知平

矩阵求导术(下)

已关注

398 人赞了该文章

本文承接上篇 zhuanlan.zhihu.com/p/24...,来讲矩阵对矩阵的求导术。使用小写字母x表示标量, 粗体小写字母 æ 表示列向量、大写字母 X表示矩阵。矩阵对矩阵的求导采用了向量化的思路、常应 用于二阶方法求解优化问题。

首先来琢磨一下定义。矩阵对矩阵的导数,需要什么样的定义?第一,矩阵F(p×q)对矩阵X(m×n)的 导数应包含所有mnpq个偏导数 $\dfrac{\partial F_{kl}}{\partial X_{ii}}$,从而不损失信息;第二,导数与微分有简明的联系,因为

在计算导数和应用中需要这个联系;第三,导数有简明的从整体出发的算法。我们先定义向量 ƒ

定义矩阵的(按列优先)向量化

 $\operatorname{vec}(X) = [X_{11}, \ldots, X_{m1}, X_{12}, \ldots, X_{m2}, \ldots, X_{1n}, \ldots, X_{mn}]^T$ (mn×1),并定义矩阵F对矩阵 X的导数 $rac{\partial F}{\partial X} = rac{\partial ext{vec}(F)}{\partial ext{vec}(X)}$ (mn×pq)。导数与微分有联系 $ext{vec}(dF) = rac{\partial F}{\partial X}^T ext{vec}(dX)$ 。几点说明 如下:

- 1. 按此定义,标量f对矩阵X(m×n)的导数 $\frac{\partial f}{\partial x}$ 是mn×1向量,与上篇的定义不兼容,不过二者容易 相互转换。为避免混淆,用记号 $oldsymbol{
 abla}_X f$ 表示上篇定义的 $oldsymbol{\mathsf{m}} imes \mathsf{n}$ 矩阵,则有 $\dfrac{\partial f}{\partial oldsymbol{v}} = \mathrm{vec}(oldsymbol{
 abla}_X f)$ 。虽 然本篇的技术可以用于标量对矩阵求导这种特殊情况,但使用上篇中的技术更方便。读者可以 通过上篇中的算例试验两种方法的等价转换。
- 2. 标量对矩阵的二阶导数,又称Hessian矩阵,定义为 $\nabla_X^2 f = \frac{\partial^2 f}{\partial X^2} = \frac{\partial \nabla_X f}{\partial X}$ (mn×mn),是对
- 称矩阵。对向量 $\frac{\partial f}{\partial X}$ 或矩阵 $\nabla_X f$ 求导都可以得到Hessian矩阵,但从矩阵 $\nabla_X f$ 出发更方便。 $\frac{\partial F}{\partial X} = \frac{\partial \mathrm{vec}(F)}{\partial X} = \frac{\partial F}{\partial \mathrm{vec}(X)} = \frac{\partial \mathrm{vec}(F)}{\partial \mathrm{vec}(X)} \,, \,\,$ 求导时矩阵被向量化,弊端是这在一定程度破 坏了矩阵的结构, 会导致结果变得

▲ 赞同 398 ★ 收藏

知乎

4. 在资料中,矩阵对矩阵的导数还有其它定义,比如 $\frac{\partial F}{\partial X} = \left[\frac{\partial F_{kl}}{\partial X}\right]$ (mp×nq),它能兼容上篇中的标量对矩阵导数的定义,但微分与导数的联系(dF等于 $\frac{\partial F}{\partial X}$ 中每个m×n子块分别与dX做内积)不够简明,不便于计算和应用。

然后来建立运算法则。仍然要利用导数与微分的联系 $\operatorname{vec}(dF) = \frac{\partial F}{\partial X}^T \operatorname{vec}(dX)$, 求微分的方法与上篇相同,而从微分得到导数需要一些向量化的技巧:

- 1. 线性: $\operatorname{vec}(A+B) = \operatorname{vec}(A) + \operatorname{vec}(B)$ 。
- 2. 矩阵乘法: $\operatorname{vec}(AXB) = (B^T \otimes A)\operatorname{vec}(X)$,其中 \otimes 表示Kronecker积,A(m×n)与B(p×q)的 Kronecker积是 $A \otimes B = [A_{ij}B]$ (mp×nq)。此式证明见张贤达《矩阵分析与应用》第107-108 页。
- 3. 转置: $\operatorname{vec}(A^T) = K_{mn}\operatorname{vec}(A)$, A是m×n矩阵,其中 K_{mn} (mn×mn)是交换矩阵 (commutation matrix)。
- 4. 逐元素乘法: $vec(A \odot X) = diag(A)vec(X)$, 其中 diag(A) (mn×mn)是用A的元素(按列优先)排成的对角阵。

