SI 151 Graphical Models and Bayes Nets

Xin Deng

April 5, 2020

Outline

- ▶ Introduction to Graphical models and Bayes Nets
- ▶ Simple inference and Simple learning

Graphical models

- ► Two types of graphical models:
 - Directed graphs (aka Bayes Networks)
 - Undirected graphs (aka Markov Random Fields)
- ► Graphical models allow combining:
 - Prior knowledge in form of dependencies/independencies
 - Prior knowledge in form of priors over parameters
 - Observed training data

Bayes Nets

- ightharpoonup A Bayes network includes $\begin{cases} DAG \\ CPD's \end{cases}$
 - Each node denotes a random variable
 - Edges denote dependencies
 - For each node X_i its CPD defines $P(X_i|Pa(X_i))$
 - The joint distribution over all variables is defined to be

$$P(X_1,\cdots,X_n) = \prod_i P(X_i|Pa(X-i))$$

► Each node is conditionally independent of its non-descendents, given only its immediate parents.

Bayes Nets

Example: A directed acyclic graph describing the joint distribution over variables x_1, \dots, x_7 .

The corresponding decomposition of the joint distribution is given by

$$p(x_1,\cdots,x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1,x_2,x_3)p(x_5|x_1,x_5)p(x_6|x_4)p(x_7|x_4,x_5)$$

Outline

- ▶ Introduction to Graphical models and Bayes Nets
- ▶ Simple inference and Simple learning

► Head-to-Tail

- None of the variables are observed: A is not cond indep of B
- Given C: A is cond indep of B
- ► Tail-to-Tail

- None of the variables are observed: A is not cond indep of B
- Given C: A is cond indep of B
- Head-to-Head

- None of the variables are observed: A is cond indep of B
- Given C: A is not cond indep of B

D-separation

Consider a general directed graph in which A, B, and C are arbitrary nonintersecting sets of nodes.

Any possible paths from any node in A to any node in B is said to be blocked if it includes a node such that either

- ▶ the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
- ▶ the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in the set C.

Markov Blanket:

The Markov blanket of a node \mathbf{x}_i comprises the set of parents, children and co-parents of the node. It has the property that the conditional distribution of \mathbf{x}_i , conditioned on all the remaining variables in the graph, is dependent only on the variables in the Markov blanket.

- ► In general, intractable (NP-hard)
- ► For certain cases, tractable
 - Assigning probability to fully observed set of variables
 - Or if just one variable unobserved
- ► Sometimes use Monte Carlo methods
 - Generate many samples according to the Bayes Net distribution, then count up the result

Example:

Conditional independence and marginal independence:

- $X_1 \perp \!\!\! \perp X_4 \mid X_3$?
- $X_1 \perp \!\!\! \perp X_4 \mid \{X_2, X_3\}$?
- $X_1 \perp \!\!\! \perp X_4 \mid \varnothing$?

Example:

Conditional prob and marginal prob:

- $P(x_1 \mid x_2, x_3, x_4) = ?$
- $P(x_3) = ?$

Example:

$$\begin{split} P(x_1 \mid x_2, x_3, x_4) &= \frac{P(x_1, x_2, x_3, x_4)}{P(x_2, x_3, x_4)} \\ &= \frac{P(x_1)P(x_4)P(x_2 \mid x_1)P(x_3 \mid x_2, x_4)}{P(x_3 \mid x_2, x_4)} \end{split}$$

•
$$P(x_3) = \sum_{x_1, x_2, x_4} P(x_1, x_2, x_3, x_4)$$

Generating a sample from joint distribution

- For marginal prob: Take X_1 as an example and $P(X_1) = \theta_{X_1=1}$
 - Draw a value of r_1 uniformly from [0, 1]
 - $X_1 = \begin{cases} 1, & \text{if } r_1 < \theta_{X_1=1} \\ 0, & \text{else} \end{cases}$

Generating a sample from joint distribution

- ► For cond prob:
 - Draw a value r_1 for X_1
 - Draw value for X_4 , for $X_2 \mid X_1$, for $X_3 \mid X_2, X_4$
- ▶ Generate a sample by $P(X_1, X_2, X_3, X_4) = P(x_1)P(x_4)P(x_2 \mid x_1)P(x_3 \mid x_2, x_4)$

Learning

• Learn the parameter

$$\theta_{\{X_3=1|X_2=1,X_4=1\}} = P(X_3=1 \mid X_2=1,X_4=1)$$

• Maximum likelihood estimate

$$\theta = \arg\min_{\theta} \ \log P(\mathcal{D} \mid \theta)$$

Learning

$$\begin{split} \log P(\mathcal{D} \mid \theta) &= \log \prod_{i} P(x_{1i}, x_{2i}, x_{3i}, x_{4i} \mid \theta) \\ &= \log \prod_{i} P(x_{1i} \mid \theta) P(x_{4i} \mid \theta) P(x_{2i} \mid x_{1i}, \theta) P(x_{3i} \mid x_{2i}, x_{4i}, \theta) \\ &= \sum_{i} \log P(x_{1i} \mid \theta) + \log P(x_{4i} \mid \theta) + \log P(x_{2i} \mid x_{1i}, \theta) + \log P(x_{3i} \mid x_{2i}, x_{4i}, \theta) \end{split}$$

$$\begin{split} \frac{\partial \log P(\mathcal{D} \mid \theta)}{\partial \theta_{\{X_3 = 1 \mid X_2 = 1, X_4 = 1\}}} &= \sum_{i} \frac{\partial \log P(x_{3i} \mid x_{2i}, x_{4i}, \theta)}{\partial \theta_{\{X_3 = 1 \mid X_2 = 1, X_4 = 1\}}} \\ \Longrightarrow \theta_{\{X_3 = 1 \mid X_2 = 1, X_4 = 1\}} &= \frac{\#(X_3 = 1, X_2 = 1, X_4 = 1)}{\#(X_2 = 1, X_4 = 1)} \end{split}$$

Thanks!