

Homework #3

MEC 529: Introduction to Robotics Spring 2023

Instructor Amin Fakhari, Ph.D. Assigned Date Friday, Feb. 24, 2023

Due Date Sunday, Mar. 5, 2023 (extended)

- 1. (a) (1/10) For any unit axis $\hat{\boldsymbol{\omega}} \in \mathbb{R}^3$ ($\|\hat{\boldsymbol{\omega}} = 1\|$) and scalar $\theta \in \mathbb{R}$, we can always find a rotation matrix $\boldsymbol{R} \in SO(3)$ such that $\boldsymbol{R} = e^{[\hat{\boldsymbol{\omega}}]\theta}$ where $[\hat{\boldsymbol{\omega}}] \in so(3)$ (recall that \boldsymbol{R} is equivalent to the rotation of a frame from $\boldsymbol{I}_3 = \text{diag}\{1\} \in \mathbb{R}^{3\times 3}$ about $\hat{\boldsymbol{\omega}}$ by an angle θ). Write a MATLAB function that take $\hat{\boldsymbol{\omega}}$ and θ , and returns the corresponding rotation matrix \boldsymbol{R} . I recommend that you first write a function that returns a 3×3 skew-symmetric matrix corresponding to a vector (i.e., $\boldsymbol{x} \in \mathbb{R}^3 \to [\boldsymbol{x}] \in so(3)$).
 - (b) (1/10) For three arbitrary pairs $(\hat{\omega}, \theta)$, compute the rotation matrix \mathbf{R} using your function in (a). For each pair, visualize the rotated frame along with the fixed frame $\{s\}$ and also the unit axis $\hat{\omega}$. For visualization of the frames, you can use the attached function triad, and for visualization of a line corresponding the unit axis you can use the line formula as $\mathbf{l} = (x, y, z) = \mathbf{q} + t\hat{\omega}$ where $t \in \mathbb{R}$ and $\mathbf{q} = \mathbf{0} \in \mathbb{R}^3$ (since it passes through the origin).
- 2. (a) (1/10) For any rotation matrix $\mathbf{R} \in SO(3)$, we can always find a unit axis $\hat{\boldsymbol{\omega}} \in \mathbb{R}^3$ ($\|\hat{\boldsymbol{\omega}} = 1\|$) and scalar $\theta \in \mathbb{R}$ such that $\log \mathbf{R} = [\hat{\boldsymbol{\omega}}]\theta$ where $[\hat{\boldsymbol{\omega}}] \in so(3)$. Write a MATLAB function that take a rotation matrix \mathbf{R} and returns the corresponding $\hat{\boldsymbol{\omega}}$ and $\theta \in [0, \pi]$ (note that your function should also support the rotation matrices corresponding $\theta = 0$ and $\theta = \pi$). I recommend that you first write a function that returns a vector corresponding to a 3×3 skew-symmetric matrix (i.e., $[\mathbf{x}] \in so(3) \to \mathbf{x} \in \mathbb{R}^3$).
 - (b) (1/10) Validate your function using the three rotation matrices \mathbf{R} computed in 1.(b).
- 3. (1/10) The two vectors $v_1, v_2 \in \mathbb{R}^3$ are related by

$$\mathbf{v}_2 = \mathbf{R} \mathbf{v}_1 = e^{[\hat{\boldsymbol{\omega}}]\theta} \mathbf{v}_1$$

where $\hat{\boldsymbol{\omega}} \in \mathbb{R}^3$ ($\|\hat{\boldsymbol{\omega}} = 1\|$) and $\theta \in [-\pi, \pi]$. Given $\hat{\boldsymbol{\omega}} = (\frac{2}{3}, \frac{2}{3}, \frac{1}{3})$, $\boldsymbol{v}_1 = (1, 0, 1)$, $\boldsymbol{v}_2 = (0, 1, 1)$, find angle θ that satisfy the above equation.

4. (1/10) Consider a wrist mechanism with two revolute joints θ_1 and θ_2 , in which the end-effector frame orientation $\mathbf{R} \in SO(3)$ is given by

$$\mathbf{R} = e^{[\hat{\boldsymbol{\omega}}_1]\theta_1} e^{[\hat{\boldsymbol{\omega}}_2]\theta_2}$$

with $\hat{\boldsymbol{\omega}}_1 = (0,0,1)$ and $\hat{\boldsymbol{\omega}}_2 = \left(0,\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$. Determine whether the following orientation \boldsymbol{R} is reachable.

$$\mathbf{R} = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Figure 1: A 3-DOF wrist mechanism.

