| Mark 1982 | 1 June 1981 | 16 COR 1983 | 16 SE 1983 | 16 SE

(43) International Publication Date 1 August 2002 (01.08.2002)

WO 02/059260 A2

(51)	International	Patent	Classification':	CI2N
(21)	International	Applic	stice Number:	PCT/US01/42950
(22)	International	Filing		2001 (16.11.2001)

(25) Filing Longuage

(26) Publication Language (30) Prierity Data: 09/714.936 17 No. reinber 2000 (17,11.2000) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application; 09/714,936 (CIP) 17 November 2000 (17,11,2000) ()S Filed on

(71) Applicant (for all designated States except US): HYSEQ, INC. [US/US]: 670 Almanor Avenue, Sunnyvale, CA

A2

059260

Internation and Conference and Confe

Ranwick Court, San Jose, CA 95118 (US), WEHRMAN, Tom (USAIS); CYSR Mol Pharm 3310, 269 W. Campus, Driva, Stanford, CA 94305 (US). DRMANAC, Radoja, T. [USAIS]: 830 East Greenwich Phace, Pulo Aho, CA

(74) Agent: ELRIFI, Iver, R.; Minta, Lavin, Cohn, Fortis, Glovsky and Popeo PC, One Financial Center, Boston, MA 02111 (US).

al search report and to be republished

and other abbreviations, refer to the "Guid-t and Abbreviations" appearing at the begin-issue of the PCT Gazette.

(\$4) Title: NOVEL NUCLEIC ACIDS AND POLYPEPTIDES (57) Abstract; The pre

one or more epitopes present on such polypeptides, as well as hybridomas producing such entibodies

The compositions of the present invention additionally include vectors, including expression vectors, containing the polynucleotides of the invention, cells genetically engineered to contain such polymucleotides and cells genetically engineered to express such polynucleotides.

The present invention relates to a collection or library of at least one novel nucleic acid equence assembled from expressed sequence tags (ESTs) isolated mainly by sequencing by hybridization (SBH), and in some cases, sequences obtained from one or more public databate The invention relates also to the proteins encoded by such polynucleotides, along with therapeutic, diagnostic and research utilities for these polynucleotides and proteins. These nucleic acid sequences are designated as SEQ ID NO: 1-341. The polypeptides sequences are designated SEQ ID NO: 342-682. The nucleic acids and polypeptides are provided in the Sequence Listing. In the nucleic acids provided in the Sequence Listing, A is adenosine; C is

cytosine; G is guanine; T is thymine; and N is unknown or any of the four bases.

The nucleic soid sequences of the present invention also include, nucleic soid sequences that hybridize to the complement of SEO ID NO: 1-341 under stringent hybridization conditions; nucleic acid sequences which are allelic variants or species homologues of any of the nucleic acid sequences recited above, or nucleic acid sequences that encode a pentide comprising a specific domain or truncation of the peptides encoded by SEQ ID NO: 1-341. A polymicleotide comprising a nucleotide sequence having at least 90% identity to an identifying sequence of SEQ ID NO: 1-341 or a degenerate varient or fragment thereof. The identifying sequence can be 100 base pairs in length.

The nucleic acid sequences of the present invention also include the sequence 25 information from the nucleic acid sequences of SEQ ID NO: 1-341. The sequence information can be a segment of any one of SEO ID NO: 1-341 that uniquely identifies or represents the securence information of SEO ID NO: 1-341

A collection as used in this application can be a collection of only one polynucleotide. The collection of sequence information or identifying information of each sequence can be provided on a nucleic acid array. In one embodiment, segments of sequence information are provided on a nucleic acid array to detect the polynucleotide that contains the segment. The array can be designed to detect full-match or mismatch to the polynucleotide that contains the segment. The collection can also be provided in a computer-readable format.

WO 02/059264

NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

1. TECHNICAL FIELD

The present invention provides novel polynucleotides and proteins encoded by such polynucleotides, along with uses for these polynucleotides and proteins, for example in therapeutic, diagnostic and research methods,

2. BACKGROUND

Technology aimed at the discovery of protein factors (including e.g., cytokines, such 10 as lymphokines, interferons, circulating soluble factors, chemokines, and interleukins) has matured rapidly over the past decade. The now routine hybridization cloning and expression cloning techniques clone novel polynucleotides "directly" in the sense that they rely on information directly related to the discovered protein (i.e., partial DNA/amino acid sequence of the protein in the case of hybridization cloning; activity of the protein in the case of 15 expression cloning). More recent "indirect" cloning techniques such as signal sequence cloning, which isolates DNA sequences based on the presence of a now well-recognized secretory leader sequence motif, as well as various PCR-based or low stringency hybridization-based cloning techniques, have advanced the state of the art by making available large numbers of DNA/amino acid sequences for proteins that are known to have 20 biological activity, for example, by virtue of their secreted nature in the case of leader sequence cloning, by virtue of their cell or tissue source in the case of PCR-based techniques, or by virtue of structural similarity to other genes of known biological activity. Identified polynucleotide and polypeptide sequences have numerous applications in,

for example, diagnostics, forensics, gene mapping; identification of mutations responsible for 25 genetic disorders or other traits, to assess biodiversity, and to produce many other types of data and products dependent on DNA and amino acid sequences.

3. SUMMARY OF THE INVENTION

The compositions of the present invention include novel isolated polypeptides, novel isolated polynucleotides encoding such polypeptides, including recombinant DNA molecules, cloned genes or degenerate variants thereof, especially naturally occurring variants such as allelic variants, antisense polynucleotide molecules, and antibodies that specifically recognize

WO 02/059260

This invention also includes the reverse or direct complement of any of the nucleic acid ences recited above; cloning or expression vectors containing the nucleic acid sequences; and host cells or organisms transformed with these expression vectors. Nucleic acid seque (or their reverse or direct complements) according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology, such as use as hybridization probes, use as primers for PCR, use in an array, use in computer-readable media. use in sequencing full-length genes, use for chromosome and gene mapping, use in the recombinant production of protein, and use in the generation of anti-sense DNA or RNA, their chemical analogs and the like.

In a preferred embodiment, the nucleic acid sequences of SEQ ID NO: 1-341 or novel segments or parts of the nucleic acids of the invention are used as primers in expression assays that are well known in the art. In a particularly preferred embodiment, the nucleic acid sequences of SEQ ID NO: 1-341 or novel segments or parts of the nucleic acids provided herein are used in diagnostics for identifying expressed genes or, as well known in the art and 15 exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The isolated polynucleotides of the invention include, but are not limited to, a polynucleotide comprising any one of the nucleotide sequences set forth in SEQ ID NO: 1-341; a polynucleotide comprising any of the full length protein coding sequences of SEQ ID NO: 1-20 341; and a polynucleotide comprising any of the nucleotide sequences of the mature protein coding acquences of SEQ ID NO: 1-341. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent hybridization conditions to (a) the complement of any one of the nucleotide sequences set forth in SEQ ID NO: 1-341; (b) a nucleotide sequence encoding any one of the amino acid sequences set forth in the Sequence Listing; (c) a polymocleotide which is an allelic variant of any polymocleotides recited above; (d) a polynucleotide which encodes a species homolog. (e.g. orthologs) of any of the proteins recited above; or (e) a polynucleotide that encodes a polyneratide comprising a specific domain or truncation of any of the polypeptides comprising an amino acid sequence set forth in the Sequence Listing.

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising any of the amino acid sequences set forth in SEQ ID NO: 342-682; or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides with biological activity that are encoded by (a) any of the polymelectides having a

nucleotide sequence set forth in SEQ ID NO: 1-341; or (b) polynucleotides that hybridize to the complement of the polynucleotides of (a) under stringent hybridization conditions. Biologically or humunologically active variants of any of the polypeptide sequences in the Sequence Listing, and "substantial equivalents" thereof (e.g., with at least about 65%, 70%, 75%, 80%, 85%, 90%, 95% or 99% amino acid sequence identity) that preferably retain biological activity are also contemplated. The polypeptides of the invention may be wholly or partially chemically synthesized but are preferably produced by recombinant means using the genetically engineered cells (e.g., host cells) of the invention.

The invention also provides compositions comprising a polypeptide of the invention.

Polypeptide compositions of the invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The invention also provides host cells transformed or transfected with a

The invention also relates to methods for producing a polypeptide of the invention
15 comprising growing a culture of the host cells of the invention in a suitable culture medium
under conditions permitting expression of the desired polypeptide, and purifying the
polypeptide from the culture or from the host cells. Preferred embodiments include those in
which the protein produced by such process is a meture form of the protein.

Polynucleotides according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology. These techniques include use as hybridization probes, use as oligomers, or primers, for PCR, use for chromosome and gene mapping, use in the recombinant production of protein, and use in generation of anti-sense DNA or RNA, their chemical analogs and the like. For example, when the expression of an mRNA is largely restricted to a particular cell or tissue type, polynucleotides of the invention can be used as hybridization probes to detect the presence of the particular cell or tissue mRNA in a sample using, a.g., in stin hybridization.

In other exemplary embodiments, the polynucleotides are used in diagnostics as expressed sequence tags for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The polypeptides according to the invention can be used in a variety of conventional procedures and methods that are currently applied to other proteins. For example, a polypeptide of the invention can be used to generate an antibody that specifically binds the

WO 02/059260 PCT/US01/42950

substances that interact with (e.g., bind to) the polypeptides of the invention. The invention provides a method for identifying a compound that binds to the polypeptides of the invention comprising contacting the compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and detecting the complex by detecting the reporter gene sequence expression such that if expression of the reporter gene is detected the compound the binds to a polypeptide of the invention is identified.

The methods of the invention also provide methods for treatment which involve the administration of the polymocleotides or polypeptides of the invention to individuals exhibiting symptoms or tendencies. In addition, the invention encompasses methods for treating diseases or disorders as recited herein comprising administering compounds and other substances that modulate the overall activity of the target gene products. Compounds and other substances can effect such modulation either on the level of target gene/protein expression or target protein activity.

The polypeptides of the present invention and the polypucleotides encoding them are also useful for the same functions known to one of skill in the art as the polypeptides and polymucleotides to which they have homology (set forth in Table 2); for which they have a signature region (as set forth in Table 3); or for which they have homology to a gene family (as set forth in Table 4). If no homology is set forth for a sequence, then the polypeptides and polymucleotides of the present invention are useful for a variety of applications, as described herein, including use in arrays for detection.

4. DETAILED DESCRIPTION OF THE INVENTION

4.1 DEFINITIONS

It must be noted that as used herein and in the appended claims, the singular forms "a", "an" and "the" include plural references unless the context clearly dictates otherwise.

The term "active" refers to those forms of the polypeptide which retain the biologic and/or immunologic activities of any naturally occurring polypeptide. According to the invention, the terms "biologically active" or "biological activity" refer to a protein or peptide having structural, regulatory or biochemical functions of a naturally occurring molecule.

Likewise "immunologically active" or "immunological activity" refers to the capability of the

polypeptide. Such antibodies, particularly monoclonal antibodies, are useful for detecting or quantitating the polypeptide in tissue. The polypeptides of the invention can also be used as molecular weight markers, and as a food supplement.

Methods are also provided for preventing, treating, or smellorating a medical 5 condition which comprises the step of administering to a mammalian subject a therapeutically effective amount of a composition comprising a polypeptide of the present invention and a pharmaceutically acceptable carrier.

In particular, the polypeptides and polynucleotides of the Invention can be utilized, for example, in methods for the prevention and/or treatment of disorders involving aberrant protein expression or biological activity.

The present invention further relates to methods for detecting the presence of the polynucleotides or polypeptides of the invention in a sample. Such methods can, for example, be utilized as part of prognostic and diagnostic evaluation of disorders as recited example, be utilized as part of prognostic and diagnostic evaluation of disorders as recited example, be utilized as part of prognostic and diagnostic evaluation of disorders as recited in the invention provides a method for detecting the polynucleotides of the invention in a sample, comprising contacting the sample with a compound that binds to and firms a complex with the polynucleotide of interest for a period sufficient to form the complex such that if a complex is detected, the polynucleotide of interest is detected. The invention also provides a method for detecting the polypeptides of the invention in a sample comprising contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex and detecting the formation of the complex such that if a complex is formed, the polypeptide is detected.

The invention also provides kits comprising polynucleotide probes and/or monoclonal
25 antibodies, and optionally quantitative standards, for carrying out methods of the invention.
Furthermore, the invention provides methods for evaluating the efficacy of drugs, and
monitoring the progress of patients, involved in clinical trials for the treatment of disorders as
recited above.

The invention also provides methods for the identification of compounds that modulate (i.e., increase or decrease) the expression or activity of the polynucleotides and/or polypeptides of the invention. Such methods can be utilized, for example, for the identification of compounds that can ameliorate symptoms of disorders as recited herein. Such methods can include, but are not limited to, assays for identifying compounds and other

WO 02/059260 PCT/US01/42950

natural, recombinant or synthetic polypeptide to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The term "activated cells" as used in this application are those cells which are engaged in extracellular or intracellular membrane trafficking, including the export of secretary or enzymatic molecules as part of a normal or disease process.

The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence 5'-AGT-3' binds to the complementary sequence 3'-TCA-5'. Complementarity between two single-stranded molecules may be "partial" such that only some of the nucleic acids bind or it may be "complete" such that total complementarity exists between the single stranded molecules. The degree of complementarity between the nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands.

The term "embryonic stem cells (ES)" refers to a cell that can give rise to many differentiated cell types in an embryo or an adult, including the germ cells. The term "germ 15 line stem cells (GSCs)" refers to stem cells derived from primordial stem cells that provide a steady and continuous source of germ cells for the production of gametes. The term "primordial germ cells (PGCs)" refers to a small population of cells set aside from other cell lineages particularly from the yolk sac, mesenteries, or goosdal ridges during embryogenesis that have the potential to differentiate into germ cells and other cells. PGCs are the source from which GSCs and ES cells are derived. The PGCs, the GSCs and the ES cells are capable of self-renewal. Thus these cells not only populate the germ line and give rise to a plurality of terminally differentiated cells that comprise the adult specialized organs, but are

The term "expression modulating fragment," EMP, means a series of nucleotides

which modulates the expression of an operably linked ORF or another EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (includie) elements). One class of EMFs are nucleic acid fragments which induce the expression of an operably linked ORF in response to a specific regulatory factor or physiological event.

The terms "nucleotide sequence" or "nucleic scid" or "polymeteotide" or
"oligoniculeotide" are used interchangeably and refer to a heteropolymer of nucleotides or the
sequence of these nucleotides. These phrases also refer to DNA or RNA of genomic or

synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisease stread, to peptide nucleic acid (PNA) or to any DNA-like or RNA-like material. In the sequences herein A is adenine, C is cytosine, T is thymine, G is guanine and N is A, C, G or T (U). It is contemplated that where the polynucleotide is RNA, the T (thymine) in the sequences provided herein is substituted with U (tursell). Generally, nucleic acid segments provided by this invention may be assembled from fragments of the genome and short oligonucleotide linkers, or from a series of oligonucleotides, or from individual nucleotides, to provide a synthetic nucleic acid which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon, or a cukaryotic gene.

The terms "oligonuclocitide fragment" or a "polynuclocitide fragment", "portion," or "segment" or "probe" or "primer" are used interchangeably and refer to a sequence of nucleotide residues which are at least about 5 nucleotides, more preferably at least about 7 nucleotides, more preferably at least about 11 nucleotides, more preferably at least about 11 nucleotides. The fragment is preferably less than about 500 nucleotides, preferably less than about 500 nucleotides, more preferably less than about 100 nucleotides, more preferably less than about 100 nucleotides and most preferably less than about 100 nucleotides and most preferably less than about 100 nucleotides more preferably from about 150 nucleotides, preferably from about 15 to about 50 nucleotides, more preferably from about 17 to 30 nucleotides and most preferably from about 17 to 30 nucleotides and most preferably from about 17 to 30 nucleotides and most preferably from about 17 to 30 nucleotides and most preferably from about 17 to 30 nucleotides. A fragment chain reaction (PCR), various hybridization procedures or nitroarray procedures to identify or amplify identical or related parts of mRNA or DNA molecules. A fragment or segment may uniquely identify each polymucleotide sequence of the present invention. Preferably the fragment comprises a sequence substantially similar to any one of SEQ ID NO: 1-341.

Probes may, for example, be used to determine whether specific mRNA molecules are present in a cell or tissue or to isolate similar nucleic acid sequences from chromosomal DNA as described by Walsh et al. (Walsh, P.S. et al., 1992, PCR Methods Appl 1:241-259). They may be labeled by nick translation, Klenow fill-in reaction, PCR, or other methods well known in the art. Probes of the present invention, their preparation and/or labeling are elaborated in Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY; or Ausubel, F.M. et al., 1989, Current Protocols in Molecular

WO 02/059260 PCT/US01/42950

The terms "polypeptide" or "peptide" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide or protein sequence or fragment thereof and to naturally occurring or synthetic molecules. A polypeptide "fragment," "portion," or "segment" is a stretch of amino acid residues of at least about 5 amino acids, preferably at least about 7 amino acids, more preferably at least about 9 amino acids more preferably at least about 17 or more amino acids. The peptide preferably is not greater than about 500 amino acids, more preferably less than 200 amino acids more preferably less than 150 amino acids and most preferably less than 100 amino acids. Preferably the peptide is from about 5 to about 200 amino acids. To be active, any polypeptide must have sufficient length to display 10 biolosical and/or immunological activity.

The term "naturally occurring polypeptide" refers to polypeptides produced by cells that have not been genetically engineered and specifically contemplates various polypeptides arising from post-translational modifications of the polypeptide including, but not limited to, acetytation, curboxylation, gbycoxylation, phosphorylation, linidation and acytation.

The term "translated protein coding portion" means a sequence which encodes for the full length protein which may include any leader sequence or any processing sequence.

The term "mature protein coding sequence" means a sequence which encodes a peptide or protein without a signal or leader sequence. The "mature protein portion" means that portion of the protein which does not include a signal or leader sequence. The peptide may have been produced by processing in the cell which removes any leader/signal sequence. The mature protein portion may or may not include an initial methionine residue. The methionine residue may be removed from the protein during processing in the cell. The peptide may be produced synthetically or the protein may have been produced using a polysucleotide only encoding for the mature protein coding sequence.

The term "derivative" refers to polypeptides chemically modified by such techniques as ubiquifination, labeling (e.g., with radionuclides or various enzymes), covalent polymer attachment such as pegylation (derivatization with polyethylene glycol) and insertion or substitution by chemical synthesis of amino acids such as ornithine, which do not normally occur in human proteins.

25

30

The term "variant" (or "analog") refers to any polypoptide differing from naturally occurring polypoptides by amino acid insertions, deletions, and substitutions, created using, g, recombinant DNA techniques. Guidance in determining which amino acid residues may be replaced, added or deleted without abolishing activities of interest, may be found by

Biology, John Wiley & Sons, New York NY, both of which are incorporated herein by reference in their entirety.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO: 1-341. The sequence information can be a segment of any one of SEQ ID NO: 1-341 that uniquely identifies or represents the sequence information of that sequence of SEQ ID NO: 1-341. One such segment can be a twenty-mer nucleic acid sequence because the probability that a twenty-mer is fully matched in the human genome is 1 in 300. In the human genome, there are three billion base pairs in one set of chromosomes. Because 4²⁰ possible twenty-mers exist, there are 300 times more twenty-mers than there are base pairs in a set of human chromosomes. Using the same analysis, the probability for a seventeen-mer to be fully matched in the human genome is approximately 1 in 5. When these segments are used in arrays for expression studies, fifteen-mer segments can be used. The probability that the fifteen-mer is fully matched in the expressed sequences is also approximately one in five because expressed sequences commrise less than approximately 5% of the entire genome sequence.

Similarly, when using sequence information for detecting a single mismatch, a segment can be a twenty-five mer. The probability that the twenty-five mer would appear in a human genome with a single mismatch is calculated by multiplying the probability for a full match (1+4²³) times the increased probability for mismatch at each nucleotide position (3 x 25). The probability that an eighteen mer with a single mismatch can be detected in an array for expression studies is approximately one in five. The probability that a twenty-mer with a single mismatch can be detected in a human genome is approximately one in five.

The term "open reading frame," ORF, means a series of nucleotide triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

The terms "operably linked" or "operably associated" refer to functionally related nucleic acid sequences. For example, a promoter is operably associated or operably linked with a coding sequence if the promoter controls the transcription of the coding sequence. While operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements e.g. repressor genes are not contiguously linked to the coding sequence but still control transcription/translation of the coding sequence.

The term "phuripotent" refers to the capability of a cell to differentiate into a number of differentiated cell types that are present in an adult organism. A phuripotent cell is restricted in its differentiation capability in comparison to a totipotent cell.

WO 02/059260 PCT/US01/42950

comparing the sequence of the particular polypeptide with that of homologous peptides and minimizing the number of amino acid sequence changes made in regions of high homology (conserved regions) or by replacing amino acids with consensus sequence.

Afternatively, recombinant variants encoding these same or similar polypeptides may

5 be synthesized or selected by making use of the "redundancy" in the genetic code. Various
codon substitutions, such as the silent changes which produce various restriction sites, may
be introduced to optimize cloning into a plasmid or viral vector or expression in a particular
prokaryotic or eukaryotic system. Mutations in the polypucleotide sequence may be reflected
in the polypeptide or domains of other peptides added to the polypeptide to modify the

10 properties of any part of the polypeptide, to change characteristics such as ligand-binding
affinities, interchain affinities, or degradation/humover rate.

Preferably, amino acid "aubstitutions" are the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, i.e., conservative amino acid replacements, "Conservative" amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asperagine, and glutamine; positively charged (basie) amino acids include arginine, lyvine, appraises and alistidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid. "Insertions" or "deletions" are preferably in the range of about 1 to 20 amino acids, more preferably 1 to 10 amino acids. The variation allowed may be experimentally determined by systematically making insertions, deletions, or substitutions of amino acids in a polypeptide molecule using recombinant DNA techniques and assaying the resulting

Alternatively, where alteration of function is desired, insertions, deletions or non-conservative alterations can be engineered to produce altered polypeptides. Such alterations can, for example, alter one or more of the biological functions or biochemical characteristics of the polypeptides of the invention. For example, such alterations may change polypeptide characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnburer rate. Further, such alterations can be selected so as to generate polypeptides that are better suited for expression, scale up and the like in the host cells

an amino terminal methionine residue. This residue may or may not be subsequently cleaved

from the expressed recombinant protein to provide a final product.

WO 02/059768

The term "recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the mbinant transcriptional unit extrachromosomally. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed. This term also means host cells which have stably integrated a recombinant genetic element or elements having a regulatory role in some expression, for example, promoters or enhancers, 10 Recombinent expression systems as defined herein will express polypeptides or proteins ndogenous to the cell upon induction of the regulatory elements linked to the endogenous

DNA segment or gene to be expressed. The cells can be prokaryotic or eukaryotic

The term "secreted" includes a protein that is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence when it is expressed in a suitable host cell. "Secreted" proteins include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g., receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins that are transported across the membrane of the endoplasmic reticulum. "Secreted" proteins are also intended to include proteins containing non-typical signal sequences (e.g. interleukin-1 Beta, see Krasney, P.A. and Young, P.R. (1992) Cytokine 4(2): 134-143) and factors released from damaged cells (e.g. Interleukin-1 Receptor Antagonist, see Arend, W.P. et. al (1998) Annu, Rev. Immunol, 16:27-55)

Where desired, an expression vector may be designed to contain a "signal or leader sequence" which will direct the polypeptide through the membrane of a cell. Such a sequence may be naturally present on the polypeptides of the present invention or provided from heterologous protein sources by recombinant DNA techniques.

The term "stringent" is used to refer to conditions that are commonly understood in the art as stringent. Stringent conditions can include highly stringent conditions (i.e., hybridization to filter-bound DNA in 0.5 M NaHPO4, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1X SSC/0.1% SDS at 68°C), and moderately stringent conditions (i.e., washing in 0.2X SSC/0.1% SDS at 42°C). Other exemplary hybridization conditions are described herein in the examples.

en for expression. For example, cysteine residues can be deleted or substituted with another amino acid residue in order to eliminate disulfide bridges.

The terms "purified" or "substantially purified" as used herein denotes that the indicated nucleic acid or polypeptide is present in the substantial absence of other biological 5 macromolecules, e.g., polynucleotides, proteins, and the like. In one embodiment, the polynucleotide or polypeptide is purified such that it constitutes at least 95% by weight, more preferably at least 99% by weight, of the indicated biological macromolecules present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 1000 daltons, can be present).

The term "isolated" as used herein refers to a nucleic acid or polypeptide separated from at least one other component (e.g., nucleic acid or polypeptide) present with the nucleic acid or polypeptide in its natural source. In one embodiment, the nucleic acid or polypeptide is found in the presence of (if anything) only a solvent, buffer, ion, or other component normally present in a solution of the same. The terms "isolated" and "purified" do not 15 encompass nucleic acids or polypeptides present in their natural source

The term "recombinant," when used herein to refer to a polypeptide or protein, means that a notypertide or protein is derived from recombinant (e.g., microbial, insect, or mammalian) expression systems, "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbia?" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern in general different from those expressed in mammalian cells.

The term "recombinant expression vehicle or vector" refers to a plasmid or phase or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. An expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate transcription initiation and termination sequences. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include

WO 02/059260 PCT/US01/42950

in instances of hybridization of deoxyoligonucleotides, additional exemplary stringent hybridization conditions include washing in 6X SSC/0.05% sodium pyrophosphate at 37°C (for 14-base oligonucleotides), 48°C (for 17-base oligos), 55°C (for 20-base oligonucleotides), and 60°C (for 23-base oligonucleotides).

As used herein, "substantially equivalent" can refer both to nucleotide and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between the reference and subject sequences. Typically, such a substantially equivalent sequence varies from one of those listed herein by no more than about 35% (i.e., the number of individual residue substitutions, additions, and/or deletions in a substantially equivalent sequence, as compared to the corresponding reference sequence, divided by the total number of residues in the substantially equivalent sequence is about 0.35 or less). Such a sequence is said to have 65% sequence identity to the listed sequence. In one embodiment, a substantially equivalent, e.g., mutant, sequence of the 15 invention varies from a listed sequence by no more than 30% (70% sequence identity); in a variation of this embodiment, by no more than 25% (75% sequence identity); and in a further variation of this embodiment, by no more than 20% (80% sequence identity) and in a further variation of this embodiment, by no more than 10% (90% sequence identity) and in a further variation of this embodiment, by no more that 5% (95% sequence identity). Substantially equivalent, e.g., mutant, amino acid sequences according to the invention preferably have at least 80% sequence identity with a listed amino acid sequence, more preferably at least 85% uence identity, more preferably at least 90% sequence identity, more preferably at least 95% identity, more preferably at least 98% identity, and most preferably at least 99% identity. Substantially equivalent nucleotide sequences of the invention can have lower percent sequence identities, taking into account, for example, the redundancy or degeneracy of the genetic code. Preferably, nucleotide sequence has at least about 65% identity, more preferably at least about 75% identity, more preferably at least about 80% sequence identity, more preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% identity, more preferably at least 30 about 98% sequence identity, and most preferably at least about 99% sequence identity. For the purposes of the present invention, sequences having substantially equivalent biological activity and substantially equivalent expression characteristics are considered substantially equivalent. For the purposes of determining equivalence, truncation of the mature sequence

PCT/US01/42950 WO 02/059260

(e.g., via a mutation which creates a spurious stop codon) should be disregarded. Sequence identity may be determined, e.g., using the John Hein method (Hein, J. (1990) Methods Enzymol, 183:626-645). Identity between sequences can also be determined by other methods known in the art, e.g. by varying hybridization conditions.

The term "totipotent" refers to the capability of a cell to differentiate into all of the cell types of an adult organism.

The term "transformation" means introducing DNA into a suitable host cell so that the DNA is replicable, either as an extrachromosomal element, or by chromosomal integration. The term "transfection" refers to the taking up of an expression vector by a suitable host cell, whether or not any coding sequences are in fact expressed. The term "infection" refers to the introduction of nucleic acids into a suitable host cell by use of a virus or viral vector

As used herein, an "uptake modulating fragment," UMF, means a series of nucleotides which mediate the uptake of a linked DNA fragment into a cell. UMFs can be readily identified using known UMFs as a target sequence or target motif with the computer-based systems described below. The presence and activity of a UMF can be confirmed by attaching the suspected UMF to a marker sequence. The resulting nucleic acid molecule is then incubated with an appropriate host under appropriate conditions and the uptake of the marker sequence is determined. As described above, a UMF will increase the frequency of uptake of a linked marker sequence.

Each of the above terms is meant to encompass all that is described for each, unless the context dictates otherwise.

4.2 NUCLEIC ACIDS OF THE INVENTION

Nucleotide sequences of the invention are set forth in the Sequence Listing.

The isolated polynucleotides of the invention include a polynucleotide comp tide sequences of SEQ ID NO: 1-341; a polynucleotide encoding any one of the peptide sequences of SEQ ID NO: 342-682; and a polymucleotide comprising the nucleotide sequence encoding the mature protein coding sequence of the polypeptides of any one of SEO ID NO: 342-682. The polynucleoxides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent conditions to (a) the complement of any of the nucleotides sequences of SEQ ID NO: 1-341; (b) nucleotide sequences encoding any one of the amino acid sequences set forth in the Sequence Listing as SEQ ID NO: 342-682; (c) a polynucleotide which is an allelic variant of any polynucleotide recited above; (d)

01/42950

a polynucleotide which encodes a species homolog of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of the polypeptides of SEQ ID NO: 342-682. Domains of interest may depend on the nature of the encoded polypeptide; e.g., domains in receptor-like polypeptides include ligand-binding, extracellular, transmembrane, or cytoplasmic domains, or combinations thereof, domains in immunoglobulin-like proteins include the variable immunoglobulin-like domains; domains in enzyme-like polypeptides include catalytic and substrate binding domains; and domains in ligand polypeptides include receptor-binding domains.

The polynucleotides of the invention include naturally occurring or wholly or partially 10 synthetic DNA, e.g., cDNA and genomic DNA, and RNA, e.g., mRNA. The polynucleotides may include all of the coding region of the cDNA or may represent a portion of the coding region of the cDNA.

The present invention also provides genes corresponding to the cDNA sequences disclosed herein. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed berein. Such methods helde the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. Purther 5' and 3' sequence can be obtained using methods known in the art. For example, full length cDNA or genomic DNA that corresponds to any of the polymacleotides of SEQ ID NO: 1-341 can be obtained by screening appropriate cDNA or genomic DNA Ehraries under suitable hybridization conditions using any of the polymacleotides of SEQ ID NO: 1-341 or a portion thereof as a probe. Alternatively, the polymacleotides of SEQ ID NO: 1-341 may be used as the basis for suitable primer(s) that allow identification and/or amplification of genes in appropriate genomic DNA or cDNA libraries.

The nucleic acid sequences of the invention can be assembled from ESTs and sequences (including cDNA and genomic sequences) obtained from one or more public databases, such as dbEST, gbpri, and UniOene. The EST sequences can provide identifying sequence information, representative fragment or segment information, or novel segment information for the fulllength gene.

The polynucleotides of the invention also provide polynucleotides including nucleotide sequences that are substantially equivalent to the polynucleotides recited above. Polynucleotides according to the invention can have, e.g., at least about 65%, at least about 70%, at least about 80%, 81%, 82%, 83%, 84%, more typically at least

16

WO 02/059260 PCT/US01/42950

. The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides.

The nucleic said sequences of the invention are further directed to sequences which encode variants of the described nucleic acids. These amino acid sequence variants may be prepared by methods known in the art by introducing appropriate nucleotide changes into a native or variant polynucleotide. There are two variables in the construction of amino acid equence variants: the location of the mutation and the nature of the mutation. Nucleic acids encoding the amino acid sequence variants are preferably constructed by mutating the polynucleotide to encode an amino acid sequence that does not occur in nature. These nucleic acid alterations can be made at sites that differ in the nucleic acids from different species (variable positions) or in highly conserved regions (constant regions). Sites at such locations will typically be modified in series, e.g., by substituting first with conservative 15 choices (e.g., hydrophobic amino acid to a different hydrophobic amino acid) and then with more distant choices (e.g., hydrophobic amino acid to a charged amino acid), and then deletions or insertions may be made at the target site. Amino acid sequence deletions generally range from about 1 to 30 residues, preferably about 1 to 10 residues, and are typically contiguous. Amino acid insertions include amino- and/or carboxyl-terminal fusions ranging in length from one to one hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Intrasequence insertions may range generally from about 1 to 10 amino residues, preferably from 1 to 5 residues. Examples of terminal insertions include the heterologous signal sequences necessary for secretion or for intracellular targeting in different host cells and sequences such as FLAG or poly-histidine 25 segr ences useful for purifying the expressed protein.

In a preferred method, polynucleotides encoding the novel amino acid sequences are changed via site-directed mutagenesis. This method uses oligonucleotide sequences to alter a polynucleotide to encode the destired amino acid variant, as well as sufficient adjacent nucleotides on both sides of the changed amino acid to form a stable duplex on either side of the site of being changed. In general, the techniques of site-directed mutagenesis are well known to those of skill in the art and this technique is exemplified by publications such as, Edelman et al., DNA 2:183 (1983). A versatile and efficient method for producing site-specific changes in a polynucleotide sequence was published by Zoller and Smith,

about 85%, 86%, 87%, 88%, 89%, more typically at least about 90%, 91%, 92%, 91%, 94%, and even more typically at least about 95%, 96%, 97%, 98%, 99%, sequence identity to a polynucleotide recited above.

W/O 07/059760

Included within the scope of the nucleic acid sequences of the invention are nucleic

5 acid sequence fragments that hybridize under stringent conditions to any of the nucleotide
sequences of SEQ ID NO: 1-341, or complements thereof, which fragment is greater than
about 5 nucleotides, preferably 7 nucleotides, more preferably greater than 9 nucleotides and
most preferably greater than 17 nucleotides. Fragments of, e.g., 15, 17, or 20 nucleotides or
more that are selective for (i.e. specifically hybridize to) any one of the polynucleotides of the
invention are contempland. Probes capable of specifically hybridizing to a polynucleotide
can differentiate polynucleotide sequences of the invention from other polynucleotide
sequences in the same family of genes or can differentiate human genes from genes of other
species, and are preferably based on unique nucleotide sequences.

The sequences falling within the scope of the present invention are not limited to these specific sequences, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequence provided in SEQ ID NO: 1-341, a representative fragment thereof, or a nucleotide sequence at least 90% identical, preferably 95% identical, to SEQ ID NO: 1-341 with a sequence from another isolate of the same species. Purthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same smino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another codon that encodes the same amino acid is expressly contemplated.

The nearest neighbor or homology result for the nucleic acids of the present invention, including SEQ ID NO: 1-341, can be obtained by searching a database using an algorithm or a program. Preferably, a BLAST which stands for Basic Local Alignment Search Tool is used to search for local sequence alignments (Altshul, S.F. J Mol. Evol. 36 290-300 (1993) and Altschul S.F. at al. J. Mol. Biol. 21:403-410 (1990)). Alternatively a FASTA version 3 search against Genpept, uning Fastxy algorithm.

Species homologs (or orthologs) of the disclosed polynucleotides and proteins are

30 also provided by the present invention. Species homologs may be isolated and identified by
making suitable probes or primers from the sequences provided herein and screening a
suitable nucleic acid source from the desired species.

17

WO 02/059260 PCT/US01/4:

Nucleic Acids Res. 10:6487-6500 (1982). PCR may also be used to create amino acid sequence variants of the novel nucleic acids. When small amounts of template DNA are used as starting material, primer(s) that differs slightly in sequence from the corresponding region in the template DNA can generate the desired amino acid variant. PCR emplification results 5 in a population of product DNA fragments that differ from the polynucleotide template encoding the polypeptide at the position specified by the primer. The product DNA fragments replace the corresponding region in the plasmid and this gives a polynucleotide encoding the desired amino acid variant.

A further technique for generating amino acid variants is the cassette mutagenesis

technique described in Wells et al., Gene 34;315 (1983); and other mutagenesis techniques
well known in the art, such as, for example, the techniques in Sambrook et al., supra, and
Current Protocols in Molecular Blology, Ausubel et al. Due to the inherent degeneracy of
the genetic code, other DNA sequences which encode substantially the same or a functionally
equivalent amino acid sequence may be used in the practice of the invention for the cloning
and expression of these novel nucleic acids. Such DNA sequences include those which are
capable of hybridizing to the appropriate novel nucleic acid sequence under stringent
conditions.

Polynucleotides encoding preferred polypeptide truncations of the invention can be used to generate polynucleotides encoding chimeric or fusion proteins comprising one or more domains of the invention and beterologous protein sequences.

The polymucleotides of the invention additionally include the complement of any of the polymucleotides recited above. The polymucleotide can be DNA (genomic, cDNA, amplified, or synthetic) or RNA. Methods and algorithms for obtaining such polymucleotides are well known to those of skill in the ert and can include, for example, methods for determining hybridization conditions that can routinely isolate polymucleotides of the desired semience identities.

In accordance with the invention, polynucleotide sequences comprising the mature protein coding sequences corresponding to any one of SEQ (ID NO: 1-341, or functional equivalents thereof, may be used to generate recombinant DNA molecules that direct the expression of that nucleic acid, or a functional equivalent thereof, in appropriate host cells. Also included are the cDNA inserts of any of the clones identified herein.

A polynucleotide according to the invention can be joined to any of a variety of other nucleotide sequences by well-established recombinant DNA techniques (see Sambrook J et

WO 02/059260

al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY).
Useful nucleotide sequences for joining to polynucleotides include an assortment of vectors,
e.g., plasmids, cosmids, lambda phage derivatives, phagemids, and the like, that are well
known in the art. Accordingly, the invention also provides a vector including a

5 polynucleotide of the invention and a host cell containing the polynucleotide. In general, the
vector contains an origin of replication functional in at least one organism, convenient
restriction endonuclease sites, and a selectable marker for the host cell. Vectors according to
the invention include expression vectors, replication vectors, probe generation vectors, and
sequencing vectors. A host ocell according to the invention can be a prokaryotic or eukaryotic

10 cell and can be a unicellular organism or part of a multicellular organism.

The present invention further provides recombinant constructs comprising a nucleic acid having any of the nucleotide sequences of SEQ ID NO: 1-341 or a fragment thereof or any other polynucleotides of the invention. In one embodinent, the recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a nucleic acid having any of the nucleotide sequences of SEQ ID NO: 1-341 or a fragment thereof is inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. Large numbers of suitable vectors and promoters are known to those of skill in the set and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTre99A, pKK223-3, pKK233-3, pDR340, pRT5 (Pharmacia). Eukaryotic: pWLnee, pSV2cat, pOG44, PXT1, pSG (Stratagene) pSVK2, pBPV, pMSG, pSVL (Pharmacia).

The isolated polymicleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., Nucleic Acids Res. 19, 4485-4490 (1991), in order to produce the protein recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology 185, 537-566 (1990). As defined herein "operably linked" means that the isolated polymucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed (transfected) with the ligited polymucleotide/expression control sequence.

20

WO 02/159260 PCT/US01/42950

or derepressed by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Polynucleotides of the invention can also be used to induce immune responses. For example, as described in Fan et al., Nat. Biotech. 17:870-872 (1999), incorporated herein by reference, nucleic acid sequences encoding a polyneptide may be used to generate antibodies against the encoded polyneptide following topical administration of naked plasmid DNA or following injection, and preferably intranuscular injection of the DNA. The nucleic acid sequences are preferably inserted in a recombinant expression vector and may be in the form of naked DNA.

4.3 ANTISENSE NUCLEIC ACIDS

Another aspect of the invention pertains to isolated antisense nucleic acid molecules

that are hybridizable to or complementary to the nucleic acid molecule comprising the
nucleotides sequence of SEQ ID NO: 1-341, or fragments, malogs or derivatives thereof. An
"antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense"
nucleic acid encoding a protein, e.g., complementary to the coding strand of a
double-stranded cDNA molecule or complementary to an mRNA sequence. In specific
aspects, antisense nucleic acid molecules are provided that comprise a sequence
complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire coding
strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs,
derivatives and analogs of a protein of any of SEQ ID NO: 342-682 or antisense nucleic acids
complementary to a nucleic acid sequence of SEQ ID NO: 1-341 are additionally provided.

In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence of the invention. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the entisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence of the invention. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).

oter regions can be selected from any desired gene using CAT (chloramphenico) transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include laci, lacZ, T3, T7, gpt, lambda PR, and tre. Eukaryotic promoters include CMV immediate early, HSV thymidine 5 kinaso, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art. Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S, correvision TRP1 gene, and a promoter derived from a highly-expressed gene to 10 direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK). a-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated 15 protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an amino terminal identification poptide imparting desired characteristics, e.g., stabilization or simplified partification of expressed recombinant product. Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host, Suitable prokaryotic hosts for transformation include E. coli, Bocillus subtilis, Salmonella typhimurium and various species within the genera Pseudomonas. Streptomyces, and 25 Staphylococcus, although others may also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (Promega Biotech, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced

2

WO 02/059260 PCT/USD1/4295

Given the coding strand sequences encoding a nucleic acid disclosed herein (e.g., SEQ ID NO: 1-341), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of an mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or naccoding region of a mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start aits of a mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted 15 nucleotides can be used.

Examples of modified nuclentides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-ecetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminon 2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladening, uracil-5-oxyscetic scid (v), wybutoxosing, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methylurecil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or

genomic DNA encoding a protein according to the invention to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for exampla, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific 5 interactions in the major proove of the double belix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administrated systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed 10 on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of antisense molecules, vector constructs in which the antisense nucleic acid molecules is placed under the control of a strong pol II or pol III promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier et al. (1987) Nucleic Acids Res 15: 6625-6641).

The antisense nucleic acid molecule can also comprise a 2'-α-methybribonucleotide (Inoue et al. (1987) Nucleic Acids Res 15: 6131-6148) or a chimeric RNA -DNA analogue (Inoue et al. (1987) PicERS Les 215: 217-330).

4.4 RIBOZYMES AND PNA MOIETIES

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave a mRNA transcripts to thereby inhibit translation of a mRNA. A ribozyme having specificity for a nucleic acid of the invention can be designed based upon the nucleotide sequence of a DNA disclosed herein (i.e., SEQ (D NO: 1-341). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is

WO 02/059260 PCT/US01/42950

combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNase H and DNA polymenses, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996) above). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996) above and Finn et al. (1996) Nucl Acids Res 24: 3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside snalogs, e.g., 5'-(4-methoxytrity)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA (Mag et al. (1989) Nucl Acid Res 17: 5973-88). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) above). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. See, Petersen et al. (1975) Bioorg Med Chem Lett 5: 1119-11124.

In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-65555. Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. W082/09810) or the blood-brain barrier (see, e.g., PCT Publication No. W082/0134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (See, e.g., Krol et al., 1988, BoTechniques 6:958-976) or intercalating agents. (See, e.g., Zon, 1988, Pharm. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggreed cleavage agent, etc.

4.5 HOSTS

15

25

The present invention further provides host cells genetically engineered to contain the polynucleotides of the invention. For example, such host cells may contain nucleic acids of the invention introduced into the bost cell using known transformation, transfection or infection methods. The present invention still further provides host cells genetically engineered to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell.

complementary to the nucleotide sequence to be cleaved in an mRNA of SEQ ID NO: 1-341 (see, a.g., Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742).

Alternatively, polynucleotides of the invention can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA motocules. See, a.g., Bartel et al., (1993)

Setema 26:1:411-1418.

WO 02/059260

Alternatively, gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region (e.g., promoter and/or enhancers) to firm triple belical structures that prevent transcription of the gene in target cells. See generally, Helene. (1991) Anticancer Drug Des. 6: 569-84; Helene. et al. (1992) Ann. N.Y. Acod. Sci. 660:27-36; and Maher (1992) Biocastry 14: 807-15.

In various embodiments, the nucleic acids of the invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the decayribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorg Mad 15 Chem 4: 5-23). As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, e.g., DNA mimics, in which the decayribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low loude strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996) above, Perry-O'Keefe et al. (1996) PNAS 93: 14670-675.

PNAs of the invention can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting

25 replication. PNAs of the invention can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (Hyrup B. (1996) above); or as probes or primers for DNA sequence and hybridization (Hyrup et al. (1996), above; Perry-O'Keefe (1996), above).

In another embodiment, PNAs of the invention can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper group to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated that may

25

WO 02/059260 PCT/US01/42950

Knowledge of nucleic acid sequences allows for modification of cells to permit, or increase, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the polypeptide at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the encoding sequences. See, for example, PCT International Publication No. WO94/12650, PCT International Publication No. WO92/226808, and PCT International Publication Publication No. WO91/29555. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ade, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, asparate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

The bost cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the recembinant construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, or electroporation (Davis, L. et al., Basic Methods in Molecular Biology (1986)). The host cells containing one of the polynucleotides of the invention, can be used in conventional mamners to produce the gene product encoded by the Isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eutharyotic hosts such as HeLa cells, CV-1 cell, COS cells, 293 cells, and Sf9 cells, as well as prokaryotic host such as £ coll and B. arbitilis. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level. Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., in Molecular Cloning: A Laboratory Manual, Second Edition,

Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines 5 of monkey kidney fibroblasts, described by Gluzman, Cell 23:175 (1981). Other cell lines capable of expressing a compatible vector are, for example, the C127, monkey COS cells. Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from in vitro culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and 15 polyadenylation sites may be used to provide the required nontranscribed genetic elements Recombinant polypeptides and proteins produced in bacterial culture are usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lyzing agents.

Alternstively, it may be possible to produce the protein in lower eukaryotes such as yeast or insects or in prokaryotes such as bacteria. Potentially suitable yeast strains include 25 Saccharomyces cerevisiae, Schinsaccharomyces pointe, Kluyweromyces strains, Cardida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Ercherichia coli, Bacillus subtilis, Salmonello syphimarium, or any bacterial strains include Ercherichia coli, Bacillus subtilis, Salmonello syphimarium, or any bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation of or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polyaucleotides of the invention under the

7

WO 02/059260 PCT/US01/42950

PCT/US92/09627 (WO93/09222) by Selden et al., and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

5 4.6 POLYPEPTIDES OF THE INVENTION

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising: the amino acid sequences set forth as any one of SEQ ID NO: 342-682 or an amino acid sequence encoded by any one of the nucleotide sequences SEO ID NO; 1-341 or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides preferably with biological or immunological activity that are encoded by: (a) a polynucleotide having any one of the nucleotide sequences set forth in SEQ ID NO: 1-341 or (b) polynucleotides encoding any one of the amino acid sequences set forth as SEQ ID NO: 342-682 or (c) polynucleotides that hybridize to the complement of the polynucleotides of either (a) or (b) under stringent hybridization conditions. The invention 15 also provides biologically active or immunologically active variants of any of the amino acid sequences set forth as SEO ID NO: 342-682 or the corresponding full length or mature protein; and "substantial equivalents" thereof (e.g., with at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, 86%, 87%, 88%, 89%, at least about 90%, 91%, 92%, 93%, 94%, typically at least about 95%, 96%, 97%, more typically at least about 98%, or most typically at least about 99% amino acid identity) that retain biological activity. Polypeptides encoded by allelic variants may have a similar increased, or decreased activity compared to polypeptides comprising SEQ ID NO: 342-682.

Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention. Fragments of the protein may be in linear form or they may be cyclized using known methods, for example, as described in H. U. Saragovi, et al., BioTochnology 10, 773-778 (1992) and in R. S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated berein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding 30 sites.

The present invention also provides both full-length and mature forms (for example, without a signal sequence or precursor sequence) of the disclosed proteins. The protein coding sequence is identified in the sequence listing by translation of the disclosed nucleotide

control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targetting. These sequence include 10 polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which after or improve the function or stability of grottin or RNA molecules.

· The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element: for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the host cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No.

29

WO 02/059260 PCT/US01/42950

sequences. The mature form of such protein may be obtained by expression of a full-length polynucleotide in a suitable mammalian cell or other host cell. The sequence of the mature form of the protein is also determinable from the amino acid sequence of the full-length form. Where proteins of the present invention are membrane bound, soluble forms of the proteins are also provided. In such forms, part or all of the regions causing the proteins to be membrane bound are deleted so that the proteins are fully secreted from the cell in which they are expressed.

Protein compositions of the present invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By 'degenerate variant' is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the genetic code, encode an identical polypeptide sequence. Preferred nucleic acid fragments of the present invention are the ORFs that encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. This technique is particularly useful in producing small peptides and fragments of larger polypeptides. Fragments are useful, for example, in generating antibodies against the native polypeptide. Thus, they may 25 be employed as biologically active or immunological substitutes for natural, purified proteins in acreening of therapeutic compounds and in immunological processes for the development of smithodies.

The polypeptides and proteins of the present invention can alternatively be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. One titilled in the art can readily adapt procedures for introducing and expressing either recombinant or symbotic

sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

The invention also relates to methods for producing a polypeptide comprising growing a culture of host cells of the invention in a suitable culture medium, and purifying the protein from the cells or the culture in which the cells are grown. For example, the methods of the invention include a process for producing a polypeptide in which a host cell containing a suitable expression vector that includes a polymerication in which a host cell cultured under conditions that allow expression of the encoded polypeptide. The polypeptide can be recovered from the culture, conveniently from the culture medium, or from a lysate prepared from the host cells and further purified. Preferred embodiments include those in which the protein produced by such process is a full length or mature form of the protein

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily follow known methods for isolating polypeptides and proteins in order to obtain one of the isolated polypeptides or proteins of the present invention. These include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography. See, e.g., Scopes, Protein Purification: Principles and Practice, Springer-Verlag (1994); Sambrook, et al., in Molecular Cloning: A Laboratory Manual; Ausubel et al., Current Protects in Molecular Biology. Polypeptide fragments that retain biological/immunological activity include fragments comprising greater than about 100 amino acids, or greater than about 200 amino acids, and fragments that ecode specific protein domains.

The purified polypeptides can be used in *in vitro* binding assays which are well known in the art to identify molecules which bind to the polypeptides. These molecules include but ere not limited to, for e.g., small molecules, molecules from combinatorial libraries, antibodies or other proteins. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

In addition, the peptides of the invention or molecules capable of binding to the peptides may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for SEQ ID NO: 342-682.

32

WO 02/059260 PCT/US01/42950

The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expresses protein may then be purified from such culture (i.e., from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopent^{Tha} or Cibarrom blue 3IA Sepharose^{Tha}; one or more steps involving bydrophobic interaction chromatography using such resins as phenyl ether, or immunoaffinity chromatography.

Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathlone-S-transferase (GST) or thioredoxin (TRX), or as a His tag. Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, Mass.), Pharmacia (Piscataway, NJ.) and Invitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope ("FLAGO") is commercially available from Kodak (New Haven, Conn.).

Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other sliphstic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."

The polypeptides of the invention include analogs (variants). This embraces fragments, as well as peptides in which one or more anino acids has been deleted, inserted, or substituted. Also, analogs of the polypeptides of the invention embrace fusions of the polypeptides or modifications of the polypeptides of the invention, wherein the polypeptide or analog is fused to another motery or motelete, e.g., tergeting motery or another therapeutic agent. Such analogs may exhibit improved properties such as activity and/or stability. Examples of moketics which may be fused to the polypeptide or an analog include, for example, targeting moleties which provide for the delivery of polypeptide to pancreatic cells, e.g., amibodies to pancreatic cells, antibodies to immune cells such as T-cells, monocytes.

The protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.

The proteins provided herein also include proteins characterized by amino acid nces similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications, in the peptide or DNA sequence, can be made by those skilled in the art using known techniques. Modifications of interest in the protein sequences may include the alteration, substitution, replacement. insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or replaced with another amino acid to after the conformation of the molecule. Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Pat. No. 4,518,584). Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein. Regions of the protein that are important for the protein function can be determined by various methods known in the art including the alaning-scanning method which involved systematic substitution of single or strings of amino acids with alanine, followed by testing the resulting alanine-containing variant for biological activity. This type of analysis determines the importance of the substituted amino acid(s) in biological activity. Regions of the protein that are important for protein function may be determined by the eMATRIX program.

Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and are useful for screening or other immunological methodologies may also be easily made by those skilled in the art given the disclosures herein. Such modifications are encompassed by the present invention.

The protein may also be produced by operably linking the isolated polymucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, Calif., U.S.A. (the MaxBarTM kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated berein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present invention is "transformed."

33

WO 02/059260 PCT/US01/42950

dendritic cells, granulocytes, etc., as well as receptor and ligands expressed on pancreatic or immune cells. Other moieties which may be fused to the polypeptide include therapeutic agents which are used for treatment, for example, immunosuppressive drugs such services or cyclosporin, SK506, azathloprine, CD3 antibodies and steroids. Also, polypeptides may be fused to immune modulators, and other cytokines such as alpha or beta interferon.

4.6.1 DETERMINING POLYPEPTIDE AND POLYNUCLEOTIDE IDENTITY AND SIMILARITY

Preferred identity and/or similarity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in comput programs including, but are not limited to, the GCG program package, including GAP (Devereux, J., et al., Nucleic Acids Research 12(1):387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI), BLASTP, BLASTN, BLASTX, FASTA (Altschul, S.F. et al., J. Molec, Biol. 215:403-410 (1990), PSI-BLAST (Attachul S.F. et al., Nucleic 15 Acids Res. vol. 25, pp. 3389-3402, herein incorporated by reference), eMatrix software (Wu et al., J. Comp. Biol., Vol. 6, pp. 219-235 (1999), herein incorporated by reference), eMotif software (Nevill-Manning et al, ISMB-97, Vol. 4, pp. 202-209, herein incorporated by reference), pFam software (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1), pp. 320-322 (1998), herein incorporated by reference), the GeneAtlas software (Molecular Simulations Inc. (MSI), San Diego, CA) (Sanchez and Sali (1998) Proc. Natl. Acad. Sci., 95, 13597-13602; Kitson DH et al. (2000) "Remote homology detection using structural modeling - an evaluation" Submitted: Fischer and Eisenberg (1996) Protein Sci. 5, 947-955), Neural Network SignalP V1.1 program (from Center for Biological Sequence Analysis, The Technical University of Denmark), and the Kyte-Doolittle hydrophobocity prediction 25 algorithm (J. Mol Biol, 157, pp. 105-31 (1982), incorporated herein by reference). The BLAST programs are publicly available from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul, S., et al. NCB NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215:403-410 (1990).

4.7 CHIMERIC AND FUSION PROTEINS

The invention also provides chimeric or flusion proteins. As used herein, a "chimeric protein" or "fusion protein" comprises a polypeptide of the invention operatively linked to another polypeptide. Within a fusion protein the polypeptide according to the invention can correspond to all or a portion of a protein according to the invention. In one embodiment, a

fusion protein comprises at least one biologically active portion of a protein according to the invention. In another embodiment, a fusion protein comprises at least two biologically active portions of a protein according to the invention. Within the fusion protein, the term "operatively linked" is intended to indicate that the polypeptide according to the Invention 5 and the other polypeptide are fused in-frame to each other. The polypeptide can be fused to the Neterminus or Cereminus.

For example, in one embodiment a fusion protein comprises a polypeptide according to the invention operably linked to the extracellular domain of a second protein. In another embodiment, the fusion protein is a GST-fusion protein in which the polypeptide sequences of the invention are fused to the C-terminus of the GST (i.e., ghtathione S-transferase) sequences.

In another embodiment, the fusion protein is an immunoglobulin fusion protein in which the polypeptide sequences according to the invention comprise one or more domains fused to sequences derived from a member of the immunoglobulin protein family. The 15 immunoglobulin fusion proteins of the invention can be incorporated into pharimaceutical compositions and administered to a subject to inhibit an interaction between a ligand and a protein of the invention on the surface of a cell, to thereby suppress signal transduction in vivo. The immunoglobulin fusion proteins can be used to affect the bloavailability of a cognate ligand. Inhibition of the ligand/protein interaction may be useful therspectically for 20 both the treatment of proliferative and differentiative disorders, e.g., cancer as well as modulating (e.g., promoting or inhibiting) cell survival. Moreover, the immunoglobulin fusion proteins of the invention can be used as immunogens to produce antibodies in a subject, to purify ligands, and in screening assays to identify molecules that inhibit the interaction of a polypeptide of the invention with a ligand.

A chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undestirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using another primers that give rise to complementary overhangs

14

WO 02/059260 PCT/US01/42950

The present invention still further provides cells genetically engineered in vivo to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell. These methods can be used to increase or decrease the expression of the polynucleotides of the present invention.

Knowledge of DNA sequences provided by the invention allows for modification of cells to permit, increase, or decrease, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter is inserted in such a manner that it is operatively tinked to the desired protein encoding sequences. See, for example, PCT International Publication No. WO 94/12650, PCT International Publication No. WO 91/09955. It is also contemplated that, in addition to heterologous promoter DNA, emplifiable marker DNA (e.g., ada, dhft, and the multifunctional CAD gene which encodes certearryl phosphate synthase, aspartate transcarbumylase, and dihydrocrotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the desired protein coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polymucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence losted from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of prumoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequences include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which after or improve the function or stability of protein or RNA molecules.

between two consocutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Ausubel et al. (eds.) CURRENT PROTOCOLS ON MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vectors such that the fusion moiety is linked in-frame to the protein of

4.8 GENE THERAPY

Mutations in the polynucleotides of the invention may result in loss of normal function of the encoded protein. The invention thus provides gene therapy to restore normal activity of the polypeptides of the invention; or to treat disease states involving polypeptides of the invention. Delivery of a functional gene encoding polypeptides of the invention to appropriate cells is effected ax vivo, in situ, or in vivo by use of vectors, and more particularly viral vectors (e.g., adenovirus, adeno-associated virus, or a retrovirus), or ex vivo by use of physical DNA transfer methods (e.g., liposomes or chemical treatments). See, for example, Anderson, Nature, supplement to vol. 392, no. 6679, pp.25-20 (1998). For additional reviews of gene therapy technology see Priedmann, Science, 244: 1275-1281 (1989); Verma, Scientific American: 68-84 (1990); and Miller, Nature, 357; 455-460 (1992). Introduction of any one of the nucleotides of the present invention or a gene encoding the polypeptides of the present invention can also be accomplished with extrachromosomal substrates (transient expression) or artificial chromosomes (stable expression). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for 25 therapeutic purposes. Alternatively, it is contemplated that in other human disease states, preventing the expression of or inhibiting the activity of polypeptides of the invention will be useful in treating the disease states. It is contemplated that antisense therapy or gene therapy could be applied to negatively regulate the expression of polypeptides of the invention.

Other methods inhibiting expression of a protein include the introduction of antisense molecules to the nucleic acids of the present invention, their complements, or their translated RNA sequences, by methods known in the art. Further, the polypeptides of the present invention can be inhibited by using targeted deletion methods, or the insertion of a negative regulatory element such as a silencer, which is tissue specific.

37

WO 02/059260 PCT/US01/42950

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter of enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, 10 allowing for the selection of cells in which the exogenous DNA has integrated into the cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guarina phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,572,461 to Sherwin et al.; international Application No. PCT/US9209627 (WO93/09222) by Selden et al.; and International Application No. PCT/US92096436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

4.9 TRANSGENIC ANIMALS

25

In preferred methods to determine biological functions of the polypeptides of the invention in vivo, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination (Capechi, Science 30 244:1288-1292 (1989)). Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "hookcout" animals. Knockout animals, preferrably soc-duman mammals,

can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5.489.743 and PCT Publication No. WO94/28122, incorporated herein by reference.

WO 02/059260

Transgenic animals can be prepared wherein all or part of a promoter of the polynucleotides of the invention is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using 10 homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

The polynucleotides of the present invention also make possible the development, 15 through, e.g., homologous recombination or knock out strategies, of animals that fall to express polypeptides of the invention or that express a variant polypeptide. Such animals are useful as models for studying the in vivo activities of polypeptide as well as for studying modulators of the polypeptides of the invention.

In preferred methods to determine biological functions of the polypertides of the 20 invention in vivo, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination 25 are referred to as "knockout" animals. Knockout animals, preferably non-human mammals. can be prepared as described in U.S. Patent No. 5.557.032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals. preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of the polynucleotides of the invention promoter is either activated or inactivated to alter the level of expression of the

PCT/US01/42950 WO 02/059260

protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that 15 described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The polypeptides provided by the present invention can similarly be used in assays to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the 20 labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding polypeptide is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual*, 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

WO 02/059260

polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous 5 enhancer elements known to confer promoter activation in a particular tissue.

4.10 USES AND BIOLOGICAL ACTIVITY

The polynucleotides and proteins of the present invention are expected to exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified herein. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA). The mechanism underlying the particular condition or pathology will dictate whether the polypeptides of the invention, the polynucleotides of the invention or modulators (activators or inhibitors) thereof would be beneficial to the subject in need of treatm Thus, "therapeutic compositions of the invention" include compositions comprising isolated polynucleotides (including recombinant DNA molecules, cloned genes and degenerate variants thereof) or polypeptides of the invention (including full length protein, mature protein and truncations or domains thereof), or compounds and other substances that modulate the overall activity of the target gene products, either at the level of target ene/protein expression or target protein activity. Such modulators include polypeptides, analogs, (variants), including fragments and fusion proteins, antibodies and other binding proteins; chemical compounds that directly or indirectly activate or inhibit the polypeptides of the invention (identified, e.g., via drug screening assays as described herein); antisense polynucleotides and polynucleotides suitable for triple helix formation; and in particular antibodies or other binding partners that specifically recognize one or more epitopes of the polypeptides of the invention.

The polypeptides of the present invention may likewise be involved in cellular activation or in one of the other physiological pathways described herein.

4.10.1 RESEARCH USES AND UTILITIES

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant

41

WO 02/059260 PCT/US01/42950

4.10.2 NUTRITIONAL USES

Polynucleotides and polymentides of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the polypeptide or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the polypeptide or polynucleotide of the invention can be added to the medium in or on which the ricroorganism is cultured.

4.10.3 CYTOKINE AND CELL PROLIFERATION/DIFFERENTIATION ACTIVITY

A polypeptide of the present invention may exhibit activity relating to cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or 15 inhibiting) activity or may induce production of other cytokines in certain cell populations. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor-dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of therapeutic compositions of the 20 present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+(preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e, CMK, HUVEC, and Caco. Therapeutic compositions of the invention can be used in

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Punction 3.1-3.19; Chapter 7. Immunologic studies in Humans); Takai et al., J. Immunol, 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., I. Immunol. 149:3778-3783, 1992; Bowman et al., I. unol. 152:1756-1761, 1994.

WO 02/059260 PCT/US01/42950

Assays for cytokine production and/or proliferation of spicen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A. M. and Shevach, E. M. in Current Protocols in Immunology, J. E. e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human interteukin-y, Schreiber, R. D. in Current Protocols in Immunology, J. E. e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoletic and lymphopoletic cells include, without limitation, those described in: Measurement of Human and Murino Interteukin 2 and Interteukin 4, Bottomby, K., Davis, L. S. and Lipsky, P. E. In Current 10 Protocols in Immunology, J. E. e.a. Colligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6-Nordan, R. In Current Protocols in Immunology, J. E. Coligan eds. Vol 1 pp. 6:6.1-6:6.5, John Wiley and Sons, Toronto. 1991; 15 Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1837-1851, 1986; Measurement of human Interleukin 11-Bennett, F., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology, J. E. Coligan eds. Vol 1 pp. 6:15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9--Ciarletta, A., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6:13.1, John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9--Ciarletta, A., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6:13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell close responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, B. M. 25 Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Punction; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

4.10.4 STEM CELL GROWTH FACTOR ACTIVITY

30

WO 02/059260

A polypeptide of the present invention may exhibit stem cell growth factor activity and be involved in the proliferation, differentiation and survival of pluripotent and totipotent

PCT/US01/42950

generation of undifferentiated totipotential/pluripotential stem cell lines that are useful as is or that can then be differentiated into the desired mature cell types. These stable cell lines can also serve as a source of undifferentiated totipotential/pluripotential mRNA to create cDNA libraries and templates for polymerase chain reaction experiments. These studies would allow for the isolation and identification of differentially expressed genes in stem cell populations that regulate stem cell proliferation and/or maintenance.

Expansion and maintenance of totipotent stem cell populations will be useful in the treatment of many pathological conditions. For example, polypeptides of the present invention may be used to manipulate stem cells in culture to give rise to neuroepithelial cells that can be used to augment or replace cells damaged by illness, autoimmune disease, accidental damage or genetic disorders. The polypeptide of the invention may be useful for inducing the proliferation of neural cells and for the regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders which involve degeneration, death or trauma to 15 neural cells or nerve tissue. In addition, the expanded stem cell populations can also be genetically altered for gene therapy purposes and to decrease host rejection of replacement tissues after grafting or implantation.

Expression of the polypeptide of the invention and its effect on stem cells can also be manipulated to achieve controlled differentiation of the stem cells into more differentiated cell types. A broadly applicable method of obtaining pure populations of a specific differentiated cell type from undifferentiated stem cell populations involves the use of a cell-type specific promoter driving a selectable marker. The selectable marker allows only cells of the desired type to survive. For example, stem cells can be induced to differentiate into cardiomyocytes (Wobus et al., Differentiation, 48: 173-182, (1991); Klug et al., J. Clin.

Invest., 98(1): 216-224, (1998)) or skeletal muscle cells (Browder, L. W. In: Principles of Tisme Engineering eds. Lanza et al., Academic Press (1997)). Alternatively, directed differentiation of stem cells can be accomplished by culturing the stem cells in the presence of a differentiation factor such as retinoic acid and an antagonist of the polypeptide of the invention which would inhibit the effects of endogenous stem cell factor activity and allow differentiation to proceed.

In vitro cultures of stem cells can be used to determine if the polypeptide of the invention exhibits stem cell growth factor activity. Stem cells are isolated from any one of various cell sources (including hematopoietic stem cells and embryonic stem cells) and

stem cells including primordial germ cells, embryonic stem cells, bematopoietic stem cells and/or germ line stem cells. Administration of the polypeptide of the invention to stem cells to vivo or ex vivo is expected to maintain and expand cell populations in a totipotential or pluripotential state which would be useful for ro-engineering damaged or diseased tissues, transplantation, manufacture of bio-pharmaceuticals and the development of bio-aensors. The ability to produce large quantities of human cells has important working applications for the production of human proteins which currently must be obtained from non-human sources or donors, implantation of cells to treat diseases such as Parkinson's, Alzheimer's and other neurodegenerative diseases, tissues for grafting such as bone marrow, skin, cartilage, tendons, bone, muscle (including cardiac muscle), blood vessels, cornea, neural cells, gastrointestinal cells and others; and organs for transplantation such as kidney, liver, pancrea (including talet cells), beart and hung.

It is contemplated that multiple different exogenous growth factors and/or cytokines may be administered in combination with the polypeptide of the invention to achieve the desired effect, including any of the growth factors listed herein, other stem cell maintenance factors, and specifically including stem cell factor (SCF), leukemia inhibitory factor (LIF), Fit-3 ligand (Fit-3L), any of the interfeuklins, recombinant soluble IL-6 receptor fused to IL-6, macrophage inflammatory protein 1-alpha (MIP-1-alpha), G-CSF, GM-CSF, thrombopoletin (TPO), platelet factor 4 (PFP-4), platelet-derived growth factor (PDGF), neural growth factors and basic fibroblast growth factor (bFGF).

Since totipotent stem cells can give rise to virtually any mature cell type, expansion of these cells in culture will facilitate the production of large quantities of mature cells. Techniques for culturing stem cells are known in the art and administration of polypeptides of the invention, optionally with other growth factors and/or cytokines, is expected to enhance the survival and proliferation of the stem cell populations. This can be accomplished by direct administration of the polypeptide of the invention to the culture medium.

Alternatively, stroma cells transfected with a polynucleotide that encodes for the polypeptide of the invention can be used as a feeder layer for the stem cell populations in culture or in vivo. Stromal support cells for feeder layers may include embryonic bone marrow fibroblasts, bone marrow stromal cells, fetal liver cells, or cultured embryonic fibroblasts (see U.S. Patent No. 5.690.326).

Stem cells themselves can be transfected with a polynucleotide of the invention to induce autocrine expression of the polypeptide of the invention. This will allow for

45

WO 02/059260 PCT/US01/4295

cultured on a feeder layer, as described by Thompson et al. Proc. Natl. Acad. Sci, U.S.A., 92:
7844-7848 (1995), in the presence of the polypeptide of the invention alone or in
combination with other growth factors or cytokines. The ability of the polypeptide of the
invention to induce stem cells proliferation is determined by colony formation on semi-solid
support e.g. as described by Bernstein et al., Blood, 77: 2316-2321 (1991).

4.10.5 HEMATOPOIESIS REGULATING ACTIVITY

A polypeptide of the present invention may be involved in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell disorders. 10 Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopolesis, e.g. in supporting the growth and proliferation of crythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or 15 erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such a thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal 25 hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or crologous)) as normal cells or genetically manipulated for gene therapy.

Therapeutic compositions of the invention can be used in the following:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopolesis) include, without limitation,

those described In: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993

Assays for stem cell survival and differentiation (which will identify, among others,

proteins that regulate lympho-hematopoiets) include, without limitation, those described in:
Methylocelulose colony forming assays, Freshney, M. G. In Culture of Hematopoietic Cells.
R. I. Freshney, et al. eds. Vol pp. 263-268, Wiley-Liss, Inc., New York, N.Y. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I. K. and Briddell, R. A. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, N.Y. 1994; Neben et al., Experimental Hematology 22:333-359, 1994; Cobblestone area forming cell assay, Pioemacher, R. E. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, N.Y. 1994; Long term boom marrow cultures in the presence of stronal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, N.Y. 1994; Long term outlure unitaring cell assay, Sutherland, H. J. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, N.Y. 1994.

4.10.6 TISSUE GROWTH ACTIVITY

A polypeptide of the present invention also may be involved in bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as in wound healing and tissue repair and replacement, and in healing of burns, incistions and ulcers.

A polypeptide of the present invention which induces cartilage and/or bone growth in

25 circumstances where bone is not normally formed, has application in the healing of bone
fractures and cartilage damage or defects in humans and other animals. Compositions of a
polypeptide, antibody, binding partner, or other modulator of the invention may have
prophylactic use in closed as well as open fracture reduction and also in the improved
fixation of artificial joints. De novo bone formation induced by an osteogenic agent

contributes to the repair of congenital, trauma induced, or oncologic resection induced
craniofacial defects, and also is useful in cosmetic plastic surgery.

A polypeptide of this invention may also be involved in attracting bone-forming cells, stimulating growth of bone-forming cells, or inducing differentiation of progenitors of

bone-forming cells. Treatment of ostooporosis, ostooarthritis, bone degenerative disorders, or periodontal disease, such as through stimulation of bone and/or cardiage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, ostooclast activity, etc.) mediated by inflammatory processes may also be possible using the composition of the invention.

Another category of tissue regeneration activity that may involve the polypeptide of the present invention is tendon/ligament formation. Induction of tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or 10 ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention 15 contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth 20 of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The compositions of the present invention may also be useful for proliferation of
25 neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and
peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic
disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More
specifically, a composition may be used in the treatment of diseases of the peripheral nervous
system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies,
30 and central nervous system diseases, such as Altheimer's, Parkinson's disease, Huntington's
disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which
may be treated in accordance with the present invention include mechanical and traumatic
disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as

45

WO 02/059260 PCT/US01/42950

stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a composition of the invention.

Compositions of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

Compositions of the present invention may also be involved in the generation or regeneration of other tissues, such as organs (including, for example, pancress, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiae) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring may allow normal tissue to regenerate. A polypeptide of the present invention may also exhibit angiogenic activity.

A composition of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and 15 conditions resulting from systemic cytokine damage.

A composition of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

Therapeutic compositions of the invention can be used in the following:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon); International Patent Publication No. W095/05846 (nerve, neuronal); International Patent Publication No. W091/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in:

5 Winter, Epidermal Wound Healing, pps. 71-112 (Malbach, H. I. and Rovec, D. T., eds.), Year

Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest.

Dermand 71:382-84 (1978).

4.10.7 IMMUNE STIMULATING OR SUPPRESSING ACTIVITY

A polypeptide of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A polypucleotide of the invention can encode a polypeptide exhibiting such activities. A protein may be useful in the treatment of various immune deficiencies and

WO 02/059260 PCT/US01/42950

disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as beterial or fungal infections, or may result from sutoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpes viruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, proteins of the present invention may also be useful where a boost to the immune system generally may 10 be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, 15 graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein (or antagonists thereof, including antibodies) of the present invention may also to be useful in the treatment of allergic reactions and conditions (e.g., anaphylaxis, serum sickness, drug reactions, food allergies, insect venom allergies, mastocytosis, allergic rhinitis, hypersensitivity pneumonitis, urticaria, angioedema, eczema, atopic dermatitis, allergic 20 contact dermatitis, erythema multiforme, Stevens-Johnson syndrome, allergic conjunctivitis, atopic keratoconjunctivitis, venereal keratoconjunctivitis, giant papillary conjunctivitis and contact allervies), such as asthma (particularly allervic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein (or antagonists thereof) of the present 25 invention. The therapeutic effects of the polypeptides or antagonists thereof on allergic reactions can be evaluated by in vivo animals models such as the cumulative contact enhancement test (Lastborn et al., Toxicology 125: 59-66, 1998), skin prick test (Hoffmann et al., Allergy 54: 446-54, 1999), guinea pig skin sensitization test (Vohr et al., Arch. Toxocol. 73: 501-9), and murine local lymph node assay (Kimber et al., J. Toxicol, Environ, Health 30 53: 563-79).

Using the proteins of the invention it may also be possible to modulate immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of

PCT/IIS01/42950

an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or energy in T cells, is distinguishable from immunosuppression in that it is generally antigen-epecific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without 10 limitation B lymphocyte antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue. skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by 15 T cells, followed by an immune reaction that destroys the transplant. The administration of a therapeutic composition of the invention may prevent cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, a lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient osuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular therapeutic compositions in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in 25 humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA41g fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of therapeutic compositions of the invention on the development of that

52

PCT/US01/42950 WO 02/059260

addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient mounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I alpha chain protein and β2 microglobulin protein or an MHC class II alpha chain protein and an MHC class II beta chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class 10 II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a pentide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeck, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., I. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bowman et al., J. Virology 61:1992-1998; Bertagnolli et al., 25 Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th 1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol, 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J. J. and Brunswick, M. In Current Protocols in Immunology. J. B. e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation,

WO 02/059260

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block stimulation of T cells can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of 10 blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encenhalitis, systemic lunus crythmatosis in MRL/hr/hr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., 15 Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (e.g., a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy, Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response may be useful in cases of viral infection, including systemic viral diseases such as influenza, the common cold, and encephalitis.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form 25 of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T

A polypeptide of the present invention may provide the necessary stimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In

WO 02/059260 PCT/US01/42950

those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; 5 Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783,

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol, 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991: Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of 15 Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte tasis) include without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Goruzyca et al., Leukemia 7:659-670, 1993; Goruzyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of nmunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., Interpational Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and develope include, without limitation, those described in: Antics et al., Blood \$4:111-117, 1994; Fine et 25 al. Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

4.10.8 ACTIVIN/INHIBIN ACTIVITY

A polypeptide of the present invention may also exhibit activin- or inhibin-related activities. A polynucleotide of the invention may encode a polypeptide exhibiting such characteristics. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activing and are characterized by their ability to stimulate the release of follicle stimulating bormone (FSH). Thus, a polypeptide of the present

invention, alone or in heterodimers with a member of the inhibin family, may be useful as a contraceptive based on the ability of inhibins to decrease fartility in female mammals and decrease spermatogenesis in make mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the polypeptide of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pinuitary. See, for example, U.S. Pat. No. 4,798,885. A polypeptide of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as, but not limited to, cows, sheep and

The activity of a polypeptide of the invention may, among other means, be measured by the following methods.

Assays for activin/inhibin activity include, without limitation, those described in: Vale 15 et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3093, 1986.

4.10.9 CHEMOTACTIC/CHEMOKINETIC ACTIVITY

A polypeptide of the present invention may be involved in chemotactic or chemotinetic activity for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Chemotactic and chemotinetic receptor activation can be used to mobilitze or attract a desired cell population to a desired site of action. Chemotactic or chemotinetic compositions (e.g., proteins, antibodies, binding partners, or modulators of the invention) provide particular advantages in treatment of wounds and other traums to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population Preferably, the protein or peptide has the ability to directly stimulate directed movement of

56

WO 02/059260 PCT/US01/42950

invention may be useful for the diagnosis and/or prognosis of one or more types of cancer. For example, the presence or increased expression of a polynucleoxide/polypeptide of the invention may indicate a hereditary risk of cancer, a precancerous condition, or an ongoing malignancy. Conversely, a defect in the gene or absence of the polypeptide may be associated with a cancer condition. Identification of single nucleotide polymorphisms associated with cancer or a predisposition to cancer may also be useful for diagnosis or prognosis.

Cancer treatments promote tumor regression by inhibiting tumor cell proliferation, inhibiting angiogenesis (growth of new blood vessels that is necessary to support tumor growth) and/or prohibiting metastasis by reducing tumor cell motility or invasiveness. Therapeutic compositions of the invention may be effective in adult and pediatric oncology including in solid phase tumors/malignancies, locally advanced tumors, human soft tissue sarcomas, metastatic cancer, including lymphatic metastases, blood cell malignancies including multiple myeloma, acute and chronic leukemias, and lymphomas, head and neck 15 cancers including mouth cancer, larynx cancer and thyroid cancer, hing cancers including small cell carcinoma and non-small cell cancers, breast cancers including small cell carcinoma and ductal carcinoma, gastrointestinal cancers including esophageal cancer, stomach cancer, colon cancer, colorectal cancer and polyps associated with colorectal neonlasia, pencreatic cancers, liver cancer, prologic cancers including bladder cancer and prostate cancer, malignancies of the female genital tract including ovarian carcinoma, uterine (including endometrial) cancers, and solid tumor in the ovarian follicle, kidney cancers including renal cell carcinoma, brain cancers including intrinsic brain tumors, neuroblaston astrocytic brain tumors, gliomas, metastatic tumor cell invasion in the central nervous system, bone cancers including osteomas, skin cancers including malignant melanoma, tumor 25 progression of human skin keratinocytes, aquamous cell carcinoma, basal cell carcinoma. hemangionericytoma and Karposi's sarcoma.

Potypeptides, polynucleotides, or modulators of polypeptides of the invention (including inhibitors and stimulators of the biological activity of the polypeptide of the invention) may be administered to treat cancer. Therapeutic compositions can be administered in therapeutically effective desages alone or in combination with adjuvant cancer therapy such as surgery, chemotherapy, radiotherapy, thermotherapy, and laser therapy, and may provide a beneficial effect, e.g. reducing tumor size, slowing rate of tumor growth, inhibiting metastasis, or otherwise improving overall clinical condition, without cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

Therapeutic compositions of the invention can be used in the following:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, a. M. Kruisbock, D. H. Marguiles, B. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25:1744-1748; Oruber et al. J. of Immunol. 152:1860-5867, 1994; Johnston et al. J. of Immunol. 151:1762-1768, 1994.

4.10.10 HEMOSTATIC AND THROMBOLYTIC ACTIVITY

A polypeptide of the invention may also be involved in hemostasis or thrombotysis or thrombosis. A polymucleotide of the invention can encode a polypeptide exhibiting such attributes. Compositions may be useful in treatment of various congulation disorders

[Including hereditary disorders, such as hemophiliss) or to enhance congulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A composition of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

Therapeutic compositions of the invention can be used in the following:
Assay for hemostatic and thrombolytic activity include, without limitation, those
described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis
Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins
35:467-474, 1988.

4.10.11 CANCER DIAGNOSIS AND THERAPY

Polypeptides of the invention may be involved in cancer cell generation, proliferation or metastasis. Detection of the presence or amount of polynucleotides or polypeptides of the

•

WO 02/059260 PCT/US01/42950

necessarily eradicating the cancer.

The composition can also be administered in therapeutically effective amounts as a portion of an anti-cancer cocktail. An anti-cancer cocktail is a mixture of the polypeptide or nodulator of the invention with one or more anti-cancer drugs in addition to a pharmaceutically acceptable carrier for delivery. The use of anti-cancer cocktails as a cancer treatment is routine. Anti-cancer drugs that are well known in the art and can be used as a treatment in combination with the polypeptide or modulator of the invention include: Actinomycin D, Aminoglutethimide, Asparaginase, Bleomycin, Busulfan, Carboplatin, Carmustine, Chlorambucil, Cisplatin (cis-DDP), Cyclophosphamide, Cytarabine HCl 10 (Cytosine arabinoside), Dacarbazine, Dactinomycin, Daunorubicin HCL Doxorubicin HCL Estramustine phosphate sodium, Etoposide (V16-213), Floxuridine, 5-Fluorouracil (5-Fu), Flutamide, Hydroxyurea (hydroxycarbamide), Ifosfamide, Interferon Alpha-2a, Interferon Alpha-2b, Leuprolide acetate (LHRH-releasing factor analog), Lomustine, Mechlorethamine HCl (nitrogen mustard), Melphalan, Mercaptopurine, Mesna, Methotrexate (MTX), 15 Mitomycin, Mitoxantrone HCl, Octreotide, Plicamycin, Procarbazine HCl, Streptozocin, Tamoxifen citrate, Thioguanine, Thiotepa, Vinblastine sulfate, Vincristine sulfate, Amsacrine, Azacitidine, Hexamethylmelamine, Interleukin-2, Mitoguazone, Pentostatin, Semustine, Teninoside, and Vindesine sulfate,

In addition, therapeutic compositions of the invention may be used for prophylactic treatment of cancer. There are hereditary conditions and/or environmental situations (e.g. exposure to carcinogens) known in the art that predispose an individual to developing cancers. Under these circumstances, it may be beneficial to treat these individuals with therapeutically effective doses of the polypeptide of the invention to reduce the risk of developing cancers.

25 In vitro models can be used to determine the effective doses of the polypeptide of the invention as a potential cancer treatment. These in vitro models include proliferation assays of cultured tumor cells, growth of cultured tumor cells in soft agar (see Freshoey, (1987) Culture of Animal Cells: A Manual of Basic Technique, Wily-Lisa, New York, NY Ch 18 and Ch 21), tumor systems in nude mice as described in Giovanella et al., J. Natl. Can. Inst., 30 52: 921-30 (1974), mobility and invasive potential of tumor cells in Boyden Chamber assays as described in Pikington et al., Anticaneer Res., 17: 4107-9 (1997), and angiogenesis assays such as induction of vascularization of the chick chorioallantoks membrane or induction of vascular endothelial cell migration as a described in Rhama et al., Intl. J. Dev. Biol., 40: 1185-

97 (1999) and Li et al., Clin. Exp. Metastasis, 17:423-9 (1999), respectively. Suitable tumor cells lines are available, e.g. from American Type Tissue Culture Collection catalogs.

RECEPTOR/LIGAND ACTIVITY

A polypeptide of the present invention may also demonstrate activity as receptor. receptor ligand or inhibitor or agonist of receptor/ligand interactions. A polynucleotide of the invention can encode a polypeptide exhibiting such characteristics. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved 10 in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses. Receptors and ligands are also useful for screening of potential peptide or small nolecule inhibitors of the relevant receptor/ligand interaction. A protein of the present 15 invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described 20 in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et 25 al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

By way of example, the polypeptides of the invention may be used as a receptor for a ligand(s) thereby transmitting the biological activity of that ligand(s). Ligands may be identified through binding assays, affinity chromatography, dihybrid screening assays, BIAcore assays, gel overlay assays, or other methods known in the art.

Studies characterizing drugs or proteins as agonist or antagonist or partial agonists or a partial antagonist require the use of other proteins as competing ligands. The polypeptides of the present invention or ligand(s) thereof may be labeled by being coupled to radioisotopes, colorimetric molecules or a toxin molecules by conventional methods. ("Guide

PCT/US01/42950 WO 02/059260

methods, PCR, cloning or proprietary synthetic methods. Of particular interest are peptide and oligonuclentide combinatorial libraries. Still other libraries of interest include pentide. protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, 5 Curr. Opin. Biotechnol. 8:701-707 (1997). For reviews and examples of peptidomimetic libraries, see Al-Obeidi et al., Mol. Biotechnol, 9(3):205-23 (1998); Hruby et al., Curr Opin Chem Biol, 1(1):114-19 (1997); Dorner et al., Bloorg Med Chem, 4(5):709-15 (1996) (alkylated dipeptides).

Identification of modulators through use of the various libraries described herein permits modification of the candidate "hir" (or "lead") to optimize the capacity of the "hit" to bind a polypeptide of the invention. The molecules identified in the binding assay are then tested for antagonist or agonist activity in in vivo tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

The binding molecules thus identified may be complexed with toxins, e.g., ricin or cholers, or with other compounds that are toxic to cells such as radioisotopes. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for a polypeptide of the invention. Alternatively, the binding molecules may be complexed with imaging agents for targeting and imaging purposes.

4.10.14 ASSAY FOR RECEPTOR ACTIVITY

The invention also provides methods to detect specific binding of a polypeptide e.g. a ligand or a receptor. The art provides numerous assays particularly useful for identifying previously unknown binding partners for receptor polypeptides of the invention. For example, expression cloning using mammalian or bacterial cells, or dihybrid screening assays can be used to identify polynucleotides encoding binding partners. As another example, affinity chromatography with the appropriate immobilized polypeptide of the invention can be used to isolate polypeptides that recognize and bind polypeptides of the invention. There are a number of different libraries used for the identification of compounds, and in particular small molecules, that modulate (i.e., increase or decrease) biological activity of a polypeptide of the invention. Ligands for receptor polypeptides of the invention can also be identified by adding exogenous ligands, or cocktails of ligands to two cells populations that are genetically identical except for the expression of the receptor of the invention; one cell population

to Protein Purification" Murray P. Deutscher (ed) Methods in Enzymology Vol. 182 (1990) Academic Press, Inc. San Diego). Examples of radioisotopes include, but are not limited to, tritium and carbon-14. Examples of colorimetric molecules include, but are not limited to, fluorescent molecules such as fluorescamine, or rhodamine or other colorimetric molecules.

5 Examples of toxins include, but are not limited, to ricin.

DRUG SCREENING 4.10.13

This invention is particularly useful for screening chemical compounds by using the novel polypeptides or binding fragments thereof in any of a variety of drug screening 10 techniques. The polypeptides or fragments employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface or located intracellularly. One method of drug screening utilizes cukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or a fragment thereof. Drugs are acreened against such transformed cells in competitive binding assays. 15 Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, the formation of complexes between polypeptides of the invention or fragments and the agent being tested or examine the diminution in complex formation between the novel polypeptides and an appropriate cell line, which are well known in the art.

Sources for test compounds that may be screened for ability to bind to or modulate 20 (i.e., increase or decrease) the activity of polypeptides of the invention include (1) inorganic and organic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of either random or mimetic peptides, oligonucleotides or organic molecules.

Chemical libraries may be readily synthesized or purchased from a number of ommercial sources, and may include structural analogs of known compounds or compounds 25 that are identified as "hits" or "leads" via natural product screening.

The sources of natural product libraries are microorganisms (including bacteria and fungi), animals, plants or other vegetation, or marine organisms, and libraries of mixtures for screening may be created by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of the organisms themselves. Natural product 30 libraries include polyketides, non-ribosomal peptides, and (non-naturally occurring) variants thereof. For a review, see Science 282:63-68 (1998).

Combinatorial libraries are composed of large numbers of peptides, oligonucleotides or organic compounds and can be readily prepared by traditional automated synthesis

WO 02/059260 PCT/US01/42950

expresses the receptor of the invention whereas the other does not. The response of the two cell populations to the addition of ligands(s) are then compared. Alternatively, an expression library can be co-expressed with the polypeptide of the invention in cells and assayed for an autocrine response to identify potential ligand(s). As still another example, BlAcore assays, gel overlay assays, or other methods known in the art can be used to identify binding partner polypeptides, including, (1) organic and inorganic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides or organic molecules.

The role of downstream intracellular signaling molecules in the signaling cascade of 10 the polypeptide of the invention can be determined. For example, a chimeric protein in which the cytoplasmic domain of the polypeptide of the invention is fused to the extracellular portion of a protein, whose ligand has been identified, is produced in a host cell. The cell is then incubated with the ligand specific for the extracellular portion of the chimeric protein, thereby activating the chimeric receptor. Known downstream proteins involved in 15 intracellular signaling can then be assayed for expected modifications i.e. phosphorylation. Other methods known to those in the art can also be used to identify signaling molecules involved in receptor activity

ANTI-INFLAMMATORY ACTIVITY

Compositions of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Compositions with such activities can be used to treat inflamn conditions including chronic or acute conditions), including without limitation infination associated with infection (such as septic shock, sepsis or systemic inflammatory res syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced hung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Compositions of the invention may also be useful to treat ananhylaxis and hypersensitivity to an antigenic substance or material. Compositions of this

WO 02/059260

invention may be utilized to prevent or treat conditions such as, but not limited to, sepsis, acute pancreatitis, endotoxin shock, cytokine induced shock, rheumatold arthritis, chronic inflammatory arthritis, pancreatic cell damage from diabetes mellitus type 1, graft versus host disease, inflammatory bowel disease, inflammation associated with pulmonary disease, other autoimmune disease or inflammatory disease, an antiproliferative agent such as for acute or chronic mylegenous leukemia or in the prevention of premature labor secondary to intrastretion infections.

4.10.16 LEUKEMIAS

Leukemias and related disorders may be treated or prevented by administration of a therapeutic that promotes or inhibits function of the polymucleotides and/or polypeptides of the invention. Such leukemias and related disorders include but are not limited to seute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, myeloblastic, promyelocytic, myelomonocytic, monocytic, erythroleukemia, chronic leukemia, chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia (for a review of such disorders, see Fishman et al., 1985, Medicine, 2d Ed., J.B. Lippincott Co., Philadelphia).

4.10.17 NERVOUS SYSTEM DISORDERS

Nervous system disorders, involving cell types which can be tested for efficacy of
intervention with compounds that modulate the activity of the polynucleotides and/or
polypeptides of the invention, and which can be treated upon thus observing an indication of
therapeutic utility, include but are not limited to nervous system injuries, and diseases or
disorders which result in either a disconnection of axons, a diminution or degeneration of
neurons, or demyelination. Nervous system lesions which may be treated in a patient
[including human and non-human marmmalian patients] according to the invention include
but are not limited to the following lesions of either the central (including spinal cord, brain)
or peripheral nervous systems:

- traumatic lesions, including lesions caused by physical injury or associated with surgery, for example, lesions which sever a portion of the nervous system, or compression injuries;
- ischemic lesions, in which a lack of oxygen in a portion of the nervous system results in neuronal injury or death, including cerebral infarction or ischemia, or spinal cord infarction or ischemia;

PCT/US01/42950

forth in Arakawa et al. (1990, J. Neurosci. 10:1507-3515); increased sprouting of neurons may be detected by methods set forth in Pestronk et al. (1980, Exp. Neurol. 70:65-82) or Brown et al. (1981, Ann. Rev. Neurosci. 4:17-42); increased production of neuron-associated molecules may be measured by bioassay, enzymatic assay, antibody binding. Northern blot 5 assay, etc., depending on the molecule to be measured; and motor neuron dysfunction may be measured by assessing the physical manifestation of motor neuron disorder, e.g., weakness, motor neuron conduction velocity, or functional disability.

In specific embodiments, motor neuron disorders that may be treated according to the invention include but are not limited to disorders such as infarction, infection, exposure to toxin, trauma, surgical damage, degenerative disease or malignancy that may affect motor neurons as well as other components of the nervous system, as well as disorders that selectively affect neurons such as amyotrophic lateral sclerosts, and including but not limited to progressive spinal muscular strophy, progressive bulbar palsy, primary lateral sclerosis, infamile and juvenile muscular strophy, progressive bulbar paralysis of childhood

15 (Fazio-Londe syndrome), poliomyelitia and the post polio syndrome, and Hereditary Motorsensory Neuronethy (Chancot-Marie-Tooth Disease).

4.10.18 OTHER ACTIVITIES

A polypeptide of the invention may also exhibit one or more of the following
additional activities or effects: inhibiting the growth, infection or function of, or killing,
infectious agents, including, without limitation, betteria, viruses, fungl and other parasities;
effecting (suppressing or enhancing) bodily characteristics, hehuding, without limitation,
height, weight, bair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or
organ or body part size or shape (such as, for example, breast augmentation or diminution,
change in bone form or shape); effecting biorhythms or circadian cycles or rhythms; effecting
the fertility of male or fernale subjects; effecting the metabolism, catabolism, anabolism,
processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate,
vitamins, minerals, oc-factors or other nutritional factors or component(s); effecting
behavioral characteristics, including, without limitation, appetite, libido, stress, cognition
(including cognitive disorders), depression (including depressive disorders) and violent
behaviora; providing analgesic effects or other pain reducing effects; promoting
differentiation and growth of embryonic stem cells in lineages other than hemstopoletic
lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of

(iii) infectious lesions, in which a portion of the nervous system is destroyed or injured as a result of infection, for example, by an abscess or associated with infection by human immunodeficiency virus, herpes zoster, or herpes simplex virus or with Lyme disease, tuberculosis, robbility.

- (iv) degeoerative lesions, in which a portion of the aervous system is destroyed or injured as a result of a degenerative process including but not limited to degeneration associated with Parkinson's disease, Alzheimer's disease, Huntington's chorea, or anyotrophic lateral sciencist;
- (v) tesions associated with nutritional diseases or disorders, in which a portion of the nervous system is destroyed or injured by a nutritional disorder or disorder of metabolism including but not limited to, vitamin B12 deficiency, folio acid deficiency, Wernicko disease, cobacco-alcohol amblyopia, Marchiafava-Bignami disease (primary degeneration of the corrus calibration and alcoholio cerebellar degeneration:
- (vi) neurological lesions associated with systemic diseases including but not
 limited to diabetes (diabetic neuropathy, Bell's palsy), systemic hupus crythematosus, carcinoma, or sarcoidosis;
 - (vii) lesions caused by toxic substances including alcohol, lead, or particular neurotoxins; and
- (viii) demyelinated lesions in which a portion of the nervous system is destroyed or injured by a demyelinating disease including but not limited to multiple sciencesis, human immunodeficiency virus-associated myelopathy, transverse myelopathy or various etiologies, progressive multifocal leukoencephalopathy, and central pontine myelinolysis.

