Internet Appendix to "Growth Opportunities and Technology Shocks"

LEONID KOGAN and DIMITRIS PAPANIKOLAOU*

Summary

Here, we include material supplementary to the paper. We include several additional descriptive statistics, robustness tests, and results under alternative specifications.

^{*}Kogan, Leonid and Dimitris Papanikolaou, Internet Appendix to 'Growth Opportunities and Technology Shocks", *Journal of Finance*, [DOI STRING]. Please note: Wiley-Blackwell is not responsible for the content or functionality any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the corresponding authors of the article.

The table compares the transition probabilities across IMC beta portfolio quintiles in the data (Panel A) versus the model (Panel B). Stocks are sorted into five portfolios based on β_{t-1}^{imc} . β_t^{imc} refers to the firm's beta with the investment-minus-consumption portfolio (IMC) in year t, estimated using non-overlapping weekly returns within year t.

		Pa	anel A. I	Oata				
			IMC	beta sor	t(t-1)			
		Lo	2	3	4	Hi		
	Lo	30.4%	23.1%	18.8%	15.0%	12.5%		
	2	24.2%	25.2%	23.1%	18.7%	11.7%		
Sort(t)	3	18.7%	23.3%	22.6%	22.3%	14.7%		
	4	15.1%	17.9%	21.9%	24.3%	21.7%		
	Hi	11.7%	10.5%	13.6%	19.7%	39.5%		
	Panel B. Model							
			IMC	beta sor	t(t-1)			
		Lo	2	3	4	Hi		
	Lo	49.1%	28.3%	14.4%	6.2%	1.9%		
	2	27.6%	32.6%	24.4%	12.0%	3.4%		
Sort(t)	3	14.0%	23.8%	30.7%	23.7%	8.0%		
	4	6.4%	11.4%	22.8%	36.6%	22.9%		
	Hi	2.7%	3.7%	7.7%	21.4%	63.6%		

Table IA.II IST Risk Exposures

The table reports stock return exposures of the 10 IMC beta and 10 B/M portfolios to the four proxies for the IST shock. R^{imc} is returns to the investment-minus consumption portfolio. Δz^I is the first difference of the de-trended log quality-adjusted relative price of investment goods. Δic is the change in the log aggregate investment-to-consumption ratio. R^{imc} is the return on the IMC portfolio. $-R^{hml}$ is the negative of the returns on the HML portfolio, constructed excluding firms producing investment goods. The sample covers the 1964 to 2008 period. See the main text and the Appendix for details.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Panel A. IMC	IC beta portiolios	COHOL					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	9	7	∞	6	Hi	Hi - Lo	9-2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-2.37	-3.18	-1.67	-2.47	-1.38	-0.51	2.90	1.43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(-2.59)	(-2.29)	(-1.02)	(-1.50)	(-0.67)	(-0.19)	(1.97)	(1.24)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.37	-0.37	-0.18	-0.41	0.15	0.38	0.16	0.61
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(-0.88)	(-0.66)	(-0.33)	(-0.70)	(0.19)	(0.43)	(0.24)	(1.49)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.00	0.27	0.55	0.60	1.11	1.51	1.57	1.11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(-0.03)	(1.96)	(5.85)	(3.13)	(10.81)	(12.56)	(16.98)	(20.52)
(-1.44) (-0.02) (-0.30) (-0.09) AE decile Lo 2 3 4 -2.36 -2.14 -2.41 -2.60 (-1.64) (-1.62) (-1.51) (-2.09) (-0.40 -0.30 -0.37 -0.39 (-0.67) (-0.50) (-0.73) (-0.85) (0.41 0.23 0.23 0.19 (3.28) (2.37) (1.68) (1.60)	-0.02	0.07	0.45	0.45	0.84	1.17	1.48	0.84
AE decile Lo 2 3 4 -2.36 -2.14 -2.41 -2.60 (-1.64) (-1.62) (-1.51) (-2.09) (-0.40 -0.30 -0.37 -0.39) (-0.67) (-0.50) (-0.73) (-0.85) (-0.67) (-0.50) (-0.73) (-0.85) (-0.85) (-0.85) (-0.87) (-0.87) (-0.87) (-0.88	(-0.09)	(0.25)	(1.59)	(1.65)	(1.81)	(2.15)	(3.08)	(2.12)
AE decile Lo 2 3 4 5 -2.36 -2.14 -2.41 -2.60 -2.47 (-1.64) (-1.62) (-1.51) (-2.09) (-2.16) -0.40 -0.30 -0.37 -0.39 -0.54 (-0.67) (-0.50) (-0.73) (-0.85) (-1.29) (0.41 0.23 0.23 0.19 0.10 (3.28) (2.37) (1.68) (1.60) (0.75) al 0.72 0.38 0.21 0.07 -0.13	B.	Book-to-market	portfolio	x				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	9	2	8	6	Hi	Hi - Lo	9-2
	-2.60	-3.38	-3.05	-3.30	-3.62	-3.35	-0.99	-1.48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(-2.09)	(-1.99)	(-2.24)	(-2.26)	(-2.91)	(-2.24)	(-1.34)	(-2.16)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.39	-0.27	-0.10	-0.29	-0.20	-0.54	-0.14	0.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(-0.85)	(-0.57)	(-0.20)	(-0.55)	(-0.31)	(-1.01)	(-0.34)	(0.35)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.19	0.03	0.02	0.01	0.07	0.19	-0.22	-0.16
0.72 0.38 0.21 0.07 -0.13	(1.60)	(0.28)	(0.14)	(0.04)	(0.46)	(1.60)	(-2.58)	(-1.30)
	0.07	-0.24	-0.44	-0.39	-0.53	-0.61	-1.34	-0.91
(3.06) (1.80) (0.83) (0.30) (-0.53) $($	(0.30)	(-1.01)	(-1.65)	(-1.57)	(-1.80)	(-1.88)	(-6.32)	(-7.37)

