Раздел 1. Метод координат на плоскости и в пространстве

Понятие об аналитической геометрии

В элементарной (школьной) геометрии изучаются свойства прямолинейных фигур и окружности. Основную роль играют построения, вычисления же, хотя практическое значение их и велико, в теории играют подчиненную, вспомогательную роль. Выбор того или иного построения обычно требует изобретательности. Это и составляет главную трудность при решении задач методами элементарной геометрии.

Аналитическая геометрия возникла из потребности создать единообразные средства для решения геометрических задач с тем, чтобы применить их изучению важных для практики кривых линий различной формы.

Эта цель была достигнута созданием координатного метода. В нем ведущую роль играют вычисления, построения же имеют вспомогательное значение. Вследствие этого решение задач методами аналитической геометрии требует гораздо меньшей изобретательности.

Создание координатного метода было подготовлено трудами древнегреческих математиков, в особенности Аполлония (2-3 в. до н.э.). Систематическое развитие координатный метод получил в первой половине XVII века в работах П. Ферма и Р. Декарта. Они, однако, рассматривали только плоские линии. К систематическому изучению пространственных линий и поверхностей координатный метод был впервые применен Л. Эйлером (1707-1783).

Прямоугольная система координат на плоскости

Метод координат заключается в установлении соответствия между точками прямой (плоскости, пространства) и их координатами – действительными числами при помощи системы координат.

Две взаимно-перпендикулярные оси Ox и Oy, имеющие общее начало O и одинаковую масштабную единицу, образуют

прямоугольную систему координат на плоскости.

Ось Ox называется осью **абсцисс**, ось Oy называется осью **ординат**. Обе вместе они называются **осями координат**.

Точка O пересечения осей называется **началом координат**. Плоскость, в которой расположены оси Ox, Oy называется **координатной плоскостью** и обозначается Oxy.

Пусть M — произвольная точка плоскости. Опустим из нее перпендикуляры MA и MB на оси Ox и Oy. **Прямоугольными координатами** x и y **точки** M будем называть соответственно величины отрезков OA и OB: x = OA, y = OB. Знаки чисел x и y указывают на какой (положительной или

отрицательной) полуоси расположена соответствующая точка.

Координата x точки M называется ее **абсциссой**, координата y точки M – **ординатой**.

Тот факт, что точка M имеет координаты x и y, символически обозначают: M(x;y). При этом первой в скобках указывают абсциссу, а второй — ординату. Начало координат имеет координаты O(0;0).

Таким образом, при выбранной системе координат каждой точке M на плоскости соответствует единственная пара чисел (x; y) — ее прямоугольные координаты. U,

обратно, каждой паре чисел (x; y) соответствует, и притом одна, точка M плоскости Oxy такая, что ее абсцисса равна x, а ордината — y.

Итак, введение прямоугольной системы координат на плоскости позволяет установить однозначное соответствие между множеством всех точек плоскости и множеством пар чисел, что дает возможность при решении геометрических задач применять алгебраические методы.

Оси координат разбивают плоскость на 4 части, их называют **четвертями, квадрантами или координатными углами** и нумеруют римскими числами I, II, III, IV.

Простейшие задачи аналитической геометрии на плоскости

1. Расстояние между двумя точками.

 ${\bf Teopema~1.}$ Для любых двух точек $M_{_1}\!\left(x_{_1};y_{_1}\right)$ и $M_{_2}\!\left(x_{_2};y_{_2}\right)$ плоскости расстояние d между ними выражается формулой:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} . (1.1)$$

Например, если даны точки A(3; 5) и B(-7; 2), то расстояние между ними:

$$AB = d = \sqrt{(-7-3)^2 + (2-5)^2} = \sqrt{(-10)^2 + (-3)^2} = \sqrt{100+9} = \sqrt{109} \Rightarrow AB = \sqrt{109}$$
.

2. Площадь треугольника.

<u>Теорема 2.</u> Для любых точек $A(x_1; y_1)$; $B(x_2; y_2)$; $C(x_3; y_3)$, не лежащих на одной прямой, площадь треугольника ABC выражается формулой:

$$S = \frac{1}{2} |(x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1)|. (1.2)$$

Например, найдем площадь треугольника, образованного точками A(1; 1), B(6; 4) и C(8; 2).

