

Digital Security

# 우리집의 인터넷 환경을 살펴보자

- 인터넷이 어떻게 연결되어 있으며 어떤 정보가 오고 가는지를 통해 예상되는 공격 및 예상 공격대상 파악
- IP 주소 확인
  - 윈도우에서 [Ctrl] + [Esc] 클릭
  - [프로그램 및 파일 검색] 창에 'cmd'입력 후 확인 클릭





- 명령어 프롬프트에 'ipconfig' 입력 후 [Enter]



생명대학교 SANGMYUNG UNIVERSITY 3

Digital Security

- 포트 번호 확인
  - 명령어 프롬프트에서 'netstat -n' 입력하면 로컬 주소와 외부 주소 표시



성명대학교

- 웹 브라우저로 상명대학교 웹사이트(<a href="http://www.smu.ac.kr">http://www.smu.ac.kr</a>) 실행 후 한번 더 명령어 프롬프트에서 'netstat -n' 실행
  - ✓ 조금 전보다 표시 내용 늘어났음을 확인





5

**Digital Security** 

- 인터넷에는 어떻게 연결되는가?
  - IP 주소와 포트 번호
    - ✓ 네트워크란 여러 대의 컴퓨터를 케이블이나 무선으로 연결하여 정보 주고받는 것
    - ✓ 인터넷은 집, 회사 등의 작은 네트워크가 외부의 더 큰 네트워크에 연결되어 구성





- IP 주소로써 컴퓨터의 네트워크상의 위치를 식별
  - ✓ IPv4 (Internet Protocol version 4)
  - ✓ IPv6 (Internet Protocol version 6)
  - ✓ IP 주소는 32비트 정숫값이며, 컴퓨터 내부에서는 2진수로 처리
  - √ 32비트 정숫값을 8비트씩 4개로 나누어 10진수로 IP주소 표시



성명대학교 MANAGANYUNG UNIVERSITY 7

**Digital Security** 

✓ IP주소 확인을 위해 윈도우 PC의 명령어 프롬프트 열어 'ipconfig' 명령어 실행

성명 상명대학교

- IP 주소로 컴퓨터 장소 지정한 후, 그 컴퓨터상에서 동작하는 여러 프로그램 중 어떤 것과 통신할지를 포트 번호를 통해 지정
  - ✓ IP 주소가 건물 주소라면, 포트번호는 방 번호에 해당
  - ✓ 질 일려진 서비스 포트 (well known port) 라는, 네트워크 서비스마다 정해진 포트 번호가 존재

| 포트 번호 | 서비스 내용              |
|-------|---------------------|
| 20    | FTP(데이터)            |
| 21    | FTP(제어)             |
| 22    | SSH                 |
| 23    | Telnet              |
| 25    | SMTP                |
| 80    | НТТР                |
| 110   | POP3                |
| 443   | HTTPS               |
| 587   | Submission (이메일 발송) |



c

#### Digital Security

- √ 통신을 실행하기 위해서는 서버 측뿐 아니라 클라이언트 측도 발송 포트 번호 지정해야 함
- ✓ 발송 포트 번호는 각각 다른 번호 사용하도록 OS가 관리하는 것이 일반적
  - 임시 포트 (ephemeral port)
- √ 명령어 프롬프트에서 netstat 명령어 실행하여 포트 번호 확인: netstat -n



- 통신 프로토콜 (protocol)
  - ✓ 인터넷에서 컴퓨터가 정보 주고받기 위해 표준화된 규약
  - ✓ 규칙을 정해놓음으로써 서로 다른 제조사, 서로 다른 설계 방식으로 개발된 기종 간 문제없이 정보를 교환할 수 있음
- TCP/IP



성명 상명대학교

11

**Digital Security** 

## 네트워크에 대한 이해

- OSI 7계층 (Open System Interconnection)
  - 국제표준화기구(ISO: International Organization for Standardization)는 다양한 네트워크의 호환을 위해 OSI 7계층이라는 표준 네트워크 모델을 만듦.





