Solution

```
In [7]: print(\delta.reshape(-1,1))
```

[[-2.6]

[-5.35]

[-2.34]

[-2.58]

[-3.06]

[-2.61]

[-2.27] [-2.63]

[-2**.**52]

[-1.85]

[-4.54]

[-2.46]

[-2.39]

[-2.68]]

Berry, Levinsohn, Pakes (BLP) Model

- Indices -> j: product, t: market, i:customer
- 1. Random Coefficients Logit:
- Indirect Utility:

$$u_{ijt} = x'_{jt}b_i + a_i * p_{jt} + \xi_{jt} + \epsilon_{ijt}$$

- x_{jt} : attributes of product j in market t
- p_{it}: price of product j in market t
- ξ_{it}: unobserved quality of product j in market t
- ϵ_{iit} : random Gumbel error (for ith customer, jth product in t market)
- · Utility Maximization:
 - Customer i, in market t; chooses one product j* out of all
 - $j_{it}^* = max_j[u_{ijt}]$
- Conditional Choice Probabilities:
 - Market Share: $s_{jt} = P(j_{it}^* = j) = \frac{\exp(x_{jt}' b_i + a_i * p_{jt} + \xi_{jt})}{1 + \sum_i (x_{jt}' b_i + a_i * p_{jt} + \xi_{jt})}$
 - Demand Derivatives:

$$\circ \frac{\partial s_j}{\partial p_k} \big|_{j \neq k} = a_i s_j s_k$$

$$\circ \frac{\partial s_j}{\partial p_j} = a_i s_j (1 - s_j)$$

- 2. Parameters to Shares
- · Structural parameters

$$\bullet [b_i; a_i] = [\beta; \alpha] + A * D_i + B * v_i$$

- *D_i*: demographics
- $\theta_1 = [\beta; \alpha]$: "common preferences" for all customers
- $\theta_2 = [A, B]$: "group-specific preferences"
- Constant-utility and random-utility:
 - $u_{ijt} = \delta_{jt} + \mu_{iit}$
 - $\delta_{jt}(x_{jt}, p_{jt}, \xi_{jt}; \theta_1) = x'_{jt}\beta + \alpha * p_{jt} + \xi_{jt}$: Constant-utility (fixed for all customers, depends on product and market only)
 - $\mu_{iit}(x_{jt}, p_{jt}, D_i, v_i; \theta_2) = [p_{jt}, x_{jt}]'(A * D_i + B * v_i)$: random-utility (varies for each customer)
- · Market shares:

•
$$s_{jt} = \sigma_{jt}(\delta_t, x_t, p_t; \theta_2) = \int_v \int_D \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_i (\delta_{jt} + \mu_{ijt})} dF(v) dF(D)$$

3. Inverting Demand

- Logic
 - We want to find the mean-utility δ_{jt} implied for any θ_2 . We first find s_{jt} and μ_{it} implied by θ_2 and then find δ_{jt} .
 $s_{jt} = \sigma_{jt}(\delta_t, x_t, p_t; \theta_2) = \int_v \int_D \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_j (\delta_{jt} + \mu_{ijt})} dF(v) dF(D)$

 - $\delta_{jt} = \sigma_{jt}^{-1}(s_t, x_t, p_t; \theta_2) = x_{jt}'\beta + \alpha * p_{jt} + \xi_{jt}$ (once we have this we can estimate β and α by 2SLS.
- Algorithm:
 - 1. Guess $\theta_2 = [A, B]$ and set k = 0
 - 2. set k = 0 and use $\delta_{jt}^k = \log(s_{jt}) \log(s_{0t})$
 - 3. Compute for each customer i, the probability to choose product j in t: $\frac{\exp(\delta_{ji}^k + \mu_{iji})}{1 + \sum_{j} (\delta_{ji}^k + \mu_{ijj})}$
 - 4. Avg over all customers to get the market share for product j in t: $\sigma_{jt}(\delta_t, x_t, p_t; \theta_2) = (1/ns) \sum_{t=1}^{\infty} \frac{\exp(\delta_{jt}^k + \mu_{ijt})}{1 + \sum_{t=1}^{\infty} (\delta_{jt}^k + \mu_{ijt})}$
 - 5. Apply contraction mapping: $exp(\delta_{jt}^{k+1}) = exp(\delta_{jt}^{k}) \frac{s_{jt}}{\sigma_{jt}(\delta_{t}^{k}, x_{t}, p_{t}; \theta_{2})}$
 - 6. set k = k + 1 and go back to 3 until $\delta^{k+1} \delta^k$ below tolerance.

