Álgebra Universal e Categorias

Carla Mendes

2019/2020

Departamento de Matemática

A teoria de categorias é um ramo da matemática relativamente recente e foi desenvolvido no sentido de permitir representar de forma uniforme diferentes estruturas matemáticas dos mais diversos ramos da Matemática. A teoria de categorias permite identificar semelhanças estruturais entre diversos objetos matemáticos, que à primeira vista não parecem estar relacionados, sendo assim possível formular conceitos de grande generalidade e efetuar a prova de resultados com aplicações nas mais diversas áreas da matemática, incluindo as ciências da computação.

Categorias

Nos tempos atuais, as teorias axiomáticas desempenham um papel importante em matemática. Estas teorias são caracterizadas por conjuntos com uma determinada estrutura e por correspondências entre estes conjuntos que preservam a sua estrutura. O conceito de categoria generaliza estas teorias.

Definição

Uma categoria C é um quádruplo $(Obj(C), hom, id, \circ)$, onde

- Obj(C) é uma classe a cujos elementos se dá a designação de objetos,
- hom é uma correspondência que a cada par (A, B) de objetos de C associa um conjunto hom(A, B) a cujos elementos chamamos morfismos de A em B,
- id é uma correspondência que a cada objecto A de C associa um morfismo id $_A \in \text{hom}(A,A)$, designado por **morfismo identidade em** A,
- ∘ é uma correspondência que a cada par (f,g) de morfismos de C tais que f ∈ hom(A, B) e g ∈ hom(B, C), associa um único morfismo g ∘ f ∈ hom(A, C), designado composição de f com g,

Definição

e que satisfaz as seguintes condições satisfeitas:

(C 1) para quaisquer $A, B, C, D \in Obj(\mathbf{C})$, se $(A, B) \neq (C, D)$, então

$$\mathsf{hom}(A,B)\cap\mathsf{hom}(C,D)=\emptyset,$$

(C 2) (identidade) para quaisquer $A, B, C \in Obj(\mathbf{C})$ e para quaisquer morfismos $f \in hom(A, B)$ e $g \in hom(C, A)$,

$$f \circ id_A = f$$
 e $id_A \circ g = g$;

(C 3) (associatividade) para quaisquer $A, B, C, D \in Obj(\mathbf{C})$ e para quaisquer morfismos $f \in hom(A, B)$, $g \in hom(B, C)$ e $h \in hom(C, D)$,

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

Representaremos por Mor(C) a classe dos morfismos de C, i.e.,

$$Mor(\mathbf{C}) = \bigcup_{A,B \in Obj(\mathbf{C})} hom(A,B).$$

A um elemento de Mor(C) dá-se a designação de C-morfismo.

Dados objetos A e B de uma categoria \mathbf{C} , pode não existir qualquer morfismo de A em B ou podem existir vários.

5

Observe-se que de (C 1) resulta que a cada morfismo f de ${\bf C}$ estão univocamente associados dois objetos dom(f) e cod(f), designados respetivamente por domínio e codomínio de f. Escrevemos

$$f: A \to B$$
 ou $A \xrightarrow{f} B$

para indicar que A = dom(f) e B = cod(f);

Da definição anterior também é imediato que, para cada objeto A, existe um único morfismo identidade. De facto, se h e id $_A$ são dois morfismos identidade de A, então

$$h = h \circ id_A = id_A$$
.

Exemplos de categorias

- (i) A categoria **Pfn**: Obj(**Pfn**) é a classe de todos os conjuntos. Se X e Y são conjuntos, define-se $\hom(X,Y)$ como sendo o conjunto de todas as aplicações parciais de X em Y. A composição de morfismos é a composição usual de aplicações parciais. Se X é um conjunto, então id_X é a aplicação identidade em X.
- (ii) A categoria **Set**: Obj(**Set**) é a classe de todos os conjuntos. Se X e Y são conjuntos, define-se $\hom(X,Y)$ como sendo o conjunto de todas as aplicações de X em Y. A composição de morfismos é a composição usual de funções. Se X é um conjunto, então id_X é a aplicação identidade em X.

- (iii) A categoria **FinSet**: Obj(**FinSet**) é a classe de todos os conjuntos finitos. Se X e Y são conjuntos finitos, define-se hom(X,Y) como sendo o conjunto de todas as aplicações de X em Y. A composição de morfismos é a composição usual de funções. Se X é um conjunto, então id_X é a aplicação identidade em X.
- (iv) A categoria **Sgp**: Obj(**Sgp**) é a classe de todos os semigrupos. Dados semigrupos S e U, define-se hom(S,U) como sendo o conjunto de todos os homomorfismos de semigrupo de S em U. A composição é a composição usual de homomorfismos. Se S é um semigrupo, então id $_S$ é o morfismo identidade.

- (v) A categoria **Mon**: Obj(**Mon**) é a classe de todos os monóides. Dados monóides $S \in T$, define-se hom(S, T) como sendo o conjunto de todos os homomorfismos de $S \in T$. A composição é a composição usual de homomorfismos. Se $S \in T$ 0 é um monóide, então id $S \in T$ 1 é o morfismo identidade.
- (vi) A categoria **Grp**: Obj(**Grp**) é a classe de todos os grupos. Dados grupos G e H, define-se $\hom(G,H)$ como sendo o conjunto de todos os homomorfismos de grupo de G em H. A composição é a composição usual de homomorfismos. Se G é um grupo, então id_G é o morfismo identidade.

(vii) A categoria \mathbf{Vect}_K : $\mathbf{Obj}(\mathbf{Vect}_K)$ é a classe de todos os espaços vetoriais sobre um corpo K. Dados espaços vetoriais U e V sobre K, $\mathbf{hom}(U,V)$ é o conjunto de todas as transformações lineares de U em V. A composição de morfismos é a composição usual de transformações lineares. Se V é um espaço vetorial sobre K, \mathbf{id}_V é a transformação linear identidade.

(viii) A categoria **Poset**: Obj(**Poset**) é a classe de todos os conjuntos parcialmente ordenados. Dados conjuntos parcialmente ordenados $P \in Q$, define-se $\hom(P,Q)$ como sendo o conjunto de todas as aplicações isótonas de P em Q. A composição de morfismos é a composição usual de aplicações. Dado um conjunto parcialmente ordenado P, id $_P$ é a aplicação identidade em P.

As categorias anteriores são exemplos de categorias designadas por *categorias concretas*, isto é, tratam-se de categorias cujos objetos são conjuntos (possivelmente com algum tipo de estrutura) e cujos morfismos são funções (que eventualmente preservam a estrutura do conjunto).

- (ix) A categoria **0**: É a categoria sem objetos e sem morfismos.
- (x) A categoria 1: A categoria que tem um único objeto e um único morfismo (o morfismo identidade associado ao único objeto da categoria).
- (xi) A categoria 2: A categoria que tem dois objetos, dois morfismos identidade e um morfismo de um objeto no outro.
- (xiii) A categoria **3**: A categoria que tem três objetos (designemo-los por \star , \bullet e *), três morfismos identidade e outros três morfismos, $f: \star \to \bullet$, $g: \star \to *$ e $h: * \to \bullet$ tais que $f = h \circ g$.

Graficamente, as categorias $\mathbf{1}$, $\mathbf{2}$ e $\mathbf{3}$ podem ser representadas por

(xiii) Todo o conjunto X pode ser visto como uma categoria $\mathbf{Dis}(X)$: os objetos de $\mathbf{Dis}(X)$ são os elementos de X e os únicos morfismos são os morfismos identidade (um para cada elemento $x \in X$).

(xiv) Todo o grupo $\mathbf{G}=(G;\cdot,^{-1},1)$ também pode ser encarado como uma categoria: o único objeto da categoria é o conjunto G; os morfismos de G são os elementos de G, o morfismo identidade é a identidade de G e a composição de morfismos é a operação binária do grupo.

(xv) A categoria **Rel**: Obj(**Rel**) é a classe de todos os conjuntos. Dados conjuntos A e B, um morfismo de A em B é um subconjunto de $A \times B$ e, portanto, hom(A, B) é o conjunto de todas as relações binárias de A em B. Dado um conjunto A, o morfismo identidade em A é a relação identidade em A, id $_A = \{(a, a) : a \in A\}$. A composição de morfismos é a composição usual de relações binárias, isto é, dadas duas relações binárias $R \subseteq A \times B$ e $S \subseteq B \times C$,

$$S \circ R = \{(a, c) \in A \times C : \exists b \in B : (a, b) \in R \in (b, c) \in S\}.$$

Uma categoria **C** diz-se:

- pequena se existe uma bijeção entre Mor(C) e algum conjunto;
- **magra** se para quaisquer $A, B \in Obj(\mathbf{C})$, $|hom(A, B)| \le 1$;
- **discreta** se os únicos morfismos de **C** são os morfismos identidade.

Diagramas

A descrição de certas categorias e a prova de propriedades sobre objetos e morfismos de uma dada categoria pode tornar-se extremamente complexa. No sentido de facilitar tais descrições e a prova de determinados argumentos a respeito de categorias, é usual o recurso a representações gráficas designadas por diagramas.

Um diagrama numa categoria $\bf C$ é um grafo orientado cujos vértices representam objetos da categoria e as arestas orientadas representam morfismos da mesma categoria.

Se uma aresta representa um morfismo com domínio A e codomínio B, então o vértice origem e o vértice destino da aresta representam, respetivamente, os objetos A e B.

Os vértices e as arestas do diagrama podem ser identificados, respetivamente, pelos nomes dos objetos e pelos nomes dos morfismos aos quais estão associados.

Um diagrama pode ser usado para representar uma categoria ou pode representar apenas uma parte dos objetos e dos morfismos que definem a categoria.

Por exemplo, o diagrama seguinte

representa uma categoria com quatro objetos e onze morfismos. Note-se que, para cada objeto $X \in \{A, B, C, D\}$, existe um morfismo id_X e, para quaisquer morfismos $s \in \text{hom}(X,Y)$ e $t \in \text{hom}(Y,Z)$, com $X,Y,Z \in \{A,B,C,D\}$, existe um morfismo $t \circ s \in \text{hom}(X,Z)$.

A representação do diagrama de uma categoria pode ser simplificada suprimindo a representação de alguns morfismos. Com efeito, caso se assuma que um determinado diagrama representa uma categoria, os morfismos identidade podem ser omitidos, uma vez que é garantido que estes existem. Assim, o diagrama

$$\star \xrightarrow{f}$$

pode ser usado para representar a categoria 2.

Note-se, porém, que no caso de morfismos resultantes da composição de outros dois é necessário que fique claro qual o morfismo respeitante à composição. Por exemplo, no caso dos diagramas seguintes

o primeiro diagrama não representa uma categoria, uma vez que não há qualquer morfismo que possa corresponder ao morfismo $g\circ f$. No caso do segundo diagrama, caso se assuma que este representa uma categoria, tem se considerar $f=h\circ g$. No último caso, este diagrama não será considerado a representação de uma categoria, a não ser que se identifique qual dos morfismos I ou f corresponde ao morfismo $h\circ g$.

O recurso a diagramas para estabelecer propriedades a respeito de categorias é bastante usual e tais propriedades são geralmente expressas dizendo que um determinado diagrama comuta.

Dado um diagrama numa categoria C, diz-se que o *diagrama comuta* se, para qualquer par (A,B) de objetos do diagrama e para qualquer par $((f_1,f_2,\ldots,f_n),(g_1,g_2,\ldots,g_m))$ de caminhos de A a B, em que $m,n\in\mathbb{N}$ e pelo menos um dos caminhos tem comprimento superior a 1, tem-se $f_n\circ\ldots f_2\circ f_1=g_m\circ\ldots g_2\circ g_1$.

Por exemplo, quando se afirma que o diagrama a seguir representado comuta tal significa que $h\circ f=k$.

No caso do diagrama seguinte

diz-se que este diagrama comuta se $g \circ f = I \circ k$.

