The LWE problem from lattices to cryptography

Damien Stehlé

ENS de Lyon

Šibenik, June 2015

What is a good problem, for a cryptographer?

- Almost all of its instances must be hard to solve.
 Attacks must be too expensive.
- Its instances must be easy to sample.
 The algorithms run by honest users should be efficient.
- The problem must be (algebraically) rich/expressive
 So that interesting models of attacks can be handled,
 even for advanced cryptographic functionalities.

What is a good problem, for a cryptographer?

- Almost all of its instances must be hard to solve.
 Attacks must be too expensive.
 - Its instances must be easy to sample.

 The algorithms run by honest users should be efficient.
- The problem must be (algebraically) rich/expressive
 So that interesting models of attacks can be handled,
 even for advanced cryptographic functionalities.

What is a good problem, for a cryptographer?

- Almost all of its instances must be hard to solve.
 Attacks must be too expensive.
- Its instances must be easy to sample.
 The algorithms run by honest users should be efficient.
- The problem must be (algebraically) rich/expressive
 So that interesting models of attacks can be handled,
 even for advanced cryptographic functionalities.

What is a good problem, for a cryptographer?

- Almost all of its instances must be hard to solve.
 Attacks must be too expensive.
- Its instances must be easy to sample.
 The algorithms run by honest users should be efficient.
- The problem must be (algebraically) rich/expressive.
 So that interesting models of attacks can be handled, even for advanced cryptographic functionalities.

The Learning With Errors problem

Informal definition

Solve a random system of m noisy linear equations and n unknowns modulo an integer q, with $m \gg n$.

- The best known algorithms are exponential in $n \log q$.
- Sampling an instance costs $\mathcal{O}(mn \log q)$. Very often, $m = \mathcal{O}(n \log q)$, so this is $\mathcal{O}((n \log q)^2)$
- Very rich/expressive
 - encryption [Re05], ID-based encr. [GePeVa08], fully homomorphic encr. [BrVa11], attribute-based encr. [GoVaWe13], etc.

The Learning With Errors problem

Informal definition

Solve a random system of m noisy linear equations and n unknowns modulo an integer q, with $m \gg n$.

- The best known algorithms are exponential in $n \log q$.
- Sampling an instance costs $\mathcal{O}(mn \log q)$. Very often, $m = \mathcal{O}(n \log q)$, so this is $\mathcal{O}((n \log q)^2)$.
- Very rich/expressive: encryption [Re05], ID-based encr. [GePeVa08], fully homomorphic encr. [BrVa11], attribute-based encr. [GoVaWe13], etc.

The Learning With Errors problem

Informal definition

Solve a random system of m noisy linear equations and n unknowns modulo an integer q, with $m \gg n$.

- The best known algorithms are exponential in $n \log q$.
- Sampling an instance costs $\mathcal{O}(mn \log q)$. Very often, $m = \mathcal{O}(n \log q)$, so this is $\mathcal{O}((n \log q)^2)$.
- Very rich/expressive: encryption [Re05], ID-based encr. [GePeVa08], fully homomorphic encr. [BrVa11], attribute-based encr. [GoVaWe13], etc.

Goals of this talk

- Introduce LWE.
- Show the relationship between LWE and lattices.
- Use LWE to design a public-key encryption scheme.
- Give some open problems.

Road-map

- Definition of the LWE problem
- Regev's encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems

Road-map

- Definition of the LWE problem
- Regev's encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems

Gaussian distributions

Continuous Gaussian of parameter s:

$$D_s(x) \sim rac{1}{s} \exp\left(-\pi rac{x^2}{s^2}
ight) \ orall x \in \mathbb{R}$$

Gaussian distributions

Continuous Gaussian of parameter s:

$$D_s(x) \sim \frac{1}{s} \exp\left(-\pi \frac{x^2}{s^2}\right)$$

 $\forall x \in \mathbb{R}$

Discrete Gaussian of support \mathbb{Z} and parameter s:

$$\begin{array}{|c|c|} D_{\mathbb{Z},s}(x) \sim \frac{1}{s} \exp\left(-\pi \frac{x^2}{s^2}\right) \\ \forall x \in \mathbb{Z} \end{array}$$

Gaussian distributions

Continuous Gaussian of parameter s:

$$\begin{vmatrix} D_s(x) \sim \frac{1}{s} \exp\left(-\pi \frac{x^2}{s^2}\right) \\ \forall x \in \mathbb{R} \end{vmatrix}$$

Discrete Gaussian of support \mathbb{Z} and parameter s:

$$\begin{array}{|c|c|} D_{\mathbb{Z},s}(x) \sim \frac{1}{s} \exp\left(-\pi \frac{x^2}{s^2}\right) \\ \forall x \in \mathbb{Z} \end{array}$$

- That's not the rounding of a continuous Gaussian.
- One may efficiently sample from it.
- The usual tail bound holds.

Damien Stehlé The LWE problem 02/06/2015

6/40

The LWE problem [Re05]

Let $n \geq 1, q \geq 2$ and $\alpha \in (0,1)$. For all $\mathbf{s} \in \mathbb{Z}_q^n$, we define the distribution $D_{n,q,\alpha}(\mathbf{s})$:

$$(\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$$
, with $\mathbf{a} \hookleftarrow \mathit{U}(\mathbb{Z}_q^n)$ and $e \hookleftarrow \mathit{D}_{\mathbb{Z}, \alpha q}$.

Search LWE

For all **s**: Given arbitrarily many samples from $D_{n,q,\alpha}(\mathbf{s})$, find **s**

(Information-theoretically, $\approx n \frac{\log q}{\log 1/\alpha}$ samples uniquely determine s.)

Decision LWE

With non-negligible probability over $\mathbf{s} \leftarrow U(\mathbb{Z}_q^n)$: distinguish between the distributions $D_{n,q,\alpha}(\mathbf{s})$ and $U(\mathbb{Z}_q^{n+1})$

(Non-negligible: $1/(n \log q)^c$ for some constant c > 0.)

The LWE problem [Re05]

Let $n \ge 1$, $q \ge 2$ and $\alpha \in (0,1)$. For all $\mathbf{s} \in \mathbb{Z}_q^n$, we define the distribution $D_{n,q,\alpha}(\mathbf{s})$:

$$(\mathbf{a},\langle \mathbf{a},\mathbf{s}\rangle+e)\in\mathbb{Z}_q^n\times\mathbb{Z}_q, \text{ with } \mathbf{a}\hookleftarrow \mathit{U}(\mathbb{Z}_q^n) \text{ and } e\hookleftarrow \mathit{D}_{\mathbb{Z},\alpha q}.$$

Search LWE

For all **s**: Given arbitrarily many samples from $D_{n,q,\alpha}(\mathbf{s})$, find **s**.

(Information-theoretically, $\approx n \frac{\log q}{\log 1/\alpha}$ samples uniquely determine s.)

Decision LWE

With non-negligible probability over $\mathbf{s} \leftarrow U(\mathbb{Z}_q^n)$: distinguish between the distributions $D_{n,q,\alpha}(\mathbf{s})$ and $U(\mathbb{Z}_q^{n+1})$

(Non-negligible: $1/(n \log q)^c$ for some constant c > 0.)

