IFT 615 – Intelligence Artificielle Été 2022

Formes d'apprentissage Algorithme des K plus proches voisins

Professeur: Froduald Kabanza

Assistants: D'Jeff Nkashama & Jean-Charles Verdier

Sujets couverts

- Formes d'apprentissage
- Classification avec l'algorithme des K plus proches voisins

Types de problèmes d'apprentissage

Récompense r,

Types de problèmes d'apprentissage

APPRENTISSAGE SUPERVISÉE

Motivation – Classification d'images

Credit: Stanford cs231

Motivation – Classification d'images

Principales étapes

 Éntrée : N images, chacune étiquetée par l'une des K classes. C'est l'ensemble de données d'entrainement.

- Apprentissage : On utilise les données d'entrainement pour apprendre à quoi ressemble chacune des classe. C.à-d., on entraine un classifieur; autrement dit, on apprend le modèle.
- Évaluation: Finalement, on évalue la qualité du classifieur en lui demandant de prédire les étiquettes pour un ensemble d'images vues pour la première fois.

Motivation – Classification d'images

Credit: Stanford C231

APPRENTISSAGE SUPERVISÉ : FORMULATION DU PROBLÈME

Apprentissage supervisé

• Un problème d'apprentissage supervisé est formulé comme suit: « Étant donné un **ensemble d'entraînement** de N exemples:

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)$$
 D

où chaque y_j a été généré par une **fonction inconnue** $y=f(\mathbf{x})$, découvrir une nouvelle fonction h (**modèle** ou **hypothèse**) qui sera une bonne approximation de f (c'est à dire $f(\mathbf{x}) \approx h(\mathbf{x})$) »

Espace d'hypothèses

Apprentissage supervisé

 Étant donné un ensemble de données d'entrainement, l'apprentissage est un problème de recherche de l'hypothèse h dans un espace d'hypothèses H, tel que h minimise la distance à f(x)

- Les données sont souvent bruités et disponibles en quantité limitée. Il y a donc une variation dans les données et dans les modèles (représentations).
- L'erreur dépend de la qualité des données d'entrainements et de la méthode utilisée pour sélectionner/chercher la bonne hypothèse

Apprentissage supervisé

Données : ensemble d'entraînement de N exemples :

$$(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\ldots,(\mathbf{x}_N,y_N)$$
 $\}$ D avec $y=f(\mathbf{x})$

- Problème : trouver h(x) tel que $f(\mathbf{x}) \approx h(\mathbf{x})$
- Un algorithme d'apprentissage peut donc être vu comme étant une fonction A à laquelle on donne un ensemble d'entraînement et qui donne en retour la fonction h

$$A(D) = h$$

Modèles et approche pour chercher la fonction *h*

- Dépendamment des approches d'apprentissage, la fonction h peut être représentée de différente manière.
- Dans ce cours, nous voyons:
 - K plus proches voisins
 - Perceptron
 - Régression logistique
 - Réseau de neurones
 - Arbre de décision
- Le livre couvre différentes autres approches

REPRÉSENTATION DES DONNÉES

Représentation des données

- L'entrée X est représentée par un vecteur de valeurs d'attributs réels (représentation factorisée)
 - ex.: une image est représentée par un vecteur contenant la valeur de chacun des pixels

- La sortie désirée ou cible y aura une représentation différente selon le problème à résoudre:
 - problème de classification en C classes: valeur discrète (index de 0 à C-1)
 - problème de régression: valeur réelle ou continue

Exemple – Classification d'images

http://cs231n.github.io/assets/classify.png

Sortie: vecteur $[y_1, y_2, y_3, y_4]$

y_i: réel sur l'interval [0,1]

K PLUS PROCHES VOISINS

Exemple: classifieur k plus proches voisins

- Possiblement l'algorithme d'apprentissage de classification le plus simple
- **Idée**: étant donnée une entrée X
 - trouver les k entrées \mathbf{X}_t parmi les exemples d'apprentissage qui sont les plus « proches » de X
 - faire voter chacune de ces entrées pour leur classe associée y_t
 - 3. retourner la classe majoritaire
- Le succès de cet algorithme va dépendre de deux facteurs
 - la quantité de données d'entraînement (plus il y en a, meilleure sera la performance)
 - la qualité de la mesure de distance (est-ce que deux entrées jugées similaires sont de la même classe?)
 - » en pratique, on utilise souvent la distance Euclidienne:

$$d(\mathbf{x}_1, \mathbf{x}_2) = \sqrt{\sum_{k} (x_{1,k} - x_{2,k})^2}$$

x = vecteur x = scalaire

Reconnaissance de caractère: est-ce un 'e' ou un 'o'?

Ensemble d'entraînement

(100 exemples d'apprentissage par classe)

Reconnaissance de caractère: est-ce un 'e' ou un 'o'?

Reconnaissance de caractère: est-ce un 'e' ou un 'o'?

Rappel - Apprentissage supervisé

• Un problème d'apprentissage supervisé est formulé comme suit: « Étant donné un **ensemble d'entraînement** de N exemples:

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)$$
 D

où chaque y_j a été généré par une **fonction inconnue** $y=f(\mathbf{x})$, découvrir une nouvelle fonction h (**modèle** ou **hypothèse**) qui sera une bonne approximation de f (c'est à dire $f(\mathbf{x}) \approx h(\mathbf{x})$) »

• Un algorithme d'apprentissage peut donc être vu comme étant une fonction A à laquelle on donne un ensemble d'entraînement et qui donne en retour cette fonction h

$$A(D) = h$$

Retour sur classifieur k plus proches voisins

- Dans le cas de l'algorithme k plus proches voisins:
 - lacktriangle A est un programme qui produit lui-même un programme, soit celui qui fait une prédiction à l'aide de la procédure k plus proches voisins
 - lack h = A(D) est le programme qui fait voter les \emph{k} plus proches voisins dans D d'une entrée donnée
 - \bullet $h(\mathbf{x})$ est la sortie du programme pour l'entrée \mathbf{X} , c'est à dire une prédiction de la classe de \mathbf{X}
 - f est la « fonction » qui a généré nos données d'entraînement
 » ex.: l'être humain qui a étiqueté les images de caractères
- On peut démontrer que plus D est grand, plus h sera une bonne approximation de f
 - → intuition: en augmentant la taille de l'ensemble d'entraînement, les k plus proches voisins ne peuvent changer qu'en étant encore plus proches (plus similaires) à l'entrée

Mesure de la performance d'un algorithme d'apprentissage

- Comment évaluer le succès d'un algorithme?
 - on pourrait regarder l'erreur moyenne commise sur les exemples d'entraînement, mais cette erreur sera nécessairement optimiste
 - » $\,h\,$ a déjà vu la bonne réponse pour ces exemples!
 - » on mesure donc seulement la capacité de l'algorithme à mémoriser
- Ce qui nous intéresse vraiment, c'est la capacité de l'algorithme à généraliser sur de nouveaux exemples
 - ça reflète mieux le contexte dans lequel on va utiliser h
- Pour mesurer la généralisation, on met de côté des exemples étiquetés, qui seront utilisés seulement à la toute fin, pour calculer l'erreur
 - on l'appel l'ensemble de test

Algorithme des K plus proches voisins pour quel type d'agent?

Model-based reflex

Sensors

What the world is like now

What my actions do

What action I should do now

Agent

Actuators

Goal-based

Utiliy-based

Vous devriez être capable de...

- Nommer les trois formes d'apprentissage: supervisé, non supervisé, par renforcement
- Expliquer et simuler l'algorithme des K plus proches voisins