Process for the purification of gases

Patent number:

DE19854353

Publication date:

2000-06-21

Inventor:

STANKOWIAK ACHIM (DE); STREITBERGER HORST

प्रमिति क्षित्रकार स्वाक्ष्य प्रभाव

(DE); WYSCHOFSKY MICHAEL (DE)

Applicant:

CLARIANT GMBH (DE)

Classification:

- international:

B01D53/14; C10K1/14

- european:

B01D53/14; B01D53/14M

Application number: DE19981054353 19981125

Priority number(s): DE19981054353 19981125

Report a data error here

Also published as:

EP1004344 (A1)

US6277345 (B1)

EP1004344 (B1)

Abstract not available for DE19854353 Abstract of corresponding document: **US6277345**

The present invention relates to the use of an absorption liquid for purifying a gas by removal of gaseous, acidic impurities. The gas to be purified can be any gas, such as synthesis gas or natural gas, which contains gaseous, acidic impurities such as CO2, H2S, SO2, CS2, HCN, COS or mercaptans. The absorption liquid comprises:A) from 0.01 to 4% by weight of at least one compound of the formulaB) from 0.001 to 8.0% by weight of water, andC) at least one polyalkylene glycol alkyl ether of the formulato 100% by weight, whereR1 is C1-C4-alkyl,R2 is ethylene or 2-methylethylene,R3 is hydrogen or C1-C4-alkyl,R4 is hydrogen or C1-C4-alkyl,R5 is C1-C4-alkylene andX is an integer from 1 to 10. The amine may be N-

methyldiethanolamine and the ether may be polyethylene glycol dimethyl ether.

Data supplied from the esp@cenet database - Worldwide

概题的"对。"

Process for the purification of gases

Description of DE19854353

Die vorliegende Erfindung betrifft die Verwendung von Alkanolaminen zur Reinigung von Gasen von säurebildenden Verunreinigungen, sowie eine geeignete Absorptionsflüssigkeit.

er dan bernetalanden.

Gase verschiedensten Ursprungs wie beispielsweise Erdgas oder Synthesegas enthalten gasförmige, säurebildende Verunreinigungen wie beispielsweise CO2, H2S, SO2, CS2, HCN, COS oder Mercaptane. Die Entfernung der genannten Verunreinigungen ist im allgemeinen wegen der weiteren Nutzung der Gase erforderlich. Werden die Gase verbrannt, so sind behördliche Bestimmungen zu beachten, die den Schwefelausstoss begrenzen. Hohe CO2-Anteile senken darüberhinaus den Heizwert. Mercaptane müssen wegen ihres Geruchs und ihrer Toxizität entfernt werden. Werden die Gase für chemische Prozesse verwendet, so sind die Verunreinigungen oft störende Katalysatorgifte. Daneben verursachen die sauren Verunreinigungen Korrosion an Teilen, die mit den Gasen in Kontakt kommen.

Im Stand der Technik sind Verfahren zur Entfernung solcher Verunreinigungen beschrieben.

US-3 716 620 offenbart ein Verfahren zur Entfernung von Mercaptanen, indem man die Gase mit einer Lösung von Jod und Aminen in Kontakt bringt.

WO-A-95/13128 offenbart ein Verfahren zur Reinigung von Gasen von sauren Verunreinigungen, indem man die Gase mit einer Lösung in Kontakt bringt, die 10 bis 98 Gew.-% eines Polyethylenglykolalkylethers, 1 bis 20 Gew.-% sekundären Monoalkanolamins und gegebenenfalls 10 bis 60 Gew.-% eines Dialkanolamins enthält.

Die Verfahren nach dem Stand der Technik erfordern grosse Mengen der basischen Alkanolamine. Aufgabe der vorliegenden Erfindung war es, ein Verfahren zur Reinigung von Gasen von sauren Verunreinigungen bereitzustellen, das mit geringen Mengen von Alkanolaminen auskommt.

Überraschenderweise wurde nun gefunden, dass Dialkanolamine gelöst in Polyalkylenglykolalkylethern im Beisein von geringen Mengen Wasser in sehr niedrigen Konzentrationen die sauren Verunreinigungen, insbesondere Schwefelwasserstoff, aus Gasen wirksam abfangen. Durch die erhöhte Wirksamkeit der erfindungsgemässen Absorptionsflüssigkeit ist es möglich, entsprechende Gaswaschanlagen mit geringeren Mengen an Absorptionsflüssigkeit zu betreiben, oder den Gasdurchsatz zu erhöhen.

