

CLASSROOM CONTACT PROGRAMME

(Academic Session: 2023 - 2024)

LEADER & ACHIEVER COURSE

PHASE: MLA, MLB, MLC, MLQ, MLR, MLS, MLT, MLU, MLV, MAZA, MAZB, MAZC, MAZD,

MAZE, MAZF, MAZP, MAZQ & MAZR TARGET: PRE-MEDICAL 2024

Test Type: MAJOR Test Pattern: NEET (UG)

TEST DATE: 21-03-2024

_	MO	466	FM	- 14	TW
A	NS		EM	11.	ΕY

_																														_
Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
A.	3	4	3	2	1	4	2	2	2	4	4	1	2	3	1	1	1	2	2	1	3	2	4	1	3	3	2	4	3	2
Q.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
A.	1	4	3	1	1	1	2	1	4	4	1	4	1	4	4	1	3	4	2	1	3	3	2	2	3	3	4	1	2	2
Q.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
A.	1	4	4	4	3	4	4	2	1	4	1	1	4	3	3	1	1	3	4	2	2	1	3	1	1	4	1	1	1	3
Q.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
A.	3	1	4	1	3	2	4	4	4	2	2	3	2	1	4	3	1	2	1	1	1	3	2	2	1	4	4	1	4	2
Q.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
A.	2	1	2	2	3	2	1	1	2	1	1	4	3	1	3	4	3	1	2	1	2	3	3	3	3	4	1	2	2	1
Q.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
A.	1	2	2	3	2	3	1	1	1	2	1	1	3	4	2	2	1	3	3	3	2	4	4	1	2	2	4	4	2	2
Q.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200										
A.	2	4	4	4	2	1	4	4	1	2	3	1	4	1	4	2	4	2	3	2										

HINT - SHEET

SUBJECT: PHYSICS

SECTION-A

- 1. Ans (3) $emf = \frac{-d\phi}{d\phi}$
- 2. Ans (4)

$$|e| = -\frac{dQ}{dt}$$

$$e = \frac{d}{dt}(NBA)$$

$$e = N.A \frac{dB}{dt}$$

$$e = 500 \times (10 \times 10^{-2})^2 \times 1$$

$$e = 5 \text{ volt}$$

3. Ans (3)

$$\phi = (B)(\pi r^2) \Rightarrow e = \frac{d\phi}{dt} = (B)(2\pi r) \left(\frac{dr}{dt}\right)$$
$$= (0.025)(2\pi)(2 \times 10^{-2})(10^{-3}) = \pi \mu V$$

4. Ans (2)

Induced emf e = $-L\frac{di}{dt}$

5. Ans (1)

Magnetic energy

$$U = \frac{1}{2} LI^{2} \Rightarrow L = \frac{2U}{I^{2}} = \frac{2 \times 648}{9 \times 9} = 16H$$
Induced emf e = L $\left(\frac{\Delta I}{\Delta t}\right)$

$$= 16 \times \frac{9}{0.45} = 320V$$

6. Ans (4)

$$L = \frac{\mu_0 N^2 A}{\ell}$$

7. Ans (2)

Just after switch is closed inductor offer infinite resistance (i.e. open circuit)

(i)
$$I = 0$$
 (ii) $I = \frac{E}{R}$ (iii) $I = \frac{E}{2R}$

8. Ans (2)

$$\because K = \frac{\phi_S}{\phi_P}$$

If K = 1 then

$$\phi_s = \phi_p$$

9. Ans (2)

$$F = \frac{B^2 v \ell^2}{R}$$

10. Ans (4)

ac generator is based on the principle of the electromagnetic induction. When a coil is rotated about an axis perpendicular to the direction of uniform magnetic field, an induced emf is produced across it.

