Formulario Fisica (Seconda Parte)

Edoardo Figini

aa 2021-2022

Contents

1	Din	amica di sistemi di oggetti 3
	1.1	Equazioni cardinali della dinamica dei sistemi
	1.2	Urti - fenomeni d'urto tra due oggetti
		1.2.1 Tipologie di urti
	1.3	Centro di massa
	1.4	Teoremi di König
	1.5	Lavoro ed Energia
2	Sist	emi Rigidi (Corpo Rigido) 5
	2.1	Momento di Inerzia
		2.1.1 Teorema di Huygens-Steiner
	2.2	Sistemi rigidi in moto
		2.2.1 Moto di pura traslazione
		2.2.2 Moto di pura rotazione
		2.2.3 Moto di rotolamento
	2.3	Statica di corpi rigidi
	2.4	Energia Cinetica e Lavoro delle Forze esterne
3	Flui	idi 7
	3.1	Equazione della Statica dei fluidi
	3.2	Legge di Stevino
	3.3	Principio di Archimede
4	Ter	modinamica 8
	4.1	Principio 0 della Termodinamica
	4.2	Equazione di stato dei gas perfetti
	4.3	Lavoro
	4.4	Energia interna per i gas ideali
	4.5	Primo principio della termodinamica
	4.6	Realzione di Mayer
	4.7	Trasformazioni Politropiche
		4.7.1 Adiabatica reversibile
		4.7.2 Isoterma Reversibile
		4.7.3 Isocora Reversibile
		4.7.4 Isobara Reversibile

4.8	Rendimento	13
4.9	Secondo Principio daella termodinamica	13
4.10	Entropia	14
	4.10.1 Integrale di Clausius	14

1 Dinamica di sistemi di oggetti

Equazioni cardinali della dinamica dei sistemi

$$\vec{R}^{(e)} = \frac{d\vec{Q}}{dt} \tag{1}$$

$$\vec{R}^{(e)} = \frac{d\vec{Q}}{dt}$$

$$\frac{d\vec{L}_{TOT}}{dt} = \vec{M}_{TOT}^{(e)}$$
(2)

Urti - fenomeni d'urto tra due oggetti

 \vec{Q} è costante durante l'urto

Tipologie di urti 1.2.1

• Urti elastici

 K_{TOT} si conserva:

$$\frac{1}{2}m_1v_1^{(-)^2} + \frac{1}{2}m_2v_2^{(-)^2} = \frac{1}{2}m_1v_1^{(+)^2} + \frac{1}{2}m_2v_2^{(+)^2}$$

- \rightarrow risolvibile solo in una dimensione
- Urti anleastici

$$K_{TOT}^{(-)} \neq K_{TOT}^{(+)}$$

- \rightarrow energia viene dispersa
- Urti perfettamente anelastici

I due oggetti si fondono in uno solo

$$V^{(+)} = \frac{m_1 v_1^{(-)} + m_2 v_2^{(-)}}{m_1 + m_2}$$

1.3 Centro di massa

La posizione del centro di massa è data dalla media pesata delle posizioni di ogni punto rispetto alla massa:

$$\vec{r}_{CM} = \frac{\sum_{i=1}^{N} m_i \vec{r}_i}{\sum_{i=1}^{N} m_i} \tag{3}$$

chiamando $\sum_{i=1}^{N} m_i M$:

$$\begin{cases} \vec{Q} = M \frac{d\vec{r}_{CM}}{dt} \\ \vec{V}_{CM} = \frac{d\vec{r}_{CM}}{dt} \end{cases}$$
 (4)

$$\begin{cases} \frac{d\vec{Q}}{dt} = M \frac{d\vec{V}_{CM}}{dt} \\ \vec{a}_{CM} = \frac{d^2 \vec{r}_{CM}}{dt^2} \end{cases}$$
 (5)

Ogni corpo può essere quindi studiato nel suo Centro di Massa, infatti da (4) e (5):

$$\vec{R}^{(e)} = M\vec{a}_{CM} \tag{7}$$

Per un sistema isolato:

- $\vec{R}^{(e)} = 0$
- \vec{v}_{CM} costante
- \vec{a}_{CM} costante

1.4 Teoremi di König

$$\vec{L}_{TOT_{(O)}} = \vec{r}_{CM} \times M\vec{v}_{CM} + \vec{L}_{TOT_{CM}}$$
(8)

$$K_{TOT} = \frac{1}{2} M_{TOT} \vec{V}_{CM}^2 + \sum_{i=1}^{N} \frac{1}{2} m_i v_i^2$$

$$K_{TOT} = \frac{1}{2} M_{TOT} \vec{V}_{CM}^2 + K_{TOT}'$$
(9)

