CusToM Workshop

Kinematic tutorial

Charles Pontonnier, Pierre Puchaud

Pre-Work

Go in Examples\1_SideStep_Kinematic\SideStep_Anthropo

It contains:

Generate Parameters of the Model

>> GenerateParameters

• Size : 1.755 m

• Mass: 70 Kg

- Osteo-articular model full body
 - Pelvis
 - Pelvis LowerTrunk
 - Leg
 - Arms
- Marker Set
 - MarkerSet_2 (M2S makerset)
 - 2 markers on hand
- No Muscles

AnalysisParameters

Only Inverse Kinematic Active Step

- Levenberg-marquardt
- 5Hz filter butterworh 2nd order zero lag

What CusToM is Doing?

```
Anthropometric Model Generation ...

... Anthropometric Model Generation done
```

The osteoarticular model comes from cadaveric data.

Anthropometric scaling:

- Segments lengths
- Anatomical landmarks

$$k_0 = \frac{size \ of \ the \ subject}{size \ of \ the \ cadaver}$$

What CusToM is Doing?

```
Preliminary Computations ...
Preliminary Computations done
```

A priori known location of anatomical landmarks are computed in the global reference frame R_0 function of joint coordinates \boldsymbol{q}

Jacobian matrix **J** are computed analytically

 For Inverse kinematics using Levenberg-Marquardt algorithms

What CusToM is Doing?

```
Inverse kinematics (ChgtDirection04) ...
... Inverse kinematics (ChgtDirection04) done
```

Euclidian distance minization between experimental markers $^{R_0}X_{exp,i}$ and a priori know location of anatomical landmarks $^{R_0}X_{mod,m}(q)$ in the global frame R_0

$$\min_{\boldsymbol{q}} \sum_{i}^{N_{markers}} \left\| {^{R_0}} \boldsymbol{X}_{exp,i} - {^{R_0}} \boldsymbol{X}_{mod,m}(\boldsymbol{q}) \right\|^2$$

We get the joint coordinates q.

First results – Kinematic residuals

>> PostProcessingKinematic_Anthropo

First results – Joint coordinates

>> PostProcessingKinematic_Anthropo

What about the quality of the model? – Right Shank length

>> PostProcessingKinematic_Anthropo

What about the quality of the model?

For a same size, segment lengths can vary between subjects.

Pre-Work

Go in Examples\1_SideStep_Kinematic\SideStep_Geometric_Calibration

It contains:

ChgtDirection04.c3d	11/10/2018 09:57	Fichier C3D	347 Ko
⊕ ROM.c3d	27/11/2018 09:39	Fichier C3D	32 858 Ko

We will add a geometric calibration step

Same previous steps, except for AnalysisParameters.

Geometrical Calibration step

- Frames used
 - Selection method of frames: UniformlyDistributed
 - Number of frames: 20
- Body length
 - Homethetic factors of Clavicles are linked to homothetic factor of the Thorax
- Marker Position
 - Direction of markers to optimize in local frames (Z is medio-lateral)
- Axis of rotation
 - Orientation of Joint axis can be optimized to fit subject-specific joint axis.
 - For example knee axis. Two rotation angles have to be introduced.

```
Geometrical Calibration ...

... Geometrical Calibration done
```

A priori known location of anatomical landmarks are computed in the global reference frame R_0 , function of:

- joint coordinates q,
- homothetic factors k,
- variation of marker position Δp ,
- rotation of joint axis α .

 $R_0 X_{marker}$ $= f(\mathbf{q}, \mathbf{k}, \Delta \mathbf{p}, \alpha)$


```
Geometrical Calibration ...
... Geometrical Calibration done
```

Uniformely distributed frames

Frames are chosen equally spaced in ROM.c3d

Geometrical Calibration ...
... Geometrical Calibration done

Body Length

Linear Constraints of homothetic factors.

$$\begin{cases} k_{R_{Clavicle}} - k_{Thorax} = 0 \\ k_{L_{Clavicle}} - k_{Thorax} = 0 \end{cases}$$

