Unit 1: Atomic structure

Subunit 1.2: Isotopes

Topical Question No: 1

The prefixes nano (n), micro (μ) and pico (p) are often used with units.

Which row shows their correct values?

	n	μ	р
Α	10 ⁻⁶	10 ⁻⁹	10 ⁻¹²
В	10 ⁻⁶	10 ⁻¹²	10 ⁻⁹
С	10 ⁻⁹	10 ⁻⁶	10 ⁻¹²
D	10 ⁻¹²	10 ⁻⁹	10 ⁻⁶

Topical Question No: 2

The SI unit of specific heat capacity is J kg⁻¹ K⁻¹.

What is the unit of specific heat capacity expressed in SI base units?

- **A** $m s^{-2} K^{-1}$

- **B** $kgm s^{-1} K^{-1}$ **C** $m^2 s^{-2} K^{-1}$ **D** $kgm^2 s^{-1} K^{-1}$

Topical Question No: 3

At temperatures close to 0 K, the specific heat capacity c of a particular solid is given by $c = bT^3$, where T is the temperature and b is a constant, characteristic of the solid. The SI unit of specific heat capacity is Jkg⁻¹ K⁻¹.

What is the unit of constant b, expressed in SI base units?

- **A** $m^2 s^{-2} K^{-3}$
- $B m^2 s^{-2} K^{-4}$
- $C kg m^2 s^{-2} K^{-3}$
- **D** $kg m^2 s^{-2} K^{-4}$

Topical Question No: 4

1 The table shows some measurable quantities.

Which row gives the correct order of magnitude of the measurable quantity in the stated unit?

	measurable quantity	order of magnitude	unit
Α	mass of a coin	10 ⁻⁴	kg
В	thickness of a sheet of paper	10 ⁻²	m
С	weight of an apple	10 ⁰	N
D	temperature of a person's body	10 ¹	K

Topical Question No: 5

- 2 Which physical quantity could have units of Ns²m⁻¹?
 - A acceleration
 - B force
 - C mass
 - **D** momentum

Topical Question No: 6

1 Decimal sub-multiples and multiples of units are indicated using a prefix to the unit. For example, the prefix milli (m) represents 10⁻³.

Which row gives the sub-multiples or multiples represented by pico (p) and giga (G)?

	pico (p)	giga (G)
Α	10 ⁻⁹	10 ⁹
В	10 ⁻⁹	10 ¹²
С	10 ⁻¹²	10 ⁹
D	10 ⁻¹²	10 ¹²

Topical Question No: 7

- 1 Which list contains only SI base units?
 - A ampere, kelvin, joule, gram
 - B kilogram, newton, metre, ampere
 - C metre, coulomb, second, kelvin
 - **D** second, kelvin, ampere, kilogram

Topical Question No: 8

The stress σ needed to fracture a particular solid is given by the equation

$$\sigma = k \sqrt{\frac{\gamma E}{d}}$$

where E is the Young modulus, d is the distance between planes of atoms, and k is a constant with no units.

What are the SI base units of γ ?

- **A** $kg m s^{-2}$ **B** $kg s^{-2}$ **C** $kg m s^{-1}$ **D** $kg s^{-1}$

Topical Question No: 9

2 What is the symbol for the SI base unit of temperature?

- A C
- вк
- **C** ∘C
- **D** °K

Topical Question No: 10

2 Which two units are **not** equivalent to each other?

- **A** Nm and $kg m^2 s^{-2}$
- **B** Ns and $kgms^{-1}$
- $C ext{ J s}^{-1} ext{ and } ext{kg m}^2 ext{ s}^{-3}$
- **D** Pa and $kg m s^{-2}$