Construção de categorias

Definição

Sendo $C = (Obj(C), hom_C, id^C, \circ^C)$ e $D = (Obj(D), hom_D, id^D, \circ^D)$ categorias, diz-se que a categoria C é uma subcategoria de D se:

- Obj(C) ⊆ Obj(D);
- todo o morfismo de **C** é um morfismo de **D**:
- para qualquer $C \in Obj(\mathbf{C})$, o morfismo $id_C^{\mathbf{C}}$ de \mathbf{C} é o mesmo que morfismo $id_C^{\mathbf{D}}$ de \mathbf{D} ;
- para quaisquer **C**-morfismos $f: A \to B \ e \ g: B \to D$, o morfismo $g \circ^{\mathbf{C}} f$ de **C** é mesmo que o morfismo $g \circ^{\mathbf{D}} f$ de **D**.

Exemplo

- (1) Set é uma subcategoria de Pfn.
- (2) FinSet é uma subcategoria de Set.
- (3) AbGrp é uma subcategoria de Grp.

Definição

Uma subcategoria $\mathbf{C} = (\mathsf{Obj}(\mathbf{C}), \mathsf{hom}_{\mathbf{C}}, id^{\mathbf{C}}, \circ^{\mathbf{C}})$ de uma categoria $\mathbf{D} = (\mathsf{Obj}(\mathbf{D}), \mathsf{hom}_{\mathbf{D}}, id^{\mathbf{D}}, \circ^{\mathbf{D}})$ diz-se uma **subcategoria plena** de \mathbf{D} se, para quaisquer $A, B \in \mathsf{Obj}(\mathbf{C}), \mathsf{hom}_{\mathbf{C}}(A, B) = \mathsf{hom}_{\mathbf{D}}(A, B)$.

Definição

Sejam $C = (\mathsf{Obj}(C), \mathsf{hom}_C, \mathsf{id}^C, \circ^C)$ e $D = (\mathsf{Obj}(D), \mathsf{hom}_D, \mathsf{id}^D, \circ^D)$ categorias. Designa-se por **categoria produto de** C **por** D, e representa-se por $C \times D$, a categoria definida do seguinte modo:

- os objetos de C x D são todos os pares (A, B), onde A é um objeto de C e B é um objecto de D;
- os morfismos de hom((A, B), (A', B')) são todos os elementos da forma (f, g): (A, B) → (A', B'), onde f: A → A' é um morfismo de C e g: B → B' é um morfismo de D;
- para cada objeto (A, B) de $\mathbf{C} \times \mathbf{D}$, o morfismo identidade $\mathrm{id}_{(A, B)}$ é o par $(\mathrm{id}_A^{\mathbf{C}}, \mathrm{id}_B^{\mathbf{D}})$;
- a composição (f',g') ∘ (f,g) dos morfismos (f,g) e (f',g') de
 C × D é definida componente a componente, isto é,
 (f',g') ∘ (f,g) = (f' ∘ f,g' ∘ g).

Exemplo

Considerando grupos G e H como categorias, o produto de categorias $G \times H$ corresponde ao usual produto direto de grupos.

Definição

Seja $\mathbf C$ uma categoria. Uma relação de equivalência \sim definida em $\mathsf{Mor}(\mathbf C)$ diz-se uma **congruência** em $\mathbf C$ se, para quaisquer $f,g\in \mathsf{Mor}(\mathbf C)$,

- (1) $f \sim g \text{ implica } dom f = dom g \text{ } e \text{ cod } f = cod g;$
- (2) $f \sim g$ implica $j \circ f \circ i \sim j \circ g \circ i$, para todos os morfismos $i : A \to X$ $e j : Y \to B$, onde dom f = X = dom g e cod f = Y = cod g.

Dado $f \in Mor(\mathbf{C})$, representamos por [f] a classe de equivalência de f.

Definição

Sejam $\mathbf{C} = (\mathsf{Obj}(\mathbf{C}), \mathsf{hom}_{\mathbf{C}}, \mathsf{id}^{\mathbf{C}}, \circ^{\mathbf{C}})$ uma categoria e \sim uma congruência em \mathbf{C} . Designa-se por categoria quociente, e representa-se por \mathbf{C}/\sim , a categoria $\mathbf{C} = (\mathsf{Obj}(\mathbf{C}/\sim), \mathsf{hom}_{\mathbf{C}/\sim}, \mathsf{id}^{\mathbf{C}/\sim}, \circ^{\mathbf{C}/\sim})$ definida do seguinte modo:

- $Obj(\mathbf{C}/\sim) = Obj(\mathbf{C})$;
- os morfismos de C/ ~ são as classes de equivalência [f] de todos os morfismos f de C (o domínio e o codomomínio de [f] correspondem ao domínio e codomínio de f, respetivamente);
- para cada objeto C de \mathbb{C}/\sim , o morfismo identidade $\mathrm{id}_C^{\mathbb{C}/\sim}$ é $[\mathrm{id}_C^{\mathbb{C}}];$
- a composição $[g] \circ^{\mathbf{C}/\sim} [f]$ dos morfismos [f] e [g] é o morfismo $[g \circ^{\mathbf{C}} f]$.

Definição

Seja C uma categoria. Designa-se por categorial dual ou categoria oposta de C, e representa-se por C^{op} , a categoria definida do seguinte modo:

- $Obj(\mathbf{C}^{op}) = Obj(\mathbf{C});$
- para quaisquer $A, B \in Obj(\mathbb{C}^{op}), f : A \to B$ é um homomorfismo de \mathbb{C}^{op} se e só se $f : B \to A$ é um morfismo de \mathbb{C} ;
- os morfismos identidade de **C**^{o p} são os morfismos identidade de **C**;
- a composição g \circ f de morfismos em $\mathbf{C}^{\circ p}$ é definida como sendo f \circ g em \mathbf{C} .

Da definição anterior é imediato que $(\mathbf{C}^{op})^{op} = \mathbf{C}$.

Assim, toda a categoria é a dual de alguma categoria e toda a definição da teoria de categorias pode ser reformulada numa definição na categoria dual.

Cada afirmação S sobre categorias pode ser transformada numa afirmação dual S^{op} , trocando as palavras "domínio" e "codomínio" e substituindo cada ocorrência de $f \circ g$ por $g \circ f$.

Se S é uma afirmação verdadeira a respeito de uma categoria ${\bf C}$ então S^{op} é uma afirmação verdadeira a respeito de ${\bf C}^{op}$. Por conseguinte, é válido o princípio seguinte.

Princípio da dualidade: Se S é uma afirmação verdadeira para todas as categorias, então $S^{o\,p}$ também é uma afirmação verdadeira para todas as categorias.

Definição

Sejam $\mathbf{C} = (\mathrm{Obj}(\mathbf{C}), \mathrm{hom}_{\mathbf{C}}, id^{\mathbf{C}}, \circ^{\mathbf{C}})$ uma categoria e I um objeto de \mathbf{C} . Designa-se por categoria dos objetos sobre I, e representa-se por \mathbf{C}/\mathbf{I} , a categoria $(\mathrm{Obj}(\mathbf{C}/\mathbf{I}), \mathrm{hom}_{\mathbf{C}/\mathbf{I}}, id^{\mathbf{C}/\mathbf{I}}, \circ^{\mathbf{C}/\mathbf{I}})$ definida do seguinte modo:

- os objetos de \mathbf{C}/\mathbf{I} são todos os morfismos de \mathbf{C} com codomínio I;
- dados objetos f e g de \mathbf{C}/\mathbf{I} (isto é, dados \mathbf{C} -morfismos f : $A \to I$ e g : $B \to I$), um \mathbf{C}/\mathbf{I} -morfismo de f em g é um triplo de morfismos (f,j,g), onde j é um \mathbf{C} -morfismo de A em B tal que $g \circ^{\mathbf{C}} j = f$;
- para cada objeto $f: A \to I$ de \mathbb{C}/\mathbb{I} , o morfismo identidade id $_f^{\mathbb{C}/\mathbb{I}}$ é o triplo de \mathbb{C} -morfismos (f, id_A, f) ;
- a composição $(f_2, h, f_3) \circ (f_1, g, f_2)$ dos morfismos $(f_1, g, f_2) : f_1 \rightarrow f_2$ e $(f_2, h, f_3) : f_2 \rightarrow f_3$ de \mathbb{C}/I é o morfismo $(f_1, h \circ^{\mathbb{C}} g, f_3) : f_1 \rightarrow f_3$.

Definição

Seja $C = (\mathsf{Obj}(C), \mathsf{hom}_C, \mathsf{id}^C, \circ^C)$ uma categoria. Designa-se por categoria dos C-morfismos e representa-se por C^{\rightarrow} , a categoria $(\mathsf{Obj}(C^{\rightarrow}), \mathsf{hom}_{C^{\rightarrow}}, \mathsf{id}^{C^{\rightarrow}}, \circ^{C^{\rightarrow}})$ definida do seguinte modo:

- $\mathsf{Obj}(\mathbf{C}^{\to}) = \mathsf{Mor}(\mathbf{C});$
- dados objetos f_1 , f_2 de \mathbf{C}^{\rightarrow} (isto é, dados \mathbf{C} -morfismos $f_1: X_1 \rightarrow Y_1$ e $f_2: X_2 \rightarrow Y_2$), um morfismo de f_1 em f_2 é um par $(j: X_1 \rightarrow X_2, k: Y_1 \rightarrow Y_2)$ de \mathbf{C} -morfismos tais que $f_2 \circ^{\mathbf{C}} j = k \circ^{\mathbf{C}} f_1$;
- para qualquer \mathbb{C}^{\to} -objeto $f: X \to Y$, o morfismo identidade $\mathrm{id}_f^{\mathbb{C}^{\to}}$ é o par $(\mathrm{id}_X^{\mathbb{C}}, \mathrm{id}_Y^{\mathbb{C}})$;
- a composição $(j', k') \circ (j, k)$ dos morfismos $(j, k) : f_1 \to f_2$ e $(j', k') : f_2 \to f_3$ é o morfismo $(j' \circ^{\mathsf{C}} j, k' \circ^{\mathsf{C}} k) : f_1 \to f_3$.

Morfismos especiais

No estudo de conjuntos e funções têm especial destaque as funções que satisfazem propriedades tais como injetividade, sobrejetividade e bijetividade. Tais propriedades motivaram a definição de conceitos análogos para morfismos de categorias, os quais desempenham um papel relevante no estudo da teoria de categorias.

Definição

Sejam \mathbf{C} uma categoria e $A, B \in \mathsf{Obj}(\mathbf{C})$.

Um morfismo $f:A\to B$ de **C** diz-se um **monomorfismo** se f é cancelável à esquerda, i.e., se para quaisquer morfismos $g,h:C\to A$,

$$f \circ g = f \circ h \Rightarrow g = h$$
.

Um monomorfismo f de A em B também se diz uma **inclusão** de A em B e é usualmente representado por $f:A\mapsto B$ ou $A\stackrel{f}{\rightarrowtail}B$. Caso exista um monomorfismo de A em B, então A diz-se um **subobjeto de** B e escreve-se $A\subset B$.

Proposição

Na categoria **Set** os monomorfismos são exatamente as aplicações injetivas.

Demonstração

Seja $f:A\to B$ uma função injetiva e sejam $g,h:C\to A$ funções tais que $f\circ g=f\circ h$.

Então tem-se necessariamente g = h.

Com efeito, se admitirmos que $g \neq h$, existe $c \in C$ tal que $g(c) \neq h(c)$ e, uma vez que f é injetiva, segue que $f(g(c)) \neq f(h(c))$, o que contradiz $f \circ g = f \circ h$.

Demonstração.

Reciprocamente, admitamos que $f: A \rightarrow B$ é um momomorfismo.

