Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа М3217	К работе допущен
Студент Бессонов Борис Александрович	Работа выполнена
Преподаватель Тимофеева Эльвира Олеговна	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1

Распределение случайной величины

1. Цель работы.

Исследование распределения случайной величины на примере многократных измерений определенного интервала времени

- 2. Задачи, решаемые при выполнении работы.
 - 1. Провести многократные измерения определенного интервала времени
 - 2. Построить гистограмму распределения результатов измерения
 - 3. Вычислить среднее значение и дисперсию полученной выборки
 - 4. Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией
- 3. Объект исследования. Результат измерения заданного промежутка времени

В качестве исследуемой случайной величины выбран результат измерения заданного промежутка времени.

4. Метод экспериментального исследования.

При помощи обычных часов с секундной стрелкой или стрелочного секундомера задают некоторый промежуток t времени и многократно измеряют его достаточно точным цифровым секундомером.

5. Рабочие формулы и исходные данные.

 $\rho(t)$ -плотность вероятности (функция Гаусса)

N-полное количество измерений

 ΔN -количество результатов, попавших в интервал $[t; t + \Delta t]$

 σ_N -выборочное среднеквадратичное отклонение

 $\langle t \rangle$ -среднеарифметическое всех результатов измерений

 $P(t_1 < t < t_2)$ —вероятность попадания результата каждого измерения в интервал $[t_1;\ t_2]$ α -доверительная вероятность

 $\lceil \langle t \rangle - \Delta t, \langle t \rangle + \Delta t \rceil$ –доверительный интервал

Плотность вероятности (закон распределения исследуемой величины) (1):

$$\rho\left(t\right) = \lim_{\substack{N \to \infty \\ \Delta t \to 0}} \frac{\Delta N}{N\Delta t} = \frac{1}{N} \frac{dN}{dt}.$$

Функция Гаусса (2):

$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right).$$

Выборочное среднее как среднеарифметическое всех результатов измерений (3):

$$\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + \dots + t_N) = \frac{1}{N} \sum_{i=1}^N t_i$$

Выборочное среднеквадратичное отклонение (4):

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}.$$

Максимальная плотность нормального распределения (5): $\rho_{\max} = \frac{1}{\sigma\sqrt{2\pi}}.$

$$\rho_{\max} = \frac{1}{\sigma\sqrt{2\pi}}.$$

Соотношение для вероятности попадания результата измерения в интервал $[t_1, t_2]$ (6):

$$P(t_1 < t < t_2) = \int_{t_1}^{t_2} \rho(t)dt \approx \frac{N_{12}}{N}$$

Вероятность (7):

$$t \in [\langle t \rangle - \sigma, \langle t \rangle + \sigma], \quad P_{\sigma} \approx 0,683$$

 $t \in [\langle t \rangle - 2\sigma, \langle t \rangle + 2\sigma], \quad P_{2\sigma} \approx 0,954$
 $t \in [\langle t \rangle - 3\sigma, \langle t \rangle + 3\sigma], \quad P_{3\sigma} \approx 0,997$

Приближенные значения вероятностей (8):

$$\begin{aligned} \left[\langle t \rangle_N - \sigma_N, \langle t \rangle_N + \sigma_N \right], \\ \left[\langle t \rangle_N - 2\sigma_N, \langle t \rangle_N + 2\sigma_N \right], \\ \left[\langle t \rangle_N - 3\sigma_N, \langle t \rangle_N + 3\sigma_N \right], \end{aligned}$$

Среднеквадратичное отклонение среднего значения (9):

$$\sigma_{\left\langle t
ight
angle} = \sqrt{rac{1}{N\left(N-1
ight)}\sum_{i=1}^{N}\left(t_i - \left\langle t
ight
angle_N
ight)^2}$$

Уравнение с коэффициентом Стьюдента (10):

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$$

Доверительная вероятность (11):

$$\alpha = P\left(t \in \left[\langle t \rangle - \Delta t, \langle t \rangle + \Delta t\right]\right).$$

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Цифровой секундомер	Секундомер	5 c	0.01 c
2	Стрелочный секундомер	Секундомер	5 c.	0.01 c

7. Схема установки (перечень схем, которые составляют Приложение 1).