Table IA.III Comovement in Firm Investment and Market Returns

Columns (1) to (3) show estimates of regressing firm investment rates on lagged accumulated log market portfolio returns, $\tilde{R}_t^{mkt} = R_t^{mkt} + R_{t-1}^{mkt}$, across market beta quintiles. All variables have been standardized to zero mean and unit standard deviation. We report t-statistics in parentheses using standard errors clustered by firm and year. Depending on the specification, we include a vector of controls that includes firm-fixed effects and lagged values of log Tobin's Q, cash flows over lagged capital, log book equity over book assets, and log capital.

	(1)	(2)	(3)	(4)	(5)	(6)
$ ilde{R}_{t-1}^{mkt}$	0.076	0.057	0.042	0.023	0.023	0.047
		(3.57)	(3.86)	(0.80)	(1.27)	(3.51)
$D(\beta_{mkt})_2 \times (\tilde{R}_{t-1}^{mkt})$		-0.013	-0.009	-0.008	-0.008	-0.005
		(-1.34)	(-1.30)	(-0.94)	(-1.28)	(-0.62)
$D(\beta_{mkt})_3 \times (\tilde{R}_{t-1}^{mkt})$		-0.008	-0.002	-0.003	-0.002	-0.003
		(-0.88)	(-0.38)	(-0.30)	(-0.22)	(-0.30)
$D(\beta_{mkt})_4 \times (\tilde{R}_{t-1}^{mkt})$		-0.005	0.004	-0.001	0.004	0.009
		(-0.34)	(0.32)	(-0.04)	(0.31)	(0.71)
$D(\beta_{mkt})_H \times (\tilde{R}_{t-1}^{mkt})$		0.025	0.027	0.031	0.020	0.027
		(1.47)	(2.09)	(1.61)	(1.70)	(1.49)
Observations	87749	87749	87749	87749	87749	87749
R^2	0.013	0.039	0.333	0.241	0.411	0.537
Industry/Firm FE	N	N	N	I	I	F
Controls (i_{t-1})	N	N	Y	N	Y	N
Controls $(Q_{t-1}, CF_{t-1}, K_{t-1}, E_{t-1}/A_{t-1})$	N	N	N	Y	Y	Y

 ${\bf Table~IA.IV} \\ {\bf Comovement~in~Firm~Investment,~Firms~with~Credit~Ratings}$

The table shows estimates of equation (34) in the main text, where we constrain the sample to firms with a Standard and Poor's credit rating. See the main text and notes to Tables V and VI for more details.

