Linear Independence and Spanning

Linear Dependence and Independence

A <u>set</u> of <u>vectors</u> is said to be **linearly dependent** if at least one of the vectors in the set can be defined as a <u>linear combination</u> of the others; if no vector in the set can be written in this way, then the vectors are said to be **linearly independent**.

Definition

If $S = \{v_1, v_2, v_3, ..., v_n\}$ is a non-empty set of vectors in a vector space V, then the vector equation

$$k_1v_1 + k_2v_2 + k_3v_3 + \dots + k_nv_n = 0$$

has at least one solution, namely,

$$k_1 = 0, k_2 = 0, \dots, k_n = 0.$$

We call this the trivial solution. If this is the only solution, then S is said to be linearly independent set. If there are solutions in addition to the trivial solution, then S is called as linearly dependent set.

Example 1: Determine whether the set consists of vectors $v_1 = (1, -2, 3), v_2 = (5, 6, -1), v_3 = (3, 2, 1)$ are linearly dependent or independent.

Solution: Let $k_1v_1 + k_2v_2 + k_3v_3 = 0$ be the linear combination. Then,

$$k_{1}(1,-2,3) + k_{2}(5,6,-1) + k_{3}(3,2,1) = 0$$

$$(k_{1} + 5k_{2} + 3k_{3}, -2k_{1} + 6k_{2} + 2k_{3}, 3k_{1} - k_{2} + k_{3}) = (0,0,0)$$

$$k_{1} + 5k_{2} + 3k_{3} = 0$$

$$-2k_{1} + 6k_{2} + 2k_{3} = 0$$

$$3k_{1} - k_{2} + k_{3} = 0$$

$$\begin{pmatrix} 1 & 5 & 3 & 0 \\ -2 & 6 & 2 & 0 \\ 3 & -1 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 5 & 3 & 0 \\ 0 & 16 & 8 & 0 \\ 0 & -16 & -8 & 0 \end{pmatrix} R_2 + 2R_1, R_3 - 3R_1$$

$$\Rightarrow \begin{pmatrix} 1 & 5 & 3 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 2 & 1 & 0 \end{pmatrix} \frac{R_2}{8}, \frac{R_3}{-8}$$

$$\Rightarrow \begin{pmatrix} 1 & 5 & 3 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} R_3 - R_2$$

$$\begin{cases} k_1 + 5k_2 + 3k_3 = 0 & \dots \dots (1) \\ 2k_2 + k_3 = 0 & \dots \dots (2) \\ 0 = 0 \end{cases}$$

From equation (2), we get

$$k_3 = -2k_2$$

Putting value of k_3 in equation (1), we get:

$$k_1 + 5k_2 + 3(-2k_2) = 0$$

 $k_1 - 11k_2 = 0$
 $k_1 = 11k_2$

Let $k_2 = t$, therefore

$$k_1 = 11t$$
$$k_3 = 2t$$

As,

$$k_1=k_2\ =k_3\neq 0$$

So, the vectors v_1 , v_2 , v_3 are linearly dependent.

Example 2: Determine whether the set consists of vectors $v_1 = (1,0,1,2), v_2 = (0,1,1,2), v_3 = (1,1,1,3)$ are linearly dependent or independent.

Solution:

$$k_1v_1 + k_2v_2 + k_3v_3 = 0$$

$$k_1(1,0,1,2) + k_2(0,1,1,2) + k_3(1,1,1,3) = (0,0,0,0)$$

$$(k_1, 0, k_1, 2k_1) + (0, k_2, k_2, 2k_2) + (k_3, k_3, k_3, 3k_3) = (0,0,0,0)$$

$$\begin{pmatrix} k_1 + k_3, & k_2 + k_3, & k_1 + k_2 + k_3, & 2k_1 + 2k_2 + 3k_3 \end{pmatrix} = (0,0,0,0)$$

$$\begin{pmatrix} k_1 + k_3 = 0 & \dots \dots \dots (1) \\ k_2 + k_3 = 0 & \dots \dots \dots (2) \\ k_1 + k_2 + k_3 = 0 & \dots \dots \dots (3) \\ 2k_1 + 2k_2 + 3k_3 = 0 & \dots \dots (4) \end{pmatrix}$$

From (1), we get, $k_1 = -k_3$

From (2), we get, $k_2 = -k_3$

Put values of k_1 and k_2 in equation (3), we get:

$$k_{1} + k_{2} + k_{3} = 0$$

$$-k_{3} - k_{3} + k_{3} = 0$$

$$k_{3} = 0$$

$$k_{3} = 0 \Rightarrow k_{1} = 0, k_{2} = 0$$

$$k_{1} = k_{2} = k_{3} = 0$$

 \Rightarrow Vectors v_1 , v_2 , v_3 are linearly independent.

