1 EBSD Subsystem Requirement

1.1 Control Sub-sytem Requirements.

1.1.1 Data Storage Management

The Control Subsystem shall manage data storage efficiently, allowing for easy retrieval and backup. Rationale: This requirement ensures data integrity and accessibility, as outlined in the EBSD 300 Product Requirements Specification.

1.1.2 System Initialization

The Control Subsystem shall initialize all components upon startup to ensure readiness. Rationale: This ensures that all system components are operational from the start, as specified in the EBSD 300 Product Requirements Specification.

1.1.3 External Data Processing

The Control Subsystem shall process incoming external data in real-time. Rationale: This ensures timely data handling and system responsiveness, as outlined in the EBSD 300 Product Requirements Specification.

1.1.4 Warning System Activation

The Control Subsystem shall activate warning systems when predefined thresholds are exceeded. Rationale: This ensures user safety and system protection, as specified in the EBSD 300 Product Requirements Specification.

1.1.5 File Transfer Protocols

The Control Subsystem shall support multiple file transfer protocols, including USB and LAN. Rationale: This ensures versatile data transfer options, as outlined in the EBSD 300 Product Requirements Specification.

1.1.6 Communication Interface Support

The Control Subsystem shall support communication through USB interfaces. Rationale: This ensures basic communication capabilities, as specified in the EBSD 300 Product Requirements Specification.

1.1.7 Power Management

The Control Subsystem shall manage power consumption to not exceed 430 W. Rationale: This ensures energy efficiency and compliance with power specifications, as outlined in the EBSD 300 Product Requirements Specification.

1.1.8 Temperature Monitoring

The Control Subsystem shall continuously monitor internal temperatures to prevent overheating. Rationale: This ensures system reliability and longevity, as specified in the EBSD 300 Product Requirements Specification.

1.1.9 Pressure Adaptation

The Control Subsystem shall adapt to pressure changes within the specified range of 9.5 to 16.0 psia. Rationale: This ensures system functionality under varying pressure conditions, as outlined in the EBSD 300 Product Requirements Specification.

1.1.10 Humidity Control

The Control Subsystem shall maintain performance in environments with 30-90% relative humidity. Rationale: This ensures system reliability in different humidity conditions, as specified in the EBSD 300 Product Requirements Specification.

1.1.11 Vibration Resistance

The Control Subsystem shall resist vibrations up to 1g. Rationale: This ensures system stability in vibrational environments, as outlined in the EBSD 300 Product Requirements Specification.

1.1.12 Shock Absorption

The Control Subsystem shall absorb shocks up to 15g. Rationale: This ensures system durability under shock conditions, as specified in the EBSD 300 Product Requirements Specification.

1.1.13 Radiation Protection

The Control Subsystem shall protect against ionizing radiation as per SEE standards. Rationale: This ensures system reliability in radiation-prone environments, as outlined in the EBSD 300 Product Requirements Specification.

1.1.14 Oxygen Environment Operation

The Control Subsystem shall operate in enriched oxygen environments up to 30% concentration. Rationale: This ensures system functionality in specific atmospheric conditions, as specified in the EBSD 300 Product Requirements Specification.

1.1.15 Rear Panel Connectivity

The Control Subsystem shall provide connectivity through rear panel ports including Ethernet and USB. Rationale: This ensures comprehensive connectivity options, as outlined in the EBSD 300 Product Requirements Specification.

1.1.16 Front Panel Accessibility

The Control Subsystem shall provide easy access to front panel interfaces for user convenience. Rationale: This ensures user-friendly design and accessibility, as specified in the EBSD 300 Product Requirements Specification.

1.1.17 Design Customization

The Control Subsystem shall allow for design customization to meet specific user needs. Rationale: This ensures flexibility and adaptability in system design, as outlined in the EBSD 300 Product Requirements Specification.

1.1.18 Failure Detection

The Control Subsystem shall detect and report failures in real-time. Rationale: This ensures timely maintenance and system reliability, as specified in the EBSD 300 Product Requirements Specification.

1.1.19 Usability Enhancement

The Control Subsystem shall enhance usability through intuitive interface design. Rationale: This ensures ease of use and user satisfaction, as outlined in the EBSD 300 Product Requirements Specification.

