Reconfiguration, probabilités et transitions de phase

Clément Legrand-Duchesne

14 mars 2025

Parcours

```
2024-2025 Postdoc à Jagiellonian University, Cracovie
2021-2024 Thèse à Bordeaux avec Marthe Bonamy et Vincent Delecroix
```

2021-2024 These a Bordeaux avec Martne Bonamy et Vincent Delecroix

2017-2021 ENS de Rennes + Agrégation

Clément Legrand-Duchesne 1 / 12

Thématiques de recherche

10 articles (7 publiés)

- 2 JCTb
- 1 SIAM Discrete Mathematics
- 1 SIAM Computing
- 1 ICALP

Thèmes récurrents

- Coloration de graphe
- Reconfiguration

Clément Legrand-Duchesne 2 / 12

Changements de Kempe (1879)

Inverser les couleurs dans une composante bicolore maximale

Changements de Kempe (1879)

Inverser les couleurs dans une composante bicolore maximale

Changements de Kempe (1879)

Inverser les couleurs dans une composante bicolore maximale

À quoi ressemble l'espace des colorations ?

Changements de Kempe (1879)

Inverser les couleurs dans une composante bicolore maximale

À quoi ressemble l'espace des colorations ?

Clément Legrand-Duchesne Recoloration 3 / 12

Changements de Kempe (1879)

Inverser les couleurs dans une composante bicolore maximale

À quoi ressemble l'espace des colorations ?

• Est-ce que toutes les colorations sont équivalentes ?

Clément Legrand-Duchesne Recoloration 3 / 12

Changements de Kempe (1879)

Inverser les couleurs dans une composante bicolore maximale

À quoi ressemble l'espace des colorations ?

• Est-ce que toutes les colorations sont équivalentes ?

Coloration gelée

Changements de Kempe (1879)

Inverser les couleurs dans une composante bicolore maximale

À quoi ressemble l'espace des colorations ?

• Est-ce que toutes les colorations sont équivalentes ?

Coloration gelée

Changements de Kempe (1879)

Inverser les couleurs dans une composante bicolore maximale

À quoi ressemble l'espace des colorations ?

• Est-ce que toutes les colorations sont équivalentes ?

• Recherche d'une coloration optimale

Théorème des 5 couleurs

Tout graphe planaire est 5-colorable

- Par récurrence
- Il existe un sommet v de degré au plus 5

Théorème des 5 couleurs

Tout graphe planaire est 5-colorable

- Par récurrence
- Il existe un sommet v de degré au plus 5

Théorème des 5 couleurs

Tout graphe planaire est 5-colorable

- Par récurrence
- Il existe un sommet v de degré au plus 5

Théorème des 5 couleurs

Tout graphe planaire est 5-colorable

- Par récurrence
- Il existe un sommet v de degré au plus 5

Théorème des 5 couleurs

Tout graphe planaire est 5-colorable

- Par récurrence
- Il existe un sommet v de degré au plus 5

Théorème des 5 couleurs

Tout graphe planaire est 5-colorable

- Par récurrence
- Il existe un sommet v de degré au plus 5

Coloration

Planaire 4 Appel et Haken (1976)

Wagner/Kuratowski (1937)

Planaire \Leftrightarrow pas de $K_{3,3}$ ni de K_5 -mineur

Coloration

Planaire

4 Appel et Haken (1976)

Wagner/Kuratowski (1937)

Planaire \Leftrightarrow pas de $K_{3,3}$ ni de K_5 -mineur

Coloration

Planaire	4	Appel et Haken (1976)
Sans K_5 -mineur	4	Wagner (1937)

Wagner/Kuratowski (1937)

Planaire \Leftrightarrow pas de $K_{3,3}$ ni de K_5 -mineur

Coloration

Planaire	4	Appel et Haken (1976)
Sans K_5 -mineur	4	Wagner (1937)
Sans K_t -mineur	t -	1 ? Hadwiger (1943)

Wagner/Kuratowski (1937)

