	「計算科学ロードで	'		要求メモリ			計算時間	-					
節番号	Au to	課題	要求性能 (PFLOPS)	要求メモリ バンド幅 (PB/s)		ストレーン 量/ケース (PB)		ケース数	総演算量 (EFLOP)	概要と計算手法	問題規模	備考	演算量、メモリアクセス量、メモリ量、ストレー ジ量に関して精査中の項目
2.1	創薬・医療	個人ゲノム解析	0.0054	0.0001	1.6	0.1		200000	2700	シーケンスマッチング	がんゲノム解析200,000人分のマッピ ングおよび変異同定	1人分の解析を1ケースとした。入力データを 分割することで、細かい単位での実行、拠点 をまたいだ実行も可能。整数演算中心のた の「総演算量」はInstruction数とした。総浮動 小数点演算量は45.884EFLOPとなる。	
		遺伝子ネットワーク解析	25	89	0.08	0.016	0.34	26000	780000	ベイジアンネットワークおよびL1正則化法	4万転写物×26,000データセット・280 万アレイ	小数点演算量は45.864EFLOPとなる。	
		創薬などMD・自由エネル ギー計算	1000	400	0.0001		0.0012	1000000	4300000	全原子分子動力学シミュレーション	ケース数:10万化合物x10標的蛋白質 (10万原子程度)	B/F=0.4、数百から数千ケース同時に実行することを想定しているので、実行時に必要な タースの実際の実計算時間は、表の他の数百~数千倍となる。メモリ量、表ケースの実際の実計算時間は、表の値の数百~数千倍となる。メモリ量	
		細胞環境・ウィルス	490	49	0.2	1.2	48	10	850000	全原子/粗視化分子動力学シミュレーション	~1億粒子	/ケースは100ノード実行時を想定。 B/F=0.1	
		細胞内信号伝達経路シミュ レーション	42	100	10	10	240	100	3600000	一分子粒度細胞シミュレーション(格子法)	1000 から 10,000 細胞で構成される細胞集団	格子法·整数系の演算性能を要求。ケース数 は最低10回、100回程度が望ましいため100 回とした。	
		高精度創薬	0.83	0.14	1	0.001	1	100	300	薬品とタンパク質間相互作用の量子化学計算	水和条件下,500残基タンパク質+リガンド	ファイルI/Oは終了時に1TBを1秒で書き出すことを想定し、1TB/s必要とした	
		バイオデバイス設計	1.1	0.19	1	0.001	1	100	400	200-500残基程度のタンパク質の分光計算	電子軌道数10万超	ファイルI/Oは終了時に1TBを1秒で書き出すことを想定し、1TB/s必要とした	
		血流シミュレーション	400	64	1	1	170	10	2500000	差分法、準陽解法(構造・流体・生化学連成シ ミュレーション)	100mm長x100um径, 0.1um格子, 流 速10^-2m/s, 解像度1us, 10秒		
		超音波シミュレーション	380	460	54	64	240	10	3300000	差分法、陽解法(音波・熱シミュレーション)	400mm [*] 3の計算領域を軟組織とマイクロカブセル干渉音場を捉えるため、 225兆点の格子と時間ステップ数として1459200ステップが必要である。ま		
		脳神経系シミュレーション (ヒト全脳簡約モデル)	6.9	7.6	56	3600	0.28	100	700	単一コンパートメントIFモデル シナプス可塑 性・通信	た、1格子点あたり演算数1000程度と なる。 1000億ニューロン ニューロンあたり1 万シナプス 10 ⁵ 5step	ネットワークのボトルネックはレイテンシー	演算量、メモリアクセス量、メモリ量、ストレ・ ジ量
		脳神経系シミュレーション・ 昆虫全脳詳細モデル 神 経回路パラメータ推定・生	71	60	0.2	20	28	20	140000	マルチコンパートメントH-H(局所クランクニコル ソン) シナプス通信 進化的アルゴリズム	1000ニューロン 10^6遺伝子 100世代	100MB/S程度の外部との通信も想定	演算量、メモリアクセス量、メモリ量、ストレージ量
2.2.1	地震·津波防災	理実験とシミュレーションの 防災連携シミュレーション								77777AEIG AEIGHIJ7764777		地震発生は1領域1000シナリオを5領域行	
		(地震直後の被害状況予測) 内訳は以下(1)~(6)	7	15		9	3	5000	310000			う。 各領域について1000シナリオ中、観測に基 づき20シナリオを選び、波動伝播計算を行 う。一方、地震助増幅や建物震動: 津波遡上 については、地盤精造や場外象化、海底地 形の不確実を老考慮するために数十ケース 計算するとともに、複数の都道府県の都市 (例えば南海トラブ地震の場合に、東海・近 畿・四国・九州の4都市)を一度に計算する必 要を考慮すると、結果的に各領域で1000 ケース程度は計算が必要。 アブリの最大BF値-8.0	
		(2) 波動伝搬			0.00086	0.00086		5000	48	境界積分法による地震サイクル計算	面素数10 ⁷ 1200x1000x200Km ³	アプリの最大BF値=4 アプリの最大BF値=2.14、京での実測1.4。1	
					0.1	0.5		100	1400	差分法による弾性波動伝搬計算	(125mx125mx62.5m格子)、ステップ数 24万回	ケースあたり演算量14EFLOP(東北大調べ)。東大前田先生による新バージョンを京でも主に利用。そちらは20EFLOP。	
		(3) 地震動増幅 (4) 地震動増幅			0.01	4		5000 5000		有限要素法による地震波動計算 有限要素法による地震波動計算	30億節点(300x250x10km ² 3) 30億節点(30x25x1km ² 3)	アプリの最大BF値=8.00 アプリの最大BF値=8.00	
