

BALLISTIC MISSILE
DEFENSE ORGANIZATION
7100 Defense Pentagon
Washington, D.C. 20331 7100

GEORGIA TECH GT-VFPU
VLSI DESIGN VERIFICATION DOCUMENT

VLSI DEVELOPMENT REPORT

REPORT NO. VDR-0142-90-001

MAY 15, 1990

GUIDANCE, NAVIGATION AND CONTROL
DIGITAL EMULATION TECHNOLOGY LABORATORY

Contract No. DASG60-89-C-0142

Sponsored By

The United States Army Strategic Defense Command

COMPUTER ENGINEERING RESEARCH LABORATORY

Georgia Institute of Technology

Atlanta, Georgia 30332 - 0540

Contract Data Requirements List Item A006

Period Covered: Not Applicable

Type Report: As Required

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

20010829 009

UL10458

DISCLAIMER

DISCLAIMER STATEMENT - The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation.

DISTRIBUTION CONTROL

- (1) **DISTRIBUTION STATEMENT** - Approved for public release; distribution is unlimited.
- (2) This material may be reproduced by or for the U.S. Government pursuant to the copyright license under the clause at DFARS 252.227 - 7013, October 1988.

**GEORGIA TECH GT-VFPU
VLSI DESIGN VERIFICATION DOCUMENT**

May 15, 1990

Samuel H. Russ

COMPUTER ENGINEERING RESEARCH LABORATORY

Georgia Institute of Technology
Atlanta, Georgia 30332 - 0540

Eugene L. Sanders
USASDC
Contract Monitor

Cecil O. Alford
Georgia Tech
Project Director

Copyright 1990
Georgia Tech Research Corporation
Centennial Research Building
Atlanta, Georgia 30332

GEORGIA TECH GT-VFPU

VLSI DESIGN VERIFICATION DOCUMENT

1.0 INTRODUCTION

There are eleven (11) Georgia Tech VLSI designs (see Table 1) in the AHAT Program. Each of these designs has been produced by Georgia Tech using the Genesil Silicon Compiler. Each design has passed the design verification process at Silicon Compiler Systems/Mentor Graphics and each has been fabricated in a bulk CMOS process (fabrication of certain chips was not complete when this document was released). Each of the Georgia Tech designs listed in Table 1 is being delivered to USASDC and to the Harris Corporation for conversion and fabrication in a rad-hard process. The program under which this work is done is AHAT (Advanced Hardened Avionics Technology). This document includes design information for the Georgia Tech floating point unit, GT-VFPU.

TABLE 1. GEORGIA TECH CHIP SET FOR AHAT

DESIGN	DV PASSED	TAPE DELIV.	FABRICATED	TESTED
GT-VFPU				
GT-VNUC				
GT-VTF				
GT-VTHR				
GT-VCLS				
GT-VCTR				
GT-VIAG				
GT-VDAG				
GT-VSNI				
GT-VSM8				
GT-VSF				

1. Scheduled March 31, 1991
2. Scheduled December 31, 1990

Table of Contents

1. Checklist	1
2. Notes	8
3. Key Parameters	9
4. Power Consumption	11
5. Pin and Pad Listing	16
5. Timing Setup Files and Reports.....	20

APPENDIX A
DESIGN VERIFICATION CHECKLIST

1. DV CONTROL NUMBER : _____ (Assigned by SCS)

2. CUSTOMER INFORMATION

Customer Name: _____ Chip Name: _____

Project Manager: _____ Phone: _____

Design Engineer: Sam Russ Phone: (404) 894-3374

Phone: _____

Test Engineer : _____ Phone: _____

3. SCS CONTACT: Girish Kumar

4. REGRESSION

4.1 GENESIL Version: v7.0

4.2 Name of Session Log from recompile: REBUILD.CMD

4.3 Include DV_regression.001?: yes (simulation and timing)

4.4 Size of database: _____ Density: 6250 1600 TK50 X

5. FUNCTIONAL INFORMATION (check when included)

5.1 Key Parameters : _____

5.2 DV_pin_description : _____

5.3 Block Diagram : _____

5.4 Functional Description : _____

5.4 Timing Diagrams at Pins : _____

5.6 Annotated Views : _____ Annotated Schematics: _____

6. PHYSICAL INFORMATION

6.1 Fabline : NSC CN12A

6.2 Plots: (check when included or indicate filename)

Chip Route (D size): x Bonding Diagram (B size) : _____

Route Bonding

Filename: route_d_1.031 Filename:bond_b_1.031

6.3 Die Size: Reported Die Size: 378.96 X 363.12

(in mils) Maximum Acceptable Die Size: 392 X 392

Minimum Acceptable Die Size: 232 X 232

47

6.4 GENESIL Package Name : CPGA144f Spec included?: no

Cavity/Well Size : 472 mils by 472 mils

6.5 External Block: none

7. ELECTRICAL INFORMATION**7.1 Chip Frequency**Specified in netlist: 10 MHz Target frequency: 6.7 MHz (1/150 ns)7.2 Power Dissipation: GENESIL=5.1 W at 10 MHz Spec=1.5 W at 10 MHz7.3 Operating Voltage: from 4.5 Volts to 5.5 Volts**8. SIMULATION**8.1 Number of Clocking Regimes : one

	Clock Pad Name	DIV/NO DIV	Ext Clock Name	Int PHASE A/PHASE B Name
1.	<u>clock pad</u>	<u>NO DIV</u>	<u>proc_clk</u>	<u>PHASE_A/PHASE_B</u>
2.	_____	_____	_____	_____
3.	_____	_____	_____	_____
4.	_____	_____	_____	_____
5.	_____	_____	_____	_____

8.2 Simulation Setup Files:

Name: _____ Listings attached: _____

Description: _____

Affected Tests: _____

Name: _____ Listings attached: _____

Description: _____

Affected Tests: _____

Name: _____ Listings attached: _____

Description: _____

Affected Tests: _____

8.3 Test Vector Set:

NOTE: Test vectors written one phase per vector have a maximum test frequency on the IMS Tester of 10 MHz.
Test vectors written one cycle per vector have a maximum test frequency on the IMS Tester of 20 MHz.

1. Name: monolithic.089/083 No of vectors: 901
Description: Functional test of all opcodes, as well as some manuf.
testing of adder, normalizer, multiplier, and fixed pt modules.

Portions of Chip Tested: All

Run with GFL model? X Use for switch level simulation? X N
Run with GSL model? X Use for tester? X N

2. Name: test2op.083 No of vectors: 7622
Description: tests 2-operand opcodes

Portions of Chip Tested: all

Run with GFL model? X Use for switch level simulation? X N
Run with GSL model? X Use for tester? X N

3. Name: testRop.083 No of vectors: 2998
Description: tests "R-operand" opcodes

Portions of Chip Tested: all

Run with GFL model? X Use for switch level simulation? X N
Run with GSL model? X Use for tester? X N

4. Name: testSop.083 No of vectors: 1910
 Description: test S-operand opcodes

Portions of Chip Tested: all

Run with GFL model? X Use for switch level simulation? X N
 Run with GSL model? X Use for tester? X N

5. Name: add_atg.083 No of vectors: 1542
 Description: additional tests of adder

Portions of Chip Tested: adder, normalizer

Run with GFL model? X Use for switch level simulation? X N
 Run with GSL model? X Use for tester? X N

6. Name: testshop.083 No of vectors: 774
 Description: Tests shift and rotate opcodes
 Description:

Portions of Chip Tested: "barrel" module

Run with GFL model? X Use for switch level simulation? X N
 Run with GSL model? X Use for tester? X N

7. Name: add_vecs.083 No of vectors: 1578
 Description: ATG output of adder testing

Portions of Chip Tested: Adder

Run with GFL model? X Use for switch level simulation? X N
 Run with GSL model? X Use for tester? X N

8. Name: ftest.083 No of vectors: 46
 Description:

Tests F bus enable circuitry, "flush" and "freeze" logic

Portions of Chip Tested: F_bus_enable, F_pad's, Flush, Freeze (output module)

Run with GFL model? X Use for switch level simulation? Y N
 Run with GSL model? X Use for tester? Y N

9. TIMING ANALYSIS

9.1 Environment

Temperature Coefficient: 35 Degrees C / Watt (theta_JA)
 Operating Temp : from 0 C (min) to 75 C (max)
 Operating Voltage : from 4.5 V (min) to 5.5 V (max)

room junction temp = $25 + (\text{theta_JA} * \text{Power})$ = 133.5 degrees C
 maximum junction temp =
 maximum ambient temp + ($\text{theta_JA} * \text{Power}$) = 183.5 degrees C

9.2 Include the following reports:

(required)	(required)	(optional)
guaranteed model	guaranteed model	target model
<u>5.0V</u>	min operating V	min operating V
room junc temp(<u>100°C</u>)	max junction temp(<u>150°C</u>)	max junction temp
-----	-----	-----
Cycle: <u>X</u>	Cycle: <u>X</u>	Cycle: _____
Setup/Hold: <u>X</u>	Setup/Hold: <u>X</u>	Setup/Hold: _____
Output Delay: <u>X</u>	Output Delay: <u>X</u>	Output Delay: _____
Path Delay: <u>X</u>	Path Delay: <u>X</u>	Path Delay: _____

9.3 Setup Files:

Name: ignore_setup Listings attached: _____
 Temperature: 100°C Voltage: 5.0 V

Description : Used for cycle time calculations only. Sets setup time for ALU opcode and operand select (R/S eq f 1/2) to -999, since these are actually SB(t) signals from other chips.

Name: include setup Listings attached: _____
 Temperature: 100°C Voltage: 5.0 V

Description : Used for all other reports at 100°C.

Name: ignore_high Listings attached: _____
 Temperature: 150°C Voltage: 4.5V

Description : Used for cycle time calculations at 150°C.

Name: include high Listings attached: _____
 Temperature: 150°C Voltage: 4.5 V

Description : Used for all other reports at 150°C.

9.4 Critical Boundary Conditions:

List critical paths here or annotate the timing report.
Attach additional pages if needed.

Clock Name:

	<u>proc_clk</u>			
	report	limit	report	limit
1. Phase 1 High	<u>16.9</u>	<u>75.0</u>		
2. Phase 2 High	<u>6.3</u>	<u>75.0</u>		
3. Symmetric Cycle	<u>154.6</u>	<u>150.0</u>		
4. Minimum Cycle	<u>154.6</u>	<u>150.0</u>		

Outputs

	Signal Name	load (pF)	delay	limit
1.				
2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				

Inputs

	Signal Name	setup report/limit	hold report/limit
1.		/	/
2.		/	/
3.		/	/
4.		/	/
5.		/	/
6.		/	/
7.		/	/
8.		/	/
9.		/	/
10.		/	/

9.5 Hold Time Violations: none (At 2 nsec.)

11. TAPEOUT AND TESTING SPECIFICATION

Prototype Brokerage Service Purchased? yes no
If yes: PO # _____

12. CUSTOMER CHECKLIST COMMENTS**Pre-Verification Comments**

SCS will report back on the fault coverage of our test vector set.

