From Strong Bisimulation to Weak Bisimulation

- applying strong bisimilarity: a simple buffer
- weak bisimilarity and weak bisimulation games
- properties of weak bisimilarity
- example: a communication protocol and its modelling in CCS
- concurrency workbench (CWB)

Example – Buffer

Buffer of Capacity 1

$$B_0^1 \stackrel{\text{def}}{=} in.B_1^1$$

 $B_1^1 \stackrel{\text{def}}{=} \overline{out}.B_0^1$

Buffer of Capacity *n*

$$\begin{array}{l} B_0^n \stackrel{\mathrm{def}}{=} in.B_1^n \\ B_i^n \stackrel{\mathrm{def}}{=} in.B_{i+1}^n + \overline{out}.B_{i-1}^n \quad \text{for } 0 < i < n \\ B_n^n \stackrel{\mathrm{def}}{=} \overline{out}.B_{n-1}^n \end{array}$$

Example – Buffer

Theorem

For all natural numbers n: $B_0^n \sim \underbrace{B_0^1 | B_0^1 | \cdots | B_0^1}_{n \text{ times}}$

Proof.

Construct the following binary relation, where $i_1, i_2, \dots, i_n \in \{0, 1\}$:

$$R = \{ (B_i^n, B_{i_1}^1 | B_{i_2}^1 | \cdots | B_{i_n}^1) \mid \sum_{j=1}^n i_j = i \}$$

- $(B_0^n, B_0^1|B_0^1|\cdots|B_0^1) \in R$
- R is a strong bisimulation

But still Internal Actions must be Abstracted away

Question

Does $a.\tau.Nil \sim a.Nil$ hold?

NO!

Problem

Strong bisimilarity does not abstract away from au actions.

Weak Transitions will (mostly) hide au actions

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS such that $\tau \in Act$.

Definition of Weak Transition Relation

$$\stackrel{a}{\Longrightarrow} = \begin{cases} (\stackrel{\tau}{\longrightarrow})^* \circ \stackrel{a}{\longrightarrow} \circ (\stackrel{\tau}{\longrightarrow})^* & \text{if } a \neq \tau \\ (\stackrel{\tau}{\longrightarrow})^* & \text{if } a = \tau \end{cases}$$

What does $s \stackrel{a}{\Longrightarrow} t$ informally mean?

- If $a \neq \tau$ then $s \stackrel{a}{\Longrightarrow} t$ means that from s we can get to t by doing zero or more τ actions, followed by the action a, followed by zero or more τ actions.
- If $a = \tau$ then $s \stackrel{\tau}{\Longrightarrow} t$ means that from s we can get to t by doing zero or more τ actions.

Weak Bisimilarity

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS such that $\tau \in Act$.

Weak Bisimulations

A binary relation $R \subseteq Proc \times Proc$ is a weak bisimulation iff whenever $(s, t) \in R$ then for each $a \in Act$ (including τ):

- if $s \stackrel{a}{\longrightarrow} s'$ then $t \stackrel{a}{\Longrightarrow} t'$ for some t' such that $(s', t') \in R$
- if $t \stackrel{a}{\longrightarrow} t'$ then $s \stackrel{a}{\Longrightarrow} s'$ for some s' such that $(s', t') \in R$.

Weak Bisimilarity

Two processes $p_1, p_2 \in Proc$ are weakly bisimilar $(p_1 \approx p_2)$ if and only if there exists a weak bisimulation R such that $(p_1, p_2) \in R$.

$$\approx = \cup \{R \mid R \text{ is a weak bisimulation}\}$$

Weak Bisimulation Game

Definition

Just as the Strong game except that

• defender can now reply using $\stackrel{a}{\Longrightarrow}$ moves.

The attacker is still using only $\stackrel{a}{\longrightarrow}$ moves.

Theorem

- States s and t are weakly bisimilar if and only if the defender has a universal winning strategy starting from the configuration (s, t).
- States s and t are not weakly bisimilar if and only if the attacker has a universal winning strategy starting from the configuration (s, t).

Properties of Weak Bisimilarity

Properties of \approx

- ullet pprox is an equivalence relation
- ullet pprox is the largest weak bisimulation
- validates lots of natural laws, e.g.
 - a.τ.P ≈ a.P
 - $P + \tau . P \approx \tau . P$
 - $a.(P + \tau.Q) \approx a.(P + \tau.Q) + a.Q$
 - $P + Q \approx Q + P$ $P|Q \approx Q|P$ $P + Nil \approx P$...
- strong bisimilarity is included in weak bisimilarity ($\sim \subseteq \approx$)
- ullet pprox (totally) abstracts au loops

Is Weak Bisimilarity a Congruence for CCS?

$\mathsf{Theorem}$

Let P and Q be CCS processes such that $P \approx Q$. Then

- $\alpha.P \approx \alpha.Q$ for each action $\alpha \in Act$
- $P \mid R \approx Q \mid R$ and $R \mid P \approx R \mid Q$ for each CCS process R
- $P[f] \approx Q[f]$ for each relabelling function f
- $P \setminus L \approx Q \setminus L$ for each set of labels L.

But what about choice?

 τ .a.Nil pprox a.Nil but τ .a.Nil + b.Nil $\not\approx$ a.Nil + b.Nil

Conclusion

Weak bisimilarity is not a congruence for CCS.

Case Study: A simple Communication Protocol

```
Send \stackrel{\text{def}}{=} acc.Sending Rec \stackrel{\text{def}}{=} trans.Del Sending \stackrel{\text{def}}{=} \overline{\text{send}}.Wait \stackrel{\text{def}}{=} ack.Send + error.Sending \stackrel{\text{def}}{=} \overline{\text{ack}}.Rec
```

```
 \begin{array}{ccc} \mathsf{Med} & \stackrel{\mathrm{def}}{=} & \mathsf{send.Med'} \\ \mathsf{Med'} & \stackrel{\mathrm{def}}{=} & \tau.\mathsf{Err} + \overline{\mathsf{trans}}.\mathsf{Med} \\ \mathsf{Err} & \stackrel{\mathrm{def}}{=} & \overline{\mathsf{error}}.\mathsf{Med} \end{array}
```

Using Weak Bisimilarity for Verification

$$\begin{aligned} \mathsf{Impl} &\stackrel{\mathrm{def}}{=} (\mathsf{Send} \,|\, \mathsf{Med} \,|\, \mathsf{Rec}) \smallsetminus \{\mathsf{send}, \mathsf{trans}, \mathsf{ack}, \mathsf{error}\} \\ \\ \mathsf{Spec} &\stackrel{\mathrm{def}}{=} \mathsf{acc}. \overline{\mathsf{del}}. \mathsf{Spec} \end{aligned}$$

Question

$$Impl \stackrel{?}{\approx} Spec$$

- Oraw the LTS of Impl and Spec and prove (by hand) their equivalence.
- This could be done (automatically) using the Concurrency WorkBench (CWB).