Scattering by rotationally invariant cavities

Zoïs Moitier

October 6, 2020

Abstract

We solve scattering problem by rotationally invariant cavities. The shape consider are disk and annulus where the permittivity and permeability are radial function.

Contents

1		scattering problem	
	1.1	Problem statement	
	1.2	1D reduction	
2	The	resonances problem	
	2.1	Problem statement	
	2.2	1D reduction	
3	Disk cavities with constant optical parameters		
	3.1	Solution of the scattering problem	
	3.2	Solution of the scattering problem	
4	Annulus cavities		
	4.1	Constant optical parameters	
	4.2	The flat well version	
		The full flat version	

1 The scattering problem

1.1 Problem statement

Let $\mathbb{D} = \{ \boldsymbol{x} \in \mathbb{R}^2 \mid |\boldsymbol{x}| < 1 \}$ be the unit disk and $\mathbb{A}_{\delta} = \{ \boldsymbol{x} \in \mathbb{R}^2 \mid \delta < |\boldsymbol{x}| < 1 \}$ an annulus of width $\delta > 0$. The cavity Ω denote either \mathbb{D} or \mathbb{A}_{δ} and the interface $\Gamma = \partial \Omega$ is the boundary of Ω . We define the function $\varepsilon \in L^{\infty}(\mathbb{R}^2)$ (permittivity) and $\mu \in L^{\infty}(\mathbb{R}^2)$ (permeability) as

$$\varepsilon(\boldsymbol{x}) = \begin{cases} \varepsilon_{\mathsf{c}}(|\boldsymbol{x}|) & \text{if } \boldsymbol{x} \in \overline{\Omega} \\ 1 & \text{otherwise} \end{cases} \quad \text{and} \quad \mu(\boldsymbol{x}) = \begin{cases} \mu_{\mathsf{c}}(|\boldsymbol{x}|) & \text{if } \boldsymbol{x} \in \overline{\Omega} \\ 1 & \text{otherwise} \end{cases}$$

where $\varepsilon_{\mathsf{c}}, \mu_{\mathsf{c}} \in \mathscr{C}^{\infty}(\overline{I}, \mathbb{R}^*)$ with I = (0, 1) or $I = (\delta, 1)$. Let $\mathcal{D}^2 := \{u \in L^2(\mathbb{R}^2) \mid \operatorname{div}(\varepsilon^{-1}\nabla u) \in L^2(\mathbb{R}^2)\}$ be the domain of the operator $u \mapsto -\mu^{-1}\operatorname{div}(\varepsilon^{-1}\nabla u)$ and we define the "loc" version

$$\mathcal{D}^2_{\mathrm{loc}} \coloneqq \{u \in \mathrm{L}^2_{\mathrm{loc}}(\mathbb{R}^2) \mid \forall \chi \in \mathscr{C}^\infty_{\mathrm{comp}}(\mathbb{R}^2), \ \chi u \in \mathcal{D}^2\}.$$

We define the following scattering problem: Given a wavenumber k > 0 and an incident field $u^{\mathsf{in}} : \boldsymbol{x} \mapsto \mathsf{e}^{\mathsf{i}\,k\,y}$, find the scattering field $u^{\mathsf{sc}} \in \mathcal{D}^2_{\mathrm{loc}}$ such that the total field $u = u^{\mathsf{in}} + u^{\mathsf{sc}}$ satisfy

$$\begin{cases}
-\mu^{-1}\operatorname{div}\left(\varepsilon^{-1}\nabla u\right) - k^{2}u = 0 & \text{in } \Omega \text{ and } \mathbb{R}^{2} \setminus \overline{\Omega} \\
[u]_{\Gamma} = 0 \text{ and } \left[\varepsilon^{-1}\partial_{\nu}u\right]_{\Gamma} = 0 & \text{across } \Gamma \\
u^{\operatorname{sc}} \text{ is } k\text{-outgoing}
\end{cases}$$
(1a)

where $\boldsymbol{\nu}: \Gamma \to \mathbb{S}^1$ is the exterior unit normal and u^{sc} is k-outgoing mean that for $|\boldsymbol{x}| \geq 1$, there exist $(c_m)_{m \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$ such that

$$u^{\mathsf{sc}}(\boldsymbol{x}) = \sum_{m \in \mathbb{Z}} c_m \, \mathsf{H}_m^{(1)}(k \, r) \, \mathsf{e}^{\mathsf{i} \, m \, \theta} \tag{1b}$$

with $(r, \theta) \in \mathbb{R}_+ \times \mathbb{R}/2\pi\mathbb{Z}$ the polar coordinate associated to the Cartesian coordinates $\boldsymbol{x} \in \mathbb{R}^2$ and $z \mapsto \mathsf{H}_m^{(1)}(z)$ is the Hankel function of the first kind of order m.

1.2 1D reduction

We look for solution of problem (1) of the form

$$u(\boldsymbol{x}) = \sum_{m \in \mathbb{Z}} w_m(r) e^{i m \theta}$$
 where $w_m(r) := \frac{1}{2\pi} \int_0^{2\pi} u(r, \theta) e^{-i m \theta} d\theta$.

