Package 'sysid'

October 14, 2022

Type Package

2 armax

ex		36
	%=%	35
	time	35
	step	34
	spa	33
	sim	32
	residplot	32
	read.table.idframe	31
	read.idframe	30
	rarx	29
	predict.estpoly	28
	plot.idfrd	28
	plot.idframe	27
	optimOptions	27
	oesim	26
	oe	25
	nInputSeries	24
	misdata	24
	iv4	22
	iv	21
	inputNames<	21
	inputData	20
	impulseplot	20
	impulseest	19
	idpoly	18
	idinput	17
	idfrd	16
	getcov	15
		15
	fitch	14 15
	etfe	13
	estpoly	13

armax

Estimate ARMAX Models

Description

Fit an ARMAX model of the specified order given the input-output data

Usage

```
armax(x, order = c(0, 1, 1, 0), init_sys = NULL, intNoise = FALSE, options = optimOptions())
```

armax 3

Arguments

х	an object of class idframe
order	Specification of the orders: the four integer components (na,nb,nc,nk) are the order of polynolnomial A, order of polynomial B + 1, order of the polynomial C, and the input-output delay respectively
init_sys	Linear polynomial model that configures the initial parameterization. Must be an ARMAX model. Overrules the order argument
intNoise	Logical variable indicating whether to add integrators in the noise channel (Default=FALSE)
options	Estimation Options, setup using optimOptions

Details

SISO ARMAX models are of the form

$$y[k] + a_1 y[k-1] + \ldots + a_{na} y[k-na] = b_{nk} u[k-nk] + \ldots + b_{nk+nb} u[k-nk-nb] + c_1 e[k-1] + \ldots + c_{nc} e[k-nc] + e[k]$$

The function estimates the coefficients using non-linear least squares (Levenberg-Marquardt Algorithm)

The data is expected to have no offsets or trends. They can be removed using the detrend function.

Value

An object of class estpoly containing the following elements:

sys an idpoly object containing the fitted ARMAX coefficients

fitted.values the predicted response

residuals the residuals

input the input data used call the matched call

stats A list containing the following fields:

vcov - the covariance matrix of the fitted coefficients sigma - the standard deviation of the innovations

options Option set used for estimation. If no custom options were configured, this is a

set of default options

termination Termination conditions for the iterative search used for prediction error mini-

mization: WhyStop - Reason for termination

iter - Number of Iterations

iter - Number of Function Evaluations

References

Arun K. Tangirala (2015), *Principles of System Identification: Theory and Practice*, CRC Press, Boca Raton. Sections 14.4.1, 21.6.2

4 arx

Examples

```
data(armaxsim)
z <- dataSlice(armaxsim,end=1533) # training set
mod_armax <- armax(z,c(1,2,1,2))
mod_armax</pre>
```

armaxsim

Data simulated from an ARMAX model

Description

This dataset contains 2555 samples simulated from the following ARMAX model:

$$y[k] = \frac{0.6q^{-2} - 0.2q^{-3}}{1 - 0.5q^{-1}}u[k] + \frac{1 - 0.3q^{-1}}{1 - 0.5q^{-1}}e[k]$$

Usage

armaxsim

Format

an idframe object with 2555 samples, one input and one output

Details

The model is simulated with a 2555 samples long full-band PRBS input. The noise variance is set to 0.1

arx

Estimate ARX Models

Description

Fit an ARX model of the specified order given the input-output data

Usage

```
arx(x, order = c(1, 1, 1), lambda = 0.1, intNoise = FALSE, fixed = NULL)
```

arx 5

Arguments

x an object of class idframe

order Specification of the orders: the three integer components (na,nb,nk) are the order

of polynolnomial A, (order of polynomial B + 1) and the input-output delay

lambda Regularization parameter(Default=0.1)

intNoise Logical variable indicating whether to add integrators in the noise channel (De-

fault=FALSE)

fixed list containing fixed parameters. If supplied, only NA entries will be varied.

Specified as a list of two vectors, each containing the parameters of polynomials

A and B respectively.

Details

SISO ARX models are of the form

$$y[k] + a_1y[k-1] + \ldots + a_{na}y[k-na] = b_{nk}u[k-nk] + \ldots + b_{nk+nb}u[k-nk-nb] + e[k]$$

The function estimates the coefficients using linear least squares (with regularization).

The data is expected to have no offsets or trends. They can be removed using the detrend function. To estimate finite impulse response(FIR) models, specify the first order to be zero.

