Статистический анализ шкал в задачах принятия решений

Степаненко Илья Александрович, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д. ф.-м.н., проф. Ю. А. Сушков Рецензент: асп. Г.С. Тамазян

Санкт-Петербург 2013г.

<u>Ключевые аспекты Метода Анализа Иерархий</u>

- МАИ математический инструмент системного подхода для сложных проблем принятия решений.
- Ключевая фигура в методе анализа иерархий лицо, принимающее решение (ЛПР).
- Сравнение альтернатив производится на качественном уровне.
- Шкала переводит качественные оценки в количественные.
- Метод собственного вектора один из наиболее популярных методов получения вектора приоритетов.

Иерархическая структура

Рис. 1: Пример иерархической структуры

Процесс принятия решения при помощи МАИ

- 🚺 построение иерархии, соответствующей исследуемой задаче,
- проведение попарных сравнений альтернатив,
- получение итогового вектора приоритетов.

Попарные сравнения альтернатив в МАИ

Множество K - набор степеней превосходства				
эквивалентность	0			
слабое превосходство	±2			
сильное превосходство	±4			
очень сильное превосходство	±6			
абсолютное превосходство	±8			
промежуточные оценки	± 1 , ± 3 , ± 5 , ± 7 ,			

Определение

Пусть X - множество объектов. Качественная оценка степени превосходства одного объекта над другим - это элемент образа отображения $X \times X \to K$.

Шкалы в Методе Анализа Иерархий

 Λ - множество числовых эквивалентов элементов множества K.

Таким образом, множество $\Lambda = \{-8, -7, \dots, 7, 8\}.$

Определение

Функция шкалы - это отображение $\varphi:\Lambda o\mathbb{R}^+$.

Определение

Расширенная шкала - это шкала с бесконечным Λ .

Требование к шкале

arphi - монотонно возрастающая функция.

Метод собственного вектора

Суть метода собственного вектора

- находим собственный вектор, соответствующий максимальному по модулю собственному числу матрицы попарных сравнений,
- нормируем вектор, поделив его на сумму всех его компонент.

Метод собственного вектора предлагаетв качестве вектора приоритетов использовать нормированный главный собственный вектор матрицы попарных сравнений.

Определение

Итерированной силой порядка t объекта x_i называется величина $p^i(t)$:

$$p^i(0)=1$$
 для всех $1\leq i\leq n,$

$$p^{i}(t) = \sum_{k=1}^{n} c_{ik} p^{k}(t-1), t \ge 1.$$

Согласованность оценок

Определение

Упорядочение $x_{s_1} > x_{s_2} > \ldots > x_{s_n}$ удовлетворяет условию **порядковой согласованности**, если для любых трех объектов x_{s_i} , x_{s_i} и x_{s_k} из того, что $x_{s_i}>x_{s_i}$, $x_{s_i}>x_{s_k}$ следует, что $x_{s_i}>x_{s_k}$.

Определение

Упорядочение $x_1>x_2>\ldots>x_n$ удовлетворяет условию **численной** согласованности для аддитивного случая, если для любых трех объектов x_i , x_j и x_k и некоторой функция шкалы φ , таких, что $x_i>x_i, \ x_i\stackrel{\lambda_{jk}}{>}x_k, \ x_i\stackrel{\lambda_{ik}}{>}x_k$, выполняется условие $arphi(\lambda_{ij})+arphi(\lambda_{jk})=arphi(\lambda_{ik})$. Аналогично, упорядочение удовлетворяет условию численной согласованности для мультипликативного **случая**, если выполняется условие $\varphi(\lambda_{ij}) \cdot \varphi(\lambda_{jk}) = \varphi(\lambda_{ik})$.

Начальное упорядочение альтернатив

Любое упорядочение объектов, если оно не содержит противоречий, можно привести к следующему: $x_1 > x_2 > \ldots > x_n$. Достичь этого можно путем изменения индексов объектов. При этом, при перестановке элементов i и j, в матрице попарных сравнений произойдет перестановка строк и столбцов с номерами i и j. Матрица попарных сравнений для упорядочения $x_1 > x_2 > \ldots > x_n$ выглядит следующим образом:

- над главной диагональю расположены неотрицательные элементы,
- на главной диагонали расположены нули,
- под главной диагональю расположены неположительные элементы.

В дальнейшем будем считать, что объекты упорядочены $x_1 > x_2 > \ldots > x_n$

Сохранение порядка объектов

Пример

$$\left(\begin{array}{ccc}
1 & 2 & 2 \\
1/2 & 1 & 9 \\
1/2 & 1/9 & 1
\end{array}\right)$$

Вектор приоритетов: (0.43, 0.45, 0.1)

Теорема

Пусть $X=\{x_1,x_2,\ldots,x_n\}$, P_{Λ} - матрица попарных сравнений, φ некоторая шкала. Если для любых различных объектов

$$x_i,x_j,x_k\in X$$
, $x_i\stackrel{\lambda_{ij}}{>}x_j$, $x_j\stackrel{\lambda_{jk}}{>}x_k$, $x_i\stackrel{\lambda_{ik}}{>}x_k$, $\lambda_{ij},\lambda_{jk},\lambda_{ik}>0$, выполнено условие

$$\lambda_{ik} > \max(\lambda_{ij}, \lambda_{jk}),$$

тогда верно:

- 1) условие порядковой согласованности будет выполнено;
- 2) упорядочение, полученное методом собственного вектора, будет совпадать с изначальным.

