Sensitivity to Numerical Integration Scheme in Calculation of Transport Barriers

Arne Magnus Tveita Løken

Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

November 18, 2017

Abstract

Sammendrag

Preface

Table of Contents

Li	st of	Figures	v
Li	st of	Γables	vi
No	otatio	n	vii
1	The	ory	1
	1.1	Solving systems of Ordinary Differential Equations	1
	1.2	Setup	3
2	Intr	oduction	3
	2.1	Complex systems -> Need shortcuts	4
	2.2	Intuitively, what is an LCS?	4
	2.3	LCS definition	4
	2.4	Different types of LCSs	4
	2.5	Hyperbolic LCSs	4
3	The	ory	4
	3.1	Solving ODE systems	4
	3.2	Flowmaps	4
	3.3	LCS definition	4
	3.4	FTLE as LCS predictor	4
	3.5	Identify hyperbolic LCS from variational theory	4
4	Too	!!	4
	4.1	Adveksjon	4
	4.2	CG tensors	5
	4.3	Eigenvalues/Eigenvectors	5
	4.4	Identify AB domain	5
	4.5	Compute strainlines	5
	4.6	Identify intersections	5
	4.7	Identify neighbors	5
	4.8	Select LCSs	5
5	Exp	eriments	6
Re	eferei	nces	7
Al	PPEN	DIX A Haller er en dust	8

List of Figures

		_																				_
1	.1	1	Jawg																			-3

List of Tables

1.1 Butcher tableau representation of a general s-stage Runge-Kutta method . . . 2

Notation

1 Theory

1.1 SOLVING SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

In physics, like other sciences, modeling a system often equates to solving an initial value problem. An initial value problem can be described in terms of a differential equation of the form

$$\dot{x}(t) = f(t, x(t)), \quad x(t_0) = x_0,$$
 (1.1)

where x is an unknown function (scalar or vector) of time t. The function f is defined on an open subset Ω of $\mathbb{R} \times \mathbb{R}^n$. The initial condition (t_0, x_0) is a point in the domain of f, i.e., $(t_0, x_0) \in \Omega$. In higher dimensions (i.e., n > 1) the differential equation (1.1) is replaced by a family of equations

$$\dot{x}_{i}(t) = f_{j}(t, x_{1}(t), x_{2}(t), \dots, x_{n}(t)), \quad x_{i}(t_{0}) = x_{i,0}, \quad i = 1, \dots, n$$

$$\mathbf{x}(t) = (x_{1}(t), x_{2}(t), \dots, x_{n}(t))$$
(1.2)

The system if nonlinear if the function f in equation (1.1), alternatively, if at least one of the functions f_i in equation (1.2), is nonlinear in one or more of its arguments.

For nonlinear systems, analytical solutions frequently do not exist. Thus, such systems are often analyzed by means of numerical methods. In numerical analysis, the Runge-Kutta family of methods are a frequently used collection of implicit and explicit iterative methods, used in temporal discretization in order to obtain numerical approximations of the *true* solutions. The German mathematicians C. Runge and M. W. Kutta developed the first of the family's methods at the turn of the twentieth century (Hairer, Nørsett, and Wanner 1993, p.134 in the 2008 printing). The general scheme of what is now known as a Runge-Kutta method is as follows:

Definition 1. Let *s* be an integer and $a_{1,1}, a_{1,2}, \ldots, a_{1,s}, a_{2,1}, a_{2,2}, \ldots, a_{2,s}, \ldots, a_{s,1}, a_{s,2}, \ldots, a_{s,s}, b_1, b_2, \ldots, b_s$ and c_1, c_2, \ldots, c_s be real coefficients. Let *h* be the numerical step length used in the temporal discretization. Then, the method

$$k_{i} = f\left(t_{n} + c_{i}h, x_{n} + h\sum_{j=1}^{s} a_{i,j}k_{j}\right), \quad i = 1, \dots, s$$

$$x_{n+1} = x_{n} + h\sum_{i=1}^{s} b_{i}k_{i}$$
(1.3)

is called an *s-stage Runge-Kutta method* for the system (1.1).

The main reason to include multiple stages *s* in a Runge-Kutta method, cf. definition 1, is to improve the numerical accuracy of the computed solutions. Hairer, Nørsett, and Wanner (1993, p.2 in the 2010 printing) define the *order* of a Runge-Kutta method as follows:

Definition 2. A Runge-Kutta method (1.3) is said to be of *order* p if, for sufficiently smooth systems (1.1),

$$||x_{n+1} - x(t_{n+1})|| \le Kh^{p+1} \tag{1.4}$$

i.e., if the Taylor series for the exact solution $x(t_{n+1})$ and the numerical solution x_{n+1} coincide up to (and including) the term h^p .

