Projekt wału

Kierunek: Inżynieria Mechatroniczna

Przedmiot: PKMUM

Przygotował: Igor Cena; nr albumu 414888

Grupa laboratoryjna: 1

Rok akademicki: 2023/2024

Prowadzący: dr. inż. Krzysztof Holak

Spis treści

1.	Założenia projektowe	2
	1.1 Dane początkowe	4
	1.2 Średnice kół zębatych	4
2.	Rysunek poglądowy wału	4
3.	Obliczenia sił i momentów	5
	3.1. Moment skręcający	5
	3.1.1. Wykres momentu skręcającego:	5
	3.2 Siły obwodowe	
	3.3 Siły promieniowe	5
	3.4 Sity osiowe	5
	3.5 Płaszczyzna X-Z	е
	3.5.1 Rysunek poglądowy	е
	3.5.2 Reakcje w podporach	6
	3.5.3 Wykres sił tnących w płaszczyźnie X-Z	е
	3.5.4 Wykres momentu My	7
	3.6 Płaszczyzna Y-Z	7
	3.6.1 Rysunek poglądowy	7
	3.6.1 Reakcje w podporach	7
	3.6.2 Wykres sił tnących w płaszczyźnie Y-Z	8
	3.6.3 Wykres momentu Mx	
	3.7 Moment gnący	9
	3.7.1 Wykres momentu gnącego	10
	3.8 Moment zredukowany	10
	3.8.1 Wykres momentu zredukowanego	11
4.	Średnica wału	11
	4.1 Dobór materiału i wartości naprężenia dopuszczalnego	11
	4.2 Obliczanie średnicy	11
	4.3 Wstępne stopniowanie wału	12
	4.4 Wykres wstępnych wartości średnicy	
5.	Ugięcie statyczne wału	12
	5.1 Ugięcie w płaszczyźnie YZ	12
	5.2 Ugięcie w płaszczyźnie XZ	
	5.3 Wykresy ugięć w obydwu płaszczyznach	
	5.4 Ugięcie dopuszczalne	
6.	Kat skrecenia	15

7. Dobór łożysk tocznych	15
8. Dobór wpustów	17
8.1 Wpust na średnicy 48 mm	17
8.2 Wpust na średnicy 45 mm	18
9. Prędkość krytyczna	19
9.1 Waga wału i jego tarcz	19
9.2 Ugięcie wału uwzględniając ciężary tarcz	20
9.3 Obliczanie prędkości krytycznej	20
9.4 Krytyczna częstotliwość obrotowa	20
10. Obliczenia zmęczeniowe	21
11. Rysunek wykonawczy	22
12. Rysunek złożeniowy	23

1. Założenia projektowe

Naszym zadaniem było zaprojektowanie wału maszynowego.

1.1 Dane początkowe

N [kW]	14
a [mm]	120
b [mm]	140
c [mm]	120
n [rpm]	1000
m [mm]	8
Z1	14
Z2	45
β1 [°]	0
α [°]	20

1.2 Średnice kół zębatych

$$d_1 = Z1 \frac{m}{\cos \beta} = 14 \frac{8}{\cos 0^{\circ}} = 112 \ mm$$

$$d_2 = Z2 \frac{m}{\cos \beta} = 45 \frac{8}{\cos 0^{\circ}} = 360 \ mm$$

2. Rysunek poglądowy wału

3. Obliczenia sił i momentów

3.1. Moment skręcający

$$M_s = 9550 \frac{N}{n} = 9550 \frac{14}{1000} = 133,7 Nm$$

3.1.1. Wykres momentu skręcającego:

3.2 Siły obwodowe

$$F_{1x} = \frac{2M_s}{d_1} = \frac{2 * 133,7}{0,112} = 2387,5 N$$

$$F_{2y} = \frac{2M_s}{d_2} = \frac{2 * 133,7}{0,36} = 742,78 \, N$$

3.3 Siły promieniowe

$$F_{1y} = F_{1x} \frac{tg\alpha}{cos\beta} = 2387.5 * \frac{tg20^{\circ}}{cos0^{\circ}} = 868.98 N$$

$$F_{2x} = F_{2y} \frac{tg\alpha}{\cos\beta} = 742,78 * \frac{tg20^{\circ}}{\cos0^{\circ}} = 270,35 N$$