Gegenstand der Erfindung ist die Verwendung einer Absorptionsflüssigkeit zur Reinigung von Gasen von gasförmigen, sauren Verunreinigungen, dadurch gekennzeichnet, dass die Absorptionsflüssigkeit

A) 0,01 bis 4 Gew.-% mindestens einer Verbindung der Formel

EMI2.1

B) 0,001 bis 8,0 Gew.-% Wasser, sowie
C) mindestens einen Polyalkylenglykolalkylether der Formel
R1-O-(R2-O)x-R3
ad 100 Gew.-% enthält,
wobei
R<1> C1-C4-Alkyl,
R<2> Ethylen oder 2-Methylethylen,
R<3> Wasserstoff oder C1-C4-Alkyl,
R<4> Wasserstoff oder C1-C4-Alkyl,
R<5> C1-C4-Alkylen und
X eine ganze Zahl zwischen 1 und 10 bedeuten.

Bei den zu reinigenden Gasen kann es sich um beliebige Gase handeln, die entsprechende

Verunreinigungen enthalten und die selbst mit der Absorptionsflüssigkeit nicht reagieren. Besonders geeignet ist die Absorptionsflüssigkeit für die Reinigung von Erdgas und Synthesegas.

Die Verunreinigungen, die durch die erfindungsgemässe Verwendung zu entfernen sind, sind säurebildend und gas- oder dampfförmig. Es handelt sich insbesondere um CO2, H2S, SO2, CS2, HCN, COS oder niedere Mercaptane mit C1-C8- Kohlenstoffresten.

TO AND AN ALLED ASSESSMENT OF THE

Die Absorptionsflüssigkeit besteht aus mindestens einem Polyalkylenglykolalkylether und mindestens einem Dialkanolamin, sowie Wasser. In einer bevorzugten Ausführungsform der Erfindung stehen R<1> und R<3> für Methyl oder Butyl oder R<1> für Methyl oder Butyl und R<3> für Wasserstoff. R<2> bedeutet vorzugsweise einen Ethylenrest. X ist vorzugsweise 2 bis 8.

R<4> steht in einer bevorzugten Ausführungsform für Methyl. R<5> bedeutet vorzugsweise Methylen oder Ethylen, insbesondere Ethylen. Ein besonders bevorzugtes Dialkanolamin ist N-Methyldiethanolamin. Der Gehalt der Absorptionsflüssigkeit an Dialkanolamin liegt vorzugsweise zwischen 0,1 und 2 Gew.-%, insbesondere zwischen 0,2 und 0,99 Gew.-%, speziell zwischen 0,25 und 0,7 Gew.-% und besonders bevorzugt zwischen 0,3 und 0,6 Gew.-%. In einer weiteren bevorzugten Ausführungsform der Erfindung enthält die Absorptionsflüssigkeit 0,005 bis 5, insbesondere 0,01 bis 1 Gew.-% Wasser.

Die Gaswäsche kann drucklos oder unter Druck durchgeführt werden. Wird die Gaswäsche unter Druck durchgeführt, so sind Drucke bis zu 100 Atmosphären bevorzugt.

Die Gaswäsche kann bei Temperaturen oberhalb des Erstarrungspunktes der Absorptionsflüssigkeit durchgeführt werden. Bevorzugt ist der Temperaturbereich zwischen 20 und 100 DEG C.

Ein weiterer Gegenstand der Erfindung ist eine Absorptionsflüssigkeit für saure, gas- oder dampfförmige Verbindungen, bestehend aus

A) 0,01 bis 4 Gew.-% mindestens einer Verbindung der Formel

EMI4.1

B) 0,001 bis 8,0 Gew.-% Wasser, sowie
C) mindestens einem Polyalkylenglykolalkylether der Formel
R1-O-(R2-O)x-R3
ad 100 Gew.-%,
wobei
R<1> C1-C4-Alkyl,
R<2> Ethylen oder 2-Methylethylen,
R<3> Wasserstoff oder C1-C4-Alkyl,
R<4> Wasserstoff oder C1-C4-Alkyl,
R<5> C1-C4-Alkylen und
X eine ganze Zahl zwischen 1 und 10 bedeuten.

