Deutsch's Algorithm: An Algebraic and Quantum Computational Approach

Your Name

April 3, 2025

Contents

1	Preliminaries	1
	1.1 Abstract Algebraic Foundations	1
	1.2 Dirac's Bra–Ket Notation	
2	Deutsch's Algorithm: Problem Statement and Classical Preliminaries	2
	2.1 Problem Statement	2
	2.2 Classical Approach	2
	2.3 The Oracle and the Unitary Operator	2
3	Deutsch's Algorithm: Quantum Circuit and Detailed Analysis	3
	3.1 Circuit Description	3
	3.2 Detailed State Transformations	4
	3.3 Phase Kickback and Oracle Implementation	5
	3.4 Summary of Algorithmic Steps (Slides Overview)	5
4	Exercises and Further Directions	6
\mathbf{R}	References	7

Preliminaries

1.1 Abstract Algebraic Foundations

In our treatment, a vector space is regarded as an abelian group equipped with a compatible field action. In particular, let \mathbb{F} be a field (usually \mathbb{C}) and let (V,+) be an abelian group. A scalar multiplication

$$\cdot : \mathbb{F} \times V \to V$$

endows V with the structure of an \mathbb{F} -module if for all $\alpha, \beta \in \mathbb{F}$ and all $x, y \in V$, we have:

- (i) $\alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y$,
- (ii) $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$,
- (iii) $(\alpha\beta) \cdot x = \alpha \cdot (\beta \cdot x)$,
- (iv) $1_{\mathbb{F}} \cdot x = x$.

When \mathbb{F} is a field, an \mathbb{F} -module is precisely a vector space.

Definition 1.1 (Hilbert Space). A Hilbert space \mathcal{H} is a vector space over \mathbb{C} (viewed as an abelian group with scalar action) equipped with an inner product

$$\langle \cdot | \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{C},$$

which is positive-definite and sesquilinear, and is complete with respect to the norm

$$\|\psi\| = \sqrt{\langle \psi \, | \, \psi \rangle}.$$

1.2 Dirac's Bra-Ket Notation

To facilitate discussion in quantum mechanics, we employ Dirac's bra-ket notation.

Definition 1.2 (Bra and Ket). Let \mathcal{H} be a Hilbert space. An element $|\psi\rangle \in \mathcal{H}$ is called a ket, while the corresponding bra is the linear functional $\langle \psi | \in \mathcal{H}^*$ defined by

$$\langle \psi | (|\varphi\rangle) = \langle \psi | \varphi \rangle, \quad \forall |\varphi\rangle \in \mathcal{H}.$$

The superposition principle follows from the abelian group structure:

If
$$|\psi\rangle$$
, $|\varphi\rangle \in \mathcal{H}$ and $\alpha, \beta \in \mathbb{C}$, $\alpha |\psi\rangle + \beta |\varphi\rangle \in \mathcal{H}$.

Deutsch's Algorithm: Problem Statement and Classical Preliminaries

2.1 Problem Statement

Consider a function

$$f: \{0,1\} \to \{0,1\},\$$

with the promise that f is either *constant* or *balanced*. In this context, since the domain has only two elements, f is:

- Constant if f(0) = f(1),
- Balanced if $f(0) \neq f(1)$.

Task: Given oracle (black box) access to f, determine whether f is constant or balanced.

2.2 Classical Approach

In classical computation, one must evaluate f(0) and f(1) independently, requiring two evaluations to decide the problem.

2.3 The Oracle and the Unitary Operator

In quantum computation, the function f is embedded into a unitary operator (oracle) U_f , defined by:

$$U_f |x, y\rangle = |x, y \oplus f(x)\rangle,$$

where $x \in \{0,1\}$, $y \in \{0,1\}$, and \oplus denotes addition modulo 2. This construction ensures that U_f is reversible, as required for quantum evolution.

Deutsch's Algorithm: Quantum Circuit and Detailed Analysis

3.1 Circuit Description

The Deutsch algorithm is implemented by the following quantum circuit:

Step 1: Initialization: Prepare the state

$$|\psi_0\rangle = |0\rangle \otimes |1\rangle$$
.

Step 2: Hadamard Transform: Apply the Hadamard gate H to each qubit. Recall that

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \quad H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle).$$

Thus, the state becomes

$$|\psi_1\rangle = (H \otimes H)|0,1\rangle = \frac{1}{2} [(|0\rangle + |1\rangle) \otimes (|0\rangle - |1\rangle)].$$

Step 3: Oracle Query: Apply the oracle U_f to $|\psi_1\rangle$. Because

$$U_f |x,y\rangle = |x,y \oplus f(x)\rangle$$
,

the resulting state is

$$|\psi_2\rangle = \frac{1}{2} \Big[|0, 0 \oplus f(0)\rangle - |0, 1 \oplus f(0)\rangle + |1, 0 \oplus f(1)\rangle - |1, 1 \oplus f(1)\rangle \Big].$$

Step 4: Interference via Hadamard: Apply the Hadamard transform H to the first qubit:

$$|\psi_3\rangle = (H \otimes I) |\psi_2\rangle$$
.

A detailed calculation shows that the amplitude on the first qubit encodes the quantity

$$\frac{1}{2} \Big[(-1)^{f(0)} + (-1)^{f(1)} \Big].$$

Step 5: Measurement: Measure the first qubit in the computational basis. One obtains

$$\begin{cases} |0\rangle, & \text{if } (-1)^{f(0)} + (-1)^{f(1)} \neq 0, & \text{(i.e., } f(0) = f(1)); \\ |1\rangle, & \text{if } (-1)^{f(0)} + (-1)^{f(1)} = 0, & \text{(i.e., } f(0) \neq f(1)). \end{cases}$$

3.2 Detailed State Transformations

For completeness, we detail the state evolution through the algorithm.

After Hadamard Transforms

Starting with

$$|\psi_0\rangle = |0\rangle \otimes |1\rangle$$

after applying $H \otimes H$, we obtain

$$|\psi_1\rangle = \left(\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\right) \otimes \left(\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)\right)$$
$$= \frac{1}{2}\Big[|0,0\rangle - |0,1\rangle + |1,0\rangle - |1,1\rangle\Big].$$

After Oracle Application

The oracle acts as

$$U_f |x,y\rangle = |x,y \oplus f(x)\rangle$$
,

so

$$|\psi_2\rangle = \frac{1}{2} \Big[|0, 0 \oplus f(0)\rangle - |0, 1 \oplus f(0)\rangle + |1, 0 \oplus f(1)\rangle - |1, 1 \oplus f(1)\rangle \Big].$$

Noting that addition modulo 2 satisfies

$$0 \oplus f(x) = f(x)$$
 and $1 \oplus f(x) = 1 - f(x)$,

we can rewrite the state as

$$|\psi_2\rangle = \frac{1}{2} \Big[|0, f(0)\rangle - |0, 1 - f(0)\rangle + |1, f(1)\rangle - |1, 1 - f(1)\rangle \Big].$$

After Final Hadamard on the First Qubit

Apply H to the first qubit:

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \quad H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle).$$

Thus,

$$|\psi_3\rangle = (H \otimes I) |\psi_2\rangle = \frac{1}{2\sqrt{2}} \sum_{x \in \{0,1\}} \left[(-1)^{x \cdot 0} |0\rangle + (-1)^{x \cdot 1} |1\rangle \right] \otimes \left[\cdots \right],$$

which, after grouping terms, yields an amplitude on $|0\rangle$ proportional to

$$(-1)^{f(0)} + (-1)^{f(1)}$$
.

Measurement Outcome

A measurement in the computational basis on the first qubit then distinguishes:

$$|0\rangle$$
 if $(-1)^{f(0)} + (-1)^{f(1)} \neq 0 \iff f(0) = f(1),$

and

$$|1\rangle$$
 if $(-1)^{f(0)} + (-1)^{f(1)} = 0 \iff f(0) \neq f(1)$.

Thus, Deutsch's algorithm determines whether f is constant or balanced with a single query (oracle evaluation) on a quantum computer.

3.3 Phase Kickback and Oracle Implementation

A key concept in Deutsch's algorithm is *phase kickback*. In the implementation of U_f , the target qubit is prepared in a state $|-\rangle$, where

$$|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle).$$

The action of U_f then imprints a phase $(-1)^{f(x)}$ on the control qubit:

$$U_f |x\rangle |-\rangle = |x\rangle |-\oplus f(x)\rangle = (-1)^{f(x)} |x\rangle |-\rangle.$$

This phase encoding is then revealed by subsequent interference (Hadamard transform) on the control qubit.

3.4 Summary of Algorithmic Steps (Slides Overview)

For completeness, we list the conceptual steps as they might appear in a lecture slide sequence:

Slide 1: Deutsch Algorithm Overview: Problem statement and promise on f.

Slide 2: Function Definition: $f: \{0,1\} \rightarrow \{0,1\}$, constant versus balanced.

Slide 3: Classical Evaluation: Necessity of two evaluations.

Slide 4: Oracle Construction: Definition of $U_f | x, y \rangle = | x, y \oplus f(x) \rangle$.

Slide 5: Quantum Circuit Initialization: Prepare $|0\rangle \otimes |1\rangle$.

Slide 6: Hadamard Transformation: Transition to superposition.

Slide 7: Oracle Application: State transformation under U_f .

Slide 8: Phase Kickback: Imprinting phase $(-1)^{f(x)}$.

Slide 9: Interference via Hadamard: Extraction of global phase information.

Slide 10: Measurement: Readout distinguishing constant vs balanced.

Slide 11: Conclusion: Deutsch's algorithm solves the problem with one oracle query.

Exercises and Further Directions

Assignment

- **Problem 1: State Decomposition:** Express the two-qubit state at the red-dashed point (as indicated in the lecture circuit diagram) as a linear combination of the computational basis vectors $|00\rangle$, $|01\rangle$, $|10\rangle$, and $|11\rangle$.
- **Problem 2: Measurement Probabilities:** Suppose that f(0) = f(1) = 1 (i.e., f is constant with value 1). Compute the probabilities of obtaining outcomes 0 and 1 when measuring the first qubit.

Further Reading

Readers are encouraged to consult the following references for additional background on quantum algorithms and the algebraic foundations of quantum mechanics:

- M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information.
- P. Shor, Introduction to Quantum Algorithms.
- J. Preskill, Lecture Notes for Physics 229: Quantum Information and Computation.

References

- [1] M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information.
- [2] D. Deutsch, "Quantum theory, the Church–Turing principle and the universal quantum computer," *Proc. R. Soc. Lond. A* **400**, 97–117 (1985).
- [3] S. Lang, Algebra.
- [4] J.J. Sakurai, Modern Quantum Mechanics.