FINITE ELEMENT: TECHNOLOGY

Georges Cailletaud Ecole des Mines de Paris, Centre des Matériaux UMR CNRS 7633

Contents 1/41

Contents

Gauss integration

Definition

4-node quadrilateral

Quality of the integration

Patch test

Rigid body mode

Locking

Spurious modes

Contents

Gauss integration

Definition

4-node quadrilateral Quality of the integration

Patch test

Rigid body mode

Locking

Spurious modes

Gauss integration

r-point Gauss integration on a [-1:+1] segment:

$$\int_{-1}^{+1} f(\xi) d\xi \approx \sum_{1}^{r} w_{i} f(\xi_{i})$$

gives exact result for a (2r-1) order polynom Evaluation at *sampling points* ξ_i , combined with *weigthing coefficients* w_i

Example, order 2:

Onedimensional Gauss integration

One integration point

5/41

Gauss integration

Onedimensional Gauss integration

Two integration points

Onedimensional Gauss integration

Three integration points

7/41

Gauss integration in a N-dimensional space

$$\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} f(\xi, \eta, \zeta) d\xi d\eta d\zeta = \int_{-1}^{1} d\xi \int_{-1}^{1} d\eta \int_{-1}^{1} f(\xi, \eta, \zeta) d\zeta$$

Respectively r_1 , r_2 , r_3 Gauss points in each direction, so that:

$$\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} f(\xi, \eta, \zeta) d\xi d\eta d\zeta = \sum_{i=1}^{r_1} \sum_{j=1}^{r_2} \sum_{k=1}^{r_3} w_i w_j w_k f(\xi_i, \eta_j, \zeta_k)$$

- Usually, $r_1 = r_2 = r_3$
- Special integration rules for triangles

Gauss integration

Contents

Gauss integration

Definition

4-node quadrilateral

Quality of the integration

Patch test

Rigid body mode

Locking

Spurious modes

4-node quadrilateral (1)

• Bilinear interpolation of the geometry and of the unknown function

$$x = N_1 x_1 + N_2 x_2 + N_3 x_3 + N_4 x_4$$

$$u_x = N_1 q_{x1} + N_2 q_{x2} + N_3 q_{x3} + N_4 q_{x4}$$

$$x = N_1 x_1 + N_2 x_2 + N_3 x_3 + N_4 x_4$$

$$y = N_1 y_1 + N_2 y_2 + N_3 y_3 + N_4 y_4$$

$$u_y = N_1 q_{y1} + N_2 q_{y2} + N_3 q_{y3} + N_4 q_{y4}$$

$$u_y = N_1 q_{y1} + N_2 q_{y2} + N_3 q_{y3} + N_4 q_{y4}$$

Shape functions

$$N_1(\xi,\eta) = (1-\xi)(1-\eta)/4$$
 $N_2(\xi,\eta) = (1+\xi)(1-\eta)/4$
 $N_1(\xi,\eta) = (1+\xi)(1+\eta)/4$ $N_2(\xi,\eta) = (1-\xi)(1+\eta)/4$

Jacobian matrix

$$[J] = \frac{1}{4} \begin{pmatrix} -x_1 + x_2 + x_3 - x_4 + \eta(x_1 - x_2 + x_3 - x_4) & -y_1 + y_2 + y_3 - y_4 + \eta(y_1 - y_2 + y_3 - y_4) \\ -x_1 - x_2 + x_3 + x_4 + \xi(x_1 - x_2 + x_3 - x_4) & -y_1 - y_2 + y_3 + y_4 + \xi(y_1 - y_2 + y_3 - y_4) \end{pmatrix}_{QQ}$$

Gauss integration

10/41

4-node quadrilateral (2)

