Policy gradient methods

Reminder

Простейшая модель обучения с подкреплением состоит из:

• Множество состояний S

- Множество действий А
- Функция вознаграждения (подкрепление) $R: S \times A \to \mathbb{R}$
- Функции перехода между состояниями $p_{ss'}^a: S \times A \to \Pi(S)$,
- П(S) множество распределений вероятностей над S

Reminder

• В произвольный момент времени ${\bf t}$ агент характеризуется состоянием ${\bf s}_t$ и множеством возможных действий ${\bf A}({\bf s}_t)$

• Выбирая действие $a \in A(s_t)$, он переходит в состояние s_{t+1} и получает выигрыш r_t .

• Агент должен выработать стратегию $\pi: S \to A$, которая максимизирует величину :

$$R = \sum_{t} \gamma^{t} r_{t}$$

Мотивация

Игра агента со средой:

- Инициализация стратегии $\pi_1\left(a|s\right)$ и состояния среды s_1
- для всех t = 1 ... T:
 - агент выбирает действие $a_t \sim \pi_t (a|s_t)$
 - среда генерирует награду $r_{t+1} \sim p(r|a_t, s_t)$ и новое состояние $s_{t+1} \sim p(s|a_t, s_t)$
 - агент корректирует стратегию $\pi_{t+1}(a|s)$

Нужно определить алгоритм, который будет искать стратегии, обеспечивающие наибольшую награду.

Policy gradient method

Идея: оптимизировать стратегию $\pi_{\theta}(a|s)$ напрямую

- Сценарий $\tau = (s_1, a_1, s_2, a_2, \dots, s_T, a_T)$
- Сумма выигрыша в ходе сценария $R_{ au} = \sum_{ au} r(s_t, a_t)$
- Вероятность реализации сценария:

$$p_{\theta}(\tau) = p_{\theta}(s_1, a_1, s_2, a_2, \dots, s_T, a_T) = p(s_1 \prod_{t=1}^{T} \pi_{\theta} (a_t | s_t) p_{\theta}(s_{t+1} | s_{t}, a_t))$$

Policy gradient method

Задача : нужно выбрать такой набор параметров агента θ , задающий $\pi_{\theta}(a|s)$, чтобы максимизировать сумму полученных выигрышей:

$$J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)}[R_{\tau}] = \int p_{\theta}(\tau)R_{\tau}d\tau \to \max$$

Максимизируем выигрыш с помощью градиентного подъема

$$\nabla J(\theta) = \int \nabla p_{\theta}(\tau) R_{\tau} d\tau$$

Log derivative trick

Проблема: Не можем подсчитать $\nabla p_{\theta}(\tau)$ напрямую

Решение:

$$\nabla_{\theta} p_{\theta}(\tau) = p_{\theta}(\tau) \frac{\nabla_{\theta} p_{\theta}(\tau)}{p_{\theta}(\tau)} = p_{\theta}(\tau) \nabla \log p_{\theta}(\tau)$$

Тогда заменим $\nabla_{\theta} p_{\theta}(\tau)$ на $p_{\theta}(\tau) \nabla \log p_{\theta}(\tau)$:

$$\nabla J(\theta) = \int p_{\theta}(\tau) \nabla \log p_{\theta}(\tau) R_{\tau} d\tau$$

Policy gradient method

Рассмотрим $\nabla_{\theta} \log p_{\theta}(\tau)$:

$$\nabla_{\theta} \log p_{\theta}(\tau) = \nabla_{\theta} \log p_{\theta}(s_1) + \sum_{t=1}^{T} \left(\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) + \nabla_{\theta} \log p(s_{t+1} | s_t, a_t) \right) = \sum_{t=1}^{T} \left(\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right)$$

Подставляя в определение $\nabla_{\theta} J(\theta)$:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})) R_{\tau}]$$

Метод Монте-Карло

Если у нас есть выборка из N уже известных сценариев $au_i = \left(s_1^i, a_1^i, ..., s_T^i, a_T^i\right)$ полученная из распределения $au \sim p_{\theta}(au)$, то мы можем приблизить посчитать приблизительное значение $\nabla_{\theta} J(\theta)$:

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=0}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{i} \middle| s_{t}^{i} \right) \right) R_{\tau^{i}} = \frac{1}{N} \sum_{i=0}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{i} \middle| s_{t}^{i} \right) \right) \left(\sum_{t=1}^{T} r \left(a_{t}^{i}, s_{t}^{i} \right) \right)$$

REINFORCE

Оптимизицая $J(\theta)$ алгоритмом REINFORCE:

- 1. Прогнать N сценариев τ_i со стратегией $\pi_{\theta}(a|s)$
- 2. Посчитать среднее арифметическое $\nabla_{\theta} J(\theta)$ по методу Монте-Карло
- 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$
- 4. Если не сошлись к экстремуму, повторить с пункта 1.

Недостатки метода REINFORCE

• Для получения всего одного семпла требуется произвести Т взаимодействий со средой

• $\nabla_{\theta} \mathrm{log} p_{\theta}(\tau) \, R_{\tau}$ имеет большую дисперсию, поэтому требуется много семплов сценариев

• семплы, собранные для предыдущих значений θ, никак не переиспользуются на следующем шаге

Baseline method

Заметим, что если b - константа относительно т, то:

$$\mathbb{E}_{\tau \sim p_{\theta}(\tau)}[\nabla_{\theta} \log p_{\theta}(\tau)(R_{\tau} - b)] = \mathbb{E}_{\tau \sim p_{\theta}(\tau)}[\nabla_{\theta} \log p_{\theta}(\tau)R_{\tau}]$$

так как:

$$\mathbb{E}_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log p_{\theta}(\tau) b] = \int p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) b d\tau = \int \nabla_{\theta} p_{\theta}(\tau) b d\tau = b \nabla_{\theta} \int p_{\theta}(\tau) d\tau = b \nabla_{\theta} 1 = 0$$

Однако дисперсия $Var_{\tau \sim p_{\theta}(\tau)}(\nabla_{\theta}J(\theta))$ зависит b

$$Var_{\tau \sim p_{\theta}(\tau)}[\nabla_{\theta}\log p_{\theta}(\tau)(R_{\tau} - b)] =$$

$$\mathbb{E}_{\tau \sim p_{\theta}(\tau)}[(\nabla_{\theta} \log p_{\theta}(\tau)(R_{\tau} - b))^{2}] - \mathbb{E}_{\tau \sim p_{\theta}(\tau)}[\nabla_{\theta} \log p_{\theta}(\tau)(R_{\tau} - b)]^{2}$$

Q Actor Critic Method

Градиент суммы полученных выигрышей:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})) R_{\tau}]$$

Заметим, что:

$$\mathbb{E}_{\tau \sim p_{\theta}(\tau)}(R_{\tau}) = Q(s_t, a_t)$$

Где $Q^{\pi}(s_t, a_t) = \sum_{t'=t}^T \mathbb{E}_{\pi_{\theta}}[r(s_{t'}, a_{t'})|s_{t,} a_t]$ - оценка будущего выигрыша

Тогда мы можем переписать градиенты суммы выигрышей:

$$\nabla_{\theta} J(\theta) \, \mathbb{P} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} log \pi_{\theta} (a_t^i | s_t^i) Q_{\tau_i, t}$$
,

Список источников:

931b97b6df3f.

- К. А. А. Е. Николенко С., Глубокое обучение. Погружение в мир нейронных сетей, Спб: Питер, 2020, рр. 372-402
- «Методы policy gradient и алгоритм асинхронного актора-критика» [В Интернете]. Available: http://neerc.ifmo.ru/wiki/index.php?title=Методы _policy_gradient_и_алгоритм_асинхронного_актора-критика
- Chris Yoon, «Understanding Actor Critic Methods and A2C» 06 02 2019. [B Интернете]. Available: https://towardsdatascience.com/understanding-actor-critic-methods-

Вопросы

- 1. Описать суть трюка с лог производной (Log-derivative trick)
- 2. Напишите теорему градиента стратегии, поясните все составляющие. Что обновляется с каждым новым подсчетом градиента?
- 3. В чем суть модификации градиента по стратегии baseline? Какие недостатки удается устранить с помощью этой модификации?