

Εθνικό Μετσόβιο Πολυτέχνειο

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΕΤΑΡΤΗ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΝΑΦΟΡΑ ΝΕΥΡΟΑΣΑΦΗΣ ΈΛΕΓΧΟΣ

Αναστασία Χριστίνα Λίβα 03119029

Νευροασαφής Έλεγχος	Τέταρτη Εργαστηριακή Αναφορά
Περιεχόμενα	
Θέμα 1	

Θέμα 1

Ερώτημα Πρώτο: Έχω την ακόλουθη αλυσίδα Markov και θέλω να μελετήσω την περιοδικότητα και την αναδρομή

Σχήμα 1: Markov Chain

Φτιάχνω τον πίνακα μετάβασης:

0	1-α-β	α	β	0
0	0	1	0	0
0	0	0	1-γ	Υ
1	0	0	0	0
0	0	0.5	0	0.5

Κάθε στοιχείο του πίνακα μετάβασης είναι μη αρνητικός πραγματικός αριθμός και το άθροισμα των στοιχείων κάθε γραμμής ισούται με τη μονάδα.

Αν α = 0, β = 0 και γ = 0: Έχω
$$1 \rightarrow 2$$

$$2 \rightarrow 3$$

$$3 \rightarrow 4$$

$$4 \rightarrow 1$$

και η διαδικασία αυτή θα επαναλαμβάνεται επ' άπειρον με περίοδο 4.

Αν α = 0, β = 0 και γ = 1: Έχω
$$1 \to 2$$

$$2 \to 3$$

$$3 \to 5$$

$$5 \to 3 \ \mbox{\it ή} \ 5 \to 5$$
 Θεωρώντας
$$C_0 = \{1\}$$

$$C_1 = \{2\}$$

$$C_2 = \{3, 5\}$$

οπότε έχω πάντα

$$C_0 \rightarrow C_1 \rightarrow C_2 \rightarrow C_2 \rightarrow C_2 \dots$$

και η διαδικασία αυτή θα επαναλαμβάνεται επ' άπειρον με περίοδο 1. (ξεκινώντας απο το τρίτο βήμα)

Αν α = 0, β = 0 και γ = 0.5: Έχω
$$1 \to 2$$

$$2 \to 3$$

$$3 \to 5 ~\acute{\eta}~3 \to 4$$

$$5 \rightarrow 3 \text{ \'n} 5 \rightarrow 5 \text{ \'n} 4 \rightarrow 1$$

Άρα έχω αναδρομικότητα.

Αν α = 1, β = 0 και γ = 1: Έχω
$$1 \to 3$$

$$3 \to 5$$

$$5 \to 3 \ \mbox{ή} \ 5 \to 5$$

Θεωρώντας

$$C_0 = \{1\}$$

$$C_1 = \{3, 5\}$$

πότε έχω πάντα

$$C_0 \rightarrow C_1 \rightarrow C_1 \rightarrow C_1 \rightarrow C_1 \dots$$

και η διαδικασία αυτή θα επαναλαμβάνεται επ' άπειρον με περίοδο 1. (ξεκινώντας απο το δεύτερο βήμα)

Η διαδικασία αυτή επαναλαμβάνεται επ' άπειρο με περίοδο 3.

Αν α = 1, β = 0 και γ = 0.5: Έχω
$$1\to 3$$

$$3\to 4 ~\acute\eta~3\to 5$$

$$4\to 1 ~\acute\eta~5\to 3 ~\acute\eta~5\to 5$$

Άρα έχω αναδρομή αλλά όχι περιοδικότητα.

