Generative Adversarial Networks

PETR CEZNER

Obsah

Generativní modely

GAN

Odvozené modely

Evaluační metriky

Aplikace

Metody učení

- S učitelem
- Bez učitele

Učení s učitelem

- Data (x, y)
 - *x* − data
 - *y* − label
- Cílem: Naučit funkci, která mapuje $x \rightarrow y$
- •Například:
 - Klasifikace
 - Regrese
 - Detekce objektů
 - •

Klasifikace

Učení bez učitele

- Data: x
 - Máme pouze data, bez labelů
- Cíl: Naučit se nějaké základní, skryté informace z dat
- Například:
 - Clusterizace
 - Redukce dimenze
 - Naučení featur
 - Odhad hustoty pravděpodobnosti
 - ..

Clusterizace

Generativní modely

- Trénovací vzorek ${\it x}$ pochází z neznámé distribuce $p_{data}({\it x})$
- Cílem generativních modelů je naučit se aproximaci $p_{data}(\mathbf{x})$ pomocí $p_{model}(\mathbf{x})$

Generativní modely: Maximum Likelihood Estimate

- $oldsymbol{\cdot}$ Odhad pravděpodobnostního rozdělení pomocí parametru $oldsymbol{ heta}$
- Aproximaci $p_{data}(\mathbf{x})$ pomocí $p_{model}(\mathbf{x}; \boldsymbol{\theta})$

$$\theta^* = \arg\max_{\theta} \prod_{i=1}^{m} p_{\text{model}} \left(x^{(i)}; \theta \right)$$

$$= \arg\max_{\theta} \log \prod_{i=1}^{m} p_{\text{model}} \left(x^{(i)}; \theta \right)$$

$$= \arg\max_{\theta} \sum_{i=1}^{m} \log p_{\text{model}} \left(x^{(i)}; \theta \right)$$

• ML odhad se dá taky definovat jako minimalizace KL (Kullback - Leibler) divergence mezi daty generující distribuci a modelem

$$\theta^* = \underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} D_{\mathrm{KL}} \left(p_{\mathrm{data}}(\boldsymbol{x}) \| p_{\mathrm{model}}(\boldsymbol{x}; \boldsymbol{\theta}) \right)$$

Generativní modely: Maximum Likelihood Estimate

- Obě dvě varianty počítají to samé
- Výhodou je to že můžeme MLE použít jako proxy pro odhad skutečného rozložení
- To by pomocí přímé metody nebylo možné, protože skutečné rozložení je neznámé

Generativní modely: Dělení Generativních modelů

Goodfellow et Al.

Generativní modely: Explicitní modely

- Poskytují explicitní parametrickou specifikaci distribuce dat
- Jsou schopné přiřadit pravděpodobnost vzorku
- Hlavním problémem je navržení modelu, který je schopný zachytit veškerou komplexnost data a zachovat si výpočetní složitost

Generativní modely: Dělení Generativních modelů

Goodfellow et Al.

Generativní modely: Implicitní modely

- Modely, které nepotřebují explicitně definovat funkci hustoty pravděpodobnosti (densiti function)
- Specifikují stochastický proces, který po naučení náhodně vybírá vzorky z distribuce dat
- Simulují data
- Protože nepotřebují specificky znát distribuci, implicitní modely nepotřebují

Generativní modely: Dělení Generativních modelů

Goodfellow et Al.

GAN: Historie

- Poprvé publikováno v roce 2014
- Goodfellow, Ian; Pouget-Abadie, Jean; Mirza, Mehdi; Xu, Bing; Warde-Farley, David; Ozair, Sherjil; Courville, Aaron; Bengio, Yoshua (2014). <u>Generative Adversarial Networks</u> (PDF). Proceedings of the International Conference on Neural Information Processing Systems (NIPS 2014). pp. 2672–2680
- Ian Goodfellow
 - Pracoval v Googlu, OpenAl
 - Pracuje v Applu
 - Napsal: Deep Learning

GAN

Goodfellow et Al.