1.5 Lavoro ed Energia

$$\Delta K_{TOT} = \mathcal{L}_{i \to f}^{(i)} + \mathcal{L}_{i \to f}^{(e)}$$

 $V \rightarrow$ energia potenziale interna al sistema

$$\mathcal{Z}_{i \rightarrow f}^{(i)} = \mathcal{Z}_{i \rightarrow f}^{(inc)} - \Delta V^{(i)}$$

$$\mathcal{Z}_{i \rightarrow f}^{(e)} = \mathcal{Z}_{i \rightarrow f}^{(enc)} - \Delta V^{(e)}$$

$$E_m = K_{TOT} + V^{(i)} + V^{(e)}$$

$$\Delta E_m = \mathcal{L}_{i \to f}^{(inc)} + \mathcal{L}_{i \to f}^{(enc)}$$

In assenza di forze non conservative

$$\Delta E_m = 0$$

$$K_{TOT} = K_{CM} + K_{TOT}'$$

$$K_{CM} + K_{TOT}' + \Delta V^{(i)} = \mathcal{L}_{i \to f}^{(e)}$$

Introducendo l'energia interna del sistema $U = K_{TOT}' + \Delta V^{(i)}$

$$\Delta K_{CM} + \Delta U = \mathcal{L}_{i \to f}^{(e)} \tag{10}$$

2 Sistemi Rigidi (Corpo Rigido)

La distanza tra due oggetti puntiformni qualsiasi del sistema rimane costante nel tempo

$$\vec{v} = \vec{V_{(O')}} + \omega \times (\vec{r} - \vec{R_{(O')}})$$

$$\vec{v_P} = \vec{V}_{CM} + \omega \times (\vec{r_P} - \vec{r}_{CM}) \tag{11}$$

• Se O' è in quiete rispetto a O

$$\vec{V}_{(O')} = 0$$

$$\frac{d\vec{L}_{TOT_{(O')}}}{dt} = \vec{M}_{(O')}^{(e)} \tag{12}$$

• Se $O' \equiv CM$

$$\vec{V}_{(O')} = \vec{V}_{CM} \rightarrow \vec{V}_{(O')} \times M\vec{V}_{CM} = 0$$

$$\frac{d\vec{L}_{TOT_{CM}}}{dt} = \vec{M}_{CM}^{(e)}$$

$$\vec{L}_{TOT_{CM}} = \vec{L}_{TOT_{(O')}} - \vec{r}_{CM} \times M \vec{v}_{CM}$$

$$\vec{L}_{TOT_{(O)}} = \vec{r}_{CM} \times M \vec{v}_{CM} + \vec{L}_{TOT_{CM}}$$
(13)

I teorema di König (8)

2.1 Momento di Inerzia

Chiamando r_i la distanza del punto m_i dall'asse di rotazione e ρ la densità:

$$I = \sum_{i=1}^{N} m_i r_i^2 \tag{14}$$

$$\rho(P) = \frac{dm}{dV} \tag{15}$$

Da (14) e (15):

$$I = \lim_{\Delta V \to 0} \sum_{i=1}^{N} \Delta m_i r_i^2$$

$$I = \iiint r^2 \rho dV \tag{16}$$

2.1.1 Teorema di Huygens-Steiner

Per trovare I su un asse parallelo:

$$I = T_{CM} + Md^2$$
(17)

dove d è la distanza tra i due assi

2.2 Sistemi rigidi in moto

2.2.1 Moto di pura traslazione

$$\vec{Q} = M\vec{V}_{CM}$$

$$\vec{L}_{TOT_{(O)}} = \vec{r}_{CM} \times \vec{Q}$$
(18)

2.2.2 Moto di pura rotazione

 $\vec{r_i}$ scomposto in componenti:

- $z_i \vec{u_z}$ lungo asse z
- ρ_i perpendicolarmente a z

$$\vec{L}_{TOT_{(O)}} = I\vec{\omega} - \sum_{i=1}^{N} m_i z_i \omega \vec{\rho_i}$$
(19)

