

CREDIT CARD APPROVAL

1

Ditablan, Gil Jeremy P.

Reyes, John Ramil C.

Tajanlangit, Renzel E.

Group 1 **BACKGROUND**

Credit Card

Used by the card holders to purchase goods and services that accept cards as payment by borrowing funds from banks or other similar services.

Criteria:

Income

Location

Current Situation

In the US payment ecosystem, the pandemic has caused credit card market stats to fall but eventually have seen growth within two years. Credit card growth is continually stabilizing specially when the consumer has embraced e-commerce.

This is also the case in our country where the credit card stats has fallen but eventually continues to rise within the past quarters because of economic revival and the rise in consumer spending.

The main problem is the cost and time when dealing with multiple applications for a credit card that needs to be reviewed and multiple factors or variables that needs to be consider.

Group 1 DATASET

The credit card approval dataset has 690 data entries.

Features	Description	Variable Type	Value
Debt	Amount of applicant's current debt.	Independent	Numerical range
BankCustomer	If the applicant has a bank account or not.	Independent	1 (Yes) or 0 (No)
YearsEmployed	Number of years the applicant has been employed.	Independent	Numerical range
Employed	Applicant's current employment status.	Independent	1 (Yes) or 0 (No)
CreditScore	A numerical score that depicts the applicant's worthiness given by the bank.	Independent	Numerical range
Income	Applicant's Monthly income.	Independent	Numerical range
Approved	Whether the credit card application is approved or rejected.	Dependent	1 (Yes) or 0 (No)

Group 1 SYSTEM ARCHITECTURE

Group 1 **MACHINE LEARNING ALGORITHM**

NAÏVE BAYES ALGORITHM

Predict the approval of credit card applications

Classify different credit card applications according to their feature value The feature variables that will be fitted into the Bayesian model are Debt, BankCustomer, YearsEmployed, Employed, CreditScore, and Income

Group 1 **PYTHON PROGRAMMING DISCUSSION**

Graphical User Interface

model.fit(features_train, target_train)

Transformation of data from Qualitative to Quantitative

Splitting for Training and Testing

	Training	Testing
Percentage	70%	30%
Quantity	483	207

features_train, features_test, target_train, target_test = train_test_split(credit_card[features],
 credit_card[target], test_size = 0.30,
 random_state = 20)

Modeling based on the Training Set

The developer filtered the parameters of the training datasets into 7 parameters:

- 6 independent Variable
- 1 Dependent Variable

The developer used

Gaussian Naïve Bayes

because the data sets are numerical and Categorical.

The Developers will feed the dataset into the model to train and test the said model

Accuracy of the Model

```
Model Accuracy = 85.02415458937197 %
[[114 8]
[ 23 62]]
```

The Naive Bayes model trained on our dataset got 85.02% of accuracy in predicting approval state of the credit card applications based on the testing dataset.

Simulation with Test Data

Bank Customer	Approved	Not Approved
1 (has a bank account)	73	86
O (has no bank account)	12	36

Bank Customer	Approved	Not Approved
1 (has a bank account)	61	98
O (has no bank account)	9	39

Employed	Approved	Not Approved
1 (Is employed)	56	23
O (Is not employed)	29	99

Bank Customer	Approved	Not Approved
1 (Is a bank customer)	59	20
O (Is not a bank customer)	11	117

Added Discussion

```
Model Accuracy = 74.39613526570048 %
[[108 7]
[ 46 46]]
```

Added Discussion

```
Model Accuracy = 73.42995169082126 %
[[108 7]
[ 48 44]]
```

Added Discussion

```
Model Accuracy = 74.39613526570048 %
[[108 7]
[ 46 46]]
```

```
#import the necessary libraries
import pandas as pd
from sklearn.naive_bayes import GaussianNB
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
from sklearn import metrics
```

Important libraries

```
#read csv
credit_card = pd.read_csv("original dataset clean.csv")
print(credit_card)

#Store the independent variable to features
features = ["Debt", "BankCustomer", "YearsEmployed", "Employed", "CreditScore", "Income"]
#Store the dependent variable to target
target = ['Approved']
```

Read CSV, Features and Target

```
#Splits the training and testing dataset with random = 20 and test size 30%
features_train, features_test, target_train, target_test = train_test_split(credit_card[features],
    credit_card[target], test_size = 0.30,
        random_state = 20)

# Displaying the split datasets
print('\tTraining Features\n ',features_train) #3 Print all of these
print('\tTesting Features\n ',features_test)
print('\tTraining Target\n ',target_train)
print('\tTesting Target\n ',target_test)
```

Data Splitting

```
#create model
model = GaussianNB()

model.fit(features_train, target_train)

#prediction
pred = model.predict(features_test)
```

Model and Prediction

```
#get accuracy
accuracy = accuracy_score(target_test, pred)

#print accuracy
print("Normal Accuracy",accuracy)
print("\nModel Accuracy = ",accuracy*100,"%")
print(metrics.confusion_matrix(target_test, pred))
print(metrics.classification_report(target_test, pred))
```

Getting the accuracy