Bioinformatics I

Lecture 05:

Alignment in Linear Space and Normalized Sequence Alignment

slides by Dr. Sebastian Will
Bioinformatics Group, University Freiburg

Summer 2012

Global Sequence Alignment in Linear Space — The Algorithm of Hirschberg

Recall Global Sequence Alignment

IN: sequences
$$a = a_1 \dots a_n$$
 and $b = b_1 \dots b_m$ in Σ^*

we defined: alignment
$$\mathcal{A}=(a^{\diamond},b^{\diamond})$$
 of a and b

cost function
$$w(\mathcal{A}) = w(a^{\diamond}, b^{\diamond})$$

$$w(a^{\diamond},b^{\diamond}) := \sum_{1 \leq k \leq |\mathcal{A}|} w(a_k^{\diamond},b_k^{\diamond})$$

$$w(x,y) = \begin{cases} \delta & x,y \in \Sigma, x \neq y \\ \gamma & x = -\text{ or } y = -0 \\ 0 & \text{ otherwise} \end{cases}$$

OUT: alignment
$$A^*$$
 of a and b with minimal cost $w(A^*)$

- Algorithm?
- Complexity?

$$D(i,j) = \\ \min \begin{cases} D(i-1,j-1) + w(a_i,b_j) \\ D(i-1,j) + \gamma \\ D(i,j-1) + \gamma \end{cases}$$

$$D(i,j) =$$

$$\min egin{cases} D(i-1,j-1) + w(a_i,b_j) \ D(i-1,j) + \gamma \ D(i,j-1) + \gamma \end{cases}$$

Observations:

- Need only row i-1 to fill row i
- ullet Can forget rows $i^\prime < i-1$
- $\implies D(n, m)$ in LINEAR SPACE

Minimum Cost in Linear Space

```
Pseudocode
   for j := 0 to m do
      D^0[j] := j\gamma // \text{ init row } 0
   end for
   for i := 1 to n do
      D^1[0] := i\gamma // \text{ init column } 0
      for j := 1 to m do
         D^1[j] := \min egin{cases} D^0[j-1] + w(a_i,b_j) \ D^0[j] + \gamma \ D^1[j-1] + \gamma \end{cases}
      end for
      swap vectors D^0 and D^1 //(!)
   end for
```


Stores only two vectors D^0 and D^1 , i.e. LINEAR SPACE

Minimum Cost in Linear Space

```
Pseudocode
   for j := 0 to m do
      D^0[j] := j\gamma // \text{ init row } 0
   end for
   for i := 1 to n do
      D^1[0] := i\gamma // \text{ init column } 0
      for j := 1 to m do
         D^1[j] := \min egin{cases} D^0[j-1] + w(a_i,b_j) \ D^0[j] + \gamma \ D^1[j-1] + \gamma \end{cases}
      end for
      swap vectors D^0 and D^1 //(!)
   end for
```


Stores only two vectors D^0 and D^1 , i.e. LINEAR SPACE

Minimum Cost in Linear Space

```
Pseudocode
   for j := 0 to m do
      D^0[j] := j\gamma // \text{ init row } 0
   end for
   for i := 1 to n do
      D^1[0] := i\gamma // \text{ init column } 0
      for j := 1 to m do
         D^1[j] := \min egin{cases} D^0[j-1] + w(a_i,b_j) \ D^0[j] + \gamma \ D^1[j-1] + \gamma \end{cases}
      end for
      swap vectors D^0 and D^1 //(!)
   end for
```

Stores only two vectors D^0 and D^1 , i.e. LINEAR SPACE

Even less space: store only one row and one variable (pseudocode not given)

No direct traceback!

- Trace intersects row i: where?
 - Compute row i in O(n) space \Rightarrow prefix alignment scores: $D(i,j) = \min\{w(\mathcal{A}) \mid \mathcal{A} \text{ alig. of } a_1, \ldots, a_i \text{ and } b_1, \ldots b_j\}$
 - Compute suffix alignment scores (1) $D'(i,j) = \min\{w(\mathcal{A}) \mid \mathcal{A} \text{ alig. of }$
 - AND combine with prefix alignment (2!)

 ⇒ total alignment score "through
 - look for minimum $D(i,j) + D'(i,j) \Rightarrow$
- "naive" linear space alignment
 "do this for each row": O(n³) time!