11. Ans (4)

$$\eta = \frac{P_{out}}{P_{in}} \times 100, \text{ where } P_{in} = V_P I_P$$

$$= \left(\frac{100}{220 \times 0.5}\right) \times 100 = 90\%$$

12. Ans (1)

$$I = \frac{P}{4\pi r^2} \simeq 0.23 \text{ mW/m}^2$$

13. Ans (2)

Radiation pressures =
$$\frac{2I}{C}$$

Force
$$F = \frac{2I}{C}A$$
,

Momentum = Ft =
$$\frac{2I}{C}$$
 At = $\frac{2E}{C}$

14. Ans (3)

Intensity,
$$I = \frac{P \text{ ower}}{\text{area}} = \frac{P}{4\pi r^2} = \text{average}$$

energy

density × velocity =
$$\frac{1}{2} \varepsilon_0 E_0^2 c$$

$$\therefore \quad E_0 = \sqrt{\frac{2P}{4\pi\epsilon_0 r^2 c}} = \sqrt{\frac{P}{2\pi\epsilon_0 r^2 c}}$$

15. Ans (1)

$$r = \frac{\sqrt{2mk}}{qB} = \frac{\sqrt{2mqV}}{qB}$$

$$r = \frac{1}{B}\sqrt{\frac{2mV}{q}}$$

$$r \propto \sqrt{\frac{m}{q}}$$

16. Ans (1)

$$B_1 = \frac{r_0 M}{4\pi r_1^3}$$

$$B_2 = \frac{2\mu_0 M}{4\pi r_2^3}$$

According to question

$$\frac{r_1}{r_1} = (2)^{1/3}$$

17. Ans (1)

$$F = 3 \times F_{CD}$$

 $= 3 \times IBL$
 $= 3 \times 2 \times 4 \times 1$
 $= 24 \text{ N}$

18. Ans (2)

The magnetic field of a solenoid is given by,

$$B = \frac{1}{2}\mu_0 nI[\cos\theta_1 - \cos\theta_2]$$

For a very long current carrying solenoid, the magnetic filed at the ends of a very long solenoid is given by,

$$B = \frac{1}{2}\mu_0 nI = \frac{1}{2} \times M \text{ agnetic field at the centre}$$
 [: $\theta_1 = 90^\circ$, $\theta_2 = 180^\circ$]

19. Ans (2)

$$B = \frac{\mu_0 I}{2\pi d} \Rightarrow B \propto \frac{1}{d}$$

20. Ans (1)

Sensitivity =
$$\frac{\theta}{i} = \frac{NAB}{C}$$

21. Ans (3)

$$x_{eff} = 2L$$

so
$$F = IB X_{eff}$$

$$F = 2IBL$$

Hence option (3)

22. Ans (2)

$$\frac{B_{\text{centre}}}{B_{\text{axis}}} = \left(1 + \frac{x^2}{R^2}\right)^{3/2}, \text{ also } B_{\text{axis}} = \frac{1}{8} B_{\text{centre}}$$

$$\Rightarrow \frac{8}{1} = \left(1 + \frac{x^2}{R^2}\right)^{3/2} \Rightarrow 2 = \left(1 + \frac{x^2}{R^2}\right)^{1/2}$$

$$\Rightarrow 4 = 1 + \frac{x^2}{R^2} \Rightarrow 3 = \frac{x^2}{R^2} \Rightarrow x^2 = 3R^2$$

$$\Rightarrow x = \sqrt{3}R$$

Ans (4) 23.

Conceptual

$$\vec{v} = (2\hat{i} + 3\hat{j}) \quad \vec{B} = 4\hat{j}$$

 $\theta \neq 90^{\circ}, 0^{\circ}, 180^{\circ}$
so path will be helix

$$\begin{split} F_{Net_C} &= F_D - F_C \\ &= \frac{\mu_0(30)}{2\pi(3\times 10^{-2})} - \frac{\mu_0(20)}{2\pi(2\times 10^{-2})} \\ &= \frac{\mu_0(10)}{2\pi\times 10^{-2}} - \frac{\mu_0(10)}{2\pi\times 10^{-2}} \\ &= 0 \text{ N} \end{split}$$

26. Ans (3)

$$A - s$$
, $B - q$, $C - p$, $D - r$

Ans (2) 27.

