Problem

We generally believe that *PATH* is not NP-complete. Explain the reason behind this belief. Show that proving *PATH* is not NP-complete would prove P ≠ NP

Step-by-step solution

Step 1 of 2

NP - complete:

A language B is NP – complete if it satisfies two conditions

- 1. B is in NP and
- 2. Every A is NP is polynomial time reducible to B.

Comment

Step 2 of 2

 $\mathsf{PATH} = \big\{ \big\langle G, s, t \big\rangle \, | \, G \text{ is a directed graph that has a directed path from s to t} \big\}$

- 1. PATH is not NP complete:
- ♦ Let us assume that PATH would be NP complete.
- ♦ From the definition of *NP* completeness,

For all $L \in NP, L$ is polynomial time reducible to PATH.

 \diamond But this again implies that for all *L* in NP,L is in *P*. Thus $^{P=NP}$ which we believe that it is not true.

Hence, PATH is not NP - complete.

- 2. Proving that PATH is not NP complete implies that $NP \neq P$:
- ♦ Showing this by contraposition.
- \diamond Assume that P = NP and then show that PATH is NP complete.
- ♦ So assume P = NP
- \diamond "If P = NP then every language $A \in P$ is NP complete". So, PATH is NP complete.

Thus, if PATH is not NP – complete, then $NP \neq P$.

Comment