BROUILLON - INÉGALITÉS ISOPÉRIMÉTRIQUES RESTREINTES AUX POLYGONES

CHRISTOPHE BAL

 $Document,\ avec\ son\ source\ L^{A}T_{E}\!X,\ disponible\ sur\ la\ page\\ https://github.com/bc-writings/bc-public-docs/tree/main/drafts.$

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

0.1. Au moins une solution, ou presque

5

Date: 18 Jan. 2025 - 28 Fev. 2025.

L'existence d'un n-gone solution du problème d'isopérimétrie polygonale nécessite un moyen « continu » de calculer une aire polygonale, ou plus généralement celle d'un n-cycle. Pour ce faire, nous utiliserons l'aire algébrique qui est définie pour tout n-cycle $\mathcal{L} = A_1 A_2 \cdots A_n$ par $\frac{1}{2} \sum_{i=1}^{n} \det \left(\overrightarrow{\Omega A_i'}, \overrightarrow{\Omega A_{i+1}'} \right)$ indépendamment du point Ω . ¹

Indiquons au passage qu'il faut être prudent avec cette notion comme le montre l'exemple suivant, obtenu avec GeoGebra, 2 où le n-gone croisé proposé, construit via une spirale positive depuis le point A, 3 possède une aire algébrique positive supérieure à celle de l'enveloppe convexe du n-gone. Contre-intuitif, mais normal.

Au commencement étaient les triangles... Il est connu que ABC est d'aire $\frac{1}{2} \left| \det \left(\overrightarrow{AB}, \overrightarrow{AC} \right) \right|$ où $\frac{1}{2} \det \left(\overrightarrow{AB}, \overrightarrow{AC} \right)$ est appelé aire algébrique de ABC. Pour passer aux polygones, il « suffit » d'utiliser des triangles comme dans l'exemple suivant.

Dans le cas précédent, le résultat pourrait dépendre du point Ω employé, mais le fait suivant nous montre que non. Bonne nouvelle! Yapluka...

Fait 1. Soit $\mathcal{L} = A_1 A_2 \cdots A_n$ un n-cycle. La quantité $\mu_1^n(\Omega; \mathcal{L}) = \sum_{i=1}^n \det(\overrightarrow{\Omega A_i'}, \overrightarrow{\Omega A_{i+1}'})$ est indépendante du point Ω . Dans la suite, cette quantité indépendante de Ω sera notée $\mu_1^n(\mathcal{L})$.

 $D\acute{e}monstration.$ Soit M un autre point du plan.

^{1.} Ce fait est démontré un peu plus bas.

^{2.} Quand GeoGebra associe un nombre à un n-cycle \mathcal{L} , il calcule la valeur absolue de son aire algébrique.

^{3.} En calculant l'aire algébrique avec un point « au centre », les déterminants sont tous positifs.

$$\mu_{1}^{n}(\Omega; \mathcal{L})$$

$$= \sum_{i=1}^{n} \det \left(\overrightarrow{\Omega A_{i}'}, \overrightarrow{\Omega A_{i+1}'} \right)$$

$$= \sum_{i=1}^{n} \det \left(\overrightarrow{\Omega M} + \overrightarrow{M A_{i}'}, \overrightarrow{\Omega M} + \overrightarrow{M A_{i+1}'} \right)$$

$$= \sum_{i=1}^{n} \left[\det \left(\overrightarrow{\Omega M}, \overrightarrow{\Omega M} \right) + \det \left(\overrightarrow{\Omega M}, \overrightarrow{M A_{i+1}'} \right) + \det \left(\overrightarrow{M A_{i}'}, \overrightarrow{\Omega M} \right) + \det \left(\overrightarrow{M A_{i}'}, \overrightarrow{M A_{i+1}'} \right) \right]$$

$$= \sum_{i=1}^{n} \det \left(\overrightarrow{\Omega M}, \overrightarrow{M A_{i+1}'} \right) + \sum_{i=1}^{n} \det \left(\overrightarrow{M A_{i}'}, \overrightarrow{\Omega M} \right) + \mu_{1}^{n}(M; \mathcal{L})$$

$$= \mu_{1}^{n}(M; \mathcal{L}) + \sum_{i=2}^{n+1} \det \left(\overrightarrow{\Omega M}, \overrightarrow{M A_{i}'} \right) - \sum_{i=1}^{n} \det \left(\overrightarrow{\Omega M}, \overrightarrow{M A_{i}'} \right)$$

$$= \mu_{1}^{n}(M; \mathcal{L})$$

Fait 2. Soient $\mathcal{L} = A_1 A_2 \cdots A_n$ un n-cycle, et le n-cycle $\mathcal{L}_k = B_1 B_2 \cdots B_n$ par $B_i = A'_{i+k-1}$ où $k \in [1; n]$, Nous avons $\mu_1^n(\mathcal{L}) = \mu_1^n(\mathcal{L}_k)$. Cette quantité commune sera notée $\mu(\mathcal{L})$.