GAN: Matematická formulace

• Každý hráč optimalizuje svojí loss funkci: $J^{(D)}$, $J^{(G)}$

$$J^{(D)}(\boldsymbol{\theta}^{(D)}, \boldsymbol{\theta}^{(G)}) = -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log (1 - D(G(z)))$$
$$J^{(G)} = -J^{(D)}$$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))]$$

Odvozené modely

A 111 (O 11 1 11	Convolution based GANs	DCGAN [12]
Architecture Optimization Based GANs	Condition based GANs	CGANs [13]; InfoGAN [14]; ACGAN [15]
Dusco Gravo	Autoencoder based GANs	AAE [16]; BiGAN [17]; ALI [18]; AGE [19]; VAE-GAN [20]
Objective Function Optimization Based GANs	unrolled GAN [21]; f-GAN [22]; Mode-Regularized GAN [23]; Least-Square GAN [24]; Loss-Senstive GAN [25]; EBGAN [26]; WGAN [27]; WGAN-GP [28]; WGAN-LP [29]	

Odvozené modely: Convolution based GANs

ZHAOQING et Al.

Odvozené modely: Condition based GANs

Conditional Generative Adversarial Networks (CGAN)

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{x \sim pdata(x)} \left[\log D(x|c) \right] + \mathbb{E}_{z \sim p(z)} \left[\log \left(1 - D\left(G(z|c) \right) \right) \right]$$

InfoGAN

$$\min_{G} \max_{D} V(D, G) - \lambda I(c, G(z, c))$$

ZHAOQING et Al.

Odvozené modely: AutoEncoder Based GANs

Adversarial Autoencoder (AAG)

$$\mathcal{L} = \mathbb{E}_x \left[\underbrace{\mathbb{E}_{q(z|x)}[-\log p(x|z)]}_{\text{Reconstruction Error}} + \mathbb{E}_x \left[\underbrace{\mathrm{KL}(q(z|x)||p(z))]}_{\text{KL Regularizer}} \right]$$

Bidirectional Generative Adversarial Networks (BiGAN)

$$V(D, E, G) := \mathbb{E}_{\mathbf{x} \sim p_{\mathbf{X}}} \left[\underbrace{\mathbb{E}_{\mathbf{z} \sim p_{E}(\cdot | \mathbf{x})} \left[\log D(\mathbf{x}, \mathbf{z}) \right]}_{\log D(\mathbf{x}, E(\mathbf{x}))} \right] + \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{Z}}} \left[\underbrace{\mathbb{E}_{\mathbf{x} \sim p_{G}(\cdot | \mathbf{z})} \left[\log \left(1 - D(\mathbf{x}, \mathbf{z}) \right) \right]}_{\log \left(1 - D(G(\mathbf{z}), \mathbf{z}) \right)} \right]$$

Replaced by adversarial loss in AAE

Adversarial Generator-Encoder Network (AGE)

ZHAOQING et Al.

Odvozené modely

A 111 (O 11 1 11	Convolution based GANs	DCGAN [12]
Architecture Optimization Based GANs	Condition based GANs	CGANs [13]; InfoGAN [14]; ACGAN [15]
Dusco Gravo	Autoencoder based GANs	AAE [16]; BiGAN [17]; ALI [18]; AGE [19]; VAE-GAN [20]
Objective Function Optimization Based GANs	unrolled GAN [21]; f-GAN [22]; Mode-Regularized GAN [23]; Least-Square GAN [24]; Loss-Senstive GAN [25]; EBGAN [26]; WGAN [27]; WGAN-GP [28]; WGAN-LP [29]	

Odvozené modely: Objective Function Optimization Based GANs

Evaluační metriky

- Inception Score (IS)
 - Na vstupu má seznam obrázků a vrátí jedno číslo, skóre
 - K tomu využívá Inception model
 - Hodně používaná metrika, měří jak moc je výstup z Generátoru podobný s lablem:
 - Pomocí Inception modelu spočítá p(x|y)
 - Celkové skóre je pak dáno: $\exp(\mathbb{E}_x KL(p(y|x)||p(y)))$
 - Vysoké IS skóre indikuje to, že generovaný model je schopný kvalitní vzorky.
 - Ale pokud model spadne do Mode Collapse, tak metrika stále vrací vysoké skóre.
- Mode Score (MS)
 - Založeno na IS, ale v potaz prior labelů z dat
 - Schopné rozlišovat různost a vizuální kvalitu generovaných vzorků
 - $\exp(\mathbb{E}_x KL(p(y|x)||p(y^{train})) \mathbb{E}_x KL(p(y)||p(y^{train})))$

