

# 5. AFM – Analyse Factorielle Multiple



# Plan

- 1. Exemple
- 2. Objectifs de l'AFM
- 3. Méthodologie de l'AFM



# 5.1 – Exemples

## **Exemple 1**

- 52 emmentals dégustés par un jury d'experts
- Caractérisation sensorielle selon 3 familles d'attributs : texture, goût, odeur
- Jugement de conformité





# **Exemple 2**

6 jus d'orange décrits par

- leur profil sensoriel
- des mesures physico-chimiques





## **Exemple 3**

- 14 parfums évalués par 17 juges lors de deux épreuves de catégorisation
- Epreuve de catégorisation : un juge réalise des classes de parfum « qui se ressemblent »
- Le nombre de classes possibles est libre

|      |                  |                 | Epreuve n°1 |    |  | Epreuve n°2 |     |    | n°2 |  |     |     |
|------|------------------|-----------------|-------------|----|--|-------------|-----|----|-----|--|-----|-----|
| Code | Produits \ Juges | Marque          | J1          | J2 |  | <b>J16</b>  | J17 | J1 | J2  |  | J16 | J17 |
| Α    | Armani Code      | Armani          | 1           | 1  |  | 1           | 1   | 2  | 2   |  | 2   | 3   |
| В    | Rocabard         | Hermès          | 2           | 2  |  | 2           | 2   | 1  | 3   |  | 1   | 1   |
| С    | Ralph            | Ralph Lauren    | 3           | 3  |  | 3           | 3   | 1  | 4   |  | 1   | 3   |
| D    | Hypnotic Poison  | Dior            | 4           | 5  |  | 3           | 4   | 3  | 1   |  | 1   | 4   |
| Е    | Amor Amor        | Cacharel        | 5           | 3  |  | 4           | 5   | 4  | 2   |  | 2   | 5   |
| F    | Miracle          | Lancôme         | 6           | 2  |  | 2           | 6   | 5  | 3   |  | 3   | 6   |
| G    | Hugo Deep Red    | Hugo Boss       | 7           | 1  |  | 5           | 4   | 3  | 2   |  | 4   | 4   |
| Н    | J'Adore          | Dior            | 5           | 2  |  | 3           | 1   | 1  | 3   |  | 3   | 1   |
| 1    | Eau d'Eden       | Cacharel        | 2           | 6  |  | 6           | 7   | 2  | 2   |  | 3   | 1   |
| J    | FlowerbyKenzo    | Kenzo           | 5           | 2  |  | 7           | 8   | 4  | 3   |  | 4   | 2   |
| K    | L                | Lolita Lempicka | 6           | 2  |  | 8           | 9   | 5  | 3   |  | 4   | 2   |
| L    | Eternity         | Calvin Klein    | 4           | 6  |  | 6           | 4   | 2  | 4   |  | 2   | 3   |
| M    | Perles           | Lalique         | 7           | 3  |  | 4           | 4   | 2  | 5   |  | 1   | 6   |
| N    | Paris            | Yves St Laurent | 1           | 1  |  | 5           | 10  | 1  | 5   |  | 5   | 6   |



# 5.2 – Objectifs de l'AFM

# **Objectifs**

## **Exemple « Emmental »**

- Obtenir une typologie des 52 emmental du point de vue de leur profil organoleptique
- Relier le sensoriel à la conformité

Une ACP+ CAH est possible!

#### Mais:

- Comment tenir compte explicitement de l'existence des différents groupes de variables ?
- Quelle est l'importance relative des groupes dans l'analyse globale ?



## Plus généralement



- Etudier les liens entre les groupes de variables
- Existe-t-il une structure commune aux groupes?
- Comment construire un référentiel commun à ces groupes ?
- Quels sont les groupes liés aux principaux facteurs de variabilité?



# 5.3 – Méthodologie de l'AFM

# La pondération des groupes

« Les groupes comportant plus de variables ont-ils plus d'influence dans l'analyse ? »

## Exemple géométrique





ACP de l'ensemble des variables : 1e composante principale liée au groupe 1...

