Fecho de uma endorrelação QXD0008 – Matemática Discreta

Prof. Lucas Ismaily ismailybf@ufc.br

Universidade Federal do Ceará

 2° semestre/2022

Tópicos desta aula

Nesta apresentação:

- Fecho reflexivo
- Fecho simétrico
- Fecho transitivo
 - Grafos direcionados e fechos transitivos
 - Caminhos em grafos e caminhos em relações
 - o Caracterização do fecho transitivo de uma relação

Referências para esta aula

• Seção 9.4 do livro:

Discrete Mathematics and Its Applications.

Author: Kenneth H. Rosen. Seventh Edition. (English version)

• Seção 8.4 do livro: Matemática Discreta e suas Aplicações.

Autor: Kenneth H. Rosen. Sexta Edição.

Introdução

Motivação

- Frequentemente é desejável estender uma relação R de forma a garantir que ela satisfaz determinado conjuntos de propriedades.
 - \circ por exemplo, garantir que R satisfaz a propriedade reflexiva

Motivação

- Frequentemente é desejável estender uma relação *R* de forma a garantir que ela satisfaz determinado conjuntos de propriedades.
 - o por exemplo, garantir que R satisfaz a propriedade reflexiva
- Se uma relação binária R definida em um conjunto A não possui uma determinada propriedade P, podemos "estender" R e obter uma nova relação R* em A que tenha essa propriedade.

Motivação

- Frequentemente é desejável estender uma relação *R* de forma a garantir que ela satisfaz determinado conjuntos de propriedades.
 - o por exemplo, garantir que R satisfaz a propriedade reflexiva
- Se uma relação binária R definida em um conjunto A não possui uma determinada propriedade P, podemos "estender" R e obter uma nova relação R* em A que tenha essa propriedade.
- Estender significa que a nova relação R* em A contém todos os pares de R e os pares adicionais necessários para que a propriedade P seja válida.

Fecho de uma endorrelação

Definição: Seja R uma endorrelação num conjunto A e P uma propriedade. O fecho de R com relação à propriedade P é a endorrelação R^* no conjunto A que satisfaz as três condições abaixo:

- 1. R^* satisfaz a propriedade P.
- 2. $R \subseteq R^*$.
- 3. Se S é uma outra relação qualquer que contém R e satisfaz a propriedade P, então $R^* \subseteq S$.
 - o ou seja, R^* é a menor endorrelação em A que contém R e que satisfaz a propriedade P

Fecho de uma endorrelação

Definição: Seja R uma endorrelação num conjunto A e P uma propriedade. O fecho de R com relação à propriedade P é a endorrelação R^* no conjunto A que satisfaz as três condições abaixo:

- 1. R^* satisfaz a propriedade P.
- 2. $R \subseteq R^*$.
- 3. Se S é uma outra relação qualquer que contém R e satisfaz a propriedade P, então $R^* \subseteq S$.
 - o ou seja, R^* é a menor endorrelação em A que contém R e que satisfaz a propriedade P

• **Obs. 1:** O fecho de uma endorrelação *R* com relação a uma determinada propriedade *P* pode não existir.

Fecho de uma endorrelação

Definição: Seja R uma endorrelação num conjunto A e P uma propriedade. O fecho de R com relação à propriedade P é a endorrelação R^* no conjunto A que satisfaz as três condições abaixo:

- 1. R^* satisfaz a propriedade P.
- 2. $R \subseteq R^*$.
- 3. Se S é uma outra relação qualquer que contém R e satisfaz a propriedade P, então $R^* \subseteq S$.
 - o ou seja, R^* é a menor endorrelação em A que contém R e que satisfaz a propriedade P

- **Obs. 1:** O fecho de uma endorrelação *R* com relação a uma determinada propriedade *P* pode não existir.
- **Obs. 2:** Fechos de uma relação *R* com relação às propriedades reflexiva, simétrica e transitiva podem ser encontrados.

Definição: Seja A um conjunto e R uma endorrelação em A. O fecho reflexivo de R é a endorrelação R^* em A que satisfaz as três condições abaixo:

- 1. R* é reflexiva.
- 2. $R \subseteq R^*$
- 3. Se S é uma outra relação transitiva qualquer que contém R, então $R^* \subseteq S$.

Exemplo: A relação $R = \{(1,1), (1,2), (2,1), (3,2)\}$ no conjunto

 $A = \{1, 2, 3\}$ não é reflexiva.

Como construir uma relação reflexiva contendo R que seja a menor possível?

Exemplo: A relação $R = \{(1,1), (1,2), (2,1), (3,2)\}$ no conjunto

 $A = \{1, 2, 3\}$ não é reflexiva.

Como construir uma relação reflexiva contendo R que seja a menor possível?

Resposta: Adicionando os pares (2,2) e (3,3) em R, porque estes são os únicos pares da forma (a,a) que não estão em R. Além disso, **toda** relação reflexiva que contém R deve conter também (2,2) e (3,3).

Exemplo: A relação $R = \{(1,1), (1,2), (2,1), (3,2)\}$ no conjunto

 $A = \{1, 2, 3\}$ não é reflexiva.

Como construir uma relação reflexiva contendo R que seja a menor possível?

Resposta: Adicionando os pares (2,2) e (3,3) em R, porque estes são os únicos pares da forma (a,a) que não estão em R. Além disso, **toda** relação reflexiva que contém R deve conter também (2,2) e (3,3).

Exemplo: A relação $R = \{(1,1), (1,2), (2,1), (3,2)\}$ no conjunto $A = \{1,2,3\}$ não é reflexiva.

Como construir uma relação reflexiva contendo R que seja a menor possível?

Resposta: Adicionando os pares (2,2) e (3,3) em R, porque estes são os únicos pares da forma (a,a) que não estão em R. Além disso, **toda** relação reflexiva que contém R deve conter também (2,2) e (3,3).

 Como essa nova relação contém R, é reflexiva e está contida em toda relação reflexiva que contém R, ela é chamada de fecho reflexivo de R.

Exercício para casa: Seja *R* uma endorrelação num conjunto *A*.

Prove que o fecho reflexivo de R é a relação $R \cup \Delta$ tal que

 $\Delta = \{(a, a) \colon a \in R\}.$

Obs.: A endorrelação Δ é chamada relação diagonal em A.

Exercício para casa: Seja R uma endorrelação num conjunto A. Prove que o fecho reflexivo de R é a relação $R \cup \Delta$ tal que

 $\Delta = \{(a, a) \colon a \in R\}.$

Obs.: A endorrelação Δ é chamada relação diagonal em A.

Exemplo:

Qual é o fecho reflexivo da endorelação $R = \{(a, b): a < b\}$ no conjunto dos inteiros?

Exercício para casa: Seja R uma endorrelação num conjunto A. Prove que o fecho reflexivo de R é a relação $R \cup \Delta$ tal que $\Delta = \{(a, a) : a \in R\}$.

Obs.: A endorrelação Δ é chamada relação diagonal em A.

Exemplo:

Qual é o fecho reflexivo da endorelação $R = \{(a, b): a < b\}$ no conjunto dos inteiros?

Solução:

• De acordo com a definição acima, o fecho reflexivo de R é

$$R \cup \Delta = \{(a,b) \colon a < b\} \cup \underbrace{\{(a,a) \colon a \in \mathbb{Z}\}}_{\text{relação diagonal } \Delta} = \{(a,b) \colon a \leq b\}.$$

Definição: Seja A um conjunto e R uma endorrelação em A. O fecho simétrico de R é a endorrelação R^* em A que satisfaz as três condições abaixo:

- 1. R* é simétrica.
- 2. $R \subseteq R^*$
- 3. Se S é uma outra relação simétrica qualquer que contém R, então $R^* \subseteq S$.

Exemplo: A relação $R = \{(1,1), (1,2), (2,2), (2,3), (3,2), (3,1)\}$ no conjunto $A = \{1,2,3\}$ não é simétrica. Como construir uma relação simétrica contendo R que seja a menor possível?

Exemplo: A relação $R = \{(1,1), (1,2), (2,2), (2,3), (3,2), (3,1)\}$ no conjunto $A = \{1,2,3\}$ não é simétrica. Como construir uma relação simétrica contendo R que seja a menor possível?

Resposta: Adicionando os pares (2,1) e (1,3) em R, porque estes são os únicos pares da forma (b,a) com $(a,b) \in R$ que não estão em R. Esta nova relação é simétrica e contém R. Além disso, **toda** relação simétrica que contém R deve conter também (2,1) e (1,3).

Exemplo: A relação $R = \{(1,1), (1,2), (2,2), (2,3), (3,2), (3,1)\}$ no conjunto $A = \{1,2,3\}$ não é simétrica. Como construir uma relação simétrica contendo R que seja a menor possível?

Resposta: Adicionando os pares (2,1) e (1,3) em R, porque estes são os únicos pares da forma (b,a) com $(a,b) \in R$ que não estão em R. Esta nova relação é simétrica e contém R. Além disso, **toda** relação simétrica que contém R deve conter também (2,1) e (1,3).

Exemplo: A relação $R = \{(1,1), (1,2), (2,2), (2,3), (3,2), (3,1)\}$ no conjunto $A = \{1,2,3\}$ não é simétrica. Como construir uma relação simétrica contendo R que seja a menor possível?

Resposta: Adicionando os pares (2,1) e (1,3) em R, porque estes são os únicos pares da forma (b,a) com $(a,b) \in R$ que não estão em R. Esta nova relação é simétrica e contém R. Além disso, **toda** relação simétrica que contém R deve conter também (2,1) e (1,3).

 Como essa nova relação contém R, é simétrica e está contida em toda relação simétrica que contém R, ela é chamada de fecho simétrico de R.

- Como o exemplo anterior ilustrou, o fecho simétrico da endorrelação R em A pôde ser construído adicionando a R todos os pares (b, a) que não estão em R mas que (a, b) ∈ R.
- A adição desses pares produz uma relação que é simétrica, que contém R, e que está contida em qualquer relação simétrica que contém R.

Exercício para casa: Seja R uma endorrelação em um conjunto A. Prove que o fecho simétrico da relação R pode ser construído tomando a união da relação R com a sua inversa. Ou seja, prove que $R \cup R^{-1}$ é o fecho simétrico de R.

• Lembre-se que $R^{-1} = \{(b, a) : (a, b) \in R\}.$

Definição: Seja A um conjunto e R uma endorrelação em A. O fecho transitivo de R é a endorrelação R^* em A que satisfaz as três condições abaixo:

- 1. R* é transitiva.
- 2. $R \subseteq R^*$
- 3. Se S é uma outra relação transitiva qualquer que contém R, então $R^* \subseteq S$.

Exemplo:

• Considere a relação $R = \{(1,3), (1,4), (2,1), (3,2)\}$ no conjunto $A = \{1,2,3,4\}$. Esta relação é transitiva?

Exemplo:

- Considere a relação $R = \{(1,3), (1,4), (2,1), (3,2)\}$ no conjunto $A = \{1,2,3,4\}$. Esta relação é transitiva?
- Resposta: Não, pois ela não contém todos os pares da forma (a, c) tal que (a, b) e (b, c) estão em R. Os pares desta forma que não estão em R são (1, 2), (2, 3), (2, 4) e (3, 1).

relação não transitiva

Exemplo:

- Considere a relação $R = \{(1,3), (1,4), (2,1), (3,2)\}$ no conjunto $A = \{1,2,3,4\}$. Esta relação é transitiva?
- Resposta: Não, pois ela não contém todos os pares da forma (a, c) tal que (a, b) e (b, c) estão em R. Os pares desta forma que não estão em R são (1,2), (2,3), (2,4) e (3,1).
- A relação resultante da adição desses pares em R é transitiva?

Exemplo:

- Considere a relação $R = \{(1,3), (1,4), (2,1), (3,2)\}$ no conjunto $A = \{1,2,3,4\}$. Esta relação é transitiva?
- Resposta: Não, pois ela não contém todos os pares da forma (a, c) tal que (a, b) e (b, c) estão em R. Os pares desta forma que não estão em R são (1,2), (2,3), (2,4) e (3,1).
- A relação resultante da adição desses pares em R é transitiva?
 - \circ Não, pois ela contém (3,1) e (1,4) mas não contém (3,4).

relação não transitiva

relação não transitiva

- O exemplo anterior mostra que construir o fecho transitivo de uma relação é mais complicado que construir os fechos reflexivo e simétrico.
- Veremos que a representação de uma relação como um grafo direcionado ajuda na construção do fecho transitivo.

Caminhos em grafos direcionados e Caminhos em Relações

Caminhos em grafos direcionados

Definição: Um caminho de a para b no grafo direcionado G é uma sequência de arestas $(x_0, x_1), (x_1, x_2), (x_2, x_3), \dots, (x_{n-1}, x_n)$ em G, em que n é um inteiro não negativo e $x_0 = a$ e $x_n = b$.

Este caminho é indicado por $x_0, x_1, x_2, \dots, x_{n-1}, x_n$.

O comprimento deste caminho é n.

Podemos considerar um conjunto vazio de arestas como um caminho de (a, a).

Caminhos em grafos direcionados

Definição: Um caminho de a para b no grafo direcionado G é uma sequência de arestas $(x_0, x_1), (x_1, x_2), (x_2, x_3), \dots, (x_{n-1}, x_n)$ em G, em que n é um inteiro não negativo e $x_0 = a$ e $x_n = b$.

Este caminho é indicado por $x_0, x_1, x_2, \dots, x_{n-1}, x_n$.

O comprimento deste caminho é n.

Podemos considerar um conjunto vazio de arestas como um caminho de (a, a).

Grafo G

Quais dessas sequências são caminhos em *G*?

- u, v, w
- *u*, *z*, *w*, *v*
- \bullet u, v, u, w, v, z
- W, V, U, W

Caminhos em relações

O termo "caminho" que usamos em grafos também se aplica a relações.

Definição: Seja $R: A \to A$ uma endorrelação e $a, b \in A$. Dizemos que existe um caminho de comprimento n de a para b em R se e somente se existe uma sequência de elementos $a, x_1, x_2, \ldots, x_{n-1}, b \in A$ com $(a, x_1) \in R$, $(x_1, x_2) \in R$, ..., e $(x_{n-1}, b) \in R$.

Exemplo: Seja $R = \{(3,1), (2,4), (1,2), (4,3), (4,1)\}$ uma endorrelação em $A = \{1,2,3,4\}$. Encontre um caminho de 3 para 4 em R.

Caminhos em relações

O termo "caminho" que usamos em grafos também se aplica a relações.

Definição: Seja $R: A \to A$ uma endorrelação e $a, b \in A$. Dizemos que existe um caminho de comprimento n de a para b em R se e somente se existe uma sequência de elementos $a, x_1, x_2, \ldots, x_{n-1}, b \in A$ com $(a, x_1) \in R$, $(x_1, x_2) \in R$, ..., e $(x_{n-1}, b) \in R$.

Exemplo: Seja $R = \{(3,1), (2,4), (1,2), (4,3), (4,1)\}$ uma endorrelação em $A = \{1,2,3,4\}$. Encontre um caminho de 3 para 4 em R.

 $\begin{array}{c} \text{Solução: } 3,1,2,4 \\ \text{Comprimento do caminho} = 3 \end{array}$

Caracterização de caminhos em relações

Teorema 13.1: Seja R uma endorrelação em um conjunto A, $a,b \in A$ e n um inteiro positivo. Existe um caminho de comprimento n de a para b em R se e somente se $(a,b) \in R^n$.

Demonstração:

Caracterização de caminhos em relações

Teorema 13.1: Seja R uma endorrelação em um conjunto A, a, $b \in A$ e n um inteiro positivo. Existe um caminho de comprimento n de a para b em R se e somente se $(a,b) \in R^n$.

Demonstração:

Seja R uma endorrelação em um conjunto A e $a, b \in A$.

Seja P(n) a afirmação existe um caminho de comprimento n de a para b em R se e somente se $(a,b) \in R^n$.

Caracterização de caminhos em relações

Teorema 13.1: Seja R uma endorrelação em um conjunto A, a, $b \in A$ e n um inteiro positivo. Existe um caminho de comprimento n de a para b em R se e somente se $(a,b) \in R^n$.

Demonstração:

Seja R uma endorrelação em um conjunto A e $a, b \in A$.

Seja P(n) a afirmação existe um caminho de comprimento n de a para b em R se e somente se $(a,b) \in R^n$.

Vamos provar por indução matemática em n.

Caracterização de caminhos em relações

Teorema 13.1: Seja R uma endorrelação em um conjunto A, a, $b \in A$ e n um inteiro positivo. Existe um caminho de comprimento n de a para b em R se e somente se $(a, b) \in R^n$.

Demonstração:

Seja R uma endorrelação em um conjunto A e $a, b \in A$.

Seja P(n) a afirmação existe um caminho de comprimento n de a para b em R se e somente se $(a,b) \in R^n$.

Vamos provar por indução matemática em n.

Caso Base: n = 1. Por definição, existe um caminho de a para b em R de comprimento igual a 1 se e somente se $(a, b) \in R$.

Portanto, P(1) é verdadeira. Isso completa o caso base.

Lembrete: $P(n) = \text{existe um caminho de comprimento } n \text{ de } a \text{ para } b \text{ em } R \text{ se e somente se } (a, b) \in R^n.$

Passo Indutivo: Suponha que o teorema é verdadeiro para um inteiro positivo *n* arbitrário (**Hipótese de Indução**).

Lembrete: $P(n) = \text{existe um caminho de comprimento } n \text{ de } a \text{ para } b \text{ em } R \text{ se e somente se } (a, b) \in R^n.$

Passo Indutivo: Suponha que o teorema é verdadeiro para um inteiro positivo n arbitrário (**Hipótese de Indução**).

A seguir, provaremos que o teorema é verdadeiro para o inteiro n + 1.

Lembrete: $P(n) = \text{existe um caminho de comprimento } n \text{ de } a \text{ para } b \text{ em } R \text{ se e somente se } (a, b) \in R^n.$

Passo Indutivo: Suponha que o teorema é verdadeiro para um inteiro positivo n arbitrário (**Hipótese de Indução**).

A seguir, provaremos que o teorema é verdadeiro para o inteiro n + 1.

Existe um caminho de comprimento n+1 de a para b se e somente se existe um elemento $c \in A$ tal que $(a, c) \in R$ e existe um caminho de comprimento n de c para b em R,

Lembrete: $P(n) = \text{existe um caminho de comprimento } n \text{ de } a \text{ para } b \text{ em } R \text{ se e somente se } (a, b) \in R^n.$

Passo Indutivo: Suponha que o teorema é verdadeiro para um inteiro positivo n arbitrário (**Hipótese de Indução**).

A seguir, provaremos que o teorema é verdadeiro para o inteiro n + 1.

Existe um caminho de comprimento n+1 de a para b se e somente se existe um elemento $c \in A$ tal que $(a,c) \in R$ e existe um caminho de comprimento n de c para b em R, que, pela HI, equivale a $(c,b) \in R^n$.

Lembrete: $P(n) = \text{existe um caminho de comprimento } n \text{ de } a \text{ para } b \text{ em } R \text{ se e somente se } (a, b) \in R^n.$

Passo Indutivo: Suponha que o teorema é verdadeiro para um inteiro positivo n arbitrário (**Hipótese de Indução**).

A seguir, provaremos que o teorema é verdadeiro para o inteiro n+1.

Existe um caminho de comprimento n+1 de a para b se e somente se existe um elemento $c \in A$ tal que $(a,c) \in R$ e existe um caminho de comprimento n de c para b em R, que, pela HI, equivale a $(c,b) \in R^n$.

Logo, pela HI, existe um caminho de comprimento n+1 de a para b se e somente se existe um elemento $c \in A$ tal que $(a, c) \in R$ e $(c, b) \in R^n$.

Lembrete: $P(n) = \text{existe um caminho de comprimento } n \text{ de } a \text{ para } b \text{ em } R \text{ se e somente se } (a, b) \in R^n.$

Passo Indutivo: Suponha que o teorema é verdadeiro para um inteiro positivo n arbitrário (**Hipótese de Indução**).

A seguir, provaremos que o teorema é verdadeiro para o inteiro n + 1.

Existe um caminho de comprimento n+1 de a para b se e somente se existe um elemento $c \in A$ tal que $(a,c) \in R$ e existe um caminho de comprimento n de c para b em R, que, pela HI, equivale a $(c,b) \in R^n$.

Logo, pela HI, existe um caminho de comprimento n+1 de a para b se e somente se existe um elemento $c \in A$ tal que $(a, c) \in R$ e $(c, b) \in R^n$.

Tal elemento c existe se e somente $(a, b) \in \mathbb{R}^{n+1}$.

Lembrete: $P(n) = \text{existe um caminho de comprimento } n \text{ de } a \text{ para } b \text{ em } R \text{ se e somente se } (a, b) \in R^n.$

Passo Indutivo: Suponha que o teorema é verdadeiro para um inteiro positivo n arbitrário (**Hipótese de Indução**).

A seguir, provaremos que o teorema é verdadeiro para o inteiro n+1.

Existe um caminho de comprimento n+1 de a para b se e somente se existe um elemento $c \in A$ tal que $(a,c) \in R$ e existe um caminho de comprimento n de c para b em R, que, pela HI, equivale a $(c,b) \in R^n$.

Logo, pela HI, existe um caminho de comprimento n+1 de a para b se e somente se existe um elemento $c \in A$ tal que $(a, c) \in R$ e $(c, b) \in R^n$.

Tal elemento c existe se e somente $(a,b) \in R^{n+1}$.

Portanto, existe um caminho de comprimento n+1 de a para b se e somente se $(a,b) \in R^{n+1}$. Isso completa a prova.

Vamos mostrar que encontrar um fecho transitivo de uma relação é equivalente a determinar quais pares de vértices no grafo direcionado correspondente estão conectados por um caminho.

Vamos mostrar que encontrar um fecho transitivo de uma relação é equivalente a determinar quais pares de vértices no grafo direcionado correspondente estão conectados por um caminho.

Para isso, precisaremos da seguinte definição:

Definição: Seja R uma endorrelação em um conjunto A. A relação de conectividade R^* consiste nos pares de (a, b), tal que existe um caminho de comprimento pelo menos um, de a para b em R.

Vamos mostrar que encontrar um fecho transitivo de uma relação é equivalente a determinar quais pares de vértices no grafo direcionado correspondente estão conectados por um caminho.

Para isso, precisaremos da seguinte definição:

Definição: Seja R uma endorrelação em um conjunto A. A relação de conectividade R^* consiste nos pares de (a,b), tal que existe um caminho de comprimento pelo menos um, de a para b em R.

Como R^n consiste nos pares (a, b), tal que existe um caminho de comprimento n de a para b, segue que R^* é a união de todos os R^n :

$$R^* = \bigcup_{n=1}^{\infty} R^n$$

Exemplo:

Seja A o conjunto de todas as pessoas do mundo.

A endorrelação $R: A \rightarrow A$ contém o par (a, b) se e somente se a conhece b.

- O que é R^n quando $n \ge 1$?
- O que é *R**?

Exemplo:

Seja A o conjunto de todas as pessoas do mundo.

A endorrelação $R: A \rightarrow A$ contém o par (a, b) se e somente se a conhece b.

- O que é R^n quando $n \ge 1$?
- O que é *R**?

Resposta: R^n consiste em todos os pares (a, b), tal que existam pessoas $x_1, x_2, \ldots, x_{n-1}$, tal que a conhece x_1, x_1 conhece x_2, \ldots , e x_{n-1} conhece b.

Exemplo:

Seja A o conjunto de todas as pessoas do mundo.

A endorrelação $R: A \rightarrow A$ contém o par (a, b) se e somente se a conhece b.

- O que é R^n quando $n \ge 1$?
- O que é *R**?

Resposta: R^n consiste em todos os pares (a, b), tal que existam pessoas $x_1, x_2, \ldots, x_{n-1}$, tal que a conhece x_1, x_1 conhece x_2, \ldots , e x_{n-1} conhece b.

A relação R^* contém (a,b) se existir uma sequência de pessoas, começando com a e terminando com b, tal que cada pessoa na sequência conhece a pessoa seguinte na sequência.

Exemplo:

Seja A o conjunto de todas as pessoas do mundo.

A endorrelação $R: A \to A$ contém o par (a, b) se e somente se a conhece b.

- O que é R^n quando $n \ge 1$?
- O que é *R**?

Resposta: R^n consiste em todos os pares (a, b), tal que existam pessoas $x_1, x_2, \ldots, x_{n-1}$, tal que a conhece x_1, x_1 conhece x_2, \ldots, x_{n-1} conhece $x_n, x_n \in x_n$ conhece $x_n \in x_n$ conhe

A relação R^* contém (a, b) se existir uma sequência de pessoas, começando com a e terminando com b, tal que cada pessoa na sequência conhece a pessoa seguinte na sequência.

Teoria dos seis graus de separação [Stanley Milgram, 1967]: No mundo, são necessários no máximo seis laços de amizade para que duas pessoas quaisquer estejam ligadas.

O teorema a seguir mostra que o fecho transitivo de uma relação e a relação de conectividade associada são iguais:

Teorema 13.2: O fecho transitivo de uma relação R é igual à relação de conectividade R^* .

Atenção: Demonstração no livro. Teorema 2 da seção.

O teorema a seguir mostra que o fecho transitivo de uma relação e a relação de conectividade associada são iguais:

Teorema 13.2: O fecho transitivo de uma relação R é igual à relação de conectividade R^* .

Atenção: Demonstração no livro. Teorema 2 da seção.

 Agora sabemos que o fecho transitivo e a relação de conectividade são iguais. Mas como computar esta relação?

O teorema a seguir mostra que o fecho transitivo de uma relação e a relação de conectividade associada são iguais:

Teorema 13.2: O fecho transitivo de uma relação R é igual à relação de conectividade R^* .

Atenção: Demonstração no livro. Teorema 2 da seção.

- Agora sabemos que o fecho transitivo e a relação de conectividade são iguais. Mas como computar esta relação?
- Dado um grafo direcionado finito G associado a uma relação R, não precisamos examinar caminhos arbitrariamente longos para determinar se existe um caminho entre dois de seus vértices.

O teorema a seguir mostra que o fecho transitivo de uma relação e a relação de conectividade associada são iguais:

Teorema 13.2: O fecho transitivo de uma relação R é igual à relação de conectividade R^* .

Atenção: Demonstração no livro. Teorema 2 da seção.

- Agora sabemos que o fecho transitivo e a relação de conectividade são iguais. Mas como computar esta relação?
- Dado um grafo direcionado finito G associado a uma relação R, não precisamos examinar caminhos arbitrariamente longos para determinar se existe um caminho entre dois de seus vértices.
- O próximo teorema mostrará que basta examinar caminhos que não contenham mais do que n arestas, em que n é o número de vértices do grafo.

Princípio da Casa dos Pombos

Vamos precisar do seguinte princípio na prova do próximo resultado:

Princípio da Casa dos Pombos: Seja k um inteiro positivo. Se k+1 ou mais objetos são guardados em k caixas, então existe pelo menos uma caixa contendo dois ou mais objetos.

Três tentativas de se colocar 13 pombos em 12 caixas

Teorema 13.3: Seja A um conjunto com n elementos e R uma relação em A. Sejam $a, b \in R$.

- Se existir um caminho de comprimento pelo menos um em R de a para b, então existirá um tal caminho com comprimento que não exceda n.
- (II) Se $a \neq b$ e existir um caminho de comprimento pelo menos um em R de a para b, então existirá um tal caminho com comprimento que não exceda n-1.

Seja A um conjunto com n elementos e R uma relação em A. Sejam $a,b\in R$.

Seja A um conjunto com n elementos e R uma relação em A. Sejam $a,b\in R$.

Suponha que existe um caminho de a para b em R. **Pegue o menor caminho possível** e seja m o comprimento desse caminho. Suponha que $x_0, x_1, x_2, \ldots, x_{m-1}, x_m$ seja esse caminho, em que $x_0 = a$ e $x_m = b$. Vamos dividir a prova em dois casos: a = b e $a \neq b$.

Seja A um conjunto com n elementos e R uma relação em A. Sejam $a,b\in R$.

Suponha que existe um caminho de a para b em R. **Pegue o menor caminho possível** e seja m o comprimento desse caminho. Suponha que $x_0, x_1, x_2, \ldots, x_{m-1}, x_m$ seja esse caminho, em que $x_0 = a$ e $x_m = b$. Vamos dividir a prova em dois casos: a = b e $a \neq b$.

Caso 1: a = b. Se $m \le n$ não há o que provar.

Seja A um conjunto com n elementos e R uma relação em A. Sejam $a,b\in R$.

Suponha que existe um caminho de a para b em R. **Pegue o menor caminho possível** e seja m o comprimento desse caminho. Suponha que $x_0, x_1, x_2, \ldots, x_{m-1}, x_m$ seja esse caminho, em que $x_0 = a$ e $x_m = b$. Vamos dividir a prova em dois casos: a = b e $a \neq b$.

Caso 1: a = b. Se $m \le n$ não há o que provar. Então, suponha, **por absurdo**, que m > n. Ou seja, m > n + 1.

Seja A um conjunto com n elementos e R uma relação em A. Sejam $a,b\in R$.

Suponha que existe um caminho de a para b em R. **Pegue o menor caminho possível** e seja m o comprimento desse caminho. Suponha que $x_0, x_1, x_2, \ldots, x_{m-1}, x_m$ seja esse caminho, em que $x_0 = a$ e $x_m = b$. Vamos dividir a prova em dois casos: a = b e $a \neq b$.

Caso 1: a = b. Se $m \le n$ não há o que provar.

Então, suponha, **por absurdo**, que m > n. Ou seja, $m \ge n + 1$.

Pelo Princípio da Casa dos Pombos, como existem n vértices em A, entre os m vértices $x_0, x_1, \ldots, x_{m-1}$, pelo menos dois são iguais.

Seja $x_i = x_j$ com $0 \le i < j \le m-1$. Então, o caminho contém um circuito de x_i para si mesmo. Esse circuito pode ser removido do caminho de a para b, deixando um caminho de a para b com comprimento menor. Esse caminho é

$$x_0, x_1, \dots, x_i, x_{j+1}, \dots, x_{m-1}, x_m$$

Seja $x_i = x_j$ com $0 \le i < j \le m-1$. Então, o caminho contém um circuito de x_i para si mesmo. Esse circuito pode ser removido do caminho de a para b, deixando um caminho de a para b com comprimento menor. Esse caminho é

$$x_0, x_1, \ldots, x_i, x_{j+1}, \ldots, x_{m-1}, x_m$$

Logo, o caminho resultante possui comprimento menor que o caminho original. Contradição! Pois o caminho original já era o menor de todos.

Seja $x_i = x_j$ com $0 \le i < j \le m-1$. Então, o caminho contém um circuito de x_i para si mesmo. Esse circuito pode ser removido do caminho de a para b, deixando um caminho de a para b com comprimento menor. Esse caminho é

$$x_0, x_1, \ldots, x_i, x_{i+1}, \ldots, x_{m-1}, x_m$$

Logo, o caminho resultante possui comprimento menor que o caminho original. Contradição! Pois o caminho original já era o menor de todos.

Caso 2: $a \neq b$. Exercício para casa.

Consequência do Teorema 13.3

Corolário 13.4: Seja A um conjunto com n elementos e R uma endorrelação em A. O fecho transitivo R^* da relação R é a união

$$R^* = R \cup R^2 \cup R^3 \cup \cdots \cup R^n$$

Demonstração.

Seja A um conjunto com n elementos e R uma endorrelação em A.

Seja R^* o fecho transitivo da endorrelação $R \colon A \to A$.

Pelo Teorema 13.2, existe um caminho em R^* entre dois vértices a e b se e somente se existe um caminho entre esses dois vértices em R^i , para algum

inteiro positivo *i*. Ou seja, $R^* = \bigcup_{i=1}^{3} R^i$.

O Teorema 13.3 afirma que basta procurar por i no intervalo de valores

$$1, 2, \dots, n$$
. Logo, $R^* = \bigcup_{i=1}^n R^i$.

L

FIM