MOSFET Logic Circuits

TRANSISTORS

- > **Active** semiconductor devices (with three terminals)
- ➤ Operating **principle**: using a **voltage** between two terminals (command) **to control the current** through the third terminal.
- > Transistors: *voltage-controlled current sources*

Discrete transistors

TRANSISTORS

Transistors: essential components of every electronic circuit

Integrated transistors - digital integrated circuit

MOS transistor (T) count (processor)

- Intel 4004 (4-bit), 1971, 10μ, 12mm², 2,250 T
- Pentium 4 Prescott (32-bit) 2004, 90nm, 110mm² **112,000,000** T
- Core i7 Broadwell-E (64-bit), 2016, 14nm, 246mm², 3,200,000,000 T
- Apple A12 (hexa-core ARM64), 2018, 7nm, 83.27mm², 6,900,000,000 T
- AMD Epyc Rome (64-bit), 2019, 7&12nm, 1088 mm^{2,} 39,540,000,000 T
- Apple M1 Max (10-core, 64-bit), 2021, 5nm, 57,000,000,000 T

Transistor types

Symbols of MOSFET

n -channelenhancement-type

MOSFET

<u>n - type</u>

p -channelenhancement-typeMOSFET

p - type

G - gate or grid

D - drain

S - source

Operation of MOSFET

n -channelenhancement-type **MOSFET**

p -channel
enhancement-type MOSFET

Logic circuit with Tn

$$0V \rightarrow logic 0$$

$$V_{PS} \rightarrow \text{logic } 1$$

$$v_{GS} = v_I$$

$$v_I \in \{0, V_{PS}\}$$

Operating table

v_I	v_{GS}	Tn	v_o
0	0	off	V_{PS}
	$(< v_{Thn})$	(open-circuit)	
V_{PS}	V_{PS}	on	0
	$(>> v_{Thn})$	(short-circuit)	

Truth table

\boldsymbol{A}	Y
0	1
1	0

NOT

Logic circuit with Tp

$$0V \rightarrow logic 0$$

$$V_{PS} \rightarrow \text{logic } 1$$

$$v_{GS} = v_I - V_{PS}$$
$$v_I \in \{0, V_{PS}\}$$

Operating table

v_I	v_{GS}	Tn	v_o
0	$-V_{PS}$	on	V_{PS}
	$(<< v_{Thp})$	(short-circuit)	
V_{PS}	0	off	0
	$(>v_{Thn})$	(open-circuit)	

Truth table

\boldsymbol{A}	Y
0	1
1	0

NOT

Critical analysis of the NOT logic circuit with T_n and R

Disadvantage elimination:

R as small as possible, ideal $R \rightarrow 0$

Critical analysis of the NOT logic circuit with T_n and R

$$P_{PS} = \frac{V_{PS}^2}{R}$$

Disadvantage elimination:

R as small as possible, ideal $R \rightarrow 0$ R as large as possible, ideal $R \rightarrow \infty$

Solution?

CMOS Logic Inverter

v_I	T_n	T_p	v_O
0V	(off)	(on)	$pprox V_{DD}$
V_{DD}	(on)	(off)	≈0V

\boldsymbol{A}	Y
0	1
1	0

CMOS – Complementary MOSFET

How can we eliminate the disadvantages due to the presence of *R*?

CMOS NAND

A B	T_{n1}	T_{n2}	T_{P1}	T_{P2}	$Y = \overline{A \cdot B}$
0 0	(off)	(off)	(on)	(on)	1
0 1	(off)	(on)	(on)	(off)	1
1 0	(on)	(off)	(off)	(on)	1
1 1	(on)	(on)	(off)	(off)	0

CMOS NOR

CMOS AND

Logic Gates

NOT

A	$ar{A}$
0	1
1	0

AND

A	В	\overline{AB}
0	0	0
0	1	0
1	0	0
1	1	1

OR

A	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

Logic Gates – cont.

NOR

XOR

$$A \longrightarrow \overline{A + B}$$

A -	\mathcal{H}	$A \oplus B$
B-		

A	В	\overline{AB}
0	0	1
0	1	1
1	0	1
1	1	0

A	В	$\overline{A+B}$
11	D	$II \mid D$
0	0	1
0	1	0
1	0	0
1	1	0

A	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Problem

Use logic gates to implement the logic function:

$$Y = \overline{AB} + A\overline{C}$$

What is the truth table?

Transfer characteristic of the CMOS inverter

$$v_I \in [0; V_{DD}]$$

 $v_O \in [0; V_{DD}]$

Noise margins

Noise margins - cont.

$$NM_{H} = V_{OH \min} - V_{IH \min}$$

$$NM_{L} = V_{IL \max} - V_{OL \max}$$

Voltage levels and noise margins for *CMOS* logic family supplied at +5V

$$NM_L = 1.5V - 0.5V = 1V$$

 $NM_H = 4.5V - 3.5V = 1V$