Math 653 Henry Woodburn

Homework 1

1. Let $S = \{1, 2\}$, a set with 2 elements. We write the elements of Func(S) as

$$e:=\begin{pmatrix}1&2\\1&2\end{pmatrix} \qquad \alpha:=\begin{pmatrix}1&2\\2&1\end{pmatrix} \qquad \beta:=\begin{pmatrix}1&2\\1&1\end{pmatrix} \qquad \gamma:=\begin{pmatrix}1&2\\2&2\end{pmatrix}.$$

Then the multiplication table for the monoid Func(S) under composition is as follows:

0	$\mid e \mid$	α	β	γ
e	e	α	β	γ
α	α	e	γ	β
β	β	β	β	β
γ	γ	γ	γ	γ

This monoid is not commutative since $\gamma \circ \beta = \beta$ but $\beta \circ \gamma = \gamma$.

2. Let $\mathbb{R}_{\geq 0}$ be the monoid of nonnegative real numbers under addition, and let \mathbb{R}^+ denote the monoid of positive real numbers under multiplication.

(a.) We know that any submonoid of $\mathbb{R}_{\geq 0}$ must contain 0. Also, any submonoid containing $\sqrt{3}$ must contain $\sqrt{3}\mathbb{N}$, where \mathbb{N} is the monoid of nonnegative integers under addition. $\sqrt{3}\mathbb{N}$ is in fact the smallest submonoid containing $\sqrt{3}$, since no smaller subset is a monoid, and any submonoid containing $\sqrt{3}$ must contain $\sqrt{3}\mathbb{N}$.

(b.) A submonoid of \mathbb{R}^+ containing $\sqrt{3}$ necessarily contains $\sqrt{3}^n$ for $n=0,1,2,\ldots$ The set $\{\sqrt{3}^n:n=0,1,2,\ldots\}$ is a submonoid of \mathbb{R}^+ under multiplication, and removing any element makes it not a monoid. This is the smallest monoid containing $\sqrt{3}$.

(c.) $\mathbb{R}_{\geq 0}$ is not a group because none of the positive reals have additive inverses. \mathbb{R}^+ is a group because it is a monoid where every $r \in \mathbb{R}^+$ has an inverse, namely 1/r since r > 0. If we want to find the smallest subgroup of \mathbb{R}^+ containing $\sqrt{3}$, we need all integer powers of $\sqrt{3}$, not just the nonnegative ones. It is trivial to check that this also defines a submonoid. Also, every element $(\sqrt{3})^n$ has inverse $(\sqrt{3})^{-n}$, and we still have identity $1 = (\sqrt{3})^0$.

3. The identity in $GL(2, \mathbb{R})$ is the matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. This is indeed contained in $B_2(\mathbb{R}) := \{\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{R}, ac \neq 0\}$.

We check that $B_2(\mathbb{R})$ is closed under multiplication: for $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, $\begin{pmatrix} d & e \\ 0 & f \end{pmatrix} \in B_2(\mathbb{R})$, we have

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} d & e \\ 0 & f \end{pmatrix} = \begin{pmatrix} ad & ea + bf \\ 0 & cf \end{pmatrix} \in B_2(\mathbb{R}),$$

since $adcf = (ac)(df) \neq 0$.

Also, if

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} d & e \\ 0 & f \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

Then ad = cf = 1, and ea + bf = 0. Then we can solve for d, e, f to get $d = a^{-1}$, $f = c^{-1}$, and $e = -cab^{-1}$, giving us the inverse of $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$.

4. To see that f is injective, we note that a complex number is uniquely determined by its real and imaginary parts.

We have

$$f((a+bi)(c+di)) = f((ac-bd) + (bc+ad)i) = \begin{pmatrix} ac-bd & bc+ad \\ -(bc+ad) & ac-bd \end{pmatrix}$$

$$= \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = f(a+bi)f(c+di),$$

so that f is a monoid homomorphism and thus a group homomorphism.

5. We have $e \in Z(G)$ since for any $g \in G$, eg = ge = g. If $a \in Z(G)$, then $a^{-1} \in Z(G)$, since for any $g \in G$,

$$a^{-1}g = a^{-1}gaa^{-1} = a^{-1}aga^{-1} = ga^{-1}.$$

If $a, b \in Z(G)$, then the product $ab \in Z(G)$ since for any $g \in G$,

$$gab = agb = abg$$
.

Then Z(G) is a subgroup since it contains identity, is closed, and contains inverses. $C_G(g)$ is a subgroup for the same reasons and the proof is similar.