Programme de colle : Semaine 29 Lundi 02 Juin

1 Cours

- 1. Développements limités
 - Définition d'une fonction admettant un $DL_n(a)$.
 - Notation $o(x^n)$, notion de négligeabilité
 - Formule de Taylor-Young.
 - DL de exp, ln, cos, sin, $(1+x)^{\alpha}$
 - DL des polynomes et troncatures des DL.
 - Operations sur les DL (sommes, produits, composées)
 - Etudes de limites et d'équivalents
 - DL en un autre point (Changement de variable X = x a
 - Etudes des branches asymptotiques (changement de variable $X = \frac{1}{x}$
 - Révisions : continuité en 1 point, prolongement par continuité, dérivabilité en un point.
- 2. Python:
 - Tableau numpy, dictionnaires
 - Représentation informatique d'un polynome par une liste (évaluation, racine, dérivation, somme)

2 Exercices Types

1. Soit f et g deux fonctions. Montrer que

$$f(x) \underset{0}{\sim} g(x) \Longleftrightarrow f(x) - g(x) = o(g(x))$$

- 2. Dans chacun des cas suivants, déterminer le développement limité de la fonction f au voisinage de 0 à l'ordre donné :
 - (a) $f(x) = e^x \frac{1}{1-x}$ à l'ordre 2
 - (b) $f(x) = \sin x x \cos x$ à l'ordre 8
 - (c) $f(x) = \ln(x+1) e^x$ à l'ordre 2
 - (d) $f(x) = \tan^2 x$ à l'ordre 6

Trouver un équivalent des fonctions suivantes au voisinage de 0 :

- (a) $f(x) = \frac{2}{\sin x} \frac{2}{\ln(1+x)}$
- (b) $f(x) = \sin(2x) 2\sin x$
- (c) $f(x) = \ln\left(\frac{\tan x}{x}\right)$
- (d) $f(x) = (e+x)^e e^{e+x}$
- (e) $f(x) = \sin(\ln(1+x)) \ln(1+\sin x)$
- 3. Trouver un équivalent des fonctions suivantes au voisinage de 0 de

$$f(x) = \frac{2}{\sin x} - \frac{2}{\ln(1+x)}$$

4. Soit la fonction f définie sur $]0,1[\,\cup\,]1,+\infty[$ par $f(x)=\frac{x\ln x}{x^2-1}.$

- (a) Montrer que f admet un prolongement par continuité en 1.
- (b) Ce prolongement est-il dérivable?
- (c) Montrer que f admet un prolongement par continuité en 0.
- (d) Ce prolongement est-il dérivable?
- 5. Soit la fonction f définie par :

$$\forall x \in \mathbb{R}, \ f(x) = \arctan x + e^x - 1.$$

- (a) Étudier f et en dessiner la courbe dans un repère orthonormé.
- (b) Montrer que f induit une bijection de $\mathbb R$ dans un intervalle I à préciser.
- (c) Soit g la réciproque de la bijection précédente. Montrer que g est de classe \mathcal{C}^{∞} sur I. En déduire que g admet, en tout point de I, des développements limités à tout ordre.
- (d) En utilisant le fait que $g \circ f = Id_{\mathbb{R}}$, donner un développement limité de g à l'ordre 2 au voisinage de 0.