MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 6 - MARCH 2011 SOLUTION KEY

Team Round - continued

C) $(3, 6) / y = mx + b \Rightarrow b = 6 - 3m$ The y-intercept is at (0, b) = (0, 6 - 3m).

The x-intercept as at $\left(-\frac{b}{m},0\right) = \left(-\frac{6-3m}{m},0\right)$

The area of the first quadrant triangle is given by $\frac{1}{2}(6-3m)\cdot\left(-\frac{6-3m}{m}\right)=100$

⇒ $(6-3m)^2 = -200m$ ⇒ $9m^2 + 164m + 36 = (9m + 2)(m + 18) = 0$ ⇒ m = -2/9, -18If θ denotes the angle of inclination, then $m = \tan \theta$

Negative slopes correspond to obtuse angles of inclination.

 $\theta = \pi - Arc \tan(18)$ or $\pi - Arc \tan(\frac{2}{9})$ Since y = Arctan(x) is a strictly increasing

function, $Arc \tan(18) > Arc \tan\left(\frac{2}{9}\right)$ and the smaller of these is $\frac{\pi - Arc \tan(18)}{2}$

D) Regroup the terms on the left side as follows:

$$((x+2)(x+3))((x+1)(x+4)) = (x^2+5x+6)(x^2+5x+4) = 8$$

If $A = (x^2 + 5x)$, then the equation becomes (A+6)(A+4) = 8.

→
$$A^2 + 10A + 16 = (A+2)(A+8) = 0$$
 → $A = -2, -8$

Substituting and applying the quadratic formula,

$$x^2 + 5x + 2 = 0$$
 $\Rightarrow x = \frac{-5 \pm \sqrt{17}}{2}$ and $x^2 + 5x + 8 = 0$ $\Rightarrow b^2 - 4ac = 25 - 32 < 0$ (rejected)