

AD-A250 064

US Army Corps of Engineers

Toxic and Hazardous Materials Agency

Report No. CETHA-TS-CR-91055 FINAL REPORT

Evaluation of a Fluidized-Bed Paint Stripper at **Red River Army Depot**

April 1992 Contract No. DAAA15-88-D-0001 Task Order No. 0005

Prepared by:

IT Environmental Programs, Inc. 11499 Chester Road Cincinnati, OH 45246

Prepared for:

U.S. Army Toxic and Hazardous Materials Agency Aberdeen Proving Ground, Maryland 21010-5423

Distribution Unlimited

92-12464

The views, opinions, and/or findings contained in this report should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The use of trade names in this report does not constitute an official endorsement or approval of the use of such commercial products. This report may not be cited for purposes of advertisement.

SECURITY CLASSIFICATION OF THIS PAGE

REPORT D	OCUMENTATIO	N PAGE			Form Approved OMB No. 0704-0188
Ia REPORT SECURITY CLASSIFICATION Unclassified		16 RESTRICTIVE	MARKINGS		
28 SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION	N/AVAILABILITY (OF REPORT	
26 DECLASSIFICATION/DOWNGRADING SCHEDUL	LE	Unlimited	d		į
4 PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION	REPORT NU	MBER(S)
PN 3769-5/JTI: 816004		CETHA-TS	S-CR-91055		
63. NAME OF PERFORMING ORGANIZATION [T Environmental Programs, Inc.	6b. OFFICE SYMBOL (If applicable)	U.S. Corps	on Enginee Hazardous	ers	s Agency
6c. ADDRESS (City, State, and ZIP Code) 11499 Chester Road Cincinnati, Ohio 45246		Attn: CET	ity, State, and ZIF HA-TS-D Proving Grou		2190-5401
8a. NAME OF FUNDING/SPONSORING ORGANIZATION U.S. Army Corps of Engineers ThAMA	86 OFFICE SYMBOL (If applicable) CETHA-TS-D	9 PROCUREMEN Contract I Task Order	NT INSTRUMENT I 10. DAAA15-8 ^ No. 0005	DENTIFICATI 38-D-000	ON NUMBER]
8c. ADDRESS (City, State, and ZIP Code) Attn: CEHTA-TS-D	Annual State of the Control of the C				
					WORK UNIT ACCESSION NO.
Evaluation of a Fluidized-Bed P 12 PERSONAL AUTHOR(S) P. Ressland R. Hoye 13a. TYPE OF REPORT Final 13b. TIME CO FROM _ 7/ 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessary)	18 SUBJECT TERMS (Paint strip Fluidized b Hazardous w	14 DATE OF REPO 1992, Ap Continue on rever sping sed vaste minimi	ORT (Year, Month ril 15] 3	PAGE COUNT 393 by block number)
Hazardous waste minimization i U.S. Army depots today. The U conducts research and development of the conducts research and development of the conducts research and development of the generate moval processes at Army depots ized-bed paint stripping (FBPS generated during paint removal FBPS was believed to have the and degreasing of some parts. This technology conducted at the objectives of the demonstration of the demonstrati	ent to support a sent to support a sent to support a senerate signification, which has the a selected by the senerate property of the Red River Arm tests:	Army depots waste. Deficant quant potential by USATHAMA substituted esents the ray Depot (RR	is Materials in developing reasing and ities of hat to reduce the for a field for the character of a AD). The f	Agency Ing prog Ind chemical Index demons In	(USATHAMA) rams and tech- cal paint re- waste. Fluid- tity of waste tration. The paint stripping evaluation of g were the

SECURITY CLASSIFICATION OF THIS PAGE

19. Abstract (continued)

- To determine whether the FBPS could be used to remove paint, grease, and oil from parts processed at RRAD.
- To develop operating parameters for the FBPS.
- To determine the impact of the FBPS on hazardous waste generation at RRAD and the relative cost of its use.
- To evaluate the air emissions from the FBPS operation.

The FBPS uses hot (600 to 1000°F) aluminum oxide (alumina) as a heat-transfer medium. Air passing up through the bed keeps the medium fluidized. The parts are lowered into the fluidized bed, where organic components of surface contamination and finishes pyrolyze into carbon oxides and other products of combustion (which are then completely combusted in an afterburner). The treated part retains a loosely adhering char made up of the inorganic components of its finish.

The unit tested was manufactured by Procedyne Corp. of New Brunswick, New Jersey. It consists of an electrically heated fluidized bed (Model PCS-4848), a fluidized-bed cooling station (Model QB-4848), a natural-gas-fired afterburner (Model AB-30-2), and a variable-throat venturi gas scrubber (W.W. Sly Manufacturing Co. Size 1). The system also includes a monorail hoist and emissions-control-equipment housing. Demonstration testing took place between November 1990 and March 1991.

The FBFS is not a suitable replacement for chlorinated solvent stripping systems currently used to remove paint from aluminum and aluminum alloy parts. When exposed to 700 to 800°F temperatures for the 1-hour residence time required to pyrolize paint, aluminum parts lost essentially all of their hardness (temper). A heat-treatment step could be added to retemper these parts, but this would be impractical.

In most cases, the FBPS can remove paint from nonaluminum and non-heat-sensitive parts without affecting temper or causing warpage or shape distortion. However, not all non-aluminum, non-heat-sensitive parts can be processed in the FBPS. Some parts (e.g., thin vent covers) may be warped by the process. Additionally, this treatment is not suitable for parts with crevices, channels, or cavities that would retain the FBPS medium and thus be difficult to clean afterward (e.g., engine blocks). Therefore, FBPS cannot eliminate the need for caustic stripping. The cost per part for the FBPS treatment is 70 to 130 percent higher than for caustic stripping, depending on the number of shifts the FBPS is operated.

Metals present in paints and coatings stripped from parts accumulate in the fluidized-bed and will result in it being classified as a RCRA-characteristic hazardous waste. Inasmuch as the FBPS generates less waste on a per-part basis compared with caustic stripping, the overall amount of waste generated would be reduced regardless of the percentage of parts treated in the FBPS. Air emissions were controlled by the system and were within the constraints of the State permit. Scrubber water retained some of the metals, but it was acceptable for treatment in the onsite IWTP.

These conclusions are based on testing conducted under controlled conditions and non-continuous operation, and they should be verified by further analysis.

CONTENTS

		<u>Page</u>
Figure Table Ackno		iii iii iv
1.	Introduction	1-1
2.	Fluidized-Bed Paint Stripper 2.1 Fluidized beds 2.2 Emission control system 2.3 System controls 2.4 Equipment purchase and installation	2-1 2-1 2-8 2-9 2-11
3.	Demonstration Testing 3.1 Test plan 3.2 Test results 3.3 Environmental emissions measurements	3-1 3-1 3-2 3-10
4.	System Comparisons 4.1 FBPS 4.2 Aqueous caustic paint-stripping systems 4.3 Comparison of the two systems	4-1 4-1 4-4 4-5
5.	Conclusions	5-1
Appe	endices	
A. B.		A-1 at B-1
C. D.		C-1 D-1

FIGURES

Number		<u>Page</u>
2-1	General Arrangement of the FBPS Installed at RRAD	2-2
2-2	Parts Load Being Lifted Into the FBPS	2-3
2-3	Section Through FBPS Showing Major Features	2-5
2-4	Fluidizing Hot Bed	2-6
2-5	Explosion Vent	2-7
2-6	FBPS Control Panel	2-10
3-1	Rockwell Hardness Vs. Temperature for 4140 Low-Alloy Steels	3-8

TABLES

Number		<u>Page</u>
3-1	Effects of Temperature and Treatment Duration on Paint Removal	3-4
3-2	Effect of FBPS Treatment on Aluminum Parts	3-6
3-3	Effects of FBPS Treatment on Steel Parts	3-7
3-4	Summary of Atmospheric Emissions of Particulates and Metals	3-11
3-5	Total Metals in the Scrubber Effluent	3-12
3-6	Analysis of Metals in the Fluidized-Bed Media	3-12
4-1	Annual Costs of the FBPS	4-3
4-2	Capital Costs of the Aqueous Caustic Paint-Stripping System	4.4
4-3	Annual Costs of the Aqueous Caustic Solvent-Based Paint-Stripping System	4-6

ACKNOWLEDGMENTS

IT Environmental Programs, Inc. (ITEP, formerly PEI Associates, Inc.) prepared this report under contract to the U.S. Army Toxic and Hazardous Materials Agency (USATHAMA). Mr. Ronald P. Jackson, Jr., was the USATHAMA Project Officer.

Personnel at Red River Army Depot (RRAD) provided site support, test parts, and facility operators to assist in the conduct of this project. Mr. Edward Hanna, Production Engineer, ITEP's contact at RRAD, coordinated the activities of RRAD personnel and site support. Mr. Johnny Gross, Supervisor at North Wash Rack, provided technical manuals, test parts, and site support for the testing. Mr. Isaac Pichard, a North Wash Rack operator, was trained by Procedyne Corporation (the manufacturer of the fluidized-bed paint stripper) and operated the equipment throughout the testing.

Richard W. Gerstle served as ITEP's Project Director, and Robert A. Ressl was the Project Manager. Additional technical input was provided by John Spessard, David Pomerantz, Cindy Shires, and Jeffrey Davis.

SECTION 1

INTRODUCTION

Hazardous waste minimization is one of the most pressing environmental issues facing U.S. Army depots today. The U.S. Army Toxic and Hazardous Materials Agency (USATHAMA) conducts research and development to support Army depots in the development of programs and technologies to reduce the generation of hazardous waste. Degreasing and chemical paint removal processes conducted at Army depots generate significant quantities of hazardous waste. Fluidized-bed paint stripping (FBPS), which has the potential of reducing waste generated during paint removal, was selected by USATHAMA for a field demonstration. For some parts, the FBPS has the potential for being substituted for caustic stripping and degreasing. This report incorporates the results of a field evaluation of this technology conducted at the Red River Army Depot (RRAD). IT Environmental Programs, Inc., performed this evaluation under contract to USATHAMA.

The objectives of the demonstration tests were as follows:

- 1) To determine whether the FBPS could be used to remove paint, grease, and oil from parts processed at RRAD.
- 2) To develop operating parameters for the FBPS.
- 3) To determine the impact of the FBPS on hazardous waste generation at RRAD and its relative cost.
- 4) To evaluate air emissions generated by the FBPS operation.

The fluidized-bed technology was originally developed as a heat-treating method for metal parts rather than for the removal of paint or organic material. The main advantages of the fluidized bed over simple atmospheric heat-treatment furnaces are a

superior heat-transfer rate and the precise control of temperatures and atmospheres in the heat-treatment furnace. More recently, the FBPS technology has been used primarily for cleaning paint application equipment and fixtures and for removal of plastics from injection molding dies. In most of these applications, the parts processed are made of similar metals and have similar surface coatings. As a paint and grease stripper, the FBPS is simpler to operate than other alternatives (e.g., a molten salt bath). A major advantage FBPS offers is the possibility of replacing at least some of the toxic chemicals now used to remove paint and grease. A disadvantage of FBPS is that it generates carbon monoxide and unburned hydrocarbons because the concentration of oxygen in the fluidizing air is inadequate to allow complete combustion of the paint constituents, plastic coatings, or rubber. Precautions are taken, however, to prevent a buildup of pyrolysis products that could be combustible and/or explosive. Another disadvantage is that not all metal parts can be treated in the FBPS.

Activities at RRAD include vehicle repair, small arms repair, equipment stocking programs, and warehousing. One of the primary activities, repair of Army vehicles, includes two basic programs: 1) inspection and repair, and 2) complete rebuilding of vehicles and components. The inspection and repair program entails disassembling the vehicle and repairing those components that need repair. The rebuilding program entails complete disassembly of the vehicle, replacement or refurbishment of all components, and reassembly. Both programs involve paint-stripping operations that generate wastes.

The type of vehicles processed at RRAD varies. For example, during the Middle East conflict in 1990 and 1991, depot activities changed from the predominant task of complete rebuilds of the Type 113 family of vehicles to the exclusive task of inspecting and repairing Bradley fighting vehicles. A description of activities conducted at RRAD is included in Appendix A.

Section 2 of this report describes the FBPS process, equipment, and operation. Section 3 describes the demonstration testing performed under this task. Section 4 compares the FBPS with existing parts-cleaning processes used at RRAD. Section 5 presents the conclusions drawn from the FBPS demonstration and evaluation at RRAD.

SECTION 2

FLUIDIZED-BED PAINT STRIPPER

The FBPS process uses hot (600 to 1000°F) aluminum oxide (alumina) as a heat-transfer medium. Air passing up through the bed keeps the media fluidized. Parts to be cleaned are lowered into the fluidized bed, which quickly heats the part and its surface coatings (paint, grease, oil, etc.) to a temperature at which organic components of surface contamination and finishes pyrolyze into carbon oxides and other products of combustion. Emissions from the process are completely combusted in an afterburner. The treated part retains a loosely adhering char made up of the inorganic components of its finish.

This section describes the specific FBPS evaluated at RRAD. This unit, manufactured by Procedyne Corp. of New Brunswick, New Jersey, consists of an electrically heated fluidized bed (Model PCS-4848), a fluidized-bed cooling station (Model QB-4848), a natural-gas-fired afterburner (Model AB-30-2), and a variable-throat venturing gas scrubber (W.W. Sly Manufacturing Co. Size 1). The system also includes a monorail hoist and housing for the emissions-control equipment. The general arrangement of the system is shown in Figures 2-1 and 2-2.

2.1 Fluidized Beds

Two distinct beds are used in the system: a hot bed and a cold bed. The hot bed, where pyrolysis of the coatings takes place, is kept at operating temperature by electric heaters wrapped around the vessel. Although the cold bed is similar to the hot bed in terms of fluidization, it is surrounded by a cooling-water jacket instead of a series of electrical heaters. The cold bed is used to cool the parts after the organics have been pyrolyzed. The hot and cold beds each have diameters of 48 inches and

Figure 2-2. Parts load being lifted into the FBPS.

effective bed depths of 48 inches. An electric chain hoist on a monorail located above the bed is used to raise and lower parts into the FBPS for treatment (Figure 2-3).

The Procedyne FBPS equipment uses a patented arrangement of air diffusion nozzles and a diffusion plate to achieve fluidization. The nozzles are arranged in a uniform pattern in the diffusion plate, which is welded into the bottom of the fluidizing vessel. The installed unit uses 200-mesh alumina in the bed and uses air as the fluidizing gas. Alumina has the advantage of being chemically nonreactive and available in the required size and density range. Other nonreacting materials, such as silicon dioxide (silica) and titanium dioxide (titania) or alumina of a different mesh size could be used, but some modifications (e.g., different air velocities) would be required. Although other gases (e.g., nitrogen or carbon dioxide) could be used as fluidizing gases, air has the advantages of being readily available and providing the oxygen required for pyrolysis of organic matter in the coatings.

While the parts are in the hot bed, some surface coatings may come off the parts as flakes; these flakes generally float on top of the fluidized bed. A photograph of a hot bed in its fluidized state (Figure 2-4) shows "bubbles" of sand on top of the bed and a small accumulation of removed surface coatings. Parts that become dislodged from the parts basket fall into the fluidized bed and sink to the bottom, where they remain until the bed medium is replaced.

During the processing of a normal load of parts, the concentration of oxygen in the fluidizing air will be inadequate to allow complete combustion of the paint constituents, plastic coatings, or rubber. Therefore, carbon monoxide and unburned hydrocarbons will be generated during pyrolysis of these materials. The products of pyrolysis are combustible volatile organic compounds (VOCs), which are burned in the system's afterburner. Low-pressure steam is bled into the space above the fluidized bed. The steam prevents a buildup of pyrolysis products that could be combustible and/or explosive. As a further precaution, the hot bed is equipped with an explosion vent (Figure 2-5). The furnace housing (Figure 2-2) is used to control emissions during loading and unloading operations that occur while the lid is removed from the hot and cold fluidized beds.

Figure 2-4. Fluidizing hot bed.

Figure 2-5. Explosion vent.

During the lowering of the parts into the fluidized bed, the lid of the bed is removed. Therefore, any fumes that are carried up and out of the bed escape the primary fume capture system and are contained by the furnace housing. Once the lid is in place, these emissions are gradually evacuated from the housing. They are then combined with the other emissions from the hot bed and burned in the afterburner.

The furnace housing is an integral part of the support mechanism for the overhead monorail and hoist. The hoist raises and lowers baskets full of parts into and out of the hot and cold fluidized beds. The monorail provides a track for the hoist that moves the parts baskets from the loading and unloading areas to the hot and cold beds. The chain for the hoist passes through a narrow slot at the top of the furnace housing. This slot is sealed with rubber flaps, and the doors at each end of the housing are closed before the baskets are put into the furnace so as to control fugitive emissions; however, some emissions do escape. The housing has two 12-in.² side windows and an interior light to provide visibility for the operator.

During normal operation, parts are placed in one of four baskets having an inside diameter of 45 in. and an inside depth of 22 in. The baskets can be modified to accommodate specific parts. The 45-inch inside diameter restricts the size of parts that can be processed in the FBPS baskets; however, larger parts can be hung by a chain and lowered directly into the beds without the use of the baskets.

2.2 Emission Control System

The afterburner can heat air emissions to $1400\,^{\circ}$ F and introduce sufficient excess air to burn VOCs completely. The afterburner provides a 0.4-second retention time for the gases, which insures complete combustion. At $1400\,^{\circ}$ F, typical VOC pollutants are destroyed in 0.1 second in the afterburner. (Exceptions include black smoke and carbon particulates greater than $10~\mu m$ in diameter, which may require up to 1 second at $1400\,^{\circ}$ F to be destroyed fully.) Afterburners are normally designed with a 0.3- to 0.5-second residence time for a safety factor. Texas Air Control Board (TACB) regulations require afterburners to be designed on the basis of a 0.4-second residence time at $1400\,^{\circ}$ F. A "wet cap" attached to the discharge end of the afterburner cools

the discharge gases to approximately 150°F. This cooling permits the use of lower-temperature blowers and ducts for the system's exhaust. A pilot flame is maintained in a low-fire mode to insure that no unsafe flameout conditions occur as a result of a temporary drop in fume concentration in the process off-gas or a temporary interruption of the off-gas stream.

The RRAD FBPS has a variable-throat wet venturi scrubber designed for a pressure drop of 4 inches. The adjustable-throat feature optimizes scrubbing efficiency by maintaining the optimum pressure drop for removal of particulates and absorbing gaseous pollutants. This, combined with the unit's energy-regaining section, significantly reduces power consumption and operating costs.

2.3 System Controls

The following controls are installed on the FBPS system at RRAD:

- Hot-bed temperature controller and manual fluidizing air control.
- Cooling-bed water on/off and manual fluidizing air control.
- Afterburner temperature control and manual wet cap water control.
- Manual venturi throat adjustor and waterflow control.
- Automatic system monitor for low hot-bed fluidization, low afterburner gas flow or flameout, and afterburner overtemperature.

The hot-bed temperature controller controls the flow of electricity to the heaters, which in turn control the hot-bed temperature. Automatic shutoff controls prevent overheating. Off/on controls on the cold-bed water jacket conserve cooling water when the cold bed is not in service. Manual fluidizing air controls are used to maintain the hot- and cold-bed airflow and to keep the beds fluidized. Temperature sensors and controls on the afterburner monitor the incinerator operation, and the manual waterflow controls on the water cap maintain the afterburner gas discharge temperature at 150°F. The venturi scrubber has a manually operated, adjustable, venturi throat opening and waterflow controls. The FBPS has automatic monitors with automatic shutoffs for hot-bed operating parameters. Figure 2-6 is a photograph of the FBPS control panel.

Figure 2-6. FBPS control panel.

Procedures for startup of the FBPS are as follows:

- Turn the bed heaters on.
- When the bed reaches the desired temperature, start the afterburner.
- When the afterburner reaches the required temperature, the hoist can be operated.
- Turn cooling-bed water and air on manually as needed.
- When the system is operating, turn on the wet cap and venturi water supply.

An alarm will sound if the temperature of the afterburner exhaust exceeds set limits. Fluidizing air is shut off automatically if the afterburner shuts down.

2.4 Equipment Purchase and Installation

Although fluidized-bed technology has been used in petroleum refineries, chemical reactors, combustion processes, and metal heat-treating processes, its use for paint removal is a relatively new development; therefore, only three potential equipment vendors were identified. Of these three, only Procedyne Corporation had installed equipment in the United States and was able to provide the necessary support for installing the equipment and training the operators. Procedyne's primary involvement with the fluidized-bed technology has been for metal heat treatment.

As described in the following paragraphs, a few equipment and procedural modifications were made to the FBPS system installed at RRAD. First, interior lighting was installed in the closed cabinet, which enables operators to view and position the baskets properly. The low-pressure steam-injection system mentioned earlier in this section was an add-on design incorporated to prevent the accumulation of ignitable hydrocarbon vapors above the hot bed. This safety feature is intended to prevent explosions caused by ignition of the confined VOCs.

The FBPS purchased for this demonstration is the type typically used for heat-treating metal parts; it was redesigned for this application. When this system is used for heat treatment, bed media are replaced infrequently. Because bed media in an FBPS operated as a paint stripper (such as the one at RRAD) will be replaced more frequently, provisions should be made to simplify bed changeouts. As-built drawings should be requested for the equipment at the time of purchase. Such drawings are

necessary for those who purchase a fluidized bed for paint stripping, as they are less likely to be familiar with the equipment and its utility requirements than are purchasers from the metal heat-treating industry. The Procedyne FBPS equipment was skid-mounted and modularized, which facilitated field assembly.

SECTION 3

DEMONSTRATION TESTING

Demonstration testing of the FBPS took place at RRAD between November 1990 and March 1991. During this time, approximately 35 tests were run on parts. Tests were also run on scrap parts, paint hooks, and panels to determine optimum temperatures for the removal of various types of paints.

This section covers the field testing, the character of the parts encountered at RRAD, the operating parameters, and the test results. Some equipment testing performed at the manufacturer's facility and metallurgical testing performed by an independent laboratory are also discussed. A copy of the detailed test plan prepared prior to testing is presented in Appendix B.

3.1 Test Plan

The primary objectives of the field testing were to determine to what extent the FBPS can replace chemical paint stripping, to establish when it can be used to remove other organic coatings (e.g., oils and grease), and to determine its effects on waste generation. Secondary objectives of the field testing were to establish specific operating conditions for the parts and coating systems processed in the FBPS and to train RRAD personnel to operate the system.

The first step involved categorizing the parts processed at RRAD and identifying those that would be suitable candidates for testing in the FBPS. When available, part specification drawings were used to obtain the following information about the parts:

- The metal alloys used
- Any metal treatment (e.g., heat treatment and hardening)
- Electroplated coatings
- Conversion coatings

- Type of paint used
- Welds, soldering, brazing, and other treatments that could be affected by processing in the FBPS

The test program established which parts processed in the FBPS could be repainted and returned to service and how the current RRAD procedures would have to be modified to accomplish this. The test program also established optimum FBPS operating parameters and how these parameters would have to be modified based on what was being processed in the FBPS. Postprocess testing of parts processed in the FBPS included hardness testing, checking for changes in part dimensions, and visual examinations for warping, staining, and other damage.

The second step of the test plan involved characterization of air emissions and wastes generated by the FBPS. Metals present in coatings and removed in the FBPS could contribute to both hazardous waste generation and air emissions. These metals could 1) leave the FBPS with the part (which means the downstream processing would have to deal with their disposal); 2) contaminate the fluidizing medium (which would require eventual disposal of the medium); 3) be deposited inside the FBPS (which would force an eventual shutdown and cleaning); or 4) exit the FBPS with the exhaust gas (which could become air emissions). Air emissions of VOCs, metals, and particulates were measured, and the fate of heavy metals and combustible paint char was determined. Based on environmental sampling data (Subsection 3.3), the water scrubber and incinerator provide adequate control of emissions.

3.2 Test Results

3.2.1 Effects on Paints and Coatings

Some scrap parts were tested (production parts were not available) to determine the effectiveness of the fluidized bed in the removal of paints and coatings found at RRAD. The parts tested were aluminum brackets used for a chair replacement and a seat belt replacement. Because several of these parts were available in three or four coating types, they provided an excellent source of test materials for investigation of the effect of temperature on the various coatings.

The effectiveness of the FBPS on these parts was evaluated by using a standardized procedure to abrade the surface of the part after it was processed in the FBPS. This procedure entailed the use of a commercially available scouring pad from the Scotch Company, which is commonly used as a cleaning pad at the depot. This pad, which consists of an abrasive material on a nylon webbing matrix, is typically used to spot-clean corrosion off of metal parts. The test procedure consisted of treating parts in the FBPS at specific temperatures believed to bracket the optimum operating temperature for the particular paint. The processed part was removed from the FBPS and cleaned with the test pads to remove the char. The relative effort required to remove the char (i.e., the number of strokes required to clean he part) was recorded. This information served as an indicator of the effectiveness of the FBPS in breaking down the paint. Table 3-1 shows the results of this testing. These data demonstrate that a temperature of 750°F and a 1-hour residence time were adequate to char the paint systems sufficiently to provide a cleanable part. Although some coatings were effectively treated at lower temperatures and shorter times, 750°F for 1 hour appeared to be the minimum temperature and time capable of producing reliable results for all coatings.

3.2.2 Effects on Base Metal

The FBPS treatment can definitely affect the characteristics of the part's base metal. Warpage and shape distortion can occur and render the part useless. The FBPS treatment can also alter the heat treatment or temper of the rnetal. Tests demonstrated that aluminum parts could not be treated in the FBPS because, in all cases, the process softened the metal. This effect is shown in Table 3-2, which presents selected hardness data on typical aluminum parts processed in the FBPS. Appendix C presents a list of the metal parts evaluated during this project, which includes the aluminum parts evaluated and rejected for processing in the FBPS. In general, the only parts suitable for FBPS treatment are those made of steels that are not heat-treated or steels on which heat-treatment temperatures are high enough to preclude their being affected by processing in the FBPS.

TABLE 3-1. EFFECTS OF TEMPERATURE AND TREATMENT DURATION ON PAINT REMOVAL

Test number	Test temperature, °F	Test time, h	Part number	Relative removal efficiency
	Ename	l paint syste	ms	
9	600	1	8787	50
10	600	3	8779	200
11	600	6	8783	150
11	600	6	8784	200
14	700	1	8760	5
13	700	3	8761	3
21	775	0.75	8744	25
21	775	0.75	8743	0
22	800	0.5	8739	6
17	800	1	8759	3
15	800	3	8758_	50
	Epoxy	paint system	ns	
9	600	1	8785	200
9	600	1	8786	200
10	600	3	8780	200
10	600	3	8781	200
11	600	6	8782	200
14	700	1	8764	100
14	700	1	8775	25
14	700	1	8762	40
14	700	1	8770	200
14	700	1	8771	70
13	700	3	8776	60
13	700	3	8768	45
19	725	2	8754	C
19	725	2	8756	0
19	725	2	8753	0
19	725	2	8755	O

(continued)

TABLE 3-1 (continued)

Test number	Test temperature, °F	Test time, h	Part number	Relative removal efficiency ^a
19	725	2	8755	Э
19	725	2	8752	3
20	750	1	8774	3
20	750	1	8749	1
20	750	1	8750	3
21	775	0.75	8747	3
21	775	0.75	8737	15
21	775	0.75	8736	20
21	775	0.75	8745	3
21	775	0.75	8751	10
22	800	0.5	3740	0
22	800	0.5	8738	6
17	800	1	8777	5
17	800	1	8763	10
17	800	1	8772	1
15	800	3	8767	50
15	800	3	8765	20
15	800	3	8773	10
15	800	3	8769	0

^a Relative paint removal efficiency indicates the ease with which char was removed from the treated part. The greater the number, the more difficult the removal, which means less-efficient treatment. A zero indicates all char was removed by the FBPS. The highest possible number to indicate the degree of removal difficulty is 200.

TABLE 3-2. EFFECT OF FBPS TREATMENT ON ALUMINUM PARTS

Hardness Rockwell "B" Before After Part number Description Air horn Air horn base Spring spool Access door Battery rack Fuel cell cover Motor support Mc · clamp Sa. Ly handle

Five steel parts routinely processed at RRAD (Table 3-3) were considered good candidates for FBPS treatment. Not only are these parts typical of the kinds of parts most suitable for processing in the FBPS, they were also available in sufficient quantity for use in this evaluation. The hardness data presented in Table 3-3 demonstrate that the parts listed (except for the bearings) are unaffected by FBPS processing. The bearings are not suitable for this treatment because the FBPS processing will destroy the oil impregnation and possibly alter the shape or temper of the bearings.

TABLE 3-3. EFFECTS OF FBPS TREATMENT ON STEEL PARTS

				Hardness (Ro	ckwell "C")
Assembly item number and description	Part number	Part description	Steel alloy	Before	After
P/N 12253143	10866131	Spindle	4140H	36.4	37.2
Idler arm	12253144	Arm	4140H	35.7	36.0
	11633894	Bearing	OL16	31.9	33.0
P/N 12268700	11660930	Trunion	4140H	32.5	32.8
Road wheel arm assembly	8756363	Arm	F54145H	33.6	33.9
•	10866123	Spindle	4140H	33.7	33.5
	MS35624-50	Piug	Unknown	35.1	34.6
P/N 12253578	11669367	Spindle	F54142	40.0	39.7
Idler arm	11669358	Housing	4140H	38.5 _h	38.2
	11669365	Bearing	0L16	80.0	38.2 _b 67.7
P/N 12276657	12276657	flousing	F\$4130	36.7 _h	36.7 _b
Road wheel housing support		Bearing	0L16	68.8	68.2
P/N 10918159 Road wheel housing support	10918160	Housing	CSGRD115-95	28.9	28.9

All parts were sectioned, and metallurgical samples were prepared from the sections. One-half of the section was tested, and the results were reported as the "before"; the other half was processed in the FBPS for 1 hour at 800°F before being tested, and the results were reported as the "after" measurement.

The relationship between hardness and temperature for a specific alloy can be determined from standard material handbooks. These data can be used to determine whether the FBPS processing will affect the metal. Figure 3-1 shows this hardness-versus-temperature relationship for 4140 low-alloy steel. The figure demonstrates that a Rockwell "C" hardness of 45 is achieved at 800°F. A part [e.g., Part No. 11660930 - Trunion (Table 3-3)] would be unaffected by FBPS treatment at 800°F because its Rockwell "C" hardness (33) is below curve. Similar data for the remaining parts are also available.

Results are reported as Rockwell hardness "B" scale.

Figure 3-1. Rockwell hardness vs. temperature for 4140 low-alloy steels.

3.2.3 Effect on Parts Processing

The only special preprocessing required prior to FBPS treatment is the removal of significant organic components (e.g., large fabric sections or rubber sections) that may be present on the part. Processing of parts after paint stripping would be virtually unchanged by incorporation of the FBPS. The one exception to this is the need to remove any bed media remaining in or on the part. This would only be a concern for parts that have internal machined or bearing surfaces or parts containing small passages that could become clogged with the bed media and therefore require special cleaning. For example, engine heads and blocks would not be suitable candidates for FBPS processing because they contain numerous small passages and internal cavities.

The FBPS would not entirely eliminate either of the existing chemical paint-stripping processes at RRAD. Each process (methylene chloride and caustic stripping) would still be needed for parts that are not suitable for processing in the FBPS. Because the aluminum parts found at RRAD are heat-treated, they cannot be processed in the FBPS and would continue to be processed in the methylene chloride paint-stripping process. The FBPS would reduce the number of steel parts stripped in the caustic stripping process. A comparison of the quantities of waste generated by these stripping methods is presented in Section 4.

Parts processed in the fluidized bed were found to require a followup white metal blasting that took about the same length of time as the blasting required after chemical stripping. Parts having machined surfaces (e.g., road arms) do not require blasting; these parts are chemically treated and then cleaned by hand. When these types of parts were processed in the FBPS, however, the final hand-cleaning operation was found to be unriecessary. Road arms that were processed in the FBPS, however, had to be processed with a corrosion remover because the fluidized bed had little or no effect on corrosion removal.

3.3 Environmental Emissions Measurements

Evaluation of environmental emissions was part of the overall evaluation of the FBPS (see Appendix D). The FBPS generates the following waste streams: 1) air exhaust from the afterburner and scrubber systems, 2) water discharge from the scrubber system, 3) dust collected in the cyclone separator on the ventilation system between the fluidized bed and the afterburner, and 4) fluidized-bed media. These environmental measurements were made over a relatively short test period. The types and number of parts processed and the kinds of paints treated during this test may not be representative of the types and number that would be routinely processed if the FBPS were operated continuously during regular production. Therefore, the measurements (i.e., quantification of metals in discharges) can only serve as indicators of waste-stream characteristics.

Table 3-4 presents the quantities of four metals (cadmium, chromium, lead, and zinc) found in the afterburner and scrubber system exhaust air. These data indicate that controlled emissions of each of these metals from the FBPS would be less than 0.5 lb/h. Emissions from the FBPS are regulated under the Texas Air Control Board's Standard Exemption No. 87, which covers heat-cleaning devices. This Standard Exemption limits the emission of any air contaminant to a maximum of 0.5 lb/h and 2.0 tons/yr. Atmospheric emission testing indicated that the incinerator completely burned essentially all organic matter and that the FBPS is not a significant source of VOC emissions (Appendix D). These results are consistent with the process operating parameters submitted to the Texas Air Control Board when the unit was installed and permitted for operation.

Table 3-5 presents results of sampling for these same metals in the liquid effluent from the scrubber system. Concentrations of metals in this discharge are acceptable for treatment at the industrial wastewater treatment plant located at RRAD.

Table 3-6 presents analyses of metals in the fluidized-bed media contained in the hot bed and the cold bed, and the media collected in the cyclone separator. This material (particularly the cyclone separator dust) is contaminated with metals that could make it a RCRA-characteristic hazardous waste. Although the Toxic

TABLE 3-4. SUMMARY OF ATMOSPHERIC EMISSIONS OF PARTICULATES AND METALS^a

		Par	ticulate	Particulate emissions				Meta	Metals emissions			
	4	Concentration	ration			Concentra	Concentration, µg/m²	/m²	Ma	Mass emission rate, lb/h	n rate. 1b	/h
Test No.	(1991)	gr/dscf ^b	mg/m	Mass emission rate, lb/h	ρ	చ	P	Zn	P	Cr	Pb	Zn
SOPM-1C	5/26	0.13	297.5	0.80	30	373	574	861	7.96	9 75-4	1.56	2.2E ⁻³
S0PM-2	2/26	0.007	15.8	0.047	12.4	, 64.	17.6	<6.5	3.76	<1.1E	5.2E ⁻⁵	
S0PM-3	12/2	0.004	8.2	0.024	9	<2.8	6.4	<4.7	1.86	<8.4E ⁻⁶	1.46	
S0PM-4	2/27	0.0033	8.4	0.023	<2.1	<3.2	3.7	<5.3	<5.9E ⁻⁶	-8.8E	1.06	
S0PM-5	2/27	0.013	8.82	0.083	2.2	<2.9	10.1	34.5	6.35-6	<8.2E ⁻⁵	2.9E ⁻⁶	9.9£
S0PM-5	87/2	0.0037	8.4	0.024	9.3	<2.9	16.1	8.4	2.6E ⁻⁵	8.2E ⁻⁶	4.56	1.46
20PM-7	2/28	0.0028	6.4	0.019	6.1>	10	18.8	14.4	5.5E ⁻⁶	2.9E-5	5.4E ⁻⁵	4.2E ⁻⁵
SOPM-8	2/28	0.0040	9.1	0.026	12.4	ŝ	9.5	13.8	3.5E ⁻⁵	-9 -8,4E	2.7E	3.96

The Texas Air Control Board's Standard Exemption No. 87 for Heat Cleaning Devices limits emissions of any contaminant to 0.5 1b/h. b gr/dscf = grains per dry standard cubic foot.

C Test SOPM-1 is considered nonrepresentative because of a scrubber upset. It does, however, provide an indication of potential uncontrolled

d Less than (<) denotes value is below the method detection limit (MDL), which is the value following the "<" sign. MDLs are determined in part by the volume of gas sampled. This volume varied among the tests; therefore, the MDLs show some variation.

TABLE 3-5. TOTAL METALS IN THE SCRUBBER EFFLUENT^a (mg/L)

Sample ID	Cadmium	Chromium	Lead	Zinc
30	0.004	0.083	<0.02	0.082
31	0.002	0.030	0.0041	0.031
32	<0.002	0.007	0.0007	0.021
34	0.007	0.064	<0.02	0.20
Detection limit	0.002	0.006	0.02	0.008

The samples were collected as a series of grab sampling during the emission tests. Samples 30 and 34 were taken while cadmium- and zinc-plated parts were being processed in the FBPS, and Sample 32 was collected while aluminum-plated parts were being processed.

TABLE 3-6. ANALYSIS OF METALS IN THE FLUIDIZED-BED MEDIA^a

Sample description	Cadmium	Chromium	Lead	Zinc
Virgin material	<0.2	9.8	0.7	2.9
Cold-bed pretest	1.7	13	18	16
Cold-bed posttest	2.8	15	23	22
Hot-bed pretest	5.5	24	۷3	34
Hot-bed posttest	26.7	14.3	25.9	38.4
Cyclone dust	40.4	35.1	77.5	161
Detection limit	0.2	0.3	0.4	0.5

a Results are for total metals.

Characteristic Leaching Procedure (TCLP) test was not conducted on these materials, a similar study conducted at Letterkenny Army Depot demonstrated that fluidized-bed media was quickly contaminated with metals and was a RCRA hazardous waste. It is estimated that about 800 pounds of this dust would be collected per year, based on continuous operation of the FBPS (8760 hours per year).

Total metals analyses of the aluminum oxide fluid media are also presented in Table 3-6. These analyses indicate that metals do build up in this media; however, it cannot be determined if the levels at the time of media change-out would be sufficient to require the sand to be disposed of as a RCRA-characteristic hazardous waste. A complete change-out of the bed media would amount to about 8000 pounds of material. Based on information acquired during the test program, it is estimated that the media would require change-out every other year.

SECTION 4

SYSTEM COMPARISONS

For comparison purposes, this section presents operational, waste generation, and cost data for each of the two paint-stripping systems evaluated at RRAD--the FBPS and aqueous caustic paint stripping--which represent two alternatives for stripping paint from nonaluminum parts. Sizing of the systems and production capacities are based on operating practices at RRAD.

4.1 FBPS

4.1.1 Operational Data

Heating-bed temperatures must be in excess of 650°F to remove paint from metal parts in the FBPS. In this study and a parallel study conducted by USATHAMA at LEAD, such temperatures were found to cause aluminum to lose its temperature hardness (temper). Because it is impractical to incorporate a heat-treatment step to restore temper in the RRAD paint-removal operations, the FBPS is suitable for paint removal on nonaluminum alloy parts only, which are not affected by the FBPS operating temperatures.

Paint, rubber, plastic, oil, grease, and other organic coatings or residues are removed by the FBPS. Also, parts treated in the FBPS do not have to be cleaned in a vapor degreaser before treatment.

Some safety concerns are associated with the use of a high-temperature pyrolysis treatment system. These include burn hazards and the control of toxic off-gases (e.g., carbon monoxide, nitrogen oxides, and formaldehyde). Engineering controls, safeguards, and monitoring are required to minimize worker exposures.

4.1.2 Waste Generation

Metals present in paints, coatings, and electroplates will accumulate in the FBPS media. Organics are destroyed through pyrolysis or are volatilized in the hot bed and destroyed in the afterburner. Although not confirmed by testing during the program at RRAD, it is assumed that this accumulation of metals will eventually impart the characteristic of RCRA toxicity to the media and cause it to be regulated as a RCRA hazardous waste. The companion FBPS project conducted at LEAD demonstrated that the media became contaminated with lead and was RCRA hazardous (by TCLP testing) after only three runs. During the LEAD study, testing was conducted with large loads of parts coated with lead-based paints. Because lead-based paints are still relatively common in coatings stripped at RRAD, it is anticipated that spent FBPS media will be classified as a hazardous waste. The manufacturer recommends a biannual bed change-out, which would generate about 4000 lb of hazardous waste per year. Based on information obtained during the LEAD study, about 3 lb of contaminated media per hour of operation would be lost through carryover, dragout, and fugitive dust. This represented a more significant waste stream than that produced by bed change-out. Operations of the FBPS at RRAD, however, included methods to collect carryover and dragout and return it to the fluid bed, which eliminated this potential waste.

4.1.3 Capital and Annual Costs

The estimated installed capital cost of the FBPS (\$512,000) reflects the actual installed cost of the demonstration unit at RRAD.

Table 4-1 presents estimated annual costs of the FBPS. Treatment of a road arm (Part No. 8756363) was used as the basis for costs. A production rate of 250 parts per week was used as the basis for calculation; this rate was based on observation and best engineering judgment. The per-part cost of \$9.51 for the FBPS reflects RRAD operations and could differ at other locations.

TABLE 4-1. ANNUAL COSTS OF THE FBPS (1991 dollars)

Item	Cost
Labor	
Operating labor, 2080 h at \$20/h Maintenance labor, 150 h at \$20/h	41,600 3,000
Total	44,600
Raw Materials	
Aluminum oxide makeup, 0.5 lb/h at \$1.20/lb Aluminum oxide change-out, every 2 years	1,250 2,500
Spare parts, 1 percent of capital cost	5,120
Total	8,870
Utilities	
Electricity, average of 37 kWh, at 4.2¢/h, 2080 h Water, 250 gal/h at 0.46/1000 gal, 2080 h Natural gas for incinerator, 0.2 million Btu/h at \$3/h, 2080 h	3,230 230 1,250
Total	4,710
Waste Disposal and Treatment	
Water, 250 gal/h at 0.46/1000 gal, 2080 h Aluminum oxide made up and changed at 1.5 lb/h at 45¢/h , 2080 h Paint char disposal, 20,000 ft ² of 10 mil coating, 100 lb/ft ³ , 50 percent to char at 45¢/lb	230 1,400 380
Total	2,010
Capital Recovery ^a	
15 years, 9 percent interest (\$512,000 x 0.12394)	63,460
TOTAL ANNUAL COST	123,650
250 road arms per week, 52 weeks = 13,000 road arms	
COST PER ROAD ARM	9.51

Based on methods contained in Grant, E. L., and W. G. Iresor. Principles of Engineering Economics. Fifth Edition. Ronald Press Co., New York, 1970.

4.2 Aqueous Caustic Paint-Stripping Systems

4.2.1 Operational Data

Parts treated by caustic stripping must first undergo vapor degreasing. Any rubber or plastic must be removed from the parts.

Past operational practices at RRAD incorporated corrosion removal with caustic stripping. This was accomplished by mixing the corrosion-removal chemicals with the caustic paint stripper, which allowed corrosion and paint to be removed in one operation. Current operations use separate tanks for these solutions.

The caustic stripper system involves no unique safety requirements other than those normally in place during the handling of heated corrosive liquids.

4.2.2 Waste Generation

Because contaminants gradually build up in the caustic solution and impede its effectiveness, the solution must be periodically disposed of and replaced with fresh solution. Caustic stripping at RRAD generates both liquids and sludges that are classified as RCRA hazardous waste. Other waste streams generated by the caustic stripping process include overflow from the rinse tank, which is discharged to the onsite industrial waste treatment plant (IWTP), and spent TCA and vapor degreasing residues, which are disposed of offsite as hazardous waste.

4.2.3 Capital and Annual Costs

Table 4-2 shows the breakdown and total capital cost of the caustic paint-stripping system at RRAD. As shown, the total capital cost for this system is \$173,700.

TABLE 4-2. CAPITAL COSTS OF THE AQUEOUS CAUSTIC PAINT-STRIPPING SYSTEM (1991 dollars)

System	Component cost	Total cost
Caustic paint-stripping system Stainless steel solvent degreasing tank	134,500 ^a 19,200 _b	173,700
Carbon steel paint-stripping tank Hoist and crane Carbon steel water rinse tank	10,000 10,000	

Vendor-supplied information.

b Installed cost of test system.

C Peters and Timmerhaus.

Table 4-3 presents the estimated annual costs of the aqueous caustic paintstripping system. The production rate used in this calculation was 750 parts per week, based on observation and best engineering judgment. The estimated cost per part is \$4.11.

4.3 Comparison of the Two Systems

As indicated in the preceding discussions, the cost of the FBPS is more than twice that of the caustic stripping system, and it has only about 30 percent of the production capacity. Matching the production capacity of a solvent-based system would require either the purchase of a second FBPS or the operation of one unit on a multishift basis. The latter would be the less costly option. Adding a second shift would double all the operating costs in Table 4-1 except the capital recovery factor and result in a total cost of \$183,840 per year. Based on processing 13,000 parts per year per shift, the operating cost per part would be about \$7.10.

Another noteworthy difference in the two systems involves safety. The FBPS poses some safety concerns that would have to be minimized through engineered controls, safeguards, and monitoring. The caustic stripping system, on the other hand, involves no unique safety requirements other than those normally in place during the handling of heated corrosive liquids.

The difference in waste generation is of primary interest. Wastes are generated in the form of accumulated metals in the media of the FBPS system. This spent media waste is expected to be regulated as RCRA hazardous waste. In the caustic stripping system, contaminants build up in the caustic solution and impede its effectiveness. This solution and associated sludges must be disposed of and replaced with fresh solution. At RRAD, both liquids and sludges that are classified as RCRA hazardous waste are generated. Other hazardous wastes generated by the caustic stripping system that must be disposed of offsite include spent TCA and vapor degreasing residues.

TABLE 4-3. ANNUAL COSTS OF THE AQUEOUS CAUSTIC SOLVENT-BASED PAINT-STRIPPING SYSTEM (1991 dollars)

Item	Cost
Labor	
Operating labor, 4160 h at \$20/h Maintenance labor, 150 h at \$20/h	83,200 3,000
Total	86,200
Raw Materials	
Biannual replacement of paint stripper, 2500 gal at 60¢/gal Caustic makeup, 200 lb/day, 7¢/lb, 260 days Trichloroethane losses, 5 gal/day, 260 days at \$6.02/gal Spare parts, 1 percent of capital cost	1,500 3,640 7,830 1,740
Total	14,710
Utilities	
Electricity, 25 kW, 2080 h at 4.2¢/kWh Chilled water for degreaser coils, 1000 gal/h at \$3/1000 gal, 2080 h	2,180 6,240
Steam, 500 lb/h at \$3/1000 lb, 2080 h Rinse water, 1000l/h at \$0.46/1000 gal, 2080 h	3,120 <u>960</u>
Total	12,500
Waste Disposal and Treatment	
Degreaser sludge disposal, 5 gal/day, 260 days, 11 1b/gal,	6,440
45¢/lb Water, 2000 gal/h at 46¢/l000 gal, 2080 h Spent stripper disposal, biannual replacement, 2500 gal,	1,910 10,130
9 lb/gal, 45¢/lb Paint sludge, 60,000 ft² of 10-mil coating, 100 lb/ft³, 1/3 paint, 2/3 water and solvent	6,750
Total	25,230
Capital Recovery ^a	
15 years, 9 percent interest (\$173,700 x 0.12394)	21,530
TOTAL ANNUAL COST	160,170
750 Road arms per week, 52 weeks = 39,000 road arms	
COST PER ROAD ARM	4.11

^a Based on methods contained in Grant, E. L., and W. G. Iresor. Principles of Engineering Economics. Fifth Edition. Ronald Press Co., New York, 1970.

SECTION 5

CONCLUSIONS

The FBPS is not a suitable replacement for the chlorinated solvent stripping systems currently used to remove paint from aluminum and aluminum alloy parts at RRAD. When exposed to 700 to 800°F temperatures for the 1-h residence time required to pyrolize paint, aluminum parts lost essentially all of their hardness (temper). To use the FBPS to treat aluminum parts would require the addition of a heat-treatment step, which would be impractical.

In most cases, the FBPS can remove paint from nonaluminum and non-heat-sensitive parts without affecting the temper or causing warpage or shape distortion; however, some parts (such as thin vent covers) may be warped. Although degreasing is not required before treatment, the cost of using FBPS is significantly higher than the cost of using the caustic stripper system. Costs per part for the FBPS treatment are 70 to 130 percent higher, depending on the number of shifts the system is operated. Because not all nonaluminum non-heat-sensitive parts can be processed in the FBPS, it cannot be used to eliminate caustic stripping. This treatment would not be suitable for parts with crevices, channels, or cavities that would retain FBPS media and be difficult to clean afterward (e.g., engine blocks).

Metals present in the paints and coatings stripped from parts treated in the FBPS accumulate in the bed media. These metals would likely cause the bed material to be a RCRA-characteristic hazardous waste because of toxicity. Because media dragout and dusts were captured and recycled, the volume of this waste was estimated to be much less in this system than in the FBPS tested at LEAD. The FBPS generates less waste on a per-part basis; therefore, the overall amount of waste generated would be reduced regardless of the percentage of the parts treated in the FBPS. Air

emissions were adequately controlled by the system and were within the constraints of the State permit. Scrubber water retained some of the metals, but it was still acceptable for treatment in the onsite IWTP.

Because these conclusions are based on testing conducted under controlled conditions and noncontinuous operation, they should be verified by further analysis.

APPENDIX A DESCRIPTION OF RED RIVER ARMY DEPOT ACTIVITIES

APPENDIX A

DESCRIPTION OF RED RIVER ARMY DEPOT ACTIVITIES

In addition to being a repository for weapons and ammunitions, RRAD has multiple other missions. A primary mission is the maintenance of selected military vehicles. This maintenance activity is the subject of this summary. The maintenance responsibility at the Depot varies, depending on military vehicles being used in the field. Principally, RRAD is responsible for maintaining 2- to 10-ton trucks, trailers, 113-type armored personnel carriers (M577 Armored Command Post, M106 Self-Propelled Mortar, M741 Vulcan Weapons Carrier, M730 Chaparral Missile Carrier, etc.), and Bradley tanks. It also performs some maintenance on pickup trucks and other types of vehicles. Figure A-1 is a photograph of a typical truck processed at RRAD.

The Depot operates several types of programs for military vehicles, including inspection and repair programs, complete tear-down/rebuild programs, engine stocking programs, etc. These programs can be subdivided by the following activities: component tear-down, component cleaning, component rebuild, assembly, and stocking.

Vehicles received at RRAD are stored outside in large lots. When orders are received regarding which vehicles are to be repaired, the fuel is drained from these vehicles and they are moved into the disassembly area.

In the disassembly area, the large, heavy, track components and some of the exterior armament components are removed from the vehicle. It is then moved to a separate disassembly area, where the engines, transmissions, and remaining interior components are removed. When the vehicle has been stripped down to the hull, it is steam-washed. The remaining components are shipped either to further disassembly

Figure A-1. Typical truck processed at RRAD.

areas or to disposal/salvage. Some components are only partially disassembled and others are completely disassembled before cleaning. For example, the engines are moved to an engine disassembly area, where they are completely dismantled.

The amount of disassembly done on the vehicle depends on whether it is a complete tear-down/rebuild candidate or is scheduled for inspection and repair. The Depot's missions change as the requirements of the military commands change.

Inspection and repair (I&R) are common programs at RRAD. In the I&R programs, the vehicle is only disassembled to the point required for inspection and repair. This program typically involves removal of such items as engines, transmissions, and tracks; it usually does not include all the internal and external components.

There are several variations of the basic Bradley tank and the M113 vehicles (the two vehicle types from which parts were selected for evaluation in the FBPS). The two basic variations in the Bradley (A-1 and A-2) differ primarily in engine size and armament. Several of the other variations deal with the housing configuration (locations of holes, exhaust ports, and other minor differences). Figure A-2 shows a schematic side view of a complete Bradley.

The Type-113 vehicle includes a more extensive number of variations--12 basic variations and several minor variations. Figure A-3 shows the 12 basic vehicle types in the 113 family of vehicles, and Figure A-4 shows a schematic side view of a complete 113 Tracked Armored Personnel Carrier. Each of these different vehicles carries different identification name plates, but all are similar with regard to engines, transmissions, and basic running gear and chassis design.

The Depot is divided into several specific areas for cleaning and repair, including Buildings 333, 345, 348, and the Body Shop. Each of these buildings has numerous processing areas. Building 345, for example, contains several cleaning shops, welding shop areas, disassembly and repair areas, transmission and hydraulic repair areas, a plating shop, machine shops, and various office areas.

When the vehicles are released for repair, they are taken to Building 345, first floor (345-1), Row 1, Column W, where the tracks and the largest parts are removed.

Figure A-2. Bradley fight vehicle.

Figure A-3. M113A2 family

Figure A-4. 113 Tracked Armored Personnel Carrier.

Figure A-5 shows a schematic of a Bradley tank, and Figure A-6 is a photograph of an actual Bradley tank with the side armor removed in this area.

After the parts removal in Building 345, the vehicles are moved either to temporary storage or to Building 333. In Building 333, the vehicle is first taken to the hull disassembly area, where the remaining parts are removed and placed in pallets. Figure A-7 is a photograph of a vehicle being disassembled in this area.

At this disassembly area, parts are broken down into several categories: those requiring further disassembly, those to be cleaned, and those intended for salvage. Some of the parts sent to cleaning are not fully disassembled. Parts to be cleaned are distributed to the following areas: Body shop, Building 345 wash rack, sand blasting, Building 348 wash rack, or Building 345 Line 10. Some parts are cleaned and then disassembled further; some are cleaned and then worked on as assemblies. The degree of disassembly and whether the part is cleaned before further disassembly depends on the workload as well as the specific configuration of the parts. Those determinations are typically made by the Depot and are subject to change depending upon the processing capabilities at the time the parts are processed.

The cleaning activities at RRAD are divided into the following general categories: washing, abrasive cleaning, degreasing, chemical cleaning, and manual cleaning with various brushes and other mechanical methods. Washing includes steam cleaning, soap-and-water wash, and water blast. Abrasive cleaning includes walnut hull, silica sand, stainless steel shot, aluminum oxide grit, glass bead, etc. Those operations are carried out in automated blast cabinets (for things such as the vehicle hulls), in small hand cabinets (for some smaller components), in larger fully enclosed cabinets (for larger parts), or in rotoblast type equipment. Degreasing involves the use of such components as 1,1,1-trichloroethane vapor degreasing and other degreasing agents (e.g., Stoddard solvent). Chemical cleaning includes various paint-stripping agents, such as methylene chloride and caustics, as well as various rust-removal and corrosion-removal components.

Parts considered to be candidates for the fluidized-bed paint stripper were found in various cleaning and disassembly areas. During repair programs, vehicles of

Figure A-5. Bradley left side bolt on armor.

Figure A-6. Photograph of Bradley showing side armor being removed.

Figure A-7. Photograph of 113 type vehicle in Building 333 after complete removal of all components before cleaning.

a specific type are accumulated and all vehicles of that particular type are processed together. This produces specific collections of parts for cleaning and rebuilding at different times within the Depot. Typical campaigns can last from a few weeks to years, and different campaigns can be ongoing simultaneously in different parts of the Depot. Therefore, different collections of parts were available at different times for evaluation in the FBPS.

The three major cleaning areas from which parts were taken are Building 348 (although RRAD discontinued use of this building shortly after all field data were taken, it was active during the testing and a discussion of activities in that building is still relevant to this report); Building 345, first floor (North Wash Rack); and Building 345, second floor. Each of these areas had several cleaning lines.

The various cleaning processes affected by the FBPS in each area can be divided into three general categories: degreasing, aluminum or nonferrous cleaning, and ferrous cleaning. Early in the evaluation of the FBPS, aluminum parts were eliminated as candidates for processing in the FBPS because the operating temperatures removed temper from aluminum parts and all aluminum parts investigated at RRAD were so treated or conditioned. Therefore, only the ferrous cleaning operations are affected by operation of the FBPS. Current processing at RRAD includes corrosion-removal and paint-stripping operations. Inasmuch as FBPS does not remove corrosion, chemical corrosion treatment is still required on many FBPS candidate parts. Thus, the current chemical cleaning operations would have to be modified if the FSPS were used. Such modifications are the subject of other ongoing studies at RRAD and other depots and are not addressed in this report.

APPENDIX B

TEST PLAN FOR EVALUATING THE PROCEDYNE FLUIDIZED-BED PAINT STRIPPER AT RED RIVER ARMY DEPOT

TEST PLAN FOR EVALUATING THE PROCEDYNE FLUIDIZED-BED PAINT STRIPPER AT RED RIVER ARMY DEPOT

Prepared by
PEI Associates Inc.
1006 North Bowen Rd.
Arlington, Texas 76012

PN 3769-5

Prepared for
United States Army
Toxic and Hazardous Materials Agency
Aberdeen Proving Grounds
Baltimore, Maryland

April 1990

Revis	sion	No		0	
Sect:	ion t	10.			
Page			of		
Date			19	90	

CONTENTS

Section		Page
Figures Tables Preamble		iv v iv
I	Introduction	I- 1
II	Objectives of the Test Plan A. Define Fluidized Bed Paint Stripper	II- 1
	Operating Conditions B. Establish Incidental Effects of the	II- 1
	Fluidized Bed Paint Stripper on Coatings and Metals	II- 7
	C. Prepare a Technical Report on the Appropriate Uses of the Fluidized Bed Paint Stripper	II- 7
	D. Train RRAD Operating and Maintenance	 /
	Personnel	II- 8
	E. Environmental Emission Testing	II- 8
III	Test Parameters	III- 1
	A. Pre-Fluidized Bed Paint Stripper	III- 1
	B. Fluidized Bed Paint Stripper	III- 3
	C. Post-Fluidized Bed Paint Stripper	III- 4
	D. Parts Evaluation and Control	III- 4
	E. Part Finishing Systems	III- 6
IV	Categorize Parts	IV- 1
	A. Part is Free-Flowing	IV- 7
	B. Minimize Combustibles	IV- 7
	C. Environmental Emissions (Cadmium, Zinc,	
	PVC's, Oil and Grease, Etc.)	IV- 8
	D. Size, Shape, and Coating	IV-11
	E. Structural and/or Mechanical Integrity	IV-11
	F. Excluded Parts	IV-13
v	Parts Data	V- 1
-	A. Uniquely Mark Parts	V- 1
	B. Record Part Numbers	V- 2
	C. Obtain Part Drawings	V- 2

Revision No. 0
Section No. ____
Page ___ of ___
Date May 5, 1990

CONTENTS (continued)

<u>Section</u>		Page
	D. Record Complete Information on Data Sheet: E. Maintain Computerized Data Base of Parts	
VI	Pre-Operational Testing	VI- 1
VII	Operation Demonstration	VII- 1
VIII	Operational Tests	VIII- 1
IX	Data Evaluation	IX- 1
x	Report A. Introduction B. Description of Parts Tested C. Description of Test Results D. Discussion of the Evaluation Criteria E. Recount the Operational Test Parameters F. Present the Recommended Parts Control Parameters G. Recommended Additional Testing H. Conclusions	X- 1 X- 1 X- 1 X- 2 X- 2 X- 2 X- 3 X- 3

Revis	sion	No	٠	.0	
Secti	ion i	10.	_		
Page			of		
Date	May	5,	. 19	90	

TABLES

Number		_ Page
1	Processing Conditions	III- 5
2	Part Geometry and Quantity of Plating	IV-10

Revis	sion	No		00	
Secti	ion 1	No.			
Page			of_{-}		
Date			199	90	

FIGURES

Number		Page
1	Overall decision process	IV- 2
2	Block 1 - decision tree to decide if a part should be processed	IV- 3
3	Continuation of Block 1 of processing decision tree	IV- 4
4	Block 2 - decision tree to decide if part was successfully processed	IV- 5
5	Block 3 - successful reuse decision tree	IV- 6
6	Part-specific data collection sheet and instructions	V- 3
7	Completed data sheet data sheet	V- 5
8	Test data sheet and instructions	V- 7
9	Completed example test data sheet	V- 9
10	Pre- and post-processing data and instructions	V-10
11	Completed pre/post-processing data sheet for a specific part	V-12
12	Completed pre/post-processing data sheet for a specific part	V-13

Revision N	100_
Section No	·
Page	of
Date May 5	5, 1990

PREAMBLE

This test plan is a numbered, controlled circulation document. It is intended that periodic updates will be developed and issued to the Plan Holders. The updates will be replacement/additional pages. Each Plan Holder (listed below) is responsible for maintaining his plan current. If there are any questions or comments direct them to the Project Manager.

Robert Ressl PEI Associates, Inc. 1006 N. Bowen Road Arlington, Texas 76012 (817) 460-0777

Plan no.	Plan holder	Affiliation
1.	Ed Hanna	RRAD
2.	Ron Jackson	USATHAMA
3.	Dick Gerstle	PEI
4.	FBPS operator	RRAD
5.	PEI onsite coordinator	PEI
6.	Project Manager	PEI

Revision History

Revision	Item	Date
D	Initial Issue of Test Plan	May 5, 1990

Revision No. 0
Section No. 1
Page 1 of 3
Date May 5, 1990

SECTION I. INTRODUCTION

This test plan provides specific information on parts processed in the fluidized bed paint stripper (FBPS) at the Red River Army Depot (RRAD) will be evaluated. Included is a brief introduction on how the fluidized bed works, a discussion of the test objectives, and specific test procedures and methodologies. The U.S. Army Toxic and Hazardous Material Agency (USATHAMA), through its contractor, PEI Associates, will purchase and install a Procedyne Corporation FBPS at the RRAD. The FBPS is a production unit used to remove paint, oils, and greases from metal parts by immersing the parts in a fluidized bed of aluminum oxide granules maintained at temperatures high enough to pyrolyze organic matter. Typical temperatures range from 700 to 1,000°F with residence times in the bed of approximately one hour. Usually there is insufficient oxygen in the bed to support combustion. Therefore, organic matter on the parts and in the coatings (paints and primers) are pyrolyzed in the FBPS to carbon and carbon monoxide. An inline gas-fired incinerator burns the carbon monoxide and fluidizing bed gases. The products of combustion are exhausted through a water venturi scrubber to the atmosphere.

During the pyrolization, the binders (organic compounds) in the paints and primers are destroyed. Once the binders are destroyed, the part is left coated with a loosely adhering char composed of carbon and inorganic paint pigments. Plans are to remove the char using a low-energy shotblaster or other removal techniques, thus, leaving the part ready for recoating.

The FBPS is an alternative to solvent-based paint stripping systems. Solvent-based paint stripping systems typically use methylene chloride and other chlorinated solvents. The solvents

Revision No. 0
Section No. I
Page 2 of 3
Date May 5, 1990

chemically destroy the organic binders in the paint. Once destroyed, the remaining coating material is removed with washing action or shotblasting before recoating.

Typically, chemical paint stripping solvents are toxic and volatile. Methylene chloride, the most commonly used solvent, is especially volatile (boiling point 40°C or 104°F). The chemical paint stripping process generates sludge. The sludge consists of stripped coatings contaminated with paint stripper solvents. The sludge is listed as a categorical hazardous waste and must be disposed of as such. PEI and USATHAMA believe that installation of the FBPS will reduce atmospheric releases of stripper compounds (mostly chlorinated solvents) and reduce the volume of hazardous wastes requiring disposal. Therefore, the objective of this test program is to demonstrate that the use of a FBPS will reduce hazardous waste while satisfactorily removing coatings (or assisting removal) and facilitate reuse of parts at the RRAD.

A FBPS is an alternative to chemical paint stripping. However, the FBPS uses high temperatures that may affect the parts (temper, hardness, metallurgy, physical dimensions etc.). Therefore, this project must, besides determining the FBPS's usefulness as a hazardous waste minimization process, determine which parts can be processed in the FBPS and the appropriate processing steps and conditions. This test plan defines how this will be done.

The test plan is divided into sections. Section II discusses the est the objectives of the test plan. Section III discusses the test parameters. Section IV describes the methods of parts categorization, procedures for determining if processing should be attempted, and a part's ranking system that allows processing of the most likely candidate parts first. Section IV also includes several decision trees that describe how the categorizing and ranking are done. Section V presents the forms used to record parts data on the evaluated parts. Section VI describes

Revision No. 0
Section No. 1
Page 3 of 3
Date May 5, 1990

pre-operational testing planned for selected parts. The preoperational testing provides more detailed data used to revise
the test plan before the actual operational testing in the demonstration bed. Section VII discusses operational test data and
the how the data will be used in the operational demonstration
testing. Section VIII discusses the operational tests. Section
IX discusses how data is evaluated. Section X describes sections
of the report prepared after completion of the testing.

