

You are here: [About.com](#) > [Computing/Technology](#) > [Desktop Video](#) > [Articles](#)

[post resume](#) [new jobs](#) [hot companies](#) [protect your privacy](#)

 jobs.com Find a better job now!

communications

Keyword Search:

About.com™

The network of sites led by expert guides.

David Simpson - your About.com Guide to:

Desktop Video

Thu, Apr 6, 2000

Join us
Chat...
Forums...
Newsletters...
& More

Content: [Welcome](#) | [Netlinks](#) | [Articles](#) | [Guide Bio](#) | [Search](#) | [Related](#)
TalkAbout: [Forums](#) | [Chat](#) | [Events](#) | [Newsletter](#) | [Share This Site](#) | [Join](#)
Shopping: [ShopNow](#) | [Books](#) | [Videos](#) | [Jobs](#) | [ShoppingAbout](#)

DV Coding: How it Works with IEEE-1394

Dateline: 3/26/98

by Thomas "Rick" Tewell
VP of Engineering
Sequoia Advanced Technologies
(The following is published by
permission of Thomas Tewell.)

The following was derived from a PowerPoint presentation. In order to save bandwidth and your time, I extracted the text information from the slides. However, some slides needed the graphics in order to be understood; those I have included here. If they are

In Partnership With

TechWeb

[TechWeb News](#)

[Virtual Teams Light Up GE](#)

[Gates Works White House, Congress](#)

[Apple Releases Darwin, QuickTime Code](#)

[Free Downloads](#)

[Winning About](#)

 Kodak Z90
digicam as low as \$649

ShopCenter

[register domains](#)

[free biz stuff](#)

[casino online](#)

[free online photos](#)

[free software](#)

[find a consultant](#)

[tech for small biz](#)

[compare laptops](#)

[the best prices](#)

[auctions!](#)

[super pc deal](#)

[tech bargains](#)

[lowest airfare](#)

[join affiliates](#)

[ask the experts](#)

[win a palm v](#)

[dsl @ t1 speed](#)

[online casinos](#)

[ShopNow](#) | [T1 Speed](#)

Best Available Copy

too small to read; simply click your mouse button on the image and download the full-size file.
 -David Simpson

DV Coding: How it works with IEEE-1394

Presented July 29, 1997

Thomas "Rick" Tewell

VP of Engineering

Sequoia Advanced Technologies

What is DV?

- * DV is a compressed digital video and audio recording standard
- * DVC is an abbreviation for Digital Video Cassette
- * MiniDV is a small DV consumer cassette.
- * DV is endorsed by over 50 major manufacturers.
- * It is not DVD!!!

What are the tape specs?

- * 6.35 mm (1/4") magnetic tape
- * MiniDV cassettes (used in digital camcorders) hold up to 60 minutes of audio/video
- * Standard DV cassettes (Sony calls DVCAM) hold up to 180 minutes of audio/video
- * 60 minute MiniDV cassette holds almost 13 gigabytes of digital data!
- * 180 minute DV cassette holds almost 39 gigabytes of digital data!
- * Effective data rate is 3.6 MB/sec continuous

Compressed Video Specs

- * Compresses a 720 x 480 4:1:1 YUV image to 103,950 bytes (ratio 4.9: 1)
- * Intra-frame DCT based compression
- * Ideal for video editing solutions
- * Operates at 30 frames per second
- * Effective video transmission rate is 3.12 MB/sec

What does DV have to do with IEEE-1394?

- * The hot new digital camcorders use IEEE-1394 to transport DV data

How do I get DV data into my computer?

It is a two step process.

- * Capture the DV Data
- * Decode the DV Data

Capturing DV Data

- * Most 1394 digital camcorders broadcast DV data on isochronous channel 63
- * Set tag bit to 01 when you listen on Isochronous channel 63

This usually results in a 'channel' specification of 127 with most Windows 95 IEEE-1394 APIs

- * DV data packets are 488 bytes long

8 bytes of CIP header and
480 bytes of DV data

* You must look for the start of a video frame as these 488 byte packets come across the 1394 bus

We look for the 16-bit value
0x1F07 at byte offset 0x08 to
determine if we have the first
packet of a video frame

- * Once you have start of frame you must collect the next 250 valid packets of data to have a complete DV frame
- * Every 15th packet is a null packet and should be discarded

Adaptec and TI handle null packets with their Windows 95 API differently so care must be taken here!

- * Once you have 250 valid packets of data in a buffer you must cycle through the packets and discard the CIP headers
- * If all went well, you should have a buffer with a 120,000 byte DV frame in it!

Decoding DV Data

- * A NTSC DV frame (720 x 480) is divided into 10 DIF (data in frame) sequences each 12,000 bytes long
- * One DIF sequence contains five super blocks of video pixel data
- * There are 150 DIF blocks of 80 bytes each in each DIF sequence

135 DIF blocks are used for video information

9 DIF blocks are used for audio information.

6 DIF blocks are used for Header, Subcode and Video Auxiliary (VAUX) information

Decoding DV Data (continued)

* DV video frames are organized into 270 individual video segments

27 video segments per DIF sequence

* A video segment is made up of 5 compressed macro blocks

A macro block is 80 bytes long

3 bytes for DIF
block ID
information
14 bytes each for
Y0, Y1, Y2 and
Y3

10 bytes each for
CR and CB
1 byte for the
quantization
number (QNO)
and block status
(STA)

* Each macro
block represents
a 32 x 8 pixel
region taken from
each of five
'columns' of the
video frame

Super blocks

- * Super blocks are a logical organization of 27 macro blocks
- * There are 50 super blocks in a NTSC DV video frame
- * A group of 5 super blocks (1 from each super block column) make up one DIF sequence

The building of a NTSC DV frame

Decoding DV Data (continued)

* Decoding a video segment (a group of 5 related compressed macro blocks)

Extract AC coefficients via a three pass variable length decoding algorithm

Pass 1: decode
VLC AC
coefficients for
Y0, Y1, Y2, Y3,
CR and CB within
a macro block
Pass 2: decode
overflowed VLC
AC coefficients
within a macro
block

Pass 3: decode overflowed VLC AC coefficients within a video segment

Decoding DV Data (continued)

* Once you have AC coefficients:

Inverse quantization
Zigzag coefficient output
ordering
Inverse weighting
Inverse Discrete Cosine
Transform (DCT) either 8-8
or 2-4-8
2-4-8 is used when there is
lot of detail in the pixel group
Store the pixel values in the
proper location in the video
frame

- * Every 3 video segments you must be sure to skip the audio DIF block
- * Every 27 video segments you must be sure to skip the header, subcode and VAUX DIF blocks (6 total)
- * Do the previous video segment decoding sequence 270 times and you have a YUV 4:1:1 - 720 x 480 video

frame!

More information?

* **DVC "Blue Book"**

M. Tsunoo/MR.
Administration Department
AVC products development
laboratory
Matsushita Electric Industrial
Co, LTD
2-15 Matsuba-cho,
Kadoma-shi, Osaka, 571
Japan
Tel 81-6-905-4023, Fax
81-6-906-8125

* 1394 TA website

* Global DVC Club website

* DVC & Firewire central website

* Sequoia website

Sequoia Advanced Technologies

- * Developer of IEEE-1394 consumer level system software specializing in Windows 95 and Windows NT
- * Developed a high quality DVC codec for decoding and encoding DVC frames
- * Has a full IEEE-1394 DV solution for Windows 95 and Windows NT

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.