Nonlinear Trends and Multiple Regression Case Study

November 20, 2019

November 20, 2019

Consider the following data:

...with the best fitting straight line:

- Clearly, the straight line does not fit well.
- If we drew a curve following the apparent relationship, the variance would be approximately **homoskedastic**.
 - homoskedastic = constant (same) variance
- This is a good sign that we want to fit a curve rather than transforming y.

In order to fit a curve, we generate what's called a **polynomial basis** of x.

All this means is that we take x and create

- \bullet $x_1 = x$
- $x_2 = x^2$
- $x_3 = x^3$
- etc.

We will then use these variables in the multiple regression model.

Note:

- It is uncommon to use terms beyond x^2 .
- It is very rare to use terms beyond x^3 .

The Linear Model

Let's start by looking at the best fitting straight line from

$$\hat{y} = 0.8441 - 0.0964x$$

The Linear Model

	Estimate	Std Error	t value	Pr(> t)
(Intercept)	0.8441	0.5799	1.46	0.1487
x1	-0.0964	0.0397	-2.43	0.0169

Why is this model inappropriate for the data?

Let's try adding another variable to the model: $x_2 = x^2$.

- Generally, when we fit polynomial terms, we include *both variables* in the model.
- This is in contrast to a transformation, where we include only the transformed variable.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

The model is summarized by

	Estimate	Std Error	t value	$\Pr(> t)$
(Intercept)	2.4252	0.5079	4.78	0.0000
x1	-0.7769	0.0956	-8.13	0.0000
x2	0.0295	0.0039	7.55	0.0000

Write out the regression model.

Based on the scatterplot overlaid with the polynomial curve,

a quadratic model is still insufficient.

Cubic Terms

Let's try including a cubic term. This model looks like

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$$

where $x_3 = x^3$.

• Note that we again include x_3 and the lower order polynomial terms x_1 and x_2 .

This model is summarized by

	Estimate	Std Error	t value	Pr(> t)
(Intercept)	2.0187	0.4242	4.76	0.0000
x1	-1.4202	0.1236	-11.49	0.0000
x2	0.1187	0.0136	8.75	0.0000
x3	-0.0026	0.0004	-6.77	0.0000

Write out the regression model.

This model has residual plot

A Word of Caution

- Start with x^2 and use x^3 only as necessary.
- If a cubic polynomial doesn't work, be very cautious of using higher order polynomials.
 - We don't want to force the data to fit!
 - There are other approaches to modeling that can help deal with this.
- Extrapolation is already problematic, but can be much worse for models with transformed data or polynomial terms.

Multiple Regression Case Study: Motor Trend Cars

The mtcars data in R has data on 10 aspects of car design and performance for 32 automobiles:

	mpg	cyl	disp	hp	drat	wt	qsec	٧s	\mathtt{am}	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

Let's start with examining horsepower and miles per gallon.

A Simple Linear Model

It's hard to tell whether this relationship is linear or not. Let's start with the simple linear model.

Multiple R-squared: 0.6024, Adjusted R-squared: 0.5892

Write the regression model. Interpret the coefficients.

A Quadratic Model

Now let's try a model with a quadratic term.

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 20.091 0.544 36.931 < 2e-16 ***
hp1 -26.046 3.077 -8.464 2.51e-09 ***
hp2 13.155 3.077 4.275 0.000189 ***
```

Multiple R-squared: 0.7561, Adjusted R-squared: 0.7393

Write the regression model.

Multiple Linear Regression

Now, we know that other variables may be useful... so let's try adding them in. The summary of full model (with hp² included) is

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
            13.982035 18.988291
                                 0.736
                                         0.470
             0.044743 1.041147 0.043
cyl
                                         0.966
disp
             0.008652 0.018070 0.479
                                         0.637
hp1
           -11.877106 8.753289 -1.357
                                         0.190
hp2
             4.959203 4.072697 1.218
                                         0.238
drat
             0.430521
                       1.643201 0.262
                                         0.796
            -2.967539
                       1.971111 -1.506
                                         0.148
wt.
             0.510263
                       0.766336 0.666
                                         0.513
qsec
            -0.190406
                       2.122169 -0.090
                                         0.929
VS
             1.748014
                       2.130010 0.821
                                         0.422
am
             0.927728
                       1.493229 0.621
                                         0.541
gear
carb
            -0.469657
                       0.848911 - 0.553
                                         0.586
```

How many predictors are in this model? What does β_4 represent?

- The estimated coefficient for hp² in the smaller model was 13.155
- In the full model, this coefficient is 4.959.

Why might this difference occur?

Let's do a backward selection based on p-values.

