The Algorithm

We reduce this to a max flow problem. We construct a graph. There is a source s, sink t, and five layers between.

- 1. The first layer has *k* nodes for the *k* recruiters
- 2. the second layer has *T* nodes for the *T* timeslots
- 3. the third layer has n nodes for the n candidates
- 4. the fourth layer has n nodes for the candidates again
- 5. the fifth layer has k nodes for the k recruiters again
- 1. There is a directed edge (s, r_p) of capacity c_p from s to every node r_p in the first layer, with c_p as defined in the problem the interviewing capacity of recruiter p.
- 2. There is a directed edge (r_p, h_j) of capacity 1 from the first to second layer if recruiter p is available at timeslot j.
- 3. There is a directed edge (h_j, c_i) of capacity 1 from the second to third layer if candidate i is available at timeslot j.
- 4. There are n directed edges (c_i, c_i) of capacity 1 from the third to fourth layer. There is a directed edge (c_i, r_p) of capacity 1 from the fourth to fifth layer if recruiter p is qualified to interview candidate i.
- 5. There is a directed edge (r_v, t) of capacity c_v from every node in the fifth layer to t.

Run Ford-Fulkerson on this graph. If the max flow is less than the number of candidates n, then there is no interview schedule where every candidate gets interviewed; if the max flow is equal to n, then there is.

Example: there are three candidates: c_0 , c_1 , and c_2 . There are two recruiters: r_3 and r_4 . c_0 could be interviewed by r_3 and r_4 and is available at 10 AM and 1 PM. c_1 could be interviewed by r_4 and is available at 10 AM and 2 PM. c_2 could be interviewed by r_4 and is available at 1 PM. r_3 has capacity 3 and is available at 10 AM and 2 PM. r_4 has capacity 2 and is available at 10 AM and 1 PM. The constructed graph for this problem would look as such:

Recruiters r3 and r4, candidates c0, c1, and c2, and their time availabilities and eligibilities

Proof of Correctness

This problem is under several constraints:

- 1. Each candidate gets at most 1 interview
 - a. This is satisfied by the edges from layer 3 to layer 4, which all have capacity 1.
- 2. Each candidate can only be interviewed at a timeslot he is available for
 - a. This is satisfied by the edges from layer 2 to layer 3, which only exist if the candidate is available at the time slot the edge is connecting him to
- 3. Each candidate can only be interviewed by qualified recruiters
 - a. This is satisfied by the edges from layer 4 to layer 5, which only exist if the recruiter is qualified to interview the candidate the edge is connecting her to
- 4. Each recruiter r_p conducts at most c_p interviews
 - a. This is satisfied by the edges from s to layer 1 and from layer 5 to t, which have capacities $c_{\it p}$
- 5. Each recruiter can only conduct interviews at timeslots she is available for
 - a. This is satisfied by the edges from layer 1 to layer 2, which only exist if the recruiter is available at the time slot the edge is connecting her to
- 6. Each timeslot can have multiple interviews, but they must be of different recruiters and different candidates, i.e. a timeslot can't have one recruiter interviewing more than one candidate and a timeslot can't have a candidate interviewed by more than one recruiter.
 - a. This is satisfied by the edges between layers 1 and 3 all having capacities 1, meaning if a flow of value 1 goes into a node in layer 2, then only 1 can flow out (thus one recruiter only interviewing one candidate), and if a flow of value 1 goes out from layer 2, that means a flow of 1 went in (thus one candidate only have one recruiter)

Runtime Analysis

The runtime of Ford-Fulkerson is O(mC), where m is the number of edges in the graph and C is the sum of the capacities of all edges leaving the source. m here is k*(kT)*(nT)*n*m. C here is the sum of all recruiter capacities, which is kn in the worst case (all recruiters can interview every candidate). This algorithm is thus $O(k^3T^2n^3m)$, which is polynomial is all the variables involved.