5 Lecture examples: Chapter 5

Examples 5A

1 Verify that $\boldsymbol{x} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ is an eigenvector of $A = \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}$ corresponding to the eigenvalue $\lambda = 2$.

$$A\boldsymbol{x} = \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ -1 \end{bmatrix} = 2\boldsymbol{x}.$$

2 Find the eigenvalues of

(a)
$$A = \begin{bmatrix} 3 & 1 \\ -2 & 0 \end{bmatrix}$$
, (b) $B = \begin{bmatrix} -3 & 5 \\ -2 & 3 \end{bmatrix}$.

(a)
$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 1 \\ -2 & -\lambda \end{vmatrix} = (3 - \lambda)(-\lambda) + 2 = \lambda^2 - 3\lambda + 2$$

$$\Rightarrow \det\left(A - \lambda I\right) = 0 \Leftrightarrow \lambda^2 - 3\lambda + 2 = 0 \Leftrightarrow (\lambda - 2)(\lambda - 1) = 0 \Leftrightarrow \lambda = 1 \text{ or } \lambda = 2.$$

Eigenvalues of A are $\lambda = 1$ and $\lambda = 2$.

(b)
$$\det(B - \lambda I) = \begin{vmatrix} -3 - \lambda & 5 \\ -2 & 3 - \lambda \end{vmatrix} = (-3 - \lambda)(3 - \lambda) + 10 = \lambda^2 + 1$$
$$\Rightarrow \det(B - \lambda I) = 0 \Leftrightarrow \lambda^2 = -1 \Leftrightarrow \lambda = \pm i.$$

Eigenvalues of B are $\lambda = +i$ and $\lambda = -i$.

- **3** (a) Find the eigenvalues of $A = \begin{bmatrix} -1 & 6 & -12 \\ 0 & -13 & 30 \\ 0 & -9 & 20 \end{bmatrix}$.
 - (b) Show that (1,0,0) and (0,2,1) are eigenvectors of A corresponding to two of the eigenvalues, and find an eigenvector corresponding to the third eigenvalue.

$$\det(A - \lambda I) = \begin{vmatrix} -1 - \lambda & 6 & -12 \\ 0 & -13 - \lambda & 30 \\ 0 & -9 & 20 - \lambda \end{vmatrix} = (-1 - \lambda) \begin{vmatrix} -13 - \lambda & 30 \\ -9 & 20 - \lambda \end{vmatrix}$$
$$= (-1 - \lambda) (\lambda^2 - 7\lambda + 10) = -(1 + \lambda) (\lambda - 5) (\lambda - 2).$$

Eigenvalues are therefore -1, 2, 5.

(b)
$$A\begin{bmatrix} 1\\0\\0\end{bmatrix} = \begin{bmatrix} -1\\0\\0\end{bmatrix} = (-1)\begin{bmatrix} 1\\0\\0\end{bmatrix} \Rightarrow (1,0,0) \text{ is eigenvector for } \lambda = -1.$$

$$A\begin{bmatrix} 0\\2\\1\end{bmatrix} = \begin{bmatrix} 0\\4\\2\end{bmatrix} = 2\begin{bmatrix} 0\\2\\1\end{bmatrix} \Rightarrow (0,2,1) \text{ is eigenvector for } \lambda = 2.$$

Let $\mathbf{x} = (x_1, x_2, x_3)$ be an eigenvector corresponding to $\lambda = 5$ and solve $(A - 5I)\mathbf{x} = \mathbf{0}$. Use EROs:

$$\begin{bmatrix} -6 & 6 & -12 \\ 0 & -18 & 30 \\ 0 & -9 & 15 \end{bmatrix} \begin{array}{c} r'_1 = -r_1/6 \\ r'_3 = r_3 - \frac{1}{2}r_2 \end{array} \rightarrow \begin{bmatrix} 1 & -1 & 2 \\ 0 & -18 & 30 \\ 0 & 0 & 0 \end{bmatrix} \begin{array}{c} r'_2 = -r_2/18 \end{array} \rightarrow \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & -\frac{5}{3} \\ 0 & 0 & 0 \end{bmatrix}$$

