מבוא לטופולוגיה – סיכום

2025 במרץ 31

תוכן העניינים

תוכן העניינים

3	24.3.2025-1 שיעור	1
3	מבוא מבוא 1.1	
6	25.3.2025-2 שיעור	2
6	2.1 טופולוגיה — המשך	
8	31.3.2025 - 3 שיעור	3
8	3.1 סגירות	
9	3.2 השלמות לרציפות	

24.3.2025 - 1 שיעור 1

מבוא 1.1

 $f:\mathbb{R} o\mathbb{R}$ ומערים, באינפי 1 מתבוננים ב \mathbb{R} והגדרנו את מושג הגבול של סדרות, ולאחריו את המושג של פונקציה רציפה בעפר דיברנו על מרחבים מטריים, באינפי 1 המושג באינפי 3 כבר ראינו את את ווו $\lim_{n \to \infty} f(x_n) = f(x)$ מתקיים מתקיים אם ולכל $x \in \mathbb{R}$ אם לכל אם לכל הייתה ש־f תיקרא המושג הכללי והרחב יותר של רציפות במרחבים מטריים. ניזכר בהגדרה של מרחב מטרי.

המקיימת, מטריקה) הנקראת מטריקה (הנקראת מטרי(X,d) באשר א קבוצה לא ריקה (מרחב מטרי) מרחב מטרי(X,d) האשר א המקיימת,

- $x,y \in X$ לכל d(x,y) = d(y,x) .1
- $d(x,y)=0\iff x=y$ וכך $\forall x,y\in X, d(x,y)\geq 0$.2
- $\forall x,y,z\in X, d(x,y)\leq d(x,y)+d(y,z)$ אי־שוויון המשולש, .3

דוגמה 1.1 נראה דוגמות למרחבים מטריים,

- d(x,y)=|x-y| יחד עם \mathbb{R} .1 $d_2(ar{x},ar{y})=\sqrt{\sum_{i=1}^n|x_i-y_i|^2}$ המוגדרת על־ידי (\mathbb{R}^n,d_2) .2
- $d_{\infty}(\bar{x},\bar{y})=\max_{1\leq i\leq n}|x_i-y_i|$, אינסוף, ואת מטריקת $d_p(\bar{x},\bar{y})=\left(\sum_{i=1}^n|x_i-y_i|^p\right)^{rac{1}{p}}$ את מוכל עבור \mathbb{R}^n נוכל עבור 3.
- $ho(f,g) = \sup_{x \in [a,b]} |f(x) g(x)|$ קבוצת את המטריקה עבור $[a,b] o \mathbb{R}$ עבור הרציפות הפונקציות הרציפות עבור $[a,b] o \mathbb{R}$

נראה את ההגדרה הפורמלית של רציפות,

קדים $\delta>0$ קיים $\epsilon>0$ עבור אם לכל הא רציפה שיf רציפה אז נאמר שיf עבור f:X o Y עבור f:X o Y עבור הגדרה 1.2 (רציפות) אז נאמר שי $\rho(f(x'), f(x)) < \epsilon$ אז $d(x', x) < \delta$ מאם

אבל יותר קל לדבר במונחים של קבוצות פתוחות.

 $B(r,x) = B_r(x) = \{z \in X \mid d(x,z) < r\}$ הגדרה מטרי, נסמן מרחב מטרי, עבור עבור (בדור) 1.3 הגדרה 1.3

 $f^{-1}(V)=\{x\in X\mid f(x)\in T$ מתקיים ב־Y מתקיים אם לכל עביפות הגדרה אברה אברה לרציפות תיקרא אויקרא תיקרא אביפה אם לכל אם לכל וואר הגדרה 1.5 מתקיים לרציפות היקרא אויקרא אביפה אם לכל אביפה אם לכל אויקרא האבירה 1.5 מתקיים אויקרא האבירה ב-YX- קבוצה פתוחה ב־V

הבאים, התנאים התנאים התנאים, au כך שמתקיימים התנאים הבאים, טופולוגיה, על au הגדרה 1.6 (טופולוגיה), חהי au קבוצה (לא ריקה), טופולוגיה על au היא אוסף

- $\bigcup_{\alpha\in I}U_{\alpha}\in au$ אז $\forall lpha\in I,U_{lpha}\in au$ כך שיס, I כך אינדקסים לקבוצת אינדקסים א אוז כלומר אם סגור לאיחוד, כלומר אם 2.
 - $U\cap V\in au$ מתקיים מופיים, כלומר לכל לכל טומר סופיים, סופיים מוכים סגור לחיתוכים au .3

. הגדרה אל מרחב טופולוגיה על X, יקרא א קבוצה אר קבוצה לא קבוצה לא כאשר אוגי (מרחב טופולוגי) זוג אוגי (מרחב טופולוגי) אוגי (מרחב טופולוגי) זוג אוגי (מרחב טופולוגי) זוג

 $U\in\Omega$ לכל $f^{-1}(U)\in au$ בעשם הגדרנו כבר מתי פונקציה f:X o Y עבור מרחבים טופולוגיים (X, au), איז היא רציפה, כאשר בעצם הגדרנו לכל מ סימון 1.8 איברי au יקראו קבוצות פתוחות.

הא היא קבוצה אם A איז המשלים של A או מרחב המשלים אם A או היא הברה אם הארה אם A או היא המשלים של היא היא הברה המערה אם הארה אם הארה אם הארחב טופולוגי אז תת־קבוצה אז הארחב הארחב של האר פתוחה.

