# Improved Multi-armed Bandit Mechanisms for Sponsored Search Auctions

Divya Padmanabhan<sup>†</sup>, Satyanath Bhat<sup>†</sup>, Prabuchandran K.J.\*, Shirish Shevade<sup>†</sup>, Y. Narahari<sup>†</sup> Dept. of CSA, IISc, Bangalore; \* IBM IRL, Bangalore



# **Sponsored Search Auctions (SSA)**

Consider a set of ads competing for a slot in a search engine's sponsored ads slots.

- $\blacktriangleright$  Ad *i* has click through rate  $\mu_i$
- ightharpoonup Agent *i* has valuation per click  $\theta_i$
- Expected Social Welfare for agent i,  $W_i = \mu_i \theta_i$
- ► Planner wants to allocate a slot to the agent with maximum social welfare.



# Multi-armed Bandit Algorithms

- ► Pull arms that have yielded high rewards? Or explore new arms?
- ► Explore-exploit dilemma
- Popular MAB algorithms:
- ▶ Upper Confidence Bound (UCB)
- ▶ Thompson Sampling
- The samples we get are only of the clicks. We never get to observe samples of social welfare!
- ▶ If  $\theta_i$  known, use MAB algorithms



# Mechanism Design

- lacktriangle Mechanism  $<\mathcal{A},\mathcal{P}>$  is a tuple with allocation rule and payment rule
- ► Need to design mechanisms satisfying some properties
  - Dominant Strategy Incentive Compatible (DSIC): Truthful reporting yields the best utility for every agent under all circumstances  $u_i(\theta_i, b_{-i}, \rho, t; \theta_i) \ge u_i(b_i, b_{-i}, \rho, t; \theta_i)$
  - Individually Rational (IR): Truthful reporting yields a non-negative utility  $u_i(\theta_i, b_{-i}, \rho, t; \theta_i) \geq 0$
- Example: House being auctioned, 4 participants



- Vickrey Clarke Grove (VCG)Mechanism [4]
- Externality based payment
- ► Highest bidder wins (110)
- ► Pays 2nd highest bid(50)
- ► Mechanism is DSIC, IR

# MAB Mechanisms

- ► Allocation Rule
  - $\triangleright$   $\mathcal{A}$  is given by the MAB algorithm eg. UCB.
  - $\triangleright$   $I_t$  arm pulled/allocated at time t,
  - $\triangleright$   $W_*$ : Expected social welfare of the best agent
  - $\triangleright Regret(A) = \sum_{t=1}^{T} W_* W_{I_t}$
  - ightharpoonup MAB algorithm should not pull sub-optimal arms "very often" (logarithmic in T is alright) Eg.  $T=10^6$ ,  $\log T=6$
- ► Payment for selected agent: eg. VCG scheme

# **Existing MAB Mechanisms**

- ► Characterisation of truthful MAB Mechanisms [1], [2]
  - DSIC truthful mechanism ⇒ Exploration separated (No payment in the rounds where learning happens)
  - DSIC truthful, Deterministic mechanisms  $\implies$  Regret  $\Omega(T^{2/3})$  (Eg.  $T=10^6$ ,  $\log T=6$ ,  $T^{2/3}=10000$ )

# **Some Key Observations:**

- $ightharpoonup \Omega(T^{2/3})$  exploration rounds needed for distinguishing arms that are arbitrarily close.
- ► Planner may not differentiate between arbitrarily close arms.
- Forced to suffer regret  $\Omega(T^{2/3})$  even then!

# Our Approach for Single Slot SSA: Δ-UCB [3]

- ightharpoonup Allow the planner to specify a parameter  $\Delta$ , the resolution to which arms must be distinguished
- ▶ Define  $\Delta$ -regret =  $\sum_{t=1}^{T} (W_* W_{I_t}) \mathbb{1} [I_t \in [K] \setminus S_{\Delta}]$
- ightharpoonup Design truthful mechanisms with logarithmic regret  $\Delta$ -regret
- **Δ**-UCB Algorithm:

# Exploration rounds

- ightharpoonup Explore for  $\gamma = 8K\theta_{max}^2 \log T/\Delta^2$  rounds, free for all agents
- ▶ Obtain LCB, UCB indices  $\widehat{\mu}_{i,\gamma}^-$ ,  $\widehat{\mu}_{i,\gamma}^+$  for every agent

Exploitation rounds  $(\gamma + 1 \dots T)$ 

- ► Choose agent  $\hat{i}_* = \arg\max_{i \in [K]} \widehat{\mu}_{i,\gamma}^+ b_i$  (Best agent according to estimated social welfare)
- $P_{\hat{i}_*} = \hat{\mu}_{j,\gamma}^+ b_j / \hat{\mu}_{\hat{i}_*,\gamma}^+ \text{ (weighted VCG payment)}$

# Properties of $\Delta$ -UCB

- **Δ**-UCB mechanism is dominant strategy incentive compatible (DSIC) and individually rational (IR).
- ▶ If the  $\Delta$ -UCB mechanism is executed for a total time horizon of T rounds, it achieves an expected  $\Delta$ -regret of  $O(\log T)$ .

