FY1001/TFY4109/TFY4145. Institutt for fysikk, NTNU. Høsten 2015. Øving 7. Veiledning: 12. - 15. oktober.

Svingninger

En kloss med masse m er festet til ei (masseløs) fjær med fjærkonstant k. Fjæra er festet til en vegg i sin venstre ende. Klossen kan gli uten friksjon på et horisontalt underlag. Bevegelsen blir startet (ved t=0) ved å dra klossen fra likevektsposisjonen x=0 mot høyre til posisjon x_0 og gi den en hastighet v_0 mot høyre. Klossen utfører deretter harmoniske svingninger beskrevet ved $x(t) = A\cos(\omega_0 t + \phi)$ der $\omega_0 = 2\pi/T$ er vinkelfrekvensen, T er perioden og ϕ er en fasekonstant.

a) Hva er perioden T for denne harmoniske svingningen?

A) $2\pi\sqrt{k/m}$ B) $\sqrt{k/m}$ C) $2\pi\sqrt{m/k}$ D) $\sqrt{m/k}$

b) Hva er amplituden A for denne harmoniske svingningen?

A) $\sqrt{x_0^2 + (v_0/\omega_0)^2}$ B) $x_0/\cos(\arctan(v_0/x_0\omega_0))$ C) Både A og B er riktige svar D) Verken A eller B er riktige svar

c) Hva er fasekonstanten ϕ for denne harmoniske svingningen?

A) – $\arctan(v_0/x_0\omega_0)$ B) $\arccos(1/\sqrt{1+mv_0^2/kx_0^2})$ C) Både A og B er riktige svar D) Verken A eller B er riktige svar

d) Hva er systemets totale mekaniske energi E?

A) $kx_0^2/2$ B) $mv_0^2/2$ C) $kx_0^2/2 + mv_0^2/2$ D) 0

e) Vi kunne alternativt ha skrevet løsningen på formen $x(t) = B\cos\omega_0 t + C\sin\omega_0 t$. Hva blir da de to koeffisientene B og C?

A) $B = v_0/\omega_0$ og $C = x_0$ B) $B = x_0$ og $C = v_0/\omega_0$ C) $B = C = x_0$ D) $B = C = v_0/\omega_0$

f) Hva blir svingebevegelsens maksimale utsving og maksimale hastighet dersom m = 100 g, k = 10 N/m, $x_0 = 1.0 \text{ cm og } v_0 = 10 \text{ cm/s}.$

A) 1.4 cm og 14 cm/s B) 1.4 m og 14 m/s

C) 14 m og 1.4 m/s D) 14 cm og 1.4 cm/s

q) Svingesystemet dreies 90 grader slik at massen m henger vertikalt i tyngdefeltet. Med hvilken vinkelfrekvens ω vil massen nå svinge opp og ned?

A) $\omega = \omega_0$ B) $\omega = 2\omega_0$ C) $\omega = 3\omega_0$ D) $\omega = 4\omega_0$

h) Figuren viser utsvinget

$$x(t) = x_0 e^{-t/\tau} \cos \omega t,$$

eller rettere sagt $x(t)/x_0$, for en dempet harmonisk svingning. Omtrent hvor stort er produktet $\omega \tau$ mellom vinkelfrekvensen og den "karakteristiske tiden" for dempingsforløpet?

Et enkelt masse-fjær-svingesystem med masse m og fjærstivhet k har som kjent vinkelfrekvens $\omega = \sqrt{k/m}$. Sett opp "N2" for de tre svingesystemene vist i figuren nedenfor og finn vinkelfrekvensen for hvert av systemene uttrykt ved $\omega_1 = \sqrt{k_1/m}$ og $\omega_2 = \sqrt{k_2/m}$. I alle tilfellene er fjærene masseløse, og det er ingen ${\it friksjon.}$

$$i) \omega_i = \dots$$

A)
$$\omega_1 + \omega_2$$

i)
$$\omega_i = \dots$$

A) $\omega_1 + \omega_2$ B) $\omega_1 \omega_2 / \sqrt{\omega_1^2 + \omega_2^2}$ C) $\sqrt{\omega_1^2 + \omega_2^2}$ D) $\sqrt{\omega_1 \omega_2}$

C)
$$\sqrt{\omega_1^2 + \omega_2^2}$$

D)
$$\sqrt{\omega_1\omega_2}$$

$$i)$$
 $\omega_i = \dots$

A)
$$\omega_1 + \omega_2$$

j)
$$\omega_j = \dots$$

A) $\omega_1 + \omega_2$ B) $\omega_1 \omega_2 / \sqrt{\omega_1^2 + \omega_2^2}$ C) $\sqrt{\omega_1^2 + \omega_2^2}$ D) $\sqrt{\omega_1 \omega_2}$

C)
$$\sqrt{\omega_1^2 + \omega_2^2}$$

D)
$$\sqrt{\omega_1\omega_2}$$

$$k)$$
 $\omega_k = \dots$

A)
$$\omega_1 + \omega_2$$

k)
$$\omega_k = \dots$$

A) $\omega_1 + \omega_2$ B) $\omega_1 \omega_2 / \sqrt{\omega_1^2 + \omega_2^2}$ C) $\sqrt{\omega_1^2 + \omega_2^2}$ D) $\sqrt{\omega_1 \omega_2}$

C)
$$\sqrt{\omega_1^2 + \omega_2^2}$$

D)
$$\sqrt{\omega_1\omega_2}$$