Therapeutics which are useful according to the invention for treatment of a nervous
system disorder may be selected by testing for biological activity in promoting the survival or
differentiation of neurons. For example, and not by way of limitation, therapeutics which
elicit any of the following effects may be useful according to the invention:

- (i) increased survival time of neurons in culture:
- (ii) increased sprouting of neurons in culture or in vivo;
- (iii) increased production of a neuron-associated molecule in culture or in vivo,
- 30 e.g., choline acetyltransferase or acetylcholinesterase with respect to motor neurons; or
 - (iv) decreased symptoms of neuron dysfunction in vivo.

Such effects may be measured by any method known in the art. In preferred, non-limiting embodiments, increased survival of neurons may be measured by the method set

65

WO 02/059260 PCT/US01/42950

the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

4.10.19 IDENTIFICATION OF POLYMORPHISMS

The demonstration of polymorphisms makes possible the identification of such polymorphisms in human subjects and the pharmacogenetic use of this information for 10 diagnosts and treatment. Such polymorphisms may be associated with, e.g., differential predisposition or susceptibility to various disease states (such as disorders involving inflammation or immune response) or a differential response to drug administration, and this genetic information can be used to tailor preventive or therapeutic treatment appropriately. For example, the existence of a polymorphism associated with a predisposition to 1st inflammation or autoimmune disease makes possible the diagnosis of this condition in humans by identifying the presence of the onlymorphism.

Polymorphisms can be identified in a variety of ways known in the art which all generally involve obtaining a sample from a patient, analyzing DNA from the sample, ptionally involving isolation or amplification of the DNA, and identifying the presence of the polymorphism in the DNA. For example, PCR may be used to amplify an appropriate fragment of genomic DNA which may then be sequenced. Alternatively, the DNA may be subjected to allele-specific oligonucleotide hybridization (in which appropriate oligonucleotides are hybridized to the DNA under conditions permitting detection of a single base mismatch) or to a single nucleotide extension assay (in which an oligonucleotide that 25 hybridizes immediately adjacent to the position of the polymorphism is extended with one or more labeled nucleotides). In addition, traditional restriction fragment length polymorphism enalysis (using restriction enzymes that provide differential digestion of the genomic DNA depending on the presence or absence of the polymorphism) may be performed. Arrays with nucleotide sequences of the present invention can be used to detect polymorphisms. The 30 array can comprise modified nucleotide senuences of the present invention in order to detect the nucleotide sequences of the present invention. In the alternative, any one of the nucleotide sequences of the present invention can be placed on the array to detect changes from those sequences.

Alternatively a polymorphism resulting in a change in the amino acid sequence could also be detected by detecting a corresponding change in amino acid sequence of the protein, e.g., by an antibody specific to the variant sequence.

4.10.20 ARTHRITIS AND INFLAMMATION

suppressive effects of the compositions of the invention against The immur toid arthritis is determined in an experimental animal model system. The experimental model system is adjuvant induced arthritis in rats, and the protocol is described by J. Holoshitz, et at., 1983, Science, 219:56, or by B. Waksman et al., 1963, Int. Arch. Allergy Appl. Immunol., 23:129. Induction of the disease can be caused by a single injection, generally intradermally, of a suspension of killed Mycobacterium tuberculosis in complete Freund's adjuvant (CFA). The route of injection can vary, but rats may be injected at the base of the tail with an adjuvant mixture. The polypeptide is administered in phosphate buffered solution (PBS) at a dose of about 1-5 mg/kg. The control consists of administering PBS only.

The procedure for testing the effects of the test compound would consist of intradermally injecting killed Mycobacterium tuberculosis in CPA followed by immediately administering the test compound and subsequent treatment every other day until day 24. At 14, 15, 18, 20, 22, and 24 days after injection of Mycobacterium CFA, an overall arthritis score may be obtained as described by J. Holoskitz above. An analysis of the data would reveal that the test compound would have a dramatic affect on the swelling of the joints as measured by a decrease of the arthritis score.

4.11 THERAPEUTIC METHODS

The compositions (including polypeptide fragments, analogs, variants and antibodies 25 or other binding partners or modulators including antisense polynucleotides) of the invention have numerous applications in a variety of therapeutic methods. Examples of therapeutic applications include, but are not limited to, those exemplified herein.

4.11.1 EXAMPLE

15

One embodiment of the invention is the administration of an effective amount of the polypertides or other composition of the invention to individuals affected by a disease or disorder that can be modulated by regulating the peptides of the invention. While the mode of administration is not particularly important, parenteral administration is preferred. An

PCT/US01/42950 WO 02/059260

growth factors (TGF-c; and TGF-B), insulin-like growth factor (IGF), as well as cytokines described herein.

The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or other active ingredient or complement its activity or use 5 in treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein or other active ingredient of the invention, or to minimize side effects. Conversely, protein or other active ingredient of the present invention may be included in formulations of the particular clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or antiinflammatory agent to minimize side effects of the clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent (such as [L-1Ra, IL-1 Hy1, IL-1 Hy2, anti-TNF, corticosteroids, immunosuppressive agents). A protein of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaccutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.

As an alternative to being included in a pharmaceutical composition of the invention including a first protein, a second protein or a therapeutic agent may be concurrently administered with the first protein (e.g., at the same time, or at differing times provided that therapeutic concentrations of the combination of agents is achieved at the treatment site). Techniques for formulation and administration of the compounds of the instant application may be found in "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, latest edition. A therapeutically effective dose further refers to that amount of the compound sufficient to result in amelioration of symptoms, e.g., treatment, healing, prevention or 25 amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or smelloration of such conditions. When applied to an individual active incredient administered alone, a theraneutically effective dose refers to that ingredient alone. When applied to a combination, a therapeutically effective dose refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, scrially or simultaneously.

In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein or other active ingredient of the present invention is administ to a mammal having a condition to be treated. Protein or other active ingredient of the

exemplary mode of administration is to deliver an intravenous bolus. The dosage of the polypeptides or other composition of the invention will normally be determined by the prescribing physician. It is to be expected that the dosage will vary according to the age, weight, condition and response of the individual patient. Typically, the amount of 5 polypeptide administered per dose will be in the range of about 0.01µg/kg to 100 mg/kg of body weight, with the preferred dose being about 0.1µg/kg to 10 mg/kg of patient body weight. For parenteral administration, polypeptides of the invention will be formulated in an injectable form combined with a pharmaceutically acceptable parenteral vehicle. Such vehicles are well known in the art and examples include water, saline, Ringer's solution. 10 decrease solution, and solutions consisting of small amounts of the human scrum albumin. The vehicle may contain minor amounts of additives that maintain the isotonicity and stability of the polypeptide or other active ingredient. The preparation of such solutions is

15 4.12 PHARMACEUTICAL FORMULATIONS AND ROUTES OF ADMINISTRATION

A protein or other composition of the present invention (from whatever source derived, including without limitation from recombinant and non-recombinant sources and including antibodies and other binding partners of the polypeptides of the invention) may be tered to a patient in need, by itself, or in pharmaceutical compositions where it is mixed with suitable carriers or excipient(s) at doses to treat or ameliorate a variety of disorders. Such a composition may optionally contain (in addition to protein or other active ingredient and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The term "pharmaceutically acceptable" means a non-toxic meterial that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNF0, TNF1, TNF2, 30 G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin. In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the disease or disorder in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming

PCT/IIS01/42950 WO 02/059260

present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When co-administered with one or more cytokines, lymphokines or other hematopoietic factors, protein or other active ingredient of 5 the present invention may be administered either simultaneously with the cytokine(s). lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein or other active ingredient of the present evention in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), 10 thrombolytic or anti-thrombotic factors.

4.12.1 ROUTES OF ADMINISTRATION

Suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, 15 intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections. Administration of protein or other active ingredient of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or cutaneous, subcutaneous, intraperitoneal, 20 parenteral or intravenous injection. Intravenous administration to the patient is preferred.

Alternately, one may administer the compound in a local rather than systemic manner, for example, via injection of the compound directly into a arthritic joints or in fibrotic tissue. often in a depot or sustained release formulation. In order to prevent the scarring process frequently occurring as complication of glaucoma surgery, the compounds may be administered topically, for example, as eye drops. Furthermore, one may administer the drug in a targeted drug delivery system, for example, in a liposome costed with a specific antibody, targeting, for example, arthritic or fibrotic tissue. The liposomes will be targeted to and taken up selectively by the afflicted tissue.

The polypeptides of the invention are administered by any route that delivers an effective dosage to the desired site of action. The determination of a suitable route of administration and an effective dosage for a particular indication is within the level of skill in the art. Preferably for wound treatment, one administers the therapeutic compound directly to the site. Suitable dosage ranges for the polypeptides of the invention can be extrapolated

from these dosages or from similar studies in appropriate animal models. Dosages can then be adjusted as necessary by the clinician to provide maximal therapeutic benefit.

4.12.2 COMPOSITIONS/FORMULATIONS

Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in a conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. These pharmaceutical compositions may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragoo-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. Proper formulation is dependent upon the route of administration chosen. When a therapeutically effective amount of protein or other active ingredient of the present invention is administered orally, protein or other active ingredient of the present invention will be in the form of a tablet, capsule, powder, solution or 15 elixir. When administered in tablet form, the pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein or other active ingredient of the present invention, and preferably from about 25 to 90% protein or other active ingredient of the present invention. When administered in liquid form, a liquid carrier such as water, 20 petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% 25 by weight of protein or other active ingredient of the present invention, and preferably from about 1 to 50% protein or other active ingredient of the present invention.

When a therapeutically effective amount of protein or other active ingredient of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein or other active ingredient of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein or other active ingredient solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein or

72

WO 02/059260 PCT/US01/42950

glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration. For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present

invention are conveniently delivered in the form of an aerosol spray presentation from
pressurized packs or a nebuliser, with the use of a suitable propellant, e.g.,
dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide
or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined
by providing a valve to deliver a metzered amount. Capsules and carridges of, e.g., gelatin
for use in an inhaler or insufflator may be formulated containing a powder mix of the
compound and a suitable powder base such as lactose or starch. The compounds may be
formulated for parenteral administration by injection, e.g., by bolus injection or continuous
infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampules
or in multi-dose containers, with an added preservative. The compositions may take such
formulatory agents such as suspending, stabilizing and/or dispersing agents.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sessme oil, or synthetic fatty acid esters, such as ethyl oleste or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before

The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as occos butter or other glycerides. In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable other active ingredient of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art. For Injection, the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the burrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art. Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained from a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules. after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidore, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may ortionally contain gum arabic, tale, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or 25 titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as falc or magnesium stearate and, optionally, stabilizzers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene

7

WO 02/059260 PCT/US01/42950

polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

A pharmaceutical carrier for the hydrophobic compounds of the invention is a cosolvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. The co-solvent system may be the VPD co-solvent system. VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. The VPD co-solvent system (VPD:5W) consists of VPD diluted 1:1 with a 5% dextrose in water solution. This co-solvent system dissolves hydrophobic compounds well, and itself produces 10 low toxicity upon systemic administration. Naturally, the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of polysorbate 80; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene 15 glycol, e.g. polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose. Alternatively, other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs. Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity. Additionally, the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various types of sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the 25 biological stability of the therapeutic reagent, additional strategies for protein or other active ingredient stabilization may be employed.

The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols. Many of the active ingredients of the invention may be provided as salts with pharmaceutically compatible counter ions. Such pharmaceutically exceptable base addition salts are those salts which retain the biological effectiveness and properties of the free acids and which are obtained by reaction with

inorganic or organic bases such as sodium hydroxide, magnesium hydroxide, ammonia, trialhylamine, dialhylamine, monoalhylamine, dibaslo amino acids, sodium acetate, potasshum benzoate, triethanol amino and the like.

The pharmaceutical composition of the invention may be in the form of a complex of
the protein(s) or other active ingredient(s) of present invention along with protein or peptide
antigens. The protein and/or peptide antigen will deliver a stimulatory signal to both B and T
lymphocytes. B lymphocytes will respond to antigen through their aurface inmunoglobulin
receptor. T lymphocytes will respond to antigen through the T cell receptor (TCR) following
presentation of the antigen by MHC proteins. MHC and structurally related proteins
including those encoded by class I and class II MHC genes on host cells will serve to present
the peptide antigen(s) to T lymphocytes. The antigen components could also be supplied as
purified MHC-peptide complexes alone or with co-atimulatory molecules that can directly
signal T cells. Alternatively antibodies able to bind surface immunoglobulin and other
molecules on B cells as well as antibodies able to bind the TCR and other molecules on T
cells can be combined with the pharmaceutical composition of the invention.

The pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution.

20 Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, hysolecithins, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Patent Nos. 4,235,871; 4,501,728; 4,837,028; and 4,737,323, all of which are incorporated herein by reference.

The amount of protein or other active ingredient of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein or other active ingredient of the present invention with which to treat each individual patient.

Initially, the attending physician will administer low doses of protein or other active ingredient of the present invention and observe the patient's response. Larger doses of protein or other active ingredient of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not

76

WO 02/059260 PCT/US01/42950

weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns. In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociatins from the matrix.

A preferred family of sequestering agents is cellulosic materials such as alkylcelluloses (including hydroxyalkylcelluloses), including methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropyl-methylcellulose, and carboxymethylcellulose, the most preferred being cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate, poly(ethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and poly(vinyl alcohol). The amount of sequestering agent useful herein is 0.5-20 wt %, preferably 1-10 wt % based on total formulation weight, which represents the amount necessary to prevent description of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby 15 providing the protein the opportunity to assist the osteogenic activity of the progenitor cells. In further compositions, proteins or other active ingredients of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, yound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors 20 (TGF-α and TGF-β), and insufin-like growth factor (IGF).

The therapeutic compositions are also presently valuable for veterinary applications.

Particularly domestic animals and thoroughbred horses, in addition to humans, are desired patients for such treatment with proteins or other active ingredients of the present invention. The desage regimen of a protein-containing pharmaceutical composition to be used in tissue 25 regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, e.g., amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (e.g., bone), the patient's age, sex, and dict, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used 30 in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF 1 (insulin like growth factor i), to the final composition, may also effect the dosage. Progress can be monitored by

increased further. It is contemptated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.01 μg to about 100 mg(preferably about 0.1 µg to about 10 mg, more preferably about 0.1 µg to about 1 mg) of protein or other active ingredient of the present invention per kg body weight. For 5 compositions of the present invention which are useful for bone, cartilage, tendon or ligament regeneration, the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Purther, the composition may desirably be encapsulated or injected in a 10 viscous form for delivery to the site of bone, cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein or other active ingredient of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the 15 methods of the invention. Preferably for bone and/or cartilage formation, the composition ould include a matrix capable of delivering the protein-containing or other active ingredient-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted 20 medical applications.

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the compositions will define the appropriate formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalcium phosphata, hydroxyapatite, polyfactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxyapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised 30 of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalcium phosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle size, particle shape, and biodegradability. Presently preferred is a 50:50 (mole

"

WO 02/059260 PCT/US01/42950

periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either in vivo or ex vivo into cells for expression in a 5 mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic 10 oursesses.

4.12.3 EFFECTIVE DOSAGE

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve 13 its intended purpose. More specifically, a therapeutically effective amount means an amount effective to prevent development of or to alleviate the existing symptoms of the subject being treated. Determination of the effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially 20 from appropriate in vitro assays. For example, a dose can be formulated in animal models to achieve a circulating concentration range that can be used to more accurately determine useful doses in humans. For example, a dose can be formulated in animal models to achieve a circulating concentration range that includes the IC₂₀ as determined in cell culture (i.e., the concentration of the test compound which achieves a half-maximal inhibition of the protein's 15 biological activity). Such information can be used to more accurately determine useful doses in humans.

A therapeutically effective dose refers to that amount of the compound that results in amelioration of symptoms or a prolongation of survival in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD₂₀ (the dose lethal to 50% of the population) and the ED₂₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD₂₀ and ED₂₀. Compounds which exhibit high therapeutic

PCT/ISB1/21960

indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage may vary within this range depending upon the dosage form 5 employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. See, e.g., Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p.1. Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the desired effects, or minimal effective 10 concentration (MEC). The MEC will vary for each compound but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.

Dosage intervals can also be determined using MEC value. Compounds should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%. In cases of local administration or selective untake, the effective local concentration of the drug may not be related to plasma concentration.

An exemplary dosage regimen for polypeptides or other compositions of the invention 20 will be in the range of about 0.01 µg/kg to 100 mg/kg of body weight daily, with the preferred dose being about 0.1 µg/kg to 25 mg/kg of patient body weight daily, varying in adults and children. Dosing may be once daily, or equivalent doses may be delivered at longer or shorter intervals.

The amount of composition administered will, of course, be dependent on the subject 25 being treated, on the subject's age and weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.

4.12.4 PACKAGING

The compositions may, if desired, be presented in a pack or dispenser device which 30 may contain one or more unit dosage forms containing the active ingredient. The pack may, for example, comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. Compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be

PCT/US01/42950 WO 02/059260

targeting antibody production, hydropathy plots showing regions of hydrophilicity and obicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier mation. See, e.g., Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; 5 Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each of which is incorporated herein by reference in its entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided

A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.

Various procedures known within the art may be used for the production of polycional or monocional antibodies directed against a protein of the invention, or against terivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, incorporated herein by reference). Some of these antibodies are

4.13.1 POLYCLONAL ANTIBODIES

20

For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native tein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a 25 recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keybole limnet hemocyanin. serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response 30 include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. prepared, placed in an appropriate container, and labeled for treatment of an indicated condition

4.13 ANTIBODIES

WO 02/059260

Also included in the invention are antibodies to proteins, or fragments of proteins of the invention. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, F_{\pm} 10 F_{ab} and F_{(ab)2} fragments, and an F_{ab} expression library. In general, an antibody molecule obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG_1 , IgG_2 and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a 15 reference to all such classes, subclasses and types of human antibody species.

An isolated related protein of the invention may be intended to serve as an antigen, or a portion or fragment thereof, and additionally can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, 20 the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, such as the amino acid sequences shown in SEQ ID NO: 342-682, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that 25 contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions

In certain embodiments of the invention, at least one epitope encompassed by the 30 antigenic peptide is a region of -related protein that is located on the surface of the protein, e.g., a hydrophilic region. A hydrophobicity analysis of the human related protein sequence will indicate which regions of a related protein are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for

WO 02/059260 PCT/US01/42950

Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A. synthetic trehalose dicorynomycolate).

The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known 5 techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. 10 Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia PA, Vol. 14, No. 8 (April 17, 2000), pp. 25-28).

4.13.2 MONOCLONAL ANTIBODIES

The term "monoclonal antibody" (MAb) or "monoclonal antibody composition", as 15 used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAhs thus contain an antigen binding site capable of immunoreacting with a particular epitope of the 20 antigen characterized by a unique binding affinity for it.

Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will

25 specifically bind to the immunizing agent. Alternatively, the tymphocytes can be immunized The immunizing agent will typically include the protein antigen, a fragment thereof or a

fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human 30 mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly

PCT/US01/42950

WO 02/059260

myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, eminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a modium auch as HAT medium. More preferred immortalized cell lines are murine myelotra lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouso-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Intravnol., 133:3001 (1984);

15 Brodeur et al., Monoclonal Antibody Production Techniques and Applications. Marcel Dekker, Inc., New York, (1987) pp. 31-63).

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, <u>Anal. Biochem.</u> 107:220 (1980). Preferably, antibodies having a high degree of specificity and a high binding affinity for the target antigen are isolated.

After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods. Suitable culture media for this purpose include, for example, Duibecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites a mammal.

The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatito chromatography, gel electrophoresis, dialysis, or affinity chromatography.

••

WO 02/059260 PCT/US01/42950

imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Ricchmann et al., 1988; and Presta, Qurr, Qp., Struct, Biol., 2:593-596 (1992)).

4.13.4 HUMAN ANTIBODIES

Fully human antibodies relate to antibody molecules in which essentially the entire sequences of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies", or "fully human antibodies" herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV 15 hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).

In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboorn and Winter, L.Mol. Biol., 227:381 (1991); Marks et al., L.Mol. Biol., 222:381 (1991). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been pertially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Pattent Nos. 2,54,807; 5,54,506; 35,56,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Vanus 168 836-859 (1994)); Morrison (Rature 168 812-13 (1994)); Fishwild et al. (Nature 168 814-51 (1996)); Neuberger (Nature

The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the 5 heavy and light chains of murine antibodies). The hybridoms cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression tors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA . 10 also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a nonimmunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted 15 for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

4.13.3 HUMANIZED ANTIBODIES

The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administration to humans without engendering an immune response by the human against the administration furnamoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab'), 25 or other antigen-binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., <u>Nature</u>, 321:522-525 (1986); Riechmann et al., <u>Mature</u>, 312:323-327 (1988); Verhoeyen et al., <u>Science</u>, 232:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Patent No. 5,225,519). In some instances, Fv firmnework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the

.

WO 02/059260 PCT/US01/42950

<u>Biotechnology</u> 14, 826 (1996)); and Lonberg and Huszar (<u>Intern. Rev. Immunol</u>, 13 65-93 (1995)).

Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human 10 DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the Xenomouse™ as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully huma immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the 20 antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.

An example of a method of producing a nonhuman bost, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous beavy chain bouts in an embryonic attended in prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable

A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Patent No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a beavy chain into one mammalian bost cell in

WO 02/059260 PCT/US01/42950

culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and flusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.

In a further improvement on this procedure, a method for identifying a clinically
relevant epitope on an immunogen, and a correlative method for selecting an antibody that
binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT
publication WO 99/53049.

4.13.5 F. FRAGMENTS AND SINGLE CHAIN ANTIBODIES

According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Patent No. 4,946,778). In addition, methods can be adapted for the construction of F_α expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal F_α fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an F_α fragment produced by pepain digestion of an antibody molecule; (ii) an F_α fragment generated by reducing the disulfide bridges of an F_{(α}P₂ fragment; (iii) an F_α fragment generated by the treatment of the antibody molecule with papain and a reducing 20 agent and (iv) F, fragments.

4.13.6 BISPECIFIC ANTIBODIES

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 205:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the

88

WO 02/059260 PCT/US01/42950

derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Additionally, Fab' fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 1752.17-225 (1992) describe the production of a fully humanized bispecific antibody F(ab'); molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol, 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (V_{H}) connected to a light-chain variable domain (V1) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary V1 and V1 domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et 25 al., J. Immunol, 152:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., <u>1. immunol</u>, 147:60 (1991). Exemplary bispecific antibodies can bind to two different epitopea, at least one of which originates in the protein antigen of the invention. More anti-antigenic arm of an immunogiabulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyta such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcyR), such as FcyRII (CD64), FcyRII (CD12) and FcyRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific

correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08229, published 13 May 1993, and in Traunecker et al., 1991 EMBO J., 10:3655-3659.

Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fissed to immunoglobulin constant domain sequences. The fusion perferrably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are cotransfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Swesh et al., Methods in Enzymology, 121:210 (1986).

According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers 15 which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

Bispecific antibodies can be prepared as full length antibodies or antibody fragments

(e.g. F(ab')₂ bispecific antibodies). Techniques for generating bispecific antibodies from

25 antibody fragments have been described in the literature. For example, bispecific antibodies

can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a

procedure wherein intent antibodies are proteolytically cleaved to generate F(ab')₂ fragments.

These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite

to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab'

30 fragments generated are then converted to the historibeazoate (TNB) derivatives. One of the

Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with

mercaptocthylamine and is mixed with an equimolar emount of the other Fab'-TNB

WO 02/059260 PCT/US01/42950

antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further 5 binds tissue factor (TP).

4.13.7 HETEROCONJUGATE ANTIBODIES

Heteroconjugate antibodies are also within the scope of the present invention.

Heteroconjugate antibodies are composed of two covalently joined antibodies. Such
antibodies have, for example, been proposed to target immune system cells to unwanted cells
(U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO
92/200373; EP 93089). It is contemplated that the antibodies can be prepared in vitro using
known methods in synthetic protein chemistry, including those involving crosslinking agents.

For example, immunotoxins can be constructed using a disulfide exchange reaction or by
forming a thioether bond. Examples of suitable reagents for this purpose include
immorbiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S.
Patent No. 4,676,980.

4.13.8 EFFECTOR FUNCTION ENGINEERING

20 It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cyntrine residue(s) can be introduced into the Fe region, thereby allowing interchain disulfide bond formation in this region. The bomodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-finkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fe regions and can thereby have enhanced complement lytis and ADCC capabilities. See Strevnson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).

4.13.9 IMMUNOCONJUGATES

15

The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive 5 isotope (i.e., a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, 10 alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictorin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include 212Bi, 131I, 131In, 40Y, and 186Re.

Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (FD), bifunctional derivatives of imidoesters (such as dimethyl administrate HCL), active exters (such as dissocinimidy) subcrate), aldehydes (such as stutureldehyde), bis-ezido compounds (such es bis (p-ezidobenzoyf) bexanediamine), bisdiazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-dilsocyanate), and bis-active fluorine compounds (such as 1,5-diffuoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for 25 conjugation of radionucleotide to the antibody. See WO94/11026.

In another embodiment, the antibody can be conjugated to a "receptor" (such as streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is in turn 30 conjugated to a cytotoxic agent.

PCT/US01/42950 WO 02/059260

(Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system is used to identify open reading frames (ORFs) within a nucleic acid sequence. Such ORFs may be protein encoding fragments and may be useful in producing commercially important proteins such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention. As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means. As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present

As used herein, "search means" refers to one or more programs which are mented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of a known sequence which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the 25 computer-based systems of the present invention. Examples of such software includes, but is not limited to, Smith-Waterman, MacPattern (EMBL), BLASTN and BLASTA (NPOLYPEPTIDEIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems. As used herein, a "target sequence" can be any nucleic acid or amino acid sequence of six or more nucleotides or two or more mino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 300 amino acids,

4.14 COMPUTER READABLE SEQUENCES

W/O 02/059260

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media 5 include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tane; ontical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word rocessing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data processor structuring formats (e.g. text file or database) in order to obtain computer 25 readable medium having recorded thereon the nucleotide sequence information of the present

By providing any of the nucleotide sequences SEQ ID NO: 1-341 or a representative fragment thereof; or a nucleotide sequence at least 95% identical to any of the nucleotide sequences of SEO ID NO: 1-341 in computer readable form, a skilled artisan can routinely access the sequence information for a variety of purposes. Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE

WO 02/059260 PCT/IIS01/42950

more preferably from about 30 to 100 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzyme active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

4 15 TRIPLE HELIX FORMATION

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Polynucleotides suitable for use in these methods are preferably 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 15241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense -Olmno, J. Neurochem, 56:560 (1991); Oligodeoxymicleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the 25 present invention is necessary for the design of an antisense or triple helix oligonucleotide.

4.16 DIAGNOSTIC ASSAYS AND KITS

The present invention further provides methods to identify the presence or expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using a nucleic acid probe or antibodies of the present invention, optionally conjugated or otherwise expociated with a suitable label.

In general, methods for detecting a polynocleotide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the

polynucleotide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polynucleotide of the invention is detected in the sample. Such methods can also comprise contacting a sample under stringent hybridization conditions with nucleic acid primers that anneal to a polynucleotide of the invention under such conditions, and amplifying annealed polynucleotides, so that if a polynucleotide is amplified, a polynucleotide of the invention is detected in the sample.

In general, methods for detecting a polypeptide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polypeptide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polypeptide of the invention is detected in the sample.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the nucleic acid probes of the present invention and assaying for binding of the nucleic acid probes or antibodies to components within the test sample.

Conditions for incubating a nucleic acid probe or antibody with a test sample vary. 15 Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid probe or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the nucleic acid probes or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G.R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tilssen, P., Practice and Theory of immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The 25 Netherlands (1985). The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as souturn, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention. Specifically, the

96

VO 02/059260 PCT/US01/4295

encoded by an ORF corresponding to any of the nucleotide sequences set forth in SEQ ID NO: 1-341, or bind to a specific domain of the polypeptide encoded by the nucleic acid. In detail, said method comprises the steps of:

- (a) contacting an agent with an isolated protein encoded by an ORF of the present
 invention, or nucleic acid of the invention; and
- (b) determining whether the agent binds to said protein or said nucleic acid. In general, therefore, such methods for identifying compounds that bind to a polynucleotide of the invention can camprise contacting a compound with a polynucleotide of the invention for a time sufficient to form a polynucleotide/compound complex, and 10 detecting the complex, so that if a polynucleotide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Likewise, in general, therefore, such methods for identifying compounds that bind to a polypeptide of the invention can comprise contacting a compound with a polypeptide of the invention for a time sufficient to form a polypeptide/compound complex, and detecting the 5 complex, so that if a polypeptide/compound complex is detected, a compound that binds to a polymethotide of the invention is identified.

Methods for identifying compounds that bind to a polypeptide of the invention can also comprise contacting a compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a receptor gene sequence in the cell, and detecting the complex by detecting reporter gene sequence expression, so that if a polypeptide/compound complex is detected, a compound that binds a polypeptide of the invention is identified.

Compounds identified via such methods can include compounds which modulate the activity of a polypeptide of the invention (that is, increase or decrease its activity, relative to activity observed in the absence of the compound). Alternatively, compounds identified via such methods can include compounds which modulate the expression of a polymucleotide of the invention (that is, increase or decrease expression relative to expression levels observed in the absence of the compounds). Compounds, such as compounds identified via the methods of the invention, can be tested using standard assays well known to those of skill in the art for their ability to modulate activity/compression.

The agents acreened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be

invention provides a compartment kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the probes or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound probe or antibody.

In detail, a compartment kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody or probe. Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody. One skilled in the art will readily recognize that the disclosed probes and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4.17 MEDICAL IMAGING

The novel polypeptides and binding partners of the invention are useful in medical imaging of sites expressing the molecules of the invention (e.g., where the polypeptide of the invention is involved in the immune response, for imaging sites of inflammation or infection). See, e.g., Kunkel et al., U.S. Pat. NO. 5,413,778. Such methods involve chemical attachment of a labeling or imaging agent, administration of the labeled polypeptide to a subject in a pharmaceutically acceptable carrier, and imaging the labeled polypeptide in vivo at the tarvet site.

4.18 SCREENING ASSAYS

Using the isolated proteins and polynucleotides of the invention, the present invention further provides methods of obtaining and identifying agents which bind to a polypeptide

9

WO 02/059260 PCT/US01/4295

selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein 5 encoded by the ORF of the present invention. Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like, capable of binding to a specific peptide sequence, in order 10 to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides. Antisense Peptides." In Synthetic Peptides, A User's Guide, W.H. Freeman, NY (1992), pp. 289-307, and Kaspezak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly

described, can be used to control gene expression through binding to one of the ORFs or

EMFs of the present invention. As described above, such agents can be randomly screened

or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design

sequence specific or element specific agents, modulating the expression of either a single

ORF or multiple ORFs which rely on the same EMF for expression control. One class of

DNA binding agents are agents which contain base residues which hybridize or form a triple

beltx formation by binding to DNA or RNA. Such agents can be based on the classic

phosphodicator, ribonucleic acid backbone, or can be a variety of suffnydryl or polymeric

derivatives which have base attachment capacity.

Agents suitable for use in these methods preferably contain 20 to 40 bases and are

25 designed to be complementary to a region of the gene involved in transcription (triple helix see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and
Dervan et al., Science 251:1360 (1991); or to the mRNA itself (entisense - Okano, J.

Neurochem. 56:360 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene
Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in

30 a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks

translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated
to be effective in model systems. Information contained in the sequences of the present

invention is necessary for the design of an antisense or triple helix oligonucleotide and other DNA binding agents.

Agents which bind to a protein encoded by one of the ORFs of the present invention can be used as a diagnostic agent. Agents which bind to a protein encoded by one of the 5 ORFs of the present invention can be formulated using known techniques to generate a pharmaceutical composition.

4.19 USE OF NUCLEIC ACIDS AS PROBES

Another aspect of the subject invention is to provide for polypeptide-specific nucleic
acid hybridization probes capable of hybridizing with naturally occurring nucleotide
sequences. The hybridization probes of the subject Invention may be derived from any of the
nucleotide sequences SEQ ID NO: 1-341. Because the corresponding gene is only expressed
in a limited number of tissues, a hybridization probe derived from any of the nucleotide
sequences SEQ ID NO: 1-341 can be used as an indicator of the presence of RNA of cell type
15 of such a tissue in a sample.

Any suitable hybridization technique can be employed, such as, for example, in aim hybridization. PCR as described in US Patents Nos. 4,683,195 and 4,965,188 provides additional uses for oligonucleotides based upon the nucleotide sequences. Such probes used in PCR may be of recombinant origin, may be chemically synthesized, or a mixture of both. The probe will comprise a discrete nucleotide sequence for the detection of identical sequences or a degenerate pool of possible sequences for identification of closely related renomic sequences.

Other means for producing specific hybridization probes for nucleic acids include the cloning of nucleic acid sequences into vectors for the production of mRNA probes. Such vectors are known in the art and are commercially available and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerase as T7 or SP6 RNA polymerase and the appropriate radioactively labeled nucleotides. The nucleotide sequences may be used to construct hybridization probes for mapping their respective genomic sequences. The nucleotide sequence provided herein may be mapped to a chromosome of specific regions of a chromosome using well known genetic and/or chromosomal mapping techniques. These techniques include in situ hybridization, linkage analysis against known chromosomal markers, hybridization screening with libraries or flow-sorted chromosomal preparations specific to known chromosomes, and the like. The

WO 02/059260 PCT/US01/4295

secondary amino groups (>NH) that serve as bridge-heads for further covalent coupling.

Coval.ink Modules may be purchased from Nunc Laboratories. DNA molecules may be bound to Coval.ink exclusively at the 5'-end by a phosphoramidate bond, allowing immobilization of more than 1 pmol of DNA (Rasmussen et al., (1991) Anal. Biochem. 198(1) 138-42).

The use of CovaLink NH strips for covalent binding of DNA molecules at the 5'-end has been described (Rasmussen et al., (1991). In this technology, a phosphoramidate bond is employed (Chu et al., (1983) Nucleic Acids Res. 11(8) 6513-29). This is beneficial as immobilization using only a single covalent bond is preferred. The phosphoramidate bond joins the DNA to the CovaLink NH secondary amino groups that are positioned at the end of spacer arms covalently grafted onto the polystyrene surface through a 2 nm long spacer arm. To link an oligonuclectide to CovaLink NH via an phosphoramidate bond, the oligonuclectide terminus must have a 5'-end phosphate group. It is, perhaps, even possible for biotin to be covalently bound to CovaLink and then streptavidin used to bind the probes.

More specifically, the linkage method includes dissolving DNA in water (7.5 ng/ul) and 15 densturing for 10 min. at 95°C and cooling on loc for 10 min. los-cold 0.1 M 1-methylimidazole, pH 7.0 (1-MeIn-), is then added to a final concentration of 10 mM 1-MeIn-. The single-stranded DNA solution is then dispensed into CovaLink NH strips (75 ul/well) standing on loc.

Carbodiimide 0.2 M 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), dissolved

in 10 mM 1-Melm, is made fresh and 25 µl added per well. The strips are incubated for 5 hours
at 50°C. After incubation the strips are washed using, e.g., Nuno-Immuno Wash; first the wells
are washed 3 times, then they are soaked with washing solution for 5 min., and finally they are
washed 3 times (where in the washing solution is 0.4 N NaOH, 0.25% SDS beated to 50°C).

It is contemplated that a further suitable method for use with the present invention is that
25 described in PCT Patent Application WO 90/03/82 (Southern & Maskus), incorporated herein
by reference. This method of preparing an oligonucleotide bound to a support involves
attaching a nucleoside 3-reagent through the phosphate group by a covalent phosphodiester link
to aliphatic hydroxyl groups carried by the support. The oligonucleotide is then synthesized on
the supported nucleoside and protecting groups removed from the synthetic oligonucleotide
to that under standard conditions that do not cleave the oligonucleotide from the support.

Suitable reagents include mulcoside byhosphorumidits and nucleoside hydrogen phosphorate.

An on-chip strategy for the preparation of DNA probe for the preparation of DNA probe arrays may be employed. For example, addressable laser-activated photodeprotection may be technique of fluorescent in situ hybridization of chromosome spreads has been described, among other places, in Verma et al (1988) Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York NY.

Fluorescent in situ hybridization of chromosomal preparations and other physical

5 chromosome mapping techniques may be correlated with additional genetic map data.

Examples of genetic map data can be found in the 1994 Genome Issue of Science

(265:1981f). Correlation between the location of a nucleic solid on a physical chromosomal

map and a specific disease (or predisposition to a specific disease) may help delimit the

region of DNA associated with that genetic disease. The nucleotide sequences of the subject

10 invention may be used to detect differences in gene sequences between normal, carrier or

affected individuals.

4.20 PREPARATION OF SUPPORT BOUND OLIGONUCLEOTIDES

Oligonucleotides, i.e., small nucleic acid segments, may be readily prepared by, for example, directly synthesizing the oligonucleotide by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer.

Support bound oligonucleotides may be prepared by any of the methods known to those of skill in the art using any suitable support such as glass, polystyrene or Terlon. One strategy is to precisely spot oligonucleotides synthesized by standard synthesizers. Immobilization can be achieved using passive adsorption (thouge & Hondo, (1990) J. Clin. Microbiol. 226, 01469-72); 20 using UV light (Nagnta et al., 1985; Dahlen et al., 1987; Morrissey & Collins, (1989) Mol. Cell Probes 3(2) 189-207) or by covalent binding of base modified DNA (Keller et al., 1983; 1989); all references being specifically incorporated herein.

Another strategy that may be employed is the use of the strong biotin-streptavidin interaction as a linker. For example, Broade et al. (1994) Proc. Natl. Acad. Sci. USA 91(8) 3072-6, describe the use of hiodinylated probes, atthough these are duplex probes, that are immobilized on streptavidin-coated magnetic beads. Streptavidin-coated beads may be purchased from Dynal, Oslo. Of course, this same linking chemistry is applicable to coating any surface with streptavidin. Biotinylated probes may be purchased from various sources, such as, e.g., Operon Technologies (Alameda, CA).

Nunc Laboratories (Naperville, IL) is also selling suitable meterial that could be used.

Nunc Laboratories have developed a method by which DNA can be covalently bound to the
microwell surface termed Covalink NH. Coval.ink NH is a polystyrene surface grafted with

10

WO 02/059260 PCT/US01/42950

employed in the chemical synthesis of oligonucleotides directly on a glass surface, as described by Fodor et al. (1991) Science 251(4995) 767-73, incorporated herein by reference. Probes may also be immobilized on nyton supports as described by Van Ness et al. (1991) Nucleio Acids Res. 19(12) 3345-50; or linked to Teflon using the method of Duncan & Cavalier (1988) Anal. Blochem. 169(1) 104-8; all references being specifically incorporated herein.

To link an oligonucleotide to a nylon support, as described by Van Ness et al. (1991), requires activation of the nylon surface via alkylation and selective activation of the 5'-amine of oligonucleotides with evanuric chloride.

One particular way to prepare support bound oligonucleotides is to utilize the
light-generated synthesis described by Pease et al., (1994) PNAS USA 91(11) 5022-6,
incorporated berein by reference). These authors used current photolithographic techniques to
generate arrays of immobilized oligonucleotide probes (DNA chips). These methods, in which
light is used to direct the synthesis of oligonucleotide probes in high-density, miniaturized
arrays, utilize photolabile 5'-protected N-acyl-deoxynucleotide phosphoramidites, surface linker
the chemistry and versatile combinatorial synthesis strategies. A matrix of 256 spatialty defined
oligonucleotide probes may be generated in this manner.

4.21 PREPARATION OF NUCLEIC ACID FRAGMENTS

The nucleic acids may be obtained from any appropriate source, such as cDNAs, genomic DNA, chromosomal DNA, microdissected chromosome bends, cosmid or YAC inserts, and RNA, including mRNA without any amplification steps. For example, Sambrook et al. (1989) describes three protocols for the isolation of high molecular weight DNA from mammalian cells (p. 9.14-9.23).

DNA fragments may be prepared as clones in M13, plasmid or tambda vectors and/or prepared directly from genomic DNA or cDNA by PCR or other amplification methods.

25 Samples may be prepared or dispensed in multiwell plates. About 100-1000 ng of DNA samples may be prepared in 2-500 ml of final volume.

The nucleic acids would then be fragmented by any of the methods known to those of skill in the art including, for example, using restriction enzymes as described at 9.24-9.28 of Sambrook et al. (1989), shearing by ultrasound and NaOH treatment.

Low pressure shearing is also appropriate, as described by Schriefer et al. (1990) Nucleic Acids Res. 18(24) 7455-6, incorporated herein by reference). In this method, DNA samples are passed through a small French pressure cell at a variety of low to intermediate pressures. A lever device allows controlled application of low to intermediate pressures to the cell. The results of these studies indicate that low-pressure shearing is a useful alternative to sonic and enzymatic DNA fragmentation methods.

One particularly suitable way for fragmenting DNA is contemplated to be that using the 5 two base recognition endomoclease, CvIII, described by Fitzgerald et al. (1992) Nucleic Acids Res. 20(14) 3753-62. These authors described an approach for the rapid fragmentation and fractionation of DNA into particular sizes that they contemplated to be suitable for shotgum cloning and sequencing.

The restriction endonuclease CvIII normally cleaves the recognition sequence PuGCPy

10 between the G and C to leave blunt ends. Atppical reaction conditions, which after the
specificity of this enzyme (CvIII**), yield a quasi-random distribution of DNA fragments form
the small molecule pUC19 (2688 base pains). Fitzgerald et al. (1992) quantitatively evaluated
the randomness of this fragmentation strategy, using a CvIII** digest of pUC19 that was size
fractionated by a rapid gel filtration method and directly ligated, without end repair, to a lac Z

nimus MI3 cloning vector. Sequence analysis of 76 chones showed that CvIII** extricts
pyGCPy and PuGCPu, in addition to PuGCPy sites, and that now sequence data is accumulated
at a rate consistent with mediom fragmentation.

As reported in the literature, advantages of this approach compared to sonication and agarose gel fractionation include: smaller amounts of DNA are required (0.2-0.5 µg instead of 20 2-5 µg); and fewer steps are involved (no preligation, end repair, chemical extraction, or agarose gel electrophoresis and chation are needed

Irrespective of the manner in which the nucleic acid fragments are obtained or prepared, it is important to denaure the DNA to give single stranded pieces available for hybridization. This is achieved by incubating the DNA solution for 2-5 minutes at 80-90°C. The solution is then cooled quickly to 2°C to prevent renauration of the DNA fragments before they are contacted with the chip. Phosphate groups must also be removed from genomic DNA by methods known in the ert.

4.22 PREPARATION OF DNA ARRAYS

Arrays may be prepared by spotting DNA samples on a support such as a nylon membrane. Spotting may be performed by using arrays of metal pins (the positions of which correspond to an array of wells in a microtiter piste) to repeated by transfer of about 20 nl of a DNA solution to a nylon membrane. By offset printing, a density of dots higher than the density

104

WO 02/059260 PCT/US01/42950

5. EXAMPLES

5.1 EXAMPLE I

Novel Nucleic Acid Sequences Obtained From Various Libraries

A plurality of novel nucleic acids were obtained from a genomic library derived from various human tissues and in some cases isolated from a genomic library derived from human chromosome using standard PCR, SBH sequence signature analysis and Sanger sequencing techniques. The inserts of the library were amplified with PCR using primers specific for the vector sequences which flank the inserts. Clones from cDNA libraries were spotted on mylon membrane filters and acreened with oligonucleotide probes (e.g., 7-mers) to obtain signature sequences. The clones were clustered into groups of similar or identical sequences.

Representative clones were selected for sequencing.

In some cases, the 5' sequence of the amplified inserts was then deduced using a typical

Sanger sequencing protocol. PCR products were purified and subjected to fluorescent dye
terminator cycle sequencing. Single pass gel sequencing was done using a 377 Applied

15 Biosystems (ABI) sequencer to obtain the novel nucleic acid sequences

5.2 EXAMPLE 2

Assemblage of Novel Nucleic Acids

The nucleic acids of the present invention, designated as SEQ ID NO: 1-341 were assembled using an EST equence as a seed. Then a recursive algorithm was used to extend the 20 seed EST into an extended assemblage, by pulling additional sequences from different databases (i.e., Hyseq's databases containing EST sequences, dheST, gb prl, UniGena, and excous from public domain genomic sequences predicated by GenScan) that belong to this assemblage. The algorithm terminated when there was no additional sequences from the above databases that would extend the assemblage. Further, inclusion of component sequences finto the assemblage was based on a BLASTN hit to the extending assemblage with BLAST score greater than 300 and percent identity greater than 55%.

Using PHRAP (Univ. of Washington) or CAP4 (Pancel), full-length gene sequences and their corresponding protein sequences were generated from the assemblage. Any frame shifts and incorrect stop codons were corrected by hand editing. During editing, the sequence was checked using PASTNY algorithm against Genbank (i.e., dbEST, gb pri, UniGene, and Genpept). Other computer programs which may have been used in the editing process were phredPhrap and Consed (University of Washington) and ed-ready, ed-ext and go-zip-2 (Hyseo,

of the wells is achieved. One to 25 dots may be accommodated in 1 mm³, depending on the type of label used. By avoiding spotting in some presidented number of rows and cohumns, separate subsets (subserveys) may be formed. Samples in one subsarray may be the same genomic segment of DNA (or the same geno) from different individuals, or may be different, overlapped genomic 5 clones. Each of the subsarrays may represent replice aposting of the same samples. In one example, a selected gene segment may be amplified from 64 patients. For each patient, the amplified gene segment may be in one 96-well plate (all 96 wells containing the same sample). A plate fite each of the 64 patients is prepared. By using a 96-pin device, all samples may be aposted on one 8 x 12 cm membrane. Subsarrays may contain 64 samples, one from each patient.

Where the 96 subsarrays are identical, the dos span may be 1 mm² and there may be a 1 mm space between subsarrays.

Another approach is to use membranes or plates (available from NUNC, Naperville, Illinois) which may be partitioned by physical spacers e.g. a plastic grid molded over the membrane, the grid being similar to the sort of membrane applied to the bottom of multiwell plates, or hydrophobic strips. A fixed physical spacer is not preferred for imaging by exposure to flat phosphor-storage acreems or x-ray films.

The present invention is illustrated in the following examples. Upon consideration of the present disclosure, one of skill in the art will appreciate that many other embodiments and variations may be made in the scope of the present invention. Accordingly, it is intended that the troader aspects of the present invention not be limited to the disclosure of the following examples. The present invention is not to be limited in scope by the exemplified embodiments which are intended as illustrations of single aspects of the invention, and compositions and methods which are functionally equivalent are within the scope of the invention. Indeed, numerous modifications and variations in the practice of the invention are expected to occur to 25 those skilled in the art upon consideration of the present preferred embodiments. Consequently, the only limitations which should be placed upon the scope of the invention are those which annear in the amounted claims.

All references cited within the body of the instant specification are hereby incorporated by reference in their entirety.

105

WO 02/059260 PCT/US01/4295

Inc.). The full-length nucleotide sequences are shown in the Sequence Listing as SEQ ID NO: 1-34]. The corresponding polypertide sequences are SEO ID NO: 342-682.

Table I shows the various tissue sources of SEQ ID NO: 1-341.

The nearest neighbor results for polypeptides encoded by SEQ ID NO: 1-341 (i.e.

SEQ ID NO: 342-682) were obtained by a BLASTP (version 2.0at 19MP-WashU) search
against Gempept, Genesoq and SwissProt databases using BLAST algorithm. The nearest
neighbor result showed the closest homologue with functional annotation for SEQ ID NO: 1341. The translated amino acid sequences for which the nucleic acid sequence encodes are
shown in the Sequence Listing. The homologues with identifiable functions for SEQ ID NO:

1-341 are shown in Tuble 2 below.

Using eMatrix software package (Stanford University, Stanford, CA) (Wu et al., J. Comp. Biol., Vol. 6 pp. 219-235 (1999) herein incorporated by reference), polypeptides encoded by SEQ ID NO: 1-341 (i.e. SEQ ID NO: 342-682) were examined to determine whether they had identifiable signature regions. Table 3 shows the signature region found in the indicated polypeptide sequences, the description of the signature, the eMatrix p-value(s) and the position(s) of the signature within the polypeptide sequence.

Using the Pfam software program (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1) pp. 320-322 (1998) berein incorporated by reference) polypeptides encoded by SEQ ID NO: 1-341 (i.e. SEQ ID NO: 342-682) were examined for domains with homology to certain peptide domains. Table 4 shows the name of the domain found, the description, the p-value and the pFam score for the identified domain within the sequence.

The GeneAtlas** software package (Molecular Simulations Inc. (MSI), San Diego,
CA) was used to predict the three-dimensional structure models for the polypeptides encoded
by SEQ (ID NO: 1-341 (i.e. SEQ ID NO: 342-682). Models were generated by (1) PSI25 BLAST which is a multiple alignment sequence profile-based searching developed by
Altschul et al, (Nucl. Acids. Res. 25, 3389-3403 (1997)), (2) High Throughput Modeling
(HTM) (Molecular Simulations Inc. (MSI) San Diego, CA.) which is an automated sequence
and structure searching procedure (http://www.msi.com/). and (3) SeqFold** which is a fold
recognition method described by Fischer and Eisenberg (J. Mol. Biol. 209, 779-79) (1993)).
30 This analysis was carried out, in part, by comparing the polypeptides of the invention with
the known NMR (nuclear magnetic resonance) and x-ray crystal throe-dimensional structures
as templates. Table 5 shows, "PDB ID*, the Protein DataBase (PDB) identifier given to
template structure; "Chain ID*, identifier of the subcomponent of the PDB template structure;

PCT/I(S01/42950

"Compound Information", information of the PDB template structure and/or its subcomponents; "PDB Punction Amnotation" gives function of the PDB template as annotated by the PDB files (http://www.rcsb.ors/PDB/); start and end amino acid position of the protein sequence aligned; PSI-BLAST score, the verify score, the SeqFold score, and the 5 Potential(s) of Mean Force (PMF). The verify score is produced by GeneAtlas™ software (MSI), is based on Dr. Eisenberg's Profile-3D threading program developed in Dr. David Eisenberg's laboratory (US patent no. 5,436,850 and Luthy, Bowie, and Eisenberg, Nature, 356:83-85 (1992)) and a publication by R. Sanchez and A. Sali, Proc. Natl. Acad. Sci. USA. 95:13597-12502. The verify score produced by GeneAtlas normalizes the verify score for 10 proteins with different lengths so that a unified cutoff can be used to select good models as

Verify score (normalized) = (raw score - 1/2 high score)/(1/2 high score)

15

The PFM score, produced by GeneAtlas™ software (MSD, is a composite scoring function that depends in part on the compactness of the model, sequence identity in the alignment used to build the model, pairwise and surface mean force potentials (MFP). As given in Table 5, a verify score between 0 to 1.0, with 1 being the best, represents a good model. Similarly, a PMF score between 0 to 1.0, with 1 being the best, represents a good 20 model. A SeqFold™ score of more than 50 is considered significant. A good model may also be determined by one of skill in the art based all the information in Table 5 taken in totality.

The nucleotide sequence within the sequences that codes for signal peptide sequences and their cleavage sites can be determined from using Neural Network SignatP VI.1 program (from Center for Biological Sequence Analysis, The Technical University of Denmark). The 25 process for identifying prokaryotic and eukaryotic signal peptides and their cleavage sites are also disclosed by Henrik Nielson, Jacob Engelbrecht, Soren Brunak, and Gunnar von Heijne in the publication " Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites" Protein Engineering, Vol. 10, no. 1, pp. 1-6 (1997), incorporated herein by reference. A maximum S score and a mean S score, as described in the Nielson et al. as 30 reference, were obtained for the polypeptide sequences. Table 6 shows the position of the last amino acid of the signal peptide in each of the polypeptides and the maximum score and mean score associated with that signal peptide.

PCT/US01/42950 WO 02/059260

TABLE 1

TABLE I					
Tissue Origin	RNA Source	Library Name	SEQ ID NO:		
edult brein	GIBCO	AB3001	2 13 26-27 70 75 85 97 99-100 123 154-155 187-189		
adult brain	OBCO	ABD003	4 11 21 26-28 32 41 45 50 57 60-62 69-71 79 85 93 97 101 103-104		
			113 115 117 126 131 142 150 154-155 177-178 181 184 190-201 225-		
			226 234 237 243 255-256		
adult brain	Clontech	ABR001	6-7 11 14 26-27 75 93 107 131 154 201-202 243		
adult brain	Clostoch	ABROO6	9 12 15 26-27 37 45 49 62 69 71 75 87 91 108-109 116 136 154 194		
			202 209 218-219 225 241 253 259 269-270 332 339		
edult brain	Clostoch	ABROOM	2 6-7 9 12 15 18-22 26-28 35 37 40-41 45 48 50 55-56 61 63 65 67 71-		
			76 78 85 91 94 99-101 105 108-109 117 121-123 130 140-142 145-		
			147 149-152 154 158-159 170-174 185-186 189 198-199 201-202 205-		
			206 212-213 220 225 228-229 236-237 240-242 248 252 255 259-262 269 272 281-282 286-287 297 302 318 326-327 339		
actual brain	Clowtech	ABROIL	144 287		
adult brain	BioChain	ABR012	21 212		
adult brain	BioChain	ABR013	162		
adult brain	invitreges	ABR014	37 40 87 253		
adult brain	Invitrogen	ABR015	14 25 61 148		
adult brain	Invitragen	ABR016	40 61 124 126 225		
adult brain	Invitrogen	ABT004	5 11 14-15 20 62 65 87 93-94 100 121 147 165 167 170 184-185 196		
			202 210 213 237 239-240 270 320		
cultured	Stretagene	ADP001	9 14 32 61 85 108-109 118 150 173 175-176 203 225		
preadipocytes			L		
adrenal gland	Clontech	ADR002	11 13-14 18 21 33 43 64-65 99 101-102 104-106 104-109 111 126 156		
	L		168 178 195 199 204 206 211 234 258 287		
adult heart	овсо	AHR001	2 4 12 14-17 22 25 32-33 37 40-41 45 47-48 50 61 63-64 73-74 78 83		
	1	l	85 95 99 101 108-109 118 120 123-127 131 142 147 151-154 170 174		
adult kidney	GIBCO	AKD001	203 212 225 227-228 236 244 249 259-260 271 287		
acus comey	u.bco	******	76-79 83 85 87 90 93 95 97 99-100 103 108-110 113 116 118 121 123		
	1		126-129 131 140 142 145-146 155-156 162 167 193 223 225 250-251		
	l	1	255 287		
adult kidney	hytregen	AKT002	4-7 9 11 14 18 21 24-25 40 42-43 53 62 73 77 79 95 110 131 151-152		
	1 -	ı	158 168 185 204 211 219 222 224 245 250-251 312		
adult lung	GIBCO	ALG001	5 17 23-27 34 41 65 78 85 91 97 99 104 126 135 154 175 182 211 225		
	ļ		233 330-331		
lymph node	Clontoch	ALN001	4 21 25-27 66 69 107 114 139 145-146 155 157 205 225 229		
young liver	GIBCO	ALV001	4 10 12 14 24 40 59 64 94 100 103 105 121 139 154 198 234		
adult liver	program	A1,V002	8 10 12 21 23 43 60 62-63 71 88 103 118 125 127 145-147 168 180		
	-	4137000	198 224 257 266 303 322-323		
adult liver	Clontoch	ALV003 AOV001	266 337 2 4-7 9 11 13-16 18 21-23 25-27 33 35 37 40-41 43 45 47 52 57 60-65		
adult overy	proprotes	AUVW1	67 70-71 73 78-79 82 85 87-88 90-93 95 97-99 102 104-105 111 113-		
	ŀ	l	114 116-118 123 126-129 131 135 142 144-147 149-153 155 159-160		
	l	l	164 166-172 174-173 177-179 (82 185-186 190-194 196-197 206-209		
l	1	l	219 222 225 234-237 245-248 250-254 269-270 287 296 330-331		
adult placents	Invitrogen	APLO01	20 37 61 69 216		
placenta	Invitrogen	APL002	32 37 46 57 62 90 149 209		
adult sploca	OBCO	ASP001	4 14 20 25 32 41 45 49 61 68 70 78 93 97 99-100 103 118 131 138 142		
	L	l	148 151-152 158 162 175 177 201 216 222 225 234 309		
adult testis	GIBCO	ATS001	2 11 14-15 20 35 40 61 76 81 97 113 127 145-146 159 200-201 206		
			225 230 287		
aduti bladder	Invitrogen	BLD001	20 46 48 61-62 110 150 207 227 298		
розе шапто-	Clossech	BMD001	4 9 12 15 20 22 25-27 29 33 40-41 50-66 69-70 72 78 60-85 88 92 97		
			102 104-109 113 115-116 120-121 130 132 141 148 162 178 191-192		
			110		

WO 02/059260 PCT/IIS01/42950

Table 7 correlates each of SEQ ID NO: 1-341 to a specific chron Table 8 is a correlation table of the novel polynucleotide sequences SEQ ID NO: 1-341, and their corresponding priority nucleotide sequences in the priority application USSN 09/714,936, herein incorporated by reference in its entirety.

109

WO 02/059260

PCT/US01/42950

Thous	RNA	Library	SEQ ID NO:
Origin	Source	Name	220 222 225 287 302
bone marrow	GF	BMD002	220 222 225 287 307 24 9 12 14 15 20-22 25-27 34-35 41-43 45 44 35-36 61-42 66 71 95 105-106 108-109 112 115-116 118 120 127 131 134 136 140-141 145- 146 149 153 157 160 162 171-173 186 197 204 218 225 227 232 237 259-260 267 277 284 29 1300 304 309 319 321, 312 335 338
bone marrow	Clontech	BMD004	151
adult colon	Invitrogen	CLN001	13 21 87 93 97 130 140 149-150 164 199 232 250-251 266
mixture of 16 tissues/mRN As	various vendors	CTL021	16 61 213 225
mixture of 16 tissues/mRN As	various vendors	CTL028	61 216
adult cervix	BioChain	CVX001	2 5 14 17-18 21 32-33 40 42-43 50 61-62 64-65 70 74 78-79 82 89 92 95 97 110 114 123-124 127 155 158 168 170-172 175-177 185 197 224 234 250-251 265 287-289 333
endothelisl cells	Stratagene	EDT001	2 4 10-16 18 20-21 23 26-27 32 34-35 40 42-44 47 49-50 56-37 61-63 65 70 72-74 85 88-91 93 95 99-100 106 108-110 117-118 122-124 126-129 142-143 145-146 160 175-178 190 194 204 206 209 216 225 236 262 287
Genomic closes from the short erm of chromosome	Genomic DNA from Genetic Research	EPM001	209
Genomic	Genomic	EPM003	209
clones from the short arm of chromosome	DNA from Genetic Research		
Genomic clones from the short erm of chromosome #	Genomic DNA from Genetic Research	EPM004	209
fetal brain	Clontech	FBROOL	21 213
fetal brain	Cloutech	FBR004	299
fetal brain	Clottech	FBRD06	4 6-79 12 15 13-19 21 28-29 35 37 40 50 62 67 76 78 91 99 103-109 112 117 141 149 151-152 154 157 159 177 185 196 201-202 204 212 218 725 241 255 259 271 281 287 290 299-300 313 332 339
fetal brain	Invitrogen	FB1002	11-12 14 56 62 74 91 96 127 149 160 178-179 184-185 193 206 214 225 237 241-243
fetal heart	Invitragen	FHR001	5 14 21 28 35 64-66 78 101 106 113 149 151-152 158 160 162 186 204 218 229 248 311 330-331 339-340
fetal kidney	Clontech	FKD001	12 23 33 40 61 69 k2 91 98 104 155 175
fetul kidney	Clontach	FKD002	151-152 204 206 218 224 248 287
fatal kidney	Invitrogen	FKD007	25 61
fetal lung	Clontach	Fl.0001	21 35 126 139 203
fetal hang	Invitragen	FL0003	6-7 14 23 45 48 56 61 121 149 154 164 180 234 248 250 251 330 331
foral liver- spleen	Columbia University	FLS001	1-14 16-25 22-49 35 57 59 61-65 74 77-78 80 87-91 93-108 110-112 114 117-118 120-121 122-125 131 136 142-143 149 151-153 135 162 180-182 186 193 196 207 210-211 213 217-219 222 224 248 284 287 294 304 316 322

Thuse	RNA	Library	SEO ID NO:
Origin	Sente	Name	SEQ ID NOT
fotal liver-	Cohumbia	FI S002	3-5 8 10 12-13 17 20-21 23-27 30-33 35-37 39-40 44 57 59 63-65 71-
spices	University		72 74 77 79 88-89 93-95 97 99 101 103-107 111 114-115 117-118
•			121-122 127-129 131 142 149 158 160 173 175-176 178 181-182 185
		i	191-193 196 206-207 209-210 216-220 229 236 243 245-246 248-249
			257 277 294-296 311 317-318 325 341
fetal liver-	Columbia University	FLS003	14 20 126 160 249 294 319 334
sploen fotal liver		FLV001	6-7 10 12 14 16 24 33 37 48 50 143 149 151-152 158 186 196 224 238
fetal liver	Clostech	FLV002	14 21 61 149 335
fotal liver	Clootech	F1.V004	10 14 21 24 29 34-35 37 45 47 69 72 108-109 116 118 139 157 179
			255 332
(ctal muscle	Invitregen	FMS001	21 26-27 32 35 37 44 61 94 108-109 118 124 126-127 134 159 190
			216 263
fetal muscle	lavitrogen	FMS002	14 21-22 42-43 67-68 85 108-109 117 118-119 145-146 185 198 216
fetal skip	Invitrogen	FSK001	267-263 332 336 339 2 10-14 17 28 33 37 40 46 59 62-63 68-69 71 81 90 93 100 115 122
Term size	mannagen	120001	127 131 143 150 153 156 160 174 195-196 206 213 216 224-225 239
			287 301-302 313-315
fetal skin	Invitrogen	FSK002	2 22 34 41 66 71 100 113-114 116 121 143 178-179 194 209 216 227
	,		259 267 313
fetal spleen	BioChain	FSP001	21 91
umbilical	BioChain	FUC001	2 14 17 21 25-27 33 42-43 45 48 60-62 78 85-86 90 93 97 99 103 107
cord fetal brain	GIBCO	HFB001	110 116-117 126 147 151-152 161 168 216 220 234 236 283 14-15 18 21 23 26-28 32 35 40-41 43 47 60 67-68 70-79 85 94 99 101
tetal brain	UIBCU	HIPBOOI	144-146 149 151-152 158 177 183-184 197 212-213 225
infent brain	Columbia	IB2002	4-5 9 11-12 14 16 21 28-29 35 37 47-48 64 68 71-72 75 79 91-93 99-
	University		100 103 106 121 126 131 147 151-152 154-155 159 162 177 182 185-
			187 201 209 211 213-214 225 246 267 271 309 319-320 328
infant brein	Columbia	IB2003	4-5 9 21 26-28 45 79 90 92-93 131 147-148 185 191-192 205 213-214
	University		336
infant brein	Columbia	IBM002	21 73 320
infant brain	Columbia	IBS001	21 150 185 120
	University		
fibroblest	Stratagene	LIFB001	2 13-14 18 26-27 33 40 42-43 93 99 111 116 123 126 133 137 150 155
			175-176 201 216 225 245 329
adult hing	puvinotes	LGTO02	5-7 11 14 20-21 26-27 33 35 37 40-43 47-48 53 59 61-62 72 74 79 81
	1		83 85 90-91 95 97 99-100 104 106-107 111 117-118 126-127 136 139- 140 142 145-146 153 155 160 162 164 170 175-176 181-182 203 206
	1		215-216 220-225 233-235 248-251 262 268 291 309-310 330-331
lymphocytes	ATCC.	LPC001	4 9 14 21 26-27 41 50 61 69 83 100 107 113 117-118 120 131 137 164
.,			170-172 209 225 227 245 247 275 286 319
leukocyte	GIBCO	LUC001	1-2 4-5 9 12-15 20-22 25-27 33 35 38 40-43 50 53 57 59-63 65 69 71-
			72 74 76 78-79 82-83 88 93 95 97-99 101 103 107-109 113-114 116-
			120 123 126 131 133-139 150 161-165 173 178 218 222 225 227 250-
leukocyte	Cloritech	LUC003	251 273-275 287 305-307 309 319 338 4-5 12 42-43 63 71 99 116 118 148 162 166 171-172 309
melanoma fro	Cloutech	MELO04	2 9 12 20 26-27 70 72 79 100 113 116 126 147-144 168 184 218 225
medil line			284 304
ATCC #CRL	}	1	1 '
1424			
mammery	Invitrogen	MMG001	5-7 12-16 20-21 28 32 45-46 48 59 61-62 65 71 74 79 90-91 93-94 97
gland	l	l	100 102-103 110 115 118 121-122 131 139 149 162 167 169 196 198
		l	206-207 216 220 222 224-225 233 236 245 255-258 287 311 330-331
induced	Stratagene	NILLOW!	13-14 26-27 32 61 65 72 78
II RAUCCU	- on musicine	LI-TIDAVI	[10-12-0V-01-00-01 W/ FA TW

WO 02/059260

PCT/US01/42950

TA	nı	ĸ	,	

TABLE	4				
SEQ LD NO:	Accession No.	Species	Description	Score	% Identity
342	AK027819	Homo sapiens	FLJ14913 fls, clone PLACE1006782.	2806	100
343	AAB\$1047	Homo sapiens	20-JUN-2001 28-JUL-1999 Human protein HP00698 amino acid sequence.	1708	100
344	AB040926	Homo sapiena	for KIAA1493 protein, partial ods.	1973	98
345	AAB01382	Homo sapiens	20-OCT-2000 10-DEC-1999 Neuros- associated protein.	4363	99
346	AAY99410	Home steicns	08-AUG-2000 01-SEP-1999 Human PRO1480 (UNQ749) amino acid sequence SEQ ID NO:253.	3576	99
347	AAE01114	Homo sapiens	17-JUL-2001 08-NOV-2000 Human gene 1 encoded secreted protein HBINK72, SEQ ID NO:28.	2767	99
348	AAE01114	Homo supiens	17-JUL-2001 08-NOV-2000 Human gene 1 encoded secreted protein HBINK72, SEQ ID NO:28.	1652	76
350	AF113208	Homo sapiens	mRNA, complete cds.	1615	100
351	AAB49535	Homo sapiens	09-MAR-2001 06-APR-2000 Clone HFKCD20.	3027	100
352	BC001079	Homo sapians	clone MGC:2731 IMAGE:2822460, mRNA, complete eds.	1127	99
353	AAB20093	Home sepiens	23-APR-2001 16-JUN-2000 Human hydrophobic domain-containing protein HP03374	\$03	100
354	AY007148	Homo sapiens	CDABP0084 mRNA sequence.	984	100
355	BC001795	Home sepiens	Similar to ribosomal protein \$2, closs MGC:3141 IMAGE:3353508, mRNA, complete cds.	971	100
356 ·	BC008739	Home sapiens	protein x 013, clone MGC:3073 IMAGE:3346340, mRNA, complete cds.	386	100
357	AY007133	Homo sapiens	CDABP0047 mRNA sequence.	1639	95
358	X15977	Home sepiens	mRNA for collagen VI alpha-2 alternative C- terminal domain.	515	100
359	BC013173	Home sepiens	clone MGC:17340 IMAGE:4340287, mRNA, complete offs.	3049	100
360	BC011747	Homo sepiens	Similar to secretory carrier membrane protein 4, clone MGC:19661 D4AGE:3161979, mRNA, complete cds.	1022	87
363	AJ310550	Home sapiens	for SMCS protein,	3517	99
364	AJ2764E5	Home sapiena	for putative integral membrane transporter protein (LC27 gene).	1502	100
365	105158	Home sapiens	carboxypeptidase N mRNA, 3' end.	2274	22
366	X57351	Home sapiens	1-8D gene from interferon-inducible gene family.	673	97
367	AF230904	Horse sepiens	protein (CIN\$5) mRNA, complete eds.	3437	100
368	AP230904	Home sapiens	protein (CINSS) mRNA, complete cds.	2615	99
369	AJ236915	Home sepiens	for pak5 protein.	3550	100
370	AF769255	Home supiens	apyraso-lika protein I (LALPI) mRNA, complete offs.	3198	100
373	AAY24791	Home supiens	26-AUG-1999 18-DEC-1998 Human secreted protein nm134_4.	1277	100
374	X61277	Home sapiens	CL 100 mRNA for protein tyrosine phosphatase.	1886	100
375	AK025844	Home sepiens	FLJ22191 fls, clone HRC01066.	1904	100
376	AF032668	Rettus	ract!5	3738	92

RNA Source SEQ ID NO: 14 16 44 231 249 NTR001 NTU001 5 13-14 16 21 68 72 74 115 150 160 170 PIT004 9 34 69 74 85 99 270 333

The 16 tissue/mRNAs and their vendor sources are as follows: 1) Normal adult brain mRNA (Invitrogen), 2) Normal adult kidney mRNA (Invitrogen), 3) Normal fetal brain mRNA (Invitrogen), 4) Normal adult liver mRNA (Invitrogen), 5) Normal fetal kidney mRNA (Invitrogen), 6) Normal fetal liver mRNA (Invitrogen), 7) normal fetal skin mRNA (Invitrogen), 8) human adrenal gland mRNA (Clontech), 9) Human bone marrow mRNA (Clontech), 10) Human leukemia lymphoblastic mRNA (Clontech), 11) Human thymus mRNA (Clontech), 12) human lymph node mRNA (Clontech), 13) human solspinal cord mRNA (Clontech), 14) human thyroid mRNA (Clontech), 15) human esophagus mRNA 10 (BioChain), 16) human conceptional umbilical cord mRNA (BioChain).

113

WO 02/059260

PCT/US01/42950

SEQ ID	Accession	Species	Description	Scere	%
NO:	No.				Ideadf
	<u></u>	norvegious			
378	AF195534	Rattus	GERp95	4513	99
	1	norvegicus			
379	AAG63221	Homo sapiens	01-OCT-2001 18-JAN-2001 Amino scid	518	100
	4	i .	sequence of a human lipid metabolism		
		<u> </u>	enzyme.		
380	AAB68878	Homo sapiens	24-APR-2001 21-JUL-2000 Human RECAP	946	100
			polypeptide, SEQ ID NO: \$.		
381	BC004546	Homo sapiens	disrupter of silencing 10, clone MOC:11290	2431	100
			IMAGE:3946633, mRNA, complete cds.		L
382	AAY02361	Homo sepiens	13-JUL-1999 06-OCT-1998 Polypoptide	979	98
	Į.	1	identified by the signal sequence trap method.		Ι.
323	AAB63460	Homo sapiens	26-MAR-2001 26-MAY-2000 Human breast	984	99
			cancer associated antigen protein sequence		i
	ľ		SEO ID NO:822.		
384	AAB63460	Homo sapiena	26-MAR-2001 26-MAY-2000 Human breast	984	99
	1		cancer associated antigen protein sequence		i
	l	1	SEQ ID NO:822.	l	i
385	BC001068	Homo sapiens	clone IMAGE:2823731, mRNA, partial cds.	2994	99
386	AK003950	Mus musculus	putative	623	97
387	AK001527	Homo sapiens	FLJ10665 fls, clone NT2RP2006200.	4109	99
388	BC014442	Home sapiens	clone MGC:22964 IMAGE:4866321, mRNA.	2311	100
384	BCUI	LIMITO 1-DATE	complete cds.	~~~	١
389	BC000056	Hamo sapiens	closs MOC:3262 IMAGE:3506385, mRNA.	1464	95
189	BCUUDS	Leane mbure	complete cds.	1404	"
	W. W. W. C.		Similar to RIKEN cDNA 2310045B01 gene,	1145	99
390	BC004393	Homo rapiens	close MOC:10974 IMAGE:3635540, mRNA,	1143	"
	1				l
			complete eds.	930	99
391	AK026302	Hamo sepiens	FLJ22649 fls, clone HS107332.		
392	AK001411	Homo supiess	FLJ10349 fls, clone NT2RP2001976,	3711	100
	1		moderately similar to Mus musculus		l
			celmodulin-binding protein SHA1 mRNA.		
393	AAB93202	Homo tapiens	26-JUN-2001 28-JUL-2000 Human protein	2549	99
			sequence SEQ ID NO:12168.		
394	AAG75102	Homo sapiens	03-SEP-2001 28-SEP-2000 Human colon	995	100
			cancer antigen protein SEQ ID NO:5866.		L
396	AF006088	Home mplens	protein complex subunit p16-Arc (ARC16)	371	100
			mRNA, complete eds.		
397	BC005131	Home tapiens	Similar to RIKEN cDNA 2010003303 gene,	149	99
	1	1	close MGC:11102 IMAGE:3831647, mRNA,	1	
	1		complete cds.	ı	
398	AK010289	Mas musculus	putative	E54	73
399	AF226055	Homo sapiens	(HTGN29) mRNA, complete cds.	1367	100
400	AF090930	Home supierus	HQ0478 PRO0478 mRNA, complete cds.	180	29
401	AF118084	Home saplens	PRO1914	350	98
402	BC007283	Home sapiens	ribosomai protein S11, cione MGC:15628	824	100
	5000,120		DMAGE:3343839, mRNA, complete eds.	l'	1
403	AX025392	Home mpiens	FLJ21739 fis, clone COLF4061.	4331	99
404	AF077615	Home septent	beta inducible nuclear protein TINP1 (TINP1)	1364	100
405	V.01,013	raceno especas	mRNA, complete cds.	1,,54	۳
	A V martin	Warner and	FLI14203 fis, clone NT2RP4001442.	2963	99
405	AK027709	Home saplens		666	100
406	BC006002	Home supiens	Similar to RIKEN cDNA 1190005P17 gene,	900	100
	I	I	clone MGC:14817 IMAGE:4247279, mRNA,	i	l
	<u> </u>		complete cds.		
407	M80902	Homo sepiena	AHNAK nucleoprotein mRNA, 3' end.	8529	99
401	AAW90962	Home supiens	14-JUL-2000 06-NOV-1998 Human CSGP-2	2346	99

WO 02/055260 PCT/US01/42950 WO 02/055260 PCT/US01/42950

SEQID	Accession	Species	Description	Score	*
NO:	No.				Identity
			protein.		
409	AK027715	Homo supicas	FLJ14809 fls, close NT2RP4001822, weakly	1295	100
			similar to PLATELET-ENDOTHELIAL	l	
			TETRASPAN ANTIGEN 3.	l	
410	BC015928	Homo sapiem	clone MGC:8773 IMAGE:3908916, mRNA,	2186	100
			complete cds.	L	
411	BC015317	Homo sapiena	Similar to suppression of tumoriganicity 13	302	100
		1	(colon carcinoma) (Hap70-interacting	ŀ	1
			protein), clone MGC:21083	l	1
	1.26335		IMACE: 4425762, mRNA, complete eds.	1491	-
412	1.26333	Cevia	zinc finger protein	1493	99
		porcellus	a land or transport with	2357	100
413	AF209198	Home sepiens	finger protein 277 (ZNF277) mRNA,	2337	100
414	AE001399	Plasmodlum	OAF domain protein (cyclic at signal	178	35
414	AEUUI399	falciparum	transduct.)	178	133
415	AAY48226	Home sapiens	04-DEC-1999 10-MAR-1998 Human prostate	1204	96
413	AA 148228	riomo saparnis	cancer-associated protein 12.	1204	יייי
416	M94389	Lotigo pealei	neurofilament protein	165	23
417	AF317425	Homo sapiena		3725	91
418	AF116673	Homo sapiens	PRO1942	257	100
419	AAG73932	Homo spiens	03-SEP-2001 28-SEP-2000 Human colon	1415	100
413	~~0,3332	riomo aspecia	cancer antigen protein SEO ID NO:4696.	1413	1.00
420	AK000100	Homo sepiens	FLJ20093 fis, close COL04263.	241	100
421	BC005126	Homo moiens	ribosomal protein L27s, close MGC:12412	754	99
421	BC003326	LINERO ESPECIA	IMAGE:4052417, mRNA, complete eds.	135	"
422	AF119865	Homo sapiens	PRO2176	470	97
424	AF138863	Homo moiens	PRO1677	868	99
425	X14361	Home moiens	CR1 gene for C3b/C4b receptor SCR9 (or 16)	133	100
123	1	110000 10000	C-term. exon SCR = short consensus repeat.	.,,,	۳.۰
426	224725	Home mains	mitogen inducible gene mig-2, complete	3576	99
			CDS		l ''
427	AK027587	Homo sapiens	FLJ14681 fis, clone NT2RP2004270, weakly	1103	100
			similar to PROTEIN PTM I PRECURSOR.		
428	AC004770	Homo seriens	11. BAC CIT-HSP-311e8 (BC269730)	1527	84
			containing the hFEN1 gross, complete	1	l
		l	sequence.	1	l
429	AK026262	Homo sepiens	FL122609 fis, close HS104913.	1795	99
430	BC007279	Home smiens	clone FLB5214, clone MGC:15622	416	100
		ļ	IMAGE:3343280, mRNA, complete cds.		
431	AL133035	Homo sepiens	cDNA DKFZp434G171 (from clone	1136	99
			DKFZp434G171).		
432	AF166125	Homo supiens	N mRNA, partial cds.	1816	99
433	AF161370	Homo sapiens	mRNA, partial cds.	824	100
434	AK000161	Homo sapiens	FLJ20154 fls, clone COL08740.	284	100
435	AK001784	Homo sapions	FLJ10922 fis, clone OVARC1000420.	684	100
436	BC011396	Home sapions	clone MGC:17720 IMAGE:3870711, mRNA,	1080	100
			complete cds.		
437	AF165527	Home sapiens	(DGCR8) mRNA, complete cds.	859	100
438	AP230200	Home suplens	mRNA, partial eds.	358	95
439	BC008468	Homo sapiens	Similar to RIKEN cDNA 1110059G10 gene,	791	100
	1	1	clone MGC:14734 IMAGE:4277104, mRNA,	ł	ŀ
	L		complete cds.		L
440	BC007870	Home sapiens	DC6 protein, clone MGC:14435	505	100
	l		IMAGE:4303290, mRNA, complete cds.	L	
44]	AAB20167	Homo sapiens	30-APR-2001 17-JUL-2000 Human protein	2066	100

SEQ ID NO:	Accession No.	Species	Description	Scare	identit
,,,,,	1		associated with IgA nephropathy,	_	10410
442	AAB02910	Home explens	30-AUG-2000 22-SEP-1999 Human secretad	1112	100
			protein segmence encoded by gone 20 SEO ID	1 ***-	***
	l		NO:67.	l	l
443	BC003026	Homo rapiens	clone IMAGE:2823490, mRNA, pertial cds.	354	34
444	BC003127	Home expiens	Similar to scienoprotein X. I. clone	527	100
			MGC:3344 DMAGE:2905838, mRNA.	l	
	ŀ	i	complete eds.	ł	Ì
445	AK000141	Home sapiens	FLJ20136 fls, close COL07068.	2260	100
446	AK000388	Home seriens	FLI20381 fis, clone KAIA2329.	2375	100
447	BC002364	Home saniena	non-POU-domain-containing, octamer-	2449	98
	0000000		binding, clone MGC:8677 DMAGE:2964534.		١~
	ŀ	1	mRNA, complete ods.	1	
441	AK025645	Homo sapiens	FLJ21992 ffs, close HEP06554.	920	22
449	AAB95264	Home sapless	26-JUN-2001 28-JUL-2000 Human protein	3708	99
π,	~~B73204	riumo espicias	sequence SEQ ID NO:17462.	1700	"
450	AP113538	Home supiens	x receptor interacting protein mRNA.	1800	100
	7	1100000	complete eds.		
451	AAW78167	Homo saniens	13-APR-1999 11-JUN-1998 Human secreted	795	100
431	~~*'*'	riomo sapiciis	protein encoded by gene 42 clone HFFAT33.	′"	
452	BC014943	Homo sapiena	NMN admytyltransferase; picotinamide	1458	100
412	BC014943	riumo sapiena	monomicleotide adenyiyi transferase, clone	1430	١.~
		1	MGC:22925 IMAGE:4874147, mRNA,	1	1
	l		complete cds.	l	[
453	BC000348	Home saniens	ribosomal protein L35, clone MGC:8582	591	97
433	DC000048	riomo sapiens	IMAGE:2960987, mRNA, complete eds.	391	1"
454	AJ277591	Home tapiens	for p15-2a protein (p15-2 gane).	749	100
453	AK000927	Homo sapiens	FLJ10065 fla, clone HEMBA1001455.	3143	100
456				1192	
457	AB045118	Homo sapicna	mRNA, complete cds. 06-JUN-2000 20-AUG-1999 Human wild		99
437	AAZ51355	Home sepiens	type arring/threoning kinase KIS (hKIS) gene.	2198	۳.
458	AF146696	26		1/10	
438	AF140090	Homo sapiena	pAB195 FOXPI (FOXPI) mRNA, complete eds.	1639	100
459	BC009401	Home saciens	natural killer cell transcript 4, close	914	100
439	BCXXXXVI	riomo supiens		714	100
	l	i	MGC:15353 IMAGE:4300407, mRNA,	i	i
460	BC010537	Home saniens	complete cds.		
460	BC010037	Homo aspiens	activated RNA polymerase II transcription	563	99
	l		cofactor 4, clone MGC:17295	l	l
			IMAGE:3457167, mRNA, complete ods.		
461	AF076642	Home sapiena	of G-protein signaling 13 mRNA, complete	1218	100
			eds.		
462	AF116718	Home sapiens	PRO2900	396	100
463	AAB18919	Homo sapiens	08-FEB-2001 01-MAR-2000 A novel	1137	99
		L	polypeptide designated PRO4356.		L
464	AC025416	Arabidopsis	F5011.12	135	36
		thelians	·		L
465	BC002757	Home tapiens	cytochrome c oxidase subunit VIIa	247	100
	1		polypeptide 1 (muscle), clone MGC:3716	l	l
	<u> </u>	ļ	IMAGE:3631740, mRNA, complete eds.	L	
466	AY037115	Home supiens	stromal lymphopoietin (TSLP) mRNA,	\$23	100
			complete ods.		
467	M15841	Homo tapiens	U2 small nuclear RNA-associated B" antigen	638	100
		L	mRNA, complete ods.	i	
468	AK026916	Home sapiens	FLJ23263 fis, clone COL06129.	2612	99
469	AAY05317	Home repiens	25-JUN-1999 08-SEP-1998 Human secreted	1508	100
407			protein bn97 1.		