 $D\acute{e}monstration$. Il suffit de s'adonner à un petit jeu sur les indices de sommation.

Fait 3. Soient $\mathcal{L} = A_1 A_2 \cdots A_n$ un n-cycle. et son n-cycle « opposé » $\mathcal{L}^{op} = B_1 B_2 \cdots B_n$ où $B_i = A_{n+1-i}$. Nous avons $\mu(\mathcal{L}^{op}) = -\mu(\mathcal{L})$.

 $D\acute{e}monstration$. Soit Ω un point quelconque du plan. $\mu(\mathcal{L}^{op})$

$$= \sum_{i=1}^{n} \det \left(\overrightarrow{\Omega B'_{i}}, \overrightarrow{\Omega B'_{i+1}} \right)$$

$$= \sum_{j=0}^{n-1} \det \left(\overrightarrow{\Omega A'_{j+1}}, \overrightarrow{\Omega A'_{j}} \right)$$

$$= -\sum_{j=1}^{n} \det \left(\overrightarrow{\Omega A'_{j}}, \overrightarrow{\Omega A'_{j+1}} \right)$$

$$= -\mu(\mathcal{L})$$

$$B'_{i} = A'_{n+1-i} \text{ et } j = n-i$$

$$A'_{0} = A'_{n} \text{ et } A'_{1} = A'_{n+1}$$

$$= -\mu(\mathcal{L})$$

Fait 4. Soit $\mathcal{L} = A_1 A_2 \cdots A_n$ un n-cycle. La quantité $\overline{\text{Aire}}(\mathcal{L}) = \frac{1}{2}\mu(\mathcal{L})$ ne dépend que du sens de parcours de \mathcal{L} , mais pas du point de départ. 4 Elle sera appelée « aire algébrique » de \mathcal{L} .

 $D\acute{e}monstration$. C'est une conséquence directe des faits 2 et 3.

Considérons, maintenant, un n-gone convexe $\mathcal{P} = A_1 A_2 \cdots A_n$ où les sommets sont parcourus dans le sens anti-horaire. En choisissant l'isobarycentre G des points $A_1, A_2, ..., A_n$ pour calculer $\overline{\text{Aire}(\mathcal{P})}$, nous obtenons $\overline{\text{Aire}(\mathcal{P})} = \overline{\text{Aire}(\mathcal{P})}$: en effet, avec ce choix, tous les déterminants det $(\overline{GA_i'}, \overline{GA_{i+1}'})$ sont positifs. Dans le cas non-convexe, les choses se compliquent a priori, car nous ne maîtrisons plus les signes des déterminants. Heureusement, nous avons le résultat essentiel suivant.

Fait 5. Soit un n-gone $\mathcal{P} = A_1 A_2 \cdots A_n$ tel que A_1, A_2, \ldots, A_n soient parcourus dans le sens trigonométrique, ou anti-horaire. Un tel n-gone sera dit « positif ». ⁵ Sous cette hypothèse, nous avons $\mu(\mathcal{P}) \geq 0$, i.e. $\overline{\text{Aire}}(\mathcal{P}) \geq 0$.

^{4.} Le lecteur pardonnera les abus de langage utilisés.

^{5.} De façon cachée, nous utilisons le célèbre théorème de Jordan, dans sa forme polygonale.

Démonstration. Le théorème de triangulation affirme que tout n-gone est triangulable comme dans l'exemple suivant : ceci laisse envisager une démonstration par récurrence en retirant l'un des triangles ayant deux côtés correspondant à deux côtés consécutifs du n-gone (pour peu qu'un tel triangle existe toujours).

 $Un \ n$ -qone « nu ».

Le n-gone triangulé.

Le n-gone allégé.

Le théorème de triangulation admet une forme forte donnant une décomposition contenant un triangle formé de deux côtés consécutifs du n-gone. 6 Nous dirons qu'une telle décomposition est « à l'écoute ». Ce très mauvais jeu de mots fait référence à la notion sérieuse « d'oreille » pour un n-gone : une oreille est un triangle inclus dans le n-gone, et formé de deux côtés consécutifs du n-gone. L'exemple suivant donne un n-gone n'ayant que deux oreilles. 7

Un n-qone basique.