1.1.20 Diagnostic Capabilities

The Control Subsystem shall provide diagnostic capabilities for system health monitoring. Rationale: This ensures proactive maintenance and system reliability, as specified in the EBSD 300 Product Requirements Specification.

1.2 Thermal Current Sensing Sub-system Requirements.

1.2.1 Temperature Measurement Accuracy

The Thermal Current Sensing Subsystem shall measure temperature with an accuracy of ± 0.1 °C. Rationale: This ensures precise thermal data collection, as outlined in the Simcenter documentation for accurate thermal metrics.

1.2.2 Real-Time Data Processing

The Thermal Current Sensing Subsystem shall process temperature data in real-time. Rationale: This ensures timely monitoring and response to thermal changes, as specified in the Simcenter documentation.

1.2.3 Non-Destructive Testing

The Thermal Current Sensing Subsystem shall perform non-destructive thermal testing. Rationale: This ensures the integrity of the device under test, as outlined in the Simcenter documentation.

1.2.4 JEDEC Standard Compliance

The Thermal Current Sensing Subsystem shall comply with JEDEC 51 standards for thermal testing. Rationale: This ensures industry-standard compliance, as specified in the Simcenter documentation.

1.2.5 Thermal Transient Response

The Thermal Current Sensing Subsystem shall measure thermal transient response accurately. Rationale: This ensures detailed thermal analysis, as outlined in the Simcenter documentation.

1.2.6 Data Logging Capability

The Thermal Current Sensing Subsystem shall log temperature data for analysis and reporting. Rationale: This ensures comprehensive data collection for further analysis, as specified in the Simcenter documentation.

1.2.7 Automated Calibration

The Thermal Current Sensing Subsystem shall support automated calibration for accuracy. Rationale: This ensures high precision in thermal measurements, as outlined in the Simcenter documentation.

1.2.8 High-Volume Testing Support

The Thermal Current Sensing Subsystem shall support high-volume testing for production environments. Rationale: This ensures efficiency in mass production, as specified in the Simcenter documentation.

1.2.9 Thermal Impedance Profiling

The Thermal Current Sensing Subsystem shall generate thermal impedance profiles for components. Rationale: This ensures detailed thermal characterization, as outlined in the Simcenter documentation.

1.2.10 Integration with Simulation Models

The Thermal Current Sensing Subsystem shall integrate with thermal simulation models for enhanced accuracy. Rationale: This ensures comprehensive thermal analysis, as specified in the Simcenter documentation.

1.2.11 Power Cycling Test Support

The Thermal Current Sensing Subsystem shall support power cycling tests to assess component reliability. Rationale: This ensures system durability under operational conditions, as outlined in the Simcenter documentation.

1.2.12 Temperature Threshold Alerts

The Thermal Current Sensing Subsystem shall provide alerts when temperature thresholds are exceeded. Rationale: This ensures timely intervention to prevent overheating, as specified in the Simcenter documentation.

1.2.13 Data Interface Compatibility

The Thermal Current Sensing Subsystem shall be compatible with standard data interfaces for easy integration. Rationale: This ensures seamless data transfer and integration, as outlined in the Simcenter documentation.

1.2.14 Remote Monitoring Capability

The Thermal Current Sensing Subsystem shall support remote monitoring of thermal data. Rationale: This ensures flexibility and accessibility in data monitoring, as specified in the Simcenter documentation.

1.2.15 Energy Efficiency

The Thermal Current Sensing Subsystem shall operate with minimal power consumption. Rationale: This ensures energy efficiency and cost-effectiveness, as outlined in the Simcenter documentation.

1.2.16 Environmental Adaptability

The Thermal Current Sensing Subsystem shall adapt to varying environmental conditions without performance degradation. Rationale: This ensures reliability in diverse operating environments, as specified in the Simcenter documentation.

1.2.17 System Diagnostics

The Thermal Current Sensing Subsystem shall perform self-diagnostics to ensure operational integrity. Rationale: This ensures system reliability and reduces downtime, as outlined in the Simcenter documentation.

1.2.18 User-Friendly Interface

The Thermal Current Sensing Subsystem shall provide a user-friendly interface for easy operation. Rationale: This ensures ease of use and user satisfaction, as specified in the Simcenter documentation.

1.2.19 Data Security

The Thermal Current Sensing Subsystem shall ensure data security during transmission and storage. Rationale: This ensures the protection of sensitive thermal data, as outlined in the Simcenter documentation.