$$B = \mu H \implies 8 \times 10^{-3} \times 160 = 1.28 \text{ Wb/m}^2$$

28. Ans (4)

I = 100 sin (200 πt)
⇒ 100 = 100 sin (200 πt)
⇒ sin (200 πt) = 1
200 πt =
$$\frac{\pi}{2}$$

t = $\frac{1}{400}$ sec

29. Ans (3)

$$\begin{split} R_{Coil} &= \frac{V_{D.C.}}{I_{D.C.}} = \frac{100}{25} = 4\Omega \\ Also & Z = \frac{V_{rms}}{I_{rms}} = \frac{100}{20} = 5\Omega \\ & Z^2 = X_L^2 + R^2 \\ & X_L = \sqrt{Z^2 - R^2} = \sqrt{5^2 - 4^2} = 3\Omega \\ & X_L = 2\pi fL \\ & L = \frac{3}{2\pi(50)} \simeq 9.5 \text{mH} \end{split}$$

We know that
$$X_C = \frac{1}{2\pi fc}$$

 $X_C \propto \frac{1}{f}$: so the graph b/w then will be straight line.

$$V = \sqrt{V_R^2 + V_C^2}$$
$$\tan \phi = \frac{V_C}{V_R}$$

Ans (4) 32.

33. Ans (3)

p.f. =
$$\cos \phi = \frac{1}{\sqrt{2}} = \frac{R}{Z}$$

$$\Rightarrow Z = \sqrt{2}R \Rightarrow Z = 10\sqrt{2}\Omega$$
Here $Z = \sqrt{R^2 + (X_C - X_L)^2}$
where $X_L = \omega L = (100)(0.1) = 10 \Omega$

$$200 = 100 + (X_C - 10)^2$$

$$\Rightarrow X_C = 20\Omega$$

$$\Rightarrow \frac{1}{100C} = 20$$

$$\Rightarrow C = 500 \,\mu\text{F}$$

34. Ans (1)

For better tuning, Q-factor must be high.

$$\label{eq:Q} \therefore \, Q = \frac{\omega_o L}{R} = \frac{1}{\sqrt{LC}} \left(\frac{L}{R}\right) = \frac{1}{R} \sqrt{\frac{L}{C}}$$

R and C should be small and L should be high.

35. Ans (1)

Chock coil has high X_L and low resistance.

Hence
$$i = \frac{V}{Z}$$
 is very low.

SECTION-B

36. Ans (1)

Induced emf =
$$\frac{(B_1 - B_2)A}{\Delta t}$$

= $\frac{(2-1) \times 0.01}{10^{-3}}$ = 10V

Heat produced in resistance $R = 0.01 \Omega$ in time

$$\Delta t = 10^{-3} \text{ S is}$$

$$H = \left(\frac{V^2}{R}\right) \Delta t = \frac{(10)^2}{0.01} \times 10^{-3} = 10J$$

37. Ans (2)

$$\begin{array}{c|c}
 & |L\frac{dI}{dt}| \\
 & --|+-|+-| \\
 & || \\
 & A & 15 \text{ yolt}
\end{array}$$

From KVL A to B

$$V_A - (1 \times 5) + 15 + (5 \times 10^{-3})10^3 = V_B$$

$$V_B - V_A = +15 \text{ volt}$$

38. Ans (1)

$$V_L = V_0 e^{-t/\tau}, V_R = V_0 (1 - e^{-t/\tau})$$

39. Ans (4)

$$\varepsilon = \int_{\frac{L}{2}}^{L} B(x \omega) dx$$

40. Ans (4)

$$cB_0 = E_0$$

$$B_0 = \frac{E_0}{c} = \frac{1.2}{3 \times 10^8} = \mu_0 H$$

$$\Rightarrow H_0 = \frac{B_0}{\mu_0} = \frac{1.2}{3 \times 10^8 \times 4\pi \times 10^{-7}}$$

$$H_0 = \frac{10^{-2}}{\pi} \text{ Am}^{-1}$$

41. Ans (1)

Fact and data

42. Ans (4)

The equation of electric field occurring in Y-direction $E_y = 66 \cos 2\pi \times 10^{11} \left(t - \frac{x}{c}\right)$

