Universidad del Valle de Guatemala

Facultad de Ingeniería

Departamento de Computación

Laboratorio 2: Series de Tiempo

Integrantes:

Diego Alexander Hernández Silvestre, 21270

Linda Inés Jiménez Vides, 21169

Curso: Data Science

Sección: 10

Guatemala, 1 de agosto de 2024

En primera instancia, se importan las librerías requeridas para poder realizar los cálculos durante el laboratorio.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import sweetviz as sv
import statsmodels.api as sm
import matplotlib.pyplot as plt
from autoviz. AutoViz Class import AutoViz Class
from statsmodels.graphics.tsaplots import plot acf, plot pacf
from statsmodels.tsa.stattools import adfuller
from pmdarima import auto arima
from prophet import Prophet
from sklearn.metrics import mean squared error
from sklearn.linear model import LinearRegression
from statsmodels.tsa.arima.model import ARIMA
%matplotlib inline
```

□Dataset: CONSUMO-2024-05.xlsx

Las columnas que contienen la información sobre el diésel, se encuentran separadas en dos variables *Diesel alto azufre* y *Diesel bajo azufre* por lo que se implementa una función para llevar a cambo la combinación en una resultante.

```
def combineDieselColumns(csvPath):
    print("□ Iniciando la combinación de las columnas de Diesel...")
        # Leer el archivo CSV en un DataFrame
        df = pd.read csv(csvPath)
        print(f"□ Archivo cargado: {csvPath}")
    except Exception as e:
        print(f"[ Error al cargar {csvPath}: {e}")
        return None
    if 'Diesel alto azufre' not in df.columns or 'Diesel bajo azufre'
not in df.columns:
        print("[] Las columnas 'Diesel alto azufre' o 'Diesel bajo
        no existen en el archivo CSV.")
        return None
    # Crear la nueva columna 'Diesel'
    df['Diesel'] = df['Diesel alto azufre'].replace(0,
pd.NA).combine first(df['Diesel bajo azufre'].replace(0, pd.NA))
    print("□ Combinación de columnas completada.")
    return df
csvPath = 'Consumo/CONSUMO-2024-05.csv'
dataConsumo = combineDieselColumns(csvPath)
□ Iniciando la combinación de las columnas de Diesel...
☐ Archivo cargado: Consumo/CONSUMO-2024-05.csv
☐ Combinación de columnas completada.
```

Luego, se realiza un filtrado de las columnas relevantes del dataset.

```
dataConsumo = dataConsumo[['Fecha', 'Gasolina regular', 'Gasolina
superior', 'Diesel', 'Gas licuado de petróleo']]
dataConsumo['Fecha'] = pd.to datetime(dataConsumo['Fecha'])
dataConsumo.head()
    Fecha
              Gasolina regular
                                Gasolina superior
                                                    Diesel \
0 2000-01-01
                  202645.20
                                    308156.82
                                                   634667.06
1 2000-02-01
                  205530.96
                                    307766.31
                                                   642380.66
2 2000-03-01
                  229499.56
                                    331910.29
                                                   699807.25
3 2000-04-01
                  210680.40
                                    315648.08
                                                   586803.98
```

```
4 2000-05-01 208164.34 319667.97 656948.2

Gas licuado de petróleo
0 194410.476190
1 174710.552381
2 189234.066667
3 174330.607143
4 191745.147619
```

Este es un método alternativo que se puede utilizar para hacer un EDA automatizado. Sin embargo, en comparativa con otros métodos, se decidió no utilizar pero se dejó a manera de proporcionar un recurso extra.

```
#plt.figure(figsize=(12, 8))

#for i, column in enumerate(['Gasolina regular', 'Gasolina superior',
'Diesel', 'Gas licuado de petróleo'], 1):
# plt.subplot(2, 2, i)
# sns.histplot(dataConsumo[column], kde=True)
# plt.title(f'Distribución de {column}')
# plt.xlabel(column)

#plt.tight_layout()
#plt.show()
```

Para facilitar el EDA, se utilizó la librería AutoViz para automatizar este proceso. De este se puede destacar que en el dataset de Consumo, todas las variables cuentan con distribuciones asimétricas positivas, por lo que se puede deducir que existe una mayor concentración de valores bajos y algunos valores muy altos. Los graficos de caja y bigotes indican la presencia de valores atipicos en todas las variables y los Q-Q plots muestran que ninguna de las variables cuenta con una distribución normal.

```
csvPath = 'Consumo/dataConsumo.csv'
dataConsumo.to csv(csvPath, index=False)
AV = AutoViz Class()
AV.AutoViz(csvPath)
Shape of your Data Set loaded: (293, 5)
##################
########################
##################
Classifying variables in data set...
  Number of Numeric Columns = 4
  Number of Integer-Categorical Columns = 0
  Number of String-Categorical Columns = 0
  Number of Factor-Categorical Columns = 0
```

Number of String-Boolean Columns = 0 Number of Numeric-Boolean Columns = Number of Discrete String Columns = 0 Number of NLP String Columns = 0 Number of Date Time Columns = 0Number of ID Columns = 1Number of Columns to Delete = 05 Predictors classified... 1 variable(s) removed since they were ID or low-information variables List of variables removed: ['Fecha'] To fix these data quality issues in the dataset, import FixDQ from autoviz... All variables classified into correct types. <pandas.io.formats.style.Styler at 0x15458640650> Number of All Scatter Plots = 10

Pair-wise Scatter Plot of all Continuous Variables

Heatmap of all Numeric Variables including target:

All Plots done Time to run AutoViz = 1 seconds #################### AUTO VISUALIZATION Completed #################################### Gasolina regular Diesel Fecha Gasolina superior 202645.200000 308156.820000 6.346671e+05 0 2000-01-01 1 2000-02-01 205530.960000 307766.310000 6.423807e+05 2 2000-03-01 229499.560000 331910.290000 6.998072e+05 3 210680.400000 2000-04-01 315648.080000 5.868040e+05

4	2000-05-01	208164.340000	319667.970000	6.569482e+05
5	2000-05-01	195088.740000	300347.700000	5.709199e+05
6	2000-00-01	204556.770000	308305.930000	5.764360e+05
7	2000-07-01	218388.510000	323011.860000	5.937708e+05
	2000-08-01			
8		213906.960000	326455.720000	5.901454e+05
9	2000-10-01	213606.650000	323843.630000	6.411134e+05
10	2000-11-01	209227.480000	320788.080000	6.570863e+05
11	2000-12-01	230020.700000	366987.560000	6.732823e+05
12	2001-01-01	164547.351667	300242.781667	5.693288e+05
13	2001-02-01	174838.811667	301483.401667	5.977498e+05
14	2001-03-01	201992.651667	355572.831667	7.360860e+05
15	2001-04-01	198683.391667	355826.761667	6.062577e+05
16	2001-05-01	182504.091667	336040.041667	6.640827e+05
17	2001-06-01	201379.481667	308804.701667	5.593330e+05
18	2001-07-01	214980.241667	350501.971667	5.894527e+05
19	2001-08-01	204646.771667	348414.651667	5.685464e+05
20	2001-09-01	188292.351667	324393.961667	5.331084e+05
21	2001-10-01	225240.951667	366261.631667	6.033712e+05
22	2001-11-01	210324.951667	351890.631667	6.261562e+05
23	2001-12-01	223209.951667	403561.631667	6.641902e+05
24	2002-01-01	200309.851667	368935.525833	7.266726e+05
25	2002-02-01	183119.341667	348917.785833	6.943448e+05
26	2002-03-01	212711.711667	385044.965833	6.563793e+05
27	2002-04-01	204765.621667	379741.975833	6.836462e+05
28	2002-05-01	201083.511667	375054.635833	7.071655e+05
29	2002-06-01	187629.421667	371138.585833	6.678207e+05
30	2002-07-01	201692.641667	399944.645833	6.567616e+05
31	2002-08-01	205240.771667	392355.615833	6.570997e+05
32	2002-09-01	177614.801667	347191.435833	6.536646e+05
33	2002-10-01	203097.241667	381595.195833	6.530533e+05
34	2002-11-01	207629.811667	384334.215833	6.714013e+05
35	2002-12-01	199619.271667	400645.415833	6.761924e+05
36	2003-01-01	193713.620000	376516.580000	7.698433e+05
37	2003-02-01	184354.610000	355760.810000	7.097836e+05
38	2003-03-01	201443.370000	361880.870000	7.864845e+05
39	2003-04-01	219004.312500	377395.170000	7.096264e+05
40	2003-05-01	200407.180000	390624.270000	7.559821e+05
41	2003-06-01	168327.720000	346941.840000	6.415401e+05
42	2003-07-01	174317.570000	377178.840000	6.317041e+05
43	2003-08-01	171665.050000	355682.720000	6.134286e+05
44	2003-09-01	174757.950000	348659.020000	5.829895e+05
45	2003-10-01	209314.450000	392041.780000	7.227636e+05
46	2003-11-01	168510.000000	330640.230000	6.398284e+05
47	2003-12-01	196081.990000	391327.660000	6.528724e+05
48	2004-01-01	203975.570000	381547.720000	6.569874e+05
49	2004-01-01	180290.240000	339576.460000	6.595404e+05
50	2004-03-01	206455.620000	379687.460000	7.462368e+05
51	2004-04-01	182379.920000	357595.810000	6.337661e+05
52	2004-05-01	160741.900000	322596.730000	5.563697e+05
32	2001 05 01	1007 111300000	3223301730000	313030376103

53	2004-06-01	164782.500000	318811.500000	5.603935e+05
54	2004-07-01	182642.410000	346413.660000	5.830985e+05
55	2004-07-01	207432.800000	390304.280000	6.996108e+05
56	2004-08-01	194240.550000	364689.840000	6.126396e+05
57	2004-09-01	200323.530000	380441.550000	6.190848e+05
58	2004-11-01	214509.650000	378498.600000	7.052982e+05
59	2004-12-01	236733.030000	429109.100000	7.618643e+05
60	2005-01-01	209901.600000	321382.140000	7.246924e+05
61	2005-02-01	198775.610000	375768.830000	7.171168e+05
62	2005-03-01	231358.580000	410241.928000	8.021396e+05
63	2005-04-01	225644.890000	389737.160000	8.039969e+05
64	2005-05-01	187048.260000	343762.520000	7.153604e+05
65	2005-06-01	202161.790000	351906.820000	6.817434e+05
66	2005-07-01	213821.770000	389172.650000	6.786145e+05
67	2005-08-01	212696.380000	396871.120000	6.936811e+05
68	2005-09-01	196776.870000	378887.620000	6.662584e+05
69	2005-10-01	192270.240000	328052.560000	5.898302e+05
70	2005-11-01	185251.120000	360869.140000	7.012555e+05
71	2005-12-01	241035.130000	448688.520000	7.750272e+05
72	2006-01-01	211152.720000	382078.880000	7.509464e+05
73	2006-02-01	200551.400000	367944.250000	7.345308e+05
74	2006-03-01	233082.860000	427567.580000	8.750473e+05
75	2006-04-01	223479.450000	392050.290000	7.111852e+05
76	2006-05-01	222710.900000	379832.550000	7.342892e+05
77	2006-06-01	196511.220000	364359.350000	6.724289e+05
78	2006-07-01	210255.700000	392252.910000	6.844387e+05
79	2006-08-01	211202.140000	394585.280000	7.072197e+05
80	2006-09-01	204369.990000	382724.970000	6.507914e+05
81	2006-10-01	203061.390000	400793.810000	6.835431e+05
82	2006-11-01	205541.910000	401922.570000	7.391820e+05
83	2006-12-01	233936.830000	454373.130000	7.763303e+05
84	2007-01-01	216560.790000	418412.860000	8.103727e+05
85	2007-02-01	204991.910000	401425.140000	7.993946e+05
86	2007-03-01	239019.910000	454731.090000	9.566802e+05
87	2007-04-01	217536.230000	403732.560000	7.589886e+05
88	2007-05-01	224400.730000	426414.710000	8.117037e+05
89	2007-06-01	217473.910000	390991.360000	7.208968e+05
90	2007-07-01	219874.230000	416497.410000	7.215506e+05
91	2007-08-01	236565.570000	411088.530000	7.366209e+05
92	2007-09-01	207241.840000	390568.990000	6.695879e+05
93	2007-10-01	224750.770000	419001.810000	7.387029e+05
94	2007-11-01	218116.790000	417490.770000	7.795471e+05
95	2007 - 12 - 01	252394.114286	438542.793333	7.688869e+05
96	2008-01-01	213645.390000	403266.740000	7.976689e+05
97	2008-02-01	215873.670000	407735.550000	7.940002e+05
98	2008-03-01	233761.070000	424157.280000	7.760268e+05
99	2008-04-01	233687.280000	399193.530000	8.077258e+05
100	2008-05-01	236635.850000	390882.630000	6.823262e+05
101	2008-06-01	200656.570000	337464.320000	5.076627e+05
201	_000 00 01	2000301370000	237.1311320000	3.0.002.0.03

102	2008-07-01	228640.210000	374847.050000	5.443993e+05
103	2008-08-01	227499.000000	378363.760000	5.561744e+05
104	2008-09-01	218214.640000	367962.730000	5.578026e+05
105	2008-10-01	238955.440000	386430.400000	6.178631e+05
105	2008-10-01	238626.160000	375438.690000	6.881041e+05
107	2008-11-01	298245.470000	463343.730000	7.789538e+05
108	2009-01-01	273494.160000	424264.500000	8.005265e+05
109	2009-02-01	254667.700000	424438.710000	7.950505e+05
110	2009-03-01	290343.280000	434248.690000	8.659816e+05
111	2009-04-01	290887.080000	454265.400000	8.221097e+05
112	2009-05-01	276970.670000	432401.490000	7.706873e+05
113	2009-06-01	252551.990000	393140.380000	7.038155e+05
114	2009-07-01	283142.050000	435256.090000	7.408681e+05
115	2009-08-01	267830.840000	409182.960000	6.923767e+05
116	2009-09-01	248994.420000	420238.710000	6.874351e+05
117	2009-10-01	269008.520000	421753.290000	7.757396e+05
118	2009-11-01	212149.905000	391754.810000	7.386786e+05
119	2009-12-01	296805.290000	449842.290000	8.916704e+05
120	2010-01-01	243341.490000	389068.410000	7.777413e+05
121	2010-02-01	248207.930000	391195.690000	8.076921e+05
122	2010-03-01	320985.410000	465664.590000	1.017058e+06
123	2010-04-01	254872.610000	387063.180000	7.627700e+05
124	2010-05-01	238903.310000	381811.180000	7.216682e+05
125	2010-06-01	251896.390000	385981.100000	6.832365e+05
126	2010-07-01	278700.490000	422481.800000	7.215846e+05
127	2010-08-01	268917.790000	410176.390000	6.957963e+05
128	2010-09-01	266975.250000	396429.750000	6.875539e+05
129	2010-10-01	275031.210000	418305.070000	7.454155e+05
130	2010-11-01	273452.940000	409652.730000	7.859174e+05
131	2010-12-01	320807.170000	466766.780000	8.437620e+05
132	2011-01-01	285089.040000	411737.330000	8.506968e+05
133	2011-02-01	269301.380000	391131.100000	8.199405e+05
134	2011-03-01	281453.750000	393160.910000	9.004859e+05
135	2011-04-01	285598.370000	386749.270000	7.975272e+05
136	2011-05-01	253277.880000	371876.750000	8.038495e+05
137	2011-06-01	290137.490000	380800.430000	7.296768e+05
138	2011-07-01	279283.360000	389294.640000	7.182551e+05
139	2011-08-01	256380.270000	408494.510000	6.997361e+05
140	2011-09-01	256728.250000	380453.230000	6.603849e+05
141	2011-10-01	242071.010000	381309.500000	6.722149e+05
142	2011-11-01	231413.830000	381871.840000	7.945072e+05
143	2011-11-01	291678.030000	449904.100000	8.623188e+05
144	2012-01-01	261933.680000	393781.940000	8.149567e+05
145	2012-01-01	253733.220000	402633.550000	8.480672e+05
146	2012-02-01	290286.650000	429534.500000	9.250653e+05
147	2012-03-01	262615.280000	389264.020000	7.922017e+05
148	2012-04-01	235374.040000	405877.410000	7.715425e+05
149	2012-03-01	261012.580000	409111.240000	7.124649e+05
150	2012-00-01	233061.350000	420370.600000	6.991300e+05
130	2012-07-01	Z33001.330000	+203/0.000000	0.3313006703

151	2012-08-01	259165.940000	433828.020000	7.167204e+05
152	2012-09-01	228205.770000	378478.800000	6.321204e+05
153	2012-03-01	261347.220000	414523.220000	7.284149e+05
154	2012-10-01	272657.820000	394751.470000	8.125234e+05
155	2012-12-01	310407.040000	442191.430000	8.482629e+05
156	2013-01-01	287985.590000	408557.450000	8.637694e+05
157	2013-02-01	259659.660000	361215.690000	8.088540e+05
158	2013-03-01	313075.450000	413744.860000	8.983522e+05
159	2013-04-01	330070.650000	409238.300000	9.661039e+05
160	2013-05-01	313131.360000	403354.790000	8.276012e+05
161	2013-06-01	287596.640000	402012.070000	7.751871e+05
162	2013-07-01	314185.610000	425154.220000	7.325445e+05
163	2013-08-01	288400.670000	416968.150000	7.731479e+05
164	2013-09-01	249357.420000	379479.780000	6.721252e+05
165	2013-10-01	314518.720000	430179.690000	8.000491e+05
166	2013-11-01	306638.450000	404692.460000	8.214575e+05
167	2013-12-01	339969.850000	448135.350000	8.603519e+05
168	2014-01-01	312139.770000	412617.930000	9.172515e+05
169	2014-02-01	312142.650000	385430.580000	8.903623e+05
170	2014-03-01	335869.630000	434863.960000	1.004937e+06
171	2014-04-01	349155.300000	437470.070000	9.720394e+05
172	2014-05-01	332737.370000	427487.200000	8.772633e+05
173	2014-06-01	303016.820000	387299.100000	7.335087e+05
174	2014-07-01	344659.640000	439137.130000	8.269188e+05
175	2014-08-01	326356.060000	442953.100000	7.936940e+05
176	2014-09-01	371327.130000	411466.280000	7.284988e+05
177	2014-10-01	343812.670000	459922.480000	8.362781e+05
178	2014-11-01	343918.560000	436467.900000	8.857137e+05
179	2014-12-01	464223.150000	538899.260000	1.021378e+06
180	2015-01-01	419102.720000	503135.700000	1.014706e+06
181	2015-02-01	398167.690000	454190.880000	9.801498e+05
182	2015-03-01	457246.140000	521879.260000	1.142551e+06
183	2015-04-01	413451.110000	486779.410000	1.011168e+06
184	2015-05-01	415570.950000	483594.830000	9.443167e+05
185	2015-06-01	414466.180000	480892.110000	8.800165e+05
186	2015-07-01	440729.530000	515322.660000	9.025864e+05
187	2015-08-01	439588.900000	513413.000000	8.877968e+05
188	2015-09-01	422826.585476	501658.043333	7.346542e+05
189	2015-10-01	448971.880000	532741.140000	8.342859e+05
190	2015-10-01	423841.820000	516486.950000	9.254310e+05
191	2015-11-01	499839.170000	600161.720000	1.047479e+06
191	2016-01-01		545737.530000	
192	2016-01-01	433180.340000 450916.350000	540459.190000	1.084044e+06
				1.055673e+06
194	2016-03-01	486255.940000	575720.920000	1.107297e+06
195	2016-04-01	467472.200000	545605.470000	1.149175e+06
196	2016-05-01	468710.380000	551000.790000	1.019984e+06
197	2016-06-01	450758.180000	537583.250000	8.885381e+05
198	2016-07-01	465270.480000	562778.840000	8.837160e+05
199	2016-08-01	485995.830000	585748.500000	8.662700e+05

200	2016-09-01	456946.750000	548491.650000	8.778006e+05
201	2016-10-01	476277.640000	573754.730000	9.164107e+05
202	2016-11-01	463726.210000	547323.530000	1.019672e+06
203	2016-12-01	524242.310000	615251.510000	1.113827e+06
204	2017-01-01	477291.930000	546212.160000	1.079339e+06
205	2017-02-01	453665.320000	526888.940000	1.052536e+06
206	2017-03-01	523943.600000	592249.340000	1.216423e+06
207	2017-04-01	500063.030000	530345.960000	1.032813e+06
208	2017-05-01	516884.370000	588861.620000	1.034806e+06
209	2017-06-01	478491.950000	549378.050000	8.975119e+05
210	2017-07-01	521730.410000	607702.700000	9.388876e+05
211	2017-08-01	514086.570000	604650.340000	9.501881e+05
212	2017-09-01	492618.550000	560892.670000	8.943636e+05
213	2017-03-01	512762.320000	583658.830000	9.359862e+05
213	2017-10-01		563345.610000	1.038598e+06
		510631.290000		
215	2017-12-01	574097.700000	635423.760000	1.117711e+06
216	2018-01-01	528763.300000	581802.980000	1.105629e+06
217	2018-02-01	502041.670000	545210.000000	1.072072e+06
218	2018-03-01	571052.130000	618402.180000	1.194136e+06
219	2018-04-01	526979.670000	565665.720000	1.108453e+06
220	2018-05-01	544395.170000	570129.660000	1.009750e+06
221	2018-06-01	518911.440000	554431.500000	9.300650e+05
222	2018-07-01	541811.120000	589775.970000	9.503435e+05
223	2018-08-01	570224.107000	593659.630000	9.918181e+05
224	2018-09-01	531285.291000	551547.830000	8.823035e+05
225	2018-10-01	573751.472000	579474.430000	9.690950e+05
226	2018-11-01	563417.572000	573687.350000	1.061942e+06
227	2018-12-01	632670.174000	654281.250000	1.106130e+06
228	2019-01-01	596682.750000	601714.900000	1.152950e+06
	2019-01-01			
229		559109.220000	565425.020000	1.103358e+06
230	2019-03-01	645266.770000	610720.580000	1.228025e+06
231	2019-04-01	657570.180000	598956.300000	1.160125e+06
232	2019-05-01	666748.630000	611592.320000	1.134666e+06
233	2019-06-01	641136.560000	595744.380000	1.012030e+06
234	2019-07-01	650150.780000	615559.330000	1.030650e+06
235	2019-08-01	668783.390000	632415.700000	1.070198e+06
236	2019-09-01	616079.300000	587861.840000	9.733584e+05
237	2019-10-01	669008.770000	643044.330000	1.043630e+06
238	2019-11-01	643070.350000	620572.210000	1.122735e+06
239	2019-12-01	706020.770000	682468.140000	1.175725e+06
240	2020-01-01	640011.730000	622323.790000	1.184419e+06
241	2020-02-01	652028.000000	633100.050000	1.233250e+06
242	2020-02-01	573586.730000	509752.950000	1.100814e+06
243	2020-03-01	458420.850000	391773.230000	8.675923e+05
244	2020-05-01	478771.830000	407482.520000	8.287439e+05
245	2020-06-01	516933.600000	388952.810000	7.823280e+05
246	2020-07-01	567052.500000	462380.810000	8.703549e+05
247	2020-08-01	647375.580000	574379.330000	8.852007e+05
248	2020-09-01	661665.580000	610445.100000	9.590133e+05