We reserve the right to submit additional vectors, at no extra cost,
if we decide that the fault coverage is not sufficiently high.

13. CUSTOMER CHECKLIST APPROVAL

The undersigned understands that if any design changes are initiated by the Customer subsequent to this sign-off, the Customer is liable for any charges imposed by Silicon Compiler Systems as agreed to in either the Design Verification Terms & Conditions or the Prototype Brokerage Services Terms & Conditions. In addition, such changes require the DV process to be started from the beginning, which results in extended DV schedules.

Customer Approval : _____ Date ____ / ____ / ____

Title : _____

14. SCS CHECKLIST APPROVAL**Pre-Verification Comments**

SCS Approval : _____ Date ____ / ____ / ____

Title : _____

DESIGN VERIFICATION NOTES FOR fpu

1. Design enhancements

For your information, the following changes were made.

Normalizer - Replaced PLA's with Genesil's Datapath Static Barrel Shifter
Barrel - Added this module to perform barrel shifts and rotates. It is logic compiled.
Fixed_pt - Changed to handle barrel shifter outputs
Input - Added "freeze" option
Output - Added "freeze" and "flush" options
Pads - Added a "Freeze" and a "Flush" pad. Both have been bonded successfully.

All of the changes have been reflected in the documentation, and the chip database is fully compiled with no errors.

2. Test vectors

<u>Filename</u>	<u>Size</u>	<u>Traceobj version</u>	<u>Size</u>
monolithic	869	mon_trace	1739
add_atg	1542	add_trace	3085
test2op	7622	test2_trace	15425
testRop	2454	testR_trace	4909
testSop	1366	testS_trace	2733
testshop	774	testsh_trace	1549
ftest	46	ftest_trace	93

The "regular" files are one vector per cycle, and the traceobj files are one vector per phase. Of course, these are the "latest" vectors and should all run properly under GFL. I will try to run GSL here and let you know if there are any problems.

3. Power consumption

The chip consumes about 3.1 Watts. However, the key parameters listing no longer produces figures for power consumption. The key parameters listing is found under /fpu/keyparm.106 and the tnet power report is found under /fpu/Power.106. They are also enclosed as hardcopy. The vast majority of the remaining DC power is due to high-speed static adders. They were not changed to low power for three reasons. First, they are on various critical timing paths. Second, in the case of the "shift_mant" module, add/subtract capability was needed, and this is not possible with low-power static adders. Third, the 3.1 Watt figure is acceptable.

UTILITY;
KEY_PARAMETERS

Key Parameters for Chip ~sfpu/sfpu/fpu

ROUTE VERSION = 87.20
HEIGHT = 367.5 MILS
(= 9334.50 u)
WIDTH = 373.5 MILS
(= 9486.90 u)
ROUTED = 1 (0=NO,1=YES)
TOTAL_WIRE LENGTH = 1168070 MILS
(= 29668978. u)
CORE AREA = 109333.2 SQUARE_MILS
(= 70537410.6 u2)
PADRING AREA = 27936.8 SQUARE_MILS
(= 18023706. u2)
PAD AREA = 24909.8 SQUARE_MILS
(= 16070807. u2)
ROUTE AREA = 62919.0 SQUARE_MILS
(= 40592822. u2)
PERCENT_ROUTING_OF_CORE = 57 %
PERCENT_ROUTING_OF_CHIP = 45 %
PERCENT_CORE_OF_CHIP = 79 %
PERCENT_PADRING_OF_CHIP = 20 %
PERCENT_PAD_OF_PADRING = 89 %

NETLIST VERSION = 1.0
NETLIST_EXISTS = 1 (0=NO,1=YES)
PHASE_A_TIME = 28.7 NANOSECONDS
PHASE_B_TIME = 14.1 NANOSECONDS
SYMMETRIC_TIME = 116.6 NANOSECONDS

ROUTE ESTIMATE_LVL = 0
FLAT_ROUTE = 1 (0=NO,1=YES)
TECHNOLOGY NAME = CMOS-1
PACKAGE_SPECIFIED = 1 (0=NO,1=YES)
PACKAGE_NAME = CPGA144f
FABLINE_NAME = NSC_CN12A
COMPILER_TYPE = GCX

FLOORPLAN VERSION = 7.0
BOND PAD_CNT = 138
HEIGHT_ESTIMATE = 381.85 MILS
(= 9698.990 u)
WIDTH_ESTIMATE = 398.19 MILS
(= 10114.02 u)
FUSED = 1 (0=NO,1=YES)
FUSION_REQUIRED = 1 (0=NO,1=YES)
PINOUT = 1 (0=NO,1=YES)
PINOUT_REQUIRED = 1 (0=NO,1=YES)
PLACED = 1 (0=NO,1=YES)
PLACEMENT_REQUIRED = 1 (0=NO,1=YES)

```
DOWN_BONDS_ALLOWED = 1 (0=NO,1=YES)
PKG_PIN_COUNT = 144
PKG_WELL_HEIGHT = 472.00 MILS
)   ( = 11988.80 u )
PKG_WELL_WIDTH = 472.00 MILS
)   ( = 11988.80 u )
AREA = 137261.3 SQUARE_MILS
)   ( = 88555499.9 u2 )
OBJECT_TYPE = Chip
PHYSICAL_IMPLEMENTATIONS_EXIST = 0 (0=NO,1=YES)
) CHECKPOINTS_EXIST = 1 (0=NO,1=YES)
CAN_SET_FABLINE = 1 (0=NO,1=YES)
```

Key Parameter Listing Complete

START Genesil job ~sfpu/sfpu/18_Aug_1 on calsc2 Thu Aug 18 16:40:37 1988

Genesil (tm) System Version v7.0

Copyright Silicon Compiler Systems Corporation 1988

Licensed Material -- Program Property of SCS -- All Rights Reserved

This software is protected as an unpublished work and the copyright notice does not imply publication. This software contains confidential trade secrets of Silicon Compiler Systems Corporation. The reproduction, transfer or use of this software or the supporting documentation is governed by a license agreement with SCS, and the software shall be used solely in accordance with such agreement.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the Government
is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause
at 252.227-7013.

CONTINUE
el do fpu ba

un TNET

DISP POWER

OWER

Clock Proc_clk [clock=-9999]

) Reading Routing Data . . .

INFO: longest net delay: 26.1ns

Nets with delay longer than 10.0ns are recorded in ancillary file LONG_NET

STD

INFO: Nets loading, driving information can be found in ancillary file TA_NET
STD

Back-annotating route capacitance for block power calculation. . .

Power for block ringpower: 0.00mW(DC) 0.00mW(AC)

Power for block ringground: 0.00mW(DC) 0.00mW(AC)

Power for block reset_pad: 0.00mW(DC) 0.35mW(AC)

Power for block output/resultsel: 0.00mW(DC) 0.98mW(AC)

Power for block output/result_handler: 4.46mW(DC) 31.02mW(AC)

Power for block output/outputmux: 65.67mW(DC) 2.51mW(AC)

Power for block output/outmux2: 58.92mW(DC) 2.63mW(AC)

Power for block output/mantmux: 0.00mW(DC) 9.08mW(AC)

Power for block output/logic: 0.00mW(DC) 1.04mW(AC)

Power for block output/flagsel: 0.00mW(DC) 1.34mW(AC)

Power for block output/flagreg: 0.00mW(DC) 1.42mW(AC)

Power for block output/f_disable: 0.00mW(DC) 1.01mW(AC)

Power for block output/expmux: 0.00mW(DC) 3.16mW(AC)

Power for block opcode_logic/opatch: 0.00mW(DC) 1.71mW(AC)

Power for block opcode_logic/notop: 0.00mW(DC) 0.52mW(AC)

Power for block opcode_logic/fpatch: 0.00mW(DC) 2.88mW(AC)

Power for block opcode_logic/fpcon2: 0.00mW(DC) 0.25mW(AC)

Power for block opcode_logic/fpcon1: 0.00mW(DC) 0.39mW(AC)

) W: Node normalizer/left_shift/postnorm[24] is not routed

W: Node normalizer/left shift/postnorm[0] is not routed
Power for block normalizer/left shift: 0.00mW(DC) 9.60mW(AC)
Power for block normalizer/flags: 0.00mW(DC) 0.16mW(AC)
Power for block normalizer/exponent: 72.86mW(DC) 4.14mW(AC)
Power for block normalizer/encoderc: 0.00mW(DC) 0.60mW(AC)
Power for block normalizer/encoderb: 0.00mW(DC) 0.62mW(AC)
Power for block normalizer/encodera: 0.00mW(DC) 0.59mW(AC)
Power for block normalizer/cascade: 0.00mW(DC) 0.74mW(AC)
Power for block mult/sign ovfl: 0.00mW(DC) 0.57mW(AC)

W: Node mult/normalize/result[32] is not routed
Power for block mult/normalize: 0.00mW(DC) 4.22mW(AC)
Power for block mult/multac: 0.00mW(DC) 33.07mW(AC)
Power for block mult/multab: 0.00mW(DC) 33.06mW(AC)
Power for block mult/fxd_res: 8.92mW(DC) 4.05mW(AC)
Power for block mult/add_out_lo: 113.22mW(DC) 5.99mW(AC)
Power for block mult/add_hi: 425.06mW(DC) 24.06mW(AC)
Power for block mult/add_exp: 233.00mW(DC) 6.72mW(AC)
Power for block mult/add_ac_hi: 212.53mW(DC) 12.31mW(AC)
Power for block input/op_sel logic: 0.00mW(DC) 0.34mW(AC)
Power for block input/latch: 0.00mW(DC) 1.93mW(AC)
Power for block input/inputmux: 303.68mW(DC) 1.60mW(AC)
Power for block input/b_low: 0.00mW(DC) 12.01mW(AC)
Power for block input/b_input: 8.92mW(DC) 7.71mW(AC)
Power for block input/b_high: 0.00mW(DC) 3.65mW(AC)
Power for block input/a_low: 0.00mW(DC) 12.62mW(AC)
Power for block input/a_input: 4.46mW(DC) 7.88mW(AC)
Power for block input/a_high: 0.00mW(DC) 3.04mW(AC)
Power for block fixed_pt/synch: 0.00mW(DC) 0.73mW(AC)