Value

An object of class estpoly containing the following elements:

sys an idpoly object containing the fitted ARX coefficients

fitted.values the predicted response

residuals the residuals
input the input data used
call the matched call

stats A list containing the following fields:

vcov - the covariance matrix of the fitted coefficients sigma - the standard deviation of the innovations

df - the residual degrees of freedom

References

Arun K. Tangirala (2015), *Principles of System Identification: Theory and Practice*, CRC Press, Boca Raton. Section 21.6.1

Lennart Ljung (1999), System Identification: Theory for the User, 2nd Edition, Prentice Hall, New York. Section 10.1

Examples

```
data(arxsim)
mod_arx <- arx(arxsim,c(1,2,2))
mod_arx
plot(mod_arx) # plot the predicted and actual responses</pre>
```

6 bj

arxsim

Data simulated from an ARX model

Description

This dataset contains 2555 samples simulated from the following ARX model:

$$y[k] = \frac{0.6q^{-2} - 0.2q^{-3}}{1 - 0.5q^{-1}}u[k] + \frac{1}{1 - 0.5q^{-1}}e[k]$$

Usage

arxsim

Format

an idframe object with 2555 samples, one input and one output

Details

The model is simulated with a 2555 samples long full-band PRBS input. The noise variance is set to $0.1\,$

bj

Estimate Box-Jenkins Models

Description

Fit a box-jenkins model of the specified order from input-output data

Usage

```
bj(z, order = c(1, 1, 1, 1, 0), init_sys = NULL, options = optimOptions())
```

Arguments

Z	an 1dframe object containing the data
order	Specification of the orders: the five integer components (nb,nc,nd,nf,nk) are order of polynomial B + 1, order of the polynomial C, order of the polynomial D, order of the polynomial F, and the input-output delay respectively
init_sys	Linear polynomial model that configures the initial parameterization. Must be a BJ model. Overrules the order argument
options	Estimation Options, setup using optimOptions

bj 7

Details

SISO BJ models are of the form

$$y[k] = \frac{B(q^{-1})}{F(q^{-1})}u[k - nk] + \frac{C(q^{-1})}{D(q^{-1})}e[k]$$

The orders of Box-Jenkins model are defined as follows:

$$B(q^{-1}) = b_1 + b_2 q^{-1} + \ldots + b_{nb} q^{-nb+1}$$

$$C(q^{-1}) = 1 + c_1 q^{-1} + \ldots + c_{nc} q^{-nc}$$

$$D(q^{-1}) = 1 + d_1 q^{-1} + \ldots + d_{nd} q^{-nd}$$

$$F(q^{-1}) = 1 + f_1 q^{-1} + \ldots + f_{nf} q^{-nf}$$

The function estimates the coefficients using non-linear least squares (Levenberg-Marquardt Algorithm)

The data is expected to have no offsets or trends. They can be removed using the detrend function.

Value

An object of class estpoly containing the following elements:

sys an idpoly object containing the fitted BJ coefficients

fitted.values the predicted response

residuals the residuals

input the input data used call the matched call

stats A list containing the following fields:

vcov - the covariance matrix of the fitted coefficients sigma - the standard deviation of the innovations

options Option set used for estimation. If no custom options were configured, this is a

set of default options

termination Termination conditions for the iterative search used for prediction error mini-

mization: WhyStop - Reason for termination

iter - Number of Iterations

iter - Number of Function Evaluations

References

Arun K. Tangirala (2015), *Principles of System Identification: Theory and Practice*, CRC Press, Boca Raton. Sections 14.4.1, 17.5.2, 21.6.3

8 compare

Examples

bjsim

Data simulated from an BJ model

Description

This dataset contains 2046 samples simulated from the following BJ model:

$$y[k] = \frac{0.6q^{-2} - 0.2q^{-3}}{1 - 0.5q^{-1}}u[k] + \frac{1 + 0.2q^{-1}}{1 - 0.3q^{-1}}e[k]$$

Usage

bjsim

Format

an idframe object with 2046 samples, one input and one output

Details

The model is simulated with a 2046 samples long full-band PRBS input. The noise variance is set to 0.1

compare

Compare the measured output and the predicted output(s)

Description

Plots the output predictions of model(s) superimposed over validation data, data, for comparison.

Usage

```
compare(data, nahead = 1, ...)
```

Arguments

data validation data in the form of an idframe object

nahead number of steps ahead at which to predict (Default:1). For infinite- step ahead

predictions, supply Inf.

. . . models whose predictions are to be compared

cstr 9

See Also

```
predict.estpoly for obtaining model predictions
```

Examples

```
data(arxsim)
mod1 <- arx(arxsim,c(1,2,2))
mod2 <- oe(arxsim,c(2,1,1))
compare(arxsim,nahead=Inf,mod1,mod2)</pre>
```

cstr

Continuous stirred tank reactor data (idframe)

Description

The Process is a model of a Continuous Stirring Tank Reactor, where the reaction is exothermic and the concentration is controlled by regulating the coolant flow.

Usage

cstr

Format

an idframe object with 7500 samples, one input and two outputs

Details

Inputs: q, Coolant Flow l/min Outputs:

Ca Concentration mol/l

T Temperature Kelvin

10 cstr_mis

cstrData

Continuous stirred tank reactor data (data.frame)

Description

The Process is a model of a Continuous Stirring Tank Reactor, where the reaction is exothermic and the concentration is controlled by regulating the coolant flow.