Exercise: Determine whether vectors $v_1 = (1,0,0)$, $v_2 = (0,1,0)$, $v_3 = (0,0,1)$ are linearly dependent or independent in \mathbb{R}^3 .

Exercise: Does $S = \{(1,2,3), (0,1,2), (3,0,-1)\}$ form a linearly independent set of vectors in \mathbb{R}^3 ?

Example 3: Are the vectors

$$v_1 = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 & -3 \\ -2 & 1 \end{bmatrix}$

in M_{22} are linearly independent?

$$k_{1}v_{1} + k_{2}v_{2} + k_{3}v_{3} = 0$$

$$k_{1} \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} + k_{2} \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} + k_{3} \begin{bmatrix} 0 & -3 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 2k_{1} + k_{2} & k_{1} + 2k_{2} - 3k_{3} \\ k_{2} - 2k_{3} & k_{1} + k_{3} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{cases} 2k_{1} + k_{2} = 0 \\ k_{1} + 2k_{2} - 3k_{3} = 0 \\ k_{2} - 2k_{3} = 0 \\ k_{1} + k_{3} = 0 \end{cases}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & -3 \\ 0 & 1 & -3 \\ 0 & -1 & 2 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 & 1 & -3 \\ 0 & -1 & 2 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 & 1 & -3 \\ 0 & 0 & -5 \\ 0 & 0 & -2 \\ 0 \end{pmatrix} \begin{pmatrix} R_{2} - R_{1}, R_{3} - R_{1}, R_{4} - R_{1} \\ R_{3} - R_{1}, R_{4} - R_{1} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -3 \\ 0 & 0 & -5 \\ 0 & 0 & -2 \\ 0 \end{pmatrix} \begin{pmatrix} R_{3} + R_{2}, R_{4} + R_{2} \\ -5^{2} - 2 \end{pmatrix}$$

$$\Rightarrow k_3 = 0$$

$$\Rightarrow k_2 - 3k_3 = 0 \Rightarrow k_2 = 0 \Rightarrow k_1 + k_2 = 0 \Rightarrow k_1 = 0$$

Hence the vectors are linearly independent.

Example 4: Are the vectors $P = t^2 + t + 2$, $Q = 2t^2 + t$ and $R = 3t^2 + 2t + 2$ in P_2 are linearly independent?

Solution: Let

$$k_1v_1 + k_2v_2 + k_3v_3 = 0$$

$$k_1(t^2 + t + 2) + k_2(2t^2 + t) + k_3(3t^2 + 2t + 2) = 0t^2 + 0t + 0$$

$$k_1t^2 + k_1t + 2k_1 + 2k_2t^2 + k_2t + 3k_3t^2 + 2k_3t + 2k_3 = 0t^2 + 0t + 0$$

$$t^2(k_1 + 2k_2 + 3k_3) + t(k_1 + k_2 + 2k_3) + (2k_1 + 2k_3) = 0t^2 + 0t + 0$$

$$\begin{cases} k_1 + 2k_2 + 3k_3 = 0 \\ k_1 + k_2 + 2k_3 = 0 \end{cases}$$

$$2k_1 + 2k_3 = 0$$

$$\begin{pmatrix} 1 & 2 & 3 & 0 \\ 2 & 1 & 2 & 0 \\ 2 & 0 & 2 & 0 \end{pmatrix}$$

By using Gaussian elimination, it is a trivial exercise to show that these vectors are linearly independent.

Spanning Set

Let S be the set of some vectors of vector space V. If every vector in V is a linear combination of vectors in S, then the set S is said to span V or the V is spanned by the set S.

DEFINITION 3

The subspace of a vector space V that is formed from all possible linear combinations of the vectors in a nonempty set S is called the **span of** S, and we say that the vectors in S **span** that subspace. If $S = \{w_1, w_2, w_3, \dots, w_r\}$, then we denote the span of S by

$$span \{w_1, w_2, w_3, ..., w_r\}$$
 or $span(S)$.

