International Rectifier

AUTOMOTIVE MOSFET

PD-94428 IRF2805S IRF2805L

Typical Applications

- Climate Control
- ABS
- Electronic Braking
- Windshield Wipers

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax

chnology ce erature Allowed up to Tjmax

$V_{DSS} = 55V$ $R_{DS(on)} = 4.7m\Omega$ $I_{D} = 135A$

HEXFET® Power MOSFET

D

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this product are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	135®		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	96©	A	
I _{DM}	Pulsed Drain Current ①	700		
P _D @T _C = 25°C	Power Dissipation	200	W	
	Linear Derating Factor	1.3	W/°C	
V_{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS}	Single Pulse Avalanche Energy@	380	mJ	
E _{AS} (6 sigma)	Single Pulse Avalanche Energy Tested Value®	1220		
I _{AR}	Avalanche Current①	See Fig.12a, 12b, 15, 16	А	
E _{AR}	Repetitive Avalanche Energy®		mJ	
dv/dt	Peak Diode Recovery dv/dt 3	2.0	V/ns	
T _J	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.75	°C/W
$R_{\theta JA}$	Junction-to-Ambient(PCB Mounted, steady state)**		40	C/ VV

HEXFET(R) is a registered trademark of International Rectifier. www.irf.com

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.06		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.9	4.7	mΩ	V _{GS} = 10V, I _D = 104A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = 10V, I_D = 250\mu A$
g _{fs}	Forward Transconductance	91			S	$V_{DS} = 25V, I_D = 104A$
I	Drain-to-Source Leakage Current			20	μА	$V_{DS} = 55V, V_{GS} = 0V$
I _{DSS}				250		$V_{DS} = 44V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
lass	Gate-to-Source Forward Leakage			200	nA .	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-200		$V_{GS} = -20V$
Qg	Total Gate Charge		150	230		I _D = 104A
Q_{gs}	Gate-to-Source Charge		38	57	nC	$V_{DS} = 44V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		52	78		V _{GS} = 10V ⊕
t _{d(on)}	Turn-On Delay Time		14			$V_{DD} = 28V$
t _r	Rise Time		120		ns	$I_{D} = 104A$
t _{d(off)}	Turn-Off Delay Time		68		115	$R_G = 2.5\Omega$
t _f	Fall Time		110			V _{GS} = 10V ④
L _D	Internal Drain Inductance		4.5			Between lead,
					nH	6mm (0.25in.) from package
L _S	Internal Source Inductance		7.5			and center of die contact
C _{iss}	Input Capacitance		5110			$V_{GS} = 0V$
C _{oss}	Output Capacitance		1190		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		210			f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		6470		1	$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		860		1	$V_{GS} = 0V, V_{DS} = 44V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance ©		1600		1	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 44V$

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			475@		MOSFET symbol	
	(Body Diode)		1/5 [©]		175©	A	showing the
I _{SM}	Pulsed Source Current		700			integral reverse	
	(Body Diode) ①		_ 700		p-n junction diode.		
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 104A$, $V_{GS} = 0V$ ④	
t _{rr}	Reverse Recovery Time	T	80	120	ns	$T_J = 25^{\circ}C, I_F = 104A$	
Qrr	Reverse Recovery Charge		290	430	nC	di/dt = 100A/µs ④	
t _{on}	Forward Turn-On Time	Int	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Starting $T_J = 25^{\circ}C$, L = 0.08mH $R_G = 25\Omega$, $I_{AS} = 104A$. (See Figure 12).
- $\label{eq:loss} \begin{array}{l} \mbox{(3)} \ I_{SD} \leq 104A, \ di/dt \leq 240A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ \mbox{ } T_{J} \leq 175^{\circ}C \end{array}$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- $\ \ \, \ \, C_{oss}$ eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- © Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.
- $\ \ \,$ Limited by T_{Jmax} , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- This value determined from sample failure population. 100% tested to this value in production.

International Rectifier

IRF2805S/IRF2805L

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International Rectifier

IRF2805S/IRF2805L

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. | Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 14. Threshold Voltage Vs. Temperature www.irf.com

International TOR Rectifier

IRF2805S/IRF2805L

Fig 15. Typical Avalanche Current Vs.Pulsewidth

Fig 16. Maximum Avalanche Energy Vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption:
 Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{imax}. This is validated for
- every part type.
 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. $P_{D \text{ (ave)}}$ = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16). t_{av} = Average time in avalanche.
 - D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{th,JC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot \text{BV} \cdot \text{I}_{a\text{V}} \text{)} = \Delta \text{T} / \text{Z}_{th\text{JC}} \\ I_{a\text{V}} &= 2\Delta \text{T} / \text{ [} 1.3 \cdot \text{BV} \cdot \text{Z}_{th} \text{]} \\ E_{A\text{S (AR)}} &= P_{D \text{ (ave)}} \cdot t_{a\text{V}} \end{split}$$

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel

*** $\mbox{V}_{\mbox{GS}}$ = 5.0V for Logic Level and 3V Drive Devices

Fig 17. For N-channel HEXFET® power MOSFETs

International IOR Rectifier

IRF2805S/IRF2805L

D²Pak Package Outline

- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.

4. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

5. CONTROLLING DIMENSION: INCH.

D²Pak Part Marking Information

EXAMPLE: THIS IS AN IRF530S WITH

LOT CODE 8024

ASSEMBLED ON WW 02, 2000

IN THE ASSEMBLY LINE "L"

International IOR Rectifier

TO-262 Package Outline

S Y M		N				
B	MILLIM	ETERS	INC	INCHES		
L	MIN.	MAX.	MIN.	MAX.	O T E S	
Α	4.06	4.83	.160	.190		
A1	2.03	2.92	.080	.115		
b	0.51	0.99	.020	.039		
ь1	0.51	0.89	.020	.035	4	
b2	1.14	1.40	.045	.055		
С	0.38	0.63	.015	.025	4	
с1	1.14	1.40	.045	.055		
c2	0.43	.063	.017	.029		
D	8.51	9.65	.335	.380	3	
D1	5.33		.210			
Ε	9.65	10.67	.380	.420	3	
E1	6.22		.245			
е	2.54 BSC		.100	.100 BSC		
L	13.46	14.09	.530	.555		
L1	3.56	3,71	.140	.146		
L2		1.65		.065		

LEAD ASSIGNMENTS

HEXFET

- 1.- GATE
- 2.- DRAIN 3.- SOURCE
- 4.- DRAIN
- 1. DIMENSIONING AND TOLERANCING PER ASME Y14,5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- 4. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.
- 5. CONTROLLING DIMENSION: INCH.

TO-262 Part Marking Information

EXAMPLE: THIS IS AN IRL3103L

ф.010W AW В

2X e

ппп

LOT CODE 1789

ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

PART NUMBER INTERNATIONAL RECTIFIER IRL3103L LOGO **I©R** 719C DATE CODE 89 YEAR 7 = 1997ASSEMBLY WEEK 19 LOT CODE LINE C

D²Pak Tape & Reel Information

- - COMFORMS TO EIA-418.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION MEASURED @ HUB.
 INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.

International IOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 06/02 www.irf.com 11