Estimação Estimação Pontual Métodos de estimação pontual

Estimação Pontual

tradução do Jay Davore

índice

- Estimação
 - Ideias Iniciais
- 2 Estimação Pontual
 - Conceitos gerais de estimação pontual
 - Estimador não viesado
 - Princípio da variância mínima de um estimador não viesado
 - Erro padrão
- Métodos de estimação pontual
 - O método dos momentos
 - Função de Verossimilhança
 - estimadores de máxima verossimilhança
 - O princípio da invariância
 - Propriedades desejáveis dos EMV

Primeiras ideias

Inferência Estatística tem por objetivo fazer generalizações sobre uma população com base nos valores amostrais.

Existem dois problemas básicos:

- Estimação de parâmetros
- ② Teste de hipóteses sobre parâmetros

Primeiras ideias

Inferência Estatística tem por objetivo fazer generalizações sobre uma população com base nos valores amostrais.

Existem dois problemas básicos:

- Estimação de parâmetros
- 2 Teste de hipóteses sobre parâmetros

Uma amostra de n=500 pessoas de uma cidade é escolhida e a cada um é perguntado se concorda ou não com uma solução a um problema do estado. A resposta pode ser SIM (concorda) ou NÃO (discorda). Deseja-se estimar a proporção de pessoas na população favoráveis à solução proposta.

Se 300 pessoas responderam SIM à questão, uma estimativa natural para a proporção populacional seria 300/500 ou 60%. (Supondo que a amostra é representativa).

Uma amostra de n=500 pessoas de uma cidade é escolhida e a cada um é perguntado se concorda ou não com uma solução a um problema do estado. A resposta pode ser SIM (concorda) ou NÃO (discorda). Deseja-se estimar a proporção de pessoas na população favoráveis à solução proposta.

Se 300 pessoas responderam SIM à questão, uma estimativa natural para a proporção populacional seria 300/500 ou 60%. (Supondo que a amostra é representativa).

Sejam $X_1,...,X_n$ tais que

$$X_i = \begin{cases} 1, & \text{Se a i-\'esima pessoa da amostra responde SIM} \\ 0, & \text{Se a i-\'esima pessoa da amostra responde N\~AO} \end{cases}$$

Seja p=P(sucesso) (resposta SIM), podemos definir $Y=\sum_{i=1}^n X_i$, sabemos que $Y\sim bin(n,p)$ queremos portanto, estimar p.

Sejam $X_1,...,X_n$ tais que

$$X_i = \begin{cases} 1, & \text{Se a i-\'esima pessoa da amostra responde SIM} \\ 0, & \text{Se a i-\'esima pessoa da amostra responde NÃO} \end{cases}$$

Seja p=P(sucesso) (resposta SIM), podemos definir $Y=\sum_{i=1}^n X_i$, sabemos que $Y\sim bin(n,p)$ queremos portanto, estimar p. Um possível estimador de p é

$$\hat{p} = \frac{Y_n}{n} = \frac{\sum_{i=1}^n X_i}{n}$$

Sejam $X_1,...,X_n$ tais que

$$X_i = \begin{cases} 1, & \text{Se a i-\'esima pessoa da amostra responde SIM} \\ 0, & \text{Se a i-\'esima pessoa da amostra responde NÃO} \end{cases}$$

Seja p=P(sucesso) (resposta SIM), podemos definir $Y=\sum_{i=1}^n X_i$, sabemos que $Y\sim bin(n,p)$ queremos portanto, estimar p. Um possível estimador de p é

$$\hat{p} = \frac{Y_n}{n} = \frac{\sum_{i=1}^n X_i}{n}$$

Se $Y_n = k$, obteremos: $\hat{p} = \frac{k}{n}$ como uma estimativa de p.