Se asse di rotazione è anche asse di simmetria:

$$\boxed{\vec{L}_{TOT_{(O)}} = I\vec{\omega}} \tag{20}$$

considerata \vec{M}_z la proiezione di $\vec{M}_{(O)}^{(e)}$ lungo z:

$$\boxed{\vec{M}_z^{(e)} = I\vec{\alpha}} \tag{21}$$

2.2.3 Moto di rotolamento

Moto studiato nel punto di contatto del sistema con il suolo Q, chiamato centro di istantanea rotazione

$$\vec{v} = \vec{\omega} \times \vec{r} \tag{22}$$

$$|\vec{v}_{CM}| = \omega R \tag{23}$$

da (23):

$$|\vec{Q}| = MR\omega \tag{24}$$

2.3 Statica di corpi rigidi

Condizioni necessarie per la quiete:

$$R^{(e)} = 0$$

$$M_{TOT_{(O')}}^{(e)} = 0$$

2.4 Energia Cinetica e Lavoro delle Forze esterne

$$K_{TOT} = \frac{1}{2}M\vec{v}_{CM}^2 + \frac{1}{2}I\omega^2$$
(25)

$$\mathcal{L}_{i\to f}^{(e)} = \int_{\substack{A_{CM} \\ \gamma_{CM}}}^{B_{CM}} \vec{R}^{(e)} d\vec{r}_{CM} + \int_{\theta_B}^{\theta_A} \vec{M}_z^{(e)} d\theta = \Delta K_{TOT}$$

$$\mathcal{L}_{i\to f}^{(e)} = \Delta K_{CM} + \Delta K_{ROT} = \Delta K_{TOT}$$
(26)

3 Fluidi

Def. Fluido Ideale: non ha viscosità Def. Pressione:

$$p = \lim_{S \to 0} \frac{F_\perp}{S} = \frac{dF_\perp}{dS}$$

• unità di misura nel SI

$$p \to [Pa] = \left(\frac{N}{m^2}\right)$$

• Altre unità di misura

$$[bar] \rightarrow 1bar = 10^5 Pa$$

$$[atm] \rightarrow 1atm \simeq 1,013bar \simeq 101300Pa$$

Def. Isotropia della Pressione: La pressione non dipende dall'orientazione del sistema Def. Densità:

$$\rho = \lim_{\Delta V \to 0} \frac{\Delta m}{\Delta V} = \frac{dm}{dV}$$

in generale:

$$\rho = \rho(T, p)$$

<u>Def.</u> Fluidi perfetti: ρ è costante \rightarrow incomprimibili e indilatabili ρ non dipende da T o p

Def. Forze di volume: Forze che agiscono sul volume (es. Forza peso)

$$\vec{f_v} = \frac{\vec{F_v}}{m} \rightarrow \left[\frac{N}{kg}\right]$$

Def. Equilibrio statico:

$$\sum F = 0 \quad \to \quad \vec{F_v} + \vec{F_s} = 0$$

 $\vec{F_s} \rightarrow$ forze di superficie

3.1 Equazione della Statica dei fluidi

$$\overrightarrow{\nabla}p = \overrightarrow{f_v} \cdot \rho \tag{27}$$

- Se $\nexists \vec{f_v}$, allora $\vec{\nabla p} = 0$, quindi p è omogenea
- Se $\exists \ \vec{f_v}$, allora $\vec{\nabla p} \neq 0$ e punta verso $\vec{f_v}$

3.2 Legge di Stevino

La pressione varia in base alla quota:

$$p = p_0 + \rho g h \tag{28}$$

dove ρgh è detta pressione idrostatica.

<u>Def.</u> Legge di Pascal: Variazione di pressione in un punto di un liquido si trasmette inalterata a tutti i punti del liquido

3.3 Principio di Archimede

Ogni corpo immerso in un fluido subisce una forza diretta dal basso verso l'alto di intensità equivalente alla forza peso del volume di fluido spostato.

$$F_A = -\rho g V_f$$
 (29)

4 Termodinamica

Def. Sistema Aperto: sia scambi di calore sia di lavoro

Def. Sistema Chiuso: solo scambi di calore

Def. Sistema Isolate: non avvengono scambi

Def. Regola fasi di Gibbs:

$$N = C + 2 - F \tag{30}$$

dove

 $\bullet \ N$ è il numero di coordinate indipendenti

- $\bullet \ C$ è il numero di specie chimiche
- $\bullet \ F$ è il numero di fasi

Def. Equilibrio Termodinamico:

- Def. Eq. meccanico: equilibrio delle forze e dei momenti
- (Eq. chimico)
- Def. Eq. termico: i due sistemi hanno le stesse coordinate termodianmiche

Def. Trasformazioni: evoluzione di un sistema termodinamico

4.1 Principio 0 della Termodinamica

 $\mathit{Def.}$: Due sistemi in equilibrio termico con un terzo sono in eqilibrio tra di loro

