CSE211Digital Design

Akdeniz University

Week3: Introduction to Digital Design

Assoc.Prof.Dr. Taner Danışman tdanisman@akdeniz.edu.tr

Course program

Week 01	2-Oct-23 Introduction
Week 02	9-Oct-23 Digital Systems and Binary Numbers I
Week 03	16-Oct-23 Digital Systems and Binary Numbers II
Week 04	23-Oct-23 Boolean Algebra and Logic Gates I
Week 05	30-Oct-23 Boolean Algebra and Logic Gates II
Week 06	6-Nov-23 Gate Level Minimization
Week 07	13-Nov-23 Karnaugh Maps
Week 08	20-Nov-23 Midterm
Week 09	27-Nov-23 Karnaugh Maps
Week 10	4-Dec-23 Combinational Logic
Week 11	11-Dec-23 Combinational Logic
Week 12	18-Dec-23 Timing, delays and hazards
Week 13	25-Dec-23 Synchronous Sequential Logic
Week 14	1-Jan-24 Synchronous Sequential Logic

Number Systems

- Decimal Numbers
 - What does 5,634 represent?
 - Expanding 5,634:

$$5 \times 10^{3} = 5,000$$

+ $6 \times 10^{2} = 600$
+ $3 \times 10^{1} = 30$
+ $4 \times 10^{0} = 4 \rightarrow 5,634$

- What is "10" called in the above expansion?
 - **■** The radix.
- What is this type of number system called?
 - **■** Decimal.
- What are the digits for decimal numbers?
 - **0**, 1, 2, 3, 4, 5, 6, 7, 8, 9.
- What are the digits for radix-r numbers?
 - **■** 0, 1, ..., r-1.

Example: Convert 46.6875₁₀ To Base 2

Convert 46 to Base 2

```
46/2 = 23 remainder = 0

23/2 = 11 remainder = 1

11/2 = 5 remainder = 1

5/2 = 2 remainder = 1

2/2 = 1 remainder = 0

1/2 = 0 remainder = 1

Read off in reverse order: 101110<sub>2</sub>
```

Convert 0.6875 to Base 2:

```
0.6875 * 2 = 1.3750 int = 1

0.3750 * 2 = 0.7500 int = 0

0.7500 * 2 = 1.5000 int = 1

0.5000 * 2 = 1.0000 int = 1

0.0000

Read off in forward order: 0.1011<sub>2</sub>
```

Join together with the radix point: 1011110.1011₂

Converting Among Octal, Hexadecimal, Binary

- Octal (Hexadecimal) to Binary:
 - Restate the octal (hexadecimal) as three (four) binary digits, starting at radix point and going both ways
- Binary to Octal (Hexadecimal):
 - Group the binary digits into three (four) bit groups starting at the radix point and going both ways, padding with zeros as needed in the fractional part
 - Convert each group of three (four) bits to an octal (hexadecimal) digit
- Example: Octal to Binary to Hexadecimal

```
6 3 5 . 1 7 7 8

= 110 | 011 | 101 . 001 | 111 | 111 2

= 1 | 1001 | 1101 . 0011 | 1111 | 1 (000)<sub>2</sub> (regrouping)

= 1 9 D . 3 F 8<sub>16</sub> (converting)
```

- The code is also known as 8-4-2-1 code.
- This is because 8, 4, 2, and 1 are the weights of the four bits of the BCD code
- Since four binary bits are used the maximum decimal equivalent that may be coded is 15_{10} (i.e., 1111_2).
- But the maximum decimal digit available is 9₁₀
- Hence the binary codes 1010, 1011, 1100, 1101, 1110, 1111, representing 10, 11, 12, 13, 14, and 15 in decimal are never being used in BCD code
- These six codes are called forbidden codes

BCD

■ **Example 2.1** Give the BCD equivalent for the decimal number 589.

■ Solution.

The decimal number is 589 BCD code is 0101 1000 1001 Hence, $(589)_{10} = (010110001001)_{BCD}$

Decimal	8,4,2,1	Gray
0	0000	0000
1	0001	0100
2	0010	0101
3	0011	0111
4	0100	0110
5	0101	0010
6	0110	0011
7	0111	0001
8	1000	1001
9	1001	1000

- What property does this Gray code have?
 - Counting up or down changes only one bit at a time (including counting between 9 and 0)

Gray Code: Optical Shaft Encoder

- Shaft encoder: Capture angular position (e.g., compass)
- For binary code, what values can be read if the shaft position is at boundary of "3" and "4" (011 and 100)?
- For Gray code, what values can be read?

Warning: Conversion or Coding?

- Do <u>NOT</u> mix up <u>conversion</u> of a decimal number to a binary number with <u>coding</u> a decimal number with a BINARY CODE.
- $-13_{10} = 1101_2$ (This is <u>conversion</u>)
- **■** 13 ⇔ 0001 | 0011 (This is <u>coding</u>)

Conversion Between Number Bases

Conversion of a Binary Number into Gray Code

- the MSB of the Gray code is the same as the MSB of the binary number;
- the second bit next to the MSB of the Gray code equals the Ex-OR of the MSB and second bit of the binary number; it will be 0 if there are same binary bits or it will be 1 for different binary bits;
- the third bit for Gray code equals the exclusive-OR of the second and third bits of the binary number, and similarly all the next lower order bits follow the same mechanism

Conversion of a Binary Number into Gray Code

Example 2.2 Convert (101011)₂ into Gray code.

