#### Заняття 1. Кінематика.

Аудиторне заняття

- 1. Між двома пунктами, які знаходяться на річці на відстані S курсує катер. За течією він проходить цю відстань за час  $t_1$ , проти течії за час  $t_2$ . Знайти швидкість катера відносно води та швидкість течії.
- 2. [1.25] Тіло, що має певну початкову швидкість, рухається рівноприскорено. За час t воно пройшло шлях S, збільшивши швидкість при цьому в n разів. Знайти прискорення, з яким рухається тіло.
- 3. Тіло кинули під кутом  $\alpha$  до горизонту з початковою швидкістю  $\upsilon_0$ . Знайти дальність польоту, висоту підйому, час польоту, а також під яким кутом до горизонту буде спрямована швидкість тіла через час  $\tau$  після кидка.
- 4. [1.27] Знайти швидкості точок A, B, C, D обруча (див.рис), який рухається без проковзування по горизонтальній поверхні, якщо швидкість поступал ьного руху центру обруча дорівнює V.



5. [1.28] Точка обертається по колу радіусом r навколо нерухомої осі за законом  $\varphi = A + Bt + Ct^2$ . Знайти повне прискорення точки в момент часу t.

Домашнє завдання

1. [1.24] Залежність швидкості матеріальної точки від часу при одномірному русі має вигляд, наведений на рис. Вважаючи, що в момент часу t=0 точка знаходилась в початку координат, побудувати залежності прискорення матеріальної точки, її координати та пройденого шляху від часу.



- 2. [1.6] З вишки висотою h = 10 м стрибає спортсмен і через час t = 1,8 с падає у воду. На скільки опір повітря збільшує час стрибка? Початкову швидкість прийняти рівною нулю.
- 3. [1.19] Під яким кутом до горизонту треба кинути тіло, щоб дальність польоту була в чотири рази більша, ніж найбільша висота підйому? Опором повітря знехтувати.
- 4. Циліндр радіусом R знаходиться між двох рейок, які рухаються в різні боки зі швидкостями  $V_1$  та  $V_2$  відносно землі. Вважаючи, що ковзання нема, знайти кутову швидкість обертання циліндру та швидкість руху його центра відносно землі.



# Заняття 2. Динаміка поступального руху. Закони Ньютона.

### Аудиторне заняття

- 1. [1.57] Тіло масою M=20 г лежить на горизонтальній поверхні. До нього прикладають силу F=0,1 Н, спрямовану під кутом  $\alpha=60^\circ$  до горизонту. За який час t тіло пройде шлях S=80 см, якщо коефіцієнт тертя між ним та площиною  $\mu=0,2$ ?
- 2. [1.58] Дана система (див.рис.). Маси вантажів *m* і *M*, коефіцієнт тертя µ між меншим вантажем і площиною відомі. Знайти прискорення вантажів.
- 3. [1.40] Вантаж масою m=20 кг переміщується вгору по похилій площині з кутом нахилу  $\alpha=30^\circ$  і коефіцієнтом тертя  $\mu=0,05$ . До вантажу паралельно основі прикладена сила F=500 Н. Знайти прискорення вантажу.
- 4. [1.55] Куля масою m висить на мотузці довжиною l, прикріпленій до пласкої стінки. Знайти силу, з якою куля тисне на стіну, якщо її радіус R.
- 5. [1.80] Тіло масою m починає ковзати по похилій площині довжиною l, яка утворює кут нахилу  $\alpha$  з горизонтом. Коефіцієнт тертя між тілом і площиною  $\mu$ . Знайти роботи сили тертя  $A_t$  та сили тяжіння  $A_{mg}$  за час ковзання тіла. Визначити потужність сили  $P_t$  тертя в момент часу t після початку руху.
- 6. [1.73] На скільки подовжиться риболовна волосінь жорсткістю k = 0.5 кН/м, якщо її піднімати вертикально вгору в повітрі разом з рибою масою m = 200 г? Розглянути два випадки: волосінь піднімають рівномірно та волосінь піднімають рівноприскорено з прискоренням a = 5 м/с².

