第一章 数制和编码

- 1.1 进位计数制
- 1.2 数制系统转换
- 1.3 有符号数表示和计算
- 1.4 数字编码

1.1 进位计数制

例: 十进制数 1246385345.678091

- (1)权重
- (2) 不同的符号
- (3) 小数点
- (4) 计数规则

其中: "十" 为进位基数(Base / Radix), 简称基数(R)。

位置表示法和多项式表示法

$$12345.67809 = 1 \times 10^{4} + 2 \times 10^{3} + 3 \times 10^{2} + 4 \times 10^{1} + 5 \times 10^{0}$$
$$+ 6 \times 10^{-1} + 7 \times 10^{-2} + 8 \times 10^{-3} + 0 \times 10^{-4} + 9 \times 10^{-5}$$

$$N = \sum_{i=-m}^{n-1} a_i r^i$$

$$(1011.11)_2 = (1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2})_{10}$$
$$= (8+0+2+1+0.5+0.25)_{10} = 11.75_{10}$$

R=10	R=2	R=3	R=4	R=8	R=16
0	0	0	0	0	0
1	1	1	1	1	1 1
2 3	10	2	2 3	2	2
3	11	10	3	3	3
4	100	11	10	4	4 5
4 5	101	12	11	5	5
6	110	20	12	6	6
7	111	21	13	7	7
8	1000	22	20	10	8
9	1001	100	21	11	9
10	1010	101	22	12	A
11	1011	102	23	13	В
12	1100	110	30	14	C
13	1101	111	31	15	D
14	1110	112	32	16	E
15	1111	120	33	17	F
16	10000	121	100	20	10
17	10001	122	101	21	11
•••	•••	•••	•••	•••	•••

二进制数为计算机内部运算的基础

(1) 运算规则: + 、一、×、÷

加法规则: 0+0=0 0+1=1+0=1 1+1=10

减法规则: 0-0=0 1-0=1 1-1=0 10-1=1(借位)

乘法规则: $0 \times 0 = 0$ $0 \times 1 = 1 \times 0 = 0$ $1 \times 1 = 1$

除法规则 $0 \div 1 = 0$ $1 \div 1 = 1$ (0 不能作除数)

(2) 常用的二进制常数要记住

i	Ri	i	Ri	i	Ri
-7	0.0078125	0	1	7	128
-6	0.015625	1	2	8	256
-5	0.03125	2	4	9	512
- 4	0.0625	3	8	10	1024
-3	0.125	4	16	11	2048
-2	0.25	5	32	12	4096
-1	0.5	6	64	13	8192

(3) 二进制数的单位:

1位二进制数=1bit、1B=8b、

$$1K = 2^{10}$$
, $1M = 2^{20}$, $1G = 2^{30}$, $1T = 2^{40}$

1.2 数制系统转换

$$(N)_{\alpha} \rightarrow (N')_{\beta}$$

多项式替代法(以β进制计算)和基数乘除法(以α进制计算)

$$(N)_{\alpha} = \left(\sum_{i=-m}^{n-1} A_i \times 10^i\right)_{\alpha}$$

1.2.1 多项式替代法

$$(1CE8)_{16} = (1 \times 10^{3} + C \times 10^{2} + E \times 10^{1} + 8 \times 10^{0})_{16}$$

$$= (1 \times 16^{3} + 12 \times 16^{2} + 14 \times 16^{1} + 8 \times 16^{0})_{10}$$

$$= (4096 + 3072 + 224 + 8)_{10}$$

$$= (7400)_{10}$$

$$(N)_{\alpha} = (A_{n-1}A_{n-2} \cdots A_{1}A_{0}.A_{-1}A_{-2} \cdots A_{-m})_{\alpha}$$

$$= (A_{n-1} \times 10^{n-1} + A_{n-2} \times 10^{n-2} + \cdots + A_{1} \times 10^{1} + A_{0} \times 10^{0} + A_{-1} \times 10^{-1} + A_{-2} \times 10^{-2}A_{-2} + \cdots + A_{-m} \times 10^{-m})_{\alpha}$$

