NASA TM X-53385 c.1

NASA TECHNICAL MEMORANDUM

NASA TM X-53385

February 1

LOAN COPY: RETURN TO AFWL (WLIL-2) KIRTLAND AFB, N MEX

EARTH ORBITAL LIFETIME PREDICTION MODEL AND PROGRAM

1-205-453-2121 Ex. 0988

by Ann R. McNair and Edward P. Boykin Aero-Astrodynamics Laboratory

NASA

NASA TM X-53385

George C. Marshall Space Flight Center, Huntsville, Alabama

TECH LIBRARY KAFB, NM

TECHNICAL MEMORANDUM X-53385

EARTH ORBITAL LIFETIME PREDICTION MODEL AND PROGRAM

By

Ann R. McNair and Edward P. Boykin

George C. Marshall Space Flight Center Huntsville, Alabama

ABSTRACT

An earth orbital satellite lifetime deck has been developed and programmed in Fortran IV language for the IBM 7094. The deck represents the development of a sophisticated and accurate lifetime prediction technique, which includes the effect of aerodynamic drag and the nonspherical gravitational potential of the earth. The computer program can be used to predict lifetime based on only a gross description of the initial orbit and drag parameters, or based on a very exact definition of the initial orbit and detailed description of the drag parameters and their variations depending on the amount of information available. The primary factor contributing to uncertainty in lifetime predictions using this model is the atmospheric density. A very flexible model based on data from Discoverer, Gemini, and Saturn flights has been established. The primary uncertainty remaining in this model is prediction for future years of solar activity behavior and its influence on density as a function of altitude. As additional flight data and solar activity observations become available, they may readily be incorporated into the model, thus providing a rapidly changing density model which insures the best representation possible. Efforts to refine the models as presently defined and to perform pertinent studies in the lifetime area are continuing. This report represents only the present status of model definitions and defines the computer program now in use.

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER

TECHNICAL MEMORANDUM X-53385

EARTH ORBITAL LIFETIME PREDICTION MODEL AND PROGRAM

 $\mathbf{B}\mathbf{y}$

Ann R. McNair and Edward P. Boykin

FLIGHT EVALUATION AND OPERATIONS STUDIES DIVISION
AERO-ASTRODYNAMICS LABORATORY
RESEARCH AND DEVELOPMENT OPERATIONS

TABLE OF CONTENTS

		\mathbf{P}_{i}	age
	SUI	MMARY	1
I.	rni	TRODUCTION	1
II.	DE	NSITY MODEL	3
	A. B.	Defining a Time-Dependent and Position-Dependent Density Model	4 10
	C.	Prediction of Future Behavior of Parametric Input	11
ш.	LIE	FETIME PROGRAM	22
	А. В.		22 26
		2. Transformation Phase	26 32 35 36 38 41 44 46 48 50 50 51
	C. D.	•	54 70
		2. Detail Output	70 76 83

TABLE OF CONTENTS (Concluded)

			Page
IV. GI	RAPHIC	METHOD FOR LIFETIME PREDICTION	91
APPENDI	XA. I	DERIVATION OF THE DECAY EQUATIONS	108
APPENDI	хв. (COMPUTER PROGRAM SOURCE LISTING	145

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.	Ratio of Density for Various Values of S to the 59 ARDC Density	. 15
2.	Ratio of Density for Various Values of S to the 62 U. S. Standard Density	. 16
3.	Exponential Atmospheric Weighting Factor (K) for Effect of Heating	. 17
4.	Correction Factor for Density	. 18
5.	Currently Defined $\overline{F}_{10,7}$ and \overline{K}_{D} vs Time	. 19
6.	Currently Defined S vs Time	. 20
7.	Semiannual Effect on Atmospheric Heating	. 21
8.	Earth Orbital Lifetime	. 94
9.	Earth Orbital Lifetime	. 95
10.	Earth Orbital Lifetime	. 96
11.	Earth Orbital Lifetime	. 97
12.	Earth Orbital Lifetime	. 98

LIST OF ILLUSTRATIONS (Concluded)

Figure	Title	Page
13.	Earth Orbital Lifetime	99
14.	Orbital Drag Coefficient	100
15.	$f_{\mathbf{i},\omega}$ Correction Factor	101
16.	f Correction Factor for Nominal Lifetime: 1959 ARDC Reference	102
17.	f _d Correction Factor for Nominal Lifetime: 1962 U.S. Standard Reference	103
18.	f_d Correction Factor for -3 σ Lifetime: 1959 ARDC Reference	104
19.	f _d Correction Factor for +3σ Lifetime: 1959 ARDC Reference	105
20.	f _d Correction Factor for -3σ Lifetime: 1962 U. S. Standard Reference	106
21.	f_d Correction Factor for +3 σ Lifetime: 1962 U. S. Standard Reference	107
	LIST OF TABLES	
Table	Title	Page
I.	Decayed Satellite Analysis	13
п.	Earth Radius as a Function of Inclination (i) and Argument of Perigee (ω)	93

TECHNICAL MEMORANDUM X-53385

EARTH ORBITAL LIFETIME PREDICTION MODEL AND PROGRAM

SUMMARY

An earth orbital satellite lifetime deck has been developed and programmed in Fortran IV language for the IBM 7094. The deck represents the development of a sophisticated and accurate lifetime prediction technique, which includes the effect of aerodynamic drag and the nonspherical gravitational potential of the earth. The computer program can be used to predict lifetime based on only a gross description of the initial orbit and drag parameters, or based on a very exact definition of the initial orbit and detailed description of the drag parameters and their variations depending on the amount of information available. The primary factor contributing to uncertainty in lifetime predictions using this model is the atmospheric density. A very flexible model based on data from Discoverer, Gemini, and Saturn flights has been established. The primary uncertainty remaining in this model is prediction for future years of solar activity behavior and its influence on density as a function of altitude. As additional flight data and solar activity observations become available, they may readily be incorporated into the model, thus providing a rapidly changing density model which insures the best representation possible. Efforts to refine the models as presently defined and to perform pertinent studies in the lifetime area are continuing. This report represents only the present status of model definitions and defines the computer program in use.

SECTION I. INTRODUCTION

An extensive effort has been underway to develop a flexible and accurate orbital lifetime prediction model and a density model accurately describing the history of decayed satellites and providing the best available prediction for future satellites. This has been performed jointly by the authors and the Dynamics and Guidance Department of the Lockheed Missiles and Space Company, Huntsville Research and Engineering Center. Lockheed's work has been performed under Contracts NAS8-11148, NAS8-11121 and Task B of NASA Schedule Order No. 1, Contract NAS8-20082. Principal contributors from Lockheed are Mr. T. J.

Richards and Mr. H. F. Kilgo. This report was prepared jointly by MSFC amd LMSC, Section V being prepared by Mr. W. B. Hawkins, of Lockheed. The computer program is documented in Reference 1.

The orbital lifetime of a satellite, in the final analysis, depends solely upon two things: the initial total energy of the satellite and the time history of its rate of energy loss. Initial total energy is determined immediately either by position and velocity or by orbit elements. However, the determination of rate of energy loss is not immediately evident. Consider the external influences which act on a satellite to change its orbit: those produced by atmospheric resistance, the earth's nonspherical gravitational potential, lunar-solar gravitation, solar radiation pressure, and geomagnetic potential. Each of these act to change the shape and orientation of the orbital ellipse. Only atmospheric resistance causes a net decrease in total energy. Nevertheless, these other forces are important in determining orbital lifetime because they influence the parameters which define aerodynamic forces.

The development of sophisticated and accurate lifetime prediction and density models has been prompted by the need in the Saturn program for better estimates of lifetime and decay characteristics for earth orbital flight. These data are essential to realistic mission planning.

The basic models have been developed and a computer program written in Fortran language for the IBM 7094. The program simulates the rates of change in the orbit of a satellite and ultimately calculates the total time it remains in orbit. As presently coded, it includes the effects of aerodynamic drag and the earth's nonspherical gravitational potential. The computer program can be used to predict lifetime based on only a gross description of the initial orbit and drag parameters, or on a very exact definition of the initial orbit and detailed description of the drag parameters and their variations, depending upon the amount of information available.

Since the elements in the drag function can be input as constants or variables in a number of ways, their accuracy is limited mainly by the amount of information available to the user. These elements are atmospheric density, drag coefficient, cross-sectional area, and mass of the satellite.

Of principal significance is the atmospheric density model. It was desired to construct a model best predicting density for future years and optimally utilizing data obtained from decayed satellites and actual measurements of solar and geomagnetic activity. Consequently, any "best" density model must remain in a constant state of flux as new data and input become available.

The development of this extensive capability for earth orbital lifetime predictions is by no means completely refined. The basic model and best known inputs to date are formulated for use. A continuing effort is being made to further develop and refine the model. The following list singles out some of the more significant areas either presently being investigated or planned to be investigated. Information concerning these items may be obtained from the authors.

- 1. The equation used to compute the radius to the satellite as a function of a set of "mean" orbital elements was derived using a definition of "mean" elements which differs from the definition used in the transformation phase of the deck. The deck will be revised to either redefine the function or to redefine the elements to establish a consistent set.
- 2. The transformation between osculating and "mean" elements required before lifetime computations is indeterminant for small eccentricities. This transformation is being derived.
- 3. Expressions accounting for the effects of solar radiation pressure have been derived and are being programmed into the deck.
- 4. Expressions for solar and lunar gravity effects are being derived and will be incorporated into the deck.
- 5. Uncertainties in extrapolating mean solar activity predictions have been determined. The uncertainties caused by short period fluctuations in solar activity are being established to arrive at an overall uncertainty in predictions for short and long lifetimes.
- 6. A technique for inclusion of new solar activity data into the density model and automatic updating of the solar activity future predictions based on past and current behavior will be established.
- 7. Updating of the density model incorporating the latest Saturn flight data is in progress. This will result in a more accurate model in the higher altitude region near 500 km.

SECTION II. DENSITY MODEL

The carefully formulated decay equations presented in following sections for the lifetime model are of little value for application unless an accurate

density model is also used. Any density model which defines density as a function of altitude alone may be in error by an order of magnitude in the 200-700 kilometer altitude range. This section is specifically devoted to discussion of the time-variant density model used in the orbital lifetime program since the model is of such primary significance.

A. Defining a Time-Dependent and Position-Dependent Density Model

For future planning, it is necessary to have the capability of accurately determining the instantaneous acceleration due to drag (for propellant seating considerations, etc.) and the amount the orbit decays during a short period of time. This presents the requirement for an accurate time-dependent and position-dependent model, whereas a less sophisticated model is usually sufficient for an accurate total lifetime prediction.

The density of the upper atmosphere (120-700 km altitude) has been shown to vary with certain indices of solar and geomagnetic activity, with local time, with season and latitude, in addition to its primary variation with altitude. Many of the relationships used in the following model were developed by H. Small in Reference 2.

To describe the variation in density due to solar and geomagnetic activity fluctuations and seasonal effect, Small defines a single parameter, S, and refers to it as a "heating parameter" or the "total heating." The heating parameter S is defined as

$$S = \overline{S}e^{g(t)}, \qquad (1)$$

where

$$\overline{S} = 25 + 0.8\overline{F}_{10.7} + 0.4(F_{10.7} - \overline{F}_{10.7}) + 10Kp$$

g(t) = .025 cos
$$\left[2\pi \left(\frac{t - 38047.0}{365.25}\right)\right]$$
 - .06 cos $\left[4\pi \left(\frac{t - 38047.0}{365.25}\right)\right]$

e^{g(t)} = correction for seasonal effects

t = time in modified Julian days

Kp = 3-hour planetary index of geomagnetic activity

 $F_{10,7}$ = daily values of the 10.7 cm solar flux

 $\overline{F}_{10,7}$ = smoothed values of the 10.7 cm solar flux.

This is formed by taking the running yearly mean of $F_{10,7}$, i.e.,

$$\overline{F}_{10.7} = \frac{1}{365} \sum_{i=-182}^{182} F_{10.7} (t+i)$$
.

The daily values of $F_{10.7}$ and Kp, which are available in Reference 3, are incorporated into the model for use in post-flight prediction (section II B deals with extrapolating these values for future predictions).

Small also points out in Reference 2 that the following relationship holds (although he apparently did not use it in formulating his model):

$$\frac{d(\ln \rho)}{d(\ln S)} = \left[3 + 2.5 \left(\frac{h - 360}{240}\right) - .5 \left(\frac{h - 360}{240}\right)^2\right] \left[\frac{5.6 - \cos \psi}{6.6}\right], \quad (2)$$

where

 $\ln \rho = \text{natural log of density}$

ln S = natural log of S

h = altitude in km

 ψ ' = geocentric angle between the field point and the center of the diurnal bulge. ψ ' of 75 deg represents a mean diurnal effect.

By interpreting the above as

$$\frac{\ln \rho - \ln \rho_{0}}{\ln S - \ln S_{0}},$$

it follows directly that

$$\rho = \rho_{0} \left(\frac{S}{S_{0}} \right)^{\left[3 + 2.5 \left(\frac{h - 360}{240} \right) - .5 \left(\frac{h - 360}{240} \right)^{2} \right] \left[\frac{5.6 - \cos \psi'}{6.6} \right] . \quad (3)$$

To apply the above equation, all that remained was the selection of a realistic density profile (density as a function of altitude) to define ρ_0 and the associated value of S_0 .

Values from the above equation using various combinations of $S_{\rm O}$ and $\rho_{\rm O}$ (reference profiles) were compared to empirical density data. The results of this comparison indicated that two such combinations provide realistic density models. These are the 1959 ARDC density model with an $S_{\rm O}$ of 220 and the 1962 U. S. Standard density model with an $S_{\rm O}$ of 200.

Figures 1 and 2 show $\frac{\rho}{\rho_0}$ when $\psi^* = 75^\circ$ (mean diurnal effect)

$$\frac{\rho}{\rho_0} = \left(\frac{S}{S_0}\right) \cdot 81 \quad \left[3 + 2.5 \left(\frac{h - 360}{240}\right) - .5 \left(\frac{h - 360}{240}\right)^2\right],$$

for various values of S and $\frac{S}{O} = 220$ and $\frac{S}{O} = 200$, respectively.

These two reference atmosphers, the 1959 ARDC and U. S. Standard 1962, are used in the program. Lifetimes may be predicted solely on these models or using these models as a base with corrections for the time frame being considered as discussed above and adjusted with data obtained from flights. The selection of a model for the base is completely arbitrary. Essentially the same density model will result for either base reference. The base model is corrected in the program for solar activity behavior and diurnal effect in the following manner:

$$\rho = \rho_{0}(R_{i}^{!}) D_{c} \left\{ \frac{S}{S_{0}} \right\}^{K} \left\{ \frac{1 + .19 (e^{.0055} R_{i}^{!} - 1.9) \left(\frac{1 + \cos \psi^{!}}{2} \right)^{3}}{1 + .19 (e^{.0055} R_{i}^{!} - 1.9) \left(\frac{1 + \cos 75^{\circ}}{2} \right)^{3}} \right\}, (4)$$

where

 $ho_0(R_1^!)$ = Density of base reference atmosphere as a function of altitude $R_1^!$. This is assumed to be a diurnal mean atmosphere.

D_c = Altitude dependent correction factor derived from satellite observations (discussed later in some detail).

 S_o = Reference index of heating parameter, i.e., the value of S to which the D_c factor is referenced.

 $R_{i}^{!}$ = Field point altitude above an oblate earth

 ψ' = Angle between the field point and the center of the diurnal bulge.

The heating effect on atmospheric density is altitude dependent and the density is greater on the side of the earth toward the sun. The latter effect, the diurnal bulge, is represented by the brackets

$$\left\{ \frac{1 + .19 \ (e^{.0055R_{1}^{!}} - 1.9)}{1 + .19 \ (e^{.0055R_{1}^{!}} - 1.9)} \ \left(\frac{1 + \cos \psi!}{2} \right)^{3} \\ \frac{1 + .19 \ (e^{.0055R_{1}^{!}} - 1.9)}{2} \ \left(\frac{1 + \cos 75^{\circ}}{2} \right)^{3} \right\}$$

and is derived in Reference 4. The formulation given above assumes that the base atmosphere represents a mean dirunal effect so that, when ψ' equals the mean value of 75 degrees the ratio becomes one (1) for any altitude (ψ' is derived below). The variation in the effect of the heating parameter with altitude and position on ρ is represented in the equation (Reference 2) by K, where

$$K = \left[3 + \frac{5}{2} \left(\frac{R_{1}^{\prime} - 360}{240}\right) - \frac{1}{2} \left(\frac{R_{1}^{\prime} - 360}{240}\right)^{2}\right] \left[\frac{5 \cdot 6 - \cos \psi^{\prime}}{6 \cdot 6}\right]. \tag{5}$$

This exponent K is shown in Figure 3 as a function of altitude. The angle ψ^{\bullet} is calculated as follows:

$$\cos \psi^{\dagger} = 11_{\mathbf{R}} + mm_{\mathbf{R}} + nn_{\mathbf{R}} , \qquad (6)$$

(1, m, n) = direction cosines of the field point

$$1 = \frac{\mathbf{X_s}}{\mathbf{R_i}}$$

$$m = \frac{Y_s}{R_i}$$

$$n = \frac{Z_s}{R_i} \quad .$$

 R_i = Radius vector from earth center to field point. X_s , Y_s , Z_s are the space-fixed components of the position of the vehicle computed as

$$X_{c} = X' \cos \Omega - Y' \sin \Omega$$

$$Y_s = X' \sin \Omega + Y' \cos \Omega$$

$$Z_s = Z^{\dagger}$$

$$X' = X$$

$$Z' = Y \sin i$$

and

$$X = R_i \cos (\omega + v)$$

$$Y = R_i \sin(\omega + v)$$

- i = orbital inclination angle between the earth equatorial plane and the plane of the orbit
- Ω = Right ascension of the ascending node-angle between the intersection of the orbital plane with the earth equatorial plane and the vernal equinox
- $\omega = \text{Argument of perigee-angle between the ascending node and perigee}$

I

v = True anomaly-angle between perigee and the field point

 (l_{R}, m_{R}, n_{R}) = Direction cosines of the diurnal bulge

$$l_{\rm B} = \sqrt{n_{\rm s}^2 + l_{\rm s}^2} \cos RA_{\rm B}$$
 (7)

$$m_{B} = \sqrt{n_{S}^{2} + l_{S}^{2}} \sin RA_{B}$$
 (8)

$$n_{\mathbf{B}} = n_{\mathbf{S}} \tag{9}$$

$$\begin{pmatrix}
l_{s} \\
m_{s} \\
n_{s}
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \epsilon & -\sin \epsilon \\
0 & \sin \epsilon & \cos \epsilon
\end{pmatrix} \qquad \begin{pmatrix}
\cos \lambda_{s} \\
\sin \lambda_{s} \\
0
\end{pmatrix} \qquad (10)$$

 ϵ = inclination of the ecliptic = 0.4092 rad

 $\lambda_{_{\mathbf{S}}}$ = celestial longitude of the sun

$$\lambda_{S} = [0.017203 \text{ d} + .0335 \sin (0.017203 \text{ d}) - 1.41] \text{ rad}$$

d = number of days elapsed since Dec. 31, 1957

$$RA_{S} = tan^{-1} \left(\frac{m_{S}}{l_{S}} \right)$$

$$RA_{R} = RA_{S} - \theta$$

$$\theta_{\text{Radians}} = \frac{\pi}{180} [18.5 + 30e^{\text{K}_1} + \text{K}_2 \sigma + (1 - \sigma^2)]$$

if
$$\theta > 5$$
 set $\theta = 5$

$$\sigma = \frac{s - 160}{90}$$

$$K_1 = -.00567 (R_i - 200) + e^{-.01455} (R_i' - 200)$$

$$K_2 = 18.5 + 21.5e^{-.0315} (R_i' - 200)$$

B. Verification and Accuracy of Present Density Model From Flight Experience

The effective drag on the Saturn vehicle has been derived at MSFC primarily by the inclusion of drag as an additional unknown which is solved for in a conventional least square differential correction orbit determination program as discussed in Reference 5. The orbit correction program used included an atmospheric drag model which used the 1959 ARDC atmospheric density profile and assumed a constant ballistic factor for the satellite. The drag acceleration $\mathbf{A}_{\mathbf{D}}$ on the satellite was calculated as

$$A_{D} = \frac{1}{2} D_{C} (C_{D} A/M) \rho_{O} v_{e}^{2} , \qquad (11)$$

where C_D is the drag coefficient, A is the effective cross-sectional area, M is the satellite mass, v_e is the velocity relative to the earth, ρ_o is the reference atmospheric density at the satellite, and D_c is a constant used nominally to compensate for variation of the actual current atmospheric density from the 1959 ARDC density profile. Solutions for D_c were made for SA-5, SA-6 and SA-7 using radar tracking data in the orbit correction process described in Reference 5. Using these data in addition to Gemini and Discoverer data, a correction factor from the 1959 ARDC atmosphere was established as shown in Figure 4. These factors are referenced to an index of heating S of 100 which was applicable during the Saturn I flight time frame. Using these empirically derived solutions in the new jointly developed MSFC/LMSC lifetime program, a comparison of actual to predicted lifetime was made for 39 decayed satellites. The results of this comparison are presented in Table I.

As an indication of the accuracy of the prediction, the ratio of actual lifetime to predicted lifetime is shown in Table I for each case. This ratio

(A/P) appears to be normally distributed, having a mean value of 1.000 and a standard deviation of .082. These results indicate that the representation of solar activity as presented and the corresponding density as a function of time for the altitude region of 350 km and below is indeed valid for the time frame up to 1965. The validity for future years is only as good as the prediction of solar activity.

Similar density models are currently being investigated: one using the 59 ARDC as the reference density model, $\rm S_{o}=220$ and DC = 1.0 for all altitudes, and another using the 62 U. S. Standard as the reference density, $\rm S_{o}=200$, and DC = 1.0 for all altitudes. These yield essentially the same density as the one previously mentioned ($\rm S_{o}=100$, DC shown in Figure 4) in the 100-300 km altitude range and are currently being compared to data obtained in the 490-550 km altitude range from SA-8, SA-9, and SA-10 flights.

C. Prediction of Future Behavior of Parametric Input to the Model

Examination of the history of solar activity indicates that the present cycle need not necessarily follow a course similar to the last cycle. The $\overline{F}_{10.7}$ and \overline{K}_p for the period 1958-1975, which are currently being used in the MSFC computer program, are shown in Figure 5. Figure 6 shows the heating parameter \overline{S} based on the nominal values of $\overline{F}_{10.7}$ and \overline{K}_p given in Figure 5. The seasonal effect eg(t) on S is shown in Figure 7 as a function of the time of the year. The product of these two factors yields the heating parameter S. The $\overline{F}_{10.7}$ and \overline{K}_p values which occurred earlier than mid-1965 are averages of the actual recorded values, while those from mid-1965 to 1975 are based upon certain predictions and assumptions.

The extrapolation of $\overline{F}_{10,7}$ was based on the following assumptions:

1. $\overline{F}_{10,7}$ and Zurich smoothed sunspot number, R, are well correlated and the regression line is given by Reference 6 as

$$\overline{F}_{10.7} = 50 + .967 R$$
 $(\overline{F}_{10.7} > 100)$

and

$$\overline{F}_{10} = 68 + .607 R$$
 (F_{10.7} < 100).

- 2. The beginning of the new cycle (minimum $\overline{F}_{10,7}$) was in mid-1964.
- 3. The new sunspot cycle was assumed to have the shape and duration of the mean of sunspot cycles 8 through 18.
- 4. The magnitude of the sunspot maximum, R_{M} , was assigned the value 150, based on the following:
- (a) All predictions of $\rm R_M$ thus far found in the literature agree that $\rm R_M$ will be less than 150 (except one which indicates that $\rm R_M$ < 160).
- (b) In predicting lifetimes for mission planning, it is generally better to underpredict lifetime than to overpredict lifetime.
- (c) While most authors predict a value of R_M considerably lower than 150, the likelihood of this is questionable in view of the fact that the preceding cycle had the highest R_M ever recorded and natural phenomena tend not to change drastically from one occurrence to the next.
- 5. The time lapse of four years from minimum to maximum sunspot number for the new cycle is the same as that for the mean of cycles 8 through 18. The relationships of consideration 1 above were used to compute $\overline{F}_{10.7}$ from the R values obtained by adjusting the mean of cycles 8 through 18 by a proportionality factor which forced R_M to be 150.

The 3σ upper bound curve of $\overline{F}_{10.7}$, $\overline{F}_{10.7}$ (max), was drawn by fairing straight line segments through points computed by the following formula:

$$\overline{F}_{10.7} \text{ (max)} = \overline{F}_{10.7} + .2(\overline{F}_{10.7} - 60) + 4(\text{year}-1964.5)$$
 (12)

This formula was chosen to represent the increasing uncertainty in $\overline{F}_{10.7}$ as $\overline{F}_{10.7}$ as increases and as time increases. The weighting factors were chosen so as to yield

$$\overline{F}_{10,7}$$
 (max) = 244 at 1968.5.

The 244 maximum of the previous cycle was chosen as an absolute maximum for the new cycle. The 3σ lower bound was derived similarly from the lowest recorded cycle.

TABLE I. DECAYED SATELLITE ANALYSIS

	;			T	-	
		$\mathbf{t_s}$	h	A	P	R
	Name	(year)	p (km)	(days)	(days)	(A/P)
1	58 DELTA 2	1959, 158	207	404.0	364.0	1,11
2	58 DELTA 2	1959.725	199	197.7	179.5	1.10
3	58 ZETA	1958. 966	175	33. 6	33.2	1.01
4	59 GAMMA	1959. 287	257	11.2	10.7	1.05
5	59 EPSILON	1959.621	215	43.4	39.9	1.09
6	59 ZETA	1959.637	218	60.7	51.6	1.18
7	59 LAMBDA	1959.889	187	108.3	110.0	0.98
8	59 EPSILON 2	1960. 125	219	362, 0	355 . 5	1.02
9	60 DELTA	1960. 294	173	9, 83	10.6	0.93
10	60 THETA	1960.615	256	95.0	106.6	0.89
11	60 OMICRON	1960.880	183	42.9	42.7	1.01
12	60 SIGMA	1960.960	251	107.4	113.0	0.95
13	60 TAU	1960.973	195	32.9	33.8	0.97
14	61 EPSILON	1961, 135	298	525. 5	575. 3	0.91
15	61 ZETA	1961.146	252	422.6	460.7	0.92
16	61 LAMBDA 1	1961.272	297	372.9	384.8	0.97
17	61 LAMBDA 2	1961.321	220	391.2	429.6	0.91
18	61 XI	1961.466	224	23.2	27.8	0.83
19	61 PI	1961, 537	233	133.9	143.4	0.93
20	61 ALPHA BETA	1961.745	243	27.3	27.3	1.00
21	61 ALPHA GAMMA	1961.803	234	24.9	25.0	1.00
22	61 ALPHA EPSILON	1961.855	246	394.3	413.0	0.95
23	61 ALPHA KAPPA	1961.973	248	76.8	74.6	1.03
24	62 RHO	1962.356	203	15. 6	13, 1	1.19
25	62 CHI	1962, 435	213	20.6	19.5	1.06
26	62 ALPHA GAMMA	1962, 496	209	76.2	79.6	0.96
27	62 SIGMA	1962, 556	323	492.0	484.2	1.02
28	62 ALPHA ETA	1962, 575	204	16.5	15. 8	1.04
29	62 ALPHA THETA	1962, 594	206	18.6	18.2	1.02
30	62 ALPHA KAPPA	1962.602	208	18.3	20.0	0.92
31	62 ALPHA SIGMA	1962, 673	176	6.9	7.1	0.97

 t_s = initial time, h_p = initial perigee altitude, A = actual lifetime, P = predicted lifetime.

TABLE I. (Concluded)

Name		t _s (year)	h p (km)	A (days)	P (days)	R (A/P)
32	62 ALPHA СНІ	1962.728	211	56. 9	56. 8	1.00
33	62 BETA EPSILON	1962.797	220	29.5	26, 8	1.10
34	62 BETA OMICRON	1962, 865	210	20.1	20,4	0.99
35	62 BETA SIGMA	1962, 928	134	3.6	3.85	0.94
36	62 BETA PHI	1962. 980	200	16. 1	15, 15	1.06
37	64 (GEMINI)	1964. 274	164	4. 2	5.09	0.86
38	64 (SA-6)	1964.408	182	3. 2	3.21	1.00
39	64 (SA-7)	1964.716	185	3.8	3.3	1.15

 t_{s} = initial time, h_{p} = initial perigee altitude, A = actual lifetime, P = predicted lifetime.

FIGURE 1. RATIO OF DENSITY FOR VARIOUS VALUES OF S TO THE 59 ARDC DENSITY

FIGURE 2. RATIO OF DENSITY FOR VARIOUS VALUES OF S
TO THE 62 U.S. STANDARD DENSITY

FIGURE 3. EXPONENTIAL ATMOSPHERIC WEIGHTING FACTOR (K) FOR EFFECT OF HEATING

FIGURE 4. CORRECTION FACTOR FOR DENSITY

FIGURE 5. CURRENTLY DEFINED $\overline{F}_{10.7}$ AND \overline{K}_p VERSUS TIME

FIGURE 6. CURRENTLY DEFINED \overline{S} VERSUS TIME

21

FIGURE 7. SEMIANNUAL EFFECT ON ATMOSPHERIC HEATING

III. LIFETIME PROGRAM

A. NOTATION

This list defines the equation symbols in terms of the computer input language used.

Equation Symbol	Program Symbol	Definition	Units
A _i , A ₀	APO	apogee radius	km
Å	ADOT	time rate of change of apogee radius	km/day
Å	ADOTP	M(t)Å;	kg-km /day
A _{Nj}	AN	interpolated value of apogee at time T_{A_j} (j = 15)	km
A ₀	ARAA	effective drag area of the orbiting vehicle	m ²
CD' _i	CDP	coefficient of drag as an altitude function	non- dımen- sional
CN _i	CNN	coefficient of drag as an attitude function	11
D	מס	coefficient of the 4th zonal har- monic of the earth's gravitational potential	11
F	F	reciprocal of the flattening of the earth (298.3)	f f
F _{10.7}	FTEN	daily 10.7 cm solar flux	10 ⁻²² 2 watts/m /cycle /sec
F _{10.7}	FTENB	yearly mean values of F _{10.7}	17
н	НН	coefficient of the 3rd zonal har- monic of the earth's gravitational potential	non- dimen- sional
J	JJ	coefficient of the 2nd zonal har- monic of the earth's gravitational potential	11
К	KERTH	earth's gravitational constant	km ³ /sec ²

(Continued)

Equation Symbol	Program Symbol	Definition	Units
K _P	AP	daily mean values of geomag- netic index	non- dimen- sional
Кρ	XK	ð log _e ρ/ ð log _e S	11
M(t)	MT	mass of orbiting vehicle at time t	kg
PDi	PDI	anomalistic period (time between two successive perigee passages)	min
P _i ,P ₀	PERI	perigee radius	km
P _i	PDOT	time rate of change of perigee radius	km/day
P _i	PDOTP	M(t)P _i	kg-km /day
P _{Nk}	PN	interpolated value of perigee at time T _P (k = 15)	km
R _{AB}	RAB	right ascension of the center of the diurnal bulge	deg
R _{AS}	RAS	right ascension of the sun	deg
R _E	AE	earth's equatorial radius	km
R _i	RI	radius to probe	km
R _i	RIP	altitude to probe	km
RPA _i	RPAI	sub-perigee apogee earth radius	km
S	SS	current index of total heating of the atmosphere	non- dimen- sional
s ₀	SO	reference index of total heating of the atmosphere	11

(Continued)

(Continued)

Equation Symbol	Program Symbol	Definition	Units
T _A _{j = 15}	INTERA	times at which apogee interpo- lations are performed	days
T _{Pk} = 15	INTERP	times at which perigee interpo- lations are performed	days
VPi	VPI	earth-fixed velocity at perigee	km/sec
X_s, Y_s, Z_s	XS, YS, ZS	space-fixed ephemeris components of the position of the satellite (see Section II-B-2)	km
a _i , a ₀	AI	semi-major axis of the ellipse	km
a. i	SADOTI	time rate of change of semi- major axis	km/day
d	XDATE	number of days elapsed since 31 December 1957	days
e _i ,e ₀	EI	eccentricity	non- dimen- sional
i	INC	inclination	deg
l, m, n	XL, XM, XN	direction cosines of the satellite	non- dimen- sional
l _B , m _B , n _B	XLB, XMB, XNB	direction cosines of the center of the diurnal bulge	11
l _s ,m _s ,n _s	XLS, XMS, XNS	direction cosines of the vector to the sun	11
n _i , n ₀	NI	mean motion	deg/day
t	TTT	universal time	hrs
t.	TIME	time in orbit	days
t _n i	REVOL	number of revolutions, made by the satellite	non- dimen- sional

24

(Continued)

Equation Symbol	Program Symbol	Definition	Units
$\Delta t_{\mathbf{i}}$	DTI	change in time for one apogee step	days
θ	THETA	sidereal time	deg
$\theta_{oldsymbol{ ho}}$	XLAG	lag angle between earth-sun line and the diurnal bulge	deg
Ω _i ,Ω ₀	CAPW	right ascension of the ascending node	deg
$\dot{\Omega}_{i}, \dot{\Omega}_{0}$	CAPID	time rate of change of ascending node	deg/day
α i	ALPHA	angle of attack of the satellite	deg
JA	DA	apogee integration step size	km
ε	ECLIPT	obliquity of the ecliptic	deg
λ _s	XLAMS	celestial longitude of the sun	deg
v _i , v ₀	E	true anomaly	deg
ρ	RHO	atmospheric density	kg/m ²
Ψ-	COSPP	angle between the center of the diurnal bulge and the satellite	deg
ω _e	OMEGA	rotational velocity of the earth	deg/hr
ω _i ,ω ₀	SMAW	argument of perigee	deg
ω _i , ω ₀	SMAID	time rate of change of argument of perigee	deg/day

Subscripted symbols such as ω_i, Ω_i, A_i denote values at the ith apogee step, whereas ω_0, Ω_0, A_0 denote initial values.

B. Program Description and Flow of Computations

The Satellite Orbit Decay and Orbital Lifetime Program has three phases:

- (1) a control phase that controls the sequence of events in the entire program;
- (2) a transformation phase that accepts input in any of eight coordinate systems and transforms to the remaining seven; and (3) a lifetime phase that computes the decay history and lifetime of the orbiting body. The deck is programmed in Fortran IV language for the IBM 7094 computer.
- 1. Control Phase. This phase determines the route to be taken and the values to be used in computing both the decay history and lifetime. The Control Phase first calls the input routine "MAVRIK" which reads one or more data cards for the initial case. The only card that is always required for execution of the program is the one that defines either the satellite's initial position and velocity or orbit elements in one of eight optional coordinate systems. However, the actual breakdown of these options leads to more ways of inputting these initial orbit parameters than eight. The following outline elaborates on this.

The user can input in any one of eight coordinate systems, two of which contain three coordinate "subsystems" each:

1.	Earth-fixed plumbline	(position and velocity)
2.	Earth-fixed ephemeris	(position and velocity)
3.	Space-fixed ephemeris	(position and velocity)
4.	Space-fixed geographic	(position and velocity)
5.	Earth-fixed geographic	(position and velocity)
6.	Platform	(position and velocity)

- 7. Osculating orbital elements:
 - (a) Semi-major axis, eccentricity, inclination, right ascension of ascending node, argument of perigee, and true anomaly (alphanumeric code OET).

^{*}In effect, there are 12 coordinate systems.

- (b) Semi-major axis, eccentricity, inclination, right ascension of ascending node, argument of perigee, and eccentric anomaly (OEE).
- (c) Semi-major axis, eccentricity, inclination, right ascension of ascending node, argument of perigee, and mean anomaly (OEM).

8. Mean orbital elements:

(a) Same as (7) except mean elements replace osculating elements. Corresponding alphanumeric codes are MOT, MOE, and MOM.

The coordinate systems described previously are explained in detail in Section III. B. 2.

Each of the six coordinate "subsystems" in (7) and (8) above can be input in one of four optional ways:

- A Apogee and perigee radius.
- B Apogee and perigee radius, inclination, right ascension of ascending node, (true, eccentric, or mean) anomaly, argument of perigee, universal time, sidereal time.
- C Semi-major axis and eccentricity.
- D Semi-major axis, eccentricity, inclination, right ascension of ascending node, (true, eccentric, or mean) anomaly, argument of perigee, universal time, and sidereal time.

In option A and C the apogee radius, perigee radius, semi-major axis, and eccentricity are treated as mean elements whether they are mean or osculating. This is the case since the other elements required for the transformation between osculating and mean elements are not given. Nominal values of inclination, right ascension of ascending node, (true, eccentric, and mean) anomaly, argument of perigee, universal time, and sidereal time are built into the program. For orbits having elements grossly different from these, use options B or D. Options A and C should be used only if a bare minimum of information is available.

After calling "MAVRIK," the control phase logically decides whether input is position and velocity or orbit elements. If it decides that an orbital element system was not used, then the program proceeds immediately to the transformation phase; if an orbital element was used, further decision-making is required by the control phase. In all cases except options A and C of the orbital element system the program uses the transformation phase. However, when either options A or C are chosen the transformation phase is not used since it is unlikely that one would desire transformation based on "nominal" values of i, Ω , w, etc.

- a. Orbital Element System Not Used. If the coordinate system input is other than orbital elements, such as earth-fixed geographic (EFG), then the following events occur:
 - 1. Transform EFG to the remaining seven systems.
 - 2. Print transformations.
 - 3. Extract from mean orbital elements the following: apogee radius, perigee radius, inclination, right ascension of ascending node, and argument of perigee. These elements are then ready for use in the lifetime phase.

Logical Flow:

b. Orbital Element System Is Used. If the coordinate system input code contains the alphanumeric code for one of the Orbital Element systems, OET, OEE, OEM, MOT, MOE, MOM, then one of four input options is available. Consider the case:

$$1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$$

$$OET = ++, ++) ++, ++$$

Option A

If the value loaded in position 2 of this input is greater than 1.0, then positions 3 through 8 are tested. If all these positions contain zeroes then the input is assumed to be in the form:

OET = Apogee radius) perigee radius).

These two values along with the assembled "nominal" values for inclination, right ascension of ascending node, and argument of perigee are ready for use in the lifetime phase.

Logical Flow:

Option B

If any of positions 3 through 8 are non-zero, then the input is assumed to be in the form:

OET = apogee radius) perigee radius) inclination) right ascension of node) true anomaly) argument of perigee) universal time) sidereal time).

Semi-major axis and eccentricity are computed from the input values of apogee and perigee radius:

$$a_{o} = \frac{A_{o} + P_{o}}{2}$$
 $e_{o} = \frac{A_{o} - P_{o}}{A_{o} + P_{o}}$.

These elements are now in the format required for transformation not only to mean elements for use in the lifetime phase, but also to the elements in the remaining coordinate systems for display in the printout.

Logical Flow:

Option C

If position 2 is less than 1.0, then positions 3 through 8 are tested. If these positions are all zero then the input is in the form:

OET = semi-major axis) eccentricity).

From these two values, apogee and perigee radius are calculated:

$$A_0 = a_0 (1. + e_0)$$
 $P_0 = a_0 (1. - e_0)$

These values are used along with the assembled "nominal" values of inclination, right ascension of ascending node, and argument of perigee in the lifetime phase.

Logical Flow:

Option D

If position 2 is less then 1.0 and if any of positions 3 through 8 are non-zero then the input is in the form:

OET = semi-major axis) eccentricity) inclination) right ascension of ascending node) true anomaly) argument of perigee) universal time) sidereal time).

These elements are in the format required for transformation not only to mean elements for use in the lifetime phase, but also to the elements in the remaining coordinate systems for display in the printout.

Logical Flow:

2. Transformation Phase. The transformation phase accepts input in any one of the eight aforementioned coordinate systems, performs the required transformations, and outputs in the remaining seven. All programming is done in double precision. The transformation subroutine is a general purpose one used in other computer programs. A detailed description of this phase of the program is not included in this writeup, but may be obtained from the author. A brief description of each coordinate system follows:

a. Earth-Fixed Plumbline (EFP)

XEP, YEP, ZEP, DXEP, DYEP, DZEP

A right-handed Cartesian coordinate system with its origin at a point on the surface of the earth, specified by geodetic coordinates ϕ_0 , and λ_0 . The Z-axis points in the direction of the local geodetic vertical (plumbline). The X-Y plane is tangent to the geodetic ellipsoid with the X-axis pointing along a specified azimuth defined as (KAPPA) (normally the firing direction). This system is completely earth-fixed.

b. Earth-Fixed Ephemeris (EFE)

XE, YE, ZE, DXE, DYE, DZE

A right-handed geocentric Cartesian coordinate system. The Z-axis points north along the axis of rotation of the earth (through the north pole). The X-Y plane is the earth equatorial plane, and the X-axis points through the Greenwich meridian of longitude. The system is completely earth-fixed.

c. Space-Fixed Ephemeris (SFE)

XS, YS, ZS, DXS, DYS, DZS

A right-handed geocentric Cartesian coordinate system. The Z-axis points north along the axis of rotation of the earth (through the north pole). The X-Y plane is the earth equatorial plane, and the X-axis is collinear with and directed toward the vernal equinox of date (i.e., at time t). At time t=0, the Greenwich Hour Angle equals zero.

d. Space-Fixed Geographic (SFG)

$$R_s$$
, ψ_s , λ_s , V_s , α_s , ϵ_s

A right-handed system containing an earth-fixed position vector and a space-fixed velocity vector. The position vector is specified by geocentric earth-fixed spherical coordinates: radius, \boldsymbol{R}_s , geocentric latitude, $\boldsymbol{\psi}_s$, with respect to the earth

equatorial plane; and geographic longitude, $\lambda_{\rm S}$, measured positive eastward from the Greenwich meridian in the earth equatorial plane. The velocity vector is referenced to a fundamental plane tangent to the sphere of radius $R_{\rm S}$, perpendicular to $R_{\rm S}$, and with origin at the point of tangency. The velocity vector is specified by space-fixed velocity magnitude, $V_{\rm S}$; elevation angle, $\epsilon_{\rm S}$, with respect to the fundamental plane; and azimuth $\alpha_{\rm S}$, the angle between the projection of the velocity vector in the fundamental plane and the north vector in that plane.

e. Earth-Fixed Geographic (EFG)

$$R_e, \psi_e, \lambda_e, V_e, \alpha_e, \epsilon_e$$

The right-handed (nonrectangular) system with its origin at the center of the earth. The position vector is defined by R_e , ψ_e , and λ_e which are the same as R_s , ψ_s , and λ_s in the space-fixed geographic system. The earth-fixed velocity vector is defined by V_e , the earth-fixed velocity magnitude, α_e the earth-fixed azimuth of the velocity vector, and ϵ_e the earth-fixed elevation of the velocity vector. This system is completely earth-fixed. V_e , α_e , and ϵ_e are defined the same as V_s , α_s , and ϵ_s except they are earth-fixed and not space-fixed.

f. Platform System (PLT)

XPL, YPL, ZPL, XDPL, YDPL, ZDPL

The platform coordinate system is defined such that it coincides with the earth-fixed plumbline system until the time of first motion of the vehicle. At the instant of first motion, the system becomes space-fixed and is a space-fixed plumbline system with its origin centered at the launch pad at the time of first motion. Gravitational effects on the position and velocity component at the transformation time are accounted for. The system is a right-handed rectangular coordinate system. The Y-axis points in the direction of the local geodetic vertical (plumbline). The X-Y plane is tangent to the geodetic ellipsoid and at the time of first motion, the X-axis

points along a specified azimuth defined as KAPPA (normally the firing direction). The system is then completely space-fixed.

g. Osculating Orbital Elements (OET), (OEM), (OEE)

a, e, i,
$$\Omega$$
, ω , (ν , E or M)

The orbital element system is defined by six elements of the two-body ellipse with the reference body being determined by the body constants used, normally those of the earth. The elements are the semi-major axis (a) of the ellipse; the eccentricity (e); the inclination of the orbital plane to the equatorial plane (i); the right ascension of the ascending node (Ω) ; measured eastward in the equatorial plane from the vernal equinox to the ascending node of the orbit; the argument of perigee or the angle between the ascending node and the perigee (ω) ; and the angular position of the satellite defined by either true (ν) , eccentric (E) or mean (M) anomaly.

h. Mean Orbital Elements $(M\overline{O}T)$, $(M\overline{O}M)$, $(M\overline{O}E)$

$$\overline{a}$$
, \overline{e} , \overline{i} , $\overline{\Omega}$, $\overline{\omega}$ ($\overline{\nu}$, \overline{M} or \overline{E})

The mean orbital elements are defined as the osculating orbital elements with either or both the long and short periodic variation due to the earth oblateness removed.

