

Lesson 06 New Toys

E213 – Engineering Cost Decisions

Interactive Seminar

SCHOOL OF ENGINEERING

Module Coverage: Topic Tree

Sensitivity

Analysis

E213 – Engineering Cost Decisions

Replace Depreciation Cost Allocation and Concept of Equivalence **Project Evaluation** ment Estimation and Tax Analysis Uniform Activity series Cost depreciat Based Single Single Project Estimation Multiple Projects Comparison Tax and Costing payment ion Evaluation uniform techniques method gradient Project Project life MARR & Public IRR& life = EW Project ! = study ERR study Method Evaluation period period B/C Repeatabilit Payback y/Co-Ratio method terminated Appr Assumption oach

Scenario

In last week's problem, UShoot, a leading toy manufacturer in USA producing toy guns for children and adults had set up its new factory in China after it concluded its feasibility study. The new factory is doing well and would like to expand its operations by setting up a new manufacturing line to produce a new range of toy guns to meet the growing market needs.

Daniel, a cost analyst of UShoot, has been tasked by management to find out whether this new product development project is economically feasible. He estimated that an initial investment of \$620,000 is needed for the product design and setup of a new manufacturing line. He has also estimated the annual revenue and cost that will be incurred to the project over the next 7 years.

Based on market projections, at the end of year 7, the company needs to decommission the manufacturing line and equipment at a cost of \$60,000 to make way for other business needs.

In UShoot, the management adopts a MARR of 18% per year for evaluation of new product development projects. Meanwhile, the management also stipulates a reinvestment rate of 16% per year for project evaluations as the rate could be sustainable over a long term.

Daniel understands that he needs to use internal rate of return and external rate of return methods to evaluate the economic feasibility of a project. However, he is not sure which method is more appropriate for this new product development project. Help Daniel on the analysis and decision making. Justify your recommendation.

Recall: Rate of Return (ROR)

"Rate of return (ROR) is the rate paid on the unpaid balance of borrowed money, or the rate earned on the unrecovered balance of an investment so that the final payment or receipt brings the balance to exactly zero with interest considered." — Engineering Economy, Leland Blank, Anthony Tarquin, McGraw-Hill

Note:

- Pay attention to "balance to ZERO" & "interest considered"
- Recall what you learned before, already have a clue to solve such type of problems?

ROR Methods

- Higher ROR indicates higher return
- Two methods are used to determine the rate of return:
 - Internal Rate of Return (IRR)
 - External Rate of Return (ERR)

Internal Rate of Return (IRR)

- IRR is the interest rate that equates the equivalent worth of an alternative's cash inflows (receipts or savings) to the equivalent worth of cash outflows (expenditures)
- PW cash inflows = PW cash outflows
- Mathematically, IRR is the value of i'% at which:

$$\sum_{k=0}^{N} R_{k} (P/F, i'\%, k) = \sum_{k=0}^{N} E_{k} (P/F, i'\%, k)$$

Where R_k = Net revenue or saving for the k^{th} year E_k = Net expenditure, including any investment cost, for the k^{th} year N = Project life

Net Present Worth (NPW(i'%)) = PW(i'%)cash inflows - PW(i'%)cash outflows

To compute IRR for an alternative, set NPW = 0

NPW =
$$\sum_{k=0}^{N} R_k (P/F, i'\%, k) - \sum_{k=0}^{N} E_k (P/F, i'\%, k) = 0$$

If i' > MARR, the alternative is acceptable

If i' = MARR, Indifference towards the alternative

If i' < MARR, the alternative is not acceptable

IRR - Linear Interpolation

MARR	= 1	5%
------	-----	----

	Cash Flows (\$)
Investment Cost	9,000
Expected Life	4 Years
Salvage Value	2000
Annual Receipts	8000
Annual Expenses	5000

NPW(i%) = -9,000 + 3000 (P/A, i%, 4) + 2000 (P/F, i%, 4)

NPW(18%) = -9,000 + 3000 (P/A, 18%, 4)

+2000 (P/F, 18%, 4) = 101.76

IRR between 18% and 19%

NPW(19%) =
$$-9,000 + 3000$$
 (P/A, 19%, 4) + 2000 (P/F, 19%, 4) = -86.91

By Excel:

	Α	В
1	Year	Cash Flow
2	0	-9000
3	1	3000
4	2	3000
5	3	3000
6	4	5000
7	IRR	18.54%

IRR – Linear Interpolation cont'

