122COM: Searching

David Croft

Introduction

Linear search

Binary search

String searching

Recap

122COM: Searching

David Croft

Coventry University

david.croft@coventry.ac.uk

2015

Linear search

Binary search

String searching

Recap

Overview

- 1 Introduction
- 2 Linear search
- 3 Binary search
- 4 String searching
- 5 Recap

Linear search

Binary search

String searching

Recap

Searching is used everywhere in computing.

- Obvious applications.
 - Text files.
 - Databases.
 - File systems.
- Hidden applications.
 - Computer games.
 - FOV search for objects in view.

David Croft

Path finding

Introduction

Linear search

Binary search

String searching

Recap

- Path finding algorithms in games
 - https://www.youtube.com/watch?v=19h1g22hby8
- Brute force approaches that find the best/shortest/fastest problem are too slow (travelling salesman).
- Heuristic aproaches are used instead.
 - Find "good enough" solutions.
 - Not always the best solution.
 - Dijkstra's algorithm.
 - A* algorithm.

Linear search

Binary search

String searching

Recap

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
- **O**(*n*)
 - Will discuss *O*() notation in a later week.

Linear search

Binary search

String searching

Recap

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
- **O**(*n*)
 - Will discuss *O*() notation in a later week.

Linear search

Binary search

String searching

Recap

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
- **O**(*n*)
 - Will discuss O() notation in a later week.

Linear search

Binary search

String searching

Recap

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
- **O**(*n*)
 - Will discuss *O*() notation in a later week.

Linear search

Binary search

String searching

Recap

Simplest search.

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.

R

- **O**(*n*)
 - Will discuss *O*() notation in a later week.

Linear search

Binary search

String searching

Recap

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
- **O**(*n*)
 - Will discuss *O*() notation in a later week.

Linear search

Binary search

String searching

Recap

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
- **O**(*n*)
 - Will discuss *O*() notation in a later week.

Linear search

Binary search

String searching

Recap

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
- **O**(*n*)
 - Will discuss *O*() notation in a later week.

														14
Α	В	Z	Q	K	L	G	Н	U	Α	Р	L	F	N	R

Linear search

Binary search

String searching

Recap

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
- **O**(*n*)
 - Will discuss *O*() notation in a later week.

Linear search

Binary search

String searching

Recap

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
- **O**(*n*)
 - Will discuss *O*() notation in a later week.

Linear search

Binary search

String searching

Recap

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
- **O**(*n*)
 - Will discuss *O*() notation in a later week.

Linear search

Binary search

String searching

Recap

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
- **O**(*n*)
 - Will discuss *O*() notation in a later week.

Linear search

Binary search

String searching

Recap

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
- **O**(*n*)
 - Will discuss *O*() notation in a later week.

Linear search

Binary search

String searching

Recap

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
- **O**(*n*)
 - Will discuss *O*() notation in a later week.

Linear search

Binary search

String searching

Recap

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
- **O**(*n*)
 - Will discuss *O*() notation in a later week.

Linear search

Binary search

String searching

Recap

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
- **O**(*n*)
 - Will discuss *O*() notation in a later week.

Linear search

Binary search

String searching

Recap

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
- **O**(*n*)
 - Will discuss *O*() notation in a later week.

Linear search

Binary search

String searching

Recap

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
- **O**(*n*)
 - Will discuss *O*() notation in a later week.

Linear search

Binary search

String searching

Recap

Muuuuuuch faster than linear search.

- Divide & conquer.
- Only works on sorted sequences.
- Algorithm is:
 - 1 Find middle value of sequence.
 - If search value == middle value then success.
 - If search value is < middle value then forget about the top half of the sequence.
 - If search value is > middle value then forget about the bottom half of the sequence.
 - Repeat from step 1 until len(sequence) == 0.

I

Introduction

Linear search

Binary search

String searching

Recap

														14
Α	В	C	D	E	F	G	Н	1	J	K	L	M	N	0

Linear search

Binary search

String searching

Recap

				_			_						13	_
Α	В	C	D	Е	F	G	Н	1	J	K	L	M	N	0
							\uparrow							

Binary search II

I

Introduction

Linear search

Binary search

String searching

Recap

Linear search

Binary search

String searching

Recap

How many comparisons do we need to do for binary search?