	(1)	(2)	(3)	(4)	(5)	(6)
$ ilde{R}_{t-1}^{imc}$	0.1125	0.0206	0.0302	0.0406	0.0425	0.0547
	(3.00)	(0.97)	(1.86)	(1.71)	(2.28)	(2.78)
$D(\beta^{imc})_2 imes \tilde{R}^{imc}_{t-1}$		0.0414	0.0187	0.0419	0.0222	0.0220
		(2.04)	(0.88)	(2.50)	(1.50)	(1.32)
$D(\beta^{imc})_3 imes \tilde{R}^{imc}_{t-1}$		0.0843	0.0433	0.0391	0.0200	0.0146
		(2.63)	(1.96)	(1.15)	(0.83)	(0.71)
$D(\beta^{imc})_4 imes \tilde{R}^{imc}_{t-1}$		0.1329	0.0731	0.0749	0.0451	0.0461
		(3.38)	(2.52)	(2.55)	(1.97)	(1.91)
$D(\beta^{imc})_5 imes \tilde{R}_{t-1}^{imc}$		0.2014	0.1346	0.1398	0.1074	0.1132
		(4.47)	(4.95)	(4.12)	(4.86)	(3.82)
Observations	13456	13456	13456	13456	13456	13456
R^2	0.013	0.039	0.333	0.241	0.411	0.537
Industry/Firm FE	N	N	N	I	I	F
Controls (i_{t-1})	N	N	Y	N	Y	N
Controls $(Q_{t-1}, CF_{t-1}, K_{t-1}, E_{t-1}/A_{t-1})$	N	N	N	Y	Y	Y

Table IA.V Comovement in Firm Investment, Adjusted for Book Leverage

The table shows estimates of equation (34) in the main text, adjusted using book leverage. The leverage adjusted β^{imc} is computed as $\beta^{imc} = \hat{\beta}^{imc} \times B_E/B_A$, where B_E refers to stockholder's equity (Compustat item seq) and B_A refers to assets (Compustat item at). See the main text and notes to Tables V and VI for more details.

	(1)	(2)	(3)	(4)	(5)	(6)
$ ilde{R}_{t-1}^{imc}$	0.0959	0.0571	0.0525	0.0659	0.0613	0.0559
	(4.90)	(5.60)	(5.11)	(4.21)	(4.01)	(4.20)
$D(\beta_{imc})_2 imes \tilde{R}_{t-1}^{imc}$		0.0061	0.0072	-0.0003	0.0010	0.0042
		(0.36)	(0.46)	(-0.03)	(0.08)	(0.38)
$D(\beta_{imc})_3 imes \tilde{R}_{t-1}^{imc}$		0.0261	0.0237	0.0105	0.0104	0.0184
		(1.01)	(1.00)	(0.64)	(0.69)	(1.30)
$D(\beta_{imc})_4 \times \tilde{R}_{t-1}^{imc}$		0.0655	0.0629	0.0462	0.0463	0.0479
		(2.65)	(2.69)	(2.67)	(2.75)	(2.70)
$D(\beta_{imc})_5 imes \tilde{R}_{t-1}^{imc}$		0.0966	0.0943	0.0728	0.0740	0.0797
		(3.54)	(4.07)	(3.76)	(4.54)	(5.74)
Observations	62495	62495	62495	62495	62495	62495
R^2	0.009	0.032	0.085	0.161	0.191	0.438
Industry/Firm FE	N	N	N	Ι	I	F
Controls (i_{t-1})	N	N	Y	N	Y	N
Controls $(Q_{t-1}, CF_{t-1}, K_{t-1}, E_{t-1}/A_{t-1})$	N	N	N	Y	Y	Y

 ${\bf Table~IA.VI}$ Comovement in Firm Investment, Adjusted for Market Leverage

The table shows estimates of equation (34) in the main text, adjusted using market leverage. The leverage adjusted β^{imc} is computed as $\beta^{imc} = \hat{\beta}^{imc} \times M_E/M_A$, where M_E refers to CRSP December market capitalization and M_A refers to the sum of CRSP December market capitalization, preferred stock (Compustat item pstkrv), and long term debt (Compustat item dltt). See the main text and notes to Tables V and VI for more details.

