(54) PIEZOELECTRIC PORCELAIN COMPOSITIONS

- (11) KOKOKU SHO60-52098 (24) 18.11.1985 (19) JP
- (65) KOKAI SHO57-95869 (43) 14.06.1982
- (21) Appl. No. SHO55-170489 (22) 03.12.1980
- (71) MITSUBISHI ELECTRIC CORP. (72) Syuichi YAMAGAME, et al.
- (51) Int. Cl. C 04 B 35/00, H 01 B 3/12, H 01 L 41/18

[ABSTRACT]

[PURPOSE]

To obtain a piezoelectric porcelain composition having improved adhesive strength between a transducer and a variety of parts and an improved sensitivity characteristic of an ultrasonic detecting probe.

[CONSTITUTION]

A piezoelectric porcelain composition is formed by addition of 0.02 to 2.0 wt% of aluminum oxide and 0.001 to 0.019 wt% of iron oxide as subcomponents in relation to a total weight into a solid solution represented by a formula of $Na_1-Li_xNbo_3(0.02 \le x \le 0.30)$.

19日本国特許庁(JP)

①特許出願公告

許 公 報(B2) ⑫ 特

昭60 - 52098

庁内整理番号 ❷❷公告 昭和60年(1985)11月18日 識別記号 @Int_Cl_4 7412-4G 6794-5E C 04 B 35/00 H 01 B 発明の数 1 (全3頁) 101 7131-5F H 01 L 41/18

図発明の名称 圧電磁器組成物

> 2)特 願 昭55-170489

❸公 開 昭57-95869

田袋 顧 昭55(1980)12月3日 ❷昭57(1982)6月14日

相模原市宮下一丁目1番57号 三菱電機株式会社相模製作 砂発 明 老 Ш 亀

相模原市宮下一丁目1番57号 三菱電機株式会社相模製作 砂発 明 者 籾 Ш 公 男

所内

相模原市宮下一丁目1番57号 三菱電機株式会社相模製作 男 勿発 明者 渡 井 久

東京都千代田区丸の内2丁目2番3号 三菱電機株式会社 创出 願人

四代 理 人 弁理士 大岩 増雄

万 里 B 審査官

特開 昭49-100600(JP,A) ❷参考文献

1

の特許請求の範囲

1 一般式Na_{1-x}Li_xNbO₃ (0.02≦ x ≦0.30) を基 本組成とする固溶体に、副成分として酸化アルミ ニウムを全量に対して0.02~2.0重量%添加する 添加してなることを特徴とする圧電磁器組成物。

発明の詳細な説明

本発明は、例えば超音波探傷器の超音波探触子 用振動子として用いられる圧電磁器組成物に関す るものである。

従来のこの種の組成物は、(NaLi) NbO。を基 本組成とし、この基本組成物にはより大きな焼結 密度と機械的強度を保持させるための酸化アルミ ニウムが副成分として添加されている。

かかる組成を有する従来の圧電磁器組成物は振 15 有する。 動子として分極された後反りが発生するので、振 動子と種々の部品との接着強度が弱く、このため 超音波探触子の感度特性が低下してしまう欠点が あつた。

ここに発明者等はこのような従来の欠点を解消 20 かつ圧電特性が劣化することによる。 すべく鋭意検討を行つたところ、(NaLi) NbO。 から成る固溶体に、酸化アルミニウムと酸化鉄と を添加した場合に振動子として用いても反りが小 さく、かつ圧電特性が良好な圧電磁器組成物を得

ることができることを見出し、この発明を完成す

2

るに至つたものである。

即ち、本発明は、一般式Na_{1-x}Li_xNbO₃ (0.02 ≤x≤0.30)を基本組成とする固溶体に、副成分 と共に酸化鉄を全量に対して $0.001\sim0.019$ 重量% 5 として酸化アルミニウムを全量に対して $0.02\sim$ 2.0重量%添加すると共に酸化鉄を全量に対して 0.001~0.019重量%添加せしめてなる圧電磁器組 成物である。

> そして、本発明によれば、添加した酸化鉄によ 10 り焼結を促進させることができるので、高密度で 機械的強度が大きい圧電磁器組成物を得ることが でき、従つて振動子として用いた場合にも反りが 非常に小さい上に圧電特性が優れ、しかも品質も 安定するのでその製造が極めて容易になる利点を

本発明において、酸化鉄の添加量を0.001~ 0.019重量%の範囲に限定したのは、0.001重量% 未満の場合には焼結促進の効果がなく、また 0.019重量%を超える場合には密度が小さくなり

以下、本発明に係る実験例を詳細に説明する。 先ず、99.5%以上の純度を有する五酸化ニオ ブ、炭酸ナトリウム、炭酸リチウム、酸化アルミ ニウム及び酸化鉄の各原料粉末を、所定の割合に