WO 02/059260 PCT/US01/42950

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
470	AAY05317	Home supiens	25-JUN-1999 08-SEP-1998 Human secreted protein bn97 1.	851	99
471	AAY66721	Homo sapiens	05-APR-2000 02-JUN-1999 Membrane- bound protein PRO511.	1176	95
472	AABIZI44	Homo supiens	02-FEB-2001 17-NOV-1999 Hydrophobic domain protein isolated from WERI-RB cells.	1806	100
474	AL022398	Homo supiens	sequence from PAC 434014 on chromosoms [1q3.2.4.4]. Contains the HSDI IB1 gene for Hydroxysteroid (11-bets) Dehydrogenses i, the ADORA2DP adenasine A2b receptor LIKE pseudopses, the RF6 gens for interferon Regulatory Factor 6 and two novel genes. Combine ESTs and GSSs, complete sequence.	575	100
475	AF324830	Home supiens	transcript 11 protein (ILT11) mRNA, complete cds.	1590	100
476	AJ306731	Home sapiens	for RhoGAP protein (RICH1 gene).	846	100
477	BC006116	Home sapiens	Similar to RIKEN cDNA 3100002B05 game, clone MGC:12993 IMAGE:3504453, mRNA, complete cds.	2063	100
472	AK001077	Homo saplens	FLJ10215 fls, clone HEMBA1006737, weakly similar to ANKYRIN, BRAIN VARIANT 2.	812	100
479	AAG89322	Home sapiens	11-SEP-2001 07-DEC-2000 Human secreted protein, SEQ ID NO: 442.	922	98
480	AAE02782	Home sepiens	06-AUG-2001 06-DEC-2000 Human six transmembrane epithelial entigen of prostate (STEAP)-3 protein.	2392	100
481	AK025537	Home sapiens	FLJ21884 fls, clone HEP02863.	3021	99
482	AJ007590	Homo sapiens	for XRP2 protein.	1766	100
483	AACI93264	Homo sapiens	13-SEP-2001 06-DEC-2000 Human protein HP10160.	841	100
484	AB027258	Home sepiens	for basal transcriptional activator hABTI, complete cds.	1408	100
415	BC000318	Home supiens	Similar to brain acid-soluble protein 1, clone MGC:8555 IMAGE:2822874, mRNA, complete oth.	1137	99
426	AK001425	Home suplens	FL310363 fla, clone NT2RP2002769.	1695	99
487	BC013322	Home repiens	closs MGC:13411 DAAGE:4077631, mRNA, complete cds.	Ī459	99
483	AK002030	Home sapiens	FLJ11168 fb, clone PLACE1007274.	1029	100
489	BC003176	Homo supiens	high-mobility group (nonhistone chromosomal) protein 1, clone MGC:5223 IMAGE:2901382, mRNA, complete eds.	1140	99
490	AK001159	Homo sapiens	FLJ10297 fls, clone NT2RM1001074.	764	100
491	AK000020	Home sapiens	FLJ20013 fls, clone ADKA03455.	1613	100
492	AK001322_	Home supices	FLJ10460 fls, clone NTZRP1001475.	1207	100
493	AK001322	Home sapiens	FLJ10460 fts, ctone NTZRP1001475.	892	98
494	AY008293	Home supiens	protesse (SENPS) mRNA, complete ods.	1114	99
495	AF413080	Home sapiens	mIUNA, complete ods.	9184	99
496	AK000134_	Home sapiens	FLJ20147 fis, clone COL07954.	673	100
497	AK001001_	Home sapiens	FLJ10139 fls, clone HEMBA1003175.	658	100
499	AK027124	Home sapiens	FLJ23471 fls, ctone HS111969.	1773	99
501	BC012024	Homo sapiens	kinetochere protein CENP-H, clone MGC:21431 IMAGE:4510607, mRNA,	1214	100

WO 02/059260 PCT/US01/42950

SEQ ID	Accession No.	Species	Description	Scere	1deatity
502	U40407	synthetie construct	T cell receptor alpha chain	1119	60
503	AF043179	Homo sapiens	cell receptor beta chain (TCRBV13S1- TCRB/2S1) mRNA, complete cds.	681	73
504	AP116678	Homo sapiens	PRO1995	587	100
505	AB051853	Homo sapiens	gene for rho-OTPass activating protein, complete eds.	1766	98
506	AB046074	Macaca fascicularis	unnamed protein product	515	13
507	AK002848	Mus musculus	putative	429	84
508	AAB01973	Home sapiens	30-AUG-2000 22-SEP-1999 Human secreted protein sequence encoded by gene 27 SEQ ID NO:130.	1753	98
509	AK000740	Homo sapiens	FLJ20733 fis, clone HEP08550,	4651	100
510	AL136858	Homo sapiens	cDNA DKFZp434NZ435 (from clone DKFZp434NZ435); complete cds.	501	100
511	BC008413	Home sapiens	close MGC:14552 IMAGE:4333393, mRNA, complete cds.	1706	99
513	AJ277275	Homo sapiens	for rape-1 (rapa gene).	5086	100
514	AB042563	Homo sapiens	mRNA for casein kinase 1 gamma 11., complete cds.	1739	100
515	BC015597	Homo sapiens	clone DMAGE:4649498, mRNA, pertial ods.	719	63
516	BC001277	Homo sapiens	KDEL (Lys-Asp-Gho-Leu) endoplasmic reticulturs protein retention receptor 3, clone MGC:5099 IMAGE:3462392, mRNA, complete cds.	1103	100
317	AF0\$1126	Drosophila melanogaster	ER hamen protein retaining receptor	409	75
519	AK023651	Home saplens	FLI3389 fis, close PLACE1009308, weakly similar to GLUCOSE REPRESSION MEDIATOR PROTEIN.	1488	100
120	AK000371	Homo sapiens	FLI20364 fis, clone HEP17854.	2040	100
522	AAB24228	Homo supiens	07-FEB-2001 06-APR-2000 Human vesicle associated protein 7 SEQ ID NO:7.	1293	100
523	BC015387	Home explens	Similar to RIKEN cDNA 1110001019 gene, close MGC:21689 IMAGE:4400374, mRNA, complete cds.	429	100
524	BC008488	Homo sapizna	RIKEN cDNA 2010100012 gaze, close MGC:14813 DMAGE:4133274, mRNA, complete cds.	404	97
526	AF360739	Home rapiens	protein \$5-56 (\$5-56) mRNA, complete cds.	2611	99
527	BC015725	Home sepiens	close MGC:17998 IMAGE:3922049, mRNA, complete cds.	782	100
529	AF230201	Home rapiens	mRNA, complete cds.	396	100
530	AK001984	Homo sapiens	FLJ11122 fts, close PLACE1006159.	658	100
531	AK000530	Home sapiens	FLJ20523 fls, clone KAT10456.	691	100
532	U37134	Drosophila melanoguster	intereed protein	248	23
533	U37134	Drosophila melanogaster	interned protein	244	
335	AR033132	Home suprens	complete cds, testis-specific gene2.	1386	100
536	AF153417	Home septens	9 open reading frame 6 mRNA, complete cds.	221 617	100_
537	A)277557	Home mpiens	gene for mitochondrial 37,37)- deaxyribonucleotidase (dNT-2 gene), exons 1-5.	"	"
538	AF127564	Arabidopsis	ubiquitin-protein ligane 1	854	42

PCT/US01/42950 PCT/US01/42950 WO 02/059260 WO 02/059260

SEQ LD	Accession No.	Species	Description	Score	% Identity
		thatiana			
540	AK000442	Home saciens	FLJ20435 fis, clone KAT03864.	1513	99
341	AF278541	Homo sapiens	protein ACT mRNA, complete cds.	1657	99
542	AAY99440	Home saciens	04-AUG-2000 01-SEP-1999 Human	3408	100
•	101177114		PRO1564 (UNQ770) amino acid sequence	1	
		1	SEO ID NO:347.		
543	ALI 17491	Home saciens	cDNA DKFZp434N231 (from close	7795	100
	,		DKFZp434N231); partial cds.	'	
544	BC001179	Home sacions	clone MGC:4419 1MAGE:2958058, mRNA.	792	100
	20003177	1000 -4000	complete cds.	· · · ·	l
345	AAP05136	Homo sapiens	12-SEP-2001 12-JAN-2001 Human drug	1095	99
~,	1		metabolising enzyme (DME-17) protein.		l"
546	AAY94926	Homo sapiena	16-JUN-2000 13-AUG-1999 Human secreted	1578	99
~~	1222	TOLIN MARKETS	protein clone rd232_5 protein sequence SEQ	1	١"
	l		ID NO:58.		1
547	AK026027	Homo sapiens	FL722374 fis, clone HRC06766.	647	100
541	ALI37584	Home sapens	cDNA DKFZe434Q1310 (from clone	246	97
,			DKFZp434G1310); pertial cds.	1	1"
550	AF352026	Home suciens	protein 1 mRNA, complete cds.	3085	99
552	AK025840	Home sapiens	FLJ22187 fla. clone HRC01029.	918	100
553	BC013117	Home maiens	dom MQC:8711 IMAGE:1882749, mRNA.	1126	100
333	BUISTI	LIOCHO INDECES	complete eds.	1120	100
554	BC014111	Homo septens	Similar to ecotropic viral integration sits 5.	2698	97
334	BCOIATTI	Linean minera	clone MOC:20844 IMAGE:4542709, mRNA.	2070	"
1	1	ı	complete cds.	ŀ	1
	AK016622	Mus musculus	putative	1413	97
555	AF181263	Homo moiens	domain containing 2 (EHD2) mRNA.	2816	99
337	AFIBIADS	Homo suprens	consists cds.	2810	"
	AP001660			1424	100
558	BC001781	Home sapiens	DNA, chromosome 21q, section 4/105.	542	100
559	BC001781	Homo sapiens) ×3	100
560	AP011941	Rettus	IMAGE:3353669, mRNA, complete cds.	142	34
360	VEGRINAT		soluble adenytyl cyclase	172	34
	ÁF378129	Homo saniens	domain containing adapter protein TIRAP	1227	99
561	AF3/8129	riomo suprens		14,	777
			mRNA, complete cds. mRNA fragment for T-cell receptor alpha	140	90
562	X01403	Homo sepiens	mRNA fragment for T-cell receptor atpha chain.	340	J 20
	ļ			947	-
563	AAY39883	Homo sapiens	07-DEC-1999 26-MAR-1999 MHC Class II	947	99
	ļ	ļ	p41 specific region.		 -
564	AB026707	Home sapiens	for FOAP-11 protein, complete cds.	429	100
565	AK007905	Mus musculus	putative	1484	83
566	BC015389	Homo saplens	clone IMAGE:4401937, mRNA, partial cds.	421	100
567	AF116669	Homo sapiens	PRO1828	237	100
561	AK000328	Homo sapiens	FLJ20321 fls, clone HEP09380.	5507	99
569	AF263913	Mus musculus	fidgetin	3864	97
570	AK015017	Mus musculus	putative	635	50
572	AK001673	Home sepiens	FLJ10811 fls, clone NT2RP4000955.	3661	100
573	AAY96059	Homo sapiens	05-DEC-2000 02-MAR-2000 Human	617	100
	l	1	sphingosine kinase C.		<u>. </u>
574	AK000207	Homo sapiens	FLJ20200 fis, clone COLF1206.	2500	99
575	X52140	Rattus	precursor polypeptids (AA -28 to 1152)	5429	87
-	1	norvegicus	1	l	1
576	AK005909	Mus musculus	putative	393	100
577	AAB08870	Homo saplens	15-JAN-2001 03-MAR-2000 Amino acid	590	100
			sequence of a human secretory protein.	1	1

120

WO 02/059260 PCT/US01/42950

SEQ ID	Accession No.	Species	Description	Score	% Identity
,			NO:3488.	_	
615	AF161345	Homo sapiens	mRNA, partial cds.	439	100
616	AF116694	Home sapiens	PRO2219	351	88
617	AAE03643	Home sapiens	06-AUG-2001 05-DEC-2000 Human	1974	9x
•••			extracellular matrix and cell adhesion molecule-7 (XMAD-7).		
620	AL133640	Home sapieus	cDNA DKFZp586C1021 (from clone DKFZp586C1021); partial cds.	2149	100
621	BC003369	Home sepiens	ribosomal protein, large, P1, clone MGC:5215 IMAGE:2900846, mRNA, complete cds.	161	76
622	BC012124	Homo supiens	clone MGC:20188 IMAGE:4564707, mRNA, complete cds.	810	100
625	AK008513	Mus musculus	putative	440	50
626	M32639	Homo sapiens	salivary statherin gene, exons 2-6.	276	87
627	BC008282	Homo sapiens	Similar to SH3-domain binding protein 1, close MOC:10501 IMAGE:3639782, mRNA, complete eds.	897	96
628	AAG04000	Homo sapiens	06-OCT-2000 21-FEB-2000 Human secreted protein, SEQ ID NO: 8081.	515	100
629	AC011473	Home suplens	19, BAC BC349142 (CTC-518B2), complete sequence.	1392	100
632	AAY#2615	Home sepiens	02-AUG-2000 12-OCT-1998 Human PTHrP monoclonal antibody close (CI-3 protein SEO ID NO:14.	768	£2
633	AAB15539	Home supiens	28-FEB-2001 04-APR-2000 Human immune system molecule from Incyte clone 2907049.	637	98
634	ACO18513	Home sepiens	14 clone RP11-58H3 map 14q31, complete sequence.	#1#	100
635	X01249	Bos trurus	epsilon-4 beta-globin	321	79
636	AB046099	Macaca fascicularis	unnitraed protein product	395	H
637	AC006033	Home sapiens	clone RP11-121AS from 7p14-p13, complete sequence.	1017	95
631	BC009488	Home mpims	Similar to CG10958 gene product, clone MGC:16372 IMAGE:1929220, mRNA, complete eds.	848	99
419	AL359620	Homo sepiena	dDNA DKFZp762P2111 (from clone DKFZp762P2111).	615	100
640	AB003184	Home sapiens	for ISLR, complete eds.	880	59
641	AB036921	Pagrus major	maturation-inducing protein	797	69
643	AF284422	Home supiens	cotransporter-interacting protein mRNA, complete eds.	4694	100
646	AE000659	Home sepiens	receptor alpha delta locus from bases 250472 to 501670 (section 2 of 5) of the Complete Nucleotide Sequence.	577	100
643	AAR59748	Home sepiens	13-FEB-1995 14-DEC-1992 T call receptor Valpha2.3 chain.	636	100
649	AJ004871	Home sepions	for TCR aiptis chain, specific for Mage 1/HLA-A2	1328	94
650	AF043179	Home sapiens	cell receptor beta chain (TCRBVI351- TCRBJ251) mRNA, complete cds.	1286	92
631	AA074462	Home sepiens	03-SEP-2001 28-SEP-2000 Human colon cancer antigen protein SEQ ID NO:5226.	143	75
652	AAE02633	Home sepiens	06-AUG-2001 03-NOV-2000 Human gene I encoded uteroglobin-like protein from cDNA	287	98

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
578	AJ296173	Mus musculus	OATS protein	382	96
580	AE003588	Drosophile	CG13947 gene product	113	42
		melanogaster		L.	
S82	AK023117	Home sepiens	FLJ13055 fis, close NT2RP3001538, weakly similar to HYPOTHETICAL 39.0 KD PROTEIN T28D9.3 IN CHROMOSOME II.	1664	99
583	BC011270	Home sapiens	Similar to mesenchymal stem cell protein DSC43, clone MGC:19952 IMAGE:2960099, mRNA, complete cds.	1354	100
585	BC003563	Home sapiens	guanine nucleotide binding protein (G protein), gamma 5, clone MGC:1969 IMAGE:1502879, mRNA, complete cds.	333	98
586	AL035521	Arabidopsis thallana	putative protein	145	28
587	AY014283	Home saciens	mRNA, complete ods.	1066	100
388	AK020796	Mus musculus	putative	519	85
589	AL034548	Homo sapiem	DNA requeste from close RF-1100(F) on chromosome 20p1.2-11. Contains up to three novel genes, the game for a novel protein inflire to neuros VMP, the game for a novel protein kinase domains containing protein taillar to phenoghoportein CEFW and ras NIPK, and the SOX22 gene for SAY (sex- determining region V-)-on X2. Contains five CpO lishords, ESTs, STSs and OSSs, complete sequence.	262	100
390	AK023084	Homo sapiens	FLJ13022 fis, close NT2RP3000753, weakly similar to NEUROFILAMENT TRIPLET H PROTEIN.	1144	99
591	X97966	Home storens	mRNA for calcyphosins.	963	100
592	X97966	Home supiens	mRNA for calcyphosine.	660	95
594	BC002471	Home sapiens	complexin 1, clone MGC:3097 DAAGE:3349779, mRNA, complete cds.	668	99 .
596	BC007394	Home sapiens	clone MOC:16291 IMAGE:3834089, mRNA, complete cds.	217	8 5
598	X85738	Bos teurus	novel brain-specific protein	326	55
600	AJ310550	Home sapiens	for SMC5 protein.	280	97
601	BC001466	Homo sapiens	ring-box 1, clone MGC:1481 IMAGE:3138751, mRNA, complete cds.	131	100
602	AK012283	Mus musculus	Dutative	1711	96
603	AF251062	Home sapiens	binding protein mRNA, complete cds.	1551	99
605	AAG02234	Homo sapiens	06-OCT-2000 21-FEB-2000 Human secreted protein, SEQ ID NO: 6315.	284	93
606	AAG01931	Homo sapiens	06-OCT-2000 21-FEB-2000 Human secreted protein, SEQ ID NO: 6012.	159	73
601	AK001757	Homo sepiens	FLJ10895 fis, close NT2RP4002905.	1300	100
610	U20897	Homo sepions	cione 475/1 melanoma ubiquitous mutated protein (MUM-1) mRNA, partial eds.	2133	100
611	AE003859	Xyleila fastidiosa 9aSc	hypothetical protein	108	39
612	AK002185	Homo sapiens	FLJ11323 fis, clone PLACE1010362, weakly similar to 1-PHOSPHATIDYLINOSITOL PHOSPHODIESTERASE PRECURSOR (EC 3.1.4.10).	451	33
614	AAB41980	Homo sapiens	08-FEB-2001 31-MAR-2000 Human ORFX ORF1744 polypeptide sequence SEQ ID	116	76