#### Домашнє завдання

1. [1.45] Тіло масою  $m_1$  рухається вгору по похилій площині під дією зв'язаного з ним невагомою ниткою вантажу масою  $m_2$  (див.рис.). Початкові швидкості тіла і вантажу дорівнюють нулю, коефіцієнт тертя тіла по площині дорівнює  $\mu$ , кут нахилу площини  $\alpha$ . Визначити прискорення, з яким рухається тіло, та силу натягу нитки. Блок невагомий і обертається без тертя.



- 2. [1.50] Тіло масою m=20 кг тягнуть з силою F=120 Н по горизонтальній поверхні. Якщо ця сила прикладена під кутом  $\alpha_1=60^\circ$  до горизонту, то тіло рухається рівномірно. З яким прискоренням буде рухатись тіло, якщо цю силу прикласти під кутом  $\alpha_2=30^\circ$  до горизонту?
- 3. [1.59] Поїзд вагою P=4400 кН рухається по горизонтальній дорозі зі швидкістю V=27 км/год. Знайти час, протягом якого зможе зупинитися поїзд, якщо гальмуюча сила F=44 кН.

# Заняття 3. Закони збереження.

Аудиторне заняття

- 1. [1.101] З пружинного пістолета вистрілили кулькою, маса якої m. Жорсткість пружини k. Пружина до пострілу була стиснута на  $\Delta x$ . Визначити швидкість кульки v при її вильоті з пістолета. Знайти висоту h, на яку підніметься кулька, якщо постріл спрямувати вертикально вгору.
- 2. [1.65] Ракета встановлена на поверхні Землі для запуску у вертикальному напрямі. При якій мінімальній швидкості V, наданій ракеті, вона віддалиться від поверхні на відстань R, що дорівнює радіусу Землі? Вважати, що на ракету діє тільки гравітаційна сила з боку Землі.
- 3. [1.102] Від двохступеневої ракети загальною масою M в момент, коли вона досягла швидкості  $V_0$ , відділилась друга ступінь масою m. Швидкість цієї ступені при цьому збільшилась до  $V_2$ . Визначити, з якою швидкістю  $V_1$  буде рухатися перша ступінь. Швидкості вказано відносно спостерігача на Землі.
- 4. [1.103] З клина масою M, який стоїть на гладкій горизонтальній поверхні, зісковзує тіло масою m. Кут нахилу клину плавно змінюється до нуля в нижній частині (див.рис.). При переході на горизонтальну площину швидкість тіла V. Визначити висоту h, з якої зісковзує тіло.



- 5. [1.107] Між частинкою, яка має масу m та швидкість V, і нерухомою частинкою масою M відбувається абсолютно пружне зіткнення. При цьому напрям швидкості частинки m змінюється на 90°. Чому дорівнюють швидкості частинок після зіткнення? Який кут розльоту частинок?
- 6. Якщо на верхній кінець вертикально розташованої пружини покласти вантаж, то вони стиснеться на  $\Delta x$ . На скільки стисне пружину той самий вантаж, коли він впаде на неї з висоти h?

- 1. [1.105] Два човна рухаються паралельними курсами назустріч один одному. Коли човни порівнялися, з одного з них на інший обережно переклали вантаж масою m. Після чого човен з вантажем зупинився, а човен без вантажу продовжував рухатися зі швидкістю V. З якими швидкостями  $V_1$  і  $V_2$  рухалися човни до зустрічі, якщо маса човна, в який переклали вантаж, M?
- 2. [1.104] На гладкій горизонтальній площині знаходиться тіло масою M і на ньому шайба маси m (див.рис.). Шайбі надали швидкість V в горизонтальному напрямі. На яку максимальну висоту h (порівняно з початковим рівнем) підніметься шайба після відриву від тіла M. Тертям знехтувати.
- 3. [1.109] Дві маленькі кульки масами M і m підвішені на нитках довжиною l кожна в одній точці. Кульку масою M відхилили на кут  $\alpha$  від вертикалі і відпустили. На яку висоту H піднімуться кульки після абсолютно непружного зіткнення? Скільки тепла Q при цьому виділиться?