The test plan is a fluid document that will be revised as the testing progresses. The test plan will be maintained in a loose-leaf binder and periodically updated. Distribution of the document is controlled and each copy numbered and assigned to a specific user. Updates will be issued on an as needed basis to the plan holders. The plan holders will be responsible for replacing the revised pages and removing and discarding replaced pages. Each page will be identified by revision number, section, page number, and revision date. A revision history is included in the Preamble.

Revision No. 0
Section No. II
Page 1 of 8
Date May 5, 1990

SECTION II. OBJECTIVES OF THE TEST PLAN

The FBPS testing has five objectives:

- * Find appropriate FBPS operating conditions for various parts/coating systems.
- * Establish the effect of the FBPS on the cleaned parts.
- Prepare a technical report on the appropriate uses of the FBPS.
- * Train RRAD personnel to operate and maintain the FBPS.
- Determine the FBPS effect on waste generation at RRAD.

This section of the test plan outlines how the testing procedures will be used to meet the objectives. Processed parts will be identified and data on their "before" and "after" conditions recorded. Satisfactory demonstration of the FBPS operation may require additional processing (for example, parts may require secondary cleaning in a low-energy shotblaster). Also, parts may require additional processing, such as heat treating, chemical washing, coating treatments, etc. Once cleaned, parts will be reconditioned, pending satisfactory evaluation, and placed back in service. No part will be placed in service until the project manager determines that the FBPS did not adversely affect the part.

Parts will be evaluated in a step-wise fashion. For example, the condition of parts before the FBPS, after the FBPS, after secondary cleaning, after intermediate treating, after final recoating/reconditioning. Such a step-wise evaluation process will simplify evaluations and be more effective in the management of available resources.

Revision No. 0
Section No. II
Page 2 of 8
Date May 5, 1990

A. Define FBPS Operating Conditions

Three areas define the FBPS operation; the coatings and parts; the bed conditions; and pre- and post-part treatments. Each operating area has a unique set of evaluation criteria. By examining each area separately, the process of understanding the operating parameters is simplified.

1. Coatings and Parts

Current operating experience is limited. This task will eventually define what can be processed. Now, data are insufficient to define operating conditions. The coatings allowed in the FBPS have two components: organics (paint organics, oils, greases, binders) and inorganics (paint solids, paint fillers, cadmium, zinc, electroless nickel, electroplates, aluminum anodizing, etc.). The more common paints and primers that will be processed in the FBPS are:

•	MIL-C-22750	Coating, Epoxy-Polyamide
o	MIL-C-46168	Coating, Aliphatic Polyurethane, Chemi- cal Agent Resistant
•	MIL-P-53022	Primer, Epoxy Coating, Corrosion Inhibitant, Lead and Chromate Free
•	MIL-C-53039	Coating, Aliphatic Polyurethane, Single Component, Chemical Agent Resistant

The greases and oils are lubricants. Some parts have cadmium or zinc electroplates. The 700-1,000°F operating temperatures are above the melting point of cadmium and can be above zinc's melting point.

The FBPS bed temperature is expected to remove cadmium electroplates. The cadmium will oxidize to cadmium oxide in the FBPS. Zinc metal melts at 419.6°C (787°F) and may be removed in the FBPS depending on the bed operating conditions. The zinc either converts to oxides and exits the bed as char or an air

Revision No. 0
Section No. II
Page 2 of 8
Date May 5, 1990

contaminant, or liquefies and remains in the bed on cooler bed parts until physically removed. Part of the test program is to determine the fate of zinc and cadmium electroplates in the bed. These and other heavy metals are potentially damaging to the environment and require special attention before processing. Most of the other inorganic coatings (including paint inorganics) will not be removed in the FBPS. For example, chromium and nickel electroplates, anodized aluminum coatings, aluminum chromate conversion coatings, and zinc phosphate steel coatings should be unaffected by the FBPS.

Evaluation of the parts is necessary since the project objectives include verification of the effect of the FBPS on the inorganic coatings. Normal processing requires dimensional checking of hard chrome and nickel plated parts (mostly bearings). This information is also used to verify dimensional stability after cleaning. These surfaces are replated, if necessary, after cleaning to restore them dimensionally. Other cleaning processes typically remove the other coatings as part of the reconditioning process. While heating may weaken these coatings through thermal stress, differential expansion between the base metal and plating, and phase changes, the FBPS will not appreciably remove them.

Thousands of parts are possibly processed at RRAD. The testing will identify the various metal parts. Metal parts processed in the FBPS are possibly aluminum alloys (5083, 5086, and 6061), aluminum castings (355 or 356), carbon steel, cast iron, and possibly stainless steel. Metals processed frequently received tempering treatments such as H32, H111, H321, T4, T6, and T823. The testing includes assessment of the effect of the FBPS on temper. The test program includes testing to restore temper, if necessary, and includes in the project recommendations operating procedures to restore temper.

Revision No. 0
Section No. II
Page 4 of 8
Date May 5, 1990

Specific types of parts must be excluded from the FBPS. For examine, polyvinyl chloride (PVC) and other plastics cannot withstand the operating temperatures of the FBPS. Under the bed conditions, these components will burn/pyrolyze and be destroyed. Additionally, because of their high organic content, they can produce more pyrolysis products than the system can handle and atmospheric emissions not permitted for the system. Parts containing plastics, such as Part Number 11634072, Cover, Insulated, cannot be processed in the FBPS. Parts with solder connections should not be processed in the FBPS since the solder will melt, destroy the connections, and possibly cause unpermitted emissions. Parts having components that would be destroyed at the FBPS operating temperatures should not be processed in the FBPS.

This test plan proposes to us shotblasting to remove the char residue from parts after pyr walls in the FBPS. Therefore, parts that cannot be shotblasted may be unsuitable for cleaning in the FBPS. For example, Part Number 11010703, Scoop Disc Subassembly (an aluminum casting); the specifications prohibit shotblasting the part. Similar restrictions may make other parts unsuitable candidates for processing in the FBPS unless the use of low energy shotblasting or other cleaning techniques are acceptable alternative cleaning systems. Special consideration of steel shot cleaning is required for cleaning of aluminum parts to prevent steel contamination of the aluminum parts.

Magnesium parts cannot withstand bed operating temperatures. Bed conditions could cause magnesium parts to ignite and cause significant damage to the system through fire or explosion.

2. Bed Conditions

The bed conditions are complex and the testing will investigate only four bed variables:

- 1. bed atmosphere,
- part geometry,

Revision No. 0
Section No. II
Page 5 of 8
Date May 5, 1990

- 3. bed temperature, and
- 4. bed residence time.

Testing will review other bed conditions but not thoroughly investigate them; these include:

- 1. Cooling rates
- Cooling medium (sand, water, air, etc.)
- 3. Heat transfer medium
- Long-term bed effects (greater than three months of operation)
- 5. Multiple cycles through the bed
- 6. Synergistic effects of mixtures of various coatings and base metals and of simultaneously and sequentially processed parts.

Normally the bed atmosphere is reducing, using compressed air for fluidization. Combustible materials will only partially burn in the bed. If possible the testing will investigate the effects of a nitrogen atmosphere on various part parameters. Also, steam and argon may be investigated as fluidizing media to understand how changes in the bed atmosphere affect the various parts. Primary investigations will be with atmospheric air, and all other atmospheres will be judged in relationship to the primary operating conditions. The plan will not attempt to vary fluidization rates; manufacturers recommendations will be followed.

Bed temperatures can be varied from ambient to 1,000°F. The testing will experimentally set bed temperatures. Initially the bed temperatures are estimated to vary from 700-900°F with a nominal temperature of 750°F. The testing will determine the effect of bed temperature on the part/coating system and the optimum system cycle time.

Residence time and bed temperature are closely related; the testing will investigate both. A typical bed residence time is 30 minutes at 650°F for an acrylic paint and up to two hours for a high solids chemical resistant epoxy paint system. Testing will determine optimum times for various paint/part systems based

Revision No. 0
Section No. II
Page 6 of 8
Date May 5, 1990

on minimum residence time to produce a satisfactorily cleaned part. This includes the influence of downstream processes to remove char.

The FBPS will remove different coatings. These coatings will include:

- 1. Epoxy-Polyamide (MIL-C-227501),
- 2. Aliphatic Polyurethane (MIL-C-46168),
- 3. Epoxy Coating Primer, and
- 4. A second Aliphatic Polyurethane (MIL-C-53039).

Some coatings may be more difficult to remove and require adjusting the FBPS operating parameters to obtain satisfactory results.

The shape, type of metal, and arrangement of the parts in the FBPS may influence operating parameters. Evaluation of base metal and part geometry is a pendent upon variables, such as:

- Time for a part to come to bed temperature. For example, a thin part may come to bed temperature faster than a thick part, such as a motor block, and require less time in the bed.
- Ratio of recessed areas to flat exposed surfaces. Coatings may be removed from a flat coated surface faster than form a recessed surface.
- Variations in base metal coating systems. For example, epoxy coatings may be removed from aluminum at a different rate than from steel.

Tempered and/or heat treated parts may not be suitable candidates for FBPS cleaning. This test plan describes testing before and after the FBPS to determine the effects of the FBPS on such parts. Varying operating conditions may minimize or eliminate damage to these parts.

3. Pre- and Post-Part Treatments

Included in this test plan are procedures for tracking and evaluating the effects on parts of pre- and post-treatments, the effect of these treatments on the operation of the FBPS, and on

Revision No. 0
Section No. II
Page 7 of 8
Date May 5, 1990

the part's suitability for cleaning in the FBPS. Testing will collect data on current pre- and post-treatments and establish this as a base of comparison. Once a base of comparison is set for a part and coating system, the effect of varying the pre- and post-treatments will be investigated. The investigation will determine if such treatments have a beneficial effect. Beneficial effects are such things as better finished part quality, reduced energy usage, reduced generation of hazardous waste, reduced use of cleaning agents, reduced atmospheric emissions, etc.

B. <u>Establish Incidental Effects of the FBPS on Coatings and Metals</u>

The FBPS is not intended to remove or effect nickel and chromium electroplates, anodized aluminum coatings, aluminum chrome conversion coatings, zinc phosphate steel coatings, and metal heat treatments. Except hard chrome and nickel plated bearings, further processing removes and replaces these coatings. Testing identified in this test plan and done on plated bearings will determine the effects, if any, of the FBPS on the nickel and chromium electroplates.

Cleaning parts in the FBPS at 700 to 1,000°F may affect metal heat treatment and tempering. This plan establishes test procedures to determine the effects of the FBPS on heat treated parts.

C. Prepare a Technical Report on the Appropriate Uses of the FBPS

This test plan describes the what, why and how of testing. The test plan also describes how the information collected will be reported. The reporting serves to inform RRAD of the test results and will guide other Depots and potential users of the FBPS in establishing operating conditions. The technical report produced from this study will include details on the following:

Revision No. 0
Section No. II
Page 8 of 8
Date May 5, 1990

- 1. Part description
- 2. Coating description
- 3. FBPS description
- 4. Emissions testing results
- 5. Parts/coatings evaluations
- 6. Recommendations

Results of the tests will be included in the technical report. Accepted quality control procedures will be followed in all testing and referenced in this test plan and report.

D. Train RRAD Operating and Maintenance Personnel

The FBPS will provide satisfactory service only if properly operated and maintained. While Procedyne Corporation, the equipment vendor, will provide most of the formal training, the test program will provide hands-on training and experience. The test program will provide an improved understanding of the selection of proper operating parameters and parts that must be kept out of the system (soldered electrical connections, for example). The test plan establishes training procedures and how additional information learned during the test period will be incorporated in the operating manual and taught to the system operators.

E. Environmental Emission Testing

PEI will conduct atmospheric emission testing as part of the complete test program. A separate test plan will be developed for the environmental emissions testing. This test plan will include procedures for concrolling operations during environmental emissions tests and on coordinating testing of the FBPS and the atmospheric emissions test.

Revision No. 0 Section No. III Page 1 of 7 Date May 5, 1990

SECTION III. TEST PARAMETERS

The testing is divided into the following segments to facilitate evaluation of the test results and simplify data collection: Pre-FBPS, FBPS, Post-FBPS, and Parts Finishing Systems. Each of these segments represents unique data collection and testing. Evaluation of the project by segments will reduce the amount of data collection and the complexity associated with determining what parts to process and how to process them. Stepwise evaluation is practical because these processes are independent. Additionally, a stepwise evaluation facilitates ranking parts and makes processing the most likely candidate parts first practical.

A. Pre-Fluidized Bed Paint Stripper

Parts cleaned in the FBPS have been processed some before reaching the FBPS. Some of these pre-FBPS processing steps may be important in the overall determination of the effect of the FBPS on the part. The FBPS's usefulness can fairly be determined only by understanding these operations and how they affect the FBPS operation.

The pre-FBPS operations consist mostly of cleaning (steam, chemical baths, chemical washing, water washing, etc.) and disassembly. Steam cleaning is used to remove surface grime. It is also useful for reducing the oil and grease load to the FBPS. The removal of surface grime may be necessary as a particulate emissions reduction technique or to prevent excessive buildup of particles in the FBPS that do not fluidize properly. Where possible or useful steam cleaning will be used on parts prior to processing in the FBPS. Likewise chemical washing either as an additive to a steam or high pressure water wash or in a wash tank

Revision No. 0 Section No. III Page 2 of 7 Date May 5, 1990

can be used to reduce oil and grease, and grime loads to the FBPS before processing.

One of the intentions of the testing is to try and eliminate vapor degreasing even though vapor degreasing could be useful (like steam cleaning and chemical washing) to reduce the quantity of combustible material charged into the FBPS. Depending on the type of part and quantity of combustible material on a part vapor degreasing or other degreasing techniques may be necessary on parts before processing in the FBPS.

Further disassembly may be required for some parts. For example, a part may be damaged if processed in the FBPS with bearings in place. If the bearing will be removed and replaced after cleaning, removing the bearing before processing may prevent possible damage to the part because of differential thermal expansion. However, if the bearing can be left on the part while processing in the FBPS without adverse affects then further disassemble would not be necessary. Additionally, disassembly may be useful as a size reduction technique or to improve the "free flowing" configuration of a part.

Excluding selected parts from processing is an integral part of the Pre-FBPS operation. Parts are excluded that would be damaged by processing in the FBPS or ones that, by specification, cannot be subjected to the FBPS operating temperatures. Excluded parts include ones with plastics, solder, magnesium, excessive oil and grease, asbestos, or other materials that would create environmental or health hazards. Such parts will be identified in the initial screening process and the FBPS operator trained by the project manager in their recognition. During the course of this project additional test parameters regarding pre-processing of parts will be developed. As the additional parameters are developed they will be integrated into this test plan.

Revision No. 0 Section No. III Page 3 of 7 Date May 5, 1990

B. Fluidized Bed Paint Stripper

Three areas during the FBPS operations require data collection and allow for variability in the process; the hot bed, the transition from hot to cooling beds, and parts cooling. For the hot bed the primary test parameters are temperature and residence time. The bed temperature is key to the pyrolysis process and effects the residence time. Bed temperature can also affect the parts (temper, hardness, etc.). These will be monitored closely during processing of each part. Secondary hot bed processing parameters are the bed atmosphere (normally compressed air) and fluidizing rate (controlled to manufacturer's recommendations) these will not be monitored continuously. Because of the hazardous waste minimization nature of this project, the hot bed utility use (electricity, air, water, sewer) will be monitored.

The transition from the hot bed to parts cooling can affect part metallurgy. As part of the process description of each parts batch the FBPS operator will record the time to move the parts from the hot bed to the cooling bed, the movement method, and conditions of the move. This information may prove valuable in determining optimal processing methods and controlling metallurgical affects on parts.

Real time temperature changes in parts as they are processed could affect part metallurgy. No plans are included for such monitoring at this time. However, should the need arise, the project manager will develop such plans and have the plans included in the test plan.

All other monitoring will be done using dial type thermometers, stop watches, and system temperature indicators. This includes monitoring of ambient temperatures in the shop area and in the FBPS enclosure during part movements from the hot to cooling bed.

Revision No. 0 Section No. III Page 4 of 7 Date May 5, 1990

Parts cooling is another key area with regards to part metallurgy. Three methods of cooling will be tried; fluidized bed, water quench, and air cooling. The FBPS is initially configured for fluidizied bed cooling. Plans for air and water cooling will be developed and added to the test plan. For each method data on the cooling time and the before and after temperature of the cooling bed or fluid will be recorded by the FBPS operator. Additionally, the Project Manager will collect a complete description of the operation describing how the specific cooling method was accomplished. An initial set of processing parameters has been developed and is shown in Table 1.

C. Post-Fluidized Bed Paint Stripper

Post-processing (less finishing) is divided into five categories; media blasting (sand, stainless steel, walnut hulls, water, steam, etc.), chemical wash (caustic, corrosion inhibitors, acids, etc.), tumbling, heat treating, and others. For each part an appropriate combination of post-FBPS processes will be chosen by the project manager and RRAD staff. The choices will be based on part specifications and how well the part was cleaned in the FBPS. It is only through experimentation that the appropriate processes can be determined. As parts are tested and various post-FBPS processes used, data will be added to this test plan identifying the specific evaluation criteria and methods for determining process cleaning methods.

D. Parts Evaluation and Control

After parts are processed, they must perform as designed. No parts will be placed in service without approval of the project manager. Initial testing will be done on scrap parts followed by closely controlled tests on actual parts. As actual parts are processed in the FBPS, they will be meticulously tested before being put into service. The first parts tested will be

Revision No. 0 Section No. III Page 5 of 7 Date May 5, 1990

TABLE 1. PROCESSING CONDITIONS

HEAVY FERROUS

- A. Heavy ferrous parts painted with no oil or grease
 Hot bed for 80 minutes
 Cooling bed for 80 minutes with media blast
- 8. Heavy ferrous parts with oil or grease Hot bed for 60 minutes Cooling bed for 60 minutes with media blast
- C. Heavy ferrous parts painted with oil or grease

 Hot bed for 120 minutes

 Cooling bed for 120 minutes with media blast

LIGHT FERROUS

- A. Light ferrous parts painted with no oil or grease
 Hot bed for 50 minutes
 Cooling bed for 50 minutes with media blast
- B. Light ferrous parts with oil or grease Hot bed for 40 minutes Cooling bed for 40 minutes with media blast
- C. Light ferrous parts painted with oil or grease Hot bed for 60 minutes Cooling bed for 60 minutes with media blast

HEAVY ALUMINUM

- A. Heavy aluminum parts painted with no oil or grease
 Hot bed for 40 minutes
 Cooling bed for 40 minutes with media blast
- B. Heavy aluminum parts with oil or grease. Hot bed for 30 minutes Cooling bed for 30 minutes with media blast
- C. Heavy aluminum parts painted with oil or grease.

 Hot bed for 50 minutes

 Cooling bed for 50 minutes with media blast

LIGHT ALUMINUM

- A. Light aluminum painted with no oil or grease.

 Not bed for 40 minutes

 Cooling bed for 40 minutes with media blast
- B. Light aluminum with oil or grease. Hot bed for 30 minutes Cooling bed for 30 minutes with media blast
- C. Light aluminum painted with oil or grease.

 Hot bed for 50 minutes

 Cooling bed for 50 minutes with media blast

Revision No. 0 Section No. III Page 6 of 7 Date May 5, 1990

uniquely marked. The marking system will be developed in the field in conjunction with RRAD staff and RRAD managers to track parts and facilitate evaluation of any unanticipated field problems.

Mechanical testing will include determining the following, as appropriate: part dimensions, flatness/warpage, hardness, tensile strength and stress crack checks. Each of these tests will be done as needed on the first parts processed. Need will be determined based on the part use, part specifications, and judgment by the Project Manager. Where appropriate, the testing will be done by RRAD using routine testing techniques such as magnaflux, dye test, hardness testing, etc. Where additional testing is required, it shall be conducted at the direction of the Project Manager.

E. Part Finishing Systems

Painted parts will be tested for; paint adhesion to part, and salt spray/corrosion protection. Typical paints used meet various military specifications (mil specs). The following are the mil specs referenced most commonly; Epoxy-polyamide, Mil-C-22750, Aliphatic Polyurethane Coating, Mill-C-46167, Aliphatic Polyurethane Coating, Mill-C-53039.

Plated parts (cad, zinc, hard anodized, electroless nickel, chrome, etc.) will be tested for; plating adhesion to part, coverage, wear, and corrosion. Machined Parts will be tested for; dimensions bearing surfaces integrity, surface hardness, and machinability.

Many parts processed are old and painted with older paint systems such as:

TT-E-485, Enamel; TT-E-529, Enamel; MIL-P-1757, Zinc chromate; TT-P-636, Red oxide; MIL-C-52128, Forest green; and others.

Revision No. 0 Section No. III Page 7 of 7 Date May 5, 1990

Evaluation of these systems will be on the basis of how well they are removed in the FBPS. Removal of these systems in the FBPS result in special consideration of environmental emissions.

Revision No. 0
Section No. IV
Page 1 of 14
Date May 5, 1990

SECTION IV. CATEGORIZE PARTS

Because of the variability of the parts processed a method of categorizing the parts is necessary. There are several parameters important to parts categorization;

- Part is free-flowing;
- * Combustibles;
- Environmental emissions;
- Size, shape, and coating; and
- Structural and/or mechanical integrity of the part.

A decision tree forms the basis of categorizing parts. Information on a part is collected in response to questions asked in the decision tree. Depending on the responses, the part is assigned a rank, as is indicated in the decision trees. overall decision process is presented in Figure 1. Blocks 1, 2 and 3 are further expanded in Figures 2, 3, 4, and 5. As questions asked by each decision tree are answered, a part rank is assigned. The rankings are 1 to 4. Rank 1 parts are considered to have the best chance of successfully being processed. parts may be processable with moderate additional processing. Rank 3 parts may require extensive additional processing, and Rank 4 parts are not considered processing candidates. As parts are tested, their rank can be changed depending on the results of testing. For example, a Rank 3 part can be changed to a Rank 1 part if it can be successfully processed. Likewise, a Rank 1 part can be changed to a Rank 4 if it cannot be successfully reused.

The decision trees include two types of ranks: absolute and adjustments. An absolute rank is an assigned rank and takes precedence over the part's current rank. Adjustments are added or subtracted from the part's current rank.

Revision No. 0
Section No. IV
Page 2 of 14
Date May 5, 1990

Figure 1. Overall decision process.

Revision No. 0
Section No. IV
Page 3 of 14
Date May 5, 1990

Figure 2. Block 1 - decision tree to decide if a part should be processed.

Revision No. 0
Section No. IV
Page 4 of 14
Date May 5, 1990

Figure 3. Continuation of Block 1 of processing decision tree

Revision No. 0
Section No. IV
Page 5 of 14
Date May 5, 1990

Figure 4. Block 2 - decision tree to decide if part was successfully processed.

Revision No. 3
Section No. IV
Page 6 of 14
Date May 5, 1990

ŧ,

Figure 5. Block 3 - successful reuse decision tree.

Revision No. 0
Section No. IV
Page 7 of 14
Date May 5, 1990

The processing decision is made based on the physical properties of parts. The ranking process will be revised as the project progresses. The tentative ranking system developed is based on preliminary information. The following discusses the major factors considered in ranking parts.

A. Part is Free-Flowing

Effective operation requires that parts placed in and with-drawn from the FBPS not carry out the aluminum oxide heat transfer medium used in the bed. Also, the parts processed must allow the aluminum oxide to flow throughout the part to insure that the part is uniformly heated. The project manager and FBPS operator shall review, as part of the part categorization, the part geometry. The FBPS operator will determine if the part can be placed into the bed in such a manner that it will not trap the fluidizing media. The FBPS operator will help to control the circulation of the fluidizing media by appropriately stacking/loading the parts into the fluidized bed.

B. Minimize Combustibles

The fluidized bed heats parts to temperatures high enough to ignite most combustible materials (paint, oils, grease, plastic, foams, etc.). The system is designed to operate with an oxygen deficient environment and, thus, pyrolize most of the combustibles. The amount of combustibles that the system can burn is limited. Under normal operating conditions the bed is limited to the equivalent of 35 pounds of oil in a single charge. To measure the amount of combustibles included with a typical charge is impractical. Therefore, combustibles will be controlled by the FBPS operator by inspection and judgment. This requires that the operator have the authority to refuse to process parts if he believes that they contain excessive combustibles, PVC, or halogenated materials.

Revision No. 0
Section No. IV
Page 8 of 14
Date May 5, 1990

Additional procedures are in place that require review of which parts are processed in the FBPS. These procedures require rejection of parts that have excessive combustibles. Sometimes this will require testing to measure the amount of combustible material on the part.

Testing will be done gravimetrically. Parts will be weighed to within 0.1% of the part's weight. The weight of the part will be recorded and the part cleaned, as appropriate, of all combustible material and the part reweighed. The quantity of the combustible material is then determined by difference. By inspection and knowledge of the type of material the oil equivalence of the combustible material (based on the heat content of the material) will be determined and recorded. From this information the project manager will determine if the part is suitable for processing.

C. <u>Environmental Emissions (Cadmium, Zinc, PVC's, Oil & Grease, Etc.)</u>

The FBPS is equipped with an emissions control system to minimize environmental emissions. The system has two components; an afterburner to control hydrocarbons and the pyrolysis products and a wet venturi scrubber to control the particulate emissions. The afterburner is a natural gas fired combustion chamber that incinerates all combustible materials and convert them to water vapor and carbon dioxide.

The air permit for the unit has specific operating limits and environmental emissions limits and does not allow processing of parts that contain PVCs and halogenated materials. Because the emission control system can control only a limited amount of the environmental emissions, it imposes limits on the amount and kind of materials that can be charged into the FBPS. The afterburner has finite limits on the quantities of material that it can incinerate (35 pounds of oil equivalent). The wet venturi

Revision No. 0
Section No. IV
Page 9 of 14
Date May 5, 1990

scrubber has limitations on the kind and quantity of material that it can effectively control (particulate). Heavy metals are of special concern, especially Cadmium and Zinc.

Cadmium and Zinc are common plating metals used on parts planned for processing in the FBPS. At the bed temperatures these metals probably will volatilize and/or oxidize and leave the bed. In the afterburner any metal vapors will be converted to oxides and pass to the venturi scrubber. The scrubber is a low energy venturi and is expected to have a moderate collection efficiency on the metal oxide particles found in the process. To keep emissions of these oxides to acceptable levels the amount of the metals charged into the FBPS must be controlled. Control of these materials will be the responsibility of the FBPS operator.

The operator will be responsible for regulating the quantity of these metals charged into the bed. Basic information from drawings and knowledge of the parts will define which parts potentially have cadmium or zinc plating. Suspect parts will be visually inspected to determine if they do or could have plating. If the part is suspect it will be treated as if it is plated. From Table 2 the operator will determine how many of the particular part can be charged to the FBPS and limit the charge to that amount. The project manager and staff will work with the FBPS operator to develop specific written instructions for controlling the amount of cadmium and zinc charged in the FBPS. The instructions will include a copy of Table 2 that shows the number of parts per charge and the weight of plating per unit weight of charge so the FBPS operator can determine the allowable number of parts per charge. The operator will determine the weight of cadmium and zinc charged and limit the amount of charge to acceptable limits.

Lead and chrome are used in coatings processed in the FBPS. The fate of these metals will be determined during the project. It is theorized that most of the lead and chrome will remain with

Revision No. 0 Section No. IV Page 10 of 14 Date May 5, 1990

TABLE 2. PART GEOMETRY AND QUANTITY OF PLATED

Part geometry charge		of parts charge
1/4 to 1/2 diameter and 1 to 2 inch length	2 ,	,000
1/4 to 1/2 diameter and 2 to 6 inch length		700
1/2 to 1 diameter and 1 to 2 inch length	1	,000
1/2 to 1 diameter and 2 to 6 inch length		350
1/2 to 1 diameter and greater than 6 inch length		60
1 to 2 diameter and 4 to 10 inch length		100
1 to 2 diameter and greater than 10 inch		30

For other configurations compute the plated surface area. Each charge is limited to 50 square feet each of cadmium and zinc.

Revision No. 0
Section No. IV
Page 11 of 14
Date May 5, 1990

the char on the parts; however, this will be verified during the project.

D. Size, Shape, and Coating

The parts will be categorized by whether they are thin, thick or complex sections. For example, a flat plate like panel of less than 10 gauge material is considered a thin section where a connecting rod, bolt, or casting is a thick section. Complex sections are typically fabricated parts, like a support bracket or an engine block.

Besides the type of section, parts will be categorized by the coating system. The coatings are paints, plating, and oils and greases. Paints are further divided into the CARC (chemical agent resisting coating), polyurethanes, and enamels. Plating are divided into Cadmium and Zinc and others such as Electroless nickel and chromium. Oils and greases are categorized as a combustible material and their input will be controlled. Each of these categories may effect the way a part is processed.

E. Structural and/or Mechanical Integrity

As parts are tested, the bed operating temperature could alter the structural and/or mechanical integrity of parts. Specific tests will be performed on selected parts to verify what effect processing in the bed has on a part. The tests will be directed by the project manager based on knowledge of the part's metallurgy and how bed temperature would affect that metallurgy.

Work hardening and temper are two of the more important properties of the parts that will be considered. If the work hardening and/or temper of a part will be changed and could not be restored after processing in the FBPS or removed without adversely affecting the part, the part is not a candidate for processing. The FBPS will remove all work hardening and temper from the aluminum parts.

Revision No. 0
Section No. IV
Page 12 of 14
Date May 5, 1990

1. Ferrous Parts

Ferrous parts tend to be less effected by the bed temperatures. They are less likely to have a special temper or heat treating that could be damaged by processing in the FBPS. However, some ferrous parts can be damaged at bed conditions and each part must be investigated to determine if the part will be damaged by processing in the FBPS.

2. Non-ferrous Parts

The non-ferrous parts are mostly aluminum. The aluminum parts represent some unique situations because of work hardening and temper. For reasons similar to those for the ferrous parts the non-ferrous parts are categorized by simple thin and thick sections, complex sections, coating systems and metal treatments. Additionally the non-ferrous parts are categorized by whether they have been tempered, work hardened, or surface hardened. They also are categorized by alloy.

Determination of the temper, alloy, hardening etc. requires review of the part specifications usually contained on the part drawings. This review is a part of the total evaluation process and will be done on a part by part basis. Once determined a part will be categorized and a decision made by the project managers on whether the part is a potential processing candidate and its rank.

Castings and wrought aluminum alloys may require different processing and are therefore a potential category. This information will be determined during the initial evaluations of the parts by the project managers. The information on the part will be found with the part specifications and drawings and will be recorded by the project manager during the evaluation of the part.

Revision No. 0
Section No. IV
Page 13 of 14
Date May 5, 1990

F. Excluded Parts

PVCs will not be allowed in the bed. The incinerator has the capacity to incinerate them and the scrubber can control most of the combustion product. However, the operating permit does not allow them in the bed.

Parts that have solder or solder like materials will not be processed in the bed. The FBPS operator must know which types of parts might have solder or solder like materials and make sure that these parts are not processed in the FBPS.

Parts that contain foams, plastics, paper, cloth, webbing, etc., will not be allowed in the bed. For example, personnel carrier seats with webbed belts are not to be processed in the bed. Once the webbed belts are removed from the seat, the seats can be processed. Seat cushions (foam) and plastic part covers will not be processed. If these can be removed from a part then the part may be processed.

Magnesium is used as an alloy agent in much of the aluminum processed by the RRAD. Only a few parts contain enough magnesium that they pose a potential hazard. Magnesium could ignite and cause a violent reaction in the bed, damage the bed, and potentially be a hazard to the personnel in the area. Special precautions will be necessary to prevent magnesium parts from being processed in the FBPS. These procedures shall parallel the existing procedures used to identify and control processing of magnesium parts.

Currently, the magnesium parts are segregated from the other parts and cleaned separately. There is no intention to change that process. Therefore, these parts should not enter the area where the FBPS is operating. Still, the operator must be aware that magnesium parts will be in the area and trained in the recognition of those parts. Since there are only a few of the magnesium parts this training is not considered difficult.

Revision No. 0
Section No. IV
Page 14 of 14
Date May 5, 1990

Asbestos is present in various gaskets and an ablative coating. At bed conditions, the asbestos would be freed from the organic matrix holding it together. Once freed, the asbestos could become airborne, escape from the enclosure during charging or maintenance, and cause a health hazard to people in the area.

Revision No. 0
Section No. V
Page 1 of 14
Date May 5, 1990

SECTION V. PARTS DATA

Parts data will be collected on two levels; specific, and generic. The part specific data will be collected during testing of specific parts or groups of like parts. These data include number of parts being tested, condition of parts (painted, oily, etc.), test run number, etc. The generic data are collected from engineering and design data. These data include such things as part heat treatments, type of metal, surface finishes or treatments, etc. The data will be merged as necessary in the data reduction. This section discusses methods of collecting and maintaining the parts data and the various data sheets used to collect and record the parts data.

A. Uniquely Mark Parts

Parts being tested initially will require special marking to insure that they have been properly certified as not having been adversely affected by processing in the FBPS. Parts shall have 1/16" thick, 1" round uniquely numbered aluminum tags attached with 3/32" diameter soft aluminum wire. The marking numbers assigned to parts will be recorded in the project log book. The log book will be controlled by the project manager and no number will be assigned without it being immediately recorded in the project log book. This procedure should prevent duplication of part numbers.

Some parts cannot be effectively tagged. These are typically the very small, round, slender parts and some castings. For these parts no identification number will be affixed to the parts instead the parts will be identified with descriptions and by controlling position of the containers holding the parts. A special system of containers will be used to hold parts being

Revision No. 0
Section No. V
Page 2 of 14
Date May 5, 1990

evaluated. These containers will be marked with a stencil identifying them as test parts and with a bright yellow paint on the upper edge of the container.

B. Record Part Numbers

Each part type has a unique identification number. Sometimes this number is marked on the part. The number can be part of the casting, stamped into the part or on a permanently affixed identification tag. Some parts do not carry a part number. These unmarked parts are identified by visual inspection and knowledge of the types of paint being processed. For all parts, the part number is listed on various inventories and in various specifications documents. The staff will be responsible for locating and recording the part number by inspection of the part or consulting the various inventories, part drawings, and technical documents maintained by the project manager. Figure 6 shows the data sheet that will be used to collect part-specific data. The part number will be recorded on this data sheet. Figure 7 is a sample of a completed data sheet.

C. Obtain Part Drawings

Part drawings will be obtained, if possible, for all parts processed. The part drawings will be clearly identified with the part number. The drawings will be maintained in a central file by the project manager. Where the drawing references additional drawings or specifications that information will be collected by the project manager and reviewed to insure that all necessary information on the part is available for evaluation.

The part drawings form a key element in the complete evaluation of the parts. The drawings typically contain information on the part dimensions, tolerances, finishes, heat treating, etc. They also contain information on the various specifications that apply to the part.

		Section No
Vehicle part is used on:		
Part Number:	Part Name:	
Drawing Number:	Part Description:	
Material(s) of construction:	Mil Spec	Number:
Finishes		
Plating type(s):	_ Mil Spec Number	·
	_ Mil Spec Number	
Paint(s):	Mil Spec Number	
	Mil Spec Number	-
Other(s):	_ Mil Spec Number	
	Mil Spec Number	
Part maximum dimensions		Methods of fabrication
Lin. Win. H	in.	Stamping
Part weight: pounds		Forging
Part surface area: square inch	ies	Casting
Part type Thin section		Fabricated
Thick section		Heat Treatment
Complex section		Tempered
		Hardened
		Mil Spec Number:

Revision No. __0

Figure 6. Part-specific data collection sheet and instructions.

Revision No. 0
Section No. V
Page 4 of 14
Date May 5, 1990

INSTRUCTIONS

Vehicle part is used on: Identify the vehicle family (eg., Bradley, 113 etc.)

Part number, drawing number, part description, and material of construction & mil spec number: Transfer these from the drawing or other sources.

Finishes and mil spec: Transfer these from drawings and specifications for part.

Part dimensions: Measure part maximum dimensions.

Part weight: Weight to nearest pound.

Part surface area: Approximate and record in square inches.

Part type, method of fabrication, and heat treatments: Determine by inspection and check the appropriate boxes. Determine the mil spec for heat treatment from specifications and record.

	Revision No0_ Section NoV_ Page _5_ of _14_ Date <u>May 5, 1990</u> _
Vehicle part is used on: <u>Bradley</u>	
Part Number: <u>012345678</u>	Part Name: <u>Latch, hatch</u>
Drawing Number: 012345678	Part Description: <u>handle</u>
Material(s) of construction: Cast steel	Mil Spec Number: 00-000-000
Finishes	
Plating type(s): anodized	Mil Spec Number <u>00-000-000</u>
	Mil Spec Number
Paint(s): CARC	Mil Spec Number <u>00-000-000</u>
	Mil Spec Number
Other(s):	Mil Spec Number
	Mil Spec Number
Part maximum dimensions	Methods of fabrication
L <u>8</u> in. W <u>2</u> in. H	1/4 in. Stamping
Part weight:1 pounds	Forging
Part surface area;5 square inche	es Casting
Part type	Fabricated [
Thin section	
Thick section X	Heat Treatment
Complex section	Tempered X
	Hardened
	Mil Spec Number: 00-000-000

Figure 7. Completed data sheet.

Revision No. 0
Section No. V
Page 6 of 14
Date May 5, 1990

D. Record Complete Information on Data Sheets

Keeping track of the operational data for several hundred parts will not be a simple task. The project team will use a series of data sheets to collect data. The test plan includes instructions on the preparation of the data sheets. Each part or group of like parts processed will have a unique lot number and data sheet. The data sheet will be used to record all information on the processed part(s). Figure 8 is a blank test data sheet and instructions. Figure 9 is an example of a completed test data sheet. Since this is a research and development project data will be extensive. As the project develops the data sheet may be modified.

How a part is handled can effect the performance of the part. Tempered aluminum parts, if heated and cooled in a specific manner, will still be tempered after processing. Tempered aluminum parts, if not processed properly, lose their temper and become unusable. Also, a steel part that is exposed to moisture shortly after being processed would develop rust that could make the part unusable without further processing where, if protected from moisture after processing, it would be usable without additional processing.

Figure 10 is a data sheet and instructions designed to collect the pre- and post-processing data on parts. The data sheet has two modes: specific and generic. The specific mode is when the pre- and post-data are specific to a unique part and the generic mode is used for a class or type of part. Figure 11 is an example of the form completed for a generic type part and Figure 12 is an example of the form completed for a specific part.

0
V
14
990

Test number:	Test start time:		Test stop time:	Test date	
Basket configuration					
Number: Random] Stacked	Other (describe)			
Charge		Temperatures		Times intervals	
Weight of basket:	٩	Parts before charge:	4.	Time in hot bed:	minutes
Steel:	ſβ	Hot bed:		Time to transfer from hot to cool beds:	to cool beds:minutes
Atuminum:	<u>و</u>	Initial:		Time in cooling bed:	minutes
Iron:	٩	Final:	•		
Mixed/other:	٩	Cooling bed:			
Total charge weight:	٩	Initial:	1.		
		Final:	•		
		Parts after cooling bod:	Po bod:		

PART PARAMETERS

1	ı	
	Comments and Observations	
Part color	After FBPS	
Part	Before FBPS	
	Weight of combustibles	
	No. of parts in charge	
	Total weight of parts	
	Part description	
	Specific part number	

Figure 8. Test data sheet and instructions.

Revision No. 0
Section No. V
Page 8 of 14
Date May 5, 1990

INSTRUCTIONS

Test Number: Assign next number from project log book.

Test start & stop time: Use military time recorded from reference clock areas.

Test date: Enter two digit day number, three letter month abbreviation, and two digit year.

Basket configuration: Show number marked on basket check appropriate block if parts are loaded randomly or stacked; describe "other" such as "used fixture to stack parts".

Charge: Record tare weight marked on basket and actual or estimated weight of total steel, aluminum, iron, and mixed or other metals and the total charge weight including basket.

Temperatures: Record indicated temperatures in degree Fahrenheit from instruments as indicated.

Time intervals: Record elapsed time to nearest minute from stop-watch.

Part parameters: Complete for each part type in charge.

Specific part number: Collect and record one for each part type in charge.

Part description: Use part description found on part drawing or other graphics description if part description on drawings is not found.

Total weight of part: Record to nearest pound.

No. cf parts in charge: Record count of parts.

Weight of combustibles: Record estimate of total weight on all like parts.

Part Color: Describe and record part color.

Comments and observations: Record anything unusual and comment on cleanliness of part or if paint/coating removes easily after processing.

Figure 8. (continued).

Revision No. 0
Section No. V
Page 9 of 14
Date May 5, 1990

Test number: 15	Test start	time: 1420	Test stop time: 1630	1630	Test date 08 AUG 90
Basket configuration					
Number: 1 Random	Stacked	1 Other (describe)	ribe)	s	
<u>Charge</u>		Temperatures		- 1	Times intervals
Weight of basket:	156 16	Parts before charge:_	rge: 98	۲	Time in hot bed: 60 minutes
Steel:	9) 777	Hot bed:			Time to transfer from hot to cool beds: 5 minutes
Aluminum:	Ιβ	Initial:	850	۳	Time in cooling bed:60 minutes
Iron:	اه	Final:	850	۴	
Mixed/other:	Ιβ	Cooling bed:			
Total charge weight: 758	758 (16	Initial:	100	۲	
		final:	100	٠,	
		Parts after c	Parts after cooling bed: 110	۳	

PART PARAMETERS

					Part	Part color	
Specific part number	Part description	Total weight of parts	No. of parts in charge	Weight of combustibles	Before 78PS	After FBPS	Comments and Observations
12345678	Cylinder sleeves	105	10	2	Black	Grey	all parts appear well cleaned
23456789	Brackets	51	100	0	Green	Green	paint flakes off easily
34567890	Road arm	250	10	2	Green	Green	paint flakes off easily
45678901	Mounts	196	20	0	Green	Green	paint flakes off easily

Figure 9. Completed example test data sheet.

Revision No. 0 Section No. V Page 10 of 14 Date May 5, 1990

POST-PROCESSING DATA

PRE-PROCESSING DATA

Part number:	Describe storage conditions:
Part ID, if applicable:	
Date form initiated:	
Date form completed:	
Is part usable? (Y/N):	Describe part cleaning:
Describe precleaning done on part:	
	Describe part heat treatment:
Is part completely disassembled? (Y/N)	
If No, describe	
components:	
	Describe part testing:
FBPS test number associated with	
paint:	
fBPS test date:	Describe part reuse evaluation:
	Describe part recoating (painting/p

Figure 10. Pre- and post-processing data sheet and instructions.

Revision No. 0
Section No. V
Page 11 of 14
Date May 5, 1990

PRE-PROCESSING DATA

Part number: Collect and record from drawing or other source.

Part ID (if applicable): Use only for specially tagged parts (aluminum tag). Record number from tag on part.

Date initiated and completed: Since the part evaluation may take several days, record these as appropriate use in a two digit day number, three letter month abbreviation, and two digit year.

Is part usable (Y/N): Record "N" for no, if part is a salvage, otherwise record "Y" for yes.

Describe precleaning done on part: Record known information or "unknown" if no information on precleaning is available.

Is part completely disassembled (Y/N): Record "Y" for yes or "N" for no.

If no, describe component: Give verbal description components to part.

FBPS test number associated with part: Indicate required number

FBP3 test date: Record date of FBPS test.

POST-PROCESSING DATA

For each item, give a verbal description of the requested items. Where additional data sheet on information is collected, identify with part ID or part number and attach to form.

Figure 10. (continued).

Revis	sion	No.	_	0	
Sect:	ion 1	۱o.		V	
Page	12	of		14	_
Date				90	

POST-PROCESSING DATA

Describe part recoating (painting/plating): Part masked and prime painted after aladine wash and finish coated

with CARC

PRE-PROCESSING DATA

Part number: 12345689	Describe storage conditions: Part was
Part ID, if applicable:	stored inside
Date form initiated: <u>OB Aug 90</u>	
Date form completed: 15 Aug 90	
Is part usable? (Y/N):Y	Describe part cleaning: Part was blast-
Describe precleaning done on part:	ed with walnut hulls
Water washed to remove mud	
	Describe part heat treatment: None
Is part completely disassembled? (Y/N)	
N If No, describe	
components: Part is road arm casting	
with press fit bearing	Describe part testing: <u>Hardness testing</u>
	result was 46C
FBPS test number associated with paint:	
FBPS test date: <u>08 Aug 90</u>	Danaita and aven avaluation Danier
	Describe part reuse evaluation: <u>Bearing</u>
	removed and replaced and part considered
	reusable

Figure 11. Completed pre-/post-processing data sheet for a generic type part

Revis	sion	No.	0_
Sect	ion N	10.	
Page	13	of	14
Date			

PRE-PROCESSING DATA

Part number: 23456	number: 23456789	
Part ID, if applicable:	535	
Date form initiated: <u>08 Aug</u>	90	
Date form completed: 15 Aug	90	
Is part usable? (Y/N):	N	
Describe precleaning done of	on part:	
None		
Is part completely disassem		
Y If No	, describe	
components:		
FBPS test number associated paint:		
FBPS test date: 08 Aug 9		

POST-PROCESSING DATA

Figure 12. Completed pre-/post-processing data sheet for a specific part.

Revision No. 0
Section No. V
Page 14 of 14
Date May 5, 1990

E. Maintain Computerized Data Base of Parts

The data collected on the form will be transferred to a computerized data base for storage and retrieval. The data base will be maintained by the project manager. The data base management system will have extensive capabilities regarding sorting and retrieval of data. As the system is developed, additional details will be collected and added to the list plan.

Revision No. 0
Section No. VI
Page 1 of 1
Date May 5, 1990

SECTION VI. PRE-OPERATIONAL TESTING

The FBPS equipment is expected to take approximately 40 weeks from placement of order until completion of installation. However, the manufacturer has available a smaller demonstration FBPS at their facility. Selected parts will be shipped to the manufacture for testing prior to completion of the RRAD FPBS system. These tests will be used to refine the data collection objectives and provide information used to revise this test plan. Because of the limited access to the FBPS at the manufacturer only a few parts can be tested. The exact quantity of parts that can be tested will be developed as the project progresses.

The manufacturer's test bed is only 24 inches in diameter and 30 inches deep. This is smaller than the RRAD FBPS. Therefore, the parts that can be tested will be smaller than those that can be tested at RRAD. The parts selected for testing at the manufacturer will be selected so that they can fit in the test bed. The test bed has a fluidized cooling bed; water quench is possible, depending on part size and material type. The test bed will not be used except on an available basis.

Revision No. 0
Section No. VII
Page 1 of 1
Date May 5, 1990

VII. OPERATION DEMONSTRATION

Once the system is installed at RRAD, the manufacturer and PEI will conduct testing to evaluate the system and accept the equipment. To make the most of this testing, parts that are scheduled for testing will be used for the operational demonstration. The parts chosen for the operational demonstration will be parts that have the maximum possibility of successful processing, are the maximum size and weight, and contain maximum combustibles. These parts will be selected and accumulated by the project staff.

The most likely initial test parts are engine parts (blocks, heads, connecting rods, cylinder sleeves, etc.). These are some of the simpler parts to evaluate from a metallurgical and refinishing aspect and one of the major components planned for processing in the FBPS. Thus, engine parts are ideally suited for the operational demonstration. Additionally, engine parts are plentiful, which will be useful should the equipment require modification and retesting.

Revision No. 0
Section No. VIII
Page 1 of 2
Date May 5, 1990

VIII. OPERATIONAL TESTS

The operational tests will be iterative. A best estimate of how each part can be processed will be made. The part will be processed on the basis of that initial best estimate. Following processing the condition of the part will be reviewed by the project staff. Depending on the results of the review the processing sequence will be modified. As more information on various parts is collected the ability to make generalizations on processing will be developed. As those generalizations develop they will be added to the test plan.

Most parts will not receive a comprehensive evaluation. Instead a comprehensive evaluation will be conducted on the most probable processing candidates. A comprehensive evaluation will include testing with several pretreatment options, testing with various bed conditions and cooling methods, use of several of the post treatment options, and finishing the parts in all possible configurations. Several different parts of the same type will be used for the comprehensive evaluations. These will include scrap parts to minimize cost. Usable parts will be evaluated in the final phase of the comprehensive evaluations to confirm that the best processing sequence produces a useable part.

Following each processing sequence and at each phase the testing is re-evaluated by the project staff. If the processing is unsatisfactory or the staff believes better results are possible the test parameters are modified and the test repeated.

As part of the evaluation the project staff will determine the success of the reuse. Figures 3 and 4 show decision trees used to demonstrate how the success of processing and reuse is determined.

Revision No. 0
Section No. VIII
Page 2 of 2
Date May 5, 1990

As time permits, parts of lower priority will be evaluated. As the testing progresses to the evaluation of lower probability of processing parts, more innovative processing methods will be required. This is consistent with the evolution of a research and development project. Therefore, to leave the most difficult problems until the last is logical.

Revision No. 01
Section No. IX
Page 1 of 1
Date May 5, 1990

IX. DATA EVALUATION

The data from the testing will be qualitative and quantitative. Ease of use, part appearance, processing simplicity, etc. are qualitative judgments produced from this testing. Evaluation of such data in mathematical or quantitative terms is not practical. Instead, these will be assigned a pass/fail value and recorded in the evaluation.

The quantitative results (hardness, temper, dimensional stability, flatness, etc.) are a significant portion of the final determination of acceptable FBPS operation and evaluation. Frequently, the quantitative differences will be small. Therefore, statistical analysis will be used to determine the parameters significance. Once determined, the quantitative data will be reduced to a pass/fail value and recorded in the evaluation. If all factors are passing, then the FBPS processing is successful. If any one determination is a failing value then the FBPS processing is unsuccessful.

Revision No. 0
Section No. X
Page 1 of 3
Date May 5, 1990

SECTION X. REPORT

The report is intended to provide a discussion of what was done, why, and the testing conclusions. It is also intended to be a means of submitting the data collected. The report is included as a section in the test plan because part of the test objective is to collect data and report on the findings. Therefore, an outline of the report is included in the plan to ensure the testing meets the reporting objective.

The report will be organized in the following chapters:

- 1. Introduction
- Description of parts tested
- 3. Description of test results
- 4. Discussion of the evaluation criteria
- 5. Recount the operational test parameters
- 6. Present the recommended parts control parameters
- 7. Recommended additional testing
- 8. Conclusions

The following subparagraphs discuss the intent of each of the report Sections.

A. <u>Introduction</u>

The report introduction will be much like the introduction to this test plan. It will describe the report objectives and organization.

B. <u>Description of Parts Tested</u>

Section 2 of the report will document the types of parts processed at RRAD. The report will include a discussion of both the parts processed and the parts not processed. The RRAD processes parts that include lightweight aluminum and aluminum alloy housings, electrical components, armaments, engine and drive components, mechanical connections, fixtures, etc. Some of these are not candidates for processing in a FBPS. The report will

Revision No. 0
Section No. X
Page 2 of 3
Date May 5, 1990

discuss all parts, however, the candidate parts will be discussed based on the part category and suitability for processing and priority.

C. <u>Description of Test Results</u>

The test results will be presented in both absolute terms and statistical terms. The description will present a tabulation for each part category, the processing time for each coating system, and the success of the processing sequence reported. This section will discuss the methods used to categorize and set the parts priority and introduces the test results. The data collected during all phases of the testing will be summarized in this section. The actual test data will be available as a separate document.

D. Discussion of the Evaluation Criteria

Section 4 of the report will present the sequence of evaluations used to determine the priority of the parts. It will also present specific categories of parts and test methods and the basis of judging if a part was successfully processed.

E. Recount the Operational Test Parameters

Section 5 of the report will summarize the operational test parameters investigated. It will discuss the various phases of the testing and the data collected. Most of the information in this section of the report will be extracted from Section V of this test plan.

F. Present the Recommended Parts Control Parameters

Section 6 will present a series of recommendations developed after the test. The discussion includes a determination of parts that are suitable candidates for FBPS processing and operational procedures to optimize FBPS use. These will possibly include such procedures as:

Revision No. 0
Section No. X
Page 3 of 3
Date May 5, 1990

- Determining the base metal type and any heat treating,
- If warpage is a potential problem based on the geometry, material type, and thickness,
- Type of coatings,
- Presence of combustibles on the part,
- Presence of heavy metals, etc.

G. Recommended Additional Testing

Section 7 will make recommendations for additional tests as appropriate.

H. Conclusions

The conclusions will be based on the testing. The report will discuss the usefulness of the FBPS based on how well it functions as a cleaning device and how effectively it reduces hazardous waste generation.

APPENDIX C PARTS INCLUDED IN THE FBPS EVALUATION

Figure	Part Number	Description	TH	Material/Comment
109	8756255	Anchor Plate	2300-257	
138	8756258	Anchor Plate	2350-261	4140
109.1	8756258	Anchor Plate	2300-257	4140
113	10866132	Track Idler Arm Assy	2300-257	7 Prob 4140
		(Less Bearing 11633894)		
143	10874930	Track Tens. Bracket	2350-261	4140H
114	10874930	Track Tension Bracket	2300-257	4140H
147	10907799	Metal Tire Wheel	2350-261	CST ST CLS 120-95
116,116.1	10907799	Metal Tire Wheel	2300-257	CST ST CLS 120-95
120,120.1	10918160	Road Wheel Arm Support Housing	2300-257	CS (ALSO SEE 10918159)
		(Less Bearing 10875366)		
139	10918160	Pivot Arm Assembly	2350-261	CS
		(less Support Bearing 10875366)		
120	10918161	Arm Assy.	2300-257	? Prob 4140
120	10918162	Arm Assy.	2300-257	7 Prob 4140
142	10932828	Nondr Spindle Wheel	2350-261	7 Prob 4140
113		Idler Support Spindle	2300-257	? Prob 4140
145		Sprocket Wheel	2350-261	CST ST GR 105-85
117		Sprocket Wheel	2300-257	CST ST GR 105-85
120		Arm Assembly (Like 12268700)	2300-257	Temper Weld 500°F (ALSO See 8756363,10866123,11660920)
140		Pivot Arm Assembly (Like 12268700)	_	Temper Weld 500*F (ALSO See 8756363,10866123,11660920)
141		Idler Arm Spindle		? Prob 4149
113.1		Idler Support Spindle		? Prob 4140
148		Rear Guard		4130H-4140
119.1		Shock Absorber Guard		4130H-4140
119.1		Shock Absorber Guard		4130H-4140
148		Road Wheel Arm Guard		4130H-4140
147		Metal Tire Wheel		CST ST GR 120-95
113.1		Flat Pulley		CST ST GR 120-95
113.1	12233770	Idler Track Arm Assembly	2300-257	SEE 11669358,11669367,11669365
141, 142	12253578	(Less Bearing 11633894) Track Arm Assemble	2350.261	*CC 11440158 11440747 11440745
141, 142	12233710	(Less Bearing Steeve 11633894)	2330-201	SEE 11669358,11669367,11669365
120.1	12253620	Support Arm Assy	2300-257	7 Prob 4140
139		Support Arm Like 12268688		7 Prob 4140
140		Support Arm Like 12253620		7 Prob 4140
120.1		Support Arm Assy (Like 11598503)		SEE 10866:23,8756363,11660920
139		Arm Assembly (Like 11598503)		SEE 10866123,8756363,11660920
79481		Support Housing	2350-252	·
		(Less Bearing 12296924)		•
73	12295281	Idler Support Spiindle	2350-252	? Prob 4140
75	12295283			? Prob 4140
78		Wheeel Spindle		CST ST GR 120-95
79881		Pivot Arm Assy		SEE MS16555-63,12295288,12296925,12297029
71	12297027	Spindle	2350-252	
75	12328850	Idler Wheel Arm	2350-252	7
		(Less Bearing 12276924)		

Orewing		Assembly Number		
	Description	As Tested		
	CPCX2 REDUCING PIPE TEE	999		,
20	NP20 PILLOW BLOCK BEARING	20	0	
16555	MS16555 HEADLESS ST. PIN	999		
21044	MSZ1044E NUT	12253531	0	
35671	MS35671 GROOVED PIN	10949818	0	cos
51335	MS51335 TOWING PINTLE ASSEMBLY	51335		
51504	MS51504 PIPE ELBOW, ETC.	999	2	
53075	MS53075 NON VENTED TANK CAP	999	0	
90726	MS90726 SCREW, CAP, ETC.	999		
104235	RIVIT	5605888		
560583	SPRING	5605 888		
5109549	V6 ENGINE WATER SYSTEM	5109549	1	
5109688	FRONT COVER	510 968 8	0	
5121109	V6 PULLEY	5121109	4	
5121343	ENGINE COVER FITTING	5121343	1	
5124762	TRUNNION	5124762	4	
5125488	ENGINE LIFTING LUG LEFT	5125488	1	
5127238	AIR HORN	512 <i>7</i> 2 38	0	
5127949	ENGINE LIFTING LUG RT.	5127949	1	
513247	V6 ENGINE HEAD WATER SYSTEM	5132473	1,25	
5135296	S AIR HORN BASE	5135296	0	
\$135838	B OIL PAN	5135838	3 5	ST
5266289	WASHER	5605 88 8	3	
560587	OIL CAN STOWAGE MOUNTING BRACKE	T 5605 88 8	3	

Drawing Number	Description	Assembly Number As Tested	Test	Materials Primary/ Secondary
5605888	OIL CAN STOWAGE MOUNTING BRACKET	\$605888		
6226763	SPRING	\$605888		
6774436	Oil Pan	6774436	6	\$T
7044253	SPRING	7524312		
7355390	PINTLE HOOK	7355390		
7359523	SPRING	5605888		
7359524	OIL CAN MOUNTING BRACKET ASSY.	5605888	0	
7524312	LOCK ASSY. PINTLE	7524312		
7524313	LATCH	7524312		
7524314	LOCK	7524312		
7528105	FUEL TANK FILLER BAYONET	10861293		
7954475	AUTOMATIC BREAK CASE	7954475		
7954484	GEAR CASE	7954484	2	
8364016	CHANNEL (RADIO RAIL)	8364016	0	
8376495	WEATHERCAP (COMMERCIAL)	8376498	7	
8376498	WEATHER CAP (COMMERC!AL)	8376498	7	
8380197	DUMMY DRAWING	0		
8447117	RH PIVOT PLATE	8447117		
8456497	SPEEDOMETER ADAPTER	8756252		
8456618	SLEEVE BEARING	8756915		
8463514	STEERING CONTROL LEVER SHAFT	8763512	4	
8668636	PLUG	8668636		
8668638	GUARD	8668638	2	CAS MIL-A-11356

Drawing Number	Description	Assembly Number As Tested	Test	
8705203	PERISCOPE QUICK RELEASE ASSY.	8705203		
8713396	SLIDE ASSY.	8713396		
8756252	FINAL DRIVE OUTPUT SHAFT ASSY.	8756252		
8756258	ANCHOR TORSION BAR	8756258	4,24	
8756363	SUPPORT ARM	11598503	0	4137H,5145H,8640H,8642H,QT BH301-341 FS4145H
8756363	SUPPORT ARM	12268700	16,23	4147H,4337H,86B45H,8653H,GR D FS4145H 4147H,4337H,86B45H,8653H,GR D
8756377	RIBBED SHOULDER BOLT	12253132		41478,43378,000478,00758,04 0
8756378	RIBBED SHOULDER BOLT	12253132		
8756478	BEARING AND OIL SEAL RETAINER	8756478		
8756491	FINAL DIRVE SPLIENED SHAFT	8756252		
8756494	FINAL DRIVE SPLINED SHAFT PLUG	8756252		
8756497	SPEEDOMETER ADAPTER	8756494		
8756552	DIFFERENTIAL STEERING LEVER	8756552		
8756586	DIFFERENTIAL UNIVERSAL JOINT YOR	E 8756586	•	
8756618	SLEEVE BEARING	O	ı	
8756672	DIRVERS HATCH HINGE	8756672	:	
8756711	GROVE PULLEY	8756915		
8756850	FILLER CAP COVER	8756850	1 4	CAS
8756915	GROOVE PULLEY	8/56915	;	
8756970	PLAIN SOLID DISK	10907310	0	
8756977	! HATCH COVER HINGE SEGMENT	8756977	!	
8763159	PIVOT BREAK HOUSING	11660974	•	
8763251	RIFLE MOUNTING CLIP	8763251	1	
8763257	CLIP BRACKET	876325	l	

Page: 3

Sorted By Part Number

Oute: 17/21/91

		Assembly		Materials
Drawing		Number		
_	Description	As Tested	Number	Secondary
8763258	CLIP	8763251		
8763301	FINAL DRIVE UNIVERSAL JOINT ADAPT	r 8763301		
8763384	TOWING EYE	8763384		
8763447	RIFLE MOUNTING CLIP	8763251		
8763477	DIFFERENTIAL STEERING SHAFT	8763477		
8763494	MACHINE THREAD PLUG	8763494		
8763502	BRACKET AND SPHERICAL BEARING AS	\$ 8763503		
8763503	QUADRANT BRACKET	8163503		
8763512	STEERING CONTROL LEVER	8763512	4	
	STEERING CONTROL LEVER ARM			
	STEERING CONTROL LEVER SHAFT			
	STEERING CONTROL ARM RETAINER			F\$1010-1025 HR
8763518	SEALED SELF-ALIGNING PLAIN BEARI	н 8763503	3	
8763560	SPRING SPOOL	8763560		
8921313	S ENGINE MAND HOLD COVER	8921313		
) Valve Cover	8925269		
	DETROIT DIESEL ENG VALVE COVER			ST
	5 BILGE PUMP ACCESS DOOR ASSY.			
1023262	B BILGE PUMP ACCESS DOOR	1023262		
1023607	9 CLEVIS	1023607		
1023608	1 KNOB (CASTING)	1023610		
1023608	3 HANDLE (CASTING)	1023608		
1023608	4 KNOB LOCK HANDLE (MACHINED)	1023608	4 0	

		=		Materials
Drawing		Number		•
Number	•			Secondary
10236085	REMOTE CONTROL LEVER	10236085	0	
10236096	HOUSING COVER	10236096	0	
10236103	BOLT KNOB (MACHINED)	10236103	0	
10861293	FUELCELL FILLER NECK	10861293		
10861294	NECK FILLER FLANGE	10861293		
10861500	DIFFERENTIAL STEERING SHAFT	8763477		
10861501	LEVER ARM	8763477		
10861503	LEVER ARM	8763477		
10861515	DIFFERENTIAL STEERING SHAFT	10861515		
10861561	HOOK	10861561		
10861607	TOWCABLE HOOK	10861607		4140H 4142H,ETC
10861641	ACCELERATOR PEDAL LEVER	10932839	0	CS1009-1025
10861642	ACCELERATOR PEDAL	10932839	0	C\$ A621 OR A622
10861712	MASTER HYDRAULIC BRAKE CYLINDER	10861712		
10861717	VALVE ASSY	10861717		
10863439	BEARING SPACER	12253143	0	
	COVER HATCH HINGE SEGMENT			
	HATCH COVER HINGE SEGMENT	10865854		
	PLAIN SOLID DISK	10890649		
	EXHAUST HEATER TUBE	10875342		TS
	HEATER EXHAUST ELBOW	10875342		CAS CLS2
	SHOCK ABSORBER MOUNT	10865985		4137H,4140H,ETC
10866040	VEHICLE LIFTING EYE	10866040		4140-4145 C38-C42
10866089	FAN DRIVE SHAFT	10866089	0	C137-C1151 1H SPLINE C32-38

Sorted By Part Number

Date: 01/21/91

Drawing Number	Description	Assembly Number Test As Tested Number	•
10866123	SPINDLE	10866124	
10866123	SPINDLE		4142H, 8640H, 8659H ST 4140H 4142H, 8640H, 8659H
10866123	SPINDLE	12268700 16,23	•
10866124	SUPPORT ARM	10866124	
10866131	IDLER WHEEL SPINDLE	1225143 0	
10866206	STEERING ARM QUADRANT	10866206	
10874684	CATCH BOLD HANDLE	10874686 7	CST ST CLS 80-50 OR 90-60
1087479	C HOOK AND DAMPER	10874 799	
1087493	D TRACK ' DJUSTER MOUNTING	B 10874930 7,24	4140H,ETC
1087533	D FINAL DRIVE UNIVERSAL JOINT SPIC	E 10875330 7,24	
1087534	2 HEATER EXHAUST ELBOW	10875342 0	TS & CAS WELDED
1087539	8 BEARING RETAINER	1 2	AL ST 1340 4137-4145,8640,5145
1087559	4 SLEEVE SPACER	10875594 7	AL ST 1340 4130,4135,5130,5135,8630H,8635
1088591	7 STRAINER SCREEN	10885917 2	
1088631	0 SHAFT	10932839 0	CS 1010-1025
1088643	O LATCH HANDLE	10886450 3	
108867	5 AUXILIARY PEDAL	10886715	
108880	3 SLEEVE BEARING	1	
108905	28 BEARING HOUSING	10890528	
108906	48 CARGO HATCH TORQUE BRACKET	10890649 0	
108906	49 CARGO HATCH TORQUE BRACKET WELD	ED 10890649 0	
109072	73 TORSION BAR ANCHOR	10907310 0	
109073	10 TORSION BAR RETAINER	10907310 0	

Date: (1/21/91

		-		Materials
Drawing		Number		
	•			Secondary
10907799	IDLER WHEEL	10907799	3	CS CL\$120-95
10911056	SLEEVE BEARING	8763512	4	
10918159	ROAD WHEEL HOUSING SUPPORT	10918160		CST GRD115-95 QT ASTM A148
10918160	SUPPORT HOUSING	10918160		
10932290	SLECTRICAL INSTALLATION	10932290		
10932551	ADAPTER	10932551	0	1008-1025
10932745	PROPELLER SHAFT	10932745		
10932824	(STEERING CONTROL SHAFT)	10932824	4	
10932838	DOUBLE ANGLE BRACKET	10932839	0	CS1008-1020
10932839	ACCELERATOR CONTROL PEDAL	10932839	0	
10932844	ACCELERATOR CONTROL ARM	10932844		
10932916	ENGINE OIL HOSE OIL	10932916		
10932988	GASKET	10932988	3	
10942567	SPROCKET CARRIER	10942567	4	CST ST GR105-85 CST ST GR120-95 ASIM A148
10942621	ELECTRICAL INSTALLATION	10942621	l	
10943071	BATTERY MOUNTING FRAME	10943071		
10943072	STEEL CHANNEL			1008-1024
10949503	S LOWER TAILGATE LOCK HANDLE	10949503	_	
10949528	3 RIGHT ENGINE MOUNT ADAPTER	10949529	•	
10949605	FUEL TANK ACCESS COVER	10949505		
	S SLIDING WINDOW CYANNE'L	10949818		
10949792	S MINDOM FOCK HANDLE	10949818	-	1008-1020
10949818	3 WINDOW CHANNEL ASSEMBLY	1094981	80	
1095014	3 OUTER CAB DOOR PANEL	•	0	

Opto (1/21/91

Drawing		Assembly Number		Materials Primary/
=	Description			Secondary
11010703	SCOOP DISC SUBASSY. (REPLACE PAR	τ 0		
11069946	BASE PLATE	11069946		
11070018	BOX COVER	10170449		
11070220	GASKET COVER	11070449		
11070350	BUS BAR W1 TO CIRCUIT BREAKER	11070350		
11070354	BUS BAR W1 TO E2	11070354		
11070449	DISTRIBUTION BOX ASSEMBLY COVER	11070449		
11588878	DOOR LATCH	11589281	0	
11589281	TRUNNION ENGINE MOUNT	11589281		ND CST CLS5 OR 6 CST ST CLS65-35,70-36,80-40
11598005	AIR CLEANER COVER	11598005		
11598503	TRACK SUSPENSION PIVOT ARM	11598503	0	TEMPER WELD & 500 *F
11512673	S SLIDE LATCH PIN	11612676	5 2	
11612674	LATCH SLIDE	11612676	5 2	
1161267	S SLIDE LATCH BODY	11612676	5 2	
11612676	S SLIDE LATCH ASSY	11612676	5 2	
1161300	7 BALL PLUNGER	11612676	5 2	
1163339	5 HELICAL TORSION SPRING	10949818	8 0	MW SPEC QQ-W-470
1163349	1 LOOP CLAMP	1163349	1	
1163389	4 SLEEVE BEARING	1225314	3 0	OL 16
1163407	2 INSULATED COVER	1163407	2	
1154064	3 UNIVERSAL JOINT SPIDER	1164064	3	

Page: 8

11660920 TRUNNION

11660920 TRUNHION

Scried By Part Number

12268700 16,23 4140H

11598503 0

4140H

4142H,4145H,8650H

4142H,4145H,8650H

Date: 01/21/91

Assembly

Materials

Drawing Number

Description

Number Test Primary/

As Tested Number Secondary

11660974 APIVOT SINGLE DISK BRAKE ASSEMBLY 11660974

11669238 PROPELLER SHAFT

11669238

11669358 SUSPENSION ARM

12253578 25 F\$4140H-4145H

11669359 GUARD

11669359 3,25 4130H-4140

4340,8630-8640

11669361 BEARING UNIT HOUSING

11669365 SLEEVE BEARING

11669361 2

12253578 25 OL 16

11669366 GUARD

11669366 3,25 4130H-4140

4340,8630-8640 FS 4142

11669367 IDLER WHEEL SPINDLE

12253578 25 11669373 3

F145H, 86B45H CST ST GR120-95

11678123 SUPPRESSOR MOUNTING PLATE

11678123 9,10

11678177 DIFFERENTIAL UNIVERSAL JOINT YOKE 11678177

11678255 SPROCKET WHEEL

11669373 IDLER WHEEL

11678255 0

11699728

FS 1345H

4340H,4140H-4150,50844H,50850HOR 1340H FIH

11699728 AFT BEAM

12253130 HUB CAP

12253130 7

12253131 BEARING UNIT HOUSING

12253132

12253132 HUB ASSEMBLY

12253132

12253143 IDLER ARM

12253144 3,18

12253144 CLEVIS

12253143 0

12253406 Hatch Cover

12253406 4

12253425 FAN PULLEY ACCESS COVER

12253425 9,10,11

12253519 IDLER FLAT PULLEY

12253519 7

12253531 GROOVED PULLEY

12253531 0

CS 1040-1045

12253535 ADJUSTABLE ROD END BRACKET

12253535

12253570 OIL FILTER MOUNTING BRACKET

12253570 0

Page: 9

Scried By Part Number

Date: 01/21/91

		Assembly		Materials
Drawing		Number		
•				Secondary
12253578	IDLER ARM	12253578	2,16,18	8
12253646	FILLER CAP COVER	12253646	0	AS CLS 2
12265722	INTERCOM BOX ANGLE BRACKET	12265722	0	
12268684	GROOVED IDLER PULLEY	12268684	0	1010-1025
12268689	SUSPENSION TORSION BAR	12268689	8	
12268692	SHOCK AUSORBER MOUNT	12268692	7	4135H
12268700	ROAD WHEEL ARM ASSEMBLY	12268700	16,23	
12268773	PIPE ELBOW	10875342	0	TS
12268594	AIR INLET HOUSING	12268994		
12269095	GROOVED PULLEY	12269095	0	
12269508	CLIP RETAINER	0		
12276657	ROAD WHEEL SUPPORT HOUSING	12276657	-	FS 4130 8630
12292439	MOTOR SUPPORT	12292439	1	
12292441	MOTOR CLAMP	12292441	1	
12294243	VEHICLE LIFTING EYE	12294243	0	fS 4140-4145
12294481	SHIELD	12294481	3	
12294777	FORWARDER HOUSING	12294777	0	
12294924	WIRE SHIELD	12294924	3	
12295281	IDLER SUPPORT ARM SPINDLE	12295281		4140H-4145H 8640H, 4340H
12295282	IDLER BEARING UNIT HOUSING	12295282		
12295290	DUAL SUPPORT ROLLER SPINDLE	12295290	•	CST ST GR120-95
12295542	RIBBED SHOULDER BOLT	O	•	
12296932	TRACK SUSPENSION PIVOT ARM ASSY.	12296932	!	

