Submitting Candidate	
Name:	
Student ID:	
Lab Section:	
Total for Report Sheet:	/ 16 marks

Remarks:

- 1. This Report Sheet accompanies the Lab Sheet for Lab 1. It accounts for about 1/2 of the total mark of Lab 2.
- 2. This Report Sheet should be submitted after all compulsory sections of Lab 2 have been completed. The exact submission date will be communicated to you closer to the date.
- 3. The marks earned in the Lab Sheet combined with the marks earned in this Report Sheet will form the total mark for Lab 2.

Section 1 (4 marks)							
Section score:							
Observations and Analysis:							
What is the closest phase of the capacitor voltage relative to the current used in your circuit at 2.5 kHz and 5 kHz in Table 2? Explain your answer. [Hint: using the impedance formula of a capacitor]							
For 2.5 kHz:	□0°	□-45°	□45°	□-90°	□90°		
For 5 kHz:	□0°	□-45°	□45°	□-90°	□90°		

Section 2 (5 marks)

Section score:	
----------------	--

Observations and Analysis:

1. Sketch of waveforms for V_{ac} and V_{R2} (in DC mode). Identify the various frequency components on your graph. Note down the amplitude of the AC wave from V_{R2} and its phase relative to V_{ac} . (You can also choose to paste the plots here)

At 2.5 kHz, $V_{R2} =$ _____ (DC component) + _____ (AC component)

At 5 kHz, $V_{R2} =$ _____ (DC component) + _____ (AC component)

- 2. What is the difference between your results from Lab Task 2 and Lab Task 1?
- \square No difference \square positive DC offset \square negative DC offset

Bonus: Section 3 (7 marks)

Section score: _____

Lab 2: Report Sheet

Co-axial cable capacitance

3.1 The capacitance (C_L) and resistance (R_L) seen at the input terminals of the CRO are given below. These values can be found around the input socket that connects to the coaxial cable.

$$C_L = 25 \text{ pF}, R_L = 1 \text{ M}\Omega$$

In the circuit above, assume $R = 1M\Omega$. We can represent the coaxial cable by a capacitor C_P as shown in Fig 3b. C_P is the total capacitance of the cable, which depends on the length of the cable and its specified capacitance per unit length (pre-lab 3). By estimating the length of the cable, provide an estimate of C_P .

3.2 <u>Estimate</u> the total capacitance of your coaxial cable (C_P) using the value found in **Pre-lab 2**. (Assuming length = 1 m)

Estimated $C_P = \square 25$

 $\Box 50$

 $\Box 100$

□200 pF

Estimated total capacitance across terminals a-b:

 $\Box 50$

□75

□125

□225 pF

- 3.3 With V_S set to 5V peak, answer the following questions.
- (a) At 50 Hz, the impedance across terminals a-b is determined by $\Box R_L = \Box (C_L + C_P)$, and a reasonable estimate of this impedance is (Hint: Compare the impedances of $(C_L + C_P)$ and R_L at 50 Hz. Current prefers a less resistive path.) Show your working steps below.

(b) Based on the above estimate of impedance across a-b at 50 Hz, a reasonable estimate of V_L is (Hint: Express V_L in terms of R, R_L , ($C_L + C_P$) and V_S . Find V_L at 50 Hz) Show your working steps below.

(c) At 200 kHz, the impedance across terminals a-b is determined by $\Box R_L \Box (C_L + C_P)$, and a reasonable estimate of this impedance is (Hint: Compare the impedances of $(C_L + C_P)$ and R_L at 200 kHz. Current prefers a less resistive path.) Show your working steps below.

(d) Based on the above estimate of impedance across a-b at 200 kHz, a reasonable estimate of V_L is (Hint: Express V_L in terms of R, R_L , ($C_L + C_P$) and V_S . Find V_L at 200 kHz) Show your working steps below.