		(5) 建物震動			0.01			3000	130000	有限安米点による地质成場和 弁	30版到派(30823818111 3)	BF値=0.26 (実測値)。メモリ転送量はBF値と	
		(6) 津波遡上			0.05	0.05		5000	500		構造物100万棟	演算量から逆算。BF値はキャッシュに載るので小さい。 演算量はプロファイルからの外挿と一致、メ モリ転送量はプロファイルからの外挿	
		避難誘導シミュレーション			0.002	0.5		5000	50000	似,非静水庄,VOF法)計算	3x3x0.08Km(1都市領域を1m格子幅) から1400x1100x10Km(5.4Km格子幅) の複合格子、7都市同時計算、72万ス テップ		
2.2.2	気象災害	高解像度気象予報(全球)	3.3	0.28	0.3	0.006	1	5000	60000	マルチエージェントモデルによる行動シミュレー ション	300,000 agents, 18,000 steps (1 hour simulation), 1,000 Monte-Carlo members 格子点数: 1兆(水平解像度220m,鉛	演算量は命令数である。浮動小数演算は命令数のおよそ、1/40。 演算量、メモリアクセス量、メモリ使用量は京でのブロファイルから外挿 10万ノードを仮定(ノードあたり隣接通信	
2.2.2	风外交合	高解像度気象予報(領域)	33	360		0.3	0.5	2700		モデル名NICAM, 有限体積法 モデル名ASUCA, 有限体積法	福子点数: 750(パナ戸 原版及220m, 加 直94層)、ステップ数: 520万 (dt=1秒、 格子点数: 7500x7500x500、ステップ 数: 13万 (dt=1秒、36時間)	1GB/s) 演算量 メモリ量に関しては、SR16000での プロファイルを元に外挿、メモリアクセス量 は、B/F値が1と仮定して見積もった。 出力は、25変数は10分毎に出力する。 通信に関しては、22500ノードを仮定(ノードあ	メモリアクセス量
		局所的・集中的大雨、熱帯 気象の高度予測	220	270	0.7	5	580	2	900000	大気モデル:NICAM(有限体積法), アンサンブル データ同化:LETKF	水平解像度3.5km、鉛直100層、1000 アンサンブルメンバー、3時間おきの 同化サイクル、2ヶ月積分	たり隣接通信40GB/s) 10万ノードを仮定(大気モデルのノードあたり 隣接通信1GB/s) 演算量、メモリ転送量、メモリ使用量は、京で	
2.3	エネルギー・環境問題	電子材料の電子状態計 算・手法1	100	20	5	15	240	10	860000	第一原理分子動力学計算	原子数:1億、時間ステップ数10^4	のプロファイルを元に外挿	
		電子材料の電子状態計 算・手法2	100	10	1.2	12	96	10	350000	実空間基底O(N^3)第一原理分子動力学計算	原子数:10万、100ステップ	20SCF×100ステップ	
		強相関電子系の理解	1900	2700	0.2		8	100	5500000	変分モンテカルロ法	原子数1万	メモリ使用量はMPIプロセス数に比例し最大 使用量を記載した	
		プラズマ乱流計算・マルチ スケール乱流 プラズマ乱流計算・大域的	100	200		0.1		50	430000	ボルツマン方程式の5次元計算(スペクトル法+ 差分法)	10^12格子、10^6ステップ		
		非定常乱流 熱流体シミュレーション(自	100	200	0.5	1	170	10	610000	ボルツマン方程式の5次元計算(差分法)	10^12格子、10^7ステップ		
		動車、実際の設計、最適化問題)	110	230	0.04	4	1	100	41000	Re=10^6~10^7のLES流体計算、パラメータスタ ディ、100ケースを4日	10^10格子	BF=2として計算	
		熱流体シミュレーション(自動車、ハイエンドベンチマーク)	120	230	0.5	48	24	10	100000	Re=10 ⁶ ~10 ⁷ のLES流体計算、ストロングス ケール	格子点数:10^12	構造格子でBF=2、1,000タイムスライスを30 分で出力と想定	
		風力発電立地条件アセス メント	29	89	0.01	0.07	72	100	760000	高解像度LES流体計算(差分法)	3300x3300x300格子点(30x30x10m解 像度)、123万ステップ(dt=0.21秒、72 時間、スピンアップ24時間含)	1立地のアセスメントに約100ケース(200日) 必要。これを立地ごとに行うことが必要。	
		近未来地球環境予測システム	56	110	0.6	80	600	1	120000	モデル名MIROC-ESM	格子点数: 2000×1000×200、ステップ 数: 5300万(dt=60秒、100年)、100アン サンブル同時実行	計算の大半を占める大気モデルのみで見積 もり。100ケース全体が1ヶ月で計算完了する ことが必要。ネットワークは1000ノードを仮定 (ノードあたり大域通信1TB/s) 演算量、メモリ転送量、メモリ使用量は、京で	
2.4	社会経済予測	自動車交通流のリアルタイ ムシミュレーション	1000	100	0.00011	0.001	2.8E-08	1000	0.1	地球上の全自動車交通規模(10億台、道路総 延長3400万(m)、エージェントモデルによるシ ミュレーション (実際に計算対象となる稼働している車の台数	10 ⁸ 台×10 ³ 演算×10 ³ step×10 ³ ケース(10秒分のシミュレーション) これを0.1 secで計算する	のプロファイルを元に外挿 要求ストレージおよび総演算量は1日分あたり、とする。一台あたり10°3 FLOPと推定。	メモリ量、メモリアクセス量