Evaluační metriky

- FRéCHET Inception Distance (FID)
 - Založeno na IS
 - Počítá jak jsou si dvě skupiny obrázku podobné na základě featur raw obrázků spočítané pomocí Inception V3 modelu
 - Specificky používá poslední poolovací vrstvu před výstupem klasifikátoru
 - Nižší skóre znamená, že jsou si skupiny více podobné

Walking your dog

The **Fréchet distance** between the curves is the minimum leash length that permits such a walk

		Measure	Measure Description	
1			Log likelihood of explaining realworld held out/test data using a density estimated from the generated data (e.g. using KDE or Parzen window estimation). $L = \frac{1}{N} \sum_i \log P_{model}(\mathbf{x}_i)$	
- 8	2 Coverage Metric [22]	• The probability mass of the true data "covered" by the model distribution $C := P_{data}(dP_{model} > t)$ with t such that $P_{model}(dP_{model} > t) = 0.95$		
		3. Inception Score (IS) [3]	• KLD between conditional and marginal label distributions over generated data. $\exp\left(\mathbb{E}_{\mathbf{x}}\left[\mathbb{KL}\left(p\left(\mathbf{y}\mid\mathbf{x}\right)\parallel p\left(\mathbf{y}\right)\right]\right)\right)$ • Encourages diversity within images sampled from a particular category. $\exp\left(\mathbb{E}_{\mathbf{x}_{i}}\left[\mathbb{E}_{\mathbf{x}_{i}}\left[\left(\mathbb{KL}\left(P\left(\mathbf{y} \mathbf{x}_{i}\right)\parallel P\left(\mathbf{y} \mathbf{x}_{j}\right)\right)\right]\right)\right]$	
		- N. 1 C. (NG) [07]	• Similar to IS but also takes into account the prior distribution of the labels over real data.	
	(6. AM Score [36]	exp $\left(\mathbb{E}_{\mathbf{x}}\left[\mathbb{KL}\left(p\left(y\mid\mathbf{x}\right)\parallel p\left(y^{train}\right)\right)\right] - \mathbb{KL}\left(p\left(y\right)\parallel p\left(y^{train}\right)\right)\right)$ Takes into account the KLD between distributions of training labels vs. predicted labels, as well as the entropy of predictions. $\mathbb{KL}\left(p(y^{\text{train}})\parallel p(y)\right) + \mathbb{E}_{\mathbf{x}}\left[H(y \mathbf{x})\right]$	
	1	Wasserstein-2 distance between multi-variate Gaussians fitted to data embedded into a feature space		
		[38] f	FID $(r,g) = \mu_r - \mu_g _2^2 + Tr(\Sigma_r + \Sigma_g - 2(\Sigma_r \Sigma_g)^{\frac{1}{2}})$ • Measures the dissimilarity between two probability distributions P_r and P_g using samples drawn independently from each distribution. $M_k(P_r, P_g) = \mathbb{E}_{\mathbf{x}, \mathbf{x}' \sim P_r}[k(\mathbf{x}, \mathbf{x}')] - 2\mathbb{E}_{\mathbf{x} \sim P_r, \mathbf{y} \sim P_g}[k(\mathbf{x}, \mathbf{y})] + \mathbb{E}_{\mathbf{y}, \mathbf{y}' \sim P_g}[k(\mathbf{y}, \mathbf{y}')]$	
	• The Critic (e.g. an NN) is trained to produce high values at real samples and low values at gener		• The critic (e.g. an NN) is trained to produce high values at real samples and low values at generated samples $\hat{W}(\mathbf{x}_{test}, \mathbf{x}_g) = \frac{1}{N} \sum_{i=1}^{N} \hat{f}(\mathbf{x}_{test}[i]) - \frac{1}{N} \sum_{i=1}^{N} \hat{f}(\mathbf{x}_g[i])$	
	ive	10. Birthday Paradox Test [27]	• Measures the support size of a discrete (continuous) distribution by counting the duplicates (near duplicates)	
	≝	- ` ` ' -	 Answers whether two samples are drawn from the same distribution (e.g. by training a binary classifier) An indirect technique for evaluating the quality of unsupervised representations 	
	ant		(e.g. feature extraction; FCN score). See also the GAN Quality Index (GQI) [41].	
