

Sri Lanka Institute of Information Technology

B.Sc. Special Honours Degree in Information Technology (Computer Systems and Networking)

Final Examination Year 1, Semester 1 (2010)

Advanced Topics in Mathematics (120)

Duration: 3 Hours

Friday, 30th April 2010 (Time: 9.00 a.m. – 12.00 noon.)

Instruction to Candidates:

- ♦ This paper has 6 Questions. Answer ALL Questions.
- ♦ Calculators are allowed but steps must be shown.
- ♦ Total Marks 100.
- ♦ Percentage towards final total: 70%
- ♦ This paper contains 3 pages excluding the Cover Page.

Question 1

(15 marks)

a) Prove the following using the <u>definition of the hyperbolic functions:</u>

(6 marks)

- i) $1-\tanh^2 x = \operatorname{sech}^2 x$
- ii) coth(-x) = -coth x
- iii) $\tanh(x + y) = \frac{\tanh(x) + \tanh(y)}{1 + \tanh(x) \tanh(y)}$
- iv) $\frac{dy}{dx}$ (cosech x) = -cosech x. coth x
- b) Evaluate:

$$\int_{ln^2}^{ln \, 3} \sinh^3 x \, dx \tag{5 marks}$$

c) If $sinh^{-1} x$ is defined only for its positive values, prove that:

(4 marks)

$$\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})$$

Question 2

(25 marks)

- a) Given that: L[f(t)] = F(s), L[g(t)] = G(s) and α , β are constants, use the definition of the Laplace Transform to show that: (5 marks)
 - (i) $L[\alpha f(t) + \beta g(t)] = \alpha F(s) + \beta G(s)$
 - (ii) $L[f(t).e^{\alpha t}] = F(s \alpha)$

What are these properties called respectively?

b) Given that L[f(t)] = F(s), f'(t) is the first derivative of the function f(t) and f(0) is the value of the function at t = 0, show that: (4 marks)

$$L[f'(t)] = sF(s) - f(0)$$

c) Find the Laplace Transforms of the following:

(10 marks)

- (i) t^3e^{-2t}
- (ii) $e^{-t}\cos^2 t$
- (iii) $\cos t \cos 2t$
- (iv) $\sin t \cos t$
- (v) $\sin(\alpha t + \beta)$ where α and β are constants.

d) Find the Inverse Laplace Transform of the following:

(i)
$$\frac{s+4}{s(s-1)(s^2+4)}$$

(ii)
$$\frac{s-1}{s^2-6s+25}$$

Question 3 (14 Marks)

For an electric circuit with a constant voltage source E, the first order Ordinary Differential Equation in terms of the voltage across the capacitor $V_c(t)$ is given by:

$$R_1 C \frac{dV_c(t)}{dt} + \left(1 + \frac{R_1}{R_2}\right) V_c(t) = E$$

(Assume that the switch is closed at t = 0 and hence the voltage across the capacitor $V_c(t) = 0$ at time t = 0.)

- (a) Solve the above equation by using Laplace Transforms or separation of variables method. (6 marks)
- (b) If $R_1 = 2\Omega$, $R_2 = 6\Omega$, C = 10 F and E = 12V, find the value of $V_c(t)$ at t = 3.5 seconds and as $t \rightarrow \infty$. (3 marks)
- (c) Find the general solution of the following ordinary differential equation (ODE) using the separation of variables:

 (5 marks)

$$\operatorname{sech} x \frac{dy}{dx} = e^{x-y}$$

Question 4 (17 Marks)

The voltages V_1 , V_2 and V_3 resulting from an analysis of an electronic circuit are given by the following set of linear equations:

$$V_1 + 2V_2 - 3V_3 = 2$$

 $4V_1 + V_2 - V_3 = -3$

$$2V_1 - 6V_2 + V_3 = 1$$

(a) Write the above set of equations in the form $A\underline{x} = \underline{b}$ where A is the matrix of coefficients. Hence show that the solutions can be obtained by:

$$x = A^{-1}b$$

(b) Find adj(A), det(A) and A^{-1} . Hence find the values of the voltages V_1 , V_2 and V_3 . (10 marks)

c) If $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$, find A^2 , A^3 and A^4 . Hence show that $A^n = \begin{bmatrix} \cos n\alpha & \sin n\alpha \\ -\sin n\alpha & \cos n\alpha \end{bmatrix}$

(4 marks)

Question 5

(13 Marks)

a) Write the Euler's Formula in relation to Complex numbers. Hence prove the following: (5 marks)

- (i) $\cosh(i\theta) = \cos(\theta)$
- (ii) $sinh(i\theta) = i sin(\theta)$
- (iii) $cos(i \theta) = cosh(\theta)$
- (iv) $\sin(i\theta) = i \sinh(\theta)$

b) Separate the following in to Real and Imaginary parts:

(8 marks)

i.
$$\ln (x + iy)$$

ii.
$$\sin(\alpha + i\frac{\pi}{4})$$

Question 6

(16 Marks)

a) Find the partial derivatives $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$ of the following functions:

