Tomás Pitmani Sean Γ_1) $a_1 \times + b_1 y + c_1 = 0$ y Γ_2) $a_2 \times + b_2 y + c_2 = 0$, $\Gamma_1 \cap \Gamma_2 = P(x_0 y_0)$ $\forall k \in \mathbb{R} = 1$ $(x_1 \times + b_1 y + c_1) + k(a_2 \times + b_2 y + c_2) = 0$

 $a_1x + b_1y + C_1 + ka_2x + kb_2y + kC_2 = 0$ $(a_1 + ka_2)x + (b_1 + kb_2)y + (C_1 + kC_2) = 0$

Sabemos P(xo, yo) eli y Perz, entonces C=-a, xo-b yo y k Cz=-kazxo-kbzyo, seguimos:

(a₁+ka₂)×+(b₁+kb₂)y-(a₁+ka₂)×_o-(b₁+kb₂)y_o=0 Viendo esto, podemos tomar nuestro vector perpendicular a nuectra nueva recta como $\overline{v}=(a_1b)/a=a_1+ka_2 \wedge b=b_1+kb_2$ y obtenemos la ecuación de nuestra nueva recta que pasa Por P: Γ_K) a×+by+C=0 con c=-a×o-by_o. Sabemos que a≠0 \wedge b≠0 ya que (a₁,b₁) y (a₂,b₂) no son paralelos porque se intersecan en un unico punto, por lo tanto no existe ningun KER/(a₁,b₁)+ K(a₂,b₂)= \overline{O} .

