# Encoder-Decoder Models Attention. "The" transformer model.

Venelin Kovatchev

Lecturer in Computer Science

v.o.kovatchev@bham.ac.uk

#### Outline

- Quick recap
- Encoder-decoder networks
- Attention
- Original transformer

# Quick recap: End-to-end neural networks

#### What are end-to-end models

Task specific models

• Map directly from input to output

No feature engineering

- Trained via backpropagation
  - Data and compute expensive

#### What are some advantages of end-to-end

Better performance

• Simpler pipeline

- Changing the problem formulation
  - The task is defined by the data and the metrics

- Making NLP more accessible
  - Plug and play



### Challenges with going end to end

- My take on key challenges
  - Computational and data cost
  - Dependency on data and task formulation
  - Explainability and Interpretability
  - Bias, guarantees, and robustness

#### Explainability and Interpretability

- Interpreting feature-based models
  - Feature values ("v1agra") + weights = prediction ("spam")

- Interpreting end-to-end neural networks
  - Feature values (300d dense vector)
  - weights (input, forget, output gates)
  - different types of nonlinearity



# Explainability and Interpretability

Provide a (valid) justification for the model behavior

• Provide a faithful explanation of the model behavior

- Provide an explanation that is useful for a human
  - To assess the model
  - To learn how to perform the task
  - In a Human-Computer collaboration

#### Bias, Guarantees, and Robustness

- An end-to-end neural network finds the (mathematically) optimal solution to a formally defined problem
- Sometimes the optimal solution can lead to undesired behavior
  - bias with respect to race, gender, religion, sexual orientation
  - "shortcuts" to solving tasks

- How do we guarantee the model is consistent and bias-free?
  - Evaluation and algorithmic fairness
- How do we know if the algorithm is safe from adversarial attacks?



#### What networks do we know so far



• Recurrent neural networks (RNN) (+ LSTM, GRU)

Convolutional neural networks (CNN)

• Pop quiz: are these networks for supervised or unsupervised NLP?

# Encoder-Decoder Models

#### Input and output in NLP tasks

- What is the input and output of the following tasks
  - Sentiment analysis
  - Automated fact checking
  - Clustering documents based on topic
  - Machine translation

How many possible outputs does each of those tasks have?

#### Sequence labeling vs sequence-to-sequence

Consider the following two tasks

What is similar between them?

What is different?

How would you approach each of them?





# Key differences

Same length vs different length

• One-to-one alignment vs no one-to-one alignment

- Local dependencies vs long-distance dependencies
  - Within the output
  - Between the input and the output

#### Different task formulations

- Which of the following images corresponds to:
  - FFN
  - RNN for text classification
  - Machine translation
  - Image captioning
  - Sequence labeling



#### Encoder decoder

• We use a model family called encoder-decoder

- Simple idea
  - Encoder "represents" the source (e.g., English)
  - Decoder "generates" the target (e.g., German)

• Can you suggest tasks that can use encoder-decoder?



#### Usage of encoder decoder

- General usage of encoder decoder
  - Mapping between data of different format, size, and structure
  - Encoder-decoder vs sequence-to-sequence
- Examples for tasks that can use encoder-decoder:
  - Machine translation
  - Text summarization
  - Question answering
  - Image captioning



#### How do we implement encoder-decoder?

• Can you propose a way to implement enc-dec model with what we know so far?

How do we encode the input?

• How do we decode the output?

#### Single RNN as encoder decoder

Let's consider a single RNN for the task

- Add a separator between the two texts:
  - [sentence] [in] [English] [SEP] [sentence] [in] [German]

• The hidden state at SEP will contain all the information about the first sentence

# Conditional generation

How does a traditional language model generate text?

How does an encoder-decoder RNN generate text?

Does that concept look familiar?

#### A single RNN as encoder-decoder

- Consider using the following model
  - We use "English" as a "prompt"
  - Hidden state at <s> "encodes" the text
- We generate Spanish step by step from x and h hidden laver(s) embedding Source Text

softmax

(output of source is ignored)

Target Text

- What would be some problems with this model?
  - What if the task was text captioning?

#### Using separate RNNs for encoder and decoder

- Train two models
- Pass the context at every step

$$\mathbf{h}_t^d = g(\hat{y}_{t-1}, \mathbf{h}_{t-1}^d, \mathbf{c})$$

- Can you point a potential problem?
  - What could improve this architecture?

- What is the purpose of the encoder?
  - Should it be able to generate?