# Extension to Multi-slot SSA

- ► *M* slots to be allocated
- $\blacktriangleright$  Ad *i* has click through rate  $\mu_i$
- ightharpoonup Agent *i* has valuation per click  $\theta_i$
- $ightharpoonup \Gamma_m$ : Probability that an ad at slot m is observed
- Expected Social Welfare for agent i when allocated slot m,  $W_{i,m} = \Gamma_m \mu_i \theta_i$ ,  $\Gamma_m, \mu_i, \theta_i$  all are unknown!

# Δ-UCB for Multi Slot SSA

A useful property of  $\Gamma_m$ s:  $\Gamma_1=1\geq \Gamma_2\geq \ldots \Gamma_M$ . Suppose  $\Gamma_m$ s are known.

Exploration Rounds:

- Explore for  $\gamma = \lceil 8K\theta_{max}^2 \log T/\Delta^2 \rceil$  rounds, free for all agents
- ▶ Obtain LCB, UCB indices  $\widehat{\mu}_{i,\gamma}^-$ ,  $\widehat{\mu}_{i,\gamma}^+$  for every agent

Exploitation rounds  $(\gamma + 1 \dots T)$ :

- Select the best  $\widehat{M}$  agents as per  $\arg\max_{i\in[K]}\widehat{\mu}_{i,\gamma}^+b_i$
- ► Use weighted VCG payment to decide the amount agents pay to the planner

 $= \left(1/\Gamma_m \mu_{\widehat{K}^{(m)}}^+\right) \sum_{l=m+1}^{M+1} \left(\Gamma_{l-1} - \Gamma_l\right) \widehat{\mu}_{K^{(l)},u}^+ b_{K^{(l)}} \rho_{\widehat{K}^{(m)}}(t)$ 

ightharpoonup Payments are a function of  $ho_m \ orall m$ 

If  $\Gamma_m$  unknown? Interestingly, can be shown that setting any value for  $\Gamma_m$  works! Need to ensure that  $\Gamma_1=1\geq \Gamma_2\geq \ldots \Gamma_M$ 

# **Open Problems**

- Find the payments so that planner gets maximum revenue.
- ightharpoonup General scenario where  $\Gamma$  is unknown and depends on the ad as well.

# References

- [1] M. Babaioff, Y. Sharma, and A. Slivkins. Characterizing truthful multi-armed bandit mechanisms. *SIAM Journal on Computing*, 43(1):194–230, 2014.
- [2] N. Gatti, A. Lazaric, M. Rocco, and F. Trovo. Truthful learning mechanisms for multi-slot sponsored search auctions with externalities. *Artificial Intelligence*, 227:93–139, 2015.
- [3] D. Padmanabhan, S. Bhat, P. K. J., S. Shevade, and Y. Narahari. A dominant strategy truthful, deterministic multi-armed bandit mechanism with logarithmic regret. In *International Conference on Autonomous Agents and Multiagent Systems (AAMAS'17) (To appear)*, 2017.
- [4] W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The Journal of Finance, 16(1):8-37, 1961.

# Improved Multi-armed Bandit Mechanisms for Sponsored Search Auctions

Divya Padmanabhan PhD Student, Dept. of CSA, IISc, Bangalore

Advisors: Prof. Shirish Shevade, Prof. Y. Narahari

April 7, 2017

# Sponsored Search Auctions (SSA)



- Ads shown against search results
- Advertiser pays search engine if his ad receives a click
- Search engine must decide:
  (1) how to allocate slots
  (2) payment for clicks

# Sponsored Search Auctions

- Ad i has click through rate  $\mu_i$
- Agent i has valuation per click  $\theta_i$
- Expected Social Welfare for agent i,  $W_i = \mu_i \theta_i$
- Planner wants to allocate a slot to the agent with maximum social welfare.

Ads ①

#### Nikon Next: Digital

www.nikonnext.com/ Visualize what can be accomplished Creativity holds no boundary

#### Canon Camera Camcorders

www.homeshop18.com/canon\_camer. Lowest Prices. 1 YR Warranty. Free Home delivery. Explore Now! 31 people in Bangalore, Karnataka +1'd HomeSnop18

#### Samsung Digital Cameras

www.samsung.com/in/DigitalCameras Fastest and Easiest Wireless Camera With HD Shooting.Check Now!

#### Fujifilm X-Pro1 Camera www.fujifilmcameras.in/

Classic mirror-less interchangeable lens camera. Know more today.

# Sponsored Search Auctions

- Ad i has click through rate  $\mu_i$
- Agent i has valuation per click  $\theta_i$
- Expected Social Welfare for agent i,  $W_i = \mu_i \theta_i$
- Planner wants to allocate a slot to the agent with maximum social welfare.
- Do we know  $\mu_i$ ? NO!

