1).

Logit(p) = Intercept + Balance Coefficient X balance + Income Coefficient X Income + Student Indicator Coefficient X Student

Given estimates from the table:

- Intercept: -11.1924

Balance Coefficient: 0.00574Income Coefficient: 3.033e-6

- Student Indicator Coefficient: 0.3234

Values:

Balance: \$2500Income: \$40000Student = 1

For a student with a balance of \$2500 and income of \$40,000 we substitute and calculate values for logit(p):

Logit(p): 3.60232

Next, we need to convert the logit to probability:

$$1/1 + e^{-\log it(p)}$$

$$P = 1 / 1 + 0.272 = 0.973$$

The estimated probability is <u>97.3%</u>

2).

Confusion matrix:

(TP) True Positives: Predicted Yes and Actual Yes = 90

(FN) False Negatives: Predicted No but Actual Yes = 210

(FP) False Positives: Predicted yes but Actual No = 140

(TN) True Negatives: Predicted No and Actual No = 9560

Misclassification: 1 – Accuracy (TP + TN / Total):

- 90 + 9560 / 10000 = 0.965

Misclassification: 1 – 0.965 = <u>0.035</u>

True Positive Rate (TPR):

$$TPR = TP / TP + FN$$

$$TPR = 90 / 90 + 210 = 0.3$$

True Positive Rate (TPR) = 0.3

False Positive Rate (FPR):

FPR = 1 - TN / TN + FP

FPR = 1 - 9560 / 9560 + 140

1 - 9560 / 9700 = 0.0144

False Positive Rate (FPR) = 0.0144

3A).

Data Partition:

Impute:

Variable Name	Impute Method	Imputed Variable	Impute Value	Role	Measurement Level	Label	Number of Missing for TRAIN
CLAGE	MEAN	IMP CLAGE	179.68906032	INPUT	INTERVAL		209
CLNO	MEAN	IMP_CLNO	21.237123663	INPUT	INTERVAL		153
DEBTINC	MEAN	IMP_DEBTING	33.725587621	INPUT	INTERVAL		881
DELINQ	MEAN	IMP_DELINQ	0.4582668793	INPUT	INTERVAL		410
DEROG	MEAN	IMP_DEROG	0.2660675381	INPUT	INTERVAL		500
J0B	COUNT	IMP_JOB	Other	INPUT	NOMINAL		187
MORTDUE	MEAN	IMP_MORTDUE	73188.766338	INPUT	INTERVAL		352
NINQ	MEAN	IMP_NINQ	1.1600314301	INPUT	INTERVAL		354
REASON	COUNT	IMP_REASON	DebtCon	INPUT	NOMINAL		173
VALUE	MEAN	IMP_VALUE	100747.45973	INPUT	INTERVAL		80
YOJ	MEAN	IMP YOJ	8.8981763317	INPUT	INTERVAL		361

Regression:

13								
6		Analy	sis of	Maximum Lik	elihood Esti	mates		
7								
8					Standard			
9	Parameter		DF	Estimate	Error	t Value	Pr > t	
0								
1	Intercept		1	0.1535	0.0307	4.99	<.0001	
2	IMP_CLAGE		1	-0.00069	0.000070	-9.82	<.0001	
3	IMP_CLNO		1	-0.00199	0.000624	-3.19	0.0014	
4	IMP_DEBTING		1	0.00580	0.000695	8.35	<.0001	
5	IMP_DELINQ		1	0.1104	0.00518	21.30	<.0001	
6	IMP_DEROG		1	0.0856	0.00689	12.43	<.0001	
7	IMP_JOB	Mgr	1	-0.0408	0.0156	-2.61	0.0091	
8	IMP_JOB	Office	1	-0.0953	0.0148	-6.45	<.0001	
19	IMP_JOB	Other	1	-0.0289	0.0120	-2.41	0.0159	
0	IMP_JOB	ProfExe	1	-0.0370	0.0138	-2.68	0.0074	
1	IMP_JOB	Sales	1	0.1627	0.0346	4.71	<.0001	
2	IMP_MORTDUE		1	-7.03E-7	2.306E-7	-3.05	0.0023	
3	IMP_NINQ		1	0.0267	0.00355	7.53	<.0001	
4	IMP_REASON	DebtCon	1	-0.0219	0.00626	-3.51	0.0005	
5	IMP_VALUE		1	5.311E-7	1.869E-7	2.84	0.0045	
6	IMP_YOJ		1	-0.00108	0.000791	-1.36	0.1725	
7	LOAN		1	-1.86E-6	5.576E-7	-3.34	0.0008	
8								

The logistic regression analysis reveals that several variables are statistically significant in predicting default (BAD) status. Key financial indicators, including IMP_CLAGE, IMP_CLNO, IMP_DEBTINC, IMP_DELINQ, IMP_DEROG, IMP_MORTDUE, IMP_NINQ, IMP_VALUE, and LOAN, are significant, highlighting their impact on credit risk. Additionally, categorical factors such as IMP_JOB (with categories like Mgr, Office, ProfExe, Sales) and IMP_REASON: DebtCon are also significant, indicating that occupation and loan purpose influence default likelihood. Imputing missing values appropriately ensured that these variables could be effectively analyzed without data gaps.

Models	Input -	Input –	Transformation	Transformation
	Interval	Class	- Interval	– Class
Count-	Count	Huber	NA	NA
Huber				
Count –	Count	Tukey's	NA	NA
Tukey's		Biweight		
Biweight				
Count –	Count	Andew's	NA	NA
Andrew's		Wave		
Wave				
Count -	Count	Mean	NA	NA
Mean				
Count –	Count	Mid	NA	NA
Mid		Minimum		
Minimum		Spacing		
Spacing				
Count -	Count	Tree	NA	NA
Tree				
Count -	Count	Median	Best	Dummy
Median				Indicators

Selected Model	Predecessor Node	Model Node	Model Description	Target Variable	Target Label	Selection Criterion: Valid: Average Squared Error	Train: Akaike's Information Criterion	Train: Average Squared Error
Y	Reg3	Reg3	Count - Andrew's Wave	BAD		0.092755	-10212.1	0.083152
	Reg7	Reg7	Count - Median - Best - Dummy Indicators	BAD		0.094852	-10217.9	0.084889
	Reg	Reg	Count - Huber	BAD		0.095951	-10172.4	0.08590
	Reg2	Reg2	Count - Tukey's Biweight	BAD		0.121245	-8710.49	0.12294
	Reg4	Reg4	Count - Mean	BAD		0.123627	-8655.78	0.12457
	Reg5	Reg5	Count - Mid Minimum	BAD		0.128241	-8531.66	0.12833
	Reg6	Reg6	Count - Tree	BAD		0.13392	-8480.12	0.12992

Based on the fit statistics in the provided results, different imputation and transformation methods were explored to optimize the logistic regression model's performance. Among the various configurations, the model with Andrew's Wave imputation and Count for class variables achieved the lowest validation misclassification error, with a value of 0.092755. This suggests that using Andrew's Wave for imputation and Count for categorical variables provided the best model fit in terms of minimizing misclassification error on the validation set.

The next best-performing model utilized Median Imputation combined with the Best transformation and Dummy Indicators for categorical variables, yielding a validation misclassification error of 0.094852. Other imputation methods like Huber, Tukey's Biweight, Mean, Mid Minimum, and Tree imputation resulted in higher misclassification errors, indicating less optimal performance.

In summary, Andrew's Wave Imputation with Count transformation was identified as the best configuration to predict the target variable "BAD," based on the lowest validation misclassification error in this analysis.