DC áramkörök

Soros és párhuzamos kapcsolás, Kirchhoff-törvények, kapacitás, RC áramkör

Elektromos áram – hidraulikus analógia

Soros és párhuzamos kapcsolások

Soros kapcsolás

$$V = \sum_{i=1}^n V_i = I \sum_{i=1}^n R_i$$

$$I=I_1=I_2=\cdots=I_n$$

Párhuzamos kapcsolás

$$V=V_1=V_2=\cdots=V_n$$

$$I=\sum_{i=1}^n I_i=V\sum_{i=1}^n rac{1}{R_i}$$

$$R = \sum_{i=1}^n R_i = R_1 + R_2 + R_3 \cdots + R_n. \qquad R = \left(\sum_{i=1}^n rac{1}{R_i}
ight)^{-1} = \left(rac{1}{R_1} + rac{1}{R_2} + rac{1}{R_3} + \cdots + rac{1}{R_n}
ight)^{-1}$$

Kirchhoff-törvények

1. Huroktörvény

2. Csomóponti törvény

Feszültség mérés

Belső ellenállás: $R \to \infty \Omega$

Áram mérés

Belső ellenállás: $R_A \rightarrow 0 \ \Omega$

Kondenzátor

Kondenzátor

$$C = \frac{q}{U} \qquad {}_{1\frac{C}{V} = 1F}$$

Kondenzátor – hidraulikus analógia

RC áramkörök

d) Kisütés során, az áram exponenciálisan csökken; $\tau = R_1 C$ idő múltán az áramerősség $i_0 / e \approx 0.37 i_0$

b) A kondenzátor töltése exponenciálisan csökken; $\tau = R_2 C$ idő múltán a q töltés $Q_0 = \mathcal{E}C$ eredeti értékének $1/e \approx 0,37$ -ed részére csökken.

c) A kisütés során az áram negatív, minthogy ellenkező előjelű, mint a töltőáram; $\tau = R_2C$ idő múltán az áramerősség $I_0 = \mathcal{E} / R_0$ kezdeti értékének $1/e \approx 0,37$ -ed részére csökken.

RC áramkör - frekvenciaszűrés

Aluláteresztő szűrő – Low Pass Filter

Felüláteresztő szűrő – High Pass Filter

Hogyan lehet sávszűrőt (Band Pass Filter) építeni?