

THE FACTORS OF THE GROSS EARNING IN THE MOVIES INDUSTRY

Jhih-Rou Huang

INTRODUCTION

Motivation

People like to watch movie as an entertainment. There are different kinds of movies and budgets and earning for them are all different.

Object and Goals

Our customer want to invest the film industry but they are new to this field. Hence, our goal is to investigate what are the important factors and sign we can predict whether a movie is profitable or not.

METHODOLOGY

Data

Scrapping data from Imdb website (multiple pages)

Merge two dataset based on the movie name

Algorithms

Delete duplicates and drop rows with null

Feature analysis and linear regression

Rescale data

Kfold/Train/Test/Validation

Tools

BeautifulSoup/ Numpy/ Pandas/ Scikit-learn/ Statsmodels/ Matplotlib/ Seaborn

FEATURES

FEATURES

x=movies[['imdb','metascore','votes','years since release','time_mi
x=sm.add_constant(x)
model = sm.OLS(movies['gross_earning'], x).fit()
model.summary()

OLS Regression Results

Dep. Variable:	gross_earning	R-squared:	0.383
Model:	OLS	Adj. R-squared:	0.372
Method:	Least Squares	F-statistic:	32.22
Date:	Tue, 14 Sep 2021	Prob (F-statistic):	1.72e-25
Time:	17:24:47	Log-Likelihood:	-1603.6
No. Observations:	265	AIC:	3219.
Df Residuals:	259	BIC:	3241.
Df Model:	5		
Covariance Type:	nonrobust		

imdb -112.9820 metascore 0.7416	174.428 25.024 0.582	4.610 -4.515 1.275	0.000 0.000 0.204	460.697 -162.258 -0.404	1147.655 -63.706
metascore 0.7416			0.000		001100
	0.582	1.275	0.204	-0.404	1 887
votes 0.0003 2			20	51101	1.001
	.38e-05	10.752	0.000	0.000	0.000
years since release -4.4981	1.263	- 3.560	0.000	-6.986	- 2.010
time_minute 0.5500	0.327	1.680	0.094	-0.095	1.195

Omnibus:	123.008	Durbin-Watson:	2.124
Prob(Omnibus):	0.000	Jarque-Bera (JB):	803.343
Skew:	1.747	Prob(JB):	3.60e-175
Kurtosis:	10.781	Cond. No.	1.78e+07

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly st
- [2] The condition number is large, 1.78e+07. This might indicate that there are strong multicollinearity or other numerical problems.

R-squared: 0.2901

R-squared: 0.0501

TRAIN / VALIDATION / TEST

Linear Regression R-squared: 0.22

2 Degree polynomial regression val R-squared: 0.29

2 degree polynomial regression is slightly better than the linear one

Ridge R-squared: 0.3845

The ridge model is slightly better than the linear regression model.

TRAIN / VALIDATION / TEST

Rescale the values of every features and do the ridge model

Ridge R-squared: 0.3984

MAE: 76.7009

RIDGE

With the best alpha 10

Ridge R-squared: 0.40267

Ridge r2: 0.40267 Ridge MAE 79.23316

CONCLUSIONS