Example1: Let $S = \{(1,0,0), (0,1,0), (0,0,1)\}$ be the set of standard unit vectors in \mathbb{R}^3 . Prove that S spans \mathbb{R}^3 .

Solution:

S spans R^3 means every vector of R^3 can be written as linear combination of these three vectors i.e.

$$(a,b,c) = k_1 \overrightarrow{v_1} + k_2 \overrightarrow{v_2} + k_3 \overrightarrow{v_3}$$

$$(a,b,c) = k_1 (1,0,0) + k_2 (0,1,0) + k_3 (0,0,1)$$

$$(a,b,c) = (k_1,0,0) + (0,k_2,0) + (0,0,k_3)$$

$$(a,b,c) = (k_1,k_2,k_3)$$

$$a = k_1, b = k_2, c = k_3$$

$$= > (a,b,c) = a(1,0,0) + b(0,1,0) + c(0,0,1)$$
e.g. $(1,2,3) = 1(1,0,0) + 2(0,1,0) + 3(0,0,1)$

Note: The Standard Unit Vectors Span \mathbb{R}^n . How?

Recall that the standard unit vectors in \mathbb{R}^n are

$$e_1 = (1, 0, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, 0, 0, \dots, 1).$$

These vectors span \mathbb{R}^n since every vector $v=(v_1,v_2,\ldots,v_n)$ in \mathbb{R}^n can be expressed as

$$v = v_1 e_1 + v_2 e_2 + \ldots + v_n e_n$$

which is a linear combination of e_1, e_2, \ldots, e_n . Thus, as in example 1, the vectors

$$i = (1,0,0), j = (0,1,0), k = (0,0,1)$$

span R^3 since every vector in this space can be expressed as linear combination of these three vectors (also called basis).

Can there be vectors other than standard unit vectors in Rⁿ which can span Rⁿ?

Example 2: Let V be the vector space R^3 and $\overrightarrow{v_1} = (1,2,1), \overrightarrow{v_2} = (1,0,2), \overrightarrow{v_3} = (1,1,0)$. Check $\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}$ span R^3 .

Solution: To check whether $\overrightarrow{v_1}$, $\overrightarrow{v_2}$, $\overrightarrow{v_3}$ span R^3 , we pick any vector $\overrightarrow{v} = (a, b, c)$ in $V = R^3$ and determine whether there are constants k_1, k_2, k_3 such that

$$\vec{v} = k_1 \vec{v_1} + k_2 \vec{v_2} + k_3 \vec{v_3}$$

$$(a, b, c) = k_1 (1, 2, 1) + k_2 (1, 0, 2) + k_3 (1, 1, 0)$$

$$(a,b,c) = (k_1, 2k_1, k_1) + (k_2, 0, 2k_2) + (k_3, k_3, 0)$$

$$k_1 + k_2 + k_3 = a \quad \dots (1)$$

$$2k_1 + 0 + k_3 = b \quad \dots (2)$$

$$k_1 + 2k_2 + 0 = c \quad \dots (3)$$

From equation (2)

$$k_3 = b - 2k_1$$
 ... (4)

From equation (3)

$$k_2 = \frac{c - k_1}{2}$$
 ... (5)

Put the values in (1)

$$k_{1} + \frac{c - k_{1}}{2} + b - 2k_{1} = a$$

$$-k_{1} + \frac{c - k_{1}}{2} = a - b$$

$$-2k_{1} + c - k_{1} = 2a - 2b$$

$$-3k_{1} = 2a - 2b - c$$

$$k_{1} = \frac{-2a + 2b + c}{3}$$

Put in (5)

$$k_2 = \frac{c - \frac{-2a + 2b + c}{3}}{2}$$

$$k_2 = \frac{c}{2} - \frac{1}{2} \left(\frac{-2a + 2b + c}{3} \right)$$

$$k_2 = \frac{c}{2} - \frac{1}{6} \left(-2a + 2b + c \right)$$

$$k_2 = \frac{c}{2} + \frac{2a}{6} - \frac{2b}{6} - \frac{c}{6}$$

$$k_2 = \frac{a - b + c}{3}$$

Put
$$k_1 = \frac{-2a+2b+c}{3}$$
 in (4)

$$k_3 = b - 2(\frac{-2a + 2b + c}{3})$$

$$k_3 = \frac{3b + 4a - 4b - 2c}{3}$$

$$k_3 = \frac{4a - b - 2c}{3}$$

Thus $\overrightarrow{v_1}$, $\overrightarrow{v_2}$, $\overrightarrow{v_3}$ span V, i.e.