דוגמה באופן טריוויאלי כנביעה ערי, כלומר נגדיר טופולוגיה אין $au=\{U\subseteq X\mid \forall x\in U\exists r>0, B(x,r)\subseteq U\}$ יהי מטרי, נגדיר זה מטרי, נגדיר אין דוגמה 1.2 יהי מהמרחב המטרי.

תרגיל 1.1 הוכיחו כי אכן זהו מרחב טופולוגי.

. יהי X קבוצה כלשהי, אז ניתן להגדיר על X טופולוגיה $\{\emptyset,X\}$ יהי עופולוגיה טופולוגיה טופולוגיה זו נקראת טופולוגיה אז ניתן להגדיר על X

24.3.2025 - 1 שיעור 1 מבוא 1.1

f: מתי איז שהיא רציפה התשובה היא שהיא היא הוא f: מתי א היא f: ווהי א רציפה תמיד. ווהי רציפה מתיד. מתי א מתי f: ווהי מתי חלי. ווהי רציפה מתיד. מתי א דוגמה 1.5 מתי א מתיד. רציפה, תלוי בהגדרת הפונקציה, אבל במקרה שבו היא אכן רציפה, אז היא רציפה לעומה ההיא. לעומת אבל במקרה אבל האריא. לעומת האריא רציפה (Y, au) רציפה לעומת האריא. רציפה. $f:(X,\tau_1) o (Y, au)$

הערה לא כל טופולוגיה נובעת ממטריקה. לדוגמה הטופולוגיה הטריוויאלית על מרחב עם לפחות 2 נקודות.

. הקבוצה פתוחה קבוצה B(x,r) הקבוצה פתוחה.

 $\mathcal{F}=\{A\subseteq\mathbb{C}^n\mid\exists\{f_i\}_{i\in I}\subseteq\mathbb{C}[x_1,\ldots,x_n],A=\{(p_1,\ldots,p_n)\mid\forall i\in\mathbb{N}$ עבור איזשהו $X=\mathbb{C}^n$ נגדיר 1.6 נגדיר 1.6 נגדיר $I, f_i(p_1, \ldots, p_n) = 0\}$

, בסיס לטופולוגיה של X של תתי־קבוצות של בסיס לטופולוגיה בסיס לטופולוגיה בסיס לטופולוגיה בסיס לטופולוגיה בסיס לטופולוגיה בסיס בסיס לטופולוגיה בסיס לטופולוג

 $x \in B$ כך ש־ $B \in \mathcal{B}$ יש $x \in X$.1

 $x \in C \subseteq A \cap B$ יש כך כך שי $x \in A \cap B$ ולכל $A, B \in \mathcal{B}$.2

טענה 1.11 עבור בסיס \mathcal{B} היא טופולוגיה, $au_{\mathcal{B}} = \{U \subseteq X \mid U \text{ is a union of elements of } \mathcal{B}\}$ היא טופולוגיה,

$$\forall \alpha \in I, B_{\alpha} \in \mathcal{B}, U = \bigcup_{\alpha \in I} B_{\alpha}$$

, אז מתקיים, אז איז סופי, אז איז סופי, אז אם ער וכן וכן $U=\bigcup_{lpha\in I}B_lpha\in\mathcal{B}$ אז אז אז אם סופי, אז אז סופי, אז אז מתקיים, מכיוון ש־ $au_\mathcal{B}$ סגורה לחיתוך סופי, אז אם אז מתקיים,

$$U \cap V = (\bigcup_{\alpha \in I} B_{\alpha}) \cap (\bigcup_{\beta \in J} A_{\beta}) = \bigcup_{\alpha, \beta \in I \times J} B_{\alpha} \cap A_{\beta} = D$$

 $U\cap V=(\bigcup_{\alpha\in I}B_\alpha)\cap(\bigcup_{\beta\in J}A_\beta)=\bigcup_{\alpha,\beta\in I\times J}B_\alpha\cap A_\beta=D$ כך ש־ $C_{\alpha_0,\beta_0}\subseteq \mathcal{B}$ ישנם $C_{\alpha_0,\beta_0}\in \mathcal{B}$ ישנם $C_{\alpha_0,\beta_0}\in \mathcal{B}$ ישנם $C_{\alpha_0,\beta_0}\in \mathcal{B}$ ישנם $C_{\alpha_0,\beta_0}\in \mathcal{B}$ ישנם אבל מהגדרת הבסיס פוימת קבוצה אבל מהגדרת הבסיס פוימת הבסיס פו . סופי. לכן הזיתות מצאנו בהתאם התאם ובהתאם $D\subseteq igcup_{(x,lpha,eta)} C_{x,lpha,eta}$ לכן לכן $B_{lpha_0}\cap A_{eta_0}$

 $\{B(x,rac{1}{n})\subseteq X\mid x\in$ אם מטרי, אז $\{B(x,r)\subseteq X\mid x\in X, r>0\}$ הוא טופולוגיה. אבל עכשיו נוכל להגדיר גם את מטרי, אז הערה . המטרי לטופולוגיה שהגדרנו למרחב הטופולוגיה לאותה לטופולוגיה לטופולוגיה לטופולוגיה לאותה לטופולוגיה לאותה לטופולוגיה לאותה לאותה לטופולוגיה ל

תרגיל 1.2 הוכיחו שזהו אכן בסיס עבור המרחב הטופולוגי הנתון.

