Système de kits de mesure $low\ cost$

Synthèse de projets existants

 $\label{eq:Quentin LESNIAK - Stagiaire ingénieur - LIENSs} Quentin \ LESNIAK - Stagiaire ingénieur - LIENSs$

17 août 2023

Table des matières

SensOcean
Fonctionnement
Liste grossière du matériel
Architecture logicielle
Détail des sondes
SETIER Datalogger
Fonctionnement
Liste grossière du matériel
Architecture logicielle
Détail des sondes
OceanIsOpen
Fonctionnement
Liste grossière du matériel
Architecture logicielle
Détail des sondes
Synthèse des fonctionalités

SensOcean

https://github.com/astrolabe-expeditions/SensOcean

Fonctionnement

SensOcean est un boîtier autonome de mesure de température et salinité de l'eau de mer ainsi que de la température et pression ambiante. Il fonctionne par cycles de mesures dont la période de déclanchement peut être configurée. Le reste du temps, le boîtier est en veille. Après chaque cycle de mesures, les données sont affichées sur un écran et enregistrées sur une carte SD. Il fonctionne sur batterie et se recharge seul grâce à un panneau solaire.

Liste grossière du matériel

- ESP32:
- Ecran ePaper (bien de jour, pas terrible de nuit);
- Horloge temps réel (pour la date et l'heure);
- Sondes avec ou sans circuit de conditionnement;
- Batterie + panneau solaire;
- Slot SD (stockage de la configuration et des données);
- Recepteur GPS (uniquement pour la position).

Architecture logicielle

La station majoritairement en veille, elle se réveille pour effectuer les mesures. Utilisation du mode *deepsleep* de l'ESP32, qui permet d'uniquement utiliser la fonction setup() d'Arduino. La configuration du boîtier (intervalles de mesures, etc.) est à renseigner dans le fichier de configuration sur la carte SD.

L'interface utilisateur se compose d'une signalisation LED et de l'écran. Ce dernier affiche l'étape en cours pendant le *boot* et les mesures après un cycle.

La calibration requiert le téléversement de programmes d'aide à la calibration vers l'ESP32, un moniteur série pour récupérer les valeurs des sondes et des tableaux Excel pour le caclul de la conductivité des solutions étalons. Le système prévient également l'utilisateur si les sondes doivent être recalibrées.

Détail des sondes

Ce projet est équipé de 4 capteurs :

- Un capteur de température DS18B20;
- Un capteur de pression BMP280;
- Un kit Atlas Scientific K 0.1 Conductivity;
- Un kit Gravity Analog Temperature.

Seuls les kits suivants nous intéressent, car leurs sondes résistent à l'eau salée :

Kit Atlas Scientific K 0.1 Conductivity	Graphite	
Etendue de mesure	$0.07 \ \text{à} \ 50 \ 000 \ \mu\text{S/cm}$	
Précision	+/-2%	
Temps de réponse	90% en 1s	
Températre d'utilisation	1 à 110°C	
Durée de vie estimée	10 ans	
Longueur de câble	1m	
Prix	219.99€	
	Sonde Température PT-1000	
Kit Gravity Analog Temperature	Sonde Température PT-1000	
Kit Gravity Analog Temperature Type de sonde	Sonde Température PT-1000 Platine Classe B, RTD	
	_	
Type de sonde	Platine Classe B, RTD	
Type de sonde Etendue de mesure	Platine Classe B, RTD -50 à 200°C	
Type de sonde Etendue de mesure Précision	Platine Classe B, RTD -50 à 200°C +/-(0,3 + 0,005.T)	
Type de sonde Etendue de mesure Précision Temps de réponse	Platine Classe B, RTD -50 à 200°C +/-(0,3 + 0,005.T) 90% en 8s	

SETIER Datalogger

https://gitlab.irstea.fr/reversaal/setier_datalogger

Fonctionnement

Son focntionnement est proche de celui de SensOcean. Le datalogger effectue des cycles de mesures à une fréquence configurable (choix limités). Il présente par contre une plus grande variété de sondes. Il permet également de déclencher et visulaiser des mesures sur une page HTML, de télécharger les données mesurées et de rentrer les coefficients de calibration via son point d'accès WiFi. Il est alimenté sur secteur.

Liste grossière du matériel

- Arduino MKR WiFi;
- Shield de connecteur pour capteurs;
- Shield SD;
- Sondes avec ou sans circuits de conditionnement;
- Boîtes à relais I²C pour le pilotage de l'alimentation des capteurs;
- Hub I²C pour le contrôle des relais;
- Horloge temps réel (pour la date et l'heure);
- Alimentation secteur.

Architecture logicielle

Le datalogger est majoritairement en veille. Il se réveille pour effectuer un cycle de mesure capteur par capteur, c.à.d. que tous les capteurs sont mis sous tension, acquierent une donnée et mis hors tension les uns après les autres. La période de mesure est configurable parmi les choix proposés.

L'interface utilisateur est une page HTML accessible sur le réseau WiFi du datalogger. Elle permet de lancer une mesure pour un capteur en particulier, visualiser la valeur mesurée, télécharger les données acquises et stockées sur la carte SD, entrer les coefficients de calibration.

Le processus de calibration est identique au projet *SensOcean* mais il n'y a pas besoin de téléverser de nouveau programme à l'ESP32 et les valeurs des sondes sont retournéew sur la page HTML, non pas sur un port série.

Détail des sondes

Les capteurs utilisés pour ce projets ont été approuvés pour la mesure d'eaux usées par les chercheurs ayant développé le datalogger. Ils ne semblent néanmoins pas tous totalement étanches.