$$= (A'_{n-1} \times \alpha^{n'-1} + A'_{n-2} \times \alpha^{n'-2} + \cdots + A'_{1} \times \alpha^{1} + A'_{0} \times \alpha^{0} + A'_{-1} \times \alpha^{-1} + A'_{-2} \times \alpha^{-2} + \cdots + A'_{-m} \times \alpha^{-m'})_{\beta}$$

$$= (N')_{\beta}$$

将(121.2)3转换为二进制。

$$(121.2)_3 = (1 \times 10^2 + 2 \times 10^1 + 1 \times 10^0 + 2 \times 10^{-1})_3$$

$$= (1 \times 11^{10} + 10 \times 11^1 + 1 \times 11^0 + 10 \times 11^{-1})_2$$

$$= (1001 + 110 + 1 + 0.101010...)_2$$

$$= (10000.101010...)_2$$

将(1234) 10转换为十六进制

$$(1234)_{10} = (1 \times 10^{3} + 2 \times 10^{2} + 3 \times 10^{1} + 4 \times 10^{0})_{10}$$
$$= (1 \times A^{3} + 2 \times A^{2} + 3 \times A^{1} + 4 \times A^{0})_{16}$$
$$= (?)_{16}$$

1.2.2 基数乘除法

1.整数转换(基数除法)

$$\begin{split} (N)_{\alpha} &= (N')_{\beta} = (B_{n-1}B_{n-2}\cdots B_1B_0)_{\beta} \\ &= (B_{n-1}\times 10^{n-1} + B_{n-2}\times 10^{n-2} + \cdots + B_1\times 10^1 + B_0\times 10^0)_{\beta} \\ &= (B'_{n-1}\times \beta^{n-1} + B'_{n-2}\times \beta^{n-2} + \cdots + B'_1\times \beta^1 + B'_0\times \beta^0)_{\alpha} \end{split}$$
 两边同除以
$$\beta \qquad B'_{n-1}\times \beta^{n-2} + B'_{n-2}\times \beta^{n-3} + \cdots + B'_1\times \beta^0 + B'_0/\beta \end{split}$$

得到余数 B'_0

将十进制的179 转换成二进制数

$$179 \div 2 = 89 \dots$$
 余1 (b₀)
 $89 \div 2 = 44 \dots$ 余1 (b₁)
 $44 \div 2 = 22 \dots$ 余0 (b₂)
 $22 \div 2 = 11 \dots$ 余0 (b₃)
 $11 \div 2 = 5 \dots$ 余1 (b₄)
 $5 \div 2 = 2 \dots$ 余1 (b₅)
 $2 \div 2 = 1 \dots$ 余0 (b₆)
 $1 \div 2 = 0 \dots$ 余1 (b₇)

将十进制的3417转换成十六进制数。

$$213 \div 16 = 13$$
 余(5)

$$13 \div 16 = 0$$
 余 (13)

$$(3417)_{10} = (D59)_{16}$$

2. 小数转换(基数乘法)

$$(N)_{\alpha} = (N')_{\beta}$$

$$= (0.B_{-1}B_{-2}\cdots B_{-m})_{\beta}$$

$$= (B_{-1}\times 10^{-1} + B_{-2}\times 10^{-2} + \cdots + B_{-m}\times 10^{-m})_{\beta}$$

$$= (B'_{-1}\times \beta^{-1} + B'_{-2}\times \beta^{-2} + \cdots + B'_{-m}\times \beta^{-m})_{\alpha}$$

两边同乘以β
$$B'_{-1} + B'_{-2} \times \beta^{-1} + \cdots + B'_{-m} \times \beta^{-m+1}$$