Solution. Step 1. The MSB of the Gray code is the same as the MSB of the binary number. Binary Gray Perform the ex-OR between the MSB and the second bit of the binary. The result is 1, which is the second bit of the Gray code. Binary Gray Perform the ex-OR between the second and the third bits of the binary. The result is 1, which is the third bit of the Gray code. 0 Binary Gray

Perform the ex-OR between the third and the fourth bits of the binary. The result is 1, which is the fourth bit of the Gray code. 1 Binary Gray Perform the ex-OR between the fourth and the fifth bits of the binary. The result is 1, which is the fifth bit of the Gray code. Binary Gray Perform the ex-OR between the fifth and the sixth bits of the binary. The result is 0, which is the last bit of the Gray code. 1 Binary Gray

Conversion of a Binary Number into Gray Code

- Convert (564)₁₀ into Gray code.
- Decimal number 564 is equal to the Binary number

Some chapter terms to know

- DVD
- GUI
- BCD
- ASCII
- STX
- ETX
- Carriage Return
- Line Feed
- Hardware Description Language

Binary Arithmetic

- Single Bit Addition with Carry
- Multiple Bit Addition
- Single Bit Subtraction with Borrow
- Multiple Bit Subtraction
- Multiplication
- BCD Addition

Binary addition

Same as decimal addition

$$-0+1=1$$

0 + 0 0	0 + 1 1	1 + 0 1	1 + 1 10	1 1 +1 11	1 +10 11	10 +101 111	1011 + 10 1101	101011 + 111 110010	0000 101011 + 111 110010
				11					110010

Binary Addition

- Binary addition is very simple.
- This is best shown in an example of adding two binary numbers...

```
111111
                carries
 111101
  10111
1010100
```

Binary Subtraction

- **■** 0-1=0+B
- B(Borrow)

Binary Subtraction

- We can also perform subtraction (with borrows in place of carries).
- Let's subtract (10111)₂ from (1001101)₂...

Binary Multiplication

Binary multiplication is much the same as decimal multiplication, except that the multiplication operations are much simpler...

1's and 2's Complements

- Complements are used in digital computers to simplify the subtraction operation and for logical manipulation.
- Simplifying operations leads to simpler, less expensive circuits to implement the operations
- There are two types of complements for each base-r system:
 - the diminished radix complement (r-1's complement)
 - the radix complement (r's complement)

One's Complement Representation

- The one's complement of a binary number involves inverting all bits.
 - 1's comp of 00110011 is 11001100
 - 1's comp of 10101010 is 01010101
- Called diminished radix complement by Mano
- For an n bit number N the 1's complement is (2ⁿ-1) N
 - e.g. For decimal numbers r=10 and r-1=9 So 9's complement of N is (10ⁿ-1)-N
 - In this case, 10ⁿ represents a number that consists of a single 1 followed by n0's
 - 10ⁿ 1 is a number represented by *n* 9's
 - if n = 4, we have $10^4 = 10,000$ and $10^4 1 = 9999$
- To find negative of 1's complement number take the 1's complement. $00001100_2 = 12_{10}$ $11110011_2 = -12_{10}$

Sign bit

Magnitude

Sign bit

Magnitude

Two's Complement Representation

- The two's complement of a binary number involves inverting all bits and adding 1.
 - 2's comp of 00110011 is 11001101
 - 2's comp of 10101010 is 01010110
- Called radix complement by Mano
- For an n bit number N the 2's complement is $(2^n-1) N + 1$
 - the 10's complement of decimal 2389 is 7610 + 1 = 7611 and is obtained by adding 1 to the 9's complement value
 - The 2's complement of binary **101100** is **010011 + 1 = 010100** and is obtained by adding 1 to the 1's-complement value
- To find negative of 2's complement number take the 2's complement.

$$00001100_2 = 12_{10}$$
Sign bit Magnitude Sign bit Magnitude

Two's Complement Shortcuts

Algorithm 1 – Simply complement each bit and then add 1 to the result.
 Finding the 2's complement of (01100101)₂ and of its 2's complement...

Algorithm 2 – Starting with the least significant bit, copy all of the bits up to and including the first 1 bit and then complementing the remaining bits.

```
\begin{array}{ll}
N & = 01100101 \\
[N] & = 10011011
\end{array}
```

1's Complement Addition

- Using 1's complement numbers, adding numbers is easy.
- For example, suppose we wish to add +12 and +1
- Let's compute $(12)_{10} + (1)_{10}$ $(12)_{10} = +(1100)_2 = 01100_2$ in 1's comp. $(1)_{10} = +(0001)_2 = 00001_2$ in 1's comp.

