$\begin{array}{lll} \textbf{Definition:} & \underline{\text{Private-key Encryption Scheme:}} \\ \text{Specify a message space \mathcal{M}, and Gen, Dec, and } \\ \text{Enc algorithms. Gen is a probabilistic algorithm} \\ \text{that outputs a key k. Enc takes k and $m \in \mathcal{M}$, and outputs ciphertext c. Notation: $c = \mathsf{Enc}_k(m)$. \\ \text{Dec takes k and c, and outputs m. Notation: $m = \mathsf{Dec}_k(c)$. Must have $\mathsf{Dec}_k(\mathsf{Enc}_k(m)) = m$ for all k. The set of valid keys is \mathcal{K}. WLOG, assume Gen chooses a uniform $k \in \mathcal{K}$.} \end{array}$

Definition: Kerchoffs' Principle: An encryption scheme should be designed to be secure even if an eavesdropper knows all the details of the scheme, so long as the attacker doesn't know the key being used.

Definition: Sufficient Key-space Principle: Any secure encryption scheme must have a key space that is sufficiently large to make an exhaustive-search attack infeasible. Necessary, but not sufficient.

Theorem: Bayes Theorem: $\Pr[A|B]$ $\Pr[B|A] \cdot \Pr[A]$ $\Pr[B|A]$

Definition: Perfect Secrecy: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} such that for every probability distribution over \mathcal{M} , every message $m \in \mathcal{M}$, and every ciphertext $c \in \mathcal{C}$, for which $\Pr[C = c] > 0$, $\Pr[M = m \mid C = c] = \Pr[M = m]$. Equivalently, $\forall m, m' \in \mathcal{M}, c \in \mathcal{C}$, $\Pr[\operatorname{Enc}_K(m) = c] = \Pr[\operatorname{Enc}_K(m') = c]$.

Definition: PrivK^{eav}_{A,\Pi}: (Adversarial Indistinguishability Experiment): The Adversary \mathcal{A} outputs $m_0, m_1 \in \mathcal{M}$. $k \leftarrow \mathsf{Gen}$, $b \in \{0, 1\}$ uniformly. $c \leftarrow \mathsf{Enc}_k(m_b)$ is given to \mathcal{A} , called challenge ciphertext. $b' \leftarrow \mathcal{A}$. Output is 1 ("success") iff b' = b, notated PrivK^{eav}_{A,\Pi} = 1.

Definition: Perfect Indistinguishability: An encryption scheme $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ with \mathcal{M} , such that $\forall \mathcal{A}, \Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1] = \frac{1}{2}$.

Theorem: Perfect Indistinguishability ⇔ Perfect Secrecy.

Definition: One-time Pad: Fix $\ell > 0$. $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0,1\}^{\ell}$ (binary strings length ℓ). Gen: uniform $k \in \mathcal{K}$. Enc: $c = k \oplus m$, \oplus is bitwise xor. Dec: $m = k \oplus c$.

Theorem: The one-time pad encryption scheme is perfectly secret.

Theorem: In a perfectly secure encryption scheme, $|\mathcal{K}| \geq |\mathcal{M}|$. (|X| denotes magnitude/size of X.)

Theorem: Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme with $|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|$. It is perfectly secret iff all $k \in \mathcal{K}$ are chosen with probability $1/|\mathcal{K}|$ by Gen, and $\forall m \in \mathcal{M}, c \in \mathcal{C}, \exists ! k \in \mathcal{K} \text{ such that } c = \mathsf{Enc}_k(m)$.

Definition: PPT (Probabilistic Polynomial Time): An adversary which runs for time at most p(n), where n is the security parameter (length of key), and p is a polynomial.

Definition: negl (Negligible): A function f from the natural numbers to the non-negative real numbers such that for every positive polynomial p there is an $N \in \mathbb{N}$ such that $\forall n > N$, $f(n) < \frac{1}{p(n)}$.

Definition: <u>Secure</u>: A scheme where any PPT adversary succeeds in breaking the scheme with at most negligible probability.

Definition: Probabilistic: An algorithm that can "toss a coin" - access unbiased random bits - as necessary.