Juste deux oreilles disponibles.

Raisonnons donc par récurrence sur $n \in \mathbb{N}_{>3}$.

- Cas de base. Soit ABC un triangle. Dire que les sommets A, B et C sont parcourus dans le sens trigonométrique, c'est savoir que $\mu(ABC) = \det\left(\overrightarrow{AB}, \overrightarrow{AC}\right) > 0$.
- **Hérédité.** Soit un *n*-gone positif $\mathcal{P} = A_1 A_2 \cdots A_n$ avec $n \in \mathbb{N}_{>3}$. On peut supposer que $A_{n-1} A_n A_1$ est une oreille d'une triangulation à l'écoute du *n*-gone \mathcal{P} .

 $A_{n-1}A_nA_1$ est une oreille.

 $A_{n-1}A_nA_1$ n'est pas une oreille.

Posons $\mathcal{P}' = A_1 \cdots A_{n-1}$ où k = n-1 vérifie $k \in \mathbb{N}_{\geq 3}$. Par hypothèse, \mathcal{P}' est positif. Nous arrivons finalement aux calculs élémentaires suivants en utilisant A_1 comme point de calcul de $\mu(\mathcal{P})$.

^{6.} En pratique, cette forme forte est peu utile, car elle aboutit à un algorithme de recherche trop lent.

^{7.} On démontre que tout n-gone admet au minimum deux oreilles.

$$\mu(\mathcal{P})$$

$$= \sum_{j=1}^{n} \det \left(\overrightarrow{A_1 A_j'}, \overrightarrow{A_1 A_{j+1}'} \right)$$

$$= \sum_{j=1}^{n-1} \det \left(\overrightarrow{A_1 A_j}, \overrightarrow{A_1 A_{j+1}} \right)$$

$$= \sum_{j=1}^{n-1} \det \left(\overrightarrow{A_1 A_j}, \overrightarrow{A_1 A_{j+1}} \right)$$

$$= \sum_{j=1}^{n-2} \det \left(\overrightarrow{A_1 A_j}, \overrightarrow{A_1 A_{j+1}} \right) + \det \left(\overrightarrow{A_1 A_{n-1}}, \overrightarrow{A_1 A_n} \right)$$

$$= \mu(\mathcal{P}') + \mu(A_{n-1} A_n A_1)$$
Par hypothèse de récurrence, nous savons que $\mu(\mathcal{P}') \geq 0$, et comme $A_{n-1} A_n A_1$ est

Par hypothèse de récurrence, nous savons que $\mu(\mathcal{P}') \geq 0$, et comme $A_{n-1}A_nA_1$ est une oreille de \mathcal{P} , la 3-ligne $A_{n-1}A_nA_1$ est forcément positive, d'où $\mu(A_{n-1}A_nA_1) \geq 0$ d'après le cas de base. Nous arrivons bien à $\mu(\mathcal{P}) \geq 0$, ce qui permet de finir aisément la démonstration par récurrence.

Fait 6. Pour tout n-gone \mathcal{P} , nous avons: $Aire(\mathcal{P}) = |\overline{Aire}(\mathcal{P})|$.

Démonstration. Les deux points suivants permettent de faire une preuve par récurrence.

- Cas de base. L'égalité est immédiate pour les triangles (c'est ce qui a motivé la définition de l'aire algébrique).
- **Hérédité.** Soit $\mathcal{P} = A_1 \cdots A_n$ un n-gone avec $n \in \mathbb{N}_{>3}$. Comme $\overline{\text{Aire}}(\mathcal{P}^{\text{op}}) = -\overline{\text{Aire}}(\mathcal{P})$ selon le fait 3, nous pouvons choisir de parcourir \mathcal{P} positivement, puis de nous placer dans la situation de la démonstration du fait $5: A_{n-1}A_nA_1$ est une oreille positive d'une triangulation à l'écoute du n-gone \mathcal{P} , et $\mathcal{P}' = A_1 \cdots A_{n-1}$ un k-gone positif où k = n 1 vérifie $k \in \mathbb{N}_{\geq 3}$. Nous arrivons finalement aux calculs élémentaires suivants.