## OSI vs. TCP/IP (Transmission Control Protocol/Internet Protocol)



성명대학교

13

**Digital Security** 

### **Protocol**



성명 상명대학교

### 물리 [ Physical ]

- 물리 계층은 사용자가 전송한 데이터를 장치 간 주고받을 수 있는 형태로 변환하는 계층
- 물리 계층 특성들
  - 전기적 특성: 전압의 크기와 전압이 변하는 시점에 관련된 특성입니다
  - 기늉적 특성: 물리적으로 연결된 장치 간 데이터를 주고받을 때 쓰이는 케이블의 기늉적 특성입니다
  - 절차적 특성: 데이터를 성공적으로 전송하기 위한 규정을 말합니다
  - 물리적 특성: 표준 케이블 사이의 물리적 연결에 대해 정의합니다
- 물리 계층은 데이터를 O과 1로 표현하는 등의 신호 전송만을 수행하는 계층이므로, 오류가 생겼는지 문제는 없는지에 관한 것에는 관여하지 않음
- 사용되는 장비로는 UDP(Unshielded Twisted Pair)와 STP(Shielded Twisted Pair) 등



### 데이터링크 [ Data Link ]

- 데이터링크 계층은 직접 연결된 2개의 네트워크 장치 사이의 데이터 전송을 담당하며, 두 포인트(Point to Point) 간 신뢰성 있는 전송을 보장하기 위한 계층
- 데이터링크 계층 기능
  - 프레이밍(Framing): 1계층에서 수신한 데이터를 조합하여 프레임(Frame) 단위로 만들어 처리합니다. 또는 위의 계층에서 내려온 데이터를 프레임 단위로 만들어 신호로 전송합니다. 이때 각 계층별로 고정된 크기의 데이터 유닛을 일반적으로 PDU(Protocol Data Unit)이라고 합니다
  - 흐름 제어(Flow Control): 송신 측과 수신 측 사이의 오가는 데이터가 너무 많거나 너무 적지 않도록 데이터의 흐름을 적절히 제어합니다
  - 오류 제어(Error Control) : 프레임을 전송할 때 발생한 오류를 복원하거나 재전송합니다.
  - 접근 제어(Access Control): 네트워크 상의 통신 매체가 여럿 존재힐 경우, 각 장치들의 통신 상황을 고려하여 데이터의 전송 가능 여부를 판단합니다
  - 동기화(Synchronization) : 데이터링크 계층 프로토콜에 따라 프레임을 구분하거나 전송된 프레임의 타이밍 정보를 맞추기 위해 필요한 비트 패턴을 제공합니다

- 기능들을 수행하기 위해서 데이터링크 계층에서는 헤더와 트레일러라는 것을 사용
  - 헤더에는 송신 장치 & 수신 장치의 주소
  - 트레일러에는 오류 검출을 위한 코드가 들어감
- 사용되는 장비로는 대표적으로 스위치(Switch)가 있음
- 상호 통신을 위해 MAC 주소를 할당받는데, MAC 주소는 ipconfig /all 명령을 실행해 확인할 수 있음 데데 어떻게 되었다.



성명대학교

17

**Digital Security** 

### 네트워크 [ Network ]

- 네트워크 계층에서는 상위 계층으로부터 받은 데이터를 패킷(Packet) 혹은 데이터그램(Datagram)이라는 단위로 규격화해서 송수신하는 역할
  - 여러 개의 노드를 거칠 때마다 경로를 찾아주는 역할을 하는 계층.
  - 2계층에서는 MAC주소로 통신했다면 3계층에서는 IP 주소를 기반으로 통신
- 네트워크 계층의 주요 역할
  - 패킷 전달(Packet Forwarding) : 종단 간 패킷 전달을 합니다.
  - 라우팅(Routing): 종단 간 패킷을 전송할 때, 라우팅 프로토콜을 이용하여 가장 효율적인 경로를 통해 전달송합니다.
  - 논리 주소(Logical Address): IP 주소라는 논리적인 주소를 사용함으로써,
     사용자 데이터를 목적지 장치까지 전달합니다.
- 사용되는 장치가 라우터(Router), L3 스위치(L3 Switch) 등등이 있습니다.

