Regression

We have

- list of features X_1, \ldots, X_p
- numerical goal variable Y
- training data $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$
- $\mathbf{y} = (y_1, \dots, y_N)$ denotes the vector of training goal data.

We have or choose

- error measure (loss function) $L(y, \hat{y})$
 - square error loss $L(y, \hat{y}) = (y \hat{y})^2$

Linear Regression

- assumption about the function $f(X) \approx Y$
 - we assume linear dependence:

$$f(X) = \beta_0 + \sum_{i=1}^{p} X_i \beta_i$$

$$Y = f(X) + \epsilon$$

$$\epsilon \sim N(0, \sigma^2)$$

 σ^2 does not depend on X nor Y x_i fixed (not random).

If X^TX is not singular, then the unique solution is given by

$$\hat{\beta} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}
\hat{y} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

hat matrix $H = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}$.

• the estimate $\hat{y_i}$ for a given x_i is $\hat{y_i} = \hat{y}(x_i) = x_i^T \hat{\beta}$.

Regression (linear) 1 Machine Learning

2 / 8

Standard Error, Interval Estimate

- What is the error of the estimate?
- we estimate the variance

$$\hat{\sigma}^2 = \frac{1}{N - p - 1} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

- The N-p-1 makes the estimate unbiased, $\mathbb{E}(\hat{\sigma}^2)=\sigma^2$.
- residual standard error $\hat{\sigma}$
- and it is with approximately 95% probability in the interval $\hat{y} \in (\hat{y} 2\sigma, \hat{y} + 2\sigma)$.

Machine Learning

Regression (linear) 1

February 28, 2019

Accuracy of Coefficient Estimates

 Different training data lead to different estimates.(red-true, blue-estimated models)

• We assume:

$$Y = \mathbb{E}(Y|X_1, \dots, X_p) + \epsilon$$
$$= \beta_0 + \sum_{i=1}^p X_i \beta_i + \epsilon$$

Therefore

$$\hat{\beta} \sim N(\beta, (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\sigma^{2})$$

$$(N - p - 1)\hat{\sigma}^{2} \sim \sigma^{2}\chi^{2}_{N-p-1}$$

Machine Learning

Accuracy of Coefficient Estimates

• For any single β_i , Z-score is (v_i is the j-th diagonal element of $(\mathbf{X}^T\mathbf{X})^{-1}$):

$$z_j = \frac{\hat{\beta}}{\hat{\sigma}\sqrt{v_j}}$$

• The entire parameter vector β bounds:

$$C_{\beta} = \{\beta | (\hat{\beta} - \beta)^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} (\hat{\beta} - \beta) \le \hat{\sigma}^{2} \chi_{p+1}^{2} \ ^{(1-\alpha)} \}$$

Regression (linear) 1 Machine Learning

Importance of Features

```
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -2595.8616 752.8243 -3.448 0.000572 ***
year
     1.3499 0.3753 3.597 0.000328 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 41.65 on 2998 degrees of freedom
Multiple R-squared: 0.004296, Adjusted R-squared: 0.003964
F-statistic: 12.94 on 1 and 2998 DF, p-value: 0.0003277
```

6 / 8

R^2 , F Statistics – Comparisons with the Trivial Model

- The proportion of variance explained
- Comparison with the Trivial Model $TSS = \sum_{i=1}^{N} (y_i \overline{y})^2$
- scale independent, always in [0,1]

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

• Previous Slide example: wage $R^2 = 0.0043$ is very low.

F measure

- Hypothesis $H_0 \equiv$ coefficients $\beta_{p_0+1}, \ldots, \beta_{p_1}$ are zero, alternative $H_a \equiv$ 'at least one $\beta_i, i = p_0 + 1, \ldots, p_1$ is non-zero'
- $F = \frac{(RSS_0 RSS_1)/(p_1 p_0)}{RSS_1/(N p_1 1)}$
- ullet p-value says the probability 'such or further from null-model' data given H_0 .

Machine Learning Regression (linear) 1 February 28, 2019

Computational methods

- Cholevsky decomposition; $p^3 + N \frac{p^2}{2}$ operations
 - Decompose $\mathbf{X}^T\mathbf{X}$ to LL^T , where L is a lower diagonal matrix.
- QR decomposition; Np² operations Regression by Successive Orthogonalization
 - 1 Initialize $\mathbf{z}_0 = \mathbf{x}_0 = 1$.
 - 2 For j = 1, 2, ..., p

Regress
$$\mathbf{x}_j$$
 on $\mathbf{z}_0, \mathbf{z}_1, \dots, \mathbf{z}_{j-1}$ to produce coefficients $\hat{\gamma}_{\ell j} = \frac{\langle \mathbf{z}_\ell, \mathbf{x}_j \rangle}{\langle \mathbf{z}_\ell, \mathbf{z}_\ell \rangle}$, $\ell = 0, 1, \dots, j-1$ and residual vector $\mathbf{z}_j = \mathbf{x}_j - \sum_{k=0}^{j-1} \hat{\gamma}_{kj} \mathbf{z}_{k-1}$.

- 3 Regress **y** on the residual $\mathbf{z}_{\mathbf{p}}$ to give the estimate $\hat{\beta}_{\mathbf{p}}$.
- $\bullet X = Z\Gamma$
- **Z** has z_i as columns, Γ is the upper triangular matrix with entries $\hat{\gamma}_{ki}$.
- introducing the diagonal matrix **D**, $D_{ii} = ||z_i||$

$$X = ZD^{-1}D\Gamma$$

= QR

• We get:

$$\hat{\beta} = R^{-1}Q^{T}y$$
 $\hat{y} = QQ^{T}y$