Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

1.	• Using Image Generator, how do you label images?	
	TensorFlow figures it out from the contents	
	O It's based on the file name	
	O You have to manually do it	
	It's based on the directory the image is contained in	
	Correct That's right! The directory of the image is the label.	
2.	What method on the Image Generator is used to normalize the image?	
	O normalize_image	
	rescale	
	normalize	
	O Rescale_image	
	⊘ Correct	
	You've got it! This is the correct method for normalizing images.	
_		
3.	How did we specify the training size for the images?	
	The target_size parameter on the validation generator	
	The training_size parameter on the training generator	
	The target_size parameter on the training generator	
	The training_size parameter on the validation generator	
	Correct Exactly! target_size specifies the image training size	
	Exactly, target_size specifies the image training size	

4.	When we specify the input_shape to be (300, 300, 3), what does that mean?
	Every Image will be 300x300 pixels, and there should be 3 Convolutional Layers
	Every Image will be 300x300 pixels, with 3 bytes to define color
	There will be 300 images, each size 300, loaded in batches of 3
	There will be 300 horses and 300 humans, loaded in batches of 3
	Correct Nailed it! input_shape specifies image resolution.
5.	If your training data is close to 1.000 accuracy, but your validation data isn't, what's the risk here?
	O You're overfitting on your validation data
	O No risk, that's a great result
	O You're underfitting on your validation data
	You're overfitting on your training data
	Correct Great job! The analysis corresponds too closely to the training data, and may therefore fail to fit additional data.
6.	Convolutional Neural Networks are better for classifying images like horses and humans because:
	✓ In these images, the features may be in different parts of the frame
	 Correct Correct! The receptive fields of different neurons partially overlap such that they cover the entire visual field.
	✓ There's a wide variety of horses
	Correct Way to go! CNNs are better in this case as they are independent from prior knowledge and human intervention in feature extraction.
	✓ There's a wide variety of humans
	Correct You've got it! CNNs are better in this case as they are independent from prior knowledge and human intervention in feature extraction.
7.	After reducing the size of the images, the training results were different. Why?
	O There was less information in the images
	We removed some convolutions to handle the smaller images
	There was more condensed information in the images
	The training was faster
	✓ CorrectYes! Removing some convolutions modifies the training results.