$12n_{0670} (K12n_{0670})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 1.08226 \times 10^{53} u^{26} + 3.46651 \times 10^{53} u^{25} + \dots + 6.35629 \times 10^{53} b - 9.30418 \times 10^{53}, \\ &1.28555 \times 10^{53} u^{26} + 3.81262 \times 10^{52} u^{25} + \dots + 1.27126 \times 10^{54} a - 1.73709 \times 10^{55}, \ u^{27} + 4u^{26} + \dots - 36u - I_2^u &= \langle 2u^7 + u^6 - 3u^5 - 3u^4 + 4u^3 + 3u^2 + b - 2u - 4, \ 6u^7 + 2u^6 - 8u^5 - 7u^4 + 11u^3 + 5u^2 + a - 4u - 9, \\ &u^8 + u^7 - u^6 - 2u^5 + u^4 + 2u^3 - 2u - 1 \rangle \\ &I_3^u &= \langle b + 2u + 1, \ a - u + 3, \ u^2 - u - 1 \rangle \\ &I_4^u &= \langle b - u, \ a, \ u^2 - u - 1 \rangle \end{split}$$

$$I_1^v = \langle a, -5v^2 + 7b - 49v - 11, v^3 + 10v^2 + 5v + 1 \rangle$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 42 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \ I_1^u = \\ \langle 1.08 \times 10^{53} u^{26} + 3.47 \times 10^{53} u^{25} + \dots + 6.36 \times 10^{53} b - 9.30 \times 10^{53}, \ 1.29 \times 10^{53} u^{26} + \\ 3.81 \times 10^{52} u^{25} + \dots + 1.27 \times 10^{54} a - 1.74 \times 10^{55}, \ u^{27} + 4u^{26} + \dots - 36u - 8 \rangle$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.101124u^{26} - 0.0299909u^{25} + \dots + 208.958u + 13.6643 \\ -0.170266u^{26} - 0.545367u^{25} + \dots + 9.62422u + 1.46377 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.180542u^{26} - 0.294451u^{25} + \dots + 212.007u + 15.1966 \\ -0.206040u^{26} - 0.663628u^{25} + \dots + 10.9044u + 1.88945 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.426084u^{26} + 1.57401u^{25} + \dots + 106.382u + 3.92285 \\ 0.102378u^{26} + 0.343812u^{25} + \dots + 107.769u + 5.28292 \\ 0.102378u^{26} + 0.343812u^{25} + \dots + 107.769u + 5.28292 \\ 0.102378u^{26} + 0.343812u^{25} + \dots - 1.38646u - 1.36007 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.0171155u^{26} + 0.0283407u^{25} + \dots - 26.6157u - 2.71004 \\ 0.0302735u^{26} + 0.0988551u^{25} + \dots - 0.938445u - 0.463848 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.0251997u^{26} - 0.0548227u^{25} + \dots + 26.2467u + 2.85292 \\ -0.0188792u^{26} - 0.0620300u^{25} + \dots + 1.82255u + 0.224933 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.336468u^{26} - 0.923526u^{25} + \dots + 132.165u + 10.0199 \\ -0.251652u^{26} - 0.818179u^{25} + \dots + 10.8630u + 2.53569 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.0473890u^{26} + 0.127196u^{25} + \dots - 27.5541u - 3.17389 \\ 0.00858260u^{26} + 0.0283575u^{25} + \dots - 0.927413u - 0.0350346 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.0379585u^{26} + 1.16314u^{25} + \dots + 780.278u + 65.8410$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4	$u^{27} - 12u^{26} + \dots - 82u - 1$
c_3, c_6	$u^{27} + 4u^{26} + \dots + 640u - 256$
c_5, c_8	$u^{27} + 3u^{26} + \dots - 112u + 16$
c_7, c_{10}	$u^{27} - 4u^{26} + \dots - 36u + 8$
c_9, c_{11}, c_{12}	$u^{27} + 7u^{26} + \dots - 65u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$y^{27} - 46y^{26} + \dots + 6314y - 1$
c_{3}, c_{6}	$y^{27} - 54y^{26} + \dots + 5095424y - 65536$