It is easy to show that if the local error of a Runge-Kutta method is of order p, cf. definition 2, the global error, i.e., the total accumulated error resulting of applying the algorithm a number of times, is expected to scale as h^p . Showing this is left as an exercise for the interested reader.

In definition 1, the matrix $(a_{i,j})$ is commonly called the *Runge-Kutta matrix*, while b_i and c_i are known as the *weights* and *nodes*, respectively. Since the 1960s, it has been customary to represent Runge-Kutta methods (1.3) symbolically, by means of mnemonic devices known as Butcher tableaus (Hairer, Nørsett, and Wanner 1993, p.134 in the 2008 printing). The Butcher tableau for a general *s*-stage Runge-Kutta method, introduced in definition 1, is presented in table 1.1.

Table 1.1: Butcher tableau representation of a general s-stage Runge-Kutta method.

c_1 c_2	$a_{1,1}$	$a_{1,2}$		$a_{1,s}$
c_2	$a_{2,1}$	$a_{2,2}$		$a_{2,s}$
÷	:	:	٠.	:
c_s	$a_{s,1}$	$a_{s,2}$		$a_{s,s}$
	b_1	b_2		b_s

For explicit Runge-Kutta methods, the Runge-Kutta matrix ($a_{i,j}$) is upper triangular. Similarly, for fully implicit Runge-Kutta methods, the Runge-Kutta matrix is lower triangular. Unlike explicit methods, implicit methods require the solution of a linear system at every time level, making them more computationally demanding than their explicit siblings. The main selling point of implicit methods is that they are more numerically stable than explicit methods. This property means that implicit methods are particularly well-suited for stiff systems, i.e., physical systems with highly disparate time scales (Hairer and Wanner 1996, p.2 in the 2010 printing). For such systems, most explicit methods are highly numerically unstable, unless the numerical step size is made exceptionally small, rendering most explicit methods practically useless. For nonstiff systems, however, implicit methods behave similarly to their explicit analogues in terms of numerical accuracy and convergence properties.

1.2 SETUP

We consider flow in two-dimensional dynamical systems of the form

$$\dot{\mathbf{x}} = \mathbf{v}(t, \mathbf{x}), \quad \mathbf{x} \in \mathcal{U}, \quad t \in [t_0, t_1],$$
 (1.5)

i.e., systems defined for the finite time interval $[t_0, t_1]$, on an open, bounded subset \mathcal{U} of \mathbb{R}^2 . In addition, the velocity field \mathbf{v} is assumed to be smooth in its arguments. Depending on the exact nature of the velocity field \mathbf{v} , analytical particle trajectories, i.e., solutions of system (??), may or may not be computed.

Figure 1.1: Dawg

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{1.6}$$

2 Introduction

Only interested in hyperbolic LCSs as they are the only ones relevant for transport barriers.

- 2.1 COMPLEX SYSTEMS -> NEED SHORTCUTS
- 2.2 INTUITIVELY, WHAT IS AN LCS?
- 2.3 LCS DEFINITION
- 2.4 DIFFERENT TYPES OF LCSS
- 2.5 HYPERBOLIC LCSS
 - -> Connect to application

3 Theory

3.1 SOLVING ODE SYSTEMS

--> General ODE systems --> Numerical integrators dump --> Interpolation necessary for discrete systems

3.2 FLOWMAPS

-> Introduce system and limitations -> Introduce the concept of a flow map

3.3 LCS DEFINITION

-> Different kinds of LCSs (hyperbolic, elliptic and parabolic, cf. LCS tool) -> More mathematical definitions? Ask Thör

3.4 FTLE AS LCS PREDICTOR

- -> Prone to false positives and negatives -> Definition somewhat arbitrary (what is a ridge)?
- -> Strogatz' motivation as a simple explanation of why we consider it at all?

3.5 IDENTIFY HYPERBOLIC LCS FROM VARIATIONAL THEORY

-> Mathematically involved.