The LWE problem [Re05]

Let $n \geq 1, q \geq 2$ and $\alpha \in (0,1)$. For all $\mathbf{s} \in \mathbb{Z}_q^n$, we define the distribution $D_{n,q,\alpha}(\mathbf{s})$:

$$(\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$$
, with $\mathbf{a} \hookleftarrow U(\mathbb{Z}_q^n)$ and $e \hookleftarrow D_{\mathbb{Z}, \alpha q}$.

Search LWE

For all **s**: Given arbitrarily many samples from $D_{n,q,\alpha}(\mathbf{s})$, find **s**.

(Information-theoretically, $pprox n \frac{\log q}{\log 1/\alpha}$ samples uniquely determine s.)

Decision LWE

With non-negligible probability over $\mathbf{s} \leftarrow U(\mathbb{Z}_q^n)$: distinguish between the distributions $D_{n,q,\alpha}(\mathbf{s})$ and $U(\mathbb{Z}_q^{n+1})$.

(Non-negligible: $1/(n \log q)^c$ for some constant c > 0.)

Decision LWE

Let $n \geq 1, q \geq 2$ and $\alpha \in (0,1)$. For all $\mathbf{s} \in \mathbb{Z}_q^n$, we define the distribution $D_{n,q,\alpha}(\mathbf{s})$:

$$(\mathbf{a},\langle \mathbf{a},\mathbf{s}\rangle+e), \text{ with } \mathbf{a} \hookleftarrow \mathit{U}(\mathbb{Z}_q^n) \text{ and } e \hookleftarrow \mathit{D}_{\mathbb{Z},\alpha q}.$$

Decision LWE

With non-negligible probability over $\mathbf{s} \hookleftarrow U(\mathbb{Z}_q^n)$: distinguish between the distributions $D_{n,q,\alpha}(\mathbf{s})$ and $U(\mathbb{Z}_q^{n+1})$.

We are given an oracle \mathcal{O} that produces independent samples from always the same distribution, which is:

- either $D_{n,q,\alpha}(\mathbf{s})$ for a fixed \mathbf{s} ,
- or $U(\mathbb{Z}_q^{n+1})$.

We have to tell which, with probability $\geq \frac{1}{2} + \frac{1}{(n \log a)^{\Omega(1)}}$.

Search LWE \equiv solving noisy linear systems

Find $s_1, s_2, s_3, s_4, s_5 \in \mathbb{Z}_{23}$ such that:

$$s_1 + 22s_2 + 17s_3 + 2s_4 + s_5 \approx 16 \mod 23$$
 $3s_1 + 2s_2 + 11s_3 + 7s_4 + 8s_5 \approx 17 \mod 23$
 $15s_1 + 13s_2 + 10s_3 + s_4 + 22s_5 \approx 3 \mod 23$
 $17s_1 + 11s_2 + s_3 + 10s_4 + 3s_5 \approx 8 \mod 23$
 $2s_1 + s_2 + 13s_3 + 6s_4 + 2s_5 \approx 9 \mod 23$
 $4s_1 + 4s_2 + s_3 + 5s_4 + s_5 \approx 18 \mod 23$
 $11s_1 + 12s_2 + 5s_3 + s_4 + 9s_5 \approx 7 \mod 23$

We can even ask for arbitrarily many noisy equations.

Matrix version of LWE

- $\mathbf{A} \leftarrow U(\mathbb{Z}_q^{m \times n}),$
- $\mathbf{s} \leftarrow U(\mathbb{Z}_q^n)$,
- $e \leftarrow D_{\mathbb{Z}^m,\alpha q}$.

Discrete Gaussian error

Decision LWE:

Determine whether (\mathbf{A}, \mathbf{b}) is of the form above, or uniform.

Some simple remarks

- If $\alpha \approx$ 0, LWE is easy to solve.
- If $\alpha \approx 1$, LWE is trivially hard.
- Very often, we are interested in

$$\alpha \approx \frac{1}{n^c}, \ q \approx n^{c'}, \ \text{ for some constants } c' > c > 0.$$

• Why a discrete Gaussian noise?

Why is LWE interesting for crypto?

- LWE is just noisy linear algebra: Easy to use, expressive.
- LWE seems to be a (very) hard problem.

Two particularly useful properties

- Unlimited number of samples.
- Random self-reducibility over s

If q is prime and $\leq n^{\mathcal{O}(1)}$, there are polynomial-time reductions between the Search and Decision versions of LWE [Re05].

(We may remove these assumptions, if we allow some polynomial blow-up on α .)

Why is LWE interesting for crypto?

- LWE is just noisy linear algebra: Easy to use, expressive.
- LWE seems to be a (very) hard problem.

Two particularly useful properties:

- Unlimited number of samples.
- Random self-reducibility over s.

If q is prime and $\leq n^{\mathcal{O}(1)}$, there are polynomial-time reductions between the Search and Decision versions of LWE [Re05].

(We may remove these assumptions, if we allow some polynomial blow-up on α .)

Road-map

- Definition of the LWE problem
- Regev's encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems

Public-key encryption

A public-key encryption scheme over $\{0,1\}\times\mathcal{C}$ consists in three algorithms:

- KEYGEN: Security parameter $\mapsto (pk, sk)$.
- Enc: $(pk, M) \mapsto C \in C$.
- Dec: $(sk, C) \mapsto M' \in \{0, 1\}.$

Correctness

With probability ≈ 1 , $\forall M \in \{0,1\}$: $\mathrm{DEC}_{sk}(\mathrm{Enc}_{pk}(M)) = M$

Security (IND-CPA)

The distributions of $(pk, \text{ENC}_{pk}(0))$ and $(pk, \text{ENC}_{pk}(1))$ must be **computationally indistinguishable**.

Public-key encryption

A public-key encryption scheme over $\{0,1\}\times\mathcal{C}$ consists in three algorithms:

- KEYGEN: Security parameter $\mapsto (pk, sk)$.
- Enc: $(pk, M) \mapsto C \in C$.
- Dec: $(sk, C) \mapsto M' \in \{0, 1\}.$

Correctness

With probability ≈ 1 , $\forall M \in \{0,1\}$: $\mathrm{DEC}_{sk}(\mathrm{Enc}_{pk}(M)) = M$.

Security (IND-CPA)

The distributions of $(pk, \text{ENC}_{pk}(0))$ and $(pk, \text{ENC}_{pk}(1))$ must be **computationally indistinguishable**.

Public-key encryption

A public-key encryption scheme over $\{0,1\}\times\mathcal{C}$ consists in three algorithms:

- KEYGEN: Security parameter $\mapsto (pk, sk)$.
- Enc: $(pk, M) \mapsto C \in C$.
- Dec: $(sk, C) \mapsto M' \in \{0, 1\}.$

Correctness

With probability ≈ 1 , $\forall M \in \{0,1\}$: $\mathrm{Dec}_{\mathit{sk}}(\mathrm{Enc}_{\mathit{pk}}(M)) = M$.

Security (IND-CPA)

The distributions of $(pk, \text{Enc}_{pk}(0))$ and $(pk, \text{Enc}_{pk}(1))$ must be **computationally indistinguishable**.