■ How many times can we divide our list by 2?

Linear search

Binary search

String searching

Recap

- How many times can we divide our list by 2?
- Ideally depth of tree is $log_2(n)$
 - = n = 14.
 - $\log_2(14) = 3.9 \Rightarrow 3$

Linear search

Binary search

String searching

Recap

- How many times can we divide our list by 2?
- Ideally depth of tree is $log_2(n)$
 - = n = 14.
 - $\log_2(14) = 3.9 \Rightarrow 3$
- Binary search has a complexity of $O(\log n)$.
 - Will cover *O*() complexity in later week.

Linear search

Binary search

String searching

Recap

- How many times can we divide our list by 2?
- Ideally depth of tree is $log_2(n)$
 - = n = 14.
 - $\log_2(14) = 3.9 \Rightarrow 3$
- Binary search has a complexity of $O(\log n)$.
 - Will cover *O*() complexity in later week.
- Find E.

Linear search

Binary search

String searching

Recap

- How many times can we divide our list by 2?
- Ideally depth of tree is $log_2(n)$
 - = n = 14.
 - $\log_2(14) = 3.9 \Rightarrow 3$
- Binary search has a complexity of $O(\log n)$.
 - Will cover *O*() complexity in later week.
- Find E.

Linear search

Binary search

String searching

Recap

- How many times can we divide our list by 2?
- Ideally depth of tree is $log_2(n)$
 - = n = 14.
 - $\log_2(14) = 3.9 \Rightarrow 3$
- Binary search has a complexity of $O(\log n)$.
 - Will cover *O*() complexity in later week.
- Find E.

Linear search

Binary search

String searching

Recap

How many comparisons do we need to do for binary search?

- How many times can we divide our list by 2?
- Ideally depth of tree is $log_2(n)$
 - = n = 14.
 - $\log_2(14) = 3.9 \Rightarrow 3$
- Binary search has a complexity of $O(\log n)$.
 - Will cover *O*() complexity in later week.
- Find E.

It's HOW much faster?!?!!

Introduction

Linear search

Binary search

String searching

Recap

Clearly much faster than linear search.

- To search a trillion elements linearly could mean a trillion comparisons.
- 40 with binary search.

But...

- Have to sort the list first.
- Sorting lists can be expensive.
- Can't always sort sequences.
- Ordering is important.
- Cant always search for sequences.
 - Text documents.
 - Genetic codes.

Linear search

Binary search

String searching

Recap

- I.e. Text searching.
 - Finding one sequence in another sequence.

X

e

a

- Naive search.
 - Like linear search.
 - Is very slow.

p

e

m

etc, etc, etc.

Linear search

Binary search

String searching

Recap

Boyer-Moore string searching algorithm.

- **1977.**
- Not going to talk about the whole algorithm here.
 - Gets really complex.
- Right to left comparison.
- Can skip sections of the text.
 - Don't need to test every position.
- How?

Linear search

Binary search

String searching

Recap

Boyer-Moore string searching algorithm.

- **1977.**
- Not going to talk about the whole algorithm here.
 - Gets really complex.
- Right to left comparison.
- Can skip sections of the text.
 - Don't need to test every position.
- How?
- Pre-processes the search string.
 - Bad character rule table.
 - Explained in a minute.

example
$$\Rightarrow \frac{a}{4} = \frac{a}{6} = \frac{b}{1} = \frac{b}{3} = \frac{x}{5} = \frac{x}{7}$$

Introduction

Linear search

Binary search

String searching

example
$$\Rightarrow \frac{a}{4} = \frac{a}{6} = \frac{a}{1} = \frac{a}{3} = \frac{a}{5} = \frac{a}{7}$$

Introduction

Linear search

Binary search

String searching

example
$$\Rightarrow \frac{a}{4} = \frac{a}{6} = \frac{a}{1} = \frac{b}{3} = \frac{x}{5} = \frac{x}{7}$$