 $(\chi_z \chi)$

 $M_i(x, y_i)$

$$S_{ABC} = \frac{1}{2} |(6-1)(2-1) - (8-1)(4-1)| = \frac{1}{2} |5 \cdot 1 - 7 \cdot 3| = \frac{1}{2} |5 - 21| = \frac{1}{2} |-16| = \frac{1}{2} \cdot 16 = 8.$$

Замечание. Если площадь треугольника равна нулю, это означает, что точки лежат на одной прямой.

3. Деление отрезка в заданном отношении.

Пусть на плоскости дан произвольный отрезок M_1M_2 , и пусть M_2 – любая точка этого отрезка, отличная от точек концов. Число λ , определенное равенством $\lambda = \frac{|M_{\perp}M|}{|M_{\perp}M|}$, называется **отношением**, в котором точка M делит отрезок M_1M_2 .

Задача о делении отрезка в данном отношении состоит в том, чтобы по данному отношению λ и данным координатам точек M_{+} и M_{+} найти координаты точки M .

Теорема 3. Если точка M(x; y) делит отрезок $M_{_1}M_{_2}$ в отношении λ , то координаты этой точки определяются формулами: $x = \frac{x_1 + \lambda x_2}{1 + \lambda}$, $y = \frac{y_1 + \lambda y_2}{1 + \lambda}$ (1.3), где $(x_1; y_1)$ – координаты точки M_1 , $(x_2; y_2)$ – координаты точки M_2 .

Следствие: Если M(x; y) – середина отрезка $M_1 M_2$,

где $M_1(x_1; y_1)$ и $M_2(x_2; y_2)$, то $x = \frac{x_1 + x_2}{2}$; $y = \frac{y_1 + y_2}{2}$ (1.4) (т.к. $|M_1M| = |MM_2| \Rightarrow \lambda = 1$).

Например. Даны точки $M_1(1;1)$ и $M_2(7;4)$. Найти координаты точки M(x;y), которая раза ближе к M_1 чем к M_2 в два раза ближе к M_1 , чем к M_2

Решение: Искомая точка M делит отрезок M_1M_2 в отношении $\lambda = 1: 2 = 0,5$ так как $M_1 M = 2M M_2 \Rightarrow \lambda = \frac{M_1 M}{M M_2} = \frac{1}{2} = 0,5$, тогда $x = \frac{1 + 0,5 \cdot 7}{1 + 0,5} = \frac{1 + 3,5}{1.5} = \frac{4,5}{1,5} = 3$ $y = \frac{1+0.5\cdot 4}{1+0.5} = \frac{1+2}{1.5} = \frac{3}{1.5} = 2$, получили M(3;2).

Полярные координаты

Наиболее важной после прямоугольной системы координат является полярная система координат. Она состоит из некоторой точки О, называемой полюсом, и исходящего из нее луча ОЕ – полярной оси. Кроме того, задается единица масштаба для измерения длин отрезков.

Пусть задана полярная система координат и пусть M произвольная точка плоскости. Пусть ρ – расстояние от точки O до

точки M; φ — угол, на который нужно повернуть полярную ось для совмещения с лучом OM.

Полярными координатами точки M называются числа ρ и φ . При этом число ρ считается первой координатой и называется **полярным радиусом**, число ϕ – второй координатой и называется полярным углом.

Обозначается $M(\rho; \varphi)$. Полярный радиус может иметь любое неотрицательное $0 \le \rho < +\infty$. Обычно считают, что полярный угол изменяется в следующих значение: пределах: $0 \le \varphi < 2\pi$. Однако в ряде случаев приходится определять углы, отсчитываемые от полярной оси по часовой стрелке.

Связь между полярными координатами точки и ее прямоугольными координатами.

Будем считать, что начало прямоугольной системы координат находится в полюсе, а положительная полуось абсцисс совпадает с полярной осью.

Пусть M(x; y) — в прямоугольной системе координат и $M(\rho; \phi)$ – в полярной системе координат. Определен *ОМА* треугольник с $\angle A = 90^{\circ}$ прямоугольный $x = \rho \cos \varphi \quad y = \rho \sin \varphi \quad (1.5).$ Эти формулы выражают прямоугольные координаты через полярные.

