Econ 2120: Section 1 Part I - Orthogonality and Projection

Ashesh Rambachan

Fall 2018

Outline

Linear Algebra Preliminaries

Inner Products Norms Cauchy-Schwarz Inequality Projection Theorem

Best Linear Predictor

Minimum-mean-square-error Minimum-norm No constant case Constant and slope case

Least Squares Fit

Omitted Variables Bias

Outline

Linear Algebra Preliminaries

Inner Products

Norms

Cauchy-Schwarz Inequality

Projection Theorem

Best Linear Predictor

Minimum-mean-square-error

Minimum-norm

No constant case

Constant and slope case

Least Squares Fit

Omitted Variables Bias

Inner Products

For a vector space \mathcal{V} , an **inner product** $\langle \cdot, \cdot \rangle$ is a function defined on $\mathcal{V} \times \mathcal{V}$ to \mathbb{R} that satisfies the following properties:

Symmetry: For all $v_1, v_2 \in \mathcal{V}$,

$$\langle v_1, v_2 \rangle = \langle v_2, v_1 \rangle.$$

Linearity: For all $\alpha \in \mathbb{R}$ and $v_1, v_2, v_3 \in \mathcal{V}$

$$\langle \alpha \mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_3 \rangle = \alpha \langle \mathbf{v}_1, \mathbf{v}_3 \rangle + \langle \mathbf{v}_2, \mathbf{v}_3 \rangle.$$

Positive-definiteness: For all $v_1 \in \mathcal{V}$,

$$\langle \textit{v}_1, \textit{v}_1 \rangle \geq 0$$

with equality if and only if $v_1 = 0$.

Inner Products

 v_1, v_2 are **orthogonal** if

$$\langle v_1, v_2 \rangle = 0.$$

Write $v_1 \perp v_2$.

Consider a subspace $X \subset \mathcal{V}$. v_1 is **orthogonal** to X if

$$\langle v_1, x \rangle = 0$$

for all $x \in \mathcal{X}$. Write $v_1 \perp X$.

Norms

Next, the **norm** associated with $\langle \cdot, \cdot \rangle$ is

$$||x|| = \sqrt{\langle x, x \rangle}.$$

The norm satisfies the following properties for all $v \in \mathcal{V}$:

Positivity: $\|v\| \ge 0$ with $\|v\| = 0$ if and only if v = 0.

Homogeneity: For all $\alpha \in \mathbb{R}$, $\|\alpha \cdot \mathbf{v}\| = |\alpha| \|\mathbf{v}\|$.

Triangle Inequality: For all $v_1, v_2 \in \mathcal{V}$,

$$||x + y|| \le ||x|| + ||y||.$$

Cauchy-Schwarz Inequality

```
Theorem (Cauchy-Schwarz)   For \ all \ v_1, v_2 \in \mathcal{V}, \\ |\langle v_1, v_2 \rangle| \leq \|v_1\| \|v_2\|.
```

Projection Theorem

Theorem (Projection)

Let $\mathcal V$ be a vector space, let $X\subset \mathcal V$ be a subspace and fix $y\in \mathcal V$. Then,

$$x^* = \arg\min_{x \in \mathcal{X}} \|y - x\|$$

if and only if

$$\langle y - x^*, x \rangle = 0$$

for all $x \in \mathcal{X}$.

Proof: (\Leftarrow)

Consider $x^* \in \mathcal{X}$ such that for all $x \in \mathcal{X}$,

$$\langle y - x^*, x \rangle = 0.$$

 $\forall x \in \mathcal{X}$, define $x' \in \mathcal{X}$ and $t \in \mathbb{R}_+$ such that $\|x'\| = 1$ and

$$x = x^* + t \cdot x'.$$

Let $t = ||x - x^*||$ and $x' = (x - x^*)/t$

Then,

$$||y - x||^2 = ||y - x^* - t \cdot x'||^2$$

$$= \langle (y - x^*) - t \cdot x', (y - x^*) - t \cdot x' \rangle$$

$$= ||y - x^*||^2 - 2t\langle y - x^*, x' \rangle + t^2 \ge ||y - x^*||^2$$

with equality if and only if t = 0 or $x = x^*$.

