MATH 465 - INTRODUCTION TO COMBINATORICS LECTURE 9

1. Catalan numbers

The Catalan numbers C_n are defined by

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{n! (n+1)!} = \frac{1}{2n+1} \binom{2n+1}{n}.$$

$$\frac{n \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9}{C_n \mid 1 \mid 1 \mid 2 \mid 5 \mid 14 \mid 42 \mid 132 \mid 429 \mid 1430 \mid 4862}$$

These numbers enumerate many families of combinatorial objects. Note that it is not clear from the definition we have given that these are integers.

1.1. Circular arrangemets of $\pm 1s$. Suppose $\alpha = a_1 a_2 \cdots a_{2n+1}, a_i \in \{1, -1\}$ is a circular arrangement of n+1 1s and n-1s. We often write - for -1. Such a representation of α is of course not unique. Any cyclic shift $a_{k+1} \cdots a_{2n+1} a_1 \cdots a_k$ represents the same circular arrangement. In general, the cyclic shifts of a circular arrangement of 1s and -1s are not distinct. For example, if we have 1-1- and cyclically shift it two units, we get 1-1- again (writing - for -1). However:

Lemma 1.1. If we have n + 1 1s and n - 1s, all cyclic shifts of α are distinct.

Proof. Suppose α is invariant under cyclic shift by k. Write α k times in a line

$$\alpha\alpha\cdots\alpha=a_1\cdots a_{2n+1}a_1\cdots a_{2n+1}\cdots a_1\cdots a_{2n+1}.$$

There are (n+1)k 1s and nk-1s in this sequence. Let $\beta = a_1a_2\cdots a_k$. Then, since α is invariant under cyclic shift by k,

$$\alpha\alpha\cdots\alpha$$
 (k times) = $\beta\beta\cdots\beta$ (2n + 1 times).

Now we count the number of 1s in two different ways:

- (1) α contains n+1 1s, so $\alpha\alpha\cdots\alpha$ (k times) contains k(n+1) 1s.
- (2) Suppose β contains l 1s. Then, $\beta\beta\cdots\beta$ (2n+1 times) contains (2n+1)l 1s.

Therefore, we must have k(n+1) = (2n+1)l. Since n+1 and 2n+1 are coprime, k is divisible by 2n+1, so that cyclic shift by k is a number of full rotations of the circle. \square

Theorem 1.2. The number of circular arrangements of n+1 1s and n-1s, up to rotation, is the Catalan number C_n .

Proof. There are $\binom{2n+1}{n}$ ways to place n+1 1s and n-1s in a line, and for each circular arrangement, there are 2n+1 linear arrangements related by cyclic shifts. By the division principle, we get $\frac{1}{2n+1}\binom{2n+1}{n}$.

Corollary 1.3. C_n is an integer.

- 1.2. Ballot sequences. A ballot sequence of length 2n is a sequence of n 1s and n -1s in which each initial segment contains at least as many 1s as -1s. More precisely, a ballot sequence is a sequence a_1, \ldots, a_{2n} such that:
 - $(1) \ a_i \in \{\pm 1\};$
 - (2) $a_1 + \cdots + a_{2n} = 0;$
 - (3) Each partial sum $a_1 + \cdots + a_k, 1 \le k \le 2n$, is nonnegative.

Example 1.4 (n = 3.). There are five ballot sequences:

Theorem 1.5. The number of ballot sequences of length 2n is C_n .

The proof will rely on the following lemma.

Lemma 1.6. In any circular arrangement of $\pm 1s$ whose sum is equal to 1, there is exactly one location starting from which all clockwise partial sums are positive.

Proof. Suppose $\alpha = a_1 a_2 \cdots a_{2n+1}$ is a circular arrangement of ± 1 s such that $a_1 + a_2 + \cdots + a_{2n+1} = 1$.

