Computational and Statistical Challenges in High Dimensional Statistical Models

Ilias Zadik

Operations Research Center (ORC), MIT

PhD Thesis Defense

Commitee: David Gamarnik (PhD advisor), Guy Bresler, Lester Mackey

June 12, 2019

Over the recent years, the **number** and **magnitude** of available **datasets** have been growing **enormously**.

Over the recent years, the **number** and **magnitude** of available **datasets** have been growing **enormously**.

Big impact across science:

From artificial intelligence to economics to medicine and many others.

Over the recent years, the **number** and **magnitude** of available **datasets** have been growing **enormously**.

Big impact across science:

From artificial intelligence to economics to medicine and many others.

Required novel **statistical and computational tools** on dealing with issues such as high dimensionality.

Over the recent years, the **number** and **magnitude** of available **datasets** have been growing **enormously**.

Big impact across science:

From artificial intelligence to economics to medicine and many others.

Required novel **statistical and computational tools** on dealing with issues such as high dimensionality.

Many open challenging theoretical questions even for *simple high dimensional statistical models!*

Thesis Overview: The Models

Two Long-Studied Stylized High Dimensional Models:

(1) High Dimensional Linear Regression Model (HDLR), [Tibshirani '96] Recover vector of coefficients from few noisy linear samples.

Motivation: Fit linear models in high dimensional data.

(2) Planted Clique Model (PC) [Jerrum '92]
Recover planted clique from a large observed network.
Motivation: Community detection in large networks.

Thesis Overview: Contributions

HDLR (signal strength = sample size), PC (signal strength = clique size):

Thesis Overview: Contributions

HDLR (signal strength = sample size), PC (signal strength = clique size):

Under assumptions,

- Compute the exact statistical limit of the HDLR model ("All-to-Nothing Phase Transition")
- Explain computational-statistical gaps of HDLR and PC models, through statistical-physics based methods. ("Overlap Gap Property")
- Improved computational limit for noiseless HDLR model using lattice basis reduction ("One Sample Suffices")

Papers:

```
(Gamarnik, Z. COLT '17, AOS (major rev.) '18+)
(Gamarnik, Z. AOS (major rev.) '18+), (Gamarnik, Z. NeurIPS '18)
(Reeves, Xu, Z. COLT '19), (Gamarnik, Z. '19+)
```

Thesis Overview: Contributions

HDLR (signal strength = sample size), PC (signal strength = clique size):

Under assumptions,

- Compute the exact statistical limit of the HDLR model ("All-to-Nothing Phase Transition")
- Explain computational-statistical gaps of HDLR and PC models, through statistical-physics based methods. ("Overlap Gap Property")
- Improved computational limit for noiseless HDLR model using lattice basis reduction ("One Sample Suffices")

Papers:

```
(Gamarnik, Z. COLT '17, AOS (major rev.) '18+)
(Gamarnik, Z. AOS (major rev.) '18+), (Gamarnik, Z. NeurIPS '18)
(Reeves, Xu, Z. COLT '19), (Gamarnik, Z. '19+)
```

Outline of the Talk

- (1) Introduction and Thesis Overview
- (2) High Dimensional Linear Regression Model
 - Background
 - Statistical Limit: All-or-Nothing Phenomenon
 - Computational-Statistical Gap and Overlap Gap Property
- (3) Planted Clique Model and Overlap Gap Property

Outline of the Talk

- (1) Introduction and Thesis Overview
- (2) High Dimensional Linear Regression Model
 - Background
 - Statistical Limit: All-or-Nothing Phenomenon
 - Computational-Statistical Gap and Overlap Gap Property
- (3) Planted Clique Model and Overlap Gap Property

High Dimensional Linear Regression

Let (unknown) $\beta^* \in \mathbb{R}^p$. p number of features. For **data matrix** $X \in \mathbb{R}^{n \times p}$, and **noise** $W \in \mathbb{R}^n$, **observe** n noisy linear samples of β^* , $Y = X\beta^* + W$.

Goal: Given (Y, X), **recover** β^* with minimum n possible.

High-dimensional regime: $n \ll p, p \rightarrow +\infty$.