		株式取引所ルールの最適 化	2100	0.0001	1E-08		0.0024	10000	180000	は10 [°] 8台と推定) 1取引所の1000銘柄について、1日分の取引を トレーダーエージェントモデルでモンテカルロシ ミュレーション	総演算量 5時間×3600秒/時間×1000 注文機会/秒×10 [°] 4演算/注文機会×10 トレーダー×10 [°] 4 サンブル×10 [°] 3 銘柄=1.8×10 [°] 19 演算	整数演算が中心 「要求性能」「総演算量」はインストラクション 数	
3.1.1	基礎物理における連携	カイラル対称性とQCDに基づく有効パリオン間相互作用の決定とその応用	510	390	0.066	0.5	880	10	16000000	格子QCD (カイラル5次元型)ハイブリッドモンテカルロ法、CG法	これを24hで10^4ケース計算する	ノード数を16 [*] 4 ノードを仮定し、ノードあたり 性能を、オンチップメモリ容量 200MB. オン チップメモリバンド幅 6TB/s. ネットワークレイ テンシ 1µ soe程度、ネットワークパンド幅 128GB/sを程度。	
		閉殻を仮定しない殻模型 計算	100	10	0.1	0.0001	28	100	1000000	モンテカルロ殻模型法による原子核の構造計 算、軽い核	空間を調和振動子基底で展開し、7~ 8主殻までを考慮。10 ⁹ ステップ数。	メモリ量は10000ノード X 10GBで計算。ただし、問題をノード間で分割して持つことで削減可能。	ストレージ量
		相対論的輻射流体計算に よる超新星爆発メカニズム の探究	18	70	1.6	1.3	1200	10	780000	ニュートリノ輻射輸送計算(超新星爆発)	空間512x64x128 位相空間24 ² 3 で1秒 分の時間を計算	100Tflops/ノード×10000ノード、通信速度 60GB/s/ノード	
3.1.2		惑星系形成のシミュレー ション	4.2	0.021	0.00001	0.05	1000	100	1500000	N-体 シミュレーション	粒子数: 1億体 積分時間: 1億年(ステップ数: 10G)	調文で報告されているアルコリスムと GRAPE における計測結果から算出。1ステップ1粒子あたり1万5千演算、グループ内粒子 数 128。メモリアクセスは6000 演算あたり32 パイト	
		地球・惑星の形成シミュレーション	520	29	0.001	1	24	100	4500000	SPH 計算	粒子数: 10億体 積分時間: 数ヶ月 (ステップ数: 100M), 演算量 NlogN	演算量、メモリ転送量、メモリ使用量は、 TSUBAMEでのプロファイルを元に外挿	
		惑星表層環境の形成と進 化シミュレーション	5.6	25	0.01		100	1000	2000000	流体計算 + 輻射計算 (スペクトル法+差分法)	格子数: 3840×1920×192, 100 ケース × 10 惑星, 積分時間: 10年(ステップ数:	演算量、メモリ使用量は、TSUBAMEでのプ	
3.1.3	生命科学分野 物質科	創薬などMD・自由エネル	5.6	25	0.01	4	100	1000	2000000	///L/中日 开 * 神 別 6T 昇(人へクトル 法+差分法)	30M), 1ステップ1格子あたりの演算量: 50K		
	宝の科子が野、物貞科学分野、ものづくり分野の分野横断連携	創業などMD・自由エイル ギー計算 高精度創薬	1000	400	0.0001		0.0012	1000000	4300000	全原子分子動力学シミュレーション	ケース数:10万化合物×10標的蛋白質 (10万原子程度)	ることを想定しているので、実行時に必要な 全メモリ量、各ケースの実際の実計算時間 は、表の値の数百~数千倍となる。メモリ量 /ケースは100ノード実行時を想定。	
		101行及剧采	0.83	0.14	1	0.001	1	100	300	薬品とタンパク質間相互作用の量子化学計算	フラグメント分子軌道法で~500残基程度までの計算を統計的ゆらぎを含めた複数サンブルで行う	計算要求は「物質科学」のフラグメント分子 軌道法のところを参照	
		バイオデバイス設計	1.1	0.19	1	0.001	1	100	400	200-500残基程度のタンパク質の分光計算	電子軌道数10万超	 計算要求は「物質科学」のフラグメント分子 軌道法のところを参照	
	=[<i>M</i> -71 11 11 11 11 11 11 11 11 11 11 11 11 1	細胞環境・ウィルス	490	49	0.2	1.2	48	10		全原子/粗視化分子動力学シミュレーション	~1億粒子	B/F=0.1	
3.2.1	計算科学基盤技術の 創出と高度化	並列レンダリング 並列レンダリング	200 200	61		10	0.5	1		ポリュームレンダリング(レイキャスト、ファイルベース) ポリュームレンダリング(In situ)		対象によって問題規模等は異なるため、典型的な例で概算 対象によって問題規模等は異なるため、典	
		データ圧縮	200 500	25		10	0.5	1		ボリュームレンダリング (In situ) POD圧縮 (ファイルベース)		型的な例で概算 対象によって問題規模等は異なるため、典 型的な例で概算	
3.2.2	ビッグデータの有効利 用①:衛星・観測データ の有効利用	局所的・集中的大雨、熱帯 気象の高度予測	220	270	0.7	5	580	2		大気モデル:NICAM(有限体積法), アンサンブル データ同化:LETKF	水平解像度3.5km、鉛直100層、1000 アンサンブルメンバー、3時間おきの	10万ノードを仮定(大気モデルのノードあたり 隣接通信1GB/s) 演算量、メモリ転送量、メモリ使用量は、京で	
		統合地球環境再解析								y july july 114	同化サイクル、2ヶ月積分 格子点: 大気640x320x150, 海洋	のプロファイルを元に外挿 B/F値: 大気4.66, 海洋4.24	