1.2.20 Scalability

The Thermal Current Sensing Subsystem shall be scalable to accommodate future expansion needs. Rationale: This ensures long-term usability and adaptability, as specified in the Simcenter documentation.

1.3 Power Driver Subsystem

1.3.1 Voltage Regulation

The Power Driver Subsystem shall regulate output voltage within $\pm 5\%$ of the specified value. Rationale: This ensures stable power delivery to connected components, as outlined in the EBSD 300 Product Requirements Specification.

1.3.2 Current Limiting

The Power Driver Subsystem shall limit output current to prevent overcurrent conditions. Rationale: This protects the system and connected components from damage, as specified in the EBSD 300 Product Requirements Specification.

1.3.3 Thermal Protection

The Power Driver Subsystem shall include thermal protection to prevent overheating. Rationale: This ensures system reliability and longevity, as outlined in the EBSD 300 Product Requirements Specification.

1.3.4 Short Circuit Protection

The Power Driver Subsystem shall provide short circuit protection to prevent damage. Rationale: This ensures system safety and integrity, as specified in the EBSD 300 Product Requirements Specification.

1.3.5 Power Cycling Capability

The Power Driver Subsystem shall support power cycling tests to assess component reliability. Rationale: This ensures system durability under operational conditions, as outlined in the Simcenter documentation.

1.3.6 Efficiency Optimization

The Power Driver Subsystem shall operate with an efficiency of at least 90%. Rationale: This ensures energy efficiency and cost-effectiveness, as specified in the Simcenter documentation.

1.3.7 Remote Control Support

The Power Driver Subsystem shall support remote control for power management. Rationale: This ensures flexibility and accessibility in power management, as outlined in the Simcenter documentation.

1.3.8 Load Regulation

The Power Driver Subsystem shall maintain load regulation within $\pm 2\%$ under varying load conditions. Rationale: This ensures consistent power delivery, as specified in the EBSD 300 Product Requirements Specification.

1.3.9 Startup Sequence Control

The Power Driver Subsystem shall control the startup sequence to prevent inrush current. Rationale: This protects the system from potential damage during startup, as outlined in the EBSD 300 Product Requirements Specification.

1.3.10 Overvoltage Protection

The Power Driver Subsystem shall provide overvoltage protection to prevent damage. Rationale: This ensures system safety and integrity, as specified in the EBSD 300 Product Requirements Specification.

1.3.11 Fault Detection

The Power Driver Subsystem shall detect and report faults in real-time. Rationale: This ensures timely maintenance and system reliability, as outlined in the EBSD 300 Product Requirements Specification.

1.3.12 Data Logging Capability

The Power Driver Subsystem shall log power data for analysis and reporting. Rationale: This ensures comprehensive data collection for further analysis, as specified in the Simcenter documentation.

1.3.13 Scalability

The Power Driver Subsystem shall be scalable to accommodate future expansion needs. Rationale: This ensures long-term usability and adaptability, as outlined in the Simcenter documentation.

1.3.14 Energy Storage Integration

The Power Driver Subsystem shall integrate with energy storage systems for backup power. Rationale: This ensures continuous power supply during outages, as specified in the Simcenter documentation.

1.3.15 Environmental Adaptability

The Power Driver Subsystem shall adapt to varying environmental conditions without performance degradation. Rationale: This ensures reliability in diverse operating environments, as outlined in the Simcenter documentation.

1.3.16 User-Friendly Interface

The Power Driver Subsystem shall provide a user-friendly interface for easy operation. Rationale: This ensures ease of use and user satisfaction, as specified in the Simcenter documentation.

1.3.17 Data Security

The Power Driver Subsystem shall ensure data security during transmission and storage. Rationale: This ensures the protection of sensitive power data, as outlined in the Simcenter documentation.

1.3.18 System Diagnostics

The Power Driver Subsystem shall perform self-diagnostics to ensure operational integrity. Rationale: This ensures system reliability and reduces downtime, as specified in the Simcenter documentation.

1.3.19 Communication Interface Compatibility

The Power Driver Subsystem shall be compatible with standard communication interfaces for easy integration. Rationale: This ensures seamless data transfer and integration, as outlined in the Simcenter documentation.