- (1) Uniqueness: Suppose there are two such locations $1 \le k < l \le 2n + 1$. The circle breaks into two segments $a_k a_{k+1} \cdots a_{l-1}$ and $a_l a_{l+1} \cdots a_{2n+1} a_1 \cdots a_{k-1}$ such that the sums of each segment are ≥ 1 . The total sum is therefore ≥ 2 , a contradiction.
- (2) Existence: Suppose there is no location starting from which all clockwise partial sums are positive. Start someplace and find a nonpositive clockwise partial sum. Start at the end and find a nonpositive clockwise partial sum and so on. Eventually we will revisit a place, and the sum of all entries we have seen is ≤ 0 , a contradiction.

Proof of Theorem [1.5]. By Lemma [1.6], there exists a unique k such that $a_k a_{k+1} \cdots a_{2n+1} a_1 \cdots a_{k-1}$ has positive clockwise partial sums. Therefore $a_k = 1$ and removing it, we get a ballot sequence $a_{k+1} \cdots a_{2n+1} a_1 \cdots a_{k-1}$.

- 1.3. **Dyck paths.** A *Dyck path* of length 2n is a lattice path $v_0v_1\cdots v_{2n}$ in the coordinate plane which
 - (1) connects the points (0,0) and (2n,0), i.e., $v_0 = (0,0)$ and $v_{2n} = (2n,0)$,
 - (2) consists of steps $v_{i+1} v_i \in \{(1,1), (1,-1)\}$, and
 - (3) is entirely contained in the upper half-plane $y \ge 0$.

Theorem 1.7. The number of Dyck paths of length 2n is $C_n = \frac{1}{n+1} {2n \choose n}$.

Proof. Dyck paths of length 2n are in bijection with ballot sequences of length 2n:

$$v_0 v_1 \cdots v_{2n} \mapsto a_1 a_2 \cdots a_{2n},$$

$$a_i = \begin{cases} 1 & \text{if } v_i - v_{i-1} = (1, 1), \\ -1 & \text{if } v_i - v_{i-1} = (1, -1). \end{cases}$$

In other words, we are recording the y-coordinates of the steps. Therefore, the y-coordinate of the point v_k is $a_1 + \cdots + a_i$. The condition that v_k is contained in $y \geq 0$ becomes the ballot condition $a_1 + \cdots + a_k \geq 0$.

1.4. Recurrence for Catalan numbers.

Lemma 1.8. Every ballot sequence splits uniquely into a concatenation of the form

$$1(ballot\ sequence) - (ballot\ sequence).$$

Proof. Suppose a_1, \ldots, a_{2n} is a ballot sequence. Take the first partial sum that is 0, i.e., let $2 \le k \le 2n$ be the smallest integer such that $a_1 + \cdots + a_k = 0$. Such a k must exist because $a_1 + \cdots + a_{2n} = 0$. Then $a_2 \ldots a_{k-1}$ and $a_{k+1} \ldots a_{2n}$ are ballot sequences, and we have

$$a_1, \ldots, a_{2n} = 1, (a_2, a_3, \ldots, a_{k-1}), -1, (a_{k+1}, \ldots, a_{2n}).$$

Now we show uniqueness. Suppose l is such that $1, (a_2, \ldots, a_{l-1}), -1, (a_{l+1}, \ldots, a_{2n})$ is splitting. Since a_2, \ldots, a_{l-1} is a ballot sequence, $a_1 + \cdots + a_l = 0$, so $l \geq k$. If l > k, then since $a_1 + \cdots + a_k = 0$, we have $a_2 + \cdots + a_k = -1$, contradicting the assumption that a_2, \ldots, a_{l-1} is a ballot sequence.

Theorem 1.9. The Catalan numbers satisfy the recurrence

$$C_n = \sum_{k+l=n-1} C_k C_l.$$

Proof. Let BS(n) denote the set of ballot sequences of length 2n. By Lemma 1.8, we have a well-defined function $f: BS(n) \to \bigsqcup_{k+l=n-1} BS(k) \times BS(l)$. f is a bijection: f^{-1} is the function that sends the pair (α, β) , $\alpha \in BS(k)$ and $\beta \in BS(l)$, to $1\alpha - \beta \in BS(n)$.

Theorem 1.10 (Exercise). The generating function for Catalan numbers is

$$\sum_{n=0}^{\infty} C_n \, x^n = \frac{1 - \sqrt{1 - 4x}}{2x}.$$