Ce qui compte
La répartition de l'inertie
au sein d'un groupe

Le groupe qui compte : celui qui concentre l'inertie sur la première dimension





# Principe de la pondération en AFM : bilan

- Il faut essayer de redonner plus d'importance aux groupes dont l'inertie globale est répartie sur plusieurs axes
- Plus l'inertie d'un groupe est « diluée » sur un nombre important d'axes, moins l'inertie du premier axe est importante
- On choisit la première valeur propre comme mesure de la structuration de l'inertie du groupe
- Poids d'une variable d'un groupe =  $1/\lambda$ où  $\lambda$  est l'inertie du 1er axe de l'ACP de ce groupe





## Poids d'une variable du groupe $k = 1/\lambda_k$

où  $\lambda_k$  est l'inertie du 1er axe de l'ACP du groupe k





# Nuage moyen et nuages partiels

On définit 2 types de nuages des individus



**Chaque nuage partiel =** 

Les individus décrits par les variables d'un seul groupe



## Un référentiel commun

**Idée** : situer tous les nuages dans le même espace, celui engendré par toutes les variables

## Illustration

Tableau de données (deux groupes d'une variable)







# L'AFM comme ACP pondérée du nuage moyen

- On réalise une ACP (pondérée) du nuage moyen
- On projette les points des nuages partiels sur les axes principaux du nuage moyen

# Illustration



## Conséquence

Sur chaque axe, tout individu (i) est affecté de de K points partiels



# La représentation simultanée

## Illustration pour le premier plan factoriel





## Conséquence

Sur chaque axe, tout individu (i) est affecté de de K points partiels

Le point moyen (i) est au **barycentre** de ses points partiels (i1) et (i2)



## Exemple « emmental »



#### Emmentals 2 et 23

- Très proches du point de vue de la Texture
- Mais très différents de par leur Goût



## L'inertie totale

#### > res\$eig

|      |    | eigenvalue | percentage | of variance | cumulative | percentage | of | variance  |
|------|----|------------|------------|-------------|------------|------------|----|-----------|
| comp | 1  | 1.73239893 |            | 32.1957648  |            |            |    | 32.19576  |
| comp | 2  | 0.97797934 |            | 18.1752553  |            |            |    | 50.37102  |
| comp | 3  | 0.71291688 |            | 13.2492025  |            |            |    | 63.62022  |
| comp | 4  | 0.54127624 |            | 10.0593473  |            |            |    | 73.67957  |
| comp | 5  | 0.31130449 |            | 5.7854377   |            |            |    | 79.46501  |
| comp | 6  | 0.27292895 |            | 5.0722475   |            |            |    | 84.53725  |
| comp | 7  | 0.23010865 |            | 4.2764538   |            |            |    | 88.81371  |
| comp | 8  | 0.16614201 |            | 3.0876658   |            |            |    | 91.90137  |
| comp | 9  | 0.09516622 |            | 1.7686164   |            |            |    | 93.66999  |
| comp | 10 | 0.09396227 |            | 1.7462417   |            |            |    | 95.41623  |
| comp | 11 | 0.07143719 |            | 1.3276244   |            |            |    | 96.74386  |
| comp | 12 | 0.04069799 |            | 0.7563517   |            |            |    | 97.50021  |
| comp | 13 | 0.03391173 |            | 0.6302324   |            |            |    | 98.13044  |
| comp | 14 | 0.03257815 |            | 0.6054485   |            |            |    | 98.73589  |
| comp | 15 | 0.02754503 |            | 0.5119106   |            |            |    | 99.24780  |
| comp | 16 | 0.02311658 |            | 0.4296100   |            |            |    | 99.67741  |
| comp | 17 | 0.01735800 |            | 0.3225897   |            |            | -  | 100.00000 |

| ACP Goût | Val. Propre |
|----------|-------------|
|          | 4,405       |
|          | 1,586       |
|          | 0,718       |
|          | 0,546       |
|          | 0,276       |
|          | 0,190       |
|          | 0,162       |
|          | 0,119       |
|          |             |
|          | 8,00        |
|          | 1,82        |
|          |             |

| ACP Texture | Val. Propre |
|-------------|-------------|
|             | 2,910       |
|             | 1,365       |
|             | 0,837       |
|             | 0,562       |
|             | 0,211       |
|             | 0,115       |
|             |             |
|             | 6,00        |
|             | 2,06        |

| <b>ACP Parfum</b> | Val.propre |
|-------------------|------------|
|                   | 1,997      |
|                   | 0,811      |
|                   | 0,192      |
|                   |            |
|                   | 3,00       |
|                   | 1,50       |
|                   |            |