	(1)	(2)	(3)	(4)	(5)	(6)
$ ilde{R}_{t-1}^{imc}$	0.0959	0.0541	0.0502	0.0633	0.0592	0.0573
	(4.90)	(5.44)	(4.88)	(4.42)	(4.20)	(4.41)
$D(\beta_{imc})_2 imes \tilde{R}_{t-1}^{imc}$		0.0007	0.0009	-0.0030	-0.0022	0.0005
		(0.05)	(0.07)	(-0.25)	(-0.19)	(0.05)
$D(\beta_{imc})_3 \times \tilde{R}_{t-1}^{imc}$		0.0264	0.0252	0.0116	0.0123	0.0148
		(1.22)	(1.26)	(0.68)	(0.77)	(0.92)
$D(\beta_{imc})_4 \times \tilde{R}_{t-1}^{imc}$		0.0632	0.0594	0.0427	0.0420	0.0378
		(2.55)	(2.62)	(2.18)	(2.29)	(2.32)
$D(\beta_{imc})_5 imes \tilde{R}_{t-1}^{imc}$		0.1185	0.1137	0.0887	0.0882	0.0910
		(4.30)	(4.93)	(4.33)	(5.03)	(6.08)
Observations	62495	62495	62495	62495	62495	62495
R^2	0.009	0.026	0.080	0.163	0.192	0.438
Industry/Firm FE	N	N	N	I	I	F
Controls (i_{t-1})	N	N	Y	N	Y	N
Controls $(Q_{t-1}, CF_{t-1}, K_{t-1}, E_{t-1}/A_{t-1})$	N	N	N	Y	Y	Y

Table IA.VII Comovement in Firm Investment, Within and Between Industry

The table shows estimates of equation (34) in the main text, comparing within- and between industry sorts. We define industries according to Fama-French 30 industry classification. In Panel A we estimate a within specification by sorting firms into IMC beta quintiles within industry-year. Standard errors are clustered by year. The four proxies for the IST shock are normalized to unit standard deviation. In Panel B we estimate a between specification by collapsing the data at the industry-year level. In Panel C we estimate a between specification by sorting firms into quintiles based on the industry IMC beta.

	Pane Within	el A. industries		nel B. industries		el C. industries
	,, =,=====		Indust	ry-Level	Firm	-Level
\tilde{R}_{t-1}^{imc}	0.0038	0.0032	0.0075	0.0061	0.0068	0.0045
	(1.43)	(1.25)	(1.81)	(1.55)	(1.65)	(1.39)
$D(\beta_{imc})_3 \times \tilde{R}_{t-1}^{imc}$	0.0027	0.0013	-0.0009	-0.0001	0.0039	0.0027
	(1.76)	(1.09)	(-0.20)	(-0.02)	(1.12)	(1.15)
$D(\beta_{imc})_5 \times \tilde{R}_{t-1}^{imc}$	0.0099	0.0078	0.0077	0.0057	0.0139	0.0093
	(3.21)	(3.59)	(1.36)	(1.03)	(2.91)	(2.93)
Δz_{t-1}	-0.0005	0.0023	0.0019	0.0025	0.0010	0.0038
	(-0.17)	(0.69)	(0.38)	(0.55)	(0.26)	(0.83)
$D(\beta_{imc})_3 \times (\Delta z_{t-1})$	0.0034	0.0017	0.0022	0.0024	0.0048	0.0016
	(2.33)	(1.01)	(0.74)	(0.71)	(1.42)	(0.56)
$D(\beta_{imc})_5 \times (\Delta z_{t-1})$	0.0092	0.0047	0.0039	0.0020	0.0110	0.0047
	(4.49)	(2.93)	(0.92)	(0.42)	(2.16)	(1.70)
$\Delta i c_{t-1}$	0.0056	0.0083	0.0056	0.0032	0.0084	0.0101
	(2.17)	(3.27)	(1.34)	(0.82)	(2.17)	(3.09)
$D(\beta_{imc})_3 \times (\Delta i c_{t-1})$	0.0040	0.0014	0.0044	0.0057	0.0053	0.0011
	(2.96)	(0.89)	(1.29)	(1.57)	(1.55)	(0.44)
$D(\beta_{imc})_5 \times (\Delta i c_{t-1})$	0.0113	0.0064	0.0105	0.0120	0.0109	0.0050
	(5.10)	(3.75)	(2.25)	(2.40)	(2.82)	(1.83)
$-\tilde{R}_{t-1}^{hml}$	-0.0011	0.0000	0.0041	0.0049	-0.0017	-0.0002
	(-0.39)	(0.02)	(0.96)	(1.28)	(-0.48)	(-0.07)
$D(\beta_{imc})_3 \times (-\tilde{R}_{t-1}^{hml})$	0.0025	0.0015	-0.0003	-0.0027	0.0145	0.0085
	(1.73)	(1.14)	(-0.08)	(-0.63)	(3.54)	(2.71)
$D(\beta_{imc})_5 \times (-\tilde{R}_{t-1}^{hml})$	0.0063	0.0038	-0.0018	-0.0023	0.0089	0.0048
	(2.19)	(1.87)	(-0.39)	(-0.55)	(1.80)	(1.50)
Observations	63368	63368	1234	1234	63368	63368
Controls	-	Y	-	Y	-	Y
Fixed Effects	-	Y	-	Y	-	Y

