INTRODUCTION TO LIE ALGEBRAS – SOLUTION 6

Let us use the matrix units E_{ij} . The $n \times n$ matrix E_{ij} has only one non-zero entry, in the row i and column j. The commutator of any two such matrices is

$$[E_{ij}, E_{pq}] = E_{ij}E_{pq} - E_{pq}E_{ij} = \delta_{pj}E_{iq} - \delta_{iq}E_{pj}.$$

The matrices E_{ij} where $j - i \ge k$, form a basis in \mathfrak{g}_k . Now suppose that $E_{ij} \in \mathfrak{g}_k$ and $E_{pq} \in \mathfrak{g}_l$. This means that $j - i \ge k$ and $q - p \ge l$. Taking the sum of these two inequalities, we get

$$j - i + q - p \geqslant k + l$$
.

In particular, we get $q - i \ge k + l$ when p = j, and $j - p \ge k + l$ when q = i. Our formula for the commutator of two matrix units now shows that $[E_{ij}, E_{pq}] \in \mathfrak{g}_{k+l}$. Hence

$$[\mathfrak{g}_k,\mathfrak{g}_l]\subset\mathfrak{g}_{k+l}.$$
 (*)

Furthermore, for any indices $q, i \in \{1, ..., n\}$ such that $0 > q - i \ge k + l$, we have

$$[E_{i,i+k},E_{i+k,q}]=E_{iq}.$$

Here $E_{i,i+k} \in \mathfrak{g}_k$ and $E_{i+k,q} \in \mathfrak{g}_l$, since $q - i - k \geqslant l$. Therefore

$$[\mathfrak{g}_k,\mathfrak{g}_l]\supset \mathfrak{g}_{k+l}$$
 . $(**)$

The proof of (*) was valid for all integers k and l, so $[\mathfrak{t},\mathfrak{g}_k] \subseteq [\mathfrak{g}_0,\mathfrak{g}_k] \subseteq \mathfrak{g}_k$. Since $[E_{ii},E_{ij}]=E_{ij}$ for all i,j with $1 \leq i < j \leq n$, we get that $[\mathfrak{t},\mathfrak{g}_k]=\mathfrak{g}_k$ for all $k \geqslant 1$. Thus $[\mathfrak{g}_0,\mathfrak{g}_k]=[\mathfrak{t},\mathfrak{g}_k]+[\mathfrak{g}_1,\mathfrak{g}_k]=\mathfrak{g}_k$ for all $k\geqslant 1$. Note that this also follows from the fact that the proof of (**) was valid for all $k,l\geqslant 0$ such that k>0 or l>0. Furthermore, $[\mathfrak{g}_0,\mathfrak{g}_0]=[\mathfrak{t},\mathfrak{g}_1]+[\mathfrak{g}_1,\mathfrak{g}_1]=\mathfrak{g}_1$. It follows that \mathfrak{g}_0 is a Lie subalgebra of $\mathfrak{g}_{\mathfrak{l}_n}\mathbb{F}$ and that each \mathfrak{g}_k is an ideal of \mathfrak{g}_0 .

INTRODUCTION TO LIE ALGEBRAS – SOLUTION 7

Let us use the induction on n = 1, 2, ... In the case n = 1 the equality to be proved is

$$D[X, Y] = [D(X), Y] + [X, D(Y)].$$

This is exactly the Leibniz rule, which holds by the definition of a derivation. We will write