> sum(res\$eig[,1])

[1] 5.380829







# **Exemple « Catégorisation »**(AFM sur variables qualitatives)



Facteur 1 - 14.62 %

|      |                  |                 | Epreuve n°1 |    |  | Epreuve n°2 |     |    |    |  |     |     |
|------|------------------|-----------------|-------------|----|--|-------------|-----|----|----|--|-----|-----|
| Code | Produits \ Juges | Marque          | J1          | J2 |  | J16         | J17 | J1 | J2 |  | J16 | J17 |
| Α    | Armani Code      | Armani          | 1           | 1  |  | 1           | 1   | 2  | 2  |  | 2   | 3   |
| В    | Rocabard         | Hermès          | 2           | 2  |  | 2           | 2   | 1  | 3  |  | 1   | 1   |
| С    | Ralph            | Ralph Lauren    | 3           | 3  |  | 3           | 3   | 1  | 4  |  | 1   | 3   |
| D    | Hypnotic Poison  | Dior            | 4           | 5  |  | 3           | 4   | 3  | 1  |  | 1   | 4   |
| Е    | Amor Amor        | Cacharel        | 5           | 3  |  | 4           | 5   | 4  | 2  |  | 2   | 5   |
| F    | Miracle          | Lancôme         | 6           | 2  |  | 2           | 6   | 5  | 3  |  | 3   | 6   |
| G    | Hugo Deep Red    | Hugo Boss       | 7           | 1  |  | 5           | 4   | 3  | 2  |  | 4   | 4   |
| Н    | J'Adore          | Dior            | 5           | 2  |  | 3           | 1   | 1  | 3  |  | 3   | 1   |
| 1    | Eau d'Eden       | Cacharel        | 2           | 6  |  | 6           | 7   | 2  | 2  |  | 3   | 1   |
| J    | FlowerbyKenzo    | Kenzo           | 5           | 2  |  | 7           | 8   | 4  | 3  |  | 4   | 2   |
| K    | L                | Lolita Lempicka | 6           | 2  |  | 8           | 9   | 5  | 3  |  | 4   | 2   |
| L    | Eternity         | Calvin Klein    | 4           | 6  |  | 6           | 4   | 2  | 4  |  | 2   | 3   |
| M    | Perles           | Lalique         | 7           | 3  |  | 4           | 4   | 2  | 5  |  | 1   | 6   |
| N    | Paris            | Yves St Laurent | 1           | 1  |  | 5           | 10  | 1  | 5  |  | 5   | 6   |

## **Problématique**

Etude de la répétabilité du panel



# Exemple « Profil Flash »

Facteur 2 - 16.43%



|                 | Gre         |              |          |  |
|-----------------|-------------|--------------|----------|--|
| PRODUIT         | 1_Intensité | 1_Complexité | 1_Fleuri |  |
| Armani Code     | 6           | 11           | 8        |  |
| Rocabard        | 1           | 7            | 1        |  |
| Ralph           | 8           | 3            | 11       |  |
| Hypnotic Poison | 5           | 8            | 2        |  |
| Amor Amor       | 9           | 5            | 13       |  |
| Miracle         | 10          | 13           | 4        |  |
| Hugo Deep Red   | 12          | 14           | 6        |  |
| J'Adore         | 4           | 4            | 5        |  |
| Eau d'Eden      | 7           | 6            | 9        |  |
| Ô de Lancôme    | 14          | 12           | 7        |  |
| L               | 11          | 2            | 10       |  |
| Eternity        | 3           | 10           | 3        |  |
| Perles          | 13          | 1            | 14       |  |
| Paris           | 2           | 9            | 12       |  |