得到整数部分 B'_{-1}

将(0.375)10 转换成二进制数。

$$0 . 375 \times 2$$

$$[0] . 750 \times 2$$

$$[1] . 500 \dots B_{-1} = 0$$

$$\times 2$$

$$[1] . 000 \dots B_{-2} = 1$$

$$(0.375)_{10} = (0.011)_{2}$$

将(0.4321)10转换成十六进制数。

$$N_0 = 0.4321$$

 $N_0 \times \beta = 0.4321 \times 16 = 6.9136$ $N_1 = 0.9136$ $B_{-1} = 6$
 $N_1 \times \beta = 0.9136 \times 16 = 14.6176$ $N_2 = 0.6176$ $B_{-2} = 14(E)$
 $N_2 \times \beta = 0.6176 \times 16 = 9.8816$ $N_3 = 0.8816$ $B_{-3} = 9$
 $N_3 \times \beta = 0.8816 \times 16 = 14.1056$ $N_4 = 0.1056$ $B_{-4} = 14(E)$

即
$$(0.4321)_{10} \approx (0.6E9E)_{16}$$

将(1023.231)4转换成五进制数。

1.2.3 任意两种进制之间的转换

$$(N)_{\alpha} \rightarrow (N')_{\beta}$$

- 1. 若熟悉α进制的运算规则,则采用基数乘除法完成转换;
- 2. 若熟悉β进制的运算规则,则采用多项式替代法完成转换;
- 3. 若不熟悉α、β进制的运算规则:则可利用十进制作为转换桥梁

将(1023.231)4转换成五进制数。

$$(1023.231)_4$$

=
$$(1 \times 10^{3} + 0 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0} + 2 \times 10^{-1} + 3 \times 10^{-2} + 1 \times 10^{-3})_{4}$$

=
$$(1 \times 4^{3} + 0 \times 4^{2} + 2 \times 4^{1} + 3 \times 4^{0} + 2 \times 4^{-1} + 3 \times 4^{-2} + 1 \times 4^{-3})_{10}$$

$$= 64 + 0 + 8 + 3 + 0.5 + 0.1875 + 0.015625$$

=75.703125

 $(75.703125)_{10}$

整数部分

5 7 5 ...
$$b_0=0$$

5 1 5 ... $b_1=0$
5 3 ... $b_2=3$

小数部分

$$\begin{array}{c} 0 . 703125 \\ \times 5 \\ \hline [3] . 515625 \\ \times 5 \\ \hline [2] . 578125 \\ \times 5 \\ \hline [2] . 890625 \\ \times 5 \\ \hline [4] . 453125 \\ \dots C_{-4} = 4 \end{array}$$

$$(75.703125)_{10} \approx (300.3224)_5$$

$$\therefore$$
 (1023.231)₄ \approx (300.3224)₅

1.2.4 直接转换法

二进制Binary,简称B,如 $(10)_2 = (10)_B$; 八进制Octal,简称O ,如 $(10)_8 = (10)_O$; 十六进制Hexadecimal,简称H ,如 $(10)_{16} = (10)_H$ 。

$$(N)_{\alpha} \rightarrow (N')_{\beta}$$

R=2	R=4	R=8	R=16
0	0	0	0
1	1	1	1
10	2	2	2
11	3	3	3
100	10	4	4
101	11	5	5
110	12	6	6
111	13	7	7
1000	20	10	8
1001	21	11	9
1010	22	12	A
1011	23	13	В

R=2	R=4	R=8	R=16
1100	30	14	С
1101	31	15	D
1110	32	16	Е
1111	33	17	F
10000	100	20	10
10001	101	21	11
10010	102	22	12
10011	103	23	13
10100	110	24	14
10101	111	25	15
10110	112	26	16
•••	•••	•••	•••

$$(N)_2 \to (N')_{2^k}$$

$$(N)_2 = (K_{n-1}K_{n-2}...K_1K_0.K_{-1}K_{-2}...K_{-m})_2$$

- (1) 位置计数法表示数
- (2) 以小数点为中心,分别**向左、向右**分组,每k位一组
- (3) 补零
- (4) 转换

将(11111010.0111) 2转换为八进制数。

$$(111111010.0111)_2 = (372.34)_8$$

$$(N)_{2^k} \to (N')_2$$

将(213.01) 4转换为二进制数。

$$(213.01)_4 = (100111.0001)_2$$

将(AF.16C)₁₆转换为八进制数。

$$(AF.16C)_{16} = (257.0554)_{8}$$

1.2.5 数制转换时小数位数的确定

小数部分不能精确转换时,换后的小数部分应是怎样的?