			3.1	13	0.018	0.022	18	240	48000	4次元変分法	3600x1800x150 Δ t: 大気1min, 海洋30sec, 結合 10min 100イタレーション	演算量、メモリ使用量は、ES2のプロファイルを元に精査。メモリ転送量は、ソースから見積ものたB/F値をもとに、演算量から算出(キャッシュは考慮していない)。	

節番号		課題	要求性能 (PFLOPS)	要求メモリ バンド幅 (PB/s)		ストレージ 量/ケース (PB)	計算時間 /ケース (hour)	ケース数	総演算量 (EFLOP)	概要と計算手法	問題規模	備考	演算量、メモリアクセス量、メモリ量、ストレー ジ量に関して精査中の項目
3.2.3	ビッグデータの有効利 用②:ゲノム解析・バイ オインフォマティクス		0.0054	0.0016	1.6	0.1	0.7	200000	2700	シーケンスマッチング	がんゲノム解析200,000人分のマッピ ングおよび変異同定	I人分の解析を1ケースとした。入力データを 分割することで、細かい単位での実行、拠点 をまたいだ実行も可能。整数演算中心のた め「総演算量」はInstruction数とした。総浮動 小数点演算量は45.864EFLOPとなる。	
3.3	X線自由電子レーザー 施設SACLA等の大型	疾患遺伝子発見のための 統計的解析 大量実験データ解析による 4次元イメージング	9.9	0.0002	0.000001	0.000001	140 2.8E-11	1E+12	25000	ゲノムワイド連鎖解析(GWAS) 構造分類、3次元構造構築、時間軸推定のため		メモリ量は800GB/node. ノード数25万を仮定 通信、ファイルI/Oは引き続き調査必要。特 にファイルI/Oがボトルネックとなる可能性あ	
	研究施設との連携	実験解析結果に基づく動	490	49	0.2	1.2	48	10	850000	の統計処理 全原子/粗視化分子動力学シミュレーション	の相関計算を1ケースとした。1イメージあたりのサイズは数百MB ~1億粒子	り。京ではローカリティを考慮したI/Oにより 最適化している。 B/F=0.1	
4.1	生命科学	生体分子機能解析	29	12	0.0084	1.2	240	10	250000	分子動力学計算(全值子(代表) OM/MM 粗視	対象:100万原子,100レプリカ	サブマイクロ秒以下のネットワークレイテンシが必要。メモリ量/ケースは10万ノード実行を想定。	
		細胞環境・ウィルス 創薬などMD・自由エネル ギー計算	1000	49	0.2	1.2	0.0012	1000000		全原子/粗視化分子動力学シミュレーション 全原子分子動力学シミュレーション	~1億粒子 ケース数:10万化合物×10標的蛋白質	B/F=0.1 B/F=0.4、数百から数千ケース同時に実行することを想定しているので、実行時に必要な全メモリ量、各ケースの実際の実計算時間	
		細胞内信号伝達経路シミュ レーション	42	100	10	10	240	100		主原 ナガナ 朝 ガチシミュレーション (格子法)	(10万原子程度) 1000 から 10,000 細胞で構成される細	は、表の値の数百~数千倍となる。メモリ量 /ケースは100ノード実行時を想定。	
		細胞内信号伝達経路シミュ	420	0.01	0.001	0.001	240	100		一分子粒度細胞シミュレーション(粒子法)	胞集団 グリーン関数反応動力学法·百万分子 程度	回とした。 共通・低ネットワークレイテンシを要求	演算量、メモリアクセス量、メモリ量、ストレー
		レーション 血流シミュレーション 超音波シミュレーション	400	64	1	1	170	10	2500000	差分法、準陽解法(構造・流体・生化学連成シミュレーション)	141度 100mm長×100um径, 0.1um格子, 流 速10^-2m/s, 解像度1us, 10秒 400mm ³ 3の計算領域を軟組織とマイ クロカプセル干渉音場を捉えるため、		₩
			380	460	54	64	240	10	3300000	差分法、陽解法(音波・熱シミュレーション)	225兆点の格子と時間ステップ数として1459200ステップが必要である。また、1格子点あたり演算数1000程度となる。		
		脳神経系シミュレーション・ ヒト全脳簡約モデル	6.9	7.6	56	3600	0.28	100	700	単一コンパートメントIFモデル シナプス可塑 性・通信	1000億ニューロン ニューロンあたり1 万シナプス 10 ⁵ step	ネットワークのボトルネックはレイテンシー	
		脳神経系シミュレーション・ ヒト全脳詳細モデル	71	78	250	25000	39	1	10000	フルチコンパートメントリーリ(長頭カランカニコル	1000億ニューロン ニューロンあたり1 万シナプス 10 ⁵ step	ストレージ量は最大想定 ネットワークはレ イテンシーの影響も大きいと予測	演算量、メモリアクセス量、メモリ量、ストレー ジ量
		脳神経系シミュレーション・ 昆虫脳全脳詳細モデル リ	71	60	0.002	0.2	0.028	100	720	マルチコンパートメントH-H(局所クランクニコル	100万ニューロン ニューロン(10000コ		演算量、メモリアクセス量、メモリ量、ストレー
		アルタイム 脳神経系シミュレーション・ 昆虫全脳詳細モデル 神 経回路パラメータ推定	71	60	0.2	20	28	10	72000	ソン) ソナノス通信	ンパートメント)あたり500シナプス 1000ニューロン 10 ⁶ 遺伝子 100世 代	通信パターンの設計に工夫の余地がある	ジ量 演算量、メモリアクセス量、メモリ量、ストレー ジ量
		脳神経系シミュレーション・ 昆虫全脳詳細モデル 生 理実験とシミュレーションの 通信	71	60	0.2	20	28	10	72000	マルチコンパートメントH-H(局所クランクニコル ソン) シナブス通信 進化的アルゴリズム	1000ニューロン 10^6遺伝子 100世代	100MB/S程度の外部との通信も想定	演算量、メモリアクセス量、メモリ量、ストレー ジ量