Описание шкал в МАИ

Определение

Шкалой Саати называется функция $\varphi_S(\lambda)=(1+|\lambda|x_S)^{{\rm sign}(\lambda)}$, где x_S - это масштаб шкалы.

Определение

Шкалой Брука называется функция $\varphi_B(\lambda)=c_B+\lambda x_B$, где c_B - это центр шкалы, а x_B - масштаб.

Определение

Логистической шкалой называется функция $\varphi_{log}(\lambda) = \frac{2}{1+\exp(-\mu\lambda)}, \ \text{где } \mu \text{ - крутизна шкалы}.$

Определение

Шкалой Лутсма называется функция $\varphi_L(\lambda)=c^\lambda$, где c - степенной параметр (принимают $c=2,\ x=\sqrt{2}$).

Логистическая шкала

Рис. 2 : Варианты логистической шкалы с различными значениями параметра μ

Предельное свойство для вектора приоритетов

Пусть среди объектов x_1, x_2, \dots, x_n нет эквивалентных. w - вектор приоритетов, полученный методом собственного вектора.

$$\lim_{\mu \to \infty} w_i = \left\{ \begin{array}{ll} 1, & \text{если } x_i > x_j \text{ для любого } i \neq j; \\ 0, & \text{для остальных объектов.} \end{array} \right.$$

Критерии сравнения шкал

Критерии:

- минимальный номер итерации, начиная с которого порядок вектора, полученного на любой последующей итерации в методе собственного вектора, будет совпадать с упорядочением главного собственного вектора,
- изменение порядка вектора приоритетов, полученного методом собственного вектора, при добавлении к матрице попарных сравнений случайной ошибки,
- устойчивость первой компоненты вектора приоритетов.

Моделирование для статистического исследования

Моделирование матриц попарных сравнений

Моделируем P_1', \dots, P_N' , N = 10000 - матрицы, такие, что:

- ullet над главной диагональю: λ_{ij} p.p. на множестве $\{0,1,\ldots,9\}$,
- на главной диагонали: нули,
- ullet под главной диагональю: $\lambda_{ij}=-\lambda_{ji}$, i>j.

Применим к ним шкалу φ : $P_i = \varphi(P_i')$, i=1..N.

 $R_i = \{r_{kl}\}_{k,l=1}^n$ - матрица ошибки, где r_{kl} имеет распределение:

$$\left\{ \begin{array}{ll} \pm 1, & \text{с вероятностью } \Phi(-1), \\ 0, & \text{с вероятностью } \Phi(1) - \Phi(-1); \end{array} \right.$$

Обозначим $\widetilde{P}_i = P_i + R_i$, i = 1..N.

Минимальный номер итерации

Формулировка задачи

 P_1,P_2,\dots,P_N , N=10000 - матрицы попарных сравнений. Найти t_{\min} , такое, что $\forall au \geqslant t_{\min}$:

$$\widetilde{p}^i(\tau) > \widetilde{p}^j(\tau) \Leftrightarrow w_i > w_j,$$

для любых i, j = 1..n.

Полученные эмпирические характеристики t_{\min}

	Минимум	Среднее	Максимум
Шкала Саати	1.1944	2.7469	5.3788
Шкала Брука	1.0463	3.5273	10.998
Логистическая шкала	1.0798	1.7121	3.352
Шкала Лутсма	1.7133	6.5915	10.209

Устойчивость для шкалы Саати

Рис. 3 : Вероятность сохранения порядка при различных параметрах шкалы Саати

Устойчивость для шкалы Брука

Рис. 4 : Вероятность сохранения порядка при различных параметрах шкалы Брука

Устойчивость для логистической шкалы

Рис. 5 : Вероятность сохранения порядка при различных параметрах логистической шкалы

Устойчивость для шкалы Лутсма

Рис. 6: Вероятность сохранения порядка при различных параметрах шкалы Лутсма

Изменение среднего значения

Формулировка задачи

 $P_i, \widetilde{P}_i, \ i=1..10000$ - набор исходных матриц и матриц с ошибкой соответственно.

 $v_i, \widetilde{v_i}, \, i=1..10000$ - соответствующие им вектора приоритетов. v_i^k - k-ая компонента вектора v_i .

Проверить $\overline{v_i^1} = \overline{\widetilde{v_i}^1}$.

Будем использовать t-критерий Стьюдента для проверки нулевой гипотезы о равенстве мат. ожиданий.

Результаты

- для шкалы Саати отвергается при всех параметрах,
- для шкалы Брука не отвергается при всех параметрах,
- ullet для логистической шкалы не отвергается при малых значениях параметра μ_{\star}
- для шкалы Лутсма не отвергается при малых значениях параметра *с*.

Заключение

- получено условие порядковой согласованности,
- найдены предельные значения вектора приоритетов для логистической шкалы,
- статистически исследована устойчивость вектора приоритетов,
- статистически исследована скорость устанавливания порядка элементов в методе собственного вектора.