Mixing Samples to Address Weak Overlap in Causal Inference

ACIC 2025

Suehyun Kim

Department of Statistics, Seoul National University

14 May 2025

Collaborators

Kwonsang Lee Seoul National University kwonsanglee@snu.ac.kr

Jaehyuk (Jay) Jang Seoul National University bbq12340@snu.ac.kr

Overview

- 1. Motivation
- 2. Mixing Approach
- 3. Simulation Study
- 4. Conclusion

Overview

- 1. Motivation
- 2. Mixing Approach
- 3. Simulation Study
- 4. Conclusion

Handling weak overlap in weighting methods

Overlap assumption:

$$0 < e(x) = \mathbb{P}(Z = 1 \mid X = x) < 1$$

• Weak overlap is problematic in weighting methods due to units with extreme weights such as $1/e \simeq \infty$ or $1/(1-e) \simeq \infty$.

Remedies so far

There have been three main approaches to handle weak overlap in the literature:

1. Trimming/truncating units with extreme weights

Loss of sample size, sensitivity to the choice of cutoff

2. Targeting an alternative causal estimand

- Overlap weights and ATO (Average Treatment of the Overlap Population)
- Lack of interpretability

3. Balancing weights

- Entropy Balancing, Covariate Balancing Propensity Score, etc.
- Optimization may be infeasible under weak overlap

Remedies so far

There have been three main approaches to handle weak overlap in the literature:

1. Trimming/truncating units with extreme weights

· Loss of sample size, sensitivity to the choice of cutoff

2. Targeting an alternative causal estimand

- Overlap weights and ATO (Average Treatment of the Overlap Population)
- Lack of interpretability

3. Balancing weights

- Entropy Balancing, Covariate Balancing Propensity Score, etc.
- Optimization may be infeasible under weak overlap

Our idea

We propose the **mixing framework**, which helps overcome the limitations of the above approaches by creating a synthetic sample of mixed treated and control units.

Our strategy aims to intentionally increase overlap by mixing treated and control units.

Our strategy aims to intentionally increase overlap by mixing treated and control units.

Our strategy aims to intentionally increase overlap by mixing treated and control units.

Overview

- 1. Motivation
- 2. Mixing Approach
- 3. Simulation Study
- 4. Conclusion

Notation & Setup

Under Rubin's Potential Outcome Framework, our aim is to apply mixing to weighting estimators of the Average Treatment Effect on the Treated (ATT).

Assumptions

- 1. Unconfoundedness: $(Y(1), Y(0)) \perp \!\!\! \perp Z \mid X$
- 2. **Overlap**: $0 < e(x) = \mathbb{P}(Z = 1 \mid X = x) < 1$ for all x = x = 1
- (Y(0), Y(1)): Potential outcomes
- Y: Observed outcome
- X: Observed covariates
- Z: Binary treatment indicator
- $\tau = E[Y(1) Y(0) | Z = 1]$: Target estimand (ATT)
- $f_{Y,X}$: Joint density of (Y,X)
- $f_{Y,X|Z=z}$: Joint density of (Y,X) given Z=z

Mixed distribution

Definition (Mixed distribution)

We define the distribution of (Y^*, Z^*, X^*) as the distribution with the conditional joint densities of (Y^*, X^*) given $Z^* = 1, 0$, respectively,

$$f_{Y^*,X^*|Z^*=1} = (1 - \delta)f_{Y,X|Z=1} + \delta f_{Y,X|Z=0}$$

$$f_{Y^*,X^*|Z^*=0} = f_{Y,X|Z=0}$$

for a fixed constant $0 < \delta < 1$ and Z^* to satisfy $\mathbb{P}(Z^* = 1) = \mathbb{P}(Z = 1) =: \pi$. We refer to the mixed distribution with a constant δ as the **simple mixed distribution**.

Mixed distribution

Mixed propensity score

Lemma 1 (Mixed propensity score and its robustness)

Let $e^*(x) = \mathbb{P}(Z^* = 1 \mid X^* = x)$ be the propensity score of the mixed distribution. Then,

$$\frac{e^*}{1-e^*}(x)=(1-\delta)\frac{e}{1-e}(x)+\delta\frac{\pi}{1-\pi}$$
 for all x .

Figure 1: Behavior of $e^*(x)$ with respect to δ

Mixed IPW (MIPW) estimator

Theorem 1 (MIPW estimator and its consistency)

Using the mixed propensity score

$$\frac{e}{1-e}(x)=\frac{\frac{e^*}{1-e^*}(x)-\delta\frac{\pi}{1-\pi}}{1-\delta},$$

we define the Mixed IPW (MIPW) estimator as follows:

$$\hat{\tau} := \frac{\sum_{i} Z_{i} Y_{i}}{\sum_{i} Z_{i}} - \frac{\sum_{i} \left(\frac{e^{*}}{1 - e^{*}} (X_{i}^{*}) - \delta \frac{\pi}{1 - \pi}\right) (1 - Z_{i}^{*}) Y_{i}^{*}}{\sum_{i} \left(\frac{e^{*}}{1 - e^{*}} (X_{i}^{*}) - \delta \frac{\pi}{1 - \pi}\right) (1 - Z_{i}^{*})}$$

Under the strong ignorability assumptions, $\hat{\tau}$ is a consistent estimator of τ .

