Worm algorithm for the 6-vertex model

João F. Bravo

Computational Many-Body Physics Prof. Michael Knap Prof. Frank Pollmann

July 2019

6-vertex model

- Model for crystal lattices with coordination number 4 & hydrogen bonds.
- Square lattice with periodic boundary conditions
 translational & rotational invariance.
- **Ice rule**: satisfy two-in/two-out constraint at each vertex \implies vertices have zero charge $q = 1/2 \sum_i s_i$.
- **Ice model**: all allowed configurations are equally likely $(T = \infty)$.

- Important to model real crystals with hydrogen bonds, such as:
 - water ice (oxygen: vertices, hydrogen bonds: edges);
 - ferroelectric & antiferroelectric crystals.

Bond-value choices

$$s_{up} = s_{right} = 1$$

$$s_{down} = s_{left} = -1$$

Relative to each vertex:

- $\begin{aligned} & \bullet \ s_{\textit{in}} = 1 \\ & \bullet \ s_{\textit{out}} = -1 \end{aligned}$

Worm algorithm

Single-spin flip updates break the 6-vertex model constraints!

Worm algorithm:

- 1. Start from stable configuration;
- 2. Flip 1 bond arrow \implies create 2 defects;
- 3. Propagate 1 defect randomly until the two meet & annihilate:
 - 3.1 Randomly flip one of the vertex's other arrows, subject to ice rule;
 - 3.2 Repeat for vertex connected by chosen bond;
 - 3.3 Stop when next vertex is the other initial defect ⇒ new stable configuration.
- 4. Measure (back to 1.).

Simulation steps

- 1. Start from stable configuration;
- 2. Thermalize system;
- 3. Run worm N times & measure all spin correlations $\langle s_0 s_r \rangle$ after each time;
- Average correlations with binning analysis, considering translational & rotational invariance to reduce errors;
- 5. Fit & plot results.

Remarks:

- Binning analysis: N measures $\rightarrow C_i$ bins with average of N_i measures \rightarrow compute std. dev. of those averages \implies errors: $\sigma_{C_i}/\sqrt{\#C_i}$.
- Autocorrelation time τ factor in error can be neglected since $N_i >> \tau$ \implies bins become uncorrelated.

Spin correlations with distance

8 types:

- For horizontal spins:
 - H₁: Along spin direction;
 - **H**₂: Perpendicular to spin direction.
- ullet For vertical spins: same $oldsymbol{V}_1\ \&\ oldsymbol{V}_2;$
- Diagonal correlations:
 - D₁: Same-direction spins;
 - D₂: Perpendicular-direction spins.
- Antidiagonal correlations: same $A_1 \& A_2$.

Considerations:

- Rotational invariance: can average $H_i + V_i \& D_i + A_i$.
- Translational invariance: for each type, can translate origin along lattice
 average all those measures.
- Power-law behaviour expected: $\left| \langle s_0 s_r \rangle \propto 1/r^a \right|$
- Should decrease until L//2 & increase until L.

Testing rotational invariance

Lattice size: 10x10, #iter: 20000

• Turning point at L//2 as expected.

Increasing system size *L*

- Along spin direction: decay the slowest relative to L.
- Along diagonals with same-direction spins: 1 order of magnitude weaker.
- Behaviour of other 3 more similar with increasing L.

Correlations along the spin direction

- Turning point: scales linearly with *L*.
- Short-range correlations: independent of L.
- Decay: increases slightly with small *L*. Independent of *L* for large *L*.

Correlations perpendicular to the spin direction

- Short-range correlations: independent of *L*.
- Decay: seems independent of L.

Correlations along diagonals

- Short-range correlations: smaller with increasing small L. Seem independent of L for large L.
- Decay: increases with small L. Probably independent of L for large L.

Correlations along diagonals

Diagonals (perpendicular-direction spins), #iter: 20000

- Short-range correlations: independent of L.
- Decay: increases with small *L*. Independent of *L* for large *L*.

Fitting in log vs. log

Fitting in log vs. log

$$\left[\langle s_0 s_r \rangle \propto \frac{1}{r^a} \right] \implies \log \left| \langle s_0 s_r \rangle \right| = -a \cdot \log r + b$$

Along spin dir			Perp. to spin dir					
L	a	b	a	b				
10	1.60 ± 0.12	-1.21 ± 0.11	2.21 ± 0.06	-1.04 ± 0.05				
20	2.00 ± 0.07	-1.01 ± 0.07	2.04 ± 0.11	-1.11 ± 0.09				
30	2.11 ± 0.05	-0.94 ± 0.04	1.97 ± 0.10	-1.14 ± 0.10				
40	2.13 ± 0.05	-0.92 ± 0.04	1.99 ± 0.11	-1.12 ± 0.11				
Diagonals (same dir)			Diagonals (perp. dir)					
LI	l a	b	l a					

	l a	D	l a	l D
10	0.27 ± 0.06	-4.16 ± 0.09	2.34 ± 0.24	-0.99 ± 0.20
20	$\begin{array}{c} 0.27\pm0.06 \\ 0.60\pm0.10 \end{array}$	-4.55 ± 0.15	1.97 ± 0.04	-1.24 ± 0.03
30	0.82 ± 0.21	-4.58 ± 0.27	1.92 ± 0.02	-1.29 ± 0.02
40	1.02 ± 0.35	-4.67 ± 0.46	1.96 ± 0.02	-1.26 ± 0.02
,	'		'	'

- Correlations other than along diagonals with same-direction spins: approx. inverse-square-law decay for $L \neq 10$. Values closer for larger L as expected.
- Along diagonals with same-direction spins: Increasing decay with L. Cannot tell if decay converges for large L.

Conclusions

- Translational invariance holds for PBC.
- Rotational invariance holds for PBC, except along diagonals for spins with same direction.
- Nearby spins tend to be aligned along the direction they point in & antialigned perpendicular to it. Alignment of spins along a diagonal is less likely.
- Correlations along diagonals with same-direction spins decay faster with increasing system size.
- Correlations other than those:
 - follow inverse-square-law decay;
 - short-range independent of system size;
 - behaviour becomes more similar with increasing system size.

References

Y. Deng, Worm Algorithms, 2012, University of Science and Technology of China

L. Pauling, *The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement*, Journal of the American Chemical Society 1935, vol.57, p.2680-2684

https://en.wikipedia.org/wiki/Vertex_model, July 2019

https://en.wikipedia.org/wiki/Ice-type_model, July 2019