Equation defining the short-period variations in orbital elements contain trignometric functions in argument of latitude or in one of the anomalies; hence, they have periods equal to or less than one orbital period. Expressions for the long-period variations, on the other hand, contain trignometric functions in argument of perigee and hence have periods much larger than one orbital period. These long-period terms may contain some short-period terms also.

Note that universal time and sidereal time are common to all eight coordinate systems.

3. Lifetime Phase. The initial mean orbital elements A_{o} , P_{o} , i_{o} , Ω_{o} , ω_{o} , are input to the orbit lifetime-decay computation phase from the control phase. At the initial point the instantaneous apogee and perigee rates of change (A_{o}, P_{o})

are evaluated using Simpson's numerical integration technique. Integration steps in true anomaly are taken from 0 to 360°, completing one orbital revolution, and the mean rates of change over the revolution evaluated. The effective drag coefficient, area, and atmospheric density are required input at each integration step. The orbital decay is thus evaluated at successive apogee steps in the following manner. For successive apogee (A) values taken in increments of dA, the corresponding perigee (P) values are determined, the rates of change Å and P are evaluated and the resulting lifetime calculated using Runge-Kutta integration of Å and the orbital mass function. More detailed explanations are given in the following subsections.

a. Orbital Parameter Computations

(1) Parameters that are constant at the $i^{\mbox{th}}$ apogee integration step for all ν values.

Units

$$\mathbf{a}_{\mathbf{i}} = \frac{1}{2} \left(\mathbf{A}_{\mathbf{i}} + \mathbf{P}_{\mathbf{i}} \right)$$
 km

$$e_i = (A_i - P_i)/(A_i + P_i)$$

$$R_{PA_{i}} = R_{E} \left[1 - (\sin^{2}i_{o} \sin^{2}\omega_{i})/F \right]$$
 km

where i is initial inclination.

$$n_i = (K/a_i^3)^{\frac{1}{2}} \left[1 + J (R_E/a_i^2)^2 b_1 (1 - e_i^2)^{-\frac{3}{2}} \right] \left[C \right]$$
 deg/day

where

$$b_1 = 1 - \frac{3}{2} \sin^2 i$$

$$C = (24)(3600)(57,2957795)$$

$$\begin{split} \dot{\Omega}_{\mathbf{i}} &= -J n_{\mathbf{i}} \cos i_{\mathbf{o}} \left\{ R_{\mathbf{E}} / \left[a_{\mathbf{i}} (1 - e_{\mathbf{i}})^2 \right] \right\}^2 \\ \dot{\omega}_{\mathbf{i}} &= \frac{1}{2} J n_{\mathbf{i}} (4 - 5 \sin^2 i_{\mathbf{o}}) \left\{ R_{\mathbf{E}} / \left[a_{\mathbf{i}} (1 - e_{\mathbf{i}})^2 \right] \right\}^2 \\ &= \frac{U n i t s}{d e g / d a y} \end{split}$$

Compute

$$\Delta t_{i} = (A_{i-1}) / \dot{A}_{i-1};$$
 days

then

$$\Omega_{i} = \Omega_{i-1} + \Omega_{i-1} \Delta t_{i}$$
 deg

$$\omega_{i} = \omega_{i-1} + \dot{\omega}_{i-1} \Delta t_{i} \quad . \tag{deg}$$

At initial time,

$$\omega_{i} = \omega_{o}$$
; $\Omega_{i} = \Omega_{o}$.

Finally, period and velocity at perigee are computed from

$$PD_{i} = (2\pi/60) (a_{i}^{3}/K)^{\frac{1}{2}}$$
 min
$$VP_{i} = K^{\frac{1}{2}} \left\{ (2/P_{i}) \left[1 + \frac{1}{3} J (R_{E}/P_{i})^{2} (1 - 3 \sin^{2} i_{o} \sin^{2} \omega_{i}) \right] - 1/a_{i} \right\}^{\frac{1}{2}} .$$
 km/sec

(2) Parameters that are variable with ν at each apogee integration step. Geocentric radius to the satellite is

$$R_{i} = \frac{a_{i}(1 - e_{i}^{2})}{1 + e_{i}\cos\nu} + \frac{2JR_{E}^{2}}{3a_{i}(1 - e_{i}^{2})} \left\{ \sin^{2} i_{o} \left[1 - \frac{1}{2}\sin^{2}(\omega_{i} + \nu) \right] - \frac{1}{2} \right\}$$

$$- (0.3R_{E} H/J) \sin i_{o} \left[\sin((\omega_{i} + \nu) - \sin((\omega_{o} + \nu)) \right] . \quad \text{km}$$

Altitude of the satellite is

$$R_{i}' = R_{i} - R_{E} \left[1 - (1/F) \sin^{2} i_{o} \sin^{2} (\omega_{i} + \nu) \right].$$
 km

This value of R' is used in the density $\rho_{o}(R_{i})$ and drag coefficient (C_{D}) calculations.

b. Ballistic Parameters Computation

- (1) <u>Drag Coefficient.</u> The effective drag coefficient is input in two parts. (Note that the nomenclature was arbitrarily selected and may not be consistent with standard aerodynamic terminology.)
 - (a) The first part, C_D', is input as a function of altitude (R_i'). The input is given in table form with up to 20 values of C_D' and the associated altitude. This allows for the variation in C_D with altitude. The table is input with the highest altitude first followed by succeeding altitudes in decreasing order.

A linear interpolation is performed to determine C_D ' for a specific value of P. If only one C_D ' is input no interpolation is performed and the one value of C_D ' is is used for all values of P. If P exceeds the first value in the table, the first value of C_D ' in the table is used; if it is smaller than the last value in the table, the last value is used.

(b) The second part, C_N , is input as a function of angle of attack or time. The input is given in table form with up to 20 values of C_N and the associated angles of attack or time. Angle α

varies from 0 to 360° while time starts at smallest value. This allows for variable attitudes of the vehicle during an orbit.

- $\underline{\mathbf{1}}$ If α is input a linear interpolation should be performed to determine C_N for a specific value of α . If only one C_N is input, this value is used for all values of α .
- $\underline{2}$ If time is input check lifetime t_{i-1} , then:

If
$$t_{i-1} \ge t_{N-1}$$
, use C_N at t_N value.

If
$$t_{i-1} < t_{N-1}$$
, use C_N at t_{N-1} value.

The times associated with the \boldsymbol{C}_{N} 's mean that discrete changes in \boldsymbol{C}_{N} are made at these times.

The value of the coefficient of drag to be used at each integration point around the orbit is then

$$C_D = C_D' C_N$$
 .

(2) Drag Area

$$A_{oi} = f(\alpha, or time)$$

The effective drag area is input as a function of angle of attack or time. This then allows for variable attitude during an orbit or at some time in flight but not both. The input is given in table form with up to 20 values of area and the associated angles of attack or time.

If α is input, a linear interpolation is performed to determine A_{oi} at a specific α . If only one A_{oi} is input, this value is used for all values of α .

If time is input, check lifetime t_{i-1} at the previous integration step. Then,

if
$$t_{i-1} \ge t_{N-1}$$
 , use A at t_{N} value;

if
$$t_{i-1} < t_{N-1}$$
, use A at t_{N-1} value.

The times associated with the A's mean that discrete changes are made in A at these time points.

A special provision is made to compute C_DA_{oi} for use in the \dot{A}^{\dagger} and \dot{P}^{\dagger} equations if called for by the flag. This allows for a variation in attitude during an orbit with only a specification of the number of revolutions made.

CDA = (Sine(
$$N_1$$
, t_1 , ... N_N , t_N (End(

where N is the number of cycles/orbit made by the orbiting vehicle input as a function of time t. A check is made of the lifetime t_{i-1} :

If
$$t_{i-1} \ge t_{N-1}$$
, use N at t_N value.

If
$$t_{i-1} < t_{N-1}$$
, use N at t_{N-1} value.

The following equation is then used to compute CDA:

$$CDA = CD_1A_{01} + (CD_2A_{02} - CD_1A_{01}) | sin (N\nu + \alpha_0) |$$
,

where

$$CD_1 = C_D'CN_1$$
, $CD_2 = C_D'CN_2$...

 CN_1 , A_{01} , CN_2 , A_{02} and C_D values are determined from the table functions, and α_0 is taken from the angle of attack table (described below) for a true anomaly, ν , equal to zero.

(4) Angle of Attack, α

The angle of attack is input as a function of true anomaly. The input is given in table form with up to 20 values of α and the associated values of ν . If only one value of α is given, then this value should be used for all ν 's.

(5) Mass Functions

$$M(t) = f(\dot{M}, t)$$
 or $f(t)$ or a constant

The mass function M(t) will be handled in three ways:

(a) Input M_0 and up to 20 values each of M_N and M_{fN} in table form. Then the following calculations are made:

$$M(t_i) = M_0 - \dot{M}_{N-1}t_{i-1}$$
.

A check on mass at the previous time point is made:

If M(t) >
$$M_{fN-1}$$
 , continue use of \dot{M}_{N-1} .

If M(t) <
$$\boldsymbol{M}_{fN-1}$$
 , change to use of $\boldsymbol{\dot{M}}_{N}$.

This should be continued in table until M(t) < \mathbf{M}_{fN} ; then use M(t) = \mathbf{M}_{fN} .

(b) Input up to 20 values of mass as a function of time in table form. Then, the following check is made on lifetime at the previous integration step:

If
$$t_{i-1} \ge t_{N-1}$$
, use M at t_N value.

If
$$t_{i-1} < t_{N-1}$$
, use M at t_{N-1} value.

This table allows for discrete changes to be made in M at specified time point.

- (c) If mass is desired as a constant throughout the total lifetime, just the initial mass M_{Ω} is loaded.
- C. Atmospheric Density Options. The provision is made to call for the use of any one of six atmospheric density models by flag. These models are 1959 ARDC, 1962 U. S. Standard, Poe, Small, Special 1959 ARDC, and Special 1962 U. S. Standard. For altitudes greater than 700 km, density is set equal to 0.
- (1) 1959 ARDC and 1962 U. S. Standard Atmospheric Models. These two atmospheric density models are in subroutine form and are on the system library tape at the Computation Laboratory at Marshall Space Flight Center.

These two models differ from the standard 1959 ARDC and 1962 U. S. Standard in that they are referenced to the Patrick Air Force Base altitude rather than a mean sea level altitude.

To use this lifetime program at an installation that does not have a system library tape that originated at MSFC, either the subroutine cards must be obtained or one of the models described in the following section must be used.

- (2) <u>Poe and Small Atmospheric Models</u>. The Poe and Small atmospheric density models (References 2 and 7) are time and position dependent since the effects of atmospheric heating are included. A subroutine for each of these models is included as a part of the Lifetime program and can be used directly.
- (3) Special 1959 ARDC and Special 1962 U. S. Standard Atmospheric Models. These two models were previously discussed in detail in Section II. The models as programmed are respecified in this section. These two models are the same as (1) with the exception that atmospheric heating and diurnal bulge can be included on option. There are two options for specifying the effect of the diurnal bulge. One method is to compute the angle (ψ^i) between the satellite and the center of bulge as follows:

$$\cos \psi^{\dagger} = \ell \ell_B^+ mm_B^+ nn_B^-$$

To evaluate the two sets of direction cosines, the following formulas are required:

$$\ell = \cos \Omega \cos (\omega + \nu) - \sin \Omega \cos i \sin (\omega + \nu)$$

$$m = \sin \Omega \cos (\omega + \nu) + \cos \Omega \cos i \sin (\omega + \nu)$$

$$n = \sin i \sin (\omega + \nu)$$

$$\ell_B = \sqrt{n_s^2 + \ell_s^2} \cos (RA_B)$$

$$m_B = \sqrt{n_s^2 + \ell_s^2} \sin (RA_B)$$

$$n_B = n_s$$
,

where

$$\begin{split} \ell_{S} &= \cos \lambda_{S} \; ; \; m_{S} = \sin \lambda_{S} \cos \epsilon \; ; \; n_{S} = \sin \lambda_{S} \sin \epsilon \\ \\ \text{RA}_{B} &= \left[\tan^{-1} \left(m_{S} / \ell_{S} \right) \right] - \theta \rho \\ \\ \lambda_{S} &= .017203 \; \text{d} + .0335 \; \text{sin} \; (.017203 \; \text{d}) - 1.41 \\ \\ \theta_{\rho} &= \left(\pi / 180 \right) \left[18.5 + 30 \; \text{exp} \; (\text{K}_{1}) \; + \text{K}_{2} \sigma \; + 4 (1 - \sigma^{2}) \; \right] \; ; \; \; \theta_{\rho} < 5 \\ \\ \theta_{\rho} &= 5 \; ; \; \; \theta_{O} \geq 5 \end{split}$$

and

$$K_1 = -.00567 (R_i' - 200) + exp[-.01455 (R_i' - 200)]$$
 $K_2 = 18.5 + 21.5 exp[-.0315 (R_i' - 200)]$
 $\sigma = (S - 160)/90$.

The second method for specifying the effect of the diurnal bulge is to set $\psi^{\dagger}=75^{\circ}$ which is simply a mean diurnal bulge.

The angle ψ' is then used in the equation

$$K_{\rho} = \left[3 + 2.5 \left(\frac{R_{i}' - 360}{240} \right) - 0.5 \left(\frac{R_{i}' - 360}{240} \right)^{2} \right] \left[\frac{5.6 - \cos \psi'}{6.6} \right].$$

Finally, density is computed from

$$\rho = \rho_{0}(R_{i}')D_{c}\left(\frac{s}{s_{0}}\right)^{K}\rho\left\{\frac{1 + .19 \left[\exp\left(.0055 R_{i} - 1.9\right)\right] \left[\cos\frac{\psi'}{2}\right]^{6}}{1 + .19 \left[\exp\left(.0055 R_{i} - 1.9\right)\right] \left[\cos 37.5^{\circ}\right]^{6}}\right\},$$

in which $\rho_{\rm O}({\rm R_i}^{,})$ is either the 1959 ARDC or the 1962 U. S. Standard reference density called for, and ${\rm D_c}$ is an altitude-dependent density correction factor. If ${\rm R_i}^{,} \le 120~{\rm km}$,

$$\rho = \rho_{o} (R_{i}) D_{c}$$

However, when 120 km < $R_{\mbox{\scriptsize i}}^{\mbox{\scriptsize f}} < 700$ km, compute

$$S = \overline{S} \exp [g(t)]$$

$$\overline{S} = 25 + 0.8 \overline{F_{10.7}} + 0.4 (F_{10.7} - \overline{F_{10.7}}) + 10K_p$$

$$g(t) = .025 \cos \left[2\pi \left(\frac{d - 1843}{365.25} \right) \right] - .06 \cos \left[4\pi \left(\frac{d - 1843}{365.25} \right) \right] .$$

The yearly mean solar flux, $\overline{F_{10.7}}$, may be input in table form as a function of date (decimal year) and a linear interpolation for the current value of $\overline{F_{10.7}}$ performed. If no values of $\overline{F_{10.7}}$ are input, then $\overline{F_{10.7}}$ is computed as follows:

$$\overline{F_{10.7}} = 135 + 75 \cos \left[2\pi \left(\frac{d - 136}{4090} \right) \right] + 15 \cos \left[4\pi \left(\frac{d + 174}{4090} \right) \right].$$

 $F_{10,7}$ may also be input in table form. If no value of $F_{10,7}$ is input then $F_{10,7}$ is set equal to $\overline{F_{10,7}}$. KP is input in table form as a function of date (decimal year) and a linear interpolation performed to obtain the current value of KP.

Many of the foregoing parameters and their definitions were adopted from Reference 2.

d. Apogee and Perigee Decay Rates at the ith Apogee Integration

Step. At each ith integration step the time rates of change of apogee and perigee

radius (which are functions of ν) are averaged over 2π on ν . The resultant definite integrals are evaluated by Simpson's rule using fixed increments of ν . The procedure follows:*

Units

$$\dot{A}_{i}' = \frac{-86.4 \times 10^{6}}{2\pi} \sqrt{\frac{a(1+e)}{K(1-e)^{3}}} \int_{0}^{2\pi} C1(1+\cos \nu)_{d_{\nu}}$$
 kg-km/day

$$\dot{P}_{i}' = \frac{-86.4 \times 10^{6}}{2\pi} \sqrt{\frac{a(1-e)}{K(1+e)^{3}}} \int_{0}^{2\pi} C1(1-\cos\nu)_{d_{\nu}}$$
 kg-km/day

C1 =
$$(C_{D_i})(A_{oi})(\rho_i)(1 + 2 e_i cos \nu + e_i^2)^{\frac{1}{2}}$$
,

then

$$\dot{A}_{i} = \dot{A}_{i}^{\dagger}/M(t)$$

$$\dot{P}_{i} = \dot{P}_{i}'/M(t) ,$$

where M(t) is taken from calculations in Section III. B. 3. b. (5).

For printout only, the time rate of change of semi-major axis is computed from

$$\dot{a}_{i} = \frac{1}{2} (\dot{A}_{i} + \dot{P}_{i})$$
.

Finally, for use by the Runge-Kutta integration routine, the rates of change of time and perigee with respect to apogee are computed.

^{*}The derivations of \dot{A}_i ' and \dot{P}_i ' are given in Section V.

$$\frac{\mathrm{d} t_{i}}{\mathrm{d} A_{i}} = \mathrm{M}(t)/\dot{A}_{i}'$$

$$\frac{d P_i}{d A_i} = P_i' / \dot{A}_i' .$$

e. <u>Integration of Time and Perigee with Respect to Apogee</u>. The integration scheme used to numerically determine the change in time and perigee with respect to apogee is Runge-Kutte (Reference 4).

The Fortran source listing of the Runge-Kutta routine is given in Section VI, Statements 3 to 13. However, a brief explanation of the flow of the computations performed by Runge-Kutta follows.

At the starting point for any lifetime computation, initial values of A, P, i, Ω , ω are known. Using these initial values, the initial rates of change of time and perigee with respect to apogee are computed via the equations in Sections III-3-a through III-3-d. With the information now available (A, P, dt/dA, dP/dA), the Runge-Kutta scheme is used to take a step (δ A) in apogee and to arrive eventually at a solution for perigee and time at the end of this step. For the next step initial values of A, P, i, Ω , ω are available from the previous step and the whole sequence of computation is repeated as in step one. One of the main points to understand is that the Runge-Kutta scheme, for any one apogee step, is keyed to obtaining a very good value of dt/dA and dP/dA at the midpoint of the particular apogee step. Once this is obtained, values of perigee radius and time at the end of the step are evaluated immediately. Remember that δ A is an exact quantity input to the program while δ P and δ t must be calculated. The operations performed by Runge-Kutta are as follows.

For convenience of notation let:

(1) $P_i = \text{known perigee at beginning of step.}$

A; = known apogee at beginning of step.

 $T_i = \text{known time at beginning of step.}$

 $\delta A = \text{known step size in apogee to be taken.}$

$$PD = dP/dA$$

$$TD = dt/dA$$
,

then

$$CP_1 = \frac{\delta A}{2} PD$$

$$\mathbf{P_i} = \mathbf{CP_1} + \mathbf{P_1}$$

$$A_{i} = A_{1} + \delta A/2$$

$$CT_1 = \frac{\delta A}{2} TD$$

$$t_i = T_1 + CT_1$$

Compute new PD & TD using aforementioned equations in Sections III-3-a through III-3-d.

$$CP_2 = \frac{\delta A}{2} PD$$

$$P_{i} = CP_{2} + P_{1}$$

$$CT_2 = \frac{\delta A}{2} TD$$

$$t_{i} = T_{1} + CT_{2}$$

Compute new PD & TD as above.

$$CP_3 = \frac{\delta A}{2} PD$$

$$P_{i} = 2 CP_{3} + P_{1}$$

$$A_{i} = A_{1} + \delta A$$

$$CT_3 = \frac{\delta A}{2} TD$$

$$t_i = T_1 + 2 CT_3$$

Compute new PD & TD as above.

$$\Delta = \frac{\delta A}{2} PD + 2 CP_3 + 2 CP_2 + CP_1 / 3$$

$$P_i = \Delta + P_1$$

$$\Delta_{\mathbf{i}} = \frac{\delta \mathbf{A}}{2} \text{ TD} + 2 \text{ CT}_3 + 2 \text{ CT}_2 + \text{CP}_1 / 3$$

$$t_i = \Delta_1 + T_1$$

(2) P_i and t_i are now good at $A_i + A$

Using the latest values of P_i , A_i , t_i , PD, and TD, the above process from (1) to (2) is repeated until some cutoff criterion is met, namely, apogee, perigee or earth impact.

1

The lifetime t_i is converted at each apogee step to revolutions, t_{Ni} , for printing only.

$$t_{Ni} = t_{Ni-1} + \frac{(t_i - t_{i-1}) 1440}{PD_i}$$

f. Altitude Interpolations. Although the vaules of apogee and perigee radius are computed and printed at the end of every apogee step, the user might like to know what these values are at intermediate points.

An option is available which allows the interpolation for the the printout of a maximum of five intermediate apogees and five intermediate perigees, or a total of ten extra points if the user so desires.

The equations used for interpolation are

$$A_{N_{j}} = A_{i-1} + \frac{(T_{A_{j}} - t_{i-1})(A_{i} - A_{i-1})}{(t_{i} - t_{i-1})}$$

$$P_{N_k} = P_{i-1} + \frac{(T_{P_k} - t_{i-1})(P_i - P_{i-1})}{(t_i - t_{i-1})},$$

where A_{N_j} and P_{N_k} are the interpolated radii of the apogee and perigee and T_{A_j} and T_{P_k} are the times at which the interpolations are performed.

Block Flow of Control Phase

*

Block Flow of "Life" Routine

Block Flow of "PDAD" Routine

Block Flow of "PDAD" Routine (Cont'd)

1. Description of Input Routine (MAVRIK) Used By The Orbit Decay and Orbital Lifetime Program

The MAVRIK input routine is unique to the Computation Laboratory at MSFC. This routine allows flexibility of input and is therefore well suited for engineering work.

Single precision floating point numbers containing up to 10 digits (sign, decimal, and exponent excluded) may be input. Such numbers always contain a decimal point, are terminated by a comma, and may be input in one of several forms. For example, the number 6378.168 may be input as follows:

6378.165,

6.378165E+03,

6.378165+03,

6.378165+3,

6378165.E-3,

637816.5-2,

Integers may also contain up to 10 digits (sign excluded). Integers contain no decimal points and are terminated by commas as follows: 6378, 100, 71658,.

Double precision numbers may contain up to 16 digits (sign, decimal, and exponent excluded). These numbers always contain a decimal point, are terminated by a right hand parenthesis, and may be input in one of several forms. For example, the number 6378.165987654321 may be input as:

6378.165987654321)

.6378165987654321D+04)

637.8165987654321D+1)

637816.5987654321D-2)

Alphanumeric information, as used in this program, may contain up to 6 characters. Each piece of information is enclosed by left hand parenthesis and is left-adjusted in machine storage. Examples of alphanumeric input follows:

ON CARD

IN STORAGE

(ALPHA(

ALPHAb

(MASS(

MASSbb

(bMASS(

bMASSb

All input is loaded by code name followed by an equality sign. For example: MASS = 74812., ATMOS = (ARDC(. A complete listing of all input codes is given in the following tables.

2. Description of Parameters That May Be Input to The Lifetime Phase

Input Code	Equation Symbol	Unit & Direction	Nominal Value	Definition
	****	BALLISTIC PARA	AMETERS *****	
AREA=(***(++.++, ++.++, (END(Ao	m ²	(ALPHA (1., 360., (END(Table of effective drag area values as a function of either angle of attack or time. *** specifies whether area is a function of (ALPHA(or (TIME(. The first value after*** is the dependent variable, AREA, followed the independent variable; either ALPHA in degrees or TIME in hours. The table may contain up to 20 values of area (with the corresponding 20 values of independent variable).
ATTACK=++.++, ++.++, (END(α	deg	1.,360., (END(Table of angle of attack as a function of true anomaly. First table value is the dependent variable, α , followed by the independent variable, true anomaly, in degrees. Table may contain up to 20 values of α (with the corresponding 20 values of true anomaly.

Input Code	Equation Symbol	Unit & Direction	Nominal Value	Definition
CDPRIM=++.++,++.++,(END(CD'	non-dimensional	1., 0., (END(Table of drag co- efficients as a func- tion of perigee alti- tude. First value is dependent variable, CD, followed by inde- pendent variable, peri- gee altitude, in kilo- meters. Table may con- tain up to 20 values of CD with corresponding values of perigee alti- tude.
CDA=(***(++. ++, ++. ++, ++. ++, (END(N	cycles/orbit		When this table is input the quantity CDA is computed as some function of AREA, ATTACK, COPRIM, and N. ***indicates the sine function (SINE(. Other functions could be added at a later time. The first number in the table is N, the number of cycles/orbit made by the orbiting body. The second number in the table is time in hours at which the next value of N should be used. Table may contain up to 20 values of N with the corresponding times.

Input Code	Equation Symbol	Unit & Direction	Nominal Value	Definition
MASS=(***(++.++,++.++, (END(m(t)	see definition	(CON(1.,	Orbiting mass function. There are three methods for specifying mass. Method one. ***specifies (RATE(, the first value in the table is an initial mass (Mo) in kilograms, the second value is a mass decay rate (m) in kilograms/day, and the third value is a final mass (Mf) in kilograms. If the mass decays to (Mf) then the next decay rate in the table is used along with a new Mf. If an (END(is found in the table the last Mf is used as a constant mass until the run is completed. Table may contain up to 20 values of mand corresponding Mf. Method two. *** specifies (TIME(, the first value in the table is an initial mass (M) in kilograms, and the second value in the table is a time (t) in hours to change to a succeeding mass (m). If an (END(is found in the table the last M is used as a constant mass until the run is completed. Table may contain up to 20 values of M and corresponding times.

Input Code	Equation Symbol	Unit & Direction	Nominal Value	Definition
MASS (cont.)				Method three. ***specifies (CON(, the first and only value in the table is the mass in kilograms to be used throughout the entire run. For this option no (END(is needed in the table.
CN=(***(++. ++, ++. ++,, (END(C _N	non-dimensional	(ALPHA(1., 360., (END(Table of normal force coefficients as a function of either angle of attack or time. ***specifies whether cn is a function of (ALPHA(or (TIME(. The first value in the table is the dependent variable, C _N followed by the independent variable, either & in degrees or time in hours. The table may contain up to 20 values of C _N with the corresponding independent variable.

Input Code	Equation Symbol	Unit & Direction	Nominal Value	Definition
	***	** DENSITY PARAME	ΓERS *****	,
DATE=++.++,++.++, ++.++,		month, day year		Calendar date to be used in density calculation when special density is desired.
ATMOS=(***(ρ	kg/m ³	(ARDC)	Flag indicating atmosphere to be used. Options available are: (ARDC(1959 ARDC Atmosphere) USSTD(1962 US Standard Atmosphere) (POE(L MSC Atmosphere) Routine (SMALL(LMSC Atmosphere) Routine (SPECAR(Modified 1959) ARDC Atmosphere (SPECUS(Modified 1962) US Standard Atmosphere
CORREC=++.++,++. ++,(END(DC	non-dimensional	1.,0.,(END(Table of density correction factors DC as a function of perigee altitude in km. First value in table is DC, second value is perigee altitude. Table may contain up to 50 values of DC and corresponding altitude.

Input Code	Equation Symbol	Unit & Direction	Nominal Value	Definition
DIURNL=(***(Ψ'	deg	(MEAN(Flag indicating diurnal (bulge) effect desired in special density calculations. ***=(MEAN(indicates a mean diurnal effect where lag angle,\psi', is set equal to 75°. This effect corresponds to 9:00 a.m. local time for a lag angle of 30°. ***=(NORMAL(indicates computation of diurnal effect as given by special density equations.
ECLIPT=++.++,		deg	23. 4436	Obliquity of the ecliptic. Úsed in computing ψ '.
KP=++.++,++.++, (END(KP	k _p	2.5,2000., (END(Table of monthly mean values of geomagnetic index. Table is input as a function of decimal year. Up to 50 KP's and corresponding years may be loaded.

Input Code	Equation Symbol	Unit & Direction	Nominal Value	Definition
KP (cont.)				Note: In the literature K_p is listed as O_0 , O_1 , 1 , 1 , 0 , 1 , 0 , 0 , however loaded values are specified as a decimal number, e.g. 8.7.
FTEN=++.++,++.++, (END(^F 10.7	10 ⁻²² watts/ m ² /cycle/ sec	0.	Table of monthly mean values of F _{10.7} These values will be available only for post flight predictions. The values are loaded in the order F _{10.7} decimal year, F ₁₀ , decimal year etc. Up to 50 values of F _{10.7} and corresponding years may be loaded.
FTENB=++.++,++.++,(END(F ₁₀ .7	10 ⁻²² watts/ m ² /cycle/ sec	SEE BELOW	Table of yearly mean values of $F_{10.7}$ These values are loaded in the order $\overline{F_{10.7}}$ decimal year, $\overline{F_{10}}$ decimal year, etc. Up to 50 values of $\overline{F_{10.7}}$ and corresponding years may be loaded. The assembled nominal table is given below.

Nominal Value of $\overline{F_{10}}$. 7

243.6, 1958., 230.7, 1958.5, 226.5, 1959., 208.9, 1959.5, 180.5, 1960., 161., 1960.5, 130.8, 1961., 104.8, 1961.5, 99.3, 1962., 89.7, 1962.5, 382.7, 1963., 80.8, 1963.5, 77.9, 1964., 70., 1964.5, 75., 1965., 80., 1965.5, 131., 1966.5, 186., 1967.5, 200., 1968.5, 190., 1969.5, 163., 1970.5, 142., 1971., 128., 1971.5, 108., 1972.5, 94., 1973.5, 81., 1974.5, 75., 1975., 75., 1975.5, (END(

Input Code	Equation Symbol	Unit & Direction	Nominal Value	Definition
SO=++.++,	So	non-dimensional	220.0	Reference value of total heating used in the computation of special 59 ARDC and 62STD densities. Normally the 100. value will be used but if a D _C curve derived for some other heating value is loaded then SO must be changed to that total heating value.
SA=++.++,	SS	non-dimensional	0.	Reference value of total heating used in LMSC Hunt Small density computation. If no SA is loaded, program automatically computes this value.
		***** SPECIAL INPUT ***	***	
PRINT=(***((NORMAL(Flag denoting type of output desired. (NORMAL(, (SHORT(, (DETAIL(are the options available. Complete description of each option is given in the output section of this report.

Input Code	Equation Symbol	Unit & Direction	Nominal Value	Definition
INTERA=++.++, ++.++,	A _{Nj}	days		Table of up to 5 times for which an interpolation for apogee will be performed. Apogee values stored in table form to be output at end of run.
INTERP=++.++, ++.++,	P _{NK}	days		Table of up to 5 times for which an interpolation for perigee will be performed. Perigee values stored in table form to be output at end of run.
CUTOFF=(***(++.++,		km from earth center	(I(6378.166,	Flag denoting method of terminating run. *** indicates which parameter cutoff will be made on. Three options are available: (A(apogee radius, (P(perigee radius (I(earth impact. ++.++ is the radius at which cutoff is desired.
DANOM=++.++,	δυ	deg.	10.0	Integration step size in true anomaly to be used in Simpson's rule integration around orbit. Must be a multiple of 360

, k

41

Equation Symbol	Unit & Direction	Nominal Value	Definition
δA	km	See table at right.	Integration step size in apogee used in RUNGE-KUTTA integration. The step size is a function of apogee radius and is loaded in the form of $\delta\Lambda$, A (km), $\delta\Lambda$, A(km), etc. Up to 5 step sizes and the corresponding apogee radius may be loaded. The nominal, assembled table is: -5.,6778.,-10.,6578.,-20., 0.,
***** CONS	TANTS ****		
f	non-dimensional	298.3	Reciprocal of the flat- tening of the earth.
	Symbol ôA ***** CONS	Symbol Direction ôA km ****** CONSTANTS *****	Symbol Direction Value on the state of the

Description of Parameters That May Be Input to The Transformation Phase.

Input Code	Equation Symbol	Unit & Direction	Nominal Value	Definition
		through <u>DD</u> , are input to me phase in single preci		
KERTH=++.++)	K	km ³ /sec ²	398603.2	Earth gravitation constant.
AE=++.++)	R _e	km	6378.165	Mean equatorial radius of the earth.
AO=++. ++)	AO	km ;	6378.165	Semi-major axis of Fischer ellipsoid
BO=++.++)	во	km	6356.784	Semi-minor axis of Fischer ellipsoid
OMEGA=++. ++)	ω _e	deg/hr	15.04106705	Rotational velocity of the earth.
JJ=++. ++)	J	non-dimensional	.162345D-2	Coefficient of the 2nd zonal harmonic of the earth's gravitational potential.
HH=++.++)	H	11	. 575D-5	Coefficient of the 3rd zonal harmonic of the earth's gravitational potential.
DD=++.++)	D	11	. 7875D-5	Coefficient of the 4th zonal harmonic of the earth's gravitational potential.
PHIO=++. ++)	Ф	deg.n	28.5	Geodetic latitude of launch pad.
LAMDO = ++. ++)	λ	deg. w	80.5	Longitude of launch pad.

Input Code	Equation Symbol	Unit & Direction	Nominal Values	Definition
KAPPA=++. ++)	α _F	deg. e of n	105.	Launch Azimuth
XG=++.++)	XG	km	0.	X-component of position due to gravitational acceleration at transformation time.
YG=++.++)	YG	km	0.	Y-component of position due to gravitational acceleration at transformation time.
ZG=++.++)	ZG	km	0.	Z-component of position due to gravitational acceleration at transformation time.
XDG=++.++)	XDG	km/sec	0.	X-component of velocity due to gravitational acceleration at transformation time.
YDG=++.++)	YDG	km/sec	0.	Y-component of velocity due to gravitational acceleration at transformation time.
ZDG=++.++)	ZDG	km/sec	0.	Z-component of velocity due to gravitational acceleration at transformation time.
TFM=++.++)	t _{fm}	hrs	0.	Universal time of first motion.

Coordinate Systems That May Be Input to the Transformation Phase

Input Code	Order of Input	Unit & Direction	Definition
EFE=++.++)++.++))	XE YE ZE XE YE ZE t	km km km km/sec km/sec km/sec hours deg	Earth-fixed ephemeris system in order: position vector, velocity vector, universal time, sidereal time.
EFP=++.++)++.++))	XEP YEP ZEP XEP YEP ŻEP t	km km km km/sec km/sec km/sec hours deg	Earth-fixed plumbline system in order: position vector, velocity vector, universal time, sidereal time.
SFE=++.++)++.++))	XS YS ZS XS YS ZS t	km km km km/sec km/sec km/sec hours deg	Space-fixed ephemeris system in order: position vector, velocity vector, universal time, sidereal time.
SFG=++.++)++.++))	Rs ψs λs Vs αs εs t	km deg deg km/sec deg deg hours deg	Space-fixed geographic system in order: range, geocentric latitude, longitude, velocity, azimuth, geocentric elevation.

Input Code	Order of Input	Unit & Direction	Definition
EFG=++.++)++.++))	Re ψe λe Ve αe εe t	km deg deg km/sec deg deg hours deg	Earth-fixed geographic system in order: range, geocentric latitude, longitude, velocity, azimuth, geocentric elevation.
OET=++.++)++.++)) OEM=++.++)++.++)) OEE=++.++)++.++0)	Α Ε Ι ν, Μ, Ε ω t θ	km non-dimensional deg deg deg deg hours	Osculating orbital element system in order: semi-major axis, eccentricity, inclination, ascending node, anomaly, argument of perigee, universal time, sidereal time. Anomaly may be input in any of three ways: True (OET), Mean (OEM), Eccentric (OEE).
MOT=++. ++)++. ++)) MOM=++. ++)++. ++)) MOE=++. ++)++. ++))	Ω	km non-dimensional deg deg deg deg hours deg	Mean orbital element system in order: semi-major axis, eccentricity, inclination, ascending node, anomaly, argument of perigee, universal time, sidereal time. Anomaly may be input in any of three ways: True (MOT), Mean (MOM), Eccentric (MOE).
PLT=++.++)++.++))	Xpl Ypl Zpl Xpl Ypl Zpl t θ	km km km km/sec km/sec km/sec km/sec hours deg	Platform coordinate system in order: position vector, velocity vector, universal time, sidereal time.

Description of IOMET Flag Controlling Addition or Subtraction of Long and Short Periodic Terms in Orbital Element Transformations

INPUT CODE

IOMET=(***((***(

NOMINAL VALUE

IOMET=(SHORT((NOLONG(

If input is given in any system other than me an orbital elements, then the following conditions apply.

IOMET = (SHORT((NOLONG(

Short-period terms are subtracted.

IOMET = (NOSHRT((LONG(

Long-period terms are subtracted.

IOMET = (NOSHRT((NOLONG(

No terms are subtracted.

IOMET = (SHORT((LONG(

Both short and long-period terms are subtracted.

If input is in mean elements the above conditions apply with the exception that the periodic terms are added instead of subtracted.

