246

with positive operators S_j . Such a decomposition of S_o exists since the order completeness of E implies the order completeness of $E_{\mid f \mid} = C(K)$ and since every continuous linear operator on a space C(K) is necessarily order-bounded.

9. THE CENTER OF L(E)

We give a short description of a special, but important class of operators.

Let E be a (complex) Banach lattice. For T \in L(E) the following conditions are equivalent:

- (a) $f \perp g$ implies $Tf \perp g$ (f, $g \in E$)
- (b) $\pm T \leq ||T|| \text{Id}$
- (c) $TJ \subset J$ for every ideal J in E.

If E is countably order complete, then this is equivalent to:

(d) $TJ \subseteq J$ for ervery projection band J in E.

The last assertion also means that T commutes with every band projection.

The set of all $T \in L(E)$ satisfying the above conditions is called the <u>center</u> of L(E) and denoted Z(E). Z(E) is under the natural ordering, the operator norm and the composition product isomorphic to a Banach lattice algebra C(K) (K compact). The following examples may illustrate the situation and explain why the term "multilication operator" is often used for operators in Z(E).

- (i) If $E=L^p(X,\Sigma,\mu)$ $(1 \le p \le \infty)$ with σ -finite μ , then Z(E) is isomorphic to $L^\infty(\mu)$ via the natural identification of a function $f\in L^\infty(\mu)$ with the multiplication operator $g \to f \cdot g$ on E.
- (ii) If X is locally compact, E = $C_O(X)$ then similarly $Z(E) \cong C^b(X)$ via the identification of $f \in C^b(X)$ with the mapping $g \to f \cdot g$ $(g \in C_O(X))$.