Therefore, for the magnetic field in Z-direction

$$\begin{split} B_z &= \frac{E_y}{c} = \left(\frac{66}{3 \times 10^8}\right) \cos 2\pi \times 10^{11} \left(t - \frac{x}{c}\right) \\ &= 22 \times 10^{-8} \cos 2\pi \times 10^{11} \left(t - \frac{x}{c}\right) \\ &= 2.2 \times 10^{-7} \cos 2\pi \times 10^{11} \left(t - \frac{x}{c}\right) \end{split}$$

43. Ans (1)

$$B_1 = 0$$
, $B_2 = \frac{\mu_0 I}{4\pi x}$, $B_3 = \frac{\mu_0 I \sin 45^\circ}{4\pi x}$

Here
$$\sin 45^\circ = \frac{x}{R}$$

$$\mathbf{B}_{\mathbf{P}} = \mathbf{B}_2 - \mathbf{B}_3$$

$$\begin{split} & \therefore \quad x = R/\sqrt{2} \\ & = \frac{\mu_0 I}{4\pi x} \left(1 - \frac{1}{\sqrt{2}} \right) = \frac{\mu_0 I}{4\pi \frac{R}{\sqrt{2}}} \left(\frac{\sqrt{2} - 1}{\sqrt{2}} \right) \\ & = \frac{\mu_0 I}{4\pi R} \left(\sqrt{2} - 1 \right) \end{split}$$

44. Ans (4)

$$B_C = \frac{\mu_0}{4\pi r} \left(\pi \left(\frac{2I}{3} \right) - \pi \left(\frac{I}{3} \right) \right) = \frac{\mu_0 I}{12r}$$

outward so direction is along k

45. Ans (4) $\tau = \text{MB sin}\theta$ $\theta = 0^{\circ} \rightarrow \text{Stable equilibrium}$ $\theta = 180^{\circ} \rightarrow \text{Unstable equilibrium}$

46. Ans (1)

 $r_1: r_2 = 1: 2$ and $B_1: B_2 = 1: 3$. We know that

$$B = \frac{\mu_0}{4\pi} \cdot \frac{2\pi ni}{r} \Rightarrow \frac{i_1}{i_2} = \frac{B_1 r_1}{B_2 r_2} = \frac{1 \times 1}{3 \times 2} = \frac{1}{6}$$

47. Ans (3)

$$R = \frac{mv}{qB} = \frac{2 \times 10^{-6} \times 3}{6 \times 10^{-6} \times 1} = 1 \text{ m} < d = 1.2 \text{ m}$$

ALLEN® LEADER & ACHIEVE

LEADER & ACHIEVER COURSE/PHASE-MLA, MLB, MLC, MLQ, MLR, MLS, MLT, MLU, MLV, MAZA, MAZB, MAZB, MAZC, MAZD, MAZE, MAZF, MAZP, MAZQ & MAZR/21-03-2024

48. Ans (4)

$$(a) \xrightarrow{u} E||B||u$$

$$u_1$$

$$F_{\rm m} = 0 \left(\vec{\mathbf{u}} || \vec{\mathbf{B}} \right)$$

$$Fe \neq 0$$

$$u_1 > u$$

but path: straight line

(b) If
$$\vec{E} = -(\vec{u} \times \vec{B})$$
 then undeflected

Here $\vec{E} || \vec{B}$

49. Ans (2)

$$V_{rms} \sqrt{\frac{\int_{0}^{T/2} V_{0}^{2} dt + \int_{T/2}^{T} 0 dt}{T}} = \sqrt{\frac{4V_{0}^{2} \frac{T}{2}}{T}} = V_{0} \sqrt{2}$$

50. Ans (1)

$$\omega_{\rm r} = \frac{1}{\sqrt{\rm LC}} = \frac{1}{\sqrt{8 \times 10^{-3} \times 20 \times 10^{-6}}}$$

$$i=\frac{V}{R}=\frac{220}{44}A=5A$$

peak value =
$$\sqrt{2}$$
 i_{rms} = $5\sqrt{2}$ A

SUBJECT: BOTANY

SECTION-A

- 51. Ans (3) NCERT Pg. # 78
- **52. Ans (3)** NCERT Page No. # 83, 87 (E), 76, 79 (H)
- 53. Ans (2)
 XII NCERT Page No. # 86, 87
- **54. Ans (2)** Module No. 9 Page. No.4
- 55. Ans (3) NCERT XII, Pg. # 82
- **56. Ans (3)** NCERT XII Pg. No. # 61
- **57. Ans (4)** NCERT XII Page-No. 74
- 58. Ans (1) NCERT Pg. No. # 61