- 5. (1/10) Figure 1 shows a 3-DOF wrist mechanism in its zero position, where all joint angles α , β , γ are set to zero. Express the tool-frame orientation \mathbf{R}_{03} at an arbitrary configuration of the wrist as a product of three rotation matrices in terms of α , β , γ , i.e., $\mathbf{R}_{03} = \mathbf{R}(\alpha, \beta, \gamma)$.
- 6. (a) (0.5/10) Derive a rotation matrix corresponding to the ZXZ Euler angles, with rotations about the body/current frame $\{b\}$ (i.e., rotation by α about the body z_b -axis, then by β about the body x_b -axis, and finally, by γ about the body z_b -axis).
 - (b) (0.5/10) Find (α, β, γ) for any given rotation matrix $\mathbf{R} \in SO(3)$, when $0 \le \beta \le \pi$. At which configuration(s), gimbal lock occurs? Why?
 - (c) (0.5/10) Find the ZXZ Euler angles (α, β, γ) for the following rotation matrix.

$$\begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}}\\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

7. (a) (0.5/10) Prove that the rotation matrix $\mathbf{R} \in SO(3)$ corresponding to a given unit quaternion $\mathbf{q} = (q_0, q_1, q_2, q_3) \in S^3$ takes on the form

$$\mathbf{R} = \begin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2(q_1q_2 - q_0q_3) & 2(q_0q_2 + q_1q_3) \\ 2(q_0q_3 + q_1q_2) & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2(q_2q_3 - q_0q_1) \\ 2(q_1q_3 - q_0q_2) & 2(q_0q_1 + q_2q_3) & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$$

(b) (0.5/10) Prove that the unit quaternion $\mathbf{q} = (q_0, q_1, q_2, q_3) \in S^3$ corresponding to a given rotation matrix $\mathbf{R} \in SO(3)$ takes on the form

$$q_0 = rac{1}{2}\sqrt{1 + r_{11} + r_{22} + r_{33}}$$
, $\begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} = rac{1}{4q_0} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - 2_{12} \end{bmatrix}$, where $\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$

(c) (0.5/10) Let $\mathbf{p} = (p_0, p_1, p_2, p_3) \in S^3$ and $\mathbf{q} = (q_0, q_1, q_2, q_3) \in S^3$ denote the unit quaternions corresponding to the rotation matrices \mathbf{R}_p and \mathbf{R}_q , respectively. Prove that the unit quaternion corresponding to the product $\mathbf{R}_p \mathbf{R}_q$ takes on the form

$$\boldsymbol{pq} = \begin{bmatrix} q_0p_0 - q_1p_1 - q_2p_2 - q_3p_3 \\ q_0p_1 + p_0q_1 - q_2p_3 + q_3p_2 \\ q_0p_2 + p_0q_2 + q_1p_3 - q_3p_1 \\ q_0p_3 + p_0q_3 - q_1p_2 + q_2p_1 \end{bmatrix} = (p_0q_0 - \boldsymbol{\epsilon}_p^T\boldsymbol{\epsilon}_q, p_0\boldsymbol{\epsilon}_q + q_0\boldsymbol{\epsilon}_p + \boldsymbol{\epsilon}_p \times \boldsymbol{\epsilon}_q)$$

where $\epsilon_p = (p_1, p_2, p_3)$ and $\epsilon_q = (q_1, q_2, q_3)$.

[*Hint*: A quaternion can be also represented in the form $\mathbf{q} = q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k}$ where $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1$, $\mathbf{i}\mathbf{j} = \mathbf{k}$, $\mathbf{j}\mathbf{i} = -\mathbf{k}$, $\mathbf{j}\mathbf{k} = \mathbf{i}$, $\mathbf{k}\mathbf{j} = -\mathbf{i}$, $\mathbf{k}\mathbf{i} = -\mathbf{j}$.]

Notes for Questions 1, 2:

- Your report should include a brief description of your results with supporting figures which are usually output of your code. You do not have to include a screenshot of your code in the report.
- Add proper comments to your code, which detail what each part of the code is doing.
- Submit your report and code files in a single Zip file on Brightspace. Name the Zip file as HW#N_FullName, where N is the homework number and FullName is your full name. A report without its supporting code files and code files without a supporting report are NOT acceptable.
- Make sure to submit all the files/functions required to properly execute your code.