PSYC 5303 - Lecture 4

Thomas J. Faulkenberry, Ph.D.

September 13, 2022

Mathematical model of conditioning

We know that conditioning looks like this:

Goal - construct a mathematical equation to produce this curve.

Rescorla-Wagner Model

- uses a "difference equation"
- ullet V_n represents associative strength of CS at trial n
- Equation:

- Parameters:
 - $-\ c$ = "learning rate" (depends on salience of CS, strength of US, etc.)
 - $-V_{\max} = \max_{i=1}^{n} \sum_{j=1}^{n} V_{\max} = \sum_{$
 - $V_{\mathsf{tot}} = \mathsf{total}$ associative strength of all CS
- today, we'll use this equation to generate some standard phenomena in classical conditioning
 - acquisition
 - extinction
 - blocking

Acquisition

Set c=0.5 and $V_{\sf max}=100$

Trial (n)	Associative strength $V_n = V_{n-1} + c(V_{\sf max} - V_{\sf tot})$
1	V = V + c (Vmax - Vtot)
	= 0 + 0.5 (100 - 0)
	= 0 + 50 = 50
2	$V_2 = V_1 + 0.5(100 - 50)$ = 50 + 0.5 (50) = 50 + 25 = 75
	= 50 + 0.5 (50) = 50 + 25 = (75)
3	$V_3 = V_2 + 0.5 (100 - 75)$ = 75 + 0.5 (25) = 87.5
	= 75 + 0.5 (25) = (87.5)
4	$V_4 = V_3 + 0.5(100 - 87.5)$
	$V_4 = V_3 + 0.5(100 - 87.5)$ = 87.5 + 0.5(12.5) = 93.75

Acquisition

Let's plot our numbers here:

recep c = 0.0 but now max = 0		
Tri	al (n)	Associative strength $V_n = V_{n-1} + c(V_{\sf max} - V_{\sf tot})$
	5	$V_{5} = V_{4} + c(V_{max} - V_{tot})$ $= 93.75 + 0.5(0 - 93.75)$
		= 93.75 + 0.5 (0 - 93.75)
_		= 46.88
	6	V6= V5+ 0.5(0-46.88)
		= 46.88 + 0.5 (0-46.88) =
		= (23.44)
	7	$V_7 = 23.44 + 0.5(0 - 23.44)$
	8	V = 11.72 + 0.5 (0-11.72)
		8 = 5.86

Blocking

Recall from lecture 2 – **blocking** happens when presence of an established CS interferes with conditioning a *new* CS

Training phase 1:

- CS_a (noise) + US (shock) $\rightarrow UR$ (fear response)
- (repeat)

Training phase 2:

- ullet CS_a (noise) + CS_b (light) + US (shock) ightarrow UR (fear response)
- (repeat)
- CS_a (noise) + CS_b (light) $\rightarrow CR$ (fear response)

Test phase:

• CS_b (light) \rightarrow no CR!

Interpretation: previous learning blocks learning of CS_b

Blocking

Let's see how Rescorla-Wagner would predict this:

Phase 1:

- CS_a (noise) + US (shock) $\rightarrow UR$ (fear response)
- (repeat)
- CS_a (noise) $\to CR$ (fear response)

After Phase 1, we can assume the following:

- $\bullet \ V_{\rm noise} = V_{\rm max} = 100$
- $\bullet \ V_{\mathsf{light}} = 0$

Thus, at the beginning of Phase 2, we have

• $V_{\text{tot}} = V_{\text{noise}} + V_{\text{light}} = 100 + 0 = 100$

Blocking

Now, at the beginning of Phase 2, here's what happens:

$$V_n = V_{n-1} + c(V_{\text{max}} - V_{\text{tot}})$$
$$= V_{n-1} + c(100 - 100)$$
$$= V_{n-1} + 0$$

That is, there is no learning that occurs! (i.e., $\Delta V_n=0$)