Gradient:
$$\frac{Y_1 - Y_2}{X_1 - X_2} = \frac{Y_2 - Y_3}{X_2 - X_3}$$

$$\frac{0 - 101.76}{IRR\% - 18\%} = \frac{101.76 - (-86.91)}{18\% - 19\%}$$

$$\frac{(-1\%)(-101.76)}{188.67} = IRR\% - 18\%$$

$$IRR\% = 18\% + 0.54\%$$

 $IRR\% = 18.54\%$

Invest in this project since IRR of 18.54% > MARR of 15%

By Linear Interpolation:

i	NPW
18%	101.76
IRR(i'%)	0
19%	-86.91

i%		NPW
	1%	\$ 4,627.86
	5%	\$ 3,283.26
	10%	\$ 1,875.62
	15%	708.44
	20%	(269.29)

Test Yourself!

Given the below information. What is the IRR and is the project economically feasible? MARR = 20%

	Cash Flows (\$)
Investment cost	10,000
Expected life	4 years
Salvage value	5000
Annual receipts	6000
Annual expenses	2000

By Excel:

NPW(
$$i$$
'%) = -10,000 + 4000 (P/A, i '%, 4) + 5000 (P/F, i '%, 4)

$$NPW(32\%) = -10,000 + 4000 (P/A, 32\%, 4) + 5000 (P/F, 32\%, 4) = 29.60$$

NPW(33%) =
$$-10,000 + 4000$$
 (P/A, 33%, 4) + 5000 (P/F, 33%, 4) = -154.66

IRR between 32% and 33%

Α	В
Year	Cash Flow
0	-10000
1	4000
2	4000
3	4000
4	9000
IRR	32.16%
	Year 0 1 2 3 4

f_{x} =IRR(B2:B6)

IRR – Linear Interpolation cont'

$$NPW(32\%) = 29.60$$

NPW(33%) = -154.66

$$\frac{0-29.60}{\mathsf{IRR}-32\%} = \frac{29.60 - (-154.66)}{32\% - 33\%}$$

IRR = 32.16%

By Linear Interpolation:

i	NPW
32%	29.60.76
IRR(i'%)	0
33 %	-154.66

Accept this project since IRR of 32.16% > MARR of 20%

Multiple IRR

 A possibility of multiple IRR when change of sign happens at net cash flow (-, +, -).

Period (N)	Cash Flow
0	-\$1000
1	\$2300
2	-\$1320

IRR at 10% and 20% when PW = 0

NPW 5% (\$6.80)(\$4.98) (\$3.41 (\$2.06 (\$0.<u>93</u> 10% \$0.00 \$0.73 11% 12% \$1.28 13% \$1.64 \$1.85 14% 15% \$1.89 16% \$1.78 \$1.53 17% 18% \$1.15 19% \$0.64 20% \$0.00 (\$0.75 21% 22% (\$1.61) (\$2.58)23%

Multiple IRR: NPW vs ROR

IRR may not be suitable to evaluate the project because there are more than one IRR.

Limitations of IRR method

- Computing IRR is a tedious process (involves trial and error calculations in order that i'% converges or can be interpolated)
- Possibility of getting multiple IRR
- IRR assumes reinvestment at i'% rate. If i'% is substantially larger than MARR, it is an unrealistic assumption. Thus, an alternative way is to use the external rate of return (ERR) which can analyze the investment more realistically by fixing an external reinvestment rate.

External Rate of Return (ERR) Method

External Rate of Return (ERR) Method

- It takes into account the interest rate external to a project.
 - The net cash flows generated by the project over the project life are reinvested (or borrowed) at the external reinvestment rate (ε%)
 - IF this external reinvestment rate happens to equal the project's IRR, then the ERR method produces results identical to those of the IRR method
- It is also known as the "modified internal rate of return (MIRR)" method

General 3 Steps of calculating ERR

- All Net Cash Outflows are discounted to period 0 at ε % per compounding period;
- All **Net** Cash Inflows are compounded to period N at ε % per compounding period;
- External Rate of Return, ERR is the interest 3. rate that establishes the equivalence of (1) & (2)

External Rate of Return (ERR) Method

- Fix the <u>re-investment rate</u> at ε%.
 - Re-investment rate is the interest rate external to a project at which funds recovered/generated from the project over its life can be reinvested.
- Find the equivalent present/future worth.