Proof:
$$(\Rightarrow)$$

Consider $x^* \in \mathcal{X}$ such that

$$x^* = \arg\min_{x \in \mathcal{X}} \|y - x\|.$$

Suppose FSOC there exists an $x \in \mathcal{X}$ such that

$$\langle y-x^*,x,\neq\rangle 0.$$

WLOG, suppose that ||x||=1 and call $\langle y-x^*,x\rangle=\delta$. Let $x_1=x^*+\delta\cdot x$. Then,

$$||y - x_1||^2 = \langle y - x^* - \delta \cdot x, y - x^* - \delta \cdot x \rangle$$

$$= ||y - x^*||^2 - \langle y - x^*, \delta \cdot x \rangle - \langle \delta \cdot x, y - x^* \rangle + \delta^2$$

$$= ||y - x^*||^2 - \delta^2 < ||y - x^*||^2.$$

Note: For this direction, need to assume \mathcal{V} is a Hilbert space and X is a closed subspace of \mathcal{X} for x^* to be guaranteed to exist. Will be true for $\mathcal{V} = \mathbb{R}^d$ with the Euclidean inner product,

Exercise 1

Let H be a vector space with an inner product $\langle \cdot, \cdot \rangle$.

(1) Given $f, g \in H$, consider the problem

$$\min_{c \in \mathbb{R}} \|f - cg\|^2$$

Suppose that

$$\frac{\partial}{\partial c} \|f - cg\|^2 = 0$$

is satisfed at $c = \beta$. Define $\hat{f} = \beta g$ and show that

$$\langle f - \hat{f}, g \rangle = 0$$

and

$$||f - cg||^2 = ||f - \hat{f}||^2 + (c - \beta)^2 ||g||^2$$

Conclude that $c = \beta$ is a solution to the minimization problem.

Exercise 1 (continued)

(2) Let H_1 be a linear subspace of H. Given $f \in H$, consider the problem,

$$\min_{h\in H_1} \|f-h\|^2$$

Suppose $\hat{f} \in H_1$ satisfies

$$\langle f - \hat{f}, h \rangle = 0 \quad \forall h \in H_1.$$

Show that \hat{f} is the unique solution to the minimization problem.

Exercise 1 (continued)

(3) Let H_1 be a subspace of H. Given $f,g\in H$, suppose that $\hat{f},\hat{g}\in H_1$ satisfy

$$\langle f - \hat{f}, h \rangle = 0$$
 and $\langle g - \hat{g}, h \rangle = 0$

for all $h \in H_1$. Given $c_1, c_2 \in \mathbb{R}$, consider

$$\min_{h \in H_1} \|c_1 f + c_2 g - h\|^2.$$

What is the solution h^* ? Why?

Outline

Linear Algebra Preliminaries

Inner Products

Norms

Cauchy-Schwarz Inequality

Projection Theorem

Best Linear Predictor

Minimum-mean-square-error

Minimum-norm

No constant case

Constant and slope case

Least Squares Fit

Omitted Variables Bias

Minimum-mean-square-error

(X, Y) is a random vector with some joint distribution.

Given value of X, we want to predict Y. Start with simple linear predictor.

$$\hat{Y} = \beta_0 + \beta_1 X$$

Determine β_0, β_1 by solving

$$\min_{\beta_0,\beta_1} E[(Y-\hat{Y})^2].$$

Going to set-up a general tool to solve problems of this form.

Minimum-norm

Use the projection theorem in a vector space with an inner product to solve this problem.

The Vector space: all functions of (X, Y).

The inner product:

$$\langle X, Y \rangle = E[XY].$$

The norm:

$$||Y|| = \langle Y, Y \rangle^{1/2}.$$

Minimum-mean-square-error problem written as a minimum-norm problem:

$$\min_{\beta_0,\beta_1} \|Y - \hat{Y}\|^2$$

Aside: Why $\langle X, Y \rangle = E[XY]$?

Instead of Cov(X, Y)?

Recall: $\langle X, X \rangle \ge 0$ and equal to zero if and only if X = 0.

Covariance doesn't satisfy this.

If we used covariance, we are defining "equality" to be "equality up to a constant."

No constant case

First, suppose

$$\hat{Y} = \beta X$$
.