Planaire \Leftrightarrow pas de $K_{3,3}$ ni de K_5 -mineur

Coloration

Planaire	4	Appel et Haken (1976)
Sans K_5 -mineur	4	Wagner (1937)
Sans K_t -mineur	t -	1 ? Hadwiger (1943)

Recoloration par Kempe

5 Meyniel (1978)

Wagner/Kuratowski (1937)

Planaire \Leftrightarrow pas de $K_{3,3}$ ni de K_5 -mineur

Coloration

Planaire	4	Appel et Haken (1976)
Sans K_5 -mineur	4	Wagner (1937)
Sans K_t -mineur	t -	1 ? Hadwiger (1943)

Recoloration par Kempe

5 Meyniel (1978)

5 Las Vergnas et Meyniel (1981)

Wagner/Kuratowski (1937)

Planaire \Leftrightarrow pas de $K_{3,3}$ ni de K_5 -mineur

Coloration

Planaire	4	App	el et Haken (1976)
Sans K ₅ -mineur	4		Wagner (1937)
Sans K_t -mineur	t –	1 ?	Hadwiger (1943)

Recoloration par Kempe

5 Meyniel (1978)

5 Las Vergnas et Meyniel (1981)

t? Las Vergnas et Meyniel (1981)

Wagner/Kuratowski (1937)

Planaire \Leftrightarrow pas de $K_{3,3}$ ni de K_5 -mineur

Coloration

Planaire	4	Apı	pel et Haken (1976)
Sans K ₅ -mineur	4		Wagner (1937)
Sans K_t -mineur	t –	1 ?	Hadwiger (1943)

Recoloration par Kempe

5 Las Vergnas et Meyniel (1981)

t? Las Vergnas et Meyniel (1981)

Bonamy, Heinrich, L-D, Narboni (JCTb 2024)

Faux : Pour tout $\varepsilon > 0$, pour t suffisamment grand, il existe G sans K_t -mineur et non $(\frac{3}{2} - \varepsilon)t$ -recolorable

Clément Legrand-Duchesne Recoloration 5 / 12

Bonamy, Heinrich, L-D, Narboni (JCTb 2024)

Graphe aléatoire, sans K_t -mineur avec une $(\frac{3}{2}-arepsilon)t$ -coloration gelée

Bonamy, Heinrich, L-D, Narboni (JCTb 2024)

Graphe aléatoire, sans K_t -mineur avec une $(\frac{3}{2} - \varepsilon)t$ -coloration gelée peu de structure structuré, peu dense

Bonamy, Heinrich, L-D, Narboni (JCTb 2024)

Graphe aléatoire, sans K_t -mineur avec une $(\frac{3}{2}-\varepsilon)t$ -coloration gelée peu de structure structuré, peu dense

• coloration gelée

Bonamy, Heinrich, L-D, Narboni (JCTb 2024)

Graphe aléatoire, sans
$$K_t$$
-mineur avec une $(\frac{3}{2} - \varepsilon)t$ -coloration gelée peu de structure structuré, peu dense

• coloration gelée

Bonamy, Heinrich, L-D, Narboni (JCTb 2024)

Graphe aléatoire, sans K_t -mineur avec une $(\frac{3}{2} - \varepsilon)t$ -coloration gelée peu de structure structuré, peu dense

- coloration gelée
- "sparsification" aléatoire :

6 / 12

Bonamy, Heinrich, L-D, Narboni (JCTb 2024)

Graphe aléatoire, sans K_t -mineur avec une $(\frac{3}{2} - \varepsilon)t$ -coloration gelée peu de structure structuré, peu dense

- coloration gelée
- "sparsification" aléatoire :

- → baisse la densité :
 - coloration reste gelée
 - enlève les K_t-mineurs

Exemples:

- Colorations d'un graphe
- Rubik's Cube
- Allocation de tâches
- Plongements d'un nœud
- Surfaces à petits carreaux

Exemples:

- Colorations d'un graphe
- Rubik's Cube
- Allocation de tâches
- Plongements d'un nœud
- Surfaces à petits carreaux

Applications

- Physique statistique : Modèle d'Ising/Potts
- Recherche opérationnelle
- Quantique
- Outil de preuve puissant

Exemples:

- Colorations d'un graphe
- Rubik's Cube
- Allocation de tâches
- Plongements d'un nœud
- Surfaces à petits carreaux

À quoi ressemble l'espace d'états ?