High Dimensional Linear Regression

Let (unknown) $\beta^* \in \mathbb{R}^p$. p number of features. For **data matrix** $X \in \mathbb{R}^{n \times p}$, and **noise** $W \in \mathbb{R}^n$, **observe** n noisy linear samples of β^* , $Y = X\beta^* + W$.

Goal: Given (Y, X), **recover** β^* with minimum n possible.

High-dimensional regime: $n \ll p, p \to +\infty$. n < p implies assumptions on β^* are necessary.

Reason: even if W = 0, $Y = X\beta^*$ underdetermined.

Assumptions on β^* and X, W

Assumptions on β^* :

- (1) β^* is k-sparse: k non-zero coordinates, k/p \to 0, as p \to + ∞ . (A lot of research, e.g. *Compressed Sensing, Genomics, MRI.*)
- (2) β^* is binary valued: $\beta^* \in \{0, 1\}^p$. (†)

(†) (non-trivial) simplification of **well-studied** $\beta_{\min}^* := \min_{\beta_i^* \neq 0} |\beta_i^*| = \Theta(1) > 0$ and support recovery task.

Assumptions on β^* and X, W

Assumptions on β^* :

- (1) β^* is k-sparse: k non-zero coordinates, k/p \to 0, as p $\to +\infty$. (A lot of research, e.g. *Compressed Sensing, Genomics, MRI.*)
- (2) β^* is binary valued: $\beta^* \in \{0, 1\}^p$. (†)

Distributional Assumptions on X, W:

- (1) $X \in \mathbb{R}^{n \times p}$ has i.i.d. $\mathcal{N}(0,1)$ entries.
- (2) $W \in \mathbb{R}^n$ has i.i.d. $\mathcal{N}(0, \sigma^2)$ entries.
- (†) (non-trivial) simplification of **well-studied** $\beta_{\min}^* := \min_{\beta_i^* \neq 0} |\beta_i^*| = \Theta(1) > 0$ and support recovery task.

The Model

Setup

Let $\beta^* \in \{0,1\}^p$ be a **binary** k-sparse vector, $k/p \to 0$, as $p \to +\infty$. For

- $X \in \mathbb{R}^{n \times p}$ consisting of i.i.d $\mathcal{N}(0,1)$ entries
- W $\in \mathbb{R}^n$ consisting of i.i.d. $\mathcal{N}(0,\sigma^2)$ entries

we get n **noisy linear samples** of β^* , $Y \in \mathbb{R}^n$, given by,

$$Y := X\beta^* + W$$
.

The Model

Setup

Let $\beta^* \in \{0,1\}^p$ be a **binary** k-sparse vector, $k/p \to 0$, as $p \to +\infty$. For

- $X \in \mathbb{R}^{n \times p}$ consisting of i.i.d $\mathcal{N}(0,1)$ entries
- W $\in \mathbb{R}^n$ consisting of i.i.d. $\mathcal{N}(0,\sigma^2)$ entries

we get n **noisy linear samples** of β^* , $Y \in \mathbb{R}^n$, given by,

$$Y := X\beta^* + W.$$

Goal: Statistical and Computational Limit

Minimum n so that given (Y, X), β^* is (efficiently) recoverable with probability tending to 1 as n, k, p $\to +\infty$ (w.h.p.).

Computational Results ([Wainwright '09],[Fletcher et al '11])

Set $n_{alg} = 2k \log p$. Assume $SNR = \frac{k}{\sigma^2} \to +\infty$. If

$$\mathsf{n} > (1+\epsilon)\mathsf{n}_{\mathsf{alg}}$$

LASSO (convex relaxation) and OMP (greedy algorithm) succeed w.h.p.

Computational Results ([Wainwright '09],[Fletcher et al '11])

Set $n_{alg} = 2k \log p$. Assume $SNR = \frac{k}{\sigma^2} \to +\infty$. If

$$\mathsf{n} > (1+\epsilon)\mathsf{n}_{\mathsf{alg}}$$

LASSO (convex relaxation) and OMP (greedy algorithm) succeed w.h.p.

Statistical Results

Let $n^* := 2k \log \frac{p}{k} / \log \left(\frac{k}{\sigma^2} + 1 \right)$. Assume $\mathsf{SNR} = \frac{k}{\sigma^2} \to +\infty$.

