



Care este principiul de funcționare pentru programarea dinamică?

• În ce tip de probleme este folosită programarea dinamică?



- Paşi:
  - 1. Caracterizăm structura unei soluții optime.
  - Definim recursiv valoarea unei soluții optime.
  - 3. Calculăm valoarea unei soluții optime (de obicei, cu abordarea bottom-up).
  - 4. Reconstruim soluția optimă din informațiile anterioare.
- Paşii 1-3 = baza programării dinamice
- Pasul 4 se poate omite dacă se dorește o soluție optimă (și nu soluția în sine).



# Programare dinamică vs. Greedy

|                     | Greedy                                                                                                                            | Programare dinamică                                                                       |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Concept             | La momentul curent alege opțiunea care pare cea mai bună (optimă); subproblema rezultată este rezolvată după ce se face alegerea. | La momentul curent face o alegere, dar aceasta poate depinde de soluțiile subproblemelor. |
| Optimalitate        | Conduce la o soluție optimă dacă putem demonstra că optimul local => optimul global.                                              | Conduce la o soluție optimă.                                                              |
| Complexitate timp   | Polinomial                                                                                                                        | Polinomial, dar de obicei mai puţin eficient decât greedy.                                |
| Complexitate spațiu | Mai eficient, pentru că nu caută înapoi pentru alte soluții.                                                                      | Folosește un tabel pentru a stoca răspunsurile pentru stările anterior calculate.         |
| Exemple             | Problema rucsacului (fracțional)                                                                                                  | Problema rucsacului (0/1).                                                                |



Distanța Levenshtein (Distanța de editare)

SOVIET PHYSICS-DOKLADY

VOL. 10, NO. 8

FEBRUARY, 1966

CYBERNETICS AND CONTROL THEORY

#### BINARY CODES CAPABLE OF CORRECTING DELETIONS, INSERTIONS, AND REVERSALS

#### V. I. Levenshtein

(Presented by Academician P. S. Novikov, January 4, 1965) Translated from Doklady Akademii Nauk SSSR, Vol. 163, No. 4, pp. 845-848, August, 1965 Original article submitted January 2, 1965

Investigations of transmission of binary information usually consider a channel model in which failures of the type  $0\to 1$  and  $1\to 0$  (which we will call reversals) are admitted. In the present paper (as in [1]) we investigate a channel model in which it is also possible to have failures of the form  $0\to \Lambda, 1\to \Lambda$ , which are called deletions, and failures of the form  $\Lambda\to 0, \Lambda\to 1$ , which are called insertions (here  $\Lambda$  is the empty word). For such channels, by analogy to the combinatorial problem of constructing optimal codes capable of correcting s reversals, we will consider the problem of constructing optimal codes capable of correcting deletions, insertions, and reversals.

#### 1. Codes Capable of Correcting Deletions and Insertions

By a binary word we will mean a word in the alphabet  $\{0, 1\}$ . By a code we will mean an arbitrary set of binary words that has fixed length. We will say that a code K can correct s deletions (s insertions) if any binary word can be obtained from no more than one word in K by s or fewer deletions (insertions). This last property guarantees the possibility of unique determination of the initial code word from a word obtained as the result of some number i ( $i \ge 0$ ) of deletions and some number j ( $j \ge 0$ ) of insertions if  $i+j \le s$ . The following assertion shows that all of the codes defined above are equivalent.

Lemma 1. Any code that can correct s de-

were inserted (deleted) from at least one of the words x or y to obtain z are deleted from (inserted into) the word z, then, as we can easily see, we obtain a word that can be obtained from both x and y by no more than  $\max(i_2+j_1,j_2+i_1)$  deletions (insertions). Because x and y have the same length,  $j_1-i_1=j_2-i_2$  and, consequently,  $i_2+j_1=j_2+i_1=\frac{i_2}{2}(i_1+i_2+j_1+j_3) \le s$ , which proves Lemma 1.