Usage

cstrData

Format

an data. frame object with 7500 rows and three columns: q, Ca and T

Details

Inputs: q, Coolant Flow 1/min Outputs:

Ca Concentration mol/l

T Temperature Kelvin

Source

ftp://ftp.esat.kuleuven.be/pub/SISTA/data/process_industry/cstr.dat.gz

cstr_mis

Continuous stirred tank reactor data with missing values

Description

This dataset is derived from the cstr dataset with few samples containing missing values, in one or all variables. It is used to demonstrate the capabilities of the misdata routine.

Usage

cstr_mis

Format

an idframe object with 7500 samples, one input and two outputs

See Also

cstr, misdata

dataSlice 11

dataSlice Subset or Resample idframe data	
---	--

Description

dataSlice is a subsetting method for objects of class idframe. It extracts the subset of the object data observed between indices start and end. If a frequency is specified, the series is then resampled at the new frequency.

Usage

```
dataSlice(data, start = NULL, end = NULL, freq = NULL)
```

Arguments

data a	n object of class	idframe
--------	-------------------	---------

start the start index end the end index

freq fraction of the original frequency at which the series to be sampled.

Details

The dataSlice function extends the window function for idframe objects

Value

an idframe object

See Also

window

Examples

```
data(cstr)
cstrsub <- dataSlice(cstr,start=200,end=400) # extract between indices 200 and 400
cstrTrain <- dataSlice(cstr,end=4500) # extract upto index 4500
cstrTest <- dataSlice(cstr,start=6501) # extract from index 6501 till the end
cstr_new <- dataSlice(cstr,freq=0.5) # resample data at half the original frequency</pre>
```

12 detrend

detrend

Remove offsets and linear trends

Description

Removes offsets or trends from data

Usage

```
detrend(x, type = 0)
```

Arguments

Χ

an object of class idframe

type

argument indicating the type of trend to be removed (Default=0)

- type=0: Subtracts mean value from each signal
- type=1: Subtracts a linear trend (least-squres fit)
- type=trInfo object: Subtracts a trend specified by the object

Details

R by default doesn't allow return of multiple objects. The %=% operator and g function in this package facillitate this behaviour. See the examples section for more information.

Value

A list containing two objects: the detrended data and the trend information

See Also

1m

Examples

```
data(cstr)
datatrain <- dataSlice(cstr,end=4500)
datatest <- dataSlice(cstr,4501)
g(Ztrain,tr) %=% detrend(datatrain) # Remove means
g(Ztest) %=% detrend(datatest,tr)</pre>
```

estpoly 13

estpoly	Estimated polynomial object	

Description

Estimated discrete-time polynomial model returned from an estimation routine.

Usage

```
estpoly(sys, fitted.values, residuals, options = NULL, call, stats,
  termination = NULL, input)
```

Arguments

sys an idpoly object containing the estimated polynomial coefficients

fitted.values 1-step ahead predictions on the training dataset

residuals 1-step ahead prediction errors

options optimization specification ser used (applicable for non-linear least squares)

call the matched call

stats a list containing estimation statistics termination termination criteria for optimization input input signal of the training data-set

Details

Do not use estpoly for directly specifing an input-output polynomial model. idpoly is to be used instead

etfe Estimate empirical transfer function

Description

Estimates the emperical transfer function from the data by taking the ratio of the fourier transforms of the output and the input variables

Usage

```
etfe(data, n = 128)
```

Arguments

data an object of class idframe
n frequency spacing (Default: 128)

14 fitch

Value

an idfrd object containing the estimated frequency response

References

Arun K. Tangirala (2015), *Principles of System Identification: Theory and Practice*, CRC Press, Boca Raton. Sections 5.3 and 20.4.2

See Also

fft

Examples

```
data(arxsim)
frf <- etfe(arxsim)</pre>
```

fitch

Fit Characteristics

Description

Returns quantitative assessment of the estimated model as a list

Usage

fitch(x)

Arguments

x the estimated model

Value

A list containing the following elements

MSE	Mean Square Error measure of how well	l the response of the model fits the esti-
-----	---------------------------------------	--

mation data

FPE Final Prediction Error

FitPer Normalized root mean squared error (NRMSE) measure of how well the re-

sponse of the model fits the estimation data, expressed as a percentage.

AIC Raw Akaike Information Citeria (AIC) measure of model quality

AICc Small sample-size corrected AIC

nAIC Normalized AIC

BIC Bayesian Information Criteria (BIC)

frd 15

frd

Frequency response data

Description

This dataset contains frequency response data of an unknown SISO system.