 $C = \{a + d\mathbb{Z} \mid a, d \in \mathbb{Z}, d \neq 0\}$, נניח ש $\mathbb{Z} = \mathbb{Z}$, ונגדיר את הבסיס להיות אוסף הסדרות האריתמטיות הדו־צדדיות, כלומר $X = \mathbb{Z}$ $p\in p+dq\mathbb{Z}\subseteq$ אז $p\in (a+d\mathbb{Z})\cap (b+q\mathbb{Z})$, וננים כי זהו אכן בסיס (לטופולוגיה). נתבונן בזוג קבוצות ב $a+d\mathbb{Z},b+q\mathbb{Z}$, וננים כי זהו אכן בסיס (לטופולוגיה). $. au_C$ נגדיר טופולוגיית. ($a+d\mathbb{Z}$) \cap ($b+q\mathbb{Z}$)

קבוצות סגורות הן משלימים לקבוצות פתוחות.

כל סדרה אריתמטית דו־צדדית אינסופית היא גם פתוחה וגם סגורה. בפרט חיתוך סופי של סדרות אריתמטיות הוא סגור. לכן המשלים שלו הוא פתוח. מסקנה 1.12 (משפט אוקלידס) יש אינסוף מספרים ראשוניים.

$$\bigcup_{i=1}^k p_i \mathbb{Z} = \mathbb{Z} \setminus \{-1, 1\}$$

ולכן נובע ש־ $\{-1,1\}$ קבוצה פתוחה וזו כמובן סתירה.

טענה 1.13 (צמצום מרחב טופולוגי) עניח ש(X, au) מרחב טופולוגי, לכל $\emptyset
eq Y \subseteq X$ מרחב טופולוגי, נניח ש(X, au) מרחב טופולוגי, לכל 1.13 (צמצום מרחב טופולוגי) מרחב טופולוגי, $. au_Y = \{W \in au \mid W \subseteq Y\}$ אז $Y \in au$ אם $Y \in au$

טענה 1.14 (טופולוגיית מכפלה) נניח ש־ (X_1, au_1) ו־ (X_2, au_2) מרחבים טופולוגיים, אז נגדיר טופולוגיית מכפלה (X_1, au_1, au_1) על־ידי

$$\tau_{1,2} = \{ U_1 \times U_2 \mid U_1 \in \tau_1, U_2 \in \tau_2 \}$$

אז בסיס והטופולוגיית על־ידו נקראת על־ידו המכפלה. המכפלה דיטופולוגיית המכפלה דוא ד $au_{1,2}$ אז

דוגמה 1.8 נוכל לבנות כך מכפלה של כמות סופית או אינסופית של מכפלות טופולוגיות. עבור אוסף אינסופי (בן־מניה או לא בהכרח) אנו צריכים

24.3.2025 - 1 שיעור 1 1.1 מבוא

אז נגדיר ($\alpha \in I$ עבור (X_{α}, au_{α}) אז נגדיר להיזהר, נניח ש

$$au_b=\{\prod_{lpha\in I}U_lpha\mid oralllpha\in I, U_lpha\in au_lpha\}$$
 אם בסיס לטופולוגיה שנקרא טופולוגיית הקופסה. לעומת זאת נוכל להגדיר גם את

$$\tau_p = \{ \prod_{\alpha \in I} U_\alpha \mid U_\alpha = X_\alpha \text{ for almost all } \alpha \in I \}$$

$$.\prod_{\alpha\in I}=\{f:I\to\bigcup_{\alpha\in I}X_\alpha\mid \forall \alpha\in I, f(x)\in X_\alpha\}$$
 כלומר

25.3.2025 - 2 שיעור 2

טופולוגיה – המשך 2.1

Z=בשיעור הקודם דיברנו על מכפלה של טופולוגי, אז נתבונן שאם I קבוצת אינדקסים ולכל $lpha\in I$ גם מרחב טופולוגי, אז נתבונן ביI בשיעור הקודם דיברנו על מכפלה של טופולוגיה על I.

הערה מגדירים.

$$\prod_{\alpha \in I} X_{\alpha} = \{ f : I \to \bigcup_{\alpha \in I} X_{\alpha}, \forall \alpha \in I, f(\alpha) \in X_{\alpha} \}$$

לאחר מכן נוכל להגדיר טופולוגיית מכפלה,

,הבסים, נגדיר את הבסים (טופולוגיית מכפלה) 2.1 הגדרה

$$\mathcal{B}_{\text{box}} = \{ \prod_{\alpha \in I} U_{\alpha} \mid \forall \alpha \in I, U_{\alpha} \subseteq X_{\alpha}, U_{\alpha} \in \tau_{\alpha} \}$$

ואת הבסיס.

$$\mathcal{B}_{\text{prod}} = \{ \prod_{\alpha \in I} V_{\alpha} \mid \forall \alpha \in I, V_{\alpha} \in \tau_{\alpha}, V_{\alpha} \subseteq X_{\alpha}, |\{\beta \in I \mid V_{\beta} \neq X_{\beta}\}| < \infty, V_{\alpha} = X_{\alpha} \text{ for almost every } \alpha \}$$

אלו הן מכפלות של טופולוגיות המהוות טופולוגיה.

$$\pi_lpha(f)=f(lpha)$$
 אז שנן הטלהו ל $lpha\in I,\pi_lpha:Z o X_lpha$ הטלות שנן אז על אז אז אז אז המרכה הטלה) אז אז אז אז שנן הטלות אז אז אז אז אז אז אז הגדרה 2.2 העתקות הטלה)

 $\pi_{lpha}^{-1}(U_{lpha})\in au$ יתקיים תהינה ב־ X_{lpha} יתקיים שכל ההטלות עריך שלכל הרוצים אכן יקיימו אכן יקיימו עריים אכן יקיימו הביס, ערכל ההטלות הביס, אנו רוצים אכן יקיימו אכן יקיימו אכן יקיימו אכן יקיימו אכן יתקיים אכן יתקיים ערכל בחין כי ערכל בחין כי $\pi_{lpha}^{-1}(U_{lpha})=U_{lpha} imes\prod_{eta
eqlpha}X_{eta}$ יתקיים ערכל יתקיים ערכל המקור יהיה קבוצה פתוחה ב־ π_{lpha} .

$$C = \{ U_{\alpha} \times \prod_{\beta \neq \alpha} X_{\beta} \mid \pi_{\alpha}^{-1}(U_{\alpha}) \in \tau \}$$

.] C=Xע כך של תת־קבוצות של X תהי קבוצה X קבוצה תהי קבוצה תהיקבוצות של עד תר־קבוצות הגדרה (מת־בסיס לטופולוגיה).

