第15章微分有程

1. 微分方程 $x dy = (y - \sqrt{x^2 + y^2}) dx(x > 0)$ 满足 y(1) = 0 的特解是(

(A)
$$\sqrt{x^2 + y^2} + 2y = x$$

(B)
$$\sqrt{x^2 + y^2} + y = 1$$

(C)
$$\sqrt{x^2 + y^2} - 2y = x$$

(D)
$$\sqrt{x^2 + y^2} - y = 1$$

2. 设以下 A,B,a,b 均为常数,则微分方程 $y''-3y'+2y=xe^{2x}-2x+1$ 的特解形式为(

$$(A)x(ax+b)e^{2x}+Ax+B$$

(B)
$$(ax + b)e^{2x} + Ax + B$$

$$(C)x(ax+b)e^{2x} + x(Ax+B)$$

(D)
$$(ax + b)e^{2x} + x(Ax + B)$$

3. 设 $y = e^{2x} + (1+x)e^x$ 是二阶常系数非齐次线性微分方程 $y'' + \alpha y' + \beta y = \gamma e^x$ 的一个特解, 则该方程的通解为(

(A)
$$y = (C_1 + C_2 x) e^x + e^{2x}$$

(B)
$$y = (C_1 + C_2 x) e^x - e^{2x}$$

(C)
$$y = C_1 e^x + C_2 e^{2x} + x e^x$$

(D)
$$y = C_1 e^x + C_2 e^{2x} + 2xe^x$$

4. 以 y = x - 5 与 $y = xe^{-2x}$ 为特解的最低阶常系数齐次线性微分方程为(

$$(A)y''' + 2y'' = 0$$

(B)
$$y''' + 4y'' + 4y' - 4y = 0$$

(C)
$$y^{(4)} + 2y''' = 0$$

(D)
$$y^{(4)} + 4y''' + 4y'' = 0$$

5. 设函数 f(x) 二阶导数连续且满足方程

$$f(x) - 1 = \int_0^x f(1-t) dt$$

则 f(x) = ().

$$(A)\cos x + \frac{1+\sin 1}{\cos 1}\sin x$$

(B)
$$\cos x - \frac{1 + \sin 1}{\cos 1} \sin x$$

$$(C)\sin x + \frac{\cos 1}{1 + \sin 1}\cos x$$

(D)
$$\sin x - \frac{\cos 1}{1 + \sin 1} \cos x$$

- 6. 微分方程 $3e^x \tan y dx + (1 e^x) \sec^2 y dy = 0$ 的通解是_
- 7. 微分方程 $(y^2 + 1)dx = y(y 2x)dy$ 的通解是_
- 8. 已知某三阶常系数齐次线性微分方程有两个特解,分别为 $e^{-\frac{1}{2}x}\cos\frac{\sqrt{3}}{2}x$ 与 e^x ,则该微分方程为
- 9. 设可导函数 f(x) 满足 $f'(x) = f(\pi x)$,且 f(0) = 1,则 $f(\frac{\pi}{2}) = _____.$
- 10. 设曲线 y = y(x) 满足微分方程 y'' y' = 0,且该曲线在原点处有拐点并以 y 2x = 0 为切

线,则 y(x) =

- 11. 求 $xy'' y' \ln y' + y' \ln x = 0$ 满足 y(1) = 2 和 $y'(1) = e^2$ 的特解.
- 12. 求 $y'' = e^{2y} + e^{y}$ 满足 y(0) = 0, y'(0) = 2 的特解.
- 13. 求二阶常系数非齐次线性微分方程 $y' + \lambda y' = 2x + 1$ 的通解,其中 λ 为常数.
- **14.** 设 y(x) 是方程 $y^{(4)} y'' = 0$ 的解,且当 $x \to 0$ 时,y(x) 是 x 的 3 阶无穷小,求 y(x).
- **15.** 设函数 f(x) 具有连续的一阶导数,且满足 $f(x) = \int_{0}^{x} (x^{2} t^{2}) f'(t) dt + x^{2}$,求 f(x) 的表达式.
- **16.** 已知曲线 y = y(x) 经过点(1,e⁻¹),且点(x,y) 处的切线在 y 轴上的截距为 xy,求该曲线方 程的表达式.
 - 17. 设函数 f(u) 具有二阶连续导数,且 $\lim_{u\to 0} \frac{f(u)}{u} = 2$,又 $z = f(e^y \cos x)$ 满足

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = e^{2y}z,$$

求 f(u) 的表达式.