Computational Results ([Wainwright '09],[Fletcher et al '11])

Set $n_{alg} = 2k \log p$. Assume $SNR = \frac{k}{\sigma^2} \to +\infty$. If

$$n > (1 + \epsilon) n_{\mathsf{alg}}$$

LASSO (convex relaxation) and OMP (greedy algorithm) succeed w.h.p.

Statistical Results

Let $n^* := 2k \log \frac{p}{k} / \log \left(\frac{k}{\sigma^2} + 1 \right)$. Assume $\mathsf{SNR} = \frac{k}{\sigma^2} \to +\infty$.

• If $n < (1-\epsilon)n^*$ no algorithm can succeed w.h.p. [Wang et al '10]

Computational Results ([Wainwright '09],[Fletcher et al '11])

Set $n_{alg} = 2k \log p$. Assume $SNR = \frac{k}{\sigma^2} \rightarrow +\infty$. If

$$n > (1 + \epsilon) n_{\mathsf{alg}}$$

LASSO (convex relaxation) and OMP (greedy algorithm) succeed w.h.p.

Statistical Results

Let $n^* := 2k \log \frac{p}{k} / \log \left(\frac{k}{\sigma^2} + 1 \right)$. Assume $\mathsf{SNR} = \frac{k}{\sigma^2} \to +\infty$.

- If $n < (1 \epsilon)n^*$ no algorithm can succeed w.h.p. [Wang et al '10]
- For some large C > 0, if $n \ge Cn^*$, MLE succeeds [Rad' 11].

Computational Results ([Wainwright '09],[Fletcher et al '11])

Set $n_{alg} = 2k \log p$. Assume $SNR = \frac{k}{\sigma^2} \to +\infty$. If

$$n > (1 + \epsilon) n_{\mathsf{alg}}$$

LASSO (convex relaxation) and OMP (greedy algorithm) succeed w.h.p.

Statistical Results

Let $n^* := 2k \log \frac{p}{k} / \log \left(\frac{k}{\sigma^2} + 1 \right)$. Assume $\mathsf{SNR} = \frac{k}{\sigma^2} \to +\infty$.

- If $n < (1 \epsilon)n^*$ no algorithm can succeed w.h.p. [Wang et al '10]
- For some large C > 0, if $n \ge Cn^*$, MLE succeeds [Rad' 11].

Pictorial Representation

Figure: Computational-Statistical Gap

Pictorial Representation

Figure: Computational-Statistical Gap

Contributions

- (1) $n^* = 2k \log \frac{p}{k} / \log \left(\frac{k}{\sigma^2} + 1 \right)$ is the **exact statistical limit** (All-or-Nothing Phase Transition).
- (2) $n_{alg} = 2k \log p$ is the **phase transition point** for (landscape) hardness (Overlap Gap Property Phase Transition).

Outline of the Talk

- (1) Introduction and Thesis Overview
- (2) High Dimensional Linear Regression Model
 - Background
 - Statistical Limit: All-or-Nothing Phenomenon
 - Computational-Statistical Gap and Overlap Gap Property
- (3) Planted Clique Model and Overlap Gap Property

Maximum Likelihood Estimator (MLE)

 $Y = X\beta^* + W$ with W iid $N(0, \sigma^2)$ entries.

The MLE

 \hat{eta}_{MLE} is the optimal solution of least-squares

(LS):
$$\min_{\beta \in \{0,1\}^p, \|\beta\|_0 = k} \|Y - X\beta\|_2$$

[Rad '11]: success with Cn* samples.

All or Nothing Phenomenon- Result

Definition

For $\beta \in \{0,1\}^p$, k-sparse we define

$$overlap(\beta) := |Support(\beta^*) \cap Support(\beta)|.$$

All or Nothing Phenomenon- Result

Definition

For $\beta \in \{0, 1\}^p$, k-sparse we define

$$overlap(\beta) := |Support(\beta^*) \cap Support(\beta)|.$$

Theorem ("All or Nothing Phase Transition" (GZ '17), (RXZ '19))

Let $\epsilon > 0$ be arbitrary. Assume $k \ll p$ and $k/\sigma^2 \ge C(\epsilon) > 0$,