3.4 Siły osiowe

$$F_1 = F_{1x} * tg\beta = 2387,5 * tg0^\circ = 0 N$$

$$F_2 = F_{2\nu} * tg\beta = 742,78 * tg0^\circ = 0 N$$

3.5 Płaszczyzna X-Z

3.5.1 Rysunek poglądowy

3.5.2 Reakcje w podporach

$$V_{D} = \frac{F_{1x}a - F_{2x}(a+b)}{a+b+c}$$

$$V_{D} = 568,97 N$$

$$V_{A} = F_{1x} - V_{D} - F_{2x}$$

$$V_{A} = 1548,18 N$$

3.5.3 Wykres sił tnących w płaszczyźnie X-Z

3.5.4 Wykres momentu My

3.6 Płaszczyzna Y-Z

3.6.1 Rysunek poglądowy

3.6.1 Reakcje w podporach

$$V_{D'} = \frac{F_{1y}a - F_{2y}(a+b)}{a+b+c}$$

$$V_{D'} = -233.8 N$$

$$V_{A'} = F_{1y} - V_{D'} - F_{2y}$$

$$V_{A'} = 360 N$$

Zmieniając zwrot V_D , rozmieszczenie sił wygląda następująco:

$$V_{D'} = 233,8 \, N$$

$$V_{A\prime}=360\,N$$

3.6.2 Wykres sił tnących w płaszczyźnie Y-Z

3.6.3 Wykres momentu Mx

3.7 Moment gnący

$$M_g = \sqrt{{M_y}^2 + {M_x}^2}$$

$$M_g(0) = 0$$

$$M_g(a) = 190,74 Nm$$

$$M_g(a+b) = 69,22 Nm$$

$$M_g(a+b+c) = 0 Nm$$

3.7.1 Wykres momentu gnącego

3.8 Moment zredukowany

$$M_{ZR}^{HMH} = \sqrt{M_g^2 + \frac{3}{4}M_s^2}$$

$$M_{ZR}^{HMH}(0) = 0$$

$$M_{ZR}^{HMH}(a') = 190,74 Nm$$

$$M_{ZR}^{HMH}(a'') = 233,13 Nm$$

$$M_{ZR}^{HMH}(a + b'') = 134,9 Nm$$

$$M_{ZR}^{HMH}(a + b') = 69,22 Nm$$

$$M_{ZR}^{HMH}(a + b + c) = 0$$

3.8.1 Wykres momentu zredukowanego

4. Średnica wału

4.1 Dobór materiału i wartości naprężenia dopuszczalnego

Jako materiał wału wybrałem stal St6, której granica plastyczności $R_e=315\ MPa$. Naprężenia dopuszczalne na zginanie obliczam ze wzoru: $k_g=(0.55-0.65)R_e$

$$k_g \in (173, 205)$$

Przyjąłem $k_g = 175 MPa$.

Przyjmuje również współczynnik bezpieczeństwa k=2.

4.2 Obliczanie średnicy

$$d \ge \sqrt[3]{\frac{32M_{ZR}^{HMH}k}{\pi k_g}}$$

 $d_B \ge 34.05 \ mm$

 $d_C \ge 28.99 \ mm$

4.3 Wstępne stopniowanie wału

Biorąc pod uwagę wartości średnicy z 15% naddatkiem wstępnie określam wartości średnicy w istotnych punktach:

$$d(A) = 30 mm$$

$$d(B) = 38 mm$$

$$d(C) = 35 \, mm$$

$$d(D) = 30 mm$$

4.4 Wykres wstępnych wartości średnicy

5. Ugięcie statyczne wału

5.1 Ugięcie w płaszczyźnie YZ

Sprawdzam ugięcie dla najbardziej niebezpiecznego przekroju w moim wale - d=30 mm.