1.3.20 Redundancy Support

The Power Driver Subsystem shall support redundancy to ensure continuous operation. Rationale: This ensures system reliability and availability, as specified in the Simcenter documentation.

1.4 General IO Subsystem

1.4.1 Data Transfer Rate

The General IO Subsystem shall support a data transfer rate of up to 1 Gbps. Rationale: This ensures efficient data handling and meets the connectivity requirements outlined in the EBSD 300 Product Requirements Specification.

1.4.2 USB Port Support

The General IO Subsystem shall include at least two USB 2.0 ports. Rationale: This provides necessary connectivity options for peripheral devices, as specified in the EBSD 300 Product Requirements Specification.

1.4.3 Ethernet Connectivity

The General IO Subsystem shall include a Gigabit Ethernet port for network connectivity. Rationale: This ensures high-speed network access, as outlined in the EBSD 300 Product Requirements Specification.

1.4.4 RS232 Interface

The General IO Subsystem shall include three RS232 ports for serial communication. Rationale: This provides compatibility with legacy systems, as specified in the EBSD 300 Product Requirements Specification.

1.4.5 RS422/485 Support

The General IO Subsystem shall include one RS422 or RS485 port for industrial communication. Rationale: This ensures compatibility with industrial communication standards, as outlined in the EBSD 300 Product Requirements Specification.

1.4.6 CAN Bus Connectivity

The General IO Subsystem shall include five CAN bus connections for automotive applications. Rationale: This ensures compatibility with automotive communication standards, as specified in the EBSD 300 Product Requirements Specification.

1.4.7 Fiber Optic Interface

The General IO Subsystem shall include a fiber optic RX/TX port for high-speed data transfer. Rationale: This ensures high-speed and secure data transmission, as outlined in the EBSD 300 Product Requirements Specification.

1.4.8 28-Pin I/O Interface

The General IO Subsystem shall include a 28-pin I/O interface for custom applications. Rationale: This provides flexibility for custom connectivity needs, as specified in the EBSD 300 Product Requirements Specification.

1.4.9 Hot-Swappable Ports

The General IO Subsystem shall support hot-swappable ports for easy maintenance. Rationale: This ensures minimal downtime during maintenance, as outlined in the EBSD 300 Product Requirements Specification.

1.4.10 Data Security

The General IO Subsystem shall ensure data security during transmission and storage. Rationale: This protects sensitive data from unauthorized access, as specified in the Simcenter documentation.

1.4.11 Remote Access Capability

The General IO Subsystem shall support remote access for monitoring and control. Rationale: This ensures flexibility and accessibility, as outlined in the Simcenter documentation.

1.4.12 Environmental Adaptability

The General IO Subsystem shall operate effectively in varying environmental conditions. Rationale: This ensures reliability in diverse operating environments, as specified in the EBSD 300 Product Requirements Specification.

1.4.13 Power Efficiency

The General IO Subsystem shall operate with minimal power consumption. Rationale: This ensures energy efficiency and cost-effectiveness, as outlined in the Simcenter documentation.

1.4.14 System Diagnostics

The General IO Subsystem shall perform self-diagnostics to ensure operational integrity. Rationale: This ensures system reliability and reduces downtime, as specified in the Simcenter documentation.

1.4.15 User-Friendly Interface

The General IO Subsystem shall provide a user-friendly interface for easy operation. Rationale: This ensures ease of use and user satisfaction, as outlined in the Simcenter documentation.

1.4.16 Scalability

The General IO Subsystem shall be scalable to accommodate future expansion needs. Rationale: This ensures long-term usability and adaptability, as specified in the Simcenter documentation.

1.4.17 Redundancy Support

The General IO Subsystem shall support redundancy to ensure continuous operation. Rationale: This ensures system reliability and availability, as outlined in the Simcenter documentation.

1.4.18 Integration with Control Systems

The General IO Subsystem shall integrate seamlessly with control systems for coordinated operation. Rationale: This ensures system efficiency and performance, as specified in the EBSD 300 Product Requirements Specification.

1.4.19 Labeling and Identification

The General IO Subsystem shall include clear labeling for identification and safety information. Rationale: This ensures ease of use and compliance with safety regulations, as outlined in the EBSD 300 Product Requirements Specification.