That is,

$$x_1 - x_2 + 2x_3 = 0,$$
 $x_2 - \frac{5}{3}x_3 = 0.$

Let $x_3 = \mu$. Then $x_2 = \frac{5}{3}x_3 = \frac{5}{3}\mu$ and $x_1 = x_2 - 2x_3 = \frac{5}{3}\mu - 2\mu = -\frac{1}{3}\mu$. Hence $\boldsymbol{x} = \mu\left(-\frac{1}{3}, \frac{5}{3}, 1\right)$ is an eigenvector corresponding to $\lambda = 5$ for any $\mu \neq 0$. Choose $\mu = 3$ to obtain $\boldsymbol{x} = (-1, 5, 3)$.

4 Show that $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$ has only two distinct eigenvalues, and find bases for the two eigenspaces.

$$\det(A - \lambda I) = \begin{vmatrix} -\lambda & 0 & -2 \\ 1 & 2 - \lambda & 1 \\ 1 & 0 & 3 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} -\lambda & -2 \\ 1 & 3 - \lambda \end{vmatrix}$$

$$= (2 - \lambda) (\lambda^2 - 3\lambda + 2) = -(\lambda - 2)^2 (\lambda - 1).$$

The eigenvalues are $\lambda = 2$ (with algebraic multiplicity 2) and $\lambda = 1$ (with algebraic multiplicity 1).

Eigenspace for $\lambda = 2$: Solve (A - 2I) x = 0.

$$\begin{bmatrix} -2 & 0 & -2 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \quad r'_1 = -r_1/2 \quad \to \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \quad r'_2 = r_2 - r_1 \quad \to \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Solution is $x_3 = s$, $x_2 = t$, $x_1 = -s$ for $s, t \in \mathbb{R}$, that is,

$$oldsymbol{x} = s egin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + t egin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

Basis for eigenspace is $\{(-1,0,1),(0,1,0)\}$ and its dimension is 2. Hence the geometric multiplicity of eigenvalue $\lambda = 2$ is 2.

Eigenspace for $\lambda = 1$: Solve (A - I) x = 0.

$$\begin{bmatrix} -1 & 0 & -2 \\ 1 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix} \quad r'_1 = -r_1 \\ \rightarrow \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix} \quad r'_2 = r_2 - r_1 \\ r'_3 = r_3 - r_1 \quad \rightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Solution is $x_3 = s$, $x_2 = s$ and $x_1 = -2s$, that is,

$$x = s \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$
.

Basis for the eigenspace is $\{(-2,1,1)\}$ and its dimension is 1. Hence the geometric multiplicity of eigenvalue $\lambda = 1$ is 1.

Examples 5B

1 Given that the matrix

$$A = \begin{bmatrix} -1 & 6 & -12 \\ 0 & -13 & 30 \\ 0 & -9 & 20 \end{bmatrix}$$

has eigenvalues -1, 2, 5 with corresponding eigenvectors

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}, \qquad \begin{bmatrix} -1 \\ 5 \\ 3 \end{bmatrix},$$

find a matrix P that diagonalises A.

$$P = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 5 \\ 0 & 1 & 3 \end{bmatrix}$$
 diagonalises A .

[Check:

$$AP = \begin{bmatrix} -1 & 0 & -5 \\ 0 & 4 & 25 \\ 0 & 2 & 15 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 5 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix} = PD,$$

say, where D = diag(-1, 2, 5). Hence $P^{-1}AP = D$.

2 Given that the matrix

$$A = \left[\begin{array}{rrr} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{array} \right]$$

has eigenvalues 2 (with algebraic multiplicity= geometric multiplicity=2) and 1 (with algebraic multiplicity = geometric multiplicity=1), with corresponding eigenvectors

$$(-1,0,1), \qquad (0,1,0), \qquad (-2,1,1),$$

find a matrix P that diagonalises A.

$$P = \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \text{ diagonalises } A \text{ and } P^{-1}AP = \text{diag}(2, 2, 1).$$