 \bullet Determinant of the Jacobian matrix: terms in ξ and η

$$8J = (y_4 - y_2)(x_3 - x_1) - (y_3 - y_1)(x_4 - x_2)$$

$$+ ((y_3 - y_4)(x_2 - x_1) - (y_2 - y_1)(x_3 - x_4)) \xi$$

$$+ ((y_4 - y_1)(x_3 - x_2) - (y_3 - y_2)(x_4 - x_1)) \eta$$

• Inverse of the jacobian matrix: homographic function in ξ and η

$$[J]^{-1} = \frac{4}{J} \begin{pmatrix} -y_1 - y_2 + y_3 + y_4 + \xi(y_1 - y_2 + y_3 - y_4) & -x_1 - x_2 + x_3 + x_4 + \xi(x_1 - x_2 + x_3 - x_4) \\ +y_1 - y_2 - y_3 + y_4 - \eta(y_1 - y_2 + y_3 - y_4) & +x_1 - x_2 - x_3 + x_4 - \eta(x_1 - x_2 + x_3 - x_4) \end{pmatrix}$$

Derivative of the shape functions:

$$\begin{pmatrix} \partial N_1/\partial x \\ \partial N_1/\partial y \end{pmatrix} = [J]^{-1} \begin{pmatrix} \partial N_1/\partial \xi \\ \partial N_1/\partial \eta \end{pmatrix} = [J]^{-1} \begin{pmatrix} -(1-\eta)/4 \\ -(1-\xi)/4 \end{pmatrix}$$

Terms in

$$\begin{pmatrix} \partial N_1/\partial x \\ \partial N_1/\partial y \end{pmatrix} = \frac{1}{J} \begin{pmatrix} (1,\xi) & (1,\xi) \\ (1,\eta) & (1,\eta) \end{pmatrix} \begin{pmatrix} -(1-\eta)/4 \\ -(1-\xi)/4 \end{pmatrix} = \begin{pmatrix} \frac{(1,\xi,\eta,\xi\eta,\xi^2)}{(1,\xi,\eta)} \\ \frac{(1,\xi,\eta,\xi\eta,\eta^2)}{(1,\xi,\eta)} \end{pmatrix}$$

4-node quadrilateral (3)

- The jacobian is an homographic function for a generic quad.
- [K] is obtained by Gauss integration, $[K] = \int_{\Omega} [B]^T [D] [B] d\Omega$

$$[K] = \int_{-1}^{1} \int_{-1}^{1} [B]^{T} [D][B] J d\xi d\eta = \sum_{i=1}^{p} \sum_{j=1}^{p} w_{i} w_{j} J((\xi_{i}, \eta_{j})[B]^{T} (\xi_{i}, \eta_{j})[D][B](\xi_{i}, \eta_{j})$$

- The stiffness matrix includes terms like $\frac{(1,\xi,\eta,\xi\eta,\xi^2,...,\eta^4,\xi^4,\xi^2\eta^2)}{(1,\xi,\eta)}$
- \bullet For a generic quad, the integration of [K] is never exact
- The internal forces are computed as:

$$[F_{int}] = \int_{\Omega} [B]^{T} [\sigma] d\Omega = \sum_{i=1}^{p} \sum_{j=1}^{p} w_{i} w_{j} J((\xi_{i}, \eta_{j})[B]^{T} (\xi_{i}, \eta_{j})[\sigma(\xi_{i}, \eta_{j})]$$

- The determinant at the denominator of [B] vanishes with the determinant due to elementary volume
- The internal forces (σ constant) include terms like $(1, \xi, \eta, \xi \eta, \xi^2, ..., \eta^2, \xi^2, \xi^2 \eta, \xi \eta^2)$
- Internal forces are integrated with a 2×2 rule

< ロ > < 個 > < 重 > < 重 > の < @

4-node quadrilateral (4)

- If the "real world" quad is a parallelogram, the relation $(x,y)-\xi,\eta$ are linear and not bilinear, so that the partial derivatives $\partial x/\partial \xi$, etc. . . are constant. The jacobian is also constant.
- The following terms are present in the interpolation functions and their derivatives:

- [K] is obtained by Gauss integration, using a constant J.
 - The product $[B]^T(\xi_i, \eta_i)[D][B](\xi_j, \eta_j)$, and also the stiffness matrix, include terms like $\xi^i \eta^j$ with $i + j \leq 2$
 - [K] is exactly integrated with a 2 × 2 rule
- ullet The internal forces present only linear terms $imes\sigma$
- ullet Only one Gauss point is needed for constant stress state, and 2 imes 2 for linear stresses

Contents

Gauss integration

4-node quadrilateral

Quality of the integration

Patch test

Rigid body mode

Locking

Spurious modes

Number of Gauss points for an exact integration (1)

The following terms are present in the interpolation functions and their derivatives:

For generic geometries, the computation of [B] involves derivatives
of the shape functions and partial derivative of the coordinate of the
physical space wrt the reference coordinates:

$$\frac{\partial N_i}{\partial x} = \frac{\partial N_i}{\partial \xi} \, \frac{\partial \xi}{\partial x}$$

Number of Gauss points for an exact integration (2)

• For linear geometries, and constant jacobian matrix (introducing the constant a):

$$\frac{\partial N_i}{\partial x} = a \frac{\partial N_i}{\partial \xi}$$

- A typical term of [K] is then $\left(\frac{\partial N_i}{\partial \xi}\right)^2$
- ullet A typical term of $[F_{int}]$ is then $\ldots \qquad \dfrac{\partial N_i}{\partial \xi}$

Rectangular C2D8 element

Uniform jacobian

The following terms are present in the interpolation functions and their derivatives:

The product $[B]^T[D][B]$ includes terms like $\xi^i \eta^j$ with $i+j \leq 4$

- 3 × 3 points for a full integration (too much, exact until 5)
- ullet 2 imes 2 points are for *reduced* integration

Number of Gauss points needed

Element	Geometry	Loading	[<i>K</i>]	$[F_{int}]$
C2D4	Linear	Constant	4	1
C2D4	Bilinear	Constant	NO	1
C2D4	Linear	Linear	4	4
C2D4	Bilinear	Linear	NO	4
C2D8	Linear	Constant	4	4
C2D8	Bilinear	Constant	NO	4
C2D8	Bilinear	Linear	NO	4
C2D8	Generic	Constant	NO	4
C3D8	Linear	Constant	8	1
C3D8	Trilinear	Constant	NO	8
C3D20	Linear	Constant	27	8
C3D20	Trilinear	Constant	NO	8
C3D20	Trilinear	Linear	NO	27
C3D20	Generic	Constant	NO	27

Gauss integration 18/41

Precision of the Gauss integration method

Compute
$$I = \int_{-1}^{+1} \int_{-1}^{+1} \frac{1}{J} d\xi d\eta$$

Using a mapping on a square [0..1]:

$$x = (1 + (\alpha - 1)\eta)a\xi$$
$$y = a\eta$$

$$[J] = \begin{pmatrix} a(1+(\alpha-1)\eta) & a(\alpha-1)\xi \\ 0 & a \end{pmatrix}$$
$$I = \frac{1}{a^2} \int_0^1 \frac{d\eta}{1+(\alpha-1)\eta}$$

Order	$\alpha = 2$	$\alpha = 5$	$\alpha = 10$
1	0.66666	0.33333	0.18182
2	0.69231	0.39130	0.23404
3	0.69312	0.40067	0.24962
exact	0.69315	0.40236	0.25584

Analytic expression:

$$I = \frac{\log \alpha}{a^2(\alpha - 1)}$$

a (aften Dhatt and Touzot)

Global algorithm

For each loading increment, do while $\|\{R\}_{iter}\| > EPSI$: iter = 0; iter < ITERMAX; iter + +