# Заняття 4. Динаміка обертального руху.

### Аудиторне заняття

- 1. [1.115] Знайти момент інерції I диску масою m і радіусом R відносно осей, що перпендикулярні до його площини і проходять а) через його центр; б) через його обід.
- 2. Циліндр скочується без проковзування по похилій площини, яка утворює кут  $\alpha$  з горизонтом. Визначити прискорення а центру мас циліндра. Яким має бути коефіцієнт тертя  $\mu$  між циліндром та площиною, щоб проковзування не відбувалося?
- 3. [1.131] Через блок у вигляді суцільного диску масою m перекинута тонка нерозтяжна нитка, до кінців якої підвішено вантажі масами  $m_1$  і  $m_2$ . Визначити прискорення вантажів, якщо їх відпустити. Тертям і масою нитки знехтувати.
- 4. [1.133] На легкому столику, який вільно обертається з кутовою швидкістю  $\omega_1$ , стоїть людина і тримає на випростаних руках на відстані  $l_1$  одна від одної дві однакові гирі масою m кожна. Потім людина зблизила гирі до відстані  $l_2$  і кутова швидкість обертання столика при цьому зросла до  $\omega_2$ . Вважаючи момент інерції людини відносно осі обертання столика сталим, знайти роботу A, яку вона виконала.

### Домашнє завдання

1. [1.130] На циліндр масою m=10 кг і радіусом R=15 см, закріплений на кронштейні, намотана нитка (див.рис.). В момент часу t=0 до кінця нитки у напрямку дотичної до циліндра почала діяти сила F=10 Н. За який час  $\tau$  циліндр зробить N=5 обертів?



- 1. [1.132] Пробірка довжиною l=15 см, яка стояла вертикально, починає падати на стіл. Тертя настільки велике, що її нижній кінець не ковзає. Яку кутову та лінійну швидкість буде мати в кінці падіння середина пробірки?
- 2. [1.120] Молекулу HCl можна уявити у вигляді двох маленьких кульок масами  $m_l$  і  $m_2$ , які знаходяться на відстані l одна від одної. Визначити момент інерції l молекули відносно осі, що проходить через центр мас системи перпендикулярно до прямої, що з'єднує атоми.

### Заняття 5. Основи МКТ. Газові закони.

Аудиторне заняття

- 1. [2.3] Визначити масу  $m_i$  молекули води та кількість N молекул, що містяться в об'ємі V = 1 мм<sup>3</sup>. Оцінити радіус  $r_0$  молекули води.
- 2. [2.6] Дано дві закриті посудини об'ємами  $V_1$  і  $V_2$ . Тиск газу в першій посудині  $P_1$ , в другій  $P_2$ . Температури газів однакові. Який тиск встановиться в кожній з посудин, якщо їх сполучити?
- 3. [2.7] В посудині знаходиться кисень масою  $m_l$  і водень масою  $m_2$ . У скільки разів зміниться тиск в посудині, якщо весь кисень прореагує з необхідною для цього частиною водню? Температура стала. Тиском водяної пари знехтувати.
- 4. [2.9] Два з'єднані тонкою трубкою балони об'ємами  $V_1 = 4$  л і  $V_2 = 3$  л містять певну кількість азоту. Перший балон має незмінну температуру  $t_1 = 27$ °C. До якої температури T потрібно нагріти другий балон для того, щоб в ньому залишилася тільки 1/3 загальної кількості азоту?
- 5. [2.12] На рисунку приведена VT-діаграма замкненого циклу. Побудувати PT і PVдіаграми.



6. [2.15] Вертикальний циліндр розділено рухомим горизонтальним поршнем масою *m* і площею *S* на дві частини. У верхній частині знаходиться азот при температурі *T* і тиску *P*, у нижній – кисень при температурі 2*T*. Посудину перевертають і встановлюють горизонтально. На скільки градусів необхідно змінити температуру азоту, щоб об'єми газів не змінилися?

