A Case Study of Application Development and Production Code Generation for a Telematics ECU with Full Unified Diagnostics Services

autotxt*

Plan

- A little about Embed and our Ethos
- Description of the telematics module Embed worked in partnership with Auto-txt Ltd to deliver.
- The process by which the software was developed.
 - Automotive SPICE® level 3 (ISO/IEC 15504)
- The software architecture
 - Device Drivers: CAN, GPS, GSM, Bluetooth
 - Application as libraries enabling extensive unit testing
- Focus on Unified Diagnostic Services (ISO 14229) within the telematics module, over CAN and GSM
- How diagnostics are usually developed compared to how they can be better developed with the application within Simulink.
 - Advantages of the Embed Unified Diagnostic Services (ISO 14229) Blockset

Embed Ethos

Faster Results

Model, Simulate, Execute, Debug, Test... Then code...

New Technologies

Image Processing HMI Rapid-Prototyping Advanced Driver Assistance Systems (ADAS)

Off-the-shelf ECUs

Embed partner with New Eagle to offer MotoHawk ECUs

Higher Quality

Automotive SPICE® Level 3 Process. (ISO/IEC 15504)

Model Based Development

Off-the-shelf software components

embed

UDS, CAN, CAN-TP, Simulink Blocksets for production ECUs.

Embed Offers

System Design

- Requirement Handling
- Electrical Architecture Design

Network Design

- Physical Layer
- Communications Strategy
- Software Stacks

ECU Design & Development

- Hardware Design
- Software Design
- Software Components

Simulation & Rapid-Prototyping

- Early Validation
- Save time and money whilst raising quality.

Training & Mentoring

- Model-Based Development
- HMI System Development

Graphic

Auto-txt Advanced Telematics Module

- Advanced telematics module that can offer remote connectivity and communication to any vehicle (12V & 24V)
 - Stolen Vehicle Tracking, Fleet Management,
 Remote Diagnostics, Remote Logging & Control
- GSM, GPS, Bluetooth, Proprietary RF, WiFi, CAN
- Fully expandable via daughter boards
 - Soon adding LIN & RS232 support.
- Full automotive grade product
 - Line-fit for Aston Martin, dealer fit for Jaguar and Land Rover
- Bootloader for CAN or GSM reprogramming
 - Complete over the air reprogramming

Development Process

turnkey software solutions

Development Process

Application architecture defined in Simulink model

Software modules designed as **Simulink Libraries** complete with unit tests and documentation

The product which is the subject of this presentation is the proprietary technology and intellectual property of Auto-txt Limited. Details are reproduced with the permission of Auto-txt Limited. "Autotxt" is the trade mark of Auto-txt Limited.

Developing using Simulink Libraries

- Simulink Libraries enable many advantages.
 - Version Control
 - Library bocks live as separate files
 - Unit Test
 - Test harness models
 - Multiple Developers working on the same project
 - Clearly defined bus interfaces
 - Reuse the blocks across may projects
 - Tested modules ready to deploy

Developing using Simulink Libraries

Embed Standard Model Organisation

Software Details

- Developed as a Simulink Model
- Device Drivers wrapped with Simulink Blocksets
- Code-Generation via Real Time Workshop Embedded Coder
- AUTOSAR 'like' where applicable
- Same application runs on previous hardware as well as new hardware.
 - Completely different processor (ARM7 -> MPC55xx)

Software Architecture

Inputs

 Inputs are hardware specific and are separate from the application

Inputs

All inputs have UDS IO control, defined in the model

Outputs

 Outputs are hardware specific and are separate from the application

Outputs

Device Drivers

 Device Drivers are hardware specific and are separate from the application

Device Drivers

Simulink Blocksets

- CAN
- COM
- UDS
- Network Management
- GSM
- GPS
- Bluetooth
- GPIO
- Timers
- Power Management

Device Driver Blocksets (GPS)

Device Driver Blocksets (CAN)

Application

- All hardware specifics architected out
- Easily ported to any hardware

and intellectual property of Auto-txt Limited. Details are reproduced with the

permission of Auto-txt Limited. "Autotxt" is the trade mark of Auto-txt Limited.

Application

Application further decomposed and Architected within Simulink

Application EOL Programming

UDS Parameters (PIDs and DIDs)

turnkey software solutions

Identical usage to Data-Stores, except the addition of access control to inhibit incorrect usage due to ECU mode or wrong Security Access Level

UDS Read/Write data

by Identifier

UDS Read/Wite data

by Identifier

Application Commissioning

- Commissioning the Telematics ECU achieved using UDS Routine Control
 - Accessible only via Security Access

Telematics ECU Development Summary

- Up to 7 developers worked on the software concurrently
 - Auto-txt and Embed Engineers
- Developed using a recognised Quality Management System
 - Automotive SPICE® Level 3
- Fully auto generated code from Simulink and Stateflow using RTW-EC
- Application runs on two very different micro-processors
- New developers quickly became productive
- Low defect development
- New features being added to the ECU every month

Diagnostics Services Development: How Model Based Development can make big improvements

UDS the typical picture

- Delivered last...
 - Everyone is focused on features and functionality.
- Delivered late...
 - The feature or function owner rarely truly addresses the diagnostics requirements.
- Delivered wrong...
 - Functionality related to diagnostics isn't often captured by feature designer
 - Add/delete key fob, match PCM/IMMO, etc
 - The diagnostics team are a little detached from the rest of the development team and are usually the last to be informed of any changes.
 - Need to speak and think hex-codes, not English.

- Model Based Development has been proven to increase quality and speed time to market
 - Correctly define the requirements
 - Solve problems early
 - Remove translation errors
 - Iteration loops at the 'cheap' stage of development
 - Code generation from the models

 Enables the Diagnostics to be addressed early on in the development cycle

Typical Bugs found during development against cost of fix

- Enables the Diagnostics to be designed in Simulink
 - Focusing on the functionality not on the code
 - Testable in a friendly environment
 - Testable before the ECUs are available
 - Most important for routine control
 - Self tests and calibration (stepper motor end stops etc)
 - Programming keys and ECUs in Immobilisation Ring

- Detaches the Hex Codes from the Diagnostics
 - Enables the diagnostics functionality to be ported from one ECU to another
 - Diagnostics live with the features where they are used
 - Diagnostics database configures the feature for the ECU / Vehicle for deployment

- Off-the-shelf
 Simulink Blockset
- Clear interfaces to enable any CAN stack to be used
- ASNII-C MISRA compliant code
 - Hardware agnostic

UDS Blockset Summary (ISO 14229)

- There are clear and large advantages of developing diagnostics services using a Model Based Development Process.
- The Embed UDS Blockset can be placed on top of any CAN stack
- Please get in touch if you need more information

ivan.wilson@embeduk.com

Thank you