$$I = \frac{\pi d^4}{64} = 3.976 * 10^{-8}$$

$$-EI\dot{w} = V_{A'} * x|_{AB} - F_{1y} * (x - a)|_{BC} + F_{2y} * (x - (a + b))|_{CD}$$

$$-EI\dot{w} = V_{A'} * \frac{x^2}{2} |_{AB} - F_{1y} * \frac{(x-a)^2}{2} |_{BC} + F_{2y} * \frac{(x-(a+b))^2}{2} |_{CD} + C_1$$

$$-EIw = V_{A'} * \frac{x^3}{6} |_{AB} - F_{1y} * \frac{(x-a)^3}{6} |_{BC} + F_{2y} * \frac{(x-(a+b))^3}{6} |_{CD} + C_1 x + C_2$$

Z warunków brzegowych wyznaczam wartości stałych:

$$w(0) = C_2 = 0$$

$$w(a+b+c) = -\frac{1}{EI}(V_{A'} * \frac{(a+b+c)^3}{6} - F_{1y} * \frac{(a+b+c-a)^3}{6} + F_{2y} * \frac{(a+b+c-(a+b))^3}{6} + C_1(a+b+c)) = 0$$

$$C_1 = \frac{1}{a+b+c}(-V_{A'} * \frac{(a+b+c)^3}{6} + F_{1y} * \frac{(a+b+c-a)^3}{6} - F_{2y} * \frac{(a+b+c-(a+b))^3}{6})$$

Podstawiając do równania:

$$-EIw = V_{A'} * \frac{x^3}{6} |_{AB} - F_{1y} * \frac{(x-a)^3}{6} |_{BC} + F_{2y} * \frac{(x-(a+b))^3}{6} |_{CD} - 2.528x$$

 $C_1 = -2.528$

5.2 Ugięcie w płaszczyźnie XZ

Sprawdzam ugięcie dla najbardziej niebezpiecznego przekroju w moim wale - d=30 mm.

$$-EI\dot{w} = V_A * x|_{AB} - F_{1x} * (x - a)|_{BC} + F_{2x} * (x - (a + b))|_{CD}$$

$$-EI\dot{w} = V_A * \frac{x^2}{2}|_{AB} - F_{1x} * \frac{(x - a)^2}{2}|_{BC} + F_{2x} * \frac{(x - (a + b))^2}{2}|_{CD} + C_1$$

$$-EIw = V_A * \frac{x^3}{6}|_{AB} - F_{1x} * \frac{(x - a)^3}{6}|_{BC} + F_{2x} * \frac{(x - (a + b))^3}{6}|_{CD} + C_1x + C_2$$

Z warunków brzegowych wyznaczam wartości stałych:

$$w(0) = C_2 = 0$$

$$w(a+b+c) = -\frac{1}{EI}(V_A * \frac{(a+b+c)^3}{6} - F_{1x} * \frac{(a+b+c-a)^3}{6} + F_{2x} * \frac{(a+b+c-(a+b))^3}{6} + C_1(a+b+c)) = 0$$

$$C_1 = \frac{1}{a+b+c}(-V_A * \frac{(a+b+c)^3}{6} + F_{1x} * \frac{(a+b+c-a)^3}{6} - F_{2x} * \frac{(a+b+c-(a+b))^3}{6})$$

$$C_1 = -19.06$$

Podstawiając do równania:

$$-EIw = V_A * \frac{x^3}{6} |_{AB} - F_{1x} * \frac{(x-a)^3}{6} |_{BC} + F_{2x} * \frac{(x-(a+b))^3}{6} |_{CD} - 19.06x$$

5.3 Wykresy ugięć w obydwu płaszczyznach

5.4 Ugięcie dopuszczalne

$$f_{dop} = (2 \div 3) * 10^{-4} * l$$

 $f_{dop} = (0.076 \div 0.114) \, mm$
 $f_{dop} = 0.114 \, mm$

Ugięcie w płaszczyźnie XZ jest większe niż ugięcie dopuszczalne. Zwiększam średnice całego przekroju o 10 mm. Teraz najbardziej niebezpieczna średnica przekroju to 40 mm.

Obliczam ponownie ugięcie w płaszczyznach XZ i YZ z nową wartością średnicy.

Ugięcie mieści się w granicach ugięcia dopuszczalnego.