An $\alpha=0,\,\beta=1$ kai $\gamma=1$:

 $1 \to 4$

 $4 \to 1$

Περιοδικό με περίοδο 2

Ay $\alpha=0,\,\beta=1$ kai $\gamma=0$:

 $1 \rightarrow 4$

 $4 \rightarrow 1$

Περιοδικό με περίοδο 2

And $\alpha=0,\,\beta=1$ and $\gamma=0.5$:

 $1 \rightarrow 4$

 $4 \rightarrow 1$

Περιοδικό με περίοδο 2

An $\alpha=0,\,\beta=0.5$ kai $\gamma=0$:

 $1 \rightarrow 4~\acute{\eta}~1 \rightarrow 2$

 $4 \rightarrow 1 \ \acute{\eta} \ 2 \rightarrow 3$

αρχή ή $3 \rightarrow 4$

άρα έχω αναδρομικότητα

Aν α = 0, β = 0.5 και γ = 0.5: Όμοια με πριν θα έχω αναδρομή.

 ${\bf A} {\bf v} \ {\bf a} = {\bf 0}, \ {\bf \beta} = {\bf 0.5}$ και ${\bf \gamma} = {\bf 1}$: Θα καταλήξω να έχω εναλλαγές μεταξύ 3ης και 5ης κατάστασης, άρα αναδρομή.

Aν $\alpha=0.5,\, \beta=0$ και $\gamma=0$: αναδρομή

Aν $\alpha=0.5,$ $\beta=0$ και $\gamma=0.5$: Αναδρομή

 ${\bf A} {\bf v} \ {\bf a} = {\bf 0.5}, \ {f \beta} = {\bf 0}$ και ${\bf \gamma} = {\bf 1}$: Θα καταλήξει σε εναλλαγή μεταξύ της κατάστασης 3 και 5, άρα αναδρομή

 \mathbf{A} ν $\mathbf{\alpha}=\mathbf{0.5},$ $\mathbf{\beta}=\mathbf{0.5}$ και $\mathbf{\gamma}=\mathbf{1}$: Αναδρομή

Αν α = 0.5, β = 0.5 και γ = 0.5: Αναδρομή

 \mathbf{A} ν $\mathbf{\alpha}=\mathbf{0.5},$ $\mathbf{\beta}=\mathbf{0.5}$ και $\mathbf{\gamma}=\mathbf{0}$: Θα καταλήξω να έχω εναλλαγές μεταξύ 3ης και 5ης κατάστασης, άρα αναδρομή.

Αν α = 0.5, β = 0.5 και γ = 0: Έχω
$$1\to 3\ \'\eta\ 1\to 4$$

$$3\to 4\ \'\eta\ 4\to 1$$

$$4\to 1\ \'\eta\ \text{αρχ\'\eta}\ \text{της λούπας}$$

Εδώ παρατηρώ αναδρομικότητα αλλά όχι περιοδικότητα καθώς δεν έχω κυκλική κίνηση σε σταθερό αριθμό βημάτων.

Αν α = 0.5, β = 0.5 και γ = 1:
$$1\to 3~\acute\eta~1\to 4$$

$$3\to 5~\acute\eta~4\to 1$$

$$5\to 3~\acute\eta~5\to 5~\acute\eta~$$
 αρχ $\acute\eta~$ της λούπας

Συνεχίζοντας καταλήγω πάλι σε κάποιο από τα προηγούμενα βήματα οπότε και εδώ παρατηρώ αναδρομικότητα αλλά όχι περιοδικότητα καθώς δεν έχω κυκλική κίνηση σε σταθερό αριθμό βημάτων.

Ερώτημα Τρίτο: Προχύπτει ότι:

```
Stationary Distribution (from eigenvectors):
A: 25.00%
B: 20.00%
C: 25.00%
D: 25.00%
E: 5.00%

Percentage of time spent in each state (from simulation):
D: 24.97%
A: 24.97%
B: 20.08%
C: 25.09%
E: 4.89%
```

Αυτά τα αποτελέσματα είναι λογικά διότι έχω μια ιδιοτιμή μέτρου περίπου ίσο με τη μονάδα. Η τιμή αυτή συνεπάγεται κατάσταση ισορροπίας στο άπειρο (σύγκλιση) για την μαρκοβιανή αλυσίδα. Γι' αυτό το λόγο βλέπω πως πράγματι οι πραγματικοί χρόνοι μοιάζουν με αυτούς που προκύπτουν από τα ιδιοδιανύσματα.