CSC 411 Design and Analysis of Algorithms

Chapter 6 Transfer and Conquer - Part 2

Instructor: Minhee Jun

Transfer-and-Conquer Examples

- Presorting (6.1)
- Gaussian Elimination (6.2)
- Balanced Search Trees (6.3)
 - AVL Trees
 - 2-3 Trees
- Heaps and Heapsort (6.4)
- Horner's Rule and Binary Exponentiation (6.5)

Searching Problem

- Problem: Given a (multi)set S of keys and a search key K, find an occurrence of K in S, if any
- Searching must be considered in the context of:
 - file size (internal vs. external)
 - dynamics of data (static vs. dynamic)
- Dictionary operations (dynamic data):
 - find (search)
 - insert
 - delete

Taxonomy of Searching Algorithms

- List searching
 - sequential search
 - binary search
 - interpolation search
- Tree searching
 - binary search tree
 - binary balanced trees: AVL trees, red-black trees
 - multiway balanced trees: 2-3 trees, 2-3-4 trees, B trees
- Hashing
 - open hashing (separate chaining)
 - closed hashing (open addressing)

Each approach needs a different data structure

Binary Search Tree

 Arrange keys in a binary tree with the binary search tree property:

• Example: construct a binary search tree with the following values as inputs: 5, 3, 1, 10, 12, 7, 9

Binary Search Tree: Example

• Example: construct a binary search tree with the following values as inputs: 5, 3, 1, 10, 12, 7, 9

Operations on Binary Search Trees

- Searching
 - straightforward
- Insertion
 - search for key, insert at leaf where search terminated
- Deletion 3 cases:
 - deleting key at a leaf
 - deleting key at node with single child
 - deleting key at node with two children

Operations on Binary Search Trees

- Efficiency depends of the tree's height: [log₂ n] ≤ h ≤ n-1,
 with height average (random files) be about 3 log₂ n
- Thus all three operations have
 - worst case efficiency: $\Theta(n)$
 - best case efficiency: $\Theta(\log n)$
- Bonus: inorder traversal produces sorted list

Balanced Search Trees

- Attractiveness of binary search tree can be hindered by the bad (linear) worst-case efficiency.
- Two ideas to overcome it are:
 - to rebalance binary search tree when a new insertion makes the tree "too unbalanced"
 - AVL trees
 - red-black trees (will not cover)
 - to allow more than one key per node of a search tree
 - 2-3 trees
 - 2-3-4 trees
 - B-trees

Balanced trees: AVL trees

<u>Definition</u> An AVL tree is a binary search tree in which, for every node, the difference between the heights of its left and right subtrees, called the balance factor, is at most 1 (with the height of an empty tree defined as -1)

Tree (a) is an AVL tree; tree (b) is not an AVL tree

AVL trees: rotations

- If an insertion of a new node makes an AVL tree unbalanced, we transform the tree by rotation
- The subtree rooted at that node is transformed via one of the four rotations.
 - Single right rotation
 - Single left rotation
 - Double left-right rotation
 - Double right-left rotation
- A rotation in an AVL tree is a local transformation of its subtree rooted at the node whose balance factor has become either +2 or -2.
- If there are several nodes with the +2/-2 balance, the rotation is always performed for a subtree rooted at an "unbalanced" node closest to the new leaf.

AVL trees, 4 rotation types: Example

- Construct the binary tree (that satisfies the binary search tree property)
 - 3, 2, 1
 - 1, 2, 3
 - 3, 1, 2
 - 1, 3, 2

Balance factor = height of T(left) – height T(right)

In AVL tree, balance factor of every node is either

0 or 1 or -1.

Not AVL tree

AVL trees, 4 Rotations

Single *R*-rotation

Double LR-rotation

Single L-rotation

Double RL-rotation

AVL trees, 4 Rotations: general case Single R-rotation

AVL trees, 4 Rotations: general case Single L-rotation

AVL trees, 4 Rotations: general case General case: Double LR-rotation

AVL trees, 4 Rotations: general case Double RL-rotation

AVL tree construction - an example

Example: 5, 6, 8, 3, 2, 4, 7

AVL tree construction - an example

Analysis of AVL trees

- Efficiency:
 - $\lfloor \log_2 n \rfloor \le h < 1.4405 \log_2(n+2) 1.3277$
- average height: (found empirically)
 - 1.01 $\log_2 n$ + 0.1 for large n
- Search and insertion are O(log n)
- Deletion is more complicated but is also O(log n)
- Disadvantages:
 - frequent rotations
 - complexity

2-3 Tree

- <u>Definition</u> A 2-3 tree is a search tree that
- may have 2-nodes and 3-nodes
- height-balanced (all leaves are on the same level)

• A 2-3 tree is constructed by successive insertions of keys given, with a new key always inserted into a leaf of the tree. If the leaf is a 3-node, it's split into two with the middle key promoted to the parent.

2-3 tree construction – an example

Construct a 2-3 tree the list 9, 5, 8, 3, 2, 4, 7

Analysis of 2-3 trees

- $\log_3(n+1) 1 \le h \le \log_2(n+1) 1$
- Search, insertion, and deletion are in $\Theta(\log n)$
- The idea of 2-3 tree can be generalized by allowing more keys per node
 - 2-3-4 trees
 - B-trees

What's in a Name (2-3-4)?

- How many links to child nodes can be potentially be contained in a given node.
 - A node with 1 data item always has 2 children.
 - A node with 2 data item always has 3 children.
 - A node with 3 data item always has 4 children.
- A 2-3-4 tree is a multiway tree of order=4.