$$Span\{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\} = R^3.$$

Example 3: Determine whether $\overrightarrow{v_1} = (1,1,2), \overrightarrow{v_2} = (1,0,1), \overrightarrow{v_3} = (2,1,3)$ span \mathbb{R}^3 .

$$\vec{v} = k_1 \overrightarrow{v_1} + k_2 \overrightarrow{v_2} + k_3 \overrightarrow{v_3}$$

$$(a,b,c) = k_1(1,1,2) + k_2(1,0,1) + k_3(2,1,3)$$

$$(a, b, c) = (k_1, k_1, 2k_1) + (k_2, 0, k_2) + (2k_3, k_3, 3k_3)$$

$$(a,b,c) = (k_1 + k_2 + 2k_3, k_1 + k_3, 2k_1 + k_2 + 3k_3)$$

$$k_1 + k_2 + 2k_3 = a \dots (1)$$

$$k_1 + k_3 = b$$
 ... (2)

$$2k_1 + k_2 + 3k_3 = c \dots (3)$$

From equation (2)

$$k_1 = b - k_3$$
 ... (4)

Subtract (1) and (3)

$$k_1 + k_2 + 2k_3 = a$$

$$\pm 2k_1 \pm k_2 \pm 3k_3 = \pm c$$

$$-k_1 - k_3 = a - c$$

Put $k_1 = b - k_3$ in above equation,

$$-b + k_3 - k_3 = a - c$$
$$b = c - a$$

Not possible, No solution.

So $\overrightarrow{v_1}$, $\overrightarrow{v_2}$, $\overrightarrow{v_3}$ do not span R^3 .

Another Method: For the matrix of coefficients

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 3 \end{bmatrix}$$
$$det A = 1 \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix} - 1 \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} + 2 \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$
$$= 1(0-1) - 1(3-2) + 2(1-0)$$
$$det A = -1 - 1 + 2 = 0$$

So the system has no solution.

System is consistent if & only if its coefficient matrix has non-zero determinant i.e. $det A \neq 0$.

Example 4: Show that the set

$$S = \{t^2 + 1, t - 1, 2t + 2\}$$

span the vector space P_2 .

Solution: For spanning, let

$$(a,b,c)=k_1v_1+k_2v_2+k_3v_3$$

$$at^2+bt+c=k_1(t^2+1)+k_2(t-1)+k_3(2t+2)$$
 or
$$at^2+bt+c=k_1t^2+(k_2+2k_3)t+(k_1-k_2+2k_3)$$

$$\begin{cases} a = k_1 \dots \dots (1) \\ b = k_2 + 2k_3 \dots \dots (2) \\ c = k_1 - k_2 + 2k_3 \dots \dots (3) \end{cases}$$

Put $k_1 = a$ in equation (3)

$$c = a - k_2 + 2k_3$$

$$-k_2 + 2k_3 = c - a \dots \dots (4)$$
 Add (2) and (4)
$$k_2 + 2k_3 = b$$

$$-k_2 + 2k_3 = c - a$$

$$4k_3 = b + c - a$$

$$k_3 = \frac{b + c - a}{4}$$

And by subtracting both implies

$$k_2 = \frac{b-c+a}{2}$$

So,
$$k_1 = a$$
, $k_2 = \frac{b-c+a}{2}$, $k_3 = \frac{b+c-a}{4}$.

It means S spans V.

THEOREM 4.2.5

If $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r\}$ and $S' = \{w_1, w_2, ..., w_k\}$ are nonempty sets of vectors in a vector space V, then

$$span\{v_1, v_2, ..., v_r\} = span\{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_k\}$$

if and only if each vector in S is a linear combination of those in S', and each vector in S' is a linear combination of those in S.

THEOREM 4.3.3

Let $S = \{v_1, v_2, v_3, \dots, v_r\}$, be a set of vectors in \mathbb{R}^n . If r > n then S is linearly dependent.

EXAMPLE 5. An Important Linearly Independent Set in P_n . Show that the polynomials

$$1, x, x^2, ..., x^n$$

form a linearly independent set in P_n .