4.2 Equazione di stato dei gas perfetti

Def. Legge di Boyle:

$$V \propto \frac{1}{p} \ (T = cost, n = cost) \tag{31}$$

Def. Legge di Charles/ I legge di Gay-Lussac:

$$V = V_0(1 + \alpha t) \tag{32}$$

$$V \propto T \ (p = cost, n = cost)$$

Def. (II) Legge di Gay-Lussac:

$$p = p_0(1 + \alpha t) \tag{33}$$

 $\underline{Def.}$ Legge di Avogadro: Volumi uguali di gas diversi nelle stesse condizioni di temperatura contengono lo stesso numero di molecole.

una mole di qualsiasi sostanza contiene sempre lo stesso numero di atomi/molecole:

$$N_A = 6.022 * 10^{23}$$

$$V \propto n \tag{34}$$

Def. Equazione di stato dei gas perfetti:

$$\boxed{pV = nRT} \tag{35}$$

 $R = 8.3145 \frac{J}{mol \cdot K}$ è la costante universale dei gas

 $R=N_A+K_B$, dove N_A è il Numero di Avogadro (34) e K_B è detta costante di Boltzmann e vale $K_B = 8,3145 \frac{J}{mol \cdot K}$

Forma differenziale:

$$Vdp + pdV = nRdT (36)$$

Def. Legge di Dalton per i gas ideali (Legge delle pressioni parziali): permette di trattare miscele di gas perfetti

$$p = \sum_{i=1}^{N} \frac{n_i RT}{V}$$
(37)

4.3 Lavoro

Def. Lavoro compiuto dal sistema: $\mathcal{L} > 0$, detto lavoro fatto \mathcal{L}_F

Def. Lavoro subito dal sistema: $\mathcal{L} < 0$, detto lavoro subito \mathcal{L}_S

Def. Lavoro compiuto dal Gas:

$$\mathcal{L}_{GAS} = \int p_e dV \tag{38}$$

- per espansioni: $dV > 0 \rightarrow \mathcal{L} > 0$
- per compressioni: $dV < 0 \rightarrow \mathcal{L} < 0$

Casi particolari:

- ambiente a pressione costante: $\mathcal{L} = p_e \Delta V$
- ambiente a pressione nulla (vuoto): $\mathcal{L} = 0$
- trasformazione quasi statica: $\mathcal{L} = \int p dv$ (equilibrio meccanico)

Trasformazioni reversibili di gas perfetti:

- Isobara: $\mathcal{L}_{A\to B} = p\Delta V$
- Isocora: $\left[\mathcal{L}_{A\to B}=0\right]$ Isoterma: $\left[\mathcal{L}_{A\to B}=nRT\cdot\ln\left(\frac{V_B}{V_a}\right)\right]$

4.4 Energia interna per i gas ideali

 $\underline{\mathit{Def.}}$ Energia interna: energia potenziale associata alle trasformazionio adiabatiche (funzione di stato)

$$\Delta U = mc_v \Delta T \tag{39}$$

4.5 Primo principio della termodinamica

$$Q = \mathcal{L}_{A \to B} + \Delta U \tag{40}$$

Forma differenziale:

$$\delta Q = \delta \mathcal{L}_{A \to B} + dU \tag{41}$$

Def. Capacità termica:

$$C = \frac{\delta Q}{dT} \quad \left(\frac{J}{K}\right)$$

Def. Calore specifico:

$$c = \frac{C}{m} \quad \left(\frac{J}{Kg \cdot K}\right)$$
$$c = \frac{C}{n} \quad \left(\frac{J}{mol \cdot K}\right)$$

4.6 Realzione di Mayer

$$c_p = c_v + R \tag{42}$$

4.7 Trasformazioni Politropiche

Trasformazioni notevoli reversibili

$$pV^{\alpha} = cost$$

• Adiabatica: $\alpha = \gamma$

• Isoterma: $\alpha = 1$

• Isocora: $\alpha = 0$

• Isobara: $\alpha = \infty$

4.7.1 Adiabatica reversibile

$$T \cdot V^{(\gamma - 1)} = cost \tag{43}$$

$$pV^{\gamma} = cost \tag{44}$$

 $\underline{Def.} \ \gamma$: $\frac{c_p}{c_v}$

Gas	c_p	c_v	γ
Monoatomico	$^{3/_{2}R}$	5/2R	5/3
Biatomico	5/2R	$^{7/2}R$	7/5
Poliatomico	3R	4R	4/3

Compressione Adiabatica	Espansione Adiabatica
$\mathcal{L}_S < 0 \rightarrow$	$\to \mathcal{L}_F > 0$
$\Delta U > 0$	$\Delta U < 0$
$\Delta T > 0$	$\Delta T < 0$
$\Delta V < 0$	$\Delta V > 0$
$\Delta p > 0$	$\Delta p < 0$