- **1** Update displacements: $\Delta\{u\}_{iter+1} = \Delta\{u\}_{iter} + \delta\{u\}_{iter}$
- ② Compute $\Delta\{\varepsilon\} = [B].\Delta\{u\}_{iter+1}$ then Δ_{ε} for each Gauss point
- **1** Integrate the constitutive equation: $\Delta \underline{\varepsilon} \to \Delta \underline{\sigma}, \ \Delta \alpha_I, \ \frac{\Delta \underline{\sigma}}{\Delta \underline{\varepsilon}}$
- **3** Compute int and ext forces: $\{F_{int}(\{u\}_t + \Delta\{u\}_{iter+1})\}, \{F_e\}$
- **o** Compute the residual force: $\{R\}_{iter+1} = \{F_{int}\} \{F_e\}$
- $\label{eq:displacement} \ \, \mbox{New displacement increment:} \ \, \delta\{u\}_{\it iter+1} = -[K]^{-1}.\{R\}_{\it iter+1}$

Gauss integration 20/41

Convergence

• Value of the residual forces $< R_{\epsilon}$, e.g.

$$||\{R\}||_n = \left(\sum_i R_i^n\right)^{1/n} \; ; \; ||\{R\}||_\infty = \max_i |R_i|$$

Relative values:

$$\frac{||\{R\}_i - \{R\}_e||}{||\{R\}_e||} < \epsilon$$

Displacements

$$\left|\left|\{U\}_{k+1} - \{U\}_k\right|\right|_n < U_{\epsilon}$$

Energy

$$\left[\left\{ U \right\}_{k+1} - \left\{ U \right\}_k \right]^T \cdot \left\{ R \right\}_k < W_{\epsilon}$$

The concept of *patch* (engineering version)

- Apply a given displacement field on the external (blue) nodes
- Check the results in the internal (red) nodes
- For instance, uniform strain; or shear, or bending
- Check with a bending displacement field: $u_x = xy$ and $u_y = -0.5(x^2 + \nu y^2)$, assuming bilinear geometry (with $\xi \eta$ term)
 - The resulting displacement for u_y should have terms like $(a+b\xi+c\eta+d\xi\eta)^2$. A nine node quad will pass, but not an eight-node quad (missing $\xi^2\eta^2$ term in the polynomial base).
 - The eight-node pass, provided the edges are straight
 - This demonstrates also the limitations of high order elements. For them, a complex shape (terms in $\xi^3 \eta$, $\xi \eta^3$ for a cubic interpolation introduces terms like $\xi^6 \eta^2$, etc... for a correct patch test simulation. They are not in the polynomial basis...

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 釣९♡

Rigid body mode (1)

Example of a 2D plane element

Zero strain:

$$u_{1,1} = 0$$
 ; $u_{2,2} = 0$; $u_{1,2} + u_{2,1} = 0$

Possible displacement field:

$$u_1 = A - Cx_2$$
 ; $u_2 = B + Cx_1$

3 rigid body modes:

2 translations
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$; 1 rotation $\begin{pmatrix} -x_1 \\ x_2 \end{pmatrix}$

Patch test 23/41

Rigid body mode (2)

Example of a 2D axisymmetric element

Zero strain:

$$\varepsilon_r = u_{r,r} = 0$$
 ; $\varepsilon_\theta = \frac{u_r}{r} = 0$; $u_{z,z} = 0$

Possible displacement field:

$$u_z = A$$

Only 1 rigid body modes: 1 translation $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Rigid body mode

Rank sufficiency/deficiency

No zero-energy mode other than rigid body modes

- r is the rank of the elementary stiffness matrix (number of evaluations)
- Check r with respect to $n_F n_R$ (n_F is the number of element DOF, n_R is the number of rigid body modes)
- Rank sufficient element iff $r \ge n_F n_R$
- Rank deficiency, d in the case $d = n_F n_R r \geqslant 0$
- Each Gauss point adds n_E to the rank of the matrix (n_E is the order of the stress-strain matrix, n_G the number of Gauss points), $r = n_E n_G$

RULE:
$$n_E n_G \geqslant n_F - n_R$$

Rank-sufficient Gauss integration

Element	n	n_F	$n_F - n_R$	Min n _g	rule
3-node triangle	3	6	3	1	1-pt
6-node triangle	6	12	9	3	3-pt
4-node quadrilateral	4	8	5	2	2x2
8-node quadrilateral	8	16	13	5	3x3
9-node quadrilateral	9	18	15	5	3x3
8-node hexahedron	8	24	18	3	2x2x2
20-node hexahedron	20	60	54	9	3x3x3