Step 1: Add binary numbers

Step 2: Add carry to low-order bit

27

1's Complement Subtraction

- Using 1's complement numbers, subtracting numbers is also easy.
- For example, suppose we wish to subtract +1 from +12
- Let's compute (12)₁₀ (1)₁₀.

$$(12)_{10} = +(1100)_2 = 01100_2$$
 in 1's comp.

$$(-1)_{10} = -(0001)_2 = 11110_2$$
 in 1's comp.

Step 1: Take 1's complement of 2nd operand

Step 2: Add binary numbers

Step 3: Add carry to low order bit

2's Complement Addition

- Using 2's complement numbers, adding numbers is easy.
- For example, suppose we wish to add +12 and +1
- Let's compute $(12)_{10} + (1)_{10}$ $(12)_{10} = +(1100)_2 = 01100_2$ in 2's comp. $(1)_{10} = +(0001)_2 = 00001_2$ in 2's comp.

Step 1: Add binary numbers
Step 2: Ignore carry bit

2's Complement Subtraction

- Using 2's complement numbers, follow steps for subtraction
- For example, suppose we wish to subtract +1 from +12
- Let's compute $(12)_{10}$ $(1)_{10}$ $(12)_{10} = +(1100)_2 = 01100_2$ in 2's comp. $(-1)_{10} = -(0001)_2 = 11111_2$ in 2's comp.

Step 1: Take 2's complement of 2nd operand

Step 2: Add binary numbers

Step 3: Ignore carry bit

2's Complement Subtraction: Example # 2

Let's compute $(13)_{10} - (5)_{10}$. $(13)_{10} = +(1101)_2 = (01101)_2$ $(-5)_{10} = -(0101)_2 = (11011)_2$

Adding these two 5-bit codes...

 Discarding the carry bit, the sign bit is seen to be zero, indicating a correct result. Indeed,

$$(01000)_2 = +(1000)_2 = +(8)_{10}$$

2's Complement Subtraction: Example #3

• Let's compute $(5)_{10} - (12)_{10}$.

$$(-12)_{10} = -(1100)_2 = (10100)_2$$

 $(5)_{10} = +(0101)_2 = (00101)_2$

Adding these two 5-bit codes...

Here, there is **no carry bit** and the sign bit is 1. This indicates a negative result, which is what we expect. $(11001)_2 = -(7)_{10}$.

2's Complement Subtraction:

Example #4

Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction (a) X - Y and (b) Y - X by using 2's complements.

(a)
$$X = 1010100$$

2's complement of $Y = + 0111101$
Sum = 10010001
Discard end carry $2^7 = -10000000$
Answer: $X - Y = 0010001$
(b) $Y = 1000011$
2's complement of $X = + 0101100$
Sum = 1101111

There is no end carry. Therefore, the answer is Y - X = -(2's complement of 1101111) = -0010001.

10's Complement Subtraction: Example #5

• Let's compute $(72532)_{10} - (3250)_{10}$.

99999-3250

96749+1=96750

Using 10's complement, subtract 72532 - 3250.

$$M = 72532$$
10's complement of $N = + 96750$
Sum = 169282
Discard end carry $10^5 = -100000$

Answer = 69282

10's Complement Subtraction:

Example #6

• Let's compute $(3250)_{10} - (72532)_{10}$.

99999-72532

27467+1=27468

Using 10's complement, subtract 3250 - 72532.

$$M = 03250$$

10's complement of $N = + 27468$
Sum = 30718

There is no end carry. Therefore, the answer is -(10)'s complement of 30718) = -69282

BCD Addition

- When the binary sum is equal to or less than 1001 (without a carry), the corresponding BCD digit is correct
- However, when the binary sum is greater than or equal to 1010, the result is an invalid BCD digit
- The addition of $6 = (0110)_2$ to the binary sum converts it to the correct digit and also produces a carry as required

4	0100	4	0100	8	1000
+5	+0101	<u>+8</u>	+1000	<u>+9</u>	1001
9	1001	12	1100	17	10001
			+0110		+0110
			10010		10111

BCD Addition

■ If the binary sum is greater than or equal to 1010, we add 0110 to obtain the correct BCD sum and a carry

BCD	1	1		
	0001	1000	0100	184
	+0101	0111	0110	+576
Binary sum	0111	10000	1010	
Add 6		0110	0110	
BCD sum	0111	0110	0000	760

BCD Subtraction

We use 10's complement for the BCD subtraction. Positive numbers represented by 0000 while negative numbers represented by 1001

357-432=?

37

- 357 in BCD is 0000 0011 0101 0111
- -432 in **10**'s complement is 999 432 = 567, and 567 + 1 = 568
- Since this value is negatif we add trailing 1001 to 0101 0110 1000
- $lackbox{0000} 0011 0101 0111 + 1001 0101 0110 1000 = 1001 1000 1011 1111 0 3 5 7 + 9 5 6 8 = 9 8 11 15$
- We add 6 to the nibble values greater than 1001.
- The we obtained 1001 1001 0010 0101 which is -925.
- In order to find the magnitude: 999 925 = 74, and 74 + 1 = 75
- Then final result is 357 432 = -75

Questions

What coding type might be used in the following figures?

How can we find 16th gray code value?

Gray Code

Gray Code	Decimal Equivalent
0000	0
0001	1
0011	2
0010	3
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15