Mixing implementation 1: M-estimation

Proposition 1 (Asymptotic normality based on observed samples)

Under the strong ignorability assumptions, $\hat{\theta} = Solve_{\theta} \left[\sum_{i} \psi^{**}(\theta; Y_{i}, X_{i}, Z_{i}) = 0 \right]$ is an M-estimator of $\theta = (\beta, \pi, E[Y(1) \mid Z = 1], E[Y(0) \mid Z = 1])$, where, for $0 < \delta < 1$,

$$\psi^{**}(\theta;Y,X,Z) = \begin{pmatrix} \left\{\frac{1-\delta}{e^*(X;\beta)}Z + \left(\frac{\delta\pi}{(1-\pi)e^*(X;\beta)} - \frac{1}{1-e^*(X;\beta)}\right)(1-Z)\right\}\nabla_\beta e^*(X;\beta) \\ Z - \pi \\ ZY - ZE[Y(1) \mid Z = 1] \\ \frac{e(X;\beta)}{1-e(X;\beta)}(1-Z)Y - \frac{e(X;\beta)}{1-e(X;\beta)}(1-Z)E[Y(0) \mid Z = 1] \end{pmatrix}.$$

$$\{(Y_i, Z_i, X_i)\}_{i=1}^n \xrightarrow{\qquad \qquad \qquad } \hat{\tau} \xrightarrow{n \to \infty} \tau$$

$$\{(Y_i, Z_i, X_i, Y_i^*, Z_i^*, X_i^*)\}_{i=1}^n \xrightarrow{\qquad \qquad } \hat{\tau} \xrightarrow{n \to \infty} \tau$$

Mixing implementation 1: M-estimation

Proposition 2 (Asymptotic normality based on observed samples)

Under the strong ignorability assumptions, $\hat{\theta} = Solve_{\theta} \left[\sum_{i} \psi^{**}(\theta; Y_i, X_i, Z_i) = 0 \right]$ is an M-estimator of $\theta = (\beta, \pi, E[Y(1) \mid Z = 1], E[Y(0) \mid Z = 1])$, where, for $0 < \delta < 1$,

$$\psi^{**}(\theta;Y,X,Z) = \begin{pmatrix} \left\{\frac{1-\delta}{e^*(X;\beta)}Z + \left(\frac{\delta\pi}{(1-\pi)e^*(X;\beta)} - \frac{1}{1-e^*(X;\beta)}\right)(1-Z)\right\}\nabla_\beta e^*(X;\beta) \\ Z - \pi \\ ZY - ZE[Y(1) \mid Z = 1] \\ \frac{e(X;\beta)}{1-e(X;\beta)}(1-Z)Y - \frac{e(X;\beta)}{1-e(X;\beta)}(1-Z)E[Y(0) \mid Z = 1] \end{pmatrix}.$$

$$\{(Y_i, Z_i, X_i)\}_{i=1}^n \xrightarrow{\psi^{**}} \hat{\tau} \xrightarrow{n \to \infty} \tau$$

$$\{(Y_i, Z_i, X_i, Y_i^*, Z_i^*, X_i^*)\}_{i=1}^n \xrightarrow{\psi^*} \hat{\tau} \xrightarrow{n \to \infty} \tau$$

Another way to implement mixing is to use a **resampling algorithm** that directly estimates $\hat{f}_{X|X|Z=z}^*$ from the observed dataset.

Observed dataset

$$\{(Y_i, Z_i, X_i)\}_{i=1}^n \sim \hat{f}_{Y,X|Z=z}$$

Another way to implement mixing is to use a **resampling algorithm** that directly estimates $\hat{f}_{Y|X|Z=z}^*$ from the observed dataset.

Another way to implement mixing is to use a **resampling algorithm** that directly estimates $\hat{f}_{Y|X|Z=z}^*$ from the observed dataset.

The resampling algorithm allows for extensions to various weighting schemes, such as Entropy Balancing or Covariate Balancing Propensity Score.

Proposition 3 (Extension to balancing weights)

Suppose W^* is a balancing weight for X^* , satisfying

$$E[X^* \mid Z^* = 1] = E[W^*X^* \mid Z^* = 0].$$

Then,

$$W := \frac{W^* - \delta \frac{\pi}{1 - \pi}}{1 - \delta}$$

is a balancing weight for X.