Usage

frd

Format

an idfrd object with response at 128 frequency points

getcov

Parameter covariance of the identified model

Description

Obtain the parameter covariance matrix of the linear, identified parametric model

Usage

```
getcov(sys)
```

Arguments

sys

a linear, identified parametric model

idframe

S3 class for storing input-output data.

Description

idframe is an S3 class for storing and manipulating input-ouput data. It supports discrete time and frequency domain data.

Usage

```
idframe(output, input = NULL, Ts = 1, start = 0, end = NULL,
  unit = c("seconds", "minutes", "hours", "days")[1])
```

16 idfrd

Arguments

output dataframe/matrix/vector containing the outputs input dataframe/matrix/vector containing the inputs

Ts sampling interval (Default: 1) start Time of the first observation

end Time of the last observation Optional Argument

unit Time unit (Default: "seconds")

Value

an idframe object

See Also

plot.idframe, the plot method for idframe objects

Examples

```
dataMatrix <- matrix(rnorm(1000),ncol=5)
data <- idframe(output=dataMatrix[,3:5],input=dataMatrix[,1:2],Ts=1)</pre>
```

idfrd

S3 class constructor for storing frequency response data

Description

S3 class constructor for storing frequency response data

Usage

```
idfrd(respData, freq, Ts, spec = NULL, covData = NULL, noiseCov = NULL)
```

Arguments

resplata frequency response data. For S	SISO systems, supply a vector of frequency re-
---	--

sponse values. For MIMO systems with Ny outputs and Nu inputs, supply an

array of size c(Ny,Nu,Nw).

freq frequency points of the response

Ts sampling time of data

spec power spectra and cross spectra of the system output disturbances (noise). Sup-

ply an array of size (Ny,Ny,Nw)

covData response data covariance matrices. Supply an array of size (Ny,Nu,Nw,2,2).

covData[ky,ku,kw,,] is the covariance matrix of respData[ky,ku,kw]

noiseCov power spectra variance. Supply an array of size (Ny,Ny,Nw)

idinput 17

Value

an idfrd object

See Also

plot.idfrd for generating bode plots, spa and etfe for estimating the frequency response given input/output data

idinput

function to generate input singals (rgs/rbs/prbs/sine)

Description

idinput is a function for generating input signals (rgs/rbs/prbs/sine) for identification purposes

Usage

```
idinput(n, type = "rgs", band = c(0, 1), levels = c(-1, 1))
```

Arguments

n	integer	length	of the	input	singal	to be	generated

type the type of input signal to be generated. 'rgs' - generates random gaussian signal

'rbs' - generates random binary signal 'prbs' - generates pseudorandom binary

signal 'sine' - generates a signal that is a sum of sinusoids

Default value is type='rgs'

band determines the frequency content of the signal. For type='rbs'/'sine'/, band =

[wlow,whigh] which specifies the lower and the upper bound of the passband frequencies(expressed as fractions of Nyquist frequency). Default is c(0,1) For type='prbs', band=[0,B] where B is such that the singal is constant over 1/B

(clock period). Default is c(0,1)

levels row vector defining the input level. It is of the form levels=c(minu, maxu) For

'rbs', 'prbs', 'sine', the generated signal always between minu and maxu. For 'rgs', minu=mean value of signal minus one standard deviation and maxu=mean

value of signal plus one standard deviation

Default value is levels=c(-1,1)

18 idpoly

idpoly

Polynomial model with identifiable parameters

Description

Creates a polynomial model with identifiable coefficients

Usage

```
idpoly(A = 1, B = 1, C = 1, D = 1, F1 = 1, ioDelay = 0, Ts = 1, noiseVar = 1, intNoise = F, unit = c("seconds", "minutes", "hours", "days")[1])
```

Arguments

A	autoregressive coefficients
B, F1	coefficients of the numerator and denominator respectively of the deterministic model between the input and output
C, D	coefficients of the numerator and denominator respectively of the stochastic model
ioDelay	the delay in the input-output channel
Ts	sampling interval
noiseVar	variance of the white noise source (Default=1)
intNoise	Logical variable indicating presence or absence of integrator in the noise channel (Default=FALSE)
unit	time unit (Default="seconds")

Details

Discrete-time polynomials are of the form

$$A(q^{-1})y[k] = \frac{B(q^{-1})}{F1(q^{-1})}u[k] + \frac{C(q^{-1})}{D(q^{-1})}e[k]$$

Examples

```
# define output-error model mod_oe < - idpoly(B=c(0.6,-0.2),F1=c(1,-0.5),ioDelay = 2,Ts=0.1, noiseVar = 0.1)
# define box-jenkins model with unit variance B < - c(0.6,-0.2) C < - c(1,-0.3) D < - c(1,1.5,0.7) F1 < - c(1,-0.5) mod_bj < - idpoly(1,B,C,D,F1,ioDelay=1)
```

impulseest 19

impulseest	Estimate Impulse Response Coefficients

Description

impulseest is used to estimate impulse response coefficients from the data

Usage

```
impulseest(x, M = 30, K = NULL, regul = F, lambda = 1)
```

Arguments

Х	an object of class idframe
М	Order of the FIR Model (Default:30)
K	Transport delay in the estimated impulse response (Default:NULL)
regul	Parameter indicating whether regularization should be used. (Default:FALSE)
lambda	The value of the regularization parameter. Valid only if regul=TRUE. (Default:1)

Details

The IR Coefficients are estimated using linear least squares. Future Versions will provide support for multivariate data.