Geometrical Calibration ...
... Geometrical Calibration done

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Some location of markers are optimized In this case :

•RKNE is trusted for x,y,z direction

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Some location of markers are optimized In this case :

•RKNE is trusted for x,y,z direction

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Some location of markers are optimized In this case :

•RKNE is trusted for x,y,z direction

RKNE

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Some location of markers are optimized In this case :

•RKNE is trusted for x,y,z direction

RKNE

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

- •RKNE is trusted for x,y,z direction
- •RKNI is trusted RKNE and optimized for y and z direction


```
Geometrical Calibration ...
... Geometrical Calibration done
```

$$\overrightarrow{a_z}' = Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

$$\overrightarrow{a_z}^{\prime\prime} = Rot(\alpha_2, \overrightarrow{a_y}^{\prime}) * \overrightarrow{a_z}^{\prime\prime}$$

$$\overrightarrow{a_z}^{"} = Rot(\alpha_2, \overrightarrow{a_y}) * Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

Geometrical Calibration ...
... Geometrical Calibration done

$$\overrightarrow{a_z}' = Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

$$\overrightarrow{a_z}^{\prime\prime} = Rot(\alpha_2, \overrightarrow{a_y}^{\prime}) * \overrightarrow{a_z}^{\prime\prime}$$

$$\overrightarrow{a_z}^{"} = Rot(\alpha_2, \overrightarrow{a_y}) * Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

Geometrical Calibration ...
... Geometrical Calibration done

$$\overrightarrow{a_z}' = Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

$$\overrightarrow{a_z}^{\prime\prime} = Rot(\alpha_2, \overrightarrow{a_y}^{\prime}) * \overrightarrow{a_z}^{\prime\prime}$$

$$\overrightarrow{a_z}^{"} = Rot(\alpha_2, \overrightarrow{a_y}) * Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

Geometrical Calibration ...
... Geometrical Calibration done

$$\overrightarrow{a_z}' = Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

$$\overrightarrow{a_z}^{\prime\prime} = Rot(\alpha_2, \overrightarrow{a_y}^{\prime}) * \overrightarrow{a_z}^{\prime\prime}$$

$$\overrightarrow{a_z}^{"} = Rot(\alpha_2, \overrightarrow{a_y}) * Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

Geometrical Calibration ...
... Geometrical Calibration done

$$\overrightarrow{a_z}' = Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

$$\overrightarrow{a_z}^{\prime\prime} = Rot(\alpha_2, \overrightarrow{a_y}^{\prime}) * \overrightarrow{a_z}^{\prime\prime}$$

$$\overrightarrow{a_z}^{"} = Rot(\alpha_2, \overrightarrow{a_y}) * Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

Geometrical Calibration ...
... Geometrical Calibration done

$$\overrightarrow{a_z}' = Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

$$\overrightarrow{a_z}^{\prime\prime} = Rot(\alpha_2, \overrightarrow{a_y}^{\prime}) * \overrightarrow{a_z}^{\prime}$$

$$\overrightarrow{a_z}^{"} = Rot(\alpha_2, \overrightarrow{a_y}) * Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

Geometrical Calibration ...
... Geometrical Calibration done

$$\overrightarrow{a_z}' = Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

$$\overrightarrow{a_z}^{\prime\prime} = Rot(\alpha_2, \overrightarrow{a_y}^{\prime}) * \overrightarrow{a_z}^{\prime}$$

$$\overrightarrow{a_z}^{"} = Rot(\alpha_2, \overrightarrow{a_y}) * Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

Geometrical Calibration ...
... Geometrical Calibration done

$$\overrightarrow{a_z}' = Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

$$\overrightarrow{a_z}^{\prime\prime} = Rot(\alpha_2, \overrightarrow{a_y}^{\prime}) * \overrightarrow{a_z}^{\prime}$$

$$\overrightarrow{a_z}^{"} = Rot(\alpha_2, \overrightarrow{a_y}) * Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

