There were a few questions regarding the 3^{rd} case of the Master Theorem that I am addressing in this. The 3^{rd} case is when $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some ε

Let's consider an actual example. Let f(n) = nlog(n) and $log_b a = 1$. The question becomes" is there an $\varepsilon > 0$ such that nlog(n) is $\Omega(n^{1+\varepsilon})$? The answer is no.

We can prove by contradiction. Assume there is an ε such that nlog(n) is $\Omega(n^{1+\varepsilon})$. It follows by definition of Ω that $\exists \ c, n_0 \ s. \ t. \ nlog(n) \ge n^{1+\varepsilon} \ \forall \ n \ge n_0 \Leftrightarrow \log(n) \ge n^{\varepsilon} \ \forall \ n \ge n_0 \Leftrightarrow \log(\log(n)) \ge \varepsilon \log(n) \ \forall \ n \ge n_0 \Leftrightarrow \log(n) \ge \varepsilon \times n \ \forall \ n \ge \log(n_0) \Leftrightarrow \log(n) / n \ge \varepsilon \ \forall \ n \ge \log(n_0)$

The missing link is the fact that $\lim_{n\to\infty}\frac{\log{(n)}}{n}=0$ (this can be easily proven using l'Hôpital's rule.) This means that $\exists m_0>0 \text{ s.t. } \frac{\log{(n)}}{n}<\varepsilon \ \forall \ n\geq m_0$. Pick $n=\max{(m_0,\log(n_0))}$, and you get the contradiction.

Note that I do not expect you to prove it, but I do expect to recognize that this case is not Master Theorem case 3.