В работе используются устройство или прибор, в котором происходит периодический процесс с частотой порядка нескольких десятых долей герца (часы с секундной стрелкой, стрелочный секундомер, математический или физический маятник) и цифровой секундомер, с ценой деления не более 0,01 с. Первый прибор задает интервал времени, который многократно измеряется цифровым секундомером.

8. Результаты прямых измерений и их обработки (таблицы).

No	t_i , C	$t_i - \langle t \rangle_N$, C	$(t_i - \langle t \rangle_N)^2$, C^2
1	4,95	-0,09	0,01
3	4,49	-0,55	0,31
3	4,56	-0,48	0,23
4	5,23	0,19	0,03
5	5,19	0,15	0,02
6	4,6	-0,44	0,20
7	5,16	0,12	0,01
8	5,17	0,13	0,02
9	5,27	0,23	0,05
10	5,51	0,47	0,22
11	5,25	0,21	0,04
12	5,17	0,13	0,02
13	4,6	-0,44	0,20
14	4,49	-0,55	0,31
15	4,89	-0,15	0,02
16	4,87	-0,17	0,03
17	4,96	-0,08	0,01
18	5,01	-0,03	0,00
19	4,38	-0,66	0,44
20	5,06	0,02	0,00
21	5,3	0,26	0,07
22	5,29	0,25	0,06
23	4,75	-0,29	0,09
24	4,59	-0,45	0,21
25	5,03	-0,01	0,00
26	4,48	-0,56	0,32

27	5,18	0,14	0,02
28	5,04	0,00	0,00
29	5,28	0,24	0,06
30	5,28	0,24	0,06
31	4,72	-0,32	0,11
32			
	4,55	-0,49	0,24
33	4,91	-0,13	0,02
34	4,52	-0,52	0,28
35	5,55	0,51	0,26
36	4,88	-0,16	0,03
37	5,38	0,34	0,11
38	5,51	0,47	0,22
39	5,15	0,11	0,01
40	6,25	1,21	1,45
41	4,6	-0,44	0,20
42	4,57	-0,47	0,23
43	4,41	-0,63	0,40
44	5,53	0,49	0,24
45	5,12	0,08	0,01
46	5,24	0,20	0,04
47	4,84	-0,20	0,04
48	5,55	0,51	0,26
49	4,96	-0,08	0,01
50	5,37	0,33	0,11
51	4,98	-0,06	0,00
52	5,09	0,05	0,00
53	4,6	-0,44	0,20
54	4,83	-0,21	0,05
55	5,03	-0,01	0,00
56	5,2	0,16	0,02
57	4,98	-0,06	0,00
58	5,67	0,63	0,39
59	5,43	0,39	0,15
60	5,56	0,52	0,27
61	4,87	-0,17	0,03
62	5,69	0,65	0,42
63	5,21	0,17	0,03
64	4,56	-0,48	0,23
65	4,94	-0,10	0,01
66	4,8	-0,24	0,06
67	5,01	-0,03	0,00
68	5,07	0,03	0,00
69	5,21	0,17	0,03
70	4,78	-0,26	0,07
71	4,6	-0,44	0,20
72	4,52	-0,52	0,28
73	5,4	0,36	0,13
74	4,97	-0,07	0,01
75	4,36	-0,68	0,47
76	5,03	-0,01	0,00
77	5,41	0,37	0,13
78	5,09	0,05	0,00
79	5,01	-0,03	0,00
	1 /	. /	1 /