```
249
     2020-10-01
                    680362.070000
                                       648582.820000
                                                         1.064005e+06
250
     2020-11-01
                    652630.160000
                                       639856.620000
                                                         1.072873e+06
251
     2020-12-01
                    768193.030000
                                       760695.450000
                                                         1.276291e+06
252
     2021-01-01
                    685942.970000
                                       655512,660000
                                                         1.220638e+06
253
     2021-02-01
                    669312.880000
                                       621712.090000
                                                         1.272609e+06
254
     2021-03-01
                    773453.520000
                                       692240.490000
                                                         1.417380e+06
255
     2021-04-01
                    688389.030000
                                       610310.750000
                                                         1.268491e+06
256
     2021-05-01
                    707336.380000
                                       643076.840000
                                                         1.188223e+06
     2021-06-01
257
                    692598.710000
                                       637332.810000
                                                         1.128077e+06
258
     2021-07-01
                    740193.130000
                                       665472.940000
                                                         1.197398e+06
259
     2021-08-01
                    668221.540000
                                       636824.610000
                                                         1.104626e+06
260
     2021-09-01
                    670418.800000
                                       605257.760000
                                                         1.102655e+06
261
     2021-10-01
                                       675821.540000
                    718676.320000
                                                         1.166983e+06
262
     2021-11-01
                    708246.270000
                                       641916.400000
                                                         1.223817e+06
263
     2021-12-01
                    821882.150000
                                       768102.830000
                                                         1.380065e+06
264
     2022-01-01
                    683031.840000
                                       621512.780000
                                                         1.281083e+06
265
     2022-02-01
                    661521.580000
                                       592106.140000
                                                         1.267195e+06
266
     2022-03-01
                    701819.650000
                                       598038.470000
                                                         1.335368e+06
267
     2022-04-01
                    812059.060000
                                       569199.430000
                                                         1.288233e+06
     2022-05-01
268
                    791824.980000
                                       483991.630000
                                                         1.109577e+06
269
     2022-06-01
                    781009.470000
                                       507260.420000
                                                         1.102689e+06
270
     2022-07-01
                    788841.460000
                                       554496.900000
                                                         1.125984e+06
271
     2022-08-01
                    784468.320000
                                       581844.420000
                                                         1.107349e+06
272
     2022-09-01
                    760396.150000
                                       570632.200000
                                                         1.202883e+06
273
     2022-10-01
                                                         9.792433e+05
                    768784.360000
                                       573943.480000
274
     2022-11-01
                    771173.120000
                                       572163.230000
                                                         1.165294e+06
275
     2022-12-01
                    865851.440000
                                       635953.460000
                                                         1.241282e+06
276
     2023-01-01
                    804524.730000
                                       599501.290000
                                                         1.285933e+06
277
     2023-02-01
                    737345.640000
                                       544144.000000
                                                         1.226885e+06
278
     2023-03-01
                    875010.340000
                                       656941.640000
                                                         1.463008e+06
279
     2023-04-01
                    798128.360000
                                       586642.200000
                                                         1.247899e+06
280
     2023-05-01
                    866826.790000
                                       646221.200000
                                                         1.346554e+06
281
     2023-06-01
                    782745.170000
                                       616290.210000
                                                         1.159046e+06
282
     2023-07-01
                    825219.050000
                                       642098.160000
                                                         1.178454e+06
283
     2023-08-01
                    851754.020000
                                       632333.400000
                                                         1.222453e+06
284
     2023-09-01
                    799852.730000
                                       597670.260000
                                                         1.103622e+06
285
     2023-10-01
                    728741.160000
                                       531542.580000
                                                         9.981134e+05
286
     2023-11-01
                    807947.980000
                                       632180.030000
                                                         1.248224e+06
287
     2023-12-01
                    880233.120000
                                       691389.620000
                                                         1.334692e+06
288
     2024-01-01
                    830708.130000
                                       658083.660000
                                                         1.359012e+06
289
     2024-02-01
                    818740.160000
                                       654059.600000
                                                         1.340174e+06
290
     2024-03-01
                    870771.700000
                                       671997.050000
                                                         1.393325e+06
291
                    847353.150000
     2024-04-01
                                       633520.570000
                                                         1.428143e+06
292
     2024-05-01
                    894533.140000
                                       692427.940000
                                                         1.401052e+06
     Gas licuado de petróleo
0
          194410.476190
```

1

2

174710.552381

189234.066667

```
3
           174330.607143
4
           191745.147619
5
           196321.933333
6
           192344.502381
7
           203727.080952
8
           194565.097619
9
           210261.826190
10
           205027.952619
11
           200247.555000
12
           179405.990278
13
           167818.137897
14
           186397.325992
15
           175820.345040
16
           178303.330754
17
           177826.928373
18
           191041.990278
19
           190295.990278
20
           184039.990278
21
           206176.990278
22
           201335.990278
23
           209792.990278
24
           196068.608730
25
           180209.801587
26
           186680.965873
27
           196167.161111
28
           201612.356349
29
           193024.399206
30
           204196.244444
31
           213625.432540
32
           209849.758730
33
           212932.327778
34
           210000.546825
35
           223830.396825
36
           213268.978571
37
           206815.011905
38
           216427.950000
39
           204403.511905
40
           216452.752143
41
           212069.040476
42
           231172.014286
43
           222312.707143
44
           225703.050000
45
           239665.042857
46
           229612.354762
47
           247544.638095
48
           235284.965714
49
           213288.683333
50
           233426.354762
51
           217530.876190
```

```
52
           225959.050238
53
           225673.464048
54
           243064.072857
55
           236324,768095
56
           225204.180238
57
           229626.058333
58
           225593.823095
59
           241915.005238
60
           227154.969762
61
           211814.375952
62
           224387.028333
63
           218555.206429
64
           230568.152381
65
           223151.259524
66
           236140.078571
67
           242734.740476
68
           223283.869048
69
           213139.580952
70
           222988.526190
71
           225410.429048
72
           217867.309524
73
           212328.607143
74
           232405.357143
75
           207612.269048
76
          232489.833333
77
           236563.828571
78
           239767.854762
79
           245672.016667
80
           256040.102381
81
           238514.633333
82
          228417.438095
83
           236333.111905
84
           217344.655952
85
           211149.360714
86
           264115.983333
87
           224818.876190
88
           259749.480952
89
           244505.283333
90
           261555.621429
91
           267634.121429
92
           254081.758571
93
           264936.659524
94
           250108.611905
95
           253659.528571
96
           252508.333333
97
           241978.083333
98
           247679.038095
99
           243178.030952
100
           240798.459524
```

```
101
           242422.571429
102
           243531.971429
103
           237062.519048
104
           225262,458571
105
           263100.502381
106
           230092,621429
107
           245852.645238
108
           217372.416667
109
           212038.241928
110
           235475.316667
111
           209739.173810
112
           221884.466190
113
           221329.626190
114
           241510.204762
115
           232174.109524
116
           225886.426190
117
           235899.133333
118
          232172.833333
119
          215923.378571
120
           228078,623810
121
           214409.685714
122
           242081.585714
123
           216150,666667
124
           215523.538095
125
          226415.073810
126
           243063.350000
127
           245908.416667
128
           233404.895238
129
           236852.345238
130
           255841.845238
131
          251825.204762
132
           244328.914286
133
           228478.995238
134
           255792.916667
135
           237582,676190
136
           247975.276190
137
           247082.276190
138
           259033.888095
139
           259688.742857
140
          251882.535714
141
           262255.138095
142
           252218.214286
143
           263892.433333
144
           242524.898571
145
           243810.952381
146
           270906.083810
147
           249493.658571
148
           261657.406667
149
           255333.426190
```

```
150
           271101.936190
151
           280184.268571
152
           268875.095238
153
           297829, 174048
154
           303422.012381
           281757.561905
155
156
           291843.997619
157
           253221,892857
158
           286869.621429
159
           287216.303333
160
           301770.525476
161
           275921.369048
162
           292790.104762
163
           282844.319048
164
           278403.420238
165
           285195.011905
166
           253022,225476
167
           282335.469524
168
           288260.804286
169
           304312.128571
170
           284201.430952
171
           250902.831190
172
           305911.840476
173
          285640.435714
174
          289827.598571
175
           272617.597143
176
           271079.594762
177
           337006.144524
178
           303666.704286
179
           311419.960476
180
           317220.912857
181
           315364.363333
182
           338142.317143
183
           320920.883810
184
           328177.803810
185
          331140.045714
186
           363251.960000
187
           333215.607143
188
           364351.758095
189
           364469.545714
190
           353643.078571
191
           355233.649048
192
           346512.219048
193
           368867.548095
194
           372223.424048
195
           357084.223333
196
           377629.016905
197
           355848.993333
198
           350429.766667
199
          363859.513095
```

```
200
           356426.233571
201
           373503.775714
202
           372904.634286
203
           372690,455714
204
           358706.818571
205
           357497.970229
206
          351791.925033
207
           360957.704524
208
           377492.160714
209
           378328.463810
210
           369948.637476
211
           385834.284762
212
           447373.592143
213
           393901.921429
214
           409332.858095
215
          404574.361905
216
           421848.920476
217
           379239.067143
218
           415125.896429
219
           370434.605238
220
           403094.744048
221
           390070.171667
222
           381128.075238
223
           407124.746190
224
           385717.790714
225
           408674.336524
226
           408049.579000
227
           421872.087524
228
           421555.410000
229
          402371.330000
230
           428149.450000
231
           414018.680000
232
           426587.330000
233
           399031.610000
234
           419958.020000
235
           419493.820000
236
           396860.640000
237
           433917.150000
238
           430725.890000
239
           428697.640000
240
           421644.720000
241
           426533.150000
242
           420637.140000
243
           345933.610000
244
           362987.370000
245
           402541.020000
246
           423328.220000
247
          483695.900000
248
          439581.360000
```

```
249
          459312.450000
250
          421504.590000
251
          481068.860000
252
          485759.130000
253
          447847.050000
254
          513966.390000
255
          466275.270000
256
          475018.360000
257
          475462.790000
258
          500478.600000
259
          492629.810000
260
          493058.470000
261
          497279.700000
262
          480432.290000
263
          531775.930000
264
          513015.930000
265
          519921.040000
266
          483657.430000
267
          493178.400000
268
          515616.020000
269
          513914.270000
270
          513619.250000
271
          541273.940000
272
          479529.680000
273
          545823.450000
274
          528393.770000
275
          556737.220000
276
          574148.000000
277
          497273.190000
278
          588892.160000
279
          513919.890000
280
          561767.170000
281
          532138.900000
282
          521833.560000
283
          543825.640000
284
          517699.480000
285
          495261.140000
286
          530542.420000
287
          541263.180000
288
          548124.450000
289
          526897.850000
290
          523990.910000
291
          531880.190000
292
          536754.380000
#report = sv.analyze(dataConsumo)
#report.show html('Consumo/EDAConsumo.html')
```

Dataset: IMPORTACION-VOLUMEN-202405.xlsx

Este dataset cuenta con una estructura similar a la de datos de consumo, por lo que tambien se combinan las columnas de diesel.