D. Computer Program Output Options

There are three formates for output available in the Lifetime program. They are: short, normal, and detail. The following input cards to "MAVRIK" produced a sample of each of the three types of output.

```
= (ALPHA(2., 360., (END(
CN
        = 4., 8., 1964.,
DATE
        = (ALPHA(26.04, 360., (END(
AREA
MASS
        = (CON(6040.,
        = 6618.567) .01211) 32.68) 81.4) 101.809) 60.407)
MOT
       = (ARDC(
ATMOS
PRINT
        = (SHORT(/
PRINT
       = (DETAIL(/
        = (NORMAL(/
PRINT
```

1. Short Output. (See computer output on following page.)

PH 10 =	0.28500000000000000000000000000000000000		LAPD				00000000		DEG	AZFIR			000000000000000000000000000000000000000	DEG
A = .	0.63781650000000000 G		В	=			99999990		KM.	RMEGA			705000000D 02	_DEG/HR
RADIUS=	0.63781650000000000000000		KERT				00000000		KM3/SLC	-	=		00000000D-02	KM
H =	0.575000000000000000-0		D .	=		7500000	00000000	- 05		XG	=	_0		
YG =	0.	KM	ZG	=	0.				KM	XDG	=	0.		KM/SEC
YDG =	С.	KM/SEC	ZDG	=	0.				KM/SEC_	TEM	<u> </u>	0		HØURS
INPUT IN	MØT SYSTEM SHÆRT NØLØ	A.C.												
PESITIEN			S COF	G) i										
EFP														
	-0.3037077883473387D 0	YE	=	-0.10	1461426	5284968	21D 04	28	= = =	0.250	5989	924336480D	04	
XDE =	0.5957246065928864D 0		=			4871575			DE =			9189795430		
<u> </u>	0.5337.2100037.2000.10			U. 1.	2000		<u> </u>				, <u>.</u> .			
PL T														
	-0.3037077883473385D 0	YPL	=	-0-10	1461426	5284968	22D 04	71	PL =	0.250	5989	924336479D	04	
XDPL =	0.5979686903636678D 0					8161846						5253642900		
E FE														
	-0.26302375979548400 0	YEP	=	-0.59	986299	5727152	910 04	2.	EP =	0.108	39689	4766029310	04	
XDEP =	0.5318120342908635D 0					2620431						8812588630		
						20,20 132							. 7.7	
SFE														
	-0.2630237597954840D 0	YS.		-n - 59	86255	5727152	910 04	2 :	s =	0.108	9889	476602931D	04	
XDS =	0.5754648197067024D 0					2146875						8812588630		
	-0.	THET		-0.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
• • • • •														
SFG				-										
R =	0.6628827615152297D 0	GCLA	Γ =	0.94	4615942	2917960	26D 01	Lá	3NG =	0.246	528C4	5601763250	03	
vs = =	0.77498263676869540 0	AZVS	=	0.12	2135935	5423781	510 03	E	LVS =	0.688	34420	409938637D	00.	
EFG														
R =	0.6628827615152297D 0	GCLA	7 =	0.94	4615942	2917960	26D 01	Li	ang ≠	0.246	528C4	5601763250	03	
VE	0.7346894628261875D 0	L AZVE	=	0.12	2329496	5702450	73D 03	٤١	LVE =	0.726	52007	9920493150	00	
12ØE							-		•					
AXIS =	0.66209031696896410 0			0.12	2074748	3215571	46D-01	11	NC =	0.326	51583	4466220470	02	
ASNUD =	0.81376057355369100 0	ARGP	= ====	0.65	366222	2236963	07D 02	T	ANOM =	0.963	37668	968299269D	02	
EAROM =	0.9568865963933066D 0	MANCE	4 =	0.99	5000234	4656844	45D 02							
	· ·			-										
MØE														,
AXIS =	0.66185669999999999	ECCE	{ =	0.12	2110000	0000000	000-01	17	νc =	0.325	59999	999999990	02	
ASNED =	0.8139999999999990 0		=			9999999		Ţ	ANCM =	0.101	18090	0000000000	03	
EANOM =	0.10112897369097720 0	MANZ	1 = ···	0.10	0044816	5955907	16D 03							
											_			
AUXILIARY	CALCULATIONS								-		-			
APØGEE =	0.32268390642332060)3 KM	PER	IGEE=	0.1	1627924	30955959	8D G	3 KM	PER	0513	= 0.8935	E13214091380D	O2 MIN
RANGE =	0.40580341323003530)4 K.P	ALT	=	= 0.2	2512432	30921681	9D 0	3 KM	TPI	I TÇ H	= 0.8938	6929603982360	02 DEG -
ECV =	-0.46419844888672120-	2 KM/SEC	EEV	=	-0.	3216647	94495363	70 0	I KM/SEC	MAR	PAGEE	= 0.3205	528463699984D	
MP ER IGE =	0.1602511536299994D	33 TKM TT	MPE	R 1 80 =	0.8	8931084	161151725	20 0	2 MIN 2	DAR	RGP	= 0.1117	9248298297090	02 DEG/DA
DA SNØD =	-0.7393552696386070D													

	ENIC 0.162344996-02		MONIC 0.57500000E-05	EARTH FZURTH HA	RMENIC 0.78749999E-05
			QUARED) 0.39860319E 06		
EGONINKINE KNOTOZ	(KILOMETERS) 0.63781	1650E 04 ELLIPI	TICITY 0.29830C00E C3		
	**** BALLIST	TIC PARAMETERS ****			
ANGLE ØF ATTACK F	UNCTION				
O.	ANDMALY (DEGREES) C. 36000000E 03				
	IC PUNCTION				
CØEF <u>F</u> ICIENT_ØF_DR CN	ALPHA (DEGREES)				
0.20000CCOE 01	C.36000000E 03				
CDPRIME	PERIGEE (KILØMETERS	5)			
1.00000COOE CG	0.	,,	•• •	•	
FFFFFFT Thus Dold To	e Alles De TTAN		-		
EFFECTIVE DRAG ÄR AREA(METERS SQUAR					
0.26040COGE 02	0.3600000E 03	3			
#4.55 CANSTAUTS****					
MASS CENSTANTS	GRAMS1 0.60399999E 04	,			
INTITAL MASSINILE	GRAM37 0:00399999E 04				
	**** DENSITY	Y PARAMETERS ****			
MØrTH= 0.40E 01	DAY= 0.80E 01	YEAR O 1964E 04	DAYS ELAPSED SINCE DE	C 31 . 1057 0 2	280000E 04
MDF 171- 0.40C 01		TEAK U.LYONE UN			20771776 04
1955 ARDC ATMOSPH			5.1.5		
1955 ARDC ATMOSPH	ER 6				
DENSITY CORRECTIO	er 6 . N				
DENSITY CØRRECTIØ	ERG. N PERIGEE(KILØMETERS				
DENSITY CØRRECTI®	er 6 . N				
DENSITY CØRRECTI® DC 0.12000000E-00	N PERIGEE (KILØPETERS 0.500000000E 03				
DENSITY CØRRECTI® DC 0.12000000E-00 0.13000000E-00 0.14200000E-00 0.18400000E-00	N PERIGEE INILOMETERS 0.500000000 U3 0.400000000 03 0.3499999 03 0.300000000 03				
DENSITY CØRRECTIE DC 0.12000000E-00 0.1300000E-00 0.1420000E-00 0.1840000E-00	N PERIGEE (KILØMETERS 0.50000000E U3 0.4000000E 03 0.3499999E 03 0.30000000E 03 0.2799999E 03				
DENSITY CØRRECTION 0.12000000E-00 0.13000000E-00 0.14200000E-00 0.22000000E-00 0.27500000E-00	PERIGEE (KILØMETERS: 0.5000000000 03 0.400000000 03 0.34999999 03 0.30000000 03 0.2799999 03 0.2799999 03				
DENSITY CØRRECTIE DC 0.12000000E-00 0.1300000E-00 0.1420000E-00 0.1840000E-00	N PERIGEE (KILØMETERS 0.50000000E U3 0.4000000E 03 0.3499999E 03 0.30000000E 03 0.2799999E 03				
DENSITY CØRRECTION 0.12000000E-00 0.1300000E-00 0.14200000E-00 0.2200000E-00 0.2750000E-00 0.3400000E-00 0.34500000E-00	RR6_ PERIGEE (KILDMETERS 0.500000000 03 0.400000000 03 0.34999999 03 0.30000000 03 0.27999999 03 0.26000000 03 0.25000000 03 0.23999999 03 0.23000000 03				
DENSITY CØRRECTION 0.12000000E-00 0.13000000E-00 0.18400000E-00 0.22000000E-00 0.27500000E-00 0.30400000E-00 0.38500000E-00 0.4250000E-00	ER6_ N PERIGEE INILOMETERS 0.500000C0E U3 0.4000C00E 03 0.34999999E 03 0.3000000E 03 0.2799999E 03 0.2600C000E 03 0.25000000E 03 0.2399999E 03 0.2399999E 03 0.23000000E 03				
DENSITY CØRRECTIE DC 0.12000000E-00 0.1300000E-00 0.1420000E-00 0.2200000E-00 0.27500000E-00 0.3400000E-00 0.34500000E-00 0.4250000E-00	PERIGEE (KILOMETERS 0.500000C0E U3 0.40000C00E 03 0.34999999E 03 0.30000000E 03 0.2799999E 03 0.2600C000E 03 0.25000000E 03 0.23999999E 03 0.23000000E 03 0.23000000E 03 0.2000000E 03				
DENSITY CØRRECTION 0.12000000E-00 0.13000000E-00 0.18400000E-00 0.22000000E-00 0.27500000E-00 0.30400000E-00 0.38500000E-00 0.4250000E-00	PERIGEE (KIL DMETERS: 0.500000000 03 0.400000000 03 0.349999999 03 0.30000000 03 0.27999999 03 0.26000000 03 0.25000000 03 0.230000000 03 0.230000000 03 0.230000000 03 0.20000000 03				
DENSITY CØRRECTION 0.12000000E-00 0.13000000E-00 0.14200000E-00 0.2200000E-00 0.2750000E-00 0.3400000E-00 0.34500000E-00 0.4700000E-00 0.4700000E-00 0.4700000E-00	PERIGEE (KILOMETERS 0.500000C0E U3 0.40000C00E 03 0.34999999E 03 0.30000000E 03 0.2799999E 03 0.2600C000E 03 0.25000000E 03 0.23999999E 03 0.23000000E 03 0.23000000E 03 0.2000000E 03				
DENSITY CØRRECTION 0-12000000E-00 0-1300000E-00 0-14200000E-00 0-18400000E-00 0-2200000E-00 0-27500000E-00 0-3400000E-00 0-34500000E-00 0-4500000E-00 0-4700000E-00 0-5200000E-00 0-5200000E-00 0-6200000E-00	PERIGEE INILOMETERS 0.500000000 U3 0.400000000 U3 0.400000000 U3 0.34999999 U3 0.300000000 U3 0.27999999 U3 0.26000000 U3 0.250000000 U3 0.23999999 U3 0.23000000 U3 0.20000000 U3 0.20000000 U3 0.20000000 U3 0.20000000 U3 0.19000000 U3 0.19000000 U3 0.19000000 U3 0.19000000 U3				
DENSITY CØRRECTION 0.12000000E-00 0.13000000E-00 0.14200000E-00 0.2200000E-00 0.2750000E-00 0.3400000E-00 0.34500000E-00 0.4700000E-00 0.4700000E-00 0.5650000E-00 0.7000000E-00 0.7000000E-00	ER6_ N PERIGEE IN IL OPETER: 0.500000C0E 03 0.40000000E 03 0.34999999E 03 0.30000000E 03 0.2799999E 03 0.26000000E 03 0.23000000E 03 0.23000000E 03 0.2000000E 03 0.2000000E 03 0.2000000E 03 0.1800000E 03 0.1800000E 03 0.16999999E 03 0.16999999E 03 0.16999999E 03				
DENSITY CØRRECTIE DC 0.12000000E-00 0.13000000E-00 0.14200000E-00 0.2750000E-00 0.2750000E-00 0.3400000E-00 0.3400000E-00 0.4250000E-00 0.4250000E-00 0.4250000E-00 0.4700000E-00 0.5650000E-00 0.5650000E-00 0.7000000E	ER6_ N PERIGEEIKILOMETERS 0.500000C0E 03 0.40000000E 03 0.34999999E 03 0.26000000E 03 0.2799999E 03 0.23000000E 03 0.23000000E 03 0.23000000E 03 0.2000000E 03 0.2000000E 03 0.190000C0E 03 0.190000C0E 03 0.1699999E 03 0.1600000C0E 03 0.1699999E 03				
DENSITY CØRRECTIC DC 0.12000000E-00 0.1300000E-00 0.14200000E-00 0.1840000E-00 0.2200000E-00 0.27500000E-00 0.3400000E-00 0.34500000E-00 0.4500000E-00 0.45200000E-00 0.4500000E-00 0.5200000E-00 0.5200000E-00 0.6200000E-00 0.6200000E-00 0.6200000E-00	RR6. N PERIGEE (KILOMETERS 0.500000000 03 0.4000000000 03 0.4000000000 03 0.349999999 03 0.260000000 03 0.250000000 03 0.250000000 03 0.239999990 03 0.230000000 03 0.20000000 03 0.19000000 03 0.19000000 03 0.19000000 03 0.154999999 03 0.154999999 03 0.154999999 03 0.154999999 03 0.154999999 03				
DENSITY CØRRECTIE DC 0.12000000E-00 0.13000000E-00 0.14200000E-00 0.2750000E-00 0.2750000E-00 0.3400000E-00 0.3400000E-00 0.4250000E-00 0.4250000E-00 0.4250000E-00 0.4700000E-00 0.5650000E-00 0.5650000E-00 0.7000000E	PERIGEE INTLUMETERS 0.50000000000000000000000000000000000				
DENSITY CØRRECTIE DC 0.12000000E-00 0.13000000E-00 0.14200000E-00 0.18400000E-00 0.22000000E-00 0.3400000E-00 0.3400000E-00 0.4250000E-00 0.4250000E-00 0.4250000E-00 0.5650000E-00 0.5650000E-00 0.5650000E-00 0.5650000E-00 0.5650000E-00 0.5650000E-00 0.6200000E-00 0.8400000E-00 0.8400000E-00 1.0000000E-00	ER6. N PERIGEE INILOMETERS 0.500000C0E 03 0.40000000E 03 0.34999999E 03 0.26000000E 03 0.2799999E 03 0.23000000E 03 0.23999999E 03 0.22000000E 03 0.22000000E 03 0.1900000E 03 0.1900000E 03 0.16999999E 03 0.1600000E 03 0.15499999E 03 0.15499999E 03 0.15499999E 03 0.15499999E 03				
DENSITY CØRRECTIC DC 0.12000000E-00 0.13000000E-00 0.18400000E-00 0.22000000E-00 0.3400000E-00 0.3400000E-00 0.42500000E-00 0.4250000E-00 0.4250000E-00 0.4250000E-00 0.4250000E-00 0.5200000E-00 0.5200000E-00 0.5200000E-00 0.6200000E-00 0.8400000E-00 0.8400000E-00 0.8400000E-00	PERIGEE IN LUMETERS 0.50000000000000000000000000000000000				-
DENSITY CØRRECTIE DC 0.12000000E-00 0.1300000E-00 0.1420000E-00 0.1840000E-00 0.2200000E-00 0.340000E-00 0.3450000E-00 0.450000E-00 0.4550000E-00 0.470000E-00 0.5650000E-00 0.5650000E-00 0.7000000E-00 0.8000000E-00 0.8000000E-00 0.8400000E-00	PERIGEE INILOMETERS 0.500000C0E 03 0.4000C00E 03 0.4000C00E 03 0.34999999 03 0.3000000E 03 0.2799999E 03 0.2600C000E 03 0.2399999E 03 0.2300000E 03 0.2200000E 03 0.200000E 03 0.190000C0E 03 0.190000C0E 03 0.1699999E 03 0.160000CE 03 0.1699999E 03 0.160000CE 03 0.15499999E 03 0.1549999E 03				-
DENSITY CØRRECTIC DC 0.12000000E-00 0.1300000E-00 0.14200000E-00 0.1840000E-00 0.2200000E-00 0.27500000E-00 0.3400000E-00 0.4250000E-00 0.4250000E-00 0.4700000E-00 0.5200000E-00 0.5200000E-00 0.5200000E-00 0.6200000E-00 0.7000000E-00 0.8000000E-00 0.8000000E-00 0.8600000E-00	PERIGEE IN LOMETERS 0.500000000 03 0.400000000 03 0.349999999 03 0.30000000 03 0.27999999 03 0.26000000 03 0.23999999 03 0.230000000 03 0.230000000 03 0.20000000 03 0.20000000 03 0.19000000 03 0.19000000 03 0.16999999 03 0.16900000 03 0.15499999 03 0.16900000 03 0.15499999 03 0.15499999 03 0.15499999 03 0.15499999 03 0.15499999 03 0.1549999 03 0.1549999 03 0.1549999 03 0.1549999 03 0.1549999 03 0.1549999 03 0.1549999 03 0.1549999 03 0.1549999 03 0.1549999 03 0.1549999 03 0.1549999 03				
DENSITY CØRRECTION 0.12000000E-00 0.13000000E-00 0.14200000E-00 0.18400000E-00 0.27500000E-00 0.37500000E-00 0.38500000E-00 0.42500000E-00 0.42500000E-00 0.42500000E-00 0.42500000E-00 0.52650000E-00 0.52650000E-00 0.52650000E-00 0.52650000E-00 0.52650000E-00 0.52650000E-00 0.52650000E-00 0.7000000E-00 0.8400000E-00	PERIGEE INTLUMETERS 0.500000C0E U3 0.40000000E U3 0.40000000E 03 0.34999999E 03 0.3000000E 03 0.2799999E 03 0.26000000E 03 0.2399999E 03 0.23000000E 03 0.22000000E 03 0.2000000E 03 0.1900000E 03 0.1900000E 03 0.1900000E 03 0.15999999E 03 0.1600000E 03 0.16499999E 03 0.16499999E 03 0.15499999E 03				-
DENSITY CØRRECTIC DC 0.12000000E-00 0.1300000E-00 0.1420000E-00 0.1840000E-00 0.2200000E-00 0.3440000E-00 0.4250000E-00 0.4250000E-00 0.4250000E-00 0.4250000E-00 0.4250000E-00 0.4200000E-00 0.5650000E-00 0.6200000E-00 0.7000000E-00 0.8000000E-00 0.8000000E-00 0.8000000E-00 0.84400000E-00 0.84400000E-00 0.8550000E-00 0.8550000E-00 0.8550000E-00 0.7000000E-00 0.8600000E-00 0.8600000E-00 0.8600000E-00 0.8600000E-00 1.0000000E-00 1.0000000E-00 1.0000000E-00 1.0000000E-00 1.0000000E-00 1.0000000E-00 1.0000000E-00 0.84500000E-00 1.0000000E-00 0.84500000E-00 1.00000000E-00 0.84500000E-00 1.00000000E-00 0.84500000E-00 1.00000000E-00 0.84500000E-00 0.8550000E-00 0.855000E-00 0.855000E-00	PERIGEE INILOMETERS 0.500000C0E U3 0.4000C00E 03 0.4000C00E 03 0.34999999 03 0.3000000E 03 0.2799999E 03 0.2600C000E 03 0.2399999E 03 0.23000000E 03 0.2200000E 03 0.200000E 03 0.190000C0E 03 0.190000C0E 03 0.190000C0E 03 0.1699999E 03 0.1600000CE 03 0.15499999E 03 0.160000CE 03 0.15499999E 03 0.160000CE 03 0.15499999E 03 0.160000CE 03 0.15499999E 03 0.1750000CE 03				
DENSITY CØRRECTION 0.12000000E-00 0.13000000E-00 0.14200000E-00 0.18400000E-00 0.27500000E-00 0.38500000E-00 0.42500000E-00 0.42500000E-00 0.42500000E-00 0.5200000E-00 0.52340000E-00 0.52340000E-00 0.52340000E-00 0.5250959999E-01	PERIGEE INTLUMETERS 0.500000C0E U3 0.40000000E U3 0.40000000E 03 0.34999999E 03 0.3000000E 03 0.2799999E 03 0.26000000E 03 0.2399999E 03 0.23000000E 03 0.22000000E 03 0.2000000E 03 0.1900000E 03 0.1900000E 03 0.1900000E 03 0.15999999E 03 0.1600000E 03 0.16499999E 03 0.16499999E 03 0.15499999E 03				

```
0.29200000E 01 0.19594999E 04
  0.31599999E 01
                       0.195960COE 04
  0.34999999E 01
                       0-19597000F 04
  0-24600C0CE 01
                       0.19598000E 04
  0.289C0C00E 01
                       0.195990CGE 04
                       0.19599999E 04
  0.256999998 01
  0.23199999F 01
                       0.19601000E 04
  0.24400COCE 01
                       0.196020C0E 04
  0.34199999E 01
                       0.19603000E 04
  0.27899999E 01
                      0.19604000E 04
 0.29200C0CE 01
                      0.19605000E 04
  0.27100C00E 01
                       0.19605999E
                                   04
 0.27500C00E 01
                      0.19606999E
                                   04
 0.32299999E 01
                       0.19608000E 04
 0.34400C00E 01
                       0.19609000E 04
 0.24900C00E 01
                      0.19610000E 04
 0-22700C00F 01
                       0.196110COE 04
 0.23199999E 01
                      0.19611999E 04
  0.22899999E 01
                      C. 19613000E
                      0.19614000E 04
 0.23999999E 01
 0.26899999E 01
                      0.19615000E 04
  0.226000006 01
                       0.19616000E 04
 0.21799999E 01
                      0.19616999E 04
 0.184995995
                      0.19617999E 04
              0.1
 0.19199999E 01
                      0.19619000E 04
                      0.1962000UE
 0.14900C00E 01
                                   04
 0.172999998 01
                      0.196210C0E 04
 0.18099999E 01
                      0.196220COE 04
 0.23100C00E
             01
                      0.19622999E 04
                      0.196239998 04
 0.16000COUE 01
 0.21799599E 01
                      0.19625000E 04
 0.26199999E 01
                      0.19626000E 04
 0.29399999E 01
                      0.196270C0E 04
 0.30800C00E 01
                      0.19628000E 04
 0.20160C00E 01
                      0.19628999E 04
 0.17500C00E Q1
                      C.196200COE 04
 0.17200C00E
             01
                      0.196310COE
                                  04
 0.15400C00E 01
                      0.19631200E 04
 0.15099999E 01
                      0.19632100E 04
 0.18600C00E
             C 1
                      0.19632900E 04
 0.20800000E 01
                      0.196338COE 04
 0.20599599E 01
                      0.19634600E 04
 0.22300C00E 01
                      0.1963539 SE 04
 0.23499999E 01
                      0.196362G0E 04
 0.32600COCE 01
                      0.19637100E 04
 0.21999999E
              01
                      0.196379COE 04
                      0.19638800E 04
 0-20200C00F 01
 0.19860C00E 01
                      0.19639600E C4
 0.20599999E 01
                      0.1964040GGE 04
 0.220995998 01
                      0.196412GGE 04
                      0.196421CCE 04
 0.21600C00E 01
 0.22499999E 01
                      0.196429CCE 04
 0.180999998 01
                      0.196438GGE 04
 0.17299999E 01
                      0.19644599E 04
 0.1890000000 01
                      0.1964540UE 04
 0.16900C00E C1
                      0.19646200E 04
                      0.19647100E 04
 0.17860CGCF 01
 0.16700000E 01
                      0.19647899E 04
 0.90000CCE 0C
                      0.196488006 04
 0.77000000E CO
0.24999999E C1
                      0.19649599E 04
0.19650000E 04
 0.24999999F UI
                      0.200000006 04
FTEN
                     YEAR
```

0.

```
FTENB YEAR
  0.24360C0CE 03
                         0.19580000E 04
  0.23070000E 03
                         0.19585000E 04
  0.22650000E 03
0.20890000E C3
                        0.19589999E 04
                          0.19594999E 04"
  0.18049999E 03
0.16100000E 03
                          0.19599999E 04
                     0.1960500CE 04
  0.13079999E 03
                         0.1961000CE 04
  0.10479999E 03
                         0.19615000E 04
  0.99300000E 02
                         0.19620000E 04
  0.89699999E 02
                         0.196250CGE 04
  0.82699999E 02-
0.80800C0CE 02
                         0.19630000E 04
0.19634999E 04
  0.77899999E 02
                         0.196399998 04
  0.770000000E 02
0.75000000E 02
0.87000000E 02
                         0.19645000E 04
                         C.1965COOOE 04
                         0.1965500GE 04
  0.13100000E 03
0.18600000E 03
                         0.19665000E 04
0.19675000E 04
  0.20000C00E 03
0.19000C00E 03
                    0.19684999E 04
0.19695000E 04

      0.193000000E
      03
      0.19705000E
      04

      0.16300000E
      03
      0.19705000E
      04

      0.19710000E
      04

  0.12800C00E 03
                         0.19715000E 04
  0.10800000E 03
0.94000000E 02
                         0.19724999E 04
                         0.19735000E 04
 0.80999999E 02
                        0.197450GUE 04
 0.75000000E 02
0.75000000E 02
                         0.19750000E 04
                         0.19755000E 04
DIURNAL MEAN
_______
                           ***** SPECIAL EVENTS *****
EARTH IMPACT CUTEFF
                          **** INITIAL CENDITIONS *****
SHORT PRINTOUT
TANOMALY STEP (DLGREES) 0.999999999 01
APOGEE STEPS(KK) PERIGEE RADIUS(KK)
-0:49999999E 01
                                     0.67780000E 04
-0.99999999E 01
                                     0.65780000E 04
-0.20000C00E 02
                                    0.
 0.
                                     0.
 0.
                              ______0.
```

```
APCGEE, PERIGEE, MAJZR AXIS, AND EARTH RADIUS (KM)
AP2GEE, PERIGEE, MAJ2R AXIS RATES (KM/DAY) MASS (KG)
ASCENDING NODE, ARGUMENT OF PERIGLEIDEG)
NUDETPERTIER REGRESSION RATES LOEG/DAY)
PERIGEE VELOCITY (KM/SEC)
PRBITAL PERIPU(MIN)
LIFETIME SPENT(CRBIT AND DAY)
RHB(KG/M3), EI(UNITLESS), RIPERG AND RIPAPG(KM)
                              0.653841616 04
                                                AXIS C.66185670E 04
                                                                       RADIUS 0.63734720E 04
       0.66987178E 64
ADST -0.20172292E 02
                       PDJT -0.40069964L 01
                                                AXID21-0.12089644E 02
                                                                        MASS
                                                                               0.60399999E C4
NODE
       0.81400000E 02
                       ARGP
                              0.604069998 02
                                                DNODE -0.73800376E 01
                                                                        DARGP 0.11164444E 62
VPERIG 0.785639690 01
                       PLRICO 0.89310846E 02
                                                ORBIT C.
                                                                        TIME 0.
RHZ
                              0.1211000000-01
                                                RIPERG C.16281848E 03
                                                                        RIPAPG 0.32312018E 03
       0.10019261E-08
                       ΕI
                                                                        RADIUS 0.63724373E 04
                                                AX (S 0.63689475E 04
       0.636871781 04
                              0.636917736 04
ADET -0.45995754E 11
                       PDJI -0.46600738E 11
                                                AXID41-C.45998245E 11
                                                                        MASS
                                                                               0.60399999E 04
NUDE
     0.51174578E 02
                       ARSP
                             0.106126728 03
                                                DN.DE -C.84419879E 01
                                                                        DARGP 0.12769567E 02
VPERIG 0.791165166 01
                       PERIOD 0.84306248E 02
                                                2KBIT 0.60625867E 02
                                                                        TIME 0.37282697% 01
RHØ
      0.122543246 01
                       ΕJ
                              -0.360665256-04
                                                RIPERG-0.59685668E 01
                                                                        RIPAPG-0.57626952E OL
```

		_ EARTH ERBI	T TRANSF	ERMATIEN																
														0 105	50000	0000		63 0		
= 017		0.2850C0CC0000C		DEG	LAMO	-			00000 02			AZFIR ØMEGA					00000		EG/HR	
= 24(\$/)		0.6378165000000		KM KM	B KERT	= U =			9999D 04 0000D 06		/SEC		1				0000D-		501 in	
ulus=		0.6378165000000		K/II	D	n - =			0000D-05		7 3664	XG	_	0.102	J4 J0 0	00000	,0000		KM	
; =		0.575000000000	70000-03	KM	ZG	Ī.	0.10130	0,000,000	30000	, КМ	-	XDG		0.		-			M/SEC	
G =		0.			ZDG	*	0.			KM/		TEM	=	0.					HZURS	
PUT I	N M	IOT SYSTEM SHORT	NOLENG																	
SITIE	N ((KM) VELSCITY	(KM/SEC)	ANGLE	S (DE	(G)														
	· -	-0.3037077883473	387D 04	YE	±	-0.10	46142628	4968210	04	ZE	• ^	0.250	5989	924336	480D	04				-
E =		0.5957248065928	38640 01	YDE	=	0.16	20505487	157563D	01	ZDE	=	C.398	32714	918979	543D	01				_
. T																				
-	-	-0.303707788347		YPL	=		346142628			ZPL "				924336						
PL =	<u> </u>	0.5979686903636	6780_01	YOPL	. =	0.18	350067816	184628D	.01	ZOPL	=	0.410	05741	525364	29GD	01				_
Ε								*******												_
P a		-0.2630237597954		YEP			086299572			ZEP ZDEP	=			476602 881258						
EP :		0.531812034290	30330 01	- 1059	· •	-0.5	161077262	.0431630	01	2068	-	-0.390	32360	501230	0030	01,				
E		-0-263023759795	, a, an a,	· YS	_	-0 E	986299572	716 2010	0.6	zs	_	0 10	00400	476602	0210	04				-
) S		0.575464819706		YDS			352877214			ZDS	-			881258						
HE :					A =		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,													
F G				•																
	2	0.662882761515	2297D C4	GCLA	AT =	0.9	46159429	1796026D	01	LØNG	=	0.24	628C4	560176	3250	03				
S		0.774982636768	6954D 01	AZVS	;	0.1	21359354	23781510	03	ELVS	7	0.68	84420	409938	6370	00				
-6							•													
	•	0.662882761515		GCLA			46159429			LING				560176						
		0.734689462826	18750 01	AZVE	=	0.1	232945670	02450730	03	ELVE	=	0.72	62007	992049	3150	00				
Ε .				-														_		
15 :		0.662090316968		ECCE			20747482			INC	=_			446622						
NZD :		0.813760573553			=		58662222			TANEL	-	C.96	37668	968299	9269D	02				
inem :	゠.	0.956886596393	30660 02	PANS	= MS	0.9	50002346	56844450	0 02											
ØE		0 //105//00000	00000 01				31.100000			*										
XIS : Snød :		0.661856699999			EN =		21100000 04069999			INC	= -			1499931 100000						
ANDM		0.101123973690			2M =		00448169			· AITO		0.10	10030	703003	30000					_
		CALCULATIONS	222040 2											_						
PEGEL		0.32268390842				RIGEE			95595980		KM		RIJO				40913			
A NG E C V	=	0.46580341323			AL E e				92188190 99530370		KM M/Si/		TICH POGE				503382 536999			G M
		70.16025115362					= -0.32						RGP				39 <u>85</u> 41			
																				. •

	**** EARTH CONSTANTS ****	-	
	PONIC 0.16234499E-02 EARTH THIRD HARMON		EARTH FRURTH HARMONIC 0.78749999E-
	VAL CÓRSTANT (KTLÁMETERS CURED/SECURDS SQUAI S (KILØMETERS) 0.63781650E 04	RED) 0.39860319E 66 TY 0.29830000E 03	
EGOVERNING KADIOS		11 0.298300000 03	
	**** BALLISTIC PARAMETERS ****		
ANGLE OF ATTACK F	FUNCTION		
ALPHA (DEGREES)	ANUMALY (DEGREES)		
<u> </u>	0.360000ÓOE 03		
CØEFFICIENT ØF DR	DAC SUNCTION		
CN CDELLICITEM PL DV	ALPHA (DEGREES)		
0.20000000E 01	0.3600000E 03		
CDPRIME 1-00000COGE 00	PERIGEE (KILØMETERS)	-	
1.0000000000000000000000000000000000000	0.		
EFFECTIVE DRAG AR	CEA FUNCTION	•	
	RED) ALPHA(DEGREES)		
0.26040000E 02	0.36000000 03		
MASS CONSTANTS			
INITIAL MASSIKILE	GRAMS) 0.60399999E 04		
	**** DENSITY PARAMETERS *****		
1959 ARDC ATMESPH	IERE .	AYS ELAPSEU SINCE DEC.	31' , 1957 0.22899999E 04
1959 ARDC ATMESPH DENSITY CORRECTIO DC	PERIGEE (KILØMETERS)	AYS ELAPSEU SINCE DEC.	31' , 1957 0.22899999E 04
1959 ARDC ATMESPH DENSITY CORRECTIO DC	PERIGEE (KILØMETERS) 0.500000C0E 03	AYS ELAPSEU SINCE DEC.	31' , 1957 0.22899999E 04
0.14200000E-00	PERIGEE (KILØMETERS)	AYS ELAPSEU SINCE DEC.	31' , 1957 0.22899999E 04
1959 ARDC ATMASPH DENSITY CURRECTIE DC 0.12000C00E-00 0.13000C00E-00 0.14200000E-00 0.18400000E-00	PERIGEE (KILØMETERS) 0.500000C0E 03 0.4000000C0E 03 0.34999999E 03 0.3000C000E 03	AYS ELAPSED SINCE DEC.	31 , 1957 0.22899999E 04
DENSITY CORRECTION DC 0.12000000E-00 0.1300000E-00 0.14200000E-00 0.1840000E-00	PERIGEE (KILØMETERS) 0.50000000E 03 0.4000000E 03 0.3499999E 03 0.30000000E 03 0.2799999E 03	AYS ELAPSED SINCE DEC.	31' , 1957 0.22899999E 04
DENSITY CORRECTION DC 0.12000C00E-00 0.13000C00E-00 0.14200C00E-00 0.1840000E-00 0.22000C00E-00 0.27500C00E-00	PERIGEE (KILØMETERS) 0.50000000000000000000000000000000000	AYS ELAPSED SINCE DEC.	31 , 1957 0.22899999E 04
DENSITY CORRECTION DC 0.12000C00E-00 0.13000C00E-00 0.14200C00E-00 0.1840000E-00 0.22000C00E-00 0.27500C00E-00	PERIGEE (KILØMETERS) 0.50000000E 03 0.4000000E 03 0.3499999E 03 0.30000000E 03 0.2799999E 03	AYS ELAPSEU SINCE DEC.	31' , 1957 0.22899999E 04
DENSITY CORRECTION O-12000C00E-00 0-12000C00E-00 0-1420000E-00 0-14420000E-00 0-122000C0E-00 0-22000C0E-00 0-27500C00E-00 0-34000C00E-00 0-34500C00E-00	PERIGEE (KILØMETERS) 0.500000000 03 0.400000000 03 0.34999999 03 0.300000000 03 0.27999999 03 0.26000000 03 0.250000000 03 0.23999999 03 0.23000000 03	AYS ELAPSEU SINCE DEC.	31' , 1957 0.22899999E 04
DENSITY CRRRECTIC 0.12000000E-00 0.1300000E-00 0.14200000E-00 0.14200000E-00 0.18400000E-00 0.27500000E-00 0.3400000E-00 0.34500000E-00 0.34500000E-00 0.42500000E-00	PERIGEE (KILBMETERS) 0.500000CDE 03 0.40000000E 03 0.34999999E 03 0.3000C000E 03 0.27999999E 03 0.250000CDE 03 0.250000CDE 03 0.23999999E 03 0.2300000DE 03	AYS ELAPSEU SINCE DEC.	31' , 1957 0.22899999E 04
DENSITY CURRECTION OC. 12000C00E-00 0.12000C00E-00 0.13000C00E-00 0.18400000E-00 0.27500C00E-00 0.34000C00E-00 0.34500C00E-00 0.42500C00E-00 0.42500C00E-00	PERIGEE (KILØMETERS) 0.500000000 03 0.40000000 03 0.34999999 03 0.20000000 03 0.27999999 03 0.260000000 03 0.23999999 03 0.230000000 03 0.230000000 03 0.20000000 03	AYS ELAPSEU SINCE DEC.	31' , 1957 0.22899999E 04
DENSITY CURRECTION DC 0.12000C00E-00 0.13000C00E-00 0.14200C00E-00 0.1840000E-00 0.27500C00E-00 0.37500C00E-00 0.38500C00E-00 0.38500C00E-00 0.34500C00E-00	PERIGEE (KILBMETERS) 0.500000CDE 03 0.40000000E 03 0.34999999E 03 0.3000C000E 03 0.27999999E 03 0.250000CDE 03 0.250000CDE 03 0.23999999E 03 0.2300000DE 03	AYS ELAPSEU SINCE DEC.	31' , 1957 0.22899999E 04
DENSITY CURRECTIC 0.12000C00E-00 0.13000C00E-00 0.14200C00E-00 0.18400000E-00 0.27500C00E-00 0.37500C00E-00 0.38500C00E-00 0.38500C00E-00 0.42500C00E-00 0.42500C00E-00 0.56500C00E-00 0.56500C00E-00	PERIGEE (KILBMETERS) 0.500000CDE 03 0.40000000E 03 0.34999999E 03 0.3000C000E 03 0.27999999E 03 0.250000CDE 03 0.23000000E 03 0.23000000E 03 0.23000000E 03 0.23000000E 03 0.2300000E 03 0.2100000E 03 0.2100000E 03 0.2100000E 03 0.2100000E 03	AYS ELAPSEU SINCE DEC.	31' , 1957 0.22899999E 04
DENSITY CHRRECTIE DENSITY CHRRECTIE DC	PERIGEE (KILWMETERS) 0.50000000E 03 0.40000000E 03 0.34999999E 03 0.27999999E 03 0.26000000E 03 0.23999999E 03 0.2300000E 03 0.2300000E 03 0.2200000E 03 0.200000E 03 0.2100000E 03 0.200000E 03 0.2100000E 03 0.2100000E 03 0.2100000E 03 0.2100000E 03 0.2100000E 03	AYS ELAPSEU SINCE DEC.	31' , 1957 0.22899999E 04
DENSITY CURRECTIE C 0.12000C00E-00 0.13000C00E-00 0.14200C00E-00 0.14200C00E-00 0.22000C00E-00 0.27500C00E-00 0.30400C00E-00 0.34500C00E-00 0.47000C00E-00 0.52000C00E-00	PERIGEE (KILØMETERS) 0.500000000 03 0.400000000 03 0.34999999 03 0.300000000 03 0.27999999 03 0.26000000 03 0.230999990 03 0.23000000 03 0.23000000 03 0.23000000 03 0.20000000 03 0.10000000 03 0.10000000 03 0.10000000 03 0.10000000 03 0.100000000 03	AYS ELAPSEU SINCE DEC.	31' , 1957 0.22899999E 04
1959 ARDC ATMASPH DENSITY CARRECTIC 0.12000000E-00 0.1300000E-00 0.14200000E-00 0.1840000E-00 0.27500000E-00 0.37500000E-00 0.37500000E-00 0.3850000E-00 0.42500000E-00 0.42500000E-00 0.52650000E-00 0.52650000E-00 0.52650000E-00 0.52600000E-00 0.526000000E-00 0.526000000E-00 0.526000000E-00 0.526000000E-00	PERIGEE (KILØMETERS) 0.500000000 03 0.400000000 03 0.34999999 03 0.300000000 03 0.27999999 03 0.260000000 03 0.230999999 03 0.23000000 03 0.23000000 03 0.23000000 03 0.19000000 03 0.19000000 03 0.19000000 03 0.19000000 03 0.19000000 03		31' , 1957 0.22899999E 04
1959 ARDC ATMASPH DENSITY CURRECTIE DC 0.12000C00E-00 0.13000C00E-00 0.14200C00E-00 0.22000C00E-00 0.27500C00E-00 0.34500C00E-00 0.34500C00E-00 0.47500C00E-00 0.47500C00E-00 0.47500C00E-00 0.52500C00E-00 0.52500C00E-00 0.526500C00E-00	PERIGEE (KILØMETERS) 0.500000000 03 0.400000000 03 0.34999999 03 0.300000000 03 0.27999999 03 0.260000000 03 0.230999999 03 0.23000000 03 0.23000000 03 0.23000000 03 0.19000000 03 0.19000000 03 0.19000000 03 0.19000000 03 0.19000000 03	AYS ELAPSEU SINCE DEC.	31' , 1957 0.22899999E 04
DENSITY CHRRECTIE DENSITY CHRRECTIE C -1200000E-00 0.1300000E-00 0.14200000E-00 0.1840000E-00 0.2750000E-00 0.3400000E-00 0.3400000E-00 0.3450000E-00 0.4250000E-00 0.4250000E-00 0.4250000E-00 0.42500000E-00 0.42500000E	PERIGEE (KILWMETERS) 0.50000000E 03 0.4000000E 03 0.34999999E 03 0.27999999E 03 0.26000000E 03 0.23999999E 03 0.2300000E 03 0.2200000E 03 0.2200000E 03 0.200000E 03 0.100000E 03 0.190000E 03 0.190000E 03 0.190000E 03 0.18499999E 03 0.18499999E 03 0.18500000E 03		31' , 1957 0.22899999E 04
1959 ARDC ATMASPH DENSITY CARRECTIC 0.12000000E-00 0.13000000E-00 0.14200000E-00 0.18400000E-00 0.27500000E-00 0.37500000E-00 0.37500000E-00 0.38500000E-00 0.42500000E-00 0.42500000E-00 0.42500000E-00 0.5200000E-00 0.56500000E-00 0.62000000E-00 0.7000000E-00 0.84000000E-00 0.84000000E-00 0.84000000E-00 0.84000000E-00 0.84000000E-00 0.84000000E-00 0.84000000E-00	PERIGEE (KILWETERS) 0.50000000E 03 0.40000000E 03 0.34999999E 03 0.27999999E 03 0.26000000E 03 0.23999999E 03 0.2300000E 03 0.2300000E 03 0.2200000E 03 0.1400000E 03 0.14999999E 03 0.1600000E 03 0.1699999E 03 0.1690000E 03 0.1690000E 03 0.1690000E 03 0.1690000E 03 0.1690000E 03		31' , 1957 0.22899999E 04
1959 ARDC ATMASPH DENSITY CORRECTION 0-12000C00E-00 0-13000C00E-00 0-14200C00E-00 0-14200C00E-00 0-22000C00E-00 0-34500C00E-00 0-34500C00E-00 0-47000C00E-00 0-52000C00E-00 0-52500C00E 00 0-56500C00E 00 0-56500C00E 00 0-62000C00E 00 0-8000C00E	PERIGEE (KILWMETERS) C.500000CDE 03 C.4000000E 03 C.34999999E 03 C.27999999E 03 C.2600000E 03 C.23999999E 03 C.2300000E 03 C.239099999E 03 C.200000E 03 C.200000E 03 C.200000E 03 C.200000E 03 C.19000CE 03 C.19000CE 03 C.19499999E 03 C.1940000E 03 C.19499999E 03 C.1950000E 03 C.1950000E 03 C.1950000E 03 C.1950000E 03 C.15499999E 03 C.15499999E 03 C.15499999E 03 C.1549000E 03 C.1549090E 03		31' , 1957 0.22899999E 04
1959 ARDC ATMASPH DENSITY CARRECTIC 0.12000000E-00 0.13000000E-00 0.14200000E-00 0.18400000E-00 0.27500000E-00 0.37500000E-00 0.37500000E-00 0.38500000E-00 0.42500000E-00 0.42500000E-00 0.5650000E-00 0.5650000E-00 0.5650000E-00 0.7000000E-00 0.86000000E-00 0.8600000E-00	PERIGEE (KILWMETERS) C.500000CDE 03 0.4000000E 03 0.34999999E 03 0.27999999E 03 0.2600000E 03 0.23999999E 03 0.2300000E 03 0.239099999E 03 0.2300000E 03 0.2200000E 03 0.100000E 03 0.160000E 03 0.1800COCDE 03 0.1800COCDE 03 0.180499999E 03 0.160000E 03		31' , 1957 0.22899999E 04
1959 ARDC ATMASPH DENSITY CURRECTIE O.12000C00E-00 0.13000C00E-00 0.1420000E-00 0.1420000E-00 0.22000C0E-00 0.27500C00E-00 0.34000C00E-00 0.34000C00E-00 0.34500C00E-00 0.47000C00E-00 0.52000C00E 00 0.52000C00E 00 0.56500C00E 00 0.70000C00E 00 0.8000C00E	PERIGEE (KILWMETERS) 0.50000000E 03 0.40000000E 03 0.34999999E 03 0.27999999E 03 0.26000000E 03 0.23999999E 03 0.23909099E 03 0.2300000E 03 0.2200000E 03 0.20090999E 03 0.190000E 03 0.1800000E 03 0.1800000E 03 0.1800000E 03 0.15499999E 03 0.1500000E 03 0.15499999E 03 0.1500000E 03		31' , 1957 0.22899999€ 04
1959 ARDC ATMASPH DENSITY CHRRECTIE DC 0.12000C00E-00 0.13000C00E-00 0.14200C00E-00 0.1840000E-00 0.27500C00E-00 0.30400C00E-00 0.34500C00E-00 0.42500C00E-00 0.42500C00E-00 0.42500C00E-00 0.42500C00E-00 0.52600C00E-00 0.86000C00E-00	PERIGEE (KILWETERS) 0.50000000E 03 0.40000000E 03 0.34999999E 03 0.3000000E 03 0.27999999E 03 0.2600000E 03 0.2399999E 03 0.2300000E 03 0.2300000E 03 0.2200000E 03 0.200000E 03 0.1900000E 03 0.160000E 03 0.160000E 03 0.160000E 03 0.1699999E 03 0.160000E 03 0.169999E 03 0.169000E 03 0.1549999E 03 0.1549999E 03 0.1549999E 03 0.1590000E 03 0.159999E 03 0.1590000E 03		31' , 1957 0.22899999€ 04
1959 ARDC ATMASPH DENSITY CORRECTION O.12000C00E-00 0.13000C00E-00 0.14200C00E-00 0.14200C00E-00 0.14200C00E-00 0.27500C00E-00 0.37500C00E-00 0.34000C00E-00 0.42500C00E-00 0.42500C00E-00 0.42500C00E-00 0.42500C00E-00 0.52500C00E 00 0.56500C00E 00 0.56500C00E 00 0.70000C00E 00 0.8400C00E 00	PERIGEE (KILWMETERS) 0.50000000E 03 0.40000000E 03 0.34999999E 03 0.27999999E 03 0.26000000E 03 0.23999999E 03 0.23909099E 03 0.2300000E 03 0.2200000E 03 0.20090999E 03 0.190000E 03 0.1800000E 03 0.1800000E 03 0.1800000E 03 0.15499999E 03 0.1500000E 03 0.15499999E 03 0.1500000E 03		31' , 1957 0.22899999€ 04
1959 ARDC ATMASPH DENSITY CORRECTION O.12000C00E-00 O.13000C00E-00 O.14200C00E-00 O.18400000E-00 O.27500C00E-00 O.37500C00E-00 O.38500C00E-00 O.47500C00E-00 O.47500C00E-00 O.56500C00E-00 O.56500C00E-00 O.56500C00E-00 O.62000C00E-00 O.62000C00E-00 O.86000C00E-00 O.86000C00E-00 O.86000C00E-00 O.8600C00E-00	PERIGEE (KILWMETERS) C.500000CDE 03 C.4000000E 03 C.34999999E 03 C.3000000E 03 C.27999999E 03 C.2600000E 03 C.23999999E 03 C.2300000E 03 C.2300000E 03 C.2200000E 03 C.200000E 03 C.200000E 03 C.190000E 03 C.190000E 03 C.150000E 03 C.150000E 03 C.150000E 03 C.160000E 03 C.160000E 03 C.160000E 03 C.160000E 03 C.160000E 03 C.15998999E 03 C.1500000E 03 C.1650000E 03 C.1650000E 03 C.1650000E 04 C.195880CDE 04 C.195880CDE 04 C.1958890F 04 C.19589997E 04 C.19589997E 04		31' , 1957 0.22899999E 04

```
0.29200COCE 01
                        0.19594999E 04
  0.31599999E 01
                        0.19596000E 04
  0.34999999E 01
                        0.19597000E 04
  0.24600C00E 01
0.28900C00E 01
                        0.19598000E 04
                        0.19599000E
                                     04
  0.256999998 01
                        0.19599999E 04
  0.23199999E 01
                        0.19601000E 04
                        0.196020COE 04
  0.24400000E 01
  0.34199999E 01
                        0.19603000E 04
  0.27899999E 01
0.2920000E 01
                        0.19604000E 04
                        0.19605000E 04
  0.27100C00E 01
                        0.19605999E 04
  0.27500C0CE 01
                        0.19606999E 04
  0.32299999E 01
                        0.19608000E 04
  0.34400C00E 01
                        0.196090COE 04
  0.24900C00E 01
0.22700C00E 01
                        0.19610000E 04
                        0.19611000E 04
  0.23199999E 01
                        0.19611999E 04
  0.22899599E 01
                        0.196130COE 04
  0.23999999E 01
                        0.19614000E 04
  0.26899999E 01
                       0.19615000E 04
 0.22600000E 01
0.21799999E 01
                        0.19616000E 04
                       0.19616999E 04
  0.18499999E 01
                        0.19617999E 04
 0.19199999E 01
                       0.19619000E 04
  0.14900COOE 01
                       0.19620000E 04
 0.17299599E 01
                       0.19621000E 04
 0.18099999E 01
0.23100000E 01
                       0.196220COE 04
                       0.19622999E 04
  0.16000000E 01
                       0.19623999E 04
 0.21799999E 01
                       0.19625000E 04
 0.26199999E 01
                       0.196260C0E 04
 0-29399999E 01
                       0.19627000E 04
 0.30800000E 01
0.20100000E 01
                       0.196280COE 04
                       0.19628999E 04
 0.17500000E 01
                       0.19620000E 04
                       0.19631000E 04
 0-17200COOE 01
 0.15400C00E 01
                       0.19631200E 04
 0.15099999E 01
                       0.19632100E 04
 0.18600C00E 01
                       0.19632900E 04
 0.20800C00E
              01
                       0.196338COE 04
 0.20599999E 01
                       0.19634600E 04
 0.22300C00E 01
                       0.19635399E 04
 Q.23499999E 01
                       0.19636200E 04
 0.32600000E 01
                       0.196371COE 04
 0.21999999E 01
                       0.19637900E 04
 0.20200C00E C1
                       0.19638800E 04
 0.19800C00E G1
                       0.19639600E 04
 0.20599999E 01
                       C. 19640400E 04
 0.22099999E 01
                       0.19641200E 04
 0.21600000E 01
                       0.19642100E 04
 0.22499999E 01
                       0.19642900E 04
 0.18099599E 01
                       0.19643800E 04
 0.17299999E 01
                       0.19644599E 04
 0.18900COOE 01
                       0.19645400E 04
 0.16800C0CE G1
                       0.19645200E 04
 0.17800COCE 01
                       0.196471COE 04
 0.16700COOF 01
                       0.19647899E 04
                       0.196488COE 04
0.9000000E .00
 0.77000COCE 00
                       0.19649599E 04
0.24999599E CI
                       0.196500CCE 04
0.24999999E 01
                       0.2000000GE 04
FTEN
                      YEAR
                      0.
0.
```

```
FTENB
0.24360000E 03
0.23070000E 03
0.22650000E 03
                  0.19580000E 04
0.19585000E 04
               0.19589999E 04
0.19594999E 04
 0.20890000E 03
 0.13079999E 03
0.10479999E 03
0.99300C00E 02
                0.19610000E 04
                    0.19615000E 04
                 0.196200C0E 04
 0.89699999E 02
0.82699999E 02
                    0.19625000E 04
                    0.196300C0E 04
 0.80800COOE 02
                    0.19634999E 04
 0.77899999E 02
0.70000C00E 02
                  0.19639999E 04
0.19645000E 04
                 0.19650000E 04
 0.75000C00E 02
 0.87000C00E 02
0.13100C00E 03
0.18600C00E 03
                    0.19655000E 04
                    0.19665000E 04
                    0.19675000E 04
               0.19684999E 04
 0.20000000E 03
0.19000000E 03
                    0.19695000E 04
                0.19705000E 04
0.19710000E 04
 0.16300C00E 03
 0.14200C00E 03
0.12800C00E 03
0.10800C00E 03
               0.19715000E 04
                    0.19724999E 04
 0.94000000E 02
0.80999999 02
               0.19735000E 04
0.19745000E 04
 0.75000C00E 02
                    0.19750000E 04
 0.75000C00E 02
                    0.19755000E 04
BIURNAL MEAN
              **** SPECIAL EVENTS *****
EARTH IMPACT CUTOFF
   **** INITIAL CONDITIONS ****
DETAIL PRINTOUT
ANDMALY STEP (DEGREES) 0.99999999 01
APBGEE STEPS(KM) PERIGEE RADIUS(KM)
-0.49999999E 01
-0.9999999E 01
                           0.67780000E 04
                              0.65780000E 04
                            0.
-0.2000000E 02
Ò.
 0.
                              ٥.
```