Regev's encryption scheme

- Parameters: n, m, q, α .
- Keys: sk = s and pk = (A, b), with b = As + e
- **ENC** $(M \in \{0,1\})$: Let $r \leftrightarrow U(\{0,1\}^m)$,

$$\mathbf{u}^T = \mathbf{A}$$
, $\mathbf{v} = \mathbf{b} + \lfloor q/2 \rfloor \cdot M$.

• **DEC**(\mathbf{u}, v): Compute $v - \mathbf{u}^T \mathbf{s}$ (modulo q)

If it's close to 0, output 0, else output 1

LWE hardness

Regev's encryption scheme

- Parameters: n, m, q, α .
- Keys: sk = s and pk = (A, b), with b = As + e
- **ENC**($M \in \{0,1\}$): Let $r \leftarrow U(\{0,1\}^m)$,

$$\mathbf{u}^T = \mathbf{A}$$
, $\mathbf{v} = \mathbf{b} + \lfloor q/2 \rfloor \cdot M$.

• **DEC**(\mathbf{u}, v): Compute $v - \mathbf{u}^T \mathbf{s}$ (modulo q).

If it's close to 0, output 0, else output 1.

Decryption correctness

Correctness

Assume that $\alpha \leq o(\frac{1}{\sqrt{m \log n}})$.

Then, with probability $\geq 1 - n^{-\omega(1)}$, it correctly decrypts.

We have

$$v - \mathbf{u}^T \mathbf{s} = \mathbf{r}^T \mathbf{e} + \lfloor q/2 \rfloor M \mod q$$

As $\mathbf{e} \sim D^m_{\mathbb{Z}, \alpha q}$, we expect $\langle \mathbf{r}, \mathbf{e} \rangle$ to behave like $D_{\|\mathbf{r}\| \alpha q}$

As $||\mathbf{r}|| \leq \sqrt{m}$, we have $||\mathbf{r}|| \alpha q \leq o(\frac{q}{\sqrt{\log n}})$, and a sample from D_{n-n-n} is $< \sigma/8$ with probability $\geq 1 - n^{-o(1)}$

Decryption correctness

Correctness

Assume that $\alpha \leq o(\frac{1}{\sqrt{m \log n}})$.

Then, with probability $\geq 1 - n^{-\omega(1)}$, it correctly decrypts.

We have

$$v - \mathbf{u}^T \mathbf{s} = \mathbf{r}^T \mathbf{e} + \lfloor q/2 \rfloor M \mod q.$$

As $\mathbf{e} \sim D^m_{\mathbb{Z}, \alpha q}$, we expect $\langle \mathbf{r}, \mathbf{e} \rangle$ to behave like $D_{\|\mathbf{r}\| \alpha q}$.

As $\|\mathbf{r}\| \leq \sqrt{m}$, we have $\|\mathbf{r}\| \alpha q \leq o(\frac{q}{\sqrt{\log n}})$, and a sample from $D_{\|\mathbf{r}\| \alpha q}$ is < q/8 with probability $\geq 1 - n^{-\omega(1)}$

Damien Stehlé The LWF problem 02/06/2015

Decryption correctness

Correctness

Assume that $\alpha \leq o(\frac{1}{\sqrt{m \log n}})$.

Then, with probability $\geq 1 - n^{-\omega(1)}$, it correctly decrypts.

We have

$$v - \mathbf{u}^T \mathbf{s} = \mathbf{r}^T \mathbf{e} + |q/2|M \mod q.$$

As $\mathbf{e} \sim D^m_{\mathbb{Z}, \alpha q}$, we expect $\langle \mathbf{r}, \mathbf{e} \rangle$ to behave like $D_{\|\mathbf{r}\| \alpha q}$.

As $\|\mathbf{r}\| \leq \sqrt{m}$, we have $\|\mathbf{r}\| \alpha q \leq o(\frac{q}{\sqrt{\log n}})$, and a sample from $D_{\|\mathbf{r}\| \alpha q}$ is < q/8 with probability $\geq 1 - n^{-\omega(1)}$.

 \Rightarrow We know $\mathbf{r}^T \mathbf{e} + |q/2|M$ over the integers

Conclusion

Decryption correctness

Correctness

Assume that $\alpha \leq o(\frac{1}{\sqrt{m \log n}})$.

Then, with probability $\geq 1 - n^{-\omega(1)}$, it correctly decrypts.

We have

$$v - \mathbf{u}^T \mathbf{s} = \mathbf{r}^T \mathbf{e} + |q/2|M \mod q.$$

As $\mathbf{e} \sim D^m_{\mathbb{Z},\alpha q}$, we expect $\langle \mathbf{r}, \mathbf{e} \rangle$ to behave like $D_{\|\mathbf{r}\|\alpha q}$.

As $\|\mathbf{r}\| \leq \sqrt{m}$, we have $\|\mathbf{r}\| \alpha q \leq o(\frac{q}{\sqrt{\log n}})$, and a sample from $D_{\|\mathbf{r}\| \alpha q}$ is < q/8 with probability $\geq 1 - n^{-\omega(1)}$.

 \Rightarrow We know $\mathbf{r}^T \mathbf{e} + |q/2|M$ over the integers.

Damien Stehlé The LWF problem 02/06/2015

IND-CPA Security

Security

Assume that $m = \Omega(n \log q)$. Then any (IND-CPA) attacker may be turned into an algorithm for LWE_{n,q,α}.

Fake security experiment

Challenger uses and gives to the attacker a uniform pair (\mathbf{A}, \mathbf{b}) (instead of $\mathbf{b} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e}$).

If attacker behaves differently than in real security experiment, it can be used to solve LWE.
 In fake experiment. (A, b, r/A, r/b) is a uniform, benefit

IND-CPA Security

Security

Assume that $m = \Omega(n \log q)$. Then any (IND-CPA) attacker may be turned into an algorithm for LWE_{n,q,α}.

Fake security experiment

Challenger uses and gives to the attacker a uniform pair (\mathbf{A}, \mathbf{b}) (instead of $\mathbf{b} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e}$).

- If attacker behaves differently than in real security experiment, it can be used to solve IWE.
- ② In fake experiment, $(\mathbf{A}, \mathbf{b}, \mathbf{r}^T \mathbf{A}, \mathbf{r}^T \mathbf{b})$ is \approx uniform, hence $\mathrm{Enc}(0)$ and $\mathrm{Enc}(1)$ follow (\approx) the same distribution.

IND-CPA Security

Security

Assume that $m = \Omega(n \log q)$. Then any (IND-CPA) attacker may be turned into an algorithm for LWE_{n,q,α}.

Fake security experiment

Challenger uses and gives to the attacker a uniform pair (\mathbf{A}, \mathbf{b}) (instead of $\mathbf{b} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e}$).

- If attacker behaves differently than in real security experiment, it can be used to solve LWE.
- ② In fake experiment, $(\mathbf{A}, \mathbf{b}, \mathbf{r}^T \mathbf{A}, \mathbf{r}^T \mathbf{b})$ is \approx uniform, hence $\mathrm{Enc}(0)$ and $\mathrm{Enc}(1)$ follow (\approx) the same distribution.

