

How do you know it's a Shirt?

Implementation and comparison of K-nearest neighbors (KNN) and convolutional neural network (CNN) for clothes recognition

Topic 01 Group 04

Anastasia Warken, Bastian Mucha, Heinrike Gilles, Ole Decker

Overview

1. Material

Dataset

2. Methods

Data preparation

KNN

CNN

Evaluation

3. Results

4. TEIL:

Zusammenfassung

Fashion-MNIST Dataset

Label	Description	Examples
0	T-Shirt/Top	
1	Trouser	
2	Pullover	
3	Dress	
4	Coat	
5	Sandals	BARAGE FARENCE DE STORE
6	Shirt	THE TARREST AND THE TARREST AND THE
7	Sneaker	
8	Bag	
9	Ankle boots	LELLELLELLELLELLELLELLELLELLELLELLELLEL

- Training set 60.000 images
- Test set 10.000 images
- 28 x 28 pixels grayscale
- CSV files (Comma-separated values)
- One Row = one image
- Intensity values: 0 255

Data preparation

$$Z = \frac{x - x}{\sigma_x}$$

$$Xv = \lambda v$$

K-nearest neighbors (KNN)

- nonparametric, supervised learning algorithm
- For classification problems
- Predictions based on similarity to training data points
- Majority vote

$$d(x, y) = \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2}$$

Convolutional Neural Network (CNN)

- deep learning model
- for analysis of visual data
- detects patterns in a hierarchical structure
- different types of layers

RESULTS

PCA

- 784 Eigenvectors

Optimal number of k and PCs

- Optimal k = 4
- Variance 95%
- 256 Eigenvectors

KNN

- Run time 40 images: 26.4 seconds

KNN with KD-Tree

- Run time 10,000 images: 26.9 seconds
- Leaf size 10

Accuracy: 86.3%

What's a KD-Tree?

CNN

Training: 30 – 60 minutes

run time: 2 seconds

Accuracy: 92.9%

KNN

Accuracy: 86.3%

Confusion matrices

CNN

T-Shirt/Top vs. Shirt problem

Our Team

CNN quickly reaches its limit when dealing with pictures of people wearing clothes

Ole Decker Shirt

Heinrike Gilles

Trouser

Bastian Mucha Sandal

Anastasia Warken Ankle Boot

