Revenue Management

RUIQI WANG

11/06/2023

Revenue Management

Revenue Management is a set of strategies and tactics to manage the allocation of capacity to different classes of customers with different prices over time in order to maximize revenue.

- > Pricing
- > Capacity Allocation
- Network Management

Pricing

Value-Based Pricing

> In the value-based pricing, the price is set based on customers' valuation, i.e., willingness to pay.

> Firms try to estimate customer valuation using *market research methods*, such as customer survey and focus groups.

> The customer's decision to buy a product depends on the customer's valuation as well as how customer react to a price (i.e., customer behavior).

Customer Buying Behavior

- ➤ Assumption 1: Customer is able to assign a monetary value to a product and service. This value is called *Reservation Price* or *Maximum Willingness to Pay*
- ➤ Assumption 2: Customer will buy the product when the price of the product is less than customer's reservation price, i.e., when consumer surplus is positive, where

Consumer Surplus = Reservation Price - Selling Price

Customer will never purchase a product that yields negative consumer surplus.

> Assumption 3: In choosing between different products with positive consumer surplus, customer will buy the product that *maximizes consumer surplus*.

Price Response Function

- > Suppose the is reservation price of the population is randomly distributed with a cumulative distribution function $X \sim F(x)$.
- > If the firm sets a price of p=\$2000, what is the probability that a randomly chosen customer buy the product?

$$\Pr(Reservation\ Price \ge p) = 1 - \Pr(X \le p) = 1 - F(p)$$
.

> If the firm sets a price of p = \$2000, how many customers among the 1000 customers will buy the trip?

$$D(p) = 1000(1 - F(p))$$

 $\rightarrow D(p)$ is known as *Price Response Function*, also known as demand curve in Economics.

Price Response Function

 \triangleright Observation: If customers reservation price in a population of size N is uniformly distributed between 0 and m,

$$f(x) = \frac{1}{m} \quad for \ 0 \le x \le m$$

Then the price response function is

$$D(p) = N - \left(\frac{N}{m}\right)p,$$

Which is a linear function commonly used in economics.

Maximizing Revenue

The price response function for a particular product that a firm sells is well estimated by the following linear function:

$$D(p) = 15000 - 500p$$

> What is the price that maximizes the firm's revenue?

$$R = pD(p) = 15000p - 500p^2$$

$$p^* = 15, R^* = 15 * 7500 = $112,500$$

Maximizing Revenue

Maximizing Revenue

➤ Question: Is there any other pricing strategy that can lead to a higher revenue?

Offering two different prices:
First offering the price of \$20
and sell to 5000 customers.
Then offering the price of \$10
and sell to another 5000
customers.

Price Discrimination

- > First-Degree Price Discrimination: Firm identifies perfectly the RP for all consumers and prices accordingly. (Ideal for firm, but impossible to do)
- > Second-Degree Price Discrimination: Firm identifies imperfectly the RP of the buyers through a form of *self-selection*.
 - ➤Offer a menu of choices to the buyer from which the buyer selects.
 - > Buyers with low RPs will choose the inexpensive offerings on the menu.
 - The trick is to encourage those with a high RP not to choose the cheap option, but choose the expensive items from the menu.
- Third-Degree Price Discrimination: Firm tries to identify imperfectly the RP of buyers using some observable signal from buyers. (Age, Income, Employment Status, Location, Purchase History, Negotiation)

Second-Degree Discrimination Versioning

All Laser printers are fast. The manufacturers adds a line of code to slow them down, so they can offer both a slow and fast printer.

> Student version of a software programs are simply the professional versions with some features disabled.

Hardback versus paperback books. Hardback itself is viewed by many buyers to be a superior product to the paperback.

office	11100
Paperback Order in the next 19 hours to get it by Friday, May 24. Lligible for FREE Super Saver Shipping.	\$24.99 \$17.48
Hardcover Order in the next 19 hours to get it by Friday, May 24.	\$34.99 \$21.41

Markdowns

Retailers use two main mechanisms to provide discounts to customers:

- > Promotion: Temporary reduction in price. E.g., memorial days sales, two-for-one, coupon
- > Markdown: Permanent reduction in price to clear inventory before it becomes obsolete.

Markdowns

Question: How does markdowns increase revenue? If the retailer decides to only do markdown once, what are the optimal original and markdown price?

Markdowns

- > A retailer has 160 jeans and has four months to sell before he needs to clear the shelf space for the next fashion Jeans.
- > The retailer is planning to establish a list price at the beginning of the first month, and then mark the jeans down at the beginning of each of the next three months.
- > Unsold jeans at the end of four months will be sold to another outlet store for \$5 a pair.
- > Demand in each of the four months are as follows:

$$D_1(p) = 120 - 1.5p$$

$$D_2(p) = 90 - 1.5p$$

$$D_3(p) = 80 - 1.5p$$

$$D_4(p) = 50 - 2p$$

Markdowns

Decision Variables: p_i for i = 1, 2, 3, 4

Maximize:
$$\sum_{i=1}^{4} p_i D_i(p_i) + 5(160 - \sum_{i=1}^{4} p_i D_i(p_i))$$

Subject to:

$$\sum_{i=1}^{4} D_i(p_i) \le 160$$

$$p_1 \ge p_2 \ge p_3 \ge p_4 \ge 5$$

Solve this with gurobi as an exercise!