#### Formal representation of RNN based decoder

- The context is the last h of the encoder
- The hidden stage at step 0 is just the context
- For every step after 0, we use both h and c
- We use the hidden state to predict y at time t

Why is there a "y" at the calculation of the hidden state h<sup>d</sup><sub>t</sub>?

$$\mathbf{c} = \mathbf{h}_{n}^{e}$$

$$\mathbf{h}_{0}^{d} = \mathbf{c}$$

$$\mathbf{h}_{t}^{d} = g(\hat{y}_{t-1}, \mathbf{h}_{t-1}^{d}, \mathbf{c})$$

$$\mathbf{z}_{t} = f(\mathbf{h}_{t}^{d})$$

$$y_{t} = \operatorname{softmax}(\mathbf{z}_{t})$$

#### Training encoder-decoder models

Models are trained end-to-end

• Encoder is trained through hidden layers

- Decoder is trained through teacher forcing
  - Remember "teacher forcing"?



#### Why are encoder-decoder models important?



Google Translate switching to NMT

• Key concepts reused (and giving raise to) Attention and Transformers

• Bridging the gap between modalities

# Encoder decoder across modalities: image captioning

The encoder and decoder "talk" via the context

• They don't have to be the same type of model

- The modalities don't have to match
  - Speech to text
  - Image to text



# Attention

#### A bottleneck of RNNs

 Consider the problem of MT and an encoderdecoder solution

• The "context" is the information from the input that we need to generate the target

• To generate word  $y_{t'}$  we use the prior information for  $y_1 - y_{(t-1)}$  and the same c

Should c be the same for every word?





#### Attention – intuition and restrictions

Intuition: each token in the target should use a "personalized" context

Access all the hidden states in the encoder

• Still needs to have a fixed length, regardless of variable input length

Any ideas how we can do that?

#### Attention – basic implementation

- Weighted sum of all encoder hidden states
  - Calculated separately at each decoder step
  - Using the hidden state at (t-1)

- Dot product attention
  - Calculate the similarity between h<sub>(t-1)</sub> and each encoder state h<sup>e</sup>
  - Use the similarity scores to calculate the weighted sum



# Dot product attention (formally)

• Scoring function:

$$score(\mathbf{h}_{i-1}^d, \mathbf{h}_{j}^e) = \mathbf{h}_{i-1}^d \cdot \mathbf{h}_{j}^e$$

• Weight vector:

$$\alpha_{ij} = \operatorname{softmax}(\operatorname{score}(\mathbf{h}_{i-1}^d, \mathbf{h}_{j}^e))$$

$$= \frac{\exp(\operatorname{score}(\mathbf{h}_{i-1}^d, \mathbf{h}_{j}^e))}{\sum_{k} \exp(\operatorname{score}(\mathbf{h}_{i-1}^d, \mathbf{h}_{k}^e))}$$

• Personalized context:

$$\mathbf{c}_i = \sum_j lpha_{ij} \, \mathbf{h}_j^e$$

• More complex scoring functions:

$$score(\mathbf{h}_{i-1}^d, \mathbf{h}_{j}^e) = \mathbf{h}_{t-1}^d \mathbf{W}_s \mathbf{h}_{j}^e$$

#### Visualization of RNN with attention

RNN with attention

• Attention is learned via a simple FFN



#### Visualizing attention

Linear weights are interpretable

• We can see which word is more important

Can we use attention for explainability?



# Attention is all you need The original Transformer

#### Training vs Finetuning

Simple end-to-end models are trained for a single task

• Word embeddings can be reused, compositionality is learned

- Transfer learning has limited capabilities
  - From similarity to inference
  - From emotion to sentiment

### Need for powerful transfer learning models

- Generic representation framework
  - Represent (contextual) word meaning
  - Represent interactions between words
  - Capture different types of meaning and interactions

• Easy to adapt to new tasks with minimal adjustment

- Looks familiar?
  - Many of the problems and RQs remain the same, just the context changes

### Look back at ELMO

- ELMO embeddings meet most of those expectations
  - In-context meaning
  - Interactions between words
  - Deep representation capturing different relations
  - Task specific weight learning

Pop quiz: how did ELMO embeddings work?

### Elmo architecture

How can we improve over that?



### Self attention

 Attention works better than RNN/LSTM for encoder-decoder models

Can we use attention for a standalone network?