Sejam $X_1,...,X_n$ tais que

$$X_i = \begin{cases} 1, & \text{Se a i-\'esima pessoa da amostra responde SIM} \\ 0, & \text{Se a i-\'esima pessoa da amostra responde NÃO} \end{cases}$$

Seja p=P(sucesso) (resposta SIM), podemos definir $Y=\sum_{i=1}^n X_i$, sabemos que $Y\sim bin(n,p)$ queremos portanto, estimar p. Um possível estimador de p é

$$\hat{p} = \frac{Y_n}{n} = \frac{\sum_{i=1}^n X_i}{n}$$

Se $Y_n = k$, obteremos: $\hat{p} = \frac{k}{n}$ como uma estimativa de p.

observe que \hat{p} não é uma v.a., já k/n é um número ou uma estimativa.

Sejam $X_1,...,X_n$ tais que

$$X_i = \begin{cases} 1, & \text{Se a i-\'esima pessoa da amostra responde SIM} \\ 0, & \text{Se a i-\'esima pessoa da amostra responde NÃO} \end{cases}$$

Seja p=P(sucesso) (resposta SIM), podemos definir $Y=\sum_{i=1}^n X_i$, sabemos que $Y\sim bin(n,p)$ queremos portanto, estimar p. Um possível estimador de p é

$$\hat{p} = \frac{Y_n}{n} = \frac{\sum_{i=1}^n X_i}{n}$$

Se $Y_n = k$, obteremos: $\hat{p} = \frac{k}{n}$ como uma estimativa de p.

observe que \hat{p} não é uma v.a., já k/n é um número ou uma estimativa.

Definição de estimador

Seja uma amostra $(X_1,...,X_n)$ de uma v.a. que descreve uma característica de interesse da população. Seja θ o parâmetro que desejamos estimar (exemplo a média μ ou a variância σ^2)

Um estimador T de θ é qualquer função das observações amostrais, i.e, $T=g(X_1,...,X_n).$

Uma estimativa é o valor assumido pelo estimador em uma particular amostra.

Definição de estimador

Seja uma amostra $(X_1,...,X_n)$ de uma v.a. que descreve uma característica de interesse da população. Seja θ o parâmetro que desejamos estimar (exemplo a média μ ou a variância σ^2)

Um estimador T de θ é qualquer função das observações amostrais, i.e, $T=g(X_1,...,X_n).$

Uma estimativa é o valor assumido pelo estimador em uma particular amostra.

Estimador pontual

- Um estimador pontual de um parâmetro θ , é um número que pode ser considerado como um valor "sensato" para θ .
- Um estimador pontual pode ser obtido selecionando uma "estatística conveniente" e calculando o seu valor a partir dos dados amostrais

estimador não viesado

- um estimador pontual $\hat{\theta}$ é dito ser um estimador não viesado de θ se $E(\hat{\theta}) = \theta$, para cada possível valor de θ .
- \bullet se $\hat{\theta}$ for viesado, a diferença $E(\hat{\theta}-\theta)$ é chamado de Viês de θ

estimador pontual

As f.d.p.ts de um estimador viesado $\hat{\theta_1}$ e um estimador não viesado $\hat{\theta_2}$ para um parâmetro θ :

Figura: f.d.pt's de estimadores

estimador pontual

Figura: f.d.pts de estimadores

quando X é uma v.a. binomial com parâmetros n e p, a proporção amostral $\hat{p}=\frac{X}{n}$ é um estimador não viesado de p.

Foi visto na aula anterior que:

$$\hat{p} \sim N(p, \frac{p(1-p)}{n})$$

quando X é uma v.a. binomial com parâmetros n e p, a proporção amostral $\hat{p}=\frac{X}{n}$ é um estimador não viesado de p.

Foi visto na aula anterior que:

$$\hat{p} \sim N(p, \frac{p(1-p)}{n})$$

isto ajuda a verificar que \hat{p} "em média acerta" p. Portanto dizemos que \hat{p} é um estimador não viesado para p.

quando X é uma v.a. binomial com parâmetros n e p, a proporção amostral $\hat{p}=\frac{X}{n}$ é um estimador não viesado de p.

Foi visto na aula anterior que:

$$\hat{p} \sim N(p, \frac{p(1-p)}{n})$$

isto ajuda a verificar que \hat{p} "em média acerta" p. Portanto dizemos que \hat{p} é um estimador não viesado para p.

