Análise filogenética computacional de serpentes do gênero *Bothrops* a partir de proteomas de venenos

Victor Wichmann Raposo Supervisor: Marcelo Reis

IME - USP

Novembro 2018

Introdução

- Venenos de serpentes s\u00e3o misturas proteicas
- ▶ Proteoma e N-Glicanos são correlacionados com a filogenia
- Métrica de comparação de cladogramas
- Explorar informação de peptídeos

Introdução

Objetivos

- Geral: metodologia de geração, comparação e visualização de cladogramas com dados não tradicionais
- Específico: testar a hipótese que o perfil proteômico de espécies do gênero Bothrops é correlacionado com sua filogenia

DNA, RNA, proteína e Dogma Central

Figure 1: Ilustração da produção de proteínas de venenos em células de serpentes.

Cladogramas

Figure 2: Exemplo de árvore filogenética de sete organismos.

Inferência Bayesiana

B(s) := número de árvores possíveis para s espécies

 $au_i := ext{i-\'esima \'arvore}$

X := um conjunto de informações biológicas

$$f(\tau_i|\mathbf{X}) = \frac{f(\mathbf{X}|\tau_i) \ f(\tau_i)}{\sum_{i=1}^{B(s)} f(\mathbf{X}|\tau_i) \ f(\tau_i)},$$

Inferência Bayesiana

$$f(au_i) \sim \textit{Uniforme}\left(rac{1}{B(s)}
ight)$$

$$f(\mathbf{X}|\tau_i) = \int_{\mathcal{V}} \int_{\theta} f(X|\tau_i, v, \theta) \ f(v, \theta) \ dv \ d\theta$$

MCMC

Figure 3: Convergência do algoritmo Metropolis-Hastings. O método MCMC, representado pelo linha laranja, tenta aproximar a distribuição azul. Fonte.

teste CADM

- ► Lapointe e Legendre 2004
- Estimar congruência entre cladogramas
- ▶ Nível de convergência de 0 (incongruência) a 1 (congruência total)

Banco de Dados

Figure 4: Modelo Entidade Relacional do banco de dados

Programas

Figure 5: Programas e tecnologias utilizadas no projeto

Metodologia

Figure 6: Metodologia aplicada no projeto.

Equivalência de Peptídeos

- ▶ BLAST
 - Score
 - ► E-value
- ► Relação de equivalência
- Union Find

Metodologia

Figure 7: Metodologia aplicada no projeto.

Árvore genômica

Figure 8

Árvore de Proteína

Figure 9: Cladograma obtido por dados proteicos

Árvore de N-glicanos

Figure 10: Cladograma obtido por dados de N-glicanos.

Árvore de Peptídeos

Figure 11: Cladograma obtido por dados peptídicos.

Árvore de Peptídeos (de novo)

Figure 12: Cladograma obtido por dados de peptídeos identificados pelo protocolo de novo.

Resultado da Metodologia

Árvore (MIN_EVALUE)	CADM	Número de Sequências
(a) (10^{-10})	0.6662	5408
(b) (10^{-5})	0.7207	4901
(c) (10^{-2})	0.7214	3258

Table 1: Resultados do teste CADM comparando as árvores de peptídeos de proteoma total sequenciados do modo de novo após aplicada a metodologia de equivalência de peptídeos variando o MIN_EVALUE.

Conclusão

Contribuições Tecnológicas

- Pipeline desenvolvido
- Método de Equivalência de Peptídeos

Contribuições Cientificas

- Árvores filoproteômicas topologicamente congruentes
- Divergência da B. neuwiedi Hipóteses:
 - pool de venenos
 - evolução epigenética é mais rápida

Trabalhos Futuros

- Estender metodologia para novas serpentes
- ► Aplicar em outros contextos (e. g. modificações epigenéticas em células cancerígenas)

Agradecimentos

- Dr. Inácio L. M. Junqueira de Azevedo (LETA)
- Dra. Solange M. T. Serrano (LETA)
- Dr. Felipe Grazziotin (Coleções Zoológicas)
- Carolina Brás (Doutoranda LETA)