```
csvPath = 'Importacion/IMPORTACION-VOLUMEN-2024-05.csv'
dataImportacion = combineDieselColumns(csvPath)
□ Iniciando la combinación de las columnas de Diesel...

☐ Archivo cargado: Importacion/IMPORTACION-VOLUMEN-2024-05.csv

☐ Combinación de columnas completada.
dataImportacion = dataImportacion[['Fecha', 'Gasolina regular',
'Gasolina superior', 'Diesel', 'Gas licuado de petróleo']]
dataImportacion['Fecha'] = pd.to datetime(dataImportacion['Fecha'])
dataImportacion.head()
    Fecha
              Gasolina regular
                                 Gasolina superior
                                                     Diesel
                  177776.50
0 2001-01-01
                                     373963.96
                                                    566101.99
1 2001-02-01
                  123115.99
                                     243091.07
                                                     489525.8
                                     312084.38
2 2001-03-01
                  161726.42
                                                    575559.68
3 2001-04-01
                  127338.74
                                     285054.89
                                                    437745.42
                                     300913.67
4 2001-05-01
                  168730.19
                                                    552609.13
   Gas licuado de petróleo
0
        194065.738095
1
        170703.380952
2
        161837.371429
3
        163048.642857
4
        171518.861905
```

En este EDA se destaca que en el dataset de Importación, similarmente al dataset de Consumo, todas las variables cuentan con distribuciones asimétricas positivas, aunque algunas cuentan con una menor asimetría. Los gráficos de caja y bigotes indican la presencia de valores atipicos principalmente en *Gasolina superior* y *Gas licuado de petróleo*. Al igual que el dataset anterior, los Q-Q plots muestran que ninguna de las variables cuenta con una distribución normal.

```
######################
##################
Classifying variables in data set...
   Number of Numeric Columns = 4
   Number of Integer-Categorical Columns = 0
   Number of String-Categorical Columns = 0
   Number of Factor-Categorical Columns = 0
   Number of String-Boolean Columns = 0
   Number of Numeric-Boolean Columns = 0
   Number of Discrete String Columns = 0
   Number of NLP String Columns = 0
   Number of Date Time Columns = 0
   Number of ID Columns = 1
   Number of Columns to Delete = 0
   5 Predictors classified...
       1 variable(s) removed since they were ID or low-information
variables
       List of variables removed: ['Fecha']
To fix these data quality issues in the dataset, import FixDQ from
autoviz...
   All variables classified into correct types.
<pandas.io.formats.style.Styler at 0x15462526590>
Number of All Scatter Plots = 10
```


Heatmap of all Numeric Variables including target:

All Plots done Time to run AutoViz = 1 seconds						
	\#####################################		LIZATION Completed			
0	Fecha 2001-01-01 2001-02-01 2001-03-01	Gasolina regular 177776.500000 123115.990000 161726.420000	Gasolina superior 373963.960 243091.070 312084.380	Diesel 566101.990 489525.800 575559.680	\	
3	2001-03-01	127338.740000	285054.890	437745.420		

4	2001-05-01	168730.190000	300913.670	552609.130
5	2001-05-01	152899.090000	333217.190	497855.260
6				
0	2001-07-01	136299.130000	195071.860	302350.020
7	2001-08-01	139365.070000	268153.260	464159.130
8	2001-09-01	233643.750000	308439.070	321952.940
9	2001-10-01	141550.220000	305102.280	438989.550
10	2001-11-01	165841.460000	256638.190	440245.350
11	2001-12-01	149217.670000	277145.050	479983.270
12	2002-01-01	178585.930000	271479.000	500041.320
13	2002-02-01	144447.250000	365657.750	686923.830
14	2002-03-01	104673.640000	246292.600	432538.460
15	2002-04-01	190339.000000	310256.300	424667.360
16	2002-05-01	194830.100000	363311.760	497781.660
17	2002-06-01	137050.800000	250123.190	496826.620
18	2002-07-01	222408.000000	428842.800	636727.840
19	2002-08-01	143795.000000	298280.330	346225.000
20	2002-09-01	156956.900000	331053.700	638933.220
21	2002-10-01	195426.800000	352055.500	703749.810
22	2002-11-01	153185.700000	291188.760	573289.500
23	2002-11-01	167596.710000	440677.810	678749.640
24	2002-12-01	228269.500000	425185.500	797344.380
25	2003-01-01	214490.700000	443849.850	765912.660
26	2003-02-01	161257.480000	363352.660	693942.310
27	2003-04-01	189824.893000	335444.690	873103.096
28	2003-05-01	269981.860000	459025.690	625190.080
29	2003-06-01	182254.230000	372486.530	671882.830
30	2003-07-01	133668.200000	400922.970	822014.550
31	2003-08-01	169903.860000	292365.040	494087.130
32	2003-09-01	177217.530000	398192.160	614913.680
33	2003-10-01	181668.026000	260219.920	433084.990
34	2003-11-01	205624.080000	393951.960	627189.780
35	2003-12-01	161477.730000	296780.150	745524.880
36	2004-01-01	173427.230000	368235.140	762385.450
37	2004-02-01	147939.230000	281891.970	460947.500
38	2004-03-01	275539.380000	486880.820	772128.260
39	2004-04-01	245156.340000	415426.000	809194.950
40	2004-05-01	178387.800000	350052.950	634209.640
41	2004-06-01	133341.000000	311238.010	461381.790
42	2004-07-01	152075.750000	249710.687	467154.310
43	2004-08-01	208592.850000	434578.120	669462.530
44	2004-09-01	218499.240000	420550.290	714039.850
45	2004-10-01	201907.670000	366886.300	655715.050
46	2004-11-01	215838.320000	434710.940	726697.880
47	2004-12-01	227094.710000	433149.960	781266.610
48	2005-01-01	202374.330000	257867.990	663058.790
49	2005-02-01	178104.720000	306660.390	683664.390
50	2005-02-01	217667.690000	431907.810	778645.070
51	2005-03-01	234492.030000	534151.810	708164.740
52	2005-04-01	192734.400000	378616.300	875087.620
JZ	2003-03-01	192734.400000	270010.000	0/300/.020

53	2005-06-01	243343.680000	537398.430	1041016.720
54	2005-07-01	175946.300000	363410.900	770731.740
55	2005-08-01	173810.380000	566618.550	815435.200
56	2005-09-01	81015.300000	193484.500	229764.740
57	2005-05-01	145325.650000	528877.090	671848.940
58	2005-11-01	266018.370000	348687.810	635553.460
59	2005-12-01	107374.000000	360807.000	1212610.530
60	2006-01-01	348503.850000	711860.770	708730.840
61	2006-02-01	145048.200000	262170.900	767710.630
62	2006-03-01	285783.250000	408065.340	744721.940
63	2006-04-01	238824.610000	421300.820	935306.580
64	2006-05-01	134212.300000	312024.700	822556.450
65	2006-06-01	211562.740000	394014.850	361207.590
66	2006-07-01	180942.180000	375951.160	971716.720
67	2006-08-01	147245.490000	313326.860	603747.330
68	2006-09-01	366193.770000	525623.150	473431.310
69	2006-09-01	153997.350000	285505.000	1220719.640
70	2006-11-01	171327.010000	428590.500	431874.860
71	2006-12-01	234319.300000	395132.090	890336.680
72	2007-01-01	289550.590000	523730.310	818060.570
73	2007-02-01	299077.040000	401855.410	822325.650
74	2007-03-01	326317.750000	541817.850	569451.850
75	2007-04-01	94844.900000	203441.330	850138.110
76	2007-05-01	238404.830000	545587.630	793887.040
77	2007-06-01	170064.980000	441537.390	855757.140
78	2007-07-01	227660.470000	451180.820	1118432.250
79	2007-08-01	351306.270000	501840.270	824047.470
80	2007-09-01	181015.830000	336120.810	497008.840
81	2007-10-01	312120.180000	376377.750	885924.860
82	2007-10-01	289282.550000	512550.510	665114.830
83	2007-11-01	222108.350000	542916.970	812776.590
84	2008-01-01	107885.650000	204788.300	613819.330
85	2008-02-01	234830.100000	545139.830	500922.230
86	2008-03-01	241800.330000	405713.480	1095743.350
87	2008-04-01	271554.270000	570256.980	682042.070
88	2008-05-01	242628.160000	424954.880	710464.760
89	2008-06-01	177838.700000	273398.730	817804.840
90	2008-07-01	232129.200000	384549.700	541486.150
91	2008-08-01	138376.720000	241881.470	713650.520
92	2008-09-01	290621.260000	423244.170	544521.540
93	2008-10-01	358036.440000	329762.300	344273.020
94	2008-11-01	170365.320000	386365.050	809439.420
95	2008-12-01	238398.920000	458949.420	524038.420
96	2009-01-01	202484.534762	382300.560	941535.710
97	2009-01-01	588346.360000	522820.810	914059.400
98	2009-03-01	298459.250000	626630.990	893473.800
99	2009-04-01	182218.960000	348267.660	816840.020
100	2009-05-01	377337.480000	341700.480	621339.930
101	2009-06-01	363676.290000	589337.790	735260.510

102	2009-07-01	363911.510000	337172.650	850806.890
103	2009-08-01	210495.680000	476525.360	842742.170
104	2009-09-01	161783.680000	321728.950	611966.220
105	2009-10-01	375067.230000	639524.610	869366.310
106	2009-10-01	201213.100000	321859.440	894309.880
107	2009-11-01	291525.480000	435416.180	1144960.660
108	2010-01-01	173918.350000	318949.720	905803.650
100	2010-01-01	336005.720000	492452.550	447271.920
110	2010-02-01	157798.770000	303762.940	947702.880
111	2010-03-01	433108.230000	562996.070	613011.210
112	2010-04-01	279926.950000	429729.380	1086036.160
113	2010-05-01	281834.460000		
113	2010-00-01	241994.240000	464310.800	587828.260 712889.930
			456588.390	
115	2010-08-01 2010-09-01	282509.240000	475714.120	637252.290
116		208796.020000	321134.560	741721.420
117	2010-10-01	392100.620000	493794.290	630692.560
118	2010-11-01	139547.730000	241062.760	565627.540
119	2010-12-01	430857.950000	652210.770	1135293.920
120	2011-01-01	253700.820000	391997.540	1033948.690
121	2011-02-01	343582.850000	437769.480	772775.580
122	2011-03-01	291087.160000	445920.270	707536.310
123	2011-04-01	326003.710000	357349.670	767445.360
124	2011-05-01	326566.610000	433038.130	918940.440
125	2011-06-01	230990.130000	354604.940	553883.420
126	2011-07-01	188581.400000	369694.760	734958.540
127	2011-08-01	201844.490000	270765.310	1014324.280
128	2011-09-01	260669.220000	335803.820	795554.710
129	2011-10-01	239711.910000	351555.660	612133.260
130	2011-11-01	237803.480000	450212.800	575406.480
131	2011-12-01	367820.540000	534925.360	732921.030
132	2012-01-01	318283.440000	434648.170	790123.230
133	2012-02-01	253583.960000	372893.490	887963.980
134	2012-03-01	255492.160000	354160.850	978693.290
135	2012-04-01	189948.790000	399701.690	697871.280
136	2012-05-01	241786.290000	380531.850	833370.090
137	2012-06-01	320566.690000	550379.330	767124.650
138	2012-07-01	142232.470000	271509.200	1021995.900
139	2012-08-01	263677.230000	361307.200	626706.230
140	2012-09-01	201347.560000	372989.290	619651.270
141	2012-10-01	374301.510000	600094.030	463054.770
142	2012-11-01	197398.800000	359818.540	538552.890
143	2012-12-01	287980.580000	419029.170	1324780.960
144	2013-01-01	396416.840000	433924.690	749266.680
145	2013-02-01	235502.580000	470483.980	709843.020
146	2013-03-01	439386.620000	429974.170	832627.570
147	2013-04-01	274680.650000	430259.180	860094.780
148	2013-05-01	281823.200000	532379.660	1202187.850
149	2013-06-01	293808.600000	284038.030	729711.880
150	2013-07-01	259025.830000	486075.060	693160.500

151 2013-08-01 221433.200000 347066.110 505133.44	0
152 2013-09-01 300794.990000 373303.310 803626.98	
153 2013-10-01 281168.850000 372946.330 980327.98	
154 2013-11-01 390941.150000 496029.720 903218.47	
155 2013-12-01 210096.780000 358799.640 791698.89	
156 2014-01-01 487880.790000 457365.460 1595698.56	
157 2014-02-01 312423.860000 455726.060 688703.18	
157 2014-02-01 312423.800000 435720.800 688703.18 158 2014-03-01 472437.630000 582572.930 1147182.50	
158 2014-03-01 472457.030000 382572.930 1147182.50 159 2014-04-01 207049.000000 270302.220 845051.33	
159 2014-04-01 207049.000000 270302.220 843031.33 160 2014-05-01 417767.240000 563319.790 1008148.07	
161 2014-06-01 247114.990000 404603.550 694920.68	
162 2014-07-01 454196.130000 558403.410 845875.86	
164 2014-09-01 378741.560000 547486.220 598145.89 165 2014-10-01 256340.490000 379572.070 762763.24	
167 2014-12-01 491072.110000 583081.570 1004032.65	
168 2015-01-01 371420.590000 471973.300 1324421.96 169 2015-02-01 548714.530000 664315.850 955286.02	
170 2015-03-01 453536.190000 622883.100 1164885.97	
171 2015-04-01 537064.590000 599558.550 1130870.79	
172 2015-05-01 534049.280000 618319.210 954782.75	
173 2015-06-01 394824.330000 525280.850 862071.77	
174 2015-07-01 519374.150000 616269.010 1149630.43	
175 2015-08-01 328552.070000 467373.130 919285.90	
176 2015-09-01 485906.490000 576250.290 754068.77	
177 2015 - 10 - 01	
178 2015-11-01 574547.760000 724273.970 904700.42	
179 2015-12-01 319329.710000 498798.790 1113876.28	
180 2016-01-01 546876.540000 729211.430 987507.78	
181 2016-02-01 424074.810000 405559.450 1167227.96 182 2016-03-01 508542.180000 771024.110 1498844.95	
183 2016-04-01 527083.640000 502728.880 1137213.10 184 2016-05-01 528347.810000 615900.310 1035544.08	
185 2016-06-01 397477.400000 502082.450 800222.53	
186 2016-07-01 526652.730000 618366.100 859222.62	
187 2016-08-01 512202.570000 625218.900 701185.75	
188 2016-09-01 567786.570000 677892.970 1274128.31	
189 2016-10-01 455850.760000 546154.650 927923.50	
191 2016-12-01 473659.590000 526573.960 1303735.78 192 2017-01-01 527564.900000 748233.580 842993.49	
192 2017-01-01 527504.900000 748233.380 842993.49 193 2017-02-01 469140.060000 497707.410 844676.98	-
193 2017-02-01 469140.060000 497707.410 844676.98 194 2017-03-01 608144.980000 734984.240 1351787.92	
194 2017-03-01 608144.980000 734984.240 1351787.92 195 2017-04-01 681303.110000 632843.410 1406022.43	
195 2017-04-01 081303.110000 032843.410 1400022.43 196 2017-05-01 386088.180000 442311.090 889926.86	
190 2017-03-01 580088.180000 442511.090 889920.80 197 2017-06-01 519389.660000 582374.340 902659.00	
197 2017-00-01 519389.000000 582374.340 902059.00 198 2017-07-01 433026.080000 769214.060 994338.30	
198 2017-07-01 433020.080000 709214.000 994338.30 199 2017-08-01 592103.310000 607368.720 846696.35	
133 ZUI/-UU-UI JYZIUJ-JUUUU UU/JUU-/ZU 040090.53	U

200	2017-09-01	316435.220000	401678.980	925397.870
201	2017 - 10 - 01	574073.610000	657241.760	740198.570
202	2017 - 11 - 01	434963.360000	504247.310	1135350.100
203	2017 - 12 - 01	679441.470000	803216.880	1305047.550
204	2017-12-01	571858.060000	535784.700	1153831.890
205	2018-01-01	509366.100000	629467.910	921684.120
206	2018-02-01	563899.060000	529507.150	889227.100
207	2018-03-01	510830.000000	617512.280	696962.770
207	2018-04-01	580825.110000	580329.350	1592580.340
200	2018-05-01	463620.610000	558257.590	777679.910
210	2018-00-01	543333.770000	784601.770	793683.410
210	2018-07-01		541557.340	
		663834.040000		1281364.780
212	2018-09-01	454442.870000	536897.090	896266.430
213	2018-10-01	726044.350000	663440.340	992682.040
214	2018-11-01	534084.490000	509382.860	899588.340
215	2018-12-01	535639.970000	631652.560	792198.660
216	2019-01-01	702923.370000	684504.840	1195728.200
217	2019-02-01	469437.280000	521555.380	1208476.160
218	2019-03-01	678145.380000	704276.530	1550052.840
219	2019-04-01	867761.340000	656495.950	1215209.050
220	2019-05-01	596798.220000	568128.410	1011872.870
221	2019-06-01	712731.800000	629788.430	1029100.900
222	2019-07-01	531577.640000	516273.850	1056569.110
223	2019-08-01	896841.310000	713859.980	1167556.890
224	2019-09-01	518043.680000	491194.710	717490.020
225	2019-10-01	712672.380000	691407.730	1160570.850
226	2019-11-01	791039.020000	658706.420	1122990.690
227	2019-12-01	731012.240000	797580.750	1098972.390
228	2020-01-01	629414.900000	573220.630	999181.200
229	2020-02-01	741509.070000	611314.130	1237018.370
230	2020-03-01	735491.290000	809640.180	1367335.140
231	2020-04-01	329134.180000	453153.090	834366.520
232	2020-05-01	415805.820000	170292.500	691066.440
233	2020-06-01	683322.720000	415672.190	1066148.050
234	2020-07-01	451717.750000	347541.590	779930.570
235	2020-08-01	547899.550000	414416.340	791258.190
236	2020-09-01	591799.830000	563742.500	1021360.830
237	2020-10-01	861840.540000	733692.010	891340.690
238	2020-11-01	696600.140000	570262.170	1152909.510
239	2020-12-01	780347.280000	777450.550	1050560.830
240	2021-01-01	626537.480000	642652.370	1185644.960
241	2021-02-01	715261.340000	726508.780	1076824.670
242	2021-03-01	772750.010000	850334.640	1345110.180
243	2021-04-01	634408.890000	1227173.530	1250171.580
244	2021-05-01	669085.780000	649783.140	1279017.240
245	2021-06-01	833544.640000	623695.200	1440106.470
246	2021-07-01	833732.310000	689717.290	1110409.530
247	2021-08-01	664522.740000	685977.450	1175960.640
248	2021-09-01	844430.030000	646233.310	896539.240