			• Measures diversity of generated samples and covariate shift using classification methods.	
`			• Given two sets of samples from the same distribution, the number of samples that a given bin should be the same up to sampling noise	
			• Measures the distributions of distances to the nearest neighbors of some query images (i.e. diversity)	
			• Compares two GANs by having them engaged in a battle against each other by swapping discriminators or generators. $p(\mathbf{x} y=1;M_1^{'})/p(\mathbf{x} y=1;M_2^{'})=(p(y=1 \mathbf{x};D_1)p(\mathbf{x};G_2))/(p(y=1 \mathbf{x};D_2)p(\mathbf{x};G_1))$	
			Implements a tournament in which a player is either a discriminator that attempts to distinguish between	
		<u> </u>	real and fake data or a generator that attempts to fool the discriminators into accepting fake data as real.	
			• Compares n GANs based on the idea that if the generated samples are closer to real ones, more epochs would be needed to distinguish them from real samples.	
		19. Adversarial Accuracy and Divergence [46]	• Adversarial Accuracy. Computes the classification accuracies achieved by the two classifiers, one trained	
	[on real data and another on generated data, on a labeled validation set to approximate $P_g(y \mathbf{x})$ and $P_r(y \mathbf{x})$. Adversarial Divergence: Computes $\mathbb{KL}(P_g(y \mathbf{x}), P_r(y \mathbf{x}))$	
	5		• Compares geometrical properties of the underlying data manifold between real and generated data.	
			• Measures the reconstruction error (e.g. L_2 norm) between a test image and its closest generated image by optimizing for z (i.e. $min_{\mathbf{z}} G(\mathbf{z}) - \mathbf{x}^{(test)} ^2$)	
	22. Image Quality Measures [49, 50, 51]	• Evaluates the quality of generated images using measures such as SSIM, PSNR, and sharpness difference		
	5	23 Low-level Image Statistics 152 531	• Evaluates how similar low-level statistics of generated images are to those of natural scenes n terms of mean power spectrum, distribution of random filter responses, contrast distribution, etc.	
	5		• These measures are used to quantify the degree of overfitting in GANs, often over toy datasets.	
Ī	0	1. Nearest Neighbors	• To detect overfitting, generated samples are shown next to their nearest neighbors in the training set	
-	ıalitative		In these experiments, participants are asked to distinguish generated samples from real images n a short presentation time (e.g. 100 ms); i.e. real v.s fake	
	alit	_	• Participants are asked to rank models in terms of the fidelity of their generated images (e.g. pairs, triples)	
	Ď,		• Over datasets with known modes (e.g. a GMM or a labeled dataset), modes are computed as by measuring the distances of generated data to mode centers	
	į	b. Network Internals II. bll. bl. b2. b3. b41	• Regards exploring and illustrating the internal representation and dynamics of models (e.g. space continuity) as well as visualizing learned features	

Aplikace

- Počítačové vidění
 - Image Super-Resolution
 - Image Translation
 - Texture Synthesis
 - Face Synthesis
- NLP
 - Pro tvorbu hudby, poezie a textů
- Ostatní

Image Super-Resolution

original bicubic SRResNet SRGAN (21.59dB/0.6423) (23.44dB/0.7777) (20.34dB/0.6562)

Image Super-Resolution

Adversarial Ground Truth **MSE**

Image Translation

Texture Synthesis

Partial makeup trasnfer (lip, skin, eye)

