

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS $\text{Prof}^{\underline{\mathbf{a}}}. \text{ Karla Lima}$

Cálculo II

16 de Novembro de 2017

(1) Verifique se as funções indicadas são soluções particulares das equações diferenciais dadas. No caso positivo, dê o intervalo de definição I para cada solução.

a)
$$xy' = 2y$$
; $y = 0$ e $y = 2x$.

b)
$$y'' + 9y = 18$$
; $y = 2$ e $y = 2x^2$.

c)
$$xy'' - y' = 0$$
; $y = 2x^2$ e $y = 2x$.

d)
$$x^2y'' + xy' + y = 0$$
; $y = \text{sen}(\ln x)$.

(2) Dado que $y = x - \frac{2}{x}$ é uma solução da equação diferencial xy' + y = 2x, encontre x_0 e o maior intervalo para o qual y(x) é uma solução do PVI de 1ª ordem

$$xy' + y = 2x$$
$$y(x_0) = 1$$

(3) Sabendo que $y=c_1e^{3x}+c_2e^{-x}-2x$ é uma família de soluções da equação diferencial de 2^{4x} ordem y''-2y-3y=6x+4, encontre uma solução para o PVI com as condições iniciais abaixo:

a)
$$y(0) = 0$$
 e $y'(0) = 0$.

b)
$$y(1) = 4 e y'(1) = -2$$
.

Gabarito

(1) a)
$$y = 0$$
 é solução. $I = \mathbb{R}$.

b)
$$y = 2$$
 é solução. $I = \mathbb{R}$

c)
$$y = 2x^2$$
 é solução. $I = \mathbb{R}$

d)
$$y = \operatorname{sen}(\ln x)$$
 é solução. $I = (0, +\infty)$

(2) Para que a solução satisfaça $y(x_0)=1$ devemos ter $x_0=-1$ ou $x_0=2$. Se $x_0=-1$ então $I=(-\infty,0)$; se $x_0=2$ então $I=(0,+\infty)$.

(3) a)
$$y = \frac{e^{3x}}{2} - \frac{e^{-x}}{2} - 2x$$
.

b)
$$y = \frac{3}{2}e^{3x-3} + \frac{9}{2}e^{1-x} - 2x$$
.