

2.) Attemative distance metric for assignment step in k-means
duaholanobis = \(\(\chi_i-\mi_j\)^\Ti'\(\chi_i-\mi_j\)
Write out k-means w/this metric.
(Remember Mahalanobis distance represents distance of a point to
a distribution, taking into account its variance. It fits in nicely w/
k-means because we want to minimize it, just like we did with
Squared Foolidean)
1. Initialize: M. I Y dasses (I=I Y dasses usually)
2. Assignment:
for wie i= sln
Assign each xi to closest centroid according to
Mahalanobis distance, j.e.
argmin $\sqrt{(x_i-\mu_i)^T \sum_{i}'(x_i-\mu_i)} = label_x$
cj & C
3. Vpdate:
$\mu_i = \pi_i . 2 \pi_i$
$\mathcal{I}_{i} = \mathcal{I}_{i}(x_{i}-w_{i})(x_{i}-w_{i})^{T}$
hj ite
4 Daniel III
4. Repeat until convergence
This distance metric might be useful because it takes into
a count the variance of a chyster, i.e.
xxxxx
NS. XXXXX
XXXXX XXXXX XXXXX
 (K-means assumes covariance=identity)