W: Node fixed_pt/flag_zero/sro_s is not routed
W: Node fixed_pt/flag_zero/sro_r is not routed
W: Node fixed_pt/flag_zero/slo_s is not routed
W: Node fixed_pt/flag_zero/slo_r is not routed
Power for block fixed_pt/fixed_pt alu: 288.69mW(DC) 29.19mW(AC)
Power for block cornerpwr: 0.00mW(DC) 0.00mW(AC)
Power for block cornergnd: 0.00mW(DC) 0.00mW(AC)
Power for block corepower: 0.00mW(DC) 0.00mW(AC)
Power for block coreground: 0.00mW(DC) 0.00mW(AC)
Power for block clock_pad: 0.00mW(DC) 23.25mW(AC)
Power for block barrel: 0.00mW(DC) 26.57mW(AC)
Power for block adder/subtract: 223.94mW(DC) 13.63mW(AC)
Power for block adder/sign logic: 0.00mW(DC) 0.94mW(AC)

W: Node adder/shift_mant/addout[1] is not routed
W: Node adder/shift_mant/addout[0] is not routed
W: Node adder/shift_mant/postshift[19] is not routed
W: Node adder/shift_mant/postshift[18] is not routed
W: Node adder/shift_mant/postshift[17] is not routed
W: Node adder/shift_mant/addout[19] is not routed
W: Node adder/shift_mant/postshift[16] is not routed
W: Node adder/shift_mant/addout[18] is not routed
W: Node adder/shift_mant/addout[17] is not routed
W: Node adder/shift_mant/postshift[15] is not routed
W: Node adder/shift_mant/addout[16] is not routed
W: Node adder/shift_mant/postshift[9] is not routed
W: Node adder/shift_mant/postshift[14] is not routed
W: Node adder/shift_mant/addout[25] is not routed
W: Node adder/shift_mant/addout[15] is not routed

W: Node adder/shift_mant/postshift[8] is not routed
W: Node adder/shift_mant/postshift[13] is not routed
W: Node adder/shift_mant/addout[24] is not routed
W: Node adder/shift_mant/addout[14] is not routed
W: Node adder/shift_mant/postshift[7] is not routed
W: Node adder/shift_mant/addout[23] is not routed
W: Node adder/shift_mant/addout[13] is not routed
W: Node adder/shift_mant/postshift[12] is not routed
W: Node adder/shift_mant/postshift[6] is not routed
W: Node adder/shift_mant/addout[22] is not routed
W: Node adder/shift_mant/addout[12] is not routed
W: Node adder/shift_mant/postshift[11] is not routed
W: Node adder/shift_mant/addout[21] is not routed
W: Node adder/shift_mant/addout[11] is not routed
W: Node adder/shift_mant/postshift[5] is not routed
W: Node adder/shift_mant/postshift[10] is not routed
W: Node adder/shift_mant/addout[20] is not routed
W: Node adder/shift_mant/addout[10] is not routed
W: Node adder/shift_mant/postshift[4] is not routed
W: Node adder/shift_mant/postshift[3] is not routed
W: Node adder/shift_mant/postshift[2] is not routed
W: Node adder/shift_mant/postshift[26] is not routed
W: Node adder/shift_mant/postshift[1] is not routed
W: Node adder/shift_mant/postshift[25] is not routed
W: Node adder/shift_mant/postshift[24] is not routed
W: Node adder/shift_mant/postshift[23] is not routed
W: Node adder/shift_mant/postshift[22] is not routed
W: Node adder/shift_mant/postshift[21] is not routed
W: Node adder/shift_mant/sum_mant[26] is not routed
W: Node adder/shift_mant/postshift[20] is not routed
W: Node adder/shift_mant/addout[9] is not routed
W: Node adder/shift_mant/addout[8] is not routed
W: Node adder/shift_mant/addout[7] is not routed
W: Node adder/shift_mant/sum_mant[0] is not routed
W: Node adder/shift_mant/addout[6] is not routed
W: Node adder/shift_mant/addout[5] is not routed
W: Node adder/shift_mant/addout[4] is not routed
W: Node adder/shift_mant/addout[3] is not routed
W: Node adder/shift_mant/addout[2] is not routed
Power for block adder/shift_mant: 548.99mW(DC) 44.47mW(AC)
Power for block adder/shift_logic: 0.00mW(DC) 0.52mW(AC)
Power for block adder/logic: 0.00mW(DC) 0.10mW(AC)
Power for block Zero_pad: 0.00mW(DC) 4.21mW(AC)
Power for block Test_pad: 0.00mW(DC) 0.19mW(AC)
Power for block S_pad[9]: 0.00mW(DC) 0.16mW(AC)
Power for block S_pad[8]: 0.00mW(DC) 0.16mW(AC)
Power for block S_pad[7]: 0.00mW(DC) 0.15mW(AC)
Power for block S_pad[6]: 0.00mW(DC) 0.15mW(AC)
Power for block S_pad[5]: 0.00mW(DC) 0.15mW(AC)
Power for block S_pad[4]: 0.00mW(DC) 0.15mW(AC)
Power for block S_pad[3]: 0.00mW(DC) 0.15mW(AC)
Power for block S_pad[31]: 0.00mW(DC) 0.28mW(AC)
Power for block S_pad[30]: 0.00mW(DC) 0.28mW(AC)
Power for block S_pad[2]: 0.00mW(DC) 0.16mW(AC)
Power for block S_pad[29]: 0.00mW(DC) 0.27mW(AC)
Power for block S_pad[28]: 0.00mW(DC) 0.27mW(AC)

Power for block S_pad[27]: 0.00mW(DC) 0.26mW(AC)
Power for block S_pad[26]: 0.00mW(DC) 0.25mW(AC)
Power for block S_pad[25]: 0.00mW(DC) 0.25mW(AC)
Power for block S_pad[24]: 0.00mW(DC) 0.24mW(AC)
Power for block S_pad[23]: 0.00mW(DC) 0.24mW(AC)
Power for block S_pad[22]: 0.00mW(DC) 0.23mW(AC)
Power for block S_pad[21]: 0.00mW(DC) 0.23mW(AC)
Power for block S_pad[20]: 0.00mW(DC) 0.22mW(AC)
Power for block S_pad[1]: 0.00mW(DC) 0.18mW(AC)
Power for block S_pad[19]: 0.00mW(DC) 0.21mW(AC)
Power for block S_pad[18]: 0.00mW(DC) 0.21mW(AC)
Power for block S_pad[17]: 0.00mW(DC) 0.20mW(AC)
Power for block S_pad[16]: 0.00mW(DC) 0.20mW(AC)
Power for block S_pad[15]: 0.00mW(DC) 0.20mW(AC)
Power for block S_pad[14]: 0.00mW(DC) 0.19mW(AC)
Power for block S_pad[13]: 0.00mW(DC) 0.18mW(AC)
Power for block S_pad[12]: 0.00mW(DC) 0.18mW(AC)
Power for block S_pad[11]: 0.00mW(DC) 0.17mW(AC)
Power for block S_pad[10]: 0.00mW(DC) 0.17mW(AC)
Power for block S_pad[0]: 0.00mW(DC) 0.19mW(AC)
Power for block Run_pad: 0.00mW(DC) 0.36mW(AC)
Power for block R_pad[9]: 0.00mW(DC) 0.21mW(AC)
Power for block R_pad[8]: 0.00mW(DC) 0.22mW(AC)
Power for block R_pad[7]: 0.00mW(DC) 0.22mW(AC)
Power for block R_pad[6]: 0.00mW(DC) 0.22mW(AC)
Power for block R_pad[5]: 0.00mW(DC) 0.23mW(AC)
Power for block R_pad[4]: 0.00mW(DC) 0.23mW(AC)
Power for block R_pad[3]: 0.00mW(DC) 0.24mW(AC)
Power for block R_pad[31]: 0.00mW(DC) 0.19mW(AC)
Power for block R_pad[30]: 0.00mW(DC) 0.19mW(AC)
Power for block R_pad[2]: 0.00mW(DC) 0.24mW(AC)
Power for block R_pad[29]: 0.00mW(DC) 0.18mW(AC)
Power for block R_pad[28]: 0.00mW(DC) 0.18mW(AC)
Power for block R_pad[27]: 0.00mW(DC) 0.17mW(AC)
Power for block R_pad[26]: 0.00mW(DC) 0.17mW(AC)
Power for block R_pad[25]: 0.00mW(DC) 0.16mW(AC)
Power for block R_pad[24]: 0.00mW(DC) 0.16mW(AC)
Power for block R_pad[23]: 0.00mW(DC) 0.15mW(AC)
Power for block R_pad[22]: 0.00mW(DC) 0.15mW(AC)
Power for block R_pad[21]: 0.00mW(DC) 0.15mW(AC)
Power for block R_pad[20]: 0.00mW(DC) 0.16mW(AC)
Power for block R_pad[1]: 0.00mW(DC) 0.24mW(AC)
Power for block R_pad[19]: 0.00mW(DC) 0.16mW(AC)
Power for block R_pad[18]: 0.00mW(DC) 0.17mW(AC)
Power for block R_pad[17]: 0.00mW(DC) 0.18mW(AC)
Power for block R_pad[16]: 0.00mW(DC) 0.18mW(AC)
Power for block R_pad[15]: 0.00mW(DC) 0.18mW(AC)
Power for block R_pad[14]: 0.00mW(DC) 0.18mW(AC)
Power for block R_pad[13]: 0.00mW(DC) 0.18mW(AC)
Power for block R_pad[12]: 0.00mW(DC) 0.19mW(AC)
Power for block R_pad[11]: 0.00mW(DC) 0.20mW(AC)
Power for block R_pad[10]: 0.00mW(DC) 0.21mW(AC)
Power for block R_pad[0]: 0.00mW(DC) 0.25mW(AC)
Power for block Ovfl_pad: 0.00mW(DC) 4.21mW(AC)
Power for block Op_sel_pad[3]: 0.00mW(DC) 0.26mW(AC)
Power for block Op_sel_pad[2]: 0.00mW(DC) 0.24mW(AC)