성공 상명대학교

# 전송 [ Transport ]

- 전송 계층은 종단 간 데이터 통신을 제어하며, 세그먼트(Segment)라는 이름의 데이터 유닛을 사용
- 이전의 계층에서는 데이터를 전송하는데 의의를 두었다면 전송 계층부터는 사용자가 사용하는 서비스와 직접적으로 관련된 역할을 수행
- 전송 계층의 주요 역할
  - 종단 간 데이터 통신 보장 : 흐름 제어와 오류 제어 등을 수행함으로써 데이터의 통신을 보장합니다.
  - 지연(Delay)에 따른 문제 해결
  - 동시에 여러개의 논리적 연결 지원
  - 사용자 데이터 분할 및 재조합: 사용자가 송신하는 데이터를 전송 가능한 고정된 크기의 세그먼트로 분할합니다. 그 후 순서 번호를 할당하고 송신합니다. 이때 수신한 데이터는 이 번호를 토대로 재조립하거나 폐기하는 역할을 합니다.



19

#### Digital Security

| 포트 번호 | 서비스     | 설명                                                                                 |  |
|-------|---------|------------------------------------------------------------------------------------|--|
| 20    | FTP     | File Transfer Protocol-Datagram     FTP 연결 시 실제로 데이터를 전송한다.                        |  |
| 21    | FTP     | File Transfer Protocol-Control FTP 연결 시 인증과 제어를 한다.                                |  |
| 23    | Telnet  | • 텔넷 서비스로, 원격지 서버의 실행창을 얻어낸다.                                                      |  |
| 25    | SMTP    | Simple Message Transfer Protocol     메일을 보낼 때 사용한다.                                |  |
| 53    | DNS     | ● Domain Name Service<br>● 이름을 해석하는 데 사용한다.                                        |  |
| 69    | TFTP    | Trivial File Transfer Protocol     인증이 존재하지 않는 단순한 파일 전송에 사용한다.                    |  |
| 80    | НТТР    | • Hyper Text Transfer Protocol<br>• 웹 서비스를 제공한다.                                   |  |
| 110   | POP3    | Post Office Protocol     메일 서버로 전송된 메일을 읽을 때 사용한다.                                 |  |
| 111   | RPC     | Sun의 Remote Procedure Call     원격에서 서버의 프로세스를 실행할 수 있게 한다.                         |  |
| 138   | NetBIOS | Network Basic Input Output Service  권도우에서 파일을 공유할 수 있게 한다.                         |  |
| 143   | IMAP    | Internet Message Access Protocol     POP3와 기본적으로 같으나, 메일이 확인된 후에도 서버에 남는다는 것이 다르다. |  |
| 161   | SNMP    | Simple Network Management Protocol     네트워크 관리와 모니터링을 위해 사용한다.                     |  |



■ 3-웨이 핸드셰이킹(3-way handshaking)



성명대학교 SANGMYUNG UNIVERSITY 21

**Digital Security** 

## 세션 [ Session ]

- 세션 계층은 종단 간 통신 세션의 시작과 종료를 의미하며, 세션 계층에서부터는 데이터 유닛을 메시지(message)라고 함
- 세션 계층의 역할로는 메시지 그룹화, 데이터 전송 방향 결정, 데이터 중간 점검 및 복구를 위한 동기 점 생성과 같은 역할을 함

성명대학교 SANGMYUNG UNIVERSITY

### 표현 [ Presentation ]

- 표현 계층에서는 모든 컴퓨터가 이해할 수 있도록 데이터를 변환하는 역할을 함
- 또 암호화를 통해 보안성을 높이고, 데이터 압축 기능으로 데이터가 효율적으로 전송될 수 있도록 함



