Stat 134: Indicator and Covariance Review

Adam Lucas

December 5th, 2018

Conceptual Review

- a. What is the computational formula for Var(X + Y)?
- b. Suppose X is the sum of n identical indicators I_i 's. What is Var(X)?

Q.
$$Var(X+Y) = Var(X) + Var(Y) + Var(Y)$$

 $Var(aX+bY) = a^2 Var(X) + b^2 Var(Y) + 2ab Gov(X,Y)$
a.b e R
b. $X = \sum_{j=1}^{n} I_j$ $Var(X) = E(X^2) - (E(X)^2)$
 $= nE(I_i) + n(n-i) E(I_i I_i) - [nE(I_i)]^2$

Problem 1

In a bin, there are r red balls and b blue balls. Suppose I take the balls out, one by one (i.e. without replacement), until there are no more red balls in the bin. Let X denote the number of balls taken out.

Find:
$$X = r \text{ Red} + \# \text{ of Blue before (ast Room)}$$

a. $\mathbb{E}(X)$;
b. $Var(X)$.

Q. $E(X) = \Gamma + E(Y)$ Let I_j be indicator that jth Blue comes before law Red $E(Y) = E(\sum_{j=1}^{n} I_j) = \sum_{j=1}^{n} E(I_j) = b \cdot E(I_j) = b \cdot$

b.
$$Var(N) = Var(r+Y) = Var(Y) = E(Y) - [E(Y)]^2$$

 $= E(Y) + b(b-1) E(I,I_b) - E(Y)J^2$
 $E(I,I_b) = P(I_{i=1},I_{b=1}) = P(I_{i=1}) P(I_{b=1}) |I_{i=1}) = \frac{r}{r+1} \frac{r+1}{r+2} = \frac{r}{r+2}$
 $Var(X) = \frac{br}{r+1} + b(b-1) \frac{r}{r+2} + (\frac{br}{r+1})^2$

Problem 2

Toss a p-coin n times. Let W_r refer to the number of trials until the r_{th} head. Find $Corr(W_1, W_r)$.

Wi ~ Gream (p)
$$W_r = W_l + LW_r - W_l$$
) ~ Neg Bin (r, p) $W_r - W_l$ It W_l by indep. thinks (Recall Neg Bin is Sum of r i.i.d. Gream (p)'s) $W_r - W_l$ (Wi, W_l) = $W_r - W_l$) =

Problem 3

A p-coin is a coin that lands heads with probability p. Flip a p-coin ntimes. A "run" is a maximal sequence of consecutive flips that are all the same. For example, the sequence HTHHHTTH with n = 8 has five runs, namely H, T, HHH, TT, H. Let X denote the number of runs in these n flips. Find $\mathbb{E}(X)$.

Let
$$I_j$$
 be the indicator that jth & j-th trials are different $X = 1 + \sum_{j=1}^{n} I_j$ (X increments at after of new run)

$$E(X) = 1 + \sum_{j=1}^{n} F(I_j)$$

$$E(X) = 1 + \sum_{j=1}^{n} F(I_j)$$