- ① 小数位数受机器字长的限制而确定;
- ② 由需求给定小数的位数;
- ③保证转换成β进制后维持与α进制相同的精度。

1.3 有符号数表示和计算

真值	符号位	数值位
+5	+	5
— 7		7

1.3.1 原码

原码的形成规则:符号位+数值位

用8位二进制代码表示的原码

$$x = +5$$

$$[x]_{\text{\tiny \'e}} = 00000101$$

$$y = -7$$

$$[y]_{\text{\tiny \'e}} = 10000111$$

$$[x]_{\mathbb{R}} = \begin{cases} x, & 0 \le x < 2^{n-1} \\ 2^{n-1} - x, & -2^{n-1} < x \le 0 \end{cases}$$

$$[x]_{\text{\tiny{\mathbb{R}}}} = 01010101$$
 $[x]_{\text{\tiny{$\mathbb{R}$}}} = 11010101$
 $x = +85$ $x = -85$

$$[x]_{\text{\tiny $||}} = 011111111$$
 $[x]_{\text{\tiny $||}} = 111111111$
 $x = +127$ $x = -127$

$$[x]_{\text{\tiny $||}} = 00000000$$
 $[x]_{\text{\tiny $||}} = 10000000$
 $x = +0$ $x = -0$

1.3.2 反码

反码的形成规则:符号位+数值位

用8位二进制代码表示

$$x = +5$$

$$[x]_{\mathbb{R}} = 00000101 [x]_{\mathbb{R}} = 00000101$$

$$y = -7$$

$$[y]_{\mathbb{R}} = 10000111 [y]_{\mathbb{R}} = 11111000$$

$$[x]_{\cancel{\boxtimes}} = \begin{cases} x, & 0 \le x < 2^{n-1} \\ (2^n - 1) + x, & -2^{n-1} < x \le 0 \end{cases}$$

$$[x]_{\overline{\aleph}} = 01010101 \quad [x]_{\overline{\aleph}} = 11010101$$

$$x = +85$$

$$[x]_{\mathbb{Z}} = 11010101$$

$$x = -42$$

$$[x]_{\overline{\bowtie}} = 011111111 \quad [x]_{\overline{\bowtie}} = 111111111$$

$$x = +127$$

$$[x]_{\overline{o}} = 111111111$$

$$\mathbf{x} = \mathbf{0}$$

$$[x]_{\overline{\bowtie}} = 00000000$$
 $[x]_{\overline{\bowtie}} = 10000000$

$$[x]_{\mathbb{Z}} = 10000000$$

$$x = +0$$

$$x = -127$$

1.3.3 补码

补码的形成规则:符号位+数值位

用8位二进制代码表示

$$x = +5$$

$$[x]_{\mathbb{R}} = 00000101 [x]_{1/2} = 00000101$$

$$y = -7$$

$$[y]_{\mathbb{R}} = 10000111 [y]_{3} = 11111001$$

$$[x]_{\nmid h} = \begin{cases} x, & 0 \le x < 2^{n-1} \\ 2^n + x, & -2^{n-1} \le x < 0 \end{cases}$$

$$[x]_{\dot{\uparrow}\dot{\uparrow}} = 01010101 \quad [x]_{\dot{\uparrow}\dot{\uparrow}} = 11010101$$

$$x = +85$$
 $x = -43$

$$[x]_{\dot{\uparrow}h} = 011111111$$
 $[x]_{\dot{\uparrow}h} = 1111111111$
 $x = +127$ $x = -1$

$$[x]_{\dot{\uparrow}\dot{\uparrow}} = 00000000$$
 $[x]_{\dot{\uparrow}\dot{\uparrow}} = 10000000$
 $x = +0$ $x = -128$

