달력과 1초

• 율리우스력 (Julian calendar)

- 기존의 Roman calendar를 Julius Caesar가 BC 46년에 개선하여
 1월 1일부터 시행 (1월 1일은 이 의미만 있음)
- 춘분일 : 3월 21일로 정했다.
- 1년 : 365일(366일; 4년에 한 번 윤년) > 평균 **365.25일/년**
- 실제 1 태양년 = **365.2422 일**(태양일)
- 율리우스력 1년 -1 태양년 = 0.0078일 (11분 14초) → 128년 마다 1일의 편차

$$\frac{11 + \frac{14}{60}}{24 \times 60} \times 128 \ year = 0.9985 \ day$$

- 율리우스력의 단점 : 128년 마다 1일 율리우스력 날짜가 늦어짐
- 1582년에 춘분날은 13일 정도의 차이가 생겨 3월 10일로 옮겨갔음
- 동방교회는 율리우스력을 교회력으로 쓰고 있다.

- 그레고리력 (Gregorian Calendar)
 - 1582년 10월 4일 교황 그레고리오 13세가 이전의 율리우스력을 개정
 - 율리우스력의 단점을 400년에서 3일(세 번의 윤년)을 없애는 방법으로 극복
 - 평균 365.2425일/년

 $(365.2425 - 365.2422) \times 3300 \ year \cong 0.99 \ day$

- 3300년 마다 그레고리력은 1일 늦게 간다
- 왜냐하면 3300년 마다 그레고리력이 태양년보다 1일이 더 있기 때문이다
- 춘분일은 율리우스력과 동일하게 3월 21일
- 그레고리력 윤년 계산은 바로 앞 강의에서 우리가 이미 배웠음
 - 해당년도 끝 두 자리가 00으로 끝나지 않으면
 - [1]해당년도가 4로 나누어진다 → 해당년도 = 윤년 (안 나눠지면 평년)
 - 해당년도 끝 두 자리가 00으로 끝나면
 - [21] 해당년도가 100으로 나누어진다 → 해당년도 = 평년 (안 나눠지면 윤년)
 - [22] 해당년도가 400으로 나누어진다 → 해당년도 = 윤년 (안 나눠지면 평년)
 - * 해당년도가 00이면 [21], [22] 계산하는데 나중 해당년도가 윤년과 평년의 기준

and the same project and an electronic of the same could be a format of the same of the sa

Comparison of the control of the con

- 역법 개정
 - 율리우스력에서 그래고리력으로 1582년 10월 4일 개정
 - 윤년의 계산이 달라짐으로 10일의 날짜가 율리우스력이 실제 태양년보다 10이 더 늦게 감
 - 율리우스력에서 윤년이 많이 들어가 1년이 366인 날이 많아짐
 - 이것들이 BC 46에서 AD 1582년까지 약 10일 율리우스력이 늦게 날짜가 감
 - 따라서 인류역사에서 1582년 10월 5일~10월 14일까지 10일은 존재하지 않음

JUL 15	IAN 82	Octobe		er	Gregorian 1582	
Sun	Mon	Tues	Wed	Thurs	Fri	Sat
	1	2	3	4	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31						

• 역법을 개정한 국가들

- 천주교회 국가들
 - 그레고리력 개정 후 1년 만에 대부분 이 역법 받아들임
- 개신교회 국가들
 - 18세기 전반까지도 율리우스력을 고수
- 정교회 국가들
 - 20세기 초까지도 율리우스력을 고수
- 영국
 - 1752년 9월 2일 다음날은 9월 14일
- 러시아
 - 1918년 1월 31일 다음날은 2월 14일
- 한국
 - 1895년 10월 26일 채택

- 동양의 달력
 - ・24절기 二十四節氣
 - 태양력
 - 중국의 황하(황하) 유역을 기준으로 정해진 것
 - 2017년 1월 1일 중국의 유네스코 인류무형문화유산으로 등재