Sejam $a, a' \in A$ tais que $a \neq a'$. No sentido de provar que $f(a) \neq f(a')$, consideremos um conjunto singular $\{x\}$ e as funções

$$\overline{a}: \{x\} \rightarrow A$$
 $\overline{a'}: \{x\} \rightarrow A$ $x \mapsto a'$

Uma vez que $\overline{a} \neq \overline{a'}$ e f é um monomorfismo, então $f \circ \overline{a} \neq f \circ \overline{a'}$. Assim,

$$f(a) = (f \circ \overline{a})(x) \neq (f \circ \overline{a'})(x) = f(a').$$

Logo f é injetiva.

Em muitas outras categorias nas quais os morfismos são funções, verifica-se que os monomorfismos são exatamente as funções injetivas; tal acontece, por exemplo, em muitas categorias de "conjuntos estruturados" tais como as categorias \mathbf{Grp} , \mathbf{Rng} , \mathbf{Vect}_K .

Observe-se, no entanto, que existem categorias cujos morfismos são funções e nas quais a classe dos monomorfismos não coincide com a classe das funções injetivas.

Definição

Sejam \mathbf{C} uma categoria e $A, B \in \mathsf{Obj}(\mathbf{C})$.

Um morfismo $f: A \to B$ de **C** diz-se um **epimorfismo** se f é **cancelável** à **direita**, i.e., se para quaisquer morfismos $g, h: B \to C$,

$$g \circ f = h \circ f \Rightarrow g = h$$
.

Um epimorfismo f de A em B é usualmente representado por f : A woheadrightarrow B ou $A \overset{f}{ woheadrightarrow} B$.

Caso exista um epimorfismo de A em B, então B diz-se um **objeto quociente** de A.

A noção de epimorfismo é dual da noção de monomorfismo.

Assim, um morfismo f é um epimorfismo numa categoria \mathbf{C} se e só se f é um monomorfismo na categoria dual \mathbf{C}^{op} .

O conceito de epimorfismo surge como uma abstração do conceito de função sobrejetiva e na categoria **Set** verifica-se o seguinte.

Proposição

Os epimorfismos na categoria **Set** são exatamente as funções sobrejetivas.

Demonstração

Sejam $f:A\to B$ uma função sobrejetiva e $g,h:B\to C$ funções tais que $g\ne h.$

Então, para algum $b \in B$, $g(b) \neq h(b)$ e, uma vez que f é sobrejetiva, existe $a \in A$ tal que f(a) = b.

Assim, $g(f(a)) \neq h(f(a))$ e, portanto, $g \circ f \neq h \circ f$.

Logo f é um epimorfismo.

Demonstração.

Reciprocamente, suponhamos que $f:A\to B$ não é uma função sobrejetiva.

Então existe $b \in B$ tal que, para todo $a \in A$, $b \neq f(a)$.

No sentido de provar que f não é um epimorfismo, consideremos duas funções $g,h:B\to\{0,1\}$ definidas da seguinte forma:

- (i) g(a) = h(a) = 0, para todo $a \in B$ tal que $a \neq b$,
- (ii) g(b) = 0,
- (iii) h(b) = 1.

Então $g\circ f=h\circ f$, mas $g\neq h$ e, portanto, f não é um epimorfismo. \square

Embora na categoria **Set** os epimorfimos coincidam com as funções sobrejetivas, tal não é em geral verdade para outras categorias cujos morfismos são funções.

Exemplo

Na categoria **Mon**, consideremos os monóides $(\mathbb{Z}, +, 0)$ e $(\mathbb{N}_0, +, 0)$.

A função de inclusão i : $\mathbb{N}_0 \to \mathbb{Z}$, que a cada inteiro não negativo z associa o inteiro z, é um monomorfismo.

Esta função também é um epimorfismo, pois assumindo que g e h são dois morfismos do monóide $(\mathbb{Z};+,0)$ num monóide $(E;*,1_E)$ tais que $g\circ i=h\circ i$, prova-se que g=h.

No entanto, a função i não é sobrejetiva.

Proposição

Sejam **C** uma categoria e $f: A \rightarrow B$, $g: B \rightarrow C$ morfismos de **C**.

- (1) Para qualquer objeto A de \mathbf{C} , id_A é um monomorfismo e um epimorfismo.
- (2) Se f e g são monomorfismos (respetivamente, epimorfismos), então g o f é um monomorfismo (respetivamente, epimorfismo).
- (3) Se $g \circ f$ é um monomorfismo (respetivamente, epimorfismo), então f é um monomorfismo (respetivamente, g é um epimorfismo).

Demonstração

(2) Sejam $i: D \to A$ e $j: D \to A$ morfismos de **C** tais que $(g \circ f) \circ i = (g \circ f) \circ j$. Pretendemos mostrar que i = j.

Ora, assumindo que $(g \circ f) \circ i = (g \circ f) \circ j$, então, por associatividade, tem-se $g \circ (f \circ i) = g \circ (f \circ j)$.

Uma vez que g é um monomorfismo, segue que $f \circ i = f \circ j$.

Por último, atendendo a que f é um monomorfismo tem-se i=j.

Demonstração.

(3) Suponhamos que $g \circ f$ é um monomorfismo.

Pretendemos mostrar que, para quaisquer $i:D\to A$ e $j:D\to A$, se $f\circ i=f\circ j$, então i=j.

De facto, se $f \circ i = f \circ j$, então $g \circ (f \circ i) = g \circ (f \circ j)$.

Por conseguinte, $(g \circ f) \circ i = (g \circ f) \circ j$ e atendendo a que $g \circ f$ é um monomorfismo vem que i = j.

Definição

Sejam C uma categoria. Um morfismo $f:A\to B$ de C diz-se um bimorfismo se é simultanemente um monomorfismo e um epimorfismo.

Definição

Sejam C uma categoria e $f: A \rightarrow B$ um morfismo de C. Diz-se que:

- f é invertível à direita se existe um morfismo g : B → A de C tal que f ∘ g = id_B; neste caso, o morfismo g diz-se um um inverso direito de f.
- f é invertível à esquerda se existe um morfismo g : B → A de C tal que g ∘ f = id_A; neste caso, o morfismo g diz-se um um inverso esquerdo de f .

Sejam ${\bf C}$ uma categoria e $f:A\to B$ e $g:B\to A$ morfismos de ${\bf C}$.

Então $f:B\to A$ e $g:A\to B$ são morfismos de ${\bf C}^{op}$.

Assim, se $g \circ f = id_A$ em **C**, tem-se $f \circ g = id_A$ em **C**^{op}.

Por conseguinte, os conceitos de inverso direito e inverso esquerdo são duais.

Proposição

Sejam $f: A \rightarrow B \ e \ g: B \rightarrow C \ morfsmos \ numa \ categoria \ {\bf C}.$

- (1) Para todo $A \in Obj(\mathbf{C})$, id_A é invertível à direita e à esquerda.
- (2) Se f e g são invertíveis à direita (respetivamente, esquerda), então g o f é invertível à direita (respetivamente, esquerda).
- (3) Se g o f é invertível à direita (respetivamente, esquerda), então g é invertível à direita (respetivamente, f é invertível à esquerda).

Observe-se que existem morfismos que podem não ter qualquer inverso esquerdo.

Na categoria \mathbf{Set} , a função $f:\{0,1\} o \{1\}$ definida por

$$f(0)=f(1)=1$$

não tem inverso esquerdo.

Verifica-se também que um mesmo morfismo pode ter mais do que um inverso esquerdo.

Se consideramos na categoria Set a função

$$\begin{array}{cccc} f: \left\{0,1\right\} & \rightarrow & \left\{0,1,2\right\} \\ 0 & \mapsto & 0 \\ 1 & \mapsto & 1 \end{array},$$

então as funções

são inversos esquerdos de f.

Proposição

Na categoria **Set**, todo o monomorfismo com domínio não vazio é invertível à esquerda e todo o epimorfismo é invertível à direita.

Demonstração

Seja $f:A\to B$ um monomorfismo com domínio não vazio.

Então $A \neq \emptyset$ e f é injetiva.

Por conseguinte, é possível definir uma função $g: B \to A$, da seguinte forma: g(f(a)) = a, para todo $a \in A$ e $g(b) = a_0$, se $b \notin f(A)$, com a_0 elemento fixo em A.

A função g é um inverso esquerdo de f.

Demonstração.

Se $f:A\to B$ é um epimorfismo, então f é sobrejetiva.

Neste caso, pode definir-se uma função $h:B\to A$ da seguinte forma: para todo $b\in B$, h(b)=a, onde a é um elemento fixo em A tal que f(a)=b.

Esta função h é um inverso direito de f. Note-se que se f não é injetiva, este inverso não é único.

57

O resultado anterior não é, porém, válido em geral, ou seja, nem todo o monomorfismo é um morfismo invertível à esquerda e nem todo o epimorfismo é invertível à direita.

Por exemplo, na categoria 2, o único morfismo de um objeto no outro é um epimorfismo e um monomorfismo, mas não tem nem inverso direito nem inverso esquerdo.

Proposição

Seja $f: A \rightarrow B$ um morfismo numa categoria C.

- (1) Se f é invertível à esquerda, então f é um monomorfismo.
- (2) Se f é invertível à direita, então f é um epimorfismo.

Proposição

Seja $f:A\to B$ um morfismo numa categoria ${\bf C}$. Se $g:B\to A$ é um inverso direito de f e $h:B\to A$ é um inverso esquerdo de f, então g=h.

Demonstração.

Seja $f:A\to B$ um morfismo em ${\bf C}$ tal que $g:B\to A$ é um inverso direito de f e $h:B\to A$ é um inverso esquerdo de f. Então

$$g = id_A \circ g = (h \circ f) \circ g = h \circ (f \circ g) = h \circ id_B = h.$$

Definição

Um morfismo $f: A \to B$ de uma categoria $\mathbf C$ diz-se um **isomorfismo** ou um **morfismo invertível** se é simultaneamente invertível à direita e à esquerda. Um isomorfismo f de A em B é usualmente representado por $f: A \stackrel{\leadsto}{\longrightarrow} B$.

Exemplo

- (1) Na categoria **Set**, os isomorfismos são exatamente as funções bijetivas.
- (2) Na categoria **Grp**, os isomorfismos são os homomorfismos de grupo bijetivos.

Proposição

Seja C uma categoria.

- (1) Para todo $A \in \mathsf{Obj}(\mathbf{C})$, $\mathsf{id}_A \not\in \mathit{um} \ \mathit{isomorfismo}$.
- (2) Se $f:A\to B$ é um isomorfismo, então existe um único morfismo $g:B\to A$ tal que $g\circ f=\operatorname{id}_A$ e $f\circ g=\operatorname{id}_B$.

Definição

Seja $f:A\to B$ um isomorfismo numa categoria ${\bf C}$. Designa-se por **inverso de** f, e representa-se por f^{-1} , o único morfismo $f^{-1}:B\to A$ tal que $f^{-1}\circ f=\operatorname{id}_A$ e $f\circ f^{-1}=\operatorname{id}_B$.

Proposição

Se $f: A \to B$ é um isomorfismo numa categoria \mathbf{C} , então $f^{-1}: B \to A$ também é um isomorfismo.

Caso exista um isomorfismo de um objeto A num objeto B também existe um isomorfismo de B em A.

Assim, caso exista um isomorfismo de um objeto A num objeto B diz-se apenas que os objetos A e B são isomorfos e escreve-se $A \cong B$.

Proposição

Sejam $f:A\to B$ e $g:B\to C$ isomorfismos numa categoria ${\bf C}$. Então $g\circ f$ é um isomorfismo e o seu inverso é $f^{-1}\circ g^{-1}$.

Proposição

Seja $f: A \to B$ um morfismo numa categoria C.

Se f é um monomorfismo (respetivamente, epimorfismo) e é invertível à direita (respetivamente, invertível à esquerda), então f é um isomorfismo.

Demonstração.

Seja $f: A \rightarrow B$ um monomorfismo invertível à direita.

Então existe $g: B \to A$ tal que $f \circ g = id_B$.