Codes that can correct s deletions and insertions admit another, metric, description. Consider a function  $\rho(x,y)$  defined on pairs of binary words and equal to the smallest number of deletions and insertions that transform the word x into y. It is not difficult to show that the function  $\rho(x,y)$  is a metric, and that a code K can correct s deletions and insertions if and only if  $\rho(x,y) > 2s$  for any two different words x and y in K.

Let  $B_n$  be the set of all binary words of length n. For an arbitrary word x in  $B_n$ , let |x| denote the number of ones in x, and let ||x|| be the number of runs² in the word x. We will now estimate the number  $P_S(x)$  [ $Q_S(x)$ ] of different words that can be obtained from x by s deletions (s insertions). We have the bounds

$$C_{\text{light},s,1}^s \leqslant P_s(x) \leqslant C_{\text{light},s-1}^s$$
, (1)

$$\sum_{i=0}^{s} C_{n}^{i} 2^{s-i} \leqslant Q_{s}(x) \leqslant \sum_{i=0}^{s} C_{n}^{i} C_{s}^{i} 2^{s-i}.$$
 (2)

In order to prove the upper bound in (1), note that each word obtained by deletion from x is uniquely determined by the number of symbols deleted

Sursă articol și imagine: <a href="https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf">https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf</a>



<u>Vladimir Levenshtein</u>, 20 Martie 1935 – 6 Septembrie 2017 Sursă imagine: https://www.ithistory.org/honor-roll/mr-vladimir-iosifovich-levenshtein



- Se consideră două cuvinte A şi B, cu |A| = m, |B| = n.
- Cerință: să se transforme cuvântul A în cuvântul B, folosind operațiile:
  - Adăugarea unei litere
  - Ştergerea unei litere
  - Modificarea unei litere
- Transformarea se va face folosind un număr minim de operații.



Exemplu: SPATE şi PACT.

|   | - | - |           |   |   |
|---|---|---|-----------|---|---|
|   | # | Р | А         | С | Т |
| # |   |   |           |   |   |
| S |   |   |           |   |   |
| Р |   |   |           |   |   |
| Α |   |   | cost[i,j] |   |   |
| Т |   |   |           |   |   |
| E |   |   |           |   |   |

cost[i,j] = nr. de operații necesar pentru a transforma SPA în PA.



Se poate folosi programarea dinamică?



- Se poate folosi programarea dinamică?
  - Soluţia parţială = "Acesta este costul pentru a transforma A până la poziţia i în B până la poziţia j".
  - Următorul pas = "Pentru a transforma A până la poziția x în B până la poziția y, ultima operație ar trebui să fie o adăugare, ștergere sau modificare?"



Exemplu: SPATE şi PACT.



Operațiile pentru transformarea SPATE și PACT.



Exemplu: SPATE şi PACT.

|   | #        | Р               | Α                      | С               | Т               |
|---|----------|-----------------|------------------------|-----------------|-----------------|
| # | $c_{00}$ | $c_{01}$        | $c_{02}$               | $c_{03}$        | $c_{04}$        |
| S | $c_{10}$ | c <sub>11</sub> | <i>c</i> <sub>12</sub> | c <sub>13</sub> | c <sub>14</sub> |
| Р | $c_{20}$ | $c_{21}$        | $c_{22}$               | $c_{23}$        | c <sub>24</sub> |
| Α | $c_{30}$ | $c_{31}$        | ?                      |                 |                 |
| Т |          |                 |                        |                 |                 |
| Е |          |                 |                        |                 |                 |

Operațiile pentru transformarea SPATE și PACT. Simplificare:  $cost[i,j] \equiv c_{ij}$ 



Exemplu: SPATE şi PACT.