• Équivalence des configurations ?

Applications

- Physique statistique : Modèle d'Ising/Potts
- Recherche opérationnelle
- Quantique
- Outil de preuve puissant

Connexité

Bonamy, Heinrich, L-D, Narboni. JCTb 2024 De Meyer, L-D, León, Planken, Tamitegama. 2025+ Delecroix, L-D. 2025+

Exemples:

- Colorations d'un graphe
- Rubik's Cube
- Allocation de tâches
- Plongements d'un nœud
- Surfaces à petits carreaux

À quoi ressemble l'espace d'états ?

- Équivalence des configurations ?
- Longueur des séquences de reconfiguration ? Diamètre

Applications

- Physique statistique : Modèle d'Ising/Potts
- Recherche opérationnelle
- Quantique
- Outil de preuve puissant

Connexité

Bonamy, Heinrich, L-D, Narboni. JCTb 2024 De Meyer, L-D, León, Planken, Tamitegama. 2025+ Delecroix, L-D. 2025+

Bonamy, Delecroix, L-D. Deschamps et al. L-D, Rai, Tancer. Gomes et al. EuJC 2024 SIDMA 2023 SICOMP 2024 JCSS 2024

Clément Legrand-Duchesne

Exemples:

- Colorations d'un graphe
- Rubik's Cube
- Allocation de tâches
- Plongements d'un nœud
- Surfaces à petits carreaux

À quoi ressemble l'espace d'états ?

- Équivalence des configurations ?
- Longueur des séquences de reconfiguration ? Diamètre
- Échantillonnage aléatoire

Applications

- Physique statistique : Modèle d'Ising/Potts
- Recherche opérationnelle
- Quantique
- Outil de preuve puissant

Connexité

Bonamy, Heinrich, L-D, Narboni. JCTb 2024 De Meyer, L-D, León, Planken, Tamitegama. 2025+ Delecroix, L-D. 2025+

Bonamy, Delecroix, L-D. Deschamps et al. L-D, Rai, Tancer. Gomes et al EuJC 2024 SIDMA 2023 SICOMP 2024 JCSS 2024

Marche aléatoire

travaux en cours

Exemples:

- Colorations d'un graphe
- Rubik's Cube
- Allocation de tâches
- Plongements d'un nœud
- Surfaces à petits carreaux

À quoi ressemble l'espace d'états ?

- Équivalence des configurations ?
- Longueur des séquences de reconfiguration ? Diamètre
- Échantillonnage aléatoire
- Énumération via code de Gray ?

Applications

- Physique statistique : Modèle d'Ising/Potts
- Recherche opérationnelle
- Quantique
- Outil de preuve puissant

Bonamy, Heinrich, L-D, Narboni. JCTb 2024 De Meyer, L-D, León, Planken, Tamitegama. 2025+ Delecroix, L-D. 2025+

Bonamy, Delecroix, L-D. Deschamps et al. L-D. Rai. Tancer. EuJC 2024 SIDMA 2023 SICOMP 2024 JCSS 2024

Marche aléatoire Hamiltonicité

travaux en cours

Gomes et al.