С другой стороны, по теореме Пифагора $\rho = \sqrt{x^2 + y^2}$ х и $tg \varphi = \frac{y}{x} \Rightarrow \rho = \sqrt{x^2 + y^2} \quad \varphi = arctg \frac{y}{x}$ (1.6) — эти формулы, выражают полярные координаты через прямоугольные.

Заметим, что формула $\operatorname{tg} \varphi = \frac{y}{r}$ определяет два значения полярного угла φ , так как $\varphi \in [0;2\pi)$. Из этих двух значений угла φ выбирают тот, при котором удовлетворяются pabethctba $x = \rho \cos \varphi$ $y = \rho \sin \varphi$.

Например, найдем полярные координаты точки M(2;2) $\rho-?$ $\varphi-?$. $ho = \sqrt{4+4} = \sqrt{8} = 2\sqrt{2}$. $\phi = \arctan \frac{2}{2} = \arctan \frac{\pi}{4}$ или $\frac{5\pi}{4}$, т.к. x = 2 > 0; $y = 2 > 0 \implies M \in I$ четверти $\Rightarrow \varphi = \frac{\pi}{4}$.

Пример 1: Найти точку, симметричную точке A(-2; 4)относительно биссектрисы первого координатного угла.

Решение:

Проведем через точку A прямую l_1 , перпендикулярную биссектрисе l первого координатного угла. Пусть $l_1 \cap l = C$. На отрезок CA_1 , равный отложим отрезку AC. Прямоугольные треугольники ACO и A_1CO равны между собой (по

двум катетам). Отсюда следует, что $|OA| = |OA_1|$. Треугольники ADO и OEA_1 также равны между собой (по гипотенузе и острому углу). Заключаем, что |AD| = |OE| = 4, $|OD| = |EA_1| = 2$, т.е. точка имеет координаты x = 4, y = -2, т.е. $A_1(4;-2)$.

Отметим, что имеет место общее утверждение: точка A_1 , симметричная точке A(a; b) относительно биссектрисы первого и третьего координатных углов, имеет координаты (b; a), то есть $A_{\iota}(b; a)$.

Пример 2: Найти точку, в которой прямая, проходящая через точки A(5; 5) и B(1; 3), пересечет ось Ox.

Решение:

Координаты искомой точки C есть (x; 0). А так как точки A, B и C лежат на одной прямой, то должно выполняться условие $(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1)=0$ (формула (1.2), площадь треугольника ABC равна нулю!), где $(x_1; y_1)$ – координаты точки $A, (x_2; y_2)$ – точки B, $(x_3; y_3)$ — точки C. Получаем (1-5)(0-5)-(x-5)(3-5)=0, т.е. 20+2(x-5)=0, x-5=-10, x=-5. Следовательно, точка C имеет координаты x=-5, y=0, т.е. $C(-5;\ 0)$.

Пример 3: В полярной системе координат заданы точки $M_1(r_1; \phi_1)$, $M_2(r_2; \phi_2)$. Найти: а) расстояние между точками M_1 и M_2 ; б) площадь треугольника OM_1M_2 (O- полюс).

Решение:

а) Воспользуемся формулами (1.1) и (1.5):

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(r_2 \cos \phi_2 - r_1 \cos \phi_1)^2 + (r_2 \sin \phi_2 - r_1 \sin \phi_1)^2} = \sqrt{r_1^2 + r_2^2 - 2r_1r_2(\cos \phi_1 \cos \phi_2 + \sin \phi_1 \sin \phi_2)} = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\phi_1 - \phi_2)},$$

TO есть, $d = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\phi_1 - \phi_2)}$.

б) пользуясь формулой для площади треугольника со сторонами a и b и углом α между ними ($S=\frac{1}{2}ab\sin\alpha$), находим площадь треугольника OM_1M_2 . $S=\frac{1}{2}r_1r_2\sin(\phi_2-\phi_1)$.