18. 设方程 $y' + P(x)y = x^2$, 其中 $P(x) = \begin{cases} 1, & x \leq 1, \\ \frac{1}{x}, & x > 1. \end{cases}$ 求在 $(-\infty, +\infty)$ 内的连续函数

y = y(x),使之在($-\infty$, $+\infty$)内都满足方程,且满足初值条件 y(0) = 2.

多 第 9

- 1. 设以下 A, B, a, b 均为常数,则微分方程 $y''-4y'+5y=e^{2x}\sin x-3x+2$ 的特解形式为(
- (A) $(a\sin x + b\cos x)e^{2x} + Ax + B$ (B) $x(a\sin x + b\cos x)e^{2x} + Ax + B$
- (C) $(a\sin x + b\cos x)e^{2x} + x(Ax + B)$
- (D) $x(a\sin x + b\cos x)e^{2x} + x(Ax + B)$
- 2. 设 p(x) 是[a, +∞) 上的非负连续函数,若微分方程 dy + p(x)ydx = 0 的任一解均满足 $\lim_{x\to +\infty} y(x) = 0, \text{则 } p(x) \text{ 必然满足}($
 - $(A) \lim_{x \to +\infty} p(x) = 0$

(B) $\lim_{x\to +\infty} p(x) = +\infty$

(C) $\int_{-\infty}^{+\infty} p(x) dx$ 收敛

- (D) $\int_{-\infty}^{+\infty} p(x) dx 发散$
- 3. 以 $e^x \sin^2 x$ 为特解的最低阶常系数齐次线性微分方程为(
- (A)y''' 3y'' + 7y' 5y = 0

(B) y''' - y'' + 7y' - 5y = 0

(C) 3y''' - y'' + 7y' - 5y = 0

- (D) $\sqrt{''} 3\sqrt{'} 5\sqrt{+7} = 0$
- 4. 设函数 y = y(x) 在 $(-\infty, +\infty)$ 内可导,y(1) = 1,且当 $x \neq 0$ 时满足方程 $y'(x) = \frac{y(x)}{2} + 1$ 微信公众号(神灯考研) $x \int_{0}^{1} y(x) dx$, $\iint_{0}^{1} y(x) dx =$
 - 5. 微分方程 $(y^2 2x)$ dy ydx = 0 满足 x = 1 时 y = 2 的特解是 y = 1
 - 6. 微分方程 $(1+e^{-\frac{x}{y}})ydx+(y-x)dy=0$ 的通解为.
 - 7. 微分方程 $\frac{dy}{dx} \frac{y}{2x} = \frac{1}{2y} \tan \frac{y^2}{x}$ 满足初始条件 $y(2) = \sqrt{\frac{\pi}{2}}$ 的特解是_____.

微信公众号: 神灯考研 客服微信: KYFT104 QQ群: 118105451

微分方程

- 8. 设 $y_1 = xe^x + 2e^{2x}$, $y_2 = xe^x + 3e^{-x}$, $y_3 = xe^x e^{2x} e^{-x}$ 为某二阶常系数非齐次线性微分方 程的三个特解,设该方程的 y'' 前的系数为 1,则该方程为_____.
 - **9.** 已知 y = f(x) 是微分方程 $xy' y = \sqrt{2x x^2}$ 满足初值条件 f(1) = 0 的特解,则 $\int_{0}^{1} f(x) dx = 0$
- 10. 设 $y_0 = 2xe^{-3x}$ 是二阶常系数齐次线性微分方程 y'' + ay' + by = 0 的一个解,函数 y(x) 是 该方程满足条件 y(0) = 2, y'(0) = -5 的解,则 $\int_{0}^{+\infty} y(x) dx = _____.$
 - 11. 求微分方程 $\frac{d^2y}{dx^2} + \frac{1}{1-\nu} \left(\frac{dy}{dx}\right)^2 = 0 满足条件y \Big|_{x=0} = 0, \frac{dy}{dx}\Big|_{x=0} = 2$ 的特解.
- 12. 设函数 f(x) 在区间(0,+∞) 内连续可导,且 $\lim_{x\to 1} \frac{f(x)-1}{x-1} = \frac{1}{3}$. 当x>0时,曲线 y=f(x)上点(x,f(x)) 处的切线在 y 轴上的截距等于 $\frac{1}{x}\int_0^x f(t)dt$,求 f(x).
- 13. 设 y(x) 是微分方程 $y'' + (x+1)y' + x^2y = e^x$ 满足 y(0) = 0, y'(0) = 1 的解,并设 $\lim_{x \to \infty} \frac{y(x) - x}{x^k}$ 存在且不为零,求正整数 k 和该极限值.
 - 14. 设可微函数 f(x) 满足方程 $f(x) = e^x + e^x \int_{a}^{x} f(t) dt$,求 $\int_{a}^{0} f(x) dx$.
 - 15. 求微分方程 $\begin{cases} y'' + y = x, & x \leq \frac{\pi}{2}, \\ y'' + 4y = 0, & x > \frac{\pi}{2} \end{cases}$ 满足条件 $y \Big|_{x=0} = 0, y' \Big|_{x=0} = 0$ 且在 $x = \frac{\pi}{2}$ 处可导

的特解.