。在1994年1月1日 - 1997年 - 1994年1日 - 1997年 - 1997年

秤量して28種類の試料原料を得た。即ち、主成分 のニオブ酸ナトリウムNaNbOoとニオブ酸リチウ ムLiNbO。が次表に示すモル分率になり、また酸 化アルミニウムが最適添加量である0.5重量%と 一定で、かつ酸化鉄が5段階(0,0001,5 つらいかい機で粗粉砕して得た混合粉をまぶし、 0.010, 0.019重量%) に変化するように上記各原 料粉末を秤量し組合わせ28種類の試料原料を得 た。この得られた各試料原料を、ナイロンポツト 及びジルコニアボールを使用したボールミルを用 いてアルコールを入れた状態で10時間混合した後 10 成品に100℃のシリコーンオイル中で54KV/cmの 乾燥し、約500kg/cmの圧力にて加圧し、更に高純 度のアルミナ磁器中で900℃~1000℃の温度にて 3時間仮焼した。次に、各仮焼体をらいかい機に て粗粉砕し、上記した同一のボールミルにて更に 20時間粉砕し、再びらいかい機にて1時間混合し 15 れた。 た後2.5%P.V.A溶液を10%加えて更に30分間混

合し、標準フルイにて課粒した。次に、各課粒を 700kg/cdの圧力にてプレス成型して径が24mm、厚 さが3.5㎜の円盤状成型体を得た後各成型体に、 その成型体と同一組成を有し1150℃にて仮焼しか この各成形体を高純度のアルミナ磁器に入れ1180 ℃~1240℃にて3時間焼成した。そして、焼成し て得られた各焼成品の両面を研磨し厚さ0.42㎜に 成形した後該両面に銀電極を焼付け、然る後各焼 直流電圧を印加して1時間分極を行い、次表に示 す28種類の試料を得た。

このようにして得た各試料の密度、反り、その 他の特性を調べたところ、次表の如き結果が得ら

表

[n	T	7	,					
試料	NaNbO ₃	LiNbO3	10,	Fc ₂ O ₃	比核证书	月李为句	幣 度	収り
番号	モル分名	モル分率	瓜册多	重批 %	(1KH ₂)	粉合係数	(g/cd)	ш.
1	0.98	0.0 2	0.5	O	9 5	0.31	4, 1 1	60
2	1 "	, "	".	0.01	9 7	0.34	4.48	30
3	"	"	"	0.010	98	0.35	1.50	20
1	*		"	0.019	99	0.35	4.50	20
5	0.96	0.0 4	0.5	0	113	0.33	4.46	60
6	•	•	•	0.001	115	0.35	1.49	3 0
7	. "	"	,	0.010	118	0.36	4.5 1	20
8	"	7	,,	0.019	LIB	0.36	4.51	20
9	0.92	0.0 8	0.5	0	121	0.39	1.16	70
10	•	*	*	0.001	127	0.41	1.49	10
11	7	"	"	0.010	130	0.42	4.51	20
12	"	•	"	0.019	130	0.12	4.5 1	20
13	0.9 0	0.10	0.5	0	139	0.4 2	1.16	80
14	a	7	•	0.001	145	0.4 3	4.5 1	10
15	7	"		0.01	151	0.43	4.53	20
16	"	"	4	0.019	152	0.4 3	4.53	20
17	0.86	0.14	0.5	0	165	0.4 3	4. 1 5	80
18	•	n	a	0.001	170	. 0.4 4	4. 4. 5	10
19	r .	,	,	0.1.0	173	0.4 5	4.52	20
20	•		,,	0.019	175	0.4 5	4.5 2	20
21	0.80	0.20	0.5	U	208	0.39	1.14	
22	•	"	,	0.001	213	0.40	4.50	70
23	"	•	"	0.010	216	0.4 1	4.51	30
24	<i>a</i>	. 1	,	0.019	218	0.4 1	4.51	20
25	0.70	0,30	0.5	0	280	0.31	1.15	
26	n	,	"	0.0 0 1	284	0.3 1	1.15	60
27	,	,	,,	0.010	289	0.3 3	4.51	3 0
28	"	,	,	0.019	290	0.3 4	4.5 2	20
			l_	3. 9 . 3	200	0.5 4	4.5 2	20

5

上表から明らかなように、試料2~4の如き酸 化鉄をそれぞれ0.001, 0.010, 0.019重量%添加し たものは、試料1の如き酸化鉄を添加していない ものに比べ密度が高く、又反りが小さくなつてい く同様の結果になつた。

上記実施例において、酸化アルミニウムの添加 量を全て0.5重量%にしたが、この添加量は0.02 6

~2.0重量%の範囲であれば上記したと同様な効 果を得ることができる。

以上の説明から明らかなように本発明によれ ば、高密度で機械的強度が大きい圧電磁器組成物 るのが判る。尚、他の5~28の試料についても全 5 を得ることができ、従つて振動子として用いても 反りが小さい上に圧電特性が優れており、高周波 用圧電材料としての利用価値が大きい。