WZMS

(请选手务必仔细阅读本页内容)

一、题目概况

中文题目名称	神奇的树	永远年轻	子序列	双重回文
子目录名	tree	young	subsequence	palindrome
可执行文件名	tree	young	subsequence	palindrome
输入文件名	tree.in	young.in	subsequence.in	palindrome.in
输出文件名	tree.out	young.out	subsequence.out	palindrome .out
每个测试点时限	$1000 \mathrm{ms}$	$5000 \mathrm{ms}$	$2500 \mathrm{ms}$	2000ms
内存上限	512M	512M	1G	512M
测试点数目	20	20	10	25
每个测试点分值	5	5	10	4
附加样例文件	有	有	有	有
结果比较方式	全文比较(过滤行末空格及文末回车)			
题目类型	传统	传统	传统	传统

二、提交源程序程序名

三、优化开关

对于 C++ 语言 -O2 -std=c++17

注意事项:

- 1. 题目并不难, 请喧哗的同学不要大声 AK;
- 2. 文件名(程序名和输入输出文件名)必须使用英文小写;
- 3. C/C++ 中函数 main() 的返回类型必须是 int, 程序正常结束时的返回值必须是 0;
- 4. 保证各个题目的时间限制至少为标程运行时间的两倍;
- 5. 题目难度不一定升序排序;
- 6. 每道题目需单独建立对应子文件夹.

1 神奇的树

(tree.cpp)

1.1 问题描述

给定一个无向的树,希望你能求出这颗树字典序最小的先序遍历。

你可以任意选择一个点作为起点,当你在一个节点时,你只能访问你未被访问的邻居节点。 你可以自由地安排访问邻居节点的顺序。当你访问完一个节点所有的邻居结点之后,将当前节 点的标号写入当前的先序遍历序列的尾部。

下面给出访问过程的伪代码, G 用来储存一个节点的邻居:

```
vector <int > G[N], order;
bool vis[N];
void dfs(int u) {
  vis[u] = true;
  for (int v : G[u]) {
    if (vis[v]) continue;
    dfs(v);
  }
  order.push_back(u);
}
```

其中 order 则为所求的先序遍历序列。你需要求出可能的字典序最小的先序遍历序列。

1.2 输入

第一行输入一个正整数 T,表示测试数据组数。

对于每个测试数据,第一行读入一个正整数 n 表示给定树的节点个数。

接下来 n-1 行,每行读入两个正整数 u,v ,表示树上有一条无向边连接 u,v 两个节点。 保证给定图的形态为树。

1.3 输出

共T行,对每一个测试数据输出字典序最小的**先序遍历**。

1.4 输入输出样例

1.4.1 输入样例

3

3

13

3 2

3

2 1

13

7

1 2

13

2 4

2 5

3 6

3 7

1.4.2 输出样例

 $1 \ 2 \ 3$

 $2\ 1\ 3$

 $4\ 5\ 2\ 1\ 6\ 3\ 7$

1.5 样例解释

以下为第一个测试数据中给定的树的形态:

假如说我们从 1 开始遍历,我们只能得到序列 2 3 1, 从 2 开始遍历只能得到 1 3 2, 从 3 开始遍历,我们可以得到 1 2 3 或者 2 1 3。字典序最小的先序遍历序列为 1 2 3。

以下为第二个测试数据中给定的树的形态:

假如说我们从 1 开始遍历,我们能得到序列 2 3 1 或者 3 2 1,从 2 开始遍历只能得到 3 1 2,从 3 开始遍历,我们只能得到 2 1 3。字典序最小的先序遍历序列为 2 1 3。 以下为第三个测试数据中给定的树的形态:

其中字典序最小的先序遍历序列 4521637 可以从7号节点开始访问。

1.6 约定和数据范围

对所有测试点数据, 保证 $1 \le T \le 10^5, 2 \le n \le 2 \times 10^5, \sum n \le 2 \times 10^5, 1 \le u, v \le n, u \ne v$ 。每个测试点的具体限制见下表:

测试点编号	$n \leq$	$\sum n \le$	特殊性质
1~2	10	100	无
3~6	300	3000	无
7~10	2000	10000	无
11~12	10^{5}	2×10^5	特殊性质 A
13~14	10^{5}	2×10^5	特殊性质 B
15~20	10^{5}	2×10^5	无

特殊性质 A: 给定的树是一条链。

特殊性质 B: 给定的树是一个菊花图。即总共有 n-1 个叶子连接在一个节点下。

2 永远年轻

(young.cpp)

2.1 问题描述

给定一个由n个节点构成的无向有根树,其中根为1号节点。

我们称一个点 u 为另一个节点 v 的祖先当且仅当 u 在从 v 到根的路径上。

然后我们定义集合 subtree(u) = {v|u 为 v 的祖先}。

树上每一个节点 u 有两个权值 c_u, e_u , 定义一个点 u 的 val_u 为:

$$val_{u} = \sum_{x \in subtree(u)} \sum_{y \in subtree(u)} \min\{|c_{x} - c_{y}|, |e_{x} - e_{y}|\}$$

请输出树上每一个节点 u 输出 val_u ,接节点标号从小到大输出。由于计算结果可能很大,请将结果对 10^9+7 取模后输出。

2.2 输入

第一行一个正整数 n,表示树的节点个数。

接下来 n-1 行, 每行两个正整数 u,v,表示树上有一条无向边链接节点 u,v。保证给定图的形态是树。

接下来 n 行,每行读入两个正整数 c_i, e_i 表示节点 i 的两个权值。

2.3 输出

共 n 行, 第 i 行 val_i 对 $10^9 + 7$ 取模之后的结果。

2.4 输入输出样例

2.4.1 输入样例

5

1 2

13

2 4

2 5

9 5

28

7 1

4 3

6 6

2.4.2 输出样例

44

12

0

0

0

2.5 约定和数据范围

对所有测试点数据, 保证 $1 \le n \le 5 \times 10^5, 1 \le u, v \le n, u \ne v, 1 \le c_i, e_i \le 10^9$. 每个测试点的具体限制见下表:

