İçindekiler

Machine Learning Days	2
Data Visualization	2
Veri Setinin Hikayesi	3
Veri Görselleştirme	6
Relational Plots with Matplotlib	6
Scatter plot with Subplots	7
Categorical Plots with Matplotlib	8
Histogram	8
Bar Plot	9
Figure Kaydetme	10
Seaborn	10
Count Plot & Cat Plot	11
Scatter Plot	12
Line Plot	13
Scatter Subplots	13
Heatmap	16
Categoric Plot	16
Box Plot	17

Machine Learning Days

Data Visualization

Numeric ve Categoric veri tiplerimiz var.

Kedi-köpek ya da sıcak-soğuk gibi nitel veriler categoric verilerdir.

Eğer categoric verilerle tahminleme yapıyorsak **Classification** problemi çözüyoruz.

İnsan yaşları gibi numeric verilerle tahminleme yapıyorsak **Regression** problemi çözüyoruz.

Veri Setinin Hikayesi

Veri kümesinin amacı, veri kümesine dahil edilen belirli tanı ölçümlerine dayanarak bir hastanın diyabet olup olmadığını teşhis amaçlı olarak tahmin etmektir.

Veri kümeleri birkaç tıbbi öngörücü değişken ve bir hedef değişkenden oluşur, **Outcome**. Tahmin değişkenleri hastanın sahip olduğu gebelik sayısını, BMI'sını, insülin seviyesini, yaşını vb. İçerir.

• **Pregnancies**: Hamile sayısı

• Glucose: Oral glukoz tolerans testinde 2 saatteki plazma glikoz konsantrasyonu

• BloodPressure: Diyastolik kan basıncı (mm Hg)

• SkinThickness: Triceps deri kat kalınlığı (mm)

• Insulin: 2 saatlik serum insülini (mu U / ml)

• BMI: Vücut kitle indeksi (kg olarak ağırlık / (m olarak yükseklik) ^ 2)

• **DiabetesPedigreeFunctio**: Diyabet soyağacı işlevi

• Age: Yaş

• Outcome: Sonuç (1 yada 0)

Outcome categoric, diğer değişkenler ise numeric veri.

9]: df.describe().T								
	count	mean	std	min	25%	50%	75%	max
Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	3.0000	6.00000	17.00
Glucose	768.0	120.894531	31.972618	0.000	99.00000	117.0000	140.25000	199.00
BloodPressure	768.0	69.105469	19.355807	0.000	62.00000	72.0000	80.00000	122.00
SkinThickness	768.0	20.536458	15.952218	0.000	0.00000	23.0000	32.00000	99.00
Insulin	768.0	79.799479	115.244002	0.000	0.00000	30.5000	127.25000	846.00
ВМІ	768.0	31.992578	7.884160	0.000	27.30000	32.0000	36.60000	67.10
DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.24375	0.3725	0.62625	2.42
Age	768.0	33.240885	11.760232	21.000	24.00000	29.0000	41.00000	81.00
Outcome	768.0	0.348958	0.476951	0.000	0.00000	0.0000	1.00000	1.00

```
[10]: df.info()
     <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 768 entries, 0 to 767
      Data columns (total 9 columns):
      # Column
                                   Non-Null Count Dtype
      0
          Pregnancies
                                   768 non-null int64
          Glucose
                                   768 non-null
                                                  int64
                                  768 non-null int64
       2
          BloodPressure
       3 SkinThickness
                                  768 non-null
                                                  int64
       4 Insulin
                                  768 non-null
                                                  int64
          BMI
                                   768 non-null
                                                 float64
       6 DiabetesPedigreeFunction 768 non-null
                                                  float64
          Age
                                   768 non-null
                                                  int64
                                   768 non-null
                                                  int64
          Outcome
      dtypes: float64(2), int64(7)
     memory usage: 54.1 KB
12]: | df.isna().any()
     #Column'da bir tane bile null deger varsa True olur.
[12]: Pregnancies
                                False
     Glucose
                                False
     BloodPressure
                                False
     SkinThickness
                                False
     Insulin
                                False
     BMI
                                False
     DiabetesPedigreeFunction
                                False
                                False
     Age
     Outcome
                                False
     dtype: bool
[14]: | df.notna().any()
     #Column'da bir tane bile dolu deger varsa True olur.
```

