Measure Theory: Exercises (not for credit)

Josephine Evans

October 8, 2021

Question 1. Find the σ -algebra on \mathbb{R} which is generated by the collection of all one-point sets.

Question 2. Find an example to show that the union of a collection of σ -algebras is not necessarily a σ -algebra.

Question 3. Prove that if \mathcal{E} is both a d-system and π -system then it is a σ -algebra. Use this to prove Dynkin's π -system lemma that if \mathcal{A} is a π -system then any d-system containing \mathcal{A} also contains $\sigma(A)$. Hint: Consider \mathcal{D} the intersection of all d-systems containing \mathcal{A} , and $\mathcal{D}' = \{B \in \mathcal{D} : B \cap A \in \mathcal{D} \forall A \in \mathcal{A}\}$ and $\mathcal{D}'' = \{B \in \mathcal{D} : B \cap A \in \mathcal{D} \forall A \in \mathcal{D}\}$ and show that they are all d-systems.

Question 4. Suppose that (E, \mathcal{E}, μ) is a measure space. Prove the inclusion-exclusion formula

$$\mu(A_1 \cup A_2 \cup \dots A_n) = \sum_{k=1}^n \mu(A_k) - \sum_{k \neq j}^n \mu(A_k \cap A_j) + \dots + (-1)^n \mu(A_1 \cap A_2 \cap \dots A_n).$$

Question 5. Let μ be the measure on \mathbb{R} defined by setting $\mu(A)$ to be the number of rationals in the set A (where $\mu(A) = \infty$ if there are infinitely many rationals). Show that μ is a σ -finite measure which gives every open interval infinite measure.

Question 6. Let μ be a finitely additive set function on a σ -algebra, \mathcal{E} in a set E with $\mu(E) < \infty$. Show that μ is countably additive if and only if for any decreasing sequence of sets A_n with $\bigcap_n A_n = \emptyset$ and $\mu(A_1) < \infty$ then we have $\mu(A_n) \to 0$.

Question 7. Let (E, \mathcal{E}, μ) be a measure space. We call a set N a null set if there exists $B \in \mathcal{E}$ with $N \subseteq B$ and $\mu(B) = 0$. We write \mathcal{N} for the collection of all null sets. Define the collection

$$\mathcal{E}^{\mu} = \{ A \cup N : A \in \mathcal{E}, N \in \mathcal{N} \}.$$

Show that \mathcal{E}^{μ} is a σ -algebra and the extension of μ to \mathcal{E}^{μ} defined by $\mu(A \cup N) = \mu(A)$ is a measure. We call \mathcal{E}^{μ} the completion of \mathcal{E} with respect to μ .