Exámenes de "Programación funcional con Haskell"

Vol. 6 (Curso 2014-15)

José A. Alonso Jiménez

Grupo de Lógica Computacional Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Sevilla, 20 de diciembre de 2015

Esta obra está bajo una licencia Reconocimiento-NoComercial-Compartirlgual 2.5 Spain de Creative Commons.

Se permite:

- copiar, distribuir y comunicar públicamente la obra
- hacer obras derivadas

Bajo las condiciones siguientes:

Reconocimiento. Debe reconocer los créditos de la obra de la manera especificada por el autor.

No comercial. No puede utilizar esta obra para fines comerciales.

Compartir bajo la misma licencia. Si altera o transforma esta obra, o genera una obra derivada, sólo puede distribuir la obra generada bajo una licencia idéntica a ésta.

- Al reutilizar o distribuir la obra, tiene que dejar bien claro los términos de la licencia de esta obra.
- Alguna de estas condiciones puede no aplicarse si se obtiene el permiso del titular de los derechos de autor.

Esto es un resumen del texto legal (la licencia completa). Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-nc-sa/2. 5/es/ o envie una carta a Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Índice general

Introducción		5	
1	Exámenes del grupo 1 José A. Alonso y Luis Valencia	7	
	1.1 Examen 1 (5 de Noviembre de 2014) 1.2 Examen 2 (3 de Diciembre de 2014) 1.3 Examen 3 (23 de enero de 2015) 1.4 Examen 4 (9 de marzo de 2015) 1.5 Examen 5 (29 de abril de 2015) 1.6 Examen 6 (15 de junio de 2015) 1.7 Examen 7 (3 de julio de 2015) 1.8 Examen 8 (4 de septiembre de 2015) 1.9 Examen 9 (4 de diciembre de 2015)	11 16 22 27 32 37 43	
2	Exámenes del grupo 2 Antonia M. Chávez	63	
	2.1 Examen 1 (6 de Noviembre de 2014) 2.2 Examen 2 (4 de Diciembre de 2014) 2.3 Examen 3 (23 de enero de 2015) 2.4 Examen 4 (12 de marzo de 2015) 2.5 Examen 5 (7 de mayo de 2015) 2.6 Examen 6 (15 de junio de 2015) 2.7 Examen 7 (3 de julio de 2015) 2.8 Examen 8 (4 de septiembre de 2015) 2.9 Examen 9 (4 de diciembre de 2015)	65 68 68 72 79 79 80	
3	Exámenes del grupo 3 Andrés Cordón	81	
	3.1 Examen 1 (4 de Noviembre de 2014)		

4 Índice general

	3.3 Examen 3 (23 de enero de 2015) 3.4 Examen 4 (18 de marzo de 2015) 3.5 Examen 5 (6 de mayo de 2015) 3.6 Examen 6 (15 de junio de 2015) 3.7 Examen 7 (3 de julio de 2015) 3.8 Examen 8 (4 de septiembre de 2015) 3.9 Examen 9 (4 de diciembre de 2015)	. 89 . 94 . 102 . 102
4	Exámenes del grupo 4 María J. Hidalgo	103
	4.1 Examen 1 (6 de Noviembre de 2014) 4.2 Examen 2 (4 de Diciembre de 2014) 4.3 Examen 3 (23 de enero de 2015) 4.4 Examen 4 (12 de marzo de 2015) 4.5 Examen 5 (30 de abril de 2015) 4.6 Examen 6 (15 de junio de 2015) 4.7 Examen 7 (3 de julio de 2015) 4.8 Examen 8 (4 de septiembre de 2015) 4.9 Examen 9 (4 de diciembre de 2015)	. 107 . 111 . 115 . 121 . 128 . 137
_		
5	Exámenes del grupo 5 Francisco J. Martín	139
5	.	. 139 . 143 . 147 . 147 . 156 . 161
	Francisco J. Martín 5.1 Examen 1 (3 de Noviembre de 2014)	. 139 . 143 . 147 . 156 . 161 . 162 . 162
A	Francisco J. Martín 5.1 Examen 1 (3 de Noviembre de 2014) 5.2 Examen 2 (1 de Diciembre de 2014) 5.3 Examen 3 (23 de enero de 2015) 5.4 Examen 4 (16 de marzo de 2015) 5.5 Examen 5 (5 de mayo de 2015) 5.6 Examen 6 (15 de junio de 2015) 5.7 Examen 7 (3 de julio de 2015) 5.8 Examen 8 (4 de septiembre de 2015) 5.9 Examen 9 (4 de diciembre de 2015) 6 Resumen de funciones predefinidas de Haskell	. 139 . 147 . 147 . 156 . 162 . 162 . 163 . 165 . 169

Introducción

Este libro es una recopilación de las soluciones de ejercicios de los exámenes de programación funcional con Haskell de la asignatura de Informática (curso 2014–15) del Grado en Matemática de la Universidad de Sevilla.

Los exámenes se realizaron en el aula de informática y su duración fue de 2 horas. La materia de cada examen es la impartida desde el comienzo del curso (generalmente, el 1 de octubre) hasta la fecha del examen. Dicha materia se encuentra en los libros de temas y ejercicios del curso:

- Temas de programación funcional (curso 2014–15) ¹
- Ejercicios de "Informática de 1º de Matemáticas" (2014–15) ²
- Piensa en Haskell (Ejercicios de programación funcional con Haskell)

El libro consta de 5 capítulos correspondientes a 5 grupos de la asignatura. En cada capítulo hay una sección por cada uno de los exámenes del grupo. Los ejercicios de cada examen han sido propuestos por los profesores de su grupo (cuyos nombres aparecen en el título del capítulo). Sin embargo, los he modificado para unificar el estilo de su presentación.

Finalmente, el libro contiene dos apéndices. Uno con el método de Polya de resolución de problemas (sobre el que se hace énfasis durante todo el curso) y el otro con un resumen de las funciones de Haskell de uso más frecuente.

Los códigos del libro están disponibles en GitHub ⁴

Este libro es el cuarto volumen de la serie de recopilaciones de exámenes de programación funcional con Haskell. Los volúmenes anteriores son

 Exámenes de "Programación funcional con Haskell". Vol. 1 (Curso 2009-10) ⁵

https://www.cs.us.es/~jalonso/cursos/ilm-14/temas/2014-15-IM-temas-PF.pdf

²https://www.cs.us.es/~jalonso/cursos/ilm-14/ejercicios/ejercicios-I1M-2014.pdf

³http://www.cs.us.es/~jalonso/publicaciones/Piensa en Haskell.pdf

⁴https://github.com/jaalonso/Examenes de PF con Haskell Vol6

⁵https://github.com/jaalonso/Examenes_de_PF_con_Haskell_Vol1

6 Índice general

 Exámenes de "Programación funcional con Haskell". Vol. 2 (Curso 2010-11) ⁶

- Exámenes de "Programación funcional con Haskell". Vol. 3 (Curso 2011– 12) ⁷
- Exámenes de "Programación funcional con Haskell". Vol. 4 (Curso 2012-13) 8
- Exámenes de "Programación funcional con Haskell". Vol. 5 (Curso 2013-14) 9

José A. Alonso Sevilla, 20 de diciembre de 2015

⁶https://github.com/jaalonso/Examenes_de_PF_con_Haskell_Vol2

⁷https://github.com/jaalonso/Examenes_de_PF_con_Haskell_Vol3

⁸https://github.com/jaalonso/Examenes_de_PF_con_Haskell_Vol4

⁹https://github.com/jaalonso/Examenes_de_PF_con_Haskell_Vol5

1

Exámenes del grupo 1

José A. Alonso y Luis Valencia

1.1. Examen 1 (5 de Noviembre de 2014)

```
-- Informática (1º del Grado en Matemáticas)
-- 1º examen de evaluación continua (5 de noviembre de 2014)
import Data.Char
import Test.QuickCheck
-- Ejercicio 1.1. Definir la función
     esPotencia :: Integer -> Integer -> Bool
-- tal que (esPotencia x a) se verifica si x es una potencia de a. Por
-- ejemplo,
    esPotencia 32 2 == True
    esPotencia 42 2 == False
-- 1ª definición (por comprensión):
esPotencia :: Integer -> Integer -> Bool
esPotencia x a = x 'elem' [a^n | n <- [0..x]]
-- 2ª definición (por recursión):
esPotencia2 :: Integer -> Integer -> Bool
esPotencia2 x a = aux x a 0
   where aux x a b \mid b > x = False
```

```
| otherwise = x == a \land b || aux x a (b+1)
-- 3ª definición (por recursión):
esPotencia3 :: Integer -> Integer -> Bool
esPotencia3 0 = False
esPotencia3 1 a = True
esPotencia3 1 = False
esPotencia3 x a = rem x a == 0 \& \& esPotencia3 (div x a) a
-- La propiedad de equivalencia es
prop_equiv_esPotencia :: Integer -> Integer -> Property
prop equiv esPotencia x a =
    x > 0 \&\& a > 0 ==>
    esPotencia2 x a == b &&
    esPotencia3 x a == b
    where b = esPotencia \times a
-- La comprobación es
     ghci> quickCheck prop equiv esPotencia
      +++ OK, passed 100 tests.
-- Ejercicio 1.2. Comprobar con QuickCheck que, para cualesquiera números
-- enteros positivos x y a, x es potencia de a si y sólo si x² es
-- potencia de a<sup>2</sup>.
-- Propiedad de potencia
prop_potencia :: Integer -> Integer -> Property
prop potencia x a =
    x > 0 \& a > 0 \Longrightarrow esPotencia x a \Longrightarrow esPotencia (x*x) (a*a)
-- Ejercicio 2.1. Definir la función
     intercambia :: String -> String
-- tal que (intercambia xs) es la cadena obtenida poniendo la mayúsculas
-- de xs en minúscula y las minúsculas en mayúscula. Por ejemplo,
     intercambia "Hoy es 5 de Noviembre" == "hOY ES 5 DE nOVIEMBRE"
      intercambia "hOY ES 5 DE nOVIEMBRE" == "Hoy es 5 de Noviembre"
```

```
intercambia :: String -> String
intercambia xs = [intercambiaCaracter x | x <- xs]</pre>
intercambiaCaracter :: Char -> Char
intercambiaCaracter c | isLower c = toUpper c
                      | otherwise = toLower c
-- Ejercicio 2.2. Comprobar con QuickCheck que, para cualquier cadena xs
-- se tiene que (intercambia (intercambia ys)) es igual a ys, siendo ys
-- la lista de las letras (mayúsculas o minúsculas no acentuadas) de xs.
prop_intercambia :: String -> Bool
prop intercambia xs = intercambia (intercambia ys) == ys
    where ys = [x \mid x \le xs, x 'elem' ['a'..'z'] ++ ['A'..'Z']]
-- Ejercicio 3.1. Definir la función
      primosEquidistantes :: Integer -> [(Integer,Integer)]
-- tal que (primosEquidistantes n) es la lista de pares de primos
-- equidistantes de n y con la primera componente menor que la
-- segunda. Por ejemplo,
    primosEquidistantes 8 == [(3,13),(5,11)]
     primosEquidistantes 12 == [(5,19),(7,17),(11,13)]
-- 1ª definición (por comprensión):
primosEquidistantes :: Integer -> [(Integer,Integer)]
primosEquidistantes n =
    [(x,n+(n-x)) | x < [2..n-1], esPrimo x, esPrimo (n+(n-x))]
esPrimo :: Integer -> Bool
esPrimo n = [x \mid x \leftarrow [1..n], rem n x == 0] == [1,n]
-- 2ª definición (con zip):
primosEquidistantes2 :: Integer -> [(Integer,Integer)]
primosEquidistantes2 n =
    reverse [(x,y) \mid (x,y) \le zip [n-1,n-2...1] [n+1...], esPrimo x, esPrimo y]
```

```
-- Propiedad de equivalencia de las definiciones:
prop_equiv_primosEquidistantes :: Integer -> Property
prop equiv primosEquidistantes n =
   n > 0 ==> primosEquidistantes n == primosEquidistantes2 n
-- La comprobación es
     ghci> quickCheck prop_equiv_primosEquidistantes
     +++ OK, passed 100 tests.
-- Ejercicio 3.2. Comprobar con QuickCheck si se cumple la siguiente
-- propiedad: "Todo número entero positivo mayor que 4 es equidistante
-- de dos primos"
-- La propiedad es
prop_suma2Primos :: Integer -> Property
prop suma2Primos n =
   n > 4 ==> primosEquidistantes n /= []
-- La comprobación es
     ghci> quickCheck prop_suma2Primos
     +++ OK, passed 100 tests.
-- Ejercicio 4.1. Definir la función
     triangulo :: [a] -> [(a,a)]
-- tal que (triangulo xs) es la lista de los pares formados por cada uno
-- de los elementos de xs junto con sus siguientes en xs. Por ejemplo,
     ghci> triangulo [3,2,5,9,7]
     [(3,2),(3,5),(3,9),(3,7),
          (2,5),(2,9),(2,7),
                (5,9),(5,7),
                      (9,7)]
-- 1ª solución
triangulo :: [a] -> [(a,a)]
triangulo [] = []
```

```
triangulo (x:xs) = [(x,y) | y \leftarrow xs] ++ triangulo xs
-- 2ª solución
triangulo2 :: [a] -> [(a,a)]
triangulo2 [] = []
triangulo2 (x:xs) = zip (repeat x) xs ++ triangulo2 xs
-- Ejercicio 4.2. Comprobar con QuickCheck que la longitud de
-- (triangulo xs) es la suma desde 1 hasta n-1, donde n es el número de
-- elementos de xs.
-- La propiedad es
prop triangulo :: [Int] -> Bool
prop triangulo xs =
   length (triangulo xs) == sum [1..length xs - 1]
-- La comprobación es
-- ghci> quickCheck prop triangulo
-- +++ OK, passed 100 tests.
        Examen 2 (3 de Diciembre de 2014)
-- Informática (1º del Grado en Matemáticas)
-- 2º examen de evaluación continua (3 de diciembre de 2014)
import Test.QuickCheck
-- Ejercicio 1.1. Definir la función
-- trenza :: [a] -> [a] -> [a]
-- tal que (trenza xs ys) es la lista obtenida intercalando los
-- elementos de xs e ys. Por ejemplo,
  trenza [5,1] [2,7,4]
trenza [5,1,7] [2..]
trenza [2..] [5,1,7]
                                      == [5,2,1,7]
                                      == [5,2,1,3,7,4]
                                      == [2,5,3,1,4,7]
```

-- take 8 (trenza [2,4..] [1,5..]) == [2,1,4,5,6,9,8,13]

```
-- 1ª definición (por comprensión):
trenza :: [a] -> [a] -> [a]
trenza xs ys = concat [[x,y] \mid (x,y) \leftarrow zip xs ys]
-- 2ª definición (por zipWith):
trenza2 :: [a] -> [a] -> [a]
trenza2 xs ys = concat (zipWith par xs ys)
    where par x y = [x,y]
-- 3ª definición (por zipWith y sin argumentos):
trenza3 :: [a] -> [a] -> [a]
trenza3 = (concat .) . zipWith par
    where par x y = [x,y]
-- 4ª definición (por recursión):
trenza4 :: [a] -> [a] -> [a]
trenza4 (x:xs) (y:ys) = x : y : trenza xs ys
trenza4 _ = []
-- Ejercicio 1.2. Comprobar con QuickCheck que el número de elementos de
-- (trenza xs ys) es el doble del mínimo de los números de elementos de
-- xs e ys.
-- La propiedad es
prop trenza :: [Int] -> [Int] -> Bool
prop trenza xs ys =
    length (trenza xs ys) == 2 * min (length xs) (length ys)
-- La comprobación es
     ghci> quickCheck prop trenza
     +++ OK, passed 100 tests.
-- Ejercicio 2.1. Dado un número cualquiera, llamamos MDI de ese número
-- a su mayor divisor impar. Así, el MDI de 12 es 3 y el MDI de 15 es 15.
-- Definir la función
```

```
-- mdi :: Int -> Int
-- tal que (mdi n) es el mayor divisor impar de n. Por ejemplo,
     mdi 12 == 3
    mdi \ 15 == 15
mdi :: Int -> Int
mdi n \mid odd n = n
      | otherwise = head [x \mid x \leftarrow [n-1,n-3...1], n 'rem' x == 0]
-- Ejercicio 2.2. Comprobar con QuickCheck que la suma de los MDI de los
-- números n+1, n+2, ..., 2n de cualquier entero positivo n siempre da
-- n^2.
-- Nota. Al hacer la comprobación limitar el tamaño de las pruebas como
-- se indica a continuación
     ghci> quickCheckWith (stdArgs {maxSize=5}) prop_mdi
    +++ OK, passed 100 tests.
-- La propiedad es
prop_mdi :: Int -> Property
prop mdi n =
    n > 0 ==> sum [mdi x | x <- [n+1..2*n]] == n^2
prop_mdi2 :: Int -> Property
prop mdi2 n =
    n > 0 ==> sum (map mdi [n+1..2*n]) == n^2
-- La comprobación es
      ghci> quickCheckWith (stdArgs {maxSize=5}) prop mdi
     +++ OK, passed 100 tests.
-- Ejercicio 3.1. Definir la función
     reiteracion :: Int -> (a -> a) -> a -> a
-- tal que (reiteracion n f x) es el resultado de aplicar n veces la
-- función f a x. Por ejemplo,
```

```
reiteracion 10 (+1) 5 == 15
    reiteracion 10 (+5) 0 == 50
     reiteracion 4 (*2) 1 == 16
     reiteracion 4 (5:) [] == [5,5,5,5]
-- 1ª definición (por recursión):
reiteracion :: Int -> (a -> a) -> a -> a
reiteracion 0 f x = x
reiteracion n f x = f (reiteracion (n-1) f x)
-- 2ª definición (por recursión sin el 3ª argumento):
reiteracion2 :: Int -> (a -> a) -> a -> a
reiteracion2 0 f = id
reiteracion2 n f = f . reiteracion2 (n-1) f
-- 3ª definición (con iterate):
reiteracion3 :: Int -> (a -> a) -> a -> a
reiteracion3 n f x = (iterate f x) !! n
-- Ejercicio 3.2. Comprobar con QuickCheck que se verifican las
-- siguientes propiedades
    reiteracion 10 (+1) x == 10 + x
    reiteracion 10 (+x) 0 == 10 * x
    reiteracion 10 (x:) [] == replicate 10 x
-- La propiedad es
prop reiteracion :: Int -> Bool
prop_reiteracion x =
    reiteracion 10 (+1) x == 10 + x \&\&
    reiteracion 10 (+x) 0 == 10 * x \&\&
    reiteracion 10 (x:) [] == replicate 10 x
-- La comprobación es
-- ghci> quickCheck prop reiteracion
-- +++ OK, passed 100 tests.
```

```
-- Ejercicio 4.1. Definir la constante
     cadenasDe0y1 :: [String]
-- tal que cadenasDe0y1 es la lista de todas las cadenas de ceros y
-- unos. Por ejemplo,
    ghci> take 10 cadenasDe0y1
    ["","0","1","00","10","01","11","000","100","010"]
cadenasDe0y1 :: [String]
cadenasDe0y1 = "" : concat [['0':cs, '1':cs] | cs <- cadenasDe0y1]</pre>
-- Ejercicio 4.2. Definir la función
-- posicion :: String -> Int
-- tal que (posicion cs) es la posición de la cadena cs en la lista
-- cadenasDe0y1. Por ejemplo,
-- posicion "1" == 2
      posicion "010" == 9
posicion :: String -> Int
posicion cs =
   length (takeWhile (/= cs) cadenasDe0y1)
-- Ejercicio 5. El siguiente tipo de dato representa expresiones
-- construidas con números, variables, sumas y productos
     data Expr = N Int
               | V String
                | S Expr Expr
               | P Expr Expr
-- Por ejemplo, x^*(5+z) se representa por (P(V''x'')(S(N 5)(V''z'')))
-- Definir la función
    reducible :: Expr -> Bool
-- tal que (reducible a) se verifica si a es una expresión reducible; es
-- decir, contiene una operación en la que los dos operandos son números.
-- Por ejemplo,
    reducible (S (N 3) (N 4))
                                          == True
    reducible (S (N 3) (V "x"))
                                          == False
```

```
reducible (S (N 3) (P (N 4) (N 5))) == True
     reducible (S (V "x") (P (N 4) (N 5))) == True
     reducible (S (N 3) (P (V "x") (N 5))) == False
     reducible (N 3)
                                        == False
    reducible (V "x")
                                        == False
data Expr = N Int
         | V String
         | S Expr Expr
         | P Expr Expr
reducible :: Expr -> Bool
reducible (N _) = False
reducible (V _)
                      = False
reducible (S (N _) (N _)) = True
reducible (S a b)
                      = reducible a || reducible b
reducible (P (N _) (N _)) = True
reducible (P a b) = reducible a || reducible b
```

1.3. Examen 3 (23 de enero de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 3º examen de evaluación continua (23 de enero de 2015)

import Data.List
import Data.Array

-- Ejercicio 1. Definir la función
-- divisiblesPorAlguno :: [Int] -> [Int]
-- tal que (divisiblesPorAlguno xs) es la lista de los números que son
-- divisibles por algún elemento de xs. Por ejemplo,
-- take 10 (divisiblesPorAlguno [2,3]) == [2,3,4,6,8,9,10,12,14,15]
-- take 10 (divisiblesPorAlguno [2,4,3]) == [2,3,4,6,8,9,10,12,14,15]
-- take 10 (divisiblesPorAlguno [2,5,3]) == [2,3,4,5,6,8,9,10,12,14]
-- divisiblesPorAlguno :: [Int] -> [Int]
```

```
divisiblesPorAlguno xs = [n | n < - [1..], divisiblePorAlguno xs n]
-- 1º definición (con any)
divisiblePorAlguno :: [Int] -> Int -> Bool
divisiblePorAlguno xs n = any (x -> n \pmod x == 0) xs
-- 2ª definición (por comprensión)
divisiblePorAlguno1 :: [Int] -> Int -> Bool
divisiblePorAlguno1 xs n = or [n \text{ 'mod' } x == 0 | x <- xs]
-- 3ª definición (por recursión)
divisiblePorAlguno2 :: [Int] -> Int -> Bool
divisiblePorAlguno2 [] _
                          = False
divisiblePorAlguno2 (x:xs) n = n 'mod' x == 0 || divisiblePorAlguno2 xs n
-- Ejercicio 2. Las matrices pueden representarse mediante tablas cuyos
-- índices son pares de números naturales:
      type Matriz = Array (Int, Int) Int
-- Definir la función
      ampliada :: Matriz -> Matriz
-- tal que (ampliada p) es la matriz obtenida ampliando p añadiéndole
-- al final una columna con la suma de los elementos de cada fila y
-- añadiéndole al final una fila con la suma de los elementos de cada
-- columna. Por ejemplo, al ampliar las matrices
     1 2 3
                   1 2
     |4 5 6|
                   |3 4|
                   |5 6|
-- se obtienen, respectivamente
     |1 2 3 6 | |1 2 3 |
      |4 5 6 15| |3 4 7|
                 |5 6 11|
      |5 7 9 21|
                   |9 12 21|
-- En Haskell,
     ghci> ampliada (listArray ((1,1),(2,3)) [1,2,3, 4,5,6])
     array ((1,1),(3,4)) [((1,1),1),((1,2),2),((1,3),3),((1,4),6),
                           ((2,1),4),((2,2),5),((2,3),6),((2,4),15),
                           ((3,1),5),((3,2),7),((3,3),9),((3,4),21)]
     ghci> ampliada (listArray ((1,1),(3,2)) [1,2, 3,4, 5,6])
```

```
array ((1,1),(4,3)) [((1,1),1),((1,2),2),((1,3),3),
                            ((2,1),3),((2,2),4),((2,3),7),
                            ((3,1),5),((3,2),6),((3,3),11),
                            ((4,1),9),((4,2),12),((4,3),21)]
type Matriz = Array (Int,Int) Int
ampliada :: Matriz -> Matriz
ampliada p = array((1,1),(m+1,n+1))
                    [((i,j),f i j) | i \leftarrow [1..m+1], j \leftarrow [1..n+1]]
    where
      (\_,(m,n)) = bounds p
      f i j | i <= m
                      && j \le n = p ! (i,j)
            | i \le m \quad \&\& j == n+1 = sum [p!(i,j) | j <- [1..n]]
            | i == m+1 \&\& j <= n = sum [p!(i,j) | i <- [1..m]]
            | i == m+1 \& \& j == n+1 = sum [p!(i,j) | i <- [1..m], j <- [1..n]]
-- Ejercicio 3. El siguiente tipo de dato representa expresiones
-- construidas con variables, sumas y productos
      data Expr = Var String
                | S Expr Expr
                | P Expr Expre
                deriving (Eq, Show)
-- Por ejemplo, x^*(y+z) se representa por (P(V''x'')(S(V''y'')(V''z'')))
-- Una expresión está en forma normal si es una suma de términos. Por
-- ejemplo, x^*(y^*z) y x+(y^*z) está en forma normal; pero x^*(y+z) y
-- (x+y)*(x+z) no lo están.
-- Definir la función
      normal :: Expr -> Expr
-- tal que (normal e) es la forma normal de la expresión e obtenida
-- aplicando, mientras que sea posible, las propiedades distributivas:
      (a+b)*c = a*c+b*c
      c^*(a+b) = c^*a+c^*b
-- Por ejemplo,
     ghci > normal (P (S (V "x") (V "y")) (V "z"))
      S (P (V "x") (V "z")) (P (V "v") (V "z"))
```

```
ghci> normal (P (V "z") (S (V "x") (V "y")))
      S (P (V "z") (V "x")) (P (V "z") (V "y"))
      ghci> normal (P (S (V "x") (V "y")) (S (V "u") (V "v")))
     S (S (P (V "x") (V "u")) (P (V "x") (V "v")))
       (S (P (V "y") (V "u")) (P (V "y") (V "v")))
      ghci > normal (S (P (V "x") (V "y")) (V "z"))
     S (P (V "x") (V "y")) (V "z")
     ghci> normal (V "x")
     V "x"
data Expr = V String
          | S Expr Expr
          | P Expr Expr
          deriving (Eq. Show)
normal :: Expr -> Expr
normal(V v) = V v
normal (S a b) = S (normal a) (normal b)
normal (P a b) = p (normal a) (normal b)
    where p(Sab)c = S(pac)(pbc)
          pa(Sbc) = S(pab)(pac)
          pab
                    = P a b
-- Ejercicio 4. Los primeros números de Fibonacci son
      1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
-- tales que los dos primeros son iguales a 1 y los siguientes se
-- obtienen sumando los dos anteriores.
-- El teorema de Zeckendorf establece que todo entero positivo n se
-- puede representar, de manera única, como la suma de números de
-- Fibonacci no consecutivos decrecientes. Dicha suma se llama la
-- representación de Zeckendorf de n. Por ejemplo, la representación de
-- Zeckendorf de 100 es
      100 = 89 + 8 + 3
-- Hay otras formas de representar 100 como sumas de números de
-- Fibonacci; por ejemplo,
     100 = 89 + 8 + 2 + 1
     100 = 55 + 34 + 8 + 3
```

```
-- pero no son representaciones de Zeckendorf porque 1 y 2 son números
-- de Fibonacci consecutivos, al igual que 34 y 55.
-- Definir la función
      zeckendorf :: Integer -> [Integer]
-- tal que (zeckendorf n) es la representación de Zeckendorf de n. Por
-- ejemplo,
-- zeckendorf 100
                         == [89, 8, 3]
     zeckendorf 2014
                         == [1597,377,34,5,1]
     zeckendorf 28656 == [17711,6765,2584,987,377,144,55,21,8,3,1]
    zeckendorf 14930396 == [14930352,34,8,2]
-- 1ª solución
-- =========
zeckendorf1 :: Integer -> [Integer]
zeckendorf1 n = reverse (head (aux n (tail fibs)))
    where aux 0 = [[]]
          aux n (x:y:zs)
              | x <= n = [x:xs | xs <- aux (n-x) zs] ++ aux n (y:zs)
              | otherwise = []
-- fibs es la sucesión de los números de Fibonacci. Por ejemplo,
     take 14 fibs == [1,1,2,3,5,8,13,21,34,55,89,144,233,377]
fibs :: [Integer]
fibs = 1 : scanl (+) 1 fibs
-- 2ª solución
-- =========
zeckendorf2 :: Integer -> [Integer]
zeckendorf2 n = aux n (reverse (takeWhile (<= n) fibs))</pre>
    where aux 0 = []
          aux n (x:xs) = x : aux (n-x) (dropWhile (>n-x) xs)
-- 3ª solución
-- =========
zeckendorf3 :: Integer -> [Integer]
zeckendorf3 0 = [1]
zeckendorf3 n = x: zeckendorf3 (n - x)
    where x = last (takeWhile (<= n) fibs)</pre>
```

```
-- Comparación de eficiencia
-- La comparación es
     ghci> zeckendorf1 300000
     [196418,75025,17711,6765,2584,987,377,89,34,8,2]
     (0.72 secs, 58478576 bytes)
     ghci> zeckendorf2 300000
     [196418, 75025, 17711, 6765, 2584, 987, 377, 89, 34, 8, 2]
    (0.00 secs, 517852 bytes)
     ghci> zeckendorf3 300000
     [196418, 75025, 17711, 6765, 2584, 987, 377, 89, 34, 8, 2]
     (0.00 secs, 515360 bytes)
-- Se observa que las definiciones más eficientes son la 2º y la 3º.
-- Ejercicio 5. Definir la función
     maximoIntercambio :: Int -> Int
-- tal que (maximoIntercambio x) es el máximo número que se puede
-- obtener intercambiando dos dígitos de x. Por ejemplo,
     maximoIntercambio 983562 == 986532
     maximoIntercambio 31524 == 51324
    maximoIntercambio 897 == 987
-- 1ª definición
-- ==========
maximoIntercambio :: Int -> Int
maximoIntercambio = maximum . intercambios
-- (intercambios x) es la lista de los números obtenidos intercambiando
-- dos dígitos de x. Por ejemplo,
     intercambios 1234 == [2134, 3214, 4231, 1324, 1432, 1243]
intercambios :: Int -> [Int]
intercambios x = [intercambio i j x | i \leftarrow [0..n-2], j \leftarrow [i+1..n-1]]
   where n = length (show x)
-- (intercambio i j x) es el número obtenido intercambiando las cifras
-- que ocupan las posiciones i y j (empezando a contar en cero) del
```

```
-- número x. Por ejemplo,
     intercambio 2 5 123456789 == 126453789
intercambio :: Int -> Int -> Int -> Int
intercambio i j x = read (concat [as,[d],cs,[b],ds])
   where xs
                = show x
          (as,b:bs) = splitAt i xs
          (cs,d:ds) = splitAt (j-i-1) bs
-- 2ª definición (con vectores)
_ _ _____
maximoIntercambio2 :: Int -> Int
maximoIntercambio2 = read . elems . maximum . intercambios2
-- (intercambios2 x) es la lista de los vectores obtenidos
-- intercambiando dos elementos del vector de dígitos de x. Por ejemplo,
     ghci> intercambios2 1234
      [array (0,3) [(0,'2'), (1,'1'), (2,'3'), (3,'4')],
       array (0,3) [(0,'3'),(1,'2'),(2,'1'),(3,'4')],
       array (0,3) [(0,'4'),(1,'2'),(2,'3'),(3,'1')],
       array (0,3) [(0,'1'),(1,'3'),(2,'2'),(3,'4')],
       array (0,3) [(0,'1'),(1,'4'),(2,'3'),(3,'2')],
       array (0,3) [(0,'1'),(1,'2'),(2,'4'),(3,'3')]]
intercambios2 :: Int -> [Array Int Char]
intercambios2 x = [intercambioV i j v | i \leftarrow [0..n-2], j \leftarrow [i+1..n-1]]
    where xs = show x
         n = length xs
         v = listArray (0, n-1) xs
-- (intercambioV i j v) es el vector obtenido intercambiando los
-- elementos de v que ocupan las posiciones i y j. Por ejemplo,
     ghci> intercambioV 2 4 (listArray (0,4) [3..8])
      array (0,4) [(0,3),(1,4),(2,7),(3,6),(4,5)]
intercambioV i j v = v // [(i,v!j),(j,v!i)]
```

1.4. Examen 4 (9 de marzo de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 4º examen de evaluación continua (9 de marzo de 2015)
```

import I1M.PolOperaciones import Data.List import Data.Array -- Ejercicio 1. Un capicúa es un número que es igual leído de izquierda -- a derecha que de derecha a izquierda. -- Definir la función mayorCapicuaP :: Integer -> Integer -- tal que (mayorCapicuaP n) es el mayor capicúa que es el producto de -- dos números de n cifras. Por ejemplo, mayorCapicuaP 2 == 9009 mayorCapicuaP 3 == 906609 mayorCapicuaP 4 == 99000099 -- mayorCapicuaP 5 == 9966006699 -- 1ª solución -- ========= mayorCapicuaP1 :: Integer -> Integer mayorCapicuaP1 n = maximum $[x*y \mid x < - [a,a-1..b],$ y < - [a,a-1..b],esCapicua (x*y)] where $a = 10^n-1$ $b = 10^{(n-1)}$ -- (esCapicua x) se verifica si x es capicúa. Por ejemplo, esCapicua 353 == True esCapicua 357 == False esCapicua :: Integer -> Bool esCapicua n = xs == reverse xs where xs = show n-- 2ª solución -- =========

```
mayorCapicuaP2 :: Integer -> Integer
mayorCapicuaP2 n = maximum [x | y <- [a..b],
                                 z \leftarrow [y..b],
                                let x = y * z,
                                let s = show x,
                                 s == reverse s]
     where a = 10^{(n-1)}
           b = 10^n - 1
-- Ejercicio 2. Sea (b(i) \mid i \geq 1) una sucesión infinita de números
-- enteros mayores que 1. Entonces todo entero x mayor que cero se puede
-- escribir de forma única como
     x = x(0) + x(1)b(1) + x(2)b(1)b(2) + ... + x(n)b(1)b(2)...b(n)
-- donde cada x(i) satisface la condición 0 \le x(i) < b(i+1). Se dice
-- que [x(n),x(n-1),\ldots,x(2),x(1),x(0)] es la representación de x en la
-- base (b(i)). Por ejemplo, la representación de 377 en la base
-- (2*i | i >= 1) es [7,5,0,1] ya que
-- 377 = 1 + 0*2 + 5*2*4 + 7*2*4*6
-- y, además, 0 \le 1 < 2, 0 \le 0 < 4, 0 \le 5 < 6 y 0 \le 7 < 8.
-- Definir las funciones
      decimalAmultiple :: [Integer] -> Integer -> [Integer]
      multipleAdecimal :: [Integer] -> [Integer] -> Integer
-- tales que (decimalAmultiple bs x) es la representación del número x
-- en la base bs y (multipleAdecimal bs cs) es el número decimal cuya
-- representación en la base bs es cs. Por ejemplo,
      decimalAmultiple [2,4..] 377
                                                             [7,5,0,1]
     multipleAdecimal [2,4..] [7,5,0,1]
                                                             377
      decimalAmultiple [2,5..] 377
                                                         == [4,5,3,1]
     multipleAdecimal [2,5..] [4,5,3,1]
                                                         == 377
      decimalAmultiple [2^n \mid n < [1..]] 2015
                                                         == [1,15,3,3,1]
     multipleAdecimal [2^n | n <- [1..]] [1,15,3,3,1] ==
                                                             2015
     decimalAmultiple (repeat 10) 2015
                                                         == [2,0,1,5]
     multipleAdecimal (repeat 10) [2,0,1,5]
                                                         == 2015
-- 1º definición de decimalAmultiple (por recursión)
decimalAmultiple :: [Integer] -> Integer -> [Integer]
decimalAmultiple bs n = reverse (aux bs n)
```

```
where aux 0 = []
          aux (b:bs) n = r : aux bs q
             where (q,r) = quotRem n b
-- 2º definición de decimalAmultiple (con acumulador)
decimalAmultiple2 :: [Integer] -> Integer -> [Integer]
decimalAmultiple2 bs n = aux bs n []
   where aux 0 xs = xs
          aux (b:bs) n xs = aux bs q (r:xs)
             where (q,r) = quotRem n b
-- 1º definición multipleAdecimal (por recursión)
multipleAdecimal :: [Integer] -> [Integer] -> Integer
multipleAdecimal xs ns = aux xs (reverse ns)
    where aux (x:xs) (n:ns) = n + x * (aux xs ns)
          aux _ _
-- 2ª definición multipleAdecimal (con scanl1)
multipleAdecimal2 :: [Integer] -> [Integer] -> Integer
multipleAdecimal2 bs xs =
    sum (zipWith (*) (reverse xs) (1 : scanl1 (*) bs))
-- Ejercicio 3. Las expresiones aritméticas pueden representarse usando
-- el siguiente tipo de datos
     data Expr = N Int | S Expr Expr | P Expr Expr
                 deriving (Eq, Show)
-- Por ejemplo, la expresión 2*(3+7) se representa por
-- P (N 2) (S (N 3) (N 7))
-- Definir la función
     subexpresiones :: Expr -> [Expr]
-- tal que (subexpresiones e) es el conjunto de las subexpresiones de
-- e. Por ejemplo,
     ghci> subexpresiones (S (N 2) (N 3))
     [S (N 2) (N 3), N 2, N 3]
     ghci> subexpresiones (P (S (N 2) (N 2)) (N 7))
-- [P(S(N2)(N2))(N7),S(N2)(N2),N2,N7]
```

```
data Expr = N Int | S Expr Expr | P Expr Expr
            deriving (Eq, Show)
subexpresiones :: Expr -> [Expr]
subexpresiones = nub . aux
    where aux (N \times) = [N \times]
          aux (S i d) = S i d : (subexpresiones i ++ subexpresiones d)
          aux (P i d) = P i d : (subexpresiones i ++ subexpresiones d)
-- Ejercicio 4. Definir la función
      diagonalesPrincipales :: Array (Int,Int) a -> [[a]]
-- tal que (diagonalesPrincipales p) es la lista de las diagonales
-- principales de p. Por ejemplo, para la matriz
      1 2 3 4
      5 6 7 8
      9 10 11 12
-- la lista de sus diagonales principales es
      [[9],[5,10],[1,6,11],[2,7,12],[3,8],[4]]
-- En Haskell,
      ghci> diagonalesPrincipales (listArray ((1,1),(3,4)) [1..12])
      [[9],[5,10],[1,6,11],[2,7,12],[3,8],[4]]
diagonalesPrincipales :: Array (Int,Int) a -> [[a]]
diagonalesPrincipales p =
    [[p!ijl | ijl <- extension ij] | ij <- iniciales]</pre>
    where (,(m,n)) = bounds p
          iniciales = [(i,1) \mid i \leftarrow [m,m-1..2]] ++ [(1,j) \mid j \leftarrow [1..n]]
          extension (i,j) = [(i+k,j+k) | k < [0..min (m-i) (n-j)]]
-- Ejercicio 5. Dado un polinomio p no nulo con coeficientes enteros, se
-- llama contenido de p al máximo común divisor de sus coeficientes. Se
-- dirá que p es primitivo si su contenido es 1.
-- Definir la función
     primitivo :: Polinomio Int -> Bool
-- tal que (primitivo p) se verifica si el polinomio p es primitivo. Por
-- eiemplo,
```

1.5. Examen 5 (29 de abril de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 5º examen de evaluación continua (29 de abril de 2015)

import Data.Array
import Data.List
import Data.Numbers.Primes
import I1M.Grafo
import I1M.Monticulo
import I1M.PolOperaciones
import Test.QuickCheck

-- Ejercicio 1. Una propiedad del 2015 es que la suma de sus dígitos
-- coincide con el número de sus divisores; en efecto, la suma de sus
-- dígitos es 2+0+1+5=8 y tiene 8 divisores (1, 5, 13, 31, 65, 155, 403
-- y 2015).
```

```
-- Definir la sucesión
      especiales :: [Int]
-- formada por los números n tales que la suma de los dígitos de n
-- coincide con el número de divisores de n. Por ejemplo,
      take 12 especiales == [1,2,11,22,36,84,101,152,156,170,202,208]
-- Calcular la posición de 2015 en la sucesión de especiales.
especiales :: [Int]
especiales = [n \mid n \leftarrow [1..], sum (digitos n) == length (divisores n)]
digitos :: Int -> [Int]
digitos n = [read [d] | d <- show n]</pre>
divisores :: Int -> [Int]
divisores n = n : [x \mid x < [1..n 'div' 2], n 'mod' x == 0]
-- El cálculo de número de años hasta el 2015 inclusive que han cumplido
-- la propiedad es
      ghci> length (takeWhile (<=2015) especiales)</pre>
     59
-- Ejercicio 2. Definir la función
     posicion :: Array Int Bool -> Maybe Int
-- tal que (posicion v) es la menor posición del vector de booleanos v
-- cuyo valor es falso y es Nothing si todos los valores son
-- verdaderos. Por ejemplo,
     posicion (listArray (0,4) [True, True, False, True, False]) == Just 2
     posicion (listArray (0,4) [i <= 2 | i <- [0..4]]) == Just 3
     posicion (listArray (0,4) [i <= 7 | i <- [0..4]])
                                                             == Nothing
-- 1º solución
posicion :: Array Int Bool -> Maybe Int
posicion v \mid p > n = Nothing
          | otherwise = Just p
    where p = (length . takeWhile id . elems) v
          (\_,n) = bounds v
```

```
-- 2ª solución:
posicion2 :: Array Int Bool -> Maybe Int
posicion2 v | null xs = Nothing
            | otherwise = Just (head xs)
    where xs = [i \mid i \leftarrow indices v, v!i]
-- Ejercicio 3. Definir la función
      todos :: Ord a => (a -> Bool) -> Monticulo a -> Bool
-- tal que (todos p m) se verifica si todos los elementos del montículo
-- m cumple la propiedad p, Por ejemplo,
      todos (>2) (foldr inserta vacio [6,3,4,8]) == True
     todos even (foldr inserta vacio [6,3,4,8]) == False
todos :: Ord a => (a -> Bool) -> Monticulo a -> Bool
todos p m
    | esVacio m = True
    | otherwise = p (menor m) && todos p (resto m)
-- Ejercicio 4. El complementario del grafo G es un grafo G' del mismo
-- tipo que G (dirigido o no dirigido), con el mismo conjunto de nodos y
-- tal que dos nodos de G' son adyacentes si y sólo si no son adyacentes
-- en G. Los pesos de todas las aristas del complementario es igual a O.
-- Definir la función
      complementario :: Grafo Int Int -> Grafo Int Int
-- tal que (complementario g) es el complementario de g. Por ejemplo,
      ghci > complementario (creaGrafo D (1,3) [(1,3,0),(3,2,0),(2,2,0),(2,1,0)])
      GD(array(1,3),[(1,[(1,0),(2,0)]),(2,[(3,0)]),(3,[(1,0),(3,0)])])
      ghci > complementario (creaGrafo D (1,3) [(3,2,0),(2,2,0),(2,1,0)])
     G D (array (1,3) [(1,[(1,0),(2,0),(3,0)]),(2,[(3,0)]),(3,[(1,0),(3,0)])])
complementario :: Grafo Int Int -> Grafo Int Int
complementario q =
    creaGrafo d (1,n) [(x,y,0) | x <- xs, y <- xs, not (aristaEn g (x,y))]
    where d = if dirigido g then D else ND
```

xs = nodos g

```
n = length xs
-- Ejercicio 5. En 1772, Euler publicó que el polinomio n^2 + n + 41
-- genera 40 números primos para todos los valores de n entre 0 y
-- 39. Sin embargo, cuando n=40, 40^2+40+41 = 40(40+1)+41 es divisible
-- por 41.
-- Definir la función
      generadoresMaximales :: Integer -> (Int,[(Integer,Integer)])
-- tal que (generadoresMaximales n) es el par (m,xs) donde
      + xs es la lista de pares (x,y) tales que n^2+xn+y es uno de los
        polinomios que genera un número máximo de números primos
        consecutivos a partir de cero entre todos los polinomios de la
        forma n^2+an+b, con |a| \le n \ y \ |b| \le n \ y
     + m es dicho número máximo.
-- Por ejemplo,
     generadoresMaximales
                            4 == (3, [(-2,3), (-1,3), (3,3)])
      generadoresMaximales
                             6 == (5, [(-1,5), (5,5)])
     generadoresMaximales 50 == (43, [(-5, 47)])
     generadoresMaximales 100 == (48, [(-15, 97)])
     generadoresMaximales 200 == (53, [(-25, 197)])
     generadoresMaximales 1650 == (80, [(-79, 1601)])
-- 1ª solución
-- =========
generadoresMaximales1 :: Integer -> (Int,[(Integer,Integer)])
generadoresMaximales1 n =
    (m,[((a,b)) \mid a < [-n..n], b < [-n..n], nPrimos a b == m])
    where m = maximum  nPrimos a b | a <- [-n..n], b <- [-n..n]]
-- (nPrimos a b) es el número de primos consecutivos generados por el
-- polinomio n^2 + an + b a partir de n=0. Por ejemplo,
     nPrimos 1 41
                          == 40
      nPrimos (-79) 1601 == 80
nPrimos :: Integer -> Integer -> Int
nPrimos a b =
```

```
length $ takeWhile isPrime [n*n+a*n+b \mid n < [0..]]
-- 2ª solución (reduciendo las cotas)
-- Notas:
-- 1. Se tiene que b es primo, ya que para n=0, se tiene que 0^2+a*0+b=
-- b es primo.
-- 2. Se tiene que 1+a+b es primo, ya que es el valor del polinomio para
     n=1.
generadoresMaximales2 :: Integer -> (Int,[(Integer,Integer)])
generadoresMaximales2 n = (m,map snd zs)
   where xs = [(nPrimos a b,(a,b)) | b <- takeWhile (<=n) primes,</pre>
                                     a <- [-n..n],
                                     isPrime(1+a+b)]
         ys = reverse (sort xs)
         m = fst (head ys)
          zs = takeWhile ((k, ) -> k == m) ys
-- 3ª solución (con la librería de polinomios)
--
generadoresMaximales3 :: Integer -> (Int,[(Integer,Integer)])
generadoresMaximales3 n = (m, map snd zs)
    where xs = [(nPrimos2 \ a \ b,(a,b)) \ | \ b < - \ takeWhile (<=n) \ primes,
                                     a <- [-n..n],
                                     isPrime(1+a+b)]
         ys = reverse (sort xs)
         m = fst (head ys)
          zs = takeWhile ((k,_) -> k == m) ys
-- (nPrimos2 a b) es el número de primos consecutivos generados por el
-- polinomio n^2 + an + b a partir de n=0. Por ejemplo,
     nPrimos2 1 41
                         == 40
      nPrimos2 (-79) 1601 == 80
nPrimos2 :: Integer -> Integer -> Int
nPrimos2 a b =
    length $ takeWhile isPrime [valor p n | n <- [0..]]</pre>
    where p = consPol 2 1 (consPol 1 a (consPol 0 b polCero))
```

```
-- Comparación de eficiencia
      ghci> generadoresMaximales1 200
      (53, [(-25, 197)])
      (3.06 secs, 720683776 bytes)
      ghci> generadoresMaximales1 300
      (56, [(-31, 281)])
      (6.65 secs, 1649274220 bytes)
      ghci> generadoresMaximales2 200
     (53, [(-25, 197)])
      (0.25 secs, 94783464 bytes)
      ghci> generadoresMaximales2 300
      (56, [(-31, 281)])
      (0.51 secs, 194776708 bytes)
      ghci> generadoresMaximales3 200
      (53, [(-25, 197)])
      (0.20 secs, 105941096 bytes)
      ghci> generadoresMaximales3 300
     (56, [(-31, 281)])
      (0.35 secs, 194858344 bytes)
```

1.6. Examen 6 (15 de junio de 2015)

valor :: Arbol -> Int

```
-- Definir la función
     inversiones :: Ord a -> [a] -> [(a,a)]
-- tal que (inversiones xs) es la lista de las inversiones de xs. Por
-- ejemplo,
     inversiones [1,7,4,9,5] = [(7,4),(7,5),(9,5)]
     inversiones "esto" == [('s', 'o'), ('t', 'o')]
inversiones :: Ord a => [a] -> [(a,a)]
inversiones [] = []
inversiones (x:xs) = [(x,y) | y \leftarrow xs, y \leftarrow x] ++ inversiones xs
-- Ejercicio 2. Las expresiones aritméticas se pueden representar como
-- árboles con números en las hojas y operaciones en los nodos. Por
-- ejemplo, la expresión "9-2*4" se puede representar por el árbol
     / \
     9 *
       / \
      2 4
-- Definiendo el tipo de dato Arbol por
     data Arbol = H Int | N (Int -> Int -> Int) Arbol Arbol
-- la representación del árbol anterior es
     N(-)(H9)(N(*)(H2)(H4))
-- Definir la función
     valor :: Arbol -> Int
-- tal que (valor a) es el valor de la expresión aritmética
-- correspondiente al árbol a. Por ejemplo,
     valor (N (-) (H 9) (N (*) (H 2) (H 4)))
                                              == 1
     valor(N(+)(H9)(N(*)(H2)(H4))) == 17
     valor(N(+)(H9)(N(div)(H4)(H2))) == 11
     valor(N(+)(H9)(N(max)(H4)(H2))) == 13
data Arbol = H Int | N (Int -> Int -> Int) Arbol Arbol
```

```
valor(H x) = x
valor (N f i d) = f (valor i) (valor d)
-- Ejercicio 3. Definir la función
      agrupa :: Ord c => (a -> c) -> [a] -> M.Map c [a]
-- tal que (agrupa f xs) es el diccionario obtenido agrupando los
-- elementos de xs según sus valores mediante la función f. Por ejemplo,
      ghci> agrupa length ["hoy", "ayer", "ana", "cosa"]
      fromList [(3,["hoy","ana"]),(4,["ayer","cosa"])]
     ghci> agrupa head ["claro", "ayer", "ana", "cosa"]
     fromList [('a',["ayer","ana"]),('c',["claro","cosa"])]
     ghci> agrupa length (words "suerte en el examen")
     fromList [(2,["en","el"]),(6,["suerte","examen"])]
-- 1ª definición (por recursión)
agrupa1 :: Ord c => (a -> c) -> [a] -> M.Map c [a]
agrupal [] = M.empty
agrupal f (x:xs) = M.insertWith (++) (f x) [x] (agrupal f xs)
-- 2ª definición (por plegado)
agrupa2 :: Ord c => (a -> c) -> [a] -> M.Map c [a]
agrupa2 f = foldr (x \rightarrow M.insertWith (++) (f x) [x]) M.empty
-- Ejercicio 4. Los primeros términos de la sucesión de Fibonacci son
     0, 1, 1, 2, 3, 5, 8, 13, 21, 34
-- Se observa que el 6º término de la sucesión (comenzando a contar en
-- 0) es el número 8.
-- Definir la función
      indiceFib :: Integer -> Maybe Integer
-- tal que (indiceFib x) es justo el número n si x es el n-ésimo
-- términos de la sucesión de Fibonacci o Nothing en el caso de que x no
-- pertenezca a la sucesión. Por ejemplo,
                        == Just 6
     indiceFib 8
     indiceFib 9
                        == Nothing
                       == Just 8
    indiceFib 21
    indiceFib 22
                       == Nothing
```

```
indiceFib 9227465 == Just 35
     indiceFib 9227466 == Nothing
indiceFib :: Integer -> Maybe Integer
indiceFib x | y == x
                        = Just n
            | otherwise = Nothing
    where (y,n) = head (dropWhile ((z,m) -> z < x) fibsNumerados)
-- fibs es la lista de los términos de la sucesión de Fibonacci. Por
-- ejemplo,
     take 10 fibs == [0,1,1,2,3,5,8,13,21,34]
fibs :: [Integer]
fibs = 0 : 1 : [x+y \mid (x,y) \leftarrow zip fibs (tail fibs)]
-- fibsNumerados es la lista de los términos de la sucesión de Fibonacci
-- juntos con sus posiciones. Por ejemplo,
      ghci> take 10 fibsNumerados
      [(0,0),(1,1),(1,2),(2,3),(3,4),(5,5),(8,6),(13,7),(21,8),(34,9)]
fibsNumerados :: [(Integer, Integer)]
fibsNumerados = zip fibs [0..]
-- Ejercicio 5. Definir las funciones
      grafo :: [(Int,Int)] -> Grafo Int Int
      caminos :: Grafo Int Int -> Int -> [[Int]]
-- tales que
-- + (grafo as) es el grafo no dirigido definido cuyas aristas son as. Por
     ejemplo,
        ghci > grafo [(2,4),(4,5)]
        G ND (array (2,5) [(2,[(4,0)]),(3,[]),(4,[(2,0),(5,0)]),(5,[(4,0)])])
  + (caminos q a b) es la lista los caminos en el grafo q desde a hasta
     b sin pasar dos veces por el mismo nodo. Por ejemplo,
        ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 7)
        [[1,3,5,7],[1,3,7]]
        ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 2 7)
        [[2,5,3,7],[2,5,7]]
       ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 2)
       [[1,3,5,2],[1,3,7,5,2]]
        ghci > caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 4
```

-- | M: Maybe

```
-- []
grafo :: [(Int,Int)] -> Grafo Int Int
grafo as = creaGrafo ND (m,n) [(x,y,0) | (x,y) \leftarrow as]
   where ns = map fst as ++ map snd as
       m = minimum ns
       n = maximum ns
-- 1ª solución (mediante espacio de estados)
caminos1 :: Grafo Int Int -> Int -> Int -> [[Int]]
caminos1 g a b = buscaEE sucesores esFinal inicial
   where inicial
                     = [b]
       sucesores (x:xs) = [z:x:xs | z <- advacentes g x
                             , z 'notElem' (x:xs)]
       esFinal(x:xs) = x == a
-- 2ª solución (sin espacio de estados)
caminos2 :: Grafo Int Int -> Int -> Int -> [[Int]]
caminos2 q a b = aux [[b]] where
   aux [] = []
   aux ((x:xs):yss)
      | x == a = (x:xs) : aux yss
      | otherwise = aux ([z:x:xs | z <- adyacentes g x
                         , z 'notElem' (x:xs)]
                     ++ yss)
-- Tipos de ejercicios
| E1 | E2 | E3 | E4 | E5 |
    | R: Recursión
                              |R|R|R|R|R|
   | C: Comprensión
                             | C | |
   | TDA: Tipo de datos algebraicos | | TDA | |
                        | OS: Orden superior
-- | D: Diccionarios
                                | P: Plegado
```

1.7. Examen 7 (3 de julio de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- Examen de julio (3 de julio de 2015)
import Data.List
import Data.Matrix
import Test.QuickCheck
-- Ejercicio 1. Definir la función
     minimales :: Eq a => [[a]] -> [[a]]
-- tal que (minimales xss) es la lista de los elementos de xss que no
-- están contenidos en otros elementos de xss. Por ejemplo,
    minimales [[1,3],[2,3,1],[3,2,5]] == [[2,3,1],[3,2,5]]
     minimales [[1,3],[2,3,1],[3,2,5],[3,1]] == [[2,3,1],[3,2,5]]
minimales :: Eq a => [[a]] -> [[a]]
minimales xss =
    [xs | xs <- xss, null [ys | ys <- xss, subconjuntoPropio xs ys]]
-- (subconjuntoPropio xs ys) se verifica si xs es un subconjunto propio
-- de ys. Por ejemplo,
     subconjuntoPropio [1,3] [3,1,3] == False
      subconjuntoPropio [1,3,1] [3,1,2] == True
subconjuntoPropio :: Eq a => [a] -> [a] -> Bool
subconjuntoPropio xs ys = subconjuntoPropio' (nub xs) (nub ys)
      subconjuntoPropio' _xs [] = False
      subconjuntoPropio' [] _ys = True
      subconjuntoPropio' (x:xs) ys =
```

x 'elem' ys && subconjuntoPropio xs (delete x ys)

```
-- Ejercicio 2. Un mínimo local de una lista es un elemento de la lista
-- que es menor que su predecesor y que su sucesor en la lista. Por
-- ejemplo, 1 es un mínimo local de [8,2,1,3,7,6,4,0,5] ya que es menor
-- que 2 (su predecesor) y que 3 (su sucesor).
-- Análogamente se definen los máximos locales. Por ejemplo, 7 es un
-- máximo local de [8,2,1,3,7,6,4,0,5] ya que es mayor que 7 (su
-- predecesor) y que 6 (su sucesor).
-- Los extremos locales están formados por los mínimos y máximos
-- locales. Por ejemplo, los extremos locales de [8,2,1,3,7,6,4,0,5] son
-- el 1, el 7 y el 0.
-- Definir la función
      extremos :: 0rd a => [a] -> [a]
-- tal que (extremos xs) es la lista de los extremos locales de la
-- lista xs. Por ejemplo,
     extremos [8,2,1,3,7,6,4,0,5] == [1,7,0]
     extremos [8,2,1,3,7,7,4,0,5] == [1,7,0]
-- 1ª definición (por comprensión)
extremos1 :: Ord a => [a] -> [a]
extremos1 xs =
    [y \mid (x,y,z) \leftarrow zip3 xs (tail xs) (drop 2 xs), extremo x y z]
-- (extremo x y z) se verifica si y es un extremo local de [x,y,z]. Por
-- ejemplo,
      extremo 2 1 3 == True
     extremo 3 7 6 == True
      extremo 7 6 4 == False
      extremo 5 6 7 == False
      extremo 5 5 7 == False
extremo :: Ord a => a -> a -> Bool
extremo x y z = (y < x \&\& y < z) \mid | (y > x \&\& y > z)
```

```
-- 2ª definición (por recursión)
  _____
extremos2 :: Ord a => [a] -> [a]
extremos2 (x:y:z:xs)
    | extremo x y z = y : extremos2 (y:z:xs)
    | otherwise = extremos2 (y:z:xs)
extremos2 _ = []
-- Ejercicio 3. Los árboles, con un número variable de hijos, se pueden
-- representar mediante el siguiente tipo de dato
      data \ Arbol \ a = N \ a \ [Arbol \ a]
                    deriving Show
  Por ejemplo, los árboles
       1
                       3
      / \
                      /|\
      6 3
                     / | \
                    5 4 7
          /\
          5
                    2 1
-- se representan por
     ej1, ej2 :: Arbol Int
     ej1 = N \ 1 \ [N \ 6 \ [], N \ 3 \ [N \ 5 \ []]]
     ej2 = N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]]
-- Definir la función
     emparejaArboles :: (a -> b -> c) -> Arbol a -> Arbol b -> Arbol c
-- tal que (emparejaArboles f al a2) es el árbol obtenido aplicando la
-- función f a los elementos de los árboles al y a2 que se encuentran en
-- la misma posición. Por ejemplo,
      ghci> emparejaArboles (+) (N 1 [N 2 [], N 3[]]) (N 1 [N 6 []])
     N 2 [N 8 []]
     ghci> emparejaArboles (+) ej1 ej2
     N 4 [N 11 [],N 7 []]
     ghci> emparejaArboles (+) ej1 ej1
     N 2 [N 12 [],N 6 [N 10 []]]
```

```
deriving (Show, Eq)
emparejaArboles :: (a -> b -> c) -> Arbol a -> Arbol b -> Arbol c
emparejaArboles f (N \times l1) (N y l2) =
    N (f x y) (zipWith (emparejaArboles f) l1 l2)
-- Ejercicio 4. Definir la lista
      antecesoresYsucesores :: [[Integer]]
-- cuyos elementos son
      [[1], [0,2], [-1,1,1,3], [-2,2,0,0,2,0,2,2,4], \ldots]
-- donde cada una de las listas se obtiene de la anterior sustituyendo
-- cada elemento por su antecesor y su sucesor; es decir, el 1 por el 0
-- y el 2, el 0 por el -1 y el 1, el 2 por el 1 y el 3, etc. Por
-- ejemplo,
      ghci> take 4 antecesoresYsucesores
      [[1], [0,2], [-1,1,1,3], [-2,0,0,2,0,2,2,4]]
-- Comprobar con Quickcheck que la suma de los elementos de la lista
-- n-ésima de antecesoresYsucesores es 2^n.
-- Nota. Limitar la búsqueda a ejemplos pequeños usando
     quickCheckWith (stdArgs {maxSize=7}) prop suma
-- 1ª solución
antecesoresYsucesores :: [[Integer]]
antecesoresYsucesores =
    [1]: map (concatMap (x - [x-1,x+1])) antecesoresYsucesores
-- 2ª solución
antecesoresYsucesores2 :: [[Integer]]
antecesoresYsucesores2 =
    iterate (concatMap (x \rightarrow [x-1,x+1])) [1]
-- La propiedad es
prop suma :: Int -> Property
prop suma n =
    n \ge 0 => sum (antecesoresYsucesores2 !! n) == 2^n
```

```
-- La comprobación es
     ghci> quickCheckWith (stdArgs {maxSize=7}) prop suma
     +++ OK, passed 100 tests.
-- Ejercicio 5.1. Los grafos no dirigidos puede representarse mediante
-- matrices de adyacencia y también mediante listas de adyacencia. Por
-- ejemplo, el grafo
     1 ---- 2
     1 \
     | 3
     | /
     4 ---- 5
-- se puede representar por la matriz de adyacencia
     0 1 1 1 0
     1 0 0 0 1
     11 0 0 1 0
    |1 0 1 0 1|
    0 1 0 1 0
-- donde el elemento (i,j) es 1 si hay una arista entre los vértices i y
-- j y es 0 si no la hay. También se puede representar por la lista de
-- advacencia
     [(1,[2,3,4]),(2,[1,5]),(3,[1,4]),(4,[1,3,5]),(5,[2,4])]
-- donde las primeras componentes son los vértices y las segundas
-- la lista de los vértices conectados.
-- Definir la función
     matrizAlista :: Matrix Int -> [(Int,[Int])]
-- tal que (matrizAlista a) es la lista de adyacencia correspondiente a
-- la matriz de adyacencia a. Por ejemplo, definiendo la matriz anterior
-- por
     eiMatriz :: Matrix Int
     ejMatriz = fromLists [[0,1,1,1,0],
                            [1,0,0,0,1],
                            [1,0,0,1,0],
                            [1,0,1,0,1],
                            [0,1,0,1,0]]
-- se tiene que
     ghci> matrizAlista ejMatriz
     [(1,[2,3,4]),(2,[1,5]),(3,[1,4]),(4,[1,3,5]),(5,[2,4])]
```

```
ejMatriz :: Matrix Int
ejMatriz = fromLists [[0,1,1,1,0],
                      [1,0,0,0,1],
                      [1,0,0,1,0],
                      [1,0,1,0,1],
                      [0,1,0,1,0]
matrizAlista :: Matrix Int -> [(Int,[Int])]
matrizAlista a =
    [(i,[j \mid j \leftarrow [1..n], a!(i,j) == 1]) \mid i \leftarrow [1..n]]
    where n = nrows a
-- Ejercicio 5.2. Definir la función
     listaAmatriz :: [(Int,[Int])] -> Matrix Int
-- tal que (listaAmatriz ps) es la matriz de adyacencia correspondiente
-- a la lista de adyacencia ps. Por ejemplo,
     ghci> listaAmatriz [(1,[2,3,4]),(2,[1,5]),(3,[1,4]),(4,[1,3,5]),(5,[2,4])]
    (01110)
    (10001)
    (10010)
    (10101)
    (01010)
     ghci> matrizAlista it
     [(1,[2,3,4]),(2,[1,5]),(3,[1,4]),(4,[1,3,5]),(5,[2,4])]
listaAmatriz :: [(Int,[Int])] -> Matrix Int
listaAmatriz ps = fromLists [fila n xs | (_,xs) <- sort ps]</pre>
    where n = length ps
          fila n xs = [f i | i \leftarrow [1..n]]
              where f i \mid i \text{ 'elem' } xs = 1
                        | otherwise = 0
```

1.8. Examen 8 (4 de septiembre de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- Examen de septiembre (4 de septiembre de 2015)
import Data.List
import Data.Array
import Test.QuickCheck
import I1M.PolOperaciones
-- Ejercicio 1. Definir la función
     numeroBloguesRepeticion :: Eq a => [a] -> Int
-- tal que (numeroBloquesRepeticion xs) es el número de bloques de
-- elementos consecutivos repetidos en 'xs'. Por ejemplo,
     numeroBloquesRepeticion [1,1,2,2,3,3] == 3
     numeroBloquesRepeticion [1,1,1,2,3,3] == 2
     numeroBloguesRepeticion [1,1,2,3] == 1
     numeroBloquesRepeticion [1,2,3]
-- 1º definición
numeroBloquesRepeticion1 :: Eq a => [a] -> Int
numeroBloquesRepeticion1 xs =
    length (filter (\ys -> length ys > 1) (group xs))
-- 2ª definición (por recursión):
numeroBloquesRepeticion2 :: Eq a => [a] -> Int
numeroBloquesRepeticion2 (x:y:zs)
    | x == y = 1 + numeroBloquesRepeticion2 (dropWhile (==x) zs)
    otherwise = numeroBloquesRepeticion2 (y:zs)
numeroBloquesRepeticion2 _ = 0
-- Ejercicio 2.1. Los grafos se pueden representar mediante una lista de
-- pares donde las primeras componentes son los vértices y las segundas
-- la lista de los vértices conectados. Por ejemplo, el grafo
-- 1 ---- 2
-- | \
```

```
| 3
      /
     4 ---- 5
-- se representa por
      [(1,[2,3,4]),(2,[1,5]),(3,[1,4]),(4,[1,3,5]),(5,[2,4])]
-- En Haskell se puede definir el tipo de los grafos por
      type Grafo \ a = [(a,[a])]
-- y el ejemplo anterior se representa por
      ejGrafo :: Grafo Int
      ejGrafo = [(1,[2,3,4]),(2,[1,5]),(3,[1,4]),(4,[1,3]),(5,[2,4])]
-- Definir la función
      aristas :: Ord a => Grafo a -> [(a,a)]
-- tal que (aristas g) es la lista de aristas del grafo g. Por ejemplo,
     aristas ejGrafo == [(1,2),(1,3),(1,4),(2,5),(3,4)]
type Grafo a = [(a,[a])]
ejGrafo :: Grafo Int
ejGrafo = [(1,[2,3,4]),(2,[1,5]),(3,[1,4]),(4,[1,3]),(5,[2,4])]
aristas :: Ord a => Grafo a -> [(a,a)]
aristas g = [(x,y) | (x,ys) \leftarrow g, y \leftarrow ys, x < y]
-- Ejercicio 2.2. El grafo línea de un grafo G es el grafo L(G) tal que
-- + los vértices de L(G) son las aristas de G y
-- + dos vértices de L(G) son adyacentes si y sólo si sus aristas
    correspondientes tienen un extremo común en G.
-- Definir la función
      grafoLinea :: Ord a => Grafo a -> Grafo (a,a)
-- tal que (grafoLinea g) es el grafo línea de g. Por ejemplo
     ghci> grafoLinea ejGrafo
      [((1,2),[(1,3),(1,4),(2,5)]),
      ((1,3),[(1,2),(1,4),(3,4)]),
      ((1,4),[(1,2),(1,3),(3,4)]),
      ((2,5),[(1,2)]),
      ((3,4),[(1,3),(1,4)])]
```

grafoLinea :: Ord a => Grafo a -> Grafo (a,a) grafoLinea g = $[(a1,[a2 \mid a2 \leftarrow as, conExtremoComun a1 a2, a1 /= a2]) \mid a1 \leftarrow as]$ where as = aristas g conExtremoComun :: Eq a => (a,a) -> Bool conExtremoComun (x1,y1) (x2,y2) =not (null ([x1,y1] 'intersect' [x2,y2])) -- Ejercicio 3.1. La sucesión de polinomios de Fibonacci se define por p(0) = 0p(1) = 1p(n) = x*p(n-1) + p(n-2)-- Los primeros términos de la sucesión son p(2) = x $p(3) = x^2 + 1$ $p(4) = x^3 + 2*x$ $p(5) = x^4 + 3*x^2 + 1$ -- Definir la lista sucPolFib :: [Polinomio Integer] -- tal que sus elementos son los polinomios de Fibonacci. Por ejemplo, ghci> take 6 sucPolFib $[0,1,1*x,x^2 + 1,x^3 + 2*x,x^4 + 3*x^2 + 1]$ -- 1ª solución -- ========= sucPolFib :: [Polinomio Integer] sucPolFib = [polFibR n | n < - [0..]]polFibR :: Integer -> Polinomio Integer polFibR 0 = polCero polFibR 1 = polUnidad polFibR n = sumaPol (multPol (consPol 1 1 polCero) (polFibR (n-1)))

```
(polFibR (n-2))
-- 2º definición (dinámica)
sucPolFib2 :: [Polinomio Integer]
sucPolFib2 =
    polCero : polUnidad : zipWith f (tail sucPolFib2) sucPolFib2
    where f p = sumaPol (multPol (consPol 1 1 polCero) p)
-- Ejercicio 3.2. Comprobar con QuickCheck que el valor del n-ésimo
-- término de sucPolFib para x=1 es el n-ésimo término de la sucesión de
-- Fibonacci 0, 1, 1, 2, 3, 5, 8, ...
-- Nota. Limitar la búsqueda a ejemplos pequeños usando
-- quickCheckWith (stdArgs {maxSize=5}) prop polFib
-- La propiedad es
prop_polFib :: Integer -> Property
prop polFib n =
    n >= 0 ==> valor (polFib n) 1 == fib n
    where polFib n = sucPolFib2 'genericIndex' n
          fib n = fibs 'genericIndex' n
fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
-- La comprobación es
     ghci> quickCheckWith (stdArgs {maxSize=5}) prop_polFib
     +++ 0K, passed 100 tests.
-- Ejercicio 4. Los números triangulares se forman como sigue
          * *
- - 1
         3
                 6
```

```
-- La sucesión de los números triangulares se obtiene sumando los
-- números naturales. Así, los 5 primeros números triangulares son
      1 = 1
      3 = 1+2
      6 = 1+2+3
    10 = 1+2+3+4
     15 = 1+2+3+4+5
-- Definir la función
      descomposicionesTriangulares :: Int -> [(Int, Int, Int)]
-- tal que (descomposicionesTriangulares n) es la lista de las
-- ternas correspondientes a las descomposiciones de n en tres sumandos,
-- como máximo, formados por números triangulares. Por ejemplo,
      ghci> descomposicionesTriangulares 6
      [(0,0,6),(0,3,3)]
      ghci> descomposicionesTriangulares 26
     [(1,10,15),(6,10,10)]
     ghci> descomposicionesTriangulares 96
      [(3,15,78),(6,45,45),(15,15,66),(15,36,45)]
descomposicionesTriangulares :: Int -> [(Int, Int, Int)]
descomposicionesTriangulares n =
    [(x,y,n-x-y) \mid x < -xs,
                   y <- dropWhile (<x) xs,
                   n-x-y 'elem' dropWhile (<y) xs]
    where xs = takeWhile (<=n) triangulares</pre>
-- triangulares es la lista de los números triangulares. Por ejemplo,
      take 10 triangulares == [0,1,3,6,10,15,21,28,36,45]
triangulares :: [Int]
triangulares = scanl (+) 0 [1..]
-- Ejercicio 5. En este problema se consideran matrices cuyos elementos
-- son 0 y 1. Los valores 1 aparecen en forma de islas rectangulares
-- separadas por 0 de forma que como máximo las islas son diagonalmente
-- adyacentes. Por ejemplo,
     ej1, ej2 :: Array (Int, Int) Int
```

```
ei1 = listArray ((1,1),(6,3))
                       [0,0,0,
                        1,1,0,
                        1,1,0,
                        0,0,1,
                        0,0,1,
                        1,1,0]
      ej2 = listArray ((1,1),(6,6))
                       [1,0,0,0,0,0,0,
                        1,0,1,1,1,1,
                        0,0,0,0,0,0,
                        1, 1, 1, 0, 1, 1,
                        1,1,1,0,1,1,
                        0,0,0,0,1,1]
   Definir la función
      numeroDeIslas :: Array (Int,Int) Int -> Int
  tal que (numeroDeIslas p) es el número de islas de la matriz p. Por
  ejemplo,
      numeroDeIslas ej1 == 3
      numeroDeIslas ej2 == 4
type Matriz = Array (Int,Int) Int
ej1, ej2 :: Array (Int,Int) Int
ej1 = listArray ((1,1),(6,3))
                 [0,0,0,
                 1,1,0,
                  1,1,0,
                 0,0,1,
                 0,0,1,
                  1,1,0]
ej2 = listArray ((1,1),(6,6))
                 [1,0,0,0,0,0,0,
                 1,0,1,1,1,1,
                 0,0,0,0,0,0,
                 1,1,1,0,1,1,
                 1,1,1,0,1,1,
```

0,0,0,0,1,1

```
numeroDeIslas :: Array (Int,Int) Int -> Int
numeroDeIslas p =
    length [(i,j) \mid (i,j) \leftarrow indices p,
                     verticeSuperiorIzquierdo p (i,j)]
-- (verticeSuperiorIzquierdo p (i,j)) se verifica si (i,j) es el
-- vértice superior izquierdo de algunas de las islas de la matriz p,
-- Por ejemplo,
      ghci> [(i,j) | (i,j) <- indices ej1, verticeSuperiorIzquierdo ej1 (i,j)]</pre>
      [(2,1),(4,3),(6,1)]
      ghci> [(i,j) | (i,j) <- indices ej2, verticeSuperiorIzquierdo ej2 (i,j)]</pre>
      [(1,1),(2,3),(4,1),(4,5)]
verticeSuperiorIzquierdo :: Matriz -> (Int,Int) -> Bool
verticeSuperiorIzquierdo p (i,j) =
    enLadoSuperior p (i,j) && enLadoIzquierdo p (i,j)
-- (enLadoSuperior p (i,j)) se verifica si (i,j) está en el lado
-- superior de algunas de las islas de la matriz p, Por ejemplo,
      ghci > [(i,j) \mid (i,j) < - indices ej1, enLadoSuperior ej1 (i,j)]
      [(2,1),(2,2),(4,3),(6,1),(6,2)]
      ghci > [(i,j) \mid (i,j) < - indices ej2, enLadoSuperior ej2 (i,j)]
      [(1,1),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3),(4,5),(4,6)]
enLadoSuperior :: Matriz -> (Int,Int) -> Bool
enLadoSuperior p (1,j) = p!(1,j) == 1
enLadoSuperior p (i,j) = p!(i,j) == 1 \&\& p!(i-1,j) == 0
-- (enLadoIzquierdo p (i,j)) se verifica si (i,j) está en el lado
-- izquierdo de algunas de las islas de la matriz p, Por ejemplo,
      ghci > [(i,j) \mid (i,j) < - indices ej1, enLadoIzquierdo ej1 (i,j)]
      [(2,1),(3,1),(4,3),(5,3),(6,1)]
      ghci > [(i,j) \mid (i,j) < - indices ej2, enLadoIzquierdo ej2 (i,j)]
      [(1,1),(2,1),(2,3),(4,1),(4,5),(5,1),(5,5),(6,5)]
enLadoIzquierdo :: Matriz -> (Int,Int) -> Bool
enLadoIzquierdo p (i,1) = p!(i,1) == 1
enLadoIzquierdo p (i,j) = p!(i,j) == 1 \&\& p!(i,j-1) == 0
-- 2ª solución
-- =========
```

1.9. Examen 9 (4 de diciembre de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- Examen de la 3º convocatoria (4 de diciembre de 2015)
-- Puntuación: Cada uno de los 5 ejercicios vale 2 puntos.
-- § Librerías auxiliares
import Data.List
import Data.Matrix
import Data.Numbers.Primes
import I1M.BusquedaEnEspaciosDeEstados
import I1M.Grafo
import I1M.PolOperaciones
-- Ejercicio 1. Un número tiene factorización capicúa si puede escribir
-- como un producto de números primos tal que la concatenación de sus
-- dígitos forma un número capicúa. Por ejemplo, el 2015 tiene
-- factorización capicúa ya que 2015 = 13*5*31, los factores son primos
-- y su concatenación es 13531 que es capicúa.
-- Definir la sucesión
      conFactorizacionesCapicuas :: [Int]
-- formada por los números que tienen factorización capicúa. Por
-- ejemplo,
     ghci> take 20 conFactorizacionesCapicuas
     [1,2,3,4,5,7,8,9,11,12,16,18,20,25,27,28,32,36,39,44]
```

```
-- Usando conFactorizacionesCapicuas calcular cuál será el siquiente año
-- con factorización capicúa.
-- lª definición
-- ==========
conFactorizacionesCapicuas :: [Int]
conFactorizacionesCapicuas =
   [n | n <- [1..], not (null (factorizacionesCapicua n))]</pre>
-- (factorizacionesCapicua n) es la lista de las factorizaciones
-- capicúas de n. Por ejemplo,
     factorizacionesCapicua\ 2015 == [[13,5,31],[31,5,13]]
factorizacionesCapicua :: Int -> [[Int]]
factorizacionesCapicua n =
    [xs | xs <- permutations (factorizacion n),</pre>
         esCapicuaConcatenacion xs]
-- (factorizacion n) es la lista de todos los factores primos de n; es
-- decir, es una lista de números primos cuyo producto es n. Por ejemplo,
     factorizacion 300 == [2,2,3,5,5]
factorizacion :: Int -> [Int]
factorizacion n | n == 1 = []
               \mid otherwise = x : factorizacion (div n x)
   where x = menorFactor n
-- (menorFactor n) es el menor factor primo de n. Por ejemplo,
     menorFactor 15 == 3
     menorFactor 16 == 2
     menorFactor 17 == 17
menorFactor :: Int -> Int
menorFactor n = head [x \mid x \leftarrow [2..], rem n x == 0]
-- (esCapicuaConcatenación xs) se verifica si la concatenación de los
-- números de xs es capicúa. Por ejemplo,
     esCapicuaConcatenacion [13,5,31] == True
     esCapicuaConcatenacion [135,31]
                                      == True
     esCapicuaConcatenacion [135,21] == False
```

```
esCapicuaConcatenacion :: [Int] -> Bool
esCapicuaConcatenacion xs = ys == reverse ys
    where ys = concatMap show xs
-- 2ª definición
-- ==========
conFactorizacionesCapicuas2 :: [Int]
conFactorizacionesCapicuas2 =
    [n | n <- [1..], not (null (factorizacionesCapicua2 n))]</pre>
-- (factorizacionesCapicua2 n) es la lista de las factorizaciones
-- capicúas de n. Por ejemplo,
     factorizacionesCapicua2\ 2015 == [[13,5,31],[31,5,13]]
factorizacionesCapicua2 :: Int -> [[Int]]
factorizacionesCapicua2 n =
    [xs | xs <- permutations (primeFactors n),</pre>
          esCapicuaConcatenacion xs]
-- 3ª definición
-- ==========
conFactorizacionesCapicuas3 :: [Int]
conFactorizacionesCapicuas3 =
    [n | n <- [1..], conFactorizacionCapicua n]</pre>
-- (conFactorizacionCapicua n) se verifica si n tiene factorización
-- capicúa. Por ejemplo,
      factorizacionesCapicua2\ 2015 == [[13,5,31],[31,5,13]]
conFactorizacionCapicua :: Int -> Bool
conFactorizacionCapicua n =
    any listaCapicua (permutations (primeFactors n))
listaCapicua :: Show a => [a] -> Bool
listaCapicua xs = ys == reverse ys
    where ys = concatMap show xs
-- El cálculo es
      ghci> head (dropWhile (<=2015) conFactorizacionesCapicuas)</pre>
     2023
```

```
-- Ejercicio 2. Los árboles binarios se pueden representar mediante el
-- tipo Arbol definido por
     data \ Arbol \ a = H \ a
                   | N a (Arbol a) (Arbol a)
                  deriving Show
-- Por ejemplo, el árbol
          "C"
         / \
      "B"
             "A"
      / \
              / \
   "A" "B" "B" "C"
-- se puede definir por
     ejl :: Arbol String
     ej1 = N "C" (N "B" (H "A") (H "B")) (N "A" (H "B") (H "C"))
-- Definir la función
     renombraArbol :: Arbol t -> Arbol Int
-- tal que (renombraArbol a) es el árbol obtenido sustituyendo el valor
-- de los nodos y hojas por números tales que tengan el mismo valor si y
-- sólo si coincide su contenido. Por ejemplo,
     ghci> renombraArbol ej1
     N 2 (N 1 (H 0) (H 1)) (N 0 (H 1) (H 2))
-- Gráficamente,
           2
          / \
             1
       1
              0
      / \
     0 1 1
                 2
-- Nótese que los elementos del árbol pueden ser de cualquier tipo. Por
-- ejemplo,
     ghci> renombraArbol (N 9 (N 4 (H 8) (H 4)) (N 8 (H 4) (H 9)))
     N 2 (N 0 (H 1) (H 0)) (N 1 (H 0) (H 2))
    ghci> renombraArbol (N True (N False (H True) (H False)) (H True))
     N 1 (N 0 (H 1) (H 0)) (H 1)
```

```
ghci> renombraArbol (N False (N False (H True) (H False)) (H True))
     N 0 (N 0 (H 1) (H 0)) (H 1)
      ghci> renombraArbol (H False)
     H 0
     ghci> renombraArbol (H True)
     H 0
data Arbol a = H a
             | N a (Arbol a) (Arbol a)
             deriving (Show, Eq)
ej1 :: Arbol String
ej1 = N "C" (N "B" (H "A") (H "B")) (N "A" (H "B") (H "C"))
renombraArbol :: Ord t => Arbol t -> Arbol Int
renombraArbol a = aux a
   where ys
                       = valores a
          aux (H x) = H (posicion x ys)
          aux (N x i d) = N (posicion x ys) (aux i) (aux d)
-- (valores a) es la lista de los valores en los nodos y las hojas del
-- árbol a. Por ejemplo,
      valores ej1 == ["A","B","C"]
valores :: Ord a => Arbol a -> [a]
valores a = sort (nub (aux a))
   where aux (H x) = [x]
          aux (N x i d) = x : (aux i ++ aux d)
-- (posicion x ys) es la posición de x en ys. Por ejemplo.
     posicion 7 [5,3,7,8] == 2
posicion :: Eq a => a -> [a] -> Int
posicion x ys = head [n \mid (y,n) \leftarrow zip ys [0..], y == x]
-- Ejercicio 3. El buscaminas es un juego cuyo objetivo es despejar un
-- campo de minas sin detonar ninguna.
-- El campo de minas se representa mediante un cuadrado con NxN
-- casillas. Algunas casillas tienen un número, este número indica las
```

```
-- minas que hay en todas las casillas vecinas. Cada casilla tiene como
-- máximo 8 vecinas. Por ejemplo, el campo 4x4 de la izquierda
-- contiene dos minas, cada una representada por el número 9, y a la
-- derecha se muestra el campo obtenido anotando las minas vecinas de
-- cada casilla
     9 0 0 0
                   9 1 0 0
     0 0 0 0
                   2 2 1 0
     0 9 0 0
                   1910
     0 0 0 0
                   1 1 1 0
-- de la misma forma, la anotación del siguiente a la izquierda es el de
-- la derecha
     9 9 0 0 0
                   9 9 1 0 0
     0 0 0 0 0
                   3 3 2 0 0
     0 9 0 0 0
                   1 9 1 0 0
-- Utilizando la librería Data.Matrix, los campos de minas se
-- representan mediante matrices:
     type Campo = Matrix Int
  Por ejemplo, los anteriores campos de la izquierda se definen por
     ejCampo1, ejCampo2 :: Campo
     ejCampo1 = fromLists [[9,0,0,0],
                           [0,0,0,0],
                            [0,9,0,0],
                           [0,0,0,0]]
     eiCampo2 = fromLists [[9,9,0,0,0],
                            [0,0,0,0,0],
                            [0,9,0,0,0]]
-- Definir la función
     buscaminas :: Campo -> Campo
-- tal que (buscaminas c) es el campo obtenido anotando las minas
  vecinas de cada casilla. Por ejemplo,
     ghci> buscaminas ejCampol
     (9100)
     (2210)
     (1910)
     (11110)
    ghci> buscaminas ejCampo2
     (99100)
```

```
(33200)
    (19100)
type Campo = Matrix Int
type Casilla = (Int,Int)
ejCampo1, ejCampo2 :: Campo
ejCampol = fromLists [[9,0,0,0],
                      [0,0,0,0],
                      [0,9,0,0],
                      [0,0,0,0]
ejCampo2 = fromLists [[9,9,0,0,0],
                      [0,0,0,0,0]
                      [0,9,0,0,0]
-- 1ª solución
-- ========
buscaminas1 :: Campo -> Campo
buscaminas1 c = matrix m n (\((i,j) -> minas c (i,j))
    where m = nrows c
         n = ncols c
-- (minas c (i,j)) es el número de minas en las casillas vecinas de la
-- (i,j) en el campo de mina c y es 9 si en (i,j) hay una mina. Por
-- ejemplo,
     minas\ ejCampo\ (1,1) == 9
     minas\ ejCampo\ (1,2) == 1
     minas\ ejCampo\ (1,3) == 0
     minas\ ejCampo\ (2,1) == 2
minas :: Campo -> Casilla -> Int
minas c (i,j)
   | c!(i,j) == 9 = 9
    | otherwise = length (filter (==9)
                            [c!(x,y) | (x,y) \leftarrow vecinas m n (i,j)]
                    where m = nrows c
                          n = ncols c
-- (vecinas m n (i,j)) es la lista de las casillas vecinas de la (i,j) en
```

```
-- un campo de dimensiones mxn. Por ejemplo,
      vecinas 4 (1,1) = [(1,2),(2,1),(2,2)]
      vecinas 4 (1,2) = [(1,1),(1,3),(2,1),(2,2),(2,3)]
      vecinas 4 (2,3) = [(1,2),(1,3),(1,4),(2,2),(2,4),(3,2),(3,3),(3,4)]
vecinas :: Int -> Int -> Casilla -> [Casilla]
vecinas m n (i,j) = [(a,b) \mid a \leftarrow [\max 1 (i-1)..\min m (i+1)],
                              b \leftarrow [max 1 (j-1)..min n (j+1)],
                              (a,b) /= (i,j)
-- 2ª solución
-- =========
buscaminas2 :: Campo -> Campo
buscaminas2 c = matrix m n ((i,j) \rightarrow minas (i,j))
    where m = nrows c
          n = ncols c
          minas :: Casilla -> Int
          minas (i,j)
              | c!(i,j) == 9 = 9
              | otherwise
                  length (filter (==9) [c!(x,y) | (x,y) \leftarrow vecinas (i,j)])
          vecinas :: Casilla -> [Casilla]
          vecinas (i,j) = [(a,b) \mid a \leftarrow [\max 1 (i-1)..\min m (i+1)],
                                    b \leftarrow [max 1 (j-1)..min n (j+1)],
                                    (a,b) /= (i,j)
-- Ejercicio 4. La codificación de Fibonacci de un número n es una
-- cadena d = d(0)d(1)...d(k-1)d(k) de ceros y unos tal que
      n = d(0)*F(2) + d(1)*F(3) + ... + d(k-1)*F(k+1)
      d(k-1) = d(k) = 1
-- donde F(i) es el i-ésimo término de la sucesión de Fibonacci
      0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
-- Por ejemplo, la codificación de Fibonacci de 4 es "1011" ya que los
-- dos últimos elementos son iguales a 1 v
      1*F(2) + 0*F(3) + 1*F(4) = 1*1 + 0*2 + 1*3 = 4
-- La codificación de Fibonacci de los primeros números se muestra en la
-- siguiente tabla
      1 = 1 = F(2)
                                            11
       2 = 2 = F(3)
                                           011
```

```
3 = 3 = F(4)
                                        0011
      4 = 1+3
                 = F(2)+F(4)
                                        1011
                                  5 = 5
                = F(5)
                                  00011
      6 = 1+5 = F(2)+F(5)
                                  \equiv
                                       10011
       7 = 2+5 = F(3)+F(5)
                                      01011
                                  8 = 8
                = F(6)
                                  \equiv
                                      000011
      9 = 1+8 = F(2)+F(6)
                                 ■ 100011
     10 = 2+8 = F(3)+F(6)
                                 ≡ 010011
     11 = 3+8 = F(4)+F(6)
                                 ■ 001011
      12 = 1+3+8 = F(2)+F(4)+F(6) \equiv 101011
               = F(7)
     13 = 13
                                 ≡ 0000011
      14 = 1+13 = F(2)+F(7)
                               \equiv 1000011
-- Definir la función
      codigoFib :: Integer -> String
-- tal que (codigoFib n) es la codificación de Fibonacci del número
-- n. Por ejemplo,
     ahci> codigoFib 65
      "0100100011"
     ghci > [codigoFib n | n < - [1..7]]
      ["11","011","0011","1011","00011","10011","01011"]
codigoFib :: Integer -> String
codigoFib = (concatMap show) . codificaFibLista
-- (codificaFibLista n) es la lista correspondiente a la codificación de
-- Fibonacci del número n. Por ejemplo,
      ghci> codificaFibLista 65
      [0,1,0,0,1,0,0,0,1,1]
     ghci> [codificaFibLista n | n <- [1..7]]</pre>
      [[1,1],[0,1,1],[0,0,1,1],[1,0,1,1],[0,0,0,1,1],[1,0,0,1,1],[0,1,0,1,1]]
codificaFibLista :: Integer -> [Integer]
codificaFibLista n = map f [2..head xs] ++ [1]
    where xs = map fst (descomposicion n)
          fi \mid elem i xs = 1
              | otherwise = 0
-- (descomposicion n) es la lista de pares (i,f) tales que f es el
-- i-ésimo número de Fibonacci y las segundas componentes es una
```

```
-- sucesión decreciente de números de Fibonacci cuya suma es n. Por
-- ejemplo,
      descomposicion 65 == [(10,55),(6,8),(3,2)]
      descomposicion 66 == [(10,55),(6,8),(4,3)]
descomposicion :: Integer -> [(Integer, Integer)]
descomposicion 0 = []
descomposicion 1 = [(2,1)]
descomposicion n = (i,x): descomposicion (n-x)
   where (i,x) = fibAnterior n
-- (fibAnterior n) es el mayor número de Fibonacci menor o igual que
-- n. Por ejemplo,
     fibAnterior 33 == (8,21)
      fibAnterior 34 == (9,34)
fibAnterior :: Integer -> (Integer, Integer)
fibAnterior n = last (takeWhile p fibsConIndice)
   where p (i,x) = x <= n
-- fibsConIndice es la sucesión de los números de Fibonacci junto con
-- sus índices. Por ejemplo,
     ghci> take 10 fibsConIndice
      [(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8),(7,13),(8,21),(9,34)]
fibsConIndice :: [(Integer, Integer)]
fibsConIndice = zip [0..] fibs
-- fibs es la sucesión de Fibonacci. Por ejemplo,
      take 10 fibs == [0,1,1,2,3,5,8,13,21,34]
fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
-- Ejercicio 5. Definir las funciones
      grafo :: [(Int,Int)] -> Grafo Int Int
      caminos :: Grafo Int Int -> Int -> [[Int]]
-- tales que
-- + (grafo as) es el grafo no dirigido definido cuyas aristas son as. Por
   ejemplo,
        ghci > grafo [(2,4),(4,5)]
        G ND (array (2,5) [(2,[(4,0)]),(3,[]),(4,[(2,0),(5,0)]),(5,[(4,0)])])
-- + (caminos g a b) es la lista los caminos en el grafo g desde a hasta
```

```
b sin pasar dos veces por el mismo nodo. Por ejemplo,
        ghci > sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 7)
        [[1,3,5,7],[1,3,7]]
        ghci > sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 2 7)
        [[2,5,3,7],[2,5,7]]
        ghci > sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 2)
        [[1,3,5,2],[1,3,7,5,2]]
        ghci> caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 4
        ghci> length (caminos (grafo [(i,j) \mid i < [1..10], j < [i..10]]) 1 10)
        109601
grafo :: [(Int,Int)] -> Grafo Int Int
grafo as = creaGrafo ND (m,n) [(x,y,0) | (x,y) \leftarrow as]
    where ns = map fst as ++ map snd as
         m = minimum ns
          n = maximum ns
-- 1ª solución
-- =========
caminos :: Grafo Int Int -> Int -> Int -> [[Int]]
caminos g a b = aux [[b]] where
    aux [] = []
    aux ((x:xs):yss)
        | x == a = (x:xs) : aux yss
        | otherwise = aux ([z:x:xs | z <- adyacentes g x
                                   , z 'notElem' (x:xs)]
                           ++ yss)
-- 2ª solución (mediante espacio de estados)
   _____
caminos2 :: Grafo Int Int -> Int -> Int -> [[Int]]
caminos2 g a b = buscaEE sucesores esFinal inicial
   where inicial
                          = [b]
          sucesores (x:xs) = [z:x:xs \mid z \leftarrow adyacentes g x
                                     , z 'notElem' (x:xs)]
         esFinal(x:xs) = x == a
```

2

Exámenes del grupo 2

Antonia M. Chávez

2.1. Examen 1 (6 de Noviembre de 2014)

```
-- Informática (1º del Grado en Matemáticas)
-- 1º examen de evaluación continua (6 de noviembre de 2014)
-- Ejercicio 1. Definir por comprensión, recursión y con funciones de
-- orden superior, la función
     escalonada :: (Num a, Ord a) => [a] -> Bool
-- tal que (escalonada xs) se verifica si la diferencia entre números
-- consecutivos de xs es siempre, en valor absoluto, mayor que 2. Por
-- ejemplo,
    escalonada [1,5,8,23,5] == True
    escalonada [3,6,8,1] == False
    escalonada [-5,-2,4] == True
    escalonada [5,2] == True
-- 1ª definición (por comprensión):
escalonadaC :: (Num a, Ord a) => [a] -> Bool
escalonadaC xs = and [abs (x-y) > 2 \mid (x,y) < -zip xs (tail xs)]
-- 2ª definición (por recursión):
escalonadaR :: (Num a, Ord a) => [a] -> Bool
escalonadaR (x:y:zs) = abs (x-y) > 2 \&\& escalonadaR (y:zs)
```

```
escalonadaR
              = True
-- 3ª definición (con funciones de orden superior):
escalonada0 :: (Num a, Ord a) => [a] -> Bool
escalonada0 xs = all ((>2) . abs) (zipWith (-) xs (tail xs))
-- Ejercicio 2. Definir la función
     elementos :: Ord a => [a] -> [a] -> Int
-- tal que (elementos xs ys) es el número de elementos de xs son menores
-- que los correpondientes de ys hasta el primero que no lo sea. Por
-- ejemplo,
     elementos "prueba" "suspenso"
     elementos [1,2,3,4,5] [2,3,4,3,8,9] == 3
-- 1ª definición (por recursión):
elementosR :: Ord a => [a] -> [a] -> Int
elementosR (x:xs) (y:ys) | x < y = 1 + elementosR xs ys
                        | otherwise = 0
elementosR \_ _ = 0
-- 2ª definición (con funciones de orden superior):
elementos0 :: Ord a => [a] -> [a] -> Int
elementos0 xs ys = length (takeWhile menor (zip xs ys))
   where menor (x,y) = x < y
-- Ejercicio 3. Definir por comprensión y recursión la función
     sumaPosParR :: Int -> Int
-- tal que (sumaPosParR x) es la suma de los dígitos de x que ocupan
-- posición par. Por ejemplo,
     sumaPosPar 987651 = 8+6+1 = 15
     sumaPosPar 98765 = 8+6 = 14
     sumaPosPar 9876 = 8+6 = 14
    sumaPosPar 987 = 8
    sumaPosPar 9
-- 1ª definición (por recursión):
```

```
sumaPosParR :: Int -> Int
sumaPosParR x
    \mid even (length (digitos x )) = aux x
                     = aux (div x 10)
    ∣ otherwise
   where aux x | x < 10 = 0
               \mid otherwise = mod x 10 + sumaPosParR (div x 10)
digitos :: Int -> [Int]
digitos x = [read [y] | y < - show x]
-- 2ª definición (por comprensión):
sumaPosParC :: Int -> Int
sumaPosParC x = sum [y | (y,z) < -zip (digitos x) [1 ..], even z]
-- Ejercicio 3. Define la función
-- sinCentrales :: [a] -> [a]
-- tal que (sinCentrales xs) es la lista obtenida eliminando el elemento
-- central de xs si xs es de longitud impar y sus dos elementos
-- centrales si es de longitud par. Por ejemplo,
-- sinCentrales [1,2,3,4] == [1,4]
    sinCentrales [1,2,3] == [1,3]
    sinCentrales [6,9] == []
    sinCentrales [7]
                          == []
    sinCentrales []
                          == []
sinCentrales :: [a] -> [a]
sinCentrales [] = []
sinCentrales xs | even n = init ys ++ zs
           | otherwise = ys ++ zs
     where n
                   = length xs
           (ys,z:zs) = splitAt (n 'div' 2) xs
```

2.2. Examen 2 (4 de Diciembre de 2014)

```
-- Informática (1º del Grado en Matemáticas)
-- 2º examen de evaluación continua (4 de diciembre de 2014)
```

```
-- Ejercicio 1. Definir la función
      vuelta :: [Int] -> [a] -> [a]
-- tal que (vuelta ns xs) es la lista que resulta de repetir cada
-- elemento de xs tantas veces como indican los elementos de ns
-- respectivamente. Por ejemplo,
    vuelta [1,2,3,2,1] "ab" == "abbaaabba"
vuelta [2,3,1,5] [6,5,7] == [6,6,5,5,5,7,6,6,6,6,6]
    vuelta [1,2,3,2,1] "ab"
-- take 13 (vuelta [1 ..] [6,7]) == [6,7,7,6,6,6,7,7,7,7,6,6,6]
-- 1º definición (por recursión):
vuelta :: [Int] -> [a] -> [a]
vuelta (n:ns) (x:xs) = replicate n x ++ vuelta ns (xs++[x])
vuelta [] _ = []
-- 2ª definición (por comprensión):
vuelta2 :: [Int] -> [a] -> [a]
vuelta2 ns xs = concat [replicate n x | (n,x) \leftarrow zip ns (rep xs)]
-- (rep xs) es la lista obtenida repitiendo los elementos de xs. Por
-- eiemplo,
-- take 20 (rep "abbccc") == "abbcccabbcccabbcccab"
rep xs = xs ++ rep xs
-- Ejercicio 2.1. Definir (por comprensión, recursión y plegado por la
-- derecha, acumulador y plegado por la izquierda) la funcion
     posit :: ([Int] -> Int) -> [[Int]] -> [[Int]]
-- tal que (posit f xss) es la lista formada por las listas de xss tales
-- que, al evaluar f sobre ellas, devuelve un valor positivo. Por
-- ejemplo,
      posit\ head\ [[1,2],[0,-4],[2,-3]] == [[1,2],[2,-3]]
     posit sum [[1,2],[9,-4],[-8,3]] == [[1,2],[9,-4]]
-- 1ª definición (por comprensión):
positC :: ([Int] -> Int) -> [[Int]] -> [[Int]]
positC f xss = [xs | xs \leftarrow xss, f xs > 0]
```

```
-- 2ª definición (por recursión):
positR :: ([Int] -> Int) -> [[Int]] -> [[Int]]
positR f [] = []
positR f (xs:xss) | f xs > 0 = xs : positR f xss
                  | otherwise = positR f xss
-- 3ª definición (por plegado por la derecha):
positP :: ([Int] -> Int) -> [[Int]] -> [[Int]]
positP f = foldr g []
   where g xs yss | f xs > 0 = xs : yss
                   | otherwise = yss
-- 4ª definición (con acumulador):
positAC :: ([Int] -> Int) -> [[Int]] -> [[Int]]
positAC f xss = reverse (aux f xss [])
    where aux f [] yss = yss
          aux f (xs:xss) yss | f xs > 0 = aux f xss (xs:yss)
                             | otherwise = aux f xss yss
-- 5ª definición (por plegado por la izquierda):
positPL :: ([Int] -> Int) -> [[Int]] -> [[Int]]
positPL f xss = reverse (foldl g [] xss)
    where g yss xs | f xs > 0 = xs : yss
                   | otherwise = yss
-- Ejercicio 2.2. Definir, usando la función posit,
     p1 :: [[Int]]
-- tal que p1 es la lista de listas de [[1,2,-3],[4,-5,-1],[4,1,2,-5,-6]]
-- que cumplen que la suma de los elementos que ocupan posiciones pares
-- es negativa o cero.
p1 :: [[Int]]
p1 = [xs | xs <- l, xs 'notElem' positP f l]</pre>
    where l = [[1,2,-3],[4,-5,-1],[4,1,2,-5,-6]]
          f []
                   = 0
          f [x]
                   = X
          f(x:_:xs) = x + fxs
```

```
-- El cálculo es
-- ghci> p1
-- [[1,2,-3],[4,1,2,-5,-6]]
-- Ejercicio 3. Definir la función
-- maxCumplen :: (a -> Bool) -> [[a]] -> [a]
-- tal que (maxCumplen p xss) es la lista de xss que tiene más elementos
-- que cumplen el predicado p. Por ejemplo,
-- maxCumplen even [[3,2],[6,8,7],[5,9]] == [6,8,7]
-- maxCumplen odd [[3,2],[6,8,7],[5,9]] == [5,9]
-- maxCumplen (<5) [[3,2],[6,8,7],[5,9]] == [3,2]
-- maxCumplen p xss = head [xs | xs <- xss, f xs == m]
where m = maximum [f xs | xs <- xss]
f xs = length (filter p xs)
```

2.3. Examen 3 (23 de enero de 2015)

El examen es común con el del grupo 4 (ver página 115).

2.4. Examen 4 (12 de marzo de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 4º examen de evaluación continua (12 de marzo de 2015)
-- Librerías auxiliares
-- Librerías auxiliares
import Data.Array
import Data.List
import I1M.PolOperaciones
import Test.QuickCheck
```

```
-- Ejercicio 1. Dado un polinomio p con coeficientes enteros, se
-- llama parejo si está formado exclusivamente por monomios de grado par.
-- Definir la funcion
     parejo :: Polinomio Int -> Bool
-- tal que (parejo p) se verifica si el polinomio p es parejo. Por
-- ejemplo,
     ghci> let p1 = consPol 3 2 (consPol 4 1 polCero)
     ghci> parejo p1
     False
     ghci> let p2 = consPol 6 3 (consPol 4 1 (consPol 0 5 polCero))
     ghci> parejo p2
     True
parejo :: Polinomio Int -> Bool
parejo p = all even (grados p)
grados p | esPolCero p = [0]
         | otherwise = grado p : grados (restoPol p)
-- Ejercicio 2 . Las matrices pueden representarse mediante tablas cuyos
-- indices son pares de numeros naturales:
     type Matriz a = Array (Int, Int) a
-- Definir la funcion
     mayorElem :: Matriz -> Matriz
-- tal que (mayorElem p) es la matriz obtenida añadiéndole al principio
-- una columna con el mayor elemento de cada fila. Por ejemplo,
-- aplicando mayorElem a las matrices
-- |1 8 3|
                  |1 \ 2|
    |4 5 6|
                  |7 4|
                  |5 6|
-- se obtienen, respectivamente
-- |8 1 8 3 | |2 1 2 |
    |6 4 5 6| |7 7 4|
                  |6 5 6|
-- En Haskell,
     ghci> mayorElem (listArray ((1,1),(2,3)) [1,8,3, 4,5,6])
```

```
array ((1,1),(2,4))
            [((1,1),8),((1,2),1),((1,3),8),((1,4),3),
             ((2,1),6),((2,2),4),((2,3),5),((2,4),6)]
      ghci> mayorElem (listArray ((1,1),(3,2)) [1,2, 7,4, 5,6])
            array ((1,1),(3,3))
            [((1,1),2),((1,2),1),((1,3),2),
             ((2,1),7),((2,2),7),((2,3),4),
             ((3,1),6),((3,2),5),((3,3),6)]
type Matriz a = Array (Int,Int) a
mayorElem :: Matriz Int -> Matriz Int
mayorElem p = listArray ((1,1),(m,n+1))
                        [f i j | i \leftarrow [1..m], j \leftarrow [1..n+1]]
    where
      m = fst(snd(bounds p))
      n = snd(snd(bounds p))
      f i j | j > 1 = p! (i,j-1)
            | j==1 = maximum [p!(i,j)|j<-[1..n]]
-- Ejercicio 3. Definir la sucesion (infinita)
      numerosConDigitosPrimos :: [Int]
-- tal que sus elementos son los números enteros positivos con todos sus
-- dígitos primos. Por ejemplo,
      ghci> take 22 numerosConDigitosPrimos
      [2,3,5,7,22,23,25,27,32,33,35,37,52,53,55,57,72,73,75,77,222,223]
numerosConDigitosPrimos :: [Int]
numerosConDigitosPrimos =
    [n \mid n \leftarrow [2..], digitosPrimos n]
-- (digitosPrimos n) se verifica si todos los digitos de n son
-- primos. Por ejemplo,
      digitosPrimos 352 == True
      digitosPrimos 362 == False
digitosPrimos :: Int -> Bool
digitosPrimos n = all ('elem' "2357") (show n)
```

```
-- Ejercicio 4. Definir la función
      alterna :: Int -> Int -> Matriz Int
  tal que (alterna\ n\ x) es la matriz de dimensiones n \times n que contiene el
   valor x alternado con 0 en todas sus posiciones. Por ejemplo,
      ghci> alterna 4 2
      array ((1,1),(4,4)) [((1,1),2),((1,2),0),((1,3),2),((1,4),0),
                           ((2,1),0),((2,2),2),((2,3),0),((2,4),2),
                           ((3,1),2),((3,2),0),((3,3),2),((3,4),0),
                            ((4,1),0),((4,2),2),((4,3),0),((4,4),2)]
      ghci>alterna 3 1
     array ((1,1),(3,3)) [((1,1),1),((1,2),0),((1,3),1),
                           ((2,1),0),((2,2),1),((2,3),0),
                           ((3,1),1),((3,2),0),((3,3),1)]
alterna :: Int -> Int -> Matriz Int
alterna n x =
    array ((1,1),(n,n)) [((i,j),f i j) | i \leftarrow [1..n], j \leftarrow [1..n]]
    where f i j \mid even (i+j) = x
                | otherwise = 0
-- Ejercicio 5. Los árboles binarios con datos en nodos y hojas se
-- define por
      data Arbol a = H a \mid N a (Arbol a) (Arbol a) deriving Show
  Por ejemplo, el árbol
             3
            / \
           /
          4
               7
         / | / |
       5 00 3
      / \
      2
          0
-- se representa por
     ejArbol :: Arbol Integer
      ejArbol = N 3 (N 4 (N 5 (H 2)(H 0)) (H 0)) (N 7 (H 0) (H 3))
```

```
-- Definir la función
     caminos :: Eq a => a -> Arbol a -> [[a]]
-- tal que (caminos x ar) es la lista de caminos en el arbol ar hasta
-- llegar a x. Por ejemplo
-- caminos 0 ejArbol == [[3,4,5,0],[3,4,0],[3,7,0]]
     caminos \ 3 \ ejArbol == [[3],[3,7,3]]
    caminos 1 ejArbol == []
data Arbol a = H a | N a (Arbol a) (Arbol a) deriving Show
ejArbol :: Arbol Integer
ejArbol = N 3 (N 4 (N 5 (H 2)(H 0)) (H 0)) (N 7 (H 0) (H 3))
caminos :: Eq a => a -> Arbol a -> [[a]]
caminos x (H y) | x == y = [[y]]
              | otherwise = []
caminos x (N y i d)
    | x == y = [y] : [y:xs | xs <- caminos x i ++ caminos x d]
    | otherwise = [y:xs | xs <- caminos x i ++ caminos x d]
       Examen 5 (7 de mayo de 2015)
2.5.
-- Informática (1º del Grado en Matemáticas)
-- Informática: 5º examen de evaluación continua (7 de mayo de 2015)
import Data.Array
import Data.List
import Data.Numbers.Primes
import I1M.Grafo
import I1M.Monticulo
-- Ejercicio 1.1. Un número tiene una inversión cuando existe un dígito
-- x a la derecha de otro dígito de forma que x es menor que y. Por
-- ejemplo, en el número 1745 hay dos inversiones ya que 4 es menor
```

-- que 7 y 5 es menor que 7 y están a la derecha de 7.

-- Definir la función

```
-- nInversiones :: Integer -> Int
-- tal que (nInversiones n) es el número de inversiones de n. Por
-- ejemplo,
-- nInversiones 1745 == 2
-- 1º definición
-- =========
nInversiones1 :: Integer -> Int
nInversiones1 = length . inversiones . show
-- (inversiones xs) es la lista de las inversiones de xs. Por ejemplo,
     inversiones "1745" == [('7', '4'), ('7', '5')]
     inversiones "cbafd" == [('c', 'b'), ('c', 'a'), ('b', 'a'), ('f', 'd')]
inversiones :: Ord a => [a] -> [(a,a)]
inversiones [] = []
inversiones (x:xs) = [(x,y) | y \leftarrow xs, y \leftarrow x] ++ inversiones xs
-- 2ª definición
-- ==========
nInversiones2 :: Integer -> Int
nInversiones2 = aux . show
   where aux [] = 0
          aux (y:ys) | null xs = aux ys
                    | otherwise = length xs + aux ys
                    where xs = [x \mid x \leftarrow ys, x < y]
-- 3ª solución
-- ========
nInversiones3 :: Integer -> Int
nInversiones3 x = sum $ map f xss
   where xss = init $ tails (show x)
          f(x:xs) = length $ filter (<x) xs
-- Comparación de eficiencia
```

```
-- La comparación es
      ghci> let f1000 = product [1..1000]
      ghci> nInversiones1 f1000
      1751225
      (2.81 secs, 452526504 bytes)
      ghci> nInversiones2 f1000
     1751225
     (2.45 secs, 312752672 bytes)
     ghci> nInversiones3 f1000
     1751225
      (0.71 secs, 100315896 bytes)
-- En lo sucesivo, se usa la 3º definición
nInversiones :: Integer -> Int
nInversiones = nInversiones3
-- Ejercicio 1.2. Calcular cuántos números hay de 4 cifras con más de
-- dos inversiones.
-- El cálculo es
      ghci> length [x \mid x \leftarrow [1000 ...9999], nInversiones x > 2]
      5370
-- Ejercicio 2. La notas de un examen se pueden representar mediante un
-- vector en el que los valores son los pares formados por los nombres
-- de los alumnos y sus notas.
-- Definir la función
     aprobados :: (Num a, Ord a) => Array Int (String,a) -> Maybe [String]
-- tal que (aprobados p) es la lista de los nombres de los alumnos que
-- han aprobado y Nothing si todos están suspensos. Por ejemplo,
      ghci> aprobados (listArray (1,3) [("Ana",5),("Pedro",3),("Lucia",6)])
     Just ["Ana","Lucia"]
      ghci> aprobados (listArray (1,3) [("Ana",4),("Pedro",3),("Lucia",4.9)])
     Nothing
```

```
aprobados :: (Num a, Ord a) => Array Int (String,a) -> Maybe [String]
aprobados p | null xs = Nothing
            | otherwise = Just xs
    where xs = [x \mid i \leftarrow indices p]
                  , let (x,n) = p!i
                  , n >= 5
-- Ejercicio 3.1. Definir la función
      refina :: Ord a => Monticulo a -> [a -> Bool] -> Monticulo a
-- tal que (refina m ps) es el formado por los elementos del montículo m
-- que cumplen todos predicados de la lista ps. Por ejemplo,
      ghci> refina (foldr inserta vacio [1..22]) [(<7), even]</pre>
     M 2 1 (M 4 1 (M 6 1 Vacio Vacio) Vacio) Vacio
      ghci> refina (foldr inserta vacio [1..22]) [(<1), even]</pre>
      Vacio
refina :: Ord a => Monticulo a -> [a-> Bool] -> Monticulo a
refina m ps | esVacio m = vacio
            | cumple x ps = inserta x (refina r ps)
            | otherwise = refina r ps
            where x = menor m
                  r = resto m
-- (cumple x ps) se verifica si x cumple todos los predicados de ps. Por
-- ejemplo,
      cumple 2 [(<7), even] == True
      cumple 3 [(<7), even] == False
      cumple \ 8 \ [(<7), even] == False
cumple :: a -> [a -> Bool] -> Bool
cumple x ps = and [p x | p \leftarrow ps]
-- La función 'cumple'se puede definir por recursión:
cumple2 x [] = True
cumple2 x (p:ps) = p x && cumple x ps
-- Ejercicio 3.2. Definir la función
     diferencia :: Ord a => Monticulo a -> Monticulo a -> Monticulo a
```

```
-- tal que (diferencia m1 m2) es el montículo formado por los elementos
-- de m1 que no están en m2. Por ejemplo,
     ghci> diferencia (foldr inserta vacio [7,5,6]) (foldr inserta vacio [4,5])
     M 6 1 (M 7 1 Vacio Vacio) Vacio
diferencia :: Ord a => Monticulo a -> Monticulo a -> Monticulo a
diferencia m1 m2
                       = vacio
   esVacio m1
   esVacio m2
                        = m1
   | menor m1 < menor m2 = inserta (menor m1) (diferencia (resto m1) m2)</pre>
   | menor m1 == menor m2 = diferencia (resto m1) (resto m2)
   | menor m1 > menor m2 = diferencia m1 (resto m2)
-- Ejercicio 4. Una matriz latina de orden n es una matriz cuadrada de
-- orden n tal que todos sus elementos son cero salvo los de su fila y
-- columna central, si n es impar; o los de sus dos filas y columnas
-- centrales, si n es par.
-- Definir la función
     latina :: Int -> Array (Int, Int) Int
-- tal que (latina n) es la siguiente matriz latina de orden n:
-- + Para n impar:
      0 0... 0 1 0 ... 0
                              01
       0 0 . . . 0 2 0 . . . 0
                              0
       0 0 . . . 0 3 0 . . . 0
                              01
       | 1 2.....n-1
       | .......
       | 0 0... 0 n-2 0 ... 0
       | 0 0... 0 n-1 0 ... 0
       | 0 0... 0 n 0 ... 0
-- + Para n par:
       0 0... 0 1
                    n 0 ...
                                     0 |
       | 0 0... 0 2 n-1 0 ...
                                     0
      | 0 0... 0 3 n-2 0 ...
                                     0 |
       | ......
       | 1 2.....n-1
                                     n
      | n n-1 ..... 2
                                     1
```

```
| 0 0... 0 n-2 3
                              0 . . .
                                       0
                                           0 |
        | 0 0... 0 n-1 2
                              0 . . .
                                           0 |
        0 0... 0 n
                                           01
                         1
                              0 . . .
  Por ejemplo,
      ghci> elems (latina 5)
      [0,0,1,0,0,
       0,0,2,0,0,
       1,2,3,4,5,
       0,0,4,0,0,
       [0,0,5,0,0]
      ghci> elems (latina 6)
      [0,0,1,6,0,0,
      0,0,2,5,0,0,
       1,2,3,4,5,6,
       6,5,4,3,2,1,
       0,0,5,2,0,0,
       [0,0,6,1,0,0]
latina :: Int -> Array (Int,Int) Int
latina n | even n = latinaPar n
         | otherwise = latinaImpar n
-- (latinaImpar n) es la matriz latina de orden n, siendo n un número
-- impar. Por ejemplo,
      ghci> elems (latinaImpar 5)
      [0,0,1,0,0,
       0,0,2,0,0,
       1,2,3,4,5,
       0,0,4,0,0,
       0,0,5,0,0]
latinaImpar :: Int -> Array (Int,Int) Int
latinaImpar n =
    array ((1,1),(n,n)) [((i,j),f i j) | i \leftarrow [1..n], j \leftarrow [1..n]]
    where c = 1 + (n 'div' 2)
          fij | i == c
                 | j == c
                 | otherwise = 0
```

```
-- (latinaPar n) es la matriz latina de orden n, siendo n un número
-- par. Por ejemplo,
      ghci> elems (latinaPar 6)
      [0,0,1,6,0,0,
       0,0,2,5,0,0,
       1,2,3,4,5,6,
       6,5,4,3,2,1,
       0,0,5,2,0,0,
       [0,0,6,1,0,0]
latinaPar :: Int -> Array (Int,Int) Int
latinaPar n =
    array ((1,1),(n,n)) [((i,j),f i j) | i \leftarrow [1..n], j \leftarrow [1..n]]
    where c = n 'div' 2
          fij | i == c
                           = j
                | i == c+1 = n-j+1
                | j == c
                | j == c+1 = n-i+1
                | otherwise = 0
-- Ejercicio 5. Definir las funciones
      grafo :: [(Int,Int)] -> Grafo Int Int
      caminos :: Grafo Int Int -> Int -> [[Int]]
-- tales que
   + (grafo as) es el grafo no dirigido definido cuyas aristas son as. Por
     ejemplo,
        ghci > grafo [(2,4),(4,5)]
        G ND (array (2,5) [(2,[(4,0)]),(3,[]),(4,[(2,0),(5,0)]),(5,[(4,0)])])
  + (caminos g a b) es la lista los caminos en el grafo g desde a hasta
     b sin pasar dos veces por el mismo nodo. Por ejemplo,
        ghci > caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 7
        [[1,3,7],[1,3,5,7]]
        ghci > caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 2 7
        [[2,5,7],[2,5,3,7]]
        ghci > caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 2
        [[1,3,7,5,2],[1,3,5,2]]
        ghci > caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 4
```

```
grafo :: [(Int,Int)] -> Grafo Int Int
grafo as = creaGrafo ND (m,n) [(x,y,0) | (x,y) \leftarrow as]
    where ns = map fst as ++ map snd as
         m = minimum ns
         n = maximum ns
caminos :: Grafo Int Int -> Int -> Int -> [[Int]]
caminos g a b = reverse (aux b a [])
   where aux a b vs
              | a == b = [[b]]
              | otherwise = [b:xs | c <- adyacentes g b
                                  , c 'notElem' vs
                                  , xs <- aux a c (c:vs)]
-- Ejercicio 6. Definir la función
     sumaDePrimos :: Int -> [[Int]]
-- tal que (sumaDePrimos x) es la lista de las listas no crecientes de
-- números primos que suman x. Por ejemplo:
    sumaDePrimos 10 == [[7,3],[5,5],[5,3,2],[3,3,2,2],[2,2,2,2,2]]
sumaDePrimos :: Integer -> [[Integer]]
sumaDePrimos 1 = []
sumaDePrimos n = aux n (reverse (takeWhile (<=n) primes))</pre>
    where aux _ [] = []
         aux n (x:xs) | x > n = aux n xs
                       | x == n = [n] : aux n xs
                       otherwise = map (x:) (aux (n-x) (x:xs)) ++ aux n xs
```

2.6. Examen 6 (15 de junio de 2015)

El examen es común con el del grupo 4 (ver página 137).

2.7. Examen 7 (3 de julio de 2015)

El examen es común con el del grupo 1 (ver página 42).

2.8. Examen 8 (4 de septiembre de 2015)

El examen es común con el del grupo 1 (ver página 50).

2.9. Examen 9 (4 de diciembre de 2015)

El examen es común con el del grupo 1 (ver página 61).

3

Exámenes del grupo 3

Andrés Cordón

3.1. Examen 1 (4 de Noviembre de 2014)

```
-- Informática (1º del Grado en Matemáticas)
-- 1º examen de evaluación continua (4 de noviembre de 2014)

import Test.QuickCheck

-- Ejercicio 1.1. Definir, usando listas por comprensión, la función
-- mulPosC :: Int -> [Int] -> [Int]
-- tal que (mulPosC x xs) es la lista de los elementos de xs que son
-- múltiplos positivos de x. Por ejemplo,
-- mulPosC 3 [1,6,-5,-9,33] == [6,33]

mulPosC :: Int -> [Int] -> [Int]
mulPosC x xs = [y | y <- xs, y > 0, rem y x == 0]

-- Ejercicio 1.1. Definir, por recursión, la función
-- mulPosR :: Int -> [Int] -> [Int]
-- tal que (mulPosR x xs) es la lista de los elementos de xs que son
-- múltiplos positivos de x. Por ejemplo,
-- mulPosR 3 [1,6,-5,-9,33] == [6,33]
```

```
mulPosR :: Int -> [Int] -> [Int]
mulPosR _ [] = []
mulPosR x (y:ys) | y > 0 \&\& rem y x == 0 = y : mulPosR x ys
                             = mulPosR x ys
               | otherwise
-- Ejercicio 2.1. Diremos que una lista numérica es muy creciente si
-- cada elemento es mayor estricto que el doble del anterior.
-- Definir el predicado
     muyCreciente :: (Ord a, Num a) => [a] -> Bool
-- tal que (muyCreciente xs) se verifica si xs es una lista muy
-- creciente. Por ejemplo,
     muyCreciente [3,7,100,220] == True
     muyCreciente [1,5,7,1000] == False
muyCreciente :: (Ord a, Num a) => [a] -> Bool
muyCreciente xs = and [y > 2*x \mid (x,y) < -zip xs (tail xs)]
-- Ejercicio 2.2. Para generar listas muy crecientes, consideramos la
-- función
-- f :: Integer -> Integer
-- dada por las ecuaciones recursivas:
    f(x,0) = x
    f(x,n) = 2*f(x,n-1) + 1, si n > 0
-- Definir la función
    lista :: Int -> Integer -> [Integer]
-- tal que (lista n x) es la lista [f(x,0),f(x,1),...,f(x,n)]
-- Por ejemplo,
-- lista 5 4 == [4,9,19,39,79]
f :: Integer -> Integer
f \times 0 = x
f \times n = 2 * f \times (n-1) + 1
```

```
lista :: Int -> Integer -> [Integer]
lista n x = take n [f x i | i \leftarrow [0..]]
-- Ejercicio 3.1. Representamos un conjunto de n masas en el plano
-- mediante una lista de n pares de la forma ((ai,bi),mi) donde (ai,bi)
-- es la posición y mi es la masa puntual.
-- Definir la función
     masaTotal :: [((Float, Float), Float)] -> Float
-- tal que (masaTotal xs) es la masa total del conjunto xs. Por ejemplo,
     masaTotal [((-1,3),2),((0,0),5),((1,4),3)] == 10.0
masaTotal :: [((Float, Float), Float)] -> Float
masaTotal xs = sum [m | (_,m) <- xs]
-- Ejercicio 3.2. Se define el diámetro de un conjunto de puntos del
-- plano como la mayor distancia entre dos puntos del conjunto.
-- Definir la función
      diametro :: [[(Float,Float),Float)] -> Float
-- tal que (diametro xs) es el diámetro del conjunto de masas xs. Por
-- ejemplo,
     diametro [((-1,3),2),((0,0),5),((1,4),3)] == 4.1231055
diametro :: [((Float,Float),Float)] -> Float
diametro xs = maximum [dist p q | (p,_) \leftarrow xs, (q,_) \leftarrow xs]
    where dist (a,b) (c,d) = sqrt ((a-c)^2+(b-d)^2)
-- Ejercicio 4. Se define el grado de similitud entre dos cadenas de
-- texto como la menor posición en la que ambas cadenas difieren, o bien
-- como la longitud de la cadena menor si una cadena es una segmento
-- inicial de la otra.
-- Definir la función:
     grado :: String -> String -> Int
```

```
-- tal que (grado xs ys) es el grado de similitud entre las cadenas xs e ys.
-- Por ejemplo,
     grado "cadiz" "calamar" == 2
     grado "sevilla" "betis" == 0
     grado "pi" "pitagoras" == 2
-- 1ª definición:
grado :: String -> String -> Int
grado xs ys | null zs = min (length xs) (length ys)
           | otherwise = head zs
   where zs = [i \mid ((x,y),i) < -zip (zip xs ys) [0..], x /= y]
-- 2ª definición:
grado2 :: String -> String -> Int
grado2 xs ys = length (takeWhile (\((x,y) -> x == y) (zip xs ys))
        Examen 2 (5 de Diciembre de 2014)
-- Informática (1º del Grado en Matemáticas)
-- 1º examen de evaluación continua (5 de diciembre de 2014)
import Test.QuickCheck
-- Ejercicio 1.1. Definir, por comprensión, la función
-- cuentaC :: Ord a => a -> a -> [a] -> Int
-- tal que (cuentaC x y xs) es el número de elementos de la lista xs que
-- están en el intervalo [x,y]. Por ejemplo,
-- cuentaC 50 150 [12,3456,100,78,711] == 2
cuentaC :: Ord a => a -> a -> [a] -> Int
cuentaC x y xs = length [z \mid z \leftarrow xs, x \leftarrow z \& x \neq y]
-- Ejercicio 1.2. Definir, usando orden superior (map, filter, ...), la
-- función
```

-- cuentaS :: Ord a => a -> a -> [a] -> Int

```
-- tal que (cuentaS x y xs) es el número de elementos de la lista xs que
-- están en el intervalo [x,y]. Por ejemplo,
     cuentaS 50 150 [12,3456,100,78,711] == 2
cuentaS :: Ord a => a -> a -> [a] -> Int
cuentaS x y = length . filter (>=x) . filter (<=y)</pre>
-- Ejercicio 1.3. Definir, por recursión, la función
     cuentaR :: Ord a => a -> a -> [a] -> Int
-- tal que (cuentaR x y xs) es el número de elementos de la lista xs que
-- están en el intervalo [x,y]. Por ejemplo,
-- cuentaR 50 150 [12,3456,100,78,711] == 2
cuentaR :: Ord a => a -> a -> [a] -> Int
cuentaR \_ [] = 0
cuentaR x y (z:zs) | x \le z \& z \le y = 1 + cuentaR x y zs
                  otherwise = cuentaR x y zs
-- Ejercicio 1.4. Definir, por plegado (foldr), la función
      cuentaP :: Ord a => a -> a -> [a] -> Int
-- tal que (cuentaP x y xs) es el número de elementos de la lista xs que
-- están en el intervalo [x,y]. Por ejemplo,
     cuentaP 50 150 [12,3456,100,78,711] == 2
-- 1º definición:
cuentaP :: Ord a => a -> a -> [a] -> Int
cuentaP x y = foldr (\z u -> if x <= z && z <= y then 1 + u else u) 0
-- 2ª definición:
cuentaP2 :: Ord a => a -> a -> [a] -> Int
cuentaP2 \times y = foldr f 0
   where f z u | x \leq z \&\& z \leq y = 1 + u
                | otherwise = u
```

```
-- Ejercicio 1.5. Comprobar con QuickCheck que las definiciones de
-- cuenta son equivalentes.
-- La propiedad es
prop cuenta :: Int -> Int -> [Int] -> Bool
prop cuenta x y zs =
    cuentaS x y zs == n &&
    cuentaR x y zs == n &&
    cuentaP x y zs == n
   where n = cuentaC \times y zs
-- La comprobación es
-- ghci> quickCheck prop cuenta
     +++ OK, passed 100 tests.
__ ______
-- Ejercicio 2. Definir la función
     mdp :: Integer -> Integer
-- tal que (mdp x) es el mayor divisor primo del entero positivo x. Por
-- ejemplo,
     mdp 100
               == 5
     mdp 45
-- mdp 12345 == 823
                               mdp :: Integer -> Integer
\operatorname{mdp} x = \operatorname{head} [i \mid i \leftarrow [x,x-1..2], \operatorname{rem} x i == 0, \operatorname{primo} i]
primo :: Integer -> Bool
primo x = divisores x == [1,x]
  where divisores x = [y \mid y \leftarrow [1..x], rem x y == 0]
-- Ejercicio 2.2. Definir la función
     busca :: Integer -> Integer -> Integer
-- tal que (busca a b) es el menor entero por encima de a cuyo mayor
-- divisor primo es mayor o igual que b. Por ejemplo,
  busca 2014 1000 == 2017
    busca 2014 10000 == 10007
```

busca :: Integer -> Integer -> Integer busca a b = head $[i \mid i \leftarrow [max \ a \ b..], \ mdp \ i >= b]$ -- Ejercicio 3.1. Consideramos el predicado -- comun :: Eq b => (a -> b) -> [a] -> Bool-- tal que (comun f xs) se verifica si al aplicar la función f a los -- elementos de xs obtenemos siempre el mismo valor. Por ejemplo, -- comun (^2) [1,-1,1,-1] comun (+1) [1,2,1] == False comun length ["eva","iba","con","ana"] == True -- Definir, por recursión, el predicado comun. -- 1º definición comunR :: **Eq** b => (a -> b) -> [a] -> **Bool** comunR f (x:y:xs) = f x == f y && comunR f (y:xs) comunR _ _ = True -- 2ª definición: comunR2 :: **Eq** b => (a -> b) -> [a] -> **Bool** comunR2 [] = True comunR2 f (x:xs) = aux xswhere z = f x aux [] = True aux (y:ys) = f y == z && aux ys -- Comparación de eficiencia: ghci> comunR (\n -> product [1..n]) (replicate 20 20000) True (39.71 secs, 11731056160 bytes) ghci> comunR2 (\n -> product [1..n]) (replicate 20 20000) True -- (20.36 secs, 6175748288 bytes)

__ _______

```
-- Ejercicio 3.2. Definir, por comprensión, el predicado comun.
-- 1ª definición
comunC :: Eq b => (a -> b) -> [a] -> Bool
comunC f xs = and [f a == f b | (a,b) \leftarrow zip xs (tail xs)]
-- 2ª definición
comunC2 :: Eq b => (a -> b) -> [a] -> Bool
comunC2 _ [] = True
comunC2 f (x:xs) = and [f y == z | y \leftarrow xs]
   where z = f x
-- Comparación de eficiencia:
      ghci> comunC (\n -> product [1..n]) (replicate 20 20000)
      True
     (39.54 secs, 11731056768 bytes)
     ghci> comunC2 (\n -> product [1..n]) (replicate 20 20000)
     True
     (20.54 secs, 6175747048 bytes)
-- Ejercicio 4. Definir la función
     extension :: String -> (String, String)
-- tal que (extension cs) es el par (nombre, extensión) del fichero
-- cs. Por ejemplo,
    extension "examen.hs"
                             == ("examen", hs")
     extension "index.html" == ("index","html")
     extension "sinExt"
                              == ("sinExt","")
    extension "raro.pdf.ps" == ("raro","pdf.ps")
extension :: String -> (String, String)
extension cs
    '.' 'notElem' cs = (cs,"")
                = (takeWhile (/='.') cs, tail (dropWhile (/='.') cs))
    | otherwise
-- Ejercicio 5.1. Un entero positivo x es especial si en x y en x^2
```

```
-- aparecen los mismos dígitos. Por ejemplo, 10 es especial porque en 10
-- y en 10^2 = 100 aparecen los mismos dígitos (0 y 1). Asimismo,
-- 4762 es especial porque en 4762 y en 4762^2 = 22676644 aparecen los
-- mismos dígitos (2, 4, 6 y 7).
-- Definir el predicado
-- especial :: Integer -> Bool
-- tal que (especial x) se verifica si x es un entero positivo especial.
especial :: Integer -> Bool
especial x = digitos x == digitos (x^2)
    where digitos z = [d \mid d \leftarrow ['0'...'9'], d 'elem' show z]
-- Ejercicio 5.2. Definir la función
     especiales :: Int -> [Integer]
-- tal que (especiales x) es la lista de los x primeros números
-- especiales que no son potencias de 10. Por ejemplo,
    espaciales 5 == [4762, 4832, 10376, 10493, 11205]
especiales :: Int -> [Integer]
especiales x = take x [i | i \leftarrow [1..], not (pot10 i), especial i]
    where pot10 z = z 'elem' takeWhile (\leq z) (map (10^) [0 ..])
```

3.3. Examen 3 (23 de enero de 2015)

El examen es común con el del grupo 4 (ver página 115).

3.4. Examen 4 (18 de marzo de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 4º examen de evaluación continua (18 de marzo de 2015)
-- -- -- § Librerías auxiliares
```

```
import Data.List
import Data.Array
import I1M.Pol
import Data.Numbers.Primes
-- Ejercicio 1.1. Definir la función
     agrupa :: Eq a => [a] -> [(a, Int)]
-- tal que (agrupa xs) es la lista obtenida agrupando las ocurrencias
-- consecutivas de elementos de xs junto con el número de dichas
-- ocurrencias. Por ejemplo:
     agrupa "aaabzzaa" == [('a',3),('b',1),('z',2),('a',2)]
-- 1º definición (por recursión)
agrupa :: Eq a => [a] -> [(a, Int)]
agrupa xs = aux xs 1
   where aux (x:y:zs) n \mid x == y = aux (y:zs) (n+1)
                       \mid otherwise = (x,n) : aux (y:zs) 1
          aux [x]
                                   = [(x,n)]
                      n
-- 2ª definición (por recursión usando takeWhile):
agrupa2 :: Eq a => [a] -> [(a, Int)]
agrupa2 [] = []
agrupa2 (x:xs) =
    (x,1 + length (takeWhile (==x) xs)): agrupa2 (dropWhile (==x) xs)
-- 3ª definición (por comprensión usando group):
agrupa3 :: Eq a => [a] -> [(a, Int)]
agrupa3 xs = [(head ys,length ys) | ys <- group xs]</pre>
-- 4ª definición (usando map y group):
agrupa4 :: Eq a => [a] -> [(a,Int)]
agrupa4 = map (\xs -> (head xs, length xs)) . group
    -- Ejercicio 1.2. Definir la función expande
-- expande :: [(a,Int)] -> [a]
-- tal que (expande xs) es la lista expandida correspondiente a ps (es
```

```
-- decir, es la lista xs tal que la comprimida de xs es ps. Por ejemplo,
-- expande [('a',2),('b',3),('a',1)] == "aabbba"
-- 1ª definición (por comprensión)
expande :: [(a, Int)] -> [a]
-- 2ª definición (por concatMap)
expande2 :: [(a, Int)] -> [a]
expande2 = concatMap ((x,k) -> replicate k x)
-- 3ª definición (por recursión)
expande3 :: [(a, Int)] -> [a]
expande3 [] = []
expande3 ((x,n):ps) = replicate n x ++ expande3 ps
-- Ejercicio 2.2. Dos enteros positivos a y b se dirán relacionados
-- si poseen, exactamente, un factor primo en común. Por ejemplo, 12 y
-- 14 están relacionados pero 6 y 30 no lo están.
-- Definir la lista infinita
     paresRel :: [(Int,Int)]
-- tal que paresRel enumera todos los pares (a,b), con 1 <= a < b,
-- tal que a y b están relacionados. Por ejemplo,
    ghci> take 10 paresRel
    [(2,4),(2,6),(3,6),(4,6),(2,8),(4,8),(6,8),(3,9),(6,9),(2,10)]
-- ¿Qué lugar ocupa el par (51,111) en la lista infinita paresRel?
paresRel :: [(Int,Int)]
paresRel = [(a,b) \mid b \leftarrow [1..], a \leftarrow [1..b-1], relacionados a b]
relacionados :: Int -> Int -> Bool
relacionados a b =
    length (nub (primeFactors a 'intersect' primeFactors b)) == 1
-- El cálculo es
```

```
ghci> 1 + length (takeWhile (/=(51,111)) paresRel)
      2016
-- Ejercicio 3. Representamos árboles binarios con elementos en las
-- hojas y en los nodos mediante el tipo de dato
      data Arbol a = H a | N a (Arbol a) (Arbol a) deriving Show
-- Por ejemplo,
      ejl :: Arbol Int
      ej1 = N \ 5 \ (N \ 2 \ (H \ 1) \ (H \ 2)) \ (N \ 3 \ (H \ 4) \ (H \ 2))
-- Definir la función
      ramasCon :: Eq a => Arbol a -> a -> [[a]]
-- tal que (ramasCon a x) es la lista de las ramas del árbol a en las
-- que aparece el elemento x. Por ejemplo,
   ramasCon\ ej1\ 2 == [[5,2,1],[5,2,2],[5,3,2]]
data Arbol a = H a | N a (Arbol a) (Arbol a) deriving Show
ejl :: Arbol Int
ej1 = N 5 (N 2 (H 1) (H 2)) (N 3 (H 4) (H 2))
-- 1º definición
-- =========
ramasCon :: Eq a => Arbol a -> a -> [[a]]
ramasCon a x = [ys \mid ys \leftarrow ramas a, x 'elem' ys]
ramas :: Arbol a -> [[a]]
ramas (H x) = [[x]]
ramas (N \times i d) = [x:ys | ys <- ramas i ++ ramas d]
-- 2ª definición
-- ==========
ramasCon2 :: Eq a => Arbol a -> a -> [[a]]
ramasCon2 a x = filter (x 'elem') (ramas2 a)
ramas2 :: Arbol a -> [[a]]
```

```
ramas2 (H x) = [[x]]
ramas2 (N x i d) = map (x:) (ramas2 i ++ ramas2 d)
-- Ejercicio 4. Representamos matrices mediante el tipo de dato
      type Matriz a = Array (Int, Int) a
-- Por ejemplo,
     ejM :: Matriz Int
     ejM = listArray ((1,1),(2,4)) [1,2,3,0,4,5,6,7]
-- representa la matriz
-- |1 2 3 0|
     |4 5 6 7|
-- Definir la función
     ampliada :: Num a => Matriz a -> Matriz a
-- tal que (ampliada p) es la matriz obtenida al añadir una nueva fila
-- a p cuyo elemento i-ésimo es la suma de la columna i-ésima de p.
-- Por ejemplo,
   |1 2 3 0|
                       1 2 3 0
     |4 5 6 7| ==>
                      |4 5 6 7|
                       |5 7 9 7|
-- En Haskell,
     ghci> ampliada ejM
     array ((1,1),(3,4)) [((1,1),1),((1,2),2),((1,3),3),((1,4),0),
                           ((2,1),4),((2,2),5),((2,3),6),((2,4),7),
                           ((3,1),5),((3,2),7),((3,3),9),((3,4),7)]
type Matriz a = Array (Int,Int) a
ejM :: Matriz Int
ejM = listArray ((1,1),(2,4)) [1,2,3,0,4,5,6,7]
ampliada :: Num a => Matriz a -> Matriz a
ampliada p =
    array ((1,1),(m+1,n)) [((i,j),f i j) | i \leftarrow [1..m+1], j \leftarrow [1..n]]
    where (,(m,n)) = bounds p
          f i j | i <= m
                         = p!(i,j)
                | otherwise = sum [p!(i,j) | i \leftarrow [1..m]]
```

```
-- Ejercicio 5. Un polinomio de coeficientes enteros se dirá par si
-- todos sus coeficientes son números pares. Por ejemplo, el polinomio
--2*x^3 - 4*x^2 + 8 es par y el x^2 + 2*x + 10 no lo es.
-- Definir el predicado
     parPol :: Integral a => Polinomio a -> Bool
-- tal que (parPol p) se verifica si p es un polinomio par. Por ejemplo,
     ghci> parPol (consPol 3 2 (consPol 2 (-4) (consPol 0 8 polCero)))
     ghci> parPol (consPol 2 1 (consPol 1 2 (consPol 0 10 polCero)))
     False
parPol :: Integral a => Polinomio a -> Bool
parPol p = esPolCero p || (even (coefLider p) && parPol (restoPol p))
        Examen 5 (6 de mayo de 2015)
-- Informática (1º del Grado en Matemáticas)
-- 5º examen de evaluación continua (6 de mayo de 2015)
import Data.List
import I1M.Pol
import Data.Matrix
import I1M.Grafo
import I1M.BusquedaEnEspaciosDeEstados
import qualified Debug.Trace as T
-- Ejercicio 1. Definir la función
     conUno :: [Int] -> [Int]
-- tal que (conUno xs) es la lista de los elementos de xs que empiezan
-- por 1. Por ejemplo,
-- conUno [123,51,11,711,52] == [123,11]
conUno :: [Int] -> [Int]
```

conUno xs = $[x \mid x \leftarrow xs, head (show x) == '1']$

```
-- Ejercicio 2. Representamos los árboles binarios con elementos en las
-- hojas y en los nodos mediante el tipo de dato
      data Arbol a = H a \mid N a (Arbol a) (Arbol a) deriving Show
-- Definir la función
     aplica :: (a -> a) -> (a -> a) -> Arbol a -> Arbol a
-- tal que (aplica f g a) devuelve el árbol obtenido al aplicar la
-- función f a las hojas del árbol a y la función g a los nodos
-- interiores. Por ejemplo,
     ghci> aplica (+1)(*2) (N 5 (N 2 (H 1) (H 2)) (N 3 (H 4) (H 2)))
     N 10 (N 4 (H 2) (H 3)) (N 6 (H 5) (H 3))
data Arbol a = H a | N a (Arbol a) (Arbol a) deriving Show
aplica :: (a -> a) -> (a -> a) -> Arbol a -> Arbol a
aplica f q (H x) = H (f x)
aplica f g (N \times i d) = N (g \times) (aplica f g i) (aplica f g d)
-- Ejercicio 3. Representamos los polinomios mediante el TAD de los
-- Polinomios (I1M.Pol). La parte par de un polinomio de coeficientes
-- enteros es el polinomio formado por sus monomios cuyos coeficientes
-- son números pares. Por ejemplo, la parte par de 4x^3+x^2-7x+6 es
--4x^3+6.
-- Definir la función
     partePar :: Integral a => Polinomio a -> Polinomio a
-- tal que (partePar p) es la parte par de p. Por ejemplo,
     ghci> partePar (consPol 3 4 (consPol 2 1 (consPol 0 6 polCero)))
     4*x^3 + 6
partePar :: Integral a => Polinomio a -> Polinomio a
partePar p
    | esPolCero p = polCero
    even b = consPol n b (partePar r)
    | otherwise = partePar r
```

```
where n = grado p
         b = coefLider p
         r = restoPol p
-- Ejercicio 4.1. Representaremos las matrices mediante la librería de
-- Haskell Data.Matrix.
-- Las posiciones frontera de una matriz de orden mxn son aquellas que
-- están en la fila 1 o la fila m o la columna 1 o la columna n. El
-- resto se dirán posiciones interiores. Observa que cada elemento en
-- una posición interior tiene exactamente 8 vecinos en la matriz.
-- Definir la función
     marco :: Int -> Int -> Integer -> Matrix Integer
-- tal que (marco m n z) genera la matriz de dimensión mxn que
-- contiene el entero z en las posiciones frontera y 0 en las posiciones
-- interiores. Por ejemplo,
     ghci> marco 5 5 1
     (111111)
    (10001)
    (10001)
    (10001)
    (111111)
marco :: Int -> Int -> Integer -> Matrix Integer
marco m n z = matrix m n f
   where f(i,j) \mid frontera m n(i,j) = 1
                  | otherwise
                                  = 0
-- (frontera m n (i,j)) se verifica si (i,j) es una posición de la
-- frontera de las matrices de dimensión mxn.
frontera :: Int -> Int -> (Int,Int) -> Bool
frontera m n (i,j) = i == 1 || i == m || j == 1 || j == n
-- Ejercicio 4.2. Dada una matriz, un paso de transición genera una
-- nueva matriz de la misma dimensión pero en la que se ha sustituido
-- cada elemento interior por la suma de sus 8 vecinos. Los elementos
```

```
-- frontera no varían.
-- Definir la función
    paso :: Matrix Integer -> Matrix Integer
-- tal que (paso t) calcula la matriz generada tras aplicar un paso de
-- transición a la matriz t. Por ejemplo,
     ghci> paso (marco 5 5 1)
    (111111)
    (15351)
    (13031)
    (15351)
-- (11111)
paso :: Matrix Integer -> Matrix Integer
paso p = matrix m n f where
   m = nrows p
   n = ncols p
   f(i,j)
       | frontera m n (i,j) = 1
       | otherwise
                    = sum [p!(u,v) \mid (u,v) \leftarrow vecinos m n (i,j)]
-- (vecinos m n (i,j)) es la lista de las posiciones de los vecinos de
-- (i,j) en las matrices de dimensión mxn.
vecinos :: Int -> Int -> (Int,Int) -> [(Int,Int)]
vecinos m n (i,j) = [(a,b) \mid a \leftarrow [\max 1 (i-1)..\min m (i+1)]
                          , b <- [\max 1 (j-1)..\min n (j+1)]
                          (a,b) /= (i,j)
-- Ejercicio 4.3. Definir la función
     itPasos :: Int -> Matrix Integer -> Matrix Integer
-- tal que (itPasos k t) es la matriz obtenida tras aplicar k pasos de
-- transición a partir de la matriz t. Por ejemplo,
     ghci> itPasos 10 (marco 5 5 1)
                            1
     (
            1
                     1
                                           1)
            1 4156075 5878783 4156075
                                           1)
            1 5878783 8315560 5878783
                                           1)
    (
            1 4156075 5878783 4156075
                                           1)
                1 1 1
            1
                                           1)
```

```
itPasos :: Int -> Matrix Integer -> Matrix Integer
itPasos k t = (iterate paso t) !! k
-- Ejercicio 4.4. Definir la función
     pasosHasta :: Integer -> Int
-- tal que (pasosHasta k) es el número de pasos de transición a partir
-- de la matriz (marco 5 5 1) necesarios para que en la matriz
-- resultante aparezca un elemento mayor que k. Por ejemplo,
     pasosHasta 4
                        == 1
     pasosHasta 6
     pasosHasta (2^2015) == 887
pasosHasta :: Integer -> Int
pasosHasta k =
   length (takeWhile (\t -> menores t k) (iterate paso (marco 5 5 1)))
-- (menores p k) se verifica si los elementos de p son menores o
-- iguales que k. Por ejemplo,
     menores (itPasos 1 (marco 5 5 1)) 6 == True
     menores (itPasos 1 (marco 5 5 1)) 4 == False
menores :: Matrix Integer -> Integer -> Bool
menores p k = and [p!(i,j) \le k \mid i \le [1..m], j \le [1..n]]
   where m = nrows p
         n = ncols p
  ______
-- Ejercicio 5.1. Representaremos los grafos mediante el TAD de los
-- grafos (I1M.Grafo).
-- Dado un grafo G, un ciclo en G es una secuencia de nodos de G
-- [v(1), v(2), v(3), ..., v(n)] tal que:
     1) (v(1), v(2)), (v(2), v(3)), (v(3), v(4)), \ldots, (v(n-1), v(n)) son
       aristas de G,
    2) v(1) = v(n), y
     3) salvo v(1) = v(n), todos los v(i) son distintos entre sí.
```

```
-- Definir la función
      esCiclo :: [Int] -> Grafo Int Int -> Bool
-- tal que (esCiclo xs g) se verifica si xs es un ciclo de g. Por
-- ejemplo, si gl es el grafo definido por
     gl :: Grafo Int Int
      g1 = creaGrafo D (1,4) [(1,2,0),(2,3,0),(2,4,0),(4,1,0)]
-- entonces
    esCiclo\ [1,2,4,1]\ g1 == True
     esCiclo [1,2,3,1] g1 == False
     esCiclo [1,2,3] g1 == False
    esCiclo\ [1,2,1]\ g1 == False
q1 :: Grafo Int Int
g1 = creaGrafo D (1,4) [(1,2,0),(2,3,0),(2,4,0),(4,1,0)]
esCiclo :: [Int] -> Grafo Int Int -> Bool
esCiclo vs g =
    all (aristaEn g) (zip vs (tail vs)) &&
    head vs == last vs &&
    length (nub vs) == length vs - 1
-- Ejercicio 5.2. El grafo rueda de orden k es un grafo no dirigido
-- formado por
      1) Un ciclo con k nodos [1,2,...,k], y
     2) un nodo central k+1 unido con cada uno de los k nodos del
        ciclo:
     3) y con peso 0 en todas sus aristas.
-- Definir la función
     rueda :: Int -> Grafo Int Int
-- tal que (rueda k) es el grafo rueda de orden k. Por ejemplo,
     ghci> rueda 3
     G D (array (1,4) [(1,[(2,0)]),(2,[(3,0)]),(3,[(1,0)]),
                       (4,[(1,0),(2,0),(3,0)])])
rueda :: Int -> Grafo Int Int
rueda k = \text{creaGrafo } D (1, k+1) ([(i, i+1, 0) | i <- [1..k-1]] ++
```

```
[(k,1,0)] ++
                               [(k+1,i,0) | i \leftarrow [1..k]]
-- Ejercicio 5.3. Definir la función
     contieneCiclo :: Grafo Int Int -> Int -> Bool
-- tal que (contieneCiclo q k) se verifica si el grafo q contiene algún
-- ciclo de orden k. Por ejemplo,
     contieneCiclo g1 4
                               == True
     contieneCiclo g1 3 == False
    contieneCiclo (rueda 5) 6 == True
contieneCiclo :: Grafo Int Int -> Int -> Bool
contieneCiclo g k = not (null (ciclos g k))
-- (caminosDesde g k v) es la lista de los caminos en el grafo g, de
-- longitud k, a partir del vértice v. Por ejemplo
      caminosDesde g1 3 1 == [[1,2,3],[1,2,4]]
caminosDesdel :: Grafo Int Int -> Int -> Int -> [[Int]]
caminosDesdel g k v = map reverse (aux [[v]])
    where aux [] = []
          aux ((x:vs):vss)
              | length (x:vs) == k = (x:vs) : aux vss
              | length (x:vs) > k = aux vss
              | otherwise
                          = aux ([y:x:vs | y <- adyacentes g x] ++ vss)</pre>
caminosDesde2 :: Grafo Int Int -> Int -> Int -> [[Int]]
caminosDesde2 g k v = map (reverse . snd) (aux [(1,[v])])
   where aux [] = []
          aux ((n,(x:vs)):vss)
              \mid n == k = (n,(x:vs)) : aux vss
              | n > k = aux vss
              | otherwise = aux ([(n+1,y:x:vs) | y <- adyacentes g x] ++ vss)
-- 3ª definición de caminosDesde (con búsqueda en espacio de estados):
caminosDesde3 :: Grafo Int Int -> Int -> Int -> [[Int]]
caminosDesde3 g k v = map reverse (buscaEE sucesores esFinal inicial)
   where inicial
                         = [v]
         esFinal vs = length vs == k
```

```
sucesores (x:xs) = [y:x:xs | y < - advacentes g x]
-- 4ª definición de caminosDesde (con búsqueda en espacio de estados):
caminosDesde4 :: Grafo Int Int -> Int -> Int -> [[Int]]
caminosDesde4 g k v = map (reverse . snd) (buscaEE sucesores esFinal inicial)
                             = (1,[v])
    where inicial
          esFinal (n, )
                            = n == k
          sucesores (n,x:xs) = [(n+1,y:x:xs) | y <- adyacentes g x]
-- Comparación
      ghci > let n = 10000 in length (caminosDesdel (rueda n) (n+1) 1)
      1
      (3.87 secs, 20713864 bytes)
      ghci > let n = 10000 in length (caminosDesde2 (rueda n) (n+1) 1)
      1
      (0.10 secs, 18660696 bytes)
      ghci > let n = 10000 in length (caminosDesde3 (rueda n) (n+1) 1)
     1
      (0.42 secs, 16611272 bytes)
      ghci > let \ n = 10000 \ in \ length \ (caminosDesde4 \ (rueda \ n) \ (n+1) \ 1)
      (0.10 secs, 20118376 bytes)
-- En lo sucesivo usamos la 4º definición
caminosDesde :: Grafo Int Int -> Int -> Int -> [[Int]]
caminosDesde = caminosDesde4
-- (ciclosDesde g k v) es la lista de los ciclos en el grafo g de orden
-- k a partir del vértice v. Por ejemplo,
      ciclosDesde\ g1\ 4\ 1\ ==\ [[1,2,4,1]]
ciclosDesde :: Grafo Int Int -> Int -> Int -> [[Int]]
ciclosDesde q k v = [xs | xs <- caminosDesde q k v
                         , esCiclo xs g]
-- (ciclos g k) es la lista de los ciclos en el grafo g de orden
-- k. Por ejemplo,
     ciclos g1 4 == [[1,2,4,1],[2,4,1,2],[4,1,2,4]]
ciclos :: Grafo Int Int -> Int -> [[Int]]
ciclos g k = concat [ciclosDesde g k v | v <- nodos g]</pre>
```

```
caminosDesde5 :: Grafo Int Int -> Int -> [[Int]]
caminosDesde5 g v = map (reverse . fst) (buscaEE sucesores esFinal inicial)
    where inicial
                              = ([v],[v])
          esFinal (x: ,ys)
                            = all ('elem' ys) (adyacentes g x)
          sucesores (x:xs,ys) = [(z:x:xs,z:ys) | z < - advacentes g x
                                                , z 'notElem' ys]
      caminos g1 = [[1,2,3],[1,2,4],[2,3],[2,4,1],[3],[4,1,2,3]]
caminos :: Grafo Int Int -> [[Int]]
caminos g = concatMap (caminosDesde5 g) (nodos g)
      todosCiclos \ q1 == [[1,2,4,1],[2,4,1,2]]
todosCiclos :: Grafo Int Int -> [[Int]]
todosCiclos g = [ys | (x:xs) <- caminos g</pre>
                    , let ys = (x:xs) ++ [x]
                    , esCiclo ys g]
```

3.6. Examen 6 (15 de junio de 2015)

El examen es común con el del grupo 4 (ver página 137).

3.7. Examen 7 (3 de julio de 2015)

El examen es común con el del grupo 1 (ver página 42).

3.8. Examen 8 (4 de septiembre de 2015)

El examen es común con el del grupo 1 (ver página 50).

3.9. Examen 9 (4 de diciembre de 2015)

El examen es común con el del grupo 1 (ver página 61).

4

Exámenes del grupo 4

María J. Hidalgo

4.1. Examen 1 (6 de Noviembre de 2014)

```
-- Informática (1º del Grado en Matemáticas)
-- 1º examen de evaluación continua (6 de noviembre de 2014)
import Test.QuickCheck
import Data.List
-- Ejercicio 1. La suma de la serie
-- 1/1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 ...
-- es 2.
-- Definir la función
     aproxima2:: Integer -> Float
-- tal que (aproxima2 n) es la aproximación de 2 obtenida mediante n
-- términos de la serie. Por ejemplo,
     aproxima2\ 10 == 1.9990234
     aproxima2 100 == 2.0
aproxima2:: Integer -> Float
aproxima2 n = sum [1 / (2^k) | k < [0..n]]
```

```
-- Ejercicio 2.1. Decimos que los números m y n están relacionados si
-- tienen los mismos divisores primos.
-- Definir la función
      relacionados :: Integer -> Integer -> Bool
-- tal que (relacionados m n) se verifica si m y n están relacionados.
-- Por ejemplo,
    relacionados 24 32 == False
      relacionados 24 12 == True
      relacionados 24 2 == False
    relacionados 18 12 == True
relacionados:: Integer -> Integer -> Bool
relacionados m n =
    nub (divisoresPrimos n) == nub (divisoresPrimos m)
divisoresPrimos :: Integer -> [Integer]
divisoresPrimos n =
    [x \mid x \leftarrow [1..n], n \text{ 'rem' } x == 0, esPrimo x]
esPrimo :: Integer -> Bool
esPrimo n = divisores n == [1,n]
divisores :: Integer -> [Integer]
divisores n =
    [x \mid x \leftarrow [1..n], n \text{ 'rem' } x == 0]
-- Ejercicio 2.2. ¿Es cierto que si dos enteros positivos están
-- relacionados entonces uno es múltiplo del otro? Comprobarlo con
-- QuickCheck.
-- La propiedad es
prop_rel :: Integer -> Integer -> Property
prop rel m n =
    m > 0 \&\& n > 0 \&\& relacionados m n ==>
    rem m n == 0 \mid \mid rem n m == 0
```

```
-- La comprobación es
     ghci> quickCheck prop rel
     *** Failed! Falsifiable (after 20 tests):
     18
     12
-- Ejercicio 2.3. Comprobar con QuickCheck que si p es primo, los
-- números relacionados con p son las potencias de p.
-- La propiedad es
prop_rel_primos :: Integer -> Integer -> Property
prop rel primos p n =
   esPrimo p ==> esPotencia n p == relacionados n p
esPotencia :: Integer -> Integer -> Bool
esPotencia n p = nub (divisoresPrimos n) == [p]
-- La comprobación es
    ghci> quickCheck prop_rel_primos
    +++ OK, passed 100 tests.
-- Ejercicio 3.1. Definir la función
     mcdLista :: [Integer] -> Integer
-- tal que (mcdLista xs) es el máximo común divisor de los elementos de
-- xs. Por ejemplo,
    mcdLista [3,4,5] == 1
     mcdLista [6,4,12] == 2
mcdLista :: [Integer] -> Integer
mcdLista [x]
             = X
mcdLista (x:xs) = gcd x (mcdLista xs)
-- -----
-- Ejercicio 3.2. Comprobar con QuickCheck que el resultado de
-- (mcdLista xs) divide a todos los elementos de xs, para cualquier
-- lista de enteros.
```

```
-- La propiedad es
prop mcd 1 :: [Integer] -> Bool
prop_mcd_1 xs = and [rem x d == 0 | x <- xs]
   where d = mcdLista xs
-- La comprobación es
    ghci> quickCheck prop mcd 1
   +++ OK, passed 100 tests.
__ ______
-- Ejercicio 3.3. Comprobar con QuickCheck que, para n > 1, el máximo
-- común divisor de los n primeros primos es 1.
-- La propiedad es
prop_mcd_2 :: Int -> Property
prop mcd 2 n = n > 1 ==> mcdLista (take n primos) == 1
primos = [x \mid x \leftarrow [2..], esPrimo x]
-- La comprobación es
-- ghci> quickCheck prop mcd 2
    +++ OK, passed 100 tests.
-- Ejercicio 4.1. Definir la función
     menorLex:: (Ord a) => [a] -> [a] -> Bool
-- tal que menorLex sea el orden lexicográfico entre listas. Por
-- ejemplo,
     menorLex "hola" "adios"
                                 == False
     menorLex "adios" "antes"
                                 == True
    menorLex "antes" "adios"
                                 == False
    menorLex [1 [3,4]
                                 == True
   menorLex [3,4] []
                                 == False
    menorLex [1,2,3] [1,3,4,5] == True
-- menorLex [1,2,3,3,3,3] [1,3,4,5] == True
```

-- Por comprensión:

4.2. Examen 2 (4 de Diciembre de 2014)

```
-- Informática (1º del Grado en Matemáticas)
-- 2º examen de evaluación continua (4 de diciembre de 2014)

import Data.List
import Data.Char
import Test.QuickCheck

-- Ejercicio 1. Definir la función
-- seleccionaDiv :: [Integer] -> [Integer]
-- tal que (seleccionaDiv xs ys) es la lista de los elementos de xs que
-- son divisores de los correspondientes elementos de ys. Por ejemplo,
-- seleccionaDiv [1..5] [7,8,1,2,3] == [1,2]
-- seleccionaDiv [2,5,3,7] [1,3,4,5,0,9] == []
-- seleccionaDiv (repeat 1) [3,5,8] == [1,1,1]
-- seleccionaDiv [1..4] [2,4..] == [1,2,3,4]
```

```
seleccionaDiv :: [Integer] -> [Integer] -> [Integer]
seleccionaDiv xs ys = [x \mid (x,y) \leftarrow zip xs ys, rem y x == 0]
-- Por recursión:
seleccionaDivR :: [Integer] -> [Integer] -> [Integer]
seleccionaDivR (x:xs) (y:ys) | rem y x == 0 = x: seleccionaDivR xs ys
                              | otherwise = seleccionaDivR xs ys
seleccionaDivR _ _ = []
-- Ejercicio 2.1. Un número es especial si se cumple que la suma de cada
-- dos dígitos consecutivos es primo. Por ejemplo,
      4116743 es especial pues 4+1, 1+1, 1+6, 6+7, 7+4 y 4+3 son primos.
      41167435 no es especial porque 3+5 no es primo.
-- Definir la función
     especial :: Integer -> Bool
-- tal que (especial n) se verifica si n es especial. Por ejemplo,
    especial 4116743 == True
     especial 41167435 == False
especial :: Integer -> Bool
especial n = all esPrimo (zipWith (+) xs (tail xs))
    where xs = digitos n
digitos :: Integer -> [Integer]
digitos n = [read [x] | x <- show n]</pre>
esPrimo :: Integer -> Bool
esPrimo x = x 'elem' takeWhile (<=x) primos</pre>
primos:: [Integer]
primos = criba [2..]
    where criba (p:ps) = p: criba [x \mid x \leftarrow ps, rem x p \neq 0]
-- Ejercicio 2.2. Calcular el menor (y el mayor) número especial con 6
-- cifras.
```

```
-- El cálculo es
      ghci > head [n \mid n < -[10^5..], especial n]
     ghci > head [n \mid n < [10^6, 10^6 - 1..], especial n]
     989898
-- Ejercicio 3.1. Definir la función
     productoDigitosNN :: Integer -> Integer
-- tal que (productoDigitosNN n) es el producto de los dígitos no nulos
-- de n.
-- productoDigitosNN 2014 == 8
productoDigitosNN :: Integer -> Integer
productoDigitosNN = product . filter (/=0) . digitos
-- Ejercicio 3.2. Consideremos la sucesión definida a partir de un
-- número d, de forma que cada elemento es la suma del anterior más el
-- producto de sus dígitos no nulos. Por ejemplo,
     Si \ d = 1, la sucesión es 1,2,4,8,16,22,26,38,62,74,102,104, ...
     Si \ d = 15, la sucesión es 15, 20, 22, 26, 38, 62, 74, 102, 104, 108, ...
-- Definir, usando iterate, la función
      sucesion :: Integer -> [Integer]
-- tal que (sucesion d) es la sucesión anterior, empezando por d. Por
-- ejemplo,
     take 10 (sucesion 1) == [1,2,4,8,16,22,26,38,62,74]
    take 10 (sucesion 15) == [15, 20, 22, 26, 38, 62, 74, 102, 104, 108]
sucesion :: Integer -> [Integer]
sucesion = iterate f
 where f x = x + productoDigitosNN x
-- Ejercicio 3.3. Llamamos sucesionBase a la sucesión que empieza en
-- 1. Probar con QuickCheck que cualquier otra sucesión que empiece en
```

```
-- d, con d > 0, tiene algún elemento común con la sucesionBase.
                               -- La propiedad es
prop_sucesion :: Integer -> Property
prop sucesion d =
   d > 0 ==>
   [n | n <- sucesion d, n 'elem' takeWhile (<=n) sucesionBase] /= []</pre>
   where sucesionBase = sucesion 1
-- La comprobación es
-- ghci> quickCheck prop sucesion
  +++ OK, passed 100 tests.
-- Ejercicio 4. Consideremos el tipo de dato árbol, definido por
-- data Arbol a = H a \mid N a \text{ (Arbol a)}
-- y los siguientes ejemplos de árboles
    ei1 = N 9 (N 3 (H 2) (H 4)) (H 7)
     ej2 = N 9 (N 3 (H 2) (N 1 (H 4) (H 5))) (H 7)
-- Definir la función
     allArbol :: (t -> Bool) -> Arbol t -> Bool
-- tal que (allArbol p a) se verifica si todos los elementos del árbol
-- verifican p. Por ejemplo,
-- allArbol even ej1 == False
    allArbol (>0) ej1 == True
data Arbol a = H a | N a (Arbol a) (Arbol a)
eil = N 9 (N 3 (H 2) (H 4)) (H 7)
ej2 = N 9 (N 3 (H 2) (N 1 (H 4) (H 5))) (H 7)
allArbol :: (t -> Bool) -> Arbol t -> Bool
allArbol p (H x) = p x
allArbol p (N r i d) = p r && allArbol p i && allArbol p d
-- Ejercicio 5. Definir la función
```

```
-- listasNoPrimos :: [[Integer]]
-- tal que listasNoPrimos es lista formada por las listas de números
-- no primos consecutivos. Por ejemplo,
-- take 7 listasNoPrimos == [[1],[4],[6],[8,9,10],[12],[14,15,16],[18]]
listasNoPrimos :: [[Integer]]
listasNoPrimos = aux [1..]
   where aux xs = takeWhile (not . esPrimo) xs :
                  aux (dropWhile esPrimo (dropWhile (not . esPrimo ) xs))
        Examen 3 (23 de enero de 2015)
4.3.
-- Informática: 3º examen de evaluación continua (23 de enero de 2014)
-- Puntuación: Cada uno de los 5 ejercicios vale 2 puntos.
import Data.List
-- Ejercicio 1. Definir la función
     sumaSinMuliplos :: Int -> [Int] -> Int
-- tal que (sumaSinMuliplos n xs) es la suma de los números menores o
-- iguales a n que no son múltiplos de ninguno de xs. Por ejemplo,
-- sumaSinMuliplos 10 [2,5] == 20
    sumaSinMuliplos 10 [2,5,6] == 20
    sumaSinMuliplos 10 [2,5,3] == 8
sumaSinMuliplos :: Int -> [Int] -> Int
sumaSinMuliplos n xs = sum [x | x <- [1..n], sinMultiplo x xs]
-- 1º definición
sinMultiplo :: Int -> [Int] -> Bool
sinMultiplo n xs = all (x - n \pmod x = 0) xs
-- 2ª definición (por comprensión):
sinMultiplo2 :: Int -> [Int] -> Bool
sinMultiplo2 n xs = and [n 'mod' x /= 0 | x <- xs]
```

```
-- 3ª definición (por recursión):
sinMultiplo3 :: Int -> [Int] -> Bool
sinMultiplo3 n [] = True
sinMultiplo3 n (x:xs) = n 'mod' x /= 0 && sinMultiplo3 n xs
-- Ejercicio 2. Definir la función
     menorFactorial :: (Int -> Bool) -> Int
-- tal que (menorFactorial p) es el menor n tal que n! cumple la
-- propiedad p. Por ejemplo,
     menorFactorialP (>5)
     menorFactorialP (\x -> x 'mod' 21 == 0) == 7
______
-- 1ª solución
-- ========
menorFactorial :: (Int -> Bool) -> Int
menorFactorial p = head [n | (n,m) <- zip [0..] factoriales, p m]</pre>
   where factoriales = scanl (*) 1 [1..]
-- 2ª solución
-- =========
menorFactorial2 :: (Int -> Bool) -> Int
menorFactorial2 p = 1 + length (takeWhile (not . p) factoriales)
factoriales :: [Int]
factoriales = [factorial n | n <- [1..]]</pre>
factorial :: Int -> Int
factorial n = product [1..n]
-- Ejercicio 3. Las expresiones aritméticas se pueden representar como
-- árboles con números en las hojas y operaciones en los nodos. Por
-- ejemplo, la expresión "9-2*4" se puede representar por el árbol
-- / \
```

```
9 *
       2 4
-- Definiendo el tipo de dato Arbol por
     data Arbol = H Int | N (Int -> Int -> Int) Arbol Arbol
-- la representación del árbol anterior es
     N(-)(H9)(N(*)(H2)(H4))
-- Definir la función
     valor :: Arbol -> Int
-- tal que (valor a) es el valor de la expresión aritmética
-- correspondiente al árbol a. Por ejemplo,
     valor (N (-) (H 9) (N (*) (H 2) (H 4)))
                                             == 1
     valor(N(+)(H9)(N(*)(H2)(H4))) == 17
     valor(N(+)(H9)(N(div)(H4)(H2))) == 11
     valor(N(+)(H9)(N(max)(H4)(H2))) == 13
data Arbol = H Int | N (Int -> Int -> Int) Arbol Arbol
valor :: Arbol -> Int
valor (H x)
valor (N f i d) = f (valor i) (valor d)
-- Ejercicio 4.1. Se dice que el elemento y es un superior de x en una
-- lista xs si y > x y la posición de y es mayor que la de x en xs. Por
-- ejemplo, los superiores de 5 en [7,3,5,2,8,5,6,9,1] son el 8, el 6 y
-- el 9. El número de superiores de cada uno de sus elementos se
-- representa en la siguiente tabla
     elementos:
                           [7, 3, 5, 2, 8, 5, 6, 9, 1]
                           2 5 3 4 1 2 1 0 0
     número de superiores:
-- El elemento con máximo número de superiores es el 3 que tiene 5
-- superiores.
-- Definir la función
     maximoNumeroSup :: Ord a => [a] -> Int
-- tal que (maximoNumeroSup xs) es el máximo de los números de
-- superiores de los elementos de xs. Por ejemplo,
```

```
maximoNumeroSup [7,3,5,2,8,4,6,9,1] == 5
    maximoNumeroSup "manifestacion" == 10
-- 1ª solución
-- =========
maximoNumeroSup :: Ord a => [a] -> Int
maximoNumeroSup [] = 0
maximoNumeroSup xs = maximum [length (filter (z<) zs) | z:zs <- tails xs]</pre>
-- 2ª solución
-- ========
maximoNumeroSup2 :: Ord a => [a] -> Int
maximoNumeroSup2 = maximum . numeroSup
-- (numeroSup xs) es la lista de los números de superiores de cada
-- elemento de xs. Por ejemplo,
     numeroSup [7,3,5,2,8,5,6,9,1] == [2,5,3,4,1,2,1,0,0]
numeroSup :: Ord a => [a] -> [Int]
numeroSup []
              = []
             = [0]
numeroSup [ ]
numeroSup (x:xs) = length (filter (>x) xs) : numeroSup xs
-- Ejercicio 4.2. Comprobar con QuickCheck que (maximoNumeroSup xs) es
-- igual a cero si, y sólo si, xs está ordenada de forma no decreciente.
-- La propiedad es
prop maximoNumeroSup :: [Int] -> Bool
prop maximoNumeroSup xs = (maximoNumeroSup xs == 0) == ordenada xs
   where ordenada xs = and (zipWith (>=) xs (tail xs))
-- La comprobación es
     ghci> quickCheck prop maximoNumeroSup
-- +++ OK, passed 100 tests.
```

```
-- Ejercicio 5. En la siguiente figura, al rotar girando 90º en el
-- sentido del reloj la matriz de la izquierda se obtiene la de la
-- derecha
    1 2 3
                 7 4 1
     4 5 6
                 8 5 2
    7 8 9
                 9 6 3
-- Definir la función
-- rota :: [[a]] -> [[a]]
-- tal que (rota xss) es la matriz obtenida girando 90º en el sentido
-- del reloj la matriz xss, Por ejemplo,
    rota [[1,2,3],[4,5,6],[7,8,9]] == [[7,4,1],[8,5,2],[9,6,3]]
     rota ["abcd", "efgh", "ijkl"] == ["iea", "jfb", "kgc", "lhd"]
rota :: [[a]] -> [[a]]
rota [] = []
rota ([]:_) = []
rota xss = reverse (map head xss) : rota (map tail xss)
```

4.4. Examen 4 (12 de marzo de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 4º examen de evaluación continua (12 de marzo de 2015)
-- § Librerías auxiliares
-- § Librerías auxiliares
-- import Data.List
import Data.Array
import I1M.PolOperaciones
-- Ejercicio 1.1. En este ejercicio, representemos las fracciones
-- mediante pares de números de enteros.
-- Definir la función
```

```
fracciones :: Integer -> [(Integer, Integer)]
-- tal que (fracciones n) es la lista con las fracciones propias
-- positivas, con denominador menor o igual que n. Por ejemplo,
      fracciones 4 == [(1,2), (1,3), (2,3), (1,4), (3,4)]
      fracciones 5 == [(1,2), (1,3), (2,3), (1,4), (3,4), (1,5), (2,5), (3,5), (4,5)]
fracciones :: Integer -> [(Integer,Integer)]
fracciones n = [(x,y) | y \leftarrow [2..n], x \leftarrow [1..y-1], gcd x y == 1]
-- Ejercicio 1.2. Definir la función
      fraccionesOrd :: Integer -> [(Integer,Integer)]
-- tal que (fraccionesOrd n) es la lista con las fracciones propias
-- positivas ordenadas, con denominador menor o igual que n. Por
-- ejemplo,
      fracciones0rd 4 == [(1,4), (1,3), (1,2), (2,3), (3,4)]
      fracciones0rd 5 = [(1,5), (1,4), (1,3), (2,5), (1,2), (3,5), (2,3), (3,4), (4,5)]
fraccionesOrd :: Integer -> [(Integer,Integer)]
fraccionesOrd n = sortBy comp (fracciones n)
    where comp (a,b) (c,d) = compare (a*d) (b*c)
-- Ejercicio 2. Todo número par se puede escribir como suma de números
-- pares de varias formas. Por ejemplo:
      8 = 8
       = 6 + 2
       = 4 + 4
       = 4 + 2 + 2
       = 2 + 2 + 2 + 2
-- Definir la función
      descomposicionesDecrecientes:: Integer -> [[Integer]]
-- tal que (descomposicionesDecrecientes n) es la lista con las
-- descomposiciones de n como suma de pares, en forma decreciente. Por
-- ejemplo,
      ghci> descomposicionesDecrecientes 8
      [[8],[6,2],[4,4],[4,2,2],[2,2,2,2]]
```

```
ghci> descomposicionesDecrecientes 10
      [[10], [8,2], [6,4], [6,2,2], [4,4,2], [4,2,2,2], [2,2,2,2,2]]
-- Calcular el número de descomposiciones de 40.
descomposicionesDecrecientes:: Integer -> [[Integer]]
descomposicionesDecrecientes 0 = [[0]]
descomposicionesDecrecientes n = aux n [n,n-2..2]
    where aux _ [] = []
          aux n (x:xs) | x > n = aux n xs
                       | x == n = [n] : aux n xs
                       | otherwise = map (x:) (aux (n-x) (x:xs)) ++ aux n xs
-- El cálculo es
      ghci> length (descomposicionesDecrecientes 40)
      627
-- Ejercicio 3. Consideremos los árboles binarios con etiquetas en las
-- hojas y en los nodos. Por ejemplo,
           5
          / \
         2 4
            / \
            7 1
              2 3
-- Un camino es una sucesión de nodos desde la raiz hasta una hoja. Por
-- ejemplo, [5,2] y [5,4,1,2] son caminos que llevan a 2, mientras que
-- [5,4,1] no es un camino, pues no lleva a una hoja.
-- Definimos el tipo de dato Arbol y el ejemplo por
      data Arbol = H Int | N Arbol Int Arbol
                   deriving Show
     arb1:: Arbol
     arb1 = N (H 2) 5 (N (H 7) 4 (N (H 2) 1 (H 3)))
```

```
-- Definir la función
     maxLong :: Int -> Arbol -> Int
-- tal que (maxLong x a) es la longitud máxima de los caminos que
-- terminan en x. Por ejemplo,
-- maxLong 3 arb1 == 4
     maxLong 2 arb1 == 4
    maxLong 7 arb1 == 3
data Arbol = H Int | N Arbol Int Arbol
             deriving Show
arb1:: Arbol
arb1 = N (H 2) 5 (N (H 7) 4 (N (H 2) 1 (H 3)))
-- 1º solución (calculando los caminos)
-- (caminos x a) es la lista de los caminos en el árbol a desde la raíz
-- hasta las hojas x. Por ejemplo,
     caminos 2 arb1 == [[5,2],[5,4,1,2]]
      caminos \ 3 \ arb1 == [[5,4,1,3]]
     caminos 1 arb1 == []
caminos :: Int -> Arbol -> [[Int]]
caminos x (H y) | x == y = [[x]]
               | otherwise = []
caminos x (N i r d) = map (r:) (caminos x i ++ caminos x d)
maxLong1 :: Int -> Arbol -> Int
maxLong1 \times a = maximum (0: map length (caminos x a))
-- 2ª solución
maxLong2 :: Int -> Arbol -> Int
\max Long2 \times a = \max imum (0 : aux \times a)
   where aux x (H y) | x == y = [1]
                      | otherwise = []
          aux x (N i r d) = map (+1) (aux x i ++ aux x d)
```

```
-- Ejercicio 4. Un elemento de una matriz es un máximo local si es un
-- elemento interior, que es mayor que todos sus vecinos. Por ejemplo,
-- en la matriz
      [[1,0,0,1],
       [0,2,0,3],
       [0,0,0,5],
       [3,5,7,6],
        [1,2,3,4]]
-- los máximos locales son 2 (en la posición (2,2)) y 7 (en la posición
-- (4,3)).
-- Definimos el tipo de las matrices, mediante
      type Matriz a = Array (Int, Int) a
-- y el ejemplo anterior por
     ejl :: Matriz Int
      ej1 = listArray ((1,1), (5,4)) (concat [[1,0,0,1],
                                              [0,2,0,3],
                                              [0,0,0,5],
                                              [3,5,7,6],
                                              [1,2,3,4]])
-- Definir la función
      maximosLocales :: Matriz Int -> [((Int,Int),Int)]
-- tal que (maximosLocales p) es la lista de las posiciones en las que
-- hay un máximo local, con el valor correspondiente. Por ejemplo,
      maximosLocales\ ej1 == [((2,2),2),((4,3),7)]
type Matriz a = Array (Int,Int) a
ejl :: Matriz Int
ej1 = listArray ((1,1),(5,4)) (concat [[1,0,0,1],
                                        [0,2,0,3],
                                        [0,0,0,5],
                                        [3,5,7,6],
                                        [1,2,3,4]])
maximosLocales :: Matriz Int -> [((Int,Int),Int)]
maximosLocales p =
```

```
[((i,j),p!(i,j)) | i \leftarrow [1..m], j \leftarrow [1..n], posicionMaxLocal (i,j) p]
        where (,(m,n)) = bounds p
-- (posicionMaxLocal (i,j) p) se verifica si (i,j) es la posición de un
-- máximo local de la matriz p. Por ejemplo,
      posicionMaxLocal (2,2) ej1 == True
      posicionMaxLocal (2,3) ej1 == False
posicionMaxLocal :: (Int,Int) -> Matriz Int -> Bool
posicionMaxLocal (i,j) p =
    esInterior (i,j) p && all (< p!(i,j)) (vecinosInterior (i,j) p)
-- (esInterior (i,j) p) se verifica si (i,j) es una posición interior de
-- la matriz p.
esInterior:: (Int,Int) -> Matriz a -> Bool
esInterior (i,j) p = i /= 1 \&\& i /= m \&\& j /= 1 \&\& j /= n
    where (,(m,n)) = bounds p
-- (indicesVecinos (i,j)) es la lista de las posiciones de los
-- vecinos de la posición (i,j). Por ejemplo,
      ghci> indicesVecinos (2,2)
      [(1,1),(1,2),(1,3),(2,1),(2,3),(3,1),(3,2),(3,3)]
indicesVecinos :: (Int,Int) -> [(Int,Int)]
indicesVecinos (i,j) =
    [(i+a,j+b) \mid a \leftarrow [-1,0,1], b \leftarrow [-1,0,1], (a,b) /= (0,0)]
-- (vecinosInterior (i, j) p) es la lista de los valores de los vecinos
-- de la posición (i,j) en la matriz p. Por ejemplo,
     vecinosInterior (4,3) ej1 == [0,0,5,5,6,2,3,4]
vecinosInterior (i,j) p =
    [p!(k,l) \mid (k,l) \leftarrow indicesVecinos (i,j)]
-- Ejercicio 5. Los polinomios de Bell forman una sucesión de
-- polinomios, definida como sigue:
      B \ \theta(x) = 1 \ (polinomio \ unidad)
      B n(x) = x*[B_n(x) + B_n'(x)]
-- Por ejemplo,
    B O(x) = 1
     B \ 1(x) = x^*(1+0)
                                            = x
```

```
B \ 2(x) = x^*(x+1)
                                        = x^2+x
     B \ 3(x) = x*(x^2+x + 2x+1) = x^3+3x^2+x
     B \ 4(x) = x^*(x^3+3x^2+x + 3x^2+6x+1) = x^4+6x^3+7x^2+x
-- Definir la función
     polBell :: Int -> Polinomio Int
-- tal que (polBell n) es el polinomio de Bell de grado n. Por ejemplo,
-- polBell1 4 == x^4 + 6*x^3 + 7*x^2 + 1*x
-- Calcular el coeficiente de x^2 en el polinomio B 30.
-- 1º solución (por recursión)
polBell1 :: Integer -> Polinomio Integer
polBell1 0 = polUnidad
polBell1 n = multPol (consPol 1 1 polCero) (sumaPol p (derivada p))
   where p = polBell1 (n-1)
-- 2ª solución (evaluación perezosa)
polBell2 :: Integer -> Polinomio Integer
polBell2 n = sucPolinomiosBell 'genericIndex' n
sucPolinomiosBell :: [Polinomio Integer]
sucPolinomiosBell = iterate f polUnidad
    where f p = multPol (consPol 1 1 polCero) (sumaPol p (derivada p))
-- El cálculo es
    ghci> coeficiente 2 (polBellP1 30)
     536870911
```

4.5. Examen 5 (30 de abril de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 4º examen de evaluación continua (30 de abril de 2015)
-- -- § Librerías auxiliares
```

```
import Data.Numbers.Primes
import Test.QuickCheck
import Data.List
import Data.Array
import I1M.Grafo
import I1M.Monticulo
-- Ejercicio 1.1. Un número n es especial si al unir las cifras de sus
-- factores primos, se obtienen exactamente las cifras de n, aunque
-- puede ser en otro orden. Por ejemplo, 1255 es especial, pues los
-- factores primos de 1255 son 5 y 251.
-- Definir la función
     esEspecial :: Integer -> Bool
-- tal que (esEspecial n) se verifica si un número n es especial. Por
-- ejemplo,
    esEspecial 1255 == True
    esEspecial 125 == False
esEspecial :: Integer -> Bool
esEspecial n =
   sort (show n) == sort (concatMap show (nub (primeFactors n)))
-- Ejercicio 1.2. Comprobar con QuickCheck que todo número primo es
-- especial.
-- La propiedad es
prop primos:: Integer -> Property
prop primos n =
   isPrime (abs n) ==> esEspecial (abs n)
-- La comprobación es
-- ghci> quickCheck prop primos
-- +++ OK, passed 100 tests.
```

```
-- Ejercicio 1.3. Calcular los 5 primeros números especiales que no son
-- primos.
-- El cálculo es
     ghci> take 5 [n | n <- [2..], esEspecial n, not (isPrime n)]</pre>
     [735, 1255, 3792, 7236, 11913]
-- Ejercicio 2. Consideremos las relaciones binarias homogéneas,
-- representadas por el siguiente tipo
     type Rel a = ([a], [(a,a)])
-- y las matrices, representadas por
    type Matriz a = Array (Int,Int) a
-- Dada una relación r sobre un conjunto de números enteros, la matriz
-- asociada a r es una matriz booleana p (cuyos elementos son True o
-- False), tal que p(i,j) = True si y sólo si i está relacionado con j
-- mediante la relación r.
-- Definir la función
     matrizRB:: Rel Int -> Matriz Bool
-- tal que (matrizRB r) es la matriz booleana asociada a r. Por ejemplo,
     ghci> matrizRB ([1..3],[(1,1), (1,3), (3,1), (3,3)])
      array((1,1),(3,3))[((1,1),True),((1,2),False),((1,3),True),
                           ((2,1),False),((2,2),False),((2,3),False),
                           ((3,1),True), ((3,2),False), ((3,3),True)]
     ghci > matrizRB ([1..3], [(1,3), (3,1)])
     array((1,1),(3,3))[((1,1),False),((1,2),False),((1,3),True),
                           ((2,1), False), ((2,2), False), ((2,3), False),
                           ((3,1),True),((3,2),False),((3,3),False)]
-- Nota: Construir una matriz booleana cuadrada, de dimensión nxn,
-- siendo n el máximo de los elementos del universo de r.
type Rel a = ([a],[(a,a)])
type Matriz a = Array (Int,Int) a
-- 1º definición (con array, universo y grafo):
```

```
matrizRB:: Rel Int -> Matriz Bool
matrizRB r =
    array ((1,1),(n,n))
          [((a,b), (a,b) 'elem' grafo r) | a <- [1..n], b <- [1..n]]
    where n = maximum (universo r)
universo :: Eq a => Rel a -> [a]
universo (us,_) = us
grafo :: Eq a => Rel a -> [(a,a)]
grafo(_,ps) = ps
-- 2ª definición (con listArray y sin universo ni grafo):
matrizRB2:: Rel Int -> Matriz Bool
matrizRB2 r =
    listArray ((1,1),(n,n))
              [(a,b) 'elem' snd r | a \leftarrow [1..n], b \leftarrow [1..n]]
    where n = maximum (fst r)
-- Ejercicio 3.1. Dado un grafo G = (V, E),
     + la distancia entre dos nodos de G es el valor absoluto de su
        diferencia,
     + la anchura de un nodo x es la máxima distancia entre x y todos
        los nodos adyacentes y
     + la anchura del grafo es la máxima anchura de sus nodos.
-- Definir la función
      anchuraG :: Grafo Int Int -> Int
-- tal que (anchuraG g) es la anchura del grafo g. Por ejemplo, si g es
-- el grafo definido a continuación,
     g :: Grafo Int Int
      g = creaGrafo \ ND \ (1,5) \ [(1,2,12),(1,3,34),(1,5,78),
                               (2,4,55),(2,5,32),
                               (3,4,61),(3,5,44),
                               (4,5,93)
-- entonces
-- anchuraG g == 4
```

```
q :: Grafo Int Int
g = creaGrafo ND (1,5) [(1,2,12),(1,3,34),(1,5,78),
                      (2,4,55),(2,5,32),
                      (3,4,61),(3,5,44),
                      (4,5,93)
anchuraG :: Grafo Int Int -> Int
anchuraG g = maximum [abs(a-b) | (a,b, ) <- aristas g]</pre>
-- Ejercicio 3.2. Comprobar experimentalmente que la anchura del grafo
-- cíclico de orden n (para n entre 1 y 20) es n-1.
-- La propiedad es
propG :: Int -> Bool
propG n = anchuraG (grafoCiclo n) == n-1
grafoCiclo :: Int -> Grafo Int Int
grafoCiclo n = creaGrafo ND (1,n) ([(x,x+1,0) | x <- [1..n-1]] ++ [(n,1,0)])
-- La comprobación es
     ghci> and [propG n | n <- [2..10]]
     True
-- Ejercicio 4.1. Definir la función
    mayor :: Ord a => Monticulo a -> a
-- tal que (mayor m) es el mayor elemento del montículo m. Por ejemplo,
-- mayor (foldr inserta vacio [1,8,2,4,5]) == 8
-- 1ª solución
mayor :: Ord a => Monticulo a -> a
mayor m | esVacio r = menor m
       | otherwise = mayor r
       where r = resto m
-- 2ª solución
mayor2 :: Ord a => Monticulo a -> a
```

```
mayor2 m = last (monticulo2Lista m)
monticulo2Lista :: Ord a => Monticulo a -> [a]
monticulo2Lista m | esVacio m = []
                 | otherwise = menor m : monticulo2Lista (resto m)
-- Ejercicio 4.2. Definir la función
     minMax :: Ord a => Monticulo a -> Maybe (a, a)
-- tal que (minMax m) es justamente el par formado por el menor y el
-- mayor elemento de m, si el montículo m es no vacío. Por ejemplo,
     minMax (foldr inserta vacio [4,8,2,1,5]) == Just (1,8)
     minMax (foldr inserta vacio [4])
                                             == Just (4,4)
    minMax vacio
                                              == Nothing
minMax :: (Ord a) => Monticulo a -> Maybe (a, a)
minMax m | esVacio m = Nothing
         | otherwise = Just (menor m, mayor m)
-- Ejercicio 5.1. Dada una lista de números naturales xs, la
-- codificación de Gödel de xs se obtiene multiplicando las potencias de
-- los primos sucesivos, siendo los exponentes los elementos de xs. Por
-- ejemplo, si xs = [6,0,4], la codificación de xs es
     2^6 * 3^0 * 5^4 = 64 * 1 * 625 = 40000.
-- Definir la función
     codificaG :: [Integer] -> Integer
-- tal que (codificaG xs) es la codificación de Gödel de xs. Por
-- ejemplo,
    codificaG [6,0,4]
                                == 40000
     codificaG [3,1,1] == 120
    codificaG [3,1,0,0,0,0,0,1] == 456
-- codificaG [1..6] == 4199506113235182750
codificaG :: [Integer] -> Integer
codificaG xs = product (zipWith (^) primes xs)
```

```
-- Se puede eliminar el argumento:
codificaG2 :: [Integer] -> Integer
codificaG2 = product . zipWith (^) primes
__ _______
-- Ejercicio 5.2. Definir la función
      decodificaG :: Integer -> [Integer]
-- tal que (decodificaG n) es la lista xs cuya codificación es n. Por
-- ejemplo,
                                    == [6,0,4]
     decodificaG 40000
     decodificaG 120
                                   == [3,1,1]
    decodificaG 456
                                  == [3,1,0,0,0,0,0,1]
   decodificaG \ 4199506113235182750 == [1,2,3,4,5,6]
decodificaG :: Integer -> [Integer]
decodificaG n = aux primes (group $ primeFactors n)
 where aux _ [] = []
       aux (x:xs) (y:ys) | x == head y = genericLength y : aux xs ys
                       | otherwise = \theta : aux xs (y:ys)
-- Ejercicio 5.3. Comprobar con QuickCheck que ambas funciones son
-- inversas.
-- Las propiedades son
propCodifical :: [Integer] -> Bool
propCodifical xs =
   decodificaG (codificaG ys) == ys
   where ys = map((+1) \cdot abs) xs
propCodifica2:: Integer -> Property
propCodifica2 n =
   n > 0 ==> codificaG (decodificaG n) == n
-- Las comprobaciones son
-- ghci> quickCheck propCodifical
    +++ OK, passed 100 tests.
```

-- =========

```
-- ghci> quickCheck propCodifica2
-- +++ 0K, passed 100 tests.
```

4.6. Examen 6 (15 de junio de 2015)

```
-- Informática: 6º examen de evaluación continua (15 de junio de 2015)
-- § Librerías auxiliares
import Data.Numbers.Primes
import Data.List
import I1M.PolOperaciones
import Test.QuickCheck
import Data.Array
import Data.Char
import Data.Matrix
-- Ejercicio 1. Sea p(n) el n-ésimo primo y sea r el resto de dividir
-- (p(n)-1)^n + (p(n)+1)^n por p(n)^2. Por ejemplo,
     si \ n = 3, entonces p(3) = 5 \ y \ r = (4^3 + 6^3) \ mod (5^2) = 5
     si \ n = 7, entonces p(7) = 17 \ y \ r = (16^7 + 18^7) \ mod (17^2) = 238
-- Definir la función
     menorPR :: Integer -> Integer
-- tal que (menorPR x) es el menor n tal que el resto de dividir
-- (p(n)-1)^n + (p(n)+1)^n por p(n)^2 es mayor que x. Por ejemplo,
     menorPR 100
                    == 5
     menorPR 345
                     == 9
    menorPR 1000
                     == 13
     menorPR (10^9) = 7037.
    menorPR (10^10) == 21035
    menorPR (10^12) == 191041
-- 1ª solución
```

```
menorPR1 :: Integer -> Integer
menorPR1 x =
    head [n \mid (n,p) \leftarrow zip [1..] primes
            (((p-1)^n + (p+1)^n) \text{ 'mod' } (p^2)) > x]
-- Segunda solución (usando el binomio de Newton)
-- Desarrollando por el binomio de Newton
     (p+1)^n = C(n,0)p^n + C(n,1)p^n + \dots + C(n,n-1)p + 1
     (p-1)^n = C(n,0)p^n - C(n,1)p^n(n-1) + \ldots + C(n,n-1)p + (-1)^n
-- Sumando se obtiene (según n sea par o impar)
     2*C(n,0)p^n + 2*C(n,n-2)p^(n-1) + ... + 2*C(n,2)p^2 + 2
     2*C(n,0)p^n + 2*C(n,n-2)p^(n-1) + ... + 2*C(n,1)p^1
-- Al dividir por p^2, el resto es (según n sea par o impar) 2 ó 2*C(n,1)p
-- (restom n p) es el resto de de dividir (p-1)^n + (p+1)^n por p^2.
restoM :: Integer -> Integer
restoM n p | even n
          | otherwise = 2*n*p 'mod'(p^2)
menorPR2 :: Integer -> Integer
menorPR2 x = head [n | (n,p) \leftarrow zip [1...] primes, restom n p > x]
-- Comparación de eficiencia
     ghci> menorPR1 (3*10^8)
     3987
     (2.44 secs, 120291676 bytes)
     ahci> menorPR2 (3*10^8)
     3987
    (0.04 secs, 8073900 bytes)
-- Ejercicio 2. Definir la función
     sumaPosteriores :: [Int] -> [Int]
-- tal que (sumaPosteriores xs) es la lista obtenida sustituyendo cada
-- elemento de xs por la suma de los elementos posteriores. Por ejemplo,
     sumaPosteriores [1..8] == [35,33,30,26,21,15,8,0]
     sumaPosteriores [1, -3, 2, 5, -8] == [-4, -1, -3, -8, 0]
```

```
-- Comprobar con QuickCheck que el último elemento de la lista
-- (sumaPosteriores xs) siempre es 0.
__ _______
-- 1ª definición (por recursión):
sumaPosteriores1 :: [Int] -> [Int]
sumaPosteriores1 [] = []
sumaPosteriores1 (x:xs) = sum xs : sumaPosteriores1 xs
-- 2ª definición (sin argumentos)
sumaPosteriores2 :: [Int] -> [Int]
sumaPosteriores2 = map sum . tail . tails
-- 3ª definición (con scanr)
sumaPosteriores3 :: [Int] -> [Int]
sumaPosteriores3 = tail . scanr (+) 0
-- La propiedad es
propSumaP:: [Int] -> Property
propSumaP xs = not (null xs) ==> last (sumaPosteriores1 xs) == 0
-- La comprobación es
-- ghci> quickCheck propSumaP
    +++ OK, passed 100 tests.
-- Ejercicio 3.1. Definir la constante
     sucesionD :: String
-- tal que su valor es la cadena infinita "1234321234321234321..."
-- formada por la repetición de los dígitos 123432. Por ejemplo,
     ghci> take 50 sucesionD
     "12343212343212343212343212343212343212343212"
-- 1º definición (con cycle):
sucesionD :: String
sucesionD = cycle "123432"
-- 2ª definición (con repeat):
```

```
sucesionD2 :: String
sucesionD2 = concat $ repeat "123432"
-- 3ª definición (por recursión):
sucesionD3 :: String
sucesionD3 = "123432" ++ sucesionD4
-- Comparación de eficiencia
      ghci> sucesionD !! (2*10^7)
      '3'
     (0.16 secs, 1037132 bytes)
     ghci> sucesionD2 !! (2*10^7)
     ′3′
     (3.28 secs, 601170876 bytes)
     ghci> sucesionD3 !! (2*10^7)
     '3'
     (0.17 secs, 1033344 bytes)
-- Ejercicio 3.2. La sucesión anterior se puede partir en una sucesión
-- de números, de forma que la suma de los dígitos de dichos números
-- forme la sucesión de los números naturales, como se observa a
-- continuación:
      1, 2, 3, 4, 32, 123, 43, 2123, 432, 1234, 32123, ...
      1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...
-- Definir la sucesión
     sucesionN :: [Integer]
-- tal que sus elementos son los números de la partición anterior. Por
-- ejemplo,
     ghci> take 11 sucesionN
     [1,2,3,4,32,123,43,2123,432,1234,32123]
sucesionN :: [Int]
sucesionN = aux [1..] sucesionD
   where aux (n:ns) xs = read ys : aux ns zs
             where (ys,zs) = prefijoSuma n xs
-- (prefijoSuma n xs) es el par formado por el primer prefijo de xs cuyo
```

```
-- suma es n y el resto de xs. Por ejemplo,
     prefijoSuma 6 "12343" == ("123","43")
prefijoSuma :: Int -> String -> (String,String)
prefijoSuma n xs =
    head [(us,vs) | (us,vs) <- zip (inits xs) (tails xs)
                  , sumaD us == n]
-- (sumaD xs) es la suma de los dígitos de xs. Por ejemplo,
      sumaD "123" == 6
sumaD :: String -> Int
sumaD = sum . map digitToInt
-- Ejercicio 4. El polinomio cromático de un grafo calcula el número de
-- maneras en las cuales puede ser coloreado el grafo usando un número
-- de colores dado, de forma que dos vértices adyacentes no tengan el
-- mismo color.
-- En el caso del grafo completo de n vértices, su polinomio cromático
-- es P(n,x) = x(x-1)(x-2) \dots (x-(n-1)). Por ejemplo,
     P(3,x) = x(x-1)(x-2) = x^3 - 3*x^2 + 2*x
     P(4,x) = x(x-1)(x-2)(x-3) = x^4 - 6*x^3 + 11*x^2 - 6*x
-- Lo que significa que P(4)(x) es el número de formas de colorear el
-- grafo completo de 4 vértices con x colores. Por tanto,
     P(4,2) = 0 (no se puede colorear con 2 colores)
     P(4,4) = 24 (hay 24 formas de colorearlo con 4 colores)
-- Definir la función
       polGC:: Int -> Polinomio Int
-- tal que (polGC n) es el polinomio cromático del grafo completo de n
-- vértices. Por ejemplo,
       polGC \ 4 == x^4 + -6*x^3 + 11*x^2 + -6*x
       polGC 5 == x^5 + -10*x^4 + 35*x^3 + -50*x^2 + 24*x
-- Comprobar con OuickCheck que si el número de colores (x) coincide con
-- el número de vértices del grafo (n), el número de maneras de colorear
-- el grafo es n!.
-- Nota. Al hacer la comprobación limitar el tamaño de las pruebas como
-- se indica a continuación
```

```
ghci> quickCheckWith (stdArgs {maxSize=7}) prop polGC
    +++ OK, passed 100 tests.
-- 1ª solución
-- =========
polGC :: Int -> Polinomio Int
polGC 0 = consPol 0 1 polCero
polGC n = multPol (polGC (n-1)) (consPol 1 1 (consPol 0 (-n+1) polCero))
-- 2ª solución
-- ========
polGC2 :: Int -> Polinomio Int
polGC2 n = multLista (map polMon [0..n-1])
-- (polMon n) es el monomio x-n. Por ejemplo,
     polMon \ 3 == 1*x + -3
polMon:: Int -> Polinomio Int
polMon n = consPol 1 1 (consPol 0 (-n) polCero)
-- (multLista ps) es el producto de la lista de polinomios ps.
multLista :: [Polinomio Int] -> Polinomio Int
multLista [] = polUnidad
multLista (p:ps) = multPol p (multLista ps)
-- La función multLista se puede definir por plegado
multLista2 :: [Polinomio Int] -> Polinomio Int
multLista2 = foldr multPol polUnidad
-- La propiedad es
prop polGC :: Int -> Property
prop_polGC n =
    n > 0 ==> valor (polGC n) n == product [1..n]
-- La comprobación es
    ghci> quickCheckWith (stdArgs {maxSize=7}) prop polGC
    +++ OK, passed 100 tests.
    (0.04 secs, 7785800 bytes)
```

```
-- Ejercicio 5:
-- Consideramos un tablero de ajedrez en el que hay un único caballo y
-- lo representamos por una matriz con ceros en todas las posiciones,
-- excepto en la posición del caballo que hay un 1.
-- Definimos el tipo de las matrices:
type Matriz a = Array (Int,Int) a
-- (a) Definir una función
      matrizC:: (Int,Int) -> Matriz Int
-- tal que, dada la posición (i,j) donde está el caballo, obtiene la
-- matriz correspondiente. Por ejemplo,
    elems (matrizC (1,1))
-- [1,0,0,0,0,0,0,0,0,
   0,0,0,0,0,0,0,0,0,
   0,0,0,0,0,0,0,0,0,
-- 0,0,0,0,0,0,0,0,
   0,0,0,0,0,0,0,0,0,
   0,0,0,0,0,0,0,0,0,
-- 0,0,0,0,0,0,0,0,
-- 0,0,0,0,0,0,0,0]
matrizC:: (Int,Int) -> Matrix Int
matrizC (i,j) = setElem 1 (i,j) (zero 8 8)
-- (b) Definir una función
      posicionesC :: (Int,Int) -> [(Int,Int)]
-- tal que dada la posición (i, j) de un caballo, obtiene la lista
-- con las posiciones posibles a las que se puede mover el caballo.
-- Por ejemplo,
-- posicionesC (1,1) == [(2,3),(3,2)]
-- posicionesC (3,4) == [(2,2),(2,6),(4,2),(4,6),(1,3),(1,5),(5,3),(5,5)]
posicionesC :: (Int,Int) -> [(Int,Int)]
posicionesC(i,j) =
    filter p [(i-1,j-2),(i-1,j+2),(i+1,j-2),(i+1,j+2),
```

```
(i-2,j-1),(i-2,j+1),(i+2,j-1),(i+2,j+1)
    where p (x,y) = x >= 1 \&\& x <= 8 \&\& y >= 1 \&\& y <= 8
-- (c) Definir una función
       saltoC:: Matriz Int -> (Int,Int) -> [Matriz Int]
-- tal que, dada una matriz m con un caballo en la posición (i,j),
-- obtiene la lista con las matrices que representan cada una de los
-- posibles movimientos del caballo.
saltoC:: Matrix Int -> (Int,Int) -> [Matrix Int]
saltoC m (i,j) = map matrizC (posicionesC (i,j))
-- o bien, sin usar matrizC
saltoC':: Matrix Int -> (Int,Int) -> [Matrix Int]
saltoC' m (i,j) = map f (posicionesC (i,j))
    where f (k,l) = setElem 0 (i,j) (setElem 1 (k,l) m)
-- También se puede definir obviando la matriz:
saltoCI:: (Int,Int) -> [Matrix Int]
saltoCI = map matrizC . posicionesC
-- saltoC m1 (1,1)
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 1 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 1 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
```

```
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- (d) Definir una función
       juego:: IO ()
-- que realice lo siguiente: pregunte por la posición del caballo en el
-- tablero y por la casilla hacia la que queremos moverlo y nos devuelva
-- en pantalla "Correcta" o "Incorrecta". Por ejemplo,
    juego
    Introduce la posición actual del caballo
    fila: 1
    columna: 1
    Introduce la posición hacia la que quieres moverlo
    fila: 4
    columna: 2
    Incorrecta
    juego
    Introduce la posición actual del caballo
    fila: 3
    columna: 4
    Introduce la posición hacia la que quieres moverlo
    fila: 1
    columna: 5
    Correcta
juego :: IO ()
juego = do putStrLn "Introduce la posición actual del caballo "
           putStr "fila: "
           a <- getLine
           let i = read a
           putStr "columna: "
           b <- getLine
           let i = read b
           putStrLn "Introduce la posición hacia la que quieres moverlo "
           putStr "fila: "
           a2 <- getLine
           let k = read a2
           putStr "columna: "
```

```
b2 <- getLine
          let l = read b
          putStrLn (if (k,l) 'elem' posicionesC (i,j)
                    then "Correcta"
                    else "Incorrecta")
 ______
-- Ejercicio 5: Con Array. Matrices. Entrada/salida
-- Los mismos ejercicios, pero usando Array en vez de la librería de
-- matrices.
matrizC2:: (Int,Int) -> Array (Int,Int) Int
matrizC2 (i,j) = array ((1,1), (8,8)) [((k,l), f (k,l)) | k <-[1..8],
                                                       l <- [1..8]]
   where f (k,l) | (k,l) == (i,j) = 1
                 | otherwise = 0
-- Ejemplo:
m1_2:: Array (Int,Int) Int
m1 \ 2 = matrizC2 \ (1,1)
saltoC2:: Array (Int,Int) Int -> (Int,Int) -> [Array (Int,Int) Int]
saltoC2 m (i,j) = map matrizC2 (posicionesC (i,j))
saltoCI2:: (Int,Int) -> [Array (Int,Int) Int]
saltoCI2 = map matrizC2 . posicionesC
```

4.7. Examen 7 (3 de julio de 2015)

El examen es común con el del grupo 1 (ver página 42).

4.8. Examen 8 (4 de septiembre de 2015)

El examen es común con el del grupo 1 (ver página 42).

4.9. Examen 9 (4 de diciembre de 2015)

El examen es común con el del grupo 1 (ver página 61).

5

Exámenes del grupo 5

Francisco J. Martín

5.1. Examen 1 (3 de Noviembre de 2014)

```
-- Informática (1º del Grado en Matemáticas)
-- 1º examen de evaluación continua (3 de noviembre de 2014)
-- Ejercicio 1.1. El módulo de un vector de n dimensiones,
--xs = (x1, x2, ..., xn), es la raíz cuadrada de la suma de los cuadrados
-- de sus componentes. Por ejemplo,
-- el módulo de (1,2) es 2.236068
     el módulo de (1,2,3) es 3.7416575
-- El normalizado de un vector de n dimensiones, xs = (x1, x2, ..., xn), es
-- el vector que se obtiene dividiendo cada componente por su módulo. De
-- esta forma, el módulo del normalizado de un vector siempre es 1. Por
-- ejemplo,
     el normalizado de (1,2) es (0.4472136,0.8944272)
     el normalizado de (1,2,3) es (0.26726124,0.5345225,0.8017837)
-- Definir, por comprensión, la función
     modulo :: [Float] -> Float
-- tal que (modulo xs) es el módulo del vector xs. Por ejemplo,
    modulo [1,2] == 2.236068
    modulo [1,2,3] == 3.7416575
    modulo [1,2,3,4] == 5.477226
```

```
modulo :: [Float] -> Float
modulo xs = sqrt (sum [x^2 | x <- xs])
-- Ejercicio 1.2. Definir, por comprensión, la función
     normalizado :: [Float] -> [Float]
-- tal que (normalizado xs) es el vector resultado de normalizar el
-- vector xs. Por ejemplo,
-- normalizado [1,2] == [0.4472136,0.8944272]

-- normalizado [1,2,3] == [0.26726124,0.5345225,0.8017837]
     normalizado [1,2,3,4] == [0.18257418,0.36514837,0.5477225,0.73029673]
normalizado :: [Float] -> [Float]
normalizado xs = [x / modulo xs | x <- xs]</pre>
-- Ejercicio 2.1. En un bloque de pisos viven "Ana", "Beatriz", "Carlos"
-- y "Daniel", cada uno de ellos tiene ciertos alimentos en sus
-- respectivas despensas. Esta información está almacenada en una lista
-- de asociación de la siguiente forma: (<nombre>,<despensa>)
     datos = [("Ana",["Leche","Huevos","Sal"]),
               ("Beatriz",["Jamon","Lechuga"]),
               ("Carlos", ["Atun", "Tomate", "Jamon"]),
               ("Daniel", ["Salmon", "Huevos"])]
-- Definir, por comprensión, la función
      tienenProducto :: String -> [(String,[String])] -> [String]
-- tal que (tienenProducto x ys) es la lista de las personas que tienen el
-- producto x en sus despensas. Por ejemplo,
     tienenProducto "Lechuga" datos == ["Beatriz"]
     tienenProducto "Huevos" datos == ["Ana", "Daniel"]
    tienenProducto "Pan" datos == []
  -----
datos = [("Ana",["Leche","Huevos","Sal"]),
         ("Beatriz", ["Jamon", "Lechuga"]),
         ("Carlos", ["Atun", "Tomate", "Jamon"]),
```

```
("Daniel", ["Salmon", "Huevos"])]
tienenProducto :: String -> [(String,[String])] -> [String]
tienenProducto x ys = [z \mid (z,ds) \leftarrow ys, x \text{ 'elem' ds}]
-- Ejercicio 2.2. Definir, por comprensión, la función
      proveedores :: String -> [(String,[String])] -> [String]
-- tal que (proveedores xs ys) es la lista de las personas que pueden
-- proporcionar algún producto de los de la lista xs. Por ejemplo,
    proveedores ["Leche","Jamon"] datos == ["Ana","Beatriz","Carlos"]
      proveedores ["Sal", "Atun"] datos == ["Ana", "Carlos"]
      proveedores ["Leche", "Sal"] datos == ["Ana"]
proveedores :: [String] -> [(String,[String])] -> [String]
proveedores xs ys =
    [z \mid (z,ds) \leftarrow ys, \text{ not (null } [d \mid d \leftarrow ds, d \leftarrow elem \leftarrow xs])]
-- Ejercicio 3. Definir, por recursión, la función
      intercalaNumeros :: Integer -> Integer
-- tal que (intercalaNumeros n m) es el número resultante de
-- "intercalar" las cifras de los números 'n' y 'm'. Por ejemplo, el
-- resultado de intercalar las cifras de los números 123 y 768 sería:
        1 2 3
        7 6 8
        172638
-- Si uno de los dos números tiene más cifras que el otro, simplemente
-- se ponen todas al principio en el mismo orden. Por ejemplo, el
-- resultado de intercalar las cifras de los números 1234 y 56 sería:
        1 2 3 4
            5 6
        1 2 3546
-- De esta forma:
     intercalaNumeros 123 768 == 172638
     intercalaNumeros 1234 56 == 123546
     intercalaNumeros 56 1234 == 125364
```

-- 1º definición: intercalaNumeros :: Integer -> Integer intercalaNumeros 0 y = yintercalaNumeros x 0 = xintercalaNumeros x y = let rx = mod x 10 $dx = div \times 10$ ry = mod y 10dy = div y 10**in** (intercalaNumeros dx dy)*100 + rx*10 + ry-- 2ª definición: intercalaNumeros2 :: Integer -> Integer intercalaNumeros2 0 y = y $intercalaNumeros2 \times 0 = x$ intercalaNumeros2 x y = 100 * intercalaNumeros2 dx dy + 10*rx + ry where (dx,rx) = divMod x 10(dy,ry) = divMod y 10__ _______ -- Ejercicio 4. La carga de una lista es el número de elementos -- estrictamente positivos menos el número de elementos estrictamente -- negativos. -- Definir, por recursión, la función carga :: [Integer] -> Integer -- tal que (carga xs) es la carga de la lista xs. Por ejemplo, carga [1,2,0,-1] == 1carga [1,0,2,0,3] == 3 carga [1,0,-2,0,3] == 1carga [1,0,-2,0,-3] == -1carga [1,0,-2,2,-3] == 0carga :: [Integer] -> Integer carga [] = 0carga (x:xs) $\mid x > 0 = 1 + carga xs$

```
| x == 0 = carga xs
| otherwise = carga xs - 1
```

5.2. Examen 2 (1 de Diciembre de 2014)

```
-- Informática (1º del Grado en Matemáticas)
-- 2º examen de evaluación continua (1 de diciembre de 2014)
-- § Librería auxiliar
import Test.QuickCheck
-- Ejercicio 1.1. Decimos que una lista está equilibrada con respecto a
-- una propiedad si el número de elementos de la lista que cumplen la
-- propiedad es igual al número de elementos de la lista que no la
-- cumplen. Por ejemplo, la lista [1,2,3,4,5,6,7,8] está equilibrada con
-- respecto a la propiedad 'ser par' y con respecto a la propiedad 'ser
-- primo', pero no con respecto a la propiedad 'ser múltiplo de 3'.
-- Definir, por comprensión, la función
     listaEquilibradaC :: [a] -> (a -> Bool) -> Bool
-- tal que (listaEquilibradaC xs p) se verifica si la lista xs está
-- equilibrada con respecto a la propiedad p. Por ejemplo,
    listaEquilibradaC [1..8] even
      listaEquilibradaC [1..8] (\times -> mod x 3 == 0) == False
listaEquilibradaC :: [a] -> (a -> Bool) -> Bool
listaEquilibradaC xs p =
    length [x \mid x \leftarrow xs, p x] = length [x \mid x \leftarrow xs, not (p x)]
-- Ejercicio 1.2. Definir, usando funciones de orden superior, la
-- función
     listaEquilibradaS :: [a] -> (a -> Bool) -> Bool
-- tal que (listaEquilibradaS xs p) se verifica si la lista xs está
```

```
-- equilibrada con respecto a la propiedad 'p'. Por ejemplo,
-- listaEquilibradaS [1..8] even
     listaEquilibradaS [1..8] (\ x \rightarrow mod \times 3 == 0) == False
  _____
listaEquilibradaS :: [a] -> (a -> Bool) -> Bool
listaEquilibradaS xs p =
   length (filter p xs) == length (filter (not . p) xs)
-- Ejercicio 1.3. Comprobar con QuickCheck que la longitud de las listas
-- que están equilibradas respecto a la propiedad 'ser impar' es pae
__ ______
-- La propiedad es
prop listaEquilibradaImpar :: [Int] -> Property
prop listaEquilibradaImpar xs =
   listaEquilibradaC xs odd ==> even (length xs)
-- La comprobación es
     ghci> quickCheck prop_listaEquilibradaImpar
    +++ OK, passed 100 tests.
-- -----
-- Ejercicio 2.1. Definir, por recursión, la función
     diferenciasParidadR :: [Int] -> [Int]
-- tal que (diferenciasParidadR xs) es la lista de las diferencias entre
-- elementos consecutivos de xs que tengan la misma paridad. Por ejemplo,
     diferenciasParidadR [1,2,3,4,5,6,7,8] == []
     diferenciasParidadR [1,2,4,5,9,6,12,9] == [2,4,6]
    diferenciasParidadR [1,7,3]
                                       == [6, -4]
-- 1º definición:
diferenciasParidadR :: [Int] -> [Int]
diferenciasParidadR (x1:x2:xs)
   | even x1 == even x2 = x2-x1 : differenciasParidadR (x2:xs)
                     = diferenciasParidadR (x2:xs)
diferenciasParidadR _ = []
```

```
-- 2ª definición:
diferenciasParidadR2 :: [Int] -> [Int]
diferenciasParidadR2 xs = aux (zip xs (tail xs))
    where aux [] = []
          aux ((x,y):ps) | even x == even y = y-x : aux ps
                         | otherwise = aux ps
-- Ejercicio 2.2. Definir, usando plegado con flodr, la función
      diferenciasParidadP :: [Int] -> [Int]
-- tal que (diferenciasParidadP xs) es la lista de las diferencias entre
-- elementos consecutivos de xs que tengan la misma paridad. Por ejemplo,
     diferenciasParidadP [1,2,3,4,5,6,7,8] == []
     diferenciasParidadP [1,2,4,5,9,6,12,9] == [2,4,6]
    diferenciasParidadP [1,7,3]
                                            == [6, -4]
-- 1º definición:
diferenciasParidadP :: [Int] -> [Int]
diferenciasParidadP xs =
    foldr (\ (x,y) r \rightarrow if even x == even y
                        then y-x: r
                        else r) [] (zip xs (tail xs))
-- 2ª definición:
diferenciasParidadP2 :: [Int] -> [Int]
diferenciasParidadP2 xs =
    foldr f [] (zip xs (tail xs))
    where f (x,y) r | even x == even y = y-x : r
                    | otherwise = r
-- Ejercicio 2.3. Comprobar con QuickCheck que todos los elementos de la
-- lista de las diferencias entre elementos consecutivos de xs que
-- tengan iqual paridad son pares.
-- La propiedad es
prop_diferenciasParidad :: [Int] -> Bool
prop diferenciasParidad xs =
```

```
all even (diferenciasParidadP xs)
-- La comprobación es
     ghci> quickCheck prop diferenciasParidad
     +++ OK, passed 100 tests.
-- Ejercicio 3. La sucesión generalizada de Fibonacci de grado N
-- (N >= 1) se construye comenzando con el número 1 y calculando el
-- resto de términos como la suma de los N términos anteriores (si
-- existen). Por ejemplo,
-- + la sucesión generalizada de Fibonacci de grado 2 es:
       1, 1, 2, 3, 5, 8, 13, 21, 34, 55
-- + la sucesión generalizada de Fibonacci de grado 4 es:
       1, 1, 2, 4, 8, 15, 29, 56, 108, 208
-- + la sucesión generalizada de Fibonacci de grado 6 es:
       1, 1, 2, 4, 8, 16, 32, 63, 125, 248
-- Ejercicio 3.1. Definir, por recursión con acumulador, la función
      fibsGenAR :: Int -> Int -> Int
-- tal que (fibsGenAR n m) es el término m de la sucesión generalizada
-- de Fibonacci de grado n. Por ejemplo,
      fibsGenAR 4 3 == 4
     fibsGenAR 4 4 == 8
     fibsGenAR 45 == 15
     fibsGenAR 4 6 == 29
     fibsGenAR 4 7 == 56
fibsGenAR :: Int -> Int -> Int
fibsGenAR = fibsGenARAux [1]
fibsGenARAux :: [Int] -> Int -> Int -> Int
fibsGenARAux ac 0 = head ac
fibsGenARAux ac n m =
    fibsGenARAux (sum (take n ac) : ac) n (m-1)
-- Ejercicio 3.2. Definir, usando plegado con foldl, la función
```

fibsGenAP :: Int -> Int -> Int

```
-- tal que (fibsGenAP n m) es el término m de la sucesión generalizada
-- de Fibonacci de grado n. Por ejemplo,
     fibsGenAP 4 3 == 4
     fibsGenAP 4 4 == 8
    fibsGenAP 4 5 == 15
    fibsGenAP 4 6 == 29
    fibsGenAP 4 7 == 56
fibsGenAP :: Int -> Int -> Int
fibsGenAP n m =
   head (foldl (\ac x \rightarrow (sum (take n ac): ac)) [1] [1..m])
-- Ejercicio 4. Definir, por recursión, la función
     fibsGen :: Int -> [Int]
-- tal que (fibsGen n) es la sucesión (infinita) generalizada de
-- Fibonacci de grado n. Por ejemplo,
    take 10 (fibsGen 2) == [1,1,2,3,5,8,13,21,34,55]
    take 10 (fibsGen 4) == [1,1,2,4,8,15,29,56,108,208]
    take 10 (fibsGen 6) == [1,1,2,4,8,16,32,63,125,248]
fibsGen :: Int -> [Int]
fibsGen = fibsGenAux [1]
fibsGenAux :: [Int] -> Int -> [Int]
fibsGenAux ac n = head ac : fibsGenAux (sum bc : bc) n
   where bc = take n ac
```

5.3. Examen 3 (23 de enero de 2015)

El examen es común con el del grupo 1 (ver página 22).

5.4. Examen 4 (16 de marzo de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 4º examen de evaluación continua (16 de marzo de 2015)
```

```
-- § Librerías auxiliares
__ ______
import Data.Char
import Data.Array
import I1M.Pol
import Data.Numbers.Primes
import Test.QuickCheck
-- Ejercicio 1. Se dice que dos números naturales son parientes si
-- tienen exactamente un factor primo en común, independientemente de su
-- multiplicidad. Por ejemplo,
-- + Los números 12 (2^2*3) y 40 (2^3*5) son parientes, pues tienen al 2
-- como único factor primo en común.
-- + Los números 49 (7^2) y 63 (3^2*7) son parientes, pues tienen al 7
-- como único factor primo en común.
-- + Los números 12 (2^2*3) y 30 (2*3*5) no son parientes, pues tienen
-- dos factores primos en común.
-- + Los números 49 (7^2) y 25 (5^2) no son parientes, pues no tienen
   factores primos en común.
-- Se dice que una lista de números naturales es una secuencia de
-- parientes si cada par de números consecutivos son parientes. Por ejemplo,
-- + La lista [12,40,35,28] es una secuencia de parientes.
-- + La lista [12,30,21,49] no es una secuencia de parientes.
-- Definir la función
     secuenciaParientes :: [Int] -> Bool
-- tal que (secuenciaParientes xs) se verifica si xs es una secuencia de
-- parientes. Por ejemplo,
     secuenciaParientes [12,40,35,28] == True
     secuenciaParientes [12,30,21,49] == False
parientes :: Int -> Int -> Bool
parientes x y =
   length [p \mid p \leftarrow takeWhile (<= d) primes, d 'mod' p == 0] == 1
```

```
where d = gcd \times y
-- Definiciones de secuenciaParientes
- -
-- 1ª definición (por recursión)
secuenciaParientes :: [Int] -> Bool
secuenciaParientes [] = True
                            = True
secuenciaParientes [x]
secuenciaParientes (x1:x2:xs) =
   parientes x1 x2 && secuenciaParientes (x2:xs)
-- 2ª definición (por recursión con 2 ecuaciones)
secuenciaParientes2 :: [Int] -> Bool
secuenciaParientes2 (x1:x2:xs) =
   parientes x1 x2 && secuenciaParientes2 (x2:xs)
secuenciaParientes2
                            = True
-- 3ª definición (sin recursión):
secuenciaParientes3 :: [Int] -> Bool
secuenciaParientes3 xs = all (\(x,y) -> parientes x y) (zip xs (tail xs))
-- 4ª definición
secuenciaParientes4 :: [Int] -> Bool
secuenciaParientes4 xs = all (uncurry parientes) (zip xs (tail xs))
-- Equivalencia de las 4 definiciones
prop secuenciaParientes :: [Int] -> Bool
prop secuenciaParientes xs =
   secuenciaParientes2 xs == ys &&
   secuenciaParientes3 xs == ys &&
   secuenciaParientes4 xs == ys
   where ys = secuenciaParientes xs
-- La comprobación es
     ghci> quickCheck prop secuenciaParientes
     +++ OK, passed 100 tests.
-- Ejercicio 2. En lógica temporal la expresión AFp significa que en
```

```
-- algún momento en el futuro se cumple la propiedad p. Trasladado a
-- su interpretación en forma de árbol lo que quiere decir es que en
-- todas las ramas (desde la raíz hasta una hoja) hay un nodo que cumple
-- la propiedad p.
-- Consideramos el siguiente tipo algebraico de los árboles binarios:
     data \ Arbol \ a = H \ a
                   | N a (Arbol a) (Arbol a)
                     deriving (Show, Eq)
-- y el siguiente árbol
-- al :: Arbol Int
     a1 = N 9 (N 3 (H 2) (N 4 (H 1) (H 5))) (H 8)
-- En este árbol se cumple (AF par); es decir, en todas las ramas hay un
-- número par; pero no se cumple (AF primo); es decir, hay ramas en las
-- que no hay ningún número primo. Donde una rama es la secuencia de
-- nodos desde el nodo inicial o raíz hasta una hoja.
-- Definir la función
     propiedadAF :: (a -> Bool) -> Arbol a -> Bool
-- tal que (propiedadAF p a) se verifica si se cumple (AF p) en el árbol
-- a; es decir, si en todas las ramas hay un nodo (interno u hoja) que
-- cumple la propiedad p. Por ejemplo
     propiedadAF even a1 == True
     propiedadAF isPrime a1 == False
data Arbol a = H a
             | N a (Arbol a) (Arbol a)
             deriving (Show, Eq)
al :: Arbol Int
a1 = N 9 (N 3 (H 2) (N 4 (H 1) (H 5))) (H 8)
propiedadAF :: (a -> Bool) -> Arbol a -> Bool
propiedadAF p (H a)
                     = p a
propiedadAF p (N a i d) = p a || (propiedadAF p i && propiedadAF p d)
-- Ejercicio 3. Consideramos las matrices representadas como tablas
-- cuyos índices son pares de números naturales.
```

```
type Matriz a = Array (Int, Int) a
-- Una matriz cruzada es una matriz cuadrada en la que sólo hay elementos
-- distintos de 0 en las diagonales principal y secundaria. Por ejemplo
     | 1 0 0 0 3 |
                    | 1 0 0 3 |
     0 2 0 1 0 |
                      0230
     0 0 3 0 0 |
                      | 0 4 5 0 |
    | 0 2 0 1 0 |
                      | 2 0 0 3 |
    | 1 0 0 0 3 |
-- Definir la función
     creaCruzada :: Int -> Matriz Int
-- tal que (creaCruzada n) es la siguiente matriz cruzada con n filas y n
-- columnas:
     | 1
              0 ... 0
                         0 1 |
            0 ... 0
     0 2
                         2 0
     0 0 3 ... 3
                        0 0 1
     | ......
     | 0 0 n-2 ... n-2 0 0 |
     0 n-1 0
                ... 0 n-1 0 |
    | n 0 0 ... 0 0 n |
-- Es decir, los elementos de la diagonal principal son [1,...,n], en
-- orden desde la primera fila hasta la última; y los elementos de la
-- diagonal secundaria son [1,...,n], en orden desde la primera fila
-- hasta la última.
type Matriz a = Array (Int,Int) a
creaCruzada :: Int -> Matriz Int
creaCruzada n =
   array ((1,1),(n,n))
         [((i,j), valores n i j) | i \leftarrow [1..n], j \leftarrow [1..n]]
   where valores n i j | i == j = i
                       | i+j == n+1 = i
                       | otherwise = 0
-- Ejercicio 4. Consideramos el TAD de los polinomios y los siguientes
-- ejemplos de polinomios
```

```
p1 = 4*x^4 + 6*x^3 + 7*x^2 + 5*x + 2
      p2 = 6*x^5 + 2*x^4 + 8*x^3 + 5*x^2 + 8*x + 4
-- En Haskell,
     p1, p2 :: Polinomio Int
     p1 = consPol 4 4
                   (consPol 3 6
                            (consPol 2 7
                                     (consPol 1 5 (consPol 0 2 polCero))))
     p2 = consPol 5 6
                   (consPol 4 2
                            (consPol 3 8
                                     (consPol 2 5
                                               (consPol 1 8
                                                        (consPol 0 4 polCero)))))
-- El cociente entero de un polinomio P(x) por un monomio ax^n es el
-- polinomio que se obtiene a partir de los términos de P(x) con un
-- grado mayor o igual que n, realizando la división entera entre sus
-- coeficientes y el coeficiente del monomio divisor y restando el valor
-- de n al de sus grados. Por ejemplo,
-- + El cociente entero de 4x^4 + 6x^3 + 7x^2 + 5x + 2 por el monomio
    3x^2 se obtiene a partir de los términos 4x^4 + 6x^3 + 7x^2
    realizando la división entera entre sus coeficientes y el número 3
    y restando 2 a sus grados. De esta forma se obtiene 1x^2 + 2x + 2
-- + El cociente entero de 6x^5 + 2x^4 + 8x^3 + 5x^2 + 8x + 4 por el
    monomio 4x^3 se obtiene a partir de los términos 6x^5 + 2x^4 + 8x^3
    realizando la división entera entre sus coeficientes y el número 4
    y restando 3 a sus grados. De esta forma se obtiene 1x^2 + 2
-- Definir la función
      cocienteEntero :: Polinomio Int -> Int -> Int -> Polinomio Int
-- tal que (cocienteEntero p a n) es el cociente entero del polinomio p
-- por el monomio de grado n y coeficiente a. Por ejemplo,
      cocienteEntero\ p1\ 3\ 2\ =>\ x^2\ +\ 2*x\ +\ 2
      cocienteEntero p2 4 3 \Rightarrow x^2 + 2
-- Nota: Este ejercicio debe realizarse usando únicamente las funciones
-- de la signatura del tipo abstracto de dato Polinomio.
```

p1, p2 :: Polinomio Int

digitos 325 == [3,2,5]

```
p1 = consPol 4 4
             (consPol 3 6
                      (consPol 2 7
                               (consPol 1 5 (consPol 0 2 polCero))))
p2 = consPol 5 6
             (consPol 4 2
                      (consPol 3 8
                               (consPol 2 5
                                        (consPol 1 8
                                                 (consPol 0 4 polCero)))))
cocienteEntero :: Polinomio Int -> Int -> Int -> Polinomio Int
cocienteEntero p a n
    | grado p < n = polCero
    | otherwise = consPol (grado p - n) (coefLider p 'div' a)
                            (cocienteEntero (restoPol p) a n)
-- Ejercicio 5. Decimos que un número es de suma prima si la suma de
-- todos sus dígitos es un número primo. Por ejemplo el número 562 es de
-- suma prima pues la suma de sus dígitos es el número primo 13; sin
-- embargo, el número 514 no es de suma prima pues la suma de sus
-- dígitos es 10, que no es primo.
-- Decimos que un número es de suma prima hereditario por la derecha si
-- es de suma prima y los números que se obtienen eliminando sus últimas
-- cifras también son de suma prima. Por ejemplo 7426 es de suma prima
-- hereditario por la derecha pues 7426, 742, 74 y 7 son todos números
-- de suma prima.
-- Definir la constante (función sin argumentos)
     listaSumaPrimaHD :: [Integer]
-- cuyo valor es la lista infinita de los números de suma prima
-- hereditarios por la derecha. Por ejemplo,
     take 10 listaSumaPrimaHD == [2,3,5,7,20,21,23,25,29,30]
-- (digitos n) es la lista de los dígitos de n. Por ejemplo,
```

```
-- 1ª definición de digitos
digitos1 :: Integer -> [Integer]
digitos1 n = map (read . (:[])) (show n)
-- 2ª definición de digitos
digitos2 :: Integer -> [Integer]
digitos2 = map (read . (:[])) . show
-- 3ª definición de digitos
digitos3 :: Integer -> [Integer]
digitos3 n = [read [d] | d <- show n]</pre>
-- 4º definición de digitos
digitos4 :: Integer -> [Integer]
digitos4 n = reverse (aux n)
    where aux n \mid n < 10 = [n]
                otherwise = rem n 10 : aux (div n 10)
-- 5ª definición de digitos
digitos5 :: Integer -> [Integer]
digitos5 = map (fromIntegral . digitToInt) . show
-- Se usará la 1º definición
digitos :: Integer -> [Integer]
digitos = digitos1
-- (sumaPrima n) se verifica si n es un número de suma prima. Por
-- ejemplo,
      sumaPrima 562 == True
      sumaPrima 514 == False
-- 1ª definición de sumaPrima
sumaPrima :: Integer -> Bool
sumaPrima n = isPrime (sum (digitos n))
-- 2ª definición de sumaPrima
sumaPrima2 :: Integer -> Bool
sumaPrima2 = isPrime . sum . digitos
-- (sumaPrimaHD n) se verifica si n es de suma prima hereditario por la
```

```
-- derecha. Por ejemplo,
     sumaPrimaHD 7426 == True
     sumaPrimaHD 7427 == False
sumaPrimaHD n
   \mid n < 10 = isPrime n
    | otherwise = sumaPrima n && sumaPrimaHD (n 'div' 10)
-- 1º definición de listaSumaPrimaHD
listaSumaPrimaHD1 :: [Integer]
listaSumaPrimaHD1 = filter sumaPrimaHD [1..]
-- 2ª definición de listaSumaPrimaHD
listaSumaPrimaHD2 :: [Integer]
listaSumaPrimaHD2 = map fst paresSumaPrimaHDDigitos
paresSumaPrimaHDDigitos :: [(Integer, Integer)]
paresSumaPrimaHDDigitos =
   paresSumaPrimaHDDigitosAux 1 [(2,2),(3,3),(5,5),(7,7)]
paresSumaPrimaHDDigitosAux :: Integer -> [(Integer,Integer)] ->
                             [(Integer,Integer)]
paresSumaPrimaHDDigitosAux n ac =
   ac ++ paresSumaPrimaHDDigitosAux (n+1)
                                    (concatMap extiendeSumaPrimaHD ac)
extiendeSumaPrimaHD :: (Integer,Integer) -> [(Integer,Integer)]
extiendeSumaPrimaHD (n,s) = [(n*10+k,s+k) \mid k < [0..9], isPrime <math>(s+k)]
-- 3º definición de listaSumaPrimaHD
- - -----
listaSumaPrimaHD3 :: [Integer]
listaSumaPrimaHD3 =
   map fst (concat (iterate (concatMap extiendeSumaPrimaHD3)
                            [(2,2),(3,3),(5,5),(7,7)]))
extiendeSumaPrimaHD3 :: (Integer,Integer) -> [(Integer,Integer)]
extiendeSumaPrimaHD3 (n,s) = [(n*10+k,s+k) \mid k \leftarrow extensiones ! s]
```

```
extensiones :: Array Integer [Integer]
extensiones = array(1,1000)
               [(n,[k \mid k \leftarrow [0..9], isPrime (n+k)]) \mid n \leftarrow [1..1000]]
-- Comparación de eficiencia
      ghci> listaSumaPrimaHD1 !! 600
      34004
      (2.47 secs, 1565301720 bytes)
      ghci> listaSumaPrimaHD2 !! 600
      34004
      (0.02 secs, 7209000 bytes)
      ghci> listaSumaPrimaHD3 !! 600
      34004
      (0.01 secs, 1579920 bytes)
      ghci> listaSumaPrimaHD2 !! 2000000
      3800024668046
      (45.41 secs, 29056613824 bytes)
      ghci> listaSumaPrimaHD3 !! 2000000
      3800024668046
      (4.29 secs, 973265400 bytes)
```

5.5. Examen 5 (5 de mayo de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 5º examen de evaluación continua (4 de mayo de 2015)
-- $ Librerías auxiliares
-- $ Librerías auxiliares
-- import Data.Array
import Data.Char
import Data.List
import Data.Numbers.Primes
import IlM.Grafo
import Test.QuickCheck
import qualified Data.Matrix as M
```

import qualified Data.Set as S

```
-- Ejercicio 1. Dado dos números n y m, decimos que m es un múltiplo
-- especial de n si m es un múltiplo de n y m no tiene ningún factor
-- primo que sea congruente con 1 módulo 3.
-- Definir la función
      multiplosEspecialesCota :: Int -> Int -> [Int]
-- tal que (multiplosEspecialesCota n l) es la lista ordenada de todos los
-- múltiplos especiales de n que son menores o iguales que l. Por ejemplo,
      multiplosEspecialesCota 5 50 == [5, 10, 15, 20, 25, 30, 40, 45, 50]
      multiplosEspecialesCota 7 50 == []
multiplosEspecialesCota :: Int -> Int -> [Int]
multiplosEspecialesCota n l =
    [m \mid m \leftarrow [k*n \mid k \leftarrow [1..l 'div' n]],
         all (\p -> p 'mod' 3 /= 1) (primeFactors m)]
-- Ejercicio 2. Dado un grafo no dirigido G, un camino en G es una
-- secuencia de nodos [v(1),v(2),v(3),...,v(n)] tal que para todo i
-- entre 1 y n-1, (v(i),v(i+1)) es una arista de G. Por ejemplo, dados
-- los grafos
      g1 = creaGrafo \ ND \ (1,3) \ [(1,2,0),(1,3,0),(2,3,0)]
      g2 = creaGrafo \ ND \ (1,4) \ [(1,2,0),(1,3,0),(1,4,0),(2,4,0),(3,4,0)]
-- la lista [1,2,3] es un camino en gl, pero no es un camino en g2
-- puesto que la arista (2,3) no existe en g2.
-- Definir la función
      camino :: (Ix a, Num t) \Rightarrow (Grafo a t) \rightarrow [a] \rightarrow Bool
-- tal que (camino g vs) se verifica si la lista de nodos vs es un camino
-- en el grafo g. Por ejemplo,
     camino g1 [1,2,3] == True
      camino g2 [1,2,3] == False
g1 = creaGrafo ND (1,3) [(1,2,0),(1,3,0),(2,3,0)]
g2 = creaGrafo ND (1,4) [(1,2,0),(1,3,0),(1,4,0),(2,4,0),(3,4,0)]
```

```
camino :: (Ix a, Num t) => (Grafo a t) -> [a] -> Bool
camino g vs = all (aristaEn g) (zip vs (tail vs))
-- Ejercicio 3. Una relación binaria homogénea R sobre un conjunto A se
-- puede representar mediante un par (xs,ps) donde xs es el conjunto de
-- los elementos de A (el universo de R) y ps es el conjunto de pares de
-- R (el grafo de R). El tipo de las relaciones binarias se define por
      type Rel \ a = (S.Set \ a, S.Set \ (a, a))
-- Algunos ejemplos de relaciones binarias homogéneas son
      r1 = (S.fromList [1..4], S.fromList [(1,2),(2,1),(1,3),(4,3)])
      r2 = (S.fromList [1..4], S.fromList [(1,2),(2,1),(3,3),(4,3)])
     r3 = (S. fromList [1..4], S. fromList [(1,2),(2,1),(1,4),(4,3)])
     r4 = (S.fromList [1..4], S.fromList [(1,2),(2,1),(3,4),(4,3)])
-- Una relación binaria homogénea R = (U,G) es inyectiva si para todo x
-- en U hay un único y en U tal que (x,y) está en G. Por ejemplo, las
-- relaciones r2 y r4 son inyectivas, pero las relaciones r1 y r3 no.
-- Una relación binaria homogénea R = (U,G) es sobreyectiva si para todo
-- y en U hay algún x en U tal que (x,y) está en G. Por ejemplo, las
-- relaciones r3 y r4 son sobreyectivas, pero las relaciones r1 y r2
-- no.
-- Una relación binaria homogénea R = (U,G) es biyectiva si es inyectiva y
-- sobreyectiva. Por ejemplo, la relación r4 es biyectiva, pero las
-- relaciones r1, r2 y r3 no.
-- Definir la función
     biyectiva :: (Ord a, Eq a) => Rel a -> Bool
-- tal que (biyectiva r) si verifica si la relación r es biyectiva. Por
-- ejemplo,
     biyectiva r1 == False
     bivectiva r2 == False
     biyectiva r3 == False
     biyectiva r4 == True
```

type Rel a = (S.Set a, S.Set (a,a))

```
r1 = (S.fromList [1..4], S.fromList [(1,2),(2,1),(1,3),(4,3)])
r2 = (S.fromList [1..4], S.fromList [(1,2),(2,1),(3,3),(4,3)])
r3 = (S. fromList [1..4], S. fromList [(1,2),(2,1),(1,4),(4,3)])
r4 = (S.fromList [1..4], S.fromList [(1,2),(2,1),(3,4),(4,3)])
biyectiva :: (Ord a, Eq a) => Rel a -> Bool
biyectiva (u,g) = S.map fst g == u \&\& S.map snd g == u
-- Ejercicio 4. La visibilidad de una lista es el número de elementos
-- que son estrictamente mayores que todos los anteriores. Por ejemplo,
-- la visibilidad de la lista [1,2,5,2,3,6] es 4.
-- La visibilidad de una matriz P es el par formado por las
-- visibilidades de las filas de P y las visibilidades de las
-- columnas de P. Por ejemplo, dada la matriz
        (421)
    Q = (325)
         (618)
-- la visibilidad de Q es ([1,2,2],[2,1,3]).
-- Definir las funciones
      visibilidadLista :: [Int] -> Int
      visibilidadMatriz :: M.Matrix Int -> ([Int],[Int])
-- tales que
-- + (visibilidadLista xs) es la visibilidad de la lista xs. Por
   ejemplo,
       visibilidadLista [1,2,5,2,3,6] == 4
        visibilidadLista [0,-2,5,1,6,6] == 3
-- + (visibilidadMatriz p) es la visibilidad de la matriz p. Por ejemplo,
        qhci> visibilidadMatriz (M.fromLists [[4,2,1],[3,2,5],[6,1,8]])
       ([1,2,2],[2,1,3])
       ghci> visibilidadMatriz (M.fromLists [[0,2,1],[0,2,5],[6,1,8]])
       ([2,3,2],[2,1,3])
visibilidadLista :: [Int] -> Int
visibilidadLista xs =
    length [x \mid (ys,x) \leftarrow zip (inits xs) xs, all (<x) ys]
```

```
visibilidadMatriz :: M.Matrix Int -> ([Int],[Int])
visibilidadMatriz p =
    ([visibilidadLista [p M.! (i,j) | j <- [1..n]] | i <- [1..m]],
     [visibilidadLista [p M.! (i,j) | i \leftarrow [1..m]] | j \leftarrow [1..n]])
    where m = M.nrows p
           n = M.ncols p
-- Ejercicio 5. Decimos que un número es alternado si no tiene dos
-- cifras consecutivas iguales ni tres cifras consecutivas en orden
-- creciente no estricto o decreciente no estricto. Por ejemplo, los
-- números 132425 y 92745 son alternados, pero los números 12325 y 29778
-- no. Las tres primeras cifras de 12325 están en orden creciente y
-- 29778 tiene dos cifras iguales consecutivas.
-- Definir la constante
     alternados :: [Integer]
-- cuyo valor es la lista infinita de los números alternados. Por ejemplo,
     take 10 alternados
                                              == [0,1,2,3,4,5,6,7,8,9]
     length (takeWhile (< 1000) alternados) == 616</pre>
     alternados !! 1234567
                                              == 19390804
-- 1º definición
-- ==========
-- (cifras n) es la lista de las cifras de n. Por ejemplo.
     cifras 325 == [3,2,5]
cifras :: Integer -> [Int]
cifras n = map digitToInt (show n)
-- (cifrasAlternadas xs) se verifica si las lista de cifras xs es
-- alternada. Por ejemplo,
     cifrasAlternadas [1,3,2,4,2,5] == True
      cifrasAlternadas [9,2,7,4,5]
                                      == True
      cifrasAlternadas [1,2,3,2,5]
                                      == False
      cifrasAlternadas [2,9,7,7,8]
                                      == False
cifrasAlternadas :: [Int] -> Bool
cifrasAlternadas [x1,x2] = x1 /= x2
```

```
cifrasAlternadas (x1:x2:x3:xs) =
    not (((x1 \le x2) \&\& (x2 \le x3)) || ((x1 >= x2) \&\& (x2 >= x3))) \&\&
    cifrasAlternadas (x2:x3:xs)
cifrasAlternadas = True
-- (alternado n) se verifica si n es un número alternado. Por ejemplo,
     alternado 132425 == True
     alternado 92745
                        == True
      alternado 12325
                        == False
      alternado 29778 == False
alternado :: Integer -> Bool
alternado n = cifrasAlternadas (cifras n)
alternados1 :: [Integer]
alternados1 = filter alternado [0..]
-- 2ª definición
-- =========
-- (extiendeAlternado n) es la lista de números alternados que se pueden
-- obtener añadiendo una cifra al final del número alternado n. Por
-- ejemplo,
     extiendeAlternado 7 == [70,71,72,73,74,75,76,78,79]
      extiendeAlternado 24 == [240,241,242,243]
      extiendeAlternado 42 == [423,424,425,426,427,428,429]
extiendeAlternado :: Integer -> [Integer]
extiendeAlternado n
    | n < 10 = [n*10+h | h < [0..n-1]++[n+1..9]]
    | d < c = [n*10+h | h \leftarrow [0..c-1]]
    | otherwise = [n*10+h | h <- [c+1..9]]
    where c = n \pmod{10}
          d = (n \text{ 'mod' } 100) \text{ 'div' } 10
alternados2 :: [Integer]
alternados2 = concat (iterate (concatMap extiendeAlternado) [0])
```

5.6. Examen 6 (15 de junio de 2015)

El examen es común con el del grupo 4 (ver página 137).

5.7. Examen 7 (3 de julio de 2015)

El examen es común con el del grupo 1 (ver página 42).

5.8. Examen 8 (4 de septiembre de 2015)

El examen es común con el del grupo 1 (ver página 50).

5.9. Examen 9 (4 de diciembre de 2015)

El examen es común con el del grupo 1 (ver página 61).

Apéndice A

Resumen de funciones predefinidas de Haskell

```
1. |x + y| es la suma de x e y.
 2. x - y es la resta de x e y.
 3. | x / y | es el cociente de x entre y.
 4.
    x ^y es x elevado a y.
 5.
     x == y se verifica si x es igual a y.
     x \neq y se verifica si x es distinto de y.
 6.
 7.
     x < y se verifica si x es menor que y.
     x \leftarrow y se verifica si x es menor o igual que y.
 8.
     x > y | se verifica si x es mayor que y.
 9.
     x >= y | se verifica si x es mayor o igual que y.
10.
11.
     x \& y es la conjunción de x e y.
     x | | y es la disyunción de x e y.
12.
     x:ys es la lista obtenida añadiendo x al principio de ys.
13.
14.
     xs ++ ys es la concatenación de xs e ys.
     xs !! n es el elemento n-ésimo de xs.
15.
16.
     f . g es la composición de f y g.
17.
     abs x es el valor absoluto de x.
     and xs es la conjunción de la lista de booleanos xs.
18.
19.
     ceiling x es el menor entero no menor que x.
20.
     chr n es el carácter cuyo código ASCII es n.
     concat xss es la concatenación de la lista de listas xss.
21.
22.
                 es x.
     const x y
```

- 23. curry f es la versión curryficada de la función f.
- 24. div x y es la división entera de x entre y.
- 25. drop n xs borra los n primeros elementos de xs.
- 26. dropWhile p xs borra el mayor prefijo de xs cuyos elementos satisfacen el predicado p.
- 27. | elem x ys | se verifica si x pertenece a ys.
- 28. even x se verifica si x es par.
- 29. filter p xs es la lista de elementos de la lista xs que verifican el predicado p.
- 30. | flip f x y | es f y x.
- 31. floor x es el mayor entero no mayor que x.
- 32. foldl f e xs pliega xs de izquierda a derecha usando el operador f y el valor inicial e.
- 33. foldr f e xs pliega xs de derecha a izquierda usando el operador f y el valor inicial e.
- 34. fromIntegral x transforma el número entero x al tipo numérico correspondiente.
- 35. | fst p | es el primer elemento del par p.
- 36. $| gcd \times y |$ es el máximo común divisor de de x e y.
- 37. head xs es el primer elemento de la lista xs.
- 38. init xs es la lista obtenida eliminando el último elemento de xs.
- 39. iterate f x es la lista [x, f(x), f(f(x)), ...].
- 40. <u>last xs</u> es el último elemento de la lista xs.
- 41. length xs es el número de elementos de la lista xs.
- 42. map f xs es la lista obtenida aplicado f a cada elemento de xs.
- 43. max x y es el máximo de x e y.
- 44. maximum xs es el máximo elemento de la lista xs.
- 45. $min \times y$ es el mínimo de x e y.
- 46. minimum xs es el mínimo elemento de la lista xs.
- 47. $| mod \times y |$ es el resto de x entre y.
- 48. not x es la negación lógica del booleano x.
- 49. noElem x ys se verifica si x no pertenece a ys.
- 50. null xs se verifica si xs es la lista vacía.
- 51. $odd \times se verifica si \times es impar.$
- 52. or xs es la disyunción de la lista de booleanos xs.
- 53. ord c es el código ASCII del carácter c.

- 54. product xs es el producto de la lista de números xs.
- 55. read c es la expresión representada por la cadena c.
- 56. | rem x y | es el resto de x entre y.
- 57. repeat x es la lista infinita [x, x, x, ...].
- 58. | replicate n x | es la lista formada por n veces el elemento x.
- 59. reverse xs es la inversa de la lista xs.
- 60. round x es el redondeo de x al entero más cercano.
- 61. scanr f e xs es la lista de los resultados de plegar xs por la derecha con f y e.
- 62. show x es la representación de x como cadena.
- 63. $| signum \times | es 1 si \times es positivo, 0 si \times es cero y -1 si \times es negativo.$
- 64. snd p es el segundo elemento del par p.
- 65. splitAt n xs es (take n xs, drop n xs).
- 66. sqrt x es la raíz cuadrada de x.
- 67. sum xs es la suma de la lista numérica xs.
- 68. tail xs es la lista obtenida eliminando el primer elemento de xs.
- 69. take n xs es la lista de los n primeros elementos de xs.
- 70. takeWhile p xs es el mayor prefijo de xs cuyos elementos satisfacen el predicado p.
- 71. uncurry f es la versión cartesiana de la función f.
- 72. | until p f x | aplica f a x hasta que se verifique p.
- 73. zip xs ys es la lista de pares formado por los correspondientes elementos de xs e ys.
- 74. zipWith f xs ys se obtiene aplicando f a los correspondientes elementos de xs e ys.

A.1. Resumen de funciones sobre TAD en Haskell

A.1.1. Polinomios

- 1. polCero es el polinomio cero.
- 2. (esPolCero p) se verifica si p es el polinomio cero.
- 3. (consPol n b p) es el polinomio $bx^n + p$.
- 4. (grado p) es el grado del polinomio p.

- 5. (coefLider p) es el coeficiente líder del polinomio p.
- 6. (restoPol p) es el resto del polinomio p.

A.1.2. Vectores y matrices (Data.Array)

- 1. (range m n) es la lista de los índices del m al n.
- 2. (index (m,n) i) es el ordinal del índice i en (m,n).
- 3. (inRange (m,n) i) se verifica si el índice i está dentro del rango limitado por m y n.
- 4. (rangeSize (m,n)) es el número de elementos en el rango limitado por m y n.
- 5. (array (1,n) [(i, f i) | i <- [1..n]) es el vector de dimensión n cuyo elemento i-ésimo es f i.
- 6. (array ((1,1),(m,n)) [((i,j), f i j) | i <- [1..m], j <- [1..n]]) es la matriz de dimensión m.n cuyo elemento (i,j)-ésimo es f i j.
- 7. (array (m,n) ivs) es la tabla de índices en el rango limitado por m y n definida por la lista de asociación ivs (cuyos elementos son pares de la forma (índice, valor)).
- 8. (t ! i) es el valor del índice i en la tabla t.
- 9. | (bounds t) | es el rango de la tabla t.
- 10. (indices t) es la lista de los índices de la tabla t.
- 11. (elems t) es la lista de los elementos de la tabla t.
- 12. (assocs t) es la lista de asociaciones de la tabla t.
- 13. (t // ivs) es la tabla t asignándole a los índices de la lista de asociación ivs sus correspondientes valores.
- 14. (listArray (m,n) vs) es la tabla cuyo rango es (m,n) y cuya lista de valores es vs.
- 15. (accumArray f v (m,n) ivs) es la tabla de rango (m,n) tal que el valor del índice i se obtiene acumulando la aplicación de la función f al valor inicial v y a los valores de la lista de asociación ivs cuyo índice es i.

A.1.3. Tablas

- 1. (tabla ivs) es la tabla correspondiente a la lista de asociación ivs (que es una lista de pares formados por los índices y los valores).
- 2. (valor t i) es el valor del índice i en la tabla t.
- 3. (modifica (i,v) t) es la tabla obtenida modificando en la tabla t el valor de i por v.

A.1.4. Grafos

- 1. (creaGrafo d cs as) es un grafo (dirigido o no, según el valor de o), con el par de cotas cs y listas de aristas as (cada arista es un trío formado por los dos vértices y su peso).
- 2. (dirigido g) se verifica si g es dirigido.
- 3. (nodos g) es la lista de todos los nodos del grafo g.
- 4. (aristas g) es la lista de las aristas del grafo g.
- 5. (adyacentes g v) es la lista de los vértices adyacentes al nodo v en el grafo g.
- 6. (aristaEn g a) se verifica si a es una arista del grafo g.
- 7. (peso v1 v2 g) es el peso de la arista que une los vértices v1 y v2 en el grafo g.

Apéndice B

Método de Pólya para la resolución de problemas

B.1. Método de Pólya para la resolución de problemas matemáticos

Para resolver un problema se necesita:

Paso 1: Entender el problema

- ¿Cuál es la incógnita?, ¿Cuáles son los datos?
- ¿Cuál es la condición? ¿Es la condición suficiente para determinar la incógnita? ¿Es insuficiente? ¿Redundante? ¿Contradictoria?

Paso 2: Configurar un plan

- ¿Te has encontrado con un problema semejante? ¿O has visto el mismo problema planteado en forma ligeramente diferente?
- ¿Conoces algún problema relacionado con éste? ¿Conoces algún teorema que te pueda ser útil? Mira atentamente la incógnita y trata de recordar un problema que sea familiar y que tenga la misma incógnita o una incógnita similar.
- He aquí un problema relacionado al tuyo y que ya has resuelto ya. ¿Puedes utilizarlo? ¿Puedes utilizar su resultado? ¿Puedes emplear su método? ¿Te hace falta introducir algún elemento auxiliar a fin de poder utilizarlo?

- ¿Puedes enunciar al problema de otra forma? ¿Puedes plantearlo en forma diferente nuevamente? Recurre a las definiciones.
- Si no puedes resolver el problema propuesto, trata de resolver primero algún problema similar. ¿Puedes imaginarte un problema análogo un
 tanto más accesible? ¿Un problema más general? ¿Un problema más
 particular? ¿Un problema análogo? ¿Puede resolver una parte del problema? Considera sólo una parte de la condición; descarta la otra parte;
 ¿en qué medida la incógnita queda ahora determinada? ¿En qué forma
 puede variar? ¿Puedes deducir algún elemento útil de los datos? ¿Puedes
 pensar en algunos otros datos apropiados para determinar la incógnita?
 ¿Puedes cambiar la incógnita? ¿Puedes cambiar la incógnita o los datos,
 o ambos si es necesario, de tal forma que estén más cercanos entre sí?
- ¿Has empleado todos los datos? ¿Has empleado toda la condición? ¿Has considerado todas las nociones esenciales concernientes al problema?

Paso 3: Ejecutar el plan

- Al ejercutar tu plan de la solución, comprueba cada uno de los pasos
- ¿Puedes ver claramente que el paso es correcto? ¿Puedes demostrarlo?

Paso 4: Examinar la solución obtenida

- ¿Puedes verificar el resultado? ¿Puedes el razonamiento?
- ¿Puedes obtener el resultado en forma diferente? ¿Puedes verlo de golpe? ¿Puedes emplear el resultado o el método en algún otro problema?
- G. Polya "Cómo plantear y resolver problemas" (Ed. Trillas, 1978) p. 19

B.2. Método de Pólya para resolver problemas de programación

Para resolver un problema se necesita:

Paso 1: Entender el problema

- ¿Cuáles son las argumentos? ¿Cuál es el resultado? ¿Cuál es nombre de la función? ¿Cuál es su tipo?
- ¿Cuál es la especificación del problema? ¿Puede satisfacerse la especificación? ¿Es insuficiente? ¿Redundante? ¿Contradictoria? ¿Qué restricciones se suponen sobre los argumentos y el resultado?
- ¿Puedes descomponer el problema en partes? Puede ser útil dibujar diagramas con ejemplos de argumentos y resultados.

Paso 2: Diseñar el programa

- ¿Te has encontrado con un problema semejante? ¿O has visto el mismo problema planteado en forma ligeramente diferente?
- ¿Conoces algún problema relacionado con éste? ¿Conoces alguna función que te pueda ser útil? Mira atentamente el tipo y trata de recordar un problema que sea familiar y que tenga el mismo tipo o un tipo similar.
- ¿Conoces algún problema familiar con una especificación similar?
- He aquí un problema relacionado al tuyo y que ya has resuelto. ¿Puedes utilizarlo? ¿Puedes utilizar su resultado? ¿Puedes emplear su método? ¿Te hace falta introducir alguna función auxiliar a fin de poder utilizarlo?
- Si no puedes resolver el problema propuesto, trata de resolver primero algún problema similar. ¿Puedes imaginarte un problema análogo un tanto más accesible? ¿Un problema más general? ¿Un problema más particular? ¿Un problema análogo?
- ¿Puede resolver una parte del problema? ¿Puedes deducir algún elemento útil de los datos? ¿Puedes pensar en algunos otros datos apropiados para determinar la incógnita? ¿Puedes cambiar la incógnita o los datos, o ambos si es necesario, de tal forma que estén más cercanos entre sí?
- ¿Has empleado todos los datos? ¿Has empleado todas las restricciones sobre los datos? ¿Has considerado todas los requisitos de la especificación?

Paso 3: Escribir el programa

- Al escribir el programa, comprueba cada uno de los pasos y funciones auxiliares.
- ¿Puedes ver claramente que cada paso o función auxiliar es correcta?
- Puedes escribir el programa en etapas. Piensas en los diferentes casos en los que se divide el problema; en particular, piensas en los diferentes casos para los datos. Puedes pensar en el cálculo de los casos independientemente y unirlos para obtener el resultado final
- Puedes pensar en la solución del problema descomponiéndolo en problemas con datos más simples y uniendo las soluciones parciales para obtener la solución del problema; esto es, por recursión.
- En su diseño se puede usar problemas más generales o más particulares. Escribe las soluciones de estos problemas; ellas puede servir como guía para la solución del problema original, o se pueden usar en su solución.
- ¿Puedes apoyarte en otros problemas que has resuelto? ¿Pueden usarse? ¿Pueden modificarse? ¿Pueden guiar la solución del problema original?

Paso 4: Examinar la solución obtenida

- ¿Puedes comprobar el funcionamiento del programa sobre una colección de argumentos?
- ¿Puedes comprobar propiedades del programa?
- ¿Puedes escribir el programa en una forma diferente?
- ¿Puedes emplear el programa o el método en algún otro programa?

Simon Thompson *How to program it*, basado en G. Polya *Cómo plantear y resolver problemas*.

Bibliografía

- [1] J. A. Alonso and M. J. Hidalgo. Piensa en Haskell (Ejercicios de programación funcional con Haskell). Technical report, Univ. de Sevilla, 2012.
- [2] R. Bird. *Introducción a la programación funcional con Haskell*. Prentice–Hall, 1999.
- [3] H. C. Cunningham. Notes on functional programming with Haskell. Technical report, University of Mississippi, 2010.
- [4] H. Daumé. Yet another Haskell tutorial. Technical report, University of Utah, 2006.
- [5] A. Davie. *An introduction to functional programming systems using Haskell*. Cambridge University Press, 1992.
- [6] K. Doets and J. van Eijck. *The Haskell road to logic, maths and programming*. King's College Publications, 2004.
- [7] J. Fokker. Programación funcional. Technical report, Universidad de Utrech, 1996.
- [8] P. Hudak. *The Haskell school of expression: Learning functional programming through multimedia*. Cambridge University Press, 2000.
- [9] P. Hudak. The Haskell school of music (From signals to symphonies). Technical report, Yale University, 2012.
- [10] G. Hutton. *Programming in Haskell*. Cambridge University Press, 2007.
- [11] B. O'Sullivan, D. Stewart, and J. Goerzen. *Real world Haskell*. O'Reilly, 2008.
- [12] G. Pólya. Cómo plantear y resolver problemas. Editorial Trillas, 1965.
- [13] F. Rabhi and G. Lapalme. *Algorithms: A functional programming approach*. Addison-Wesley, 1999.

174 Bibliografía

[14] B. C. Ruiz, F. Gutiérrez, P. Guerrero, and J. Gallardo. *Razonando con Haskell (Un curso sobre programación funcional)*. Thompson, 2004.

[15] S. Thompson. *Haskell: The craft of functional programming*. Addison-Wesley, third edition, 2011.