Лекция 11 по курсу «Дискретные преобразования сигналов» 15 апреля 2025 г.

7. Окна в цифровом спектральном анализе методом ДПФ (продолжение).

- Оценка амплитуд компонент: усиление преобразования, паразитная амплитудная модуляция спектра, коэффициент амплитудной модуляции, окно с плоской вершиной.
- Примеры параметрических окон: окно Чебышева, окно Кайзера.

Пример задачи оценивания параметров сигнала

Пример задачи оценивания параметров сигнала

Пусть известно, что обрабатываемая последовательность имеет вид

$$x[k] = \sum_{m=1}^{M} A_m \sin(2\pi \frac{m}{N} k + \varphi_m), \quad k = 0, 1, 2, ..., N-1,$$

где A_m и ϕ_m — неизвестные заранее амплитуды и фазы гармонических составляющих; $m=1,2,\ldots,\lfloor 0,5N-1\rfloor$ — целые числа, определяющие нормированные частоты $\mathbf{v}_m=m/N$ гармонических составляющих, которые совпадают с бинами ДПФ. Требуется выразить неизвестные амплитуды A_m и фазы ϕ_m через отсчеты ДПФ данной последовательности.

Решение.

$$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] e^{-j\frac{2\pi}{N}nk} = \frac{1}{N} \sum_{k=0}^{N-1} \left(\sum_{m=1}^{M} A_m \sin(2\pi \frac{m}{N} k + \varphi_m) \right) e^{-j\frac{2\pi}{N}nk} =$$

$$= \frac{1}{N} \sum_{m=1}^{M} A_m \sum_{k=0}^{N-1} \left(\frac{1}{2j} e^{j\left(\frac{2\pi}{N}mk + \varphi_m\right)} - \frac{1}{2j} e^{-j\left(\frac{2\pi}{N}mk + \varphi_m\right)} \right) e^{-j\frac{2\pi}{N}nk} =$$

$$\frac{1}{N} \sum_{m=1}^{M} \frac{A_m}{2} \left(-j\sum_{k=0}^{N-1} e^{j\left(\frac{2\pi}{N}(m-n)k + \varphi_m\right)} + j\sum_{k=0}^{N-1} e^{-j\left(\frac{2\pi}{N}(m+n)k + \varphi_m\right)} \right)$$

Рассмотрим суммы вида

$$S_1 = \sum\limits_{k=0}^{N-1} e^{j\left(rac{2\pi}{N}(m-n)k+arphi_{_{m}}
ight)} = e^{jarphi_{_{m}}}\sum\limits_{k=0}^{N-1} e^{jrac{2\pi}{N}(m-n)k}$$
 отдельно.

Определим их по формуле суммы геометрической прогрессии $b_1, b_1q, b_1q^2, ..., b_1q^{N-1}$,

где
$$b_1=e^{j\phi_{_m}}$$
 (слагаемое при $k=0$), $q=e^{j\frac{2\pi}{N}(m-n)}$. Если $q\neq 1$, то $S_1=b_1\frac{1-q^N}{1-q}=e^{j\phi_{_m}}\frac{1-e^{j2\pi(m-n)}}{j\frac{2\pi}{N}(m-n)}=0.$

Если q=1 (что выполнено при m-n кратном N):

$$S_1 = b_1 N = N e^{j\varphi_m}.$$

Заметим, что при $n \in \left[0, \frac{N}{2} - 1\right]$ условие q = 1 выполняется

при
$$m=n$$
. Тогда $\tilde{X}[m]=rac{A_m}{2}e^{j(\phi_{_m}-\pi/2)}$ при $m\in \left[0,rac{N}{2}-1
ight]$.

Отсюда находим неизвестные амплитуды и фазы:

$$A_m = 2|\tilde{X}[m]|; \quad \varphi_m = \arg \tilde{X}[m] + \pi/2, \quad m \in \left[0, \frac{N}{2} - 1\right].$$

Оценка амплитуд гармоник

Оценка амплитуд гармоник.

Предположим, что некоторая последовательность анализируется с применением окна w[k] и имеет вид

$$x[k] = A \exp(j2\pi v_k k) \tag{1}$$

где

- v_k нормированная частота гармонической компоненты (известна),
- A ее амплитуда (неизвестна).

Амплитуду A требуется оценить, используя ДПФ-анализ.

Обозначим

• W(v) -ДВПФ окна w[k],

$$W(v) = \sum_{k=0}^{N-1} w[k] \exp(-j2\pi vk),$$

• $X_w(v)$ –ДВПФ x[k]w[k] (взвешенного окном сигнала),

$$X_w(v) = \sum_{k=0}^{N-1} x[k]w[k] \exp(-j2\pi vk).$$

С учетом (1)

$$X_{w}(v) = A \sum_{k=0}^{N-1} \exp(j2\pi v_{k}k) w[k] \exp(-j2\pi v_{k}k).$$

На частоте v_k

$$X_w(v_k) = A \sum_{k=0}^{N-1} w[k] = AW(0).$$
 (2)

Из (2) следует, что в отсутствии шума определить неизвестную амплитуду можно по формуле

$$A = X_{w}(v_{k}) / W(0).$$
 (3)

Значение W(0) отражает величину **когерентного усиления по амплитуде**.