נגדיר את הסופיים הסופיים של איברי אוסף להיות כלומר $\mathcal{B}_C = \{\bigcap A \mid A \subseteq C, |A| < \infty\}$ הייות של איברי מתחבסים המושרה אוסף פתוחות) פתוחות פתוחות הוא בסים.

 $au_1\subseteq au_2$ אם אם au_2 הותר חלשה יותר שר אומרים על אומרים על au_1 שם אם קבוצה au_1 אם אומרים על אומרים על אומרים אומרים אם au_1

, מרחב מושרה מתאים לכל i. נרצה להתבונן במכפלתם, ונגדיר (X_i, au_i) מרחב (X_i, au_i) לכל לכל X_i, au_i לכל לכל X_i, au_i שהגדרנו זה עתה. אז נוכל להתבונן ב־ $(\prod X_i, au_{\mathrm{prod}})$ שהגדרנו זה עתה.

 $x,y\in Z$ לכל $Z=\prod_{i\in\mathbb{N}}X_i$ עם מטריקה מצוא מטריקה מרצה מרצה מטריים מטריים מטריים מטריים בהינתן מכפלה) מרצה אז נגדיה (מטריקה מכפלה) באשר אז נגדיר, אז נגדיר,

$$\rho(x,y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)}$$

ברור שפונקציה זו מוגדרת, וברור אף כי היא מקיימת את התכונה השנייה של מטריקות, אך לא ברור שהיא מקיימת את אי־שוויון המשולש, זהו תרגיל שמושאר לקורא.

. \mathcal{B}_{prod} טענה שווה ל-מכפלה שורית עם מטריקת מרכפלה מרחבים מרחבים עבור (X_i, au_i) עבור עבור $Z = \prod_{i=1}^\infty X_i$ שענה 2.6 מענה

 $au_
ho=\mathcal{B}_{
m prod}$ בסיס, אז נוכל להגדיר טופולוגיה (Z,
ho) מרחב מטרי, ו־ $\mathcal{B}_
ho=\{B(x,r)\mid x\in Z, r>0\}$ בסיס, אז נוכל להגדיר שטופולוגיה נקבעת ביחידות על־ידי בסיס שלה, לכן מספיק להראות שכל $B\in\mathcal{B}_{
m prod}$ שייכת ל־ $T_{
m prod}$ שייכת ל־ $T_{
m prod}$. נוסיף ונבהיר שטופולוגיה נקבעת ביחידות על־ידי בסיס שלה, לכן מספיק להראות את שקילות הבסיסים.

נתחיל בתנאי הראשון, ונקבע $U_k\in au_k$ כלשהו. מספיק להראות שקבוצה מהצורה $U_k imes\prod_{i\neq k}X_i$ פתוחה בי0 עבור $U_k\in \mathbb{N}$ בית עבור בונסם ביל להרחיב הוכחה זו באופן סיסטמתי להיות על כל קבוצה סופית של קבוצות פתוחות. יהי 1 1 על להרחיב הוכחה זו באופן סיסטמתי להיות על כל קבוצה סופית של קבוצות פתוחות. יהי 1 ושי1 פתוחה ולכן ישנו 1 על מרחב זה 1 על מרחב זה 1 שי1 פתוחה ולכן ישנו 1 בין מוחה בי1 מרחב בי1 בין מוחה ביים מ

25.3.2025 - 2 שיעור 2 25.3.2025 טופולוגיה – המשך

קיים $Z=\prod_{i\in\mathbb{N}}X_i$ ב־ $\frac{s}{2^k}$ סביב $\frac{s}{2^k}$ את הכדור ברדיוס או לכן נבחן את המפלה כולו. איז א ומתקיים ברחב מרחב ומתקיים את התנאי לבסיס. נניח ש" $y=(y_i)_{i\in\mathbb{N}}\in B_{\frac{s}{2^k}}(x)$ אז המטרה שלנו היא להראות שהכדור שעתה בחרנו מקיים את התנאי לבסיס. נניח ש"כולו היא להראות שהכדור שעתה בחרנו מקיים את התנאי לבסיס.

$$\frac{s}{2^k} > \rho(x, y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)} \ge \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)}$$

$$\Rightarrow s > \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)}$$

$$\Rightarrow \rho_k(x_k, y_k) < r$$

$$\Rightarrow y_k \in B_r(x_k) \subseteq U_k$$

, נעבור לתנאי השני, נתבונן בכדור הפתוח סביב Z סביב, $B_r(x)$, $x\in Z$ כאשור השני, נתבונן בכדור הפתוח מוגדר להיות,

$$B_r(x) = \left\{ y \in Z \mid \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)} < r \right\}$$