|   | #               | Р                           | Α                    | С               | Т               |
|---|-----------------|-----------------------------|----------------------|-----------------|-----------------|
| # | $c_{00}$        | $c_{01}$                    | $c_{02}$             | $c_{03}$        | $c_{04}$        |
| S | $c_{10}$        | $c_{11}$                    | $c_{12}$             | c <sub>13</sub> | c <sub>14</sub> |
| Р | $c_{20}$        | nodifică<br>C <sub>21</sub> | $c_{22}^{ m sterge}$ | c <sub>23</sub> | c <sub>24</sub> |
| Α | c <sub>30</sub> | daugă ${\cal C}_{31}$       | ٠٠                   |                 |                 |
| Т |                 |                             |                      |                 |                 |
| Е |                 |                             |                      |                 |                 |



- Obs: numărul total de operații folosite în conversie este mai mic sau egal decât  $\max(m, n)$ .
  - De ce?
- În șirul transformărilor, de la un termen la altul, se folosește o singură operație dintre cele 3.
  - 2 termeni consecutivi ai şirului diferă printr-un singur caracter;
  - Nu contează ordinea efectuării calculelor.



Formula de recurență:

$$cost_{A,B}[i,j] = \begin{cases} \\ \end{cases}$$

$$\begin{split} \max\{i,j\}\,, dac& \min\{i,j\} = 0 \\ \min\{cost_{A,B}[i-1,j]+1, \\ cost_{A,B}[i,j-1]+1, \\ cost_{A,B}[i-1,j-1]+1_{A[i]\neq B[j]}\}, alt fel \end{split}$$



$$cost_{A,B}[i,j] = \begin{cases} \max\{i,j\}, dac \min\{i,j\} = 0 \\ \min\{cost_{A,B}[i-1,j]+1, \\ cost_{A,B}[i,j-1]+1, \\ cost_{A,B}[i-1,j-1]+1_{A[i]\neq B[j]}\}, alt fel \end{cases}$$
 formării caracterului vid. care precede pe  $A$ . în primele  $i$  caractere ale o

- Costul transformării caracterului vid, care precede pe A, în primele j caractere ale cuvântului B este j (i.e. se fac j operații de adăugare).
- Costul transformării primelor i caractere ale lui A în caracterul vid care îl precede pe B este i (i.e. se fac i operații de ștergeri).
- $cost_{A,B}[i,j] = cost_{A,B}[i-1,j] + 1 \Rightarrow$  Caracterul A[i] a fost șterș
- $cost_{A,B}[i,j] = cost_{A,B}[i,j-1] + 1 => Pe poziția A[i] se inserează caracterul B[j]$
- $cost_{A,B}[i,j] = cost_{A,B}[i-1,j-1] + \mathbf{1}_{A[i]\neq B[j]} =>$ caracterul A[i] este înlocuit cu caracterul B[j]  $(cost_{A,B}[i-1,j-1]$ se adună cu 1 dacă A[i] $\neq$ B[j])



Exemplu: SPATE şi PACT.

|   | # | Р | Α | С | Т |
|---|---|---|---|---|---|
| # | 0 | 1 | 2 | 3 | 4 |
| S | 1 |   |   |   |   |
| Р | 2 |   |   |   |   |
| Α | 3 |   |   |   |   |
| Т | 4 |   |   |   |   |
| E | 5 |   |   |   |   |

$$cost_{A,B}[i,j] = \begin{cases} \\ \\ \end{cases}$$

$$\begin{split} \max\{i,j\}\,,\, &dac \min\{i,j\} = 0 \\ \min\{cost_{A,B}[i-1,j]+1, \\ &cost_{A,B}[i,j-1]+1, \\ &cost_{A,B}[i-1,j-1]+1_{A[i]\neq B[j]}\}, alt fel \end{split}$$



Exemplu: SPATE şi PACT.

|   | # | Р | А | С | Т |
|---|---|---|---|---|---|
| # | 0 | 1 | 2 | 3 | 4 |
| S | 1 | 1 |   |   |   |
| Р | 2 |   |   |   |   |
| Α | 3 |   |   |   |   |
| Т | 4 |   |   |   |   |
| E | 5 |   |   |   |   |

$$cost_{A,B}[i,j] \\ = \begin{cases} & \max\{i,j\}, dac \min\{i,j\} = 0 \\ & \min\{cost_{A,B}[i-1,j]+1, \\ & cost_{A,B}[i,j-1]+1, \\ & cost_{A,B}[i-1,j-1]+1_{A[i]\neq B[j]}\}, alt fel \end{cases}$$