- No direct traceback!
- Trace intersects row i: where?
 - Compute row i in O(n) space \Rightarrow prefix alignment scores: $D(i,j) = \min\{w(A) \mid A \text{ alig. of } a_1, \ldots, a_i \text{ and } b_1, \ldots b_j\}$
 - Compute suffix alignment scores (1!) $D'(i,j) = \min\{w(A) \mid A \text{ alig. of } a \text{ and } b \text{ and } b \text{ arise}\}$

- look for minimum $D(i,j) + D'(i,j) \Rightarrow (i,j)$ on trace
- "naive" linear space alignment "do this for each row": $O(n^3)$ time!

- No direct traceback!
- Trace intersects row *i*: where?
 - Compute row i in O(n) space \Rightarrow prefix alignment scores: $D(i,j) = \min\{w(A) \mid A \text{ alig. of } a_1, \dots, a_i \text{ and } b_1, \dots b_j\}$
 - Compute suffix alignment scores (1!) $D'(i,j) = \min\{w(A) \mid A \text{ alig. of } a$

- look for minimum $D(i,j) + D'(i,j) \Rightarrow (i,j)$ on trace
- "naive" linear space alignment "do this for each row": $O(n^3)$ time!

- No direct traceback!
- Trace intersects row i: where?
 - Compute row i in O(n) space \Rightarrow prefix alignment scores: $D(i,j) = \min\{w(A) \mid A \text{ alig. of } a_1, \dots, a_i \text{ and } b_1, \dots b_j\}$
 - Compute suffix alignment scores (1!) $D'(i,j) = \min\{w(A) \mid A \text{ alig. of } a_{i+1}, \ldots, a_n \text{ and } b_{i+1}, \ldots b_m\}$

- look for minimum $D(i,j) + D'(i,j) \Rightarrow$ (i, i) on trace
- "naive" linear space alignment "do this for each row": $O(n^3)$ time!

(1!):

$$D'(i, m) = i\gamma, \quad D'(n, j) = j\gamma$$

 $D'(i, j) =$

$$\min \begin{cases} D'(i+1, j+1) + w(a_{i+1}, b_{j+1}) \\ D'(i+1, j) + \gamma \\ D'(i, j+1) + \gamma \end{cases}$$

- No direct traceback!
- Trace intersects row *i*: where?
 - Compute row i in O(n) space \Rightarrow prefix alignment scores: $D(i,j) = \min\{w(A) \mid A \text{ alig. of } a_1, \ldots, a_i \text{ and } b_1, \ldots b_i\}$
 - Compute suffix alignment scores (1!) $D'(i,j) = \min\{w(A) \mid A \text{ alig. of } a_{i+1}, \ldots, a_n \text{ and } b_{i+1}, \ldots b_m\}$

- look for minimum $D(i,j) + D'(i,j) \Rightarrow (i,j)$ on trace
- "naive" linear space alignment "do this for each row": $O(n^3)$ time!

(2!): by Example
$$a = ACCT$$
, $b = AGCT$, $i = 2$ $D(2,3) = w(A-C AGC)$ $D'(2,3) = w(CT -T)$

$$D(2,3) + D'(2,3) = w(\frac{A-CCT}{AGC-T})$$

- No direct traceback!
- Trace intersects row i: where?
 - Compute row i in O(n) space \Rightarrow prefix alignment scores: $D(i,j) = \min\{w(\mathcal{A}) \mid \mathcal{A} \text{ alig. of } a_1, \ldots, a_i \text{ and } b_1, \ldots b_j\}$
 - Compute suffix alignment scores (1!) $D'(i,j) = \min\{w(A) \mid A \text{ alig. of } a_{i+1}, \dots, a_n \text{ and } b_{i+1}, \dots b_m\}$

- look for minimum $D(i,j) + D'(i,j) \Rightarrow (i,j)$ on trace
- "naive" linear space alignment "do this for each row": $O(n^3)$ time

- No direct traceback!
- Trace intersects row i: where?
 - Compute row i in O(n) space \Rightarrow prefix alignment scores: $D(i,j) = \min\{w(\mathcal{A}) \mid \mathcal{A} \text{ alig. of } a_1, \ldots, a_i \text{ and } b_1, \ldots b_j\}$
 - Compute suffix alignment scores (1!) $D'(i,j) = \min\{w(A) \mid A \text{ alig. of } a_{i+1}, \ldots, a_n \text{ and } b_{i+1}, \ldots b_m\}$

- look for minimum $D(i,j) + D'(i,j) \Rightarrow (i,j)$ on trace
- "naive" linear space alignment "do this for each row": $O(n^3)$ time!