Introduction

Linear search

Binary search

String searching

example
$$\Rightarrow \frac{a}{4} = \frac{a}{6} = \frac{a}{1} = \frac{b}{3} = \frac{x}{5} = \frac{x}{7}$$

Introduction

Linear search

Binary search

String searching

example
$$\Rightarrow \frac{a}{4} = \frac{a}{6} = \frac{a}{1} = \frac{b}{3} = \frac{x}{5} = \frac{x}{7}$$

Introduction

Linear search

Binary search

String searching

example
$$\Rightarrow \frac{a}{4} = \frac{a}{6} = \frac{b}{1} = \frac{b}{3} = \frac{x}{5} = \frac{x}{7}$$

Introduction

Linear search

Binary search

String searching

example
$$\Rightarrow \frac{a}{4} = \frac{a}{6} = \frac{b}{1} = \frac{b}{3} = \frac{b}{5} = \frac{x}{7}$$

Introduction

Linear search

Binary search

String searching

example
$$\Rightarrow \frac{a \quad e \quad I \quad m \quad p \quad x \quad *}{4 \quad 6 \quad 1 \quad 3 \quad 2 \quad 5 \quad 7}$$

Linear search

Binary search

String searching

Recap

- For each character.
- Just count number of places between it and end of search string.

example
$$\Rightarrow \frac{a \ e \ l \ m \ p \ x \ *}{}$$

Linear search

Binary search

String searching

Recap

- For each character.
- Just count number of places between it and end of search string.

example
$$\Rightarrow \frac{a \quad e \quad l \quad m \quad p \quad x \quad *}{4}$$

Linear search

Binary search

String searching

Recap

- For each character.
- Just count number of places between it and end of search string.

example
$$\Rightarrow \frac{a \quad e \quad I \quad m \quad p \quad x \quad *}{4 \quad 6}$$

Linear search

Binary search

String searching

Recap

- For each character.
- Just count number of places between it and end of search string.

example
$$\Rightarrow \frac{a}{4} = \frac{b}{6} = \frac{b}{1} = \frac{b}$$

Linear search

Binary search

String searching

Recap

- For each character.
- Just count number of places between it and end of search string.

example
$$\Rightarrow \frac{a}{4} = \frac{a}{6} = \frac{b}{1} = \frac{b}{3} = \frac{b}{3}$$

Linear search

Binary search

String searching

Recap

- For each character.
- Just count number of places between it and end of search string.

example
$$\Rightarrow \frac{a}{4} = \frac{b}{6} = \frac{b}{1} = \frac{b}{3} = \frac{b}{2} = \frac{b}{3}$$

Linear search

Binary search

String searching

Recap

- For each character.
- Just count number of places between it and end of search string.

example
$$\Rightarrow \frac{a}{4} = \frac{b}{6} = \frac{b}{1} = \frac{b}{3} = \frac{x}{5}$$

David Croft

Introduction

Linear search

Binary search

String searching

Recap

- For each character.
- Just count number of places between it and end of search string.

example
$$\Rightarrow \frac{a}{4} = \frac{b}{6} = \frac{b}{1} = \frac{b}{3} = \frac{x}{5} = \frac{x}{7}$$

Introduction

Linear search

Binary search

String searching

Recap

Doesn't need to sort or modify the sequence being searched.

Small amount of pre-processing on the search value.

Worst case.

Linear time.

Average case

Sub-linear.

Not the only string searching algorithm.

- Knuth-Morris-Pratt.
- Finite State Machine (FSM).
- Rabin-Karp.

122COM: Searching

David Croft

Introduction

Linear search

Binary search

String searching

Linear search

Binary search

String searching

Recap

- Searching
 - Applications everywhere.
- Linear search.
 - Simple.
 - Slow.
- Binary search.
 - Ordered sequence.
 - Very fast.
- String searching.
 - Finding subsequence in sequence.
 - Boyers-Moore.
 - Preprocessing.
 - Skipping sections.

122COM: Searching

David Croft

Introduction

Linear search

Binary search

String searching

Recap

The End

