## VISÃO COMPUTACIONAL

Tópicos selecionados e aplicações como a biblioteca openCV.



- 1. O que é visão computacional?
  - 1. Um problema difícil.
  - 2. A visão do ser humano.
  - 3. Aplicações praticas com visão computacional.
  - 4. Biblioteca OpenCV.
- 2. Imagens
  - 1. Câmeras
    - 1. O modelo da câmera escura simples.
  - 2. Imagens
    - 1. Amostragem.
    - 2. Quantização.
  - 3. Imagens coloridas
    - 1. RGB.
    - 2. CMY.
    - 3. YUV.
    - 4. HLS.
    - 5. Outros espaços coloridos.
    - 6. Algumas aplicações com cores.

- 4. Ruídos
  - 1. Tipos de ruído.
  - 2. Modelos de ruído.
  - 3. Geração de ruído.
  - 4. Avaliação do ruído.
- 5. Suavização
  - 1. Média de imagens
  - 2. Média localizada e blur gaussiano.
  - 3. Mascaras de rotação
- 3. Visão Binária
  - 1. Thresholding
    - 1. Problemas envolvendo Thresholding.
  - 2. Métodos de detecção do limiar
    - 1. Limiar de Otsu.
  - 3. Matemática Morfológica
    - 1. Dilatação.
    - 2. Erosão.
    - 3. Aberturas e Fechamentos.
  - 4. Conectividade

#### 4. Transformações Geométricas

- 1. Especificando o problema
- 2. Transformações Afins
  - 1. Conhecidas
  - 2. Desconhecidas
- 3. Transformação de Perspectiva
- 4. Interpolação
  - 1. Vizinho mais próximo
  - 2. Bi linear
  - 3. Bi cúbica
- 5. Modelagem e remoção de distorção em câmeras

#### 5. Vídeo

- 1. Detecção de objetos em movimento
  - 1. Objeto de interesse
  - 2. Problemas comuns
  - 3. Imagem da diferença
  - 4. Modelos de fundo
  - 5. Detecção de sombras

- 2. Rastreando
  - 1. Busca Exaustiva
  - 2. Deslocamento médio
  - 3. Fluxo óptico denso
  - 4. Fluxo óptico baseado em aspectos
- 6. Problemas de visão computacional

#### BIBLIOGRAFIA:

- A pratical introduction to computer vision with OpenCV, Kenneth Dawson-Howe, Wiley 2014.
- Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library, Adrian Kaehler; Gary Bradski, O'Reilly 2016.
- http://docs.opencv.org/3.1.0/





#### O QUE É VISÃO COMPUTACIONAL?

• "É a analise automática de imagens e vídeos por computadores com o premissa de obter algum conhecimento do mundo."

Kenneth Dawson-Howe, 2014.

#### UM PROBLEMA DIFÍCIL

• "O primeiro problema que surgirá toda vez que alguém estudar este tópico é o de se convencer que este é um problema difícil"

Kenneth Dawson-Howe, 2014.

# O QUE EU PRECISO PARA APRENDER VISÃO COMPUTACIONAL?

- Inglês
- Estatística
- Cálculo
- Álgebra Linear
- C++\*
- Orientação a objetos\*

#### COMO CRIAR UMA CLASSE EM C++

```
#ifndef CLASSE_HPP_
#define CLASSE_HPP_
#include <iostream>
class image
        public:
                 int getAtributo();
                 void setAtributo(int);
        private:
                 int atributo;
#endif /* CLASSE_HPP_ */
```

#### COMO CRIAR UMA CLASSE EM C++

```
#include "classe.hpp"
Int classe::getAtributo()
        return atributo;
void classe::setAtributo(int in)
        if(in > 0)
                  atributo = in;
         else
                  std::cout < < "Entrada Invalida" < < std::endl;
```

## CONFIGURANDO O AMBIENTE LINUX PARA USAR A OPENCV

- <a href="https://docs.opencv.org/2.4/doc/tutorials/introduction/linux\_install/linux\_install.html">https://docs.opencv.org/2.4/doc/tutorials/introduction/linux\_install/linux\_install.html</a>
- <a href="https://docs.opencv.org/2.4/doc/tutorials/introduction/linux\_eclipse/linux\_eclipse.html">https://docs.opencv.org/2.4/doc/tutorials/introduction/linux\_eclipse/linux\_eclipse.html</a>

#### COMPARATIVO

Visão humana



Visão Computacional



#### VISÃO COMPUTACIONAL

Como é processada esta imagem:

Escala de cinza de 8 bits.

Resolução: 18x18.

