Hindi Vidya Prachar Samiti's Ramniranjan Jhunjhunwala College of Arts, Science and Commerce (Empowered Autonomous)

Programme: MSc. (Statistics) Part-1 Semester-2

Practical based on Multivariate Analysis & its application Factor Analysis

1) The sample correlation matrix is as follows –

$$R = \begin{bmatrix} 1 & 0.676 & 0.875 \\ 0.676 & 1 & 0.699 \\ 0.875 & 0.699 & 1 \end{bmatrix}$$

Obtain 1st & 2nd principal components and find the proportion of variation explained by them. Assuming an m = 1 and m = 2 factor model, calculate the loading matrix L and matrix of specific variances φ using the principal component method.

2) The correlation matrix for chicken – bone measurements is –

1					
0.505	1				
0.569	0.422	1			
0.602	0.467	0.926	1		
0.621	0.482	0.877	0.874	1	
0.603	0.45	0.878	0.894	0.937	1

- i) Find the factor loadings by principal component method and maximum likelihood method.
- ii) Find the specific variances.
- iii) Find the communalities.
- iv) Find the proportion of variances explained by each factor.
- v) Find the residual matrix by principal component method and maximum likelihood method and compare it.
- vi) Find rotated factor loadings using Varimax method.

3) The covariance matrix is as follows
$$\rho = \begin{bmatrix} 1 & 0.63 & 0.45 \\ 0.63 & 1 & 0.35 \\ 0.45 & 0.35 & 1 \end{bmatrix}$$

- i) Calculate communalities and interpret these quantities.
- ii) Calculate correlation for i = 1,2,3. Which variable might carry the greatest weight in naming the common factor? Why?
- 4) Ranks in performance of 16 individuals in test on mathematics, Physics, Literature, Music, Table Tennis and Car Racing are given in following table. Rank 1 means highest performance in the subject.

Individuals	Mathematics	Physics	Literature	Music	Table Tennis	Car Racing
1	1	6	9	8	8	7
2	2	5	11	10	14	11
3	3	3	14	16	16	13
4	4	2	10	9	15	14
5	5	1	12	11	1	1
6	6	4	13	15	2	6
7	7	8	15	14	6	5
8	8	7	16	13	7	16
9	9	9	6	12	9	9
10	10	10	8	7	10	8
11	11	11	7	5	11	10
12	12	13	4	2	13	15
13	13	12	5	6	12	12
14	14	15	1	4	4	3
15	15	14	3	3	5	4
16	16	16	2	1	3	2

- i) Find the correlation matrix and obtain unrotated factors loadings by principal component method and maximum likelihood method (MLE).
- ii) Plot Scree plot and extract significant factors.
- iii) Obtain rotated factor loadings by Varimax method and interpret the result.
- iv) Obtain factor score.
- 5) Case Study