In [1]: import pandas as pd import numpy as np np.set_printoptions(precision=2) df = pd.read_csv('/Users/pranjal/Desktop/Structural-Economics/io/random-coefficients-logit/

Out[1]:

	cdid	prodid	s_jt	cons1	cons2	cons3	cons4	cons5	cons6	cons7	 cons41	con
0	1	1	0.046474	0.045385	-0.140034	0.079154	-0.161694	0.247079	-0.082650	-0.481462	 -0.359403	-0.359
1	1	2	0.002790	0.449763	0.442506	-0.421718	0.435539	0.437777	-0.129650	-0.304529	 -0.348173	-0.102
2	1	3	0.062422	0.462798	-0.382640	0.488984	0.235094	-0.223185	0.240559	-0.325140	 0.201980	0.014
3	1	4	0.049676	0.269140	0.274197	-0.434930	0.286413	-0.261340	0.417779	0.498312	 0.399959	-0.153
4	1	5	0.029658	0.441156	0.392380	0.080439	0.266950	0.200849	0.433510	-0.300214	 -0.450249	0.108
5	1	6	0.047682	0.211303	0.426995	-0.242505	0.393396	-0.424232	-0.102105	0.244284	 0.310010	0.353
6	1	7	0.066592	-0.315850	0.092849	0.024730	0.115274	0.221220	-0.328235	0.326760	 0.491916	0.110
7	1	8	0.046740	0.271659	0.033336	-0.186894	0.254425	-0.297300	0.388584	0.276544	 0.335080	0.047
8	1	9	0.047965	-0.100122	-0.066365	-0.365855	-0.089553	-0.159405	0.033011	0.345223	 0.293160	-0.467
9	2	1	0.113105	0.323404	0.203230	0.297017	0.222407	0.463325	0.182649	-0.141104	 0.173135	-0.492
10	2	3	0.007645	-0.099325	-0.361114	-0.351154	0.479626	-0.398829	-0.475233	-0.431773	 0.230829	0.340
11	2	5	0.060103	-0.169256	-0.225614	-0.392618	-0.352281	0.241298	-0.231837	-0.213565	 -0.097024	0.484
12	2	7	0.068611	0.232630	0.283477	-0.456474	0.294299	0.449266	0.246000	-0.012402	 0.370328	0.286
13	2	9	0.050535	0.240073	0.476419	0.455113	-0.278779	-0.213454	0.344155	0.294992	 0.398418	-0.460

