Foundations of DL

Deep Learning

Alfredo Canziani, Ritchie Ng @alfcnz, @RitchieNg

Generative models

(Semi-) Unsupervised learning

Super resolution

Glasner (2009) Super-resolution from a single image www.wisdom.weizmann.ac.il/~vision/SingleImageSR.html

Garcia (2016) srez --- github.com/david-gpu/srez

Inpainting

VAE

GAN

Yeh (2017)
Semantic Image Inpainting
with Deep Generative Models

bit.ly/DCGAN-inpainting

Caption to image

This vibrant red bird has a pointed black beak

This bird is yellowish orange with black wings

The bright blue bird has a white coloured belly

Reed (2016) Generative adversarial text to image synthesis

github.com/reedscot/icml2016

Autoencoders

Unsupervised learning / Generative models

Autoencoder

$$egin{aligned} m{h} &= f(m{W}_hm{x} + m{b}_h) \ \hat{m{x}} &= g(m{W}_xm{h} + m{b}_x) \ m{x}, \hat{m{x}} &\in \mathbb{R}^n \ m{h} &\in \mathbb{R}^d \end{aligned}$$

$$W_h \in \mathbb{R}^{d \times n}$$

$$W_x \in \mathbb{R}^{n \times d}$$

If "tight weights", then

$$oldsymbol{W}_x \doteq oldsymbol{W}_h^ op$$

Reconstruction losses

$$\mathcal{L} = rac{1}{m} \sum_{j=1}^m \ell(oldsymbol{x}^{(j)}, \hat{oldsymbol{x}}^{(j)})$$

binary input
$$\ell(\boldsymbol{x}, \hat{\boldsymbol{x}}) = -\sum_{i=1}^n [x_i \log(\hat{x}_i) + (1-x_i) \log(1-\hat{x}_i)]$$

real valued input
$$\ell(oldsymbol{x},\hat{oldsymbol{x}}) = rac{1}{2} \|oldsymbol{x} - \hat{oldsymbol{x}}\|^2$$

Under-/over-complete hidden layer

Denoising autoencoder

$$\tilde{\boldsymbol{x}} \sim p(\tilde{\boldsymbol{x}} \mid \boldsymbol{x})$$

We assume we are injecting the same noisy distribution we're going to observe in reality. In this way, we can learn how to robustly recover from it.

Contractive autoencoder

penalises insensitivity to reconstruction directions

$$\ell(oldsymbol{x}, \hat{oldsymbol{x}}) = \boxed{\ell_{ ext{reconstruction}} + \left[\lambda \|
abla_{oldsymbol{x}} oldsymbol{h}\|^2
ight]}$$

penalises <u>sensitivity</u> to the <u>any direction</u>

Auto-encoder (recap)

Variational auto-encoder

 $\operatorname{decoder}: \mathcal{Z} \to \mathbb{R}^n$

$$oldsymbol{z}\mapsto \hat{oldsymbol{x}}$$

encoder :
$$\mathcal{X} \to \mathbb{R}^{2d}$$

$$x\mapsto h$$

Variational auto-encoder

Generative adversarial nets

Unsupervised learning / Generative models

$$D: \mathbb{R}^n \to (0,1)$$

$$\boldsymbol{x} \vee \hat{\boldsymbol{x}} \mapsto \ell$$

$$G: \mathcal{Z}
ightarrow \hat{x}$$

Generative adversarial network

Value function

$$V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D[G(\boldsymbol{z})])]$$

$$\min_{G} \max_{D} V(D,G)$$