

PRAGMA 34 Conference: Fujitsu

Technical Computing Solutions Unit May 9th, 2018

Introduction of Fujitsu, Fujitsu HPC, HPC Center Examples

Revenue by Sector – FY2016

Headquarters: Tokyo, Japan (Since 1935)

65.6%

Revenue: 4.726 trillion yen (US\$41.7 billion)

President: Tatsuya Tanaka

Stock Exchange: Tokyo (code 6702), Nagoya

FUJITSU Server PRIMERGY CX600

FUJITSU Server

PRIMERGY CX400

Solutions
 System Integration

Infrastructure Services

System Platforms

System Products
 Network Products

FY 2016 Revenue by Business Segment

¥2,942.3 billion US\$31,301 million 21.5%

11.4%

1.4%

Ubiquitous Solutions

- PCs/Mobile Phones
- Mobilewear Others ¥1,090.2 billion US\$11,598 million

Device Solutions

- LSI Electronic Components
- Others ¥540.3 billion US\$5,748 million

Others

¥64.7 billion US\$688.4 million

LIFEBOOK

Fujitsu Group

 \blacksquare There are approximately 155,000 Fujitsu colleagues working with customers in over

Research and Development

Over 18,500 employees are engaged in R&D within the Fujitsu Group.

We have approximately 1,400 researchers in the Fujitsu Laboratories Group conducting leading-edge R&D at 4 key global R&D sites. Fujitsu spent approximately 3.9% of revenue on R&D, last year.

In addition to in-house efforts, Fujitsu engages in collaborative R&D with renowned universities, corporations and research institutions, worldwide.

Fujitsu's Expertise in HPC for Over 40 Years

Post-K

FUJITSU has been providing high performance supercomputers for 40 years, increasing application performance while maintaining application compatibility

Oakforest-PACS

The first of its kind in the world; over 8,000 Xeon Phi nodes connected by Omni-Path Interconnect, surpassing the "K Computer" by 1.3 times.

Customer: JCAHPC

- High Performance This system promotes cutting-edge computational science, while also greatly contributing to Japanese science & technology
- Construction
 - -8,208 Intel® Xeon Phi™ Nodes, Storage: 26.2PB
 - -Intel® Omni-Path Interconnect
 - -Performance: 25PF (Peak)
 - -Official operation started in Dec., 2017.
- **Shared System** Tokyo University and Tsukuba University share this system. This is the first attempt in Japan for this kind of partnership.

PFLOPS Global: **1.3** faster than K

NSCC (National Supercomputer Center)

Singapore National Initiative for Boosting Scientific Research

- HPC platform to further advance R&D in Singapore and nurture young talent by bringing together research institutes of higher learning and industry partners
- Potential usage includes research in the areas of modeling and simulation, and data analytics

Fujitsu Competencies

Fujitsu's deep-rooted background in R&D, broad industry networks, technical know-how and experience building HPC facilities made us the perfect choice for this project.

- Construction
 - -1,288 Intel Xeon™ Nodes (128 nodes w/GPUs), Storage: 13PB
 - -Mellanox EDR Infiniband® Interconnect
 - -Performance: 1PF
 - -Official operation started in Mar., 2016.
- End-to-End Fujitsu's integral professional and managed services in the design, construction, and maintenance of the HPC facility.

K computer/Post K computer

K computer is necessary for safety and security of public, and to maintain international competitiveness

Customer: Riken AICS

Now working with RIKEN to develop Post
K computer, aiming to be the most
advanced general purpose
supercomputer in the world

- Indispensable platform for advanced science research
- Still leading benchmarks awards after 6 years from delivery

1 st

1 st

10th

※ as of Nov. 2017

Post-K Development Goals

- Application performance
- Low power consumption
- User convenience
- Ability to produce ground-breaking results

HPC + AI Systems

Human-Centric Al "Zinrai"

- Fujitsu is combining component tech, such as:
 - machine learning
 - deep learning
- visual recognition into our digital solutions and services.
- The goal is to use Al to complement human activity, not replace it, by developing solutions that take care of tedious and/or repetitive work, so humans can focus on important matters.

Processor for Deep Learning ("DLU")

Applying K computer Technologies

11

DLU Features:

- Unique architecture, newly developed for "Deep Learning"
- Energy-saving design
- → Goal : 10x better "performance per watt" compared to competitors
- Large scalability : Utilizes HPC interconnect technology
- → Capable of handling very large-scale neural networks

FY2018~

Digital Annealer

Quantum-inspired computer hardware that can rapidly solve combinatorial optimization problems using existing semiconductor technology!

Large Scale 1024-bit scale, inter-bit full connection

Accurate 16-bit inter-bit connection precision

Stable Works at normal temperature

Rapid Evolution Further enhancement in 2018

The only hardware in the world as of today, which can solve real world problems!

Scale x Connection x Precision is large. The Digital Annealer is very practical!.

"Al Bridging Cloud Infrastructure" (ABCI)

Fujitsu won the deal for the most advanced Al supercomputer in the world, in order to promote Al research and development through industry-government-academia collaboration.

National Institute of Advanced Industrial Science and Technology (AIST)

- AIST is one of the 3 core Al sites in Japan. The system is an open innovation platform for the purpose of implementing Al in society.
- Construction
 - -1,088 Nodes (4,352 GPUs), Storage: 22PB
 - -Performance: 550 Peta-Al-Flops
 - -Contract won in Sep,2017
 - -Official operation to start in 2018.

This system will act as a "roll-out" model for the next national Al projects in Taiwan and Singaporg.

RIKEN AIP (AI Platform)

- FUJITSU
- The largest NVIDIA DGX-1-equipped system at a customer site
- Constructed to accelerate Japan's Al research activities

Combined use of "Cloud Managed" mode and "Base OS" mode

- Mainly, "Base-OS Mode" is the mode used.
 - Cloud Managed Mode: 1 node
 - Base-OS Mode : 23 nodes
- Why "Base-OS Mode" was necessary:
 - To Realize Multi-container Execution
 - "Cloud Managed Mode" only supports 1 container / node, so far. Fujitsu installed a job scheduler for multi-container execution
 - To Mitigate Security Risks
 - "Cloud Portal" requires some of system information and Docker containers are stored in the public internet area

Booth Exhibits

- "Deep Tensor" a new solution for detecting multiple malware behaviors through AI!
- Post K the successor to the famous K computer!
- X86 Cluster Solutions a full range of Intel CPU-based HPC solutions, to fit any need!
- *Also, make sure to check out "Nature" magazine at our booth!*

shaping tomorrow with you