# Understanding the Poisson solution CG, preconditioning, and performance

Ed Bueler
Dept. of Mathematics and Statistics, UAF

23 February 2016

# outline for today

#### finish Chapter 3 of book:

- recall Poisson code
- convergence
- CG = conjugate gradients
- preconditioning
- scaling flaw in preconditioned CG

#### next week:

start Chapter 4 on Newton's method

#### recall c/ch3/poisson.c

poisson.c discretizes on a structured grid:

$$-\nabla^2 u = f \rightarrow A\mathbf{u} = \mathbf{b}$$

▶ it then hands the linear system Au = b to PETSc:

```
formRHS(da,b);
formMatrix(da,A);
KSPCreate(PETSC_COMM_WORLD,&ksp);
KSPSetOperators(ksp,A,A);
KSPSetFromOptions(ksp);
KSPSolve(ksp,b,u);
```

## goals once you have an initial implementation

- convergence: is numerical method implemented correctly?
- exposure: what is occurring inside PETSc when we solve?
- efficiency: how to get high performance?

#### evidence for convergence

```
$ for K in 0 1 2 3 4 5 6; do ./poisson -da_refine $K; done
on 9 x 9 grid: error |u-uexact|_inf = 0.000763959
on 17 x 17 grid: error |u-uexact|_inf = 0.000196764
on 33 x 33 grid: error |u-uexact|_inf = 4.91557e-05
on 65 x 65 grid: error |u-uexact|_inf = 1.29719e-05
on 129 x 129 grid: error |u-uexact|_inf = 3.76924e-06
on 257 x 257 grid: error |u-uexact|_inf = 1.73086e-06
on 513 x 513 grid: error |u-uexact|_inf = 1.23567e-06
```

- ▶ results above are \* on graph
- ▶ add -ksp\_rtol 1.0e-12
  to get results
- or -ksp\_type preonly
  -pc\_type lu
- ► FD method can give  $O(h^2)$  at best, so poisson.c is correct



## ask PETSc to show parallel structured grid

use option -dm\_view:

```
$ ./poisson -dm_view
$ mpiexec -n 2 ./poisson -dm_view
```

with draw:

```
$ mpiexec -n 2 ./poisson -dm_view draw -draw_pause 2
$ mpiexec -n 4 ./poisson -da_grid_x 5 -da_grid_y 7 \
    -dm_view draw -draw_pause 2
```



#### matrix structure in poisson.c

- ▶ note line MatSetOptionsPrefix(A, "a\_") in poisson.c
- ▶ use -a\_mat\_view:
  - \$ ./poisson -da\_grid\_x 4 -da\_grid\_y 4 -a\_mat\_view
  - \$ ./poisson -da\_grid\_x 4 -da\_grid\_y 4 \
     -a mat view ::ascii dense
  - \$ ./poisson -a\_mat\_view draw -draw\_pause 5
- use it to read matrix into MATLAB/OCTAVE:
  - \$ ./poisson -da\_grid\_x 5 -da\_grid\_y 7 \
     -a mat view ascii:foo.m:ascii matlab
  - \$ octave
    - >> foo
    - >> whos
    - >> spy(...)

#### try various KSP and PC

- defaults include gmres, ilu
- matrix is symmetric so minres also available
- matrix is positive-definite so cg, icc, cholesky also
- table below from

```
$ timer ./poisson -da_refine 5 \
    -ksp_converged_reason \
    -ksp_type KSP -pc_type PC
```

| KSP     | <u>PC</u>              | time (s) | iterations |
|---------|------------------------|----------|------------|
| gmres   | none                   | 8.44     | 4705       |
|         | ilu                    | 1.35     | 506        |
|         | ilu + restart=200      | 1.46     | 174        |
| cg      | none                   | 0.52     | 606        |
|         | jacobi                 | 0.57     | 606        |
|         | icc                    | 0.33     | 177        |
|         | icc + rtol= $10^{-14}$ | 0.38     | 261        |
| preonly | cholesky               | 8.66     | 1          |
| minres  | none                   | 0.76     | 579        |
|         |                        |          |            |

Table 3.1: Times and number of KSP iterations for serial runs of poisson c on 257 × 257 grids. The assembled matrix is symmetric, diagonally-dominant, and positive definite. All runs were on WORKSTATION (see page 43).

# CG = conjugate gradients

- -ksp\_type cg
- well-known Krylov iteration for solving Au = b →
- requires A to be symmetric and positive-definite
  - sometimes converges even if not
  - reliable compared to Richardson!
- less expensive than GMRES
  - $\circ$  4 vectors in memory vs many ( $\sim$  30)
  - note: both iterations do one product Av per iteration

$$\begin{aligned} \mathbf{r}_0 &:= \mathbf{b} - \mathbf{A} \mathbf{x}_0 \\ \mathbf{p}_0 &:= \mathbf{r}_0 \\ k &:= 0 \\ \end{aligned}$$
 repeat 
$$\alpha_k := \frac{\mathbf{r}_k^\mathsf{T} \mathbf{r}_k}{\mathbf{p}_k^\mathsf{T} \mathbf{A} \mathbf{p}_k} \\ \mathbf{x}_{k+1} &:= \mathbf{x}_k + \alpha_k \mathbf{p}_k \\ \mathbf{r}_{k+1} &:= \mathbf{r}_k - \alpha_k \mathbf{A} \mathbf{p}_k \\ \text{if } r_{k+1} &\text{is sufficiently small then exit} \\ \beta_k &:= \frac{\mathbf{r}_{k+1}^\mathsf{T} \mathbf{r}_{k+1}}{\mathbf{r}_k^\mathsf{T} \mathbf{r}_k} \\ \mathbf{p}_{k+1} &:= \mathbf{r}_{k+1} + \beta_k \mathbf{p}_k \\ k &:= k+1 \\ \end{aligned}$$
 end repeat