(6 marks)

i.
$$f(x,y) = x^2 \cos(2xy)$$

ii.
$$f(x,y) = (x-3)^2 + (y+2)^2 + 4$$

iii.
$$f(x,y) = e^{-\lambda x} \sin(\lambda y) + e^{-\lambda y} \cos(\lambda y)$$
 where λ is a constant.

b) If $f(x, y, z) = 2\sin(x)\cos(y)\tan(z)$, find the mixed partial derivatives $\frac{\partial^2 f}{\partial x \partial y}$ and $\frac{\partial^2 f}{\partial y \partial x}$. (4 marks)

c) If
$$f(x, y, z) = xyz + x + y + z + 1$$
, where $x(s, t) = st^2 - t$, $y(s, t) = t^2 + s - 1$ and

$$z(s,t) = e^{s+t}$$
, find $\frac{\partial f}{\partial t}$ and $\frac{\partial f}{\partial s}$ using the Chain Rule.

(6 marks)

LAPLACE TRANSFORM TABLE

		, '
	$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$ $= \int_0^\infty e^{-st} f(t) dt$
*	ex	$\frac{c_i}{s}$, $s > 0$
*	t^n , n an integer	$\frac{n!}{s^{n+1}}, \qquad s > 0$
*	e ^{at}	$\frac{1}{s-a}$, $s>a$
#	$\sin bt$	$\frac{b}{s^2+b^2}, \qquad s>0$
*	cos bt	$\frac{s}{s^2+b^2}, \qquad s>0$
*	$e^{at}f(t)$	F(s-a)
	e ^{at} t ⁿ n an integer	$\frac{n!}{(s-a)^{n+1}}, \qquad s>a$
	$e^{at}\sin bt$	$\frac{b}{(s-a)^2 + b^2}, s > a$ $\frac{(s-a)}{(s-a)^2 + b^2}, s > a$
	eat cos bt	$\frac{(s-a)}{(s-a)^2+b^2} , s>a$
	t sin bt	$\frac{2bs}{(s^2 + b^2)^2} \qquad s > 0$ $s^2 - b^2$
	t cos bt	$\frac{(s^2+b^2)^2}{(s^2+b^2)^2}, s>0$
	$u_c(t)f(t), \ c\geq 0$	$e^{-cs}\mathcal{L}\{f(t+c)\}(s)$
	$u_c(t)f(t-c), c \geq 0^{ca}$	$e^{-cs}\mathcal{L}\{f(t)\}(s)$
	$y' = \dot{y} = \frac{dy}{dt}$	sY(s)-y(0)
	$y'' = \bar{y} = \frac{d^2y}{dt^2}$	$s^2Y(s)-sy(0)-\dot{y}(0)$
×	Sinh (at)	$\frac{\alpha}{s^2 - \alpha^2}$
*	Cosh (xt)	3 32 - q2

Table of Derivatives

Throughout this table, a and b are constants, independent of x.

	373
F(x)	$F'(x) = \frac{dF}{dx}$
af(x) + bg(x)	af'(x) + bg'(x)
f(x)+g(x)	f'(x)+g'(x)
f(x)-g(x)	f'(x)-g'(x)
af(x)	af'(x)
f(x)g(x)	f'(x)g(x) + f(x)g'(x)
f(x)g(x)h(x)	f'(x)g(x)h(x) + f(x)g'(x)h(x) + f(x)g(x)h'(x)
$\frac{f(x)}{g(x)}$	$\frac{f'(x)g(x)-f(x)g'(x)}{g(x)^2}$
	$-\frac{g'(x)}{g(x)^2}$
g(x)	
f(g(x))	f'(g(x))g'(x)
1	0
a	0
xª	ax^{a-1}
$g(x)^a$	$ag(x)^{a-1}g'(x)$
$\sin x$	cos x
$\sin g(x)$	$g'(x)\cos g(x)$
cos x	$-\sin x$
$\cos g(x)$	$-g'(x)\sin g(x)$ $\sec^2 x$
tanx	- csc x cot x
csc x	sec x tan x
cotx	$-\csc^2 x$
ex	· e ^z
eg(x)	$g'(x)e^{g(x)}$
a ^z	$(\ln a) a^x$
	(1110) 6
ln x	# # #(x)
$\ln g(x)$	$\frac{g'(x)}{g(x)}$
$\log_a x$	z ha
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
$\arcsin g(x)$.	$\frac{g'(x)}{\sqrt{1-g(x)^2}}$
arccos x	$\frac{\sqrt{1-g(x)^2}}{\sqrt{1-x^2}}$
	$\sqrt{1-x^2}$
arctan x	1 1+x² g'(x)
arctan g(x)	$\frac{g'(x)}{1+g(x)^2}$
arccec x	$-\frac{1}{z\sqrt{1-z^2}}$
arcsec x	$\frac{1}{x\sqrt{1-x^2}}$
arccot x	- <u>1</u>

Table of Indefinite Integrals

Throughout this table, a and b are given constants, independent of x and C is an arbitrary constant.