Theorem: Let $\mathtt{negl}_1, \mathtt{negl}_2$ be negligible functions, p a polynomial. Then $\mathtt{negl}_1(n) + \mathtt{negl}_2(n)$ and $p(n) \cdot \mathtt{negl}_1(n)$ are both negligible.

Definition: Secure: A scheme for which every PPT adversary \mathcal{A} carrying out an attack of some formally specified type, the probability that \mathcal{A} succeeds is negligible.

Definition: We denote an error from Dec by \bot (bottom), when it is asked to decrypt a non-valid ciphertext.

Definition: Fixed-length encryption scheme: An encryption scheme such that for a $k \leftarrow \mathsf{Gen}(1^n)$, Enc_k is only defined for messages $m \in \{0,1\}^{\ell(n)}$ (fixed length messages).

Definition: PrivK^{eav}_{A,II}(n) (Adversarial Indistinguishability Experiment-EAV):, where n is the security parameter, and success is defined as before. However, \mathcal{A} is a PPT adversary, $|m_0| = |m_1|$, but the guessing for b = b' is identical.

Definition: <u>EAV-secure</u> (indistinguishable encryptions in the presence of an eavesdropper): A private key encryption scheme (Gen, Enc, Dec) such than for all PPT adversaries \mathcal{A} , for all n, $\Pr[\operatorname{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1] \leq \frac{1}{2} + \operatorname{negl}(n)$, where the probability is taken over the randomness used by \mathcal{A} and the encryption scheme Π . Equivalently: $|\Pr[\operatorname{out}_{\mathcal{A}}(\operatorname{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n,0)) = 1] -$

 $[\operatorname{out}_{\mathcal{A}}(\operatorname{PrivK}_{\mathcal{A},\Pi}^{\operatorname{eav}}(n,1))=1]\Big| \leq \operatorname{negl}(n).$

Theorem: Let $\Pi = (\mathsf{Enc}, \mathsf{Dec})$ be a fixed-length private-key encryption scheme for messages of length ℓ that has indistinguishable encryptions in the presence of an eavesdropper. Then for all PPT adversaries $\mathcal A$ and any $i \in \{1,\dots,\ell\}$, there is a negligible function negl such that $\Pr[\mathcal A(1^n,\mathsf{Enc}_k(m)) = m^i] \leq \frac12 + \mathsf{negl}(n)$, where m^i is the i^{th} bit of m.

Theorem: Let (Enc, Dec) be a fixed-length private key encryption scheme for messages of length ℓ that is EAV-secure. Then for any PPT algorithm \mathcal{A} there is a PPT algorithm \mathcal{A}' such that for any $S\subseteq\{0,1\}^\ell$ and any function $f:\{0,1\}^\ell\to\{0,1\}, |\operatorname{Pr}[\mathcal{A}(1^n,\operatorname{Enc}_k(m))=f(m)]-\operatorname{Pr}[\mathcal{A}(1^n)=f(m)]| \leq \operatorname{negl}(n).$ That is, \mathcal{A} cannot determine any function f of the original message m, given the ciphertext, with more than negligible probability better than when not given the ciphertext.

Definition: PRG (Pseudo-Random Generator): Let ℓ be a polynomial and G be a deterministic polynomial-time algorithm such that for any n and any input $s \in \{0,1\}^n$, the result G(s) is a string of length $\ell(n)$. The following must hold: For every n, $\ell(n) > n$. For any PPT algorithm D, there is a negligible function negl such that $|\Pr[D(G(s)) = 1] - \Pr[D(r) = 1]| \leq \operatorname{negl}(n)$. ℓ is the expansion factor of G.