1.4.20 Material Selection

The General IO Subsystem shall use materials that meet specified performance and safety standards. Rationale: This ensures durability and compliance with industry standards, as specified in the EBSD 300 Product Requirements Specification.

1.5 Chassis Subsystem

1.5.1 Structural Integrity

The Chassis Subsystem shall maintain structural integrity under all specified operating conditions. Rationale: This ensures the durability and safety of the system, as outlined in the EBSD 300 Product Requirements Specification.

1.5.2 Modular Design

The Chassis Subsystem shall support a modular design to accommodate up to 10 plug-in units. Rationale: This ensures flexibility and scalability, as specified in the EBSD 300 Product Requirements Specification.

1.5.3 Heat Dissipation

The Chassis Subsystem shall effectively dissipate heat to maintain optimal operating temperatures. Rationale: This ensures system reliability and performance, as outlined in the EBSD 300 Product Requirements Specification.

1.5.4 Vibration Resistance

The Chassis Subsystem shall resist vibrations up to 1g. Rationale: This ensures system stability in vibrational environments, as specified in the EBSD 300 Product Requirements Specification.

1.5.5 Shock Absorption

The Chassis Subsystem shall absorb shocks up to 15g. Rationale: This ensures system durability under shock conditions, as outlined in the EBSD 300 Product Requirements Specification.

1.5.6 EMI Shielding

The Chassis Subsystem shall provide electromagnetic interference (EMI) shielding to protect internal components. Rationale: This ensures system integrity and performance, as specified in the EBSD 300 Product Requirements Specification.

1.5.7 Corrosion Resistance

The Chassis Subsystem shall be resistant to corrosion in specified environmental conditions. Rationale: This ensures long-term durability and reliability, as outlined in the EBSD 300 Product Requirements Specification.

1.5.8 Weight Optimization

The Chassis Subsystem shall be designed to minimize weight while maintaining structural integrity. Rationale: This ensures ease of handling and installation, as specified in the EBSD 300 Product Requirements Specification.

1.5.9 Mounting Flexibility

The Chassis Subsystem shall support flexible mounting options for various installation environments. Rationale: This ensures adaptability to different use cases, as outlined in the EBSD 300 Product Requirements Specification.

1.5.10 Cooling System Integration

The Chassis Subsystem shall integrate with the cooling system to maintain optimal temperatures. Rationale: This ensures system reliability and performance, as specified in the EBSD 300 Product Requirements Specification.

1.5.11 Access Panels

The Chassis Subsystem shall include access panels for easy maintenance and component replacement. Rationale: This ensures ease of maintenance and reduces downtime, as outlined in the EBSD 300 Product Requirements Specification.

1.5.12 Color Scheme

The Chassis Subsystem shall adhere to Siemens corporate color scheme for brand consistency. Rationale: This ensures brand recognition and consistency, as specified in the EBSD 300 Product Requirements Specification.

1.5.13 Environmental Adaptability

The Chassis Subsystem shall adapt to varying environmental conditions without performance degradation. Rationale: This ensures reliability in diverse operating environments, as outlined in the EBSD 300 Product Requirements Specification.

1.5.14 Noise Reduction

The Chassis Subsystem shall incorporate noise reduction features to minimize operational noise. Rationale: This ensures a quieter operating environment, as specified in the EBSD 300 Product Requirements Specification.

1.5.15 Security Features

The Chassis Subsystem shall include security features to prevent unauthorized access. Rationale: This ensures the protection of internal components and data, as outlined in the EBSD 300 Product Requirements Specification.

1.5.16 Grounding Provisions

The Chassis Subsystem shall include grounding provisions to ensure electrical safety. Rationale: This ensures compliance with safety standards, as specified in the EBSD 300 Product Requirements Specification.

1.5.17 Labeling and Identification

The Chassis Subsystem shall include clear labeling for identification and safety information. Rationale: This ensures ease of use and compliance with safety regulations, as outlined in the EBSD 300 Product Requirements Specification.

1.5.18 Material Selection

The Chassis Subsystem shall use materials that meet specified performance and safety standards. Rationale: This ensures durability and compliance with industry standards, as specified in the EBSD 300 Product Requirements Specification.

1.5.19 Integration with Control Systems

The Chassis Subsystem shall integrate seamlessly with control systems for coordinated operation. Rationale: This ensures system efficiency and performance, as outlined in the EBSD 300 Product Requirements Specification.