IND-CPA Security

Security

Assume that $m = \Omega(n \log q)$. Then any (IND-CPA) attacker may be turned into an algorithm for LWE_{n,q,\alpha}.

Fake security experiment

Challenger uses and gives to the attacker a uniform pair (\mathbf{A}, \mathbf{b}) (instead of $\mathbf{b} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e}$).

- If attacker behaves differently than in real security experiment, it can be used to solve LWE.
- ② In fake experiment, $(\mathbf{A}, \mathbf{b}, \mathbf{r}^T \mathbf{A}, \mathbf{r}^T \mathbf{b})$ is \approx uniform, hence Enc(0) and Enc(1) follow (\approx) the same distribution.

Setting the parameters: n, m, α, q

- Correctness: $\alpha \leq o(\frac{1}{\sqrt{m \log n}})$
- Reducing LWE to IND-CPA security: $m \ge \Omega(n \log q)$
- Set α as large as possible (α impacts security)
- Set m as small as possible (m impacts efficiency)
- **Set** n and q so that LWE_{n,q,α} is sufficiently hard to solve

Here:
$$\alpha = \widetilde{\Theta}(\sqrt{n})$$
, $m = \widetilde{\Theta}(n)$ and $q = \widetilde{\Theta}(n)$

This is not very practical... ciphertext expansion: $\widetilde{\Theta}(n)$

Setting the parameters: n, m, α, q

- Correctness: $\alpha \le o(\frac{1}{\sqrt{m \log n}})$
- Reducing LWE to IND-CPA security: $m \ge \Omega(n \log q)$
- **①** Set α as large as possible (α impacts security)
- Set m as small as possible (m impacts efficiency)
- **Set** n and q so that $\mathsf{LWE}_{n,q,\alpha}$ is sufficiently hard to solve

Here:
$$\alpha = \widetilde{\Theta}(\sqrt{n})$$
, $m = \widetilde{\Theta}(n)$ and $q = \widetilde{\Theta}(n)$.

This is not very practical... ciphertext expansion: $\widetilde{\Theta}(n)$

Setting the parameters: n, m, α, q

- Correctness: $\alpha \le o(\frac{1}{\sqrt{m \log n}})$
- Reducing LWE to IND-CPA security: $m \ge \Omega(n \log q)$
- **①** Set α as large as possible (α impacts security)
- Set m as small as possible (m impacts efficiency)
- **3** Set n and q so that LWE $_{n,q,\alpha}$ is sufficiently hard to solve

Here:
$$\alpha = \widetilde{\Theta}(\sqrt{n})$$
, $m = \widetilde{\Theta}(n)$ and $q = \widetilde{\Theta}(n)$.

This is not very practical... ciphertext expansion: $\Theta(n)$.

Multi-bit Regev

- Parameters: n, m, q, α, ℓ .
- Keys: $sk = S \in \mathbb{Z}_q^{n \times \ell}$ and pk = (A, B), with B = AS + E
- **ENC**($M \in \{0,1\}^{\ell}$): Let $\Gamma \leftarrow U(\{0,1\}^m)$,

$$\mathbf{u}^T = \mathbf{A}, \mathbf{v}^T = \mathbf{B} + \lfloor q/2 \rfloor \cdot \mathbf{M}^T.$$

• **DEC**(\mathbf{u}, \mathbf{v}): Compute $\mathbf{v}^T - \mathbf{u}^T \mathbf{S}$ (modulo q).

Asymptotic performance, for $\ell=n$

- Ciphertext expansion: $\widetilde{\Theta}(1)$
- Processing time: $\widetilde{\Theta}(n)$ per message bit
 - Kev size: $\widetilde{\Theta}(n^2)$

Multi-bit Regev

- Parameters: n, m, q, α, ℓ .
- Keys: $sk = S \in \mathbb{Z}_q^{n \times \ell}$ and pk = (A, B), with B = AS + E
- **ENC**($M \in \{0,1\}^{\ell}$): Let $r \leftarrow U(\{0,1\}^m)$,

$$\mathbf{u}^T = \mathbf{A}, \mathbf{v}^T = \mathbf{B} + \lfloor q/2 \rfloor \cdot \mathbf{M}^T.$$

• **DEC**(\mathbf{u}, \mathbf{v}): Compute $\mathbf{v}^T - \mathbf{u}^T \mathbf{S}$ (modulo q).

Asymptotic performance, for $\ell = n$

- Ciphertext expansion: $\widetilde{\Theta}(1)$
- Processing time: $\widetilde{\Theta}(n)$ per message bit
- Key size: $\widetilde{\Theta}(n^2)$

Damien Stehlé

More on Regev's encryption

- This scheme is homomorphic for addition: add ciphertexts
- IAnd also for multiplication: tensor ciphertexts
- ⇒ Can be turned into FHE [Br12]
 - Enc and KeyGen may be swapped: dual-Regev [GePeVa08]
- \Rightarrow This allows ID-based encryption, and more

May be turned into a practical scheme [Pe14]

- Use Ring-LWE rather than LWE: more efficient
- Ciphertext expansion can be lowered to essentially 1
- IND-CCA security can be achieved efficiently in the ROM

More on Regev's encryption

- This scheme is homomorphic for addition: add ciphertexts
- IAnd also for multiplication: tensor ciphertexts
- \Rightarrow Can be turned into FHE [Br12]
 - Enc and KeyGen may be swapped: dual-Regev [GePeVa08]
- ⇒ This allows ID-based encryption, and more

May be turned into a practical scheme [Pe14]

- Use Ring-LWE rather than LWE: more efficient
- Ciphertext expansion can be lowered to essentially 1
- IND-CCA security can be achieved efficiently in the ROM

More on Regev's encryption

- This scheme is homomorphic for addition: add ciphertexts
- IAnd also for multiplication: tensor ciphertexts
- \Rightarrow Can be turned into FHE [Br12]
 - Enc and KeyGen may be swapped: dual-Regev [GePeVa08]
- ⇒ This allows ID-based encryption, and more

May be turned into a practical scheme [Pe14]

- Use Ring-LWE rather than LWE: more efficient
- Ciphertext expansion can be lowered to essentially 1
- IND-CCA security can be achieved efficiently in the ROM

Road-map

- Definition of the LWE problem
- Regev's encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems

Euclidean lattices

Lattice $L = \sum_{i=1}^{n} \mathbb{Z} \mathbf{b}_{i} \subset \mathbb{R}^{n}$, for some linearly indep. \mathbf{b}_{i} 's.

Minimum
$$\lambda(L) = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$$

 SVP_{γ} : Given as input a basis of L find $\mathbf{b} \in L$ s.t. $0 < \|\mathbf{b}\| \le \gamma \cdot \lambda(L)$.

 BDD_{γ} : Given as input a basis of L, and a vector \mathbf{t} s.t. $\mathsf{dist}(\mathbf{t}, L) < \frac{1}{2\gamma} \cdot \lambda(L)$ find $\mathbf{b} \in L$ minimizing $\|\mathbf{b} - \mathbf{t}\|$.