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

as usual. Let us now assume that the equality

$$D^{n}[X,Y] = \sum_{k=0}^{n} {n \choose k} \cdot [D^{k}X, D^{n-k}Y]$$

holds for a given $n \ge 1$ and all $X, Y \in \mathfrak{g}$. Using the definition of D^{n+1} , we then get

$$D^{n+1}[X,Y] = D(D^{n}[X,Y]) = \sum_{k=0}^{n} \binom{n}{k} \cdot D[D^{k}X, D^{n-k}Y] =$$

$$\sum_{k=0}^{n} \binom{n}{k} \cdot [D^{k+1}X, D^{n-k}Y] + \sum_{k=0}^{n} \binom{n}{k} \cdot [D^{k}X, D^{n-k+1}Y] =$$

$$\sum_{k=1}^{n+1} \binom{n}{k-1} \cdot [D^{k}X, D^{n+1-k}Y] + \sum_{k=0}^{n} \binom{n}{k} \cdot [D^{k}X, D^{n+1-k}Y] =$$

$$\sum_{k=0}^{n+1} \binom{n+1}{k} \cdot [D^{k}X, D^{n+1-k}Y],$$

which makes the induction step. Here the last equality holds because

$$\begin{pmatrix} n \\ 0 \end{pmatrix} = 1 = \begin{pmatrix} n+1 \\ 0 \end{pmatrix} , \begin{pmatrix} n \\ n \end{pmatrix} = 1 = \begin{pmatrix} n+1 \\ n+1 \end{pmatrix}$$

and

$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$$

for any $k = 1, \ldots, n$.

INTRODUCTION TO LIE ALGEBRAS – SOLUTION 8

Recall that the eigenspace V_{λ} of the eigenvalue λ of a linear operator X on V is defined by

$$V_{\lambda} := \{ v \in V \mid X(v) = \lambda v \}.$$

Lemma. Suppose X is a linear operator on a finite dimensional vector space V and let $\lambda_1, \ldots, \lambda_r$ be disctinct eigenvalues of X. Then the sum $\sum_{i=1}^r V_{\lambda_i}$ of the eigenspaces V_{λ_i} is direct.

Proof. We prove this by induction on r. If r=1, there is nothing to prove. Assume the assertion holds for r. We prove it for r+1. For each $i=1,\ldots,r+1$ let $v_i \in V_{\lambda_i}$ and assume that $v_1 + \cdots + v_{r+1} = 0$ (*). Applying X to (*) we get $\lambda_1 v_1 + \cdots + \lambda_{r+1} v_{r+1} = 0$ (**). Multiplying (*) by λ_{r+1} and subtracting it from (**) we obtain $(\lambda_1 - \lambda_{r+1})v_1 + \cdots + (\lambda_r - \lambda_{r+1})v_r = 0$. Now the induction hypothesis gives us $(\lambda_i - \lambda_{r+1})v_i = 0$ for all $i \in \{1, \ldots, r\}$. Since $\lambda_i \neq \lambda_{r+1}$ for all $i \in \{1, \ldots, r\}$, we get $v_i = 0$ for all $i \in \{1, \ldots, r\}$. Now (*) gives us $v_{r+1} = 0$. \square

Now we continue with the exercise. For i = 1, ..., n pick $v_i \in V_{a_i}$ nonzero. Then the v_i are linearly independent by the above lemma and since we have n of them, they must form a basis of V. So X is semisimple. Note also that each V_{a_i} must be one dimensional.

Now assume X is semisimple with eigenvalues a_1, \ldots, a_n . Let (v_1, \ldots, v_n) be a basis of V such that v_i is an X-eigenvector with eigenvalue a_i . Let us identify the Lie algebra $\mathfrak{gl}(V)$ with $\mathfrak{gl}_n\mathbb{F}$ by using this basis. Then consider the matrix units $E_{ij} \in \mathfrak{gl}_n\mathbb{F}$. The operator X is then identified with the diagonal matrix $A = a_1E_{11} + \ldots + a_nE_{nn}$. The elements E_{ij} form a basis of eigenvectors of the operator ad A in the vector space $\mathfrak{gl}_n\mathbb{F}$:

$$(\operatorname{ad} A)(E_{ij}) = [a_1 E_{11} + \ldots + a_n E_{nn}, E_{ij}] = (a_i - a_j) E_{ij}; \quad i, j = 1, \ldots, n.$$

So ad X is semisimple with eigenvlues $a_i - a_j$, $i, j = 1, \ldots, n$.