16. 用变量代换 $x = \tan t \left(-\frac{\pi}{2} < t < \frac{\pi}{2}\right)$ 将微分方程

$$(1+x^2)^2 \frac{d^2 y}{dx^2} + 2x(1+x^2) \frac{dy}{dx} + y = \frac{1}{\sqrt{1+x^2}}$$

化为以 y = y(t) 为未知函数的微分方程,并求原方程满足初始条件 $y \mid_{t=0} = y' \mid_{t=0} = 1$ 的特解.

- 17. 设 f(x) 为可导的正值偶函数,且 f(x) 不为常值函数,f(0) = 1.已知对于 x 轴上的任意闭 区间[a,b],以[a,b]为底边,以曲线 y=f(x)为曲边的曲边梯形的面积在数值上总等于曲线 y=f(x) 在[a,b] 上的弧长,求函数 f(x) 的解析式.
- 18. 位于上半平面且图形是凹的曲线 y = y(x) 在点(0,1) 处的切线斜率为 0, 在点(2,2) 处的切 线斜率为 1. 已知曲线上任一点处的曲率半径与 \sqrt{y} 及 $1+(y')^2$ 的乘积成正比,求该曲线方程.

19. 设
$$y_1(x) = x(1-2x)$$
, $y_2(x) = 2x(1-x)$, $y_3(x) = x(e^x - 2x)$ 是微分方程
$$y'' + p(x)y' + q(x)y = f(x)$$

的 3 个解,其中 p(x),q(x),f(x) 是(0, $+\infty$) 内的连续函数,求此微分方程及其通解.

20. 已知二阶微分方程 $y'' + ay' + by = ce^x$ 有特解 $y = e^{-x}(1 + xe^{2x})$,求此微分方程的通解.

21. (1) 设
$$y(1) = -\frac{1}{6}$$
, $y'(1) = 0$. 计算变限积分 美研人的精神家园

$$\int_{1}^{x} [t^{2}y''(t) + 4(t+1)y'(t) + 2y(t)]dt,$$

使得结果中不含 y''(x),也不含积分号;

(2) 求微分方程

$$x^{2}y''(x) + 4(x+1)y'(x) + 2y(x) = \frac{2}{x^{3}}, x \in (0, +\infty)$$

满足初始条件 $y(1) = -\frac{1}{6}, y'(1) = 0$ 的特解.

22. 设函数 f(t) 在 $[0,+\infty)$ 上连续,且满足方程

$$f(t) = e^{-4\pi t^2} - \iint_{x^2 + y^2 \leq 4t^2} f\left(\frac{1}{2} \sqrt{x^2 + y^2}\right) d\sigma,$$

求 f(t) 的表达式.

- **23.** 设 f(x) 是以 2π 为周期的二阶可导函数,满足关系式 $f(x) + 2f'(x + \pi) = \sin x$,求 f(x).
- **24.** 设定义在(0, + ∞) 内的函数 y = f(x) 满足微分方程 xy'' + 3y' = 3, 且有 f(1) = 3,
 - (1) 函数 y = f(x) 的表达式;
 - (2) 函数 y = f(x) 的单调区间与极值;
 - (3) 曲线 y = f(x) 在 $x \ge 1$ 的部分绕其斜渐近线旋转一周所得的旋转体的体积 V.
- **25.** 设 a > 0,函数 f(x) 在 $[0, +\infty)$ 上连续有界,证明: 微分方程 y' + ay = f(x) 的解在 $\lceil 0, +\infty \rangle$ 上有界.