Euclidean lattices

Lattice $L = \sum_{i=1}^{n} \mathbb{Z} \mathbf{b}_{i} \subset \mathbb{R}^{n}$, for some linearly indep. \mathbf{b}_{i} 's.

Minimum
$$\lambda(L) = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$$

SVP_{γ}: Given as input a basis of L, find $\mathbf{b} \in L$ s.t. $0 < \|\mathbf{b}\| \le \gamma \cdot \lambda(L)$.

 BDD_{γ} : Given as input a basis of L, and a vector \mathbf{t} s.t. $\mathsf{dist}(\mathbf{t}, L) < \frac{1}{2\gamma} \cdot \lambda(L)$ find $\mathbf{b} \in L$ minimizing $\|\mathbf{b} - \mathbf{t}\|$.

Euclidean lattices

Lattice $L = \sum_{i=1}^{n} \mathbb{Z} \mathbf{b}_{i} \subset \mathbb{R}^{n}$, for some linearly indep. \mathbf{b}_{i} 's.

Minimum
$$\lambda(L) = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$$

SVP_{γ}: Given as input a basis of L, find $\mathbf{b} \in L$ s.t. $0 < \|\mathbf{b}\| \le \gamma \cdot \lambda(L)$.

BDD $_{\gamma}$: Given as input a basis of L, and a vector \mathbf{t} s.t. $\operatorname{dist}(\mathbf{t}, L) < \frac{1}{2\gamma} \cdot \lambda(L)$, find $\mathbf{b} \in L$ minimizing $\|\mathbf{b} - \mathbf{t}\|$.

Best known (classical/quantum) algorithms

```
\begin{split} \mathsf{SVP}_{\gamma} \colon & \mathsf{Given} \ L, \ \mathsf{find} \ \mathbf{b} \in L \ \mathsf{s.t.} \ 0 < \|\mathbf{b}\| \leq \gamma \cdot \lambda(L). \\ \mathsf{BDD}_{\gamma} \colon & \mathsf{Given} \ L \ \mathsf{and} \ \mathbf{t} \in \mathbb{R}^n \ \mathsf{s.t.} \ \mathsf{dist}(\mathbf{t}, L) < \frac{1}{2\gamma} \cdot \lambda(L), \\ & \mathsf{find} \ \mathbf{b} \in L \ \mathsf{minimizing} \ \|\mathbf{b} - \mathbf{t}\|. \end{split}
```

For small γ : [AgDaReSD15]

- Time $2^{n/2}$
- In practice: up to $n \approx 120$ (with other algorithms)

For $\gamma = n^{\Omega(1)}$: BKZ [ScEu91,HaPuSt11]

- Time $\left(\frac{n}{\log \gamma}\right)^{\mathcal{O}\left(\frac{n}{\log \gamma}\right)}$
- In practice, we can reach $\gamma \approx 1.01^n$ [ChNg11]

https://github.com/dstehle/fplll

Best known (classical/quantum) algorithms

```
\begin{split} \mathsf{SVP}_{\gamma} \colon & \mathsf{Given} \ L, \ \mathsf{find} \ \mathbf{b} \in L \ \mathsf{s.t.} \ 0 < \|\mathbf{b}\| \leq \gamma \cdot \lambda(L). \\ \mathsf{BDD}_{\gamma} \colon & \mathsf{Given} \ L \ \mathsf{and} \ \mathbf{t} \in \mathbb{R}^n \ \mathsf{s.t.} \ \mathsf{dist}(\mathbf{t}, L) < \frac{1}{2\gamma} \cdot \lambda(L), \\ & \mathsf{find} \ \mathbf{b} \in L \ \mathsf{minimizing} \ \|\mathbf{b} - \mathbf{t}\|. \end{split}
```

For small γ : [AgDaReSD15]

- Time $2^{n/2}$.
- In practice: up to $n \approx 120$ (with other algorithms).

```
For \gamma = n^{\Omega(1)}: BKZ [ScEu91,HaPuSt11]
```

- Time $\left(\frac{n}{\log \gamma}\right)^{\mathcal{O}\left(\frac{n}{\log \gamma}\right)}$
- In practice, we can reach $\gamma \approx 1.01^n$ [ChNg11]

https://github.com/dstehle/fplll

Best known (classical/quantum) algorithms

```
\begin{split} \mathsf{SVP}_{\gamma} \colon & \mathsf{Given} \ L, \ \mathsf{find} \ \mathbf{b} \in L \ \mathsf{s.t.} \ 0 < \|\mathbf{b}\| \leq \gamma \cdot \lambda(L). \\ \mathsf{BDD}_{\gamma} \colon & \mathsf{Given} \ L \ \mathsf{and} \ \mathbf{t} \in \mathbb{R}^n \ \mathsf{s.t.} \ \mathsf{dist}(\mathbf{t}, L) < \frac{1}{2\gamma} \cdot \lambda(L), \\ & \mathsf{find} \ \mathbf{b} \in L \ \mathsf{minimizing} \ \|\mathbf{b} - \mathbf{t}\|. \end{split}
```

For small γ : [AgDaReSD15]

• Time $2^{n/2}$.

Introduction

• In practice: up to $n \approx 120$ (with other algorithms).

For $\gamma = n^{\Omega(1)}$: BKZ [ScEu91,HaPuSt11]

- Time $\left(\frac{n}{\log \gamma}\right)^{\mathcal{O}\left(\frac{n}{\log \gamma}\right)}$.
- In practice, we can reach $\gamma \approx 1.01^n$ [ChNg11].

https://github.com/dstehle/fplll

Hardness of SVP

GapSVP_{γ}

Given a basis of a lattice L and d > 0, assess whether

$$\lambda(L) \leq d$$
 or $\lambda(L) > \gamma \cdot d$.

- **NP-hard** when $\gamma < \mathcal{O}(1)$ (random. red.) [Aj98,HaRe07]
- In NP \cap coNP when $\gamma \geq \sqrt{n}$ [GoGo98,AhRe04
- In P when $\gamma \ge \exp\left(n \cdot \frac{\log \log n}{\log n}\right)$ (BKZ)

Hardness of SVP

GapSVP_{γ}

Given a basis of a lattice L and d > 0, assess whether

$$\lambda(L) \leq d$$
 or $\lambda(L) > \gamma \cdot d$.

- **NP-hard** when $\gamma \leq \mathcal{O}(1)$ (random. red.) [Aj98,HaRe07]
- In NP \cap coNP when $\gamma \geq \sqrt{n}$ [GoGo98,AhRe04]
- In P when $\gamma \ge \exp\left(n \cdot \frac{\log \log n}{\log n}\right)$ (BKZ)

Road-map

- Definition of the LWE problem
- Regev's encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems

Each LWE sample gives $\approx \log_2 \frac{1}{\alpha}$ bits of data on secret s.

With a few samples, s is uniquely specified. How to find it?

Exhaustive search

Assume we are given **A** and $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e}$, for some **e** whose entries are $\approx \alpha q$. We want to find **s**.

1st variant:

- Try all the possible $\mathbf{s} \in \mathbb{Z}_q^n$.
- Test if $\mathbf{b} \mathbf{A} \cdot \mathbf{s}$ is small.
- \Rightarrow Cost $\approx q^n$.