```
249
     2021-10-01
                    522701.110000
                                          589405.560
                                                          1542473.570
250
     2021-11-01
                    692267.310000
                                          623392.630
                                                          1029780.800
251
     2021-12-01
                    785313.560000
                                          640981.150
                                                          1294042.310
252
     2022-01-01
                    848902,970000
                                          947226,270
                                                          1438571,280
253
     2022-02-01
                    723925.740000
                                          673653.800
                                                          1217495.310
254
     2022-03-01
                    772406,100000
                                                          1246975,120
                                          592318,210
255
     2022-04-01
                    906104.050000
                                          493958.320
                                                          1284453.730
256
     2022-05-01
                    762776.120000
                                          663348.940
                                                          1306786.770
                    641348.460000
                                          556311.960
257
     2022-06-01
                                                          1032070.530
258
     2022-07-01
                    987872.050000
                                          611115.010
                                                          1116548.970
259
     2022-08-01
                    657942.720000
                                          378627.690
                                                          1299910.960
260
     2022-09-01
                    869579.640000
                                          551589.720
                                                          1077517.900
     2022-10-01
261
                    718920.200000
                                          529832.420
                                                           980527.080
262
     2022-11-01
                    754135.860000
                                          595870.420
                                                          1136760.550
263
     2022-12-01
                    841323.980000
                                          602458.300
                                                          1082107.640
264
     2023-01-01
                    909391.130000
                                          578792.140
                                                          1442099.080
265
     2023-02-01
                    725101.200000
                                          685183.060
                                                          1267967.390
266
     2023-03-01
                    803262.670000
                                          633849.050
                                                          1317519.910
267
     2023-04-01
                    922032.390000
                                          572201.360
                                                          1417182.730
     2023-05-01
268
                    947633.290000
                                          668478.730
                                                          1428099.620
269
     2023-06-01
                    831466.440000
                                          639685.800
                                                          1278824.180
270
     2023-07-01
                    830098.860000
                                          562498.090
                                                          1113086.840
271
     2023-08-01
                    801621.750000
                                          669240.210
                                                          1075379.760
272
     2023-09-01
                    762592.300000
                                          586145.300
                                                          1242719.420
273
     2023-10-01
                    928439.180000
                                          652149.450
                                                           834686.020
                    839290.020000
274
     2023-11-01
                                          682060.840
                                                          1348739.160
275
     2023-12-01
                    763754.270000
                                          571924.920
                                                          1509634.280
276
     2024-01-01
                    914133.320000
                                          712333.330
                                                          1409097.150
277
     2024-02-01
                    740662.250000
                                          650360.110
                                                          1236861.750
278
     2024-03-01
                    838270.930000
                                          620077.740
                                                          1477038.000
279
     2024-04-01
                    886132.770000
                                          687017.960
                                                          1294706.120
280
     2024-05-01
                    939656.180000
                                          696970.300
                                                          1470870.090
     Gas licuado de petróleo
0
           1.940657e+05
1
           1.707034e+05
2
           1.618374e+05
3
           1.630486e+05
4
           1.715189e+05
5
           1.900044e+05
6
          2.060228e+05
7
           1.005615e+05
8
           1.868390e+05
9
           1.638642e+05
10
           1.947225e+05
11
           1.943290e+05
12
           1.684226e+05
13
          2.001414e+05
```

14

1.934226e+05

```
15
          2.182575e+05
16
          1.592994e+05
17
          2.108746e+05
18
           1.997085e+05
19
           1.922137e+05
20
           1.906867e+05
21
          2.108712e+05
22
          2.275959e+05
23
          1.922720e+05
24
          2.375323e+05
25
           1.698190e+05
26
          2.210309e+05
27
          1.921701e+05
28
          1.850167e+05
29
          2.318050e+05
30
          2.165049e+05
31
          2.099524e+05
32
          2.314992e+05
33
          2.163028e+05
34
          2.325270e+05
35
          2.144899e+05
36
          2.512715e+05
37
           1.977303e+05
38
          2.533661e+05
39
          2.066719e+05
40
          2.023682e+05
41
          2.318503e+05
42
          2.204493e+05
43
          2.158811e+05
44
          2.520583e+05
45
          2.087155e+05
46
          1.956455e+05
47
          2.786885e+05
48
          2.264525e+05
49
           1.792128e+05
50
          2.711630e+05
51
           1.876000e+05
52
          2.436253e+05
53
          2.560014e+05
54
          3.510896e+05
55
           1.150986e+05
56
          4.619572e+05
57
          4.567143e+05
58
          1.278198e+05
59
          4.564411e+05
60
          4.619158e+05
61
          1.393182e+05
62
          3.852874e+05
63
          3.177561e+05
```

```
64
           1.345260e+05
65
           3.475493e+05
66
           1.400744e+05
67
           4.340132e+05
68
           4.576832e+05
69
           1.309387e+05
70
           4.920634e+05
71
           1.129128e+05
72
           3.083485e+05
73
           2.950828e+05
74
           3.993872e+05
75
           3.917908e+05
76
           1.321066e+05
77
           5.532520e+05
78
           1.531678e+05
79
           3.096471e+05
80
           1.834849e+05
81
           4.861949e+05
82
           1.486274e+05
83
           3.710984e+05
84
           5.226705e+05
85
           1.269412e+05
86
           3.212948e+05
87
           2.965320e+05
88
           5.065898e+05
89
           1.356305e+05
90
           3.651176e+05
91
           1.249092e+05
92
           2.903307e+05
93
           5.158331e+05
94
           3.047807e+05
95
           2.658542e+05
96
           4.408072e+05
97
           3.088982e+05
98
           1.163574e+05
99
           3.827966e+05
100
           1.080326e+05
101
           4.399545e+05
102
           4.518928e+05
103
           1.511795e+05
104
           2.655124e+05
105
           2.942996e+05
106
           5.434985e+05
107
           1.212566e+05
108
           4.370423e+05
109
           4.108464e+05
110
           1.484954e+05
111
           4.100011e+05
112
           2.305846e+05
```

```
113
          3.446831e+05
114
          4.619780e+05
115
          2.361643e+05
116
           1.443818e+05
117
          3.284726e+05
118
          5.406719e+05
119
          2.865017e+05
120
          5.115181e+05
121
          3.138772e+05
122
          2.971903e+05
123
          4.263802e+05
          2.383741e+05
124
125
          3.451963e+05
126
          1.489885e+05
127
           5.656279e+05
128
          3.823104e+05
129
          3.190910e+05
130
          3.843684e+05
131
          1.410525e+05
132
          4.817815e+05
133
          1.625613e+05
134
          5.214937e+05
135
           1.319584e+05
136
          5.105068e+05
137
          5.276723e+05
138
          1.654242e+05
139
          3.878921e+05
140
          5.308978e+05
141
           1.622084e+05
142
          5.693459e+05
143
          1.529268e+05
144
          5.753185e+05
145
          1.427728e+05
          5.690132e+05
146
147
          5.086495e+05
148
          1.814616e+05
149
          5.368472e+05
150
          3.529090e+05
151
          3.593460e+05
152
          3.949859e+05
153
          4.158693e+05
154
          4.256692e+05
155
          4.524141e+05
156
          3.718887e+05
157
          3.368452e+05
158
          3.587558e+05
159
          4.667670e+05
160
          5.547843e+05
161
          3.591356e+05
```

```
162
          4.175703e+05
163
          4.160683e+05
164
          4.089989e+05
165
          3.148689e+05
166
          4.873437e+05
167
          3.801860e+05
168
          5.233523e+05
169
          4.212682e+05
170
          4.971686e+05
171
          5.196038e+05
172
          4.158903e+05
173
          5.263585e+05
174
          4.119714e+05
175
          5.615638e+05
176
          4.802689e+05
177
          4.232394e+05
178
          6.373165e+05
179
          5.006843e+05
180
          7,489706e+05
181
          2.873377e+05
182
          5.044511e+05
183
          5.874827e+05
184
          4.169125e+05
185
          7.033192e+05
186
          4.558231e+05
187
          5.883105e+05
188
          3.065434e+05
189
          7.173886e+05
190
          5.059760e+05
191
          5.848072e+05
192
          5.673458e+05
193
          2.795272e+05
194
          7.800486e+05
195
          5.305781e+05
196
          6.047026e+05
          4.872442e+05
197
198
          5.104281e+05
199
          5.385821e+05
200
          3.502946e+05
201
          5.847096e+05
202
          9.359865e+05
203
          5.954214e+05
204
          3.963630e+05
205
          5.910000e+05
206
          6.442454e+05
207
          1.885908e+05
208
          6.362341e+05
209
          6.188113e+05
210
          5.843861e+05
211
          4.086586e+05
```

```
212
          4.498468e+05
213
          6.002305e+05
214
          5.986262e+05
215
          6.148870e+05
216
          4.140861e+05
217
          4.605188e+05
218
          3.844256e+05
219
          6.706339e+05
220
          6.234662e+05
221
          6.127323e+05
222
          6.674868e+05
223
          5.864306e+05
224
          8.507782e+05
225
          2.252070e+05
226
          6.108681e+05
227
          6.000039e+05
228
          7.156003e+05
229
          4.513317e+05
230
          6.432789e+05
231
          5.103499e+05
232
          6.163814e+05
233
          4.676648e+05
          6.753375e+05
234
235
          6.343201e+05
236
          3.155271e+05
237
          9.608405e+05
238
          3.286031e+05
239
          6.841601e+05
240
          4.756195e+05
241
          6.177832e+05
242
          5.498153e+05
243
          6.644439e+05
244
          6.785011e+05
245
          4.666585e+05
246
          6.652631e+05
247
          7.460025e+05
248
          6.898295e+05
249
          6.963469e+05
250
          5.241865e+05
251
          6.794151e+05
252
          6.571857e+05
253
          6.732183e+05
254
          7.135534e+05
255
          6.939644e+05
256
          6.672722e+05
257
          2.657738e+05
258
          7.176527e+05
259
          7.352537e+05
260
          4.213032e+05
```

```
261
          7.178492e+05
262
          6.912374e+05
263
          6.714446e+05
264
          4.977807e+05
265
          6.529847e+05
266
          7.119783e+05
          6.476663e+05
267
268
          7.133490e+05
269
          2.858178e+05
270
          1.077123e+06
271
          2.749736e+05
272
          5.917119e+05
273
          6.735812e+05
274
          5.787974e+05
275
          6.921820e+05
276
          7.015708e+05
277
          9.165417e+05
          6.751575e+05
278
279
          4.739407e+05
          6.848645e+05
280
```

Dataset: Precios-Promedio-Nacionales-Diarios-2024-3.xlsx

```
csvPath = 'PreciosPromedioNacionales/PreciosPromedioNacionales.csv'
dataPrecios = pd.read csv(csvPath)
print(f"□ Archivo cargado: {csvPath}")

  □ Archivo cargado:

PreciosPromedioNacionales/PreciosPromedioNacionales.csv
dataPrecios = dataPrecios[['FECHA', 'Regular GTQ/GALON', 'Superior
GTQ/GALON', 'Diesel GTQ/GALON', 'Glp Cilindro 25Lbs. GTQ/LB']]
dataPrecios['FECHA'] = pd.to datetime(dataPrecios['FECHA'])
dataPrecios.head()
    FECHA
              Regular GTQ/GALON Superior GTQ/GALON
                                                      Diesel GTQ/GALON
0 2021-01-01
                    21.11
                                         21.91
                                                             17.61
                    21.11
                                                             17.61
1 2021-01-02
                                         21.91
2 2021-01-03
                    21.11
                                         21.91
                                                             17.61
3 2021-01-04
                    21.11
                                         21.91
                                                             17.61
                    21.11
4 2021-01-05
                                         21.91
                                                             17.61
```

```
Glp Cilindro 25Lbs. GTQ/LB
0 3.96
1 3.96
2 3.96
3 3.96
4 3.96
```

En este análisis se puede destacar que la mayoría de categorías de combustibles cuentan con distribuciones cercanas a una distribucion normal, con la excepción de *Gas Cilindro 25Lbs*. Los valores atípicos se aprecian más en esta última que en las otras categorías. *Superior*, *Regulary Diesel* tienen rangos intercuartiles similares y más amplios que en comparación de *Gas Cilindro 25Lbs*.