, על־ידי, המוגדרת על־ידי, כלומר הזנב של את טור הזנב לומר נחסום את כלומר כלומר המוגדרת אר המוגדרת על־ידי, כלומר ב $V\subseteq Z$ ההי כל על כלומר כלומר כלומר הזנב את כלומר כלומר כלומר כלומר ביש המוגדרת על־ידי, כלומר כלומר כלומר ביש המוגדרת על־ידי, כלומר ביש המוגדרת ביש המוגדרת על־ידי, כלומר ביש המוגדרת ביש ביש המוגדרת ביש המו

$$V = \left\{ (y_1,\ldots,y_M) \in \prod_{i=1}^M \mid \sum_{i=1}^M rac{1}{2^i} rac{
ho_i(x_i,y_i)}{1+
ho_i(x_i,y_i)} < rac{r}{2}
ight\}$$
ואנו טוענים כי $V imes \prod_{i=M+1}^\infty X_i \subseteq B_r(x)$ ואנו טוענים כי

П

31.3.2025 - 3 שיעור 3

3.1 סגירות

בדיוק כמו במרחבים מטריים, גם במרחב טופולוגי נרצה לדון במניפולציות על קבוצות במרחב, נתחיל בהגדרת הקונספט של סגור של קבוצה במרחב מופולוגי

A של הסגור את הסגור. נגדיר על קבוצה $A\subseteq X$ הגדרה ותהי קבוצה מרחב טופולוגי) היי היי (סגור של קבוצה כשלהי. הסגור של $A\subseteq X$ מרחב טופולוגי) מרחב טופולוגיA את את הסגור המכילה את A, כלומר,

$$\overline{A} = \bigcap_{X \setminus F \in \tau} F$$

בהתאם נקבל מספר תכונות ראשוניות ודומות לתכונות שראינו בעבר,

למה 3.2 התכונות הבאות מתקיימות,

$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$
 .1

. כאשר במקרה זה אין בהכרח שוויון. $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$. 2

, אז מתקיים, אז מתקיים, $A=\mathbb{Q}, B=\mathbb{R}\setminus\mathbb{Q}$ וכן $X=\mathbb{R}$ שוויון, נגדיר שוויון, מתקיים, אז מתקיים, אז מתקיים,

$$\emptyset = \overline{\emptyset} = \overline{A \cap B} \subsetneq \overline{A} \cap \overline{B} = \mathbb{R} \cap \mathbb{R} = \mathbb{R}$$

טענה 3.3 אם (X, au) מרחב טופולוגי ו- $A\subseteq X$, אז,

$$x \in \overline{A} \iff \forall U \in \tau, x \in U \to U \cap A \neq \emptyset$$

Aאם ורק אם כל קבוצה פתוחה ביב הנקודה לא Aאם ורק אם כל קבוצה פתוחה סביב הנקודה לא A

 $x
otin \overline{A}\iff \exists U\in au, x\in U\land U\cap A=\emptyset$ הטענה, כלומר שלילת את נראה הוכחה. נראה הוכחה

A- אבל \overline{A} פתוחה וזרה מהגדרתה $X\setminus \overline{A}$ אבל $x\in X\setminus \overline{A}$ ולכן ולכן $x\notin \overline{A}$

 $x
otin \overline{A}$ בכיוון השני אם יש $X
otin \overline{A}\subseteq F$ פתוחה כך ש־ $X
otin U\cap A=\emptyset$ אז ע $X
otin \overline{A}\subseteq F$ סגורה ומכילה את $X
otin \overline{A}\subseteq F$ ובהכרח

 $A^\circ = igcup_{U \in au, U \subset A} U$, הגדרה את הפנים את נגדיר את נגדיר ושפה) אנדרה 3.4 הגדרה

כלומר הפנים הוא איחוד כל הקבוצות הפנימיות הפתוחות של A, ובשל הסגירות של הטופולוגיה לאיחוד, נקבל כך את הקבוצה הפתוחה הגדולה ביותר שחלקית ל- $A = \overline{A} \setminus A^\circ$ היותר $A = \overline{A} \setminus A^\circ$

נבחין בהגדרה של סביבה ונשתמש בהגדרה זו כדי להגדיר מונח חדש.

 $.x \in U \subseteq L$ יש כך ער פרימת קבוצה פתוחה $t \in U \subseteq L$ יש כל באמר של באמר איז מביבה של נקודה) נאמר של $t \in L$

אם אם הצטברות של היא נקודת הצטברות $x\in A$ ו תת־קבוצה כלשהי, והי $x\in A$ ו נקודת הצטברות של חדוב טופולוגי, תהי $x\in A$ ו תת־קבוצה כלשהי, ו־ $x\in A$ ו נקודה מ־x שונה מ־x, כלומר,

$$\forall U \in \tau, x \in U \implies \exists y \in (U \setminus \{x\}) \cap A$$

A את קבוצת נקודות ההצטברות של A'

נרצה להסתכל על נקודות הצטברות כנקודות שלא משנה כמה קרוב אנחנו מסתכלים אליהן, עדיין נוכל למצוא בסביבתן נקודות נוספות. במובן הזה ברור שהן נמצאות בקרבת נקודות בפנים, אך עלולות להיות גם נקודות לא פנימיות שמקיימות טענה כזו.

