DEPARTMENT OF MATHEMATICS, I.I.T. GUWAHATI

MA 322: Scientific Computing Lab - VI

1. The following data represents the function $f(x) = \exp(x)$.

x	1.0	1.5	2.0	2.5
f(x)	2.7183	4.4817	7.3819	12.1825

Estimate the value of f(2.25) using the (i) Newton's forward difference interpolation and (ii) Newton's backward difference interpolation. Compare with the exact value.

2. Use Newton forward-difference formula to construct interpolating polynomials of degree one, two, and three for the following data. Approximate the specified value using each of the polynomials

a.
$$f(0.43)$$
 if $f(0) = 1$, $f(0.25) = 1.64872$, $f(0.5) = 2.71828$, $f(0.75) = 4.48169$

b.
$$f\left(\frac{-1}{3}\right)$$
 if $f(-0.75) = -0.07181250$, $f(-0.5) = -0.02475000$, $f(-0.25) = 0.33493750$, $f(0) = 1.10100000$

Also plot the obtained interpolating polynomials.

3. Let $f(x) = \frac{1}{1+x^2}$ for $-5 \le x \le 5$. For each n = 1, 2, ..., 10, let h = 10/n and $y_n = P_n(1 + \sqrt{10})$, where $P_n(x)$ is the interpolating polynomial for f(x) at the nodes $x_0^{(n)}, x_1^{(n)}, ..., x_n^{(n)}$ and $x_j^{(n)} = -5 + jh$, for each j = 0, 1, ..., n. Does the sequence $\{y_n\}$ appear to converge to $f(1 + \sqrt{10})$? Explain your observations with reasons.

Take P_n as Lagrange interpolant, Newton-forward and Newton-backward.