PROBLEMS

B–10–1. Consider the system defined by

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$
$$y = \mathbf{C}\mathbf{x}$$

where

$$\mathbf{A} = \begin{bmatrix} -1 & 0 & 1 \\ 1 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$$

Transform the system equations into (a) controllable canonical form and (b) observable canonical form.

B–10–2. Consider the system defined by

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$
$$y = \mathbf{C}\mathbf{x}$$

where

$$\mathbf{A} = \begin{bmatrix} -1 & 0 & 1 \\ 1 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

Transform the system equations into the observable canonical form.

B–10–3. Consider the system defined by

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$

where

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

By using the state-feedback control $u = -\mathbf{K}\mathbf{x}$, it is desired to have the closed-loop poles at $s = -2 \pm j4$, s = -10. Determine the state-feedback gain matrix \mathbf{K} .

B–10–4. Solve Problem B–10–3 with MATLAB.

B–10–5. Consider the system defined by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$

Show that this system cannot be stabilized by the state-feedback control $u = -\mathbf{K}\mathbf{x}$, whatever matrix \mathbf{K} is chosen.

B–10–6. A regulator system has a plant

$$\frac{Y(s)}{U(s)} = \frac{10}{(s+1)(s+2)(s+3)}$$

Define state variables as

$$x_1 = y$$

$$x_2 = \dot{x}_1$$

$$x_3 = \dot{x}_2$$

By use of the state-feedback control $u = -\mathbf{K}\mathbf{x}$, it is desired to place the closed-loop poles at

$$s = -2 + j2\sqrt{3}$$
, $s = -2 - j2\sqrt{3}$, $s = -10$

Determine the necessary state-feedback gain matrix K.

B-10-7. Solve Problem B-10-6 with MATLAB.

B–10–8. Consider the type 1 servo system shown in Figure 10–58. Matrices **A**, **B**, and **C** in Figure 10–58 are given by

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -5 & -6 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

Determine the feedback gain constants k_1 , k_2 , and k_3 such that the closed-loop poles are located at

$$s = -2 + j4$$
, $s = -2 - j4$, $s = -10$

Obtain the unit-step response and plot the output y(t)-versus-t curve.

Figure 10–58
Type 1 servo system.

Problems 855

B–10–9. Consider the inverted-pendulum system shown in Figure 10–59. Assume that

$$M = 2 \text{ kg}, \qquad m = 0.5 \text{ kg}, \qquad l = 1 \text{ m}$$

Define state variables as

$$x_1 = \theta$$
, $x_2 = \dot{\theta}$, $x_3 = x$, $x_4 = \dot{x}$

and output variables as

$$y_1 = \theta = x_1, \qquad y_2 = x = x_3$$

Derive the state-space equations for this system.

It is desired to have closed-loop poles at

$$s = -4 + j4$$
, $s = -4 - j4$, $s = -20$, $s = -20$

Determine the state-feedback gain matrix **K**.

Using the state-feedback gain matrix **K** thus determined, examine the performance of the system by computer simulation. Write a MATLAB program to obtain the response of the system to an arbitrary initial condition. Obtain the response curves $x_1(t)$ versus t, $x_2(t)$ versus t, $x_3(t)$ versus t, and $x_4(t)$ versus t for the following set of initial condition:

$$x_1(0) = 0$$
, $x_2(0) = 0$, $x_3(0) = 0$, $x_4(0) = 1$ m/s

Figure 10–59 Inverted-pendulum system.

B–10–10. Consider the system defined by

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$$
$$y = \mathbf{C}\mathbf{x}$$

where

$$\mathbf{A} = \begin{bmatrix} -1 & 1 \\ 1 & -2 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Design a full-order state observer. The desired observer poles are s = -5 and s = -5.

B–10–11. Consider the system defined by

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$
$$v = \mathbf{C}\mathbf{x}$$

where

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -5 & -6 & 0 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

Design a full-order state observer, assuming that the desired poles for the observer are located at

$$s = -10, \qquad s = -10, \qquad s = -15$$

B–10–12. Consider the system defined by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1.244 & 0.3956 & -3.145 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1.244 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Given the set of desired poles for the observer to be

$$s = -5 + j5\sqrt{3}$$
, $s = -5 - j5\sqrt{3}$, $s = -10$

design a full-order observer.

B–10–13. Consider the double integrator system defined by

$$\ddot{y} = u$$

If we choose the state variables as

$$x_1 = y$$
$$x_2 = \dot{y}$$

then the state-space representation for the system becomes as follows:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

It is desired to design a regulator for this system. Using the pole-placement-with-observer approach, design an observer controller.

Choose the desired closed-loop poles for the poleplacement part to be

$$s = -0.7071 + j0.7071,$$
 $s = -0.7071 - j0.7071$

and assuming that we use a minimum-order observer, choose the desired observer pole at

$$s = -5$$

B–10–14. Consider the system

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$
$$y = \mathbf{C}\mathbf{x}$$

where

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

Design a regulator system by the pole-placement-withobserver approach. Assume that the desired closed-loop poles for pole placement are located at

$$s = -1 + i$$
, $s = -1 - i$, $s = -5$

The desired observer poles are located at

$$s = -6, \qquad s = -6, \qquad s = -6$$

Also, obtain the transfer function of the observer controller.

B–10–15. Using the pole-placement-with-observer approach, design observer controllers (one with a full-order observer and the other with a minimum-order observer) for the system shown in Figure 10–60. The desired closed-loop poles for the pole-placement part are

$$s = -1 + j2$$
, $s = -1 - j2$, $s = -5$

Figure 10–60

Control system with observer controller in the feedforward path.

The desired observer poles are

s=-10, s=-10, s=-10 for the full-order observer s=-10, s=-10 for the minimum-order observer.

Compare the unit-step responses of the designed systems. Compare also the bandwidths of both systems.

B–10–16. Using the pole-placement-with-observer approach, design the control systems shown in Figures 10–61(a) and (b). Assume that the desired closed-loop poles for the pole placement are located at

$$s = -2 + j2,$$
 $s = -2 - j2$

and the desired observer poles are located at

$$s = -8, \qquad s = -8$$

Obtain the transfer function of the observer controller. Compare the unit-step responses of both systems. [In System (b), determine the constant N so that the steady-state output $y(\infty)$ is unity when the input is a unit-step input.]

Figure 10–61

Control systems with observer controller: (a) observer controller in the feedforward path; (b) observer controller in the feedback path.

B–10–17. Consider the system defined by

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -a \end{bmatrix}$$

$$a = \text{adjustable parameter} > 0$$

Problems 857