```
csvPath = 'PreciosPromedioNacionales/dataPrecios.csv'
dataPrecios.to csv(csvPath, index=False)
AV = AutoViz Class()
AV.AutoViz(csvPath)
Shape of your Data Set loaded: (1305, 5)
###################
########################
###################
Classifying variables in data set...
   Number of Numeric Columns = 4
   Number of Integer-Categorical Columns = 0
   Number of String-Categorical Columns = 0
   Number of Factor-Categorical Columns = 0
   Number of String-Boolean Columns = 0
   Number of Numeric-Boolean Columns = 0
   Number of Discrete String Columns = 0
   Number of NLP String Columns = 0
   Number of Date Time Columns = 0
   Number of ID Columns = 1
   Number of Columns to Delete = 0
   5 Predictors classified...
      1 variable(s) removed since they were ID or low-information
variables
      List of variables removed: ['FECHA']
To fix these data quality issues in the dataset, import FixDQ from
autoviz...
   All variables classified into correct types.
<pandas.io.formats.style.Styler at 0x1545e536590>
Number of All Scatter Plots = 10
```


Heatmap of all Numeric Variables including target:

All Plots done Time to run AutoViz = 1 seconds								
	######################################							
	FECHA	Regular GTQ/GALON	Superior GTQ/GALON	Diesel				
GTQ/G	GALON \							
0	2021-01-01	21.11	21.91	17.61				
1	2021-01-02	21.11	21.91	17.61				

2	2021-01-03	21.11	21.91	17.61
3	2021-01-04	21.11	21.91	17.61
4	2021-01-05	21.11	21.91	17.61
1300	2024-07-24	31.29	32.79	28.09
1301	2024-07-25	31.29	32.79	28.09
1302	2024-07-26	31.29	32.79	28.09
1303	2024-07-27	31.29	32.79	28.09
1304	2024-07-28	31.29	32.79	28.09
0 1 2 3 4 1300 1301 1302 1303 1304	Glp Cilindro 25Lb 3.96 3.96 3.96 3.96 3.96 4.40 4.40 4.40 4.40 4.40	s. GTQ/LB		
[1305	rows x 5 columns]			

Datasets: Seleccion de series de tiempo.

Las tres series seleccionadas fueron:

- Dataset consumo = 'Diesel'
- Dataset importación = 'Gasolina regular'
- Dataset precios = 'Superior GTQ/GALON'

```
serieConsumoDiesel = dataConsumo[['Fecha', 'Diesel']]
serieImportacionRegular = dataImportacion[['Fecha', 'Gasolina
regular']]
seriePreciosSuper = dataPrecios[['FECHA', 'Superior GTQ/GALON']]
serieConsumoDiesel.set_index('Fecha', inplace=True)
serieConsumoDiesel.sort_index(inplace=True)
```

```
serieImportacionRegular.set_index('Fecha', inplace=True)
serieImportacionRegular.sort_index(inplace=True)
seriePreciosSuper.set_index('FECHA', inplace=True)
seriePreciosSuper.sort_index(inplace=True)
```

□ Datos iniciales sobre las series.

Como se puede observar, se cuenta con tres series de tiempo. Se describen las fechas de inicio y finalización de cada serie, teniendo un abanico de datos que van desde el año 2000 hasta mayo de 2024. Las siglas de frecuencia representan lo siguiente:

- MS significa "Month Start", lo que indica que los datos para ese dataset son mensuales y se registran al inicio de cada mes.
- D significa "Daily", lo que indica que los datos se registran diariamente.

```
def mostrarInfoSeriesTiempo(consumoDiesel, importacionRegular,
preciosSuper):
    print("□ Información de las series de tiempo:")
    print("\n□ Consumo Diesel:")
    print(f"
               Inicio: {consumoDiesel.index.min()}")
               Fin: {consumoDiesel.index.max()}")
    print(f"
    frecuenciaDiesel = consumoDiesel.index.freq or
pd.infer_freq(consumoDiesel.index)
    print(f"
             Frecuencia: {frecuenciaDiesel}")
    print("\n□ Importación Gasolina Regular:")
    print(f"
               Inicio: {importacionRegular.index.min()}")
    print(f"
               Fin: {importacionRegular.index.max()}")
    frecuenciaRegular = importacionRegular.index.freq or
pd.infer_freq(importacionRegular.index)
    print(f"
             Frecuencia: {frecuenciaRegular}")
    print("\n[] Precios Super:")
    print(f"
              Inicio: {preciosSuper.index.min()}")
    print(f"
               Fin: {preciosSuper.index.max()}")
    frecuenciaSuper = preciosSuper.index.freq or
pd.infer freq(preciosSuper.index)
    print(f"
              Frecuencia: {frecuenciaSuper}")
# Supongamos que ya tienes las series de tiempo `serieConsumoDiesel`,
`serieImportacionRegular` y `seriePreciosSuper`
mostrarInfoSeriesTiempo(serieConsumoDiesel, serieImportacionRegular,
seriePreciosSuper)
□ Información de las series de tiempo:
□ Consumo Diesel:
   Inicio: 2000-01-01 00:00:00
   Fin: 2024-05-01 00:00:00
```

```
Frecuencia: MS

Importación Gasolina Regular:
    Inicio: 2001-01-01 00:00:00
    Fin: 2024-05-01 00:00:00
    Frecuencia: MS

Precios Super:
    Inicio: 2021-01-01 00:00:00
    Fin: 2024-07-28 00:00:00
    Frecuencia: D
```

∇isualizacion de las series.

Para esta parte, se deciden mostrar las series de tiempo para ver un comportamiento inicial. Pero adicionalmente, se genera graficos que permiten observarlas en distintos componentes.

```
def plotTimeSeries(consumoDiesel, importacionRegular, preciosSuper):
    print("□ Iniciando la visualización de series de tiempo...")
    # Grafica Consumo Diesel
    plt.figure(figsize=(12, 6))
    print("[] Graficando Consumo Diesel...")
    plt.plot(consumoDiesel.index, consumoDiesel['Diesel'],
label='Consumo Diesel', color='blue')
    plt.title('Consumo Diesel a lo largo del tiempo')
    plt.xlabel('Fecha')
    plt.ylabel('Consumo')
    plt.legend()
    plt.grid()
    plt.xticks(rotation=45)
    plt.tight layout()
    plt.show()
    print("□ Gráfica de Consumo Diesel completada.")
    # Grafica Importación Gasolina Regular
    plt.figure(figsize=(12, 6))
    print("□ Graficando Importación Gasolina Regular...")
    plt.plot(importacionRegular.index, importacionRegular['Gasolina
regular'], label='Importación Gasolina Regular', color='orange')
    plt.title('Importación Gasolina Regular a lo largo del tiempo')
    plt.xlabel('Fecha')
    plt.ylabel('Importación')
    plt.legend()
    plt.grid()
    plt.xticks(rotation=45)
    plt.tight_layout()
    plt.show()
    print("□ Gráfica de Importación Gasolina Regular completada.")
```

```
# Grafica Precios Super
    plt.figure(figsize=(12, 6))
    print("[] Graficando Precios Super...")
    plt.plot(preciosSuper.index, preciosSuper['Superior GTQ/GALON'],
label='Precios Super', color='green')
    plt.title('Precios Super a lo largo del tiempo')
    plt.xlabel('Fecha')
    plt.ylabel('Precio (GTQ/GALON)')
    plt.legend()
    plt.grid()
    plt.xticks(rotation=45)
    plt.tight layout()
    plt.show()
    print("□ Gráfica de Precios Super completada.")
plotTimeSeries(serieConsumoDiesel, serieImportacionRegular,
seriePreciosSuper)
□ Iniciando la visualización de series de tiempo...
☐ Graficando Consumo Diesel...
```


- □ Gráfica de Consumo Diesel completada.
- □ Graficando Importación Gasolina Regular...

- □ Gráfica de Importación Gasolina Regular completada.
- ☐ Graficando Precios Super...


```
Gráfica de Precios Super completada.

def descomponerSerieTiempo(serieTiempo, descripcion):
    print(f"[] {descripcion}: Iniciando la descomposición de la serie
    de tiempo... ")

# Descomposición de la serie
    descomposición = sm.tsa.seasonal_decompose(serieTiempo,
```

```
model='additive')
    # Graficar los componentes
    plt.figure(figsize=(12, 8))
    descomposicion.observed.plot(ax=plt.subplot(411),
label='Observado', color='blue')
    plt.legend(loc='upper left')
    descomposicion.trend.plot(ax=plt.subplot(412), label='Tendencia',
color='orange')
    plt.legend(loc='upper left')
    descomposicion.seasonal.plot(ax=plt.subplot(413),
label='Estacionalidad', color='green')
    plt.legend(loc='upper left')
    descomposicion.resid.plot(ax=plt.subplot(414), label='Residuo',
color='red')
    plt.legend(loc='upper left')
    plt.tight layout()
    plt.show()
    print("□ Descomposición completada.")
descomponerSerieTiempo(serieConsumoDiesel['Diesel'], 'Diesel')
descomponerSerieTiempo(serieImportacionRegular['Gasolina regular'],
'Regular')
descomponerSerieTiempo(seriePreciosSuper['Superior GTQ/GALON'],
'Superior')
□ Diesel: Iniciando la descomposición de la serie de tiempo...
```


- ☐ Descomposición completada.☐ Regular: Iniciando la descomposición de la serie de tiempo...

- ☐ Descomposición completada.☐ Superior: Iniciando la descomposición de la serie de tiempo...

☐ Descomposición completada.

- Consumo de diesel: Se puede observar que lo largo del tiempo, cuenta con una tendencia general ascendente con alguna fluctuaciones durante ciertos años como el 2008, 2012, 2016 y 2020. Seguramente este último debido a la pandemia de COVID-19. Además, se puede observar que cuenta con algunos patrones de estacionalidad con variaciones relativamente regulares en ciertos periodos.
- Importacion de gasolina regular: Al igual que la tendencia del diesel, cuenta con una tendencia creciente en el tiempo y con la característica que es más pronunciada a partir de 2008. Respecto a la estacionalidad de la serie, se puede mencionar que existe mayor variabilidad y picos significativos en los mismos años mencionados del diesel. Estas variaciones se pueden atribuir a cambios en politicas de importacion, eventos fuera de lo ordinario como la pandemia, entre otros.
- Precios diarios promedio de super: A diferencia de las últimas dos series, los precios no muestran una tendencia muy clara a largo plazo. Aún asi, cabe desctacar que existen periodos de aumento y disminución significativos. Hablando de la estacinalidad de la serie, no se logra apreciar una estacionalidad clara pero sí es evidente que existen picos y valles notables. Entre 2021 y 2022 se observa que existio un aumento considerable de los precios seguidos de una disminución y varias flucturaciones. Estos cambios siempre se atribuyen a eventos como el COVID-19 o conflictos geopolíticos que afecta la producción y oferta del petróleo.

⚠ Transformaciones

Se puede observar que todos los diagramas cuentan con un lento decaimiento y las autocorrelaciones son positivas. Esto nos indica que existe autocorrelación significativa y las series no son estacionarias. Además, analizando la autocorrelación parcial, se puede observar que existe significancia entre el primer y segundo retardo principalmente.

```
def graficarACF_PACF(serieTiempo, descripcion):
    print(f"[] Gráfico de Autocorrelación y Autocorrelación Parcial
para: {descripcion}")

    fig, axes = plt.subplots(1, 2, figsize=(16, 6))

    plot_acf(serieTiempo, lags=15, alpha=0.2, ax=axes[0])
    axes[0].set_title(f'Autocorrelación de {descripcion}')

    plot_pacf(serieTiempo, lags=15, alpha=0.2, ax=axes[1])
    axes[1].set_title(f'Autocorrelación Parcial de {descripcion}')

    plt.show()

# Ejemplos de uso:
graficarACF_PACF(serieConsumoDiesel['Diesel'], 'Diesel')
graficarACF_PACF(serieImportacionRegular['Gasolina regular'],
'Regular')
graficarACF_PACF(seriePreciosSuper['Superior GTQ/GALON'], 'Superior')

[] Gráfico de Autocorrelación y Autocorrelación Parcial para: Diesel
```


☐ Gráfico de Autocorrelación y Autocorrelación Parcial para: Regular

☐ Gráfico de Autocorrelación y Autocorrelación Parcial para: Superior

De la prueba de Dickey-Fuller Aumentada se puede observar que tanto para diesel y gasolina regular, sus series no son estacionarios debido al p-valor determinado, por lo que se puede considerar realizar aplicar diferenciación antes de aplicar los modelos de series temporales. Por otra parte, respecto a la serie de gasolina superior, pareciera ser estacionaria por lo que se podría modelar directamente sin necesidad de diferenciación.

Las trasnformaciones que podrían ser requeridas serían aplicar diferenciaciones para las series *Diesel y Regular* o transformaciones logaritmicas para estabilizar varianza. Además, si se quisiera mejorar un poco la serie de *Super* se podría considerar aplicar alguna transformación para ver si mejora el rendimiento.

```
def pruebaDickeyFuller(serieTiempo, descripcion):
    print(f" Prueba de Dickey-Fuller Aumentada para: {descripcion}")
    resultado = adfuller(serieTiempo)
    print(f'Estadístico ADF: {resultado[0]}')
    print(f'p-valor: {resultado[1]}')
    print('Valores críticos:')
    for key, value in resultado[4].items():
```

```
print(f' {key}: {value}')
   print('-----
    return resultado[1]
print('-----')
pruebaDickeyFuller(serieConsumoDiesel['Diesel'], 'Diesel')
pruebaDickeyFuller(serieImportacionRegular['Gasolina regular'],
'Regular')
pruebaDickeyFuller(seriePreciosSuper['Superior GTQ/GALON'],
'Superior')
□ Prueba de Dickey-Fuller Aumentada para: Diesel
Estadístico ADF: 0.14523982117810716
p-valor: 0.9690175028779467
Valores críticos:
  1%: -3.453922368485787
 5%: -2.871918329081633
 10%: -2.5723001147959184
🛮 Prueba de Dickey-Fuller Aumentada para: Regular
Estadístico ADF: 0.8288289928204905
p-valor: 0.992087554110633
Valores críticos:
 1%: -3.4547128138328875
 5%: -2.8722649771800155
 10%: -2.5724850011573914
□ Prueba de Dickey-Fuller Aumentada para: Superior
Estadístico ADF: -2.9399220843939617
p-valor: 0.040898674582741115
Valores críticos:
  1%: -3.435401880796999
 5%: -2.863770985550096
 10%: -2.567957791647768
0.040898674582741115
```

En esta parte se realizan una serie de funciones que buscan automatizar el proceso de transformación de series para mejorar su rendimiento y evitar la no estacionalidad. Dentro de estas se mencionan la trasnformacion logaritmica y la diferenciación. Cabe destacar que de acuerdo con los resultados anteriores, si no se logra estabilizar tanto en media como en varianza, se decidieron los valores p=1, d=1 y q=1 para ser utilizados en los modelos requeridos.