127

WO 02/059260 PCT/US01/42950

SEQ ID NO:	Accession No.	Species	Description	Score	% Identit
NO.	.110.		clone HTELR92	_	Tuesta.
554	AAY70457	Homo sapiens	21-JUN-2000 02-SEP-1999 Human	1425	97
-	1 441 1/43/	HOUSE SECTION	membrane channel protein-7 (MECHP-7).	.42	l"
655	A3406931	Home sacions	for terratin associated protein 3.1 (KRTAP3.1	198	100
	~~~~	110000 00000	gene).		
656	AK000366	Homo supiens	FLJ20359 fls, clone HEP16626.	2151	100
657	AF116688	Home saniens	PRO2133	370	98
658	BC002505	Homo supiens	small nuclear ribonucleogratein polypeptida	222	14
026	BCM2505	LIOURO BEDECTIS	P. close MGC:1615 DMAGE:3051263.		٠-
			mRNA, complete cds.		i
659	D#7009	Homo sapiens	lambda gone locus DNA, clone:288A10.	1822	99
660	AK000349	Homo sapiens	FL/20342 fis, clone HEP13572.	3028	99
661	AK010756	Mus musculus	putative	653	34
	AE006360	Lactococcus	HYPOTHETICAL PROTEIN	287	34
662	AE006360		HYPOTHETICAL PROTEIN	267	34
	l	lactis subsp.	I		l
	AC004832	lactia	clone RP4-539M6 from 22, complete	220	100
663	ACD04132	Home sapiens		440	100
		L	sequence.	670	100
664	AB037902	Home sapiens	AKR mRNA for truncated aldo-keto	970	100
		L.	reductase type A, complete cds.	133	52
665	AF060511	Homo sapiens	016b10 My016 protein mRNA, complete cds.		62
666	M33014	Drusophila	ubiquitin	153	62
		melanogester			
667	AK022128	Home sepiens	FLJ12066 fls, clone HEMBB1002266,	1397	100
	ŀ	i .	moderately similar to NEURONAL		i
			PROTEIN.	<u> </u>	ļ
669	AL137512	Home supiens	cDNA DKFZp564E0178 (from clone	751	100
		1	DKFZp564E0178); partial cds.		L
670	S68015	human,	1	1664	100
	i	mRNA, 1020		l	l
	ı	nt). [liomo		l	l
		sapiens		2111	100
671	U19336	Home sapiems	class III region containing NOTCH4 gene,	2133	100
	l		partial sequence, homeobox PBX2 (HPBX)	l	l
		1	game, receptor for advanced glycosylation end	l	l
	i		products (RAGE) gene, complete ons, and 6		l
	I		unidentified cds, complete sequence.	2094	96
672	U89336	Homo mpiero	class III region containing NOTCH4 gene,	2094	J 70
	l .	l .	partial sequence, homeobox PBX2 (HPBX)	1	1
	l	i	gene, receptor for advanced glycosylation and	Į.	l
	l	ļ.	products (RAGE) gens, complete ons, and 6	ı	l
		<del></del>	unidentified cds, complete sequence.	962	94
673	AL136746	Homo supiens	cDNA DKFZp434K0312 (from close	J 962	"
	I	l.,	DKFZp434K0512); complete cds.	502	95
674	AF125535	Home sapiens	homolog mRNA, complete eds.		100
675	AF227130	Home sepiens	taste receptor T2R3 gene, complete eds.	1629	93
677	AB046626	Macaca	hypothetical protein	291	93
	L	facicularia		<del> </del>	<del> </del>
678	AC002077	Homo sepiens	cosmid clone LUCA17 from 3p21.3,	1145	100
		L	complete sequence.	<b>-</b>	L
679	AE000659	Home sapiens	receptor alpha delta locus from bases 250472	365	100
	Ī	1	to 501670 (section 2 of 5) of the Complete	l	ı
	<u> </u>	<u> </u>	Nucleotide Sequence.		٠
680	AAY99368	Home supiens	08-AUG-2000 01-SEP-1999 Human	2034	100
	I	I	PRO1326 (UNQ686) amino acid sequence	l	i
	I	1	SEQ ID NO:100.	ı	

WO 02/059260

PCT/US01/42950

0780768

PCT/US01/42950

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
6117	BC000555	Home sapiens	ribosomal protein L37s, clone MGC:1638	187	55

124

PCT/US01/42950

Accession No.	Description	Results*
		·
PE00628		PF00628 15.84 9.4196-09 179-194
PR00215	NEUROMODULIN	PR00215C 13,98 4.364e-09 201-222
PD00078	REPEAT PROTEIN ANK	PD00078B 13.14 2.350e-10 132-145
D/ 010/2	NUCLEAR ANKYR.	BL01262 22.18 6.6250-12 25-80
	proteins.	•
BL00056		BL00056A 28,90 3,769e-32 116-156 BL00056B 20,86 6,727e-23 164-188
BL00019	Actinin-type actin-binding	BL00019D 15,33 9.705e-13 296-326
PP 00250		PR00259C 16.40 2.459e-21 78-107
PR00239		PR00259A 9.27 2.846e-18 11-35
r		PR00259B 14.81 2.250e-17 51-78
ı	I	PR00259D 13.50 2.756e-15 221-248
PD00066	PROTEIN ZINC-PINGER	PD00066 13.92 2,385e-15 105-118
		PD00066 13.92 4.462s-15 161-174
		PD00066 13.92 1.600e-14 189-202
		PD00066 13.92 1,500e-13 133-146
		PD00066 13.92 1.500e-13 217-230
	Į.	PD00066 13.92 1.000e-11 21-34
j	l .	PD00066 13.92 2.957e-11 77-90
BL00028	Zinc finger, C2H2 type,	BL00028 16.07 3.400+10 214-231
1	domain proteins.	BL00028 16.07 7.171+09 347-364
PP00791	Domain present in ZO-1 and	PP00791B 28.49 8.057e-14 199-254
		PF00791B 28.49 4.909e-11 166-221
BL00475		BL00475D 16.25 3.250e-19 130-152
ŀ	proteins.	BL00475C 13.06 3.700s-17 110-127
	1	BL00475B 8.20 2.9576-11 36-46
1		BL00475A 10.62 8.560e-11 16-31
		DM00215 19.43 2.286e-10 179-212
BL01153		BL01153D 19.69 4.375e-17 255-281
i	proteins.	BL01153C 13.67 1.726e-11 205-219
	1	BL01153A 13.77 4.300e-11 135-150
	DETERMINATION SHORT.	DM00984B 15.18 6.764e-17 142-197
PR00320		PR00320C 13.01 2.800e-09 284-299
		PR00320B 12.19 1.000a-08 146-161
PR00153		PR00153A 12.98 1.667e-14 49-65
	ISOMERASE SIGNATURE	PR00153B 11.57 6.6676-12 78-91
PD02811		PD02811A 20.67 7.429e-12 4-42
	REDUCTASE MG448 PILB	
PR00915	BAND 4.1 PROTEIN	PR00935D 10.20 4.656e-14 179-196
1	PAMILY SIGNATURE	PR00935A 10.16 2.333=-12 40-53
l		PR00915C 11.98 2.500e-12 118-139
l		PR00935B 10.58 8.714a-11 105-119
BL00030	Bukaryotic RNA-binding	BL00030A 14.39 1.643e-13 81-100
PR00401	SH2 DOMAIN SIGNATURE	PRO0401B 12 94 7.333e-09 115-126
		PR00401D 11.55 8.579e-09 144-155
+	Ribosomal protein L29	
BL00579	proteins.	BL00579B 21.99 5.065e-21 35-65
	PF00028 PF00078 BL01262 BL00056 BL00056 BL00019 PF000259 PF000259 BL00028 PF00791 BL00475 BL01133 DM00984 PF00133 PF000311 PF000935 BL00010 PF00091	dispociation stimulations   CDC24 family stim.

TABLE 1

SEQ ID NO:	Accession No.	Description	Results
343	BLOOK95	3-bydroxylsobutyrate	BL00895B 21.14 7.061e-22 151-190
		dehydrogenese proteins.	BL00895C 20.10 8.071-22 200-236
	i		BL00895A 12.61 1.973e-18 42-63
351	PR00907	THROMBOMODULIN	PR00907B 11.29 9.299-10 234-251
331	1	SIGNATURE	
355	BL00585	Ribosomal protein S5 proteins.	BL00585A 28.43 1.391e-40 103-155
357	PR00078	GLYCERALDEHYDE-3-	PR00078B 7.45 3.250e-24 146-165
337	* KOOO * 8	PHOSPHATE	PR00078D 11.49 2.800e-21 232-250
	l	DEHYDROGENASE	PR00078E 10.50 6.211e-16 272-288
		SIGNATURE	PR00078C 15.99 8.000e-16 173-190
	1	SIGNATORE	PR00078A 10.38 1.000e-15 111-125
359	BL01282	BIR repeat proteins.	BL01282B 30.49 1.000+13 523-562
361	BL00970		BL00970C 14.80 9.773e-09 70-108
301	8200970	Nuclear transition protein 2	BE009/0C 14.80 9.7/36-09 70-108
		proteins.	B
362	DM00191	w SPACSA4.04C	DM00191A 8.16 9.640e-09 12-25
	1	RESISTANCE SPACEA4.05C	
		DAUNORUBICIN.	
365	PR00500	POLYCYSTIC KIDNEY	PR00500B 7.74 3.558e-09 396-417
	i	DISEASE PROTEIN	
		SIGNATURE	
367	BL50002	Src homology 3 (SH3) domain	BL50002B 15.18 1.600e-10 141-155
		proteins profile.	B1.50002B 15.18 6.000e-09 42-56
368	BL50002	Src homology 3 (SH3) domain	BL50002B 15.18 1.600e-10 141-155
		proteins profile.	BL50002B 15.18 6.000e-09 42-56
369	BL00240	Receptor tyrosine kinese class	BL00240F 17.74 4.196e-11 552-600
		III proteins.	
370	BL01238	GDA I/CD39 family of	BL01238C 14.36 2.080e-16 212-234
	ļ.	mucleoside phosphatases	BL0123KD 10.19 1.180a-12 255-269
		proteins.	BL01238A 11.72 5.673e-11 86-101
371	PR00679	PROHIBITIN SIGNATURE	PR00679F 8.03 7.8486-25 122-146
			PR00679E 12.82 6.674e-18 97-117
			PR00679D 11.91 3.739-16 74-91
	ľ		PR00679B 13.63 8.07te-16 28-48
			PR00679C 14.44 7.465e-14 51-70
	Ī	i	PR00679G 6.13 1.340s-13 157-174
			PR00679A 14.03 1.295e-12 10-27
374	PR00700	PROTEIN TYROSINE	PR00700D 12.47 4.462s-11 253-272
	Į.	PHOSPHATASE	
	1	SIGNATURE	
375	PD00066	PROTEIN ZINC-FINGER	PD00066 13.92 2.385=15 254-267
	1	METAL-BINDI.	PD00066 13.92 2.800e-14 310-323
	ļ		PD00066 13.92 7.429+12 282-295
377	PR00925	NONHISTONE	PR00925B 3.73 6.625e-10 12-25
	1	CHROMOSOMAL PROTEIN	
		HMG17 FAMILY	1
	l	SIGNATURE	
378	PR00049	WILM'S TUMOUR PROTEIN	PR00049D 0.00 8.071e-10 3-18
		SIGNATURE	
	PF00084	Sushi domain proteins (SCR	PF00084B 9.45 3.250e-10 116-128
380			
380	PF00024	repeat proteins.	1
380	PF00084	repeat proteins. Nt-dna I domain proteins.	BL00636A 8.07 1.947e-17 18-35
		repeat proteins. Nt-dna! domain proteins.	BL00636A 8.07 1.947e-17 18-35 BL00636B 15.11 5.500e-16 46-67
383	BL00636	Nt-dnal domain proteins.	BL00636B 15.11 5.500s-16 46-67

125

WO 02/059260

PCT/US01/42950

SEQ ID NO:	Accession No.	Description	Results*
		region proteins.	BL00107B 13.31 5.154e-12 222-238
458	BL00657	Fork head domain proteins.	BL00657A 19.39 1.191e-22 101-143
461	PF00615	Regulator of G protein	PF00615B 16.25 3.323e-14 103-120
	l '	signalling domain proteins.	PF00615C 10.06 4.800e-10 180-194
463	BL00983	Ly-6 / u-PAR domain proteins.	BL00983C 12.69 6.885e-09 156-172
466	PR00358	BOMBESIN RECEPTOR	PR00358F 6.58 5.200e-09 15-29
		SIGNATURE	
467	PD02784	PROTEIN NUCLEAR	PD02784B 26.46 1.000e-40 45-88
		RIBONUCLEOPROTEIN.	PD02784A 21.09 7.750e-37 5-42
	Į.	į.	PD02784C 20.76 4.106e-09 97-143
469	B1,00615	C-type lectin domain proteins.	BL00615A 16.68 2.080e-11 148-166
470	BL00615	C-type lectin domain proteins.	BL00615A 16.68 2.080e-11 175-193
475	PD01652	RECEPTOR CELL NK	PD01652B 8.50 7.207e-27 127-179
		GLYCOPROTEIN	PD01632A 15.35 3,557e-17 137-173
	1	IMMUNOGLOB.	PD01652B 8.50 6.910e-10 32-84
478	PF00791	Domain present in ZO-1 and	PF00791B 28.49 3.179e-12 40-95
	1	Unc5-like netrin receptors.	1
479	PF00624	Flocculin repeat proteins.	PF00624I 9.10 7.165e-09 271-301
480	PR00603	CYTOCHROME C1	PR00603H 13.20 9.534e-09 285-301
	l	SIGNATURE	1
412	BL01088	CAP protein.	BL01088F 14.83 5.404e-10 60-106
485	BL00412	Neuromodulin (GAP-43)	BL00412D 16.54 2.023e-11 45-96
		proteins.	BL00412D 16.54 3.204e-09 41-92
	Į	1	BL00412D 16.54 5.684e-09 66-117
489	BL00353	HMG1/2 proteins.	BL00353A 9.60 1.000=40 2-51
	1	1	BL00353B 11.47 1.000e-40 78-128
	ŀ		BL00353C 14.83 1.000=40 128-175
	l	l -	BL00353A 9.60 5.661+11 3-52
495	PF00523	Pusion glycoprotein F0.	PF00523D 11.39 7.188e-10 80-94
502	DM00031	IMMUNOGLOBULIN V	DM00031B 15.41 8.606e-11 78-112
	i	REGION.	l
505	PR00683	SPECTRIN PLECKSTRIN	PR00683D 15.87 9.864e-09 226-245
	ŀ	HOMOLOGY DOMAIN	1
		SIGNATURE	
507	BL01189	Ribesomal protein \$12s	BL01189A 14.27 7.513+17 38-74
	l	proteins.	BL01189A 14.27 5.245e-09 35-71
508	PD01094	ACID FATTY	PD01094D 7.35 7.094e-11 227-281
	l	DESATURASE	1
		ENDOPLASMI.	
512	BL00021	Zinc finger, C2H2 type,	BL00028 16.07 2.286=-09 353-370
		domain proteins.	
513	BL00028	Zinc finger, C2H2 type,	BL00028 16.07 2.286e-09 353-370
		domain proteins.	L
514	BL00107	Protein kinases ATP-binding	BL00107A 18.39 5.7146-16 117-148
	l	region proteins.	
\$16	BL00951	ER himen protein retaining	BL00951C 19.35 1.000e-40 93-142
	l	receptor proteins.	BL00951B 14.23 4.300+31 38-69
	i	1	BL00951D 13.94 1.783e-30 142-177
		I	BL00951A 15.10 1.818e-29 2-38
517	BL00951	ER lumen protein retaining	BL00951D 13.94 2.761+30 89-124
	l	receptor proteins.	BL00951A 15.10 1.818e-29 2-38
	1	1	BL00951B 14.23 5.950s-27 38-69
	l		BL00951C 19.35 4.493e-22 40-89
522	PF01105	emp24/gp25L/p24 family.	PF01105B 25.12 3.928-12 176-228
526	BL00518	Zinc finger, C3HC4 type	BL00518 12.23 2.714e-10 31-40
	1	(RUNG finger), proteins.	· ·
534	PD00717		PD00787B 13.26 1.574e-09 91-105

126

127

SEQ ID NO:	Accession No.	Description	Results*
		TRANSFERASE.	
531	PF00632	HECT-domain (ubiquitin-	PF00632C 20.66 1.340e-20 554-586
		transferase).	PF00632B 18.45 8.313s-20 499-527
541	BL00478	LIM domain proteins.	BL00478B 14.79 9.679c-13 62-77
		1	BL0047EB 14.79 5.750s-12 182-197
			BL00478B 14.79 6.500=12 245-260
			BL00478B 14.79 3.400s-11 123-138
543	DM00547	I kw CHROMO	DM00547F 23.43 6.538e-36 628-675
		BROMODOMAIN SHADOW	DM00547E 13.94 2.400e-18 387-410
		GLOBAL	DM00547C 17.30 9.486e-16 266-288 DM00547B 11.28 9.217e-15 237-251
		1	DMAXS47B 11.28 9.2176-13 237-231 DMAXS47D 11.60 4.951e-12 357-371
			DM00547A 12.38 6.455e-11 216-228
345	PF00777	Siniyitransferase family,	PF00777C 18.60 5.291=21 78-133
350	PD00066	PROTEIN ZINC-FINGER	PD00066 13.92 3.769+15 459-472
330	7120000	METAL-BINDI.	PD00066 13.92 2.800=14 206-219
		MBIADAUA.	PD00066 13.92 2.800=14 234-247
			PD00066 13.92 2.800=14 347-360
			PD00066 13.92 2.800=14 431-444
	ŀ		PD00066 13.92 2.800p-14 487-500
			PD00066 13.92 3.400s-14 375-388
			PD00066 13.92 5.200e-14 319-332
			PD00066 13.92 8.800e-14 403-416
			PD00066 13.92 4.000+13 150-163
			PD00066 13.92 5.500=13 515-528
			PD00066 13,92 7.652s-11 262-275
553	PF00615	Regulator of O protein	PF00615B 16.25 8.839e-14 101-118
		signalling domain proteins.	PF00615C 10.06 3.700+13 178-192
555	PR.00180	CELLULAR	PR00180A 10.11 1.875e-16 75-98
		RETINALDEHYDS-	PR00180D 12.78 1.155e-15 233-253
		BENDING PROTEIN	PR00180B 16.42 4.493e-13 124-149
	<del></del>	SIGNATURE	PR00180C 10.92 2.901e-12 200-222
557	BL00018	EF-hand calcium-binding	B1,00018 7.41 4.150s-10 494-507
359	BL01172	domain proteins. Ribosomal protein L44e	BL01172B 14.10 1.000=40 15-57
339	SCOTT/2	i Kraciomai protess LA46 i proteins.	BL01172C 16.78 3.400s-33 63-102
		process.	BL01172A 7.78 3.520s-13 2-13
562	DM00031	IMMUNOGLOBULIN V	DM00031B 15.41 1.000e-10 83-117
302	Distance	REGION.	DM00031B 13.47 1.000F10 83-117
563	BL00484	Thyrogtobulin type-1 repeat	BL00484B 9.04 6.344e-14 103-117
	D200101	proteins proteins.	BL00484C 17.01 8.125e-14 123-138
565	PF00366	Probable rabGAP domain	PF00566A 12.64 9.6676-10 111-121
		proteins.	PF00566B 11.92 1.300e-09 153-159
366	BL00580	Ribosomal protein L32e	BL00580A 17.63 9.899e-09 14-50
		proteins.	
569	BL00674	AAA-protein family proteins.	BL00674D 23.41 4.696c-15 599-646
	1		BL00674B 4.46 1.333p-14 508-530
			BL00674C 22.60 3.786e-14 541-584
572	BL00397	Site-specific recombinases	BL00397D 19.54 £.1636-10 279-299
	1	proteins.	
575	BL00242	Integrins alpha chain proteins.	BL00242E 9.03 1.375e-26 1143-1172
	ı		BL00242C 16.86 2,324e-23 483-513
	1	1	BL00242D 13.57 5,200e-22 570-595
	1	1	BL00242B \$.13 6.478e-11 394-404
		1	BL00242A 13.80 7,000e-11 75-87
		<del> </del>	BL00242D 13.57 3.9576-10 632-657
582	BL00415	Synapsins proteins.	BL00415N 4.29 2,445e-09 386-430

WO 02/059260 PCT/US01/42950

SEQ ID NO:	Accession No.	Description	Results*
671	PD02327	GLYCOPROTEIN ANTIGEN PRECURSOR IMMUNOGLO.	PD02327B 19.84 8.941e-23 143-165 PD02327A 8.89 1.000e-13 115-127 PD02327C 15.47 5.500e-13 209-224
672	PD02327	GLYCOPROTEIN ANTIGEN PRECURSOR IMMUNOGLO.	PD02327B 19.84 8.941a-23 159-181 PD02327A 8.89 1.000a-13 115-127 PD02327C 15.47 5.500a-13 225-240
678	PR00441	G-PROTEIN ALPHA SUBUNIT GROUP I SIGNATURE	PR00441B 16.16 4.667e-26 163-186 PR00441C 14.17 1.409e-24 192-210 PR00441A 10.69 1.375e-19 31-47

* Results include in order: Accession No., subtype, e-value, and amino acid position of the signature in the corresponding polypeptide

SEQ ID NO:	Accession No.	Description	Results*
583	PD00066	PROTEIN ZINC-FINGER	PD00066 13.92 1,000e-14 165-178
		METAL-BINDI.	PD00066 13.92 5.800s-14 193-206
	l.		PD00066 13.92 9.000s-13 221-234
			PD00066 13.92 1.000s-12 137-150
			PD00066 13.92 5.286e-12 249-262
			PD00066 13.92 9.143e-12 109-122
			PD00066 13.92 2.957s-11 81-94
585	BI-50058	O-protein gamma subunit	BL50054 27.23 8.393e-31 35-43
	DE-000-	profile.	BC50030 2723 1359531 3540
587	PF00628	PHO-finger.	PF00628 15.84 6.806e-09 77-92
591	PR00450	RECOVERIN PAMILY	PR00450C 12.22 5.364e-12 65-87
		SIGNATURE	710000000000000000000000000000000000000
592	PROCESO	RECOVERIN PAMILY	PR00450C 12.22 1.3646-12 65-87
		SIGNATURE	
600	BL00617	RecF protein.	BL00617A 25.53 6.308e-11 61-104
603	PR00216	OSTEOPONTIN	PRO0216C 9.63 8.636e-09 189-215
003	FR00210	SIGNATURE	FROM210C 9.03 8.0300-09 189-213
	DI ACCIA		BL00019D 15.33 7.660-17 197-427
604	BL00019	Actinin-type actin-binding	BLAUGIST (3.3) 7.8608-17 397-427
		domain proteins.	
610	PF00855	PWWP domain proteins.	PF00855 13.75 7.000e-10 414-431
613	BLÖ1228	Hypothetical cof family	BL01228D 17.44 2.523+10 609-634
		proteins.	
629	BL00021	Kringle domain proteins.	BL00021B 13.33 4.2406-16 48-66
635	BL01033	Globins profile.	BL01033B 13.81 5.500e-14 38-50
638	PF00992	Troponia.	PP00992A 16.67 7.868e-09 7-42
639	PD00066	PROTEIN ZINC FINGER	PD00066 13.92 8.800e-14 50-63
	!	METAL-BINDI.	
640	PR-00500	POLYCYSTIC KIDNEY	PR00500B 7.74 7.964e-12 182-203
		DISEASE PROTEIN	1
	1	SIGNATURE	ŀ
641	PD00066	PROTEIN ZINC-FINGER	PD00066 13.92 6.143e-12 316-329
		METAL-BINDI.	PD00066 13.92 6.192s-10 344-357
643	PD01941	TRANSMEMBRANE	PD01941A 14.81 2.662p-34 82-136
~~	1.00.2.	COTRANSPORTER SYMP.	PD01941B 15.02 2.246e-28 267-314
		COTRUCTOR CALLERY	PD01941D 27.18 9.194e-19 501-550
	l .	ł	PD01941C 19.96 6.786e-13 347-402
649	DM00011	IMMUNOGLOBULIN V	DM00031B 15.41 3.278e-09 79-113
· · ·	DAGGGT	REGION.	DM000318 13.41 3.2760-03 75-113
650	HL00290	Immunoslobulins and major	BL00290A 20.89 8.200e-12 162-185
630	BLUMASO	histocompatibility complex	BL00290A 20.89 8.2006-12 162-185
			l
654	BL00407	proteins. Connexins proteins.	BL00407E 22 17 1 000s-40 164-209
654	BL00407	Connexins proteins.	
		1	BL00407B 14.23 7.231e-35 39-70
		1	BL00407A 18.57 5.250e-29 2-39
		1	BL00407C 14.61 7.097e-28 70-98
	l	L	BL00407D 17.61 4.000e-25 125-155
656	PR00359	B-CLASS P450 SIGNATURE	PR00359F 24.20 4.536e-10 310-338
661	BL01064	Pyridoxamine 5'-phosphate	BL01064C 15.22 1.2036-09 307-340
		oxidase proteins.	<u> </u>
664	PR00069	ALDO-KETO REDUCTASE	PR00069A 16.01 1.000e-18 42-67
	L	SIGNATURE	PR00069B 11.33 1.735e-13 102-121
665	PD02462	PROTEIN BOLA	PD02462A 22.48 9.873e-12 13-48
	1	TRANSCRIPTION	
	1	REGULATION AC.	1
			T T T T T T T T T T T T T T T T T T T
666 .	PR00348	I UBIOUITIN SIGNATURE	
666 ·	PR00348 BL01052	UBIQUITIN SIGNATURE Calponin family repeat	PR00348A 7.86 8.625e-09 11-32 BL01052B 15.31 2.518e-10 511-537

WO 02/059260

PCT/US01/42950

# TABLE 4

SEQ ID NO:	Pfam Model	Description	Lvalue	Score
350	K_tetra	K+ channel tetramerisation domain	230-31	117.6
351	zona pellucida	Zona pellucida-like domain	2.26-25	97.7
355	Ribosomal_SS	Ribosomal protein S5	1.70-46	167.9
357	gpdh	Glyceraldehyde 3-phosphate dehydrogenase, NA		349.8
429	Noil_Nop2_Sun	NOLI/NOP2/sun family	4.5e-19	68.6
431	LIM	LIM domain	8.6e-32	119.1
441	WD40	WD domain, G-beta repeat	230-07	37.9
443	pro isomerase	Cyclophilin type peptidyl-profyl cis-tr	5.30-34	120.4
444	DUF25	Domain of unknown function DUP25	1.1-11	46.9
446	Band_41	FERM domain (Band 4.1 family)	3.2a-77	242.4
447	rma	RNA recognition motif.	1.1+33	125.4
448	\$H2	SH2 domain	1.70-33	100.2
449	UIM	Ubiquitin interaction motif	0.00071	26.3
453	Ribosomal L29	Ribosomal L29 protein	1.70-15	64.9
454	NTF2	Nuclear transport factor 2 (NTF2) domain	3.2a-07	37,4
457	pkinase	Protein kinese domain	60-40	146.1
458	Fork head	Fork head domain	10-28	108.8
460	PC4	Transcriptional Coactivator p15 (PC4)	2.10-38	141.0
461	ROS	Regulator of O protein signaling domain	2.60-45	164.0
465	COX7a	Cytochrome c oxidase subunit VIIs	2.30-40	147.5
467	man .	RNA recognition motif.	3.20-15	64.0
469	lectin c	Lectin C-type domain	5.1p-06	33.3
470	lectin c	Lectin C-type domain	5.1a-06	33.3
475	ig	Immunoglobulin domain	9.10-07	26.9
478	enk	Ank repeat	30-15	64.1
481	Zip	ZIP Zinc transporter	3.8+31	116.9
419	HMG box	HMG (high mobility group) box	80-53	188.9
490	PH	PH domain	2.84-13	52.3
494	VI∋( C	Ulp I protesse family, C-terminal catalytic d	1.20-11	52.1
495	Pentidase C6	Helper component proteiness	0.0056	7.9
502	ig Co	Immunoglobulia domain	2.30-09	35.2
503	1g	Immunoglobulin domain	9.24-09	33.3
305	PH	PH domain	1.90-14	36.4
507	Ribosomal L7Ae	Ribosomal protein L7Ae/L30e/S12e/Gedd4	8.2=14	59.3
512	nf-C2H2	Zinc finger, C2H2 type	1.10-10	48.9
513	rf-C2H2	Zinc finger, C2H2 type	3.20-16	67.3
<del>314</del>	pkinese	Protein kirmse domain	3.4+26	98.4
516	ER kunen recept	ER hanen protein retaining receptor	3.50-144	492.4
			1.8-88	307.3
517	ER homen recept EMP24 GP25L	ER haven protein retaining receptor	6.9e-06	24.1
522	SPRY	SPRY domain	2.3+30	114.3
526		HECT-domain (ubiquitin-transferese)	1.1+115	397.8
538	HECT		4.2a-42	
540	Rhomboid	Rhomboid family		153.3
541	LIM	LIM domain	2=35	131.1
542	Olycos transf 2	Glycosyl transferase	1.7-25	98.1
543	SNF2 N	SNF2 and others N-terminal domain	5.9-104	338.6
545	Glyce transf 29	Glycosyltransferase family 29	7.3 - 20	79,4
546	LysM	LysM domain	Je-06	33.5
550	ef-C2H2	Zinc finger, C2H2 type	1.1+104	361.2
553	ROS	Regulator of G protein signating domain	5.10-52	186.2
554	TBC	TBC domain	7.2-15	129.3
555	CRAL_TRIO	CRAL/TRIO domain	4.56-47	158.6
539	Ribosomal L44	Ribosomal protein 1.44	1042	175.3
561	אוד	TIR domain	0.063	9.9

SEQ ID NO:	Pfam Medel	Description	E-value	Score
562	iz	Immunorlobutin domain	3.5e-08	31.4
562 563 563 564 568	thyroglobulin I	Thyroglobulin type-1 repest	3.9-24	93.6
565	твс	TBC domain	1.20-54	195.0
561	rf-C2H2	Zinc fineer, C2H2 type	7.1e-08	39.6
369	AAA	ATPase family associated with various callul	20-44	161.0

WO 02/059260

PCT/US01/42950

WO 02/059260 PCT/US01/42950

133

60.0

1.76-29

ğ

ĕ

ā

126.0

16-36

₹ 3 28 ě

_					DH:		
PDB nasetation			OXIDOREDUCTASE OXIDOREDUCTASE		OXIDOREDUCTASE &PODH, 6-PODH; OXIDOREDUCTASE, CHOH(D)- NADP+(B)	OXIDOREDUCTASE OXIDOREDUCTASE, OXIDOREDUCTASE, NAD	ı
Coumpeusd	GLYCERATE DEHYDROGENASE (APO FORM) (E.C.1.1.29) 1GDH 3	OXIDORIDÚCTASE(CHON (D-NAD(A)) APO-1- 1-ACTATB DEHYDROGENASE (R.C.1.1.27) ILDB 4	LEUCINE DEHYDROGENASE; GIAIN: A, B;	OXIDOREDÜCTÁSE(CHOH (D.P.M.D.(A.)) L-LACTATB (D.P.M.D.(A.)) L-LACTATB (B.C.I.I.I.27) (T-STATB) MUTANT ILLD 3 WITH CYS 199 REPLACED BY SER (C1995) COMPLEX WITH NASH ILLD 4	6-PHOSPHOGLUCONATE DEHYDROGENASE; CHAIN: A, B;	CHAIN A: DEHYDROGENASE; LALLANDE	OXIDOREDUCTASE (NAZV.) D-1- PHOSPHOOL YCERATE DEHYTOKOGENASE (PHOSPHOCL YCERATE DEHYTOKOGENASE) (PHOSPHOCH YCERATE DEHYTOKOGENASE) (R.C.I.I.1.95) 195D 4
Seare							
PM.P Scere		ę,	073	3	85	990	70
Vertify Scare		20.0	73	69	0.27	960	6115
PSJ BLAST Score		50 <b>4</b>	1.76-08	1.78-06	3.44-37	6 6	¥•1.8
3 \$		921	<b>9</b> 2	81	ğ	3	82
Start A		er .	n	<del>-</del>	\$	7	=
<b>1</b> 0			٧.	<	<	<	۷
ē e		ള	g	3	104	igt a	PE.
g e ğ		ž	ž	3	3	ŝ	3

PDB аввеситов	OXIDOREDUCTASE SIMILAR TO THE PREVIOUSLY SOLVED FORMATE DEHYDROGENARS 2 OXIDOREDUCTASE		OXIDOREDUCTASE (CHOHD)- NAD+(A)) R-LACTATE DEHYDROGENASE; 2DLD 7	OXIDOREDICTASE (CHOH(D)- NAD+(A)) R-LACTATE DEHYDROGENASE; 2DLD 7		OXIDOREDICTASE SCHAD, OXIDOREDICTASE SCHAD, OXIDOREDICTASE, BETATIC OXIDATION, SCHAD, CATALTIC ACTIVITY: 1 L-14TOROXYACYL COA + NAD(+) - 3-OXOACTI-COA + NADH	OXIDOREDUCTASE SCHAD; OXIDOREDUCTASE SET OXIDATION, SCHAD, CATALYTIC ACTIVITY: 2 L-3+FYDROXYACYL- COX + NAD(+) = JOXOACYL-COA + NAD(+)	OXIDOREDUCTASE SCHAD; OXIDOREDUCTASE, BETA
Countpound	FORMATE DEHYDROGENASE; CHAIN: A, B;	OXIDOREDUCTASE(NAD( A)-CHOH(D)) MALATE DEHYDROGENASI (B.C.1.1.137) 2CMD 3	D-LACTATE DEHYDROGENASE; 2DLD 5 CHADN: A, B; 2DLD 6	D-LACTATE DEHYDROGENASE; 2DLD 5 CHAIN; A, B; 2DLD 6	OXIDOREDUCTASE (CHORID)-NADP-(A)) 6- PHOSTHOGLUCONATE DEHYDROGENASE (6- PGDH) (B.C.I.I.I.44) 2FGD )	LJ-HYDROXYACYL COA DEHYDROGENASE; CHAIN: A, B, C;	LJHYDROXYACYL CGA Dehydrogenase; Chain: A. B. C.	L-3-HYDROXYACYL COA DEHYDROGEMASE;
Scare Scare						29.63		75.95
ž į	800	000	ري د	673	61.0		170	
Vertiy	600	10.0	3	3	<b>6.13</b>		Sig.	
2 5 S	<u> </u>	5.le-06	5.4e-18	3	1.78-45	3	F-52	6.84-32
33	777	<u>a</u>	2	3115	E .	SE .	ž	11.2
Ęş	-	\$	9	R	7	*	\$	2
8	<		<	<_		<	<	ပ
<b>2</b> 03	<u>B</u>	Į	Pipe	PIPE.	) E	9	ğ	ğ
ğ e ğ	ŝ	3	ž	ž	3	3	3	ž

SEQ PDB 1D NO: 1D 1D NO: 1D NO

BLAST Seen 3.4e-11

3 \$

ž ž 3 e

**2** €

			7						
PDB expectation	OXIDATION, SCHAD, CATALYTIC ACTIVITY: 1 L-3-HYDROXYACYL COA + NAD(+) - 3-OXOACYL-COA + NADH	OXDOQEDUCTASE SCHAD; OXDOATION, SCHAD, CATALTIC OXDATION, SCHAD, CATALTIC COA + NAD(*) = J-OXOACTA-COA + NAD(*)		SCAFFOLD PROTEIN SCAFFOLD PROTEIN, PP2A, PHOSPHORYLATION, HEAT REPEAT	ARMADILLO REPEAT ARMADILLO REPEAT, BETA-CATENIN, CYTOSKELETON		COMPLEX (OXIDOREDUCTASPANTBOON) (OXIDOREDUCTASPANTBOON) (ERROCTTOCHEOR, C., COMPLEX IV, FERROCTTOCHEOR, C., COMPLEX (OXIDOREDUCTASPANTBODY), ELECTRON TRANSFORT, 2 TRANSEDMBANKE, CTTOCHEOM TRANSEDMBANKE, CTTOCHEOM OXIDARS, ANTREOPY COMPLEX	TALKUNB SYSTEM DAKUNGELOBULIN FOLD, ANTIBODY, IOK, FV	DOCLOROGIOBULIN BIDSEV; MONOCLONAL ANTIBODY, ANTITIONOR POCHORICIO
Cenmperad	CHADN: A, B, C;	L-J-Hydroxyacy, coa dehydrogenase; chady: A, B, C;		PROTEIN PHOSPHATASE PP2A; CHAIN: A, B;	BETA-CATENIN; CHAIN: NUL;		CYTOCHROMB C OXDASE, CHADI: A, B; ANTBODY FV FRAGMENT; CHADI: C, D;	IGM MEZ DAMINDGLOBULN; CHANN: L; IGM MEZ DAMINDGLOBULN; CHAN: H;	ANTICANCER ANTIBODY BI; CHAIN: L, II;
SeqFold Scare									
PMP		0.01		0.39	ğ	Ī	o o	<b>6.20</b>	0.17
Verify		0.12		0.12	4,10		800	8.0	0.10
PSI BLAST		[[ <b>4</b> ]]		0.00016 0.12	7.20-14		3.4e-16 0.06	3.40-16 0.04	1.70-16 0.10
3 5		317		225	609		215	112	717
Starr		<b>3</b>		E	<b>\$</b>	[	126	128	8
g G		U		<			ပ	II.	±
<b>8</b> 04		Ž.		163	ř		3	ā.	Ā
Og o S		ĝ	T	ž	ž	Ī	35 25	9.	ž

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

Challs Start 1D AA	3 ₹	PSI BLAST Score	Verify Sears	Score	Seaffold	Composited	PDB annytation
	ı					CYCLODEXTRIN GLUCANOTRANSFERASE (B.C.2.4.1.19) (COTASE) ICYG 3	
36	I	1.6+20	П	П	59.37	VIRUS TOMATO BUSHY STUNT VIRUS 2TBV 4	
Н	1						
12	-	1.76-14	2	0.49		POTASSIUM CHANNEL KVI.I; CHAIN: NULL;	POTASSIUM CHANNELS POTASSIUM CHANNELS, TETRAMERIZATION DOMANN, X.RAY 2 STRUCTURE, APLYSIA KVI.1
2	l.	7.4 T.	ŝ	650		POTÁSSIUM CHANNEL KVI.I; CHAIN: NULL;	POTASSITIM CHANNELS POTASSIUM CHANNELS, TETRAMERIZATION DOMAIN, X.RAY 2 STRUCTURE, APLYSIA KVI.1
2	اما	3.te-17	0.47	411		PROMYBLOCYTIC LEUKBAIA ZIAC FINGBR PROTEIN PLZP, CHAIN: A;	GEGE REQUIATION FOR DOMANS: PROTEIN-PROTEIN INTERACTION DOMAN; TRANSCRIPTIONAL 2 REPRESOR, ZINC-FROGER POTEN, KRAY CRYSTALLOGAN-HY, 3 ROOTEN STRUCTURE, ROOMELOCYTIC LEUTEMAL, GEGE REGMATTION
<u>*</u>	l	) 4	ĝ	629		KV1.2 VOLTAGE-GATED POTASSIGM CHANNEL; CHAIN: A, B, C, D, E, F, G, H;	SIGNALING PROTEIN VOLTAGE- GATED POTASSIUM CHANNEL, ASSEMBLY DOMAIN, TETRAMER
2	l	101	0.02	934		KV BETA? PROTEIN; CHAIN: A; POTASSIUM CHAINEL KVI.1; CHAIN: E;	METAL TRANSPORT ION CHANNEL. OXIDOREDUCTASE, BETA SUBUNIT
<u> </u>	≀ I	<u>*</u>	900	045		KVI.3 VOLTAGE GATED POTASSIUM CHANNEL; CHAIN: A, B, C, D;	SIGNALING PROTEIN VOLTAGE GATED POTASSIUM CHANNEL, TETRAMERIZATION DOMAIN, 2

PDB annotation			IMMUNOGLOBULIN NMR, VH DOMAIN, ANTIBODY, HUMAN, IMMUNOGLOBULIN	STRUCTURAL PROTEIN INTEGRIM-			STRUCTURAL PROTEIN INTEGRIN- BINDING PROTEIN, INV GENE	
Countywas	DANUNOGLOBULIN DANUNOGLOBULIN M (1G-M) FV FRAGMENT HOM 3	PACAGET (NUTBE SISTA) CONFLEX WITH THE TRACCHARDE INFA ALTHAD OLACTOSE/13/ALTHA DASCOUSSE/13/ALTHA DASCOUSSE/13/ALTHA DASCOUSSE/13/ALTHA DASCOUSSE/13/ALTHA DASCOUSSE/13/ALTHA DASCOUSSE/13/ALTHA DASCOUSSE/13/ALTHA DASCOUSSE/13/ALTHA DASCOUSSE/13/ALTHA DASCOUSSE/13/ALTHA DASCOUSSE/13/ALTHA DASCOUSSE/13/ALTHA DASCOUSSE/13/ALTHA DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD DASCOUSSE/13/ALTHAD	VI-PI; CHAIN: MILL:	DVASIN; CHAIN: A;	GLYCOSYLTRANSFERASE CYCLODEXTRIN GLUCANOTRANSFERASE (B.C.2.I.19) (CGTASE)	VIRUS TOMATO BUSHY STUNT VIRUS ZIBY 4	DIVASIN; CHAIN: A;	GLYCOSYLTRANSFERASE
SeqFold Score				79.67		75.65	79.67	
P. Soor	40.19	9170-	11.0-		60'0			600
Verty F	60.0	20:0	637		0.62			8
ELAST Scere	Si-al	6	91-42	1.50-24	1,46.13	02.9	1.86-24	1.46-15 0.02
3 \$	*	82	214	2	ŧ	395	3	Ę
Start A	<b>8</b> 21	3	128	,	25	2	9	23
a B	±			· ·		J	<	
<u> </u>	<u>g</u>	गुष	dth	Icur	163E	À	CWA	151
ĝe ë	3	34	ž	ž	ž	ž	3	ž

PCT/US01/42950

| St. | To | Chair | San | East | San | Sa

ā

8

20

2

257

2

3

2

141

WO 02/059260

£ Ser

**1**0 2 e

S e S

PCT/US01/42950

WO 02/059260

PCT/US01/42950

Γ		l		Ι.	Γ-	le .	П	T
PDB annotation	MATRIX, CALCIUM-BINDING, CALYCOROTEN, I SERENT, SIGNAL, MULTIGENE FAMILY, DISEASE MUTATION, 3 EGF-LIKE DOMAIN, HUMAN FERELLIAN 1 FRAGMENT, MATRIX PROTEIN.	MATRIX PROTEIN EXTRAGELLULAR MATRIX CALCUPABEDIONO, CLYCOPROTEIN, 3 REPEAT, 5 SIGNAL, MULTIGENE FAMILY, DISEASE MUTATION, 3 EGF-LICE DOMAIN, HUMAN FIBRILLIN-I PRAGMENT, MATRIX PROTEIN	SIGNALLING PROTEIN BINDING PROTEIN, CYTOKINE, SIGNALLING PROTEIN	SIGNALLING PROTEIN BINDING PROTEIN, CYTOKINE, SIGNALLING PROTEIN	HYDROLLASE PROTEIN-INHIBITOR COMPLEX	PLOOD CLOTTING COMPLEXGEBURE ROTEASECON-CTORLIGADI), BLOOD COAGULATION, 1 SERNIE PROTEASE, COMPLEX, CO-ACTOR, RECEPTOR, ESCYME, 1 DATBITOR, GIA, EGF, COMPLEX (SERIE 4 PROTEASECON-ACTORLIGAND), BLOOD CLOTTING	GLYCOPROTEIN GLYCOPROTEIN	SIGNALLING PROTEIN TYPE I
Countpound		FIBRILLIN; CHAIN: NULL;	TUMOR NECROSIS FACTOR RECEPTOR; CHAIN: A, B;	TUMOR NECROSIS PACTOR RECEPTOR; CHAIN: A, B;	COAGULATION PACTOR XX; CHAIN: A: COAGULATION FACTOR XX; CHAIN: B:	BLÖOD COAGULATION FACTOR VIL, CIAM: L; BLOOD COAGULATION FACTOR VIL, CIAM: H; SOLUBLE TISSUE FACTOR; CHAN: T; 51.15; CHAN: E	LAMININ CHAIN NULL;	TUMOR NECROSIS
SeqFold			11.32			-		73.83
PMF Score		<b>13</b>		0.41	0.16	0.0	9	3
Verify Sears		97.0		623	0.61		E 6	500
PSI BLAST Score		1.5-20	.le-15	SI-all.	3.60-13	3.46-15	2 4	
3 \$		92	982	1.2	392	EL .	252	390
Start A.A.		Ē	221	αι	ä	ā	<u>8</u>	12
e e			٧ .	٧	ø	د.		<
<b>2</b> 2		Ē	lext	160	Ē	ž.	앩	1
9 e 9		135	131	351	150	<u> </u>	18 25	П

PDB annetation	RECEPTOR, STAFRI; INCF 6 BINDING PROTEIN, CYTOKINE INCF 19	COMPLEX (BLOOD) COAGULATION/NEBITOR) COAGULATION/NEBITOR) COAGULATION/NEBITOR INDIBIOUS CHARLATION 2 PLASMA, SERINE PROTEAS, CALCTUM- BINDDIO, FIVENCIAS, CALCTUM- BINDDIO, FIVENCIASE, CALCTUM- GLYCOPROTEIN	COMPLEX (BLOOD CONCULT TOWNBERTOR) CONCULT TOWNBERTOR) CHESTALS RATTOR; COMPLEX, INHERITOR; ERMORHELA/EGF, BLOOD COAGULATION, 17 PLASMA, SERING PROTEASE, CALCIUM, BINDING, HYDROLASE, 31 BINDING, HYDROLASE, 31	COMPLEX (BLOOD) COAGULATION/NEBETOR) COAGULATION/NEBETOR) CHESTORY, COAFLEX, RMEBTORY, EEMOPHLA/CEF, BLOOD COAGULATION, 2 FLASMA, SERING PROTEASE, CALCITON, BINDING, HTYROLASE, 1	COMPLEX (BLOOD COAGULATION WHEBTOR) COAGULATION WHEBTOR) CHEATTOR, COAPLEX, PREITOR, EMOURALLAGOF, SERDIE PROTEASE, CALCTUM- BROUND, HYTROLIASE, 1 BROUND, HYTROLIASE, 1
. Септрошь	FACTOR RECEPTOR; INCP 4 CHAIN: A, B; INCP 5	FACTOR IXA; CHAIN: C, L; D-PHE-PRO-ARG; CHAIN: L;	FACTOR IXA; CHAIN; C, L;, DPIB-PRO-ARG; CHAIN; I;	FACTOR IXA; CHAIN: C, L; DPHE-PRO-ARG; CHAIN: L;	FACTOR IXA; CHAIN; C, L.; DPHE-PRO-ARG; CHAIN; E;
Score				77.38	
PM F		110	ğ		0.13
Verify Scare		<del>6</del> 13	SI P		600
PSI PSI		5,16-12	3,46-10	02-39 10-29	97-99-1
<b>P</b> ₹		011	ž.	ín.	912
ž ź		101	8	<u>91</u>	25
Chals To A Sort		٠	<b>-</b>	_	J
<u> </u>		哲	덮	Çdı	Apr.
03 e 5		156	32	331	351

PDB annetation	COMPLEX (BLOOD) COMOLTHOWNSHIPTON) COMOLTHOWNSHIPTON) COMOLTHOWNSHIPTON FORTHOLY COMPLEX, FORTHOLY FLOWER, SEEDING FROTHER, THESSAY, SEEDING FROTHERS, CALCINIB, GLYCORY OFFICE, THESSAY, CONTRACTORY	SEEDUR PROTEASS PYTIA; FYLIA; BLOOD COAGULATION, SERURE PROTEASS	SERDO COACULATION, SERING PROTEASE	SGENE FROTEASE PVILA; FVILA; BLOOD COAGULATION, SERING PROTEASE	BLOOD COAGULATION FACTOR STUART FACTOR: BLOOD COAGULATION FACTOR, SERINE PROTEINASE EPIDERAAL 2 GROWTH PACTOR LIKE DOMAIN
Cormpound	FACTOR D'AS, CHAIN: C, L, D-FB-FRD-ARQ; CHAIN: L	COAGULATION PACTOR THIS LLOHT CALIN); CHAIN: L; COAGULATION PACTOR VIA (FEAVY CALIN); CIAIN: H; RUPETIDYL INHIBITOR; CHAIN: CIAIN: H;	CÖĞĞÜLATTON PACTOR YAN ÇLGİR CARIN; CİLAİN: L. COĞĞÜLATION PACTOR VÜA (HEAVY CÜALIN; CHAÜN: H; RUPETTDYL DÜĞÜTÜN; CHAIN: Ç	COAGULATION FACTOR THE GLORIC CHAINE, CHAINE LE COAGULATION FACTOR VIA (IELAY) GLAINE, CHAINE, CHAINE, GLAINE, CHAINE, TRIFFETTOYL, DEGRIFOR, OHAINE, CHAINE,	BLOOD COAGULATION PACTOR XA, CHADY: L, C,
Scare Scare					
Score	6.93	620	3	60	70
Vertity Score	7.0	9.13	403	25.0	H.O
BLAST		7.26-20	5.40-21	<u> </u>	3.l <b>e</b> 13
\$ 5	912	źź.	692	EL .	122
A Start	<u>a</u>	<b>S</b> S	22	28	91
g a	,	ـــ	د	۔	
20 e	2d	Ē.	톂	를	9
35 E 5		ā	ā	§	ā

WO 02/059260 PCT/US91/42950 WO 02/059260

PDB annatration	·			
Coumpound	RUBGOOMAL PROTIES SE,  CHUNN I, 108 BIDGOOMAL  SE BEDGOOMAL PROTIES SE,  CHUNN I, 108 BIDGOOMAL  SE BEDGOOMAL PROTIES SE,  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHUNN IK, 106  CHU	RIBOSOMAL PROTEIN SS (PROKARYOTIC) IPRP 3	RIBOSOMAL PROTEIN RIBOSOMAL PROTEIN S3 (PROKAR YOTIC) IPKP 3	OXIDOREDUCTASE (NADS(A)-ALDEHYDE(D))
Seq Pold			\$1.18	17.74
Scare		Q.19		$oxed{oxed}$
Vertby Scars		£3,		
PSI 75		ĝ.	1.46-49	
3 \$		ដែ	133	337
F ×		8	20	
g e				~
<b>2</b> 0		Đ.	£	Ē
ន្តិមន្តិ		32	ž	137

POB amediation						SUBJOON STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STREETS OF STR
Ces mpound	LECTIN (AGGLUTININ) WHEAT GERM AGGLUTININ (ISOLECTIN 2) 9WQA 3	LECTIN (AGGLUTININ) WHEAT GERM AGGLUTININ (ISOLECTIN 1) 9WOA 1	LECTIN (AOGLUTININ) WHEAT GERM AGGLUTININ (ISOLECTIN 1) 9WOA 3	LECTIN (AGGLUTININ) WHEAT GERM AGGLUTININ (ISOLECTIN 2) 9WGA 3		ILE BROSSHAL RAVA  CHONDA, CRANGEST ON  MESSENEER RAV, CRANGEST  ST 108 REDGOMAL  REOTHER, ES, CHANE, E.  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE REDGOMAL  SE
Sea Pad						
Scare	1.	000	9 9	90.0		= 
S and S	<u> </u>	700	0.07	0.03	Ī	8
ELAST Sons		100	5.10-24	1141		6.Ep-44
A.A.	250	162	200	3		263
Start AA	60	124	27	•	Ĺ	<u>.</u>
<b>1</b> 0	·	<	<	<b>v</b>		us .
<u>e</u> e	a a	el as	n.	ti no		5
g e ĝ	ž	ī	ž	351		333

					•		
PDB annotation			TRANSCRIPTION REGULATION PROTO-CHOCHE, NUCLEAR BODDES (PODS), LEUKEMIA, 3 TRANSCRIPTION REGULATION			TRANSPORT PROTEIN SERING-RICH RNA POLYMGRASE I SUPPRESSOR PROTEIN; ARM REPEAT	LIGASE CBI, UBCH7, ZAP-74, ET, UBCASE CBI, UBCH7, ZAP-74, ET, UBCSPHORYA-TION, J. TYROSIDE KINASE, UBCUTTA-TION, PROTEIN DEGRADATION,
Септрепи	D-OLYCERALDEHYDE-3- PHOSPHATE DEHYDROGENASE (B.C.1.21.12) 3GPD 4	OXIDOREDÚCTASE (PANDSKAALDEHYDED)) D-QI YCERALDEHYDE-3- PHOSPHATE DEHYDROGENASE (B.C.1.2.1.13) 3GPD 4	TRANSCAPTION FACTOR PML; CHAIN: NULL;	VIRUS EQUING HERPES VIRUS-1 (CHC4, OR RING DOMAIN) ICHC3 (NMR, 1 STRUCTURE) ICHC4	VIRUS EQUINE HERPES VIRUS-1 (C3HC4, OR RING DOMAIN) ICHC 3 (NMR, 1 STRUCTURE) ICHC 4	KARYOPHERIN ALPHA; CHAIN; A, B; MYC PROTO- ONCOGENE PROTEIN; CHAIN; C, D, R, F,	SIGNAL TRANSDUCTION MOTERN GLI, CALDIN, A. ZAP-70 PETIDE, CIALDIN, B-UBIQUITIO, B-UBIQUITION BNZYME ELE-18 KDA UBCH?, CHAIN, C.
Seq Fold							
A S		8	ā	15.0	0.21	0.21	ğ
Variety Seers		85	£73	100	424	90.0	4017
E 52 5		•	1.60-09	1,000	0.00034	1.66-03	3.49-07
3 5		),tt	3	8	3	RE .	363
£ Sur		_	ž	ğ	æ	ā	\$
<b>å</b> e		<u></u>				<	<
ş e		B	¥	<u> 1</u>	ij	<u> </u>	ě
g e ģ		337	55	930	şî	139	33

PCT/US01/42950

PDB anastades	LICASE OLD HOGH, ZAF.R, EZ. UBIQUITIN EJ. PHOSPHORYLATION, 1 PYROSING KINASE, UBIQUITINATION, PROTEIN DEGRADATION,	METAL BINDING PROTEIN RING FINGER PROTEIN MATI; RING FINGER (CHICA)	CHAPERONE HOP, TPR-LOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSP90, 2 PROTEIN BINDING	SIGNALING PROTEIN PEROXISMORE RECEPTOR 1, PTS1-8P, PEROXIN-5, PTS1 PROTEIN-PEPTIDE COMPLEX, TETRATRICOPERTIDE REPEAT, TPR, 2 HELICAL REPEAT	SIGNALING PROTEIN PEROXISMORE RECEPTOR I, PTSI-BP, PEROXID-S, PTSI PROTEIN-PEPTIDE COMPLEX, TETRATRICOPETIDE REPEAT, TPR, 1 HELICAL REPEAT	SIGNALINO PROTEIN PEROXISMORE RECEPTOR I, PTSI-RP, PEROXIDA, PTSI PROTEIN-PEPTIDE COMPLEX, TBITRA TRICOPEPTIDE REPEAT, TPR, 2 HELICAL REPEAT	STRUCTURAL PROTEIN ARMADILLO REPEAT, BETA-CATENIN, STRUCTURAL PROTEIN
Compound	SIGNAL TRANSDUCTION PARTEN CEL, CHADI: A; PAR-10 PEPTUDE, CHADI: A; B; UBIQUITIN- CONULOATING DEZYME ELD-11 KCA UBCAT; CHADI:	COK-ACTIVATING KINASB ASSEMBLY FACTOR MATI, CHAIN: A;	TPRZA-DOMAIN OF HOP; CHAIN: A; HSP90-PEPTIDB MEBVD; CHAIN: B;	PEROXISOMAL TARGETING SIGNAL 1 RECEPTOR, CHAIR: A, B; PTS1-CONTAINING, B; PTS1-CONTAINING, B;	PEROXISOMAL  TARGETING SIGNAL I  RECEPTOR, CHAIN: A, B;  PTSI-CONTAININ: C, D;	PEROXISOMAL TARGETING SIGNAL 1 RECEPTOR; CHAIN: A, B; PTSI-CONTAINING PEPTING, CHAIN: C, D;	BETA-CATENDY, CHAIN: NULL;
Scare Scare							
PM P Score	18.0	21.0	<b>91</b> .0	70.0	0.05	900	3.0
Verify Score	47.22	50.5	970	0.07	032	600	120
FSI BLAST	1.7e-05	3.6e-07	Je-01	1063 1.7e-03	126-07	1361	16017
3 \$	6%	<del>1</del> 95	1046 1e-08	1963	8	5 <del>1</del> 1	903
Start A	515	75	ž	ž	g g	\$2.6	332
a e	<	<	< -	٧	<	<	
<b>8</b> 8	ě	ğ	ž	£	<u>a</u>	ള	Į.
S e Š	SE .	329	<u>×</u>	196	ž	ž	25

WO 02/059260	PCT/US01/42950	WO 02/059260	PCT/US01/42950

	E 1 E 1 TOPS ATS	(NA)	S (A)	CNA), CNA),	XXX XXX	(KK)	E KA	CAN SE	(NA)
PDB expectation	COMPLEX (INHIBITOR/NUCLEASE) COMPLEX (INHIBITOR/NUCLEASE) COMPLEX (RI-ANG), HYDROILASE 1 MOLECULAR RECOGNITION, ERTORE MAPPING, LEUCINE-RICH 3 REPEATS	COMPLEX (PUCLEAR PROTEINRIA) COMPLEX (PUCLEAR PROTEINRIA), RNA, SNRNP, RIBONUCLEOPROTEIN	COMPLEX (NUCLEAR PROTEINRNA) COMPLEX (NUCLEAR PROTEINRNA), RNA, SNRNP,RIBONUCLEOPROTEIN	COMPLEX (NUCLEAR PROTEINRNA) COMPLEX (NUCLEAR PROTEINRNA), RNA, SNRNP, RIBONUCLEOPROTEIN	COMPLEX (NUCLEAR PROTEINRNA) COMPLEX (NUCLEAR PROTEINRNA), RNA, SNRMP, ALBONUCLEOPROTEIN	COMPLEX (NUCLEAR PROTEDNRA) COMPLEX (NUCLEAR PROTEDNRA), RNA, SNRAP, AIBONUCLEOPROTEIN	COMPLEX (NUCLEAR PROTEINRIA) COMPLEX (NUCLEAR PROTEINRIA), RIVA, SIRIVP, RIBONUCLEOPROTEIN	COMPLEX (NUCLEAR PROTEINRNA) COMPLEX (NUCLEAR PROTEINRNA), RNA, SNRNP, RIBONUCLEOPROTEIN	COMPLEX (NUCLEAR PROTEINRNA)
	88883	883	883	883	88≩_	883	882	882	Ē
Севирения	RIBONUCIEASE INHERITOR: CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	UD RIVA HABRIN IV; CHAINS A, C, UD B"; CHAINS A, C, UD B"; CHAINS B, D;	CHAIN: Q, P; UZ A; CHAIN: Q, P; UZ A; CHAIN: A, C; UZ B*; CHAIN: B, D;	UZ RNÁ HAIBPIN IV; CHAIN; Q, R; UZ A; CHAIN; A, C; UZ B°; CHAIN; B, D;	UZ RNA HAIRPIN IV; CHADN Q. R. UZ A; CHADN A. C. UZ B*; CHADN B. D;	UZRNA HARPIN IV; CHAIN: Q, R; UZ A; CHAIN: A, C; UZ B; CHAIN: B, D;	UZ RNA HAIRPIN IV. CHADE: Q. R. UZ A.; CHADE: A. C. UZ B.; CHADE: B. D.	CHAINE Q. R. UZ A; CHAINE Q. R. UZ A; CHAINE A. C. UZ B;	UZ RNA HAIRPIN IV;
Score									
A)MA	83	£9	\$45	<b>39</b> 0	0.76	Q.19	0.16	650	9.4
Verify	0.11	3	т,	0.55	3	er,	ur ₀	110	0.0
PSI BLAST Score	9	5.4e-34	1,46.27	1,64-23	1.6-24	14	91- <b>4</b> 1	1,60-27	318 1.85-25 0.22
3 5	ž	25	22	1	% 2%	ş	<u> </u>	ELE	
Sterr	z	Ξ	2	21.	77	8	8	821	Ē
C) and a	<	<	<	<	<	<	<	<b>5</b>	U
<b>6</b> 6	ž	€	8	Ē	<u>g</u>	<u>e</u>	€.	<u>g</u>	Legal C
g a ÿ	3	38	3	3	34	36	38	38	ŝ

150

Charles 15	Start	End AA	BLAST Sonn	Vertify Scere	PMP Boars	Seq Fold Scere	Смирока	PDB agnetation
	\$	632	3.44-10			99:001	אחד: כסוזכוא ואי כאעוא:	TRANSMEMBRANE PROTEIN COLICIN, BACTERIOCIN, CHANNEL FORMATION, TRANSMEMBRANE 2 PROTEIN
	E	ឆ	1.40-12	110	0.48		ALPHA SPECTRUN; CHAIN:	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIA, ALPHA HELICAL LINKER REGION, 2.1 TANDEM 3-HELIX COLED-COLLS, STRUCTURAL PROTEIN
	ı,	321	60-47 L	-0.40	0.05		RNA POLYMERASE PRIMARY SIGNA FACTOR; CHAIN: NULL;	TRANSCRIPTION REGULATION SIGMATO, RIVA POLYMERASE SIGMA PACTOR, TRANSCRIPTION REGULATION
	<u>s</u>	33	1.76-17	900	-0.02		RIBONUCLEASE DHIBITOR: CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	COMPLEX (INHIBITORNINGLEASE) COMPLEX (INHIBITORNINGLEASE), COMPLEX (BLAND), HYDROLASE 3 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCONERICH 3 REPEATS
	518	382	02 <b>.</b> €.1	10.0	0.42		RIBONUCLRASE INSTRUCK; CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	COMPLEX (INTERTORNUCLEASE) COMPLEX (INTERTORNUCLEASE) COMPLEX (INTERTORNUCLEASE) MOLLECULAR RECOGNITION EPITOR MAPPING, LEUCING-RICH 1 REFEATS
	n	ē	), le-46			31.05 31.05	RIBONUCLEASE DAMBITOR; CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	COMPLEX (INHIBITORNIUGLEASE) COMPLEX (INHIBITORNIUGLEASE) COMPLEX (IL-ANG), HYDROLASE 1 MOLECULAR RECOGNITION, EPITOPE MAPPINQ, LEUCING-RUCH 3 REPEATS
	ī	349	1.36-16	0.15	639		RIBONUCLEASB DRIBITOR, CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	COMPLEX (INHIBITIORALICI EASS) COMPLEX (INHIBITIORALICI EASS), COMPLEX (RI-ANG), HYDROLASS 2, MOLECULAR RECOONTION, EPITOPS MAPPING, LEUCINE-RUCH 3 REPEATS

149

CELL ADHESION LEUCHORE RICH ADHESION COLL ADHESION LEUCHE RECH REPART, CALCIUM BRODRO, CELL ADHESION COLL ADHESION LEUCHE RECH REPART, CALCIUM BRODRO, CELL ADHESION COLL ADHESION CELLON RECH ADHESION COLL ADHESION CELLON RECH ADHESION COLL ADHESION CELLON RECH ADHESION CELLON RECH ADHESION CELLON RECH CELLON ADHESION CELLON RECH ADHESION CELLON RECH ADHESION CELLON RECH CELLON RECHAUTER RECH AT AN RESCHURCH RECH AT AN RESCHURCH RECH AT AN RESCHURCH RECH AT AN RESCHURCH RECH AT AN RESCHURCH RECH AT AN RESCHURCH RECH AT AN RESCHURCH RECH AT AN RESCHURCH RECH AT AN RESCHURCH RECH AT AN RESCHURCH RECH AT AN RESCHURCH RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER RECHAUTER CONPLEX (NUCLEAR PROTEINRNA), RNA, SNRNP, RIBONUCLEOPROTEIN COMPLEX (NUCLEAR PROTEINRNA) COMPLEX (NUCLEAR PROTEINRNA), RNA, SWRAP, RIBONUCLEOPROTEIN COMPLEX (NUCLEAR PROTEINRNA) COMPLEX (NUCLEAR PROTEINRNA), RNA, SNRNP, RIBONUCLEOPROTEIN GKABE, B. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. C. U.S. F. U.S. F. C. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. U.S. F. RAB GERANYLGERANYLTRAN S SFERASE ALPHA SUBLINT; CHAIN: A, C; 2 DYTERNALIN B; CHAIN: A; INTERNALLY B; CHAIN: A; INTERNALIN B; CHAIN: A; INTERNALIN B; CHAIN: A; INTERNALIN B, CHAIN: A; è 3 8 S 8 3 Verify Scars ş 9 7.5 1 20.2 25.25 1 77 3 5 E ā я **1**0

<u>a</u> <u>a</u>

ğ Ş

ş

151

8 8

S e S

**E** E E E

ŝ

									_							_				_					_	_
PDB anaetation	SUBUNIT, BETA SUBUNIT	TRANSFERASH CRYSTAL STRUCTURE, RAB	GERANYLGERANYLTRANSFERASE, 20 A 2 RESOLLITION N.	FORMYLMETHICHINE, ALPHA	SUBUNIT, BETA SUBUNIT		SONTRACTILE PROTEIN LEGGNE	ANCHINETRAL, DELA-DELA-ALCIA	CYLINDER, DYNEIN, 2 CHLAMYDOMONAS, FLAGELLA	CONTRACTILE PROTEIN LEUCINE	RICH REPEAT, BETA-BETA-ALPHA	CYLINDER, DYNEIN, 2	CHILAMYDOMONAS, FLAGELLA	LIGASE CYCLIN ACDICA-	ASSOCIATED PROTEIN P45; CYCLIN	AACDK2-ASSOCIATED PROTEIN P19;	SKPI, SKP2, P-BOX, LRR, LEUCINE	RICH REPEAT, SCF, UBIQUITIN, 2 EJ.	LIDASE CYCLIN AKTOK?	ASSOCIATED PROTEIN PAS-CYCLIN	AATDK 2-ASSOCIATED PROTEIN P19:	SKPI SKP2 P-BOX LAR LEUCINE	RICH REPRAT, SCP, UBIQUITIN, 2 E3,	UBIQUITIN PROTEIN LIGASE	LIGASE CYCLIN ANCDICA.	ASSOCIATED P45; CYCLIN ACDK3-
Compound	GERANYLGERANYLTRAN SFERASE BETA SUBUNIT; CHAIN: B, D;	RAB GERANYLGERANYLTRAN	SPERASE ALPHA	RAB	GERANYLGERANYLTRAN SFERASE BETA SUBUNTT;	CHAIN: B, D.	OUTER ARM DYNEIN;	CHAIN: A:		OUTER ARM DYNEIN;	CIVIN: 4;			SKP2; CHAIN: A. C. E. G. I.	K, M, O; SKP1; CHAIN: B,	DEHILLNE		•	CKPT-CHACK A C P G 1	K M O CKET CHAPS B	N. H. T. H. S.				SKP2; CHAIN: A, C; SKP1;	CIMIN: B. D.
Scare																			Ī							
Sour P		0.49				1	6.63			5	_			90.0		_			9	;	_		_		0.07	_
Score of		0.41					9			9				-0.08					200	}					170	
1573.	1	6.80-10					1.76-13			1.45.			_	21-e5	_				1						5.10-14	
3 5		202					<del>2</del>			22				563	_	_	_		ş	3	_		_		546	
Y Start		92				]	5			130				220			_	_	•				_		12	
e de		<b>V</b>					<			<				<			_				_				<	
ē a	T	20					60			espi				è					1	Ì					152	
3 a s	<u> </u>	59	-			7	ž.			2				હ્યુ				_	ž	_					3	

WO 02/059260

PCT/US01/42950

WO 02/059260

PDB spnotetion	PACTOR RECEPTOR-BOUND PROTEIN 2; COMPLEX (ADAPTOR PROTEIN/PEPTIDE), SH3 DOMAIN; 2 GLIANINE-NUCLEOTIDE RELEASING PACTOR	COMPLEX (ADAPTING PROTEINFERTING) ASH GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2 COMPLEX (ADAPTING PROTEINFERTING), SHI DOMAIN, 2 FROTEINFERTING, SHI DOMAIN, 2 GUANNUE-MUCLEOTING RELEASING PACTOR	PHOSPHOTRANSFERASE C-SRC, P60- SRC, SRC, TYROSDE KINASE, PHOSPHOTYATION, SH2, 249, 2 PHOSPHOTYAGSINE, PRO, SH3, 2 ONCOGENE, PHOSPHOTRANSFERASE	COMPLEX (SIGNAL TRANSDUCTTON/PEPTIDE) COMPLEX (SIGNAL TRANSDUCTTON/PEPTIDE), SHJ DOMAIN	COMPLEX (SIGNAL TRANSDUCTION/PETTDE), SID DOMAIN	
Соппропи		GRB2: CHAIN: A; SOS; CHAIN: B;	TYROSINE-PROTEIN KINASE SRC, CHAIN: NULL;	GRBY, CHAIN! A; SOS-1; CHAIN: B;	GIBZ: CHAIN: A; SOS-1; CHAIN: B;	SIGNAL TRANSDUCTION PROTEIN GROWTH PACTOR RECEPTOR. BOUND PROTEIN 2 (GR21, PETRANDALL 1GR3 SEP DOMANY COMPLEXED WITH SISSA PEPTUR GIGRA 4 (PAR, 29 STRUCTURES) 1GR8 5
SeqFeld						
Scars		8	635	0.95	6.98	8
Vertiy Scare		ā	Q.16	0.74	90.0	कार्
PSI BLAST Sterr	_	1.44-17	.e-06	1.de.19	71-46.7	100
3		r	⊴	TI.	g	ន្ទ
Start		2	107	112	2	ũ.
Chais		<		<	۷ .	<
708 UD		<u> </u>	Ā	4	<u> </u>	<u>a</u>
SEQ ID NO:		98	192	191	367	SE SE

PDB ansetation	LRRS, LEUCINE-RICH REPEATS, SCF. 2 UBIQUITIN, E3, UBIQUITIN PROTEIN LIGASE	TANSCEPTION RANDE LANGARY OF ASSACTIVATING PROTEIN FOR SINI, GTAABLACTIVATING PROTEIN GAP, RANDE, RANDER, LAR, LEUCHS, 2 ARCH REPRAY PROTEIN TWINNING, HEMIGEDRAL TWINNING, MERGIGEBAL TWINNING, MERGIGEBAL				ACETYLATION RIVASE INHIBITOR, REGONUCLEASE/ANDIOGENIN INHIBITOR ACETYLATION, LEUCING- RICH REPEATS	TRANSFERASE ATK, AMOXI, BPK; TYROSING KINASE, X-LINKED AGAMAGAGGOBULDE:MA, XIA, BTK, SHI 2 DOMAIN, TRANSFERASE	PROTEIN/PEPTIDE) ASH, GROWTH
Социронно		OTPASE-ACTIVATINO PROTEIN RNA I SCIPO, CHAIN: A. B;	RIBONUCLEASE INHIBITOR; CHAIN: NULL;	RIBONUCLEASE INHIBITOR; CHAIN: NULL;	RIBONUCLEASE RHIBITOR; CHAIN: NULL;	RIBONIUCLEASE INHIBITOR; CHAIN; NULL;	BRUTON'S TYROSINE KINASE; CHAIN: NULL;	GRB2; CHAIN: A; SOS; CHAIN: B;
SeqFold Score				8.18				
PM P Score		0.01	500		0.17	8	0.41	0.92
Verify Score		0.21	0.20		0.03	0.46	0.20	0.26
PSI BLAST Score		1.34-16	1.7-22	3.6=-60	1.76-20	3.56-60	3.66-16	3.66-18
3		206	£3	ij.	395	<b>ā</b>	328	325
Start A		19	<u>8</u>	_	=	8	386	212
a a		<						,
E 8		341	2beth	2Dent	<b>1</b> 12	Shrih	laww	83
8 a 8		æ	295	365	595	365	367	367

153

PCT/US01/42950

| Sign | Fig. | Chain | Start | East | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start |

										_							_	_	_	_		_
PDB emotstien	SPZ, SPD IGRU 14	SIGNAL TRANSDUCTION ADAPTOR SIZ, SIÐ IGRI 14																				PHOSPHOTRANSFERASE P13K SH3;
Countysend	PROTBIN 2: 10RI 5 CHAIN: A. B. 1GRI 6	GROWTH FACTOR BOUND PROTEIN 2; IGRI 5 CHAIN: A, B; IGRI 6	PHOSPHORIC DIESTER HYDROLASE PHOSPHOLIPASE C.	GAMMA (SH3 DOMAIN) (B.C.3.1.4.11) 1HSQ 3 (NMR, MINIMIZED MEAN	PHOSPHORIC DIESTER	PHOSPHOLD ASE C	GAMMA (SH3 DOMAIN)	MUNIMIZED MEAN	STRUCTURE) 1HSQ 4	PHOSPHORIC DIESTER	HYDROLASE	PHOSPHOLIPASE C.	CLC1.14.11) IHSO 3 (NAR.	MINIDATIZED MISAN	STRUCTURE) IHSQ 4	PHOSPHORIC DIESTER	HYDROLASE	PHOSPHOLIPASE C.	CAMMA (SHI LOSIAIN)	(B.C.3.1.4.11) IHSQ 3 (NMR,	STRUCTURE) 1HSO 4	STOL
Scere	Γ																		_			
Score	Γ	0.42	8.		0.55					0.62					1	8						0.25
Verify Score		0.08	0.17	-	0.20					-0.30						637						0.47
PSI BLAST		136-17	136-16		1.80-16					0.00017						725-17						3.66-13
2 ₹		251	82		328					333						19						191
¥ Sirt		70	101		566					270												102
ag e		<											_									ſ
<u>8</u> a	Γ	<u>B</u>	ž.		ž.					T.						i bad						∄
ge ş		367	<u> </u>		367		_			367			_		_	797	_	_	_			282

PCT/US01/42950

20

Ē

WO 02/059260

PDB annetation	IPHT 9 PHOSPHATIDYLMOSITOL 3- KINASE, P1S-ALPHA SUBUNIT, SH3 DOMAIN IPHT 21	PHOSPHOTRANSFERASE PIJK SHJ; IPHT 9 PHOSPHATIDYLINOSITOL 3- KINASE, PIS-ALPHA SUBUNIT, SHJ DOMAIN IPHT 21		CIRCULAR PERMUTANT PWT; CIRCULAR PERMUTANT, SHI DOMAIN, CYTOSKELETON	CIRCULAR PERMUTANT PWT; CIRCULAR PERMUTANT, SHI DOMAIN, CYTOSKELETON	CYTOSKELETON CYTOSKELETON, MEMBRANE, SH3 DOMAIN	CYTOSKELETON CYTOSKELETON, MEMBRANE, SH3 DOMAIN	CYTOSKELETON CYTOSKELETON, MEMBRANE, SHI DOMAIN	TYROSOBE-PROTEIN KINASE BRUTONS TYROSINE KINASE, B CELL PROJEBUTOR KINASE, TRANSTERASE, TYROSINE-PROTEIN KINASE, PHOSPHORYLATION, 2 849 DOMAIN	SIGNAL TRANSDUCTION PROTEIN SRC-HOMOLOGY 3 (SH3) DOMAIN,
Compound	SUBUNIT, IPHT 6 CHAIN: NULL: IPHT 7	PHOSPHATIDYLINOSITOL  J-KINASB PIS-ALPHA  SUBUNT; IPHT 6 CHAIN: NULL; IPHT 7	PHOSPHOTRANSFEASE HOSPHOTRANSTOL  -KINASE (PES-APHA SUBLINT, IPVJ 3 SID DOMAIN) (NICE, MINIMIZED A VERAGE STRUCTURE) PNJ 4	HAIN:	ALPHA SPECTRIN; CHAIN: NULL;	ALPHA II SPECTRIN; CHAIN; A;	ALPHA II SPECTRIN; CHAIN: A;	ALPHA II SPECTKIN; CHAIN: A;	TYROSINĖ-PROTEIN KINASE BTK; CHAIN: A;	SEM-5; ISEM 3 CHAIN: A, B; ISEM 5 10-RESIDUE
SeqPodd										
PM.F Score		a.17	500	0.62	8	0.60	66.0	663	720	8
Vertify Scare		-0.02	0.42	08.0	0.25	0970	0.42	6.19	0.43	24
PSI PSI		21-48 21-43	1.16-12	1.66-18	1.66-18 0.25	1.16.18	S.40-18	1.6	1.4-17	1.46-17
3 5		3	161	185	*	25	326	*	251	136
St.		1/2	<del>1</del> 01	<u> </u>	-	8	269		101	<u></u>
<b>a</b>						<	<	<	<	<
<u> </u>		분	E	lpwt	Ē	lqkw	Idkw	мф	슘	lien
S a ş		167	367	367	367	367	367	790	797	787

WO 02/059260 PCT/US01/42950

Chaits Start End	\$ C.	Start A A End	3 \$		2		Venty Score	FM F	Seq Feld Sear	Coumposad	PDB apparation
A 272 335 3.5e-16 0.26 0.93	777 735 3.50-16 0.26	323 3.56-18 0.26	323 3.56-18 0.26	3.6e-18 0.26	97.0	1	12	2		GB2; CHAN: A; SOS; CHAN: B;	COMPLEX (ADAPTOR PROTEINFETTIBE) ASH, CROWTH ACTOR RECETTOR-BOND PROTEIN 2. COMPLEX (ADAPTOR PROTEINFETTIBE), SHE DOMAIN, 2 QUANNIE-AUCLEOTIDE RELEASING
A 2 57 1.44-17 0.21 1.	2 57 1.40-17 0.21	57 1.46-17 0.21	1.46-17	1.46-17	<u>1</u> 20		12	8		GRB2; CHAIN: A; 80S; CHAIN: B;	COMPLEX, KIDATOR PROTERMETETIDE) ASI, GROWTH PACTOR RECEPTOR-BOUND PROTEIN 2: COMPLEX (ADATOR) PROTEIN/PETIDE, SHE DOMAIN, 2 PROTEIN/PETIDE, SHE DOMAIN, 2 GUANINE-NUCLEOTIDE RELEASING PACTOR.
107 161 1.80-06 0.16 Q	161 1.Be-06 0.16	161 1.Be-06 0.16	161 1.Be-06 0.16	1.86-06	9.16		lo	SS S		TYROSING-PROTEIN KINASE SRC; CHAIN: NULL;	PHOSPHOTRANSFERASE C-SRC, P60- SRC, SRC, TYROSINE KDAASE, PHOSPHOTRICATION, SH2, SH3, 2 PHOSPHOTYROSINE, PROTO- ONCOGENE, PHOSPHOTRANSFERASE
A 271 327 1.8e-19 0.74 0	271 327 1.86-19 0.74	327 1.86-19 0.74	327 1.86-19 0.74	1.46-19 0.74	0.74			0.93		GRB2, CHAIN: A; 80S-1; CHAIN: B;	COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE), SIGNAL TRANSDUCTION/PEPTIDE), SH3 DOMAIN
A 2 53 7.2s-17 -0.00 0	2 53 7,24-17 -0.00	53 7,2a-17 -0.00	7,24-17 -0.00	7,24-17 -0.00	8			0.98		GRB2; CHAIN: A; 805-1; CHAIN: B;	COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE) COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE), SH3 DOMAIN
A 271 329 1.3e-11 -0.16 0	771 329 L3+18 42.16	329 [.3e-18 -0.16	329 [.3e-18 -0.16	1.36.16	\$.			660		SIGNAL TRANSDUCTION PROTEIN GROWTH FACTOR RECEPTOR. BOUND PROTEIN 2 (CRB2, N-TERMINAL 1GRB 1 SED DOMAND) COMPLEXED WITH SOS-A PEPTIDE.	

	PDB specifics									_																					SIGNAL TRANSDUCTION ADAPTOR	SHZ, SH3 1GRU 14		SIGNAL TRANSDUCTION ADAPTOR	STA STUTIES IN
	Contraposition		IGBR 4 (NMR, 29 STRUCTURES) IGBR 5	SIGNAL TRANSDUCTION	PROTEIN GROWTH	PACTOR RECEPTOR-	BOUND PROTEIN 2 (GRB2,	N-TERMINAL (GBR 3 SH)	DOMAIN COMPLEXED	WITH SOC. A PEPTING	2000 1000	CT STATE OF THE COLUMN C	ADAPTOR PROTEIN	CONTAINING STR AND	STO GROWTH FACTOR	RECEPTOR-BOUND	PROTEIN 2 (DRBZ) (GFC 3	C-TERMINAL SHI	DOMAIN) (NMR.	MENENTZED MEAN	STRUCTURB) IGPC 4	ADAPTOR PROTEIN	CONTAD/ING S12 AND	SHE GROWTH FACTOR	RECEPTOR-BOUND	PROTEIN 2 (CRB2) IGPC 3	(C-TERMINAL SHI)	DOMAIN) (NINR.	MINIMIZED MEAN	STRUCTURE) 1GFC 4	GROWTH FACTOR BOUND	PROTEIN 2: IGRU 5 CHAIN:	A B: IORI 6	GROWTH PACTOR BOUND	TO ELV PICKES CHAIN
	SeqFold			Ī					_									_													\$9.95				
Ī	Ž			160					_				8	}								90'												0.61	
	ţ			0.43									1,5	2								120												520	
	2	Score		166-17	_								1	_								3									36-26			130.26	
	3:			191									ž	3								2									330			128	
	Start:	ŧ	Г	3									1	3		_															2			ខ	
	9	2			:																		_							_	<			<	
	B 6	9		ł	ļ								1	1								9									Ē			<u> </u>	_

25

3 e Ş 3

WO 02/059260

PCT/US01/42950

364 88

WO 02/059260

Ead PSI AA BLAST Score

2 e S 3

SIGNAL TRANSDUCTION ADAPTOR SH2, SH3 IORI 14

800

3

161

368

PCT/US01/42950

A LEGATOR CARDER SERVING BOUND SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING

_		7	_				F	_			1		_			_		_	_	_	_	_	•			Γ	_	_		Г		Г	_		_	_	7	
PDB agnotation			PHOSPHOTRANSFERASE PIJK SHJ;	1PHT 9 PHOSPHATIDY LINGSITOL 3-	KINASE, P85-ALPHA SUBUNIT, SHI	DOMAIN IPHT 21	PHOSPHOTRANSFERASE PUK SH3:	IPHT 9 PHOSPHATTDYL INDSTRUCT. 3-	VINAST Dec. A DUA CITOLOGY	KINASE, PERMITTER SUBURIL, SHI	DOMAIN IPHI 2									CIRCULAR PERMUTANT PWT;	CIRCULAR PERMUTANT, SH3	DOMAIN, CYTOSKELETON	CONTRACTOR AD DED MAINTANT DWT.	CROCKE AS SECONDICAL CALL	DOMAIN CYTOSKELETON	NOTE IN THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERS	MEMBRANE, SH3 DOMAIN	CYTOSKELETON CYTOSKELETON,	MEMBRANE, SHI DOMAIN	CYTOSKELETON CYTOSKELETON,	MEMBRANE, SHI DOMAIN	TYROSDIE-PROTEIN KINASE	BRUTONS TYROSINE KINASE, B CELL	PROGENITOR KINASE,	TRANSFERASE, TYROSINE PROTEIN	KINASE, PHOSPHORYLATION, 2 SHJ	DOMAIN	
Commission		STRUCTURE) 1HSQ 4	PHOSPHATEDY LINOSITOL	PKINASB PES-ALPHA	SUBUNIT, IPHT 6 CHAIN:	NULL: IPHT 7	PHOSPHATIDYLINOSITOL	1. KINASS DICAL DIA	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	SUBUNIT; IPHI & CHALK	NULL; IPHT 7	PHOSPHOTRANSFERASE	PHOSPHATTDYLINOSITOL	J-KINASE (PIS-ALPEA	CIBITALT INVITEDIA	SOBORIL, ILIO SALO	DOMALN) (NIMIK	MONDATZED AVERAGE	STRUCTURE) IPN 4	ALPHA SPECTRIN: CHAIN:	MULT		AT BULL COUNTRY IN CUAIN	ALTER STEEL RING CITATION	4	ALBUA II COULTED.	CHAIN A:	ALPHA II SPECTRUN:	CHAR: A:	ALPHA II SPECTRIN:	CHADS: A:	TYROSINE-PROTEIN	KDNASE BTK: CHAIN: A:					
Section																																						
ž,			ŝ				417					0.03	_		_					270			8	3		3	3	8		8		0.87		_				
į			200				200					0.42								80				3		5	3	3		610		3						
: t	Score		3.66-13				1					1,10-12								8				8				5 do 11	!	14		46.17						
3:			191				3	:				191								2				ŧ.		ŀ	3	724		3		ž	_					
E S	ı	L	8				ķ					101			_		_			2						3	3	346	i	ŀ	_	ē			_			
10																										Į.	<				١	ŀ	:					
<b>ê</b> s	1		벁				į	ļ				M								ě				Ĕ.		į	ļ	9	į	2		ź	}					
8 5	ğ		ž		_		3					790				_				3			t	ŧ		ŀ	ŧ	3		3		3						

PS1 Verly PMF SeqFold Compound PDB anochibes Bear Ren	1.29   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20	1.00   SEM-4: ISBAT JOCKHEK, A GROWAT TRANSDORM PROTECTION PROTECTION PROTECTION SEM 1 SECTION SEM 1 SEM 1 SECTION SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 SEM 1 S	T26-11 0.09 1.00 ESB-5: ISB-1 0-ALPAP. A GRANAL TRANSDUCTOR MEDICIPEN PROLIDE SECHOLOGORY (SEI) DOMANA FROUNDS ISB-1 1 TOWNER SHOUND PROTECTIVE SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) DOMANA FROUNDS ISB-1 1 TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SECHOLOGORY (SEI) TOWNER OF SEC	1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00	7.2=16 0.41 0.41 ALPHA-SPECTUN; CHARP, FORTOSELETING CAPPROPRIOEN MILL: REPETATOR REPETATOR CHARPET 12 SER DOMAN. CPTROSPELETION CONTROL CPTROSPELETION CPTROSPELETION CPTROSPELETION CPTROSPELETION CPTROSPELETION CPTROSPE	14-14   4.16   6.73   A.PHA,SPECTRIN; CHAIN: CANCENSELENTON COPPROPRIORIES   REPEAT, 1.581 DOMAIN: COPPOSELENTON COPPOSELENTON COPPOSELENTON COPPOSELENTON COPPOSELENTON COPPOSELENTON COPPOSELENTON COPPOSELENTON COPPOSE	17 A.19 0.59 HEMATOPOETIC CELL TRANSFERAGE HOLS. RATHEN KIPAGE, CHAIN: YULL; TYROSDIE KINAG, SIGNAL, TYROSDICTION, 2 TRANSFERASE	140.90 TRANSFERASE(PHOSPHO
± 3 %	<u>z</u> .	21 21	8	% %	25 C	\$E.	<u>ş</u>	0
Start	<u>-</u>	ii.		•	ž	a	<u> </u>	841
10	<	<	<	<				В
<b>2</b> a	1	<u>g</u>	1	<u></u>	2	3	ğ	4
8 a §		3	3	3	3	3	3	ş

								_	_	_	_	_	_	_	_	_	
PDB emachition																	
Compound	DEPENDENT PROTEIN KINASB (B.C.2.7.1.37) (SCARKS) IAPM 3 (CATALYTIC SUBUNIT) AI PHA ISOSOTYMB	MUTANT WITH SER 139 IAPM 4 REPLACED BY ALA (\$139AS) COMPLEX	AND THE DETECTION (ATM) AND THE DETECTION MECA-1 LAPM 6	TRANSFERASE(PHOSPHO TRANSFERASE) SCAALPS	DEPENDENT PROTEIN KINASE (E.C.2.7.1.37)	(SCAPICS) LAPM 3 (CATALYTIC SUBUNIT)	ALPHIA ISOENZYMB	IAPM 4 REPLACED BY	ALA (5119AS) COMPLEX	5 INSUBITOR PKI(5-24)	AND THE DETERGENT MEGA-I 1APM 6	PHOSPHOTRANSPERASE	CAMP-DEPENDENT	CATALYTIC SUBUNIT	1CMX 3 (B.C.2.7.1.37)	ICMR 4	PHOSPHOTRANSPERASE CAMP-DEPENDENT
Score												147.30					
Score				8													96'1
Verty				0.46													ब्रा
BLAST					_												
3 2				8.29			•					199					\$1.9
¥ \$				Ħ								364					388
<b>1</b> e				ш								Е					9
80 e				ŀ								Icmk					ğ
g e ş				<b>S</b>								96	_				Ş

WO 02/059260 PCT/US01/42950

2039200	

PDB angertation	HYDROLASE PTP 18; HYDROLASE, PHOSPHOR YLATION, LIGAND, INHIBITOR	HYDROLASE C2 DOMAIN, PHOSPHOTIDYLINOSITOL, PHOSPHOTASE, HYDROLASE	HYDROLASE PROTEDN-TYROSINE PHOSPHATASE, HYDROLASE, PROTEIN TYROSINE PHOSPHATASE, CATALYTIC DOMAIN, 2 WPD LOOP, SH2 DOMAIN	HYDROLASE TYROSINE PHOSPHATEASE, LAR PROTEIN	HYDROLASE TYROSINE PHOSPHATEASE, LAR PROTEIN	HYDROLASE TYROSINE PHOSPHATEASE, LAR PROTEIN	HYDROLASE DUAL SPECIFICITY PHOSPHATASE, MAP KINASE HYDROLASE	HYDROLASE DUAL SPECIFICITY PHOSPHATASE, MAP KINASE HYDROLASE	HYDROLASE DUAL SPECIFICITY PHOSPHATASE, MAP KINASE HYDROLASE	RECEPTOR DI; RECEPTOR, PHOSPHATASE, SIGNAL PRANSDUCTION, ADHESION, 2 HYDROLASE	HYDROLASE VHR; HYDROLASE, PROTEIN DUAL-SPECIFICITY PHOSPHATASE
Compound	PROTEIN-TYROSINE PHOSPHATASE IB; CHAIN: A:	PHOSPHOINOSITIDE PHOSPHOTASE PTEN; CHAIN: A;	SHP-1; CHAIN: NULL:	LAR; CHAIN: A, B;	LAR; CHADN: A, B;	LAR; CHADI: A, B;	PYSTI; CHAIN: NULL;	PYSTI; CHAIN: NULL;	PÝSTI; CHAIN: NULL;	RECEPTOR PROTEIN TYROSING PHOSPHATASE MU, CHAIN: A, B;	HUMAN VHI-RELATED DUAL-SPECIFICITY PHOSPHATASB CHAIN: A, B;
Seq Pedd Sears			33.14		Г		142.92				20,68
A La	0.05	5		e e	900	-0.05		8	8	-0.02	
Verify	10.0	8		10.0	9	0.02		87.0	3	6119	
2 3	13-47	1.76-21	5. 4.	70-76	5.10-62	3.46-73	2.4e.37	5,46.)7	13	\$ \$ \$	1.5e.20
3 5	2	₹	ax	367	916	367	212	E_	71	31.7	Ē
ž ž	7	3	7	2	2	3	121	2	ž	r _	8
a a	<	<		<	_	8			_	<	<
<b>2</b> e	3	1454	Ē	Ē	1	ì	đị.	ta ta	計	Ē.	ž.
g =	ž ž	715	ž.	7.5	ž	¥.	*	7.7	***	Ĕ	*

| State | Para | Chair | State | Para | Venty | Print | Stay | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State | State |

WO 02/059260 PCT/US01/42950

165

<b>2</b> e	đe o	¥ Ş	3 2	PSI DLAST	Verth Seers	P.M.P.	Seq Fold Scare	Constant	PDB amounden
皇	<	3	ŝ	유	ä	1,00		HUMAN VHI-RELATED DUAL-SPECIFICITY PHOSPHATASE CHAIN: A, B;	HYDROLASE VHR; HYDROLASE, PROTEIN DUAL-SPECIFICITY PHOSPHATASE
š	<	77	ant.	3.le-67	0.10	80'0-		RECEPTOR PROTEIN TYROSINE PHOSPILATASE ALPHA; CHAIN: A, B;	Hydrolase di, hydrolase, Signal Transduction, receptor, Glycoproten; 2 Phosphorylation, signal
₫.		217	ā	1.te-06	Ş	0.01		YERSINIA PROTEIN TYROSING PHOSPHATASE; CHAIN: NULL;	HYDROLASE YOPSI, YOPZB, Pasteurella X, Ptp.ASB, Protein Tygosole Phosphatase, Hydrolase
£	<	n	11	130-61	100	100		SIP-2; CHAIN: A, B;	TYROSINE PHOSPHATASE SYP. SIPTY-2; TYROSINE PHOSPHATASE, INSULIN SIGNALING, SHD PROTEIN
3	<	a	25	2.4C.	ಕ್ಷ	0,70		QGSR ZINC FINGER PETTIDE; CHAIN: A; DUPLEX OLICONUCLEOTIDE BINDING STIT; CHAIN: B, C,	COMPLEX (ZINC FINGER/DINA), ZINC FINGER, DINA, BINC FINGER/DINA), ZINC FINGER, DINA, BINCHEIN
Į.	u	3	2	ž Ž	8	7		DNA; CHADN; A, B, D, E; CONSENSUS ZINC FUNGER PROTEDN; CHADN; C, F, C;	COMPLEX (ZINC FINGERONA) ZINC PROEER/ONE) ZINC PROFER DESIGN, 3 CRYSTAL STRUCTURE, COMPLEX COMPLEX STRUCTURE, COMPLEX COMPLEX STRUCTURE, COMPLEX COMPLEX STRUCTURE, COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX CO
lacy.	U .	ā	ži.	3,46-51	0.47	90.1		DNA; CHADN: A, B, D, E; CONSENSUS ZINC FUNGER PROTEIN; CHADN: C, F, Q;	COMPLEX (ZINC FINGEADINA) ZINC PINGER, PROFESH-DINA PROFESH-DINA CRYSTAL STRUCTURE, COMPLEX COMPLEX FINGEADINA)
ì	0	Ä	2	<u> </u>	81.0	00'1		DNA; CHADA: A, B, D, E; CONSENSUS ZINC FINGER	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

<del>    _</del>	PROTEIN; CHAIN: G, F, G. UNA; CHAIN: A, B, D, E. CONSEINSTERN FOR THE CONTROL OF THE CHAIN.	PROTEIN; CHAIN; C. F. C.	O a district in the second	A SCORE	DOM A	DCM C	2000		A A A STATE COMME	10710
	PROTEIN; CHAIN: C, F, C; DNA; CHAIN: A, B, D, E; CONSENSUS ZENC FINGER	_	ŀ	ŀ		Sorr	Score	AA BLASI Score Score Score	AA AA BLASI Soort Scare Scare	ID AA AA BLASI SONY SONY SONY
ã.	CONSENSUS ZINC FINGER	- CENCE			PROTEIN; CIAIN: C, F, C;	PROTEIN; CIAIN: C, F, C;	PROTEIN; CIAIN: C, F, C;	PROTEIN; CIAIN: C, F, C;	PROTEIN; CIAIN: C, F, C;	PROTEIN; CIAIN: C, F, C;
_	-		DNA; CHAIN: A, B, D, E.	DNA; CHAIN: A, B, D, E.	DNA; CHAIN: A, B, D, E.	DNA; CHAIN: A, B, D, E.	100.95 DNA; CHAIN: A, B, D, E.	16-51 100.95 DNA; CHAIN: A, B, D, E;	343 16-51 100.95 DNA; CHAIN: A, B, D, E;	261 343 1e-51 100.95 DNA; CHAIN: A, B, D, E.
		_	_	_	_	_	_	_	_	_
CRYSTAL STRUCTU	_	_	_	_	_	_	_	_	_	_
T	۰	T	DNA; CHAIN: A, B, D, E.	DNA; CHAIN: A, B, D, E.	DNA; CHAIN: A, B, D, E.	DNA; CHAIN: A, B, D, E.	DNA; CHAIN: A, B, D, E.	1.76.37 0.34 0.94 DNA; CHAIN: A, B, D, E.	289 348 1.76-37 0.34 0.94 DNA; CHAIN: A, B, D, E.	C 289 348 1.76-37 0.34 0.94 DNA; CHAIN: A, B, D, E.
ã.	ã.	ã.	ã.	ã.	ã.	ã.	CONSENSUS ZINC PINGER	CONSENSUS ZINC PINGER	CONSENSUS ZINC PINGER	CONSENSUS ZINC PINGER
TEIN; CHAIN; C, P, G; INTERACTION, PROTEIN DESIGN, 2	PROTEIN, CHAIN, C. P. G. INTERIO									
(ZINC FINGER/DNA)	CELEGI	CZNC E	C C C C C C C C C C C C C C C C C C C	CENCE CENCE	- LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSSICE - LOSS	- Carce	STANCE I	STATE OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE P	25.22	25/22/
Ť	TFILLY, CHAIN: A. D. SS COMPLE	T	TFILIA: CHAIN: A. D. SS	0.01 TFILIA: CHAIN: A. D. 55	-0.23 0.01 TFUIA: CHAIN: A. D. 55	-0.23 0.01 TFUIA: CHAIN: A. D. 55	3.46-31 -0.23 0.01 TFILM: CHAIN: A. D. 55	323 3.4631 -0.23 0.01 TFUIA; CHAIN: A. D; 55	115 323 3.4e-31 40.23 0.001 TFILIA: CHAIN: A. D. 55	A 115 323 3.4531 -0.23 0.01 TFILM: CHAIN: A. D. 55
_	GENE	_	RIBOSOMAL RNA GENE;	RIBOSOMAL, RNA GENE;	RIBOSOMAL RNA GENE;	RIBOSOMAL RNA GENE;	RIBOSOMAL RNA GENE;	RIBOSOMAL RNA GENE;	RIBOSOMAL RNA GENE;	RIBOSOMAL RNA GENE;
_	CHAIN: B, C, B, P; (TRANSCR	_	_	_	_	_	_	_	_	_
REGULATION/DNA), RNA	REGULATION	REGULATION	REGULATION	REGULATION	REGULATION	REGULATION	REGULATION	REGULATION	REGULATION	REGULATION
INITIATION ZINC FINGER PROTEIN	IZ NOTIVITION Z	INTERIOR ZI	INTIATION Z	Z NITATION Z	Z WILLIAM Z	INITIATION Z	INITIATION Z	DITION ZI	ZINITATION	IZ NOTATIVE
Ť	TETTA CHAIN A P. SS	TETTA CHAIN A P. SS	TETTA CHAIN A P. SS	TETTA CHAIN A P. SS	AK 77 TETRA: CHAIN: A P. CS	AK 77 TETRA: CHAIN: A P. CS	6 to 33	348 6 pc. 33	200 348 6 E-12	A 200 346 6 62-39 A6 79 TETTA: CHAIN: 4 P. 19
Ť.	TFULA; CHAIN: A, D; 58	Ť.	TFULA; CHAIN: A, D; 58	TFULA; CHAIN: A, D; 58	66.72 TFUIA; CHAD: A, D; 58	TFULA; CHAIN: A, D; 58	66.72 TFUIA; CHAD: A, D; 58	6.8e-32 66.72 TFUA; CHAIN: A, D; 58	348 6.8e-32 66.72 TFUIA; CHAIN: A, D; 58	203 348 6.8e-32 66.72 TFUIA; CHAIN: A. D; 58
	TFULA; CHADA: A. D; 58	TFULA; CHADA: A. D; 58	TFULA; CHADA: A. D; 58	TFULA; CHADA: A. D; 58	66.72 TFUA; CHAIN; A, D; SS	66.72 TFUA; CHAIN; A, D; SS	6.8e-32 66.72 TFUA; CHAIN; A, D; 38	348 6.8e-32 66.72 TFUIA; CHAIN: A, D; 58	203 348 6.8e-32 66.72 TFULA; CHADN: A, D; 38	A 203 348 6.8e-32 66.72 TFUA; CHAIN; A D; 38
ist	TFULA; CHAIN: A, D; 3S RIBOSOMAL RNA GENE;	TFULA; CHAIN: A, D; 3S RIBOSOMAL RNA GENE;	TFULA; CHAIN: A, D; 3S RIBOSOMAL RNA GENE;	TFULA; CHAIN: A, D; 3S RIBOSOMAL RNA GENE;	66.72 TFILM, CHAIN: A, D, SS RIBOSOMAL RNA GENE;	66.72 TFILM, CHAIN: A, D, SS RIBOSOMAL RNA GENE;	6.4e-32 66.72 TFUA; CHADI: A. D; 58 RBOSOMAL RNA GENE;	348 6.8e-32 66.72 TFILIA; CHAIN!: A. D.: 58 EDDSOMAL RNA GENE;	203 348 6.8e-32 66.72 TFILIA; CHAIN: A. D; 3S RIBOSOMAL RNA GENE;	A 203 348 6.8e-32 66.77 TFULX: CIADR: A. D. 38 RIDOSOMAL RNA GENE.
	TFULK, CHAIN! A, D; 38 RIBOSOMAL RNA GENE;	TFULK, CHAIN! A, D; 38 RIBOSOMAL RNA GENE;	TFULK, CHAIN! A, D; 38 RIBOSOMAL RNA GENE;	TFULK, CHAIN! A, D; 38 RIBOSOMAL RNA GENE;	66.72 TFUIA; CHAIN; A. D. 58 RIDOSOMAL RNA GENE;	66.72 TFUIA; CHAIN; A. D. 58 RIDOSOMAL RNA GENE;	6.4e-32 66.72 TFUIA; CHAIN: A. D; SS into SOMAL RNA GENE; RICK CHAIN: A. D; SS	346 6.4e-32 66.72 TFILIA; CIAINP; A. D; 38 NECONAL, RNA GENE;	203 346 6.4e-32 66.72 TPULK, CHAIN: A. D. 38 PRIOSONAL RNA GENE;	A 203 346 6.8-37 66.77 TTUA. CHAIN: A. D. SS. REDOSCIMAL. RNA GERTE. REDOSCIMAL. RNA GERTE.
IA; CHAIN! A, D; 38 ISOMAL RNA GENE;					\$ E	\$ E	6.46-32	348 6.ke.32 66.72	203 348 6.8e.32 66.72	A 203 348 6.8e.32 66.72
A; CHADY: A, D; SOMAL RNA GE					27.98	27.99	6.86-32	348 6.86-32 66.72	20) 346 6.8e.32 66.72	A 203 348 GA-33 66.72
N. CHADI SOMAL R IN: B, C, R A, CHADI SOMAL R	1 - 1 - 1 - 1	1 1 1 1 1	\$\$ Lt.	65.72	423 4.01	433 401	3.4e31 -423 0.01 6.4e32 66.72	133 3.4e.31 4.33 4.001 146 6.4e.37 66.77	115 333 3.4e31 453 0.00 20 344 6.6e37 66.77	A 113 333 34431 453 001 A 203 344 64632 6672
A DAM DAM	- 1	- 1	2,3	0001	0.01 0.01	0.01 0.01	3.4531 -0.33 0.00	33 3.4-31 4.23 0.01	113 323 3.4-31 4-523 0.00 205 344 6.4-32 0.00	A 115 323 3.45.31 45.33 0.00 A 220 344 6.65.32 A 566.72
			2.3	0.01	001	001	3.4531 -0.33 0.001	33 3.4e.31 4.33 0.001 34 6.4e.32 66.77	115 333 334-31 453 8001	A 115 333 3.4531 -b.33 0.00 A 203 346 6.8533 66.77
				5.00	5.00	5.00	1,7637 034 034 034 043 041 043 001	34 (353) 034 034 33 (363) 433 001	289 344 1.76-37 0.34 0.094 115 323 3.46-31 6.33 0.01 203 349 6.46-32	A 203 349 1.7b-37 0.34 0.094 A 203 349 6.4b-37

WO 02/059260	PCT/US01/42950	WO 02/059260	PCT/US01/42950

	i i	7		П		_	_	_	Γ.	_	-	-		Γ	_	-	_		2	-	_	1	 	_	
PDB annotation	PROTEINDNA) FIVE-FINGER OLL, GLL, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDNA)		ISOMERASE EPIMERASE; UDP. GALACTOSE, EPIMERASE, ISOMERASE		OLYCOPROTEIN MEMBRANG	RECEPTOR, COMPLEMENT	COFACTOR, SHORT CONSENSUS	REPEAT, 2 SCR, MEASLES VIKUS, GLYCOPROTEIN	GLYCOPROTEIN MEMBRANE	CUPACION PROJECT MCPF, VIRGO	COFACTOR SHORT CONSENSIS	REPEAT, 2 SCR, MEASLES VIRUS,	GLYCOPROTEIN	GLYCOPROTEIN MEMBRANG	COFACTOR PROTEIN (MCP); VIRUS	RECEPTOR, COMPLEMENT	COFACTOR, SHORT CONSENSUS	REPEAT, 2 SCR, MEASILES VIRUS, GLYCOPROTEIN	COMPLEMENT INHIBITOR VCP, SP35;	COMPLEMENT, NMR, MODULES,	PROTEIN STRUCTURE, VACCINIA	VIRUS	COMPLEMENT INHIBITION VCP, SP35;	COMPLEMENT, NMK, MODULES,	VIRUS
Counteported	OLLI; CHAIN: A; DNA; CHAIN: C, D;		UDP-GALACTOSE 4- EPIMERASE; CHAIN: NULL;		CD46; CHAIN: A, B, C, D, E,				MG; CHAIN: A, B, C, D, E,				_	CD46; CHAIN: A, B, C, D, E,	e:				COMPLEMENT CONTROL	PROTEIN: CHAIN: A:		-1	- 102	PROTEIN; CHAIN: A;	
Score									91.85										Ī						
Scar			0.01		8									8		_			Ş				ē		
Vertify Score			98.0		59									3					0.13				900		
PSI Sorre			0.0013		3.46-30 0.45				5,40-30					3.10.29					24.4				14		
33			3		3				155				_	×			_		ž				2		
Z Ş			u	Γ	n				2					2					2				×		
9					7				~					<					<				۷.		
<b>2</b> 9		Γ	9		3				3				_	3					2				P.		
ğ e ğ			82		3	_			2				_	2					ă				3		

PDB expectation	INITIATOR ELEMENT, YY1, ZINC2 FINGER PROTEIN, INA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATIONEDNA)	COMPLEX TRANSCARTION RECULATION/TRANS TO TRANSCARTION INTRATION INTRATOR ELEMENT, VIT, EXICS FRACER FROTEN, POLA-ROTEN RECORDING, SOUGHER TRANSCARTION, SOUGHER TRANSCARTION SEGULATION PAR	COMPLEX TRANSCURITION REGULATION/DAY YING-YANG 1; TRANSCULTION BRITATION, RITANSCULTION BRITATION, RITANSCULTION BRITATION RECOUNTION IN COMPLEX RECOURTION IN COMPLEX TRANSCULTION IN COMPLEX TRANSCULTION RECOULATION/DAY	COMPLEX (TRANSCENTERON REGILATION/DAY YING-YAND I; TRANSCENTION INTENTON RIMINATION INTENTON RIMINATION IN OWNER FOR THE RECOMMENT IN OWN AROTEN TRANSCENTION IS COUNTY TRANSCENTION IS COUNTY TRANSCENTION IS COUNTY TRANSCENTION IS COUNTY TRANSCENTION IS COUNTY TRANSCENTION IS COUNTY TRANSCENTION IS COUNTY TRANSCENTION IS COUNTY TRANSCENTION IS COUNTY TRANSCENTION IS COUNTY TRANSCENTION IS COUNTY TRANSCENTION IS COUNTY TRANSCENTION IS COUNTY TRANSCENTION TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SE	COMPLEX (UNA-BINDING PROTEINDINA) FIVE-FINGER GLL, GLL, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINCHA)	COMPLEX (DNA-BINDING PROTELNDINA) FIVE-FINGER GLL; GLL, ZINC FINGER, COMPLEX (DNA- BINDING PROTELNDINA)	COMPLEX (DNA-BINDING
Consequence	DNA; CHADN: A, B;	YYI; GIAINF C, ADENO- ASSOCIATION FILENENT DITILITION ELEMENT DNA; CHAIN; A, B;	YYI; GIADN C, ADBNO- ASSOCIATD VRUS PS BUTLATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHADIY C, ADENO- ASSOCIATED VRUS PS DUTATOR ELEMENT DNA; CHADI: A, B;	ZINC FINGER PROTEIN GLJI; CHADN: A; DNA; CHAIN: C, D;	ZING FINGER PROTEIN GLD; CHADY: A; DNA; CHADY: C, D;	ZINC FINGER PROTEIN
SeqFold Scare		¥ 5			3		
4WA			8	8		8	160
Verify Score			81:0 81:0	200		91.0	
PSI BLAST Score			ş	M. 41.2	24	1.76-32 0.19	1.4-54 0.32
3 2		3	ž	ž	¥	ž	34
A Start		£	338	241	g	213	236
g e		U	U	v		<b>~</b>	<b>~</b>
<b>2</b> e		3	3	P. C. C. C. C. C. C. C. C. C. C. C. C. C.	17	P.	Zeli
9 0 <u>Ş</u>		375	25.	226	57.5	57.5	37.5

			_		_	_	_	_	_	_	_		٠,		_	_	_	_		-	_
PDB amotation	COMPLEMENT INHIBITOR, COMPLEMENT MODULE, SCR, SUSHI DOMAIN, 2 MODULE PAIR	ENDOCYTOSIS/BXOCYTOSIS NSECI; PROTEIN-PROTEIN COMPLEX, MULTI- SIBINAT		LIPID TRANSPORT APO A-L	CHOLDSTEROL METABOLISM, 2 ATTEROSCI, EROSIS, HDI, LCAT-	CHAPERONE HSP40; CHAPERONE,	HEAT SHOCK, PROTEIN FOLDING, DNAK	CHAPERONE HSP40; CHAPERONE, HFAT SHOCK, PROTEIN FOLDING	DNAK	STRUCTURAL PROTEIN TWO	REPEATS OF SPECTRIN, ALPHA	TANDEM HELLY COLLED-COLLS,	STRUCTURAL PROTEIN	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35	KDA PROTEIN, PJSA, THREE HELLX	BUNDLE	MOLECULAR CHAPERONE IDJ-1;	MOLECULAR CHAPERONE	MOLECULAR CHAPERONG HDJ-1; MOLECULAR CHAPERONG	MOLECULAR CHAPERONS HDF1:	MOLECULAR CHAPERONE
Compound	PROTEIN; CHAIN; NULL;	SYNTAXIN BINDING PROTEIN I; CHAIN: A;		APOLIPOPROTEIN A-I;		DNA! CHAIN: NULL;		DNAJ; CHAIN: NULL;		ALPHA SPECTRIN; CHAIN:	A.B.C.			SYNTAXON-IA; CHAIN: A,	5 i		HUMAN HSP40, CHAIN:	NOT.	HUMAN HSP40, CHAIN:	HUMAN HSP40, CHAIN:	NOT:
Seaved				1979		65.24								_			_		25.33	Ī	
PM.F Scure		800	Ī					1.00		630				8			8			8	
Vertify		 673	Ī					950		673				270			Ş			8	_
PSI Seen		0.00054		7.26-08		1.76-23		1.76-23		7.26-10				1.66-06			77.48		1.86-21	3	
3 \$		ĝ	I	ž		36		4		ž				ğ			92		92	1	_
Start C		551	Ī	3		_		ŗ		\$91				197			~	į	2	7	
<b>å</b> e		8	T	<						<				<			_				_
<b>2</b> 9		19		lav.		Š		1 0 0		<u>1</u>				3			Ī		Ē	Ž	ŗ
g = g		Ē	T	2		2		383		2				ä			2		2	120	_

WO 02/059260 PCT/US01/42950

172

												_
PDB ametation	ATHEROSCIEROSIS, HDI, LCAT- ACTIVATION	CHAPERONG HSP40; CHAPERONE, HEAT SHOCK, PROTEIN POLDING, DNAK	CHAPERONE HSP40; CHAPERONE, HEAT SHOCK, PROTEIN POLDENG, DNAK	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELLOAL LINKER REGION, 2.1 TANDEM 3-HELLX COLLED-COLLS, STRUCTURAL PROTEIN	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGAIN ASSOCIATED 33 KDA PROTEIN, P35A, THREE HELLX BUNDLE.	MOLECULAR CHAPERONE HDI-1; MOLECULAR CHAPERONE	MOLECULAR CHAPERONE HDJ-1; MOLECULAR CHAPERONE	MOLECULAR CHAPERONE HD.F.I; MOLECULAR CHAPERONE	CONTRACTILE PROTEIN TRIPLE. HELIX COLLED COIL, CONTRACTILE PROTEIN	TRANSCRIPTION REGULATION SIGNATO, RNA POLYMERASE SIGNA FACTOR, TRANSCRIPTION REGULATION	CHAPERONE HSP40, CHAPERONE, HEAT SHOCK, PROTEIN FOLDING, DNAK	ALPHA SPECTRIN; CHAIN: STRUCTURAL PROTEIN TWO