PERIGEE VELOCITY(KM/SEC ORBITAL PERIODIMIN) IFETIME SPENT(ORBIT AN	· I .		
.IFETIME SPENT(ØRBIT AN	-		
	ID DAY)		
:H∂(KG/M3), EI(UNITLES:	S), RIPERG AND RIPAPGIKM	1	
			7.00
0.66987178E 04	P 0.65384161E 04 PD2T -0.40069964E 01	AXIS C.66185670E 04 AXIDOT-0.12089644E 02	MASS 0.60399999E C4
IDDE 0.8140000GE 02	ARGP 0.60406999E 02	DN2DE -0.73808376E 01	DARGP 0.11164444E 02
PERIG 0.78563969E 01	PERIOD 0.89310846E 02	ØRBIT C.	TIME 0.
HØO.1CO19261E-08	E1 0.12110000E-01	RIPERG 0.16281848E 03	RIPAPG 0.32312018E G
0.668871786 04	P 0.65363847E 04	AXIS 0.66125512E 04	RADIUS 0.63729899E C4
DØT -0.21854386E 02	PDØT ~0.45366886E 01	AXID@T-C.13195537E 02	MASS 0.60394999E '04
IØDE "" 0.77741100E 02 "	ARGP 0.65941543E 02	DN2DE -C.74041695E 01	DARGP 0.11199737E 0
PERIG 0.78550523E 01	PERIOD 0.89189111E 02	ØRBIT 0.76963580E 01	TIME 0.47668843E-00
0.10763352E-08	EI 0.11518484E-01	RIPERG 0.16103314E 03	RIPAPG 0.31368445E 0
0.66787178E 04	P 0.65342648E 04	AX (5 C.66064913E 04	RADIUS 0.63726118E 0
DØT -0.23836359E 02	POST -0.51580800E 01	AXID21-C.14497220E 02	MASS 0.60399999E 0
IØDE 0.74353144E 02 /PERIG 0.78538398E 01	ARGP 0.71066251E.02 PERIDO 0.89066537E 02	DN2DE -0.74277838E 01 2RB[T C.14785457E 02	TIME 0.91516171E 00
0.11652293E-08	EI 0.10932652E-01	RIPERG C.15911090E 03	RIPAPG 0.30412115E G
	00103520522 01	KILLING GITTYTIOTOL GY	
0.66687178E 04	P 0.65320580E 04	AXIS 0.66003878E 04	RADIUS C.63723329E 0
1DST -0.26187366£ 02	PDØT -0.58897937E 01	AXID2T-0.16038579E 02	MASS 0.603999999 C
WDE 0.71236986E 02 PERIG 0.78527560E 01	ARGP 0.75779830E 02 PERIOO 0.88943137E 02	DNCDE -C.74516790E J1 ØRBIT C.21272498E G2	DARGP 0.11271600E 0: TIME 0.13158407E 0
3HØ 0.12720751E-08	EI 0.10352410E-01	RIPERG 0.15705157t 03	RIPAPG 0.29444018E 0
0.66587178E 04	P 0.65297680E 04 PDØT -0.67591456E 01	AXIS 0.65942429E 04	RACIUS 0.63721424E C
NØDE 0.68391461E 02	ARGP 0.80084042E 02	AX 1021-0.17883664E 02 DNCDE -0.74758501E U1	MASS 0.60393999E C UARGP 0.11308163E 0
VPERIG 0.78517914E 01	PERIOD 0.88818957E 02	ØRBIT 0.27161858E 02	TIME 0.16790955E C
tHØ" "0:14009906E-08	EI 0.97774551E-02	RIPERG C.15486291E 03	RIPAPG 0.28465612E C
0.66487178E 04	P 0.65273999E 04	AX(S G.65880588E 04	RADIUS 0.63720265E C
DØT -0.32431474E 02	POST -0.78004355t 01	AXIDET-0.20115954E 02	MASS 0.603939393 C
WDE 0.65814312E 02	ARGP 0.83982302E 02	DNUDE -0.75002896E 01	DARGP 0.11345130E 0
PERIG 0.78509342E 01	PERIOD 0.88694043E 02	Ø8:311 C.32462037E 02	TIME 0.20055498E 0
RHØ- 0.15571679E-08	FI 0.92074110E-02	RIPERG 0.15255591E 03	RIPAPG 0.27478613E 0
0.66387178E 04	P 0.65249590E 04	AXIS 0.65818384E 04	RADIUS 0.63719703E 0
ADØT -0.36582107E 02	PDØT -0.90565055E 01	AX 1031-0.22819306E 02	MASS 0.60399999E 0
MDE 0.63501654E 02	ARGP 0.87480488E 02	DNCDE -0.75249887E 01	DARGP 0.11382490E C
VPERIG 0.78501709E 01 RHØ 0.17472959E-08	PLRIDD 0.88568456E 02 EI 0.86418749E-02	ØRBIT 0.37189028E 02	TIME 0.22962875E 0
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		RIPERG 0.15014362E 03	R1PAPG 0.26484796E 0
0.662871780 04	P 0.65224564£ 04	AXIS C.65755841E 04	
ADBT -0.416684160 02	PDGT -0.10584679E 02	AX (DCT-0.26126547E 02	MASS 0.60393499E 0
NGDE 0.61444640E 02 VPERIG 0.78494892E 01	ARSP 0.90591474E 02	DNTDL -0.754993926 01	DARGP 0.11420231E 0
RH2 0.19801765E-08	PERIOD 0.884422476 02 E1 0.80804481E-02	BRUTT 0.41366296E 02 RTPERG 0.14763916E 03	TIME 0.255284800 C RIPAPG 0.254858648 C
0.661871785 64	0.6519880/2 04	AXIS 0.65692993L 04	RAUTUS 0.63/19793E C
ADDT -0.4800660PE 02 NBCE 0.596327306 02	POST -0.12472527L 02 ARSP 0.93332718L 02	AXIDJT-0.30233567E 02 DN.DL -0.75751306E 01	MASS 0.60399999E C DARGP 0.11458337E C
	PERITO 0.88315480E 02	CRUIT 0.450163936 02	TIME 0.21768318E 0
VPERIG 6.784887571 01			

```
A 0.66087178E 04 P 0.65172561E 04
                                                       AXIS C.65629869E 04
                                                                                   RADIUS 0.63720200E 04
ADØT -0.55973225E 02
NØDE 0.58054795E 02
                            PDØT
                                                                                   MASS 0.60399999E 04
DARGP 0.11496790E 02
                                  -0.14833832E 02
                                                        AX1D0T-0.35403528E 02
                                                       DN2DE -0.76005523E 01
WRBIT C.48174605E 02
                            ARGP
                                    0.95719543E 02
                                                                                   TIME 0.29701240E 01
RIPAPG 0.23478466E 03
VPERIG 0.78483187E 01
                            PERIOD 0.88188218E 02
        0.26253967E-08
                                                        RIPERG 0.14240667E 03
                                    0.69680004E-02
        0.659871786 04
                                    0.65145827E 04
                                                               0.65566503E 04
                                                                                    RADIUS 0.63720719E C4
                                                                                   MASS 0.60399999E 04
DARGP 0.11535574E 02
TIME 0.31349111E 01
RIPAPG 0.22472332E 03
ADØT -0.66103096E 02
                            PDØT -0.17819200E 02
                                                        AXIDØT-C.41961148E 02
NADE
        0.56696904E 02
                            ARGP
                                    0.97773523E 02
                                                       DNEDE -C.76261927E 01
ØRBIT 0.50869267E 02
VPERIG 0.78478073E 01
                            PERIOD 0.88060527F 02
RHA
        0.30758083E-08
                            ΕI
                                    0.64160102E-02
                                                        RIPERG 0.13970275E 03
        0.65887178E 04
                                    0.65118655E 04
                                                        AXIS
                                                               0.65502916E 04
                                                                                    RADIUS 0.63721281E 04
ADUT -0.79264738E 02
NØUE 0.55543222E 02
                            PDØT -0.21702515E 02
                                                        AXIDØT-0.50483626E 02
                                                                                   MASS 0.60399999E 04
DARGP 0.11574678E 02
NOUE
                            ARGP
                                    0.99518611E 02
                                                       DN2DE -0.76520441E 01
ØRBIT 0.53137720E 02
VPERIG 0.78473331E 01
                                                                                          0.32734323E 01
                            PERIOD 0-87932458E 02
                                                                                    TIME
                                                       RIPERG 0.13695270E 03
                                                                                    RIPAPG 0.21465692E 03
RHØ
        0.36504593E-08
                            ΕĒ
                                    0.58663261E-02
        0.657871786 04
                                    0.650910746 04
                                                                                    RADIUS 0.63721834E 04
                                                        ZXIS
                                                               C-65439127F 04
ADØT -0.96654691£ 02
NØDE 0.54577845E 02
                            PDØT
                                   -0.26856437E 02
                                                        AXIDST-0.617555636 02
                                                                                   MASS 0.60399999E 04
        0.54577845E 02
                            ARSP
                                    0.10097887E 03
                                                       DN2DE -0.76781022E 01
ØRBIT 0.55017389E 02
                                                                                   DARGP
                                                                                           0.11614094E 02
VPERIG 0.78468911E 01
                            PERIED 0.87804039E 02
                                                                                    TIME
                                                                                           0.33880452E 01
                                                        RIPERG 0.13416217E 03
        0.439579198-08
                                    0.53187103F-02
                                                                                    RIPAPG 0.20459143E 03
                                                                                    RADIUS 0.63722347E 04
        0.656871786 04
                                    0.65063073F 04
                                                        AX IS
                                                                0.65375125E 04
ADØT -0.12024515£ 03
NØDE 0.53783459£ 02
                            POST
                                  -0.33940001E 02
                                                        AXIDØT-C.77092577E 02
                                                                                            0.60399999E C4
                                                                                    MASS
                                                       DNCDE -0.77043711E 01
ØRBIT 0.56546763E 02
                                                                                          0.11653829E C2
        0.537834596 02
                            ARGP
                                    0.10218047E 03
                                                                                    DARGP
                                                                                    TIME
VPERIG 0.78464800# 01
                            PEXIOD 0.87675259E 02
                                                                                           0.34811621E 01
RHA
        0.538307836-08
                            ΕI
                                    0.47732574E-02
                                                        RIPERG 0.13133202E 03
                                                                                    RIPAPG 0.19453058E 03
        0.65487178E 04
                                    0.65005544E 04
                                                        21 X A
                                                                0.65246361E 04
                                                                                    RADILS 0.63723277E 04
ADØT -0.20129748E C3
NØDE 0.52502015E 02
                            PDØT -0.59263927E 02
                                                        AX100T-0.13028070E 03
                                                                                   MASS 0.60399999E C4
DARGP 0.11734350E 02
                                                       DN2DE -0.77576034E 01
ØREIT C.58709557E 02
                            ARGP
                                   0.10411882F 03
VPERIG 0.78457771E 01
                            PERIOD 0.87416356E 02
                                                                                    TIME
                                                                                            0.36124563E 01
RHØ
                                                        RIPERG 0.12552423E 03
                                                                                    RIPAPG 0-17441961E C3
        0.86214397E-08
                            F I
                                    0.36908918E-02
        0.652871781 04
                                    0.64944185F 04
                                                        AX IS
                                                               0-65115681F 04
                                                                                    RADIUS 0-63723896F C4
ADDT -0.39824621E 03
                                  -0.12856697E 03
                            PDØT
                                                        AXIDST-C.26340659E 03
                                                                                    MASS
                                                                                           0.603999998 04
                                                                                    DARGP
                            ARGP
                                                        DNGDE -C.78121534E 01
ØR81T 0.59921826E 02
NØDE
        0.51731255E 02
                                    0.10528468E 03
                                                                                            0.11816864E 02
VPERIG 0.78453854E 01
                            PERIØD 0.87153862E 02
                                                                                    TIME
                                                                                           0.36858271E 01
        0.159007928-07
                            ΕI
                                    0.26337263E-02
                                                        RIPERG G.11935028E 03
                                                                                    RIPAPG 0.15434387E C3
                                                                                   MASS 0.60399999E 04
DARGP 0.11902/2
        0.650871786 04
                                    0.64875169E 04
                                                                C-64981174F 04
                                                                                    RADIUS 0.63724229E C4
ADDT -0.11186879E C4
NØDE 0.51338927E 02
                            PUØT -0.41531130E 03
                                                        AXIDØT-0.76699963E 03
                                    0.10587813E 03
                                                        DNCDE -0.78688589E 01
2R3IT 0.60463034E 02
                            ARGP
VPERIG 0.78456540E 01
                            PERIOD 0.86883955E 02
                                                                                            0.37184814E 01
                                                                                    TIME
RHO
        0.39444161E-07
                                    0.16313130E-02
                                                        RIPERG 0.11242608E 03
                                                                                    RIPAPG 0.13430102E 03
                            ΕI
        0.648871781 04
                                    0.64790406E 04
                                                        ZIYA
                                                               0.64838792E 04
                                                                                    RADIUS C.63724351E 04
ADAT
      -0.70584279£ C4
                            PD2T
                                  -0.366145518 04
                                                        AXIDØT-0.53599416E 04
                                                                                    MASS
                                                                                           0.60394999E C4
                                                       DNLUE -0.79295006E 01
ØRBIT C.60608292E 02
NADE
       0.511982466 02
                            ARGP
                                   0.10609093F 03
                                                                                    DARGE
                                                                                            0-11994366E 02
VPERIG 0.78473248E 01
                            PERIOD 0.86598551E 02
                                                                                    TIME
                                                                                           0.37272170E C1
                                                                                    KIPAPG 0.11428174E 03
RHO
        0.18488389E-06
                            FI
                                    0.74624963E-03
                                                        RIPERG 0.103938236 03
        0.646871788 04
                                                                                    RADIUS 0.63724370E C4
                                    0.64654747E 04
                                                        ZIXA
                                                                0.646709628 04
ADJT -0.13953651E 06
                                                        AXIDAT-C.12511238E 06
                            PDUT -0.11068825E 06
                                                                                    MASS
                                                                                           0.60399999E 04
                                                                                    DARGP 0.12103708E 02
                                                       UNIDE -0.80017868E 01 
URBIT 0.60625134E 02
NOOF
        0.511757788 02
                            ARSP
                                    0.10612491L 03
VPERIG 0.78536133E 01.
                            PIRIOD 0.86262540F 02
                                                                                    TIME
                                                                                            0.372822598 01
                                                        RIPERG 0.90364990E 02
                                                                                    RIPAPG 0.94273559E 02
RHA
        0.26460587E-05
                            Εſ
                                    0.250743448-03
      ~~0.64487178E C4
                                    0.64478089F 04
                                                                                    RADIUS 0.63724373F C4
                                                        AXIS
                                                               C.64482634E 04
ADJI -0.34856556E 07
                            PUJT -0.32746/75E 07
                                                        AXIDST-0.33801666L 07
                                                                                           0.603999990 04
                                                                                    22 A M
        0.51174(302 02
                            ARSP
                                    0.166126641 03
                                                        DNI/DE -0.90839723E 01
#R91T 0.60625828E 02
                                                                                    DARGE
                                                                                           0.12221948F 02
NAME
                            PLRISD 0.058860060 02
VP cR 16 0.78635/04c 01
                                                                                    TIME
                                                                                            0.372826738 01
                                                                                    RIPAPG 0.14266540E_62
RHJ
        0.612165458-04
                            f 1
                                    0.704730928-64
                                                        RIPERG 0.72692382E 02
```

بعدف والمصاد والرمانية والمرباء اللاسميان فالمصادر والمائيل المائد	and the same of the first and the same are the same and the same of the same of the same and the	والمعاولات والمراوات المواول المارين المارا والمواسد الماسية المرسية أراوات والمراوات	ا به الما معاليمة عقر فيد سواليم مم المانية الله لمما يعينهم عبر عبر ساليون و راي او راييان
A 0.64287178E C4	P 0.64284943E 04	AXIS 0.64286062E 04	RADIUS 0.63724373E 04
ADET -0.36040654E 08	POØT -0.35568516E 08	AXID3T-C.35804585E 08	MASS 0.60399999E 04
NØDE 0.51174583E 02	ARGP 0.10612672E 03	DN20E -0.81708138E 01	DARGP 0.12359383E 02
VPERIG 0.78752603E 01	PERICO 0.85493578E 02	ØREIT 0.60625864E 02	TIME 0.37282695E 01
RH2 0.72545402E-03	EI 0.17350844E-04	RIPERG 0.53371032E 02	RIPAPG 0.54259277E 02
A 0.64087178F 04	0 ((00(1)205.01	1416	0.01115 0 (0.70/0.705 0/
	P 0.64086128E 04	AXIS G.64086653E 04	RADIUS 0.63724373E 04
ADST -0.57522210E 09	PDØT -0.57563592E 09	AXIDST-0.97542901E 09	MASS 0.60399999E 04
NØDE 0.51174579E 02	ARGP 0.10612672E 03	DN2DE -0.82601909E 01	DARGP 0.12494577E 02
VPERIG 0.788743605 01	PERIOD 0.85096096E 02	ØRBIT 0.60625867E 02	TIME
RHU 0.10391000E-01	EI 0.81952714E-05	RIPERG C.33481811E 02	RIPAPG 0.34251953E 02
A 0.63887178E 04	P 0.63887154E 04	AXIS C.63887166E 04	RADIUS 0.63724373E 04
ADOT -0.12913613E 11	PDST -0.12713984E 11	AX [D2T-0.12813799E 11	MASS 0.60399999E C4
NODE 0.51174578E 02	ARGP 0.10612672E 03	DN2DE -C.83508641E 01	DARGP 0.12631731E 02
VPERIG 0.78996825E 01	PERIOD 0.84699079E 02	2R8IT 0.60625867E 02	TIME 0.37282697E 01
RHØ 0.24382363E-00	EI 0.18629493E-06	RIPERG 0.13577026E 02	RIPAPG 0.14244629E 02
A 0.63687178E C4	P 0.63691773E 04	AXIS 0.63689475E 04	RACIUS 0.63724373E 04
ADUT -0.45995754E 11	PD2T -0.46000738E 11	AXIDØT-C.45998245E 11	MASS 0.60399999E 04
NØDE 0.51174578E 02	ARGP 0.10612672E 03	DN2DE -0.84419879E 01	DARGP 0.127695676 02
VPERIG 0.791165166 01	PERIOD 0.84306248E 02	ØREIT 0.60625867E 02	
RHØ 0.12254324E 01	EI -0.36066525E-04		
KHU 0.12254324E 01	E1 -0.36066323E-04	RIPERG-C.59685668E 01	RIPAPG-0.57626952E 01
A 0.63687178E C4	P 0.63691773E 04	AXIS C.63689475E 04	RADIUS 0.63724373E 04
ADØT -0.45995754E 11	PDØT -0.46000738E 11	AXIDZT-0.45998245E 11	MASS 0.60399999E 04
NØDE 0.51174578E 02	ARGP 0.10612672E 03	DN2DE -0.84419879E 01	DARGP 0.12769567E C2
VPERIG 0.79116516E 01	PERIZD 0.84306248E 02	ØRBIT 0.60625867E 02	TIME 0.37282697E 01
RHØ 0.12254324E 01	EI -0.36066525E-04	RIPERG-0.59685668E 01	RIPAPG-0.57626952E 01

___ EARTH ERBIT TRANSFORMATION

PHIØ = A = RADIUS= H = YG = YDG =	0.28500000000000000000 02 0.63781650000000000 04 0.6378165000000000 04 0.575000000000000000-05 0.	DEG LAPE KM B KM KERT D KM ZG KM/SEC ZDG	= 0.63567839999	999990 04 KM 000000 06 KM3/SEC	PMEGA = 0.1504106	0000000000 03 DEG 7050000000 02 DEG/HR 000000000D-02 KM KM/SEC HBURS
PØSITIEN Efp	MRT SYSTEM SHART NOLCNG (KM) VELECITY (KM/SCC) -0.3037077883473387D 04	ANGLES (DE	-G) -0.1046142628496821	D 04 ZE =	0.2505989924336480D	04
X0E = PLT XPL =	0.5957248665928864D 01 -0.3037077883473385D 04	YDE = YPL =	-0.1620505487157563		0.3982714918979543D	
EFE XEP =	0.5979686903636678D 01 -0.2630237597954840D 04	YDPL =	0.1850067816184628 -0.5986299572715291		0.41057415253642900	
SFE	0.5318120342908635D 01 -0.2630237597954840D 04	YDEP =	-0.3161077262043163	D 01 ZDEP =	-0.3962580881258863D	01
XDS = TIME =	0.5754648197067024D 01 -0.	YDS =	-0.3352877214687555 -0.		-0.39625808612588630	
R = VS = EFG	0.6628827615152297D 04 0.7749826367686954D 01	GCLAT = AZVS =	0.9461594291796026 0.1213593542378151		0.24628C4560176325D C.6884420409938637D	
R = VE = .	0.6628827615152297D 04 0.7346894628261875D 01	GCLAT = AZVE =	0.9461594291796026 0.1232949670245073		0.24628C4560176325D 0.7262007992049315D	
AXIS = ASNUD = EANDM =	0.66209031696896410 04 0.81376057355369100 02 0.95688659639330660 02	ECCEN = ARGP = MANOM =	0.1707474821557146 0.6586622223696307 0.9500023465684445	D 02 TANOM =	0.3261583446622047D 0.9637668968299269D	
M2 E AX 1S = AS N2 D = EANUM =	0.66185669999999999 04 0.813999999999999 02 0.10112897369097720 03	ECCEN = ARGP = MANAM =	0.1211000000000000 0.6040699999999999 0.1304481695590716	D 02 TANEM =	0.3259999999999990 0.10180900000000000	
AP DGEE = RANGE = EC V = MPERIGE=	CALCULATIONS 0.3726839084233206D 03 0.4058034132300353D 04 -0.46419844868672120-02 0.1602511536299994D 03 -0.73935526963860700 01	KM ALT KM/SFC ELV	= -0.321664794	95595980 C3 KM 92168190 O3 KM 4953C370 C1 KM/SLC 11512520 O2 MIN	TP1TCH = 0.8938 MAPZGEE = 0.3205	E13214091380D 02 MIN 692960398236D 02 DEG 528463699984D 03 KM 9298298297090 02 DEG/DAY

```
** *** EARTH CONSTANTS *****
EARTH SECOND HARMONIC 0.162344991-02 EARTH THIRD HARMONIC 0.57500000E-05 EARTH FRURTH HARMONIC 0.78749999E-05
EARTH GRAVITATIONAL CONSTANT INTERMETERS CUBED/SECONDS SQUARED) 0.39860319E 06
EQUATURIAL RADIUS (KILOMETERS) 0.63781650E 04 ELLIPTICITY 0.29830C00E C3
                       **** BALLISTIC PARAMETERS *****
ANGLE OF ATTACK FUNCTION
ALPHA (DEGREES) AND MALY IDEGREES)
                   C.36000000E 03
CØEFFICIENT OF DRAG FUNCTION
CN
                   ALPHA (DEGREES)
                   C.360000C0E 03
0.20000CGGE 01
COPRIME
                   PERIGEE (KILEMETERS)
 EFFECTIVE DRAG AREA FUNCTION
AREA (METERS SQUARED) ALPHA (DEGREES)
0.26040C00E 02
                      0.360000000 03
MASS CENSTANTS
INITIAL MASS(KILEGRAMS) 0.60399999E 04
                        ***** DENSITY PARAMETERS *****
                   DAY= 0.80E 01 YEAR 0.1964E 04 DAYS ELAPSED SINCE DEC. 31 , 1957 0.22899999E 04
MBNTH= 0.40E 01
1959 ARDC ATMØSPHERE
DENSITY CORRECTION
nc
                   PERIGEE (KILØMETERS)
 0.12000000E-00
                    0.500000CCE U3
 0.13000C00E-00
                    0.4000C0C0E 03
 0.14200C00E-00
                    0.34999994E 03
 0.18400C00E-00
                    0.3000000CE 03
 0.22000C00E-00
                    0.2799999E 03
 0.27500C0CE-0C
                    0.2600C0C0E 03
 0.304C0C0CE-00
                    0.25000000E 03
 0.34000C00E-00
                    0.239999998 03
 0.38500C00E-C0
                    0.23000000E 03
 0.42500C0CE-00
                    0.220000C0E 03
 0.470COCOCE-00
                    0.20999999E G3
 0.52000C00E 0C
                    0.2000000E 03
 0.56500COOE 00
                    0.190000C0E 03
 0.62000C00E 00
                    0.180000CCE 03
                    0.16999999E 03
 0.70CCCCCOE 00
 0.80000C00E 00
                    0.16000000E 03
 0.840G0C00E 00
                    0.154999998 03
 0.86000C00E 00
                    C.15000000E 03
1.00000CGOE 00
                    0.1450000GE 03
 1.00000COOE 00
                    0.
                   YEAR
                    0.1958COOCE 04
 0.234GOCCCE 01
 0.248COCOOE 01
                    0.195880001 64
 0.189600000000
                    0-195889996 04
                    0.195899996 64
 0.250995998 01
 0.297000000 01
                    0.19591000E 04
 0.241999999 01
                    0.19592000E 04
                    0.195930008 64
 0.2560000000 01
                    0.195940098 64
 0.25900000L 01
```

```
~~0.29200CQGE 01 ~~ 0.19594999E 04
  0.31599999E 01
                         0.195960C0E 04
  0.349999998 01
                         0.1959700CE 04
  0.24600C0CE 01
0.289C0C00E 01
0.25699999E 01
0.23199999E 01
                         0.19598000E 04
                         0.195990CCE 04
                        0.19599999E 04
                        0.1960100CE 04
  0.24400C00E 01
                         0.196020COE 04
  0.341999998 01
                         0.19603000E-04
  0.27899999E 01
0.29200C0CE 01
                         0.1960400CE 04
                         0.196050GOE 04
  0.27100C00E 01
                        0.19605999E 04
  0.27500000E 01
0.3229999E 01
                         0.196069998 04
                         0.19608000E 04
  0.34400C00E 01
                         0.19609000E 04
  0.24900COOE 01
                         0.19610000E 04
  0.22700C00E 01
                         0.196110COE 34
 0.23199599E 01
0.22899599E 01
0.23999599E 01
                         0.19611999E 04
                         C. 1961 3000E C4
                         0.19614000E 04
  0.26899599E 01
0.22600000E 01
                        0.19615000E 04
                         0.19616000E 04
  0.21799999E 01
                         0.19616999E 04
                       _ 0.19617999E 04
  0.18499999E 01
0.19199999E 01
                         0.19619000E 04
  0.14900C00E 01
                         0.1962000UE 04
  0.172999995 01
0.18099999 01
                         0.196210COE 04
                        U.19622000E 04
  0.23100C06E 01
                        0.19622999E 04
  0.16000000E 01
0.21799999E 01
                        0.19623999E 04
0.19625000E 04
  0.26199599E 01
                        0.19626000E 04
  0.29399999E UI
                         0.196270CGE 04
  0.30800C00E 01
                         0.19628000E 04
                         0.19628999E 04
  0.201600005 01
  0.17500C0CE 01
                         C.196200COE 04
                       0.196310COE 04
  0.17200000E 01
  0.15400C0CE 01
                         0.1963120ČE 04
  0.15099999E 01
                         0.19632100E 04
  0.18600C00E C1
                        0.1963290UE 04
                         0.196338CCE 04
  0.20800000E 01
  0.20599999E 01
0.22300C00E 01
                        0.19634600E 04
                        0.1963539 >E 04
  0.23499999E 01
                         0.19636200E 04
  0.32600C0CE 01
                         0.19637100E 04
  0.21999999E 01
                        0.196379COE 04
  0.20200C00E 01
                        0.19638800E 04
  0.198COCOOE 01
                         0.19639600E 64
  0.205999996 01
                         0.196404005 04
  0.22099999E 01
0.21600C00E 01
                         0.196412CGE 04
                        0.196421668 04
  0.22499999E 01
                         0.196429CCE 04
  0.180999999E 01
0.17299999E 01
                         0.196438CGE D4
                         0.196445998 04
  0.18900000E 61
                         0.19645400E 04
  0.16800C00E C1
                        0.196462008 04
  0.17800CCCE 61
                         0.196471608 04
  0.16700CGCE G1
                        0.196478996 04
  0.90000CGUE 0G
                        0.196488GCE 04
  0.77000C0GE GO
                         0.196495996 04
                       0.19636000E 04
  0.249999996 61
                        0.200000000 04
  0.249999991 01
 FIELD
                        YE 53
                         С.
  0.
```

```
FIENB YEAR
  0.1960500CE 04

0.196100CCE 04

0.19615000E 04

0.1962500CE 04

0.196250C0E 04
  0.13079999E 03
  0.10479999E 03
0.99300000E 02
  0.89699999E 02
                     0.19630000E 04
0.19634999E 04
  0.82699999E 02
0.80800000E 02
                    0.19634999E 04
0.19639999E 04
0.19645000E 04
  0.77899999E 02
 0.70000000E 02
0.75000000E 02
 U-/5000000E 02 C.1965000E 04

0.8700000E 02 0.19655000E 04

0.13100000E 03
 0.13100C00E 03
0.18600C00E 03
                   0.19665000E 04
0.19675000E 04
                    0.19675000E 04
0.19684999E 04
0.19695000E 04
  0.20000COGE 03
 0.19000COCE 03
0.16300COCE 03
                         0.197050GOE 04
                    0.19705000E 0.

0.19710000E 04

0.19715000E 04

0.1972499E 04
 0.14200C00E 03
 0.12800C00E 03
0.10800C00E 03
                    0.197247972 07
0.19735000E 04
0.197450C0E 04
0.19750000E 04
0.197550C0E 04
 0.94000000E 02
0.80999999E 02
0.75000000E 02
 0.75000000E 02
DIURNAL MEAN
                             **** SPECIAL EVENTS *****
EARTH IMPACT CUTCHE
                   **** INITIAL CENDITIONS *****
SHERT PRINTOUT
ANDMALY STEP (DEGREES) 0.999999999 01
                                  PERTGEE RADIUS (KM)
APOGEE STEPS (KK)
-0:49999999E 01
                                   0.67780000E 04
-0.99999999E 01
                                    0.65780000E 04
-0.20000CUOE 02
                                   0.
                                   Ò.
 0.
 0.
                 _____
```

APEGE	EE,PERIGEC,MAJ&R A EE,PERIGEE,ANO MAJ IIME SPENI(ZRBI) A	CR AXIS				
A ADØT	0.66987178E C4 -0.20172292E 02	P PDJT	0.65384161E 04 -0.40069964c 01	AXIS C.66185670E 04 AXID21-0.12089644E 02	RADIUS 0.63734720E 04 ERBIT 0.	TÎMÊ O.
ADST	0.66887178E 04 -0.21854386E 02	P PDØT	0.65363847E 04 -0.45366886E 01	AXIS 0.66125512E 04 AXIDDT-C.13,195537E 02	RADIUS 0.63729899E 04 @RBIT 0.76963580E 01	TIME 0.47668843E-00
A ADØT	0.66787178E 04 -0.23836359£ 02	P PDØT	0.65342648E 04 -0.51580800E 01	AXIS 0.66064913E 04 AXIU2T-0.14497220E 02	RADIUS 0.63726118E C4 0REIT 0.14785457E C2	TIME 0.91516171E 00
ADOT	0.66687178E 04 -0.26187366E 02	P PDØT	0.65320580E 04 -0.58897937E 01	AXIS 0.66003878E 04 AXID21-C.16038579E 02	RACIUS 0.63723329E 04 ZRBIT 0.21272498E 02	TIME 0.13158407E 01
A ADØT	0.66587178E 04 -0.29008224E 02	P PDØ I	0.65297680E 04 -0.67591456E 01	AXIS 0.65942429E 04 AXID2T-C.17883684E 02	RACIUS 0.63721424E C4 2RBIT 0.27161858E 02	TIME 0.16790955E 01
ADØT	0.66487178E 04 -0.32431474E 02	P PDØT	0.65273999E 04 -0.78004355E 01	AXIS C.65880588E 04 AXIDET-0.2011>954E 02	RADIUS 0.63720265E 04 2RBIT 0.32462037E 02	TIME 0.200554986 31
ADØT	0.66387178E 04 -0.36582107E 02	PDØT	0.65249590E 04 -0.90565055E 01	AXIS C.65818384E 04 AXIDCT-0.22819306E 02	RADIUS 0.63719703E 04 ERBIT 0.37189C28E 02	TIME 0.22962875E 01
ADØT	0.66287178E 04 -0.41668416E 02	P PDØT	0.65224504E 04 -0.10584679E 02	AXIS 0.65755841E 04 AXID21-0.261265476 02	RACIUS G.63719590E C4 CRBIT 0.41366296E C2	TIME 0.25528480t 01
A ADØT	0.66187178E 04 -0.48006608E 02	P PDØ I	0.65198607E 04 -0.12472527E 02	AXIS 0.65692993E 04 AXIDJT-C.30239567E 02	RACIUS 0.63719793E C4 ERBIT 0.45018393E C2	TIME 0.27768318E 01
ADØT	0.66087178E 04 -0.55973225E 02	P PDØT	0.65172561E 04 -0.14833832E 02	AXIS C.65629869E 04 AXIDET-0.35403528E 02	AACIUS 0.63720200E 04 ERBIT 0.48174605E 02	TIME 0.29701240E 01
ADØT	0.65987178E 04 -0.66103096E 02	P T G U P	0.65145827E 04 -0.17819200E 02	AXIS 0.65566503E 04 AXID0T-0.41961148E 02	RACIUS 0.63720719E 04 ØRBIT 0.50864267E C2	TIME 0.31349111E 01
ADØT	0.65887178E 04 -0.79264738E 02	P PD2T	0.65118655E 04 -0.21702515E 02	AXIS 0.65502916E 04 AXID2T-0.50483626E 02	RADIUS 0.63721281E 04 BRBII 0.53137720E 02	TIME 0.32734323E 01
	0.65787178E 04 -0.96654691E 02	P PD∂T	0.65091074E 04 -0.26856437E 02	AXIS 0.65439127E 04 AXID2T-0.61755563E 02	RACIUS 0.63721834E 04 ERBIT 0.55017389E 62	TIME 0.33880452E 01
ADET	0.65687178E 04 -0.12024515E 03	PUST	0.65063073E 04 -0.33940001E 02	AXIS 0.65375125E 04 AXID#T-C.77092577E 02	RADIUS 0.63722347E 04 #RBIT 0.56546763E 02	TIME 0.34811621E 01
ADØT	0.65487178E 04 -0.20129745E 03	P PUUT	0.65005544E 04 -0.59263927E 02	AXIS C.65246361E 04 AXID2T-C.13628070E 03	RADIUS 0.63723277E 04 @RBIT 0.58709557E 02	TIME 0.36124563t 01
ADST	0.65287178E C4 -0.39824621E 03	PDJT	0.64944185E 04 -0.12856697E 03	AXIS 0.65115681E 04 AXIDZI-C.26340659E 03	RADIUS 0.63723896E 04 ØRBIT 0.59921826E 02	TIME 0.36858271E 01
A ADZT	0.65087178E 04 -0.11186879E 04	P PDØT	0.64875169E 04 -0.41531130E 03	AXIS C.64981174E C4 AXIDUT-0.76697963E 03	RADIUS 0.63724229E C4 ØRBIT 0.60463034E 62	TIME 0.371848146 01
ADST	0.64887178E 04 -0.70584279E 04	P PCST	0.64790406E 04 -0.36614551E 04	AXIS 0.64833792E 04 AXID21-0.53599416E 04	RADIUS 0.63724351E 04 @RBIT 0.60608292E 02	TIME 0.37272170E 01
ADST	0.64687178E C4 -0.13953651E G6	P EUG T	0.64654747E 04 -0.11068525E 06	AXIS 0.64670962E 04 AXIDCT-0.12511238E 06	RADIUS 0.63724370E 04 2R8IT 0.60625134E 02	TIME 0.37282259E 01
Λ ΛΠ., Τ	0.64487172. 04 -0.34856556L 07	P PDST	0.64478083E 04 -0.32746775E 07	AXIS 0.64482634E 04 AXID:T-0.33801666E 07	RADIUS 0.63724373E C4 BRELL 0.60625828E 02	TIME 0.37282673E 01

A AD C T	0.64287178E (P PD2 T	0.64284948E	-		0.64286062E			0.63724373E 0.60625864E		TIME "	0.372826958 01
Α	0.64087178E	•	P	0.64086128E			0.640866536	•		0.637243736			
ADDT		-	POST	-0.57563592E			-0.57542901E	•		0.60625867E		TIME	0.37282697E 01
A	0.638871786	04-	P	0.63887154E	04	AXIS	0.63887166E	04	RADIUS	0.63724373E	04		
ADET	-0.12913613t	11	POJT	-0.12713984E	11	AXID2T-	-0.12813799E	11	DREIT	0.606258678	C 2	TIME	0.37282697E 01
A	0.63687178E	04	P	0.63691773E	04	AXIS	0.63689475E	04 ^ .	RADIUS	0.637243736	C 4		-
ADET	-0.45995754E	11	PDST	-0.46000738E	11	AXID2T-	-C.45998245E	11	ERBIT	0.6C625867E	02	TIME	0.37282697E 01
A	0.636871785	64	Р	0.63691773E	04	AXIS	0.63689475E	04	RADIUS	0.63724373E	C4		
ADØT	-0.45995754Ē	11	PDØT	-0.46000738E	11	AX ID2T-	-0.45998245E	11	28811	0.60625867E	02	TIME	0.37282697E 01

SECTION IV: GRAPHIC METHOD FOR LIFETIME PREDICTION

A lifetime model has been presented for making reasonably accurate predictions of orbital lifetime. Primary factors influencing earth orbital satellite lifetimes have been included. A method has been devised to provide a means of graphically predicting lifetime based on this model. This graphic technique allows a quick prediction of lifetime independent of computer runs.