3 Show that $A = \begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{bmatrix}$ is not diagonalisable.

$$\det (A - \lambda I) = \begin{vmatrix} 2 - \lambda & 2 & 0 \\ 0 & 2 - \lambda & 2 \\ 0 & 0 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^{3}.$$

Hence A has one eigenvalue of $\lambda=2$ with algebraic multiplicity 3. To find the related eigenspace, solve (A-2I) x = 0. This is

$$\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \mathbf{0}$$

with solution is $x_2 = 0$, $x_3 = 0$, $x_1 = s$ for any $s \in \mathbb{R}$, i.e. $\mathbf{x} = s(1,0,0)$. This eigenspace is spanned by (1,0,0): it has dimension 1 and the geometric multiplicity of $\lambda = 2$ is 1.

Since algebraic multiplicity \neq geometric multiplicity, A does not have 3 linearly independent eigenvectors and A is not diagonalisable.

Examples 5C

1 If $A = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 5 & 4 \\ 4 & 4 & 3 \end{bmatrix}$, find an orthogonal matrix P such that $P^T A P = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3)$.

Eigenvalues are given by
$$\begin{vmatrix} 1 - \lambda & 0 & 4 \\ 0 & 5 - \lambda & 4 \\ 4 & 4 & 3 - \lambda \end{vmatrix} = 0$$
, so $(1 - \lambda) [(5 - \lambda) (3 - \lambda) - 16] + 4 [-4 (5 - \lambda)] = 0$
 $\Rightarrow \lambda^3 - 9\lambda^2 - 9\lambda + 81 = 0 \Rightarrow (\lambda + 3)(\lambda - 3)(\lambda - 9) = 0$.

Hence eigenvalues are $\lambda_1 = -3$, $\lambda_2 = 3$, $\lambda_3 = 9$.

Solve $(A+3I)\boldsymbol{x}_1=\boldsymbol{0}, (A-3I)\boldsymbol{x}_2=\boldsymbol{0}, (A-9I)\boldsymbol{x}_3=\boldsymbol{0}$: corresponding eigenvectors are

$$oldsymbol{x}_1 = k_1 \left[egin{array}{c} 2 \ 1 \ -2 \end{array}
ight], \qquad oldsymbol{x}_2 = k_2 \left[egin{array}{c} 2 \ -2 \ 1 \end{array}
ight], \qquad oldsymbol{x}_3 = k_3 \left[egin{array}{c} 1 \ 2 \ 2 \end{array}
ight],$$

where k_1 , k_2 , k_3 are non-zero constants.

Choose

$$m{x}_1 = \left[egin{array}{c} 2 \ 1 \ -2 \end{array}
ight], \qquad m{x}_2 = \left[egin{array}{c} 2 \ -2 \ 1 \end{array}
ight], \qquad m{x}_3 = \left[egin{array}{c} 1 \ 2 \ 2 \end{array}
ight],$$

with corresponding

$$oldsymbol{z}_1 = rac{1}{3} \left[egin{array}{c} 2 \ 1 \ -2 \end{array}
ight], \qquad oldsymbol{z}_2 = rac{1}{3} \left[egin{array}{c} 2 \ -2 \ 1 \end{array}
ight], \qquad oldsymbol{z}_3 = rac{1}{3} \left[egin{array}{c} 1 \ 2 \ 2 \end{array}
ight],$$

(it is readily seen that $z_i \cdot z_j = \delta_{ij}$). So

$$P = \frac{1}{3} \begin{bmatrix} 2 & 2 & 1 \\ 1 & -2 & 2 \\ -2 & 1 & 2 \end{bmatrix}$$

satisfies

$$P^T P = I, \qquad P^T A P = \operatorname{diag}(-3, 3, 9).$$

2 If
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
, find an orthogonal matrix P such that $P^T A P = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3)$.

Eigenvalues are given by
$$\begin{vmatrix} -\lambda & 1 & 1 \\ 1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} = 0$$
, so

$$-\lambda(\lambda^{2} - 1) - (-\lambda - 1) + (1 + \lambda) = 0 \Rightarrow \lambda^{3} - 3\lambda - 2 = 0 \Rightarrow (\lambda - 2)(\lambda + 1)^{2} = 0.$$

Hence eigenvalues are $\lambda_1 = 2$, $\lambda_2 = -1$, $\lambda_3 = -1$.