1 article en cours de rédaction

Combinatoire extrémale

Principe

• Condition suffisante assurant une propriété P

Dirac (1952)

Tout graphe de degré min $\delta \geq \frac{n}{2}$ a un cycle Hamiltonien

Combinatoire extrémale

Principe

- Condition suffisante assurant une propriété P
- Étude des cas pathologiques

Dirac (1952)

Tout graphe de degré min $\delta \geq \frac{n}{2}$ a un cycle Hamiltonien

$$\delta = \rho < \frac{2p+1}{2}$$

Principe

- Condition suffisante assurant une propriété P
- Étude des cas pathologiques

Dirac (1952)

Tout graphe de degré min $\delta \geq \frac{n}{2}$ a un cycle Hamiltonien

$$\delta = p < \frac{2p+1}{2}$$

Phénomène de supersaturation

Au dessus du seuil :

- très grand nombre de solutions de P (ex : $\frac{n!}{2^n}$ cycles Hamiltoniens)
- ullet solutions "uniformément réparties" : un sous-graphe aléatoire vérifie encore P avec grande probabilité

Combinatoire extrémale

Principe

- Condition suffisante assurant une propriété P
- Étude des cas pathologiques

Dirac (1952)

Tout graphe de degré min $\delta \geq \frac{n}{2}$ a un cycle Hamiltonien

$$\delta = p < \frac{2p+1}{2}$$

Phénomène de supersaturation

Au dessus du seuil :

Bastide, L-D, Müyesser. 2025+

- très grand nombre de solutions de P (ex : $\frac{n!}{2^n}$ cycles Hamiltoniens)
- \bullet solutions "uniformément réparties" : un sous-graphe aléatoire vérifie encore P avec grande probabilité

Objectif 1 : Interprétation de la supersaturation via la reconfiguration

• Graphe de reconfiguration des solutions (presque) connexe ?

Anastos, Frieze. RSA 2020 Bousquet et.al. IGT 2025 Buys, Kang, van den Heuvel. 2025+

Objectif 1 : Interprétation de la supersaturation via la reconfiguration

• Graphe de reconfiguration des solutions (presque) connexe ?

Anastos, Frieze. RSA 2020 Bousquet et.al. IGT 2025 Buys, Kang, van den Heuvel. 2025+

- Problèmes de Dirac
- Problèmes de Turán

Objectif 1 : Interprétation de la supersaturation via la reconfiguration

- Graphe de reconfiguration des solutions (presque) connexe ?
- Cas pathologiques pour la reconfiguration ?

Anastos, Frieze. RSA 2020 Bousquet et.al. IGT 2025 Buys, Kang, van den Heuvel. 2025+

- Problèmes de Dirac
- Problèmes de Turán

Objectif 1 : Interprétation de la supersaturation via la reconfiguration

- Graphe de reconfiguration des solutions (presque) connexe ?
- Cas pathologiques pour la reconfiguration ?

Objectif 2 : Obstructions à un espace d'états connexe

- Principales obstructions connues = configurations gelées
- Si P \neq NP/PSPACE, il existe d'autres obstructions. Lesquelles ?

Anastos, Frieze. RSA 2020 Bousquet et.al. IGT 2025 Buys, Kang, van den Heuvel. 2025+

- Problèmes de Dirac
- Problèmes de Turán

Clément Legrand-Duchesne Projet de recherche 9 / 12

Objectif 3 : Échantillonnage aléatoire

Méthodes d'analyse pour chaînes de Markov avec opération non-locale

- Méandres
- Colorations d'arêtes via Kempe
- Surfaces à petits carreaux
- Coloration via Kempe

Objectif 3 : Échantillonnage aléatoire

Méthodes d'analyse pour chaînes de Markov avec opération non-locale

Objectif 4: Reconfiguration et preuves probabilistes

- Preuves probabilistes s'adaptent mal à la reconfiguration
- Robustesse : peu de chances de donner des configurations gelées

- Méandres
- Colorations d'arêtes via Kempe
- Surfaces à petits carreaux
- Coloration via Kempe

Objectif 3 : Échantillonnage aléatoire

Méthodes d'analyse pour chaînes de Markov avec opération non-locale

Objectif 4: Reconfiguration et preuves probabilistes

- Preuves probabilistes s'adaptent mal à la reconfiguration
- Robustesse : peu de chances de donner des configurations gelées

- Méandres
- Colorations d'arêtes via Kempe
- Surfaces à petits carreaux
- Coloration via Kempe