Ads ①

#### Nikon Next: Digital

www.nikonnext.com/ Visualize what can be accomplished Creativity holds no boundary

#### Canon Camera Camcorders

www.homeshop18.com/canon\_camer. Lowest Prices. 1 YR Warranty. Free Home delivery. Explore Now! 31 people in Bangalore, Karnataka +1'd HomeShop18

#### Samsung Digital Cameras

www.samsung.com/in/DigitalCameras Fastest and Easiest Wireless Camera With HD Shooting.Check Now!

#### Fujifilm X-Pro1 Camera www.fujifilmcameras.in/

Classic mirror-less interchangeable lens camera. Know more today.

# Sponsored Search Auctions

- Ad i has click through rate  $\mu_i$
- Agent i has valuation per click  $\theta_i$
- Expected Social Welfare for agent i,  $W_i = \mu_i \theta_i$
- Planner wants to allocate a slot to the agent with maximum social welfare.
- Do we know  $\mu_i$ ? NO!
- Do we know  $\theta_i$ ? NO!



Ads ①

#### Nikon Next: Digital

www.nikonnext.com/ Visualize what can be accomplished Creativity holds no boundary

#### Canon Camera Camcorders

www.homeshop18.com/canon\_camer. Lowest Prices. 1 YR Warranty. Free Home delivery. Explore Now! 31 people in Bangalore, Karnataka +1'd HomeShop18

#### Samsung Digital Cameras

www.samsung.com/in/DigitalCameras Fastest and Easiest Wireless Camera With HD Shooting.Check Nowl

#### Fujifilm X-Pro1 Camera www.fujifilmcameras.in/

Classic mirror-less interchangeable lens camera. Know more today.



# Multi-armed Bandits for Learning $\mu$

Reward from Bernoulli with  $\mu_1$ =0.9



Reward from Bernoulli with  $\mu_2$ =0.1



More likely to get 1!

More likely to get 0!

At every time instant need to choose a machine/arm which will give highest reward  $\in \{0,1\}$ . But means are unknown!

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. "Finite-time Analysis of the Multiarmed Bandit Problem".

William R. Thompson. "On the Likelihood that One Unknown Probability Exceeds Another in View of the Evidence of Two Samples". In: *Biometrika* 25.3/4 (1933), pp. 285–294.

# Multi-armed Bandits for Learning $\mu$

Reward from Bernoulli with  $\mu_1$ =0.9



Reward from Bernoulli with  $\mu_2$ =0.1



More likely to get 0!

More likely to get 1!

At every time instant need to choose a machine/arm which will give highest reward  $\in \{0,1\}$ . But means are unknown!

### Which arm to choose?

- Pull arms that have yielded high rewards?
- Explore new arms?
- Exploration-exploitation dilemma

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. "Finite-time Analysis of the Multiarmed Bandit Problem". In: Journal of Machine Learning Research (JMLR) 47.2-3 (2002), pp. 235–256.

William R. Thompson. "On the Likelihood that One Unknown Probability Exceeds Another in View of the Evidence of Two Samples". In: *Biometrika* 25.3/4 (1933), pp. 285–294.

# Multi-armed Bandits for Learning $\mu$

Reward from Bernoulli with  $\mu_1$ =0.9



Reward from Bernoulli with  $\mu_2$ =0.1



More likely to get 0!

More likely to get 1!

At every time instant need to choose a machine/arm which will give highest reward  $\in \{0,1\}$ . But means are unknown!

#### Which arm to choose?

- Pull arms that have yielded high rewards?
- Explore new arms?
- Exploration-exploitation dilemma
- State of the art MAB algorithms:
  - Upper Confidence Bound (UCB)
  - Thompson Sampling

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. "Finite-time Analysis of the Multiarmed Bandit Problem". In: Journal of Machine Learning Research (JMLR) 47,2-3 (2002), pp. 235–256.

William R. Thompson. "On the Likelihood that One Unknown Probability Exceeds Another in View of the Evidence of Two Samples". In: *Biometrika* 25.3/4 (1933), pp. 285–294.

- Ad i has click through rate  $\mu_i$
- Agent i has valuation per click  $\theta_i$
- Expected Social Welfare for agent i,  $W_i = \mu_i \theta_i$
- Planner wants to allocate a slot to the agent with maximum social welfare.
- The samples we get are only of the clicks. We never get to observe samples of social welfare!

Ads ①

#### Nikon Next: Digital

Www.nikonnext.com/ Visualize what can be accomplished Creativity holds no boundary

#### Canon Camera Camcorders www.homeshop18.com/canon camera

Lowest Prices. 1 YR Warranty. Free Home delivery. Explore Now! 31 people in Bangalore, Karnataka +1'd HomeShop18

#### Samsung Digital Cameras

www.samsung.com/in/DigitalCameras Fastest and Easiest Wireless Camera With HD Shooting.Check Now!

#### Fujifilm X-Pro1 Camera www.fujifilmcameras.in/

Classic mirror-less interchangeable lens camera. Know more today.

