The Particle Swarm Optimization Algorithm

Decision Support 2010-2011

Andry Pinto Hugo Alves Inês Domingues Luís Rocha Susana Cruz

Summary

- Introduction to Particle Swarm Optimization (PSO)
 - Origins
 - Concept
 - PSO Algorithm
- PSO for the Bin Packing Problem (BPP)
 - Problem Formulation
 - Algorithm
 - Simulation Results

Introduction to the PSO: Origins

Inspired from the nature social behavior and dynamic movements with communications of insects, birds and fish

Introduction to the PSO: Origins

In 1986, Craig Reynolds described this process in 3 simple behaviors:

Separation

avoid crowding local flockmates

Alignment

move towards the average heading of local flockmates

Cohesion

move toward the average position of local flockmates

Introduction to the PSO: Origins

- Application to optimization: <u>Particle Swarm</u><u>Optimization</u>
- Proposed by James Kennedy & Russell Eberhart (1995)
- Combines <u>self-experiences</u> with <u>social experiences</u>

Introduction to the PSO: Concept

- Uses a number of agents (particles)
 that constitute a swarm moving
 around in the search space looking
 for the best solution
- Each particle in search space adjusts its "flying" according to its own flying experience as well as the flying experience of other particles

Introduction to the PSO: Concept

- Collection of flying particles (swarm) Changing solutions
- Search area Possible solutions
- Movement towards a promising area to get the global optimum
- Each particle keeps track:
 - its best solution, personal best, <u>pbest</u>
 - the best value of any particle, global best, gbest

Introduction to the PSO: Concept

- Each particle adjusts its travelling speed dynamically corresponding to the flying experiences of itself and its colleagues
 - Each particle modifies its position according to:
 - its current position
 - its current velocity
 - the distance between its current position and <u>pbest</u>
 - the distance between its current position and <u>gbest</u>

Introduction to the PSO: Algorithm - Neighborhood

Introduction to the PSO: Algorithm - Neighborhood

Introduction to the PSO: <u>Algorithm - Parameterss</u>

- Algorithm parameters
 - A: Population of agents
 - p_i : Position of agent a_i in the solution space
 - **f**: Objective function
 - v_i : Velocity of agent's a_i
 - V(a_i): Neighborhood of agent a_i (fixed)
- The neighborhood concept in PSO is not the same as the one used in other meta-heuristics search, since in PSO each particle's neighborhood never changes (is fixed)


```
\overline{[x^*]} = \overline{PSO}()
P = \overline{Particle\_Initialization()};
For i=1 to it_max
 For each particle p in P do
   fp = f(p);
   If fp is better than f(pBest)
       pBest = p;
   end
  end
 gBest = best p in P;
 For each particle p in P do
     v = v + c1*rand*(pBest - p) + c2*rand*(gBest - p);
     p = p + v;
  end
end
```

Particle update rule

$$p = p + v$$

with

$$v = v + c_1 * rand * (pBest - p) + c_2 * rand * (gBest - p)$$

- where
- p: particle's position
- v: path direction
- c_l : weight of local information
- c_2 : weight of global information
- pBest: best position of the particle
- gBest: best position of the swarm
- rand: random variable

Introduction to the PSO: Algorithm - Parameters

- Number of particles usually between 10 and 50

- Usually $C_1 + C_2 = 4$ (empirically chosen value)
- If velocity is too low → algorithm too slow
- If velocity is too high \rightarrow algorithm too unstable

- Create a 'population' of agents (particles) uniformly distributed over X
- Evaluate each particle's position according to the objective function
- If a particle's current position is better than its previous best position, update it
- Determine the best particle (according to the particle's previous best positions)

5. Update particles' velocities:

$$\mathbf{v}_{i}^{t+1} = \underbrace{\mathbf{v}_{i}^{t}}_{inertia} + \underbrace{\mathbf{c}_{1}\mathbf{U}_{1}^{t}(\mathbf{p}\mathbf{b}_{i}^{t} - \mathbf{p}_{i}^{t})}_{personal\ influence} + \underbrace{\mathbf{c}_{2}\mathbf{U}_{2}^{t}(\mathbf{g}\mathbf{b}^{t} - \mathbf{p}_{i}^{t})}_{social\ influence}$$

