Final concepts of SLR

Author: Nicholas G Reich, Jeff Goldsmith

This material is part of the statsTeachR project

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

ŧ

Today's lecture

- Simple Linear Regression Continued
- Multiple Regression Intro

Simple linear regression model

• Observe data (y_i, x_i) for subjects $1, \ldots, I$. Want to estimate β_0, β_1 in the model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i; \ \epsilon_i \overset{iid}{\sim} (0, \sigma^2)$$
• Note the assumptions on the variance:

- - $\mathbf{E}(\epsilon \mid x) = E(\epsilon) = 0$
 - Constant variance
 - Independence
 - [Normally distributed is not needed for least squares, but is needed for inference

Some definitions / SLR products

- Fitted values: $\hat{y}_i := \hat{\beta}_0 + \hat{\beta}_1 x_i$
- Residuals / estimated errors: $\hat{\epsilon}_i := y_i \hat{y}_i$
- Residual sum of squares: RSS := $\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}$
- Residual variance: $\hat{\sigma^2} := \frac{RSS}{n-2}$ Degrees of freedom: (n-2)

Notes: residual sample mean is zero; residuals are uncorrelated with fitted values.

Looking for a measure of goodness of fit.

RSS by itself doesn't work so well:

$$\sum_{i=1}^n (y_i - \hat{y}_i)^2$$

• Coefficient of determination (R^2) works better:

Propofall variance by model

$$R^2 = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2}$$

Propofall variance described by excess

Some notes about R^2

- Interpreted as proportion of outcome variance explained by the model.
- Alternative form

$$R^{2} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

- R^2 is bounded: $0 \le R^2 \le 1$
- \blacksquare For simple linear regression only, $R^2=\rho^2$

ANOVA

Lots of sums of squares around.

- Regression sum of squares $SS_{reg} = \sum (\hat{y}_i \bar{y})^2$
- Residual sum of squares $SS_{res} \neq \sum (y_i \hat{y}_i)^2$
- Total sum of squares $SS_{tot} = \sum (y_i \bar{y})^2$
- All are related to sample variances

Analysis of variance (ANOVA) seeks to address goodness-of-fit by looking at these sample variances.

ANOVA

ANOVA is based on the fact that $SS_{tot} = SS_{reg} + SS_{res}$

$$SS_{tot} = \mathcal{Z}(y_i - \bar{y})^2$$

= $\mathcal{Z}((y_i - \bar{y}) + (y_j - \bar{y}))^2$

ANOVA

ANOVA is based on the fact that $SS_{tot} = SS_{reg} + SS_{res}$

ANOVA and R^2

- Both take advantage of sums of squares
- Both are defined for more complex models
- ANOVA can be used to derive a "global hypothesis test" based on an F test (more on this later)

R2 never used for hypothesis

```
require(alr3)
data(heights)
linmod <- lm(Dheight ~ Mheight, data = heights)</pre>
linmod
##
## Call:
## lm(formula = Dheight ~ Mheight, data = heights)
##
## Coefficients:
## (Intercept) Mheight
## 29.917 0.542
```

```
summary(linmod)
##
## Call:
## lm(formula = Dheight ~ Mheight, data = heights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.397 -1.529 0.036 1.492 9.053
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29.917 1.623 18.4 <2e-16 ***
## Mheight 0.542 0.026 20.9 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.27 on 1373 degrees of freedom
## Multiple R-squared: 0.241, Adjusted R-squared: 0.24
## F-statistic: 435 on 1 and 1373 DF, p-value: <2e-16
```

```
class( linnod)
```

```
names(linmod)

## [1] "coefficients" "residuals" "effects" "rank"

## [5] "fitted.values" "assign" "qr" "df.residual"

## [9] "xlevels" "call" "terms" "model"
```

linned \$ (oef

```
head(linmod$residuals)
## 1 2 3 4 5 6
## -7.160 -4.947 -6.747 -6.001 -7.397 -2.084
head(resid(linmod))
## 1 2 3 4 5 6
## -7.160 -4.947 -6.747 -6.001 -7.397 -2.084
head(linmod$fitted.values)
## 1 2 3 4 5 6
## 62.26 61.45 62.75 62.80 63.40 59.98
head(fitted(linmod))
## 1 2 3 4 5 6
## 62.26 61.45 62.75 62.80 63.40 59.98
```

```
names(summary(linmod))
                       "terms"
##
                                       "residuals"
                                                       "coefficients"
                                       "df"
    [5]
       "aliased"
                       "sigma"
                                                       "r.squared"
##
    [9] "adj.r.squared" "fstatistic"
##
                                       "cov.unscaled"
summary(linmod)$coef
##
              Estimate Std. Error t value Pr(>|t|)
                          1.62247 18.44 5.212e-68
   (Intercept) 29.9174
  Mheight
                0.5417
                          0.02596
                                    20.87 3.217e-84
summary(linmod)$r.squared
## [1] 0.2408
```

```
## Analysis of Variance Table
##
## Response: Dheight
##
Df Sum Sq Mean Sq F value Pr(>F)
## Mheight 1 2237 2237 435 <2e-16 ***
## Residuals 1373 7052 5
## --- State of the s
```