Divide&Conquer: The Hirschberg Algorithm

pseudocode TRACE(a, b)

- 1. Find trace cell (i,j) in row $i := \lceil n/2 \rceil$
- 2. Divide problem "find trace for $a_1 ldots a_n$ and $b_1 ldots b_m$ " into subproblems
 - a) TRACE $(a_1 \ldots a_{i-1}, b_1 \ldots b_j)$
 - b) TRACE $(a_{i+1} \ldots a_n, b_j \ldots b_m)$
- 3. Solve subproblems recursively (terminate at ≤ 1 rows)

Note: everything is done in LINEAR SPACE

Divide&Conquer: The Hirschberg Algorithm

pseudocode TRACE(a, b)

- 1. Find trace cell (i,j) in row $i := \lceil n/2 \rceil$
- 2. Divide problem "find trace for $a_1 ldots a_n$ and $b_1 ldots b_m$ " into subproblems
 - a) TRACE $(a_1 \dots a_{i-1}, b_1 \dots b_j)$
 - b) TRACE $(a_{i+1} \ldots a_n, b_j \ldots b_m)$
- 3. Solve subproblems recursively (terminate at ≤ 1 rows)

Note: everything is done in LINEAR SPACE

Divide&Conquer: The Hirschberg Algorithm

pseudocode TRACE(a, b)

- 1. Find trace cell (i,j) in row $i := \lceil n/2 \rceil$
- 2. Divide problem "find trace for $a_1 ldots a_n$ and $b_1 ldots b_m$ " into subproblems
 - a) TRACE $(a_1 \ldots a_{i-1}, b_1 \ldots b_j)$
 - b) TRACE $(a_{i+1} \dots a_n, b_j \dots b_m)$
- 3. Solve subproblems recursively (terminate at ≤ 1 rows)

Note: everything is done in LINEAR SPACE

Hirschberg Runs in $O(n^2)$ Time

Proof:

by solving recursion for runtime T(n, m):

$$T(0,m)=0 \qquad T(1,m)=m$$

$$T(n,m) = nm + T(\lceil n/2 \rceil - 1, j) + T(n - \lceil n/2 \rceil - 1, m - j)$$

Claim: $T(n,m) \le 2nm$

Proof: by induction on n

Ind. start: n=0, n=m

Ind. step:

$$T(n,m) \leq_{(I.H.)} nm + 2(\lceil n/2 \rceil - 1)j + 2(n - \lceil n/2 \rceil - 1)(m - j)$$

$$\leq nm + 2(\lceil n/2 \rceil - 1)(j + m - j)$$

$$< nm + nm$$

Conclusions: Linear space alignment

- Computing optimal alignment scores in linear space is simple
- One can compute prefix and suffix alignment scores by DP
- Hirschberg algorithm: linear space but only twice the time
- Divide and conquer: general algorithmic principle
- Run-time of D&C algorithm shown by induction
- Extensions possible, e.g. affine gap cost

Normalized Local Sequence Alignment

[Arslan et al., Bioinformatics 2001]

Fractional Programming using Dinkelbach's Algorithm

Recall Local Sequence Alignment

IN: sequences
$$a = a_1 \dots a_n$$
 and $b = b_1 \dots b_m$ define: a local alignment $\mathcal{A} = (a^{\diamond}, b^{\diamond})$ of a and b is a (global) alignment of subsequences of a and b similarity function $s(\mathcal{A}) = s(a^{\diamond}, b^{\diamond})$
$$s(a^{\diamond}, b^{\diamond}) := \sum_{1 \leq k \leq |\mathcal{A}|} s(a_k^{\diamond}, b_k^{\diamond})$$

$$s(x, y) = \begin{cases} \gamma & x = - \text{ or } y = - \\ \sigma & x = y \\ y & x \neq y \end{cases}$$

OUT: local alignment \mathcal{A}^* of a and b with maximum similarity $s(\mathcal{A}^*)$

sequencesa = GCATTUGCCUUb = CTTGACCATU

• similarity
$$s(x,y) = \begin{cases} -2 & x = - \text{ or } y = -\\ 3 & x = y\\ -1 & x \neq y \end{cases}$$

• Local alignment with maximum similarity: (global alignment of subsequences a_4, \ldots, a_9 and b_2, \ldots, b_7) $a^{\diamond} = \text{TTUG-CC}$ $b^{\diamond} = \text{TTCGACG}, s(a^{\diamond}, b^{\diamond}) = 3 + 3 - 2 + 3 - 2 + 3 + 3 = 11$

