Relations and Functions

- The period of $\sin^2 \theta$ is
 - (a) π^2
- (b) π
- (c) 2π
- (d) $\pi/2$
- Which one is not periodic? 2.

[2002]

[2002]

- (a) $|\sin 3x| + \sin^2 x$
- (b) $\cos \sqrt{x} + \cos^2 x$
- (c) $\cos 4x + \tan^2 x$
- (d) $\cos 2x + \sin x$
- The function $f(x) = \log(x + \sqrt{x^2 + 1})$, is

[2003]

- (a) neither an even nor an odd function
- (b) an even function
- (c) an odd function
- (d) a periodic function.
- A function f from the set of natural numbers to integers defined by

$$f(n) = \begin{cases} \frac{n-1}{2}, & \text{when n is odd} \\ -\frac{n}{2}, & \text{when n is even} \end{cases}$$
 is

- (a) neither one -one nor onto
- (b) one-one but not onto
- (c) onto but not one-one
- (d) one-one and onto both.
- If $f: R \to S$, defined by 5.

$$f(x) = \sin x - \sqrt{3}\cos x + 1$$
, is onto, then the

interval of S is

[2004]

- (a) [-1, 3]
- (b) [-1, 1]
- (c) [0, 1]
- (d) [0,3]
- Let $R = \{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ be a relation on the set $A = \{1, 2, 3, 4\}$.. The relation

- (a) reflexive
- (b) transitive
- (c) not symmetric
- (d) a function
- 7. Let $f: (-1, 1) \rightarrow B$, be a function defined by

$$f(x) = \tan^{-1} \frac{2x}{1 - x^2}$$
, then f is both one - one and

onto when *B* is the interval

[2005]

- (a) $\left(0, \frac{\pi}{2}\right)$ (b) $\left[0, \frac{\pi}{2}\right]$
- (c) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- A real valued function f(x) satisfies the functional equation

$$f(x-y) = f(x)f(y) - f(a-x)f(a+y)$$

where a is a given constant and f

where a is a given constant and f(0) = 1, f(2a-x) is equal to [2005]

- (a) -f(x)
- (b) f(x)
- (c) f(a)+f(a-x)
- (d) f(-x)
- Let $R = \{(3,3), (6,6), (9,9), (12,12), (6,12), (3,9), (12,12), ($ (3, 12), (3, 6)} be a relation on the set $A = \{3, 6, 9, 12\}$. The relation is [2005]

- (a) reflexive and transitive only
- (b) reflexive only
- (c) an equivalence relation
- (d) reflexive and symmetric only

м-90 -

Statement-2 is not a correct explanation for Statement-1.

Mathematics

- 10. Let W denote the words in the English dictionary. Define the relation R by $R = \{(x, y) \in W \times W \}$ the words x and y have at least one letter in common.} Then R is [2006]
 - (a) not reflexive, symmetric and transitive
 - (b) relexive, symmetric and not transitive
 - (c) reflexive, symmetric and transitive
 - (d) reflexive, not symmetric and transitive
- 11. Let $f: N \rightarrow Y$ be a function defined as f(x) = 4x + 3 where $Y = \{y \in N : y = 4x + 3 \text{ for some } x \in N\}$. Show that f is invertible and its inverse is

[2008]

(a)
$$g(y) = \frac{3y+4}{3}$$
 (b) $g(y) = 4 + \frac{y+3}{4}$

(c)
$$g(y) = \frac{y+3}{4}$$
 (d) $g(y) = \frac{y-3}{4}$

12. Let *R* be the real line. Consider the following subsets of the plane $R \times R$:

$$S = \{(x, y): y = x + 1 \text{ and } 0 < x < 2\}$$

 $T = \{(x, y): x - y \text{ is an integer}\},$

Which one of the following is true? [2008]

- (a) Neither S nor T is an equivalence relation on R
- (b) Both S and T are equivalence relation on R
- (c) S is an equivalence relation on R but T is not
- (d) T is an equivalence relation on R but S is not
- **13. DIRECTIONS**: This question contains two statements:

Statement-1 (Assertion) and Statement-2 (Reason).

This question also has four alternative choices, only one of which is the correct answer. You have to select the correct choice.

Let
$$f(x) = (x+1)^2 - 1$$
, $x \ge -1$

Statement -1 : The set $\{x : f(x) = f^{-1}(x) = \{0, -1\}$ **Statement-2 :** *f* is a bijection. [2009]

- (a) Statement-1 is true, Statement-2 is true. Statement-2 is not a correct explanation for Statement-1.
- (b) Statement-1 is true, Statement-2 is false.
- (c) Statement-1 is false, Statement-2 is true.
- (d) Statement-1 is true, Statement-2 is true.

- 14. For real x, let $f(x) = x^3 + 5x + 1$, then [2009]
 - (a) f is onto R but not one-one
 - (b) f is one-one and onto R
 - (c) f is neither one-one nor onto R
 - (d) *f* is one-one but not onto R
- 15. Consider the following relations: $R = \{(x, y) | x, y \text{ are real numbers and } x = wy \text{ for some rational number } w\};$

$$S = \{\left(\frac{m}{n}, \frac{p}{q}\right) \mid m, n, p \text{ and } q \text{ are integers such } \}$$

that $n, q \neq 0$ and qm = pn. Then [2010]

- (a) Neither R nor S is an equivalence relation
- (b) S is an equivalence relation but R is not an equivalence relation
- (c) R and S both are equivalence relations
- (d) R is an equivalence relation but S is not an equivalence relation
- 16. Let R be the set of real numbers. [2011] Statement-1: $A = \{(x, y) \in R \times R : y - x \text{ is an integer}\}$ is an equivalence relation on R.
 - Statement-2: $B = \{(x, y) \in R \times R : x = \alpha y \text{ for some rational number } \alpha \}$ is an equivalence relation on R.
 - (a) Statement-1 is true, Statement-2 is true;Statement-2 is not a correct explanation for Statement-1.
 - (b) Statement-1 is true, Statement-2 is false.
 - (c) Statement-1 is false, Statement-2 is true.
 - (d) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- **17.** Let *f* be a function defined by

$$f(x) = (x-1)^2 + 1, (x \ge 1).$$
 [2011RS]

Statement - 1:

The set
$$\{x: f(x) = f^{-1}(x)\} = \{1, 2\}$$
.

Statement - 2:

f is a bijection and $f^{-1}(x) = 1 + \sqrt{x-1}, x \ge 1$.

(a) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.

Relations and Functions

- (b) Statement-1 is true, Statement-2 is true; Statement-2 is NOT a correct explanation for Statement-1.
- (c) Statement-1 is true, Statement-2 is false.
- (d) Statement-1 is false, Statement-2 is true.
- **18.** If g is the inverse of a function f and

$$f'(x) = \frac{1}{1+x^5}$$
, then $g'(x)$ is equal to: [2014]

(a)
$$\frac{1}{1+\{g(x)\}^5}$$
 (b) $1+\{g(x)\}^5$

(b)
$$1 + \{g(x)\}$$

- (c) $1 + x^5$
- (d) $5x^4$
- 19. The function $f: R \to \left[-\frac{1}{2}, \frac{1}{2} \right]$ defined as f(x) =

$$\frac{x}{1+x^2}$$
, is: [2017]

- (a) neither injective nor surjective
- invertible
- (c) injective but not surjective
- surjective but not injective

	Answer Key														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
(b)	(b)	(c)	(d)	(a)	(c)	(d)	(a)	(a)	(b)	(d)	(d)	(b)	(b)	(b)	
16	17	18	19												
(a)	(a)	(b)	(d)												

SOLUTIONS

- **(b)** $\sin^2 \theta = \frac{1 \cos 2\theta}{2}$; Period = $\frac{2\pi}{2} = \pi$
- **(b)** $\because \cos \sqrt{x}$ is non periodic 2.
 - $\cos \sqrt{x} + \cos^2 x$ can not be periodic.
- (c) $f(x) = \log(x + \sqrt{x^2 + 1})$

$$f(-x) = \log\left\{-x + \sqrt{x^2 + 1}\right\}$$

$$= \log \left\{ \frac{-x^2 + x^2 + 1}{x + \sqrt{x^2 + 1}} \right\}$$

$$= -\log(x + \sqrt{x^2 + 1}) = -f(x)$$

 $\Rightarrow f(x)$ is an odd function.

(d) We have $f: N \to I$ 4.

If x and y are two even natural numbers,

then
$$f(x) = f(y) \Rightarrow \frac{-x}{2} = \frac{-y}{2} \Rightarrow x = y$$

Again if x and y are two odd natural numbers then

$$f(x) = f(y) \Rightarrow \frac{x-1}{2} = \frac{y-1}{2} \Rightarrow x = y$$

 \therefore f is onto.

Also each negative integer is an image of even natural number and each positive integer is an image of odd natural number. \therefore f is onto.

Hence f is one one and onto both.

f(x) is onto $\therefore S = \text{range of } f(x)$ 5.

Now
$$f(x) = \sin x - \sqrt{3}\cos x + 1$$

= $2\sin\left(x - \frac{\pi}{2}\right) + 1$

$$\therefore -1 \le \sin\left(x - \frac{\pi}{2}\right) \le 1$$

$$-1 \le 2\sin\left(x - \frac{\pi}{2}\right) + 1 \le 3$$

$$f(x) \in [-1, 3] = S$$

ALTERNATE SOLUTION

We know that

$$-\sqrt{a^2 + b^2} \le a\sin\theta + b\cos\theta \le \sqrt{a^2 + b^2}$$

$$\therefore -2 \le \sin x - \sqrt{3}\cos x \le 2$$

м-92

$$\Rightarrow -1 \le \sin x - \sqrt{3} \cos x + 1 \le 3$$

$$\therefore f(x) \in [-1, 3]$$

- 6. (c) $(1, 1) \notin R \Rightarrow R \text{ is not reflexive } (2,3) \in R$ but $(3, 2) \notin R$
 - :. R is not symmetric

7. **(d)** Given
$$f(x) = \tan^{-1} \left(\frac{2x}{1 - x^2} \right) = 2\tan^{-1} x$$

for $x \in (-1, 1)$

If
$$x \in (-1, 1) \Rightarrow \tan^{-1} x \in \left(\frac{-\pi}{4}, \frac{\pi}{4}\right)$$

$$\Rightarrow 2 \tan^{-1} x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$

Clearly, range of
$$f(x) = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

For f to be onto, codomain = range \therefore Co-domain of function = B =

$$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$$
.

- 8. (a) f(2a-x) = f(a-(x-a)) = f(a)f(x-a) - f(0)f(x) = f(a)f(x-a) - f(x) = -f(x) $[\because x = 0, y = 0, f(0) = f^{2}(0) - f^{2}(a)$ $\Rightarrow f^{2}(a) = 0 \Rightarrow f(a) = 0$ $\Rightarrow f(2a-x) = -f(x)$
- 9. (a) Reflexive and transitive only. e.g. (3,3), (6,6), (9,9), (12,12) [Reflexive] (3,6), (6,12), (3,12) [Transitive]. $(3,6) \in R$ but $(6,3) \notin R$ [non symmetric]
- **10. (b)** Clearly $(x,x) \in R \forall x \in W$. So R is reflexive. Let $(x,y) \in R$, then $(y,x) \in R$ as x and y have at least one letter in common. So, R is symmetric. But R is not transitive for example

Let x = INDIA, y = BOMBAY and z = JOKERthen $(x, y) \in R$ (A is common) and $(y, z) \in R$ (O is common) but $(x, z) \notin R$. (as

11. (d) Clearly f is one one and onto, so invertible

no letter is common)

Mathematics

$$Also f(x) = 4x + 3 = y$$

$$\Rightarrow x = \frac{y-3}{4} \qquad \therefore \ g(y) = \frac{y-3}{4}$$

- 12. **(d)** Given $S = \{(x, y) : y = x + 1 \text{ and } 0 < x < 2\}$ $\therefore x \ne x + 1 \text{ for any } x \in (0, 2)$
 - $\Rightarrow (x, x) \notin S$
 - \therefore S is not reflexive.

Hence S in not an equivalence relation.

Also $T = \{x, y\}: x - y \text{ is an integer}\}$

- $\therefore x x = 0$ is an integer $\forall x \in R$
- \therefore T is reflexive.

If x - y is an integer then y - x is also an integer $\therefore T$ is symmetric

If x - y is an integer and y - z is an integer then

(x-y)+(y-z)=x-z is also an integer.

 \therefore T is transitive

13. **(b)** Given that $f(x) = (x+1)^2 - 1$, $x \ge -1$ Clearly $D_f = [-1, \infty)$ but co-domain is not given. Therefore f(x) need not be necessarily onto.

But if f(x) is onto then as f(x) is one one also, (x+1) being something +ve,

 $f^{-1}(x)$ will exist where

$$(x+1)^2 - 1 = y$$

$$\Rightarrow x+1 = \sqrt{y+1}$$

(+ve square root as $x + 1 \ge 0$)

$$\Rightarrow x = -1 + \sqrt{y+1}$$

$$\Rightarrow f^{-1}(x) = \sqrt{x+1} - 1$$

Then $f(x) = f^{-1}(x)$

$$\Rightarrow (x+1)^2 - 1 = \sqrt{x+1} - 1$$

$$\Rightarrow (x+1)^2 = \sqrt{x+1} \Rightarrow (x+1)^4 = (x+1)$$

\Rightarrow (x+1) \left[(x+1)^3 - 1 \right] = 0 \Rightarrow x = -1, 0

:. The statement-1 is correct but statement-2 is false.