Домашнє завдання

- 1. [2.5] Скільки електронів міститься в 1 см $^3$  свинцю? Густина свинцю  $\rho = 11000$  кг/м $^3$ .
- 2. [2.14] Газ здійснює цикл, PV-діаграма якого наведена на рисунку. Температура газу у станах 1 та 2 відома і дорівнює  $T_l$  і  $T_2$ , відповідно. Знайти температуру в стані 3.



3. [2.8] Бульбашка повітря піднімається з дна басейну глибиною H. Знайти залежність радіуса бульбашки r від глибини h її місцезнаходження в даний момент часу, якщо її об'єм на дні дорівнює  $V_0$ . Сили поверхневого натягу не враховувати. Атмосферний тиск  $P_0$ , густина води в басейні  $\rho$ . Температура води не залежить від глибини.

# Заняття 6. Принципи термодинаміки.

Аудиторне заняття

- 1. Знайти середні кінетичні енергії обертального, поступального та коливного рухів однієї молекули кисню при температурі T, а також кінетичну енергію  $E_k$  руху всіх молекул кисню масою m.
- 2. [2.18] В циліндрі об'ємом V під поршнем знаходиться газ при температурі T. Знайти роботу розширення газу при нагріванні його на  $\Delta T$ . Маса поршня m, площа S, атмосферний тиск  $p_0$ .
- 3. [Приклад 2.13] В двох теплоізольованих циліндрах об'ємами  $V_1 = 3$  л і  $V_2 = 5$  л знаходяться однакові гази, які мають тиски  $p_1 = 100$  кПа і  $p_2 = 150$  кПа та температури  $T_1 = 300$  К і  $T_2 = 320$  К , відповідно. Циліндри сполучені трубкою з краном. Кран відкривають і гази змішуються. Яка температура T і який тиск p встановляться в циліндрах після змішування? Об'ємом трубки знехтувати.
- 4. [2.56] Кисень займає об'єм  $V_l$  і знаходиться під тиском  $P_1$ . Газ спочатку нагрівають при сталому тиску до об'єму  $V_2$ , а потім при сталому об'ємі до тиску  $P_3$ . Знайти зміну  $\Delta U$  внутрішньої енергії газу, виконану ним роботу A і передану газу кількість теплоти Q.
- 5. [ $\sim$  Приклад 2.11] Азот об'ємом V, що знаходиться при тиску  $p_1$  стискують до  $p_2$ . Визначити роботу газу при адіабатичному стисненні.
- 6. [2.59] Ідеальний газ із показником адіабати  $\gamma$  розширили за законом  $P = \alpha V$ , де  $\alpha$  стала. Початковий об'єм газу  $V_0$ . У результаті розширення об'єм газу збільшився в  $\eta$  разів. Знайти зміну внутрішньої енергії  $\Delta U$ , роботу розширення газу A, молярну теплоємність газу  $C_M$

- 1. Знайти молярні теплоємності  $C_p$  та  $C_v$  ідеального трьохатомного газу. Розглянути всі можливі випадки.
- 2. В циліндрі під поршнем знаходиться деяка маса водню при температурі T, яка займає об'єм V і має тиск p. Як змінилась температура водню, якщо при незмінному тиску його об'єм зменшився настільки, що при цьому була виконана робота A.
- 3. [2.55] Якщо над ідеальним газом здійснюють процес A-B-C (див. рис.), то газу надають кількість теплоти Q. Яку кількість теплоти надають газу при здійснені процесу A-D-C? Величини  $P_1$ ,  $P_2$ ,  $V_1$  і  $V_2$  відомі.
- 4. [2.58] Кисень масою m виконує замкнений процес див.рис. Температура газу в станах 1, 2, 3, і 4 дорівнює  $T_1$ ,  $T_2$ ,  $T_3$ ,  $T_4$ , відповідно. Яка робота A виконана газом за цикл? Яка кількість теплоти Q передана газу при цьому? Як змінилася внутрішня енергія газу при переході зі стану 1 у стан 3?



