2022-2023 MP2I

DM 17, corrigé

PROBLÈME Analyse, calcul d'un déterminant

Partie I. Relation de récurrence

1)

a) Quand on efface la dernière ligne et la première colonne, on obtient une matrice triangulaire inférieure avec des 1 sur la diagonale donc son déterminant est égal à 1.

Quand on efface la dernière ligne et la dernière colonne, on obtient la matrice D_{n-1} qui est de déterminant Δ_{n-1} .

b) Soit $k \in [2, n-1]$. Le coefficient a_k de la dernière ligne est dans la colonne n-k+1. On en déduit alors que la matrice extraite est de la forme :

$$\begin{pmatrix} a_1 & 1 & 0 & \dots & 0 & 0 & \dots & \dots & 0 \\ a_2 & a_1 & 1 & & \vdots & & \vdots & & & \vdots \\ \vdots & & & \ddots & \vdots & & \vdots & & & \vdots \\ a_{n-k-1} & & 1 & \vdots & & & 0 \\ a_{n-k} & \dots & \dots & a_1 & 0 & \dots & \dots & 0 \\ a_{n-k+1} & \dots & \dots & a_2 & 1 & 0 & \dots & 0 \\ \vdots & & & \vdots & & \vdots & & \ddots & \vdots \\ a_{n-1} & \dots & \dots & a_k & a_{k-2} & \dots & 1 \end{pmatrix}$$

On a donc $A = D_{n-k}$ et C qui est triangulaire inférieure avec des 1 sur la diagonale.

2) On effectue un développement du déterminant par rapport à la dernière ligne. D'après la question 1.b, le déterminant de la matrice extraite de D_n où on a effacé la dernière ligne et la colonne n-k est $\det(D_{n-k}) \times \det(C) = \Delta_{n-k}$ (puisque l'on a une matrice triangulaire par blocs). On en déduit donc, d'après la question 1.a (pour les termes dans les coins) que :

$$\Delta_n = (-1)^{n+1} a_n \times 1 + \sum_{k=2}^{n-1} (-1)^{n+(n-k+1)} a_k \Delta_{n-k} + (-1)^{n+n} a_1 \times \Delta_{n-1} = (-1)^{n+1} a_n + \sum_{k=1}^{n-1} (-1)^{k-1} a_k \Delta_{n-k}.$$

Puisque
$$\Delta_0 = 1$$
 et que $(-1)^{k-1} = (-1)^{k-1+2} = (-1)^{k+1}$, on a donc bien $\Delta_n = \sum_{k=1}^n (-1)^{k+1} a_k \Delta_{n-k}$.

3) Pour
$$n = 1$$
, on a $\Delta_1 = a_1 = \frac{1}{2}$ et $\sum_{k=1}^{1} (-1)^{k+1} a_k \Delta_{1-k} = a_1 \Delta_0 = \frac{1}{2}$ donc la propriété est vraie.

Pour
$$n = 2$$
, on a $\Delta_2 = a_1^2 - a_2 = \frac{1}{4} - \frac{3}{8} = -\frac{1}{8}$ et $\sum_{k=1}^{2} (-1)^{k+1} a_k \Delta_{2-k} = a_1 \Delta_0 = \frac{1}{2} \times \frac{1}{2} - \frac{3}{8} \times 1 = -\frac{1}{8}$ donc la relation est également vraie aux rangs 1 et 2.

Partie II. Détermination de Δ_n

4) Soit I un intervalle de \mathbb{R} , x_0 dans l'intérieur de I et f de classe \mathcal{C}^n sur I. Alors, f admet un développement limité à l'ordre n en x_0 et :

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o_{x_0}((x - x_0)^n).$$

En $x_0 = 0$ (ce qui sera le cas dans la suite), on obtient $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k + o(x^n)$.

Soit $n \in [0, N]$. Pour obtenir un terme en x^n dans le développement limité de f(x)g(x) en 0, il faut faire le produit d'un terme en $b_k x^k$ (dans le développement limité de f) avec un terme en $c_{n-k} x^{n-k}$ (dans le développement limité de g). On peut effectuer ceci pour tout $k \in [0, n]$. On en déduit que le coefficient de x^n dans le développement limité de f(x)g(x) en 0 est $\sum_{k=0}^n b_k c_{n-k}$.

