Homework 7

ALECK ZHAO

March 29, 2017

- 1. Let R be a ring, and let σ be an automorphism of R. Show that $\{a \in R \mid \sigma(a) = a\}$ is a subring of R, and a subfield if R is a field.
- 2. Let F be a finite field with p^n elements for p a prime. Show that each element $a \in F$ has a pth root in F, i.e. there exists $b \in F$ such that $b^p = a$. Is b unique? By contrast, for K := F(x) the fraction field of the polynomial ring F[x], show that x has no pth root in K.

Section 6.4: Finite Fields

- 8. Find $[\mathbb{F}_{p^n} : \mathbb{F}_{p^m}]$ where $m \mid n$.
- 18. (a) Show that a monic irreducible polynomial $f \in F[x]$ has no repeated root in any splitting field over F if and only if $f \ncong 0$ in F[x].
 - (b) If char F = 0, show that no irreducible polynomial has a repeated root in any splitting field over F.
- 19. If char F = p, show that a monic irreducible polynomial $f \in F[x]$ has a repeated root in some splitting field if and only if $f = g(x^p)$ for some $g \in F[x]$. (Hint: Ex 18)
- 21. Let p be a prime and write $f = x^p x 1$. Show that the splitting field of f over \mathbb{F}_p is $\mathbb{F}_p(u)$, where u is any root of f. (Hint: Compute $f(u+a), a \in \mathbb{F}_p$) tin
- 22. (a) Let f be a monic irreducible polynomial of degree n in $\mathbb{F}_p[x]$. Show that f divides $x^{p^n} x$ in $\mathbb{F}_p[x]$. (Hint: First work over $\mathbb{F}_p(u)$, f(u) = 0. Use the uniqueness in Theorem 4 § 4.1.)
 - (b) Show that the degree of each monic irreducible divisor f of $x^{p^n} x$ is a divisor of n. (Hint: Theorem 5)
 - (c) Factor $x^8 x$ into irreducibles in $\mathbb{F}_2[x]$.

Section 4.5: Symmetric Polynomials

- 14. Given $\sigma \in S_n$, define $\theta_{\sigma} : R[x_1, \dots, x_n] \to R[x_1, \dots, x_n]$ by $\theta_{\sigma}[f(x_1, \dots, x_n)] = f(x_{\sigma_1}, \dots, x_{\sigma_n})$.
 - (a) Show that θ_{σ} is a ring automorphism of $R[x_1, \dots, x_n]$.
 - (b) Show that $\sigma \mapsto \theta_s$ is a group homomorphism $S_n \to \operatorname{aut} R[X_1, \cdots, x_n]$, which is injective.
 - (c) If $G \subseteq \text{aut } R[x_1, \cdots, x_n]$ is a subgroup, show that $S_G = \{ f \mid \theta(f) = f, \forall \theta \in G \}$ is a subring of $R[x_1, \cdots, x_n]$.