$$R^{2} = \left| -\frac{SS_{res}}{SS_{tot}} \right| = \left| -\frac{SS_{res}}{SS_{res} + SJ_{res}} \right|$$

```
anova(linmod)
## Analysis of Variance Table
##
## Response: Dheight
              Df Sum Sq Mean Sq F value Pr(>F)
##
## Mheight 1 2237 2237 435 <2e-16 ***
## Residuals 1373 7052
                              5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(r2 \leftarrow 1 - 7052/(7052 + 2237))
## [1] 0.2408
```

Note on interpretation of β_0

Recall
$$\beta_0 = E(y|x=0)$$

- This often makes no sense in context
- "Centering" x can be useful: $x^* = x \bar{x}$
- Center by mean, median, minimum, etc
- Effect of centering on slope:

$$\beta_{i}^{*} = \frac{\sum (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum (x_{i} - \overline{x})^{2}}$$

$$\beta_{i}^{*} = \frac{\sum (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum (x_{i} - c - \overline{x})^{2}}$$

$$\vdots$$

$$\overline{X} = \frac{\sum x_i^*}{\sum (x_i - c)}$$

Note on interpretation of β_0, β_1

- The interpretations are sensitive to the scale of the outcome and predictors (in reasonable ways)
- You can't get a better model fit by rescaling variables


```
heights$centeredMheight <- heights$Mheight - mean(heights$Mheight)
centeredLinmod <- lm(Dheight ~ centeredMheight, data = heights)</pre>
summary(centeredLinmod)
##
## Call:
## lm(formula = Dheight ~ centeredMheight, data = heights)
##
## Residuals:
##
     Min 1Q Median 3Q
                                 Max
## -7.397 -1.529 0.036 1.492 9.053
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   63.7511
                               0.0611 1043.1 <2e-16 ***
## centeredMheight (
                    0.5417
                               0.0260 20.9 <2e-16 ***
## ---
## Signif. codes:
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.27 on 1373 degrees of freedom
## Multiple R-squared: 0.241, Adjusted R-squared: (0.24)
## F-statistic: 435 on 1 and 1373 DF, p-value: <2e-16
```

Properties of $\hat{\beta}_0, \hat{\beta}_1$

Properties of \hat{eta}_0,\hat{eta}_1

Estimates are unbiased:

$$E(\hat{\beta_0}) = \beta_0$$

$$E(\hat{\beta_1}) = \beta_1$$

Properties of $\hat{\beta}_0, \hat{\beta}_1$

Variances of estimates $Var(\hat{\beta}_0) = \frac{\bar{x}\sigma^2}{\sum x^2}$

$$Var(\hat{eta}_1) = rac{\hat{\sigma}^2}{S_{xx}}$$
 where $S_{xx} = \sum (x - \bar{x})^2$

Properties of $\hat{\beta}_0, \hat{\beta}_1$

Note about the variance of β_1 :

- Denominator contains $\underline{SS_x} = \sum (x_i \bar{x})^2$
- To decrease variance of $\hat{\beta}_1$, increase variance of x

One slide on multiple linear regression

• Observe data $(\underline{y_i, x_{i1}, \dots, x_{ip}})$ for subjects $1, \dots, n$. Want to estimate $\beta_0, \beta_1, \dots, \beta_p$ in the model

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_1 x_{ip} + \epsilon_i; \ \epsilon_i \stackrel{iid}{\sim} (0, \sigma^2)$$

- Assumptions (residuals have mean zero, constant variance, are independent) are as in SLR
- Notation is cumbersome. To fix this, let

$$\mathbf{x}_{i} = [1, x_{i1}, \dots, x_{ip}] \quad (\boldsymbol{\times} \boldsymbol{p})$$

$$\bullet \beta^T = [\beta_0, \beta_1, \dots, \beta_p]$$

■ Then
$$y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i$$

Summary

Today's big ideas

- ► Simple linear regression definitions
- Properties of least squares estimates

Coming up soon

► More on MLR