Move particles to their new positions:

$$\mathbf{p}_{i}^{t+1} = \mathbf{p}_{i}^{t} + \mathbf{v}_{i}^{t+1}$$

7. Go to step 2 until stopping criteria are satisfied

Particle's velocity:

$$\mathbf{v}_{i}^{t+1} = \underbrace{\mathbf{v}_{i}^{t}}_{inertia} + \underbrace{\mathbf{c}_{1}\mathbf{U}_{1}^{t}(\mathbf{pb}_{i}^{t} - \mathbf{p}_{i}^{t})}_{personal\ influence} + \underbrace{\mathbf{c}_{2}\mathbf{U}_{2}^{t}(\mathbf{gb}^{t} - \mathbf{p}_{i}^{t})}_{social\ influence}$$

- Makes the particle move in the same direction and with the same velocity
- Improves the individual
- Makes the particle return to a previous position, better than the current
- Conservative
- Makes the particle follow the best neighbors direction

- Intensification: explores the previous solutions, finds the best solution of a given region
- <u>Diversification</u>: searches new solutions, finds the regions with potentially the best solutions
- In PSO:

$$\mathbf{v}_{i}^{\,t+1} = \mathbf{v}_{i}^{\,t} + \mathbf{c}_{1} \mathbf{U}_{1}^{\,t} (\mathbf{p} \mathbf{b}_{i}^{\,t} - \mathbf{p}_{i}^{\,t}) + \mathbf{c}_{2} \mathbf{U}_{2}^{\,t} (\mathbf{g} \mathbf{b}^{\,t} - \mathbf{p}_{i}^{\,t})$$
Diversification
Intensification

Introduction to the PSO: Algorithm Characteristics

Advantages

- Insensitive to scaling of design variables
- Simple implementation
- Easily parallelized for concurrent processing
- Derivative free
- Very few algorithm parameters
- Very efficient global search algorithm

Disadvantages

- Tendency to a fast and premature convergence in mid optimum points
- Slow convergence in refined search stage (weak local search ability)

Introduction to the PSO: <u>Different Approaches</u>

Several approaches

- 2-D Otsu PSO
- Active Target PSO
- Adaptive PSO
- Adaptive Mutation PSO
- Adaptive PSO Guided by Acceleration Information
- Attractive Repulsive Particle Swarm Optimization
- Binary PSO
- Cooperative Multiple PSO
- Dynamic and Adjustable PSO
- Extended Particle Swarms

•

PSO for the BPP: **Introduction**

On solving Multiobjective Bin Packing Problem Using Particle Swarm Optimization

D.S Liu, K.C. Tan, C.K. Goh and W.K. Ho 2006 - IEEE Congress on Evolutionary Computation

First implementation of PSO for BPP

PSO for the BPP: **Problem Formulation**

- Multi-Objective 2D BPP
- ullet Maximum of I bins with width W and height H
- J items with $w_j \leq W$, $h_j \leq H$ and weight ψ_j
- Objectives
 - Minimize the number of bins used K
 - Minimize the average deviation between the overall centre of gravity and the desired one

PSO for the BPP: **Initialization**

- Usually generated randomly
- In this work:
 - Solution from Bottom Left Fill (BLF) heuristic
 - To sort the rectangles for BLF:
 - Random
 - According to a criteria (width, weight, area, perimeter..)