c_5, c_8	$y^{27} + 25y^{26} + \dots + 12928y - 256$
c_7, c_{10}	$y^{27} + 12y^{26} + \dots + 7696y - 64$
c_9, c_{11}, c_{12}	$y^{27} - 15y^{26} + \dots + 4023y - 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.598885 + 1.018170I		
a = -0.527451 - 0.308767I	-2.46734 + 1.28188I	0.019660 - 0.966602I
b = 0.147510 + 0.585443I		
u = 0.598885 - 1.018170I		
a = -0.527451 + 0.308767I	-2.46734 - 1.28188I	0.019660 + 0.966602I
b = 0.147510 - 0.585443I		
u = -0.975452 + 0.786268I		
a = -0.196879 + 0.002027I	1.16826 - 5.86191I	6.68570 + 1.60407I
b = 0.073018 - 0.478334I		
u = -0.975452 - 0.786268I		
a = -0.196879 - 0.002027I	1.16826 + 5.86191I	6.68570 - 1.60407I
b = 0.073018 + 0.478334I		
u = -0.538379 + 0.455019I		
a = 1.62953 + 0.35861I	1.156740 + 0.801856I	6.71973 + 0.16728I
b = -0.061105 - 0.490914I		
u = -0.538379 - 0.455019I		
a = 1.62953 - 0.35861I	1.156740 - 0.801856I	6.71973 - 0.16728I
b = -0.061105 + 0.490914I		
u = -0.702983 + 0.023598I		
a = -2.18915 + 4.62670I	-0.834252 - 0.150815I	17.5464 + 6.6365I
b = -0.99845 + 1.93414I		
u = -0.702983 - 0.023598I		
a = -2.18915 - 4.62670I	-0.834252 + 0.150815I	17.5464 - 6.6365I
b = -0.99845 - 1.93414I		
u = 0.442597 + 0.499853I		
a = -0.078287 - 0.292577I	4.69512 - 2.40532I	3.41247 - 6.32084I
b = -0.33969 - 1.38997I		
u = 0.442597 - 0.499853I		
a = -0.078287 + 0.292577I	4.69512 + 2.40532I	3.41247 + 6.32084I
b = -0.33969 + 1.38997I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.610551		
a = 0.710713	0.859867	11.9670
b = 0.376982		
u = 0.594482		
a = -4.50707	-7.81649	57.8300
b = 0.0513464		
u = 1.58256		
a = 1.18182	7.98804	43.0640
b = 3.57318		
u = 0.34038 + 1.67519I		
a = 1.057830 + 0.148663I	-13.16990 + 3.53439I	02.09406I
b = -0.340400 + 0.098336I		
u = 0.34038 - 1.67519I		
a = 1.057830 - 0.148663I	-13.16990 - 3.53439I	0. + 2.09406I
b = -0.340400 - 0.098336I		
u = -0.60820 + 1.69659I		
a = 0.877793 - 0.221512I	-6.34499 - 6.08931I	0. + 3.73020I
b = -0.35535 - 1.77081I		
u = -0.60820 - 1.69659I		
a = 0.877793 + 0.221512I	-6.34499 + 6.08931I	0 3.73020I
b = -0.35535 + 1.77081I		
u = 0.03133 + 1.80621I		
a = 0.524823 + 0.076099I	-7.44159 - 1.29405I	-1.37770 + 1.27497I
b = -0.25035 + 1.73182I		
u = 0.03133 - 1.80621I		
a = 0.524823 - 0.076099I	-7.44159 + 1.29405I	-1.37770 - 1.27497I
b = -0.25035 - 1.73182I		
u = 0.142980		
a = 49.1336	0.561362	203.500
b = 0.408460		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.125648		
a = -6.99415	-1.12664	-9.59770
b = -0.661597		
u = -1.42516 + 1.34942I		
a = -0.835437 + 0.737623I	-15.7574 - 13.5083I	0
b = 0.57720 + 2.23959I		
u = -1.42516 - 1.34942I		
a = -0.835437 - 0.737623I	-15.7574 + 13.5083I	0
b = 0.57720 - 2.23959I		
u = 1.66937 + 1.50035I		
a = -0.579428 - 0.676345I	18.5782 + 5.9421I	0
b = 0.28102 - 2.41058I		
u = 1.66937 - 1.50035I		
a = -0.579428 + 0.676345I	18.5782 - 5.9421I	0
b = 0.28102 + 2.41058I		
u = -1.62430 + 1.65382I		
a = -0.445794 + 0.495251I	-16.0044 + 2.3695I	0
b = -0.10758 + 2.58327I		
u = -1.62430 - 1.65382I		
a = -0.445794 - 0.495251I	-16.0044 - 2.3695I	0
b = -0.10758 - 2.58327I		