4.2	物質科学	遺伝子ネットワーク解析 次世代先端デバイス	2900	1500	0.08	0.016	0.34	26000		ベイジアンネットワークおよびL1正則化法 第一原理計算RSDFT(擬ポテンシャル法、実空	4万転写物×26,000データセット・280 万アレイ		演算量、メモリアクセス量、メモリ量、ストレー
7.2	170 SQ 1-4 -T-	次世代先端デバイス	100	100	1.2	10 15	96 60	100	350000 2200000	間基底) 第一原理計算PHASE(擬ポテンシャル、平面波	原子数:10万 原子数:1万 100MDを同時実行		演算量、メモリアクセス量、メモリ量、ストレージ量 演算量、メモリアクセス量、メモリ量、ストレー
		次世代先端デバイス	100	100	2	15	60	100	2200000	基底、O(N ² 3)法) 第一原理計算xTAPP(擬ポテンシャル、平面波 基底、O(N ² 3)法)	原子数:1万 100MDを同時実行		ジ量 演算量、メモリアクセス量、メモリ量、ストレー ジ量
		次世代先端デバイス	100	20	5	10	240	10	860000	第一原理計算CONQUEST(密度行列、最適化 によるO(N)法)	原子数:1億 24sの時間刻みで2500 のセナ約オーダーを想定 計算時間 は要注意。時間ステップ数10 ⁷ 4。電子 材料の電子状態計算・手法1と同じ計 算だが、こちは個々のケースを高速 に計算する必要があり、ネットワーク 性能をより要求する。ストレージ量の 違いは出力頻度の違いによる。		
		光·電子デバイス 分子機能	1000 300	10	10	0.0001	1 15	100		高精度分子軌道法 大規模分子軌道法	2万基底、100万求積点 原子数:1万	100~1000くらいのアレイジョブを想定	
		分子機能(タンパク質の電 子状態)	1.1	0.19	1	0.001	1	100		フラグメント分子軌道法	数百残基のタンパク質、数千万次元 の密行列の固有値問題		
		熱交換デバイスの安全性 向上・特性解析	20	6.4	51	44	24	10	17000	短距離古典分子動力学	粒子数:4000億		
		分子機能と物質変換	1000	100	2	1000	150	10	5400000	長距離古典分子動力学	原子数:10億		
		光·電子材料	600	200	200	33	14	10	300000	ナノ構造体電子・電磁波ダイナミクス法	原子数:96万,時間は1ステップあたり 1秒で計算量は0.63EFLOP。これを		
		強相関電子系の機能解明	3	390	10	10	10	100	11000	クラスターアルゴリズム量子モンテカルロ法	50000ステップでおよそ14時間 原子数:1億	整数演算がメイン	演算量、メモリアクセス量、メモリ量、ストレー ジ量
		強相関電子系の機能解明	1000	300	0.2		8	100	2900000	変分モンテカルロ法	原子数1万	メモリ使用量はMPIプロセス数に比例し最大 使用量を記載した	
		物質・エネルギー変換	500	50	0.008	6.4	2.8	10	50000	量子分子動力学法	100レプリカ、100万ステップ	電子状態計算の要求性のは第一原理計算のxTAPP、古典MDはMODYLAS、I/Oの部分は東大渡辺による短距離古典MD(東大渡辺さん)のデータをベースに概算	
		物質・エネルギー変換	690	69	2	3.2	300	10	7400000	化学反応動力学・量子分子動力学法(分子軌 道計算またはQM/MM)	QM1000原子、10000レプリカ、 10000step, MM100,000原子(roadmap)	電子状態計算の要求性のは第一原理計算のxTAPP、古典MDはMODYLAS、I/Oの部分は東大渡辺による短距離古典MD(東大渡辺さん)のデータをベースに概算	
		物質・エネルギー変換	410	41	0.02	0.05	20	10	300000	化学反応動力学·量子分子動力学法(第一原理計算)¥	数万レプリカ	電子状態計算の要求性のは第一原理計算のxTAPP、古典MDはMODYLAS、I/Oの部分は東大渡辺による短距離古典MD(東大渡辺さん)のデータをベースに概算	
		分子構造・分子機能	1000	0.5	0.04		24	1	86000	分子動力学法(feramによるリラクサー強誘電体の誘電率の周波数依存)	512X512X512	アレイジョブでノード間通信なし	演算量、メモリアクセス量、メモリ量、ストレー ジ量
		新物質探索	4100	41	20		0.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		クラスター展開法(第一原理計算)	原子数:1万,100イオン配置の同時実行	PHASEの1/10の規模であることから、同時	演算量、メモリアクセス量、メモリ量、ストレー
		強相関電子系の機能解明	0.1	130	0.00012	41	24 42	10000		第一原理計算(凍結フォノン法) 厳密対角化(ランチョス法)	原子数:1万 54サイトのスピン系(Sz=0)	実行はこの表では想定していない	ジ量 演算量、メモリアクセス量、メモリ量、ストレー ジ量
4.3.1	気象・気候科学	新物質探索 高解像度気象予報(全球)	690	1600	1.5	20	24	20	1200000	フェーズフィールド法	10 ¹³ 空間メッシュ、10 ⁷ 時間ステップ 格子点数:1兆(水平解像度220m,鉛	1/一ド100TFLOPS, 10000/一ド並列を仮 定 10万/一ドを仮定(ノードあたり隣接通信	グ車
4.3.1	X(承 · X(下X行子	高解像度気象予報(領域)	130	360	3	58	340	1	150000	モデル名NICAM, 有限体積法	直94層)、ステップ数: 520万(dt=1秒、	1GB/s) 演算量、メモリ量に関しては、SR16000での	