Capacity Allocation

Capacity Allocation

➤ Airlines: How to allocate seats of a single-leg flight to different customer classes?

> Hotels: How to allocate rooms in a hotel for a single day to different classes of customers?

➤ Car Rentals: How to allocate vehicles to different classes of customers in a single day?

- > High Towers Hotel has a total of 100 rooms that it offers to both leisure and business customers.
- ➤ Hotel offers a \$175 discount fare for a midweek stay for leisure and \$240 for business customers.

. 11	
Leisure Customers	Business Customers
Highly price sensitive	Less price sensitive
Book earlier	Book later
More flexible to departure and arrival times	Less flexible

Revenue Management

Leisure and Business Customers

- > Question: The hotel accepts reservations according to First-Come-First-Served. Do you agree with this booking policy?
- Answer: No. This policy may result in all 100 rooms being reserved one week before the date, mostly by leisure travelers since they often book early.
- > Nested Booking:
 - The business customers can also use the allotment of the leisure customers
 - > Business class will never rejected as long as there is a room available
 - > Leisure customers are rejected if their allotment is closed.

Definition: *Booking Limit* for a fare is the maximum number of reservations allowed at that fare and lower.

Definition: *Protection Level* for a fare is the number of rooms set aside for that fare or higher.

Assumption 1: All low-fare customers arrive before high-fare customers.

Assumption 2: The demand for each fare class is independent of other classes.

What discount booking limit maximizes the hotel's revenue?

- ightharpoonup System has capacity of C = 100
- ightharpoonup Price of a full-fare is $p_f=\$240$ and price of a discount is $p_d=\$175$
- ightharpoonup Demand for $\underline{\textit{discount}}$ class, D_d , has probability distribution $f_d(x)$ with cumulative probability distribution $F_d(x) = \Pr \big\{ D_d \leq x \big\}.$
- Demand for *full-fare* class, D_f , has probability distribution $f_f(x)$ with cumulative probability distribution $F_f(x) = \Pr\Big\{D_f \leq x\Big\}.$
- \rightarrow Discount booking limit is b. Protection level for full-fare is y = C b.

Question: Suppose the protection level is y + 1. Should we reduce it to y?

Revenue Management

Leisure and Business Customers

Solution: Decrease the protection level from y+1 to y, if

$$F_f(y) > 1 - \frac{p_d}{p_f} = 1 - \frac{175}{240} = 0.271$$
.

<u>Discrete Distribution</u>: Scan from the top of the table for cumulative distribution of full fare toward the bottom until you find the first value of x with a cumulative value $F_f(x)$ greater than or equal to critical ratio.

<u>Gaussian Distribution</u>: Once you have mean and std for large sample size.

	Demand for Full Fare	$F_f(x)$	
	0 20	0.033	
	21	0.067	
	22	0.092	
	23	0.133	
	24	0.183	
	25	0.242	
y	= 26	0.283	
y+1	l = 27	0.300	
	30	0.458	
	31	0.517	
	32	0.558	
	33	0.592	
	34	0.633	
	35	0.692	
	36	0.758	
	37	0.792	
	38	0.833	
	39	0.883	
	39 40	0.883 0.933	

Revenue Management Overbooking

- > High Towers Hotel has a total of 100 rooms that it offers to both leisure and business customers.
- > Hotel offers a \$175 discount fare for a midweek stay
- > Historical data about the number of customers who book a room but fail to show is as follow.
- > The cost of arranging alternative accommodation for an overbooked customer is \$300.
- > How many rooms the hotel should overbook?

Number of	
No-Shows	Probability
0	0.05
1	0.1
2	0.15
3	0.3
4	0.2
5	0.15
6	0.05

Revenue Management Overbooking

Capacity of the Hotel = 100 rooms

Number of overbooked rooms = V

Total reservations = 100 + V

Question: What is the optimal overbooking level V?

Revenue Management Overbooking

Expected Profit from one *additional overbook*= \$175 Pr. {no-show > V} - \$300 Pr. {no-show $\leq V$ }

= \$175 Pr.
$$\{\text{no-show} > V\} - \$300 \text{ Pr. } \{\text{no-show} \le V\} > 0$$

Increase the overbooking level from V to V+1 if:

$$\Pr.\{no\text{-}show \le V\} < \frac{\$175}{\$175 + \$300} = 0.368$$

Number of		
No-Shows	Probability	Cumulative
0	0.05	0.05
1	0.1	0.15
2	0.15	0.3
3	0.3	0.6
4	0.2	0.8
5	0.15	0.95
6	0.05	1

Optimal overbooking = 3 Rooms