Fournisseurs:

Farnell

DFRobot

SEN0169	рН
Tension d'entrée	3.3 à 5.5V
Etendue de mesure	0 à 14
Température d'utilsation	0 à 60°C
Résolution	0.1
Temps de réponse	<1min
Durée de vie estimée	6 mois
Longueur de câble	5m
Prix	US\$65
DFR0300	Conductivité
Tension d'entrée	3 à 5V
Etendue de mesure	0 à 20μS/cm
Température d'utilsation	0 à 40°C
Durée de vie estimée	6 mois
Longueur de câble	1m
Prix	65€
SEN0464	Potentiel Redox
Tension d'entrée	5V
Etendue de mesure	-2000 à 2000mV
Température d'utilsation	5 à 70°C
Précision à 25°C	$10 \mathrm{mV}$
Prix	US\$129
SEN0237	Oxigène Dissous
Tension d'entrée	3.3 à 5.5V
Etendue de mesure	$0 \ \text{à} \ 20 \text{mg/L}$
Température d'utilsation	0 à 60°C
Durée de vie estimée	12 mois
Durée de vie de la membrane	1-2 mois
Durée de vie de la soude	1 mois
Longueur de câble	2m
Prix	155€

OceanIsOpen

https://gitlab.irstea.fr/reversaal/setier_datalogger

Fonctionnement

Le projet OceanIsOpen est le plus complet des trois. En plus d'une station de mesure, il compte aussi un système de stockage et mise à disposition des données sophistiqué.

La station de mesure effectue des acquisitions périodiques, de fréquence paramétrable, pour stockage temporaire local sans jamais entrer en veille.

Le système de stockage peut être sépraré en deux parties, le stockage local (sur la station) et distant (sur un serveur distant). Sur la station, les acquisitions sont envoyées dans une base de données PostgreSQL qui les stocke avec leurs métadonnées (date, heure et position GNSS). Ces données sont accessibles via le point d'accès WiFi embarqué de la station. L'application web et un serveur Grafana permettent de gérer et visualiser les données en local.

Les données locales sont envoyées pour stockage vers un serveur PostgreSQL distant grâce à un accès à internet fourni par une carte SIM. De ce serveur accessible depuis internet, elles peuvent être extraites et utilisées.

Liste grossière du matériel

- Raspberry Pi;
- Teensy (ESP32);
- Sondes avec ou sans circuits de conditionnement;
- Module GPS;
- Serveur distant.

Architecture logicielle

Le Teensy effectue les acquisitions périodiquement (si les logs sont activés) et les envoie aux Raspberry à travers un port série au format JSON. Il scrute également les ordres envoyés par le Rapberry Pi sur ce port.

Le Raspberry joue plusieurs rôles dans le système. Il héberge :

- Un serveur multiusages;
- Une application web (interface utilisateur);
- Une base de données PostgreSQL;
- Un serveur Grafana;
- Un service d'injection auto.replay des données au serveur distant.

Le seveur multiusages (serveur.js) est chargé : d'intéragir avec la base de données (insertions, extractions, etc.), de gérer la communication avec le Teensy (données entrantes et ordres sortants), de récupérer l'heure et la position GNSS, et la communication avec l'application web ReactApp (page web sortante et ordres Teensy entrants). L'application web et le serveur Grafana proposent une interface utilisateur permettant de respectivement contrôler paramétrer le Teensy et calibrer

les capteurs ; et visualiser les données en base de données. Le script auto.replay permet d'injecter les données sur le serveur distant.

Détail des sondes

Fournisseur : DFRobot

SEN0161	pH
Tension d'entrée	5V
Etendue de mesure	0 à 14
Température d'utilsation	0 à 60°C
Précision (25°C)	±0.1
Temps de réponse	≤1 min
Prix	US\$29.5
DFR0300	Conductivité
Tension d'entrée	3.0 à 5.0V
Etendue de mesure (recomandée)	0 à (15) 20mS/cm
Température d'utilsation	0 à 40°C
Précision	$\pm 5\%$ F.S.
Durée de vie	6 mois
Longueur de câble	1m
Prix	US\$69.9
SEN0189	Turbidité
Tension d'entrée	5.0V
Temps de réponse	<500ms
Température d'utilsation	5 à 90°C
Prix	US\$9.9
SEN0244	TDS
Tension d'entrée	3.3 à 5.50V
Etendue de mesure	0 à 1000ppm
Précision (25°C)	±10% F.S
Prix	US\$11.80

SEN0237-A	Oxygène dissous
Tension d'entrée	3.3 à 5.5V
Etendue de mesure	0 à 20mg/L
Temps de réponse (25°C)	98% en 90s
Durée de vie de l'électrode	1 an
Rempalcement membrane	1-2 mois
Longueur de câble	2m
Prix	US\$169
SEN0165	ORP
Tension d'entrée	3.0 à 5.5V
Température d'utilisation	-55 à 125°C
Précision (-10 à 85°C)	±0.5°C
Longueur câble	95cm
Prix	US\$6.90

Synthèse des fonctionalités

	SensOcean	SETIER Datalog- ger	OceanIsOpen
Alimentation	Batterie	Secteur	Batterie
Recharge	Secteur Solaire	Batterie	Secteur
Mise en veille	Oui	Oui	Non
Date/Heure	Horloge	Horloge	GNSS
Accès aux données	SD	SD WiFi	Internet WiFi SD
Visualisation de données	Ecran (temps réel) post traitement	Post traitement	Grafana (local ou distant)
Signalisation LED	Oui	Non	Non
Ecran	Oui	Non	Oui
Aide à la calibra- tion	+	++	+++