## Заняття 7. Статистичні розподіли.

Аудиторне заняття

- 1. [Приклад 2.6] Знайти найбільш імовірну швидкість молекул ідеального газу, який підлягає розподілу Максвела.
- 2. [2.32] Обчислити найбільш ймовірну швидкість молекул газу, у якого при нормальному атмосферному тиску густина дорівнює ρ.
- 3. [2.33] Для газоподібного азоту знайти температуру, при якій швидкостям молекул υ1 і υ2 відповідають однакові значення функції розподілу Максвелла.
- 4. Азот знаходиться у дуже високій посудині в однорідному полі тяжіння при температурі Т. Температуру збільшили в η разів. На якій висоті концентрація молекул буде мати попереднє значення?

- 1. [Приклад 2.8] Використовуючи функцію розподілу молекул за модулями швидкостей, отримати вираз для середньоквадратичної швидкості.
- 2. [2.34] При якій температурі газу кількість молекул, які мають швидкості, що знаходяться в заданому інтервалі [ $\upsilon$ ,  $\upsilon$  +  $d\upsilon$ ] буде максимальним? Маса кожної молекули дорівнює  $m_0$ .
- 3. [2.36] У довгій вертикальній посудині знаходиться газ, що складається з двох сортів молекул з масами  $m_1$  і  $m_2$  (  $m_2 > m_1$ ). Концентрація цих молекул біля дна посудини  $n_{10}$  і  $n_{20}$ , відповідно ( $n_{20} > n_{10}$ ). Вважаючи, що по всій висоті підтримується одна й та ж температура T, знайти висоту, на якій концентрації молекул кожного сорту будуть однакові. Прискорення вільного падіння у всіх точках системи дорівнює g.

# Заняття 9. Напруженість електростатичного поля

Аудиторне заняття

- 1. [1.2] В центр квадрату, у кожній вершині якого знаходяться однакові заряди q=2 мкКл, вносять ще один заряд q. Якою повинна бути величина цього заряду, щоб система знаходилась у стані рівноваги? Чи буде ця рівновага стійкою?
- 2. [1.8] Два точкових заряди  $q_1$  та  $(-q_2)$  знаходяться на відстані d один від одного. Визначити напруженість та потенціал  $\varphi$  електричного поля, що створюється цими зарядами у точці, розташованій на відстані  $r_1$  від заряду  $q_1$  та на відстані  $r_2$  від заряду  $(-q_2)$ .
- 3. [1.12] Визначити напруженість та потенціал електричного поля E, яке створюється рівномірно зарядженою сферою радіусом R, на відстані r від її центра. Загальний заряд кулі дорівнює Q.
- 4. [1.52] Двом концентричним тонким металевим сферам радіусами  $R_1$ =10 см та  $R_2$ =20 см надано електричні заряди  $Q_1$ =3 мкКл та  $Q_2$ =-12 мкКл відповідно? Визначити заряд  $q_1$  внутрішньої сфери після її заземлення.
- 5. [1.27] Дві паралельні заряджені площини з густинами заряду  $+\sigma_1$  і  $-\sigma_2$  знаходяться на відстані d одна від одної. Вважаючи, що відстані  $L_1$  і  $L_2$  відомі (див.рис.), знайти напруженість E поля в точках A і B, а також різницю потенціалів  $\Delta \phi$  між ними.



- 1. [1.30] Дві однакові кульки, кожна масою, підвішено в одній точці на нитках довжиною l. Кульки мають однакові заряди. Кут між нитками  $2\alpha$ . Визначити заряди q кульок.
- 2. [1.10] У кожній вершині квадрата із стороною a, знаходяться однакові точкові заряди q. Знайти напруженість E і потенціал електростатичного поля  $\phi$  в центрі квадрата.
- 3. [1.14] Знайти напруженість E електричного поля, що створюється нескінченно довгим циліндром радіусом R на відстані r від його осі, якщо циліндр заряджено: а) лише на поверхні з лінійною густиною заряду  $\lambda$ ; б) по всьому об'єму з об'ємною густиною заряду  $\rho$ . Розглянути випадки r < R та  $r \ge R$ .