Stiffness matrix of a rectangular element

rectangle [
$$\pm a$$
, $\pm a/2$]; E=96; ν =1/3

$$[K] = \begin{pmatrix} 42 & 18 & -6 & 0 & -21 & -18 & -15 & 0 \\ 18 & 78 & 0 & 30 & -18 & -39 & 0 & -69 \\ -6 & 0 & 42 & -18 & -15 & 0 & -21 & 18 \\ 0 & 30 & -18 & 78 & 0 & -69 & 18 & -39 \\ -21 & -18 & -15 & 0 & 42 & 18 & -6 & 0 \\ -18 & -39 & 0 & -69 & 18 & 78 & 0 & 30 \\ -15 & 0 & -21 & 18 & -6 & 0 & 42 & -18 \\ 0 & -69 & 18 & -39 & 0 & 30 & -18 & 78 \end{pmatrix}$$

Eigenvalues =
$$\{ 223.4 \ 90 \ 78 \ 46.36 \ 42 \ 0 \ 0 \ 0 \}$$
 (three rigid body modes)

Carlos Felippa

◆□ → ◆□ → ◆ = → ◆ = → へ へ ○

Rigid body mode 27/41

Stiffness matrix of a trapezoidal element

Eigenvalues obtained with different Gauss rules (scaled by 10^{-6}) Rule 1x1 8.77276 3.68059 2.26900 0 0 0 0 2×2 8.90944 4.09769 3.18565 2.64523 1.54678 3x3 8.91237 4.11571 3.19925 2.66438 1.56155 8.91246 4.11627 3.19966 2.66496 1.56199 4×4

Three rigid body modes, but a rank deficiency by TWO is too few Gauss points are used

Carlos Felippa

Rigid body mode

Analysis of the locking penomenon

For bad reasons, the element becomes too stiff

- Shear locking
- Volumetric locking
- Trapezoidal locking
- Locking in fields

Locking 29/41

Alias functions

Function which tries to mimic a given function in one element

Basis for a C2D3:
$$(1, \xi, \eta)$$
, for a C2D4: $(1, \xi, \eta, \xi \eta)$, for a C2D8: $(1, \xi, \eta, \xi^2, \xi \eta, \eta^2, \xi^2 \eta, \xi \eta^2)$.

Alias for various functions:

Function	ξ^2	$\xi\eta$	η^2	ξ^3	$\xi^2 \eta$	$\xi \eta^2$	η^3
C2D3	ξ	0	η	ξ	0	0	η
C2D4	1	OK	1	ξ	η	ξ	η
C2D8	OK	OK	OK	ξ	OK	OK	η

Locking 30/41

Shear locking

C2D4,
$$-L \le x_1 \le L$$
, $-1 \le x_2 \le 1$

Actual field
$$\begin{array}{cccc} u_1 & = & x_1x_2 \\ u_2 & = & -x_1^2/2 \end{array}$$
 Aliased field $\begin{array}{cccc} u_1 & = & x_1x_2 \\ u_1 & = & x_1x_2 \\ u_2 & = & -L^2/2 \ !! \end{array}$

Computed shear for the alias, $\varepsilon_{12} = x/2$!! (actual solution: 0) Computed stored elastic energy W_e for the real field and W_a for the alias:

$$\frac{W_a}{W_o} = 1 + \frac{1 - \nu}{2} L^2$$

Solve the problem by computing shear on the middle of the element

Locking 31/41

Shear locking (2)

Analytic solution

$$arepsilon_{11} = u_{1,1} = x_2$$
 $\sigma_{11} = Ex_2/(1 - \nu^2)$
 $arepsilon_{22} = u_{2,2} = 0$ $\sigma_{22} = \nu Ex_2/(1 - \nu^2)$
 $2arepsilon_{12} = u_{2,1} + u_{1,2} = 0$ $\sigma_{12} = 0$