 $\mathsf{Logo}\;(f\circ g)\circ f=\mathsf{id}_{B}\circ f=f,\,\mathsf{donde}\;f\circ (g\circ f)=f\circ \mathsf{id}_{A}.$

Por conseguinte, atendendo a que f é um monomorfismo, tem-se

$$g \circ f = id_A$$
.

Assim, g é simultaneamente um inverso direito e um inverso esquerdo de f e, portanto, f é um isomorfismo.

Observe-se que todo o isomorfismo é um bimorfismo.

Contudo, um bimorfismo não é necessariamente um isomorfismo.

Na categoria **Mon** é possível encontrar bimorfismos que não são isomorfismos. De facto, $(\mathbb{N}_0,+,0)$ e $(\mathbb{Z},+,0)$ são objetos desta categoria e a função $i:\mathbb{N}_0\to\mathbb{Z}$, que a cada inteiro não negativo z associa o respetivo inteiro z, não é invertível, mas é um monomorfismo e um epimorfismo.

Definição

Uma categoria **C** diz-se **equilibrada** se todo o bimorfismo é um isomorfismo.

Exemplo

A categoria **Set** é equilibrada, mas a categoria **Mon** não é.

Objetos iniciais, objetos terminais

Nesta secção consideram-se caracterizações abstratas do conjunto vazio e dos conjuntos singulares da categoria **Set** e de outros objetos estruturalmente similares existentes em outras categorias.

Definição

Seja C uma categoria.

- Um objeto I de C diz-se um **objeto inicial** se, para qualquer objeto X de C, existe um, e um só, morfismo $I \rightarrow X$.
- Um objeto T de C diz-se um objeto terminal se, para qualquer objeto X de C, existe um, e um só, morfismo X → T.

Exemplo

- (1) Na categoria **Set**, o conjunto vazio é um objeto inicial e qualquer conjunto singular $\{x\}$ é um objeto terminal. Note-se que a categoria **Set** tem um único objeto inicial e tem vários objetos terminais.
- (2) Na categoria **Grp**, um grupo trivial é um objeto inicial e terminal.
- (3) Na categoria **Poset**, qualquer c.p.o. $(\{x\}, \{(x,x)\})$ é um objeto terminal.

Exemplo

- (4) Considerando o c.p.o. (\mathbb{N}_0, \leq) como uma categoria, o inteiro zero é o único objeto inicial e não existem objetos terminais. O c.p.o. (\mathbb{Z}, \leq) não tem objetos iniciais nem objetos terminais.
- (5) Um c.p.o., encarado como uma categoria, tem objeto inicial se e só se tem elemento mínimo e tem objeto terminal se e só se tem elemento máximo.

Os exemplos anteriores permitem perceber que certas categorias não têm qualquer objeto inicial nem qualquer objeto terminal e que em outros casos a mesma categoria pode ter vários objetos iniciais ou vários objetos terminais. Caso uma determinada uma categoria tenha mais do que um objeto inicial (respetivamente, terminal) prova-se que este é único a menos de isomorfismo.

Proposição

Os objetos iniciais (respetivamente, terminais) de uma categoria \mathbf{C} , caso existam, são únicos a menos de isomorfismo. Reciprocamente, se I é um objeto inicial (respetivamente, terminal) e $I\cong J$, então J é um objeto inicial (respetivamente, terminal).

Demonstração.

Se I e J são objetos iniciais numa categoria ${\bf C}$, então existem morfismos únicos $f:I\to J$ e $g:J\to I$.

Por conseguinte, $g \circ f$ é um morfismo de I em I.

Outro morfismo de I em I é o morfismo identidade id $_I$.

Mas, atendendo a que I é um objeto inicial, existe um único morfismo de I em I; logo $g \circ f = \mathrm{id}_I$.

De modo análogo tem-se $f\circ g=\operatorname{id}_J$. Logo g é inverso direito e inverso esquerdo de f e, portanto, f é um isomorfismo.

Assim, $I \cong J$.

Demonstração.

Reciprocamente, sejam I e J objetos de ${\bf C}$ tais que I é um objeto inicial e $I\cong J$.

Então existe um isomorfismo $i:I\to J$ e, para cada objeto X de ${\bf C}$, existe um único morfismo $f:I\to X$.

Logo existe um morfismo $f\circ i^{-1}:J\to X$ e prova-se que este é o único **C**-morfismo de J em X .

De facto, se $g:J\to X$ é um morfismo em ${\bf C}$, tem-se $g\circ i:I\to X$ e, por conseguinte, $g\circ i=f$.

Logo $g = f \circ i^{-1}$.

Assim, para cada objeto X de \mathbb{C} , existe um único \mathbb{C} -morfismo $J \to X$ e, portanto, J é um objeto inicial de \mathbb{C} .

Nos exemplos anteriores verificou-se que um mesmo objeto pode ser simultaneamente inicial e terminal.

Definição

Um objecto 0 numa categoria **C** que seja simultaneamente inicial e terminal diz-se um **objeto zero**.

Proposição

Sejam **C** uma categoria, 0 e 0' objetos zero e A, B objetos de **C**. Então o diagrama

$$\begin{array}{ccc}
0 & \xrightarrow{\xi^B} & B \\
\downarrow \xi_A & & & \downarrow \xi'^E \\
A & & & \downarrow \xi'_A & 0'
\end{array}$$

comuta; i.e., $\xi^B \circ \xi_A = {\xi'}^B \circ {\xi'}_A$.

Demonstração.

Como 0 e 0' são objetos zero, existe um isomorfismo entre eles. Seja $f:0\to0'$ esse isomorfismo. Então

$$f \circ \xi_A = \xi'_A$$
 e ${\xi'}^B \circ f = \xi^B$,

donde

$$\xi_A = f^{-1} \circ \xi'_A$$
 e $\xi^B = {\xi'}^B \circ f$.

Logo

$$\xi^{B} \circ \xi_{A} = ({\xi'}^{B} \circ f) \circ (f^{-1} \circ {\xi'}_{A}) = {\xi'}^{B} \circ (f \circ f^{-1}) \circ {\xi'}_{A} = {\xi'}^{B} \circ {\xi'}_{A}.$$

77

Definição

Sejam **C** uma categoria, 0 um objeto zero de **C**, A e B objetos de **C**, $\xi_A:A\to 0$ o único morfismo de A em 0 e $\xi^B:0\to B$ o único morfismo de 0 em B. Chama-se **morfismo nulo** de A em B ao morfismo $\xi^B\circ\xi_A$.

A proposição anterior garante que numa categoria com objeto zero, para quaisquer dois objetos A e B da categoria, existe um único morfismo nulo de A em B que representamos por $0_{A,B}$.

Exemplo

Na categoria Grp , se H e G são grupos, $\{1_G\}$ é um objeto zero e o morfismo

$$\begin{array}{ccc}
0_{H,G}: H & \to & G \\
x & \mapsto & 1_G
\end{array}$$

é o morfismo nulo de H em G.

Proposição

Seja **C** uma categoria com objeto zero. A composta de um morfismo nulo com qualquer outro morfismo é ainda um morfismo nulo.

Produtos e coprodutos

As noções que a seguir se apresentam permitem caracterizar de forma abstrata conceitos bem conhecidos tais como produto cartesiano de conjuntos, produto direto de álgebras e união disjunta de conjuntos.

Definição

Sejam ${\bf C}$ uma categoria e A_1 , A_2 objetos de ${\bf C}$. Chama-se **produto de** A_1 e A_2 a um par $(P,(p_i)_{i\in\{1,2\}})$, onde P é um objeto de ${\bf C}$ e $p_1:P\to A_1$ e $p_2:P\to A_2$ são ${\bf C}$ -morfismos tais que, para cada objeto S de ${\bf C}$ e para quaisquer ${\bf C}$ -morfismos $f_1:S\to A_1$ e $f_2:S\to A_2$, existe um único ${\bf C}$ -morfismo $u:S\to P$ tal que $p_1\circ u=f_1$ e $p_2\circ u=f_2$, i.e., tal que o diagrama seguinte comuta

O morfismo p_i designa-se por **projeção de índice** i.

Exemplo

- (1) Na categoria **Set**, o par $(A_1 \times A_2, (p_1, p_2))$, onde $A_1 \times A_2$ é o produto cartesiano dos conjuntos A_1 e A_2 e p_i : $A_1 \times A_2 \rightarrow A_i$, $i \in \{1, 2\}$, é a projeção-i, é um produto dos objetos A_1 e A_2 .
- (2) Na categoria Grp , o par $(\mathcal{G}_1 \times \mathcal{G}_2, (p_1, p_2))$, onde $\mathcal{G}_1 \times \mathcal{G}_2$ é o produto direto dos grupos \mathcal{G}_1 e \mathcal{G}_2 e p_i : $G_1 \times G_2 \to G_i$, $i \in \{1, 2\}$, é a projeção-i, é um produto dos objetos \mathcal{G}_1 e \mathcal{G}_2 .

Exemplo

(3) Considerando um conjunto parcialmente ordenado P como uma categoria, o produto de dois elementos $p, q \in P$ é um elemento $p \times q \in P$, juntamente com projeções

$$p \times q \le p$$
$$p \times q \le q$$

tais que, para qualquer elemento $s \in P$, se

$$s \leq p \ e \ s \leq q$$
,

então $s \leq p \times q$; ou seja, $p \times q$ é o ínfimo de $\{p, q\}$.

Proposição

O produto de dois objetos de uma categoria é único a menos de isomorfismo.

Demonstração.

Sejam **C** uma categoria, A_1 , A_2 objetos de **C** e $(P, (p_i)_{i \in \{1,2\}})$ e $(Q, (q_i)_{i \in \{1,2\}})$ produtos de A_1 e A_2 .

Então, uma vez que Q é um produto de A_1 e A_2 , existe um único morfismo $i:P\to Q$ tal que $q_1\circ i=p_1$ e $q_2\circ i=p_2$.

De forma análoga, como P é um produto de A_1 e A_2 , existe um único morfismo $j:Q\to P$ tal que $p_1\circ j=q_1$ e $p_2\circ j=q_2$.

Demonstração.

Assim, $p_1 \circ j \circ i = p_1$ e $p_2 \circ j \circ i = p_2$. Mas, atendendo a que $p_1 \circ \mathrm{id}_P = p_1$ e $p_2 \circ \mathrm{id}_P = p_2$, resulta da condição de unicidade que $j \circ i = \mathrm{id}_P$. De forma similar prova-se que $i \circ j = \mathrm{id}_Q$. Logo $i : P \to Q$ é um isomorfimo.

Nas condições da definição anterior, e caso exista o produto dos objetos A_1 e A_2 , o objeto P é usualmente representado por $A_1 \times A_2$ e o morfismo u, univocamente determinado pelos morfismos f_1 , f_2 , é representado por $< f_1, f_2 >$.

Definição

Sejam \mathbf{C} uma categoria e $(A_i)_{i\in I}$ uma família de objetos de \mathbf{C} . Chama-se **produto de** $(A_i)_{i\in I}$ a um par $(P,(p_i)_{i\in I})$, onde P é um objeto de \mathbf{C} e $p_i:P\to A_i,\ i\in I,\ são\ \mathbf{C}$ -morfismos tais que, para cada $S\in O$ bj (\mathbf{C}) e para cada família $\{f_i:S\to A_i\}_{i\in I}$ de \mathbf{C} -morfismos, existe um único \mathbf{C} -morfismo $u:S\to P$ tal que $p_i\circ u=f_i$, para todo $i\in I$.

Nas condições da definição anterior, se |I|=n, $n\in\mathbb{N}_0$, o produto $(P,(p_i)_{i\in I})$ diz-se n-ário; em particular, se |I|=0,1,2 ou 3 o produto diz-se *nulário*, *unário*, *binário* ou *ternário*, respetivamente.

Observe-se que os produtos nulários de uma categoria coincidem com os objetos terminais.