23

Digital Security

# 응용 [ Application ]

- 응용 계층은 OSI의 최상위 계층으로서 주로 서비스를 나타냄
- 응용 계층의 예시로는 FTP, SMTP, SNMP, HTTP 등등이 있습니다. 즉 응용 계층은 사용자가 사용하는 UI와 비슷하다고 할 수 있음



### 웹 브라우저에서 웹 서버에 요청 보내는 경우



생 상명대학교

25

**Digital Security** 

- 웹 브라우저에서 웹 서버로 보낼 데이터를 OS가 관리하는 TCP에 전달
- TCP에서는 전달받은 데이터를 일정한 사이즈로 분할한 'TCP 세그먼트' 작성.
   작성한 TCP 세그먼트의 혜더에 상대방 웹 서버의 포트번호 적어서 IP에 전달
- IP에서는 통신 상대 나타내는 IP 주소를 새로운 헤더에 붙인 'IP 패킷' 만들어 이더넷으로 보냄
- 이더넷에서는 IP주소에 지정된 최종 상대와의 통신 경로상에 있는 네트워크 기기들 중 바로 다음으로 패킷 전달해야 할 기기의 MAC 주소를 헤더에 기입한 '이더넷 프레임' 송출
- 네트워크로 송출된 이더넷 프레임이 헤더에 적힌 다음 기기로 전달되면, 그 기기에서는 다음 상대의 MAC 주소를 헤더에 고쳐 적어 다시 송출. 이를 반복하여 이더넷 프레임은 최종 통신 상대의 서버에 도착.
- 서버에서는 이더넷 프레임에서 IP 패킷, TCP 세그먼트의 순서로 혜더를 벗겨내어 마지막으로 원래 애플리케이션이 보낸 데이터를 복원. 이 데이터가 TCP 세그먼트의 혜더에 기술된 수신 포트 번호의 애플리케이션으로 건네짐.

<mark>媛</mark> 상명대학교

## 패킷 교환(패킷 통신)의 원리

- 데이터를 일정한 길이의 블록으로 분할하여 각각마다 수신자 정보를 부여
- 이를 '패킷' 형태로 만들어 발송



성명 상명대학교

27

Digital Security

- 하나의 회선 안에 여러 이용자의 패키지를 주고받으며, 통신회선을 놀리지 않고 작동하기 때문에 네트워크 이용 효율이 높음
- 그림이나 음성 등 서로 다른 종류의 데이터를 같은 네트워크 안에서 보낼 수 있음
- 네트워크 데이터를



성명 상명대학교

 회선이 패킷으로 붐비면 도착할 때까지 시간 걸리거나 패킷 분실될 수 있음





29

**Digital Security** 

## TCP와 UDP의 차이점

- TCP (Transmission Control Protocol)
  - 패킷의 순서를 맞추거나 도착하지 않은 패킷이 있으면 재발송 요구하는 등 제어 담당
- UDP (User Datagram Protocol)
  - '포트 번호로 프로그램 식별하기'라는 간단한 제어만을 수행

| - TCP어 |    | TCP                                  | UDP                                |
|--------|----|--------------------------------------|------------------------------------|
|        | 특징 | • 발송 전에 커넥션을 확립<br>• 통신 상대마다 접속을 관리  | • 커넥션을 확립할 필요 없음<br>• 바로 즉시 데이터 발송 |
|        | 장점 | • 재발송, 도착순서 등을 제어할 수 있음<br>• 신뢰성이 높음 | • 헤더 사이즈가 작음<br>• 부하가 작음           |
|        | 단점 | • 헤더 사이즈가 큼<br>• 부하가 큼               | • 패킷을 분실해도 재발송하지 않음<br>• 신뢰성이 떨어짐  |



# MAC(media access control) 주소

- 네트워크 기기를 유일하게 식별할 수 있도록 할당된 물리 주소
- 48비트 정숫값으로, 앞부분 24비트는 제조사 식별번호, 뒷부분 24비트는 각 장치마다 중복되지 않도록 제조사가 할당한 번호로 되어 있음
  - (예) 12:34:56:78:9a:bc or 12-34-56-78-9a-bc