	Estimate Std.	Error t v	alue Pr(>	· t)
(Intercept)	13.982035	18.988291	0.736	0.470
cyl	0.044743	1.041147	0.043	0.966
disp	0.008652	0.018070	0.479	0.637
hp1	-11.877106	8.753289	-1.357	0.190
hp2	4.959203	4.072697	1.218	0.238
drat	0.430521	1.643201	0.262	0.796
wt	-2.967539	1.971111	-1.506	0.148
qsec	0.510263	0.766336	0.666	0.513
vs	-0.190406	2.122169	-0.090	0.929
am	1.748014	2.130010	0.821	0.422
gear	0.927728	1.493229	0.621	0.541
carb	-0.469657	0.848911	-0.553	0.586

What variable do we remove first?

	Estimate Std	. Error t v	alue Pr(> t)
(Intercept)	14.516933	13.994971	1.037	0.311
disp	0.008873	0.016907	0.525	0.605
hp1	-11.796710	8.345344	-1.414	0.172
hp2	4.937641	3.944451	1.252	0.224
drat	0.413058	1.553865	0.266	0.793
wt	-2.979803	1.903425	-1.565	0.132
qsec	0.503152	0.730261	0.689	0.498
vs	-0.216661	1.983443	-0.109	0.914
am	1.728754	2.032237	0.851	0.405
gear	0.904345	1.357122	0.666	0.512
carb	-0.460509	0.802022	-0.574	0.572

	Estimate Std	. Error t v	alue Pr(>	t)
(Intercept)	14.922119	13.187937	1.131	0.270
disp	0.009315	0.016044	0.581	0.567
hp1	-11.914838	8.087022	-1.473	0.155
hp2	4.832406	3.738113	1.293	0.210
drat	0.401197	1.514859	0.265	0.794
wt	-2.985060	1.859596	-1.605	0.123
qsec	0.474635	0.666511	0.712	0.484
am	1.774822	1.942840	0.914	0.371
gear	0.874993	1.300039	0.673	0.508
carb	-0.440539	0.763170	-0.577	0.570

	Estimate Std	. Error t v	alue Pr(>	· t)
(Intercept)	16.176651	12.056492	1.342	0.193
disp	0.009256	0.015714	0.589	0.562
hp1	-12.340452	7.763871	-1.589	0.126
hp2	5.071981	3.552934	1.428	0.167
wt	-3.018258	1.817474	-1.661	0.110
qsec	0.471422	0.652791	0.722	0.477
am	1.848385	1.883611	0.981	0.337
gear	0.953887	1.239606	0.770	0.449
carb	-0.424462	0.745215	-0.570	0.574

	Estimate Std	. Error t	value Pr	(> t)	
(Intercept)	13.41166	10.87958	1.233	0.22961	
disp	0.01510	0.01174	1.286	0.21057	
hp1	-14.31438	6.84901	-2.090	0.04739	*
hp2	4.62330	3.41540	1.354	0.18846	
wt	-3.76861	1.23435	-3.053	0.00547	**
qsec	0.67281	0.54097	1.244	0.22562	
am	2.00853	1.83611	1.094	0.28486	
gear	0.67669	1.12392	0.602	0.55277	

	Estimate Std.	Error t	<pre>value Pr(> t)</pre>		
(Intercept)	16.62533	9.35861	1.776	0.08783	
disp	0.01200	0.01041	1.152	0.26006	
hp1	-13.19944	6.50931	-2.028	0.05337	
hp2	4.79117	3.36032	1.426	0.16629	
wt	-3.66706	1.20708	-3.038	0.00551	**
qsec	0.64249	0.53171	1.208	0.23822	
am	2.52789	1.60007	1.580	0.12671	

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
             20.2315
                         8.8754 2.280
                                         0.03108 *
            -11.5546
                         6.3908 -1.808
                                         0.08219 .
hp1
hp2
              4.5925
                         3.3770
                                1.360
                                         0.18553
wt
             -2.7832
                         0.9379 - 2.967
                                         0.00637 **
              0.4486
                         0.5075 0.884
                                         0.38492
qsec
              1.9866
                         1.5392
                                  1.291
                                         0.20817
am
```

```
Estimate Std. Error t value Pr(>|t|)
              27.5420
                          3.2037 8.597 3.27e-09 ***
(Intercept)
             -16.2337
                          3.5647 -4.554 0.000101 ***
hp1
hp2
               6.1579
                          2.8635 2.151 0.040628 *
              -2.4839
                          0.8711 -2.851 0.008242 **
wt
               1.3289
                          1.3419 0.990 0.330791
am
```

```
Estimate Std. Error t value Pr(>|t|) (Intercept) 29.8389 2.2093 13.506 8.72e-14 *** hp1 -15.1717 3.3984 -4.464 0.00012 *** hp2 6.8997 2.7628 2.497 0.01867 * wt -3.0300 0.6741 -4.495 0.00011 ***
```

Write out the final model.

Diagnostics: Normality

Now that we have a final model, we should check our regression diagnostics.

Diagnostics: Constant Variance

Diagnostics: Residuals vs. Predictors