Two sets of normalized lifetime curves have been generated, one using the 1959 ARDC density model as the basic reference and the other using the 1962 U. S. Standard atmospheric density model. These sets are presented in Figures 8, 9, and 10 for 1959 ARDC and 11, 12, and 13 for the 1962 U. S. Standard. Figures 9, 10, 12, and 13 are blown up altitude regions of Figures 8 and 11. A mean diurnal bulge and constant values of one (1) for vehicle mass, area and drag coefficients are assumed. The normalized lifetime read from these charts is L_1 . For both references the formula for computing lifetime is then:

Lifetime =
$$L_i \left[\frac{m}{C_D A} \right] (f_i, \omega) (f_d)$$

where

 L_1 = normalized lifetime which is a function of apogee and perigee altitudes

m = orbiting mass in kg

 C_D = orbital drag coefficient

A = effective drag area in square meters

 f_i , ω = correction factor to the normalized reference for initial orbital inclination and argument of perigee. The normalized reference assumes values of

$$i = 30^{\circ}$$
 $\omega = 180^{\circ}$

 f_d = correction factor to the normalized reference for the actual calendar dates the satellite is in orbit and the initial perigee altitude. This correction is required to account for the variation of density with

solar and geomagnetic activity which varies with time. The value of of \mathbf{f}_d for future years is based upon current predictions of these effects.

The step-wise procedure to be followed in predicting lifetime is as follows:

- 1. Compute perigee and apogee altitudes in km. Use the earth radius defined at the sub perigee point in computing altitude (see Table 2). If the i and ω necessary to define this radius are not known, use the equatorial earth radius of 6378.165 km in computing altitude.
- 2. For the specified perigee altitude read the L_1 corresponding to the given apogee altitude, interpolating between lines of constant apogee altitude if required. Depending on altitude region of interest use Figures 8, 9, or 10 for ARDC reference and Figures 11, 12, or 13 for 1962 U. S. Standard.
- 3. Compute A, effective area. For attitude stabilized vehicles this area is the surface projection on a plane perpendicular to the direction of vehicle motion. Projected areas are computed as follows:

Nose-on ($\alpha = 0^{\circ}$)

Broadside ($\alpha = 90^{\circ}$)

Cone A = $\frac{\pi D^2}{4}$

A = DL/2

Cylinder A = $\frac{\pi D^2}{4}$

A = DL

A = projected area (m²)

D = vehicle diameter (m)

L = vehicle length (m)

 α = angle of attack

For random tumbling bodies A is computed as one-fourth the total surface area.

4. Determine drag coefficient, $C_{\rm D}$, from Figure 14. These data are extracted from Reference 8. The following values are for a 200 km altitude:

Cone, nose-on =
$$2.06$$

Tumbling Body =
$$2.18$$

- 5. Compute the ratio M/C_DA in $\frac{kg}{m^2}$
- 6. To obtain total lifetime in days based on 1959 ARDC or 1962 U. S. Standard reference, multiply M/C_DA by the value read from the graph to obtain L₂. (i = 30°, ω = 180°)

$$L_2 = L_1 M/C_D A$$

If something more than the apogee and perigee values are known about the orbit or a prediction for later launch dates is desired, using the 1959 ARDC or 1962 U. S. Standard predictions computed in step 6 continue with the following steps.

7. For given values of i and ω read $f(i,\omega)$ in Figure 15, interpolating between lines of constant inclination if necessary. Note that the figure consists of two sets of curves, one for use when $L_2 < 30$ days and the other for use when $L_2 \ge 30$ days. Multiply L_2 by $f(i, \omega)$ to obtain L_3 .

$$L_3 = L_2 f(i, \omega)$$

 L_3 is then lifetime in days for proper inclination and argument of perigee. Omit this step if i and ω are not defined and the mean radius was used in step 1.

8. For the given launch date and perigee altitude enter Figure 16 or Figure 17 for the 1959 or 1962 atmospheres respectively and obtain an average value of the ordinate for the given perigee altitude over the interval of time from the launch date (year and fraction) over the time (in years) corresponding to L_3 days. The same lifetime will be obtained regardless of which base is used. This average is f_d which is multiplied by L_3 to obtain the first lifetime estimate $L_3(1)$.

$$L_3(1) = L_3 f_d$$

These f_d correction factors are current only for the date of this publication. As new data become available and the solar activity prediction is updated, this f_d factor must be updated.

9. Step 8 is repeated using $L_3(1)$ instead of L_3 to perform the average. However, when the new value of f_d is obtained it is multiplied by L_3 not $L_3(1)$ to obtain $L_3(2)$.

$$L_3(2) = L_3 f_d$$

Depending upon the accuracy desired and the variations in successive values of f_d , step 8 may be repeated until $L_3(n)$ is obtained which differs insignificantly from $L_3(n-1)$.

Primary uncertainties associated with these predictions are a 25% uncertainty in ${\rm C_D}$ and uncertainty in prediction of ${\rm f_d}$. The latter is a function of time and altitude. To obtain three sigma lifetime values for ${\rm f_d}$ uncertainty, Figures 18 and 19 or 20 and 21 should be used for the 1959 or 1962 atmospheres respectively in the same manner as given in step 8 for Figures 16 and 17 and nominal lifetime. Three sigma curves are given only for future dates as there is no prediction uncertainty associated with past solar activity behavior.

To assess the accuracy of the graphic technique, a total of 103 comparisons was made between lifetimes predicted using the computer deck and lifetimes predicted using the graphic technique. It was found that a maximum of three iterations as specified in step 9 was sufficient for convergence. For short lifetimes only one iteration was necessary. The ratio of the program value and the graphic value was computed for all cases. The results of this yielded a mean and standard deviation of 1.01 and .15 respectively. From the results of this comparison no systematic errors seemed to be present in the graphic technique.

As well as total lifetime, time spent in decaying from one circular altitude to another can also be obtained by subtracting the respective lifetime values. For elliptical orbits, the time spent in decaying from one apogee to another can be found in a like manner if the perigee could be assumed fixed. However, this assumption could cause a significant error since the perigee will in actuality experience a decay whose effect cannot be neglected.

TABLE II. EARTH RADIUS AS A FUNCTION OF INCLINATION (i) AND ARGUMENT OF PERIGEE (ω)

i	0 180 360	15 165 195 345	30 150 210 330	45 135 225 315	60 120 240 300	75 105 255 285	90 270
15	6378.2	6378.1	6377.9	6377.5	6377.1	6376.8	6376.7
30	6378.2	6377.9	6376.9	6375.5	6374, 2	6373.2	6372.8
45	6378.2	6377.5	6375.5	6372.8	6370.2	6368.2	6367.5
60	6378.2	6377.1	6374.2	6370.2	6366.1	6363.3	6362.1
75	6378.2	6376.8	6373.2	6368.2	6363 . 3	6359.6	6358.2
90	6378.2	6376.7	6372.8	6367.5	6362.1	6358.2	6356.8

Computed from

$$R_{E} = 6378.165 \left[1 - \frac{1}{298.3} (\sin^2 i \sin^2 \omega) \right]$$

FIGURE 8. EARTH ORBITAL LIFETIME

Perigee: 100 - 650 km Apogee: 450 - 600 km

FIGURE 9. EARTH ORBITAL LIFETIME

Perigee: 100 - 200 km Apogee: 450 - 1750 km

FIGURE 10. EARTH ORBITAL LIFETIME

Perigee: 100 - 600 km Apogee: 200 - 600 km

FIGURE 11. EARTH ORBITAL LIFETIME

Perigee: 100 - 650 km Apogee: 450 - 6000 km

FIGURE 12. EARTH ORBITAL LIFETIME

Perigee: 100 - 200 km Apogee: 450 - 1750 km

FIGURE 13. EARTH ORBITAL LIFETIME

Perigee: 100 - 600 km Apogee: 250 - 600 km

FIGURE 14. ORBITAL DRAG COEFFICIENT

FIGURE 15. $f_{i,\ \omega}$ CORRECTION FACTOR

FIGURE 16. f_d CORRECTION FACTOR FOR NOMINAL LIFETIME: 1959 ARDC REFERENCE

FIGURE 17. f_d Correction factor for nominal lifetime: 1962 u.s. standard reference

FIGURE 18. f_d CORRECTION FACTOR FOR -3 σ LIFETIME: 1959 ARDC REFERENCE

FIGURE 19. $f_{\rm d}$ Correction factor for +3 σ lifetime: 1959 ard reference

FIGURE 20. f_d CORRECTION FACTOR FOR -3 σ LIFETIME: 1962 U.S. STANDARD REFERENCE

FIGURE 21. f_d CORRECTION FACTOR FOR +3 σ LIFETIME: 1962 U.S. STANDARD REFERENCE

APPENDIX A. DERIVATION OF THE DECAY EQUATIONS

$$\frac{\mathrm{d}\lambda}{\mathrm{d}t} = f(\lambda) \cdot \overline{\mathcal{F}}$$

A. Definitions

From the above geometry:

$$\cos i = \overline{e}_h \cdot \overline{k}$$

$$\cos \Omega = \overline{e}_{\Omega} \cdot \overline{i}$$

$$\overline{\mathbf{e}}_{\mathbf{R}} = \overline{\mathbf{e}}_{\mathbf{L}} \times \overline{\mathbf{e}}_{\mathbf{h}}$$

$$\begin{aligned} &\cos u = \overline{e}_{\Omega} \cdot \overline{e}_{R} \\ &\sin \Omega = \overline{e}_{\Omega} \cdot \overline{J} \\ &\sin u = \overline{e}_{\Omega} \times \overline{e}_{R} \cdot \overline{e}_{h} \end{aligned} \qquad \begin{pmatrix} \overline{e}_{R} \\ \overline{e}_{L} \\ \overline{e}_{h} \end{pmatrix} = M \begin{pmatrix} \overline{J} \\ \overline{J} \\ \overline{k} \end{pmatrix}$$

$$&\overline{e}_{\Omega} = \frac{\overline{k} \times \overline{e}_{h}}{\sin i} = \frac{\overline{k} \times \overline{h}}{h \sin i}$$

$$&\overline{e}_{R} = \frac{\overline{R}}{R}$$

$$&\overline{e}_{h} = \frac{\overline{R} \times \overline{V}}{|\overline{R} \times \overline{V}|}$$

The transformation matrix M is given by

$$M = \begin{pmatrix} \cos u \cos \Omega - \sin u \cos i \sin \Omega & \cos u \sin \Omega + \sin u \cos i \cos \Omega & \sin u \sin i \\ -\sin u \cos \Omega - \cos u \cos i \sin \Omega & -\sin u \sin \Omega + \cos u \cos i \cos \Omega & \cos u \sin i \\ \sin i \sin \Omega & -\sin i \cos \Omega & \cos i \end{pmatrix}$$

$$\begin{split} \overline{h} &\equiv \overline{R} \times \overline{V} \\ h &\equiv R^2 \frac{\mathrm{d}\theta}{\mathrm{d}t} \\ &\overline{e} &\equiv \frac{\overline{V} \times (\overline{R} \times \overline{V})}{\mu} - \overline{e}_R \\ e &= |\overline{e}| \\ \sin \omega &= \frac{(\overline{e}_\Omega \times \overline{e}) \cdot \overline{e}_h}{e} \end{split}$$

$$\cos\,\omega = \frac{\overline{e}_{\Omega} \cdot \overline{e}}{e}$$

$$A = e \cos \omega = \overline{e}_{\Omega} \cdot \overline{e}$$

$$\mathbf{B} = \mathbf{e} \sin \omega = \overline{\mathbf{e}}_{\Omega} \times \overline{\mathbf{e}} \cdot \overline{\mathbf{e}}_{\mathbf{h}}$$

$$p = \frac{\overline{h} \cdot \overline{h}}{\mu} = \frac{h^2}{\mu}$$

$$\overline{R} = \frac{\overline{pe}_R}{1 + e \cos (u - \omega)}$$

$$\overline{\overline{V}} = \sqrt{\frac{\mu}{p}} \; \big\{ \, [\, \mathbf{1} \, + \, \mathbf{e} \, \cos \, \left(\mathbf{u} \, - \, \omega \right) \,] \, \, \overline{\overline{\mathbf{e}}}_{\mathrm{R}} \, + \, \mathbf{e} \, \sin \, \left(\mathbf{u} \, - \, \omega \right) \, \, \overline{\overline{\mathbf{e}}}_{\mathrm{L}} \, \big\}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} R \cdot \overline{i} \\ R \cdot \overline{j} \\ R \cdot \overline{k} \end{pmatrix} = \frac{p}{1 + \cos \theta} \begin{pmatrix} \overline{e}_R \cdot \overline{i} \\ \overline{e}_R \cdot \overline{j} \\ \overline{e}_R \cdot \overline{k} \end{pmatrix} \qquad \theta = u - \omega$$

 $\psi \equiv 1 + e \cos \theta \equiv 1 + A \cos u + B \sin u$

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} \overline{\overline{V}} \cdot \overline{i} \\ \overline{\overline{V}} \cdot \overline{j} \\ \overline{\overline{V}} \cdot \overline{k} \end{pmatrix} = \sqrt{\frac{\mu}{p}} \left\{ [1 + e \cos \theta] \begin{pmatrix} \overline{e}_L \cdot \overline{i} \\ \overline{e}_L \cdot \overline{j} \\ \overline{e}_L \cdot \overline{k} \end{pmatrix} + e \sin \theta \begin{pmatrix} \overline{e}_R \cdot \overline{i} \\ \overline{e}_R \cdot \overline{j} \\ \overline{e}_R \cdot \overline{k} \end{pmatrix} \right\}$$

Consider now \overline{R} to be "radius" and \overline{V} to be "velocity." In Newtonian motion the two are related to some "force" \overline{F} as follows:

$$\overline{V} = \frac{d\overline{R}}{dt}$$

or in alternate form:

$$\frac{d\overline{V}}{dt} = \frac{\overline{F}}{M} \qquad \text{or } \frac{d\overline{V}}{dt} = \frac{-\mu \overline{R}}{R^3} + \overline{\mathcal{F}}$$

Since the definitions express the orbital elements most directly as functions of \overline{h} and \overline{e} , their derivatives are facilitated with expressions for $\frac{d\overline{h}}{dt}$ and $\frac{d\overline{e}}{dt}$.

$$\begin{split} \frac{d\overline{h}}{dt} &= \frac{d}{dt} \quad (\overline{R} \times \overline{V}) = \frac{d\overline{R}}{dt} \quad \times \overline{V} + \overline{R} \times \frac{d\overline{V}}{dt} \\ &= \overline{V} \times \overline{V} + \overline{R} \times \left(\overline{\mathcal{F}} - \frac{\mu \overline{R}}{R^3} \right) \\ &= \overline{R} \times \left(\overline{\mathcal{F}} - \frac{\mu \overline{R}}{R^3} \right) \\ &= \overline{R} \times \overline{\mathcal{F}} - \overline{R} \times \frac{\mu \overline{R}}{R^3} \\ &\frac{d\overline{h}}{dt} &= \overline{R} \times \overline{\mathcal{F}} \end{split}$$

$$\begin{split} \mu \, \frac{\mathrm{d} \overline{\mathrm{e}}}{\mathrm{d} t} &= \frac{\mathrm{d}}{\mathrm{d} t} \, \left(\, \overline{\mathrm{V}} \times \overline{\mathrm{h}} \right) \, - \, \mu \, \frac{\mathrm{d}}{\mathrm{d} t} \, \, \overline{\mathrm{e}}_{\mathrm{R}} \\ &= \frac{\mathrm{d} \overline{\mathrm{V}}}{\mathrm{d} t} \times \, \overline{\mathrm{h}} + \overline{\mathrm{V}} \times \frac{\mathrm{d} \overline{\mathrm{h}}}{\mathrm{d} t} \, - \, \mu \, \frac{\mathrm{d}}{\mathrm{d} t} \left(\, \frac{\overline{\mathrm{R}}}{\mathrm{R}} \right) \end{split}$$

$$\begin{split} &= \frac{d\overline{V}}{dt} \times \overline{h} + \overline{V} \times \frac{d\overline{h}}{dt} - \frac{\mu}{R^2} \left[R \frac{d\overline{R}}{dt} - \overline{R} \frac{dR}{dt} \right] \\ &= \frac{d\overline{V}}{dt} \times \overline{h} + \overline{V} \times (\overline{R} \times \overline{\mathcal{F}}) - \frac{\mu}{R^3} \left(\overline{R} \times \frac{d\overline{R}}{dt} \right) \times \overline{R} \\ &= \frac{d\overline{V}}{dt} \times \overline{h} + \overline{V} \times (\overline{R} \times \overline{\mathcal{F}}) - \frac{\mu}{R^3} (\overline{h} \times \overline{R}) \\ &= \left(\frac{d\overline{V}}{dt} + \frac{\mu \overline{R}}{R^3} \right) \times \overline{h} + \overline{V} \times (\overline{R} \times \overline{\mathcal{F}}) \\ &= \overline{\mathcal{F}} \times (\overline{R} \times \overline{V}) + \overline{V} \times (\overline{R} \times \overline{\mathcal{F}}) \end{split}$$

1. The derivation of $\frac{di}{dt}$

$$\cos i = \overline{e}_{h} \cdot \overline{k}$$

$$-\sin i \frac{di}{dt} = \overline{k} \cdot \frac{d\overline{e}_{h}}{dt} + \overline{e}_{h} \cdot \frac{d\overline{k}}{dt} = \overline{k} \cdot \frac{d\overline{e}_{h}}{dt} + 0$$

$$= \frac{1}{h^{3}} \left(\overline{h} \times \frac{d\overline{h}}{dt} \times \overline{h} \cdot \overline{k} \right)$$

$$= \frac{1}{h^{3}} \left(\overline{h} \times \frac{d\overline{h}}{dt} \right) \cdot (-\overline{e}_{\Omega} h \sin i)$$

$$\frac{di}{dt} = \frac{1}{h^{2}} \left(\overline{h} \times \frac{d\overline{h}}{dt} \right) \cdot \overline{e}_{\Omega}$$

$$\frac{\mathrm{d}\mathbf{i}}{\mathrm{d}\mathbf{t}} = \frac{\mathrm{d}\overline{\mathbf{h}}}{\mathrm{d}\mathbf{t}} \cdot \frac{(\overline{\mathbf{e}}_{\Omega} \times \overline{\mathbf{h}})}{\mathbf{h}^{2}}$$

$$= (\overline{\mathbf{R}} \times \overline{\mathfrak{F}}) \cdot \frac{(\overline{\mathbf{e}}_{\Omega} \times \overline{\mathbf{e}}_{\mathbf{h}})}{\mathbf{h}}$$

$$= \frac{R}{h} (\overline{\mathbf{e}}_{R} \times \overline{\mathbf{e}}_{\mathbf{h}}) \times \overline{\mathbf{e}}_{R} \cdot \overline{\mathfrak{F}}$$

$$\frac{\mathrm{d}\mathbf{i}}{\mathrm{d}\mathbf{t}} = \frac{R}{h} \cos \mathbf{u} (\overline{\mathbf{e}}_{\mathbf{h}} \cdot \overline{\mathfrak{F}})$$

2. The derivation of $\frac{d\Omega}{dt}$

$$\begin{split} \cos \Omega &= \overline{e}_{\Omega} \cdot \overline{i} \\ -\sin \Omega \, \frac{d\Omega}{dt} &= \overline{i} \cdot \frac{d\overline{e}_{\Omega}}{dt} + 0 \\ \\ \frac{d\overline{e}_{\Omega}}{dt} &= \frac{d}{dt} \, \left(\frac{\overline{k} \times \overline{h}}{h \, \sin i} \right) \\ \\ &= \frac{\overline{k}}{h \, \sin i} \times \frac{d\overline{h}}{dt} - \frac{\overline{k} \times \overline{h}}{h^2 \, \sin^2 i} \, \frac{d}{dt} \, \left(h \, \sin i \right) \\ \\ &= \frac{\overline{k}}{h \, \sin i} \, \times \frac{d\underline{h}}{dt} - \frac{\overline{e}_{\Omega}}{h \, \sin i} \, \frac{d}{dt} \, \left(\overline{k} \times \overline{h} \cdot \overline{e}_{\Omega} \right) \\ \\ &= \frac{1}{h \, \sin i} \, \left[\left(\overline{k} \times \frac{d\overline{h}}{dt} \right) - \overline{e}_{\Omega} \, \left(\overline{k} \times \overline{h} \right) \cdot \frac{d\overline{e}_{\Omega}}{dt} + \overline{e}_{\Omega} \cdot \frac{d}{dt} \, (\overline{k} \times \overline{h}) \right] \end{split}$$

$$\begin{split} &=\frac{1}{h \sin i} \left[\overline{k} \times \frac{d\overline{h}}{dt} - \overline{e}_{\Omega} \left\{ 0 + \overline{e}_{\Omega} \cdot \overline{k} \times \frac{d\overline{h}}{dt} \right\} \right. \right] \\ &= \frac{1}{h \sin i} \left[\overline{k} \times \frac{d\overline{h}}{dt} - \overline{e}_{\Omega} \left(\overline{k} \times \frac{d\overline{h}}{dt} \cdot \overline{e}_{\Omega} \right) \right. \right] \\ &= \frac{1}{h \sin i} \left[\overline{e}_{\Omega} \times \left(\overline{k} \times \frac{d\overline{h}}{dt} \right) \right] \times \overline{e}_{\Omega} \\ &- \sin \Omega \frac{d\Omega}{dt} = \frac{d\overline{e}_{\Omega}}{dt} \cdot \overline{i} \\ &= \frac{1}{h \sin i} \left[\overline{e}_{\Omega} \times \left(\overline{k} \times \frac{d\overline{h}}{dt} \right) \right] \times \overline{e}_{\Omega} \cdot \overline{i} \\ &= \frac{1}{h \sin i} \left[\overline{e}_{\Omega} \times \left(\overline{k} \times \frac{d\overline{h}}{dt} \right) \right] \cdot \overline{e}_{\Omega} \times \overline{i} \\ &= \frac{1}{h \sin i} \left[\overline{e}_{\Omega} \times \left(\overline{k} \times \frac{d\overline{h}}{dt} \right) \right] \cdot (-k \sin \Omega) \\ &= \frac{d\Omega}{dt} = \frac{1}{h \sin i} \left[\overline{e}_{\Omega} \times \left(\overline{k} \times \frac{d\overline{h}}{dt} \right) \right] \cdot \overline{k} \\ &= \frac{\overline{k} \times \overline{e}_{\Omega}}{h \sin i} \cdot \overline{k} \times \frac{d\overline{h}}{dt} \\ &= \frac{(\overline{k} \times \overline{e}_{\Omega})}{h \sin i} \times \overline{k} \cdot \frac{d\overline{h}}{dt} \\ &= \frac{\overline{e}_{\Omega}}{h \sin i} \cdot (\overline{k} \times \overline{f}) \end{split}$$

$$\frac{d\Omega}{dt} = \frac{\overline{e}_{\Omega}}{h \sin i} \cdot (R \overline{e}_{R} \times \overline{f})$$

$$= \frac{R \overline{e}_{\Omega}}{h \sin i} \cdot (\overline{e}_{R} \times \overline{f})$$

$$= \frac{R}{h \sin i} (\overline{e}_{\Omega} \times \overline{e}_{R}) \cdot \overline{f}$$

$$\frac{d\Omega}{dt} = \frac{R}{h \sin i} \sin u (\overline{e}_{h} \cdot \overline{f})$$

3. The derivation of $\frac{dp}{dt}$

$$\frac{dp}{dt} = \frac{d}{dt} \left(\frac{\overline{h} \cdot \overline{h}}{\mu} \right)$$

$$= \frac{2}{\mu} \overline{h} \cdot \frac{d\overline{h}}{dt}$$

$$= \frac{2}{\mu} \overline{h} \cdot (\overline{R} \times \overline{\mathcal{F}})$$

$$= \frac{2}{\mu} h \overline{e}_h \cdot (R \overline{e}_R \times \overline{\mathcal{F}})$$

$$\frac{\mathrm{dp}}{\mathrm{dt}} = \frac{2 \, \mathrm{h} \, \mathrm{R}}{\mu} \, \overline{\mathrm{e}}_{\mathrm{h}} \cdot \overline{\mathrm{e}}_{\mathrm{R}} \times \overline{\mathcal{F}}$$

$$= \frac{2 \, \mathrm{h} \, \mathrm{R}}{\mu} \, \overline{\mathrm{e}}_{\mathrm{h}} \times \overline{\mathrm{e}}_{\mathrm{R}} \cdot \overline{\mathcal{F}}$$

$$\frac{\mathrm{dp}}{\mathrm{dt}} = \frac{2\,\mathrm{h}\,\mathrm{R}}{\mu} \ (\overline{\mathbf{e}}_{\mathrm{h}} \cdot \overline{\mathcal{F}})$$

$$\frac{1}{p}\frac{dp}{dt} = \frac{2R}{h} (\overline{e}_h \cdot \overline{f})$$

4. The derivation of $\frac{dA}{dt}$

$$A = \overline{e}_{\Omega} \cdot \overline{e}$$

$$\frac{dA}{dt} = \overline{e} \cdot \frac{d\overline{e}_{\Omega}}{dt} + \overline{e}_{\Omega} \frac{d\overline{e}}{dt}$$

$$= \overline{e} \cdot \left[\begin{array}{c} \frac{1}{h \ \text{sin} \ i} \ \overline{e}_{\Omega} \times \end{array} \left(\overline{k} \times \frac{d\overline{h}}{dt} \right) \right] \times \overline{e}_{\Omega} + \overline{e}_{\Omega} \cdot \frac{d\overline{e}}{dt}$$

$$= \overline{e} \cdot \left[\frac{d\Omega}{dt} \, \overline{k} \, \right] \times \overline{e}_{\Omega} + \overline{e}_{\Omega} \cdot \frac{d\overline{e}}{dt}$$

$$= \frac{\mathrm{d}\Omega}{\mathrm{d}t}\,\overline{k}\cdot(\overline{e}_{\Omega}\times\overline{e}) + \overline{e}_{\Omega}\cdot\frac{\mathrm{d}\overline{e}}{\mathrm{d}t}$$

$$= \frac{\mathrm{d}\Omega}{\mathrm{d}t} \ \overline{\mathbf{k}} \cdot \ \mathbf{B} \, \overline{\mathbf{e}}_{\mathbf{h}} + \overline{\mathbf{e}}_{\Omega} \cdot \frac{\mathrm{d}\overline{\mathbf{e}}}{\mathrm{d}t}$$

$$= B \frac{d\Omega}{dt} (\overline{R} \cdot \overline{e}_{h}) + \overline{e}_{\Omega} \cdot \frac{d\overline{e}}{dt}$$

$$\frac{dA}{dt} = B \frac{d\Omega}{dt} \cos i + \overline{e}_{\Omega} \cdot \frac{d\overline{e}}{dt}$$

$$\begin{split} \frac{d\overline{e}}{dt} &= \frac{1}{\mu} \left\{ \overrightarrow{\mathcal{F}} \times (\overrightarrow{R} \times \overrightarrow{V}) + \overrightarrow{V} \times (\overrightarrow{R} \times \overrightarrow{\mathcal{F}}) \right\} \\ \overline{e}_{\Omega} \cdot \frac{d\overline{e}}{dt} &= \frac{\overline{e}_{\Omega}}{dt} \cdot \left\{ \overrightarrow{R} \left(\overrightarrow{V} \cdot \overrightarrow{\mathcal{F}} \right) - \overrightarrow{V} \left(\overrightarrow{R} \cdot \overrightarrow{\mathcal{F}} \right) + \overrightarrow{R} \left(\overrightarrow{V} \cdot \overrightarrow{\mathcal{F}} \right) - \overrightarrow{\mathcal{F}} \left(\overrightarrow{V} \cdot \overrightarrow{R} \right) \right\} \\ \overline{e}_{\Omega} &= \overline{e}_{R} \cos u - \overline{e}_{L} \sin u \\ \overline{e}_{\Omega} \cdot \overline{e}_{R} &= \cos u \\ \overline{R} \cdot \overline{e}_{\Omega} &= R \cos u \\ \overline{V} \cdot \overline{e}_{\Omega} &= \frac{-\mu}{h} \left[(1 + A \cos u + B \sin u) \ \overrightarrow{e}_{L} + (A \sin u - B \cos u) \ \overrightarrow{e}_{R} \right] \cdot \overrightarrow{e}_{\Omega} \\ &= \frac{\mu}{h} \left[(1 + A \cos u + B \sin u) \ \overrightarrow{e}_{L} + (A \sin u - B \cos u) \ \overrightarrow{e}_{R} \right] \cdot \left[\overline{e}_{R} \cos u - \overline{e}_{L} \sin u \right] \\ &= \frac{\mu}{h} \left[- (1 + A \cos u + B \sin u) \sin u + (A \sin u - B \cos u) \cos u \right] \\ &= \frac{\mu}{h} \left[- \sin u - A \sin u \cos u - B \sin^{2} u + A \sin u \cos u - B \cos^{2} u \right] \\ \overline{V} \cdot \overline{e}_{\Omega} &= \frac{\mu}{h} \left\{ B + \sin u \right\} \end{split}$$

$$\overline{V} \cdot \overline{R} = \frac{\mu}{h} \left[(1 + A \cos u + B \sin u) \ \overline{e}_L + (A \sin u - B \cos u) \ \overline{e}_R \right] \cdot R \ \overline{e}_R$$

$$\overline{V} \cdot \overline{R} = \frac{\mu R}{h} \left[A \sin u - B \cos u \right]$$

$$\begin{split} \overline{\mathbf{e}} \cdot \frac{d\overline{\mathbf{e}}}{dt} &= \frac{1}{\mu} \left\{ 2 (\overline{\mathbf{V}} \cdot \overline{\mathfrak{f}}) \cdot (\overline{\mathbf{R}} \cdot \mathbf{e}_{\Omega}) - (\overline{\mathbf{R}} \cdot \overline{\mathfrak{f}}) \cdot (\overline{\mathbf{V}} \cdot \overline{\mathbf{e}}_{\Omega}) - (\overline{\mathfrak{f}} \cdot \overline{\mathbf{e}}_{\Omega}) \cdot (\overline{\mathbf{V}} \cdot \overline{\mathbf{R}}) \right\} \\ &= \frac{1}{\mu} \left\{ 2 \operatorname{Rcos} \mathbf{u} (\overline{\mathbf{V}} \cdot \overline{\mathfrak{f}}) + \frac{\mu}{\mathbf{h}} (\overline{\mathbf{B}} + \sin \mathbf{u}) \cdot (\overline{\mathbf{R}} \cdot \overline{\mathfrak{f}}) - \frac{\mu \mathbf{R}}{\mathbf{h}} [\operatorname{Asin} \mathbf{u} - \operatorname{Bcos} \mathbf{u}] (\overline{\mathfrak{f}} \cdot \overline{\mathbf{e}}_{\mathbf{R}}) \right\} \\ &= \frac{1}{\mu} \left\{ 2 \operatorname{Rcos} \mathbf{u} \cdot \overline{\mathbf{V}} + \frac{\mu}{\mathbf{h}} (B + \sin \mathbf{u}) \cdot \overline{\mathbf{R}}_{\mathbf{R}} - \frac{\mu}{\mathbf{h}} \mathbf{R} [\operatorname{Asin} \mathbf{u} - \operatorname{Bcos} \mathbf{u}] \cdot \overline{\mathbf{e}}_{\Omega} \right\} \cdot \overline{\mathfrak{f}} \\ &= \frac{1}{\mu} \left\{ \frac{2 \mu \mathbf{R}}{\mathbf{h}} \cos \mathbf{u} \left[1 + \operatorname{Acos} \mathbf{u} + \operatorname{Bsin} \mathbf{u} \right] \cdot \overline{\mathbf{e}}_{\mathbf{L}} + \frac{2 \mu \mathbf{R}}{\mathbf{h}} \cos \mathbf{u} \cdot \operatorname{Asin} \mathbf{u} - \operatorname{Bcos} \mathbf{u} \right] \cdot \overline{\mathbf{e}}_{\mathbf{R}} \\ &- \frac{\mu \mathbf{R}}{\mathbf{h}} \left[\mathbf{B} + \sin \mathbf{u} \right] \cdot \overline{\mathbf{e}}_{\mathbf{R}} - \frac{\mu \mathbf{R}}{\mathbf{h}} \left[\operatorname{Asin} \mathbf{u} - \operatorname{Bcos} \mathbf{u} \right] \cdot \overline{\mathbf{e}}_{\mathbf{R}} \cos \mathbf{u} - \mathbf{e}_{\mathbf{L}} \sin \mathbf{u} \right\} \cdot \overline{\mathfrak{f}} \\ &= \frac{\mathbf{R}}{\mathbf{h}} \left\{ (2 \cos \mathbf{u} \left[1 + \operatorname{Acos} \mathbf{u} + \operatorname{Bsin} \mathbf{u} \right] + \left[\operatorname{Asin} \mathbf{u} - \operatorname{Bcos} \mathbf{u} \right] \cos \mathbf{u} \right) \cdot \overline{\mathbf{e}}_{\mathbf{R}} \right\} \cdot \overline{\mathfrak{f}} \\ &= \frac{\mathbf{R}}{\mathbf{h}} \left\{ (2 \psi \cos \mathbf{u} + \operatorname{Asin}^2 \mathbf{u} - \operatorname{Bsin} \mathbf{u} \cos \mathbf{u} \right) \cdot \overline{\mathbf{e}}_{\mathbf{L}} + (\operatorname{Asin} \mathbf{u} \cos \mathbf{u} - \operatorname{Bcos}^2 \mathbf{u} \\ &+ \sin \mathbf{u} \right) \cdot \overline{\mathbf{e}}_{\mathbf{R}} \right\} \cdot \overline{\mathfrak{f}} \\ &= \frac{\mathbf{d}}{\mathbf{d}} \left\{ (2 \psi \cos \mathbf{u} + \operatorname{Asin}^2 \mathbf{u} - \operatorname{Bsin} \mathbf{u} \cos \mathbf{u} \right) \cdot \overline{\mathbf{e}}_{\mathbf{L}} + (\operatorname{Asin} \mathbf{u} \cos \mathbf{u} - \operatorname{Bcos}^2 \mathbf{u} \\ &+ \sin \mathbf{u} \right) \cdot \overline{\mathbf{e}}_{\mathbf{R}} \right\} \cdot \overline{\mathfrak{f}} \\ &= \frac{\mathbf{d}}{\mathbf{d}} \left\{ (\mathbf{a} + (1 + \psi) \cos \mathbf{u} \right) \cdot \overline{\mathbf{e}}_{\mathbf{L}} + \psi \sin \mathbf{u} \cdot \overline{\mathbf{e}}_{\mathbf{R}} \right\} \cdot \overline{\mathfrak{f}} \\ &= \frac{\mathbf{d}}{\mathbf{d}} \frac{\partial \Omega}{\partial t} \cos \mathbf{i} + \overline{\mathbf{e}}_{\Omega} \cdot \frac{\partial \Omega}{\partial t} \\ &= \frac{\mathbf{d}}{\mathbf{d}} \left\{ (\mathbf{a} + (1 + \psi) \cos \mathbf{u} \right) \cdot \overline{\mathbf{e}}_{\mathbf{L}} + \psi \sin \mathbf{u} \cdot \overline{\mathbf{e}}_{\mathbf{R}} \right\} \cdot \overline{\mathfrak{f}} \\ &= \frac{\mathbf{d}}{\mathbf{d}} \frac{\partial \Omega}{\partial t} \cos \mathbf{i} + \overline{\mathbf{e}}_{\Omega} \cdot \frac{\partial \Omega}{\partial t} \\ &= \frac{\mathbf{d}}{\mathbf{d}} \left\{ (\mathbf{a} + (1 + \psi) \cos \mathbf{u} \right) \cdot \overline{\mathbf{e}}_{\mathbf{L}} + \psi \sin \mathbf{u} \cdot \overline{\mathbf{e}}_{\mathbf{R}} \right\} \cdot \overline{\mathfrak{f}} \\ &= \frac{\mathbf{d}}{\mathbf{d}} \frac{\partial \Omega}{\partial t} \cos \mathbf{u} + \frac{\mathbf{R}}{\mathbf{h}} \left\{ (\mathbf{a} + (1 + \psi) \cos \mathbf{u} \right) \cdot \overline{\mathbf{e}}_{\mathbf{L}} + \psi \sin \mathbf{u} \cdot \overline{\mathbf{e}}_{\mathbf{R}} \right\} \cdot \overline{\mathfrak{f}} \\ &= \frac{\mathbf{d}}{\mathbf{d}} \frac{\partial \Omega}{\partial t} \cos \mathbf{u} + \frac{\mathbf{R}}{\mathbf{h}} \left\{ (\mathbf{a} + (1 + \psi) \cos \mathbf{u} \right)$$

5. The derivation of $\frac{dB}{dt}$

$$\mathbf{B} = \overline{\mathbf{e}}_{\Omega} \times \overline{\mathbf{e}} \cdot \overline{\mathbf{e}}_{\mathbf{h}}$$

$$\frac{dB}{dt} = \frac{d}{dt} (\overline{e}_{\Omega} \times \overline{e}) \cdot \overline{e}_{h} + \frac{d\overline{e}_{h}}{dt} \cdot (\overline{e}_{\Omega} \times \overline{e})$$

$$= \left[\frac{d\overline{e}_{\Omega}}{dt} \times \overline{e} + \overline{e}_{\Omega} \times \frac{d\overline{e}}{dt} \right] \cdot \overline{e}_{h} + \frac{d\overline{e}_{h}}{dt} \cdot (\overline{e}_{\Omega} \times \overline{e})$$

$$= \overline{e}_{h} \cdot \frac{d\overline{e}_{\Omega}}{dt} \times \overline{e} + \overline{e}_{h} \cdot \overline{e}_{\Omega} \times \frac{d\overline{e}}{dt} + \frac{d\overline{e}_{h}}{dt} \cdot (\overline{e}_{\Omega} \times \overline{e})$$

$$\frac{dB}{dt} = \overline{e}_{h} \cdot \frac{d\overline{e}_{\Omega}}{dt} \times \overline{e} + \overline{e}_{h} \cdot \overline{e}_{\Omega} \times \frac{d\overline{e}}{dt} + \frac{d\overline{e}_{h}}{dt} \cdot B \overline{e}_{h}$$

$$\frac{d\overline{e}_{\Omega}}{dt} = \frac{d\Omega}{dt} \ \overline{k} \times \overline{e}_{\Omega}$$

$$\begin{split} &\frac{\mathrm{d} \mathbf{B}}{\mathrm{d} t} = \overline{\mathbf{e}}_{\mathbf{h}} \cdot \left(\frac{\mathrm{d} \Omega}{\mathrm{d} t} \ \overline{\mathbf{k}} \times \overline{\mathbf{e}}_{\Omega} \right) \times \overline{\mathbf{e}} + \overline{\mathbf{e}}_{\mathbf{h}} \cdot \overline{\mathbf{e}}_{\Omega} \times \frac{\mathrm{d} \overline{\mathbf{e}}}{\mathrm{d} t} \\ &= \frac{\mathrm{d} \Omega}{\mathrm{d} t} \left(\overline{\mathbf{k}} \times \overline{\mathbf{e}}_{\Omega} \right) \times \overline{\mathbf{e}} \cdot \overline{\mathbf{e}}_{\mathbf{h}} + \overline{\mathbf{e}}_{\mathbf{h}} \cdot \overline{\mathbf{e}}_{\Omega} \times \frac{\mathrm{d} \overline{\mathbf{e}}}{\mathrm{d} t} \\ &= \frac{\mathrm{d} \Omega}{\mathrm{d} t} \left(\overline{\mathbf{k}} \times \overline{\mathbf{e}}_{\Omega} \right) \cdot \left(\overline{\mathbf{e}} \times \overline{\mathbf{e}}_{\mathbf{h}} \right) + \overline{\mathbf{e}}_{\mathbf{h}} \cdot \overline{\mathbf{e}}_{\Omega} \times \frac{\mathrm{d} \overline{\mathbf{e}}}{\mathrm{d} t} \\ &= \frac{\mathrm{d} \Omega}{\mathrm{d} t} \left[\left(\overline{\mathbf{k}} \cdot \overline{\mathbf{e}} \right) \left(\overline{\mathbf{e}}_{\Omega} \cdot \overline{\mathbf{e}}_{\mathbf{h}} \right) - \left(\overline{\mathbf{k}} \cdot \overline{\mathbf{e}}_{\mathbf{h}} \right) \left(\overline{\mathbf{e}}_{\Omega} \cdot \overline{\mathbf{e}} \right) \right] + \overline{\mathbf{e}}_{\mathbf{h}} \cdot \overline{\mathbf{e}}_{\Omega} \times \frac{\mathrm{d} \overline{\mathbf{e}}}{\mathrm{d} t} \end{split}$$

$$= -\frac{\mathrm{d}\Omega}{\mathrm{d}t} \ (\overline{\mathbf{k}} \cdot \overline{\mathbf{e}}_{\mathbf{h}}) (\overline{\mathbf{e}}_{\Omega} \cdot \overline{\mathbf{e}}) + \overline{\mathbf{e}}_{\mathbf{h}} \cdot \overline{\mathbf{e}}_{\Omega} \times \frac{\mathrm{d}\overline{\mathbf{e}}}{\mathrm{d}t}$$

$$\frac{dB}{dt} = -\frac{d\Omega}{dt} A \cos i + \overline{e}_h \cdot \overline{e}_{\Omega} \times \frac{d\overline{e}}{dt}$$

$$\frac{dB}{dt} = -\frac{d\Omega}{dt} A \cos i \quad \overline{e}_{\Omega} \cdot \frac{d\overline{e}}{dt} \times \overline{e}_{h}$$

$$\frac{\mathrm{dB}}{\mathrm{dt}} = -\frac{\mathrm{d\Omega}}{\mathrm{dt}} \ \mathrm{A} \ \mathrm{cos} \ \mathrm{i} \ + \overline{\mathrm{e}}_{\mathrm{h}} \times \overline{\mathrm{e}}_{\Omega} \ \cdot \ \frac{\mathrm{d}\overline{\mathrm{e}}}{\mathrm{dt}}$$

$$\overline{e}_{\Omega} = \overline{e}_{R} \cos u - \overline{e}_{L} \sin u$$

$$\overline{e}_h \times \overline{e}_\Omega = \overline{e}_h \times [\overline{e}_R \cos u - \overline{e}_L \sin u]$$

$$=\overline{e}_h\times\overline{e}_R\,\cos\,u\,-\,\overline{e}_h\times\overline{e}_L\,\sin\,u$$

$$\overline{e}_h \times \overline{e}_\Omega = \overline{e}_L \cos u + \overline{e}_R \sin u$$

$$\overline{e}_h \times \overline{e}_\Omega \cdot \frac{d\overline{e}}{dt} = \left[\overline{e}_L \cos u + \overline{e}_R \sin u\right] \cdot \frac{d\overline{e}}{dt}$$

$$= \overline{e}_{L} \cdot \frac{d\overline{e}}{dt} \cos u + \overline{e}_{R} \cdot \frac{d\overline{e}}{dt} \sin u$$

$$\frac{\overline{\mathrm{de}}}{\mathrm{dt}} = \frac{1}{\mu} \left[2\overline{R} \left(\overline{V} \cdot \overline{\mathcal{F}} \right) - \overline{V} \left(\overline{R} \cdot \overline{\mathcal{F}} \right) - \overline{\mathcal{F}} \left(\overline{V} \cdot \overline{R} \right) \right]$$

$$\overline{\mathbf{e}}_{\mathbf{L}} \cdot \frac{d\overline{\mathbf{e}}}{dt} = \frac{1}{\mu} \left[2(\overline{\mathbf{v}} \cdot \overline{\mathbf{f}}) (\overline{\mathbf{R}} \cdot \overline{\mathbf{e}}_{\mathbf{L}}) - (\overline{\mathbf{R}} \cdot \overline{\mathbf{f}}) (\overline{\mathbf{v}} \cdot \overline{\mathbf{e}}_{\mathbf{L}}) - (\overline{\mathbf{v}} \cdot \overline{\mathbf{R}}) (\overline{\mathbf{f}} \cdot \overline{\mathbf{e}}_{\mathbf{L}}) \right]$$

$$= \frac{1}{\mu} \left[2\overline{V} (\overline{R} \cdot \overline{e}_{L}) - \overline{R} (\overline{V} \cdot \overline{e}_{L}) - (\overline{V} \cdot \overline{R}) e_{L} \right] \cdot \overline{\mathcal{F}}$$

$$\overline{R} \cdot \overline{e}_{L} = 0$$

$$\overline{R} \cdot \overline{V} = \frac{\mu R}{h} [A \sin u - B \cos u]$$

$$\overline{V} \cdot \overline{e}_L = \frac{\mu}{h} \{ [1 + A\cos u + B\sin u] \overline{e}_L + [A\sin u - B\cos u] \overline{e}_R \} \cdot \overline{e}_L$$

$$\overline{V} \cdot \overline{e}_{L} = \frac{\mu}{h} [1 + A\cos u + B\sin u]$$

$$\begin{split} \overline{\mathbf{e}}_{\mathbf{R}} \cdot \frac{\mathrm{d}\overline{\mathbf{e}}}{\mathrm{d}t} &= \frac{1}{\mu} \left\{ 2 \left(\overline{\mathbf{V}} \cdot \overline{\mathcal{F}} \right) \ (\overline{\mathbf{R}} \cdot \overline{\mathbf{e}}_{\mathbf{R}}) - (\overline{\mathbf{R}} \cdot \overline{\mathcal{F}}) \ (\overline{\mathbf{V}} \cdot \overline{\mathbf{e}}_{\mathbf{R}}) - (\overline{\mathbf{V}} \cdot \overline{\mathbf{R}}) \ (\overline{\mathcal{F}} \cdot \overline{\mathbf{e}}_{\mathbf{R}}) \right\} \\ &= \frac{1}{\mu} \left\{ 2 \overline{\mathbf{V}} (\mathbf{R} \cdot \overline{\mathbf{e}}_{\mathbf{R}}) - \overline{\mathbf{R}} (\overline{\mathbf{V}} \cdot \overline{\mathbf{e}}_{\mathbf{R}}) - (\overline{\mathbf{V}} \cdot \overline{\mathbf{R}}) \overline{\mathbf{e}}_{\mathbf{R}} \right\} \cdot \overline{\mathcal{F}} \end{split}$$

$$\overline{V} \cdot \overline{e}_{R} = \frac{\mu}{h} \{ [1 + A\cos u + B\sin u] \overline{e}_{L} + [A\sin u - B\cos u] \overline{e}_{R} \} \cdot \overline{e}_{R}$$

$$\overline{V} \cdot e_{R} = \frac{\mu}{h} [A \sin u - B \cos u]$$

$$\overline{e}_{L} \cdot \frac{d\overline{e}}{dt} \cos u + \overline{e}_{R} \cdot \frac{d\overline{e}}{dt} \sin u = \frac{1}{\mu} \cos u \left\{ -\frac{\mu}{h} \overline{R} \left[1 + A \cos u + B \sin u \right] \right\}$$

$$-\frac{\mu R}{h} [A \sin u - B \cos u] \overline{e}_{L} \cdot \overline{f} + \frac{1}{\mu} \sin u \{2R\overline{V} - \frac{\mu R}{h} [A \sin u - B \cos u] \}$$