Assembly Materials

12307265 1

Drawing Number Test Primary/

Number Description As Tested Number Secondary

12296935 ROAD WHEEL HUB ASSY. 12296935

12297029 TAPERED PIN 12297029 AL ST 4130-4140

12297362 COMM. CONTROL MOUNTING PLAT 12297362 9,10,11

12298112 SAFETY HANDLE (NEW PART #12317063 12298112 2

12307265 HATCH HANDLE AND HOOK

12397270 CONTROL DOOR ANGLE HANDLE 12307270 1 AS 1330 4130 & 1010-1025

12317158 25 MM AMUNITION ACCESS 0:00R 12317158

12328579 SAFETY ANCHOR SHACKLE 12328579

12328805 IDLER WHEEL ARM 12328805

12349903 BILGE PUMP STRAINER 12349903

108990528 Pillow Block 108990525 3

APPENDIX D ATMOSPHERIC EMISSION TEST REPORT

ATMOSPHERIC EMISSION TEST REPORT FLUIDIZED-BED PAINT REMOVAL DEMONSTRATION TESTS RED RIVER ARMY DEPOT, TEXARKANA, TEXAS

by

IT Air Quality Services 11499 Chester Road Cincinnati, Ohio 45246

Contract No. DAAA15-88-D-0001 Task Order No. 0005 JTN 816004-002

Contracting Officer's Representative Ms. Carolyn Graham

Project Officer Mr. Ron Jackson

U.S. ARMY TOXIC AND HAZARDOUS MATERIALS AGENCY ABERDEEN PROVING GROUND, MARYLAND 21010-5423

April 1991

Regional Office 11499 Chester Rd. • Cincinnati, Ohio 45246 • 513-782-4700

CONTENTS

		Page
Figur Table		iii iii
1.	Introduction	1-1
	1.1 Background	1-1
	1.2 Atmospheric emission tests	1-2
2.	Summary of Test Results	2-1
	2.1 Sampling plan	2-1
	2.2 Flue gas data summary	2-1
	2.3 Particulate/multimetals test results	2-5
	2.4 Total hydrocarbon test results	2-7
	2.5 Process sample analytical results	2-9
3.	Quality Assurance Procedures and Results	3-1
	3.1 Field sampling quality assurance	3-1
	3.2 Continuous emission monitor - THC	3-1
	3.3 Analytical quality assurance	3-5
4.	Fluidized-Bed Paint Stripper Operation	4-1
5.	Sampling Locations and Test Methods Used	5-1
	5.1 Particulate/metals	5-3
	5.2 Total hydrocarbons	5-4
Appe	endices	
A B C D	Field Data Sheets Laboratory Data Sheets Sampling and Analytical Procedures	A-1 B-1 C-1 D-1 E-1
F	Calibration Procedures and Results	F

FIGURES

Numbe	<u>इ</u>	<u>Page</u>
5-1	FPBS Unit Showing Sampling Locations	5-2
	TABLES	
Numbe	<u>er</u>	<u>Page</u>
2-1	RRAD Test Plan	2-2
2-2	Summary of Flue Gas Conditions - Afterburner Inlet	2-3
2-3	Summary of Flue Gas Conditions - Venturi Inlet	2-3
2-4	Summary of Flue Gas Conditions - Venturi Outlet	2-4
2-5	Summary of Particulate and Metals Emissions	2-6
2-6	Summary of Hydrocarbon Emissions Data	2-8
2-7	Process Sample Analytical Results	2-9
3-1	Field Equipment Calibration	3-2
3-2	THC Monitor QA/QC Results	3-4
3-3	Filter and Reagent Blank Analysis Data	3-5
3-4	Metals QA/QC Data	3-6
3-5	Methods Detection Limit Data	3-6
4-1	FBPS Operation and Type of Emission Tests	4-1

SECTION 1

INTRODUCTION

1.1 Background

For this task assignment, PEI Associates, Inc. (PEI), under contract to the U.S. Army Toxic and Hazardous Materials Agency (USATHAMA), has purchased and installed a Procedyne Corporation fluidized-bed paint stripper (FBPS) at the Red River Army Depot (RRAD) near Texarkana, Texas. The FBPS is a production unit used to remove paint, oils, and greases from metal parts by immersing the parts in a fluidized bed of aluminum oxide granules maintained at temperatures high enough to pyrolyze organic matter. Typical temperatures range from 700° to 1000°F, with residence times in the bed of approximately 1 hour. Usually the bed contains insufficient oxygen to support combustion. Therefore, organic matter on the parts and in the coatings (paints and primers) is pyrolyzed in the FBPS to carbon and carbon monoxide. An inline gas-fined incinerator burns the carbon monoxide and fluidizing-bed gases. The products off combustion are exhausted through a water venturi scrubber to the atmosphere.

The IFBPS is an alternative to solvent-based paint-stripping systems. Solvent-based paintt-stripping systems typically use methylene chloride and other chlorinated solvents. The solvents chemically destroy the organic binders in the paint. The remaining counting material is removed with washing action or shotblasting prior to recoating.

Typically, chemical paint-stripping solvents are toxic and volatile. Methylene chloride, the most commonly used solvent, is especially volatile (boiling point 40°C or 104°F). Tilhe chemical paint-stripping process generates sludge consisting of stripped

coatings contaminated with paint-stripper solvents. The sludge is listed as a categorical hazardous waste and must be disposed of as such. PEI and USATHAMA believe that installation of the FBPS will reduce atmospheric releases of stripper compounds (mostly chlorinated solvents) and reduce the volume of hazardous wastes requiring disposal. Therefore, the objective of this test program is to demonstrate that the use of an FBPS will reduce hazardous waste while satisfactorily removing coatings (or assisting removal) and enabling reuse of parts at the RRAD.

1.2 Atmospheric Emission Tests

Atmospheric emission tests were conducted on February 26, 27, and 28, 1991. Testing was performed at the following three locations:

- Afterburner inlet (AI)
- Venturi scrubber inlet (VI)
- Venturi scrubber outlet (VO)

At each location, a Method 5 sampling train, modified to allow collection and analysis of trace metals [total chromium (Cr), cadmium (Cd), lead (Pb), and zinc (Zn)], was used to measure particulate and metals concentrations. In addition, a continuous flame ionization analyzer (FIA) was used to measure total hydrocarbon (THC) concentrations at the AI and VI locations.

Messrs. Bob Ressl and David Pomerantz of PEI coordinated FBPS operations throughout each test period and collected appropriate process samples (scrubber water-bed sand samples). The following report sections detail the results of the emission sampling effort.

SECTION 2

SUMMARY OF TEST RESULTS

This section details the results of the emission test program. No attempt is made to correlate emissions with FBPS operation, although conclusions relative to pollutant removal efficiencies are addressed based on the emission data.

2.1 Sampling Plan

Table 2-1 summarizes test times, parameters, and FBPS operation for this test program. Particulate/multimetals samples were collected simultaneously at the indicated locations for Test Series 1 through 5. Test Series 6 through 8 were conducted at only the AI and VO test locations. Measurements of THC were made primarily at the AI and VI test locations.

The initial test series was conducted for about 120 minutes and the remaining tests were conducted for 60 minutes each.

2.2 Flue Gas Data Summary

Tables 2-2 through 2-4 summarize flue gas conditions at each location.

Prior to each test, U.S. EPA Methods 1A and 2C* were used to measure velocity pressure head and temperatures. These data were then used to set isokinetic sampling rates. Volumetric flow rates are generally expressed in actual cubic feet per minute (acfm) and dry standard cubic feet per minute (dscfm) at 68°F, 29.92 in.Hg, and zero percent moisture.

^{* 40} CFR 60, Appendix A, July 1990.

TABLE 2-1. RRAD TEST PLAN

						Emiss <u>param</u> e	
FBPS test No.	Corresponding emission test No.	Date (1991)	Time (24-h)	Type of parts charged	Net wt of charge, lb	Partic- ulate/ metals	THC
029	AIPM-1 SIPM-1 SOPM-1	2/26	0922- 1142	Scrap aluminum	319	1	VI
030	AIPM-2 SIPM-2 SOPM-2	2/26	1426- 1535	Cd- and Zn- plated and scrap aluminum	955	1	IV
031	AIPM-3 SIPM-3 SOPM-3	2/27	0806- 0914	None	0	1	ΑI
032	AIPM-4 SIPM-4 SOPM-4	2/27	1034- 1139	Scrap aluminum	235	√	AI
033	AIPM-5 SIPM-5 SOPM-5	2/27	1327- 1432	Roadarms	996	✓	AI
034	AIPM-6 ^C SOPM-6	2/28	0800- 0905	Cd-plated and scrap aluminum	964	1	ΑI
035	AIPM-7 ^C SOPM-7	2/28	0945- 1050	None	0	1	ΑI
036	AIPM-8 ^C SOPM-8	2/28	1128- 1253	Roadarms with oil and grease	700	1	AI

^a AIPM = afterburner inlet, SIPM = venturi inlet, SOPM = venturi outlet.

b VI = venturi inlet, AI = afterburner inlet.

^C Venturi inlet tests not conducted because of glassware breakage and subsequent shortage.

TABLE 2-2. SUMMARY OF FLUE GAS CONDITIONS - AFTERBURNER INLET

				metric rate	_			osi- n, %
Run No.	Date (1991)	Time (24-h)	acfm ^a	dscfm ^b	Tempera- ture, *F	Mois- ture, %	02	CO ⁵
AIPM-1	2/26	0924-1124	521	366	228	7.9	21	0
AIPM-2	2/26	1426-1526	524	348	233	12.4	2	0
AIPM-3	2/27	0806-0906	531	372	281	0.9	41	0
AIPM-4	2/27	1038-1138	499	392	191	2.3	2 i	0
AIPM-5	2/27	1330-1430	526	341	229	14.6	21	0
AIPM-6	2/28	0800-0900	507	412	168	1.5	21	0
AIPM-7	2/28	0945-1045	519	404	198	1.0	21	0
AIPM-8	2/28	1153-1253	530	395	226	1.4	21	0

a acfm = Actual cubic feet per minute.

TABLE 2-3. SUMMARY OF FLUE GAS CONDITIONS - VENTURI INLET

				metric / rate			•	osi- n, %
Run No.	Date (1991)	Time (24-h)	acfma	dscfm ^b	Tempera- ture, *F	Mois- ture, %	02	CO2
SIPM-1 SIPM-2 SIPM-3 SIPM-4	2/26 2/26 2/27 2/27	0923-1123 1427-1527 0807-0907 1037-1137	1082 1311 1276 1230	892 1066 1058 995	113 116 111 116	9.6 10.4 9.1 10.5	20 20 20 20	1.0 1.0 1.0
SIPM-5	2/27	1329-1429	1280	1002	123	12.5	20	1.0

a acfm = Actual cubic feet per minute.

b dscfm = Dry standard cubic feet per minute. Standard conditions are 68°F, 29.92 in.Hg, and zero percent moisture.

b dscfm = Dry standard cubic feet per minute. Standard conditions are 68°F, 29.92 in.Hg, and zero percent moisture.

TABLE 2-4. SUMMARY OF FLUE GAS CONDITIONS - VENTURI OUTLET

				metric rate				osi- n,_%
Run No.	Date (1991)	Time (24-h)	acfm ^a	dscfm ^b	Tempera- ture, *F	Mois- ture, %	02	CO ₂
SOPM-1	2/26	0922-1142	915	695	131	15.4	20	1.0
SOPM-2	2/26	1430-1535	982	787	126	11.4	20	1.0
SOPM-3	2/27	0808-0914	974	788	125	10.5	20	1.0
SOPM-4	2/27	1034-1139	920	744	123	11.1	20	1.0
SOPM-5	2/27	1327-1432	963	765	127	11.9	20	1.0
SOPM-6	2/28	0800-0905	980	754	129	13.7	20	1.0
SOPM-7	2/28	0945-1050	983	770	125	12.8	20	1.0
SOPM-8	2/28	1128-1232	961	755	125	12.5	20	1.0

a acfm = Actual cubic feet per minute.

For tests conducted at the AI, flow rates ranged between 499 and 531 acfm, with average gas temperatures ranging between 168° and 281°F. Flue gas moisture content was generally less than 2.5 percent, except in Tests 1, 2, and 5, where moisture contents of 7.9, 12.4, and 14.6 percent, respectively, were measured. Gas composition data showed essentially ambient characteristics, with 21 percent oxygen (O₂) and 0 percent carbon dioxide (CO₂). A Fyrite gas analyzer was used to make these measurements periodically throughout the test program.

Scrubber venturi inlet flow rates ranged between 1082 and 1311 acfm, with an average temperature of 116°F and a moisture content of 10.4 percent. Gas composition data showed an average O_2 content of 20 percent and a CO_2 content of 1.0 percent.

Scrubber venturi outlet flow rates ranged between 915 and 983 acfm, with an average temperature of 126°F. Gas moisture content averaged about 12.4 percent, with O₂ and CO₂ contents of 20 and 1.0 percent, respectively. Since the gas stream appeared saturated and apparently contained water droplets, two moisture determinations were made: the first involved volumetrically determining the amount of water collected during each test and the second involved calculating the moisture content by

b dscfm = Dry standard cubic feet per minute. Standard conditions are 68°F, 29.92 in.Hg, and zero percent moisture.

using the vapor pressure of water at the measured stack temperature and pressure. The lower value was reported in each case as specified in U.S. EPA Method 4.*

Because the AI and VI test locations did not conform to U.S. EPA sampling location criteria (see Section 5 of this report), the measured flow rates are probably biased high. By comparing scrubber inlet (VI) and outlet (VO) average flow rates, the measurement bias was determined to be about 25 percent. Outlet flow rates measured at the VO location which meets the U.S. EPA sampling location criteria averaged 757 dscfm for eight tests, compared with a five-test average of 1003 dscfm at the VI (i.e., about a 25 percent difference). In summary, the outlet flow rates are considered representative, whereas the gas flow measured at the other two sites is semi-quantitative at best.

2.3 Particulate/Multimetals Test Results

Particulate concentrations reported in Table 2-5 are expressed in grains per dry standard cubic foot (gr/dscf) and milligrams per cubic meter (mg/m³). Metals concentrations are expressed in micrograms per cubic meter (μ g/m³). Pollutant mass rates are expressed in pounds per hour (lb/h). The product of volumetric gas flow rate and concentration yields the mass rate in lb/h.

Test SOPM-1 (scrubber outlet) is considered nonrepresentative because a scrubber upset occurred during the first 40 minutes of the test. No major problems, either process or sample related, were encountered with any of the remaining tests.

Afterburner inlet particulate concentrations ranged between 0.01 and 0.08 gr/dscf (23.3 and 183 mg/m³) for the eight tests conducted. Maximum concentrations were observed in Tests 1, 2, 5, and 6, which correspond to the maximum FBPS system loadings (see Table 2-1). Baseline (no parts charged) tests showed particulate concentrations of 0.01 and 0.026 gr/dscf (23 and 59 mg/m³).

Particulate concentration at the VI ranged between 0.002 and 0.004 gr/dscf (5 and 9.6 mg/m³). In the five tests in which simultaneous measurements were made

^{* 40} CFR 60, Appendix A, July 1990.

TABLE 2-5. SUMMARY OF PARTICULATE AND METALS EMISSIONS

				Par	Particulate	ite emissions				Metals	Metals emissions			
,	ı			Concentration	ration		ٽ	Concentration, µg/m²	tion, pg,	'm'	Mas	Mass emission rate, 1b/h	n rate,	1b/h
Test No.	Fest location	Date (1991)	Time (24-h)	gr/dscf	mg/m	Mass emission rate, lb/h	P	ڻ	Pb	Zn	РЭ	c	Pb	Zn
AIPM-1	AB inlet	92/2	0924-1124	0.08	182.8	0.25	68	106	300	723	1.25.*	1.46.4	4.16.	€.36.6
SIPH-1	VS inlet d		0923-1123	0.003		0.024	4.7	9.5	16.2	<2.0	1.66.	3.1E.	5.4E.3	•6.8€
SOPH-1	VS outlet	92/2	0922-1142	0.13	297.5	0.80	30	373	574	861	7.9E.3	9.75	1.5£	2.2£ '
A1PM-2	AB inlet	2/26	1426-1526	90.0	132.7	0.17	70	267	178	480	9.15.3	3. SE.	2.3E.*	6.35.
SIPH-2	VS inlet	92/2	1427-1527	0.002	5.5	0.022	8.4	?	9.1	7	3.4E.	<8.7E*	3.6E *	<1.4E 1
S0PM-2	VS outlet	2/26	1430-1535	0.007	15.8	0.047	12.4	4	17.6	<۲>	3.7E ⁻³	<1.16.3	5.2E 3	<1.96 *
AIPN-3	AB inlet	1712	9060-9080	0.01	23.3	0.033	6.2	₹	57	33	8.6E.	<4.9E*	8.06.3	4.65.3
SIPM-3	VS inlet	12/2	0807-0907	0.004	9.6	0.038	3.7	<2.2	7.0	<3.6	1.56.	<8.6E.	2.8E.3	<1.4E'
S0PM-3	VS outlet	12/2	0808-0914	0.004	8.8	0.024	9	<2.8	4.9	<4.7	1.86.1	<8.4E	1.46.	<1.4E*
AIPH-4	AB inlet	1/13	1038-1138	0.027	61.3	0.09	10.6	30.3	11	22.1	1.66.1	4.4E	1.06	3.26.3
SIPH-4	VS inlet	1/2/	1037-1137	0.0039	8.9	0.033	3.2	<2.3	1.5	<3.9	1.26.	<8.6E.	5.76.	<1.46.3
SOPH-4	VS outlet	17/1	1034-1139	0.0037	8.4	0.023	<2.1	<3.2	3.7	<5.3	<5.9E*	<8.8E ♣	1.06.	<1.56
AIPM-S	AS inlet	177	1330-1430	0.02	114.4	0.15	44.6	134	178	671	5.76.3	1.75.	2.3E.	8.6E.
SIPM-5	VS inlet	17/1	1329-1429	0.0022	5.0	0.019	4.4	14.5	4 .6	46	1.7E	5.46.	3.56.	1.76
SOPM-5	VS outlet	2/2/	1327-1432	0.013	28.8	0.083	2.2	<2.9	100	34.5	6.3E.	<8.2E	2.96.2	9.96.
AIPH-6	AB inlet	82/2	0800-0080	0.052	118.8	0.18	9	8.89	200	223	8.36°6	1.1E*	3.1E.	3.46.
S0PM-6	VS outlet	2/28	C800-0905	0.0037	8.4	0.024	9.3	<2.9	16.1	4.8	2.66.	8.2E*	4.5E.3	1.4E.
AIPH-7	AB inlet	82/2	0945-1045	920.0	59.3	6.09	170	80	308	649	2.6E.	1.26.	4.7E*	9.86.
SOPM-7	VS outlet	2/28	0945-1050	0.0028	₽.9	0.019	41.9	10	18.8	14.4	5.5E*	2.96.2	5.4E*	4.2E
AIPM-8	AB inlet	2/28	1153-1253	0.017	38.7	0.057	47	91	117	87	6.36.9	1.5E.	1.75.	1.36.4
S0PM-8	VS outlet	2/28	1128-1232	0.0040	9.1	0.026	12.4		9.5	13.8	3.5E°	<8.4£.	2.7E.3	3.96.2
	•													

³ Afterburner inlet.

b Venturi scrubber inlet.

C "Less than" denotes below method detection limit (MDL).

d Venturi scrubber outlet. Test SOPM-1 is considered nonrepresentative because of a scrubber upset.

at all three locations, particulate concentration was reduced by more than 85 percent in a comparison of the AI and VI test results.

Particulate concentrations at the VO ranged between 0.003 and 0.013 gr/dscf (6.4 and 28.8 mg/m³). Corresponding mass emission rates were 0.019 and 0.47 lb/h, respectively. In Tests 2 through 5, VI and VO test results were very similar and, in some cases, showed higher outlet results (Tests 2 and 5). This is believed to be a function of scrubber operation in that no mist elimination system is in place. Visual observation of the system indicated a significant water carryover rate at the outlet test location and resulted in entrained particulate (in the water droplets) being collected at the sampling location.

Emission samples collected at each location were subjected to a metals analysis for Cd, Cr, Pb, and Zn. As reported, all four metals were found in all samples collected at the Al. The highest metals concentrations were observed in Tests 2, 5, 6, and 7. Tests 2, 5, and 6 correspond to the largest FBPS charge weights, and Test 7 was conducted at a baseline (no-load) condition.

As reported, metals concentrations were reduced across the system in close parallel with total particulate reductions.

2.4 Total Hydrocarbon Test Results

Table 2-6 summarizes the THC test results for the test periods indicated. Concentrations are reported in parts per million (ppm) as methane on both a wet and dry basis. The average volumetric flow rates measured at the indicated locations were used to calculate mass emission rates.

No measurements were made at the VO test location because of the high moisture content of the gas stream. The VI data (February 26) show essentially nondetectable THC levels covering Tests 1 and 2. Even though no measurements were made at the VO outlet, it is reasonable to assume that the same nondetectable level of THC would be observed at the VO outlet based on the VI results. After the February 26 tests, the decision was made to monitor exclusively the AI location and no further measurements were made at the VI or VO locations.

TABLE 2-6. SUMMARY OF HYDROCARBON EMISSIONS DATA

			THC concentra	stion, ppm		
Range	Date (1991)	Time (24-h)	Wet	Dry	Average volumetric flow rate, dscfm	THC emission rate, 1b/h
			Vent	turi_in]et		
				tur innet		
0-500	2/26	1011-1045	7.4 <mark>a</mark> 2.5	8.3	1003	0.021
0-100		1106-1429	2.5	2.8	1003	0.0070
0-100		1429-1503	4.4	4.9	1003	0.012
0-110		1503-1522	2.5	2.8	1003	0.0070
			After	burner inle	<u>t</u>	
0-100	2/27	0923-1019	3.8	4.0	379	0.0038
0-5000	·	1019-1105	>5000	>5275	379	4.98
0-500		1105-1135	210	221.5	379	0.21
0-100		1135-1143	53.8	56.8	379	0.054
0-100		1143-1245	31.4	33.1	379	0.031
0-100		1245-1255	49.1	51.8	379	0.049
0-100		1255-1331	32.6	34.4	379	0.032
0-500		1331-1340	>560	>591	379	0.56
0-5000		1340-1346	>2670	>2816	379	2.66
0-100		1346-1430	130.3	137.4	379	0.13
0-100		1430-1445	39.7	41.9	379	0.040
0-100		1445-1539	18.5	19.5	379	0.018
0-500	2/28	0805-0837	>2600	>2743	379	2.59
0-500		0837-0903	71.7	75.6	379	0.071
0-500		0903-0920	40.3	42.5	379	0.040
0-500		0920-0936	29.8	31.4	379	0.030
0-500		0936-1009	19.4	20.5	379	0.019
0-500		1009-1041	12.4	13.1	379	0.012
0-500		1041-1128	10.6	11.2	379	0.011
0-500		1128-1157	>2600	>2743	379	2.59
0-500		1157-1253	83.9	88.5	379	0.084

a 0-500 ppm range (detection limit ±10 ppm).

b 0-100 ppm range (detection limit ±2 ppm).

The AI data were relatively consistent, with the exception of large THC spikes corresponding to Tests 4, 5, 6, and 8. The duration of each spike is indicated by the corresponding time interval in Table 2-6.

2.5 Process Sample Analytical Results

Table 2-7 summarizes the process sample analytical results. A total of six sand and four water samples collected during the test program were analyzed for the specified metals.

Sand Sample 1 was collected from a randomly selected drum (No. 16864) of the virgin sand used to charge the fluidized bed. Samples 2 and 5 are the cold-bed pre- and post-test samples and Samples 3 and 4 are the hot-bed pre- and post-test samples. Sample 6 is the dust sample collected from the cyclone between the beds and the afterburner.

The water samples were collected as a series of grab samples during the emissions tests. Samples 30 and 34 were taken while cadmium- and zinc-plated parts were being processed in the FBPS, and Sample 32 was collected while aluminum-plated parts were being processed.

TABLE 2	-7.	PROCESS	SAMPLE	ANALYTICAL	RESULTS

IABLE 2-7	· PRUCESS	SAMPLE AN	ALTITUAL	KESUL13				
	Met	al concent	ration, μ	g/g ^a				
Sample ID	Cadmium	Chromium	Lead	Zinc				
Sand - 1 Sand - 2	ND ^b	9.8 13	0.7 13	2.9 16				
Sand - 3	5.5	24	23	34				
Sand - 4 Sand - 5	26.7 2.8	14.3 15	25.9 23	38.4 22				
Sand - 6	40.4	35.1	77.5	161				
	Met	Metal concentration, mg/L ^c						
Water - 30	0.004	0.083	ND	0.082				
Water - 31 Water - 32	0.002 ND	0.030 0.007	0.0041 0.0007	0.031 0.021				
Water - 34	0.007	0.064	ND	0.20				

^a μg/g ≈ Micrograms per gram.

b ND = Nondetectable.

 $^{^{}C}$ mg/L = Milligrams per liter.

SECTION 3

QUALITY ASSURANCE PROCEDURES AND RESULTS

The procedures described in the Quality Assurance Project Plan were followed in all field sampling analyses. The following subsections describe the quality assurance (QA) procedures and the results obtained.

3.1 Field Sampling Quality Assurance

Routine Reference Method quality control (QC) procedures were followed throughout the test program. These included, but were not limited to, the following:

- Calibration of field sampling equipment. Sampling equipment was calibrated according to the procedures of the "Quality Assurance Handbook for Air Pollution Measurement Systems, Volume III," EPA 600/4-72-027B, August 1977. The calibration data are summarized in Table 3-1. Calibration guidelines are described in more detail in Appendix E.
- Onsite audits of dry gas meters, thermocouples, and digital indicators (see Appendix B).
- Train configuration and calculation checks.
- Onsite QC checks of the sampling train and leak checks of the pitot tube and Orsat line.
- Use of designated equipment and reagents.

The sampling equipment and procedures met all the guidelines established in the reference methods.

3.2 Continuous Emission Monitor - THC

The following QA procedures pertain to the use of the THC continuous emission monitor (CEM):

TABLE 3-1. FIELD EQUIPMENT CALIBRATION

Equipment	10 No.	Calibrated against	Allowable error	Actual error	Within allowable limits	Comments
Meter box	FT-2	Wet test meter	Y ±0.02 Y ΔH @ ±0.15 (Y ±0.05 Y posttest)	0.004 -C.03 -3.032	Yes Yes Yes	
		Critical orifice	Y ±0.05 Y AH @ ±0.15	0.016 -0.09	Yes Yes	Field check Field check
	FT-4	Wet test meter	Y ±0.02 Y AH @ ±0.15 (Y ±0.05 Y posttast)	0.001 0.03 -0.001	Yes Yes Yes	
		Critical orifice	Y ±0.05 Y AH @ ±0.15	0.016 -0.15	Yes	Field check Field check
	FT-11	Wet test meter	γ ±0.02 γ ΔH @ ±0.15 (γ ±0.05 γ posttest)	0.001 0.02 0.002	Yes Yes Yes	
		Critical orifice	Y ±0.05 Y AH @ ±0.15	-0.010 -0.05	Yes Yes	Field check Field check
Pitot tube	501 140 107	Geometric speci- fications	۵	ممم	Yes Yes Yes	
	501 140 107	Inspection	No visible damage	No visible damage Nc visible damage No visible damage	Yes Yes Yes	Field check Field check Field check

(continued)

TABLE 3-1 (continued)

Equipment	ID No.	Calibrated against	Allowable error	Actual error	Within allowable limits	Comments
Digital in- dicator	FT-2 FT-4 FT-11	Millivolt signal	+0.5% +0.5% +0.5%	0.0-0.35% 0.0-0.45% 0.0-0.2%	Yes Yes Yes	Pange of values Range of values Range of values
Stack ther- mocouple	271	ASTM-3F thermom- eter	±2°F	+1•F	Yes	
Impinger thermocouple	1-2 I-5 I-32	ASTM-3F thermom- eter	+2°F +2°F +2°F	+ + + +	Yes Yes Yes	
Ory gas thermometer	FT-2		±5°F	+2°F +2°F	Yes	Inlet Outlet
	FT-4			+1 °F 0°F	Yes Yes	Inlet Outlet
	FT-11			+1°F+	Yes Yes	Inlet Outlet
Balance	Mettler Electronic	Type-S weights	±0.5 g	6 0	Yes	
Glass probe nozzles	3-109(SS) VSO VSI	Caliper	10.004 in. 10.004 in. 10.004 in.	0.001 in. 0.001 in. 0.002 in.	Yes Yes Yes	
Barometer	414	Hg in glass	±0.05 in.Hg	+0.02 in.Hg	Yes	
3 Ac rocommond	to die la lite	As recommended in Ouslity Assurance Handbook for Air Ballution Marringment Custome Valume 111	for Air Dollut	O + a caronina com a ci	wetome Velum	

As recommended in Quality Assurance Handbook for Air Pollution Measurement Systems, Volume III. Stationary Source Specific Methods. EPA-600/4-77-027b. August 1977.

^b See Appendix E.

- Use of designated sampling equipment and procedures. The CEM met all performance requirements of U.S. EPA Method 25A. All components in the sampling system were either 316 stainless steel (probes) or Teflon (sampling line and pump diaphragms).
- System leak checks and integrity checks. Prior to the start of the first test, the entire sampling system from the probe to the analyzer inlet was leak-checked by plugging the probe inlet and evacuating the system to 15 in.Hg. The vacuum was observed for 5 minutes to ensure that the system was leak-free.
- System integrity and bias were measured by injecting calibration gases through a three-way valve at the probe outlet and comparing the response obtained with the response obtained when the gas was introduced directly to the analyzer. System integrity test results are listed on the data sheets in Appendix B. System bias in all cases was less than 2 percent of scale.
- Pre- and post-test calibrations. At the beginning and end of each test day, the analyzer was calibrated with three standards in the analytical range and zero nitrogen. The calibration data were reduced by linear regression analysis and the linear equations were used for data reduction. Calibration data are summarized in Table 3-2. Copies of the strip charts are contained in Appendix B.

TABLE 3-2. THC MONITOR QA/QC RESULTS

Monitor	Date (1991)	Calibration error, % of span ^a	Drift, % of span ^b	Correlation coefficient
THC	2/25	0.25	•	0.9999
THC	2/26	0.15	0.12	0.9999
THC	2/27	0.16	1.20	0.9999
THC	2/28	0.16	1.73	0.9999

^a Calibration error = $\frac{\text{(Cal. qas conc. - conc. predicted)}}{\text{Span value}} \times 100.$

Calibration error is average value from four calibration gases.

Drift error is average value from four calibration gases.

NOTE: Calibration error and drift checks were all within the Method 25A limits.

b Drift = (Posttest cal. response - initial cal. response) x 100.

Span value

3.3 Analytical Quality Assurance

The laboratory QA procedures outlined in the Quality Assurance Project Plan were followed for each type of analysis.

The QC procedures to be used in the sample analyses in this test program included, but were not limited to, the following:

- Use of designated analytical equipment and experienced laboratory personnel.
- Internal and external audits to ensure accuracy in sampling and analysis.
- Reagent, filter, and field blanks to determine blank levels.
- Spiked samples to determine the effect of sample handling and the matrix effect.
- Duplicate analysis of selected samples.

Particulate

As a check of the gravimetric analytical procedures, a blank filter and reagent (acetone) were analyzed in a manner similar to that used for actual field sampling.

Table 3-3 summarizes the particulate blank data. The blank corrections were applied to the particulate data.

TABLE 3-3. FILTER AND REAGENT BLANK ANALYSIS DATA

Sample type	ITAS Lab No.	Tare weight, mg	Average gross weight, mg	Net difference, mg
Filter (9070094)	X10305509-A	468.2	469.1	0.9
Acetone	X10305509-B	107,373.9	107,376.0	2.1 mg (0.0077 mg/g)

Metals

Quality assurance for metals (Cr, Cd, Pb, Zn) included filter reagent blank data, duplicate analysis (Pb only), and Standard Reference Solution (SRS) analysis. These data are summarized in Table 3-4. Method Detection Limit (MDL) data for the stack emission samples are summarized in Table 3-5.

TABLE 3-4. METALS QA/QC DATA (EMISSION SAMPLES)

		SI	RS data
Metal	Filter and HNO ₃ /H ₂ O ₂ blank data, μg	Theoretical value, mg/L	Percent recovery (duplicate)
Chromium	9.6	1	85.6, 87.8
Cadmium	2.4	1	86.7, 95.8
Lead	2.4	0.75	92.0, 84.4
Zinc	58	11	80.4, 82.9

TABLE 3-5. METHOD DETECTION LIMIT DATA (total μq)

Metal	Afterburner inlet	Venturi scrubber inlet	Venturi scrubber outlet
Chromium	3	3	3
Cadmium	2	2	2
Lead	11	0.6	0.6
Zinc	5	5	5

As indicated, the lead analyses were performed in duplicate; laboratory report values (Appendix C) represent the average of the duplicate analysis.

Metals blank corrections were applied to all reported data using the blank values summarized in Table 3-4. The reported SRS data are within the guidelines established for each metal analyte.

Process Samples

Quality assurance for the process samples included SRS analysis and duplicate analysis for lead. The percent recovery data for all metals were within the guidelines specified in the analytical methods. These data are contained in Appendix C.

SECTION 4 FLUIDIZED-BED PAINT STRIPPER OPERATION

Table 4-1 summarizes the FBPS operation and type of emission tests conducted during this test program.

TABLE 4-1. FBPS OPERATION AND TYPE OF EMISSION TESTS

				Emission test p	art	<u>.</u>	
Test No.	Date (1991)	FBPS test No.	After- burner inlet	VI between wet cap and scrubber	VO atmospheric emissions	Types of parts charged	Net wt. of charge, 1b
1	2/26	029	1	1	1	Scrap aluminum	319
2	2/26	0 30	4	1	₹	Cd- and Zn-plated and scrap aluminum	956
3	2/27	031	1	1	₹	None	0
4	2/27	032	1	1	₹	Scrap aluminum	235
5	2/27	033	1	•	₹	Roadarms	996
6	2/28	034	₹	a	•	Cd-plated and scrap	964
7	2/28	035	4	a	₹	None	0
8	2/28	036	4	a	•	Roadarms with oil and grease	700

Afterburner inlet and scrubber outlet tests only.

On February 26, 1991, the first emission test was conducted with painted aluminum parts processed in the FBPS. In the second emissions test, Cd-plated, Zn-plated, and painted parts were processed in the FBPS. Two painted parts had been weighed and marked before and after the test to determine the amount of paint removed. A composite wet cap/scrubber water sample was collected during this test. The plated parts from the second test were sent to be replated.

On February 27, three 1-hour emission tests were run. The first run (Test 3) was without any parts loaded in the hot bed. A water sample was collected during this test. For the second run (Test 4), the unit was loaded with painted aluminum parts. water sample was also collected during this test. For the third run (Test 5), Bradley Roadarms were processed in the FBPS. These parts had a combination of paint and grease.

On February 28, three additional 1-hour emission test runs were performed. Test 6 was run with Cd- and Zn-plated parts and painted parts in the FBPS. Three of the Cd-plated parts had been marked and weighed before and after plating, and after the test run. Also, five steel plates were included with the test part. The plates had been sandblasted clean, and their thickness measured, weighed, plated, and measured again. After the test run, the thickness and weight of each plate were again checked. A water sample was collected during the test.

The seventh emission test was conducted with no parts in the hot bed. For the eighth test, the parts baskets were loaded with painted M113 Roadarms. To these were added an additional 4.5 ounces of oil and 6.75 ounces of grease, simulating typical grease and oil loads. This test run was performed to correlate the hydrocarbon emissions with the amount of hydrocarbon in the charge.

Several representative plated parts were measured and weighed to determine an average area-to-weight ratio for calculating the amount of plating on the miscellaneous steel parts. After the eighth test was run, posttest hot-bed and cold-bed sand samples and a cyclone dust sample were collected.

SECTION 5

SAMPLING LOCATIONS AND TEST METHODS USED

Figure 5-1 depicts the FBPS unit and sampling locations used in this test program. At the VO, two sampling ports 90 degrees off-center were located more than 13 duct diameters from both the nearest upstream and downstream disturbances in the 9-in.-inside-diameter (i.d.) round duct. A total of eight sampling points, four per port, were used to traverse the cross-sectional area of the duct. U.S. EPA Methods 1A and 2C were used to measure volumetric gas flow rates at each location.* Velocity heads and temperature were measured at each point prior to testing. These data were then used to set isokinetic sampling rates at each point because the pitot tube and thermocouple are not attached to the sampling probe when small (less than 12-in.-i.d.) ducts are measured. Between-test velocity measurements varied less than 10 percent. The initial test at the VO was 105 minutes in duration. All remaining tests were 60 minutes in duration (7.5 minutes per point).

At the VI, only one sampling port was available for use in this study. The geometric configuration of the ductwork and surrounding equipment precluded a multiport traverse at this location. A total of six sampling points were used to measure volumetric flow rates in the 6-in.-i.d. round duct. This single port was located approximately 5 duct diameters downstream and 3 duct diameters upstream from the nearest flow disturbances.

These same points were used to traverse the cross-sectional area of the duct. The initial test was 120 minutes in duration (20 minutes per point) and the remaining

^{* 40} CFR 60, Appendix A, July 1990.

tests were 60 minutes in duration (10 minutes per point). Once again, between-test flow measurements varied less than 10 percent.

The AI test location was similar to that of the VI location in that only one port was available for access to the gas stream. In addition, because the port coupling extended from the outside duct wall into the stainless steel round duct, an accurate inside diameter measurement was impractical. Therefore, a nominal diameter of 5 in. (based on design specifications) was used in all flow-rate calculations. Samples from this location were collected isokinetically at a single point in the duct. The initial test was conducted for 120 minutes, and the remaining seven tests conducted for 60 minutes. Gas compositions (O₂ and CO₂) were measured at each location by a Fyrite gas analyzer.

The following subsections briefly describe the sampling methods used. Detailed descriptions are contained in Appendix D.

5.1 Particulate/Metals

The multimetals/particulate procedures follow those in U.S. EPA's "Methodology for the Determination of Trace Metal Emissions From Stationary Source Combustion Processes."* The sampling train was a Method 5 train with two impingers containing 5 percent nitric acid (HNO₃)/10 percent hydrogen peroxide (H₂O₂) solution. The train uses a quartz fiber filter and a borosilicate glass sampling nozzle to minimize potential blank contamination. Samples were analyzed first for filterable particulate by U.S. EPA Method 5** procedures and then for the specified metals (chromium, cadmium, lead, and zinc) by using both atomic absorption (AA) and inductively coupled argon spectroscopy (ICAS) analysis techniques.

^{*} Methodology for Determination of Trace Metal Emissions From Stationary Source Combustion Processes, July 1988.

^{** 40} CFR 60, Appendix A, July 1990.

5.2 Total Hydrocarbons

A Beckman Model 402 continuous-flame ionization analyzer was used to measure THC concentration per Method 25A. The analyzer pump, particulate filter, and detector are housed in a temperature-controlled oven, which is maintained at 300°F for this test.

The monitor was assembled and calibrated per method specifications. The system sampling probe was located at the centroid of each sampling duct, and sampling was conducted successively at the AI and VI test locations.

APPENDIX A COMPUTER PRINTOUTS AND EXAMPLE CALCULATIONS

Nomenclature and Dimensions

 A_n = Cross-sectional area of nozzle, ft^2

 A_6 = Cross-sectional area of stack, ft²

Bws = Proportion by volume of water vapor in the gas stream, dimensionless

Cp = Pitot tube coefficient, dimensionless

C_g = Concentration of pollutant in stack gas - grains per dry standard cubic foot, gr/dscf

%C = Percent of carbon by weight, dry basis

%CO = Percent of carbon monoxide by volume, dry basis

%CO2 = Percent of carbon dioxide by volume, dry basis

D_n = Sampling nozzle diameter, inches

Dg = Stack diameter, inches

F = Factor representing a ratio of the volume of dry flue gases generated to the calorific value of the fuel combusted, expressed as dry standard cubic feet per million Btu of heat input, dscf/10⁶ Btu

GCV = Gross calorific value of the fuel combusted on a dry basis, Btu/lb

%H = Percent of hydrogen by weight, dry basis

 ΔH = Average pressure drop across the sampling meter flow orifice - inches of water, in. $H_2\theta$

HHV = Higher heating value on an as-received basis, Btu/lb

%ISO = Percent of isokinetic sampling

La = Maximum acceptable leakage rate for either a pretest leak check of for a leak check following a component change; equal to 0.020 cubic foot per minute of 4% of the average sampling rate, whichever is less

Md = Dry molecular weight, lb/lb-mole

mf = fuel firing rate (measured coal to boiler), lb of coal per hour

Mn = Total amount of pollutant matter collected - milligrams, mg

M₈ = Molecular weight of stack gas (wet basis), lb/lb-mole

%N = Percent of nitrogen by weight, dry basis

(continued)

Nomenclature and Dimensions

%N₂ = Percent of nitrogen by volume, dry basis

%O = Percent of oxygen by weight, dry basis

%O2 = Percent of oxygen by volume, dry basis

 ΔP = Velocity head of stack gas - inches of water, in H_2O

Pher = Barometric pressure - inches of mercury, in.Hg

 P_{stat} = (also P_{si}) Static stack gas pressure - inches of water, in.H₂O

Pg = Absolute stack gas pressure - inches of mercury, in.Hg

Pstd = Gas pressure at standard conditions - 29.92 inches of mercury, in.Hg

pur = Pollutant matter emission rate - pounds per hour, lb/h

QH = Total heat input - million Btu per hour, 106 Btu/h

Q_S = Volumetric flow rate - wet basis at stack conditions - actual cubic feet per minute, acfm

Q_{std} = Volumetric flow rate - dry basis at standard conditions - dry standard cubic feet per minute, dscfin

°R = degrees Rankine = degrees Fahrenheit + 460, °F + 460

%S = Percent of sulfur by weight, dry basis

T_m = Average temperature of dry gas meter, °R

T_g = Average temperature of stack gas, °R

T_{std} = Temperature at standard conditions, 528 °R

V_{lc} = Total volume of liquid collected in impingers and silica gel, ml

 V_{m} = Volume of dry gas sampled at meter conditions - cubic feet, t^3

Vmstd = Volume of dry gas sampled at standard conditions - cubic feet, ft3

 V_g = Average stack gas velocity at stack conditions - feet per second, ft/s

 V_{wstd} = Volume of water vapor at standard conditions - cubic feet, ft^3

Y = Dry gas meter calibration correction factor

 θ = Total sampling time, minutes

Example Calculations for Pollutant Emissions

1. Volume of dry gas samples corrected to standard conditions. Note: Vm must be corrected for leakage if any leakage rates exceed La.

$$Vmstd = 17.647 \times Vm \times Y \left[\frac{Pbar + \frac{\Delta H}{13.6}}{Tm} \right]$$

2. Volume of water vapor at standard conditions, ft3.

$$Vwstd = 0.04707 \times Vlc$$

3. Moisture content in stack gas.

$$Bws = \frac{Vwstd}{Vwstd + Vmstd}$$

4. Dry molecular weight of stack gas.

$$Md = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%N_2 + \%CO)$$

5. Molecular weight of stack gas.

$$Ms = Md(1 - Bws) + 18Bws$$

6. Stack velocity at stack conditions, ft/s.

$$Vs = (85.49)(Cp)(avg\sqrt{\Delta P})\sqrt{\frac{Ts}{(Ps)(Ms)}}$$

7. Stack gas volumetric flow rate at stack conditions, cfm. Note: As = square feet.

$$Qs = 60 \times Vs \times As$$

8. Dry stack gas volumetric flow rate at standard conditions, cfm.

Qstd =
$$(17.647)$$
(Qs) $\left(\frac{Pg}{Ts}\right)$ (1 - Bws)

9. Concentration in micrograms per cubic meter, µg/m³

$$Cs = (35.315) \left(\frac{Mn}{Vmstd} \right)$$

(continued)

Example Calculations for Pollutant Emissions

10. Pollutant mass emission rate, lb/h.

pmr =
$$Cs \times (6.243 \times 10^{-11}) \times Qstd \times 60$$

11. Isokinetic variation, %

ISO =
$$\frac{(100)(\text{Ts})\left[(0.0002669 \text{ Vlc}) + \left(\frac{\text{Vm}}{\text{Tm}}\right)(\text{Y})\left(\text{Pbar} + \left(\frac{\Delta H}{13.6}\right)\right)\right]}{(60)(\emptyset)(\text{Vs})(\text{Ps})(\text{An})}$$

Example Calculations for Pollutant Emissions

CORRECTION FACTORS

$$117.647 = \left(\frac{\text{Tstd}}{\text{Pstd}}\right)$$

$$\langle 0.04707 = \left(\frac{ft^3}{ml}\right)$$

Ø.44 = molecular weight of CO2/100

0.32 = molecular weight of $O_2/100$

 $0.28 = \text{molecular weight of N}_2/100$

18 = molecular weight of water (H2O)

$$85.49 = \left[\frac{(1b/1b - mole)(in.Hg)}{(\circ R)(in.H_2O)} \right]^{\frac{1}{2}}$$

@.01543 = grains per milligram (gr/mg)

$$(0.002669 = \frac{(in.Hg.)(ft^3)}{(ml)(^{\circ}R)}$$

Validated 3/7/91

FIELD DATA

Plant: R.R.A.D. Texarkana

Sampling location: AB Inlet Test time (start-stop): 0924-1124

Date: 2/26/91

Run number: AIPM-1

Sample type: Part/Metals

Bar. press. (in. Hg): 30.06 Static press. (in. H20): -4.100 Filter number(s): 9070076 Stack inside dia. (in.): 5.00 Pitot tube coeff.: 0.84

Total H2O collected (ml): 115.8 % O2 by volume (dry): 21.0 Volume correction (cu. ft.): 0.000 Meter calibration factor: 0.980 Data interval (min.): 20.0 Nozzle dia. (in.): 0.194

Meter box number: FT-11 Number of traverse points: 6

% CO2 by volume (dry): 0.0
% CO by volume (dry): 0.0

Sample time (min)_	Gas meter reading (cu. ft.)	Velocity head ΔP	Orifice drop actual ΔH	Stack Temp.	Dry gas temp	
0.0	763.179	(in. H2 O)	(in. H2O)	(°F)	inlet	outle
20.0	774.160	0.950	0.98	192	70	70
40.0	785.000	0.950	0.94	221	74	71
60.0	795.890	0.950	0.84	250	80	74
80.0	805.600	0.950	0.89	269	83	76
100.0	817.360	0.950	0.95	229	85	77
120.0	828.631	0.950	0.94	208	85	
120.0	65.452	0.950	0.94	228	80	74

Validated 3/7/91

FIELD DATA

Plant: R.R.A.D. Texarkana

Sampling location: AB Inlet Test time (start-stop): 1426-1526 Date: 2/26/91

Run number: AIPM-2

Sample type: Part/Metals

Bar. press. (in. Hg): 30.06
Static press. (in. H20): -4.100
Filter number(s): 9070092
Stack inside dia. (in.): 5.00

Pitot tube coeff.: 0.84

Total H2O collected (ml): 95.5 % O2 by volume (dry): 21.0 Volume correction (cu. ft.): 0.000

Meter calibration factor: 0.980
Data interval (min.): 10.0
Nozzle dia. (in.): 0.194

Meter box number: FT-11 Number of traverse points: 6 % CO2 by volume (dry): 0.0

% CO by volume (dry): 0.0

Sample time (min)	Gas meter reading (cu. ft.)	Velocity head AP	Orifice drop actual AH	Stack Temp.	Dry gas temp.	
0.0	831.237	(in. H2O)	(in. H2O)	_ (° F)	inlet	outle
10.0	837.010	0.940	0.97	203	77	76
20.0	842.900	0.940	0.97	203	78	77
30.0	847.810	0.940	0.94	227	80	78
40.0	853.640	0.940	0.92	240	82	78
50.0	858.800	0.940	0.93	258	84	79
60.0	864.124	0.940	0.89	268	85	79
60.0	32.887	0.940	0.94	233	81	78

Validated 37/91

FIELD DATA

Plant: R.R.A.D. Texarkana

Sampling location: AB Inlet

Test time (start-stop): 0806-0906

Date: 2/27/91

Run number: AIPM-3

Sample type: Part/Metals

Bar. press. (in. Hg): 29.97 Static press. (in. H20): -4.100

Filter number(s): 9070052 Stack inside dia. (in.): 5.00

Pitot tube coeff.: 0.84

Total H2O collected (ml): 5.9 % O2 by volume (dry): 21.0 Volume correction (cu. ft.): 0.000

Meter calibration factor: 0.980 Data interval (min.): 10.0

Nozzle dia. (in.): 0.194

Meter box number: FT-11 Number of traverse points: 6

% CO2 by volume (dry): 0.0

% CO by volume (dry): 0.0

Sample time (min)	Gas meter reading (cu. ft.)	Velocity head ΔP	Orifice drop actual AH	Stack Temp.	Dry gas temp	
0.0	865.797	(in. H2O)	(in. H2O)	(°F)	inlet	outle
10.0	871.000	0.940	0.86	275	72	71
20.0	876.080	0.940	0.86	279	72	72
30.0	881.207	0.940	0.86	281	74	72
40.0	886.480	0.940	0.86	2 83	78	73
50.0	891.740	0.940	0.86	285	80	74
60.0	896.902	0.940	0.86	285	82	75
60.0	31.105	0.940	0.86	281	76	73

Validated 3/7/91

TEST RESULTS

Plant: R.R.A.D. Texarkana Sampling location: AB Inlet

Test date(s): 2/26/91

2/26/91 2/27/91

			AIPM-1	Run Numbers AIPM-2	AIPM-3	AVERAGE
o	Net time of test (min)	******	1.20.0	60.0	6 0.0	
NP	Net sampling points	•••••	c	6	6	
Y	Meter calibration factor	******	0.980	0.980	0.980	
Dn	Sampling nozzle diameter (in)	•••••	0.194	0.194	0.194	
Ср	Pitot tube coefficient	•••••	0.84	0.84	0.84	
ΔH	Average orifice pressure drop (in. H2O)	•••••	0.94	0.94	0.86	0.91
Vm	Volume of dry gas sampled at meter conditions (cu. ft.)	•••••	65.452	32.887	31.105	43.148
Tm	Average gas meter temperature (2)	•••••	76.9	79.4	74.6	77.0
Vmstd	Volume of dry gas sampled at standard conditions (scf)	*******	63.518	31.767	30.221	41.836
Vle	Total H2O collected in impingers and silica gel (ml)	******	115.8	95.5	5.9	72.4
Vwstd	Volume of water vapor at standard conditions (sef)	******	5.451	4.495	0.278	3.408
Bws	Percent moisture by volume, as measured Percent moisture by volume, at saturation	•••••	7.90 100.00	12.40 100.00	0.91 100.00	7.07 100.00
	Percent moisture by volume, used in calculations	******	7.9 0	12.40	0.91	7.07
Fmd	Mole fraction of dry gas		0.921	0.876	0.991	0.929
%CO2	Percent CO2 by volume (dry)		0.0	0.0	0.0	0.0
% 02	Percent O2 by volume (dry)	*****	21.0	21.0	21.0	21.0
% СО	Percent CO by volume (dry)	******	0.0	0.0	0.0	0.0
%N2	Percent N2 by volume (dry)		79.0	79.0	79.0	79 .0
Md	Molecular weight - dry stack gas		28.84	28.84	28 .84	28.84
Ma	Molecular weight - stack gas		2 7.98	27.50	28.74	28.07
Pbar	Barometric pressure (in. Hg)	•••••	30.06	3 0.06	29.97	30.03
Pai	Static pressure of stack gas (in. H2O)	******	-4.100	-4.100	-4.100	-4.100
P ₆	Stack pressure - absolute (in. Hg)	•	29.76	29.76	29.67	29.73
Te	Average stack gas temperature (°F)	·····	228.2	233.2	281.3	247.6

Validated 3/8/91

TEST RESULTS

Plant: R.R.A.D. Texarkana

Test date(se: 2/26/91

2/26/91

2/27/91

S	Plant: R Sampling location: A	B Inlet	Test date(s)	2/26/91	2/26/91	2/21/91	
			_	AIPM-1	Run Numbers AIPM-2	AIPM-3	AVERAGE
Vh	Average square 1	root of velocity head (in. H2O)	•••••	0.9747	0.9695	0.9695	0.9713
Vs	Average stack ga	us velocity (feet/sec.)	******	63.63	64.08	64.92	64.21
As	Stack area (sq. ii	n.)	*** · * *	19.6	19.6	19.6	19.6
Qu	Actual stack flow	v rate (acfm)	•••••	521	524	531	525
Quatd	Stack flow rate -	dry (sclm)		366	348	372	362
iso	Percent isokinet	ic	•••••	96.1	101.1	90.0	95.7
			place 0 with 1.	328.9 0 328.9	118.7 0 118.7	20.0 0 20.0	
r Ma	Particulate	mass	mg				
C•	Particulate	concern a lon	gr/dscf	7.990E-02	5.765E-02	1.021E-02	4.925E-02
Pmr	Particulate	emission rate	lb/h	2.505E-01	1.720E-01	3.253E-02	1.517E-01
Мр	Cadmium	Mass of poli If below detection limits, re mass		160.0 0 160.0	63.0 0 63.0	5 .3 0 5.3	
C ₀	Cadmium	concentration	μ g/m 3	88.956	70.035	6.193	55.061
Pmr	Cadmium	emission rate	lb∕h	1.219E·04	9.126E-05	8.621E-06	7.392E-05
Mn	Chromium	Mass of pol If below detection limits, re mass		190.0 0 190.0	240.4 0 240.4	3.0 1 <3.0	
C•	Chromium	concentration	μ g /m3	105.635	267.245	<3.50₹	125.462
Pmr	Chromium	emission rate	lb/h	1.447E-04	3.483E-04	<4.880E-06	1.860E-04

Validated 3/8/91

TEST RESULTS

Plant: R.R.A.D. Texarkana Test date(s): 2/26/91 Sampling location: AB Inlet

2/26/91

2/27/91

				AIPM-1	Run Number AIPM-2	AIPM-3	AVERAGE
		Mass of pollutant	-	1300.0	432.0	28.0	
		If below detection limits, replace		0	0	0	
Mn	Zinc	mass.	μg	1300.0	432.0	28.0	
C.	Zinc	concentration	$\mu g/m3$	722.768	480.241	32.719	411.909
Pmr	Zine	emission rate	l b ክ	9.903E-04	6.258E-04	4.554E-05	5.539E-04
		Mass of pollutant If below detection limits, replace		540.0 0	160.0 0	49 .0 0	
Mn	Lead	mass	µ g	540.0	160.0	49.0	
C.	Lead	concentration	μ g/m3	300.227	177.867	57.2 58	178.451
Pmr	Lead	emission rate	lb/h	4.114E-04	2.318E-04	7.970E-05	2.409E-04
		Mass of pollutant	<u>.</u>	0.0	0.0	0.0	
		If below detection limits, replace		0	0	0	
Mn	<pollutant></pollutant>	mass	mg	0.0	0.0	0.0	
C.	<pollutant></pollutant>	concentration	gr/dscf	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Pmr	<pollutant></pollutant>	emission rate	lb'n	0.000E+00	0.000E+00	0.000E+00	0.000E+00
		Mass of poliutant	_	0.0	0.0	0.0	
		If below detection limits, replace	0 with 1	0	0	0	
Mn	<pollutant></pollutant>	ID 8.84	mg	0.0	0.0	0.0	
C•	ollutant>	concentration	gr/dscf	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Pmr	<pre>cpollutant></pre>	emission rate	lb/h	0.000E+00	0.000E+00	0.000E+00	0.000E+00
		Mass of pollutant		0.0	0.0	0.0	
Mn	cpollutant>	If below detection limits, replace mass	0 with 1.	0 0.0	0 0.0	0 0.0	
C ₈	cpollutant>	concentration	gr/dscf	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Pmr	<pre><poliutant></poliutant></pre>	emission rate	lb/h	0.000E+00	0.000E+00	0.000E+00	0.000E+00