We wish to find β that minimizes

$$E[(Y - \beta X)^2] = ||Y - \beta X||^2.$$

Use the projection theorem! The prediction error will be orthogonal to X.

$$\langle Y - \hat{Y}, X \rangle = 0$$

Let \mathcal{X} be the space of linear functions of X with no constant. We are looking for the element $\beta^*X \in \mathcal{X}$ that is closest to Y.

No constant case

We have

$$\langle Y - \hat{Y}, X \rangle = \langle Y, X \rangle - \beta \langle X, X \rangle = 0.$$

So,

$$\beta = \frac{\langle Y, X \rangle}{\langle X, X \rangle}$$

or

$$\beta = \frac{E[YX]}{E[X^2]}.$$

Denote the predicted value of Y at the solution as

$$E^*[Y|X] = \beta X.$$

Constant and slope case

Now, suppose

$$\hat{Y} = \beta_0 + \beta_1 X.$$

Find β_0, β_1 that minimizes

$$E[(Y - \beta_0 - \beta_1 X)^2] = ||Y - \beta_0 - \beta_1 X||^2.$$

Use the projection theorem! The prediction error is orthogonal to 1, X.

$$\langle Y - \hat{Y}, 1 \rangle = 0, \langle Y - \hat{Y}, X \rangle = 0$$

Let \mathcal{X} be the space of all linear functions of X - spanned by X and a constant.

Constant and slope

Orthogonality conditions give two equations for two unknowns. Solve them to get

$$\beta_0 = \langle Y, 1 \rangle - \beta_1 \langle X, 1 \rangle$$
$$\beta_1 = \frac{\langle X, Y \rangle - \langle Y, 1 \rangle \langle X, 1 \rangle}{\langle X, X \rangle - \langle X, 1 \rangle \langle X, 1 \rangle}$$

or

$$\beta_0 = E[Y] - \beta_1 E[X]$$

$$\beta_1 = \frac{E[XY] - E[X]E[Y]}{E[X^2] - E[X]^2} = \frac{\text{Cov}(X, Y)}{V(X)}$$

Denote predicted value of Y at solution as

$$E^*[Y|1,X] = \beta_0 + \beta_1 X.$$

Exercise

Let

$$E^*[Y|1, X_1, \dots, X_K] = \beta_0 + \beta_1 X_1 + \dots + \beta_K X_K$$

be the population linear predictor of Y given $1, X_1, \ldots, X_K$. Write this as

$$E^*[Y|X] = X'\beta$$

where $X = (1, X_1, \dots, X_K)'$ and $\beta = (\beta_0, \beta_1, \dots, \beta_K)'$. Define

$$U=Y-X'\beta.$$

Show that

$$V(Y) = V(X'\beta) + V(U)$$

Outline

Linear Algebra Preliminaries

Inner Products

Norms

Cauchy-Schwarz Inequality

Projection Theorem

Best Linear Predictor

Minimum-mean-square-error

Minimum-norm

No constant case

Constant and slope case

Least Squares Fit

Omitted Variables Bias

This orthogonal projection approach is very general.

We'll now switch gears and look at how to apply it to data.

Let

$$y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad x_0 = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}.$$

The *i*-th fitted value is

$$\hat{y}_i = b_0 + b_1 x_i$$

and we want to find the b_0 , b_1 to solve

$$\min_{b_0,b_1}\frac{1}{n}\sum_{i=1}^n(y_i-b_0-b_1x_i)^2.$$

We'll set-up a minimum norm problem. Define the inner product

$$\langle y, x \rangle = \frac{1}{n} \sum_{i=1}^{n} y_i x_i.$$

The minimum-norm problem is

$$\min_{b_0,b_1} \|y - b_0 x_0 - b_1 x_1\|^2$$

and the solution is obtained via the orthogonal projection of y onto the space spanned by (x_0, x_1) .