80	4,7	-0,34	0,12
81	4,71	-0,33	0,11
82	6,09	1,05	1,09
83	5,65	0,61	0,37
84	4,41	-0,63	0,40
85	5,09	0,05	0,00
86	5,17	0,13	0,02
87	5,05	0,01	0,00
88	4,7	-0,34	0,12
89	5,13	0,09	0,01
90	5,8	0,76	0,57
91	3,8	-1,24	1,55
92	5,24	0,20	0,04
93	5,17	0,13	0,02
94	5,28	0,24	0,06
95	4,84	-0,20	0,04
96	5,39	0,35	0,12
97	5,2	0,16	0,02
98	4,87	-0,17	0,03
99	5,34	0,30	0,09
100		1,26	1,58
	$\begin{array}{c} 6.3 \\ \langle t \rangle_N = 5.04 c \end{array}$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = 0 \mathrm{c}$	$\sigma_N = 0.41$ $p_{max} = 0.97$
		i=1	

Границы интегралов, С	ΔN	$\frac{\Delta N}{N\Delta t}$, c^{-1}	t,c	ρ , c^{-1}
3.8	1	0.04	3.93c	0.02
4.1				
4.1	0	0.00	4.18c	0.10
4.3				
4.3	9	0.36	4.43c	0.31
4.6				
4.6	16	0.64	4.68c	0.65
4.8				
4.8	24	0.96	4.93c	0.93
5.1				
5.1	29	1.16	5.18c	0.92
5.3				
5.3	11	0.44	5.43c	0.63
5.6				
5.6	6	0.24	5.68c	0.30
5.8	1			
5.8	1	0.04	5.93c	0.10
6.1	1			
6.1	3	0.12	6.18c	0.02

163		
0.5		

	Интервал, С		ΔΝ	$\frac{\Delta N}{N}$	P
	ОТ	до			
5.04 ± 0.41	4.63c	5.46c	67	0.67	≈ 0.68
5.04 ± 0.82	4.22c	5.87c	96	0.96	≈ 0.95
5.04 ± 1.23	3.81c	6.28c	98	0.98	≈ 0.99

9. Расчет результатов косвенных измерений (таблицы).

Расчёт среднеквадратичного отклонения среднего значения по формуле (9):

$$\sigma_{\langle t \rangle} = \sqrt{rac{1}{N\left(N-1
ight)} \sum_{i=1}^{N} \left(t_i - \langle t
angle_N
ight)^2}$$
 =0.041

Табличное значение коэффициента Стьюдента $t\alpha$,N для доверительной вероятности $\alpha=0.95$: $t\alpha$, $N\approx1.98$ при N=100

Расчёт доверительного интервала для измеряемого в работе промежутка времени по формуле (10):

$$\Delta t = t_{lpha,N} \cdot \sigma_{\langle t
angle}$$
 =0.082

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$\frac{|x-a|}{|a|}$$
 — относительная погрешность $|x-a|$ — абсолютная погрешность $|a|$ — приближенное значение x

$$\frac{|5.04 - 5.00|}{5} \cdot 100\% = 0.8\%$$

11. Графики (перечень графиков, которые составляют Приложение 2).

12. Окончательные результаты.

$$\langle t \rangle = 5.04 \text{ c}$$
 $\sigma_N = 0.41$
 $\rho_{max} = 0.97$
 $\sigma_{\langle t \rangle} = 0.041$
 $\Delta t = 0.082 \text{c}$ πρμ $\alpha = 0.95, N = 100, t_{\alpha,N} = 1.98$

Относительная погрешность: Y = 0.8%

13. Выводы и анализ результатов работы.

В ходе лабораторной работы я исследовал распределение случайной величины. Для этого я провёл многократные измерения определенного интервала времени (5 секунд)

Посте того, как был задан промежуток времени, разброс t по секундомеру не превышал нескольких десятых секунд. На разброс повлиял человеческий фактор — человеческая реакция и невнимательность. Из-за этого имеется подобная погрешность.

Гистограмма не полностью соответствует графику плотности вероятностей из-за малого количества измерений и человеческого фактора.

- 14. Дополнительные задания.
- 15. Выполнение дополнительных заданий.
- 16. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).

Примечание:

- 1. Пункты 1-6,8-13 Протокола-отчета **обязательны** для заполнения.
- 2. Необходимые исправления выполняют непосредственно в протоколе-отчете.
- 3. При ручном построении графиков рекомендуется использовать миллиметровую бумагу.
- 4. Приложения 1 и 2 вкладывают в бланк протокола-отчета.