|           | Gr       | oupe 17 = Jug | e 17     |          |
|-----------|----------|---------------|----------|----------|
| 17_Floral | 17_Fruit | 17_Intensité  | 17_Herbe | 17_Boisé |
| 1         | 2,5      | 11            | 1        | 14       |
| 12        | 6,5      | 8,5           | 2        | 1,5      |
| 13,5      | 12       | 10            | 5        | 5,5      |
| 13,5      | 14       | 3,5           | 3,5      | 3,5      |
| 4         | 10       | 8,5           | 3,5      | 11,5     |
| 6,5       | 6,5      | 13            | 6,5      | 5,5      |
| 2,5       | 1        | 14            | 11,5     | 13       |
| 2,5       | 8,5      | 12            | 13,5     | 11,5     |
| 8,5       | 11       | 5,5           | 10       | 7,5      |
| 6,5       | 5        | 2             | 8,5      | 1,5      |
| 10        | 13       | 5,5           | 13,5     | 7,5      |
| 5         | 8,5      | 3,5           | 11,5     | 9        |
| 8,5       | 2,5      | 1             | 6,5      | 3,5      |
| 11        | 4        | 7             | 8,5      | 10       |

## **Problématique**

Comparaison des descriptions sensorielles fournies par 17 juges



# La recherche de facteurs communs aux groupes

#### Question

Dans quelle mesure un facteur (axe) est-il commun aux différents groupes ?

## Coordonnée d'un groupe sur un axe

Inertie projetée de l'ensemble des variables du groupe sur l'axe « l'axe correspond-il à une direction d'inertie importante pour le groupe ? »

### Coordonnées (Tableaux) :

|            | F1    | F2    | F3    | F4    | F5    |
|------------|-------|-------|-------|-------|-------|
| Parfum     | 0,740 | 0,018 | 0,202 | 0,255 | 0,041 |
| Texture    | 0,273 | 0,744 | 0,371 | 0,132 | 0,181 |
| Goût       | 0,719 | 0,215 | 0,140 | 0,155 | 0,089 |
| Conformité | 0,021 | 0,065 | 0,009 | 0,179 | 0,062 |

## Représentation graphique des groupes







- Le premier facteur est commun aux groupes Parfum et Goût
- Le second facteur est quant à lui spécifique du groupe **Texture**
- La Conformité n'est liée à aucune direction d'inertie importante...

## Remarque

Si aucun facteur commun : AFM non intéressante... Préférer des analyses séparées !



## **Exemple « Catégorisation »**

Répétabilité du panel





# Corrélation entre les facteurs de l'AFM et les axes partiels

## Question

Comment les facteurs de l'AFM sont-ils reliés aux facteurs des analyses séparées ?





# Indicateurs de liaison entre groupes

#### Coefficients Lg:

|            | Parfum | Texture | Goût  | Conformité | AFM   |
|------------|--------|---------|-------|------------|-------|
| Parfum     | 1,174  | 0,109   | 0,362 | 0,043      | 0,950 |
| Texture    | 0,109  | 1,347   | 0,198 | 0,139      | 0,955 |
| Goût       | 0,362  | 0,198   | 1,179 | 0,048      | 1,004 |
| Conformité | 0,043  | 0,139   | 0,048 | 1,000      | 0,133 |
| AFM        | 0,950  | 0,955   | 1,004 | 0,133      | 1,679 |

## Coefficient *Lg* (G1, G2)

D'autant plus grand que les 2 groupes partagent des directions d'inertie importantes (somme des carrés des covariances entre colonnes de G1 et de G2)

Lg (G1, G1)

Indicateur de « dimensionnalité » du groupe

#### Coefficients RV:

|            | Parfum | Texture | Goût  | Conformité | AFM   |
|------------|--------|---------|-------|------------|-------|
| Parfum     | 1,000  | 0,086   | 0,308 | 0,039      | 0,676 |
| Texture    | 0,086  | 1,000   | 0,157 | 0,120      | 0,635 |
| Goût       | 0,308  | 0,157   | 1,000 | 0,044      | 0,714 |
| Conformité | 0,039  | 0,120   | 0,044 | 1,000      | 0,103 |
| AFM        | 0,676  | 0,635   | 0,714 | 0,103      | 1,000 |

## Coefficient RV (G1, G2)

Coefficient Lg « normalisé » dans [0,1]

RV = 0 (orthogonalité)

RV = 1 (homothétie)



# Représentations « classiques »

### Cercle des corrélations

#### Correlation circle





# **Graphe des individus** moyens et partiels

#### Individual factor map