We have the orthogonality conditions

$$\langle y - \hat{y}, x_0 \rangle = 0$$

$$\langle y - \hat{y}, x_1 \rangle = 0.$$

The solution is exactly as before

$$b_0 = \langle y, x_0 \rangle - b_1 \langle y, x_1 \rangle$$

$$b_1 = \frac{\langle y, x_1 \rangle - \langle y, x_0 \rangle \langle x, x_0 \rangle}{\langle x_1, x_1 \rangle - \langle x_1, x_0 \rangle \langle x, x_0 \rangle}$$

and plugging in the definition of this norm,

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$b_1 = \frac{\bar{y}x - \bar{y}\bar{x}}{\bar{x}^2 - \bar{x}^2}$$

where

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i, \quad \bar{xy} = \frac{1}{n} \sum_{i=1}^{n} y_i x_i, \quad \bar{x^2} = \frac{1}{n} \sum_{i=1}^{n} x_i^2$$

4□ > 4□ > 4□ > 4□ > 4□ > 9

Outline

Linear Algebra Preliminaries

Inner Products

Norms

Cauchy-Schwarz Inequality

Projection Theorem

Best Linear Predictor

Minimum-mean-square-error

Minimum-norm

No constant case

Constant and slope case

Least Squares Fit

Omitted Variables Bias

Omitted variables bias formula

We can use this orthogonal projection tool to derive the typical omitted variables bias formula.

Let (Y, X_1, X_2) be a random vector with some joint distribution. Call

$$E^*[Y|1, X_1, X_2] = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

the long regression. Call

$$E^*[Y|1, X_1] = \alpha_0 + \alpha_1 X_1$$

the short regression. Call

$$E^*[X_2|1,X_1] = \gamma_0 + \gamma_1 X_1$$

the auxiliary regression.

Omitted variables bias formula

Can we relate α_1 to β_1 ? Yes!

Let
$$U = Y - \beta_0 - \beta_1 X_1 - \beta_2 X_2$$
. Then,

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + U$$

with $U \perp 1, X_1, X_2$.

Therefore,

$$E^*[Y|1, X_1] = \beta_0 + \beta_1 X_1 + \beta_2 E^*[X_2|1, X_1] + E^*[U|1, X_1]$$

= \beta_0 + \beta_1 X_1 + \beta_2(\gamma_0 + \gamma_1 X_1) + 0

and we re-arrange to get

$$E^*[Y|1, X_1] = (\beta_0 + \beta_2 \gamma_0) + (\beta_1 + \beta_2 \gamma_1) X_1.$$

Omitted variable bias formula

Omitted variable bias formula:

$$\alpha_1 = \beta_1 + \beta_2 \gamma_1.$$

There is an exactly identical formula for the least-squares problem.

Exercise

Consider the following model for measurement error:

$$E^*[Y_i|1, \tilde{Z}_i, Z_{i1}, Z_{i2}] = \beta_0 + \beta_1 \tilde{Z}_i$$

 $E^*[Z_{i1}|1, \tilde{Z}_i] = \tilde{Z}_i$
 $E^*[Z_{i2}|1, \tilde{Z}_i] = \tilde{Z}_i$

where Z_{i1}, Z_{i2} are noisy measurements of \tilde{Z}_i . The population model is expressed in terms of vectors of random variables

$$D_i = (Y_i, \tilde{Z}_i, Z_{i1}, Z_{i2})$$

and we assume the D_i are i.i.d. from some unknown distribution. We observe

$$W_i = (Y_i, Z_{i1}, Z_{i2})$$

for
$$i = 1, ..., n$$
.

Exercise (continued)

(1) Work out the covariance matrix of (Y_i, Z_{i1}, Z_{i2}) as a function of β_1 , $V(\tilde{Z}_i)$ and some additional parameters that you will need to define.

Hint: Define the prediction errors associated with the best linear predictors

$$Y_i = \beta_0 + \beta_1 \tilde{Z}_i + U_i$$
$$Z_{i1} = \tilde{Z}_i + V_{i1}$$
$$Z_{i2} = \tilde{Z}_i + V_{i2}$$

Show these errors are uncorrelated.

- (2) Express β_1 as a function of the elements of the covariance matrix in (1).
- (3) Consider the linear predictor

$$E^*[Y_i|1,Z_{i1}] = \pi_0 + \pi_1 Z_{i1}.$$

Is
$$\pi_1 = \beta_1$$
, $\pi_1 > \beta_1$ or $\pi_1 < \beta_1$?