$$[x]_{\mathbb{R}} = \begin{cases} x, & 0 \le x < 2^{n-1} \\ 2^{n-1} - x, & -2^{n-1} < x \le 0 \end{cases}$$

$$[x]_{n} = \begin{cases} x, & 0 \le x < 2^{n-1} \\ 2^n + x, & -2^{n-1} \le x < 0 \end{cases}$$

$$[x]_{\mathbb{R}} = \begin{cases} x, & 0 \le x < 2^{n-1} \\ (2^n - 1) + x, & -2^{n-1} < x \le 0 \end{cases}$$

$$[x]_{ab} = 2^n - N = (2^n - 1 - N) + 1$$

N: 原码的数值位

Signed Decimal	Sign Magnitude Binary	Two's Complement System	One's Complement System
+15	0,1111	0,1111	0,1111
+14	0,1110	0,1110	0,1110
+13	0,1101	0,1101	0,1101
+12	0,1100	0,1100	0,1100
+11	0,1011	0,1011	0,1011
+10	0,1010	0,1010	0,1010
+9	0,1001	0,1001	0,1001
+8	0,1000	0,1000	0,1000
+7	0,0111	0,0111	0,0111
+6	0,0110	0,0110	0,0110
+5	0,0101	0,0101	0,0101
+4	0,0100	0,0100	0,0100
+3	0,0011	0,0011	0,0011
+2	0,0010	0,0010	0,0010
+1	0,0001	0,0001	0,0001
0	0,0000	0,000	0,0000
	(1,0000)	_	(1,1111)
-1	1,0001	1,1111	1,1110
-2	1,0010	1,1110	1,1101
-3	1,0011	1,1101	1,1100
-4	1,0100	1,1100	1,1011
-5	1,0101	1,1011	1,1010
-6	1,0110	1,1010	1,1001
-7	1,0111	1,1001	1,1000
-8	1,1000	1,1000	1,0111
-9	1,1001	1,0111	1,0110
-10	1,1010	1,0110	1,0101
-11	1,1011	1,0101	1,0100
-12	1,1100	1,0100	1,0011
-13	1,1101	1,0011	1,0010
-14	1,1110	1,0010	1,0001
-15	1,1111	1,0001	1,0000
-16	_	1,0000	_

1.3.4 有符号数的加、减运算

原码 加减法有不同的规则,关键是要判大小;

反码
$$[x+y]_{\overline{D}} = [x]_{\overline{D}} + [y]_{\overline{D}}$$

 $[x-y]_{\overline{D}} = [x]_{\overline{D}} + [-y]_{\overline{D}}$
补码 $[x+y]_{\dot{N}} = [x]_{\dot{N}} + [y]_{\dot{N}}$
 $[x-y]_{\dot{N}} = [x]_{\dot{N}} + [-y]_{\dot{N}}$

反码和补码的减法运算按加法运算完成 符号位S被看成一位数码,与数值位按同样的加法规则进行处理 进位的处理:补码运算时符号位产生的进位要丢掉;反码运算时符 号位产生的进位加到和数最低位

$$xz = x - y$$
, 其中 $x = +1010$, $y = +0011$

原码运算:
$$[x]_{\mathbb{R}} = 01010$$
 $[y]_{\mathbb{R}} = 00011$

x 绝对值 > y 绝对值

$$[z]_{\mathbb{R}} = [01010 - 00011]_{\mathbb{R}} = 00111$$
 $z = +0111$

补码运算:
$$[x]_{\stackrel{}{h}}=01010$$
 $[-y]_{\stackrel{}{h}}=[-0011]_{\stackrel{}{h}}=11101$

$$\begin{array}{c}
01010 \\
+11101 \\
\hline
1 00111
\end{array}$$

$$[z]_{\frac{1}{2}} = 00111 \\
z = + 0111$$

反码运算:
$$[x]_{\overline{\mathbb{Q}}} = 01010 \ [-y]_{\overline{\mathbb{Q}}} = [-0011]_{\overline{\mathbb{Q}}} = 11100$$