Power for block Op_sel_pad[1]: 0.00mW(DC) 0.25mW(AC)
Power for block Op_sel_pad[0]: 0.00mW(DC) 0.23mW(AC)
Power for block Freeze_pad: 0.00mW(DC) 1.12mW(AC)
Power for block Flush_pad: 0.00mW(DC) 0.35mW(AC)
Power for block F_enable_pad[1]: 0.00mW(DC) 0.33mW(AC)
Power for block F_enable_pad[0]: 0.00mW(DC) 0.33mW(AC)
Power for block F8_pad[3]: 0.00mW(DC) 3.23mW(AC)
Power for block F8_pad[2]: 0.00mW(DC) 3.23mW(AC)
Power for block F8_pad[1]: 0.00mW(DC) 3.23mW(AC)
Power for block F8_pad[0]: 0.00mW(DC) 3.23mW(AC)
Power for block F7_pad[3]: 0.00mW(DC) 3.20mW(AC)
Power for block F7_pad[2]: 0.00mW(DC) 3.20mW(AC)
Power for block F7_pad[1]: 0.00mW(DC) 3.20mW(AC)
Power for block F7_pad[0]: 0.00mW(DC) 3.20mW(AC)
Power for block F6_pad[3]: 0.00mW(DC) 3.20mW(AC)
Power for block F6_pad[2]: 0.00mW(DC) 3.20mW(AC)
Power for block F6_pad[1]: 0.00mW(DC) 3.20mW(AC)
Power for block F6_pad[0]: 0.00mW(DC) 3.20mW(AC)
Power for block F5_pad[3]: 0.00mW(DC) 3.20mW(AC)
Power for block F5_pad[2]: 0.00mW(DC) 3.20mW(AC)
Power for block F5_pad[1]: 0.00mW(DC) 3.20mW(AC)
Power for block F5_pad[0]: 0.00mW(DC) 3.20mW(AC)
Power for block F4_pad[3]: 0.00mW(DC) 3.20mW(AC)
Power for block F4_pad[2]: 0.00mW(DC) 3.20mW(AC)
Power for block F4_pad[1]: 0.00mW(DC) 3.20mW(AC)
Power for block F4_pad[0]: 0.00mW(DC) 3.20mW(AC)
Power for block F3_pad[3]: 0.00mW(DC) 3.20mW(AC)
Power for block F3_pad[2]: 0.00mW(DC) 3.20mW(AC)
Power for block F3_pad[1]: 0.00mW(DC) 3.20mW(AC)
Power for block F3_pad[0]: 0.00mW(DC) 3.20mW(AC)
Power for block F2_pad[3]: 0.00mW(DC) 3.20mW(AC)
Power for block F2_pad[2]: 0.00mW(DC) 3.20mW(AC)
Power for block F2_pad[1]: 0.00mW(DC) 3.20mW(AC)
Power for block F2_pad[0]: 0.00mW(DC) 3.20mW(AC)
Power for block F1_pad[3]: 0.00mW(DC) 3.20mW(AC)
Power for block F1_pad[2]: 0.00mW(DC) 3.20mW(AC)
Power for block F1_pad[1]: 0.00mW(DC) 3.20mW(AC)
Power for block F1_pad[0]: 0.00mW(DC) 3.20mW(AC)
Power for block Carry_pad: 0.00mW(DC) 4.21mW(AC)
Power for block Alu_op_pad[4]: 0.00mW(DC) 0.50mW(AC)
Power for block Alu_op_pad[3]: 0.00mW(DC) 0.49mW(AC)
Power for block Alu_op_pad[2]: 0.00mW(DC) 0.45mW(AC)
Power for block Alu_op_pad[1]: 0.00mW(DC) 0.52mW(AC)
Power for block Alu_op_pad[0]: 0.00mW(DC) 0.51mW(AC)
Total power consumption (5.5V, 0 DegC 50pf/out pad):
DC: 2573.32mW [2573.32(core)+0.00(ring)]
AC@10MHz: 524.92mW [386.52(core)+138.40(ring)]

BACK

EXIT GENESIL

CONFIRM

EEP LOG

) End of GENESIL session '18_Aug_1'

++++++

NORTH

PAD NAME	PIN NUMBER	SIGNAL NAME	IN/OUT
cornergnd[1]	1	VSS	
F2_pad[0]	2	F[4]	OUT
F2_pad[1]	3	F[5]	OUT
F2_pad[2]	4	F[6]	OUT
F2_pad[3]	5	F[7]	OUT
ringpower[1]	6	VDD	
F3_pad[0]	7	F[8]	OUT
F3_pad[1]	8	F[9]	OUT
F3_pad[2]	9	F[10]	OUT
F3_pad[3]	10	F[11]	OUT
ringground[1]	11	VSS	
ringpower[2]	13	VDD	
F4_pad[0]	14	F[12]	OUT
F4_pad[1]	15	F[13]	OUT
F4_pad[2]	16	F[14]	OUT
F4_pad[3]	17	F[15]	OUT
ringground[2]	18	VSS	
ringpower[3]	19	VDD	
F5_pad[0]	20	F[16]	OUT
F5_pad[1]	21	F[17]	OUT
F5_pad[2]	22	F[18]	OUT
F5_pad[3]	23	F[19]	OUT
ringground[3]	24	VSS	
ringpower[4]	25	VDD	
F6_pad[0]	26	F[20]	OUT
F6_pad[1]	27	F[21]	OUT
F6_pad[2]	28	F[22]	OUT
F6_pad[3]	29	F[23]	OUT
ringground[4]	30	VDD	
F7_pad[0]	31	F[24]	OUT
F7_pad[1]	32	F[25]	OUT
F7_pad[2]	33	F[26]	OUT
F7_pad[3]	34	F[27]	OUT

EAST

PAD NAME	PIN NUMBER	SIGNAL NAME	IN/OUT
cornerpwr[0]	36	VDD	
ringpower[5]	37	VDD	
F8_pad[0]	38	F[28]	OUT
F8_pad[1]	39	F[29]	OUT
F8_pad[2]	40	F[30]	OUT
F8_pad[3]	41	F[31]	OUT
ringground[5]	42	VSS	
Alu_op_pad[4]	43	ALU_opcode[4]	IN
Alu_op_pad[3]	44	ALU_opcode[3]	IN
Alu_op_pad[2]	45	ALU_opcode[2]	IN
Alu_op_pad[1]	46	ALU_opcode[1]	IN
Alu_op_pad[0]	47	ALU_opcode[0]	IN
corepower[1]	48	VDD	
S_pad[31]	49	S[31]	IN
S_pad[30]	50	S[30]	IN
S_pad[29]	51	S[29]	IN
S_pad[28]	52	S[28]	IN
Test_pad	53	Test	IN
S_pad[27]	54	S[27]	IN
S_pad[26]	55	S[26]	IN
S_pad[25]	56	S[25]	IN
S_pad[24]	57	S[24]	IN
S_pad[23]	58	S[23]	IN
S_pad[22]	59	S[22]	IN
S_pad[21]	60	S[21]	IN
corepower[0]	61	VDD	
S_pad[20]	62	S[20]	IN
S_pad[19]	63	S[19]	IN
S_pad[18]	64	S[18]	IN
S_pad[17]	65	S[17]	IN
S_pad[16]	66	S[16]	IN
S_pad[15]	67	S[15]	IN
S_pad[14]	68	S[14]	IN
S_pad[13]	69	S[13]	IN
Freeze_pad	70	Freeze	IN

WEST

PAD NAME	PIN NUMBER	SIGNAL NAME	IN/OUT
cornergnd[0]	72	VSS	
S_pad[12]	73	S[12]	IN
S_pad[11]	74	S[11]	IN
S_pad[10]	75	S[10]	IN
S_pad[9]	76	S[9]	IN
S_pad[8]	77	S[8]	IN
S_pad[7]	78	S[7]	IN
S_pad[6]	79	S[6]	IN
S_pad[5]	80	S[5]	IN
S_pad[4]	81	S[4]	IN
S_pad[3]	82	S[3]	IN
S_pad[2]	83	S[2]	IN
S_pad[1]	84	S[1]	IN
S_pad[0]	85	S[0]	IN
Op_sel_pad[3]	86	S_eq_f_1	IN
Op_sel_pad[2]	87	S_eq_f_2	IN
Op_sel_pad[1]	88	R_eq_f_1	IN
Op_sel_pad[0]	89	R_eq_f_2	IN
R_pad[31]	90	R[31]	IN
R_pad[30]	91	R[30]	IN
R_pad[29]	92	R[29]	IN
R_pad[28]	93	R[28]	IN
R_pad[27]	94	R[27]	IN
R_pad[26]	95	R[26]	IN
R_pad[25]	96	R[25]	IN
R_pad[24]	97	R[24]	IN
R_pad[23]	98	R[23]	IN
R_pad[22]	99	R[22]	IN
R_pad[21]	100	R[21]	IN
R_pad[20]	101	R[20]	IN
R_pad[19]	102	R[19]	IN
R_pad[18]	103	R[18]	IN
R_pad[17]	104	R[17]	IN
R_pad[16]	105	R[16]	IN

SOUTH

PAD NAME	PIN NUMBER	SIGNAL NAME	IN/OUT
cornerpwr[1]	108	VDD	
R_pad[15]	109	R[15]	IN
R_pad[14]	110	R[14]	IN
R_pad[13]	111	R[13]	IN
R_pad[12]	112	R[12]	IN
R_pad[11]	113	R[11]	IN
coreground[1]	114	VSS	
R_pad[10]	115	R[10]	IN
R_pad[9]	116	R[9]	IN
R_pad[8]	117	R[8]	IN
R_pad[7]	118	R[7]	IN
R_pad[6]	119	R[6]	IN
R_pad[5]	120	R[5]	IN
R_pad[4]	121	R[4]	IN
R_pad[3]	122	R[3]	IN
R_pad[2]	123	R[2]	IN
R_pad[1]	124	R[1]	IN
R_pad[0]	125	R[0]	IN
coreground[0]	126	VSS	
clock_pad	127,128,129	VDD,VSS,Proc_clk	IN
Run_pad	130	Proc_run	IN
Zero_pad	131	Zero	OUT
Carry_pad	132	Carry	OUT
Ovfl_pad	133	ALU_error	OUT
F_enable_pad[1]	134	F_bus_en[1]	IN
F_enable_pad[0]	135	F_bus_en[0]	IN
reset_pad	136	ALU_reset	IN
ringpower[0]	137	VDD	
F1_pad[0]	138	F[0]	OUT
F1_pad[1]	139	F[1]	OUT
F1_pad[2]	140	F[2]	OUT
F1_pad[3]	141	F[3]	OUT
ringground[0]	142	VSS	
Flush_pad	143	Flush	IN