Validated 3/7/91

FIELD DATA

Plant: R.R.A.D. Texarkana

Sampling location: Afterburner Inlet

Test time (start-stop): 1038-1138

Date: 2/27/91

Run number: AIPM-4

Sample type: Part/Metals

Bar. press. (in. Hg): 29.97 Static press. (in. H20): -4.100

Filter number(s): 9070045 Stack inside dia. (in.): 5.00

Pitot tube coeff.: 0.84

Total H2O collected (ml): 16.1 % O2 by volume (dry): 21.0

Volume correction (cu. ft.): 0.000

Meter calibration factor: 0.980
Data interval (min.): 10.0

Nozzle dia. (in.): 0.194 Meter box number: FT-11

Number of traverse points: 6

% CO2 by volume (dry): 0.0

% CO by volume (dry): 0.0

Sample time (min)	Gas meter reading (cu. ft.)	Velocity head ΔP	ad actual Stack		Dry gas meter temp. (°F)		
0.0	897.928	(in. H2O)	(in. H2O)	(° F)	inlet	outle	
10.0	903.340	0.940	1.06	146	76	76	
20.0	908.800	0.940	1.02	168	77	76	
30.0	914.400	0.940	0.08	192	79	76	
40.0	919.800	0.940	0.96	210	81	77	
50.0	925.500	0.940	0.96	214	81	77	
60.0	931.038	0.940	0.96	216	82	78	
60.0	83.110	0.940	0.99	191	79	77	

Validated 37/91

FIELD DATA

Plant: R.R.A.D. Texarkana

Sampling location: Afterburner Inlet

Test time (start-stop): 1330-1430

Date: 2/27/91

Run number: AIPM-5

Sample type: Part/Metals Bar. press. (in. Hg): 29.97 Static press. (in. H20): -4.100

Filter number(s): 9010412 Stack inside dia. (in.): 5.00 Pitot tube coeff.: 0.84

Total H2O collected (ml): 114.8 % O2 by volume (dry): 21.0

Volume correction (cu. ft.): 0.000 Meter calibration factor: 0.980 Data interval (min.): 10.0

Nozzle dia, (in.): 0.194 Meter box number: FT-11

Number of traverse points: 6 % CO2 by volume (dry): 0.0 % CO by volume (dry): 0.0

Sample time (min)	Gas meter reading (cu. ft.)	Velocity head ΔP	Orlfice drop actual ΔH	Stack Temp.	Dry gas meter temp. (°F)	
0.0	931.815	(in. H2O)	(in. H2O)	(°F)	inlet	outle
10.0	937.440	0.940	1.01	176	78	77
20.0	942.940	0.940	0.97	205	78	77
30.0	948.400	0.940	0.94	228	80	78
40.0	953.820	0.940	0.91	246	82	79
50.0	959.400	0.940	0.90	256	84	80
60.0	964.720	0.940	0.90	262	85	80
60.0	32.905	0.940	0.94	229	81	79

Validated 3/7/91

FIELD DATA

Plant: R.R.A.D. Texarkana

Sampling location: Afterburner Inlet

Test time (start-stop): 0800-0900

Date: 2/28/91

Run number: AIPM-6

Sample type: Part/Metals

Bar. press. (in. Hg): 29.75 Static press. (in. H20): -5.300

Filter number(s): 9010487 Stack inside dia. (in.): 5.00

Pitot tube coeff.: 0.84 Total H2O collected (ml): 10.9 % O2 by volume (dry): 21.0 Volume correction (cu. ft.): 0.000 Meter calibration factor: 0.980 Data interval (min.): 10.0

Nozzle dia. (in.): 0.194 Meter box number: FT-11

Number of traverse points: 6 % CO2 by volume (dry): 0.0 % CO by volume (dry): 0.0

Sample time (min)	Gas meter reading (cu. ft.)	Velocity head ΔP	Orifice drop actual ΔH	Stack Temp.	Dry gas meter temp. (°F)	
0.0	965.043	(in. H2O)	(in. H2O)	_ (° F)	inlet	outle
10.0	970.760	1.000	1.02	200	73	72
20.0	976.700	1.000	1.12	141	73	72
30.0	982.370	1.000	1.08	159	74	72
40.0	988.420	1.000	1.07	168	79	73
50.0	994.000	1.000	1.07	171	79	74
6 0.0	999.855	1.000	1.07	170_	81	75
60.0	34.812	1.000	1.07	168	77	73

Validated 3/7/91

TEST RESULTS

Plant: R.R.A.D. Texarkana Sampling location: Afterburner Inlet Test date(s): 2/27/91

2/27/91

2/28/91

			AIPM-4	Run Numbers AIPM-5	AIPM-6	AVERAGE
Ø	Net time of test (min)	******	60.0	60.0	6 0.0	
NP	Net sampling points	******	6	6	6	
Y	Meter calibration factor		0.980	0.980	0.980	
Dn	Sampling nozzle diameter (in)		0.194	0.194	0.194	
Cp	Pitot tube coefficient	•••••	0.84	0.84	0.84	
ΔH	Average orifice pressure drop (in. H2O)	•••••	0.99	0.94	1.07	1.00
Vm.	Volume of dry gas sampled at meter conditions (cu. ft.)		33.110	32.905	34.812	33.609
Tm	Average gas meter temperature (°F)	•••••	78.0	79.8	74.8	77.5
Vmstd	Volume of dry gas sampled at standard conditions (scf)	*****	31.975	31.665	33.582	32.408
Vlc	Total H2O collected in impingers and silica gel (ml)	*****	16.1	114.8	10.9	47.3
Vwstd	Volume of water vapor at standard conditions (scf)		0.758	5.404	0.513	2.225
Bws	Percent moisture by volume, as measured Percent moisture by volume, at saturation Percent moisture by volume, used in calculations		2.32 65.38 2.32	14.58 100.00 14.58	1.50 39.74 1.50	6.13 68.37 6.13
Fmd	Mole fraction of dry gas	*****	0.977	0.854	0.985	0.939
%CO2	Percent CO2 by volume (dry)	*****	0.0	0.0	0.0	0.0
% O2	Percent O2 by volume (dry)	******	21.0	21.0	21.0	21.0
% СО	Percent CO by volume (dry)		0.0	0.0	0.0	0.0
%N2	Percent N2 by volume (dry)	•	79.0	79.0	79 .0	79.0
Md	Molecular weight - dry stack gas		28.84	28.84	28.84	28.84
Ms	Molecular weight - stack gas		28.59	27.26	28.68	28.18
Pbar	Barometric pressure (in. Hg)	•••••	29.97	29.97	29.75	29.90
Pei	Static pressure of stack gas (in. H2O)	*******	-4.100	-4.100	-5.300	-4.500
Ps	Stack pressure - absolute (in. Hg)		29.67	29.67	29.36	29.57
T.	Average stack gas temperature (°F)	•••••	191.0	228.8	168.2	196.0

Validated 3/7/91

TEST RESULTS

Plant:	R.R.A.D. Texarkana
Sampling location:	Afterburner lalet

Test date(s): 2/27/91

2/27/91

2/28/91

					3 		
			_	AIPM-4	Run Numberi AIPM-5	AIPM-6	AVERAGE
Vh	Average aquare	root of velocity head (in. H2O)	•••••	0.9695	0.9695	1.0000	0.9797
Vs	Average stack go	as velocity (feet/sec.)	•••••	61.00	64.25	62.03	62.43
As	Stack area (sq. ii	n.)	•••••	19.6	19.6	19.6	19.6
Q1	Actual stack flow	v rate (acím)	•••••	499	526	507	511
Quatd	Stack flow rate -	dry (scfm)	•••••	392	341	412	382
ISO	Percent isokinet	ic		90.3	102.7	90.2	84.4
Mn	Particulate	Mass of polluts If below detection limits, repla mass		55.5 0 55.5	103.2 0 103.2	112.9 0 112.9	
C•	Particulate	concentration	gr/decf	2.678E-02	5.029E-02	5.187 E -02	4.298E-02
Pmr	Particulate	emission rate	lb/h	9.000E-02	1.471E-01	1.833E-01	1.401E-01
Mn	Cadmium	Mass of pollute If below detection limits, repla mass		9.6 0 9.6	40.0 0 40.0	61.0 0 61.0	
Cs	Cadmium	concentration	μ g /m3	10.603	44.610	64.147	39.786
Pmr	Cadmium	emission rate	lb/h	1.557E-05	5.702E-05	9.904E-05	5.721E-05
Ma	Chromium	Mass of pollute If below detection limits, repla mass		27.4 0 27.4	120.4 0 120.4	65.4 0 65.4	
C•	Chromium	concentration	μg/m3	30.262	134.276	68.774	77.770
Pmr	Chromium	emission rate	lb/h	4.443E-05	1.716E-04	1.062E-04	1.074E-04

Validated 3/7/91

TEST RESULTS

Plant: R.R.A.D. Texarkana Sampling location: Afterburner Inlet Test date(s): 2/27/91

2/27/91

2/28/91

				I	Run Number		
			_	AIPM-4	AIPM-5	AIPM-6	AVERAGE
		Mara of pollutant	. =	20.0	602.0	212.0	
		If below detection limits, replace	0 with 1.	0	0	0	
Mn	Zinc	10 8.66	μg	20.0	602.0	212.0	
C•	Zinc	concentration	$\mu g/m3$	22.089	671.378	222.936	305.467
Pmr	Zinc	emission rate	lb/h	3.243E-05	8.582E-04	3.442E-04	4.116E-04
		Mass of pollutant		64.0	160.0	190.0	
Mn	Lead	If below detection limits, replace mass	U with 1.	0 64 .0	0 160 .0	0 1 90.0	
Ca .	Lead	concentration		70.684	178.439	199,801	149.641
	Lead	Concentration	μg/m3	10.04	178.439	188.901	145.041
Pmr	Lead	emission rate	lb/h	1.038E-04	2.281E-04	3.085E-04	2.135E-04
		Mass of pollutant		0.0	0.0	0.0	
Mn	<pollutant></pollutant>	If below detection limits, replace	0 with 1.	0 0.0	0 0.0	0 0. 0	
	_		•				0.000
C•	<pollutant></pollutant>	concentration	gr/dsci	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Pmr	<pollutant></pollutant>	emission rate	lb/h	0.000E+00	0.000E+00	0.000E+00	0.000E+00
		Mass of pollutant	l =	0.0	0.0	0.0	
34-	11A. A.	If below detection limits, replace		0	0	0	
Mn	<pollutant></pollutant>	m 2.56	mg	0.0	0.0	0.0	
C•	<pollutant></pollutant>	concentration	gr/dscf	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Pmr	cpollutant>	emission rate	lb/h	0.000E+00	0.000E+00	0.000E+00	0.000E+00
		Mass of pollutan	t =	0.0	0.0	0.0	
	••	If below detection limits, replace	0 with 1.	0	0	0	
Mn	<pollutant></pollutant>	m a44	mg	0.0	0.0	0.0	
C	<pollutant></pollutant>	concentration	gr/dscf	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Pmr	<pollutant></pollutant>	emission rate	lb/h	0.000E+00	0.000E+00	0.000E+00	0.000E+00

Validated 3/7/91

FIELD DATA

Plant: R.R.A.D. Texarkana

Sampling location: Afterburner Inlet

Test time (start-stop): 0945-1045

Date: 2/28/91

Run number: AIPM-7

Sample type: Part/Metals

Bar. press. (in. Hg): 29.75

Static press. (in. H20): -5.300 Filter number(s): 9010533

Stack inside dia. (in.): 5.00

Pitot tube coeff.: 0.84

Total H2O collected (ml): 7.3

% O2 by volume (dry): 21.0

Volume correction (cu. ft.): 9.000

Meter calibration factor: 0.980

Data interval (min.): 10.0

Nozzle dia. (in.): 0.194

Meter box number: FT-11

Number of traverse points: 6

% CO2 by volume (dry): 0.0

% CO by volume (dry): 0.0

Sample time (min)	Gas meter reading (cu. ft.)	Velocity head ΔP	Orifice drop actual ΔH	Stack Temp.	Dry gas temp.	
0.0	0.129	(in. H2O)	(in. H2O)	(°F)	inlet	outlet
10.0	5.630	1.000	0.95	250	78	77
20.0	11.370	1.000	1.01	210	78	76
30.0	17.700	1.000	1.03	200	79	77
40.0	23.300	1.000	1.03	190	81	77
50.0	28.940	1.000	1.08	169	83	78
60.0	34.900	1.000	1.08	168	84	78
60.0	34.771	1.000	1.03	198	81	77

Validated 37 91

FIELD DATA

Plant: R.R.A.D. Texarkana

Sampling location: Afterburner Inlet

Test time (start-stop): 1153-1253

Date: 2/28/91

Run number: AIPM-8

Sample type: Part/Metals

Bar. press. (in. Hg): 29.75 Static press. (in. H20): -5.300

Filter number(s): 9010532

Stack inside dis. (in.): 5.00

Pitot tube coeff.: 0.84 Total H2O collected (ml): 10.2

% O2 by volume (dry): 21.0

Volume correction (cu. ft.): 0,000

Meter calibration factor: 0.980 Data interval (min.): 10.0

Nozzle dia. (in.): 0.194 Meter box number: FT-11

Number of traverse points: 6 % CO2 by volume (dry): 0.0

% CO by volume (dry): 0.0

Sample time (min)	Gas meter reading (cu. ft.)	Velocity head ΔP	Orifice drop sctual Sta ΔH Ten			s meter	
0.0	46.023	(in. H2O)	(in. H2O)	(°F)	inlet	outle	
10.0	52.900	1.000	1.27	74	80	78	
20.0	58.450	1.000	0.96	249	81	78	
30.0	64.100	1.000	0.95	253	83	78	
40.0	70.250	1.000	0.95	257	85	79	
50.0	75.310	1.000	0.95	26 0	87	80	
60.0	80.973	1.000	0.95	260	87	81	
60.0	34.950	1.000	1.01	226	84	79	

Validated 3/76/1

TEST RESULTS

Plant: R.R.A.D. Texarkana Sampling location: Afterburner Inlet

Test date(s): 2/28/91 2/28/91 1/1/04

				Run Numbers	•	AS TEXTS A CORE
		•	AIPM-7	AJPM-8	<u> </u>	AVERACE
Ø	Net time of test (min)	******	60.0	6 0.0	0.0	
NP	Net sampling points	*******	6	6	6	
Y	Meter calibration factor	******	0.980	0.980	0.000	
Dn	Sampling nozzle diameter (in)	*****	0.194	0.194	0.000	
Сp	Pitot tube coefficient	•••••	0.84	0.84	0.00	
ΔΗ	Average orifice pressure drop (in. H2O)	•••••	1.03	1.01	#DIV/01	DIVÆ
Vm	Volume of dry gas sampled at meter conditions (cu. ft.)	*****	34.771	34.950	0.000	23.249
Tm	Average gas meter temperature (°F)	******	78.8	81.4	#DIV/01	ODIVA
Vmstd	Volume of dry gas sampled at standard conditions (scf)	******	33.285	33.295	#D[V/01	ODEVINE
· Vlc	Total H2O collected in impingers and silica gel (ml)	•••••	7.3	10.2	0.0	5.8
Vwstd	Volume of water vapor at standard conditions (scf)	•••••	0.344	0.480	0.000	0.275
Bws	Percent moisture by volume, as measured Percent moisture by volume, at saturation Percent moisture by volume, used in calculations	•••••	1.02 76.33 1.02	1.42 100.00 1.42	#DIV/01 #DIV/01 #DIV/01	#DIV/M #DIV/M #DIV/M
Fmd	Mole fraction of dry gas	*****	0.990	0.986	#D[V/01	øDfV/et
%CO2	Percent CO2 by volume (dry)		0.0	0.0	0.0	0.0
%O2	Percent O2 by volume (dry)	•••••	21.0	21.0	0.0	14.0
% СО	Percent CO by volume (dry)	******	0.0	0.0	0.0	6.0
%N2	Percent N2 by volume (dry)	******	79.0	79.0	100.0	86.0
Md	Molecular weight - dry stack gas	******	28.84	28.84	28.00	25.55
Ms	Molecular weight - stack gas	*******	28.73	28.69	#DIV/01	* DIVA
Pbar	Barometric pressure (in. Hg)	*****	29.75	29.75	0.00	19.98
Psi	Static pressure of stack gas (in. H2O)	******	-5.300	-5.300	0.000	-3.533
P•	Stack pressure - absolute (in. Hg)	******	29.36	29.36	0.00	19.57
T•	Average stack gas temperature (°F)	•••••	197.8	225.5	#D[V/01	*DIVAL

Validated 3/7/91

TEST RESULTS

Plant: R.R.A.D. Texarkana	Test date(s):	2/28/91	2/28/91	1/1/04
Sampling location: Afterburner Inlet				

			AIPM-7 Run Numbers		0	AVERAGE	
			-	AIF,M·1	AIFW-6		AVERAGE
Vh	Average square root of velocity head (in. H2O)			1.0000	1.0000	0.0000	0 0.6667
V•	Average stack gas	velocity (feet/sec.)	******	63.42	64.79	#DIV/01	#PIV/0!
As	Stack area (sq. in.))	•••••	19.6	19.6	19.6	19.6
Q.	Actual stack flow a	rate (acfm)	•••••	519	530	#DTV/01	#D [∀/0!
Quald	Stack flow rate - d	ry (scfm)	•••••	404	395	#DIV/0!	●DTV /0!
iso	Percent isokinetic		•••••	91.1	93.3	#DIV/01	•DIV/0!
					· · · · · · · · · · · · · · · · · · ·		
		Mass of pollute If below detection limits, repla		56.0 0	36.4 0	0	
Ma	Particulate	mass	mg	56.0	36.4	0.0	
Cs	Particulate	concentration	gr/dscf	2.596E-02	1.687E-02	#DIV/01	●DIV /0!
Pmr	Particulate	emission rate	lb/h	9.000E-02	5.710E-02	●DIV /0!	●DIV /01
		Mass of pollute	ant =	160.0	44.0	0.0	
34	Cadmium	If below detection limits, repla	oe 0 with 1.	0	0	0	
Mn	Cadmium	m 8 a 6	μ g	160.0	44.0	0.0	
C.	Cadmium	concentration	$\mu g/m3$	169.756	46.669	●DIV/0!	●DIV /0!
Pmr	Cadmium	emission rate	lb/h	2.571E-04	6.902E-05	●DIV /0!	#DIV/01
		Mass of pollute	ant ⊭	75.4	9.4	0.0	
Mn	Chromium	If below detection limits, repla		0 75.4	0 9.4	0 0. 0	
C.	Chromium	concentration	μ g /m3	79.997	9.970	#D[V/0!	●DIV /01
Pmr	Chromium	emission zate	lb/h	1.212E-04	1.475E-05	●DIV /0!	#DIV/0!

Validated 3/7/91

TEST RESULTS

Plant: R.R.A.D. Texarkana Sampling location: Afterburner Inlet

Test date(s): 2/28/91

2/28/91

1/1/04

		Run Numbers					A AIRPACE		
			-	AIPM-7	AIPM-8		AVERAGE		
		Mass of pollutant		612.0 0	82.0 0	0.0			
Mn	Zinc	If below detection limits, replace mass	μ g	612.0	82.0	0.0			
C•	Zinc	concentration	μ g /m3	649.315	86.975	•DIV /0!	#DIV/01		
Pmr	Zinc	emission rate	lb/h	9.836E-04	1.286E-04	●DIV/01	●DIV/0!		
		Mass of pollutant		290.0	110.0	0.0			
Mn	Lead	If below detection limits, replace mass	0 with 1. µg	0 290.0	0 110.0	0 0 .0			
Co	Lead	concentration	μg/m3	307.682	116.673	#DIV/01	#DIV/01		
, Pmr	Lead	emission rate	lb/h	4.661E-04	1.726E-04	#DIV/0!	●DIV/0!		
-									
		Mass of pollutant		0.0	0.0	0.0			
Mn	<pollutant></pollutant>	If below detection limits, replace mass	mg	0 0.0	0 0.0	0. 0			
C•	<pollutant></pollutant>	concentration	gr/dscf	0.000E+00	0.000E+00	●DIV /01	#DTV/0!		
Pmr	<pollutant></pollutant>	emission rate	lb/h	0.000E+00	0.000E+00	●DIV /01	●DIV/0!		
		W 6 N		0.0	• •				
		Mass of pollutant If below detection limits, replace		0.0 C	0.0 0	0.0 0			
Mn	<pollutant></pollutant>	mass	mg	0.0	0.0	0.0			
C.	<pre><pollutant></pollutant></pre>	concentration	gr/dscf	0.000E+00	0.000E+00	#DIV/01	#DIV/0!		
Pmr	<pollutant></pollutant>	emission rate	ll√h	0.000E+00	0.000E+00	#DIV /01	#DIV/01		
		Marrie David		0.0	• •				
		Mass of pollutant If below detection limits, replace		0.0 0	0.0 0	0.0 0			
Мь	<pre><pollutant></pollutant></pre>	m a.se	mg	0.0	0.0	0.0			
C•	<pollutant></pollutant>	concentration	gr/decf	0.000E+00	0.000E+00	#DIV /0!	#DIV/0!		
Pmr	ollutant>	emission rate	lb/h	0.000E+00	0.000E+00	●DIV /0!	●DIV /0!		

Validated 3.7/91

FIELD DATA

Plant: R.R.A.D. Texarkana

Sampling location: Venturi Inlet Test time (start-stop): 0923-1123 Date: 2/26/91 Run number: SIPM-1

Sample type: Part Metals

Bar. press. (in. Hg): 30.06 Static press. (in. H20): -8.993 Filter number(s): 9070054 Stack inside dia. (in.): 6.00

Pitot tube coeff.: 0.84 Total H2O collected (ml): 385.1 % O2 by volume (dry): 20.0 Volume correction (cu. ft.): 0.000 Meter calibration factor: 0.974 Data interval (min.): 20.0 Nozzle dia. (in.): 0.171

Meter box number: FT-4
Number of traverse points: 6
% CO2 by volume (dry): 1.0
% CO by volume (dry): 0.0

Sample time (m/n)	Gas meter reading (cu. ft.)	Velocity head ΔP	Orifice drop actual ΔH	Stack Temp.	Dry gas meter temp. (°F)	
0.0	726.931	(in. H2O)	(ln. H2O)	(° F)	inlet	outle
20.0	740.520	1.900	1.64	80	66	68
40.0	752.600	1.500	1.29	84	68	68
6 0.0	766.620	1.900	1.61	100	73	72
80.0	780.550	2.300	1.83	138	78	74
100.0	797.900	3.500	2.79	139	80	76
120.0	815.669	3.400	2 72	138	82	77
120.0	88.738	2.417	1.98	113	75	73

Validated 37/91

FIELD DATA

Plant: R.R.A.D. Texarkana

Sampling location: Venturi Inlet

Date: 2/26/91 Run number: SIPM-2

Test time (start-stop): 1427-1527

Sample type: Part/Metals

Bar. press. (in. Hg): 30.06 Static press. (in. H20): -5.900

Filter number(s): 9070063 Stock inside dia. (in.): 6.00

Pitot tube coeff.: 0.84 Total H2O collected (ml): 196.0

% O2 by volume (dry): 20.0

Volume correction (cu. ft.): 0.000 Meter calibration factor: 0.974

Data interval (min.): 10.0

Nozzle dia. (in.): 0.171 Meter box number: FT-4

Number of treverse points: 6

% CO2 by volume (dry): 1.0 % CO by volume (dry): 0.0

Sample time (min)	Gas meter reading (cu. ft.)	Velocity head ΔP	Orifice drop actual ΔH	Stack Temp.	Dry gas meter temp. (°F)	
0.0	815.965	(in. H2O)	(in. H2O)	(°F)	inlet	outle
10.0	823.840	2.900	2.16	98	77	75
20.0	831.460	2.700	1.99	10€	78	75
3 0.0	838.370	2.100	1.58	97	80	76
40.0	846.750	3.700	2.63	129	81	77
5 0.0	856.500	4.900	3.46	133	83	78
60.0	866.432	4.800	3.40	134	85	79
60.0	50.447	3.517	2.54	116	81	77

Validated 3/7/91

FIELD DATA

Plant: R.R.A.D. Texarkana

Sampling location: Venturi Inlet

Test time (start-stop): 0807-0907

Date: 2/27/91

Run number: SIPM-3

Sample type. Part/Metals

Bar. press. (in. Hg): 29.97 Static press. (in. H20): -5.900 Filter number(s): 9070085 Stack inside dia. (in.): 6.00

Pitot tube coeff.: 0.84 Total H2O collected (ml): 163.9 % O2 by volume (dry): 20.0

Volume correction (cu. ft.): 0.000 Meter calibration factor: 0.974 Data interval (min.): 10.0 Nozzle dia. (in.): 0.171 Meter box number: FT-4 Number of traverse points: 6

% CO2 by volume (dry): 1.0 % CO by volume (dry): 0.0

Sample time (min)	Gas meter reading (cu. ft.)	Velocity head ΔP	head actual Stack		Dry gas temp	
0.0	866.588	(in. H2O)	(in. H2O)	(° F)	inlet	outle
10.0	873.850	2.200	1.65	99	76	73
20.0	882.150	3.000	2.33	80	76	72
30.0	889.500	2.500	1.86	105	78	72
40.0	897.620	3.400	2.43	128	79	72
50.0	907.200	4.500	3.22	128	8 0	74
60.0	916.809	4.500_	3.22	128	82	_75
60.0	50.221	3.350	2.45	111	78	73

Vehidated 3/7/91

TEST RESULTS

Plant: R.R.A.D. Texarkana Test date(s): 2/26/91 2/26/91 2/27/91 Sampling location: Venturi Inlet

			Run Numbers			
			SIPM-1	SIPM-2	SIPM-3	AVERAGE
Ø	Net time of test (min)	******	120.0	60.0	60.0	
NP	Net sampling points	******	6	6	6	
Y	Meter calibration factor	•••••	0.974	0.974	0.974	
Dn	Sampling nozzle diameter (in)	•••••	0.171	0.171	0.171	
Ср	Pitot tube coefficient	•••••	0.84	0.84	0.84	
ΔH	Average orifice pressure drop (in. H2O)	******	1.98	2.54	2.45	2.32
Vm	Volume of dry gas sampled at meter conditions (cu. ft.)	******	88.733	50.447	50.221	63.1 35
Tm	Average gas meter temperature (°F)		73.5	78.7	75.7	75.9
Vmstd	Volume of dry gas sampled at standard conditions (scf)		86.356	48.688	48.586	61.210
Vlc	Total H2O collected in impingers and silica gel (ml)	•••••	385 1	196.0	163.9	248.3
Vwstd	Volume of water vapor at standard conditions (sef)	•••••	18.127	9.226	7.715	11.689
Bws	Percent moisture by volume, as measured	•••••	17.35	15.93	13.70	15.66
2	Percent moisture by volume, at saturation	•••••	9.59	10.44	9.12	9.72
	Percent moisture by volume, used in calculations	******	9 .59	10.44	9.12	9.72
Fmd	Mole fraction of dry gas	····	0.904	0.896	0.909	0.903
%CO2	Percent CO2 by volume (dry)		1.0	1.0	1.0	1.0
%O2	Percent O2 by volume (dry)		20.0	20.0	20.0	20.0
%C0	Percent CO by volume (dry)	******	0.0	0.0	0.0	0.0
%N2	Percent N2 by volume (dry)		79.0	79.0	79.0	79.0
Md	Molecular weight - dry stack gas	******	28.96	28.96	28.96	28.96
Me	Molecular weight - stack gas		27.91	27.82	27.96	27.90
Pbar	Barometric pressure (in. Hg)		30.06	30.06	29.97	30.03
Pei	Static pressure of stack gas (in. H2O)	******	-5.900	-5.900	-5.900	-5.900
Ps	Stack pressure - absolute (in. Hg)	******	29.63	29.63	29.54	29.60
Ts.	Average stack gas temperature (°F)	••••••	113.2	116.2	111.3	113.6

Vehidated 3/7/91

TEST RESULTS

Plant: R.R.A.D. Texarkana Sampling location: Venturi Inlet

Test date(s): 2/26/91

2/26/91

2/27/91

					Run Number		
			-	SIPM-1	SIPM-2	SIPM-3	AVERAGE
Vh	Average square i	root of velocity head (in. H2O)	******	1.5355	1.8539	1.8138	1.7344
V•	Average stack ga	us velocity (feet/sec.)	******	91.80	111.32	108.34	103.82
As .	Stack area (sq. ii	n.)	•••••	28.3	28.3	28.3	28.3
Q#	Actual stack flow	rate (acfm)	******	1082	1311 1066	1276 1058	1223 1005
Qestd	Stack flow rate .	dry (scfm)	*****	892			
180	Percent isokinetic			108.7	99.9	99.2	102.6
		Mass of pollute	int =	17.8	7.5	13.2	
Mn	Particulate	If below detection limits, repla		0 17.8	0 7.5	0 13.2	
C•	Particulate	concentration	gr/dscf	3.180E-03	2.377E-03	4.192E-03	3.250E-03
Pmr	Particulate	emission rate	lb/h	2.432E-02	2.171E-02	3.802E-02	2.802E-02
		Mass of pollute	ant =	11.6	11.6	5.1	
Mn	Cadmium	If below detection limits, repla	.ce θ with 1. μg	0 11.6	0 11. 6	0 5.1	
C ₀	Cadmium	concentration	μ g /m3	4.744	8.414	3.707	5.621
Pmr	Cadmium	emission rate	lb/h	1.585E-05	3.358E-05	1.469E-05	2.137E-08
		Mass of pollute If below detection limits, repla		22.4 0	3 .0	3.0 1	
Mn	Chromium	mass	μg	22.4	<3.0	<2.0	
C•	Chromium	concentration	μ g/m 3	9.160	<2.176	€.181	4.506
Pmr	Chromium	emission rate	ll/h	3.060E-05	<8.685E-06	<8.641 E-06	1.598E-05

Validated 3/7/91

TEST RESULTS

Plant: R.R.A.D. Texarkana
Sampling location: Venturi Inlet

Test date(s): 2/26/91

6/91 2/26/91

2/27/91

				1	Ruu Numberi	1	
				SIPM-1	SIPM-2	SIPM-3	AVERAGE
		Mass of pollutant	z	5.0	5.0	5.0	
		If below detection limits, replace 0	with 1.	1	1	1	
Mn	Zinc	mas:	μg	<5.0	<5.0	<5.0	
C ₀	Zinc	concentration	$\mu g/m3$	<2.045	<3.627	<3.634	<3.102
Pmr	Zinc	emission rate	lb/h	<8.830E-06	<1.448E-05	<1.440E-05	<1.190E-05
		Mass of pollutant If below detection limits, replace (# \ich 1	39.6 0	12.6 0	9.6 0	
Mn	Lead	mass	μg	39.6	12.6	9.6	
C ₆	Lead	concentration	μ g /m3	16.194	9.139	6.978	10.770
Pmr	Lead	emission rate	lb/h	5.410E-05	3.648E-05	2.765E-05	3.941E-05
Mn Cs	<poliutant></poliutant>	Mass of pollutant If below detection limits, replace (mass concentration	mg	0.0 0 0.0	0.0 0 0.0 0.000E+00	0.0 0 0.0	0.000E+00
	•		•				0.0002400
Pmr	ديماiut <u>an</u> t>	emission rate	1b/r.	0.000E+00	0.000E+00	0.000	0.000E+00
Mn	<pollutant></pollutant>	Mass of pollutant If below detection limits, replace (0.0 0 0.0	0.0 0 0.0	0.0 0 0.0	
Co	ollutant>	concentration	gr/decf	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Pmr	cpollutant>	emission rate	lb/h	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Mn	<pollutant></pollutant>	Mass of pollutant If below detection limits, replace (0.0 0 0.0	0.0 0 0.0	0.0 0 0.0	
C.	<pre>pollutant></pre>	concentration	gr/dscf	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Pmr	«pollutant»	emission rate	lb/h	0.000E+00	ΰ.0⊍0E+00	0.000E+00	0.000E+00

Validated 37/91

FIELD DATA

Plant: R.R.A.D. Texarkana

47.458

3.083

Sampling location: Venturi Inlet

Date: 2/27/91 Run number: SIPM-4

Test time (start-stop): 1037-1137

Sample type: Part/Metals

Bar. press. (in. Hg): 29.97 Static press. (in. H20): -5.900 Filter number(s): 9070038

Stack inside dia. (in.): 6.00

Pitot tube coeff.: 0.84 Total H2O collected (ml): 155.9 % O2 by volume (dry): 20.0

60.0

Volume correction (cu. ft.): 0.000 Meter calibration factor: 0.974 Data interval (min.): 10.0 Nozzle dia. (in.): 0.171

Meter box number: FT-4 Number of traverse points: 6 % CO2 by volume (dry): 1.0

% CO by volume (dry): 0.0

116

80

76

Sample time (min)	reading hea (cu.ft.) ΔF	Velocity head ΔP	Orifice drop sctual ΔH	Stack Temp.	Dry gas meter temp. (°F)	
0.0	916.936	(in. H2O)	(in. H2O)	(° F)	inlet	outlet
10.0	92 3.550	2.000	1.50	101	79	75
20.0	931.110	2.700	2.07	91	79	74
30.0	937.750	2.000	1.45	120	80	75
40.0	946.840	3.300	2.37	.28	81	76
50.0	955.000	4.200	3.01	129	81	77
60.0	964.394	4.300	3.09	129	82	78

2.25

Validated 37/91

FIELD DATA

Plant: R.R.A.D. Texarkana

49.175

3.233

Sampling location: Venturi Inlet

Test time (start-stop): 1329-1429

Date: 2/27/91

Run number: SIPM-5

Sample type: Part/Metals

Bar. press. (in. Hg): 29.97 Static press. (in. H20): -5.900

Filter number(s): 9010500 Stack inside dia, (in.): 6.00

Pitot tube coeff.: 0.84 Total H2O collected (ml): 183.7 % O2 by volume (dry): 20.0

60.0

Volume correction (cu. ft.): 0.000

Meter calibration factor: 0.974
Data interval (min.): 10.0

Nozzle dia. (in.): 0.171 Meter box number: FT-4

123

81

77

***: '::'...er of traverse points: 6
% CO2 by volume (dry): 1.0
% CO by volume (dry): 0.0

Orifice drop Velocity Sample Gas meter time reading head actual Stack Dry gas meter ΔН (min) (cu.ft.) $\Delta \mathbf{P}$ Temp. temp. (°F) (in. H2O) (in. H2O) (°F) outlet 0.0 964.628 inlet 10.0 972.200 2.700 2.05 97 79 75 20.0 979.730 2.600 1.92 114 79 76 2.600 1.88 76 30.0 987.200 125 80 40.0 996.100 3.500 2.50 133 82 77 32 1004.600 3.900 2.79 78 50.0 133 60.0 1013,803 4.100 2.94 133 84 79

2.30

Validated 3/7/91

TEST RESULTS

Plant: R.R.A.D. Texarkana Sampling location: Venturi Inlet Test date(a: 2/27/91

91 2/27/91

			Run Numbers			
			SIPM-4	8IPM-5	0	AVERAGE
Ø	Net time of test (min)	******	60.0	60.0	0.0	
NP	Net sampling points	*******	6	6	6	
Y	Meter calibration factor		0.974	0.974	0.000	
Dn	Sampling nozzle diameter (in)	***	0.171	0.171	0.000	
Ср	Pitot tube coefficient	******	0.84	0.84	0.84	
ΔH	Average orifice pressure drop (in. H2O)	******	2.25	2.35	#DIV/01	●DIV /0!
Vm	Volume of dry gas sampled at meter conditions (cu. ft.)	******	47.458	49.175	0.000	32.211
Tm	Average gas meter temperature (°F)	******	78.1	78.9	#DIV/0i	●DIV /0!
Vmstd	Volume of dry gas sampled at standard conditions (scf)	******	45.684	47.275	#DIV/0!	●DIV /0!
Vlc	Total H2O collected in impingers and silica gel (ml)		155.9	183.7	0.0	113.2
Vwstd	Volume of water vapor at standard conditions (sef)	•••••	7.338	8.647	0.000	5.328
Bws	Percent moisture by volume, as measured	******	13.84	15.46	#DIV/01	#DIV/0!
	Percent moisture by volume, at saturation	•••••	10.52	12.48	#DIV/01	#DTV/01
	Percent moisture by volume, used in calculations	*	10.52	12.48	#DIV/01	DIV/01
Fmd	Mole fraction of dry gas	•	0.895	0.875	#DIV/01	●DIV/01
%CO2	Percent CO2 by volume (dry)	*******	1.0	1.0	0.0	0.7
%02	Percent O2 by volume (dry)	•••••	20.0	20.0	0.0	13.3
%СО	Percent CO by volume (dry)	******	0.0	0.0	0.0	0.0
%N2	Percent N2 by volume (dry)	*******	79.0	79.0	100.0	86.0
Md	Molecular weight - dry stack gas		28.96	28.96	28.00	28.64
Ms	Molecular weight - stack gas		27.81	27.59	#DIV/0i	●DIV/0i
Pbar	Barometric pressure (in. Hg)		29.97	29.97	0.00	19.98
P∎i	Static pressure of stack gas (in, H2O)		-5.900	-5.900	0.000	-3.933
Pe	Stack pressure - absolute (in. Hg)	•••••	29.54	29.54	0.00	19.69
T•	Average stack gas temperature (°F)		116.3	122.5	#DIV/01	#DIV/0!

Velidated 3/7/91

TEST RESULTS

Plant: R.R.A.D. Texarkana
Sampling location: Venturi Inlet

Test date(s): 2/27/91

2/27/91

				SIPM-4	lun Numbers SIPM-5	0	AVERAGE
Vh	Average square	root of velocity head (in. H2O)	•••••	1.7352	1.7898	0.0000	1.1750
V•	Average stack ge	as velocity (feet/sec.)	••··	104.38	108.66	#DIV/01	#D1V/01
As	Stack area (sq. i	n.)	******	28.3	28.3	28.3	28.3 •DIV/01
Qs	Actual stack flov	v rate (acfm)	•••••	1230	1280 1002	#DIV/0!	
Qnetd	Stack flow rate -	dry (scfm)	•••••	995			●DIV /0!
iso	Percent isokinet	ic	······	97.8	100.2	#D TV /01	#DIV/0!
		Mary C. allian		11.6	6.7		
		Mass of pollute If below detection limits, repla		11.6 0	0.7	0	
Mn	Particulate	maas	mg	11.6	6.7	0.0	
C•	Particulate	concentration	gr/dscf	3.918E-03	2.187E-03	#DIV/0!	#DIV/0!
Pmr	Particulate	emission rate	lb/h	3.342E-02	1.879E-02	●DIV /0!	●DIV/0!
		Mass of pollute	ant =	4.2	5.9	0.0	
		If below detection limits, repla	iœ 0 with 1.	0	0	0	
Mn	Cadmium	m 855	μ g	4.2	5.9	0.0	
Cı	Cadmium	concentration	μ g/m 3	3.247	4.407	●DIV/0:	DIV/0!
Pmr	Cadmium	emission rate	lb/h	1.210E-05	1.655E-05	●DIV /0!	#DIV/0!
		Mass of pollute		3.0	19.4	0.0	
Mn	Chromium	If below detection limits, repla mass	ice 0 with 1.	1 <3 .0	0 19.4	0 0.0	
Ce	Chromium	concentration	μ g/m 3	<2.319	14.492	#DIV/0!	#DIV/0!
Pmr	Chromium	emission rate	lb/h	<8.643E-06	5.441E-05	#DIV /0!	#DIV/01

Validated 3/7/91

TEST RESULTS

Plane: R.R.A.D. Texarkana Sampling location: Venturi Inlet

Test date(s):

2/27/91

2/27/91

					Run Numbers		
			-	SIPM-4	SIPM-5	0	AVERAG
		Mass of pollutant	=	5.0	62.0	0.0	
		If below detection limits, replace (1	0	0	
Mn	Zinc	mass	μ g	<5.0	62.0	0.0	
Cs	Zinc	concentration	$\mu g/m3$	<3.865	46.314	DIV/01	#DIV /0!
Pmr	Zinc	emission rate	lb/h	<1.441E-05	1.739E-04	●DTV /01	♦DTV /01
		Mass of pollutant		2.0	12.6	0.0	
Mn	Lead	If below detection limits, replace (0 2.0	0 12.6	0 0.0	
WIII	Lead	TI Bee	μg	2.0	12.0	0.0	
C•	Lead	concentration	$\mu g/m3$	1.546	9.412	#DIV/01	●DIV/01
Pmr	Load	emission rate	lb/h	5.762E-06	3.534E-05	●DIV /01	●DIV/01
		Mass of pollutant		0.0	0.0	0.0	
Mn		If below detection limits, replace		0 0.0	0 0.0	0 0.0	
MITT	<pre><pollutant></pollutant></pre>	mass	mg	0.0	0.0	U.U	
Cs.	<pollutant></pollutant>	concentration	gr/dscf	0.000E+00	0.000E+00	#DIV /0!	•DIV /0!
Pmr	<pollutant></pollutant>	emission rate	lb/h	0.000E+00	0.000E+00	●DIV /01	#DIV /01
		Mass of sollutant	_	0.0	0.0	0.0	
		Mass of pollutant If below detection limits, replace		0.0	0.0	0.0	
Mn	ollutant>	mass.	mg	0.0	0.0	0.0	
C.	cpollutant >	concentration	gr/dscf	0.000E+00	0.000E+00	•DIV /01	#DIV/01
Pmr	ollutants	emission rate	lb/h	0.000E+00	0.000E+00	●DIV /01	#DIV /0!
		Mass of pollutant If below detection limits, replace		0.0 0	0.0 Q	0.0 0	
Mn	cpollutant>	mass	mg	0.0	0.0	0.0	
C.	cpollutant>	concentration	gr/decf	00+ 3 000.c	0.000E+00	#DIV/0!	#DIV/0!
Pmr	<pollutant></pollutant>	emission rate	lb/h	0.000E+00	0.000E+00	●DTV /01	#DIV/01

FIELD DATA

Plant: R.R.A.D.-Texarkana

Sampling location: Venturi Outlet

Test time (start-stop): 0922-1142

Date: 2/26/91

Run number: SOPM-1

Sample type: Part/Metals

Bar. press. (in. Hg): 30.06 Static press. (in. H20): 0.050

Filter number(s): 9070069, 9070053

Stack inside dia. (in.): 9.00 Pitot tube coeff.: 0.84

Total H2O collected (ml): 999.0 % O2 by volume (dry): 20.0

Volume correction (cu. ft.): 0.081 Meter calibration factor: 0.992 Data interval (min.): 15.0

Nozzie dia. (in.): 0.252

Meter box number: FT-2 Number of traverse points: 7

% CO2 by volume (dry): 1.0 % CO by volume (dry): 0.0

Sample time (min)	Gas meter reading (cu. ft.)	Velocity head ΔP	Orifice drop actual ΔH	Stack Temp.	Dry gas temp	
0.0	829.154	(in. H2O)	(in. H2O)	(°F)	inlet	outle
15.0	837.170	0.260	0.67	123	73	73
3 0.0	846.596	0.350	0.89	134	78	74
45.C	855.740	0.340	0.87	134	78	77
6 0.0	864.735	0.310	0.80	131	84	77
7 5.0	874.390	0.320	0.82	132	82	80
9 0.0	883.010	0.330	0.86	131	87	80
105.0	892.157	0.340	0.88	131	90	80
105.0	63.003	0.321	0.83	131	82	77

FIELD DATA

Plant: R.R.A.D.-Texarkana

Sampling location: Venturi Outlet

Test time (start-stop): 1430-1535

Date: 2/26/91

Run number: SOPM-2

Sample type: Part/Metals

Bar. press. (in. Hg): 30.06

Static press. (in. H20): 0.050

Filter number(s): 9070066

Stack inside dia. (in.): 9.00

Pitot tube coeff.: 0.84 Total H2O collected (ml): 74.8

% O2 by volume (dry): 20.0

Volume correction (cu. ft.): 0.000

Meter calibration factor: 0,992

Data interval (min.): 7.5

Nozzle dia. (in.): 0,252

Meter box number: FT-2

Number of traverse points: 8

% CO2 by volume (dry): 1.0

% CO by volume (dry): 0.0

Sample time (min)	Gas meter reading (cu. ft.)	Velocity head ΔP	Orifice drop actual ΔH	Stack Temp.	Dry gas meter temp. (°F)		
0.0	892.532	(in H2O)	(in. H2O)	(°F)	inlet	outle	
7.5	895.610	0.400	0.49	121	80	80	
15.0	900.300	0.460	0.57	119	82	79	
22 .5	903.650	0.440	0.53	132	85	80	
30.0	907.628	0.310	0.38	133	88	80	
37.5	909.890	0.300	0.37	126	85	80	
45.0	913.640	0.340	0.42	126	85	80	
52.5	917.210	0.410	0.52	127	89	82	
60.0	920.633	0.380_	0.47	127	92	83	
60.0	28.101	0.380	0.47	126	86	81	

FIELD DATA

Plant: R.R.A.D.-Texarkana

Sampling location: Venturi Outlet

Test time (start-stop): 0808-0914

Date: 2/27/91

Run number: SOPM-3

Sample type: Part/Metals

Bar. press. (in. Hg): 29.97 Static press. (in. H20): 0.050

Filter number(s): 9070093 Stack inside dia. (in.): 9.00

Total H2O collected (ml): 93.5

Pitot tube coeff.: 0.84

% O2 by volume (dry): 20.0

Volume correction (cu. ft.): 0.000

Meter calibration factor: 0.992 Data interval (min.): 7.5

Nozzle dia. (in.): 0.252 Meter box number: FT-2

Number of traverse points: 8

% CO2 by volume (dry): 1.0

% CO by volume (dry): 0.0

Sample time (min)	Gas meter reading (cu. ft.)	Velocity head ΔP	Orifice drop actual ΔH	Stack Temp.	Dry gas temp	
0.0	920.771	(in. H2O)	(in. H2O)	(° F)	inlet	outle
7.5	925.150	0.330	0.78	130	75	75
15.0	929.730	0.350	0.82	134	77	75
22.5	934.480	0.370	0.88	131	80	75
30.0	938.437	0.400	0.96	123	83	75
37.5	944.100	0.350	0.85	121	82	76
45.0	948.810	0.360	0.88	121	87	77
52.5	953.760	0.400	0.98	120	88	78
60.0	959.167	0.430	1.05	120	90	79
60.0	38.396	0.374	0.90	125	83	76

TEST RESULTS

Plant: R.R.A.D. Texarkana
Sampling location: Venturi Outlet

Test date(s): 2/26/91

26/91 2/26/91

2/27/91

	· -			Run Numbers		
			SOPM-1	SOPM-2	SOPM-3	AVERAGE
ø	Net time of test (min)	******	105.0	60.0	60.0	
NP	Net sampling points	•••••	7	8	8	
Y	Meter calibration factor	******	0.992	0.992	0.992	
Dn	Sampling nozzle diameter (in)	******	0.252	0.252	0.252	
Ср	Pitot tube coefficient	•••••	0.84	0.84	0.84	
ΔН	Average orifice pressure drop (in. H2O)	*****	0.83	0.47	0.90	0.73
Vm	Volume of dry gas sampled at meter conditions (cu. fl.)	******	62.922	23.101	38.396	43.140
Tm	Average gas meter temperature (°F)	•••••	79.5	83.1	79.5	80.7
Vmstd	Volume of dry gas sampled at standard conditions (sef)	******	61.498	27.258	37.422	42.059
Vlc	Total H2O collected in impingers and silica gel (ml)	******	0.666	74.8	93.5	389.1
Vwstd	Volume of water vapor at standard conditions (scf)	******	47.023	3.521	4.401	18.315
D	Percent moisture by volume, as measured	••••	43.33	11.44	10.52	21.78
Bws	Percent moisture by volume, at saturation		15.37	13.63	13.17	14.06
	Percent moisture by volume, used in calculations	•••••	15.37	11.44	10.52	12.45
Fmd	Mole fraction of dry gas	••	0.846	0.886	0.895	0.876
%CO2	Percent CO2 by volume (dry)		1.0	1.0	1.0	1.0
% 02	Percent O2 by volume (dry)		20.0	20.0	20.0	20.0
%CO	Percent CO by volume (dry)		0.0	0.0	0.0	0.0
%N2	Percent N2 by volume (dry)	*****	79.0	79.0	79.0	79.0
Md	Molecular weight - dry stack gas	******	28.96	28.96	28.96	28.96
Ms	Molecular weight - stack gas	******	27.28	27.71	27.81	27.60
Pbar	Rarometric pressure (in. Hg)		30.06	30.06	29.97	30.03
Pei	Static pressure of stack gas (in. H2O)		0.050	0.050	0.050	0.050
P#	Stack pressure - absolute (in. Hg)		30.06	30.06	29.97	30.03
T•	Average stack gas temperature (°F)	******	130.9	126.4	125.0	127.4

Plant: R.R.A.D.-Texarkana

Sampling location: Venturi Outlet

Pmr

IT AIR QUALITY SERVICES **EMISSION TEST REPORT**

TEST RESULTS

Test date(s):

2/26/91

53.0

0 53.0 9.6

9.6

6.4

6.4

2/27/91

2/26/91

Run Numbers SOPM-2 SOPM-3 AVERAGE SOPM-1 0.5664 0.6148 0.6108 0.5973 Vh Average square root of velocity head (in. H2O) •••• 34.53 37.04 36.75 36.11 ۷s Average stack gas velocity (feet/sec.) ****** 63.6 63.6 63.6 63.6 Stack area (sq. in.) -----982 974 957 915 Q. Actual stack flow rate (acfm) -----757 787 788 Stack flow rate - dry (scfm) -----695 Quatd 73.7 101.0 111.7 ISO 160.5 Percent isokinetic 12.2 8.6 Mass of pollutant 532.7 If below detection limits, replace 0 with 1. 0 8.6 12.2 532.7 Mn Particulate mg gr/dscf 1.337E-01 6.906E-03 3.546E-03 4.804E-02 Particulate concentration Ce 4.657E-02 2.395E-02 2.891E-01 lb/h 7.967E-01 emission rate Particulate Pmr

Mn	Cadmium	m 2.55	μ g	53.0	9.6	6.4	
Cs	Cadmium	concentration	$\mu g/m3$	30.435	12.438	6.040	16.304
Pmr	Cadmium	emission rate	lb/h	7.826E-05	3.665E-05	1.783E-05	4.458E-05
		Mass of pollutant		650.0	3.0	8.0	
		If below detection limits, replace	0 with 1.	0	1	1	
Mn	Chromlum	mass	μg	650.0	<3.0	<3.0	
C.	Chromium	concentration	μ g /m3	373.257	<3.887	2.8 31	126,658
Pmr	Chromium	emission rate	lb∕h	9.721E-04	<1.145E-05	<8.356E-06	8.306E-04

Mass of pollutant

If below detection limits, replace 0 with 1.

TEST RESULTS

Plant: R.R.A.D.-Texarkana Sampling location: Venturi Outlet

Test date(s): 2/26/91

2/26/91

2/27/91

			_	SOPM-1	Run Numbers SOPM-2	SOPM-3	AVERAGE
Mn	Zinc	Mass of pollutant If below detection limits, replace (=) with 1. µg	1500.0 0 1500.0	5.0 1 < 5.0	5.0 1 <5.0	
C•	Zinc	concentration	μ g /m3	861.362	<6.478	<4.718	290.853
Pmr	Zine	emission rate	lb/h	2.243E-03	<1.909E-05	<1.393E-05	7.588E-04
Mn	Lead	Mass of pollutant If below detection limits, replace (mass	_) with 1. μ g	1000.0 0 1000.0	13.6 0 13.6	5.2 0 5.2	
C.	Lead	concentration	μ g /m3	574.242	17.620	4.907	198.923
Pmr	Lead	emission rate	lb/h	1.496E-03	5.192E-05	1.448E-05	5.206E-04
Mn Cs Pmr	<pollutant> <pollutant> <pollutant> <pollutant></pollutant></pollutant></pollutant></pollutant>	Mass of pollutant If below detection limits, replace (mass concentration emission rate	with 1. mg gr/dscf lb/h	0.0 0 0.0 0.000E+00	0.0 0 0.0 0.000E+00	0.0 0 0.0 0.000E+00	0.000E+00 0.000E+00
Mn	<pollutant></pollutant>	Mass of pollutant If below detection limits, replace to	= 0 with 1. mg	0.0 0 0.0	0.0 0 0.0	0.0 0 0.0	
C.	<pre><pollutant></pollutant></pre>	concentration	gr/dscf	0.000E+00	0.000E+00	0.0002+00	00+ 3000. 0
Pmr	<pollutant></pollutant>	emission rate	lb/h	0.000E+00	0.000 E+0 0	0.000E+00	0.060R+00
Mn	<pollutant></pollutant>	Mass of pollutant If below detection limits, replace mass		0.0 0 0.0	0.0 0 0.0	0.0 0 0.0	
C.	<pollutant></pollutant>	concentration	gr/decf	0.000E+00	0.000E+00	0.000E+00	0.600E+00
Pmr	<pollutant></pollutant>	emission rate	lb/h	0.000E+00	0.090E+00	0.000E+00	0.000E+00

validated 11/L/90

FIELD DATA

Plant: R.R.A.D.-Texarkana

Sampling location: Venturi Outlet

Test time (start-stop): 1034-1139

Date: 2/27/91

Run number: SOPM-4

Sample type: Part/Metals

Bar. press. (in. Hg): 29.97 Static press. (in. H20): 0.050

Filter number(s): 9070021

Stack inside dia. (in.): 9.00 Pitot tube coeff.: 0.84

Total H2O collected (ml): 88.7 % O2 by volume (dry): 20.0

Volume correction (cu. ft.): 0.000

Meter calibration factor: 0.992 Data interval (min.): 7.5

Nozzle dia. (in.): 0.252 Meter box number: FT-2

Number of traverse points: 8

% CO2 by volume (dry): 1.0

% CO by volume (dry): 0.0

Sample time (min)	Gas meter reading (cu. ft.)	Velocity head ΔP	Orifice drop actual ΔH	Stack Temp.	Dry gae temp	
0.0	959.294	(in. H2O)	(in. H2O)	(° F)	inlet	outlet
7.5	962.750	0.200	0.48	124	80	80
15.0	967.250	0.330	0.80	125	82	79
22.5	971.700	0.430	0.76	122	85	79
30.0	976.095	0.390	0.77	121	85	81
37.5	980.621	0.290	0.71	121	83	82
45.0	985.350	0.330	0.80	122	85	81
52 .5	989.880	0.350	0.80	122	86	81
60.0	_993.908	0.380	0.78	121	88	81
60.0	34.614	0.338	0.74	122	84	81

validated 11/1-90

FIELD DATA

Plant: R.R.A.D.-Texarkana Sampling location: Venturi Outlet

Test time (start-stop): 1327-1432

Date: 2/27/91 Run number: SOPM-5

Sample type: Part / Metals

Bar. press. (in. Hg): 29.97 Static press. (in. H20): 0.050 Filter number(s): 9010493 Stack inside dia. (in.): 9.00

Pitot tube coeff.: 0.84 Total H2O collected (ml): 105.9

% O2 by volume (dry): 20.0

Volume correction (cu. ft.): 0.000 Meter calibration factor: 0.992 Data interval (min.): 7.5 Nozzle dia. (in.): 0.252 Meter box number: FT-2

Number of traverse points: 8 % CO2 by volume (dry): 1.0 % CO by volume (dry): 0.0

Sample time (min)	Gas meter reading (cu. ft.)	Velocity head ΔP	Orifice drop actual ΔH	Stack Temp.		Dry gas meter temp. (°F)		
0.0	994.142	(in. H2O)	(in. H2O)	(°F)	inlet	outle		
7.5	998.700	0.330	0.79	128	81	82		
15.0	1003.280	0.340	0.81	131	83	81		
22 .5	1008.350	0.370	0.90	128	87	81		
30.0	1013.153	0.410	1.60	125	90	82		
37.5	1017.660	0.320	0.78	126	87	82		
45.0	1022.400	0.350	0.86	125	92	84		
52.5	1027.450	0.380	0.93	126	95	85		
60.0	1032.437	0.400	0.98	126	95	85		
60.0	38.295	0.363	0.88	127	89	83		

validated 11/1/90

FIELD DATA

Plant: R.R.A.D.-Texarkana

Sampling location: Venturi Outlet

Test time (start-stop): 0800-0905

Date: 2/28/91

Run number: SOPM-6

Sample type: Part/Metals

Bar. press. (in. Hg): 29.75

Static press. (in. H20); 0.050

Filter number(s): 9010503

Stack inside dia. (in.): 9.00

Pitot tube coeff.: 0.84

Total H2O ∞llected (ml): 123.6

% O2 by volume (dry): 20.0

Volume correction (cu. ft.): 0.000

Meter calibration factor: 0.992

Data interval (min.): 7.5

Nozzle dia. (in.): 0.252

Meter box number: FT-2

Number of traverse points: 8

% CO2 by volume (dry): 1.0

% CO by volume (dry): 0.0

Sample time (min)	Gas meter reading (cu. ft.)	Velocity head AP	Orifice drop actual ΔH	Stack Temp.	Dry gae temp.	
0.0	32.738	(in. H2O)	(in. H2O)	_(°F)	inlet	outle
7.5	37.030	0.310	0.72	131	75	75
15.0	41.520	0.340	0.79	130	77	75
22.5	46.260	0.390	0.91	128	81	76
30.0	51.171	0.410	0.96	128	85	76
37.5	55.000	0.320	0.76	127	85	78
45.0	60.600	0.360	0.85	129	88	78
52.5	65.430	0.400	0.95	130	90	79
60.0	70.570	0.420	1.00	130	92	80
60.0	37.832	0.369	0.87	129	84	77

validated 11/1/90

TEST RESULTS

Plant: R.R.A.D.-Texarkana Sampling location: Venturi Outlet

Test date(s): 2/27/91

2/27/91

2/28/91

			SOPM-4	Run Numbers 80PM-5	SOPM-6	AVERAGE
Ø	Net time of test (a.in)	•	60.0	60.0	60.0	
NP	Net sampling points	*****	8	8	8	
Y	Meter calibration factor	******	0.992	0.992	0.992	
Dn	Sampling nozzle diameter (in)		0.252	0.252	0.252	
Ср	Pitot tube coefficient	*****	0.84	0.84	0.84	
ΔН	Average orifice pressure drop (in. H2O)	•••••	0.74	0.88	0.87	0.83
Vm	Volume of dry gas sampled at meter conditions (cu. ft.)	******	34.614	38.295	37.832	36.914
Tm	Average gas meter temperature (°F)	•••••	82.4	85.8	80.6	82.9
Vmstd	Volume of dry gas sampled at standard conditions (scf)	•	33.543	36.894	36.523	35.653
Vic	Total H2O collected in impingers and silica gel (ml)	** ****	88.7	105.9	123.6	106.1
Vwstd	Volume of water vapor at standard conditions (scf)		4.175	4.985	5.818	4.993
Bws	Percent moisture by volume, as measured Percent moisture by volume, at saturation Percent moisture by volume, used in calculations	******	11.07 12.22 11.07	11.90 13.86 11.90	13.74 14.83 13.74	12.24 13.64 12.24
Fmd	Mole fraction of dry gas	••••••	0.889	0.881	0.863	0.878
%CO2	Percent CO2 by volume (dry)		1.0	1.0	1.0	1.0
%O2	Percent O2 by volume (dry)	******	20.0	20.0	20.0	20.0
% СО	Percent CO by volume (dry)		0.0	0.0	0.0	0.0
%N2	Percent N2 by volume (dry)	*****	79.0	79.0	79.0	79.0
Md	Molecular weight - dry stack gas		28.96	28.96	28.96	28.96
Ms	Molecular weight - stack gas	******	27.75	2 7.66	27.45	27.62
Pbar	Barometric pressure (in. Hg)		29.97	29.97	29.75	29.90
Psi	Static pressure of stack gas (in. H2O)		0.050	0.050	0.050	0.050
Ps	Stack pressure - absolute (in. Hg)		29.97	29.97	29.75	29.90
Ts	Average stack gas temperature (°F)		122.3	126.9	129.1	126.1

validated 11/1/90

TEST RESULTS

Plant: R.R.A.D.-Texarkana Sampling location: Venturi Outlet

Test datc(s): 2/27/91

2/27/91

2/28/91

				F	Run Numbers	1	
			-	SOPM-4	SOPM-5	SOPM-6	AVERAGE
Vh	Average square	root of velocity head (in. 120)	******	0.5779	0.6015	0.6064	0.5953
V•	Average stack g	as velocity (feet/sec.)	•••••	34.72	36.35	36.98	36.02 63.6 955 754
As	Stack srea (sq. i	n.)	******	63.6	63.6 963 765	63.6	
Q.	Actual stack flow	w rate (acfm)	•••••	9 20		980 754	
Qsstd	Stack flow rate	dry (scfm)	•••••	744			
iso	Percent isokinet	ie		95.9	102.5	103.0	100.5
		Mass of pollute	int =	8.0	30.1	8.7	
Mn	Particulate	If below detection limits, repla		0 8.0	0 30.1	0 8.7	
			_				
C.	Particulate	concentration	gr/dscf	3.680E-03	1.259E-02	3.676E-03	6.648E-03
Pmr	Particulate	emission rate	lb/h	2.345E-02	8.255E-02	2.374E-02	4.325E-02
		Mass of pollute	int =	2.0	2.3	9.6	
Mn	Cadmium	If below detection limits, repla		1	0	0	
MID	Cadmium	III @ SEE	ħ&	<2.0	2.3	9.6	
C•	Cadmium	concentration	μ g /m3	<2.106	2.202	9.282	4.530
Pmr	Cadmium	emission rate	lb/h	<5.864E-06	6.307E-06	2.620E-05	1. 279 E-05
		Mass of pollute		3.0	3.0	3.0	
Mn	Chromium	If below detection limits, repla mass	ice 0 with 1.	1 <3.0	1 <3.0	1 <3.0	
C.	Chromium	concentration	μ g/m 3	<3.158	<2.872	4.90 1	4.9 77
Pmr	Chromium	emission rate	lb/h	<8.795E-06	<8.227E-06	<8.187E-06	<8.403E-06

validaced 11/1/90

TEST RESULTS

Plant: R.R.A.D.-Texarkana
Sampling location: Venturi Outlet

Test date(s): 2/27/91

2/27/91

2/28/91

				SOPM-4	Run Number SOPM-5		AVERAGE
			-	SUP M-4	SUPM-8	SOPM-6	AVERAGE
		Mass of pollutant	=	5.0	36.0	5.0	
		If below detection limits, replace (1	0	1	
Mn	Zinc	m ass	μg	<5.0	36.0	<.8.0	
Cs.	Zinc	concentration	μ g/m 3	<5.264	34.459	<4.835	14.853
Pmr	Zinc	emission rate	lሁ⁄ክ	<1.466E-05	9.873E-05	<1.364E-05	4.234E-05
		Mass of pollutant	=	ŭ. 5	10.6	16.6	
		If below detection limits, replace (0	0	0	
Mn	Lead	mass	μg	3.5	10.6	16.6	
C ₈	Load	concentration	$\mu g/m3$	3.685	10.146	16.051	9.961
Pmr	Lead	emission rate	lb/h	1.026E-05	2.907E-05	4.530E-05	2.821E-05
		Mass of pollutant	2	1.0	10.0	100.0	
		If below detection limits, replace		0	0	0	
Min	<pollutant></pollutant>	mass	mg	1.0	10.0	100.3	
Cs	<pollutant></pollutant>	concentration	gr/dscf	4.600E-04	4.182E-03	4.225E-02	1.563E-02
Pmr	<pollutant></pollutant>	emission rate	lb/h	2.932E-03	2.742E-02	2.729E-01	1.011E-01
		Mass of pollutant	ŧ	10.0	1.0	100.0	
		If below detection limits, replace		0	0	0	
Mn	<pre><poliutant></poliutant></pre>	mass	mg	10.0	1.0	100.0	
Cs	<poliutant></poliutant>	concentration	gr/dscf	4.600E-03	4.182E-04	4.225E-02	1.576E-02
Pmr	<poliutant></poliutant>	emission rate	lb/h	2.932E-02	2.742E-03	2.729E-01	1.017E-01
		Mass of pollutant		100.0	1.0	10.0	
Mn	<pollutant></pollutant>	If below detection limits, replace mass	U with 1.	1 <100 .0	1 <1.0	1 <10.0	
C.	<pre><pollutant></pollutant></pre>	concentration	gr/dscf	<4.600E-02	<4.182E-04	<4.225E-03	<1.688E-0
D	•		_			AA BAAB AA	-1 ARRE A
Pmr	<pollutant></pollutant>	emission rate	lb/h	<2.932E-01	<2.742E⋅03	<2.729E-02	<1.077E-0

validated 3 VV90

FIELD DATA

Plant: R.R.A.D.-Texarkana

Sampling location: Venturi Outlet

Test time (start-stop): 0945-1050

Date: 2/28/91

Run number: SOPM-7

Sample type: Part/Metals

Bar. press. (in. Hg): 29.75

Static press. (in. H20): 0.050

Filter number(s): 9010488

Stack inside dia. (in.): 9.00

Pitot tube coeff.: 0.84

Total H2O collected (ml): 114.5

% O2 by volume (dry): 20.0

Volume correction (cu. ft.): 0.000

Meter calibration factor: 0.992

Data interval (min.): 7.5

Nozzle dia. (in.): 0.252

Meter box number: FT-2

Number of traverse points: 8 % CO2 by volume (dry): 1.0

% CO by volume (dry): 0.0

Dry gas m temp. (°	Stack Temp.	Orifice drop actual ΔH	Velocity head ΔP	Gas meter reading (cu. ft.)	Sample time (min)
nlet	(°F)	(in. H2O)	(in. H2O)	70.700	0.0
81	124	0.74	0.310	75.140	7.5
83	125	0.81	0.340	79.750	15.0
89	124	0.93	0.390	84.650	22.5
92	125	1.00	0.420	89.667	3 0.0
87	124	0.79	0.330	94.250	37.5
93	126	0.91	0.380	99 .130	45.0
94	125	0.98	0.410	104.360	52.5
95	126	1.01	0.420	109.162	60.0
89	125	0.90	0.375	38.462	60.0

validated 11 1/90

FIELD DATA

Plant: R.R.A.D. Texarkana

Sampling location: Venturi Outlet

Date: 2/28/91 Run number: SOPM-8

Test time (start-stop): 1128-1232

Sample type: Part/Metals

Bar. press. (in. Hg): 29.75 Static press. (in. H20): 0.050 Filter number(s): 9010533 Stack inside dia. (in.): 9.00