Overview

- 1. Motivation
- 2. Mixing Approach
- 3. Simulation Study
- 4. Conclusion

Simulation study

Simulation 1	Simulation 2
M-estimation	Resampling algorithm
 IPW vs MIPW 	 Extension to Entropy Balancing
 Efficiency gain in terms of both finite- and large-sample perspective 	 Performance under model misspecification

- Data generating process: $e(X) = \{1 + \exp(-X^T\beta)\}^{-1}, X \sim N_5(0, I)$
 - Overlap level (according to β): Strong / Moderate / Weak
 - Treatment effect: au=1 (homogeneous)

Simulation study for implementation 1: M-estimation

- **Performance measures**: Monte-Carlo simulation of (1) standard deviation estimates and (2) Huber-White's robust standard error estimates
- Benchmark: ATO estimation via overlap weights (Li et al., 2018)
 - ATO: A causal estimand under the subpopulation for which the average treatment effect can be estimated with the smallest variance.
- True treatment effect: 1 (homogeneous) \implies ATO = ATT = 1

Estimator	IPW	MIPW	OW
Target	ATT	ATT	ATO

Results: IPW vs MIPW vs OW

Figure 2: Monte Carlo simulation result: SD estimates (solid) and Huber-White robust SE estimates (dotted) of IPW, MIPW, OW

Simulation study for implementation 2: Resampling algorithm

- **Scenario 1**: The same weak overlap setting from previous study (true treatment effect = 1)
- **Scenario 2**: A modified study from Kang & Schafer (2007) to endow model misspecification but within weak overlap (true treatment effect = 210)
- Extension to Entropy Balancing (EB): Weighting method that estimates $\frac{e}{1-e}(X_i)$ by solving a constrained optimization problem to reduce model dependence (Hainmueller, 2012).

Estimator	EB	MEB	OW
Target	ATT	ATT	ATO

Results: EB vs MEB vs OW

Figure 3: Monte Carlo simulation result: SD estimates of EB, MEB, OW

Results: EB vs MEB vs OW

Figure 4: Monte Carlo simulation result: Finite-sample bias of EB, MEB, OW

Overview

- 1. Motivation
- 2. Mixing Approach
- 3. Simulation Study
- 4. Conclusion

Future Work

• Heterogeneous mixing strategy: What if we allow δ to vary according to the values of covariates?

Figure 5: Homogeneous (Simple) Mixing: shrink with same ratio

Figure 6: Heterogeneous (Advanced) Mixing: (Blue) shrink less (Red) shrink more

Future Work

Primary results

Estimator	Bias	SD
IPW	0.1812	0.2656
Simple Mixing	0.1590	0.2440
Heterogeneous Mixing	0.1497	0.2232

Table 1: Advanced mixing strategy

• Other interesting topics remain, including application of mixing to matching methods.

Summary

Key Takeaways

Mixing: A simple & practical statistical tool for handling overlap to control extremeness of inverse probability weights without additional assumptions

- Performance: Efficiency is enhanced without bias trade-off (even in sufficient overlap)
- Straightforward interpretation: No need to shift the target estimand
- Flexibility: Applicable to broad range of weighting methods
- Open to further exploration: Heterogeneous mixing strategy

Thank you!

Email: suehyunkim@snu.ac.kr

Preprint link: https://arxiv.org/abs/2411.10801v3

Supplementary Materials 1

Figure 7: Monte Carlo Simulation Result: ATT Estimates of IPW, MIPW, OW

Supplementary Materials 2

Definition 2 (Mixed Distribution)

Let Z^* be a binary variable with marginal probability, π^* . Define the joint distribution of (Y^*, X^*) as distribution with density,

$$h^* = h^*_{\pi^*, heta_1, heta_0} = \pi^* h^*_1 + (1 - \pi^*) h^*_0$$

where

 $h_z^* = \theta_z h_1 + (1 - \theta_z) h_0 \in \mathcal{M} := \{\theta h_1 + (1 - \theta) h_0 : 0 \le \theta = \theta(x) \le 1, \forall x \in \mathcal{X}\}, z = 0, 1$ are the densities of conditional distribution given $Z^* = z, z = 0, 1$. We will call its distribution, H^* as "the mixed distribution of H".

Supplementary Materials 3

Lemma 2 (Propensity Score of the Mixed Distribution)

Let $e^*(x) = P(Z^* = 1 \mid X^* = x), \forall x \in \mathcal{X}$ be the propensity score of the mixed distribution. Then,

$$\frac{e^*}{1-e^*}(x) = \frac{\pi^*}{1-\pi^*} \cdot \frac{\theta_1(x) \frac{e}{1-e}(x) + (1-\theta_1(x)) \frac{\pi}{1-\pi}}{\theta_0(x) \frac{e}{1-e}(x) + (1-\theta_0(x)) \frac{\pi}{1-\pi}}, \quad \forall x \in \mathcal{X}$$