Nome:	Nota:

Leia com atenção as instruções antes de começar a prova:

- A prova deve ser limpa e organizada;
- A prova é individual e sem consulta;
- A interpretação das questões faz parte da prova;
- Questões com resultado final correto, mas sem desenvolvimento coerente não terão valor;
- A pontuação de cada questão está indicada na respectiva questão;
- Identifique o número das questões nas respostas;
- Escreva seu nome em todas as folhas entregues;
- Após a resolução da prova, você deverá escanear a solução da prova (ou tirar uma foto de boa qualidade) e enviar no *classroom* da disciplina. Os formatos permitidos são PNG, JPG e PDF (preferencialmente).
- 1. (3,0) No circuito abaixo, determine o menor valor de tensão de entrada E para que todos os diodos $(D_1, D_2 \in D_3)$ estejam em condução. Calcule a corrente em cada resistência nessa condição. Considere:
 - diodo D_1 é de silício, ou seja, tem tensão direta de 0,7 V;
 - diodo D_2 tem tensão direta de 2 V;
 - diodo D_3 tem tensão direta de 1 V e tensão zener de 5 V;
 - $R_1 = R_2 = R_3 = 1k\Omega$.

2. (2,0) Calcule a tensão média e a ondulação (ripple) de tensão na carga (v_o) do circuito abaixo. Considere que a tensão de entrada v_{in} é senoidal com valor eficaz $V_{RMS}=12$ V e frequência de 60Hz, $R_o=100\Omega$, $C=330\mu F$ e o diodo é ideal.

3. (2,0) Para que o circuito abaixo opere como regulador de tensão, determine os valores mínimos e máximos para a resistência de carga R_o . Os diodos são de silício. $E=12V,\,V_Z=6,2V,\,I_{Zmax}=80$ mA e $R=59\Omega$.

- 4. (3,0) Esboce a forma de onda da tensão de saída (v_o) do circuito abaixo indicando os valores de tensão. Considere que a tensão de entrada v_{in} é senoidal com amplitude $V_{pico}=20$ V e frequência de 60 Hz, $R_1=1k\Omega$ e que os diodos zener são de silício com $V_Z=5,1V$.
 - a) (1,5) O resistor R_o não está conectado ao circuito
 - b) (1,5) O resistor $R_o = 1k\Omega$ está conectado ao circuito