```
def detectar_valores_invalidos(serieTemporal, descripcion):
    serieTemporal = pd.to_numeric(serieTemporal, errors='coerce') #
Convertir a numérico y forzar NaN si hay errores
    n_nan = serieTemporal.isna().sum()
```

```
n no positivos = (serieTemporal <= 0).sum()</pre>
    print(f"∏ Detección de valores inválidos en la serie:
{descripcion}")
    print(f" Valores NaN: {n_nan}")
    print(f" Valores no positivos: {n no positivos}")
    serieTemporal sin nan = serieTemporal.dropna()
    print(f" Serie temporal sin valores NaN tiene
{len(serieTemporal sin nan)} elementos.")
    return serieTemporal sin nan, n nan, n no positivos
def varianza estable(serieTemporal):
    n = len(serieTemporal)
    partes = np.array_split(serieTemporal, 3)
    varianzas = [np.var(parte) for parte in partes]
    return np.allclose(varianzas[0], varianzas[1], rtol=0.1) and
np.allclose(varianzas[1], varianzas[2], rtol=0.1)
def aplicar transformacion logaritmica(serieTemporal):
    if (serieTemporal > 0).all():
        return np.log(serieTemporal)
    else:
        print("A La serie contiene valores no positivos, no se puede
aplicar la transformación logarítmica.")
        return serieTemporal
def analizar_y_transformar_serie(serieTemporal, descripcion):
    print(f"□ Analizando la serie: {descripcion}")
    serieTemporal, n nan, n no positivos =
detectar valores invalidos(serieTemporal, descripcion)
    estacionaria = False
    intentos = 0
    max intentos = 10
    serieTemporal = aplicar transformacion logaritmica(serieTemporal)
    while not estacionaria and intentos < max intentos:
        intentos += 1
        p valor = pruebaDickeyFuller(serieTemporal, descripcion)
        if p valor < 0.05:
            if varianza estable(serieTemporal):
                estacionaria = True
                print(f"∏ La serie {descripcion} es estacionaria en
media y varianza.")
                break
            else:
```

```
print(f"∏ La varianza no es estable en la serie
{descripcion}.")
       else:
           print(f"[] La serie {descripcion} no es estacionaria (p-
valor: {p valor}).")
       serieTemporal = serieTemporal.diff().dropna()
       print(f"∏ Aplicando diferenciación a {descripcion}. Intento
{intentos}.")
   if not estacionaria:
       print(f"△ No se pudo hacer la serie {descripcion} estacionaria
después de {max intentos} intentos.")
       print("□ Utilizando un modelo ARIMA para tratar con la no
estacionariedad.")
       modelo arima = ARIMA(serieTemporal, order=(1, 1, 1))
       modelo arima fit = modelo arima.fit()
       print(modelo arima fit.summary())
       modelo arima fit = None
   return serieTemporal, modelo arima fit
# Asegúrate de que estas variables estén definidas correctamente
# Reemplaza con tus series temporales reales
serieTemporalD, modelo arima diesel =
analizar y transformar serie(serieConsumoDiesel['Diesel'], 'Diesel')
print("-----
            _____")
serieTemporalR, modelo arima regular =
analizar_y_transformar_serie(serieImportacionRegular['Gasolina
regular', 'Regular')
print("-----
serieTemporalS, modelo arima super =
analizar y transformar serie(seriePreciosSuper['Superior GTQ/GALON'],
'Superior')
☐ Analizando la serie: Diesel
□ Detección de valores inválidos en la serie: Diesel
 Valores NaN: 0
 Valores no positivos: 0
 Serie temporal sin valores NaN tiene 293 elementos.
Prueba Dickey-Fuller para Diesel: p-valor = 0.901557753919378
\sqcap La serie Diesel no es estacionaria (p-valor: 0.901557753919378).
☐ Aplicando diferenciación a Diesel. Intento 1.
Prueba Dickey-Fuller para Diesel: p-valor = 7.851113111171977e-10
□ La varianza no es estable en la serie Diesel.
```

Aplicando diferenciación a Diesel. Intento 2. Prueba Dickey-Fuller para Diesel: p-valor = 3.1021697475811376e-15 La varianza no es estable en la serie Diesel. Aplicando diferenciación a Diesel. Intento 3. Prueba Dickey-Fuller para Diesel: p-valor = 7.339914914662219e-25 La varianza no es estable en la serie Diesel. Aplicando diferenciación a Diesel. Intento 4. Prueba Dickey-Fuller para Diesel: p-valor = 3.85887345410522e-27 La varianza no es estable en la serie Diesel. Aplicando diferenciación a Diesel. Intento 5. Prueba Dickey-Fuller para Diesel: p-valor = 3.960328765820069e-24 La varianza no es estable en la serie Diesel. Aplicando diferenciación a Diesel. Intento 6. Prueba Dickey-Fuller para Diesel: p-valor = 1.693758290598338e-19 La varianza no es estable en la serie Diesel. Aplicando diferenciación a Diesel. Intento 7. Prueba Dickey-Fuller para Diesel: p-valor = 9.999475164371196e-19 La varianza no es estable en la serie Diesel. Aplicando diferenciación a Diesel. Intento 8. Prueba Dickey-Fuller para Diesel: p-valor = 6.431107622936416e-23 La varianza no es estable en la serie Diesel. Aplicando diferenciación a Diesel. Intento 9. Prueba Dickey-Fuller para Diesel: p-valor = 2.6791261349428788e-28 La varianza no es estable en la serie Diesel. Aplicando diferenciación a Diesel. Intento 10. Δ No se pudo hacer la serie Diesel estacionaria después de 10 intentos. Utilizando un modelo ARIMA para tratar con la no estacionariedad.						
			======	========		
Dep. Variable: 283		Diesel	No. O	bservations:		
Model:	,	ARIMA(1, 1, 1)	Log L	ikelihood	-	
1078.599 Date:	Su	n, 04 Aug 2024	AIC			
2163.197 Time:		14:50:24	BIC			
2174.123						
Sample: 2167.578		11-01-2000	HQIC			
		- 05-01-2024				
Covariance Type:		opg				
======	coef	atd one	_	D. 1-1		
0.0751	COCI	std err	Z	P> z	[0.025	
0.975]	6061	sta err	Z	P> Z	[0.025	

```
ar.L1
              -0.8892
                           0.027 -32.441
                                                  0.000
                                                             -0.943
-0.836
ma.L1
              -0.9995
                           1.502
                                      -0.665
                                                  0.506
                                                             -3.944
1.945
                         179.118
                                      0.666
                                                  0.505
                                                           -231.692
sigma2
             119.3735
470.439
Ljung-Box (L1) (Q):
                                    162.95
                                              Jarque-Bera (JB):
0.09
Prob(0):
                                       0.00
                                              Prob(JB):
0.96
Heteroskedasticity (H):
                                      0.54
                                             Skew:
0.02
Prob(H) (two-sided):
                                       0.00
                                              Kurtosis:
3.08
Warnings:
[1] Covariance matrix calculated using the outer product of gradients
(complex-step).

  □ Analizando la serie: Regular

□ Detección de valores inválidos en la serie: Regular
 Valores NaN: 0
 Valores no positivos: 0
  Serie temporal sin valores NaN tiene 281 elementos.
Prueba Dickey-Fuller para Regular: p-valor = 0.9547166884951503
\square La serie Regular no es estacionaria (p-valor: 0.9547166884951503).
□ Aplicando diferenciación a Regular. Intento 1.
Prueba Dickey-Fuller para Regular: p-valor = 8.607670489056085e-12
□ La varianza no es estable en la serie Regular.
□ Aplicando diferenciación a Regular. Intento 2.
Prueba Dickey-Fuller para Regular: p-valor = 1.1514286931342563e-18
□ La varianza no es estable en la serie Regular.

  □ Aplicando diferenciación a Regular. Intento 3.

Prueba Dickey-Fuller para Regular: p-valor = 1.4299582821292605e-21
□ La varianza no es estable en la serie Regular.

  □ Aplicando diferenciación a Regular. Intento 4.

Prueba Dickey-Fuller para Regular: p-valor = 1.3446729756106482e-22
□ La varianza no es estable en la serie Regular.

□ Aplicando diferenciación a Regular. Intento 5.

Prueba Dickey-Fuller para Regular: p-valor = 2.3198979881378136e-21
□ La varianza no es estable en la serie Regular.
□ Aplicando diferenciación a Regular. Intento 6.
Prueba Dickey-Fuller para Regular: p-valor = 3.8522581992643975e-23
□ La varianza no es estable en la serie Regular.
```

```
□ Aplicando diferenciación a Regular. Intento 7.
Prueba Dickey-Fuller para Regular: p-valor = 4.3203576796413914e-27
□ La varianza no es estable en la serie Regular.

□ Aplicando diferenciación a Regular. Intento 8.

Prueba Dickey-Fuller para Regular: p-valor = 1.9830657561682155e-29
□ La varianza no es estable en la serie Regular.
□ Aplicando diferenciación a Regular. Intento 9.
Prueba Dickey-Fuller para Regular: p-valor = 7.512287476786966e-30
□ La varianza no es estable en la serie Regular.
□ Aplicando diferenciación a Regular. Intento 10.
△ No se pudo hacer la serie Regular estacionaria después de 10
intentos.
□ Utilizando un modelo ARIMA para tratar con la no estacionariedad.
                              SARIMAX Results
                    Gasolina regular No. Observations:
Dep. Variable:
271
Model:
                      ARIMA(1, 1, 1) Log Likelihood
1459.374
Date:
                    Sun, 04 Aug 2024
                                     AIC
2924.747
Time:
                            14:50:24
                                       BIC
2935.542
                          11-01-2001 HOIC
Sample:
2929.082
                         - 05-01-2024
Covariance Type:
                                 opg
                coef std err
                                                P>|z|
                                                           [0.025]
                                         Z
0.9751
                                                           -0.966
ar.L1
              -0.9238
                          0.022
                                   -42.730
                                                0.000
-0.881
              -0.9995
                          2.543
                                    -0.393
                                                0.694
ma.L1
                                                           -5.983
3.984
sigma2
           2808.7948 7124.660
                                     0.394
                                                0.693
                                                        -1.12e+04
1.68e + 04
Ljung-Box (L1) (Q):
                                   171.55
                                            Jarque-Bera (JB):
6.09
Prob(Q):
                                     0.00
                                            Prob(JB):
Heteroskedasticity (H):
                                     0.31
                                            Skew:
```

-0.02 Prob(H) (two-sided): 3.73	0	. 00	Kurtosis:
========			
Warnings: [1] Covariance matrix cal (complex-step). Analizando la serie: Su Detección de valores in Valores NaN: 0 Valores no positivos: 6 Serie temporal sin valo Prueba Dickey-Fuller para La varianza no es estab Aplicando diferenciació Prueba Dickey-Fuller para La varianza no es estab Aplicando diferenciació Prueba Dickey-Fuller para La varianza no es estab Aplicando diferenciació Prueba Dickey-Fuller para La varianza no es estab Aplicando diferenciació Prueba Dickey-Fuller para La varianza no es estab Aplicando diferenciació Prueba Dickey-Fuller para La varianza no es estab Aplicando diferenciació Prueba Dickey-Fuller para La varianza no es estab Aplicando diferenciació Prueba Dickey-Fuller para La varianza no es estab Aplicando diferenciació Prueba Dickey-Fuller para La varianza no es estab Aplicando diferenciació Prueba Dickey-Fuller para La varianza no es estab Aplicando diferenciació Prueba Dickey-Fuller para La varianza no es estab Aplicando diferenciació Prueba Dickey-Fuller para La varianza no es estab Aplicando diferenciació Prueba Dickey-Fuller para La varianza no es estab Aplicando diferenciació Prueba Dickey-Fuller para La varianza no es estab Aplicando diferenciació Prueba Dickey-Fuller para La varianza no es estab Aplicando diferenciació Prueba Dickey-Fuller para La varianza no es estab	perior nválidos en la res NaN tiene a Superior: p-va ble en la serie	serie 1305 (alor: alor	elementos. = 0.021117919557505475 rior. to 1. = 2.436091753573115e-16 rior. to 2. = 3.159810795761913e-22 rior. to 3. = 2.988167990607026e-27 rior. to 4. = 2.845364748853002e-30 rior. to 5. = 0.0 rior. to 6. = 0.0 rior. to 7. = 0.0 rior. to 8. = 0.0 rior. to 9. = 0.0 rior. to 9. = 0.0 rior. to 10. naria después de 10
	SARIMAX I	Resul	ts

	=========	.=======	=======			
======						
Dep. Varia	ble: Super	ior GTQ/GA	LON No.	Observations:	:	
1295 Model:	٨	RIMA(1, 1,	1) Log	Likelihood		
1718.628	P	INTIMA (I, I,	i) Lug	LIKECIHOOU	-	
Date:	Sun	, 04 Aug 2	024 AIC			
3443.255		14 50	25 250			
Time: 3458.752		14:50	:25 BIC			
Sample:		01-11-2	021 HQI	C		
3449.071		V =				
		- 07-28-2	024			
Covariance	Type:		opg			
20141 141100	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		~F9			
			======			
	coef	std err	Z	P> z	[0.025	
0.975]				' '	-	
ar.L1	-0.9007	0.006	-148.573	0.000	-0.913	
-0.889	0.3007	0.000	140.575	0.000	0.313	
ma.L1	-0.9999	1.317	-0.759	0.448	-3.581	
1.581	0 0275	1 000	0.760	0 447	1 207	
sigma2 2.962	0.8275	1.089	0.700	0.447	-1.307	
========		=======	=======			
Liung Poy			755 70	largue Pera	(1D).	
Ljung-Box 1613.69	(LI) (Q):		755.72	Jarque-Bera	(JB):	
Prob(Q):			0.00	<pre>Prob(JB):</pre>		
0.00						
	asticity (H):		0.76	Skew:		
0.00 Prob(H) (t	wo-sided):		0.01	Kurtosis:		
8.47	514647.		0.01			
=======	===					
Warnings:						
	ance matrix ca	lculated u	sing the	outer product	of gradients	
(complex-step).						

Los resultados nos indican de esta forma de automatizar la busqueda de buenos parametros p, d y q resultó efectiva en todas las series. Esto basados en los resultados de AIC y BIC obtenidos. Aun así, se decidió implementar el modelo auto_arima para comparar la diferencia que existen entre estos métodos.

```
serie diesel = serieConsumoDiesel['Diesel']
# Ajustar el modelo ARIMA automáticamente
modelo auto = auto arima(serie diesel,
                          seasonal=False, # Si no es estacional
                                           # Si utilizar pasos para
                          stepwise=True,
encontrar el mejor modelo
                          trace=True)
                                      # Mostrar el progreso
# Resumen del modelo
print(modelo auto.summary())
Performing stepwise search to minimize aic
ARIMA(2,1,2)(0,0,0)[0] intercept
                                     : AIC=inf, Time=0.29 sec
ARIMA(0,1,0)(0,0,0)[0] intercept
                                     : AIC=7447.955, Time=0.01 sec
ARIMA(1,1,0)(0,0,0)[0] intercept
                                     : AIC=7440.658, Time=0.02 sec
ARIMA(0,1,1)(0,0,0)[0] intercept
                                     : AIC=7440.979, Time=0.02 sec
                                     : AIC=7446.248, Time=0.01 sec
ARIMA(0,1,0)(0,0,0)[0]
                                     : AIC=7442.638, Time=0.04 sec
ARIMA(2,1,0)(0,0,0)[0] intercept
ARIMA(1,1,1)(0,0,0)[0] intercept
                                     : AIC=7442.627, Time=0.04 sec
ARIMA(2,1,1)(0,0,0)[0] intercept
                                     : AIC=7444.623, Time=0.08 sec
ARIMA(1,1,0)(0,0,0)[0]
                                     : AIC=7439.163, Time=0.02 sec
ARIMA(2,1,0)(0,0,0)[0]
                                     : AIC=7441.126, Time=0.02 sec
 ARIMA(1,1,1)(0,0,0)[0]
                                     : AIC=7441.116, Time=0.04 sec
                                     : AIC=7439.504, Time=0.02 sec
ARIMA(0,1,1)(0,0,0)[0]
                                     : AIC=7443.087, Time=0.06 sec
ARIMA(2,1,1)(0,0,0)[0]
Best model: ARIMA(1,1,0)(0,0,0)[0]
Total fit time: 0.677 seconds
                               SARIMAX Results
Dep. Variable:
                                        No. Observations:
                                    У
293
                                        Log Likelihood
Model:
                     SARIMAX(1, 1, 0)
3717.581
                     Sun, 04 Aug 2024
                                        AIC
Date:
7439.163
                                        BIC
Time:
                             17:10:33
7446.516
Sample:
                           01-01-2000
                                        HOIC
7442.108
                           05-01-2024
Covariance Type:
                                  opg
                         std err
                                                  P>|z|
                                                             [0.025]
                 coef
```

```
0.9751
                           0.043
ar.L1
                                     -3.719
                                                 0.000
                                                             -0.244
              -0.1598
-0.076
sigma2
            6.671e+09 4.16e-13
                                    1.6e+22
                                                 0.000
                                                          6.67e + 09
6.67e+09
Ljung-Box (L1) (Q):
                                      0.35
                                             Jarque-Bera (JB):
1.44
Prob(Q):
                                      0.56
                                             Prob(JB):
0.49
Heteroskedasticity (H):
                                      2.34
                                             Skew:
-0.14
Prob(H) (two-sided):
                                      0.00
                                             Kurtosis:
3.19
Warnings:
[1] Covariance matrix calculated using the outer product of gradients
(complex-step).
[2] Covariance matrix is singular or near-singular, with condition
          inf. Standard errors may be unstable.
serie regular = serieImportacionRegular['Gasolina regular']
# Ajustar el modelo ARIMA automáticamente
modelo auto = auto arima(serie regular,
                          seasonal=False, # Si no es estacional
                          stepwise=True,
                                           # Si utilizar pasos para
encontrar el mejor modelo
                                           # Mostrar el progreso
                          trace=True)
# Resumen del modelo
print(modelo auto.summary())
Performing stepwise search to minimize aic
ARIMA(2,1,2)(0,0,0)[0] intercept
                                    : AIC=7193.005, Time=0.09 sec
                                    : AIC=7412.355, Time=0.01 sec
ARIMA(0,1,0)(0,0,0)[0] intercept
ARIMA(1,1,0)(0,0,0)[0] intercept
                                    : AIC=7264.099, Time=0.01 sec
                                    : AIC=7230.431, Time=0.05 sec
ARIMA(0,1,1)(0,0,0)[0] intercept
ARIMA(0,1,0)(0,0,0)[0]
                                    : AIC=7410.471, Time=0.01 sec
ARIMA(1,1,2)(0,0,0)[0] intercept
                                    : AIC=7201.550, Time=0.07 sec
ARIMA(2,1,1)(0,0,0)[0] intercept
                                    : AIC=7200.752, Time=0.06 sec
ARIMA(3,1,2)(0,0,0)[0] intercept
                                    : AIC=7193.700, Time=0.14 sec
                                    : AIC=7195.543, Time=0.13 sec
ARIMA(2,1,3)(0,0,0)[0] intercept
                                    : AIC=7198.250, Time=0.04 sec
 ARIMA(1,1,1)(0,0,0)[0] intercept
 ARIMA(1,1,3)(0,0,0)[0] intercept
                                    : AIC=7200.602, Time=0.10 sec
```

```
ARIMA(3,1,1)(0,0,0)[0] intercept
                                    : AIC=7199.638, Time=0.06 sec
                                    : AIC=7189.517, Time=0.34 sec
ARIMA(3,1,3)(0,0,0)[0] intercept
ARIMA(4,1,3)(0,0,0)[0] intercept
                                    : AIC=inf, Time=0.35 sec
                                    : AIC=inf, Time=0.37 sec
ARIMA(3,1,4)(0,0,0)[0] intercept
ARIMA(2,1,4)(0,0,0)[0] intercept
                                    : AIC=inf, Time=0.40 sec
                                    : AIC=7195.774, Time=0.19 sec
ARIMA(4,1,2)(0,0,0)[0] intercept
                                    : AIC=inf, Time=0.45 sec
ARIMA(4,1,4)(0,0,0)[0] intercept
ARIMA(3,1,3)(0,0,0)[0]
                                    : AIC=7199.639, Time=0.16 sec
Best model: ARIMA(3,1,3)(0,0,0)[0] intercept
Total fit time: 3.051 seconds
                               SARIMAX Results
```

3586.758
Date: Sun, 04 Aug 2024 AIC 7189.517

Time: 17:10:38 BIC 7218.595

Sample: 01-01-2001 HQIC

7201.180

- 05-01-2024

Covariance Type: opg

========					
	coef	std err	Z	P> z	[0.025
0.975]					
intercept	1.22e+04	2792.661	4.367	0.000	6721.770
1.77e+04	1 4200	0.063	22.006	0.000	1 562
ar.L1 -1.317	-1.4398	0.063	-22.896	0.000	-1.563
ar.L2	-1.2383	0.086	-14.318	0.000	-1.408
-1.069					
ar.L3	-0.2493	0.059	-4.218	0.000	-0.365
-0.133 ma.L1	0.3535	0.041	8.556	0.000	0.273
0.434	0.555	0.041	0.550	0.000	0.273
ma.L2	-0.0481	0.045	-1.062	0.288	-0.137
0.041					
ma.L3	-0.8335	0.041	-20.336	0.000	-0.914
-0.753 sigma2	8.31e+09	0.001	1.53e+13	0.000	8.31e+09

```
8.31e+09
Ljung-Box (L1) (Q):
                                       0.07
                                              Jarque-Bera (JB):
37.62
Prob(Q):
                                       0.79
                                              Prob(JB):
0.00
Heteroskedasticity (H):
                                       3.23
                                              Skew:
0.03
Prob(H) (two-sided):
                                       0.00
                                              Kurtosis:
4.80
Warnings:
[1] Covariance matrix calculated using the outer product of gradients
(complex-step).
[2] Covariance matrix is singular or near-singular, with condition
number 1.1e+29. Standard errors may be unstable.
serie super = seriePreciosSuper['Superior GTQ/GALON']
# Ajustar el modelo ARIMA automáticamente
modelo auto super = auto arima(serie super,
                           seasonal=False, # Si no es estacional
                           stepwise=True, # Si utilizar pasos para
encontrar el mejor modelo
                                          # Mostrar el progreso
                          trace=True)
# Resumen del modelo
print(modelo auto.summary())
Performing stepwise search to minimize aic
ARIMA(2,1,2)(0,0,0)[0] intercept
                                     : AIC=773.104, Time=0.66 sec
ARIMA(0,1,0)(0,0,0)[0] intercept
                                     : AIC=774.698, Time=0.05 sec
                                     : AIC=776.697, Time=0.07 sec
ARIMA(1,1,0)(0,0,0)[0] intercept
ARIMA(0,1,1)(0,0,0)[0] intercept
                                     : AIC=776.697, Time=0.05 sec
                                     : AIC=773.556, Time=0.03 sec
: AIC=779.616, Time=0.11 sec
ARIMA(0,1,0)(0,0,0)[0]
ARIMA(1,1,2)(0,0,0)[0] intercept
 ARIMA(2,1,1)(0,0,0)[0] intercept
                                     : AIC=770.964, Time=0.69 sec
                                     : AIC=778.676, Time=0.12 sec
ARIMA(1,1,1)(0,0,0)[0] intercept
ARIMA(2,1,0)(0,0,0)[0] intercept
                                     : AIC=777.650, Time=0.05 sec
                                     : AIC=781.620, Time=0.09 sec
ARIMA(3,1,1)(0,0,0)[0] intercept
ARIMA(3,1,0)(0,0,0)[0] intercept
                                     : AIC=779.621, Time=0.08 sec
 ARIMA(3,1,2)(0,0,0)[0] intercept
                                     : AIC=771.049, Time=0.99 sec
ARIMA(2,1,1)(0,0,0)[0]
                                     : AIC=769.409, Time=0.17 sec
ARIMA(1,1,1)(0,0,0)[0]
                                     : AIC=769.647, Time=0.21 sec
                                     : AIC=776.461, Time=0.03 sec
ARIMA(2,1,0)(0,0,0)[0]
                                     : AIC=780.423, Time=0.06 sec
 ARIMA(3,1,1)(0,0,0)[0]
ARIMA(2,1,2)(0,0,0)[0]
                                     : AIC=771.199, Time=0.25 sec
```

```
: AIC=775.556, Time=0.02 sec
 ARIMA(1,1,0)(0,0,0)[0]
ARIMA(1,1,2)(0,0,0)[0]
                                     : AIC=778.410, Time=0.04 sec
ARIMA(3,1,0)(0,0,0)[0]
                                     : AIC=778.423, Time=0.10 sec
                                     : AIC=768.220, Time=0.37 sec
ARIMA(3,1,2)(0,0,0)[0]
                                     : AIC=770.135, Time=0.55 sec
ARIMA(4,1,2)(0,0,0)[0]
                                     : AIC=760.596, Time=0.73 sec
ARIMA(3,1,3)(0,0,0)[0]
                                     : AIC=768.273, Time=0.54 sec
ARIMA(2,1,3)(0,0,0)[0]
ARIMA(4,1,3)(0,0,0)[0]
                                     : AIC=753.584, Time=0.58 sec
ARIMA(5,1,3)(0,0,0)[0]
                                     : AIC=754.952, Time=0.76 sec
ARIMA(4,1,4)(0,0,0)[0]
                                     : AIC=755.142, Time=0.88 sec
                                     : AIC=753.109, Time=0.72 sec
ARIMA(3,1,4)(0,0,0)[0]
ARIMA(2,1,4)(0,0,0)[0]
                                     : AIC=770.272, Time=0.56 sec
ARIMA(3,1,5)(0,0,0)[0]
                                     : AIC=752.713, Time=0.76 sec
ARIMA(2,1,5)(0,0,0)[0]
                                     : AIC=750.713, Time=0.48 sec
                                     : AIC=783.759, Time=0.26 sec
: AIC=782.318, Time=0.12 sec
ARIMA(1,1,5)(0,0,0)[0]
ARIMA(1,1,4)(0,0,0)[0]
ARIMA(2,1,5)(0,0,0)[0] intercept : AIC=751.866, Time=1.66 sec
Best model: ARIMA(2,1,5)(0,0,0)[0]
Total fit time: 12.850 seconds
                                SARIMAX Results
=======
Dep. Variable:
                                         No. Observations:
                                     У
281
Model:
                     SARIMAX(3, 1, 3)
                                       Log Likelihood
3586.758
                     Sun, 04 Aug 2024
                                         AIC
Date:
7189.517
                              17:10:53
                                         BIC
Time:
7218.595
Sample:
                            01-01-2001
                                         HQIC
7201.180
                          - 05-01-2024
Covariance Type:
                                   opg
                                           z P>|z| [0.025]
                 coef std err
0.975]
intercept
             1.22e+04
                        2792.661
                                       4.367
                                                  0.000
                                                            6721.770
1.77e + 04
ar.L1
              -1.4398
                           0.063
                                     -22.896
                                                  0.000
                                                              -1.563
-1.317
ar.L2
              -1.2383
                           0.086
                                     -14.318
                                                  0.000
                                                              -1.408
-1.069
```

ar.L3	-0.2493	0.059	-4.218	0.000	-0.365			
-0.133								
ma.L1	0.3535	0.041	8.556	0.000	0.273			
0.434								
ma.L2	-0.0481	0.045	-1.062	0.288	-0.137			
0.041								
ma.L3	-0.8335	0.041	-20.336	0.000	-0.914			
-0.753	0. 21 00	0.001	1 [212	0.000	0. 21 00			
sigma2 8.31e+09	8.31e+09	0.001	1.53e+13	0.000	8.31e+09			
8.31e+09								
Ljung-Box			0.07	Jarque-Bera	(1B):			
37.62	(22) (4):		0.07	Sarque Bera	(35):			
Prob(Q): 0.79 Prob(JB)								
0.00				` '				
Heteroskedasticity (H): 3.23 Skew:								
0.03								
Prob(H) (two-sided): 0.00 Kurtosis:								
4.80								
=======	=========	=======		========	========			
=======================================								
Warnings								
Warnings: [1] Covariance matrix calculated using the outer product of gradients								
(complex-step).								
[2] Covariance matrix is singular or near-singular, with condition								
number 1.1e+29. Standard errors may be unstable.								
	number fife-25. Scandard crivis may be unscable.							

De esta manera se comprueba que la diferencia es significativamente alta, ya que entre los modelos propuestos anteriormente y los generados con el auto arima, existe una diferencia en terminos de AIC y de BIC de 3000 aproximadamente en todos los modelos.

Además, con fines de investigación y de verificar cómo las predicciones automatizadas con librerías funcionan, se decidió utilizar la librería de prophet de Facebook para evaluar su rendimiento.

```
def calcular_aic_bic(y_true, y_pred, num_params):
    # Calcular log-verosimilitud
    residuals = y_true - y_pred
    n = len(y_true)
    log_likelihood = -0.5 * (n * np.log(np.sum(residuals**2) / n))

# Calcular AIC y BIC
    aic = 2 * num_params - 2 * log_likelihood
    bic = np.log(n) * num_params - 2 * log_likelihood
    return aic, bic
```

```
def entrenarProphet(serieTiempo, nombre variable):
    # Preparar los datos
    df prophet = serieTiempo.reset index()
    df prophet.columns = ['ds', 'y']
    # Crear y ajustar el modelo Prophet
    modelo = Prophet()
    modelo.fit(df prophet)
    # Hacer predicciones
    futuro = modelo.make future dataframe(periods=12, freq='M') #
Cambia el número y la frecuencia según tus necesidades
    pronostico = modelo.predict(futuro)
    # Graficar resultados
    modelo.plot(pronostico)
    plt.title(f'Pronóstico de {nombre variable} usando Prophet')
    plt.show()
    # Calcular AIC y BIC
    y true = df prophet['y'].values
    y_pred = pronostico['yhat'][:len(df_prophet)].values
    num params = len(modelo.params) # Número de parámetros del modelo
    aic, bic = calcular aic bic(y true, y pred, num params)
    print(f"AIC para {nombre variable}: {aic}")
    print(f"BIC para {nombre variable}: {bic}")
# Entrenar el modelo para el Diesel
entrenarProphet(serieConsumoDiesel[['Diesel']], 'Diesel')
entrenarProphet(serieImportacionRegular[['Gasolina regular']],
'Regular')
entrenarProphet(seriePreciosSuper[['Superior GTQ/GALON']], 'Superior')
17:20:53 - cmdstanpy - INFO - Chain [1] start processing
17:20:53 - cmdstanpy - INFO - Chain [1] done processing
```


17:20:53 - cmdstanpy - INFO - Chain [1] start processing 17:20:53 - cmdstanpy - INFO - Chain [1] done processing

AIC para Diesel: 6480.70112158008 BIC para Diesel: 6506.4623298432

17:20:54 - cmdstanpy - INFO - Chain [1] start processing

AIC para Regular: 6387.850788531148 BIC para Regular: 6413.319271216485

17:20:54 - cmdstanpy - INFO - Chain [1] done processing

AIC para Superior: -279.6520722629985 BIC para Superior: -243.43436402470093

Por una parte, se logran realizar predicciones coherentes como las de diesel y gasolina regular, pero por otra parte, es evidente que las predicciones en algunos casos no cuentan con ningún sentido dado que puede ocurrir cuaquier evento debido al rango que muestran. El ejemplo más evidente es con la serie de precios promedio de la gasolina super. Aún así, es destacable la forma en la que se representan los puntos atípicos, evidenciando las épocas donde se vieron afectadas las series por acotecimientos globales como la pandemia o conflictos geopolíticos.

Dejando lo anterior de lado, los valores de AIC y BIC son significativamente mejores que los de auto arima hablando de las series de Diesel y de Gasolina regular, sin embargo, siguen siendo mejores los que se determinaron manualmente. Por otra parte, resulta interesante la predicción de gasolina superior dado que los valores de AIC y BIC son los mejores obtenidos de todos los métodos implementados.

Predicciones ultimos 3 años

```
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_absolute_error,
mean_absolute_percentage_error

ultimos_3_anos = serieTemporalD['2022-01-01':'2024-12-31']

# Dividir los datos en 70% entrenamiento y 30% prueba
n = len(ultimos_3_anos)
```

```
train size = int(n * 0.7)
train, test = ultimos 3 anos[:train size], ultimos 3 anos[train size:]
pred = modelo arima diesel.get prediction(start=test.index[0],
end=test.index[-1])
pred ci = pred.conf int()
ax = serieTemporalD['2022':].plot(label='observed')
pred.predicted mean.plot(ax=ax, label='One-step ahead Forecast',
alpha=.7, figsize=(14, 4))
ax.fill between( pred ci.iloc[:,0],
                pred ci.iloc[:,1], color='k', alpha=.2)
# Evaluar el modelo
rmse = np.sqrt(mean squared error(test, pred.predicted mean))
mae = mean absolute error(test, pred.predicted mean)
mape = mean absolute percentage error(test, pred.predicted mean)
print(f'RMSE: {rmse:.2f}')
print(f'MAE: {mae:.2f}')
print(f'MAPE: {mape * 100:.2f}%')
plt.legend()
plt.title(f'Predicción últimos 3 años Diesel')
plt.show()
RMSE: 9.34
MAE: 8.38
MAPE: 47.00%
```


Para la serie de tiempo de consumo de diesel se utilizó información de los últimos 3 años y concretamente en los meses entre septiembre y abril de 2024, se realizó una predicción y se evaluaron para ver qué tanto se asemeajaba a la información real de la serie de tiempo. En la misma, se puede ver que se asemeja bastante visualmente, además el RMSE y el MAE obtenidos son relativamente bajos, lo que indica una buena prediccion. Por otra parte, el MAPE fué de 47% por lo que se puede decir que la predicción es razonable.