#### Exemplu:

$$c_{1,1} = \min\{c_{1-1,1} + 1, c_{1,1-1} + 1, c_{1-1,1-1} + 1\}$$

$$= \min\{c_{0,1} + 1, c_{1,0} + 1, c_{0,0} + 1\}$$

$$= \min\{0 + 1, 1 + 1, 0 + 1\} = 1$$



Exemplu: SPATE şi PACT.

|   | # | Р | Α | С | Т |
|---|---|---|---|---|---|
| # | 0 | 1 | 2 | 3 | 4 |
| S | 1 | 1 | 2 | 3 | 4 |
| Р | 2 |   |   |   |   |
| Α | 3 |   |   |   |   |
| Т | 4 |   |   |   |   |
| Е | 5 |   |   |   |   |

$$cost_{A,B}[i,j] = \begin{cases} \\ \\ \end{cases}$$

$$\begin{split} \max\{i,j\}\,,\, &dac \Breve{a} \min\{i,j\} = 0 \\ \min\{cost_{A,B}[i-1,j]+1, \\ &cost_{A,B}[i,j-1]+1, \\ &cost_{A,B}[i-1,j-1]+1_{A[i]\neq B[j]}\}, alt fel \end{split}$$



Exemplu: SPATE şi PACT.

|   | # | Р | Α | С | Т |
|---|---|---|---|---|---|
| # | 0 | 1 | 2 | 3 | 4 |
| S | 1 | 1 | 2 | 3 | 4 |
| Р | 2 | 1 |   |   |   |
| Α | 3 |   |   |   |   |
| Т | 4 |   |   |   |   |
| Е | 5 |   |   |   |   |

$$cost_{A,B}[i,j] = \begin{cases} \\ \\ \end{cases}$$

$$\begin{split} \max\{i,j\}\,, & \, dac \min\{i,j\} = 0 \\ \min\{cost_{A,B}[i-1,j]+1, \\ & \, cost_{A,B}[i,j-1]+1, \\ & \, cost_{A,B}[i-1,j-1]+1_{A[i]\neq B[j]}\}, alt fel \end{split}$$



Exemplu: SPATE şi PACT.

|   | # | Р | А   | С | Т |
|---|---|---|-----|---|---|
| # | 0 | 1 | 2   | 3 | 4 |
| S | 1 | 1 | 2   | 3 | 4 |
| Р | 2 | 1 | 2   | 3 | 4 |
| Α | 3 | 2 | 1 — | 2 | 3 |
| Т | 4 | 3 | 2   | 2 | 2 |
| Е | 5 | 4 | 3   | 3 | 3 |

$$\begin{aligned} cost_{A,B}[i,j] \\ &= \left\{ \begin{array}{c} \max\{i,j\}\,,\,dac \min\{i,j\} = 0 \\ \min\{cost_{A,B}[i-1,j]+1, \\ cost_{A,B}[i,j-1]+1, \\ cost_{A,B}[i-1,j-1]+1_{A[i]\neq B[j]}\},\,altfel \end{array} \right. \end{aligned}$$

Costul final al transformării A -> B se află pe poziția cost[m,n] în matricea de costuri.

$$best\_score = cost_{A,B}[m,n]$$



Exemplu: SPATE şi PACT.

|   | # | Р | Α   | С  | Т |
|---|---|---|-----|----|---|
| # | 0 | 1 | 2   | 3  | 4 |
| S | 1 | 1 | 2   | 3  | 4 |
| Р | 2 | 1 | 2   | 3  | 4 |
| Α | 3 | 2 | 1 + | -2 | 3 |
| Т | 4 | 3 | 2   | 2  | 2 |
| Е | 5 | 4 | 3   | 3  | 3 |

$$cost_{A,B}[i,j] \\ = \begin{cases} & \max\{i,j\}, dac \min\{i,j\} = 0 \\ & \min\{cost_{A,B}[i-1,j]+1, \\ & cost_{A,B}[i,j-1]+1, \\ & cost_{A,B}[i-1,j-1]+1_{A[i]\neq B[j]}\}, alt fel \end{cases}$$

Urma (*trace*) indică modul în care este obținută valoarea minimă și poate fi folosită pentru a determina ordinea operațiilor în transformarea A->B.