PSO for the BPP: Initialization BLF

Item moved to the right if intersection detected at the top

Item moved if there is a lower available space for insertion

Item moved to the top if intersection detected at the right

PSO for the BPP: <u>Algorithm</u>

• Velocity depends on either pbest or gbest: never both at the same time

PSO for the BPP: <u>Algorithm</u>

1st Stage:

- Partial Swap between 2 bins
- Merge 2 bins
- Split 1 bin

2nd Stage:

• Random rotation

3rd Stage:

Random shuffle

Mutation modes for a single particle

PSO for the BPP: Algorithm

H hybrid

M multi

O objective

P particle

S swarm

O optimization

The flowchart of HMOPSO

PSO for the BPP: **Problem Formulation**

- 6 classes with 20 instances randomly generated
- Size range:
 - Class 1: [0, 100]
 - Class 2: [0, 25]
 - Class 3: [0, 50]
 - Class 4: [0, 75]
 - Class 5: [25, 75]
 - Class 6: [25, 50]
- Olass 2: small items → more difficult to pack

PSO for the BPP: Simulation Results

- Comparison with 2 other methods
 - MOPSO (Multiobjective PSO) from [1]
 - MOEA (Multiobjective Evolutionary Algorithm) from [2]
- Definition of parameters:

Parameter	MOPSO	MOEA	HMOPSO	
crossover rate	-	0.7	-	
PSO update rate	-	-	0.7	
mutation rate	-	0.4	0.4	
population size	500	500	500	
generation size	200 generations			
niche radius	0.1	0.1	0.1	

^[1] Wang, K. P., Huang, L., Zhou C. G. and Pang, W., "Particle Swarm Optimization for Traveling Salesman Problem," *International Conference on Machine Learning and Cybernetics, vol. 3, pp.* 1583-1585, 2003.

[2] Tan, K. C., Lee, T. H., Chew, Y. H., and Lee, L. H., "A hybrid multiobjective evolutionary algorithm for solving truck and trailer vehicle routing problems," *IEEE Congress on Evolutionary Computation*, vol. 3, pp. 2134-2141, 2003.

PSO for the BPP: Simulation Results

- Comparison on the performance of metaheuristic algorithms against the branch and bound method (BB) on single objective BPP
- Results for each algorithm in 10 runs
- Proposed method (HMOPSO) capable of evolving more optimal solution as compared to BB in 5 out of 6 classes of test instances

PSO for the BPP: Simulation Results

Class 1	BB	MOEA	MOPSO	HMOPSO
n=20	10	10	10	10
n=40	10	10	9	10
n=60	7	6	5	6
n=80	3	10	5	10
n=100	1	6	3	7
Total	31	42	32	43
Class 2				
n=20	10	10	10	10
n=40	10	9	9	9
n=60	4	10	9	10
n=80	10	9	8	9
n=100	10	10	9	10
Total	44	48	45	48
Class 3				
n=20	9	10	10	10
n=40	9	6	5	6
n=60	5	5	1	6
n=80	0	4	1	4
n=100	0	5	1	5
Total	23	30	18	31

				1
Class 4	BB	MOEA	MOPSO	HMOPSO
n=20	10	10	10	10
n=40	10	10	10	10
n=60	7	8	8	8
n=80	10	7	7	7
n=100	10	8	7	8
Total	47	43	42	43
Class 5				
n=20	10	9	10	9
n=40	10	8	9	10
n=60	8	5	5	6
n=80	0	3	3	3
n=100	1	3	0	2
Total	29	28	27	30
Class 6				
n=20	10	10	10	10
n=40	5	6	6	9
n=60	10	9	9	6
n=80	10	10	10	10
n=100	2	8	7	8
Total	37	43	42	43

Number of optimal solution obtained

PSO for the BPP: Simulation Results

- Computational Efficiency
 - stop after 1000 iterations or no improvement in last 5 generations
 - MOPSO obtained inferior results compared to the other two

PSO for the BPP: **Conclusions**

- Presentation of a mathematical model for MOBPP-2D
- MOBPP-2D solved by the proposed HMOPSO
- BLF chosen as the decoding heuristic
- HMOPSO is a robust search optimization algorithm
 - Creation of variable length data structure
 - Specialized mutation operator
- HMOPSO performs consistently well with the best average performance on the performance metric
- Outperforms MOPSO and MOEA in most of the test cases used in this paper

The Particle Swarm Optimization Algorithm