Observe que a diferença entre \hat{p} e p tenderá a ser pequena, pois quando $n\to\infty,\ Var(\hat{p})\to 0$

quando X é uma v.a. binomial com parâmetros n e p, a proporção amostral $\hat{p}=\frac{X}{n}$ é um estimador não viesado de p.

Foi visto na aula anterior que:

$$\hat{p} \sim N(p, \frac{p(1-p)}{n})$$

isto ajuda a verificar que \hat{p} "em média acerta" p. Portanto dizemos que \hat{p} é um estimador não viesado para p.

Observe que a diferença entre \hat{p} e p tenderá a ser pequena, pois quando $n\to\infty,\ Var(\hat{p})\to 0$

Princípio do estimador não viesado

Na escolha de diferentes estimadores de θ , selecione-se o que é não viesado

estimador não viesado da média

Seja $X_1,X_2,...,X_n$ uma a.a. de uma distribuição com média μ . Então \bar{X} é um estimador não viesado de μ .

Esta propriedade foi provada na aula anterior $(E(\bar{X}) = \mu)$

estimador não viesado da média

Seja $X_1,X_2,...,X_n$ uma a.a. de uma distribuição com média μ . Então \bar{X} é um estimador não viesado de μ .

Esta propriedade foi provada na aula anterior $(E(\bar{X}) = \mu)$

Se em adição a distribuição é contínua e simétrica, então \hat{X} (mediana) e outras médias centradas, são também estimadores não viesados de μ .

estimador não viesado da média

Seja $X_1,X_2,...,X_n$ uma a.a. de uma distribuição com média μ . Então \bar{X} é um estimador não viesado de μ .

Esta propriedade foi provada na aula anterior $(E(\bar{X}) = \mu)$

Se em adição a distribuição é contínua e simétrica, então \tilde{X} (mediana) e outras médias centradas, são também estimadores não viesados de μ .

Seja $X_1, X_2, ..., X_n$ uma a.a. de uma distribuição com média μ e variância σ^2 . Então o estimador:

$$\hat{\sigma^2} = S^2 = \frac{\sum (X_i - \bar{X})^2}{n - 1}$$

é um estimador não viesado.

A variância populacional é definida como

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i - \mu)^2$$

Seja

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$

um possível estimador para σ^2 extraído de uma a.a. de tamanho n.

A variância populacional é definida como

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i - \mu)^2$$

Seja

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

um possível estimador para σ^2 extraído de uma a.a. de tamanho n. provaremos que este estimador é viesado.

A variância populacional é definida como

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i - \mu)^2$$

Seja

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$

um possível estimador para σ^2 extraído de uma a.a. de tamanho n. provaremos que este estimador é viesado.

Escrevemos:

$$\sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i=1}^{n} (X_i - \mu + \mu - \bar{X})^2$$

$$= \sum_{i=1}^{n} (X_i - \mu)^2 - 2\sum_{i=1}^{n} (X_i - \mu)(\bar{X} - \mu) + \sum_{i=1}^{n} (\bar{X} - \mu)^2$$

$$= \sum_{i=1}^{n} (X_i - \mu)^2 - n(\bar{X} - \mu)^2$$

$$(\bar{X} - \mu) \text{ \'e constante, e}$$

$$\sum_{i=1}^{n} (X_i - \mu) = n(\bar{X} - \mu)$$

$$E(\hat{\sigma}^2) = \frac{1}{n} \left[\sum_{i=1}^n E(X_i - \mu)^2 - nE(\bar{X} - \mu)^2 \right]$$
$$= \frac{1}{n} \left[\sum_{i=1}^n Var(X_i) - nVar(\bar{X}) \right]$$
$$= \frac{1}{n} \left[n\sigma^2 - n\frac{\sigma^2}{n} \right] = \frac{n-1}{n}\sigma^2$$

vemos que este estimador é viesado e temos que $E\left(\frac{n}{n-1}\hat{\sigma}^2\right)=\sigma^2$ Logo, se definirmos

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

é não viesado

Exemplo

Suponha que X, tempo de reação a certo estímulo, possua distribuição uniforme no intervalo $[0,\theta]$ com θ desconhecido. Deseja-se estimar θ com base em uma a.a. $X_1,...,X_n$ de tempos de reação. Sendo θ o maior tempo possível de reação, podemos considerar $\hat{\theta}_1 = max\{X_1,...,X_n\}$ como estimador de θ .