II.
$$I_2^u = \langle 2u^7 + u^6 - 3u^5 - 3u^4 + 4u^3 + 3u^2 + b - 2u - 4, \ 6u^7 + 2u^6 + \dots + a - 9, \ u^8 + u^7 - u^6 - 2u^5 + u^4 + 2u^3 - 2u - 1 \rangle$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -6u^{7} - 2u^{6} + 8u^{5} + 7u^{4} - 11u^{3} - 5u^{2} + 4u + 9 \\ -2u^{7} - u^{6} + 3u^{5} + 3u^{4} - 4u^{3} - 3u^{2} + 2u + 4 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -6u^{7} - 2u^{6} + 8u^{5} + 7u^{4} - 11u^{3} - 5u^{2} + 4u + 9 \\ -2u^{7} - u^{6} + 3u^{5} + 3u^{4} - 4u^{3} - 3u^{2} + 2u + 4 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{6} - u^{4} + 2u^{2} - 1 \\ -u^{7} - u^{6} + 2u^{5} + u^{4} - 2u^{3} - 2u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -6u^{7} - 2u^{6} + 8u^{5} + 7u^{4} - 11u^{3} - 4u^{2} + 4u + 8 \\ -2u^{7} - u^{6} + 3u^{5} + 3u^{4} - 4u^{3} - 4u^{2} + 2u + 4 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} - 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-44u^7 15u^6 + 58u^5 + 53u^4 78u^3 42u^2 + 28u + 73u^4 + 28u^2 + 28u + 73u^4 + 28u^2 + 28u + 73u^4 + 28u^2 + 28u^2$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^8$
c_{3}, c_{6}	u^8
<i>C</i> ₄	$(u+1)^8$
C ₅	$u^8 + 3u^7 + 7u^6 + 10u^5 + 11u^4 + 10u^3 + 6u^2 + 4u + 1$
	$u^8 + u^7 - u^6 - 2u^5 + u^4 + 2u^3 - 2u - 1$
c ₈	$u^8 - 3u^7 + 7u^6 - 10u^5 + 11u^4 - 10u^3 + 6u^2 - 4u + 1$
<i>c</i> ₉	$u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1$
c_{10}	$u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1$
c_{11}, c_{12}	$u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^8$
c_3, c_6	y^8
c_5, c_8	$y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1$
c_7, c_{10}	$y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1$
c_9, c_{11}, c_{12}	$y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.570868 + 0.730671I		
a = -1.194470 - 0.635084I	-0.604279 + 1.131230I	0.744211 + 0.553382I
b = -0.281371 + 1.128550I		
u = -0.570868 - 0.730671I		
a = -1.194470 + 0.635084I	-0.604279 - 1.131230I	0.744211 - 0.553382I
b = -0.281371 - 1.128550I		
u = 0.855237 + 0.665892I		
a = -0.637416 - 0.344390I	-3.80435 + 2.57849I	-2.39106 - 4.72239I
b = 0.208670 - 0.825203I		
u = 0.855237 - 0.665892I		
a = -0.637416 + 0.344390I	-3.80435 - 2.57849I	-2.39106 + 4.72239I
b = 0.208670 + 0.825203I		
u = 1.09818		
a = 0.687555	4.85780	8.45210
b = 0.829189		
u = -1.031810 + 0.655470I		
a = -0.286111 + 0.344558I	0.73474 - 6.44354I	0.47538 + 9.99765I
b = 0.284386 + 0.605794I		
u = -1.031810 - 0.655470I		
a = -0.286111 - 0.344558I	0.73474 + 6.44354I	0.47538 - 9.99765I
b = 0.284386 - 0.605794I		
u = -0.603304		
a = 7.54843	-0.799899	60.8910
b = 2.74744		