2nd variant

- Try all the possible *n* first error terms
- Recover the corresponding s, by linear algebra.
- Test if $\mathbf{b} \mathbf{A} \cdot \mathbf{s}$ is small.
- \Rightarrow Cost $\approx (\alpha a \sqrt{\log n})^n$.

Exhaustive search

Assume we are given **A** and $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e}$, for some **e** whose entries are $\approx \alpha q$. We want to find **s**.

1st variant:

- Try all the possible $\mathbf{s} \in \mathbb{Z}_q^n$.
- Test if $\mathbf{b} \mathbf{A} \cdot \mathbf{s}$ is small.
- \Rightarrow Cost $\approx q^n$.

2nd variant:

- Try all the possible *n* first error terms.
- Recover the corresponding **s**, by linear algebra.
- Test if $\mathbf{b} \mathbf{A} \cdot \mathbf{s}$ is small.
- \Rightarrow Cost $\approx (\alpha q \sqrt{\log n})^n$.

Assume we are given **A** and $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e}$, for some \mathbf{e} whose entries are $\approx \alpha q$. We want to find \mathbf{s} .

Let
$$L_{\mathbf{A}} = \{ \mathbf{x} \in \mathbb{Z}^m : \exists \mathbf{s} \in \mathbb{Z}^n, \mathbf{x} = \mathbf{A}\mathbf{s} \ [q] \} = \mathbf{A}\mathbb{Z}_q^n + q\mathbb{Z}^m.$$

- L_A is a lattice of dimension m
- Whp, its minimum satisfies $\lambda(L) \approx \sqrt{m} \cdot q^{1-\frac{n}{m}}$.
- We have dist(\mathbf{b}, L) = $\|\mathbf{e}\| \approx \sqrt{m\alpha q}$.

LWE reduces to BDD

This is a BDD instance in dim *m* with $\gamma \approx q^{-\frac{n}{m}}/\alpha$

Assume we are given **A** and $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e}$, for some **e** whose entries are $\approx \alpha q$. We want to find **s**.

Let
$$L_{\mathbf{A}} = \{ \mathbf{x} \in \mathbb{Z}^m : \exists \mathbf{s} \in \mathbb{Z}^n, \mathbf{x} = \mathbf{A}\mathbf{s} \ [q] \} = \mathbf{A}\mathbb{Z}_q^n + q\mathbb{Z}^m.$$

- L_A is a lattice of dimension m.
- Whp, its minimum satisfies $\lambda(L) \approx \sqrt{m} \cdot q^{1-\frac{n}{m}}$.
- We have dist(\mathbf{b}, L) = $\|\mathbf{e}\| \approx \sqrt{m} \alpha q$.

LWE reduces to BDD

This is a BDD instance in dim *m* with $\gamma \approx q^{-\frac{n}{m}}/\alpha$

Assume we are given **A** and $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e}$, for some \mathbf{e} whose entries are $\approx \alpha q$. We want to find \mathbf{s} .

Let
$$L_{\mathbf{A}} = \{ \mathbf{x} \in \mathbb{Z}^m : \exists \mathbf{s} \in \mathbb{Z}^n, \mathbf{x} = \mathbf{A}\mathbf{s} \ [q] \} = \mathbf{A}\mathbb{Z}_q^n + q\mathbb{Z}^m.$$

- L_A is a lattice of dimension m.
- Whp, its minimum satisfies $\lambda(L) \approx \sqrt{m} \cdot q^{1-\frac{n}{m}}$.
- We have dist(\mathbf{b}, L) = $\|\mathbf{e}\| \approx \sqrt{m\alpha q}$.

LWE reduces to BDD

This is a BDD instance in dim *m* with $\gamma \approx q^{-\frac{n}{m}}/\alpha$

Assume we are given **A** and $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e}$, for some **e** whose entries are $\approx \alpha q$. We want to find **s**.

Let
$$L_{\mathbf{A}} = \{ \mathbf{x} \in \mathbb{Z}^m : \exists \mathbf{s} \in \mathbb{Z}^n, \mathbf{x} = \mathbf{A}\mathbf{s} [q] \} = \mathbf{A}\mathbb{Z}_q^n + q\mathbb{Z}^m.$$

- L_A is a lattice of dimension m.
- Whp, its minimum satisfies $\lambda(L) \approx \sqrt{m} \cdot q^{1-\frac{n}{m}}$.
- We have dist(\mathbf{b}, L) = $\|\mathbf{e}\| \approx \sqrt{m} \alpha q$.

LWE reduces to BDD

This is a BDD instance in dim m with $\gamma \approx q^{-\frac{n}{m}}/\alpha$.

Solving LWE with BKZ (2/2)

LWE reduces to BDD

This is a BDD instance in dim m with $\gamma \approx q^{-\frac{n}{m}}/\alpha$.

Cost of BKZ:
$$(\frac{m}{\log \gamma})^{\mathcal{O}(\frac{m}{\log \gamma})}$$
, with $\frac{\log \gamma}{m} = \frac{1}{m} \log \frac{1}{\alpha} - \frac{n \log q}{m^2}$.

Cost is minimized for $m \approx \frac{2n \log q}{\log \frac{1}{\alpha}}$.

Cost of BKZ to solve LWE

Time:
$$\left(\frac{n \log q}{\log^2 \alpha}\right)^{O\left(\frac{n \log q}{\log^2 \alpha}\right)}$$

Solving LWE with BKZ (2/2)

LWE reduces to BDD

This is a BDD instance in dim m with $\gamma \approx q^{-\frac{n}{m}}/\alpha$.

Cost of BKZ:
$$(\frac{m}{\log \gamma})^{\mathcal{O}(\frac{m}{\log \gamma})}$$
, with $\frac{\log \gamma}{m} = \frac{1}{m} \log \frac{1}{\alpha} - \frac{n \log q}{m^2}$.

Cost is minimized for $m \approx \frac{2n \log q}{\log \frac{1}{\alpha}}$.

Cost of BKZ to solve LWE

Time:
$$\left(\frac{n\log q}{\log^2 \alpha}\right)^{\mathcal{O}\left(\frac{n\log q}{\log^2 \alpha}\right)}$$
.

Hardness results on LWE

Assume that $\alpha q \geq 2\sqrt{n}$.

[Re05]

If q is prime and $\leq n^{\mathcal{O}(1)}$, then there exists a **quantum** polynomial-time reduction from \mathbf{SVP}_{γ} in $\dim n$ to $\mathsf{LWE}_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

[BrLaPeReSt13]

If q is $\leq n^{\mathcal{O}(1)}$, then there exists a **classical** polynomial-time reduction from **GapSVP** $_{\gamma}$ in **dim** \sqrt{n} to LWE $_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

- The two results are incomparable.
- Best achievable γ here: n
- In the case of Regev's encryption, we get $\gamma \approx n^{3/2}$.
- One can use BDD $_{\alpha}$ instead (with a different γ)

Hardness results on LWE

Assume that $\alpha q \geq 2\sqrt{n}$.

