Test1

Using the whole dataset, randomly split it in 20% for test and 80% for next split. Then split the rest 80% in 20% for validation and 80% for training.

during training is early-stopping used, the training will stop if the validation set will no longer be improved within certain rounds.

No: 0, Yes: not 0 Confusion matrix of all data(train,valid,test):

	Predict No	Predict Yes
Actual No	143422	320
Actual Yes	186	30715

Confusion matrix of valid set:

	Predict No	Predict Yes
Actual No	22889	135
Actual Yes	85	4834

Confusion matrix of test set:

	Predict No	Predict Yes
Actual No	28546	185
Actual Yes	101	6097

Test2

Using data include all patients but not the whole dataset. Split the dataset like above.

No: 0, Yes: not 0 Confusion matrix of all data(train,valid,test):

	Predict No	Predict Yes
Actual No	37391	398
Actual Yes	146	30755

Confusion matrix of valid set:

	Predict No	Predict Yes
Actual No	5911	171
Actual Yes	68	4841

Confusion matrix of test set:

	Predict No	Predict Yes
Actual No	7361	213
Actual Yes	77	6087

Test the model on some of the rest dataset which are not used. The rest data's labels are all 0.