References

Arun K. Tangirala (2015), *Principles of System Identification: Theory and Practice*, CRC Press, Boca Raton. Sections 17.4.11 and 20.2

See Also

step

Examples

```
uk <- rnorm(1000,1)
yk <- filter (uk,c(0.9,-0.4),method="recursive") + rnorm(1000,1)
data <- idframe(output=data.frame(yk),input=data.frame(uk))
fit <- impulseest(data)
impulseplot(fit)</pre>
```

20 inputData

impulseplot

Impulse Response Plots

Description

Plots the estimated IR coefficients along with the significance limits at each lag.

Usage

```
impulseplot(model, sd = 2)
```

Arguments

model an object of class impulseest

sd standard deviation of the confidence region (Default: 2)

See Also

```
impulseest,step
```

inputData

Output or Input-data

Description

Extract output-data or input-data in idframe objects

Usage

```
inputData(x, series)
```

Arguments

x idframe object

series the indices to extract

inputNames<-

i	nnuth	Names<-	
- 1	nbu tr	vailles\-	

Extract or set series' names

Description

Extract or set names of series in input or output

Usage

```
inputNames(x) \leftarrow value
```

Arguments

x idframe objectvalue vector of strings

i٧

ARX model estimation using instrumental variable method

Description

Estimates an ARX model of the specified order from input-output data using the instrument variable method. If arbitrary instruments are not supplied by the user, the instruments are generated using the arx routine

Usage

```
iv(z, order = c(0, 1, 0), x = NULL)
```

Arguments

Z	an idframe object containing the data
order	Specification of the orders: the three integer components (na,nb,nk) are the order of polynolnomial A, (order of polynomial B + 1) and the input-output delay
X	instrument variable matrix. x must be of the same size as the output data. (Default: NULL)

iv4

Value

An object of class estpoly containing the following elements:

sys an idpoly object containing the fitted ARX coefficients

fitted.values the predicted response

residuals the residuals input the input data used call the matched call

stats A list containing the following fields:

vcov - the covariance matrix of the fitted coefficients sigma - the standard deviation of the innovations

df - the residual degrees of freedom

References

Arun K. Tangirala (2015), *Principles of System Identification: Theory and Practice*, CRC Press, Boca Raton. Sections 21.7.1, 21.7.2

Lennart Ljung (1999), *System Identification: Theory for the User*, 2nd Edition, Prentice Hall, New York. Section 7.6

See Also

```
arx, iv4
```

Examples

```
data(arxsim)
mod_iv <- iv(arxsim,c(2,1,1))</pre>
```

iv4

ARX model estimation using four-stage instrumental variable method

Description

Estimates an ARX model of the specified order from input-output data using the instrument variable method. The estimation algorithm is insensitive to the color of the noise term.

Usage

```
iv4(z, order = c(0, 1, 0))
```

Arguments

z an idframe object containing the data

order Specification of the orders: the three integer components (na,nb,nk) are the order

of polynolnomial A, (order of polynomial B + 1) and the input-output delay

iv4 23

Details

Estimation is performed in 4 stages. The first stage uses the arx function. The resulting model generates the instruments for a second-stage IV estimate. The residuals obtained from this model are modeled using a sufficently high-order AR model. At the fourth stage, the input-output data is filtered through this AR model and then subjected to the IV function with the same instrument filters as in the second stage.

Value

An object of class estpoly containing the following elements:

sys an idpoly object containing the fitted ARX coefficients

fitted.values the predicted response

residuals the residuals

input the input data used

call the matched call

stats A list containing the following fields:

vcov - the covariance matrix of the fitted coefficients sigma - the standard deviation of the innovations

df - the residual degrees of freedom

References

Lennart Ljung (1999), *System Identification: Theory for the User*, 2nd Edition, Prentice Hall, New York. Section 15.3

See Also

```
arx, iv4
```

Examples

```
\label{eq:mod_dgp} $$ -idpoly(A=c(1,-0.5),B=c(0.6,-.2),C=c(1,0.6),ioDelay = 2,noiseVar = 0.1)$$ u <- idinput(400,"prbs")$$ y <- sim(mod_dgp,u,addNoise=TRUE)$$ z <- idframe(y,u)$$ mod_iv4 <- iv4(z,c(1,2,2))$$
```

24 nInputSeries

misdata

Replace Missing Data by Interpolation

Description

Function for replacing missing values with interpolated ones. This is an extension of the na. approx function from the zoo package. The missing data is indicated using the value *NA*.