[Re05]

If q is prime and $\leq n^{\mathcal{O}(1)}$, then there exists a **quantum** polynomial-time reduction from \mathbf{SVP}_{γ} in $\dim n$ to $\mathsf{LWE}_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

[BrLaPeReSt13]

If q is $\leq n^{\mathcal{O}(1)}$, then there exists a **classical** polynomial-time reduction from **GapSVP** $_{\gamma}$ in $\dim \sqrt{n}$ to LWE $_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

- The two results are incomparable
- Best achievable γ here: n
- In the case of Regev's encryption, we get $\gamma \approx n^{3/2}$.
- One can use BDD $_{\alpha}$ instead (with a different γ)

Hardness results on LWE

Assume that $\alpha q \geq 2\sqrt{n}$.

[Re05]

If q is prime and $\leq n^{\mathcal{O}(1)}$, then there exists a **quantum** polynomial-time reduction from \mathbf{SVP}_{γ} in $\dim n$ to $\mathsf{LWE}_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

[BrLaPeReSt13]

If q is $\leq n^{\mathcal{O}(1)}$, then there exists a **classical** polynomial-time reduction from **GapSVP** $_{\gamma}$ in $\dim \sqrt{n}$ to LWE $_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

- The two results are incomparable.
- Best achievable γ here: n.
- In the case of Regev's encryption, we get $\gamma \approx n^{3/2}$.
- One can use BDD $_{\gamma}$ instead (with a different γ).

Damien Stehlé The IWE problem 02/06/2015

Road-map

- Definition of the LWE problem
- Regev's encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems

LWE variants

Numerous variants have been showed to be at least as hard as LWE, up to polynomial factors in the noise rate α :

(Polynomial in n, $\log q$ and possibly in the number of samples m.)

- When **s** is distributed from the error distribution.
- When s is binary with sufficient entropy.
- When **e** is uniform in a hypercube.
- When **e** corresponds to a deterministic rounding of **As**.
- When **A** is binary (modulo q).
- When some extra information on e is provided.
- When the first component of **e** is zero.

LWE in dimension 1

1-dimensional LWE [BoVe96]

With non-negl. prob. over $s \leftarrow U(\mathbb{Z}_q)$: distinguish between

$$(a, a \cdot s + e)$$
 and (a, b) (over \mathbb{Z}_q^2),

where $a, b \leftarrow U(\mathbb{Z}_q), e \leftarrow D_{\mathbb{Z}, \alpha q}$.

Hardness of 1-dim LWE [BrLaPeReSt13]

For any n, q, n', q' with $n \log q \le n' \log q'$: there exists a polynomial-time reduction from LWE_{n,q,α} to LWE_{n',q',α'} for some $\alpha' \le \alpha \cdot (n \log q)^{O(1)}$.

 \Rightarrow LWE_{1,qⁿ} is no easier than LWE_{n,q}.

Approximate gcd

$\mathsf{AGCD}_{\mathcal{D},\mathsf{N},\alpha}$ [HG01]

With non-negl. prob. over $p \leftarrow \mathcal{D}$, distinguish between

$$u$$
 and $q \cdot p + r$ (over \mathbb{Z}),

where $u \leftarrow U([0, N)), q \leftarrow U([0, \frac{N}{p})), r \leftarrow \lfloor D_{\alpha p} \rceil$.

Hardness of AD (Informal) [ChSt15]

 $\mathsf{AGCD}_{\mathcal{D},N,\alpha}$ is computationally equivalent to $\mathsf{LWE}_{n,q,\alpha}$, for some \mathcal{D} of mean $\approx q^n$ and some $N \approx q^{2n}$.

Conclusion

LWE:

- LWE is hard for almost all instances.
- It seems exponentially hard to solve, even quantumly.
- It is a rich/expressive problem, convenient for cryptographic design.

Lattices:

- LWE hardness comes from lattice problems.
- We can design lattice-based cryptosystems without knowing lattices!

Exciting topics I did not mention

- The Small Integer Solution problem (SIS)
 - \Rightarrow Digital signatures.
- Ideal lattices, Ring-LWE, Ring-SIS, NTRU
 - ⇒ Using polynomial rings (a.k.a. structured matrices) to get more efficient constructions.
- Implementation of lattice-based primitives.

These will be addressed in Léo's talk (Friday morning), my second talk (Friday afternoon) and Tim's talk (Friday afternoon).

Open problems: foundations

If q is prime and $\leq n^{\mathcal{O}(1)}$, then there exists a **quantum** polynomial-time reduction from SVP_{γ} in $\dim n$ to $\mathsf{LWE}_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

If q is $\leq n^{\mathcal{O}(1)}$, then there exists a **classical** polynomial-time reduction from **GapSVP** $_{\gamma}$ in $\dim \sqrt{n}$ to LWE $_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

- Does there exist a classical reduction from *n*-dimensional $SVP_{\gamma}/BDD_{\gamma}$ to $LWE_{n,q,\alpha}$?
- Does there exist a quantum algorithm for LWE_{n,q,\alpha} that runs in time $2^{\sqrt{n}}$ (when $q \leq n^{O(1)}$)?
- Is LWE easy for some $\alpha = 1 / n^{\mathcal{O}(1)}$?
- Can we reduce factoring/DL to LWE?

Open problems: foundations

If q is prime and $\leq n^{\mathcal{O}(1)}$, then there exists a **quantum** polynomial-time reduction from SVP_{γ} in $\dim n$ to $\mathsf{LWE}_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

If q is $\leq n^{\mathcal{O}(1)}$, then there exists a **classical** polynomial-time reduction from **GapSVP** $_{\gamma}$ in $\dim \sqrt{n}$ to LWE $_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

- Does there exist a classical reduction from *n*-dimensional $SVP_{\gamma}/BDD_{\gamma}$ to $LWE_{n,q,\alpha}$?
- Does there exist a quantum algorithm for LWE_{n,q,α} that runs in time $2^{\sqrt{n}}$ (when $q \leq n^{\mathcal{O}(1)}$)?
- Is LWE easy for some $\alpha = 1 / n^{\mathcal{O}(1)}$?
- Can we reduce factoring/DL to LWE?

Open problems: foundations

If q is prime and $\leq n^{\mathcal{O}(1)}$, then there exists a **quantum** polynomial-time reduction from SVP_{γ} in $\dim n$ to $\mathsf{LWE}_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

If q is $\leq n^{\mathcal{O}(1)}$, then there exists a **classical** polynomial-time reduction from **GapSVP** $_{\gamma}$ in $\dim \sqrt{n}$ to LWE $_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

- Does there exist a classical reduction from *n*-dimensional $SVP_{\gamma}/BDD_{\gamma}$ to $LWE_{n,q,\alpha}$?
- Does there exist a quantum algorithm for LWE_{n,q,α} that runs in time $2^{\sqrt{n}}$ (when $q \leq n^{\mathcal{O}(1)}$)?
- Is LWE easy for some $\alpha = 1 / n^{\mathcal{O}(1)}$?
- Can we reduce factoring/DL to LWE

Open problems: foundations

If q is prime and $\leq n^{\mathcal{O}(1)}$, then there exists a **quantum** polynomial-time reduction from SVP_{γ} in $\dim n$ to $\mathsf{LWE}_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

If q is $\leq n^{\mathcal{O}(1)}$, then there exists a **classical** polynomial-time reduction from **GapSVP** $_{\gamma}$ in $\dim \sqrt{n}$ to LWE $_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

- Does there exist a classical reduction from *n*-dimensional $SVP_{\gamma}/BDD_{\gamma}$ to $LWE_{n,q,\alpha}$?
- Does there exist a quantum algorithm for LWE_{n,q,α} that runs in time $2^{\sqrt{n}}$ (when $q \leq n^{\mathcal{O}(1)}$)?
- Is LWE easy for some $\alpha = 1 / n^{\mathcal{O}(1)}$?
- Can we reduce factoring/DL to LWE?