Die bevorzugten Ausführungsformen der erfindungsgemässen Absorptionsflüssigkeit sind bereits beschrieben.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Reinigung von Gasen, indem man die Gase bei Temperaturen von 20 bis 100 DEG C und Drucken von 1 bis 100 Atmosphären mit der erfindungsgemässen Absorptionsflüssigkeit in Kontakt bringt.

Beispiele

Die Wirksamkeit der erfindungsgemässen Absorptionsflüssigkeit werde anhand zweier Versuchseinstellungen, die an einer Pilotanlage durchgeführt wurden dargestellt werden, siehe Fig. 1.

Ein in einer Vergasungsanlage erzeugtes Syntheserohgas (kurz Rohgas) werde unter einem Druck von 24

bar und einer Temperatur von ca. 30 DEG C in den Sumpf der Absorptionskolonne C-1 geführt.

Das Rohgas besass folgende Zusammensetzung:

EMI5.1

Der H2S-Gehalt konnte über eine Dosierstation eingestellt werden. Funktionsweise der Absorptionsanlage:

Im Absorber C-1 erfolgt im Gegenstrom mit Absorptionsflüssigkeit die H2S- Auswaschung bis auf Restspuren. Die beladene Absorptionsflüssigkeit verlässt den Absorbersumpf und wird in den Flash-Tank D-1 entspannt. Hier entweichen die gelösten Komponenten CH4, H2 und C0, sowie Teile des gelösten CO2. Die weitgehend entgaste Absorptionsflüssigkeit gelangt vorgewärmt über den Kreislauftauscher E-1 auf den Kopf der Regenerationskolonne C-2. Hier werden H2S und Restanteile CO2 durch thermisches Strippen mit Wasserdampf bis auf geringste Spuren aus der Absorptionsflüssigkeit ausgetrieben. Die erforderliche Menge Regenerationsdampf wird im Verdampfer E-3 erzeugt. Die feinregenerierte Absorptionsflüssigkeit gelangt über den Kreislauftauscher E-1 vorgekühlt zur Kreislaufpumpe P-1 und wird über den Wasserkühler E-2 mit einer Temperatur von ca. 30 DEG C zum Kopf der Absorptionskolonne C-1 gefördert. Das Desorptionsgas gelangt über den Dephlegmator E-4 und Separator D-2 zur Anlagengrenze und wird gemeinsam mit dem Flashgas in einer Schwefelgewinnungsanlage aufbereitet.

Es wurden zwei Versuche mit gleich gehaltenen Randbedingungen durchgeführt, die zu verschiedenen Zeitpunkten mit verschiedenen Absorbentien gefahren wurden.

Das Ziel der Versuche war, zu zeigen, dass bei Verwendung einer erfindungsgemässen Absorptionsflüssigkeit deren Umlaufmenge im Vergleich zum Stand der Technik reduziert werden kann.

Versuch 1 (Vergleichsbeispiel)

Es erfolgt der Einsatz eines Polyethylenglykoldimethylethers (kurz: PEGDME) einer Molmasse von ca. 270 (Handelsbezeichnung TM Genosorb 1753).

Versuch 2 (erfindungsgemässes Beispiel)

Es erfolgt der Einsatz eines Gemisches aus dem gleichen PEGDME wie in Versuch 1 mit 0,6 Gew.-% Methyldiethanolamin und 5 Gew.-% Wasser.

Als gleich gehaltene Randbedingungen wurden folgende Grössen festgelegt:

- 1. Rohgasmenge
- 2. Rohgaszusammensetzung, einschliesslich H2S-Gehalt
- 3. H2S-Gehalt im Reingas
- 4. Temperatur des Rohgases am Absorbereintritt
- 5. Temperatur des regenerierten Lösungsmittels am Absorberzulauf
- 6. Wassergehalt des regenerierten Lösungsmittels
- 7. Strippdampfverhältnis der thermischen Regeneration

Als Zielgrösse der jeweiligen Versuchseinstellung wird der Umlauf der Absorptionsflüssigkeit erfasst.