• If $n > (1 + \epsilon) n^*$, then

$$\frac{1}{\mathsf{k}}\mathsf{overlap}\left(\hat{\beta}_{\mathsf{MLE}}\right) \to \mathsf{1}, \textit{whp, as } \mathsf{n}, \mathsf{p}, \mathsf{k} \to +\infty.$$

• If $n < (1 - \epsilon) n^*$, and $k \ll \sqrt{p}$, then $\forall \hat{\beta} = \hat{\beta} (Y, X)$

$$rac{1}{\mathsf{k}}$$
overlap $\left(\hat{eta}
ight) o 0$, whp, as $\mathsf{n}, \mathsf{p}, \mathsf{k} o +\infty$.

All or Nothing Phenomenon - Comments

An "All or Nothing" phase transition!

With n ≥ (1 + ε)n*,
 MLE recovers all but o(1)-fraction of the support.

All or Nothing Phenomenon - Comments

An "All or Nothing" phase transition!

- With n ≥ (1 + ε)n*,
 MLE recovers all but o(1)-fraction of the support.
- With n ≤ (1 − ε)n*,
 every estimator recovers at most o(1)-fraction of the support.

Negative Result for $n \leq (1 - \epsilon)n^*$:

• Step 1:

"Impossibility of Testing": Data Look Like Pure Noise.

Negative Result for $n \leq (1 - \epsilon)n^*$:

• Step 1:

"Impossibility of Testing": Data Look Like Pure Noise.

Let P the law of $(Y = X\beta^* + W, X)$,

and Q the law of $(Y = \lambda W, X)$, for some $\lambda > 0$.

Negative Result for $n \leq (1 - \epsilon)n^*$:

• Step 1:

"Impossibility of Testing": Data Look Like Pure Noise.

Let P the law of $(Y = X\beta^* + W, X)$,

and Q the law of $(Y = \lambda W, X)$, for some $\lambda > 0$.

We show,

$$D_{\mathsf{KL}}\left(\mathsf{P}||\mathsf{Q}\right) \to \mathsf{0}, \ \mathsf{as} \ \mathsf{p} \to +\infty.$$

Negative Result for $n \leq (1 - \epsilon)n^*$:

• Step 1:

"Impossibility of Testing": Data Look Like Pure Noise.

Let P the law of $(Y = X\beta^* + W, X)$, and Q the law of $(Y = \lambda W, X)$, for some $\lambda > 0$. We show,

$$D_{\mathsf{KL}}(\mathsf{P}||\mathsf{Q}) \to 0$$
, as $\mathsf{p} \to +\infty$.

Step 2:

"Impossibility of Testing" implies "Impossibility of Estimation".

Negative Result for $n \leq (1 - \epsilon)n^*$:

• Step 1:

"Impossibility of Testing": Data Look Like Pure Noise.

Let P the law of $(Y = X\beta^* + W, X)$, and Q the law of $(Y = \lambda W, X)$, for some $\lambda > 0$. We show,

$$D_{\mathsf{KL}}\left(\mathsf{P}||\mathsf{Q}\right) \to \mathsf{0}, \ \mathsf{as} \ \mathsf{p} \to +\infty.$$

• Step 2:

"Impossibility of Testing" implies "Impossibility of Estimation". We show that for any estimator $\hat{\beta} = \hat{\beta}(Y, X)$:

overlap
$$(\hat{\beta})/k \le (1 + \sigma^2/k) D_{\mathsf{KL}}(\mathsf{P}||\mathsf{Q})$$
.

Summary for n* contribution

Sharp Information-Theoretic Limit n*

 $(1+\epsilon)$ n* samples MLE (asymptotically) succeeds.

 $(1-\epsilon)n^*$ samples all estimators (asymptotically) strongly fail.

Outline of the Talk

- (1) Introduction and Thesis Overview
- (2) High Dimensional Linear Regression Model
 - Background
 - Statistical Limit: All-or-Nothing Phenomenon
 - Computational-Statistical Gap and Overlap Gap Property
- (3) Planted Clique Model and Overlap Gap Property

Computational-Statistical Gap

18/31

Computational-Statistical Gap

Contribution through Landscape Analysis

 n_{alg} is a **phase transition point** for certain Overlap Gap Property (OGP) on the space of binary k-sparse vectors (origin in *spin glass theory*).