Recoloration de graphes sans grandes cliques induites

De Meyer, L-D, León, Planken, Tamitegama. 2025

Objectif 3 : Échantillonnage aléatoire

Méthodes d'analyse pour chaînes de Markov avec opération non-locale

Objectif 4: Reconfiguration et preuves probabilistes

- Preuves probabilistes s'adaptent mal à la reconfiguration
- Robustesse : peu de chances de donner des configurations gelées
- → Trouver des preuves constructives via la reconfiguration
- → Adapter la méthode probabiliste à la reconfiguration
- Nouvelles obstructions

- Méandres
- Colorations d'arêtes via Kempe
- Surfaces à petits carreaux
- Coloration via Kempe

Recoloration de graphes sans grandes cliques induites

De Meyer, L-D, León, Planken, Tamitegama. 2025

Possibilités d'intégration

G-SCOP (Grenoble)

Louis Esperet, Aurélie Lagoutte, Moritz Mühlenthaler, Alantha Newman, András Sebő et Zoltán Szigeti

LIRIS (Villeurbanne)

Nicolas Bousquet, Laurent Feuilloley et Théo Pierron

LIP (Lyon)

Édouard Bonnet, <u>Carl Feghali</u>, Jean-Florent Raymond, Stéphan Thomassé, Nicolas Trotignon et Rémi Watrigant

Curriculum vitae (thèse en 2024)

- 10 articles (dont 2 JCTb, SIDMA, SICOMP, ICALP)
- 33 exposés
- 4 mois de visites de recherche (2.5 à l'étranger)
- 24 coauteur·e·s (12 à l'étranger, 10 juniors)

Curriculum vitae (thèse en 2024)

- 10 articles (dont 2 JCTb, SIDMA, SICOMP, ICALP)
- 33 exposés
- 4 mois de visites de recherche (2.5 à l'étranger)
- 24 coauteur·e·s (12 à l'étranger, 10 juniors)

- co-organisation du séminaire d'équipe
- organisation workshop (Édimbourg 2026)
- 2 (co)-encadrements d'étudiants

Curriculum vitae (thèse en 2024)

- 10 articles (dont 2 JCTb, SIDMA, SICOMP, ICALP)
- 33 exposés
- 4 mois de visites de recherche (2.5 à l'étranger)
- 24 coauteur·e·s (12 à l'étranger, 10 juniors)

- co-organisation du séminaire d'équipe
- organisation workshop (Édimbourg 2026)
- 2 (co)-encadrements d'étudiants

I. Reconfiguration extrémale

- 1. Supersaturation via reconfiguration
- 2. Obstructions à la reconfiguration
- II. Reconfiguration et probabilités
 - 3. Échantillonnage aléatoire
 - 4. Preuves probabilistes

Modèle de Potts

 $\mathbb{P}(\sigma)$ proportionelle à $e^{-\beta M_\sigma}$

Modèle de Potts

 $\mathbb{P}(\sigma)$ proportionelle à $e^{-\beta M_{\sigma}}$

- Régime ferromagnétique si $\beta < 0$
- Régime antiferromgnétique si $\beta > 0$

Modèle de Potts

 $\mathbb{P}(\sigma)$ proportionelle à $e^{-\beta M_{\sigma}}$

- Régime ferromagnétique si $\beta < 0$
- Régime antiferromgnétique si $\beta > 0$

Échantillonage aléatoire

- Glauber dynamics
- Wang, Swendsen, Kotecký dynamics

Application en quantique

Cimring, El Sabeh, Bacvanski, Maaz, El Hajj, Nishimura, Mouawad, Cooper. 2023

Configuration finale

Application en quantique

Cimring, El Sabeh, Bacvanski, Maaz, El Hajj, Nishimura, Mouawad, Cooper. 2023

Configuration finale

Déplacements des atomes un par un, sans se rencontrer

Application en quantique

Cimring, El Sabeh, Bacvanski, Maaz, El Hajj, Nishimura, Mouawad, Cooper. 2023

- Déplacements des atomes un par un, sans se rencontrer
- Les atomes peuvent être perdus entre deux mesures