Se n=5 e $x_1=4,2$, $x_2=1,7$, $x_3=2,4$, $x_4=3,9$, $x_5=1,3$, temos que $\max(x_1,...,x_5)=4,2$ demonstra-se que

$$E(\hat{\theta}_1) = \frac{n}{n+1}\theta < \theta$$

Exemplo

Suponha que X, tempo de reação a certo estímulo, possua distribuição uniforme no intervalo $[0,\theta]$ com θ desconhecido. Deseja-se estimar θ com base em uma a.a. $X_1,...,X_n$ de tempos de reação. Sendo θ o maior tempo possível de reação, podemos considerar $\hat{\theta}_1 = max\{X_1,...,X_n\}$ como estimador de θ .

Se
$$n=5$$
 e $x_1=4,2$, $x_2=1,7$, $x_3=2,4$, $x_4=3,9$, $x_5=1,3$, temos que $\max(x_1,..,x_5)=4,2$

demonstra-se que

$$E(\hat{\theta}_1) = \frac{n}{n+1}\theta < \theta$$

portanto

$$\hat{\theta}_2 = \frac{n+1}{n} \max\{X_1, ..., X_n\}$$

será um estimador não viesado de θ

Exemplo

Suponha que X, tempo de reação a certo estímulo, possua distribuição uniforme no intervalo $[0,\theta]$ com θ desconhecido. Deseja-se estimar θ com base em uma a.a. $X_1,...,X_n$ de tempos de reação. Sendo θ o maior tempo possível de reação, podemos considerar $\hat{\theta}_1 = max\{X_1,...,X_n\}$ como estimador de θ .

Se
$$n=5$$
 e $x_1=4,2$, $x_2=1,7$, $x_3=2,4$, $x_4=3,9$, $x_5=1,3$, temos que $\max(x_1,..,x_5)=4,2$

demonstra-se que

$$E(\hat{\theta}_1) = \frac{n}{n+1}\theta < \theta$$

portanto,

$$\hat{\theta}_2 = \frac{n+1}{n} \max\{X_1, ..., X_n\}$$

será um estimador não viesado de heta

Estimadores consistentes

Uma sequência $\{\,T_n\}$ de estimadores de um parâmetro θ é consistente se para todo $\epsilon>0$:

$$P(|T_n - \theta| > \epsilon) \to 0, \quad n \to \infty$$

Estimadores consistentes

Uma sequência $\{T_n\}$ de estimadores de um parâmetro θ é consistente se:

$$\lim_{n \to \infty} E(T_n) = \theta$$
$$\lim_{n \to \infty} Var(T_n) = 0$$

da definição é possível ver que \hat{p} e \bar{X} são estimadores consistentes de p e de μ respectivamente

Estimadores consistentes

Uma sequência $\{T_n\}$ de estimadores de um parâmetro θ é consistente se:

$$\lim_{n \to \infty} E(T_n) = \theta$$
$$\lim_{n \to \infty} Var(T_n) = 0$$

da definição é possível ver que \hat{p} e \bar{X} são estimadores consistentes de p e de μ respectivamente

ENVVM

Entre todos os estimadores de θ que são não viesado, escolhe-se aquele que têm variância mínima.

O estimador resultante $\hat{\theta}$ é chamado de estimador não viesado de variância mínima (ENVVM) de θ

Representação de dois estimadores não viesados

Figura: f.d.pts de estimadores não viesados

ENVVM para uma distribuição Normal

Seja $X_1, X_2, ..., X_n$ uma a.a. de uma distribuição normal com parâmetros μ e σ .