Conjecture computational hardness!

Computational gaps appear frequently in random environments

- (1) randoms CSPs, such as random-k-SAT (e.g. [MMZ '05], [ACORT '11])
- (2) average-case combinatorial opt problems such as max-independent set in ER graphs (e.g. [GS '17], [RV '17])

Computational gaps appear frequently in random environments

- (1) randoms CSPs, such as random-k-SAT (e.g. [MMZ '05], [ACORT '11])
- (2) average-case combinatorial opt problems such as max-independent set in ER graphs (e.g. [GS '17], [RV '17])

Between easy and hard regime there is an "abrupt change in the geometry of the space of (near-optimal) solutions" [ACO '08].

Computational gaps appear frequently in random environments

- (1) randoms CSPs, such as random-k-SAT (e.g. [MMZ '05], [ACORT '11])
- (2) average-case combinatorial opt problems such as max-independent set in ER graphs (e.g. [GS '17], [RV '17])

Between easy and hard regime there is an "abrupt change in the geometry of the space of (near-optimal) solutions" [ACO '08].

(Vague) Strategy of Studying the Geometry

Study **realizable overlap sizes** between "near-optimal" solutions.

Algorithms appear to work as long as there are **no gaps** in the overlaps.

Computational gaps appear frequently in random environments

- (1) randoms CSPs, such as random-k-SAT (e.g. [MMZ '05], [ACORT '11])
- (2) average-case combinatorial opt problems such as max-independent set in ER graphs (e.g. [GS '17], [RV '17])

Between easy and hard regime there is an "abrupt change in the geometry of the space of (near-optimal) solutions" [ACO '08].

(Vague) Strategy of Studying the Geometry

Study **realizable overlap sizes** between "near-optimal" solutions. Algorithms appear to work as long as there are **no gaps** in the overlaps.

Overlap Gap Property, Shattering, Clustering, Free Energy Wells etc

The Overlap Gap Property (OGP) for Linear Regression

"Near-optimal solutions" $\{\beta \in \{0,1\}^p : \|\beta\|_0 = \mathsf{k}, \text{ "small" } \|\mathsf{Y} - \mathsf{X}\beta\|_2\}.$

The Overlap Gap Property (OGP) for Linear Regression

"Near-optimal solutions" $\{\beta \in \{0,1\}^p : \|\beta\|_0 = k$, "small" $\|Y - X\beta\|_2\}$. *Idea:* Study overlaps between β and β^* . overlap $(\beta) = |\mathsf{Support}(\beta) \cap \mathsf{Support}(\beta^*)|$.

The OGP (informally)

The set of β' s with "small" $\|Y - X\beta\|_2$ partitions in one group where β have **low** overlap with the ground truth β^* and the other group where β have **high** overlap with the ground truth β^* .

The Overlap Gap Property for Linear Regression-definition

For
$$r > 0$$
, set $S_r := \{ \beta \in \{0, 1\}^p : \|\beta\|_0 = k, n^{-\frac{1}{2}} \|Y - X\beta\|_2 < r \}.$

Definition (The Overlap Gap Property)

The linear regression problem satisfies OGP if there exists r>0 and $0<\zeta_1<\zeta_2<1$ such that

(a) For every $\beta \in S_r$,

$$\frac{1}{\mathsf{k}}\mathsf{overlap}\left(\beta\right)<\zeta_1 \text{ or } \frac{1}{\mathsf{k}}\mathsf{overlap}\left(\beta\right)>\zeta_2.$$

(b) Both the sets

$$\mathsf{S_r} \cap \{\beta: \frac{1}{\mathsf{k}} \mathsf{overlap}\left(\beta\right) < \zeta_1\} \text{ and } \mathsf{S_r} \cap \{\beta: \frac{1}{\mathsf{k}} \mathsf{overlap}\left(\beta\right) > \zeta_2\}$$

are non-empty.

OGP Phase Transition at $\Theta(n_{alg})$

Theorem (GZ '17a), (GZ '17b)

Suppose $k \le exp(\sqrt{\log p})$. There exists C > 1 > c > 0 such that,

- If $n^* < n < cn_{alg}$ then w.h.p. OGP holds.
- If n > Cn_{alg} then w.h.p. OGP does not hold.