Similarly we write $u^{\sf in}(\boldsymbol{x}) = \sum_{m \in \mathbb{Z}} w^{\sf in}_m(r) \, \mathsf{e}^{\mathsf{i} \, m \, \theta}$ and $u^{\sf sc}(\boldsymbol{x}) = \sum_{m \in \mathbb{Z}} w^{\sf sc}_m(r) \, \mathsf{e}^{\mathsf{i} \, m \, \theta}$. For the incident field, we have $w^{\sf in}_m(r) = \mathsf{J}_m(k \, r)$ because the Jacobi-Anger expansion [DLMF, Eq. 10.12.1] states that

$$u^{\mathsf{in}}(\boldsymbol{x}) = \mathsf{e}^{\mathsf{i}k\,y} = \sum_{m\in\mathbb{Z}} \mathsf{J}_m(k\,r)\,\mathsf{e}^{\mathsf{i}\,m\,\theta} \tag{2}$$

where $z \mapsto \mathsf{J}_m(z)$ is the Bessel function of the first kind. The series in equation (2) converges absolutely on every compact set of \mathbb{R}^2 .

The domain of the operator $w \mapsto -r^{-1} \mu^{-1} \partial_r (r \varepsilon^{-1} \partial_r w) + m^2 r^{-2} \varepsilon^{-1} \mu^{-1} w$ and its "loc" version are define by

$$\mathcal{D}^{1,m} := \{ w \in L^2(\mathbb{R}_+^*, r \, \mathrm{d}r) \mid \partial_r(r \, \varepsilon^{-1} \, \partial_r w) - m^2 \, r^{-1} \varepsilon^{-1} w \in L^2(\mathbb{R}_+^*) \}$$
$$\mathcal{D}^{1,m}_{\mathrm{loc}} := \{ w \in L^2(\mathbb{R}_+^*, r \, \mathrm{d}r) \mid \forall \chi \in \mathscr{C}^{\infty}_{\mathrm{comp}}(\mathbb{R}), \ \chi w \in \mathcal{D}^{1,m} \}.$$

Problem 1 reduce to a family of problem index by $m \in \mathbb{Z}$: Given k > 0 find $w_m^{sc} \in \mathcal{D}_{loc}^{1,m}$ such that $w_m = w_m^{in} + w_m^{sc}$ and

$$\begin{cases}
-\frac{1}{r\mu}\partial_r\left(\frac{r}{\varepsilon}\partial_r w_m\right) + \frac{m^2}{r^2\,\varepsilon\mu}w_m - k^2\,w_m = 0 & \text{in } I \text{ and } \mathbb{R}^* \setminus \overline{I} \\
w_0'(0) = 0 & \text{on } \{0\} \\
[w_m]_{\{1\}} = 0 & \text{and } \left[\varepsilon^{-1}\,w_m'\right]_{\{1\}} = 0 & \text{across } \{1\} \\
w_m^{\mathsf{sc}}(r) \propto \mathsf{H}_m^{(1)}(k\,r) & r \ge 1
\end{cases} \tag{3}$$

with \propto meaning "up to a multiplicative constant".

2 The resonances problem

2.1 Problem statement

2.2 1D reduction

3 Disk cavities with constant optical parameters

3.1 Solution of the scattering problem

In this section, we assume that the cavity is the unit disk \mathbb{D} and that ε_{c} and μ_{c} are non zero constant in [0,1]. The solution of problem (3) for 0 < r < 1 depend of the sign of $\varepsilon_{c}\mu_{c}$. We denote by C_{m} the function

$$C_m(z) = \begin{cases} \mathsf{J}_m(\sqrt{\varepsilon_{\mathsf{c}}\mu_{\mathsf{c}}}z) & \text{if } \varepsilon_{\mathsf{c}}\mu_{\mathsf{c}} > 0\\ \mathsf{I}_m(\sqrt{-\varepsilon_{\mathsf{c}}\mu_{\mathsf{c}}}z) & \text{if } \varepsilon_{\mathsf{c}}\mu_{\mathsf{c}} < 0 \end{cases}$$

where $z \mapsto I_m(z)$ is the modified Bessel of the first kind. The solution of problem (3) is

$$w_m(r) = \begin{cases} \alpha_m \, C_m(k \, r) & \text{if } r \le 1\\ \beta_m \, \mathsf{H}_m^{(1)}(k \, r) + \mathsf{J}_m(k \, r) & \text{if } r > 1 \end{cases} \tag{4}$$

where (α_m, β_m) are solution of

$$\begin{pmatrix} C_m(k) & -\mathsf{H}_m^{(1)}(k) \\ \varepsilon_c^{-1} C_m'(k) & -\mathsf{H}_m^{(1)'}(k) \end{pmatrix} \begin{pmatrix} \alpha_m \\ \beta_m \end{pmatrix} = \begin{pmatrix} \mathsf{J}_m(k) \\ \mathsf{J}_m'(k) \end{pmatrix}. \tag{5}$$

3.2 Solution of the resonance problem

A resonances ℓ is a complex satisfying

$$\varepsilon_{c}^{-1} C'_{m}(\ell) \mathsf{H}_{m}^{(1)}(\ell) - C_{m}(\ell) \mathsf{H}_{m}^{(1)'}(\ell) = 0$$
(6)

with the associated mode

$$w_{\ell}(r) = \begin{cases} C_m(k\,r) & \text{if } r \le 1\\ \frac{C_m(k)}{\mathsf{H}_m^{(1)}(k)} \,\mathsf{H}_m^{(1)}(k\,r) & \text{if } r > 1 \end{cases}$$
 (7)

4 Annulus cavities

4.1 Constant optical parameters

4.2 The flat well version

4.3 The full flat version

References

[DLMF] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.28 of 2020-09-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.