| 67 | 67 | 66 | 68 | 66  | 67  | 64 | 65  | 65  | 63  | 63  | 69  | 61 | 64  | 63 | 66 | 61 | 60 |
|----|----|----|----|-----|-----|----|-----|-----|-----|-----|-----|----|-----|----|----|----|----|
| 69 | 68 | 63 | 68 | 65  | 62  | 65 | 61  | 50  | 26  | 32  | 65  | 61 | 67  | 64 | 65 | 66 | 63 |
| 72 | 71 | 70 | 87 | 67  | 60  | 28 | 21  | 17  | 18  | 13  | 15  | 20 | 59  | 61 | 65 | 66 | 64 |
| 75 | 73 | 76 | 78 | 67  | 26  | 20 | 19  | 16  | 18  | 16  | 13  | 18 | 21  | 50 | 61 | 69 | 70 |
| 74 | 75 | 78 | 74 | 39  | 31  | 31 | 30  | 46  | 37  | 69  | 66  | 64 | 43  | 18 | 63 | 69 | 60 |
| 73 | 75 | 77 | 64 | 41  | 20  | 18 | 22  | 63  | 92  | 99  | 88  | 78 | 73  | 39 | 40 | 59 | 65 |
| 74 | 75 | 71 | 42 | 19  | 12  | 14 | 28  | 79  | 102 | 107 | 96  | 87 | 79  | 57 | 29 | 68 | 66 |
| 75 | 75 | 66 | 43 | 12  | 11  | 16 | 62  | 87  | 84  | 84  | 108 | 83 | 84  | 59 | 39 | 70 | 66 |
| 76 | 74 | 49 | 42 | 37  | 10  | 34 | 78  | 90  | 99  | 68  | 94  | 97 | 51  | 40 | 69 | 72 | 65 |
| 76 | 63 | 40 | 57 | 123 | 88  | 60 | 83  | 95  | 88  | 80  | 71  | 67 | 69  | 32 | 67 | 73 | 73 |
| 78 | 50 | 32 | 33 | 90  | 121 | 66 | 86  | 100 | 116 | 87  | 85  | 80 | 74  | 71 | 56 | 58 | 48 |
| 80 | 40 | 33 | 16 | 63  | 107 | 57 | 86  | 103 | 113 | 113 | 104 | 94 | 86  | 77 | 48 | 47 | 45 |
| 88 | 41 | 35 | 10 | 15  | 94  | 67 | 96  | 98  | 91  | 86  | 105 | 81 | 77  | 71 | 35 | 45 | 47 |
| 87 | 51 | 35 | 15 | 15  | 17  | 51 | 92  | 104 | 101 | 72  | 74  | 87 | 100 | 27 | 31 | 44 | 46 |
| 86 | 42 | 47 | 11 | 13  | 16  | 71 | 76  | 89  | 95  | 116 | 91  | 67 | 87  | 12 | 25 | 43 | 51 |
| 96 | 67 | 20 | 12 | 17  | 17  | 86 | 89  | 90  | 101 | 96  | 89  | 62 | 13  | 11 | 19 | 40 | 51 |
| 99 | 88 | 19 | 15 | 15  | 18  | 32 | 107 | 99  | 86  | 95  | 92  | 26 | 13  | 13 | 16 | 49 | 52 |
| 99 | 77 | 16 | 14 | 14  | 16  | 35 | 115 | 111 | 109 | 91  | 79  | 17 | 16  | 13 | 46 | 48 | 51 |

#### A VISÃO DO SER HUMANO

- É muito complexa.
- A maior parte do tempo não sabemos como ela funciona.
- Tem como entrada duas lentes cujos sinais transmitem cerca de 50-60 quadros por segundo (Stereo Vision).

# APLICAÇÕES PRÁTICAS DA VISÃO COMPUTACIONAL

- Verificar componentes e soldas de circuitos.
- Inspecionar qualidade da impressão de rótulos.
- Inferir se garrafas estão corretamente preenchidas.
- Procurar por contusões em maçãs.
- Guiar robôs para na fabricação de produtos complexos como carros.
- Detecção de placas de transito automática (open ALPR).



#### BIBLIOTECA OPENCV

- Desenvolvida pela Intel em 2000.
- Multiplataforma e Livre.
- Licença BSD Intel.
- Contém vários módulos.
- Desenvolvida em C/C++, com suporte a Java, Python e Visual Basic.

#### COMO IMAGENS SÃO REPRESENTADAS NA OPENCV

• Geralmente representadas por uma instancia da classe cv::Mat.

Referência: <a href="http://docs.opencv.org/3.1.0/d3/d63/classcv\_1\_1Mat.html">http://docs.opencv.org/3.1.0/d3/d63/classcv\_1\_1Mat.html</a>



# MANIPULAÇÃO DE IMAGENS

Leitura, Exibição e Armazenamento

#### LEITURA DE IMAGENS

• É feita com o uso do método Mat cv::imread( const String & filename, int flags = IMREAD\_COLOR ).

Referência: <a href="http://docs.opencv.org/3.1.0/d4/da8/group">http://docs.opencv.org/3.1.0/d4/da8/group</a> imgcodecs.html

#### EXIBIÇÃO DE IMAGENS

- Para realizar esta tarefa precisaremos de quatro métodos cv::imshow, cv::namedWindow ,cv::waitKey e cv::destroyWindow.
- void cv::imshow( const String & winname, InputArray mat )

Referência:

http://docs.opencv.org/3.2.0/d7/dfc/group highgui.html#ga453d42fe4cb60e5723281a89973ee563

• void cv::namedWindow (const String & winname, int flags = WINDOW\_AUTOSIZE)

Referência:

http://docs.opencv.org/3.2.0/d7/dfc/group\_highgui.html#ga5afdf8410934fd099df85c75b2e0888b

• int cv::waitKey( int delay = 0 )

Referência:

http://docs.opencv.org/3.2.0/d7/dfc/group\_highgui.html#ga5628525ad33f52eab17feebcfba38bd7

void cv::destroyWindow( const String & winname )

Referência:

http://docs.opencv.org/3.2.0/d7/dfc/group highgui.html#ga851ccdd6961022d1d5b4c4f255dbab34

#### ARMAZENAMENTO DE IMAGENS

• É feita com o uso do método bool cv::imwrite( const String & filename, InputArray img, const std::vector< int > & params = std::vector< int >() )

#### Referência:

http://docs.opencv.org/3.1.0/d4/da8/group imgcodecs.html#gabbc7ef1aa2edfaa87772f1202d67e0ce

#### **EXERCÍCIO 1**

• Desenvolva uma classe em C++ chamada images. Crie dois arquivos images.hpp e images.cpp, esta classe deve conter métodos genéricos de leitura, exibição e escrita de imagens.