-
$$\frac{\mu R}{h}$$
 [Asin u - Bcos u] \overline{e}_R } · $\overline{\mathfrak{F}}$

$$\begin{split} \overline{e}_{\mathbf{L}} \cdot \frac{d\overline{e}}{dt} \cos u + \overline{e}_{\mathbf{R}} \cdot \frac{d\overline{e}}{dt} \sin u &= \frac{R}{h} \big\{ -[\psi] \cos u \, \overline{e}_{\mathbf{R}} - [\operatorname{Asin} u - \operatorname{Bcos} u] \cos u \, \overline{e}_{\mathbf{L}} \\ &+ 2 \sin u \, \psi \, \overline{e}_{\mathbf{L}} + [\operatorname{Asin} u - \operatorname{Bcos} u] \sin u \, \overline{e}_{\mathbf{R}} \\ &- [\operatorname{Asin} u - \operatorname{Bcos} u] \sin u \, \overline{e}_{\mathbf{R}} - [\operatorname{Asin} u - \operatorname{Bcos} u] \sin u \, \overline{e}_{\mathbf{R}} \big\} \cdot \overline{\mathcal{F}} \\ \\ \overline{e}_{\mathbf{L}} \cdot \frac{d\overline{e}}{dt} \cos u + \overline{e}_{\mathbf{R}} \cdot \frac{d\overline{e}}{dt} \sin u &= \frac{R}{h} \big\{ (-\psi \cos u + [\operatorname{Asin} u - \operatorname{Bcos} u] \sin u \big\} \\ \end{split}$$

 $\overline{e}_{L} \cdot \overline{dt} \cos u + e_{R} \cdot \overline{dt} \sin u = \overline{h} \{(-\psi \cos u + [A \sin u - B \cos u] \sin u - [A \sin u - B \cos u] \sin u)\} = \overline{h} \{(-\psi \cos u + [A \sin u - B \cos u] \sin u - [A \sin u - B \cos u] \sin u - [A \sin u - B \cos u] \sin u - [A \sin u - B \cos u] \sin u + 2\psi \sin u = \overline{h} \{(-\psi \cos u + [A \sin u - B \cos u] \sin u - [A \sin u - B \cos u] \sin u - [A \sin u - B \cos u] \sin u - [A \sin u - B \cos u] \sin u + 2\psi \sin u = \overline{h} \{(-\psi \cos u + [A \sin u - B \cos u] \sin u - [A \sin u - B \cos u] \sin u - [A \sin u - B \cos u] \sin u - [A \sin u - B \cos u] \sin u - [A \sin u - B \cos u] \sin u - [A \sin u - B \cos u] \sin u - [A \sin u - B \cos u] \sin u - [A \sin u - B \cos u] \sin u - [A \sin u - B \cos u] \cos u - [A \cos u - [A \cos u] \cos u] \cos u - [A \cos u] \cos u - [A$

$$\begin{split} \overline{e}_{L} \cdot \frac{d\overline{e}}{dt} \cos u + \overline{e}_{R} \cdot \frac{d\overline{e}}{dt} \sin u &= \frac{R}{h} \left\{ -\psi \cos u \, \overline{e}_{R} + (-[\operatorname{Asin} u - \operatorname{Bcos} u] \cos u \right. \\ &+ 2\psi \sin u) \overline{e}_{L} \right\} \cdot \overline{\mathcal{F}} \end{split}$$

 $\overline{\overline{e}}_L \cdot \frac{d\overline{e}}{dt} \cos u + \overline{e}_R \cdot \frac{d\overline{e}}{dt} \sin u$

$$\begin{split} &=\frac{R}{h}\left\{-\psi\cos u\;\overline{e}_{R}^{}+\left(-A\sin u\cos u+B\cos^{2}u+2\psi\sin u\right)\overline{e}_{L}^{}\right\}\cdot\;\overline{\mathcal{F}}\\ \\ &=\frac{R}{h}\left\{-\psi\cos u\;\overline{e}_{R}^{}+\left(-\sin u\cos u+B-B\sin^{2}u+2\psi\sin u\right)\overline{e}_{L}^{}\right\}\cdot\;\overline{\mathcal{F}}\\ \\ &=\frac{R}{h}\left\{-\psi\cos u\;\overline{e}_{R}^{}+\left[\sin u\left(-\cos u-B\sin u+2\psi\right)+B\right]\overline{e}_{L}^{}\right\}\cdot\;\overline{\mathcal{F}}\\ \\ &=\frac{R}{h}\left\{-\psi\cos u+\left[\left(1+\psi\right)\sin u+B\right]\overline{e}_{L}^{}\right\}\cdot\;\overline{\mathcal{F}} \end{split}$$

$$\begin{split} \frac{dB}{dt} &= -\frac{d\Omega}{dt} \operatorname{Acos} \, i + \overline{e}_h \times \, \overline{e}_\Omega \, \cdot \, \frac{d\overline{e}}{dt} \\ &= -\frac{d\Omega}{dt} \operatorname{Acos} \, i + \overline{e}_L \, \cdot \, \frac{d\overline{e}}{dt} \cos u + \, \overline{e}_R \, \cdot \, \frac{d\overline{e}}{dt} \sin u \end{split}$$

$$\frac{\mathrm{dB}}{\mathrm{dt}} = -\frac{\mathrm{d}\Omega}{\mathrm{dt}}\,\mathrm{Acos}\,\,\mathrm{i} + \frac{\mathrm{R}}{\mathrm{h}}\,\left\{-\psi\mathrm{cos}\,\,\mathrm{u}\,\,\overline{\mathrm{e}}_{\mathrm{R}} + \left[\,(1+\psi)\,\mathrm{sin}\,\,\mathrm{u} + \,\mathrm{B}\right]\,\overline{\mathrm{e}}_{\mathrm{L}}\right\} \bullet\,\,\overline{\mathcal{F}}$$

6. The derivation of $\frac{de}{dt}$

$$\begin{split} &\frac{\mathrm{d}e}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \ (\overline{e} \cdot \overline{e})^{\frac{1}{2}} \\ &= \frac{1}{e} \ \overline{e} \cdot \frac{\mathrm{d}\overline{e}}{\mathrm{d}t} \\ &= \frac{1}{\mu e} \left[\frac{\overline{\nabla} \times (\overline{R} \times \overline{V})}{\mu} - \overline{e}_{\overline{R}} \right] \cdot \left[\overline{g} \times (\overline{R} \times \overline{V}) + \overline{V} \times (\overline{R} \times \overline{g}) \right] \\ &= \frac{1}{\mu e} \left\{ \left[\frac{(\overline{V} \cdot \overline{V}) \overline{R} - (\overline{V} \cdot \overline{R}) \overline{V}}{\mu} - \overline{e}_{\overline{R}} \right] \cdot \left[2(\overline{V} \cdot \overline{g}) \overline{R} - (\overline{R} \cdot \overline{F}) \overline{V} - (\overline{V} \cdot \overline{R}) \overline{g} \right] \right\} \\ &= \frac{1}{\mu e} \left\{ \frac{(\overline{V} \cdot \overline{V}) \overline{R}}{\mu} \cdot \left[2(\overline{V} \cdot \overline{g}) \overline{R} - (\overline{R} \cdot \overline{g}) \overline{V} - (\overline{V} \cdot \overline{R}) \overline{g} \right] \right. \\ &- \frac{(\overline{V} \cdot \overline{R})}{\mu} \ \overline{V} \cdot \left[2(\overline{V} \cdot \overline{g}) \overline{R} - (\overline{R} \cdot \overline{g}) \overline{V} - (\overline{V} \cdot \overline{R}) \overline{g} \right] \right. \\ &- \overline{e}_{\overline{R}} \cdot \left[2(\overline{V} \cdot \overline{g}) \overline{R} - (\overline{R} \cdot \overline{g}) \overline{V} - (\overline{V} \cdot \overline{R}) \overline{g} \right] \right\} \end{split}$$

$$= \frac{1}{\mu e} \left\{ \frac{(\overline{V} \cdot \overline{V})}{\mu} \left[2R^2 \overline{V} - 2\overline{R} (\overline{V} \cdot \overline{R}) \right] - \frac{(\overline{V} \cdot \overline{R})}{\mu} \left[(\overline{V} \cdot \overline{R}) \overline{V} - (\overline{V} \cdot \overline{V}) \overline{R} \right] \right.$$

$$\left. - \left[2 (\overline{R} \cdot \overline{e}_{R}) \overline{V} - (\overline{V} \cdot \overline{e}_{R}) \overline{R} - (\overline{V} \cdot \overline{R}) \overline{e}_{R} \right] \right\} \overline{\mathcal{F}}$$

$$\overline{\overline{V}} = \frac{\mu}{h} \{ [1 + e\cos\theta] \ \overline{\overline{e}}_L + e\sin\theta \ \overline{\overline{e}}_R \}$$

$$\overline{R} = R \overline{e}_R$$

$$(\overline{V} \cdot \overline{R}) = \frac{\mu R}{h} e \sin \theta$$

$$(\overline{\mathbf{V}} \cdot \overline{\mathbf{V}}) = \frac{\mu^2}{h^2} \left\{ [1 + e\cos\theta]^2 + e^2\sin^2\theta \right\}$$
$$= \frac{\mu^2}{h^2} \left\{ 1 + e^2 + 2e\cos\theta \right\}$$

$$(\overline{\mathbf{V}} \cdot \overline{\mathbf{e}}_{\mathbf{R}}) = \frac{\mu}{\mathbf{h}} \mathbf{e} \sin \theta$$

$$\begin{split} \frac{\mathrm{d}\mathbf{e}}{\mathrm{d}\mathbf{t}} &= \frac{1}{\mu\mathbf{e}} \left\{ \frac{\mu}{h^2} \left[1 + \mathbf{e}^2 + 2\mathrm{e}\mathrm{cos}\theta \right] \left[2\mathrm{R}^2 \frac{\mu}{h} \left(\left[1 + \mathrm{e}\mathrm{cos}\theta \right] \overline{\mathbf{e}}_\mathrm{L} + \mathrm{e}\mathrm{sin}\theta \ \overline{\mathbf{e}}_\mathrm{R} \right) \right. \\ &\left. - \frac{2\mathrm{R}^2 \mu}{h} \, \mathrm{e}\mathrm{sin}\theta \ \overline{\mathbf{e}}_\mathrm{R} \right] - \frac{\mathrm{Resin}\theta}{h} \left[\frac{\mu\mathrm{Resin}\theta}{h} \frac{\mu}{h} \left(\left[1 + \mathrm{e}\mathrm{cos}\theta \right] \overline{\mathbf{e}}_\mathrm{L} + \mathrm{e}\mathrm{sin}\theta \overline{\mathbf{e}}_\mathrm{R} \right) \right. \\ &\left. - \frac{\mu^2}{h^2} \, \, \mathrm{R} \left[1 + \mathrm{e}^2 + 2\mathrm{e}\mathrm{cos}\theta \right] \overline{\mathbf{e}}_\mathrm{R} \right] - \frac{2\mu\mathrm{R}}{h} \left(\left[1 + \mathrm{e}\mathrm{cos}\theta \right] \overline{\mathbf{e}}_\mathrm{L} + \mathrm{e}\mathrm{sin}\theta \ \overline{\mathbf{e}}_\mathrm{R} \right) \end{split}$$

$$\begin{split} &+\frac{\mu R}{h} \, e \sin \theta \, \, \overline{e}_R \, + \frac{\mu R}{h} \, e \sin \theta \, \, \overline{e}_R \\ &= \frac{R}{h} \, \left\{ \frac{2\mu R}{eh^2} \, \left[1 + e^2 + 2e \cos \theta \right] \right[(\psi \overline{e}_L + e \sin \theta \, \, \overline{e}_R) \, - e \sin \theta \, \, \overline{e}_R \right] \\ &- \frac{\mu R e \sin \theta}{h^2} \, \left[e \sin \theta \, (\psi \, \overline{e}_L + e \sin \theta \, \, \overline{e}_R) \, - (1 + e^2 + 2e \cos \theta) \, \, \overline{e}_R \right] \\ &- \frac{2}{e} \, \left(\psi \overline{e}_L + e \sin \theta \, \, \overline{e}_R \right) \, + 2 \sin \theta \, \, \overline{e}_R \\ &- \frac{2}{e} \, \left(\psi \overline{e}_L + e \sin \theta \, \, \overline{e}_R \right) \, + 2 \sin \theta \, \, \overline{e}_R \\ &- \frac{\sin \theta}{\psi} \, \left[e \sin \theta \, (\psi \, \overline{e}_L + e \sin \theta \, \, \overline{e}_R) \, - \left[1 + e^2 + 2e \cos \theta \right] \, \overline{e}_R \right] \\ &- \frac{2}{e} \, \left(\, \psi \, \overline{e}_L + e \sin \theta \, \, \overline{e}_R \right) \, + 2 \sin \theta \, \, \overline{e}_R \\ &- \frac{2}{e} \, \left(\, \psi \, \overline{e}_L + e \sin \theta \, \, \overline{e}_R \right) \, + 2 \sin \theta \, \, \overline{e}_R \\ &- \frac{2}{e} \, \left(\, \psi \, \overline{e}_L + e \sin \theta \, \, \overline{e}_R \right) \, + 2 \sin \theta \, \, \overline{e}_R \\ &+ \left[\frac{2}{\psi e} \, \left[1 + e^2 + 2e \cos \theta \right] \, \psi \, - \frac{e \sin^2 \theta}{\psi} \, \psi \, - \frac{2 \psi}{e} \right] \, \overline{e}_L \\ &+ \left[\frac{e^2 \sin^3 \theta}{\psi} \, + \frac{\sin \theta}{\psi} \, \left[1 + e^2 + 2e \cos \theta \right] \right] \, \overline{e}_R \\ &+ \frac{2}{e} \, \left[1 + e^2 + 2e \cos \theta \right] \, - e \sin^2 \theta \, - \frac{2}{e} \, \left[1 + e \cos \theta \right] \, \overline{e}_R \\ &+ \frac{\sin \theta}{\psi} \, \left[- e^2 \sin^2 \theta \, + \left[1 + e^2 + 2e \cos \theta \right] \right] \, \overline{e}_R \\ &+ \frac{\sin \theta}{\psi} \, \left[- e^2 \sin^2 \theta \, + \left[1 + e^2 + 2e \cos \theta \right] \right] \, \overline{e}_R \\ &+ \frac{\sin \theta}{\psi} \, \left[- e^2 \sin^2 \theta \, + \left[1 + e^2 + 2e \cos \theta \right] \right] \, \overline{e}_R \\ &+ \frac{\sin \theta}{\psi} \, \left[- e^2 \sin^2 \theta \, + \left[1 + e^2 + 2e \cos \theta \right] \right] \, \overline{e}_R \\ &+ \frac{\sin \theta}{\psi} \, \left[- e^2 \sin^2 \theta \, + \left[1 + e^2 + 2e \cos \theta \right] \right] \, \overline{e}_R \\ &+ \frac{\sin \theta}{\psi} \, \left[- e^2 \sin^2 \theta \, + \left[1 + e^2 + 2e \cos \theta \right] \right] \, \overline{e}_R \\ &+ \frac{\sin \theta}{\psi} \, \left[- e^2 \sin^2 \theta \, + \left[1 + e^2 + 2e \cos \theta \right] \right] \, \overline{e}_R \\ &+ \frac{\sin \theta}{\psi} \, \left[- e^2 \sin^2 \theta \, + \left[1 + e^2 + 2e \cos \theta \right] \right] \, \overline{e}_R \\ &+ \frac{\sin \theta}{\psi} \, \left[- e^2 \sin^2 \theta \, + \left[1 + e^2 + 2e \cos \theta \right] \right] \, \overline{e}_R \\ &+ \frac{\sin \theta}{\psi} \, \left[- e^2 \sin^2 \theta \, + \left[1 + e^2 + 2e \cos \theta \right] \right] \, \overline{e}_R \\ &+ \frac{\sin \theta}{\psi} \, \left[- e^2 \sin^2 \theta \, + \left[1 + e^2 + 2e \cos \theta \right] \right] \, \overline{e}_R \\ &+ \frac{\sin \theta}{\psi} \, \left[- e^2 \sin^2 \theta \, + \left[1 + e^2 + 2e \cos \theta \right] \right] \, \overline{e}_R$$

$$\begin{split} &= \frac{R}{h} \left\{ \! \left[2e + 2 \text{cos}\theta - \text{esin}^2 \theta \right] \! \overline{e}_L + \left[- \frac{\text{esin}^2 \theta}{\psi} \right] \\ &+ \frac{\text{sin}\theta}{\psi} \left[1 + e^2 + 2 \text{ecos}\theta \right] \right] \overline{e}_R \right\} \cdot \overline{\mathcal{F}} \\ &\frac{\text{d}e}{\text{d}t} = \frac{R}{h} \left\{ \! \left[e + (1 + \psi) \cos \theta \right] \, \overline{e}_L + \psi \text{sin}\theta \, \overline{e}_R \right\} \cdot \overline{\mathcal{F}} \end{split}$$

7. The derivation of $\frac{d\omega}{dt}$

$$\cos\omega = \frac{\overline{e}_{\Omega} \cdot \overline{e}}{e}$$

$$-\sin\omega \, \frac{\mathrm{d}\omega}{\mathrm{d}t} = \frac{1}{\mathrm{e}} \, \frac{\mathrm{d}}{\mathrm{d}t} \, (\overline{\mathrm{e}}_{\Omega} \cdot \overline{\mathrm{e}}) \, - \frac{1}{\mathrm{e}^2} \, (\overline{\mathrm{e}}_{\Omega} \cdot \overline{\mathrm{e}}) \, \frac{\mathrm{d}\mathrm{e}}{\mathrm{d}t}$$

$$-\sin\omega \frac{d\omega}{dt} = \frac{1}{e} \frac{dA}{dt} - \frac{\cos\omega}{e} \frac{de}{dt}$$

$$-esin\omega \frac{d\omega}{dt} = \frac{dA}{dt} - \cos\omega \frac{de}{dt}$$

$$= B \frac{d\Omega}{dt} \cos i + \frac{R}{h} \{ [A + (1 + \psi) \cos u] \overline{e}_{L} + \psi \sin u \overline{e}_{R} \} \cdot \overline{\mathcal{F}}$$

$$-\cos\omega \, \frac{\mathrm{R}}{\mathrm{h}} \, \big\{ \psi \mathrm{sin}\theta \, \, \overline{\mathrm{e}}_{\mathrm{R}} \, + \, [\, \mathrm{e} \, + \, (1 \, + \, \psi) \, \, \cos\theta \,] \, \, \overline{\mathrm{e}}_{\mathrm{L}} \, \big\} \, \bullet \, \, \overline{\mathcal{F}}$$

$$\frac{d\omega}{dt} = \frac{R}{he} \cot \omega \left\{ \psi \sin \theta \ \overline{e}_{R} + [e + (1 + \psi) \cos \theta] \ \overline{e}_{L} \right\} \cdot \overline{\mathcal{F}}$$

$$-\frac{\mathrm{d}\Omega}{\mathrm{d}t}\cos\,i - \frac{\mathrm{R}}{\mathrm{he}}\csc\omega\left\{\psi\sin\,u\,\overline{\mathrm{e}}_{\mathrm{R}} + \left[\mathrm{A} + (1+\psi)\cos\,u\right]\,\overline{\mathrm{e}}_{\mathrm{L}}\right\} \,\,\bullet\,\,\overline{\mathcal{F}}$$

$$\frac{\mathrm{d}\omega}{\mathrm{d}t} = -\frac{\mathrm{d}\Omega}{\mathrm{d}t}\cos i + \frac{\mathrm{R}}{\mathrm{he}}\left\{\psi\sin\theta\,\cot\!\omega\,\,\overline{e}_{\mathrm{R}} + \cot\!\omega\,\,\left[\mathrm{e} + (1+\psi)\,\cos\!\theta\right]\,\,\overline{e}_{\mathrm{L}}\right\}$$

-
$$\psi$$
sin u csc ω \overline{e}_{R} - csc ω [A + (1 + ψ)cos u] \overline{e}_{L} } • $\overline{\mathcal{F}}$

$$\frac{d\omega}{dt} = -\frac{d\Omega}{dt}\cos i + \frac{R}{he} \left\{ \left[\psi \sin\theta \, \cot\omega \, - \psi \sin \, u \, \csc\omega \right] \, \overline{e}_{R} \right\}$$

$$+ \left| \cot \omega \left[\, \mathrm{e} \, + \, (\, 1 \, + \, \psi) \mathrm{cos} \, \theta \, \right] \, - \, \mathrm{csc} \omega \left[\, \mathrm{A} \, + \, (\, 1 \, + \, \psi) \mathrm{cos} \, \mathrm{u} \, \right] \, \overline{\mathrm{e}}_{\mathrm{L}} \, \right\} \, \cdot \, \, \overline{\mathcal{F}}$$

$$\frac{\mathrm{d}\omega}{\mathrm{d}t} = -\frac{\mathrm{d}\Omega}{\mathrm{d}t}\cos\,i + \frac{\mathrm{R}}{\mathrm{he}} \left\{ -\psi \mathrm{cos}\theta \ \overline{\mathrm{e}}_{\mathrm{R}} + \left(1 + \psi\right) \ \mathrm{sin}\theta \ \overline{\mathrm{e}}_{\mathrm{L}} \right\} \bullet \ \overline{\mathcal{F}}$$

8. A derivation of
$$\frac{dr}{dt}$$

$$\frac{\mathrm{dr}}{\mathrm{dt}} = \frac{\mathrm{d}}{\mathrm{dt}} \quad \frac{\mathrm{p}}{1+\mathrm{e}}$$

$$= \frac{1}{1+e} \frac{dp}{dt} - \frac{p}{(1+e)^2} \frac{de}{dt}$$

$$\begin{split} &=2\,\frac{1}{1+\mathrm{e}}\,\frac{\mathrm{Rp}}{\mathrm{h}}\,(\overline{\mathrm{e}}_\mathrm{L}\cdot\overline{\mathcal{F}})\,-\frac{\mathrm{p}}{(1+\mathrm{e})^2}\,\frac{\mathrm{R}}{\mathrm{h}}\,\{\psi\mathrm{sin}\theta\,\overline{\mathrm{e}}_\mathrm{R}\,+\\ &+\left[\mathrm{e}+(1+\psi)\,\cos\theta\right]\,\overline{\mathrm{e}}_\mathrm{L}\,\}\cdot\overline{\mathcal{F}}\\ &=\frac{\mathrm{R}}{\mathrm{h}}\,\frac{\mathrm{p}}{(1+\mathrm{e})^2}\,\left\{\,2(1+\mathrm{e})\,(\overline{\mathrm{e}}_\mathrm{L}\cdot\overline{\mathcal{F}})\,-\psi\mathrm{sin}\theta\,\overline{\mathrm{e}}_\mathrm{R}\,-\,\left[\mathrm{e}\right.\\ &+\left.(1+\psi)\,\cos\theta\right]\,\overline{\mathrm{e}}_\mathrm{L}\,\right\}\cdot\overline{\mathcal{F}}\\ &=\frac{\mathrm{R}}{\mathrm{h}}\,\frac{\mathrm{p}}{(1+\mathrm{e})^2}\,\left\{\,(2(1+\mathrm{e})\,-\,\left[\mathrm{e}+(1+\psi)\,\cos\theta\right]\right\}\overline{\mathrm{e}}_\mathrm{L}\,-\psi\mathrm{sin}\theta\,\overline{\mathrm{e}}_\mathrm{R}\,\right\}\cdot\overline{\mathcal{F}} \end{split}$$

$$\frac{d\mathbf{r}}{dt} = \frac{\mathbf{R}}{\mathbf{h}} \frac{\mathbf{p}}{(1+\mathbf{e})^2} \left\{ -\psi \sin\theta \ \overline{\mathbf{e}}_{\mathbf{R}} + \left[2(1-\cos\theta) + e\sin^2\theta \ \right] \ \overline{\mathbf{e}}_{\mathbf{L}} \right\} \cdot \ \overline{\mathcal{F}}$$

9. A derivation of $\frac{dr}{dt}$

$$\begin{split} \frac{\mathrm{d}\mathbf{r}_{\mathbf{a}}}{\mathrm{d}\mathbf{t}} &= \frac{\mathrm{d}}{\mathrm{d}\mathbf{t}} \quad \left(\frac{\mathbf{p}}{\mathbf{1} - \mathbf{e}}\right) \\ &= \frac{1}{1 - \mathbf{e}} \quad \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}\mathbf{t}} + \frac{\mathbf{p}}{(\mathbf{1} - \mathbf{e})^2} \quad \frac{\mathrm{d}\mathbf{e}}{\mathrm{d}\mathbf{t}} \\ &= \frac{2}{1 - \mathbf{e}} \quad \frac{\mathbf{p}\mathbf{R}}{\mathbf{h}} \quad (\overline{\mathbf{e}}_{\mathbf{L}} \cdot \overline{\mathcal{F}}) + \frac{\mathbf{p}}{(\mathbf{1} - \mathbf{e})^2} \quad \frac{\mathbf{R}}{\mathbf{h}} \left\{ \left[\mathbf{e} + (\mathbf{1} + \psi) \cos\theta \right] \quad \overline{\mathbf{e}}_{\mathbf{L}} \right. \\ &+ \psi \sin\theta \quad \overline{\mathbf{e}}_{\mathbf{R}} \right\} \cdot \quad \overline{\mathcal{F}} \end{split}$$

$$\begin{split} &=\frac{pR}{h(1-e)^2} \left\{ \ 2(1-e) \ \overline{e}_L + [e+(1+\psi) \ \cos\theta] \overline{e}_L + \psi \sin\theta \ \overline{e}_R \ \right\} \cdot \overline{\mathcal{F}} \\ &=\frac{pR}{h(1-e)^2} \left\{ \left[\ 2(1-e) + e+(1+\psi) \ \cos\theta \right] \overline{e}_L + \psi \sin\theta \ \overline{e}_R \ \right\} \cdot \overline{\mathcal{F}} \\ &=\frac{pR}{h(1-e)^2} \left\{ \left[(2-e) + (1+\psi) \ \cos\theta \right] \overline{e}_L + \psi \sin\theta \ \overline{e}_R \right\} \cdot \overline{\mathcal{F}} \\ &\frac{dr_a}{dt} = \frac{pR}{h(1-e)^2} \left\{ \left[\psi \sin\theta \ \overline{e}_R + \left[2(1+\cos\theta) - e\sin^2\theta \right] \ \overline{e}_L \right\} \cdot \overline{\mathcal{F}} \end{split}$$

B. The description and substitution of $\overline{\mathfrak{F}}$ in the decay equations $\frac{d\lambda}{dt}$

Define $\overline{\mathcal{F}}$ as follows:

$$\overline{\mathcal{F}}=\overline{\mathcal{F}}_{\mathbf{G}}+\overline{\mathcal{F}}_{\mathbf{D}}+\overline{\mathcal{F}}_{\mathbf{S}}$$

Where $\overline{\mathcal{F}}_G$ is the gravitational perturbing force due to earth oblatness $\overline{\mathcal{F}}_D$ is the perturbing force due to drag $\overline{\mathcal{F}}_S$ is the perturbing force due to solar radiation pressure

$$\overline{\mathcal{F}}_{G} = \frac{\mu}{R^{2}} \sum_{N=2}^{3} J_{N} \left(\frac{R_{eq}}{R}\right)^{N} \left\{ (N+1) P_{N} \overline{e}_{R} - P_{N}' [\cos i \overline{e}_{h} + \sin i \cos u \overline{e}_{L}] \right\}$$

R_{eq} = earth's equatorial radius

R, β are the geocentric radius and latitude of the satellite

 $P_N^{}(\sin\!\beta)$ is the Nth Legendre polynomial

 \boldsymbol{J}_{N} are empirically determined constants

$$P_{N}' = \frac{\partial}{\partial \sin \beta} (P_{N} \sin \beta)$$

$$\overline{\mathcal{F}}_{\mathrm{D}} = -\frac{\mu\rho\mathrm{B}}{\mathrm{p}} \left[1 + \mathrm{e}^2 + 2\mathrm{e}\mathrm{cos}\theta\right]^{\frac{1}{2}} \left[\left[1 + \mathrm{e}\mathrm{cos}\theta\right] \, \overline{\mathrm{e}}_{\mathrm{L}} + \mathrm{e}\mathrm{sin}\theta \, \overline{\mathrm{e}}_{\mathrm{R}} \right]$$

$$B = \frac{C_D^A}{2m}$$

A = reference area

m = mass of satellite

 $C_D = drag coefficient$

$$\overline{\mathcal{F}}_{S} = -\frac{A}{m} \Pr \left[L \overline{e}_{R} + M \overline{e}_{L} + N \overline{e}_{h} \right]$$

$$\begin{bmatrix} sin u sin i \\ cos u sin i \\ cos i \end{bmatrix} \begin{bmatrix} l_S \\ m_S \\ n_S \end{bmatrix}$$

 l_{S} , m_{S} , n_{S} are the direction cosines of the sun

 P_{R} = solar radiation pressure

A reference area

$$P_2 = \frac{1}{2} (3\sin^2\beta - 1) = \frac{1}{2} (3\sin^2i \sin^2u - 1)$$

$$P_3 = \frac{1}{2} (5\sin^3\beta - 3\sin\beta) = \frac{1}{2} (5\sin^3i \sin^3u - 3\sin i \sin u)$$

$$P_2^i = 3\sin\beta = 3\sin i \sin u$$

$$P_3' = \frac{3}{2} (5\sin^2\beta - 1) = \frac{3}{2} (5\sin^2i \sin^2u - 1)$$

1. Substitution of the above expression for $\overline{\mathcal{F}}$ in the $\frac{d\lambda}{dt}$

$$\frac{\mathrm{d}\mathbf{i}}{\mathrm{d}t} = \frac{\mathrm{R}}{\mathrm{h}}\cos\,\mathbf{u}\,(\mathbf{\bar{g}}\cdot\mathbf{\bar{e}}_{\mathrm{h}})$$

$$\frac{\mathrm{di}}{\mathrm{d}\theta} = \frac{\mathrm{R}^3}{\mathrm{h}^2} \cos u \, (\overline{\mathcal{F}} \cdot \overline{\mathrm{e}}_{\mathrm{h}})$$

$$\frac{di}{d\theta} = \frac{R^3}{h^2} \cos u \left(\overline{\mathcal{F}}_G + \overline{\mathcal{F}}_D + \overline{\mathcal{F}}_S \right) \cdot \overline{e}_h$$

$$\overline{\mathfrak{F}}_{G} \cdot \overline{e}_{h} = -\frac{\mu}{R^{2}} \sum_{N=2}^{3} J_{N} \left(\frac{R_{eq}}{R}\right)^{N} P_{N}' \cos i$$

$$\overline{\mathfrak{F}}_{\mathbf{D}} \cdot \overline{\mathbf{e}}_{\mathbf{h}} = \mathbf{0}$$

$$\bar{f}_{S} \cdot \bar{e}_{h} = -\frac{A}{m} P_{R} N$$

$$\begin{split} \frac{\mathrm{di}}{\mathrm{d}\theta} &= \frac{R^3}{\mathrm{h}^2} \cos u \ \left\{ -\frac{\mu}{\mathrm{R}^2} \cos i \ \sum_{N=2}^3 \ J_N \ \left(\frac{\mathrm{R}_{\mathrm{eq}}}{\mathrm{R}} \right)^N \ \mathrm{P}_N^i - \frac{\mathrm{A}}{\mathrm{m}} \ \mathrm{P}_R^N \right\} \\ &= \frac{R^3}{\mathrm{h}^2} \cos u \ \left\{ -\frac{\mu}{\mathrm{R}^2} \cos i \ \left[J_2 \ \left(\frac{\mathrm{R}_{\mathrm{eq}}}{\mathrm{R}} \right)^2 \ \mathrm{P}_2^i + J_3 \ \left(\frac{\mathrm{R}_{\mathrm{eq}}}{\mathrm{R}} \right)^3 \ \mathrm{P}_3^i \right] - \frac{\mathrm{A}}{\mathrm{m}} \ \mathrm{P}_R^N \right\} \\ &= \frac{\mathrm{R}^3}{\mathrm{h}^2} \cos u \ \left\{ -\frac{\mu}{\mathrm{R}^2} \cos i \ \left[3J_2 \ \left(\frac{\mathrm{R}_{\mathrm{eq}}}{\mathrm{R}} \right)^2 \sin i \sin u + \frac{3}{2} J_3 \ \left(\frac{\mathrm{R}_{\mathrm{eq}}}{\mathrm{R}} \right)^3 \right. \left(5 \sin^2 i \sin^2 u \right) \\ &- 1) \ \left[-\frac{\mathrm{A}}{\mathrm{m}} \ \mathrm{P}_R^N \right] \\ &= -\frac{3\mu J_2}{\mathrm{Rh}^2} \cos u \sin u \cos i \sin i \ \mathrm{R}^2_{\mathrm{eq}} - \frac{15}{2} \frac{\mu J_3}{\mathrm{h}^2 \mathrm{R}^2} \cos u \sin^2 u \sin^2 i \cos i \ \mathrm{R}^3_{\mathrm{eq}} \\ &+ \frac{3}{5} \frac{\mu}{\mathrm{h}^2 \mathrm{R}^2} \ J_3 \cos u \cos i \ \mathrm{R}^3_{\mathrm{eq}} - \frac{\mathrm{P}_r^{\mathrm{A} \mathrm{N}}}{\mathrm{mh}^2} \ \mathrm{R}^3 \cos u \end{split}$$

$$\frac{di}{d\theta} = -\frac{3J_2}{p^2} \quad R_{eq}^2 \quad \cos i \sin i \cos u \sin u \left[1 + e\cos\theta\right]$$

$$= \frac{15}{2p^3} J_3 R_{eq}^3 \sin^2 i \cos i \cos u \sin^2 u [1 + e\cos]^2$$

$$+ \frac{3}{2} \frac{J_3}{p^3} R_{eq}^3 \cos i \cos u [1 + e\cos\theta]^2 - \frac{ANR^3}{mh^2} \cos u P_r$$

Define \tilde{i} so that $\tilde{i} = i - \Delta i$ where Δi is the purely periodic portion of i. A characteristic of any periodic function is that its derivative is also periodic. The only portion of the above expression that is not necessarily periodic is the term involving solar radiation pressure, P_r . I. e. P_r is assumed to have a constant positive value in sunlight and a value of zero in the earth's shadow.