4.7.2 Isoterma Reversibile

Espansione Isoterma	Compressione Isoterma
$Q_A > 0 \rightarrow$	$\rightarrow Q_C < 0$
$\to \mathcal{L}_F > 0$	$\mathcal{L}_S < 0 \rightarrow$
$\Delta U = 0$	$\Delta U = 0$
$\Delta T = 0$	$\Delta T = 0$
$\Delta V > 0$	$\Delta V < 0$
$\Delta p < 0$	$\Delta p > 0$

4.7.3 Isocora Reversibile

Riscaldamento Isocoro	Raffreddamento Isocoro
$Q_A > 0 \rightarrow$	$\rightarrow Q_C < 0$
$\mathcal{L} = 0$	$\mathcal{L} = 0$
$\Delta U > 0$	$\Delta U < 0$
$\Delta T > 0$	$\Delta T < 0$
$\Delta V = 0$	$\Delta V = 0$
$\Delta p < 0$	$\Delta p > 0$

4.7.4 Isobara Reversibile

Espansione Isobara	Compressione Isobara
$Q_A > 0 \rightarrow$	$Q_C < 0 \rightarrow$
$\rightarrow \mathcal{L}_F > 0$	$\rightarrow \mathcal{L}_S < 0$
$\Delta U > 0$	$\Delta U < 0$
$\Delta T > 0$	$\Delta T < 0$
$\Delta V > 0$	$\Delta V < 0$
$\Delta p = 0$	$\Delta p = 0$

4.8 Rendimento

 $\underline{\underline{Def.}}$ Rendimento: percentuale di calore assorbito che la macchina riesce a trasformare in Lavoro $\overline{\text{netto}}$.

$$\boxed{\eta = \frac{\mathcal{L}}{Q_A}} \tag{45}$$

Def. Coefficiente di prestazione (COP):

• Per Pompa di Calore:

$$COP_C = \left| \frac{Q_C}{\mathcal{Z}} \right| \tag{46}$$

• Per Frigorifero:

$$COP_F = \frac{Q_A}{|\mathcal{L}|} \tag{47}$$

Def. Ciclo di Carnot: Ciclo Termodinamico Reversibile sia termico sia frigorifero

$$\eta = 1 - \frac{T_1}{T_2} \tag{48}$$

4.9 Secondo Principio daella termodinamica

<u>Def.</u> Enunciato di Kelvin-Plank: è impossibile realizzare una trasformazione il cui unico risultato sia quello di convertire completamente in lavoro il calore assorbito dal sistema termodinamico

<u>Def.</u> Enunciato di Clausius: è impossibile realizzare una trasformazione il cui unico risultato sia quello di trasferire (spontaneamente) calore da un corpo freddo a uno caldo

 $\underline{Def.}$ Teorema di Carnot: date due sorgenti T_1 e $T_2 > T_1$

• tutte le macchine reversibili operanti tra queste due sorgenti hanno lo stesso rendimento

$$\eta_{REV} = \left(1 - \frac{T_2}{T_1}\right)$$

 \bullet le macchine irreversibili che operano tra queste due sorgenti hanno rendimento

$$\eta_{IRR} < \eta_{REV}$$

Def. Teorema di Clausius:

$$\sum_{i=1}^{N} \frac{Q_i}{T_i} \le 0 \tag{49}$$

$$\oint \frac{\delta Q}{T} \le 0$$
(50)

Il < vale per le trasformazioni irreversibili, = vale per le trasformazioni reversibili

4.10 Entropia

 ${\it Def.\ Entropia}\colon$ funzione di stato

$$dS \equiv \left(\frac{\delta Q}{T}\right)_{REV} \tag{51}$$

$$\Delta S = \int_{A}^{B} \left(\frac{\delta Q}{T}\right)_{REV} \tag{52}$$

4.10.1 Integrale di Clausius

$$\begin{cases} \int_{A}^{B} \left(\frac{\delta Q}{T}\right)_{REV} \equiv \Delta S \\ \int_{A}^{B} \left(\frac{\delta Q}{T}\right)_{IRR} < \Delta S \end{cases}$$
 (53)

Formulazione alternativa del II principio della termodinamica

Def. Variazione di entropia di un gas perfetto:

$$\Delta S = nc_v \ln \left(\frac{T_f}{T_i} \right) + nR \left(\frac{T_f}{T_i} \right)$$
 (54)

 $\underline{\underline{Def.}}$ Principio di aumento dell'entropia: L'entropia dell'universo aumenta sempre per trasformazioni $\underline{irreversibili}$, al più resta costante per trasformazioni $\underline{reversibili}$.

$$\Delta S_U \ge 0$$