Damien Stehlé The LWE problem 02/06/2015

Open problems: cryptanalysis

LWE-based cryptography is based on GapSVP_{γ} for $\gamma \geq n$. No NP-hardness here...

- Can we solve SVP_{γ} in poly(n)-time for some $\gamma = n^{\mathcal{O}(1)}$?
- And with a quantum computer?
- Can we do better than BKZ's $\left(\frac{n}{\log \gamma}\right)^{\mathcal{O}\left(\frac{n}{\log \gamma}\right)}$ run-time, for some γ ?
- What are the practical limits?

http://www.latticechallenge.org

Damien Stehlé D2/06/2015 37/40

Open problems: cryptanalysis

LWE-based cryptography is based on GapSVP_{γ} for $\gamma \geq n$. No NP-hardness here...

- Can we solve SVP_{γ} in poly(n)-time for some $\gamma = n^{\mathcal{O}(1)}$?
- And with a quantum computer?
- Can we do better than BKZ's $(\frac{n}{\log \gamma})^{\mathcal{O}(\frac{n}{\log \gamma})}$ run-time, for some γ ?
- What are the practical limits?

http://www.latticechallenge.org

Open problems: cryptanalysis

LWE-based cryptography is based on GapSVP_{γ} for $\gamma \geq n$. No NP-hardness here...

- Can we solve SVP $_{\gamma}$ in poly(n)-time for some $\gamma = n^{\mathcal{O}(1)}$?
- And with a quantum computer?
- Can we do better than BKZ's $(\frac{n}{\log \gamma})^{\mathcal{O}(\frac{n}{\log \gamma})}$ run-time, for some γ ?
- What are the practical limits?

http://www.latticechallenge.org

Open problems: cryptanalysis

LWE-based cryptography is based on GapSVP_{γ} for $\gamma \geq n$. No NP-hardness here...

- Can we solve SVP $_{\gamma}$ in poly(n)-time for some $\gamma = n^{\mathcal{O}(1)}$?
- And with a quantum computer?
- Can we do better than BKZ's $(\frac{n}{\log \gamma})^{\mathcal{O}(\frac{n}{\log \gamma})}$ run-time, for some γ ?
- What are the practical limits?

http://www.latticechallenge.org

Open problems: practice

There exist practical lattice-based signature and encryption schemes.

- Can lattice-based primitives outperform other approaches in some contexts?
- What about side-channel cryptanalysis?
- Can advanced lattice-based primitives be made practical?
 Attribute-based encryption? Homomorphic encryption?

Open problems: practice

There exist practical lattice-based signature and encryption schemes.

- Can lattice-based primitives outperform other approaches in some contexts?
- What about side-channel cryptanalysis?
- Can advanced lattice-based primitives be made practical?
 Attribute-based encryption? Homomorphic encryption?

Open problems: practice

There exist practical lattice-based signature and encryption schemes.

- Can lattice-based primitives outperform other approaches in some contexts?
- What about side-channel cryptanalysis?
- Can advanced lattice-based primitives be made practical?
 Attribute-based encryption? Homomorphic encryption?

Open problems: practice

There exist practical lattice-based signature and encryption schemes.

- Can lattice-based primitives outperform other approaches in some contexts?
- What about side-channel cryptanalysis?
- Can advanced lattice-based primitives be made practical?
 Attribute-based encryption? Homomorphic encryption?

Bibliography

- AhRe04 D. Aharonov, O. Regev: Lattice problems in NP cap coNP. J. ACM 52(5): 749-765 (2005).
- AjDw97 M. Ajtai, C. Dwork: A Public-Key Cryptosystem with Worst-Case/Average-Case Equivalence. STOC 1997: 284-293.
 - Aj98 M. Ajtai: The Shortest Vector Problem in L2 is NP-hard for Randomized Reductions (Extended Abstract). STOC 1998: 10-19.
- AgDaReSD15 D. Aggarwal, D. Dadush, O. Regev, N. Stephens-Davidowitz: Solving the Shortest Vector Problem in 2ⁿ Time via Discrete Gaussian Sampling. Available on ARXIV.
 - BoVe96 D. Boneh, R. Venkatesan: Hardness of Computing the Most Significant Bits of Secret Keys in Diffie-Hellman and Related Schemes. CRYPTO 1996: 129-142.
 - Br12 Z. Brakerski: Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP. CRYPTO 2012: 868-886.
- rLaPeReSt13 Z. Brakerski, A. Langlois, C. Peikert, O. Regev, D. Stehlé: Classical hardness of learning with errors. STOC 2013: 575-584.
 - BrVa11 Z. Brakerski, V. Vaikuntanathan: Efficient Fully Homomorphic Encryption from (Standard) LWE. SIAM J. Comput. 43(2): 831-871 (2014).
 - ChNg11 Y. Chen, P. Nguyen: BKZ 2.0: Better Lattice Security Estimates. ASIACRYPT 2011: 1-20.
 - ChSt15 J. H. Cheon, D. Stehlé: Fully Homomophic Encryption over the Integers Revisited. EUROCRYPT 2015.

Damien Stehlé The LWE problem 02/06/2015

39/40

Bibliography

- GePeVa08 C. Gentry, C. Peikert, V. Vaikuntanathan: Trapdoors for hard lattices and new cryptographic constructions. STOC 2008: 197-206.
 - GoGo98 O. Goldreich, S. Goldwasser: On the Limits of Nonapproximability of Lattice Problems. J. Comput. Syst. Sci. 60(3): 540-563 (2000).
- GoVaWe13 S. Gorbunov, V. Vaikuntanathan, H. Wee: Attribute-based encryption for circuits. STOC 2013: 545-554.
- HaPuSt11 G. Hanrot, X. Pujol, D. Stehlé: Analyzing Blockwise Lattice Algorithms Using Dynamical Systems. CRYPTO 2011: 447-464.
 - HaRe07 I. Haviv, O. Regev: Tensor-based Hardness of the Shortest Vector Problem to within Almost Polynomial Factors. Theory of Computing 8(1): 513-531 (2012).
 - HG01 N. Howgrave-Graham: Approximate Integer Common Divisors. CaLC 2001: 51-66.
 - Pe14 C. Peikert: Lattice Cryptography for the Internet. PQCrypto 2014: 197-219.
 - Re03 O. Regev: New lattice-based cryptographic constructions. J. ACM 51(6): 899-942 (2004).
 - Re05 O. Regev: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6) (2009).
 - ScEu91 C.-P. Schnorr, M. Euchner: Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Math. Program. 66: 181-199 (1994).