

STRUTTURE RELAZIONALI, GRAFI E ORDINAMENTI

(parte 4)

Stefania Bandini

ALBERI

GRAFO DIRETTO ACICLICO (DAG)

Un grafo diretto aciclico (detto anche DAG, dall'inglese "Directed Acyclic Graph") è un grafo diretto senza cicli.

Sia
$$R \subseteq S \times S$$
 dove $S = \{a, b, c, d, e, f\}$;

$$R = \{ \langle a, b \rangle, \langle a, c \rangle, \langle b, d \rangle, \langle c, d \rangle, \langle b, e \rangle, \langle c, e \rangle, \langle d, f \rangle, \langle e, f \rangle, \}.$$

A DE O C C W

FONDAMENTI DELL'INFORMATICA

ALBERI

Un *albero* è un DAG connesso con un solo nodo sorgente (detto *radice* dell'albero) in cui ogni nodo diverso dalla radice ha un solo arco entrante.

I nodi privi di archi uscenti sono detti foglie dell'albero.

Per analogia con gli alberi genealogici i nodi intermedi si chiamano padre, figli, fratelli, discendenti, avi, con l'ovvio significato.

Di solito gli alberi vengono disegnati ponendo la radice in alto e le foglie in basso, in analogia con gli alberi genealogici. Quindi non è necessario disegnare le "punte" alle frecce.

ALBERI - ESEMPI

ALBERI - ESEMPI

ALBERI - ESEMPI

ALBERO

grafo non diretto, connesso e aciclico

Sia
$$R \subseteq S \times S$$
 dove $S = \{a, b, c, d, e, f, g, h, i\}$

$$R = \{ \langle a, b \rangle, \langle a, c \rangle, \langle a, d \rangle, \langle c, g \rangle, \langle c, h \rangle, \langle c, i \rangle, \langle d, e \rangle, \langle d, f \rangle, \}.$$

ALBERI

Esempio di grafo che ha struttura di albero

UNIVERSITA O D C C W

FONDAMENTI DELL'INFORMATICA

CAMMINO SU UN ALBERO

Un **cammino dal nodo** i **al nodo** j è la sequenza di archi che devono essere attraversati per raggiungere il nodo j partendo dal nodo i Ogni nodo y che si trova sul cammino tra r e x è un **ascendente** di x; viceversa, x è un **discendente** di y

r è l'unico nodo che non ha ascendenti

Se l'ultimo arco del cammino da r a $x \in (y, x)$, allora $y \in \mathbb{R}$ il **padre** di

x, e x è **figlio** di y

Il numero di figli di un nodo x si dice **grado** di x

FOGLIE, NODI INTERNI, PERCORSI

Un nodo che non ha figli si dice **nodo foglia**Un nodo si dice **nodo interno** se ha almeno un figlio.

PROFONDITA' E ALTEZZA

La **profondità di un nodo** x è la lunghezza del percorso per andare da r a x.

L'altezza dell'albero è la profondità massima che può avere un nodo dell'albero.

ALBERO BINARIO

Un *albero binario* è un albero in cui ogni nodo diverso dalle foglie ha al massimo due figli ordinati, detti *figlio sinistro* e *figlio destro*.

ALBERO BINARIO

E' una struttura costituita da un insieme finito di elementi detti nodi. Quest'insieme è vuoto oppure è costituito da una radice e da due alberi binari (sottoalbero sinistro e destro) disgiunti tra loro e dalla radice.

STRUTTURE RELAZIONALI, GRAFI E ORDINAMENTI

(parte 4)

END