H24VSP Project 3

Introduction to PPP using DL5

Lukasz K Bonenberg 12th January 2016

NGI

Table of Contents

- 1. Introduction
- 2. Veripos Services
- 3. Live demo
- 4. Practical work

Introduction

Introduction

Aim of the Project is to compare difference between Network RTK and PPP technique in:

- convergence time;
- precision estimated and actual after convergence;
- accuracy after convergence.

We will be using:

- Leica GS10:
- maritime Veripos LD5 receiver with AsterRx chipset¹.

¹For short introductory video see http://bit.ly/VeriposLD5.

Veripos Services

Veripos Services I

Veripos offer hardware (receivers) in combination with following services²:

- Veripos Standard with single frequency DGPS and 1-2 metre accuracy.
- Legacy Veripos Standard Plus with dual-frequency DGPS for low latitude areas and 1-2 metre accuracy.
- Veripos Standard² with single frequency combined GPS and GLONASS DGPS.

Veripos Services II

 Veripos Ultra/APEX using global orbit, clock correction and dual-frequency GPS/GLONASS observations for dm level accuracy.

Corrections are transmitted via Inmarsat geostationary satellites - 25E, 98W, 143.5E, AORE, AORW, IOR, POR³. All coordinates provided are in ITRF2008.

 $^{^2\}mbox{Also check http://www.veripos.com/services.html}$ and for video http://bit.ly/VeriposServices.

³http://www.veripos.com/global-coverage.html

Veripos Standard

- Provides RTCM Type 1⁴, 3⁵ messages.
- Normal accuracy: 1-2m.
- Typical latency: 4 seconds⁶.
- Single difference (DGPS) using GPS C/A code

⁴DGPS corrections.

⁵GPS reference station parameters.

⁶Typical correction update interval is 15 seconds.

Veripos Standard Plus

Standard Plus is intended to support DGPS positioning for lower latitudes and combat ionospheric activity.

- Provides RTCM Type 1, 3, 15⁷ messages.
- Normal accuracy: 1-2m.
- Typical latency: 4 seconds.
- \bullet Single difference (DGPS) using GPS C/A and P code

Note that this is legacy service, according to http://www.veripos.com/services.html.

⁷Ground transmitter parameters including ionospheric delay information

Veripos Standard and Standard Plus

Figure 1: Solutions at a monitor site in Malongo [Veripos]

Veripos Standard²

- Provides RTCM Type 1, 3, 318, 329 messages.
- Normal accuracy: 1-2m.
- Typical latency: 4 seconds.
- \bullet Single difference (DGPS) using GPS and GLONASS C/A ${\rm code^{10}}$

⁸DGPS GLONASS corrections.

⁹GPS GLONASS reference station parameters.

 $^{^{10}\}mbox{It}$ is possible to use GLONASS only with this service as well.

Veripos Ultra

- Orbit and clock corrections in JPL GDGPS format.
- Normal accuracy: 0.1m planar.
- Typical latency: 2 seconds with 30 s update rate.
- Precise Point Positioning (PPP) using C/A and P code and L1/L2 carrier phase for GPS.

Horizontal accuracy

Vertical accuracy

Figure 2: Standard and Ultra solutions at a monitor site in Singapore.

Veripos Apex²

- Orbit and clock corrections in Veripos OCDS format.
- Normal accuracy: 0.1m planar.
- Typical latency: 2 seconds with 30 s update rate.
- Precise Point Positioning (PPP) using C/A and P code and L1/L2 carrier phase for GPS and GLONASS.

Figure 3: Veripos Apex solution at a monitor site in Aberdeen.

Live demo

Practical work

Practice layout

- LD5 will be restarted at 12:00 in order to converge properly.
- You will start collecting RTK data after 14:00.
- You will download Veripos NMEA strings for Ultra and Apex² alongside data from GS10.
- Make sure that Veripos NMEA file has been splitted into \$GPGGA and \$GPGST before leaving.

Point	Frame	Lat[deg]	Long[deg]	EllHt[m]	Notes
NGB5	ETRF97	52 57 07.05318	01 11 01.44897 W	91.2065	at point
NGB5	ETRF97	52 57 07.05318	01 11 01.44897 W	91.3865	at ARP ^a
NGB5	ETRF97	52 57 07.05318	01 11 01.44897 W	91.4280	at antenna PCO^b
NGB5	ITRF2008	52 57 7.070524	01 11 1.427085 W	91.480	at antenna PCO^c
NGB5	ITRF2008	5257.1178421	00111.0237848 W	91.480	at antenna PCO^d

Table 1: Coordinates of NGB5

 $^{^{}a}$ Antenna heigh = 0.18m.

^bAntenna offset for ionsphere free solution is $2.545L_1 - 1.545L_2$ so

^{2.545 * 55.3 - 1.545 * 64.2 = 41.5}mm.

^cConverted from ETRF97 to ITRF2008 at epoch 2015-12-04.

^dConverted to DDMM.MMMMMMM to be compatible with NEMEA GGA string.

Veripos \$GPGGA NMEA strings

In Verpos provides two types of NMEA strings GPGGA and GPGGT. GPGGA will behave differently in PPP mode with QA flag always 2 or 5. To obtain any information about solution we need to examine last flag before GRC(*).

Example

\$GPGGA,183324.00,5257.1178371,N,00111.0236798,W,**5**,17,0.7,42.76,M,49.01,M,30.5,**0268***54.

Values for the flag indicate:

0268 ULTRA²

0281 APEX²

0068 ULTRA

0081 APEX

1006 Standard²

Veripos \$GPGST NMEA strings

Example

\$GPGST,140545.00,3.81,0.02,0.01,81.00,0.02,0.01,0.02*57.

Cell	Notes			
0	Message ID \$GPGST			
1	UTC of position fix ^a			
2	RMS value of the pseudorange or carrier phase (RTK/PPP) residuals			
3	Error ellipse semi-major axis $\boldsymbol{1}$ sigma error, in meters			
4	Error ellipse semi-minor axis $\boldsymbol{1}$ sigma error, in meters			
5	Error ellipse orientation, degrees from true north			
6	Latitude 1 sigma error, in meters			
7	Longitude 1 sigma error, in meters			
8	Height 1 sigma error, in meters			
9	The checksum data, always begins with st			

^aNotice 17s offset to GPS time.

Questions?