External Rate of Return (ERR)

 Mathematically, ERR is the value of i' % at which:

$$\sum_{k=0}^{N} E_{k}(P/F, \varepsilon\%, k)(F/P, i'\%, N) = \sum_{k=0}^{N} R_{k}(F/P, \varepsilon\%, N-k)$$

where

 $R_k =$ Net Revenue or net cash inflow in period k

 $E_k =$ **Net Expenditure** or net cash outflow in period k

N = Project Life

 ε % = Re-investment rate

Decision: A project is acceptable if i' % ≥MARR.

Why ERR method is preferred

- ✓ It can usually be solved for directly rather than by trial and error;
- ✓ It is not subject to the possibility of multiple rates of return.

It takes into account company's re-investment rate, at ε%, which will be more realistic compared to some unusually high IRR calculated.

External Rate of Return Example

Question: Determine the ERR of the engineering project where the reinvestment rate is 13% annually and the MARR is 15% per year. Is the project acceptable?

Period (N)	Cash Flow
0	(\$1,000)
1	\$2,500
2	(\$1,320)

$$\sum_{k=0}^{N} E_k(P/F, \varepsilon\%, k) = 1000+1320(P/F, 13\%, 2)$$

= 2033.75

$$\sum_{k=0}^{N} R_k(F/P, \varepsilon\%, N-k) = 2500(F/P, 13\%, 1)$$

= 2825

2033.75(F/P,
$$i$$
'%, 2) = 2825
2033.75 $(1+i')^2 = 2825$
Therefore, $i' = 0.1786$
= 17.86%

ERR = 17.86% > MARR (15%), It is economically feasible to invest

Test Yourself!

Determine the ERR of the engineering project where the reinvestment rate is 13% annually and the MARR is 15% per year. Is the project acceptable?

Period (N)	Cash Flow
0	(\$500)
1	\$2,500
2	(\$2,000)

$$\sum_{k=0}^{N} E_k(P/F, \varepsilon\%, k) = 500+2000(P/F,13\%,2)$$

= 2066.2

$$\sum_{k=0}^{N} R_k(F/P, \varepsilon\%, N-k) = 2500(F/P, 13\%, 1)$$

= 2825

2066.2(F/P,
$$i$$
'%, 2) = 2825
2066.2(1+ i ')² = 2825
Therefore, i = 0.1693
= 16.93%

ERR = 16.93% > MARR (15%), It is economically feasible to invest

Suggested Answer for Scenario

Scenario

In last week's problem, UShoot, a leading toy manufacturer in USA producing toy guns for children and adults had set up its new factory in China after it concluded its feasibility study. The new factory is doing well and would like to expand its operations by setting up a new manufacturing line to produce a new range of toy guns to meet the growing market needs.

Daniel, a cost analyst of UShoot, has been tasked by management to find out whether this new product development project is economically feasible. He estimated that an initial investment of \$620,000 is needed for the product design and setup of a new manufacturing line. He has also estimated the annual revenue and cost that will be incurred to the project over the next 7 years.

Based on market projections, at the end of year 7, the company needs to decommission the manufacturing line and equipment at a cost of \$60,000 to make way for other business needs.

In UShoot, the management adopts a MARR of 18% per year for evaluation of new product development projects. Meanwhile, the management also stipulates a reinvestment rate of 16% per year for project evaluations as the rate could be sustainable over a long term.

Daniel understands that he needs to use internal rate of return and external rate of return methods to evaluate the economic feasibility of a project. However, he is not sure which method is more appropriate for this new product development project. Help Daniel on the analysis and decision making. Justify your recommendation.

Problem Statement: Cash Flow

Cash Flow Diagram:

Problem Statement: Cash Flow

Net Cash Flow:

Solution:

```
NPW (i'%) = 370,000(P/F,i'\%,1) + 370,000(P/F,i'\%,2) + 330,000(P/F,i'\%,3) + 290,000(P/F,i'\%,4) - 40,000(P/F,i'\%,5) - 40,000(P/F,i'\%,6) - 100,000(P/F,i'\%,7) - 620,000
```

Linear Interpolation (IRR)

Find IRR (i'%) such that NPW(i'%) = 0

370,000(P/F,i'%,1) + 370,000(P/F,i'%,2) + 330,000(P/F,i'%,3) + 290,000(P/F,i'%,4) - 40,000(P/F,i'%,5) - 40,000(P/F,i'%,6) - 100,000(P/F,i'%,7) - 620,000 = 0

