

planetmath.org

Math for the people, by the people.

m-system

Canonical name Msystem

Date of creation 2013-03-22 17:29:09 Last modified on 2013-03-22 17:29:09

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 11

Author CWoo (3771)
Entry type Definition
Classification msc 16U20
Classification msc 13B30
Synonym m-system

Related topic MultiplicativelyClosed

Related topic NSystem Related topic PrimeIdeal Let R be a ring. A subset S of R is called an m-system if

- $S \neq \emptyset$, and
- for every two elements $x, y \in S$, there is an element $r \in R$ such that $xry \in S$.

m-Systems are a generalization of multiplicatively closet subsets in a ring. Indeed, every multiplicatively closed subset of R is an m-system: any $x, y \in S$, then $xy \in S$, hence $xyy \in S$. However, the converse is not true. For example, the set

$$\{r^n \mid r \in R \text{ and } n \text{ is an odd positive integer}\}$$

is an m-system, but not multiplicatively closed in general (unless, for example, if r = 1).

Remarks. *m*-Systems and prime ideals of a ring are intimately related. Two basic relationships between the two notions are

1. An ideal P in a ring R is a prime ideal iff R - P is an m-system.

Proof. P is prime iff $xRy \subseteq P$ implies x or $y \in P$, iff $x, y \in R - P$ implies that there is $r \in R$ with $xry \notin P$ iff R - P is an m-system. \square

2. Given an m-system S of R and an ideal I with $I \cap S = \emptyset$. Then there exists a prime ideal $P \subseteq R$ with the property that P contains I and $P \cap S = \emptyset$, and P is the largest among all ideals with this property.

Proof. Let \mathcal{C} be the collection of all ideals containing I and disjoint from S. First, $I \in \mathcal{C}$. Second, any chain K of ideals in \mathcal{C} , its union $\bigcup K$ is also in \mathcal{C} . So Zorn's lemma applies. Let P be a maximal element in \mathcal{C} . We want to show that P is prime. Suppose otherwise. In other words, $aRb \subseteq P$ with $a, b \notin P$. Then $\langle P, a \rangle$ and $\langle P, b \rangle$ both have non-empty intersections with S. Let

$$c = p + faq \in \langle P, a \rangle \cap S$$
 and $d = q + hbk \in \langle P, b \rangle \cap S$,

where $p, q \in P$ and $f, g, h, k \in R$. Then there is $r \in R$ such that $crd \in S$. But this implies that

$$crd = (p + fag)r(q + hbk) = p(rq + rhbk) + (fagr)q + f(a(grh)b)k \in P$$
 as well, contradicting $P \cap S = \emptyset$. Therefore, P is prime. \square

 $m\mbox{-}\mathrm{Systems}$ are also used to define the non-commutative version of the radical of an ideal of a ring.