			33	33	0.09	0.3	0.5	2700	160000	モデル名ASUCA, 有限体積法	格子点数: 7500x7500x500、ステップ 数: 13万(dt=1秒、36時間)	プロファイルを元に外挿。メモリアクセス量 は、B/F値が1と仮定して見積もった。 出力は、25変数は10分毎に出力する。 通信に関しては、22500ノードを仮定(ノードあ たり隣接通信40GB/s)	メモリアクセス量
		地球環境変化予測	56	110	0.6	80	600	1	120000	モデル名MIROC-ESM	格子点数:2000x1000x200、ステップ 数:5300万(dt=60秒、100年)、100アン サンブル同時実行	計算の大半を占める大気モデルのみで見積 もり。100ケース全体が1ヶ月で計算完了する ニトが必要、カットワークは1000ノードを仮定	
		データ同化を用いた気象	2.5	5	4.8	0.0003	0.5	6100	28000	エデルタ INAVA 四次元亦公注(同化エデル)	格子点数:4000x3000x150、ステップ	のプロファイルを元に外挿 演算量、メモリ量に関しては、SR16000での プロファイルを元に外挿。メモリ転送量はB/F	メエリアクセス 景
4.3.2	固体地球	予測精度向上 防災連携シミュレーション (地震直後の被害状況予	2.5	5	4.8	0.0003	0.5	0100	28000	モデル名JNoVA, 四次元変分法(同化モデル)	数:2700、探査回数50回	プロファイルを元に外押。メモリ転送童はB/F 値を2として見積もった 地震発生は1領域1000シナリオを5領域行 う。	
		測) 内訳は以下(1)~(6)	7	15	0.1	9	3		310000			名領域について1000シナリオ中、観測に基づき20シナリオを選び、波動伝播計算を行う一方、地震動増幅や建物度動・津波囲上については、地盤構造や建物完化、海底地形の不確実を考慮するために数サケース計算するとともに、複数の都道府県の都市(例えば南第トラン地震の場合に、東海・近畿・四国・九州の4都市)を一度に計算する必要を考慮すると、結果的に各領域で1000ケース程度は計量が必要	
		(1) 地震発生 (2) 波動伝搬			0.00086	0.00086		5000	48	境界積分法による地震サイクル計算	面素数10 ⁷ 7 1200x1000x200Km ³	アプリの最大BF値=4 アプリの最大BF値=2.14、京での実測1.4。1	
					0.1	0.5		100	1400	差分法による弾性波動伝搬計算	(125mx125mx62.5m格子)、ステップ数 24万回	ケースあたり演算量14EFLOP(東北大調べ)。東大前田先生による新バージョンを京でも主に利用。そちらは20EFLOP。	
		(3) 地震動増幅 (4) 地震動増幅			0.01	4		5000		有限要素法による地震波動計算	30億節点(300×250×10km^3)	アプリの最大BF値=8.00	
		(5) 建物震動			0.01			5000		有限要素法による地震波動計算	30億節点(30x25x1km ² 3)	アプリの最大BF値=8.00 BF値=0.26 (実測値)。メモリ転送量はBF値と 演算量から逆算。BF値はキャッシュに載るの	
					0.05	0.05		5000	500		構造物100万棟	で小さい。 演算量はプロファイルからの外挿と一致、メ モリ転送量はプロファイルからの外挿	
		(6) 津波遡上			0.002	0.5		5000	50000	Navier-Stokes方程式複数モデル(静水圧近似, 非静水圧, VOF法)計算	3x3x0.08Km(1都市領域を1m格子幅) から1400x1100x10Km(5.4Km格子幅) の複合格子、7都市同時計算、72万ス	演算量、メモリ転送量、メモリ量は実測値からの外挿。BF値=10(実測値)	
		避難誘導シミュレーション	3.3	0.28	0.3	0.006	1	5000	60000	マルチエージェントモデルによる行動シミュレー ション	300,000 agents, 18,000 steps (1 hour simulation), 1,000 Monte-Carlo	演算量は命令数である。浮動小数演算は命令数のおよそ 1/40。 演算量、メモリアクセス量、メモリ使用量は京	
		マントル対流	1000		0.01		0.083	1	300	流れ場の反復求解、格子法差分計算?	members 格子数: 290x4000x2000, 4変数	でのプロファイルから外挿	演算量、メモリアクセス量、メモリ量、ストレージ量
4.4.1	熱流体	ダイナモ ターボ機械の熱流動、振動・音響解析			0.053	4		1		陰陽格子	格子点: 2000x2000x6000x2, 8変数	演算量については、アルゴリズムそのものの	演算量、メモリアクセス量、メモリ量、ストレー ジ量
		動、音響解析 熱流体シミュレーション(自	18	100	5	10	120	20		有限要素法 Re=10^6~10^7のLFS液体計管 パラメータスタ	10^12格子	変更についてコミュニティ間で議論が進んで いるところでおり、将来大幅な増減の可能性 あり	
		動車、実際の設計、最適化 問題) 電子機器の熱流体解析、	280	560	0.04	4	1	100	100000	Re=10^6~10^7のLES流体計算、パラメータスタ ディ、100ケースを4日	10^10格子	BF=2として計算 演算量については、アルゴリズムそのものの	
		電子機器の製造性を 騒音解析 航空機の翼設計、機体設	0.46	2.5	0.1	1.6	12	1000	20000	有限要素法	10^11格子	演算量については、アルコリスムそのものの 変更についてコミュニティ間で議論が進んで いるところでおり、将来大幅な増減の可能性 あり	