- Try i' = 40%: NPW(40%) = 6576.75 > 0
- Try i' = 42%: NPW(42%) = -9,760.63 < 0 NPW
- Hence 40% < i' < 42%

	Linear Interpolation		
NPW(<i>i%</i>)	i'%		
6576.75	40%		
0	40.80%		
-9,760.63	42%		

By linear interpolation:

$$i' \approx 40 + (40-42)[(0-6576.75) / (-9760.63 - 6576.75)]$$

 $\approx 40.80\%$

MS Excel (IRR)

	А	В	С	D
	End of Year	Revenue (\$)	Operational Cost (\$)	Net Cash Flow (\$)
1				
2	0	-	620,000	-620,000
3	1	490,000	120,000	370,000
4	2	490,000	120,000	370,000
5	3	490,000	160,000	330,000
6	4	450,000	160,000	290,000
7	5	210,000	250,000	-40,000
8	6	210,000	250,000	-40,000
9	7	40,000	80,000	-100,000
10			IRR	40.79%
	•			1
			<i>f</i> _{sc} =IRR(E2:E9)	

- Since i' (≈40.79%) > MARR (18%), the project is economically feasible.
- However, IRR method assumes reinvestment at IRR calculated (40.79%) which is substantially larger than MARR, is it a realistic assumption? It seems not!!! We will need to use ERR method to evaluate the feasibility of the project!

External Rate of Return (ERR) Method

Equivalent Present Worth of All Net Expenditure or net cash outflow

$$\sum_{k=0}^{N} E_{k}(P/F, \varepsilon\%, k)$$

- $= E_0 + E_5(P/F,16\%,5) + E_6(P/F,16\%,6) + E_7(P/F,16\%,7)$
- = 620,000 + 40,000(P/F,16%,5) + 40,000(P/F,16%,6) + 100,000(P/F,16%,7)
- = 620,000 + 40,000*0.4761 + 40,000*0.4104 + 100,000*0.3538
- = \$690,840

Equivalent Future Worth of All Net Revenue or net cash inflow

$$\sum_{k=0}^{N} R_{k}(F/P, \varepsilon\%, N-k)$$

- $= R_1(F/P,16\%,6) + R_2(F/P,16\%,5) + R_3(F/P,16\%,4) + R_4(F/P,16\%,3)$
- = 370,000(F/P,16%,6) + 370,000(F/P,16%,5) + 330,000(F/P,16%,4) +
- 290,000(F/P,16%,3)
- $=370,000^{2}.4364 + 370,000^{2}.1003 + 330,000^{1}.8106 + 290,000^{1}.5609$
- = \$2,728,738

External Rate of Return (ERR) Method

$$\sum_{k=0}^{N} E_{k}(P/F, \varepsilon\%, k)(F/P, i'\%, N) = \sum_{k=0}^{N} R_{k}(F/P, \varepsilon\%, N-k)$$

Recall: (F/P, i'%, 7) = 2,728,738 $690,840^*(1+i)^7 = 2,728,738$ $(1+i)^7 = 3.94988$ i' = 1.2168 i' = 0.2168i' = 21.68%

Since the rate of return, ERR (21.68%) is more than MARR (18%), the project is economically feasible to invest in.

Using MS Excel Financial Functions

ERR (21.68%) > MARR (18%) shows that this project is economically feasible.

Learning Objectives

- ✓ Apply the concept of Rate of Return (ROR)
- ✓ Compute the IRR using Linear Interpolation and MS Excel financial functions
- ✓ Recognize the limitations of Internal Rate of Return (IRR) method
- ✓ Compute the ERR using formula and MS Excel financial functions
- ✓ Evaluate economic feasibility of single project by applying the Internal Rate of Return method (IRR) and External Rate of Return method (ERR).

E213 Engineering Cost Decisions (Topic Flow)

Application of ABC costing method in cost management

Application of different cost estimating techniques

Comparison of alternatives using the concept of equivalence

Alternatives evaluation using single, uniform series and uniform gradient cash flows Today's learning

Evaluate alternatives with different life spans

Evaluate alternatives of equal life spans using payback method

Project evaluation based on Internal Rate of Return and External Rate of Return

Project evaluation using MARR and **Equivalent Worth** method

Evaluate public projects through incremental B/C analysis

Depreciation estimation and consideration in economic analysis

Tax consideration in economic analysis

Replacement analysis application

Risk and handling in economic

uncertainties analysis