Pitot tube coeff.: 0.84 Total H2O collected (ml): 108.5 % O2 by volume (dry): 20.0 Volume correction (cu. ft.): 0.000
Meter calibration factor: 0.992
Data interval (min.): 7.5
Nozzle dia. (in.): 0.252
Meter box number: PT-2
Number of traverse points: 8

% CO2 by volume (dry): 1.0 % CO by volume (dry): 0.0

Sample time (min)	Gas meter reading (cu. ft.)	Velocity head ΔP	Orifice drop actual ΔH	Stack Temp.	Dry gas meter temp. (°F)	
0.0	109.330	(in. H2O)	(in. H2O)	(°F)	inlet	outle
7.5	113.560	0.580	0.67	126	84	84
15.0	118.000	0.320	0.76	125	86	83
22.5	122.800	0.390	0.93	125	89	83
30.0	127.885	0.420	1.01	125	91	82
37.5	132.200	0.300	0.71	126	87	82
45.0	136.830	0.350	0.84	125	91	83
52.5	141.800	0.400	0.97	123	94	83
60.0	146.823	0.420	1.01	124	96	84
60.0	37.493	0.360	0.86	125	90	83

validated 11/1/90

TEST RESULTS

Plant: R.R.A.D.-Texarkana Test date(s): 2/28/91 2/28/91 1/1/04
Sampling location: Venturi Outlet

	,					
			SOPM-7	Run Numbers 80PM-8	0	AVERAGE
Ø	Net time of test (min)	****	60 0	60.0	0.0	
NP	Net sampling points		8	8	8	
Y	Meter calibration factor	******	0.992	0.992	0.000	
Dn	Sampling nozzle diameter (in)	******	0.252	0.252	0.000	
Cp	Pitot tube coefficient	******	0.84	0.84	0.00	
ΔH	Average orifice pressure drop (in. H2O)	******	0.90	0.86	#DIV /01	#DIV/0!
V _m	Volume of dry gas sampled at meter conditions (cu. ft.)	******	38.462	37.493	0.000	25.318
Tm	Average gas meter temperature (°F)	******	85.8	86.4	#DTV/01	#DIV/01
Vmstd	Volume of dry gas sampled at standard conditions (scf)	******	36.785	35.814	#DIV/01	●DTV /01
Vlc	Total H2O collected in impingers and silica gel (ml)	*	114.5	108.5	0.0	74.3
Vwstd	Volume of water vapor at standard conditions (sef)	•••••	5.390	5.107	0.000	3.499
Bws	Percent moisture by volume, as measured	•••••	12.78	12.48	#DIV/01	#DIV/0!
	Percent moisture by volume, at saturation		13.22	13.22	#DIV/01	#DIV/of
	Percent moisture by volume, used in calculations	•	12.78	12.48	#DIV/01	#DIV/01
Fmd	Mole fraction of dry gas	******	0.872	0.875	#DIV/ 01	●DIV/3!
%CO2	Percent CO2 by volume (dry)		1.0	1.0	0.0	0.7
%O2	Percent O2 by volume (dry)	•••••	20.0	20.0	0.0	13.3
%CO	Percen* CO by volume (dry)	•••••	0.0	0.0	0.0	0.0
%N2	Percent N2 by volume (dry)		79.0	79.0	100.0	86.0
Md	Molecular weight - dry stack gas		28.96	28.96	28.00	28.64
Ms	Molecular weight - stack gas		27.56	27.59	#DIV/ 01	#DIV/01
Pbar	Barometric pressure (in. Hg)	******	29.75	29.75	0.00	19.83
Pel	Static pressure of stack gas (i.a. H2O)		0.050	0.050	0.000	0.033
Ps	Stack pressure - absolute (in. Hg)	******	29.75	29.75	0.00	19.84
Ts	Average stack gas temperature (°F)		124.9	124.9	#DIV/01	●DIV/01

validated 11/1/90

TEST RESULTS

Plant: R.R.A.D.-Texarkana Sampling location: Venturi Outlet

Test date(s): 2/28/91

2/28/91

				SOPM-7	Run Numbers SOPM-8	0	AVERAGE
Vh	Average square ro	oot of velocity head (in. H2O)	•••••	0.6115	0.5984	0.0000	0.4033
V.	Average stack gas	velocity (feet/sec.)	•••••	37.08	36.27	# D IV /01	●DIV /0!
As .	Stack area (sq. in.)	•••••	63.6	63.6	63.6	63.6
Q.	Actual stack flow	rate (acfm)	******	983	961	#DIV/01	#DIV/01
Qsetd	Stack flow rate - d	iry (scim)	**	770	755	#D[V/0]	●DTV /01
ISO	Percent isokinetic	·	·····	101.6	100.8	#D[V/01	#DIV /0!
		Mass of pollute		6.7 0	9.2	0.0	
Mn	Particulate	If below detection limits, repla mass	mg	6.7	9.2	0.0	
C•	Particulate	concentration	gr/dscf	2.810E-03	3.964E-03	#DIV/01	#DIV /0!
Pmr	Particulate	emission rate	lb/h	1.854E-02	2.566E-02	#DIV/0!	#DIV/Ct
		Mass of pollute	ant =	2.0	12.6	0.0	
Mn	Cadmium	If below detection limits, repla	ice 0 with 1. μg	1 <2 .0	0 12.6	0 0.0	
C.	Cadmium	concentration	μg/m3	<1.920	12.424	DIV/01	#DIV /0!
Pmr	Cadmium	emission rate	lb/h	<5.535E-06	3.515E-05	#DIV/01	#DIV /0!
		Mass of pollut.		10.4	3.0	0.0	
Mn	Chromium	If below detection limits, repla mass	oe 0 with 1.	0 10.4	1 <3.0	0.0	
C•	Chromium	concentration	μ g/m3	9.984	<2.958	DIV/01	#D[V/0 1
Pmr	Chromium	emission rate	lb/h	2.878E-05	<8.369E-06	#DIV/0!	#DIV/01

validated 11/1/90

TEST RESULTS

Plant: R.R.A.DTexarkana	Test date(s):	2/28/91	2/28/91	1/1/04
Sampling location: Venturi Outlet				

			_	SOPM-7	Run Numbers SOPM-8	0	AVERAGE
Mn	Zinc	Mass of pollutant If below detection limits, replace 0		15.0 0 15.0	14.0 0 14.0	0.0 0	
			μg	-			
C ₆	Zinc	concentration	µg/m3	14.401	13.805	●DIV /01	●DIV/0:
Pmr	Zinc	emission rate	lb/h	4.151E-05	3.905E-05	●DTV/0!	●DIV/0 1
		Mass of pollutant If below detection limits, replace 0	E Lwith 1	19.6 0	9.6 0	0.0 0	
Mn	Lead	mass	μ g	19.6	9.6	0.0	
C ₀	Lead	concentration	μg/m3	18.817	9.466	●DIV /01	#DIV/01
Pmr	Lead	emission rate	lb/h	5.424E-05	2.678E-05	#DIV/01	●DIV/01
		M 6 N		0.0	•	0.0	
		Mass of pollutant If below detection limits, replace (=) with 1.	0.0 0	0.0 0	0.0 0	
Mn	<pollutant></pollutant>	mass	mg	0.0	0.0	0.0	
Cs	<pre><pollutant></pollutant></pre>	concentration	gr/dscf	0.000E+00	0.000E+00	●DIV /0!	#DIV/01
Pmr	<pollutant></pollutant>	emission rate	lb/h	0.000E+00	0.000E+00	#DIV/01	#DIV/0!
		Mass of pollutant	=	0.0	0.0	0.0	
Mn	<pre></pre>	If below detection limits, replace (with 1.	0 0.0	0 0. 0	0 0.0	
Ce	cpollutant:	concentration	gr/decf		0.000E+00	#DIV/0!	øDIVÆ!
Pmr	<pre><pollutant></pollutant></pre>	emission rate	lb/h	0.000E+00	0.000E+00	#DIV/01	øDIV/01
•	402002 0		20.00				
		Mass of pollutant If below detection limits, replace		0.0 0	0.0 0	0.0	
Mn	<pollutant></pollutant>	mass	mg	0.0	0.0	0.0	
C•	<pollutant></pollutant>	concentration	gr/decf	0.000E+00	0.000E+00	#D[V/0!	#DIV/01
Pmr	<pollutant></pollutant>	emission rate	lb/h	0.000E+00	0.000E+00	#DIV /01	#DIV/01

APPENDIX B FIELD DATA SHEETS

TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS

Plant	U.SA	THAMA -	RRAI	>			
Date		2/25/91	/				
Samp Inside	ling location	$\frac{2/25/9}{25/9}$ on $\frac{After}{4}$ to outside of ni	kunu pple 4	4 at 43/4"			
Inside	of near wa	all to outside of	nipple (nipple	e length):		· · *	
Stack	Inside dia	meter, inches	21/2	" (expertine No	mple less	- rection)	
Distar	nce downst	ream from flow	disturbance	(Distance B):		F/ow } 0 -5"	
		inches / di	ameter =	dd		Flow to -	
Distar	nce upstrea	ım from flow dis	turbance (Di	stance A):		[5]	60
		inches / d	_	dd			<u> </u>
Calcu	lated by		3)			~	
	* Mipp Luit 6"I.D.	le extende	pu B. K	Cisal - the 5'	S CH	IEMATIC OF SAMPLING LO	CATION
	TRAVERSE POINT NUMBER	FRACTION OF STACK I.D.	STACK I.D.	PRODUCT OF COLUMNS 2 AND 1 (TO REAREST 1/8 INCH)	NIPPLE LENGTH	TRAVERSE POHIT LOCATION FROM OUTSIDE OF MIPPLE (SUM OF COLUMNS 4 & 5)	
F	<u></u>		5"		214"		
F							
-				·			
-							
Ė							
F		l			<u> </u>		
					ì		

TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS

Plant USATHAMA - RRAD	
Date	
Sampling location FBPS Venture Inlet	
Inside of far wall to outside of nipple	
Inside of near wall to outside of nipple (nipple length):	x 20"-0x-30"-x
Stack Inside diameter, inches	Flex
Distance downstream from flow disturbance (Distance B):	H 76.31
	To Yandan
Distance upstream from flow disturbance (Distance A):	GRE
inches / diameter =3 dd	
Calculated by	

SCHEMATIC OF SAMPLING LOCATION

	TRAYERSE POINT LOCATION FROM OUTSIDE OF RIPPLE (SUM OF COLUMNS 4 & 5)	MIPPLE LENGTH	PRODUCT OF COLUMNS 2 AND 3 (TO REAREST 1/8 INCH)	STACK I.D.	FRACTION OF STACK I.D.	RAVERSE POINT NUMBER
1	. 264 Adj.	0	.264	4"	.044	/
	. 876		.876	1	.146	2
	1.776		1.776		.296	3
اً	4.224		4.221		. 704	4
┛	5.07		5.07		.854	9
4	Tes 5.50	NASTU	5.736	1/	.956	le
4						
\dashv						
┥						
\dashv						
- 1						

TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS

Plant USATHAMA - RRAD	4 - 10 ATM
Date	116
Sampling location FBPS VENTUR, OUTLET	1 1 1
Inside of tar wall to outside of nipple /3"	7120"
Inside of mear wall to outside of nipple (nipple length):	
Stack inside diameter, inches 9"	IT PION
Distance downstream from flow disturbance (Distance B):	130 \
	FEN
Distance upstream from flow disturbance (Distance A):	a saysbaca
2 /20 inches / diameter = 13.3 dd	
Calculated by	

SCHEMATIC OF SAMPLING LOCATION

TRAVERSE POINT NUMBER	FRACTION OF STACK I.D.	STACK I.D.	PRODUCT OF COLUMNS 2 AND 3 (TO REAREST 1/8 MICH)	NIPPLE LENGTH	TRAVERSE POWT LOCATION FROM OUTSIDE OF RIPPLE (SUM OF COLUMNS 4 & 5)
1	.067	9"	,603	4"	45/8"
2	25		2.25		614"
3	7.75		6.75		10 3/4"
4	.933		8.40		12 3/8"
	ļ			_ ,,, <u>-</u>	
	<u> </u>				ļ
	ļ				ļ
		ļ			
		 			 _
		<u>1</u>	<u> </u>		<u> </u>

GAS VELOCITY AND VOLUMETRIC FLOW RATE

Plant and City KRAD - Texan	Kara Date 2/26/91
Sampling Location Ventur Dutl	
Run No	Operator <u>B</u>
Barometric Pressure, in. Hg 30.06	Static Pressure, in. H ₂ 0 _ + 105
Moisture, % ≈ //℃ Molecular wt.,	Dry Pitot Tube, Cp <u>. 94</u>
Stack Dimension, in. Diameter or Side 1	9 Side 2

£1510 0474

	FIELD DATA	
TRAVERSE POINT NUMBER	VELOCITY HEAD (aP ₃), in.H ₂ C	STACH TEMP., *F
A-1	.35	1/8
	136	1/8
3		1/8
	32	19
13 1	32	1/7
1	136	118
	36	119
4	.35	120
	An. 345	hu = 118"F
		-
		-
<u> </u>		
		
		
-		
	 	

CALCU, ATTOMS

	CHECOLA 110H3
Ms + Mc = (1 -	$\frac{H_2C}{10C}$ + 18 ($\frac{H_2C}{10C}$);
M _s • () x (1 · - 105) · 18 (- 105)
M _s -	
T, -	*f * (*F * 46C)
$P_S \cdot P_C \cdot \frac{S.F.}{13.6}$	• () • 13.6
P ₅ •	in.Mg
$\sqrt{L^p}$.	
V _s = 85,49 x C	5 1 VEF X 3 1 1 5 1 1 1 5
Y _s = 85.49 x () x () x }
¥s *	
* *	157
Q _s + V _s x A _s x	<u>60 s</u>
Q _s •	x 260
•	acfm
Q _{std} + Q _s x 1	7.647 x $\frac{P_s}{T_s}$ x $\left(1 - \frac{H_2C^{-3}}{100^{-1}}\right)$
Q _s	x 17,647 x x (1)

Q_{sstd} •

dscfr

GAS VELOCITY AND VOLUMETRIC FLOW RATE

	Plant and City RRAD - TERRKUNA	Date
	Sampling Location Venturi Aulit	Clock Time 0715
	Run No. V-1 30.06 Operator	B3 / PF
	Barometric Pressure, in. Hg 30.01 Static Pressure	re, in.H ₂ 0 - 5.9
A.	<u>.</u>	_
	Stack Dimension, in. Diameter or Side 1	Side 2

FIELD DATA

TRAVERSE	VELOCITY	
PGINT	¶ HEA™	STACE TEMP., *F
NUMBER	(efs), in.H2C	TEMF., *F
A	3.0	85
2	1 2,6	106
3	2.2	120
7	24	122
	3.0	123
6	3.3	123
7		
	Ane 2.75	An 11301
		-
AB- Jule	7	1
	.95	
2	.98	
ļ		<u> </u>
sto	te - 4.1	<u> </u>
L	i	
L		
		_i
<u></u>		
L		
<u></u>		
		1
		

CALCU, A*100\$

$$M_{S} + M_{O} \times (1 - \frac{M_{2}O}{100}) + 18 \left(\frac{M_{2}O}{100}\right)$$
 $M_{S} + (1 - \frac{M_{2}O}{100}) + 16 \left(\frac{M_{2}O}{100}\right)$
 M_{S}

Q_s

FIELD AUDIT REPORT: DRY GAS METER BY CRITICAL ORIFICE

DATE: BAROMETRIC ORIFICE NO ORIFICE K)	97 (P _{bar}):30 4.738×11		CLIENT: $\frac{2CSATAMA}{METER BOX NO.}$ $\frac{FT-11}{PRETEST Y: 980}$ $\Delta H@ 1,79 in.H_2Q$ AUDITOR: $\frac{63}{63}$				
Orifice manometer reading ΔH ,	Dry gas meter reading V _i /V _f ,	Ambi		emperatures Dr Inlet T _{ii} /T _{if} ,	y gas meter Outlet	Average T _m ,	Duration of run s	
45 40	£+3	٥٥	ا ٥٠	٥٢	۰۶	٥٤		

16:13 9/m

	_ _		· · · · · · · · · · · · · · · · · · ·			
Dry gas meter V _m , ft ³	V _m std' ft³	V _{mact} ,	Audit, Y	Y devia- tion, %	Audit ∆H0, in.H ₂ O	ΔH@ Devia- tion, in.H ₂ O
10.)		.0.000	0.00	/ \ /	, 24	2051

$$V_{m_{std}} = \frac{17.647(V_{m})(P_{bar} + \Delta H/13.6)}{(T_{m} + 460)} = ft^{3}$$

$$V_{\text{mact}} = \frac{1203(0)(K)(P_{\text{bar}})}{(T_a + 460)} = ft^3$$

Audit Y =
$$\frac{V_{\text{mact}}}{V_{\text{mstd}}}$$
 = Y deviation = $\frac{\text{Audit Y - Pretest Y}}{\text{Pretest Y}} \times 100 =$

Audit
$$\Delta H@ = (0.0317)(\Delta H)(P_{bar})(T_m + 460) \left[\frac{\emptyset}{Y(V_m)(P_{bar} + \Delta H/13.6)}\right]^2 = \frac{1}{10} H_2 O$$

Audit Y must be in the range, pretest Y ± 0.05 Y. Audit $\triangle H@$ must be in the range pretest $\triangle H@$ ± 0.15 inches H_2O .

FIELD AUDIT REPORT: DRY GAS METER BY CRITICAL ORIFICE

ORIFICE NO		(P _{bar}): <u>30</u> 7		CLIENT: $USATHAMA$ METER BOX NO. $FT-4$ PRETEST Y: $.974$ $\Delta H0$ 2.03 in. H_2O AUDITOR:				
Orifice manometer reading ΔH , in.H ₂ O	Dry gas meter reading V _i /V _f , ft ³	Ambi Tai ^{/T} af'			y gas meter Outlet	Average T _m , °F	Duration of run Ø min.	
2.03	7/3.4	70	70	66	68	68	15:43 3/53	

Dry gas meter V _m , ft ³	V mstd' ft ³	V mact' ft³	Audit, Y	Y devia- tion, %	Audit ∆H0, in.H ₂ O	ΔH@ Devia- tion, in.H ₂ O
- 12.7	12.835	12.295	1958	1.690	1.98	15

$$V_{m_{std}} = \frac{17.647(V_{m})(P_{bar} + \Delta H/13.6)}{(T_{m} + 460)} = /2.855 ft^{3}$$

$$V_{m_{act}} = \frac{1203(\sqrt[9]{6})(\sqrt[8]{8})(P_{bar})}{(T_{a} + 460)} = /2.295 ft^{3}$$

Audit Y =
$$\frac{V_{\text{mact}}}{V_{\text{mstd}}}$$
 = Y deviation = $\frac{Audit Y - Pretest Y}{Pretest Y}$ x 100 =

Audit
$$\triangle H@ = (0.0317)(\triangle H)(P_{bar})(T_m + 460) \left[\frac{\emptyset}{Y(V_m)(P_{bar} + \triangle H/13.6)}\right]^2 = in.H_20$$

Audit Y must be in the range, pretest Y ± 0.05 Y. Audit $\pm H0$ must be in the range pretest $\pm H0$ ± 0.15 inches H₂O.

FIELD AUDIT REPORT: DRY GAS METER BY CRITICAL ORIFICE

DATE: 2/25/91	CLIENT: USATHAMA
BAROMETRIC PRESSURE (Pbar): 30.69 in	.Hg METER BOX NO. FT-2
ORIFICE NO	PRETEST Y:992
ORIFICE K FACTOR: 4.7384/0-4	AUDITOR: (33)

Orifice	Dry gas		Duration				
manometer reading ΔH , in.H ₂ 0	meter reading V _i /V _f , ft ³	Ambi Tai ^{/T} af'	ent Average T _a , °F	Inlet T _{ii} /T _{if} , °F	y gas meter Outlet Toi ^{/T} of, °F	Average T _m , °F	of run Ø min.
1.3 e, 20 Hg	817.10	70	70	78 78	68	13.5	15.04 17/4 15:0428

Dry gas meter V _m , ft ³	V mstd' ft ³	V _m act' ft³	Audit, Y	Y devia- tion, %	Audit ∆H@, in.H ₂ 0	ΔH0 Devia- tion, in.H ₂ O
11.5	11.482	11.210	.976	1.690	1.32	-0.09

$$V_{m_{std}} = \frac{17.647(V_{m})(P_{bar}^{2} + \Delta H/13.6)}{(T_{m} + 460)} = ft^{3}$$

$$V_{m_{act}} = \frac{1203(0)(K)(P_{bar}^{20})^{67}}{(T_{a} + 460)} = ft^{3}$$
Audit Y =
$$\frac{V_{m_{act}}}{V_{m_{std}}} = .976 \quad \text{Y deviation} = \frac{Pre}{V_{retest Y}} \times 100 = V_{retest Y}$$

Audit
$$\triangle H0 = (0.0317)(\triangle H)(P_{bar})(T_m + 460) \left[\frac{\emptyset}{Y(V_m)(P_{bar} + \triangle H/13.6)}\right]^2 = in.H_20$$

Audit Y must be in the range, pretest Y ± 0.05 Y. Audit $\triangle H0$ must be in the range pretest $\triangle H0$ ± 0.15 inches H_20 .

THERMOCOUPLE DIGITAL INDICATOR AUDIT DATA SHEET

Date 2/25/91 Indicator No. FT-2 Operator S3									
(STK. oly)									
Test Point No.	Millivolt signal*	Equivalent temperature, ************************************	Digital indicator temperature reading, *F	Difference,					
1		0	2	43					
2		100	102	36					
3		200	201	-,15					
4		300	301	-,/3					

Percent difference must be less than or equal to 0.5%.

Percent difference:

Where $^{\circ}R = ^{\circ}F + 460^{\circ}F$

These values are to be obtained from the calibration data sheet for the calibration device.

THERMOCOUPLE DIGITAL INDICATOR AUDIT DATA SHEET

Date	125/9/ In	dicator No	FF-4 Operator	83)
Test Point No.	Millivolt signal*	Equivalent temperature,	Digital indicator temperature reading,	Difference,
1		0	-1	22
2		100	100	0
3		200	200	0
4		300	300	0

Percent difference must be less than or equal to 0.5%.

Percent difference:

(Equivalent temperature °R - Digital indicator temperature reading °R)(100%)
(Equivalent temperature °R)

Where $^{\circ}R = ^{\circ}F + 460^{\circ}F$

These values are to be obtained from the calibration data sheet for the calibration device.

THERMOCOUPLE DIGITAL INDICATOR AUDIT DATA SHEET

Date $\frac{\partial}{\partial s} = \frac{\partial}{\partial s} =$ Equivalent Digital indicator Test Point Millivolt. temperature. temperature reading, Difference. oF# signal* No. -. 43 0 1 -2 2 .18 100 0 3 500 500 -.09 4 601 600

. Percent difference must be less than or equal to 0.5%.

Percent difference:

Where $^{\circ}R = ^{\circ}F + 460^{\circ}F$

These values are to be obtained from the calibration data sheet for the calibration device.

	PLANTA	PLANT AND CITY		DATE		SAMPLI	SAMPLING LOCATION	NO.			SAMPLETYPE	YPE		RUNNEMBER	WBER
RAAD		TEXAR KaNG		7 06191	AB	IN	1167			PAKT		MeTAls	¥	AIVM-	1-1
	1 1		1	STATIC	 					-	PITOT			2	NOZZE
	OPERATOR(S)	_	PRESS.	PRESS. (n. 1.20)	TEMP		FILTER NUMBER(S)	.P(S)	STACK INSIDE DIA. (m.)	NSIDE (n.)	සු ප	PROBE LENGTH AND TYPE	P. Cart	10.	NUMBER
	32		30.06	1.6-19	202	90	9070576		٠,		18	4' Gara	4.6	* out	601-8 4pt.
				_ [461-	
			_	<u> </u>	 	1 1 2	TRAIN LEAK CHECY (INITIAL)	CHECK L	NIN.	WIN LEAK CHECK (FINAL)		PROBE HEAT	BOX		PITOT LEAK CHECK
MOSTURE:	BOX NO.	AHO FACTOR (Y)	3 E	2	NO.	Ц	5. Ta	8	r. F	æ5	к ғастоя		-	Ī	FINAL
0/5	FT-11 /	086. 61.1	1	i	1-1	- 1	21 6	100.0	V _i	0.0	1.27	250	250		
														İ	
oftons	SAMPUND	CLOCK TIME		CAS METER READING	والحالم		ORIFICE PRESSURE DIFFERENTAL		704	DRY CAN TEMPES	DRY GAS METER TEMPERATURE	8		 u 8	
TRAVERSE	TBME, min.	(24-hz CLOCK)		(Vm). ft ³	3		(AM). P. H20		TEMP.	INET	OUTET	NACUM VACUM		_	IMPINGER
NUMBER	٥	4060	763	3.179	(4P). h. H20		DESIRED A(ACTUM ((Ta), °F	(Im h), F	(Im aug. F	F h	\dashv	TEMP, F	TEMP F
_	2at		174	1. 6	56.		0.98 0	0.78	192	70	70	7	12.	270	69
	4020		785	8	56.		.94	76'	77	14	11	1	112	77	49

			_								_					_		 _,	 	_	 _	 	,
	MPINGER	TEMP F	59	49	99	49	39	60															
CAMP	Š	TEMP F	270	271	270	269	271	239		7													
078	VACUUM,	h Hg	/	/ I	7	7	3	3															1
METER ATURE	OUTET	(Im aug. F	70	11	74	76	77	18				72ºF]
DRY GAS METER TEMPERATURE	ı	(T _m h), °F	70	14	80	93	45	55				Pre !											
7	TEMP.	(Ts), °F	192	72	250	759	229	208															4
SSURE	22	ACTUM	0.78	16'	100	186	0.95	7.0g															
OPIFICE PRESSURE DIFFERENTAL	(AM). P. H2O	DESIRED	860	.94	. 94	68	0.75	6.97				0.94											
)	TESS!	(4P). h. H20	.95	.95	56.	-55	.95	6.95				Da = .975											
GAS METER READING	(Vm). h ³	763.179	174.66	785.00	\`.	805.60	96.113	159,868	•			1/m=65, 452	•	Vm = 63.509	نې		Bus = 8.1%						
CLOCK TIME	(24-hz CLOCO)	4060						124															
SAMPUND	TIME, min.	°	2000	oroh	603	4070	0,001	12060	19020	03091	30	000/	077	8%									
oftons	TRAVERSE	NAMEGR																					

1-03-046

Plant R.R.A.D TENARK	ava Sample date 2/26/9/
Sample location AfterburNer In	V/c - Recovery date 2/26/91
Run number <u>AIPM-1</u>	Recovered by C3/PF
filter number(s) 907	· · · · · · · · · · · · · · · · · · ·
	STURE
1 2 3.	
Impingers	4 5
Final volume (wt) <u>658.9</u> 626.5 491.4 ml	(g) Final wt <u>747.9</u>
Initial volume (wt) 608.7 592.0 483.5ml	(g) Initial wt 483.5
Net volume (wt) 50.2 34.5 7.9 ml	
Description of impinger water	
Allerand Calor (15T Imp. only)
J Total moisture	
RECOVER	ED SAMPLE
Filter container number(s) 12208	
Description of particulate on filter	Light Bhackish
.1.5	
Actom probe rinse container no. 12208-A	Liquid level marked
Impinger contents $(1+2)$ container no. $ 22/0-A $	Liquid level marked
HNO_3/H_2O_2 blank container no. $122/1-A$	Liquid level marked
Impinger contents (3+4) container no.	Liquid level marked
KMnOy blank	Liquid level
Samples stored and locked	
Remarks ACCTONC BLAK. 3122	109-A
PALIFIEX FIXTER BANK	,
HNO3 BLUX12211-A LABORATO	
LABORATO	RY CUSTODY / / .
Received by An Andlem	Date 3/5/9/
Remarks	7/7

PLANT AND CITY		DATE		SAMPLINGLOCATION		SAMPLE TYPE	: TYPE	RUNNAMBER	MBER
(KAD-Ternhaua, 1	X	146191	Afres	HEadwar INFET	H	623 Miles	4.60	AIPM-2	4-7
	P. P	STATIC	AM8.		STACK MSIDE	PITOT	PROBELENCED		NOZZIE
OPERATIONIS	E E	6 H &	E	FLTER NUMBERIG)	DIA (m.)		AND TYPE	Ч	ID. NUMBER
(34)	48.86	1.4-	70	98. TARS.	\$	133	41 (664		194 3-109

]	į			100	IMP.	7000	TRAIN LEA	K CHECK	TRAINLE (FIR	TRAN LEAK CHECK TRAN LEAK CHECK (INTIAL)		PROBE HEAT	BOX	PITOT LEAK CHECK	HECK
	S K	A HO	(%) BOX NO A HØ FACTOR (1) NO.	2	<u> </u>	2	§ 2	h. Ho	CPM	h. Hg	₹	K FACTOR	(P)	6.5	INIT.	FINAL
6*	Fryl	1.73	.980	1	١	1.7	١	U	0.006	15	70.€	[t.]	350	250	\	\

	IMPINGER	TEMP., . F	68	6.5	88	67	62	63													
SAMPLE	90	TEMP, •F	111	277	120	26.6	259	200					,								
deld	VACUM	F Ho	10	//	/4	14	15	/5/													
METER Ature	OUTLET	(Tm out). F	76	77	28	78	73	1.1													
DRY GAS METER TEMPERATURE	ı	F	77	78	80	22	84	85	166												
STACK	TEVE	(Ts), • F	203	203	227	240	250	766													
RESSURE BYTHAL	727	ACTUAL	0.37	0.97	6.04	46'0	693	0.88										7			
OPPINICE PRESSURE DIFFERENTIAL	(0 m; nr n20	DESIRED	0.97	0.97	45.0	0.92	0.43	0.87	46.												
VEI DE LIA	16.0	(4P). h. H20	.94	46	46.	46.	44.	44.													
	ą. n3	. 237	10.	90	18:	+9.	08.	124		133	31.792	1		716	4 .	12%					
CAS METER	<u>ج</u>	188	837	842	648	853	258	2004		12 AV	Variet			4 114	1	BWA					
CLOCK TIME	C24-14-C10000	1426						1526													
SAMPLING	TIME men.	0	0/	20	3	04	50	07													
	HAVERSE	N. LABES																			

1:13-046

Plant RRAD	Samp	ple date	2/26/	9/
Sample location After burner &				6/91
Kun number AIPM-2			B)111	کیے
Filter number(s) 90700				
MO	ISTURE			
Impinoans 1 2 3	1310//		44	_
Impingers			4	5
Final volume (wt) 672 8 597.8 479.7m	1 (g) Fin	nal wt	181.0	9
Initial volume (wt) (69.7 591.4 476.1 m	1 (g) Ini	itial wt	757.6	9
Net volume (wt) 63 64 2 6 m	1 (g) Net	t wt	23.4	
Description of impinger water			40	% spent
15 Imp = yellowish; Other-Clin				
Total moistur	_	5	9	
RECOVE	RED SAMPLE			
Filter container number(s) 11080-	3 Sea1	led V	/	
Description of particulate on filter	Blackisk	- anera	Nome (have Clina
A		11		
ACTIONE probe rinse container no.	Liquid lev	rel		
Impinger contents $(1+2)$ container no. $1/081-A$	Liquid lev marked	rel		
HNO_3/H_2O_2 blank $122/1-A$ container no. $122/1-A$	Liquid lev marked	el	V	
Impinger contents (3+4) container no.	Liquid lev marked	el		
KMnOy blank container no.	Liquid lev marked	el		
Samples stored and locked				
Remarks Ace Block - 1	1209-A			
	- 			
LABORATO	RY CUSTODY			/ .
Received by Mr / Maddemi		Date	3/5/9	7
Remarks				

STATIC AND FITERNUMBERS) DIA. (m.) TO 9070053 STACK INSIDE TUBE AND TYPE			-		NOTATION BOX		SAMPLETYPE	TYPE	RUNNUMBER	MBER
FOREILE PRESS. TEMP. FRITERNIANBERS) STACK NSIDE TUBE AND TYPE (in Hg) (in Hg) 70 9070053 5 5 54 4 6/22	PLANT AND CITY		DATE		SAMITERA LOCALICA	<u> </u>			,	
BAR STATIC AMB. STACK NSIDE TUBE PROBE LENGTH PRESS. (m. H2) (r. H2) (r. H2) (r. H2) (r. H2) (m. H2) (r. H2) (A.143 - CA.16		611212	With		F (20	×		MIN	1-3
BAR STATIC AMB. STACK NSIDE TUBE PROBE LENGTH PRESS. (m. H2) (f. H2) (V. V. V.	1								
(in Hg) (in H ₂ O) (r.f) FILTERNUMBER(S) DIA. (in.) Go AND TYPE		8AR	STATIC	AM9.			PITOT	Parae i Ewm		NOZZIE
1 10 9070053 5 SH 4'	S OCTABOOC	PRESS	PRESS.	TEMP	FILTER NUMBER(S)	OIA. (m.)	3	AND TYPE	Щ	ID. NUMBER
		7997	1 17-	70	£500/06	هد ا	18	4 6/10	, 194	

PITOT EAK CHECK	FINAL	
PTI LEAK	-NI	
BOX HEAT	6.5	25.0
PROBE	6.9	750 250
	K FACTOR	1.27
AK CHECK (AL)	S₽.	1000
TRAIN LE	in. Hg	5
(FINAL) (FINAL)	₹	100.0
Ľ_	r H	16
	NO. NO.	
IMP.	<u>5</u> 9	7-1
	<u> </u>	
	MOSTURE METER METER METER CAL THERM. PITOT	980
	METER	1.79
	METER	FF-11
	Z GRE	9/

	_	_	7		~			-	_	Т	Т	Т	1	Т	Т	Т	┰	T	Т	Т	 7	_	Γ	Т	1
	IMPINGER	TEMP. • F	60	2.6	10	20)	63	99																	
SAMPLE	Š.	TEMP .F	250	251	252	253	157	256																	
a de la companya de l	WACUM.	유		,			/	/																	
METER	OUNET	(Im out .F	71	72	11	73	74	75																	
DRY GAS METER TEMPERATURE	MET	(Im to) F	72	7.2	ħL.	38	80	۲۷																	
2000	TEMP.	(Ts), • F	775	279	1861	283	285	1000																	
RESSURE SMTAL		ACTUAL	28.0		_	950	780	70																	
ORIFICE PRESSURE DIFFERENTIAL	(AH). TH20	DESIRED	0.86	0.96	096	95.0	0.86	7.8	•																
	VELOCITY	(AP. n. H20	36	76	91	90	100	27	777																
GAS WETER READING	(Vm). h ³	161 778]_		1	97.	X 2 6 5 70 X		436 .401												,				4
Self your	24-14 CLOCK	7027	3207						2010																
00000		Т		30,	200	1030	20.90	6.650	00																
sengle	TRAVERSE																								

X1-03-046

Plant RR.A.D TEXALKANA	Sample date $2/27/9/$
Sample location AFTER BURNER - I	WEET Recovery date 2/01/9/
Run number ATAN - 3	
	9010052
	ISTURE
1 7 3-	•
Impingers Final volume (wt) 595.7 101.9 471.4 ml	4 5
4 1	
Initial volume (wt) 600 606.2 4776 ml	
Net volume (wt) -4.3 1.7 0.8 m	
Description of impinger water	
A little clady	
Total moisture	29
RECOVER	RED SAMPLE
	,
Filter container number(s) 11:03.	· · · · · · · · · · · · · · · · · · ·
Description of particulate on filter	might shown
Acton probe	
rinse container no. 11030-A	Liquid level marked
Impinger contents (1+2) container no. III18-A	Liquid level
HNO_3/H_2O_2 blank container no. $132/2-17$	Liquid level marked
Impinger contents (3+4) container no.	Liquid level
KMnOy blank container no.	Liquid level
Samples stored and locked	
Remarks Are. Bluk -	12209-A
- HND: -12211	
_	
	RY CUSTODY .
Received by M. Amlen	Date 3/5/9/
Remarks	

VIO CHAR PLAS SO	DATE	SAMPLING LOCATION	SAMPLE TYPE	RUNNAMBER
			/ 4 /	
2	191161	11 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1	10th /////	アーグダース
1/41) - 10 callina	11:00	" the man way		
			POTOT	1

						1		
	040	STATIC	ANB			РПОТ		NOZZIE
	Š	60200			STACK INSIDE	128F	PROBE LENGTH	
	PRESS	3	- E				2007 0144	ODGIVEN CI
- ACCOATOONS	3	O T E	E	FILTER NUMBER(S)	U.A. (m.)	3	AND ITE	i.C. Nomber
(Storings)					\	110	, ,	
	79 97	: **	72	3070045	-	-	4 6/20	1.64
3	11.10							

FINAL

Ē

PEAT (F)

PROBE HEAT (°F)

TRAIN LEAK CHECK (FINAL)

TRAN LEAK CHECK (INITIAL)

K FACTOR (G)

8

요 도

8

F F

THERM. ORSAT NO. NO.

TOTA OX

METER CAL THERM. FACTOR (Y) NO.

METER A H @

METER BOX NO.

NOISTURE £ 10

980

1.79

F7-11

Ì

250 050

0.038

6.003

PITOT LEAK CHECK

mr.	3	Suff Year	CAS WETER READING		ORIFICE PRESSURE DIFFERENTAL	ESSURE NTAL	ž	DAY GAS TEMPES	DAY GAS WETER TEMPERATURE	a a	SAVE	
TRAVERSE		TIME, min. (24-14 CLOCK)	(Vm), h3 VELC	FEGGIN	(AM. A. H ₂ O	12C	EMP.	NET	OUNET	VACUUM	_	IMPINGER
8387	(1530	867 928	(4P). h K2O	DESIRED	ACTUAL	(18). °F	(Je 10)	APY, IN H20 DESIRED ACTUAL (Ta), "F (Tm II), "F (Tm ONG, "F	2 Kg	TEMP.	IEMP. 'F
		6/3/	1.6.0	20	70/	1.06	771	91	76	~	760	ر ور
`	10		100.37					22	1/2	[1/2	//
	20		08.806	46.	1.07	107	Zey/		3	1	1	9
								(7	•		` '

											_	_	_	_		_	_	 	_	 _	 	_	_	_	
	IMPINGER	TEMP 'F	6 ×	99	64	66	19	99																	i
SAMPLE	ВОХ	TEMP	037	161	200	157	256	15%																	1
S. C.	VACUUM	£ c	7	4	7	2	જ	7																	
WETER	OUTET	Ta oo.	26	76	76	77	26	78																	l
DAY CAS WETER TEMPERATURE	MET	(Im In)	9/	77	64	18	8)	7.6																	
STACK	EV S	Ē	146	168	761	37.0	7/6	2/16																	_
SNTAL SNTAL	720	ACTUAL	1.06	1.07	136	76	76		4																
ORINCE PRESSURE DIFFERENTIAL	(A M). A. H ₂ O	DESIRED	1.06	1.07	36	46	10	200	- 10																4
200	NEIGHT.	(4 P). h. H2O	40.	16	76	100	200	170	7.7																1
GAS METER READING	(Vm), h ³	•	76		1	,,,,		-36-	\$50	•	1			•											
GAS MET	2	168	903	800	9/10	19.0	7	22	4														`		1
CLOCKTINE	בארום מארים	1038						63,	(38																
CALP PIC	TIME min.	•	Ş		2	*	s d	es S	23																
por fa	TRAVERSE	NUMBER																							

X1-03-046

Remarks				
Received by for fonding		Date	35/9	·
LABORATO	ORY CUST	ODY		/ .
Remarks				
Samples stored and locked				
container no.	marked			<u> </u>
K.MnOy blank		level		
Impinger contents (3+4) container no.	Liquid marked	level		
HNO_3/H_2O_2 blank container no. $IZZ/Z-A$	Liquid marked	level		
Impinger contents $(1+2)$ container no. $\frac{11/26-A}{}$	Liquid marked	level		
Nectone probe rinse container no. 11/25-A	Liquic marked	level		
Description of particulate on filter				
Filter container number(s)	<u>B</u>	Sealed	/	
RECOVE	RED SAM	PLE		
Total moistur	e	16.1	_ 9	
YELLOW TIME				
Description of impinger water			30	% spen
Net volume (wt) m	1 (g)	Net wt	10.1	
Initial volume (wt) 601.0 587.2 50.8 m			4	
Final volume (wt) 404.8 5948 502.0m	ıl (g)	Final wt	745.4	
Impiggers 1 2 3			4 1	5
<u></u>	ISTURE			
Filter number(s) 9070045				
Run number ATIM - 4				
Sample location AFTER BURNER INC				
Plant RRAD - Townkowa		Samole dat	e 2-2	7.91

BALS. STATIC ANB FILTER NUMBER, STACK WISIDE THE STATIC AND NO	PLANT AND CITY	ID CITY		DATE		SAMPLING LOCATION	OCATION			SAMPLE TYPE	نیا	RUN	RUNNUMBER
PRESS FEMP FILTERNUMBER, STACK NISDE THE	D- 10	intano	7					nut	•	Past. Me	Metals	AIPM	5-W
Cheraldren Pages Static and Pages Static response Pages Pa									-	,			
METER METER CAL METER CHILD METER METER METER CHECK METER METER CHECK METER METER CHECK METER CHECK METER METER CHECK METER CHEC			BAR. PRESS.	PRESS.	-	2	, 400 or 1	STACK		7.08.5 1.08.5	PROBE LENGTH AND TYPE		NOZZLE
METER METER LAS THERM PITOT THEM ONSAT TRANSLEAK CHI K TRANSLEAK CHECK (FINAL) METER METER LASTOR (T) NO THEM ONSAT THEM CHAND FINAL CLOCK THE CAS METER READING VELOCITY OF THE SESURE ON THE CHAND CLOCK THE CAS METER READING VELOCITY OF THE SESURE ON THE CHAND CLOCK THE CAS METER READING VELOCITY OF THE SESURE O	OPERAIDR(S)		19.97	1.	10	90/04	() \(\frac{7}{2}\)	8		84	3 '6 lun	╁┤	12
METER METER ALTERN PITOT THEM ONE (INTIMA) BOX NO A HG FACTOR (IN NO						TRAINL	įįį	├	EAK CHECK		39000		PITOT
FACTOR NO NO NO NO NO NO NO							Z L	-	INAL)		HEAT 6	HEAT	호누
SAMPLING CLOCK TME GAS METER PEADING VELOCITY OFFERENTIAL STACK TEMPERS OF SAMPLING VELOCITY OFFERENTIAL STACK TEMPERS OF SAMPLING OFFERENTIAL STACK TEMPERS OF SAMPLING OF SA			-	_		+-		1	0.00	7.27	350	-	1187
SAMPLING CLOCK TIME GAS METER PEADING TIME, min. (24th CLOCK) O						ORIFICE P	PESSURE		DRY GAS	SWETER			
1330 931.815 (187) in H20 DESIRED ACI (181.°F (Tm. in).°F 932.94 94 0.94 0.94 0.94 2.28 80 94 0.94 0.99 0.94 2.28 80 95.94 0.99 0.90 2.90 2.90 8.90 9.90 9.90 2.90 8.90 9.90 9.90 2.90 8.90 9.90 9.90 2.90 8.90 9.90 9.90 9.90 9.90 9.90 9.90 9	SAMPURG		GAS METE	R READING	VELOCITY		n. H ₂ O	STACK	Ewire.	אוטאני פישוריים	PUMP	SAMPLE	
927.44 1.01 1.01 1.01 1.05 246 94 0.94 0.94 228 948.40 94 0.94 0.94 228 95.3.40 94 0.94 0.90 0.90 0.90 246 95.5.40 94 0.90 0.90 0.90 25.2 95.40 96.4 720 34 8.90 0.70 26.2	_	1230	921	.)	(A P), in H ₂ (ĕ	VC1	(Ts). °F	(Tm in). *F	(Tm out. F	in Hg	TEMP . F	TEMP
742.94 0.94 0.94 0.94 228 948.40 94 0.94 0.91 246 953.82 94 0.91 0.91 246 954.720 34 0.90 0.90 2162 1430 964.720 34 0.90 0.70 2162	0/	7	937	•1 •	46.		1.0.1	176	32	17	,	270	99
948.40 94 0.94 0.94 228 953.82 94 0.91 0.91 246 954.720 94 0.90 0.90 252 944.720 94 0.90 0.70 262 944.720 94 0.90 0.90 262	20		642	1 •	46.	0.97	0.27	205	78	77	7	760	64
1430 953.82 94 0.91 246 929 40 0.90 0.90 256 1430 964, 720 .94 0.90 0.70 262	R		846		16			228	80	36	77	25.8	63
957 .40 44 0.40 516 267 1430 364 0.70 262 1430 364 1430 3	oh		953	1 4	200	0.61	0.91	246	2.00	93	2 4	124	70
	50		25%	707	***	000	9	2,70	100		74	020	1
	60		767	120		4	2/:0	7 8 7	4.3		ì		
	-					1	1						
							_						
							_						
							 						
							i						
	† +	-					Ĺ						
	+												
								1					
							1						
									1				

1-03-046

Sample location AFTERALENEN FILET Recovery date 2-27/1/ Run number AFAM Sample date 2-27/1/ Run number AFAM Secovered by Recovered by BIPF Filter number(s) 90/04/2 (Gran-fisher) MOISTURE Impingers AFTERALENEN FILET Recovery date 2/27/1/ MOISTURE Impingers 4 5 Hinal volume (wt) 688,8 6253 478.7ml (g) Final wt 730.6 Initial volume (wt) 586.4 613 48.4 ml (g) Initial wt 722.7	
Run number $ATDM - 5$ Recovered by $BIPF$ Filter number(s) $90/04/2$ (G_{CM} -fidu) MOISTURE Impingers Impingers Final volume (wt) 688,8 6255 478.7ml (g) Final wt 730.6 Initial volume (wt) 586.4 613 478.4 ml (g) Initial wt 722.7	
## ## ## ## ## ## ## ## ## ## ## ## ##	
## MOISTURE Impingers ## MOISTURE ## MOIS	
Impingers 2 3. 4 5 #Final volume (wt) 688,8 625.5 478.7 ml (g) Final wt 733.6 Initial volume (wt) 586.4 611.3 478.4 ml (g) Initial wt 722.7	
Ampingers AFinal volume (wt) $688.8 625.5 478.7 \text{ ml}$ (g) Final wt 736.6 Initial volume (wt) $588.4 613 478.4 \text{ ml}$ (g) Initial wt 722.7	
Initial volume (wt) 596.4 611.3 496.4 ml (g) Initial wt 722.7	
	,
$\mathbf{A}_{1} = \mathbf{A}_{1} + \mathbf{A}_{2} + \mathbf{A}_{3} + \mathbf{A}_{4} + \mathbf{A}_{3} + \mathbf{A}_{4} $	
Net volume (wt) $92.4 14.2 0.3 $ ml (g) Net wt 1.9	
Description of impinger water 15 Imp. 60 %	spen
slightly yellow	
Total moistureg	
RECOVERED SAMPLE	
Filter container number(s) 1/133-B Sealed	
Description of particulate on filter dupich gruy	
Actine probe Liquid level rinse container no. 1//33-A marked	
Impinger contents $(1+2)$ Liquid level container no. $1/134-A$ marked	
HNO_3/H_2O_2 blank Liquid level container no. $122/2-14$ marked	
Impinger contents (3+4) Container no. Liquid level marked	
KMnOy blank Container no. Liquid level marked	
Samples stored and locked	
Remarks 6/000 fibre fitte Blad =>	
Received by In Amelina Date 3/5/41	
Memarks 7	

RUM D-TEXAKLANA 212891 HB INICT PAKI METALS #IPM L					
Klawa 212891 HB IN	PI ANT AND CITY	DATE	SAMPLING LOCATION	SAMPLE TYPE	RUNNUMBER
HB IN					
KKHU - lexakkana Literal Mis Inici	: 1 (1)	10000	11 / / // All	F. 1. 1 M. ra/s	1.W01
	KKH U - I CJAKKANA	1411	121W- 611	140///	2

NOZZIE	LD. NUMBER	1461	
n Englished	AND TYPE	3° 6/m	
PITOT	33	P8.	
	DIA. (n.)	ه/	
	FILTER NUMBER(S)	6340106	
AMB	a G	7.7	
STATIC	FRESS.	-5.3	
BAR	PRESS	29.75	
		101(8)	

		_		
PITOT EAK CHECK	FINAL	\		
PIT LEAK	INIT.	``		
EAT W	e.	, (150	
PROBE	(°F)	,	250 150	
	K FACTOR		1.76	
K CHECK	₹5		0 0	
BANK B	ë. H	,	\ ₀	
TRAIN LEAK CHECK TRAIN LEAK CHECK (INITIAL) (FINAL)	8		2000	
TRAN LE	i. Ho		<i>\</i>	
	3 9		1	
JMP.	NO NO NO		1-17	
			<u> </u>	
			1	
	MOISTURE NETER METER METER CAL THERM.		200	700
	METER		. 70	
	WETER	· · · · · · · · · · · · · · · · · · ·	2.00	
	MOISTURE	(20)	67.7	

	SAMPLE		_	260 68	-	759 67	1	1	t	261 70												
— 臣	PE	_	-	72 2	アトア	6 21	77 77	ľ	+	75 4												
DAY GAS METER		NET	(Im in). • F	73	73	176	1.0	 	4	8/8	+		_		+	+		-				
CASPICE PRESSURE	DIFFERENTIAL	(AH), n. H ₂ O SIMP.	ACTUAL (2 1.02 200	141 211 21	100 159	14	1/01	1.01	7 1.07 170		-			1							
CRIFIC		VELOCITY (A)	(AP), in H20 DESIPED	1.0 1.02		\ -	1	1	1.0 1.07	101 01												
	GAS METER READING	(Vm), N3	43	1	·	16		788.42	994.00	1 4			+	+	•					+	+	
	COCKTINE	_	O Kus	1227						0000			†									
	CAMPING	TIME, min.	٠				30	04	as	200												
		TRAVERSE	KINBER																			

X1-03-046

PARTICULATE SAMPLE RECOVERY AND INTEGRITY SHEET

Plant R.R.A. & Texask ma	Sample date 2-28-91
Sample location AFTERBURNER 3	near Recovery date 2/28/9/
Run number AIPM-6	· //
Filter number(s) 9010487	
	MOISTURE
Impingers / 2 3	Silica gel
Final volume (wt) 577.3 602.3 984.	غُما(g) Final wt
Initial volume (wt) 600 c 595.9 493	7ml(g) Initial wt 73/6 g
Net volume (wt) -2-7 4.4 .5	ml(g) Net wt g
Description of impinger water yellow	TINT 40 % spent
Total moisture	
DE	COVERED SAMPLE
Filter container number(s)	(37-B) Sealed
Description of particulate on filt	er
Probe rinse container no	Liquid level marked
Ace blank	Liquid level
container no. 12709-A	marked
Impinger contents	Liquid level
container no. ///38-A	marked
blank container no.	Liquid level
Samples stored and locked	
Remarks MRO, Black - 12211A	FILTER Blank - 11/268
HAVS, HEOR BIANK - 12	212 A
1	1 1
LAB	DRAFORY CUSTODY
Received by mothers	Date 3/5/47
Remarks	

VII.O CIVA FAA IO	DATE	SAMPLING LOCATIC	SAMPLE TYPE	RUNNAMBER	
	2,300	26 1.71	1.2 10.66	レールのエサ	
- KKAJINEZER KENA	11,00,0	The said	1 4.4.		
			_		

NOZIE	I WASE		77.67	1.777	
HISNS I SOCIE	AND TVPE	2 200	1710	ر مردو	
PITOT	3 6	3	710	.07	
SOLD MANAGEMENT	SIACA INSIDE	OIA. (III.)	_	\$	
		FILTER NUMBER(S)	,	4010533	
AMB	TEMP	E C		72	
STATIC	PRESS	(<u>s</u>		18.3	
BAR	PRESS.	E H		29.75	?
		OPERATOR/SI		B	

EAK CHECK	FINAL	1	\	
LEAKCHE	INIT	1	\	
BOX HEAT	(P.P.		スシュ	
PROBE FFAT		1,70	120	
	OFM K FACTOR	,	1.74 1.50 4.50	
TRAIN LEAK CHECK TRAIN LEAK CHECK (INITIAL)	Ω-FM	, 	0.0	
TRAIN LE	gH re	,	\	
LEAK CHECK INITIAL)	وي	1	100.0	1
	ē.	1	14	
	<u> </u>		١	
IMP	NO NO NO NO		7/7	
			١	
	¥ €	2	į	
	METER CAL	ביוליולי	000	.780
	METER	BOX NO. DHE	70	7
	METER		١	17-1
	MOISTURE	(%)		2/0

				_	_							_	_	_	_		_	 			_			_	 _	_		_	4
		IMPINGER	JEMP. T	64	64	157	77		5 7	9																			
	SAMPLE	Š	. 11	257	261	24'7	26.1	470	161	3																			
	٥	VACUUM.	2	7	ĸſ	Z	t	7	7																				
METER	ATURE	OUTLET	(Im own. F	77	16	17	7.7	20	100	9																			
DRY CAS METER	TEMPERATURE			18	84	29	10	000	A S	12												+							
	30	TEMP	(3 <u>8</u>)	250	210	130	201	97,	A.	237										1		1							1
1	₹.	°2	ACTU	0.95	101	100		رزو	<u> </u>	707				İ	1	1												1	
CRIENCE PRESS	DIFFERENTIA		OESIRED '	0.95	1	200	150	2017	1:08	1.08									+	+	1	1	1				+	+	
		VELOCITY	(AP), in. H ₂ O	1.0			3,	1.0	1.0	1.0																			
	CAS METER READING		000 129		200	1,5.1	17:10	23.30	20.94	34.900	•		-	+		•								•				•	-
	Sign Vice	(24-hr CLOCK)	2460	7						5,01																			 _
	Č	TIME min	٥		0)	2	97	07	25	09																			
		TRAVERSE	N. MBER		1																								

) - 07-046

PARTICULATE SAMPLE RECOVERY AND INTEGRITY SHEET

Sample location APTERMANE SALET Recovery date 2-23-99 Run number AIRM - 7 Recovered by AIRM PLAN - 7 Received by AIRM PLAN -	Plant R.R.A.D - TEXPERSON		Sample dat	te 2-28-9/	
Run number					/
MOISTURE Impingers	Run number PIPIN - 7	Recover	red by \mathcal{S}_{l}	C/CB	
Impingers 2 3 Silica gel	Filter number(s) 9010 5.31			7	
Impingers Final volume (wt) 102.1 1002 1985 2m1(g) Final wt 760.9 g Initial volume (wt) 665.7 10.2 1985 2m1(g) Net volume (wt) -360 30 1.0 m1(g) Net volume (wt) -360 30 1.0 m1(g) Description of impinger water Total moisture 7.3 g RECOVERED SAMPLE Filter container number(s) 1139 -8 Sealed Description of particulate on filter 12 12 12 12 12 12 12 12 12 12 12 12 12					
Final volume (wt) 102.1 1002 115 ml (g) Final wt 760.9 g Initial volume (wt) 405.1 142 11 ml (g) Initial wt 7548 g Net volume (wt) -36 30 10 ml (g) Net wt 6.9 g Description of impinger water 8 spent Total moisture 7.3 g RECOVERED SAMPLE Filter container number(s) 1139 - R Sealed Description of particulate on filter 124 124 124 124 124 124 124 124 124 124		MOISTUR	RE		
Initial volume (wt) 4057 M42 M1 ml(g) Initial wt 7545 g Net volume (wt) -36 30 10 ml(g) Net wt 4.9 g Description of impinger water 5 spent Total moisture 7.3 g RECOVERED SAMPLE Filter container number(s) 1139 -8 Sealed 5 Description of particulate on filter 5 DAZK GAZY Probe rinse container no. 1139 - A marked 5 marked 1 marked			Silica gel		
Net volume (wt) -34 30 10 m ¹ (g) Net wt 4.9 g Description of impinger water % spent Total moisture 7.3 g RECOVERED SAMPLE Filter container number(s) 1139 - R Sealed Description of particulate on filter	Final volume (wt) 102.1 601.2 485	[7 m1(g)	Final wt	760.9	9
Total moisture 7.3 g RECOVERED SAMPLE Filter container number(s) 1/139 - R Sealed Description of particulate on filter Probe rinse container no. 1/139 - A marked Actor blank container no. 1/209 - A marked Impinger contents container no. 1/140 - A marked HMO2 blank Liquid level marked HMO3 blank Liquid level marked Samples stored and locked Remarks 501 HNO3 H2O2 Arck = 1/22/12 - A	Initial volume (wt) 6057 604.2 484	<u>/</u> m1(g)	Initial wt _	7540	9
RECOVERED SAMPLE Filter container number(s) ///39 - R Sealed Description of particulate on filter Daek May Probe rinse container no. ///39 - A marked Acrosc blank Liquid level marked Impinger contents Liquid level marked Impinger contents Liquid level marked MM2 blank Liquid level marked Samples stored and locked Remarks Soli HNO, H2O, Alack - /22/2-A	Net volume (wt) -36 30 1.6	2 ml(g)	Net wt	4.4	9
RECOVERED SAMPLE Filter container number(s) 1139 - R Sealed Description of particulate on filter Drew Cray Probe rinse container no. 1139 - A marked Container no. 12209 - A marked Impinger contents Liquid level marked Impinger contents Liquid level marked Liquid level marked Liquid level marked Samples stored and locked Remarks Sol: HNO, H2O, Rink = 12212 - A	Description of impinger water			% spent	
RECOVERED SAMPLE Filter container number(s) 1139 - R Sealed Description of particulate on filter Drew Cray Probe rinse container no. 1139 - A marked Container no. 12209 - A marked Impinger contents Liquid level marked Impinger contents Liquid level marked Liquid level marked Liquid level marked Samples stored and locked Remarks Sol: HNO, H2O, Rink = 12212 - A					
Filter container number(s) 1139 - R Sealed Description of particulate on filter Drew 1149 Probe rinse	Total moisture				
Filter container number(s) 1139 - R Sealed Description of particulate on filter Drew 1149 Probe rinse	0.5	.0045050 (· AMBLE		
Probe rinse container no. ///39-A marked Actor blank Liquid level marked Impinger contents Liquid level marked Impinger contents Liquid level marked Liquid level marked Liquid level marked Liquid level marked Liquid level marked Liquid level marked Liquid level marked Remarks Soli HNO, H2O, Alark = /22/2-A	KE	COVERED S	SAMPLE		
Probe rinse container no. //39-A marked Actor blank Liquid level marked Impinger contents Liquid level marked Impinger contents Liquid level marked #### Liquid level marked #### Liquid level marked #### Liquid level marked Samples stored and locked Remarks Sol; HNO, H2O, R/Ak = /22/2-A	Filter container number(s) 11139	7-B	Sealed	V	
container no. //39-A marked Actoc blank Liquid level marked Impinger contents Liquid level marked Liquid level marked Liquid level marked Liquid level marked Liquid level marked Liquid level marked Samples stored and locked Remarks Soli HNO, H2O, Alark = /22/2-A	Description of particulate on filt	er	DREW GAY		
container no. //39-A marked Actoc blank Liquid level marked Impinger contents Liquid level marked Liquid level marked Liquid level marked Liquid level marked Liquid level marked Liquid level marked Samples stored and locked Remarks Soli HNO, H2O, Alark = /22/2-A					
Impinger contents container no. 12209-A marked Impinger contents container no. 11140-A marked HNO2 blank container no. 12211-A marked Samples stored and locked Remarks 501 HNO2 H2O2 RIAK = 12212-A		•	level		
Impinger contents container no. ////O-A marked ##### Liquid level container no. /22//-A marked Samples stored and locked Remarks 50/; HNO, H2O, B/Ak = /22/2-A		-	lovo)		
Impinger contents container no. ////O-A marked ##### Liquid level container no. /22//-A marked Samples stored and locked Remarks 50/; HNO, H2O, B/Ak = /22/2-A	container no. 12209-A		ieve i		
Liquid level marked Samples stored and locked Remarks Sol; HNO, H2O, Black = 12212-4	Impinger contents	- Liquid 1	level		
Samples stored and locked Remarks Sol; MNO, H2O, Black = 12212-A	container no. ///٧٥-A	_ marked			
Samples stored and locked					
Remarks <u>Sol: HNO, H2O, Black = 12212-4</u>		•			
			- /23/	7 - 4	
Received by An Amelian Date 35/9/	Remarks 301, 11100, 11202	LY 72K	- /52/		
Received by An Andrew Date 35/9/					
Received by fin fondism Date 35/9/	LAB	OBATORY C	CUSTODY	//	
Remarks	Received by An Annih	·	Nate	3/2/01	
	Remarks			95/11-	
					

	,) [[~]		١١		T .		,		-	-	_	7	7	, ,			-,	_		_	, 			 			٠.,			_
RUNNUMBER	Pm-8		NOZZU	ID. NUMBER	161		PITOT LEAK CHECK	INIT FINAL	\		IMPINGER		9,	0 7	19	99	6.8																1
A.	MAIRM						BOX HFAT	L	250	200	80X	TEMP of		200	#SX	255	256				1												
Э с	lents		PROBELENCIA	AND TYPE	36		PROBE HEAT		750	0	VACUUM,	₽ E 1	2/2	t	4	76	7	1			+										1	1	-
SAMPLE TYPE	ct . [[]		PITOT		1.8			K FACTOR	1.26	AFTER TURE	omer	1.000 H	96	286	29	80	8.7																
	(Fee						TRAIN LEAK CHECK (FINAL)	CFN	100.0	DRY GAS METER TEMPERATURE		-	2 3	22	12	87	87	1	+	+	}						-		+	+	+	+	
			STACKINSIDE	DIA (in)	7	- }		n. Hg	h	34	L	(1s): 't	97.6	25.0	150	26.	260	1		+	+							-	1	1	+	+	
OCATION	ler			MBER(S)	132		(INITIAL)	Ö	0,0	RESSUR	25	ACTIAL		130	5:10	0.95	25.0	<u> </u>	1		+						 	_+ 	→	- 	i	 	→
SAMPLING LOCATION	I'M			FILTER NUMBER(S)	9010532		<u>ş</u>	£ E	91	ORIFICE PRESSUR DIFFERENTIAL	(A H), IN H ₂ O	DESIMED	000	0.30	26.0	0.95	0.75																
S	* B		AMB TEMP	(-1)	73		IMP. OBSAT		1	2	HEAD	(4 P). P. H ₂ O	3		10/	1.0	1.0															1	
DATE	15180		STATIC	(n. H ₂ O)	5.3		AI YOTO		1	READING		023 (1/2/2	45	1/2/	17	673	1	+	+	+	+	-	-	_							+	
	1		BAR	8 1 5	29.75			2		GAS METER READING	(Vrn).	30%	.l	-í	-1	J.	. [~]		4			•					•		-				
≥	cinka							FACTOR (?)	180		٤	1153	+		+		1253		+	+	1			 -	-							-	
PLANT AND CITY	17)A (S)			į	A HO	1.79	}	+	$\frac{1}{2}$					├-		1	+	+	+	+	-	_	-	_				+	$\frac{1}{1}$	
\ \{\frac{1}{2}}	\$			OPERATOR(S)	0		1	BOX NO	11-11		TIME, min		<u>:</u>	3 3	1/2	13	9																
	18				7			MOISION (*)	;		POINT	NUMBER	,	٧,	, ,		3																
																۰									-		 ليا		لــا				