 $\overline{A}=A\cup A'$ מענה 3.7 מתקיים

היא אוסף כל \overline{A} היא אוסף הטענה ש־ \overline{A} או או \overline{A} או אז או \overline{A} או אוסף היא אוסף מביבה של x יש נקודה מ \overline{A} שונה מ־ \overline{A} אז או אוסף היא אוסף מביבה של \overline{A} או אוסף לאר היק נובע ש־ \overline{A} או אוסף כל סביבה שלהן המכילה את \overline{A} בחיתוך לא ריק נובע ש־ \overline{A} איז אוסף כל סביבה שלהן המכילה את \overline{A} בחיתוך לא ריק נובע ש־ \overline{A} איז אוסף כל סביבה שלהן המכילה את \overline{A} בחיתוך לא ריק נובע ש־ \overline{A} איז אוסף כל סביבה שלהן המכילה את \overline{A} בחיתוך לא ריק נובע ש־ \overline{A} איז אוסף כל סביבה שלהן המכילה את \overline{A} בחיתוך לא ריק נובע ש־ \overline{A} איז אוסף כל סביבה שלהן המכילה את \overline{A} בחיתוך לא ריק נובע ש־ \overline{A} היא אוסף כל סביבה שלהן המכילה אוך לא ריק נובע ש־ \overline{A} היא אוסף כל סביבה שלהן המכילה את \overline{A} בחיתוך לא ריק נובע ש־ \overline{A} היא אוסף כל סביבה שלהן המכילה את \overline{A} בחיתוך לא ריק נובע ש־ \overline{A} היא אוסף כל סביבה שלהן המכילה את \overline{A} בחיתוך לא ריק נובע ש־ \overline{A} היא אום בכל סביבה שלהן המכילה את \overline{A} בחיתוך לא ריק נובע ש־ \overline{A} היא אום בכל סביבה שלהן המכילה את \overline{A} בחיתוך לא ריק נובע ש־ \overline{A} היא אום בכל סביבה שלהן המכילה את \overline{A} היא אום בכל סביבה שלח ברים לא היא אום ברים המכילה את ברים לא ברים לא

בכיוון השני נניח ש". $x\in A$ אז לכל $x\notin A$ כך ש". $x\in A$ מתקיים $x\in A$ אם אם $x\in A$ אם אז לכל $x\in A$ אז לכל $x\in A$ אז לכל $x\in A\cup A'$ מתקיים $x\in A\cup A'$ מרכי משני $x\in A\cup A'$ מרכי משני מש". $\overline{A}=A\cup A'$

31.3.2025 - 3 שיעור 3 שיעור 3

3.2 השלמות לרציפות

f:X o Y ופונקפט של רציפות ופונקציה איז מרחב טופולוגי ויX קבוצה כלשהי, ופונקציה איז בחול בחליני ויזכר בהגדרה לדון בקונספט של רציפות באופן רחב יותר. בהינתן להגדיר טופולוגיה על X כך שיf רציפה.

X איא מהבסיס משרית מושרית עליו ולהגדיר לבסיס ולהרחיבה הרחיבה היא תת־בסיס, היא הת־בסיס, ואפשר הרחיבה לבסיס ולהגדיר עליו $\{f^{-1}(U) \mid U \in au_Y\}$

. ביותר על X עבורה f רציפה עבור טופולוגיה או, וזו הטופולוגיה וו על דעותר או f סענה f סענה f סענה f סענה און ווא עבורה f סענה און ווא טופולוגיה אווא טופולוגיה און ווא טופולוגיה אווא טופולוג

 $\{U\subseteq Y\mid f^{-1}(U)\in au_X\}$ את נוכל להגדיר f:X o Y נוכל עם פונקציה עם יחד עם וקבוצה לשהי ווו ויוו הטופולוגיה וווו הטופולוגיה ביותר על עם ביותר על עם עם עם ועם ועם לבנות בסיס וטופולוגיה על f באופן דומה ביותר על עם ביותר ע

טענה 3.9 (שקילות לרציפות) יהיו מרחבים טופולוגיים (X, au_X), ותהי אז התנאים הבאים שקולים, יהיו מרחבים טופולוגיים (שקילות לרציפות)

- 1.2 רציפה לפי f .1
- X^{-1} סגורה $f^{-1}(F)$, $F\subseteq Y$ סגורה ב-2. .2 הגדרה זו עוזרת לנו לדון בקבוצות סגורות במקום פתוחות
- Xבסיס לטופולוגיה של Y אז לכל $B\in\mathcal{B}$ מתקיים ש $f^{-1}(B)$ פתוחה ב- B מתקיים של לנו לדון בכיסים ובכך לפשט את העבודה עם טופולוגיות הגדרה זו מאפשרת לנו לדון בבסיסים ובכך לפשט את העבודה עם טופולוגיות
- x של סביבה $f^{-1}(W)$ מתקיים שf(x) של $W\subseteq Y$ סביבה של $x\in X$ לכל .4
- רציפה. $f\mid_{U_{\alpha}}:U_{\alpha}\to Y$ מתקיים $\alpha\in\Omega$ מתקיים γ , ער γ , ער γ , ער אומר γ , כלומר אווער γ , ער כלומר אווער γ , ער אווער אווער ביסוי פתוח γ , ער אווער אווער ביסוי פתוח γ , ער אווער ביסוי פתוח אווער אווער אווער ביסוי פתוח אווער אווער אווער אווער ביסוי פתוח אווער איינער אווער אייער אווער אווער אווער אווער אווער איינער אווער אווער אווער איינער אווער אייער אווער אווער אווער איינער אווער אווער אווער איינער אווער אווער אווער איינער איינער איינער איינער איינער איינער איינער איינער אווער איינער איינע
 - . רציפה. $f\mid_{F_i}:F_i\to Y$ הכל כיסוי סגור עבור $f\mid_{F_i}:F_i\to Y$ עבור עבור עבור עבור עבור עבור $X=\bigcup_{i=1}^n F_i$ רציפה.
 - $f(\overline{A}) \subseteq \overline{f(A)}$ מתקיים $A \subseteq X$ לכל.

. תוחות שירות על קבוצות הרציפות של משלימים הגדרה שירות מהגדרה שירות פתוחות. בובע ישירות מהגדרה של משלימים והגדרת מהגדרה שירות מהגדרה שירות מהגדרה של משלימים והגדרת הרציפות על קבוצות פתוחות.