Usage

```
misdata(data)
```

Arguments

data

an object of class idframe

Value

data (an idframe object) with missing data replaced.

See Also

```
na.approx
```

Examples

```
data(cstr_mis)
summary(cstr_mis) # finding out the number of NAs
cstr <- misdata(cstr_mis)</pre>
```

nInputSeries

Number of series in input or output

Description

Number of series in input or output in a idframe object

Usage

```
nInputSeries(data)
```

Arguments

data

idframe object

oe 25

oe	Estimate Output-Error Models
----	------------------------------

Description

Fit an output-error model of the specified order given the input-output data

Usage

```
oe(x, order = c(1, 1, 0), init_sys = NULL, options = optimOptions())
```

Arguments

x an object of class idframe

order Specification of the orders: the four integer components (nb,nf,nk) are order of polynomial B + 1, order of the polynomial F, and the input-output delay respectively

init_sys Linear polynomial model that configures the initial parameterization. Must be an OE model. Overrules the order argument

options Estimation Options, setup using optimOptions

Details

SISO OE models are of the form

$$y[k] + f_1 y[k-1] + \ldots + f_{nf} y[k-nf] = b_{nk} u[k-nk] + \ldots + b_{nk+nb} u[k-nk-nb] + f_1 e[k-1] + \ldots + f_{nf} e[k-nf] + e[k]$$

The function estimates the coefficients using non-linear least squares (Levenberg-Marquardt Algorithm)

The data is expected to have no offsets or trends. They can be removed using the detrend function.

Value

An object of class estpoly containing the following elements:

sys an idpoly object containing the fitted OE coefficients

fitted.values the predicted response

residuals the residuals

input the input data used call the matched call

stats A list containing the following fields:

vcov - the covariance matrix of the fitted coefficients sigma - the standard deviation of the innovations

options Option set used for estimation. If no custom options were configured, this is a

set of default options

26 oesim

termination

Termination conditions for the iterative search used for prediction error minimization: WhyStop - Reason for termination

iter - Number of Iterations

iter - Number of Function Evaluations

References

Arun K. Tangirala (2015), *Principles of System Identification: Theory and Practice*, CRC Press, Boca Raton. Sections 14.4.1, 17.5.2, 21.6.3

Examples

```
data(oesim)  z \leftarrow \text{dataSlice(oesim,end=1533)} \ \# \ \text{training set} \\  \text{mod\_oe} \leftarrow \text{oe}(z,c(2,1,2)) \\  \text{mod\_oe} \\  \text{plot(mod\_oe)} \ \# \ \text{plot the predicted and actual responses}
```

oesim

Data simulated from an OE model

Description

This dataset contains 2555 samples simulated from the following OE model:

$$y[k] = \frac{0.6q^{-2} - 0.2q^{-3}}{1 - 0.5q^{-1}}u[k] + e[k]$$

Usage

oesim

Format

an idframe object with 2555 samples, one input and one output

Details

The model is simulated with a 2555 samples long full-band PRBS input. The noise variance is set to $0.1\,$

optimOptions 27

|--|

Description

Specify optimization options that are to be passed to the numerical estimation routines

Usage

```
optimOptions(tol = 0.01, maxIter = 20, LMinit = 0.01, LMstep = 2,
  display = c("off", "on")[1])
```

Arguments

tol	Minimum 2-norm of the gradient (Default: 1e-2)
maxIter	Maximum number of iterations to be performed
LMinit	Starting value of search-direction length in the Levenberg-Marquardt method (Default: 0.01)
LMstep	Size of the Levenberg-Marquardt step (Default: 2)
display	Argument whether to display iteration details or not (Default: "off")

plot.idframe Plotting idframe objects	plot.idframe	Plotting idframe objects
---------------------------------------	--------------	--------------------------

Description

Plotting method for objects inherting from class idframe

Usage

```
## S3 method for class 'idframe'
plot(x, col = "steelblue", lwd = 1, main = NULL,
    size = 12, ...)
```

Arguments

X	an idframe object
col	line color, to be passed to plot.(Default="steelblue")
lwd	line width, in millimeters(Default=1)
main	the plot title. (Default = $NULL$)
size	text size (Default = 12)
	additional arguments

28 predict.estpoly

Examples

```
data(cstr)
plot(cstr,col="blue")
```

plot.idfrd

Plotting idfrd objects

Description

Generates the bode plot of the given frequency response data. It uses the ggplot2 plotting engine

Usage

```
## S3 method for class 'idfrd'
plot(x, col = "steelblue", lwd = 1, ...)
```

Arguments

```
x An object of class idframe

col a specification for the line colour (Default: "steelblue")

lwd the line width, a positive number, defaulting to 1

... additional arguments
```

See Also

```
ggplot
```

Examples

```
data(frd)
plot(frd)
```

predict.estpoly

Predictions of identified model

Description

Predicts the output of an identified model (estpoly) object K steps ahead.