		計、エンジンや機体の空 力・騒音解析	7.9	20	0.092	8	24	1000	680000	差分法	10^11格子		
		宇宙機の熱流体設計、推進系解析、全機システム解析	40	99	0.92	80	240	10	340000	差分法	10^12格子		
L		都市や建築物内の空気の 流れや汚染物質の拡散解 析	120	490	4	160	96	10	430000	有限要素法	10^12格子、10^4ステップ		
	II.	1)1								<u> </u>	l.		

March	節番号		課題	要求性能 (PFLOPS)		ケース	量/ケース	/ケース	ケース数	総演算量 (EFLOP)	概要と計算手法	問題規模	備考	演算量、メモリアクセス量、メモリ量、ストレー ジ量に関して精査中の項目
Section	4.4.2	構造解析			(PB/s) 27	(PB) 1	(PB) 100	(hour) 24	10		有限要素法(陽解法)	10^11節点		DETENDINE TO ALL
Part						10	10							
Column	4.4.3		関する強度評価	31		0.2	500	10	10			1000の銅多結晶体引張シミュレーショ		
Part	4.4.4	プラズマ・核融合	開発 プラズマ乱流計算・マルチ					24			ボルツマン方程式の5次元計算(スペクトル法+	10000ステップの陰解法シミュレーショ	B/F=2として計算	
The part of the			プラズマ乱流計算・大域的	100	200	0.5	1	170	10	610000		10^12格子、10^7ステップ		
Company			解析	3.2	5.3	0.072	0.6	1	20	230	陽解法と陰解法の混合	10^12格子		演算量、メモリアクセス量、メモリ量、ストレー ジ量
Part			レーションによる宇宙構造 形成の解明	420	1.4	5	100	1000	1	1500000	独立時間刻みとツリーのハイブリッド	10^14粒子		
## PROPRIES OF THE PROPRIES OF			と巨大ブラックホール形成	50	0.63	2	1.2	550	1	98000	Tree radiation SPH	4096^3粒子 + 6×10^7光源		
## PROPRIES OF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Boltzmann方程式による無	45	34	2	2	3.3	10	5400	有限体積法	位置空間256^3個 速度空間256^3個		
Property of the content of the con				420	1.4	1	2	20	1	30000	Particle-Mesh + FFT			
변경 등			レーションによる銀河ス	1000	0.31	2	10	1000	10	36000000		8192^3メッシュ+10^8光源		演算量、メモリアクセス量、メモリ量、ストレー
Part			明 輻射磁気流体計算による	100	20	0.2	200	1000	2	720000	相対論的磁気流体方程式の近似リーマン解法	512^3格子点、1000光線方向、100振	100Tflops/ノード×10000ノード、通信速度	
Part			究 数値相対論によるブラック ホールの形成と強重力現	1000	100	0.04	50	28	10	1000000			100Tflops/ノード ×10000ノード、通信速度	
Column			相対論的輻射流体計算に	1000	100	0.04	30	20		1000000	TAX JUNIX, Nau-TINGO			
### 1985			の探究	18	70	1.6	1.3	1200	10	780000	ニュートリノ輻射輸送計算(超新星爆発)			
### 1995 전 19			超高エネルギー現象と粒	310	92	96	1000	200	2	450000	Particle~in~Cell法			
### MARCHANING NO. 10 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0			ションによるプラズマ非熱	24	1.5	50	500	1400	2	240000	セミ・ラグランジュアン法			
변경함 1			酸生成と光不斉化過程の	1000	0.1	1		600	1	2200000	量子ダイナミックス計算サーフェスホッピング法			演算量、メモリアクセス量、メモリ量、ストレージ量
			輻射磁気流体計算による	100	88	7	13	410	1	150000	音速抑制法+Yin-Yang grid	格子点1024x8192x24576x2, 5x10^7ス		
### 1985년 1985년 1985 - 1985년 1985			圈·宇宙空間無衝突衝擊	160	46	96	1000	1400	2	1600000	Particle-in-Cell法			
### 17.5 AMERICANS (1.5 AMERICANS)			宇宙天気予報に基づく太	1000	2	2		100	1	360000			100Tflops/ノード ×10000ノード、通信速度	演算量、メモリアクセス量、メモリ量、ストレー
## 1997 - 1998년 10 000 00 00 00 00 00 00 00 00 00 00 00	4.5.2	素粒子	カイラル対称性とQCDに基づく有効バリオン間相互作										ノード数を16^4 ノードを仮定し、ノードあたり性能を、オンチップメモリ容量 200MB. オン	ン重
1				510	390	0.066	0.5	880	10	16000000	格子QCD (カイラル5次元型),ハイブリッドモンテ カルロ法、CG法	問題規模 格子点:128 ² 4x32、格子間隔:0.1 [fm] 以下	チップメモリバンド幅 6TB/s, ネットワークレイ テンシ 1μ sec程度、ネットワークバンド幅 128GB/sを想定。	
日本				510	370	0.021	1	880	10	16000000	格子QCD (ウィルソン型),ハイブリッドモンテカル ロ法、CG法BiCGStab法	192^4	性能を、オンチップメモリ容量 200MB, オンチップメモリバンド幅 18TB/s, ネットワークレイテンシ 1µ sec程度、ネットワークバンド幅	
# 10 100 2 0 0 10 100 100 100 100 100 100				510	1200	0.066	0.2	880	10	16000000		256 ⁴	性能を、オンチップメモリ容量 200MB, オンチップメモリバンド幅 18TB/s, ネットワークレイテンシ 1µ sec程度、ネットワークバンド幅	
11 13 200007 24 220 24				510	1200	0.46	0.05	880	10	16000000	格子QCD (カイラル5次元型)、ハイブリッドモン テカルロ法、CG法	96 ⁴ ×32	性能を、オンチップメモリ容量 200MB, オンチップメモリバンド幅 18TB/s, ネットワークレイテンシ 1µ sec程度、ネットワークバンド幅	