- היא איחוד השני כל קבוצה הטענה. לכיוון השני כך להראות היא קבוצה פתוחה, ונוכל כך להראות את נכונות הטענה. לכיוון השני כל קבוצה היא איחוד $f^{-1}(\bigcup U_{\alpha}) = \bigcup f^{-1}(U_{\alpha})$, של קבוצות מהבסיס, U_{α} , ור
- $x\in f^{-1}(U)\subseteq$ ש־ט פתוחה, לכן נובע ש־ט $f(x)\in U\subseteq W$ אז קיימת אז קיימת של $f(x)\in W\subseteq Y$ וכן $f(x)\in W\subseteq Y$ אז פתוחה. $f^{-1}(U)$ כאשר כאשר באטר פתוחה.
- היא $f^{-1}(U)$ הנחה אז צריך להראות שר $f^{-1}(U)$ פתוחה. תהי תהי $f^{-1}(U)$ אם צריך להראות שר $f^{-1}(U)$ פתוחה אז צריך להראות אז צריך להראות פתוחה, ונסיק שר $f^{-1}(U)=\bigcup_{x\in f^{-1}(U)}V_x$ פתוחה, ונסיק שר $f^{-1}(U)=\bigcup_{x\in f^{-1}(U)}V_x$ פתוחה, ונסיק שר
 - . נוכל לבחור כיסוי טריוויאלי. נוכל לבחור נוכל כיסוי נוכל וויאלי. ביסוי נוכל לבחור נוכל לבחור נוכל לבחור נוכל לבחור כיסוי טריוויאלי.
- - . נבחר את לכיסוי סגור של עצמה. $1 \Longrightarrow 6$
- עששינו בימה למהלך ההוכחה רציפה. כעת ההוכחה לההלך שעשינו $f\mid_{F_i}: F_i \to Y$, ונניח גם שלכל של כיסוי סגור סופי אל כיסוי סגור כיסוי סגור אפיון רציפות בעזרת $f\mid_{F_i}: F_i \to Y$, אבל כעת אפיון רציפות בעזרת $f\mid_{F_i}: F_i \to Y$, ואיחוד סופי על סגורות הוא סגור.
- $f(x) \notin \overline{f(A)}$ שילה שי $f(\overline{A}) \in \overline{f(A)}$, נניח בשלילה שי $f(\overline{A}) \in \overline{f(A)}$, יהי $f(\overline{A}) \in \overline{f(A)}$, יהי $f(\overline{A}) \in \overline{f(A)}$, נניח בשלילה שי $f(\overline{A}) \in \overline{f(A)}$ אבל $f(\overline{A}) \in \overline{f(A)}$ פתוחה ב־ $f(\overline{A}) \in \overline{f(A)}$ אבל $f(\overline{A}) \in \overline{f(A)}$ פתוחה ב- $f(\overline{A}) \in \overline{f(A)}$ אבל $f(\overline{A}) \in \overline{f(A)}$ פתוחה ב- $f(\overline{A}) \in \overline{f(A)}$ אבל $f(\overline{A}) \in \overline{f(A)}$ וקיבלנו $f(\overline{A}) \in \overline{f(A)}$ אבל $f(\overline{A}) \in \overline{f(A)}$ פתוחה ב- $f(\overline{A}) \in \overline{f(A)}$ אבל $f(\overline{A}) \in \overline{f(A)}$ פתוחה ב- $f(\overline{A}) \in \overline{f(A)}$ אבל $f(\overline{A}) \in \overline{f(A)}$ וקיבלנו
 - סגורה, אז, $F \subseteq Y$ מגורה, אז. $7 \implies 2$

$$f(\overline{f^{-1}(F)}) \overset{\text{finith}}{\subseteq} \subseteq \overline{F} \overset{\text{finith}}{=} F \ \Longrightarrow \ \overline{f^{-1}(F)} \subseteq f^{-1}(F)$$

31.3.2025 - 3 שיעור 3 שיעור 3

, לכן, $f^{-1}(F)\subseteq\overline{f^{-1}(F)}$ מהגדרת סגור נוכל להסיק ש

$$\overline{f^{-1}(F)} = f^{-1}(F)$$

Xבפרט $f^{-1}(F)$ סגורה ב-

נבחן תכונה מעניינת שלא תשרת אותנו רבות, אך כן מעלה שאלות,

I=[0,1] עבור f:I imes X o X הציבה עופציה שי ש (Contractible) אם ש־ עבור עבור אמר מרחב טופולוגי, נאמר ש־ X כוויץ אם יש פונקציה רציפה איז יהי איז מרחב טופולוגי, נאמר איז X כך ש־ X בעבור X הגדרה עבור X העבור X הגדרה עבור X הגדרה עבור X האיז ישר X בעבור X הגדרה עבור X הגדרה עבור X בעבור X האיז ישר X בעבור X האיז ישר X בעבור X בעבור X האיז ישר X בעבור X בעבור X האיז ישר X בעבור X האיז ישר X בעבור X בעב

 $x\mapsto x_1$ כסמן גם $f_t:X\mapsto X$ כאשר הפונקציה הקבועה וכן נקבל $f_t:X\mapsto X$ כאשר כאשר בסמן גם

f(t,x)=(1-t)x נגדיר על־ידי המוגדרת f:I imes I o I ואת את מה 3.2 נגדיר 3.2 נגדיר

. נגדיר $\mathbb R$ כוויצה בדיוק באותו על־ידי $f:I imes\mathbb R$ נגדיר אופן. נגדיר על־ידי $f:I imes\mathbb R$ ונקבל שגם $X=\mathbb R$

תרגיל S^1 כוויץ. הראו מרגיל 3.1

נחזור לדבר על פונקציות רציפות.

f(x)(i)=xכך לכל $f:(\mathbb{R}, au_\mathbb{R}) o(\mathbb{R}^\mathbb{N}, au)$ לכל לכל 3.2 נתבונן בי

הקופסה. עופולוגיית אי לא רציפה הופלוגיית המכפלה, טופולוגיית הקופסה כהעתקה כאשר לא רציפה או לא רציפה הראו ש־f

פתרון בתבונן ב T_n בעופולוגיית הקופסה היא לא קבוצה פתוחה, אך עד הקופסה היא לא פתרון פתרון אדן אדי קבוצה פתוחה, אך T_n בעופר פתוחה, אך בעופר היא לא רציפה. רציפה, לכן בטופולוגיית הקופסה היא לא רציפה.