Usage

```
## S3 method for class 'estpoly'
predict(object, newdata = NULL, nahead = 1, ...)
```

rarx 29

Arguments

object estpoly object containing the identified model

newdata optional dataset to be used for predictions. If not supplied, predictions are made on the training set.

nahead number of steps ahead at which to predict (Default:1). For infinite- step ahead

predictions or pure simulation, supply Inf.

... other arguments

Value

Time-series containing the predictions

References

Arun K. Tangirala (2015), *Principles of System Identification: Theory and Practice*, CRC Press, Boca Raton. Chapter 18

Examples

```
data(arxsim)
mod1 <- oe(arxsim,c(2,1,1))
Yhat <- predict(mod1,arxsim) # 1-step ahead predictions
Yhat_2 <- predict(mod1,arxsim,nahead=2) # 2-step ahead predictions
Yhat_inf <- predict(mod1,arxsim,nahead=Inf) # Infinite-step ahead predictions</pre>
```

rarx

Estimate parameters of ARX recursively

Description

Estimates the parameters of a single-output ARX model of the specified order from data using the recursive weighted least-squares algorithm.

Usage

```
rarx(x, order = c(1, 1, 1), lambda = 0.95)
```

Arguments

x an object of class idframe

order Specification of the orders: the three integer components (na,nb,nk) are the order

of polynolnomial A, (order of polynomial B + 1) and the input-output delay

lambda Forgetting factor(Default=0.95)

30 read.idframe

Value

A list containing the following objects

theta Estimated parameters of the model. The k^{th} row contains the parameters associated with the k^{th} sample. Each row in theta has the following format: theta[i,:]=[a1,a2,...,ana,b1,...bnb]

yhat Predicted value of the output, according to the current model - parameters based on all past data

References

Arun K. Tangirala (2015), Principles of System Identification: Theory and Practice, CRC Press, Boca Raton. Section 25.1.3

Lennart Ljung (1999), System Identification: Theory for the User, 2nd Edition, Prentice Hall, New York. Section 11.2

Examples

```
Gp1 <- idpoly(c(1,-0.9,0.2),2,ioDelay=2,noiseVar = 0.1)
Gp2 <- idpoly(c(1,-1.2,0.35),2.5,ioDelay=2,noiseVar = 0.1)
uk = idinput(2044,'prbs',c(0,1/4)); N = length(uk);
N1 = round(0.35*N); N2 = round(0.4*N); N3 = N-N1-N2;
yk1 <- sim(Gp1,uk[1:N1],addNoise = TRUE)
yk2 <- sim(Gp2,uk[N1+1:N2],addNoise = TRUE)
yk3 <- sim(Gp1,uk[N1+N2+1:N3],addNoise = TRUE)
yk <- c(yk1,yk2,yk3)
z <- idframe(yk,uk,1)
g(theta,yhat) %=% rarx(z,c(2,1,2))</pre>
```

read.idframe

Data input into a idframe object

Description

Read the contents of a data.frame/matrix into a idframe object.

Usage

```
read.idframe(data, ninputs = NULL, Ts = 1, unit = c("seconds", "minutes",
   "hours", "days")[1])
```

Arguments

```
data a data.frame object
ninputs the number of input columns. (Default: 0)
```

Ts sampling interval (Default: 1)
unit Time Unit (Default: "seconds")

read.table.idframe 31

Value

an idframe object

Examples

```
data(cstrData)
data <- read.idframe(cstrData,ninputs=1,Ts= 1,unit="minutes")</pre>
```

read.table.idframe

Read the contents of a table-formatted file

Description

Read the contents of an file in table format into a idframe object.

Usage

```
read.table.idframe(file, header = TRUE, sep = ",", ninputs = 0, Ts = 1,
  unit = c("seconds", "minutes", "hours", "days")[1], ...)
```

Arguments

file	the path to the file to read
header	a logical value indicating whether the first row corresponding to the first element of the rowIndex vector contains the names of the variables. (Default: TRUE)
sep	the field separator character. Values on each line of the file are separated by this character. (Default: $"$, $"$)
ninputs	the number of input columns. (Default: 0)
Ts	sampling interval (Default: 1)
unit	Time Unit (Default: "seconds")
• • •	additional arguments to be passed to the read.table function

Details

The read.table.idframe function uses the read.table function, provided by the **utils** package, to read data from a table-formatted file and then calls the read.idframe function to read the data into a idframe object

Value

an idframe object

See Also

```
read.table
```

32 sim

Examples

```
dataMatrix <- data.frame(matrix(rnorm(1000),ncol=5))
colnames(dataMatrix) <- c("u1","u2","y1","y2","y3")
write.csv(dataMatrix,file="test.csv",row.names=FALSE)
data <- read.table.idframe("test.csv",ninputs=2,unit="minutes")</pre>
```

residplot

Plot residual characteristics

Description

Computes the 1-step ahead prediction errors (residuals) for an estimated polynomial model, and plots auto-correlation of the residuals and the cross-correlation of the residuals with the input signals.