Септректа		DNAJ; CHAIN: NULL;	DNAJ; CHAIN: NULL;	ALPIN SPECTRIN; CHAIN: A, B, C;	SYNTAXIN-1A; CHADI: A, B, C;	HUMAN HSP40; CHAIN: NOLL;	HUMAN HSP40; CHAIN: NULL;	HUMAN HSP40; CHAIN: NULL:	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	RNA POLYMERASE PRIMARY STOMA PACTOR; CHAIN: NUIL;	DNAJ; CHAÎN; NULL;	ALPHA SPECTRIN; CHAIN:
Seq Fold Boar		16.34					26.93		% %			
Score	Г		<u>8</u>	3	8	90'		8,		3	8	930
Vertity Score			0.50	623	770	0.45		83		400	70	
PSI BLAST Score		.3 <del>6</del> .3	1.76-23	7.26-10	1.6e-06	7.49	27 eq.	1,50,23	3.be-07	5.4 <del>a</del> -06	<u> </u>	354 7.20-10 0.33
W		22	F	ž	ğ	2	22	۲	398	92	20	ž
Į ×			_	3	<u>s</u>	2	-		136	\$22	_	3
9 9				٧	۷				<b>4</b>			
<u> </u>		<u>ş</u>	ž.	<u> </u>	ā	7	Ĭ	Ī	B	3	<u>ş</u>	8
ğ e ğ		ž	¥	Ä	ž	3	ž	ž	ž	ž	ž	i i

174

CONTRACTILE FROTEN TIEDLE
TEAMSCHIPPER COLC, CONTRACTILE
TEAMSCHIPPER SEGUL, CONTRACTILE
TEAMSCHIPPER SEGUL, CONTRACTILE
TEAMSCHIPPER SEGUL, CONTRACTILE
TEAMSCHIPPER SEGUL, CONTRACTILE
TEAMSCHIPPER SEGUL, CONTRACTILE
TEAMSCHIPPER SEGUL, CONTRACTILE
TEAMSCHIPPER SEGUL, CONTRACTILE
TEAMSCHIPPER SEGUL, CONTRACTILE
TEAMSCHIPPER SEGUL, TON
THORSE SEGUL, TON
THORSE SEGUL, TON
THORSE SEGUL, TON
THORSE SEGUL, TON
THORSE SEGUL, TON
THORSE SEGUL, TON
THORSE SEGUL, TON
THORSE SEGUL, TON
THORSE SEGUL, TON
THORSE SEGUL, TON
THORSE SEGUL, TON
THORSE SEGUL, TON
THORSE SEGUL, TON
THORSE SEGUL, TON
THORSE SEGUL, TON
THORSE SEGUL, TON
THORSE SEGUL, TON
THORSE SEGUL, TON
THORSE SEGUL, TON
THORSE SEGUL, TON
THE COURT CONTRACTILE
THORSE SEGUL, TON
THORSE SEGUL, TON
THORSE SEGUL, TON
THORSE SEGUL, TON
THE COURT CONTRACTILE
THORSE SEGUL, TON
THORSE SEGUL, TON
THE CONTRACTILE
THORSE SEGUL, TON
THE CONTRACTILE
THORSE SEGUL, TON
THE CONTRACTILE
THORSE SEGUL, TON
THE CONTRACTILE
THORSE SEGUL, TON
THE CONTRACTILE
THE COLLE OF THE CONTRACTILE
THE COLLE OF THE CONTRACTILE
THE COLLE OF THE CONTRACTILE
THORSE SEGUL, TON
THE COLL CONTRACTILE
THE COLLE OF THE CONTRACTILE
THE COLLE OF THE CONTRACTILE
THE COLLE OF THE CONTRACTILE
THE COLLE OF THE CONTRACTILE
THE COLLE OF THE CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTILE
THE COLL CONTRACTI HIDAAN HES-RE-CRADE:
NULL:
HIDAAN HES-RE-CRADE:
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETAL
HIDAAN SKELETA ALPHA SPECTRUN; CHAIN: BYNTAXIN-IA; CHAIN: A. B, C; APOLIPOPROTEIN A-I; CHAIN: A, B, C, D; NAJ; CHAIN: NULL; Seq Fold 97.69 P.M.V 10.0 7.20-08 NA Kad 316 ¥ Start A **1** a **5** 5 夏 重 O E E 2 2

WO 02/059260

10	A A	3 5	157		PM P	Score Score	Cermpound	PDB snaetribon
							∧B.C.	REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 22 TANDEM HELLY COLLED-COLLS, STRUCTURAL PROTEIN
	181	8	1.50-06	70	0.0		SYNTAXDA-TA; CHAIN: A, B, C;	ENDOCYTOSISEXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 15 KDA PROTEIN, P154, THREE HELIX BUNDI.E
	~	=	3.46.23	990	8.		HUMAN HSP40, CHAIN: NULL;	MOLECULAR CHAPERONE HDJ-1; MOLECULAR CHAPERONE
Γ	~	e	1,36-23	3	8		HUMAN HSP40, CHAIN: NULL;	MOLECULAR CHAPERONE HDI-1; MOLECULAR CHAPERONE
	32	<u>\$</u>	7 4 -			36.90	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	CONTRACTILE PROTEIN TRIPLE- HELIX COLLED COLL, CONTRACTILE PROTEIN
	922	ş	726-07	0.0	10.0		RNA POLYMERASE PRIMARY SIGMA PACTOR: CHAIN: NULL;	TRANSCRETION REGULATION SIGNATO, RNA POLYMERASE SIGMA SECTOR, TRANSCRETION REGULATION
Γ	Ī	L			L			
Г	Ē,	≴	13-12	ŝ	55		ENDONUCLEASE; CHAIN: A;	ENDONUCLEASE ENDONUCLEASE, PHOSPHODIESTERASE,
	Ē	ğ	1.76-21	£5	0.47		ENDONUCLEASE; CHAIN: A;	ENDONUCLEASE ENDONUCLEASE, PHOSPHODIESTERASE,
Γ		L	L	L	L	L		
	×	F	9000	69.0	61.0		AGGLUTININ ISOLECTIN VI; CHAIN: A	PLANT PROTEIN TWO HOMOLOGOUS HEVEIN-LIKE DOMAINS
	2	2	5.44-03	8	60		ADDLUTININ ISOLECTIN VI; CHAIN; A	PLANT PROTEIN TWO HOMOLOGOUS HEVER-LIKE DOMAINS
Γ.	5	3	3.66-03	8	00'0		AGGLÜTTNIN ISOLECTIN VVAGGLÜTTNIN ISOLECTIN V; CHAIN: A;	SUGAR BINDING PROTEIN UDA; LECTIN, HEVEIN DOMAIN, UDA, SUPERANTIGEN
	2	=	1.68-05	1.12	000		VAOGLUTTININ ISOLECTIN	SUGAR BINDING PROTEIN UDA; LECTIN, HEVEIN DOMAIN, UDA,
		ľ						

3 3 3

175

3

PCT/US01/42950

,

		_			_		_		_	_	_		_	_	_	_		_	_	_	_	_	_	_
PDB amounted	SUPERANTIGEN, SACCHARIDE BINDING		GLYCOSIDASE CGTASE; ICIU I THERMOSTABLE ICIU IA	STRUCTURAL PROTEIN INTEGRIM- BINDING PROTEIN, INV GENE	STRUCTURAL PROTEIN INTEGRIN- BINDING PROTEIN, INV GENE	CHAPERONE/STRUCTURAL PROTEIN	STRAND COMPLEMENTATION, 2	CHAPERONESTRUCTURAL PROTEIN	COMPLEX (GTP-BUNDING/EFFECTOR)	RAS-RELATED PROTEIN RABIA;	COMPLEX (CIP-BINDING) BAPTING	SYNAPTIC EXCEPTION, MARCINE, 2 SYNAPTIC EXCEPTIONS BAB	PROTEIN, RABJA, RABPHILIN	COMPLEX (TRANSCRIPTION	PACTOR/DNA) UAS CYC7; HAP1.18;	COMPLEX (TRANSCRUTTION	PACTOR/DNA), ASYNOMETRY, 2	TRANSCRIPTIONAL ACTIVATION,	HYPERACTIVE MUTANT	MEMBRANE PROTEIN VSG VSG,	TRYPANOSOME, ANTIGENIC	VARIATION, MEMBRANG PROTEIN		LIGASE AMP COMPLEX, NAD+- DEPENDENT
Coumpound	V/ CHAIN: A;		CYCLODEXTRIN GLYCOSYLTRANSFERASE ; ICTU 6 CHAIN: MULL;	DVASIN; CHAIN: A:	DVASIN; CHAIN: A;	PAPD-LIKE CHAPERONE	K, M, O; MANNOSB	SPECIFIC ADMESTIN FUNDI; CHAIN: B. D. F. H. J. L. N. P.	RAB-3A; CHAIN: A;	RABPHILIN-3A; CHAIN: B;				CYC7 DNA DUPLEX;	CHAIN: A, B; YEME	ACTIVATOR PROTEIN;	CHAIN: C, D;			VARIANT SURFACE	GLYCOPROTEIN ILTAT	1,24; CHAIN: A, B;		DNA LIGASE; CHAIN: A, B;
SeqPald Scars								•																
PM/y Scars			-0.19	-0.20	810	40.14			579					Ē						-0.19				270
Verify Sears			1.0	0.03	ž	9.14			14.0					1						0.02				-0.70
PSI BLAST Seers			3.6e-04	8-09	166-11	54014	_		0.0072				_	0.0072				_		5.40-09				0.001
3 \$			5	£	437	<b>2</b>			232					86						440				223
Ser.			236	z	265	265			162					191	_					592	_			493
g e				<b>~</b>	<b>,</b>	_	_		_					U						~				В
80° 6			5	À.	À C	<u>a</u>			ğ	_			_	di	_					2vsg				<u>ā</u>
9 a 8			388	Ħ	Ħ	E.			353					328	_					388	_			393

WQ 02/059260 PCT/US01/42950

176

PDB ennotation	3 PACTOR	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK46 INHIBITOR, ANKYRIN MOTIF	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDE 46 INHIBITOR, ANK YRIN MOTTP	COMPLEX (KINASTANT). ONCOCREND CONG, PIGNERA, MTS1. CYCLIN DEPENDENT KINASE. NUBBRONY 2 PROTEIN, CON, DIKA. CELL, CYCLE MULTIPLE TIMOR. STERNESSEN 2 MATEL TIMOR.	(KINASDANTI-ONCOGENG) HEADER COMPUEX (INNERTOR PROTEIN CYCLIA-REPADENT KINAS, CELL CYCLE 2 CONTROL ALFIANDEN, COMPUEX (INHERTOR PROTEIN CHAPTEX (INHERTOR PROTEIN CHAPTEX (INHERTOR	COMPLEX (DRIBBTOR PROTECTION PROTECTION AND SUPPLIED REPORTS CYCLE) CYCLE 2 CONTROL, KINASE CELL CYCLE 2 CONTROL, ALPHADETA, COMPLEX (DRIBBITOR PROTENCIANS)	HÖRMÖNEĞGROWTH FACTOR P18- INKAC, CELL CYCLE INHBITOR, P111NKAC, TUMOR, SUPPRESSOR, CYCLIN-1 DEPENDENT KINASE, HORMÖNEĞGROWTH FACTOR	HORMONE/GROWTH FACTOR PILE INKAC, CELL CYCLE INHIBITOR,
Composed		PISTAK 4D CDK46 INHIBITOR, CHAIN: NULL;	PISINKAD CDK46 INHIBITOR: CHAIN: NULL;	CYCLIN-DEPENDENT KIDASE & CHAIN: A; MALTIPLE TUMOR SUPPLESSOR; CHAIN: B;	CYCLIN-DEPENDENT KINASB 6; CHAIN! A: PIBINKAP; CHAIN! B;	CYCLIA-DEPENDENT KINASE & CHAIN: A; PI9NKAD, CHAIN: B;	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHADH A;	CYCLIN-DEPENDENT KINASE 6 INHIBITOR;
Scare			33.62			55.99	\$C.78	
PM.F Score		8		8	8			860
Verify Score		0.07		190	ä.			80
PSI BLAST Seers		5.16.30	X = X	R 471	83	156.78	13+31	15-41
3 \$		161	5	8	161	191	8	=
¥ ₹		2	<b>5</b>	C)	11	_	*	6
<b>1</b> a	Ī			8	æ	B		٧
ē e	Ī	2	3	<u>1</u>	₫.	<u> </u>	3	9
g e ģ		¥	ĭ	š	¥	¥.	ž.	홌

| SEG | PDB | CLAB | SEGN | EACH | FEL | Vorify | FMI | Seg/End | Consispend | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landschool | FDB Landscho

177

WO 02/059260

PCT/US01/42950

							,			
POB ametades	PIEUK 4C, TUMOR, SUPPRESSOR, CYCLIN- 2 DEFENDENT KINASE, HORMONEGEOWTH FACTOR	SIGNALING PROTEIN HELLY-TURN- HELLX, ANKYRIN REPEAT	SIGNALING PROTEIN HELIX-TURN- HELLX, ANK YRIN REPEAT	METAL BINDING PROTEIN ZINC. BINDING MODULE, ANK YRIN REPEATS, METAL BINDING PROTEIN	METAL BINDING PROTEIN ZINC. BINDING MODULE, ANKYRIN REPEATS, METAL BINDING PROTEIN	CELL CYCLE DYMBITOR PILE DESCRIPCE, CELL CYCLE DYMBITOR, PILDECACHERO, ANKYRIV REPEAT, 2 CDK 46 FWHBITOR	TRANSCRIPTION FACTOR, RG.; P50D; TRANSCRIPTION FACTOR, ICENIFICE COMPLEX	TRANSCRIPTION FACTOR, NG; PSOD; TRANSCRIPTION FACTOR, IKBNFKB COMPLEX	ANK-REPEAT MYOTROPHIN, ACETYLATION, NMR, ANK-REPEAT	ANK-REPEAT MYOTROPHIN, ACETYLATION, NACH, ANK-REPEAT
Counpound	CHAIN: A;	CYCLIN-DEPENDENT KINASE 4 INITIBITOR B; CHAIN: A;	CYCLIN-DEPENDENT KINASE 4 INHIBITOR B; CHAIN: A;	PYK2-ASSOCIATED PROTEIN BETA; CHAIN: A;	PYK2-ASSOCIATED PROTEIN BETA; CHAIN: A;	CYCLIN-DEPENDENT KDNASE 6 DHEBITOR; CHAIN: A, B;	NP-KAPPA-B P65 SUBUNIT: CHAN: A; NF- KAPPA-B P500 SUBUNIT: CHAN: C; L-KAPPA-B- ALPHA; CHAN: D;	NF-KAPPA-B P65 SUBUNCT; CHAIN! A; NF- KAPPA-B P500 SUBUNCT; CALIDI: C; 1-KAPPA-B- ALPHA; CHAIN! D;	MYOTROPHIN; CHAIN: NULL,	MYOTROPHIN; CHAIN: NULL
SeqFeld Scare					-	62.03		n X		
7 E		ສ	u o	9.76	3		0.78		1.00	213
V crls		กู	100	8.0	ã		910		0.10	40
	Score	3.66-23	9 4	22-44-X	6.fe-21	2	1.76-17	13635	3.46-19	96-28
3 \$		8	8	<u>ş</u>	5	8	ž	161	601	175
ž ž		2	<b>\$</b>	9	7	Ŧ	2	,	0	ş
j e		,	<	<	<	<	۵	a		
<u> </u>	Г	₹	₹ <u></u>	함	ldeq	뒖	ā	ë	trayo	10 ye
ğ e	Ē	ž.	ž	X.	ž	<b>1</b> 60	ž	M	760	ğ

		_			٠,	_			_		-	_		_		_	_	_		_	_	_	_		_	
PDB angestation	ANK-REPEAT MYOTROPHIN, ACETYLATION, NMR, ANK-REPEAT	ANK-REPEAT MYOTROPHIN, ACETYLATION, NMR, ANK-REPEAT	COMPLEX (TRANSCRIPTION	REGNANK REPEAT) COMPLEX (TRANSCRIPTION REGULATION/ANK	REPRATI, ANKYRIN 2 REPRAT HELLY	COMPLEX (TRANSCRUPTION REGVANK REPRATI COMPLEX	(TRANSCRIPTION REGULATIONANK	CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF	REGANK REPEATI COMPLEX	(TRANSCRIPTION REGULATIONANK	REPRAT, ANKYRIN 2 REPRAT HELLX	TRANSCRIPTION REGULATION	TRANSCRIPTION REGULATION,	ANN PART PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF T	TRANSCRIPTION REGULATION	ANKYRIN REPRATS, CELL-CYCLE	TRANSCRIPTION REGULATION	TRANSCRIPTION REGULATION,	COMPLEX (ANT)-	ONCOGENE/ANK YRLN REPEATS)	PS3BP2; ANKYRIN REPEATS, SH3, PS3,	TUMOR SUPPRESSOR, MULTICENE 2	FAMILY, NUCLEAR PROTEIN,	PHOSPHORYLATION, DISEASE	MUTATION, 3 POLYMORPHISM,	COMPLEX (ANTI-
Coumpound	MYOTROPHIN; CHAIN: NULL	MYOTROPHIN; CHAIN: NULL	NP-KAPPA-B P65; CHAIN:	A, C, NF-KAPPA-B PSC, CHAIN: B, D; I-KAPPA-B-	ALPHA, CHAIN: B, P.	A C. NF.KAPPA-B PSC	CHAIN! B, D; LKAPPA.B.	ALTHA CHAIN BY	A C NEKAPPA B PSO	CHAIN: B, D, LICAPPA.B.	ALPHA; CHAIN: B, P.	REGULATORY PROTEIN	SW16; CHADN: A, B;	The second second second	SWIG CHAIN: A. B.		REGULATORY PROTEIN	SWIG CHAIN: A, B;	P53: CHAIN: A: 53BP2:	CIADY: B;						•
Scaro			Γ		ļ	20.00		T						Ì	_				Ī							
Sears Sears	0.49	\$60	260		1			8	3			0.81		į	ŝ		150		80							
Vertify	170	120-	ş					91.0	3			970		ŀ	ş		60:0+		61.0							
PSI Score	2.45	3.60-21	1.70-17		ŀ	2		71.33				3.40-07		+	2.14.13		3.60-22		6.80-20	_						
3 5	≣ .	151	2		т	<u> </u>		2				111		1	3		133		2		_					
¥ 4	2		~		Ţ,			Ī.				132		1	:		8		ă							
<b>a</b>			<u> </u>		1	20			2			٧		Ī.			٧		-		_					
<u> </u>	e my	e g g	ā			<u> </u>		100	1			Iswe		1	g E		9MS1		Į.							
SEQ No di	394	ğ	ğ			ž		701				36		1	ţ		394		ž						_	

WO 02/059260 PCT/US01/42950

180

PDB annotation	HOMOLOGY (CR) DOMAIN; FILAMENTOUS ACTIV-BINDING DOMAIN, CYTOSKELETON	METAL-BRODING PROTEIN LIM DOMAIN CONTAINING PROTEINS ICTL 15	SIGNALING PROTEIN LIM DOMAIN CONTAINING PROTEINS, METAL BINDING PROTEIN	STRUCTURAL, PROTEIN DYSTROPHY, MUSCULAR DYSTROPHY, CALPONIN HOMOLOGY DOMAIN, 2 ACTIN-BINDING, UTROPHIN	METAL-BINDING PROTEIN CRIP; METAL-BINDING PROTEIN, LIM DOMAIN PROTEIN	STRUCTURĂL PROTEIN CALPONIN HOMOLOOY DOMAN, DOMAN SWAPING, ACTIN BINDING, 2 UTROPIIN, DYSTROPIIN, STRUCTURAL PROTEIN	METAL-BINDING PROTEIN LIM DOMAIN, ZINC-FINGER, METAL- BINDING PROTEIN		HYDROLASE ARYLSULFATASE B.
Coumbound	CHAIN: A;	AVIAN CYSTEING RICH PROTEIN; ICTL 3	CYSTEINE AND GLYCINE- RICH PROTEIN CRP2; CHAIN: A;	DYSTROPHIN; CHAIN: A, B, C, D;	CYSTEINE RICH INTESTINAL PROTEIN CHAIN: NULL;	UTROPHEN ACTEN BENDENG REGION; CHAIN: A. B:	LASP-I; CHAIN: NULL;	CATALYTIC ANTIBODY 1/TE COMPLEXED WITH PRENYL [141-N- SUCCINYLAMBODPENTY L, I BAP 3 PHOSPHONATE I BAP 4	ż
SeeFold									
PMy		3	r.	:	0.77	3.5	17.0	. 0.03	70.0
Vertify Score		623	\$ 6	ig op	91.0	Si Si	9110	97	0.37
PSI BLAST		3663	<u></u>	1.5e.36	21-991	<u>.</u>	3.6e-06	0.0036	3.40-37
3 \$		es S	g	GK	618	ZK.	ş	ž.	ž
Start		\$	3	3	99	91	\$	131	2(
10									

5 B

103 1dex

P33; CHAIN: A; 338P2; CHAIN: B; Coumpound 22 375 A A 2 6 **1**0 12 至 3 #4 8 0 5 ¥ 3 63 3 ş 603

WO 02/059260 PCT/US01/42950

181

РОВ авметайна	ASB, 4-SULPATASE, SULPATASE, GLYCOSAMINOGLYCAN DEGRADATION, HYDROLLASE, SIGNAL, 2 GLYCOPROTEIN, LYSOSOME.	STRUCTURAL PROTEIN RETINALS. ANTIGEN, 44 KID PROTEIN; VISUAL ARRESTIN, DESENSITISATION OP THE VISUAL TRANSDUCTION 2 CASCADE, BINDING TO ACTICATED AND PRIOSPHORYLATED REGIONOPSIN	STRUCTURAL PROTEIN RETRIALS. ANTIGEN, 44 KD PROTEIN; VISUAL ARRESTIN, DESENSTIBATION OF THE VISUAL TRANSDUCTION 2 CASCADE, BINDING TO ACTICATED AND PROSPHORYLATED RHODOPSTIN	STRUCTURAL PROTEIN EITHALS ANTIGEN, 41 DI PROTEIN; VISUAL ARRESTIN, DESENSITISATION OF THE VISUAL TRANSPOLITION? CASCADE, BINDIN TO ACTICATED AND PHOSPHONY LATED KHODOPEIN	COMPLEX (ZINC FINGER/DINA) COMPLEX (ZINC FINGER/DINA), ZINC FINGER, DINA-BINDING PROTEIN	CONTRACTILE LIM DOMÁIN, CRP, NMR, MUSCLE DIFFERENTIATION, CONTRACTILE
Countound	ACETYLGALACTOSÁMIN E-4-SULFATASE; CHAIN: NULL;	Arrestin; Chain: A, B, C, D,	Arresto; Chad: A. B. C. D:	ARRESTIN; CHAIN; A, B, C, D,	QUSK ZINC FINGER PEPTIDE, GIAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B,	CRP1; CHAIN: A;
Sea Fold Score		D.44		76.07		8.
A MA			4.18		8	
Vertity			8		3	
EAST Serv		D-41	74	1.70-54	15-21	738-17
<b>3</b> ≤		370	117	36	=	219
F S		2	a	_		Ä
g e		<	<	۵		<
<b>5</b> e		털	5	G)	<b>4</b> ·	2
2 e ğ			01	<b>.</b>	Ş	2

	N DESIGN, 2 COMPLEX	_	PONA) ZINC N DESIGN, 2 COMPLEX	EDDIN) ZINC N DESIGN, 1 COMPLEX EDDIN) ZINC N DESIGN, 1	EADINA) ZENC NOBESIGN, 2 COMPLEX EADINA) ZENC NOBESIGN, 2 COMPLEX NOBESIGN, 2 COMPLEX	TO THE STAND THE CONTRACT OF THE STAND THE CONTRACT OF THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND THE STAND T	ADDIA) ZINC CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CO
	COMPLEX (ZINC PINGEA/DINA) ZING FINGER, PROTEIN-DINA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURA, COMPLEX (ZINC FINGEA/DINA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DINA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	MAGAR, ROTERADA, INTERACTION PROTESTION, ON STAL STRUCTURA, COMPLEX CONFERENCE (COMPLEX COMPLEX (COMPLEX COMPLEX (COMPLEX COMPLEX COMP	PRICE ACTION, ROTTED LANG. INTERACTION, ROTTED LESSON, 1 CAN STARL STRUCTURE, CONCLEX COMPLEX CENTER THE CONCLEX COMPLEX CENTER PROTEST RESERVE, 1 COMPLEX CENTER PROTEST RESERVE, 1 COMPLEX CENTER LESSON, 1 COMPLEX CENTER RESERVE, 1 COMPLEX CENTER PROME DAY, 1 PRICE RESERVED BAY, 1 PRICE RESERVED, 1 COMPLEX CENTER PROME DAY, 1 PRICE RESERVED, 1 COMPLEX CENTER PROTEST PROTEST COMPLEX CENTER PROTEST COMPLEX CENTER PROTEST COMPLEX CENTER PROTEST COMPLEX CENTER PROTEST COMPLEX CENTER PROTEST COMPLEX CENTER PROTEST COMPLEX CENTER PROTEST COMPLEX CENTER PROTEST CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER CENTER C	PRINCIAL MOTION, ROTTED LANG, INTERACTION, ROTTED LESSON, 1 CONFILER CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX CONFLEX C	THE ACTION, ROTHER LANG, STREET, LANG, STREET, LANG, STREET, LANG, STREET, LANG, STREET, LANG, STREET, LANG, STREET, LANG, STREET, LANG, STREET, LANG, STREET, LANG, STREET, LANG, STREET, LANG, STREET, LANG, STREET, LANG, STREET, LANG, STREET, LANG, STREET, LANG, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET,
	_	FINGER	CAYST.		<del></del>		<del></del>
•	DNÁ; CHAIN; A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN; C, P, Q;	DNA; CHAIN; A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN; C, F, C;		DNA, CHÁIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, Q;	DNK; CHAIN: A, B, D, E; CONCENSUR ZINC FINGER PROTEIN CHAIN: C, F, G, PHA; CHAIN: A, B, D, E; CONCENSUR ZINC FINGER PROTEIN; CHAIN: C, F, G,	NACCIÁNIS, A.B. D. E. CONCENSUS ZIME FROBE PROTESTOS ZIME FROBE PROTESTOS ZIMES C.F. G. CONCENSOS ZIMES CHARIS, C.F. G. FROBE PROTESTOS CHARIS, C.F. G. FROBE PROTESTOS ZIMES, C.F. G. FROBE PROTESTOS ZIMES, C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES FROBE PROTESTOS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES FROBE PROTESTOS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZIMES C.F. G. CONCENSIS ZI	DIACCIOLIS, A.B. D. E. CONSENSIO ZIME FRANCE FRANCE GLANE, F. P. O. CONSENSIO ZIME FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRA
	PROTE	DNA; CONSI		1			
ğ		_		99.05	98	0.66	0.68
Scene	8	8		<u>.</u>	8	8 8	8 8 8
Score	60'0	-0.27			-0.03		
BLAST	ĵ	1.7+50	_	1.70-50	1.76-50		
\$	ī	249		230	250	92 97 89	100 250 250
\$	9.	3		168			
<b>4</b> 0	U	υ		υ	υυ	υ υ υ	U U U
	lacy	lary		lacy			
ΒŞ	3	27		₽	‡ ‡	412 413	<del>+</del> <del>+</del> <del>+</del> <del>+</del> <del>+</del> <del>+</del> <del>+</del> <del>+</del> <del>+</del> <del>+</del>

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

PDB apacertica	FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATIONDNA)	COMPLEX TRANSCREPTION REGULATIONDAN YRG-YANG; TRANSCREPTION BRITATION, TRANSCREPTION BRITATION BRITATION BRITATION BRITATION STORMS RECOGNITION; 3 COMPLEX TRANSCREPTION REGILATIONDAN	COMPLEX TRANSCENTION REGILATIONOMY YING, YANO I; TRANSCENTION BRITATION BRITANIO BLEMENT, YI. ZINC 2 FRUER PROTEIN, DIVA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCENTION REGILATIONOM)	COMPLEX TRANSCENTION REGILATIONOMY THE-YAND I; TRANSCENTION POTIATION BITTANTE ELEMENT, YII, ZUC 2 FRUGER FROTEIN, DIAK-FROTEIN RECOMPTING, 3 COMPLEX FRANSCENTION REGILATIONOMY	CONFLEX TRANSCHPTON REGULATIONON YNG-YANG I; TRANSCHPTON POTIATION, TRANSCHPTON POTIATION, TRANSCHPTON POTIATION, TRANSCHPTON, NAV-ROTEN RECOMMINGN, STOCKHEN TRANSCHPTON REGULATIONONA	COMPLEX (TRANSCRIPTION REGULATIONDNA) YING-YANG I; TRANSCRIPTION INTIATION,
Cognitional		YYI; CIAIN: C. ADENO- ASSOCIATED YRUS P3 INTIATOR ELEMENT DNA; CIAIN: A, B;	YYI; CHAIN: C, ADENO ASSOCIATED YRUS P3 INTIATOR ELEMENT DIVA; CHAIN: A, B;	YYI; GIADN: C; ADENO- SSOCIATED YRUS PS NITIATOR ELEMENT DNA; CHADN: A, B;	YYI; CHÁIN: C, ADENO- ASSOCLATED YRUS PS INTLATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C, ADENO- ASSOCIATED VIRUS PS INTIATOR FLEMENT
Seq Podd See r		13.17				
PM P			ž,	8	290	8
\$ .			8	0.07	0.10	432
E AST		15.4g	( Pe 33	\$[ <b>4</b> ]\$	<u> </u>	15421
3 \$		82	24	711	137.	11
Į į		<u> </u>	<u> </u>	×	_	,
đe		U	v	v	U	c
<u> 2</u> 8		3	3	3	<u> </u>	Jube
ğ e ğ		Ş	ş	413	63	ş

	_	_	_	_	_		_		_	_	-	_		-	_	_	_	_		_	_	_	-		_	-	_	_	_
PDS ausetaden	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGENDINA) ZINC FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX	(TRANSCRUPTION	RECULATION/DNA), RWA	POLYMERASE III, 2 TRANSCRIPTION INTIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX	(TRANSCRIPTION	REGULATION DIVA, RNA	POLYMERASE III, 2 TRANSCRIPTION	INITIATION, ZINC PINGER PROTEIN	COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX	(TRANSCAUPTION	KEGULATIONUNA, KNA	POLYMEKASE III, 2 TRANSCRIPTION	COMPLEX CRANSCRIPTION	REGULATION DINA, COMPLEX	(TRANSCRUPTION	REGULATION/DNA), RNA	POLYMERASE III, 1 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	RECOLATIONDRA) TING-TAKE I	INTIATOR FLEMENT, YY1, ZINC 2
Coumpound		DNA; CHAIN; A, B, D, E; CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, C;		THIN CHAIN A D. SS	RIBOSOMAL RNA GENE:	CHAIN: B, C, B, P;			TFIIIA; CHAIN: A, D; SS	RIBOSOMAL RNA GENE;	CHAIN! B, C, B, P.				TFUIA; CHAIN: A, D; SS	RIBOSOMAL RNA GENE:	CHAIN: B, C, B, P.			THUIA: CHAIN: A D: 55	RIBOSOMAL RNA GENE	CHAIN: B, C, B, P;			,	YYI; CHAIN: C; ADENO-	ASSOCIATION OF ENGINE	DNA CHAIN A B.
SeqFeld Score					Ī								_								01 70								_
Score		8			160					120						8					Ī						ž		_
Vertify		ž			-002					110						20											50.0		
PSI BLAST Some		67			146.36					S.10-37					-	3.40-37					20-77					_	1.80-58		
<b>7</b>		3			852					1						153					132	i					58		
Start		2			=					2						_			_		2						=		
a a		J			<					<						<					_				_		٠ د		_
PD8 LD		Iney			200					168						碧					116	!					3		
g e ŝ	Γ	412			Ę					21		_				<del>-</del>		_			Ş	!			_	-	 		_

PDВ вавосьского	INTIATOR ELEMENT, YY I, ZINC 1 FINGER PROTEIN, DIA-PROTEIN RECOMPTION, 3 COMPLEX (TRANSCAPTION REGULATIONDINA)	COMPLEX TRANSCENTION REGILATIONONNY YNG-YAND I; TRANSCENTION PRINATION, YNI, ZEC.2 TRANSCENTION PRINATION, YNI, ZEC.2 TRANSCENTION PROPERLY RECOGNISM, I COMPLEX TRANSCENTION REGILATIONONN	COMPLEX (TRANSCAPTION REGULATION/TRANSCAPTION INTANSCAPTION BRITATION INTRANSCAPTION BRITATION INTRANSCAPTION BRITATION INTO BROOM BROOTEN RECOMMENTAL STORMENT INTO STORMENT STORMENT INTO STORMENT STORMENT INTO STORMENT	COMPLEX TRANSCRAFTON REGULATIONOMY THE YOUR I; TRANSCRIPTION BUTTACTOR BUTTACTOR BLANSCRY, YYI, ZIYC 2 PRICER ROTEIN, DNA-ROTEIN RECOGNISM, 3 COMPLEX (TRANSCRIPTION REGULATIONOM)	COMFLEX (DNA-BINDING PROTENDRA) FIVE-FINGER GLJ; GLJ, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDINA)	COMPLEX (DNA-BINDING PROTEINDINA) PIVE-FINGER CIL; CIL, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDINA)	COMPLEX (DNA-BINDING
Compound	DNA; CHAIN: A, B;	YYI; CHAIN: C, ADENO- ASSOCIATED YRUS PS ARSOCIATED YRUS PS ANTIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHÁDH: C, ÁDENO- ASSOCIATBO VIRUS PS PUTLATOR ELEMENT DNA; CHÁUN: A, B;	YYI; CHÁIN: C, ADENO- ASSOCIATED VIRUS PS DATICATOR ELEMENT DNA; CHAIN: A, B;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLIT; CHADI: A; DNA; CHADI: C, D;	ZINC FINGER PROTEIN
Seq Fold							$\prod$
Pres Score		8	0.98	8	3	ž	550
Venty		<b>5</b>	0.0	150	8	Ę.	900
ELAST Sees		3,6633	1.76-34	1.76.35	5.1e.3d	- - -	258 16-29
3 4		31	8	66	<b>z</b>	80	52
¥ Ş		*	-	s	R.	21	Z
e e		υ	U	υ	<	<	<
6 G		<u> </u>	3	<u> </u>	Ņ.	ī,	<b>1</b> 22
ğe ğ		<del>=</del>	<b>2</b>	7	213	71.	Ę

							_		
PDB amortetion	PROTEINDNA) FIVE-FINGER GIJ; GIJ, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDNA)	COMPLEX (DNA-BINDING PROTEINDNA) FIVB-FINGER GLI, GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDNA)	COMPLEX (DNA-BINDING PROTEINIDNA) FIVE-FINGER GIL; GIL; SINC FINGER, COMPLEX (DNA- BINDING PROTEINDNA)	COMPLEX (DNA-BINDING PROTEINDIN) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDINA)	COMPLEX (DNA-BINDING PROTEINDNA) FIVE-FINGER GLL; GLL, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDNA)	COMPLEX (DNA-BINDING PROTEINDNA) FIVE-FINGER GIL; GIL, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDNA)			
Coumpound	OLLI); CHAIN: A; DNA; CHAIN: C, D;	ZINC FÜNGER PKOTEIN GLJI; CHAIN: A; DNA; CHAIN: C, D;	ZINC FDWOER PROTEIN GLJI; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN; A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GL1); CHAIN: A; DNA; CHAIN: C, D;	The Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the P	MACHINGTON TROIDIN HUMAN BRHANCEN BRODNO PROTEDI MBP-I MITANT WITH CYS II BBOS PRETACED BY ABU (CI IABU) (PMR, 60 STRUCTURES) 1880 4	ZINC FUGER /DNAS BINDING DOMAIN ZINC FINGER (ANABS) 17NF 1
Seq Podd Score			*77						
P.M.F		00.1		8	<b>8</b>	7	3	ŝ	Q.76
Verthy Scan		0.12 0.12		0.15	457	-0.15		4119	070
BLAST Start		3.60-64	3.60-75	5.4e-7!	Ĵ	3,66-75	1,000	1000	01-94-10
3 ₹		191	<u>2</u>	282	62	230	т		239
Star		82	%	8	\$	I	:	éli.	210
<b>1</b> E		· ·	<	<	<	<			
8 G		72	Ę.	P)	<b>1</b> 2	120		80	]m[
S e S		412	<b>₽</b>		₽	412			Ę.

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/4

ĝe ģ	<b>5</b> a	<b>g</b> e	ğ	3 \$	is if is	Verthy	N S	Seq Fold Score	Севиревн	YUB ansomness
П										3 FACTOR
ş	<u> </u>	a.	ã	621	2	6.09	§		GA BINDING PROTEIN HATHA; CHAIN; A; GA BUDING PROTEIN BETA 1; CHAIN; B; DNA; CHAIN; D, E;	COMPLEX (TRANSCUPTION REQUIATIONDONA) GABPLEHA: GABRETATI COMPLEX (TRANSCUPTION REQUIATIONADA BINDING, 2 NUCLEAR PROTEIN ETS DONALIN ANCYLEN REPEATS, TRANSCUPTION
Ę.	2		23	72	ī	ā	8		PISINKAD CDK46 DREBITOR; CHAIN: NULL;	TUMOR SUPPLESSOR TUMOR SUPPLESSOR CDK46 INHBITOR, ANKYRIN MOTTE
ş	3		2	#	5.40-35	0.45	8		PISTNKAD CDK46 INHIBITOR; CHAIN: NULL;	TUMOR STPPRESSOR TUMOR SUPPRESSOR, CDK46 INHIBITOR, ANKYRIN MOTIF
ş	3		691	22	1.76-25	10	9		PINNKAD CDK46 DRHIBITOR; CHAIN: NULL;	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK46 INFIBITOR, ANKYRIN MOTTF
ş	3		•	≘	1.7-20	55	100		PISTNK 4D CDK 4/6 DRHIBITOR; CHAIN: NULL;	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDX46 INHIBITOR, ANKYRIN MOTIF
÷	ž.	œ.	81	3	- Pe-21	170	87		CYCLIN-DEPENDENT KUNKAS & CHAIN: A: MULTPLE TUMOR SUPPRESSOR, CHAIN: B;	COMPLEX (KINASBANT) ONCOGNED CDAK, BIOBYCL, MTSI, CYCLAN DEPRODERY KINASB, CYCLAN DEPRODERY KINASB, MENBITORY Y ROTTEN, CDX, DNX, CELL CYCLE, MULTIPLE TUMOR SUPPRESSOR, J. MTSI, COMPLEX, SUPPRESSOR, J. MTSI, COMPLEX,
ş	五	a a	2	72	3.44-12	6.33	63		CYCLIN-DEPENDENT KINASE & CHAIN: A; PISDIKAD; CHAIN: B;	COMPLEX (INHIBITOR PROTEDWINASS) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASS, CELL CYCLE 2 COWTROL, ALPHABETA, COMPLEX (INHIBITOR

			_			_			_	_		_	_	-	_	7			_	_	_
PDB annotation				ANTI-ONCOGENE CELL CYCLE, ANTI- ONCOGENE, REPEAT, ANK REPEAT	COMPLEX (TRANSCEPTION PETTI ATTOMENA) CARPALPHA:	GABPBETA1; COMPLEX	(TRANSCRUPTION REGULATION DNA-BINDING, 2	NUCLEAR PROTEIN, ETS DOMAIN, ANY YEAR PERSATS TRANSCRIPTION	3 PACTOR	COMPLEX (TRANSCRIPTION	REGULATIONONA) GABPALPHA:	CAUSTRAIN COMPLEX	REGULATION DNA, DNA-BINDING, 2	NUCLEAR PROTEIN, ETS DOWAIN,	ANKYRIN REPEATS, TRANSCRIPTION 1 PACTOR	COMPLEX (TRANSCRIPTION	RECULATION/DNA) CABPALPHA;	OABPBETAI; COMPLEX	(TRANSCRUPTION PEGIT ATTOMOMA) DNA-BINDING 3	NUCLEAR PROTEIN, ETS DOMAIN,	ANKYRIN REPRATS, TRANSCRIPTION
Consposed	ZINC FUNGER ADNAS BINDING DOMAIN ZINC FINGER (MMRS) 3ZNF 3	ZINC FINGER DNA BINDIMO DOMANN ZINC- FINGER (ZFY-SWAP) (NMR, 12 STRUCTURES) 7ZNF 3		TUMOR SUPPRESSOR PIGNIKAA; CHAIN; NULL;	DA BINDING PROTEIN	BINDING PROTEIN BETA	I; CHAIN: B; DNA; CHAIN: D. E:	ľ		CA BINDING PROTIEN	ALPHA; CHAIN: A; OA	HOUSING PROTEIN BELLA	30			GA BINDING PROTEIN	ALPHA; CHAIN: A; GA	BINDING PROTEIN BETA	I CHAIN: B. DNA; CHAIN:		
Score											_		_						_		_
ž į	8.7e	0.71	Γ	8	8					8,						8					_
Verty See 3	620	424		936	61.0			_		2						0.59					_
<del>-</del>	0.0046	0.00017		<u> </u>	146.19					3.46-36						16.8					_
3 5	176	23		<b>69</b> 2	247					267						35					_
F Stra	ž	210		155	25					132	_					×					
a a					9					m m						В					_
8 E	M	類		Sa.	lawa					lawe						lewe				_	_
~			Γ.	_		_	_			1	_	_				1	_			_	_

60 PCT/US01/42950

	_		_		_		_		_					_	_	_	÷	_	_	_,	_		-	_	_	_	-		_
PDB ampetation	PROTEIN/KINASE)	COMPLEX (INHIBITOR PROTEINKINASE) INHIBITOR	PROTEIN, CYCLIN-DEPENDENT	ALPHABETA, COMPLEX (DIFFBITOR	PROTEIN/KINASE)	COMPLEX (INHIBITOR	PROTEIN/KINASE) INHIBITOR	PROTEIN, CYCLIN-DEPENDENT	KINASE, CELL CYCLE 1 CONTROL,	ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINA/SE)	HORMONE/GROWTH FACTOR PLB-	DAKAC; CELL CYCLE DIFFIBITION,	PIEDNKAC, TUMOR, SUPPRESSOR,	CYCLIN- 2 DEPENDENT KINASE,	HUKMUNEAUKUW IH FACI UK	HORMONE/GROWTH PACTOR PIE.	INK 4C; CELL CYCLE INSTITUTOR,	PLEINK 4C, TUMOR, SUPPRESSOR,	CYCLIN- 2 DEPENDENT KINASE,	HORMONE/GROWTH PACTOR	SIGNALING PROTEIN HELLX-TURN-	HELLIX, ANK YRIN REPEAT	METAL BINDING PROTEIN ZINC.	BINDING MODULE, ANKYRIN	REPRATS, METAL BINDING PROTEIN	CELL CYCLE INHIBITIOR PIS.	DAK4C(DAK6); CELL CYCLE	INHIBITION, PIE-INK4C(INK6),	ANK TRIN KETEAT, J CLIA 400 INHIBITIOR
Compound		CYCLIN-DEPENDENT KINASE 6; CHAIN: A;	PI9DAKAD; CHAIN: B;			CYCLIN-DEPENDENT	KINASE 6; CHAIN: A;	PISNIKAD, CHAIN: B;			CYCLIN-DEPENDENT	KINASE 6 INTIBITOR;	CHAIN: A:			CYCLIN-DEPENDENT	KINASE 6 INHIBITIOR;	CHAIN: A:			CYCLIN-DEPENDENT	KINASB 4 INHIBITIOR B;	PYC2-ASSOCIATED	PROTEIN BETA: CIAIN: A:		CYCLIN-DEPENDENT	KINASE 6 INHIBITOR:	CHAIN: A. B;	
Seq Fold Seare																													
PM.9	ļ	8	_			278					0.43					8					8		1.00			1,00			
Verify Scere	ĺ	77.0			_	407					0.39					603					0.47		0.44	!		100			
PSI		97				2747					1.46.33					Š					1,44-35		100			146-33	_		
3 \$		£				332					35					334					62.2		5%			72			
A A	Γ	8				99					22			_		991			_		155		25	!	_	132			
C Carlo		<b>a</b>				_			_	_	<					٧					v			:		<			
<u>0</u>	Ī	ğ				ž					9					ŝ					8		1	[		4			
038 038		ş	_			413					ş					413					417			;		Ę			

_											_
PDB amonation		CELL CYCLE PAUBITOR PIE PIRACINISA; CELL CYCLE DIJEBITOR, PIE-DIKACINISA, ANKYRIN REFEAT, 1 CDK 46 DATBITOR	TRANSCRUPTION FACTOR, PS.S. PSOD, TRANSCRUPTION FACTOR, IKBNEKB COMPLEX	ANK-REPEAT MYOTROPHIN, ACETYLATION, NMR, ANK-REPEAT	ANK-REPEAT MYOTROPHIN, ACETYLATION, NAR, ANK-REPEAT	ANK-REPEKT MYOTROPHIN, ACETYLATION, NAG, ANK-REPEAT	ANK-REPEAT MYOTROPHIN, ACETYLATION, NAR, ANK-REPEAT	ANK REPEAT MYOTROPHIN, ACETYLATION, NIAB, ANK-REPEAT	COMPLEX (TRANSCRIPTION REGARK REPEAT) COMPLEX (TRANSCRIPTION REGULATIONANK REPEAT), ANKYRIN 2 REPEAT HELLX	ONCORPEZ, (ANT.)  ONCORDENCARY REPEATS)  THORS SUPPLESSOR, MULTIOBEZ T FAMILY MOZDAR REPEATS  FAMILY MOZDAR REPER, MULTIOBEZ T FAMILY MOZDAR REPEATS  MULTI MOZDAR REPER, MULTIOBEZ T FAMILY MOZDAR REPEATS  MULTI MONTO LESSOR MOTOR OF THE MATTER TO THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF THE MOZDAR MOTOR OF	COMPLEX (ANTI-
		CYCLIN-DEPISODENT KINASB 6 INHBITOR; CHAIN: A, B;	NF.KAPPA-B P65 SUBUNIT: CHAN: A: NF. KAPPA-B P50D SUBUNIT: CHAN: C, I-KAPPA-B- ALPIN: CHAN: D.	MYOTROPIEM; CHAIN: NULL	MYOTROPHIN; CHAIN: NULL	MYOTROPHINE CHAIN: NULL	MYOTROPHIN; CHAIN: NULL	MYOTROPHIN; CHAIN: MULL	NF-KAPPA-B P65; CHAIN: A, C; NF-KAPPA-B P50; CHAIN: B, D; HKAPPA-B- ALPHA: CHAIN: B, P;	P31, CHÁIN: A; 318P2; CHÁIN: B;	PS3: CHAIN: A: 53BP2:
Sec. Bolts	Bran .										
DAM	ş	11.0	li o	600	98.0	8	00	0.41	170	8.	6
2	ğ	0.03	0.13	-033	0.10	0.04	0.40	100	<b>8</b> 0.0	22	8
¥	н.	1.76-29	× 4	12-47	1.46-25	1.46-27	1.16-38	6.le-17	1.46-35 -0.08	3.66-33	1 -35
3	1	33	329	516	249	245	278	314	328	<b>3</b> 6	
1		8	121	ē	133	2	163	8	126	3	
4		<	۵						D)	œ.	_
900	e	<u>a</u>	rii Ti	- N	eć 🗉	5 E	layo	e (a)	9	<u>g</u>	417 I'mes B
933	βBŞ	4	417	1	Ę	ŧ1	411	÷	43	\$	413

WO 02/059260 PCT/US01/42950

192

je	<b>5</b> \$	3 \$	<u> </u>	A Carl	2 5	Scq Feld Scene	Соппрови	
							RIBOSOMAL PROTEIN	RIBOSOMAL PROTEIN L24E,
							LIS; CHAIN: K;	HI 2 I/HI 22; SOS RIBOSOMAL PROTEIN
							RIBOSOMAL PROTEIN	L29P, HMAL29, HL33; SOS RIBOSOMAL
							LIES CHAIN: L.	PROTEIN L30P, HMAL30, HL20, HL16;
							RIBOSOMAL PROTEIN	SOS RIBOSOMAL PROTEIN L31E, L34,
							LIP CHAIN: NO	HEJO, SOS RIBOSOMAL PROTEIN LIZE,
							RIBOSOMAL PROTEIN	HL3; SOS RIBOSOMAL PROTEIN L37E,
							L21E; CHAIN: N;	LJSE; SOS RIBOSOMAL PROTEINS
			_				REDOSOMAL PROTEIN	LISE, HLISE, HLAGE; SOS RIBOSOMAL
							LZ; CHAIN: O;	PROTEIN 1.44E, LA, HLA; 50S
							RIBOSOMAL PROTEIN	RIBOSOMAL PROTEIN LAP, HMALA,
							L23; CHAIN: P.	HILIO RIBOSOME ASSEMBLY, RNA-
							RUBOSOMAL PROTEIN	RNA, PROTEIN RNA, PROTEIN
		_					L24; CHAIN: Q.	PROTEIN
							RIBOSOMAL PROTEIN	
					_		LOVE; CHAIN: R:	
							NIBOSOMAL PROTEIN	
							L29, CHAIN: S;	
							RIBOSOMAL PROTEIN	
							LIS CHADE T	
							RIBOSOMAL PROTEIN	
							LJIE CHAIN: U.	
							RIBOSOMAL PROTEIN	
							LJZE, CHAIN: V;	
				_			REDOSOMAL PROTEIN	
							LITAE; CHADR: W;	
							RIBOSOMAL PROTEIN	
							LJ7E; CHAIN: X;	
					_		RIBOSOMAL PROTEIN	
		_					LISE CHAIN: Y:	
		_					RIBOSOMAL PROTEIN	
	_				_		LARE CHAIN: 2:	
							RIBOSOMAL PROTEIN L.6;	
	_						CHAPP: 1:	

PDB assetation	GINCOGREWARY KIN REPLATS) PSIBPLANK YNN REFRATS, BILL PLINOR SUPPLESSOR, MOLTIGER 1 FAMELY, NUCLER FROTEN, HOSPHORYLATION, DESASE MOTATION, 1 POLYMORPHISM, COMPLEX (ANT.	ANTI-COAGULANT ANTI- COAGULANT, PEPTIDIC INHBITORS, CONPORMATIONAL 2 PLEXIBLITY, SERING PROTEASE INHIBITOR	LEWINGORDS SERVICE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND THE AND
Competed	CHAIN: B;	IURUSTASIN; CHAIN: NULL;	THE RANK CHAIR & 18 BRONG CHAIR & 18 BRONG CHAIR & 18 BRONG CHAIR & 18 BROSONAL PROTEN LE BROSONAL PROTEN LE BROSONAL PROTEN LE BROSONAL PROTEN LE LINE CHAIR E LINE CHAIR E LINE CHAIR E LINE CHAIR E LINE CHAIR E LINE CHAIR E LINE CHAIR E LINE CHAIR E LINE CHAIR E LINE CHAIR E LINE CHAIR E LINE CHAIR E LINE CHAIR E LINE CHAIR E LINE CHAIR E LINE CHAIR E LINE CHAIR E LINE CHAIR E LINE CHAIR E LINE CHAIR E LINE CHAIR E LINE CHAIR E LINE CHAIR E LINE CHAIR LINE CHAIR LINE CHAIR LINE CHAIR LINE CHAIR LINE CHAIR LINE CHAIR LINE CHAIR LINE CHAIR LINE CHAIR LINE CHAIR LINE CHAIR LINE CHAIR LINE CHAIR LINE LINE LINE LINE LINE LINE LINE LINE
Seq Paid Scars			
N. S.		10:01	8
Vertis Seare		-0.83	613
PSI BLAST Sour		0.00%	6.86-21
3 \$		23.1	<u>*</u>
Stert AA		502	91
<b>1</b> 0			
<b>2</b> e		1ht.7	<u>e</u>
Se S		£	£1

WO 02/059260 PCT/US01/42950

193

ğ e ğ	9	įį	1	BLAST Seen	) i	Scene	Breev		
H	L	L	Ľ						
5	1521	<u>≅</u>	<u>s</u>	<u>.</u>	ĘĘ	693		אנורד: אנורד: אנורד:	LIM DOMAIN CONTAINING PROTEINS LIM DOMAIN CONTAINING PROTEINS, METAL-BINDING PROTEINS, PROCES.
5	Ē	<u> </u>	3	5,14-13	8	0.73		илт: Оскъз (пин): снати:	LDA DOMAIN CONTAINING PROTEINS LDA DOMAIN CONTAINING PROTEINS, METAL-BINDING PROTEIN, ZINC 2 FINGER
= =	4	8	ž	2 <b>4</b> 2			19:59	CRP1; CHAIN: A;	CONTRACTILE LIM DOMAIN, CRP, NAR, MUSCLE DIFFERENTIATION, CONTRACTILE
5	<u>B</u>	3	22	7	100	77		AVIAN CYSTEINE RICH PROTEIN; ICTL 3	METAL-BINDING PROTEIN LIM DOMAIN CONTAINING PROTEINS ICTL 13
5	Ē	8	Ā	3,46-14	7.0	9		AVIAN CYSTEINE RICH PROTEIN; ICTL 3	METAL-BINDING PROTEIN LIM DOMAIN CONTAINING PROTEINS ICTL 13
- -	<u>ਰ</u>	2	<u>s</u>	=	6. Q	0.78		AVIAN CYSTEINE RICH PROTEIN; ICTL 3	METAL-BINDING PROTEIN LIM DOMAIN CONTAINING PROTEINS ICTL 15
5	Ē	8	<u>8</u>	,	0.0	20		AVIAN CYSTEINE RICH PROTEIN; ICTL 3	METAL-BINDING PROTEIN LIM DOMAIN CONTAINING PROTEINS ICTL 15
10	<u> </u>	Ē	<u>\$</u>	4	ě	99		CYSTEINE AND GLYCING. RICH PROTEIN CRP? CHAIN: A;	SIGNALING PROTEIN LIM DOMAIN CONTAINING PROTEINS, METAL- BINDING PROTEIN
- -	<u> </u>	<u>8</u>	≗	1.5c.1	77	65.0		CYSTEINE AND GLYCINE. RICH PROTEIN CRP2; CHAIN: A;	SIGNALING PROTEIN LIM DOMAIN CONTAINING PROTEINS, METAL- BINDING PROTEIN
- -	<u></u>	₫	<u>s</u>	1.76-13	40.34	0°E2		CYSTEDGE RICH INTESTINAL PROTEIN; CHAIN: NULL;	METAL-BINDING PROTEIN CRIP; METAL-BINDING PROTEIN, LIM DOMAIN PROTEIN
=	<u>.</u>	8		171 5.46-17 -0.29	929	0.0	L	CYSTEINE RICH	METAL-BINDING PROTEIN CRIP.

ON EI Ö	<u> </u>	đe	Şeri	3 \$	PSI BLAST Sour	Verify	Score	Seq Pedd Score	Countypeus	FOS annetation
									INTESTINAL PROTEIN; CHAIN; NULL;	METAL-BINDING PROTEIN, LIM DOMAIN PROTEIN
₹	Ē		2 <u>9</u>	ន	[] %	80.0 8	0.15		CYSTEMB RICH INTESTINAL PROTEIN; CHAIN: NULL;	METAL-BINDING PROTEIN CRIP; METAL-BINDING PROTEIN, LIM DOMAIN PROTEIN
Ş	1		591	512	1.80-17	02.0	0.15		CYSTENII RICH INTESTINAL PROTEIN; CHAIN: NULL;	METAL-BINDING PROTEIN CRIP; METAL-BINDING PROTEIN, LIM DOMAIN PROTEIN
3	Ē	<	12	38	3.4e-33	410	0.28		TRANSCRIPTIONAL REPRESSOR TUPI; CHAIN: A. B. C.	TRANSCRIPTION DIRECTOR BETA- PROPELLER
<u>\$</u>	Ē	<	11	8	1.26.53	0.69	1.00		TRANSCRIPTIONAL REPRESSOR TUPI; CHAIN: A, B, C;	Transcription drubitor beta- propeller
3	Ē	<	=	SE.	8.50	g.70	90:1		TRANSCRIPTIONAL REPRESSOR TUPI; CHAIN: A, B, C;	TRANSCRIPTION INHIBITOR BETA- PROPELLER
<b>‡</b>	<b>3</b> 01	<	ğ	<b>%</b>	0.0014	0.29	0.13		QUINOPROTEIN ETHANOL DEHYDROGENASE; GHADY: A, B	QUINOPROTEIN ETHANOL (XIDOREDACTASE QUINOPROTEIN, DEHYDROGENASE; SUPERBARREL, DEHYDROGENASE CHAPP. A. B
3	<u>1</u>	a	12	378	5.le.56			67.04	GT-ALPHANGI-ALPHA CROMERA, CHANN: A; GT- BATA; CHANN: B; GT- GAMMA; CHANN: O;	COMPLEX (GTP. TRANSDUCER) BETA1, TRANSDUCTR BETA SUBURT: GALOMA, TRANSDUCTR GALOMA SUBURT: COMPLEX (GTP. SUBURT: CAMPLEX (GTP. SUBURT: ANSIDUCER), G PROTEIN, HETEROTHURE 1 SIGNAL.
<u>1</u>	180	Δ.	n	297	5.10-46	9910	16'0		OT-ALPHAVGI-ALPHA CHIMERA; CHAIN: A; GT- BRTA; CHAIN: B; OT- GALOGA; CHAIN: Q;	COMPLEX (GTP. BINDINGTRANSDUCER) BETA!, TRANSDUCH BETA SUBUNIT; GAMMAI, TRANSDUCH GAMMA SIBINIT: COMPLEX (GTP.

WO 02/059260	PCT/US01/42950	WO 02/059260	PCT/US01/42950

RADIXIN; CHAIN: A;
1
SXL-LETHAL PROTEIN:
KIP-OP-UP-UP-GP-UP-UP
CHARS D
SXL-LETHAL PROTEIN:
CHAIN: A, B; RNA (5.
;
SXL-LETHAL PROTEIN:
CHAIN: A. B. KNA (3:
:
POLYDENYLATE BINDING
PROTEIN I; CHAIN: A, B,
C.D. B. P. O. H. RNA (S.
R(*AP*AP*AP*AP*AP*
APPAPAPAPAPAPA
CHAIN: M. N. C. T. C. A. A.
ANY NOW A THE BRADING CHENE BEGIN A THORNE A MAN WAS ANY AND THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF THE BEAUTIES OF T
_
C D R P O H BNA CF.
RIA PAPA APA APA APA APA APA APA APA APA
AP-AP-AP-AP-ALTY
200000000000000000000000000000000000000
 8 2 9

5~		¥ %	3 \$	PSI BLAST	Sea g	Seera PM	SeqPold	Coumpound	FUE ABSOLUTION
		<b> </b>		1					BINDINGTRANSDUCER), G PROTEIN, HETEKOTRINGR 2 SIGNAL TRANSDUCTION
m		2	370	3.16-56	0.45	0.80		OT-ALPHANGI-ALPHA CHIMERA; CHAIN: A; OT- BISTA; CHAIN: B; OT-	COMPLEX (GTP- BINDING/TRANSINCER) BETAI, TRANSIDICIN BETA SUBMINT; CANAMA TO ANSTRUM CANAMA
		-						n sonoro	SUBUNT; COMPLEX (OTP. BINDINGTRANSDUCER), O PROTEIN, HETEROTRIDER, 2 SIGNAL TRANSDUCTION
1<	-	3	98	3 to 1	0.12	9.15		CYTOCHROMB CD1 NTRUTS REDUCTASE:	OXIDOREDUCTASE ENZYMA NITXITE REDUCTASE,
								CHAIN! A. B;	OXIDOREDIACTASE, DENITRIFICATION, 2 ELECTRON TRANSPORT, PERIPLASMIC
	H	T							
<		u	2	į	20:02	0.93		CYCLOPHILINA; CHAIN: A; PEPTIDE PROM THE HIV-1 CAPSID PROTEIN;	COMPLEX (ISOMERASE/PEPTIDE) COMPLEX (ISOMERASE/PEPTIDE), CYCLOPHILIN A, HIV-1 CAPSID, 2
	_		_	į				CHAIN: B;	PSEUDO-SYMMETRY
<		<i>x</i>	<b>*</b> 11	1,747			1574	CYCLOPHILIN A; CHAIN: A; PEPTIDE PROM THE HIV-1 CAPSID PROTEIN;	COMPLEX (ISOMERASE/PETTUE) COMPLEX (ISOMERASE/PETTUE), CYCLOPHILIN A, HIV-1 CAPSID, 2
١	$\dagger$	Ť	1		T			CHAIN; B;	PSEUDO-STRIMEIRT
<	f-	=	28	1.50-55	ş	8		MOESIN; CHAIN: A, B; MOESIN; CHAIN: C, D;	MEMBRANE PROTEIN CRYSTAL STRUCTURE, MEMBRANE, FERM DOMAIN, TAIL DOMAIN
<b> </b> <		n	82	3.66-11	14.0	8		MOESIN; CHAIN; A, B; MOESIN; CHAIN; C, D;	MEMBRANE PROTEIN CRYSTAL STRUCTURE, MEMBRANE, FERM DOMAIN, TAIL DOMAIN
<		2	182	5.10-56	G.62	8		RADIXIN; CHAIN: A;	CELL ADHESION 3 SUBDOMAINS, CYTOSKELETON, CELL.

3

8 a § 3

_	_	<del></del>				
PDB superation		GEGE REGULATIONERA POLY(A) BROUNG PROTENT, PABP I; ROM, PROTENERA, COMPLEX, GENE REGULATIONERA	GEGE REGULATIONERA POLY(A) BRODING PROTEIN, PABP 1; RDM, PROTEIN-RNA, COMPLEX, GENE REGULATIONERA	GEVE REGULATIONRNA POLY(A) BINDING PROTEIN 1, PABP 1; REM, PROTEIN-RIN, COMPLEX, GENE REGULATIONRNA	GER REGULATIONEM POLY(A) BINDING PROTEIN I, PABP I; RUM, PROTEIN-RUM COMPLEX, GENE REGULATIONENM	GENB REGULATIONRNA POLY(A) BINDING PROTEIN I, PABP 1; RRM, PROTEINANA COMPLEX, GENB REGULATIONRNA
Септреше	1	POLYDENYLATE BINDING POLYDENYLATE BINDING C, D, R, F, G, H, RNA (S. R(*AF*AF*AF*AF*AF*AF*AF*AF*AF*AF*AF*AF*AF*	POLYDENYLATE BINDING C, D, R, P, G, H, RNA (S. R("AP" AP" AP" AP" AP" AP" AP" AP" AP" AP" CHAIN: M, N, O, P, Q, R, S, T, T,	POLYDENYLATE BINDING POLYDENYLATE BINDING C, D, R, P, Q, H, RNA (S'. R, A, P, A, P, A, P, A, P, A, P, A, P, A, P, A, P, A, P, A, P, A, P, A, P, A, P, A, P, A, P, A, P, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, A, B, B, A, B, B, A, B, B, B, B, B, B, B, B, B, B, B, B, B,	POLYDENYLATE BINDING POLYDENYLATE BINDING C, D, B, F, O, H, RNA (S. R(*AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*	POLYDENYLATE BINDING PROTEIN I; CHAIN; A, B, C, D, R, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*
Seq Fold Score						
Seers		871	0.65	00'1	69'0	0.57
Verify Score		16.0	623	<b>19</b> 70	570	0.16
PSI BLAST Score		5,16,34	1.76.1	1,76-26	6.86-24	1.76-20
₽ ¥		219	288	204	162	87
¥ Ş		2	<u>83</u>	2	8	\$
C 0		m m	ts.	ů.	н	I
<b>2</b> €		<u> </u>	<u>E</u>	<u>[8]</u>	ام ا	<u>3</u>
g a ģ		ž	ž	44	£3.	ž

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

								_			IN PTB, PTB-	OUS NOCHEAR	SACT BINDING	SPICING, 2	IN RMA-			SINDNA) HNRNP		EINDNA),	UCLEAR 2	NA.			ELNONA) HORNE		ENDOW)	DCLEAR 2	
		BINDING DOMAIN									RIBONUCLEOPROTEIN PTB, PTB-	C198, HETEROGENEOUS NUCLEAR	POLYPYRIMIDINE TRACT BINDING	PROTEIN, RNP, RNA, SPICING, 2 TRANSLATION	RNA BINDING PROTEIN RNA-	BINDING DOMAIN	COMPLEX	(RIBONUCLEOPROTEINDNA) HNRNP	A1, UP1; COMPLEX	(RIBONUCLEOPROTEIN/DNA)	HETEROGENEOUS NUCLEAR 2	RIBONUCLEOPROTEIN AL		COMPLEX	(RESONUCLEOPROTEINDINA) HURNIP	A1, UP1; COMPLEX	(RIBONUCLEOPROTEINDNA),	HETEROGENEOUS NUCLEAR 2	KIBONUCZEGPKUTEIN A:
		NUCLEAR RIBONUCLEOPROTEIN DO; CHAIN: A:	RIBONUCI EOPROTEIN	MICHEN FROM UI SMALL	NBONUCLEOPROTEIN	(SNRMP UI) INRC 3 (N-	TERMINAL FRAGMENT,	RESIDUES 1 - 95) MUTANT	WITH GLN 85 INRC 4	REPLACED BY CYS (485C)	POLYPYRIMIDING TRACT.	BONDONG PROTEIN;	CHAIN: A:		MUSASHITI CHAIN: A:		HETEROGENEOUS	NUCLEAR	RIBONUCLEOPROTEIN A1:	CHAIN: A; 13-	NUCLEOTIDE SINGLE.	STRANDED TELOMETRIC	DNA; CHAIN: B;	HETEROGENEOUS	NUCLEAR	RIBONUCLEOPROTEIN A1;	CHAIN: A; 12-	NUCLEOTIDE SINGLE	STRANDED TELOMETRIC DNA: CHAIN: B:
	Score			_																									
l	Ş		8						_		25.				160		19.0						_	8	_		_		
Verily.	Score		690								9.16				690		0.17							0.73					
Z	Serv		3.60-19								5.40-22				0 49 4		1697							3.40-49					
	\$		69								112				313	L	317				_			17					
I	\$		8								2				2	<u>:</u>	×				_	_	_	E	_				
dia.	9										<					:	<							<					
1.	9		E								Î				į	Ī	ā	-			_			ā					
⊏	Βģ		13						_		13				17		5		_		_		_	Ę	_				

	_		,					_	-
PDB ametrica		GERE REGULATIONMAN POLY(N) BINDING PROTEIN I, PABP I; REM, PROTEIN-RIM COMPLEX, GENE REGULATION/RIM	RNA BINDING PROTEIN RNA- BINDING DOMAIN	RIBONUCLEOPROTEIN UTAITY; RIBONUCLEOPROTEIN, RNP DOMAIN, SPLICEOSOME	STRUCTURAL PROTEIN PROTEIN C23; RNP, RBD, RRM, RNA BINDING DOMAIN, NUCLEOLUS	NUCLEAR PROTEIN HETEROGENGUNGLEAR RBONICLEOPROTEIN A1, NUCLEAR PROTEIN, HNRNP, RBD, RBM, RNP, RIAN BRODING, 2 RBONICLEOPROTEIN	NUCLEAR PROTEIN HETROCORDECUS NUCLEAR HETROCORDECUS NUCLEAR HEDONICLEOPROTEIN AI, NUCLEAR PROTEIN HYRNP, RED, REM, RNP, RNA BENDING, 2 HEDONICLEOPROTEIN	RNA BINDING PROTEIN RNA- BINDING DOMAIN	RNA BINDING PROTEIN RNA-
Сепирения	CHAIN: M, N, O, P, Q, R, S, T;	PÖLYDENYLATE BINDINO PROTEIN I, CALAN: A. B., C. D. E. P. Q. H. RIM (5'' R('AP-AP-AP-AP-AP-AP-AP-AP-AP-AP-AP-AP-AP-A	HU ANTIGEN C. CHAIN: A:	UI SMALL NUCLEAR RIBONUCLEOPROTEIN A; CHAIN; NULL;	NUCLEOLIN RBD2; CHADN: A;	HYRNP AI; CHAIN: WILL;	HNRNP AI; CHAIN: NUIL;	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN DO, CHAIN: A:	SAROUS
Score									Ī
PMF		8.	8	66.0	8:0	0.43	8	\$6.0	8
Verify Scare		29:0	1.10	8	0.71	50.0	16.0	0.71	
PSI Sent		3.40.26	3.4e-20	1.4c-18	3,66-1	9(3)	B-4-1	1.76-19	14.30
End A		622	122	2	6€	E	252	212	9
Start		2	92	2	7	2	7.	ž	٩
Chath		I	<		,			<	ļ
5 a		Ē	1482	<u>ē</u>		Į.	<u>ā</u>	Į.	7
ğ a ğ		2	13	2	2	ş	3	2	1747

COMPLEX (TRANSFERASE/PEPTIDE) ITAM PEPTIDE, COMPLEX (TRANSFERASE/PEPTIDE), SYK, KINASE, SYZ DOMAIN, ITAM CGRCTYROSHE KINARE; CT CHAN, AE AGE DAUAY HORSTOTA. CARCHARESTOTA. SEXTETHAL; CHAIN: A, B, C, Varity PMF SeqFeld Scare Scare Scare = 1 8 450 5.16-39 40-24 35 E ž v **2** a 6 a B 8 Ę 8

12

41

3

2

PDB sanstation		COMPLEX (FROTO- ONCOCENCIZARLY PROTEIN) SEC HOMOLOGY 2 DOMANE SHI DOMANI SIGNAL TRANSDUCTION, PETTINE COMPLEX 3 COMPLEX (PROTO-ONCOCENERARLY PROTEIN)	V-SRC SH2 DOMAIN SRC SH2: V-SRC SH2 DOMAIN, PHOSPHOTYROSING RECOGNITION DOMAIN, PP60 2 SRC SH2 DOMAIN	V-SRC SIG DOMAIN SRC SH2: V-SRC SH2 DOMAIN, PHOSTHOTYROSINE RECOGNITION DOMAIN, PP60 2 SRC SH2 DOMAIN	PHOSPHORYLATION SIGNAL, TRANSDUCTION, TYROSINE KINASE, TRANSFERASE, 1 PHOSPHORYLATION PHOSPHORYLATION	COMPLEX (PHOSPHOTRANSFERASE/PEPTIDE) PHOSPHOTRANSFERASE, COMPLEX (PHOSPHOTRANSFERASE/PEPTIDE)	COMPLEX (SHI DOMAINVIRAL ENIANCER) SRC-HOMOLOGY 3
Contrapostud	TRANSFERGERICOSPHO TRANSFERAES) PROTO- ONCOGENG TREASHE IAB 3 (SEC HOMOLOGY 2 DOMAIN) (ABELSON SH2 SEL) IAB 3 (NEC, SO SEL) IAB 3 (NEC, SO SEL) IAB 3 (NEC, SO STRUCTIRES) IAB 3	FYN PROTEIN-TYRGSINE HOLASIE, CHAGN: P. PLOTEIDE, CHAIN: P. FEPTEIDE, CHAIN: P.	PP60 V-SRC TYROSDE KINASE TRANSFORMINO PROTEIN; CHAIN: NULL;	PP60 V.SRC TYROSINE KDVASE TRANSFORMINO PROTEIN; CHAIN: NULL;	P53 BLK PROTEIN TYROSINE KINASE; CHAIN: NULL;	PSGCK TYROSINE KINASE; CHAIN: 1; PHOSPHONOPEPTIDE CHAIN: P;	PYN TYROSINE KDASE:
Scare Scare	\$6.12	77.83	13.76		90.55	11.19	
PMP Scare				00'1			0.03
Verify				101			<b>8</b>
PSi BLAST Sone	1.76.18	1,46.22	1.26-25	1.28-25	.e-23	Se.24	1.76-10
3 \$	86	682	គ	<u>%</u>	261	<u>s</u>	2
5 ₹	2	3	2	<b>a</b>	=	8	ř
<b>1</b> e		L.					<
2 a	162	100	Pigi	PIE	191	Pag.	g
<u> </u>	3	3	3	3	<u> </u>	2	\$

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

_			÷							_	_		_						_	_		_	_	_	_							-		_
PDB ansetation		SIGNAL TRANSDUCTION ADAPTOR SP2, SED 1GR1 14									COMPLEX (KINASE/PEPTIDE)	•						COMPLEX OF INASE/PEPTINE	(							COMPLEX (KINASEPEPTIDE)						macon ma and an and an and an and an and an and an and an an and an an an an an an an an an an an an an		_
Compound		GROWTH PACTOR BOUND PROTEIN 2; 1GRJ 5 CHAIN: A, B; 1GRJ 6	AUTOUR CHANGE	DATE OF SEE	n Drogen	PROSPHOLIPASE C	GAMBICA (SHB DOMAIN)	(RC3.1.4.11) IKSO 3 (NACR.	MUNICIPED MEAN	STRIPTINE HSO 4	PSC - TYROSDAE	KINASE: ILCK 7 CHAIN: A:	ILCK I TAB.	PIZOCPIZOPEPITOR	TCCORROCERON NOBORA	ECC(PROSPRO) CO.	ILLE IS CHAME: B; ILLE	Becard CY - TVBOSINE	FINASE II CK 7 CHAIN: A:	TOTAL STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE	TOWN STATE	PROSPHOPE / ILDE	TEGU(PHUSPHU)YQPQPA;	ILCK Is GRAIN: B; ILCK	13	PSG-LCK- TYROSINE	KINASE; ILLE / LIMIN: A;	ILUR BIALL	PHOSPHOPEPTIDE	TEOQ(PHOSPHO)YQPQPA;	ILCK 14 CHAIN: B; ILCK	13	KINASE ILKK 7 CHADS A:	ILKK 8
Sog Fold	Scena										15.53																						<u>.</u>	
78.	Sear	2670	ŀ	ì														2	}							8								
Vertity	Seem	0.41	200	}														,	}							8								
¥	Ŧ.	1347	5								140					_		1															3.16.24	
3		3	8	:							ē							į	:							1					_		<u> </u>	
Stan		ž	Ş	1	_		_		_		ļ							ļ	3		_	_				=					_	1	8	
1		<			_					_								1								<							<	
804		<u>5</u>		ŗ							1	!						1	į							<u> </u>							≝	
SEO		3	ŀ								1							ŀ	ï				_			3							3	

PDB nanotation	DOMAIN' COMPLEX (SID DOMAIN' URAL ENHANCER, PROTO- ONCODENE, 3 TRANSPERASE, PROSPIDRY ATTON, 1 AUTS. MYRISTYLATION, OTP-BINDING, ATP-BINDING, SID DOMAIN, SID DOMAIN, PRI JEJJX, PROT	PHOSPHOTRANSFERASH C-SRC, P40- SRC, SRC, TPROSIDE KDAKSE, PHOSPHOPYLATION, SHE, SHJ, 3 PHOSPHOTYKOSIDE, PROTID- ONCOGENE, PHOSPHOTRANSFERASE.			SIGNAL TRANSDUCTION ADAPTOR SEC, SHJ IGRI 14
Counterne	PROTEIN; CHAIN: B, D;	TYROSINE-PROTEIN KINASE SRC, CHAIN: NULL;	SIGNAL TRANSDUCTION PROTEIN GROWTH FACTOR REGEPTOR. BOUND PROTEIN 2 (GRB2, WITH SOSA, PEPTIDE GOBA, ADA, ADA, GOBA, ADA, GOBA, ADA, GOBA, ADA, STRUCTURES, IGBR 3	ADATOR PROTEIN CONTAINING SEL AND SEU GROWTH PACTOR RECEPTOR JOHND FROTEIN 2 (GRE3) (GFC) C-TERMINAL, SIL DOMANN) FRACE MINGRESED MEAN MINGRESED MEAN	GROWTH FACTOR BOUND PROTEIN 2: IGRI 5 CHAIN: A, B; IGRI 6
Seq Pold Score					20.22
S. S. S.		8	20	11.0	
Vertify		990	100	223	
EAST 2		3,66-42	3.40-10	). <del>(</del>	1.5-23
ž ž		207	2	=	502
Start A		*	<b>z</b>	2	2
đa			<		<
80g G1		Ī	4	ğ	Ē
ខ្លួកទ		<del>-</del>	3	3	3

| Chile | Start | East | Fast | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start

207

5£Q PDB D 15 NO:

CYCLIN-DEPENDENT KINASE 6; CHAIN: A; PISINK4D; CHAIN: B;

2.20-39

CYCLIN-DEPENDENT KINASE 6: CHAIN: A; PISINKAD; CHAIN: B;

PROTEIN ICAME CORL PROTEIN
MANAS, CELL COCTA,
MANAS, CELL COCTA,
MANAS, CELL COCTA,
MANAS, CELL COLL MANAS, COCTA
MANAS, MANAS, COCTA
MANAS, MANAS, COCTA
MANAS, COCTA, MANAS, COCTA
MANAS, CALL MANAS, COCTA
MANAS, CALL MANAS, COCTA
MANAS, CALL COCTA, COCTA, COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL CONTENTO
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL COCTA
MANAS, CALL
MANAS, CALL
MANAS, CALL
MANAS, CALL
MANAS, CALL
MANAS, CALL
MANAS, CALL
MANAS, CALL
MANAS, CALL
MANAS, CALL
MANAS, CALL
MANAS, CAL

5.44-36

PDB sasetridos		Transferase Transferase, Tyrosine Kinase, SHD, SH2, Oncoprotein	transperase transperase, tyrosine kinase, spb, sp2, oncoprotein	TRANSFERASE HCK, SH2, TYROSINE KDVASE, SIGNAL, TRANSDUCTION, TRANSFERASE	TRANSFERASE IKCK, SILI, TYROSINE KINASE, SIGNAL TRANSDUCTION, TRANSFERASE	TRANSPORT PP15, B2; TRANSPORT, NUCLEAR TRANSPORT PROTEIN	TRANSPORT PP15, B2; TRANSPORT, NUCLEAR TRANSPORT PROTEIN	KINASE KINASE, SIGNAL TRANSDUCTION, CALCTUMCALMODULIN	COMPLEX (NUCLEAR PROTEINRIA) COMPLEX (NUCLEAR PROTEINRIA), RIA, SHRIP, RIBONUCLEOPROTEIN
Сепрепи	TEANSFORMING PROTEIN (PRIOSPUT/ROSNE 1SHA 3 RECOGNITION DOMANTS (ST) (EC.2.1.112) COMPLEX WITH 1SHA 4 ***RASHMET-LEU (TYR- 'VAL-MEN-MET-LEU (TYR- 'VAL-MET-LEU (TYR- 'V	ABL TYROSINE KINASE; CHAIN: NULL;	ABL TYROSINE KINASE; CHAIN: NULL;	HCK SHZ; CHAIN: NULL;	HCK SH2; CHAIN! NULL;	NUCLEAR TRANSPORT FACTOR 2; CHAIN: A, B;	NUCLEAR TRANSPORT PACTOR-2; CHAIN: A, B;	CALCIUM/CALMODULIN- DEPENDENT PROTEIN KINASE; CIAIN: NULL;	CHAIN: Q. R; UZ A; CHAIN: Q. R; UZ A; CHAIN: A. C; UZ B*;
SeqPold		17.30			103.54	60.79		19.69	
Score			86	97			96:0		8.
Verify			0.74	933			0.49		27'0
PSI PLAST		3.46-29	3.46-29	3.40-26	3.40-26	2.20-31	2.20-31	5.40-25	8.16-09 0.42
3 \$		<u>88</u>	182	561	195	₹	136	747	397
ž ž		FZ	52	68	90	13	18	23	ž
e e						<	<b>,</b>		a
<u> </u>		Iqe Q	पुष्ट	3hck	3bck	Orac	lar0	- 1a0	183a
9 a g		24	2	3	111	3	ž	457	5

WO 02/059260

92.24

8.16-33

31

8.1c-33

310

3

5

2

209

Score

PSI BLAST Score

3 5

Start 9 9 9 e e

\$ 50 EQ

PCT/US01/42950

WO 02/059260

PCT/US01/42950

RAV, BRONDO, PROTED, PRAV.

FOURLE, PSELDOCKOT RAV.

STRUCTURE

REAV BLODDO, PROTEIN RAV.

BRONDO DOMAN.

PROSENOTAL STRUCTURE

PROSENOTATION WITH ACTOR

RECETOR: ITANSPEACE

TYROSPICAT (ROWNERALS)

TYROSPICAT (ROWNERALS) KINASI, CELL CYCLE J CONTROL,
ALTAMBERI, COMPLEX, (BRIBATOR
PROTEINFONSE)
ALTAMBERI, COMPLEX, (BRIBATOR
PROTEINFONSE)
ALTAMBERI, CELL II
FORMAS, CELL (II
FORMA HIGSPHOTANSPEAASE
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANTS SUBJANT
CANATANT
CAN FGF RECEPTOR 1; CHAIN: A, B; Scar 6.93 S Vertity 979 3 246.36 3,40-07 3 ₹ ž ĕ Start A.A. E đe <u>e</u> e 필발 3 3 3 S e S

	4 C	Stern A	3 \$	ELAST	Vertity	Score	SeqFold	Септреква	PDB annotation
		1		Score					
H	Ī								RECEPTOR, PHOSPHOTRANSFERASE
t.	8	9	310	1,46,21			15.15	FOF RECEPTOR 1; CHAIN:	PHOSPHOTRANSFERASE FGFRIK,
_					_			<b>≯</b> B;	FIBROBLAST GROWTH FACTOR
_									RECEPTOR 1; TRANSFERASE,
_		_							TYROSINE-PROTEIN KINASE, ATP-
_									BINDING, 2 PHOSPHORYLATION,
_									RECEPTOR, PHOSPHOTRANSFERASE
Τ		Ā	197	140.05	8.0	0.75		UI SWALL NUCLEAR	RIBONUCLEOPROTEIN UIAII7;
								RIBONUCLEOPROTEIN A;	RIBONUCLEOPROTEIN, RNP DOMAIN,
_								CHAIN: NULL;	SPLICEOSOME
Τ	<	24.5	ç;	10-01	412	919		NUCLEOLIN RBD2;	STRUCTURAL PROTEIN PROTEIN C23;
_		_						CHAIN: A;	RNP, RBD, RRM, RNA BINDING
_									DOMAIN, NUCLEOLUS
T	ſ	12	Ē	25.0		Ĺ	99.28	HUMAN CYCLIN-	PROTEIN KINASE CDK2;
_								DEPENDENT KINASE 2:	TRANSFERASE, SERINE/THREONINE
_		_					_	CHAIN: NULL;	PROTEIN KINASE, ATP-BINDING, 2
_	_	_							CELL CYCLE, CELL DIVISION,
_	_	_							MITOSIS, PHOSPHORYLATION
	ſ	2	ğ	1.10-35	0,40	8		HUMAN CYCLIN-	PROTEIN KINASE CDK2;
_	_							DEPENDENT KINASE 2:	TRANSFERASE, SERINE/THREONINE
								CHAIN: NULL;	PROTEIN KINASE, ATP-BINDING, 2
_									CELL CYCLE, CELL DIVISION,
	_								MITOSIS, PHOSPHORYLATION
L		Ξ	35	8.16.25			8E'15	P38 MAP KINASE; CHAIN:	SERINE/THREONINE-PROTEIN
_								אמנד:	KINASE CSBP, RK, PJE, PROTEIN
		_							SER/THR-KINASE,
_			_						SERINE/THREONING-PROTEIN
_									KINASE
Ι.		_	324	2.74-19			2	INSULAN RECEPTOR:	COMPLEX
_	_		_					CHAIN: A: PEPTIDE	(TRANSFERASE/SUBSTRATE)
_			_					SUBSTRATE; CHAIN: B;	TYROSDIE KINASE, SIGNAL
_									TRANSDUCTION,
_									PHOSPHOTRANSFERASE, 1 COMPLEX
1									WINNESTER IDE SUBSTINATION IL

\$ 8

£5 £5

ş

WO 02/05/92/60 PCT/IUS01/12/950 WO 02/05/92/60 PCT/IUS01/12/950

									_													
PDB ansetation	ANALOGI, ENZYME, 3 COMPLEX (TRANSFERASE/SUBSTRATE)	TRANSFERASE INCJ; TRANSFERASE, INCJ MAP KINASE.	SERINE/THREONINE PROTEIN 1 KINASE	TRANSFERASE INC.; TRANSFERASE,	SERINE/THREONING PROTEIN 2	KINASE KINASE, TWITCHIN, INTRASTERIC REGULATION	TRANSFERASE MAP KINASE,	SERINE/THREORING PROTEIN KINASE, TRANSFERASE	TRANSFERASE MAP KINASE,	SERDIE/THREOWINE PROTEIN KINASE TRANSFERASE	RIBONUCLEOPROTEIN PTB, PTB-	CISE, HETEROGENEOUS NUCLEAR	POLYPYRIMIDDE TRACT BUIDING PROTEIN BUR BNA SPICTAG. 2	TRANSLATION	SERING KINASE SERINE KINASE, TITIN MUSCLE, AUTONNEBITION	SERING KINASE SERINE KINASE,	COAPLEX	(RIBONUCLEOPROTEIN/RINA)				
Coumpound		CJUN N-TERMINAL KINASE CHAIN: MILL:		C.IUN N-TERMINAL	Andread Comments	TWITCHIN; CHAIN: NULL;	ERK2; CHAIN: NULL.		ERKZ; CHAIN: NULL;		POLYPYRIMIDING TRACT.	BINDING PROTEIN;	CHAIN: A:		TITIN; CHAIN; A, B;	TITIN; CHAIN: A, B;	THE SPETCEOSCIMAL	PROTEIN: LURN S CIAIN:	A. B. C. IURN 6 RNA	21 MER HAIRPIN (5.	(AP-AP-UP-CP-AP-UP	R IURN 13
Seer's				55,23		35.50			2						19.8							
PM P Score		0.95					660				0,62					160	0.76	;				
Verify Seare		3					ç				61.0					500	0.76	}				
PSI Sons		<u> </u>		1.16-31		8.14-29	1.10-33		1,10-33		8.1e-08				1.46.23	1.40-29	170.00					
₹ 5	Γ	310		ž		417	Ē		ž		397				ξ. 26.	ğ	ş	;				
ž Ş	Γ	-				_	2		22		ž				-	2	25	3				
O Charle						Γ					~				<	<						
۵ ت		ĭ		1		9	ě		ě		6mb				3	2	1	 ]				
S e 8		457		153		457	457		457		153	_			453	5	57				_	

PCT/US01/42950

0 e ë	<u>6</u> 0	đe	F \$	35	Feat Page	Vertiy	PM F Score	Seq Fold Score	Септропи	PDS ansetron
£	44		8	261	1.66-23			76.10	OHNESIS; CHAIN: NULL;	HNF-3 HOMOLOGUES IUTI-2; INF-3 HOMOLOGUES, WINGED HELLX PROTEIN
T					_					
3	Ē	<	14	=	2003	हर <del>क</del>	68 6		SECINF (RESIDUES 22 - 210); CHAIN: A, B, C,	ENDOCYTOSIS/RXOCYTOSIS POUBLE-PSI BETA BARREL, VESICLE FUSION, 2 ENDOCYTOSIS/EXOCYTOSIS
3	ķ	٧	3	178	5.46-20			11.57	TRANSCRUFTIONAL COACTIVATOR FCH; CHAIN: A, B, C, D, B, F, Q, H;	TRANSCRPTION P15; TRANSCRPTION, TRANSCRPTIONAL COPACTOR, TRANSCRPTIONAL 2 CO- ACTIVATOR, SEDNA BINDING, NUCLEAR PROTEIN
3	Ĭ	<	3	2	R ♣ ¥	5	00'1		TRANSCHUTIONÁL COACTTVATOR PC4, CHAIN: A. B. C. D. E. F. G. H;	TRANSCRIPTION P15; TRANSCRIPTION, TRANSCRIPTIONAL COFACTOR, TRANSCRIPTIONAL 2 CO- ACTIVATOR, SSDNA BINDING, NUCLEAR PROTEIN
										and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
ā	<u>i</u>	<	r	ĘĘ.	2.76-50			110.58	GAIP (G-ALPHA DYTERACTINO) PROTEIN; CHAIN: A;	SIGNALINO PROTEIN REGULATION GALPHA INTERACTINO PROTEIN; GALF, RGS, REGULATOR OP O PROTEIN; SIGNALINO PROTEIN 2 REGULATION
· · · · · · · · · · · · · · · · · · ·	lca.	٧	92	<b>292</b>	2.78-50	<b>5</b> 0	86'1		OALP (O-ALPHA INTERACTINO) PROTEIN; CHAIN!: A;	SIGNALING PROTEIN REGULATION GALPHA INTERACTING PROTEIN; GAR, RGG, REGULATOR OF O PROTEIN; SIGNALING PROTEIN 2 REGULATION
<u>\$</u>	<b>849</b> 1	٧	7.8	602	27-49'5	0.43	0.98		יאמאי כוועדאי: עי	SIGNALING PROTEIN ALPHA-HELD,
19#	lem	<b>.</b>	a	002	1.64-37	80	97		AXIN; CHAIN: A; ADENOMATOUS POLYPOSIS COLJ	SIGNALING PROTEIN RGS DOMAIN

WO 02/059260

	<b>'O</b>	CAS	808	Chain Start		77.3	2	2000	MAT CAPAIN	Media	Parameter Comment	PDR superchan
	02/05	9 9		9			+		į	Soore		
	59260	457	3772	_	ž.	397	L.10-07 0.18	1	87.0		SPLICING FACTOR UZAF	RNA-BINDING PROTEIN SPLICING, UZ
RDIOTOXDA,							_				A;	
BATION,		457	Ħ		10	349 5.46-34	£.9	r	_	11.10	EXTRACELLULAR	TRANSFERASE MITOGEN
IZATION.					_			_			GIAIN MILL	ACTIVATED PROTEIN KINASK, MAY 2, FERZY-TRANSFERASE
						_	_					SERUNE/THREONINE-PROTEIN
					_	_	_					KINASE, MAP KINASE, 2 ERK2
		457	150		24 3	321 5.46-34 0.39	-34 O	_	00.1		EXTRACELLUIAR REGULATED KINASE 2:	TRANSFERASE MITOGEN ACTIVATED PROTEIN KINASE, MAP 2.
		_			_	-		_			CHAIN: NULL;	ERK2; TRANSFERASB,
		_										SERINE/THREOND/B-PROTEIN KINASB, MAP KINASB, 2 ERK2
				Ī	t	┞		Ī	T			
	21:	458	Ϋ́	<	001	1.9 6.1	8.10-28 0	620	8		S12 TRANSCRIPTION	GENE REGULATION WINGED HELLX,
	,				_						PACTOR (PKIL14); CHAIN:	DNA-RECOGNITION HELLX
		\$\$	7191	~	- -	173	8.10-26 0	643	8	Ī	APX; CHAIN: A;	DNA BINDING DOMAIN DNA
			_			_	_					BINDING DOMAIN, WINGED HELLX
		\$	23.00	<	8	173 2.24-28	_	rr _o	8	Г	INFINEH TRANSCRIPTION	GENE REGULATION/DNA
		_				_		_			FACTOR GENESIS, CHAIN:	HEPATOCYTE NUCLEAR PACTOR 3
		_			_		-		_		A; 5' CHAIN: B; 5'- CHAIN:	FURKHEAD HOMOLOG & NMK,
CCOATCEN		_				-						STACK TOTAL OF ANAMACA, GENERAL
						_						REGULATIONONA
CYGEN,		\$3	SP42	~	8	197	2.20.28	r	ľ	79.14	HNPIVEH TRANSCRIPTION	GENE REGULATION/DNA
<b>GDASE</b>					_	-					PACTOR GENESIS; CHAIN:	HEPATOCYTE NUCLEAR FACTOR 3
	P					-			_		A: 5'- CHAIN: B; 5'- CHAIN:	FORKHEAD HOMOLOG 2, NACK,
SCEOXYGEN	ст						_	_	_		ď	STRUCTURE, DY ANAMICS, GENESIS,
_	⁄us											WINGED HELAX PROTEIN, 2 GENE REGIL ATTOMONA
YOEN	601/-	458	24.0		8	173	1.66-28 0	11.0	8		GENESIS; CHAIN: NULL;	HNF-3 HOMOLOQUES HFH-2; HNF-3
CIDASE	429	_				_	_					HOMOLOGUES, WINGED HELLY
	50				1	1	1	1	1	1		PROTEIN

V-4----(13---(10) III)

(CTT) VICTORY TOXIN TOXIN

GAMAGA (CARDIOTOXIN)

TOXI II TOXI II

RELEGIOTOXIN ALPIA
RELEGIOTOXIN ALPIA
RELEGIOTOXIN ALPIA
CARDIOTOXIN A ŝ ŝ ž 2 3 5 ¥ Şgri g e <u>§</u> 5 9 e 8 3 3 3 3 3

94 174 1.96-09

PON enseration			COMPLEX (NUCLEAR PROTEDVRNA), COMPLEX (NUCLEAR PROTEDVRNA),	RNA, SNRNP, RIBONUCI, EOPROTEIN	COMPLEX (NUCLEAR PROTEDVRNA)	COMPLEX (NUCLEAR PROTEINRINA).	RNA, SYRNP, RIBONUCLEOPROTEIN	ART ANDVISCORD PROTECTION AND	PRE-MRNA; SPLICING REGULATION,	RNP DOMAIN, RNA COMPLEX		RNA-BINDING PROTEIN/RNA TRA	PRE-MRNA; SPLICING REGULATION,	RNP DOMAIN, RNA COMPLEX			GENE REGULATIONENA POLY(A)	PROTEINLANA COMPLEX, GENE	REGULATION/RNA				GENE REGULATION RNA POLY(A)	BENCHA PROTEIN I, PABP I; RRM,	PROTEIN-RIVA COMPLEX, GENE	REGULATION/RNA				GENE REGULATION/RNA POLY(A) RINDING PROTEIN 1, PASP 1; RRM,
2			U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A;	CHAIN: A, C, UZ B.; CHAIN: B, D;	UZ RNA HAURPIN IV;	CHAIN: Q. R; U2 A;	CHAIN: A C. C. B.	evi i i fridat paremet	CHADE A. B. RNA (5-	RP-CP-UP-UP-UP-UP-UP	· Un-th-th-th-th-th	SXL-LETHAL PROTEIN:	CHAIN: A. B. RNA (5-	R.P. CP-UP-UP-UP-UP-UP	ംവം-വം-വം-വം-വം-	CHAIN: P. Q.	POLYDENYLATE BINDING	TRUITING CALLERY	R.AP.AP.AP.AP.AP.AP	AP-AP-AP-AP-A);	CHAIN M. N. O. P. Q. R. S.	T.	POLYDENYLATE BINDING	PROTEIN 1; CHAIN: A. B.	C, D, E, P, O, H; RNA (5:	RICAPPAPAPAPAPAPAP	AP-AP-AP-AP-A);	CHAIN: M. N. O. P. O. P. S.	-	POLYDENYLATE BINDING PROTEIN I; CHAIN: A, B,
Sec Parks					147.88			599	!			Ţ					27.20													
277		П	8					T	_			260	!		_								0.86							5
100	1		8					Ī					:										0.42							97
154	ELAST.	Scere	L.16-32		8.1e-32			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				91.41.8					1.46-14						1.40-14							1.1e-15
3		Ę	*		8			Ę	:			3					174						173		_					191
1	-																_								_				7	
	1	È	r.		Ļ							ų	,				-						-						1	••
			1		_	_		Ť	<u>.</u>			4	_	_	_	_	- Y													e .
	-	2		_	- B B			Ť	<u> </u>			†	_	_			LCsj A 7						1cm 4							B kal

WO 02/059260

PCT/US01/42950

3 6 5 €

Vertify PMF Seaffold Scare Scare Scare

PSI BLAST Scen

3 \$

PDB aggest tion	PROTEIN; RIVA BINDING DOMAIN, NUCLEAR PROTEIN	COMPLEX  (ELBONUZ, EOPEROTELNONA), HARAP  AI, URI, COOPILEX  (ELBONUZ, EOPEROTELNONA),  HETRICOGENEOUS NUCLEAR?  REGONUZ, EOPEROTELNONA)	SCAFFOLD PROTEIN SCAFFOLD PROTEIN, PTA, PHOSPHORYLATION, HEAT REPEAT	SUGAR BINDING PROTEIN C.TYPE LECTIN, CRD, SP-D, COLECTIN, ALPHA-HELICAL COILED: 2 COIL, LING SUB-ACTANT, SUGAR BINDING PROTEIN	NK CELL NK CELL, RECEPTOR, C. TYPE LECTIN, C-TYPE LECTIN-LIKE, NKD	NK CELL NK CELL, RECEPTOR, C. TYPE LECTIN, C-TYPE LECTIN-LIKE, NKD	MEMBRANE PROTEIN C-TYPE LECTIN-LIKE DOMAINS	HEMATOPOBITIC CELL RECEPTOR ACTIVATION DEDUCER MOLECULE (ADD, EN 1, HEMATOPOBITIC CELL RECEPTOR, LEUCOCYTE, C-TYPE LECTIN-LIKE, 1 NKD, KLR
Совирения	RIBONUCLEOPROTEIN A; CHAIN: NULL;	HETEROGENEOUS RUBOUNCIERRA 1; GIAIN: A: 12 GIAIN: A: 12 GIAIN: B: SINGLE STRANDED TELOMETRIC BIRACHERIC BIRACH	PROTEIN PHOSPHATASE PPZA; CHAIN! A, B;	LUNG SURFACTANT PROTEIN D; CHAIN: A, B, C;	CD94; CHAIN: NULL;	CD94; CHAIN: NUILL;	FLAVOCETTA-A: ALPHA SUBUNT; CHAIN: A; FLAVOCETTA-A: BETA SUBUNT; CHAIN: B	BALLY ACTIVATION ANTIGEN CD69, CHAIN: A;
Seq Feld Scere						16.24		
PM P		024	Q.15	6119	8		97.0	0.87
Vertfy Scene		573	40.15	200	550		90.0	625
ELAST	Š.	14-13	1100'0	1.14-23	5.44-26	S.4e-26	276-24	6.10-20
3 \$		24	3	22	9	<del>2</del>	182	652
			m	8	3_	3	<u>1</u>	<u> </u>
đ a		۷	٧	<			n	<
<b>2</b> 9		Ē	3	2	3	羅	ē.	lef7
25 e	ğ	<b>59</b>	3	69	<b>3</b>	9	69	699

		~			-		-	
2		d	I				<	
e 5		ley.	3		Ā		<u>е</u>	467 2218 467 2218
ž e į		467	199		467		<b>t</b> \$	467
02/059	260			217	٠.		РСТ/	US01/4295
	COAGULATON FACTOR BRUING BINA-BP COAGULATION FACTOR BINDING, CITTE LECTIN, GLA- BOMANI SINDING, CTTPE CAD MOTE, LOOP EXCHANGED DINER	COAGULATION FACTOR BINDING INCARP COAGULATION FACTOR BINDING, CTYPE LECTIN, CLA- DOMAIN 1 BINDING, CTYPE CRD MOTTE, LOOP EXCHANGED DIMER	PANCREATIC STONE INHIBITOR, PANCREATIC STONE INHIBITOR, LECTIN	METAL BINDING PROTEIN PANCHEATIC STONE PROTEIN, PSP: PANCHEATIC STONE INTERIOR, LITHOSTATHURE	METAL BINDING REOTEIN PANCHEATHC STONG PROTEIN, PSP: LTHOSTATIC STONG PROTEIN, PSP: LTHOSTATIONE DISTRIBITION.	COMPLEX (NK RECEPTORAMIC CLASS () H-2 CLASS ( HISTOCOMPATBULLTY ANTIGEN, DELAY NY, COLL STREAM	GLYCOPROTEN YELM, NR CELL, GLYGOPROTEN YELM, NHC-1, C. TYPE LECTH-LIKE, 3 HASTOCOMA ATTRILITY, B2M, LV49,	COMPLEX (NR RECEPTORABLE CLASS I) H-2 CLASS I TRYTOCOMPATIBILITY ANTIGEN, PINA NY TELL CIPELOR
Compound	COAGULATION FACTORS LXX-RINDING PROTEIN; CHAIN: A, B, C, D, B, F;	COAGULATION PACTORS IXX-BINDING PROTEIN; CHAIN: A, B, C, D, B, F;	LITHOSTATHENE; CHAIN: NULL		LITHOSTATHENE; CHAIN: A:	MHC CLASS I H-20D HEAVY CHAN; CHAN: A; BBTA-2-ACROGLOBULN; CHAN; B, UN SOUTH COP	GLYGOROTEN LD PETIDS, CHAIN: P. LY494, CHAIN: C, D,	MHC CLASS I H-100 HEAY CHAN; CHAN; A; BETA-1-MCROGLOBULN;
Scare Scare	33		33.00	39.68				
Į,		0.62			ž	0.73		8
								10
ELAST See	7.47	13+21 018	1.54-21	7.47	7.4-1. 9.7-1	1.4-27		278-23
3 \$	ž	192	192		2	2		98
<b>5</b> \$	2	70	137	¥21	2	132		2
<b>l</b> e	æ	_α		<	<	U		۵
<b>e</b>	<u>1</u>	III.	Ħ	<u>ş</u>	3	lead		Ē

PDB annetation	GLYCOPROTEIN YELMS, NK CELL, INVERTORY RECEPTOR, MHC-L, C. TYPE LECTIN-LIKE, 1 HISTOCOMPATIBILITY, B2M, LY49, LY-49	LECTIN TETRANECTIN, PLASMINOCIN BINDING, KRINGLE 4, C-TYPE LECTIN, 2 CARBOHYDRATE RECOGNITION DOMAIN	ANTUREBZE PROTEIN RECOMBINANT SEA RAVEN PROTEIN, SOLLITION BACKBONE FOLD, C. 2 TYPE LECTIN, ANTIFREEZE PROTEIN	SUGAR BINDING PROTEIN C.TYPE LECTIN, CRD, SP-D, COLECTIN, ALPHA-IELICAL COLLED-1 COLL, LUNG SURPACTANT, SUGAR BINDING PROTEIN	NK CELL NK CELL, RECEPTOR, C. TYPE LECTIN, C-TYPE LECTIN-LIKE, NKD	NK CELL NK CELL, RECEPTOR, C. TYPE LECTIN, C.TYPE LECTIN-LIKE, NKD	MEMBRANG PROTEIN C-TYPE LECTIN-LIKB DOMAINS	HEMATOPOBRIC CELL RECEPTOR ACTIVATION INDUCER MOLECULE (AIM), RA I, HEMATOPOIETIC CELL RECEPTOR, LEUCOCYTR, CTYPE LECTIVALIAR, 2 NICI, KLR
Consposand	GLYCOPROTEDN 120 PEPTIDE; CHAIN: P; LY49A; CHAIN: C, D;	TETRANECTIN; CHAIN: NOLL;	SEA RAVEN TYPE II ANTIPREEZB PROTEIN, CHAIN: A;	LUNG SURFACTANT PROTEIN D; CHAIN: A, B, C,	CD94; CHAIN: NUIL;	CD94; CHAIN: NULL;	FLAVOCETB4A: ALPHA SUBUNIT; CHAIN: A: FLAVOCETB4A: BETA SUBUNIT; CHAIN: B	EARLY ACTIVATION ANTIGEN CD69, CHAIN: A;
Seq Faid Score						86.29		
Sea Sea		68.0	15.0	73	8		0.78	0.67
Verify Score		0.15	900	0.03	6.53		9.06	955
PSI BLAST Score		2.70-24	5.40-26	5.44-24	5.46-26 0.53	5.4e-76	2.76-24 0.06	3.1e-26 0.55
<b>₽</b>		<b>2</b> .	52	252	287	288	288	982
Start		<u>*</u>	2	<b>2</b> .	191	191	\$5	29
1 E			<	<			<u>a</u>	<
801 E		ij	कुहर	1908	<u>\$</u> .	<u>ş</u>	2	rai Tai
§ e §		694	69	694	69	69	§\$	697

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

20	Sterr A.A.	34	PSI BLAST	Verify	Score	Seat/Fold Scare	Compound	PDB annetation
ı	Г	Ī			Γ			LY-49
3		182	7.9-77	\$1:0 *	86		MICCLASS 14-12DD HEAVY CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, CAND, C	COMPLEX FOR EXCEPTORABLE CLASS I H-1 CLASS I HISTOCOMP, ATBLILLY ANTIGEN, BEN, INCELLS SURFACE ATBLILLY SURFACE MINISTORY RECEPTOR, MISC., C. TYPE LECTIVE, LUE, 2 HISTOCOMP ATBLILTY, BEN, LY49, 117-49
<u>≅</u>	T	SE .	2.70-24	0.13	84.0		TETRANECTON, CHAIN: NULL;	LECTIN TETRANECTIN, PLASMINGEN BINDING, KRINGLE 4, C-TYPE LECTIN, 2 CARBOHYDRATE RECOGNITION DOMAIN
8		ñ	3.46-26	8.9	<b>1</b> 50		SEA RAVEN TYPE (I ANTEREEEB PROTEIN; CHAÎN: A;	ANTIFICEZE RODEIN RECOMBINANT SEA RAVEN PROTEIN, SOLUTION BACKBONE FOLD, C. 2 TYPE LECTIN ANTIFICEZE PROTEIN
12	8	ž.	1.16.23	800	0.19		LUNG SURFACTANT PROTEIN D; CHAIN: A, B, C;	SUGAR BINDING PROTEIN C.TYPE LECTIN, CRD, SP-D, COLECTIN, ALPHA-HELICAL COLLED- 2 COID, LUNG SUFFACTANT, SUGAR BINDING PROTEIN
22	ž	98	3.4e-36	0.53	8 <u>1</u>		CD94; CHAIN: NULL;	NK CELL NK CELL, RECEPTOR, C. TYPE LECTIN, C-TYPE LECTIN-LIKE, NKD
	¥	ā	5. de 26			16.24	CDM; CHAIN: NULL;	NK CELL, NK CELL, RECEPTOR, C. TYPE LECTIN, C.TYPE LECTIN-LIKE, NKD
!	117	182	2.70-24	0.06	84.0		FLAVOCETINA: ALPHA SUBUNT; CHAIN: A; FLAVOCETINA: BETA	MEMBRANE PROTEIN C-TYPE LECTIN-LIKE DOMAINS

PDB association	COAQULATION FACTOR BUDDING DIXXBP COAQULATION FACTOR BRUDING, C-TYPE LECTIN, GLA-DOMAIN 2 BRUDING, C-TYPE GRD MOTIF, LOOP EXCHANGED DIMER.	COAGULATION FACTOR BUDDING DXX-8P COAGULATION FACTOR BINDING, C-TYPE LECTIN, GLA- DOMAIN 2 BINDING, C-TYPE GRD MOTIF, LOOP EXCHANGED DIMER	COAGULATION FACTOR BINDING DXARP COAGULATION FACTOR BINDING, C-ITYRE LECTIN, GLA- DOMAIN 2 BINDING, C-ITYRE CRD MOTIF, LOOP EXCHANGED DIMER	PANCREATIC STONE INHIBITOR, PANCREATIC STONE INHIBITOR, LECTIN	METAL BINDING PROTEIN PANCHEATIC STONE PROTEIN, PSP; PANCHEATIC STONE INHIBITOR, LITHOSTATHING	METAL BINDING PROTEIN PANCREATIC STONE PROTEIN, PSP; PANCREATIC STONE INHIBITOR, LITHOSTATHENB	COMPLEX ON RECEPTORACHIC CLASS IN 12 CLASS I BACK RCCELS SURVACE ENCH RCCELS SURVACE ENCH RCCELS SURVACE CLYCOPROTEN YSTICK, MICC. C. TYPE LCCFFLLEKE, C. TYPE LCCFFLLEKE, E.
Соппреква	COAGULATION FACTORS IXX-BINDING PROTEIN; CHAIN: A, B, C, D, B, F;	COAGULATION PACTORS IXXX-BINDING PROTEIN; CHAIN: A, B, C, D, B, F;	COAGULATION FACTORS IXX-BINDING PROTEIN; CHAIN: A, B, C, D, E, P;	LITHOSTATHÜNE; CHAIN: NUL	LTHOSTATHUNE; CHADI: A;	LITHOSTATHENE; CHAIN: A:	MHICCLASS 1H-2DD HEAVY CHAIN: CHAIN: A: BETA-2-AGCNOGLOBULIN: CHAIN: B; HEY ENVELOPE CLACHEN TO PETTIDE; CHAIN: P; LY49A; CHAIN: P;
Seore Seore	57.0%	58.01		\$1.16	63.08		
Scar			0.62			96.0	0.72
Vertity						6.26 6.26	
PSI BLAST Score	116-21	1.36-23	13623 0.18	1.96.21	1,46-24	1.46-24	£10-28
3 \$	382	# T	288	288	2118	122	782
Zeg.	3	291	<u>3</u>	<u>3</u>	55	191	151
g e	<	8	<b>a</b>		<	<	U
	ā	ii ii	ā	<b>=</b>	19dd	19dd	1403
Š e Š	<del> </del>	694	469	694	699	69	69

221

		_					_		_	_	_		_	_	_	_	_	_		_	_	_	_	
HISTOCOMPATIBILITY, B2M, LY49, LY-49	COMPLEX (NK RECEPTORAMIC CLASS I) H-2 CLASS I	HISTOCOMPATIBILITY ANTIGEN, BZM: NK-CELL SURPACE	GLYCOPROTEIN YELVAR, NK CELL,	TYPE LECTIVALIKE, 2	HISTOCOMPATIBILITY, B2M, LY49, LY-49	LECTIN TETRANECTIN,	PLASMINOGEN BINDING, KRINGLE 4.	C-TYPE LECTIN, 2 CARBOHYDRATE RECOGNITION DOMAIN	ANTIFREEZE PROTEIN	RECOMBINANT SEA RAVEN	PROTEIN, SOLUTION BACKBONE	FOLD, C. 2 TYPE LECTIN,	ANIIFKERZE PROJEIN	SUGAR BINDING PROTEIN C-TYPE	LECTIN, CRD, SP-D, COLECTIN,	TIMO SI BEACTANT SI DAS	BINDING PROTEIN	NK CELL NK CELL, RECEPTOR, C.	TYPE LECTIN, C-TYPE LECTIN-LIKE,	NK CELL NK CELL BECEPTOR C.	TYPE LECTIN, C-TYPE LECTIN-LIKE,	NXD	MEMBRANE PROTEIN C. TYPE	LECTIN-LIKE DOMAINS
	MHC CLASS I B-2DD HEAVY CHAIN; CHAIN: A;	BETA-2-MICROGLOBULIN; CHAIN: B: HIV ENVELOPE	GLYCOPROTEIN 120	LY49A; CHAIN! C, D;		TETRANECTIN; CHAIN:	MOLE		SEA RAVEN TYPE II	ANTERREZE PROTEIN;	CHAIN: A:			LUNG SURFACTANT	PROTEIN O, CHAIN: A, B,	5		CDM; CHAIN: NULL;		COST CHAIN NEED			FLAVOCETING, ALPHA	SUBUNIT; CHAIN! A: FLAVOCETIV-A: BETA
													1	_				Γ		2	-			
	8					53			Ş					57				1.00		I			0.78	
	1.0					513			800					ģ 8				0.53						
		_				270-24								5.4c-24						\$ 40.36	1		2.76-24	
	92					258												787		388	•		288	
	₹					₹			132				7					191		Т			19	
	_								~		_			~ <						Ī			8	
	3					Ē			ã					ŝ				8		1	1		Ic3e	
	670					410			676				-+					470		-	_		470	
		14  260 2.76-23 0.14   100   MHCCLASS I B-20D   HCCLASS I CAADS A.	141 260 276-21 0.14 1.00 HIFCOLASS 18-330   HIPCOLASS 18-330   HIPCO	141   260   276-25   5,14   100   HICCLASS   15-330   100   HICCLASS   15-330   100   HICCLASS   15-330   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	141   260   2.76-25   0.14   1.00   HINCCLASS I H-2.00	140 266 276-25   0.14 1.00   MHCCLASSIB-EDD   MHCCLASSI	141   250   276-25   0.14   100   MICCLASS IH-20D   MICCLASS IH-	140   260   276-24   0.14   1.00   MHCCLASSIB-EEDD   MHCCLASSIB-	141   256   276-25   614   100   MHCCLASS1H-2DD   MHCCL	14   26   276-21   0.14   1.00   MHCCLASS 1B-XDD   MHCCLASS   MHCCLASS 1B-XDD   MH	14   26   2.7e.23   6.14   100   MHCCLASS 1B-20D   MHCCLASS 1B-2	14   26   276-23   6,14   100   HHCCLASS H-32D   HHCCLA	14   26   276-23   6.14   100   HHCCLASS   H-2DD   HHCCLASS   H-2DD   H-2AVF CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG   CHANG	14   26   276-23   6,14   1,00   MHCCLASS H-20D   MHCCL	14   26   2.7e.23   6.14   100   HHCCLASS 1B-20D   HHCCLASS 1B-2DD   HHCCLASS 1B-2DD   HHCCLASS 1B-2DD   HHCCLASS 1B-2DD   HHCCLASS 1B-2DD   HEAVY CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG C	14   24   276-23   6,14   100   HHCCLASS   H-20D   HHCCLASS   H-2DD   HHCCLASS   H-2DD   H-2APV   CHANF   CH	14   250   276-23   6.14   100   HHCCLASS 1B-20D   HHCCLASS 1B-2DD   HHCCLASS 1B-2DD   HHCCLASS 1B-2DD   HEAVY CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG C	14   240   2.76-21   0.14   100   HHCCLASS   H-20D   HACCLASS   H-2DD   H-2AVY CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE; CIANE	193   D   141   250   2.76-23   6.14   100   HHCCLASS1H-JDD   HHCCLASS1H-JDD   HHCCLASS1H-JDD   HHCCLASS1H-JDD   HACCLASS1H-JDD   HACCLASS1H	14   250   2.76-23   0.14   100   HHCCLASS 1B-ZDD   HHCCLASS 1B-ZDD   HHCCLASS 1B-ZDD   HHCCLASS 1B-ZDD   HHCCLASS 1B-ZDD   HEAVY CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG	14   26   276-25   6.14   100   MHCCLASS1H-20D   MHCCLA	14   26   2.76-23   6.14   100   HHCCLASS 1B-20D   HHCCLASS 1B-2DD   HHCCLASS 1B-2DD   HHCCLASS 1B-2DD   HHCCLASS 1B-2DD   HEAVY CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG CHANG CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG	14   24   27   24   100   27   24   24   24   24   24   24   24	14   250   276-23   6.14   100   HHCCLASS   H-210     15