11-62-046

PARTICULATE SAMPLE RECOVERY AND INTEGRITY SHEET

Flant R.R.A.S TEXA	RKANHS	ampie date		//
Sample location AFTERBURN	ER FACET F	Recovery da	te 208	-91
Run number AIRM - 8				
Filter number(s) 9010 S				
	MOISTURE			
Impingers /		ca gel		
Final volume (wt) 400.4 5	6.8 4745m1(g) Fina	il wt	74	_ 9 _{/-}
Initial volume (wt)403.4 59				_ g (//
Net volume (wt) $\frac{-3.7}{3}$				9
Description of impinger wate	er - gellouik -	30	_ % spent	
				
Total mo	oisture /0.2	9		
	DE SOUEDED CAMO	-		
	RECOVERED SAMPL	.t		
Filter container number(s)	11145 - B	Sealed		
	· ·			
Filter container number(s) _ Description of particulate (· ·			
Description of particulate of partic	on filter Liquid level			
Description of particulate of Probe rinse container no	Liquid level			
Description of particulate of Probe rinse container no	Liquid level marked Liquid level			
Probe rinse container no. ///45-A ALETONE blank container no. //2209-A	Liquid level marked Liquid level marked			
Description of particulate of Probe rinse container no	Liquid level marked Liquid level marked			
Probe rinse container no. ////5-A Aletae blank container no. //2208-A Impinger contents container no. ///////////////////////////////////	Liquid level marked Liquid level marked Liquid level marked Liquid level marked Liquid level			
Probe rinse container no. ///5-A Aletare blank container no. //2208-A Impinger contents container no. ///////////////////////////////////	Liquid level marked Liquid level marked Liquid level marked Liquid level marked Liquid level			
Probe rinse container no. ////5-A ALETENCE blank container no. ////5-A Impinger contents container no. //////-A NO2 blank container no. //////-A Samples stored and locked	Liquid level marked Liquid level marked Liquid level marked Liquid level marked Liquid level marked			
Probe rinse container no. ////5-A Aletare blank container no. //2208-A Impinger contents container no. ///////////////////////////////////	Liquid level marked Liquid level marked Liquid level marked Liquid level marked Liquid level marked			
Probe rinse container no. ////5-A ALETER blank container no. ////5-A Impinger contents container no. //////-A NO2 blank container no. //////-A Samples stored and locked	Liquid level marked Liquid level marked Liquid level marked Liquid level marked Liquid level marked			
Probe rinse container no. ////5-A ALETER blank container no. ////5-A Impinger contents container no. //////-A NO2 blank container no. //////-A Samples stored and locked	Liquid level marked Liquid level marked Liquid level marked Liquid level marked Liquid level marked Savarjan Blank	//22/		. 1.
Probe rinse container no. ///5-A Aletene blank container no. //208-A Impinger contents container no. ///46-A Samples stored and locked Remarks ///03 + 1502	Liquid level marked Liquid level marked Liquid level marked Liquid level marked Liquid level marked Savarjan Blank	//22/		
Probe rinse container no. ////5-A ALETER blank container no. ////5-A Impinger contents container no. //////-A NO2 blank container no. //////-A Samples stored and locked	Liquid level marked Liquid level marked Liquid level marked Liquid level marked Liquid level marked	//22/		

PLANT AND CITY	-	DATE		SAMPLING LOCATION		SAMPLETYPE	TYPE	RUNNUMBER	MREA
KKND-Texaplena	2	136191	Veni	ture of let	6	act Merals	Fz./s	SIPM-	1-1
	BAA	STATIC	AMB.		STACK INSIDE	PITOT	PROBE ENGTH		NOZZIE
QPERATOR(S)	2 2 5	(F. H.20)	e G	FILTER NUMBER(S)	DIA. (m.)	8	AND TYPE	\dashv	LD. NUMBER
(4)	30.06	-5.9	70	7010054	,, 9	78.	3, 6/m	171	

ă	FINAL	
PITOT LEAK CHECK	INIT	
BOX HEAT	Ч	150
PROSE B	- 1	9
æ <u>∓</u>	-4	250
	K FACTOR	.889
TRAIN LEAK CHECK (FINAL)	SP.	0.0
TRAINLE (FI	h.Hg	5
FRAN LEAK CHECK (INITIAL)	SP4	₹30.0
١,	h.Hg	11
1438	<u></u>	١
JMP.	ģ	7-5
30,00	<u>2</u> 2	Sol
į	2	270
	(%) BOX NO. A H.Ø FACTOR (Y) NO.	416.
	A H @	2.03
	BOX NO.	17.4
	Mosture (%)	01

	IMPINGER	TEMP F	72	99	60	79	69	69												•
SAV S	BCX N	TEMPF	251	259	256	259	717	272												(
Q S	VACUM	면 당	7	h	7	7	3	7												
DRY CAS METER TEMPERATURE	OUNET	(Im out). F	89	88	72	14	76	77		73.5										
DRY GA TEMPE	NET	(Im h), F	66	608	73	36	08	62		Acue										
2005	TEMP.	(Te), °F	80	18	901	381	133	128		///3										l
RESSURE ENTAL	1 H20	ACTUM.	1.64	87.1	121	881	62.70	2.72		%										
ORIFICE PRESSURE DIFFERENTIAL	(AM). R. H ₂ O	DESIRED	1.64	bx'/	1.61	681	2.73	2,72		Au = 1										1
2000		(4 P). P. H20	6.1	57	6.1	2.3	1 .	3,4		Do: 1.535										
GAS METER READING	(Vm). n ³	726.931	•	1 '	1 '	d d	4 •	1 -		VM= 89.738		Vm = 96,556		Bus = 17.36	יון					
CLOCKTIME	(24-1-CLOCK)	62.60						1/23			1.385.1	!								
SAMPING	TIME, min.	•	20	04	07	0%	00/	120												
	TRAVERSE	NAMBER	1 - 4	 	2	}	٧	٠												

71-03-053

Plant R.R. H.D Terarka	Na Sample date 2/26/91
Sample location VENTURI INC	
Kun number 5IPM-1	
Filter number(s) 90700:	
MO:	ISTURE
1 2 3.	,
Impingers j j	4 5
Final volume (wt) 857. 1 709.7 534.7 m	•
Initial volume (wt) 604.6 630.1 506.4 m	
Net volume (wt) 252.5 79.6 18.3 m	4.
Description of impinger water clear	% spent
Total moisture	385.1 9
RECOVER	RED SAMPLE
Filter container number(s) 122/9-	B Sealed √
Description of particulate on filter	
Auton probe rinse container no. 12213-A	Liquid level marked
Impinger contents $(1+2)$ container no. $122/4-A$	Liquid level marked
HNO_3/H_2O_2 blank container no. $12211-A$	Liquid level
Impinger contents (3+4) container no.	Liquid level marked
KMnOy blank container no. NA	Liquid level
Samples stored and locked	
Remarks Arctone Blad:	12209-A
LABORATO	ORY CUSTODY
Received by fin structure	Date <u>5/5/4/</u>
Remarks	

PLANT AND CITY		DATE		SAMPLINGLOCATION	OCATION		9	SAMPLE TYPE	TYPE	RUN	PLN NUMBER
RRAD- Toucher	1	151777	Yen	enturi	fult		Pa	17:8	Tas, Meth	Y-WOIS.	n-2
								$\setminus \left[\right]$			
	BAR	STATIC	AMB.			CTACK MOIDE		PITOT	RUENEI I SBUBB		NOZZLE
OPERATOR(S)	3 3 5	(0°H t)	300	FILTER NUMBER(S)	MBEP(S)	DIA. (m.)	j.,	\$	AND TYPE	Щ	LD. NUMBER
(83)	30.00	6.5-	70	9070063	2063	9		18.	216/00	11	

PITOT EAX CHĒĆK	FINAL	1
<u> </u>	INIT.	\
£ 55	6.9	250
PROGE	٦٩	250 250
EN PROGE BOX	K FACTOR	.777
LEAK EMEEK (FINAL)	₹	0.0
TRUNKE (F)	h. Ho	5
TRAN LEAK CHECK (INITIAL)	SPL SPL	100.
TINNI)	유	3/
17300	Ş <u>Ş</u>	
.dili	. O	7-2
30.00	Ş	20/
		4 270
	(%) BOX NO. AHO FACTOR (*) NO.	T4 2.03 .974
	BOX NO. A H.	2.03
	SOK NO.	Fry
		17

					_			_	_	_	_			_	_		 	 _	 _	 	 _	4
	MPINSER	TEMP F	79	19	29	63	777	19														1
SAMPLE	ğ	TEMP. • F	269	267	259	264	265	266														
P. P.	VACUUM,	6H م	3	3	2	3	5	>														Î
METER ATURE	OURET	(Tm out). F	75	75	76	77	78	19		= 79												
DRY GAS METER TEMPERATURE	MET	(Im by F	77	32	08	18	83	58		Ar.												1
STACK	TEMP	(Ta), • F	86	106	16	129	(33	134														1
ESSURE NITAL	22	ACTUAL	2.16	1.99	158	2.63	3.46	3.40		2.54												1
ORIFICE PRESSURE DIFFERENTAL	(AH). TH 20	DESIRED	2.16	661	1.58	2.63	3.4	3.40		Ac =												
AEI OCIA	93	(4P). h. H2O	2.9	2.7	7.1	3.7	4.9	4.8													,	1
GAS METER READING	(Vmţ. ቤ ³	786. 518	١.	231	528 37	1	05. 55%			14 = 50.847		Ver. 48.66	7.15			Bus = 16.9.						
CLOCKTIME	CAST CLOCKS	LZhI						1527														
SAUPUNG	TIME, min.	0	0 /	20	46	i	20	90														
	TRAVERSE	NAMBER	4	,	S	7	1	٥														

XI-03-053

Plant RRAD - Tenanka	n a	Sample date	1/	26/9/
Sample location Yenrum Inte			/ /	26/91
Run number SIPM-2			(33)	,
Filter number(s) 9070063				
MO	ISTURE			
1 2 3.			U I	5
Impingers Final volume (wt) 235.3 623.4 499.4 m	۱ (۵)	Cinn)	7	_
Initial volume (wt) 624.4 584.8 494.6 m				NA 9
Net volume (wt) /30.9 38.6 7.8 m		Net wt		
Description of impinger water <u>lear</u>			80	9 % spent
beset the toll of timp ringer water	<u></u>			& Spene
Total moisture	<u> </u>	196	g	
			3	
	RED SAMP			
Filter container number(s)	F- B	Sealed	V	
Description of particulate on filter	his	the bigg	Cola	
ACETONE probe 1/078-17 rinse container no.	Liquid marked	level		
Impinger contents $(1+2)$ container no. $1/679-A$	Liquid marked	level		
HNO_3/H_2O_2 blank container no. $IZZII - A$	Liquid marked	level		
Impinger contents (3+4) container no.	Liquid marked	level		
KMnOy blank container no.	Liquid marked			
Samples stored and locked				
Remarks Autore Black -	12200	7-A		
<u> </u>		······································		
LABORATO	RY CUST	ODY	//	1.
Received by In Amelian		Date	36/9	,
Remarks			7-1-1	

EMISSION IEU IING CILLE KOID

	}	-				SAMPLETYPE		PUN NUMBER
700 CHAN THE TO	_	DATE		SAMPLING LOCATION	9			
PLANI AND CALL			•	70//	ノ	1.41		X 1681 X
1 1000		12/2/19/	7	putue In Cit		an //war		
KKKD - 1 exertano	J							
						PITOT		3 KZ CN
	9		AMB				משטים ו באינונה	1
	1 2 2		TEMP	-	STACK INSIDE	3	1000	A MARKA
	3	Ó	2	FILTER NUMBER(S)	DIA. (m.)	3	MOTIFE	
OPERATOR(S)	(6)		- 1	\		170	11 - 1	121
000	9/100	6/	100	5800106	9	. 07	3 6/00	
3	127.71	7.5	2	20000				

_			-			_	_		- 1	-7	_	\neg	1	7	7	7	7	7	Т	7	Т	7	Т	7	7	7	٦	П	٦	
PITOT	항ㅏ	FINAL			IMPINGER TEMP . F	79	59	60	19	62	67																			
-		Ž	,	SAMPLE	BOX TEMP • F	267	261	262	261	206																				
<u></u>			25.0			十	12		,	0	7	_									4	-	-	_						
200	KEAT	£	250	8	Waller of the second of the se	ϵ	و	3	h	5	13																			ł
		K FACTOR	0.787	METER ATURE	omer	, 4 L	17	72	72	74	25																			
TRAIN LEAK CHECK	(FIVAL)	₹	0.0	DRY GAS METER TEMPERATURE	INLET	. ₩ W.	12/2	36	19	0%	2.8																			
TRANIE	(F)	oH re	5		TEMP.	78	15	100	361	120	100																			
TOAM I CAN CUECK	(INITIAL)	₹	0.001	ESSURE	2°	ACTUR.	50-		2 7		12	٠.																		
TO LANGE		h. H0	27	ORFICE PRESSURE DIFFERENTIAL	(4 M). in H ₂ O	DESIRED	50,	200	2000	2,0	1,7,7																			
		X 9)		VELOCITY HEAD	(AP). h. H20	`. I	•	1	•	4	1					1	1				T								
	INP.	N 0.	2-5			(A)	7	7	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7	7	7	1	1	1	1	4	1	4	\downarrow	1	1	 	1	+	4	- 	+	$\frac{1}{1}$	4
		<u>5</u> 5			REALING R3	' 18	85	4	20	49	20	208																		
		<u> </u>	270		CAS METER READY (Vm). ft ³	866	973	223	88%	897	907	4/16																	.	
		METER CAL	466	▎├─	CLOCK TIME OF	. 1080	Н					0.7				1			1	+	1	+		1		-				
		WETER	┿~			38						010									-	4	_	4	_					
		METER I			SAUPLIND TIME, min.	°	01	7	30	0/1	B	8																		
		#	(x)		w	NUMBER		76	m7	7	7	,																		

X1-03-053

Plant RRAD - TEXARRANA	Sample date $2/37/91$
Sample location VENTUCI - MILET	Recovery date 2/27/3/
Run number SIPM-3	\sim 1 \sim 20
Filter number(s) 9070085	
MO	ISTURE
1 7 3.	// 1 =
Impingers	4 5
Final volume (wt) 6927 6383 4464m	
Initial volume (wt) 680 5913 484.8 m	
Net volume (wt) <u>84.7 [47.5] 1/.9</u> m	1 (g) Net wt 20.4
Description of impinger water	% spent
YALLOWISH TINT	
Total moisture	e <u>/63.9</u> 9
RECOVE	RED SAMPLE
Filter container number(s) ///2/-	B Sealed
Description of particulate on filter	
Autore probe rinse container no. 11/21-A	Liquid level marked
Impinger contents $(1+2)$ container no. $1/1/22-A$	Liquid level marked
HNO_3/H_2O_2 blank container no. $172/2-A$	Liquid level marked
impinger contents (3+4) container no.	Liquid level
KMnOy blank ————————————————————————————————————	Liquid level
Samples stored and locked	
Remarks	
44.000.00	
LABORATO	ORY CUSTODY .
Received by for Atomorn	Date 3/5/9/
Remarks	7/

Section 1		DATE		SAMPLING LOCATION	_	SAMPLE TYPE	ETYPE	RUNNUMBER	MBER
						- (, ,	1	,,
0000 75. 0		121/21/21	7	Vertie Anles		Tut / Musas	usalo	5I MIN-4	11-4
KKKU - Jeknema	1								
				À					
	BAB	STATIC	AMB.		4	PITOT	מטיפב ו בחינונה		NOZZIE
	PRESS	PAESS.	TEMP.	FILTER NUMBER(S)	STACK INSIDE DIA. (m.)	38	AND TYPE		LD. NUMBER
OPERATORIS	(10)	, ,			 -	•	110		
(XX)	79 92	15.9	72	9070038	<u>,</u>	. 84	2 5/2	11.11	

	ار	\neg
PITOT EAK CHECK	FINAL	
E Z	N.	
BOX	6.5	250
PROBE	(FF)	250
	K FACTOR	0.002 0.787 250 250
K CHECK AL)	OF.	D.007
TRAIN LEAK CHECK TRAIN LEAK CHECK (INITIAL)	ъ. Н	3
LEAK CHECK INITIAL)	CPM	100.0
TRAN LEA	ج بو	2
	2 2	
M.	NO.	2-5
		105
	15 S	270
	MOSTURE METER METER METER CAL THEPAL P	974
	WETER	2.03
	METER	F7-4
	NOISTURE	/5/

	PINGER	TEMP F	69	67	1/1	1	1	η,	99																				
		TEMP F TE	_	┞	L	-	 		+			_		1				-	-	-	+	1	+	1			+	+	-
			759	260	77	1/2	1	8 (3	$\frac{1}{1}$	_		L	╀	-	_		<u> </u>	_	-	\downarrow	+	1	4	L	-	-	\downarrow	-
	PLARP	다 라	7	4	77	1	1	,	#																				
METER	ATURE	(Tm aug. F	26	74	15	15	9,0		8																				
DAY CAS METER	TEMPERATURE	(Ta 15)	29	20	00	200	X	K	72																				
	STACK	(a)	101	è			X		127																				
PESCURE	420 420	ACTUR	6,7	100	1/1/2	٠,	٠.	- 1	3.05																				
PRINCE PRESCUE	DIFFERENTIAL (A H), In 420	DESIRED	57	2000	1	22	10.00	3.01	3.05																				
	VELOCITY	(AP) R H,O	7 0 7	4	1	٧į	3,3	4.2	4.3																				
	READING	920	g/	77		75/	48	20	766																				
	CAS METER 6	//0	6	200	1	7	9	955.	7	۱ ٔ		4						1		4			•			1		•	
<u> </u>	CLOCKTINE	200	1021						113.7								1												
	SAMPLAD	Table C. Hall.		0/	20	300	ch	8	07																				
	TRAVERSE	PORT	NAME		٦	3	7	~	, ,	ì																			

71.03-03

Plant RRAD - TEXARKANA	Sai	mple date	2/27	/91
Sample location VENTURY - INCE				
Run number STPM-4			_ / /	
Filter number(s) 90706				
HO1	STURE			
Impiesons 1 2 3.	310//		11 1	
10010062			4	5
Final volume (wt) 709.2 637.9 484.3 ml			- 1	9
Initial volume (wt) 5924 613-6 983.7 ml		nitial wt	743.0	9
Net volume (wt)	(g) N	et wt	12.2	9
Description of impinger water <u>Clear</u>				% spent
Total moisture		5.9	9	
RECOVER	ED SAMPLE			
Files and in the state of the s		-3 - 1		•
Filter container number(s) ///2:	2-12 26g	a 1 e d		
Description of particulate on filter				
7. +		 _		
Acetone probe rinse container no. 11/23-A	Liquid le	evel		
IMPINARY CONTRAIS (/+2)	Liquid 1e	evel		
container no. ///24-14	marked			
HNO_3/H_2O_2 blank container no. $/22/2-A$	Liquid le	evel		
	marked			
Impinger contents (3+4) container no.	Liquid le	evel		
KMnOy blank	Liquid le	evel		
container no.	marked			
Samples stored and locked				
Remarks				
AROBETO	RY CUSTODY	v		,
				•
Received by for Hardlin		Date	3/5/9	
Remarks			<u> </u>	
				

		DATE		SAMPLING LOCATION		SAMPLE TYPE	TYPE	HUNNUMBER	5
							ı	1	\
1 - 5 61.00		1816614	>	Visturi IN/eT	7	12 LI	Megale 1	511m-5	7
KKA J - YCKAROME,		-	1			/			
	BAR	STATIC	AMB.			Z F	HUCKET BOOG		NOZZIE
	PRESS	PRESS	TEMP.		SIACK INSIDE		AND TYPE	_	LD. NUMBER
OPERATORIS	(E)	(S) X (S)	65	FIL IEH MUMBER(3)	OC. (11.)				
					_	70	10' 17' 2 17'	10'	
	7007	70 01	しょり	20102	۔	- 0	4/10	,,,,	

																į
	-					J.		TRAN LEA	TRAIN LEAK CHECK TRAIN LEAK CHECK (INITIAL)	TRAIN (EX	K CHECK		PROBE	80X	LEAK CHECK	ECK
MOSTURE METER METER CAL THERM.	TER ME	<u> </u>	METERCAL	THERM.	PITOT	PITOT THERM. ORSAT	2 S S T	P F	8	5	3	K FACTOR	(F)	6.5	INIT.	FINAL
£ €	K NO. A	H	BOX NO. A HO FACTOR(M)	3	į	2		1		,	,	6000	150	17'	١	/
15 6	FT-4 3.03	63	414.	270	50	1-5		16	100.0	4	0.001	0.00/10.18/10	9	V20		

		IMPINGER TEMP • F	/,' ,'	, ,	62	67	63	99	67												
	SAMPLE	TEMP • F	111	100		- 1	1259	356	256												
		VACUUM, In His	1	4	1	23	E	77	6												
DRY GAS METER	NATURE	OMET	, E	5,	16	76	46	26	29												
DAY GA	W 1	NET S		/1	79	80	73	83		7											
	STACK	TEMP.		$oldsymbol{ol}}}}}}}}}}}}}}$	7//	125		127	4.5	70			-								
ESSURE	₹ 2	2	3	202	1.92	1.88	0	٦١.		2/12											
CRIECE PRESSURE	OFFERENTIAL A M D H O	(40.7), 12.72	DESIMED	2.05	7.92	888. /	0 > 6	2 79		777											
	VELOCITY	ES ES	(4 P). h. H20	2.7	2.6	2.6		4.7	Α.	4:1											
	CAS METER READING	(Vm). #3	964.628		970 73	90000		956		1013 643										•	
	CLOCK TIME	CA-In CLOCK	1329							1429											
	CAUPINO	TIME, min.	0	9,		6	30	40	50	99											
•		TRAVERSE	NUMBER	T _\	,	١	3	4	5	9											

>(1-03-053

Plant R.R.A.D TEXPLEANA		Sample	date	2/	27/9/
Sample location VENTURI . INCET					27/9/
Run number SIAM-E				133	IPF
Filter number(s) GOVO 500					
	*CTUDE				
1 2 3-	ISTURE			4.	
Impingers				4	5
Final volume (wt) 745.9 629.6 488.3 m					<u> </u>
Initial volume (wt) 1001.5 605.5 45.3 m	ı l (g)	Initi	al wt	749.3	<u>.</u>
Net volume (wt) 139.4 24.1 3 m			t	- 4	9
Description of impinger water Muse	<u>-</u>			70	% spent
Total moistur	e	183.7		3	
PECOVE	RED SAM	טונ			
	4				
Filter container number(s) $\frac{113}{}$	<u>-13</u>	Sealed			
Description of particulate on filter					
				·	
Hetton probe rinse container no. 1/13/-A	Liquid marked	level			
Impinger contents $(1+2)$ container no. $\frac{1/(32-A)}{2}$	Liquid	llevel			
HNO_3/H_2O_2 blank container no. $1/2/2-17$	Liquid marked	level			
Impinger contents (3+4)	Liquid marked	level			
KMnOy blank	Liquid marked	level			
Samples stored and locked		•			
Remarks					
					//
LABORATO	DRY CUST	QDY			
Received by for Mondem			Date _	3/5/9	
Remarks			_	,	

PLANT AND CITY		DATE	<u>`</u>	SAMPLING LOCATION		SAMPLETYPE	TYPE	RUNNUMBER	WBER
RKAD - TEXARLANG	Na	16130	Vin	Tuni Ouglet	-	Pes 11	Mohla	SOPM-	-1
						/			
	BAR.	STATIC	AMB.	6908106	STACK INSIDE	PITOT	HUXNH I HOUSE		NOZZLE
OPERATOR(S)	3 3	(F. H ₂ O)	3	FILTER NUMBER(S)	DIA. (m.)	8	AND TYPE		ID. NUMBER
(S)	30.06	70.05	70	9070053	6	18.	3 'Ghu 1252	2 .252	

	- 1	١		9	Ç	IMP.	788AT		IRAIN LEAK CHECK (INITIAL)	JENNIE (FIN	TRAIN LEAK CHECK (FINAL)	2.819	PROBE	BOX FEAT	PITOT LEAK CHE	PITOT EAK CHECK
* (*)	S X X	A HO	(%) BOXNO AHO FACTOR(Y) NO. N	2	0	2	2	h. Hg	NLO OFIN	in. Hg	₽	K FACTOR	(•6)		INIT.	FINAL
10	612/4	10/	266	201	041	I-32	١	9/	100.0	2/	800.0	/ COL	250	250	7	/

Table mt. Cath Cooks Comp. Ann. Cath. Cath	1 :	SAMPLING	CLOCK TIME	GAS METER READING	المدا تحديد	18		7	DRY GAS METER TEMPERATURE	METER	8	8		
0972— 829 17 26 17 21 17 123 73 73 73 6955 844 596 135 187 187 77 74 187 77 187 187 77 74 187 77 187 187 77 74 187 77 187 187 187 187 187 187 187 187		TIME, min.	CZF-IN CLOCKO	(Vm). R ³	NEIOGH HEAD			_	P.F.	OUTET		N X	MPINGER	
26 6955 846 596 35 81 61 123 73 73 15 15 15 15 15 15 15 15 15 15 15 15 15	~	°	0922	29	(AP). h. H20	DESIRED			(Im in) · F	(Im out). F		TEMP, • F	TEMP, .F	, , ,
26 0955 844 596 13 1 89 134 78 77 19 19 19 19 19 19 19 19 19 19 19 19 19	\ \``	15			.26		12	123	73	73	7	250	70	and a
75		32	6955		56'	183	.89	134	18	7.1	/3	300	89	757
75 874 33 31 0.80 0.80 131 84 77 75 874 39 01 33 0.86 0.86 131 87 80 70 105 1147 892 01 34 0.88 0.88 131 80 80 1045 892 101 34 0.88 0.88 131 80 80 1045 892 101 34 0.88 0.88 131 80 80 1045 10510 131 005 80 80 1045 10510 131 005 80 80 1051 131		45				181	0.87	134	28	77	15	300	69	
75 874 39 32 0.87 0.87 132 82 80 80 147 89 193 6.88 0.88 0.88 1.31 80 80 80 80 147 80 80 80 80 80 1.31 80 80 80 80 80 80 80 80 80 80 80 80 80		09	1042	1	.31	1	0.80	131	48	77	*	300	70	0965
75 874 39 31 087 0.37/37 87 80 90 90 98 688 131 80 80 100 1142 892 157 34 0.88 0.88 131 90 80 130 1142 802 16.510 131 131 1412 80.7 130 142 80.7	1													0 2 1
147 89 .32 0.82 0.87 87 80 80 83 .31 0.87 34 0.88 0.88 131 87 80 80 80 147 80 80 20 151 80 80 80 80 147 80 80 80 80 80 151 80 80 80 80 80 80 80 80 80 80 80 80 80	4						1	1						10. 7g.
142 592 101 33 0.88 0.88 131 90 80 11 11 11 11 11 11 11 11 11 11 11 11 11		75			76'	0.82	0.37	132	82	80	60	305	72	219 348
1147. 992. 157 34 6.88 6.88 131 Alex 80.F		96		١.	33	0.86		131	87	80	6	301	29	
Vm:63:603 Vg:546 que= 827 13/ Me= Vm:63:61.520 Rus= 43%		501	7411	1	34	Н	89.0	13(90	80	9	303	64	
Vms 63, 603 Vg = 566 que = 837 13/ Me= Vms 70 = , 61.520 Rus = , 43%		130												
Ause : 43% Vo = 566 aux = 827 13/ nue = 825				•					1					
msa = 61.520 msa = 43% msa = 43%				•				-	_					
= 5 m = 2 m				.003	Vo = . 566		128	13/	7	3.08				
= 5 m = 2 m									1					
				men =										
				1										
				•										
				•										
	Γ						_							
	Г													

X1-03-053-055

Plant RRAD - TEXARKANA		Sample date	2/26	/21	
Sample location Venturi Curle:					
Run number 50 PM - 1	Recove	ered by	_(3)/2	Ė	
Filter number(s) 9070053	and.	9070069		<u> </u>	
MC	ISTURE	,			
Impingers 1,2,3			4	5	
Final volume (wt) 860.7 907.8 874.8	n1 (g)	Final wt _	725.3	NA	_ 9
Initial volume (wt)591.8 61/.2 476.3 m	nl (g)	Initial wt	698.3	NA	_ 9
Net volume (wt) 268.9 196.6 378.5 m	n) (g)	Net wt	35		_ 9
Description of impinger water <u>Ulu</u>	<u>~</u>		100	% spe	ent
Total moistur	·e	999.0	. 9		
RECOVE	RED SAME	PLE			
Filter container number(s) 907000	53 -B	C2-4	. /		
ritter container number(s) <u>907000</u>	59 -B	Sealed			
Description of particulate on filter	_ Ser	fitter	met; de	uty	
Actone probe 11075-A rinse container no. 11054-A	Liquid	level			
Impinger contents $(1+2)$ container no. $122/5-A$	Liquic marked	level			
HNO_3/H_2O_2 blank $IIC74-A$ container no. $I22/2-A$	Liquid marked	level	/		
Impinger contents (3+4) container no.	Liquid marked	level			
KMnOy blank container no. NA	Liquid marked	level	_		_
Samples stored and locked					_
Remarks Blok Filter No. Aretone Blok: 12			Cont. #	11074-	s)
			 		_
LABORAT	ORY CUST	ODY			•
Received by for Amelian		Date	3/5/9/	/	_
Remarks			7		_
					_

PLANT AND CITY	} 	DATE		SAMPLING LOCATION		SAMPLE TYPE	TYPE	RUN NUMBER	MBEA
KKAD - TEXAR KAND		2126191	Vent	enture Ought	J.	11.80	utile	SOPM-2	-2
						,		1	
	88	STATIC	AMB.			PITOT			NOZZIE
OPERATORIS	PRESS.	(5. H.2)	TEMP	FILTER NUMBER(S)	SIACK NSIDE DIA. (n.)	<u></u>	AND TYPE	<u> </u>	ID. NUMBER
	30.06	50+	70	9070066	9	18.	3 'G/m 252	252	

			_						_	_		_	_	_	_	_			 				_			_		_
РПОТ	≎ ⊦	INIT. FINAL	\			MPINGER	TEMP F	99	59	57	29	Ŧ	63	63	99	89												
Ž.		4	750 /			SAMPLE SOS	TEMP F	290	152	888	112		30C	386	592	346												
PROBE	Ę	3	250			VACUAL	in Hg	3	3	4	14		$\frac{1}{2}$	7	77	4												
		K FACTOR	1.32		METER ATURE	STEET STATES	(Tm out).F	$\mathcal{E}_{\mathcal{O}}$	79	08	8		08	9.8	8.5	83		83.,										
TRAIN LEAK CHECK		8	0.0		DRY GAS METER TEUPERATURE	FAS	4	08	8 ን	38	58		85	88	58	16		A14.5	1									-
↓ —		ج 1	5			TEMP		121	.6//	132	133		126	126	121	127		1										-
TRAIN LEAK CHECK	(INITIAL)	8	0.0		RESSURE	1 H20	ACTUAL	65.0	15.0	52.0	0.38		0.37	76.0	0.52	0.47							-					
TRANK		2 4	1/6		ORIFICE PRESSURE DIFFERENTAL	(4 H), in H ₂ O	DESIRED	65.0	0.57	0,53	0.38		0.37	78.0	6.92	6.47		Ar : 46										
		2	17 75			VELOCITY	(AP). n. H20	04.	94.	44	1/5		30	1''!	١,	38												
	TEN T	Ž	1-32			_	<u>و</u>	-	-	<u> </u>	-	-	-	134	7.	<u>'</u> '	Ц	V		Ц	<u> </u>	-	L	Ļ	1	-	1	1
	PITOT	Ŏ.	140		3 PF ADM	j. RJ	53%	19.	S	\ 9			68	7.7		633		101.	1882]_					
	THERM	Q Q	13 Part	(0/	CAS WETER	S)	892	268	006	903	100		606	1	l	920		Vm = 28	71 - 11				8.42/28					
	METERCAL	FACTOR (1)	€ 56.		CICCETIVE	_	1430		-							<u> </u>			: 		-							+
	METER	ФНФ	14.1			_	1,	_	-		L	\downarrow	-	-	-	1535			_			-	L	-	-	1	-	+
	METER	\dashv	17-2		SA PAS	TIME min.	•	2.5	×	2.5	38		37.5	× ×	7.7	03												
	MOSTURE	3	43			TRAVERSE	N. M.	4	7	2	1		X	7	7	 												

X1-03-053 CSS

Plant KRAS - TEXAR KARA		_Sample date	2/2	6/91
Sample location VENTURE OUTL				<i>/</i> .
kun number <u>50 p/n - 2</u>			(83)	/
Filter number(s) 9070066		·		
	MOISTURE			
1 2 3			11	5
Impingers Final volume (wt) 662.3 599.7 497.	1 (a)	Sina) . A	7	_
		_		N/A o
Initial volume (wt) 606 Z 588.1 495.4 Net volume (wt) 54.1 11.6 1.5				
	7			g
Description of impinger water <u>Cl</u>	w		10	% spent
Total moist		74.8		
o Total motst	.016	17.0	. 9	
RECO	VERED SAM	IPLE	,	
Filter container number(s) //62	76-13	Sealed L		
Description of particulate on filt		, -	- for	
		7		<u>, </u>
AKETENE probe 11076-A rinse container no. 1229	/ Liqui marke	d level d		
Impinger contents $(1+2)$ container no. $1/077-A$	Liqui marke	d level d		-
HNO_3/H_2O_2 blank container no. 1211-A	Liqui marke	d level		
Impinger contents (3+4) container no.	Liqui marke	d level		
KMnO4 blank container no. NA	Liqui marke	d level	· · · · · · · · · · · · · · · · · · ·	
Samples stored and locked		. /		
Remarks				
/1 4800	ATODY CUC	TODY		/
- 1 /i /i.	ATORY CUS	וטטז		•
Received by Mallim	n	Date	3/5/9/	,
Remarks				

					-	CAMPIE TYPE	<u></u>	
		¥ 5		SAMPLING LOCATION	_			
PLANT AND CITY		2140			1	7/1/2		40000
/ // //	1	1017010	_	1. 1. Curta	_	or //wale		2000
KKHD - IPRALAMA IX.	, /×.	14/17/	٦	mm		,		
						2000		arry)
	040	STATIC	AMB.			5 6		
	PRESS	PRESS.	TEMP.	(SACIONAL MOCOVICE)	STACK INSIDE		AND TYPE	1D. NUMBER
COCCUATOR	(a)	و ک ت ک	- -	FILL ER NOMBENAS				Г
OLEWING)			7	2000	2	なひ	1777 8 75	777
	12997	+ 04	0 /	C 6001.06 - 01	,			1
								2000
				TOARLIE AND CHECK	TOARINGAK CHEC	×		5

	_	7	_	_	1	ſ
LEAK CHECK		- INA		\		
LEAK		INIT	`	\		
BOX FAT	5 ((F)		270		
PROBE	5	<u>د</u>		270		
		FACTOR		2 61 270 270		
¥ 2 4 C¥		8		\	2	
TRAIN LE		Ž.		`	ê	
TRAIN LEAK CHECK TRAIN LEAK CHECK (FINAL)	,	X N. Ha CFM X		100 0	20.0	
TRANCE		4		;	<u>,</u>	
	TACAT				١	
IMP		PITOT THEM. UPDA	ž	,	140 4-32	
	1	P.TOI	2		041	
		TEST.	Ş		, 00	
		WOKENINGE METER METER METER CAL TH	FACTORM	١.	292	
		METER	SH A CHANG		177	
		METER	2	1	1	111
		MOKETI BRE			1	7.3

		_				_					_		-	_	_		- r	_	_	_	\neg		ľ	
		TEMP. • F	09	3.3	65	19	63	49	65	99														
	SAMPLE	BOX TEMP. • F	279	218	277	267	266	176	29.7	268	 -	! -												•
	PUMP	WACKUR.	7	4	ħ	*	4	ħ	7	7														1
METER	ATURE	Ounet In out. F	75	15	45	12/	7/2	77	78	66														I
DRY GAS METER	TEMPERATURE		75	1/1	\$	K %	22		28	200	1													J
	STACK	TEMP.	120	77.7	1,	12.4		12/	100	201]_	1
SSURE	₹°	A L	0.70	20,00		900	200		96		1.05													Į
CRIFICE PRESSURE	DIFFERENTIAL	School Act		9	100	٥١			1000	0.0	1.05	†												
	ALC:	HEND	(AP). N. H20	500	467	78	-101	23	48.	70	42													
	A READING	9, 113	177	4	23	.48	737	07:	2	.76	167		-	•	-									
	GAS METER	(Σ	920	935	676	934	939	444	শ	953	656												•	
	CLOCKTINE	CA-TACLOCK)	8080				8830				4160													
	0.000	TIME, min.	0	5.7	/5/	2.50		37.5	57	50.5	00)													
		TRAVERSE	NUMBER	1 #	4	2	7	121	7.8	4	7													

>1-(3-053-055

Plant RRAN - TEXARBANA	s	ample dat	:e	2/27/9/
Sample location VENTURI OUTCET				3/27/9/
Kun number Sopa - 3				
Filter number(s) 5070093				
MO	STURE			
Impingers 1, 2, 3.		-	824 4	1 5
Final volume (wt) 654-3 5/2 1/m	(a)	Final wt	1 200	V MA
Initial volume (wt) (db 6 2000 507.5 m	(a)	Initial w		
Net volume (wt) 49.5 26 4.6 m		Net wt		
Description of impinger water			40	2 % spen
Llen a little clardy				· ·
Total moisture		93.5	_ 9	
RECOVE	ED SAMPLE	Ε		
Filter container number(s) ////	1-B S	ealed		
Description of particulate on filter				
Autore probe rinse container no. 11/19 - A	Liquid marked	level		
Impinger contents $(1+2)$ container no. $1/1/20-A$	Liquid :	level		
HNO_3/H_2O_2 blank container no. $IDDIA-A$	Liquid 1	level	/	-
Impinger contents (3+4) container no.	Liquid 1	level		
KMnOy blank container no.	Liquid 1	level		
Samples stored and locked				
Remarks				
ARORATO	RY CUSTO	ny		7
	٠٠٠ ٥٥٥١٥٠			·
Received by Andlem		Dat	e <u>73</u>	(4)
Remarks				-

	9.0	STATIC	AMB			PIO		NOZZIE	_
	3 2 2 2 2 2	PRESS	TEMP		STACK INSIDE	38	PACSE LENGTH	02014 84	16
1	3 5	Ó		FILTER NUMBER(S)	OIA (F)	3	AND ITPE	LU. NOMBER	
OPERATOR(S)	(Bu 15)	2			- (Ì	1017	,	
(0)	2002	7004	7.2	1200106	2	**	(000	,252	7
	17660	16:05	6						

EAK CHECK	FINAL	\
E Y	T <u>S</u>	
Ę,	1	250 250
PROBE HEAT	(F)	250
	K FACTOR	0.006 2.61
K CHECK	₹	9000
TRAIN LEAK CHECK (FRAIL) (FINAL)	e F	0.0 73
LEAK CHECK INITIAL)	CPN	0.0
TRAIN LE	of A	51
	8 5	j
-d Mi	TOT THEPAN OPSAT	732
	<u> </u>	140
	1 S	601
	MOSTURE METER METER CAL THERM.	266
	METER), /,
	METER METER ME	FT. 7 1.4
	MOISTURE	15/

	GER	-	,,				Kesikited					1								T	T	T		7			
 u 874			257 72	261 68	99 192	49 272		269 655	261 66	766 67	╁	\dagger								-	-						
9	VACUM,	84	7	9/	77	77		h/	7/	7.7	1	╁	+	+				+	+	+	+						
DAY GAS METER TEMPERATURE	_	(Im in) F (Im out) F	80 800	66 28	66 33	10 20		-		┞	-	4								1	1					-	
		(Te). ° F	11.74	195	1,32	12/2/	1	/2/	12/	107		X / X /						-	1						-		-
ORIFICE PRESSURE DIFFERENTAL	(AH, in H20	DESIRED ACTUAL	Sh. 4 Sh V	4-	1	t	7770 62.0	11.011	╁╌	+	+	0.93 0 11			_		1										
	VELOCITY	<u> </u>	,	200	265		77	19	†	1	.35	1.38											-				•
	CAS METER REALITYS (Vm), R ³	466 294	J	ľ			976.095	•		•	83.686	993,908						•							4	•	
	CLOCK TIME	1020	1001				1104					1/39															
	SAUPLING TIME mts	٠.	•	2.5	15	22.5	30		37.5	45	555	9,	3	1					-		-	-	1				
	TRAVERSE	PORT	NCMOE A	14/	ત	3	7		179	~	~	,															

X1-03-657 055

Plant KRAD - TEXARKANA	Sample date $\frac{2}{27/9}$
Sample Incation VENTURY OUTLE	
Kun number Sopm - 4	
Filter mumber(s) 9070021	
	ISTURE
1 2 3.	11 1 5
Impingers	7 3
Final walkume (wt) 664.9 5814 507.5 m	
Initial wolume (wt/20:2 5243 50/0 m	T .
Net volume (wt) /64.7 5.1 3.5 m	
Description of impinger water	<u>40</u> % spent
T-A-1	
Total moisture	e <u>88.7</u> 9
RECOVE	RED SAMPLE
Filter container number(s) 1//27-	B Sealed
Description of particulate on filter	higher beige color
Action probe 11/27-A rinse comtainer no.	Liquid level marked
Impinger (contents (1+2) container no. 11/28-A	Liquid level marked
HNO_3/H_2O_2 blank container no. $122/2-A$	Liquid level marked
Impinger contents (3+4) container no.	Liquid level
KMnO4 thank container no.	Liquid level
Samples satored and locked	
Remarks	
-7 AADDDAY	ADV CUCTODY
LABURAK	ORY CUSTODY .
Received by for fordien	Date
Remarks	

EMISSION TESTING FIELD DATA

	DATE	SAMPLING LOCATION	SAMPLE TYPE	RUNNUMBER
POWI MOCI I	,		, 0 0)	1
7 7 500	2177191	V. V. I. Out/et	Tag //whale	300M-S
KKH !! / centare, 1x				

	BAB.	STATIC	AMB.			PITOT	TECHNOL SOCOO	NOZZIE	
	PRESS	PRESS.	TEMP.	FILTER NUMBER(S)	DIA. (n.)	38	AND TYPE	LD. NUMBER	MBER
U-EMICA(3)	7		Т		9	113	10,6		
(アン)	19 97	101	7 7	701043	_	- * * ·	10 (262) 134	104	

						IMP.		TRAIN LEA	LEAK CHECK INITIAL)	TRAIN LEAK CHECK TRAIN LEAK CHECK (FINAL)	¥ C#GX		PROGE	BOX FAT	MIOI LEAK CHECK	HECK
MOISTURE	E METER	METER	MOSTURE METER METER METERCAL THERM.	14 CH	TOTA	NO NO NO NO	2 S	3	NSO.	ë.	SPE CPE	K FACTOR		6.5	INIT.	FINAL
€	HOM NO.	AHO	TACION!	2	- 1			1	(\		1,,,	1/10	Ĵ	,	\
`.	ربر ،	/ / / /	400	501	140	1-32	1	/>/	0.0	>	0.0	10.7	450 450	750	\	
رې	11-1	1/2/		101				3								

		_	_	_		_	_	_	_		γ-	_	_	_	٠,	_	_	_	_	1	т	_	_	_	۰,	 т—	1
IMPINGER	TEMP. • F	64	59	99	49	99	6	63	pol																		
SAMPLE	TEMP F	268	271	775	265	262	172	212	198																		
PUMP VACUUM,	H H	ħ	<i>h</i>	4	7	4	4	6	*																		
METER ATURE OUTLET	(Im aug. F	$a \\ \gamma$	18	18	25	2%	53	85	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\																		
or σ +—	F	18	83	23	9	87	7.6	36	276																		
STACK	(Ts). F	801	127	128	125	3 5	100	126		d																	
	ACTUAL	44	0	0 90	2 (130		100	9																	
OPIFICE PRESSURE DIFFERENTAL (A H), IL H ₂ O	DESIMED	1366	Τ	60	1	2000	45	202	1000	9																	
VELOCITY	(AP). n. H.O		T	177	137	5,	70	200	800	220																	
CAS METER READING	241 HPP	1		ď				10.14.10	1	1032 421												•					
CLOCK TIME	1227	1771			r	1357				1432																	
SAMPLING	,	3	7.5	\$	255	30	\$7.5	45	5.55	áo																	
TRAVERSE	FORT	5	*	6	Ē	7	4 -	4	3	7																	

1-03-055

MULTIMETALS SAMPLE RECOVERY AND INTEGRITY SHEET

Plant R.R.A.D - TEXPERANA	Sample date $\frac{2/27/9/}{}$
Sample location VENTUE CUTTUET	1, 6,
Run number <u>sopm-5</u>	Recovered by Priss
Filter number(s) 9010493	
	STURE
1 2 3	_
Impingers	4 5
Final volume (wt) 684.5 6499 510.8 ml	(g) Final wt 742.4
Initial volume (wt) 6/11 7 /25.2 5/2.4 ml	
Net volume (wt) 72.8 24.7 -1.6 ml	(g) Net wt
Description of impinger water <u>Clum</u>	60 % spent
Total moisture	9
RECOVER	ED SAMPLE
Filter container number(s)	-B Sealed
Description of particulate on filter	light (bouly windle)
·	
Actor probe rinse container no. 1/129-A	Liquid level marked
Impinger contents $(1+2)$ container no. $1/(30-A)$	Liquid level marked
HNO_3/H_2O_2 blank container no. $\frac{12^{2/2}-\hat{H}}{}$	liquid level marked
Impinger contents (3+4) container no.	Liquid level
KMnOy blank container no.	Liquid level marked
Samples stored and locked	
Remarks	
ABORATO	RY CUSTODY
Received by from Marketing	Date
Remarks	

•
~
⋖
٥
Q
넒
7
_
Ø
ž
=
-
m
M
Z
7
$\mathbf{\Sigma}$
Ø
ď
ž
a
ü

				100 to 10		SAMPLE TYPE	TAME	NO NEWS
PI ANT AND CITY		DATE.		SWIPLING LUCAINA		1	" / " /	1.000
			,	1-01-0		140	CAKI /MERCAS SOFTING	STATE OF
ARAD - Texaskane	7	128191	reni	Ventual durie				
		RTATIC	AMA			5 6	Williams	NOZOR
	1	FESS	30	5000	STACK BASIDE DAY (PA)	38	ANTON	ID NAMES
COCOATTONO.	3	و عر	e e	FETTEN MEMORY ()				H
(Albamara)				* '	0	24	74 - 1 Kar	los. c rec.
	7000	20. 1	イン	70/05 00				

			_
LEWCHECK	13. 15.	/	
ğğ	6	250	
HEAT TANK	E	250	
	K FACTOR	0.001 2.56	
X OFFICE A	Ē	100.0	
TRANLEAK CHECH	8	9	
TRAN LEAK CHECK	Ē	7000	
ANN LE	F R	`	,
l	82	١	
3	14 d	1	101
	Ę		1,40
	100	2	109
	WOSTURE LIETER LIETER CAL THERE PI	MCIONIO	.972
	METER	•	1.41
	LETTER .	Q XX	フィーシナ
	MOSTURE	3	4

	-	Т	1	٦	\Box		1	1		П					\neg			- 1	7	7	1	7	T	7	7	
	BONNE		99	64	70	29		63	64	39	47															
1	N N		255	261	202	197		256	195	298	196															
	Note:	2	Ç	4	3	1		3	3	*	7															•
	QUIET	1	75	75	72	76		78	10	6/	S															1
DRY DAS METER	_	۳Ì	75	11	10	70	1	2	22	(h	9,5	1														
	STACK TIPE.	(Ta.F	181	66/	300	120		127	120	1		1	1	Ī		T	T									
PESSURE POSSUR	O. H.	ACTUME	610	200	10		0:10	1	900		1	20: /														
ORIGIC PRESSUR	(ARANO	034630	17	01:0	417	0:31	0.75	110	4		47.0	£														
	WELDOTTY	(4P, P, P, P	,	7	.34	.39	-41	1	34	36	9.	42														
	CAS METER READING	22. 120	.,	. 1	41 52	46 . 36	51 171		00.00	60,60	65 .43	70 570		•												
	COOKTME		0800				0830																			
	CAUPLED	100	0	7.5	15	32.5	30		37.5	17.3	7.5%	07														
	TRAVERSE	T T T T T T T T T T T T T T T T T T T		1-0	4	,	,		1	1		†														

> 1-03-055

LEAD SAMPLE RECOVERY AND INTEGRITY SHEET

Plant R.R.A.D - TEXARRAMA	Sample date $\frac{2/28/91}{}$
Sample location <u>VENTURE</u> OUTLET	Recovery date 2/28/8/
Run number <u>SCAM</u> - G	
Filter number(s) $\frac{90/0503}{}$	
	STURE
Impingers / 2 3	Silica gel
Final volume (wt) 672.5 (41.1 97.1 ml	(g) Final wt 748.0 g
Initial volume (wt) 587.8 628.1 546 ml	
Net volume (wt) 89.7 20.6 25 ml	
Description of impinger water Clus	
Total moisture	
RECOVER	ED SAMPLE
Filter container number(s) ///35	-B Sealed
Description of particulate on filter	
•	
Acetone probe rinse container no. 11135-A	Liquid level marked
Acetone blank container no. 12209-A	Liquid level
0.1 N HNO ₃ probe rinse container no.	Liquid level marked
Impinger contents container no. 11/36-A	Liquid level marked
0.1 N HNO ₃ blank container no.	Liquid level marked
Samples stored and locked	
"Remarks HRO, BIANK - 1221,	K-A FILTER BLANK - 11/26 B
SOC: NNO, 1.0, SIAN	K - 12212 a
ABORAT	DRY CUSTODY
Received by Minden	Date 3/5/5/
Remarks	4
-	

EMISSION TESTING FIELD DATA

OF ANT CHA		DATE:	•	SAMPLING LOCATION		SAMPLE TYPE	TYPE	HUNNOMBER	5
TIPO NATIONAL		1				100	1 / 1	-	5
000 D - 1000 K. da	70	1151871	?	Lature Outlet	-	Vers. Menul	Metrelo	SOFIN	
7									
	3	STATIC	AMB.			PITOT	Rund I sevee		NOZZE
	PRESS	PRESS OF H C	TOP.	FLTER NUMBER(S)	SIACA MODE DIA (m.)	8	AND TIPE		ID. NAMBER
Chemical 3)					,	1,75	1111		
	7000	40 50+	20	3870/06	_	78.	4. 4 20	1.124	
	ここと								

PHOT EAK CHECK	FINAL	1	
EXX.	Ę	\	
BOX	(3)	150	
PROBE	6.9	250 450	
	r FACTOR	0.003 2.56	
TRANLEUK CHECK TRANLEAK CHECK (FINAL) (FINAL)	25	6.003	
ANATE OF	4	V	
AK CHECK	8	1000	
ANNE Se	7 4	12	
	3 9	1	
¥.	THERM OPEN	7-33	
	Ę ç	141)	
		2 8	•
	LETER CALL	200	-772
	KETEN	N. T.	7.4
	STURE METER METER 4	BCR PC.	17.1
	MOSTURE	<u>ê</u>	1/5

•		F TEMP. F	9 62	6 63	3 62	┞	╀	\downarrow	1	+	2 64		_									_	
	POLICE BOX	•	1 269	766	2	Ž	\dagger	f	\dagger	7	72			_	-		†			_	_	_	
	4	A. F.	4 18	7 18	* 18	200	17	\dagger	†	+	84 4			_		-	+				-	-	
DRY CAS METER TEAPERATURE	NET	(fm Ht. F	18	53	6.3	43	100	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	72	+	195				+								
	ST ST ST ST ST ST ST ST ST ST ST ST ST S	(Ts). • F	124	73.5	134	1/6	4	1	1	125	1260												
ORIFICE PRESSURE DIFFERENTIAL	(44.hH20	ACTIVE	0.74	┪—	╆	┿	301	9	-{	0.98	1011												
OPIFICE	(A H).	DESMED	0.74	2	177	1	3	0.77	0.41	0.98	101												
	VECCITY	(4P, P. H.20	18	778	100	12.	47	,33	38	Ih.	24												
	CAS METER READING	70 700	١,	20.00		. 1	239.66	34.75	E7' 66	1		1					•						
	CLOCKTINE	7000	11:3								2	1											
	SAMPLIND THE MA	Т	3	2.3	4	225	5	27.5	V	700		3											
	TRAVERSE		5	7-8	,	'n	4	7	7	7													

×1-03-055

MULTIMETALS SAMPLE RECOVERY AND INTEGRITY SHEET

Plant R.R.R. S - TEXAKAMA		Sample date	2-28-	9/
Sample location VENTURI OUTLE				
Run number 50AA-7				
Filter number(s) 9010488			· <u> </u>	
MO	ISTURE			
Impiesers 1 2 3.			4 1	5
Impingers Final volume (wt) USS.4 (201./ 503.0 m	1 (0)	Final ut	229 /	//A g
Initial volume (wt) 604 2 5849 5011 m			- 1	
Net volume (wt) $84.2 / 9.2 / 9$ m		Net wt		 ,
Description of impinger water				9 % spent
				» spene
Total moisture	e	4.5	9	
RECOVE	RED SAMPL	F		
			_	
Filter container number(s) ///4/-	_			
Description of particulate on filter	616	WT GRAY		
ALETENE probe	Liquid	level		
rinse container no. 11141 -A	marked			
Impinger contents $(1+2)$ container no.	Liquid marked	level		
HNO_3/H_2O_2 blank container no. $/22/2-A$	Liquid marked	level		
Impinger contents (3-4) container no. 11142-A	Liquid marked	level		
KMnOy blank container no.	Liquid marked	level		
Samples stored and locked				
Remarks ACETONE STORK 1007	09-A	Mas	Blook	- 12211-4
				
LABORATO	RY CUSTO	DY	,	
Received by for Hindun			2/-	
Remarks		Date	5/5/	9/
uchark?				

EMISSION TESTING FIELD DATA

				-			CAMPING LOCATION	LOCATION			SAUPLE TYPE	YPE		PUNNAMBER	ABEA
	PLANT AND CITY	FO CA	.		DATE		THE STATE OF THE S				1'			4.0	
RRAD		1/6%	Texakkana		1618012	1/2	enture	aut,	167		7	Auth		20/1/10	01
										-					
				1	STATIC	8WA				_	PITOT		,	2	NOZZIE
				PRESS.	PRESS.	TEMP		CHITER NUMBER(S)	STACK DIA.	STACK INSIDE DIA. (n.)		AND TYPE	YPE	10	NUMBER
8	OPERATOR(S)	٤		(g)	200						<u> </u> ;			1	
	(M)			29.75	4.05	12	101	9010533	19		1 48.	3 (5)	Clan	Č.	
									-	TOARS LEAK CHECK			L		PITOT
-	-							IMAN LEAN CHECK (INITIAL)		(FIVAL)	, ' 1	F. F. PR		3	LEAK CHECK
7	WETER	METER	METER CAL	THEORY.	FTOT ON	KO Z OZ	NO.	to CON	In. Ha	₹	K FACTOR	(F)	6	Z	FINAL
T		D I	משלים מיים	╬	1	+	Y	100.0	2 10	0.001	2.56	150	250		
15 /6	11-11	/ #/	427	767	- 1		1	1]					-	
							-	ORIFICE PRESSURE DIFFERENTIAL	_	DAY GA TEMPE	DAY GAS METER TEMPERATURE			CAMPIE	
- 	SAMPLING TIME, min.		CLOCK TIME (24-14 CLOCK)	CAS METER HEALTHS (Vm), N ³	(Vm), N ³	VELOCITY		-	 -	NET		<u> </u>			IMPINGER
NUMBER		 	1128	109	.330	(4P.n.H20			<u> </u>	(Im m). *	1.m 849.	4	╁	87.7	63
14	7.5			113	35.	0.40	+	1000	200	133	3	3	\ -	259	56
7	/5/			718	B	45.4	0.76	1	7	68	83	4	26	10	24
3	12.5		-		०४:	6.3	\dagger	1	٦_	16	76	10	26	62	52
7	30			127	5237	2.0	75.7	+	}						
		_		- 1		1	120	11011	1/2//	63	28	3	25	73	54
10	37.5	4	1	4	26	7	\dagger	Ł	1	16	83	m	7	 √. √.	23
1	4	1	1	9	3	1	╁	長	1	94	83	F	18	+	68
1	4	#	1		223	*	+		H	96	78	4		2	62
*	3	1	132	7.0			-					+	+	1	
		1	1				_					+	+	\dagger	
†		+										+	+	†	
†		1										+	$\frac{1}{1}$	\dagger	
1		1										+	+	1	
1		+						-				1	-	1	
		4						-				-	1	1	
1		4	1				-					+	$\frac{1}{1}$	1	
1		+					-					+	-	1	
- 		+						_				4	-	1	
_		_		_	•						_	•	_	_	

PARTICULATE SAMPLE RECOVERY AND INTEGRITY SHEET

Plant R.R.A.D - TEXAR	KANA	Sample date	2.78.4	2/
Sample location VENTURI OUTLE	T	Recovery da	ite <u> </u>	9/
Run number <u>som - 8</u>	Recovered	by	P.E	
Filter number(s) <u>9010533</u>				
	MOISTURE			
Impingers / 2 3	Si	lica gel		
Final volume (wt) 6657 6416 868		nal wt	757.1	g
Initial volume (wt) 583.5 (24.3 505.0		itial wt	747.9	-
Net volume (wt) 82.2-15.3 1.8	=	t wt	9.2	9
Description of impinger water		70	% spent	-
		,	_	
Total moisture	108.	. <u>\$</u> 9		
REC	COVERFO SAM	IPLE		
Filter container number(s)	•	Sealed		
Description of particulate on filt				
				
Probe rinse	Liquid lev	el		
container no	marked			
Plotaeblank container no. 12209-A	Liquid lev marked	'e1 		
Impinger contents container no	Liquid lev marked	/e1	/	
11NO ₃ blank container no. 12211-A	Liquid lev marked	/e1		
Samples stored and locked				
Remarks MNC3 + HaO2 SOLA	ATHON BLA	NR /2	2/2-A	
	·			·
- / LAD	ORATORY CUS	TODY	, 1	
		Date	35/9/_	
Remarks			<u> </u>	

INITIAL CEM CALIBRATION AND PERFORMANCE EVALUATION

Plant Location Date Operator PN	KED RUCE TEXALONY 12-25 4 12 F1/20 80: p2	and d		Parameter Monitor Span value Chart scal Pbar, in.H	e 100	CO ₂ , Kaian or 2	5/7.	*
			divisions		ntra-			
Cylinder No.	Cal. gas conc., ppm or %	Direct injection to monitor	through	n dicte equat	pre- d by ion,* System	Cal brat erro % of	ion r,**	Sampling system bias,*** % of span
Am 005 34	2 5C Z	90.5	940	504.7			i	1.6
ALM 008755	300	56.5 22.3	58.5	297.5	309.0	. 5	-16	
ALMOICOIC	101	22.3	243	100.7	112-3	.05	-2.1	-2.1
ARC 3691		3.0	مر	1:2-	12.7	21	23	
		regression of termine follows:			concent	tratio	n vs. (chart
01113		b x = pi	-		vision			
Fan	data redu		. •	- 7	- 1			
		/% = <u>(Chart</u>	division m	- b) = (CC	1738	1		
		oef. = <u>. 9</u>			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•		
		oncentration ined from ea					tual c	hart
** Calib	ration err	or, % span :		ration of edicted co	nc., p		100	
Accep	table limi	t = ±2% each	h gas (THC	limit is	±5%).			
*** Sampl	ing system	n bias =						
		injection g	as conc Sp	system ir an value	jection	n gas	conc.)	x 100
Accep	table limi	t <u><</u> 5% of sp	an					
Minim one)	num detecta	ble limit =	2 percent	of span o	or <u>//.</u>	0 00	or %	(circle
		response for each injusted		1. gas inj	jected :	throug	h syst	em
	28	s, <u>28</u>	_s, _ <i>>8</i>	s Avg.	> 8	<u></u> s		
Precision	, % scale	= difference	e in chart	division	respons	se for	two r	epeated
injection		ame gas con			-	_		•
COMMENTS:								()
								()b.
			B.	55				K

Plant	RR.A. A			Paramet	er <u>50</u> ,	CO2, O2, NO), THO
Location	TEXALE	na		Monitor	BE	TRMON 408	
Date	2-36	91		Span va	lue opm	or % //9.	2
Operator	P. Titre	ensid		Chart s	cale <u>100</u>		
PN	80562			Pbar, i	n.Hg	30.06	
Time, Pre	test /055	_ Post-te	st 1544	Tamb, °	F	70°	and the same of th
Run No.	VENTURI	FNLET	·				
Cylinder	Cal. gas		livisions	predic equa	tration ted by tion*	Analyzer cali- bration error,**	Drift,***
No.	ppm or %	Pretest	Posttest	Pretest	Posttest	% of span	% of span
	101	855	850	101.1	100.5	.08	,5
	508	450	45 C	50.5	50.5	. 3	0
	20.4	21.0	20.9	20.6	20.3	2.	10°C
divis For Pol Cor	orm linear ions to de y = mx + data redu lutant ppm relation c	termine f b	on of preterollowing erepposes of the property of the property of the preterollowing the property of the preterollowing the property of the preterollowing the preter	equation: y = chart on - b) =	as concent division (CD -4.51		
					0,000	. predicted) alue	x 100
	itable limi	-	· ·				
*** Drift	: % span =	(Posttest	cal. resp	Span va	ilue cal	. response)	<u>× 100</u>
Accer	otable limi	t <3% of	span				
Minim	num detecta	ble limit	= 2% of s	pan or _	2.4	or % (circle	e one)
Maxim	num zero dr	ift =	≥% of span	or	PI	om or % (cir	cle one)
Махіп	num cal. dr	ift = <u>.5</u>	_% of span	or	P	pm or % (cir	cle one)
COMMENTS:	<u>sample</u> da	ta. Post	st (circle ttest is us concentra	ed if dri	bration u	sed to quant s limits and	itate if post-
							~ \\ \sqrt{\sq}}}}}}}\sqrt{\sq}}}}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

3,28,91

Plant	Red Rive	RPany Dejot	Parameter	50 ₂ , CO ₂ ,	0, NO), THO
Location	TEXARKA.	·A	Monitor	BECKMON	· 80	2
Date	2-2	91	Span value	opm or %	538	.0
Operator	P. Fitzge	no/of	Chart scale	100		
PN	8056	25	Pbar, in.Hg	30.00	·	
Time, Pret	est <i>0805</i>	Post-test	Tamb, °F			
Run No.	FAH-1, SE	1m-1, 500m-2				
	Cal. gas	Chart divisions Pretest Posttest	Concentrati predicted b equation* Pretest Post	oy cal brat erro	ì	Drift,*** % of span
ALMOESZIZ	503	94.0	504.0		2.	<i>✓</i>
FLM 008755	300	578	298.5	•		✓
ALM 010010	101	230	1010	e		
AAL 3691	0	5.3	16	~ .	/	
Poli Corr ** Analyz Accept	relation c zer cal. e table limi	ction: /% = (Chart division oef. =	1. gas conc Sp 5% for THC).	conc. predi		
Minimo Maximo Maximo	um detecta um zero dr um cal. dr Pretest o sample da	<pre>t <3% of span ble limit = 2% of s ift =% of span ift =% of span r posttest (circle ta. Posttest is us</pre>	on orone) calibrations defined in the second calibration of the	ppm or % ppm or % ion used to	(circ	cle one) cle one) itate
		ds higher concentra	itions.			