Table 7: Pin Assignments for the Chip

Genesil Screen Dump -- Thu Aug 18 13:54:42 1988

chip: ~sfpu/sfpu/fpu

Timing Analyzer

-----Genesil Version v7.0-----

ISOLATION MODE

Fabline: NSC CN12A

Corner: TYPICAL

Junction Temperature: 75 degree C

Voltage: 5.00v

External Clock: Proc_clk

Included setup files: default setup file

NO VIOLATIONS

Hold time check margin: 2.0ns

INSERT MESSAGES GRAPHICS FORM

OVERLAY

RECORD

UTILITY

BACK

>TIMING>VIOLATIONS>

LABEL Don't let opcode setup affect clk
TEMP VOLT 100 5.00
HOLDTIME MARGIN 2.00
SELECT EXT_CLOCK Proc_clk
INPUT ALU_opcode[0] 0 1 -999.00 0.00 -999.00 0.00
INPUT ALU_opcode[1] 0 1 -999.00 0.00 -999.00 0.00
INPUT ALU_opcode[2] 0 1 -999.00 0.00 -999.00 0.00
INPUT ALU_opcode[3] 0 1 -999.00 0.00 -999.00 0.00
INPUT ALU_opcode[4] 0 1 -999.00 0.00 -999.00 0.00
INPUT R_eq_f_1 0 1 -999.00 0.00 -999.00 0.00
INPUT R_eq_f_2 0 1 -999.00 0.00 -999.00 0.00
INPUT S_eq_f_1 0 1 -999.00 0.00 -999.00 0.00
INPUT S_eq_f_2 0 1 -999.00 0.00 -999.00 0.00
INPUT Test 0 1 -999.00 0.00 -999.00 0.00

Genesil Screen Dump -- Thu Aug 18 11:12:24 1988

chip: ~sfpu/sfpu/fpu

Timing Analyzer

-----Genesil Version v7.0-----

LOCK REPORT MODE

Fabricline: NSC CN12A

Corner: GUARANTEED

Junction Temperature: 100 deg C

Voltage: 5.00v

External Clock: Proc_clk

Included setup files:

#0 ignore_setup (Don't let opcode setup affect clk)

CLOCK TIMES (minimum)

Phase 1 High: 31.0 ns Phase 2 High: 6.9 ns

Cycle (from Ph1): 148.5 ns Cycle (from Ph2): 133.7 ns

Minimum Cycle Time: 148.5 ns Symmetric Cycle Time: 148.5 ns

CLOCK WORST CASE PATHS

Minimum Phase 1 high time is 31.0 ns set by:

** Clock delay: 3.3ns (34.3-31.0)

Node	Cumulative Delay	Transition
input/latch/(internal)	34.3	rise
input/latch/n_freeze	32.1	rise
Freeze_pad/n_freeze	8.5	rise
Freeze_pad/n_freeze'	4.9	rise
Freeze	0.0	fall

Minimum Phase 2 high time is 6.9 ns set by:

** Clock delay: 2.9ns (9.7-6.9)

Node	Cumulative Delay	Transition
output/flagreg/(internal)	9.7	fall
output/flagreg/reset_2	6.0	rise
output/flagreg/reset_2'	5.9	rise
output/flagreg/first	4.7	fall
output/flagreg/flush	4.0	rise
Flush_pad/flush	2.6	rise
Flush_pad/flush'	2.0	rise
Flush	0.0	rise

Minimum cycle time (from Ph1) is 148.5 ns set by:

** Clock delay: 6.6ns (155.0-148.5)

Node	Cumulative Delay	Transition
mult/multac/(internal)	155.0	rise
mult/multac/mant_A[23]	112.5	fall
input/a_high/mant_A[23]	107.8	fall
input/a_high/mant_A[23]'	103.8	fall
input/a_high/mant_Ax	100.8	fall
input/a_high/mant_Ax'	100.7	fall

input/a_high/not_mant_Ax	99.8	rise
input/a_input/not_mant_Ax	99.2	rise
input/a_input/not_mant_Ax'	96.8	rise
input/a_input/INTERVAL1[29]	92.9	fall
*input/a_input/(internal)	91.7	rise
input/a_Input/alu_out[29]	88.3	fall
<ut/result_handler/alu_out[29]	81.0	fall
<t/result_handler/alu_out[29]'	79.7	fall
<put/result_handler/result[29]	76.4	fall
output/expmux/result[5]	76.4	fall
output/expmux/exp_low[5]	71.7	fall
output/expmux/normexp[5]	67.5	fall
normalizer/exponent/normexp[6]	67.2	fall
<rmlizer/exponent/normexp[6]'	66.9	fall
<lizer/exponent/ADDSUB1_OUT[6]	65.8	fall
normalizer/exponent/lead[1]	48.8	rise
normalizer/cascade/lead[1]	48.7	rise
normalizer/cascade/lead[1]'	43.9	rise
normalizer/cascade/ao[1]	42.8	fall
normalizer/cascade/naza	42.2	rise
normalizer/cascade/aza	41.1	fall
normalizer/encoder/all_zero	41.0	fall
normalizer/encoder/all_zero'	38.0	fall
normalizer/encoder/s[7]	36.8	fall
normalizer/encoder/in[5]	34.6	rise
adder/shift_mant/sum_mant[23]	34.2	rise
adder/shift_mant/sum_mant[23]'	33.7	rise
adder/shift_mant/addout[23]	30.8	rise
<er/shift_mant/ADDSUB6_OUT[23]	29.5	rise
adder/shift_mant/addsubsel	7.6	fall
adder/sign_logic/addsubsel	7.6	fall
adder/sign_logic/addsubsel'	6.3	fall
adder/sign_logic/round_x	4.8	fall
adder/sign_logic/PHASE_A	2.7	rise
clock_pad/PHASE_A	1.2	rise
Proc_clk	0.0	rise

Minimum cycle time (from Ph2) is 133.7 ns set by:

** Clock delay: 2.7ns (69.6-66.9) cycle sharing disabled		
Node	Cumulative Delay	Transition
input/a_input/(internal)	150.9	rise
input/a_input/alu_out[29]	147.4	fall
<ut/result_handler/alu_out[29]	140.2	fall
<t/result_handler/alu_out[29]'	138.8	fall
<put/result_handler/result[29]	135.6	fall
output/expmux/result[5]	135.6	fall
output/expmux/exp_low[5]	130.9	fall
output/expmux/normexp[5]	126.6	fall
normalizer/exponent/normexp[6]	126.4	fall
<rmlizer/exponent/normexp[6]'	126.1	fall
<lizer/exponent/ADDSUB1_OUT[6]	125.0	fall
normalizer/exponent/lead[1]	107.9	rise
normalizer/cascade/lead[1]	107.9	rise
normalizer/cascade/lead[1]'	103.0	rise
normalizer/cascade/co[1]	102.3	fall

normalizer/cascade/co[1]'	102.2	fall
normalizer/cascade/nazc	101.1	rise
normalizer/cascade/azc	100.0	fall
normalizer/encoderc/all_zero	99.9	fall
normalizer/encoderc/all_zero'	98.6	fall
normalizer/encoderc/s[7]	97.3	fall
normalizer/encoderc/in[4]	95.0	rise
adder/shift_mant/sum_mant[6]	94.6	rise
adder/shift_mant/sum_mant[6]'	93.9	rise
adder/shift_mant/addout[6]	91.0	rise
<der/shift_mant/ADDSUB6_OUT[6]	89.7	rise
adder/shift_mant/postshift[0]	72.6	rise
adder/shift_mant/postshift[0]'	72.5	rise
<der/shift_mant/INTER4_VAL1[0]	70.7	rise
*adder/shift_mant/(internal)	69.1	fall
adder/shift_mant/c[0]	60.5	fall
adder/shift_logic/c[0]	60.5	fall
adder/shift_logic/c[0]'	59.8	fall
adder/shift_logic/sum2big	58.0	fall
adder/shift_logic/gt24	56.1	rise
adder/shift_logic/gt24'	56.0	rise
adder/shift_logic/or_out	54.7	fall
adder/shift_logic/exp_sum[0]	52.1	fall
adder/subtract/exp_sum[0]	52.1	fall
adder/subtract/exp_sum[0]'	51.9	fall
adder/subtract/subout[8]	48.7	rise
adder/subtract/subout[8]'	47.8	rise
adder/subtract/ADDSUB1_OUT[8]	46.4	rise
adder/subtract/b[7]	36.6	fall
input/b_high/b[7]	31.4	fall
input/b_high/b[7]'	13.5	fall
input/b_high/bexpse1[0]	10.0	rise
input/latch/bexpse1[0]	9.5	rise
input/latch/bexpse1[0]'	8.4	rise
input/latch/PHASE_B	3.7	rise
clock_pad/PHASE_B	2.4	rise
Proc_clk	0.0	fall

LABEL Reg. temp -- setup/hold/output
TEMP VOLT 100 5.00
HOLDTIME MARGIN 2.00
SELECT_EXT_CLOCK Proc_clk

Genesil Screen Dump -- Thu Aug 18 11:00:59 1988

hip: ~sfpu/sfpu/fpu

Timing Analyzer

-----Genesil Version v7.0-----

SETUP AND HOLD MODE

Fabricline: NSC_CN12A

Corner: GUARANTEED

Junction Temperature: 100 deg C

Voltage: 5.00v

External Clock: Proc_clk

Included setup files:

#0 include_setup (Reg. temp -- setup/hold/output)

INPUT SETUP AND HOLD TIMES (ns)

Setup Time Hold Time

Ph1(f) Ph2(f) Ph1(f) Ph2(f)

LU_opcode[0]	---	19.0	---	-3.3	PATH
LU_opcode[1]	---	18.6	---	-3.2	PATH
ALU_opcode[2]	---	17.9	---	-2.3	PATH
PLU_opcode[3]	---	17.8	---	-2.2	PATH
PLU_opcode[4]	---	19.0	---	-3.5	PATH
ALU_reset	---	4.4	---	-2.2	PATH
F_bus_en[0]	---	---	---	---	PATH
F_bus_en[1]	---	---	---	---	PATH
Iush	---	6.9	---	-0.8	PATH
Freeze	31.0	---	-13.8	---	PATH
Proc_run	---	5.6	---	-3.9	PATH
[0]	---	3.9	---	-2.3	PATH
[10]	---	3.6	---	-2.0	PATH
R[11]	---	3.6	---	-2.0	PATH
[12]	---	3.5	---	-1.9	PATH
[13]	---	3.5	---	-1.9	PATH
R[14]	---	3.5	---	-1.9	PATH
[15]	---	3.5	---	-1.9	PATH
[16]	---	3.5	---	-1.9	PATH
[17]	---	3.5	---	-1.9	PATH
R[18]	---	3.6	---	-2.0	PATH
[19]	---	3.6	---	-1.9	PATH
[1]	---	3.8	---	-2.2	PATH
R[20]	---	3.5	---	-1.9	PATH
[21]	---	3.5	---	-1.9	PATH
[22]	---	3.4	---	-1.8	PATH
[23]	---	3.4	---	-1.8	PATH
R[24]	---	3.4	---	-1.8	PATH
[25]	---	3.5	---	-1.9	PATH
[26]	---	3.5	---	-1.9	PATH
R[27]	---	3.5	---	-1.9	PATH
[28]	---	3.5	---	-1.9	PATH
[29]	---	3.5	---	-1.9	PATH
[2]	---	3.8	---	-2.2	PATH
R[30]	---	3.5	---	-1.9	PATH
[31]	---	3.6	---	-1.9	PATH
[3]	---	3.8	---	-2.2	PATH
R[4]	---	3.8	---	-2.1	PATH
[5]	---	3.7	---	-2.1	PATH