WO 02/059260	PCT/US01/42950	WO 02/059260	PCT/US01/42950

			# p		<b>5</b> 8	Ę	Π
PDB anatotico	HISTOCOMPATIBILLTY ANTIGEN, BEN, NCCELL SURFAGE GLYCOPROTEIN YEIGH, NK CELL, INHIBITORY RECEPTOR, MHC-L C. TYPE LECTIN-LIKE, 1 HESTOCOMPATIBILITY, BEN, LY49, 117-49.	LYONETRY OR RESPTONMENC CLASS DIFF, CLASS I HISTOCHANTHUTY ANTIGEN HISTOCHANTHUTY ANTIGEN HISTOCHANTHUTY BEACTOR HYONOTORY WELL C. TYPE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENCE TO THE LECTROMENC	LECTIN TETRANECTIN, PLASMINOGEN BINDING, KRINGLE 4, C-TYPE LECTIN, 2 CARBOHYDRATE RECOGNITION DOMAIN	ANTEREZE ROTEN PECONEINANT SA RAVEN PROTEN, SOLJION BACKBONE FOLD, C. 7 TYPE LECTIV, ANTEREZE ROTEIN	HYDROLASE TARTBATE RESISTANT ACID PHOSPHATASE, TRAP. HYDROLASE, METAL PHOSPHATASE	HYDROLASE TARTRATE-RESISTA ACID PHOSPHATASE; METAL PHOSPHATASE, HYDROLASE	INSECT IMMUNITY INSECT
Countound	BETA-PAGCROGLOBULIN; CLUCH: B; BY BAYELOPE GLYCOPROTEIN 120 PETIDE, CHAIN: C, D; LY994; CHAIN: C, D;	MACCLASS 114-2DO HEAVY CHARN CHARN GHARN CHARN GHARN B. HOV ERVELOPE GLYCOPTEN 120 FETTING, CHARN: C. LY494, CHARN: C. D.	TETRANECTIN, CHAIN: NULL;	SBA KAVEN TYPE II ANTIRREZE PROTEIN; CHAIN: A;	PURPLE ACID PHOSPHATASE; CHAIN: A;	PURPLE ACID PHOSPHATASE; CHAIN: A;	HEMOLIN; CHAIN: A, B;
SeqTold							
aseog JPG		8	67.0	150	rs	23	0.29
Verlfy		11.0	0.15	900-	600	600	0.28
PSI BLAST Score		27623	276-24	3.40.26	F10-19	5.40.22	5.40-09 0.28
35		ä	ã	£	ä	ã	82
F St		3	9	651	3	g	9
<b>1</b> 0		۵		<	<	<b>4</b>	٨
104 10		<u>3</u>	3	Ŕ	4	- 15 A	4
ğ e ğ		g	ę	g.	Ē	Ê	\$13

	,-	,—	_				_	_	_		_		_	_	_	_		_	_	_	_	_	_	_	_		_		_
PDB anastation		HEMATOPOLETIC CELL RECEPTOR ACTIVATION INDUCER MOLECULE	(ADM), BA 1, HEMATOPOIETIC CELL	RECEPTOR, LEUCOCYTE, C-TYPE LECTIV-LIKE, 2 NKD, KLR	COAGULATION FACTOR BUNDING	DOX-RP COAGULATION PACTOR	BINDING, C-TYPE LECTIN, GLA-	DOMAIN 2 BINDING, C. TYPE CRD MOTTE 1 OOF EXCHANGED DIVER	COACHI ATTON PACTOR BINDING	TXX-8P COAGLILATION FACTOR	BINDING C-TYPE LECTIN, GLA-	DOMAIN 2 BINDING, C. TYPE CR.D.	MOTTF, LOOP EXCHANGED DIMER	COAGULATION PACTOR BINDING	DOX-BP COAGULATION FACTOR	BINDING, C.TYPE LECTIN, GLA-	DOMAIN 2 BINDING, C-TYPE CRD	MOTTE, LOOP EXCHANGED DIMER	PANCAZATIC STONE INHIBITOR	PANCREATIC STONE INHIBITION,	METAL BINDING PROTEIN	PANCAPATIC STONE PROTEIN, PSP.	PANCARATIC STONE INSIDITOR.	LITHOSTATHINE	METAL BINDUNG PROTEIN	PANCREATIC STONE PROTEIN, PSP;	PANCAGATIC STONE INHIBITOR,	COMPLEX (NK RECEPTORAGIEC	CLASS D H-2 CLASS I
Coumpound	SUBUNIT; CHAIN: B	EARLY ACTIVATION ANTIGEN CD69, CHAIN: A;			COAGULATION FACTORS	LX/X-BINDING PROTEIN;	CHAIN! A, B, C, D, B, P;		COAGULATION FACTORS	DXX-BD00NG PROTEIN:	CHADE A. B. C. D. B. P.			COAGULATION FACTORS	IXX-BINDING PROTEIN;	CHAIN: A. B. C. D. E. F.			LITHOSTATHINE; CHAIN:	אתד	LITHOSTATHONE: CHAIN:	*	•		LITHOSTATHENE; CHAIN:	₹		MHC CLASS I H-2DD	HEAVY CHADI: CHADI: A: CLASS D.H-2 CLASS
Seq Puld Scare					50.23				035					ľ				7	2.5		1919		_					İ	_
M Fee		ar.			Γ									29'0											96.0			22	-
Venity		0.55												1770							T				90'0			0.4	
PSI BLAST		E.16-26			17-51				36.2		_			1.36-23				1	8		146.24				1.40-24			17-01.8	
3 \$		226			317				Ħ					288			_	-	77		218			_	787	_		287	
Start >		162			3				3		_			3				7	3		5	_	_		191			151	
<b>a</b> e		<			<				n		_			6				Ī			_				٧			U	
6 e		1थ,			ğ				ā					ig					₫		100				ള	_		1901	_
S e S		470			470		_		470					5,			_	4	Ê		470			-	670			676	$\overline{}$

_		THPACTOR		B, STGNAL	RIZATION	THEACTOR		TH FACTOR		E, SIGNAL	RIZATION	THFACTOR		NCAM,	_		TH PACTOR		TIKE	O THE LSET		2	SILON R	LEN FOLD,	5,100		VENTA	STLON) IGB-	ã	708, 108	ANTIBODY,	RANE
	DAMUNITY, LPS BINDING HOMOPHILIC ADHESION	GROWTH FACTOR/GROWTH PACTOR	RECEPTOR FOF, FOFR,	INDAUNOCI, OBUILIN-LIKE, STONAL	TRANSDUCTION, 2 DIMERIZATION	GROWTH FACTOR/GROWTH FACTOR	RECEPTOR	GROWTH FACTOR/ORDWTH FACTOR	RECEPTOR FOR, POPR,	INDIVINOGLOBULIN-LIKE, SIGNAL	TRANSDUCTION, 2 DIMERIZATION	GROWTH PACTOR/GROWTH FACTOR	RECEPTOR	CELL ADHESION NCAM; NCAM,	DAMINOGLOBULIN FOLD	GLYCOPROTEIN	GROWTH FACTOR/GROWTH PACTOR	RECEPTOR POFT; POFRI;	IMMUNOCIOBULIN (ICI) LIKE	DOMAINS BELONGING TO THE LSET	2 SUBGROUP WITHIN IGLLIKE	DOMAINS, B-TREFOIL FOLD	INMUNE SYSTEM FC-EPSILON R.	ALPHA; IMMUNOCIOBULEN FOLD	GLYCOPROTEIN, RECEPTOR, IGE	BINDING 2 PROTEIN	INDALINE SYSTEM HIGH AFFINITY	IGE-PC RECEPTOR, PC(EPSILON) IGE-	FC; INACUNOGLOBULDN FOLD,	GLYCOPROTEIN, RECEPTOR, IGE-	BINDING 2 PROTEIN, IGE ANTIBODY,	IMMUNE SYSTEM, MEMBRANE
Commission		FIBROBLAST GROWTH	PACTOR 2: CHAIN: A, B;	FIBROBLAST GROWTH	PACTOR RECEPTOR 1;	CHAINICP		FIBROBLAST GROWTH	FACTOR 2: CHAIN: A, B;	FIBROBLAST GROWTH	PACTOR RECEPTOR 1;	CHAIN: C. D.		NEURAL CELL ADITESTON	MOLECULE; CHAIN: A, B,	C, D,	PIBROBLAST GROWTH	PACTOR 1; CHAIN: A, B;	PIBROBLAST GROWTH	PACTOR RECEPTOR 1;	CHAIN: C. D.		HIGH AFFINITY	IMMUNOCI OBULIN	EPSELON RECEPTOR	CHAIN: A:	HOH APPINITY	INDAUNOGLOBULIN	EPSILON RECEPTOR	CHAIN: A; TO EPSILON	CHAIN CREGION; CHAIN:	PCRECEPTOR
Seq Feld																																
See		<del>.0</del> .09						0170						0.40			61.0						9670				577					660
Verify Seers		0.10						200						-0.03			0.43						0.46				3					0.32
E PE		5.44-03						5.4e-07						1.18-07			120-07						5.40-23		_		1342				_	8.10-79 0.32
3 \$		291						291						291			162						239				ıα					977
žź		95						×						25	_		22	_					9				3					\$
g e		2						a				_		<	_		Ü		_				<	_		į	<					<
<b>e</b>		ica:						icva						ğ			2					Ī	8				ag.					164
g e g		\$4.5						540						475			475						433				543					435

PDB anactation	PROTEIN CD12; FC RECEPTOR, DAMINOGLOULIN, LEUKOCYTE, CD32	DKKUNG SYSTEM RECEPTOR BETA SANDWICH, DOKUNOGLOBULIN- LIKE, RECEPTOR	INTIBITORY RECEPTOR KILLER CELL INTIBITORY RECEPTOR, INGIBITORY RECEPTOR, NATURAL KILLER CELLS, DAMUNOLOGICAL 2 RECEPTORS, DAMUNOCICAL 2 RECEPTORS,	INHIBITORY RECEPTOR KILLER CELL INHIBITORY RECEPTOR, INHIBITORY RECEPTOR, NATURAL KILLER CELLS, DAMINOLOGICAL I RECEPTORS, BAKUNOGICAL I RECEPTORS, BAKUNOGICALIN FOLD	INHIBITORY RECEPTOR KILLER CELL DEGISTORY RECEPTOR, INHIBITORY RECEPTOR, NATURAL KILLER CELLS, DAMINOLOGICAL J RECEPTORS, DAMINOCIOSULIN FOLD	CELL ADHESION PROTEIN VCAM- D1.2; IVCA 6 INACINOGLOBULIN SUPERFAMILY, INTEGRIN-BINDING IVCA 15	CELL ADHESION PROTEIN VCAM- DI 2; IVCA 6 INACINOGLOBULIN SUPERPAMILY, INTEGRIN-BINDING IVCA 15	CELL ADHESION ICAM-2; INACINOGLOBILIN FOLD, CELL ADHESION, CLYCOPROTEIN, 2 TRANSMEMBRANE, REPRAT, SIGNAL.
Compound	FC(QAMMA)RIIA; CHAIN: A;	LOW AFFINITY IMMUNOGLOBULIN GAMMA FC REGION CHAIN: A;	PSECIAZ KIR, CHAIN: NULL;	NULL: NULL:	PSE-CLAZ KIR; CHAIN: NULL;	HUMAN VASCULAR CELL ADHESION MOLECULE-1; IVCA 4 CHAIN: A, B; IVCA 5	HUMAN VASCULAR CELL ADHESION MOLECULE-1; 1VCA 4 CHAIN: A, B; 1VCA 5	INTERCELLULAR ADHESTON MOLECULE-2; CHADN: NULL;
Seq.Fald Score				16901	_	32.60		
Score		3	8		8		0.07	400
Vertify		641	150		0.72		0.12	0.17
PSI BLAST Seers		1603	1,3e28	2.70-64	2.70-68	1.1e-08	1.Te-08	5.40-08
3 \$		622	77	ţū	'n	<b>5</b> 7	26	791
Start A		ş	₹	ž.	\$	3	\$	25
<b>1</b> 0		<				<	<	
<u> </u>		<u>a</u>	alt.	녈	긜	<u>s</u>	<u>ş</u>	<u>a</u>
g a g		475	475	475	475	475	£	475

WO 02/05/9260 PCT/US01/42950 WO 02/05/9260 PCT/US01/42950

						_		
PDB ametatien	3 FACTOR	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK46 DHIBITOR, ANKYRIN MOTTF	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDKAK INHIBITOR, ANKYRIN MOTIF	COMPLEX (KINASE/ANTI- ONCOCENE) CDK6; PLENKA, MTS1; CYCLIN DEPENDENT KINASE, CYCLIN DEPENDENT KINASE,	DHIBITORY 2 PROTEIN, CDK, DK4, CELL CYCLS, MILITRIE TIMOR SUPPRESSOR, 1 MTS1, COMPLEX KINASSANTI-ONCOGENS) HEADER	COMPLEX (KUNASE/ANT)- ONCOMEN) CASE (HONG KA, MTS): CYCLIN DEPENDENT KINASE CYCLIN DEPENDENT KINASE INHIBITORY 2 PROTESH COK, INK, CELL CYCLE, MULTIPLE TUMOR SUPPRESSOR, 1 MTSI, COMPLEX	(KINASEMTI-ONCOENE) HEADER COMPLEX (RHEBITOR PROTEINKINASE) DATEITOR PROTEIN (CYCLA-DEFENDENT KINASE, CELL CYCLA-DEFENDENT ALPHADETT, COMPLEX (CHEBITOR PROTEINASE), COMPLEX (RHIBITOR	COMPLEX (INHIBITOR PROTEIN/UNAS) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHARBETA, COMPLEX (INHIBITOR
Counpound		PI9DNK4D CDK46 INSIBITOR; CHAIN: NULL;	PISINKAD CDK46 INHIBITOR; CHAIN: NULL;	CYCLIN-DEPENDENT KINASE & CHAIN: A: MULTIPLE TUMOR SUPPRESSOR: CHAIN: B:		CYCLIN-DEPENDENT CYCLIN-DEPENDENT MULTPLE TUMOR SUPPLESSOR; CHAIN: B:	CYCLIN-DEPENDENT KINASE & CHAIN: A: PISDIKAD; CHAIN: B;	CYCLIN-DEPENDENT KDNASE & CHAIN: A; PIEDIKAD; CHAIN: B;
SeqFeld		_	8. 1.	37.64				23
PMF Scars		8				84	88	
Vertiy		ij				<b>1</b>	100	
PS1 BLAST Scere		8.1e-23	1.16-23	1262		178-21	16.06.	1.66-24
3 \$	Γ	<u> </u>	2	2		2	55	51
Start		9		_		2	91	_
a o				a		a a	а	o l
ē e	Γ	ž	3	<u>1</u>		2	Ę	ž
g e ğ		E .		5		164	E	16

		•			<del></del> -
PDB annetation	IMMUNE SYSTEM PSS NATURAL KILLER CELL RECEPTOR, KIR, NATURAL KILLER RECEPTOR, INHIBITOR Y RECEPTOR, 2 IMMUNOGLOBULIN	IMINING SYSTEM PSI NATURAL TOTAER CELT REGETFOR, KIR, NATURAL KULZE RECETFOR, INIUBITORY RECEPTOR, 1 IMMUNOQLOBULIN	COMPLEX (TRANSCRIPTION REQUILATIONNIN) CARPERA I; COMPLEX (TRANSCRIPTION REQUILATIONNIN), THAN REQUILATIONNIN, THAN REQUILATIONNIN, THAN REQUILATIONNIN, THAN ANY THAN REPEATS, TRANSCRIPTION J. P. ACTOR	COMPLEX (TRANSCRIPTION REQUILATIONONIA), OLBARATHA; OLAPBETA;; COMPLEX (TRANSCRIPTION REGULATIONONA), INABIDIDING, 3 NUCLEAR PROTEIN; ETS DOMAIN, ANY THIN REPEATS; TRANSCRIPTION 18 ACTOR	COMPLEX (TRANSCRUTION REGULATIONONAL ACTIONAL OR CARRESTAI; COMPLEX (TRANSCRUTION REGULATIONONAL DAY, BINDING, 1 NUCLEAR PROTEIN ETS DOMACH, ANKYRIN REPEATS, TRANSCRUTION
Септрепи	NHC CLASS I NK CELL RECEPTOR PRECURSOR; CHAIN: A;	MHCCLASS INK CELL RECEPTOR PRECURSOR; CIAIN: A;	GA BINDING PROTEIN ALPIN, CHADI: A; GA BINDING PROTEIN BETA I; CHADI: B; DIA; CHADI: D, E;	GA BINDING PROTEIN ALPHA; CHADI: A; GA BINDING PROTEIN BETA I; GHAIN: B; DNA; CHAIN: D; E;	GA BINDING PROTEIN LETHA; CHAIR A; GA BINDING PROTEIN BETA I; CHAIN: B; DNA; CHAIN: D; E;
Seq Fadd					61.03
A S	8	81	86	801	
Vertity Some	or o	999	0.34	S.	
E AST		3.40-40	5.40-23	1.16-21	5.40-23
3 3	955	236	<u>121</u>	151	251
AA A	139	ş	=	=	
<b>a</b>	<		63	m	ш
80 E	197	頭	lave	and I	lawe
ğ e ğ		£	147	141	478

229

| 13 | 14-23 | 14-13 | 14-24 | 14-13 | 14-24 | 14-13 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 | 14-24 |

e i

11.5

S a S

W() 02/059260

WO 02/059260

PCT/US01/42950

12950	WO 02/	Ľ

SEO	PDB	Chath	Start	2	ž	Vertity	A.	SeqPuld	Coempound	PDB ausetation
ΩŞ	9	9	\$	\$	BLAST Sen	Scena	ž	ž.		
i				П						ONCOGENE/ANKYRIN REPEATS)
3	Zdid	<	-	=	5.40-09	950	0.80		D-LACTATE DESPYDROGENASE; 2DLD S CHAIN; A, B; 2DLD 6	OXIDOREDUCTASE (CHOH(D)- NAD+(A)) R-LACTATE DEHYDROGENASE; ZDLD 7
Γ	ŀ					Γ				
3	ž	<	ā	<b>5</b> 6	0.00054 0.02		â		NUCLEOSIDE DOPHOSPHATE TRANSFERASE; CHADN: A, B, C,	PHOSPHOTRANSFERASE PRIOSPHOTRANSFERASE
3	ate I	<_	122	S S	0.00034		0.17		NUCLEOSIDE DOPHOSPHATE KINASE; CHAIN: A, B;	TRANSFERGE NIPK 14; NUCLESSING DIPHOSPHATE KNASB. NAZJ. MITOCHONDRIAL, KILLER. 2 OF-PRUNG
<b>3</b>	1	Ж	052	308	0.00054 0.31	150	0.78		PHOSPHOTBANSFERASE NUCLEOSIDE DØPHOSPHATE KINASE OF CO. 2.4.6. COMB. EVER	
									WITH INER 3 S-CYCLIC ADENOSINE MONOPHOSPHATE INER	
1	ŀ		į	т			Į		SOUTH A THE PARTY IN LEGISLA	
8	<u>*</u>		82	5	0.00034	3	8		NUCLEOSIDE	
									(EC2.7.4.6) INPK 3	
462	) Seal	<b>V</b>	152	30\$	0.00081	90.0	0.77		PHOSPHOTRANSFERASE NUCLEOSIDE	
									DUPHOSPHATE KINASE (E.C.2.7.4.6) INSQ 3	
482	June.	<	123	310	12000.0	5	600		NUCLEOSIDE DIPHOSPHATE KINASE	PHOSPHOTRANSFERASE NICLEOSIDE TRIPHOSPHATE
									INUE 4 CHAIN: A, B, C, D,	NUCLEOSIDE DIPHOSPHATE INUE 10

232

PCT/US01/42950 WG 02/059260

AA AA

<u>6</u> 9

PDB amonation	PROTEIN-RNA COMPLEX, GENE REGULATIONRNA	CEGE RECULATION/WAY POLY(A) BINDING PROTEIN, PABP I: RIDA, PROTEIN-RIJA COMPLEX, CENE RECULATION/RIJA	RNA BINDING PROTEIN RNA- BINDING DOMAIN	RNA-BINDING PROTEIN SPLICING, UZ SNRNP, RBD, RNA-BINDING PROTEIN	TRANSFERASE DINUCLEOTIDE- BINDING MOTIF, PHOSPHORIBOSYL TRANSFERASE	ISOMERASB ISOMERASE, MUTASE, INTRAMOLECULAR TRANSFERASE	ISOMERASE ISOMERASE, MUTASE, INTRAMOLECULAR TRANSFERASE	DNA-BINDING HAGA DNA-BINDING HAG-BOX DOMAIN A OF RAT HAGI; IAAB 8 HAG-BOX IAAB 20	DNA-BINDING HMGA DNA-BINDING HMG-BOX DOMAIN A OF RAT HMGI; IAAB I HMG-BOX IAAB 20
Соптроила	C, D, B, P, O, H; RWA (5'- R(*, A)* A, A)* A, A)* A, AP* AP* AP* AP* A)*; CHAIN: M, N, O, P, Q, R, S, T;	POLYDEAYLATE BINDING C, D, R, P, G, H; RNA (5', R, AP, AP, AP, AP, AP, AP, AP, AP, AP, AP	HU ANTIOEN C; CHAIN: A;	SPLICING PACTOR UDAF 65 KD SUBUNIT; CHAIN: A;	NICOTENTE MONONUCLEOTIDE:5,6 CHAIN: A;	METHYLMALONYL-COA MUTASE; CHAIN: A, B, C, D;	METHYLMALONYL-COA MUTASE; CHAIN: A, B, C, D,	HIGH MOBILITY GROUP PROTEIN: 1AAB 5 CHAIN: NULL: 1AAB 6	HIGH MOBILITY GROUP PROTEIN; LAAB 5 CHAIN; NULL; LAAB 6
Scaffold									131.01
PM/F		ş	500	021	ĝ	61.0	-0.20	8.	
\$ N		790	ŝ	0.43	Q.13	6.33	0.04	1.01	
PS! BLAST Sem		0.0027	1100.0	0.00027	1.6e-09	27413	£.1e-10	238-30	2.36-30
3 5		3	3	3	12	133 133	121	2	2
ğ ş		J J	4	2	2	2	17	-	
g e		±	<	<	< _	<	٧		
<b>2</b> a		Ē	4	Ä	ğ	ā	ā.	1	4
g e ş		3	3	₹		3	3	ş	ş

	П	٦			7	٠,		<u> </u>	
PDB ennetation			LPID TRANSPORT APO A-I; LIPOPROTEIN, LIPID TRANSPORT, CHOLESTEROL METABOLISM, 2 ATHEROSCLEROSIS, HDL, LCAT- ACTIVATION	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA RELICAL LINKER REGION, 21 TANDEM HELLY COLLED-COLLS, STRUCTURAL, PROTEIN		RYA-BINDING PROTEINBNA TBA PRE-MRNA; SPLICING REGULATION, RNY DOMAIN, RNA COMPLEX	GEGE REGULATIONANA POLY(A) BROWNO PROTEIN I, PABP I; RAA, PROTEIN-RAA, COMPLEX, GENE REGULATION/RAA	GENE REGULATIONBHA POLY(A) BINDING PROTEIN I, PABP I; RUA, PROTEIN-RNA COMPLEX, GENE REGULATIONRAA	GENE REGULATIONARIA POLY(A) BINDING PROTEIN I, PABP I, RICH,
Coumpound	B, F; INUE S		APOLIPOPROTEIN A-1; CHAIN: A, B, C, D;	ALPHA SPECTRDY, CHADN: A, B, C,		SXL-LETHAL PROTEIN; CHARK A. B. RNA (5: CHARK A. B. RNA (5: CHARK A. B. RNA (5: CHARK P. Q.	POLYDENYLATE BRODAG ROTEIN I, CAUN: A, B, C, D, B, P, Q, IE, RNA (S' R(*AP*AP*AP*AP*AP*AP* AP*AP*AP*AP*AP* AP*AP*AP*AP*AP* AP*AP*AP*AP* AP*AP*AP*AP*AP* AP*AP*AP*AP*AP* AP*AP*AP*AP*AP* AP*AP*AP*AP*AP* AP*AP*AP*AP*AP*AP* AP*AP*AP*AP*AP*AP* AP*AP*AP*AP*AP*AP*AP* AP*AP*AP*AP*AP*AP*AP*AP* AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*A	POLYDENTATE BINDDO PROTEIN I. CHADIN, B. C. D. B. P. G. H. RNA (S. RI, AP. AP. AP. AP. AP. AP. AP. AP. AP. AP. AP. AP. AP. AP. CHADIN, M. N. O. P. Q. R. S.	POLYDENYLATE BINDING PROTEIN I; CHAIN: A, B,
Seat Fold		-	603						
N. Scor	П			900		0.13	0.07	100	60.0
Verify Sear				Q43		0.07	7	ភូ	3
E.A.ST			0.00081	2.76-05		0.0001€	0.0027	0.0027	0.0027
3 5			1174	130		101	ž	ž.	<u> </u>
¥ Ş			-	=	_	<b>#</b>	3	7	7
<b>å</b> e			<	<		٧	<	æ	_
<b>2</b> e	$\prod$	Ī	lw!	8	_	1675	<u>[8]</u>	Ē	<u>13</u>
3 a §	П		<b>3</b>	3	_	\$	3	ş	ş

PCT/US01/42950

PCT/US01/42950

233

| 11-16-24 | Case | Gery | Farty | Seepland | Colonapseed | FOB assessions | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | For assession | F

3 <u>1</u>

\$

WO 02/05/9260 PCT/US01/42/950 WO 02/05/9260 PCT/US01/42/950

			_					_		_			_	_				_	_	_	_	_	_		_	_	_	
PDB spactation	VISION, MEKA, COMPLEX (TRANSDUCER/TRANSDUCTION)		COMPLEX (TRANSCRIPTION REGULATION/DNA) GABPALPHA;	GABPBETA!; COMPLEX	REGIZATION/DNA: DNA-BRODNO. 2	NUCLEAR PROTEIN, ETS DOMAIN,	ANKYRIN REPRATS, TRANSCRIPTION 3 PACTOR	SIGNAL TRANSDUCTION SIGNAL	TRANSDUCTION, SOS, PLECKSTRIN	HOMOLOGY (PH) DOMAIN	COMPLEX (DNA-BINDING	FACTOR ACCESSORY PROTEIN IA:	ETS DOMAIN, DNA-BINDING	DOMAIN, WINGED HELDX-TURN-	HELLY, 2 CRYSTAL STRUCTURE,	DNA-BINDING SPECIFICITY,	COMPLEX 3 (DNA-BINDING	PROTEINDNA) SHEET HEADER	TRANSFERASE BRUTON'S	AGAMMAGLOBULINEMIA TYROSINE	KINASE, BTK; TRANSFERASE, PH	DOMAIN, BITK MOTTP, ZINC BINDING,	X-LINKED 2	AGAMMAGLOBULDIEMIA,	TYROSINE-PROTEIN KINASE	GENE REGULATION SON OF	SEVENLESS PROTEIN; GUANINE	NOCES OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY
Courspound			CA BINDING PROTEIN ALPHA; CHADI: A; GA	BINDING PROTEIN BETA	I; CHAIN: B; DNA; CHAIN: D. B.			SOS1; CHAIN: MULL;			B74 PROMOTOR DNA;	CHAIN							BRUTON'S TYROSINE	KINASE; CHAIN: A, B;						HUMAN SOS I; CHADN: A;		
Seq Feld Scars			_																I									
See .	П	1	3					61.0			0.22								640							9		
Verify Sears		1	ą					ğ			8								433							400		
EAST Feet			2005					0.00054			0,0054								11000							0.00027		
3 4		1	ž					E	_		25						_		101							8		
F# \$			2					47			8								3							23		
			<								Ü								1							<		
e e	П		¥					a a			3			_					ä							200		
S e S	П	-1	\$				_	ş	_	_	8					_			8		_	_	_		_	\$		١

WO 02/059260 PCT/US01/42950 . WO 02/059260 PCT/US01/42950

$\neg$		NO	Ī	r É		äģ	1		
PDB sunotation		SIGNAL TRANSDUCTION SON OF SEVENLESS, PLECKSTRIN, SON OF SEVENLESS, SIGNAL TRANSDUCTION		HYDROLASS SUMO HYDROLASS. URIQUITIDI-LIZE PROTEASE, 1, SMT HYDROLASS 2 DESUMOYLATIVO BOXTAME, CYSTEDER PROTEASE, SUMO PROCESSIVO 2 IRAZYAME, NABIH, THOREMALCETAL, 4 COVALENT PROCESSIVA COVALENT		ENDOCYTOSIS/EXOCYTOSIS NSEC!; PROTEIN-PROTEIN COMPLEX, MULTI- SUBUNIT		LIPID TRANSPORT APO A-1; LIPOPROTEIN, LIPID TRANSPORT, ACHLESTEROL, METABOLISM, 2 ATHEROSCI-EROSIS, HDK, LCAT- ACTIVATION	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 23 TANDEM 3-HELLX COILED-COILS,
Commpound	TERMINAL PERCESTRIN HOMOLOGY DOMAIN MUTANT PLES 1 WITH LEU GUL (MESS ADDED TO THE C TERMINIS IPLE 4 (INSCI 09-LEHBHBBB) (ANNEL 25 STRUCTURES) IPLS 5	SOS I; CHAIN: NULL;		A: UBITOUTSALE: CHADE: A: UBITOUTSALE: PROTEIN SATTS; CHADE: B;		SYNTAXIN BINDING PROTEIN 1; CHAIN: A; SYNTAXIN 1A; CHAIN: B;		APOLIPOPROTEIN A-L; CHAIN: A, B, C, D;	ALPHA SPECTRIN; CHAIN: A, B, C;
SeqFedd Score								2 4	51.30 51.30
PM.P		0.91		007		40.14			
Verify S		0,12		0.20	l	200			
2 1 2		1.7e-10		3.46-41		£10-09		0.00017	Lie-07
3 \$		<b>201</b>		2112		п		912	ã
Ser.		п		o:		2			3
đe				۷.		<b>.</b>		٧	· ·
ē e		1		Val		Ē		IWI.	1
g a ğ		ŝ		ž		ĝ.		ž	ā

PDB senetation	GENE REGULATION	TRANSCOLDIONONA TRANSCOLDIONONA TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDIONO TRANSCOLDION	TRANSCRIPTION REGULATION	EGNALING PROTEIN DAPPI, PHISH, BAMJE, PLECKERING, S. PHOSPHONOSITIDES, NOSTOL, TETRAKESHOSPIKATB 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR PROTEIN, ADAPTOR PROTEIN	SIGNALMO PROTEIN DAPPI, PHISH, BAMIZ PLECKITIN, 1- PHOSPHOLOSTIDES, INOSTOC. TETRAKESHOSPHATE 2 SIGNAL. TEANSOUCTION PROTEIN, ADAPTOR PROTEIN	SIGNALING PROTEIN ARFI GUANINE NUCLEOTIDE EXCHANGE FACTOR AND PH DOMAIN	COMPLEX (TRANSCRIPTION PACTOR/DNA)	
Септроти		DRA (5°.  DKTP*GP*AP*GP*GP*GP*GP*GP*AP*GP*TP*GP*TP*TP*TP*TP*TP*TP*TP*TP*TP*TP*TP*TP*TP	F; MURDE BTS-1 TRANSCRIPTION PACTOR; BTC 4 CHAIN: NULL; BTC 5	DUAL ADAPTOR OF PROSPHOTYROSINE AND 3- CHAIN: A;	DUAL ADAPTOR OF PROSPHOTYROSINE AND 3- CHAIN: A:	GRPI; CHAIN: A;	FLI-1; IFLI SCHAIN: A; IFLI 6 DNA IFLI 10 CHAIN: B, C; IFLI 12	PHOSPHORYLATION PLECKSTRIN (N-
Seq Feld Score								
PM P Score	Γ	ng ng	600	8	8	8.	80	00.1
Verify Score		400	-0.47	6.73	0.92	160	10:01	0.29
PSI BLAST Soon	Ī	0.0027	0.0027	224-13	54-13	5.4e-12	0.0027	3.44-11
3 5	Γ	<u> </u>	7	8	ž	8	33	8
A A		5	8	n	#	Ħ.	2	2
<b>a</b>		u		<	<		<b>~</b>	
<u>8</u> 9		1	重	9	102 102	O.	d	킖
S e š		<b>%</b>	\$	8	06	<b>§</b>	8	8

237

_		_								
PDR superston		INTERFERON, IMMUNE SYSTEM	IMMUNOGLOBULIN DAMUNOGLOBULIN, KAPPA LIGHT- CHAIN DIMER HEADER	IMMUNOGLOBULIN DAMUNOGLOBULIN, KAPPA LIGHT- CHAIN DIMER HEADER		COMPLEX (MICVIRAL PEPTIDERECEPTOR) HLA A3 HEAVY CEATINE (COMPLEX (MHCVIRAL PEPTIDERECEPTOR)	ANTBODY ANTBODY, FAB, CAMPATIF10, CD52	COMPLEX (ANTBODY/ANTIGEN) FAB-12; VEOF; COMPLEX (ANTBODY/ANTIGEN), ANGLOGNIC FACTOR	COMPLEX (ANTIBODY/ANTIGEN) PAB-12; VEGF; COMPLEX (ANTIBODY/ANTIGEN), ANGIOGENC FACTOR	ANTIBODY THERAPEUTIC, ANTIBODY, CD52
F			IMMUNOOLOBULIN; CHAIN: A, B;	UMMUNOGLOBULIN; CHAIN: A, B;	IMMUNOGLOBULIN FAB- FRAGMENT OF MONOCLONAL ANTIBODY BT2 18BJ 1 GUILINEMUNAN CHIMERA) 18BJ 4	HIA-A GOI; CHADE: A. GHARE: BTAZ PERCOLOBULIN; CHARE: CTGLL RECEPTOR ALPHA; CHARE: D.TGLL GHARE: D.TGLL RECEPTOR BETA; CHARE: R.	CAMPATH-10 ANTBODY; CHAIN: A, B, C, D, E, P, G, H;	FAB FRAGMENT; CHAIN: L, H, J, K; VASCULAR ENDOTHELAL GROWTH PACTOR; CHAIN: V, W;	FAB FRAGMENT; CHAIN: L, H, J, K; VASCULAR ENDOTHELAL GROWTH FACTOR; CHAIN: V, W;	CAMPATIF-I HELIGHT CHAIN; CHAIN: L;
Magazi	2			109.72	102 A	233.42	105.12		109.40	
4774	Sear		860					06.0		0.99
Veriffe	Score		11.0			-		0.03		1270
150	Scare Scare		- te-16	1.40-E6	1.45.78	F.10-74	5.10-79	1,40-11	1.40-18	6.80-85
2	1		977	ā	622	219	335	822	224	922
1110	į		8	77	17	12_	12	8	17	22
1	9		<	<	٠,	۵	٧	1	J	
965	2		196	<u>ş</u>	18	ā	gg.	(ē)	191	3
000	βeğ	Γ	203	ğ	202	S.	ğ	82	SS.	82

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

PDB atmotation	(A:ALPHA) BINDING, 1 COMPLEX (WILLEBRAND/IMMCINOCIOBULIN, BLOOD COAGULATION TYPE 3 13B VON WILLEBRAND DISEASE			COMPLEX GRIP CENTELOPE  PROTEINCOMPLEX (HEV  BENTELOPE FROTEINCOMPLEX (HEV  BENTELOPE FROTEINCOMPLEX T.  EXTERIOR CALVOORFORTEN COM- 3 ANTICEN-BROND FRAGMENT OF  HUDANN DAALUNGOUDLIN TRA  GLYCOSYLATED PROTEIN	COMPLEX (HV ENVELOPE RROTEMUCDARABI COMPLEX (HV BROTEMUCDARABI SIVI- EXTERIOR E ROTEMUCDAG AB, HIV- EXTERIOR CE LYCORFOTER COM- TOTAL SURFACE CLYCORFOTER COM- TOTAL SURFACE CLYCORFOTER COM- TOTAL SURFACE CLYCORFOTER COM- TOTAL SURFACE CLYCORFOTER COM- TOTAL COMPLEX COMPLEX COM- TOTAL COMPLEX COMPLEX COM- TOTAL COMPLEX COMPLEX COM- TOTAL COMPLEX COMPLEX COM- TOTAL COMPLEX COMPLEX COM- TOTAL COMPLEX COMPLEX COM- TOTAL COMPLEX COMPLEX COM- TOTAL COMPLEX COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- TOTAL COMPLEX COM- T		
Coumpound	UMMUNOGLOBULIN NMC- 4 IGG1; CHAIN: H; VON WILLEBRAND FACTOR; CHAIN: A:	IMMUNOCLOBULIN FAB FRACMENT OF HUMANIZED ANTBODY 4D5, VERSION 4 IPVD 3	IMMUNOGLOBULIN PAB FRACKENT OF HUMANIZED ANTIBODY 4D5, VERSION 4 IPVD 3	BOVELOPE PROTEIN DE CHAIN: G. CD4; CHAIN: C. ANTBOOY 17B; CHAIN: L. H.	ENVELOPE PROTEIN GPLD, CHAIN: G, CDA, CHAIN: C, ANTBODY I TB; CHAIN: L, H;	INDAUNOGLOBULIN IOGZA FAB FRAGMENT (FAB 179) IHIL 3	IMMUNOCLOBULIN IGG2A FAB FRAGMENT (PAB 17/9) COMPLEX
Sea Feld Seare			60'901	8.30			
Ser.		<b>5</b>			8.	8	3
Verls Boars		<b>3</b> 0.0			617	•10	900
E IS		3 <del>8</del>	), de 16	19-51			S. Indian
3 \$		ន្ទ	ដ	ជ	922	\$12	វជ
ž ž		я	<del>2</del>	12	a	8	я
<b>g</b> e		<	<	<b>.</b>		<b>~</b>	
<u> </u>		Ī	Ē	18	<u>z</u>	2	ā
ន្តិខន្		Zes	ğ	208	ă	ZQX	ğ

PDB annetation		AVTBODY, CD51	DÁMUNE SYSTEM ABZYNE TRANSITION STATE ANALOG, DAMUNE SYSTEM	MAUDIC SYSTEM PAB-BB COMPLEX CONYETAL STRUCTURE 1.7A RESOLUTION BUNDING 2 OUTSIDE THE ANTIGEN COMBINING SITE SPICENTICEN FAB VIB 3 SPECIFICITY		IMMUNE SYSTEM DEMUNOCIJOBULIN, ANTIBODY, FAB, HEPATITIS B, PRESZ		DIGHTONE SYSTEM YON WILLEBRAND FACTOR, GLYCOPROTEIN IBA
Consuperad	CAMPATH-III:HEAVY CHAIN; CHAIN; II; PEPTIDE ANTIGEN; CHAIN: P;	CAMPATH-HELIGIT CHADF, CHADR, L; CAMPATH-HEREAVY CHADF, CHADR, H; PETTIDE ANTIGEN; CHADF, P.	TCI FAB FRAGMENT; SHORT CHAIN; CHAIN; A, C; TCI FAB FRAGMENT; LONG CHAIN; CHAIN; B, D	IGM RF 2A2; CHAIN! A, C, E; IGM RF 2A2; CHAIN: B, D, P; IMMUNOGLOBUILN G BINDING PROTEIN A; CHAIN: G, H;	IMMUNOGLOBULIN 1D6 PAB 1DFB 3	FIN IMMUNOQLOBULDN (KAPPA LIGHT CHAD); CHADI: A, C; FIN IMMUNOQLOBULN (GGI IEAYY CHADY, CHADI: B,	DAMINOGLOBULN BANNOGLOBULN GI (KAPPA LIGHT CHALN) FAB FRAGMENT I FIG 3	ي ن
SeqFold Score		101.57	105.20		107.04		103.10	
PMP				0.95		8.		0.77
Vertfly Score				8		50.00		0.18
PSI See		51-04.9	5.16-75	1.20-89	29.0	8. 4 8	5.le-£1	1.70-83
₽ <b>2</b>		ía.	22	. 23	22	922	ä	229
ž ž		12	R	8	12	8	2	æ
2		.1	<	<		<		I.
6 B		<u> </u>	ā	ag ag	qp.	Ē	<u>.</u>	eg:
8 a §		202	ğ	S	205	Ş.	ğ	200

241

	П				_			٠_ ا		_
PDB assetation	FRAGMENT, REPRODUCTION	receptor icr; t-cell, receptor, transmembrane, glycoprotein, signal	IMMUNOGLOBULN TRI 9, ANTI- THYROD PEROXIDASS, AUTOANTIBODY, 3 IMMUNOGLOBULN	IMMUNOGLOBULIN TRIS, ANTI- THYROD PEROXIDASS, AUTOANTIBODY, 1 SKMUNOGLOBULIN	CATALYTIC ANTBODY CATALYTIC ANTBODY, FAB, RING CLOSURB REACTION			DANUNG SYSTEM METAL CHELATASE, CATALYTIC ANTBODY, PAD FRACMENT, DANUNG 2 SYSTEM		CONTRACTOR AT
Compound	7	ALPHA, BETA T-CELL RECEPTOR CHAIN: A, B;	TRI 3 PAD; CHAIN: L, H;	TRIS PAB; CHAIN: L, H;	100 SCB; CHAIN: L, H.	IMMUNOCIOBULIN FAB FRAMIZED VERSION OF THE ANTI-CDIS ZPOW 3 ANTIBODY 1157 (RUHS2- OZ PAB) ZPOW 4	IMMINOGLOBULIN FAB FRAGMENT OF A HUMANIZED VEKSION OF THE ANTI-CD11 IFOW 3 ANTIBODY 1427 (HUHS2- OZ FAB) IFOW 4	METAL CHELATASB CATALYTIC ANTIBODY; CHAIN: A, C, METAL CHELATASB CATALYTIC ANTIBODY; CHAIN: B, D;		the a proof. Classica.
Seq Peld Score	Ī	27 18	106.13				E			
Score	Ī			1	0.72	0.95		2	Γ	8
Val.	Γ			9.03	30	60°0		070		9
PSI Seer	Ī	1,46-74	1.76-85	1.76-85	1	3.46-19	3.46-19	5.10-41		0.0
3 \$	T	ä	ä	ñ	ă	â	a	<b>1</b> 77		ş
Start AA		12	i.	n	ន	8	a	n		į
e e		<		.,	_	<b>.</b>	1	<		
708 U		Ē	as A	ž.	ž	a. N	Į.	ħ.		ŀ
g a g	T	ĕ	ğ	ã	ğ	ğ	ğ	ğ	Γ	5

WO 02/05/9260 PCT/US01/42950 WO 02/05/9260 PCT/US01/42950

				_					
PDB amecades	RECEPTOR T CELL RECEPTOR 185C	HA-DRI, DDR. HA-DRI, DDB 1001; TOR HA.1) HA-DGAN, TOR HA.1) BETA CHANG, PROTEIN COLOFTER, DAGNOGLOBULN FOLD		SIGNAL TRANSDUCTION PROTEIN	CYTOSKELETON	SHD PROTOTYPE WWPROTOTYPE, PROTEIN DESIGN	ISOMERASE PINI; PEPTIDYL. PROLING ISOMERASE, WW DOMAIN, PHOSPHOSERING BINDING	SIGNALING PROTED DAPP. PUSH, BAMT: PLECKSTRN, 1- PHOSPHONOSTIDER, INOSITOL TETRAKISPHOSFRATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR PROTEIN	SIGNALING PROTEIN DAPPI, PHISH, BAM32, PLECKSTRIN, 3-
Compound	14.3.D T CELL ANTIGEN RECEPTOR; IBEC 5 CHAIN; NULL; IBEC 6	HIA CASS II RESTOCOMO A TRELTY ANTERS DE CIALDE A HESTOCOMO A TRELTY ANTERS DE CIALDE E ENACCIALTEDETO FETTE GENERICADE ALFA CIALDE GENERICA ALFA CIALDE GENERICA		BETA-SPECTRIN; 18TN 4 CHAIN: NULL; 18TN 5	BETA-SPECTRIN; IDRO 6 CHAIN: NULL; IDRO 7	WWPROTOTYPE, CHAIN: A;	PEPTEDYL-PROLYL CES- TRANS ISOMERASB NEAR- CHAIN: B; Y(SEPIPT(SEP)S PEPTEDS; CHAIN: C,	DUAL ADAPTOR OF PHOSPHOTYROSING AND 3- CHAIN: A;	DUAL ADAPTOR OF PHOSPHOTYROSINE AND
Seq Feld Scare									
PMP Scar	00'1	80'1		970	0.76	3	ros —	3	atz
Verity	0.47	35		0.22	0.67	8	0.08	Q.61	0.60
ig ig Fari	S.48-31	3.40-27		==	5149.5	1000	900034	2.76-11	11411
3 \$	2	9		ş.	ā	3	3	ឆ	153
H (\$)	а	n		3	2	ä	n	8	8
e o		ш				,		<	<
<b>604</b>	3	&	Γ	Ē	£	g g	₫	<u>8</u>	ā
g e ş	3	3		ĝ	ŝ	203	ğ	ž	ŝ

PDB smotstlen	PETTDERECEPTOR) H.A.A.J. HEAVY GLAG, CAASI HERC, T-CELL RECEPTOR, VIAL PETTDE, 2 COMPLEX (AHCVITAL PETTDERECEPTOR	COMPLEK (HHCVURAL) PETTUREBEGETOR) HAL-AJ HEAVY RECTRON, VIDAL PETTUR, 1 GOMTLAK (HHCVURAL) PETTUREBEGETOR	COMPLEX (MHCV/BLAL) PETTUBERECETTOR) HEA A2 HEAVY PETTUBERECETTOR) PETTUBERECETTOR)	CONTEX (AHCVIBAL) PETIDEMECETTOR) HLA AZ HEAVY CHAP, COMPLEX (MEKVIBAL) PETIDEMECETTOR)	RECEPTOR T CELL RECEPTOR 188C
Compound	BETA-2 MICROGLOBULN; CHAIN: B; TAX TEPTIDE; CHAIN: C; T CELL RECEPTOR ALPHA; CHAIN: D; T CELL RECEPTOR BETA; CHAIN:	HILA-A GOO!; CHAIN! A: BETA-3 MCCOLOBULIN! CHAIN! G; TC SEL RECETOR ALPHA; CHAIN! D; T CELL CHAIN! D; T CELL RECETOR BETA; CHAIN!	HAAA 0201; CHADN: A: BETA-2 MCROOLOBULIN; CHADN: B; TAX FETTIDE; CHADN: C; T CELL RECEPTOR ALPHA; RECEPTOR BETA; CHADN: RECEPTOR BETA; CHADN:	HIAAA GGBI, CHADE, A; ERAAD, EROGALOBULDE, CHADE, B. TAX PETTIDE; CHADE, CE CELL CHADE, D. T. CELL CHADE, D. T. CELL ERCEPTOR BETA; CHADE; E.	14.3.D T CELL ANTIGEN RECEPTOR: 18EC 5 CHAIN: NULL; 18EC 6
SeqFald Score		132%		147.96	2233
aress Ayid			8		
Verify			979		
BLAST Sear		276-49	¥ 6 5	X 9 %	5.46.51
3 €		3	9	8	3
¥ Ş		a	п	a	n
<b>1</b> e		D)	m	ω	
<b>e</b> e		<u> </u>	ž	ā	<u>ş</u>
g e g		ğ	Ş	ŝ	ã

245

INSULIN RECEPTOR SUBSTRATE 1; CHAIN: A. B. J. CHADI: A; 3 1.76-19 -0.29 ā 222 2 = Ē ē 9 ŝ ă ş Ş ă

SEQ 108	đe	£ ₹	3 5	PLAST	Verify	Schr	SeqFeld Score	Compound	PDS annotation
	L	Ĺ						RIBOSOMAL PROTEIN	EDMAL 15, HLP, 50S RIBOSOWAL
								LINE CHAIN: P.	PROTEIN LIEF, FAMALIE, FLUX, 343
								LIS CHAN: 9:	LIP. SGS RIBOSOMAL PROTEIN LIFE.
_			_			_		RIBOSOMAL PROTEIN	FDAAL 19, HL.24; 50S RIBOSOMAL
			_	_				LIN, CHAIN: H.	PROTEIN L212, HL31; SOS RIBOSOMAL
_			_					RIBOSOMAL PROTEIN	PROTEIN 1,22P, FDAA1,22, H1,23; SOS
_	_	_						LISE; CHAIN: E	RIBOSOMAL PROTEIN L23P, HMAL23,
	_	_						RIBOSOMAL PROTEIN	HL25, L21; SOS RIBOSOMAL PROTEIN
_		_	_		_			LIS CHAIN: 2:	124P, HMAL24, HL16, HL15; 50S
_			_	_				RIBOSOMAL PROTEIN	REBOSOMAL PROTEIN LAKE,
_			_					CIE CHAIN: K;	HL21/HL22; SGS RIBOSOMAL PROTEIN
_			_					RIBOSOMAL PROTEIN	1299, HOMAL 29, HLJ3; SOS RUBOSOMAL
_			_	_	_			LIE CHAIN: L.	PROTEIN L30P, FDAAL30, HL20, HL16;
	_		_					RIBOSOMAL PROTEIN	50S RIBOSOMAL PROTEIN 1,318, L.M.
_		_						LIP, CHAIN: M;	HL30; SOS RIBOSOMAL PROTEIN LIZE,
_			_					RIBOSOMAL PROTEIN	HLS; SOS RIBOSOMAL PROTEIN L378,
			_		_			L21E; CHAIR: N.	LISTE; SOS RIBOSOMAI, PROTEINS
_	_							RIBOSOMAL PROTEIN	LISSE, HLISSE, HLAGE, SOS RIBOSOMAL
	_		_					LZZ; CHAIN: O,	PROTEIN LARI, LA, HLA; 305
_	_							RIBOSOMAL PROTEIN	REBOSOMAL PROTEIN LAP. HMALA,
								[23; CHAIN: P.	HL10 RIBOSOME ASSEMBLY, RNA-
_			_	_		_		RIBOSOMAL PROTEIN	RNA, PROTEIN-RNA, PROTEIN-
								L24; CHAIN: Q:	PROTEIN
			_			_		REBOSOMAL PROTEEN	
_			_			_		L10: CHAIN: R:	
_						_		RIBOSOMAL PROTEIN	
_	_							L29; CHAIN: 5;	
	_	_						RIBOSOMAL PROTEIN	
	_	_						LJO CHAIN: T;	
		_				_		RIBOSOMAL PROTEIN	
			_			_		LUE CHAIN: U.	
								RUBOSOMAL PROTEIN	
		_						L32E; CHAIN: V;	

WO 02/05/2540 PCT/US/01/42/50 WO 02/05/2540 PCT/US/01/42/50

PDB ametation	BIOSYNTHESIS	TRANSFERASE SHMT, SERINE METHYLASE, ALPHA PLP ASPARTATE, AMINO TRANSFERASE,	(AAT)-LIKB FOLD TRANSFERASE PLP-DEPENDENT TRANSFERASE PLP-DEPENDENT ENZYMESIR CAS 3 BHT A LYARE SYNTHESIS CAS 3 BHT A LYARE	TRANSFERASE SIGHT, SERINE- GLYCINE CONVERSION, PYRIDOXAL S-PHOSPHATE, 1 ETRAHYDROFOLATE, ASYMMETRIC DIMER	LYASE FES CLUSTER BIOSYNTHESIS, PYRIDOXAL S-HOSPHATE, 1 THOCYSTEINE, AMINOAGRYLATE, ENZYME, FRODUCT COMPLEX	LYASE METHONINE BIOSYNTHESIS, PYRIDOXAL S-PHOSPHATE, GAMDAA- 2 FAMILY, LYASB	CHLOROHYLI BIOSYNTHESIS GLITAMATE SEMALDEHYDB AMDOMUTAR; CHLOROHYLL BIOSYNTHESIS, PYRDOXAL,5: PHOSPHATE, 1 PYRDOXAMES-5: PHOSPHATE, ASYMAETRO DAGR.	COMPLEX (ZINC FINGER/DINA) COMPLEX (ZINC FINGER/DINA), ZINC FINGER, DNA-BINDING PROTEIN
Сепрепи	CHAIN: A. B. C. D.	SERINE HYDROXYMETHYLTRANS FERASE; CHAIN: A, B, C,	D. AMINOTRANSFERASE; CHAIN: A, B;	SERINB HYDROXYMETHYLTRANS FERASE; CHAIN: A, B, C, D,	L-CYSTEINE/L-CYSTINE CS LYASE; CHAIN: A, B;	CYSTATHIONINE GAMMA-SYNTHASE; CHAIN: A, B, C, D, B, F, G, H:	GLUTANATE SEXIALDEHYDE AAGNOTRANSPERASE; CHADY: A, B;	QOSR ZINC FINGER PETIDS; CHAIN: A; DUPLEX CULOCAUCLEOTIDS BINDING SITE; CHAIN: B,
Seq Feld Score								
See S	T	g	85	ā	0.93	605	900	0.17
Vertity	Ī	0.17	93	673	20	0.41	0.16	-0.16
15 J		LA	1.70-65	3	3.66-47	3,60.51	J. 44-10	2.76-05
3 5	1	ğ	ęş	\$	3	£	8	176
¥ Ş	Ī	ı.	2	n n	=	=	ş	691
đe		<		<	<		<	<
e e	T	9	<u>ā</u>	2	4	<u>ş</u>	ā,	=
geş	Ī	8	<b>§</b>	\$	§.	Ş	<b>§</b>	8

		_	_	_	_		_	_	_	_	_	_		_	_	_	_	_	_	_		,
PDB sanutation			TRYPTOPHAN BIOSYNTHESIS TRYPTOPHAN INDOCELYASE:	TRYPTOPHAN BIOSYNTHESIS,	TRYPTOPHAN INDOLE-LYASE,	PYRIDOXAL 2 5-P110SPHATE,	MONOVALENT CATION BINDING	3115	TRANSPERASE TRANSPERASE,	MEI ABULLU KOLE, FTALLOUAL 3: PHOSPHATH	LYASE ALPHABETA FOLD	TRANSFERASE TRANSFERASE,	AMINOTRANSFERASE, PYRIDOXAL PHOSPHATE	TRANSPERASE SHOWT:	HYDROXYMETHYL TRANSFERASE, 1	CARBON METABOLISM	METHIONINE BIOSYNTHESIS BETA	CYSTATHIONASE; PLP-DEPENDENT	ENZYMES, METHONINE	BIOSYNTHESIS, C.S BETA 2 LYASE	LYASE COS; LYASE, LLP-DEPENDENT ENZYMES, METHONINE	
Сонировня	HUBOSWAL PROTEIN  1176: CHAIR: W. REGSDIAL PROTEIN  1179: CHAIR: W. REGSDIAL PROTEIN  1179: CHAIR: W. REGSDIAL PROTEIN  1179: CHAIR: Y. REGSDIAL PROTEIN LA  REGSDIAL PROTEIN LA  GRAIN: I.		CHADE A. B. C. D.						SERINE	FIRASE CHAIN: A:	CSDB PROTEIN; CHAIN: A;	CYSTALYSIN; CHAIN: A,	B,C,D,E,F,Q,H;	SPRINE	HYDROXYMETHYLTRANS	FERASE; CHAIN: A, B;	CYSTATHIONING BETA-	LYASE; CHADA: A, B;			CYSTATHIONINE DAMMA-SYNTHASE:	
Score Score						_		1						Ī				_				1
PMF			Ę					1	8		8	900		980			91.0				-0.15	
Verify Scure		Ī	86					ļ	Ŗ		0.37	60.0		57.0		į	570				6.33	]
PSI BLAST Score									79.0		5.10.76	70-06		144.68			3.40.43				1.7e-52	
3 \$		1	8	_	_			1	<u>\$</u>		181	269		809	;		492				492	
¥ Sir			⊋						22		33	2		11	_		28				3	
g 9			<					1	<		~	_			:		<				<	
<u> </u>		Ì	Ĭ						<u>≯</u>		ě	2		5	ŀ		Ē				2	1
Š e Š			ŝ	_	_				ş		8	ŝ		ş	ì		Š				ş	

249

DINA-BINDING PROTEIN PROTYONCOENE PRODUCT, DINA-BINDING PROTEIN DINA BINDING PROTEIN PROTYONCOGENE PRODUCT IMBE 12 OCSE ZINC FROUR CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTRO DNA; CHAIN! A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN! C, F, G; 3 3 3 5 8 22 8 A.A. E 3 **1** 0 2 3 ē a gag≅ 312 2

PMF SeqPeld Score Score

Verify Score

Kod PSI AA BLAST S

F \$

80 E

SEQ NO B 3

WO 02/059260

PCT/US01/42950

WO 02/059260	PCT/US01/42950

ŝ

5

3

2gli

PDB annotation		PHOSPHOTRANSFERASE PROTEIN KINASE ICKI 18	PHOSPHOTRANSFERASE PROTEIN KINASE ICKI 18		PHOSPHOTRANSFERASE BHOSPHOTB ANSERBASE	THOSE IN LINE IN THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY	LIPID TRANSPORT APO A-I; LIPOPROTEIN, LIPID TRANSPORT, CHOLESTEROL METABOLISM, 2 ATHEROSCLEROSIS, HDL, LCAT.
Countpound	GGÜAKI) IAPM 3  (CATALTTIC SUBURT)  ALPHA ISOBUSTAB  MUTANT WITH ESS 119  IAPM 4 REPLACED BY  ALA (S119AS) COMPLEX  WITH THE PEPTIDE 1APM  S DREBITOR FKL(2.24)  AND THE DETERCENT	CASEIN KINASE I DELTA; ICKI 6 CHAIN; A, B; ICKI 7	CASEIN KINASE I DELTA; ICKI 6 CHAIN: A, B; ICKI 7	PHOSPHOTRANSFERASE CAMP-DEPENDENT PROTEIN KINASE CATATIC SUBUNIT ICMX 3 (B.C.2.7.1.37) ICMK 4	CASEIN KINASE 1, 1CSN 4	TRANSFERASE(PHOSPHO TRANSFERASE) CAMP- DEPENDENT PROTEIN KDAASE (E.C.2.7.1.37) (CAPK) ICIP 3 ICIP 4	APOLIPOPROTEIN A-I; CHAIN: A, B, C, D;
Seq.Pold Scare		285.79		21.87	5	77.16	69.36
PM P Scars			8		8		
Vertify Score			20.0		£.		
PSI BLAST		130-14	24	0	3.40-78	0	90-98'9
3 >		ĕ	<b>8</b> 2	316	Ž,	133	112
Start		_		2	_[.		64
<b>1</b> e		,	<	8		10	٧
<b>2</b> e		3	ig B	lon k	8 1	<u>8</u>	jasj
3 a 5		15	*	\$	3	<del> </del>	a

	Г	81		<u> </u>		Γ	_	_		Ž.					Γ	ž						-	4	1		4
PDS anactation	ACTIVATION	CONTRACTUE PROTEIN TRIPLE- HELIX COLLED COLL, CONTRACTUE PROTEIN	TRANSCRIPTION REGULATION	FACTOR, TRANSCRIPTION REGULATION					LIGASE CBL, UBCH7, ZAP-70, E2,	UBIQUITIN, E3, PHOSPHOR YLATION,	2 TYROSINE KINASE,	OBIQUITINATION, PROTEIN	DECKADATION	-	LIGASE CBL, UBCH7, ZAP-70, E2,	UBIQUITIN, E3, PHOSPHORYLATION,	2 TYROSINE KINASE,	UBIQUITINATION, PROTEIN	DEGRADATION,	-	ZINC-BINDING PROTEIN ZINC-	BINDING PROTEIN, XNF7, BBOX,	DEVELOPMENT, 1 MID-BLASTULA-	TINC BINDING SECTION TINC	BANDING PROTEIN XNF7 BBOX	DEVELOPMENT, 3 MID-BLASTULA-
Coumporad		HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2: CHAIN: A;	RNA POLYMERASE	FACTOR; CHAIN: NULL;		VIRUS EQUINE HERPES	VIRUS-1 (CHICA, OR RING	STRUCTURE) ICHC 4	SIGNAL TRANSDUCTION	PROTEIN CBL; CHAIN: A;	ZAP-70 PEPTIDE, CHAIN:	B; UBIQUITIN	CONSOLATION ENGINE	CHAIN C.	SIGNAL TRANSDUCTION	PROTEIN CBL; CHAIN: A;	ZAP-70 PEPTEDE; CHAIN:	B; UBIQUEIN	CONTUGATING ENZYME	CHAIN: C:	NUCLEAR PACTOR XNF7;	CHAIN: NULL:		Take South Back State	CHAIN: MILL:	
SeaFold	Ī	16.38	78.92	•																				Ī		
¥ 5						0.78			603						0.15						Ş			5	}	
Vertity					Ī	S			5						61.9						663				7	
PSI BLAST Sorre		S.40-12	2.20-10			2.46-			7-09						11011						5.40-12					
3 \$	Γ	332	8			8			ŝ	_											12			ŀ		
¥ Ş	Γ	2	_			21			-			_			91		_				8		_	,	:	
<b>S</b>		<							~						<							_		I		
5 5		arp!	3 11 1			op.			ě					_	ě						ŝ		_	ŀ	5	
ğ e Ş		820	ğ			328			236				_		226						22			ì	3	_

	_									
P.D.B. ametadon	TRANSITION	METAL BINDING PROTEIN RING FINGER PROTEIN MATI: RING FINGER (C3HC4)	METAL BINDING PROTEIN RING FINGER PROTEIN MATI; RING FINGER (C3HC4)	DON-BINDER ROTBEN VIDD V RECOMBINATION ACTIVATING PROTBEN I: AACH VID VID RECOMBINATION, ANTIBODY, MAD, RING FINGER, 2 ZINC BINUCLEAR CLUSTER, ZINC FINGER, DIN-	DIA-BINDHOR POLITRIA YOUJ RECOMBINATION ACTIVATING RECOMBINATION, ANTIBODY, MAD, RENG FROME, 1, EACH, STONG BINACLEAR GLUSTER, ZIMC BINACLEAR BINDING PROTEIN	OXIDOREDUCTASE PDZ DOMAIN,	NNOS, NITRIC OXIDE SYNTHASE	PEPTIDE RECOGNITION PEPTIDE RECOGNITION, PROTEIN LOCALIZATION	CYTOKING LCF; CYTOKING, LYMPHOCYTE CHEMOATTBACTANT FACTOR, PDZ DOMAIN	KINASE HCASK, GLOF REPEAT, DHR; PDZ DOMAIN, NEUREXIN, SYNDECAN, RECEPTOR CLUSTERING,
Coumbenad		CDK-ACTIVATING KINASB ASSEMBLY FACTOR MAT1; CHAIN: A;	CDK-ACTIVATING KINASB ASSEMBLY FACTOR MATI; CHADE: A;	RAGI; CHADI: NULL;	RAGI; CHARN; NULL;	IDE	SYNTHASE; CHAIN! A; HEDTAPETTIDE; CHAIN! B;	PSD-95; CHAIN: A; CRIPT; CHAIN: B;	INTERLEUKIN I & CHAIN: NUL;	HCASKAIN-3 PROTEIN: CHAIN: A, B;
Seq Fold Scen										
PMP	Γ	5	मु	0.47	623	850		0.77	97.0	629
Verth		91.0	800	8.9	40.28	96		-0.55	11.0	-0.52
PSI PSI		1.46-13	S.1e-05	2,40-19	<u> </u>	89.		1.46-05	1.19-05	5.4e-07
3 5	T	r	8	<u>5</u>	ē	122		ឆ	ដ	997
¥ Şeri	Ī	2	2	9	e .	802		214	161	502
a e	Ī	<	<					<		<
<u> 8</u> 8	T	2	ŝ	<u>F</u>	<u> </u>	1080			9111	I I
£ e £		228	328	326	925	532		233	252	ä

WO 02/059260	PCT/US01/42950	WO 02/059260	PCT/US01/42950

PDB senetation		REPEAT	MEMBRANE PROTENOXIDOREDUCTASE BETA- FINGER, HETENODAGE	PEPTIDE RECOGNITION PSD-95; PDZ. DOMARN, NEURONAL NITRIC OXIDE SYNCHASE, NMDA RECEPTOR 2 BINDING	HYDROLASE PDZ DOMAIN, HUMAN PHOSPHATASE, HPTPIE, PTP-BAS, SPECIFICITY 2 OP BINDING		OXIDOREDIACTASE PIDZ DOMAIN, NNOS, NITRIC OXIDE SYNTHASE	PEPTIDE RECOGNITION PEPTIDE RECOGNITION, PROTEIN LOCALIZATION	CYTOKINE LCF, CYTOKINE, LYMPHOCYTE CHEMOATTRACTANT FACTOR, PDZ DOMAIN	KINASE HCASK, GLOP REPEAT, DHR; PDZ DOMAIN, NEURBXIN, SYNDECAN, RECEPTOR CLUSTERING, KINASE	SIGNAL TRANSDUCTION HDLO, DHB3 DOMARN; SIGNAL, TRANSDUCTION, SH3 DOMARN, REFEAT	MEMBRANE PROTEINOXIDOREDUCTASE BETA-
Connsound	•		ALPHA-I SYNTROPIEN (RESDUES 77-17); CHAD: A; NEURONAL NITRIC OXDE SYNTHASE (RESDUES 1-130; CHAD: B;	POSTSYNAPTIC DENSITY PROTEIN 95; CHAD4: A;	TYROSINE PHOSPHATASE (PTP-BAS, TYPE I); CHAIN: A;		NEURONAL NITRUC OXIDE SYNTHASE; CHAIN: A; HEPTAPEPTIDE; CHAIN: B;	PSD-95; CHAIN; A; CRUPT; CHAIN; B;	INTERLEUKIN 16; CHAIN: NULL;	HCASKAIN+2 PROTEIN; CHAIN: A, B;	HUMAN DISCS LARGE PROTEIN; CHAIN: MULL;	ALPHA-I SYNTROPHIN (RESIDUES 77-171);
SeePold	200											
AMA	Į,	Ī	500	7	0.64		160	477	9,0	659	0.47	0.05
ŧ,	Ş		Ç.	031	-0.26		6.6	455	110	-0.52	462	633
ž	BLAST Score		5.4e-07	5.4e-03	246-03		9	13 4 -		5.40-07	89-199 199-199	5.40-07
3	1		22	111	cuz		ā	ត្ត	ä	92	ត្	ž
ğ	\$		8	QZ .	102	L	ğ	ž.	<u>18</u>	g	ă	<u>s</u>
8	9		٧	٧	٧		<	<		<		<
804	9	Γ	<u>1</u>	¥	ž,	Ī	ž	ķ	1116	Ī	1	å
925	Αģ		ä	čą:	215		â	ã	â	â	a	ā

258

	_									
PDB amentation	KINASH	SIGNAL TRANSLAUCTION HDLO, DHBJ DOMADI, SIGNAL TRANSDUCTION, SHJ DOMAIN, REPEAT	KEMBRANS PROTEUNOXIDOREDUCTASE BETA- FINGER, HETEKODIMER	PEPTIDE RECOGNITION PSD-99; PDZ DOMADN, NEURONAL NITRIC OXIDE SYNTHASE, NMDA RECEPTOR 2 BIYDING	HYDROLASE PDZ DOMAIN, HUMAN PHOSPHATASE, HPTP1E, PTP-BAS, SPECIFICITY 2 OF BINDING	OXIDOREDUCTASE PDZ DOMAIN, NNOS, NITRIC OXIDE SYNTHASE	PEPTIDE RECOGNITION PEPTIDE RECOGNITION, PROTEIN LOCALIZATION	CYTOKING LCP; CYTOKING, LYMPHOCYTE CHEMOATTRACTANT FACTOR, PDZ DOMAIN	KINÁSE HCASK, GLÓP REPEAT, DHR; PDZ DOMAIN, NEURENO, SYNDECAN, RECEPTOR, CLUSTERINO, KINASE	SIGNAL TRANSDUCTION HDLG, DIERJ DOMAIN; SIGNAL TRANSDUCTION, SH3 DOMAIN,
Considerate		HUMAN DISCS LARGE PROTSIN; CHAIN: NULL;	ALPHA-I SYNTROPHIN (RESDUGS 77-17); CHAID: A; NEURONAL NITRIC OXIDS SYNTHASE (RESDUGS 1-150; CHAIN; B;	POSTSYNAPTIC DENSITY PROTEIN 95; CHAIN! A;	TYROSINE PHOSPHATASE (PIP-DAS, TYPE I); CHAIN: A;	NEURONAL NITRIC OXIDE SYNTHASE; CHAIN: A: HEPTAPEPTIDE; CIAIN: B;	PSD-95; CHAIN: A; CRIPT; CHAIN: B;	INTERLEUKIN 16; CHAIN: NULL;	HCASKAIN-2 PROTEIN; CHAIN: A, B;	HUXAN DISCS LARGE PROTEIN; CHAIN: MULL;
SeqFeld										
PIM P	Γ	0.47	0.05	Ī.	<b>3</b>	8670	0.77	97.0	ຶ່ງ	0.47
Vertify Score	Γ	<b>79</b> .0	633	12	970	-0.43	-0.55	11.0	452	0.62
PSI BLAST Scere		1.60-05	5.40·07	S.4e-05	2,40-05	20-03	50-03-	 1	5.40-07	20-49.
<b>F6d</b>	Γ	612	32	E	<i>E11</i>	ឆ	152	152	92	239
Start		ă	<u>\$</u>	g g	<b>1</b> 02	<b>80</b>	214	861	203	ž
Challs	Ī		<	<	۷	<	,		<	
<b>80%</b>	I	¥	) B	윤	ž.	2 2	<u> </u>	9111	Ë	Ā
ខ្លី១ខ្		532	233	232	232	232	757 757	Œ	232	g

257

FINGER, HETERODUMER ALPHA-I SYNTROPIUM (RESDUES 77-17); CHAIN: A: NEURONAL NITRUC OXIDS SYNTHASE (RESIDUES 1-170); CHAIN: TYROSINE PHOSPHATASE OTP-BAS, TYPE I); CHAIN: INTERLEUKIN 16, CHAIN: NULL; B; POSTSYNAPTIC DENSITY PROTEIN 95; CHAIN: A; HUMAN DISCS LARGE PROTEIN; CHAIN: NULL; HCASKAIN+2 PROTEIN; CHAIN: A, B; Coumpound End PSI Vertiy PMF SeepPald
AA BLAST Seere Seere Seere
Seere 3 ş 3 3 25.0 ¥ Şarı #e **2** 0

3

a a

259

3 a ğ

WO 02/059260

PDB aggetation	PEPTIDE RECOGNITION PSID-93; POZ DOMANIN, WEJRONAL, MITRIC OXIDE SYNTHASSI, NADA RECEPTOR 2 BINDING	HYDROLASE PDZ DOMÁIN, HUMAN PHOSPHATASE, HYPIE, PTP-BAS, SPECIPICITY 2 OF BINDING	LIGASE EGAP; UBCH7; BILOBAL STRUCTURE, ELONGATED SHAPE, E3	UBIQUITIN LIGASE, E2 2 UBIQUITIN CONJUGATING ENZYME	LIGASE EAAP: UBCH7: BILOBAL	STRUCTURE, ELONGATED SHAPE, EJ UBIQUITIN LIGASE, EZ 2 UBIQUITIN	CONJUGATING ENZYME	LIM DOMAIN CONTAINING PROTEINS LIM DOMAIN CONTAINING	PROTEINS, METAL-BINDING PROTEIN, ZINC 2 FINGER	LIM DOMAIN CONTAINING PROTEINS	LIM DOMAIN CONTAINING PROTEINS, METAL-BINDING PROTEIN 704C 3 ENGES	LIM DOMAIN CONTAINING PROTEINS	LIM DOMAIN CONTAINING	PROTEINS, MEI ALCOLOGICA	CONTRACTILE LIM DOMAIN, CRP.	NMR, MUSCLE DIFFERENTIATION, CONTRACTILE
Countries	POSTSYNAPTIC DENSITY PROTEIN 95; CHAIN: A;	TYROSDE PHOSPHATASE (PTP-BAS, TYPE 1); CHAIN: A;	UBIQUITIN-PROTEIN LIGASE EJA; CHAIN: A, B,		UBIOUITIX-PROTEIN	LIGASE EJA; CHAIN: A, B,	CONTUGATING ENZYME E2; CHAIN: D;	QCRP2 (LIMI); CHAIN: NULL;		QCRP2 (LIM1); CHAIN:	NULL:	OCREZ (LIMI); CHAIN:	אתוד:		CRPI; CHAIN: A:	
SeqFold Scan					227.88							Ī				
PMP Sours	3	7	00'1		Ī			3		0.83		660			0.54	
Vertity Sours	979	-0.26	5		Ī			69.0		-0.03		04.0			0.01	
PSI BLAST	5.4e-05	2.46-05	0		٠			ZI-44.		 		5.40-14			3.46-13	
3 \$	##	273	<b>E35</b>		386			139		812		x			187	
Start A	208	208	734		ž			<u>8</u>		E91		39			35	
G E	<	٧	<b>~</b>												~	
20 C	월	3pdt	1042		200			χ.,		Ta1		15.0			<u>84</u>	
S a S	g	233	538		538			ī		3		ž			ž	

260

WO 02/059260

PCT/US01/42950

441 0.27 COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPL		đe	Start	3 \$	PSI BLAST Seere	Verify Scare	Starr	Score	Compound	PDB ensectifies
559   636   316-11   4.44   627   COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY COUNTESCABERHY			Ī							
19    61    1,4-21    613    519   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510   510		a	8 <u>5</u>	ş	5.16-13	473	<b>62</b>		COMPLEX (GLYCOSIDASE/CARBOHY DRATE) ABRIDA A	
19   43   14-8-31   44.13   45.14   50-00E COAT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJ		_							SUGAR CHAINS 1ABR 3	•
1,50   0.0   0.6   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0		_	<u> </u>	5	1.46-21	Q.13	150		SPORE COAT POLYSACCHARIDE	TRANSFERASE CLYCOSYLTBANSFERASE
56   629   Li-Pay 0.40   646   EUGIC-LA-RETIVAR-GOLARRA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-B-TA-A-									BLOSYNTHESIS PROTEIN CHAIN: A:	
144 6.16   11-17 0.04 0.70   EDGO-(1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-16-ETA-1-		·	8	ŝ	1.76.30	55	690		ENDO-1,4-BETA- XYLANASE: CHADI: A. B:	HYDROLASE XYLAN DEGRADATION
134-11   0.15   0.65   DAN NUCLEOTIDE		_	3	93	11-01	400	0.70		ENDO-1,4-BETA-	HYDROLASE XYLAN DEGRADATION
1579   141   13-61   10.25   0.65   DAN-HOLEOTOPE			T						XYLANASE; CHAIN: A, B;	
259 641   2.76-10 0.23 0.54   BXCABIOVER-AIR A.     536 641   2.76-10 0.23 0.54   BXCABIOVER-AIR A.     536 641   2.76-10 0.23 0.54   BXCABIOVER-AIR A.     536 642   2.76-10 0.40   BXCABIOVER-AIR A.     537 642   2.76-10 0.40   BXCABIOVER-AIR A.     538 643   2.76-10 0.40   BXCABIOVER-AIR A.     538 643   2.76-10 0.40   BXCABIOR A.     539 644   2.76-10 0.40   BXCABIOR A.     530 1.66-11 0.46 0.42   PXCABIOR A.     530 1.66-11 0.46 0.42   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-10 0.40   PXCABIOR A.     530 1.76-1		Į	\$39	2	11-04-2	0.25	0.65		DNA NUCLEOTIDE	REPLICATION DNA NUCLEOTIDE
12-10   0.23   0.54   EXTYNE UVB; CRAIN: A.		_							EXCISION REPAIR	EXCISION REPAIR, UVRABC,
155   641   276-10   0.23   0.24   BEXCHARGE-SKR BLOCK   156   641   276-11   0.61   1.00   BEXCHARGE-SKR BLOCK   157   643   276-11   0.71   0.64   BEXCHARGE-SKR BLOCK   157   1.06-11   0.71   0.64   BEXCHARGE-SKR BLOCK   157   1.06-11   0.71   0.64   BEXCHARGE-SKR BLOCK   157   1.06-11   0.34   0.62   BEXCHARGE-SKR BLOCK   157   1.06-11   0.34   0.62   BEXCHARGE-SKR BLOCK   157   1.06-11   0.34   0.63   BEXCHARGE-SKR BLOCK   157   1.06-11   0.34   0.63   BEXCHARGE-SKR BLOCK   157   1.06-11   0.34   0.63   BEXCHARGE-SKR BLOCK   157   1.06-11   0.34   0.63   BEXCHARGE-SKR BLOCK   157   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07									ENZYME UVRB; CHAIN: A;	HELICASE, 2 HYPERTHERMOSTABLE PROTEIN
136   43   1-6-11   0.61   1.00   DECONICEZ-ESSE UNFAGE   144   642   1.16-11   0.71   0.40   DECONICEZ-ESSE UNFAGE   155   1.6-11   0.71   0.40   DELAKAYOTE CHITATION   151   1.6-11   0.15   0.40   DELAKAYOTE CHITATION   152   1.6-11   0.15   0.40   DELAKAYOTE CHITATION   153   1.6-11   0.15   0.40   DELAKAYOTE CHITATION   154   0.17   1.5-48   0.47   0.40   DELAKAYOTE CHITATION   155   155   1.6-11   0.15   0.40   DELAKAYOTE CHITATION   155   155   1.6-11   0.15   0.40   DELAKAYOTE CHITATION   155   155   1.6-11   0.15   0.40   DELAKAYOTE CHITATION   155   155   1.6-11   0.15   0.40   DELAKAYOTE CHITATION   155   155   1.6-11   0.15   0.40   DELAKAYOTE CHITATION   155   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATION   155   0.40   DELAKAYOTE CHITATI		_	529	3	2.76-10	0,23	ž		EXCINICLEASE ABC	HYDROLASE UVRB; MULTIDOMAIN
139   431   144   431   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134		T.	1				2		Proceedings of the special	CONTRACTOR ATTOM AND BOOTEN
544 642   1.16-11 0.20   DAGO   ENCRAVORE INTERTORY		<del></del>	<u> </u>	3		ē.	3		COMPONENT UVRB;	GENE REGULATION AND PROTEIN
155 652   166-11   0.16 0.62   FACTOR 44, CHADR: A. P. P. P. P. P. P. P. P. P. P. P. P. P.	•	,	¥	23	1.101.1	0.71	0,60		EUKARYOTIC INITIATION	TRANSLATION YEAST INITIATION
533   632   164-11   0.16   0.62   PACKOT DITLATION									FACTOR 4A; CHAIN: A;	FACTOR 44, EIF44; HELICASE, INTIATION FACTOR 44, DEAD-BOX PROTEIN
65 107 1.5-48 -0.77 D.M MEMBKANG-BOUND	_		2	55	1.66	970	0.62		YEAST INTITATION	TRANSLATION EUKARYOTIC
63 107 1.3e-08 -0.77 0.04 MEXIBRANE-BOUND									PACTOR 4A; CHAIN: A, B;	INITIATION PACTOR 44; 1944, HELICASE, DEAD-BOX PROTEIN
65 107 1.5e-bs -0.72 0.04 MEMBRANE-BOUND	_									
		,	3	191	B-8-	47	ğ		MEMBRANE-BOUND LYTIC MURBIN	HYDROLASE MLTD, MUREIN HYDROLASE D, REGULATORY

TOTATION AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR CONTINUES AND GLYCTOR C AVIAN CYSTEINE RICH PROTEIN; ICTL 3 AVIAN CYSTEINE RICH PROTEIN; ICTL 3 Scar 0.62 190 0.27 8 120 PSI BLAST Sears 3.40-07 Esd A 186 12 Start 20 8 3 3 B 8 33 ž 2 3 ž

261

PCT/US01/42950

WO 02/059260

	1	_	r	· ·	<del></del>			r
PDB annotation	PROTEIN DNIR, CELL WALL, HYDROLASB, GLYCOSIDASB, LIPOPROTEIN, 2 OUTER MEMBRANB, MOLTIGENE PAMILY		COMPLEX (ZINC PINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGERADINA) ZINC FINGER, PROTEIN-DNA DATEACTION, PROTEIN DESIGN, 2 CAYSTAL STRUCTURE, COMPLEX ZINC FINGERADINA	COMPLEX (ZINC FINDER/DINA) ZINC FINGER, REOTEIN-DINA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DINA)	COMPLEX (ZINC FINGER/DINA) ZINC FINGER, REOTER-DIA PITERACTION PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DINA)	COMPLEX (ZINC FINGENDINA) ZINC FINGER, REOTED-DINA FREDACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGENDINA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2
Сеппрекай	TRANSGLYCOSYLASE D. CHAIN: A;		QOSR ZINC FINGER PEPTIDE, CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B,	DNA; CHAIN; A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN; C, F, G;	DNA; CHAIN! A, B, D, E; CONSENSUS ZINC FINGER, PROTEIN; CHAIN! C, F, C;	DNA, CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN; A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN; C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, Q,
Sears Sears								
Du.			0.16	8	8	81	83	69'0
Verlfy Score			<b>75</b> 0	0.16	120	0.16	190	200
PSI BLAST Score			1.46-77	1.54	3.66-47	P.	3 de 1.7	l.le.19
3 \$			150	21	ñ	992	(SZ	131
ğş			230	102	151	3	213	121
g G			<	U	v	ວ	υ	J.
10 10			<b>f</b>	lac,	incy	losey	imey	lacy
g e ğ			88	88	330	988	88	350

ž ž

		_	_	_	_	_	_		_						_	_	_		_	_	_		_		_		_	_	
PDS ansotation	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGEADINA)	COMPLEX (ZINC FINGER/DNA) ZINC ENCHE PROTEIN, INA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	CLINC PHINCESCURA)	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, FROIEM-DAY	INTERACTION, PROTEIN DESIGN, 2	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTED-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DINA)	COMPLEX (ZINC PINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC PINGER/DINA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA
Соппроше		DNA; CHAIN: A, B, D, B;	PROTEIN: CHAIN: C. F. O.		Part Citibility B B B	CONSENSUS ZINC FINGER	PROTEIN; CHAIN; C. F. O.		density of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sam	DNA; CHAIN: A, B, D, E;	CUNSENSUS CANC FINDER	PROTEIN; CHAIN: C. P. O.		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN; C, F, O;			DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C. P. G.			DNA, CHAIN: A, B, D, E.	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C. P. G;			DNA; CHAIN: A, B, D, E; CONSENSIJS ZINC FINGER
SeqFold					1								_												_		_		_
PMF		8			1	3				8				8					90.1					8	_	_			8
Vertity Score		90.0			,	9				67				0.21					0.21					0.16					8
PSI		1.76-46				Î				25-55				15-65					05.01					1.76-50					05-91 05-01
3 5	Γ	331			1	Š				ĝ				435					£63	_				16#		_			<b>S</b> 3
Start As A	Γ	592			1	2	_			326				35					382					01+		_			\$
Chads 15		u			,	ر				_ u				o					u					J					v
80 E		lmey	_		1	963				lmey				latev					Iney					Imey					lney
30		550				ž		_	1	8	_			88					550			_		550					8

WO 02/059260

264

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

PDB amoration	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATIONDINA) COMPLEX (TRANSCRIPTION REGULATIONDINA), RNA REGULATIONDINA), RNA RUY MERKAS ELL 3 TRANSCRIPTION INITIATION, ZINC FROTEIN	COMPLEX (TRANSCAPTION REGULATION/DIAL) COMPLEX (TRANSCAPTION) REGULATION/DIAL) RIA POLYMERASE II, 2 TRANSCAPTION DMITTION, ZINC FINGER PROTEIN	COMPLEX (TRANSCAPTION REGULATIONDNA) COMPLEX (TRANSCAPTION REGULATIONDNA), BNA REGULATIONDNA), BNA POLYMERASE II, 2 TRANSCAPTION DNITATION, ZINCERPION	COMPLEX (TRANSCRIPTION REGULATIONDIA) COMPLEX (TRANSCRIPTION REGULATIONCONA), RNA RECOLLATIONCONA), ZNA RITAATION, ZMC PRINGER PROTEIN INTILATION, ZMC PRINGER PROTEIN	COMPLEX (TRANSCRIPTION TEGULATIONDNA) COMPLEX (TRANSCRIPTION REGULATIONDNA), RNA REGULATIONDNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION,
Coumpound		TFIIA; CHAIN: A, D; SS RIBGSOMAL RNA GENE; CHAIN: B, C, B, P;	TFIIIA, CHADH. A, D; 5S RIBOSOMAL RNA GENE; CHADH. B, C, B, F;	TFULA; CHADA: A, D; SS RIBOSOMAL, RNA GENE; CHADA: B, C, E, F;	TFIIIÀ; CHADI: A, D; SS RIBOSOMAI, RNA GENE; CHADI: B, C, E, F;	TFILIA; CHAIN! A, D; SS RIBOSOMAL RNA GENE; CHAIN! B, C, B, P;	YYI; CHAIN: C, ADENO- ASSOCIATED VIRUS PS INTTATOR ELEMENT
SeqFold							
PMF	r	8	0.70	86.0	3	or to	1.00
Verify Somm	Ī	9.1.0 1.0	it o	0.05	0.21	900	0.17
P. P. P. P. P. P. P. P. P. P. P. P. P. P		3,46,34	R. C.	F 1	3.40.36	1.7+36	6.84-12
3 \$		ğ	200	925	<del>ŝ</del>	219	310
Start		151	21	ar	ŧ	\$	<u>s</u>
Clats 6		<		<	<	<	υ J
<b>9</b> e		<u>s</u>	9	<b>8</b> 9	<b>7</b> 91	喜	Pa Pa
S a S		S ₂	88	230	938	950	88

g e	a B	Start	<b>7</b>	PSI BLAST Score	Vertify Score	Score	Seq Fold Scere	Септрепля	PDB suggestation
								PROTEIN; CHAIN: C, P, O;	INTERACTION, PROTEIN DESIGN, 1 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGENDNA)
Іпсу	ບ	£5	820	16-50			107.02	DNA; CHAIN; A, B, D, E; CONSENSIS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGEA/DINA) ZINC PINGER, PROTECH-DINA PINGEACCTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DINA)
Iney	J	\$	ž _	5.10-50	0.29	<b>8</b>		DNA; CHAIN; A, B, D, E; CONSENSUS ZINC PUGER PROTEIN; CHAIN: C, F, O;	COMPLEX (ZINC FINGEADINA) ZINC PINGEA, PROTESI-DINC PINGEA, DATE COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX FINGENDINA)
lmey	o .	ŝ	352	13635	0.20	8		DNA; CHAIN; A, B, D, E; CONSENSUS ZNC FINGER PROTEIN; CHAIN; C, F, G;	COMPLEX (ZINC FINGER/INA) ZINC FINGER, PROTEIN-DIA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL, STRUCTUPE, COMPLEX (ZINC FINGER/INA)
lacy	U	2	2	16-33	<b>1</b>	9.65		DNA; CHATN: A, B, D, E; CONSENSUS ZINC FUNGER PROTEIN; CHATN: C, P, Q;	COMPLEX (ZINC PINGER/DINA) ZINC PINGER, PROTEIN-UNG PESIGN, 2 CRYSTAL STRUCTURE, COMPLEX CANCEL STRUCTURE, COMPLEX PESIGN, 2 CRYSTAL STRUCTURE, COMPLEX PENGER/DINA)
1E8	<	291	77	3.16-35	4.13	0.59		TPILIA; CHAIN! A, D; 3S RIBOSOMAL RNA GENE; CHAIN: B, C, B, F,	COMPLEX (TRANSCEPTION REGULATION COMPLEX (TRANSCEPTION REGULATIONDIAN), RMA POLYMERASE ILL 2 TRANSCEPTION INITIATION, JONE FINGER ROTEIN INITIATION, LONGER ROTEIN
P P	<	127	£	3,46-36			107.11	TFILIA CHAIN: A D: 35 RIBOSOMAL RNA GENE; CHAIN: B, C, R, P;	COMPLEX (TRANSCHPTON REGULATIONDIN) COMPLEX: REGULATIONDIN) COMPLEX: REGULATIONONN) ROMPLEY: REGULATIONONNN) COMPLEX: REGULATIONONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

PMF SeqPold Score Score
87
8.1
80
0.75
96'0

RECOGNITION, 1 COMPLEX (TRANSCRIPTION REGULATIONDMA) (COMPLEX (TRANSCRIPTION REGULATION MONA) THE YANG I: TRANSCRIPTION INTILATION INTILATOR ELEMENT, YYI, ZING 2
LI RANSCRITTON REDULATIONER COMPLEX (TRANSCRIPTION REGULATIONEN'S YING-YANG I; TRANSCRIPTION INTIATION, INTIATOR ELEMENT, YYI, ZINC 2
REGULATION TRANSCRIP DITTATOR E
RUS PS MENT B:
ASSOCIATED VIRUS PS NUTLATOR ELEMENT DINA; CHAIN: A, B;
E N

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

PDB Chats Start Ead PSI Vertly P LD ID AA AA BLAST Scars St Score	Start Ead PS1 Verty AA AA BLAST Boars Score	End PSI Verify AA BLAST Scars Scors	Vertity Score		- 2	PMP	SeqFold Scure	Compenso	PDB aanotatien
					П	П			BINDING PROTEIN/DNA)
2gii A 157 297 2.28-67 0.40 1.00	297 2.20-67 0.40	2.2e-67 0.40	0.40		8			ZINC FINGER PROTEIN GLII; CHAIN: A: DNA; CHAIN: C. D.	COMPLEX (DNA-BINDING PROTEINIDNA) FIVE-FINGER GLL; GLL, ZINC FINGER, COMPLEX (DNA-
		_	_	_			_		BINDING PROTEIN/DNA)
2gd A 185 353 1.6e-65 0.10 0.45	353 1.60-65 0.10	1.60-63 0.10	0.10		ð	_		ZINC FINGER PROTEIN	COMPLEX (DNA-BINDING PROTEINDINA) FIVE-FINGER GLI: GLL
								CHAIN: C. D.	ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
2gd A 249 378 8.5e-33 0.18 0.58	378 8.56-33 0.18	1.56-33 0.18	0.18	Г	2	_		ZINC FINGER PROTEIN	COMPLEX (DNA-BINDING
								CHAIN: C, D;	ZNC FINGER, COMPLEX (DNA- BINDING PROTEDMONA)
241 A 298 437 2.70-68 0.39 1.00	437 2.70-68 0.39	2.70-68 0.39	ŝ	1-	2	L		ZINC FINGER PROTEIN	COMPLEX (DNA-BINDING
			_			_		OLD, CHAIN: A, DNA.	PROTEINDNA) FIVE-FINGER GLI; GLI,
						_		CHAIN: C. D.	BINDING PROTEINDINA)
2di A 312 549 8.1e-73 -0.09 0.88	549 8.10-73 -0.09	8.10-73 -0.09	409	_	8	Т		ZINC FINGER PROTEIN	COMPLEX (DNA-BINDING
								CHAIN: C, D;	ZINC FINGER, COMPLEX (DNA-
		_	_	_		_			BINDING PROTEIN/DNA)
2gi A 390 318 6.8e-35 0.17 0.99	518 6.8e-35 0.17	6.8e-35 0.17	617	_	ခ	<u>_</u>		ZINC FINGER PROTEIN	COMPLEX (DNA-BINDING PROTECTION FIVE-FINGER GIL: GLL
								CHAIN: C, D,	ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
					l	Γ			
Con 2 A 73 200 1.40-51 0.47 1.00	200 1.46-51 0.47	1.40-51 0.47	0.47	H	Ž			CAIP (G-ALPHA	SIGNALING PROTEIN REGULATION
				_				CHAIN: A:	GALP, ROS, REGULATOR OF G
				_	_				PROTEIN, SIGNALING PROTEIN 2 REGULATION
lonz A 73 200 1.4e-51	92	_	1,46-51		<u>L</u> .		172.06	GAIP (G-ALPHA	SIGNALING PROTEIN REGULATION GALPHA INTERACTING PROTEIN:
								CHAIN: A;	GAIP, ROS, REGULATOR OF G

PDB appointed	REGULATIONDAN YNO YNO !  TANSCEPTON BUTLANDON, INITIATOR ELEMENT, YY, ZINC 2 FINGER PROTEIN, DINA-PROTEIN FENCHMENTON, J. COMPLEX GEOCHMICH, A COMPLEX (TRANSCRPTON REGULATIONDAN)	CONFLEX (TRANSCRIPTION REGULATIONDALA) YING-YANG I; TRANSCRIPTION INTIATION, RIMANOR BLANGENT, YIV, ZINC 2 RINGER ROTEIN, BNA-ROTEIN RECOMMENTAL 3 OFFICE TRANSCRIPTION REGULATIONDANA)	COMPLEX (TRANSCHITTON REGILATIONONA) YING-YANG ; TRANSCHITTON INTIATION INTIATION ELEMENT YN 1, ZDVC 2 FINGER PROTEIN, DNA-PROTEIN RECOMMING, 1 COMPLEX (TRANSCHITTON REGILATIONDNA)	TRANSCRIPTION REGULATION TRANSCRIPTION REGULATION, ADRI, ZINC FINGER, NAR	COMPLEX (DNA-BINDING PROTEINDRA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLIA (DNA- BINDING PROTEINDING)	COMPLEX (DNA-BINDING PROTEMBRAN PITE-FROER GLI; GLI, ZINC FROER, COMPLEX (DNA- BINDING PROTEINDINA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER (DL; GLL, ZINC FINGER, COMPLEX (DNA-
Септрений	ASSOCIATED VIRUS PS DUTLATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C, ADENO- ASSOCIATED VRUS PS INITIOR ELEMENT DNA; CHAIN: A, B;	YYI; CHÁIN: C; ADENO- ASSOCIATED VRUS PS RNITHOR ELEMENT DNA; CHAIN: A, B;	ADRI; CHAIN: NULL;	ZINC FINGER PROTEIN GL1; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC PINGER PROTEIN GLIT; CHAIN! A; DNA; CHAIN! C. D:
Scare							100.42
P.M.P.		660	660	590	6.30	8	
Vertity Scara		7. 2.	0.12	. 80.0	6:09	75.0	
BLAST Son		% 41.	\$£ <b>•</b> 33	1.5e-t6	1, 1, 1,	β. 1.1 2.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	J. Je-70
3 \$		ã	ž	29.1	2112	\$97	ž
¥ Shirt		% %	\$	272	Ξ	8	75
<b>1</b> 0		၁	U		<	<	<
80.0		29	3	77	ig.	Få.	3
Š e Š		SS.	550	88	350	88	85

REGULATION
SIGNALINO PROTEIN REGULATION
GALPHA INTERACTING PROTEIN;
GAIP, RGS, REGULATOR OF G
PROTEIN SIGNALING PROTEIN 2
REGULATION PHOSPHATEDYLINOSITOL TRANSFER PROTEIN SECI (P; CHAIN: NULL; PHOSPHATIDYLINOSITOL TRANSFER PROTEIN SECIAP: CHAIN: NULL; EPIDERMAL GROWTH FACTOR RECEPTOR PATHWAY CHAIN: A; PM F 8 Verify 0.24 25 0,001 15 A 51 3 3 ă E 32 ž Ş \$ 9 5 B 1607 ទី ១ ខ្ 3 55 22 22 23 3 ×


PDB amounties	CALCIÚM BINDING EHE, EFIDERMÁL GROWTH FACTOR RECEPTOR SUBSTITATE CALCIUM BINDING, SIGNALING DOMAIN NP BINDING, EFHAND, EH 2 DOMAIN		TRANSLATION TRANSLATIONAL GTPASE		PROTEIN BUDDING EFG; EF O ELONGATION FACTOR, RLANSLOCASE, RIBOSONE, ELONGATION 1 TRANSLATION, PROTEIN SYMP FACTOR, GTP-ASS, GTP INDING, TO GANGSINE NUCLECTIONE BINGDING, PROTEIN		REBOSOME, SOS BEDGSOMA, PROTEIN LP. PRACTE, FLA. SOS REBOSOMAL PROTEIN LJF, SOS REBOSOMAL PROTEIN LJF, SOS REBOSOMAL PROTEIN LJF, SOS REBOSOMAL PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROTEIN LJF, PROT
Courposed	EPSIS; CHÁIN: MULL:	TRANSPORT AND PROTECTION PROTEIN BLOWGATTON PACTOR TU (DOMAIN I) "GLOMAIN II - "GLANOSINE TO PRITOR PACTOR TO "GLANOSINE TO PRITOR PACTOR TO "GLANOSINE TO SAMPLEXI LETU 4 COMPLEXI LETU 5	TRANSLATION INITIATION PACTOR IPZEIPSB; CHAIN: A;	CALCIUM-BUNDING PROTEIN RAT CHICOMODULIN IRRO 3	ELONGATION FACTOR O. GLADR. A. ELONGATION PACTOR O DOMAGN 3: CHADR. B:		ZIS RRIVA; CHAIN; ES RAVA; CHAIN; S. REDOSOMAL PROTEN L2; CHAIN; A; REDOSOMAL PROTEN L3; CHAIN; B; REDOSOMAL PROTEN L4; CHAIN; C; REDOSOMAL
Seq Pold Scare							
A S	8	- F	â	0.13	0.10		<b>8</b> 10
Vertfy Sour	11	<b>4</b> 000	50:02	90'0	970		3
15 J	1.76-39	25.0	6.8e-13	1100.0	<u>∳</u>		5.24-30
3 \$	88	2	ii.	ş	a		g .
Start AA	3	g	s	77	я	L	M
9 9 9			<		<		2
<b>8</b> 8	<u>1</u>	<u>a</u>	123	ē.	Ą	Γ	별
3 a 5		252	552	587	25.	Ī	555

WO 02/059260

PCT/US01/42950

WO 02/059260

PDB Chain Start East P51 Verity PMF Sospedid
D 1D AA AA BLAST Score Score Score

S e S

PCT/US01/42950

PDB ensetation	·	LIP, HAMLI, HA: SIS RIBOSOMAL PROTEIN LIP, HAMLI, HA: SIS RIBOSOMAL REGISTRAL III PARALI, HE: SIS RIBOSOMAL PROTEIN LIS, RIBOSOMAL PROTEIN LIS, RAMLI, RILL SIS RIBOSOMAL ROCKELL III SIS RIBOSOMAL ROCKELL III SIS RIBOSOMAL ROCKELL III SIS RIBOSOMAL ROCKELL III SIS RIBOSOMAL ROCKELL III SIS RIBOSOMAL ROCKELL III SIS RIBOSOMAL ROCKELL ROCKELL ROCKELL III RAMLI RALLS SIS RIBOSOMAL ROCKELL ROCKELL III SIS RAMLI SIS RIBOSOMAL ROCKELL ROCKELL III SIS RAMLI SIS RIBOSOMAL ROCKELL ROCKELL III SIS RAMLI SIS RIBOSOMAL ROCKELL ROCKELL ROCKELL III RAMLI SIS RIBOSOMAL ROCKELL ROCKELL ROCKELL ROCKEL LILL SIS RIBOSOMAL ROCKEL ROCKELL ROCKELL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKELL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROCKEL ROC
Сектрепи	LINE CAUNE IN LINE CAUNE IN LINE CAUNE IN LINE CAUNE IN LINE CAUNE IN LINE CAUNE IN LINE CHANE IN RESCONAL PROTEIN RESCONAL PROTEIN RESCONAL PROTEIN RESCONAL PROTEIN RESCONAL PROTEIN RESCONAL PROTEIN RESCONAL PROTEIN RESCONAL PROTEIN RESCONAL PROTEIN RESCONAL PROTEIN RESCONAL PROTEIN RESCONAL PROTEIN RESCONAL PROTEIN RESCONAL PROTEIN RESCONAL PROTEIN RESCONAL PROTEIN RESCONAL PROTEIN RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARIA RESCONARI	20 SENAC CIANNE, S. SENAC, CIANNE, S. SENAC, CIANNE, S. SENAC, CALANNE, S. MERCARAL, FROTER 11.2 CHANNE, R. REDSONAL, PROTER 12, CHANNE, S. SENESCHAL, PROTER 13, CHANNE, S. SENESCHAL, PROTEIN LING CHANNE, S. SENESCHAL, PROTEIN LING CHANNE, S. SENESCHAL, PROTEIN LING CHANNE, S. SENESCHAL, PROTEIN LING CHANNE, S. SENESCHANNE, S. SENES
Seq Paid Score		
Scare		000
Verify		
ELAST Fear		2.76-45
3 5		
ğ ş		•
d e		7
<u>2</u> 9		Ę
g a g		655

WO 02/059260

Sea Faid Score Scare 5

Vertify

PSI BLAST Score 3 3

Start 9 9 <u>5</u> 0 0.74

10

500

IGM KAPFA CHAIN V.III
(KAU COLD
AGALITIMINE, CHAIN: A,
C; IGM TAB REGION IV.
KH4)-C (KAU COLD
AGALITIMINE, CHAIN: B.
D:

860

9170

277

			_		,				
PDB sseetations	SIGNALING PROTEIN BETA-ALPHA- BETA POLD PARALLEL BETA SHEET	SIGNALING PROTEIN BETA-ALPHA- BETA FOLD		IMANDE SYSTEM  BAKUNGGLØBULIN HATTBODY  BAGDREEBING, HAWATZED AND  CURCERC, CHITBODY, FAB. 2X.4AY  STRUCTURE, THEEB-DIMENSIONAL  STRUCTURE, CHARACA, 3	DAKUNOGLOBUTN DAMUNOGLOBUTN, KAPA LIGHT- CHAIN DIMER HEADER	COMPLEX (ARCOVIRAL PETIDERGENTOR) HEA A2 HEAVY GLANE, COMPLEX (ARCOVIRAL PETIDERGE CETTOR)	COMPLEX (ANTIBODY/ANTIGEN) PAB-12; VEGF; COMPLEX (ANTIBODY/ANTIGEN), ANGIOGENIC FACTOR	IMMING SYSTEM ANTIBODY (PAB FRAGMENT, IMMING SYSTEM	IMMUNE SYSTEM FAB-18P COMPLEX CRYSTAL STRUCTURE 2.7A
Countposed	TOLL-LIKE RECEPTOR 1; CHAIN: A;	TOLL-LIKE RECEPTOR 2; CHAIN: A;		ANTBODY (LIGHT GLARDS, CHARN: L; ANTBODY (FEAVY GHAIN); CHAIN: H;	IMMUNOQLOBULDI; CHAIN: A, B;	HLA-A 0201; CHAIN! A: BETA-2 MICROGLOBULIN; GLAIN: B: FAX FETIDE; GLAIN: C: T CELL RECETOR ALPHA; GRAIN: D: T CELL GRAIN: D: T CELL BECETOR BETA; CHAIN: B.	FAB FRAGMENT; CHAIN; L, H, J, K; VASCULAR ENDOTHELLAL GROWTH FACTOR; CHAIN; V, W;	ANTIBODY B24 (LIGHT CHAIN; CHAIN: A: ANTIBODY R24 (HEAVY CHAIN; CHAIN: B:	IOM RF 2A2; CHAIN: A, C, R: IOM RF 2A2; CHAIN: B.
Scare						130.55		57.72	
Score	ā	0.17		28 0	66		250		563
Vertify Score	0.13	60.0		0.10	6,20		70		12
PSI PSI PSI PSI PSI PSI PSI PSI PSI PSI	5.46-15	1.76-20		5.10-67	\$	3.40-57	1.7e-64	16.59	3.40-69
3 5	3	213		2	22	2	2	<u>e</u>	3
Z Ser	F	2		a	n	z	а	n_	22
O C	<	<		J	<	۵	ے د	<	<
<u>e</u> e	š	<u>ş</u>		agg.	38	<u>3</u>	<u>:</u>	24	<u> </u>
SEQ.	-	ž		<b>3</b> 4	3	ž.	3	3	3

276

PCT/US01/42950

PCT/US01/42950

WO 02/059260

PCT/US01/42950

9,46

8

183

丑

295

Ē

3

									_
PDB annecation		RECEPTOR TCR, T-CELL, RECEPTOR, TRANSMEMBRANE, GLYCOPROTEIN, SIGNAL	IMMUNOGLOBULIN TRI 19, ANTI- THYROID PEROXIDASE, AUTOATIBODY, 1 DAMINOGLOBULIN			HYDROLASE U FRAGMENT, CD24 PRAGMENT CYSTEINE PROTEINASE, CATHEFSIN, MHC CLASS II, DNYARIANT 2 CHAIN, THYROGLOBULIN TYPE I DOMAIN	HYDROLÁSE I PRAGMENT, CD74 PRAGMENT CYSTEINE PROTEINASE, CATHERSIN, MHC CLASS II, DIVARIANT 2 CHAIN, THYROGLOBULIN TYPE-I DOMAIN	MAJOR ISTOCOMPATIBILITY ONMER HAN CLASS II FISTOCOMPATIBILITY ANTIGEN, GAMMA MAJOR BILLITY ANTIGEN, HISTOCOMPATIBILITY COMPLEX, ANTIGEN FOCESSION OLOOMBELA, FIOR CAMPERONIN	MAJOR HISTOCOMPATEBILITY
Cermpound		ALPHA, BETA T-CELL RECEPTOR CHAIN: A, B;	TRI.9 FAB; CHAIN: L, H;	IMMUNOGLOBULIN FAB FRACIMENT OF A HUMANTZED VERSION OF THE ANTI-CD11 ZFGW 3 ANTIBOOY 1427 (HUH32- OZ FAB) ZFGW 4		CATIEDSIN L. HEAVY GIADIS, CIADIS, A. C. CATIEDSIN L. LIGHT CHAN, CHAIN: B. D. BYARLANT CHAIN; CHAIN: L. J.	CATHEPSIN L. HEAVY CHAIN, CHAIN: A, C, CATHEPSIN L. LIGHT CHAIN, CHAIN: B, D, CHAIN: L, I,	HLA-DR ANTIGENS ASSOCIATED DWARLANT CHAIN: CHAIN: A, B, C,	HLA-DR ANTIGENS
Seq Fold	Scarr	E13							136.01
	į		85	35		1.00	8	97'I	
Verify	Ç.		770	4.89		0.47	0.47	i co	
ž	EVE See	1.40-57	1.70-66	3. leeds		1,44-34	2.76-25	1.1641	194
3	\$	2	<u>a</u>	9		í:	41	=	=
Į	\$	z.	×	a		<b>a</b>	a	4	J
ľ	8	<b>.</b>	,	J				<	Į
г	8	Ē	<u>1</u>	77 <b>0.</b>		Ā	Ĕ	2	ij
200	ΑŞ	3	3	3	Ī	я̂	3	3	Z

PDB ametades	COMPLEX H.A. CLASS II HETOCOMPATRILITY ANTIGEN, GAMAN MALOR HETOCOMPATRILITY COMPLEX, ANTIGEN PROCESSING, I. OLIOOMERLATION, CHAPERONIN	MAJOR HETOCOMPATIBILITY COMPLEX HIA CLASS II HESTOCOMPATIBILITY ANTIGEN, GUMBAN MAJOR HISTOCOMPATIBILITY COMPLEX, ANTIGER PROCESSION, STAPPER, OLOOMERIZATION, GTAPERONIN		COMPLEX (ZINC FINGERDINA) COMPLEX (ZINC FINGERDINA), ZINC FINGER, DINA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DINA) COMPLEX (ZINC FINGER/DINA), ZINC FINGER, DINA-BINDING PROTEIN	COMPLEX (ZINC FINGERONA) COMPLEX (ZINC FINGERONA), ZINC FINGER, DIAA-BINDING PROTEIN	
Cermpound	ASSOCIÁTED INVARLANT CHAIN; CHAIN: A, B, C;	HA-DR ANTIGENS ASSOCIATED DVARLANT CHANK CHAIN: A. B. C;		QGSQ ZINC PINGER PETIDE, CHAIN: A; DUFLEX OULOGNUCLEOTIDE BINDING SITE, CHAIN: B, C,	QGSR ZINC FENGER PRETING: CHAIN: A: DUPLEX OLIOONUCLEOTIDE BINDING STR; CHAIN: B,	QGSR ZINC FENGER PETTING, CHAIN: A; DUPLEX OLIOONUCLEOTING BINDING SITE; CHAIN: B, C,	TRANSCRUPTION REGULATION YEAST
Seq Fold Score							
4W4		<b>8</b> 71		Q.11	6070-	00	0.10
Vertity	-	160		-0.45	01.0	3	80
15 P. 15 P.		1.4·24		16-13	12-12	13-13	0.0001
3 2		=		512	570	3	7.5
Į į		-		43	7	¥ .	3
đe		<	ĺ	٧	۷.	<	
ê a		<u>.</u>		dial	4	11	Ē
3 a §		3			¥	ž	Ŗ

10   10   10   10   10   10   10   10							
1798   Chain   Sart   Edd   781   Verity   Paif   Sagridad	PDB association		DNA-BINDING REGULATORY PROTEIN ATF-2; CRE BINDING PROTEIN ATF-2; TRANSCALFTONAL ACTIVATION 2 DOMAIN, 2N FINGER	COMPLEX (ZINC FINGERDNA) ZINC FINGER, PROTEIN-CINA INTERACTION, PROTEIN DESIGN, 3 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGERDNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA THERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC PINGEADHA) ZINC FINGER, PROTEIN-DNA THERACTION, PROTEIN DESIGH, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGEADHA)	
1798   Chain   Sart   Earl   Midty   FMIY    Con apound	TRANSCRIPTION PACTOR ADRI (RESDAES 102 - 130) 1ALD 3 (AMDN 1ERAMAL ZDAC FROER DOMARN (ANAL 10 STRUCTURES) 1ARD 4	CREBPI; CIAIN: NULL;	DNA; CHAIN; A, B, D, E; CONSENSUS ZINC PINGER PROTEIN; CHAIN; C, P, O;	DNA; CHANN: A, B, B, E, CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G,	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, O;	REQUIATION YEAST REGULATION YEAST TRANSCRIPTION FACTOR PART (RESULDES 190-159) [PAA. 1 (PAPA. CARBOXY TERMINAL ZINC FINGER DOMAND, MITTANT WITH	
1798   Chain Start   Ead   Fist   Verify	Seat Feld Score						
Pril   Chain Start   Each   Fict	PM.P Scars		990	6.13	25	o II	ਤ ·
178   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chain Start Red   Chai	Verify Score		8	0.16	=	971	3
17   17   18   18   18   18   18   18	PSI BLAST Score		0.00034			1147	0.00085
P			572	\$	339	672	us
60 KM KM KM KM KM KM KM KM KM KM KM KM KM	A. A.		₹	3	309	₹	¥
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	O C			υ	o	o	
	80 E		<u> </u>		ine)	lacy	<u>a</u>
	S e Š		38	-	3	38	3

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

																				•									
PDB sanotaden	CELL CYCLE CONTROL FACTOR	CHAPERONE AAA-ATPASE, CLPY, ATP-DEPENDENT PROTEOLYSIS	CHAPERONE AAA-ATPASE, CLPY, ATP-DEPENDENT PROTEOLYSIS	TRANSFERASE SHIKIMATE KINASE,	PHOSPHORYL TRANSFER, ADP,	PROTEIN, TRANSFERASE		HYDROLASE TETRATRICOPEPTIDE,	TRP, HYDROLASE, PHOSPHATASE,	PROTEIN-PROTEIN INTERACTIONS,	STRUCTURE	CHAPERONE HOP, TPR-DOMAIN,	PEPTIDE-COMPLEX, HELICAL	REPEAT, HSP90, 2 PROTEIN BINDING	CHAPERONE HOP, TPR-DOMAIN,	PEPTIDE-COMPLEX, HELICAL	REPEAT, HSC70, 2 HSP70, PROTEIN	BINDING	CHAPERONE HOP, TPR-DOMAIN,	PEPTIDE-COMPLEX, HELLCAL	REPEAT, HSC70, 2 HSP70, PROTEIN	SIGNALING PROTEIN PEROXISMORE	RECEPTOR 1, PTS1-BP, PEROXIN-5.	PTS! PROTEIN-PEPTIDE COMPLEX.	TETRATRICOPEPTIDE REPEAT, TPR, 2	HELICAL REPEAT		ENDONUCLEASE ENDONUCLEASE,	
Coempound		HEAT SHOCK PROTEIN HSLU: CHAIN: A:	HEAT SHOCK PROTEIN HSLU: CHAIN: A:	SHIKIMATE KINASE;	CHAIN: A, B;			SERINE/THREONING	PROTEIN PHOSPHATASE	S, CHAIN: NULL;		TPR2A-DOMAIN OF HOP:	CHAIN: A; HSP90-PEPTEDE	MEEVD, CHAIN: B;	TPRI-DOMAIN OF HOP:	CHAIN: A. B. HSC70	PEPTIDE; CHAIN: C, D;		TPR1-DOMAIN OF HOP:	CHAIN: A. B. HSC70	PEPTIDE; CHAIN: C, D;	PEROXISOMAL	TARGETING SIGNAL 1	RECEPTOR: CHAIN: A. B.	PTSI-CONTAINING	PEPTIDE CHAIN C.D.		ENDONUCLEASE; CHAIN:	
Seq Fold Scare												Γ								_									1
N S	T	30	2	120			Ī	370				9			870				on.			550	:	_		_	Ī	ş	1
Vertity		200	4.12	950				10				ä		_	900				20.0			200					Ī	0.02	1
EAST F		174-72	51.0	1000			Ī	84	_			17000			5				12007			200	_				Ī	51-10 1-10	1
3 \$	Ī	Ę	Ę	537				2				261		_	ñ		_		5			9	:				I	22	]
Stert A A		92.0	Ė	=				8				2	_		162				•			ļ			_			2	
g e		4	4									<			<				<									Į,	
<u>8</u> e	T	ī	ī	相				-				1			i i				ŧ			į	!			_	I	103	
ğ e ş		ş	ş	ş				ě				25		_	2			_	ŝ			ŝ					I	234	

			# "ñ 3	ă.,	П		, 1	