לעומת זאת בטופולוגיית המכפלה היא אכן רציפה.

רציפה ערכית די־חד ערכית $f:X\to Y$ היא העתקה איז מופולוגיים שני מרחבים בין שני מרחבים הומיאומורפיזם) הומיאומורפיזם בין שני מרחבים טופולוגיים איז היא היא.

אנו נרצה להסתכל על הומיאומורפיזם כאיזומורפיזם של מרחבים טופולוגיים.

$$f'(x) = \frac{e^x(e^x + 1) - e^x e^x}{(e^x + 1)^2} = \frac{e^x}{(e^x + 1)^2} > 0$$

. ולכן האי גם על, ואכן המרחבים הומיאומורפים. $f(x) \xrightarrow{x \to -\infty} 0, f(x) \xrightarrow{x \to \infty} 1$ ולכן המרחבים הומיאומורפים.

 $z\mapsto rac{z-i}{z+i}$ על־ידי $\psi:\eta o D$ נגדיר גם $D=\{z\in\mathbb{C}\mid |z|<1\}$ ואת ואת $\eta=\{z=x+iy\in\mathbb{C}\mid x,y\in\mathbb{R},y>0\}$ נגדיר את נגדיר את הוכחה כי זהו אכן הומיאומורפיזם מושארת לקורא.

נבחין כי הדוגמה האחרונה אינה אלא העתקת מביוס, העתקה קונפורמית ואנליטית.

. המרחבים בין שני המרחבים כי אין אונים כי אין טוענים אונים אנו אונים א

נבחן אבל הערכית ועל, ארכית ערכית ועל, ארכית דיחד ערכית ועל, ארכית אדר דיחד ערכית לדוגמה, לדוגמה, לדוגמה, לא לדוגמה, לא ועל, ארכית ועל, ארכית לדוגמה, לועל, ארכית ועל, ארכית וע

נניח שיש העתקה חד־חד ערכית אך מן הצד מיJיהוציא מיJנקודה יחידה, אז נקבל איחוד זר של שתי קבוצות זרות, אך מן הצד השני הוצאת נקודה יחידה מהמעגל משאיר אותו כקבוצה קשירה. ההוכחה המלאה אומנם סבוכה יותר, אך הצבענו פה על הבדל מהותי בין שני המרחבים.

. הראו כי \mathbb{R}^2 לא הומיאומורפים תרגיל 3.3 הראו כי

?האם גם \mathbb{R}^2 ו- \mathbb{R}^3 הומיאומורפים

 $f(U)\subseteq Y$ מתקיים (סגורה) פתוחה לכל אם לכל (סגורה) העתקה תיקרא העתקה f:X o Y העתקה העתקה פתוחה (סגורה) ב-3.12 העתקה פתוחה (סגורה) ב-Y

. המוגדרת ולא סגורה היא רציפה, היא היא $f(x)=x^2$ ידי על-ידי המוגדרת המוגדר העיפה, זוגמה היא הוגדרת לידי המוגדרת המוג

. האבל אבל אבר רציף, הוא הוא $x\mapsto x$ ידי על־ידי המוגדר ($0,1)\hookrightarrow\mathbb{R}$ השיכון 3.7 השיכון

. ביפה. אך אך אד סגורה, סגורה היא טריוויאלית טריוויאלית המוגדרת $\{a,b\} o \{a,b\}$

הגדרות ומשפטים

הגדרות ומשפטים

3	הגדרה 1.1 (מרחב מטרי)
3	1.2 הגדרה 1.2 (רציפות) הגדרה בירות ביר
3	1.3 הגדרה 1.3 (כדור)
3	הגדרה 1.4 (קבוצה פתוחה)
3	הגדרה 1.5 (הגדרה שקולה לרציפות)
3	הגדרה 1.6 (טופולוגיה)
3	הגדרה 1.7 (מרחב טופולוגי)
3	\ldots הגדרה 1.9 (קבוצה סגורה)
4	הגדרה 1.10 (בסיס לטופולוגיה)
4	טענה 1.13 (צמצום מרחב טופולוגי)
4	טענה 1.14 (טופולוגיית מכפלה)
6	הגדרה 2.1 (טופולוגיית מכפלה)
6	הגדרה 2.2 (העתקות הטלה)
6	הגדרה 2.3 (תת־בסיס לטופולוגיה)
6	הגדרה 2.4 (טופולוגיה חלשה)
6	הגדרה 2.5 (מטריקת מכפלה)
8	הגדרה 3.1 (סגור של קבוצה במרחב טופולוגי)
8	הגדרה 3.4 (פנים ושפה)
8	הגדרה 3.5 (סביבה של נקודה)
8	הגדרה 3.6 (נקודת הצטברות)
9	טענה 3.9 (שקילות לרציפות)
10	הגדרה 3.10 (מרחב כוויץ)
10	הגדרה 3.11 (הומיאומורפיזם)
10	הגדרה 3.12 (העתקה פתוחה וסגורה)