1.5.20 Redundancy Support

The Chassis Subsystem shall support redundancy to ensure continuous operation. Rationale: This ensures system reliability and availability, as specified in the EBSD 300 Product Requirements Specification.

1.6 Power Subsystem

1.6.1 Voltage Regulation

The Power Subsystem shall regulate output voltage within $\pm 5\%$ of the specified value. Rationale: This ensures stable power delivery to connected components, as outlined in the EBSD 300 Product Requirements Specification.

1.6.2 Current Limiting

The Power Subsystem shall limit output current to prevent overcurrent conditions. Rationale: This protects the system and connected components from damage, as specified in the EBSD 300 Product Requirements Specification.

1.6.3 Thermal Protection

The Power Subsystem shall include thermal protection to prevent overheating. Rationale: This ensures system reliability and longevity, as outlined in the EBSD 300 Product Requirements Specification.

1.6.4 Short Circuit Protection

The Power Subsystem shall provide short circuit protection to prevent damage. Rationale: This ensures system safety and integrity, as specified in the EBSD 300 Product Requirements Specification.

1.6.5 Power Cycling Capability

The Power Subsystem shall support power cycling tests to assess component reliability. Rationale: This ensures system durability under operational conditions, as outlined in the Simcenter documentation.

1.6.6 Efficiency Optimization

The Power Subsystem shall operate with an efficiency of at least 90%. Rationale: This ensures energy efficiency and cost-effectiveness, as specified in the Simcenter documentation.

1.6.7 Remote Control Support

The Power Subsystem shall support remote control for power management. Rationale: This ensures flexibility and accessibility in power management, as outlined in the Simcenter documentation.

1.6.8 Load Regulation

The Power Subsystem shall maintain load regulation within $\pm 2\%$ under varying load conditions. Rationale: This ensures consistent power delivery, as specified in the EBSD 300 Product Requirements Specification.

1.6.9 Startup Sequence Control

The Power Subsystem shall control the startup sequence to prevent inrush current. Rationale: This protects the system from potential damage during startup, as outlined in the EBSD 300 Product Requirements Specification.

1.6.10 Overvoltage Protection

The Power Subsystem shall provide overvoltage protection to prevent damage. Rationale: This ensures system safety and integrity, as specified in the EBSD 300 Product Requirements Specification.

1.6.11 Fault Detection

The Power Subsystem shall detect and report faults in real-time. Rationale: This ensures timely maintenance and system reliability, as outlined in the EBSD 300 Product Requirements Specification.

1.6.12 Data Logging Capability

The Power Subsystem shall log power data for analysis and reporting. Rationale: This ensures comprehensive data collection for further analysis, as specified in the Simcenter documentation.

1.6.13 Scalability

The Power Subsystem shall be scalable to accommodate future expansion needs. Rationale: This ensures long-term usability and adaptability, as outlined in the Simcenter documentation.

1.6.14 Energy Storage Integration

The Power Subsystem shall integrate with energy storage systems for backup power. Rationale: This ensures continuous power supply during outages, as specified in the Simcenter documentation.

1.6.15 Environmental Adaptability

The Power Subsystem shall adapt to varying environmental conditions without performance degradation. Rationale: This ensures reliability in diverse operating environments, as outlined in the Simcenter documentation.

1.6.16 User-Friendly Interface

The Power Subsystem shall provide a user-friendly interface for easy operation. Rationale: This ensures ease of use and user satisfaction, as specified in the Simcenter documentation.

1.6.17 Data Security

The Power Subsystem shall ensure data security during transmission and storage. Rationale: This ensures the protection of sensitive power data, as outlined in the Simcenter documentation.

1.6.18 System Diagnostics

The Power Subsystem shall perform self-diagnostics to ensure operational integrity. Rationale: This ensures system reliability and reduces downtime, as specified in the Simcenter documentation.

1.6.19 Communication Interface Compatibility

The Power Subsystem shall be compatible with standard communication interfaces for easy integration. Rationale: This ensures seamless data transfer and integration, as outlined in the Simcenter documentation.

1.6.20 Redundancy Support

The Power Subsystem shall support redundancy to ensure continuous operation. Rationale: This ensures system reliability and availability, as specified in the Simcenter documentation.

1.7