Membrány

Chemické zloženie membrán

	Proteín [%]	Lipid [%]	Sacharid [%]
Plazmatická membrána (ľudké erytrocyty)	49	43	8
Vnútorná membrána mitochondrií	75	25	O
Myelín	18	79	3

G.Guidotti 1972, Ann. Rev. Biochem. 41:731

Lipidy

- Lipidy sú nepolárne (hydrofóbne) zlúčeniny, ktoré sú rozpustné v organických rozpúšťadlách.
- Membránové lipidy sú amfipatické, majú nepolárnu časť a polárnu časť.
- Hlavnými lipidovými komponentami membrán sú: glycerofosfolipidy, sfingolipidy a steroly

Glycerofosfolipidy

hlavička PE PC hydrofóbny chvost PS

Glycerofosfolipidy

Sfingolipidy

Spfingolipidy sú odvodené od sfingozínu, ktorý má uhľovodíkový chvost, ako aj polárnu doménu, ktorá obsahuje amino skupinu.

Sfingomyelin: $R = -P-CH_2-CH_2-N(CH_3)_3$ (fosfocholin)

Steroly

Steroly

Cholesterol (živočíchy)

Ergosterol (huby)

Fytosterol (rastiny)

Lipidy vo vode agregujú

Lipidy vo vode agregujú

ENERGETICKY NEVÝHODNÉ

Uzavretá štruktúra je stabilná, lebo v nej nedochádza k energeticky nepriaznivému vystaveniu hydrofóbnych uhlovodíkových reťazcov do vodného prostredia.

25 nm

Membrány sú tekuté (fluidné)

Lipidové zloženie ovplyvňuje fyzikálne vlastnosti membrán

nenasýtené uhľovodíkové reťazce obsahujúce cis-dvojité väzby

nasýtené uhľovodíkové reťazce

Vnútorný a vonkajší lístok membrány sa líšia lipidovým zložením

- b Sfingomyelín
- **c** Gangliozid
- d Fosfatidyletanolamín
- e Cerebrozid
- f Fosfatidylcholín
- g Cholesterol
- h Fosfatidylserín

Lipidové rafty

- membránové mikrodomény
- bohaté na cholesterol a sfingolipidy

Asociácia membránových proteínov s lipidovou dvojvrstvou

- jeden alebo viac transmembránových α -helixov (1, 2)
- β -barel (3)
- pripojené k membráne kovalentnou väzbou k lipidu napr. k MK (5)
- oligosacharidovou spojkou k P-inozitolu GPI kotva (6)
- nekovalentnými väzbami k iným proteínom (7,8)

Glykozylfosfatidylinozitolová (GPI) kotva

cytosol

Proteíny môžu byť v membráne ukotvené hydrofóbnymi α -helixami

Proteíny môžu byť v membráne ukotvené hydrofóbnymi α -helixami

Membránové proteíny môžu mať štruktúru β-barelu (príklady)

- (1) OmpA (8 β -vlákien)
- (2) OMPLA fosfolipáza A1 vonkajšej membrány (12 β -vlákien)
- (3) porín (16 β -vlákien)
- (4) transportér vonkajšiej membrány FepA (22 β -vlákien)

Membránové proteíny môžeme skúmať s pomocou detergentov

dodecylsulfát sodný (SDS)

Permeabilita membrán

Transport molekúl cez membrány môže byť zabezpečený proteínmi

Membránové kanály

Transport sprostredkovaný prenášačmi

Pasívny a aktívny transport

Aktívny transport cez membrány

spriahnutý transportér pumpa poháňaná hydrolýzou ATP pumpa poháňaná svetlom

Kotransport

Na/K ATPáza vytvára gradient Na⁺ a K⁺ na cytoplazmatickej membráne

EXTRACELULÁRNY PRIESTOR

Transport molekúl cez membrány môže byť zabezpečený ionofórmi

Ionofóry I.

2,4-dinitrofenol - \mathbf{H}^{+} ionofór

Valinomycin - **K**⁺ ionofór

Nigericin- H+/K+ ionofór

From *Ionophores and Their Structures*, M. Dobler. 1981, J. Wiley & Sons

Ionofóry II. - Gramicidin

Gramicidin je peptid, ktorý vytvára v membráne kanály priepustné pre jednomocné ióny.

Osmóza