- Ad i has click through rate  $\mu_i$
- ullet Agent i has valuation per click  $heta_i$
- Expected Social Welfare for agent i,  $W_i = \mu_i \theta_i$
- Planner wants to allocate a slot to the agent with maximum social welfare.
- The samples we get are only of the clicks. We never get to observe samples of social welfare!
- If  $\theta_i$  known, use MAB algorithms

Ads ①

#### Nikon Next: Digital

Www.nikonnext.com/ Visualize what can be accomplished Creativity holds no boundary

#### Canon Camera Camcorders

www.homeshop18.com/canon\_camera Lowest Prices. 1 YR Warranty. Free Home delivery. Explore Now! 31 people in Bangalore, Karnataka +1'd HomeShop18

#### Samsung Digital Cameras

www.samsung.com/in/DigitalCameras Fastest and Easiest Wireless Camera With HD Shooting.Check Now!

#### Fujifilm X-Pro1 Camera

Classic mirror-less interchangeable lens camera. Know more today.

- Ad i has click through rate  $\mu_i$
- ullet Agent i has valuation per click  $heta_i$
- Expected Social Welfare for agent i,  $W_i = \mu_i \theta_i$
- Planner wants to allocate a slot to the agent with maximum social welfare.
- The samples we get are only of the clicks. We never get to observe samples of social welfare!
- If  $\theta_i$  known, use MAB algorithms
- Otherwise?

Ads ①

#### Nikon Next: Digital

Www.nikonnext.com/ Visualize what can be accomplished Creativity holds no boundary

#### Canon Camera Camcorders

www.homeshop18.com/canon\_camer. Lowest Prices. 1 YR Warranty. Free Home delilvery. Explore Now! 31 people in Bangalore, Karnataka +1'd HomeShop18

#### Samsung Digital Cameras

www.samsung.com/in/DigitalCameras Fastest and Easiest Wireless Camera With HD Shooting.Check Now!

#### Fujifilm X-Pro1 Camera

Classic mirror-less interchangeable lens camera. Know more today.



- Ad i has click through rate  $\mu_i$
- ullet Agent i has valuation per click  $heta_i$
- Expected Social Welfare for agent i,  $W_i = \mu_i \theta_i$
- Planner wants to allocate a slot to the agent with maximum social welfare.
- The samples we get are only of the clicks. We never get to observe samples of social welfare!
- If  $\theta_i$  known, use MAB algorithms
- Otherwise? Mechanism Design (Auctions!)

Ads ①

#### Nikon Next: Digital

www.nikonnext.com/ Visualize what can be accomplished Creativity holds no boundary

#### Canon Camera Camcorders

www.homeshop18.com/canon\_camera Lowest Prices. 1 YR Warranty. Free Home delivery. Explore Now! 31 people in Bangalore, Karnataka +1'd HomeShop18

#### Samsung Digital Cameras

www.samsung.com/in/DigitalCameras Fastest and Easiest Wireless Camera With HD Shooting.Check Now!

#### Fujifilm X-Pro1 Camera

Classic mirror-less interchangeable lens camera. Know more today.



# Mechanism Design: Example





# Vickrey Clarke Grove (VCG) Mechanism

- Allocation rule: Highest bidder wins ( $b_4 = 110$ )
- Payment rule: Winner pays second highest bid ( $p_4 = 50$ )
- VCG Mechanism is dominant strategy incentive compatible (DSIC) truthful, maximizes social welfare.

William Vickrey. "Counterspeculation, auctions, and competitive sealed tenders". In: The Journal of Finance 16.1 (1961), pp. 8–37.

Learn mean of observable samples using multi-armed bandits and elicit private valuations truthfully with mechanism design.

- Allocation Rule
  - ullet  ${\cal A}$  is given by the MAB algorithm eg. UCB.
  - I<sub>t</sub> arm pulled/allocated at time t,
  - W\*: Expected social welfare of the best agent

Learn mean of observable samples using multi-armed bandits and elicit private valuations truthfully with mechanism design.

- Allocation Rule
  - ullet  ${\cal A}$  is given by the MAB algorithm eg. UCB.
  - I<sub>t</sub> arm pulled/allocated at time t,
  - $W_*$ : Expected social welfare of the best agent
  - $Regret(A) = \sum_{t=1}^{T} W_* W_{I_t}$

Learn mean of observable samples using multi-armed bandits and elicit private valuations truthfully with mechanism design.

- Allocation Rule
  - ullet  ${\cal A}$  is given by the MAB algorithm eg. UCB.
  - I<sub>t</sub> arm pulled/allocated at time t,
  - $W_*$ : Expected social welfare of the best agent
  - $Regret(A) = \sum_{t=1}^{T} W_* W_{I_t}$
  - MAB algorithm should not pull sub-optimal arms "very often"

Learn mean of observable samples using multi-armed bandits and elicit private valuations truthfully with mechanism design.