Erro padrão

Então o estimador $\hat{\mu} = \bar{X}$ é um ENVVM para $\mu.$

Estimador viesado que é preferível ao ENVVM

Erro padrão

Figura: f.d.p's de um ENVVM e um estimador viesado

estimadores para μ

- Se a a.a. vem de uma distribuição normal, então \bar{X} é o melhor estimador, dado que têm a variância mínima entre todos os estimadores não viesados.
- Se a a.a. vem de uma distribuição de Cauchy, então \tilde{X} é um bom estimador (o ENVVM não é conhecido) e, \bar{X} e maxX não são bons estimadores

Erro padrão

• se a a.a. vem de uma uniforme, o melhor estimador é \bar{X}_e (média dos valores extremos), mas ele é influenciavel por valores extremos.

Erro Padrão de um estimador

- Obtida a distribuição amostral de um estimador, podemos calcular a variância,
- se não pudermos obter a distribuição exata, usamos uma aproximação, se estiver disponível. No caso de \bar{X} , e a variância do estimador será a variância dessa aproximação.

Por exemplo, para X, obtida de uma amostra tamanho n, temos que

$$var(\bar{X}) = \frac{\sigma^2}{n}$$

na qual σ^2 é a variância da v.a. X definida sobre a população. À raiz quadrada dessa variância chamaremos de Erro Padrão de \bar{X} e o denotaremos por

$$EP(\bar{X}) = \frac{\sigma}{\sqrt{n}}$$

Definição de erro padrão

Se $\hat{\theta}$ for o estimador de uma parâmetro θ , chamamos de erro padrão de $\hat{\theta}$ ao seu desvio padrão:

$$EP(\hat{\theta}) = \sigma_{\hat{\theta}} = \sqrt{V(\hat{\theta})}$$

Se o erro padrão envolve parâmetros desconhecidos, cujos valores podem ser estimados, eles serão substituidos em $\sigma_{\hat{\theta}}$ e teremos o erro padrão estimado do estimador, e será denotado por

$$\hat{EP}(\hat{\theta}) = \hat{\sigma}_{\hat{\theta}}$$
 ou $s_{\hat{\theta}}$

no caso do $EP(\bar{X})$ depende de σ , que em geral é desconhecida, obtemos então o erro padrão estimado de \bar{X} por

$$ep(\bar{X}) = \hat{EP}(\bar{X}) = \frac{s}{\sqrt{n}}$$

Foi visto que S^2 é um estimador não viesado para σ^2 . É possível demonstrar no caso que $X_1,...,X_n$ são observações de uma distribuição $N(\mu,\sigma^2)$, que

$$Var(S^2) = \frac{2\sigma^4}{n-1}$$

Como $E(S^2)=\sigma^2$ e $\lim_{n\to\infty} Var(S^2)=0$, podemos afirmar que S^2 é um estimador consistente para σ^2 .

No caso do estimador $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$, vimos que $E(\hat{\sigma}^2) = \sigma^2 (1 - \frac{1}{n})$, de forma que $\lim_{n \to \infty} E(\hat{\sigma}^2) = \sigma^2$, temos que:

$$Var(\hat{\sigma}^2) = \left(\frac{n-1}{n}\right)^2 Var(S^2) = \frac{n-1}{n^2} (2\sigma^4)$$

o que mostra que $Var(\hat{\sigma}^2) \to 0$ quando $n \to \infty$. Logo, $\hat{\sigma}^2 = \hat{\sigma}_n^2$ também é consistente para σ^2

obtemos que

$$Var(\hat{\sigma}^2) < \frac{2\sigma^4}{n-1} = Var(S^2)$$

Usando o critério da variância menor, $\hat{\sigma}^2$ é melhor estimador para σ^2

No caso do estimador $\hat{\sigma}^2=\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2$, vimos que $E(\hat{\sigma}^2)=\sigma^2(1-\frac{1}{n})$, de forma que $\lim_{n\to\infty}E(\hat{\sigma}^2)=\sigma^2$, temos que:

$$Var(\hat{\sigma}^2) = \left(\frac{n-1}{n}\right)^2 Var(S^2) = \frac{n-1}{n^2} (2\sigma^4)$$

o que mostra que $Var(\hat{\sigma}^2)\to 0$ quando $n\to\infty$. Logo, $\hat{\sigma}^2=\hat{\sigma}_n^2$ também é consistente para σ^2 obtemos que

$$Var(\hat{\sigma}^2) < \frac{2\sigma^4}{n-1} = Var(S^2)$$

Usando o critério da variância menor, $\hat{\sigma}^2$ é melhor estimador para σ^2