Table IA.VIII Portfolios Sorted on IMC Beta (Between and Within Industry)

The table shows excess returns and CAPM alphas and betas for three sets of portfolios. Panel A reports results of sorting firms into portfolios based on IMC beta within industry, Panel B reports results of sorting industry portfolios into quintiles based on IMC beta, and Panel C reports results of sorting firms into portfolios based on the average IMC beta for the industry. We use monthly data and annualize alpha estimates by multiplying by 12.

	Pane	l A. With	in indust	ries		
Firm IMC Beta (industry rank)	Lo	2	3	4	Hi	Hi - Lo
Excess Return (%)	6.62	5.45	5.50	4.75	3.79	-2.84
	(2.93)	(2.57)	(2.37)	(1.69)	(1.11)	(-1.14)
$\sigma~(\%)$	15.34	14.36	15.71	19.07	23.05	16.86
$\alpha(\%)$	2.53	1.29	0.93	-0.61	-2.53	-5.06
	(2.32)	(1.83)	(1.34)	(-0.58)	(-1.67)	(-2.24)
β_{MKT}	0.87	0.89	0.98	1.14	1.35	0.48
	(29.71)	(48.68)	(64.89)	(40.48)	(31.99)	(7.59)
$R^2(\%)$	76.78	90.38	91.40	85.21	81.14	18.85
Panel B	Between	n industry	: sort inc	dustries o	$n \bar{\beta}_{imc}$	
Industry IMC Beta	Lo	2	3	4	Hi	Hi - Lo
Excess Return (%)	7.19	6.78	5.80	5.80	7.28	0.09
	(2.82)	(2.52)	(2.00)	(1.79)	(2.07)	(0.03)
σ (%)	17.08	18.03	19.41	21.64	23.57	16.61
$\alpha(\%)$	3.32	2.56	1.27	0.73	1.77	-1.55
	(2.66)	(1.98)	(0.94)	(0.49)	(1.05)	(-0.69)
β_{MKT}	0.80	0.88	0.94	1.05	1.14	0.34
	(9.49)	(9.96)	(12.45)	(13.30)	(14.73)	(3.42)
$R^2(\%)$	73.08	78.00	77.49	77.93	77.63	13.76
Panel	C. Betwe	een indus	try: sort	firms on ,	\bar{eta}_{imc}	
Industry IMC Beta	Lo	2	3	4	Hi	Hi - Lo
Excess Return (%)	8.52	4.93	4.12	4.07	4.87	-3.64
	(3.94)	(2.16)	(1.70)	(1.61)	(1.71)	(-1.77)
σ (%)	14.67	15.45	16.48	17.17	19.30	13.98
$\alpha(\%)$	4.67	0.72	-0.46	-0.55	-0.47	-5.13
. ,	(4.12)	(0.67)	(-0.43)	(-0.48)	(-0.38)	(-2.61)
β_{MKT}	0.82	0.90	0.98	0.99	1.14	0.32
	(30.47)	(32.97)	(43.05)	(32.35)	(42.73)	(7.27)
$R^2(\%)$	74.28	80.00	83.31	78.18	82.63	12.29

Table IA.IX Double-Sorted Portfolios: Between and Within-Industry IMC Beta

The table shows CAPM alphas and IMC betas of double sorted portfolios: first on the industry average IMC beta $(\bar{\beta}_{imc})$ and then on the deviation from the IMC beta from the industry average $(\beta_{imc} - \bar{\beta}_{imc})$. We use monthly data and annualize alpha estimates by multiplying by 12.