Construction: Stream Cipher: Let G be a pseudorandom generator with expansion factor ℓ . Let $\mathsf{Gen}(1^n)$ output a uniform $k \in \{0,1\}^n$. Let $c = \mathsf{Enc}_k(m) = G(k) \oplus m$. Let $\mathsf{Dec}_k(c) = G(k) \oplus c$. This is an EAV-secure private-key encryption scheme. **Definition:** PrivK_{A,II}^{\text{null}}: The EAV experiment, ex-

cept \mathcal{A} presents 2 equal length lists of equal length messages, $\vec{M}_0 = (m_{0,1}, \ldots, m_{0,t})$ and $\vec{M}_1 = (m_{1,1}, \ldots, m_{1,t})$, the challenger chooses one of the lists and returns the ciphertext of all messages from that list, and \mathcal{A} attempts to determine which list was chosen.

Definition: Multiple-EAV-Secure: Same as EAV secure, except with the $\mathsf{PrivK}^{\mathsf{mult}}_{A,\Pi}$ experiment.

Theorem: There are private-key encryption schemes which are EAV-secure but not multiple-EAV-secure.

Theorem: Any multiple-EAV-secure private-key encryption scheme is also EAV-secure.

Theorem: If Π is a stateless encryption scheme in which Enc is deterministic, then Π cannot be multiple-EAV-secure.

Definition: PrivK^{CPA}_{A,II}(n): $k \leftarrow \text{Gen}(1^n)$, then adversary \mathcal{A} is given 1^n and oracle access to $\text{Enc}_k(\cdot)$. \mathcal{A} , after making its oracle calls, outputs m_0, m_1 , a pair of same length messages. b is chosen, $c = \text{Enc}_k(m_b)$ is computed and returned, and \mathcal{A} outputs b'. \mathcal{A} "succeeds" if b' = b, and the experiment

outputs 1. Else, the experiment outputs 0.

Definition: <u>CPA-secure</u> (Chosen Plaintext Attack): A private-key encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ such that for all PPT adversaries A. Pr $\left[\text{PrivK}_{AB}^{\text{CPA}}(n) = 1\right] < \frac{1}{5} + \text{negl}(n)$.

Theorem: CPA-secure \Rightarrow multiple-CPA-secure. **Definition:** Keyed Function: A function $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$, with first input called key k. It is efficient if there is a polynomial-time algorithm that computes F(k,x) given k and x.

Definition: Length-Preserving: A keyed function such that $\ell_{key}(n) = \ell_{in}(n) = \ell_{out}(n)$.

Definition: Func_n: The set of all functions mapping n-bit strings to n-bit strings. $|\operatorname{Func}_n| = 2^{n \cdot 2^n}$. **Definition:** PRF (Pseudo-Random Function): An efficient, length-preserving keyed function such that for all PPT distinguishers

$$D, \quad \left| \Pr[D^{F_k^{(\cdot)}}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1] \right| \le$$

 $\operatorname{negl}(n)$, where f is chosen uniformly from Func_n . $|\operatorname{PRF}| = 2^n$, there are at most that many distinct functions. (Some are not secure.)

Definition: Permutation: A keyed function F such that $\ell_{in} = \ell_{out}$, and for all $k \in \mathcal{K}$, $F_k\{0,1\}^{\ell_{in}(n)} \to \{0,1\}^{\ell_{out}(n)}$ is one-to-one. F_k is efficient if $F_k(x)$ and $F_k^{-1}(x)$ are computable with a polynomial-time algorithm.

Definition: PRP (Pseudo-Random Permutation): Same as a PRF, except F must be indistinguishable from a random $f \in Perm_n$, the set of truly random permutations.

Theorem: If F is a PRP and $\ell_{in}(n) \geq n$, F is a PRF.

 $\Pr[D^{f(\cdot),f^{-1}(\cdot)}(1^n)=1]\Big| \le \operatorname{negl}(n)$, where $f \in \operatorname{Perm}_n$ uniformly. Any strong PRP is a PRP.

Definition: Synchronized: Stream cipher mode where sender and receiver must know how much plaintext has been encrypted/decrypted so far. Typically used in a single session between parties. Definition: Unsynchronized: Stream cipher mode which is stateless, taking a new IV each time.

Definition: ECB Mode (Electronic Code Book): Here, $c := \langle F_k(m_1), F_k(m_2), \dots, F_k(m_\ell) \rangle$, where $m = m_1, m_2, \dots, m_\ell$ is the message and F is a block cipher of length n. Deterministic, and therefore not CPA-secure. Should not be used, only included for historical significance.