测试点编号	$N \leq$	特殊性质
$1 \sim 4$	2000	无
$5 \sim 8$	5000	无
9 ~ 10	5×10^5	特殊性质 A
$11 \sim 12$	5×10^5	特殊性质 B
$13 \sim 16$	10^{5}	无
$17 \sim 20$	无	无

特殊性质 A: 给定的树是一条链。

特殊性质 B: 给定的树是一个菊花图。即总共有 n-1 个叶子连接在一个节点下。

3 子序列

(subsequence.cpp)

给定一个长度为 n 的正整数序列 a, 和一个长度为 m 的正整数序列 b。我们需要从 a 中选出一个非空子序列 p_a ,从 b 中选出一个非空子序列 p_b 。我们这里定义一个长度为 k 的子序列 p_1, p_2, \cdots, p_k 的权值为:

$$\sum_{i=1}^{k} p_i \times 1000^{k-i}$$

现在想知道有多少种在 a,b 中分别选择子序列的方案,能使得 p_a 的权值严格大于 p_b 的权值。

我们认为两种选择子序列的方案 $(A_1,B_1),(A_2,B_2)$ 不同,当且仅当 $A_1 \neq A_2$ 或者 $B_1 \neq B_2$ 。两个子序列 p,q 不同当且仅当其权值不同。

由于答案可能很大,请将其对998244353取模后输出。

3.1 输入

第一行读入两个正整数 n, m 表示 a 的长度和 b 的长度。接下来一行读入 n 个正整数,其中第 i 个数表示 a_i 。接下来一行读入 m 个正整数,其中第 i 个数表示 b_i 。

3.2 输出

输出一个非负整数,表示答案对 998244353 取模之后的结果。

3.3 输入输出样例 1

3.3.1 输入样例

3 5

2 1 2

 $1\ 2\ 2\ 1\ 2$

3.3.2 输出样例

22

3.4 样例解释

在 a 能选出的子序列有 $\{1\}$, $\{2\}$, $\{1,2\}$, $\{2,1\}$, $\{2,2\}$, $\{2,1,2\}$, 他们对应的权值为 1,2,1002,2001,2002,2001002。 在 b 中能选出的子序列有 $\{1\}$, $\{2\}$, $\{1,1\}$, $\{1,2\}$, $\{2,1\}$, $\{2,2\}$, $\{1,1,2\}$, $\{1,2,1\}$, $\{1,2,2\}$, $\{2,1,2\}$, $\{2,2,2\}$, 他们对应的权值为 1,2,1001,1002,2001,2002,1001002,1002001,1002002,2001002,2002002。

那么其中有 0+1+3+4+5+9=22 种选择子序列的方案,能使得 p_a 的权值严格大于 p_b 的权值。

3.5 约定和数据范围

对所有测试点数据, 保证 $1 \le n, m \le 5000, 1 \le a_i, b_i \le 100$ 。 每个测试点的具体限制见下表:

测试点编号	$N \leq$	$M \leq$
$1 \sim 2$	10	10
$3 \sim 4$	100	100
$5\sim 6$	300	300
$7 \sim 8$	1000	1000
9 ~ 10	5000	5000

4 双重回文

(palindrome.cpp)

4.1 问题描述

定义一个字符串是回文的,当且仅当该字符串的正串等于其反串。比如说 aba 和 oppo 是回文的,但 wzms 不是回文的。

定义一个字符串是双重回文的,当且仅当该字符串本身是回文的,或者该字符串可以看成两个非空回文串的顺序拼接(这两个回文串可以相同)。比如说 abacdda, potato 和 xjjx 是双重回文的。而 wzmstxdy 和 abaabb 不是双重回文的。

现在你需要求出长度不超过 n 的仅用前 k 个小写字母构成的非空字符串中双重回文串的数量。由于答案可能很大,请对 998244353 取模后输出。

4.2 输入

第一行两个正整数 n,k。表示最长的字符串长度,和字符集的大小。

4.3 输出

输出一个整数表示长度不超过 n 的仅用前 k 个小写字母构成的非空字符串中双重回文串的数量。答案对 998244353 取模。

4.4 输入输出样例 1

4.4.1 输入样例

3 3

4.4.2 输出样例

33

4.5 输入输出样例 2

4.5.1 输入样例

6 2

4.5.2 输出样例

114

4.6 输入输出样例 3

4.6.1 输入样例

427

4.6.2 输出样例

83419789

4.7 样例解释

第一个样例中的双重回文字符串为: a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, aac, aba, abb, aca, acc, baa, bab, bba, bbb, bbc, bcb, bcc, caa, cac, cbb, cbc, cca, ccb, ccc.

4.8 约定和数据范围

对所有测试点数据, 保证 $1 \le n \le 10^5, 1 \le k \le 26$ 。 每个测试点的具体限制见下表:

测试点编号	$n \leq$	$k \leq$
$1 \sim 2$	10	2
$3 \sim 4$	10	26
$5\sim 6$	20	2
$7 \sim 8$	20	26
$9 \sim 10$	1000	2
$11 \sim 12$	1000	26
$13 \sim 14$	5000	26
$15 \sim 17$	5×10^4	26
$18 \sim 20$	10^{5}	26