jangjunha <jangjunha113@gmail.com>

C언어 스탠디

5/25

오늘의 할 일

- 구조체
- 링크드리스트

구조체

구조체

Collection of fields

```
struct Person {
    char name[30];
    int age;
    char gender;
};
```

사람에 대한 정보를 나타내는 구조체

구조체

• 여러 사람들의 정보를 저장해봅시다.

```
#define MAX_PEOPLE 100
char name[MAX_PEOPLE][30];
int age[MAX_PEOPLE];
char gender[MAX_PEOPLE];
strcpy(name[0], "강찬구");
age[0] = 21;
gender[0] = 'M';
strcpy(name[1], "이상혁");
age[1] = 21;
gender[1] = 'M';
```

```
#define MAX_PEOPLE 100
struct Person {
    char name[30];
    int age;
    char gender;
}
Person people[MAX_PEOPLE];
strcpy(people[0].name, "강찬구");
people[0].age = 21;
people[0].gender = 'M';
strcpy(people[1].name, "이상혁");
people[1].age = 21;
people[1].gender = 'M';
```

구조체 정의

```
구조체 이름

struct Person {
    char name[30];
    int age;
    char gender;
};
```

변수 선업

```
// 변수 선언
Person person1;

// 배열 선언
Person people[100];
```

```
struct Person {
    char name[30];
    int age;
    char gender;
}
```

초기화

```
Person person1 = {"김영희", 30, 'F'};
```

필드 정의 순서대로

```
struct Person {
    char name[30];
    int age;
    char gender;
}
```

구조체 정의부

접근

```
Person person1 = {"김영희", 30, 'F'};

printf("이름: %s\n나이: %d\n성별: %c\n\n",
    person1.name, person1.age, person1.gender);

person1.age++;
```

포인터를 써보자

배열에서의 원소 삽입

0	1	2	3	4	5	6	7	8	9	
3	5	11	27	32						
0	1	2	3	4	5	6	7	8	9	
3		5	11	27	32					
0	1	2	3	4	5	6	7	8	9	
3	4	5	11	27	32					

배열에서의 원소 삭제

0	1	2	3	4	5	6	7	8	9
3	4	5	11	27	32				
0	1	2	3	4	5	6	7	8	9
3	4	5		27	32				
			←						
0	1	2	3	4	5	6	7	8	9
3	4	5	27	32					

링크드리스트

- · 연결 리스트, 링크드 리스트(linked list)
- 각 노드가 데이터와 포인터를 가지고 한 줄로 연결되어 있는
 는 방식으로 데이터를 저장하는 자료 구조

3개의 정수를 저장하고 있는 단순연결리스트

연결인스트에서의 원소 삽입

연결인스트에서의 원소 삭제

구조체 정의

```
struct Node {
   int value;
   Node *next;
};
```

정수형 데이터 하나를 저장하는 노드

연결인소트 선언

```
Node *head = (Node *)malloc(sizeof(Node))
```


원소추가

```
Node *head = (Node *)malloc(sizeof(Node));

Node *node1 = (Node *)malloc(sizeof(Node))
node1->value = 2;
node1->next = NULL;
head->next = node1;

Node *node2 = (Node *)malloc(sizeof(Node));
node2->value = 5;
node2->next = NULL;
node1->next = node2:
```


원소 제개

```
node1->next = NULL;
free(node2);
```


엄소 삽입

```
void insertAfter(Node *node, Node *newNode) {
   newNode->next = node->next;
   node->next = newNode;
}
```


원소 삭제

```
void removeAfter(Node *node) {
   Node *temp = node->next;
   node->next = node->next->next;
   free(temp);
}
```


배열 vs 연결인소트

	배열	연결리스트
n번째 원소에 접근	빠름 O(1)	느림 O(n)
원소 삽입·삭제	느림	빠름 O(1)
메모리 사용량	적음	많음

접근

• 3번째 원소를 출력해봅시다.

	0	1	2	3	4	5	6	7	8	9
arr	3	4	5	11	27	32				

접근

• 3번째 원소를 출력해봅시다.

```
printf("%d\n", arr[2]);
```

```
void printValue(Node *head, int n) {
  Node *i = head->next;
  while (--n) {
    i = i->next;
  }
  printf("%d\n", i->value);
}
```

순회

• 모든 원소를 출력해봅시다.

3 4 5 11 27 32

	0	1	2	3	4	5	6	7	8	9
arr	3	4	5	11	27	32				

순회

• 모든 원소를 출력해봅시다.

3 4 5 11 27 32

```
for (int i = 0; i < 6; i++)
    printf("%d ", arr[i]);

void printList(Node *head) {
    Node *i;
    for (i = head->next; i; i = i->next) {
        printf("%d ", i->value);
    }
    printf("\n");
}
```

역방향순회

• 모든 원소를 역순으로 출력해봅시다.

32 27 11 5 4 3

	0	1	2	3	4	5	6	7	8	9	
arr	3	4	5	11	27	32					

#