Метод координат в пространстве

Положение любой точки в пространстве можно однозначно определить с помощью прямоугольной системы координат. Эта система включает три взаимно

перпендикулярные оси, пересекающиеся в одной точке O – начале координат. Одну из осей называют осью абсцисс (ось Ox), другую – осью ординат (Oy), третью – осью аппликат (Oz). Плоскости XOY, XOZ и YOZ называются координатными плоскостями. Какой-либо отрезок принимается за единицу масштаба для всех трех осей. Положительные направления на осях выбираются так,

чтобы поворот на 90° , совмещающий положительный луч OX с положительным лучом OY, казался проходящим против часовой стрелки, если смотреть со стороны луча OZ. Такая система координат называется npaвoй.

Положение любой точки M в пространстве можно определить тремя координатами следующим образом. Через M проводим плоскости, параллельные плоскостям XOY, XOZ и YOZ. В пересечении с осями получаем точки, например, P, Q и R соответственно. Числа x (абсцисса), y (ордината), z (аппликата), измеряющие отрезки OP, OQ и OR в избранном масштабе, называются прямоугольными координатами точки M. Они берутся положительными или отрицательными в зависимости от того, лежат ли соответствующие отрезки на положительной или отрицательной полуоси. Каждой тройке чисел (x; y; z) соответствует одна и только одна точка пространства, и наоборот.

Расстояние между двумя точками $M_1(x_1; y_1; z_1)$ и $M_2(x_2; y_2; z_2)$ вычисляется по формуле: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ (1.6)

Координаты (x; y; z) точки M, делящей в заданном отношении $\lambda \left(\lambda = \frac{AM}{MB}\right)$ отрезок AB, $(A(x_1; y_1; z_1), B(x_2; y_2; z_2))$ определяются по формулам: $x = \frac{x_1 + \lambda x_2}{1 + \lambda}, \ y = \frac{y_1 + \lambda y_2}{1 + \lambda}, \ z = \frac{z_1 + \lambda z_2}{1 + \lambda} \quad (1.7)$

В частности, при $\lambda = 1$ (точка M делит отрезок AB пополам), получаются формулы для определения координат середины отрезка:

$$x = \frac{x_1 + x_2}{2}, \ y = \frac{y_1 + y_2}{2}, \ z = \frac{z_1 + z_2}{2}$$
 (1.8)

Пример 4: На оси Oy найти точку, равноудаленную от двух точек A(2; 3; 1) и B(-1; 5; -2).

Решение: Точка M, лежащая на оси Oy, имеет координаты M(0; y; 0). По условию задачи |AM| = |BM|. Найдем расстояния |AM| и |BM|, используя формулу (1.6):

$$|AM| = \sqrt{(0-2)^2 + (y-3)^2 + (0-1)^2} = \sqrt{y^2 - 6y + 14}$$
$$|BM| = \sqrt{(0+1)^2 + (y-5)^2 + (0+2)^2} = \sqrt{y^2 - 10y + 30}$$

Получим уравнение: $\sqrt{y^2 - 6y + 14} = \sqrt{y^2 - 10y + 30}$.

Отсюда находим, что 4y = 16, т. е. y = 4. Искомая точка есть M(0; 4; 0).

Пример 5: Отрезок AB разделен на 3 равные части. Найти координаты точек деления, если известны точки A(-2; 4; 1) и B(2; -4; -3).

Решение:

Обозначим точки деления отрезка AB в следующем порядке: C и D. По условию задачи |AC| = |CD| = |DB|. Поэтому точка C делит отрезок AB в отношении $\lambda = \frac{1}{2}$. Пользуясь формулами (1.7), находим координаты точки C:

$$x_C = \frac{-2 + \frac{1}{2} \cdot 2}{1 + \frac{1}{2}} = -\frac{2}{3}, \ y_C = \frac{4 + \frac{1}{2} \cdot (-4)}{1 + \frac{1}{2}} = \frac{4}{3}, \ z_C = \frac{1 + \frac{1}{2} \cdot (-3)}{1 + \frac{1}{2}} = -\frac{1}{3}.$$

Имеем, $C\left(-\frac{2}{3}; \frac{4}{3}; -\frac{1}{3}\right)$.

По формулам (1.8) находим координаты точки D – середины отрезка CB:

$$x_D = \frac{-\frac{2}{3} + 2}{2} = \frac{2}{3}, \ y_D = \frac{\frac{4}{3} - 4}{2} = -\frac{4}{3}, \ z_D = \frac{-\frac{1}{3} - 3}{2} = -\frac{5}{3}.$$

То есть точка D имеет координаты: $\left(\frac{2}{3}; -\frac{4}{3}; -\frac{5}{3}\right)$.