III.
$$I_3^u = \langle b+2u+1, \ a-u+3, \ u^2-u-1 \rangle$$

a) Arc colorings
$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} u - 3 \\ -2u - 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ u + 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 2u - 4 \\ -u - 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -3u + 5 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -3u + 5 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -4u + 5 \\ -2u - 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -45

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_{10}, c_{11}, c_{12}	$u^2 + u - 1$
c_4, c_6, c_7 c_9	$u^2 - u - 1$
c_5, c_8	u^2

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_6, c_7 c_9, c_{10}, c_{11} c_{12}	$y^2 - 3y + 1$
c_5, c_8	y^2

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = -3.61803	-7.89568	-45.0000
b = 0.236068 $u = 1.61803$		
a = -1.38197	7.89568	$\begin{bmatrix} -45.0000 \end{bmatrix}$
b = -4.23607		

IV.
$$I_4^u = \langle b - u, a, u^2 - u - 1 \rangle$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -u \\ -u - 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_2 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u \\ -1 \\ -u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_{10}, c_{11}, c_{12}	$u^2 + u - 1$
c_4, c_6, c_7 c_9	$u^2 - u - 1$
c_5, c_8	u^2

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_6, c_7 c_9, c_{10}, c_{11} c_{12}	$y^2 - 3y + 1$
c_5, c_8	y^2

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = 0	0	0
b = -0.618034		
u = 1.61803		
a = 0	0	0
b = 1.61803		

V.
$$I_1^v = \langle a, -5v^2 + 7b - 49v - 11, v^3 + 10v^2 + 5v + 1 \rangle$$

$$a_{8} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v\\0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{5}{7}v^{2} + 7v + \frac{11}{7} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{5}{7}v^{2} - 7v - \frac{11}{7}\\\frac{5}{7}v^{2} + 7v + \frac{11}{7} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\\frac{2}{7}v^{2} + 3v + \frac{17}{7} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{2}{7}v^{2} - 3v - \frac{10}{7}\\\frac{2}{7}v^{2} + 3v + \frac{17}{7} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{5}{7}v^{2} + 7v + \frac{25}{7}\\-v^{2} - 10v - 5 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{5}{7}v^{2} - 6v - \frac{25}{7}\\v^{2} + 10v + 5 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}v^{2} + 3v + \frac{17}{7} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{5}{7}v^{2} - 7v - \frac{25}{7}\\v^{2} + 10v + 5 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v\\0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-\frac{54}{7}v^2 65v \frac{95}{7}$

Crossings	u-Polynomials at each crossing
c_1, c_2	$u^3 + u^2 - 1$
c_3	$u^3 - u^2 + 2u - 1$
c_4	$u^3 - u^2 + 1$
	$u^3 + 3u^2 + 2u - 1$
<i>C</i> ₆	$u^3 + u^2 + 2u + 1$
c_7, c_{10}	u^3
<i>c</i> ₈	$u^3 - 3u^2 + 2u + 1$
<i>c</i> ₉	$(u+1)^3$
c_{11}, c_{12}	$(u-1)^3$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$y^3 - y^2 + 2y - 1$
c_{3}, c_{6}	$y^3 + 3y^2 + 2y - 1$
c_5, c_8	$y^3 - 5y^2 + 10y - 1$
c_7, c_{10}	y^3
c_9, c_{11}, c_{12}	$(y-1)^3$