Exercise 4.2

Q11: In each part determine whether the given vector span R^3 .

a)
$$\overrightarrow{v_1} = (2, 2, 2), \ \overrightarrow{v_2} = (0, 0, 3), \ \overrightarrow{v_3} = (0, 1, 1)$$

b)
$$\overrightarrow{v_1} = (2, -1, 3), \overrightarrow{v_2} = (4, 1, 2), \overrightarrow{v_3} = (8, -1, 8)$$

c)
$$\overrightarrow{v_1} = (3, 1, 4), \overrightarrow{v_2} = (2, -3, 5), \overrightarrow{v_3} = (5, -2, 9), \overrightarrow{v_4} = (1, 4, -1)$$

d)
$$\overrightarrow{v_1} = (1, 2, 6), \overrightarrow{v_2} = (3, 4, 1), \overrightarrow{v_3} = (4, 3, 1), \overrightarrow{v_4} = (3, 3, 1)$$

Answer: (a) and (d) span R^3 .

Q2: Let V be the vector space P_2 . Let $\overrightarrow{v_1} = t^2 + 2t + 1$, $\overrightarrow{v_2} = t^2 + 2$.

Does $\{\overrightarrow{v_1}, \overrightarrow{v_2}\}$ span V?

Q3: In R^3 let $\overrightarrow{v_1} = (2,1,1), \overrightarrow{v_2} = (1,-1,3)$ and Determine whether the vector

 $\vec{v} = (1, 5, -7)$ Belong to the span $\{\vec{v_1}, \vec{v_2}\}$.

Exercise 4.3

1. Explain why the following are linearly dependent sets of vectors. (Solve this problem by inspection.)

(a)
$$\mathbf{u}_1 = (-1, 2, 4)$$
 and $\mathbf{u}_2 = (5, -10, -20)$ in \mathbb{R}^3

(b)
$$\mathbf{u}_1 = (3, -1), \mathbf{u}_2 = (4, 5), \mathbf{u}_3 = (-4, 7) \text{ in } \mathbb{R}^2$$

(c)
$$\mathbf{p}_1 = 3 - 2x + x^2$$
 and $\mathbf{p}_2 = 6 - 4x + 2x^2$ in P_2

(d)
$$A = \begin{bmatrix} -3 & 4 \\ 2 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & -4 \\ -2 & 0 \end{bmatrix}$ in M_{22}

Answer:

- (a) u₂ is a scalar multiple of u₁.
- (b) The vectors are linearly dependent by Theorem 4.3.3.
- (c) P2 is a scalar multiple of P1.
- (d) B is a scalar multiple of A.
- 2. Which of the following sets of vectors in R3 are linearly dependent?
 - (a) (4, -1, 2), (-4, 10, 2)
 - (b) (-3,0,4), (5,-1,2), (1,1,3)
 - (c) (8, -1, 3), (4, 0, 1)
 - (d) (-2,0,1), (3,2,5), (6,-1,1), (7,0,-2)
- 3. Which of the following sets of vectors in R4 are linearly dependent?
 - (a) (3, 8, 7, -3), (1, 5, 3, -1), (2, -1, 2, 6), (1, 4, 0, 3)
 - (b) (0, 0, 2, 2), (3, 3, 0, 0), (1, 1, 0, -1)
 - (c) (0, 3, -3, -6), (-2, 0, 0, -6), (0, -4, -2, -2), (0, -8, 4, -4)
 - (d) (3, 0, -3, 6), (0, 2, 3, 1), (0, -2, -2, 0), (-2, 1, 2, 1)

Answer:

None

- 4. Which of the following sets of vectors in P₂ are linearly dependent?
 - (a) $2-x+4x^2$, $3+6x+2x^2$, $2+10x-4x^2$
 - (b) $3 + x + x^2$, $2 x + 5x^2$, $4 3x^2$
 - (c) $6 x^2$
 - (d) $1+3x+3x^2$, $x+4x^2$, $5+6x+3x^2$, $7+2x-x^2$
- 10. Show that if $\{v_1, v_2, v_3\}$ is a linearly independent set of vectors, then so are $\{v_1, v_2\}$, $\{v_1, v_3\}$, $\{v_2, v_3\}$, $\{v_1\}$, $\{v_2\}$, and $\{v_3\}$.
- 11. Show that if S = {v₁, v₂, ..., v_r} is a linearly independent set of vectors, then so is every nonempty subset of S.
- 12. Show that if $S = \{v_1, v_2, v_3\}$ is a linearly dependent set of vectors in a vector space V, and v_4 is any vector in V that is not in S, then $\{v_1, v_2, v_3, v_4\}$ is also linearly dependent.