观察一下可以断言,若矩阵函数F是矩阵X经加减乘法、行列式、逆、逐元素函数等运算构成,则使用相应的运算法则对F求微分,再做向量化并使用技巧将其它项交换至vec(dX)左侧,即能得到导数。

再谈一谈复合:假设已求得 $\frac{\partial F}{\partial Y}$,而Y是X的函数,如何求 $\frac{\partial F}{\partial X}$ 呢?从导数与微分的联系入手, $\operatorname{vec}(dF) = \frac{\partial F}{\partial Y}^T \operatorname{vec}(dY) = \frac{\partial F}{\partial Y}^T \frac{\partial Y}{\partial X}^T \operatorname{vec}(dX)$,可以推出链式法则 $\frac{\partial F}{\partial X} = \frac{\partial Y}{\partial X} \frac{\partial F}{\partial Y}$ 。

和标量对矩阵的导数相比,矩阵对矩阵的导数形式更加复杂,从不同角度出发常会得到形式不同的结果。有一些Kronecker积和交换矩阵相关的恒等式,可用来做等价变形:

- 1. $(A \otimes B)^T = A^T \otimes B^T$.
- 2. $\operatorname{vec}(\boldsymbol{a}\boldsymbol{b}^T) = \boldsymbol{b} \otimes \boldsymbol{a}$
- 3. $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$ 。可以对 $F = D^T B^T X A C$ 求导来证明,一方面,直接求导得到 $\frac{\partial F}{\partial X} = (AC) \otimes (BD)$;另一方面,引入 $Y = B^T X A$,有

2018/9/30 矩阵求导术(下)

知平

- 4. $K_{mn} = K_{nm}^{I}, K_{mn}K_{nm} = I$.
- 5. $K_{pm}(A\otimes B)K_{nq}=B\otimes A$,A是m×n矩阵,B是p×q矩阵。可以对 $_{AXB}^{T}$ 做向量化来证明,一方面, $_{vec}(AXB^{T})=(B\otimes A)\mathrm{vec}(X)$;另一方面,

 $\operatorname{vec}(AXB^T) = K_{pm}\operatorname{vec}(BX^TA^T) = K_{pm}(A\otimes B)\operatorname{vec}(X^T) = K_{pm}(A\otimes B)K_{nq}\operatorname{vec}(X)$

-

接下来演示一些算例。

例1: F = AX, X是m×n矩阵, 求 $\frac{\partial F}{\partial X}$ 。

解: 先求微分: dF = AdX,再做向量化,使用矩阵乘法的技巧,注意在dX右侧添加单位阵: $\operatorname{vec}(dF) = \operatorname{vec}(AdX) = (I_n \otimes A)\operatorname{vec}(dX)$,对照导数与微分的联系得到 $\frac{\partial F}{\partial X} = I_n \otimes A^T$ 。

特例:如果X退化为向量, $m{f}=m{A}m{x}$,则根据向量的导数与微分的关系 $m{d}m{f}=rac{\partial m{f}}{\partial m{x}}^Tm{d}m{x}$,得到 $rac{\partial m{f}}{\partial m{x}}=m{A}^T$ 。

例2: $f = \log |X|$,X是n×n矩阵,求 $\nabla_X f$ 和 $\nabla_X^2 f$ 。

解:使用上篇中的技术可求得 $\nabla_X f = X^{-1T}$ 。为求 $\nabla_X^2 f$,先求微分: $d\nabla_X f = -(X^{-1}dXX^{-1})^T$,再做向量化,使用转置和矩阵乘法的技巧 $\operatorname{vec}(d\nabla_X f) = -K_{nn}\operatorname{vec}(X^{-1}dXX^{-1}) = -K_{nn}(X^{-1T}\otimes X^{-1})\operatorname{vec}(dX)$,对照导数与微分的联系,得到 $\nabla_X^2 f = -K_{nn}(X^{-1T}\otimes X^{-1})$,注意它是对称矩阵。在 X 是对称矩阵时,可简化为 $\nabla_X^2 f = -X^{-1}\otimes X^{-1}$ 。

例3: $F = A \exp(XB)$, A是I×m, X是m×n, B是n×p矩阵, exp()为逐元素函数,求 $\frac{\partial F}{\partial X}$ 。

解: 先求微分: $dF = A(\exp(XB) \odot (dXB))$, 再做向量化, 使用矩阵乘法的技巧:

 $\operatorname{vec}(dF) = (I_p \otimes A)\operatorname{vec}(\exp(XB) \odot (dXB))$,再用逐元素乘法的技巧:

 $\operatorname{vec}(dF) = (I_p \otimes A)\operatorname{diag}(\exp(XB))\operatorname{vec}(dXB)$,再用矩阵乘法的技巧:

 $\operatorname{vec}(dF) = (I_p \otimes A)\operatorname{diag}(\exp(XB))(B^T \otimes I_m)\operatorname{vec}(dX)$,对照导数与微分的联系得到

$$rac{\partial F}{\partial X} = (B \otimes I_m) \mathrm{diag}(\exp(XB)) (I_p \otimes A^T) \ .$$

2018/9/30 矩阵求导术 (下)

|が||4 【一元||Og||Suic凹四】 ・ $t=-ym{x}^*m{w}+\log(1+\exp(m{x}^*m{w}))$, 水 $m{V}_{m{w}} t$ 他 $m{V}_{m{w}} t$ 。共中 $m{y}$ 定以 值0或1的标量, $\boldsymbol{x}, \boldsymbol{w}$ 是向量。

解:使用上篇中的技术可求得 $abla_{m w} l = m x(\sigma(m x^Tm w) - y)$,其中 $\sigma(a) = rac{\exp(a)}{1 + \exp(a)}$ 为sigmoid 函数。为求 $\nabla^2_{m{w}}l$,先求微分: $d\nabla_{m{w}}l=m{x}\sigma'(m{x}^Tm{w})m{x}^Tdm{w}$,其中 $\sigma'(a)=rac{\exp(a)}{(1+\exp(a))^2}$ 为 sigmoid函数的导数,对照导数与微分的联系,得到 $abla^2_w l = oldsymbol{x} \sigma'(oldsymbol{x}^T oldsymbol{w}) oldsymbol{x}^T$ 。

推广: 样本 $(oldsymbol{x}_1, y_1), \ldots, (oldsymbol{x}_n, y_n)$, $l = \sum_{i=1}^N \left(-y_i oldsymbol{x}_i^T oldsymbol{w} + \log(1 + \exp(oldsymbol{x}_i^T oldsymbol{w}))
ight)$, 求 $abla_w l$ 和

 $abla_w^2 l$ 。有两种方法,方法一:先对每个样本求导,然后相加;方法二:定义矩阵 $m{X} = egin{bmatrix} w_1 \ dots \ x = \end{matrix} \end{bmatrix}$,

向量 $m{y} = egin{bmatrix} m{y_1} \\ \vdots \\ m{y_n} \end{bmatrix}$,将 $m{l}$ 写成矩阵形式 $m{l} = -m{y}^T m{X} m{w} + m{1}^T \log(m{1} + \exp(m{X} m{w}))$,进而可以求得 $abla_w l = X^T(\sigma(Xoldsymbol{w}) - oldsymbol{y}) \,, \;\;
abla_w^2 l = X^T \mathrm{diag}(\sigma'(Xoldsymbol{w})) X \,.$

例5【多元logistic回归】: $m{l} = -m{y}^T \log \operatorname{softmax}(Wm{x}) = -m{y}^T Wm{x} + \log(\mathbf{1}^T \exp(Wm{x}))$,求 $\nabla_W l \, \Pi \, \nabla_W^2 l$.

解:上篇例3中已求得 $\nabla_W l = (\operatorname{softmax}(W \boldsymbol{x}) - \boldsymbol{y}) \boldsymbol{x}^T$ 。为求 $\nabla_W^2 l$,先求微分:定义 $\boldsymbol{a} = W \boldsymbol{x}$, $d\operatorname{softmax}(\boldsymbol{a}) = \frac{\exp(\boldsymbol{a}) \odot d\boldsymbol{a}}{\mathbf{1}^T \exp(\boldsymbol{a})} - \frac{\exp(\boldsymbol{a})(\mathbf{1}^T (\exp(\boldsymbol{a}) \odot d\boldsymbol{a}))}{(\mathbf{1}^T \exp(\boldsymbol{a}))^2}$,这里需要化简去

掉逐元素乘法,第一项中 $\exp(\boldsymbol{a}) \odot d\boldsymbol{a} = \operatorname{diag}(\exp(\boldsymbol{a}))d\boldsymbol{a}$,第二项中

 $\mathbf{1}^T(\exp(oldsymbol{a})\odot doldsymbol{a})=\exp(oldsymbol{a})^T doldsymbol{a}$,故有 $d\mathrm{softmax}(oldsymbol{a})=\mathrm{softmax}'(oldsymbol{a}) doldsymbol{a}$,其中

 $\operatorname{softmax}'(\boldsymbol{a}) = rac{\operatorname{diag}(\exp(\boldsymbol{a}))}{\mathbf{1}^T \exp(\boldsymbol{a})} - rac{\exp(\boldsymbol{a}) \exp(\boldsymbol{a})^T}{(\mathbf{1}^T \exp(\boldsymbol{a}))^2}$,代入有