• Another local alignment (g.a. of a_2 , a_3 , a_4 and b_7 , b_8 , b_9)

$$\mathcal{A} = \begin{pmatrix} \text{CAT} \\ \text{CAT} \end{pmatrix}, \ s(\mathcal{A}) = 3 + 3 + 3 = 9$$

sequencesa =GCATTUGCCUUb =CTTGACCATU

• similarity
$$s(x,y) = \begin{cases} -2 & x = - \text{ or } y = -\\ 3 & x = y\\ -1 & x \neq y \end{cases}$$

• Local alignment with maximum similarity: (global alignment of subsequences a_4,\ldots,a_9 and b_2,\ldots,b_7) $a^\diamond=\text{TTUG-CC}$ $b^\diamond=\text{TT-GACC}$, $s(a^\diamond,b^\diamond)=3+3-2+3-2+3+3=11$

• Another local alignment (g.a. of a_2 , a_3 , a_4 and b_7 , b_8 , b_9)

$$A = \begin{pmatrix} \text{CAT} \\ \text{CAT} \end{pmatrix}$$
, $s(A) = 3 + 3 + 3 = 9$

sequencesa = GCATTUGCCUUb = CTTGACCATU

• similarity
$$s(x,y) = \begin{cases} -2 & x = - \text{ or } y = -\\ 3 & x = y\\ -1 & x \neq y \end{cases}$$

- Local alignment with maximum similarity: (global alignment of subsequences a_4,\ldots,a_9 and b_2,\ldots,b_7) $a^\diamond=\text{TTUG-CC}$ $b^\diamond=\text{TT-GACC}$, $s(a^\diamond,b^\diamond)=3+3-2+3-2+3+3=11$
- Another local alignment (g.a. of a_2 , a_3 , a_4 and b_7 , b_8 , b_9)

$$A = \begin{pmatrix} CAT \\ CAT \end{pmatrix}$$
, $s(A) = 3 + 3 + 3 = 9$

sequencesa = GCATTUGCCUUb = CTTGACCATU

• similarity
$$s(x,y) = \begin{cases} -2 & x = - \text{ or } y = -\\ 3 & x = y\\ -1 & x \neq y \end{cases}$$

- Local alignment with maximum similarity: (global alignment of subsequences a_4,\ldots,a_9 and b_2,\ldots,b_7) $a^\diamond=\text{TTUG-CC}$ $b^\diamond=\text{TT-GACC}$, $s(a^\diamond,b^\diamond)=3+3-2+3-2+3+3=11$
- Another local alignment (g.a. of a_2 , a_3 , a_4 and b_7 , b_8 , b_9)

$$A = \begin{pmatrix} CAT \\ CAT \end{pmatrix}$$
, $s(A) = 3 + 3 + 3 = 9$ Better?

Drawbacks of "Smith-Waterman" Local Alignment: **Shadowing**

longer alignments "shadow" shorter ones

Drawbacks of "Smith-Waterman" Local Alignment: Shadowing

Non-overlapping and overlapping shadowing

Drawbacks of "Smith-Waterman" Local Alignment: Mosaic Effect

poor "middle parts" hidden in overall
 scoring

Overcoming the Drawbacks of Local Alignment

Overcoming the Drawbacks of Local Alignment

"Smith-Waterman"-similarity does not consider length

Overcoming the Drawbacks of Local Alignment

"Smith-Waterman"-similarity does not consider length

Better "similarity": $\frac{s(A)}{\text{length of subsequences in } A}$

In example a = GCATTUGCCUU, b = CTTGACCATU, "shadowing":

$$sigg(egin{array}{c} ext{TTUG-CC} \ ext{TT-GACC} \end{array}igg) > sigg(egin{array}{c} ext{CAT} \ ext{CAT} \ \end{array}igg)$$
 but: $sigg(egin{array}{c} ext{TTUG-CC} \ ext{TT-GACC} \ \end{array}igg) < rac{sigg(egin{array}{c} ext{CAT} \ ext{CAT} \ \end{array}igg)}{| ext{CAT}| + | ext{CAT}|$

Overcoming Drawbacks: Normalized Similarity

Given:

- sequences $a = a_1 \dots a_n$ and $b = b_1 \dots b_m$
- local alignment $\mathcal{A} = (a^{\diamond}, b^{\diamond})$ of a and b= global alignment of subsequences of $a_i \dots a_j$ and $b_k \dots b_l$

Define.