Geometrical Calibration ...
... Geometrical Calibration done

$$\overrightarrow{a_z}' = Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

$$\overrightarrow{a_z}^{\prime\prime} = Rot(\alpha_2, \overrightarrow{a_y}^{\prime}) * \overrightarrow{a_z}^{\prime\prime}$$

$$\overrightarrow{a_z}^{"} = Rot(\alpha_2, \overrightarrow{a_y}) * Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$


```
Geometrical Calibration ...
... Geometrical Calibration done
```


Regression method Based on height RM

```
Geometrical Calibration ...
... Geometrical Calibration done
```


Geometrical Calibration Geometrical Calibration done Equally spaced sets of frames:

```
... Geometrical Calibration done
                                          Equally spaced sets of frames:
                                                     N_f
                                 X_{mod,1}^{global}
```

Geometrical Calibration ...

Geometrical Calibration Geometrical Calibration done Equally spaced sets of frames: $X_{mod,1}^{global}$ Inverse kinematics q_2 Lu and O'Connor et al. 1999 q_3

What is CusToM Doing?

```
Geometrical Calibration ...

... Geometrical Calibration done
```

$$\begin{split} \Phi &= \sum_{f}^{N_f} \sum_{m}^{N_m} ||\mathbf{X}_{exp,m}(t_f) - \mathbf{X}_{mod,m}^{R_{global}}(\mathbf{q}(t_f), \mathbf{k}, \boldsymbol{\alpha}, \boldsymbol{\Delta}\mathbf{p})||^2 \\ & \underset{\mathbf{k}, \boldsymbol{\alpha}, \boldsymbol{\Delta}\mathbf{p}}{\min} \quad \Phi(\mathbf{q}(t_f), \mathbf{k}, \boldsymbol{\alpha}, \boldsymbol{\Delta}\mathbf{p}) \\ & \text{s.t.} \qquad \forall \; s \; \in \llbracket 1; N_s \rrbracket, \; |\frac{k_s}{k_s^0} - 1| < 20 \; \% \\ & \forall \; a \; \in \llbracket 1; N_\alpha \rrbracket, \; \alpha_{a,min} < \alpha_a < \alpha_{a,max} \\ & \forall \; m \in \llbracket 1; N_m \rrbracket, \; |\boldsymbol{\Delta}p_m| < 0.05 \; m \end{split}$$

$$\epsilon = rac{\Phi_i - \Phi_{i-1}}{\Phi_{i-1}}$$

>> PostProcessingCalibration

All contained in a struct:

Biomechanical Model. Geometrical Calibration	
Field A	Value
frame_calib	1x20 double
 crit	[1 0.4682 0.0703 0.0989 0.0414]
errorm	1x5 cell
	48x1 double
	126x1 double
alpha_calib	[]

BiomechanicalModel.GeometricalCalibration
« .Crit »

>> PostProcessingCalibration

Biomechanical Model. Geometrical Calibration

« .errorm »

>> PostProcessingCalibration

BiomechanicalModel.GeometricalCalibration

Variation of the homothetic coefficient from the anthopometric estimation.

Reminder:

$$k_0 = \frac{\text{size of the subject}}{\text{size of the cadaver}}$$

From the initial musculoskeletal model:

$$k_{final} = k_0 * k_{calib}$$

15

'ThoraxSkul...

16

>> PostProcessingCalibration

Displacement of the marker in local frames.

What about the quality of the model? Geometrical Calibration Results - Right Shank length

Kinematical Results

Decreasing of the mean reconstruction error over the side step trial.

Kinematical Results

Workshop CusToM - 1

27

Kinematical Results

Take home message

To ensure the quality of the model and kinematic results

- Check your reconstruction errors
 - on your calibration trial
 - on your inverse kinematic trials
 - 4 to 40 mm reconstruction error mean have been reported. [Begon et al. 2017]

Begon, M., Andersen, M.S., Dumas, R., 2017. Multibody kinematic optimization for the estimation of upper and lower limb human joint kinematics: a systematic review. J. Biomech. Eng. 140, 1–11.

- Be sure you chose the right constraints to ensure the geometrical calibration
 - Enough frames (20-100)
 - Homothetic constraints (equality)
 - Displacement of markers
 - Rotation of joint axis