L1 Physique-chimie

marie-claude.arnaud@univ-avignon.fr

Corrigé succint du contrôle 1 durée : 1 heure Les téléphones sont interdits.

Exercice 1. On considère la courbe $\gamma: \mathbb{R} \to \mathbb{R}^2$ définie par

$$\gamma(t) = (\gamma_1(t), \gamma_2(t)) = (e^{-t^2}, t^3 - 3t).$$

1. On suppose que que $\gamma(t)=\gamma(s)$. Alors $e^{-t^2}=e^{-s^2}$, donc $-s^2=-t^2$, i.e. $s=\pm t$. Si le point est double, $s\neq t$ et donc on a s=-t. On écrit alors $\gamma_2(t)=\gamma_2(s)$, i.e. $t^3-3t=(-t)^3-3(-t)$, ce qui donne $2t(t^2-3)=0$, c-à-d $t(t-\sqrt{3})(t+\sqrt{3})=0$. Donc soit t=0, mais alors s=t=0 ne donne pas un point double, soit $t=\pm\sqrt{3}$, et alors on trouve $\{s,t\}=\{\sqrt{3},-\sqrt{3}\}$; On vérifie alors que

$$\gamma(\sqrt{3}) = (e^{-3}, 0) = \gamma(-\sqrt{3})$$

donne bien un point double.

2. (sur 4)

	t	$-\infty$	- 1		0		1		$+\infty$
	$\gamma_1(t)$	0 /	e^{-1}	7	1	¥	e^{-1}	\searrow	0
2.a.	$\gamma_1'(t)$	+	+	+	0	=	-		-
	$\gamma_2(t)$	$-\infty$ \nearrow	2	V	0	×	-2	7	$+\infty$
	$\gamma_2'(t)$	+	0	-	-	-	0	-	+

On a $\gamma_1'(t) = -2te^{-t^2}$ a même signe que -t et $\gamma_2'(t) = 3(t-1)(t+1)$.

De plus, $\gamma(-1) = (e^{-1}, 2)$, $\gamma(0) = (1, 0)$ et $\gamma(-1) = (e^{-1}, -2)$.

2.b On a une tangente parallèle à l'axe des abcisses si et seulement si $\gamma_2'(t) = 0$, c-à-d pour $t = \pm 1$, que qui correspond aux points $(e^{-1}, 2)$ et $(e^{-1}, -2)$.

On a une tangente parallèle à l'axe des ordonnées si et seulement si $\gamma'_1(t) = 0$, c-à-d pour t = 0, que qui correspond au point (1,0).

3. On déduit de ci-dessus que l'équation de la tangente en $\gamma(0)=(1,0)$ est x=1.

On a $\gamma(2) = (e^{-4}, 2)$ et $\gamma'(2) = (-4e^{-4}, 9)$, donc l'équation de la tangente en $\gamma(2)$ est $-4e^{-4}(y-2) = 9(x-e^{-4})$, ou encore $4y = 17 - 9e^4x$.

Exercice 2. La période d'un pendule simple est donné par la formule : $T(\ell,g)=2\pi\sqrt{\frac{\ell}{g}}$ où $\ell>0$ désigne la longueur du pendule et g>0 la force de pesanteur.

1. On a $\frac{\partial T}{\partial \ell}(\ell,g) = \pi \frac{1}{\sqrt{\ell g}}$ et $\frac{\partial T}{\partial g}(\ell,g) = -\pi \sqrt{\frac{\ell}{g^3}}$. il s'agit de composée et de quotient de fonctions continues $\sqrt{}$, constantes..., qui sont donc continue. Ayant ses dérivées partielles continues, T est de classe C^1 .

Sa différentielle est donnée par

$$DT(\ell, g)(\delta \ell, \delta g) = \frac{\partial T}{\partial \ell}(\ell, g)\delta \ell + \frac{\partial T}{\partial g}(\ell, g)\delta g$$

soit

$$DT(\ell, g)(\delta \ell, \delta g) = \pi \frac{1}{\sqrt{\ell g}} \delta \ell - \pi \sqrt{\frac{\ell}{g^3}} \delta g$$

2. Deux options pour faire ce calcul : utiliser une dérivée logarithmique ou faire un calcul direct. On trouve de toute façon

$$\frac{1}{T(\ell,g)}DT(\ell,g)(\delta\ell,\delta g) = \frac{1}{2}\left(\frac{\delta\ell}{\ell} - \frac{\delta g}{g}\right).$$

Si on note I_T , I_ℓ et I_g les incertitudes relatives, on obtient

$$I_T \le \frac{I_\ell + I_g}{2}$$

donc comme incertitude relative sur T la demi-somme des deux incertitudes relatives sur ℓ et g, soit 5%.