# Self attention (2)

Self attention is a key concept in building transformers

 It applies the same approach as attention in encoder-decoder, but on itself





### Causal attention vs bidirectional attention

• In encoder-decoder attention, the attention is the weighted sum of all hidden states of the encoder

- Which hidden states do we use in self attention?
  - Why?



### Causal self attention

Causal self-attention is used in models like GPT

- Two key properties
  - Only calculated using words in one direction (left for european languages)
  - Each representation at a layer L is calculated independently of the others

- How does this compare to RNNs and LSTMs?
  - Why are these two properties important?

# Pop quiz

• Can a transformer model process infinite input?

• Can an RNN be (natively) parallelized?

### Causal self attention (intuition)

- Similar to RNNs, we have a 1:1 input-output mapping
- Same basic approach as original attention
  - Dot product + softmax + weighted sum

$$score(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i \cdot \mathbf{x}_j$$

$$\alpha_{ij} = \operatorname{softmax}(\operatorname{score}(\mathbf{x}_i, \mathbf{x}_j)) \ \forall j \leq i$$

$$= \frac{\exp(\operatorname{score}(\mathbf{x}_i, \mathbf{x}_j))}{\sum_{k=1}^{i} \exp(\operatorname{score}(\mathbf{x}_i, \mathbf{x}_k))} \ \forall j \leq i$$

$$\mathbf{a}_i = \sum_{j \leq i} lpha_{ij} \mathbf{x}_j$$





### Decomposing input vectors

• We can use simple attention

• Transformers introduce query, key, value

- What are they, why do we need them and how do we use them?
  - The "dictionary" analogy
  - A semantic explanation, grounded in NLP

### The LSTM and RNN

What is the difference between LSTM and RNN?

Why do we need that "evolution"?

- Break a single hidden state into two + gates
  - Filtering and specialization





# Compositionality of meaning

- Consider the following phrases
  - "A black dog"
  - "A house for my dog"

• What is the meaning of the dog in each phrase?

• Where is the dog in the second picture?





# Compositionality of meaning (2)

- What about "A house for my black dog"?
  - Does "dog" change the meaning of "house"?
  - Does "house" change the meaning of "dog"?
  - Does "dog" change the meaning of "black"?
  - Does "black change the meaning of "dog"?

Meaning compositionality can be asymmetrical!

### Different aspects of meaning compositionality

• Meaning compositionality is not a simple addition

Words "behave" differently in different context

- Socher's Vector-Matrix representation
  - Vector for the head, matrix for the complement



Pop quiz: what would be the vector and what would be the matrix in "black dog"?

# How to model asymmetric compositionality in attention?

• Self attention (that we have seen) has 1:1 correspondence

- Dot product attention is commutative
  - $a \cdot b = b \cdot a$
  - score("black", "dog") = score("dog", "black")



• Pop quiz: would "black" have the same importance on "dog" as "dog" would have on "black"?

### The query, key, value

- We project the input vector x to three vectors that serve different purpose: "query", "key", and "value"
- Two vector operations in the original attention:
  - "Score": for indexes i and j, calculate how important is  $x_j$  for  $x_i$ : score( $x_i$ ,  $x_j$ )
  - "Scale": for index i, calculate the hidden state  $h_i$  as a weighted sum of  $x_1 \dots x_i$ :  $h_i = \sum_{j \le i} \alpha_{ij} x_j$
- Each input vector x can three different roles
  - Argument 1 in score() ["dog" in score("dog", "black")] -> query
  - Argument 2 in score() ["dog" in score("black", "dog")] -> key
  - The **value** used in scale to calculate the hidden state

# Query, Key, Value (formally)

- We learn three different matrices (WQ, WK, WV)
- Every input vector  $x_i$  is projected to three different representations

• 
$$q_i = x_i W^Q$$
;  $k_i = x_i W^K$ ;  $v_i = x_i W^V$ 

- The new formula for score:  $score(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{q}_i \cdot \mathbf{k}_j$
- The new formula for calculating weights:  $\mathbf{a}_i = \sum_{j \leq i} \alpha_{ij} \mathbf{v}_j$

• Pop quiz: which token will have the most impact on  $x_3$ ?

