ArsDigitaUniversity Month2:DiscreteMathematics -ProfessorShaiSimonson

Syllabus

Week1: Introduction, Proofs, Logic, Boolean Algebra and applications, Sets and applications, Basic sums and functions.

Reading:Rosen1.1 -1.8,3.1 -3.2,5.5,9.1 -9.3HowtoReadMathematics (http://academics.stonehill.edu/compsci/History_Math/math-read.htm),Polya, HowtoSolveIt .

Lecture1: Whatkindsofproblemsaresolvedindi scretemath? Whatareproofs? Examplesofproofsbycontradiction, and proofs by induction: Triangle numbers, irrational numbers, and prime numbers. (3.1 -3.2)

Lecture2: BooleanAlgebraandformallogic.Applicationsinalgorithms,complexity theory, AI,digitallogicdesignandcomputerarchitecture.(1.1 -1.2,9.1 -9.3)

Lecture3: Morelogic:quantifiers and predicates . Sets, operations on sets, using logic toproveidentities on sets. (1.3 -1.5)

Lecture4: Sets. Applications in counting (the inclusion-exclusion theorem), theory of computation and data structures. (5.5)

Lecture5: Growthrateoffunctions,Big -Onotation,Countability,1 -1 correspondence.Applicationstoalgorithmsandtheoryofcomputation.(1.6 -1.8)

Week2: Induction, recur sion, recurrence equations, graphs.

Reading:Rosen3.3 -3.5,5.1 -5.3,7.1 -7.5

Lecture1: Basicarithmeticandgeometricsums, closedforms. Compound Interest – a simplere currence. Binary search – recursion, induction and complexity. Towers of Hanoi – recursion, induction, and graphs. (3.3 -3.5)

Lecture2: Chineseringspuzzle –Greycodes,graphs,hypercubes,Hamiltonianand Eulercircuits,planargraphs,Euler'stheorem.(7.1 -7.5)

Lecture3: Solvingrecurrence equations —repeated substitution, the Master Theorem with application stoal gorithms, change of variable technique. (5.1,5.3)

Lecture4: Solvingrecurrenceequations –guessingandprovingcorrectby induction, linearhomogeneous types. The Josephus Problem. (5.2)

Lecture5: Mathematicalinduction –aflexibleandusefultool.Manyexamplesand theideaofstronginduction.(3.2)

Week3: Countinganddiscreteprobability. Combinations, permutations, pigeonhole principle, inclusion/exclusionrevisited.

Reading:Rosen4.1 -4.7,5 .6,HowtoReadMath(re -readfromweek1)

Lecture1: Combinations and permutations. Pascal's triangle and binomial coefficients. (4.1,4.3)

Lecture2: Countingproblemsusingcombinations, distributions and permutations. (4.6)

Lecture3: Thepig eonholeprincipleandexamples. Theinclusion/exclusion theoremandadvancedexamples. A combinatorial cardtrick. (4.2,4.7,5.6)

Lecture4: Discrete probability, the birthday *paradox*, and many examples. (4.4)

Lecture5: Conditional probability, a ndmore counting. (4.5)

Week4: Generating functions, Number theory for cryptography and computer science, equivalence relations, partial orders, trees.

Reading:Rosen2.1 -2.5,5.4,6.1 -6.6,8.1 -8.2

Lecture1: Generating functions. (5.4)

Lecture 2: Primes, Greatest Common Divisors and the Euclidean Algorithm. (2.1 -2.5)

Lecture3: Thetwo-jugpuzzleasdemonstratedbyBruceWillisin **DieHardIII**.

Lecture4: Congruences and Fermat's little theorem. Application sto Cryptography. (6.1 -6.6)

Lecture5: Partialorders, trees and equivalence relations. Application stoal gorithms. (8.1 -8.2)