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -0.258045 + 0.197115I		
a = 0	4.66906 + 2.82812I	2.98758 - 12.02771I
b = -0.215080 + 1.307140I		
v = -0.258045 - 0.197115I		
a = 0	4.66906 - 2.82812I	2.98758 + 12.02771I
b = -0.215080 - 1.307140I		
v = -9.48391		
a = 0	0.531480	-90.9750
b = -0.569840		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_2	$((u-1)^8)(u^2+u-1)^2(u^3+u^2-1)(u^{27}-12u^{26}+\cdots-82u-1)$
c_3	$u^{8}(u^{2}+u-1)^{2}(u^{3}-u^{2}+2u-1)(u^{27}+4u^{26}+\cdots+640u-256)$
<i>C</i> ₄	$((u+1)^8)(u^2-u-1)^2(u^3-u^2+1)(u^{27}-12u^{26}+\cdots-82u-1)$
c_5	$u^{4}(u^{3} + 3u^{2} + 2u - 1)$ $\cdot (u^{8} + 3u^{7} + 7u^{6} + 10u^{5} + 11u^{4} + 10u^{3} + 6u^{2} + 4u + 1)$ $\cdot (u^{27} + 3u^{26} + \dots - 112u + 16)$
c_6	$ u^{8}(u^{2} - u - 1)^{2}(u^{3} + u^{2} + 2u + 1)(u^{27} + 4u^{26} + \dots + 640u - 256) $
C ₇	$u^{3}(u^{2}-u-1)^{2}(u^{8}+u^{7}-u^{6}-2u^{5}+u^{4}+2u^{3}-2u-1)$ $\cdot (u^{27}-4u^{26}+\cdots-36u+8)$
c ₈	$u^{4}(u^{3} - 3u^{2} + 2u + 1)$ $\cdot (u^{8} - 3u^{7} + 7u^{6} - 10u^{5} + 11u^{4} - 10u^{3} + 6u^{2} - 4u + 1)$ $\cdot (u^{27} + 3u^{26} + \dots - 112u + 16)$
<i>c</i> ₉	$(u+1)^3(u^2-u-1)^2(u^8-u^7-3u^6+2u^5+3u^4-2u-1)$ $\cdot (u^{27}+7u^{26}+\cdots-65u+1)$
c_{10}	$u^{3}(u^{2} + u - 1)^{2}(u^{8} - u^{7} - u^{6} + 2u^{5} + u^{4} - 2u^{3} + 2u - 1)$ $\cdot (u^{27} - 4u^{26} + \dots - 36u + 8)$
c_{11}, c_{12}	$(u-1)^{3}(u^{2}+u-1)^{2}(u^{8}+u^{7}-3u^{6}-2u^{5}+3u^{4}+2u-1)$ $\cdot (u^{27}+7u^{26}+\cdots-65u+1)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^8(y^2-3y+1)^2(y^3-y^2+2y-1)$ $\cdot (y^{27}-46y^{26}+\cdots+6314y-1)$
c_3, c_6	$y^{8}(y^{2} - 3y + 1)^{2}(y^{3} + 3y^{2} + 2y - 1)$ $\cdot (y^{27} - 54y^{26} + \dots + 5095424y - 65536)$
c_5, c_8	$y^{4}(y^{3} - 5y^{2} + 10y - 1)$ $\cdot (y^{8} + 5y^{7} + 11y^{6} + 6y^{5} - 17y^{4} - 34y^{3} - 22y^{2} - 4y + 1)$ $\cdot (y^{27} + 25y^{26} + \dots + 12928y - 256)$
c_7, c_{10}	$y^{3}(y^{2} - 3y + 1)^{2}(y^{8} - 3y^{7} + \dots - 4y + 1)$ $\cdot (y^{27} + 12y^{26} + \dots + 7696y - 64)$
c_9, c_{11}, c_{12}	$(y-1)^{3}(y^{2}-3y+1)^{2}$ $\cdot (y^{8}-7y^{7}+19y^{6}-22y^{5}+3y^{4}+14y^{3}-6y^{2}-4y+1)$ $\cdot (y^{27}-15y^{26}+\cdots+4023y-1)$