Solution with the *alias*

$$\varepsilon_{11} = u_{1,1} = x_2$$
 $\sigma_{11} = Ex_2/(1 - \nu^2)$
 $\varepsilon_{22} = u_{2,2} = 0$ $\sigma_{22} = \nu Ex_2/(1 - \nu^2)$
 $2\varepsilon_{12} = u_{2,1} + u_{1,2} = x_1$ $\sigma_{12} = (1/2)Ex_1/(1 + \nu)$

$$W_o = \frac{1}{2} \int_{\Omega} \sigma : \varepsilon d\Omega$$

Locking 32/41

Dilatational locking

C2D4,
$$-L \le x_1 \le L$$
, $-1 \le x_2 \le 1$

$$u_1 = x_1 x_2$$
Actual field
$$u_2 = -\frac{x_1^2}{2} - \frac{\nu}{2(1-\nu)} x_2^2$$

$$u_1 = x_1 x_2$$
Aliased field
$$u_2 = -\frac{L^2}{2} - \frac{\nu}{2(1-\nu)} !!$$

The computed stored elastic energy W_a for the alias tends to infinity if ν tends to 0.5

$$W_{\rm a} = rac{E}{2(1+
u)} \left(rac{1-
u}{1-2
u} x_2^2 + rac{x_1^2}{2}
ight) \qquad {
m instead \ of:} \qquad W_{
m e} = rac{E}{2(1-
u^2)} \, x_2^2$$

Solve the problem by adding a non conform. displacement (x $_1^2-L^2, x_2^2-1$)

Locking 33/41

Dilatational locking (2)

Analytic solution

$$\varepsilon_{11} = u_{1,1} = x_2$$
 $\sigma_{11} = Ex_2/(1 - \nu^2)$
 $\varepsilon_{22} = u_{2,2} = -\nu x_2/(1 - \nu)$ $\sigma_{22} = 0$
 $\varepsilon_{33} = u_{3,3} = 0$ $\sigma_{33} =$
 $2\varepsilon_{12} = u_{2,1} + u_{1,2} = 0$ $\sigma_{12} = 0$

Solution with the alias

$$\varepsilon_{11} = u_{1,1} = x_2 \qquad \sigma_{11} = E(1 - \nu)x_2/(1 + \nu)(1 - 2\nu)$$

$$\varepsilon_{22} = u_{2,2} = 0 \qquad \sigma_{22} = \nu Ex_2/(1 + \nu)(1 - 2\nu)$$

$$2\varepsilon_{12} = u_{2,1} + u_{1,2} = x_1 \qquad \sigma_{12} = (1/2)Ex_1/(1 + \nu)$$

$$W_o = \frac{1}{2} \int_{\Omega} \underline{\sigma} : \underline{\varepsilon} d\Omega$$

34/41

Locking of the 8-node rectangle

Consider a rectangle of length 2Λ and width 2 (with $\Lambda > 1$)

- Displacement basis: 1, ξ , η , ξ^2 , $\xi\eta$, η^2 , $\xi^2\eta$, $\xi\eta^2$
- Try $u_1 = x_1^2 x_2$, $u_2 = -x_1^3/3$, so that $\varepsilon_{11} = 2x_1 x_2$, $\varepsilon_{22} = 0$, $\varepsilon_{12} = 0$.
- In fact, u_2 represented by its alias, $-x_1\Lambda^2/3$, so that the shear is $x_1^2-\Lambda^2/3$
- No locking if the shear is evaluated at the second order Gauss point $(x_1 = \pm 1/\sqrt{3})$
- Underintegration is a good remedy to locking

Locking 35/41

Locking of the 8-node rectangle (2)

Analytic solution

$$\varepsilon_{11} = u_{1,1} = 2x_1x_2$$
 $\sigma_{11} = 2Ex_1x_2$ $\varepsilon_{22} = u_{2,2} = 0$ $\sigma_{22} = 0$ $\varepsilon_{33} = u_{3,3} = 0$ $\sigma_{33} = 2\varepsilon_{12} = u_{2,1} + u_{1,2} = 0$ $\sigma_{12} = 0$

