

Event-Based Computer Vision at Sony AVS CVPR 2021

Christian Brändli, CEO, Sony AVS

SONY

So Who Is Sony Semiconductor?

Sony Group Corporation Game & Network Sony Interactive Entertainment Services Sony Music Group(Global) (Sony Music Entertainment, Sony Music Publishing) Music **Sony Music Entertainment Japan Pictures Sony Pictures Entertainment Electronics Products & Sony Corporation Solutions Imaging & Sensing Sony Semiconductor Solutions** Solutions **Financial Services Sony Financial Holdings**

We Build The World's Best Image Sensors

Who is Sony AVS?

14-Jun-21

And What Does Sony AVS Do?

We built and build Event-Based Computer Vision Algorithms

Enough PR ...

... Let's Talk Technology

What Is A Temporal Contrast Event?

A temporal contrast event is a tuple of an address with polarity p = 0 and timestamp t. Such an event is created when ...

$$e = \{x, y, \breve{p}, \breve{t}\} : \exists e_{x,y}[j] \left(\breve{p} = \begin{cases} 1 \ for \ \int_{T[j-1]}^{\breve{t}} C_{x,y}^t(t) + \dot{N}_{x,y}(t) \ dt \geq \Theta^{ON} \\ 0 \ for \ \int_{T[j-1]}^{\breve{t}} C_{x,y}^t(t) + \dot{N}_{x,y}(t) \ dt \leq \Theta^{OFF} \end{cases}$$
 ... of the temporal contrast... ... is below or above a threshold

What is Temporal Contrast?

Temporal contrast is the rate of illumination change...

... normalized by the absolute intensity...

... which is equivalent to the log intensity change rate.

So What is Encoded By an Event?

Integrating temporal contrast results in ...

$$\int_{t_0}^{t_1} C_{x,y}^t(t) \, dt = \Delta C_{x,y}^t(t_0,t_1) = \ln \left(I_{x,y}(t_1) \right) - \ln \left(I_{x,y}(t_0) \right) = \ln \left(\frac{I_{x,y}(t_1)}{I_{x,y}(t_0)} \right)$$
 ... or a fixed step factor.

... which is a fixed step in log intensity ...

Then What Makes Up a Temporal Contrast Step?

The "event magnitude" is ...

... which in turn is made up of different components.

So What To Do With Events

reflectance change

Entropy:

- Smart Triggering
- Smart Processing

Active Lighting:

- Structured Light
- Active Marker Tracking
- Visible Light
 Communication

Reconstruction:

- Imaging
- Mapping

Classification:

- Object

Tracking:

- Camera:
 - VIO
- World:
 - User
 - Objects

Some Examples

So What To Do With Events

$$EM_{x,y}[j] = \int_{T[j-1]}^{T[j]} \frac{dlog(I(k,t))}{dt} + \frac{dR}{dt} - \frac{dR}{dx} \frac{dx}{dt} - \frac{dR}{dy} \frac{dy}{dt} dt$$
illumination change
Active Lighting

High-Speed 3D

So What To Do With Events

$$EM_{x,y}[j] = \int_{T[j-1]}^{T[j]} \frac{dlog(I(k,t))}{dt} + \frac{dR}{dt} - \frac{dR}{dx} \frac{dx}{dt} - \frac{dR}{dy} \frac{dy}{dt} dt$$
optical flow
Tracking

Very Fast Real-Time Tracking Of Dots

Better For Fast Motion than Open CV

And More Robust On Repetitive Structures

So What To Do With Events

$$EM_{x,y}[j] = \int_{T[j-1]}^{T[j]} \frac{dlog(I(k,t))}{dt} + \frac{dR}{dt} - \frac{dR}{dx} \frac{dx}{dt} - \frac{dR}{dy} \frac{dy}{dt} dt$$
spatial contrast

Reconstruction

Sensor Fusion of iToF and EVS for Efficient Depth Sensing

To Capture What Our Engineers Are Doing In the Office

If You Like To Work With The Latest And Greatest Sensors

Follow us on LinkedIn:

https://linkedin.com/company/sony-advanced-visual-sensing

Or Have A Look At Sony Jobs Every Now And Then:

https://www.sonyjobs.com/jobs.html

SONY