De facto, se $(P,(p_i)_{i\in\emptyset})$ é um produto de uma família $(A_i)_{i\in\emptyset}$ de objetos de uma categoria ${\bf C}$, então P é um objeto de ${\bf C}$ tal que, para qualquer objeto S de ${\bf C}$, existe um único morfismo $u:S\to P$. Reciprocamente, se P é um objeto terminal, então $(P,(p_i)_{i\in\emptyset})$ é um produto nulário.

Os produtos unários existem para qualquer objeto A de uma categoria C; com efeito, $(A, (id_A))$ é um produto de (A).

Definição

Se C é uma categoria em que toda a família finita de objetos tem produto, diz-se que C tem produtos finitos. Se C é uma categoria em que toda a família de objetos tem produto, diz-se que C tem produtos.

Dualmente, define-se o coproduto de dois objetos de uma categoria **C**.

Definição

Sejam ${\bf C}$ uma categoria e A_1 , A_2 objetos de ${\bf C}$. Chama-se **coproduto de** A_1 **e** A_2 a um par $(Q,(i_j)_{j\in\{1,2\}})$, onde Q é um objeto de ${\bf C}$ e $i_1:A_1\to Q$ e $i_2:A_2\to Q$ são ${\bf C}$ -morfismos tais que, para cada $Z\in O$ b $j({\bf C})$ e para quaisquer ${\bf C}$ -morfismos $g_1:A_1\to Z$ e $g_2:A_2\to Z$, existe um único morfismo $v:Q\to Z$ tal que $v\circ i_1=g_1$ e $v\circ i_2=g_2$, i.e., tal que o diagrama seguinte comuta

O morfismo i, designa-se por injeção de índice j.

Proposição

O coproduto de dois objetos de uma categoria é único a menos de isomorfismo.

Caso exista o coproduto $(Q,(i_j)_{j\in\{1,2\}})$ de dois objetos A_1 e A_2 de uma categoria ${\bf C}$, o objeto Q é usualmente representado por A_1+A_2 e o morfismo v, referido na definição anterior e univocamente determinado pelos morfismos g_1 e g_2 , é representado por $[g_1,g_2]$.

Exemplo

(1) Na categoria **Set**, o coproduto de dois conjuntos A_1 e A_2 corresponde à sua união disjunta, onde $A_1 + A_2$ pode ser definido, por exemplo, por

$$A_1 + A_2 = \{(a, 1) : a \in A_1\} \cup \{(a, 2) | a \in A_2\}$$

e cujas funções injeção são naturalmente definidas por

$$i_1(a) = (a, 1) e i_2(a) = (a, 2).$$

Exemplo

Dadas funções g₁ e g₂ nas condições descritas no diagrama seguinte

define-se

$$[g_1, g_2](x, \delta) = \begin{cases} g_1(x) \text{ se } \delta = 1\\ g_2(x) \text{ se } \delta = 2 \end{cases}$$

Então, se $h: A_1+A_2 \to Z$ é uma função tal que $h \circ i_1=g_1$ e $h \circ i_2=g_2$, tem-se $h(x,\delta)=[g_1,g_2](x,\delta)$, para qualquer $(x,\delta)\in A_1+A_2$.

Exemplo

(2) Considerando um conjunto parcialmente ordenado P como uma categoria, o coproduto de dois elementos $p, q \in P$ é um elemento $p+q \in P$, juntamente com injeções

$$p \le p + q$$

 q

tais que, para qualquer elemento $z \in P$, se

$$p \le z e q \le z$$
,

então $p+q \le z$; ou seja, p+q é o supremo de $\{p,q\}$.

Definição

Sejam \mathbf{C} uma categoria e $(A_j)_{j\in J}$ uma família de objetos de \mathbf{C} . Chama-se coproduto de $(A_j)_{j\in J}$ a um par $(Q;(i_j)_{j\in J})$, onde Q é um objeto de \mathbf{C} e $i_j:A_j\to Q$, $j\in J$, são \mathbf{C} -morfismos tais que, para cada $Z\in Obj(\mathbf{C})$ e para cada família $\{g_j:A_j\to Z\}_{j\in J}$ de \mathbf{C} -morfismos, existe um único \mathbf{C} -morfismo $v:Q\to Z$ tal que $v\circ i_j=g_j$, para todo $j\in J$.

Um coproduto $(Q, (q_i)_{i \in J})$ diz-se n-ário se |J| = n, $n \in \mathbb{N}_0$; se |J| = 0, 1, 2 ou 3 o coproduto diz-se **nulário**, **unário**, **binário** ou **ternário**, respetivamente.

Os coprodutos nulários de uma categoria coincidem com os objetos iniciais e os coprodutos unários existem para qualquer objeto $\cal A$ de uma categoria $\cal C$.

Definição

Se C é uma categoria em que toda a família finita de objetos tem coproduto diz-se que C tem coprodutos finitos. Se C é uma categoria em que toda a família de objetos tem coproduto diz-se que C tem coprodutos.

Igualizadores e coigualizadores

A noção de igualizador generaliza conceitos tais como o de kernel de um homomorfismo de grupo e a noção de coigualizador generaliza o conceito de conjunto quociente por uma relação de equivalência.

Definição

Sejam ${\bf C}$ uma categoria e $f,g:A\to B$ morfismos de ${\bf C}$. Um par (I,i), onde I é um objeto de ${\bf C}$ e $i:I\to A$ é um ${\bf C}$ -morfismo, diz-se um igualizador de f e g se:

- (i) $f \circ i = g \circ i$;
- (ii) para qualquer morfismo $i':I'\to A$ tal que $f\circ i'=g\circ i'$, existe um único morfismo $u:I'\to I$ tal que $i\circ u=i'$

Definição

Sejam \mathbf{C} uma categoria, I um objeto de \mathbf{C} e $i:I \to A$ um morfismo em \mathbf{C} . Diz-se que (I,i) é um **igualizador** em \mathbf{C} se existem morfismos $f:A \to B$ e $g:A \to B$ tais que (I,i) é um igualizador de f e g. Diz-se que a categoria \mathbf{C} tem **igualizadores** se para qualquer par de \mathbf{C} -morfismos $f,g:A \to B$ existe um igualizador.

Exemplo

(1) Na categoria \mathbf{Set} , sejam $f,g:A\to B$ funções e seja

$$I = \{a \in A : f(a) = g(a)\}.$$

Então o par (I, i), onde i é a função inclusão de I em A

$$i: I \rightarrow A$$
 $x \mapsto x$

é um igualizador de f e g.

Exemplo

(2) Na categoria Grp , sejam $\mathcal{G}_1=(G_1;\cdot,^{-1},1_{G_1})$ e $\mathcal{G}_2=(G_2;\cdot,^{-1},1_{G_2})$ grupos, $f:\mathcal{G}_1\to\mathcal{G}_2$ um homomorfismo de grupos, $\phi:\mathcal{G}_1\to\mathcal{G}_2$ o homomorfismo trivial (i.e., o homomorfismo que a cada elemento de G_1 associa o elemento neutro de G_2) e seja

 $I=\{x\in G_1: f(x)=\phi(x)=1_{G_2}\}$. Então o par (I,i), onde i é a função inclusão de I em G_1

$$i: I \rightarrow G_1$$
 $x \mapsto x$

é um igualizador de f e ϕ .

Proposição

Sejam ${\bf C}$ uma categoria, A e I objetos de ${\bf C}$ e $i:I\to A$ um ${\bf C}$ -morfismo. Se (I,i) é um igualizador em ${\bf C}$, então i é um monomorfismo.

Demonstração

Seja $(I, i: I \to A)$ um igualizador em **C**. Então existem **C**-morfismos $f: A \to B$ e $g: A \to B$ tais que (I, i) é um igualizador de f e g.

Pretendemos mostrar que i é um monomorfismo, ou seja, que para quaisquer ${\bf C}$ -morfismos $k:C\to I$ e $h:C\to I$,

$$i \circ k = i \circ h \Rightarrow k = h$$
.

De facto, se $k:C\to A$ e $h:C\to A$ são **C**-morfismos tais que $i\circ k=i\circ h$ e se considerarmos $z=i\circ k=i\circ h$

Demonstração.

tem-se

$$f \circ z = f \circ (i \circ k) = (f \circ i) \circ k = (g \circ i) \circ k = g \circ (i \circ k) = g \circ z.$$

Mas (I,i) é um igualizador de f e g e, por conseguinte, existe um único morfismo $u:C\to I$ tal que $i\circ u=z$. Então, como $i\circ k=i\circ h=z$ resulta que k=h=u.

Proposição

Sejam ${\bf C}$ uma categoria, A e I objetos de ${\bf C}$ e $i:I\to A$ um ${\bf C}$ -morfismo. Se (I,i) é um igualizador em ${\bf C}$ e i é um epimorfismo, então i é um isomorfismo.

Demonstração

Sejam $(I,i:I\to A)$ um igualizador em ${\bf C}$ e $f:A\to B$ e $g:A\to B$ morfismos dos quais (I,i) é um igualizador. Então $f\circ i=g\circ i$. Se i é um epimorfismo segue que f=g, donde $f\circ {\rm id}_A=g\circ {\rm id}_A$.

Demonstração.

Atendendo a que (I,i) é um igualizador de f e g, existe um único morfismo $u:A\to I$ tal que $i\circ u=\mathrm{id}_A$, donde resulta que $i\circ u\circ i=\mathrm{id}_A\circ i=i=i\circ\mathrm{id}_I$. Então, como todo o igualizador é um monomorfismo, segue que $u\circ i=\mathrm{id}_I$. Logo u é um inverso direito e um inverso esquerdo de i e, portanto, i é um isomorfismo.

Proposição

Sejam $f:A\to B$ e $g:A\to B$ morfismos de uma categoria ${\bf C}$. Se $(I,i:I\to A)$ e $(I',i':I'\to A)$ são igualizadores de f e g, então I e I' são isomorfos.

Definição

Sejam **C** uma categoria com objeto zero 0, N um objeto de **C** e $f:A\to B$ um **C**-morfismo. Diz-se que N é um **núcleo de f** (ou um **kernel de** f) se existe algum **C**-morfismo $i:N\to A$ tal que (N,i) é um igualizador de f e $0_{A,B}$.

Da definição anterior resulta imediatamente que dois núcleos de um morfismo $f:A\to B$ são isomorfos. O nucleo de f (kernel de f) é, usualmente, representado por Nucf (ou kerf).

Proposição

Se $f:A\to B$ é um monomorfismo numa categoria com objeto zero 0, então Nucf=0.

Definição

Sejam **C** uma categoria e $f, g: A \to B$ morfismos de **C**. Um par (K, k), onde K é um objeto de **C** e $k: B \to K$ é um **C**-morfismo, diz-se um **coigualizador de** f **e** g se:

- (i) $k \circ f = k \circ g$;
- (ii) para qualquer **C**-morfismo $k': B \to K'$ tal que $k' \circ f = k' \circ g$, existe um único morfismo $v: K \to K'$ tal que $v \circ k = k'$.

Definição

Sejam \mathbf{C} uma categoria, K um objeto de \mathbf{C} e $k:B\to K$ um morfismo em \mathbf{C} . Diz-se que (K,k) é um coigualizador em \mathbf{C} se existem morfismos $f:A\to B$ e $g:A\to B$ tais que (K,k) é um coigualizador de f e g. Diz-se que a categoria \mathbf{C} tem coigualizadores se para qualquer par de \mathbf{C} -morfismos $f,g:A\to B$ existe um coigualizador.

Sendo o conceito de coigualizador dual da noção de igualizador, são imediatos os resultados seguintes.

Proposição

Sejam C uma categoria, K um objeto de C e $k: B \to K$ um morfismo em C. Se (K, k) é um coignalizador em C, então k é um epimorfismo.