Solution with the alias ($u_1=x_1^2x_2$ and $u_2=-x_1\Lambda^2/3$)

$$\varepsilon_{11} = u_{1,1} = 2x_1x_2$$
 $\sigma_{11} = 2Ex_1x_2$ $\varepsilon_{22} = u_{2,2} = 0$ $\sigma_{22} = 0$ $\varepsilon_{33} = u_{3,3} = 0$ $\sigma_{33} = 0$ $\sigma_{33} = 0$ $\sigma_{12} = (1/2)(x_1^2 - \Lambda^2/3)/(1 + \nu)$

$$W_o = \frac{1}{2} \int_{\Omega} \underline{\sigma} : \underline{\varepsilon} d\Omega$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Locking 36/41

Trapezoidal locking

- Geometry: $x_1 = \Lambda \xi (1 \alpha \eta)$, and $x_2 = \eta$; $\xi = x_1/(1 \alpha x_2)\Lambda$.
- Displacement basis: 1, ξ , η , ξ^2 , $\xi\eta$, η^2 , $\xi^2\eta$, $\xi\eta^2$
- Try $u_1 = x_1^2 x_2$, $u_2 = -x_1^2/2$, so that $\varepsilon_{11} = x_2$, $\varepsilon_{22} = 0$, $\varepsilon_{12} = 0$.
- In fact, the solution with the alias is:

$$arepsilon_{11} = rac{\eta - lpha}{1 - lpha \eta} \quad arepsilon_{22} = lpha \Lambda^2 \quad 2arepsilon_{12} = \Lambda \xi \left(1 + rac{lpha (\eta - lpha)}{1 - lpha \eta}
ight)$$

- All components are affected
- ullet Error on shear component suppressed if the evaluation is made at $\xi=0$ only.
- Error on ε_{22} cannot be easily suppressed

4□ > 4圖 > 4 = > 4 = > = 9 < ○</p>

37/41

Locking

Dilatational locking on triangles

triangle C2D3

• Incompressible, $BL \rightarrow TR$ mesh......

• Incompressible, $TL \rightarrow BR$ mesh...

• Compressible, $BL \rightarrow TR$ mesh.

Locking

Spurious modes of a C2D4

Find a displacement field which does not produce any strain on the Gauss points

$$u_2^1 = u_2^2 = u_2^3 = u_2^4 = 0$$

$$u_1^1 = +a$$
 ; $u_1^2 = -a$

$$u_1^3 = +a$$
 ; $u_1^4 = -a$

Spurious modes

- An element has "internal degrees of freedom" which allow deformation process to occur in the element
- Rigid body mode $\{\Phi_o\}$ such as: $[K]\{\Phi_o\}=0$ everywhere
- Spurious mode $\{\Phi_o\}$ such as: $[K]\{\Phi_o\}=0$ in some places
- The number of independent states is given by the total number of dof in the element
- Number of independent states Rigid body mode Number of evaluation of the strain components = Number of spurious modes
- For an element of degree p, the number of strain evaluations is: $3p^2$ (reduced integration, 2D); $3(p+1)^2$ (full integration, 2D); $6p^2$ (reduced integration, 3D); $6p^2$ (reduced integration, 3D).
- The number of strain states is: $8p^3$ (Serendip, 2D); $2(p+1)^2$ (Lagrange, 2D); 36p-6 (Serendip, 3D); $3(p+1)^3-6$ Lagrange, 3D).

<ロ > → □ > → □ > → □ > → □ → ○ ○ ○

Spurious modes 40/41

Spurious modes

Polynomial degree p	Serendip 2D	Lagrange 2D	Serendip 3D	Lagrange 3D
1 2	2 1	2 3	12 6	12 27

For the 8-node underintegrated element, the following is a spurious mode:

$$u_1 = k_1 \xi (\eta^2 - 1/3)$$

$$u_2 = -k_2 \eta (\xi^2 - 1/3)$$