Project Design Phase-I Proposed Solution Template

Date	19 September 2022
Team ID	PNT2022TMID53208
Project Name	Project - A Gesture-based Tool for Sterile Browsing of Radiology Images
Maximum Marks	2 Marks

Proposed Solution Template:

Project team shall fill the following information in proposed solution template.

S.No.	Parameter	Description
1.	Problem	The use of doctor-computer interaction devices in the operation
	Statement	room requires new
	(Problem to be	modalities that support medical imaging manipulation while
	solved)	allowing doctors' hands to remain sterile, supporting
	,	their focus of attention, and providing fast response times.
		Therefore, a gesture recognition system that interprets user's
		gestures for manipulation of medical images is proposed.
2.	Idea / Solution	The data is to be collected by observing intuitive gestures in
	description	different lighting environments by video capture. The data is then
		sampled, cleaned and segmented and passed into a
		Convolutional Neural Network which then identifies the gestures.
		Following this, stacking is performed to give higher accuracy using
		algorithms such as SVMs and GMMs.
3.	Novelty /	The project proposes classification of hand images depicting a
Uniquene	Uniqueness	particular number for an operation, ex,.2 for zoom out. Instead,
		a temporal model, depicting real time gesture for an operation, ex.
		moving index finger left for left swipe, can be implemented to ease
		the interaction which thus forms a scope for uniqueness for the
		project.
4.	Social Impact /	The ability to interact through patient medical images in a sterile
	Customer	format augments the attention of the surgeon towards surgery. The
	Satisfaction	surgeon
		need not change location in order to browse images, but can do it
		remotely. Further, inconveniences caused in physical interaction,
		being
		possible mode for infection spread, is now solved.
5.	Business Model	The system when developed and tested for accuracy, can be given to
	(Revenue	various hospitals for practical testing for a particular period. They can
	Model)	later be persuaded to purchase once the test period is done. Further, to
		capitalise and
		market it as a software product, direct sales to hospitals and surgeons
		must be made. Revenue sources include direct sales via demo and sales
		via purchase after testing.
6.	Scalability of the	Numerous hospitals in the present date, follow only physical mode
	Solution	of interaction with images during surgery. But the need for sterile
		browsing in intact and vital. This
		explains that the model has immense scope to be scaled and
		distributed among various surgeons. Additionally, the model can be
		improvised to perform more functions than interactions,
		such as automatic and consecutive fetching of related images, ex. If
		an image of shoulder blade inspected, more likely hand will also be
		inspected.