Proposição

Sejam \mathbf{C} uma categoria, K um objeto de \mathbf{C} e k: $B \to K$ um morfismo em \mathbf{C} . Se (K,k) é um coigualizador em \mathbf{C} e k é um monomorfismo, então k é um isomorfismo.

Proposição

Sejam $f:A\to B$ e $g:A\to B$ morfismos de uma categoria ${\bf C}$. Se $(K,k:B\to K)$ e $(K',k':B\to K')$ são coigualizadores de f e g, então K e K' são isomorfos.

Definição

Sejam C uma categoria com objeto zero 0, K um objeto de C e $f:A\to B$ um morfismo de C. Diz-se que K é um **conúcleo de f** (ou um **cokernel de** f) se existe um C-morfismo $k:B\to K$ tal que (K,k) é um coigualizador de f e $0_{A,B}$.

O conceito de conúcleo é dual do conceito de núcleo, pelo que os resultados estabelecidos para núcleos podem ser dualizados para conúcleos.

Produto fibrado e soma amalgamada

O conceito de produto fibrado, frequentemente utilizado em matemática, generaliza conceitos tais como o de interseção e de imagem inversa. A noção de soma amalgada é a noção dual de produto fibrado.

Definição

Sejam ${\bf C}$ uma categoria e $f:A\to C$ e $g:B\to C$ morfismos de ${\bf C}$. Chama-se **produto fibrado** de (f,g) (ou **pullback** de (f,g)) a um par (P,(f',g')), onde P é um objeto de ${\bf C}$ e $f':P\to A$ e $g':P\to B$ são morfismos de ${\bf C}$ tais que

(i) $f \circ f' = g \circ g'$, i.e., tais que o diagrama seguinte comuta

Definição

(ii) para quaisquer morfismos $i: X \to A$ e $j: X \to B$ tais que $f \circ i = g \circ j$, existe um único morfismo $k: X \to P$ tal que $i = f' \circ k$ e $j = g' \circ k$.

Se (P, (f', g')) é um produto fibrado de (f, g), o diagrama apresentado na alínea (i) da definição anterior diz-se um **quadrado de produto fibrado** ou **quadrado cartesiano**.

Diz-se que uma categoria **C tem produtos fibrados** se existe produto fibrado para qualquer par de morfismos que tenham o mesmo codomínio.

Proposição

Sejam \mathbf{C} uma categoria e $f: A \to C$ e $g: B \to C$ morfismos de \mathbf{C} . Se (O, (f', g')) e (Q, (f'', g'')) são produtos fribrados de (f, g), então O e Q são isomorfos.

Exemplo

(1) Na categoria **Set**, sejam A, B, C conjuntos e $f: A \to C$ e $g: B \to C$ funções. Então o produto fibrado de (f,g) é o par (P,(f',g')), onde

$$P = \{(a, b) \mid a \in A, b \in B, f(a) = g(b)\}$$

e f' : $P \to A$ e g' : $P \to B$ são as funções definidas, para todo $(a,b) \in P$, por

$$f'(a, b) = a e g'(a, b) = b.$$

Exemplo

(2) Nas condições do exemplo anterior se consideramos que $A, B \subseteq C$ e que f e g são, respetivamente, as funções inclusão $i_1: A \to C$ e $i_2: B \to C$, tem-se

$$P = \{(a,b) | a \in A, b \in B, f(a) = g(b)\}$$

= \{(a,b) | a \in A, b \in B, i_1(a) = i_2(b)\}
= \{(a,b) | a \in A, b \in B, a = b\}

e, portanto, $P \cong A \cap B$.

Exemplo

(3) Se em (1) tomarmos B = C e $g = id_B$, então

$$P = \{(a, c) | a \in A, c \in C, f(a) = g(c)\}$$

$$= \{(a, c) | a \in A, c \in C, f(a) = c)\}$$

$$\cong \{a \in A | \exists c \in C, f(a) = c\}$$

$$= f^{\leftarrow}(C).$$

Proposição

Sejam C uma categoria e

um quadrado cartesiano. Se f é um monomorfismo, então j também o é.

Demostração

Suponhamos que $u, v: B \to A$ são dois morfismos de ${\bf C}$ tais que $j \circ u = j \circ v$. Então

$$f \circ (i \circ u) = (f \circ i) \circ u$$

$$= (g \circ j) \circ u$$

$$= g \circ (j \circ u)$$

$$= g \circ (j \circ v)$$

$$= (g \circ j) \circ v$$

$$= (f \circ i) \circ v$$

$$= f \circ (i \circ v)$$

e, uma vez que f é monomorfismo, vem que $i \circ u = i \circ v$.

Demonstração.

Assim, o diagrama

é comutativo, o que implica u = v. Logo j é um monomorfismo.

Proposição

Sejam \mathbf{C} uma categoria e $f:A\to B$ um \mathbf{C} -morfismo. Então as afirmações seguintes são equivalentes:

- (1) f é um monomorfismo.
- (2) O diagrama

é um quadrado cartesiano.

(3) Existe um objeto X e um morfismo $g: X \to A$ tal que o diagrama seguinte

é um quadrado cartesiano.

Definição

Sejam \mathbf{C} uma categoria e $f: C \to A$ e $g: C \to B$ morfismos de \mathbf{C} . Chama-se **soma amalgamada** de (f,g) (ou **pushout** de (f,g)) a um par (S,(f',g')), onde S é um objeto de \mathbf{C} e $f': A \to S$ e $g': B \to S$ são morfismos de \mathbf{C} tais que

(i) $f' \circ f = g' \circ g$, i.e., tais que o diagrama seguinte comuta

Definição

(ii) para quaisquer morfismos $i: B \to X$ e $j: A \to X$ tais que $i \circ g = j \circ f$, existe um único morfismo $k: S \to X$ tal que $i = k \circ g'$ e $j = k \circ f'$.

Se **C** é uma categoria tal que existe soma amalgamada para qualquer par de morfismos que tenham o mesmo domínio, diz-se que a categoria **C** tem somas amalgamadas.

Os duais de todos os resultados estudados para produtos fibrados são válidos para somas amalgamadas.

Limites e colimites

Nas secções anteriores definiram-se os conceitos de objeto terminal, produto e igualizador, sendo possível perceber semelhanças nas definições apresentadas. O conceito de limite generaliza o que há de comum nestas noções, pelo que objetos terminais, produtos e igualizadores não são mais do que exemplos de limites. Dualmente define-se colimite, que tem os objetos inicias, os coprodutos e os coigualizadores como exemplos.

Definição

Sejam **C** uma categoria, D um diagrama em **C** e $(D_i)_{i\in I}$ a família de objetos de D. Um D-cone ou cone do diagrama D é um par $(C; (f_i : C \to D_i)_{i\in I})$, onde C é um objeto de **C** e $(f_i : C \to D_i)_{i\in I}$ é uma família de **C**-morfismos, tal que, para cada **C**-morfismo $g : D_j \to D_k$ existente em D, o diagrama

comuta, i.e., $g \circ f_j = f_k$. Ao objeto C dá-se a designação de **vértice** do cone.

Note-se que podem existir diversos cones, com vértices distintos, para um mesmo diagrama D.

Definição

Sejam **C** uma categoria, D um diagrama em **C** e $(D_i)_{i\in I}$ a família de objetos de D. Um cone $(L; (\lambda_i : L \to D_i)_{i\in I})$ do diagrama D diz-se um D-cone limite ou um limite do diagrama D se, para qualquer outro D-cone $(C; (f_i : C \to D_i)_{i\in I})$, existe um único morfismo $u : C \to L$ tal que, para cada $i \in I$, $\lambda_i \circ u = f_i$, i.e., tal que cada triângulo de vértices C, L e D_i comuta:

Exemplo

(1) Sejam A e B dois objetos de uma categoria ${\bf C}$ e seja D um diagrama em ${\bf C}$ formado apenas por dois objetos A e B

Então um D-cone é um par (C; (f,g)), onde C é um objeto de C e $f: C \to A$ e $g: C \to B$ são C-morfismos.

$$A \leftarrow f \qquad C \longrightarrow B$$

Assim, um D-cone limite, caso exista, é um produto de A e B.

Exemplo

(2) Seja D um diagrama sem objetos e sem morfismos.

Então um cone para o diagrama D numa categoria \mathbf{C} é qualquer par (C,()), onde C é um objeto de \mathbf{C} .

Por conseguinte, um D-cone limite é um par (L, ()), onde L é um objeto de \mathbb{C} tal que, para qualquer outro D-cone $(C, \{\})$ de \mathbb{C} , existe um único morfismo $u: C \to L$, i.e., L é um objeto terminal.

Exemplo

(3) Seja D o diagrama

com três objetos e dois morfismos. Um D-cone é um par (P'; (f', g', h')) onde P' é um objeto de \mathbf{C} e $f': P \to B$, $g': P \to A$ e $h': P \to C$ são \mathbf{C} -morfismos tais que o diagrama seguinte comuta

i.e., tais que $f \circ f' = h' = g \circ g'$.

Exemplo

Se (P',(f',g',h')) é um D-cone limite, então para qualquer outro D-cone (P'',(f'',g'',h'')) existe um único morfismo $u:P''\to P'$ tal que $f''=f'\circ u,\,g''=g'\circ u$ e $h''=h'\circ u$. Assim, (P',(f',g')) é um produto fibrado de (f,g).

Proposição

Sejam **C** uma categoria, D um diagrama em **C** e $(D_i)_{i\in I}$ a família de objetos de D. Um D-cone limite é único a menos de isomorfismo, i.e., se $(L;(\lambda_i:L\to D_i)_{i\in I})$ e $(L';(\lambda'_i:L'\to D_i)_{i\in I})$ são D-cones limite, então existe um isomorfismo $i:L\to L'$.

Definição

Diz-se que uma categoria **C** tem limites (respetivamente, limites finitos) se todo o diagrama (respetivamente diagrama finito) D admite D-cone limite.

Proposição

Seja C uma categoria. Então são equivalentes as seguintes afirmações:

- (1) **C** tem limites finitos.
- (2) **C** tem produtos finitos e igualizadores.
- (3) **C** tem um objeto terminal e produtos fibrados.

Definição

Sejam ${\bf C}$ uma categoria, D um diagrama em ${\bf C}$ e $(D_i)_{i\in I}$ a família de objetos de D. Um **cocone do diagrama** D é um par $(C;(f_i:D_i\to C)_{i\in I})$, onde C é um objeto de ${\bf C}$ e $(f_i:D_i\to C)_{i\in I}$ é uma família de ${\bf C}$ -morfismos, tal que, para cada morfismo $g:D_j\to D_k$ existente em D, o diagrama

comuta, i.e., $f_k \circ g = f_j$.

Definição

Um cocone $(L; (\lambda_i : D_i \to L)_{i \in I})$ de um diagrama D numa categoria C diz-se um **colimite do diagrama** D se, para qualquer outro cocone $(C; (f_i : D_i \to C)_{i \in I})$, existe um único morfismo $u : L \to C$ tal que, para cada $i \in I$, o diagrama

comuta, i.e., tal que $u \circ \lambda_i = f_i$.

Funtores

No início deste capítulo foram apresentados vários exemplos de domínios matemáticos formulados como categorias. Então, atendendo a que as categorias constituem elas própias um domínio matemático, é natural questionar se existem categorias de categorias. De facto, como se irá verificar mais à frente, tais categorias existem: os objetos destas categorias são categorias e os morfismos, designados por funtores, são correspondências entre categorias que preservam a sua estrutura.

Definição

Sejam C e D categorias. Um funtor (ou funtor covariante) F de C em D é uma correspondência que a cada objeto A de C associa um único objeto F(A) de D, a cada C-morfismo $f:A \to B$ associa um único D-morfismo $F(f):F(A) \to F(B)$ e tal que as seguintes condições são satisfeitas:

- (F1) para qualquer objeto A de \mathbf{C} , $F(\mathrm{id}_A) = \mathrm{id}_{F(A)}$;
- (F2) $F(g \circ f) = F(g) \circ F(f)$, para quaisquer **C**-morfismos $f : A \to B$ e $g : B \to C$.

