Enumerative Combinatorics

Lecture Notes

David Scholz

January 28, 2022

Abstract

Abstract

Contents

1	Introduction					
2	Permutations and binomial coefficients					
	2.1	The cab driver problem	2			
	2.2	Balls in boxes and multisets	2			
	2.3	Integer compositions	2			
	2.4	Principle of inclusion and exclusion	2			
	2.5	The derangement problem	2			
	2.6	Exercises	2			
3	Linear recurrences - The Fibonacci sequence 3					
	3.1	Fibonacci's rabbit problem	3			
	3.2	Fibonacci numbers and the Pascal triangle	3			
	3.3	Domino tilings	3			
	3.4	Linear recurrence relations	3			
	3.5	The characteristic equation	3			
	3.6	Linear recurrence relations of order 2	3			
	3.7	The Binet formula	3			
	3.8	Linear recurrence relations of arbitrary order	3			
	3.9	The case of roots with multiplicities	3			
	3.10	Exercises	3			
4	A nonlinear recurrence: many faces of Catalan numbers 4					
	4.1	Triangulations of a polygon	4			
	4.2	Recurrence relation for triangulations	4			
	4.3	The cashier problem	4			
	4.4	Dyck paths	4			
	4.5	Recurrence relations for Dyck paths	4			
	4.6	Reflection trick and a formula for Catalan numbers	4			
	4.7	Binary trees	4			
	4.8	Exercises	4			
5	Generating functions: a unified approach to combinatorial problems -					
	Solving linear recurrences					
	5.1	Generating functions: first examples	5			
	5.2	Formal power series	5			
	5.3	When are formal power series invertible?	5			
	5.4	Derivation of formal power series	5			
	5.5	Binomial theorem for negative integer exponents	5			

	5.6	Solving the Fibonacci recurrence relation	5		
	5.7	Generating functions of linear recurrence relations are rational	5		
	5.8	Solving linear recurrence relations: general case	5		
	5.9	Exercises	5		
6	Ger	nerating function of the Catalan sequence	6		
	6.1	Composition of formal power series	6		
	6.2	Derivation and integration of formal power series	6		
	6.3	Chain rule - Inverse function theorem	6		
	6.4	Logarithm - Logarithmic derivative	6		
	6.5	Binomial theorem for arbitrary exponents	6		
	6.6	Generating function for Catalan numbers	6		
	6.7	Exercises	6		
7	Partitions - Euler's generating function for partitions and pentagonal				
	forn	nula	7		
	7.1	Definition and first examples	7		
	7.2	Young diagrams	7		
	7.3	Generating function for partitions	7		
	7.4	Partition with odd and distinct summands	7		
	7.5	Sylvester's bijection	7		
	7.6	Euler's pentagonal theorem	7		
	7.7	Proof of Euler's pentagonal theorem	7		
	7.8	Computing the number of partitions via the pentagonal theorem	7		
	7.9	Exercises	7		
8	Gaı	ussian binomial coefficients	8		
	8.1	Generating function for partitions inside a rectangle	8		
	8.2	q-binomial coefficients: definition and first properties	8		
	8.3	Recurrence relation for q -binomial coefficients	8		
	8.4	Explicit formula for q -binomial coefficients	8		
	8.5	Euler's partition function	8		
	8.6	q-binomial coefficients in linear algebra	8		
	8.7	q-binomial theorem	8		
	8.8	Exercises	8		

1 Introduction

Combinatorics is the study Hallo Welt $\,$

2 Permutations and binomial coefficients

- 2.1 The cab driver problem
- 2.2 Balls in boxes and multisets
- 2.3 Integer compositions
- 2.4 Principle of inclusion and exclusion
- 2.5 The derangement problem
- 2.6 Exercises

3 Linear recurrences - The Fibonacci sequence

- 3.1 Fibonacci's rabbit problem
- 3.2 Fibonacci numbers and the Pascal triangle
- 3.3 Domino tilings
- 3.4 Linear recurrence relations
- 3.5 The characteristic equation
- 3.6 Linear recurrence relations of order 2
- 3.7 The Binet formula
- 3.8 Linear recurrence relations of arbitrary order
- 3.9 The case of roots with multiplicities
- 3.10 Exercises

4 A nonlinear recurrence: many faces of Catalan numbers

- 4.1 Triangulations of a polygon
- 4.2 Recurrence relation for triangulations
- 4.3 The cashier problem
- 4.4 Dyck paths
- 4.5 Recurrence relations for Dyck paths
- 4.6 Reflection trick and a formula for Catalan numbers
- 4.7 Binary trees
- 4.8 Exercises

5 Generating functions: a unified approach to combinatorial problems - Solving linear recurrences

- 5.1 Generating functions: first examples
- 5.2 Formal power series
- 5.3 When are formal power series invertible?
- 5.4 Derivation of formal power series
- 5.5 Binomial theorem for negative integer exponents
- 5.6 Solving the Fibonacci recurrence relation
- 5.7 Generating functions of linear recurrence relations are rational
- 5.8 Solving linear recurrence relations: general case
- 5.9 Exercises

6 Generating function of the Catalan sequence

- 6.1 Composition of formal power series
- 6.2 Derivation and integration of formal power series
- 6.3 Chain rule Inverse function theorem
- 6.4 Logarithm Logarithmic derivative
- 6.5 Binomial theorem for arbitrary exponents
- 6.6 Generating function for Catalan numbers
- 6.7 Exercises

7 Partitions - Euler's generating function for partitions and pentagonal formula

- 7.1 Definition and first examples
- 7.2 Young diagrams
- 7.3 Generating function for partitions
- 7.4 Partition with odd and distinct summands
- 7.5 Sylvester's bijection
- 7.6 Euler's pentagonal theorem
- 7.7 Proof of Euler's pentagonal theorem
- 7.8 Computing the number of partitions via the pentagonal theorem
- 7.9 Exercises

8 Gaussian binomial coefficients

- 8.1 Generating function for partitions inside a rectangle
- 8.2 q-binomial coefficients: definition and first properties
- 8.3 Recurrence relation for q-binomial coefficients
- 8.4 Explicit formula for q-binomial coefficients
- 8.5 Euler's partition function
- 8.6 q-binomial coefficients in linear algebra
- 8.7 q-binomial theorem
- 8.8 Exercises