VLSI Design Verification and Testing Introduction Mohammad Tehranipoor Electrical and Computer Engineering University of Connecticut

Course Outline Course outline Part I: Introduction to VLSI testing Part II: Test methods Part III: Design for testability

	1997-2001	2003-2006	2009-2012
Feature size (micron)	0.25 - 0.15	0.13 - 0.10	0.07-0.05
Transistors/cm ²	4 - 10M	18 - 39M	84-180
Pin count	100 - 900	160 - 1475	260-2690
Clock rate (MHz)	200 - 730	530 - 1100	840-1830
Power (Watts)	1.2 - 61	2 - 96	2.8-109
* SIA Poadman	, IEEE Spec	<i>ctrum</i> , July	1999

Present and Future What is happening to the test cost Automatic Test Equipment (ATE) cost Test time Escape Yield loss Compression At-speed testing New subtle defects Power delivery issue Source: IEEE D&T, Jan 2000

Contract between design house and fab vendor Design is complete and checked (verified) Fab vendor: How will you test it? Design house: I have checked it and ... Fab vendor: But, how would you test it? Design house: Why is that important? complete the story That is one reason for design-fortestability, test generation etc.

Contract between design ...

Hence:

- "Test" must be comprehensive
- It must not be "too long"

Issues:

- Model possible defects in the processUnderstand the process
- Develop simulator and fault simulator
- Develop test generator
- Methods to quantify the test efficiency
 Fault coverage

Verification v/s Testing

Definitions

- Design synthesis:
 - Given an I/O function, develop a procedure to manufacture a device using known materials and processes.
- Verification:
 - Predictive analysis to ensure that the synthesized design, when manufactured, will perform the given I/O function.
- Test
 - A manufacturing step that ensures that the physical device, manufactured from the synthesized design, has no manufacturing defect.

.

Verification v/s Testing

Verification	Testing
Verifies correctness of design.	Verifies correctness of manufactured hardware.
Performed by simulation, hardware	Two-part process:
emulation, or formal methods.	Test generation: software process executed once during design
	Test application: electrical tests applied to hardware
Performed once prior to manufacturing.	Test application performed on "every" manufactured device.
Responsible for quality of design.	Responsible for quality of devices.

Need for testing

- Functionality issue
 - Does the circuit (large or small) work?
- Density issue
 - $_{\mbox{\scriptsize \square}}$ Higher density \Rightarrow higher failure prob
- Application issue
 - Life critical applications
- Maintenance issue
 - Need to identify failed components
- Cost of doing business
- What does testing achieve?
 - Discard only the "bad product"?

10

Ideal Tests

- Ideal tests detect all defects produced in the manufacturing process.
- Ideal tests pass all functionally good devices.
- Very large numbers and varieties of possible defects need to be tested.
- Difficult to generate tests for some real defects.
 Defect-oriented testing is an open problem.

Real Tests

- Based on analyzable fault models, which may not map on real defects.
- Incomplete coverage of modeled faults due to high complexity.
- Some good chips are rejected. The fraction (or percentage) of such chips is called the **yield loss**.
- Some bad chips pass tests. The fraction (or percentage) of bad chips among all passing chips is called the **defect level**.

12

11

Level of testing (2)

- Other ways to define levels these are important to develop correct "fault models" and "simulation models"
 - Transistor
 - □ Gate
 - □ RTL
 - Functional
 - Behavioral
 - Architecture
- Focus: Chip level testing gate level design

15

Costs of Testing

- Design for testability (DFT)
 - Chip area overhead and yield reduction
 - Performance overhead
- Software processes of test
 - Test generation and fault simulation
 - Test programming and debugging
- Manufacturing test
 - □ Automatic test equipment (ATE) capital cost
 - Test center operational cost

16

Cost of Manufacturing Test

- 0.5-1.0GHz, analog instruments,1024 digital pins: ATE purchase price
 - \Box = \$1.2M + 1,024 x \$3,000 = \$4.272M
- Running cost (five-year linear depreciation)
 - □ = Depreciation + Maintenance + Operation □ = \$0.854M + \$0.085M + \$0.5M
 - = \$0.634M + \$0.63= \$1.439M/year
- Test cost (24 hour ATE operation)
 - $\Box = \$1.439M/(365 \times 24 \times 3,600)$
 - = 4.5 cents/second

Roles of Testing

- <u>Detection</u>: Determination of whether or not the device under test (DUT) has some fault.
- <u>Diagnosis</u>: Identification of a specific fault that is present on DUT.
- <u>Device characterization</u>: Determination and correction of errors in design and/or test procedure
- <u>Failure mode analysis (FMA)</u>: Determination of manufacturing process errors that may have caused defects on the DUT.

18

Course Outline Part I: Introduction

- Basic concepts and definitions (Chapter 1)
- Test process and ATE (Chapter 2)
- Test economics and product quality (Chapter 3)
- Fault modeling (Chapter 4)

20

Course Outline (Cont.) Part II: Test Methods

- Logic and fault simulation (Chapter 5)
- Testability measures (Chapter 6)
- Combinational circuit ATPG (Chapter 7)
- Sequential circuit ATPG (Chapter 8)
- Memory test (Chapter 9)
- Delay test and IDDQ test (Chapters 12 and 13)

Course Outline (Cont.)
Part III: DFT

- Scan design (Chapter 14)
- BIST (Chapter 15)
- Boundary scan (Chapters 16)

22