PDB senetribes		ZINC FINGER TRANSCRIPTION FACTOR SP1; ZINC FINGER, TRANSCRIPTION ACTIVATION, SP1	CONPLEX TRANSCARTION REGULATION/DIA) TETEM; SI GENE; NAR, TETEM, PROTEN, DNA, TRANSCARTION FACTOR, SI SENA 2 GENE, DNA, BINDONG PROTEN, ZIM, FINGER, COMPLEX) CRANSCARTION REGULATION/DA)	ZINC FINGER DINA BINDING DOMAIN DINA BINDING MOTIF, ZINC FINGER DINA BINDING DOMAIN	TRANSCRIPTION REGULATION TRANSCRIPTION REGULATION, ADRI, ZINC FINGER, NAG	HEXAMERIZATION DOMAIN HEXAMERIZATION DOMAIN, ATPASE, TRANSPORT	CIMPERONG HSLV; HSLU CHAPERONG, HSLVU, CLPQY, AAA ATPASE, ATP-DEPENDENT 2 PROTEOLYSIS, PROTEASONG	ORCI, AAA PROTEIN, DNA
Company	REPLACED BY ALA, PRO TIN REPLACED BY ALA, CYS 140 IPAA 3 REPLACED BY ALA REPLACED BY ALA ROMA, 10 STRUCTURES) IPAA 6	SP 172; CHAIN: NULL;	TRANSCEPTION FACTOR IIIA, CELADI: A; SS RNA GENE; CHAIN: E, P;	SWIS; CHAIN: NUIL;	ADRI; CHAIN; NUIL;	N-ETIMIMALEDAIDE- SENSITIVE FUSION PROTEIN: CHAIN: A:	HEAT SHOCK PROTEIN HELV; CHAIN; A, B, C, D; HEAT SHOCK PROTEIN HELU; CHAIN; B, P;	CELL DIVISION CONTROL PROTEIN 6; CHAIN: A, B;
Score Score								
ij		9	10	65	0.03	0.12	0.03	50'0-
Verte See 15		0.07	<b>9</b> 10	61.9	3	83	2	<u>0</u> 0
ELAST Se se		S.16-10	= 	3.46-06	1.50-06	1.76-13	3,46-12	1.96.1
3 \$		574	8	220	376	3	265	732
ž Ş		3	£	ž	34	419	477	8
g _e			<			٧	13	<
<b>8</b> 8		<u> </u>	91	pga 1	2ads	4 <u>5</u>	1694	egj.
266		3	3	3	2	8	8	S

į
INTEGRIN ALPHA 2 BETA; CHAIN: A, B;
INTEGRIN ALPHA 2 BETA; CHAIN: A, B;
AI DOMAIN OF VON WILLEBRAND FACTOR:
ı
INTEGRIN ALPIYA-1; CHAIN: A, B;
INTEGRIN ALPHA-1; CHAIN: A, B;
DOKUNOGLOBULDI NAC-
4 1001; CHAIN: H; YON WILLEBRAND FACTOR;
ALPHAI BETAI INTEGRIN; CHAIN; A; ALPHAI BETAI INTEGRIN; CHAIN; B;
ALPHAI BETAI INTEGRIN; CHAIN: A; ALPHAI BETAI INTEGRIN; CHAIN: B;
ı
QOSR ZINC FINGER
!
OLIOCATUCI EOTIDE
BINDING STTE; CHALN: B, C,
QOSR ZINC FINGER

FDB assecttion	COMPLEX (ZINC FINGEADINA), ZINC FINGER, DNA-BINDINO PROTEIN	COMPLEX (ZINC FINGER/DDA), COMPLEX (ZINC FINGER/DDA), ZINC FINGEX, DNA-BINDDNO PROTEIN	COMPLEX (ZINC FINGERDINA) COMPLEX (ZINC FINGERDINA), ZINC FINGER, DNA. BINDING PROTEIN	CONTRACTILE LIM DOMAIN, CRP. NACH, MUSCLE DIFFERENTIATION, CONTRACTILE	COMPLEX (ZINC FINGERDWA) ZINC FINGER, PROTEIN-DWA INTERACTION, PROTEIN DISIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGERDWA)	COMPLEX (ZINC FINGERDINA) ZINC FINGER, PROTEIN-DINA INTERACTION, PROTEIN DESION, 2 CRYSTAL STRUCTURB, COMPLEX GINC FINGERDINA)	COMPLEX (ZING FINGER/DNA) ZING FINGER, PROTEIN-DNA INTEXACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX
Compound	PLPTIDE; CHAIN; A; DUPLEX OLICONUCLEOTIDE BINDING SITE; CHAIN; B,	QGSR ZINC FINGER PEPTIDE, CHAIN: A: DUPLEX OLIGONUCLEOTIDE CLIGONUCLEOTIDE C,	QOSR ZINC FINGER PEPTIDE, CHAIN: A; DUPLEX OLIGONUCLEOTIDE CLIGONUCLEOTIDE CLIGONUCLEOTIDE C,	CRP1; CHAIN!: A;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN! A. B. D. E. CONSENSUS ZINC FINGER PROTEIN; CHAIN: C. F. G.	DNA; CHAIN! A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN! C, P, G;
Seq Fold Scare			-	35.06		108.46	
PM F		693	0.0		0.1		1.00
Vertity		40.03	0.10		0.70		0.58
FSI AST		79°Z	5.16-23	5.46-13	3.46-51	3.46-51	6.40-51
3 \$		<b>%</b>	308	315	161	<b>8</b> 61	22
Start AA		£	£	113	2	<u>ş.</u>	<u> </u>
Chath C		<	<b>~</b>	v	U	U	c
5 5 5		<u> </u>	dia i	44 44	ja ja	lmey	inc,
g e ğ		8	383	583	æ	S S	S#S

WO 02/05/260 PCT/US01/47/50 WO 02/05/260 PCT/US01/47/50 WO 02/05/260 PCT/US01/42/50

PDB annotation	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINCERONA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	COMPLEX (TRANSCRETTON COMPLEX (TRANSCRETTON REGULATIONONA) FITIA; 85 GENE; NAK, TELIA, PROTEIN, DIN, CHANGKIPTON FACTOR, SR NA 2 FERSOR DAYS BRAINED WORTHY AND	TRANSCRIPTION REGULATION DNA)	USING TOWNERS OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF T	THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS O	THE ANALYST ON THE ANALYST ON THE ANALYST ON SECURITION SECURATION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION SECURITION
	(ZINC FINGER/DIA)	+	<del></del>	TRANSCRIPTION RE			
Cemporad		DNA; CHAN; A, B, D, B; CONSENSUS ZINC FUNGER PROTEIN; CHAIN; C, F, Q,	TRANSCRUPTION PACTOR IIA; CHAIN: A; 58 RNA GENE; CHAIN: E, F;		FEILA; CHAIN: A, D; 33 KIBOSOMAL, RNA GENE: CHAIN: B, C, B, F;	FILLY, CHANY, A. Dr. 53 LIBOSOMAL, RNA GENER FILLY, CHANY, A. Dr. 53 RIBOSOMAL, RNA GENER GHAIN, B. C. R. F.	THIN, CHUIR A D. S. S. S. S. S. S. S. S. S. S. S. S. S.
Som	-	202	FEG		F 2 0	F20   F20	ESO ESO ESO
PMJ SeqPeld Score Score		81	ē		2110	210 87: 84:	27 0 <u>0</u> 1
Vertify		0.27	-0.07		10.0	70 FF	5 F
ELAST F		1.60-10	[] <b>4</b> [		9(-91)	9(-41) K-4:1	1.43 K-6.1
3 \$		Ħ	ğ		92	316 471	\$1 E
¥ \$		ă	82		\$	£ 0	ž
đe		0	<_			< <	< < <
<u> </u>		1	9		<b>9</b>	嘉 暮	ā ā ā
ar One	<u> </u>	9	æ		≅	3 3	23 ES ES

	_			_	_		_																							
PDB anastries	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DINA) ZINC	DATE ACTION PROTEIN DESIGN 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DINA)	COMPLEX (ZINC PINGENDINA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DINA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGERONA)	COMPLEA (AINL FINESOURA) AND	INTER ACTION PROTEIN PERSON 2	COVETAL STREET, COLOR BY	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2
Coumpound		DNA; CHADI: A, B, D, E.	PROTEIN CHAIN C P O			DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	retrient chain: c, r, c,	DNA: CHAIN: A. B. D. R.	CONSENSUS ZINC FINGER	PROTEIN; CILAIN: C, P, Q.			DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN; C, P, Q.			DNA; CHAIN: A. B. D. E.	CONSENSUS ZINC FINGER	PROTEIN; CHAIN; C, F, Q;		a u u canana	DANK CHANGE A, D. E.	MONTEN CHAPLO FO	,		DNA; CHAIN: A, B, D, E;	COMSENSUS ZINC PINGER	PROTEIN: CLAIN: C. P. C.
Scare		Г	_						Ī												_		1			_				-
PMY	ľ	8				00'1			590			,		1170					8.0	_			1	3			_	8		-
Vertify		6.73		_		75.0			ã					-6.33					16.0			_	1					2		_
PSI BLAST Sem		05-04-1				3.40-46	_	-	9			_	_	16-25					1.22-39		_			_	_	_		6.8e-51		-
End A Lad	Γ	82				274			8					317					EII		_	_	Ī	•				169		_
Start	Γ	12				902			228	_				952			_		3	_			ļ	8	-			=		
Chab	Г	S				c			J					) 2				į	3				,	٠				l		
80g C)	Γ	laey.		_		lacy			À	•	_			Intery					Iney	_				, ac		_		laey	_	
Se OS		E .	_			583	_	_	3	_				685		_		_	583	_	_	_		_				ŝ		_

285

SEQ TO TO	6 6	a e	Start	<b>₩</b>	PSI BLAST Sterr	Verify Scare	Score	SeqFold	Centrapend	PDB annotation
									INTIATOR ELEMENT DRA; CHAIN: A, B;	TRANSCRPTION INTIATION, DUTATOR ELEMENT, YYL, ZINC 2 FINGER ROOTEN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRPTION EGULATIONDIA)
ā	<u> </u>	υ	802	308	1.7027	031	0.98		YYI; GHADI: C, ADEBO- SASOCARTED YELES PS DUITATOR ELEMENT DNA; CHADI: A, B.	СОМЕТЕК ПЕМОТИ ПОМОНУ)  В МЕТОВЕТИ ПОМОНУ В МОТЕМЕТЕК  В МЕТОВЕТИ ПОМОНУ В МОТЕМЕТЕК  В МЕТОВЕТИ ПОМОНУ В МОТЕМЕТЕК  В МЕТОВЕТИ В МОТЕМЕТЕК  В МЕТОВЕТИ В МОТЕМЕТЕК  В МЕТОВЕТИ В МОТЕМЕТЕК  В МЕТОВЕТИ В МОТЕМЕТЕК  В МЕТОВЕТИ В МОТЕМЕТЕК  В МЕТОВЕТИ В МОТЕМЕТЕК  В МЕТОВЕТИ В МОТЕМЕТЕК  В МЕТОВЕТИ В МОТЕМЕТЕК  В МЕТОВЕТИ В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МЕТОВЕТИ В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК  В МОТЕМЕТЕК
9	<b>P</b>	U	3	ž	1.56.12	170	8.		YY; CHAIN; C, ADENO- ASCOCATED VEUS PS DUTIA, TOR ELEMENT DNA; CHAIN; A, B;	СОМРЕЖ ТИКАКОСКІТОМ ВЕФИЛЛІФИЛИЛ УМО-УАЛО І: ТКАМКОЛЕТІОМ ПЕТАТІОМ ІМПАТОМ ВЕВМЕМІ, УУІ, ZMC 2 ПРОСЕВ МОГПЕМ, ВОМ-РЕМ ВЕХОМЯТНОМ, З ОМРЕКЕ (ТКАМКОЦЕТІОМ В
3	3	υ	3	691	Lled.	937	9:0		YYI; GIÁIN: Ç, ADENO- ASOCIATED VEUS PS BUTTATOR ELEMENT DNA; CHAIN: A, B;	COMPLEX (TRANSCRPTION BEGIL-ATRONDAN, TRO-Y-AND ! TRANSCRPTION BUTTATION, BUTTATOR ELEMENT, YYI, ZINC 2 FINGER PROTEDI, DNA-PROTEDI BECOGNITION, SOAPUEZ, TRANSCRPTION REGULATIONDNA)
3	3	υ	3	<u>s</u>	1.2k-34	0.48	8.		YYI: CHAIN: C, ADENO- SASCATADO VRUE FS DUTIA, TOR ELEMENT DNA; CHAIN: A, B;	СОМРЕКТ ГЕЛЬНОСТВИН В ВЕСПТАТОМОМ В ТЕМОВОМОМ В ВЕСОВОТНОЙ В БЕМОВТОТИ В ВЕМОВТЕМ В ВЕМОВТЕМ В ВЕМОВОМИ В В В В В В В В В В В В В В В В В В В
S	100		23	8	1.76-03 -0.43	т-	10.0		ADRI; CHAIN: NULL;	TRANSCRIPTION REGULATION

PCT/US01/42950

WO 02/059260 PCT/US01/42950

										_
PDB annetation		COMPLEX (GTP- BINDING/TRANSDUCER) SIGNAL TRANSDUCTION PROTEIN, GTPASE, WING, RAS-LIKE, 2 COMPLEX (GTP- BINDING/TRANSDUCER)	COMPLEX (GTP- BRUDINGTIXANSDUCER) SIGNAL TRANSDUCTION PROTEIN, GTP-ASE, WD4, RAS-LIKE, 2 COMPLEX (GTP- BRUDINGTRANSDUCER)		TRANSFERASE METHYLTRANSFERASE	STRUCTURAL GENOMICS HYPOTHETICAL PROTEIN, METHANOCOCCUS JANNASCHII	TRANSFERASE FT3. METHYTRANSFERASE, FT3. METHYTRANSFERASE, ADOMGT. ADENOSYL METHORINE, HEAT 2 SHOCK PROTEINS, 235 RIBOSOMAL. RNA.	TRANSFERASE (METHYLTRANSFERASE) COMT; TRANSFERASE, METHYLTRANSFERASE, REJUGITANSFERASE, ECURANSMITTER	METHYLTRANSFERASE GNMT, S. ADENOSYL-L-METHONINE: GLYCINE METHYLTRANSFERASE	
Сепиропи		O PROTEIN GI ALPHA 1; CHAIN: A; O PROTEIN GI BETA 1; CHAIN: B; C PROTEIN GI GAMMA 2; CHAIN: G;	O PROTEIN OI ALPHA 1; CHAIN: A; O PROTEIN GI BETA 1; CHAIN: B; O PROTEIN GI QAMMA 2; CHAIN; O;		GLYCINE N. METHYLTRANSFERASE; CHAIN: A. B. C. D;	MIGSEZ; CHAIN: A;	FTSJ; CHADN: A;	CATECHOL O- METHYLTRANSFERASE; CHAIN: NULL;	GLYCINE N- METHYLTRANSFERASE; CHAIN; A, B;	
Seq Fold Score			57.14							
AW.		0,60			935	0.00	0.16	5	0.24	
Verde Ber dy		1 o			0.49	<u>.</u>	60.0	#7°0	633	
PSI BLAST		6.le-23	6.80-23		1,46-18	<u> </u>	0.00017	1.18-09	1.46-18	
3 \$		2	2		8	161	<u>\$</u>	561	81	
Ş Ş		2	2	L	=	2	2	rs.	22	
g e		0	D		<	<	<b>v</b>		<	
<u> e</u>		<u>a</u>	g.		<u> </u>	1	9 <u>1</u>	3	evzi .	
S a É	Γ	g	212	Ī	3	3	¥	38	9 <del>2</del>	

290

WO 02/059260

PDB szaotzden			HORMONE RECEPTOR HORMONE RECEPTOR, DISULIN RECEPTOR FAMILY		MUSCLE PROTEIN CTNC, CARDIAC, MUSCLE PROTEIN, REGULATORY, CALCIUM BINDING	MUSCLE PROTEIN CTNC; CARDIAC, MUSCLE PROTEIN, REGULATORY, CALCIUM BINDING	CALCIUM-BENDING PROTEIN	CALMODULIN CERUIM TRIC.	DOMAIN, RESIDUES 1 - 73; CEALUM- LOADED, CALCIUM-BINDING	PROTEIN	HYDROLASE CALCINEURIN; HYDROLASE, PHOSPHATASE, IMMUNOSUPPRESSION	HYDROLASE CALCINEURIN;	HYDROLASE, PHOSPHATASE, DAMUNOSUPPRESSION	MUSCLE CONTRACTION MUSCLE	ACTIVATED, TADPOIN, EP HAND 2	CALCUME BINDING CALCUM.	BINDING, MYRISTOYLATION,	NEURONAL SPECIFIC GUANYLATE 2 CYCLASE ACTIVATOR	CALCTUM-BINDING PROTEIN SNTNC;
Соепропр		VIRUS EQUINE HERPES VIRUS-1 (CIHCA, OR RIND DOMAIN) ICHC 3 (NAR, 1 STRUCTURE) ICHC 4	INSULIN-LIKE GROWTH FACTOR RECEPTOR 1; CHAIN: A;		TROPONIN C; CHAIN:	TROPONIN C. CHAIN: NULL;	CALMODULD; CHADS:	NUT:		_	HAD	EVITABONINE	PHOSPHATASE 2B; CHAIN: A, B;	ONIN C; CHAIN: A, B;		NPI IROCALCIN DEL TA			N-TROPONIN C, CHAIN:
SeqPold	Scene			1		69.25						17.59				20,70			
	2	00	ğ		2630		590				0.0			66.0					690
Verify	200	-0.16	Z P		3		2				950	Γ		0.67					
_	3 5	S 4	S0-45.		(Ped)	6.86-45	14.2				4. 64	9-40		3,44.25		1			5.14-26 0.50
3	\$	<u>r</u>	Si.		191	2	2			_	5	6/1		=		į	:		ē
ungg	<b>1</b>	<u>ā</u>	2		91		2			_	2	۰		=					=
•	e		,								a	8		<		ŀ			
604	<u> </u>	豊	ē	Γ	3	4	101			_	1	3		leva		1	ŗ		ž
520	eġ	ş	32		īš.	š	Ē				Ē.	165		Ē		į	:_		š

291

ZING FINGER PROTEIN GLII; CHAIN: A; DNA; -CHAIN: C, D;

ZDC FINGER PROTEIN
GLIC GRAN: A DWA:
CAUGE OF DEAGE PROTEIN
GLIC GRANE A DWA:
GLIC GRANE A DWA:
GLIC GRANE A DWA:
GLIC GRANE A DWA:
GLIC GRANE A DWA:
GLIC GRANE A DWA:

8

3

122

Ę,

ZINC FINGER PROTEIN
GUI; GUANN AC DAN
GUI; GUANN AC DAN
GUI; GANN AC DAN
GUINE CO

0.55 3

> ğ 8

289

ä

182 3 2 583 ž

PMP

PSI BLAST Score 3 2

Start \$ 경으

SEQ PDB ID ID NO: į Ğ ş 75 Ē

WO 02/059160 PCT/US01/4950 WO 02/059260 PCT/US01/4950

										_	_	_	_	_		_		_		_	_	_	_	÷		_		_	_	_		_
PDB sanotation	CALCIUM-BINDINO, REGULATION, TROPONIN C. SKELETAL MUSCLE, 2 CONTRACTION																													CALCIUM-BUNDING PROTEIN	CALMODULIN APO TRIC-DOMAIN;	CMF 9
Centipoend	:Tina	CALCTUM-BINDING	PROTEIN CALMODULIN	COMPLEXED WITH	CALMODULIN-BINDING	DOMAIN OF ICDM 3	CALMODULM	DEPENDENT PROTEIN	KINASE II ICDM 4	CALCTUM-BINDING	PROTEIN CALMODULIN	COMPLEXED WITH	CALMODULDI-BINDING	DOMAIN OF ICOM 3	CALMODULDA	DEPENDENT PROTEIN	KINASB II ICDM 4	CALCIUM-BINDING	PROTEIN CALMODULIN	(VERTEBRATE) ICLL. 3	CALCTUM-BINDING	PROTEIN CALMODULIN	(VERTEBRATE) ICLL 3	CALCIUM-BINDING	PROTEIN CALMODULIN	(VERTEBRATE) ICLL 3	CALCTUM-BINDING	PROTEIN CALMODULIN	(VERTEBRATE) ICLL 3	CALMODULIN	(VERTEBRATE); ICMF 6	CHAIN: NUTL; ICAP 7
Scar										18.59	_	_									75.45				_							
PM F Score		8																8						860			940			7		
Vertify Score		0.77								Γ								0.82						0.74			27			0.00		
PSI BLAST		3.46.56								3.46.56								1905			3.			120-26			170.24			5.10-28		
3 \$		191				_	_			167								191			19			92			3			691		
Start A		=								=								9			=			2			8			62		
O Cale		<	_							~													_									
<b>2</b> 9		9								8					_			3			2			3			2	_		ju j		
SE SE		55	_							<u>8</u>	_		_					165			165			ž			Ē			165		

292

3

STRUCTIONAL PROTEIN RELIZATIONAL
RETAL TRANSFORT COLAMODULINAL
RETAL TRANSPORT CONTRACTION
CALCIDAR RETORNAL
CALCIDAR RETORNAL
CALCIDAR RETORNAL
CALCIDAR RETORNAL
CALCIDAR RETORNAL
CONTRACTION CALCIDAR RETORNAL
CONTRACTION CALCIDAR RETORNAL
CONTRACTION CALCIDAR RETORNAL
CONTRACTION CALCIDAR RETORNAL
CONTRACTION RETORNAL
RETAL TRANSPORT
CALCIDAR RETORNAL
RETORNAL CALCIDAR RETORNAL
CONTRACTION RETORNAL
RETORNAL CALCIDAR RETORNAL
RETORNAL CALCIDAR RETORNAL
RETORNAL CALCIDAR RETORNAL
RETORNAL CALCIDAR RETORNAL
RETORNAL CALCIDAR RETORNAL
RETORNAL CALCIDAR RETORNAL
RETORNAL CALCIDAR RETORNAL
RETORNAL CALCIDAR RETORNAL
RETORNAL CALCIDAR RETORNAL
RETORNAL CALCIDAR RETORNAL
RETORNAL CALCIDAR RETORNAL
RETORNAL CALCIDAR RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL RETORNAL
RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETORNAL RETO

CARDACTROPONDIC CALMODITHE CHAIN: A CALMODITHE CHAIN: A CALMODITHE CHAIN: A CALMODITHE CHAIN: A

0.71 1.00 0.57 1.00 0.51 1.00 0.59 0.89

251 25 251 25 251 25 251 251 251

3 \$

WO 02/059260 . PCT/US01/42950 WO 02/059260 PCT/US01/42950

				_					
PDB annetation	CONTRACTION, CALCTUM-BRIDING, TROPOUN, E.F. HAND, 2 OPEN CONFORMATION REQUILATORY DOMAIN, CALCTUM-REGUILATED 3 MUSCLE, CONTRACTION	CONTRACTION MUSCLE CONTRACTION MUSCLE CONTRACTION CALCIUM-BRODNO, TOPPONIN, EP HAND, 1 OPEN CONFORMATION REGULATION? DOMANY, CALCIUM-BROILATIED 3 MUSCLE CONTRACTION	CALCIUM-BINDING PROTEIN EF- HAND ITNX 14	CALCIUM-BINDING PROTEIN EF- HAND ITNX 14					
Coumpound		TROPONDI C. CIÁDI: NULL:	TROPONIN C; ITNX 4 CHAIN: NULL; ITNX 5	TROPONIN C; I TNX 4 CHAIN: NULL; I TNX 5	CONTRACTILE SYSTEM PROTEIN TROPONIN C 1TOP 3	CONTRACTILE SYSTEM PROTEIN TROPONIN C 1TOP 3	CONTRACTILE SYSTEM PROTEIN TROPONIN C 1TOP 3	CALCTUM BRODNO WENTEN CALADOULIN (VTE.>—CF FRACHENT COLOTATISNO RESIDUES 78 - 144 LTRC 3 OF THE NTACT MOLECULE) ITRC	MUSCLE PROTEIN TROPOWIN C (TRIC
Seq Pada Bearr		11.47		17'69			71.36		
PM.F Scare			00"		87	0.77		8	8
Vertify PMP Score Score			3		0.89	950		970	61.
2 K 2		) Pag	31.5	5.10-46	6. Be 49	5.1e-24	6. Be-49	1.6.77	24.2
3 \$		3	3	3	3	2	£.	191	5
¥ ₹		•	=	6	=	7	9	5	=
đe								<	
<u>5</u> e		Ā	Ħ	Ħ	ĝ	ğ	<u>ĝ</u>	8	Ħ
ğ e ş		s.	ŝ	š	<u>\$</u>	š.	<u>.</u>	\$	<u>s</u>

_	_		_	Ē		ì,			
9 9 §	<u> </u>	1	<b>1</b>	i k					
	_							FRAGMENT) (APO FORM) (NMR, 1 STRUCTURE) 1TRP 3	
195 184	۷	2	<u>s</u>	<u> </u>	0.75	1.00		CALMODULIN; CHÁIN: A; RSJO, CHÁIN: B;	салморили, салсим віхрию, нелх-лоов-нелх, зісимілию, з сометежсалсим-віхрію Ркотеймертів;
165	<	91	<u>\$</u>	85.01 85.01			75.17	CALMODULIN; CHAIN: A; RSZB; CHAIN: B;	CALMODULIN, CALCIÚM BINDINO, HELIX-LOOP-HELIX, SIGNALLING, 2 CONPLEX(CALCIÚM-BINDINO PROTEINPEPTIDE)
166	<	~	2	1.40	0,15	66'0	,	CALMÓDULN; CHAIN: A; RS20; CHAIN: B;	CALMODÁILNÍ CALCIUM BINDINO, HELYLLOOP-HELIX, SIGNALLINO, 2 COMPLEXICALCIUM-BINDINO PROTEINPEPTIDE)
165	<u> </u>	<u>-</u>	3	3.44-23	62.0	693		CALMODULDY, CHADY: A; RS20; CHADY: B;	CALMODULIN, CALCIÚM BINDING, HELIX-LOOP-HELIX, SIGNALLING, 2 COMPLEX(CALCIÚM-BINDING PROTEINVEPTIDE)
15K	_	<u>-</u>	191	61-971	ឌេ	673		TROPONIN C, CHAIN: NULL;	CALCTUM-BINDING PROTEIN CTNC; CALDIAC, MUSCLE, REGULATORY, CALCTUM-BINDING PROTEIN
15 15 15 15 15 15 15 15 15 15 15 15 15 1	_	2	151	<u> </u>	58.0	\$6.0		TROPONIN C; CHAIN: NULL;	MUSCLE PROTEIN CTNC; CARDIAC, MUSCLE PROTEIN REGULATORY, CALCTUM BINDING
<del>2</del> <u>2</u>	_		651	<u> </u>			58.42	TROPONDI C; CHAIN: NULL;	MUSCLE PROTEIN CTNC; CARDIAC, MUSCLE PROTEIN, REGULATORY, CALCTUM BINDING
165		2	2	3.4-30	0.41	590		CALMODULIN; CHAIN:	CALCTUM-BINDING PROTEIN CALMODULIN CERUIM TRIC DOMAIN, RESIDUES I - 73; CERUIM- LOADED, CALCTUM-BINDING PROTEIN
165	\  -	E	5	140.33	19'0	660		TROPONIN C; CHAIN: A, B;	

_	_	_	_	-		_	-	-	-		_	Т	_			_	_		_	_	_	_	-	Т	_	_
PDB nametation		CONTRACTION, CALCIUM- ACTIVATED, TROPONIN, BJP HAND 2 CALCIUM-BINDING PROTEIN	CALCIUM-BINDING PROTEIN SNTNC	CALCIUM-BINDING, RECULATION, TROPONIN C, SKELETAL MUSCLE, 2 CONTRACTION	MUSCLE PROTEIN MDE, MUSCLE PROTEIN													•								
Conmpound			N-TROPONIN C; CHAIN:	NOTE:	MYOSIN; CHAIN: A, B, C, D, E, F, O, H;	CALCIUM-BINDING	PROTEIN CALMUDULIN	CALMODITINARIONO	DOMAIN OF ICDM 3	CALMODULIN-	DEPENDENT PROTEIN KINASE II ICDM 4	CALCIUM-BINDING	PROTEIN CALMODULIN	COMPLEXED WITH	CALMODULIN-BINDING	DOMAIN OF ICDM 3	CALMODULDI.	DEPENDENT PROTEIN	CALCTUM-BINDING	PROTEIN CALMODULIN	(VERTEBRATE) ICLL 3	CALCIUM-BINDING	PROTEIN CALMODULIN	(VERTEBRATE) ICLL 3	CALCIUM-BINDING	WERTEBRATE ICAL 3
SeqPadd	,											75.93										11.03				
AW.			69.0		8	8													8						3	
Vestify			0.50		0.73	22.0													0.75						3	
2			5.10-26		120-33	5.16-54						5.1e-54							15.4			16-57			6.80-25	
3:	<u> </u>		63		139	157						53							151			158	_		2	
Start	ŧ		=		61	=						61							82			61			_	
9 5	•				<b>a</b>	٧			_			<														
EQ.	3				Ē	8						Podra							2		_	3			큣	
	ğ		165		165	165						365							88			165			381	

. 296

PCT/US01/42950 WO 02/059260

Par Par	Verti)	Prof.	Seet Feed Seere	Сеппревьй	PDB annetation
				TROPONIN C (TRIC FRADMENT) (APO FORM) (NAR, 1 STRUCTURE) ITRF 3	
95-45.1	14.0	0.94		CALMODULN; CHARN: A; RS20; CHAIN: B;	CALMODULM, CALCTUM BINDING, HELIX-LOOP-HELIX, SIGNALLING, 2 COMPLEX(CALCTIM-BINDING PROTEINPEPTIDE)
% • S			89.13	CALMODULM; CHĀRÞ: A; RSZQ; CHĀRÞ: B;	CALMODULIN, CALCIUM BINDING, HELLY, LOOP-HELLY, SIGNALLING, 2 COMPLEX(CALCIUM-BINDING) PROTEMPEPTIDE)
1.76-24	OTO	0.70		CALMODULPI; CHAIN! A; RSZB; CHAIN! B;	CALMODULIN, CALCIUM BINDING, HELIX-LOOP-HELIX, SIGNALLING, 2 COMPLEX(CALCIUM-BINDING PROTEIN/PEPTIDE)
1.76.24	40.16	đ		MYOSIN; CHAIN; A, B, C;	MUSCLE PROTEIN MUSCLE PROTEIN, MYGSIN SUBPRACIMENT-1, MYGSIN HEAD, 2 MOTOR PROTEIN
6.10-45	0.54	0.92		TROPONIN C; CHAIN: NULL;	MUSCLE PROTEIN CINC, CARDIAC, MUSCLE PROTEIN, REGULATORY, CALCTUM BINDING
\$ <b>- 4</b> 3			69.25	TROPONIN C, CHAIN: NULL;	MUSCLE PROTEIN CTNC; CARDIAC, MUSCLE PROTEIN, REGULATORY, CALCIUM BINDING
1.7 <del>0.</del> 29	_	aés		NULL; CALMODULIN; CHAIN;	CALCIUM-BINDING PROTEIN CALMODALIN CERUM TRIC. DOMAN, RESIDUES 1 - 75, CERUM- LOADED, CALCIUM-BINDING PROTEIN
04-04.	0.58	0.83		SERINETHREONINE PHOSPHATASE 2B; CHAIN: A, B;	HYDROLASE CALCINEURIN; HYDROLASE, PHOSPHATASE, IMMUNOSUPPRESSION
ı	l	Ì			

STRUCTURAL PROPERINFELIA-TURAL
HEITAL TRANSPORT DISCREDIAL
HEITAL TRANSPORT DISCREDIAL
HEITAL RESOLUTION DISCREDIAL
HEITAL RESOLUTION DISCREDIAL
CONTRACTION CALCULA BENDERA
CONTRACTION CALCULA BENDERA
CONTRACTION CALCULA BENDERA
CONTRACTION CALCULA BENDERA
CONTRACTION CALCULA BENDERA
CONTRACTION ALGORA
CONTRACTION ALGORA
CONTRACTION ALGORA
CONTRACTION ALGORA
CONTRACTION ALGORA
CONTRACTION
CALCULA BENDERA
CONTRACTION
CALCULA BENDERA
CONTRACTION
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA BENDERA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCULA
CALCUL CARDIAC TROPONIN C; CHAIN: A; CALMODULIN; CHAIN: A; CALMODULIN; CHAIN: A; TRUPOMIN'C TINK'A
GIANIN'RIAL, INNS
GIANIN'RIAL, INNS
GIANIN'RIAL, INNS
GIANIN'RIAL, INNS
GIANIN'RIAL, INNS
GIANIN'RIAL, INNS
IND
GONTA-CTILLE SYSTEM
PROTEEN TRUPOMIN'C
CONTRACTUE SYSTEM
INTER
REOTEN TRUPOMIN'C
HOTEL TRUPOMIN'C
THOSE SYSTEM
ANINGLE PROTEIN SeqFold 8 8 3 690 623 0.51 PSI BLAST Scere 1.46-40 1.70-44 3,40-43 1.78-45 ₽ \$ 158 158 5 5 5 SI 139 Start A đ e 0 B B ă 26 56 58 56 E8

297

165

WO 02/059260 PCT/US01/42950

			ZLB AND 2	787	TON TON T.B. 2			
PDB annotation		HYDROLASE CALCINEURIN; HYDROLASE, PHOSPHATASE, DAMINOSUPPRESSION	MUSCLE CONTRACTION MUSCLE CONTRACTION, CALCIUM- ACTIVATED, TROPONDI, EF HAND 2 CALCIUM-BINDING PROTEIN	CALCIUM-BINDING CALCIUM- BINDING, MYRUSTOYLATION, NEURONAL SPECIFIC GUANYLATB 2 CYCLASE ACTTVATOR	CALCIUM-BINDING PROTEIN SWING CALCIUM-BINDING, REGULATION, TROPONIN C, SKELETAL MUSCLE, 2 CONTRACTION			•
_		_		3898	33≱8			<u> </u>
Coumpound		SERINE/THREONINE PHOSPHATASE 2B; CHAIN: A, B;	TROPONIN C, CHAIN: A, B;	NEUROCALCIN DELTA; CHAIN: A, B;	NUL;	CALCIDÁ-BINDING PROTEIN CALAODULIN COMPLEXED WITH CALAODULIN-BINDING DOMAIN OF ICDM 3 CALAODULIN- EDFEDIENT PROTEIN KDASEB II COMM.	CALCHUM-BINDING PROTEIN CALMODULIN COMPLEXED WITH CALMODULIN-BINDING DOMAIN OF ICDM 3 CALMODULIN- DEFENDENT PROTEIN KINASE II ICDM 4	PROTEIN CALMODULIN
Sequent	Ker	65.74		£.73			18.53	
Ē	2		680		69.0	8		8
	Score		1970		g	0.71		220
_	BLAST Sterr	9	3.46.23	3.46-38	% al.	3,46-36	3.46.56	3
Pag.	ŧ	Ę.	5	2	2	5	5	167
Start	<b>₹</b>	۰	<u>.</u>	-,	<u> </u>	=	=	=
-	e	_	<	<		<	<	
	2	1	Ē	,	五	<u> </u>	<u>§</u>	3
SEQ	Θģ	285	265	8	£	5 <b>5</b>	<b>8</b> 6	265

299

33

ž ž 30 **2** 0 8 e ş

WO 02/059260

Start	3 :	2	Vertity	P.M.P	SeqFedd	Coumpound	PDB aggetries
Ę							
20		19-95.8			75.45	CALCIUM-BINDING PROTEIN CALMODULIN (VENTEBRATE) ICLL 3	
2	I-	126-26	0.74	0.98		CALCIUM BINDING PROTEIN CALMODULIN (VERTEBRATE) ICLL 3	
<u>z</u>	I-	1.76-24 0.37	,5	0.46		CALCIUM-BINDING PROTEIN CALMODULIN (VERTEBRATE) ICLL 1	
169 5.	(vi	S.16-23	20.0	74.0		CALMODULIN (VERTEDRATE); ICMP 6 CHAIN; NULL; ICMP 7	CALCIUM-BINDING PROTEIN CALMODULIN APO TRZC-DOMAIN; 10MF 9
191	•	1.5e.43	120	1.80		CANDIAC TROPONIN C; CHAIN: A;	STRUCTURAL PROTEIN HELLX-TURN- HELLX
168 5.1	12	5.10-59	0.57	97		CALMODULIN; CHAIN: A;	METAL TRANSPORT CALMODULIN, HIGH RESOLUTION, DISORDER
<u>2</u>	ř	3.40.25	ŝ	8:		CALMODULIN; CHAIN: A;	METAL TRANSPORT CALMODULIN, HIGH RESOLUTION, DISORDER
<u>z</u>	Ē.	3.46-23	659	0.89		CALMODULIN; CHAIN: A;	METAL TRANSPORT CALMODULIN, HIGH RESOLUTION, DISORDER
169	h	3,46-27	85.0	06.1		CALMODULIN; CHAIN! A:	TRANSPORT PROTEIN CALCIUM BINDING, EF HAND, FOUR-HELLX BUNDUS
9 891	હ	6.16-20	-0.10	0.15		TROPONIN C; CHADN: A;	CONTRACTILE PROTEIN TROPONIM C-TROPONIM INTERACTION, CARDIAC, MUSCLE PROTEIN, 2 CALCIUM BINDING PROTEIN
3 E.	<u>  ~ </u>	3.46-29			56.95	RECOVERIN; CHAIN: NULL;	CALCIUM-BINDING PROTEIN CALCIUM-BINDING PROTEIN CALCUIM-BINDING PROTEIN
20		<u> </u>	0.73	00'-		TROPONIN C, CHAIN: NULL;	COLCUME REQUIZATED MUSCLE CONTRACTION MUSCLE CONTRACTION, CALCIUM-BINDING, TROPONIN, E-F HAND, 2 OPEN

300

WO 02/059260 PCT/US01/42950

39260 PCT/US01/4.

<b>804</b>	a e	YY YY	3 \$		Vertity Score	M E	Seq Yold	Constitution	PDS assecution
3		•	Ē	Î,			3,5	CONTRACTILE SYSTEM PROTEIN TROPONIN C 110P 3	
E	<		191	1.4-77	<b>9</b> 70	8		CALCIUM BINDING PROTEIN CALAGOULIN (VIR-2-CE FRACIMENT COMPALIZING RESIDUES 78 - 144 ITRC J OF THE hyract Molecule) ITRC 4	
Ā		=	<u>-</u>	3.44.23	<b>6</b> 171	8		MUSCLE PROTEIN TROPONIN C (TRIC FRAGMENT) (APO FORM) (PARE, I STRUCTURE) 1TRF 3	
Ī		51	691	16.59	0.75	8		CALMODULIN; CHAIN: A; RS20; CHAIN; B;	CALMODULIN CALCIUM BINDING, HELXLACOPHELIX, SIGNALLING, 2 COMPLEXICALCIUM-BINDING PROTEINPEPTIDE)
<u>‡</u>		91	691	85.41 1			75.17	CALMODULIN; CHAIN: A; RS20; CHAIN: B;	CALMODULM CALCIUM BINDING, HELIX-LOOP-HELIX, SIGNALLING, 2 PROFELIX/CALCIUM-BINDING PROFELIVE-FILDE)
Ĭ	<	~	2	1.40.Z	0.13	650		CALMODÚLIN; CHAIN: A; RSDO, CHAIN: B;	CALMODULIN, CALCTIM BODDING, HEILT, STONALLING, 1 COMPLEX(CALCTUM-BRUDING) PROTEDWFETTIDE)
Ĭ	<	4	2	3.4-2	620	690		CALMODULN; CHAIN: A; RSSO; CHAIN: B;	CALMODULIN CALCTUM BINDING, HELLY-CORPHELLY, SIGNALLING, 2 COMPLEX/CALCTUM-BINDING PROTEINPEPTIDE)
8		16	39	1.25-19	0.22	0.59		TROPONIN C; CHAIN: NULL:	CALCTUM-BINDING PROTEIN CTNC; CARDIAC, MUSCLE, REGULATORY, CALCTUM-BINDING PROTEIN

| Sign | PipB | Chair | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr | Sarr |

WO 02/059260 PCT/US01/42950

301

	<b>ئ</b> .	<b>ئ</b> .	*	. 7	g - 5			
PDB assection	MUSCLE PROTEIN CTNC; CARDIAC, MUSCLE PROTEIN, REGULATORY, CALCTUM BINDING	MUSCLE PROTEIN CTNC; CARDIAC; MUSCLE PROTEIN, REGULATORY, CALCIUM BINDING	CALCIUM-BINDINO PROTEIN CALMODULIN CERUM TRIC DOMAN, RESIDUES 1 - 75, CERUM- LOADED, CALCIUM-BINDINO PROTEIN	MUSCLE CONTRACTION MUSCLE CONTRACTION, CALCIUM- ACTIVATED, TROPONIN, EF HAND 2 CALCIUM-BINDING PROTEIN	CALCIUM-BINDING PROTEIN SYTNG; CALCIUM-BINDING, REGULATION; TROPOYIN C, SKELETAL MUSCLE, 2 CONTRACTION	MUSCLE PROTEIN MDE; MUSCLE PROTEIN		
	MUSCLE PROTEIN CALCTUM BINDING	MUSCLE I CALCIUM	CALCIUM CALMODI DOMAIN, LOADED, PROTEIN	MUSCLE CONTIRAC	CALCIUM-BIND CALCIUM-BIND TROPONIN C, SI CONTRACTION	MUSCLE		
Cecimpetind	TROPONIN C; CHAIN: NULL;	TROPONIN C; CHAIN: NULL;	CALMODULIN; CHAIN: NUL;	TROPONIN C; CHAIN: A, B;	NULL:	MYOSDY, CHADY: A, B, C, D, E, F, O, H;	CALCIUM-BINDING CONTELECE WITH CALMODULIN-BINDING CALMODULIN-BINDING DOMAIN OF ICDM 3 CALMODULIN- CALMODULIN- RINASE II ICDM 4 KINASE II ICDM 4	CALCIUM-BINDING COMPLEXED WITH CALMODULIN CALMODULIN-BINDING
Sear Sear		24.0						17.09
Scare	16.0		59	88.	6970	8	8	
Vertity Score	51.0		1.0	0.67	8	6.73	r.	
ELAST ELAST		į	3. 4.30	1.4e.23	3.1e-26	1.46.1	X 67	2.le.54
33	151	651	2	<u> </u>	2	S.	151	127
ž ž	22	_	=	=	=	61	=	<u>•</u>
g e				<		B	<	<
ê e	3	<u> </u>	3	Ē	Ŧ.	Ē	<u>#</u>	₫
ខ្លី១ខ្	ž.	265	§.	282	265	88	\$	285

E

3 0 5 2 2 0 5 2

3						HELLY, TURN-	ALMODULIN, TORDER	LIMODULIN, TORDER	MUSCLE B UM-BINDING, I OPEN	ALATORY GULATED 3	MUSCLE B UM-BINDING, 2 OPEN	ALATORY GULATED 3	
PDB emetation						STRUCTURAL PROTEIN HELLY, TURN- HELLX	METAL TRANSPORT CALMODULIN, HIGH RESOLUTION, DISORDER	METAL TRANSPORT CALMODULIN, HIGH RESOLUTION, DISORDER	CALCTUM-REGULATED MUSCLE CONTRACTION MUSCLE CONTRACTION, CALCTUM-BINDING, TROPONTIC B-P HAND, 2 OPEN	CONFORMATION REGULATORY DOMAIN, CALCYUM-REGULATED MUSCLE CONTRACTION	CALCTUR-REQUIATED MUSCLE CONTRACTION MUSCLE CONTRACTION, CALCTUM-BINDING, TROPONIN, B.P. MAND, 2 OPEN	CONFORMATION REGULATED DOMAIN, CALCTUM-REGULATED MISCH & CONTRACTION	
Countpound		CALMODULIN- DEPENDENT PROTEIN KINASE II ICDM 4	CALCTUM-BINDING PROTEIN CALMODULIN OVERTEBRATED ICLL 3	CALCTUM-BINDING PROTEIN CALMODULIN (VEXTEBRATE) ICLL 3	CALCTUM-BINDING PROTEIN CALMODULIN (VPRTEBRATE) ICLL, 3	CARDIAC TROPONING, CITATIN: A;	CALMODULIN; CHAIN: A;	CALMODULIN; CHAIN: A;	TROPONIN C, CHAIN: NULL;		TROPONIN C. CHAIN:		
SeqFold	Score			71.03				Ī	6				
AWA	Scure		8		8	8	8	3			8		
Verli	Scere		0.75		3 0	69'0	ş	S			973		
_	Stern		10-57	10-57	6. <b>2</b> 6.26	14040	1.76-55	3.40-23	170-44		1.76-44		
793	\$		157	851	91	151	158	22	136		8		
Start	\$		=	93		2	=	_	21		=		
S.	2					<	<	<					
PDB	e		3	2	3	10	B	8	<u>ਬ</u>		व		
OZS	έğ		265	<u>8</u>	265	592	265	265	592		282		•

WO 02/05/2460 PCT/US01/43950 WO 02/05/2460 PCT/US01/43950

PDB annetation		ISOMERASE ISOMERASE, MUTASE, Intramolecular transferase		PLANT PROTEIN TWO HOMOLOGOUS HEVERALIKE DOMAINS	GLYCOPROTEIN GLYCOPROTEIN		REPLICATION DNA DOUBLE-STRAND BREAK REPAIR, ABC-ATPASE		ACTIN-BINDING PROTEIN ACTIN- BINDING PROTEIN, CALCIUM- BINDING, PHOSPHORYLATION	STRUCTURAL PROTEIN CALPONIN HOMOLOGY, ACTIN BINDING, STRUCTURAL PROTEIN	STRUCTURAL PROTEIN CALPONIN HOMOLOGY, ACTIN BINDING, STRUCTURAL PROTEIN	ACTIN-BRUDING CALPONIN HOMOLDOY (CF) DOMAIN; FILAMENTOUS ACTIN-BINDING DOMAIN, CYTOSKELETON	ACTIN-BINDING CALPONIN HOMOLOGY (Cd) DOMAIN: FILAMENTOUS ACTIN-BINDING DOMAIN, CYTOSKEL BTON	TRANSAEMBRANE PROTEIN COLICIN, BACTERIOCIN, 10N CHANNEL FORMATION, TRANSAEMBRANE 2 PROTEIN
Септреший	SUTTO: CHAIN: A:	METHYLMALONYL-COA MUTASE; CHAIN; A, B, C, D;		AGGLUTTININ ISOLECTIN VI; CHAIN: A	LAMININ; CHAIN; NULL;		RADSO ABCATPASE; CHAIN: A, C, RADSO ABC- ATPASE; CHAIN: B, D;		T-FIMBRIN; CHAIN: NIJL;	UTROPHIN; CHAIN! A, B;	UTROPHEN; CHAIN: A, B;	SPECTRIN BETA CHAIN; CHAIN: A;	SPECTRIN BETA CHAIN; CHAIN! A;	COLLCIN IA; CHAIN: NULL;
Sea Pedd Scare											74.00	11.13		
PM.F	T	ā	Ī	200	031		97.0		0.63	8			8	g o
Verify	Ī	974	Ī	96'0	16.0		900		17.0	0.79			0.95	0.17
EAST		276-06		0.00014	91000.0	Ī	le-26		5.10-26	<u> </u>	3	3	3	1,46-11
35	Ī	<b>*</b>		2	2		22	Ī	3	98	3	å	\$	<b>3</b>
žį ž		3		=	E		5		125	Ĕ.	#1	378	379	ß
19 ≘	Ī	<	ſ	٧.			₹			<	<	<	<	
29	Ī	Ē	Ī	3	2		ē		1	3	3	2	<u> 3</u>	101
ទ្ធខទ្ធ	į	ğ.		38	ŝ		8		3	š	š	š	ğ	š

PDS expetition	CALCIUM-BINDING PROTEIN EF- HAND I TNX 14					CALMODÁLIN, CALCIUM BINDÍNO, HELIX-LOOP-HELIX, SIGNALLING, 2 COMPLEX(CALCIUM-BINDINO PROTEINVPEPTIDE)	CALMODITLY, CALCIUM BENDING, HELLY-LOOP-HELLY, SIGNALLING, 2 COMPLEXICALCIUM-BENDING PROTEINVESTIDE)	CALMODULIN, CALCIUM BINDING, HELIX-LOOP-HELD, SIGNALLING, 2 COMPLEX(CALCIUM-BINDING PROTEINFEFTIDE)	MUSCLE PROTEIN MUSCLE PROTEIN, MYOSIN SUBPRACHENT-I, MYOSIN HEAD, 2 MOTOR PROTEIN	TRANSFERASE ALPHA-SUPERIELLX, TRANSFERASE
Compound	TROPONIN C; ITNX 4 CHAIN; NULL; ITNX 5	CONTRACTILE SYSTEM PROTEIN TROPONIN C 1TOP 3	CONTRACTILE SYSTEM PROTEIN TROPONIN C 170P 3	CONTRACTILE SYSTEM PROTEIN TROPONTN C 1TOP 3	MUSCLE PROTEIN TROPONIN C (TRIC FRAGNENT) (APO FORM) (PARE, I STRUCTURE) 1TR 3	CALMODULIN; CHAIN: A; RS20; CHAIN: B;	CALMODULIN; CHAIN: A; RE20; CHAIN: B;	CALMODULIN; CHAIN: A; RS20; CHAIN: B;	MYOSIN; CHAIN: A, B, C.	SOLUBLE LYTIC TRANSQLYCOSYLASE
SeaFold				ST.09			22.5 22.5			
Score	ş	8	570		8.	160		0.70	ă	100
Vertify Seere	2	1970	7		<u>6</u>	0.71		0.0	-0.16	100
BLAST	3,46-43	. 78-45	3.46-23	3	1.4-25	38.95	39	1.76-24	1,70-24	0.0019
Kad AA	<u>%</u>	8	22	85	<u> </u>	51	159	2	Ş <u>+</u>	ž
Start	=	=		•	=	2	5	-	R	×
Charles The Charles						<b>4</b>	<b>.</b>	<	a l	<
<u> </u>	ğ	<u>B</u>	gg T	<u>8</u>	Ē	¥	¥.	¥.	E L	8
SEQ.	265	<u>8</u>	255	35	292	283	255	285	392	ž

307

š

š

S = S

			_				
PDB sanotation	ПЕА-КОВОСБЕТКА-КОВОСТОВУ) ОТ ВЕТА-СЛАВОК МЕХА, РУЗ; ОДОВОСТОВ, ТЕАТОВОСТОВУ, ЗОВОТЬ ОДОВОКА, СПОМ, ТАКТВОСТОВУ, З РОБОГЕЗУВ, ТНОВЕДОХИ, З РОБОГЕЗУВ, ТНОВЕДОХИ, З	COMPLEASTRANSDUCTION) OT TRANSDUCTRANSDUCTION) OT BETT-ACADACA, EEE, PT3; CAMBAC, SIGNAL TRANSDUCTION, 2 REGULATION, MEGRENOR VLATION, OF RECITENS, THOREDOOTH, 3 VISION, MEEK, COWLEK		HYDROLASE PI-PLC, HYDROLASE, PHOSPHOLIND DEGRADATION, VIRULENCE PACTOR OF 2 HUMAN PATHODEN	HYDROLASE PI-PLC, HYDROLASE, PROGRAN DEGRADATION, STRULENCE PACTOR OF 2 HUMAN PATHOGEN.	HYDROLASE PI-PLC, HYDROLASE, PHOSPHORIC DUSTER, LIPID DEGRADATION, 3 PHOSPHOLIDASE C. PHOSPHOLIDASE C.	HYDROLASE M.PLC, HYDROLASE, PHOSPHORIC DIESTER, LIPID DEGRADATION, 3
Септроизе	G; PHOSDUCIN; CHAIN: P;	TAAKSDUCIN; CHAIN: B,		PHOSPHATIDYLINOSITOL SPECIFIC PHOSPHOLIPASE C, CHAIN: NULL;	PHOSPHATIDYLINOSITOL -SPECIFIC PHOSPHOLIPASE C, CHAIN: NULL;	PHOSPHATIDYLINOSITOL -SPECIFIC PHOSPHOLIPASE C; CHAIN: MULL;	PHOSPHATIDYLINOSITOL SPECIFIC PHOSPHOLIPASH C
Seq.Fald Score					16,91		74.76
P.M.F		92.0		0.99		0.71	
Verify Seers		0.12		Q.10		60'0	
Plast Sere		113		6. Ba-67	6.le-67	3,46-34	3,46-34
3 \$		239		11	312	301	314
F S		£		01	9	•	•
g o		a.					
5 e		£		計	县	Į.	pd.
S e Š		š		612	612	219	612

WO 02/059260

308

WO 02/05/2560 PCT/US01/42/950 WO 02/05/2560 PCT/US01/42/950

PDB ennetation	SERINE PROTEINASE TRYPSIN-LIKE SERINE PROTEINASE, TETRAMER, HEPARIN, ALLERGY, 2 ASTHMA	SEAINE PROTEASE PRORENTN CONVERTING ENZYME (PRECE), EPIDERAAL GLANDULAR KALLIKERIN, STRINE PROTEASE, PROTEIN MATURATION	SEALDE PROTEASE PRORENDA CONVERTING ENZYME (PRECE), EPIDERMAL GLANDULAR KALLIKERIN, ERRINE PROTEASE, PROTEIN MATURATION	COMPLEX (BLOOD  ALTOPOPHEROREN LIA;  HYDROLAER RENDE PROTEINASE;  FLASAK CALCTUM SINDING;  FLASAK CALCTUM SINDING;  FLASAK CHACTEN, COMPLEX (BLOOD  COAGULATOWNHERTOR)	COMPLEX (SERINE PROTEASE) THE STATE OF THE PROTEASE PROTEASE I PRESTOR SERINE PROTEASE I PRESTOR SERINE PROTEASE I PRESTOR SERINE PROTEASE STATE OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROTECT OF THE PROT	SERINE PROTEASIS SERINE PROTEASI, HYDROLASI, COMPLEMENT, FACTOR D, CATALYTIC 2 TRAD, SELF. REGULATION	BLOOD CLOTTING TSV-PA; FIBRINGLYSIS, PLASMINGGEN
Consposed	BETA-TRYPTASE; CHAIN: A, B, C, D;	GLANDULAR KALLIKREN-13; CHAIN: A, B;	GLANDULAR KALLIKREIN-13; CHAIN: A, B;	ACTIVATED PROTEIN C; Grain: C, L; Dayibapro- Mai; Giain: F;	COLLAGENASS; CHAIN: A, B, BOOTTN; CHAIN: C, D;	COMPLEMENT FACTOR D; CHAIN: NULL;	PLASMINOCIEN ACTIVATOR; CHAIN: A, B;
Sea Pold Score	144.00	197.00		51781	14.13	157.25	160.19
AWA South			8				Г
Variety Search			8				
2 1 2 E	1.4	3.4-19	3.40-19	3.46-31	3,40-(3	13-13	5.10-79
35	2	Si Si	82	ž	82	â	ន្ត
¥ Ş	a	a	Ä.	a	2	3	*
g e	<b>~</b>	<	<	U	<		<
<u> </u>	<u>ş</u>	3	3	1	<u>B</u>	F.	ğ
g a g	ş	S	3	ş	679	83	8

PDB annetation	PHOSPHOLIPASE C					STRUCTURAL PROTEIN INTEGRIN- BINDING PROTEIN, INV GENE	GLYCOSYLTRANSFERASE TRANSFERASE GLYCOSYLTRANSFERASE, CALCTUM, SIGNAL		CONTRACTUE PROTEIN TRIPLE HELIX COLLED COLL, CONTRACTUE PROTEIN		CONTEXT (TAASSATTON/NICLEAL/NICLEAL NICHTSTAND CONTEXT ON THE ACTION NICHTSTAND CONTEXT ON THE ACTION STRUCTURE TAASSATTON CONTEXT STRUCTURE TAASSATTON CONTEXT REGULATION CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHTSTAND CONTEXT NICHT	SERINE PROTBASE SERINE PROTEINASE, TRYPSIN, HYDROLASE	SERINE PROTEASE SERINE PROTEINASE, TRYPSIN, HYDROLASE
Сепиреные	CHAIN: NULL;		GLYCOSYLTRANSPERASE	CYCLODEXTRUN	EC24,1,19 1COT 3	INVASIN; CHAIN: A;	CYCLODEXTRIN GLUCANOTRANSFERASE; CHAIN: A, B;		HUMAN SKELETAL MUSCLE ALPHA-ACTDAN 2: CHANY A:		WAY: CHADE B. CFOS; GLADE; P. CJDE; GLADE; J. DNA; CHADE; A. B;	TRYPSIN; CHAIN: A. B. C. D;	TRYPSIN; CHADN: A, B, C, D;
Seq Pold Score													210.95
FA P			61.9			Q.19	40.19	Γ	603	Γ	850	8	
Verify Semi			150			0.02	-¢.00	Ī	900	Γ	4013	8	П
PSI BLAST			2.70-14			1,46-31	2.76-14		2.38 IS		0.00	1.76-93	1.76-93
3 2			339			56	213		į		ig.	250	250
¥ Şg			3			8	22		Ģ.	Ī	92.	13	3
<b>å</b> ≘				_		<	<		<		-	<b>~</b>	<
202 CE		Γ	쁄			- Color	1		<u>a</u>	Γ	<b>2</b>	io-1	igi j
§ 8 ĝ			219			219	617	I	23		627	6279	629

PCT/US01/42950

| Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Control | Cont

	SERUNB PROTEINASE SERINE PROTEINASE, GLYCOPROTEIN	HYDROLASE MICROPLASMINOGEN, SEXUM PROTEASE, ZYMOGEN, CHYMOTRYPEN 2 FAMELY, HYDROLASE	GROWTH FACTOR 73 NOP, CROWTH PACTOR (BETA-NGF), HYDROLASSI SERUR FROTEINASS 1 (GAMGA-NGF), NOP), UNACTIVE SERINE PROTEINASSI (ALPHA-NGP)	GROWTH FACTOR 15 NGP; CIROWTH FACTOR (BETA-NGP, HYDROLASE . SERING PROTEINASE 1 (CAMMA-NGP, INCTIVE SERING PROTEINASE (ALPHA-NGP)	GROWTH FACTOR 78 NOT! GROWTH PACTOR (BETA-NOT), HYDROLASE - SETING FROTENASE 2 (GAMGA- NOT), DACTIVE SERINE PROTEINASE (ALPHA-NOT)	COMPLEX (SELDIC REDITALS STATED HEIRTON, COMPLEX, METAL, BENDROS SITES, PROTEN ENDING SITES, PROTEN SUSTRATE INTERACTIONS, 3 SUSTRATE INTERACTIONS, 3	COMPLEX (SERINE PROTEASIN PROTEIN DISTRIBITOR, COMPLEX, METAL. BINDING STIER, 2 PROTEIN
	NEUROPSIN; CHAIN: A. B;	PLASMINOGEN; CHAIN: A, B, C, D;	NERVE GROWTH PACTOR; CHAIN: A, B, Q, X, Y, Z;	NERVE GROWTH FACTOR; CHAIN: A, B, Q, X, Y, Z;	NERVE GROWTH FACTOR: CHAIN: A, B, Q, X, Y, Z;	ECOTTN: CHAIN: A; ANGONIC TRYPSIN; CHAIN: B;	ECOTIN; CHAIN; A; ANIONIC TRYPSIN; CHAIN; B;
2	235.42	1323	154.03		201.29		19291
See .				8		87	
See .				0.93		0.92	
BLAST	2.70-88	8.10-79	f. 10-77		3.40-91	6.80-89	6 <b>1-1</b> 9
\$	249	22	2	220	82	êž	250
\$	7	9	ZE .	3	72	α	ž
e	,	<	<	0			a a
2	g.						ă.
<u> </u>	629	629	ŝ	679	673	á	679
	ID ID AA AA BLAST Scere Scere Scere	ID   ID   AA   AA BLAST Seers Seers Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers   Seers	D   D   AA   AA   BLAST Seen Seen Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   S	10   10   AA   AA BLAST Seev Seev Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   Seev   S	D   D   AA   AA   BAAFF   Seen Seen Seen   Seen   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   III   IIII   III   I	D   D   AA   A   BLAST   Seen Seen Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen   Seen	D   D   AA   A   BLAST   Sees   Sees   Sees   Injury   A   24   29   276-14   23.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54   13.54

WO 02/059260	PCT/US01/42950	WO 02/059260	PCT/US01/42950

*	-		Kenth Kenth	P.M.P.	Seq Pold Score	Consequence	PDB ametades
	6 9	ē			195.28	HYDROLASE(SERINE PROTEINASE) TR YPSIN (B.C.J.A.I.4) CONFLEXED WITH BENZAMIDING INSTERED INSTERED INSTERED INSTERED INSTERED INSTERED INSTERED INSTERED INSTERED INSTERED INSTERED INSTERED INSTERED INSTERED INSTERED INSTER	
	ię.	1.76-91	Bi .	8		BETA TRYPSIN; CHAIN: NULL;	SERING PROTEASE HYDROLASE, SERING PROTEASE, DICESTION, PANCREAS, 2 ZYMOGEN, SIGNAL
-	اغا	1.74-91			202.83	BETA TRYPSIN; CHAIN: NULL;	SERINE PROTEASE HYDROLASE, SERINE PROTEASE, DIGESTION, PANCREAS, 2 ZYMOGEN, SIGNAL
Ш	t I	H	Ī				
-		1.76-78			157.53	INDRUMOGLOBULIN FAB 13G5; CHAIN: L, H;	IMMUNOGLOBULIN DIELS-ALDER, DISFAVORED REACTION, CATALYTIC ANTIBODY, 2 SHMUNOGLOBULIN
<u>r</u>		1.76-90 0	:50	90"		togla, chadr. I. H; Lulaan rhinovirus Cardir. P; Chadr. P;	COMPUTATION OF STREET PROPERTY OF STREET PATTERN OF STREET PATTERN OF STREET PATTERN OF STREET PATTERN OF STREET PATTERN OF STREET PATTERN OF STREET PATTERN OF STREET PATTERN OF STREET PATTERN OF STREET PATTERN OF STREET
<u> </u>		1.76-90			151.40	IGOZA; CHAIN; I, H; CHAIN; PROTEIN VP2; CHAIN; P;	COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLE
2		1.40-15			176.88	DANUNOGLOBULN, DIELS ALDER CATALYTIC ANTIBODY; CHAIN: L, H, A, B;	IMMUNOGLOBUTIN LIMUNOGLOBUTIN, ANTIBODY, CATALYTIC ANTIBODY, DIELS ALDER, 2 GERMLINE
1.70-83		Ħ	H		160.46	FAB FRAGMENT CTM01;	IMMUNOGLOBULIN

PDB emotation	ENGINEERING, PROTEASE- SUBSTRATE INTERACTIONS, 3 METALLOPROTEINS					
Социровно		HYDROLASE(SERINE PROTEINASE) TONIN (B.C. NUMBER NOT ASSIGNED) 1TON 4	HYDROLASEKSERINE PROTEINASE) TONIN (E.C. NUMBER NOT ASSIGNED) 170N 4	HYDROLASE (SERÜNE PROTEUAASE) TRYPSIN (E.CA.21.4) COMPLEXED WITH THE DMILBITOR ITRN J DISGOROPYL PLUGAOPI TRN 4 HUMAN TRYPSIN, DFP HOMAN TRYPSIN, DFP	HYDROAASE (SELNE PROTENASE) RYPSIN WITH THE INHIBITOR WITH THE INHIBITOR WITH THE INHIBITOR WITH THE INHIBITOR WITH THE INHIBITOR WITH THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INHIBITOR THE INH	HYDROLASE(SERDNE PROTEINASE) TRYPSIN (E.C.) 4.21.4) COMPLEXED WITH BENZAMIDINE INHIBITOR 2785.3
Seq Fold Seare			£7.102		267161	
PMF		8		8		95.1
Vertfy Sours		7.0		26.0		\$6:
E 75 15		18-96.1	18-96.	1.76-92	1.76-92	130-91
3 5		ន្ត	82	£	82	330
Start AA		3	2	ล	3	n
a e				<	<	
20 G		a lia	<u>8</u>	Ē	Ē	報
g e g		629	639	679	8	629

313

PDB sasetides		IMMINE SYSTEM FAB-RP COMPLEX CRYSTAL STRUCTURE 2.7A RESCLATION BRIDING 2 OUTSIDE THE ANTIGEN COMBINING STE SUFFEMATIORN FAB VH3 3 SPECTIOTY	DAKUNOGLOBULIN				CATALYTIC ANTBODY CATALYTIC ANTBODY GO CATALYTIC ANTBODY, GO CATALYTIC ANTBODY, ESTER HYDROLYSIS, ESTEROLYTIC, FAB. 2 IMMINOCLOBULIN	
Continued	ANTIBODY IDBB 3 (IOCI., SUBGROUP 24, KAPPA 1) COMPLEX WITH PROCESTERONE IDBB 4	IOM Nº 2A2 CHADN: A, C, E, IOM Nº 2A2; CHADN: B, D, P. DOGUNOCILOBULIN O BINDING PROTEIN A; CHAIN: Q, H;	44-20 (IG*02A-KAPPA-) PAB FRAGMENT; IFLR S CHAIN! L. H. IFLR 6	IMMUNOGLOBULIN FAB FRAGMENT OF HUMANIZED ANTIBODY 4D5, VERSTON 4 1FVD 3	IMMUNOCIOBULIN IGG2A PAB FRAGMENT (FAB 179) 1HIL 3	IMMUNOGLOBULN IGGZA FAB FRAGMENT (PAB 179) 11ft 3	IMMUNOGLOBULIN 6D9; CHAIN: L, H;	DAMUNOGLOBULIN (DOZA FAB PRACHEK (FAB 179) COMPLEX WITH PEPTIDB OF 11FH 3 PPTLUENZA HEMAGGLUTTHIN HA!
Score Score	!		169.43			148.78	165.42	
S P		8		1.00	1.00			<b>00</b> '1
V errity		0.58		0.57	0.45			950
PSI AST		1.76-91	3.46.16	3.40-89	3.40-90	3.40-90	3 5	3.40-90
3 \$		170	<u>8</u>	5.	169	<u>6</u>	170	169
¥ >		7	77	=	7	23	Ħ.	
<b>1</b> 0		<		<	<	<	د	دا
<b>2</b> 0		<u>\$</u>	à	2	2	7	r _e	ē
S e S		632	632	632	632	632	632	53

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

			1	ASE)				9	4.	EAVY		JBBC
PDB nanotation	IMMUNE SYSTEM			COMPLEX (IMMUNOGLOBULINHYDROLASE) COMPLEX	DAMINOGLOBULIN V 2 REGION,	SIGNAL, HYDROLASE, GLYCOSIDASE, BACTERIOLYTIC 3 ENZYME, EGG WHITE	INDAUNOGLOBULN DAMUNOGLOBULN, VARIANT	INMUNOCIOBULIN VARIABLE	DOMAIN; SINGLE CHAIN FY, MONOCLONAL ANTBODY, C219, P. GLYCOPROTEIN, 2 IMMUNOCLOBULIN	COMPLEX (MHCVBAL PEPTIDERECEPTOR) HIA AJ HEAVY CHAIN; COMPLEX (MHCVBAL	PEPTIDE/RECEPTOR)	RECEPTOR T CELL, RECEPTOR 182C
Coumpound	ANTIBODY D2.3 (HEAVY CHAIN); CHAIN: H;	DOWNOOLOBULIN FAB FRACINGTY OF A HUMANIZED VERSION OF THE ANTI-CDIE ZEGW 1 ANTIBODY 143Z (RUHSZ- OZ FAB) ZEGW 4		MONOCLONAL ANTBODY DI.J; CHAIN: A, B; LYSOZYME; CHAIN:	IJ		MONOCLONAL ANTIBODY DI J; CHAIN: 1. H:	MONOCLONAL	ARTBODY CZ19, CHADN: A, B, C, D;	HLA-A 0201; CHAIN: A; BETA-2 MCROCIOBULN; CHAIN: B; TAX PEPTIDE;	CHAIN: C; T CELL, RECEPTOR ALPHA; CHAIN: D; T CELL RECEPTOR BETA; CHAIN:	E. 14 3.D T CELL ANTIQEN
Scarre Scarr				\$1.12			91.00	21.40				
ž Š	Г	8.						Ī		6,3		8
		3						Ī		4.18		710
z ž š		16-419		3,44-33			1.76-32	17.0		5.1e-38		14.
35	Г	Ę.		=			=	Ē		= _		1
ž ž		77		ន			я	R		п		<u>ج</u>
<b>2</b> =		_		<_			دا			ш		$\int$
<u> </u>		27,674		<u> </u>			F. 8.7	3		ã		<u>į</u>
ğ <u>a</u> ğ		3		â	_		3	1	1	3		1

PDB amotation							IMMUNOGLOBULLN	MONOCLONAL ANTBODY MONOCLONAL ANTBODY, PAD- FRAGMENT, REPRODUCTION	MONOCLONAL ANTIBODY MONOCLONAL ANTIBODY, FAB- FRAOMENT, REPRODUCTION	CATALYTIC ANTIBODY CATALYTIC ANTIBODY, TRANSITION STATE ANALOGUE	DAMUNE SYSTEM ABZYME, TRANSITION STATE ANALOG,
Compense	(STRAIN X47) (RESIDUES 101-107) ITPH 4	IMMUNICOLOBILLIN 1002A FAB PRACINENT (FAB 179) COXOPLEX WITH PEPTIDE OF 11PH 3 PRELENZA PRACILITININ HAI	(STRAIN X47) (RESIDUES 101-107) 1IPH 4	EAB' FRAGMENT (81312)	DAMUNOGLOBULDY IMMUNOGLOBULDY PAB FRAGMENT (MC/PC\$603) 1MCP 4	DAMUNOGLOBULN DAMUNOGLOBULN PAB FRAGMENT (MC/PC8603) IMCP 4	IOGZA-KAPPA-; IPLO 4 CHAIN: L, H; IPLO 5	MONOCLONAL ANTEGODY 3A2; CHAIN: H, L;	MONOCLONAL ANTIBODY 3A2; CHAIN: H, L;	IOOJA FAB PRAGMENT (D2.1); CHAIN: L, H;	IO ANTIBODY D23 (LIGHT CHAIN); CHAIN: L; 10
SeqFold		148.62		163.94		153.91	165.16		131.81	151.63	8
Scare	Γ				8			8		Γ	
Vertify Score					69'0			3			
PSI BLAST Score		3.46.90		G-9-	26.2	[6-0]	3.4e-85	6.te-95	6.56-95	1.1c-12	1.le-£2
End AA		67		67	691	2	22	691	0,1	021	6
Start A		12		77	~	71	17	12	12	17	11
j a		1		_	د	_	ر	_ ر	ــــــــــــــــــــــــــــــــــــــ	1,	J
<b>8</b> 0.0	Γ	ē.		ā	<u>B</u>	than 1	i pig	₫	<u>a</u>	35	ĸ
g a g		632		3	3	253	789	3	632	5	632

318

3 3

3

3 3

_	_						
PDB susetation							
Compound	THE ANTI-COIS IFOV 3 ANTIBODY 11ST (RUISS- AA PV) IFOV 4	DIMUNOGLOBULDS FV FRACKENT OF A HUMANIZZO VERSION OF THE ANTI-COIS IFOV 3 ANTIBODY SIZE (RUISZ)- AA FV) IFOV 4	IMMUNOCIOBULIN PV PRACIMENT OF HUMANIZED ANTIBODY 4D5, VERSION 8 I FVC 3	INDIVINGELOBULIN FV PRACIMENT OF HUMANIZED ANTIBODY 4D5, VERSION 1 IPVC 1	DAMUNOGLOBULIN FAB FRACHENT OF HUMANIZED ANTIBODY 4D5, VERSION 4 1FVD 3	DAMINOCIÓBULIN MANINOCIÓBULIN VI. DOMAIN (YAILABLE DOMAIN OF KAPPA LIGHT IIVI. 3 CHAND) OF DESIGNED ANTBODY MYSS IVIV. 4	IMMUNOGLOBULIN MURURE ANTBODY 26-10 VL DOMAIN (NMR, 15 ENEROY MININGZED IMAN 3 STRUCTURES) IMAN 4
Seq Yold Scure		۲. اد		32.10		32.59	8 X
Scare			98.0		<b>31</b> 0		
Vertiy		,	-0.06		90.0		
<del></del>	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	3.45	3,40-40	3.46-40	6.8e-4	3.4-28	1.56.71
₹ Knd		=	Ξ	=	<b>8</b>	=	=
Start		8	8	2	8	8	22
<b>a</b>			<	< ·	<	<	
808	1	<u>A</u>	2	ž.	E	<u>×</u>	Ī
) (1)	Ö	3	ŝ	69	ig .	6	3

PCT/US01/42950 PCT/US01/42950 WO 02/059260 WO 02/059260

	-	GEN THEIR,		PORT HB STATE) 1. H 2			E, PIRATORY	KTUFICIAL
TUB Annetation		OXYGEN TRANSPORT OXYGEN TRANSPORT, CHUMGRA PROTEIN RESPIRATORY PROTEIN, HEME		OXYGEN STORAGE/TRANSPORT HB D; HB D HEMOGLOBIN D (R-STATE) 1, HEMOGLOBIN, AVIAN, HIGH 2 COOPERATUTY, OXYGEN TRANSPORT			OXYGEN TRANSPORT HEME, OXYGEN TRANSPORT, RESPIRATORY PROTEIN, ERYTHROCYTE	OXYGEN TRANSPORT X-RAY STUDY, PORCING HEMOGLOBIN, ARTIFICIAL, ILUMAN BLOOD, 2 OXYGEN TRANSPORT
Coumpound	HEMOGLOBIN THONYILLE ALPHA THONYILLE ALPHA VAL. I MAUTANT WITH VAL. I MAB 3 REPLACED BY GLU AND AN ACETTATED MGT BOUND TO THE 18AB 4 AMINO TERAMINIS 18AB 5	MODULE-SUBSTITUTED CEMCERA HEMOGLOBIN BETA-ALPHA; CHAIN: A, B, C, D;	OXYGEN TRANSPORT HEMOGLOBIN (DEOXY, HUMAN FETAL F=415*) IFDHG 1 (FDHH 1	HEMOGLOBIN D; CHAÎN: A, C; HEMOGLOBÎN D; CHAÎN: B, D;	OXYGEN TRANSPORT HEMOGLOBIN (DEOXY) IHDA 3	OXYGEN TRANSPORT HEMOGLOBIN (SICKLE CELL) HIDS 4	HEMOGLOBIN (DEOXY); CHAIN: A, B;	PORICINE HEMOGLOBIN (ALPHA SUBUNIT); CHAIN! A, C; PORICINE HEMOGLOBIN (BETA
Seq Pold Score								
PM F Scere		00'1	00'1	871	§	160	97	8
Vertiy		1910-	4.70	-0.76	Ş	£.73	9	<b>75</b> 0
151 12,4,87 50ere		Sile35	178-38	16-35	1.76-33	6.8-3	\$ A	1.56.34
3 \$		۲.	4	£	+	2	F	F
VV VV			-					
90		<	0	a a	_			<u>_</u>
5 e		<u> </u>	<u>g</u>	2	2	1	8	1970
S a S		ŝ	23	635	ŝ	â	53	ŝ

							_
PDB sanctides	RECEPTOR TCR; T-CELL, RECEPTOR, TRANSMEMBRANB, GLYCOPROTEIN, SIGNAL			NT/NBO/TDOAN/MRI NT/NBO/TDOAN/MRI	OXYGEN TRANSPORT OXYGEN TRANSPORT, HEMB, RESPIRATORY PROTEIN, EXYTIROCYTE	OXYGEN TRANSPORT OXYGEN TRANSPORT	
Countpound	ALPHA, BETA T-CELL RECEPTOR CHAIN: A, B;	IMMUNOGLOBULIN FAB FRADMENT OF A HIDAANTZED VESSION OF THE ANTI-CD18 IFGW 3 ANTIBOOY '152' (HUHS2- OZ PAB) ZFGW 4	MUNCOLOBULIN DOMAIN (VALUALE DOMAIN (VALUALE DOMAIN (VALUALE DOMAIN (VALUALE DOMAIN (VALUALE DOMAIN OF CLAPA ZINA HIGH TEAN OF CLAPA THOS THAT PE THOS THOS THAT PE THOS THAT PE THOS THAT PE THOS THAT PE THOS THAT PE THOS THAT PE THOS THOS THAT PE THOS THAT PE THOS THOS THAT PE THOS THOS THOS THAT PE THOS THOS THOS THOS THOS THOS THOS THOS	IMMUNOGLOBUIN C, E, C. C, E, C. C, E, E, H. B, D, F, H.	HEMOGLOBIN; CHAIN: A, B	HEMOGLOBIN; CHAIN: A, B, C, F;	OXYGEN TRANSPORT
Sears Sears			30.13	ű			
N.	8	0.43			8.	8.	8
Vertfy Score	0.00	80			99.0	90	
PSI Soors	1.70-38	0.86-40	5.10.34	1.76.33	1.70-35	120-36	75.36 0.71
7 V	≘	=	=	=	F	11	4
Start	R	8	8	2		_	Ŀ
Chata	_	_		<			_
80 <u>4</u>	ā	Ziga.	Time.	6369	ž.	Š.	2
ğ e ğ	ŝ	3	3	9	ŝ	509	8

321

COMPLEX
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATIONALIDAM
(IGANICALIZATI MONOCLONAL
AVERBOOY DIJ, CHADR:
L. H.
FAD FRAGMENT
ATTEGOT ASBY, CHARR:
LGGWEAC, CHARR: A, R.C.
ANTGOMAMBDA; CHADR:
A, L. L.
ANTGOMAMBDA; CHADR:
H, L. CYTOCHROME C OXIDASE; CHAIN: A, B; ANTBODY FV FRAGMENT; CHAIN: C, D; SUBUNITY CHAIN: B, D Scar Pold 3 \$

5

2

Ē 8

Ē 9

13

ž Ş **3** a 5 9

PDB amedides	TRANSMEMBRANE, CYTOCHROME OXIDASE, ANTIBODY COMPLEX	IMMUNI SYSTEM BENGE-JONES; DAKUNOGLOBULN, AMYLOID, DAKUNE SYSTEM	DOMUNOGLOBULIN DOMUNOGLOBULIN, KAPPA LIGHT- CIAIN DIMER HEADER	COMPLEX (MEGNERAL) FEYTING/RECEPTOR) HALA AZ HEAVY CHARK COMPLEX (MHEVIRAL) FEYTING/RECEPTOR)	COMPLEX (ANTIBODY/ANTIGEN) FAB-12; VEGF; COMPLEX (ANTIBODY/ANTIGEN), ANGIOGENIC FACTOR	COMPLEX (ANTBÓDY/ANTIGEN) FAB-IZ, VEGF; COMPLEX (ANTBODY/ANTIGEN), ANGIOGENIC FACTOR.	DAMUNOGLOBULIN BENCK-JONES PROTEIN; IBM 1 BENCE JONES, ANTEODY, MULTIPLE QUATERNARY STRUCTURES 187M 13	COMPLEX (HUMANIZED AVTRODY/HYDROLASE) AVTRODY, AVTRODY COMPLEX PY, ANTL-TYSZTARE, 2 COMPLEX (HUMANIZED)
Cettapoetad		BENCEJONES KAPPA I PROTEIN BRE; CHAIN: A, B, C,	DAMUNOGLOBUZIN; CHAIN: A, B;	HILAN DDIL CHADE: AN HERAL MICROGLOBULDS; CHAINE & TAX FETTURE: CHAINE; CHAINE; CHAINE DT CELL.  GLAINE DI CELL.  GLAINE DI CELL.  E. CHAINE DI CELL.  E. CHAINE DI CELL.  E. CHAINE DI CELL.	FAB FRAGMENT; CHAIN: L, H, J, K; VASCULAR ENDOTHELLAL GROWTH PACTOR; CHAIN: V, W;	FAB FRAGIGENT, CHAIN: L, H, J, K; VASCILAR ENDOTHELLAL GROWTH FACTOR; CHAIN: V, W;	LOC - LAMBDA I TYPE LIGHT-CHAIN DINER; IBJM 6 CHAIN: A, B; IBJM 7	HULYSI I; CHAIN: A, B, D, B; LYSOZYMB; CHAIN: C, F;
Sea Fad		33.76	36.36	51.40		222		S X
Scare					3		653	
N Carry					2		0.03	
15 PE 25		1.46-39	3.46-55	8.0	1.76-57	1.76-57	1,50-67	3.45-41
3 ≥		5_	82	8	921	200	<b>1</b>	181
Start		2	2	ន	62	61	17	61
O Charles		<b>~</b>	<b>~</b>	۵	,	_	<	۷,
<b>8</b> 0 E		2	38	3	Ē.	2	Ē.	草
3 a g		63	637	<b>23</b>	63	á	637	100

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

											_							_							_		
PDB nanotation			IMMUNOGLOBULIN IMMUNOGLOBULIN,	DAMINE SYSTEM HUMAN TORRESTITIONAL COMPLEX HIA-	A2, HTLV-1, TAX, TCR, T1 CELL	RECEPTOR, INDAUNE SYSTEM			RECEPTOR TCR; T-CELL, RECEPTOR,	TRANSMEMBRANE, GLYCOPROTEIN, SIGNAL																	
Совтроина		(/MCGS-/WEIRS HYBRID)	NIO9 (IGG) = LAMBDA=); CHAIN: L. H;	MARC CLASS I HLA-A;	MCKOGLOBULIN; CHAIN:	B; TAX PEPTIDE PGA;	CHAIN: C. HAKAN T-CELL	HECEPTOR: CHAIN: D:	ALPHA, BETA T-CELL	RECEPTOR CHAIN: A, B;	IMMUNOGLOBULEN WAT,	A VARIABLE DOMAIN	FROM	INDICTION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF TH	LIGHT-CHAIN I WTL 3	(BENCE-JONES PROTEIN)	INDICATION OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE	DAMUNOGLOBULIN FAB	2FB4 4	IMMUNOCLOBULIN FAB	HIMANITED VERSION OF	THE ANTI-COLS 2FOW 3	ANTIBODY 1452 ORIGISS-	OZ FAB) 2FGW 4	DAMUNOGLOBULIN	A MODA I IGHT CHAIN	DIMER (MCOS) 2MCG 3
Seq Fold	Ş		8.23	52.06					12		55.26									1575							
	ě		Γ	Γ													0.47								ā		
Verify	Š																910								0.12		
Ē	BLAST Seen		15.02.1	1.40-12					6.86-17		3						7	_		3.40-57					2. lo 6.6		_
			R	g g					92		Ē			_			1			200			_		22.		
	\$		61	R					8		•	_			_	_	R	_		61					<u>~</u>		
	2		-	٥					<		<									٠			_				
202	e	Γ	9	Ē		_			9		P						ž	i	_	å					Ĭ		
L	ΘĚ		53	â					ş		ŝ		_	_	_		5	_	_	153				_	ŝ		

	_		. —	_			-		
PDB semedation	ANTIBODY/HYDROLASE)	IMMUNG SYSTEM REIV, STABILIZED IMMUNGGLOBULIN FRAGMENT, BENCE, JONES 2 PROTEIN, IMMUNE SYSTEM	АИТВОДУ, СДЗ АИТВОДУ, СДЗ				COMPLEX (ANTIBODY/ANTIGEN) CYTOKINE RECEPTOR, COMPLEX (ANTIBODY/ANTIGEN), 1 TRANSMEMBRANE, GLYCOPROTEIN	DOMUNOCLOBULIN DAMINOCLOBULIN, BENCE JONES PROTEIN	
Contraposate		IO KAPPA CIJAIN V-I REGION REI; CHAIN: A, B;	CAMPATH-HELLOHT CHADE, CHADE, L; CAMPATH-HEHEAVY CHADE, CHADE, H; CHADE, CHADE, H; CHADE, CHADE, H; CHADE, CHADE, H; CHADE, CHADE, H; CHADE, CHADE, H;	IMMUNOGLOBULIN 1D6	IMMUNOQLOBULIN FV FRAGMENT OF A HUMANUZED VERSION OF THE ANTI-CD14 IFOV 3 ANTIBODY 1437 (RUBS2- AA FY) IFOV 4	DAMUNOGLOBULIN BAMUNOGLOBULIN M (IG-M) PV PRAGMENT IRGM 3	ANTIBODY A& CHAIN: L, H; DYTERFERON-GAMMA RECEPTOR ALPHA CHAIN; CHAIN: I;	LAKBDA III BENCE JONES PROTEIN CLE; CHAIN: A, B	MAKUNOGLOBULIN IMMUNOGLOBULIN HETEROLOGOUS LIGHT
Sea Fold		39.82	78.03	26.95	57.59	55.75	91 95		
S See	Γ			Γ				55	<del>0</del> .03
Verify Scores	Γ							0.12	900
BLAST		1.76-41	15 <b>4</b>	7.4	<b>9</b>	CP-01.9	3.6-43	R 4	1.76-59
31		132	02	200	121	9	<u>16</u>	681	111
¥ \$		. 41	61	61	<u>•</u>	<u>6</u>	61	17	21
<b>#</b> e		۷	-1		J	د	دا	<	*
<u> </u>	Ī	1bura	<u> </u>	eg E	<u>š</u>	<u>B</u>	<u>4</u>	2	IBCW
g a ģ	T	63	7.9	637	ŝ	53	7.03	637	£3

325

| 10 | D | D | AA | AA | BALST | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer | Seer

					_					_											_	_									
PDB ensetation		COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-UNA	CONSTANT STRICTION CONDICTS	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC .	FINGER, PROTEIN DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGEN/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINDER/DNA)	COMPLEX (TRANSCRIPTION	REGULATION DINA) COMPLEX	(TRANSCRIPTION	REGULATION DNA, RNA	POLYMERASE III, 2 TRANSCRIPTION	DITTATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRUPTION INITIATION,	INTRA TOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLICA
Composing	BINDING SITE; CHAIN: D.	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	PROTEIN, CHAIN: C. P. G.			DKA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN CIAIN C. P. C.		DNA: CHAIN: A. B. D. E.	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, C.			DNA; CHAIN: A, B, D, B;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN; C. P. G.			TFUIA; CHAIN: A, D; 58	RIBOSOMAL RNA GENE;	CHAIN'S B, C, B, P;				YYI; CHAIN: C; ADENO-	ASSOCIATED VIRUS PS	INTITATOR ELEMENT	DNA; CHAIN: A, B;		
Score		8.3																								51.78					
A S						17.0			_	3		_		_	8:					10'0										•	_
Verity Score						71.0				60					0.44					-0.26	•		_								
BLAST F		3.4e-49				3,46-49	_			74					3.46-14					5.10-28						3.40-32					
35	Γ	8				2				2					2					112						Ξ					
Ran A	Γ	L				12				,					25					2				_		-		_			
<b>1</b> 0		J				Ü	_	_							0		_			ļ						J					
<u>5</u> 6	T	ig.		_	_	Í				À					Tech Tech	-	_		_	碧	_	_				Na.		_	_	_	
Oig ei		639				ŝ				01.9	_				609				_	639						60	_				_
										_			_			_			_		_		-							-	

PCT/US01/42950 WO 02/059260 PCT/US01/42950 WO 02/059268

PDB sanetaden		RNA, SNRNP, RIBONUCLEOPROTEIN	COMPLEX (NUCLEAR PROTEINRNA)	COMPLEX (NUCLEAR PROTEINRINA),	RNA, SNRNP, RIBONUCLEOPROTEIN		COMPLEX (NUCLEAR PROTEINRNA)	COMPLEX (NUCLEAR PROTEINRINA),	RNA, SHRING, RIBONUCLE OPROTEIN		COMPLEX (NUCLEAR PROTEIN/RNA)	COMPLEX (NUCLEAR PROTEINRNA),	RNA, SNRNP, RIBONUCL EOPROTEIN		COMPLEX (NUCLEAR PROTEINRNA)	COMPLEX (NUCLEAR PROTEINRNA),	RNA, SNRNP, RIBONUCLEOPROTEIN		COMPLEX (NUCLEAR PROTEINRNA)	COMPLEX (NUCLEAR PROTEINRNA),	RNA, SNRNP, RIBONUCLEOPROTEIN		CELL ADHESION NEURAL CELL	ADRESION	CELL ADHESION NEURAL CELL ADHESION	CELL ADHESION LEUCINE RICH	REPEAT, CALCTUM BINDING, CELL	ADHESION STICRE PICE	REPRAT CALCILLA RINDING CRIT.	ADHESION	TRANSFERASE CRYSTAL	
Соещрония		CHAIN: A, C; UZ B.; CHAIN: B, D;	U2 RNA HALRPIN IV;	CHAIN Q. R. UZ A.	CHAIN: A C; UZ B*	CHAIN: B, D;	UZ RNA HAIRPIN IV;	CHAIN: Q. R; U2 A;	CHAIN: A.C. UZ B.	CRAIN: B, D,	U2 RNA HAIRPIN IV;	CHAIN: O. R; UZ A;	CHAIN: A C. UZ B.	CHAIN: B, D,	UZ RNA HAIRPIN IV;	CHAIN: Q. R. UZ A:	CHAIN: A.C. UZ B.	CHAIN: B, D,	UZ RNA HAIRPIN IV;	CHAIN: Q. R: U2 A;	CHAIN: A.C. UZ B.	CHAIN: B, D;	AXONIN-I; CHAIN: A;		AXONIN-I; CHAIN: A;	INTERNALIN B; CHAIN: A;		Personal Print A.	INTERCACION BI CITATION AS	•	RAB	GERANYLUERANYLIKAN
SeqFold	Scen				_																							Ī				_
	Som	Γ	67.0			_	89			ı	3				69.0				5				90.0		<del>7</del>	ā		į	ŝ		0.72	_
Verify	į	Γ	ş				800				Š				0.47				33				Ę		0.10	g					0.73	
<u>15</u>	BLAST See a		275.2			_	1	_		_	1.46-15				74.22				14				\$. \$0.99		1.7 80 80	12.0		1	7		2.5	
3	\$		22		_	_	a	_			139		_		₽				Ŕ				ž		92	ă		7	3		E	_
Start	ŧ		=				22	_			3		_		2				a				ž		ž	25		Ţ	_		2	_
G G	9		~				<				2			•	o				J	,			<	_	<	<			<		<b>×</b>	
804	e		€				8				ē	_		_	5				£	!			8		9	9			ĝ		3	
028	ΒŞ		3	_	_		3	_			3			_	3	_		_	3				3		₹.	98			ŝ		ş	

ГОВ автоское	(TRANSCRIPTION REGULATION DAY)	COMPLEX (TRANSCRIPTION RECULATION/DINA) YING-YANG I; TRANSCRIPTION (MTLATION)	HIGER PROTEIN, DIA-ROTEIN FENGER PROTEIN, DAR-ROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REQUILATION/DNA)	COMPLEX (TRANSCRIPTION RECYLATION YING-YANO 1;	TRANSCREPTION INTIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN DIVA-PROTEIN	RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION DNA)	TRANSCRIPTION REGULATION,	AUKI, ZINC FINUEA, MAK	PROTEINDRA) FIVE-FINGER GLI, GLI, ZINC FINGER, COMPLEX (DNA-	COVER EX (TNA.BINDING	PROTEINDINA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- RINGING PROTEINDINA)		COMPLEX (INHIBITOR/NUCLEASE) COMPLEX (INHIBITOR/NUCLEASE),	COMPLEX (RI-ANG), HYDROLASE 2 AND ECLEAR RECOGNITION EPITOPE	MAPPING, LEUCINE RICH 3 REPEATS	COMPLEX (NUCLEAR PROTEINRINA), COMPLEX (NUCLEAR PROTEINRINA),
Constitute		YYI; CHAIN: C, ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT	חשעל בנוסווט: ע" פ'	YYI; CIMBI CADENO- ABSOCIATED VIRUS PS	INTIATOR BLEMENT DNA; CHAIN: A, B;		ADRI; CHAIN: MULL;	Michigan Photography	GLAIN CLAIN A; DNA; GHAIN C, D;	WALL CONOCO BEACHING	GLII; CHAIN: A; DNA; CHAIN: C, D;		RIBONUCLEASE DRIBITOR; CHAIN: A, D;	ANGIOGENIN; CHAIN; B, P.	3	UZ RNA HAIRPIN IV; CHAIN: Q, R; UZ A;
Seq Fold Scars	Ī						31.76					l				
PMF	T	253		17.0					3		;	T	970			0.63
Verity Score	Ī	600		-0,02					}		,	I	417			Q.14
BLAST		1.46-23		3,46-32			10-13	1	2-91.C	7.			5.46-15			1.66-15
3 \$		ŭ		91			2	_	<u>§</u>	١,	1	I	=			132
Start A	Ī	-		1			æ		-	Ī.	•	ľ	52	_		3
<u>1</u> 0	ſ	0		v					<		٠	l	<			<_
20	T	3		ă			#	1	ş.		•	T	3			5
0 e s		639		69	•		609		63		à	1	3			3

			-			
PDB senseterion	GERANYLABRANYLITRANSPERASE, 2.0 a 7 resolution, n- Formtlaethgondr, alpha Subunt, beta subunt	TRANSTERASE CHYSTAL STRUCTURE AAB GEAANTLGERANTLTRANSFERASE, 20 A 12 ESSOLUTION W SUBUNT, BETA SUBUNIT SUBUNIT, BETA SUBUNIT	CONTRACTILE PROTEIN LEUCINE- RICH REPEAT, BETA-BETA-ALPHA CYLINDER, DYNEIN, 2 CHLAMYDOMONAS, FLAGELLA	CONTRACTILE PROTEIN L'EUCINE- RICH REPEAT, BETA-BETA-ALPHA CYLINDER, DYNEIN, 2 CHLANYDOMONAS, FLACIELLA	GROWTH FACTORAROWTH FACTOR BEGETOR FORL FOFFE LACINOCLOBULIN (OBLICE DOMAINS BELONGING TO THE LSET S SUGGROUP WITHIN ICLLIKE DOMAINS, B-TREFOIL FOLLO	GEGOWTH FACTOR/GROWTH PACTOR RECETTOR FOR 1: FGFR1. INCANOGLOBULIN (10) LIKE DOMANYS BELINGING TO THE LEST 2 SUBGROUP WITHIN FOLLIKE DOMANNS, B-TREFOIL FOLLI
Соемроний	SFERASI ALPHA SUBUNIT, CHAIN: A. C., RAB GERANYLOERANYLIRAN GERASE BETA SUBUNIT; CHAIN: B. D.	EAB SPEASE ALPHA SPEASE ALPHA SUBURT: CHAIN: A.C.; RAB GERANTIGERANT, TRAIN CHAIN: B.D.	OUTER ARM DYNEIN; CHAIN: A;	OUTER ARM DYNEIN; CHAIN: A;	FIBROBLAST GROWTH FACTOR 2; CILID: A, B, C, D; FIBROBLAST GROWTH FACTOR RECEPTOR 2; CHAIN: E, F, G, H;	FIBROBLAST GROWTH FACTOR I; CHADS: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR I; CHAN; C, D;
Seq Fald Score						
FMF		10	Q.17	77g	0.03	0.05
Verify Score		\$ \$	ą	<b>9</b> 70	476	473
PSI Seen		.7e-08	), 6 13		1.7 8	1.78-03
3 5		2	2	2	212	nt
ž ž		g	я	22	9X	740
<b>1</b> e		<	<		ш	c
<u> </u>		<u>a</u>	Ē	<u>a</u>	Ē	F
g e g		3	3	3	3	3

				_			
PDB asseration		ENA BINDING PROTEIN TAP (NVXI); RIBONUCLEOPROTEIN (RAP, RBD OR RRM), AND LEUCINB-RICH-REPEAT 2 (LRR)	RIVA BINDING PROTEIN TAP (NFX1); REBONUCLEOPROTEIN (NAPABLO OR REM) AND LEUCINE-RICHAEFFAT 2 (LAR)	LIGASE CYCLIN ACRES ACSOCIATED PROTEIN PIS. SEPI., SEPI., PED., LEAL LEUCHE. SEPI., SEPI., PED., LEAL LEUCHE. BICH REPEAT, SCP., UBIQUITIN, 2 E., UBIQUITIN PROTEIN LIGASE.	LIGASE CYCLIN ACDIKA. ASSOCIATIS PH; CYCLIN ACDIKA. ASSOCIATIS PH; SED; SED; PSOX. LERS, LEUCHG-RICH REPEATE, SCY; TATS, LEUCHG-RICH REPEATE, SCY; LOANS	ACETYLATION RNASE DHIBITOR, RIBONUCLEASE/ANGIOGENIN DHIBITOR ACETYLATION, LEUCINE- RICH REPEATS	COMPLEX (ZINC PRIGERDINA) COMPLEX (ZINC FINGERDINA), ZINC FINGER, DNA-BINDING PROTEIN
Септент	CELL, ADJESSION PROTEIN FIBRONECTIN CELL ADJESSION MODULE TYPE III-10 1FNA 3	NUCLEAR RNA EXPORT FACTOR 1; CHAIN: A, B;	NUCLEAR RIVA EXPORT FACTOR I; CHAIN: A, B;	SKP2 CHAD! A, C, E, Q, I, K, M, O, SKP1; CHAD!: B, D, F, H, J, L, M, F;	SKP2: CHADN: A, C; SKP1; CHADN: B, D;	RIBONUCLEASE DHIBITOR, CHAIN: NULL;	GOSK ZING FINGER PEPTIDG, CHAIN: A; DUPLEX OLIONUCLEOTIDE RINDING STTT: CHAIN: R.
SeqFeld					_		
Sea.	ä	<u> </u>	<u> </u>	6.03	2	and and and	263
Verify	100	40.15	9 0	10:0	2010	86 0	60.0
ELAST Som		1.70-06	1.7e-06	01-04-10	8.16-16	1,60-19	1.16-23
3 5	3	=	=	261	=	<b>3</b>	¥
Σgr. ₹	65	\$	\$	z .	S S	22	EE.
a g		<		<	<		<
50 E	ā	<u> </u>	<u>.</u>	<u>t</u>	<u> </u>	fl fl	dial
ğ e ğ	3	3	<b>3</b>	3	3	3	3
			_				

WO 02/059260

PCT/US01/42950

PDB ausstribe		COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN		COMPLEX (ZINC PINGENDNA) COMPLEX (ZINC PINGENDNA), ZINC FINGER THA BINDING PROTEIN		GENEREGULATION POZ DOMAIN; PROTEIN-PROTEIN INTERACTION DOMAIN, TRANSCRIPTIONAL, 2	REPRESSOR, ZINC-FINGER PROTEIN, X-RAY CRYSTALLOGRAPHY, 3	PROTEIN STRUCTURE. PROMYELOCYTIC LEUKEMIA, GENE REGULATION	GENE REGULATION POZ DOMAIN; PROTEIN-PROTEIN INTERACTION	DOMAIN, TRANSCRIPTIONAL 2 REPRESSOR, ZINC-FINGER PROTEIN,	N-RAY CRYSTALLOGRAPHY, 3 PROTEIN STRUCTURE, PROAVEL OCYCLE ELIFELDA	REGULATION	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX ATM CENTER MAN
Compound	2	QGSR ZINC FINDER PEPTIDE; CHAIN: A; DUPLEX	OLIOONUCLEOTUB BINDING SITE; CHAIN: B, C,	QOSR ZINC FINGER PEPTIDE; CLAIN: A;	GLIOONUCLEOTIDE BINDING STTE; CHAIN: B,	PROMYELOCYTIC LEUKEMA ZINC FINGER PROTEIN PLZP: CHAIN: A:			PROMYELOCYTIC LEUKEMAA ZINC FINGER	PROTEIN PLZP; CHAIN: A;			DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, P, O;
Seq Fold	T			1671		38.53								
A MA	T	83							8				ē	
Verify	T	427							17.0				0.03	
PSI	Scen	1.46.31		3.46-31		16-20			10.20				5.10-37	
Z.A.	1	376		379		121			<u></u>			_	339	
별	1	8		82		-							247	
<b>1</b> 0	1	<		<		<			<				U	
<u>6</u> 8		die		414		ond:	_		98				tmey	
ĝ e	ë	3		3		2			ž				3	

WO 02/059260 PCT/US01/42950

PDB annetetlen	REGULATIONDNA) COMPLEX (TRANSCRETION REGULATIONDNA), RNA POLYMERASE II, 2 TRANSCRETION INITATION, ZDNC FENGER PROFEIN	COMPLEX (TRANSCRIPTION REGULATIONDEN) TINO-YANG 1; TRANSCRIPTION BUTLATION; PATILATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, SOMPLEX TRANSCRIPTION REGULATIONDENNA)	COMPLEX (TRANSCRIPTION REQUILATIONDNAN, TNO-YANG I; TRANSCRIPTION INTLATION INTLATOR ELEMENT, YYI, ZINC 2 FRINGER REOTTEN, DNA-PROTEIN RECOGNITION, I COMPLEX RECOGNITION EGGILATIONDEN)	COMPLEX (DNA-BINDING PROTEINDNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDNA)	COMPLEX (DNA-BINDING PROTEINDINA) FIVE-FINGER GIL; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDINA)		DAMUNE SYSTEM BENCE-JONES; INMUNOCLOBITLN, AMYLOTO,
Continuend	RIBOSOMAL RÑA OBNE; CHAIN: B, C, B, F;	YYI; CHAIN: C, ADENO- ASSOCIATED VIRUS PS NITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C, ADENO- ASSOCIATED VRUS P3 INTLATOR ELEMENT DNA; CIAIN: A, B;	ZINC FINGER PROTEIN GLIT; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLZI; CHAIN: A; DNA; CHAIN: C, D;	NEURAMINIDASE; CHAIN: N; SINGLE CHAIN ANTIBODY; CHAIN: H, L;	BENCEJONES KAPPA I PROTEIN BRE; CHAIN: A,
Seq.Feld Score		19'21		77.15		31.12	\$1.14
Scare	-		630		0.40		П
Verify Sears			82		43		
PS! BLAST		3.14-33	\$.le3\$	<u> </u>	[- -	3.46-42	1.46-49
P >		μ.	376	17.5	378	82	ŝ
ž Ş		E	## E	ff.	346	g	Я
e e		υ	u	<	<		Ų
90.0		<u> </u>	3	P .	Ţ,	3	ģ
) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		ī	ī	ī	ī	3	3

	_							
PDB angecation	DAMUNE BYSTEM	DOMUNOCIOBULN BOOTINOCIOBULN, KAPPA LIGHT- CHAIN DOMER HEADER	COMPLEX (ANTIBODY/ANTIGEN) FAB-12: VBGP; COMPLEX (ANTIBODY/ANTIGEN), ANGIOGENIC PACTOR	COMPLEX (RUMANIZED ANTBODYNTYBOLIASE) ANTBODY, ANTBODY COMPLEX ANTBODY, ANTBODY COMPLEX, PY, ANTBODY COMPLEX (RUMANIZED ANTBODYNTYBOLIASE)	DAMUNE SYSTEM REPY, STABLLZED DAMUNOCLOBULN FRAGMENT, BENCE-JONES 2 PROTEIN, DAMUNE SYSTEM	DONUNE SYSTEM REIV, STABILIZED DONUNGLOBULDN PRACINENT, BENCE-JONES 2 PROTEIN, DONUNG SYSTEM	АРПВООУ, СРЯЗ АНТВООУ, СРЯЗ	DAMUNE SYSTEM FAB-LIBF COMPLEX CRYSTAL STRUCTURE 2.1A RESOLUTION BINDING 2 OUTSIDE THE ANTIGEN COMBINING SITE SUPERANTIGEN FAB 1913 3
Counpeend	2 4	IMMUNOCIOBULDI; CHADI: A, D;	FAB PRAGMENT, CHAIN: I, H.J. K. VASCILAR ENDOTHELIAL GROWTH PACTOR: CHAIN: Y. W.:	HULYSTI; CHAIN: A, B, D, R, LYSOZYME, CHAIN: C, F,	IG KAPPA CHAIN V4 REGION REL; CHAIN: A, B;	IG KAPPA CHAIN V4 REGION REL; CHAIN: A, B;	CAMPATH-HELIOHT CHAIN; CHAIN; C, CAMPATH-HEHELAVY CHAIN; CHAIN; H; CHAIN; CHAIN; H; CHTIDS ANTIGEN; CHAIN; P;	IOM RF 2A2; CHAIN: A, C, E, IOM RP ZA2; CHAIN: B, D, P, IMMUNOGLOBULIN O BINDON PROTEIN A; CHAIN: Q, H;
Sequent				28.02	11.12			
Score	Ī	8	8.			8	96'0	8
Vertiy	Ī	22	25			0.23	7£.0	8118
ELAST See		1.70-51	1.76-53	1.76-49	120	16-51	5.10-50	¥.4.
<u> 3</u> 5	T	2	28		621	121	126	921
Start S		R	8	R	=	a	8	92
a e		<b>v</b>		<	<b>~</b>	<b>~</b>	7	<
<b>8</b> 0	Ī	ž.	20	lbvk		lbava	les!	egp I
S e š		3	ž		35		34	949

WO 02/059260

						•
PDB appointes		COMPLEX (HYDROLASPINANINOGLOBULIN)	RECEPTOR TCR, T-CELL, RECEPTOR, TRANSMEMBRANE, GLYCOPROTEIN, SIGNAL			COMPLEX (AMCVURAL PRINDEABCEPTOR) HAAA HEAVY CHAIN; CLASS I MRQT, T-CELL RECENTOR, VIALL PEPTIDE, 2 COMPLEX (AMCVURAL PEPTIDEABCEPTOR
Coumpound	MONOCLONAL ANTI-HEN EQG I.HL, 4 LYSOZYME ANTBODY DIIIS COMPLEX WITH PHEASANT EGO I.HL, 5 LYSOZYME I.HL, 6	NO NEURAMINIDASE; INMB 4 CHAIN: N; INMB 5 FAB NCIQ; INMB 9 CHAIN; L, H; INMB 10	ALPHA, BBTA T-CELL RECEPTOR CHAIN: A, B;	IMMINOGLOBULIN WAT,  VARLABLE DOMAIN FROM IMMINOGLOBULIN LIGHT-CHAIN 1 WT1, 3 (BENCE-LONES PROTEIN) 1 WT1, 4	IMMUNOGLOBULN FAB FLACHERY OF A FUANNIZZD VERSION OF THE ANTI-CDI B FOW 3 ANTIBODY 152 (HUHS2- OZ FAB) 2FOW 4	HLA-A GOI; CHAIN: A: BETA-2 MICROGLOBULIN; CHAIN: B: TAX FETTIDE; CHAIN: C: T CELL CHAIN: C: T CELL CHAIN: C: T CELL CHAIN: C: T CELL REGETTOR ALPHA; RECEPTOR BETA; CHAIN;
Scen		37.18	SE.98	3		01,911
PMP Scere					8	
Vertity Score					77	
PSJ BLAST Seeve		25. 25.	S.18-40	3.40-49	G-6	1.76-40
3 \$		8.	8	82	25	135
ž ź		R	=	8	8	2
<b>1</b> 0		_,	<	۷	۔	٥
01 804		dami	<u>a</u>	Ī	L,	<u> </u>
Ç e ç		999	3	3	ž	3

PCT/US01/42950

WO 02/059260

PDB association	SPECIFICITY							
Септропад		IMMUNOCIOBULIN 106 PAB 10FB 1	IMMÜNGGLOBULIN FV FRADMENT OF A HUMANIZED VERSTON OF THE ANTI-CD18 IPQV 3 ANTIBODY HYZ (HUHSZ- AA FY) IPQV 4	IMMUNOGLOBULIN FV FRAGMENT OF A FUMANIZED VERSION OF THE ANTI-CENT IFOV 3 ANTIBODY 1427 (FUHS2- AA, FV) IFOV 4	IMMUNOGLOBULIN PV FRAGMENT OF HUMANIZED ANTIBODY 4D5, VERSION I IFVC 3	DAMUNOGLOBULIN FV PRACMENT OF HUMANIZED ANTIBODY 405, VERSION 8 1FVC 3	IMMUNOGLOBULIN FAB FRACMENT OF FIUMANIZED ANTEDODY 4DS, VERSION 4 1FVD 3	COMPLEX(ANTIBODY. ATTORNY PY PRAGMENT (GGI, KAPPA) (LIGHT AND HEAVY VARIABLE COVALDRIT, Y ASSOCIATED) OF
SeqFold				57.39		33,42		32.03
Score		8	<b>3</b>		860		1.00	
Verify		0.22	0.43		S		£.	
BLAST		6.16-50		3,60.53	3.4.50	3. 4. 5.	8 8	1 <u>8</u>
3 \$		138		62	92	e:	921	130
Start A		8	8	8	R	R	8	8
O C	I	1	1	J	·	<	<	د
<u>5</u> 9		gg.	ود	1,60	<u>z</u>	ž.	PW1	<u>a</u>
§ a §	į	3	<b>3</b>	3	95 95	<del>3</del>	3	3

337

PCT/US01/42950

PDB senetades		COMPLEX [GOALMOGLOBULD/MECEPTOR) TOR (MACHAN YBETA DOMANN: T-CZLL RECEPTOR, STRAND SWITCH, FAB, ANTICLONOTYPHC, 3. (MAKINGOLOBULN/MECEPTOR)	COMPLEX (INAUMOCLOBULINAECEPTOR) TCR (INAUMOCLOBULINAECEPTOR) TCR (INAUMOC) RECEPTOR, STRAND SWITCH, FAB, ANTICLONOTPRIC, S (INAUMOCLOBULINAECEPTOR)	DAGING SYSTEM HUMAN TOXPETIDESMIC COMPLEX, HIA- LECETOR, DAMINE SYSTEM RECEPTOR, DAMINE SYSTEM	DAUNG SYSTEM HUMAN TEMPETEDRAME COMPLEX, HLA- LA HILVI, I AX, TEM, T.3 CELL RECEPTOR, DAMING SYSTEM	NATION OF THE
Competed	CHAIN (ALPHA CHAIN); CHAIN: C. Q. MINC LAK B CHAIN: Q. BETA CHAIN); CHAIN: D. IL CHAIN: D. IL	KBS-CCO T-CELL ANTIGEN RECETTOR; CHAIN: A B; ANTIBODY DESIRE-1; CHAIN: L R;	KB-CCO T-CELL ANTIGEN RECEPTOR; CHAIN: A.B. ANTIBODY DESIDE-1; CHAIN: L. H;	MHC CLASS I HEA-A; CARDE A; BESTA-3 MCCLOGLOBULM; CARN; B; TAX PETTIDE PA; CRANE C; HOMAN T-CELL RECETTOR; CALANI; D; HA-A-A CODI; CHANI; B;	MHC CLASS I HLAAC, CARNE, A BERTA-3 MCCOGLOBULN: CHAN: B: TAX PETIDE PAC, B: TAX PETIDE PAC, B: TAX PETIDE PAC, B: CANN: C; CAAN: D; RECETOR; CAAN: D; HLAA-A 001; CHAN: B;	П
Seq Pold Score			74.76 24.76	7.2		194
Scar		8			8	П
Vertify Scars		10.0			0.49	П
FSI Seers		Ī	7	1.76-40	1.76-40	1741
3 \$		2	3	42	761	1
Start A		a a	*	2	a	-
<b>a</b>		<	<	Ω	۵	
80 E		<u>a</u>	Si .	<u>s</u>	톼	1
S e S		3	3	3	3	8

WO 02/059260	PCT/US01/42950	WO 02/059260	PCT/US01/42950

PDB agnetation		АИТВОDY, ГДБЯАРЕUTIC, АИТВОDY, СД32	MAUNOCIOBULIN CBRS6 FAB (INDALINOCIOBULIN); IMMUNOCIOBULIN, MAUNOCIOBULIN C REGION, GLYCOPROTEIN, ANTIB	BANUNOGLOBULIN MBRS6 FAB (IMMUNOGLOBULIN); BANUNOGLOBULIN C REGION, GLYCOPROTEIN, TRANSAGMBRANE	EMMUNE SYSTEM ABZYMB TRANSITION STATE ANALOG, BOAUNE SYSTEM	IMMUNE SYSTEM PAB-18P COMPLEX CRYSTAL STRUCTURE 2.7A RESOLUTION BINDING 2 CHYSIDE THE ANTIGEN COMBINING SITS SUFFRANTIGEN PAB VIB 3 SPECIFICITY	IMMUNOQLOBULIN FAB, FAB LIGHT CHAIN, FAB HEAVY CHAIN; ANTIBODY, FAB, ANTI-TF, MONOCLONAL, MURINE, DAMINOGLOBULIN	IMMUNE SYSTEM YON WILLEBRAND FACTOR, GLYCOPROTEIN IBA (A-ALPHA) BINDING, 2 COMPLEX (WILLEBRANDIMMUNOGLOBULIN),
Coumpound		CAMPATH-HELIGHT CHANY; CHANN; L; CAMPATH-HEREAVY CHANY; CHANN; H; PEPTIDS ANTIOEN; CHANN; P.	IOO FAB (HUMAN 1601, KAPPA); CHAIN: L. H;	IGO FAB (IGG), KAPPA); CHAIN: L, H;	7CI FAB FRAGMENT; SHORT CHAIN; CHAIN; A, C, 7CI FAB FRAGMENT; LONG CHAIN; CHAIN; B, D	IGM RF 2A2; CHADP: A, C, E, IGM RF 2A2; CHADP: B, D, F; DOACHOGLOBULIN G BINDING PROTEIN A; CHADP: G, H;	MAMUNOGLOBULIN FAB SO9, CHAIN: L, H;	MMIMOGLOBULIN NMC- 4 1991; CHAIN: L; BAMIMOGLOBULIN NMC- 4 1991; CHAIN: H; VON
SeqFold	Scan	8	H.78	572	69711		2.1	
PMP.	Scarr					20		Q.75
Vertity	Scere					<b>70</b> 0		-427
Ē	Scen	9	5.1e-73	£ 9 .	1.76-74	3,40.01	01-40	1,46.14
	\$	<i>1</i> Ω	072	£	622	និ	82	823
Start	\$	12	я	я	21	2	<b>π</b>	Я
Chath Start	B		در	_	4	٧	۰	۲ '
8	9	Ī	Ę.	₫.	<u>a</u>	1900	Ē	<b>2</b>
SEQ	ΘĘ	69	ŝ	ŝ	ŝ	63	3	619

				_	,			
PDB nanotation	DAMUNOGLOBULM, ANTBODY, CATALYTIC ANTBODY, DIELS ALDER, 2 GENALINE	DGMUNOGLOBULIN DGMUNOGLOBULIN, FAB FRAGMENT, HUMANISATION	DANUNE SYSTEM DACHNOCLOSULM DACHNOCLOSULM ANTIBODY ENGDEERING, HUMANIZED AND COLGERIC ANTIBODY, FAR J. X.RAY STRUCTURE, TYBEE-DIMENSIOMAL	STRYCTURE, GAMMA- 1 DYTERFERON, TAMUNE SYSTEM	DAUDIE SYSTEM BARUNGCLOBULIN DAMINOCLOBULIN BARUNGCLOBULIN ANTERODY CEDIZELIC ANTERODY STRUCTURE THEE-DAGASSIONAL STRUCTURE OADSAN-3	INTESERON, INANING SYSTEM ANTRODY SIGNEDARIO ANTRODY ENGINEERING, HUMANITED AND CHOLERIC ANTRODIES, 1 PAB, X, EAY STRUCTURES, CAMMA- INTERFERON	IMMUNOCILOBULIN BOACHOOLLOBULIN, KAPPA LIGHT- CHAIN DIMER HEADER	COMPLEX (ANTEGOPY/ANTIOEN) PAB-12: VEGF; COMPLEX (ANTEGOPY/ANTIGEN), ANGIOGENIC PACTOR
Сепирение	DELIS ALDER CATALYTIC ANTIBODY; CHAIN: L, H, A, B;	ANTIBODY CTMB!; CHAIN: I,, H;	ANTBODY (LIGHT CHAIN; CHAIN; L; ANTBODY (REAVY CHAIN; CHAIN; H;		ANTBODY (LIGHT CHAIN); CHAIN: L; ANTBODY (HEAVY CHAIN); CHAIN: H;	АМТВООУ; СНАЙ: L, H;	DAMUNOCLOBULDY, CHAIN: A. B;	FAB FRAGMENT, CHAIN: 1, H, J, K; VASCULAR ENDOTHELIAL GROWTH FACTOR, CHAIN: V, W;
SeqPetd		0.0			15.20	711		
Som S			<b>13</b>				0.70	0.54
Vertify Scars			ig				0.15	0.04
E PS		1.36.73	5,16-15		5.10-85	5.10-79	3.16-ki	3.40-26
3 \$		822	£		240	340	123	177
¥ ₹		12	93		12	a a	R	20
g e		-1	_		٦	ы		,
ē e		3	Age 1824		a lp Zw	<u> 3</u>	3	161
8 e 5		63	ŝ		\$	ŝ	ŝ	ŝ

			,						-
FDB ngaotution	BLOOD COAGULATION TYPE 3 2B VON WILLEBRAND DISPASE		COMPLIX (INV ENVELOPE PROTEINCOME AB) COMPLEX (INV EXTERIOR 1 BNYELDER GIT IN. EXTERIOR 1 BNYELDER GIT IN. 1 ANTIGEN-BRUNKO FEAGAGENT OF HUMAN BAGINGOLDBULIN 178, 4	IMMUNOGLOBULIN INTACT IMMUNOGLOBULIN V REGION C REGION, IMMUNOGLOBULIN	DOMUNOGLOBULIN, BENCE JONES PROTEIN	I DANINGE SYSTEM HILDANN TOLNEFTIDEAGIC COMPLEX. HLA- ALL HTLV-1, TAX, TCR, T.2 CELL RECEPTOR, IMMUNE SYSTEM	MONOCLONAL ANTIBODY MONOCLONAL ANTIBODY, PAB- FRAGMENT, REPRODUCTION	RECEPTOR TCR; T-CELL, RECEPTOR, TRANSMEMBRANE, GLYCOPROTEIN, SIGNAL.	INDAUNOGLOBULIN TRI.9, ANTI-