• length of alignment subsequences

$$\llbracket \mathcal{A}
rbracket = |\mathsf{a}_i \dots \mathsf{a}_j| + |\mathsf{b}_k \dots \mathsf{b}_l|$$

normalized similarity

$$ns(A) := \frac{s(A)}{\llbracket A \rrbracket + L}$$

Overcoming Drawbacks: Normalized Similarity

Given:

- sequences $a = a_1 \dots a_n$ and $b = b_1 \dots b_m$
- local alignment $\mathcal{A} = (a^{\diamond}, b^{\diamond})$ of a and b = global alignment of subsequences of $a_i \dots a_j$ and $b_k \dots b_l$

Define:

length of alignment subsequences

$$\llbracket \mathcal{A} \rrbracket := |a_i \dots a_j| + |b_k \dots b_l|$$

normalized similarity

$$ns(\mathcal{A}) := \frac{s(\mathcal{A})}{\llbracket \mathcal{A} \rrbracket + L}$$

Overcoming Drawbacks: Normalized Similarity

Given:

- sequences $a = a_1 \dots a_n$ and $b = b_1 \dots b_m$
- local alignment $\mathcal{A}=(a^{\diamond},b^{\diamond})$ of a and b = global alignment of subsequences of $a_i\ldots a_j$ and $b_k\ldots b_l$

Define:

length of alignment subsequences

$$\llbracket \mathcal{A} \rrbracket := |a_i \dots a_j| + |b_k \dots b_l|$$

normalized similarity

$$ns(\mathcal{A}) := \frac{s(\mathcal{A})}{\llbracket \mathcal{A} \rrbracket + L}$$

constant L controls dependency of ns(A) on length

Effect of constant *L*

${\cal A}$	$s(\mathcal{A})$	$ns(\mathcal{A})$ L=0 $L=1$ $L=21$ $L=50$			
		L=0	L = 1	L = 21	L = 50
(TTUG-CC TT-GACC)	11	0.92	0.85	0.33	0.18
$\left(\begin{array}{c} \mathtt{CAT} \\ \mathtt{CAT} \end{array}\right)$	9	1.5	1.29	0.33	0.16
$\begin{pmatrix} c \\ c \end{pmatrix}$	3	1.5	1	0.14	0.06

Normalized Local Alignment

IN: sequences
$$a = a_1 \dots a_n$$
 and $b = b_1 \dots b_m$

$$ns(\mathcal{A}) := \frac{s(\mathcal{A})}{\llbracket \mathcal{A} \rrbracket + L}$$

OUT: local alignment \mathcal{A}^* of a and b with maximum normalized similarity $\lambda^* = ns(\mathcal{A}^*)$

no algorithm details today ...

- 1. Guess λ^* find best local alignment \mathcal{A}^* $\lambda^* := ns(\mathcal{A}^*)$
- 2. (Try to) improve: find better λ^* For this purpose, set $\lambda := \lambda^*$ and find new λ^* with $\lambda^* \lambda \ge 0$ Note: In one step, we cannot maximize $\lambda^* \lambda = ns(A) \lambda = \frac{s(A)}{\|A\| + L} \lambda$. Thus, maximize $(\lambda^* \lambda)(\|A\| + L) = s(A) \lambda(\|A\| + L)$ (over all local alignments A; let A^* be the best alignment).
- 3. Iterate with new estimation $\lambda^* := ns(A^*)$ until convergence (i.e. $\lambda = \lambda^*$).

- 1. Guess λ^* find best local alignment \mathcal{A}^* $\lambda^* := ns(\mathcal{A}^*)$
- 2. (Try to) improve: find better λ^* For this purpose, set $\lambda := \lambda^*$ and find new λ^* with $\lambda^* \lambda \geq 0$. Note: In one step, we cannot maximize $\lambda^* \lambda = ns(\mathcal{A}) \lambda = \frac{s(\mathcal{A})}{\|\mathcal{A}\| + L} \lambda$. Thus, maximize $(\lambda^* \lambda)(\|\mathcal{A}\| + L) = s(\mathcal{A}) \lambda(\|\mathcal{A}\| + L)$ (over all local alignments \mathcal{A} ; let \mathcal{A}^* be the best alignment).
- 3. Iterate with new estimation $\lambda^* := ns(A^*)$ until convergence (i.e. $\lambda = \lambda^*$).

