ROBEM I When p is prime, p > 2, $A \mid p^{\alpha}$, find all the solution of $y^2 \equiv A \pmod{p^{\alpha}}$.

SOLION. Since $A \mid p^{\alpha}$, then it is equal to find the solution of $y^2 \equiv 0 \pmod{p^{\alpha}}$. Next, we will prove that the solution of $y^2 \equiv 0 \pmod{p^{\alpha}}$ are $\{y \in \mathbb{Z} : V_p(y) \geq \frac{\alpha}{2}\}$.

Let $y = \prod_{r \in P} r^{V_r(y)}$, where P is all the prime, $V_r(n) = \min\{k \in \mathbb{N} : r^k \mid n\}, r \in P, n \in \mathbb{Z}$. If $p^{\alpha} \mid y^2 = \prod_{r \in P} r^{2V_r(y)}$, then $V_p(y) \geq 1$ and $\alpha \mid 2V_p(y)$. So $\frac{\alpha}{2} \leq V_p(y)$.

And obviously, $\forall y: V_p(y) \geq \frac{\alpha}{2}$, then $V_p(y^2) = 2V_p(y) \geq \alpha$, then $p^{\alpha} \mid y^2$.

BOBEM II Prove:

$$ax^2 + bx + c \equiv 0 \pmod{m}, \gcd(2a, m) = 1$$

has solution. \iff

$$x^2 \equiv q \pmod{m}, q = b^2 - 4ac$$

has solutions, which can infer the solution of $ax^2 + bx + c \equiv 0 \pmod{m}$.

SOUTION. Since $\gcd(2a,m)=1$, then $2 \nmid m, a \nmid m$, then $\gcd(4a,m)=1$. $ax^2+bx+c \equiv 0 \pmod m$ has solutions $\iff (2ax+b)^2+(4ac-b^2) \equiv 0 \pmod m$ has solutions. $\implies :y^2+4ac-b^2 \equiv 0 \pmod m$, where $y \equiv 2ax+b \pmod m$. Since $\gcd(2a,m)=1$, then the solution of $y^2+4ac-b^2 \equiv 0 \pmod m$ y, we let $x \equiv A(y-b) \pmod m$, where $A(2a) \equiv 1 \pmod m$, x is the solution of $(2ax+b)^2+(4ac-b^2) \equiv 0 \pmod m$. $\iff (2ax+b)^2+(4ac-b^2) \equiv 0 \pmod m$ has solution x, then 2ax+b is the solution of $ax^2+bx+c \equiv 0 \pmod m$, same way as above.

ROBEM III Find out all the squared remainder and non quadratic remainder of 37.

SOLION. By the Theorem 2 on page 65 of text book, we can get that $\{k^2 + 37t : 1 \le k \le 18, t \in \mathbb{Z}\} = \{k + 37t : t \in \mathbb{Z}, k \in A\}$, where $A := \{1, 4, 9, 16, 25, 36, 12, 27, 7, 26, 10, 33, 21, 11, 3, 34, 30, 28\}$ are squared remainder. And $\{k + 37t : t \in \mathbb{Z}, k \in B\}$, where $B = \mathbb{N}^+ \cap [0, 36] \setminus A$ are non squared remainder.

ROBEM IV

- 1. Use the conclusion in the former chapters, prove: there must exist quadratic residue and non quadratic residue in the reduced residue system of p.
- 2. Assume x_1, x_2 are quadratic residues, X_3 is non quadratic residue: prove x_1x_2 is quadratic residue, x_1x_3 is non quadratic residue.
- 3. Apply the conclusions above, prove that both the quadratic residue and the non quadratic residue in the reduced residue system of p have $\frac{p-1}{2}$ elements.
- SOUTION. 1. Obviously, 1 is quadratic residue of p. Consider function $f: \mathbb{Z}_p \setminus \{0\} \to \mathbb{Z}_p \setminus \{0\}$, $i \to i^2$. When p > 2, if every elements in $\mathbb{Z}_p \setminus \{0\}$ is quadratic residue, then f is bijective. But $1 \not\equiv -1 \pmod{p}$ and $f(-1) \equiv f(1) \equiv 1 \pmod{p}$, then f is not surjective, contradiction! Then there must exist non-quadratic residue of p.

- 2. Assume $x_1 \equiv y_1^2, x_2 \equiv y_2^2 \pmod{p}$, then $x_1 x_2 \equiv y_1^2 y_2^2 \pmod{p}$. Then $x_1 x_2$ is quadratic residue. Since $y_1 \not\equiv 0 \pmod{p}$, then $\exists z \text{ such that } y_{1z} \equiv 1 \pmod{p}$. If $x_1 x_3 \equiv t^2 \pmod{p}$, $\exists t$. Then $x_3 \equiv z^2 x_1 x_3 \equiv (zt)^2 \pmod{p}$, contradiction!
- 3. Recall f, we only need to prove $|f(\mathbb{Z}_p \setminus \{0\})| = \frac{p-1}{2}$. For every $x \in f(\mathbb{Z}_p \setminus \{0\})$, consider $x \equiv y^2 \pmod{p}$. Then $\exists y$ such that $x \equiv y^2 \pmod{p}$. If $y_1^2 \equiv y_2^2 \equiv \pmod{p}$, then $p \mid (y_1 + y_2)(y_1 y_2)$, then $y_2 \equiv \pm y_1 \pmod{p}$. Then $|f^{-1}(x)| \leq 2$. On the other hand, easy to prove that $y \not\equiv 0 \pmod{p} \to y \not\equiv -y \pmod{p}$, and $x \equiv y^2 \pmod{p} \to x \equiv (-y)^2 \pmod{p}$. So $|f^{-1}(x)| = 2$. Then

$$\sum_{x \in f(\mathbb{Z}_p \setminus \{0\})} 2 = \sum_{x \in f(\mathbb{Z}_p \setminus \{0\})} \sum_{y \in \mathbb{Z}_p, x \equiv y^2} 1 = \sum_{y \in \mathbb{Z}_p \setminus \{0\}} \sum_{x \equiv y^2} 1 = \sum_{y \in \mathbb{Z}_p \setminus \{0\}} 1 = p - 1$$

Therefore, $|f(\mathbb{Z}_p \setminus \{0\})| = \frac{p-1}{2}$.

ROBEM V Prove: the solution of $x^2 \equiv a \pmod{p^{\alpha}}$, $\gcd(\alpha, p) = 1$ is $x \equiv \pm PQ' \pmod{p^{\alpha}}$, where

$$P = \frac{(z + \sqrt{\alpha})^{\alpha} + (z - \sqrt{\alpha})^{\alpha}}{2}, Q = \frac{(z + \sqrt{\alpha})^{\alpha} - (z - \sqrt{\alpha})^{\alpha}}{\sqrt{\alpha}},$$
$$z^{2} \equiv \alpha \pmod{p}, QQ' \equiv 1 \pmod{p^{\alpha}}.$$

SOLITON. First, if $x^2 \equiv a \pmod{p^{\alpha}}$ has solution, then $z^2 \equiv a \pmod{p}$ has solution. So we only need to prove that if $z^2 \equiv a \pmod{p}$ has solution, then $\pm PQ'$ is the solution of $x^2 \equiv a \pmod{p^{\alpha}}$. Easy to get that $P + \sqrt{a}Q = (z + \sqrt{a})^{\alpha}$ and $P - \sqrt{a}Q = (z - \sqrt{a})^{\alpha}$. So $P^2 - aQ^2 = ((z + \sqrt{a})(z - \sqrt{a}))^{\alpha} = (z^2 - a)^{\alpha}$. Since $z^2 \equiv a \pmod{p}$, we know $p \mid z^2 - a$, so $p^{\alpha} \mid P^2 - aQ^2$. So $P^2 \equiv aQ^2 \pmod{p}$. So $x^2 \equiv P^2Q'^2 \equiv aQ^2Q'^2 \equiv a \pmod{p}$.

ROBEM VI Prove the solution of $x^2 + 1 \equiv 0 \pmod{p}$, p = 4m + 1 is $x \equiv \pm 1 \cdot 2 \cdot \cdots \cdot (2m) \pmod{p}$.

SOUTON. Easy to know that $x^2 \equiv \prod_{i=1}^{2m} i \prod_{i=1}^{2m} i \equiv \prod_{i=1}^{2m} i(-1)^{2m} \prod_{i=1}^{2m} -i \equiv \prod_{i=1}^{4m} i \pmod{p}$. So we only need to prove that for $p \in \mathbb{P} \land p \neq 2, (p-1)! \equiv -1 \mod{p}$. It is obvious by Wilson's Theorem.