- Allocation Rule
  - ullet  ${\cal A}$  is given by the MAB algorithm eg. UCB.
  - I<sub>t</sub> arm pulled/allocated at time t,
  - ullet  $W_*$ : Expected social welfare of the best agent
  - $Regret(A) = \sum_{t=1}^{T} W_* W_{I_t}$
  - MAB algorithm should not pull sub-optimal arms "very often" (logarithmic in T is alright)

Learn mean of observable samples using multi-armed bandits and elicit private valuations truthfully with mechanism design.

- Allocation Rule
  - $\bullet$   $\,{\cal A}$  is given by the MAB algorithm eg. UCB.
  - $I_t$  arm pulled/allocated at time t,
  - ullet  $W_*$ : Expected social welfare of the best agent
  - $Regret(A) = \sum_{t=1}^{T} W_* W_{I_t}$
  - MAB algorithm should not pull sub-optimal arms "very often" (logarithmic in T is alright)
- Payment for selected agent: eg. VCG scheme

- Characterisation of truthful MAB Mechanisms<sup>4</sup>
  - DSIC truthful mechanism 

    Exploration separated
    (No payment in the rounds where learning happens)

<sup>&</sup>lt;sup>4</sup>Moshe Babaioff, Yogeshwer Sharma, and Aleksandrs Slivkins. "Characterizing truthful multi-armed bandit mechanisms". In: *SIAM Journal on Computing* 43.1 (2014), pp. 194–230.

<sup>5</sup>Nicola Gatti et al. "Truthful learning mechanisms for multi-slot sponsored search auctions with externalities".

In: Artificial Intelligence 227 (2015), pp. 93–139.

- Characterisation of truthful MAB Mechanisms<sup>4</sup>
  - DSIC truthful mechanism ⇒ Exploration separated (No payment in the rounds where learning happens)
  - DSIC truthful, Deterministic mechanisms  $\implies$  Regret  $\Omega(T^{2/3})$  (Eg.  $T=10^6$ , log T=6,  $T^{2/3}=10000$ )

<sup>&</sup>lt;sup>4</sup>Moshe Babaioff, Yogeshwer Sharma, and Aleksandrs Slivkins. "Characterizing truthful multi-armed bandit mechanisms". In: *SIAM Journal on Computing* 43.1 (2014), pp. 194–230.

<sup>5</sup>Nicola Gatti et al. "Truthful learning mechanisms for multi-slot sponsored search auctions with externalities".

In: Artificial Intelligence 227 (2015), pp. 93–139.

- Characterisation of truthful MAB Mechanisms<sup>4</sup>
  - DSIC truthful mechanism ⇒ Exploration separated (No payment in the rounds where learning happens)
  - DSIC truthful, Deterministic mechanisms  $\implies$  Regret  $\Omega(T^{2/3})$  (Eg.  $T=10^6$ , log T=6,  $T^{2/3}=10000$ )
- Subsequent research influenced by this characterisation, similar results in multi-slot  $\mathsf{SSA}^5$
- Settle for weaker notions of truthfulness to bring regret down from  $\Omega(\mathcal{T}^{2/3})$

<sup>&</sup>lt;sup>4</sup>Moshe Babaioff, Yogeshwer Sharma, and Aleksandrs Slivkins. "Characterizing truthful multi-armed bandit mechanisms". In: SIAM Journal on Computing 43.1 (2014), pp. 194–230.

<sup>5</sup>Nicola Gatti et al. "Truthful learning mechanisms for multi-slot sponsored search auctions with externalities".

In: Artificial Intelligence 227 (2015), pp. 93–139.

- Characterisation of truthful MAB Mechanisms<sup>4</sup>
  - DSIC truthful mechanism ⇒ Exploration separated (No payment in the rounds where learning happens)
  - DSIC truthful, Deterministic mechanisms  $\implies$  Regret  $\Omega(T^{2/3})$  (Eg.  $T=10^6$ , log T=6,  $T^{2/3}=10000$ )
- Subsequent research influenced by this characterisation, similar results in multi-slot  $\mathsf{SSA}^5$
- Settle for weaker notions of truthfulness to bring regret down from  $\Omega(\mathcal{T}^{2/3})$

#### Our Observation

- $\Omega(\mathcal{T}^{2/3})$  exploration rounds needed for distinguishing arms that are arbitrarily close.
- Planner may not differentiate between arbitrarily close arms.
- Forced to suffer regret  $\Omega(T^{2/3})$  even then!

<sup>&</sup>lt;sup>4</sup>Moshe Babaioff, Yogeshwer Sharma, and Aleksandrs Slivkins. "Characterizing truthful multi-armed bandit mechanisms". In: *SIAM Journal on Computing* 43.1 (2014), pp. 194–230.

• Allow the planner to specify a parameter  $\Delta$ , the resolution to which arms must be distinguished

Divya Padmanabhan et al. "A Dominant Strategy Truthful, Deterministic Multi-Armed Bandit Mechanism with Logarithmic Regret". In: International Conference on Autonomous Agents and Multiagent Systems (AAMAS'17) (To appear). 2017.

