Last name _		
First name		

LARSON—MATH 610—CLASSROOM WORKSHEET 21 Linear Transformations.

Concepts & Notation

- (Sec. 3.1) linear transformation, range, rank, null space, nullity.
- (Sec. 3.2) L(V, W), linear operator, invertible linear transformation, non-singular linear transformation.
- (Sec. 3.3) isomorphism.
- (Sec. 3.4) matrix of T relative to (ordered) bases

Review

- 1. (Claim:) If V and W are finite-dimensional vector spaces over a field \mathbb{F} with dim $V = \dim W$, and $T: V \to W$ is a linear transformation then the following are equivalent:
 - (a) T is invertible,
 - (b) T is non-singular,
 - (c) T is onto (that is, the range of T is W).

New

2. If $T:V\to W$ is a linear transformation, when is T an isomorphism of V onto W? (If T is an isomorphism we say that vector spaces V and W are isomorphic).

3. If T an isomorphism of a vector space V onto a vector space W, why is T invertible and non-singular?

4.	(Claim:)	Every	n-dimensiona	l vector	space	over	a f	ield	$\mathbb F$ is	s isomor	phic	to	\mathbb{F}^n

5. (Claim:) Every linear transformation T from an n-dimensional vector space V to an m-dimensional vector space W can be represented by a matrix A (with respect to specific bases for V and W; in particular, different bases yield different A's).

6. (**Example:**) Let T be the linear transformation from \mathbb{R}^2 to \mathbb{R}^3 defined by $T(x_1, x_2) = (x_1, x_2, x_3)$. $\mathcal{B} = \{(1,0), (0,1)\}$ is a basis for \mathbb{R}^2 and $\mathcal{B}' = \{(1,1,0), (0,1,0), (0,0,1)\}$ is a basis for \mathbb{R}^3 . Find a 3×2 matrix A (with respect to these bases so that, for every $\alpha \in \mathbb{R}^2$, we have:

$$[T(\alpha)]_{\mathcal{B}'} = A[\alpha]_{\mathcal{B}}.$$