True

True

True

True

True True

True

True

True

[14]: Pregnancies

Glucose

Insulin

Outcome

dtype: bool

Age

BloodPressure

SkinThickness

DiabetesPedigreeFunction

```
[18]: df.isna().all()
      #tamamı null olan column'lar True olur.
[18]: Pregnancies
                                 False
      Glucose
                                 False
      BloodPressure
                                 False
      SkinThickness
                                 False
      Insulin
                                 False
      BMI
                                 False
      DiabetesPedigreeFunction
                                 False
      Age
                                 False
      Outcome
                                 False
      dtype: bool
[20]: df.notna().all()
      #tamamı dolu olan column'lar True gelir.
      #Hepsi True gelirse eksik veri yok demektir.
[20]: Pregnancies
                                 True
      Glucose
                                 True
      BloodPressure
                                 True
      SkinThickness
                                 True
      Insulin
                                 True
      BMI
                                 True
      DiabetesPedigreeFunction
                                 True
                                 True
      Age
      Outcome
                                 True
      dtype: bool
```

[22]:	df.isna().sum() #degiskenlerdeki eksik veri sayisi.											
[22]:	Pregnancio Glucose BloodPress SkinThicki Insulin BMI DiabetesPo Age Outcome dtype: int	sure ness edig	5	0 0 0 0 0 tion 0								
[26]:	#Sadece 1 tane sınıfımız var. Görselleştirirken 1 tane daha sınıfımız olsa iyi olabilir. #Overweight adında yeni bir sınıf ekleyelim. #Vücut kitle indeksi 25'den büyük ise 1 değil ise 0 olsun. df["Overweight"] = [1 if x > 25 else 0 for x in df.BMI] df.head()											
[26]:	Pregnanc	ies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeFunction	Age	Outcome	Overweight	
	0		148	72	35		33.6	0.627	50			
	1		85	66	29		26.6	0.351	31			
	2		183	64			23.3	0.672	32			
	3		89	66	23	94	28.1	0.167	21			
	4	0	137	40	35	168	43.1	2.288	33	- 1	1	

Veri Görselleştirme

Relational Plots with Matplotlib

Relational Plots iki tane değişkenin arasındaki ilişkiyi gösteren grafiklerdir.

- Scatter Plot: İki değişken arasındaki ilişkinin dağılımını veri noktalarıyla gösterir.
- **Lineplot**: İki değişken arasındaki ilişkiyi sürekli gösterir. Veri noktaları birbirine çizgilerle bağlıdır. (Zaman serilerinde kullanılır.)
- s parametresi: marker boyutu
- c parametresi: marker rengi, hangi değişkeni tuttuğu da yazılabilir.
- alpha: marker opaklığı

Scatter plot with Subplots

subplot'ı bir plottan iki tane küçük plot çıkarıyoruz gibi düşünebiliriz.

fig, ax = plt.subplots(): figure ve axes object oluşturur. figure'de her şey var, axes data'yı tutuyor.


```
[34]: fig, ax = plt.subplots()
   ax.scatter(df.Age, df.Insulin, c=df.Overweight, cmap="viridis")
   ax.set_xlabel("Age")
   ax.set_ylabel("Insulin")
   ax.set_title("Relationship between Age and Insulin")
   plt.show()
```