- ullet Allow the planner to specify a parameter  $\Delta$ , the resolution to which arms must be distinguished
- $S_{\Delta} = \{i \in [K] : W_* W_i < \Delta\}$

Divya Padmanabhan et al. "A Dominant Strategy Truthful, Deterministic Multi-Armed Bandit Mechanism with Logarithmic Regret". In: International Conference on Autonomous Agents and Multiagent Systems (AAMAS'17) (To appear). 2017.

- ullet Allow the planner to specify a parameter  $\Delta$ , the resolution to which arms must be distinguished
- $S_{\Delta} = \{i \in [K] : W_* W_i < \Delta\}$
- Define  $\Delta$ -regret  $=\sum_{t=1}^T (W_* W_{I_t}) \mathbb{1} \left[I_t \in [K] \setminus S_\Delta\right]$

Divya Padmanabhan et al. "A Dominant Strategy Truthful, Deterministic Multi-Armed Bandit Mechanism with Logarithmic Regret". In: International Conference on Autonomous Agents and Multiagent Systems (AAMAS'17) (To appear). 2017.

- ullet Allow the planner to specify a parameter  $\Delta$ , the resolution to which arms must be distinguished
- $S_{\Delta} = \{i \in [K] : W_* W_i < \Delta\}$
- Define  $\Delta$ -regret  $=\sum_{t=1}^T (W_* W_{I_t}) \mathbb{1} \left[I_t \in [K] \setminus S_{\Delta}\right]$
- ullet Design truthful mechanisms with logarithmic regret  $\Delta$ -regret

Divya Padmanabhan et al. "A Dominant Strategy Truthful, Deterministic Multi-Armed Bandit Mechanism with Logarithmic Regret". In: International Conference on Autonomous Agents and Multiagent Systems (AAMAS'17) (To appear). 2017.

- ullet Allow the planner to specify a parameter  $\Delta$ , the resolution to which arms must be distinguished
- $S_{\Delta} = \{i \in [K] : W_* W_i < \Delta\}$
- Define  $\Delta$ -regret  $=\sum_{t=1}^T (W_* W_{I_t}) \mathbb{1} \left[I_t \in [K] \setminus S_\Delta\right]$
- ullet Design truthful mechanisms with logarithmic  ${\sf regret}\ \Delta{\sf -regret}$
- Exploration rounds
  - Explore for  $\gamma = 8K\theta_{max}^2 \log T/\Delta^2$  rounds, free for all agents
  - Obtain LCB, UCB indices  $\widehat{\mu}_{i,\gamma}^-, \widehat{\mu}_{i,\gamma}^+$  for every agent



- ullet Allow the planner to specify a parameter  $\Delta$ , the resolution to which arms must be distinguished
- $S_{\Delta} = \{i \in [K] : W_* W_i < \Delta\}$
- Define  $\Delta$ -regret  $=\sum_{t=1}^T (W_* W_{I_t})\mathbb{1}\left[I_t \in [K] \setminus S_\Delta\right]$
- ullet Design truthful mechanisms with logarithmic  ${}^{ ext{regret}}$   $\Delta ext{-regret}$
- Exploration rounds
  - Explore for  $\gamma = 8K\theta_{max}^2 \log T/\Delta^2$  rounds, free for all agents
  - $\bullet$  Obtain LCB, UCB indices  $\widehat{\mu}_{i,\gamma}^-, \widehat{\mu}_{i,\gamma}^+$  for every agent
- Exploitation rounds  $(\gamma + 1 \dots T)$ 
  - Choose agent  $\hat{i}_* = \arg\max_{i \in [K]} \widehat{\mu}_{i,\gamma}^+ b_i$
  - $j = \operatorname{arg\,max}_{i \in [K] \setminus \{\widehat{l}_*\}} \widehat{\mu}_{i,\gamma}^+ b_i$  (2nd best agent)
  - ullet  $P_{\hat{i}_*}=\widehat{\mu}_{j,\gamma}^+b_j/\widehat{\mu}_{\hat{i}_*,\gamma}^+$  (weighted VCG payment)

Divya Padmanabhan et al. "A Dominant Strategy Truthful, Deterministic Multi-Armed Bandit Mechanism with Logarithmic Regret". In: International Conference on Autonomous Agents and Multiagent Systems (AAMAS'17) (To appear). 2017.

# Properties of $\Delta$ -UCB

#### Theorem

 $\Delta$ -UCB mechanism is dominant strategy incentive compatible (DSIC) truthful and individually rational (IR).

# Properties of $\Delta$ -UCB

#### $\mathsf{Theorem}$

 $\Delta$ -UCB mechanism is dominant strategy incentive compatible (DSIC) truthful and individually rational (IR).

#### **Theorem**

If the  $\Delta$ -UCB mechanism is executed for a total time horizon of T rounds, it achieves an expected  $\Delta$ -regret of  $O(\log T)$ .

Divya Padmanabhan et al. "A Dominant Strategy Truthful, Deterministic Multi-Armed Bandit Mechanism with Logarithmic Regret". In: International Conference on Autonomous Agents and Multiagent Systems (AAMAS'17) (To appear). 2017.

