Systematic Studies for the π^0 Calibration of the Crystal-Ball Detector

Martin Sobotzik

Johannes Gutenberg-Universität Mainz

29.05.2017

$$\gamma + p \to \pi^0 + p \to \gamma_1 \gamma_2 + p$$

$$m_{\pi^0} = \sqrt{2E_1 E_2 (1 - \cos(\alpha))}$$

$$\gamma + p \to \pi^0 + p \to \gamma_1 \gamma_2 + p$$

$$m_{\pi^0} = \sqrt{2E_1 E_2 (1 - \cos(\alpha))}$$

• Is there an energy dependency in the CB?

$$\gamma + p \to \pi^0 + p \to \gamma_1 \gamma_2 + p$$

$$m_{\pi^0} = \sqrt{2E_1 E_2 (1 - \cos(\alpha))}$$

- Is there an energy dependency in the CB?
- How can it be checked?

$$\gamma + p \to \pi^0 + p \to \gamma_1 \gamma_2 + p$$

$$m_{\pi^0} = \sqrt{2E_1 E_2 (1 - \cos(\alpha))}$$

- Is there an energy dependency in the CB?
- How can it be checked?

$$\rightarrow |E_1 - E_2| < 25 \, \text{MeV}$$

$$\gamma + p \to \pi^0 + p \to \gamma_1 \gamma_2 + p$$
$$m_{\pi^0} = \sqrt{2E_1 E_2 (1 - \cos(\alpha))}$$

- Is there an energy dependency in the CB?
- How can it be checked? $\rightarrow |E_1 E_2| < 25 \, \text{MeV}$
- What are the reasons for the dependency?

Crystal-Ball-Function / Reduction of the Underground

- Check if the registered particles are uncharged → Reduction of the underground
- Used signal line shape: Crystal-Ball Function

Martin Sobotzik

- $|E_1 E_2| < 25 \, \text{MeV}$ is a strong cut. One need really large MC statistics.
 - → There is no MC sample with enough events

Event-Generator

- $|E_1 E_2| < 25 \,\text{MeV}$ is a strong cut. One need really large MC statistics.
 - → There is no MC sample with enough events
- Creating a new sample with enough events with an already existing Event-Generator would take too much time (multiple days on blaster). Not Efficient!

Event-Generator

- $|E_1 E_2| < 25$ MeV is a strong cut. One need really large MC statistics.
 - \rightarrow There is no MC sample with enough events
- Creating a new sample with enough events with an already existing Event-Generator would take too much time (multiple days on blaster). Not Efficient!
- It is better to use the same generator in all studies
 - \rightarrow The generator should be able to simulate MAMI-Beam and isotropic boost

Event-Generator in ANT

New Event-Generator integrated in ANT

```
auto cmd Emin
                  = cmd.add<TCLAP::ValueArg<double>>
                                                          ("". "Emin".
                                                                               "Minimal incident energy [MeV]", false, 0.0, "double [MeV]"):
auto cmd Emax
                  = cmd.add<TCLAP::ValueArg<double>>
                                                         ("", "Emax",
                                                                               "Maximal incident energy [MeV]", false, 1.6*GeV, "double [MeV]");
auto cmd events = cmd.add<TCLAP::ValueArg<int>>
                                                                               "number of events", false, 10000, "n");
                  = cmd.add<TCLAP::SwitchArg>
                                                          ("", "sym",
                                                                               "Require symmetric photon energies");
auto cmd regsym
                                                          ("", "zboost",
                                                                               "Boost the Pions in z-Direction: True or False"):
auto cmd zboost = cmd.add<TCLAP::SwitchArg>
                                                          ("", "Prod",
auto cmd Prod
                  = cmd.add<TCLAP::SwitchArg>
                                                                               "Get the Product of the Pion: Change Beam Energy with E min and E max" ):
```

- Emin: Minimal energy of the beam/boost
- Emax: Maximal energy of the beam/boost
- Events: Number of events
- Sym: Require $|E_1 E_2| < 25 \,\text{MeV}$
- ZBoost: Boost the π^0 in z-Direction, if false than isotropic boost
- Prod: Also takes the proton into account

- Beamtime October 2014
- Well-calibrated

 \rightarrow There is a dependency

Detectors on the Edge

- Beamtime October 2014
- Neglect the detectors at the edge: They are difficult to calibrate because they have less neighbors

How does MC look like?