Exemplu: SPATE şi PACT.

|   | # | Р | Α   | С  | Т |
|---|---|---|-----|----|---|
| # | 0 | 1 | 2   | 3  | 4 |
| S | 1 | 1 | 2   | 3  | 4 |
| Р | 2 | 1 | 2   | 3  | 4 |
| Α | 3 | 2 | 1 ← | -2 | 3 |
| Т | 4 | 3 | 2   | 2  | 2 |
| Е | 5 | 4 | 3   | 3  | 3 |

- $$\begin{split} \max\{i,j\}\,,\, &dac \min\{i,j\} = 0 \\ \min\{cost_{A,B}[i-1,j]+1, \\ &cost_{A,B}[i,j-1]+1, \\ &cost_{A,B}[i-1,j-1]+1_{A[i]\neq B[j]}\},\, altfel \end{split}$$

- Şterge A[5]
- Adaugă pe poz A[3] B[3]
- Şterge S[1]



Exemplu: SPATE şi PACT.

|   | # | Р | Α   | С  | Т |
|---|---|---|-----|----|---|
| # | 0 | 1 | 2   | 3  | 4 |
| S | 1 | 1 | 2   | 3  | 4 |
| Р | 2 | 1 | 2   | 3  | 4 |
| Α | 3 | 2 | 1 + | -2 | 3 |
| Т | 4 | 3 | 2   | 2  | 2 |
| Е | 5 | 4 | 3   | 3  | 3 |

- Şterge A[5]
- Adaugă pe poz A[3] B[3]
- Şterge A[1]

|                          |   |   |   |   |  | - |  |  |
|--------------------------|---|---|---|---|--|---|--|--|
| 1                        | 2 | 3 | 4 | 5 |  |   |  |  |
| S                        | Р | Α | Т | Е |  |   |  |  |
| ↓ Şterge A[1]            |   |   |   |   |  |   |  |  |
| 1                        | 2 | 3 | 4 | 5 |  |   |  |  |
|                          | Р | Α | Т | Е |  |   |  |  |
| ↓ Adaugă pe poz A[3] B[3 |   |   |   |   |  |   |  |  |
| 1                        | 2 | 3 | 4 | 5 |  |   |  |  |
| Р                        | Α | С | Т | Е |  |   |  |  |
| ↓ Şterge A[5]            |   |   |   |   |  |   |  |  |
| 1                        | 2 | 3 | 4 | 5 |  |   |  |  |
| Р                        | Α | С | Т |   |  |   |  |  |

3



Exemplu: SPATE şi PACT.

Transformarea este unică?

|               |               |   |   |   |   |  |   | _ |   |   |
|---------------|---------------|---|---|---|---|--|---|---|---|---|
|               | 1             | 2 | 3 | 4 | 5 |  | 1 | 2 | 3 | 4 |
|               | S             | Р | Α | Т | Е |  | Р | Α | С | Т |
| ↓ Şterge A[1] |               |   |   |   |   |  |   |   |   |   |
|               | 1             | 2 | 3 | 4 | 5 |  |   |   |   |   |
|               |               | Р | Α | Т | Е |  |   |   |   |   |
| _             |               |   |   |   |   |  |   |   |   |   |
|               | 1             | 2 | 3 | 4 | 5 |  |   |   |   |   |
|               | Р             | Α | С | Т | Е |  |   |   |   |   |
|               | ↓ Şterge A[5] |   |   |   |   |  |   |   |   |   |
|               | 1             | 2 | 3 | 4 | 5 |  |   |   |   |   |
|               | Р             | Α | С | Т |   |  |   |   |   |   |