название окна	Когерентное усиление	
	в единицах	
	W(0)/N	
прямоугольное	1	
Бартлетта	0,5	
Ханна	0,5	
Хэмминга	0,54	
Блэкмана	0,42	

Оценка амплитуд гармоник

Пример. Оценка амплитуд гармоник.

Предположим, что анализируемая последовательность имеет вид

$$x[k] = A\cos(2\pi v_k k)$$

где $v_k=0,2$, A — неизвестная амплитуда, которую нужно оценить. Анализ осуществляется по последовательности y[k]=x[k]w[k], где w[k]— окно Блэкмана длиной N=100.

Заметим, что

$$A\cos(2\pi v_k k) = \frac{A}{2} \exp(j2\pi v_k k) + \frac{A}{2} \exp(-j2\pi v_k k)$$

Из предыдущей лекции спектр окна Блэкмана:

$$W(v) = 0.42W_{\text{пр}}(v) - 0.25W_{\text{пр}}\left(v + \frac{1}{N}\right) - 0.25W_{\text{пр}}\left(v - \frac{1}{N}\right) + 0.04W_{\text{пр}}\left(v + \frac{2}{N}\right) + 0.04W_{\text{пр}}\left(v - \frac{2}{N}\right),$$

$$W_{\text{пр}}(v) = \frac{\sin(N\pi v)}{\sin(\pi v)} \exp(-j(N-1)\pi v).$$

Функция $W_{\rm пp}(\nu)$ в точках $\nu=\pm 1/N$ и $\nu=\pm 2/N$ равна нулю, $W_{\rm пp}(0)=N$ (значение определяется в пределе). Тогда W(0)=0,42N.

На рисунке показан график модуля ДВПФ с нормировкой на величину когерентного усиления W(0)=0,42N . По графику можно сделать оценку $A\approx 10$ $\left(A/2\approx 5\right)$.

Паразитная амплитудная модуляция спектра

Паразитная амплитудная модуляция спектра.

Паразитная амплитудная модуляция $K_{\text{мод}}$ характеризует амплитуду гармонического сигнала, которую можно оценить с помощью ДПФ анализатора с оконной функцией. В самом неблагоприятном случае частота сигнала находится между соседними бинами ДПФ. Пусть спектр (ДВПФ) оконной функции W(v). Величина $K_{\text{мод}}$, выраженная в децибелах, определяется как

$$K_{\text{мод}} = 20 \lg \left| \frac{W(0,5/N)}{W(0)} \right|.$$

Для прямоугольной функции $K_{\text{мод}} = -3,92\,\text{дБ}$, для окна Бартлетта $K_{\text{мод}} = -1,82\,\text{дБ}$, для окна Хэмминга $K_{\text{мод}} = -1,78\,$ дБ. При этом для окна с плоской вершиной (flattop) $K_{\text{мод}} = -0,02\,$ дБ. Заметим, что для снижения этой погрешности можно также воспользоваться методом дополнения нулями анализируемой последовательности.

Окно с плоской вершиной

Окно с плоской вершиной

Как было показано ранее, форма главного лепестка оконной функции приводит к искажению амплитуд гармоник, частоты которых не соответствуют бинам ДПФ. Если требуется уменьшить этот эффект, то следует использовать окно с плоской вершиной:

$$w_{flattop}[k] = \begin{cases} \sum_{r=0}^{4} (-1)^r a_r \cos\left(\frac{2\pi}{N}rk\right), & \text{при } 0 \le k \le N-1, \\ 0, & \text{при других } k, \end{cases}$$

где $a_0=0,21557895$, $a_1=0,41663158$, $a_2=0,277263158$, $a_3=0,083578947$, $a_4=0,006947368$. Заметим, что временная функция $w_{flattop}[k]$ может принимать отрицательные значения. Как было ранее отмечено, для окна с плоской вершиной $K_{\text{мод}}=-0,02$ дБ. Это означает, что использование этого окна позволяет минимизировать эффект паразитной амплитудной модуляции.

Окно с плоской вершиной

Исключение эффекта искажения амплитуд из-за паразитной амплитудной модуляции спектра.

Окно Чебышёва (равноволновое окно)

Окно Чебышёва (равноволновое окно)

Частотная характеристика окна Чебышева длины N задается формулой

$$W_{\text{Чебышева}}(\nu) = \frac{\cos((N-1)\arccos(\alpha\cos\pi\nu))}{\cosh((N-1)\operatorname{arch}\alpha)}, \quad \alpha = \operatorname{ch}\frac{\operatorname{arch}10^{\beta/20}}{N-1},$$

где β — разность уровней главного и боковых лепестков в дБ. Во временной области окно Чебышева можно получить, взяв обратное ДПФ для выборок $W_{\mathrm{Чеб.}}(\nu_n)$, таких, что $\nu_n=n/N$, $n=0,1,\ldots,N-1$.