Solve (A - 2I)x = 0:

$$\begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix} \begin{array}{c} r'_1 = r_2 \\ r'_2 = r_1 \end{array} \rightarrow \begin{bmatrix} 1 & -2 & 1 \\ -2 & 1 & 1 \\ 1 & 1 & -2 \end{bmatrix} \begin{array}{c} r'_2 = r_2 + 2r_1 \end{array} \rightarrow \begin{bmatrix} r'_1 = r_2 \\ r'_2 = r_2 + 2r_1 \end{array} \rightarrow \begin{bmatrix} r'_1 = r_2 \\ r'_2 = r_2 + 2r_1 \end{array} \rightarrow \begin{bmatrix} r'_1 = r_2 \\ r'_2 = r_2 + 2r_1 \end{array} \rightarrow \begin{bmatrix} r'_1 = r_2 \\ r'_2 = r_2 + 2r_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 1 \\ 0 & -3 & 3 \\ 0 & 3 & -3 \end{bmatrix} r_3' = r_3 + r_2 \rightarrow \begin{bmatrix} 1 & -1 & 1 \\ 0 & -3 & 3 \\ 0 & 0 & 0 \end{bmatrix} r_2' = r_2/(-3) \rightarrow \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Let free variable $x_3 = s$ so $x_2 - x_3 = 0 \Rightarrow x_2 = s$, $x_1 - 2x_2 + x_3 = 0 \Rightarrow x_1 = s$ and eigenvector for $\lambda = 2$ is s(1, 1, 1). Choose s = 1 to give $\mathbf{x}_1 = (1, 1, 1)$.

Solve $(A+I)\boldsymbol{x}=\mathbf{0}$:

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} r'_2 = r_2 - r_1 \rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$r'_3 = r_3 - r_1$$

Let free variables $x_2 = s$ and $x_3 = t$ so $x_1 + x_2 + x_3 = 0 \Rightarrow x_1 = -s - t$ and eigenvector for $\lambda = -1$ is $\boldsymbol{x} = s(-1, 1, 0) + t(-1, 0, 1)$. Eigenspace is $\operatorname{sp}\{(-1, 1, 0), (-1, 0, 1)\}$ so $\lambda = -1$ has geometric multiplicity 2. Choose s = 1, t = 0 and s = 0, t = 1 to get two eigenvectors $\boldsymbol{x}_2 = (-1, 1, 0), \, \boldsymbol{x}_3 = (-1, 0, 1)$. So full set of eigenvectors is

$$m{x}_1 = egin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \qquad m{x}_2 = egin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \qquad m{x}_3 = egin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}.$$

Vectors \mathbf{x}_2 and \mathbf{x}_3 are not orthogonal, so apply Gram-Schmidt:

Step 1: Let $y_1 = (-1, 1, 0)$.

Step 2: Let
$$y_2 = (-1, 0, 1] + \alpha(-1, 1, 0) = (-1 - \alpha, \alpha, 1)$$
.

$$\boldsymbol{y}_2 \cdot \boldsymbol{y}_1 = 0 \Rightarrow 1 + 2\alpha = 0 \Rightarrow \alpha = -\frac{1}{2}.$$

So $y_2 = (-1/2, -1/2, 1)$. We will use $y_2 = (-1, -1, 2)$.

The required orthonormal set is therefore

$$oldsymbol{z}_1 = rac{1}{\sqrt{3}} \left[egin{array}{c} 1 \\ 1 \\ 1 \end{array}
ight], \qquad oldsymbol{z}_2 = rac{1}{\sqrt{6}} \left[egin{array}{c} -1 \\ -1 \\ 2 \end{array}
ight], \qquad oldsymbol{z}_3 = rac{1}{\sqrt{2}} \left[egin{array}{c} -1 \\ 1 \\ 0 \end{array}
ight],$$

and

$$P = \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & 0 \end{bmatrix}$$

satisfies

$$P^{T}P = I,$$
 $P^{T}AP = \text{diag}(2, -1, -1).$