# Заняття 10. Енергія електростатичного поля. Електрична ємність.

## Аудиторне заняття

1. [1.50] У вершинах рівностороннього трикутника зі стороною a=2 см знаходяться заряди  $q_1=1$  нКл,  $q_2=2$  нКл та  $q_3=3$  нКл. Визначити роботу A по переміщенню заряду  $q_3$  до середини протилежної сторони трикутника (див.рис.).



2. [Пр.4] Дві металеві кулі радіусами  $R_1 = 5$  см і  $R_2 = 10$  см мають заряди  $Q_1 = 40$  нКл і  $Q_2 = -20$  нКл, відповідно. Знайти енергію W, яка виділиться при розряді, якщо кулі з'єднати провідником. Відстань між кульками настільки велика, що їхню взаємодію можна не враховувати.



3. [1.79] Конденсатор ємністю C заряджено до напруги U. До нього підключають незаряджений конденсатор ємністю  $C_1$  (див.рис.). Визначити заряд q, який пройшов по провідникам після замикання ключа. Яка кількість тепла W при цьому виділилось?



- 4. [1.74] Площа кожної з обкладинок плоского конденсатора дорівнює S, відстань між ними D. У конденсатор паралельно обкладинкам вводять пластину з діелектрика товщиною d та діелектричною проникністю є. Знайти ємність C створеної системи, коли: а) пластина введена повністю; б) на половину висоти конденсатора.
- 5. [1.88] На рис. наведена схема, яка складається з двох конденсаторів ємностями  $C_1$  і  $C_2$  та двох джерел струму з ЕРС  $\xi_1$  і  $\xi_2$ . Знайти різницю потенціалів  $\phi_{AB}$  між точками A і B.



# Домашнє завдання

1. [1.80] Три однакові конденсатори ємністю C кожен з'єднані так, як показано на схемі (див.рис.). Знайти ємність системи між точками A і B.



2. [1.44] У двох вершинах (див.рис.) квадрата знаходяться заряди величиною +Q, а в двох інших — величиною (-q). Чому дорівнює потенціальна енергія W системи зарядів, якщо сторона квадрата a.



3. [1.86] Обкладинки конденсатора з невідомою ємністю, зарядженого до напруги  $U_1$ , з'єднують з обкладинками конденсатора ємністю  $C_2$ , зарядженого до напруги  $U_2$ . Визначити невідому ємність  $C_1$ , якщо напруга на конденсаторах після з'єднання дорівнює U. Розглянути наступні випадки: а) конденсатори з'єднують однойменними обкладинками; б) різнойменними.

# Заняття 11. Електричний струм. Розрахунок електричних кіл за правилом Кірхгофа.

### Аудиторне заняття

- 1. [1.80] При зовнішньому опорі  $R_1 = 8$  Ом сила струму в колі, що складається з опора та джерела EPC, дорівнює  $I_1 = 0.8$  А, а при зовнішньому опорі  $R_2 = 15$  Ом, відповідно,  $I_2 = 0.5$  А. Визначити силу струму короткого замикання  $I_{\kappa_3}$  джерела EPC.
- 2. [1.149] Дана схема див. рис. Величини опорів  $R_1$ ,  $R_2$ ,  $R_3$ , EPC одного з джерел  $\xi_1$  та сила струму  $I_3$ , що проходить через опір  $R_3$ , відомі. Знайти величину ЕРС другого джерела  $\xi_2$ . Внутрішніми опорами джерел знехтувати.



3. [1.150] Два джерела з ЕРС  $\xi_1$  та  $\xi_2$ , внутрішніми опорами  $r_1$  і  $r_2$  з'єднані за схемою, що зображена на рис. Знайти струм, що проходить через резистор з опором R.



4. [1.151] Визначити падіння напруги на резисторах з опорами  $R_1 = 2$  Ом,  $R_2 = 4$  Ом,  $R_3 = 4$  Ом,  $R_4 = 2$  Ом, які увімкнені, як показано на рис.1.50. ЕРС джерел  $\xi_1 = 10$  В та  $\xi_2 = 4$  В. Опорами джерел струму знехтувати.



