The Spectral Theory Basis of PCA

Ng Yen Kaow

Eigenvectors

- Only concerned with square matrices
- \Box A **eigenvector** for a square matrix M is vector u where Mu = λ u
 - u is <u>invariant</u> under transformation M
 - The corresponding scaling factor is called a eigenvalue
- □ The **eigenspace** of a matrix M is the set of all the vectors u that fulfills $Mu = \lambda u$
- \square A eigenbasis of a $n \times n$ matrix M is a set of n orthogonal eigenvectors of M

Eigendecomposition

- \square A eigendecomposition of matrix M is $M = Q\Lambda Q^{-1}$
 - where Λ is <u>diagonal</u>, and Q contains (not necessarily orthogonal) <u>eigenvectors</u> of M
- Any <u>normal</u> M can be eigendecomposed
- □ Furthermore, for real symmetric M,
 - Eigenvectors that correspond to distinct eigenvalues are orthogonal (Spectral Theorem)
 - For an orthogonal matrix Q, $Q^{-1} = Q^{T}$
 - Hence for real symmetric M, $M = Q\Lambda Q^T$

Rayleigh Quotient

- \square Consider an $n \times n$ real symmetric M
- □ $M = Q\Lambda Q^T$, where Λ is diagonal, and Q is the eigenbasis of M
- \square Denote the eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$.
 - Then, for all unit vector u

Maximum of Rayleigh Quotient

$$\max_{\|\mathbf{u}\|=1} \frac{\mathbf{u}^{\mathrm{T}} \mathbf{M} \mathbf{u}}{\mathbf{u}^{\mathrm{T}} \mathbf{u}} = \lambda_{1}$$

Similarly, λ_n is the minimum of the Rayleigh Quotient

 \square And for all orthogonal matrix P and $k \le n$

Minimax Principle

$$\max_{P \in \mathbb{R}^{k \times n}, P^{T}P = I} \operatorname{tr}(P^{T}MP) = \lambda_{1} + \dots + \lambda_{k}$$

Similarly,
$$\min_{P \in \mathbb{R}^{k \times n}, P^T P = I} \operatorname{tr}(P^T M P) = \lambda_{n-k+1} + \dots + \lambda_n$$

Eigendecomposition applications

- Matrix inverse
- Matrix approximation
- Minimization or maximization through the Rayleigh Quotient
 - PCA
 - Covariance matrix
 - Find maximum
 - Spectral clustering
 - Graph Laplacian
 - Find minimum

Singular Value Decomposition

- Any matrix can be singular value decomposed
- \square M = U Σ V*
 - \blacksquare M is $m \times n$ matrix
 - U is an $m \times m$ unitary matrix Orthogonal
 - lacksquare Σ is an $m \times n$ diagonal matrix
 - V is an $n \times n$ unitary matrix
- $\hfill\Box$ For a real M, $V^*=V^T$ (and $U=U^T)$ hence $M=U\Sigma V^T$

SVD applications

- Solving linear equations
- Linear regression
- Pseudoinverse
- Kabsch algorithm
- Matrix approximation
- As a eigendecomposition (see next slide)

SVD and eigendecomposition

- □ SVD is a eigendecomposition but not of M
 - Given an SVD of $M = U\Sigma V^*$
 - Then, clearly
 - $\square M^*M = V\Sigma^*U^*U\Sigma V^* = V(\Sigma^*\Sigma)V^*$
 - $\square MM^* = U\Sigma V^*V\Sigma^*U^* = U(\Sigma^*\Sigma)U^*$
 - Hence V is the eigenbasis of M*M and U is the eigenbasis of MM* respectively
 - That is, U and V are eigenbases of the squared matrices of M
 - However the eigenbasis of M*M and MM*
 are in general not the eigenbasis of M

- □ Let X be an $m \times n$ matrix where each row represents a vector in an n-D space
 - That is, X represents the input data
- What do we ideally expect to be the "principal components" of X
 - 1. The components form a basis
 - 2. The components are orthogonal
 - 3. The first component accounts for the most variation, the second component accounts for the most variation after removing the first component, and so on

- □ Let X be an $m \times n$ matrix where each row represents a vector in an n-D space
 - X represents m datapoints in n-D
- □ Assume that the rows in X are generated by a random vector $\mathbf{X} \in \mathbb{R}^n$
 - Note the difference between X and X
 - The theory of PCA is based on X (and its $n \times n$ covariance matrix M)
- □ For the first component, we want to find unit vector $\mathbf{u} \in \mathbb{R}^n$ such that $var(\mathbf{u}^T\mathbf{X})$ is maximized

The eigenvector u of the covariance matrix of X with the largest eigenvalue maximizes var(u^TX)

Let $\mathbf{X} \in \mathbb{R}^n$ be a random vector with

- mean $\mu \in \mathbb{R}^n$ and
- covariance matrix $M = \mathbb{E}[(X \mu)(X \mu)^T]$

For any $u \in \mathbb{R}^n$, the projection of $u^T X$ has

- \blacksquare $\mathbb{E}[\mathbf{u}^{\mathrm{T}}\mathbf{X}] = \mathbf{u}^{\mathrm{T}}\mu$ and
- $var(u^{T}X) = \mathbb{E}\left[\left(u^{T}X u^{T}\mu\right)^{2}\right]$ $= \mathbb{E}\left[u^{T}(X \mu)(X \mu)^{T}u\right] = u^{T}Mu$

From earlier slide, u^TMu is maximized when u is the eigenvector of M with the largest eigenvalue

- \square Extend to k principal components, we want
 - k-D subspace of \mathbf{X} that is defined by orthogonal basis $\mathbf{p}_1, \dots, \mathbf{p}_k \in \mathbb{R}^d$ and displacement $\mathbf{p}_0 \in \mathbb{R}^d$
 - Distance from X to this subspace is minimized
 - Projection of **X** onto subspace is $P^TX + p_0$, where P is matrix whose rows are $p_1, ..., p_k$
 - Squared distance to subspace is $\mathbb{E} \|\mathbf{X} (\mathbf{P}^{T}\mathbf{X} + \mathbf{p_0})\|^2$
 - By calculus, $\mathbf{p_0} = \mathbb{E} \|\mathbf{X} \mathbf{P}^{\mathrm{T}}\mathbf{X}\| = (1 \mathbf{P}^{\mathrm{T}})\mu$, hence $\mathbb{E} \|\mathbf{X} (\mathbf{P}^{\mathrm{T}}\mathbf{X} + \mathbf{p_0})\|^2 = \mathbb{E} \|\mathbf{X} \mu\|^2 \mathbb{E} \|\mathbf{P}^{\mathrm{T}}(\mathbf{X} \mu)\|^2$
 - To maximize that, need to maximize $\mathbb{E} \| P^{T}(\mathbf{X} \mu) \|^{2} = var(P^{T}\mathbf{X})$
 - Finally, same as in previous slide, $p_1, ..., p_k$ are eigenvectors of M

 If X is normalized such that each column has zero mean, an unbiased estimator of M can be obtained as

$$M = \frac{1}{n-1} X^{T} X$$

- □ Since SVD of X eigendecomposes X^TX
 - This allows us to solve PCA through either
 - 1. Eigendecompose M, or
 - 2. Solve SVD for X