

班級:____ 座號:____ 姓名:_____

多重選選題:(每題5分,共20分)

- 1. 下列何者不是複數的極式?
 - (A) $2(\cos 40^{\circ} + i\sin 25^{\circ})$ (B) $-2(\cos 40^{\circ} + i\sin 40^{\circ})$
- (C) $2(\cos 40^{\circ} i \sin 40^{\circ})$

- (D) $2(\sin 40^{\circ} + i\cos 40^{\circ})$
- $(E)2(\cos 40^{\circ}+i\sin 40^{\circ})$
- 2. 下列敘述何者正確? (A)當 $0 < x < \frac{\pi}{4}$, $\sin x < \cos x$ (B) 函數 $y = \sin 2x$ 的週期為 2π
 - (C) $y=\sin(x-\frac{\pi}{4})$ 為 $y=\sin x$ 的圖形向右移 $\frac{\pi}{4}$ (D) $y=\sin x+1$ 為 $y=\sin x$ 的圖形向上移 1
 - (E)所有三角函數的週期皆為 2π
- 3. 設 $\tan \theta = t$, 其中 $0 < \theta < \frac{\pi}{2}$, 則 (A) $\sin 2\theta = \frac{2t}{1+t^2}$ (B) $\cos 2\theta = \frac{1-t^2}{1+t^2}$

(C)
$$\tan 2\theta = \frac{2t}{1+t^2}$$
 (D) $\cot 2\theta = \frac{1+t^2}{2t}$ (E) $\tan \theta + \cot \theta = \frac{t^2+1}{t}$

- 4. $(1+\sqrt{3}i)$ z 在複數平面的第三象限,則 z 可能在複數平面上的何處? (A)第一象限
 - (B) 第二象限 (C) 第三象限(D) 第四象限 (E) 實軸上

二、 填充題:(每格5分)

- 1. $\sin 10^{\circ} \cos 20^{\circ} + \cos 10^{\circ} \sin 20^{\circ} = \underline{\qquad (A) \qquad }^{\circ}$
- 2. $\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} =$ (B)
- 3. 如圖均為邊長為 1 的正方形,試求 $\tan(\alpha + \beta) = \underline{\quad (C)}$

- 4. $\triangle ABC$ 中,若 $\cos B = \frac{4}{5}$, $\cos C = \frac{1}{\sqrt{5}}$,則 $\sin A = \underline{\text{(D)}}$ 。
- 5. 設 $\sin\theta + \cos\theta = \frac{1}{2}$,則(1) $\sin 2\theta = \underline{\qquad (E)}$ 。(2) $\cos 4\theta = \underline{\qquad (F)}$ 。
- 6. $\Re \cos^2 \frac{\pi}{7} + \cos^2 (\frac{\pi}{2} + \frac{\pi}{7}) + \cos^2 (\frac{\pi}{2} \frac{\pi}{7}) \ge \text{ if } A = (G)$

- 7. $\frac{\sin 68^{\circ} + \sin 52^{\circ}}{\cos 68^{\circ} + \cos 52^{\circ}} =$ (H)
- 8. 如圖為半徑 $\sqrt{5}$ 的圓,圓心為O,若弦 \overline{AB} 垂直 \overline{OC} 於D,試求 $\overline{AB}+\overline{OD}$ 的最大值為 $\underline{\hspace{0.5cm}}$ (I)__。

9. 函數 $y=2\sin(x+\frac{\pi}{6})-2\cos x$ 的最大值為M,最小值為m,

試求數對(M,m)=_(J)_。

- 10. 如圖<u>賽雞</u>球場為一以O為圓心的扇形球場
 - ,一、三壘邊線各為 300 呎,且夾角為 120°
 - ,若壘間的距離為90呎,試問外野區面積

(即斜線部分面積)為_(K)_平方呎。

三、 計算題證明題 (每題10分)

- 1. 試證:(1)求證: $\sin\theta \times \sin(\frac{\pi}{3} \theta) \times \sin(\frac{\pi}{3} + \theta) = \frac{1}{4}\sin 3\theta (6 \%)$
 - (2)利用(1)試求 sin 10°× sin 50°× sin 70° 之值(4分)
- 2. (1)試求 1 的六次方根(5 分)
 - (2)若 1 的六次方根,在複數平面上依逆時針序分別代表 A,B,C,D,E,F 六點,試求 ΔADE 面積= ? (5 分)

台北市立松山高中 九十五學年度 高一數學科期末考試 第二學期

		班級:	座號:	姓名:	
一、多重選選	題:(每題5分,	共 20 分)			
1.	2.	3		4.	
	<u> </u>	I		I	
二.填充題(每格	55分)				
(A)	(В	(B)		(C)	
(D)	(E	(E)		(F)	
(G)	(Н)	(I)	
(J)	(K	(K)		(L)	
計算題證明題	į				
1.		2.			

班級:____ 座號:___ 姓名:_____

一、多重選選題:(每題5分,共20分)

1.ABCD	2.ACD	3.ABE	4.BCE
--------	-------	-------	-------

二.填充題(每格5分)

$(A) \frac{1}{2}$	(B) 1	(C) 7
(D) $\frac{11\sqrt{5}}{25}$	(E) $-\frac{3}{4}$	(F) $-\frac{1}{8}$
(G) $\frac{3}{2}$	(H) $\sqrt{3}$	(I)5
(J) (2 · -2)	(K) $30000 \pi - 4050 \sqrt{3}$	(L) $\frac{3}{4}$

三.計算題證明題

1.(1)略	2.(1) 1, $\frac{1}{2} + \frac{\sqrt{3}}{2}i$, $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$,
$1.(1)$ 略 $(2)\frac{1}{8}$	-1 , $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$, $\frac{1}{2} - \frac{\sqrt{3}}{2}i$
G	(2) $\frac{\sqrt{3}}{2}$
	2