 $d\nabla_W l = \operatorname{softmax}'(a) dax^T = \operatorname{softmax}'(Wx) dWxx^T$,做向量化并使用矩阵乘法的技巧, 得到 $abla_W^2 l = (\boldsymbol{x} \boldsymbol{x}^T) \otimes \operatorname{softmax}'(W \boldsymbol{x})$ 。

最后做个总结。我们发展了从**整体**出发的矩阵求导的技术,**导数与微分的联系是计算的枢纽**,标量 对矩阵的导数与微分的联系是 $df=\mathrm{tr}(
abla^T_{x}fdX)$,先对f求微分,再使用迹技巧可求得导数,特 别地,标量对向量的导数与微分的联系是 $df = oldsymbol{
abla}_{oldsymbol{x}}^T f doldsymbol{x}$;矩阵对矩阵的导数与微分的联系是

知乎

向量的导数与微分的联系是 $d m{f} = rac{\partial m{f}}{\partial m{x}}^T dm{x}$ 。

参考资料:

- 1. 张贤达. 矩阵分析与应用. 清华大学出版社有限公司, 2004.
- 2. Fackler, Paul L. "Notes on matrix calculus." North Carolina State University (2005).
- 3. Petersen, Kaare Brandt, and Michael Syskind Pedersen. "The matrix cookbook." *Technical University of Denmark* 7 (2008): 15.
- 4. HU, Pili. "Matrix Calculus: Derivation and Simple Application." (2012).

编辑于 2018-08-11

矩阵分析 机器学习 优化

推荐阅读

机器学习之——自动求导

章华燕

如何直观地理解「协方差矩阵」?

协方差矩阵在统计学和机器学习中随处可见,一般而言,可视作方差和协方差两部分组成,即方差构成了对角线上的元素,协方差构成了非对角线上的元素。本文旨在从几何角度介绍我们所熟知的协方...

Xinyu Chen

机器学:

"矩阵求[§] 域。虽然 讲的多元 公式以及 必要的, 且易出错

Towser

59 条评论

⇒ 切换为时间排序

2018/9/30 矩阵求导术(下)

知乎

2018/9/30 矩阵求导术 (下)

知平

邓问问重对矩阵的邓导是否也适用这套方法?

炒

👺 长躯鬼侠 (作者) 回复 张秦川

1年前

适用啊 向量可以看成矩阵的特例

★ 赞 ● 查看对话

1年前

看完上下篇,是否可以总结出如下:对于复合函数求导,如果是标量函数对矩阵求导,没有链式法 则可用;如果是矩阵对矩阵求导,有链式法则可以套用。

┢ 赞

长躯鬼侠 (作者) 回复 仡佬佬

1年前

你可以这么理解。不过链式法则就是源自多次求微分,所以只是形式不同,没有本质的区别。

▲ 1 ● 查看对话

/ 仡佬佬

1年前

或者可以这么表达: 如果不论标量还是矩阵(包括向量)对矩阵的求导,如果是按照篇二的做法, 首先都列向量化(vec),然后求导。那么对于这种形式的求导,是可以适用复合函数的链式求导 法则。其它形式的求导方法,可能不适用复合函数求导链式法则。

┢ 赞

1年前

你好,请问下,为何例二中,f对X的二阶导没有进行转置?在原文(例二中):"对照导数与微分 的关系得到....."后面的那个式子

┢ 赞

1年前

还有,请问下,我怎么确定我的转换矩阵的值是多少啊?

┢ 赞

1年前

你好,请问下,原文中有句话:"若矩阵函数F是矩阵X经加减乘法、行列式、逆、逐元素函数等运 算构成,则使用相应的运算法则对F求微分,再做向量化并使用技巧将其它项交换至vec(dX)左侧, 即能得到导数",那么如果F是由X卷积操作得到的,那么,对于这个卷积的运算法则是什么呢? 👀

000000

2018/9/30 矩阵求导术 (下)

知乎

你好,我还思知退下,兄歹内兄枳和起阵来积,哪个的优先级不啊! 🤝

┢ 赞

🥮 长躯鬼侠 (作者) 回复 陌烛

1年前

是对称矩阵,转置等于它自己。

┢ 赞 ● 查看对话

🥮 长躯鬼侠 (作者) 回复 陌烛

1年前

对于卷积,你可以自己推导一下,运算法则也可以用卷积来表示,对full、valid模式在细节上有些 差异。

▲ 赞 ● 查看对话

1 2 3 下一页