Se F é um funtor de C em D escrevemos $F: C \rightarrow D$.

Definição

Sejam C e D categorias. Um **cofuntor** (ou **funtor contravariante**) F de C em D é uma correspondência que a cada objeto A de C associa um único objeto F(A) de D, a cada C-morfismo $f:A \to B$ associa um único D-morfismo $F(f):F(B)\to F(A)$ e tal que as seguintes condições são satisfeitas:

- (CF1) para qualquer objeto A de \mathbf{C} , $F(\mathrm{id}_A) = \mathrm{id}_{F(A)}$;
- (CF2) $F(g \circ f) = F(f) \circ F(g)$, para quaisquer **C**-morfismos $f : A \to B$ e $g : B \to C$.

Exemplo

(1) Seja $\bf C$ uma categoria. A correpondência $Id_{\bf C}$ de $\bf C$ em $\bf C$, que a cada objeto A de $\bf C$ associa o objeto $Id_{\bf C}(A)=A$ e a cada $\bf C$ -morfismo f associa o morfismo $Id_{\bf C}(f)=f$, é um funtor de $\bf C$ em $\bf C$, ao qual se dá a designação de **funtor identidade em \bf C** e que se representa por $Id_{\bf C}:{\bf C}\to{\bf C}$.

Exemplo

(2) Sejam C uma categoria e C' uma subcategoria de C. A correspondência I de C' em C, que a cada objeto A de C' faz corresponder o objeto A de C e a cada morfismo f de C' associa o morfismo f de C, define um functor de C' em C, que se designa por funtor inclusão.

Exemplo

- (3) A correspondência E da categoria Mon na categoria Set, que a cada monóide $(M; \cdot^M, 1_M)$ da categoria Mon associa o conjunto M da categoria Set e que a cada homomorfismo de monóides $f: (M; \cdot^M; 1_M) \to (N; \cdot^N, 1_N)$ associa a função $f: M \to N$, é um funtor da categoria Mon na categoria Set. Este funtor é um exemplo de funtores designados por funtores esquecimento.
- (4) Considerando monóides M e N como categorias, qualquer homomorfismo de monóides $f:M\to N$ é um funtor de M em N.

Exemplo

(5) Sejam $\mathbf{P}_1 = (P_1, \leq_1)$ e $\mathbf{P}_2 = (P_2, \leq_2)$ c.p.o.'s. Considerando \mathbf{P}_1 e \mathbf{P}_2 como categorias, tem-se $\mathsf{Mor}(\mathbf{P}_1) = \leq_1$ e $\mathsf{Mor}(\mathbf{P}_2) = \leq_2$. Se F é um funtor de \mathbf{P}_1 em \mathbf{P}_2 , então a cada \mathbf{P}_1 -morfismo de a em b é associado um \mathbf{P}_2 -morfismo de F(a) em F(b), i.e.,

$$a \leq_1 b \Rightarrow F(a) \leq_2 F(b)$$
.

Por conseguinte, F é uma aplicação isótona de P_1 em P_2 .

Exemplo

(6) Sejam $\bf C$ uma categoria e $\bf C^{op}$ a sua categoria dual. A correspondência D, que a todo o objeto A em $\bf C$ associa o objeto A em $\bf C^{op}$ e que a cada $\bf C$ -morfismo $f:A\to B$ associa o $\bf C^{op}$ -morfismo $f:B\to A$, define um cofunctor $D:{\bf C}\to {\bf C}^{op}$, que se designa por **cofuntor dualidade**. De forma análoga define-se o cofuntor dualidade $D^{op}:{\bf C}^{op}\to {\bf C}$.

Exemplo

- (7) Considere-se, na categoria **Set**, a correspondência P que:
 - a cada conjunto A faz corresponder o seu conjunto potência $\mathcal{P}(A)$;
 - a cada aplicação $f:A\to B$ associa a aplicação $P(f):\mathcal{P}(B)\to\mathcal{P}(A)$ definida por

$$P(f)(B') = f^{\leftarrow}(B') = \{a \in A \mid f(a) \in B'\}, \quad \forall B' \subseteq B.$$

Facilmente se verifica que $P : \mathbf{Set} \to \mathbf{Set}$ é um cofuntor.

Definição

Sejam C, D e E categorias. Dados um funtor ou cofuntor $F:C\to D$ e um funtor ou cofuntor $G:D\to E$, chama-se **composição de F com G**, e representa-se por GF, à correspondência que a cada objeto A de C associa o objeto A de A de A de A de A associa o morfismo A de A d

Proposição

Sejam **A**, **B**, **C** e **D** categorias e $F : \mathbf{A} \to \mathbf{B}$, $G : \mathbf{B} \to \mathbf{C}$ e $H : \mathbf{C} \to \mathbf{D}$ funtores ou cofuntores. Então,

- (1) Se F e G são ambos funtores ou ambos cofuntores, GF é um funtor. Caso contrário, GF é um cofuntor.
- (2) H(GF) = (HG)F.
- (3) $FId_{\mathbf{A}} = F = Id_{\mathbf{B}}F$.

Atendendo à propriedade associativa dos funtores podemos escrever, sem ambiguidade, HGF para representar quer H(GF) quer (HG)F.

Definição

Sejam A, B e C categorias e $F : A \rightarrow B$, $G : B \rightarrow C$ funtores ou cofuntores.

- (1) Se F e G são ambos funtores ou ambos cofuntores, ao funtor GF dá-se a designação de **funtor composição**.
- (2) Se F é um funtor (respetivamente, cofuntor) e G é um cofuntor (respetivamente, funtor) ao confuntor GF dá-se a designação de cofuntor composição.

Definição

Sejam C e D categorias. Um funtor $F:C\to D$ diz-se um **isomorfismo** se existe um funtor $G:D\to C$ tal que $FG=Id_D$ e $GF=Id_C$.

Um funtor F de uma categoria ${\bf C}$ numa categoria ${\bf D}$, associa a cada objeto A de ${\bf C}$ a sua imagem F(A) em ${\bf D}$ e associa a cada ${\bf C}$ -morfismo $f:A\to B$ a sua imagem $F(f):F(A)\to F(B)$. Estas imagens permitem obter uma representação de ${\bf C}$ na categoria ${\bf D}$, pelo que se coloca a questão de saber que propriedades de ${\bf C}$ são preservadas pelo funtor F.

Comece-se por observar que a representação de ${\bf C}$ em ${\bf D}$ não é necessariamente uma subcategoria de ${\bf D}$. Considere-se, por exemplo, a categoria ${\bf C}$ definida pelo diagrama

e seja **D** a categoria

Considere-se, também, a correspondência F de ${\bf C}$ em ${\bf D}$ tal que

-
$$F(A) = A'$$
, $F(B_1) = F(B_2) = B'$, $F(C) = C'$;

- para cada objeto X de \mathbf{C} , $F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$;
- F(f) = f', F(g) = g'.

Facilmente se verifica que F é um funtor de C em D, no entanto, a "imagem" de C não é uma subcategoria de D; note-se que a referida "imagem"

não é uma categoria, uma vez que tem os morfismos $f':A'\to B'$ e $g':B'\to C'$, mas não tem a sua composição.

Definição

Sejam C e D categorias, $F: C \to D$ um funtor e P uma propriedade a respeito de morfismos. Diz-se que:

- F preserva P se, para qualquer morfismo f em C, sempre que f tem a propriedade P, o morfismo F(f) também a tem.
- F reflete P se, para qualquer morfismo f em C, sempre que F(f) tem a propriedade P, o morfismo f também a tem.

Para abreviar, diz-se apenas que F preserva (reflete) X se F preserva (reflete) a propriedade de ser X.

Note-se que os funtores não preservam necessariamente monomorfismos e epimorfismos. Considere-se, por exemplo, a categoria **2**

e a categoria C definida pelo diagrama

$$g \underbrace{id_A}_A \underbrace{f = f \circ g}_B id_B$$

O morfismo f é um monomorfismo na categoria $\mathbf{2}$, mas não é um monomorfismo na categoria \mathbf{C} . Por conseguinte, o funtor inclusão de $\mathbf{2}$ em \mathbf{C} não preserva monomorfismos.

Proposição

Os funtores preservam inversos direitos, inversos esquerdos e isomorfismos.

Demonstração.

Sejam C e D categorias, $F : C \to D$ um funtor e $f : A \to B$ um morfismo em C.

Se f é um inverso direito, então existe um **C**-morfismo $g:B\to A$ tal que $g\circ f=\mathrm{id}_A.$

Por conseguinte, $F(g \circ f) = F(id_A)$, donde segue que $F(g) \circ F(f) = id_{F(id_A)}$.

Logo F(f) é um inverso direito em **D**.

Embora os funtores preservem inversos direitos, inversos esquerdos e isomorfismos, não refletem necessariamente estas propriedades.

Por exemplo, o funtor F da categoria $\mathbf{2}$ na categoria $\mathbf{1}$,

que associa cada objeto da categoria $\mathbf 2$ ao objeto A' da categoria $\mathbf 1$ e que associa cada morfismo da categoria $\mathbf 2$ ao mofismo id $_{A'}$, não reflete isomorfismos, uma vez que o morfismo id $_{A'}$ é um isomorfismo na categoria $\mathbf 1$, mas o morfismo f da categoria $\mathbf 2$ não é.

Os exemplos anteriores permitem perceber que a "imagem" de uma categoria **C** numa categoria **D** pode não dizer muito a respeito de **C**, pelo que tem interesse estudar funtores que preservam/refletem mais propriedades.

Definição

Dadas duas categorias, $C \in D$, um functor $F : C \to D$ diz-se:

(1) injetivo em objetos se, para quaisquer objetos A e B de C,

$$F(A) = F(B) \Rightarrow A = B;$$

- (2) **representativo** se para todo o objeto B de **D**, existe um objeto A em **C** tal que F(A) = B;
- (3) **fiel** se para quaisquer **C**-morfismos $f, g: A \rightarrow B$

$$F(f) = F(g) \Rightarrow f = g;$$

- (4) um **mergulho** se é injetivo em objetos e fiel;
- (5) **pleno** se, para quaisquer objetos A e B de C e para qualquer D-morfismo $g: F(A) \to F(B)$, existe um C-morfismo $f: A \to B$ tal que F(f) = g.

De modo análogo, define-se cofuntor injetivo em objetos, cofuntor fiel, cofuntor mergulho, cofuntor representativo e cofuntor pleno.

Proposição

Sejam C, D categorias $e F : C \rightarrow D$ um funtor.

- (1) Se F é um funtor fiel, então F reflete monomorfismos e epimorfismos.
- (2) Se F é um funtor fiel e pleno, então F reflete inversos direitos e inversos esquerdos.

Demonstração

(1) Seja $f: A \to B$ um **C**-morfismo e suponhamos que F(f) é um monomorfismo.

Sejam $g, h : C \to A$ morfismos de **C** tais que $f \circ g = f \circ h$.

Então
$$F(f \circ g) = F(f \circ h)$$
, donde $F(f) \circ F(g) = F(f) \circ F(h)$.

Uma vez que F(f) é um monomorfismo, tem-se F(g) = F(h) e, atendendo a que F é fiel resulta que g = h. Logo F reflete monomorfismos.

De modo análogo, prova-se que F reflete epimorfismos.

Demonstração.

(2) Mostremos que se F é fiel e pleno, então F reflete inversos direitos.

Seja $f:A\to B$ um **C**-morfismo tal que $F(f):F(A)\to F(B)$ é um inverso direito. Então existe um **D**-morfismo $g':F(B)\to F(A)$ tal que $g'\circ F(f)=\mathrm{id}_{F(A)}$.

Uma vez que F é pleno, existe um **C**-morfismo $g:B\to A$, tal que F(g)=g'.

