- 1. Consider metal-oxide-semiconductor (MOS) capacitors on p-type substrates that are ideal, meaning the workfunction of the metal and semiconductor are equal. Assume no charge inside the oxide or at the interfaces. Then the gate voltage V_G may be written as the sum of the voltage drops in the semiconductor and the oxide: $V_G = \psi_s + V_{ox}$.
 - (a) Assume the MOS is in depletion. How does the voltage drop in the semiconductor vary (qualitatively) as a function of the oxide thickness t_{ox} for a given V_G ? Share your reasoning.
 - **(b)** Suppose the semiconductor substrate is silicon, with doping of $N_a = 10^{16} \, cm^{-3}$; and the oxide is SiO₂, with $\varepsilon_r \left(SiO_2 \right) = 4$, and thickness t = 10 nm. Calculate the threshold voltage V_T . How do you expect V_T to vary with temperature? Share your reasoning.