### The transformer self attention

1. 
$$\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{Q}}; \mathbf{k}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{K}}; \mathbf{v}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{V}}$$

2. and 3. 
$$\operatorname{score}(\mathbf{x}_i, \mathbf{x}_j) = \frac{\mathbf{q}_i \cdot \mathbf{k}_j}{\sqrt{d_k}}$$

$$\alpha_{ij} = \operatorname{softmax}(\operatorname{score}(\mathbf{x}_i, \mathbf{x}_j)) \ \forall j \leq i$$

5. and 6. 
$$\mathbf{a}_i = \sum_{j \leq i} \alpha_{ij} \mathbf{v}_j$$



# Parallelizing and masking the future

- Calculating hidden state h<sub>t</sub> is independent of h<sub>(t-1)</sub>
- We can compute all hidden states in a single operation

• 
$$Q = XW^Q$$
;  $K = XW^K$ ;  $V = XW^V$ 

- A = SelfAttention (Q,K,V) = softmax( $\frac{QK^T}{\sqrt{d_k}}$ )V
- Can you see a problem for causal self attention?

|   | q1•k1 | -∞    | -∞    | -∞    | -∞    |
|---|-------|-------|-------|-------|-------|
|   | q2•k1 | q2•k2 | -8    | -8    | -8    |
| Ν | q3•k1 | q3•k2 | q3•k3 | -8    | -∞    |
|   | q4•k1 | q4•k2 | q4•k3 | q4•k4 | -∞    |
|   | q5•k1 | q5•k2 | q5•k3 | q5•k4 | q5•k5 |
|   | N     |       |       |       |       |

• Pop quiz: What is the complexity of the self-attention w.r.t. length of the input?

### Multiheaded self-attention

- Instead of using a single self attention, we can use multiple
  - Each "head" has its own weights W<sup>Q</sup>, W<sup>K</sup>, W<sup>V</sup>
  - The outputs of all heads are concatenated and projected to input dimensions

• Formally:

$$\mathbf{Q} = \mathbf{X} \mathbf{W}_i^Q \; ; \; \mathbf{K} = \mathbf{X} \mathbf{W}_i^K \; ; \; \mathbf{V} = \mathbf{X} \mathbf{W}_i^V \\ \mathbf{head}_i = \mathrm{SelfAttention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) \\ \mathbf{A} = \mathrm{MultiHeadAttention}(\mathbf{X}) = (\mathbf{head}_1 \oplus \mathbf{head}_2 ... \oplus \mathbf{head}_h) \mathbf{W}^O$$

### The transformer block

- Residual connection
  - Copy the input of a layer to its output
- Layer normalize
  - Rescale each x vector to 0-mean with STD=1
- Feedforward
  - Apply the same fully connected FFN to each x



# The transformer block (formally)

- Simplified representation
  - O = LayerNorm(X + MultiHeadAttention(X))
  - H = LayerNorm(O + FFN(O))

• You can change the order of operations in some implementaitons

### Does transformer consider word order?

• Consider an autoregressive transformer

Does it handle long-distance dependencies?

- Does it handle word order?
  - Does the position of x1 and x2 matter?



# Encoding the Input. Positional Embeddings.

- Semantic embeddings
  - One-hot encoding maps to a row in a matrix
- Positional embeddings
  - One embedding for each position
  - Learnable; Same dimension as semantic
- Add semantic and positional embeddings



• Alternative techniques: use functions (sine/cosine); calculate relative positional embeddings

# Classification layer: The "Head" of the model

- How did we train word2vec?
  - How did we reduce the computational cost?

- The concept of transfer learning
  - Train on one objective
  - Reuse the model on another task
  - We keep the stacked transformer blocks, change the "head"

# Language modeling head

- Language modeling
  - Efficient for learning representations
  - Self-supervised

- Project h<sub>N</sub> to vocabulary size
  - Do we know any computational tricks for that?
  - What would h<sub>N</sub> look like?



### A final transformer representation for LM

Token + positional embedding

Multiple stacked transformer blocks

- A classification head
  - Language modeling with weight tying and sampling



# Conclusions

### Encoder decoder models

- Dealing with tasks where input and output are mismatched
  - Different length
  - No 1 to 1 alignment

- We use one model to encode the input (image, text in English)
- We use another model to generate text in target language

• Simple encoder decoder is based on RNNs/LSTMs

### Attention

• RNNs have problems with long-distance dependencies

Decoding from a single hidden state is restricted

- Attention uses all hidden states and compares current decoder state
  - Dot product attention

### Transformers

Self attention builds upon the attention from encoder-decoder

• Query, Key, Value project the input based on its function

Multiheaded attention stacks multiple self attentions

# Transfer learning

• The goal of transformers – learn contextual (and text) representations and reuse

• The head of the transformer determines the task

• Multiple problems can be framed as classification or generation