6. Kąt skręcenia

Korzystając ze wzoru na kąt skręcenia obliczam jego wartości uwzględniając średnice wału stopniowanego.

$$\varphi'_{dop} = 0.01 \left[\frac{rad}{m} \right]$$

Uzyskane kąty skręcenia nie przekraczają dopuszczalnej granicy.

7. Dobór łożysk tocznych

Ze względu na występowanie jedynie sił poprzecznych w wale, obliczam wartości nośności dynamicznej C łożysk w podporach A i D wału zgodnie ze wzorem:

$$C = F_{\$r} (\frac{L_h * 60n}{10^6})^{\frac{1}{p}}$$

, gdzie: $F_{\pm r}$ – wypadkowa wartość reakcji podpór

 L_h - czas pracy łożyska (przyjmuje 10 000h)

n – częstotliwość obracania wału

p – stała dla łożysk kulkowych równa 3

$$C_A=13,406~kN$$

$$C_D = 5,1883 \ kN$$

Zgodnie z normą PN-85/M-86100 dobieram łożyska:

W podporze A dobieram łożysko 6008

WYMIARY PRODUKTU

Marka	SNR
d - Średnica wewnętrzna	40 mm
D - Średnica zewnętrzna	68 mm
B - Szerokość łożyska/ pierścienia wewnętrznego	15 mm
d1 - Pierścień wewnętrzny o średnicy zewnętrznej	46,7 mm
D1 - Pierścień zewnętrzny o średnicy wewnętrznej	61,4 mm
rs - Minimalny promień zaokrąglenia	1 mm
Klasa luzu promieniowego	CN
Waga	0,189 kg

WYDAJNOŚĆ PRODUKTU

C - Nośność dynamiczna	17,7 kN
CO - Nośność statyczna	11,5 kN
Cu - Obciążenie graniczne przy zmęczeniu	0,52 kN
f0 - Współczynnik	15.2

W podporze D dobieram łożysko 16008

WYMIARY PRODUKTU

Marka	NTN
d - Średnica wewnętrzna	40 mm
D - Średnica zewnętrzna	68 mm
B - Szerokość łożyska/ pierścienia wewnętrznego	9 mm
rs - Minimalny promień zaokrąglenia	0,3 mm
Klasa luzu promieniowego	CN
Waga	0,125 kg

WYDAJNOŚĆ PRODUKTU

C - Nośność dynamiczna	14 kN
CO - Nośność statyczna	9,65 kN
Cu - Obciążenie graniczne przy zmęczeniu	0,685 kN
f0 - Współczynnik	16

8. Dobór wpustów

Jako materiał wpustów wybieram stal z hartowanego chromu 100Cr6. Jej granica plastyczności Re=295 MPa.

$$k_d = 0.4 * R_e = 118 MPa$$

Na podstawie normy PN-70/M-85005 dobieram wymiary wpustu pryzmatycznego.

8.1 Wpust na średnicy 48 mm

Dobieram wpust $14x9xl_1$.

$$\frac{P}{\frac{h}{2} \cdot l_0 \cdot i} \le k_d$$

$$l_0 \ge \frac{4 \cdot M_S}{h \cdot d \cdot i \cdot k_d}$$

$$l_0 \ge 10.49 \ mm$$

$$l_1 \ge l_0 + b$$

$$l_1 \ge 24.49 \ mm$$

Zgodnie z normą dobieram długości wpustów $l_1=36\ mm.$

8.2 Wpust na średnicy 45 mm

Dobieram wpust $14x9xl_2$.

$$\frac{P}{\frac{h}{2} \cdot l_0 \cdot i} \le k_d$$

$$l_0 \ge \frac{4 \cdot M_s}{h \cdot d \cdot i \cdot k_d}$$

$$l_0 \ge 11.19 \ mm$$

$$l_2 \ge l_0 + b$$

$$l_2 \ge 25.19 \ mm$$

Zgodnie z normą dobieram długości wpustów $l_2 = 36 \ mm$.

9. Prędkość krytyczna

9.1 Waga wału i jego tarcz

Aby uwzględniać masę wału w obliczeniach zamieniam układ mas na dyskretny zgodnie z poniższą metodą:

Szerokość obydwu kół zębatych jest taka sama i wynosi:

$$sz = l_{wpsutu} + b$$

$$sz = 36 + 14 = 50 mm$$

Gęstość stali St6 wynosi 7860 $\frac{kg}{m^3}$.