Figure: n < cn_{alg}

Figure: $n > Cn_{alg}$

OGP Phase Transition at $\Theta(n_{alg})$

Theorem (GZ '17a), (GZ '17b)

Suppose $k \le exp(\sqrt{\log p})$. There exists C > 1 > c > 0 such that,

- If $n^* < n < cn_{alg}$ then w.h.p. OGP holds.
- If n > Cn_{alg} then w.h.p. OGP does **not** hold.

OGP coincides with the failure of **convex relaxation** and **compressed sensing** methods!

 $\begin{array}{c} \text{XJ} \\ \text{with medium-overlap } \beta \\ \text{With high-overlap } \beta \\ \text{with high-overlap } \beta \end{array}$

Figure: $n^* < n < cn_{alg}$

Figure: $n > Cn_{alg}$

Local Step:
$$\beta \to \beta'$$
 if $d_H(\beta, \beta') = 2$. E.g. $\begin{bmatrix} * \\ 0 \\ 1 \\ * \end{bmatrix} \to \begin{bmatrix} * \\ 1 \\ 0 \\ * \end{bmatrix}$

Local Step:
$$\beta \to \beta'$$
 if $d_H(\beta, \beta') = 2$. E.g. $\begin{bmatrix} * \\ 0 \\ 1 \\ * \end{bmatrix} \to \begin{bmatrix} * \\ 1 \\ 0 \\ * \end{bmatrix}$
(LS): $\min_{\beta \in \{0,1\}^p, \|\beta\|_0 = k} \|Y - X\beta\|_2$.

Local Step:
$$\beta \to \beta'$$
 if $d_H(\beta, \beta') = 2$. E.g. $\begin{bmatrix} * \\ 0 \\ 1 \\ * \end{bmatrix} \to \begin{bmatrix} * \\ 1 \\ 0 \\ * \end{bmatrix}$ (LS): $\min_{\beta \in \{0,1\}^p, \|\beta\|_0 = k} \|Y - X\beta\|_2$.

Corollary: Local Search Barrier [GZ'17a]

Under OGP, there are **low-overlap local minima** in (LS). If $n < cn_{alg}$, greedy local-search algorithm **fails** (worst-case) w.h.p.

Theorem (GZ '17b)

If n > Cn_{alg}, the **only local minimum** in (LS) is β^* whp and greedy local search algorithm **succeeds** in $O(k/\sigma^2)$ iterations whp.

Summary of Contribution

	Lit: Impossible to exactly recover	Lit: Possible but hard??	Lit: Possible and Easy (LASSO, OMP)
[RXZ1	(19): All estimators strongly fail with n<(1-ε)n*	[GZ17a]: MLE succeeds with n>(1+ε)n*	[GZ17b]: OGP disappears and
		[GZ17a]: OGP appears [GZ17b]: LS has low overlap local min	greedy local search works [GZ17b]: LS has only the trivial local min
	0	(n^*) $\Theta(n^*)$	n

Sharp Information-Theoretic Limit n*

 $(1+\epsilon)$ n* samples MLE (asymptotically) succeeds.

 $(1-\epsilon)n^*$ samples all estimators (asymptotically) strongly fail.

OGP Phase Transition at nalg

 $n < cn_{alg}$ OGP holds and $n > Cn_{alg}$ OGP does not hold.

Computational Hardness conjectured!

Outline of the Talk

- (1) Introduction and Thesis Overview
- (2) High Dimensional Linear Regression Model
 - Background
 - Statistical Limit: All-or-Nothing Phenomenon
 - Computational-Statistical Gap and Overlap Gap Property
- (3) Planted Clique Model and Overlap Gap Property

The Planted Clique Model

The Planted Clique Model [Jerrum '92]

Graph Generating Assumptions:

- Stage 1: G₀ is an Erdos-Renyi G(n, 1/2):
 n-vertex undirected graph, each edge appears w.p. 1/2.
- Stage 2: k out of the n vertices of \mathcal{G}_0 are chosen u.a.r. to form a k-vertex clique, \mathcal{PC} . Call \mathcal{G} the final graph.