Estimadores Eficientes

Definição:

Se $\hat{\theta}$ e $\hat{\theta}^{\circ}$ são dois estimadores não viesados de um mesmo parâmetro θ , e ainda

$$var(\hat{\theta}) < var(\hat{\theta}`)$$

Então diz-se que $\hat{\theta}$ é mais eficiente que $\hat{\theta}$

Erro Quadrático Médio (EQM)

Seja $e=T-\theta$ o erro amostral cometido ao estimar o parâmetro θ da distribuição X por meio de $T=g(X_1,...,X_n)$ baseado na amostra $X_1,...,X_n.$

o EQM é definido por:

$$EQM(T;\theta) = E(e^2) = E(T - \theta^2)$$

Erro Quadrático Médio (EQM)

Seja $e=T-\theta$ o erro amostral cometido ao estimar o parâmetro θ da distribuição X por meio de $T=g(X_1,...,X_n)$ baseado na amostra $X_1,...,X_n.$

o EQM é definido por:

$$EQM(T;\theta) = E(e^2) = E(T - \theta^2)$$

Erro Quadrático Médio (EQM)

Temos que:

$$EQM(T;\theta) = E(T - E(T) + E(T) - \theta)^{2}$$

$$= E(T - E(T))^{2} + 2E[(T - E(T))(E(T) - \theta)] + E(E(T) - \theta)^{2}$$

$$= E(T - E(T))^{2} + E(E(T) - \theta)^{2}$$

como $E(T)-\theta$ é uma constante, e E(T-E(T))=0 podemos escrever:

$$EQM(T;\theta) = Var(T) + V^2$$

onde
$$V = V(T) = E(T) - \theta$$
 (viês de T)

Figura 11.1: Resultados de 15 tiros dados por 4 rifles. (A) (D) (C)

Desse modo, podemos descrever cada arma da seguinte maneira:

Arma A: não-viesada, pouco acurada e baixa precisão.

Arma B: viesada, pouco acurada e baixa precisão.

Arma C: não-viesada, muito acurada e boa precisão.

Arma D: viesada, pouco acurada e alta precisão.

Representação do EQM

Vemos, portanto, que um estimador preciso tem variância pequena, mas pode ter EQM grande.

Figura 11.2: Representação gráfica para o EQM.

Figura: EQM

Definição

Seja $X_1,X_2,...,X_n$ uma a.a. de un f.m.p ou f.d.p f(x). Para k=1,2,..., o k-ésimo momento populacional , ou o k-ésimo momento da distribuição f(x) é $E(X^k)$

O k-ésimo momento é:

$$\left(\frac{1}{n}\right) \sum_{i=1}^{n} X_i^k$$

Estimadores dos momentos

Seja $X_1, X_2, ..., X_n$ uma a.a. de uma distribuição com f.m.p ou f.d.p. $f(x; \theta_1, ..., \theta_m)$ onde $\theta_1, ..., \theta_m$ são parâmetros cujos valores são desconhecidos. Então os estimadores dos momentos $\theta_1, ..., \theta_m$ são obtidos igualando os primeiros m momentos amostrais aos correspondentes primeiros m momentos populacionais e resolvemos para $\theta_1, ..., \theta_m$.

Método dos momentos

A média populacional é o primeiro momento.