Die Versuchsergebnisse

Nachfolgende Zahlen basieren auf statistischen Daten, die jeweils während einer längeren Versuchseinstellung (mindestens 8 Stunden) aus On-line-Messwerten ermittelt wurden:

Page 4 of 4

EMI7.1

Das Versuchsergebnis zeigt, dass mit einem um 10% erhöhten Umlauf der erfindungsgemässen Absorptionsflüssigkeit in bezug auf den Umlauf der Absorptionsflüssigkeit des Standes der Technik die gleiche Wirkung in der Gaswäsche erzielt wird. Die erfindungsgemässe Absorptionsflüssigkeit erlaubt unter diesen Bedingungen eine Verringerung der Flüssigkeitsmenge um 10%.

Data supplied from the esp@cenet database - Worldwide

Process for the purification of gases

Claims of **DE19854353**

1. Verwendung einer Absorptionsflüssigkeit zur Reinigung von Gasen von gasförmigen, sauren Verunreinigungen, dadurch gekennzeichnet, dass die Absorptionsflüssigkeit

A) 0,01 bis 4 Gew.-% mindestens einer Verbindung der Formel

EMI8.1

B) 0,001 bis 8,0 Gew.-% Wasser, sowie
C) mindestens einen Polyalkylenglykolalkylether der Formel
R1-O-(R2-O)x-R1
ad 100 Gew.-% enthält,
wobei
R<1> C1-C4-Alkyl,
R<2> Ethylen oder 2-Methylethylen,
R<3> Wasserstoff oder C1-C4-Alkyl,
R<4> Wasserstoff oder C1-C4-Alkyl,
R<5> C1-C4-Alkylen und
X eine ganze Zahl zwischen 1 und 10 bedeuten.

- 2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei dem zu reinigenden Gas um Erdgas oder Synthesegas handelt.
- 3. Verwendung nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, dass es sich bei den Verunreinigungen um CO2, H2S, SO2, COS, CS2, HCN oder ein Mercaptan mit einem C1-C8-Kohlenwasserstoffrest handelt.
- 4. Verwendung nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass R<1> Methyl oder Butyl bedeutet.
- 5. Verwendung nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass R<3> Wasserstoff, Methyl oder Butyl bedeutet.
- 6. Verwendung nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass X eine Zahl von 2 bis 8 bedeutet.
- 7. Verwendung nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass R<4> Methyl bedeutet.
- 8. Verwendung nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass R<5> für einen Methylen- oder Ethylenrest steht.
- 9. Verwendung nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Absorptionsflüssigkeit 0,1 bis 0,7 Gew.-% des Dialkanolamins enthält.
- 10. Verwendung nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Absorptionsflüssigkeit 0,005 bis 5 Gew.-% Wasser enthält.
- 11. Absorptionsflüssigkeit, bestehend aus
- A) 0,01 bis 4 Gew.-% mindestens einer Verbindung der Formel

EMI9.1

B) 0,001 bis 8,0 Gew.-% Wasser, sowie
C) mindestens einem Polyalkylenglykolalkylether der Formel
R1-O-(R2-O)x-R3
ad 100 Gew.-%,
wobei
R<1> C1-C4-Alkyl,
R<2> Ethylen oder 2-Methylethylen,
R<3> Wasserstoff oder C1-C4-Alkyl,
R<4> Wasserstoff oder C1-C4-Alkyl,
R<5> C1-C4-Alkylen und
X eine ganze Zahl zwischen 1 und 10 bedeuten.

- 12. Absorptionsflüssigkeit nach Anspruch 11, dadurch gekennzeichnet, dass R<1>, R<3>, R<4>, R<5> und/oder X die in einem oder mehreren der Ansprüche 4 bis 8 genannten Bedeutungen haben.
- 13. Verfahren zur Reinigung von Erdgas oder Synthesegas von säurebildenden, gas- oder dampfförmigen Verunreinigungen, indem man die Gase bei Temperaturen von 20 bis 100 DEG C und Drucken von 1 bis 100 Atmosphären mit einer Absorptionsflüssigkeit nach Anspruch 11 oder 12 in Kontakt bringt.

Data supplied from the esp@cenet database - Worldwide

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLORED OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox