Finding clusters of abalone

July 12, 2019

1 Finding clusters of abalone

Given a dataset containing information on abalone, can we find an optimal clustering for them?

1.1 Table of contents

- 1. Section 1.2
- 2. Section 1.3
- 3. Section 1.4
- 4. Section 1.5
- 5. Section 1.6

1.2 Data ingestion

1.2.1 Introduction

Thanks to UCI Machine Learning Group for providing the dataset, which can be found here.

From the UCI MLG page, the columns are detailed as follows:

Format: Name / Data Type / Measurement Unit / Description

Sex / nominal / – / M, F, and I (infant)

Length / continuous / mm / Longest shell measurement

Diameter / continuous / mm / perpendicular to length

Height / continuous / mm / with meat in shell

Whole weight / continuous / grams / whole abalone

Shucked weight / continuous / grams / weight of meat

Viscera weight / continuous / grams / gut weight (after bleeding)

Shell weight / continuous / grams / after being dried

Rings / integer / - / +1.5 gives the age in years

1.2.2 Initial thoughts

For this dataset, we will be performing a clustering operation using various clustering algorithms. We will also be automating the selection of the optimal-K value for this clustering for future use in 5411's clustering feature. Let's begin by opening the dataset and looking at what we have.

1.3 Data preprocessing

We begin by importing the abalone dataset into our notebook and checking for null values.

```
[1]: # import data science packages
    import numpy as np
    import pandas as pd
    import math
    from sklearn.preprocessing import MinMaxScaler, LabelEncoder
    # import k means methods
    from sklearn.cluster import KMeans, SpectralClustering
    from sklearn.metrics import silhouette_score
    #import elbow method algorithm
    from kneed import KneeLocator
    df = pd.read_csv("abalone.csv")
    df.head()
[1]:
     sex
          length diameter height
                                      whole_weight
                                                    shucked_weight viscera_weight \
            0.455
                      0.365
                              0.095
                                            0.5140
                                                            0.2245
                                                                             0.1010
            0.350
                      0.265
                              0.090
                                            0.2255
                                                            0.0995
                                                                             0.0485
    1
       М
    2
       F
            0.530
                      0.420
                              0.135
                                            0.6770
                                                            0.2565
                                                                             0.1415
    3
       Μ
            0.440
                      0.365
                              0.125
                                            0.5160
                                                            0.2155
                                                                             0.1140
    4
       Т
            0.330
                      0.255
                              0.080
                                            0.2050
                                                            0.0895
                                                                             0.0395
       shell_weight rings
              0.150
    0
                        15
              0.070
    1
                         7
              0.210
    2
                         9
    3
              0.155
                        10
                         7
              0.055
[2]: print("Presence of null values: " + str(df.isnull().values.any()))
```

Presence of null values: False

There are no null values in our dataset, which is nice. We can now encode our categorical data to be a numerical value. This means that our 'sex' column will be 3 different numbers.

```
[3]: lbl = LabelEncoder()
  df['sex'] = lbl.fit_transform(df['sex'])
  keys = lbl.classes_
  values = lbl.transform(lbl.classes_)
  mapping = dict()
  dictionary = dict(zip(keys, values))
  print(dictionary)
```

```
{'F': 0, 'I': 1, 'M': 2}
```

Now we can analyze some of our data before we begin clustering.

1.4 EDA

First, let's make a correlation graph of our column values and see what has the strongest trends.

```
[4]: import seaborn as sns

corr = df.corr()
sns.heatmap(corr)
```

[4]: <matplotlib.axes._subplots.AxesSubplot at 0x2b012d1d470>

Judging from the heatmap, there are a lot of correlation points between the physical attributes of the abalone. There isn't much of a correlation between the sex and the physical attributes, however.

```
[5]: pd.value_counts(df['sex']).plot.bar()
```

[5]: <matplotlib.axes._subplots.AxesSubplot at 0x2b014f76940>


```
[6]: pd.value_counts(df['rings']).plot.bar()
```

[6]: <matplotlib.axes._subplots.AxesSubplot at 0x2b015008828>

From the above two plots, we can see that there are roughly equal distributions of M, F, and I genders. For the rings, it appears that the most common numbers of rings range from 7 to 11, while other numbers of rings are rarer in comparison.

[7]: <matplotlib.axes._subplots.AxesSubplot at 0x2b01510eda0>


```
[8]: sns.boxplot(x = 'sex', y = 'shucked_weight', data = df)
```

[8]: <matplotlib.axes._subplots.AxesSubplot at 0x2b01519cdd8>

From the boxplots, we can see that the M, F sexes are very similar in physical size and type. Potential use cases for this information include food consumptio (e.g fishermen can prioritize M/F type abalone since they are larger). Let's try to remove some of the outliers present within the dataset so we can get a clearer picture.

```
[9]: males = df[df['sex'] == 2]
  females = df[df['sex'] == 0]
  infants = df[df['sex'] == 1]

quantile_male = males['shucked_weight'].quantile(0.90)
  quantile_female = females['shucked_weight'].quantile(0.90)
  quantile_infant = infants['shucked_weight'].quantile(0.90)

males[males['shucked_weight'] < quantile_male]
  females[females['shucked_weight'] < quantile_female]
  infants[infants['shucked_weight'] < quantile_infant]

frames = [males, females, infants]
  df = pd.concat(frames)
  print(len(df.index))</pre>
```

```
[10]: sns.boxplot(x = 'sex', y = 'shucked_weight', data = df)
```

[10]: <matplotlib.axes._subplots.AxesSubplot at 0x2b015224978>

Let's try building our clustering model with the abalone.

1.5 Model Training

We will be using different clustering algorithms and analyzing their performances while running our automated K-selection code.

1.5.1 K-Means (elbow method)

We can also profile the time it takes to cluster the dataset with each algorithm with the '%time' command.

```
[11]: # hold error value for elbow method calculation
error = []

for i in range(2, 10):
    kmeans = KMeans(n_clusters = i)
    %time kmeans.fit(df)
    error.append(kmeans.inertia_)
```

```
# find the elbow of the graph using kneed package
optimalK = KneeLocator(
    range(2, 10),
    error,
    curve = 'convex',
    direction = 'decreasing',
    interp_method = 'interp1d',
)

# print number of clusters for dataset
print("\nNumber of clusters: " + str(optimalK.elbow))
optimalK.plot_knee_normalized()

# create optimal K graph for prediction model
kmeans = KMeans(n_clusters = optimalK.elbow)
```

Wall time: 72.5 ms
Wall time: 80.1 ms
Wall time: 109 ms
Wall time: 159 ms
Wall time: 143 ms
Wall time: 165 ms
Wall time: 191 ms
Wall time: 251 ms

Number of clusters: 4

We can then plot the clustering for this dataset given by KMeans.

```
[12]: from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

pca = PCA(n_components = 2)
new_df = pca.fit_transform(df)
model = KMeans(n_clusters = optimalK.elbow).fit(new_df)

plt.figure(figsize=(8, 6))
plt.scatter(new_df[:,0], new_df[:,1], c=model.labels_.astype(float))
```

[12]: <matplotlib.collections.PathCollection at 0x2b017387e80>

1.5.2 K-Means (silhouette)

```
[13]: silhouette_vals = dict()
    optimalK = 0

for i in range(2, 10):
        kmeans = KMeans(n_clusters = i)
        %time cluster_labels = kmeans.fit_predict(df)
        silhouette_vals[i] = silhouette_score(df, cluster_labels)

silhouette_optimalK = max(silhouette_vals, key=silhouette_vals.get)
    print("\nNumber of clusters: " + str(silhouette_optimalK))

pca = PCA(n_components = 2)
    new_df = pca.fit_transform(df)
    model = KMeans(n_clusters = silhouette_optimalK).fit(new_df)

plt.figure(figsize=(8, 6))
    plt.scatter(new_df[:,0], new_df[:,1], c=model.labels_.astype(float))
```

Wall time: 96.6 ms

```
Wall time: 86.9 ms
Wall time: 107 ms
Wall time: 150 ms
Wall time: 152 ms
Wall time: 203 ms
Wall time: 201 ms
Wall time: 242 ms
```

Number of clusters: 2

[13]: <matplotlib.collections.PathCollection at 0x2b0173f6be0>

For this dataset, it seems that the silhouette method gives the best K value for the dataset. However, we had to use PCA to visualize the data on a 2-D space, so the graph is difficult to interpret as a result.

1.5.3 Spectral Clustering (silhouette)

Below is the code given for the spectral clustering algorithm in sklearn.

```
[14]: # error contains error value for each value of k
optimalK = 0
silhouette_vals = dict()
```

```
# iterate through possible k values to set up optimization graph
for i in range(2, 10):
    sc = SpectralClustering(i)
    %time spectral_cluster_labels = sc.fit_predict(df)
    silhouette_vals[i] = silhouette_score(df, spectral_cluster_labels)

silhouette_optimalK = max(silhouette_vals, key=silhouette_vals.get)
print("\nNumber of clusters: " + str(silhouette_optimalK))
Wall time: 6.23 s
Wall time: 6.01 s
```

Wall time: 6.01 s
Wall time: 5.88 s
Wall time: 6.07 s
Wall time: 6.12 s
Wall time: 6.38 s
Wall time: 6.38 s
Wall time: 5.66 s

Number of clusters: 2

```
[15]: from sklearn.decomposition import PCA

pca = PCA(n_components = 2)
new_df = pca.fit_transform(df)
model = SpectralClustering(silhouette_optimalK).fit_predict(new_df)

plt.figure(figsize=(8, 6))
plt.scatter(new_df[:,0], new_df[:,1], c=model.astype(float))
```

[15]: <matplotlib.collections.PathCollection at 0x2b0152d4588>

We can see that spectral clustering is very slow for this dataset compared to KMeans, and KMeans still gives a good clustering as seen in the PCA analysis. Therefore, it is better to use KMeans for this dataset.

1.6 Credits

Thanks again to the UCI Machine Learning Group for providing the dataset.