Пример 6: В точках $A_1(x_1; y_1; z_1)$, $A_2(x_2; y_2; z_2)$, $A_3(x_3; y_3; z_3)$, $A_4(x_4; y_4; z_4)$ сосредоточены соответственно массы m_1 , m_2 , m_3 , m_4 . Найти координаты центра тяжести системы этих масс.

Решение:

Как известно из курса физики центр тяжести масс m_1 и m_2 , помещенных в точках A и B, делит отрезок AB на части, обратно пропорциональные массам, сосредоточенным на концах отрезка ($\lambda = \frac{m_2}{m_1}$). Исходя из этого, найдем сначала центр тяжести $M_1(x'; y'; z')$ системы двух масс m_1 и m_2 , помещенных в точках A_1 и A_2 :

$$x' = \frac{x_1 + \frac{m_2}{m_1} \cdot x_2}{1 + \frac{m_2}{m_1}} = \frac{x_1 m_1 + x_2 m_2}{m_1 + m_2}, \quad y' = \frac{y_1 + \frac{m_2}{m_1} \cdot y_2}{1 + \frac{m_2}{m_1}} = \frac{y_1 m_1 + y_2 m_2}{m_1 + m_2}, \quad z' = \frac{z_1 + \frac{m_2}{m_1} \cdot z_2}{1 + \frac{m_2}{m_1}} = \frac{z_1 m_1 + z_2 m_2}{m_1 + m_2}.$$

Центр тяжести системы трех масс m_1 и m_2 и m_3 ($\lambda = \frac{m_3}{m_1 + m_2}$) находим аналогично:

$$x'' = \frac{x' + \frac{m_3}{m_1 + m_2} \cdot x_3}{1 + \frac{m_3}{m_1 + m_2}} = \frac{x_1 m_1 + x_2 m_2 + x_3 m_3}{m_1 + m_2 + m_3} , \quad y'' = \frac{y_1 m_1 + y_2 m_2 + y_3 m_3}{m_1 + m_2 + m_3} , \quad z'' = \frac{z_1 m_1 + z_2 m_2 + z_3 m_3}{m_1 + m_2 + m_3} .$$

Находим, наконец, центр тяжести системы трёх масс m_1 , m_2 , m_3 и m_4 :

$$\begin{split} \lambda &= \frac{m_4}{m_1 + m_2 + m_3} \\ x &= \frac{x_1 m_1 + x_2 m_2 + x_3 m_3 + x_4 m_4}{m_1 + m_2 + m_3 + m_4} \,, \ \ y &= \frac{y_1 m_1 + y_2 m_2 + y_3 m_3 + y_4 m_4}{m_1 + m_2 + m_3 + m_4} \,, \ \ z &= \frac{z_1 m_1 + z_2 m_2 + z_3 m_3 + z_4 m_4}{m_1 + m_2 + m_3 + m_4} \,. \end{split}$$

Вопросы для контроля:

- 1. Опишите прямоугольную систему координат на плоскости и все ее компоненты.
- 2. Как определяются координаты произвольной точки плоскости?
- 3. Напишите формулу для нахождения расстояния между двумя точками на плоскости.
- 4. Как найти координаты точки, делящей в заданном отношении отрезок?
- 5. Напишите формулы координат середины отрезка.
- 6. Напишите формулу, по которой вычисляется площадь треугольника, если известны координаты его вершин.
- 7. Опишите полярную систему координат.
- 8. Что называют полярным радиусом? В каких пределах он измеряется?
- 9. Что называют полярным углом? Пределы его измерения?
- 10. Как найти прямоугольные координаты точки, для которой известны полярные координаты?
- 11. Как найти полярные координаты точки, для которой известны прямоугольные координаты?
- 12. Как найти расстояние между точками в полярной системе координат?
- 13. Опишите прямоугольную систему координат в пространстве и все ее компоненты.
- 14. Как определить координаты точки в пространстве?
- 15. Запишите формулу для нахождения расстояния между двумя точками в пространстве.
- 16. Запишите формулы для нахождения координат точки, делящей отрезок в данном отношении для трехмерной системы координат.