

INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI

भारतीय प्रौद्योगिकी संस्थान तिरुपति

1.	Title of the course	Computational Fluid Dynamics
2.	Course number	ME501M
3.	Structure of credits	2-0-2-3
4.	Offered to	PG
5.	New course/modification to	Modification To ME5101/20
6.	To be offered by	Department of Mechanical Engineering
7.	To take effect from	January 2022
8.	Prerequisite	СоТ
9.	Course Objective(s): To introduce computational methods for solving linear and non-linear Partial Differential Equations (PDE) related to fluid dynamics and heat transfer. To discuss concepts about solving PDE in the Finite Volume (FV) framework.	
10	Course Contents Coverning assertions for fluid flow and heat transfers Classifications of Dorticle	

10. Course Content: Governing equations for fluid flow and heat transfer; Classifications of Partial Differential Equations (PDE); Finite difference formulation: various aspects of finite difference equation, error and stability analysis, dissipation and dispersion errors, modified equations; Solutions of simultaneous equations: iterative and direct methods; Elliptic PDE: one and two dimensional steady heat conduction and their solutions, extension to three-dimensional; Parabolic PDE: unsteady heat conduction, explicit and implicit methods, solution of boundary layer equation, up-winding; Solution of incompressible Navier-Stokes equation: stream function and vorticity formulation, primitive variable methods: Marker And Cell (MAC) and Semi Implicit Method for Pressure Linked Equation (SIMPLE)

11. Textbook(s):

- 1. Patankar S V, Numerical Heat Transfer and Fluid Flow, 1st Edition, CRC Press (1980).
- 2. Muralidhar M and Sundararajan T, Computational Fluid Flow and Heat Transfer, 2nd Edition, Narosa (2011).

12. Reference(s):

- 1. Ghoshdastidar PS, Computer S imulation of Flow and Heat Transfer, 4 th edition, Tata McGraw-Hill), 1998.
- 2. Hirch C, Numerical Computation of Internal and External Flows, Elesvier, 2007.
- 3. Zikanov O, Essential Computational Fluid Dynamics, Wiley, 2010.