Основы комбинаторики и теории чисел

Сергей Григорян

15 октября 2024 г.

Содержание

1	Лекция 3					
	1.1	Мощн	ЮСТИ МН-В	3		
		1.1.1	Парадоксы			
		1.1.2	Счётных мн-в			
		1.1.3	Отношение равномощности			
		1.1.4	Сравнимость по мощности			
2	Лекция 4					
			оные отношения	7 9		
3	Лекция 5					
	3.1 Отношения эквивалентности (~)					
			пение порядка (≤)			
4	Лекция 6					
	4.1	Плотн	ный порядок. Изоморфизм	16		
	4.2		порядки			
			Агрегирование предпорядков			

1 Лекция 3

- 1.1 Мощности мн-в
- 1.1.1 Парадоксы

Парадокс Галилея:

Все нат. числа	⊉	полные квадаты
n	\longleftrightarrow	n^2

Гранд-отель Гильберта:

1) Все места заняты, нужно подселить постояльца:

2) Есть своб. места, хотим занять все комнаты имеющимися постояльцами:

Решение. Если мн-во занятых комнат бесконечно, то:

3) 2 гранд-отеля, полностью заняты. Один закрылся, как всех заселить?

Решение.

 \Rightarrow

 Гранд-авенью, гранд-отелей. Цель: переселить всех в один отель: Решение.

Отель 0: → неч. номера

Отель 1: \mapsto номера, кот. \vdots 2, $\cancel{/}$ 4

Отель 2: \mapsto номера, кот. ⋮ 4, $\cancel{/}$ 8

Отель k: \mapsto номера, кот \vdots 2^k , $\cancel{/}$ 2^{k+1}

1.1.2 Счётных мн-в

Определение 1.1. A и B равномощны $(A \cong B)$, если \exists биекция $f: A \to B$

Определение 1.2. A наз-ся счётным, если $A \cong \mathbb{N}$

Утверждение 1.1. 1) A счётно $\Rightarrow A \cup x$ счётно

- 2) Любое подмн-во счётного мн-ва конечно или счётно
- 3) A, B счётны $\Rightarrow A \cup B$ счётно
- 4) A_0, A_1, \dots сч. $\Rightarrow \bigcup_{i=0}^{\infty} A_i$ сч. или: A, B сч. $\Rightarrow A \times B$ сч.

Доказательство. 1) $f:A \to \mathbb{N}$ - биекция

$$g: A \cup \{x\} \rightarrow \mathbb{N}$$
:

$$\begin{cases} g(x) = 0 \\ g(y) = f(y) + 1, y \in A \end{cases}$$

 $f:A \to \mathbb{N}$,- биекция; $B \subset A$

$$g: B \to \mathbb{N}; g(x) = \#\{ y \in B \mid f(y) < f(x) \}$$

3)
$$f: A \to \mathbb{N}; g: B \to \mathbb{N}$$

$$h: A \cup B \to \mathbb{N}; h(x) = \begin{cases} 2f(x), x \in A \\ 2g(x) + 1, x \in B \end{cases}$$

$$f: A \to \mathbb{N};$$

$$g: B \to \mathbb{N};$$

$$h: A \times B \to \mathbb{N}; h(x, y) = 2^{f(x)} * (2g(y) + 1) - 1$$

1.1.3 Отношение равномощности

Утверждение 1.2. Общие св-ва равномощности:

- 1) Рефлексивность: $A \cong A$ (т. к. id_A биекция)
- 2) Симметричность: $A \cong B \iff B \cong A$ (f биекция $\iff f^{-1}$ биекция)
- 3) Транзитивность: $A \cong B, B \cong C \Rightarrow A \cong C$ (т. к. композиция биекций биекция)

1.1.4 Сравнимость по мощности

Обозначение.
• Нестрогая: $A \cong B$, если $\exists B' \subset B, A \cong B'$ (A не более мозно чем B)

• Строгая: $A \approx B$, если $A \cong B$, $A \not\cong B$ (A менее мощно чем B)

Утверждение 1.3. Св-ва сравнимости по мощ-ти:

- 1) Рефлексивность: $A \ncong A$; Антирефлексивность: $A \not \curvearrowright A$
- 2) Транзитивность: $A \cong B, B \cong C \Rightarrow A \cong C$ Для строгой сравнимости:

Доказательство.

$$A \gtrsim B, B \gtrsim C \Rightarrow A \gtrsim C$$

 $A \cong C$ - из предыдущего

Нужно: $A \cong C$

Теорема 1.1 (Теорема Кантора-Бернштейна).

$$A \cong B, B \cong A \Rightarrow A \cong B$$

Доказательство. 1) Пусть $f:A_0\to B_1\subset B_0$ - биекция $g:B_0\to A_1\subset A_0$ - биекция

2)
$$B_{i+1} = f(A_i); A_{i+1} = g(B_i)$$

3)
$$C_i = A_i \backslash A_{i+1}$$
; $D_i = B_i \backslash B_{i+1}$

4)
$$C = \bigcap_{i=0}^{\infty} A_i; D = \bigcap_{i=0}^{\infty} B_i$$

<u>Утверждение</u> 1.4. $C_i \cong D_{i+1}$, т. е. $f: C_i \to D_{i+1}$ - биекция Почему? Потому что:

$$C_i = A_i \setminus A_{i+1}; f(A_i) = B_{i+1}, f(A_{i+1}) = B_{i+2}$$

 $f\left(A_{i}\backslash A_{i+1}\right)=$ (т. к. f - биекция) $f\left(A_{i}\right)\backslash f\left(A_{i+1}\right)=B_{i+1}\backslash B_{i+2}=D_{i+1}=f\left(C_{i}\right)$ Утверждение 1.5.

$$D_i \cong C_{i+1}$$
 (симметричо)

Следствие.

$$C_0 \cong C_2 \cong C_4 \cong C_6 \cong \dots$$

 $C_0 \cong D_1 \cong D_3 \cong D_5 \dots$

Утверждение 1.6.

$$C \cong D$$

Доказательство. f - биекция

Пусть $x \in \bigcap_{i=0}^{\infty} A_i \Rightarrow \forall i, x \in A_i \Rightarrow \forall i, f(x) \in B_{i+1} \Rightarrow f(x) \in \bigcap_{i=0}^{\infty} B_i$ Т. е. $f(C) \subset D$:

Инъекция - наследуется

Сюрьекция:
$$y \in \bigcap_{i=0}^{\infty} B_i \Rightarrow \forall i, y \in B_{i+1} \Rightarrow \forall i, f^{-1}(y) \in A_i \Rightarrow f^{-1}(y) \in C$$

$$A = C \cap C_0 \cap C_1 \cap C_2 \cap C_3 \cap \dots$$
$$B = D \cap D_1 \cap D_2 \cap D_3 \cap D_4 \dots$$

При этом:

$$\begin{cases} C \cong D \\ \begin{cases} C_0 \cong D_1 \\ C_1 \cong D_0 \\ C_2 \cong D_3 \\ C_3 \cong D_2 \end{cases} \Rightarrow A \cong B$$

2 Лекция 4

Об<u>означение</u>. $\{0,1\}^{\mathbb{N}}$ - это

- 1) Мн-во подмножеств $A \subset \mathbb{N}$
- 2) Мн-во ф-ций $f:\mathbb{N} \to \{\,0,1\,\}$
- 3) Mh-bo $A \leftrightarrow f_A \colon N \to \{\,0,1\,\}$

$$f_A(x) = \begin{cases} 1, x \in A \\ 0, x \notin A \end{cases}$$

Замечание. Бесконечная двоичная дробь:

$$\underline{a_1 a_2 \dots a_n} 01111 \dots = \underline{a_1 a_2 \dots a_n} 10000 \dots$$

Задача 2.1. Показать:

$$[0,1]\cong \{\,0,1\,\}^{\mathbb{N}}\setminus\{\,$$
посл-ти с 1 в периоде $\,\}$

Доказательство. Конструктивно: Picture

Теорема 2.1. A - беск., B - сч. $\Rightarrow A \cup B \cong A$

Следствие.