계절	24절기(節氣)					
봄	立春 입춘	雨水 우 수	驚蟄 경 칩	春分 춘분	淸明 청명	穀雨
여름	立夏 입하	小滿 소만	芒種 망종	夏至 하지	小暑 소서	大暑 대서
가을	立秋 입추	處暑 처서	白露	秋分 추분	寒露 한로	霜降 상강
겨울	立冬 입동	小雪 소설	大雪 대설	冬至 동 지	小寒 소한	大寒 대한

• 24절기 날짜

• 태양이 황도를 따라 춘분(황경 0°)에서 부터 시작하여 다시 제 위치로 오는데(황경 360°)이를 황경 15°로 나눠 24절기를 나눔

절기	양력 일자	황경(°)	절기	양력 일자	황경(°)
입춘 立春	2월 4일경	315	입추 立秋	8월 8일경	135
우수 雨水	2월 19일경	330	처서 處暑	8월 23일경	150
경칩 驚蟄	3월 6일경	345	백로 白露	9월 8일경	165
춘분 春分	3월 21일경	0	추분 秋分	9월 23일경	180
청명 淸明	4월 5일경	15	한로 寒露	10월 8일경	195
곡우 穀雨	4월 20일경	30	상강 霜降	10월 23일경	210
입하 立夏	5월 6일경	45	입동 立冬	11월 7일경	225
소만 小滿	5월 21일경	60	소설 小雪	11월 22일경	240
망종 芒種	6월 6일경	75	대설 大雪	12월 7일경	255
하지 夏至	6월 21일경	90	동지 冬至	12월 22일경	270
소서 小署	7월 7일경	105	소한 小寒	1월 6일경	285
대서 大暑	7월 23일경	120	대한 大寒	1월 21일경	300

- ・24절기 二十四節氣
 - 절기의 이름과 그에 대한 설명은 중국의 화북 지방의 날씨에 맞춰 지었기 때문에 현대 한반도의 날씨와는 맞지 않는 경우가 있음
 - 우리 실정에 맞게 24절기를 활용하기 위하여 측정 (세종)
- 규표 圭表
 - 표(表): 해 그림자를 만드는데 사용하는 수직 막대
 - 규(圭): 해 그림자의 길이를 알 수 있도록 눈금을 새겨 놓은 평행판

- 세종시대 규표(圭表)
 - 여주 세종대왕 영릉 야외에 축소 복원된 규표
 - 표(表)의 높이 40척(尺)
 - 규(규) 설치 방향 : 남북
 - 영부(影符) : 눈금을 정확히 읽을 수 있는 장치

• 시간의 기본 단위

- 년(年, year) : 태양년
- 일(日, day): 태양일
- 초(초, second)

- 역사적 1초 (s, second)
 - 1960년
 - 1 s = 1900년의 정확한 1년의 시간을 31,556,925.9747로 나눈 값
 - 이후 이 시간이 1 s의 기준
 - 1967년
 - Cesium atomic clock으로 1 s 정의
 - ¹65*Cs*에서 방출되는 특정 마이크로파가 9,192,631,770번 진동할 때까지 걸린 시간을 1초라고 정의

- 원자 시계의 정확도 향상
 - 가스 상태의 $^{133}_{55}Cs$ 를 4개의 레이저로 정지시킴 (laser cooling)
 - 온도는 기체의 움직이는 정도에 의해 정의
 - $^{133}_{55}Cs$ 은 거의 절대온도 0도에 근접
 - 원자 시계의 정밀도 향상
 - 300,000년에 1초 오차
- 1999년
 - 2천만년에 1초 오차
- 현재
 - 알미늄 이온 시계
 - 오차 330억년에 1초 오차

- 시간의 오차
 - 시간 측정 장치의 시간 오차

• 알미늄 이온 시계

- 한국표준과학연구원 KRISS
 - 1991년부터 이 이름을 사용
 - Korea Research Institute of Standards and Science

물리표준본부	화학표준본부
광도표준그룹 길이표준그룹 시간표준그룹 역학표준그룹 열유체표준그룹 음향진동초음파표준그룹 전자기파표준그룹 전자기파표준그룹	가스분석표준그룹 무기분석표준그룹 바이오분석표준그룹 방사선표준그룹 유기분석표준그룹