Definition: CBC Mode (Cipher Block Chaining): Choose an IV of length n. Then, $c_0 = IV$, $c_1 = F_k(c_0 \oplus m_1)$, $c_2 = F_k(c_1 \oplus m_2)$, and so on. To decrypt, compute $m_\ell = F_k^{-1}(c_\ell) \oplus c_{\ell-1}$, $m_{\ell-1} = F_k^{-1}(c_{\ell-1}) \oplus c_{\ell-2}$, and so on. If F is a PRP, and IV is chosen uniformly at random, then CBC mode is CPA-secure. It cannot be computed in parallel, since encrypting c_i requires c_{i-1} for i > 0. Using c_ℓ as IV for the next encryption is not secure.

Definition: OFB Mode (Output FeedBack): Let IV be uniformly chosen of length n. Then $c_0 = IV$, $c_1 = F_k(IV) \oplus m_1$, $c_2 = F_k(F_k(IV)) \oplus m_2$, ... $c_\ell = F_k^\ell(IV) \oplus m_\ell$, where F_k^ℓ denotes F_k applied ℓ times. F need not be invertible, and m_ℓ need not be of length n, the message may be truncated to match its length. OFB mode is CPA-secure. Using $F_k^\ell(IV)$ as the next IV, producing a synchronized stream cipher, it remains secure.

Definition: CTR Mode (CounTeR): Pick an ctr = IV, then $c_0 = \text{ctr}$, $c_1 = F_k(\text{ctr} + 1) \oplus m_1$, ..., $c_\ell = F_k(\text{ctr} + \ell) \oplus m_\ell$. F need not be invertible. Here, the encryption can be fully parallelized.

CTR mode is CPA-secure, assuming F is a PRF. The stateful variant, where $F_k(\mathtt{ctr} + \ell)$ is used as the new IV, remains secure.

Note: None of these schemes achieve message integrity in the sense of chapter 4.

Definition: PrivK $_{A,\Pi}^{\text{CCA}}(n)$: The adversary \mathcal{A} is given access to a decryption oracle in addition to an encryption oracle, then outputs m_0, m_1 , gets $c := \operatorname{Enc}_k(m_b)$, the challenge ciphertext, and tries to determine b'. \mathcal{A} again has oracle access, but cannot query the decryption oracle with c. Success is as defined in previous experiments.

Definition: <u>CCA-Secure</u> (Chosen Ciphertext Attack): A private-key encryption scheme Π such that for all PPT adversaries \mathcal{A} , $\Pr[\mathsf{PrivK}^{\mathsf{CCA}}_{\mathcal{A},\Pi}(n) = 1] \leq \frac{1}{2} + \mathsf{negl}(n)$. Any CCA-secure scheme is also multiple-CCA-secure.

Note: NOTHING above this point is CCA-secure. Definition: Non-Malleability: An encryption scheme with the property that if the adversary tries to modify a given ciphertext, the result is either an invalid ciphertext or one whose corresponding plaintext has no relation to the original plaintext. **Definition:** MAC (Message Authentication Code): Three probabilistic polynomial-time algorithms GenMacVrfy such that Gen takes 1^n , outputs k with $|k| \geq n$. Mac, the tag-generation algorithm, takes k and $m \in \{0,1\}^*$ and outputs tag t. Deterministic Vrfy takes k, m, t, and outputs b, where b = 1 means t is a valid tag for m with key k, and b = 0 means it is not. It must be that $\mathsf{Vrfy}_k(m,\mathsf{Mac}_k(m)) = 1$. If Mac_k is only defined for $m \in \{0,1\}^{\ell(n)}$, we call it a fixed-length MAC. Definition: Canonical Verification: Deterministic MACs (Mac is deterministic), where $Vrfy_k(m,t)$ computes $\tilde{t} := \mathsf{Mac}_k(m)$, and out puts 1 iff $\tilde{t} = t$.