$$[0,1] \cong \{0,1\}^{\mathbb{N}}$$

Лемма 2.2. В любом бесконечном мн-ве есть счётное подмн-во

Доказательство. A - беск. мн-во

$$a_0 \in A, a_1 \in A \setminus \{a_0\}, \dots$$

$$a_{n+1}\in A\backslash$$
 { a_0,a_1,\ldots,a_n } A - беск., сл-но на каждом шаге возможен выбор нового эл-та

Теперь докажем теорему:

Доказательство. A - беск. $\Rightarrow C \subset A$, C - счётно

$$\begin{cases} C \cong \mathbb{N} \\ B \cong \mathbb{N} \end{cases} \Rightarrow C \cup B \cong \mathbb{N} \cong C$$

$$A \cup B = (A \backslash C) \cup C \cup B \cong (A \backslash C) \cup C \cong A$$

Теорема 2.3 (Кантора). [0,1] - несчётен (или: $\{0,1\}^{\mathbb{N}}$ несчётно)

Доказательство. Пусть { 0, 1 } $^{\mathbb{N}}$ - счётно, тогда α_i - i-ая бинарная последовательность:

$$\begin{array}{c|cccc} \alpha_0 & \underline{0}0000 \dots \\ \alpha_1 & \underline{1}\underline{1}111 \dots \\ \alpha_2 & \underline{0}\underline{1}\underline{0}11 \dots \\ \vdots & \vdots \end{array}$$

Воспользуемся диагональным методом Кантора:. Возьмём диагональную п-ть:

$$d_i = \alpha_i^i, d = 010...$$

 $d'_i = 1 - \alpha_i^i, d' = 101...$

Если $d'=(\alpha_k)^k$, то $(d_k)^k=((d_k)^k)'=1-(\alpha_k)^k$, что невозможно \Rightarrow противоречие.

Теорема 2.4 (Общая теорема Кантора). $\forall A: A \approx 2^A$

Доказательство. Пусть $\phi:A o 2^A$ - биекция

 $\phi(x)$ - подмн-во A

Корректен ли вопрос о том, что $x \in \phi(x)$?

Pacm. $M = \{ x \mid x \notin \phi(x) \}$

Т. к. ϕ - биекция \Rightarrow сущ. $m = \phi^{-1}(M)$. Т. е. $\phi(m) = M$

Рассм. 2 случая:

1)

$$m \in M \Rightarrow m \in \phi(m) \Rightarrow x \notin \phi(x)$$
 — ложно при $x = m \Rightarrow m \notin M$

2)

$$m \not\in M \Rightarrow m \not\in \phi(m) \Rightarrow x \not\in \phi(x)$$
 - истино, при $x = m \Rightarrow m \in M$

Получаем противоречие.

Определение 2.1. A континуально, если $A \cong \{0,1\}^{\mathbb{N}}$

Теорема 2.5. A - континуально $\Rightarrow A^2$ - континуально

Пример.

$$[0,1] \cong [0,1]^2$$

Следствие.

$$(\{\,0,1\,\}^\mathbb{N})^2 = \{\,0,1\,\}^\mathbb{N}$$
 $(\alpha,\beta) \leftrightarrow \gamma = \alpha_0\beta_0\alpha_1\beta_1\alpha_2\beta_2\dots$ $[0,1] \cong \mathbb{R} \Rightarrow \mathbb{R}$ - континуально

По индукции:

$$\mathbb{R}^k \cong \mathbb{R}$$

Верно и $\mathbb{R}^{\mathbb{N}} \cong \mathbb{R}$

Доказательство. Док-во конструктивно ИЛИ:

$$\mathbb{R}^{\mathbb{N}} \cong (\mathbb{R}^{\mathbb{N}})^{\mathbb{N}} \cong 2^{\mathbb{N} \times \mathbb{N}} \cong \mathbb{R}$$

2.1 Бинарные отношения

Определение 2.2. Отношение - любое $R \in A \times A$

Обозначение. Отношение R между a и b:

1)
$$(a, b) = R$$

- 2) R(a,b)
- 3) aRb

Различные виды отношений:

1) Рефлексивные: $\forall a: aRa$

Пример. $=, \leq, \subset, \cong, \sqsubset$

2) Антирефлексивные: $\forall a: \neg (aRa)$

Пример. <, \in , ||

3) Симметричные: $\forall a, \forall b (aRb \rightarrow bRa)$

<u>Пример</u>. \cong , ||, =, \equiv_k

4) Антисимметричные: $\forall a, \forall b((aRb \land bRa) \rightarrow a = b)$

Пример. \leq , <, >, \square , \square , \subset

5) Транзитивность:

$$\forall a, b, c((aRb \land bRc) \rightarrow aRc)$$

Пример. $=,\cong,\equiv_k,\leq,\subset,\sqsubset$

6) Антитранзитивность:

$$\forall a, b, c((aRb \land bRc) \rightarrow \neg (aRc))$$

$$|a-b|=1$$
 (Ha \mathbb{R})

7) Полнота: $\forall a, b(aRb \lor bRa)$

<u>Пример</u>. \leq , $\underline{\cong}$ (теор. Цермело)

Наборы св-в:

1) Отнош. эквивалентности: рефлексивность, симметричность, транзитивность.

Пример. \equiv_k , (|| или =), \sim (подобие \triangle -ов)

Общий вид: $f: A \to B, x \sim y$, если f(x) = f(y)

2) Отношение нестрогого частичного порядка, рефлексивность, антисимметричность, транзитивность:

Пример. \subset , \leq , \vdots , \sqsubset , ...

- 3) Отнош. строгого част. п-ка: антирефл., антисимметричность, транзитивность
- 4) Отнош. лин. порядка: нестрогий частичный порядок + полнота
- 5) Препорядки: рефлексивность, транзитивность
- 6) Полные предпорядки: полнота + транзитивность
- 3 Лекция 5
- 3.1 Отношения эквивалентности (~)

Определение 3.1. Отношение эквив. - отношение с св-вами:

- 1) Рефлексивность: $x \sim x$
- 2) Симметричность: $x \sim y \Rightarrow y \sim x$
- 3) Транзит.: $x \sim y, y \sim z \Rightarrow x \sim z$

Определение 3.2. Класс эквив.: $K_x = \{ y \mid y \sim x \}$

Теорема 3.1 (О разбиении на классы эквив.). Если задано отн. экв. \sim на \overline{A} , то \overline{A} можно представить как:

$$A = \bigsqcup_{i \in I} A_i,$$

т. ч.:

1) Каждая A_i - K_x для некот. x

$$2) \quad i \neq j \Rightarrow A_i \cap A_j = \emptyset$$

3)
$$y, z \in A_i \Rightarrow y \sim z$$

4)
$$y \in A_i, z \in A_i, i \neq j \Rightarrow y \nsim z$$

Доказательство. Рассм. всевозм. мн-ва, явл-ся классами эквив-ти. Докажем выполн. св-в для них. Для этого докажем леммы I-IV

Лемма 3.2 (I). $x \in K_x$

Доказательство.

$$x \sim x \Rightarrow x \in \{ y \mid y \sim x \} \Rightarrow x \in K_x$$

Следствие.

$$\bigsqcup_{x \in A} K_x = A$$

Лемма 3.3 (II).

$$y \in K_x, z \in K_x \Rightarrow y \sim z$$

Доказательство.

$$\begin{cases} y \in K_x \Rightarrow y \sim x \\ z \in K_x \Rightarrow x \sim z \text{ - симметричность} \end{cases} \Rightarrow y \sim z \text{ - транзитивность}$$

Лемма 3.4 (III).

$$K_x \neq K_t \Rightarrow K_x \cap K_t = \emptyset$$

Доказательство. Докажем контрапозицию:

$$K_{x} \cap K_{t} \ni w \Rightarrow K_{x} = K_{t}$$

$$\Rightarrow \begin{cases} w \sim x \\ w \sim t \end{cases} \Rightarrow \begin{cases} w \sim x \\ t \sim w \end{cases} \Rightarrow t \sim x$$

Если $y \in K_t \Rightarrow y \sim t \Rightarrow y \sim x \Rightarrow y \in K_x$, т. е. $K_t \subset K_x$. Аналогично, получаем $K_x \subset K_t \Rightarrow K_x = K_t$

Лемма 3.5 (IV).

$$K_x \neq K_t, y \in K_x, z \in K_t \Rightarrow y \nsim z$$

Доказательство.

$$\begin{cases} y \in K_x \Rightarrow x \sim y \\ y \in K_t \Rightarrow z \sim t \end{cases}$$

Из $y \sim z$, то, по транзитивности, $x \sim t \Rightarrow K_x = K_t!!!$. Т. к. это противоречие, то $y \nsim z$

Определение 3.3. Фактормножество $A/_{\sim}$ - мн-во классов эквив.