The result is  $\mathbf{x}_{k+1}$ 

# what CG accomplishes

- let u<sub>i</sub> be iterates from (un-preconditioned) CG
- ightharpoonup errors  $\mathbf{e}_j = \mathbf{u}_j \mathbf{u}$  satisfy

$$\|\mathbf{e}_j\|_A = \min_{p \in \mathcal{P}_j^1} \|p(A)\mathbf{e}_0\|_A$$

- where  $\mathcal{P}_{i}^{1} = \{\text{degree } j \text{ polynomials } p(x) \text{ with } p(0) = 1\}$
- $\circ \ \| \boldsymbol{v} \|_{\mathcal{A}} = \left\langle \boldsymbol{v}, \mathcal{A} \boldsymbol{v} \right\rangle^{1/2} \qquad \dots \text{not the } \mathcal{L}^2 \text{ norm}$
- thus  $\|\mathbf{e}_j\|_A$  decrease monotonically
- ▶ the *A*-norm of the error is controlled by  $\kappa = \kappa_2(A)$ :

$$\frac{\|\mathbf{e}_j\|_{\mathcal{A}}}{\|\mathbf{e}_0\|_{\mathcal{A}}} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^j$$

## preconditioning CG

▶ to improve CG performance, preconditioning the system

$$A\mathbf{u} = \mathbf{b} \qquad \rightarrow \qquad M^{-1}A\mathbf{u} = M^{-1}\mathbf{b}$$

- last slide says: preconditioning needs to reduce the condition number
- ▶ we need *M* symmetric and positive-definite, and factored:

$$M = EE^{\top}$$

goal:

$$\kappa_2(A) \gg \kappa_2(E^{-1}AE^{-\top})$$

"incomplete cholesky" (-pc\_type icc) computes E which is a sparse approximate factor of A:

$$EE^{\top} \approx A$$

▶ -pc\_type cholesky does it perfectly:  $EE^{\top} = A$ 



#### measuring performance of poisson.c

- timing should use -with-debugging=0 PETSC configuration
- and we should use a fine grid so that timing is less dominated by other system activities

```
$ export PETSC_ARCH=linux-c-opt
$ make poisson
...
$ timer ./poisson -da_refine 6
on 513 x 513 grid: error |u-uexact|_inf = 1.23567e-06
real 17.80
$ timer ./poisson -da_refine 6 -ksp_type cg -pc_type icc
on 513 x 513 grid: error |u-uexact|_inf = 1.96296e-07
real 2.87
```

# preconditioned CG: actually measure what works!

```
$ for PC in none jacobi icc cholesky; do \
    timer ./poisson -da_refine 6 -ksp_type cg -pc_type $PC \
    -ksp_converged_reason -ksp_compute_singularvalues; done
Linear solve converged due to CONVERGED_RTOL iterations 1227
Iteratively computed extreme singular values:
     \max 7.99992 \min 7.52989e-05 \max/\min 106242.
on 513 x 513 grid: error |u-uexact| inf = 1.94253e-07
real 4.91
Linear solve converged due to CONVERGED RTOL iterations 1227
Iteratively computed extreme singular values:
     max 1.99998 min 1.88247e-05 max/min 106242.
on 513 x 513 grid: error |u-uexact| inf = 1.94253e-07
real 5.20
Linear solve converged due to CONVERGED RTOL iterations 357
Iteratively computed extreme singular values:
     max 1.20706 min 0.000128532 max/min 9391.18
on 513 x 513 grid: error |u-uexact| inf = 1.96296e-07
real 2.83
Linear solve converged due to CONVERGED_RTOL iterations 1
Iteratively computed extreme singular values:
     max 1. min 1. max/min 1.
on 513 x 513 grid: error |u-uexact| inf = 1.92073e-07
real 112.32
```

# preconditioned CG: the hope

- preconditioned CG was the great hope of about 1970
- good: preconditioning by icc does reduce iteration count by reducing condition number, relative to no preconditioning or jacobi
- ▶ bad: preconditioning by icc does not slow down the growth condition number  $\kappa_2(A)$  as the grid is refined

# preconditioned CG: the scaling flaw

- do with PC=none, icc:
  - \$ for K in 0 1 2 3 4 5 6; do \
     ./poisson -da\_refine \$K -ksp\_converged\_reason
     -ksp\_type cg -pc\_type PC; done



we need genuinely-better preconditioning!

