THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH1510 Calculus for Engineers (Fall 2021) Coursework 5

Nan	ne:	_Ct	UAN	CHO	KIT		_ Stud	ent No.: _	1135	(158 46	_
Clas	ss:		M	9711 Q	1510	91	_				46
	in a	cadem to bre	ic wor	rk, and o of such	f the disc	ciplina nd reg	ry guio	delines an s, as con esty/	d proced tained in	s on hones ures applic the webs	a-
	Sign	nature	; 20 N	M		_	Da		0'- 70)	1	
	Fail	ure to ase wi	comp	ly will re	sult in a	2-poi	int dec	luction o	of the fina	the CUSIS l score.	
	• All	quest	ions in	n Part	A along	with s	some se	sufficient elected qu hallengin	estions in	ons.	will be
For	interr	nal us	e only:	('x)	us) fy	nt (3. _N	ei Él.		- * " · ·	. (
	1		3		4 7 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	75.0		v I	1 .		
	2		2	-					A)	\$	
	3		2				/ · .				

Total

/ 10

2

Part A

1. Find f'(x) if

(a)
$$f(x) = ex^{\pi} + \sqrt{2}\pi^{x} + \pi^{\pi}$$

(b)
$$f(x) = \frac{\log x}{x+1}$$

(c)
$$f(x) = \sec(\tan x)$$

(d)
$$f(x) = \ln(\ln(e^x + x))$$

(e)
$$f(x) = \cos^2(2^x)$$
 $=$ $\left[\cos\left(2^x\right)\right]^{\nu}$

(a)
$$f'(x) = e \pi_0 x^{\pi - 1} + J_2 \pi^{\infty} \ln \pi_0 //$$

$$(6) f'(\chi) = \frac{\frac{1}{\chi \ln(\kappa)}(\chi+1) - \log \chi}{(\chi+1)^2}$$

$$= \frac{x+1-x lulo \cdot log to x}{x lulo (x+1)^2}$$

(c)
$$f'(x) = \sec(\tan x) \tan(\tan x) \times (\sec x)^2$$

A

(a)
$$y = \frac{\sqrt{e^x + 1}}{\sqrt{e^x + 1}}$$

(b)
$$y = \sin^{-1}(3x + 1)$$

(c)
$$y = (\sin x)^x$$

(d)
$$x^3 - 2xy + 2y^2 = 5$$

Express your answer in terms of x y

(b)
$$\frac{dy}{dx} = \frac{(3)^{2}}{(-3x)(3x+2)^{2}}$$

(1-3n-1)(1t3nt1)

$$lny = x.ln(sinx)$$

$$\frac{1}{9}\left(\frac{dy}{dx}\right) = \ln(\sinh x) + \frac{\cancel{x}}{\sinh x}\left(\cos x\right) -$$

$$\frac{dy}{dx} = (shx)^{x} \left[lu(shx) + \frac{x \cos x}{shx} \right]$$

CL) by mphat differentiation, we have:

$$3x^2 - 2y - 2x\left(\frac{dy}{dx}\right) + 4\left(\frac{dy}{dx}\right) = 5$$

$$\frac{dy}{dx}(4-2x) = 5-3x^2+2y$$

$$\frac{dy}{dx} = \frac{\sqrt{3x^2+2y}}{4\sqrt{2x}}$$

$$\frac{\text{cly}}{\text{dx}} = \frac{3x^2 - 2y}{2x - 4y}$$

5

Part B

3. Let
$$f(x) = \ln(2x+4)$$
 for $x > -2$.

- (a) Find f'(x), f''(x) and f'''(x).
- (b) Let n be a positive integer. Write down $f^{(n)}(x)$.

$$f'(x) = \frac{1}{2x+4}(2)$$

$$= \frac{1}{x+2} /$$

$$f''(x) = \frac{-(1)}{(x+2)^2}$$

$$= -\frac{1}{(x+2)^2}$$

$$= \frac{-2(x+2)}{(x+2)^4}$$

$$= \frac{2}{(x+2)^3} /$$

$$(b) f^{(n)}(x) = (-1)^{n+1} \times \frac{(n-1)!}{(x+2)^n}$$

4. Let
$$f(x) = \sin 2x$$
.

- (a) Find f(0), f'(0), f''(0), f'''(0) and $f^{(4)}(0)$.
- (b) Let n be a positive integer. Write down $f^{(2n-1)}(0)$ and $f^{(2n)}(0)$.

(a)
$$f(0) = 0$$
 $f'(x) = 2\cos 2x$

-) $f'(0) = 2(1) = 2/$
 $f''(x) = 2(-\sin 2x)(2) = -4\sin 2x$
 $f''(x) = -4\cos 2x(x) = -8\cos 2x$
 $f''(x) = -8(1)$

= -8(-9h)x)(x)

= -8(4)(x) = -8(-9h)x)(x)

= -8(4)(x) = -8(-9h)x(x)

= -8(4)(x) = -8(4)(x)

f (0) = 0

5. Let
$$y = f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
.

(a) Show that $\frac{dy}{dx} = 1 - y^2$.

(b) Show that

$$\frac{d^3y}{dx^3} + 2y\frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 = C$$

for some constant C. Also, find the value of C.

(A)
$$\frac{dy}{dx} = \frac{(e^{x} + e^{-x})(e^{x} + e^{-x}) - (e^{x} - e^{-x})(e^{xx} - e^{-x})}{(e^{x} + e^{-x})^{2}}$$

$$= \frac{(e^{x} + e^{-x})^{2} - (e^{x} - e^{-x})^{2}}{(e^{x} + e^{-x})^{2}}$$

$$= \frac{(2e^{x})(e^{x} + e^{-x})^{2}}{(e^{x} + e^{-x})^{2}}$$

$$= \frac{4}{(e^{x} + e^{-x})^{2}}$$

$$= \frac{(1-y)(1+y)}{(e^{x} + e^{-x})}$$

$$= \frac{(2e^{x})(2e^{x})}{(e^{x} + e^{-x})^{2}}$$

$$= \frac{(2e^{x})(2e^{x})}{(e^{x} + e^{-x})^{2}}$$

$$= \frac{4}{(e^{x} + e^{-x})^{2}}$$

$$= \frac{4}{(e^{x} + e^{-x})^{2}}$$

$$= \frac{4}{(e^{x} + e^{-x})^{2}}$$

$$= \frac{4}{(e^{x} + e^{-x})^{2}}$$

We have
$$\frac{d^2y}{dx^2} = -2y(\frac{dy}{dx})$$

$$= -2y \left(\left(-y^{2} \right) \right)$$

$$\frac{d^{3}y}{dx^{2}} = -2 \left(\frac{dy}{dx} \right) \left(-y^{2} \right)$$

$$-2y \left(-\frac{1}{2}y\left(\frac{dy}{dx}\right)\right]$$

$$= -2(1-y^{2})^{2} + 4y^{2}(1-y^{2})$$

$$= -2(1-y^{2})(1-y^{2})^{2}$$

$$= -2(1-y^{2})(1-y^{2})^{2}$$

$$= -2(f-g^2)(1-3y^2) - 4y^2(f-y^2) - 42(f-y^2)^2$$

$$= (1-y^2)(-2+6y^2-4y^2+2-2y^2)$$

$$= (1-y^2)(0)$$