- **60. Ans (2)** NCERT XII Pg#71 FIG. 5.2
- **61. Ans (1)** XII NCERT Pg # 85, 86, 87
- 62. Ans (4)
 Module No. 8 Page. No.113
- 63. Ans (4)
 Module No. 9 Page. No.116
- **64. Ans (4)** Module No. 9 Page. No.99
- 65. Ans (3) NCERT-XII, Pg.#96
- 66. Ans (4)
 Module, Pg. # 70
- **67. Ans (4)** NCERT XII Pg#107
- 68. Ans (2) NCERT XII Pg#111(E), 122(H)
- **69. Ans (1)** NCERT XII Pg#107(E), 118(H)
- **70. Ans (4)** NCERT XII Pg#115(E), 126(H)
- 71. Ans (1) NCERT, Pg. # 104
- **72. Ans (1)** XII NCERT Pg # 100, 103
- 73. Ans (4)
 NCERT-XII, Page No. # 107, 108, 111, 114
- **74. Ans (3)** NCERT XII Pg#87
- 75. **Ans (3)**NCERT, Pg. # 97
- **76. Ans (1)** NCERT Pg. No. # 61
- 77. Ans (1) XII NCERT Pg # 188, 187

ALLEN®

- **78. Ans (3)** NCERT-XII, Pg. # 187, 188
- **79. Ans (4)** NCERT XII, Pg. # 181
- 80. Ans (2) NCERT XII, Pg. # 187
- 81. Ans (2) XII NCERT Pg # 187
- 82. Ans (1) XII NCERT Pg # 187, 188
- 83. Ans (3) NCERT XII Page No. 187,186
- **84. Ans (1)** XII NCERT Pg # 187
- 85. Ans (1) XII NCERT Pg # 188

SECTION-B

- 86. Ans (4) NCERT Pg. # 80
- **87. Ans (1)** XII NCERT Page No. # 86
- 88. Ans (1) NCERT-XII, Pg. No. # 77
- **89.** Ans (1) NCERT XII Pg # 89
- 90. Ans (3) NCERT XII Page-No.78
- 91. Ans (3) NCERT, Pg. # 114, Para # 6.7
- **92. Ans (1)** NCERT XII Page-No. 101
- 93. Ans (4) NCERT XII Pg#83,87(E), 92,97(H)
- **94.** Ans (1) NCERT XII Pg#84

- 95. Ans (3) NCERT, Pg. # 104
- **96. Ans (2)** NCERT XII Pg#90
- **97. Ans (4)** NCERT, Pg. # 89, Para # 5.8.2
- 98. Ans (4) NCERT XII, Pg. # 185
- **99. Ans (4)** NCERT Pg. No. # 187
- **100. Ans (2)**NCERT XII, Pg. # 181

SUBJECT: ZOOLOGY

SECTION-A

- **101. Ans (2)** NCERT Pg # 195,198,199
- 102. Ans (3) NCERT XII, Pg. # 195, 196 (E) 215 (H)
- 103. Ans (2) NCERT Pg # 199
- **104. Ans (1)** NCERT Pg # 209, 211, 212
- 105. Ans (4) NCERT Pg # 158
- **106. Ans (3)** NCERT-XII, Pg. # 194, 195
- **107. Ans (1)** NCERT Pg#198
- **108. Ans (2)** NCERT XII, Pg. No. 203,194,195
- **109. Ans (1)** NCERT XII, Pg. No. 197,202,203
- 110. Ans (1) NCERT XII, Pg. No. 202,197,195