14 rows × 53 columns

20/01/23, 5:22 am

```
In [2]: # index of records
        ID = np.array(df.index)
        ID_idx = ID.shape[0]
        # cdid: market id (total 2)
        cdid = np.array(df['cdid'])
        # prodid: product id (total 9)
        prodid = np.array(df['prodid'])
        # cdindex: index of last element in market
        cdindex = np.searchsorted(cdid, np.unique(cdid))
        # market shares for each product j and market t
        s = np.array(df['s_jt'])
        # Mean-Deviations: \mu_ijt for ith customer, for JxT product/markets.
        \mu = \text{np.array}(\text{df.drop}(['cdid', 'prodid', 's_jt'], axis = 1))
        # Share of the outside good in each market t
        s_sum = np.array(df[['s_jt','cdid']].groupby('cdid').sum())
        s0 = 1 - s_sum
        s0 = np.where(cdid==1, s0[0], s0[1])
        # Initial guess for Mean-utilities
        \delta = \text{np.log(s)} - \text{np.log(s0)}
        print(δ)
        # Number of customers, products and markets
        N = \mu.shape[1]
        J = np.unique(prodid).shape[0]
        T = np.unique(cdid).shape[0]
         [-2.56 -5.37 -2.26 -2.49 -3.01 -2.53 -2.2 -2.55 -2.53 -1.82 -4.52 -2.46
          -2.32 -2.63
In [3]: def CCP(\mu_ijt, \mu_irt, \delta_jt, \delta_rt):
             '''For a market t, given mean valuations and mean deviations of products '''
                 return (np.exp(\delta_{jt} + \mu_{ijt})/(1 + np.sum(np.exp(\delta_{rt} + \mu_{irt}))))[0]
             except:
                 return 0
        # Example
        i = 1
        j = 1
        t = 2
        idx = np.multiply(cdid==t, prodid==j)
        print(idx)
        \mu_{ijt} = \mu[idx, i-1] \# scalar: mean deviations for i, j, t
        \mu_irt = \mu[cdid==t, i-1] # vector: mean deviations for i, t for all products
        \delta_{jt} = \delta[idx] # scalar: mean-valuation for j,t (fixed for all customers)
        \delta rt = \delta[cdid==t] # vector: mean-valuation for all products in market t
        print(\mu_ijt.shape, \mu_irt.shape, \delta_jt.shape, \delta_rt.shape)
        print(CCP(\mu_ijt, \mu_irt, \delta_jt, \delta_rt))
         [False False False False False False False False False False True False False
          False False]
         (1,) (5,) (1,) (5,)
         0.14678166923652114
```

```
In [4]: def CCPMatrix(\mu, \delta):
                               '''Return Consumer Choice Probability for each i and product/market'''
                              P = np.zeros((ID_idx, N))
                              for t in range(1,T+1):
                                        for j in range(1,J+1):
                                                  idx = np.multiply(cdid==t, prodid==j)
                                                  \delta_{jt} = \delta[idx]
                                                  \delta_{rt} = \delta[cdid==t]
                                                  for i in range(1,N+1):
                                                             \mu_{ijt} = \mu[idx, i-1]
                                                             \mu_{irt} = \mu[cdid==t, i-1]
                                                             P[idx, i-1] = CCP(\mu_ijt, \mu_irt, \delta_jt, \delta_rt)
                              return P
                    P = CCPMatrix(\mu, \delta)
                    print(P.shape)
                    # Checks
                    idx = np.multiply(cdid==2, prodid==3)
                    print(idx)
                    print(np.sum(P[idx, :]/50), np.sum(s[ID[idx]]))
                    idx = np.multiply(cdid==2, prodid==4)
                    print(idx)
                    print(np.sum(P[idx, :]/50), np.sum(s[ID[idx]]))
                     [False False False False False False False False False False True False
                       False False]
                    0.007735102054792866 0.007645334
                     [False False False
                      False False]
                    0.0 0.0
In [5]: |def \sigma_jt(P, j, t):
                               '''Using CCP return Market share for product j and t'''
                               idx = np.multiply(cdid==t, prodid==j)
                              if np.mean(P[idx, :])>0:
                                         return np.mean(P[idx, :])
                              else:
                                        return 0
                    # Checks
                    print(\sigma_jt(P, 1, 1))
                    print(\sigma_jt(P, 4, 2))
                    0.047173663262102906
                    /usr/local/lib/python3.10/site-packages/numpy/core/fromnumeric.py:3432: RuntimeWarning: Me
                    an of empty slice.
                          return _methods._mean(a, axis=axis, dtype=dtype,
                    /usr/local/lib/python3.10/site-packages/numpy/core/_methods.py:190: RuntimeWarning: invali
                    d value encountered in double_scalars
                          ret = ret.dtype.type(ret / rcount)
```

```
In [6]: def contractionMap(\delta, \mu, tol=0.000001):
               '''Input: Guess for mean-valuations and mean-deviations for all products and all market
               Output: Optimal mean-valuations
               exp\delta = np.exp(\delta)
               error = 1
               cnt = 1
               while error > tol:
                    print(cnt)
                    P = CCPMatrix(\mu, np.log(exp\delta))
                    for t in range(1,T+1):
                         for j in range(1,J+1):
                              idx = np.multiply(cdid==t, prodid==j)
                              exp\delta[idx] = exp\delta[idx]*s[idx]/\sigma_jt(P, j, t)
                              error = np.linalg.norm(exp\delta[idx]*s[idx]/\sigma_jt(P, j, t) - exp\delta[idx])
                    cnt = cnt + 1
               return np.log(expδ) # return δ
          \delta_0 = \text{np.log(s)} - \text{np.log(s0)} \# initial guess
          \delta = contractionMap(\delta_0, \mu)
          print(\delta)
          1
          2
          3
          4
          5
          6
          7
          [-2.6 \quad -5.35 \quad -2.34 \quad -2.58 \quad -3.06 \quad -2.61 \quad -2.27 \quad -2.63 \quad -2.52 \quad -1.85 \quad -4.54 \quad -2.46
           -2.39 - 2.68
In [ ]:
In [ ]:
```