# Proof Idea of Logarithmic $\Delta$ -regret



If sub-optimal arm is pulled, one of these 3 cases must occur, Bound the number of times that any of these cases occur





# Proof Idea of Logarithmic $\Delta$ -regret







If sub-optimal arm is pulled, one of these 3 cases must occur, Bound the number of times that any of these cases occur

### How?

- Occurrence of conditions 1 and 2 bounded using concentration inequalities
- Condition 3
   eliminated by fixing
   number of
   exploration rounds
   appropriately

# Extensions and Future Work

#### Multi-slot SSA

- $\Gamma_m$ : Probability that an ad at slot m is observed
- Expected Social Welfare for agent i when allocated slot m,  $W_{i,m} = \Gamma_m \mu_i \theta_i$
- $\Gamma_m, \mu_i, \theta_i$  all are unknown!

### Open Problems

- Find the payments so that planner gets maximum revenue.
- General scenario where  $\Gamma$  is unknown and depends on the ad as well.

### THANK YOU!

### Extension to Multi-slot SSA

- M slots to be allocated
- Ad i has click through rate  $\mu_i$
- Agent i has valuation per click  $\theta_i$
- Γ<sub>m</sub>: Probability that an ad at slot m is observed
- Expected Social Welfare for agent i when allocated slot m,  $W_{i,m} = \Gamma_m \mu_i \theta_i$

Ads ①

#### Nikon Next: Digital

Visualize what can be accomplished Creativity holds no boundary

#### Canon Camera Camcorders

www.homeshop18.com/canon\_camer. Lowest Prices. 1 YR Warranty. Free Home delivery. Explore Now! 31 people in Bangalore, Karnataka +1'd HomeShop18

#### Samsung Digital Cameras www.samsung.com/in/DigitalCameras

Fastest and Easiest Wireless Camera
With HD Shooting.Check Now!

#### Fujifilm X-Pro1 Camera www.fujifilmcameras.in/

Classic mirror-less interchangeable lens camera. Know more today.

Divya Padmanabhan et al. "A Dominant Strategy Truthful, Deterministic Multi-Armed Bandit Mechanism with Logarithmic Regret". In: International Conference on Autonomous Agents and Multiagent Systems (AAMAS'17) (To appear). 2017.

### Extension to Multi-slot SSA

- M slots to be allocated
- Ad i has click through rate  $\mu_i$
- Agent i has valuation per click  $\theta_i$
- $\Gamma_m$ : Probability that an ad at slot m is observed
- Expected Social Welfare for agent i when allocated slot m,  $W_{i,m} = \Gamma_m \mu_i \theta_i$
- $\Gamma_m, \mu_i, \theta_i$  all are unknown!

Ads ①

#### Nikon Next: Digital

Visualize what can be accomplished Creativity holds no boundary

#### Canon Camera Camcorders

www.homeshop18.com/canon\_camer. Lowest Prices. 1 YR Warranty. Free Home delivery. Explore Now! 31 people in Bangalore, Karnataka +1'd HomeShop18

#### Samsung Digital Cameras www.samsung.com/in/DigitalCameras

Fastest and Easiest Wireless Camera
With HD Shooting.Check Now!

#### Fujifilm X-Pro1 Camera

www.fujifilmcameras.in/ Classic mirror-less interchangeable lens camera. Know more today.

Divya Padmanabhan et al. "A Dominant Strategy Truthful, Deterministic Multi-Armed Bandit Mechanism with Logarithmic Regret". In: International Conference on Autonomous Agents and Multiagent Systems (AAMA5'17) (To appear). 2017.

### Extension to Multi-slot SSA

- M slots to be allocated
- Ad i has click through rate  $\mu_i$
- Agent i has valuation per click  $\theta_i$
- $\Gamma_m$ : Probability that an ad at slot m is observed
- Expected Social Welfare for agent i when allocated slot m,  $W_{i,m} = \Gamma_m \mu_i \theta_i$
- $\Gamma_m, \mu_i, \theta_i$  all are unknown!

Ads ①

#### Nikon Next: Digital

Visualize what can be accomplished Creativity holds no boundary

#### Canon Camera Camcorders

www.homeshop18.com/canon\_camers Lowest Prices. 1 YR Warranty. Free Home delivery. Explore Now! 31 people in Bangalore, Karnataka +1'd HomeShop18

#### Samsung Digital Cameras www.samsung.com/in/DigitalCameras

Fastest and Easiest Wireless Camera
With HD Shooting.Check Now!

#### Fujifilm X-Pro1 Camera

www.fujifilmcameras.in/ Classic mirror-less interchangeable lens camera. Know more today.

High Ouality Micro Camera

Suppose  $\Gamma_m$ s were known?

Divya Padmanabhan et al. "A Dominant Strategy Truthful, Deterministic Multi-Armed Bandit Mechanism with Logarithmic Regret". In: International Conference on Autonomous Agents and Multiagent Systems (AAMAS'17) (To appear). 2017.