Теорема 3.6. Если ~ - отн. эквив. на A, то сущ. B и $f:A\to B$, т. ч.:

$$x \sim y \iff f(x) = f(y)$$

Доказательство.

$$B = A/_{\sim}$$

$$f(x) = K_x$$

3.2 Отношение порядка (≤)

Определение 3.4. Отношение порядка - отношение со св-вами:

- Нестрогий порядок ≤:
 - 1) Рефлекивность: $x \le x$
 - 2) Ahtucumm.: $x \le y \land y \le x \Rightarrow x = y$
 - 3) Транзтивность: $x \le y \land y \le z \to x \le z$
 - 4) (Для линейных порядков) Полнота: $(x \le y \lor y \le x)$
- Строгий порядок <:
 - 1) Антирефлексивность: $\neg(x < x)$
 - 2) Антисимметричность: $\neg(x < y \land y < x)$

- 3) Транзитивность: $(x < y \land y < z) \rightarrow x < z$
- 4) (Для линейных порядков) Трихотомичность:

$$x < y \lor y < x \lor x = y$$

Пример. 1) Стандартный числовой порядок в $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$.

на № (в том числе включая 0)

$$x : y \iff \exists z : x = y \cdot z$$

- 3) \subset на 2^A
- 4) \sqsubset , \sqsupset , (substring) Ha $\{0,1\}^n$
- 5) Асимптот. порядок на ф-циях f < g, если $\exists N \forall n > N$: f(n) < g(n)
- 6) Пор-ки на \mathbb{R}^2 :
 - а) Лексикографический:

$$(x_1, y_1) \le (x_2, y_2) \iff \begin{bmatrix} x_1 < x_2 \\ x_1 = x_2 \land y_1 \le y_2 \end{bmatrix}$$

b) Покоординатный:

$$(x_1, y_1) \le (x_2, y_2) \iff \begin{cases} x_1 \le x_2 \\ y_1 \le y_2 \end{cases}$$

Диаграмма Хассе: граф на пл-ти, т. ч. вершины, соед. рёрбрами, не находятся на одном уровне (Picture)

Paccm.: $(\{0,1,...,9\}, \vdots)$

 $x \le y \iff$ Есть восходящий путь из x в y

Определение 3.5. Наибольший эл-т - Больше всех

$$x$$
 - наиб. $\iff \forall y : y \le x$

Определение 3.6. Макс. эл-т - больше него нет

$$x$$
 - Make. $\iff \neg \exists y : y > x$

Для лин. порядка - это одно и то же

Для част. порядка - может быть разное, т. е.:

$$\forall y (y \le x \lor y$$
 не сравним с $x)$

- макс. эл-т для част. порядка.

Наименьший и минимальный - аналогично.

В конечном непустом мн-ве всегда есть макс. и мин.

В конечном мн-ве единственный макс. является наибольшим.

Для беск. мн-в всё, что выше, конечно неверно. (picture)

Определение 3.7. Упорядоченное мн-во - пара из мн-ва и порядка на нём.

<u>Обозначение</u>. Пишут так: (A, \leq_A) , сокращённо УМ

Операции над УМ:

1) Сложение:

$$(A, \leq_A) + (B, \leq_B) = (C, \leq_C)$$

$$C = A \sqcup B$$

$$x \leq y \iff \begin{bmatrix} x, y \in A : x \leq_A y \\ x, y \in B : x \leq_B y \\ x \in A, y \in B \end{bmatrix}$$

При этом оно:

- Ассоциативно: A + (B + C) = (A + B) + C
- Некоммутативно: $A + B \neq B + A$
- 2) Умножение:

$$(A, \leq_A) \cdot (B, \leq_B) = (C, \leq_C)$$

$$C = A \times B$$

$$(a_1, b_1) \leq_C (a_2, b_2) \iff \begin{bmatrix} b_1 <_B b_2 \\ b_1 = b_2, a_1 \leq_A a_2 \end{bmatrix}$$

4 Лекция 6

4.1 Плотный порядок. Изоморфизм

Отношение частичного порядка:

- 1) $x \le x$ рефлексивность
- 2) $(x \le y \land y \le x) \Rightarrow x = y$ антисимметричность
- 3) $(x \le y \land y \le z) \Rightarrow x \le z$ транзитивность

Отношение линейного порядка:

4) $\forall x, y : x \le y \lor y \le x$

Упор. мн-во (A, \leq_A)

Наибольший эл-т - $M: \forall x, x \leq M$.

Наименьший эл-т - $m: \forall x, x \geq m$

Максимальный эл-т - M: $\neg \exists x : x > M$ (или $\forall x : x \leq M \lor (x \text{ не сравним с } M)$)

Минимальный эл-т $m : \neg \exists x : x < m$

Определение 4.1. Плотный порядок:

$$\forall x, y (x < y \rightarrow \exists z : x < z < y)$$

<u>Утверждение</u> 4.1. Плотный порядок - либо тривиальный (т. е. разл-ные эл-ты не сравнимы), либо опр. на бесконечном мн-ве.

Определение 4.2. Изоморфизм упор. мн-в (A, \leq_A) и (B, \leq_B) - это такая биекция $f: A \to B$, что:

$$\forall x, y : (x \leq_A y \iff f(x) \leq_B f(y))$$

Пример.

$$(\{n \mid 30 : n\}, :)$$
 и $(2^{\{a,b,c\}}, \subset)$

Пример.

$$(\mathbb{Q} \cap (0,1), \leq)$$
 и $(\mathbb{Q} \cap (0,+\infty), \leq)$ $x \mapsto \frac{1}{1-x} - 1$

<u>Теорема</u> 4.1. Любые два счётных плотно, линейно упоряд. мн-ва без наиб. и наим. эл-тов изоморфны:

Пример.

$$\mathbb{Q}, \mathbb{Q}_2 = \{ \frac{a}{2^n} \mid a \in \mathbb{Z}, n \in \mathbb{N} \}, \mathbb{Q}[\sqrt{2}] = \{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \},\$$

А - корни мн-ов с целыми коэфф-ми

Доказательство.

$$A = \{ a_0, a_1, \dots \}, B = \{ b_0, b_1, \dots \}$$

Построим инъекцию f:

- 1) Построим $a_0 \rightarrow b_0$
- 2) Б. О. О. $a_1 > a_0$. Т. к. в B нет наибольшего, то есть $b_i : b_i > b_0$. Тогда добавим $a_1 \to b_i$
- 3) Пусть для $a_k, k \le n-1$ соединения проведены. Проведём для a_n . Рассм. три случая:
 - I) $a_n < a_k, \forall k \leq n-1$. Тогда отобразим его в b_p : $b_p < b_i, \forall i$ из использованных ранее.
 - II) $a_n > a_k, \forall k \leq n-1$. Тогда отобразим его в $b_p : b_p > b_i, \forall i$ из использованных ранее.
 - III) Иначе у a_n есть использованные ранее соседи a_i и a_j . Т. к. A и B лин. упор.: $\exists p: f(a_i) < b_p < f(a_j)$. Добавим $a_n \to b_p$

Как добиться, чтобы постр. ф-ция была сюрьекцией? Варианты:

- 1) Каждый раз брать эл-т B с наим номером из подходящих.
- 2) Действовать по очереди: сначала брать эл-т A с наим. номером, кот. ещё не рассмотрен, и отправлять в B. Затем эл-т B с наим. номером, кот. ещё не рассм, и отправлять в A. И т. д.

4.2 Предпорядки

Определение 4.3. Предпорядок (Предпочтения) - отношение, обладающее рефлексивностью и транзитивностью.

<u>Определение</u> 4.4. Полный предпорядок (Рациональные предпочтения) - предпорядок + любые два сравнимы. (или полн. + транз.)