Goal: Recover \mathcal{PC} from observing \mathcal{G} .

Question: For how small $k = k_n$ can we recover?

Statistical limit + Computational limit.

$$n=7, k=3, \ \mathcal{G}_0 \ (left) \ and \ \mathcal{G} \ (right)$$
 :

The Planted Clique Model-Literature

Literature:

- Statistical Limit (unique k-clique): $k = (2 + \epsilon) \log_2 n$, for any $\epsilon > 0$.
- (Apparent) Computational Limit: $k = c\sqrt{n}$, for any c > 0. [AKS'98],[FR'10],[DM'13],[DGGP'14]

The Planted Clique Model-Literature

Literature:

- Statistical Limit (unique k-clique): $k = (2 + \epsilon) \log_2 n$, for any $\epsilon > 0$.
- (Apparent) Computational Limit: $k = c\sqrt{n}$, for any c > 0. [AKS'98],[FR'10],[DM'13],[DGGP'14]

Long-studied comp-stats gap [BR'13], [BHK+'16], [BBH'18]

The Planted Clique Model-Literature

Literature:

- Statistical Limit (unique k-clique): $k = (2 + \epsilon) \log_2 n$, for any $\epsilon > 0$.
- (Apparent) Computational Limit: $k = c\sqrt{n}$, for any c > 0. [AKS'98],[FR'10],[DM'13],[DGGP'14]

Long-studied comp-stats gap [BR'13], [BHK+'16], [BBH'18] *Question: Is there an OGP phase transition around* $k = \sqrt{n}$?

The Overlap Gap Property for Planted Clique: Results

• Focus on subgraphs of $\mathcal G$ of fixed vertex size ("k-sparse binary β ") with many edges, dense, ("small error $\|\mathbf Y - \mathbf X\beta\|_2$ ") and study their overlap with $\mathcal {PC}$ ("overlap with β^* ").

OGP: dense subgraphs have either high or low overlap with \mathcal{PC} .

The Overlap Gap Property for Planted Clique: Results

- Focus on subgraphs of $\mathcal G$ of fixed vertex size ("k-sparse binary β ") with many edges, dense, ("small error $\|\mathbf Y \mathbf X\beta\|_2$ ") and study their overlap with $\mathcal {PC}$ ("overlap with β^* ").
 - OGP: dense subgraphs have either high or low overlap with \mathcal{PC} .
- Strong evidence for OGP phase transition at $k = \sqrt{n}$. (Possible explanation for a long-studied hardness!).
- Proof OGP appears if $k \le n^{0.0917}$.

The Overlap Gap Property for Planted Clique: Results

- Focus on subgraphs of $\mathcal G$ of fixed vertex size ("k-sparse binary β ") with many edges, dense, ("small error $\|\mathbf Y \mathbf X\beta\|_2$ ") and study their overlap with $\mathcal {PC}$ ("overlap with β^* ").
 - OGP: dense subgraphs have either high or low overlap with \mathcal{PC} .
- Strong evidence for OGP phase transition at $k = \sqrt{n}$. (Possible explanation for a long-studied hardness!).
- Proof OGP appears if $k \le n^{0.0917}$.
- Assumption 1: Concentration of the value of k-densest subgraph problem of $G(n, \frac{1}{2})$. Known for $k = \Theta(\log n)$ [BBSV'18], proven for $k \le n^{0.0917..}$ [GZ'19], conjectured for all $k = o(\sqrt{n})$.

Thesis Overview: Contributions

HDLR (signal strength = sample size), PC (signal strength = clique size):

Under assumptions,

- Compute the exact statistical limit of the HDLR model ("All-to-Nothing Phase Transition")
- Explain computational-statistical gaps of HDLR and PC models, through statistical-physics based methods. ("Overlap Gap Property")
- Improved computational limit for noiseless HDLR model using lattice basis reduction ("One Sample Suffices")

Papers:

```
(Gamarnik, Z. COLT '17, AOS (major rev.) '18+)
(Gamarnik, Z. AOS (major rev.) '18+), (Gamarnik, Z. NeurIPS '18)
(Reeves, Xu, Z. COLT '19), (Gamarnik, Z. '19+)
```