					Within	industrie	S	
CAPM alpha	Between	industries			eta_{imc}	$-ar{eta}_{imc}$		
			Lo	2	3	4	Hi	Hi-Lo
	Lo	4.67	3.93	5.55	6.13	3.76	2.96	-0.97
		(4.12)	(2.07)	(3.82)	(4.42)	(2.80)	(1.81)	(-0.45)
	2	0.72	3.20	1.85	0.39	-0.23	-5.50	-8.70
		(0.67)	(2.03)	(1.30)	(0.25)	(-0.16)	(-2.88)	(-3.61)
ō	3	-0.46	1.03	0.94	0.33	-2.71	-5.24	-6.26
$ar{eta}_{imc}$		(-0.43)	(0.60)	(0.69)	(0.24)	(-1.67)	(-2.52)	(-2.38)
	4	-0.55	1.71	0.90	-1.26	-0.36	-8.20	-9.90
		(-0.48)	(0.93)	(0.62)	(-0.76)	(-0.19)	(-3.39)	(-3.11)
	5	-0.47	3.91	0.44	0.08	-1.92	-1.97	-5.88
		(-0.38)	(2.05)	(0.27)	(0.05)	(-0.93)	(-0.72)	(-1.75)
	Hi–Lo	-5.13						
		(-2.61)						
					Within	industrie	S	
IMC beta	Between	industries			ß.	$-ar{eta}_{imc}$		
					uimc	ho imc		
			Lo	2	3	4	Hi	Hi-Lo
	Lo	0.17	0.12	0.14	0.19	0.39	0.53	0.41
		(2.75)	(1.68)	(2.17)	(2.83)	(5.75)	(6.42)	(8.04)
	2	0.33	0.18	0.27	0.32	$0.5\overset{\circ}{5}$	0.83	0.65
		(5.16)	(2.47)	(3.84)	(4.22)	(6.97)	(8.70)	(8.85)
ō	3	0.42	0.20	0.30	0.45	0.61	0.96	0.76
$ar{eta}_{imc}$		(6.44)	(2.72)	(5.17)	(6.17)	(6.91)	(9.00)	(10.13)
	4	0.52	0.24	0.39	0.60	0.89	1.27	1.03
		(6.43)	(2.93)	(5.04)	(6.05)	(8.02)	(12.57)	(11.83)
	Hi	0.76	0.35	0.55	0.79	1.24	1.62	1.26
		(10.81)	(3.55)	(6.51)	(10.52)	(16.11)	(13.79)	(15.20)
	Hi–Lo	0.59						
		(13.04)	10					

Table IA.X
Asset Pricing Test: IMC Beta Portfolios,
Constrained Risk Premia

of each portfolio. Standard errors are computed using Newey-West with one lag to adjust for autocorrelation in returns. t-statistics are reported Panel A reports asset-pricing tests on 10 portfolios sorted on β_{t-1}^{imc} , where we constrain the factor risk premium to equal the in-sample average return in parentheses. Estimation is done using monthly data. We report annualized estimates of mean returns and alphas by multiplying the monthly estimates by 12. Panel A reports results using the market and IMC portfolios and Panel B reports results using the market and HML portflios.