Usage

```
residplot(model, newdata = NULL)
```

Arguments

model estimated polynomial model

newdata an optional dataset on which predictions are to be computed. If not supplied,

predictions are computed on the training dataset.

sim

Simulate response of dynamic system

Description

Simulate the response of a system to a given input

Usage

```
sim(model, input, addNoise = F, innov = NULL, seed = NULL)
```

33 spa

Arguments

model the linear system to simulate a vector/matrix containing the input input logical variable indicating whether to add noise to the response model. (Default: addNoise FALSE) innov an optional times series of innovations. If not supplied (specified as NULL), gaus-

sian white noise is generated, with the variance specified in the model (Property:

noiseVar)

integer indicating the seed value of the random number generator. Useful for seed

reproducibility purposes.

Details

The routine is currently built only for SISO systems. Future versions will include support for MIMO systems.

Value

a vector containing the simulated output

Examples

```
# ARX Model
u <- idinput(300,"rgs")</pre>
model <- idpoly(A=c(1,-1.5,0.7), B=c(0.8,-0.25), ioDelay=1,
noiseVar=0.1)
y <- sim(model,u,addNoise=TRUE)</pre>
```

spa

Estimate frequency response

Description

Estimates frequency response and noise spectrum from data with fixed resolution using spectral analysis

Usage

```
spa(x, winsize = NULL, freq = NULL)
```

Arguments

an idframe object

lag size of the Hanning window (Default: min (length(x)/10,30)) winsize

frequency points at which the response is evaluated (Default: seq(1,128)/128*pi/Ts) freq

34 step

Value

an idfrd object containing the estimated frequency response and the noise spectrum

References

Arun K. Tangirala (2015), *Principles of System Identification: Theory and Practice*, CRC Press, Boca Raton. Sections 16.5 and 20.4

Examples

```
data(arxsim)
frf <- spa(arxsim)</pre>
```

step

Step Response Plots

Description

Plots the step response of a system, given the IR model

Usage

```
step(model)
```

Arguments

model

an object of class impulseest

See Also

```
impulseest
```

Examples

time 35

time	Sampling times of IO data time creates the vector of times at which
	data was sampled. frequency returns the number of damples per unit
	time and deltat the time-interval between observations

Description

Sampling times of IO data

time creates the vector of times at which data was sampled. frequency returns the number of damples per unit time and deltat the time-interval between observations

Usage

time(x)

Arguments

Х

a idframe object, or a univariate or multivariate time-series, or a vector or matrix

%=% Multiple assignment operator

Description

Assign multiple variables from a list or function return object

Usage

1 %=% r

Arguments

- 1 the variables to be assigned
- r the list or function-return object

Index

* datasets armaxsim, 4 arxsim, 6 bjsim, 8 cstr, 9 cstr_mis, 10 cstrData, 10 frd, 15 oesim, 26 %=%, 35	<pre>idfrd, 16 idinput, 17 idpoly, 13, 18 impulseest, 19, 20, 34 impulseplot, 20 inputData, 20 inputNames (inputNames<-), 21 inputNames<-, 21 iv, 21 iv4, 22, 22, 23</pre>
armax, 2 armaxsim, 4 arx, 4, 22, 23 arxsim, 6 bj, 6 bjsim, 8	<pre>lm, 12 misdata, 10, 24 na.approx, 24 nInputSeries, 24 nOutputSeries (nInputSeries), 24</pre>
<pre>compare, 8 cstr, 9, 10 cstr_mis, 10 cstrData, 10 dataSlice, 11 deltat (time), 35</pre>	<pre>oe, 25 oesim, 26 optimOptions, 3, 6, 25, 27 outputData (inputData), 20 outputNames (inputNames<-), 21 outputNames<- (inputNames<-), 21</pre>
detrat (time), 33 detrend, 3, 5, 7, 12, 25 estpoly, 13 etfe, 13, 17 fft, 14 fitch, 14	plot.idframe, 16, 27 plot.idfrd, 17, 28 predict.estpoly, 9, 28 rarx, 29 read.idframe, 30, 31 read.table, 31
frd, 15 frequency (time), 35 g (%=%), 35 getcov, 15 ggplot, 28	read.table.idframe, 31 residplot, 32 sim, 32 spa, 17, 33 step, 19, 20, 34
idframe, 15	time, 35

INDEX 37

trInfo (detrend), 12

window, 11