6]	---	3.7	---	-2.1	PATH
R[7]	---	3.7	---	-2.1	PATH
R[8]	---	3.7	---	-2.0	PATH
R[9]	---	3.6	---	-2.0	PATH
Eq_f_1	---	9.3	---	-5.2	PATH
Eq_f_2	---	9.7	---	-6.8	PATH
0]	---	3.6	---	-1.9	PATH
10]	---	3.3	---	-1.7	PATH
S[11]	---	3.3	---	-1.7	PATH
S[12]	---	3.3	---	-1.7	PATH
S[13]	---	3.4	---	-1.8	PATH
S[14]	---	3.4	---	-1.8	PATH
S[15]	---	3.4	---	-1.8	PATH
S[16]	---	3.4	---	-1.8	PATH
S[17]	---	3.4	---	-1.8	PATH
S[18]	---	3.5	---	-1.9	PATH
S[19]	---	3.5	---	-1.9	PATH
S[20]	---	3.5	---	-1.9	PATH
S[21]	---	3.6	---	-2.0	PATH
S[22]	---	3.6	---	-2.0	PATH
S[23]	---	3.6	---	-2.0	PATH
S[24]	---	3.6	---	-2.0	PATH
S[25]	---	3.7	---	-2.0	PATH
S[26]	---	3.7	---	-2.1	PATH
S[27]	---	3.7	---	-2.1	PATH
S[28]	---	3.8	---	-2.2	PATH
S[29]	---	3.9	---	-2.2	PATH
S[30]	---	3.4	---	-1.8	PATH
S[31]	---	3.9	---	-2.3	PATH
S[3]	---	3.9	---	-2.3	PATH
S[4]	---	3.4	---	-1.7	PATH
S[5]	---	3.3	---	-1.7	PATH
S[6]	---	3.3	---	-1.7	PATH
S[7]	---	3.3	---	-1.7	PATH
S[8]	---	3.3	---	-1.7	PATH
S[9]	---	3.4	---	-1.8	PATH
Eq_f_1	---	14.0	---	-8.8	PATH
Eq_f_2	---	14.4	---	-10.8	PATH
Test	---	3.3	---	-1.9	PATH

Genesil Screen Dump -- Thu Aug 18 11:01:59 1988

chip: ~sfpu/sfpu/fpu

Timing Analyzer

-----Genesil Version v7.0-----

Critical Paths (setup/hold):

Fabric: NSC_CN12A

Corner: GUARANTEED

Junction Temperature: 100 deg C

Voltage: 5.00v

External Clock: Proc_clk

Included setup files:

#0 include_setup (Reg. temp -- setup/hold/output)

Phase 1, Setup time: 31.0ns (34.3-3.3)

input/latch/(internal)	34.3	rise
input/latch/n_freeze	32.1	rise
Freeze_pad/n_freeze	8.5	rise
Freeze_pad/n_freeze'	4.9	rise
Freeze	0.0	fall

Phase 1, Hold time: -13.8ns (2.7-16.5)

<code_logic/fplatch/(internal)	16.5	rise
opcode_logic/fplatch/n_freeze	16.0	fall
Freeze_pad/n_freeze	5.4	fall
Freeze_pad/n_freeze'	2.5	fall
Freeze	0.0	rise

Genesil Screen Dump -- Thu Aug 18 11:04:03 1988

...ip: ~sfpu/sfpu/fpu

Timing Analyzer

-----Genesil Version v7.0-----

Initial Paths (setup/hold):

Fabline: NSC_CN12A

Corner: GUARANTEED

Junction Temperature:100 deg C

Voltage:5.00v

External Clock: Proc_clk

Included setup files:

#0 include_setup (Reg. temp -- setup/hold/output)

Phase 2, Setup time: 9.7ns (14.4-4.7)

input/a_input/internal	14.4	rise
input/a_input/op_sel[0]	8.1	fall
input/op_sel_logic/op_sel[0]	7.9	fall
input/op_sel_logic/op_sel[0]'	6.2	fall
input/op_sel_logic/r_eq_f_2	4.6	fall
Op_sel_pad[0]/op_sel	4.3	fall
Op_sel_pad[0]/op_sel'	3.7	fall
R_eq_f_2	0.0	fall

Phase 2, Hold time: -6.8ns (4.7-11.5)

input/a_input/internal	11.5	rise
input/a_input/op_sel[0]	7.4	rise
input/op_sel_logic/op_sel[0]	7.2	rise
input/op_sel_logic/op_sel[0]'	5.8	rise
input/op_sel_logic/r_eq_f_2	4.5	rise
Op_sel_pad[0]/op_sel	4.1	rise
Op_sel_pad[0]/op_sel'	3.8	rise
R_eq_f_2	0.0	rise

Genesil Screen Dump -- Thu Aug 18 11:05:57 1988

hip: ~sfpu/sfpu/fpu

Timing Analyzer

-----Genesil Version v7.0-----

Initial Paths (setup/hold):

Fabricline: NSC CN12A

Corner: GUARANTEED

Junction Temperature: 100 deg C

Voltage: 5.00v

External Clock: Proc_clk

Included setup files:

#0 include_setup (Reg. temp -- setup/hold/output)

Phase 2, Setup time: 14.4ns (19.3-4.9)

input/b_input/(internal)	19.3	rise
input/b_input/op_sel[2]	13.0	fall
input/op_sel_logic/op_sel[2]	11.6	fall
input/op_sel_logic/op_sel[2]'	6.3	fall
input/op_sel_logic/s_eq_f_2	4.8	fall
Op_sel_pad[2]/op_sel	4.3	fall
Op_sel_pad[2]/op_sel'	3.7	fall
S_eq_f_2	0.0	fall

Phase 2, Hold time: -10.8ns (4.8-15.6)

input/b_input/(internal)	15.6	rise
input/b_input/op_sel[2]	11.5	rise
input/op_sel_logic/op_sel[2]	10.2	rise
input/op_sel_logic/op_sel[2]'	5.9	rise
input/op_sel_logic/s_eq_f_2	4.6	rise
Op_sel_pad[2]/op_sel	4.2	rise
Op_sel_pad[2]/op_sel'	3.8	rise
S_eq_f_2	0.0	rise

Genesil Screen Dump -- Thu Aug 18 11:06:16 1988

chip: ~sfpu/sfpu/fpu

Timing Analyzer

-----Genesil Version v7.0-----

INPUT DELAY MODE

Fabricline: NSC_CN12A

Corner: GUARANTEED

Junction Temperature: 100 deg C

Voltage: 5.00v

External Clock: Proc_clk

Included setup files:

#0 include_setup (Reg. temp -- setup/hold/output)

Output	OUTPUT DELAYS (ns)				Loading(pf)	PATH
	Ph1(r) Min	Delay Max	Ph2(r) Min	Delay Max		
U_error	15.7	21.5	---	---	50.00	PATH
arry	14.9	20.9	---	---	50.00	PATH
F[0]	20.1	27.8	21.9	27.8	50.00	PATH
F[10]	16.9	26.0	20.0	26.0	50.00	PATH
F[11]	16.9	26.0	20.0	26.0	50.00	PATH
F[12]	16.8	25.6	19.6	25.6	50.00	PATH
F[13]	16.8	25.6	19.6	25.6	50.00	PATH
F[14]	16.8	25.6	19.6	25.6	50.00	PATH
F[15]	16.6	25.6	19.6	25.6	50.00	PATH
F[16]	16.1	25.3	19.3	25.3	50.00	PATH
F[17]	16.1	25.3	19.3	25.3	50.00	PATH
F[18]	16.2	25.3	19.3	25.3	50.00	PATH
F[19]	16.3	25.3	19.3	25.3	50.00	PATH
F[1]	19.2	27.9	21.9	27.9	50.00	PATH
F[20]	16.3	25.5	19.6	25.5	50.00	PATH
F[21]	16.4	25.5	19.6	25.5	50.00	PATH
F[22]	16.4	25.5	19.5	25.5	50.00	PATH
F[23]	16.4	25.5	19.5	25.5	50.00	PATH
F[24]	16.6	25.3	19.4	25.3	50.00	PATH
F[25]	16.7	25.3	19.4	25.3	50.00	PATH
F[26]	16.7	25.4	19.4	25.4	50.00	PATH
F[27]	17.3	25.4	19.4	25.4	50.00	PATH
F[28]	14.4	23.3	16.9	23.3	50.00	PATH
F[29]	14.3	23.3	16.9	23.3	50.00	PATH
F[2]	19.7	27.9	21.9	27.9	50.00	PATH
F[30]	14.2	23.3	16.9	23.3	50.00	PATH
F[31]	15.0	23.3	16.8	23.3	50.00	PATH
F[3]	19.6	27.9	21.9	27.9	50.00	PATH
F[4]	19.3	26.4	20.5	26.4	50.00	PATH
F[5]	19.1	26.4	20.4	26.4	50.00	PATH
F[6]	19.0	26.4	20.4	26.4	50.00	PATH
F[7]	18.8	26.4	20.4	26.4	50.00	PATH
F[8]	16.9	26.0	20.0	26.0	50.00	PATH
F[9]	16.9	26.0	20.0	26.0	50.00	PATH
Zero	12.3	18.1	---	---	50.00	PATH