- 1. Guess λ^* find best local alignment \mathcal{A}^* $\lambda^* := ns(\mathcal{A}^*)$
- 2. (Try to) improve: find better λ^* For this purpose, set $\lambda := \lambda^*$ and find new λ^* with $\lambda^* \lambda \geq 0$. Note: In one step, we cannot maximize $\lambda^* \lambda = ns(\mathcal{A}) \lambda = \frac{s(\mathcal{A})}{\|\mathcal{A}\| + L} \lambda$. Thus, maximize $(\lambda^* \lambda)(\|\mathcal{A}\| + L) = s(\mathcal{A}) \lambda(\|\mathcal{A}\| + L)$ (over all local alignments \mathcal{A} ; let \mathcal{A}^* be the best alignment).
- 3. Iterate with new estimation $\lambda^* := ns(A^*)$ until convergence (i.e. $\lambda = \lambda^*$).

- 1. Guess λ^* find best local alignment \mathcal{A}^* $\lambda^* := ns(\mathcal{A}^*)$
- 2. (Try to) improve: find better λ^* For this purpose, set $\lambda := \lambda^*$ and find new λ^* with $\lambda^* \lambda \geq 0$. Note: In one step, we cannot maximize $\lambda^* \lambda = ns(\mathcal{A}) \lambda = \frac{s(\mathcal{A})}{\|\mathcal{A}\| + L} \lambda$. Thus, maximize $(\lambda^* \lambda)(\|\mathcal{A}\| + L) = s(\mathcal{A}) \lambda(\|\mathcal{A}\| + L)$ (over all local alignments \mathcal{A} ; let \mathcal{A}^* be the best alignment).
- 3. Iterate with new estimation $\lambda^* := ns(A^*)$ until convergence (i.e. $\lambda = \lambda^*$).

Dinkelbach's algorithm Converges to Best Normalized Local Alignment

Define
$$s_{\lambda}(A) := s(A) - \lambda(\llbracket A \rrbracket + L)$$

Theorem:

In step 2 of Dinkelbach's Algorithm,

- i) $s_{\lambda}(\mathcal{A}^*) >= 0$
- ii) $\lambda = ns(A)$ is optimum if and only if $s_{\lambda}(A^*) = 0$.

This implies λ^* converges to best normalized alignment score.

Proof: ...

Dinkelbach's algorithm Converges to Best Normalized Local Alignment

Define
$$s_{\lambda}(A) := s(A) - \lambda(\llbracket A \rrbracket + L)$$

Theorem:

In step 2 of Dinkelbach's Algorithm,

- i) $s_{\lambda}(\mathcal{A}^*) >= 0$
- ii) $\lambda = ns(A)$ is optimum if and only if $s_{\lambda}(A^*) = 0$.

This implies λ^* converges to best normalized alignment score.

Proof:

i) we know: $\lambda = ns(\mathcal{A})$ for some local alignment \mathcal{A} , therefore: $s_{\lambda}(\mathcal{A}) = s(\mathcal{A}) - \lambda(\llbracket \mathcal{A} \rrbracket) = (\llbracket \mathcal{A} \rrbracket + L)(ns(\mathcal{A}) - \lambda)$ $\llbracket \mathcal{A} \rrbracket + L > 0$; $ns(\mathcal{A}) = \lambda \Rightarrow ns(\mathcal{A}) - \lambda = 0$ Since $s_{\lambda}(\mathcal{A}) = 0$, $\max_{\mathcal{A}} s_{\lambda}(\mathcal{A}) \geq 0$

Dinkelbach's algorithm Converges to Best Normalized Local Alignment

Define
$$s_{\lambda}(\mathcal{A}) := s(\mathcal{A}) - \lambda(\llbracket \mathcal{A} \rrbracket + L)$$

Theorem:

In step 2 of Dinkelbach's Algorithm,

- i) $s_{\lambda}(A^*) >= 0$
- ii) $\lambda = ns(A)$ is optimum if and only if $s_{\lambda}(A^*) = 0$.

This implies λ^* converges to best normalized alignment score.

Proof:

ii) "
$$\Longrightarrow$$
": $s_{\lambda}(\mathcal{A}^*) = (\llbracket \mathcal{A}^* \rrbracket + L)(ns(\mathcal{A}^*) - \lambda) \leq 0$, since $\llbracket \mathcal{A}^* \rrbracket + L > 0$ and $ns(\mathcal{A}^*) - \lambda \leq 0$. With (i): $s_{\lambda}(\mathcal{A}^*) = 0$.