14. (b) Given that $f(x) = x^3 + 5x + 1$ $\therefore f'(x) = 3x^2 + 5 > 0$,

$$\therefore f'(x) = 3x^2 + 3 > 0$$

$$\forall x \in R$$

 $\Rightarrow f(x)$ is strictly increasing on R

 $\Rightarrow f(x)$ is one one

 \therefore Being a polynomial f(x) is continuous and increasing.

on R with
$$\lim_{x\to\infty} f(x) = -\infty$$

and
$$\lim_{x \to \infty} f(x) = \infty$$

Relations and Functions

Hence statement-1 is correct

 \therefore Range of $f = (-\infty, \infty) = R$

Hence f is onto also. So, f is one one and onto R.

15. (b) x Ry need not implies yRx

$$S: \frac{m}{n} s \frac{p}{q}$$

Given
$$qm = pn \implies \frac{p}{q} = \frac{m}{n}$$

 $\therefore \frac{m}{n} s \frac{m}{n}$ reflexive $\frac{m}{n} s \frac{p}{a} \Rightarrow \frac{p}{a} s \frac{m}{n}$ symmetric

$$\frac{m}{n} s \frac{p}{q}, \frac{p}{q} s \frac{r}{s} \Rightarrow qm = pn, ps = rq$$

$$\Rightarrow \frac{p}{q} = \frac{m}{n} = \frac{r}{s} \Rightarrow \text{ms} = \text{rn transitive}.$$

S is an equivalence relation.

16. (a) Let for statement 1: $xRy = x - y \in I$. As xRxis an integer and yRx as well as xRz (for xRy and yRz) is also an integer.

Hence equivalence.

Similarly as $x = \alpha y$ hence $\alpha = 1$ for reflexive

and $\frac{1}{2}$ being a rational for symmetric for

some non zero α and product of rationals also being rational \Rightarrow equivalence

But not symmetric because of $\alpha = 0$ case Both relations are equivalence but not the correct explanation.

17. (a) $f(x) = (x-1)^2 + 1, x \ge 1$

Since f is a bijective function

$$f:[1,\infty)\to[1,\infty)$$

$$\Rightarrow y = (x-1)^2 + 1 \Rightarrow (x-1)^2 = y-1$$

$$\Rightarrow x = 1 \pm \sqrt{y - 1} \Rightarrow f^{-1}(y) = 1 \pm \sqrt{y - 1}$$

$$\Rightarrow f^{-1}(x) = 1 + \sqrt{x-1} \left\{ :: x \ge 1 \right\}$$

Hence statement-2 is correct

Now
$$f(x) = f^{-1}(x)$$

$$\Rightarrow f(x) = x \Rightarrow (x-1)^2 + 1 = x$$

$$\Rightarrow x^2 - 3x + 2 = 0 \Rightarrow x = 1,2$$

18. (b) Since f(x) and g(x) are inverse of each other

$$\therefore g'(f(x)) = \frac{1}{f'(x)}$$

$$\Rightarrow$$
 $g'(f(x)) = 1 + x^5$

$$\left(\because f'(x) = \frac{1}{1 + r^5} \right)$$

Here
$$x = g(y)$$

$$\therefore g'(y) = 1 + [g(y)]^5$$

$$\Rightarrow g'(x) = 1 + (g(x))^5$$

19. (d) we have $f: R \to \left| -\frac{1}{2}, \frac{1}{2} \right|$,

$$f(x) = \frac{x}{1 + x^2} \, \forall x \in R$$

$$\Rightarrow f'(x) = \frac{(1+x^2).1-x.2x}{(1+x^2)^2} = \frac{-(x+1)(x-1)}{(1+x^2)^2}$$

 \Rightarrow f'(x) changes sign in different intervals.

.. Not injective

Now
$$y = \frac{x}{1+x^2}$$

$$\Rightarrow y + yx^2 = x$$
$$\Rightarrow yx^2 - x + y = 0$$

$$\Rightarrow$$
 vx²-x+v=0

For
$$y \ne 0$$
, $D = 1 - 4y^2 \ge 0$

$$\Rightarrow y \in \left[\frac{-1}{2}, \frac{1}{2}\right] - \{0\}$$

For
$$y = 0 \Rightarrow x = 0$$

$$\therefore$$
 Range is $\left[\frac{-1}{2}, \frac{1}{2}\right]$

⇒ Surjective but not injective

м-93