5. [1.153] Джерело струму з ЕРС  $\xi$ , два опори  $R_1$  та  $R_2$  і два конденсатори  $C_1$  та  $C_2$  з'єднані так, як показано на рис. Визначити різницю потенціалів між точками A та B. Внутрішнім опором джерела знехтувати.



## Домашнє завдання

- 1. [1.117] Вольтметр, який підключено до акумулятора із внутрішнім опором r = 1 Ом, показує напругу  $U_1 = 1,2$  В. Якщо послідовно з ним ввімкнено опір R = 20 Ом, то покази вольтметра складають  $U_2 = 1$  В. Визначити опір  $R_V$  вольтметра.
- 2. [1.154] Визначити силу струму, який проходить через кожен з елементів схеми, зображеної на рис., та напругу на затискачах реостату R, якщо  $\xi_1 = 12$  B,  $r_1 = 1$  Ом,  $\xi_2 = 6$  B,  $r_2 = 1,5$  Ом, R = 20 Ом.



3. [1.156] В схемі, зображеній на рис.1.55, ЕРС джерела дорівнює  $\xi = 5$  В, опори  $R_1 = 4$  Ом,  $R_2 = 6$  Ом, внутрішній опір джерела r = 0,1 Ом. Знайти струми, які проходять через опори  $R_1$  та  $R_2$ .



4. [1.152] Два елементи з ЕРС  $\xi$ 1 і  $\xi$ 2 та внутрішніми опорами  $r_1$ та  $r_2$  увімкнено до схеми, яка зображена на рис. Опір резисторів R,  $R_1$  та  $R_2$  і ємність конденсатора C відомі. Знайти заряд на конденсаторі.



# Заняття 12. Робота електричного струму. Електричний опір.

Аудиторне заняття

- 1. [1.132] Джерело з електрорушійною силою  $\xi$  та внутрішнім опором r підключено до реостата. Побудувати графіки залежності потужності P, яка виділяється у зовнішньому колі, повної потужності  $P_0$  та ККД  $\eta$  від опору реостата R. При якому відношенні внутрішнього та зовнішнього опорів P буде максимальною? Яким при цьому буде ККД?
- 2. [1.143] Електричний чайник містить у нагрівачі дві секції. При вмиканні першої чайник закипає за час  $t_1$ , при вмиканні другої за час  $t_2$ . Через який час закіпить вода, якщо увімкнути секції: а) паралельно; б) послідовно?
- 3. [1.144] Знайти потужність P, яка виділяється у зовнішньому колі, що складається з двох однакових резисторів. Відомо, що ця потужність однакова, як при послідовному, так і при паралельному з'єднанні резисторів. ЕРС джерела струму дорівнює  $\xi$ , внутрішній опір r.
- 4. [1.147] За час t = 8 с при рівномірно зростаючій силі струму в провіднику з опором R = 8 Ом виділилася кількість теплоти W = 500 Дж. Визначити заряд q, який пройшов через провідник за цей час, якщо сила струму у початковий момент часу дорівнювала нулеві.
- 5. [1.120] Визначити повний опір R кола (див. рис.), якщо величини  $R_1$ ,  $R_2$ ,  $R_3$ ,  $R_4$  та r відомі.



Домашнє завдання

- 1. [1.145] Електровоз рухається зі швидкістю  $\upsilon$  і тягне потяг масою m. При цьому він споживає струм силою I з кола з вихідною напругою U. Визначити ККД електровозу, якщо коефіцієнт тертя під час руху потягу дорівнює  $\mu$ .
- 2. [1.122] 3 шматка дроту загальним опором R зроблено кільце. Де треба приєднати провідники, які підводять струм (див.рис., щоб опір кільця дорівнював r=0,1 R.



3. [1.133] 25-ватна та 100-ватна лампочки, розраховані на однакову напругу, з'єднують послідовно і вмикають у мережу. В якій з них виділиться більше тепла?