No additional cut Red: Black: Neglect the detectors on the edge

MC also shows this raise

 \rightarrow it can be used for further studies

Isotropic Boost

- \bullet π^0 decay in the origin of the target
- π^0 are boosted with an energy of $1420\,\mathrm{MeV}$ to $1580\,\mathrm{MeV}$ isotropically
 - \rightarrow all detector elements are hit roughly equally

ightarrow Raise is not caused by specific detector elements

Dimension of the Target

Motivation Preparation Studies Further Results Conclusion

z-Vertex Dependency

- Neglect the detectors on the edge
- Divide the target in sections of 1 cm

→ Some dependence but small in compared to the main effect

Angle between Generated and Reconstructed Candidates

 The angle between generated and reconstructed candidate is calculated

 \rightarrow Angular resolution $\sim 1^{\circ}\, \text{to}\, 2^{\circ}$

Difference between Generated and Reconstructed Opening Angle

$$\bullet \ \Delta\alpha = \alpha_{rec} - \alpha_{gen} \quad {\rm Properties} \quad \bullet_{\rm interpretation}^{\rm interpretation}$$

→ Systematic bias for high photon energies

Reason for the Deviation?

$$\begin{split} m_{\pi^0} &= \sqrt{2E_1E_2(1-\cos(\alpha))}\\ &\to \Delta m_{\pi^0} = \sqrt{E_1E_2} \cdot \cos(\frac{\alpha}{2}) \cdot \Delta \alpha \end{split}$$
 with $E_1 = E_2 = 450\,\text{MeV} \to \alpha \approx 17.3^\circ$

Lets assume:
$$\Delta \alpha = 1.0^{\circ}$$
 $\rightarrow \Delta m_{\pi^0} = 7.8 \, {\rm MeV}$

Which is a deviation of about 6% to the true m_{π^0} mass

$\Delta \alpha$ for Different z-Vertices

• $\Delta \alpha$ for different z-Vertices

Hot Crystals

- Beamtime October 2014
- Photon energy between 0 MeV and 100 MeV

Number in the figures Element Number 549 565 597 677

Motivation Preparation Studies Further Results Conclusion

Hot Crystals and Clustersize > 3

- Beamtime October 2014
- ullet Photon energy between $0\,\mathrm{MeV}$ and $100\,\mathrm{MeV}$
- Clustersize > 3

→ Neighbors of some dead crystals appear hot for low energies

Hot Crystals for Higher Energies

- Beamtime October 2014
- \bullet Photon energy between $300\,\mathrm{MeV}$ and $400\,\mathrm{MeV}$

→ Hot Neighbors disappear at larger energies

Additional Dead Crystals

- Beamtime October 2014
- Photon energy between 300 MeV and 400 MeV

ϕ -Distribution in the CB

- Beamtime October 2014
- Photon energy between 200 MeV and 225 MeV
- Weird bump

Conclusion

- There is a energy dependency in the detector
- The reconstructed opening angle is too big for high energies
 - \rightarrow wrong reconstruction of the photon impact position is probably the reason for the dependency (Clustering Algorithm)
- The hardware of some PIDs has to be checked (too few or to many events)
- There is a strange ϕ -distribution in the detector
 - \rightarrow reason for this has also to be determined

Appendix

Figure: Simulation:Left: Reconstructed energy and true opening angle. Right: True energy and reconstructed opening angle