

to = 00

$$A_0 = AVJ. O_1Q_1 = Q_1 + M_2^2 \Rightarrow A_0. kf = 8,73 \times 10^2$$

$$\triangle v = \frac{v_0}{v_h} = \frac{A_0}{1 + A_0 k_h} \implies \frac{1}{k_h} = 11,11$$

- a) Justificar cualitativamente:
- El valor de la tensión de salida V_o del amplificador en reposo (V_{oo}).
- ¿Cómo influye en el valor de la RRMC el polarizar con una fuente cascode en lugar de una espejo simple?.
- ¿Cómo influye en el balance de corrientes la carga T3-T4-T5, en lugar de una espejo simple?
 - b) Obtener el valor de la corriente de offset I_{off} si existe un desapareamiento $\delta < 5\%$ entre β_1 y β_2 .
 - c) Calcular el rango de tensión de modo común.
 - d) Obtener el valor de la constante de tiempo asociada al terminal de salida. Justificar cualitativamente si puede considerarse dominante para la respuesta en alta frecuencia de Av_d o debe analizarse otra constante de tiempo potencialmente importante.

1.- Se tiene el circulto de la figura formado por un par de NMOSFET inducidos T_1 - T_2 , acoplado por source, con una fuente espejo como carga PMOSFET, T_3 - T_4 , polarizado mediante fuentes de alimentación \pm Voo y de corriente I_1 - R_1 y excitado mediante dos señales cuyo equivalente Thévenin es el Indicado en la figura (V_{51} y V_{52} e iguales resistencias equivalentes R_5). Se admiten en principio transistores con características nominalmente similares (T_1 = T_2 y T_3 = T_4). Definir y hallar la expresión de la tensión de offset, V_{01} , del circulto para los siguientes casos:

- a) $100.|W_2 W_1|/W_1 = \delta$, donde $0 < \delta < 3\%$.
- **b)** $100.|W_4 W_3|/W_3 = \delta$, donde $0 < \delta < 3\%$.
- c) 100. $|V_{T2} V_{T1}| / V_{T1} = \delta$, donde $0 < \delta < 3\%$.

Obtener la tensión de offset total, admitiendo que existen todos los desapareamientos a la vez y considerando el peor caso (Despreciar para este ítem, la influencia de R₁).

Justificar por qué en señal los desapareamientos afectan en forma importante a Av_c y no a Av_d.

C)
$$V_0 = \sqrt{\frac{101}{101}} + V_{T_1} - \sqrt{\frac{1001}{102}} - V_{T_2}$$

$$I_{01} = I_{02}$$
 $L_1 = L_2$
 $W_1 - W_2$ $K_1 = K_2$

VT2 = 1,03 VT,

$$Voff = \sqrt{\tau}, -\sqrt{\tau_2}$$

$$Voff = \sqrt{\tau}, \left(1 - 1, 03\right) = -0.03 \text{V}_{\tau_2}$$

la voff afecta más en Avc porque tengo una entrada comun, al desaparearme me rompe el corto virtual y el poder considerar la fuente de corriente con "l'hemicircuitos"

1. El OPAMP tiene una etapa de entrada diferencial MOS, con Ava = Vur/Vu = 104. [3 = 100; R = 100f)

- a) Obtener el valor de Icq. ¿Qué función cumple el TBJ en este circuito? ¿Entre que valores puede variar R1 manteniendo el TBJ en MAD?.
- b) Analizar el lazo de realimentación entre el TBJ y la entrada del OPAMP. ¿Es positiva o negativa?. Justificar. ¿Qué muestrea y qué suma?. Identificar los distintos bloques que conforman el sistema realimentado (A_o, k_i, generador y carga).

$$ViT(lok+Q_v) = 10.lok$$

$$Rv = \frac{10.10K - 1.710K}{V:T}$$
 $Rv = 54.5K$

$$0.000 = -9.000 = 10 \times (-(-9.000 + 10 \times))$$

$$\frac{\text{Vod2}}{\text{2r:d}} = -\frac{\text{gm V:d low}}{\text{V:d}} = -\text{gm low}$$