У окна Чебышева все боковые лепестки имеют одинаковый уровень, спада боковых лепестков по мере удаления от главного у него нет.

Однако из всех N — точечных дискретных окон с уровнем боковых лепестков относительно главного, не превосходящем β дБ, оно имеет самый узкий главный лепесток.

Окно Кайзера

Окно Кайзера

Джеймс Кайзер (Лаборатории Белла, MIT) предложил использовать окна следующего вида

$$w_{\text{Кайзера}}[k] = \begin{cases} I_0 \left(\beta \sqrt{1 - \left(\frac{2k}{N} - 1\right)^2}\right) \\ \hline I_0(\beta) \\ 0, & \text{при } 0 \leq k \leq N - 1, \end{cases}$$

где N — длина окна, β — параметр окна Кайзера, $I_0(x)$ — модифицированная функция Бесселя первого рода нулевого порядка, которая может быть вычислена с помощью быстро сходящегося степенного ряда (обычно достаточно L < 25)

$$I_0(x) = 1 + \sum_{m=1}^{L} \left(\frac{(x/2)^m}{m!} \right)^2.$$

Варьируя β и N, можно найти компромисс между относительным уровнем боковых лепестков окна и шириной главного. Характерно то, что относительный уровень боковых лепестков не зависит от длины окна, и

определяется лишь параметром β. Кайзер и Шафер получили следующие эмпирические зависимости:

$$\beta = \begin{cases} 0,12438(a+6,3), & 60 < a \le 120, \\ 0,76609(a-13,26)^{0.4} + 0,09834(a-13,26), & 13,26 < a \le 60, \\ 0, & a \le 13,26, \end{cases}$$

$$N \approx \frac{24\pi(a+12)}{155\Delta v} + 1,$$

где a — уровень боковых лепестков относительно уровня главного в дБ, Δv — ширина главного лепестка окна на нулевом уровне.

Задачи с лекции

Задачи для самостоятельного решения

№1. Пусть известно, что обрабатываемая последовательность имеет вид

$$x[k] = \sum_{m=1}^{M} A_m \cos(2\pi \frac{m}{N} k + \varphi_m), \quad k = 0, 1, 2, ..., N-1,$$

где A_m и ϕ_m — неизвестные заранее амплитуды и фазы гармонических составляющих; $m=1,2,...,\lfloor 0,5N-1\rfloor$ — целые числа, определяющие нормированные частоты $\mathbf{v}_m=m/N$ гармонических составляющих, которые совпадают с бинами ДПФ.

Выразите неизвестные амплитуды A_m и фазы ϕ_m через отсчеты ДПФ данной последовательности.

Пример практического примененния оценки амплитуд.

Investigation of the correlations between the field pavement inplace density and the intelligent compaction measure value (ICMV) of asphalt layers

https://doi.org/10.1016/j.conbuildmat.2021.123439

№2. На рисунке изображен спектр (ДВПФ) последовательности отсчетов

 $x[k] = A_1 \sin(2\pi v_1 k) + A_2 \sin(2\pi v_2 k), v_1 = 0, 1, v_2 = 0, 2,$ где A_1 и A_2 — неизвестные амплитуды (положительные числа), взвешенной окном Блэкмана длиной в 64 отсчета. Оцените значения A_1 и A_2 по графику.

Задачи с лекции

Приложение. Сводная таблица основных характеристик различных оконных функций.

название окна	ширина главного	уровень максимального	скорость спада	коэффициент паразитной
	лепестка на нулевом	бокового лепестка	боковых	амплитудной модуляции
	уровне (в бинах ДПФ)	относительно главного (дБ)	лепестков	$K_{\scriptscriptstyle{ ext{MOЛ}}}$ (дБ)
			(дБ / октава)	Мод
прямоугольное	2	-13,3	6	-3,92
Бартлетта	4	-26,5	12	-1,82
Ханна	4	-32	18	-1,42
Хэмминга	4	-42	6	-1,78
Блэкмана	6	-58,1	18	-1,10
Flattop	10	зависит от длины окна		-0,02

название окна	полоса по уровню –3 дБ (в бинах ДПФ)	полоса по уровню –6 дБ (в бинах ДПФ)	ЭШП (в бинах ДПФ)	$\delta = \frac{\Delta v_{\text{III}} - \Delta v_{-3 \text{д}B}}{\Delta v_{-3 \text{д}B}}$	Когерентное усиление в единицах $W(0) / N$
прямоугольное	0,89	1,20	1,00	0,124	1
Бартлетта	1,28	1,78	1,33	0,039	0,5
Ханна	1,44	2,00	1,50	0,042	0,5
Хэмминга	1,33	1,82	1,36	0,023	0,54
Блэкмана	1,64	2,30	1,73	0,055	0,42
Flattop	3,74	4,60	3,77	0,008	0,21557895