Korzystając ze wzoru na masę $m=\rho V$ obliczam potrzebne masy.

$$\begin{split} M_1 &= 7860 * \pi * 0.056^2 * 0.05 = 3.8719 \, kg \\ M_2 &= 7860 * \pi * 0.18^2 * 0.05 = 40.0025 \, kg \\ m_1 &= 7860 * \pi (0.015^2 * 0.06 + 0.019^2 * 0.035) = 0.6453 \, kg \\ m_2 &= 7860 * \pi (2 * 0.019^2 * 0.035 + 0.021^2 * 0.015 + 0.0175^2 * 0.005) = 0.8251 \, kg \\ m_3 &= 7860 * \pi (0.0175^2 * 0.025 + 0.015^2 * 0.07) = 0.578 \, kg \end{split}$$

$$M_1 + \frac{1}{2}(m_1 + m_2) = 4.6071 \, kg$$

 $M_2 + \frac{1}{2}(m_2 + m_3) = 40.7041 \, kg$

Ciężary tarcz:

$$F_{g1} = 4.6071 * 9.81 = 45.196 N$$

 $F_{g2} = 40.7041 * 9.81 = 399.3 N$

9.2 Ugięcie wału uwzględniając ciężary tarcz

Ugięcie w punkcie B:

$$y(B) = \sqrt{y_{YZ}(B)^2 + y_{XZ}(B)^2} = 7.0157 * 10^{-5} m$$

Ugięcie w punkcie C:

$$y(C) = \sqrt{y_{YZ}(C)^2 + y_{XZ}(C)^2} = 5.73 * 10^{-5} m$$

9.3 Obliczanie prędkości krytycznej

Korzystam ze wzoru lorda Rayleigha:

$$\Omega_{1kr} = \sqrt{\frac{g\sum_{i=1}^{n} G_{i}y_{i}}{\sum_{i=1}^{n} G_{i}y_{i}^{2}}}$$

$$\Omega_{1kr} = \sqrt{\frac{g(F_{g1} * y(B) + F_{g2} * y(C))}{F_{g1} * y(B)^2 + F_{g2} * y(C)^2}} = 408.23 \frac{1}{s}$$

9.4 Krytyczna częstotliwość obrotowa

$$n_{kr} = \frac{30}{\pi} \Omega_{1kr} = 3898.3 \; \frac{obr}{min}$$

Porównanie częstotliwości zadanej z krytyczną:

$$n < n_{kr}$$

10. Obliczenia zmęczeniowe

Wytrzymałość na rozciąganie stali St6 wynosi $R_m=620\ MPa$. Granica plastyczności wynosi $R_e=350\ MPa$.

Najbardziej niebezpieczne miejsce w moim wale znajduje się w miejscu przejścia ze średnicy d=40mm na średnicę D=48mm. Zaokraglenie r=2mm.

Obliczam rzeczywiste naprężenia dopuszczalne:

$$\begin{split} S_e &= 0.5 R_m = 310 \ MPa \\ K_a &= 0.77 \\ K_b &= 0.85 \\ K_c &= 0.897 \\ K_d &= \frac{1}{K_f} = 0.562 \\ K_f &= 1 + q(K_t - 1) = 1.78 \\ K_t &= 2 \\ q &= 0.78 \\ S'_e &= K_a * K_b * K_c * K_d * S_e = 102.282 \ MPa \end{split}$$

Obliczam potrzebne wartości do wykresu krzywej Wohlera:

$$\log_{10}(0.9R_m) = 2,747$$
$$\log_{10}(S'_e) = 2.0098$$

Przeprowadzam obliczenia dla n=100 000 cykli.

$$k_g = 180.094 \, MPa$$

Obliczam minimalną średnicę:

$$d \ge \sqrt[3]{\frac{32M_{zr_{max}}}{\pi k_g}} = 23.62 \ mm$$

Dobrane średnice wału stopniowanego są większe od minimalnej średnicy wynikającej z obliczeń zmęczeniowych.

11. Rysunek wykonawczy

12. Rysunek złożeniowy