β^{imc} decile	Lo	2	က	4	ಸಾ	9	7	∞	6	H	Hi - Lo
				Panel	A. Market	t and IMC	F > .				
β^{mkt}	0.86	0.86	0.88	0.92	0.99	1.04	1.06	1.14	1.27	1.39	0.53
	(21.17)	(34.96)	(42.91)	(54.68)	(56.58)	(58.23)	(56.46)	(62.21)	(44.73)	(36.52)	(8.28)
eta^{imc}	-0.48	-0.39	-0.41	-0.33	-0.29	-0.08	-0.01	0.28	0.59	1.00	1.48
	(-9.71)	(-10.67)	(-14.66)	(-7.16)	(-11.05)	(-2.66)	(-0.17)	(4.42)	(10.86)	(10.99)	(17.40)
$\alpha(\%)$	0.88	0.92	1.63	1.97	0.45	0.31	0.02	0.16	-0.55	-2.11	-2.99
	(0.61)	(0.97)	(2.03)	(2.56)	(0.64)	(0.40)	(0.02)	(0.13)	(-0.45)	(-1.26)	(-1.25)
$R^2(\%)$	67.56	82.62	87.02	89.03	91.65	91.73	89.05	87.87	89.85	87.06	65.73
				Panel	B. Market	and HMI	_1				
etamk t	0.84	0.82	0.84	0.88	96.0	1.04	1.07	1.18	1.34	1.53	0.69
	(21.27)	(38.61)	(31.74)	(39.52)	(50.16)	(62.38)	(52.81)	(49.10)	(37.96)	(28.57)	(8.97)
eta^{hml}	0.56	0.34	0.31	0.22	0.22	0.13	0.04	-0.15	-0.41	-0.55	-1.11
	(7.38)	(5.87)	(5.03)	(3.77)	(4.67)	(3.74)	(0.74)	(-3.28)	(-5.20)	(-6.03)	(-7.87)
$\alpha(\%)$	-0.05	0.64	1.53	2.01	0.38	0.02	-0.10	0.01	-0.50	-2.63	-2.58
	(-0.04)	(0.59)	(1.50)	(2.20)	(0.47)	(0.02)	(-0.12)	(0.01)	(-0.33)	(-1.25)	(-0.90)
$R^2(\%)$	66.91	78.30	81.03	85.03	89.19	91.92	80.08	86.22	85.33	76.80	42.80

The table reports time-series asset pricing tests for the decile portfolios sorted on book-to-market, where we constrain the factor risk premium to equal the in-sample average return of each portfolio. Panel A reports results using the market portfolio and IMC. Panel B reports results using the market portfolio and HML. Panel C reports results using the market portfolio, IMC, and SMB. Panel D reports results using the market portfolio, SMB, and the 10-minus-1 IMC beta portfolio.