- 5) f et g sont de classe \mathcal{C}^{∞} sur $I =]-1, +\infty[$ par composition de fonctions usuelles \mathcal{C}^{∞} . D'après la formule de Taylor-Young, elles admettent donc un développement limité à tout ordre en 0.
- 6) Pour $k \in \mathbb{N}$, on pose $\mathcal{P}(k)$: « $\forall x \in I$, $f^{(k)}(x) = (-1)^k (k!) a_k (1+x)^{-1/2-k}$ ».
 - L'hypothèse est vraie au rang 0. En effet, on a $a_0 = 1$, 0! = 1 et $\forall x \in I$, $f^{(0)}(x) = (1+x)^{-1/2}$.
 - Soit $k \in \mathbb{N}$. Supposons l'hypothèse vraie au rang k. Sur I, $f^{(k)}$ est dérivable d'après la question précédente et on a d'après l'hypothèse de récurrence :

$$f^{(k+1)}(x) = (f^{(k)})'(x)$$

$$= (-1)^k (k!) a_k (-1/2 - k) (1+x)^{-1/2-k-1}$$

$$= (-1)^k + 1((k+1)!) a_k \frac{2k+1}{2k+2} (1+x)^{-1/2-(k+1)}$$

$$= (-1)^{k+1} ((k+1)!) a_{k+1} (1+x)^{-1/2-(k+1)}.$$

On a donc bien l'hypothèse au rang k+1

- On a donc la propriété pour tout $k \in \mathbb{N}$.
- 7) Pour $x \in I$, on a f(x)g(x) = 1. D'après la question 4, puisque f et g sont \mathcal{C}^{∞} , alors $f \times g$ également et le coefficient en x^n de son DL à l'ordre n est $\sum_{k=0}^n b_k c_{n-k}$ où $b_k = \frac{f^{(k)}(0)}{k!}$ d'après la formule de

Taylor-Young. D'après la question 6, on en déduit que $b_k = (-1)^k a_k$. De plus, puisque f(x)g(x) = 1, le coefficient de x^n de son DL à l'ordre n vaut 0 pour $n \in \mathbb{N}^*$. Par unicité du développement limité, on en déduit que pour $n \in \mathbb{N}^*$:

$$\sum_{k=0}^{n} (-1)^k a_k c_{n-k} = 0.$$

Puisque $a_0 = 1$, on a donc $c_n + \sum_{k=1}^n (-1)^k a_k c_{n-k} = 0 \Leftrightarrow c_n = \sum_{k=1}^n (-1)^{k+1} a_k c_{n-k}$.

- 8) Montrons par récurrence forte sur $n \in \mathbb{N}$ la propriété $\mathcal{P}(n)$: « $\Delta_n = c_n$ ».
 - La propriété est vraie au rang 0 $(c_0 = \Delta_0 = 1 \text{ car } c_0 = g(0) = 1).$
 - Soit $n \in \mathbb{N}^*$. Supposons que pour tout $k \in [0, n-1]$, $\mathcal{P}(k)$ soit vraie. On a alors d'après les question 2 et 3 (pour la relation de récurrence vérifiée par Δ_n qui est valable pour tout $n \in \mathbb{N}^*$) et 7:

2

$$c_n = \sum_{k=1}^n (-1)^{k+1} a_k c_{n-k}$$

$$= \sum_{k=1}^n (-1)^{k+1} a_k \Delta_{n-k} \qquad \text{(d'après l'hypothèse de récurrence)}$$

$$= \Delta_n.$$

- On a donc bien montré la propriété voulue par récurrence.
- 9) On a pour tout $x \in I$, $g'(x) = \frac{1}{2}(1+x)^{-1/2} = \frac{f(x)}{2}$. On en déduit que pour tout $n \in \mathbb{N}^*$, $g^{(n)}(0) = \frac{f^{(n-1)(0)}}{2} = \frac{(-1)^{n-1}(n-1)!a_{n-1}}{2}.$
- 10) Toujours d'après la formule de Taylor-Young, pour $n \in \mathbb{N}^*$, on a $c_n = \frac{g^{(n)}(0)}{n!} = \frac{(-1)^{n-1}a_{n-1}}{2n}$. D'après la question 8, on en déduit que $\forall n \in \mathbb{N}^*$, $\Delta_n = (-1)^{n-1}\frac{a_{n-1}}{2n}$. De plus, on a :

$$a_n = \frac{1 \times 3 \times 5 \dots \times (2n-1)}{2 \times 4 \times 6 \dots \times (2n)}$$

$$= \frac{(2n)!}{(2 \times 4 \times 6 \dots \times (2n))^2}$$

$$= \frac{(2n)!}{(2^n n!)^2}$$

$$= \frac{(2n)!}{2^{2n} (n!)^2}.$$

On a donc finalement pour $n \in \mathbb{N}^*$, $\Delta_n = (-1)^{n-1} \frac{(2n-2)!}{2^{2n-1}((n-1)!)^2 n}$.