" \Leftarrow ": Let $\max_{\mathcal{A}} s_{\lambda}(\mathcal{A}) = 0$. Assume \mathcal{A} is not optimal, i.e. there is an \mathcal{A}' with $ns(\mathcal{A}') > \lambda$, then $s_{\lambda}(\mathcal{A}') = (\llbracket \mathcal{A}' \rrbracket + L)(ns(\mathcal{A}') - \lambda) > 0$, since $\llbracket \mathcal{A}' \rrbracket + L > 0$ and $ns(\mathcal{A}') - \lambda > 0$, contradicting $\max_{\mathcal{A}} s_{\lambda}(\mathcal{A}) = 0$.

How to maximize $s_{\lambda}(A) := s(A) - \lambda(\llbracket A \rrbracket + L)$?

Maximize $s_{\lambda}(A)$ by solving an instance of local alignment:

$$\begin{split} s_{\lambda}(\mathcal{A}) & \operatorname{maximum} \\ &\equiv s(\mathcal{A}) - \lambda(\llbracket \mathcal{A} \rrbracket + L) \operatorname{maximum} \\ &\equiv s(\mathcal{A}) - \lambda \llbracket \mathcal{A} \rrbracket - \lambda L \operatorname{maximum} \\ &\equiv s(\mathcal{A}) - \lambda \llbracket \mathcal{A} \rrbracket \operatorname{maximum} \\ &\equiv \sum_k s(a_k^{\diamond}, b_k^{\diamond}) - \lambda \llbracket \mathcal{A} \rrbracket \operatorname{maximum} \\ &\equiv \sum_k (s(a_k^{\diamond}, b_k^{\diamond}) - \lambda \llbracket \mathcal{A} \rrbracket \operatorname{maximum} \\ &\equiv \sum_k (s(a_k^{\diamond}, b_k^{\diamond}) - \{\lambda \text{ if } a_k^{\diamond} \neq -\} - \{\lambda \text{ if } b_k^{\diamond} \neq -\}) \operatorname{maximum} \\ &\equiv s'(\mathcal{A}) \operatorname{maximum}, \operatorname{where } s' \operatorname{uses modified base similarity} \\ &s'(x, y) = \begin{cases} s(x, y) - 2\lambda & x, y \in \Sigma \\ s(x, y) - \lambda & x = - \operatorname{or} y = - \end{cases} \end{split}$$

a = GCATTUGCCUU and b = CTTGACCATU $s(x, y) = \{3 \text{ match}; -1 \text{ mismatch}; -2 \text{ gap}\}; L:=10$

1.
$$\mathcal{A}^* = \begin{pmatrix} \mathsf{TTUG-CC} \\ \mathsf{TT-GACC} \end{pmatrix}$$
, $s(\mathcal{A}^*) = 11$, $ns(\mathcal{A}^*) = 11/22 = 0.5 \to \lambda$

2. solve local alignment of a and b for modified similarity $s'(x, y) = \{2 \text{ match}; -2 \text{ mismatch}; -2.5 \text{ gap}\}$

$$\Rightarrow$$
 new $\mathcal{A}^*=egin{pmatrix} ext{CAT} \ ext{CAT} \end{pmatrix}$, $s_\lambda(\mathcal{A}^*)=9-16\lambda=1$,

$$s(A^*) = 9$$
, $ns(A^*) = 9/16 = 0.5625 \rightarrow \lambda$

3. solve local alignment of a and b for new modified similarity $s'(x,y) = \{1.875 \text{ match}; -2.125 \text{ mismatch}; -2.5625 \text{ gap}\}$

$$\Rightarrow$$
 new $\mathcal{A}^* = \left(egin{matrix} ext{CAT} \ ext{CAT} \end{matrix}
ight)$, $s_\lambda(\mathcal{A}^*) = 0$,

$$s(A^*) = 9$$
, $ns(A^*) = 9/16 = 0.5625$

4. convergence $\Rightarrow \lambda^* = 0.5625$

a = GCATTUGCCUU and b = CTTGACCATU $s(x, y) = \{3 \text{ match}; -1 \text{ mismatch}; -2 \text{ gap}\}; L:=10$

1.
$$\mathcal{A}^* = \begin{pmatrix} \mathtt{TTUG-CC} \\ \mathtt{TT-GACC} \end{pmatrix}$$
, $s(\mathcal{A}^*) = 11$, $ns(\mathcal{A}^*) = 11/22 = 0.5 o \lambda$