# Distanța Levenshtein - Pseudocode

```
function LevenshteinDistance(char s[1..m], char t[1..n]):
// for all i and j, d[i,j] will hold the Levenshtein distance between
// the first i characters of s and the first j characters of t
declare int d[0..m, 0..n]
  set each element in d to zero
  // source prefixes can be transformed into empty string by // dropping all characters for i from 1 to m:
      d[i, 0] := i
  // target prefixes can be reached from empty source prefix
  // by inserting every character for j from 1 to n:
       d[0, j] := j
  for j from 1 to n:
      for i from 1 to m:
          if s[i] = t[j]:
substitutionCost := 0
           else:
             substitutionCost := 1
          d[i, j] := minimum(d[i-1, j] + 1,
d[i, j-1] + 1,
d[i-1, j-1] + substitutionCost)
                                                                                           // deletion
                                                                                           // insertion
                                                                                           // substitution
  return d[m, n]
```

Sursa: https://en.wikipedia.org/wiki/Levenshtein\_distance



Complexitate?



- Complexitate?
  - $\bigcirc O(m \times n)$



- Variaţii
  - Fiecare operație are un cost diferit, cu condiția cost\_modificare < cost\_adăugare + cost\_ștergere</li>
     De ce?



- Aplicaţii
  - verificatori ortografici
  - Sisteme de corecție pentru recunoașterea optică a caracterelor
  - Procesarea limbajului natural
  - Distanța lingvistică



• Fiind date două coordonate pe tabla de șah  $(n \times n)$ , determinați cel mai scurt drum dintre acestea utilizând mutările unui cal.

Sursa exemplu: Doina Hrinciuc Logofătu. C++.Probleme rezolvate și algoritmi



• Fiind date două coordonate pe tabla de șah  $(n \times n)$ , determinați cel mai scurt drum dintre acestea utilizând mutările unui cal.



Sursa exemplu "Cal pe tabla de şah": Doina Hrinciuc Logofătu. C++.Probleme rezolvate şi algoritmi Sursa imagine: https://e4e4.wordpress.com/basics/



- Fiind date două coordonate pe tabla de șah  $(n \times n)$ , determinați cel mai scurt drum dintre acestea utilizând mutările unui cal.
  - Exemplu:
    - ∘ N=5
    - $\circ$  Start = (5,2)
    - $\circ$  Fin = (1,4)



- Fiind date două coordonate pe tabla de șah  $(n \times n)$ , determinați cel mai scurt drum dintre acestea utilizând mutările unui cal.
  - Exemplu:
    - ∘ N=5
    - $\circ$  Start = (5,2)
    - $\circ$  Fin = (1,4)

| 3 | 2 | 3 | 2 | 3 |
|---|---|---|---|---|
| 2 | 3 | 2 | 3 | 2 |
| 1 | 2 | 1 | 4 | 3 |
| 2 | 3 | 2 | 1 | 2 |
| 3 | 0 | 3 | 2 | 3 |

Cel mai scurt drum: 2 pași

Drumul parcurs: (5,2), (3,3), (1,4)



Când se aplică programarea dinamică?



- Când se aplică programarea dinamică?
- Problema trebuie să aibă următoarele caracteristici:
  - Substructură optimală
  - Suprapunerea problemelor



- Substructură optimă
  - O soluție optimă a problemei include soluții optime ale subproblemelor.
  - Presupunem că există o soluție mai optimă a subproblemei.
  - 2. Arătăm că presupunerea contrazice optimalitatea problemei inițiale.



- Suprapunerea problemelor
  - Când un algoritm recursiv rezolvă mereu o aceeași problemă => subprobleme suprapuse.
  - Spațiul subproblemelor trebuie să fie restrâns.
  - O subproblemă este rezolvată, iar rezultatul este salvat pentru utilizări viitoare => timp de regăsire constant.