Genesil Screen Dump -- Thu Aug 18 11:06:55 1988

chip: ~sfpu/sfpu/fpu

Timing Analyzer

-----Genesil Version v7.0-----

Dest.	Object	Connector	(Ph2)	Min	Max	BLOCK NAME
F enable pad[0]	F bus en			22.1	27.8	*CURRENT*
F1 pad[0]	F			22.1	27.8	PATHAlu_op_pad[0]
F enable pad[0]	F bus en			20.7	26.4	Alu_op_pad[1]
F2 pad[0]	F			20.7	26.4	PATHAlu_op_pad[2]
F enable pad[0]	F bus en			20.3	26.0	Alu_op_pad[3]
F3 pad[0]	F			20.3	26.0	PATHAlu_op_pad[4]
F enable pad[0]	F bus en			19.9	25.6	Carry_pad
F4 pad[0]	F			19.9	25.6	PATHF1_pad[0]
F enable pad[0]	F bus en			19.6	25.3	F1_pad[1]
F5 pad[0]	F			19.6	25.3	PATHF1_pad[2]
F enable pad[0]	F bus en			19.8	25.5	F1_pad[3]
F6 pad[0]	F			19.8	25.5	PATHF2_pad[0]
F enable pad[0]	F bus en			19.6	25.3	F2_pad[1]
F7 pad[0]	F			19.6	25.3	PATHF2_pad[2]
F enable pad[0]	F bus en			17.1	23.3	F2_pad[3]
F8 pad[0]	F			17.1	23.3	PATHF3_pad[0]
F enable pad[1]	F bus en			21.9	27.6	F3_pad[1]
F1 pad[0]	F			21.9	27.6	PATHF3_pad[2]
F enable pad[1]	F bus en			20.5	26.2	F3_pad[3]
F2 pad[0]	F			20.5	26.2	PATHF4_pad[0]
F enable pad[1]	F bus en			20.0	25.7	F4_pad[1]
F3 pad[0]	F			20.0	25.7	PATHF4_pad[2]
F enable pad[1]	F bus en			19.6	25.3	F4_pad[3]
F4 pad[0]	F			19.6	25.3	PATHF5_pad[0]
F enable pad[1]	F bus en			19.3	25.0	F5_pad[1]
F5 pad[0]	F			19.3	25.0	PATHF5_pad[2]
F enable pad[1]	F bus en			19.6	25.3	F5_pad[3]
F6 pad[0]	F			19.6	25.3	PATHF6_pad[0]
F enable pad[1]	F bus en			19.4	25.1	F6_pad[1]
F7 pad[0]	F			19.4	25.1	PATHF6_pad[2]
F enable pad[1]	F bus en			16.9	23.1	F6_pad[3]
F8 pad[0]	F			16.9	23.1	PATHF7_pad[0]
						F7_pad[1]
						* MORE *

Genesil Screen Dump -- Thu Aug 18 11:07:16 1988

chip: ~sfpu/sfpu/fpu

Timing Analyzer

-----Genesil Version v7.0-----

VIOLATION MODE

Table: NSC_CN12A

Corner: GUARANTEED

Junction Temperature: 100 deg C

Voltage: 5.00v

External Clock: Proc_clk

Included setup files:

#0 include_setup (Reg. temp -- setup/hold/output)

NO VIOLATIONS

Hold time check margin: 2.0ns

ABEL High temp - no opcode setup - clk
TEMP VOLT 150 4.50
HOLDTIME MARGIN 2.00
SELECT EXT_CLOCK Proc clk
INPUT ALU_opcode[0] 0 1 -999.00 0.00 -999.00 0.00
INPUT ALU_opcode[1] 0 1 -999.00 0.00 -999.00 0.00
INPUT ALU_opcode[2] 0 1 -999.00 0.00 -999.00 0.00
INPUT ALU_opcode[3] 0 1 -999.00 0.00 -999.00 0.00
INPUT ALU_opcode[4] 0 1 -999.00 0.00 -999.00 0.00
INPUT R_eq_f_1 0 1 -999.00 0.00 -999.00 0.00
INPUT R_eq_f_2 0 1 -999.00 0.00 -999.00 0.00
INPUT S_eq_f_1 0 1 -999.00 0.00 -999.00 0.00
INPUT S_eq_f_2 0 1 -999.00 0.00 -999.00 0.00
INPUT Test 0 1 -999.00 0.00 -999.00 0.00

Genesil Screen Dump -- Thu Aug 18 11:17:37 1988*****
chip: ~sfpu/sfpu/fpu Timing Analyzer
-----Genesil Version v7.0-----

CLOCK REPORT MODE

ipline: NSC_CN12A Corner: GUARANTEED
Junction Temperature: 150 deg C Voltage: 4.50v

External Clock: Proc_clk

Included setup files:

#0 ignore_high (High temp - no opcode setup - clk)

CLOCK TIMES (minimum)

Phase 1 High: 34.7 ns Phase 2 High: 7.8 ns

Cycle (from Ph1): 166.0 ns Cycle (from Ph2): 149.1 ns

Minimum Cycle Time: 166.0 ns Symmetric Cycle Time: 166.0 ns

CLOCK WORST CASE PATHS

Minimum Phase 1 high time is 34.7 ns set by:

** Clock delay: 3.5ns (38.1-34.7)

Node	Cumulative Delay	Transition
input/latch/(internal)	38.1	rise
input/latch/n_freeze	35.7	rise
Freeze_pad/n_freeze	9.5	rise
Freeze_pad/n_freeze'	5.5	rise
Freeze	0.0	fall

Minimum Phase 2 high time is 7.8 ns set by:

** Clock delay: 3.0ns (10.9-7.8)

Node	Cumulative Delay	Transition
output/flagreg/(internal)	10.9	fall
output/flagreg/reset_2	6.7	rise
output/flagreg/reset_2'	6.6	rise
output/flagreg/first	5.2	fall
output/flagreg/flush	4.5	rise
Flush_pad/flush	2.9	rise
Flush_pad/flush'	2.3	rise
Flush	0.0	rise

Minimum cycle time (from Ph1) is 166.0 ns set by:

** Clock delay: 7.1ns (173.1-166.0)

Node	Cumulative Delay	Transition
mult/multac/(internal)	173.1	rise
mult/multac/mant_A[23]	125.8	fall
input/a_high/mant_A[23]	120.6	fall
input/a_high/mant_A[23]'	116.2	fall
input/a_high/mant_Ax	112.8	fall
input/a_high/mant_Ax'	112.8	fall

input/a_high/not_mant_Ax	111.8	rise
input/a_input/not_mant_Ax	111.1	rise
input/a_input/not_mant_Ax'	108.4	rise
input/a_input/INTER1_VAL1[29]	104.1	fall
*input/a_input/internal	102.8	rise
input/a_input/alu_out[29]	99.0	fall
<ut/result_handler/alu_out[29]	90.9	fall
<t/result_handler/alu_out[29]'	89.4	fall
<put/result_handler/result[29]	85.8	fall
output/expmux/result[5]	85.8	fall
output/expmux/exp_low[5]	80.5	fall
output/expmux/normexp[5]	75.8	fall
normalizer/exponent/normexp[6]	75.5	fall
<rmalizer/exponent/normexp[6]'	75.2	fall
<lizer/exponent/ADDSUB1_OUT[6]	74.0	fall
normalizer/exponent/lead[1]	54.8	rise
normalizer/cascade/lead[1]	54.8	rise
normalizer/cascade/lead[1]'	49.4	rise
normalizer/cascade/ao[1]	48.2	fall
normalizer/cascade/ao[1]'	48.1	fall
normalizer/cascade/naza	47.5	rise
normalizer/cascade/aza	46.3	fall
normalizer/encodera/all_zero	46.2	fall
normalizer/encodera/all_zero'	42.9	fall
normalizer/encodera/s[7]	41.5	fall
normalizer/encodera/in[5]	39.0	rise
adder/shift_mant/sum_mant[23]	38.7	rise
adder/shift_mant/sum_mant[23]'	38.0	rise
adder/shift_mant/addout[23]	34.8	rise
<er/shift_mant/ADDSUB6_OUT[23]	33.4	rise
adder/shift_mant/addsubsel	8.4	fall
adder/sign_Logic/addsubsel	8.4	fall
adder/sign_logic/addsubsel'	7.0	fall
adder/sign_logic/round_x	5.2	fall
adder/sign_logic/PHASE_A	2.9	rise
clock_pad/PHASE_A	1.2	rise
Proc_clk	0.0	rise

Minimum cycle time (from Ph2) is 149.1 ns set by:

Node	Cumulative Delay	Transition
input/a_input/internal	168.0	rise
input/a_input/alu_out[29]	164.2	fall
<ut/result_handler/alu_out[29]	156.1	fall
<t/result_handler/alu_out[29]'	154.7	fall
<put/result_handler/result[29]	151.0	fall
output/expmux/result[5]	151.0	fall
output/expmux/exp_low[5]	145.8	fall
output/expmux/normexp[5]	141.1	fall
normalizer/exponent/normexp[6]	140.7	fall
<rmalizer/exponent/normexp[6]'	140.4	fall
<lizer/exponent/ADDSUB1_OUT[6]	139.2	fall
normalizer/exponent/lead[1]	120.1	rise
normalizer/cascade/lead[1]	120.0	rise
normalizer/cascade/lead[1]'	114.6	rise

normalizer/cascade/co[1]	113.8	fall
normalizer/cascade/co[1]'	113.8	fall
normalizer/cascade/nazc	112.5	rise
normalizer/cascade/acz	111.3	fall
normalizer/encoderc/all_zero	111.2	fall
normalizer/encoderc/all_zero'	109.7	fall
normalizer/encoderc/s[7]	108.3	fall
normalizer/encoderc/in[4]	105.7	rise
adder/shift_mant/sum_mant[6]	105.3	rise
adder/shift_mant/sum_mant[6]'	104.5	rise
adder/shift_mant/addout[6]	101.3	rise
<der/shift_mant/ADDSUB6_OUT[6]	99.8	rise
adder/shift_mant/postshift[0]	80.8	rise
adder/shift_mant/postshift[0]'	80.6	rise
<der/shift_mant/INTER4_VAL1[0]	78.6	rise
*adder/shift_mant/(internal)	76.9	fall
adder/shift_mant/c[0]	67.2	fall
adder/shift_logic/c[0]	67.2	fall
adder/shift_logic/c[0]'	66.4	fall
adder/shift_logic/sum2big	64.3	fall
adder/shift_logic/gt24	62.2	rise
adder/shift_logic/gt24'	62.1	rise
adder/shift_logic/or_out	60.7	fall
adder/shift_logic/exp_sum[0]	57.8	fall
adder/subtract/exp_sum[0]	57.7	fall
adder/subtract/exp_sum[0]'	57.5	fall
adder/subtract/subout[8]	53.9	rise
adder/subtract/subout[8]'	53.0	rise
adder/subtract/ADDSUB1_OUT[8]	51.4	rise
adder/subtract/b[7]	40.5	fall
input/b_high/b[7]	34.7	fall
input/b_high/b[7]'	14.8	fall
input/b_high/bexpsel[0]	10.8	rise
input/latch/bexpsel[0]	10.3	rise
input/latch/bexpsel[0]'	9.1	rise
input/latch/PHASE_B	3.8	rise
clock_pad/PHASE_B	2.4	rise
Proc_clk	0.0	fall

LABEL High temp -- setup/hold/output
TEMP VOLT 150 4.50
HOLDTIME MARGIN 2.00
ELECT_EXT_CLOCK Proc_clk