Dizemos que $\hat{\theta}_1,...,\hat{\theta}_n$ são estimadores obtidos pelo método dos momentos se eles forem as soluções das equações

$$m_k = \mu_k, \quad k = 1, 2, ..., r$$

Método dos momentos

Se $X \sim N(\mu, \sigma^2)$ teremos as seguintes relações para os dois primeiros momentos populacionais:

$$E(X) = \mu, \quad E(X^2) = \sigma^2 + \mu^2$$

do que se obtém:

$$\mu = E(X), \quad \sigma^2 = E(X^2) - (E(X))^2$$

no caso dos momentos amostrais temos

$$m_1 = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}$$

$$m_2 = \frac{1}{n} \sum_{i=1}^n X_i^2$$

Método dos momentos

Se $X \sim N(\mu, \sigma^2)$ teremos as seguintes relações para os dois primeiros momentos populacionais:

$$E(X) = \mu, \quad E(X^2) = \sigma^2 + \mu^2$$

do que se obtém:

$$\mu = E(X), \quad \sigma^2 = E(X^2) - (E(X))^2$$

no caso dos momentos amostrais temos:

$$m_1 = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}$$

$$m_2 = \frac{1}{n} \sum_{i=1}^n X_i^2$$

Método dos momentos

OS estimadores obtidos pelo método dos momentos são:

$$\hat{\mu}_M = m_1 = \bar{X}$$

$$\hat{\sigma}_M^2 = m_2 - m_1^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2 = \hat{\sigma}^2$$

Verossimilhança

Seja $X_1, X_2, ..., X_n$ uma a.a. com f.m.p conjunta ou f.d.p. conjunta

$$f(x_1,...,x_n;\theta_1,...,\theta_m)$$

onde os parâmetros $\theta_1,...,\theta_m$ tem valores desconhecidos. quando $x_1,...,x_n$ são valores amostrais observados e f é considerada como uma função de $\theta_1,...,\theta_m$, ela é chamada de "função de verossimilhança".

EMV

Os estimadores de máxima verossimilhança (EMV) $\hat{\theta}_1,...,\hat{\theta}_m$ são aqueles valores dos θ_i 's que maximizam a função de verossimilhança, tal que:

$$f(x_1, ..., x_n; \hat{\theta}_1, ..., \hat{\theta}_m) \ge f(x_1, ..., x_n; \theta_1, ..., \theta_m)$$

para todo $(\theta_1,...,\theta_m)$

quando os X_i 's são substituidos no lugar dos x_i 's, resultam nos estimadores de máxima verossimilhança.

Exemplo

Suponha que temos n provas de Bernoulli com probabilidade de sucesso p 0 , e <math>X =número de sucessos.

tomaremos como estimador, aquele valor de p que torna a amostra observada a máis provável de ocorrer

Suponha que n=3 e se obtiveram 2 sucessos e um fracasso. A função de verossimilhança é:

$$L(p) = P(2 \text{ sucessos e 1 fracasso}) = p^2(1-p)$$

maximizamos essa função em relação a p:

$$L'(p) = 2p(1-p) - p^2 = 0 \Rightarrow p(2-3p) = 0$$

de onde tem-se p=0 ou p=2/3.

Suponha que n=3 e se obtiveram 2 sucessos e um fracasso. A função de verossimilhança é:

$$L(p) = P(2 \text{ sucessos e 1 fracasso}) = p^2(1-p)$$

maximizamos essa função em relação a p:

$$L'(p) = 2p(1-p) - p^2 = 0 \Rightarrow p(2-3p) = 0$$

de onde tem-se p=0 ou p=2/3. Vemos que o ponto máximo é $\hat{p}=2/3$ que é o estimador de máxima verossimilhança de p.

Suponha que n=3 e se obtiveram 2 sucessos e um fracasso. A função de verossimilhança é:

$$L(p) = P(2 \text{ sucessos e 1 fracasso}) = p^2(1-p)$$

maximizamos essa função em relação a p:

$$L'(p) = 2p(1-p) - p^2 = 0 \Rightarrow p(2-3p) = 0$$

de onde tem-se p=0 ou p=2/3. Vemos que o ponto máximo é $\hat{p}=2/3$ que é o estimador de máxima verossimilhança de p.

Exemplo

De modo geral, o EMV(p) de uma binomial é

$$\hat{p}_{MV} = \frac{X}{n}$$

Observe que no caso geral a função de verossimilhança é

$$L(p) = p^x (1-p)^{n-x}$$

que é a probabilidade de se obter x sucessos e n-x fracassos.

