Trabalho T3 - Aproximação de funções MTM224 - Métodos Numéricos Computacionais

Eng. Química (305) - Turma 14

prof. Tiago Martinuzzi Buriol

1. O volume específico de um vapor superaquecido está listado nas tabelas de vapor para diversas temperaturas. por exemplo, na pressão absoluta de 3000 lb/pol²:

T, °F	700	720	740	760	780
$v, pés^3/lb_m$	0,0977	0,12184	0,14060	0,15509	0,16643

Determine v para $T=750^{\circ}F$ usando interpolação, use a fórmula de Lagrange e a fórmula de Newton e compare o resultado. Comente o que você observou.

2. Considere a função

$$f(x) = \frac{3.21}{0.73 + 9.81x^2}$$

- (a) Aproxime o valor de f(1.78) usando um polinômio de grau 3 no intervalo [1, 2] e compare com o valor da função. Mostre o gráfico do polinômio e da função nesse intervalo.
- (b) Repita o item anterior, mas dessa vez utilize um polinômio de grau 10 no intervalo [-2,2] e comente o que você observou.
- (c) Pesquise e responda o que é "Fenômeno de Runge".
- 3. Ensaios de laboratório mostraram que a viscosidade dinâmica da água μ ($10^{-3}N.s/m^2$) está relacionada com a temperatura T (°C) da seguinte maneira

 \overline{T}	0	5	10	20	30	40
$\overline{\mu}$	1.857	1.419	1.377	1.002	0.8975	0.5529

- (a) Use mínimos quadrados para ajustar uma reta aos dados. Mostre o resultado graficamente.
- (b) Repita o item anterior ajustando uma parábola aos dados.
- 4. Encontre a função do tipo $g(x) = a_1x + a_2sen(x)$ que melhor se ajusta aos pontos tabelados abaixo

$\overline{x_i}$	0.01	0.99	2.02	3.01	3.97	5.01	5.93	6.99	8.08
$f(x_i)$	0.000	1.621	1.782	0.915	-0.122	-0.225	1.093	2.748	3.534

5. O número de bactérias, por unidade de volume, existente em uma cultura após x horas é

nº de horas	0	1	2	3	4	5	6
nº de bactéricas	32	47	65	92	132	190	275

- (a) Ajuste os dados às curvas $y = ab^x$ e $y = ax^b$; compare os valores obtidos por meio dessas equações com os dados experimentais. Comente.
- (b) Avalie da melhor forma o valor de y(x) para x = 7.