```
ultimos 3 anos = serieTemporalR['2022-01-01':'2024-12-31']
# Dividir los datos en 70% entrenamiento y 30% prueba
n = len(ultimos 3 anos)
train size = int(n * 0.7)
train, test = ultimos 3 anos[:train size], ultimos 3 anos[train size:]
pred = modelo arima regular.get prediction(start=test.index[0],
end=test.index[-1])
pred ci = pred.conf int()
ax = serieTemporalR['2022':].plot(label='observed')
pred.predicted mean.plot(ax=ax, label='One-step ahead Forecast',
alpha=.7, figsize=(14, 4))
ax.fill between( pred ci.iloc[:,0],
                pred_ci.iloc[:,1], color='k', alpha=.2)
# Evaluar el modelo
rmse = np.sqrt(mean squared error(test, pred.predicted mean))
mae = mean_absolute_error(test, pred.predicted_mean)
mape = mean absolute percentage error(test, pred.predicted mean)
print(f'RMSE: {rmse:.2f}')
print(f'MAE: {mae:.2f}')
print(f'MAPE: {mape * 100:.2f}%')
plt.legend()
plt.title(f'Predicción últimos 3 años Regular')
plt.show()
pred
RMSE: 17.56
MAE: 13.31
MAPE: 136.39%
```


<statsmodels.tsa.statespace.mlemodel.PredictionResultsWrapper at
0x2dc4c777f90>

Para esta predicción podemos ver en la gráfica de la serie de tiempo, la predicción inicia alineada a los datos reales, sin embargo se desalinea en las siguientes partes. El RMSE y el MAE son relativamente bajos aunque más altos que la anterior, sin embargo el MAPE es casi del 136% por lo que indica una predicción bastante pobre.

```
ultimos 3 anos = serieTemporalS['2022-01-01':'2024-12-31']
# Dividir los datos en 70% entrenamiento y 30% prueba
n = len(ultimos 3 anos)
train size = int(n * 0.7)
train, test = ultimos 3 anos[:train size], ultimos 3 anos[train size:]
pred = modelo arima super.get prediction(start=test.index[0],
end=test.index[-1])
pred ci = pred.conf int()
ax = serieTemporalS['2022':].plot(label='observed')
pred.predicted mean.plot(ax=ax, label='One-step ahead Forecast',
alpha=.7, figsize=(14, 4))
ax.fill between( pred ci.iloc[:,0],
                pred_ci.iloc[:,1], color='k', alpha=.2)
# Evaluar el modelo
rmse = np.sqrt(mean_squared_error(test, pred.predicted_mean))
mae = mean absolute error(test, pred.predicted mean)
mape = mean absolute percentage error(test, pred.predicted mean)
print(f'RMSE: {rmse:.2f}')
print(f'MAE: {mae:.2f}')
print(f'MAPE: {mape * 100:.2f}%')
plt.legend()
plt.title(f'Predicción últimos 3 años Superior')
plt.show()
pred
RMSE: 0.77
MAE: 0.52
MAPE: 7882774729377.25%
```


<statsmodels.tsa.statespace.mlemodel.PredictionResultsWrapper at
0x2dc68fb6b50>

Para esta predicción podemos ver en la gráfica de la serie de tiempo que la predicción se mantiene bastante alineada a los datos reales. El RMSE y el MAE son bastante bajos, lo que podría dar indicios de una buena predicción, sin embargo el MAPE es demasiado grande, indicandonos que igualmente sería una predicción bastante pobre.

Prediccion para 2024

```
actual year = serieTemporalD['2024-01-01':'2024-12-31']
# Dividir los datos en 70% entrenamiento y 30% prueba
n = len(actual year)
train size = int(n * 0.7)
train, test = actual_year[:train_size], actual_year[train_size:]
pred = modelo arima diesel.get prediction(start=test.index[0],
end='2024-12-31')
pred ci = pred.conf int()
ax = serieTemporalD['2024':].plot(label='observed')
pred.predicted mean.plot(ax=ax, label='One-step ahead Forecast',
alpha=.7, figsize=(14, 4))
ax.fill between( pred ci.iloc[:,0],
                pred_ci.iloc[:,1], color='k', alpha=.2)
plt.legend()
plt.title(f'Predicción 2024 Diesel')
plt.show()
# Alinear las predicciones y los valores reales para asegurarse de que
tienen la misma longitud
```

```
predictions = pred.predicted_mean.loc[test.index]
true_values = test

# Calcular intervalo de confianza
pred_ci = pred.conf_int().loc[test.index]

# Calcular errores
rmse = np.sqrt(mean_squared_error(true_values, predictions))
mae = mean_absolute_error(true_values, predictions)
mape = np.mean(np.abs((true_values - predictions) / true_values)) *
100

print(f'RMSE: {rmse}')
print(f'MAE: {mae}')
print(f'MAPE: {mape:.2f}%')
```


RMSE: 4.790903186877741 MAE: 4.561657135595812

MAPE: 22.95%

Haciendo la predicción pero solo con el año 2024 para el consumo de diesel, podemos ver que empieza bastante alineada con los datos reales. El RMSE y el MAE son relativamente bajos y el MAPE es del casi 23% lo que nos dice que no es una excelente predicción pero es bastante razonable.

```
actual_year = serieTemporalR['2024-01-01':'2024-12-31']
# Dividir los datos en 70% entrenamiento y 30% prueba
n = len(actual_year)
train_size = int(n * 0.7)
train, test = actual_year[:train_size], actual_year[train_size:]
pred = modelo_arima_regular.get_prediction(start=test.index[0], end='2024-12-31')
pred_ci = pred.conf_int()
```

```
ax = serieTemporalR['2024':].plot(label='observed')
pred.predicted mean.plot(ax=ax, label='One-step ahead Forecast',
alpha=.7, figsize=(14, 4))
ax.fill between( pred ci.iloc[:,0],
                pred ci.iloc[:,1], color='k', alpha=.2)
plt.title(f'Predicción 2024 Regular')
plt.legend()
plt.show()
# Alinear las predicciones y los valores reales para asegurarse de que
tienen la misma longitud
predictions = pred.predicted mean.loc[test.index]
true values = test
# Calcular intervalo de confianza
pred ci = pred.conf int().loc[test.index]
# Calcular errores
rmse = np.sqrt(mean squared error(true values, predictions))
mae = mean absolute error(true values, predictions)
mape = np.mean(np.abs((true values - predictions) / true values)) *
100
print(f'RMSE: {rmse}')
print(f'MAE: {mae}')
print(f'MAPE: {mape:.2f}%')
```


RMSE: 31.710895539342097 MAE: 31.408330118821873

MAPE: 321.42%

En la predicción de serie de tiempo de importación regular con el año 2024 podemos ver que el RMSE y el MAE son más altos de lo usual y el MAPE sobrepasa el 100%, lo que indicaría una predicción bastante pobre. En comparativa, es mejor la predicción que cuenta con más años antes del 2024.

```
actual year = serieTemporalS['2024-01-01':'2024-12-31']
# Dividir los datos en 70% entrenamiento y 30% prueba
n = len(actual year)
train size = int(n * 0.7)
train, test = actual year[:train size], actual year[train size:]
pred = modelo arima super.get prediction(start=test.index[0],
end='2024-12-31')
pred ci = pred.conf int()
ax = serieTemporalS['2024':].plot(label='observed')
pred.predicted mean.plot(ax=ax, label='One-step ahead Forecast',
alpha=.7, figsize=(14, 4))
ax.fill between( pred ci.iloc[:,0],
                pred_ci.iloc[:,1], color='k', alpha=.2)
plt.legend()
plt.title(f'Predicción 2024 Superior')
plt.show()
# Alinear las predicciones y los valores reales para asegurarse de que
tienen la misma longitud
predictions = pred.predicted_mean.loc[test.index]
true values = test
# Calcular intervalo de confianza
pred ci = pred.conf int().loc[test.index]
# Calcular errores
rmse = np.sqrt(mean squared error(true values, predictions))
mae = mean absolute error(true values, predictions)
mape = np.mean(np.abs((true values - predictions) / true values)) *
100
print(f'RMSE: {rmse}')
print(f'MAE: {mae}')
print(f'MAPE: {mape:.2f}%')
```


RMSE: 0.32406539665899864 MAE: 0.23132556421351486

MAPE: inf%

Por último en la predicción de los precios de la gasolina superior, se puede observar que el modelo del año 2024 no fue el adecuado para realizar la predicción, ya que el modelo casi no se ajusta a los datos reales. A pesar que el RMSE y el MAE salieron batante bajos, MAPE llego casi a infinito indicando una predicción muy pobre, igualmente se puede observar esa mala predicción en la gráfica.

Comportamiendo durante pandemia

```
actual year = serieTemporalD['2020-01-01':]
# Dividir los datos en 70% entrenamiento y 30% prueba
n = len(actual year)
train size = int(n * 0.7)
train, test = actual year[:train size], actual year[train size:]
pred = modelo arima diesel.get prediction(start=test.index[0],
end='2024-12-31')
pred ci = pred.conf int()
ax = serieTemporalD['2020':].plot(label='observed')
pred.predicted mean.plot(ax=ax, label='One-step ahead Forecast',
alpha=.7, figsize=(14, 4))
ax.fill between( pred ci.iloc[:,0],
                pred_ci.iloc[:,1], color='k', alpha=.2)
plt.legend()
plt.title(f'Comportamiendo en 2020')
plt.show()
# Alinear las predicciones y los valores reales para asegurarse de que
tienen la misma longitud
predictions = pred.predicted mean.loc[test.index]
```

```
true_values = test

# Calcular intervalo de confianza
pred_ci = pred.conf_int().loc[test.index]

# Calcular errores
rmse = np.sqrt(mean_squared_error(true_values, predictions))
mae = mean_absolute_error(true_values, predictions)
mape = np.mean(np.abs((true_values - predictions) / true_values)) *
100

print(f'RMSE: {rmse}')
print(f'MAE: {mae}')
print(f'MAPE: {mae}:.2f}%')
```


RMSE: 10.78909174355549 MAE: 9.528774374289872

MAPE: 36.71%

Podemos ver que para el consumo de gasolina diesel durante 2020 fue más bajo de lo normal, luego para 2021 y 2022 se puede ver un poco de aumento, hasta 2023 que este aumento fue significativo. Debido a la baja de consumo durante el año 2020 y la costosa recuperación entre 2021 y 2022, se puede considerar que puede afectar la predicción ya que se pudo ver un abrupto cambio en 2023 a comparación de los años cercanos a la pandemia ya que el valle generado en la pandemia no es considerado un comportamiento usual en el consumo.

```
actual_year = serieTemporalR['2020-01-01':]

# Dividir los datos en 70% entrenamiento y 30% prueba
n = len(actual_year)
train_size = int(n * 0.7)
train, test = actual_year[:train_size], actual_year[train_size:]
pred = modelo_arima_regular.get_prediction(start=test.index[0], end='2024-12-31')
```

```
pred ci = pred.conf int()
ax = serieTemporalR['2020':].plot(label='observed')
pred.predicted mean.plot(ax=ax, label='One-step ahead Forecast',
alpha=.7, figsize=(14, 4))
ax.fill_between( pred_ci.iloc[:,0],
                pred_ci.iloc[:,1], color='k', alpha=.2)
plt.title(f'Comportamiento en 2020')
plt.legend()
plt.show()
# Alinear las predicciones y los valores reales para asegurarse de que
tienen la misma longitud
predictions = pred.predicted mean.loc[test.index]
true values = test
# Calcular intervalo de confianza
pred ci = pred.conf int().loc[test.index]
# Calcular errores
rmse = np.sqrt(mean squared error(true values, predictions))
mae = mean absolute error(true values, predictions)
mape = np.mean(np.abs((true values - predictions) / true values)) *
100
print(f'RMSE: {rmse}')
print(f'MAE: {mae}')
print(f'MAPE: {mape:.2f}%')
```


RMSE: 18.11992975727239 MAE: 13.964687409995861

MAPE: 90.00%

Para la importación de gasolina regular se puede ver que no hubo mayor cambio en la fluctuación de importaciones ya que en 2020 mostraban un alza, luego bajo un poco, a inicios de 2021 volvió a subir y bajo una temporada, luego 2022 vuelve a subir y bajar al final. La pequeña

diferencia es que en 2023, la parte alta fue un poco más que los años anteriores, probablemente por la recuperación que se vió en ese año, hasta llegar a 2024 sin cambiar casi nada a inicios de ese mismo año. Podemos ver que la predicción no es tan buena y puede deberse a las fluctuaciones de cada año.

```
actual year = serieTemporalS['2021-01-01':]
# Dividir los datos en 70% entrenamiento y 30% prueba
n = len(actual year)
train size = int(n * 0.7)
train, test = actual year[:train size], actual year[train size:]
pred = modelo arima super.get prediction(start=test.index[0],
end='2024-12-31')
pred ci = pred.conf int()
ax = serieTemporalS['2021':].plot(label='observed')
pred.predicted mean.plot(ax=ax, label='One-step ahead Forecast',
alpha=.7, figsize=(14, 4))
ax.fill between( pred ci.iloc[:,0],
                pred_ci.iloc[:,1], color='k', alpha=.2)
plt.legend()
plt.title(f'Predicción 2024 Superior')
plt.show()
# Alinear las predicciones y los valores reales para asegurarse de que
tienen la misma longitud
predictions = pred.predicted mean.loc[test.index]
true values = test
# Calcular intervalo de confianza
pred ci = pred.conf int().loc[test.index]
# Calcular errores
rmse = np.sqrt(mean_squared_error(true values, predictions))
mae = mean absolute error(true values, predictions)
mape = np.mean(np.abs((true values - predictions) / true values)) *
100
print(f'RMSE: {rmse}')
print(f'MAE: {mae}')
print(f'MAPE: {mape:.2f}%')
```


RMSE: 0.7509319468696994 MAE: 0.5098981943527374

MAPE: inf%

Finalmente tenemos los precios de la gasolina super, la cual es un poco más dificil de ver la predicción de la gráfica ya que solo cuenta con el año 2021 en adelante. Aún así, basandonos en el comportamiento de predicciones anteriores se ve que durante el año 2021 hasta inicios del 2022, los cambios registrados fueron un poco más bajos, lo cual se le podría atribuir a la pandemia. Luego en el 2022 hubo un aumento significativo hasta llegar a 2023 donde se registró una pequeña disminución que se mantuvo hasta 2024. En este modelo podemos ver que tanto en periodos anteriores como actuales, cuentan con cierta incertidumbre de predicción a futuro por lo que es considerado uno de los peores modelos que se pudieron dar entre los de gasolina regular y diesel, por lo que a pesar que no cuenta con el año 2020 para determinar si la pandemia fue lo que afectó principalmente, se puede evidenciar que fué el peor modelo de predicción.

Posiblemente el mejor de todos y el único modelo razonable de predicción fue el de consumo de diesel, ya que fué el que mejor pudo predecir y evidenciar fluctuaciones durante la pandemia.