$$01010 \\ +11100 \\ \hline 1 00110 \\ + 1 \\ \hline 00111$$

$$[z]_{\overline{\bowtie}} = 00111$$

 $z = + 0111$

原码运算:
$$[x]_{\mathbb{R}} = 00011$$
 $[y]_{\mathbb{R}} = 01010$

x 绝对值 < y 绝对值

$$[z]_{\mathbb{R}} = [-(01010 - 00011)]_{\mathbb{R}} = -00111 \ z = -0111$$

补码运算:
$$[x]_{\dot{\uparrow}} = 00011$$
 $[-y]_{\dot{\uparrow}} = [-1010]_{\dot{\uparrow}} = 10110$

$$\begin{array}{ccc}
00011 & & & & [z]_{\frac{1}{2}} = 11001 \\
+10110 & & & z = -0111 \\
\hline
11001 & & & & \end{array}$$

反码运算: $[x]_{\overline{D}} = 00011$ $[-y]_{\overline{D}} = [-1010]_{\overline{D}} = 10101$

$$\begin{array}{c}
00011 \\
+10101 \\
\hline
11000
\end{array}$$

$$[z]_{\overline{k}} = 11000 \\
z = -0111$$

进位的处理: 补码运算时符号位产生的进位要丢掉

- 1、两正数相加,和小于2ⁿ⁻¹
- 2、两正数相加,和大于2ⁿ⁻¹ (溢出)
- 3、正数与负数相加(负数绝对值大)
- 4、正数与负数相加(正数绝对值大)
- 5、两负数相加、和绝对值小于等于2n-1
- 6、两负数相加,和绝对值大于2n-1(溢出)

$$-A + B(B > A) : A * +B = (2^n - A) + B = 2^n + (B - A) > 2^n$$

$$-A - B(A + B \le 2^{n-1}) : A * + B * = (2^n - A) + (2^n - B) = 2^n + 2^n - (A + B)$$

进位的处理: 反码运算时符号位产生的进位加到和数最低位

- 1、两正数相加,和小于2ⁿ⁻¹
- 2、两正数相加,和大于2ⁿ⁻¹
- 3、正数与负数相加(负数绝对值大)
- 4、正数与负数相加(正数绝对值大)
- 5、两负数相加,和绝对值小于等于2n-1
- 6、两负数相加,和绝对值大于2ⁿ⁻¹

$$-A + B(B > A) : \overline{A} + B = (2^{n} - 1 - A) + B = 2^{n} + (B - A) - 1$$
$$-A - B(A + B \le 2^{n-1}) : \overline{A} + \overline{B} = (2^{n} - 1 - A) + (2^{n} - 1 - B) = 2^{n} + [2^{n} - 1 - (A + B)] - 1$$

计算机采用什么码进行整数计算?

1.4 数字编码

1.4.1 十进制数的常用代码(二进制编码的十进制数)

用四位二进制数的代码表示一位十进制数,既具有二进制数的形式,又具有十进制数的特点;

"8421"码(BCD码)、"2421"码、余3码、格雷码......

"制"表示方法。码制:编码方法:数制,计数方法。

十进制整数	8421码	2421码	余3码		
0	0000	0000	0011		
1	0001	0001	0100		
2	0010	0010	0101		
3	0011	0011	0110		
4	0100	0100	0111		
5	0101	1011	1000		
6	0110	1100	1001		
7	0111	1101	1010		
8	1000	1110	1011		
9	1001	1111	1100		
无效码区	1010、1011、	0101、0110、	0000、0001、		
Unused code	1100、1101、	0111、1000、	0010, 1101,		
wrds	1110、1111	1001、1010	1110、1111		