4

CEM DATA REDUCTION SHEET FOR BAG ANALYSIS OR STEADY READINGS

Pate	5-26-9	<u> </u>		Parameter SO_2 , NO_2 , CO_2 , O_2 THD, CO_2
Operator	PTITZS	explor PN 8	205625	Location ventuer incet
Pollutan	t ppm/% =	(Chart div	ision - t m 0.500 =	$\frac{(CD - 5.20)}{(.1762)} = \frac{(CD - 5.20)}{(.1762)}$
Run No.	Time**	Average chart division	Conc.	Comments

Run No.	Time** (24-H)	Average chart division	Conc.	Comments
STAM-I	1011-1045	6.5	7.4	00 0-500 Ronge
	Switch To 0-100 Amuse 186-1305 1305-1332 1332-1429 1429-1443 1143 1503 1503-1522	6.5 6.5 6.5 8.0	19 19 25 25 19h 25	4.4 @ 1442 THE MORE to 14 Chart Dovish of 4.4 @ 1442 THE MORE to 14 Chart Dovish of 4.4 = 11. 8 fmin , this shadraling denerated to a stable 8.4 fmin Merching
	1	1	1	_

Calculated by 1. 1 feel on 3.891 Checked by DAchfon 3.8-91

^{**} For NO_X indicate whether NO, NO + NO₂, or NO₂ for specific interval.

** Indicate whether time interval is from beginning of first time to beginning of second time or to end of second time (circle one, or describe alternate).

DAILY CEM CALIBRATION AND PERFORMANCE EVALUATION

Plant	RRAD			Paramet	er 50,,	CO2, O2, N	0, ARC)	
Location	TIKAR			Moni tor	Be	ecknes y	ve	
Date	2-27			Span va		Dr % 500		
Operator	PF:12	·····		Chart s	cale 100			
PN	8056	,		Pbar,	in.Hg	79.97		
Time, Pre	test 0851	_ Post-t	est <i>1539</i>	Tamb, '	'F	70°		
Run No.	AFTER BU	RMR IR	LET					• •
Cylinder	Cal. gas		divisions	predic equa	ntration ited by ition*	Analyzer cali- bration error,**	Drift,***	
No.	ppm or %	Pretest	Posttest			% of span	% of span	
Almoe 5342	503	40.3	88.5	504.1	4935	-, 2	1.9	V
PLM 008755	300	55.3	<i>5</i> 5.3	2981	298.1	.3	Ø	L
Almoiooic	101	21.8	228	100.9	106.8	92	-1.1	1
AAL 3691.	A					-/	116	
Pol Cor ** Analy Accep *** Drift Accep Minim Maxim	relation correlation correlati	coef. =	span = (Ca) of span (±1 t cal. response span t = 2% of span 7% of span 9% of span	1. gas co 5% for TH ponse - 1 Span vo span or	nc conc. Span va C). nitial cal. alue //. Z aum	predicted) alue response) on % (circ) om or % (cir	x 100 e one) cle one)	
COMMENTS:	sample da	ata. Pos	st (circle ttest is us r concentra	sed if dr	ibration us	sed to quant s limits and	itate If post-	.0

CEM DATA REDUCTION SHEET FOR BAG ANALYSIS OR STEADY READINGS

Parameter SO, NO, CO, O, THC CO

Operator $\frac{1}{1/2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{1}$ Pollutant ppm/% = $\frac{(Chart division - b)}{m} = \frac{(CD - 4)lb}{(1099)}$

Run No.	Time** (24-H)	Average chart division	Conc.	at ~ 1040 0 ff scale 1004 CD > 560 pp. 105 (~ 5000 pp. 105) Comments
PILLA BURNET FALLT	(823-109) 129 - 1135" 1135" - 1135" 1143-1245 1143-1245 1136-1346 1360-1346 1360-1346 1370-1346 1370-1734 1475-1531	53 403 138 10.0 19/3 100+ 50 26.8	35 3048 314 37.6 7560 13:3 18:5	PURDEN MINIMUM DETECTIONE ZIMIT. TIME APPREXIMATE PINO ARRIXMATE PINOS TASTRUMINT ONSCARV 1105 (- 51 DPFM) - 1135 (N 6/pm),
	i	1	l	1

For NO_x indicate whether NO, NO + NO₂, or NO₂ for specific interval.

**

Indicate whether time interval is from beginning of first time to beginning of second time or to end of second time (circle one, or describe alternate).

Calculated by 1211-11/2000 3-8-91 Checked by Alchyll on 3.28-91

Plant	R.R.A. D	<u> </u>		Paramet	ter <u>50,</u>	CO2, O2, NO	OHO.
Location	TEXALKA	49		Monitor	Acc	cas 402	
Date	2-28	91		Span va	lue com	or % 548.	7
Operator	P. 7.12	genld		Chart s	cale 100		
PH	8056	25		Pbar, i	In.Hg	79.75	
Time, Pret	test <u>0759</u>	Post-te	est <u>/330</u>	Tamb, 4	,Ł	<u> </u>	
Run No.	AFTER BU	ener 2	FNLET				
Cy yl inder No.	Cal. gas conc., ppm or %		divisions Posttest	predic	ntration ted by stion* Posttest	Analyzer cali- bration error,** % of span	Drift,*** % of span
Almocsziz	<i>5</i> 03	92.3	938	504.0	512.9	Z	-1.6 L
ALMOOS 755	300	57.0	58.5	298 Le	307.3	٤.	-1.6 v
ALM 010010	101	230	248	100.8	111.3	.04	-i.9 V
AAL 3691	0	5.8	7.5	-8	10.6	~/	-18
## Analy Accep ### Drift Accep Hinim Maxim	relation c zer cal. e table limi % span = table limi um detecta um zero dr um cal. dr	ction: /% = (Ch oef. = rror, % t = <2% (Posttes t <3% of ble limi ift = _/. ift = _/.	span = (Ca) of span (±: t cal. resp span t = 2% of s % of span % of span	J. gas constant of the span or	nc conc. Span va C). nitial cal. alue //. 0 PF	predicted) liue response) or % (circle m or % (circ	x 100 e one) cle one) cle one)
COMMENTS:	sample da	ta. Pos	st (circle ttest is us r concentra	sed if dr	ibration us	ed to quant limits and	1 post-

CEM DATA REDUCTION SHEET FOR BAG ANALYSIS OR STEADY READINGS

Pate			Parameter	502, NO	CO2,	0, THC, CO
Operator _	P=	PN 805625	Location	AFTERQU	RRIR	INCET
Pollutant	ppm/% =	(Chart division - b)	= (CD - 54	·)		

Run No.	Time** (24-۲)	Average chart division	Conc.	Comments
AFTER Bugger! Inc:	1505 637 1505 637 1505 6126 1526 6126 1526 164! 1641-1128 1105 1157 1157 1653	186 18.6 16.5 96 7.5 7.5	11.1 40.3 39.8 19.4 10.6 10.6 10.6 83.9	CONTENTION > 14 is (48:4 pm) SECON: MINIMUM DETECTABLE ARMIT OFF: SURCE > 2600 pm SULD (3:3 pm) > 12 cd (37pm)

For NO_X indicate whether NO, NO + NO₂, or NO₂ for specific interval.

**

Indicate whether time interval is from beginning of first time to beginning of second time or to end of second time (circle one, or describe alternate).

Calculated by 1. Higgs on 3-8-91 Checked by Marty on 3.28-91

					.A 2 U MI 031M/RS	CHART NO. 445-17
				9-		
				177717	+++++	
	++-					
P						
	-68					
	2	-0		-50		
					4	
					88	
						
					3	
					*	
1-1-1-1-1-1-1				- OS-		
				09	┆ ╃┩┩╌╾╌╏┆┾╍╁	
	d . i — — i — — d — — i — b — b — b — i —					
			والتوات لاستكنان بيهجن			
+++++++++++++++++++++++++++++++++++++++				111111102		
				TT TT US	╽┈ ┩ ╾╃╸╋┈╅┈┩┈╃┈╂┈╂┈╇╼╇╼╇╼ ╉╼┤	
***	┇┆┇ ┼┼┼┼┼┼	الربا في وي أبار وا			╎ ╎	
4+++++++		~ ~~~				
				06		
						
				1-1-1-001		

APPENDIX C LABORATORY DATA SHEETS

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

ITAQS Cincinnati

Date: April 9, 1991

Attn: Mr. Chuck Bruffey

Job Number 21341

P.O. Number 805625

This is the Certificate of Analysis for the following samples:

Client Project ID:

USATHAMA Project

Date Received:

March 5, 1991

Work Order:

X1-03-031

Number of Samples:

11

Sample Type:

Sand/Water

I. Introduction

Six sand and five water samples arrived at ITAS Cincinnati on March 5, 1991. The samples were sent for analytical work in support of monitoring work on the USATHAMA Project. The samples are labeled as follows:

Sand # 1 (1)

Sand # 5 (1)

Water # 31 (1)

Sand # 2 (1)

Sand # 6

Water # 32 (1)

Sand # 3 (1)

Sand # 4

Water # 30

Water # 33 (1)

Water # 34

- (1) These samples were placed on hold per client's request.
- II. Analytical Results/Methodology

The analytical results for this report are presented by analytical test. Each set of data will include sample identification information, the analytical results, and the appropriate detection limits.

The analyses requested are listed on the following page.

Reviewed and Approved by:

Man Polar for To

Project Manager

103031

Client: USATHAMA Work Order: X1-03-031

10303101

IT ANALYTICAL SERVICES CINCINNATI, OH

II. Analytical Results/Methodology (cont.)

- Lead by Graphite Furnace Atomic Absorption; EPA Method 7421
- * Cadmium, Chromium and Zinc by Inductively Coupled Plasma Spectroscopy; EPA Method 6010

III. Quality Control

Immediately following the analytical data for the samples can be found the QA/QC information that pertains to these samples. The purpose of this information is to demonstrate that the data enclosed is scientifically valid and defensible. This QA/QC data is used to assess the laboratory's performance during the analysis of the samples it accompanies. All quantitations were performed from within the calibrated range of the analytical instrument.

Client: USATHAMA

Work Order: X1-03-031

10303103

IT ANALYTICAL SERVICES CINCINNATI, OH

Analytical Results, mg/L

Client Sample ID	Water # 30	Water # 34	
Lab No.	07	11	
Analyte			<u> Limit</u>
Cadmium	0.004	0.007	6_002
Chromium	0.083	0.064	0.006
Lead	ND	ND	0-07
Zinc	0.082	0.20	G_GD8

ND = Not detected above the reported detection limit

Quality Control Standard Reference Solutions

	Theoretical	Percent
Analyte	Value	Recovery
Cadmium	1	95.3, 95.7
Chromium	1	99.2, 100
Lead	0.075	93.9
Zinc	1	97.1, 102

Client:

AMAHTARU

10303102

Work Order: X1-03-031

IT ANALYTICAL SERVICES CINCINNATI, OH

Analytical Results, ug/g

Client Sample ID	Sand # 4	Sand # 6	
Lab No.	04	06	Detectio Limit
Analyte			
Cadmium	26.7	40.4	0.2
=	14.3	35.1	0.3
Chromium	25.9 (1)	77.5	2
Lead Zinc	38.4	161	0.5

ND = Not detected above the reported detection limit

(1) The detection limit for lead for this sample is 0.3 ug/g

Quality Control Standard Reference Solutions

	Theoretical	Percent
Analyte	Value	Recovery
Analyce	***	
Cadmium	1	96.3, 97.0
Chromium	1	99.4, 99.0
	0.075	92.9, 90.1
Lead	1	94.8, 96.0
Zinc	-	

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

ITAQS Cincinnati

Date: April 19, 1991

Attn: Mr. Chuck Bruffey

Job Number 21341

P.O. Number 805625

This is the Certificate of Analysis for the following samples:

Client Project ID:

Date Received:

USATHAMA Project March 5, 1991

Work Order:

X1-04-026

Number of Samples:

4

Sand

Sample Type:

I. Introduction

Four sand samples arrived at ITAS Cincinnati on March 5, 1991. The samples were sent for analytical work in support of monitoring work on the USATHAMA Project. The samples are labeled as follows:

Sand # 1

Sand # 3

Sand # 2

Sand # 5

- (1) These samples were taken off hold for additional analysis on April 1, 1991.
- II. Analytical Results/Methodology

The analytical results for this report are presented by analytical test. Each set of data will include sample identification information, the analytical results, and the appropriate detection limits.

The analyses requested are listed on the following page.

Reviewed and Approved by:

Timothy Soward

Project Manager

104026

Client:

USATHAMA

Work Order: X1-04-026

10402601

IT ANALYTICAL SERVICE CINCINNATI, OH

II. Analytical Hemults/Methodology (cont.)

- Lead by Graphite Furnace Atomic Absorption; EPA Method 7421
- * Cadmium, Chromium and Zinc by Inductively Coupled Plasma Spectroscopy; EPA Method 6010

III. Quality Contirol

Immediately following the analytical data for the samples can be found the QA/QC information that pertains to these samples. The purpose of this information is to demonstrate that the data enclosed is scientifically valid and defensible. This QA/QC data is used to assess the laboratory's performance during the analysis of the samples it accompanies. All quantitations were performed from within the calibrated range ouf the analytical instrument.

Client: USATHAMA Work Order: X1-04-026

10402602

IT ANALYTICAL SERVICES CINCINNATI, OH

Analytical Results, ug/g

Client Sample ID	Lab No.	Cadmium	Chromium	Lead	Zinc
Sand # 1	01	ND	9.8	0.70	2.9
Sand # 2	02	1.7	13	18	16
Sand # 3	03	5.5	24	23	34
Sand # 5	04	2.8	15	23	22
Detection Limit		0.2	0.3	0.4	0.5

Quality Control Standard Reference Solutions

	Theoretical	Percent
Analyte	Value	Recovery
Cadmium	1	98.4
Chromium	1	102
Lead	0.075	105, 105
Zinc	1	97.5

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

ITAQS Cincinnati

Date: April 9, 1991

Attn: Mr. Chuck Bruffey

Job Number 21341

P.O. Number 805625

This is the Certificate of Analysis for the following samples:

Client Project ID: Date Received: USATHAMA Project March 5, 1991

Work Order:

X1-03-046

Number of Samples:

Ω

Sample Type:

Multi-Metals Trains

I. Introduction

Eight multi-metals trains arrived at ITAS Cincinnati on March 5, 1991. The samples were sent for analytical work in support of monitoring work on the USATHAMA Project. The samples are labeled as follows:

Run # AIPM-1

Run # AIPM-5

Run # AIPM-2

Run # AIPM-6

Run # AIPM-3

Run # AIPM-7

Run # AIPM-4

Run # AIPM-8

II. Analytical Results/Methodology

Zan Police ifor TS

The analytical results for this report are presented by analytical test. Each set of data will include sample identification information, the analytical results, and the appropriate detection limits.

Each train consisted of a filter, acetone, and HNO3 impinger. The filter and acetone were analyzed per EPA 5. After EPA 5 analysis they were composited with the HNO3 impinger and analyzed for the metals listed on the next page.

Reviewed and Approved by:

Tim Soward

Project Manager

103046

American Council of Independent Laboratories
International Association of Environmental Testing Laboratories
American Association for Laboratory Accreditation

Client:

USATHAMA

Work Order: X1-03-046

10304601

IT ANALYTICAL SERVICES CINCINNATI, OH

II. Analytical Results/Methodology (cont.)

- * Lead by Graphite Furnace Atomic Absorption; EPA Method 7421
- * Cadmium, Chromium and Zinc by Inductively Coupled Plasma Spectroscopy; EPA Method 6010

III. Quality Control

Immediately following the analytical data for the samples can be found the QA/QC information that pertains to these samples. The purpose of this information is to demonstrate that the data enclosed is scientifically valid and defensible. This QA/QC data is used to assess the laboratory's performance during the analysis of the samples it accompanies. All quantitations were performed from within the calibrated range of the analytical instrument.

The lead analyses by Atomic Absorption were done in duplicate. The average is reported.

Client: USATHAMA

10304602

Work Order: X1-03-046

IT ANALYTICAL SERVICES CINCINNATI, OH

	Analyti	cal Results, ug		•
Client Sample ID	Run # AIPM-1	Run # AIPM-2	Run # AIPM-3	
Lab No.	01	02	03	Detecti
Analyte				Limit
Cadmium	160	63	7.7	2
Chromium	190	250	11	3
Lead	540	160	49	11
Zinc	1300	490	86	5
Client Sample ID	Run # AIPM-4	Run # AIPM-5	Run # AIPM-6	•
Lab No.	04	05	06	
Analyte				Detection Limit
Cadmium	12	40	61	2
Chromium	37	130	75	3 🁚
Lead	64	160	190	11
Zinc	78	660	270	5
Client Sample ID	Run # AIPM-7	Run # AIPM-8		1
Lab No.	07	08		
Analyte				Detect 150
Cadmium	160	44		2
Chromium	85	19		3
Lead	290	110		11
Zinc	€70	140		5

ND = Not detected above the reported detection limit

Client: USATHAMA

Work Order: X1-03-046

10304603

IT ANALYTICAL SERVICES CINCINNATI, OH

Quality Assurance Data

Quality Control Standard Reference Solutions

	Theoretical	Percent
Analyte	Value, mg/L	Recovery
Cadmium	1	86.7 , 95.8
Chromium	1	85.6, 87.B
Lead	0.75	92.0, 84.4
Zinc	1	80. 4, 82.9

Seried to instruction Fanticulate Data sections binder and filterial

ilanit)	RRAL TERABLANA	Run No.:A	PM-1
Sample	LocationalTERBURGER/INLET	Density of Acetone	დ.7899 g/ml ✓
Sample :	Sample identifiable	liquid leve	el at mark tainer sealed
Acetone	YES	YES	
Filter	YES	YES	
Acetone E	lani. Kesimie Corm. (c.007)	mg/p Lab #:X	10304601B
Aceton	: Volume: Lin mil	-	
Date & Tr	me or Wt.5/15/81 c:45AM	Beaker Gross Wt.:1	01419.4 mg
Date & Tir	me of Wt.3/14/91 6:10AM	Beaker Gross Wt.:1	01418.9 mg/
		Average Gross Wt.:1	01419.2 mg
		- Beaker Tare Wt.:1	01218.7 mg
	ါ့ မှ မှ ဗ	r acetone blank wt.:	1.4 mg
		Farticulate Wt.;	198.1 mg
Filter #	- 86% colore 1861 #: 10000468)1A 	
Date & Di	me v: Wt.5 14791 8:18AM	Filter Gross Wt.:	569.3 mg 🗸
Date & Ti	me of Wt.5/14/91 4:30PM	Filter Gross Wt.:	569.4 mg
	~	Average Gross Wt.:	569.4 mg
		Filter Tare Wt.:	439.6 mg
	Weight of Par	rticulate on Filter:	129.6 mg
	Weight of Particulat	e in Acetone Rinse:	199.1 mg
	Total Wt	c. of Particulate:	328.9 mg
algoatu	ing of Annivet: Mulisia C		3-19-91
សំខ្នះ ទេវៈ។	the fire - white the King	Muller late	4/1/91

Method to India Analytical Particulate Data Aletine hindes and Filter(a)

Frent: RRAIGTEMARRANA	Kun No.:AIPM-2
Sample LocationAFTERPURNER/IN	LET Density of Acetone 0.7899 g/ml
Sample Sample type inchtitiable	Liquid level at mark and/or container sealed
Acetone YES	YES
Filter Yh-	YES
- Anethone binenk benboue sommo - Kok	10777 mg/g / Lab #:X10304602E
Avetone Romania 14. m. 🗸	/
lete & Time / 1 Wt.3 12 (=1 8:45AM	Beaker Gross Wt.: 102H03.3 mg
Date & Time of Wt.3/14/81 F:10AM	Beaker Gross Wt.: 102802.9 mg
	Average Gross Wt.: 102803.1 mg
	Beaker Tare Wt.: 102702.5 mg
:	ess acetone blank wt.: 0.9 mg
	Particulate Wt.: 98.7 mg
Filter # Policies - Inc #:X1080	4602A
Times / Same of Williams 14791 Billion	Filter Gross Wt.: 486.3 mg
Date & Time of Wt.3/14/91 4:30PM	Filter Gross Wt.: 486.2 mg
**************************************	Average Gross Wt.: 486.3 mg
	Filter Tare Wt.: 467.3 mg
Weight of	Particulate on Filter: 19.0 mg
Weight of Particu	late in Acetone Rinse: 99.7 mg
Total	Wt. of Particulate: 118.7 mg
Signalating with anti-livery with a	A A A A Determination
Signature of Analyst: Pulling	a a Ellesson Date: 3-19-91
21gh5/une //1 FFW1eWer1	Muller Pate: 4/1/4

Method & Their Analytical Particulate Data Acetone Binses and Filter(s)

Fianti!	RRAI-TEXAFFANA	Run No.:AIPM-3
Sample	LocationAFTERBURNER/INLET	Density of Acetone 0.7899 g/ml
========		######################################
Sample type	Sample identifiable	Liquid level at mark and/or container sealed
Acetone	YES	YES
Filter	YES	YES
Acetone B	lank Residue Coro, ທຸກທີ່77	mg/g / Lab #:X10304603B
Areton	e Volume: 125 mil 🗸	
Date & li	me of Wt.Frib/Hi b:45AH	Heaker Gross Wt.: 97684 7 mg
Date & li	me of Wt.3/14/93 F:10AM	Beaker Gross Wt.: 97684.: mg
		Average Gross Wt.: 97684.5 mg
		Beaker Tare Wt.: 97669.6 mg
	lines	nacetone blank wt.: 0.8 mg
		Farticulate Wr.: 14.1 mg
Fister #	9070050 195 #:X1080460	A&
DATE & Ta	m- of Wilbrides1 6:10AM	Filter Gross Wt.: 426.5 mg
Date & Ti	me of Wt.3/14/91 4:30PM	Filter Gross Wt.: 426.5 mg
		Average Gross Wt.: 426.5 mg
		Filter Tare Wt.: 420.6 mg
	Weight of Par	ticulate on Filter: 5.9 mg
	Weight of Particulat	e in Acetone Rinse: 14.1 mg
	Total Wi	o. of Particulate: 20.0 mg
Signatu	re of Analyst: Mulissa	1. Elesson Date: 3:19-91 Pulle 14/1
ដែរទូបគម្	re c: keviewer: Ku M	weller 11/41

Methor E Train Analytical Particulate Data Abetone Ringes and Filter(s)

Plant: KKAD-TFXARKANA Run No.: AIPM-4 Sample LocationAFTERBURNER/INLET Density of Acetone 0.7899 g/ml / Sample : Sample Liquid level at mark type | identifiable and/or container sealed Acetone Brank Residue Conc. 0.0077 mg/g Lab #:X10304604B Hierone Allimon 110 mil. Tate & lime of Wt.5 14/80 8:10AM Beaker Gross Wt.:106002.5 mg Date & Time of Wt.5/14/81 4:00PM Beaker Gross Wt.: 106002.3 mg Average Gross Wt.: 106002.4 mg Beaker Tare Wt.: 105961.7 mg less acetone blank wt.: 0.7 mg Farticulate Wt.: 40.0 mg Filter & Berneut lab #:310304604A Date & Time of which (4/81 E: 0AM Filter Gross Wt.: 437.6 mg Date & Time of Wt.3/14/91 4:30PM Filter Gross Wt.: 436.8 mg Average Gross Wt.: 436.9 mg Filter Tare Wt.: 421.4 mg Weight of Particulate on Filter: Weight of Farticulate in Acetone Rinse: Total Wt. of Particulate: 55.5 mg Eignature of Analyst: Mulino a. Ellerson Inate: 3.19.21

Method & Train Analytical Farticulate Data Acetone Rinses and Filter(a)

Fiant: Rhale TF XARKANA Run No.: AIPM-5						
Sample	LocationAFTERBURNER/INLET		of Ace	etone -	0.7899	g/ml V
=======================================	* = 2 = 4 = 5 + 5 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =	=======	=====	:::::	========	=======================================
Sample type	Sample identifiable				el at ma tainer s	
Acetone	YES		YES			
Filter :	Y	:=======	YES	=====	========	*********
Acetone B	iank kesidue Cono. 0.0077	mg/g 🗸	L	ab #:X	10304605	5B
Aceton	e Volume: St mi. 🗸			_		
Date & Ti	me ct Wt.5/13/91 0:45AM	Beaker	Gross	Wt.:1	02176.6	mg.
Date & Tu	me of Wt.3/14/91 8:10AM	Beaker	Gross	Wt.:1	02176.3	mg ·
	• • • • • • • • • • • • • • • • • • • •	Average	Gross	W:.:1	02176.6	_m <u>e</u>
		Beaker	r Tare	Wt.:1	02101.6	mg /
	Less	acetone	blank	wt.:	0.6	mg
		Partic	rulate	Wt:	74.4	ນເຮ
rister #	9010411 Lab #:210004805	۱Á		_		-
Date & Ti	me of Wt.8/14/91 8:10AM	Filter	Gross	Wt.:	359.7	mg /
Date & Ti	me of Wt.3/14/91 4:30PM	Filter	Gross	Wt.:	359.9	mg 🗸
		Average	Gross	Wt.:	359.8	- ng
		Filter	Tare	Wt.:	331.0	mg.
	Weight of Part	ciculate	on Fi	lter:	28.8	ng
	Weight of Particulate	e in Acet	tone R	- inse:	74.4	ng ng
	Total Wt.	of Part	ticula	te:	103.2	- mg
a :		/		-		~
	ire of Analyst: Melassa Core of Reviewer: Ken Ma	L Efler	Mos-	Date		7/_
Signatu	de di hevieweri Kun Ma	uller		L'at.e 	2///9/	<u>/</u>

Metron & Train Analytical Particulate Data Acetone Rinses and Filter(s)

Flant:	ERAIH TEXARKANA	Run No.:AIPM-6
Sample	LocationAFTERBURNER/INLET	Density of Acetone 0.7899 g/ml
========		~~
Sample :	dample identitiable	Liquid level at mark and/or container sealed
	YEs	YES
Filter		YES
		mg/g / Lab #: X10304606B
Acetor.	= Velum = : 14f m /	
Date & Tur	me of Wilstin at bietaM	Beaker Gross Wt.: 104457.1 mg
late & Tim	me At Wt.8/14/91 8:10AM	Beaker Gross Wt.: 104456.6 mg
		Average Gross Wt.: 104456.9 mg
		Beaker Tare Wt.:104415.7 mg
	Less	acetone blank wt.: 0.9 mg
		Particulate Wt.: 40.3 mg
Filter #	9647427 Feb. #:X1636466	6A
Jete & T.	m= co kt.3434401 5:10AM	Filter Gross Wt.: 405.8 mg
Date & Ti	me of Wt.3/14/91 4:30PM	Filter Gross Wt.: 405.9 mg
		Average Gross Wt.: 405.9 mg
		Filter Tare Wt.: 333.3 mg
	Weight of Par	ticulate on Filter: 72.6 mg
	Weight of Farticulat	e in Acetone Rinse: 40.3 mg
	Total Wt	. of Particulate: 112.9 mg
ຮິ້ນຊຸກສຽນ	re of Ana yet: Malisia (1. Ellesson Date: 3-19-91
Signatu	re of Ana yet: Process	Muller Date: 4/1/91

Methor o Train Analytical Particulate Data Acetone Rinses and Filter(s)

Fiart:F	ANARAKAKANA	Run No.	:AIPM-7
2ample	LocationAFTERBURNER/INLET	Density of Aceton	e 0.7899 g/ml
==== =====	*************		
	Samale identiliable		evel at mark ontainer sealed
Acetone	AF2	YES	
Filter	YEA COURT SEESEER CONTRACTOR	YES	
	ank Residue Conc. 0.0077	,	: X10304607B
geeta, a	· Annual Zena et .	-	
Pate & Tib	ж / t Wt.9/18/91 6:45AM	Beaker Gross Wt.	:105917.6 mg
Date & Tin	e of Wt. 5/14/21 B:10AM	Beaker Gross Wt.	:105917.5 mg
		Average Gross Wt.	:105917.6 mg
		Beaker Tare Wt.	:10586ñ.2 mp
	Leas	acetone blank wt.	: 1.2 mg
		Particulate Wt.	: 50.2 mg
Filter #	901(55) Lab #: X1030460	7.A	
Date & Tir	er of kills on At SiteAt	Filter Gross Wt.	: 350.6 mg 🖊
Date & Tim	ne of Wt.5/14/91 4:30PM	Filter Gross Wt.	: 355.8 mg
		Average Gross Wt.	: 355.7 mg
		Filter Tare Wt.	: 329.9 mg
	Weight of Par	ticulate on Filter	: 25.8 mg
	Weight of Particulat	e in Acetone Rinse	: 30.2 mg
	Total Wt	of Particulate:	56.0 mg
هممين	on of Antiumt:	<i>1.</i> -	*
	re of Aralvet: Melisia.	C. Ellesson	te: 3.12-91
៩០ ខ្មាកកុលរ	me of neviewers	Muller 11a	te: 2 4/1/91

Method to Prein Analytical Particulate Data Acetone hinses and Filter(s)

Plant:R	KAN-TEZAHKANA	Run No.:AlPM-8	
Sample I	LocationAFTERBURNER/INDE1	Density of Acetone 0.7899 g/	ml /
= == =================================			=====
Sample type	Sample identifiable	Liquid level at mark and/or container sea	
Acetone	YEs	YES	
Filter	YE:	YES	
Acetone Bla	em. Residue Conc. 0.0077		
ac≐*on∈	Wisconer 118 mg.		
Tate & Some	≈ o: Wt.o/13/91 8:45AM	Beaker Gross Wt.: 101966.9 mg	
Date o Time	of W*.5×14×31.5:10AM	Beaker Gross Wt.: 101966.9 mg	
		Average Gross Wt.: 101966.9 mg	!
		Beaker Tare Wt.:101941.2 mg	
	Tipography	acetone blank wt.: 0.7 mg	,
		Farticulate Wt.: 25.0 mg	!
Fliter # 9	901mh2). Lair #:X1030460	8A 	
Date & Time	s of Wt.3-14791 8:10AM	Filter Gross Wt.: 342.8 mg	·
Date & Time	e of Wt.3/14/91 4:30AM	Filter Gross Wt.: 342.9 mg	
		Average Gross Wt.: 342.9 mg	ţ
		Filter Tare Wt.: 331.5 mg	
	Weight of Par	ticulate on Filter: 11.4 mg	3
	Weight of Particulat	e in Acetone Rinse: 25.0 mg	3
	Total Wt	. of Particulate: 36.4 mg	3
สิวฐกลรับก	e (1 Anaivet: Miliya L	2. Elloesson Date: 3:19-91	_
Signatur	e of Reviewers	Muelle Date: 3.19-91	-

Laboratory Data

ITAS Cincinnati

Client: TTROS US	BETHA	Analysis: EPA 5
PN:	Date: 3-11-91	Method Number: 07-0/5-00
Extraded By: ME //OES	500r	Checker: 41/41

				الكوالين والمادية	3 13 91	3-14.91	3 14.91	
					3.45A~	8.1CAM	4.000-	
Bun#	Contt	Lab#	Tare	UUL	Gross	Gross	Gross	
arpm·1	12202A X /	-03-046- 01B	1012137	328	101.41990	1014189	161.	
ATPM.2	11080A	OZB	102 7035	143		102 8029		
E-M9TA	11030A	മുദ	976696	125	97.6347	97 6843	D	
ALPMY	11125A	04B	105 9617	119	101.003	106.0025	106 0023	
AIPM-S	1113313	05 B	103 1016	95	102,1768	102 1763		
AIPM 6	HIBMA	<i>७</i> ०८	244157	145	404.4571			
AIRM.4	11139A	078	1058862	300 C	1059176	105.9175	<u></u>	
810m-3	111-15A	023	101.9412	119 5	101.9669	1019660		
							<u> </u>	
					3-13-91	3.14.91 B.10Am	3 14-91 4.30pm	
Burt	CEMI	Lab	Filter#	Tale	Gross	Gross	Gross	
AIPON I	123083	X1-03-046-	9070076	4396V	5707	(5693)	3694	
BIPM-3	11020B	CZA	crara?	.4673	4874	(4863)	4862	
BIEW-3	11030B	A3A	90710052	4206	4271	(4365)	(4365)	
AIPM.Y	111253	AYO	907025	.4214:	4388	(4370)	(4368)	
aipms	1113313	OSA	उठाजाउ	3310	.3604	3594	3599	
AIPM-6	1113413	OVA	424006	.3333.	4067	(4058)	(4059)	
AIPMY	11130	CTA	9010531	.3999	3566	3556	3558	
AIPM 8	UNSQ_	CBA	4 0. € 60.02.85	3315	(3498)	.3429		
					<u> </u>		1	
				<u> </u>	<u> </u>	<u> </u>	ļ	
					<u> </u>	L		
								
				<u> </u>				
					<u> </u>	<u> </u>	<u> </u>	
	·				<u> </u>		<u> </u>	
N. 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 12 12 12 12 12 12 12 12 12 12 12 12 12		1.01 (1.00 No. 1.00	and the state of the	2	and the second	100000000000000000000000000000000000000	TO THE PARTY OF THE

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

ITAQS Cincinnati

Date: April 9, 1991

Attn: Mr. Chuck Bruffey

Job Number 21341

P.O. Number 805625

This is the Certificate of Analysis for the following samples:

Client Project ID:

USATHAMA Project

Pate Received:

March 5, 1991

Work Order:

X1-03-053

Number of Samples:

5

Sample Type:

Multi-Metals Trains

I. Introduction

Five multi-metals trains arrived at ITAS Cincinnati on March 5, 1991. The samples were sent for analytical work in support of monitoring work on the USATHAMA Project. The samples are labeled as follows:

Run # SIPM-1 Run # SIPM-2 Run # SIPM-3

Run # SIPM-4

Run # SIPM-5

II. Analytical Results/Methodology

: X. teek. fr. 75

The analytical results for this report are presented by analytical test. Each set of data will include sample identification information, the analytical results, and the appropriate detection limits.

Each train consisted of a filter, acetone, and HNO3 impinger. The filter and acetone were analyzed per EPA 5. After EPA 5 analysis they were composited with the HNO3 impinger and analyzed for the metals listed on the next page.

Reviewed and Approved by:

Tim Soward

Project Manager

103053

Client:

USATHAMA

Work Order: X1-03-053

10305301

IT ANALYTICAL SERVICE CINCINNATI, OH

II. Analytical Results/Methodology (cont.)

- Lead by Graphite Furnace Atomic Absorption; EPA Method 7421
- * Cadmium, Chromium and Zinc by Inductively Coupled Plasma Spectroscopy; EPA Method 6010

III. Quality Control

Immediately following the analytical data for the samples can be found the QA/QC information that pertains to these samples. The purpose of this information is to demonstrate that the data enclosed is scientifically valid and defensible. This QA/QC data is used to assess the laboratory's performance during the analysis of the samples it accompanies. All quantitations were performed from within the calibrated range of the analytical instrument.

The lead analyses by Atomic Absorption were done in duplicate. The average is reported.

Client: USATHAMA Work Order: X1-03-053

10305302

IT ANALYTICAL SERVICES CINCINNATI, OH

Analytical Results, ug				
Client Sample ID	Run # SIPM-1	Run # SIPM-2	Run # SIPM-3	
Lab No.	01	02	03	
Analyte				Detection Limit
		P7************************************		
Cadmium	14	14	7.5	2
Chromium	32	ND	ND	3
Lead	42	15	12	0.6
Zinc	62	ND	ND	5
Client Sample ID	Run # SIPM-4	Run # SIPM-5		
Lab No.	04	05		
Analyte				Detection Limit
Cadmium	6.6	8.3		2
Chromium	, ND	29		3
Lead	4.4	15		0.6
Zinc	11	120		5

ND = Not detected above the reported detection limit

Client:

USATHAMA

Work Order: X1-03-053

10305303

IT ANALYTICAL SERVICES CINCINNATI, OH

Quality Assurance Data

Quality Control Standard Reference Solutions

	Theoretical	Percent
h-alubo	Value, mg/L	Recovery
Analyte		
Cadmium	1	86.7, 95.8
	1	85.6, 87.8
Chromium	0.75	92.0, 84.4
Lead	1	80.4, 82.9
Zinc	4	

Method to Brain Analytical Particulate Data Abetone Birses and Filter(s)

Plant:RHAD-TEXABNANA	kun No.:SIPM-1
	Tensity of Acetone 0.7898 g/ml
Sample : Sample type identifiable	Liquid level at mark and/or container sealed
Acetone YES	YES
Filter YES	YES
Acetone Blank Residue Const. 0.007	7 mg/g Lab #:X10305301B
Acetone volume: 218 m	
Date & lime of Wt.3/13/61 5:45AN	Beaker Gross Wt.: 104974.6 mg/
Date & Time of Wt.3/14/9) 5:10AM	Beaker Gross Wt.:104974.3 mg ✓
	Average Gross Wt.: 104974.5 mg
	Beaker Tare Wt.:104966.1 mg
Lee	s acetone blank wt.: 1.3 mg
	Particulate Wt.: 7.1 mg
Filter & 91/00064 Dec #:3200063	W1A
Date & Time of wt14791 6:10AM	Filter Gross Wt.: 479.8 mg
Date & Time of Wt.3/14/91 4:30PM	Filter Gross Wt.: 479.9 mg
	Average Gross Wt.: 479.9 mg
	Filter Tare Wt.: 469.2 mg
• Weight of Pa	rticulate on Filter: 10.7 mg
Weight of Particula	te in Acetone Rinse: 7.1 mg
Total W	t. of Particulate: 17.8 mg
Signature of Analyst: Diling (1. Ellego: Date: 3-19-21
Signature of heviower:	Date: 3-19-21 Date: 4/1/41

Method 5 Train Analytical Particulate Data Acetone Rinses and Filter(s)

Fiant:	KRAI-TEXARKANA	Run No.:51PM-2	
Sample		Density of Acetone 0.7899 g/ml /	/
======================================			: = :
Sample type	Sample identifiable	Liquid level at mark and/or container sealed	
Acetone	YES	YES	
Filter	YES	YES	
	lank kesidue Conn. 0.007 e Volume: 178 m. /	7 mg/g / Lab #: X10305302E	
		Beaker Gross Wt.: 102989.0 mg	
Date & Ti	L Of Wt.5/14/91 8:10AM	Beaker Gross Wt.: 102988.6 mg	
		Average Gross Wt.: 102986.8 mg	
		Beaker Tare Wt.:102983.2 mg	
	Les	s acetone blank w.: 1.1 mg	
		Farticulate Wt.: 4.5 mg	
Filter #	9070068 Lab #:X103053	02A 	
Date & To	m= x; wt.5 14x81 6:10AK	Filter Gross Wt.: 467.0 mg	
Date & Ti	me of Wt.3/14/91 4:30PM	Filter Gross Wt.: 467.1 mg	•
		Average Gross Wt.: 467.1 mg	
		Filter Tare Wt.: 464.1 mg	
	Weight of Pa	rticulate on Filter: 3.0 mg	
	Weight of Farticula	te in Acetone Rinse: 4.5 mg	
	Total W	t. of Particulate: 7.5 mg	
Signatu	re of Analyst	Ellusson Date: 3.19-91	
สัง∉หล†น	the of heviewer: for 12	Ellerson Date: 3.19-91	

Method to Train Analytical Particulate Data Acetone hinses and Filter(s)

Frant: RRAIH-TE XARRANA	Run No.:SIPM-3
Sample LocationVENTURI INLET	Density of Acetone 0.7899 g/ml/
Sample Sample type I identification	Liquid level at mark and/or container sealed
Acetone YEs	YES
Filter YES	YES
Acetone Blank Residue Conc. 0.0077	7 mg/g / Lab #:X10305303B
Acetone Volume: 100 ma.	
Date & Time of Wt.8/18/91 6:45AM	Beaker Gross Wt.:101583.7 mg
Date & Time of Wt.5/14/91 5:10AM	Beaker Gross Wt.:101583.2 mg
	Average Gross Wt.: 101583.5 mg
	Beaker Tare Wt.: 101575.7 mg
Les:	e acetone blank wt.: 0.7 mg
	Farticulate Wt.: 7.1 mg
Filter # 90700fr Lab #:X1030530	03A
Date & Time of Wt.5/14/a) AlteAB	Filter Gross Wt.: 472.2 mg
Date & Time of Wt.5/14/91 4:30PM	Filter Gross Wt.: 472.2 mg
	Average Gross Wt.: 472.2 mg
	Filter Tare Wt.: 466.1 mg
Weight of Par	rticulate on Filter: 6.1 mg
Weight of Particulat	te in Acetone Rinse: 7.1 mg
Total Wt	of Particulate: 13.2 mg
Signature of Analyst Mulina	Elleryon Date: 3-19-91
Signature of heviewer:	Muelle Date: 4/1/41

Method t Train Analytical Particulate Data Aletone Rinses and Filter(s)