Definition: Secure MAC (Existentially Unforgeable Under an Adaptive Chosen-Message Attack): A MAC such that for all PPT adversaries \mathcal{A} , $\Pr[\mathsf{Mac\text{-}forge}_{\mathcal{A},\Pi}(n) = 1] \leq \mathsf{negl}(n)$. Note: This definition offers no protection against replay attacks

Definition: Strong MAC: MAC such that (m,t) cannot have been previously output by the oracle, but using (m,t') is a valid guess.

Theorem: With a canonical Vrfy, Strong Mac \Leftrightarrow Secure MAC.

Construction: : $\mathsf{Mac}_k(m) = F_k(m)$, where $k \in \{0,1\}^n$, $m \in \{0,1\}^n$, and F a PRF. Vrfy is canonical. If $|m| \neq |k|$, Mac outputs nothing, and Vrfy outputs 0. This construction is a secure fixed-length MAC.

Construction: Another Mac_k : Chop m into n-bit blocks, m_1, m_2, \ldots, m_d , let $t_i = \mathsf{Mac}'(m_i)$, and use (t_1, t_2, \ldots, t_d) as the tag.

This is bad. This can be easily broken using a reordering attack. Present $m=m_1,m_2$, get tag t_1,t_2 . Then message $m'=m_2,m_1$ will have tag t_2,t_1 , which will pass Vrfy.

To combat this attack, break m into $\frac{n}{2}$ -bit blocks m_1,\ldots,m_d , then $t_i=\mathsf{Mac}_k'(\langle i \rangle \mid \mid m_i)$, where $\langle i \rangle$ is the $\frac{n}{2}$ -bit binary encoding of i. This prevents the reordering attack.

This scheme is still insecure. Since we have an arbitrary-length message Mac , we can use a truncation attack, and present $m=m_1,m_2,m_3,$ get $(t_1,t_2,t_3).$ Then we can present $m'=m_1,m_2.$ The

tag (t_1, t_2) will be valid for m'.

To prevent the truncation attack, we will include the length ℓ of the full message in the calculation. We will chop our message into $\frac{n}{3}$ -bit blocks. Then $t_i = \mathsf{Mac}'_k(\langle \ell \rangle \parallel \langle i \rangle \parallel m_i)$. Note: We pad the last block with 0's if necessary. The tag will be (t_1, \ldots) . By this point, we are sending 4ℓ bits.

Unfortunately, even this scheme is still insecure. It can be attacked with a "mix and match" attack. For example, get tag $t = (t_1, t_2, t_3)$ for $m = m_1, m_2, m_3$. Take another message, same length, $m' = m_4, m_5, m_6$, get tag $t' = (t_4, t_5, t_6)$. Then (t_1, t_5, t_6) is a valid tag for m_1, m_5, m_6 , which has never been queried from the oracle before.

Finally, let's fix all of this! We'll chop our message $m=m_1,\ldots,m_d$ into $\frac{n}{4}$ bit blocks, and pick a random $\frac{n}{4}$ -bit value r for the entire message, and $t_i=\mathsf{Mac}'_k(r\mid\mid\langle\ell\rangle\mid\mid\langle i\rangle\mid\mid m_i)$. $\mathsf{Mac}_k(m)=(r,t_1,\ldots,t_d)$. At this point, this is not a deterministic Mac , so Vrfy has to behave slightly differently, taking into account the random r passed to it. It can reconstruct the tag as above, with this slight extra step.

This is secure!

But it does produce a tag of 4x the length of the message.

Construction: <u>CBC-MAC</u>: Used widely in practice. On input a key $k \in \{0,1\}^n$, m of length $\ell(n) \cdot n$, let $\ell = \ell(n)$, parse $m = m_1, \ldots, m_\ell$, set $t_0 := 0^n$, then for $i \in \{1,\ell\}$, $t_i := F_k(t_i - 1)$, where F is a PRF. Output t_ℓ only as the tag. Vrfy is done in the canonical way.

To extend this to arbitrary length messages, prepend the message with length |m|, encoded as an n-bit string.

Alternatively, have keys k_1 , k_2 , compute CBC-MAC using k_1 , then output tag $\hat{t} := F_{k_2}(t)$.