### 120			次補正計算(多倍精度演	1.8	1.3	0.00012		24	220	34000	モンテカルロ法による多次元積分	1万個以上の多次元(8~13次元)積分	プ、SIMOとコア並列が必要、プログラムが巨大なためコンパイル速度が重要、高度に最適化された4倍精度ライブラリが必要。ケース数は独立なケードジョブの個数である1万程ともいえる。2から3年かけて計算を終えるようにしたい。多倍長精度浮動小数点型の四則演算数を倍精度浮動小数点型に数して記載してある。多倍長精度浮動小数点型の四則演算数は倍	
解析 100 10 0.1 0.000 23 100 1000000 年上ナアルルの経費型による原子核の機動性 密整式を存棄しまります。 「おりようなできまったりのような 「おりました」」 「本に関係している」 「本の表現している」 「本のましている」 「本のましている」 「本の表現している」 「本のましている」 「本の表現している」 「本の表現している」 「本のましている」 「本の表現している」 「本の表現している」 「本のましている」 「本のましている」 「本のましている」 「本のましている」 「本のましている」 「本のましている」			ファインマン振幅の自動計 算(4倍精度/演算)	3.2	0.13	2E-09	0.0005	24	1000	280000	モンテカルロ法による多次元積分	総数約350,000ダイアグラム(ILCでの 重心系衝突エネルギー250GeVでの Bhabha,ZH過程、370GeVでの Bhabha,ZH,トップクォーク対生成過程	しては指数部15ビッル(IEEE754-2008の binary 128形式)が不可なであり、高速計算されることが必要である。プログラムが巨大な ため演算命令数が極めて多い。コンパイル の速度も問題になる。場合によっては4倍精 度以上の計算が必要になる。一つの素粒子 反応過程については半年から1年を目のは 計算を実施する。演算量は4倍精度浮動小 数点型の四則演算数である。要求性能も4 倍精度浮動小数点演算数/8である。一ケー	
報道の基準 14 0.68 0.33 0.0001 10 1000 500000 100 1000 500000 100 1000 1000 1000 1000 1000 1000 100000 1000000 1000000 1000000 1000000 10000000 1000000 10000000 1000000 1000000 10000000 100000000	4.5.3		原子核構造の第一原理的 解明	100	10	0.1	0.0001	28	100	1000000	モンテカルロ殻模型法による原子核の構造計 算、軽い核		し、問題をノード間で分割して持つことで削減	
■ 子供養・皮化の除一				14	0.69	0.32	0.0001	10	1000	500000	モンテカルロ殻模型法による原子核の構造計 算、中重核領域		し、問題をノード間で分割して持つことで削減	
記述計算核子・分積接 44 0.22 0.00 0.1 0.1 10000 1160000 東空間表示事紀子による極助な著行列分合。			的解明	53		0.03		100	50	950000	生成座標法を用いた第一原理的CI計算	空間格子点1万点、配位数100程度		演算量、メモリアクセス量、メモリ量、ストレー ジ量
投稿物質の相構達・状態方 根物質の相構達・状態方 根本の原明 20 2.1 2.4 0.02 2.4 100 17000 AMD法による熱平板の計算				46	0.22	0.03	0.1	0.1	10000	160000	実空間表示準粒子による線形応答行列対角化	10000核種に対して特定の一体場に対する応答関数を系統的に計算	れば、系統的な計算による計算核データ構 築が現実的になる。現在、反復解法などが 改良されており、将来的には行列対角化に	
程式の解明 20 2.1 2.4 0.02 2.4 100 17000 17000 17000 180 0.0001 2.4 2.00 17000 180 0.0001 2.4 2.00 17000 180 0.0001 2.4 2.00 17000 180 0.0001 2.4 2.00 17000 180 0.0001 2.4 2.00 17000 180 0.0001 2.4 2.00 17000 180 0.0001 2.4 2.00 17000 180 0.0001 2.4 2.00 17000 180 0.0001 2.4 2.00 2.0001 2.4 2.00 2.0001 2.4 2.00 2.0001 2.4 2.00 2.0001 2.4 2.00 2.0001 2.4 2.00 2.0001 2.4 2.00 2.0001 2.4 2.00 2.0001 2.4 2.00 2.0001 2.4 2.00 2.0001 2.4 2.00 2.0001 2.00				42	0.021	0.04	10	24	100	360000	実空間·実時間発展計算	空間格子点数、準粒子数、時間ステップ数、それぞれ10万	時間発展1ケースあたり、3x10 ² 1 FLOP	
#				20	2.1	2.4	0.02	24	100	170000	AMD法による熱平衡の計算	核子数3200の系の状態方程式を得る	作用の異なる2万の場合のそれぞれについ	
第五ネルギー量イナの衝突実験の流体シュレーション計算 第五ネルギー量イオン衝突実験の流体シュレーション計算 第五ネルギー量イオン衝突実験の流体シュレーション計算 第五ネルギー量イオン衝突実験の流体シュレーション計算 第五条 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			構造・反応の解明	57000	17000	180	0.00001	24	200	980000000	量子少数多体系のガウス関数展開法による厳密計算	7体系(6400万x6400万密行列の一般 化固有値問題)		ストレージ量
ドロノ共鳴と相互作用の新たな展開			クォーク・グルーオン・プラ ズマ物性の解明									注目されるなど、理論の枠組み自体 の発展も激しい。現在確立している物 理状況を取り入れた模型における計	波を扱った相対論的粘性流体方程式解法の アルゴリズム開発。数値解の安定性、初期 条件等の吟味。(手法確立に必要な知見) 粘性が有限の場合の低温での数値不安定 性の回避が必要。	演算量、メモリアクセス量、メモリ量、ストレージ量
1000 1			ドロン共鳴と相互作用の新 たな展開	1.1	0.24	0.0002	0.000005	720	10	29000	することで、励起バリオンに関する知見を得る ための計算。微視的な多チャンネル動的反応	の複素密行列の逆行列を6000回計算 する。そのchi-2乗値の計算を	評価を含めたchi-2乗最適化への収束の問題解決。(手法確立に必要な知見)多次元パラメータ空間上での極小値サーチの効率的手法。chi-2乗計算の高速化。(実計算への見込み)現在のチームで4-5年程度	
作	4.6	社会科学	ムシミュレーション	1000	100	0.00011	0.001	2.8E-08	1000	0.1	延長3400万Km)、エージェントモデルによるシミュレーション (実際に計算対象となる稼働している車の台数	ケース(10秒分のシミュレーション) これを0.1 secで計算する	要求ストレージおよび総演算量は1日分あた	
10^10人程度の集団が、集団の規模に応じて異 よび数値計算モデルが確立していないた 演算量、メモリアクセス量、メモリ			ft.	2100	0.0001	1E-08		0.0024	10000	180000	トレーダーエージェントモデルでモンテカルロシ	5時間 × 3600秒/時間 × 1000 注文機会/秒 × 10^4演算/注文機会 × 10トレーダー × 10^4 サンプル × 10^3 銘柄 = 1.8 × 10^19 演算	「要求性能」「総演算量」はインストラクション数	
なる規則に従うエージェントジミュレージョン め、要求計算リソースを見積もることが出来 ジェ			人間関係シミュレーション							_	10^10人程度の集団が、集団の規模に応じて異なる規則に従うエージェントシミュレーション		よび数値計算モデルが確立していないた め、要求計算リソースを見積もることが出来	演算量、メモリアクセス量、メモリ量、ストレージ量