Por conseguinte, $F(g) \circ F(f) = \mathrm{id}_{F(A)}$, donde $F(g \circ f) = F(\mathrm{id}_A)$. Então, atedendo a que F é fiel, vem que $g \circ f = \mathrm{id}_A$ e, portanto, f é um inverso direito.

Logo F reflete inversos direitos.

A prova de que F reflete inversos esquerdos é similar.

Categorias de categorias

As propriedades dos funtores sugerem o estudo de categorias cujos objetos são categorias e cujos morfismos são funtores.

Um quádruplo (K, hom, id, \circ) onde

- K é uma classe de categorias;
- hom é uma correspondência que a duas categorias C e D de K associa um conjunto de funtores de C em D;
- id é uma correspondência que a cada categoria C de K associa o funtor Id_C;
- \circ é uma correspondência que a cada par de funtores $F: \mathbf{C} \to \mathbf{D}$ e $G: \mathbf{D} \to \mathbf{E}$ associa o funtor $GF: \mathbf{C} \to \mathbf{E}$,

é uma categoria.

Exemplo

São exemplos de categorias de categorias:

- (1) A categoria **Mon**. Já observamos anteriormente que cada monóide pode ser visto como uma categoria, logo **Mon** pode ser vista como uma categoria de categorias.
- (2) A categoria que tem como único objeto uma categoria **C** e que tem como único morfismo o funtor Id_C.
- (3) A categoria cuja classe de objetos é formada por todas as categorias finitas e cuja coleção de morfismos é a coleção de funtores entre estas categorias.
- (4) A categoria **Cat** cuja classe de objetos é formada por todas as categorias pequenas e cuja coleção de morfismos é formada por todos os funtores entre categorias pequenas.

Os casos anteriores são exemplos de categorias que não são problemáticos. No entanto, existem situações em que é necessário tomar atenção.

Por exemplo, definindo como categoria **normal** uma categoria que não é um dos seus objetos, será que existe alguma categoria que inclua todas as categorias normais?

Será que existe a categoria de todas as categorias?

Atendendo a que para o nosso estudo não há a necessidade de considerar uma categoria universal de categorias, limitamos o estudo de categorias de categorias a casos em que não se coloquem este tipo de problemas.

Transformações naturais

Os morfismos de uma categoria permitem comparar objetos e cada funtor compara categorias. Seguidamente iremos ver como cada transformação natural compara funtores.

Definição

Sejam C e D categorias e $F,G:C\to D$ funtores. Chama-se **transformação natural de** F **em** G, e representa-se por $\tau:F\to G$, a uma correspondência que associe a cada objeto C de C um D-morfismo $\tau_C:F(C)\to G(C)$ e tal que, para qualquer C-morfismo $f:C\to C'$, o diagrama seguinte comuta

i.e.,
$$\tau_{C'} \circ F(f) = G(f) \circ \tau_C$$
.

Definição

Para cada objeto C de C, o morfismo τ_C diz-se uma componente da transformação natural.

Se para cada objeto C de C, τ_C é um isomorfismo, então τ diz-se um isomorfismo natural e escreve-se $\tau: F \xrightarrow{\sim} G$.

Exemplo

(1) Sejam \mathbf{C} e \mathbf{D} categorias e $F: \mathbf{C} \to \mathbf{D}$ um funtor. A correspondência que a cada objeto A de \mathbf{C} associa o \mathbf{D} -morfismo id $_{F(A)}$ é uma transformação natural de F em F, designada por **transformação** identidade e representada por id $_F$.

Exemplo

(2) Dado um grupo $\mathcal{G}=(G;*,^{-1},1_G)$, seja $\mathcal{G}^{op}=(G;*^{op},^{-1},1_G)$ o grupo dual de \mathcal{G} , onde $*^{op}$ é a operação definida por a $*^{op}$ b = b * a.

Considerando a noção de grupo dual, pode definir-se o funtor $Op: \mathbf{Grp} \to \mathbf{Grp}$ que a cada grupo $\mathcal G$ da categoria \mathbf{Grp} associa o seu grupo dual $\mathcal G^{op}$ e que a cada homomorfismo de grupos $f: \mathcal G \to \mathcal H$ associa o homomorfismo de grupos $f^{op}: \mathcal G^{op} \to \mathcal H^{op}$, definido por $f^{op}(a) = f(a)$.

A correspondência τ que a cada grupo $\mathcal G$ da categoria Grp associa o homomorfismo $\tau_{\mathcal G}: \operatorname{Id}_{\operatorname{Grp}}(\mathcal G) \to \operatorname{Op}(\mathcal G)$, definido por $\tau_{\mathcal G}(g) = g^{-1}$, é uma transformação natural do funtor $\operatorname{Id}_{\operatorname{Grp}}$ no funtor Op .

Exemplo

- (3) Seja $P : \mathbf{Set} \to \mathbf{Set}$ o cofuntor que:
 - a cada conjunto A faz corresponder o seu conjunto potência $\mathcal{P}(A)$;
 - a cada aplicação $f:A\to B$ associa a aplicação $P(f):\mathcal{P}(B)\to\mathcal{P}(A)$ definida por

$$P(f)(B') = f^{\leftarrow}(B') = \{ a \in A \mid f(a) \in B' \}, \quad \forall B' \subseteq B.$$

Então PP é um funtor e a correspondência τ , que a cada conjunto A associa a função $\tau_A:A\to PP(A)$, definida por $\tau_A(a)=\{\{a\}\}$, para todo $a\in A$, é uma transformação natural do funtor identidade Id_{Set} no funtor PP.

Proposição

Sejam \mathbf{C} e \mathbf{D} categorias, $F,G,H:\mathbf{C}\to\mathbf{D}$ funtores e $\tau:F\to G$ e $\gamma:G\to H$ transformações naturais. Então, a correspondência que a cada objeto C de \mathbf{C} associa o \mathbf{D} -morfismo $(\gamma\circ\tau)_C=\gamma_C\circ\tau_C$, é uma transformação natural de F em H.

Definição

Sejam C e D categorias, $F,G,H:C\to D$ funtores e $\tau:F\to G$ e $\gamma:G\to H$ transformações naturais. Designa-se por **composta de** γ e τ , e representa-se por $\gamma\circ\tau$, a transformação natural de F em H definida na proposição anterior.

Proposição

Sejam C e D categorias, $F,G,H,L:C\to D$ funtores e $\tau:F\to G$, $\eta:G\to H$ e $\sigma:H\to L$ transformações naturais. Então

- $(1) id_G \circ \tau = \tau e \tau \circ id_G = \tau.$
- (2) $(\sigma \circ \eta) \circ \tau = \sigma \circ (\eta \circ \tau)$.

Proposição

Sejam C, D e E categorias, $F : C \to D$, $H : E \to C$ e $G, G' : D \to E$ funtores e $\tau : G \to G'$ uma transformação natural. Então:

- (1) A correspondência que a cada objeto C de C associa o E-morfismo $(\tau F)_C = \tau_{F(C)}$, define uma transformação natural $\tau F : GF \to G'F$.
- (2) A correspondência que a cada objeto D de \mathbf{D} associa o \mathbf{C} -morfismo $(H\tau)_D = H(\tau_D)$, define uma transformação natural $H\tau: HG \to HG'$.

Proposição

Sejam C, D e E categorias, $F: C \to D$, $H: E \to C$ e $G, G': D \to E$ funtores e $\tau: G \to G'$ uma transformação natural. Se τ é um isomorfismo natural, então:

- a correspondência que a cada objeto D de $\mathbf D$ associa o $\mathbf E$ -morfismo $(\tau^{-1})_D=(\tau_D)^{-1}$ é um isomorfismo natural de G' em G, representado por $\tau^{-1}:G'\to G$, e tem-se $\tau\circ\tau^{-1}=id_{G'}$ e $\tau^{-1}\circ\tau=id_G$.
- τF é um isomorfismo natural e $(\tau F)^{-1} = \tau^{-1} F$.
- H au é um isomorfismo natural e $(H au)^{-1}=H au^{-1}$.

A composição de transformações naturais é associativa; além disso, a cada funtor F é possivel associar a transformação natural identidade id_F .

Assim, dadas categorias $\bf C$ e $\bf D$, onde $\bf C$ é uma categoria pequena, pode construir-se a categoria dos funtores de $\bf C$ em $\bf D$.

Representando por [C, D] a classe de todos os funtores de C em D, é simples verificar que o quádruplo $([C, D], hom, id, \circ)$, onde

- hom é a correspondência que a dois funtores $F: \mathbf{C} \to \mathbf{D}$ e $G: \mathbf{C} \to \mathbf{D}$ associa o conjunto de todas as transformações naturais de F em G,
- id é a correspondência que a cada funtor $F: \mathbf{C} \to \mathbf{D}$ associa a transformação natural $id_F: F \to F$,
- \circ é a correspondência que a cada par de transformações naturais $\tau: F \to G$ e $\gamma: G \to H$ associa a transformação natural $\gamma \circ \tau: F \to H$,

é uma categoria.

Equivalência de categorias

Uma vez que existem categorias que têm bastantes propriedades em comum sem que exista necessariamente um isomorfismo entre elas, surge a necessidade de definir um conceito "menos exigente" que o de categorias isomorfas. A noção de isomorfismo natural de funtores permite definir categorias equivalentes.

Definição

Sejam C e D categorias. Um funtor $F: C \to D$ diz-se uma **equivalência** se existem um funtor $G: D \to C$ e isomorfismos naturais $\tau: GF \xrightarrow{\sim} Id_C \ e \ \gamma: Id_D \xrightarrow{\sim} FG$.

Claramente, todo o funtor que seja um isomorfismo é uma equivalência.

Sejam **C** e **D** categorias.

Se existir uma equivalência $F: \mathbf{C} \to \mathbf{D}$, diz-se que \mathbf{C} é equivalente a \mathbf{D} .

Note-se que se C é equivalente a D, então D também é equivalente a C.

Assim, caso exista uma equivalência entre as categorias C e D diz-se que as categorias C e D são *equivalentes* e escreve-se $C \simeq D$.

Proposição

Sejam C e D categorias e $F: C \to D$ um funtor. Então são equivalentes as afirmações seguintes:

- (1) F é um funtor pleno, fiel e representativo.
- (2) Existem um funtor $G: \mathbf{D} \to \mathbf{C}$ e isomorfismos naturais $\tau: GF \xrightarrow{\sim} Id_{\mathbf{C}} e \ \gamma: Id_{\mathbf{D}} \xrightarrow{\sim} FG$ tais que $F\tau = (\gamma F)^{-1}$ e $G\gamma = (\tau G)^{-1}$.

Exemplo

(1) Seja $\mathsf{FDV}_\mathbb{K}$ a categoria dos espaços vetoriais finitos sobre um corpo \mathbb{K} e seja $\mathsf{MAT}_\mathbb{K}$ a categoria das matrizes sobre o corpo \mathbb{K} (os objetos desta categoria são os inteiros não negativos, $\mathsf{hom}(m,n)$ é o conjunto das matrizes do tipo $m \times n$ sobre \mathbb{K} , a composição de morfismos é a multiplicação de matrizes).

Seja G o funtor de $\mathbf{FDV}_{\mathbb{K}}$ em $\mathbf{MAT}_{\mathbb{K}}$ tal que: para cada objeto V de $\mathbf{FDV}_{\mathbb{K}}$, $G(V) = \dim V$; para cada morfismo f de $\mathbf{FDV}_{\mathbb{K}}$, G(f) é a matriz do morfismo f relativamente a bases fixas.

O funtor G é fiel e pleno, uma vez que cada matriz $A_{m \times n} : m \to n$ representa (relativamente a bases fixas) uma única transformação linear.

O funtor G também é representativo, uma vez que cada inteiro m é a dimensão do espaco vetorial \mathbb{K}^m .

Assim, as categorias $FDV_{\mathbb{K}}$ e $MAT_{\mathbb{K}}$ são equivalentes.