

Python Program

CHAPTER 8: REGRESSION ANALYSIS

Chapter Objectives

In this chapter, we will:

- → Introduce Linear Regression
- → Compare two algorithms
 - Scikit-learn
 - Statsmodel

Chapter Concepts

Regression Analysis

Algorithms

Chapter Summary

Linear Regression

- → Given a collection of X, Y points, you could easily see there is a pattern
- → If you remember enough algebra, you could describe the pattern of dots as roughly following the red line, which could be described with the formula y = 1.5x + .01

Linear Regression (continued)

- → The idea is that the line that best describes the pattern of dots is the one that has the least distances of the dots from the line
- → The formula that describes the line could then be used to predict a value that we have not observed
 - The better the line and formula are at describing that pattern of dots,
 the more accurate that prediction should be
- → Extrapolate this idea onto more than just two axes and instead try to find a line that goes through many different dimensions and you have the idea of multiple linear regression
 - $y=a+\beta 1x^1 +\beta 2x^2 +...+\beta ixi +\epsilon$
- → Has many use cases
 - Predicting a stock or commodity price
 - Predicting election results
 - Predicting crime rate

Linear Regression (continued)

- → Is a supervised model that requires training from a known set of data and testing to see how good it is at predicting before using it for real predictions
- → Only works with numeric values
 - Categorical data needs to be dummy encoded
- → Does not deal well with missing data, so must be fixed by removing or replacing with central tendency
- → There are many algorithms to do this, each with its own pros and cons

Dataset

→ For our examples, let's use a public data set of housing data

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
USAhousing = pd.read_csv('USA_Housing.csv')
print(USAhousing.columns)
print(USAhousing.head())
sns.distplot(USAhousing['Price'])
```

- → The data has no categorical columns but does have an address we will ignore
- → Plotting the distribution of Prices shows that they are normally distributed

Chapter Concepts

Regression Analysis

Algorithms

Chapter Summary

Create a Scikit Model

→ Prep the data and fit the model on the training set

```
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
x = USAhousing[['Avg. Area Income', 'Avg. Area House Age',
'Avg. Area Number of Rooms', 'Avg. Area Number of Bedrooms',
'Area Population']]
y = USAhousing['Price']
trainX, testX, trainY, testY = train_test_split(x, y, test_size
= 0.4, random_state = 101)

from sklearn.linear_model import LinearRegression
lm = LinearRegression()
lm.fit(trainX, trainY)
```

View the Model

→ Run predictions on the test set and compare them to the real values to see how well the model did at predicting

```
predictions = lm.predict(testX)
plt.scatter(testY, predictions)
print("Mean squared error: %.2f" % mean_squared_error(testY, predictions))
print('Variance score: %.2f' % r2_score(testY, predictions))
```

- → The variance score, also called R-Squared, indicates how well in general the model fits
 - Ranges from 0 1, the closer
 to 1 the better
 - .92 means this model fit reasonably well

Mean squared error: 10460958907.21 Variance score: 0.92

Create a Stats Model

- → The stats library offers a different version of the algorithm
- → Provides a little more information about the accuracy of the model

```
import statsmodels.api as sm
model = sm.OLS(trainY, trainX).fit()
print (model.summary())
predictions = model.predict(testX)
plt.scatter(testY, predictions)
plt.show()
```

Interpret the Model

- → You automatically get the R-squared from the summary function
 - Additionally, the Adjusted R-squared is helpful because it helps to compare models with different numbers of predictor variable
- → The P-value also identify which features are most significant in influencing the value you are trying to predict, closer to one is better.

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Price OLS Least Squares Fri, 17 May 2019 23:08:27 3000 2995 5 nonrobust		R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		0.965 0.965 1.633e+04 0.00 -41426. 8.286e+04 8.289e+04		
		coef	std err	t	P> t	[0.025	0.975]
Avg. Area Income		10.1001	0.346	29.176	0.000	9.421	10.779
Avg. Area House Age		4.972e+04	3870.040	12.846	0.000	4.21e+04	5.73e+04
Avg. Area Number of		-9135.0559		-2.162	0.031	-1.74e+04	-848.754
Avg. Area Number of	Bedrooms	4272.2896		1.060	0.289		1.22e+04
Area Population		8.4544	0.419	20.171	0.000	7.633	9.276
Omnibus: 0.002			Durbin-Watson:		1.999		
Prob(Omnibus):	0.999		Jarque-Bera (JB):		0.000		
Skew:	-0.000		Prob(JB):		1.00		
Kurtosis:		2.998	Cond. No.		9.34e+04		
Warnings: [1] Standard Errors [2] The condition no strong multicolline Mean squared error: Variance score: 0.53	umber is l arity or o 598426195	arge, 9.34d ther numer:	e+04. This mig	ght indicate			fied.

Chapter Concepts

Regression Analysis

Algorithms

Chapter Summary

Next Steps

- → Regression has a lot more complexity to it once you master the basics
- → Some subjects to explore in this area:
 - Under- and over-fitting a model
 - Correlation between the independent variables
 - Non-linear regression

Chapter Summary

In this chapter, we have:

- → Introduced Linear Regression
- → Compared two algorithms
 - Scikit-learn
 - Statsmodel