

Temporal Conjunctive Query Answering via Rewriting

Lukas Westhofen¹, Jean Christoph Jung², Daniel Neider^{2,3}

¹German Aerospace Center (DLR e.V.), Institute of Systems Engineering for Future Mobility, Oldenburg, Germany

²TU Dortmund University, Dortmund, Germany

³Research Center Trustworthy Data Science and Security, University Alliance Ruhr, Dortmund, Germany lukas.westhofen@dlr.de, jean.jung@tu-dortmund.de, daniel.neider@tu-dortmund.de

Setting

Ontology (\mathcal{O})

Expressive Description Logics (DLs) model complex operational domain:

 $Human \equiv Driver \sqcup Pedestrian$ // any human must either be a driver or a pedestrian $CrowdMember \equiv Human \sqcap \exists next_to.Human$ // crowd members are humans next to others $CrowdMember \sqsubseteq \neg Driver$ // crowd members are never drivers

Data (\mathcal{D})

Systems (e.g., automated driving systems) gather temporal data in operation:

- t_0 : Human(Jon), Human(Jane), next_to(Jon, Jane), next_to(Jane, Jon)
- t_1 : Human(Jon), Human(Jane)

Temporal Conjunctive Query (TCQ) and Certain Answers

 $\mathsf{TCQ}\ \Phi: \ \Box \mathtt{Human}(x) \land \lozenge \mathtt{Pedestrian}(x)$

// everything always being a human and eventually a pedestrian

Search in the Temporal Knowledge Base (TKB) $\mathcal{K} = (\mathcal{O}, \mathcal{D})$: cert $_{\mathcal{K}}(\Phi) = \{\text{Jane}, \text{Jon}\}$

... More Formally

TKBs: $\mathcal{K} = (\mathcal{O}, (\mathcal{D}_i)_{i \in \{0, ..., n\}})$ \mathcal{O} is a set of DL, e.g., \mathcal{ALC} , concepts: $\mathcal{C} ::= \mathbb{A} \mid \neg \mathcal{C} \mid \mathcal{C} \sqcap \mathcal{C} \mid \mathcal{C} \sqcup \mathcal{C} \mid \forall r. \mathcal{C} \mid \exists r. \mathcal{C}$ \mathcal{D}_i is a set of assertions:

A(i), $r(i_1, i_2)$ over individuals i, i_1, i_2

TCQs: $\Phi := \neg \Phi \mid \Phi \land \Phi \mid \bigcirc \Phi \mid \Phi \mathcal{U}\Phi \mid \varphi$ φ is a conjunction of atoms A(v), $r(v_1, v_2)$ where v, v_1, v_2 are

individuals i,

answer variables \vec{x} , or existentially quantified variables \vec{y} .

cert_{\mathcal{K}}(Φ): Assignments to \vec{x} guaranteeing Φ under any interpretation of \mathcal{K} (written ' $\mathcal{K} \models \Phi$ ').

State of the Art using Finite Automata

 $\mathcal{K} \models \Box \mathtt{A}(\mathtt{a}) \land \Diamond \mathtt{B}(\mathtt{a})$

 \mathcal{K} , $\neg(\Box A(a) \land \Diamond B(a))$ unsatisfiable

CrowdMember -----

Reachability Check

Return true iff no final state is reachable on data.

A Novel Approach using Rewriting

Idea: Reduce unnecessary dependency on UCQs by rewriting Φ to equivalent Φ' .

Assume Negation Normal Form

Rule 1: $\bigcirc \Phi_1 \lor \bigcirc \Phi_2 \leadsto \bigcirc (\Phi_1 \lor \Phi_2)$ Rule 2: $\Phi_1 \lor (\Phi_2 \land \Phi_3) \leadsto (\Phi_1 \lor \Phi_2) \land (\Phi_1 \lor \Phi_3)$

Rule 3: $\Phi_1 \mathcal{U} \Phi_2 \rightsquigarrow \Phi_2 \lor (\Phi_1 \land \bigcirc (\Phi_1 \mathcal{U} \Phi_2))$

Rule 4: $\Phi_1 \mathcal{R} \Phi_2 \rightsquigarrow \Phi_2 \land (\Phi_1 \lor \bullet (\Phi_1 \mathcal{R} \Phi_2))$

Rule 5: $\Phi \leftrightarrow \text{last} \lor \bigcirc \Phi$

 $\Phi' = \bigwedge_{k \in \{1, \dots, u\}} \Phi_k \wedge \bigwedge_{l \in \{u+1, \dots, v\}} \Phi_l \wedge \bigwedge_{m \in \{v+1, \dots, w\}} \Phi_m,$

// Φ_k non-temporal // $\Phi_l = \bigcirc \Phi_l'$ // $\Phi_m = \bigcirc \Phi_m^1 \lor \Phi_m^2$, Φ_m^2 non-temporal

An Efficient Fragment

Fragment $TCQ_{CQ^*} \subset TCQ$ guarantees answering to only require CQ answering (no UCQs).

Not obvious:

 $(\{\top \sqsubseteq A \sqcup B\}, (\{A(a)\}, \emptyset, \{B(a)\})) \models \Diamond(A(a) \land \bigcirc B(a))$ does require UCQs!

Idea: For $\Phi_1 \vee \Phi_2$ and $\Phi_1 \mathcal{U}\Phi_2$, disallow temporally overlapping disjunctions:

$$1 + t(\phi_1 \cup \phi_2)$$

$$t(\phi_2)$$

$$t(\phi_1)$$

This normal form allows to safely combine disjunctions:

$$\operatorname{cert}_{\mathcal{K}_{\geq j}}(\Phi') = \bigcap_{k \in \{1, \dots, u\}} \operatorname{cert}_{\mathcal{K}_j}(\Phi_k) \cap \bigcap_{l \in \{u+1, \dots, v\}} \operatorname{cert}_{\mathcal{K}_{\geq j+1}}(\Phi'_l) \cap \bigcap_{m \in \{v+1, \dots, w\}} \operatorname{cert}_{\mathcal{K}_{\geq j+1}}(\Phi^1_m) \cup \operatorname{cert}_{\mathcal{K}_j}(\Phi^2_m)$$

Evaluation

On $\Box A(x) \land \Diamond B(x) \in TCQ_{CQ^*}$ (Rewriting does not use UCQ checks):

On the Traffic Ontology Benchmark (github.com/lu-w/tobm):

Main Findings

Order of magnitude speed-up compared to finite automata

Why? Reduction of (expensive) UCQ answering

Why? Automata translation does not push introduced negation inwards

Bonus: Rewriting approach enables defining a fragment of TCQ that guides users to efficiently answerable queries

More Information:

