Separating classes of functions

May 7, 2024

Our goal is to show that any algebra of functions (defined on a Polish space) which separates points is separating.

Remark 0.1 (Notation). We will write (E, r) for some extended pseudo-metric space, $\mathcal{P}(E)$ for the set of probability measures on the Borel σ -algebra on E, $\mathbb{k} \in \{\mathbb{R}, \mathbb{C}\}$, and $\mathcal{C}_b(E, \mathbb{k})$ the set of \mathbb{k} -valued bounded continuous functions on E. For some $\mathbf{P} \in \mathcal{P}(E)$ and $f \in \mathcal{C}_b(E, \mathbb{k})$, we let $\mathbf{P}[f] := \int f(x)\mathbf{P}(dx) \in \mathbb{k}$ be the expectation.

1 Bounded pointwise convergence

The following is a simple consequence of dominated convergence, and often needed in probability theory.

Definition 1.1. Let E be some set and $f, f_1, f_2, ...$: $E \to \mathbb{k}$. We say that $f_1, f_2, ...$: converges to f boundedly pointwise if $f_n \xrightarrow{n \to \infty} f$ pointwise and $\sup_n ||f_n|| < \infty$. We write $f_n \xrightarrow{n \to \infty}_{bp} f$

lemma:bp

Lemma 1.2. Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability (or finite) measure space, and $X, X_1, X_2, \ldots : \Omega \to \mathbb{k}$ such that $X_n \xrightarrow{n \to \infty}_{bp} X$. Then, $\mathbf{E}[X_n] \xrightarrow{n \to \infty} \mathbf{E}[X]$.

Proof. Note that the constant function $x \mapsto \sup_n ||f_n||$ is integrable (since **P** is finite), so the result follows from dominated convergence. \square

In lean this does not exist yet, although dominated convergence exists.

How can one formulate this kind of convergence using filters?

Task: ??

2 Almost sure convergence and convergence in probability

Definition 2.1. Let $X, X_1, X_2, ..., all E$ -valued random variables.

- 1. We say that $X_n \xrightarrow{n \to \infty} X$ almost everywhere if $\mathbf{P}(\lim_{n \to \infty} X_n = X) = 1$. We also write $X_n \xrightarrow{n \to \infty}_{ae} X$.
- 2. We say that $X_n \xrightarrow{n\to\infty} X$ in probability

The two notions here are denoted $\forall^m (x : \alpha) \partial P$, Filter.Tendsto (**fun** n => X n x) Filter.atTop (nhds (X x)) and MeasureTheory.TendstoInMeasure, respectively.

(or in measure) if, for all $\varepsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}(r(X_n,X)>\varepsilon)=0.$$

l:aep

This MeasureTheory. called $tendstoInMeasure_of_tendsto_ae \ in \ mathlib.$

l:puni

Lemma 2.3 (Uniqueness, limit in probability). Let X, Y, X_1, X_2, \dots be E-valued random variables with $X_n \xrightarrow{n \to \infty}_p X$ and $X_n \xrightarrow{n \to \infty}_p Y$. Then, X = Y, almost surely.

Proof. We write, using monotone convergence and Lemma 2.2

$$\begin{split} \mathbf{P}(X \neq Y) &= \lim_{\varepsilon \downarrow 0} \mathbf{P}(r(X,Y) > \varepsilon) \\ &\leq \lim_{\varepsilon \downarrow 0} \lim_{n \to \infty} \mathbf{P}(r(X,X_n) > \varepsilon/2) \\ &+ \mathbf{P}(r(Y,X_n) > \varepsilon/2) = 0. \end{split}$$

This does not exist in mathlib yet.

3 Sup and sum

l:supsum

Lemma 3.1. Let I be some (finite or infinite) Does this exist in mathlib? set and $(X_t)_{t\in I}$ be a family of random variables with values in $[0,\infty)$. Then, $\sup_{t\in I} X_t \leq$ $\sum_{t\in I} X_t$.

Separating algebras and characteristic functions

Definition 4.1 (Separating class of functions). Let $\mathcal{M} \subseteq \mathcal{C}_b(E, \mathbb{k})$.

1. If, for all $x, y \in E$ with $x \neq y$, there is $f \in \mathcal{M}$ with $f(x) \neq f(y)$, we say that \mathcal{M} separates points.

2. If, for all $\mathbf{P}, \mathbf{Q} \in \mathcal{P}(E)$,

$$\mathbf{P} = \mathbf{Q}$$
 iff $\mathbf{P}[f] = \mathbf{Q}[f]$ for all $f \in \mathcal{M}$,

we say that \mathcal{M} is separating in $\mathcal{P}(E)$.

3. If (i) $1 \in \mathcal{M}$ and (ii) if \mathcal{M} is closed under sums and products, then we call \mathcal{M} a (sub-)algebra. If $\mathbb{k} = \mathbb{C}$, and (iii) if \mathcal{M} is closed under complex conjugation, we call \mathcal{M} a star-(sub-)algebra.

In mathlib, 1. and 3. of the above definition are already implemented:

structure Subalgebra (R : Type u) (A : Type v) [CommSemiring R] [S [Algebra R A] extends Subsemiring: Type v

abbrev Subalgebra. Separates Points $\{\alpha : Type \ u \ 1\}$ [Topological Space {R: Type u 2} [CommSemiring R] {A: Type u 3} [TopologicalSpace [Semiring A] [Algebra R A] [TopologicalSemiring A] (s: Subalgebra R : Prop

The latter is an extension of Set.SeparatesPoints, which works on any set of functions.

For the first result, we already need that (E, r)has a metric structure.

This is now implemented.

I:unique

T:wc3

Lemma 4.2. $\mathcal{M} := \mathcal{C}_b(E, \mathbb{k})$ is separating.

Proof. We restrict ourselves to $\mathbb{k} = \mathbb{R}$, since the result for $\mathbb{k} = \mathbb{C}$ follows by only using functions with vanishing imaginary part. Let $P, Q \in$ $\mathcal{P}(E)$. We will prove that $\mathbf{P}(A) = \mathbf{Q}(A)$ for all A closed. Since the set of closed sets is a π -system generating the Borel- σ -algebra, this suffices for $\mathbf{P} = \mathbf{Q}$. So, let A be closed and $g = 1_A$ be the indicator function. Let $g_n(x) := (1 - nr(A, x))^+$ (where $r(A, y) := \inf_{y \in A} r(y, x)$) and note that $g_n(x) \xrightarrow{n \to \infty} 1_A(x)$. Then, we have by dominated convergence

$$\mathbf{P}(A) = \lim_{n \to \infty} \mathbf{P}[g_n] = \lim_{n \to \infty} \mathbf{Q}[g_n] = \mathbf{Q}(A),$$

and we are done.

We will use the Stone-Weierstrass Theorem below.

We also need (as proved in the last project) that compact sets are measurable.

The proof of the following result follows [EK86. Theorem 3.4.5].

Note that this requires E to be compact.

theorem ContinuousMap.starSubalgebra topologicalClosure eq top $\{k : Type u_2\} \{X : Type u_1\} [IsROrC k] [TopologicalSpace X] [Compare the compared of the c$ (A : StarSubalgebra \mathbb{K} C(X, \mathbb{K})) (hA : Subalgebra.SeparatesPoints A.toS StarSubalgebra.topologicalClosure A = T

theorem innerRegular_isCompact_isClosed_measurableSet_of_compl [PseudoEMetricSpace α] [CompleteSpace α] [SecondCountableTopological PseudoEMetricSpace α] $(P : Measure \alpha) [IsFiniteMeasure P] :$ P.InnerRegular (**fun** s => IsCompact s Λ IsClosed s) MeasurableSet

This does not exist in mathlib yet.

Theorem 1 (Algebras separating points and separating algebras). Let (E,r) be a complete and separable extended

pseudo-metric space, and $\mathcal{M} \subseteq \mathcal{C}_b(E, \mathbb{k})$ be a star-sub-algebra that separates points. Then, \mathcal{M} is separating.

Proof. Let $\mathbf{P}, \mathbf{Q} \in \mathcal{P}(E)$, $\varepsilon > 0$ and K compact, such that $\mathbf{P}(K) > 1 - \varepsilon$, $\mathbf{Q}(K) > 1 - \varepsilon$, and $g \in$ $C_b(E, \mathbb{k})$. According to the Stone-Weierstrass Theorem, there is $(g_n)_{n=1,2,...}$ in \mathcal{M} with

$$\sup_{x \in K} |g_n(x) - g(x)| \xrightarrow{n \to \infty} 0. \tag{1}$$
 [eq:wc9]

So, (note that $C := \sup_{x \ge 0} xe^{-x^2} < \infty$)

$$\begin{split} \left|\mathbf{P}[ge^{-\varepsilon g^2}] - \mathbf{Q}[ge^{-\varepsilon g^2}]\right| &\leq \left|\mathbf{P}[ge^{-\varepsilon g^2}] - \mathbf{P}[ge^{-\varepsilon g^2};K]\right| \\ &+ \left|\mathbf{P}[ge^{-\varepsilon g^2};K] - \mathbf{P}[g_ne^{-\varepsilon g_n^2};K]\right| \\ &+ \left|\mathbf{P}[g_ne^{-\varepsilon g_n^2};K] - \mathbf{P}[g_ne^{-\varepsilon g_n^2}]\right| \\ &+ \left|\mathbf{P}[g_ne^{-\varepsilon g_n^2}] - \mathbf{Q}[g_ne^{-\varepsilon g_n^2}]\right| \\ &+ \left|\mathbf{Q}[g_ne^{-\varepsilon g_n^2}] - \mathbf{Q}[g_ne^{-\varepsilon g_n^2};K]\right| \\ &+ \left|\mathbf{Q}[g_ne^{-\varepsilon g_n^2}] - \mathbf{Q}[ge^{-\varepsilon g^2};K]\right| \\ &+ \left|\mathbf{Q}[ge^{-\varepsilon g^2};K] - \mathbf{Q}[ge^{-\varepsilon g^2}]\right| \end{split}$$

We bound the first term by

$$\left|\mathbf{P}[ge^{-\varepsilon g^2}] - \mathbf{P}[ge^{-\varepsilon g^2};K]\right| \leq \frac{C}{\sqrt{\varepsilon}}\mathbf{P}(K^c) \leq C\sqrt{\varepsilon},$$

and analogously for the third, fifth and last. The second and second to last vanish for $n \to \infty$ due to (1). Since \mathcal{M} is an algebra, we can approximate, using dominated convergence,

$$\mathbf{P}[g_n e^{-\varepsilon g_n^2}] = \lim_{m \to \infty} \mathbf{P}[\underbrace{g_n \left(1 - \frac{\varepsilon g_n^2}{m}\right)^m}_{\in \mathcal{M}}] = \lim_{m \to \infty} \mathbf{Q}[\underbrace{g_n \left(1 - \frac{\varepsilon g_n^2}{m}\right)^m}_{\in \mathcal{M}}] = \mathbf{Q}[g_n e^{-\varepsilon g_n^2}],$$

so the fourth term vanishes for $n \to \infty$ as well. Concluding,

$$\left|\mathbf{P}[g] - \mathbf{Q}[g]\right| = \lim_{\varepsilon \to 0} \left|\mathbf{P}[ge^{-\varepsilon g^2}] - \mathbf{Q}[ge^{-\varepsilon g^2}]\right| \leq 4C \lim_{\varepsilon \to 0} \sqrt{\varepsilon} = 0.$$

Since g was arbitrary and $C_b(E, \mathbb{k})$ is separating by Lemma 4.2, we find $\mathbf{P} = \mathbf{Q}$.

We now come to characteristic functions and
This does not exist in mathlib yet. Laplace transforms.

Pr:charl Proposition 4.3 (Charakteristic functions determine distributions uniquely).

A probability measure $\mathbf{P} \in \mathcal{P}(\mathbb{R}^d)$ is uniquely given by its characteristic function.

In other words, if $\mathbf{P}, \mathbf{Q} \in \mathcal{P}(\mathbb{R}^d)$ are such that $\int e^{itx} \mathbf{P}(dx) = \int e^{itx} \mathbf{Q}(dx)$ for all $t \in \mathbb{R}^d$. Then, $\mathbf{P} = \mathbf{Q}$.

Proof. The set

$$\mathcal{M} := \left\{ x \mapsto \sum_{k=1}^{n} a_k e^{it_k x}; n \in \mathbb{N}, a_1, ..., a_n \in \mathcal{C}, t_1, ..., 1_n \in \mathbb{R}^d \right\}$$

separates points in \mathbb{R}^d . Since $\mathcal{M} \subseteq \mathcal{C}_b(\mathbb{R}^d, \mathbb{k})$ contains 1, is closed under sums and products, and closed under complex conjugation, it is a star-subalgebra of $\mathcal{C}_b(E, \mathbb{C})$. So, the assertion directly follows from Theorem 1.

References

- [EK86] S.N. Ethier and T.G. Kurtz. Markov Processes. Characterization and Convergence. John Wiley, New York, 1986.
- [KS91] Ioannis Karatzas and Steven Shreve. Brownian motion and stochastic calculus, volume 113. Springer Science & Business Media, 1991.