Source Light makeup

Heavy makeup

Reference

Large poses and expressions differences

Reference Source

Periodic Spatial GAN (PSGAN)

Face Synthesis

Two-Pathway Generative Adversarial Network (TP-GAN)

NLP

Ostatní

- Lze použít k detekci poruchy
- Booyse, W., Wilke, D., & Heyns, S. (2020, February 01). Deep digital twins for detection, diagnostics and prognostics. Retrieved November 12, 2020, from https://www.sciencedirect.com/science/article/abs/pii/S0888327019308337

Shrnutí

- GAN je hra dvou hráčů, tzv. protivníků:
 - Diskriminátor a Generátor
- Diskriminátor se snaží dát vysoké skóre reálním obrázkům a nízké skoré falešným (generovaným) obrázkům
- Generátor se snaží generovat takové obrázky, aby vypadali reálně.
 - Snaží se modifikovat svůj výstup tak, aby získal vysoké skóre od Diskriminátoru
- Cílem celé hry (min-max) pro Generátor je, aby distribuce generovaných dat byla shodná s distribucí reálných dat: $p_G(x) \approx p_{data}(x)$

Zdroje

- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., . . . Bengio, Y. (2014, December 01). Generative adversarial nets. Retrieved November 11, 2020, from https://dl.acm.org/doi/10.5555/2969033.2969125
- Goodfellow, I. (2017, April 03). NIPS 2016 Tutorial: Generative Adversarial Networks. Retrieved November 11, 2020, from https://arxiv.org/abs/1701.00160
- Zhaoqing, P., Weijie, Y., Xiaokai, Y., Asifullah, K., Feng, Y., & Yuhui, Z. (2019, March 14). Recent Progress on Generative Adversarial Networks (GANs): A Survey. Retrieved November 11, 2020, from https://ieeexplore.ieee.org/document/8667290
- Borji, A. (2018, October 24). Pros and Cons of GAN Evaluation Measures. Retrieved November 11, 2020, from https://arxiv.org/abs/1802.03446
- Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016, June 10). Improved Techniques for Training GANs. Retrieved November 11, 2020, from https://arxiv.org/abs/1606.03498
- Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February 26). Progressive Growing of GANs for Improved Quality, Stability, and Variation.
 Retrieved November 11, 2020, from https://arxiv.org/abs/1710.10196
- Barratt, S., & Sharma, R. (2018, June 21). A Note on the Inception Score. Retrieved November 11, 2020, from https://arxiv.org/abs/1801.01973

Zdroje

- Booyse, W., Wilke, D., & Heyns, S. (2020, February 01). Deep digital twins for detection, diagnostics and prognostics. Retrieved November 12, 2020, from https://www.sciencedirect.com/science/article/abs/pii/S0888327019308337
- Oh, T., Dekel, T., Kim, C., Mosseri, I., Freeman, W., Rubinstein, M., & Matusik, W. (2019, May 23). Speech2Face: Learning the Face Behind a Voice. Retrieved November 12, 2020, from https://arxiv.org/abs/1905.09773
- Brownlee, J. (2019, October 10). How to Implement the Frechet Inception Distance (FID) for Evaluating GANs. Retrieved November 11, 2020, from https://machinelearningmastery.com/how-to-implement-the-frechet-inception-distance-fid-from-scratch/
- Brownlee, J. (2019, July 12). How to Evaluate Generative Adversarial Networks. Retrieved November 11, 2020, from https://machinelearningmastery.com/how-to-evaluate-generative-adversarial-networks/
- Brownlee, J. (2020, September 01). How to Develop a Wasserstein Generative Adversarial Network (WGAN) From Scratch. Retrieved November 11, 2020, from https://machinelearningmastery.com/how-to-code-a-wasserstein-generative-adversarial-network-wgan-from-scratch/
- Papers with Code BiGAN Explained. (n.d.). Retrieved November 11, 2020, from https://paperswithcode.com/method/bigan

Zajimavé odkazy

- Tutoriály: https://machinelearningmastery.com/category/generative-adversarial-networks/
- GAN Zoo: https://github.com/hindupuravinash/the-gan-zoo