BE/ME	Lo	2	3	4	5	6	7	8	9	Hi	Hi - Lo
					Panel A	: MKT a	nd IMC				
α	-1.40	0.84	-0.63	0.94	0.47	1.36	0.92	3.02	2.97	4.12	5.52
	(-1.21)	(0.87)	(-0.81)	(1.03)	(0.52)	(1.30)	(0.60)	(2.16)	(1.67)	(2.01)	(1.83)
β^{mkt}	1.03	0.96	1.00	0.89	0.98	0.99	1.02	1.05	1.13	1.11	0.07
	(14.44)	(23.79)	(21.89)	(13.99)	(18.31)	(11.22)	(9.99)	(12.73)	(13.64)	(10.82)	(0.50)
β^{imc}	-0.10	-0.23	-0.24	-0.19	-0.41	-0.41	-0.49	-0.55	-0.51	-0.37	-0.27
	(-1.53)	(-3.82)	(-2.94)	(-2.85)	(-7.28)	(-4.51)	(-5.43)	(-7.17)	(-4.46)	(-3.13)	(-2.28)
R^2	81.55	88.41	90.79	84.95	88.67	82.37	79.70	82.42	73.93	70.07	9.10
					Panel B	: MKT a	nd HML				
β^{mkt}	0.95	0.96	0.99	0.91	0.94	0.92	0.97	1.03	1.07	1.18	0.23
	(46.09)	(47.59)	(52.01)	(36.98)	(38.18)	(36.72)	(45.86)	(46.07)	(40.79)	(32.56)	(5.30)
β^{chml}	-0.42	-0.10	0.17	0.27	0.38	0.50	0.66	0.74	0.76	0.82	1.24
	(-6.00)	(-2.33)	(2.87)	(5.24)	(6.64)	(11.24)	(15.61)	(19.63)	(17.64)	(9.52)	(8.73)
$\alpha(\%)$	0.54	1.63	-0.61	0.48	0.09	0.21	-1.21	0.81	0.48	1.44	0.90
, ,	(0.55)	(1.99)	(-0.71)	(0.49)	(0.10)	(0.24)	(-1.45)	(0.86)	(0.47)	(1.10)	(0.51)
$R^2(\%)$	89.59	90.34	88.77	85.84	85.89	85.51	88.72	88.14	87.42	83.65	54.43
				Р	anel C: M	IKT, IMO	C, and SM	ΙΒ			
α	-0.97	1.30	-0.51	0.89	0.28	1.45	0.66	2.48	1.98	3.15	4.12
	(-0.89)	(1.31)	(-0.67)	(0.98)	(0.33)	(1.41)	(0.46)	(1.87)	(1.30)	(1.55)	(1.43)
β^{mkt}	1.07	1.00	1.01	0.89	0.97	1.00	1.00	1.00	1.04	1.03	-0.04
	(16.42)	(23.47)	(25.97)	(13.85)	(17.34)	(11.95)	(9.44)	(12.32)	(12.11)	(10.62)	(-0.30)
β^{imc}	-0.10	-0.22	-0.24	-0.20	-0.41	-0.41	-0.49	-0.55	-0.52	-0.34	-0.25
	(-1.44)	(-4.02)	(-2.89)	(-2.83)	(-7.29)	(-4.43)	(-5.65)	(-7.90)	(-5.00)	(-3.72)	(-2.21)
β^{smb}	-0.16	-0.17	-0.04	0.02	0.07	-0.04	0.10	0.20	0.37	0.36	0.53
	(-1.59)	(-2.45)	(-0.57)	(0.22)	(1.40)	(-0.30)	(1.18)	(3.09)	(3.63)	(3.68)	(3.22)
R^2	82.80	90.20	90.91	84.98	88.98	82.44	80.18	84.47	79.28	75.05	16.66
			Pa	nel D: Ml	KT, SMB	, and high	n-minus-lo	ow IMC b	eta		
α	-0.38	1.59	-0.43	0.84	0.04	0.98	-0.00	1.88	1.22	2.40	2.78
7.4	(-0.31)	(1.61)	(-0.52)	(0.88)	(0.05)	(1.03)	(-0.00)	(1.77)	(0.93)	(1.30)	(1.01)
β^{mkt}	1.02	0.97	1.00	0.89	0.98	1.03	1.05	1.04	1.10	1.08	0.07
	(18.82)	(19.64)	(25.85)	(14.18)	(18.91)	(15.62)	(13.34)	(18.92)	(17.01)	(15.20)	(0.65)
β^{10m1}	0.05	-0.04	-0.08	-0.08	-0.19	-0.22	-0.28	-0.29	-0.31	-0.24	-0.29
	(1.11)	(-1.06)	(-1.59)	(-2.08)	(-4.74)	(-5.00)	(-7.44)	(-8.77)	(-8.09)	(-6.31)	(-4.09)
β^{smb}	-0.19	-0.16	-0.02	0.05	0.14	0.05	0.20	0.31	0.49	0.46	0.65
	(-1.87)	(-2.26)	(-0.23)	(0.51)	(2.28)	(0.42)	(2.99)	(5.88)	(6.35)	(4.89)	(4.11)
R^2	83.01	88.25	89.64	84.68	89.46	86.01	86.44	89.68	85.45	80.11	32.01

Table IA.XII Calibration Moments - With Fixed Operating Costs

The table compares sample moments to moments in simulated data in a version of the model with fixed costs (operating leverage). Relative to the baseline model, adding operating leverage reduces the level of Q and profitability, reduces the spread in Q, increases a little bit the skewness in the firm distribution, increases the IQR in relative firm size, and increases the correlation between Q and size.

Moment	Data		Model	
	Bata	Median	5%	95%
Firm investment rate, median	0.112	0.122	0.061	0.232
Firm investment rate, IQR	0.157	0.162	0.086	0.265
Cash flows-to-Capital, median	0.160	0.232	0.204	0.253
Cash flows-to-Capital, IQR	0.234	0.222	0.207	0.242
Tobin's Q , median	1.412	1.603	1.024	2.065
Tobin's Q , IQR	2.981	1.059	0.682	1.865
IMC beta, median	0.683	0.710	0.400	1.062
IMC beta, IQR	0.990	0.552	0.428	0.676
Relative firm size, median	0.201	0.664	0.626	0.683
Relative firm size, IQR	0.830	1.278	1.236	1.331
Correlation between Tobin's Q and relative firm size	0.162	0.242	0.127	0.399