UNIT - 2

COMBINATIONAL CIRCUIT

BY,
BORMANE P. D.

Contents

- Introduction of Parity
- Types
- Parity bit
- Parity Generator
- Parity Checker

Introduction

Parity

- A checker bit
- o Single bit error detector code
- O Counts number of 1's is message

Parity

- Types
 - Even Parity
 - Odd Parity
- Even Parity: Number of 1's in message is even.
- Odd Parity: Number of 1's in message is odd.

Parity Generator

Parity Bit:

• An extra bit added along with binary message or data word to enable error checking is Parity bit.

Parity Generator:

- A circuit that generates an additional bit which is when appended to a message makes its parity as desired (odd or even).
- It is used on communication links and is often included in memory systems.

Even Parity Generator

- o 3 bit or 4 bit binary message is transmitted through lines along with that extra bit is added.
- If number of 1's is message is even then no error & parity bit is even parity.

INPUT			OUTPUT
B2	B1	В0	P
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Odd Parity Generator

- o 3 bit or 4 bit binary message is transmitted through lines along with that extra bit is added.
- If number of 1's is message is odd then no error & parity bit is odd parity.

INPUT			OUTPUT
B 2	B 1	Bo	P
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Parity Checker

- At the receiving end a circuit is used to check the parity of received information, and determines whether the error is included in the message or not.
- If single bit change in transmitted message and receiver message, this single bit error can be detected using parity bit.
 - If more than 1 bit changes it is not possible to detect error.
- E.g. Message or word transmitted is 10111 and received message or word is 11111
 - The parity of received word is odd this indicated single bit error is introduced.

Even Parity Checker

- o 3 bit or 4 bit binary message is transmitted through lines along with parity bit is added.
- If number of 1's is message + parity bit is even then no error.
- \circ 0 No Error

1 - Error

INPUT				OUTPUT
P				
Parity Bit	B 2	B 1	\mathbf{B}_0	PEC
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Odd Parity Checker

- o 3 bit or 4 bit binary message is transmitted through lines along with parity bit is added.
- If number of 1's is message + parity bit is odd then no error.

o 0 − No Error

1 – Error

INPUT				OUTPUT
P				
Parity Bit	B 2	B 1	Bo	PEC
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