Обозначение.

$$a \gtrsim b$$
 - предпор.

$$a\sim b\iff (a\succsim b\land b\succsim)$$
 - отношение безразличия $a \rightarrowtail \iff (a\succ b\land \lnot(b\succ a))$ - строгий предпорядок

Нетранзитивно: a > b > c > a

Теорема 4.2 (Структурная теорема о предпорядке на мн-ве A).

- 1) Отношение безразличия это отношение эквив-ти на ${\cal A}$
- 2) На эл-ах $A/_{\sim}$ можно ввести отношение $S \leq T$, если $\exists x \in S, y \in T : x \lesssim y$ Это отнош. будет част. пор. на $A/_{\sim}$
- 3) ≤ лин. пор. ⇔ ≾ полон.

Доказательство.

- 1) Рефл.: $a \lesssim a \Rightarrow (a \lesssim a \land a \lesssim a) \Rightarrow a \sim a$
 - 2) Симм.:

$$a \sim b \iff (a \lesssim b \land b \lesssim a) \iff (b \lesssim a \land a \lesssim b) \iff b \sim a$$

3) Транзитивность:

$$\begin{cases} a \sim b \\ b \sim c \end{cases} \iff \begin{cases} a \lesssim b \land b \lesssim a \\ b \lesssim c \land c \lesssim b \end{cases} \iff \begin{cases} a \lesssim c \\ c \lesssim a \end{cases} \Rightarrow a \sim c$$

• 1) Рефл $S \neq \emptyset \Rightarrow \exists x \in S \Rightarrow$ т. к. $x \lesssim x \Rightarrow S \leq S$

2) Транз. $R \leq S \leq T$:

$$\begin{cases} x \in R \\ y, z \in S \\ t \in T \\ x \lesssim y \\ z \lesssim t \end{cases} \Rightarrow y \lesssim z \Rightarrow x \lesssim t \Rightarrow R \leq T$$

3) Антисимм.:

$$S \leq T, T \leq S$$

$$\begin{cases} x \in S, y \in T \Rightarrow x \lesssim y \\ z \in T, t \in S \Rightarrow z \lesssim t \\ x \sim t \\ y \sim z \end{cases} \Rightarrow y \sim z \lesssim t \sim x \Rightarrow y \lesssim x \Rightarrow x \sim y \Rightarrow S = T$$

• \Leftarrow) S,T - классы

$$x \in S, v \in T$$
:

Если
$$x \lesssim y \Rightarrow S \leq T$$

Если $y \lesssim x \Rightarrow T \leq S$

 \Rightarrow) Даны x, y:

$$x \in S, y \in T$$
, 6. o. o. $S \le T$
 $\Rightarrow \exists z \in S, t \in T : z \lesssim t$
 $x \sim z \lesssim t \sim y \Rightarrow x \lesssim y$

S - класс эквив., T - класс эквив.

4.2.1 Агрегирование предпорядков

$$A$$
 - мн-во, $\lesssim_1,\ldots,\lesssim_n$ - препорядки \Rightarrow $F:(\lesssim_1,\lesssim_2,\ldots,\lesssim_n)\mapsto\lesssim$

Определение 4.5. Агрегирование по больш-ву:

$$x \le y$$
, если # { $i \mid x \lesssim_i y$ } \le # { $i \mid y \lesssim_i x$ }

Парадокс Кондорсе:

$$\begin{cases} a \lesssim_1 b \lesssim_1 c \\ b \lesssim_2 c \lesssim_2 a \\ c \lesssim_3 a \lesssim_3 b \end{cases} \Rightarrow a \leq b \leq c \leq a$$

<u>Теорема</u> 4.3. Любое полное отношение может быть реализовано как результат агрегирование предпорядков

Доказательство. Эл-ты $x,y,a_1,a_2,\ldots,a_{n-2}$. Также есть два предпорядка \prec и \prec' , т. ч.:

$$\begin{aligned} x \prec y \prec a_1 \prec \ldots \prec a_{n-2} \\ a_{n-2} \prec' a_{n-3} \ldots a_2 \prec a_1 \prec x \prec y \end{aligned}$$