Compensa	WILLEBRAND FACTOR: CHAIN: A;	DÁMUNOGLOBULIN FAB FRACKENT OF HUMANIZED ANTIBODY 4D5, VERSION 4 IFVD 3	BIVELOPE PROTEIN GP12: CHAIN: G; CD4; GHAIN: C; ANTBODY ITE; GHAIN: L; H;	1002A INTACT ANTIBODY • MABZ11; CHAIN: A, B, C, D	LAMBDA III BENCE JONES PROTEIN CLE; CHAIN: A, B	MHC CLASS I HLA-A; CHAN'S AS BETA-1 MCCROCLABULN; CHAN; B; TAX PEPTUB PA; CHAN; C; HAAN T-CELL RECETTOR; CHAN; E; HLA-A GOJ; CHAN; E;	MONOCLONAL ANTIBODY 3A2; CHAIN: H, L:	ALPHA, BETA T-CELL RECEPTOR CHAIN: A, B;	TRI.9 FAB, CHAIN: L. H.
Boq Fold Score			67.29		8.18	97.70		237.84	
PM P Scare		6.75		653			5970		0.62
Vorthy Score		υ <b>τ</b> 0		-0.01	·		-0.03		
BLAST Service		5.10-85	9	2	99 <b>-9</b> 5-1	1.76-55	1.56.14	17874	130-14 0.14
VV PE		677	137	229	8Z	<b>7</b> 2	£2	ā	129
¥¥.		я	12	œ	12	п	R	F	n
đe		<	.1	٧	<b>.</b>	۵	_ د	<b>4</b>	L
<b>6</b> 0		Ē	<u>1</u>	ng.	9	<u>5</u>	4	ā	1 VE
g e ğ		ŝ		63	ŝ	ŝ	ŝ	3	ŝ

								_
PDB emetaden	TITYROID PEROXIDASS, AUTOANTIBODY, 2 DAMUNOGLOBULIN					DAMUNOGLOBULN BAMUNOGLOBULN, PAB FRAGMENT, HUMANISATION	COMPLEX (VERAL CA-FERDRACHNOCEOBULDA) HTV-1 CA, HIY CA, HIY PAI, FAB, FAB, HAB LUBHT CAINE, FAB HEAVY CHAIN COMPLEX (VIRAL CA-FERDRACHNOCHOGLEAD), HTV,	COMPLEX (MHCVIRAL
Cestapeund		IMMUNOCLOBULIN PAB FRACMENT OF A HUMANIZED VERSION OF THE ANTI-COLE ZFOW 3 ANTI-COLE ZFOW 3	EMETHOROUGH FAB FRAGMENT OF A HUMANIZED VERSION OF THE ANTI-CDIS PROW 3 ANTIDGOY 1452-	IMMUNOGLOBULN AVITGEN-BRODNO FACOMENT OF THE MURDIG ANTI- HENYLARSONATE 6FAB 36-71 6FAB 4		ANTIBUDY CTABI; CHAIN: L, H;	HUMAN DAMUNODERICENCY VIRUS TYPE I CAPEID CHADE, A. B. ANTERODY FAR23 FRACKENT; GRADE, H. K. L. M;	HLA-A 0201; CHAIN: A;
Scare Scare			13.0	21				303.44
A 8		250				3.0	8	T
Score (		40			Γ	250	0.57	Γ
PSI BLAST Score		3.40-47	3.4-17	3.46.80	Γ	1,40-91	3.16-93	1,50-62
3 ≨		229	ä	822		ž	z z	ž
£ ₹		22	-	7		12	12	a
<b>1</b> 00		-1	ر	_		×	I	
e e		2(gw	1,72	<b>4</b> 9	Γ	8	<u>Ş</u>	7045
g e <u>ş</u>		ŝ	ŝ	ŝ		3	ş	3

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

PDB amorates																							DAMUNOGLOBULIN INTACT	DAMUNOGLOBULIN V REGION C	REGION, DAMUNOGLOBULIN									DAMINOGLOBULY DAMINOGLOBILIN
Coumpound		FRAGMENT, CHAIN: B;	COMPLEX	(ANTIBODY/ANTIGEN)	FAB FRAGMENT OF THE	MONOCLONAL	ANTBODY P9.13.7 (1001)	IFBI 3 COMPLEXED WITH	LYSOZYMB (R.C.).2.1.170	FB1.4	IMMUNOQLOBULIN FAB	FRAGMENT OF	HUMANIZED ANTIBODY	4D\$ VERSION 4 IFVD 3	COMPLEX	(ANTIBODY/RINDING	PROTEIN IGGI FAR	FRAGMENT COMPLEXED	WITH PROTEIN G	(DOMAIN III) 11GC 5	PROTEIN G.	STREPTOCOCCUS 11GC 15	IGG2A INTACT ANTIBODY	· MAB231; CHAIN: A, B, C,	Q	DAMUNOGLOBULDN ANTI-	PHOSPHATEDYLINOSITOL	SPECIFIC	PHOSPHOLD ASE C	DIABODY ILACK 3	BYNONYMS: LSMK16	DIABODY, SINGLE-CHAIN	FV DDAER I LARK 4	NIG9 (IGGI=LAMBDA=);
SeqFold			_			_				_																								
PM.F			6670					_	_		8				8								8			3								87
Verity Scere			0.48							_	3				570			_		_			77			5								99'0
_	Score		16-91.2		_						5,10-92				20.0								× 10.95			6							_	¥ 49.
3 \$	٦		747	_					_		8	_		_	92	_	_	_	_				2		_	3								72
¥ Ş			21							_	2				-								=			_							_	12
<b>1</b> 0			Ī								_				1								_			<					_			=
<b>2</b> e			ē						_	_	Z				3								2			Ĭ								<u>p</u>
g e	Ö		3	_	_			_	_	_	3	_			ş		_	_		_	_		3			ş							_	3

PDS amedición	PETTURABCEPTOR) HILAAA HEAVY CHARLA CAKSI MAKE, TACEL COMPLEX (MICVITAL COMPLEX (MICVITAL PETTURABCEPTOR	CONTLEX (MICON) BLA AL HEAVY PETTURABECEPTOR) PETTURABECEPTOR)	RECEPTOR T CELL RECEPTOR 188C	RECEPTOR T CELL RECEPTOR IBEC 14	COMPLEX (ANTIBODY ANTIGER) 1,4- BETA-NACETTAMIRAMIDAE C, SINGLE-DOMAIN ANTIBODY, TURKEY EGO-WHITE LYSOZYME, 2 ANTIBODY-PROTEIN COMPLEX, SINGLE-CIAIN PY FRAGMENT	IMMUNOGLOBULIN FAB, ANTIBODY ANTIGEN, HIV-1, P24, CA	TAMÜNĞ BYSTEM 1G-POLD, DAKUNO COJALEK, ANTIBODY-ANTIGEN, BETA-TURN
Compeend	BETA-1 MICROGIOGULIN; GARIN: B. TAX TETIDE: GHAIN: C. T. CELL RECEPTOR ALPHA. GHAIN: D. T. CELL, GHAIN: D. T. CELL, RECEPTOR BETA; CHAIN: R.	HANA 0201; CHADRI N; BETA J MCROCLOBULN; CHAURI B; TAX PETIDE; CHAURI C; T CELL RECEPTOR ALPHA; RECEPTOR BETA; CHADR; RECEPTOR BETA; CHADR; RECEPTOR BETA; CHADR;	N.3.D T CELL ANTIGEN RECEPTOR: IBEC 3 CHAIN: NULL; IBEC 6	M.3.D T CELL ANTIGEN RECEPTOR; IBEC 3 CHAIN; NULL; IBEC 6	SCPV FRAGMENT 1P9. CHAIN: A, B; TURKEY EOG-WHITE LYSOZYME C; CHAIN: X, Y;	EMMUNOGLOBULIN LIGHT CHAIN; CHAIN; L; EMMUNOGLOBULIN FRAVY CHAIN; CHAIN; H;	ACETYLCHOLINE RECEPTOR ALPHA; CHAIN: A; FV ANTIBODY
Seqf'eld Score		397.14	324.99				
A See a				8	0.02	90'1	0.19
Vertify Scare				0.73	<b>#</b> 0	0.49	11.0
PSI BLAST Score		¥ 4.	S.4m-95	5.40-95	1.45.15	5,1e-92	1.56.33
3 ≥		ž	ž	Si .	<u>z</u>	24	ž
¥ Start		a	2	*	6	12	= _
g e		B			<	±	_
<u> </u>		<u>g</u>	<u>B</u>	ž	<u>a</u>	<u>8</u>	ğ
SE O		93	950	8	8	§	059

345

OURDOBEDUCTAS PATTY ACID
THROUTAGES ATTH ACID
MAD BEAME TO WASHED AND ACID
THROUTAGES ATTH ACID
HYDROXTLASE ATTH ACID
HYDROXTLASE ATTH ACID
HAD REMARK
HYDROXTLASE ATTH ACID
HAD REMARK
HYDROXTLASE ATTH ACID
HYDROXTLASE ATTH ACID MEE JI RECOMBINANT
ANTIBODY FRAGMENT;
GIALIR A;
REANTIBODY; CHAIN: L,
RE CYTOCHROME C,
CHAIN: P; CYTOCHROME P450; CHAIN: A, B; Verify PMF 8 Scars Scars 8 ş End PSI V AA BLAST 8 Berr 135 £8e33 0 2.78-60 2.70-60 15.0 0.0016 408 Sbrt ₹ SZQ PDB Chain ID ID ID NO; hatb ,E T P 1 33 959 3 632 3

_					—,							_	
PDB sandtiton		MONOOXYGENASH, HEMOPROTEIN, PASO REMARK		OXIDOREDICTASI PROGISTERONE  1-INTOXYLASE CYPICS NA9 I,  REASEANE PROTEIN  PROGESTERONE 21-HYDROXYLASE,  BENCAD, 1 PYRENE HYDROXYLASE,  ESTRADIOL 2-HYDROXYLASE, PYRENE  CYPICS	OXIDOREDUCTASB NITRIC OXIDB REDUCTASE, CYTOCHROME PASONOR	OXIDOREDUCTASE NITRIC OXIDE REDUCTASE, CYTOCHROME PASONOR	OXIDOREDUCTASE CYP119, P450 FOLD	CTTOCHROLE 1450 ERYF. OXIDOREDUCTASE (OXYGENASE) 10XA 5 CHAIN: NULL 10XA 6	CYTOCHROME PAS ERYF; OXIDOREDUCTASE (OXYGEMASE) 10XA 5 CHAN: NULL 10XA 6	OXIDOREDUCTASE (OXYGENASE)	OXIDOREDUCTASE CAMPHOR 5- MONDOXYGENASE OXIDOREDUCTASE(OXYGENASE), RU-SUBSTRATE,		RIVA BINDING PROTEIN SNRAP, SPLICING, SPLICEOSOMB, SM, CORE
Coumpened			OXIDOREDUCTASE(OXYO ENASE) CYTOCHROME	CPTOCHROME P450 2CS; CHAIN: A;	NITRUC OXIDB REDUCTASE; CHAIN: A;	NITRUC OXIDE REDUCTASE; CHAIN: A;	CYTOCHROND PASO 119; CHAIN: A, B;	CYTOCHROME PASS ERYF; IOXA 5 CHAIN: NULL IOXA 6	CYTOCHROME P450 ERYF; IOXA 5 CHAIN: NULL IOXA 6	CYTOCHROME PASS ERYF; IOXA 5 CHAIN: NULL 10XA 6	CYTOCHROME P450; CHADS: A;		SMALL NUCLEAR REGINEE FORBOTEIN SM
Seq Podd	Š								3.0				
ž	2	Γ	3	80:1	0.47	0.00	3	8		88	027		0.00
\$ P	Š		9,0	0.49	0.14	973	91.0	6.03		97.7	0.03		413
-	BLAST		914	0	1.34-50	1.7e-07	£.10-31	3,40-61	3,40-61	81-95.	1.4e-06		1.16-11
3	\$		380	388	113	ž	55	ĕ	<u>&amp;</u>	ž	388		23
Start	\$		691	2	9	16	77			6	971		_
1	•			٧	٧	,	<				٧		<b>∀</b>
60.	9		Ē	1466	100 100	ğ	₹.	axo I	<u>s</u>	200	leme		¥2
SECO	Αğ	Γ	3		959	8	3	8		8	8		859

WO 02/059260	PCT/US01/42950	WO 02/059260	PCT/US01/42950

PDB annetation	COMPLEX (TRANSCRIPTION REGULATIONDNA) COMPLEX (TRANSCRIPTION REGULATIONDNA), BNA REGULATIONDNA), BNA REGULATIONDNA, BNA REGULATION COMPLEX REGULATION COMPLEX REGULATION, ZUNC PINGER PROTEIN	COMPLEX (TRANSCAPTION REGULATION/DIA) YING-YANG I; TRANSCAPTION DITLATION, BITTATION BELEAGHT, YII, ZINC 2 FINGER PROTENT, DIA, PROTEIN RECOMMITM, I SOCHELLE RECOMMITM, I SOCHELLE (TRANSCAPTION REGULATION/DIA)	COMPLEX TRANSCENTION REGULATION/DIAL YEAC-YANG I; RAANSCENTION DUTATION, RITHATOR BELEMENT, YI, 200.2 FENCINETING SCHOOL DIAL PROTEIN RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED RECOGNITION IS COURTED REC	COMPLEX TRANSCENTION REGILATION/DINALY YNG-YANG I; TRANSCENTION DUTATION, TRANSCENTION DIAL-PROTEIN FINITER ROTEIN, DIAL-PROTEIN RECONDITION, 3 COMPLEX FRANSCENTION, 3 COMPLEX FRANSCENTION, 3 COMPLEX FRANSCENTION, 3 COMP	COMPLEX (DNA-BINDING PROTEMORA) FIVE-FINGER CIL: CILI, ZINC PINGER, COMPLEX (DNA- BINDING PROTEINDNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-
Соещропъе	TFIIA; CHAIN: A, D; 3S RIBOSOIMAL RNA GENE; CHAIN: B, C, B, F;	YYI; CHAIN: C; ADENO- SSCOLATED VRUS P3 INITATOR ELEMENT DNA; CHAIN: A, B;	YYI; GHAIN: C; ADENO	YYI; CHAIN: C; ADENO- ASOCIA/TED YRUS PS NITTATOR ELEMENT DNA; CHAIN: A, B;	ZINC FINGER PROTEIN GLI; CHADH: A: DNA; CHADH: C, D;	ZINC FINGER PROTEIN GLI; CHAIN: A; DNA; CHAIN: C, D;
Seq Fald Scare	57.65	-				19.11
Scare		Š	 00	91.6	100	
C a		-067	590	* * * * * * * * * * * * * * * * * * *	\$	
E IS	<u> </u>	. P. 10	15.49	2.76-10	6.16-12	6.66-32
3 \$	en En	=	ž	692	E	346
Įş	6	28	2	3	3	z
đa	<	u	u	υ	<	V
<u> </u>	<u> </u>	<u> </u>	3	3	<b>∄</b>	3
g e ğ	ş	§ .	ŝ , _	89	63	639

		_				_	
PDB separation	SNRNP DOMAIN, 2 SYSTEMIC LUPUS ER YTHEMATOSUS, SLE	RAY, BROTHEN, B CORE SNRUP FROTEN, B CORE SNRUP FROTEN SNRUP, STLICING, SM, CORE SNRUP DOMAIN, SYSTEMIC LIPUS 2 EX THEMA TOSUS, STE, BNA BINDING PROTEIN		COMPLEX (ZING FINGERONA) ZING FINGER, DNA. EINGER, DNA. EINGERONA, ZING FINGER, DNA. EINGER, DNA	COMPLEX (ZINC FINGELONA) COMPLEX (ZINC FINGELONA), ZINC FINGER, DNA-BINDING PLOTEIN	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA TINERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGEADMA) ZINC FINGER, PROTEIN-UNA PITERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGEADMA)
Coumpound	DI; CHAIN: A; SMALL NUCLEAR RIBONUCLEOPROTEIN SM D2; CHAIN: B;	SMALL NUCLEAR BIBONUCLEOPROTEDS SM D): CHADN: A, C, B, Q, I, K; SMALL NUCLEAR RIBONUCLEOPROTEDS RIBONUCLEOPROTEDS H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, J, H, H, J, H, H, J, H, H, J, H, H, H, H, H, H, H, H, H, H, H, H, H,		GOSA ZINC FRAGER PETTIDE, CHAIN: A; DUTLEX OLIGONUCLEOTIDE BUNDING SITE; CHAIN: B,	QGSR ZINC FINGER PEPTIDE, CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B,	DNA; CHAIN! A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, O;	DNA; CHAIN! A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, Q;
Sour Fold							
PMP Scene		413		6.0	0.09	9,0	0.0
Verify Scare		0.14		97.0	-051	750	452
PSI BLAST		5.10-12		1.76-26	1.36.26	3.15-6	1.70-13
3 ≥		15		<b>3</b> 5	581	3	77
Start A A		E.		991	8	159	217
e e		en en		<	<	U	0
<b>2</b> 0		4th		4	dia.	lacy.	Imey
ខ្លួនខ្លួ		3	T	659	659	659	83

g e	a a	AA Start	32	E PE	Verify Scars	Scary	Seq Pold Scars	Септрокие	PDB annetation
Ī									BINDING PROTEIN/DNA)
		Ī							
9		=	139	27-07-07	8	8		OXIDOREDUCTASE ALDOSE REDUCTASE	
								(E.C.I.I.131) COMPLEX WITH NADPH IADS 3	
9	<		22	7.4.	25	8		J-ALPHA-	OXIDOREDUCTASE 3-ALPHA-HSD;
								HYDROXYSTEROID	OXIDOREDUCTASE, NAD
_								DEHYDROGENASE;	
					_			CHAIN: A, B;	
4		-	172	3.44-39	150	1.00		ALDOSE REDUCTASE;	OXIDOREDUCTASE
								CHAIN: NUIL;	OXIDOREDUCTASE, ALDOSE
			1		Ī			Carlo Berry LOT 1 CT 1 CT 1 CT 1	ACCOUNTS INTERITION DIVIDING
ě	<u> </u>	_	2	ř.	ĵ	8		CHU KELAUCI ASE; CRAIN;	BARREL PROTEIN-NADP+COMPLEX
163	<	=	52	6,00-42	3	3		ALDOSE REDUCTASE;	OXIDOREDUCTASE ALDOSE
		_		_				CHAIN: A:	REDUCTASE, INTERITTON, DIABETES
£		۰	172	6,04.3	2	8		FR-1 PROTEIN; CHAIN:	OXIDOREDUCTASE (NADP) ALDO-
	_							WIT:	KETO OXIDOREDUCTASE (NADP),
			I						
Ē	<	L	×	1.50-26	290	25		IDS UBIQUITIN; CHAIN: A;	DE NOVO PROTEIN PROTEIN DESIGN,
									HYDROPHOBIC CORE, PACKING,
				_					NOVO PROTEIN, UBIQUITIN
₫		Ŀ	ž	10-33	979	ş		UBIQUITIN	
								TETIKA UBIQUITIN I TBE 3	
9	L	_	25	16-27	-0.52	090		CHROMOSOMAL PROTEIN	
ŀ			ŀ					THEODIET COSE	TRICITION LIBIOITHM DESIGNED
è	<u>.</u>		2	7	;	,		MUTANT ID? CHAIN: A;	CORE MUTANT
				•					
2		=	122	1.70-64			19.67	ZEJ (IGGI-KAPPA*) ANTIBODY; CHAIN: L. H.	IMMUNOGLOBULIN IMMUNOGLOBULIN

PDB equotation		IMMUNOGLOBULIN IMMUNOGLOBULIN, C'REGION, V REGION	·	COMPLEX (HENCYBALL PETIDER ECETIOR) HEA AZ HEAVY PETIDER ECETIOR) PETIDER ECETIOR)	RECEPTOR T CELL RECEPTOR 18EC	INSECT IMMUNITY INSECT IMMUNITY, LPS-BINDING, HOMOPHILIC ADTESTON	ANTBODY, THERAPEUTIC, ANTBODY, CD52	
Courporad	M.P.	ANTI-IDIOTYPIC FAB 409.53 (IOGZA) PAB; CHAIN: A, B, L, H	DAKUNOGLOBULN FAB- FRAGMENT OF MONDCLONAL ANTERDY BILLS 1 IBBI 3 GINERA) 1 IBBI 4	HAAA 020; CIADR: A; BETA J MICROGLOBULN; CIANR: B; TAX PETIDE; CIANR: C; TOELL RECEPTOR ALPHA; CHAN: B; TOELL RECEPTOR BETA; CHAN: E;	143.D T CELL ANTIGEN RECEPTOR, 188C \$ CHAIN: NOTL; 18EC 6	HEMOLIN; CHAIN: A, B;	CAMPATH-LIBELOHT CHAIN; CHAIN; L; CAMPATH-HEHBAVY PEPTIDE ANTHGEN; H; PEPTIDE ANTTGEN;	IMMUNOGLOBULIN IMMUNOGLOBULIN GI (KAPPA LIGHT CHAIN) FAH'FRAGMENT IFIG 3
SeeFold		72.57	nz.	ып	75.74	102.10	22	1Ecr
Som S	Ī							
Vertiy Score	Γ							
E TO		5.16-72	5.1e-69	27-47 I	1.76-21	8.50-16	3.16-72	3.40-72
3 ₹	Ī	ä	ä	ă	ă	<b>Ş</b>	22	ta
¥ V	Γ	2	2	=	=	=		=
<b>a</b>	Ī			ш		<	_	د
9 e	T	1	<u>z</u>	<u>ā</u>	<u>3</u>	2	2	ğ.
S a S	T	1.59	16	16	5	1/9	1.09	1159

WO 02/059269 PCT/US01/42950 WO 02/059260 PCT/US01/42950

PDB annetation	IMMUNOGLOBULIN	CATALYTIC ANTIBODY CATALYTIC ANTIBODY, FAB, RING CLOSURE REACTION			COMPLEX (DAMINOGLOBULDNAUTOANTIGEN) COMPLEX (DAMINOGLOBULDNAUTOANTIGEN) NEGUMATOD FACTOR 2 AUTO- ANTIBODY COMPLEX ANTIBODY COMPLEX	IMMUNOGLOBULIN IMMUNOGLOBULIN, C'REGION, V REGION	COMPLEX (MENCHAL) PETIDENE EET (MENCHAL) RECEPTOR) HANA TAGEN RECEPTOR, VIALA PETIDE, 1 RECEPTOR, VIALA PETIDE, 2 PETIDENE CENTOR PETIDENE CENTOR	COMPLEX (MHCVTRA). PEPTIDE/RECEPTOR) HLA A3 HEAVY CHAIN; COMPLEX (MHCVFRA).
Countries		100 SCI; CHAIN: L, H;	BOKUNOGLÓBULN IMACINOGLÓBULN LANBDA LIGHT CHAIN DIMER (MCGS) ZMCG 3 (RUGGNAL FORM) ZMCG	IMMUNOGLOBULIN IMMUNOGLOBULIN PAB' NEW (LAMBDA LIGHT CHAIN) 7FAB 3	IGOVREA; CHADI: A; RF- AN IGMALANBDA; CHADI: H, L;	ANTI-EDIOTYPIC FAB 409.53 (LOGZA) FAB; CHAIN: A, B, L, H	ILAA 020]; CHAIN! A. BETA-2 MCROOLOBULIN! CHAIN: B; TAX FETIUE; CHAIN: B; TAX FETIUE; RECEPTOR ALPHA; CHAIN: B; T CELL RECEPTOR BETA; CHAIN: B;	HLA-A 0201; CHAIN: A: BETA-2 MICROGLOBULIN; CHAIN: B; TAX PEPTIDB;
SeqPold Score	Ī	14.57	75.07	76.53	¥.6		89.69	77.18
Score	T					6.25		
Verthy	Ī					77 O		
¥ 1		<u>*</u>	3	6 <u>5</u>	<u> </u>	5.18-63	3.4-27	76-38
33	T	ä	ž	a	242	340	82	82
ij\$	I	=	=	=	61	=	=	=
je	T					_	₈₈	22
ē a	T	127	Ž.	2	₹ T	1	<u>a</u>	Ž
ន្ទិចខ្	1	15	ī.	1.69	159	1.09	5	1.69

PDB association	•	COMPLEX (DAMANOGLOBULINRECEPTOR) TCR VAPLER VBETA DOMAIN; T-CELL RECEPTOR, STRAND SWITCH, FAB, AMTICLONOTYPIC, 3. (DAMINOGLOBULINRECEPTOR)		COMPLEX (INACINORECEPTOR/INACIDBU LIN COMPLEX (IMACINORECEPTOR/INACIDBU LIN)	COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLEXES COMPLE	RECEPTOR TOR: T-CELL, RECEPTOR, TRANSMEMBRANE, GLYCOPROTEIN, SIGNAL.	IMAUNOGLOBULDI TRL9, ANTI- THYROID PEROXIDASE, AUTOANTIBODY, 2
Септрепи	IMMUNOGLOBULIN FAB FRAGMENT OF HUMANIZED ANTIBODY 4D5, VERSION 4 IFVD 3	KBS-C20 T-CELL ANTIGEN RECEPTOR; CHADI: A, B; ANTBODY DESIRB-I; CHADI: I, H;	HYDROLASE(O- OLYCOSYL) NO NEURAMONDASENCAI (B.C.3.2.1.18) COMPLEX WITH FAB INCA 3	NIS ALPHA-BETA T-CELL. RECEPTOR; CHAIN: A, B, C, D, H37 FAB; CHAIN: E, P, Q, H	FAB 1841; CHAIN: L. H. OUTER SURFACE PROTEIN A; CHAIN: O;	ALPIÁ, BETA T-CELL RECEPTOR CHAIN: A, B;	TRI.9 FAB; CHAIN: L, H;
Seq Pold	76.29	96.85	73,83	2,17	<u> </u>	77.74	75.01
E S							
Verify Sem							
PSI BLAST	1.50.72	6.8672	1.56.71	6.le-23	3.10-67	2.18-22	1.421
3 3	222	722	121	ñ	ta	ន្ត	a
Fra Str	12	<b>1</b>	=	=	Ŀ	=	11
a a	<	ب	د	<u>a</u>		æ	٦
<u> </u>	P.	<u> </u>	<u>a</u>	Page 1	<u>B</u>	Ē	8.
දී ප දී	129	110	11.0	129	ī.	1/9	179

353

| Chaila Gair | Fai | Fai | Fair | Garylan | Comespend | Fib institution | Fib | Research | Fib | Research | Fib | Research | Fib | Research | Fib | Research | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fib | Fi

Ē

Γ			υ.	_	-	7	g	_		-		7	Œ		_	_	<u>.</u>	_	4	_	-				Γ	-		g			_		<u> </u>
PDB association		CELL SURFACE CILYCOPROTEIN	CATALYTIC ANTIBODY CATALYTIC	CARBOCATION, 2 CYCLIZATION	CASCADE		GROWTH PACTOR/GROWTH FACTOR	RECEPTOR FGP, FGFR,	INDAUNOGLOBULDN-LIKE, SIGNAL	TRANSDUCTION, 2 DIMERIZATION,	GROWTH PACTOR/GROWTH FACTOR	RECEPTOR	GROWTH PACTORAGROWTH PACTOR	RECEPTOR FOF, FOFR,	DOMINOGLOBULIN-LIKE, SIGNAL.	TRANSDUCTION, 2 DIMERIZATION,	GROWTH PACTORAGROWTH PACTOR	RECEPTOR	COMPLEX (ANTBODY ANTIGEN) 1,4	BETA-N-ACETYLANDRAMIDASE C.	SINGLE-DOMAIN ANTIBODY,	TURKEY EGG-WHITE LYSOZYME, 2	ANTIBODY-PROTEIN COMPLEX,	SINGLE-CHAIN FV FRAGMENT	CELL ADPESION NCAM; NCAM,	INMUNOCIOBULIN FOLD,	OLYCOPROTEIN	GROWTH PACTORADROWTH PACTOR	PERSONAL ECOP. ECER 2.		MAKUNOGLOBULAN (IG)LIKE	MANUNOGLOBULN (IG)LIKE DOMAINS BELONGING TO THE I-SET	DOMAINS BELONGING TO THE I-SET SUBGROUP WITHIN IQ-LIKE
		mao	CAT	3	3		9	2	Ž	Ž	8	2	8	ğ	ğ	ž	GRO	SEG	ŝ	BET	3	2	Ę	S	TEO.	ğ	GLY.	9		3	Š	88	388
Countrousd			CATALYTIC ANTIBODY	CIAIN: L. CATALYTIC	ANTIBODY 1944 (HEAVY	CHAIN, CHAIN: H.	PIBROBLAST GROWTH	FACTOR 2; CHAIN: A, B;	FIBROBLAST GROWTH	PACTOR RECEPTOR 1;	CHAIN: C. D.		FIBROBLAST GROWTH	FACTOR 2: CHAIN: A, B;	FIBROBLAST GROWTH	FACTOR RECEPTOR 1;	CHAIN: C. D.		SCFV FRADMENT 1P9.	CHAIN: A, B; TURKEY	EGG-WHITTE LYSOZYNE	C CHADS X, Y;			NEURAL CELL ADHESION	MOLECULE; CHAIN: A, B,	ដូច	PIBROBLAST GROWTH		FACTOR 2: CHAIN: A, IS, C.	D. FIBROBLAST GROWTH	PACTOR 2: CHAIN: A, B, C, D, FIBROBLAST GROWTH FACTOR RECEPTOR 2:	PACTOR 2: CHAIN: A, B, C, D; FIBROBLAST CROWTH FACTOR RECEPTOR 2: CHAIN: B, F, Q, H;
PMP SeqPetd	Seem																																
M	E S	Γ	60				100		Ī				500						61.0						0.92		Ī	27.0					
Vertity			150	_			T			_	_		633					_	6:3						17:0			Г					
PSI	_		3.40-63				6.80-47 0.37						3						21-94-						5,46-17			1.76-45 0.36					
Ead	\$		Z		_		ž		_				ž				_		288	_					ž			ž					
Start	\$		8				2						25			_			65						55			133					
4	_						U						۵						~						<				_				
PDB	e	ſ	탈				EM3						3						9						Ē			Lev2	_				
SEO	Αġ		11/9				119				_		129	_		_			129						1/9			129	_				

WO 02/059260	PCT/US01/42950	WO 02/059260	PCT/US01/42950
WO 02437140	1 € 1703/1/42/30	***************************************	

PDB association						DOMUNE SYSTEM YON WILLEBRAND	FACTOR, GLYCOPROTEIN IBA	(A:ALPHA) BINDING, 2 COMPLEX	(WILLEBRAND/DOMUNOGLOBULIN).	BLOOD COAGULATION TYPE 3 28	VON WILLEBRAND DISEASE																	COMPLEX	(INDAUNOCIOBULINARECEPTOR)	IMMUNOCLOBULIN FOLD,	TRANSMEMBRANE, OLYCOPROTEIN,	RECEPTOR, 2 SIGNAL, COMPLEX (DAMUNOGLOBULIN/RECEPTOR)	COMPLEX
Coumpound	, noa au	AA PV JPUV 4	IMMUNOGLOBULIN	(KAPPA LIGHT CHAIN)	FAB FRAGMENT 1FIG 3	DOMUNOGLOBULIN NAC.	4 1001; CHAIN: L;	INCAUNOGLOBULIN NMC-	4 1001; CHAIN: H; VON	WILLEBRAND FACTOR:	CHAIN: A;	IMMUNOGLOBULIN PV	FRAGMENT OF	HUMANIZED ANTIBODY	4DS, VERSION 8 IFVC 3	DOMUNOGLOBULIN FAB	PRACINGENT OF	HUMANIZED ANTIBODY	4D3, VERSION 4 IPVD 3	TLYMPHOCYTE	ADHESION	CLYCOPROTEIN CD2	(RAT) IHNO 3	DAMUNOGLOBULIN	INDMUNOCITOBUTIN M	(10-M) FV FRADMENT	IIOM 3	INTERLEUKIN-I BETA;	CHAIN: A; TYPE I	DITERLEUKIN-I	RECEPTOR; CHAIN: B;		INTERLEUKIN-1 BETA;
SeqFeld	1									_						ŝ			_	Ī								\$ 35					
M &	1		ä		-	Q.12						41.0							_	9.14				10.0									60
Verthy Sours	Ī		6.17			979						28.0								800				0.46									ż
157	E C	٦	3.			3,4463						25.4				9				3				7				14					<u>.</u>
] \$			3			240						82	_			Ē				Ħ				92.1	_		_	8					Z
Start	Ī		a			=						=				-				2				Ē			_	ŝ					3
<b>4</b> 0	Ī					1						V				_				~								_					B
<b>2</b> e	1		ĕ			4						2				Ē				ı				B				9					₫
03g	į	1				11.9						11.9		_		129	_	_		169		_	-	129	_		_	150					115

		<b>.</b>				
PDB agaeteties	RECEPTOR FOP?; FGFR2: DAMUNOCLOBULIN (10)LIKE DOMAINS BELONGING TO THE I-SET 1 SUBGROUP WITHIN 10-LIKE POWATHER II. THE FOUR	GROWTH FACTORGROWTH PACTOR RECEPTOR FORP, FORTZ, DAMINOGLOBULM (IOLIKE DOMAINS BELONGING TO THE LEET S SUBGROWTH WITHOUT OF THE DOMAINS, B-TREFOIL, FOLDE	GROWTH FACTORAROWTH FACTOR RECEPTOR FEET; FEET; BANNOGLOBULN (10) LATB DOMAINS BELONGING THE I-SET STUBROOF WITHIN (10-LIKE DOMAINS, B-TREFOIL, FOLD.	GROWTH FACTORAGEOWTH FACTOR RECEPTOR FOFF, FERT, I. BANDNOCILOBULH (10) LIKB DOMAIN'S BELOWGING TO THE I-SET S SUBGROOT WITHIN'S IO-LIKE DOMAIN'S B-TREFOIL FOULD	DAKUNE SYSTEM HIGH AFFINITY (IGH-C RECEPTOR, CEGESLOON) IGB- EC; INACUNGLICIBULIN FOLD, GL YCOPROTEIN, RECEPTOR, IGB- BINDHOOD 2 PROTEIN, IGB ANTIBODY, IGB-CO	
Consposed	FACTOR 2: CHADN: A, B, C, D; FIBROBLAST GROWTH FACTOR RECEPTOR 2: CHAIN: B, P, G, H;	FURNOBLAST GROWTH FACTOR 2: CHADN: A, B, C, D: FURNOBLAST GROWTH PACTOR RECEPTOR 2: CHADN: E, F, Q, H;	FIBROBLAST GROWTH PACTOR I; CHAIN: A, B; FIBROBLAST GROWTH PACTOR RECEPTOR 1; CHAIN: C, D;	FIBROBIAST OROWTH PACTOR 1; CHAIN: A, B; FIBROBIAST GROWTH PACTOR RECEPTOR 1; CHAIN: C, D;	HIGH AFFINITY DAMUNOGLOBULIN EPSILON RECEPTOR CHAIN: A, 10 EPSILON GAIN C REGION, CHAIN: B, D.	IMMUNOQLOBULN FV FRACMENT OF A HUMANIZED VERSION OF THE ANTI-CD18 1FOV 3 ANTIBODY 152 (HUHS2-
SeqPald Schre						
N. See See See See See See See See See Se		900	100	0.16	10.0-	-0.05
Verly Sears		0.40	97.0	290	ີ່ 2	87
잠		1.40-43	5.1e-49	3.4e.ls	14-14	F 4
3 \$		ii.	¥	339	339	=
S S		¥	E	247	159	=
<b>j</b> e		D	ט	υ	<	٠.
<u> </u>		<u>\$</u>	E	F	<u>8</u>	<u>i</u>
g e ĝ		5	120	5	E.	150

PCT/US01/42950

PDB annetados	(BANUNOGLOBULINNECEPTOR) DAMINOGLOBULIN POLD, TRANSMEMBRANE, GLYCOPROTEIN, RECEPTOR, 2 SIGNAL, COMPUEX, GMAUNOGLOBULINNECEPTOR)		MUISCLE ROTEIN CONVECTIV, MEXTAS, CELL ADRESION, GLYCOPFOLTEN, TRANSAEABRANE, BEFEAT, BRAIN, 1 MAINFOGLOBULIN FOLD, ALTERATIVE SPLICHO, SIGNAL, MISCALE PROTEIN.	COMPLEX (INACINORECEPTOR/INACINOCILOBU LIN) COMPLEX (INACINORECEPTOR/INACINOCILOBU LIN)	DOMINE SYSTEM BETA BARREL DOMINOGLOBULIN YL DOMAIN DIMER, FLIPPED DOMAIN 1 DIMER	ANTIBODY ANTIBODY, VI PEPTIDE, BINDING SITE	MONOCLONAL ANTIBODY MONOCLONAL ANTIBODY, PAB- FRAGMENT, REPRODUCTION	RECEPTOR TCR: T-CELL, RECEPTOR, TRANSMEMBRANE, GLYCOPROTEIN,
Compound	CHAIN: A; TYPE I INTERLEUKIA-I RECEPTOR; CHAIN: B;	DAMINOGLOBULIN DAMINOGLOBULIN FAB FRACMENT (MCPCS603) 1MCP 4	TITIN; CHAIN; NULL;	NIS ALPHA-BETA T-CELL RECEPTOR; CHAIN: A, B, C, D; HS7 FAB; CHAIN: E, P, Q, H	IMMUNOGLOBULIN LIGHT CHAIN VARIABLE DOMAIN; CHAIN: A, B;	OCIVIE II OLIVEL II OLIVEL II OLIVEL II OLIVEL II OLIVEL II OLIVEL II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI II OLIVELI	MONOCLONAL ANTIBODY 3A2; CHAIN: H, L;	ALPHA, BETA T-CELL. RECEPTOR CHAIN: A, B;
Seq Fold				76.63				20.09 0.09
PMP Score		80	<b>100</b>		\$0 <del>0</del>	9010	0.03	
Verity		2 2	*		973	0.37	0.42	
15 Ja		1.56	<u></u>	S.le.33	1.76-12	1.76-31	3,44-6J	1.74-33
3 \$		3	ā	ភ	<u>\$</u>	£	52	ā
¥ Sgr		ŝ	ន	=	e.	8	2	
<b>5</b> e		ر ا		<b>.</b>	<	در		۵
<u> </u>		ĝ e	3	विद्या	lgac	<u>H</u>	4	1
geg		159	129	129	169	11.9	129	11.9

CATALYTIC ANTIBODY CATALYTIC
ANTIBODY, RAB, RING CLOSURE
REACTION
DIAGNUE SYSTEM F11 NATURAL
KALJER CELE RECEPTOR, KIR,
NATURAL, KILLER RECEPTOR,

MHC CLASS I NX CELL RECEPTOR PRECURSOR; CHAIN: A;

800

20.03

85

1.70-63

3 333

IMMUNOCLOBULIN WAT,
A VARIABLE DOMAIN
FOM
MAUNOCLOBULIN
LUGHT-CHAIN IWTL, 3
(BENCE-UNES PROTEIN)
IWTL, 4
100 3CI; CHAIN! I, 18

TWITCHIN INTH IOSP MODULE; CHAIN: NULL;

40.15 =

331 119

2

đe					<			<	د	<
<b>2</b> 2	am I		?		9.		, auft	P. P.	25c4	2
ខ្លីខទ្	1.59		3		1/9		129	1159	119	1.09
02/05	<del>9</del> 260				360	•			PCT/USO	01/4295
PDB saactides	GPI-ANCHOR, 2 NEURAL ADVESTON MOLECULE, DAMUNOCLOBULIN FOLD, HOMOPHILC 3 BINDING, CELL ADMESTON PROTEIN			DAMUNOGLOBULIN	INMINOGLOBULIN DAMINOGLOBULIN, C REGION, V REGION			ONDERS (MANDA)  TEPTURE RECEPTOR) HILA AO HEAVY CHAN; COMPLEX (MICVIRAL  PEPTURE RECEPTOR)	RECEPTOR T CELL RECEPTOR IBEC	INSECT IMMUNITY INSECT IMMUNITY, LPS-BINDING
Centpend		MAKUNOGLOBULIN BAKUNOGLOBULIN FAB NEW (LAMBDA LIGHT	canal trans	ZEI (10G1-KAPPA+) ANTIBODY; CHAIN: L, H, M, P;	ANTI-IDIOTYPIC FAB 409.5.3 (IOGZA) FAB; CHARN: A, B, L, H	IMMUNOGLOBULIN FAB FRAGMENT OF MONOCLONAL	ANTIBODY B72.3 IBBJ 3 (MURINBARUMAN CHIMERA) 18814	HLA-A 0201; CHAIN: A: BBTIA-A MICROGLOBULIN; CHAIN: B; TAX PETTIDE; CHAIN: G; T CELL RECEPTOR ALPHA; RECEPTOR RETA: CELL RECEPTOR RETA: CELL	E; 14.3.D T CELL ANTICEN RECEPTOR; 18BC 5	CHAIN; NULL; 1BEC 6 HEMOLIN; CHAIN: A, B;
Seg Pald Sears		17		73,64		77.88		30.00	15.74	02.10
į			T							
Verity Scere			Τ							Γ
E E		1.34-53		1.70-68	5.16-72	3.10-69		7	1.34-21	15-16
] \$		iñ.		122	27 S.I.P.72	222 5.10-69		ă	ă	ş
¥		=		=	:			=	=	41
10	L	د		٦	د.	٠		<b>3</b>	$\perp$	<
			_	_		_			_	

2 229

22 362

COMPLEX (ANTIBODY ELECTRON
ANTIBORA BE CATC
ANTIBORA BE CATC
ANTIBORA BE CATC
ANTIBORACE COMPLES
ANTIBORACE ELECTRON
ANTIBORACE ELECTRON
ANTIBORACE ELECTRON
ANTIBORACE ELECTRON
ANTIBORACE ELECTRON
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
ANTIBORACE
A

PDB snaotzibe

Verliy PMF SegPaid Scare Scare Scare 90'0

0.33

32

AA BLAST S
AA BLAST S
Score
331 2.76-15 0

¥ Se 22

		_	-	_	-	_	_	-		-				-	-				_	-	-	-	_	Т	-	-	-	_		-	٦
PDB assectes	INHUBITORY RECEPTOR, 2 IMMUNOGLOBULIN																							CELL ADHESION NCAM DOMAIN 1;	CELL ADHESION, GLYCOPROTEIN,	HEPARIN-BINDING, OPLANCHOR, 2	NEURAL ADHESTON MOLECULA	DAMINOGLOBULN FOLD, SIGNAL	CELL ADRESION PROTEIN NCAM	MODULE 2: CELL ADFRESION,	CLYCOPROTEIN, HEPARIN-BINDING,
Cemporad		IMMUNOGLOBULDY FAB	FRAGMENT OF A	HUMANIZED VERSION OF	THE ANTI-COLL 2POW 1	ANTIBODY HSZ (HUHS2.	OZ PAB) ZPGW 4	TO THE PROPERTY OF THE PARTY OF	DOMAIN (VARIABLE	DOMAIN OF KAPPA ZIMON	3 LIGHT CHAIN OF	MCPC603 MUTANT IN	WHICH ZIMN 4	COMPLEMENTARITY.	DETERMINING REGION I	HAS BEEN REPLACED BY	ZDON 5 THAT FROM	MOPC167 ZIMIN 6	DAMUNOGLOBULIN	TANGED TOTAL	DOCUMENT COOLS	Contract (McCus) 2mcus	(INCOMPANIENCE) AMERICA	NEURAL CELL ADHESION	MOLECULE, CHAIN:	NUT:			NEURAL CELL ADHESION	MOLECULE, LARGE	ISOPORM; CHAIN: A.
Seer's																			19.19												
Scare		242					;	į									_							81.0					0.34		_
Varity Score		0.42					,	ŝ				_												8					150		
PSI BLAST Soor		3.40-63					1							_					5.10-56					5.40-15					5.40-15		
3 2		240					1	È											242					Ē					331		
F 2		=		_			,	-							_	_			=			_		255		_		_	255	_	
<b>a</b>							1											_	_					Ī					<		
<u> </u>	Γ	77,00	,				1	1			_		_						2mcg	_				98				_	Ę	_	
g e g		11/9					ļ	5			_			_					129					11/9				_	1/9	_	_

PCT/US01/42950

WO 02/059260 PCT/US01/42950

	_				_	_	_		_			_	_	_	_	_		_	_		_	-	_		_	_	τ	
РОВ аквоситоп	HOMOPHILIC ADHESTON	ANTIBODY, CD52 ANTIBODY, CD52											COMPLEX	(IMMUNOGLOBULIN/RECEPTOR) TCR	VAPLHA VBEIA DOMAIN; I-LELL	RECEPTOR, STRAND SWITCH, PAB,	(IMMUNOGLOBULINAECEPTOR)						COMPLEX	(IMMUNORECEPTOR/IMMUNOCILOBU	LIN) COMPLEX	(MAKUNORECEPTOR/IMPAUNOGLOBU	(NT)	COMPLEX (INDAUNOGLOBULINALIPOPROTEIN)
Септрепъ		CHAIP TH-IH-LIGHT CHAIR; CHAIR: L;	CAMPATH-IH-HEAVY	PEPTITION ANTHORN	CHAIN: P.	DAMUNOGLOBULLIN	DAMINOGLOBULIN GI	(KAPPA LIGHT CHAIN)	FAB' PRACMENT 1FIG 3	IMMUNOQLOBULIN FAB	HUMANIZED ANTERODY	4D5, VERSION 4 IPVD 3	KBS-C20 T-CELL ANTIGEN	RECEPTOR; CHAIN: A, B;	ANTIBUDY DESIRE-1;	CHAIN: L, M.		HYDROLASE(O-	GLYCOSYL) N9	NEURAMINIDASB-NC41	(EC.3.21.10) COMPLEX	WITH PAB INCA 3	NIS ALPHA-BETA T-CELL	RECEPTOR; CHAIN: A, B,	C, D, HS7 FAB; CHAIN: E,	Р, О, Н		OUTER SURFACE
Sear Sear		2.55				15.0				76.29			23.99					13.83					7.54					r H
AM.	Γ																											
Vertity	Γ																	Γ					Γ					
2 to 1		S.18-77				14-72				1.4.7			6.80-72					12.05					6.16-25					
3 \$	Ī	ZZ.				122				22			ш					ü					517					ä
Ę Į	Γ	-				=				1			:					=			_		=		_		Ī	
<b>a</b>		_								<			٦										8					
<b>2</b> 9		Ē				2				Ē			24					900					146				1	ł
3 a 5		673				E.		_	7	119	_		229					673					219		_			Ę

								<u>:</u>
PDB sanstades	(DAGUNOGLOBULDALPOPROTEIN), OUTER SURPACE 2 PROTEIN A COMPLEXED WITH FABIALI, BORRELLA BURGDORFERI 3 STRAIN B31	RECEPTOR TCR; T-CELL, RECEPTOR, TRANSMEMBRANE, GLYCOPROTEIN, SIGNAL	DGGUNGOLOBULN TE I.9, ANTI- THYROID FEROXIDASE, AUTOANTIBODY, 1 DGGUNOOLOBULN	CATALYTIC ANTIBODY CATALYTIC ANTIBODY, FAB, RING CLOSURE REACTION			СОМГЕЖ (БКАМОСІДВИЈАКЛТОБНТІСЕМ) (ОКАТЬКУ ОКАПНОСІДВИЈАКЛТОБНТІСЕМ) ВНЕПМА ТОПО РАСТОВ З АUTO- ANTIBODY COMPLEX	DAKUNOGLOBULIN DAKUNOGLOBULIN, C'REGION, V REGION
Compense		ALPHA, BETA T-CELL RECEPTOR CHAIN: A, B;	TRI 3 YAB; CHAIN: L, H;	ופס זכנו כנויינוא: ר' או	IMMUNOGLOBULIN DANINOGLOBULIN LAMBDA LIGHT CHAIN DINER (MCOS) 2MCO 3  (TRIGORAL FORM) 2MCO	DAMUNOGLOBULN DAMUNOGLOBULN FAB NEW (LAMBDA LIGHT GIANN) TFAB 3	IGGA RUA; CHÁIDH: A; RF- AN IGMLAMEDA; CHÁIDH: H, L;	ANTI-LDIOTYPIC FAB 409.5.3 (TOGZA) FAB; GHADH: A, B, L, H
Seq Fald		1. 1.	15.01	74.57	75.07	76.52	¥.5	
E E								0.25
Vertfy Scene								0.26
BLA51		5.19.22	17-02.1	1.56-73	D-91'9	16-39	l'és	5,18-63
3 ≥		ñ	a	a	922	a	242	240
Start A		=	1	=	<u>.</u>	=	61	=
9		n	ب	د		1	د	ر.
<u> </u>		ğ	ž.	256	Jmc#	da da	<u> </u>	ja .
g a ğ		229	£ .	21.9	u ₉	£5	719	229

w

WO 02/U59160 PCT/U5/01/42950 WO 02/U59160 PCT/U5/01/42950

= 3			i		E S		
= 3							FV, ANTI-LYSOZYME, 1 COMPLEX (HUMANIZED ANTIBODY/HYDROLASE)
ž	=	1.7432	3	£0.05		IO KAPPA CHAIN V4 REGION REI; CHAIN: A, B;	MMUNE SYSTEM REIV, STABILIZED IMMUNE SYSTEM PRAGMENT, BENCE-LONES 2 PROTEIN, IMMUNE SYSTEM
<u> </u>	ā	\$. 414	2	ã		T-CELL SURFACE GLYCOPROTEIN CD4; CHAIN: NULL;	T-CELL SURFACE GLYCOPROTEIN DAMUNOGLOBULIN FOLD. TRANSMEMBRANE, GLYCOPROTEIN, T-CELL, 2 MHC, LIPOPROTEIN, T-CELL, SURFACE GLYCOPROTEIN
8	3	3-4-0	ā	1979		CATALYTIC ANTIBODY 19A4 (LIGHT CHAIN); CHAIN! L! CATALYTIC CHAINSDY 19A4 (BEAVY CHAIN]; CHAIN! H;	CATALYTIC ANTIBODY CATALYTIC ANTIBODY, TEMEBODD SYNTHASE, CARBOCATION, 2 CYCLIZATION CASCADE
<u>s</u>	ă	j	5	10.0-		FIRROBLAST GROWTH FACTOR 2: CIADI: A, B; FERGELAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;	CROWNTH PACTORAROWTH PACTOR RECEPTOR FOR POFF. INANSOUCTION, 2 DIMERIZATION, GROWNTH FACTORAGOWTH FACTOR RECEPTOR
8	ž	<u> </u>	ĝ	903		FEROBLAST GROWTH FACTOR 2; CKADE: A, B; FEROBLAST GROWTH PACTOR RECEPTOR 1; CHADE: C, D;	GROWTH FACTORARDWTH PACTOR RECEPTOR FOF, FOFR, DANINOCILOBILIN-LIKE, SIGNAL TRANSDIACTIOR, 2 DIMERIZATION, GROWTH FACTORARDWTH FACTOR
60	222	1.46-12	0.19	40.19		SCFV FRAGMENT 1F9; CHAIN; A, B; TURKEY EGG-WHITE LYSOZYME C; CHAIN; X, Y;	COMPLEX (ANTIBODY ANTIGEN) I,4- BETA-R-ACETYLAGRAMOASE C; STGGLE-DOMAIN ANTIBODY, TURKEY EGG-WHITE LYSOZYME, 2 ANTIBODY-PROTEIN COMPLEX,

					-		
PDB sapetation	COMPLEX CHICUTEAL THE TIDEAGE CONTENT THOSE CONTENT OF THE CONTENT THE CONTENT CONTENT THE CONTENT CONTENT THE CONTENT CONTENT THE CONTENT CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE CONTENT THE	COMPLIX (MICHANIA)  GLUDI; COMPLEX (MICHANIA)  GRUDI; COMPLEX (MICHANIA)  FETTIBERECETTOR)	RECEPTOR T CELL RECEPTOR IBEC 14	INSECT IMMUNITY INSECT IMMUNITY, LPS-BINDING, HOMOPHILIC ADHESTON	COMPLEX (ANTBODY/ANTIDEN) FAB-12: VEGF; COMPLEX (ANTBODY/ANTIGEN), ANGIOGENIC FACTOR	IMMUNOGLOBULIN BENCE-JONES PROTEIN, IBIN 8 BENCE JONES, ANTBODY, MULTIPLE QUATERNARY STRUCTURES IBIN 13	COMPLEX (RUMANIZED ANTBOOY/HYDROLASE) MURAMIDASE; HUMANIZED ANTBODY, ANTBODY COMPLEX,
Compound	HIA'A 000); CHAIN! A' CHAIN! B! TAX PETIDE; CHAIN: B; CELL RECEPTOR ALPHA; CHAIN: D; TCELL RECEPTOR BETA; CHAIN: RECEPTOR BETA; CHAIN:	HI A-A GODI, CIALDI: A: BETA-2 MICROGLOBULDI: CHAINE; STAX FETTIDE: CHAINE; CHAINE; CHAINE; CHAINE; D: T CELL. CHAINE; D: T CELL. CHAINE; D: T CELL. RECEPTOR BETA; CTAINE;	143.DT CELL ANTIGEN RECEPTOR: 18EC 5 CHAIN: NULL; 18EC 6	HEMOLIN, CHAIN: A, B;	FAB FRAGMENT; CHADN: 1, H. J. K. VASCULAR ENDOTHELAL GROWTH FACTOR; CHAIN: V. W;	LOC - LAMBDA I TYPE LIGHT-CHAIN DIMER; IBJM 6 CHAIN: A, B; IBJM 7	HULYSII; CHAIN; A, B, D, E, LYSOZYME; CHAIN; C, P;
Seq Fold Sears	£0.03	11 11 11 11 11 11 11 11 11 11 11 11 11	16.74	16.09		67.92	
Son S					0.13		000
Vertify Score					97,0		0.24
PSI Score	3.46.27	1.76-38	1.76-32	270-36	6.Bc-63	X 4	3.46-33
3 2	230	ន្ត	220	614	340	242	611
¥ Şa	=	=	=	11	<u>=</u>	17	=
Chata Start 10 AA	வ	ш		<	ر	<b>v</b>	٧
e e	9	ā	3	2	<u> </u>	4	ibvt
ğ e ğ		r,	219	21.9	21.9	21.9	229

_							
POB sesections	IMMINE SYSTEM HORA APPAUTY (GE-FC RECEPTOR, FC(FSTLON) (GE- FC, IMMUNOGLOBULM FOLD.) GLYCOPROTEIN, RECEPTOR, (GE- BINDING 2 PROTEIN, IGE ANTIBODY, (GE-PC)			VON WILLERAND DISEASE  NON WILLERAND DISEASE  (WILLE BRANDIAKINOGLOBULDA,  (WILLE BRANDIAKINOGLOBULDA,  WILLERANDIAKINOGLOBULDA,  WILLERAND  WATERRAND  WATERRAND  WATERRAND  WATERRAND  WATERRAND			
Coumpound	HIGH AFFINITY DAMUNOGLOBULIN EFSILON RECEPTOR CHAIN: A: 10 EPSILON CHAIN: A: 10 EPSILON GLAIN C REGION; CHAIN: B, D;	DÉMUNCCIOBULIN FV FRACINENT OF A FUMANIZED VERSION OF THE ANTI-CDII 1FDV 3 ANTIBODY 1437 (FUHS2- AA FV) 1FDV 4	MACINOGLOBULIN BOALNOGLOBULIN GI (KAPPA LIGHT CRAIN) FAB' FRAGMENT IFIG 3	MANUNDGLOBULIN NACCA 1001; CHAN; L; MAKINOGLOBULIN NACA 1001; CHAN; H; VON WILLERAND FACTOR; CHAN; A;	INDUINOGLOBULDI PV FRAGMENT OF HUMANIZED ANTBODY 4D5, VERSION B 1FVC 3	IMMUNOGLOBULIN FAB FRAGMENT OF HUMANIZED ANTIBODY 4D5, VERSION 4 IFVD 3	TLYMPHOCYTE ADHESTON GLYCOPROTEIN CD2 (RAT) 1HNO 3
Seq Feld Scare						66.39	
PM P Scare	100	50.0-	72.0	0.12	<b>4.</b> 4		-0.14
Verify Scene	£0	979	0.17	0.36	9.65		10.0
PSI BLAST	24014	F(4)	S.10-63	3.4-63	1.26-33	19-989	1.8.1
<b>2</b> 2	339	# C	240	270	021	172	338
Start	651	=	SZ	=	<u>=</u>	11	651
e G	<	د	٠.	د	<	<	<
<u>0</u>	ž.	وغ	<b>1</b> 91	<u>a</u>	<u>શ</u>	P&I	ij
035 8 6 5	<i>1</i> 3	E5	229	rs	229	573	719

WO 02/059260	PCT/LIS01/42950	WO 02/059260	PCT/US01/42950

	PSI V BLAST 8	Verify Score	PM P	Seqfield	Compared	PDB sametation
Ш		П			DOMAIN; CHAIN: A, B;	DIMER, FLIPPED DOMAIN 2 DIMER
1037	12.67.		ğ		G.SB ANTBODY (LIGHT CHAIN; CHAIN: L. 0.5B ANTBODY (HBAVY CHAIN; CHAIN: H; GP120; CHAIN: P.	ANTIBODY ANTIBODY, V3 PEPTIDE, BINDING SITE
3 0.42	3.40-63 0.42		ē		MONOCLONAL ANTIBODY 3A2; CHAIN: H, L;	MONOCLONAL ANTIBODY MONOCLONAL ANTIBODY, FAB- FRAGMENT, REPRODUCTION
	1.76-33			90.09	ALPHA, BETA T-CELL. RECEPTOR CHAIN: A, B;	RECEPTOR TCR. T-CELL, RECEPTOR, TRANSMEMBRANE, GLYCOPROTEIN, SIGNAL
50 5	27615 0.55		80		MUSCLE PROTEIN TITIN MODULE MS (CONNECTRO) ITMM 3 (NMR, MINIMIZED AVERAGE STRUCTURE) ATTNM 4 ITMM 51	
3			500		ES ANTIBODY; CHAIN: I, II; CYTOCHROME C, CHAIN: P,	COMPLEX (ANTIBODYRIECTRON TRANSPORT) PAB ER, CYT C, ANTIGEN, BANKHOGLOBULIN, IOCI KAPA, FAB FRACHENT, HORSE 2 CYTOCHACHAGE, CANTRONYELS (ANTIBODYRIECTRON TRANSPORT)
2	22			2	T-CELL SURFACE CLYCOPROTEIN CDA; CHAIN: A, B;	GLYCOPROTEIN CDV;  IMMUNOLLOBULIN POLD,  TANSMEMBRANR; GLYCOPROTEIN,  T-CELL, 2 MHC LIPOPROTEIN,  POLYMORPHISM
150	1.10-14 0.51		- <del>0</del> .13		TWITCHIN 18TH IGSP MODULE; CHAIN: NULL;	MUSCLE PROTEIN INMUNOCLOBULIN SUPERFAMILY, I SET, MUSCLE PROTEIN
اگ	6.80-32 0.51		E .		MMUNOGLOBULIN WAT. A VARIABLE DOMAIN	

_	7		z/	z		H	2 2	Γ
PDB anaectrion			COMPLEX (IMANUOCIOBULIAMBGEPTOR) IMANUNOCIOBULIA POLD, TRANSMEBRANE, GLYCOROTEIN, RECEPTOR, 1 SIGNAL, COMPLEX (IMANUOCIOBULIAMBGESPTOR)	CONFLEX (INAULVOCLOBULANBECETOR) BANINGOLOBULA FOLD BANINGOLOBULA FOLD TRANSAGRANAE GLYCOROTEN TECETTOR, 2 SGNAL, COMPLEX (INAUNOCLOBULANBECETOR)		MUSCLE PROTEIN CONNECTIN, NEXTNA; CELL ARRESTON, CELL ARRESTON, CELL ARRESTON, CELL YOPKOTENY TANSSMEMBANB, REPEAT, SRAM, 3 MANNOCLOSULLAN POLD, ALTERNATIVE SPLICTNO, STONAL, 3 ALTERNATIVE SPLICTNO, STONAL, 3 MUSCLE PROTEIN	COMPLEX (INALINORECEPTORINAMUNOGLOBU) LIN) COMPLEX (INALINORECEPTORINAMUNOGLOBU) LIN)	IMMUNE SYSTEM BETA BARREL.
Compound		EMMUNOGLOBULIN EMMUNOGLOBULIN M (10-M) PV FRAGMENT 110M 3	INTERLEUKIN-I BETA; GRADI: A; TYPE I INTERLEUKIN-I RECEPTOR; GRADI: B;	INTERLEUKIN-I BETA; GIAIN: A; TYPE I INTERLEUKIN-I RECETTOR; CHAIN: B;	IMMUNOGLOBULIN IMMUNOGLOBULIN FAB FRAGMENT (MCPC\$601)	TITIN; CHAIN: NULL;	NI SALPHA-BETA T-CELL RECEPTOR; CHAIN: A. B. C, D; HS7 PAB; CHAIN: B, F, Q, H	IMMUNOOLOBULIN
Seq Peld	Ş		\$1.06 \$1.00				76.63	
Ž	Ę	0.0		600	8	<b>6</b> 8 .		500
Verily	Į.	0.46		ž	3	10		253
Ē	Scene		1.96.1	1.96.1	15063	E.10-13	5.le-35	1,36.32
3	<b>{</b>	921	92	28.	92	EE .	122	65
Steri	<b>\$</b>	=	981	3	61	25	=	2
4	2	٦	<b>a</b>	m			œ.	
PDB	2	<u>B</u>	<u>a</u>	₫ .	Imcp	<u>a</u>	Plafd	200
ន	e ë	r.	E .	E	E	E	£	F

PCT/US01/42950

369

PDB aggestation		CATALYTIC ANTIBODY CATALYTIC ANTEGODY, FAB, RING CLOSURE REACTION	IMMUNE SYSTEM PSS NATURAL KULLER CELL RECEPTOR, KIR, NATURAL KULLER RECEPTOR, BUHBATTOR Y BECEPTOR, DAMONOGLOBULIN			
Conspense	FROM IMACINOGLOBULN LIGHT-CHAIN IWTL 3 (BENCE-LONES PROTEIN) IWTL 4	100 SC1; CHAIN: L, H;	MHC CLASS I NK CELL RECEPTOR PRECURSOR; CHAIN: A;	IMMUNOCIOBULIN FAB FRACMENT OF A HUMANIZED VERSION OF THE ANTI-CDI & TICK A ANTIBODY 41ST (RUHSS- OZ FAB) ZFOW 4	IMPRODIOBILIN VI DAMINOCIDBULIN VI DAMINOCIDBULIN VI DOMANNO COBULIN VI LIUTTI CALADI OF MICHARITO MANCHI TIMO VI MICHI TIMO VI	IMMUNOGLOBULIN DOMINOGLOBULIN LAMBDA LIGHT CHAIN
Seq#etd Scare						23.23
ž š		<b>7</b> 00	90'0	0.42	021	
Verts Scars		0.39	50.0	0,42	6970	
E PE		3-47.	1,16-14	I.te-ti	<u> </u>	5.1e-56
3 ≯		92	a .	92	<u>•</u>	ž
¥ Seri		я	65	=	=	=
<b>1</b> 2		٠,	<			
2 e		3	a	ž.	8	7

		·				
		CELL ADHESION NCAM DOMAIN I; CELL ADHESION, QLYCOPROTEIN, HEPARIN-BINDING, QPI-ANCHOR, 1 NEURAL ADHESION MOLECULE, IMMUNIQUOBULIN FOLD, SIGNAL	TOTAL AND PROPER NAME OF THE AND PROPERTY OF THE AND PROPERTY OF VOCATION TARKEN AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND PROPERTY OF THE AND P		COMPLEX (UTP. BIRDINGTRANSDUCIB) BETAI, TRANSDUCTH BETA SUBURT; GAMANI, TRANSDUCTH GAMAN SUBURT; COMPLEX (UTP. BIRDINGTRANSDUCER), O PROTEIN, HETROSTRANSZUCERA,	
	DIMER (MCGS) 2MCG 3 (TRIOGNAL FORM) 2MCG 4	NEURAL CELL ADIESSON NOLECULE: CHAIN: NULL:	NEURAL CELL ADHESION MOLECULE, LANGE ISOFORM; CHADI: A;	IMMUNOGLOBULIN INMUNOGLOBULIN PAB NEW (LAMBDA LICHT CHAIN) TPAB 3	OT-ALPHANGI-ALPHA CHINERA; CHANI: A; OT- BETA; CHANI: B; OT- GAMMA; CHANI: Q;	OTP-BINDING PROTEIN TRANSDUCDI-ALPHA (OT- ALPHA-GDP-ALP, T- ALPHA-GDP-ALP, T- COMPLEXED WITH GDP AND ALUMINGIM
Som				<b>3</b>	262.16	n:n
See		9170	934			
Scere		80	150			
BLAST		3.40-15	5.4015	1.76-53	4.0	1.5695
\$		88	Ē	121	38	<b>3</b>
\$		82	SE	=	ي و	12
9		Ţ.	<	١.	<	<b>v</b>
A		100	Jaco	Jisb	<u>z</u>	38
e ë		229	22.5	219	8.29	<b>1</b> /9
	ID ID AA AA BLAST Seers Scers Scers	D   D   AA   AA   BLAST   Seer   Seer   Under (AACOS) DACO 3	D   D   AA   A   BLATT Scens Seen Seen   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   Control of the COD DATE   C	D   D   AA   AA   BLATT Steen Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen   Steen	D   D   AA   BLATT Seri Seri Seri   CHANGOLOGICAL MOSE	D   D   AA   A   BLATT   Sees   Sees   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE   CHAPLE

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

					_
PDB emotetion	CHADY COMPLEX (MICVIRAL PETIDIRECEPTOR)	IMMUNE SYSTEM DOATHOGLOBULIN, DAMINORECETTOR, DOATHE SYSTEM	AK, T-CELL RECEPTOR, MIC CLASS  IL DIQ, FAX	ANNOS SYSTEM TACABL, IDA, ELA-ORI, DEBI 000; TOR RALT ELA-DRI, DEBI 000; TOR RALT CHARL CHARL; TORT DANINGCIOBILIN FOLD DANINGCIOBILIN FOLD	COMPLEX
Compound	GHAIN: B; TAX PETIDE; GHAIN: G; TŒLL RECEPTOR ALPHA; CHAIN: D; TŒLL RECEPTOR BETA; GHAIN: E.	ALPHA-BBTA T CHLL RECEPTOR (TCR) (D10); CHAIN: A:	T-CELL RECEPTOR DIO (ALPHA CHAMP, CHAMP, A. E. T-CELL RECEPTOR DIO (BETA CHAMP, CHAMP, R. P. MICHAK CHAMP, R. P. MICHAK CHAMP, C. C. MICHAK CHAMP, C. C. MICHAK CHAMP, C. C. MICHAK CHAMP, C. C. MICHAK CHAMP, C. C. MICHAK CHAMP, D. R. CONALLEJONN PETIDE: CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C. CHAMP, E. C.	HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS II HAT CASS I	KBS-C20 T-CELL ANTIGEN   COMPLEX
SeqFold					
P.M.P		ş	98	8	3
Vertity		91.0	979	3	20
PSI FLAST		3.4.36	25	3	139 8.50-37 0.24
3 :		98.	9 <u>C</u>	95	Ê
Start		91	a	2	=
1 0		<	<	۵	Į
5 5	1	i i	1626	ž.	$\overline{}$
SEQ	Ę	\$	6.39	619	679 IthS

PDB amoration			RECEPTOR RECEPTOR, V ALPHA	MUTAGENESIS, 2 THREE.	DIMENSIONAL STRUCTURE,	RECEPTOR RECEPTOR, V ALPHA	DOMAIN, STE-DIRECTED	MUI AUGNESIS, A I HIGHE DIMENSIONAL STRUCTURE,	GLYCOPROTEIN, SIGNAL	PEPTIDE/RECEPTOR) HLA-A2 HEAVY	CHAIN CLASS I MRC T-CELL	RECEPTOR, VIRAL PEPTIDE, 2	COMPLEX (MHCVTRAL	PEPTIDE/RECEPTOR		COMPLEX (MHC/VIBAL	PEPTIDE/RECEPTOR) HIA-A2 HEAVY	CHAIN; CLASS I MISC, T-CELL	RECEPTOR, VIRAL PEPTIDE, 2	COMPLEX (ARICVIRAL	PEPTIDE/RECEPTOR		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TOTAL MELEPION ICK! CELL	KELETION, MINICIPASS L'INDAM	MANAGERICENCY VICES, 2	COMPLEX (MICVIRAL	PEPTIDE/RECEPTOR) HLA A2 HBAVY
Compound	El tiobine i TADA	1	T-CELL RECEPTOR			T-CELL RECEPTOR	ALPHA; CHAIN: A, B;		U a a most, Cuant, a.	BETA-2 MCROGLOBILINE	CHAIN: B: TAX PEPTIDE:	CHAIN: C. T CELL	RECEPTOR ALPHA:	CHAIN: D, T CELL	RECEPTOR BETA; CHAIN: E:	HLA-A 0201; CHAIN: A;	BETA-2 MECROGLOBULIN;	CHAIN: B; TAX PEPTIDB;	CHAIN: C; T CELL.	RECEPTOR ALPHA:	CHAIN: P, T CELL	RECEPTOR BETA; CHAIN:	1	CELL RELEVIOR V	ALCTIN COMMAN, CITAINS	7 E	HGA-A 0201: CHAIN: A:	BETA-2 MICROGLOBULIN;
SeqFeld Scere		Ī	67.32	_		T			1	3											_		1		_		Ī	
PMF	T	T				8			T							0.89							1	3			0.19	
Vertity Scare	T	T				0.45			Ī							400		_					;	}			0,40	
PSI	2000		1.50			8.50-33										3.40.31							_	<u> </u>			7. o.	
Ead AA		Ī	123			136			1	1						97.		_		_			ì	2		_	136	
VV URING			21			72			7	;						n								=			2	
<b>1</b> 0	T	I	<			<			1							۵							Ţ.				6	1
103 10	T	Ī	9			Ž			1	_						<u>[8</u>			_				1	2	_	_	2	
ge;	ğ	T	£			629			8		_		_			8				_			1	ŝ	_		83	1

373

WO 02/05/2540 PCT/US01/12/250 WO 02/05/2540 PCT/US01/12/250

TABLE

EQ 1D	Position of The Last	Maximum Score	Mesa Score
NO:	Amino Acid of The Signal	0.981	0.764
	1-13	0.978	0.754
3	1-40	0.954	0.756
4		0.981	0.652
16	1-45	0.982	0.632
	1-13	0.982	0.882
47 48	1-13	0.992	0.764
19	1-15	0.909	0.589
	1-33	0.961	0.864
50 <u> </u>	1-17	0.974	0.943
53	1-20	0.957	0.974
54	1-20	0.972	0.771
55	1-28	0.941	0.755
36	1-22	0.932	0.802
37	1-22	0.895	0.595
	1-20	0.884	0.588
58		0.884	0.881
59	1-16		0.784
60	1-26	0.937	0.864
61	1-29	0.968	0.806
62			0,806
6)	1-22	0.968	0.763
54			0.929
65	1-21	0.992	0.929
70		0.978	0.756
0	1-34	0.954	0.773
21	1-31	0.981	0.652
99	1-22	0.982	0.882
08	1-42	0.993	0.715
		0.966	0.767
11	1-30	0.997	0.767
23			0.764
30	1-13	0.981	
35	1-45	0.890	0.631
38	1-27	0.992	0.969
66	1-31	0.961	
72	1-45	0.987	0.658
73	1-20	0.992	0.967
02	1-20	0.957	0.874
03	1-21	0.989	0.945
06	1-42	0.980	0.577
11	1-20	0.972	0.771
16	1-28	0.941	0.755
17	1-28	0.941	0.755
18	1-12	0.907	0.779
22	1-21	0.958	0.779
27	1-15	0.970	0.875
38	1-20	0.895	0.595
42	1-31	0.987	0.895
45	1-30	0.971	0.889
52	1-17	0.884	0.588
62	1-23	0.965	0.817
64	1-29	0.933	0.725
75	1-28	0.972	0.870

SEQID NO:	Position of The Last Amine Acid of The Signal	Maximum Score	Mesa Score
577	1-17	0.966	0.905
586	1-26	0.921	0.517
395	1-20	0,938	0.631
606	1-18	0.901	0.763
611	1-20	0.940	0.693
615	1-26	0.937	0.784
617	1-22	0.972	0.745
618	1-15	0.910	0.748
619	1-35	0.906	0.600
622	1-29	0.981	0.864
629	1-19	0.976	0.916
630	1-27	0.973	0.931
631	1-29	0.950	0.629
632	1-19	0.969	0.913
633	1-21	0.956	0.823
637	3-17	0.976	0.938
640	1-18	0.991	0.978
645	1-26	0.968	0.806
646	1-20	0.972	0.828
647	1-27	0.893	0.567
641	1-21	0.994	0.959
649	1-20	0.945	0.891
650	1-21	0.984	0.858
હા 🗀	1-27	0.891	0.593
654	1-40	0.955	0.703
668	1-22	0.968	0.806
671	1-23	0.982	0.945
672	1-23	0.982	0.945
675	1-32	0.955	0.617
676	I-23	0.936	0.677
679	1-20	0.937	0.859
680	1-29	0.956	0.765
681	1-23	0.964	0.819

377

WO 02/059260

PCT/US01/42950

WO 02/059260

PCT/US01/42950

ESQ ID NO;         Chromeomal           1         1           2         10           3         11           4         4           5         15q25           6         3           9         3           11         12           12         17pmop.           13         11           14         16p13.3           15         1           16         12p15           17         21q22           20         14           21         7q22           22         9           23         5q31           24         5p23-p2           23         11           24         5p23-p2           23         11           24         5p23-p2           25         11           26         15           30         17q21           31         101           32         4           4         6           13         11           11         11           12         1           33         5q34     <	Lecation
2 10 3 11 4 4 4 4 5 115025 6 3 15025 6 3 3 7 3 12 11 12 12 17ppssyll 13 16 16 17ppssyll 14 16 16p13.3 16 17 12p13 17 12p13 18 17 12p13 19 18 18 18 18 18 18 18 18 18 18 18 18 18	
4 4 4 4 4 5 15025 6 6 3 15025 6 6 3 7 7 9 12 12 11 12 12 17 17 1502 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
5         15q25           6         3           7         3           9         12           11         12           12         17pms-pl           13         11           14         16p13.3           15         1p13           16         1p13           17         2lcc22           20         4           21         7q22           22         9           23         5q1           24         4p2-p2           25         11           26         X           27         X           23         15q14           30         15q24           31         15q14           31         15q14           31         5q44           40         4q13           41         10           37         4q4           40         4q13           41         10           31         17           44         10           43         19           44         19           49         19	
6 3 7 3 9 12 11 12 12 17 13 12 14 16 15 13 11 14 16 15 17 16 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	
7	5
9 12 9 12 11 12 12 17presp1 13 11 14 16p13.1 15 1 17 16 17p13.1 15 1 17 17 21p23.2 20 14 21 22 23 9 21 14 22 23 9 23 14 24 12 23 9 25 17 26 24 24 25 12 27 9 28 100,20 29 100,20 29 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20 20 100,20	
11	
12	
13	
14         16913.           15         1           16         12p3.           17         21e22.           20         14           21         7a22.           22         9           23         5911.           24         1623-p2           25         17.7           26         17.7           27         X           28         15c14.           29         10c22.           39         10c22.           30         17a21.           31         11           32         8           34         6           43         6           44         6           45         12           44         20(1.23.           44         12           47         4           49         19           50         4           31         17           32         14           49         19           50         4           31         17           31         17           31         17	
15	
15	3.3
17   21e22.1	
20   14 20   14 21   7q22   9 21   7q22   9 22   9 23   5q31   24   5p32-p2   25   11 26   17   27   27   X   28   19   29   19   19   20   17q21   21   11   11   21   11   11   21   12   14   20   17q21   21   4   6   21   4   6   21   7   6   22   7   23   4   24   7   25   7   26   7   27   7   28   7   29   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   21   7   22   7   24   7   25   7   26   7   27   7   28   7   29   9   20   9   21   9   22   14   23   14   24   17   25   14   26   17   27   17   28   18   29   19   20   19   20   19   21   14   25   16   26   17   27   17   28   19   29   19   20   19   20   19   21   14   21   15   22   14   23   14   24   17   25   1   26   19   27   17   28   19   29   19   20   19   20   19   20   19   20   19   21   22   22   3   43   44   44   45   25   5   26   64   7   27   7   28   7   29   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7   20   7	3
21         7e22           22         9           23         5e31           24         4p3-2s           25         11           26         X           27         X           28         15e3-4           29         16e2-4           30         17e31           31         11           33         5           44         6           45         19           37         4e3-4           40         4e31-3           44         2e01-2           46         112           47         4           49         19           9         19           35         1           35         1           37         1           49         19           9         15           35         1           37         1           33         1           41         19           49         19           35         1           37         1           49         19           35	
22 9 9 23 5911 24 1923-p2 24 1923-p2 25 111 26 X	
13   591    24   1923-192    24   1923-192    25   11   26   X   27   X   27   X   28   29   1902-24   29   1902-24   29   1902-24   29   1902-24   29   1902-24   29   29   29   29   29   29   29	2
24	
25	<u> </u>
26 X 27 X 24 13q14 29 15q24 20 17q21 30 17q21 31 11 31 11 31 31 32 6 6 31 5q14 4 6 6 15 10 40 4q13 41 1 10 37 6q24 44 22q1,24 46 12 47 4 6 31 2 47 4 7 49 39 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19 39 50 19	p22
77 X 24 13q14 29 13q14 29 19q24 30 17q21 31 11 11 31 11 32 8 9 34 6 6 35 17q21 34 6 6 35 17q21 44 1 10 44 1 19 46 11 35 4 14 19 35 4 14 19 35 1 1 19 35 1 1 19 35 1 1 19 35 1 1 19 35 1 1 19 35 1 1 19 35 1 1 19 35 1 1 19 35 1 1 19 35 1 1 19 35 1 1 19 35 1 1 19 35 1 1 19 35 1 1 19 35 1 1 19 36 1 19 37 17p13,3 38 1 19 38 1 19 39 1 19p13,3 30 1 19p13,3 40 1 19p13,3 40 1 19p13,3 40 1 19p13,3 41 1 19p13,3 42 1 14 1 19p13,3 43 1 19p13,3 44 1 19p13,3 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
28         15q14           29         10q24           30         17q21           31         11           32         8           33         5q34           34         6           15         10           37         8q24           40         4q13           41         10           44         20q1,22-4           46         12           47         4           40         13           50         12           47         4           40         12           47         4           40         13           50         12           47         4           40         13           50         12           47         4           48         7           10         12           47         4           48         1           59         12           41         10           42         4           43         5           44         7	
19	
30   17c21   31   11   11   12   13   13   3   3   3   3   3   3   3	
11	4
137   1	<u> </u>
33   5544     34   6     25   10     37   4624     40   46133     41   10     44   2001.24     44   2001.32     45   17     47   1     49   19     50   4     51   17     52   14     55   1     66   11     77   17p133     81   5p12-243     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   10     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81   91     81	
34         6           35         10           37         1624           40         4613           41         10           44         2061,324           46         12           47         4           49         19           50         4           31         17           33         14           35         11           37         179132           39         10           39         10           39         10           40         15           5912-29         10           40         15           41         1803.3           42         4           43         5           44         7	
15	<u></u>
17	
60 6413.3 41 10 42 12011.22-4 44 22011.22-4 45 12 47 4 19 49 19 50 4 19 51 17 52 14 55 1 17 57 12013.3 58 5912-32-5 59 7011.6 60 15 61 19013.4 61 19013.4 64 7	
4i 100 44 2001.32-4 45 12 47 4 19 49 19 50 4 1 51 17 51 17 52 11 53 11 55 17 56 19 57 10 58 59 59 10 59 10 59 10 59 10 59 10 59 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 5	<del>`</del>
44 20(1),22-4 46 12 47 4 4 49 19 49 19 50 4 51 17 52 14 55 1 57 19(1),23-4 56 5 60 5 61 19(1),33-4 64 7 64 7	3
46 12 47 4 19 49 19 50 4 1 11 17 22 14 13 55 1 1 25 14 26 57 1 27 1 28 57 1 29 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 20 15 57 1 2	
47 4 41 19 49 19 50 4 51 17 52 14 55 1 57 19133 58 5918-29 59 721.13 60 15 61 19213 61 19213 61 5 5 6 61 5 7 6 61 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4-414
41 P 49 P 50 A 51 P 50 A 51 P 52 B 53 B 54 B 55 B 66 B 67 B 77 B 78 B 78 B 68 B 68 B 68 B 68 B 68 B 68 B 68 B 6	
49 19 50 4 51 17 52 14 55 1 17 57 1910133 58 51 59 29 72113 59 72113 59 7213 60 15 61 192133 61 52 64 64 7	
50	
51         17           52         14           53         1           56         11           57         12p13,3           58         5p14,2           59         7p1,1,3           60         15           61         19q1,3           62         6           43         5           44         7           44         7	
92 14 95 1 96 11 97 17p13, 98 5p12-eq 99 7q1,1,4 60 15 61 19q13, 62 6 63 5 64 7	
55 1 56 11 57 12p13.3 58 5p14.2 59 7q1.1 59 7q1.1 60 15 61 12p13.3 62 64 7 64 7	
56	
57 12913.3 \$4 5914-29.9 \$9 741.1, 60 15 61 13943.3 62 6 63 5 64 7	
38 5p162-g1 59 7q11.8 60 15 61 19q13 62 6 63 5 64 7	
59         7q11.2           60         15           61         19q13.3           62         6           63         5           64         7	
60 15 61 19q13,1 62 6 63 5 64 7	
61 19q13.1 62 6 43 5 64 7	
62 6 63 5 64 7	
63 5 64 7	,,,
64 7	
66 12924.3	

SEQ ID NO:	Chromosamal Location
69	15
70	22q13.2
71	16
n	7q31.1
75	10
76	18
77	15
78	18q
79	6q14
50	ilp15
81	5p13.3-q21.3
83	7q33
- 84	1932
85	14
87	11q12-q13.1
89	ž
90	<del>                                     </del>
91	1p36.13
92	7p14
93	10cen-q26.11
94	19
95	17
96	22qi1.2
97	6922.3
98	1
99	
100	11
101	1,
102	7p13-p11.2
103	15q21-q22
104	15
105	9q22.1-q22.3
106	Xq13.1
107	20
108	1
109	,
110	16q23
	Ip32-p35
112	9
113	Xq22
114	15
115	\$q22-q23
117	6p21.3
118	16p13.3
119	15
120	16
121	2q37
123	\$q22-q23
124	19913.1
126	20p12.3-p11.22
127	1
128	12pter-p13.31
129	12pter-p13.31
131	12pt 91331
133	[q32,3-q41
134	19q13.4
134	379

WO 02/05/260 PCT/US01/47550 WO 02/05/260 PCT/US01/47550

SEQ   DNO:   Chromosomal Loration   16		
136	SEQ ID NO:	Chromosomal Location
137		
139		
140		
		, , , , , , , , , , , , , , , , , , , ,
142		
143   6   144   5p1+15   144   145   144   145   144   147   146   144   147   147   20   144   147   149   199   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195		Xp11.4-p11.21
144   5p 4-15   14   14   146   14   146   14   146   14   14	142	T
145	143	
145	14	5p14-15
147   20	145	14
	146	14
149   19   19   19   150   17   151   151   15   15   15   15	147	20
149   19   19   19   150   17   151   151   15   15   15   15	148	22
150   17   15   15   15   15   15   15   15		
151	150	
152   15   16   16   155   16   155   10   155   10   155   10   156   157   157   156   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157		
154   6   1   155   10   156   157   156   156   157   156   156   157   156   157   156   157   156   157   156   157   156   157   156   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157   157		
155   10   156   15per-pl.31   156   15per-pl.31   156   15per-pl.31   156   15per-pl.31   156   15per-pl.31   156   15per-pl.31   151   152   152   154   154   154   155   155   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156   156		
136		
160   3p15.2		
161		
162   7q35   15   163   15   164   12   164   12   166   6q   164   18   18   169   7   7   170   7   171   171   171   171   171   171   171   171   171   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177		14011.2
163		
164   12   164   16   164   164   164   165   164   165   164   165   169   7   7   7   170   7   7   170   7   7   171   172   172   172   172   173   173   174   175   175   175   176   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   17		
166   6q   18   18   18   169   7   7   7   7   7   7   7   170   7   7   7   7   7   7   7   7   7		
164		
169   7   7   170   170   171   171   171   172   172   173   152,1-21,1   173   152,1-21,1   173   152,1-21,1   173   152,1-21,1   175   224,3,1   176   224,3,1   177   224,3-24,3,1   177   224,3-24,3,1   177   224,3-24,3,1   179   3   3   1   100   11   1   179   3   3   110   110   11   110   11   11		
170   7    171   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   173   173   174   175   175   175   175   175   177   175   177   175   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177		
171   69(2,1-2).1   172   172   172   173   173   173   173   173   173   173   173   173   173   173   173   173   173   173   174   177   174   177   174   177   174   177   174   177   174   177   174   177   174   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   17		
172   6p(2,1-21,1)     173   13q21-q223      174   22q(3,1)     175   22q(3,1)     176   22q(3,1)     177   22q(3,1)     177   22q(3,1)     178   10mq(2,1)     179   3     179   3     185   1     185   1     185   1     199   10     190   4p(6     191   4     192   4     193   12     194   9     195   12     196   17p(1,2)     197   6     199   7     199   7     199   7     199   7     199   7     199   7     199   7     199   7     190   5q(6,1-q(6,3)     190   19     190   19     190   19     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   190     190   19		
173   13g21-q223    175   22q13.1   175   22q13.1   176   22q13.1   177   22q13.2-q13.21   177   22q13.2-q13.21   178   11em-q12.1   179   5   5   110   179   5   179   180   171   180   171   180   171   180   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190		
175   22q13.1		
116   22q. 3.1     117   22q 3.2q. 3.3      118   1 cenq 2.2     119   5   5     140   11     144   17q2.1,3     115   11     115   11     119   10     109   4p16     109   4     109   4     109   4     109   5     109   5     109   7     109   7     109   8     109   9     109   9     109   10     109   10     109   10     109   10     109   10     109   10     109   10     109   10     109   10     109   10     109   10     109   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     100   10     10		
177   22q13.4-q13.31     178		22913.1
178		
179   5   11   11   11   11   11   11   11		
110		[10en-q12.1
		· · · · · · · · · · · · · · · · · · ·
115		
114   20   10   10   10   10   10   10   10		
119		
190   4p16		
191   4		
192   4     12     193     12     194     9     195     196     1971   197   6   1971   197   6   1979   17   199   17   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190	190	
193		
194   9   196   1791.12   197   196   1791.12   197   6   1991   5   5   1999   17   1200   69161.4163   1202   1   1203   2021   1   1203   1205   19   19   19   19   19   19   19   1		
196   17p1].2   197   6   6     17p1].2     197   6   6     198   5     199   17   200   6q16.1-q16.3   202   1   203   203   203   205   19   209   19   19   19   19   19   19   19		
197   6     198   199   17   199   17   199   17   100   199   17   100   190   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   10		
194   5   17     200   6q16.1-q16.3     202   1     203   2q13   205   19   209   19   19   19	196	
199		
200 6q16.1-q16.3 202 1 203 2q13 205 19 209 19		
202 1 203 2q13 205 19 209 19		
203 2q13 205 19 209 19		
205 19 209 19		
209		
		19
380	209	19
		380

SEQ ID NO:	Chromosomal Lecation
211	19
212	q25-26
216	19913.3
217	21q11,2
218	Xq21,3-q22
219	6
221	14q11,2
222	5q12
224	13
225	3q13.3-q21
226	6q23-q24
227	17
728	17
231	14
232	22
233	19
234	5q11.2
237	7922
241	19
242	15
244	tp22
246	3p21.1-9
241	p12.2-13
249	10
250	19p13.3
251	19p13.3
253	4
255	10
259	
259	1665
260	3931
264	iq32.1-q41
267	10
269	11
272	
274	5q34 19
275	17
279	
280	2
286	22q13.1
287	7
288	19q13.3-q13.4
291	2p12
292	14
293	14q31
294	11p15.5
296	7p14-p13
298	7q35-q36
299	20
300	9
302	7922
305	14q11,2
306	11
307	14q11,2
308	14q11,2
309	7933

WO 02/059260 PCT/US01/42950

SEQ ID NO:	Chromosomel Location
313	p34.3-36.11
315	17
316	15
317	12
318	22q11.2
319	6pter-p22.1
322	22q
323	10
326	X
328	i
329	14q11.2
330	6p21.3
331	6p21.3
332	19q13.3
333	x
334	7q31.3-q32
337	3p21.3
338	14g11.2
339	9
141	2

WO 02/059260 PCT/US01/42950

## TABLES

EQ ID NO: f Pull-length Nucleotide Sequence	SEQ ID NO: of Full-length Peptide Sequence	SEQ ID NO: In Priority Application USSN 09/714,936
1	342	
2	343	
1	344	5
4	345	7
1	346	- 1
6	347	10
<del>-;-</del> -	348	11
1	349	12
•	350	13
10	351	14
11	352	15
12	353	17
13	354	ii ii
14	355	19
13	356	20
16	357	21
17	358	22
18	359	25
19	360	29
20	361	30
21	362	32
22	363	34
23	364	36
24	365	37
25	366	31
26	367	39
27	368	40
28	369	41
29	370	42
30	371	43
30	371	- 4
32	373	- 43
33	374	46
	375	47
34	376	41
35	377	49
36	378	30
37		31
38	379	31
39	380	
40	311	53
41	382	54
42	313	55
43	384	56
44	345	37
45	386	58
46	387	59
47	318	60
41	329	61
49	390	62
50	391	63

WO 02/059260 PCT/US01/43550 WO 02/059260 PCT/US01/43550

SEQ ID NO: of Full-length Nucleotide	SEQ ID NO: of Full-length Peptide Sequence	SEQ ID NO: to Pyterity Application USSN 09/714,936
Sequence	392	- 4
	393	
52		65
53	394	66
54	395	67
55	396	64
56	397	69
57	398	70
58	399	71
59	400	72
60	401	73
61	402	74
62	403	75
63	404	76
- 64	405	77
65	406	
66	407	79
67	408	20
68	409	81
- 69	410	82
70	411	83
71	412	84
72 .	413	25
73	414	26
74	415	<del></del>
75	416	<del>- ü</del>
76	417	
77	416	90
	419	91
78		
79	420	92
10	421	93
81	422	94
82	423	95
83	424	96
84	425	97
85	426	98
26	427	99
87	428	100
- 11	429	101
89	430	102
	431	103
91	432	104
92	433	105
93	434	106
94	435	107
95	436	108
96	437	109
97	438	110
98	439	111
99	440	112
100	441	113
101	442	114
		115
102	443	
103	444	116

SEQ ID NO: of Full-length Nucleotide	SEQ ID NO: of Full-length Peptide Sequence	SEQ ID NO: to Priority Application USSN 09/714,936
Sequence	l — — — — — — — — — — — — — — — — — — —	
104	445	117
105	446	118
106	447	119
107	448	120
108	449	121
109	450	122
110	451	123
111	452	124
112	453	125
111	434	126
114	455	127
115	456	128
116	457	129
117	458	130
118	459	131
119	460	132
120	461	133
121	462	134
122	463	135
123	464	136
123		137
125	465	
125	466	138
126	467	139
	468	140
128	469	141
129	470	142
130	471	143
131	472	144
132	473	145
133	474	146
134	475	147
135	476	148
136	477	149
137	472	150
138	479	151
139	480	152
140	481	153
141	482	154
142	483	155
143	484	156
144	485	157
145	486	158
146	487	159
147	488	160
142	489	162
149	490	163
150	491	164
151	492	165
152	493	166
153	494	167
154	495	168
155	496	169
156	497	170
130	49/	379

WO 02N89260 PCT/US01/42950 WO 02N89260 PCT/US01/42950

SEQ ID NO: of Full-length Nucleotide	SEQ ID NO: of Full-length Peptide Sequence	SEQ 1D NO: in Priority Application USSN 09/714,936
Sequence		
157	498	171
158	499	172
159	500	173
160	501	174
161	502	175
162	503	176
163	504	177
164	505	178
165	506	179
166	507	180
167	508	181
168	509	182
169	510	183
170	511	184
171	512	185
172	513	186
173	514	187
174	515	188
175	516	189
176	517	190
177	518	191
178	519	192
179	520	193
180	521	194
181	522	195
183	323	196
184	524 525	197
185	325	198
186	527	200
187	528	201
183	529	202
189	530	203
190	331	204
191	532	205
192	533	206
193	333	207
194	335	202
195	536	209
196	537	210
197	538	211
198	339	212
199	540	213
200	31	214
201	342	215
202	543	215
203	544	217
204	545	218
203	546	219
206	547	220
207	541	221
201	540	222

551	
331	
	224
552	225
553	226
554	227
555	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	244
	245
	246
	247
	248
	249
	250
	252
	253 254
	255
	256 257
	258 259
	260
	261
	262 263
	265
	266
	267 268
	269
	270
	272
	273
	275
	276
	277
	271
	279 280
	535 536 537 537 537 539 540 541 540 544 545 546 546 546 546 547 546 547 547 547 547 547 547 547 547 547 547

SEQ ID NO: of Pull-length Nucleotide Sequence	SEQ ID NO: of Fall-length Peptide Sequence	SEQ ID NO: in Priority Application USSN 09/714,936
263	604	281
264	605	242
265	606	213
256	607	284
	608	285
267	609	286
269	610	287
270	611	288
271	612	290
272	613	291
273	614	292
274	615	292
275	616	293
	617	295
276	618	296 .
	619	296 . 297
278		
279	620	298 299
280	621	
281	622	300
282	623	301
283	624	302
284	625	303
285	625	304
286	627	305
287	628	306
288	629	307
219	630	308
290	631	309
291	632	310
292	633	311
293	634	312
294	635	313
295	636	314
296	637	315
297	638	316
298	639	318
299	640	319
300	641	320
301	642	321
302	643	322
303	644	323
304	645	324
305	646	325
306	647	326
307	648	327
308	649	328
309	650	329
310	651	330
311	652	331
312	653	332
313	654	333
314	655	334
315	656	335
	388	

PCT/US01/42950

WHAT IS CLAIMED IS:

WO 02/059260

15

An isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 1-341, a mature protein coding portion of SEQ ID NO: 1-341, an active domain coding portion of SEQ ID NO: 1-341, and complementary sequences thereof.

PCT/US01/42950

- 2. An isolated polynucleotide encoding a polyneptide with biological activity, wherein said polynucleotide hybridizes to the polynucleotide of claim I under stringent hybridization
- 10 3. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide has greater than about 90% sequence identity with the polynucleotide of claim I.
  - The polynucleotide of claim 1 wherein said polynucleotide is DNA.
  - An isolated polynucleotide of claim 1 wherein said polynucleotide comprises the complementary sequences.
  - 6. A vector comprising the polynucleotide of claim 1.
- 7. An expression vector comprising the polynucleotide of claim 1.
  - 8. A host cell genetically engineered to comprise the polynucleotide of claim 1.
- 25 9. A host cell genetically engineered to comprise the polynucleotide of claim 1 operatively associated with a regulatory sequence that modulates expression of the polynucleotide in the bost cell.
- 10. An isotated polypeptide, wherein the polypeptide is selected from the group consisting 30 of:
- a polypeptide encoded by any one of the polynucleotides of claim 1;
  - a polypeptide encoded by a polynucleotide hybridizing under stringent conditions with any one of SEQ ID NO: 1-341; and

WO 02/059260

SEQ ID NO: of Full-length Nucleotide Sequence

SEQ ID NO: of Full-langth

(c) a polypertide of any one of SEO ID NO: 342-682.

SEQ ID NO: In Priority Application USSN 09/714,936

- 11. A composition comprising the polypeptide of claim 10 and a carrier.
- 5 12. An antibody directed against the polypeptide of claim 10.
  - 13. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
  - a) contacting the sample with a compound that binds to and forms a complex with the polymucleotide of claim 1 for a period sufficient to form the complex; and
- b) detecting the complex, so that if a complex is detected, the polynucleotide of claim 1 is detected.
  - 14. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
- a) contacting the sample under stringent hybridization conditions with
- 15 nucleic acid primers that anneal to the polynucleotide of claim 1 under such conditions;
  - b) amplifying a product comprising at least a portion of the polynucleotide of claim 1; and
  - c) detecting said product and thereby the polynucleotide of claim 1 in the
- - 15. The method of claim 14, wherein the polynucleotide is an RNA molecule and the method further comprises reverse transcribing an annealed RNA molecule into a cDNA polynucleotide.
- 25 A method for detecting the polypeptide of claim 10 in a sample, comprising:
  - a) contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex; and
- b) detecting formation of the complex, so that if a complex formation is detected, the polypeptide of claim 10 is detected.

WO 02/059260 PCT/US01/42950

- 17. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
- a) contacting the compound with the polypeptide of claim 10 under conditions sufficient to form a polypeptide/compound complex; and
- detecting the complex, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
- 18. A method for identifying a compound that binds to the polypeptide of claim 10, comprising
- contacting the compound with the polypeptide of claim 10, in a cell, under conditions sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and
- b) detecting the complex by detecting reporter gene sequence expression,
   so that if the polypeptide/compound complex is detected, a compound that binds to the
   polypeptide of claim 10 is identified.
  - 19. A method of producing the polypeptide of claim 10, comprising,
- a) culturing a host cell comprising a polynucleotide sequence selected from SEQ ID NO: 1-341, a mature protein coding portion of SEQ ID NO: 1-341, an active 20 domain coding portion of SEQ ID NO: 1-341, complementary sequences thereof and a polynucleotide sequence bybridizing under stringent conditions to SEQ ID NO: 1-341, under conditions sufficient to express the polypeptide in said cell; and
  - b) isolating the polypeptide from the cell culture or cells of step (a).
- 25 20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of any one of the polypeptides SEQ ID NO: 342-682, the mature protein portion thereof, or the active domain thereof.
- The polypeptide of claim 20 wherein the polypeptide is provided on a polypeptide
   array.
  - 22. A collection of polynucleotides, wherein the collection comprising the sequence information of at least one of SEQ ID NO: 1-341.

392

WO 02/059260 PCT/US01/42950

- 23. The collection of claim 22, wherein the collection is provided on a nucleic acid array.
- 24. The collection of claim 23, wherein the array detects full-matches to any one of the 5 polynucleotides in the collection.
  - The collection of claim 23, wherein the array detects mismatches to any one of the
    polynucleotides in the collection.
- 10 26. The collection of claim 22, wherein the collection is provided in a computer-readable format.
- A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising a polypeptide of claim 10 or 20
   and a pharmaceutically acceptable carrier.
  - 28. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising an antibody that specifically binds to a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.

20

## This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS	
$\square$ image cut off at top, bottom or sides	
FADED TEXT OR DRAWING	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

## IMAGES ARE BEST AVAILABLE COPY.

**□** OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.