## Learning Parameters via Back-Propagation

## not(XOR)

| $x_1$ | $x_2$ | y |
|-------|-------|---|
| 0     | 0     | 1 |
| 0     | 1     | 0 |
| 1     | 0     | 0 |
| 1     | 1     | 1 |

- 1. Initialize all the parameters  $(w_1, w_2, w_3, w_4, w_5, w_6, b_1, b_2, b_3)$  to random values.
- 2. Forward pass: input data samples (e.g.,  $x_1 = 0$ ,  $x_2 = 0$ ) to the neural network, and then get the output  $\hat{y}$ .
- 3. Compare  $\hat{y}$  with the desired output y, and the difference between them is regarded as the error:  $error = \hat{y} y$ .
- 4. Back-propagate the error to the beginning of the network. During back-propagation, we adjust the parameters (e.g., if we find error is caused by that  $w_5$  is too big, then we decrease  $w_5$ ).