Categorical Plots with Matplotlib

Histogram

Numerik ya da kategorik verilerde dağılımı yorumlamamıza yardımcı olur.

```
[43]: fig, ax = plt.subplots()
   ax.hist(df.Age, label="Age", bins=10) #bins: kaç aralığa bölünecek
   ax.set_xlabel("Age") #axis isimleri
   ax.set_ylabel("Number of Observations")
   plt.show()
```



```
[46]: bins=[20,30,40,50,60,70,80] #bins'i manuel girdik.
fig, ax = plt.subplots()
ax.hist(df.Age, label="Age", bins=bins)
ax.set_xlabel("Age") #axis isimleri
ax.set_ylabel("Number of Observations")
plt.show()
```


Bar Plot

Kategorik verilerin özelliklerine bakmamızı sağlar.

```
[47]: fig, ax = plt.subplots()
   ax.bar(df.Outcome, df.Insulin)
   ax.set_xlabel("Outcome")
   ax.set_ylabel("Insulin")
   plt.show()
```


Figure Kaydetme

[52]: #Yaşlara göre insulin değerlerine bakalım.
fig, ax = plt.subplots()
ax.bar(df.Age, df.Insulin)
ax.set_xticklabels(df.Age, rotation=90) # x eksenindeki yazıların yazı yönü.
fig.savefig("Age.png", dpi=500) #png formatında kaydeder.

- fig.savefig("Age.png"): kayıp olmadan kaydeder, yüksek kalitelidir ama çok hafıza tutar
- fig.savefig("Age.jpg", quality=50): websitesine konulabilir
- fig.savefig("Age.png", dpi=200): dots per inch, dense rendering
- fig.set_size_inches([5,3]): aspect ratio

Seaborn

- FacetGrid (relplot(), catplot()) subplot'lar oluşturabilir.
- AxesSubplot(scatterplot, countplot) bir tane plot oluşturur.

Count Plot & Cat Plot

Count Plot

```
[60]: sns.set_palette("RdBu")
sns.countplot(x="Age", data=df)
plt.show()
```


[68]: sns.catplot(x="Age", aspect=3, data=df, kind="count") #aspect = x ekseni, y ekseninin 3 katı kadar olsun. plt.show()

[69]: g = sns.catplot(x="Age", aspect=3, data=df, kind="count")
g.fig.suptitle("Age Counts", y=1.04) #ismi yukarı çıkarıyor.
plt.show()

[71]: g = sns.catplot(x="Age", aspect=3, data=df, kind="count")
plt.xticks(rotation=30) #x eksenindeki isimleri 30 derece döndürür.
plt.show()

Scatter Plot

Scatter Plot

[72]: sns.scatterplot(x="Age", y="Insulin", data=df, hue="Outcome")
plt.show()

Line Plot

Line Plot

[83]: df.head()

[83]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome	Overweight
	0	6	148	72	35	0	33.6	0.627	50	1	1
	1	1	85	66	29	0	26.6	0.351	31	0	1
	2	8	183	64	0	0	23.3	0.672	32	1	0
	3	1	89	66	23	94	28.1	0.167	21	0	1
	4	0	137	40	35	168	43.1	2.288	33	1	1

Scatter Subplots

Scatter Subplots

Heatmap

Öznitelikler arasındaki ilişkiye, korelasyona bakmamızı sağlar.

Korelasyon ne kadar iyiyse makine öğrenmesi modelimiz o kadar düzgün çalışır.

```
sns.set_palette("RdBu")
correlation=df.corr()
sns.heatmap(correlation, annot=True) #annot: corr degerlerini heatmap üzerine yazar.
plt.show()
#Renk ne kadar açıksa correlation o kadar yüksek demektir.
```


Categoric Plot

Categorical Plots

Bar plot bize kategorik veri hakkında bilgi verir.


```
[130]: sns.set_style("darkgrid") #arka plan tasarımı
sns.catplot(x="Outcome", data=df, kind="count")
plt.show()
```


[158]: sns.set_context("talk") #Font size
sns.set_palette("cool") #color design
sns.catplot(x="Outcome", data=df, kind="count")
plt.show()