Genesil Screen Dump -- Thu Aug 18 12:57:22 1988*****
chip: ~sfpu/sfpu/fpu Timing Analyzer
-----Genesil Version v7.0-----

SETUP AND HOLD MODE

Tabline: NSC_CN12A Corner: GUARANTEED
Junction Temperature: 150 deg C Voltage: 4.50vExternal Clock: Proc_clk
Included setup files:

#0 include_high (High temp -- setup/hold/output)

INPUT SETUP AND HOLD TIMES (ns)
Setup Time Hold Time
Ph1(f) Ph2(f) Ph1(f) Ph2(f)

U_opcode[0]	---	21.3	---	-3.9	PATH
U_opcode[1]	---	20.8	---	-3.7	PATH
ALU_opcode[2]	---	20.1	---	-2.7	PATH
ALU_opcode[3]	---	20.0	---	-2.6	PATH
ALU_opcode[4]	---	21.3	---	-4.0	PATH
U_reset	---	5.0	---	-2.6	PATH
F_bus_en[0]	---	---	---	---	PATH
bus_en[1]	---	---	---	---	PATH
ush	---	7.8	---	-1.1	PATH
freeze	34.7	---	-15.4	---	PATH
Proc_run	---	6.4	---	-4.5	PATH
[0]	---	4.4	---	-2.7	PATH
[10]	---	4.1	---	-2.4	PATH
R[11]	---	4.1	---	-2.3	PATH
[12]	---	4.1	---	-2.3	PATH
[13]	---	4.0	---	-2.3	PATH
R[14]	---	4.0	---	-2.3	PATH
[15]	---	4.0	---	-2.3	PATH
[16]	---	4.0	---	-2.3	PATH
[17]	---	4.0	---	-2.3	PATH
R[18]	---	4.1	---	-2.3	PATH
[19]	---	4.1	---	-2.3	PATH
[1]	---	4.4	---	-2.6	PATH
R[20]	---	4.1	---	-2.3	PATH
R[21]	---	4.0	---	-2.2	PATH
[22]	---	3.9	---	-2.2	PATH
[23]	---	4.0	---	-2.2	PATH
R[24]	---	4.0	---	-2.2	PATH
[25]	---	4.0	---	-2.2	PATH
[26]	---	4.0	---	-2.2	PATH
[27]	---	4.0	---	-2.2	PATH
R[28]	---	4.0	---	-2.3	PATH
[29]	---	4.0	---	-2.3	PATH
[2]	---	4.4	---	-2.6	PATH
R[30]	---	4.1	---	-2.3	PATH
R[31]	---	4.1	---	-2.3	PATH
[3]	---	4.3	---	-2.6	PATH
[4]	---	4.3	---	-2.5	PATH
R[5]	---	4.3	---	-2.5	PATH

6]	---	4.2	---	-2.5	PATH
7]	---	4.2	---	-2.5	PATH
8]	---	4.2	---	-2.4	PATH
9]	---	4.2	---	-2.4	PATH
eq_f_1	---	10.5	---	-5.9	PATH
eq_f_2	---	10.9	---	-7.8	PATH
0]	---	4.1	---	-2.3	PATH
10]	---	3.8	---	-2.1	PATH
11]	---	3.8	---	-2.1	PATH
12]	---	3.9	---	-2.1	PATH
13]	---	3.9	---	-2.1	PATH
14]	---	3.9	---	-2.1	PATH
15]	---	3.9	---	-2.2	PATH
16]	---	3.9	---	-2.2	PATH
17]	---	4.0	---	-2.2	PATH
18]	---	4.0	---	-2.2	PATH
19]	---	4.0	---	-2.3	PATH
1]	---	4.0	---	-2.2	PATH
20]	---	4.1	---	-2.3	PATH
21]	---	4.1	---	-2.4	PATH
22]	---	4.2	---	-2.4	PATH
23]	---	4.1	---	-2.4	PATH
24]	---	4.2	---	-2.4	PATH
25]	---	4.2	---	-2.4	PATH
26]	---	4.2	---	-2.5	PATH
27]	---	4.3	---	-2.5	PATH
28]	---	4.4	---	-2.6	PATH
29]	---	4.4	---	-2.7	PATH
2]	---	3.9	---	-2.1	PATH
30]	---	4.5	---	-2.7	PATH
31]	---	4.5	---	-2.7	PATH
3]	---	3.9	---	-2.1	PATH
4]	---	3.8	---	-2.0	PATH
5]	---	3.8	---	-2.0	PATH
6]	---	3.8	---	-2.0	PATH
7]	---	3.8	---	-2.0	PATH
8]	---	3.8	---	-2.0	PATH
9]	---	3.9	---	-2.2	PATH
eq_f_1	---	15.7	---	-10.0	PATH
eq_f_2	---	16.2	---	-12.2	PATH
est	---	3.8	---	-2.2	PATH

Genesil Screen Dump -- Thu Aug 18 12:57:52 1988

chip: ~sfpu/sfpu/fpu

Timing Analyzer

-----Genesil Version v7.0-----

OUTPUT DELAY MODE

Pipeline: NSC_CN12A

Corner: GUARANTEED

Junction Temperature: 150 deg C

Voltage: 4.50v

External Clock: Proc_clk

Included setup files:

#0 include_high (High temp -- setup/hold/output)

Output	OUTPUT DELAYS (ns)				Loading(pf)
	Ph1(r) Min	Delay Max	Ph2(r) Min	Delay Max	
U_error	17.2	23.9	---	---	50.00 PATH
arry	16.5	23.1	---	---	50.00 PATH
[0]	22.1	30.9	24.3	30.9	50.00 PATH
[10]	18.6	28.8	22.2	28.8	50.00 PATH
[11]	18.6	28.8	22.2	28.8	50.00 PATH
[12]	18.5	28.4	21.8	28.4	50.00 PATH
[13]	18.5	28.4	21.8	28.4	50.00 PATH
[14]	18.5	28.4	21.8	28.4	50.00 PATH
[15]	18.3	28.4	21.8	28.4	50.00 PATH
[16]	17.7	28.1	21.5	28.1	50.00 PATH
[17]	17.7	28.1	21.5	28.1	50.00 PATH
[18]	17.9	28.1	21.4	28.1	50.00 PATH
[19]	17.9	28.0	21.4	28.0	50.00 PATH
[1]	21.1	30.9	24.3	30.9	50.00 PATH
[20]	18.0	28.3	21.7	28.3	50.00 PATH
[21]	18.0	28.3	21.7	28.3	50.00 PATH
[22]	18.1	28.3	21.7	28.3	50.00 PATH
[23]	18.1	28.3	21.7	28.3	50.00 PATH
[24]	18.2	28.1	21.5	28.1	50.00 PATH
[25]	18.3	28.1	21.5	28.1	50.00 PATH
[26]	18.4	28.1	21.5	28.1	50.00 PATH
[27]	19.0	28.2	21.5	28.2	50.00 PATH
[28]	15.8	25.9	18.7	25.9	50.00 PATH
[29]	15.7	25.9	18.7	25.9	50.00 PATH
[2]	21.7	30.9	24.3	30.9	50.00 PATH
[30]	15.6	25.9	18.7	25.9	50.00 PATH
[31]	16.5	25.9	18.7	25.9	50.00 PATH
[3]	21.6	31.0	24.3	31.0	50.00 PATH
[4]	21.2	29.3	22.7	29.3	50.00 PATH
[5]	21.1	29.3	22.7	29.3	50.00 PATH
[6]	20.9	29.3	22.7	29.3	50.00 PATH
[7]	20.7	29.3	22.7	29.3	50.00 PATH
[8]	18.6	28.9	22.2	28.9	50.00 PATH
[9]	18.6	28.9	22.2	28.9	50.00 PATH
ero	13.5	20.0	---	---	50.00 PATH

Genesil Screen Dump -- Thu Aug 18 12:57:06 1988

hip: ~sfpu/sfpu/fpu

Timing Analyzer

-----Genesil Version v7.0-----

Dest.	Object	Connector	(Ph2)	Min	Max	BLOCK NAME
	enable pad[0]	F bus en		24.6	30.9	*CURRENT*
	F1 pad[0]	F		24.6	30.9	PATHAlu_op_pad[0]
F	enable pad[0]	F bus en		23.0	29.3	Alu_op_pad[1]
	F2 pad[0]	F		23.0	29.3	PATHAlu_op_pad[2]
F	enable pad[0]	F bus en		22.5	28.9	Alu_op_pad[3]
	F3 pad[0]	F		22.5	28.9	PATHAlu_op_pad[4]
F	enable pad[0]	F bus en		22.1	28.4	Carry pad
	F4 pad[0]	F		22.1	28.4	PATHF1_pad[0]
F	enable pad[0]	F bus en		21.7	28.1	F1_pad[1]
	F5 pad[0]	F		21.7	28.1	PATHF1_pad[2]
F	enable pad[0]	F bus en		22.0	28.3	F1_pad[3]
	F6 pad[0]	F		22.0	28.3	PATHF2_pad[0]
F	enable pad[0]	F bus en		21.8	28.1	F2_pad[1]
	F7 pad[0]	F		21.8	28.1	PATHF2_pad[2]
F	enable pad[0]	F bus en		19.0	25.9	F2_pad[3]
	F8 pad[0]	F		19.0	25.9	PATHF3_pad[0]
F	enable pad[1]	F bus en		24.3	30.6	F3_pad[1]
	F1 pad[0]	F		24.3	30.6	PATHF3_pad[2]
F	enable pad[1]	F bus en		22.7	29.0	F3_pad[3]
	F2 pad[0]	F		22.7	29.0	PATHF4_pad[0]
F	enable pad[1]	F bus en		22.2	28.6	F4_pad[1]
	F3 pad[0]	F		22.2	28.6	PATHF4_pad[2]
F	enable pad[1]	F bus en		21.8	28.1	F4_pad[3]
	F4 pad[0]	F		21.8	28.1	PATHF5_pad[0]
F	enable pad[1]	F bus en		21.5	27.8	F5_pad[1]
	F5 pad[0]	F		21.5	27.8	PATHF5_pad[2]
F	enable pad[1]	F bus en		21.7	28.0	F5_pad[3]
	F6 pad[0]	F		21.7	28.0	PATHF6_pad[0]
F	enable pad[1]	F bus en		21.5	27.9	F6_pad[1]
	F7 pad[0]	F		21.5	27.9	PATHF6_pad[2]
F	enable pad[1]	F bus en		18.7	25.6	F6_pad[3]
	F8 pad[0]	F		18.7	25.6	PATHF7_pad[0]
						F7_pad[1]
						* MORE *