# Our Approach for Multi-slot SSA

A useful property of  $\Gamma_m$ s:  $\Gamma_1 = 1 \geq \Gamma_2 \geq \dots \Gamma_M$ 

Divya Padmanabhan et al. "A Dominant Strategy Truthful, Deterministic Multi-Armed Bandit Mechanism with Logarithmic Regret". In: International Conference on Autonomous Agents and Multiagent Systems (AAMAS'17) (To appear). 2017.

# Our Approach for Multi-slot SSA

A useful property of  $\Gamma_m$ s:  $\Gamma_1 = 1 \geq \Gamma_2 \geq \dots \Gamma_M$ 

#### Δ-UCB for multi Slot SSA

- Exploration rounds
  - Explore for  $\gamma = \lceil 8K\theta_{max}^2 \log T/\Delta^2 \rceil$  rounds, free for all agents
  - Obtain LCB, UCB indices  $\widehat{\mu}_{i,\gamma}^-, \widehat{\mu}_{i,\gamma}^+$  for every agent

Divya Padmanabhan et al. "A Dominant Strategy Truthful, Deterministic Multi-Armed Bandit Mechanism with Logarithmic Regret". In: International Conference on Autonomous Agents and Multiagent Systems (AAMAS'17) (To appear). 2017.

# Our Approach for Multi-slot SSA

A useful property of  $\Gamma_m$ s:  $\Gamma_1 = 1 \ge \Gamma_2 \ge \dots \Gamma_M$ 

#### Δ-UCB for multi Slot SSA

- Exploration rounds
  - Explore for  $\gamma = \lceil 8K\theta_{max}^2 \log T/\Delta^2 \rceil$  rounds, free for all agents
  - $\bullet$  Obtain LCB, UCB indices  $\widehat{\mu}_{i,\gamma}^-, \widehat{\mu}_{i,\gamma}^+$  for every agent
- Exploitation rounds  $(\gamma + 1 \dots T)$ 
  - Select the best M agents as per  $\max_{i \in [K]} \widehat{\mu}_{i,\gamma}^+ b_i$
  - Use weighted VCG payment to decide the amount agents pay to the planner

$$= \left(1/\Gamma_{m}\mu_{\widehat{K}^{(m)}}^{+}\right)\sum_{l=m+1}^{M+1}\left(\Gamma_{l-1}-\Gamma_{l}\right)\widehat{\mu}_{K^{(l)},u}^{+}b_{K^{(l)}}\rho_{\widehat{K}^{(m)}}(t)$$

• Payments are a function of  $\Gamma_m \ \forall m$ 

Divya Padmanabhan et al. "A Dominant Strategy Truthful, Deterministic Multi-Armed Bandit Mechanism with Logarithmic Regret". In: International Conference on Autonomous Agents and Multiagent Systems (AAMAS'17) (To appear). 2017.

# Analysis of $\Delta$ -UCB (multi-slot)

$$S_{\Delta,m} = \{i \in [K] : W_{*,m} - W_{i,m} < \Delta\}.$$
 (1)

$$\Delta\text{-regret} = \sum_{t=1}^{T} \sum_{m=1}^{M} (W_{*,m} - W_{I_{t,m},m}) \mathbb{1} \left[ I_{I_{t},m} \in [K] \setminus \mathcal{S}_{\Delta,m} \right]$$

# Analysis of $\Delta$ -UCB (multi-slot)

$$S_{\Delta,m} = \{i \in [K] : W_{*,m} - W_{i,m} < \Delta\}.$$
 (1)

$$\Delta ext{-regret} = \sum_{t=1}^T \sum_{m=1}^M (W_{*,m} - W_{I_{t,m},m}) \mathbb{1}\left[I_{I_t,m} \in [\mathcal{K}] \setminus \mathcal{S}_{\Delta,m}\right]$$

#### $\mathsf{Theorem}$

In the multi-slot setting,  $\Delta$ -UCB is Dominant Strategy Incentive Compatible (DSIC) and Individually Rational (IR).



# Analysis of $\Delta$ -UCB (multi-slot)

$$S_{\Delta,m} = \{i \in [K] : W_{*,m} - W_{i,m} < \Delta\}.$$
 (1)

$$\Delta\text{-regret} = \sum_{t=1}^{T} \sum_{m=1}^{M} (W_{*,m} - W_{I_{t,m},m}) \mathbb{1} \left[ I_{I_{t,m}} \in [K] \setminus S_{\Delta,m} \right]$$

#### $\mathsf{Theorem}$

In the multi-slot setting,  $\Delta$ -UCB is Dominant Strategy Incentive Compatible (DSIC) and Individually Rational (IR).

#### **Theorem**

If the  $\Delta$ -UCB mechanism is executed in the multiple slot scenario for a total time horizon of T rounds, it achieves an expected  $\Delta$ -regret of  $O(\log T)$ .

Divya Padmanabhan et al. "A Dominant Strategy Truthful, Deterministic Multi-Armed Bandit Mechanism with Logarithmic Regret". In: International Conference on Autonomous Agents and Multiagent Systems | | | | | | | | | | |