® C组®

- 1. 设 p(x),q(x),f(x) 均是 x 的已知连续函数, $y_1(x),y_2(x),y_3(x)$ 分别是非齐次微分方程 y'' + p(x)y' + q(x)y = f(x)的3个线性无关的解, C_1 , C_2 是两个任意常数,则该非齐次微分方程对应 的齐次微分方程的通解是(
 - $(A)C_1y_1 + (C_2 C_1)y_2 + (1 C_2)y_3$
 - (B) $(C_1 C_2)y_1 + (C_2 1)y_2 + (1 C_1)y_3$
 - $(C)(C_1+C_2)y_1+(C_1-C_2)y_2+(1-C_1)y_3$
 - (D) $C_1 y_1 + C_2 y_2 + (1 C_1 C_2) y_3$
- **2.** 设函数 y = y(x) 由方程 $\frac{x^2}{a^2 + b} + \frac{y^2}{b^2 + b} = 1(x, y > 0)$ 确定,其中参数 $|a| \neq |b|, k > 0$,则 y = y(x) 满足微分方程(

$$(A)(a^2 - b^2) \frac{dy}{dx} = \left(x + y \frac{dy}{dx}\right) \left(x \frac{dy}{dx} - y\right)$$

(B)
$$(a^2 - b^2) \frac{dy}{dx} = \left(x - y \frac{dy}{dx}\right) \left(x \frac{dy}{dx} + y\right)$$
 (B) $(a^2 - b^2) \frac{dy}{dx} = \left(x - y \frac{dy}{dx}\right) \left(x \frac{dy}{dx} + y\right)$

(C)
$$(a^2 + b^2) \frac{dy}{dx} = \left(x + y \frac{dy}{dx}\right) \left(x \frac{dy}{dx} + y\right)$$

(D)
$$(a^2 + b^2) \frac{dy}{dx} = \left(x - y \frac{dy}{dx}\right) \left(x \frac{dy}{dx} - y\right)$$

考研人的精神家园

- 3. 求微分方程 $\frac{d^2y}{dx^2} + (x + \sin y) \left(\frac{dy}{dx}\right)^3 = 0$ 满足初值条件 $y(0) = 0, y'(0) = \frac{2}{3}$ 的特解.
- **4.** 适当选取函数 $\varphi(x)$,作变量代换 $y = \varphi(x)u$,将 y 关于 x 的微分方程 $\frac{d^2y}{dx^2} + x \frac{dy}{dx} + \left(\frac{1}{4}x^2 + \frac{1}{2}\right)y = 0$ 化为 u 关于 x 的二阶常系数齐次线性微分方程 $\frac{d^2u}{dx^2} + \lambda u = 0$,求 $\varphi(x)$ 及常数 λ ,并 求原方程满足 y(0) = 1,y'(0) = 0 的特解.
 - **5.** 设 f(x) 具有一阶连续导数,且满足 $x = \int_{0}^{x} f(t) dt + \int_{0}^{x} t f(t-x) dt$,求 f(x) 的表达式.
 - 6. 设微分方程 $xy' + 2y = 2(e^x 1)$.
- (1) 求上述微分方程的通解,并求使 $\limsup_{x\to 0}(x)$ 存在的解(将该解记为 $y_0(x)$),以及极限值 $\limsup_{x\to 0}(x)$;
- (2) 补充定义使 $y_0(x)$ 在 x = 0 处连续,求 $y_0'(0)$,并证明无论 $x \neq 0$ 还是 x = 0, $y_0'(x)$ 均连续,并写出 $y_0'(x)$ 的表达式.
 - 7. 设 $\varphi(x)$ 是以 2π 为周期的连续函数,且 $\Phi'(x) = \varphi(x)$, $\Phi(0) = 0$.
 - (1) 求方程 $y' + y\sin x = \varphi(x)e^{\cos x}$ 的通解;
 - (2)(1)中方程是否有以 2π 为周期的解?若有,请写出所需条件,若没有,请说明理由.
- 8. 求一条凹曲线,已知其上任意一点处的曲率 $k = \frac{1}{2y^2 \mid \cos \alpha \mid}$,其中 α 为该曲线在相应点处的切线的倾斜角,且该曲线在点(1,1)处的切线为水平方向.
- 9. 一长为l(X)、线密度为 ρ (千克/X)的链条,两端各系一个质量为m(千克)的物体A与B. 开始时,仅A下垂,其余部分平置于桌面上,假设物体、链条与桌面的摩擦均略而不计.问从开始算起经过多少时间,链条全部从桌面上滑下?
- 10. 如图所示,正圆柱形水桶中装满水,当打开水桶底部的水龙头时,随着水的流出,水面高度 y 逐渐下降. 当水面高度 y 较大时,水的流出速率较快;当水面高度 y 越来越小时,流出速率也越来越小. 设水面高度 y 的下降速率与 y 的平方根成正比,即

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -k\sqrt{y},$$

其中 k 为正的比例常数.

- (1) 求水面高度 y 对于时间 t 的函数关系;
- (2) 设 $k = \frac{1}{10}$, 当 t = 0 时, y = 9, 问需要多长时间水桶中的水才能流光(t 的单位是 min, y 的单位是 m)?

微信公众号【神灯考研】 考研人的精神家园