Aire(
$$\mathcal{P}$$
)
$$= \text{Aire}(\mathcal{P}') + \text{Aire}(A_{n-1}A_nA_1)$$

$$= \frac{1}{2}|\mu(\mathcal{P}')| + \frac{1}{2}|\mu(A_{n-1}A_nA_1)|$$

$$= \frac{1}{2}(\mu(\mathcal{P}') + \mu(A_{n-1}A_nA_1))$$

$$= \frac{1}{2}\mu(\mathcal{P})$$

$$= \frac{1}{2}|\mu(\mathcal{P})|$$

$$= \frac{1}{2}|\mu(\mathcal{P})|$$

$$= |\overline{\text{Aire}}(\mathcal{P})|$$

$$= |\overline{\text{Aire}}(\mathcal{P})|$$

$$= |\overline{\text{Aire}}(\mathcal{P})|$$

$$| A_{n-1}A_nA_1 \text{ est une oreille de } \mathcal{P}.$$

$$| Hypothèse de récurrence et cas de base.$$

$$| Voir le fait 5.$$

$$| Voir le fait 5.$$

Finissons par un théorème de continuité qui permettra de justifier l'existence d'au moins une solution au problème d'isopérimétrie polygonale.

Fait 7. Soient $n \in \mathbb{N}_{\geq 3}$ et $(O; \vec{\imath}, \vec{\jmath})$ un repère orthonormé direct du plan. On note $\mathcal{U} \subset \mathbb{R}^{2n}$ l'ensemble des uplets de coordonnées $(x(A_1); y(A_1); \ldots; x(A_n); y(A_n))$ où $A_1A_2 \cdots A_n$ désigne un n-cycle, et $\alpha : \mathcal{U} \to \mathbb{R}_+$ la fonction qui à un uplet de \mathcal{U} associe l'aire algébrique du n-cycle qu'il représente. Avec ces notations, la fonction $\alpha : \mathcal{U} \to \mathbb{R}_+$ est continue.

Démonstration. Immédiat, car nous avons une fonction polynomiale.

0.1. Au moins une solution, ou presque. L'étude du cas des quadrilatères a montré que la convexité était un ingrédient central. Ceci sera aussi le cas pour les *n*-gones, bien que moins immédiat à justifier, comme nous le verrons dans le fait ?? dont la preuve est indépendante des résultats de cette section. Ceci explique qu'ici nous cherchions à justifier l'existence d'au moins un *n*-gone convexe d'aire maximale parmi les *n*-gones convexes de longueur fixée.

Fait 8. Si \mathcal{L} est un n-cycle convexe, alors nous avons l'une des deux alternatives suivantes.

- $\forall (i,k) \in [1;n]^2$, $\det\left(\overrightarrow{A_i'A_{i+1}'},\overrightarrow{A_i'A_k'}\right) \geq 0$.
- $\forall (i,k) \in [1;n]^2$, $\det\left(\overrightarrow{A_i'A_{i+1}'},\overrightarrow{A_i'A_k'}\right) \leq 0$.

Démonstration. Soit \mathcal{L} un n-cycle convexe. Supposons avoir $\forall (i,k,j,m) \in [1;n]^4$ vérifiant $\det\left(\overrightarrow{A_i'A_{i+1}'}, \overrightarrow{A_i'A_k'}\right) > 0$ et $\det\left(\overrightarrow{A_j'A_{j+1}'}, \overrightarrow{A_j'A_m'}\right) < 0$. Quitte à considérer \mathcal{L}^{op} , et à changer d'origine, on peut supposer avoir $\det\left(\overrightarrow{A_1'A_2'}, \overrightarrow{A_1'A_k'}\right) > 0$ et $\det\left(\overrightarrow{A_2'A_3'}, \overrightarrow{A_2'A_m'}\right) < 0$ (il suffit de considérer k le plus petit possible tel que k > i, puis ensuite i le plus grand possible tel que i < k, pour obtenir k = i + 1). Nous avons alors les résultats suivants.

- Par convexité, $\forall r \in [1; n]$, nous avons $\det\left(\overrightarrow{A_1'A_2'}, \overrightarrow{A_1'A_r'}\right) \geq 0$ et $\det\left(\overrightarrow{A_2'A_3'}, \overrightarrow{A_2'A_r'}\right) \leq 0$.
- En particulier, $\det\left(\overrightarrow{A_1'A_2'},\overrightarrow{A_1'A_r'}\right) \ge 0$ et $\det\left(\overrightarrow{A_2'A_3'},\overrightarrow{A_2'A_r'}\right) \le 0$.
- Le point précédent n'est possible que si A_1 , A_2 et A_3 sont alignés comme le montre le dessin suivant où les hachures donnent les zones où doivent se trouver les sommets relativement aux droites (A_1A_2) , hachures vertes, et (A_2A_3) , hachures marron, les droites étant comprises.

• XXXX

Fait 9. Soit $n \in \mathbb{N}_{\geq 3}$ un naturel fixé. Parmi tous les n-cycles convexes de longueur ℓ fixée, non nulle, il en existe au moins un d'aire algébrique maximale.

Démonstration.

- Munissons le plan d'un repère orthonormé direct $(O; \vec{i}, \vec{j})$.
- Commençons par noter que tout n-cycle d'origine A_1 translaté via le vecteur $\overrightarrow{A_1O}$ donne un n-cycle d'origine O, sans modification de la longueur, ni de l'aire algébrique, ni l'ordre des sommets après A_1 . De plus, $\overline{\text{Aire}}(\mathcal{L}^{\text{op}}) = -\overline{\text{Aire}}(\mathcal{L})$ pour tout n-cycle \mathcal{L} d'après le fait 3, donc nous pouvons nous concentrer sur les n-cycles convexes vérifiant det $(\overrightarrow{A_i'A_{i+1}'}, \overrightarrow{A_i'A_k'}) \geq 0$ pour tous les sommets A_i et A_k grâce au fait précédent.
- Soit $\mathcal{U} \subset \mathbb{R}^{2n}$ l'ensemble des uplets de coordonnées $(x(A_1); y(A_1); \ldots; x(A_n); y(A_n))$ où $\mathcal{L} = A_1 A_2 \cdots A_n$ est un n-cycle vérifiant les conditions suivantes.
 - (1) $A_1 = O$.
 - (2) $\operatorname{Long}(\mathcal{L}) = \ell$.
 - $(3) \ \forall (k,i) \in \llbracket 1\,; n \rrbracket^2, \, \det\left(\overrightarrow{A_i'A_{i+1}'}, \overrightarrow{A_i'A_k'}\right) \geq 0.$
- \mathcal{U} est fermé dans \mathbb{R}^{2n} , car les conditions le définissant le sont, et il est borné, car inclus dans la boule fermée de centre O et de rayon ℓ . En résumé, \mathcal{U} est un compact de \mathbb{R}^{2n} .
- Nous définissons la fonction $\alpha: \mathcal{U} \to \mathbb{R}_+$ qui à un uplet de \mathcal{U} associe l'aire algébrique du n-cycle qu'il représente. Cette fonction est continue d'après le fait 7. Donc, α admet un maximum sur \mathcal{U} par continuité et compacité. Affaire conclue!

Nous arrivons au résultat central suivant pour les n-gones convexes. On perd a priori des sommets, mais nous verrons plus tard que cela suffit, car nous nous ramènerons à la comparaison de k-gones réguliers convexes pour k variable, ce qui sera facile, puisque nous disposons de formules, en fonction de k, pour le périmètre et l'aire d'un k-gone régulier convexe.

Fait 10. Soient $n \in \mathbb{N}_{\geq 3}$ et $\ell \in \mathbb{R}^*$ fixés. Il existe un k-gone convexe K validant les assertions suivantes.

- k < n.
- Long(\mathcal{K}) = ℓ .
- $Si \mathcal{P}$ est un n-gone convexe tel que $Long(\mathcal{P}) = \ell$, alors $Aire(\mathcal{P}) \leq Aire(\mathcal{K})$.

Démonstration. Reprenons les notations de la preuve du fait 9, puis notons \mathcal{K} un n-cycle convexe maximisant la fonction α sur \mathcal{U} , de sorte que $\operatorname{Long}(\mathcal{K}) = \ell$ est validée. Il est immédiat que pour tout n-gone convexe \mathcal{P} tel que $\operatorname{Long}(\mathcal{P}) = \ell$, nous avons $\overline{\operatorname{Aire}}(\mathcal{P}) \leq \overline{\operatorname{Aire}}(\mathcal{K})$, puis le fait 6 donne que $\operatorname{Aire}(\mathcal{P}) \leq |\overline{\operatorname{Aire}}(\mathcal{K})|$, après avoir noté que nécessairement $\overline{\operatorname{Aire}}(\mathcal{K}) \geq 0$. Pour finir, voyons pourquoi \mathcal{K} est un k-gone convexe avec $k \leq n$, ce qui impliquera ensuite $|\overline{\operatorname{Aire}}(\mathcal{K})| = \operatorname{Aire}(\mathcal{K})$.

• XXX

• XXX