De modo geral, o EMV(p) de uma binomial é

$$\hat{p}_{MV} = \frac{X}{n}$$

Observe que no caso geral a função de verossimilhança é

$$L(p) = p^x (1-p)^{n-x}$$

que é a probabilidade de se obter x sucessos e n-x fracassos. O máximo dessa função ocorre quando l(p)=ln(L(p))

$$l(p) = xlog(p) + (n - x)log(1 - p)$$

derivando e igualando a zero temos:

$$\hat{p}_{MV} = \frac{x}{n}$$

Exemplo

De modo geral, o EMV(p) de uma binomial é

$$\hat{p}_{MV} = \frac{X}{n}$$

Observe que no caso geral a função de verossimilhança é

$$L(p) = p^x (1-p)^{n-x}$$

que é a probabilidade de se obter x sucessos e n-x fracassos. O máximo dessa função ocorre quando l(p)=ln(L(p))

$$l(p) = xlog(p) + (n-x)log(1-p)$$

derivando e igualando a zero temos:

$$\hat{p}_{MV} = \frac{x}{n}$$

Procedimento

O procedimento consiste em

- obter a função de verossimilhança $L(\theta;X_1,...,X_n)$, que depende dos parâmetros desconhecidos e dos valores amostrais
- ② maximizar a função de verossimilhança (FV) ou o logaritmo da FV $l(\theta;X_1,...,X_n)=Ln\left(L(\theta;X_1,...,X_n)\right)$. Dependendo da conveniência da situação

Procedimento

A função de verossimilhança (FV) é:

$$L(\theta; x_1, ..., x_n) = f(x_1; \theta)...f(x_n; \theta)$$

que é uma função de $\theta.$ O EMV de θ é o valor $\hat{\theta}_{MV}$ que maximiza $L(\theta;x_1,...,x_n)$

O princípio da invariância

Sejam $\hat{\theta}_1,...,\hat{\theta}_m$ os EMV dos parâmetros $\theta_1,...,\theta_m$, então o EMV de qualquer função $h(\theta_1,...,\theta_m)$ destes parâmetros, é a função $h(\hat{\theta}_1,...,\hat{\theta}_m)$ dos EMV.

Exemplo

Suponha que a v.a. X tenha distribuição exponencial com parâmetro $\alpha>0$ desconhecido. Queremos obter o EMV de α .

$$f(x; \alpha) = \begin{cases} \frac{1}{\alpha} e^{-x/\alpha}, & \text{se } x \ge 0\\ 0 & \text{se } x < 0 \end{cases}$$

a verossimilhança é dada por:

$$L(\alpha|x) = \left(\frac{1}{\alpha}\right)^n e^{-\sum_{i=1}^n x_i/\alpha}$$

Exemplo

A função de log-verossimilhança é:

$$l(\alpha|x) = -nlog(\alpha) - \frac{\sum_{i=1}^{n} x_i}{\alpha}$$

Derivando e igualando a zero obtemos:

$$\hat{\alpha}_{MV} = \frac{\sum_{i=1}^{n} x_i}{n}$$

lembre que $E(X)=\alpha$ e o estimador é a média amostral.

Exemplo

A função de log-verossimilhança é:

$$l(\alpha|x) = -nlog(\alpha) - \frac{\sum_{i=1}^{n} x_i}{\alpha}$$

Derivando e igualando a zero obtemos:

$$\hat{\alpha}_{MV} = \frac{\sum_{i=1}^{n} x_i}{n}$$

lembre que $E(X)=\alpha$ e o estimador é a média amostral.

Propriedades

Sob condições gerais na distribuição conjunta da amostra, quando o tamanho amostral n é grande, o EMV de qualquer parâmetro θ é aproximadamente não viesado:

$$\left[E(\hat{\theta}) \approx \theta\right]$$

e tem variância que é tão pequena como a que pode ser obtida por qualquer estimador:

$$\text{EMV}\hat{\theta} \approx \text{ENVVM de}\theta$$