四位二进制代码	8421码	2421码	余3码
0000	0000	0000 0	0000〕 非
0001	0001 <mark>1</mark>	0001 <mark>1</mark>	0000 0001 0010 非 码 区
0010	0010 2	0010 2	0010
0011	0011 3	0011 3	0011 <mark>0</mark>
0100	0100 4	0100 4	0100 <mark>1</mark>
0101	0101 5	0101	0101 <mark>2</mark>
0110	0110 6	0110 ₋₁₁₋	0110 3
0111	0111 <mark>7</mark>	0111 非码	0111 4
1000	1000 8	1000 🔀	1000 5
1001	1001 <mark>9</mark>	1001	1001 <mark>6</mark>
1010	1010	1010	1010 <mark>7</mark>
1011	1011 ₋₁₁₋	1011 5	1011 <mark>8</mark>
1100	1100 【 記	1100 <mark>6</mark>	1100 <mark>9</mark>
1101	1100 1101 E	1101 <mark>7</mark>	1101] 非
1110	1110	1110 <mark>8</mark>	1110 ~码
1111	1111	1111 9	1111 🕽 🔀

代码表示为 A₃A₂A₁A₀

代码	对应的十进制数值	代码直接按位转换
8421码	有权码 (Weighted code) 8A ₃ +4A ₂ +2A ₁ +1A ₀	$(13)_{10} = (00010011)_{BCD}$ $(1011101010000)_{BCD} = (1750)_{10}$
2421码	有权码、对9自补码 2A ₃ +4A ₂ +2A ₁ +1A ₀	$(13)_{10} = (00010011)_{2421}$ $(1110110110000)_{2421} = (1750)_{10}$
余3码	无权码、对9自补码 8A ₃ +4A ₂ +2A ₁ +1A ₀ -0011	$(13)_{10} = (01000110)_{{\Re}3}$ $(100101010000011)_{{\Re}3} = (1750)_{10}$

1.4.2 可靠性编码

解决代码在形成或传输过程中可能会发生的错误,提高系统的安全性。

- 1. 使代码自身具有一种特征或能力;
- 2. 增加信息位之间的运算,如异或运算⊕;
- 3. 增加校验位。

格雷码(Gray)

特点: 任意两个相邻数的代码只有一位二进制数不同

•例:四位二进制加1计数器,工作时有如下情况出现:

这种情况出现的最为严重的是当由1111加1计数到0000时

典型Gray码

Gray码、步进码和二进制码对照表

十进制数	二进制数	典型Gray	十进制 Gray码(1)	十进制 Gray码(2)	步进码
0	0000	0000	0000	0000	00000
1	000 <mark>1</mark>	0001	0001	0001	00001
2	0010	0011	0011	0011	00011
3	0011	001 0	0010	0010	00111
4	0100	0110	0110	0110	01111
5	0101	0111	1110	0111	11111
6	0110	0101	1010	0101	11110
7	0111	01 00	1011	0100	11100
8	1000	1100	1001	1100	11000
9	1001	1101	1000	1000	10000
10	1010	1111			
11	1011	1110			
12	1100	1010			
13	1101	1011			
14	1110	1001			
15	1111	1000			

典型Gray码通过异或运算⊕完成:

$$G_i = B_{i+1} \oplus B_i$$
$$B_{n+1} = 0$$

- 二进制码 B 0 1 1 1 0
- Gray码 **1** 0 0 1

典型Gray码转换到二进制码:

$$G_{i} = B_{i+1} \oplus B_{i}$$

$$G_{i} \oplus B_{i+1} = B_{i+1} \oplus B_{i} \oplus B_{i+1}$$

$$B_{i} = G_{i} \oplus B_{i+1}$$

$$B_{n+1} = 0$$

$$B_i = G_i \oplus B_{i+1}$$

Gray码 G 1 1 1 0

二进制码 B 1 0 1 1

$$\begin{split} B_{i} &= G_{i} \oplus B_{i+1} \\ B_{n-1} &= G_{n-1} \oplus 0 = G_{n-1} \\ B_{n-2} &= G_{n-2} \oplus B_{n-1} = G_{n-2} \oplus G_{n-1} \\ \vdots \end{split}$$

$$B_0 = G_{n-1} \oplus G_{n-2} \oplus \cdots \oplus G_0$$

G 1 1 1 0

B 1 0 1 1

改异或运算电路为判别电路

$$B_i = G_{n-1} \oplus G_{n-2} \oplus \cdots \oplus G_i$$

$$G = 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1$$

$$B = 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1$$

校验码和纠错码

传输系统电路

解决方法: 增加校验位P(⊕)

