Intégrales sur un intervalle quelconque

Calcul d'intégrales généralisées

Exercice 1 (Calcul direct)

Montrer que les intégrales convergent et les calculer.

(a)
$$\int_0^{+\infty} t^2 e^{-t^3} dt$$
 (b) $\int_0^2 \frac{1}{\sqrt{x}} dx$. (c) $\int_1^{+\infty} \frac{1}{1+x^2} dx$.

Exercice 2 (Exploiter la parité)

- 1. Etudier la parité de $f: x \to \frac{e^x}{(1+e^x)^2}$
- 2. Justifier l'existence de $\int_{-\infty}^{+\infty} \frac{e^x}{(1+e^x)^2} dx$ et la calculer.

Exercice 3 (Intégration par parties)

A l'aide d'intégrations par parties, montrer que les intégrales convergent et calculer leur valeur.

(a)
$$\int_{1}^{+\infty} \frac{\ln(t)}{t^n} dt$$
 (pour $n \ge 2$)

(b)
$$\int_0^{+\infty} e^{-t/2} \cos(t) dt$$
 (réaliser 2 IPP)

Exercice 4 (Changement de variable)

A l'aide d'un changement de variable, montrer que les intégrales convergent et calculer leur valeur.

(a)
$$\int_{1}^{+\infty} \frac{dt}{t(1+\ln(t)^2)}$$
 $(u=\ln(t))$

(b)
$$\int_{1}^{+\infty} \frac{1}{t\sqrt{t^2 - t}} dt$$
 $\left(u = \frac{1}{t} \right)$

(c)
$$\int_0^{\pi/2} \frac{dt}{1 + \cos^2 t}$$
 $(u = \tan t)$

Nature d'intégrales généralisées

Exercice 5 (Théorèmes de comparaison)

Déterminer la nature des intégrales suivantes.

(a)
$$\int_0^1 \frac{\sin(t)}{t} dt$$
 (b) $\int_0^2 \frac{1}{e^{2x} - 1} dx$

(c)
$$\int_{1}^{+\infty} \frac{1}{e^{2x} - 1} dx$$
 (d) $\int_{0}^{2} \frac{1}{(x - 2)^3} dx$

(e)
$$\int_{1}^{+\infty} e^{1/t} dt$$
 (f) $\int_{0}^{+\infty} \frac{\ln(t)}{t^2} dt$

(g)
$$\int_0^{+\infty} t \sin\left(\frac{1}{t^3}\right) dt$$
 (h) $\int_0^{+\infty} e^{-\sqrt{x}} dx$

(i)
$$\int_0^1 \frac{\sqrt{t}}{\ln(1-t)} dt$$
 (j) $\int_1^{+\infty} \frac{\exp(\sin t)}{t} dt$

Exercice 6 (Moments gaussiens)

Justifier que, pour tout $n \in \mathbb{N}$,

l'intégrale $\int_{-\infty}^{+\infty} t^n e^{-t^2} dt$ converge.

Exercice classiques

Exercice 7 (Une intégrale de Bertrand)

Soit $\beta \neq 1$.

- 1. Déterminer le domaine de définition et une $\stackrel{1}{1}$ primitive de $t \mapsto \frac{1}{t |\ln(t)|^{\beta}}$ sur ce domaine.
- 2. Déterminer la nature des intégrales suivantes :

(a)
$$\int_0^{1/2} \frac{1}{t|\ln(t)|^{\beta}} dt$$
 (b) $\int_1^2 \frac{1}{t|\ln(t)|^{\beta}} dt$

(b)
$$\int_{1}^{2} \frac{1}{t |\ln(t)|^{\beta}} dt$$

(c)
$$\int_{2}^{+\infty} \frac{1}{t|\ln(t)|^{\beta}} dt$$

Exercice 8 (Moments exponentiels)

Pour tout $n \in \mathbb{N}$, on pose $M_n = \int_0^{+\infty} t^n e^{-t} dt$.

- 1. Justifier que M_n est bien défini pour tout $n \in \mathbb{N}$.
- 2. (a) Établir : $\forall n \in \mathbb{N}, M_{n+1} = (n+1)M_n$.
- (b) En déduire l'expression de M_n en fonction de npour tout $n \in \mathbb{N}$.