The process of removing the periodic portions of the $\frac{d\lambda}{dt}$ is done by averaging in the following way:

$$\frac{d\tilde{\lambda}}{dt} = \frac{1}{4\pi^2} \int_{0}^{2\pi} \int_{0}^{2\pi} \left[\frac{d\lambda}{dt} \right]_{G} d\theta d\omega$$

It is easily shown that terms containing $\sin^N u$, $\cos^N u$, $\sin^N u \cos^N u$, N ODD will vanish over $[o,2\pi]$ when averaged in the above manner. This aid then makes the integration a process of inspection.

$$\frac{d\hat{i}}{d\theta} = -\frac{ANR^3 P_r \cos u}{mh^2}$$

$$\frac{\mathrm{d}\widetilde{\mathbf{i}}}{\mathrm{d}t} = \frac{\mathrm{d}\mathbf{i}}{\mathrm{d}\theta} = \frac{\mu^2}{\mathbf{a}^2}$$

$$\frac{\mathrm{d}\widetilde{i}}{\mathrm{d}t} = -\frac{\mathrm{ANR}^{3}\mathrm{P}\cos u}{\mathrm{m}\mu\mathrm{a}\left(1-\mathrm{e}^{2}\right)} \frac{\mu^{2}}{\mathrm{a}^{\frac{3}{2}}}$$

$$\frac{d\tilde{i}}{dt} = -\frac{ANR^{3}P_{r}cos u}{m\mu^{\frac{1}{2}}a^{\frac{5}{2}}(1 - e^{2})}$$

2. Derivation of
$$\frac{d\widetilde{\Omega}}{dt}$$

$$\frac{\mathrm{d}\Omega}{\mathrm{d}t} = \frac{\mathrm{R}}{\mathrm{h}} \frac{\sin u}{\sin i} \left(\overline{\mathcal{F}} \cdot \overline{\mathrm{e}}_{\mathrm{h}} \right)$$

$$\frac{\mathrm{d}\Omega}{\mathrm{d}\theta} = \frac{\mathrm{R}^3}{\mathrm{h}^2} \frac{\sin u}{\sin i} (\overline{\mathcal{F}} \cdot \overline{\mathrm{e}}_{\mathrm{h}})$$

$$\begin{array}{c} \frac{d\Omega}{d\theta} = \frac{R^3}{h^2} \, \frac{\sin u}{\sin i} \, \left(\overline{\mathcal{F}}_G + \overline{\mathcal{F}}_D + \overline{\mathcal{F}}_S \right) \, \cdot \, \overline{e}_h \\ \\ \overline{\mathcal{F}}_G \, \cdot \, \overline{e}_h \\ \\ \overline{\mathcal{F}}_S \, \cdot \, \overline{e}_h \end{array} \right) \quad \text{are the same expressions as given in } \frac{di}{dt} \\ \\ \overline{\mathcal{F}}_S \, \cdot \, \overline{e}_h \end{array}$$

On substitution then the expression for $\frac{d\Omega}{d\theta}$ becomes

$$\frac{d\Omega}{d\theta} = \frac{R^3}{h^2} \frac{\sin u}{\sin i} \left\{ -\frac{\mu}{R^2} \cos i \left[3J_2 \left(\frac{R_{eq}}{R} \right)^2 \sin i \sin u \right] + \frac{3}{2} J_3 \left(\frac{R_{eq}}{R} \right)^3 \left(5\sin^2 i \sin^2 u - 1 \right) \right] - \frac{A}{m} P_r N \right\}$$

$$\frac{d\Omega}{d\theta} = \frac{3J_2 R_{eq}^2}{n^2} \cos i \sin^2 u \left[1 + \cos \theta \right] - \frac{15J_3}{2n^3} R_{eq}^3 \sin i \cos i \sin^3 u \left[1 + \cos \theta \right]$$

$$+\cos\theta]^2+\frac{3}{2}\ \frac{J_3}{p^3}\ R_{\rm eq}^{3}\csc\ i\ \sin\ u\,[\,1+\cos\theta\,]^2-\frac{\rm ANR^3}{\rm mh^2sin}\sin\ u\ P_{\rm r}$$

Averaging as before, only the first term of the above expression will remain since it contains a secular term. The term involving solar radiation pressure is retained

$$\frac{\mathrm{d}\Omega}{\mathrm{d}\theta} = -\frac{3}{p^2} J_2 R_{\mathrm{eq}}^{2} \cos i \left\{ \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \right\} - \frac{\mathrm{ANR}^3 \sin u P_{\mathrm{r}}}{\mathrm{mh}^2 \sin i}$$

$$\frac{d\widetilde{\Omega}}{d\theta} = -\frac{3}{2} \frac{J_2}{p^2} R_{eq}^2 \cos i - \frac{AMR^3 \sin u P_r}{mh^2 \sin i}$$

$$\frac{d\widetilde{\Omega}}{dt} = -\frac{3}{2} \frac{\mu^{\frac{1}{2}}}{a^{\frac{3}{2}}} \quad \overline{J}_2 \cos i - \frac{ANR^3 \sin u}{m\mu^{\frac{1}{2}} a^{\frac{5}{2}} (1 - e^2) \sin i}$$

3. Derivation of $\frac{d\widetilde{\omega}}{dt}$

$$\frac{\mathrm{d}\omega}{\mathrm{d}t} = -\frac{\mathrm{d}\Omega}{\mathrm{d}t}\cos\,i + \frac{\mathrm{R}}{\mathrm{e}h}\,\left\{ -\psi\!\cos\!\theta\ \overline{\mathrm{e}}_{\mathrm{R}} + (1+\psi)\!\sin\!\theta\ \overline{\mathrm{e}}_{\mathrm{L}} \right\} \cdot \, \bar{\mathcal{T}}$$

$$\frac{\mathrm{d}\omega}{\mathrm{d}t} = -\frac{\mathrm{d}\Omega}{\mathrm{d}t} \; \cos \; i + \frac{\mathrm{R}}{\mathrm{eh}} \left\{ \; -\psi \mathrm{cos}\theta \; \overline{\mathrm{e}}_{\mathrm{R}} \; + \; (1+\psi) \sin\theta \; \overline{\mathrm{e}}_{\mathrm{L}} \right\} \; \cdot \; (\overline{\mathcal{F}}_{\mathrm{G}} \; + \overline{\mathcal{F}}_{\mathrm{D}} \; + \overline{\mathcal{F}}_{\mathrm{S}})$$

$$\overline{e}_{R} \cdot \overline{f}_{G} = \frac{\mu}{R^{2}} \sum_{N=2}^{3} J_{N} \left(\frac{R_{eq}}{R}\right)^{N} (N+1) P_{N}$$

$$\overline{e}_L \cdot \overline{f}_G = -\frac{\mu}{R^2} \sum_{N=2}^3 J_N \left(\frac{R_{eq}}{R} \right) \quad P_N^{\dagger} \sin i \cos u$$

$$\overline{e}_{R} \cdot \overline{f}_{D} = -\frac{\mu e \rho B}{p} \left[1 + e^2 + 2e \cos \theta\right]^{\frac{1}{2}} \sin \theta$$

$$\overline{e}_{L} \cdot \overline{f}_{D} = -\frac{\mu \rho B}{p} [1 + e^2 + 2e\cos\theta]^{\frac{1}{2}} [1 + e\cos\theta]$$

$$\overline{\mathbf{e}}_{\mathbf{R}} \cdot \overline{\mathbf{f}}_{\mathbf{S}} = -\frac{\mathbf{A}}{\mathbf{m}} \mathbf{P}_{\mathbf{r}} \mathbf{L}$$

$$\overline{\mathbf{e}}_{\mathbf{L}} \cdot \overline{\mathbf{f}}_{\mathbf{S}} = -\frac{\mathbf{A}}{\mathbf{m}} \mathbf{P}_{\mathbf{R}} \mathbf{m}$$

$$\frac{d\omega}{dt} = -\frac{d\Omega}{dt}\cos i - \frac{R}{eh}\psi\cos\theta \left(\overline{e}_R \cdot \overline{f}_G + \overline{e}_R \cdot \overline{f}_D + \overline{e}_R \cdot \overline{f}_S\right)$$

$$+\frac{\mathrm{R}}{\mathrm{eh}} \ (\mathbf{1}+\psi) \ \sin\theta \left(\overline{\mathbf{e}}_{\mathbf{L}} \boldsymbol{\cdot} \overline{\mathcal{I}}_{\mathbf{G}} + \overline{\mathbf{e}}_{\mathbf{L}} \boldsymbol{\cdot} \overline{\mathcal{I}}_{\mathbf{D}} + \overline{\mathbf{e}}_{\mathbf{L}} \boldsymbol{\cdot} \overline{\mathcal{I}}_{\mathbf{S}} \right)$$

$$\frac{d\omega}{dt} = -\frac{d\Omega}{dt}\cos i - \frac{R\psi\cos\theta}{eh} \begin{cases} \frac{\mu}{R^2} \sum_{N=2}^{3} J_N \left(\frac{R_{eq}}{R}\right)^N & (N+1) P_N \end{cases}$$

$$-\frac{\mu e \rho B}{p} \left[1 + e^2 + 2e \cos\theta\right]^{\frac{1}{2}} \sin\theta - \frac{A}{m} P_r L \right\} +$$

$$+\frac{R(1 + \psi) \sin\theta}{eh} \left\{-\frac{\mu}{R^2} \sum_{N=2}^{3} J_N \left(\frac{R_{eq}}{R}\right)^N P_N' \sin i \cos u\right\}$$

$$-\frac{\mu\rho B}{p} \left[1 + e^{2} + 2e\cos\theta\right]^{\frac{1}{2}} \left[1 + e\cos\theta\right] - \frac{A}{m} P_{r}M$$

$$\sum_{N=2}^{3} J_{N} \left(\frac{R_{eq}}{R} \right)^{N+1}$$
 (N+1) $P_{N} = 3J_{2} \left(\frac{R_{eq}}{R} \right)^{2} \left(\frac{1}{2} \right) (3\sin^{2}i \sin^{2}u - 1)$

$$\begin{split} & + 4J_{3} \, \left(\frac{R_{eq}}{R}\right)^{3} \left(\frac{1}{2}\right) \left(5 \sin^{3} i \, \sin^{3} u - 5 \sin i \, \sin u\right) \\ & = \frac{9}{2} \, J_{2} \, \left(\frac{R_{eq}}{R}\right)^{2} \, \sin^{2} i \, \sin^{2} u - \frac{3}{2} \, J_{2} \, \left(\frac{R_{eq}}{R}\right)^{2} + 10J_{3} \, \left(\frac{R_{eq}}{R}\right)^{3} \, \sin^{3} i \, \sin s^{3} u \\ & - 6J_{3} \, \left(\frac{R_{eq}}{R}\right)^{3} \, \sin i \, \sin u \\ & - 6J_{3} \, \left(\frac{R_{eq}}{R}\right)^{N} \, P_{N}^{i} \, \sin i \, \cos u = 3J_{2} \, \left(\frac{R_{eq}}{R}\right)^{2} \, \sin^{2} i \, \sin u \, \cos u \\ & + \frac{15}{2} \, J_{3} \, \left(\frac{R_{eq}}{R}\right)^{3} \, \sin^{3} i \, \sin^{2} u \cos u - \frac{3}{2} \, J_{3} \, \left(\frac{R_{eq}}{R}\right)^{3} \, \sin i \, \cos u \\ & \frac{d\omega}{d\theta} = \frac{d\omega}{dt} \, \frac{dt}{d\theta} = \frac{R^{2}}{h} \, \frac{d\omega}{dt} \\ & \frac{d\omega}{d\theta} = -\frac{d\Omega}{d\theta} \, \cos i \, - \frac{\mu R^{3} \psi \cos \theta}{eh^{2}} \, \frac{1}{R^{2}} \, \left[\frac{9}{2} \, J_{2} \, \left(\frac{R_{eq}}{R}\right)^{2} \, \sin^{2} i \, \sin^{2} u - \frac{3}{2} \, J_{2} \, \left(\frac{R_{eq}}{R}\right)^{2} \\ & + 10J_{3} \, \left(\frac{R_{eq}}{R}\right)^{3} \, \sin^{3} i \, \sin^{3} u - 6J_{3} \, \left(\frac{R_{eq}}{R}\right)^{3} \, \sin i \, \sin u \right] \\ & - \frac{e\rho B}{p} \, \left[1 + e^{2} + 2e\cos\theta\right]^{\frac{1}{2}} \sin\theta - \frac{AP_{r}L}{m\mu} \\ & + \frac{\mu R^{3}(1 + \psi)}{eh^{2}} \, \sin\theta \, \left\{\frac{1}{R^{2}} \, \left[-3J_{2} \, \left(\frac{R_{eq}}{R}\right)^{2} \, \sin^{2} i \, \sin u \, \cos u\right] \right. \end{split}$$

$$\begin{split} &-\frac{\rho B}{p} \left[1 + e^2 + 2e\cos\theta\right]^{\frac{1}{2}} \left[1 + e\cos\theta\right] - \frac{AP_r M}{\mu m} \\ &\frac{d\omega}{d\theta} = -\frac{d\Omega}{d\theta} \cos i - \frac{\cos\theta}{e} \left\{ \frac{9}{2} \ J_2 \ \left(\frac{R_{eq}}{R}\right)^2 \sin^2 i \sin^2 u - \frac{3}{2} \ J_2 \ \left(\frac{R_{eq}}{R}\right)^2 \\ &+ 10J_3 \ \left(\frac{R_{eq}}{R}\right)^3 \sin^3 i \sin^3 u - 6 \ J_3 \ \left(\frac{R_{eq}}{R}\right)^3 \sin i \sin u \\ &- \frac{e\rho BR^2}{p} \left[1 + e^2 + 2e\cos\theta\right]^{\frac{1}{2}} \sin\theta - \frac{AP_r LR^2}{m\mu} \right\} \\ &+ \frac{\sin\theta}{\psi e} \left\{ -3J_2 \ \left(\frac{R_{eq}}{R}\right)^2 \sin^2 i \cos u - \frac{15}{2} \ J_3 \ \left(\frac{R_{eq}}{R}\right)^3 \sin^3 i \sin^2 u \cos u \right. \\ &+ \frac{3}{2} J_3 \ \left(\frac{R_{eq}}{R}\right)^3 \sin i \cos u - \frac{\rho BR^2}{p} \ \left[1 + e^2 + 2e\cos\theta\right]^{\frac{1}{2}} \left[1 + e\cos\theta\right] \\ &- \frac{AP_r MR^2}{\mu m} \right\} + \frac{\sin\theta}{e} \left\{ -3J_2 \ \left(\frac{R_{eq}}{R}\right)^2 \sin^2 i \sin u \cos u \right. \\ &- \frac{15}{2} J_2 \ \left(\frac{R_{eq}}{R}\right)^3 \sin^3 i \sin^2 u \cos u + \frac{3}{2} J_3 \ \left(\frac{R_{eq}}{R}\right)^3 \sin i \cos u \\ &- \frac{\rho BR^2}{p} \ \left[1 + e^2 + 2e\cos\theta\right]^{\frac{1}{2}} \left[1 + e\cos\theta\right] - \frac{AP_r MR^2}{\mu m} \right\} \end{split}$$

For convenience the effects due to the three perturbing forces will be considered separately below. For $\frac{d\omega}{d\theta}$ only the first, second and third terms of the expression remain, and become

$$\left[\frac{d\widetilde{\omega}}{d\theta} \right]_{C} = \frac{3}{2p^{2}} J_{2} R_{eq}^{2} \cos^{2}i - \frac{9}{4p^{2}} J_{2} R_{eq}^{2} \sin^{2}i + \frac{3}{2p^{2}} J_{2} R_{eq}^{2}$$

$$\left[\frac{\mathrm{d}\widetilde{\omega}}{\mathrm{d}\theta}\right]_{G} = \frac{3}{2}\,\overline{\mathrm{J}}_{2}\,\cos^{2}i - \frac{9}{4}\,\overline{\mathrm{J}}_{2}\,\sin^{2}i + \frac{3}{2}\,\mathrm{J}_{2}$$

$$\left[\frac{\mathrm{d}\widetilde{\omega}}{\mathrm{d}\theta}\right]_{G} = \frac{3}{4} \,\overline{J}_{2} \,\left[4 - 5\sin^{2}i\right]$$

$$\frac{d\widetilde{\omega}}{dt} = \frac{\mu^{\frac{1}{2}}}{a^{\frac{3}{2}}} \frac{d\widetilde{\omega}}{d\theta}$$

$$\begin{bmatrix} \frac{\mathrm{d}\widetilde{\omega}}{\mathrm{d}t} \end{bmatrix}_{G} = \frac{3\mu^{\frac{1}{2}}}{4a^{\frac{3}{2}}} \quad \overline{J}_{2} \left[4 - 5\sin^{2}i \right]$$

The effects due to drag become

$$\begin{bmatrix} \frac{\mathrm{d}\omega}{\mathrm{d}\theta} \end{bmatrix}_{\mathrm{D}} = \frac{\rho \mathrm{BR}^2 \mathrm{sin}\theta}{\mathrm{ep}} \left[1 + \mathrm{e}^2 + 2\mathrm{e}\mathrm{cos}\theta \right]^{\frac{1}{2}} \left\{ \mathrm{e}\mathrm{cos}\theta - 1 - (1 + \mathrm{e}\mathrm{cos}\theta) \right\}$$

$$\left[\frac{\mathrm{d}\omega}{\mathrm{d}\theta}\right]_{\mathrm{D}} = \frac{\rho \mathrm{BR}^2 \mathrm{sin}\theta}{\mathrm{ep}} \quad \left[1 + \mathrm{e}^2 + 2\mathrm{e}\mathrm{cos}\theta\right]^{\frac{1}{2}} \quad (-2)$$

$$\left[\frac{\mathrm{d}\omega}{\mathrm{d}\theta}\right]_{\mathrm{D}} = -\frac{2\rho \mathrm{BR}^2}{\mathrm{ep}} \left[1 + \mathrm{e}^2 + 2\mathrm{e}\mathrm{cos}\theta\right]^{\frac{1}{2}} \sin\theta$$

$$\begin{bmatrix} \frac{d\omega}{dt} \end{bmatrix}_{D} = -\frac{2\rho B \mu^{\frac{1}{2}} \frac{1}{a^{\frac{1}{2}} (1 - e^{2})^{2}}}{e a (1 - e^{2})} [1 + e^{2} + 2e\cos\theta]^{\frac{1}{2}} \sin\theta$$

$$\begin{bmatrix} \frac{\mathrm{d}\omega}{\mathrm{d}t} \end{bmatrix}_{\mathrm{D}} = -\frac{2\rho \mathrm{B}\mu^{\frac{1}{2}} \left(1 - \mathrm{e}^{2}\right)}{\mathrm{ea}^{\frac{1}{2}}} \left[1 + \mathrm{e}^{2} + 2\mathrm{e}\mathrm{cos}\theta\right]^{\frac{1}{2}} \mathrm{sin}\theta$$

 $\left[\frac{d\omega}{dt}\right]_D \text{ will vanish over [o, 2\pi] if we consider } \rho = \rho \text{ (R) to be an even function of } \theta. \text{ Thus } \left[\frac{d\omega}{dt}\right]_D = 0.$

The effects of solar radiation pressure remain

$$\left[\frac{\mathrm{d}\omega}{\mathrm{d}\theta}\right]_{S} = \frac{\mathrm{AP_{r}LR^{2}cos}\theta}{\mu\mathrm{me}} - \frac{\mathrm{AP_{r}MR^{2}sin}\theta}{\mu\mathrm{m}\psi\mathrm{e}} - \frac{\mathrm{AP_{r}MR^{3}sin}\theta}{\mu\mathrm{me}}$$

$$\left[\frac{\mathrm{d}\omega}{\mathrm{d}\theta}\right]_{S} = \frac{\mathrm{AP_{r}R^{2}}}{\mu\mathrm{me}}\left[\mathrm{Lcos}\theta - \frac{\mathrm{Msin}\theta}{\mathrm{1+ecos}\theta} - \mathrm{Msin}\theta\right]$$

$$\left[\frac{\mathrm{d}\omega}{\mathrm{d}t}\right]_{\mathrm{S}} = \frac{\mathrm{AP} \, \mathrm{R}^2}{\frac{1}{\mu^2} \, \frac{3}{\mathrm{a}^2} \, \mathrm{me}} \, \left[\mathrm{Lcos}\theta \, - \frac{\mathrm{Msin}\theta}{1 + \mathrm{ecos}\theta} \, - \, \mathrm{Msin}\theta \, \right]$$

$$\frac{d\widetilde{\omega}}{dt} = \frac{3}{4} \frac{\frac{1}{\mu^{2}}}{a^{\frac{3}{2}}} \overline{J}_{2} \left[4 - 5\sin^{2}i \right] + \frac{AP_{r}R^{2}}{\frac{1}{m}\mu^{2}a^{\frac{3}{2}}e} \left[L\cos\theta - \frac{M\sin\theta}{1 + e\cos\theta} - M\sin\theta \right]$$

4. Derivation of
$$\frac{d\tilde{r}_p}{dt}$$

$$\frac{\mathrm{dr}}{\mathrm{dt}} = -\frac{\mathrm{r}}{\mathrm{p}}^{2} \frac{\mathrm{R}}{\mathrm{h}} \left\{ \psi \sin \theta \overline{\mathbf{e}}_{\mathrm{R}} - \left[2 \left(1 - \cos \theta \right) + \sin^{2} \theta \right] \overline{\mathbf{e}}_{\mathrm{L}} \right\} \cdot \overline{\mathfrak{F}}$$

$$\frac{\mathrm{dr}_{\mathbf{p}}}{\mathrm{d}\theta} = -\frac{\mathbf{r}_{\mathbf{p}}^{2}}{\mathbf{p}} \frac{\mathrm{R}^{3}}{\mathrm{h}^{2}} \left\{ \psi \sin \theta \ \overline{\mathbf{e}}_{\mathbf{R}} \cdot (\overline{\mathcal{F}}_{\mathbf{G}} + \overline{\mathcal{F}}_{\mathbf{D}} + \overline{\mathcal{F}}_{\mathbf{S}}) - [2(1 - \cos \theta) \right\}$$

$$+ e sin^2 \theta$$
] $\overline{e}_L \cdot (\overline{f}_G + \overline{f}_D + \overline{f}_S)$ }

$$\left[\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\theta}\right]_{\mathrm{G}} = -\frac{\mathbf{r}_{\mathrm{p}}^{2}\mathrm{R}^{3}}{\mathrm{ph}^{2}}\left\{\psi\sin\theta\left(\overline{\mathbf{e}}_{\mathrm{R}}\boldsymbol{\cdot}\overline{\mathcal{I}}_{\mathrm{G}}\right) - \left[2(1-\cos\theta) + \mathrm{e}\sin^{2}\theta\right]\overline{\mathbf{e}}_{\mathrm{L}}\boldsymbol{\cdot}\overline{\mathcal{I}}_{\mathrm{G}}\right\}$$

$$\begin{split} \left[\frac{\mathrm{d}r_p}{\mathrm{d}\theta}\right]_G &= -\frac{\mu r_p^{\ 2}R}{\mathrm{ph}^2} \left\{ \begin{array}{l} \sin\theta \left[\frac{9}{2}\,J_2\,\left(\frac{R_{eq}}{R}\right)^2\,\sin^2\!i\,\sin^2\!u\,-\frac{3}{2}\,J_2\,\left(\frac{R_{eq}}{R}\right)^2 \right. \\ &+ 10J_3\,\left(\frac{R_{eq}}{R}\right)^3\,\sin^3\!i\,\sin^3\!u\,-\,6J_3\,\left(\frac{R_{eq}}{R}\right)^3\sin^i\,\sin^i\,u\,\right] \\ &+ \left[2(1-\cos\theta)+\,e\sin^2\!\theta\right] \left[3J_2\,\left(\frac{R_{eq}}{R}\right)^2\,\sin^2\!i\,\sin^i\,u\,\cos^i\,u \right. \\ &+ \frac{15}{2}\,J_3\,\left(\frac{R_{eq}}{R}\right)^3\,\sin^3\!i\,\sin^2\!u\,\cos^i\,u \right] \right\} \end{split}$$

On integration of the above expression for $\left[\frac{dr}{d\theta}\right]_G$ all terms will vanish due to the odd powers of the trigonometric terms involving u

$$\left[\frac{\mathrm{dr}}{\mathrm{dt}}\right]_{\mathrm{D}} = -\frac{\mathrm{r}_{\mathrm{p}}^{2}\mathrm{R}}{\mathrm{ph}}\left\{\psi\sin\theta\left(\overline{\mathrm{e}}_{\mathrm{R}}\cdot\overline{\mathcal{F}}_{\mathrm{D}}\right) - \left[2(1-\cos\theta) + \mathrm{e}\sin^{2}\theta\right]\left(\overline{\mathrm{e}}_{\mathrm{L}}\cdot\overline{\mathcal{F}}_{\mathrm{D}}\right)\right\}$$

The drag effects
$$\begin{bmatrix} \frac{dr}{p} \\ dt \end{bmatrix}_D$$
 are

$$\begin{bmatrix} \frac{\mathrm{dr}}{\mathrm{p}} \\ \frac{\mathrm{dr}}{\mathrm{dt}} \end{bmatrix}_{\mathrm{D}} = -\frac{\mu r_{\mathrm{p}}^{2} \mathrm{R} \rho \mathrm{B}}{\mathrm{hp}^{2}} \left[1 + \mathrm{e}^{2} + 2 \mathrm{e} \cos \theta \right]^{\frac{1}{2}} \left\{ -\psi \mathrm{e} \sin^{2} \theta + \left[2(1 - \cos \theta) + \mathrm{e} \sin^{2} \theta \right] \right\}$$

$$\begin{bmatrix} \frac{\mathrm{dr}}{\mathrm{dt}} \end{bmatrix}_{\mathrm{D}} = -\frac{\mu r_{\mathrm{p}}^{2} \mathrm{R} \psi \rho \mathrm{B}}{\mathrm{hp}^{2}} \left[1 + \mathrm{e}^{2} + 2 \mathrm{e} \cos \theta \right]^{\frac{1}{2}} \left[2 (1 - \cos \theta) \right]$$

$$\begin{bmatrix} \frac{\mathrm{dr}}{\mathrm{p}} \\ \frac{\mathrm{dr}}{\mathrm{dt}} \end{bmatrix}_{\mathrm{D}} - \frac{2\mu r_{\mathrm{p}}^{2} \rho B}{\mathrm{hp}} \left[1 + \mathrm{e}^{2} + 2\mathrm{e}\mathrm{cos}\theta\right]^{\frac{1}{2}} \left[1 - \mathrm{cos}\theta\right]$$

$$\begin{bmatrix} \frac{d\mathbf{r}_{\mathbf{p}}}{dt} \end{bmatrix}_{\mathbf{D}} = -\frac{2\mu^{\frac{1}{2}}\mathbf{r}_{\mathbf{p}}^{2}\rho\mathbf{B}}{\frac{3}{a^{2}}(1-e^{2})^{\frac{3}{2}}} [1+e^{2}+2e\cos\theta]^{\frac{1}{2}}[1-\cos\theta]$$

$$\begin{bmatrix} \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \end{bmatrix}_{\mathbf{S}} = -\frac{\mathbf{r_p}^{2}\mathbf{R}}{\mathrm{ph}} \left\{ \psi \mathrm{sin}\theta \left(\overline{\mathbf{e}}_{\mathbf{R}} \cdot \overline{\mathcal{F}}_{\mathbf{S}} \right) - \left[2(1 - \cos\theta) + \mathrm{esin}^2\theta \right] \left(\overline{\mathbf{e}}_{\mathbf{L}} \cdot \overline{\mathcal{F}}_{\mathbf{S}} \right) \right\}$$

$$\left[\begin{array}{c} \frac{\mathrm{dr}}{\mathrm{p}} \\ \mathrm{dt} \end{array}\right]_{\mathrm{S}} = -\frac{\mathrm{r_p}^2 \mathrm{R}}{\mathrm{ph}} \left\{ -\frac{\psi \mathrm{sin}\theta \mathrm{AP_rL}}{\mathrm{m}} + \left[2(1-\cos\theta) + \mathrm{esin}^2\theta\right] \right. \\ \left. \frac{\mathrm{AP_rM}}{\mathrm{m}} \right\}$$

$$\begin{bmatrix} \frac{\mathrm{dr}}{\mathrm{dt}} \end{bmatrix}_{\mathrm{S}} - \frac{\mathbf{r}_{\mathrm{p}}^{2} \mathrm{AP}_{\mathrm{r}}}{\mu^{\frac{1}{2}} a^{\frac{1}{2}} (1 - e^{2})^{\frac{1}{2}} \mathrm{m}} \begin{bmatrix} -\mathrm{Lsin}\theta + \frac{[2(1 - \cos\theta) + e\sin^{2}\theta] \mathrm{M}}{[1 + e\cos\theta]} \end{bmatrix}$$

Hence the final expression for $\frac{d\tilde{r}}{dt}$ is

$$\begin{split} \frac{\mathrm{d}\widetilde{r}}{\mathrm{d}t} &= -\frac{2\mu^{\frac{1}{2}} \, r_{p}^{2} \rho \mathrm{B} \, [1 + \mathrm{e}^{2} + 2 \mathrm{e} \cos \theta \,]^{\frac{1}{2}}}{\mathrm{a}^{\frac{3}{2}} \, (1 - \mathrm{e}^{2})^{\frac{3}{2}}} \, \left[1 - \cos \theta \, \right] \\ &- \frac{r_{p}^{2} \mathrm{AP}}{\mathrm{m} \mu^{\frac{1}{2}} \, \mathrm{a}^{\frac{1}{2}} \, (1 - \mathrm{e}^{2})^{\frac{1}{2}}} \left\{ - \mathrm{L} \sin \theta + \frac{\left[2 (1 - \cos \theta) + \mathrm{e} \sin^{2} \theta \,\right] \mathrm{M}}{1 + \cos \theta} \right\} \\ &\mathrm{d}\widetilde{r}_{a} \end{split}$$

5. Derivation of $\frac{d\mathbf{r}_a}{dt}$

$$\frac{\mathrm{dr}_{\mathbf{a}}}{\mathrm{dt}} = \frac{\mathrm{r}_{\mathbf{a}}^{2} \mathrm{R}}{\mathrm{hp}} \left\{ \psi \sin \theta \ \overline{\mathbf{e}}_{\mathbf{R}} + \left[2(1 + \cos \theta) - \sin^{2} \theta \right] \ \overline{\mathbf{e}}_{\mathbf{L}} \right\} \cdot \overline{\mathcal{F}}$$

$$\left[\frac{\mathrm{dr}_{a}}{\mathrm{dt}} \right]_{G} = \frac{\mathrm{r}_{a}^{2} \mathrm{R}}{\mathrm{hp}} \left\{ \psi \sin \theta \left(\overline{e}_{\mathrm{R}} \cdot \overline{f}_{\mathrm{G}} \right) + \left[2 \left(1 + \cos \theta \right) - \sin^{2} \right] \left(\overline{e}_{\mathrm{L}} \cdot \overline{f}_{\mathrm{G}} \right) \right\}$$

Since the above expression is identical to $\begin{bmatrix} \frac{dr}{d\theta} \end{bmatrix}_{C}$ insofar as trigonometric terms are involved, it vanishes over $[0,2\pi]$ in the same manner.

$$\left[\frac{\mathrm{dr}}{\mathrm{dt}}\right]_{\mathrm{D}} = -\frac{\mu \mathrm{r}_{\mathrm{a}}^{2} \mathrm{R} \rho \mathrm{B}}{\mathrm{hp}^{2}} \left[1 + \mathrm{e}^{2} + 2 \mathrm{e} \mathrm{cos} \theta\right]^{\frac{1}{2}} \left\{\psi \mathrm{e} \mathrm{sin}^{2} \theta + \left[2\left(1 + \mathrm{cos} \theta\right) - \mathrm{e} \mathrm{sin}^{2} \theta\right] \psi\right\}$$

$$\left[\frac{\mathrm{dr}_{a}}{\mathrm{dt}}\right]_{D} = -\frac{\mu r_{a}^{2} \rho B}{\mathrm{hp}} \left[1 + e^{2} + 2e \cos \theta\right]^{\frac{1}{2}} \left[2(1 + \cos \theta)\right]$$

$$\left[\frac{dr_{a}}{dt}\right]_{D} = -\frac{2\mu^{\frac{1}{2}}r_{a}^{2}\rho B}{a^{\frac{3}{2}}(1-e^{2})^{\frac{3}{2}}} \left[1 + e^{2} + 2e\cos\theta\right]^{\frac{1}{2}} \left[1 + \cos\theta\right]$$

$$\left[\frac{\mathrm{dr}_{\mathbf{a}}}{\mathrm{dt}}\right]_{\mathbf{S}} = \frac{\mathrm{r}_{\mathbf{a}}^{2}\mathbf{R}}{\mathrm{hp}} \left\{\psi \sin\theta \left(\overline{\mathbf{e}}_{\mathbf{R}} \cdot \overline{\mathcal{F}}_{\mathbf{S}}\right) + \left[2(1 + \cos\theta) - \sin^{2}\theta\right] \left(\overline{\mathbf{e}}_{\mathbf{L}} \cdot \overline{\mathcal{F}}_{\mathbf{S}}\right)\right\}$$

$$\left[\begin{array}{c} \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \end{array} \right]_{\mathrm{S}} = \frac{\mathbf{r_a}^2 \mathrm{R}}{\mathrm{hp}} \left\{ \psi \mathrm{sin}\theta \ \left(-\frac{\mathrm{AP_rL}}{\mathrm{m}} \right) + \left[2(1+\cos\theta) - \mathrm{esin}^2\theta \right] \ \left(-\frac{\mathrm{AP_rM}}{\mathrm{m}} \right) \right\}$$

$$\left[\frac{dr_{a}}{dt}\right]_{S} = -\frac{r_{a}^{2}AP_{r}}{m\mu^{2} a^{\frac{1}{2}} (1 - e^{2})^{\frac{1}{2}}} \left\{ Lsin + \frac{M[2(1 + cos\theta) - esin^{2}\theta]}{[1 + ecos\theta]} \right\}$$

Hence the final expression for $\frac{d\widetilde{r}_a}{dt}$ is

$$\frac{d\tilde{r}_{a}}{dt} - \frac{2\mu^{\frac{1}{2}}r_{a}^{2}\rho B}{a^{\frac{3}{2}}(1-e^{2})^{\frac{3}{2}}} \left[1 + e^{2} + 2e\cos\theta\right]^{\frac{1}{2}} \left[1 + \cos\theta\right]$$

$$-\frac{{{{{\bf{r}}_a}^2}{\rm{AP}}_{\bf{r}}}}{{{\rm{m}}{\mu ^{\rm{\overline{2}}}}}{{\rm{a}^{\rm{\overline{2}}}}}\left({1 - {{\rm{e}}^2}} \right)^{\rm{\overline{2}}}}}\left\{ {{\rm{Lsin}}\theta + \frac{{\rm{M}}\left[{2(1 + {\cos \theta }) - {\rm{esin}}^2\theta } \right]}{{1 + {\rm{ecos}}\theta }}} \right\}$$

. APPENDIX B

COMPUTER PROGRAM SOURCE LISTING

	/18/65 FORMULA NUMBER(S)
BYJEKNAF LAKMETA MEMORK - 2004CE 2141ELEKI - IMJEKNAF	ERKLOFA HOWCERSS
1001 BETA=TAN2PI(CL;CM)-TAN2PI(CLS,CMS1-180.+GAMMA/PI	. 11C
2002 IF(BETA) 2000,2001,2001	, 111
2000 BETA=BETA+360.	, 112
GØ TØ 2002	/113
2001_C@NT[NUE	£114
700 AMP=HKM/40C0.+(.91+.44*SIG+.38*SIG2)*EXP (-(2HKM/(405.+143.*SIG)	
1)**2)	¥115
710 AMPS= 245+ 0425*SIG- C625*SIG2	₽11 6
U=AMP*(08*EXP (-((BETA-250.)/55.)**2)+AMPS*EXP (-((BETA-135.)/	
134.)**2))+AMP*4.E-6#BETA	√117
FACT=1.+(1CN**2)*L	,116
RHØA=RHØA=FACT	#119
3000 RETURN	∤ 120
END	≠121
	,
KILGZ TANZPI 06.	/18/65
	FORMULA NUMBER(S)
FUNCTION TANZPI(X,Y)	
· · · · · · · · · · · · · · · · · · ·	0985
C TANZPI=ARCIAN(Y/X)	0985
C TANZPE = ARCTAN(Y/X) C TANZPE EQUAL ØR LESS THAN ZPE	0985
C TANZPE=ARCTAN(Y/X) C TANZPE EQUAL ØR LESS THAN ZPE C TANZPE EQUAL ØR GREATER THAN ZERØ	0925 0986 0987
C TANZPI=ARCIAN(Y/X) C TANZPI EQUAL ØR LESS THAN ZPI C TANZPI EQUAL ØR GREATER THAN ZERØ RADCEG=57.2957795 IF(Y)1.2.3	0985 0986 0987 0988 71
C TANZPI = ARCTAN(Y/X) C TANZPI EQUAL ØR LESS THAN ZPI C TANZPI EQUAL ØR GREATER THAN ZERØ RADCEG = 57.2957795 IF(Y)1.2.3 2 IF(X)5,4,6	0985 0986 0987 0988
C TANOPI = ARCTAN(Y/X) C TANOPI EQUAL ØR LESS THAN 2PI C TANOPI EQUAL ØR GREATER THAN ZERØ RADCEG = 57.2957795 IF(Y)1.2.3 2 IF(X)5,4.6 4 TANOPI = 1.0E+3C	0985 0986 0987 0988 /1 0985 /2 0950 /2
C TANZPE=ARCTAN(Y/X) C TANZPE EQUAL ØR LESS THAN ZPE C TANZPE EQUAL ØR GREATER THAN ZERØ RADCEG=57.2957795 IF(Y)1.2.3 2 IF(X)5,4.6 4 TANZPE=1.0E+3C GØ TØ 20	0985 0986 0987 0988
C TANZPI=ARCTAN(Y/X) C TANZPI EQUAL ØR LESS THAN ZPI C TANZPI EQUAL ØR GREATER THAN ZERØ RACCEG=57.2957795 IF(Y)1.2.3 2 IF(X)5,4,6 4 TANZPI=1.0E+3C G0 TØ Z0 5 TANZPI=180.0	0985 0986 0987 0988 \$1 0985 \$2 0950 \$3 0991 \$4 0992 \$5
C TANZPI = ARCIAN(Y/X) C TANZPI EQUAL ØR LESS THAN ZPI C TANZPI EQUAL ØR GREATER THAN ZERØ RADDEG = 57.2957795 IF(Y)1.2.3 2 IF(X)5,4,6 4 TANZPI = 1.0D + 3C GØ TØ 20 5 JANZPI = 180.0 GØ TØ 20	09.85 09.66 09.87 09.88 \$1 09.85 \$2 09.50 \$2 09.51 \$4 09.52 \$6 09.52 \$6 09.54 \$7
C TAN2PI = ARCTAN(Y/X) C TAN2PI EQUAL ØR LESS THAN 2PI C TAN2PI EQUAL ØR GREATER THAN ZERØ RADCEG = 57.2957795 IF(Y)1.2.3 2 IF(X)5,4,6 4 TAN2PI = 1.0E+3C GØ TØ 20 5 IAN2PI = 180.0 GØ TØ 20 6 TAN2PI = 0.0	09.85 09.66 09.87 09.88 \$1 09.85 \$2 09.50 \$2 09.51 \$4 09.52 \$6 09.52 \$6 09.54 \$7
C TAN2PI = ARCTAN(Y/X) C TAN2PI EQUAL ØR LESS THAN 2PI C TAN2PI EQUAL ØR GREATER THAN ZERØ RADCEG = 57.2957795 IF(Y)1.2.3 2 IF(X)5.4.6 4 IAN2PI = 1.0E+3C GØ TØ 20 5 IAN2PI = 180.0 GØ TØ 20 6 TAN2PI = 0.0 GØ TØ 20 6 TAN2PI = 0.0	0985 0986 0987 0988
C TAN2PI=ARCIAN(Y/X) C TAN2PI EQUAL ØR LESS THAN 2PI C TAN2PI EQUAL ØR GREATER THAN ZERØ RADCEG=57.2957795 IF(Y)1.2.3 2 IF(X)5,4,6 4 IAN2PI=1.0E+3C G0 TØ 20 5 IAN2PI=180.0 G0 TØ 20 6 TAN2PI=0.0 G0 TØ 20 1 IF(X)7,8,9	0985 0986 0987 0988 \$1 0985 \$2 0951 \$4 0952 \$5 0952 \$6 0954 \$7 0955 \$8 0956 \$9 0957 \$10
C TAN2PI = QRCTAN(Y/X) C TAN2PI EQUAL ØR LESS THAN 2PI C TAN2PI EQUAL ØR GREATER THAN ZERØ RADCEG = 57.2957795 IF(Y)1.2.3 2 IF(X)5,4,6 4 TAN2PI = 1.0E+3C GØ TØ 20 5 JAN2PI = 180.0 GØ TØ 20 6 TAN2PI = 0.0 GØ TØ 20 1 IF(X)7,8,9 7 TAN2PI = 180.+RADDEG*ATAN(Y/X)	0985 0986 0987 0988 \$1 0985 \$2 0981 \$4 0981 \$4 0982 \$5 0982 \$6 0984 \$7 0985 \$8 0986 \$5 0987 \$10 \$11
C TAN2PI = ARCIAN(Y/X) C TAN2PI EQUAL ØR LESS THAN 2PI C TAN2PI EQUAL ØR GREATER THAN ZERØ RADCEG = 57.2957795 IF(Y)1.2.3 2 IF(X)5,4,6 4 IAN2PI = 1.0E+3C GØ TØ 20 5 IAN2PI = 180.0 GØ TØ 20 6 TAN2PI = 0.0 GØ TØ 20 1 IF(X)7,8,9 7 TAN2PI = 180.+RADCEG*ATAN(Y/X) GØ TØ 20	0985 0986 0987 0988
C TAN2PI = ARCTAN(Y/X) C TAN2PI EQUAL ØR LESS THAN 2PI C TAN2PI EQUAL ØR GREATER THAN ZERØ RADCEG = 57.2957795 IF(Y)1.2.3 2 IF(X)5,4,6 4 TAN2PI = 1.0E+3C GØ TØ 20 5 IAN2PI = 180.0 GØ TØ 20 6 TAN2PI = 0.0 GØ TØ 20 1 IF(X)7,8,9 7 TAN2PI = 180.+RADDEG = ATAN(Y/X) GØ TØ 20 8 TAN2PI = 270.0	0985 0986 0987 0988
C TAN2PI=ARCIAN(Y/X) C TAN2PI EQUAL ØR LESS THAN 2PI C TAN2PI EQUAL ØR GREATER THAN ZERØ RADEG=57.2957795 IF(Y)1.2.3 2 IF(X)5,4,6 4 TAN2PI=1.0E+3C GØ TØ 20 5 TAN2PI=180.0 GØ TØ 20 6 TAN2PI=0.0 GØ TØ 20 1 IF(X)7,8,9 7 TAN2PI=180.+RADDEG*ATAN(Y/X) GØ TØ 20 8 TAN2PI=270.0 GØ TØ 20	0985 0986 0987 0988
C TANZPI=ARCIAN(Y/X) C TANZPI EQUAL ØR LESS THAN ZPI C TANZPI EQUAL ØR GREATER THAN ZERØ RADCEG=57.2957795 IF(Y)1.2.3 2 IF(X)5,4,6 4 TANZPI=1.0E+3C G0 TØ 20 5 TANZPI=180.0 G0 TØ 20 6 TANZPI=0.0 G0 TØ 20 1 IF(X)7,8,9 7 TANZPI=180.+RADDEG*ATAN(Y/X) G0 TØ 20 8 TANZPI=270.0 G0 TØ 20 9 TANZPI=360.+RADDEG*ATAN(Y/X)	0985 0986 0987 0988
C TANZPI = ARCIAN(Y/X) C TANZPI EQUAL ØR LESS THAN ZPI C TANZPI EQUAL ØR GREATER THAN ZERØ RADCEG = 57.2957795 IF(Y)1;2:3 2 IF(X)5,4;6 4 TANZPI = 1.0E+3C G0 TØ 20 5 TANZPI = 180.0 G0 TØ 20 6 TANZPI = 0.0 G0 TØ 20 1 IF(X)7,8;9 7 TANZPI = 180.+RADDEG*ATAN(Y/X) G0 TØ 20 8 TANZPI = 20 9 TANZPI = 360.+RADDEG*ATAN(Y/X) G0 TØ 20 9 TANZPI = 360.+RADDEG*ATAN(Y/X) G0 TØ 20	0985 0986 0987 0988
C TAN2PI = ARCIAN(Y/X) C TAN2PI EQUAL ØR LESS THAN 2PI C TAN2PI EQUAL ØR GREATER THAN ZERØ RADCEG = 57.2957795 IF(Y)1;2:3 2 IF(X)5,4;6 4 IAN2PI = 1.0E+3C GØ TØ 20 5 IAN2PI = 180.0 GØ TØ 20 6 TAN2PI = 0.0 GØ TØ 20 1 IF(X)7,8;9 7 TAN2PI = 180.+RADCEG = ATAN(Y/X) GØ TØ 20 8 TAN2PI = 270.0 GØ TØ 20 9 TAN2PI = 360.+RADCEG = ATAN(Y/X) GØ TØ 20 3 IF(X)7,10;11	0985 0986 0987 0988
C TANZPI=ARCIAN(Y/X) C TANZPI EQUAL ØR LESS THAN ZPI C TANZPI EQUAL ØR GREATER THAN ZERØ RACCEG=57.2957795 IF(Y)1.2.3 2 IF(X)5,4,6 4 TANZPI=1.0E+3C GØ TØ 20 5 TANZPI=180.0 GØ TØ 20 6 TANZPI=0.0 GØ TØ 20 1 IF(X)7,8,9 7 TANZPI=180.+RADDEG*ATAN(Y/X) GØ TØ 20 8 TANZPI=270.0 GØ TØ 20 9 TANZPI=360.+RADDEG*ATAN(Y/X) GØ TØ 20 3 IF(X)7,10,111 10 TANZPI=90.C	0985 0986 0987 0988
C TANZPI=ARCIAN(Y/X) C TANZPI EQUAL ØR LESS THAN ZPI C TANZPI EQUAL ØR GREATER THAN ZERØ RADCEG=57.2957795 IF(Y)1.2.3 2 IF(X)5,4,6 4 TANZPI=1.0E+3C G0 TØ 20 5 TANZPI=180.0 G0 TØ 20 6 TANZPI=0.0 G0 TØ 20 1 IF(X)7,8,9 7 TANZPI=180.+RADDEG*ATAN(Y/X) G0 TØ 20 8 TANZPI=270.0 G0 TØ 20 9 TANZPI=360.+RADDEG*ATAN(Y/X) G0 TØ 20 9 TANZPI=360.+RADDEG*ATAN(Y/X) G0 TØ 20 3 IF(X)7,10,11 10 TANZPI=90.C G0 TØ 20	0985 0986 0987 0988
C TAN2PI=ARCIAN(Y/X) C TAN2PI EQUAL ØR LESS THAN 2PI C TAN2PI EQUAL ØR GREATER THAN ZERØ RADCEG=57.2957795 IF(Y)1,2:3 2 IF(X)5,4,6 4 IAN2PI=1.0E+3C G0 IØ 20 5 IAN2PI=180.0 G0 IØ 20 6 TAN2PI=0.0 G0 IØ 20 1 IF(X)7,8,9 7 TAN2PI=180.+RADDEG*ATAN(Y/X) G0 IØ 20 8 TAN2PI=270.0 G0 IØ 20 9 TAN2PI=360.+RADDEG*ATAN(Y/X) G0 IØ 20 3 IF(X)7,10,11 10 IAN2PI=90.C G0 IØ 20 11 TAN2PI=RADCEG*ATAN(Y/X)	0985 0986 0987 0988
C TANZPI=ARCIAN(Y/X) C TANZPI EQUAL ØR LESS THAN ZPI C TANZPI EQUAL ØR GREATER THAN ZERØ RACCEG=57.2957795 IF(Y)1.2.3 2 IF(X)5,4,6 4 IANZPI=1.0E+3C GØ TØ 20 5 JANZPI=180.0 GØ TØ 20 1 IF(X)7,8,9 7 TANZPI=180.+RADDEG*ATAN(Y/X) GØ TØ 20 8 TANZPI=270.0 GØ TØ 20 9 TANZPI=360.+RADDEG*ATAN(Y/X) GØ TØ 20 9 TANZPI=360.+RADDEG*ATAN(Y/X) GØ TØ 20 3 IF(X)7,10,11 10 TANZPI=90.C GØ TØ 20 GØ TØ 20	0985 0986 0987 0988