1、奇偶校验码

校验码:

信息位 $B_{n-1} \sim 0$ 校验位 P

• 偶校验:

P的取值使校验码中'1'的个数是偶数;

$$P_{\mathbb{A}} = B_{n-1} \oplus B_{n-2} \oplus ... \oplus B_1 \oplus B_0$$

• 奇校验:

P的取值使校验码中'1'的个数是奇数;

$$P_{\widehat{a}} = B_{n-1} \oplus B_{n-2} \oplus ... \oplus B_1 \oplus B_0 \oplus 1$$

奇偶校验码具有发现一位错的能力

Error
$$_{\mathbb{H}} = B_{n-1} \oplus B_{n-2} \oplus ... \oplus B_1 \oplus B_0 \oplus P_{\mathbb{H}}$$

2、海明校验码

不仅能检测出单错,还能校正单错

以四位信息位B₄B₃B₂B₁为例,在传输前生成它的海明校验码:

(1) 位序: 7 6 5 4 3 2 1 B₄B₃B₂P₃B₁P₂P₁

(2) 校验位的生成公式: $P_3 = B_4 \oplus B_3 \oplus B_2$ $P_2 = B_4 \oplus B_3 \oplus B_1$ $P_1 = B_4 \oplus B_2 \oplus B_1$

"8421"海明码

位序	7	6	5	4	3	2	1
N.	\mathbf{B}_4	\mathbf{B}_3	\mathbf{B}_{2}	P_3	\mathbf{B}_1	P ₂	\mathbf{P}_{1}
0	0	0	0	0	0	0	0
1	0	0	0	0	1	1	1
2	0	0	1	1	0	0	1
3	0	0	1	1	1	1	0
4	0	1	0	1	0	1	0
5	0	1	0	1	1	0	1
6	0	1	1	0	0	1	1
7	0	1	1	0	1	0	0
8	1	0	0	1	0	1	1
9	1	0	0	1	1	0	0

(3) 校验和:
$$S_3 = B_4 \oplus B_3 \oplus B_2 \oplus P_3$$

 $S_2 = B_4 \oplus B_3 \oplus B_1 \oplus P_2$
 $S_1 = B_4 \oplus B_2 \oplus B_1 \oplus P_1$

 $S_3 S_2 S_1 = 0$ 时,接收到的信息是正确的;

否则, S₃ S₂ S₁所表示的二进制值就是出错的那一位的位序值。

接收到的海明码为: 7 6 5 4 3 2 1 B₄B₃B₂P₃B₁P₂P₁ 0 0 0 1 0 1 0

S₃ S₂ S₁=110, 表示第6位(B₃)出错,改0为1。

出错表的确定

$S_3 =$	$B_4 \oplus$	B_3	⊕ B ₂	⊕ P ₃			
$S_2 =$	$B_4 \oplus$	B_3			\oplus B ₁	\oplus $\mathbf{P_2}$	
$S_1 =$	B_4		\oplus B ₂		\oplus B ₁		\oplus $\mathbf{P_1}$
$S_3 S_2 S_1$	111 000	110	101	100	011	010	001
出错位序列	7	6	5	4	3	2	1
出错位	B ₄	B_3	B_2	P_3	B_1	P ₂	P ₁

设:信息位n位,校验位k位

则
$$(2^k-1)-k\geq n$$

或
$$(2^k-1) \ge n+k$$

如下表所列:

校验位数k	1	2	3	4	5	6	7	8
最大信息位数n	0	1	4	11	26	57	120	247
海明码位数 (2 ^k -1)	1	3	7	15	32	63	127	255

第一章 作业

- 1、用实例说明摩尔定律
- 2、说明计算机中浮点数的表示格式和进行四则运算的方法
- 3、课后习题: 1.1、1.6、1.8、1.16、1.23