Задания

20 февраля 2021 г.

- 1. Опишите в категории (пред)порядка следующие конструкции:
 - (а) Терминальные объекты.
 - (b) Произведения объектов.
- 2. Пусть в категории ${\bf C}$ существует терминальный объект 1. Докажите, что для любого объекта A в ${\bf C}$ существует произведение $A\times 1$.
- 3. Докажите, что любой морфизм из терминального объекта является мономорфизмом.
- 4. Пусть в категории ${\bf C}$ существует терминальный объект 1 и некоторый морфизм $1 \to B$. Докажите, что любая проекция $\pi_1: A \times B \to A$ является эпиморфизмом.
- 5. Докажите, что в **Ab** существуют все произведения.
- 6. Докажите, что два определения уравнителей, приводившихся в лекции, эквивалентны.
 - \Leftarrow) $\exists ! k \Rightarrow e \text{моно}$ Пусть $e \circ w = e \circ t$ для неких t, w. Тогда $e \circ w$ можно подставить вместо h в определение уравнителя. Тогда $\exists ! k : e \circ k = e \circ w$. Получается, что k = w = t. Значит e моно.
- 7. Докажите, что уравнитель пары стрелок $f,g:A\to B$ уникален с точностью до изоморфизма. То есть, если $e_1:E_1\to A$ и $e_2:E_2\to A$ два уравнителя f и g, то существует уникальный изоморфизм $i:E_1\to E_2$ такой, что $e_2\circ i=e_1$.

По определению уравнителя: $\exists !\ k_1.\ e_1 \circ k_1 = e_2, \ \exists !\ k_2.\ e_2 \circ k_2 = e_1.$ Так как уравнители — мономорфизмы, то:

$$e_1 \circ k_1 \circ k_2 = e_1 \quad \Rightarrow \quad k_1 \circ k_2 = id$$

$$e_2 \circ k_2 \circ k_1 = e_2 \quad \Rightarrow \quad k_2 \circ k_1 = id$$

Значит k_1, k_2 — изоморфизмы, причем единственные

8. Морфизм $h: B \to B$ называется *идемпотентным*, если $h \circ h = h$. Докажите следующие факты:

(a) Если $f:A\to B$ и $g:B\to A$ – такие, что $g\circ f=id_A,$ то $h=f\circ g$ является идемпотентным.

$$h \circ h = (f \circ g) \circ (f \circ g) = f \circ (g \circ f) \circ g = f \circ g = h$$

(b) Если в категории есть уравнители, то обратное верно. Конкретно, для любого идемпотентного морфизма $h:B\to B$ существуют $f:A\to B$ и $g:B\to A$ такие, что $g\circ f=id_A$ и $f\circ g=h$.

Построим уравнитель для h, id. Так как $h \circ h = id \circ h$, то $\exists f, \exists ! g$

$$\begin{array}{l} f\circ g=h\\ f\circ g\circ f=h\circ f\\ \text{Ho } h\circ f=id\circ f\text{ м f}-\text{ моно, а значит}\\ f\circ g\circ f=f\\ g\circ f=id \end{array}$$

- 9. Докажите, что любой расщепленный мономорфизм регулярен.
 - Пусть f регулярный моно и $g \circ f = id$. Рассмотрим диаграмму

Достаточно проверить, что эта диаграмма коммутирует для любого h (точнее даже нужно проверить только треугольник).

$$f \circ (g \circ h) = (f \circ g) \circ h = h \circ id = h$$

10. Мономорфизм $f:A\to B$ называется *сильным*, если для любой коммутативного квадрата, где $e:C\to D$ является эпиморфизмом,

существует стрелка $D \to A$ такая, что диаграмма выше коммутирует. Докажите, что любой регулярный мономорфизм силен.

Чтобы доказать существование k, достаточно показать, что $h\circ w=g\circ w$ $h\circ f\circ t=g\circ f\circ t$ — тк f — уравнитель $h\circ w\circ e=g\circ w\circ e$ — тк квадрат коммутативен $h\circ w=g\circ w$ — тк e— эпи

11. Мономорфизм $f:A\to B$ называется экстремальным, если для любого эпиморфизма $e:A\to C$ и любого морфизма $g:C\to B$ таких, что $g\circ e=f$, верно, что e – изоморфизм.

Докажите, что любой сильный мономорфизм экстремален.

Так как f — сильный, то для любых e, g, для которых квадрат коммутативен, надется соответствующий h

 $h\circ e=id$ $e\circ h\circ e=e$ $e\circ h=id$ — так как e — эпи Получается, что e,h — изо

12. Докажите, что если в категории все мономорфизмы регулярны, то она сбалансирована. Можно ли усилить это утверждение?

Если f — регулярный моно- эпиморфизм, то он является уравнителем для неких g, h. Причем, так как f — эпи, то g = h. Тогда по определению уравнителя $\exists !k: f \circ k = id$, то есть f — расщепленный моно- эпи-, а значит изо.

13. Докажите, что в **Set** все мономорфизмы регулярны.

Пусть $f:A\to B$ — моно. Если f — эпи, то f — изо, а значит расщепленный, а значит регулярен (пункт 9). Если f — не эпи, то f — уравнитель для $\mathbb{1}_B$ и $\mathbb{1}_{f(A)}$

14. Докажите, что в **Ab** все мономорфизмы регулярны.

Пусть $f:A\to B$ — моно. Если f — эпи, то f — изо, а значит расщепленный, а значит регулярен (пункт 9).

Если f — не эпи, то f — уравнитель для \mathbb{O}_B и $\mathbb{1}_{B\setminus f(A)}: B \to \mathbb{Z}_2$

Бонусные задания:

- 1. Докажите, что если в категории \mathbf{C}_M существуют бинарные произведения и моноид M нетривиален, то он бесконечен.
- 2. Докажите, что если в категории \mathbf{C}_M существуют бинарные произведения и моноид M нетривиален, то для любого натурального n>1 существует $x\in M$ такой, что $x\neq 1$ и $x^n=1$.

3. Приведите пример нетривиального моноида M такого, что в категории ${f C}_M$ существует бинарные произведения.