2. solve local alignment of a and b for modified similarity $s'(x, y) = \{2 \text{ match}; -2 \text{ mismatch}; -2.5 \text{ gap}\}$

$$\Rightarrow$$
 new $\mathcal{A}^*=egin{pmatrix} ext{CAT} \ ext{CAT} \end{pmatrix}$, $s_\lambda(\mathcal{A}^*)=9-16\lambda=1$,

$$s(A^*) = 9$$
, $ns(A^*) = 9/16 = 0.5625 \rightarrow \lambda$

3. solve local alignment of a and b for new modified similarity $s'(x,y) = \{1.875 \text{ match}; -2.125 \text{ mismatch}; -2.5625 \text{ gap}\}$

$$\Rightarrow$$
 new $\mathcal{A}^* = \begin{pmatrix} ext{CAT} \\ ext{CAT} \end{pmatrix}$, $s_{\lambda}(\mathcal{A}^*) = 0$,

$$s(A^*) = 9$$
, $ns(A^*) = 9/16 = 0.5625$

4. convergence $\Rightarrow \lambda^* = 0.5625$

a = GCATTUGCCUU and b = CTTGACCATU $s(x, y) = \{3 \text{ match}; -1 \text{ mismatch}; -2 \text{ gap}\}; L:=10$

1.
$$\mathcal{A}^* = \begin{pmatrix} \mathtt{TTUG-CC} \\ \mathtt{TT-GACC} \end{pmatrix}$$
, $s(\mathcal{A}^*) = 11$, $ns(\mathcal{A}^*) = 11/22 = 0.5 o \lambda$

2. solve local alignment of a and b for modified similarity $s'(x, y) = \{2 \text{ match}; -2 \text{ mismatch}; -2.5 \text{ gap}\}$

$$\Rightarrow$$
 new $\mathcal{A}^* = egin{pmatrix} ext{CAT} \ ext{CAT} \end{pmatrix}$, $s_{\lambda}(\mathcal{A}^*) = 9 - 16\lambda = 1$,

$$s(A^*) = 9$$
, $ns(A^*) = 9/16 = 0.5625 \rightarrow \lambda$

3. solve local alignment of a and b for new modified similarity $s'(x, y) = \{1.875 \text{ match}; -2.125 \text{ mismatch}; -2.5625 \text{ gap}\}$

$$\Rightarrow$$
 new $\mathcal{A}^* = egin{pmatrix} ext{CAT} \ ext{CAT} \end{pmatrix}$, $s_\lambda(\mathcal{A}^*) = 0$,

$$s(A^*) = 9$$
, $ns(A^*) = 9/16 = 0.5625$

4. convergence $\Rightarrow \lambda^* = 0.5625$

a = GCATTUGCCUU and b = CTTGACCATU $s(x, y) = \{3 \text{ match}; -1 \text{ mismatch}; -2 \text{ gap}\}; \text{ L}:=10$

1.
$$\mathcal{A}^* = \begin{pmatrix} \mathsf{TTUG-CC} \\ \mathsf{TT-GACC} \end{pmatrix}$$
, $s(\mathcal{A}^*) = 11$, $ns(\mathcal{A}^*) = 11/22 = 0.5 o \lambda$

2. solve local alignment of a and b for modified similarity $s'(x, y) = \{2 \text{ match}; -2 \text{ mismatch}; -2.5 \text{ gap}\}$

$$\Rightarrow$$
 new $\mathcal{A}^* = egin{pmatrix} ext{CAT} \ ext{CAT} \end{pmatrix}$, $s_\lambda(\mathcal{A}^*) = 9 - 16\lambda = 1$,

$$s(A^*) = 9$$
, $ns(A^*) = 9/16 = 0.5625 \rightarrow \lambda$

3. solve local alignment of a and b for new modified similarity $s'(x,y) = \{1.875 \text{ match}; -2.125 \text{ mismatch}; -2.5625 \text{ gap}\}$

$$\Rightarrow$$
 new $\mathcal{A}^*=egin{pmatrix} ext{CAT} \ ext{CAT} \end{pmatrix}$, $s_\lambda(\mathcal{A}^*)=0$,

$$s(A^*) = 9$$
, $ns(A^*) = 9/16 = 0.5625$

4. convergence $\Rightarrow \lambda^* = 0.5625$.

Conclusion: Normalized Alignment

- Normalized alignment helps to eliminate shadowing and mosaic effect
- General technique: Dinkelbach's Algorithm solves "Fractional programming" problems, where objective function is fraction
- Dinkelbach requires to solve parametric optimization problem (for $s_{\lambda}(A)$); works by distributing length-dependent terms
- Usually few iterations, but no worst-case bound; other methods are available (see Arslan, Bioinformatics, 2001)
- Normalized local alignment only a few times slower than local alignment
- Extensions to more complex scoring, e.g. affine gap cost