4 Tool!

4.1 ADVEKSION

-> Si noe om system, glatte vektorfelt/hastighetsfelt -> Integrasjonsteknikker

4.2 CG TENSORS

-> Auxiliary grid -> Extended grids i fire retninger -> Beregn CG tensors -> Centered differencing, consistently for all main particles -> Har med gitterpunkter på utsiden av hoveddomenet for å inkludere diskontinuitet i oppførsel i hastighetsfeltet

4.3 EIGENVALUES/EIGENVECTORS

-> Auxiliary grid -> Laplacian, extended grid layer 2 for centered differencing

4.4 IDENTIFY AB DOMAIN

-> Klargjør måten vi tolket Laplacian på

4.5 COMPUTE STRAINLINES

-> Define G0 along vertical and horizontal lin -> Avoid redundant computations of trajectories -> Integrate forwards and backwards --> (Notice that strainlines "fall out" of AB domain, likely due to num. error) -> Special linear interpolation with local direction correction -> Higher order spline interpolations are inappropriate because of oriental -> discontinuities (in case of vectors) and great variance (in case of evals) -> Linear spline interpolation without orientation fix caused random turns -> at discontinuities. -> Stop criteria -> Alpha scaling introduced by Haller gave unpredictable leaps --> After linear interp? -> Used just one integrator here, because [...] -> Choice of integration step (needs test!) -> Note that this step is very sensitive to the flow map details, -> components in the strain tensors down to the 10⁻15 level. -> LCS results sensitive to continious failure length, needed to increase --> it in order to replicate results from Haller due to different AB domain

4.6 IDENTIFY INTERSECTIONS

-> Which lines and why (maximize intersections with as few lines as possible) -> Include all intersections between a strainline and a vert / horz linear

4.7 IDENTIFY NEIGHBORS

-> Neighbor length essential for LCS results

4.8 SELECT LCSS

-> Identify LCS as local maxima of λ_2 which are also long enough -> Needs at least one neighbor other than itself -> Cut tail of strainlines which exit AB domain and do not return -> That part is no LCS! -> Parts/sections of strainlines may qualify as LCSs

5 Experiments

-> What did we try and why?

References

- Bogacki, P. and Shampine, L. (1996). "An efficient Runge-Kutta (4, 5) pair". In: *Computers & Mathematics with Applications* 32.6, pp. 15–28.
- Cargill, M. and O'Connor, P. (2013). Writing Scientific Research Articles: Strategy and Steps. 2nd ed. John Wiley & Sons. ISBN: 9781118570708.
- Dormand, J., Lockyer, M., et al. (1989). "Global error estimation with Runge-Kutta triplets". In: *Computers and Mathematics with Applications* 18.9, pp. 836–846.
- Dormand, J. and Prince, P. (1986). "A reconsideration of some embedded Runge-Kutta formulae". In: Journal of Computational and Applied Mathematics 15.2, 203–211. ISSN: 0377-0427.
- Farazmand, M. and Haller, G. (2012). "Computing Lagrangian coherent structures from their variational theory". In: *Chaos: An Interdisciplinary Journal of Nonlinear Science* 22.1, p. 013128.
- Fehlberg, E. (1974). *Classical fifth-, sixth-, seventh- and eighth order Runge-Kutta formulas with stepsize control.* Tech. rep. NASA-TR-R-432. NASA Marshall Space Flight Center, Huntsville, AL, United States.
- Hairer, E., Nørsett, S. P., and Wanner, G. (1993). *Solving Ordinary Differential Equations I: Nonstiff Problems.* 2nd ed. Springer-Verlag Berlin Heidelberg. ISBN: 978-3-540-56670-0.
- Hairer, E. and Wanner, G. (1996). Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. 2nd ed. Springer-Verlag Berlin Heidelberg. ISBN: 978-3-642-05221-7.
- Haller, G. (2015). "Lagrangian coherent structures". In: *Annual Review of Fluid Mechanics* 47, pp. 137–162.
- Onu, K., Huhn, F., and Haller, G. (2015). "LCS Tool: A computational platform for Lagrangian coherent structures". In: *Journal of Computational Science* 7, pp. 26–36. ISSN: 1877-7503.
- Peacock, T. and Haller, G. (2013). "Lagrangian coherent structures: The hidden skeleton of fluid flows". In: *Physics Today* 66.2, p. 41.
- Prince, P. and Dormand, J. (1981). "High order embedded Runge-Kutta formulae". In: *Journal of Computational and Applied Mathematics* 7.1, pp. 67–75. ISSN: 0377-0427.
- Shadden, S. C., Lekien, F., and Marsden, J. E. (2005). "Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows". In: *Physica D: Nonlinear Phenomena* 212.3, pp. 271–304. ISSN: 0167-2789.
- Strogatz, S. H. (2014). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview press, Colorado. ISBN: 978-08133-4901-7.

A Haller er en dust

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est.

Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.