Exercice 9 (Reste d'une intégrale convergente)

Pour tout x > 0, on pose $f(x) = \int_{-\pi}^{+\infty} \frac{e^{-t}}{t} dt$.

- 1. (a) Justifier que f(x) est bien défini pour x > 0.
- (b) Montrer que $f \in C^1(]0, +\infty[, \mathbb{R})$ et calculer f'.
- 2. Justifier (rigoureusement) que $\lim_{x \to +\infty} f(x) = 0$.
- 3. Justifier (rigoureusement) que $\lim_{x \to \infty} f(x) = +\infty$.

Exercice 10 (Intégrale du sinus cardinal)

1. (a) Montrer que pour tout $x \in [1, +\infty[$

$$\int_{1}^{x} \frac{\sin(t)}{t} dt = \cos(1) - \frac{\cos(x)}{x} - \int_{1}^{x} \frac{\cos t}{t^{2}} dt.$$

- (b). En déduire que $\int_{1}^{+\infty} \frac{\sin t}{t} dt$ converge.
- 2. (a) Montrer de même que $\int_{1}^{+\infty} \frac{\cos(2t)}{2t} dt$ converge.
- (b) Montrer: $\forall t \in \mathbb{R}, \ \frac{1}{2}(1 \cos(2t)) \leq |\sin(t)|.$
- (c) En déduire que $\int_{1}^{+\infty} \frac{\sin(t)}{t} dt$ ne converge pas absolument.

Exercice 11 (Comparaison série/intégrale)

Pour tout x > 1, on pose $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{k^n}$.

(Il s'agit de la "fonction zeta de Riemann").

- 1. Montrer que $\int_{1}^{+\infty} \frac{dt}{t^x} \leqslant \zeta(x) \leqslant 1 + \int_{1}^{+\infty} \frac{dt}{t^x}$
- 2. Déduire un équivalent de $\zeta(x)$ lorsque $x \to 1^+$.

Exercice 12 (Une autre suite d'intégrales)

Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 t(\ln(t))^n dt$.

1. Justifier que I_n est bien défini pour tout $n \in \mathbb{N}$.

2. (a) Établir :
$$\forall n \in \mathbb{N}, I_{n+1} = -\frac{(n+1)}{2}I_n$$
.

(b) En déduire l'expression de I_n en fonction de n pour tout $n \in \mathbb{N}$.

Exercice 13 (Intégrales à combiner)

Soit $n \in \mathbb{N}$. On définit les intégrales suivantes :

$$I = \int_0^{+\infty} \frac{du}{(1+u^2)(1+u^n)}, \quad J = \int_0^{+\infty} \frac{u^n du}{(1+u^2)(1+u^n)}.$$

- 1. Montrer que I et J convergent.
- 2. À l'aide du changement de variable $u = \frac{1}{t}$, montrer que I = J.
- 3. Calculer I + J et en déduire les valeurs de I et J.

EML 2013

1. Montrer que, pour tout $x \in]0, +\infty[$, l'intégrale $\int_0^{+\infty} \frac{e^{-t}}{x+t} dt$ converge.

On note $f:]0, +\infty[\longrightarrow \mathbb{R}$ l'application définie, pour tout $x \in]0, +\infty[$, par $: f(x) = \int_0^{+\infty} \frac{e^{-t}}{x+t} dt$.

2. Montrer :
$$\forall x \in]0, +\infty[, f(x) \geqslant \int_0^1 \frac{e^{-1}}{x+t} dt$$
. En déduire : $f(x) \xrightarrow[x \to 0^+]{} +\infty$.

3. Montrer:
$$\forall x \in]0, +\infty[, 0 < f(x) \le \frac{1}{x}$$
. En déduire: $f(x) \xrightarrow[x \to +\infty]{} 0$.

4. (a) Montrer que l'intégrale
$$\int_0^{+\infty} t e^{-t} dt$$
 converge et que : $\forall x \in]0; +\infty[, |f(x) - \frac{1}{x}| \leq \frac{1}{x^2} \int_0^{+\infty} t e^{-t} dt$.
Indication : On notera que $\int_0^{+\infty} e^{-t} = 1$, de sorte que $\frac{1}{x} = \int_0^{+\infty} \frac{e^{-t}}{x} dt$.

(b) En déduire que :
$$f(x) \underset{x \to +\infty}{\sim} \frac{1}{x}$$
.