f(x)	$F(x) = \int f(x) \ dx \qquad .$
af(x) + bg(x)	$a \int f(x) dx + b \int g(x) dx + C$
f(x)+g(x)	$\int f(x) \ dx + \int g(x) \ dx + C$
f(x)-g(x)	$\int f(x) \ dx - \int g(x) \ dx + C$
af(x)	$a \int f(x) dx + C$
u(x)v'(x)	$u(x)v(x) - \int u'(x)v(x) dx + C$
f(y(x))y'(x)	$F(y(x))$ where $F(y) = \int f(y) dy$
1	x+C
a ·	ax + C
x^a	$\frac{a+1}{a+1} + C \text{ if } a \neq -1$
· 1	$\ln x + C$
$g(x)^{a}g'(x)$	$\frac{g(x)^{\alpha+1}}{\alpha+1} + C \text{ if } \alpha \neq -1$
sin ±	$-\cos x + C$
$g'(x)\sin g(x)$	$-\cos g(x)+C$
008-22 -	$\sin x + C$
tanx	$\ln \sec x + C$
CSC II	$\ln \csc x - \cot x + C$
sec x	$\ln \sec x + \tan x + C$
cotx	$\ln \sin x + C$
$\sec^2 x$	$\tan x + C$
$\csc^2 x$	$-\cot x + C$
sec x tan x	$\sec x + C$
cscxcotx	$-\csc x + C$
e [±]	$e^x + C$
$e^{g(x)}g'(x)$	$e^{g(x)} + C$
eax .	$\frac{1}{a}e^{ax}+C$
a [±]	$\frac{1}{\ln a} a^{\pm} + C$
ln x	$x\ln x - x + C$
1/1-52	$\arcsin x + C$
$\frac{g'(x)}{\sqrt{1-g(x)^2}}$	$\arcsin g(x) + C$
1	$\arcsin \frac{x}{a} + C$
1112	$\arctan x + C$
$\frac{g'(x)}{1+g(x)^2}$	$\arctan g(x) + C$
1 6 ² +2 ²	$\frac{1}{a}\arctan\frac{x}{a}+C$
1	arcsec x + C
247	

Properties of Exponentials

In the following, x and y are arbitrary real numbers, a and b are arbitrary constants that are strictly bigger than zero and e is 2.7182818284, to ten decimal places.

1)
$$e^0 = 1$$
, $a^0 = 1$

2)
$$e^{x+y} = e^x e^y$$
, $a^{x+y} = a^x a^y$

3)
$$e^{-x} = \frac{1}{e^x}$$
, $a^{-x} = \frac{1}{e^x}$

4)
$$(e^x)^y = e^{xy}, (a^x)^y = a^{xy}$$

5)
$$\frac{d}{dx}e^x = e^x$$
, $\frac{d}{dx}e^{g(x)} = g'(x)e^{g(x)}$, $\frac{d}{dx}a^x = (\ln a) a^x$

6)
$$\int e^x dx = e^x + C$$
, $\int e^{ax} dx = \frac{1}{a}e^{ax} + C$ if $a \neq 0$

7)
$$\lim_{x \to \infty} e^x = \infty, \lim_{x \to -\infty} e^x = 0$$
$$\lim_{x \to \infty} a^x = \infty, \lim_{x \to -\infty} a^x = 0 \text{ if } a > 1$$
$$\lim_{x \to \infty} a^x = 0, \lim_{x \to -\infty} a^x = \infty \text{ if } 0 < a < 1$$

8) The graph of 2^x is given below. The graph of a^x , for any a > 1, is similar.

Properties of Logarithms

In the following, x and y are arbitrary real numbers that are strictly bigger than 0, a is an arbitrary constant that is strictly bigger than one and e is 2.7182818284, to ten decimal places.

1)
$$e^{\ln x} = x$$
, $a^{\log_e x} = x$, $\log_e x = \ln x$, $\log_a x = \frac{\ln x}{\ln a}$

2)
$$\log_a (a^x) = x$$
, $\ln (e^x) = x$
 $\ln 1 = 0$, $\log_a 1 = 0$
 $\ln e = 1$, $\log_a a = 1$

3)
$$\ln(xy) = \ln x + \ln y$$
, $\log_a(xy) = \log_a x + \log_a y$

4)
$$\ln\left(\frac{x}{y}\right) = \ln x - \ln y$$
, $\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y$
 $\ln\left(\frac{1}{y}\right) = -\ln y$, $\log_a\left(\frac{1}{y}\right) = -\log_a y$,

5)
$$\ln(x^y) = y \ln x$$
, $\log_a(x^y) = y \log_a x$

6)
$$\frac{d}{dx} \ln x = \frac{1}{x}$$
, $\frac{d}{dx} \ln(g(x)) = \frac{g'(x)}{g(x)}$, $\frac{d}{dx} \log_a x = \frac{1}{x \ln a}$

7)
$$\int \frac{1}{x} dx = \ln|x| + C$$
, $\int \ln x \, dx = x \ln x - x + C$

8)
$$\lim_{x \to \infty} \ln x = \infty, \lim_{x \to 0} \ln x = -\infty$$
$$\lim_{x \to \infty} \log_a x = \infty, \lim_{x \to 0} \log_a x = -\infty$$

9) The graph of $\ln x$ is given below. The graph of $\log_a x$, for any a > 1, is similar.