- **ALLEN®**
 - 111. Ans (1) NCERT XII, Pg. No. 197
 - 112. Ans (3) NCERT XII, Pg. No. 198
 - 113. Ans (2) NCERT XII, Pg. No. 194
 - 114. Ans (2) NCERT XII, Pg. No. 199
 - 115. Ans (1) NCERT XII, Pg. No. 198
 - 116. Ans (4) NCERT XII, Pg. No. 197
 - 117. Ans (4) NCERT XII, Pg. No. 199
 - 118. Ans (1) NCERT XII, Pg. No. 200,207
 - **119. Ans (4)** NCERT XII, Pg. No. 197
 - **120. Ans (2)** NCERT XII, Pg. No. 197
 - **121. Ans (2)** NCERT XII, Pg. No. 194
 - 122. Ans (1) NCERT Pg # 208
 - 123. Ans (2) NCERT Pg # 208
 - 124. Ans (2) NCERT-XII, Pg. # 210
 - 125. Ans (3) NCERT, Pg. # 201
 - 126. Ans (2) NCERT Pg # 209
 - **127. Ans (1)** NCERT Pg. # 209
 - 128. Ans (1) NCERT Page No. # 198 / 217

- **129. Ans (2)** NCERT-XII, Pg. # 176, 177
- **130. Ans (1)** NCERT XII Pg # 194
- **132. Ans (4)** NCERT XII, Pg. No. 211
- **133. Ans (3)** NCERT XII, Pg. No. 211
- **134. Ans (1)** NCERT XII, Pg. No. 211
- 135. Ans (3) NCERT XII, Pg. No. 209

SECTION-B

- **138. Ans (1)** NCERT 12th Pg. No. 203
- 139. Ans (2) NCERT (XIIth) Pg. # 208
- **140. Ans (1)** NCERT Pg. # 210
- **141. Ans (2)** NCERT XII, Pg. No. 196
- **142. Ans (3)** NCERT XII, Pg. No. 208
- **143. Ans (3)** NCERT XII, Pg. No. 196
- 145. Ans (3)
 NCERT Page 195
- 146. Ans (4) NCERT Pg # 196
- **147. Ans (1)** NCERT PG: 209, 12.1, Para-3
- 148. Ans (2) NCERT Pg # 211
- **149. Ans (2)** NCERT Pg # 213
- 150. Ans (1) NCERT,Pg.# 209

SUBJECT: CHEMISTRY

SECTION-A

- 152. Ans (2) $K_f \uparrow \uparrow$ Stability $\uparrow \uparrow$
- **159. Ans (1)** NCERT-XII (2019), Pg. # 248
- 165. Ans (2) $PCl_3 + 3H_2O \longrightarrow H_3PO_3 + 3HCl$
- 169. Ans (3) graphite is thermodynamically most stable allotrope of carbon.
- 172. Ans (4) $2NO_2 + H_2O \rightarrow HNO_3 + HNO_2$ $H_2S + (CH_3COO)_2Pb \rightarrow PbS (Black)$
- 176. Ans (2)
 Lanthavoid + Fe + some traces of S.C. etc.
- 177. **Ans (4)**NCERT Pg.#229
- 178. Ans (4)
 Only Gd⁺³ ([Xe]4f⁷) is paramagnetic because it as 7 unpaired electrons.

183. Ans (4)

NH₃ gas brown colour solution with Nesseler reagent

SECTION-B

- **186.** Ans (1) As per trans effect.
- 190. Ans (2) $3Mg + N_2 \xrightarrow{\Delta} Mg_3N_2$ $Mg_3N_2 + 6H_2O \rightarrow 3Mg(OH)_2 + 2NH_3$ $CuSO_4 + 4NH_3 \rightarrow [Cu(NH_3)_4]SO_4$
- 192. Ans (1) $NH_4NO_3 \xrightarrow{\Delta} N_2O + 2H_2O$
- 198. Ans (2)
 Lanthanoides(Ln) + acids \rightarrow H₂ + H₂O \rightarrow Ln(OH)₃ + H₂
- Fe + some traces of S.C. etc.

 199. Ans (3)

 BiCl₃ + H₂O → BiOCl + 2HCl

 White Turbidity

 Shows particle Hydrolysis.