Flant:	KKAI-TELMERANA	Run No.:SIPM-4
Sample		Density of Acetone 0.7899 g/ml/
========		
Sample type	Samule identifiable	Liquid level at mark and/or container sealed
Acetone		YES
Filter ;	YES	YES
	Black Residue Conc. 0.0071	ng/g / Lab #: X10305304B
		Beaker Gross Wt.:102961.8 mg
	~~~~~~~~~	Beaker Gross Wt.: 102961.4 mg/
		Average Gross Wt.:102961.6 mg
		Beaker Tare Wt.:102954.6 mg
	<u>les</u>	s acetone blank wt.: 0.5 mg
		Particulate Wt.: 6.5 mg
Filter:	# 90°0058 Lat #:X1030530	94A
Tete will	1900 of Wt.3/14/91 5:10AM	Filter Gross Wt.: 463.0 mg
Date & T	ime of Wt.3/14/91 4:30PM	Filter Gross Wt.: 462.8 mg
		Average Gross Wt.: 462.9 mg
		Filter Tare Wt.: 457.8 mg
	Weight of Pa	rticulate on Filter: 5.1 mg
	Weight of Particula	te in Acetone Rinse: 6.5 mg
	Total W	t. of Particulate: 11.6 mg
Signati Signati	ore of Analyst: Philips A	Date: 3-19-9/

## Method b Train Analytical Particulate Data Abstrace Rinses and Filter(s)

Fiant: R	HAIR TEXARKANA	Run No.:SIPM-5
Sample :	LocationVENTURI INLET	Density of Acetone 0.7899 g/ml
=======================================	######################################	
Sample :	Sample identifiante	Liquid level at mark and/or container sealed
Acetone :	YES	YES
Filter	YES	YES
	ank Kesidue Conc. 0.0077	mg/g / Lat #: X10305305F
		Beaker Gross Wt.: 97916.4 mg
	9 of W1.8/14/91 4:00PM	Beaker Gross Wt.: 97018.5 mg
		Average Gross Wt.: 97018.5 mg
		Beaker Tare Wt.: 97013.0 mg
	Less	acetone blank wt.: 0.6 mg
		Farticulate Wt.: 4.9 mg
Fijte; ≠ °	90105000 Lab #: X1030530	15A
late & Jon	o of Wilson 14 91 4:5000	Filter Gross Wt.: 338.3 mg
Date & Time	e of Wt.3/15/91 2:55PM	Filter Gross Wt.: 338.2 mg
		Average Gross Wt.: 338.3 mg
		Filter Tare Wt.: 336.5 mg
	Weight of Par	ticulate on Filter: 1.8 mg
	Weight of Particulat	e in Acetone Rinse: 4.9 mg
	Total Wt	. of Particulate: 6.7 mg
Signatur	e of Analyst: Melisia C	Date: 3-19-91 Muller Date: 4/19

## Laboratory Data



 Client:
 77 AQS
 USFTHA
 Analysis:
 \$ PA 5

 PN:
 Date:
 3 //. 9/
 Method Number:
 0 7 - 0/5 - 00

 Extracted By:
 P7. \$ 1/0.05500
 Checker:
 VCM
 4/1/41

dracted B	4. M. E110	C550C				the second contract of the second	الماء والمشم الأولامان	
		A mirror of the second of the second of the			3/3-91	3 14.91	3 14-91	
					245A2	8.10Am	u 000n	
.#	Conte	Last	Tare				Gross	
	,		1049661	2844)	1049746	104.9743		
Prn 1			100.9832	178	102 9890	102 9886		
PULS .	11078A			169	1/12237	101.5832		
PU-3	1112117		101 5757	12.7	1013031	1029614		
rw64	11123A	048	102 9546		0-0-0	97.0184	070125	
ipmy	111312	050	97.0130	95	97.0190	97.010%	7 10.00	
						2:10Am	11 3000-	2:53 pm
					11.30AIV	3.14 41	3.14.91	15.91
			r.Her#	Take	Gross	Gross	Gross	
Supp.	Contt	11-03 CS3-		46921	· ·	4748	4799	i
IPOYI	1221313	OIA	<b>30202</b> 3			4670	(4671)	
CAMI	110778		4070063	1	1.4678		4722	
16W-3	11.218	(131)	9070085		4737	4422	7	4
5P.N.4	1123B	СЧA	9040032	,4578		4630	14628	1290
Ibw. 2			9010500		3407	, 3394	3346	(.3382
JPILLS	111013							<del> </del>
					1			
				<del>                                     </del>			-	<u> </u>
			<del> </del>	<del> </del>	+			
			<del>                                     </del>	<del> </del>	<del></del>			
				<b></b>		<del> </del>		<del>                                     </del>
					<del></del>			
				<u> </u>				<del> </del>
<b></b>			+					
				1	1			
<b></b>			<del></del>					
					<del></del>		+	1
								<del> </del>
								1
<b>L</b>	and the second sections	S CONTRACTOR	A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONT	Charles Mary	Marine June 3	Brune Him and	ore to have	U.3



## ANALYTICAL SERVICES

## CERTIFICATE OF ANALYSIS

ITAQS Cincinnati

Date: April 9, 1991

Attn: Mr. Chuck Bruffey

Job Number 21341

P.O. Number 805625

This is the Certificate of Analysis for the following samples:

Client Project ID:

USATHAMA Project

Date Received:

March 5, 1991

Work Order:

X1-03-055

Number of Samples:

٥

Sample Type:

Multi-Metals Trains

#### I. Introduction

Eight multi-metals trains and blanks arrived at ITAS Cincinnati on March 5, 1991. The samples were sent for analytical work in support of monitoring work on the USATHAMA Project. The samples are labeled as follows:

Run # SOPM-1

Run # SOPM-6

Run # SOPM-2

Run # SOPM-7

Run ≠ SOPM-3

Run # SOPM-8

Run # SOPM-4

II. Analytical Results/Methodology

Run # Blank

Run # SOPM-5

The analytical results for this report are presented by analytical test. Each set of data will include sample identification information, the analytical results, and the appropriate detection limits.

Each train consisted of a filter, acetone, and HNO3 impinger. The filter and acetone were analyzed per EPA 5. After EPA 5 analysis they were composited with the HNO3 impinger and analyzed for the metals listed on the next page.

Reviewed and Approved by:

Lan Rotell Jer 73

Tim Soward

Project Manager

103055

Client: USATHAMA Work Order: X1-03-055

10305501

IT ANALYTICAL SERVICES CINCINNATI, OH

#### II. Analytical Results/Methodology (cont.)

- * Lead by Graphite Furnace Atomic Absorption; EPA Method 7421
- * Cadmium, Chromium and Zinc by Inductively Coupled Plasma Spectroscopy; EPA Method 6010

#### III. Quality Control

Immediately following the analytical data for the samples can be found the QA/QC information that pertains to these samples. The purpose of this information is to demonstrate that the data enclosed is scientifically valid and defensible. This QA/QC data is used to assess the laboratory's performance during the analysis of the samples it accompanies. All quantitations were performed from within the calibrated range of the analytical instrument.

The lead analyses by Atomic Absorption were done in duplicate. The average is reported.

Client: USATHAMA Work Order: X1-03-055

10305502

IT ANALYTICAL SERVICES CINCINNATI, OH

	Analyti	cal Results, ug		
Client Sample ID	Run # SOPM-1	Run # SOPM-2	Run # SOPM-3	
Lab No.	07	02	03	Detect <b>io</b>
Analyte				Limit
Cadmium	53	12	8.8	2
Chromium	650	ND	ND	3
Lead	1000 (1)	16	7.6	0.6
Zinc	1500	5.1	8.9	5
Client Sample ID	Run # SOPM-4	Run ≠ SOPM-5	Run # SOPM-6	
Lab No.	04	Ø5	06	
Analyte				Detectio Limit
Cadmium	2.5	4.7	12	2
Chromium	ND	ND	4.5	3
Cead	5.9	13	19	3.6
Zinc	26	94	53	5
Client Sample ID	Run # SOPM-7	Run # SOPM-8	Run # Blank	
Lab No.	07	08	09	Detection
Analyte				Limit
Cadmium	ND	15	ND	2
Chromium	20	ND	9.6	3
Lead	22	12	2.4	0.6
Zinc	73	72	58	5
Client Sample ID		Blank		
• . • • •		Pilter		
Lab No.		10		Dotectio
Analyte				Limit
Cadmium		2.4		
Chromium		3.0		2 3
Lead		4.9		0.6
e e e e		7.2		~. •

⁽¹⁾ The detection limit for lead for this sample = 11 ug

ND = Not detected above the reported detection limit

Client: USATHAMA Work Order: X1-03-055

10305503

IT ANALYTICAL SERVICES CINCINNATI, OH

Quality Assurance Data

#### Quality Control Standard Reference Solutions

Analyte	Theoretical Value, mg/L	Percent Recovery	
****			
Cadmium	1	86.7, 95.8	
Chromium	1	85.6, 87.8	
Lead	0.75	92.0, 84.4	
Zinc	1	80.4, 82.9	

## Setto to Brank Analytical Data

FURBLITHEUR	internate		
Density of Are	tone v./o∺= g/m√/pa		
Blank Type	Sample identifiable	Lique and/o	uid level at mark r container sealed
Acetone	YES	YES	
Filter : sections : Back		YES	=====================================
	onet yet m Nac		
Date & Time :	W1.074147#1.41.5PM	beaker Gross	Wt.:107376.1 mg.
Date & Time of	Wt.axit Hi 1:55PM	Beaker Gross	Wt.:107375.9 mg.
		äverage Gross	Wt.:107876.0 mg.
		Beaker Tare	Wt.:107373.9 mg.
(A.)mc	(MA) (6) Temperatura (4) (PA	beaker Net	Wt.: 2.1 mg.(ma)
	•	scetone Blank Va	lue: 0.0077 mg/g (Ca
Hlank value us	res fun Cauculations:	0.0077 mg/g	
Filter #: Swin	ं <b>ं ः 4</b>	La	ъ #:X10305509A
Date & Time of	f Wt.3/14/91 8:10AM	Filter Gross	Wt.: 469.0 mg
Date & Time of	Wt.3/14/91 4:30PM	Filter Gross	Wt.: 469.2 mg
		Average Gross	Wt.: 469.1 mg
		Filter Tare	Wt.: 468.2 mg
		Differe	nce: 0.9 mg
Femants			
algnatur	e c: Analyst: Delise	al Ellerson	Date: 3.19.91
<pre>21fffe(0)</pre>	ci heviewiti fu.	all Elsessor_ Mullu-	Nate: 4/1/1

### Method to Frank Analytical Data

Frantikher-Inkennake		
lensity of Acetone ਦੇ.7paa g/ml (p	oa )	
<b>==</b> ==================================	:=== <b>;====</b> =============================	:======================================
Sample Blank Type identifiable	Liquid le and/or cont	
Acetone		
Filter YES	YES	
sammammentersammen met samma Acetone Blank Containen No.	Lab #:	
Volume of Abetone: mu. (Va	a '	
Date & Time of wt.	Beaker Gross Wt.:	m€.
Date & Time of Wt.	Beaker Gross Wt.:	mg.
	Average Gross Wt.:	0.0 mg.
	Reaker Tare Wt.:	mg.
(ma) Ca,(mg/g = =================================	Beaker Net Wt.:	0.0 mg.(ma)
(Λ≃) (Þ⊌)	Acetone Blank Value:	ERK mp/g (Ca
Blank Value used for Calculations:	: <b>E</b> RK mg/g	
Filter #: 9010499	Lab #:X	103055 <b>10A</b>
Date & Time of Wt.3/14/91 8:10AM	Filter Gross Wt.:	336.7 mg 🗸
Date & Time of Wt.3/14/91 4:30PM	Filter Gross Wt :	336.8 mg
	Average Gross Wt.:	336.8 mg
	Filter Tare Wt.:	336.9 mg 🖊
	Difference:	-0.1 mg
Remarks	~-	
Signature of Analyst: 77	16 May 10 De	ate: 3-19-91
Signature of heviewer:		3:1 <u>7:71</u> ate: 4//1

### Method 5 Their Analytical Particulate Data Historia Hinses and Filter(s)

Fiant:F	KKA1-TEXAKLANA		Run No.:SOFM-1
Samrle	LocationVENTURI	O'D LFT	Density of Acetone 0.7899 g/ml
<b>525</b> 25255		=======================================	**********************
Sample typ-	Sample identilian	i e	Liquid level at mark and/or container sealed
Acetone	YES		YES
Filter	Удя		YES
Aretone E	lauk mesimue Cono	. e.ee7	7 mg/g / Lab #:X10305501R
	= volumet vet		
	<del>-</del>	-	
Dete W 12m	ar ot wildinii	4:359M	beaker Gross Wt.:103231.7 mg /
Date & Tim	ne of Wt.3/16/91 :	MACON:	Beaker Gross Wt.: 103251.6 mg
			Average Gross Wt.: 103231.7 mg
			Beaker Tare Wt.: 103048.3 mg
		],68	acetone brank wt.: 4.7 mg
			Farticulate Wt.: 1/6./ mg
	wesent of Pa	antidulat	te in Acetone Rinse: 176.7 mg
Filter #	Garantana Barantan	: X103055(	ð1A
•			
Date & Tir	me of Wt.3/14/91	8:10AM	Filter Gross Wt.: 670.0 mg
Date & Tir	me of Wt.3/14/91	4:30PM	Filter Gross Wt.: 670.0 mg
			Average Gross Wt.: 670.0 mg
			Filter Tare Wt.: 421.6 mg
	We i g	ht of Par	rticulate on Filter: 248.4 mg
Signatui	re of Analyst: 72	Pelino a	1 Ellesser Date: 3-19-91
ងារ ទួកគ្	re of Reviewer:	Lu M	Jully Date: 4/1/41

## Meth. of Grain Abalytical Particulate Data Fisters (Cont.)

Frant: Bhail-ThiabhaNa	Run No.: SC	DPM-1
Sample LocationVESTOR: 00TLE		
Filter # 9070068 Lac F: \\10005	601A	
Date & Time of Wt.3/14/91 8:10AM	Filter Gross Wt.:	527.9 mg ~
Date & Time of Wt.3/14/81 4:30PM	Filter Gross Wt.:	528.0 mg -
	Average Gross Wt.:	528.0 mg
	Filter Tare Wt.:	422.4 mg
Weight of P	earticulate on Filter:	105.6 mg
Filter # i.e.v #:	·	
IMpe A lime of Wil	Filter Gross Wt.:	mg
Date & Sime of Wo.	Filter Gross Wt.:	มลั 
	Average Gross Wt.:	.∵
	Filter Tare Wt.:	mg
સંસ્કૃતના છ <b>ા</b> છે	articulate on Filter:	0.0 mg
Weight of Particul	ate in Acetone Rinse:	178.7 mg
Weight of Pa	articulate on Filters:	354.0 mg
	Total Particulate:	532.7 mg
Comments:	·	
Eignature of Analyst: Prelista	2. Ellesson Date	:3.19.91
Figure of horsevers	Lillers Date	8 4/1/1
	C-39	

### Method to Insin Analytical Particulate Data Acetore hinses and Filteris)

Fredit: FRA1mTEXAELANA	Run No.:SOPM-2
Sample LocationVENTURE CUTLET	Density of Acetone 0.7899 g/ml
Sample Sample type I identifiance	Liquid level at mark and/or container sealed
Acetone YEs	YES
Filter : YF/	YES
Abetone Blank Residue Con . 0.0070	7 mg/g Lab #: X10305502E
Abetone Volume: 12: m	
Pare w Time or Wt.3/14/97 4:15PM	Beaker Gross Wt.: 103734.0 mg
Date & Time of Wt.5/15/91 5:55AM	beaker Gross Wt.: 103734.4 mg
	Average Gross Wt.:103734.2 mg
	beaker Tare Wt.: 103721.2 mg
! 46;	e acetone blank wt.: 0.8 mg
	Farticulate Wt.: 12.2 mg
Filter # Serioree - Lon #:XieBebbe	и2 <b>A</b> 
Date w lime of Wr. 5/14 (8) 8:1CAM	Filter Gross Wt.: 419.8 mg
Date & Time of Wt.3/14/91 4:30PM	Filter Gross Wt.: 419.8 mg
	Average Gross Wt.: 419.8 mg
	Filter Tare Wt.: 421.5 mg
Weight of Pa	rticulate on Filter: 0.0 mg
weight of Particula	te in Acetone Rinse: 12.2 mg
Total W	t. of Particulate: 12.2 mg
Eagnature of Analyst Melina	1 Ellesson Pate: 3.19-91
Signature of Analyst Delisia (	Muller mete: 4/1/91

### Method & Train Analytical Particulate Data Acetone Kinses and Filter(s)

Flantikhm	I-TEXARRANA	Run No.:SO	PM-3
Sample Lo	cationVENTUAL OUTLET	Density of Acetone	0.7899 g/ml
=======================================	*=========		
Sample type	Sample identifiable	Liquid leve and/or cont	
Acetone	YE.	YES	
Filter	YES	YES	
	k hesidue Cont. 0.007	7 mg/g Lab #: X10	03055 <b>0</b> 3B
	Siume: 116 ml. /		
		Beaker Gross Wt.:10	
Date & Time	of Wt.3/15/91 8:55AM	Beaker Gross Wt.:10	0565.8 mg
		Average Gross Wt.:10	୬୨ଟ୍ରିମ୍ୟ mg
		Beaker Tare Wt.:10	0558.2 mg
	les	F acetone blank wt.:	ර.7 mg
		Farticulate Wt.:	7.1 mg
Filter # 90	780an Lat #:X103055	ASW 	
Date & Time	・・ Woole (147日) とけを紹	Filter Gross Wt.:	473.0 mg
Date & Time	of Wt.3/14/91 4:30PM	Filter Gross Wt.:	473.1 mg
		Average Gross Wt.:	473.1 mg
		Filter Tare Wt.:	471.6 mg
	Weight of Pa	rticulate on Filter:	1.5 mg
	Weight of Particula	te in Acetone Rinse:	7.1 mg
	Total W	t. of Particulate:	8.6 mg
23.000.000	of hooluge.		<b>* *</b> -
STRUGIAL	of Analyst: Melissal	Lellisson pate:	3:19:91_
ed ghat ure	OI VENJEMEN:	Muller Date:	

### Method tournals Analytical Particulate Data Acetone houses and Filterias

Flant: KRAD-3EXABRAGA	Run No.:SOPM-4
Sample LocationVENTUFI OUTLET	Density of Acetone 0.7899 g/ml /
*************************	
Sample : Sample type : identifiable	Liquid level at mark and/or container sealed
Acetone YES	YES
Filter YES	YES
Acetone Blank Resigne Con . M.MM77	,
Aretone Vranner 120 mg.	
Date & Time of Wt.5014/80 4:15PM	Beaker Gross Wt.: 97563.2 mg
Date & Time of Wt.8/15/91 d:55AM	Beaker Gross Wt.: 97562.8 mg
	Average Gross Wt.: 97565.0 mg
	Beaker Tare Wt.: 97557.0 mg
bess	s acetone blank w'.: 0.7 mg
	Particulate Wt.: 5.3 mg
Filter # 90700.1 Lac #:X1080550	64A 
Date & Since of water as coloable	Filter Gross Wt.: 469.7 mg -
Date & Time of Wt.3/14/91 4:30PM	Filter Gross Wt.: 469.8 mg
	Average Gross Wt.: 469.8 mg
	Filter Tare Wt.: 467.1 mg
Weight of Par	rticulate on Filter: 2.7 mg
Weight of Particulat	te in Acetone Rinse: 5.3 mg
Total Wi	t. of Particulate: 8.0 mg
Signature of Analyst: Making	a Eller Date: 3-19-91
Signature of Analyst: Machine signature of Reviewer:	Muller 11/1/91

### Method & Train Analytical Particulate Data Acetone kinses and Filter(s)

Figur DERAD-TEXARRANA	Run No.:SC M-5
Sample LocationVENTURI OUTLET	Density of Acetone 0.7899 g/ml
Sample : Sample type : identifiable	Liquid level at mark and/or container sealed
Acetone YES	YES
Filter YER	YES
Acetone Elans Residue Cons. 0.007	7 mg/g / Lab #: X10305505B
Pate & Tame or Wt.5/14/81 4:15PH	Beaker Gross Wt.:102139.0 mg
Date & Tame of Wt.3/15/91 8:55AM	Beaker Gross Wt :102138.8 mg
	Average Gross Wt.:102136.9 mg
	Beaker Tare Wt.: 102109.3 mg
Les	s acetone blank wt.: 0.5 mg
	Particulate Wt.: 29.1 mg
Filter # 9010499 Lan #: X103055	05A 
Pate & Tume of Wt.3/14/81 8:10AM	Filter Gross Wt.: 336.0 mg
Date & Time of Wt.3/14/91 4:30PM	Filter Gross Wt.: 336.1 mg
	Average Gross Wt.: 336.1 mg
	Filter Tare Wt.: 335.1 mg
Weight of Pa	rticulate on Filter: 1.0 mg
Weight of Particula	te in Acetone Rinse: 29.1 mg
Total W	t. of Particulate: 30.1 mg
Signature of Analyst: Melisia	Date: 3.19-91_ Nuller Date: 4//1/
dignarane of heviewer:	Muller Date: 4/1/91

### Method 5 Train Abalytical Particulate Data A ethne binses and Filter(s)

Flant: BRAD-TEE-FEARS	Run No.:SOPM-6
Sample LocationVENTURI OUTLET	Density of Acetone 0.7899 g/ml
***************************************	
Sample Sample type identifiable	Liquid level at mark and/or container sealed
Acetone : YES	YES
Filter : YE	; YES
Acetone Black Residue Cono. 10.00	1/7 mg/g Lab #: X10305506B
Acetone Valume: 195 mi.	
Pate & Time of Wt.3/14/91 4:15PM	Beaker Gross Wt.: 105402.0 mg
Date & Time of Wt.3/15/91 8:55AM	Beaker Gross Wt.: 105401.9 mg
	Average Gross Wt.:105402.0 mg
	Beaker Tare Wt.: 105393.2 mg
1 -	ese acetone blank wt.: 0.9 mg
	Farticulate Wt.: 7.9 mg
Filter Francisco Laberthose	5506A
<u> </u>	
Date & Time of Wt.5-14/87 6:10AM	Filter Gross Wt.: 339.8 mg /
Date & Time of Wt.3/14/91 4:30PM	Filter Gross Wt.: 339.9 mg
	Average Gross Wt.: 339.9 mg
	Filter Tare Wt.: 339.1 mg
Weight of	Particulate on Filter: 0.8 mg
Weight of Particu	late in Acetone Rinse: 7.9 mg
Total	W ⁺ . of Particulate: 8.7 mg
	The hand of the hand of
Signature of Analyst: The Listan Signature of Reviewer:	a Elleuses Date: 3.19.91
Figuature of Reviewer:	Muller Date: 4/1/8/

## Method for Train Analytical Particulate Data Abstone Rinses and Filter's:

Flant:1	RRAID-TEXARRANA	Run No.:SOPM-7
Sample	LocationVENTUR1 OUTLET	Density of Acetone 0.7899 g/ml V
<b>:==</b> ==::		::::::::::::::::::::::::::::::::::::::
Sample type	Sample identifiable	Liquid level at mark and/or container sealed
Acetone	YES	YES
Filter	X.E.S.	YES
Acetone B	lank Residue Conc. 0.007	/ mg/g = Lab #:X10305507B
Abeton	e Vojumer 224 mi. 🦯	
Date & Tim	me of Wt.5/14/91 4:15PM	Beaker Gross Wt.: 102539.7 mg
Date & Ti	me of Wt.3/15/91 2:55PM	Beaker Gross Wt.: 102539.6 mg/
		Average Gross Wt.: 102539.7 mg
		Beaker Tare Wt.: 102532.0 mg
	bess	anetone blank wt.: 1.4 mg
		Particulate Wt.: 6.3 mg
Filter #	9810408 Lab #:X188055	07A
Date & To	me of V: 5:14 H1 8:14AN	Filter Gross Wt.: 335.4 mg
Date & Ti	me of Wt.3/14/91 4:30PM	Filter Gross Wt.: 335.5 mg
		Average Gross Wt.: 335.5 mg
		Filter Tare Wt.: 335.1 mg
	Weight of Pa	rticulate on Filter: 0.4 mg
	Weight of Particula	te in Acetone kinse: 6.3 mg
	Total W	t. of Particulate: 6.7 mg
Eignatu	re of Analyst: Mulissa	1. Ellesson Date: 3.19.91
Signatu	re of Revaewer: Kur	LEsson Date: 3-19.9! Wheeler 11ato: 4/1/11

## 

Flant:Rh	AD-TEXARKANA		Run No.	:50PM-8	
Sample L	ocationVENTURI OUTLET	Density	of Acetor	ne 0.7899	g/ml
=======================================		:=====================================			=======================================
Sample type	Sample identifiable			evel at m	
Acetone	YEA	1	YES		
Filter :	YEA		YES		
Abetone his	ns besidus Cons. 0.0070	mg/g	Lat :	: X103055e	8B
Acecone	Volument low ml. 🗸				
Date & Time	of Wt.3/14/91 4:10PM	Beaker	Gross Wt.	:102467.4	mg /
Date & Time	of Wt.8/18/91 9:00AM	Beaker	Gross Wt	.:102467.1	me /
		Average	Gross Wt.	.:102467.3	- ⊆ m <i>g</i>
		Beaker	Tare Wt	.:102457.3	3 mg
	<u>Les</u> :	s acetone	blank wt	.: %.8	ne
		Partic	culate Wt	.: 9.2	' mg
Filter # 9	0210532   LAN #:X1030550	98A 			- <b>-</b>
Date & Time	of Wt.5 14791 F:1MAM	Filter	Gross Wt	.: 331.6	n mg
Date & Time	of Wt.3/14/91 4:30PM	Filter	Gross Wt	.: 331.1	mg
		Average	Gross Wt	.: 331.1	mg
		Filter	Tare Wt	.: 331.4	mg_
	Weight of Pag	rticulate	on Filter	r: 0.6	mg
	weight of Particula	te in Acet	cone Rinse	e: 9.2	mg
	Total W	t. of Part	ciculate:	9.2	 2 mg
					- <del>-</del>
Signature	of Analyst: Meling (	L. Elfous	un D	ate: 3-12	7-91
bignature	of hevrewers the	Juller	D	ate: 4///	9/

## Laboratory Data

INTERNATIONAL TECHNOLOGY CORPORATION

 Client:
 TTROS
 USATHA
 Analysis:
 EPAS

 PN:
 Date:
 3.11-91
 Method Number:
 07-0/5-00

 Extracted By:
 M. Elicessor
 Checker:
 Mail 1/91

Arracied by. /// E//	- 1000 money m	and with the second		3 14 91	3-15-41	7-18-91	2.18.91
				4:15P2	8.55an	2.55 pr	9.00
un# Cont#	Lab#	Take	UUL.	Gross	Gross	Gross	60055
1/054H X /-	23 3 3-7	03 0483	3762		1/03,2309		63.27
**************************************		103 72/2	138	103 7342	103.7344		
		100.5582	:15	100.566	2 100.5658		
<u> </u>	043	97 5570	120	97563	2 97.56 28		
905 11127A 11129A		102 1093	85		102.1388		
SPM 6 1/135A		∕05.393Q	145		105.4019		
opm7 11141fi		102 5320		(102.539	7 102.5389	102 5396	10000
2 11143A		102 4573		10240	4 402 4657	102.4483	V024671
Mant 10009A	OPB	107 3739	345	107.370	1 07.3753	107.375	4
ikin, , , , , , , , , , , , , , , , , , ,				3-13-91	3-14-91	439.14	-
			ļ	11/30A	M 8 1000		7
unt Contt	Laber	FIHER	Tare	Gross		Gross	
BM1 12215B	018	9070053	.4214	16704		6700	<del>}</del>
	OA	9070069	4224				
WPM-2 11074B	UZA	907000		14209		4198	4
50pm-3 11119B	OBA	9070093		14744	4730	473!	4
DPM-4 1112713	DYA	7	1	44705	4697	336	
wem. 5 11129B	05A		1				1
48M-6 11135B	06A						1
40PM-7 11141B		9 900488		_   /		3311	
sem. 7 11143B		901053	¥\(\delta X\)	3.4		4493	
3000 9 11074B		907009				3368	
Blank 11126B	IDA	1 401049	7 .336	94.33 <u>7</u>			
The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon			a to a second second	A stoll with the Right	CAL MAY A TO A	Part State of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Con	ATTENDED TO THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PA



PROJECT NAME/NUMBER __

# CHAIN-OF-CUSTODY RECORD

LAB DESTINATION

R/A Control No.

C/C Control No. 158922

SAMPLE TEAM MEMBERS	M MEMBERS		CARRIER	CARRIER/WAYBILL NO.		
Sample	Sample Location and Description	Date and Time Collected	Sample Type	Container	Condition on Receipt (Name and Date)	Cusposal Record No
STPAS		2/27	Pust /miles	AL 11131-A	y sommes y	250
			,	H NOS / 11/202	(LASS-A/N (ASS)	
S-PM-1	Scanbber Durter	2/26	,,	AL - 11076-A: 11054-A	, ,	100
		,		FLYCLS - 9070	3/5/91	
				HNOS/HOOS	1221	
	-				/	
C. 04-2		2/21		Hec 11036	***************************************	
				Sal 11027A	*	
5000-3		2/27		Ac 11119-1	6	
				5- 11119-B.	Ç.	
enclassification of						
Possible Sample Hazards:	We Hazards:					
SIGNATURES	SIGNATURES: (Name, Company, Date and Time)				į!	
1. Refinquished By:	OBy A Saulton	3/4/4/	- / 3. Relingu	3. Relinquished By:		
Received By:	" In Padmy la	J 4/4 13	Received by:	ed by:		
2. Relinquished By:	d by:		4. Relings	4. Relinquished By:		
Received By:			Received By:	9d By:		
				•		

TECHNOLOGY CORPORATION

## CHAIN-OF-CUSTODY RECORD

R/A Control No.

C/C Control No. 158923

PROJECT NAME/NUMBER	AENUMBER		- LAB DEST	LAB DESTINATION		
SAMPLE TEAM MEMBERS	I MEMBERS		- CARRIER	CARRIERWAYBILL NO.		
Semple	Sample Location and Description	Date and Time Collected	Sample	Container Type	Condition on Receipt (Name and Date)	Disposal Record No
50 PM-4		2/27	Past Muth	Ke 11121-6	- Symptes Le	and
			,	30KM11128	A 14, (1000) (AND	Notth
S-M-5		2/2	"	Fe 11129-4	7/5/1/1/1	
				30KN, -11150-	1/1/4	
SOM-C		2/28	*	Na 11185-	9	
				Sold - 11186	<b>V</b> .	
50PM-7		86/6		Acc - 1141-1		
		,		7	H-	
				400	*	
SOPM-T		80/0		F- 11143-	<i>40</i>	
Special Instructions:	ions:			SAC 11144-A	, , , , , , , , , , , , , , , , , , ,	
Possible Sample Hazards:	e Hazards:				į	
SIGNATURES:	SIGNATURES: (Name, Company, Date and Time)	•			!	
1. Relinquished By:	By A Charles	3/4/1/2/	3. Relinquished By:	ished By:		
Received Byz	Who Shaking 1825	3/5/21 13H	2 Received by:	d by:		
2. Relinquished By:	1 By:		4. Relinquished By:	lished By:		

Received By: _

Received By: _



# CHAIN-OF-CUSTODY RECORD

R/A Control No.

C/C Control No. 158921

PROJECT NA	PROJECT NAME/NUMBER		_ LAB DES	LAB DESTINATION	-	
SAMPLE TEA	SAMPLE TEAM MEMBERS		CARRIER	CARRIER/WAYBILL NO.		
Sample	Sample Location and Description	Date and Time Collected	Sample Type	Container Tyer No.	Condition on Receipt (Name and Date)	D'sposal Record No
SIPM-1	Vesting Shilly	2/26	Pus Ins	1	13-4 SAMUES X	CIP
				1400/11.02-	(400) MA-KIECI	
2-1115	11	2/26	"	Ac 11078	-A CONDITION OF	
1				F- 11078-	AH16/5/200	1
				-caruleann	/ /21/011	
SIM-3	11	2/27	;	Ac 11121 -A		
				F- 11121-8	4-2-4	
				- selleour		
SIPM-4		76/6	,,	Re11123.	.A.	
				11400/HOD-	H-45111	
Special Instructions:	ctions:				`	
Possible Sam	Possible Sample Hazards:					
SIGNATURE	SIGNATURES: (Name, Company, Date and Time)				ŗ	
1. Relinquished By:	By: White	-3/4/11	3. Reling	3. Relinquished By:		
Received By	of the trudent the	375/11/24	Received by:	ed by:		
2. Relinquished By:	ed By:	, ,	4. Reling	4. Relinguished By:		
Received By:	<u> </u>		Received By:	ed By:		



# CHAIN-OF-CUSTODY RECORD

R/A Control No.

CORPORATION				C/C CONTRO! No. 158920	158920
PROJECT NAME/NUMBER		LAB DES	LAB DESTINATION		
SAMPLE TEAM MEMBERS		CARRIER	CARRIER/WAYBILL NO		
Sample Sample Number Location and Description	Date and Time Collected	Sample Type	Container Type	Condition on Receipt (Name and Date)	Disposal Record No
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2/27	Per Mari	Acc 1183	- Some so	C. L.
	,	,	HV05 14202	-11134-1 4pe De	WITIN,
AIPM-C	2/28	"	Ac 11137	43/5/9, LAT	
	•		11137	-3/	
			razul Eaur	k - 0 C // - Lauren	
AIPM-7	2/28	11	Acc 11139	-4	
			F- 11139-8		:
ALON-8	3/28	=	Harry March		
			Me 1114	1-74-10 1-74-10	
		1	HHOS /14.02 -	¥-7h111	
Special Instructions:					
Possible Sample Hazards:					
SIGNATURES: (Name, Company, Date and Time)	(0)			!	
1. Relinquished By:	13/11/10/	3. Reling	3. Relinquished By:		
Received By In Milliam 188	32/4/ 1340	Receiv	Received by:		
2. Relinquished By:		- 4. Reling	4. Relinquished By:		
Beceived By:		Received By:	ed By:		



PROJECT NAME/NUMBER KSATUMMA JTS: \$05625

# CHAIN-OF-CUSTODY RECORD

R/A Control No.

C/C Control No. 158919

LAB DESTINATION ITAS - CINN.

SAMPLE TEA	SAMPLE TEAM MEMBERS C. Buffy	. Fitzgueld	_ CARRIER	CARRIER/WAYBILL NO		
Sample	Semple Location and Description	Date and Time Collected	Sample	Container	Condition on Receipt (Name and Date)	Crsposal Record No
AEPA-1	A Free busylee INET	2/26	Pux / note	Par. / Auto Acc 12208-A	A THYDUS LEG	S.
				HHOS/11.0 122-1	10-01 W (1040)	Cost The N.
AIPM.2	"	2/26		Ac 11080-	Aft.	
		•		Fiete -11080-8/	-8///8-	
				WWO /11202	11081-4	.
AZIA-3		2/27	"	Acc 11030-A	8-	
				F.WEL - 11030-B	D6	
				ANOS/HOO- HINEYA	H118-4	
AT PM-4	1,	2/27	1	Ac - 11125-A	4	
				Filt - 11125-8	25-8	
				HNO3 /HO02 - 11126-A	-11126-A ',	
Possible Sample Haz	Possible Sample Hazards:					
SIGNATURE	SIGNATURES: (Name, Compeny, Cate and Time)				ı !	
1. Relinquished By.	led By	18/5/8		ished By:		
Received By:	Br. Am Stroken 12	2/1/5/2/3	Ho Received by:	3d by:		
2. Relinquished By:	ed By:		- 4. Relingu	4. Relinquished By:		
Received By:			- Received By:	od By:		

TECHNOLOGY CORPORATION

## CHAIN-OF-CUSTODY RECORD

R/A Control No.

C/C Control No. 158924

PROJECT NAME/NUMBER	E/NUMBER		LAB DES	LAB DESTINATION		
SAMPLE TEAM MEMBERS	MEMBERS		CARRIER	CARRIER/WAYBILL NO		
Sample	Sample Location and Description	Date and Time Collected	Sample Type	Container Type	Condition on Receipt (Name and Date)	Ensposal Record No
No 1-6	Sauld	2/26 12/28	Arket	Chan An	AN SHUKS	J.
				1	IN WON (BAN)	NOTTON
100 ST	Weter	3/21.28	Metal	Yage. you	3/5/91 114	
450				0 0	Dol #313 NOT	
	Bhasks				December 3/5	12.64
12208-4	Auto Blut.					<b>^</b> / <i>i</i>
H-1/26/	5					
•						
fulflex Fix	Pulflex Fixter (# 11074-8 File-	(450000				
Elm Cit						
Special Instructions:					``	
Possible Sample Hazards: _	Hezards:					
SIGNATURES:	SIGNATURES: (Name, Company, Date and Time)	\;			ļ!	
1. Relinquished By:	By Jan 16	15/11	3. Relinqu	3. Relinquished By:		
Received By: 4	the stratume ties	1840 1340	Receiv	Received by:		
2. Relinquished By:	By:		4. Relinq	4. Relinquished By:		
Received By:			Received By:	ed By:		



## ANALYTICAL SERVICES

### CERTIFICATE OF ANALYSIS

ITAOS Cincinnati

Date: April 29, 1991

Attn: Mr. Chuck Bruffey

Job Number 21341

P.O. Number 805625

This is the Certificate of Analysis for the following samples:

Client Project ID:

USATHAMA

Date Received:

March 5, 1991

Work Order:

X1-04-146

Number of Samples:

2

Sample Type:

Water

### I. Introduction

Two water samples arrived at ITAS Cincinnati on March 5, 1991. The samples were sent for analytical work in support of monitoring work on the USATHAMA Project. The samples are labeled as follows:

Water # 31

Water # 32

### II. Analytical Results/Methodology

The analytical results for this report are presented by analytical test. Each set of data will include sample identification information, the analytical results, and the appropriate detection limits.

The analyses requested are listed on the following page.

Reviewed and Approved by:

Timothy Soward

Project Manager

104146

Client: USATHAMA Work Order: X1-04-146

10414601

IT ANALYTICAL SERVICES CINCINNATI, OH

Analytical Results/Methodology (cont.)

- Lead by Graphite Furnace Atomic Absorption; EPA Method 7421
- * Cadmium, Chromium and Zinc by Inductively Coupled Plasma Spectroscopy; EPA Method 601

### III. Quality Control

Immediately following the analytical data for the samples can be found the QA/QC information that pertains to these samples. The purpose of this information is to demonstrate that the data enclosed is scientifically valid and defensible. This QA/QC data is used to assess the laboratory's performance during the analysis of the samples it accompanies. All quantitations were performed from within the calibrated range of the analytical instrument.

Client: USATHAMA Work Order: X1-04-146

10414603

IT ANALYTICAL SERVICES CINCINNATI, OH

### Analytical Results, mg/L

Client Sample ID	Water # 31	Water ≸ 32	
Lab No. Analyte	08	09	Detection Limit
Cadmium	0.002	ND	0.002
Chromium	0.030	0.007	0.006
Lead	0.0041	0.0007	C.0007
Zinc	0.031	0.021	0.008

ND = Not detected above the reported detection limit

Quality Assurance Data

### Quality Control Standard Reference Solutions

	Theoretical	Percent
Analyte	Value	Recovery
Cadmium	1	98.8
Chromium	1	101
Lead	0.075	96.5
Zinc	1	99.8

## APPENDIX D SAMPLING AND ANALYTICAL PROCEDURES

### SAMPLING AND ANALYTICAL PROCEDURES

This Appendix details the sampling and analytical methods used in this test program. These are generic descriptions with modifications detailed as follows:

Determination of Particulate and Trace Metal Emissions

The method as written is applicable to the measurement of trace metal emissions including mercury. The additional impinger solution (potessium permanganate) and recovery and analytical procedures specific to mercury analysis will not be used in this test series, since mercury is not a metal analyte of interest. The potassium permanganate impingers will be replaced by an empty impinger followed by an impinger containing silica gel.

 Determination of Total Gaseous Organic Concentration by U.S. EPA Method 25A

No modifications as written.

Title: <u>25A</u>
Date: <u>10/16/90</u>

### DETERMINATION OF TOTAL GASEOUS ORGANIC CONCENTRATION BY EPA METHOD 25A

Sampling and analysis procedures for determining total gaseous organic emissions are those described in EPA Method 25A. Gas flow rates are determined by using EPA Methods 1 and 2 for velocity and temperature, a Fyrite or Orsat analyzer for oxygen and carbon dioxide content, and wet bulb/dry bulb temperature measurements for moisture content. The following is a detailed description of Method 25A equipment and procedures.

### Sampling Apparatus

The sampling apparatus is shown in Figure 25A-1. The system is set up and operated in accordance with the guidelines in the operating manual for the total hydrocarbon monitor. In addition to the hydrocarbon analyzer, the sampling system consists of:

<u>Particulate Filter</u> - A short piece of 1/2-in.-i.d. pipe packed with glass wool and attached to the end of the sample probe, if needed, or equivalent.

<u>Sample Probe</u> - Stainless steel tubing inserted into the gas stream being sampled. A three-way ball valve at the outlet of the probe is used to add calibration gas.

<u>Sample Line</u> - 1/4-in.-o.d. heated Teflon line self-limited to maintain a sample temperature between 250° and 300°F.

<u>Sampling Manifold</u> - One stainless steel three-way valve and 1/4-in. stainless steel tubing are used to supply calibration standards and sample gas to the monitor. One three-way valve is used to select calibration injections or to sample stack gas. The whole system is wrapped with heat tape.

^{* 40} CFR 60, Appendix A, July 1990.



Figure 25A-1. Method 25A sampling system.

<u>Cafibration Gases</u> - Methane standards in air and zero nitrogen (less than 0.1 ppm: THC) are used to calibrate the monitor.

<u>Fuel' and Air</u> - A cylinder of 40 percent hydrogen/60 percent nitrogen and a cylinder of compressed air to provide fuel and an air supply for the analyzer's flame.

<u>Chart Recorder</u> - A Heath strip-chart recorder or equivalent is used to provide a permanent record of hydrocarbon concentration data.

A Beckman 402 total hydrocarbon analyzer that works on the principle of flame ionization issued. All critical sample-handling components of the analyzer are contained in a theat-controlled oven. The oven temperature is maintained at 250°F throughout the test program. The following analyzer specifications were provided by the manufacturer:

Full-scale sensitivity: Adjustable from 5 ppm methane to

10,000 ppm (%) methane

Response time (0 to 99%): Less than 1 s for oven temperature of 200 °F

Less than 1.5 s for oven temperature of 400°F

Electricity stability: ±1 percent of full scale per 24 hours, with

ambient temperature change of less than

10 · F

Reproducibility: ±1 percent of full scale for successive

identical samples

Output: Selectable from 10 mV, 100 mV, or 1V.

The magnitude of the analyzer response to carbon atoms depends on the chemical environment of this atom in its molecule. Typical ratios of monitor response to methane for carbon atoms in various molecular structures are listed in Table 25A-1.

TABLE 25A-1. MONITOR RESPONSE FOR VARIOUS MOLECULAR STRUCTURES

Molecular structure	Response relative to methane, %
Aliphatic compound	100
Aromatic compound	100
Olefinic compound	95
Acetylenic compound	130
Carbonyl radical	Ŏ
Nitrile radical	30

### Monitor Setup and Calibration

The monitor setup and check procedures outlined here are performed prior to sampling. The monitor is calibrated by introducing zero and high-level calibration gases to the calibration port of the sampling manifold. The predicted response for low- and mid-level calibration gases is calculated, assuming that the monitor response is linear. The low- and mid-level gases are then introduced into the monitor. If actual responses for the gases differed from the predicted responses by more than 5 percent, the monitoring system is inspected and repaired before sampling begins.

Once the monitor is calibrated, a system integrity check is performed. Zero nitrogen and one of the methane standards are sampled through the sample probes and lines to make sure that the sampling system is not diluting or contaminating the samples. A stainless steel tee with a leg left open to the atmosphere is placed on the end of the probe during this step so that calibration gases being sent from the cylinders do not pressurize the sampling system.

Once the sample lines are checked out, a response-time test is performed. This test consists of introducing zero gas to the probes and switching to high-level calibration gas when the system is stabilized. The response time is the time from the concentration change until the measurement system response, and it is equivalent to 95 percent of the response for the high-level calibration gas. The test is performed three times, and results are averaged.

### Sampling Procedures

At the start of the test day, the monitor is calibrated and a system integrity check is performed. Each sample line is also leak-checked by capping the end of the probe and observing the sample flow rotameter level on the hydrocarbon monitor. If no flow is indicated by the rotameter, the leak check is considered acceptable.

Daily calibrations for each range are performed with three calibration standards (low-level, mid-level, and high-level) and zero nitrogen. Each calibration range is checked by linear regression calculations, which indicate linear responses and are used to reduce field data.

When sampling is completed, a calibration drift check is performed on the monitor by introducing the zero and mid-level calibration gas to the monitor. If the calibration drifts for the gases do not exceed 2 percent of span, the pretest calibration curve is used to report sample results. If the calibration drift for either gas exceeds 2 percent, the monitor is recalibrated and both sets of calibration data are used in reporting the results.

### DETERMINATION OF PARTICULATE AND METAL EMISSIONS

Sampling for filterable particulate matter and total metals (particulate and gaseous) emissions was conducted in accordance with the Methodology for the Determination of Trace Metal Emissions in Exhaust Gases From Stationary Source Combustion Processes.* This is the same procedure as that in Subsection 3.1 of the Methods Manual for Compliance with BIF Regulations.** The particulate determination in this method is consistent with EPA Method 5.***

### Sampling Apparatus

The sampling train used in these tests is assembled by ITAQS personnel and meets all design specifications established by the U.S. EPA. The sampling apparatus consists of:

Nozzle - Borosilicate glass with an accurately measured round opening.

<u>Probe</u> - Borosilicate glass with a heating system capable of maintaining a minimum gas temperature of 250°F at the exit end during sampling.

<u>Pitot Tube</u> - A Type-S pitot tube that meets all geometric standards is used to measure gas velocity during each sampling run.

<u>Temperature Gauge</u> - Type-K thermocouple attached to the pitot tube in an interference-free arrangement with a digital readout to monitor stack gas temperature within 5°F.

<u>Filter Holder</u> - Pyrex glass with a heating system capable of maintaining a filter temperature of 250° ± 25° F.

Filter - 87-mm (3-in.)-diameter, Pallflex Type 2500 QAT-UP ultra-pure filter.

^{*} EPA Draft Protocol, July 1988.

^{**} EPA/530-SW-91-010, December 1990.

^{*** 40} CFR 60, Appendix A, July 1990.

<u>Draft Gauge</u> - An inclined manometer made by Dwyer with a readability of 0.01 in.H₂O in the 0- to 10-in.H₂O range is used.

Impingers - Five Greenburg-Smith design impingers connected in series with glass ball joints. The first, third, and fifth impingers are modified by removing the tip and extending the tube to within 1.3 cm (0.5 in.) of the bottom of the flask.

Metering System - Vacuum gauge, leak-free pump, thermometers capable of measuring temperature to within 2.8°C (5°F), calibrated dry gas meter, and related equipment to maintain an isokinetic sampling rate and to determine sample to volume. The dry gas meter is made by Rockwell, and the fiber vane pump is made by Gast.

<u>Barometer</u> - Aneroid tube type to measure atmospheric pressures to ±2.5 mmHg (±0.1 in.Hg).

### Sampling Procedure

Pallflex filters are desiccated for at least 24 hours and weighed to the nearest 0.1 mg on an analytical balance. One hundred mL of 5 percent nitric acid/10 percent hydrogen peroxide solution are placed in each of the first two impingers; the third and fourth impingers contain 100 mL of acidic potassium permanganate solution; and the last impinger contains 200 to 400 g of silica gel.

The train is set up with the probe as shown in Figure PMM-1. The sampling train is leak-checked at the sampling site prior to each test run by plugging the inlet to the nozzle and pulling a 15-in.Hg vacuum, and at the conclusion of the test by plugging the inlet to the nozzle and pulling a vacuum equal to the highest vacuum reached during the test run.

The pitot tube and lines are leak-checked at the test site prior to and at the conclusion of each test run. This check is made by blowing into the impact opening of the pitot tube until 3 or more inches of water is recorded on the manometer and then capping the impact opening and holding it for 15 seconds to ensure that it is leak free. The static-pressure side of the pitot tube is leak-checked by the same procedure, except suction is used to obtain the 3-in.H₂O manometer reading.

Crushed ice is placed around the impingers to keep the temperature of the gas leaving the last impinger at 68°F or less. During sampling, stack gas and sampling



Figure PMM-1. Particulate/metals sampling train.

train data are recorded at each sampling point. Sampling rates are determined with the aid of a programmable calculator, and all samples, data are recorded on the Emission Testing Field Data Sheet.

### **Recovery Procedures**

Upon completion of each sample run, the sampling train is allowed to cool and is then disassembled into sections. The probe and impinger sections are sealed and carefully transported to the cleanup area.

The amount of moisture collected is determined volumetrically using a graduated cylinder or by weighing each impinger before and after the sample run. After being weighed, the silica gel is discarded. Figure PMM-2 is a schematic of the sample recovery performed on the different sample fractions. The samples are recovered as follows:

Container No. 1 - The filter is placed into a petri dish, sealed, and labeled.

<u>Container No. 2</u> - The filter holder, probe, and nozzle are rinsed with acetone to recover particulate. A nylon brush is used to remove particulate. The rinse is recovered in a glass jar.

Container No. 3 - The nozzle, probe, and filter holder front halves are rinsed with 0.1 N HNO₃ into a leak-free polyethylene container.

The contents of the first two impingers and a 0.1 N HNG₃ rinse of the filter holder backhalf and connecting glassware are placed in the same leak-free polyethylene container. The container is sealed and labeled, and the liquid level is marked.

Container No. 4 - The contents of the third and fourth impingers and an acidified potassium permanganate rinse are placed in an amber glass container. The container is sealed and labeled, and the liquid level is marked.

Blanks of each reagent are taken in the field for preparation and analysis in a manner identical to that for the samples. For each project, the blanks consist of one or more of the following:

 Field blank - A sampling train is set up, leak-checked, recovered, and analyzed as a sample.

Date: 4/17/91 **Probe Liner** Filter Holder and **Impingers** Last Filter 384 Nozzle Impingers 1 & 2 Impinger Brush & Rinse Acetone Container #2 Glass Bottle Remove Filter with Weigh Rinse With Measure Impinger Measure Impinger **Tellon Coated** Silica Gel 0.1 N HNO3 Contents Contents Tweezers and Place in Petri Dish Recover Contents Recover Contents Discard and Rinse With and Rinse With 4% KMnOv/10%HzSO4 0.1 N HNO3 Container #1 Container #3 Container #4 Plastic Polyethylene **Amber Glass** Petri Dish **Bottle Bottle** 

Title: PMM

Figure PMM-2. Multimetals train recovery procedures.

2) Reagent blank - A sample of each reagent used is taken and analyzed either separately or by combining them in the same proportion as that used for samples.

3) Blank spike - A set of blank reagents is taken and combined in the same proportion as was used for the samples. Prior to analysis, the blank set is spiked with a known amount of each metal.

A diagram illustrating sample preparation and analysis procedures for each of the sample train components is shown in Figure PMM-3.

### Sample Preparation and Analysis, Particulate

<u>Container No. 1</u> - The filter and any loose particulate matter from this sample are placed into a tared weighing dish, desiccated for 24 hours to a constant weight, and weighed to the nearest 0.1 mg.

Container No. 2 - The acetone washings are transferred to a tared beaker and evaporated to dryness at ambient temperature and pressure, desiccated for 24 hours to a constant weight, and weighed to the nearest 0.1 mg.

### Sample Preparation and Analysis, Metals

Container Nos. 1 and 2 - The filter with its filter catch and the acetone residue are divided into portions containing approximately 0.5 g each and placed into the analyst's choice of either individual microwave pressure-relief vessels or Parr® Bombs. Six mL of concentrated nitric acid and 4 mL of concentrated hydrofluoric acid are added to each vessel. For microwave heating, the sample vessels are microwaved for approximately 12 to 15 minutes (in intervals of 1 to 2 minutes) at 600 Watts. For conventional heating, the Parr Bombs are heated at 140°C (285°F) for 6 hours. The samples are then cooled to room temperature and combined with the acid-digested probe rinse.

Container No. 3 - If necessary, the pH of this sample is lowered to 2 with concentrated nitric acid. After pH adjustment, the sample is rinsed into a beaker with water, and the beaker is covered with a ribbed watchglass. The sample volume is reduced to approximately 20 mL by heating on a hot plate at a temperature just below boiling. The sample is then digested as follows:

- a) 30 mL of 50 percent nitric acid is added to the sample, and the solution is heated for 30 minutes on a hot plate at a temperature just below boiling.
- b) 10 mL of 3 percent hydrogen peroxide is added, and the solution is heated for an additional 10 minutes.



Figure PMM-3. Sample preparation and analysis scheme.

c) 50 mL of hot water is added, and the solution is heated for an additional 20 minutes.

After digestion, the remaining sample is combined with the contents of Container 1. This combined solution of the acid-digested filter, probe, and probe rinse and the impinger contents is filtered by using Whatman 541 filter paper.

The filtered solution is then divided into three fractions. The first fraction is analyzed by inductively coupled argon plasma emission spectroscopy (ICAP) in accordance with EPA Method 200.7 (40 CFR 136, Appendix C) which is the same as Method 6010 from SW 846.* The second fraction is analyzed by graphite furnace atomic absorption spectroscopy (AAS). The third fraction is then digested and analyzed for mercury by cold vapor atomic absorption (CVAA) spectroscopy.

The following list shows the methods normally used for each metal. The listed detection limits are shown in micrograms per sample; actual detection limits will vary depending on blank levels, any dilutions made to account for high levels of metals, or interferences. The detection limit for mercury includes the permanganate fraction.

		Normal p	rocedure	Optio	nal alter	nate procedure
Me:al	Method	No.	hominal detection limit, pg	<u>Hethod</u>	No.*	Nominal detec- tion limit, ug
Antimony	ICAP	6010	30	<b>A</b> A	7041	2
Arsenic	<b>A</b> A	7060	0.3	-	•	-
Barrum	10.42	6010	0.5	-	•	•
Beryllium	ICAP	6010	<b>C</b> .7	-	-	•
Cadmium	ICAP	6010	1	-	•	-
Chromium	ICAP	6010	3	•	-	•
Copper	-	-	-	1CAP	6010	3
Lead	AA	7421	0.4	ICAP	6010	60
Nickel	-	-	•	1CAP	6010	10
Manganese	-	-	•	1 CAP	6010	1
Mercury	AA	7470	0.2	•	•	•
Selenium	-	-	•	<b>A</b>	7740	0.5
Silver	<b>AA</b>	7761	0.1	-	•	•
Thallium	1CAP	6010	120	AA	7841	0.7 1
Zinc	_	-	-	I CAP	6010	4

Container No. 4 - A known aliquot of the sample is taken and diluted to approximately 120 mL with mercury-free water. Approximately 15 mL of 50 percent potassium permanganate solution, 5 mL of 50 percent nitric acid, 5 mL of concentrated sulfuric acid, and 9 mL of 5 percent potassium sulfate are added to the sample. The sample is then heated for 2 hours at 95 °C in a convection oven or water bath. After cooling, 5 mL of hydroxylamine hydrochloride

^{*} Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, SW 846, Third Edition, September 1988.

solution is added and mixed with the sample. Then 7 mL of stannous chloride is added and the sample is analyzed for mercury by CVAA spectroscopy.

Normal analytical quality assurance measures include daily full instrument calibration (ICAP is a zero and standard; AAS is a zero and minimum three standards), analysis of a method blank, analysis of a laboratory control sample (LCS, a method blank spiked with a known quantity of each metal), analysis of one sample by ICAP in duplicate, performance of all AAS analyses in duplicate, and performance of a postdigestion spike for each metal analyzed by AAS. For specific projects, a matrix spike may be designated for mercury in the permanganate fraction.

Title: E-2 Date: 10/16/90

# APPENDIX E **CALIBRATION PROCEDURES AND RESULTS**

## CALIBRATION PROCEDURES AND RESULTS

All of the equipment used is calibrated in accordance with the procedures outlined in the <u>Quality Assurance Handbook for Air Pollution Measurement Systems. Volume III.*</u> The following pages describe these procedures and include the data sheets.

^{*}EPA 600/4-77-027b.

#### Nozzle Diameter

Each nozzle used in these tests is calibrated by making three separate measurements and calculating the average. If a deviation of more than 0.004 inch is found between any two measurements, the nozzle is either discarded or reamed out and remeasured. A micrometer is used for measuring. These calibration data are shown in the following Nozzle Calibration data sheet(s).

## NOZZLE CALIBRATION

Date 2-26-91			Calibrated by A. Tatagarela			
Nozzle/ identifica number		D ₁ , in.	D ₂ , in.	D ₃ , in.	ΔD, in.	Davg
outlet newwi f AB Inlet		.751 .390 .193	. 252	.252 389	.001	.352 .369
AB Anlet (55) TALLET		172	.196	.193	.002	-174

#### where:

Nozzle calibration data.

D_{1,2,3} = nozzle diameter measured on a different diameter, in. Tolerance = measure within 0.001 in.

 $[\]Delta D$  = maximum difference in any two measurements, in. Tolerance = 0.004 in.

 $D_{avg} = average of D_1, D_2, and D_3.$ 

#### Pitot Tube Calibration

Each pitot tube used in sampling is constructed by ITAQS and meets all requirements of EPA Method 2, Section 4.1. Therefore, a baseline coefficient of 0.84 is assigned to each pitot tube. The following pages show the alignment requirements of Method 2 and the iPitot Tube Inspection Data Sheet(s) for each pitot tube used during the test program.

^{*40} CFR 60, Apprendix A, July 1989.







Froperly constructed Type S pitot tubes shown in: (a) end view, face opening planes perpendicular to transverse axis; (b) top view, face opening planes parallel to longitudinal axis; (c) side view, both legs of equal length and centerlines coincident when viewed from both sides. Baseline coefficient values of 0.84 may be assigned to pitot tubes constructed this way.



Types of face-opening misalignment that can result from field use or improper construction of Type S pitot tubes. These will not affect Cp as long as  $a_1$  and  $a_2$  are <10°,  $B_1$  and  $B_2$  are <5°, z is <0.32 (1/8 in.), and w is <0.08 cm (1/32 in.).



# PITOT TUBE INSPECTION DATA SHEET

Pitot Tube No. 501-2" Date 12-6-90 Inspector T. WILKING

α ₁ degrees	α ₂ degrees	β ₁ degrees	β ₂ degrees
0	Z		Q
<10°	<10°	<5°	<5°

D _i inches	P inches	1.05 D ₁ inches	1.50 D _t inches
, 375	, 996	,354	.563
$0.185 \le P_1 < 0.380$	•	-	•

γ degrees	φ degrees	P _{sin} (γ) inches	P _{sin} (φ) inches
1	1	.017	1017
•	•	<0.125	<0.03125

P ₁ inches	P ₂ inches	P ₁ - P ₂   inches	Meet specifications
,502	,504	.002	/
1.05 Di <p1 <1.50="" di<="" td=""><td>1.05 Dt <p2 <1.50="" dt<="" td=""><td>≤0.010</td><td></td></p2></td></p1>	1.05 Dt <p2 <1.50="" dt<="" td=""><td>≤0.010</td><td></td></p2>	≤0.010	

Lower line in each table is limits for meeting specifications.

Checked by Date 12/7/90



# PITOT TUBE INSPECTION DATA SHEET

Pitot Tube No. 140-2' Date 12-17-90 Inspector J. Williams

α ₁ degrees	α2 degrees	β1 degrees	. $eta_2$ degrees
,	0	1	0
<10°	<10°	<5°	<5°

D _i inches	P inches	1.05 D _t inches	1.50 D _t inches
.375	. 915	.394	.563
$0.185 \le P_t < 0.380$	•	·	•

γ degrees	φ degrees	P _{sin} (γ) in <b>c</b> hes	P _{sin} (φ) inches
2	1	.049	.017
•	-	<0.125	<0.03125

P ₁ inches	P ₂ inches	P ₁ - P ₂   inches	Meet specifications
.457	. 458	.001	
1.05 D ₁ <p<sub>1 &lt;1.50 D₁</p<sub>	1.05 D ₁ <p<sub>2 &lt;1.50 D₁</p<sub>	≤0.010	

Lower line in each table is limits for meeting specifications.

Checked by _______ Date 12/11/90



## PITOT TUBE INSPECTION DATA SHEET

Pitot Tube No. 107-3 Date 12-6-90 Inspector J. Lilicano

α ₁ degrees	α ₂ degrees	β ₁ degrees	β ₂ degrees
O	0	0	0
<10°	<10°	<5°	<5°

D _t inches	P inches	1.05 D _t inches	1.50 D _t inches
. 374	. \$2.7	, 372	, 561
$0.185 \le P_1 < 0.380$	•	-	•

γ degrees	φ <b>d</b> egrees	P _{sin} (γ) inches	P _{sin} (φ) inches
2	)	,035	,017
•	·	<0.125	<0.03125

P ₁ inches	P ₂ inches	P ₁ - P ₂   inches	Meet specifications
0.413	,414	.001	/
1.05 Dt <p1 <1.50="" dt<="" td=""><td>1.05 D₁ <p<sub>2 &lt;1.50 D₁</p<sub></td><td>≤0.010</td><td></td></p1>	1.05 D ₁ <p<sub>2 &lt;1.50 D₁</p<sub>	≤0.010	

Lower line in each table is limits for meeting specifications.

Checked by _____ Date 12 1 90

## Dry Gas Meter and Orifice Meter

The following page shows the Calibration Setup used for the initial and post-test calibration. A wet-test meter with a 2-cubic-feet-per-minute capacity and  $\pm 1$  percent accuracy is used. The pump is run for approximately 15 minutes at an orifice manometer setting of 0.5 in.H₂O to heat up the pump and wet the interior surface of the wet-test meter. The information in the following example Calibration Data Sheet is gathered for the initial calibration; the ratio of accuracy of the wet-test meter to the drytest meter and the  $\Delta$ H@ are then calculated.

#### Post-Test Meter Calibration Check

A post-test meter calibration check is made on each meter box used during the test to check its accuracy against the last calibration check. This post-test calibration must be within ±5 percent of the initial calibration. The initial calibration is performed as described in APTD-0576. The post-test calibration is performed by the same method. Three calibration runs are made by using the average orifice setting obtained during each test run and setting the vacuum at the maximum value obtained during each test run. The post-test calibration check indicated that all three runs for each meter box were within the ± 5 percent range allowed by EPA Method 5.°

The Particulate Sampling Meter Box Initial Calibration and Post-Test Calibration data sheets are included in the following pages.

^{* 40} CFR 30, Appt. 3ix A, July 19%



Calibration setup.

		SSURE, P b =	n. Hg			·	·			
ORFICE		GAS VOLUME	GAS VOLUME		<del></del>	ORY GAS ME	TER			
ENOMETEI SETTING AH IN H ₂ O	A	WET TEST METER  V _w th	DRY GAS METER V _d	WET TEST METER Tw.	NLET 성. · 두	OUTLET Van. F	AVERAGE	THE Q n	Y	<b>₩</b>
0 5		5								
1.0		5								
1.5		10								
2 C		10								
3 C		10	ļ	ļ				-		
4 C	L_	10								
=	<del></del> j	<del></del>	Y	<del>10.4</del>	Ţ. <u></u>		AVERAGE _			
	<b>M</b>	- Tile -	V _W P _D (t _d + ·	(1 m + 460)		0.0317 AH Pb (1d + 460	, 0.	v	2	
_	0.5	0.0364	- 136						4	-
	1.0	0.0737								
	1.5	0 110								
_	20	0 147								_
•	•	0.221								
••					i					

Calibration data sheet.

	CORPORATIO	<b>Z</b> -	METER BO	METER BOX INITIAL CALIBRATION	LIBRATIO	2			1	Talkbeard 11/0/00
		Date:	10/9/90		<b>≱</b> et	Meter Box No.:	FT-2			
-	Barometric Pressure	ssure, (Pbar):	29.42			Calibrator:	Calibrator: . Yarbrough	2		
	Orfice	• .	Dry gas		Tempe	Temperatures				
	manometer	meter	meter	Wet test	P	Dry gas meter	9f			
	setting.	volute	volume	meter		Outlet	Average 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Vacuum	Duration	ž c
E C	T	*	P	≱	<b>₹</b>	<b>1</b> 9	70	setting.	of run, Ø	9
£	H. H20	#3	f3	ñ	ñ	ĥ	ڻ ተ	in. Hg	min. sec	sec
			121.793	72	92	74				
-	0.50	10.000	131.912	12	82	75	76.3	2	21	22
	4		122 741	22	78	75				
~	8	12.000	144.938	72	81	75	77.3	10	18	2
						,				
			151.288	7.2	93	75				
9	1.50	10.000	161.439	72	81	75	78.0	9	12	3
	<u> </u>	- 64	162 807	7.0	ā	75				
•			105.001		5 5	, ,	1	5	;	a
•	200	10.000	172.930	1-0-1	70	6)	0.//	2		
			174.083	14	78	76				
3	3.00	13.000	187.214	7.1	78	75	76.8	20	=	22
	134		188.010	7	20	5		,	1	
•	8	10,000	198,100	1,1	2	75	76.8	10		82
	Run No.	>	AH@	1		*	W/	(Vw)(Pbar)(Td+460)	460)	
				ì			(Vd)(Pba	(Vd)(Pbar+ΔH/13.6)(Tw+460)	(TW+46	<u>6</u>
	-	0.995	1.37						-	
	~	0.991	1.41		₽¥3	- 1	AH) X	(Tw+450)	9	2
	က	0.993	<del>1.</del>			(Pbar)(Td+460)	4460)	<b>}</b> -	_	
	•	0.994								
	10	0.993	1.41							
	9	0.992	1.44							
				1						
	Prefest Everage	0.993	1.41							
				1					~	
	•	1	1				7000	hacted he	Z	•
Offierence"=		80.0	0.07				טמנמ כי	Uata checked by: 2	1	1

• Y must not deviate by more than ±0.02Y.

ΔH@ difference ≤0.15 in.H20 = Maximum ΔH@ • Minimum ΔH@

E-13

CHAPTER STORY
10

METER BOX FOST-LEST CAUGRAPION

371.191

Wieles Brandon FT-2 Bridge V. 0 992

FT-2 0 982 AH@: 1.41 885625

Graves

DEPENDENCE TOTAL

Rarumetria Pressare, (Plont): 29.71
Plant: HRAD Fraject No..
Fraject Manager: Braifey Calibrator

of run, o Duration setting. Yacuum in. Hg Average Dry nas meter lemperatures -20 Kg 62 Yellest. n.elet 231.353 Dry gar Volume meter. Will less volene Tel cr 2 Origin menometer selling. H H20

(Vd)(Pbar/AH13.6)(Tv+460)

.36

929

F. un Ne.

2.14(P= (0.0317)[AH] × (174+460) (0)|2 (Pbujttd+460)

> Culterence from Pietral *** -0.03.

0.96.0

overege**

Post-test

• 10 be the average all used during the test series.
•• 10 be the highest vacuum used during the test series.
••• Post-cet Y mest be within a 0.05 initial Y.

AY = { Peattest Y - Initial YI I Initial Y Post-test AHP most be within ±0.15 in. H2O of the initial AHP. AHP difference = Post est at 10 - Initial AHP.

Data checked by Date 3 mg

[ <b>-</b> 7] -	Detreporation Tricinology Coprogramor Date: Barometric Pressure, (Pbar):	AL ( Date: ssure, (Pbar):	METER BO: 11/6/90 29.62	METER BOX INITIAL CALIBRATION 11/6/90 CC CC CC CC CC CC CC CC CC CC CC CC CC	Meter	TION Meter Box No.: Calibrator:	FT-4 R. Kolde		1	
ō	Orifice	Wert test	Dry gas	Wet test	Temperatures	Dry gas meter				
E	manometer	meter	meler	Telecol .	Inlet	Outlet	Average	Vacuum	Duration	tion
x	setting.				<b>1</b>	Tdo	PL	setting	of run, Ø	n, 0
•	₽.	<b>&gt;</b> 4	o ¢	ů	į ų.	ţ.	å	in. Ha	min.	Sec
	In. #20	T13	58.700	29	72	69			,	
	05.0	5.000	63.854	29	72	2	70.8	9	2	
L			64.300	. 29	72	2	•	. (	6	•
	8	6.00 P	74.587	29	22	20	71.3	10	ŝ	3
L			74.800	29	ಬ	20	,	,	,	-
:	5	0000	85.109	- 67	74	70	71.8	2	15	32
L		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	85.400	29	74	20		,	•	
_	8	0000	95.713	67	74	71	23	9	2	3
2	46.		96.300	67	74	۶		,	;	-
_	3.00	10.000	106.615	- 67	74	7	72.5	2		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	107 100	13	7.4	14				
*	2	9000	117.426	67	74	71	72.5	9	6	8
			•			3	٤	(Ww/(Phar)(Td+460)	460	
	Run No.	<b>\</b>	ΔH@	1		L	(Vd)(Pb	(Vd)(Pbar+AH/13.6)(Tw+460)	(Tw+4	. <u>6</u>
	- 0	0.976	1.95		AH=		X (HV	(Tw+460) (0)		-"1
	N (					(Pbar)(Td+460)	1+460)	Š		
	m •	6/8/0	7.07 0.07				•	•		
	•	- K	9 6 9 6							
	so c	0.972	200							
	Þ	26.5	;							

32

velidated 11.000

Data checked by: \(\int\)

0.15

Ş

Difference"=

**78** 

0.974

BVerage Prefest

8

DEHICATIONAL DOCUMENTS

METER BOX POST-LEST CALIBRATION

Weter Bux Ra.

1.5/8/8

974 Irilial 7:

AHD: 2.03

SECTIVATE.

**COS625** Project No.:

of run of Duration min. sec setting Yacuum in. Hg Average Graves Dry gas meter Calibrator: Cuttet Temperatures ij . 1- 20 Welles meter 2 GRUFFEY 11.8.40. Fr 637 Dry our volume 29 62 meler Plant: Rarametric Pressure, (Pbar): Project Manager: Fe lest You want 2 menometer in. H20 etting. Orifice YH. Res

_	i	1	
-		٠٠٠ (	أني
Ξ	ļ :		
. 1	!		
	1		
ا م			اے
2			2
	i	Į.∷.`	:-
-	· '	ŀ∺	$\vdash$
:	İ	<b>.</b> ::-	; ;
ا ۔ ا		:::	. 1
•		· · ·	•
		!:::`	:
		l:::	
_	ا ا	<u> </u>	$\dashv$
	:	l	
	i	1	5
6	!	١	9
~	ł	l	
		Į	
	ļ '		
	,	[ '	
9	١,	4	*
	į	~	1
ł	1		l i
<b>L</b>			
		!	
-		-	3
•		•	•
	i	_	
	)		
1	ł		1
امِرا		•	99
ړی		9	9
-	i		$\vdash$
i	ı	ĺ	
~	1	-	_
7		2	922
4	!	4	•
ع		ف	9
ف	,	ű.	~
L	j	Ĺ	Li
:	1		- 1
:	]	· :::	: ]
•	1	ı∷	•
罗			2
Ξ			:=
Ξ	1		2
_	ŀ	ŀ	
_	į	<u> </u>	
:	ł	<u></u>	:
		<b>!</b> :::	: (
•		ŀ.÷	
•	!	ŀ÷	1.6
_	1	1:::	-
:	1		:
:	1	11.11. 	:
_	4	۳.	
	ł	i	
~	i   	1	~
	ĺ	ŧ	m
	<b>66.423 66.81 76.76.0 6.15 18</b>	1.60	1.50 10.000 66.423 66 81 76 78.0 6 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 18 18 18 18 18 18 18 18 18 18 18 18

	(Yd)(Pbw+AH/13.6)(Tw-460)		AHD= 18,031784FB x /(TV+460) (Ø) 2	(Pharittd+460)	
1				!	j ·
OH9	2.06	2.05		2.0R	0.93
>	1.974	6.972	•	1.978	
Run Ne.	-	~ ~	•	Post-test average	Dalerence from Prefest ***=

.. To be the highest vacuum used during the test series. . To be the average AH used during the lest series.

Post-test BH @ must be within all 15 in H2O of the inital sHip. ** Profitcal Y must be within #8.05 initial 7. AY = { Postlest Y - Inking Y) / Initial Y

140 discretes - Postiest Alie - Tritial AME

Date checked by

3	PERSONAL PROPERTY.	뉠 .	METER BOX	METER BOX INITIAL CALIBRATION	UBRATION				1	**************************************
}					Motor	Motor Boy Mo .	11,11			
_	Demmedele Brace	Date:	12/10/90 29.65			Calibrator:	J. Neese			
	Orifice	42	Dry gas		Temperatures	atures				
	and another report	reter	meter	Wet test	Dr	Dry gas meter			4	•
	enting.		volume	meter	Inlet	Outlet	Average	Vacuum	Duration	<u>ت</u> و ا
Ċ			2	<b>≯</b>	<u>1</u>	1do	Þ	setting.	of run, Ø	9
	ν συς 1100	\$ 5	÷ ÷	ů	ĥ	ĥ	4	in. Hg	min.	Sec
2	In. HZO	113	192.173	69	1 62	73				
-	5	000 8	200.409	69	77	73	75.5	10	8	15
	25.5									
_			200.915	69	77	73		- 1		
2	1.00	10.000	211.198	69	77	73	75.0	9	18	
			211.728	69	77	73		•	· ;	
<u>ლ</u>	1.50	13.000	225.092	69	78	73	75.3	20	2	٩
				9	2	2,2				
			1//.316	S		2 6	0 20	5	;	33
4	2:00	10.000	187.617	69	6)	5	10.07			3
					-	52.				
	-		225.524	â	2	2		•	•	•
-2	3.00	10.000	235.788	69	79	73	15.8	OI I		2
			236.427	69	79	73	(	(		
<b>9</b>	6.9	8	246.709	69	8	74	76.5	2	20	8
							Š		(037	
	Run No.	>	ΔH@	ı		#	(Vd)(PV)	(Vd)(Pbar+∆H/13.6)(Tw+460)	T W + 46	. <u>6</u>
	•	680	27.					•		
	- 6		1.84		∆H=	į	X (H)	(TW+460) (Ø)	ı	~
	4 69	1881	1.81			(Pbar)(Td+460)	(094+	<b>₹</b>		
	> <	9260	17.							
	ru	9260	1.78							
	<b>.</b>	120	1.78							
	•		)							
	Pretest	0.380	67.1	l						
				1					7	7
Difference*=	=,eou	0.00	0.08				Data	Data checked by:		ر ان-ران
				1					1	

• Y must not deviate by more than ±0.02Y. ∆H@ ditterence ≤0.15 in.H2O = Maximum ∆H@ • Minimum ∆H@

DEFENDATIONAL DEPARTMENT SHEDWINE

METER BOX POST-TEST CALIBRATION

FT-11 Meta Rex No.:

083 6 fraise ?

£05625

S.10. 1.79

BILL SCHOOL HOS BILL

Project No.:

9FAD

Plant

0.0

Luramelric Pressure, (f'bet):

25 57

Calibrator:

Graves

Luration setting. Yecucan Lverage Dry gas meter Outlet OPL Jemperatures 9 -- 99 Yel lest meter 99 177.523 167 129 187.915 Lify gan firuitey. いっていいい ヨミに Froject Manager: Wel less volenc 10 000 meler 2 man on efer selling. Orifice in H20 F

Ren ≥e.

199372

[V4]|Pbar+AH113.5][TV+460]

[Phu]|Td+4cm] YV 1110=

> 1.0rz frem Pretest *** Callerence

- 30

everage

Post 1 131

.. To be the bighest vacuum used during the lest series. * To be the average AH used dump the lest series.

Post-test and much be white 40.15 in H20 of the initial and. BHO Wierence - Positest Alia - Infini LHO ** Post test Y must be within a 8.05 indig Y. AV = ( Postlest Y - Initial Y) I Initial Y

Data checked by

## Stack Thermocouples

Each thermocouple is calibrated by comparing it with an ASTM-3F thermometer at approximately 32°F, ambient temperature, 100°F, and 500°F. The thermocouple read within 1.5 percent of the reference thermometer throughout the entire range when expressed in degrees Rankine. The thermocouples may be checked at ambient temperature at the test site to verify the calibration. Calibration data are included in the following Thermocouple Calibration Data Sheet(s).



## THERMOCOUPLE CALIBRATION DATA SHEET

Date: 12/26/50	Thermocouple No: 37/
Calibrator: 13.5	Reference: ASTM-3F
Range: 21	

Reference point no.	Source*	Reference thermometer temperature °F	Thermocouple temperature °F	Difference %**
1	2	70	68	,38
2	1	38	37	, 30
3	3	210	212	.30
4	4	448	445	, 3 3

- Source: 1) Ice bath
  - 2) Ambient
  - 3) Water bath
  - 4) Oil bath
- Percent difference.

Reference temp. °R - thermocouple temp. °R x 100% (Reference temp. °R)

where  $^{\circ}R = ^{\circ}F + 460$ 

Each percent difference must be less than or equal to 1.5%.

## Digital Indicators for Thermocouple Readout

A digital indicator is calibrated by feeding a series of millivolt signals to the input and comparing the indicator reading with the reading the signal should have generated. Error did not exceed 0.5 percent when the temperatures were expressed in degrees Rankine. Calibration data are included in the following Thermocouple Digital Indicator Calibration Data Sheet(s).

# THERMITOURLE DIGITAL INDICATOR CALFERATION DATA SHEET

	l'ATE:	19/90	INLICATOR NO: F1	-2	
	OPERATOR:	Yahad	SEPIAL NO:	3	
CALISRATION	DEVICE NO:		MANUFACTURER:	2699	
TEST POINT	•	EQUIVALENT TEMPERATURE, deg. F	DIGITAL INDICATOR TEMPERATURE READING, deg. F	DIFFERENCE "	
1	-0.692	0	Ò	0	
2	1.520	100	100	0	
3	3.819	200	199	0.15	
t	6.052	300	300	٥	
5	6.314	400	397	0.35	
6	10.560	<b>5</b> 00	499	0.10	
7	22.251	: 1000	998	0,14	
6	29.315	; <b>13</b> 00	1297	2.17	
ō	36.166	1600	15.95	0.14	
10	: A2.732	: 1900	1895	:0121	
Percent difference sust be less than of equal to 0.58					
Percent difference:					
(Equ!vale	(Equivalent teaperature, deg. R - Digital Indicator Leaperature, deg. 21(1001)				
(Equivalent Leagerature, deg. R)					

Where, deg. R = deg. F + 460 -



# DIGITAL INDICATOR CALIBRATION DATA SHEET

DATE: 1-31-91 INDICATOR: FT-4

OPERATOR: J WILKING

	J	,	
Test Point Number	Equivalent Temperature, °F Te	Digital Indicator Temperature, °F Tdi	Difference,*
1	0	-1	.22
2	100	93	. 36
3	200	199	.15
4	300	298	. 26
5	400	396	.47
6	500	497	. 3/
7	1000	995	.34
8	1300	1293	. 40
9	1600	1592	.39
10	1900	1889	.47

*PERCENT DIFFERENCE MUST BE LESS THAN OR EQUAL TO 0.5%

$$\%DIFFERENCE = \frac{\left(\frac{T_{e'} \circ R - T_{di'} \circ R}{T_{e'} \circ R}\right)(100)}{T_{e'} \circ R}$$

Where,  ${}^{\circ}R = {}^{\circ}F + 460$ 

Checked By 20 Date 1/3//21

# THERMISUPLE DIGITAL INDICATOR CALIEFATION DATA SHEET

	1477	12/3/90	INLICATOR NO: F.T.	- //
	OFTERATOR!	R. Kolde	SERIAL NO:	
CALISFATICH	DEVICE NO:	3	HANDFACTURER O	MEGA
	MILLIYOLT :		DIGITAL INDICATOR TENTENTUPE READING, dec. E	: DIFFERENCE "
1	-0.692	0	- (	, 22
2	1.520	100	99	.18
3	3.819	200	200	O
	£.052	<b>3</b> 00	300	0
\$ :	e.314	400	378	,23
6	10.560	<b>5</b> 00	500	O
7 :	22.251	1000	1000	0
t :	29 315	1300	1299	.06
ġ :	35.166	1660	1599	.,05
10	42.732	1900	/898	.08

Percent difference sust we less than of equal to 0.51

Percent difference:

(Equivalent teoperature, deg. R - Digital indicator teoperature, deg. 11(1001)

Where, deg. # + deg. F + 450

12/7/40

## Dry Gas Thermocouples and Impinger Thermocouples

The dry gas thermocouples are calibrated by comparing them with an ASTM-3F thermometer at approximately 32°F, ambient temperature, and a higher temperature between approximately 100° and 200°F. The thermocouples agreed within 5°F of the reference thermometer. The impinger thermocouples are checked in a similar manner at approximately 32°F and ambient temperature, and they agreed within 2°F. The thermocouples may be checked at ambient temperature prior to the test series to verify calibration. Calibration data are included in the following Dry Gas Thermometer and Impinger Thermocouple Calibration Data Sheet(s).

# DRY GAS THERMOCOUPLE CALIBRATION DATA SHEET

[13 ( 4 ) Thermocoupie No: FT. 2 ASTM - 3F Reference: Calibrator: DILET Reference Reference point Source' thermometer Thermocouple temperature Elfference No. temperature deg. F'' deg. F deç. F 1 1 70) 2 138 <u>:</u> 3 DUTLET Reference Reference point Source' thermometer Thermocouple lio. temperature temperature Difference dec. F' cieg. F des. F

Callified 18 Anglent

1

2

:

1

ice tath

white bri

33

136

The presence washing serial stands like. First both prints

0

## DRY GAS THERNOCOUPLE CALIBRATION DATA SHEET

[ˈatə:	11/6/	90	Thermocouple No	FT-4
Calibrator:	11/6/90 brator: R.Kolde		Reference	ASTH-3F Thermoneter
INLET	<del></del>	<del></del>	<del></del>	
Reference point No.	Source'	Reference thermomete: temperature deg. F	Thermosouple temperature deg. F	Difference deg. F''
1	1	65	66	ı
2	2	33	33	0
Ş	3	200	201	1
OUTLET				
Reference point No.	Source'	Reference thermometer temperature deg. F	Thermocouple temperature deg. F	Difterence deg. F''
1	1	65	65	0
÷	2	33	33	0

Tablitael 10 Ambient 2 like back 1 Water ca

ice seth

200

Weter carts

CODUCTED BY DEC. USE DESIGN TRADE : LARGE \$ 120 bets Brists.

200

## DEV GAS THERMOTOUPLE CALLERATION DATA SHEET

Date:	12-4-90	1)	Thermocouple No	FT-11
Calibrator:	,	_	Reference	
INLET				
Reference gaint No.	žource'	Reference thermometes temperature deg. F	Thermocouple temperature deg. F	Difference deg. F''
:	ì	66	65-	,
2	2	36	36	0
3	ŝ	156	156	O
OUTLET		·		
		<del></del>	ŢT	<del> </del>
Reservance point No.	Source'	Reference thermometer temperature deg. F	Thermocouple temperature deg. F	Difterence deg. F''
1	1	66	65	1
<u>:</u>	2	36	36	0
:		156	156	0

us en siet u worten loopst

The prepared as the second two firsts. Fig. 8250 buttous



# IMPINGER THERMOCOUPLE CALIBRATION DATA SHEET

Date: 12/14/90	Thermocouple No:
Calibrator: T. yartough	Reference: <u>ASTM - 3F</u>

Reference point no.	Source*	Reference thermometer temperature °F	Thermocouple temperature °F	Difference °F**
1	1	70	71	1
2	2	34	34	0

Source: 1) Ambient 2) Ice bath

** Difference must be less than 2°F at both points.

Checked by	<u> </u>	Date	12/14/90	
------------	----------	------	----------	--



## IMPINGER THERMOCOUPLE CALIBRATION DATA SHEET

Date: 12/14/90 Thermocouple No: I-5

Calibrator: T. Yarbrough Reference: ASTM-3F

Reference point no.	Source*	Reference thermometer temperature °F	Thermocouple temperature °F	Difference °F**
1	1	70	70	0
2	2	33	34	j

* Source: 1) Ambient

2) Ice bath

** Difference must be less than 2°F at both points.



# IMPINGER THERMOCOUPLE CALIBRATION DATA SHEET

Date: 12-26-90	Thermocouple No:
Calibrator: T. MARbough	Reference: ASTM-3F

Reference point no.	Source*	Reference thermometer temperature °F	Thermocouple temperature °F	Difference °F"
1	1	69	69	0
2	2	35	34	1

Source: 1) Ambient 2) Ice bath

Checked by	-gn	Date	12/26/90
------------	-----	------	----------

^{**} Difference must be less than 2°F at both points.

# Trip Balance

The trip balance is calibrated by comparing it with Class-S standard weights, and it agreed within 0.5 g. Calibration data are shown in the following Trip Balance Calibration Data Sheet(s).



## TRIP BALANCE CALIBRATION DATA SHEET

				Mass determined for					
	Balance No.	Date	Calibrator	5 g	Error	50 g	Error	100 g	Error
	419	2/14/90	BJ Graves	5.3	0.3	50.3	0.3	100.2	0.2
.•	420	12/14/90	BJ Graves	5.0	0,0	50.0	0.0	100.1	0.1
*	421	12/14/10	BJ Graves	5.1	0.1	50.1	0.1	100 i	0.1
	472	12/14/96	BJ Graves	5.1	0.1	50.1	O. 1	100.i	0.1
	413	12/14/10	BJ Graves	5.0	0.0	50.1	0.1	100.0	0.0
	199	12/14/30	BJ Graves	5.0	0.0	50.0	0.0	100.0	0-0
	Mettler	14/1/6	BJ Graves	5.0	0.0	50.0	0.0	100.0	0.0

Error must not exceed 0.5 grams at each point.

X-used @ RRAD.

#### Barometer

The field barometer is calibrated to within 0.1 in.Hg of an NBS-traceable mercury-in-glass barometer before the test series. It is checked against the reference barometer after each test series to determine if it reads within 0.2 in.Hg. The barometer read within the allowable limits each time. Calibration data are included in the following Barometer Calibration Log(s).

## BAROMETER CALIBRATION LOG

BAROMETER NO.	412	410	411	414	479	.110	410		
PRETEST	G.E. Mivuman	Cantral State Can	7.6 332015	Teka	, , , , , , , , , , , , , , , , , , ,	261€	Sherwind Williams		
BAROMETER READING	29.55	29.04	28.76	29.44	27.44	29.15	28.78		
REFERENCE BAROMETER READING	29.57	29.07	28.78	29,44	3744	25.14	28.76		
DIFFERENCE.	.00	.01	0.02	0.00	0-00	0.01	.03		
DATE	21/21	2-/17/41	2/14/91	2/19/90		3/4/91	3/6/91		
CALIBRATOR	MK	Cl. Kith	gress	M. Koette		1.41	-1.1/2		
POST-TEST									
BAROMETER READING	29.54	29.51	29.04	29.68		35751			
REFERENCE BAROMETER READING	29,51	29,51	29 01	29,70		25.76			
DIFFERENCE**	.03	, 60	0.03	,02		. () 2			
DATE	2/27/11	2/37/91	3/13/4:	3-11-91		3/6/91			
CALIBRATOR	BI	135	<b>\$</b> 65	5W		- ull			

^{*}Barometer is adjusted so that difference does not exceed 0.05 in. Hg. **Barometer is not adjusted. If difference exceed 0.10 in. Hg, inform project

manager immediately.

# END

# FILMED

5-9Z

DTIC