REAL I ØMET, MASS, INTERA / INTERP	
DIMENSIØN FTENB(153),FTEN(153),AP(153)	
DIMENSION	
1SFG(8), EFG(8), ØET(8), ØEM(8), ØEE(81, MØT(8), MØM(8), MØE(8), AMAT(9),	
1BMAT(9),CMAT(9),A1MAT(9),W1MAT(9),WMAT(9),TEMP(20),IØMET(2),	
1SYIC(13), PLT(8), WD@MAT(9), WDMAT(9), WSUB1(9), WSUB1T(9)	
DIMENSION COPRIM(25),	*
1ATTACK(45),CN(45),AREA(45),MASS(25),INTERA(6),INTERP(6),	
1DAP@G6(10),CDA(50),CUT@FF(2),CATE(3),C@RREC(110)	-
DØUELE PRECISION KERTH, KAPPA, PHICALAMDO, AØ, BØ, ØMEGA, AE.	
1JJ, HH, DD, TTT, THETA, RRR, PSI,	
1LAMC. VE, ALPV, EV, XS, YS, ZS, XDS, YDS, ADS, AXIS, ECCEN, INC,	
1ASNOD, ARGP, ANOM, ECANOM, MNANOM, XE, YE, ZE, XCE, YCE, ZDE, XEP, YEP, ZEP,	
1xDEP, YDEP, ZDEP, XP, YP, ZP, VP, ALPP, ER, RPHIC, RLAMCO, ROMEGA, RPSIC, RO.	
1BETA, AMAT, BMAT, CMAT, AlmaT, WMAT, WIMAT, RKAPPA, RTHETA, XEC, YEC, ZEC.	
1TEMP, RRRE, PSIE LAMDE, VEE, AUPVE, EVE, MAT1, MAT2, MAT3, EFP, EFE, SFE, SFG	_
1EFG, ØET, ØEM, ØEE, MØT, MØM, MØE, A1, A2, A3, C1, C3, LR, C@SE, SR, SN, C2V,	'Y
181, 82, 83, AXISE, ECCB, INCB, ASNB, ARGB, ANMB, ECAB, MNAB,	
1PITCH : RANGE, ALT, ECV, EEV, PERIGE, APRGEE, PERIDO, MVAPRG, MVPERG,	
1MVPERD, B3MEG, LØMEG, PLT, XG, XG, ZG, XDG, YDG, ZDG, TFM	
1, XPL, YPL, ZPL, XDPL, YCPL, ZDPL, WDØMAT, WDMAT, WSUB1, WSUB1T	
DØUBLE PRECISION TOLX, DPR, PIE	
COMMON/HBLK/XKERTH, XAC; XBC; XAE, XJJ, XHH, XDD, XDAN@M, XF, XPRINT,	
1XATMØS, XDIURN, XXLAG, XMVA, XMVP, XCDPM(25), XMASS(25),	
2XATTK(45), XCN(45), XAREA(45), XINTA(6), XINTP(6), XDAPØ(10),	
3xCDA(50), xCUT(2), xxCAT(3), xCØR(11C), xIN, xASN, xARG	
4, XECLPT, XAMPR, XFTENB(153), XFTEN(153), XAP(153), XSA, XSR	
COMMON/SLK/KERTH, AC, BO, AE, JJ, HH, DC, TTT, RRR, PSI, LAMD, VE, ALPV,	
1EV, XS, YS, ZS, XCS, YDS, ZDS, AXIS, ECCEN, INC, ASNOD, ARGP, ANOM, ECANOM,	
1MNANOM, XE, YE, ZE, XDE, YDE, ZCE, XEP, YBP, ZEP, XDEP, YDEP, ZDEP, XP, YP, ZP,	
1VP, ALPP, EP, RP+ I@, RLAMDØ, R2MEGA, RPSI2, RO, BETA, AMAT, BMAT, CMAT,	
1LAMCØ,KAPPA,ØMEGA,PHIØ,THETA,XG,YG,ZG,XDG,YDG,ZDG,TFM,	
1XPL,YPL,ZPL,XCPL,YCPL,ZDPL,WD@MAT,WSUB1,WSUB1T	
1A1MAT, WMAT, W1MAT, RKAPPA, RTHETA, XEG, YEC, ZEC, TEMP, RRRE, PSIE, LAMCE,	
1VEE, ALPVE, 'EVE, MAT1, MAT2, MAT3, A1, A2, A3 ←C1, C3, LR, C&SE, SR, SN, C2V,	
181, B2, B3, AXISE, ECCB, INCB, ASNB, ARGE, ANMB, ECAB, MNAB,	
1SHØRT, XLØNG	
DATA	
DATA CN/5HALPHA /,CN(2)/1./,CN(3)/360./,CN(4)/6HEND /,	
ICDPRIM/1./, CDPRIM(2)/0./, CDPRIM(31/6HEND /, ATTACK/0./,	
2ATTACK(2)/360./,ATTACK(3)/6HEND /,AREA/6HALPHA /,AREA(2)	
3/1./, AREAL3)/360./, AREA(4)/6HEND /, MASS/6HCCN /, MASS(2)	
4/1./,MASS(3)/C./,DAPØGE/-20./,DAPØGE(2)/C./,PRINT/6HNØRMAL/,	
5ATM@S/6HARDC /,DIURNL/6HMEAN /,ECLIPT/23.4436/	
DATA(C@RREC(I) I=1,41)/	
1 .12,500., .13,400., .142,350., .184,300., .22,280., .275,260.,	
1.304,250.,.34,240.,.385,230.,.425,220.,.47,210.,.52,200.,.565,	-
1190., 62, 180., 7, 170., 8, 160., 84, 155., 86, 150., 1., 145., 1., 0.,	
16HEND /	
DATA (DATE(I), I=1,3)/9.,18.,1964./,SA/0./	
DATA SØ/10C./, AMPR/C./	
DATA XG/0.CO/,YG/0.CO/,ZG/0.DC/, XCG/0.DO/,YCG/0.DO/,	
1ZDG/O.DO/,TFM/O.DO/,XLAG/C./	
DATA(DAP@GE(I) I=1,10)/-5.46778., -1C.,6578.,-20.,0.,0.,0.,0.,c./	
DATA KERTH/398603.200/4	

And the same of th	147214.5	
	5/18/65	NUMBER! # >
EXTERNAL FORMULA NUMBER - SOURCE STATEMENT - INTERNAL	. FERFULA	NUMBER (\$1
1KAPPA/105.DO/,PHIØ/28.5DO/,LAMDØ/80.5DO/,AØ/6378.165DO/,		
280/6356.784DO/, 0MEGA/15.04106705DC/, AE/6378.165DO/;	- •	
3JJ/.00162345DC/.HH/.000C0575DC/.DB/.000CC7875D0/.		
4DAN6M/10-/,F/298-3/.	-	
PRINT/6HNØRMAL/		
91NC/30./;WE/180./;CAPE/18C./		
DATA(AP(I), I=1,141)/		
12.34,1958.,2.48,1958.8,1.89,1958.9,2.51,1959.,2.97,1959.1,2.42,		
21959.2, 2.56, 1959.3, 2.59, 1959.4, 2.92, 1959.5, 3.16, 1959.6, 3.50, 1959.7		
3,2,46,1959.8,2.89,1959.9,2.57,1960.,2.32,1960.1,2.44,1960.2,3142,1		
1960.3,2.79,		
11960.4,2.92,1560.5,2.71,1960.6,2.75,1960.7,3.23,1960.8,3.44,1960.9		
1,2.49,1961.,2.27,1961.1,2.32,1961.2,2.29,1961.3,2.40,1961.4,2.69,1		
1961.5,2.26,		
11961.6, 2.18, 1961.7, 1.85, 1961.8, 1.92, 1961.9, 1.49, 1962.1, 73, 1962.1,		
11.81,1962.2,2.31,1962.3,1.60,1962.4,2.18,1962.5,2.62,1962.6,2.94,1	- • .	
1962-7:13-08,		
11962.8, 2.01, 1762.9, 1.75, 1962., 1.72, 1963.1, 1.54, 1963.12, 1.51, 1963.2	~	
11,1.86,1963.29,2.08,1963.38,2.06,1963.46,2.23,1963.54,2.35,1963.62		
1,3.26,		
11963.71,2.20,1963.75,2.02,1963.88.1.98,1963.96,2.06,1964.04,2.21,		
11964.12,2:16,1964.21,2:25,1964.29;1.81,1964.38,1.73,1964.46,1.89;		AMOUNT IN
11964.54+1.68,1964.62,1.78+1964.71+1.67+1964.79,.90+1964.88,.77,196		
14.96,2.5;1965.,2.5,2000.,6HEND 4		
DATA(RTENB(I), I=1,57)/		
1243.641958.,230.7,1958.5,226.5,1959.,208.9,1959.5,180.5,1960.,		
2161.,1960.5,130.8,1961.,104.8,1961.5,99.3,1962.,89.7,1962.5,		
382.7,1963.,80.8,1963.5,77.9,1964.,70.,1964.5,75.,1965.,		* * -
487.,1965.5,131.,1966.5,186.,1967.5,200.,1968.5,190.,1969.5,		
5163.,1970.5,142.,1971.,128.,1971.5,108.,1972.5,94.,1973.5,		
681.,1974.5,75.,1975.,75.,1975.5,		
46HEND /		
DATA (FTEN(I), I=1,3)/0.,0.,6HEND /		
De 1 1=1,48	•	≠1
EFP(1)=-0.		12
EFE([]=-0.		, 3
SFE(1)=-0.		4
SFG(1) =-0.		y 5
PLT(1)=-0.		, ' é
EFG(1) =-0.		¥7
ØET(I)=-0:		₽ 8
9EM(1)=-0:		y 9
ØEE(1)=-0.		,10
MOT (1) = -0:		¥11
M@M(I)=-0:		√12
1 M0E(1)=-0.		,13 ,14
75 CALL MAVRIK(IERR + 5+KERTH + KERTH + 5+KAPPA + KAPPA + 4+PHI 3 + PHI 0 +		
15HLAMDØ, LAMCØ, 2HAC, AØ, 2HBC, BØ, 5H CNEGA, CNEGA, 2HAE, AE,		
12HJJ,JJ,2H+H,+H,2HCC,DD,5HIØMET,IØMET,3HEFP,EFP,3HEFE,EFE,		
13HSFE, SFE, 3HSFG, SFG, 3HEFG, EFG, 3HEET, ØET, 3HØEM, ØEM,		
13H0EE, BEE, BHMET, MOT, 3HMEM, MOM, 3HMEE, MOE, 3HPLT, PLT, 2HXG, XG,		
12HYG,YG,2HZG,ZG,3HXCG,XDG,3HYDG,YDG,3HZDG,ZDG,3HTFM,TFM,		
15HDANØM, DANØM, 1HF, F, 6HCDPRIM, CDPRIM, 6HATTACK, ATTACK,		
12HCN, CN, 4HAREA, AREA, 4HMASS, MASS, 6HINTERA, INTERA,		
16HINTERP, INTERP, 6HCAPØGE, CAPØGE, 3HCCA, CDA, 5HPRINT, PRINT,		
16HCUTØFF, CUTØFF, 4HCATE, DATE, 5HATMES, ATMES, 6HCØRREC, CERREC,	-	

	KILG# CNTRL 06/1	8/65 •	-	
	EXTERNAL FØRMLLA NUMBER - SØURCE STATEMENT - INTERNAL F	ZRMLLA NUMBER	(8)	
	16HD JURNL, DIURNL, 3HLAG, XLAG, 4HFTEN, FTEN, 5FFTENB, FTENB, 2HKP, AP,			
	16HECLIPT, ECLIPT, 2HSA, SA, 2HSØ, SØ, 4HAMPR, AMPR)	⊬15		
	1F(IERR)76,77,76	√16		
76	WRITE(6,78)	₽17	,18	
78	FØRMAT(1HO17HCARD_FØRMAT ERRØR) CALL PDUMP	#19		
	GRIRTS	120		
77	CONTINUE	<u>√21</u>		
. ,	IF(@ET.EQ:-O.)G@ T@ 4	, 22	,23	.24
	IF(@ET(2).GT.1.)GØ TØ 3	, 25	.26	+27
	DØ 2 I=3, 8	¥28		
_	IF(@ET(1):NE0.)GE TØ 200	√29	• 30	√31
2	CONTINUE	¥32	,33	
	MVAP2G=2ET • (1:+9ET(2))	#34 #35		
	MVPERG=0ET+(10ET(2)) SWIT=1.	136		
	GØ TØ 100	127		
3	DZ 300 [=3,8	,3 e	-	
	IF(2ET(1):NEO.)G0 TØ 301	139	, 40	J41
300	CØNTINUE	, 42	,43	
	MVAPOG=0ET	444		
	MYPERG * ØET (2)	y45		
	SWIT=1.	.46 .47	-	
301	GØ TØ 100 TEMP=(@ET+@ET(2))/2.	*48		
301	DET(2)=(2ET-DET(2))/(DET+DET(2))	,49		
	ØET=T6MP	450		
	GØT0200	·51		
4	IF(@EM.EQO.)GØ T@ 7	√.52	,53	• 54
	1F(@EM(2):GT.1:)GØT@ 6	y <u>5</u> 5	,56	√57
	DØ 5 I=3,8	158		
5	IF(@EM(1).NE0.)G@TØ 200	, 59 , 62	,60	, € 1
כ	CONTINUE MVAPOG=0EM*(1.+0EM(2))	#64	,05	
	MVPERG=0EM*(10EM(2))	, 65		
	SWIT=1.	, 66		
	GØ TØ 100	16.7		
6	DØ 302 I=3,8	•' £ 8		
302		,169	,70	
	MVAPOG=OEM	¥71		
	MVPERG=0EM(2) IF (0EM(1).NE0.) G0 T0 303	.72 .73	,74	·75
	SWIT=1.	.76	, , , ,	112
	GC TO 100	* * 77		
303	TEMP=(2EM+2EM(2))/2.	√78		
	0EM(2)=(0EM-0EM(2))/(0EM+0EM(2))	√79		
	ØEM≈TEMP	•480		
_	GZTC200	√81		•
7	IF(@EB.EOO.)G@ T@ 10	¥82_	, 83	.84
	IF(0EE(2).GT.1.)G0T0 9 D0 8 1=3.8	√85 √88	, 86	√87
	IF(REE(I):NE0.)GRT0200	468	, 90	•91
8	CONTINUE	J92	,93	• -
ŭ	MVAPØG=@EE+(1.+@EE(2))	194	•	
	MVPERG=0EE*(10EE(2))	J95		
	SWIT=1.	• 96		

	KILGØ CNTRL BXTERNAL FØRMLLA NUMBBR -	SØURCE STATEMENT -	06/18/65 INTERNAL FERMULA	NUMBER (S)
	GØT£100			₇ /97
9	DØ 304 I=3,8			/58
	IF(@EB(I):NE0.)G@TØ305		-	/59 ,100 /101 /102 ,103
304				√164
	_MVAPØG=ØEE MVPERG=ØEE(2)			√105
	SWIT=1.			,1G6
	GATE100			∤167
305	_TEMP={ DEE+BEE(2))/2.			¥168
	ØEE(2)=(ØEE-ØEE(2))/(ØEE+ØEE(2))			√109 √110
	ØEE=TEMP _		-	7111
	GØT 200 IF (MØT.EQ0.)GØ T2 13			v112 .113 v114
10	IF(MOT(2).GT.1.)GØ TØ 12	-		115 ,116 7117
	DØ 11 I=3,48			,111e
	IF(MOT(I) NEO.)GETØ20C	•		119 120 121
11	CØNTINUE			√122 ,•123 √124
	MVAPØG=MØT+(1.+MØT(2))			1125
	MVPERG=MØT+(1MØT(2)) SWIT=1.	÷ . =		·126
	GØT 2100			, 127
12	DØ 306 I=3,8			√12 €
	IF (MØT (I) -NE 0.) G@TØ307			129 130 131
306	CONTINUE			√132 ,133 √134
	MVAP@G=MØT	-		√135
	MVPERG * MØT(2) SWIT=1.			, 136
	GØTØ100	•		√ 137
307	TEMP=(M0T+M0T(2))/2.			138
	MRT(2) = (MRT-MRT(2))/(MRT+MRT(2))			√139 √140
	MØT≖T6MP	A	-	₹140 ₹141
1.2	GCT0200 IF(M0M.EQ0.)GCT0 16			1142 ,143 ,144
1_3	1F(M@M(2).GT.1.)GØT@15			y145 y146 y147
	DØ14 F=3,18			√148
	IF (M ØM (I) . NE Q.) GE TØ 2 GC			149 150 151 152 153
14	CONTINUE	- = 200 4		√152 ,153 √154
	MVAPØG=MØM#(1.+MØM(2)) MVPERG=MØM#(1MØM(2))			¥155
	SWIT=1:		•	√156
	GETE100		_	√157
15	DØ 308 I=3,8			√158 156 140 (141
	IF(MOM(I) NE 0.) GØTØ3@S			,159 ,160 ,161 ,162 ,163
308	CONTINUE			√162 √163 √164
	MVAPØG=MØM MVPERG=MØM(2)			√165
	CWIT-1.			166
	GØTØ100			•167
309	TEMF=LMØM+MØM(2))/2.			√168 √169
	M@M(2) = (M@M-M@M(2))/(M@M+M@M(2))			√159 √17C
	_MØM=TEMP		•	.171
_16	GØTØ200 IF(MØE.EOO.)GØTØ 200			₹172 -173 -174
	IF(MØE(2).GT.12)GØTE 18			√175 ,176 √177
	EØ 17 I=3,8			,178 ,179 ,180 ,181
·	IF(MØE(I).NE0.)G@TØ2G0			,179 ,180 ,181

-	KILGØ CNTRL External førmu	LA NUMBER -	SØURCE STA	TEMENT -	06/18/65 Internal Førmula i	NUMBER 6	5)
17	CØNT INUE					√182	,183
•	MVAPEG=MØE+(1.+MØE	211	-			184	· · · · · · · · · · · · · · · · · · ·
	MVPERG = MØE + (1 MØE					¥185	
	SWIT=1.					,186	*
	GØTØ100					,187	
18	DØ 310 I=3,8			•		¥188	
	IF(MØE(I) NE 0.) GR	TØ311				₹189	190 /191
310	CONTINUE			•		192	,193
	MVAPØG≠MØE					/194	
	MVPERG*MØE(2)					J195	
	SWIT=1.					119€	
	G2TØ100					197	
311						.198	
	MOE(2) = (MOE-MOE(2))	7(MBE+MBE(2))				J199	
	MØE=T5MP			•		+200	
200	GØTØ200					,261	
200	SWIT=0.	DA BUTO ILANDO	Ad Da avec+	45 TT DD	*	<u>√</u> 202	
	CALL TREMIKERTH, KAF 1DD, IOMET, EFP, EFE, SF						
	1PLT, XG, YG, ZG, XDG, YC				-	203	
	MVAPØG=MVAPØG+AE	CATOOMICHALAN	EG PHYT LING PIN	OD TABILOTARGE!		,2C4	
	MVPERG=MVPERG+AE		*		• •	J205	· — ——
100						J206	
•••	XAMPR=AMPR					J207	
	X A Ø = A Ø					√2C8	
	XBØ=BØ				•	¥209	
	XAE=A8					. 21C	
	XJJ=J J					/211	
	XHH=HH					√212	
	XSA≈ SA					√213	
	XSR=SØ					∤214	
	X CD≈ DD					.215	
	X D A N ØM = D A N ØM				•	, 216	
	XF=F					7217	
	XPRINT=PRINT XATMOS=ATMOS					√218 √219	
	XDIURN=DIURNL					₹215 ₹22C	
	XXLAG=XLAG				-	¥221	
	XMVA=MVAPØG					1222	
	XMVP=MVPERG				-	1222	
	DØ 50 I=1,25					,224	
	XCDPM(I)=CDPRIM(I)	-	*			,225	
50	XMASS(I)=MASS(I)						,227
-	XECLPT = ECL 1PT	•			•	,228	
	DØ 60 [=1:153					¥229	
	XFTENB(I)=FTENB(I)					,23C	
	XFTEN(I)=FTEN(I)					,231	
60	XAP(I)=APtI)					1232	,233
	DØ 51 <u>I=1,45</u>					J234	
	XATIK(I)=ATTACK(I)					¥235	
	XCN(I) = CN(I)				-	,236	220
51	XAREA(I)=AREA(I)					·237 ·239	,238
	DØ 52 I=1.º6 XINTA(I)=INTERA(I)					-24C	
52	XINTP(I)=INTERP(I)					y240 y241	,242
. 22	DØ 53 I=1,10	~		-	-	7241 7243	1 4 7 2
	00 00 1-4410					4675	

EXTERNAL FØRMULA NUMBER - SØURCE STATEMENT	- INTERNAL FORMULA NUMBER(S)
XDAPØ(I)=DAPØGE(I)	, 244 , 245
D0 54 I=1, 50	√ 246
XCCA(I)=CDA(I)	, 247 , 248
XCUT=GUTØFF	1249
XCUT(2)=CUT0FF(2)	√ 25€
D0 55 I=1,3	√251
XXDAT(I)=DATE(I)	·252 ·253
	• 254
	+255 . 256
IF(SWIT)57,57,58	√257
	√25 8
XASN=ASNB	¥259
XARG=ARGB	√ 26C
GC TØ 59	, 261
X IN= INC	√ 262
XASN=CAPØ	√263
XARG=WØ	<i>;</i> 264
CALL DIFE	√ 265
GØTØ 75	, 26€
END	• 267
	DØ 54 I=1,50 XCDA(I)=CDA(I) XCUT=GUTØFF XCUT(2)=CUTØFF(2) DØ 55 I=1,3 XXDAT(I)=DATE(I) DØ 56 I=1,110 XCØR(I)=CØRREC(I) IF(SWIT)57,57,58 XIN=INCB XASN=ASNB XARG=ARGB GØ TØ 59 XIN=INC XASN=CAPØ XASN=CAPØ XARG=#Ø CALL UIFE GØTØ 75

	KILGØ LIFE							068	18/65		
	EXTERNAL	EØRMULA	NUMBER	-	SØURCE S	TATEMENT	- 11			NUMBERS	5)
	SUBROUTINE LI	FE									
	REAL JJ.KERTH		TP.MASS.M	T. IN	TERA.INTE	RP. INC. NT					
	DIMENSION CATI			.,		9 2 110 9 142					
	DIMENSION COR			111							
	DIMENSION THE				TCODIAL .						
	1CØSE(365),E(3										
	2ATTACK (45), ST					•		-			
•	DIMENSION FTE										
	COMMON /ARCC/										
	1PSPØ,RHØ,RHØSI										
	DATA DPR/57.2			PIZ	0.1410729	1/,SNBCI/6	SHSINE	'			
	1.BCITEM/6HTIM										
	DATA AIDAGHA)/6HP	/,06	E11D/6HDE	I A I L / •					
•	1 SHØID/6HSHØRT										
	DATA ENDID/6HI										
	DATA CXMENTH(21/312,28	.,31.	,,30.,31.	,30.,31.,3	31.,				
	130.,31.,30,,3										
	DATA ARDID/6H		LSSIDX6HC	SSTC	/,DINER/	6HNØRMAL/	•				
	1DIMM/6HMEAN										
	DATA AT1/6HAR	C /,AT2	2/6HUSSTD	/ ,A1	T3/6HPRE	/ # AT4/61	ASMALL /	,			
	LAT5/6HSPEOAR/										
	COPPON/HBLK/X						,XPRINT,				
	LXATMØS, XDIURN,										
	2XATTK(45), XCN						LO),		_		
	3XCDA(50),XCUT										
•	4.XECLPT,XAMPR					, XAP(153),	XSA,XSR				
	COMMON/CLK/AP										
	LCØSI, JCNT,			, A TTA	ACK,	€N,				_	
	ZMASS, ADØT, PDØ										
	Gase, E, D/										
	A, CAPDM1, CAPID,			1,504	A, SMACM1	, SMAID, CAF	PM1,CAPW				
	5, CAPØ, DATE, XME										
	S, INTERA, INTER		BM, DAPØSE	(101,							
		ØFF(2),			AI, RPA	I,SACØTI					
	B,REVØL,MT,VPI,										
	9, PN(6), AN(6), F										
	L, CØRREC, SØLAR,		LEN ND FREV	L, XLA	G,RHØXX,	SE,SA					
	L,EI,RIPP,RIPA,	AMPR									
	DØ 10 I=1,365									• ! 1	
	CØSE(I)=0.									,•12	
	E(I)=0.									#3	
	STEPA(I)=0.									#4	
10	STEPP(1)=0.									¥5	• 6
	REV1=0.									+7	
	REVEL=0.									4 €	
	TIME1=0.								_	, 9	
	DP .104 I=1,5									√10	
101	INTERA(1)=C.							-		•111	
104	INTERP(1)=C.									≠ 12	,13
	DD=0.	-								√14	
	TIME=0.									v 15	
7000	DØ 7000 I=4,11					• • • •				,16	
.000	CCRREC(1)=C.	1								+17	.18
	DØ 857 [=1,153									119	
	FTENB(I) = X FTEN	.0111								.≠2 C	

	KILGØ LIFE				18/65			· •
	EXTERNAL FORMULA NUMBE	R - SØURCE	STATEMENT		ERRULA_N	MEER (§)	
						.21		
053	FTEN(I)=XFTEN(I)					¥21 √22	,23	
	AP(I)=XAP(I)					124	123	
	ECLIPT = XECLPT	· ·				25		
	AMPR=XAMPR SA=XSA					,26		
						127		
	KERTH-XKERTH					128		
	A3=XAB					129		
	BØ=XBØ					,30		
	AE=XAB					,31		
	JJ=XJ\$					132		
	HH=XHH					123		•
	DD=XDD					. 34		
	OANEM=XDANEM					¥35		
	F=XF					136		
	PRINT=XPRINT					.27		
	ATMES=XATMES					138		
	DIURNL = XDIURN			-		139		
	XLAG=XXLAG					√ 40		
	AØØ=XMVA					J41		
	P00=XMVP					142		
	DØ 850 I=1,25					₽43		
	COPRIM(I)=XCOPM(I)					144		
850	MASS(I)=XMASS(I)					,45	, 46	
	02 851 I=1,45					<u> 147</u>		
	ATTACK(I)=XATTK(I)					,48		
	CN(I)=XCN(I)					•149		
851	AREA())=XAREA())					, 50	,51	
	DØ 852 I=1,6					, 52		
	INTERA(I)=XINTA(I)					J53		
852	INTERP(I)=XINTP(I)					154	, 55	
	DØ 853 I=1,10					#56 *57	50	
853	DAPEGE(I)=XDAPE(I)					157	• 58	
	DØ 854 I=1,50					159	. 1	
. 8 <u>.</u> 54	CDA(I)=XCDA(I)					¥60	,61	
	CUTEFF=XCUT					√62 √63		
	CUTEFR(2)=XCUT(2)					164		
0.55	DØ 855 I=1,3					√65	,66	
.855	DATE())=XXDAT() DØ 856 I=1,11C			-		√ 67	100	
856	CORREC(I)=XCOR(I)					168	, 69	
ه د ه	INC=XIN					.70	,	
	CAPE=XASN					√71		
	WE=XARG					172		
3015	CONTINUE					.73		
	FØRMAT(1H0,1A6/)				**		-	-
	WRITE(6,30)					174	,75	
30	FORMAT (1H1,25x,27H**** EAR	TH CONSTANTS ***	**)				-	
	WRITE(6,31)JJ, HH, CC, KERTH, A	E,F				₽76	,77	,78
31	FØRMAT (1HO 2 1HEARTH SECEND H							
	120HEARTH THIRD HARMENICE15.		_					
	221HEARTH FOURTH HARMONICE15		-	•				
	31H 40HEARTH GRAVITATIONAL C		ERS.					_
	423H CUBED/SECRNDS SCUAREDIB							-
	51H 30HEQUATORIAL RACIUS (KI		х,					
	611HELDIPTICITYE15.8/)							

								-		
	KILGØ LIFE				06/18					
	<u></u>	SØURCE ST	ATEMENT	-	INTERNAL FE	RMULA	NUMBER (5)		
	WRITE(6,1400)						J79	.80		
1400	FORMAT(1HO,25x,32H**** BAULISTIC	DADAMETERS	*****				• • • –	***		
1 - 00		PARAMETERS	,							
	IF(CDA-SYBCI)32,33,32						184			
33	WRITE(6,34)						√ € 2	, 23		
34	FORMAT(1H011HSPECIAL CDA)									
	WRITE(6.11CO)						َ 49 ہ	. 85		
1100							PCT	. 6.7		
1100	FZRMAT(1H 17HREV(CYCLES/ØRBIT),5X	AT CHIT LEIDY	1211							
	KK=2						. 86			
1103	IF(CCA(KK)-ENCID)11C1,1102,11C1						√87			
	KK=KK+2			•			88			
	G2T21103						_•/89			
1102	KK≈KK-12						• ' S C			
	DØ 1104 I=1,KK;2						√ 91			
1104	WRITE(6,1105)CDA(1+1),CDA(1+2)						92	,93	, 94	, 55
							, , ,	173	. 77	,,,
	FØRMAT(1H E15.8,5X,E15.8)									
32	WRITE(6,35)						,56	, 97		
35	FORMATITHO24HANGLE OF ATTACK FUNC	DIENI								
	WRITE(6,36)						198	, 99		
2.4							, ,0	. , ,		
	FORMAT(1H 14HALPHA(CEGREES),6X,									
1	.16HANØMALY.(DEGREES))									
	KK=2						√10C			
702	IF(ATFACK(KK-1)-ENCID)700;701,700			*			,101			
	KK=KK+2									
100							, 102			
	GØ TØ 702						/103			
701	KK=KK-2						√104			
	DØ 38 1=1, KK, 2			-			,1C5			
	WRITE(6,37)ATTACK(1),ATTACK(1+1)						_ 106	,107	#108	
37	FOPMAT(1H E15.8,5X,E15.8)									
38	CONTINUE						√10 5	,110		
	WRITE(6,39)					-	111	,112		
20							* 111	,112		
39	FORMATIIHO28HCØEFFICIENT OF DRAG	HOVE ITENI								
	KK=2						.113			
705	IF(CN(KK)-ENDID)703,704,703						.114			
	KK=KK+2						,115			
, 0 5										
	G3 T8 705						#11 6			
704	CØNT INUE						√117			
	IF(CN-BCITIM)40,41,40						.118			
40	WRITE(6,42)				•		1119	,120		
		nc.,					4.1.1.	1120		
42	FØRMAT(1H 2HCN, 18X, 14HALPHA (DEGRE	03//								
	G0 T0 44						J121			
41	WRITE(6,43)						¥122	,123		
43	FORMAT(1H 2HCN / 18x, 10HTIME(DAYS))					-			-	
	KK=KK-2						√124			
77					· - ——					
	D2 46 I=1,KK,2						√ 125			
	WRITE(6,45)CN(I+1),CN(I+2)						.12€	,127	·128	
45	F@RMAT(1H E15.8,5x,E15.8)				•		-			
	CONTINUE						,129	,130		
40						-			-	
	WRITEL6,47)						¥131	,132		
47	FØRMAT(1H07HCCPRIME,13X;									
1	19HPERIGGE(KILØMETERS))									
	KK=2						v133			
700	IF(CDPRIMLKK-1)-ENC ÎD)706,707.706									
							134			
706	KK=KK+2						√135			
	GØ TØ 708						√136			
707	KK=KK-2						/137			
			-							
	DØ 49 I=1,KK,2						√138			

KILGØ LIFE	06/18/65 THENT INTERNAL SCREET	NIIMOED#EX
BXTERNAL FORMULA NUMBER - SOURCE STAT	EMENT - INTERNAL FORMULA	MOMEER (2)
WRITE(6,48)CDPRIM(1),CDPRIM(1+1)		139 ,140 <u>1141</u>
48 F2RMAT(1H E15.8,5X,E15.8)		
49 CONTINUE	_	/142 , 143
WRITE(6,50)		√144 , 145
50 FØRMAT(1H028HEFFECTIVE DRAG AREA FUNCTION)		
KK=2		≠146
		. 1147
709 KK=KK+2		√148
G0_T0_7 <u>11</u>		√149 √150
710 CONTINUE		√151
IF(AREA-BCITIM)51,52,51	· •	152 ,153
51 WRITE(6,53) 53 FRRMAT(1H 20HAREA(METERS SQUARED)#3X;		,
114HALPHA(DEGREES))		
GØ TØ 55		v154
52 WRITE(6,54)		,155 ,156
54 FORMAT (1H 20HAREA (METERS SQUARED) 43X.		
110HTIME(DAYS))		
55 CONTINUE		¥157
KK=KK-2		√158
D0 57 I=1, KK, 2	-	√159 -146 141 -1163
WRITE(6,56)AREA(1+1), AREA(1+2)		160 ,161 ,162
56 FØRMAT(1H, E15.8,8X,E15.8)		√163 •164
57 CONTINUE		165 166
WRITE(6,59)		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
58 F@RMAT(1H014HMASS C@NSTANTS) IF(MASS-BOITIM)59,60,59		√ 167
59 WRITE(6,61)MASS(2)		,168 ,169 ,170
_61 FORMAT(1H 23HINITIAL MASS(HILEGRAMS)E15-8/)		
IF(MASS(3))62,70,62	•	≓171
62 WRITE(6,63)		√172 → 173
63 FORMAT(1H 23HMASS CECAY RATE(KG/DAY)+3X+		
114HFINAL MASS(KG))		
KK=2		y 174
_714 1F(MASS(KK+1)-END10)712,713,712		↓175 ↓176
712 KK=KK+2		+17C +177
GØ TØ 714		178
713 KK=KK-2		¥17S
DØ 200 I=1,KK,2 WRITE(6,64)MASS(I+2),MASS(I+3)		180 ,181 ,182
64 FORMAT(1H E15.8,11X,E15.8)		
200 CONTINUE		,183 ,184
GØ TØ 70		v185
60 WRITE(6,65)	· · · · · · · · · · · · · · · · · · ·	√186 , 187
65 FORMAT (1H 15HMASS (KILOGRAMS) . 3X.		
110HTIME(DAYS))		
KK=2		√188
717 [F(MASS(KK)-ENDID)715,716,715		√16S
715 KK=KK+2		190 191
GØ TØ 717		₹191 ₹192
716 KK=KK-2	A Committee of the Comm	,193
D2 202 I=1,KK,2 WRITE(6,66)MASS(I+1),MASS(I+2)		√194 ,195 √196
66 FORMAT(1H E15.8,5X,E15.8)		
202 CØNTINUE		197 ,198
70 CONTINUE		¥199
· · · · · · · · · · · · · · · · · · ·		

	KILGØ LIFE	06/18/65		
	EXTERNAL FORMULA NUMBER - SOURCE STATEMENT -	INTERNAL FRANULA NUMBER	S)	
	WRITE(6+14C1)	√29 C	- 201	
1401	F2RMAT(1H0,25x,30H***** DENSITY PARAMETERS *****)	¥26C.	4201	
	DELYR=DATE(3)+1957.	, 1202		
	XDAYS=DELYR+365.	≠202		
	XLEAP=DELYR/4.	√204		
	I=XLEAP	≠ 205		
	XLEAP=I XDAYS=XDAYS+XLEAP	•/206 •/207		
	K=DATE(1)	#20E		
	YDAYS=0.	¥209		
	K=K-1	√21C		
	DØ 1700 I=1,K	√211		
1700	ZYAGY+(I)+TREMX=ZYAGY	≠212	,213	
	XDAYS=XDAYS+YCAYS+CATE(2)	+214		
	IF(CATE(1)-2.)1702,1701,1701	(215		
	XLPE=DATE(3)-1956. XLPE=XLPE=4.	√216 √217		
1104	IF(XLPE)1702,1703,1704			
1703	XCAYS=XDAYS+1.	√215		
	XDAYS=XDAYS-365.	*22C		
	WRITE(6,17C5)CATE, XCAYS	√221	,222	,223
	FORMAT(1HO6HMENTH=ES.2,5X,4HDAY=ES.2,5X,4HYEARE11.4,5X,			
	133HCAYS ELAPSED SINCE DEC. 31 , 1957E15.8)			
	IF(ATMØS-AT1)6002,6000,6002 WRITEL6,6001)	₽224	224	
	FARMATILH 20H1959 ARDC ATM#SPHERE1	√ 225	,226	
0001	GØTØ 6016	√ 227		
6002	1F(ATMØS-AT2)6005,6003/6005	.228		
	WRITE(6,60C4)	¥229	,230	
6004	FØRMAT(1H 29H1962 L.S. STANDARD ATMESPHERE)		•	
	GØTØ 6016	<u>, 1</u> 231		
	IF(ATMØS-AT3)6008;6C06;6GC8	₂ 232		
	WRITE(6,6007)	√233	.234	
6007	FØRMAT(1H 21HPØE ATMØSPHERE (LMSCO) GØTØ 6016	¥235		
6008	IF(ATMØS-AT4)6011,6C09/6011	,235		
	WRITE(6,6010)	,237	,238	
	FORMAT(1H 28HFUNT SMALL ATMOSPHERE (LMSC))	,,,,	1230	
	G0T0 6016	₽ 239		
	IF(ATMØS-AT5)6014,6C12,6014	√24 C		
	WRITE(6,6013)	√241	,242	_
6013	FORMAT(1H 28HSPECIAL 1959 ARDC ATMOSPHERE)			
6014	GZTØ 6016 WRITE(6,6015)	√243 √244	,245	
	FORMAT(1H 37HSPECIAL 1962 U.S. STANCARD ATMESPHERE)	7244	, 243	
	CØNTINUE	√24€		
	WRITE(6,1412)	¥247	.248	
1412	FØRMAT(1H018HCENSITY C@RRECTION)	•	•	
	WRITE(6,1413)	∤249	.250	
1413	FØRMAT(IH 2HDC;18x,19HPERIGEE(KILEMETERS))			<u> </u>
1414	KK=2	√251		
	IF(CØRREC(KK-1)-ENCID)1414;1415,1414 KK=KK+2	• 252 • 253		
1714	G0T0 1416	√253 √254		· -
1415	KK±KK-2	¥255		
	DØ 1417 I=1,KK/2	¥256		
		,		

KILGØ LIFE BXTERNAL FØRMULA NUMBER - SØ	O6/18/65 URCE STATEMENT - INTERNAL FORMULA NUMI	= B <u>E</u> R (S)		
WRITE(6,1413)C@RREC(1);C@RREC(1+1)		257	258	√259
1418 FORMAT (1H E15.8,5x,E15.8)				
1417 CONTINUE	الور و بر سر سرور بر این	36C •	261	
WRITE(6,1465)		262 •2	263	
1465 FORMAT (1HO2HKP / 18X, 4HYEAR)				. = .
KK=3	· _ ·	64		
1452 IF (APLKK-2)-ENDID)145C+1451-1450	91	65		
1450 KK=KK+2	y:	66		
GØT£1452	: ابو	67		
1451 KK±KK+3	g) i	969		
DØ 1453_I=1,KK-2	y)	65		_
WRITE(6,1454)AP(I),AP(I+1)	y/ ;	70 ,2	271	√272
1454 FORMAT(1H E15.8,5X,E15.8)				
1453 CONTINUE		73 ,2	274	
WRITE(6,1455)	şt.	75 .2	276	
1455 FORMAT (1HO4HFTEN, 16x, 4HYEAR)	· - ·			
KK=3	√ 2	77		
1458 IF(FTEN(KK-2)-ENDIC)1456,1457,1456	v	97!	*	
1456 KK=KK+2	42	75		
GØT@1458		8C		
1457 KK=KK+3		81		
DØ 1459 F=1,KK,2		182		
WRITE(6,1454)FTEN(1),FTEN(1+1)	, i	83 .2	284	.285
1459 CONTINUE	· · · · · · · · · · · · · · · · · · ·	86 .2	287	-
WRITE(6,1460)			289	
1460 FARMAT (1HO5HFTENB, 15X, 4HYEAR)				
KK=3	, 2	90		
1463 IF(FTBNBLKK-2)-ENDIC)1461,1462,1461		91	-	
1461 KK=KK+2		92		
GØT@1463		93	•	-
1462 KK=KK-3		94		
DØ 1464 I=1,KK;2		95		
WRITE(6,1454)FTENB(I),FTENB(I+1)			97	√298
1464 CONTINUE			00	
IF(CIURNL-CINPR)1422.1420/1422	, √3	01		
1420 WRITE(6,1421)	· · · · · · · · · · · · · · · · · · ·	02 .3	903 ~	
1421 FØRMAT(1HO16HCIURNAL NØRMAL)				
GØTe1427		04		
1422 CONTINUE	و بو	C 5		
1423 WRITE16.1424)			107	
1424 FØRMAT (1H014HC LURNAL MEAN)				
1427 CENTINUE	· · · · · · · · · · · · · · · · · · ·	9.0		
WRITE(6,1429)	•13	09 ,3	10	
1429 FORMAT(1HO, 25x + 26H SPECIAL EVENTS				
1F(CUTØFF=AID)71,72,71	[*]	11		
72 WRITE(6,73)CUTØFF(2)		12 ,3	13	√314°
73 FORMAT (1HO17HAPØGEE CUTØFF (KM)E15-8)				
GZ TØ 80	•/3	15		
71 IF(CUTØFF-PID)74+75.74	, i 3	16		
75 WRITEL6,76)CUTØFF(2)			18	√319
76 FORMAT(1H018HPERIGEE CUTØFF(KM)E15.8)				
GØ TØ 80		ŹĈ		
74 WRITE(6,77)			22	
77 FORMATI (1HO19HEARTH IMPACT CUTOFF)				-
80 CONTINUE	<u>د</u> ب	23		
IF(INTERA)83,83,82		24		
TI I THI CHAIDSECREDE	•			

	KILGØ LIFE Bxternal førmula <u>n</u> umber	- SØURCE STATEMENT	06218265 - INTERNAL FERMULA NUMBE	R(S)
82 84	WRITE(6,84) FØRMAT(1H034HTIME FØR APØGEE	INTERPOLATION(DAY))	. 432	25 -326
	DØ 86 I=1.5		√32	7
	WRITE(6,85)INTERA(I)		y = 4 y 32	
85	FØRMAT(1H E15.8)		732	28 ,329 ₽
	CØNTINUE			
			√33	
	IF(INTERP)87,87,88			
	WRITE(6,89)		33	34 ,335
89	FØRMAT(1H035HTIME FØR PERIGEE	INTERPØLATIØN(CAY)}		
	DØ 91 I=1,5		√23	16
	WRITE(6,90)INTERP(I)		¥23	7 ,338 ,
90	F2RMAT(1H E15.8)		,	,, 1220 <u>1</u>
91	CØNTINUE			C .341
87	CONTINUE			
• •	WRITE(6,1430)			-
1420			4,34	13 ,344 _
1430	F9RMAT(1H0,25X,30H***** INFTI	AL CENDITIONS *****)		
	IFTPRINT-DETIC)92,53,92		√34	5
	WRITE(6,94)		¥34	6 ,347
. 94	FORMAT (1HO15HCETAIL PRINTBUT)			• - · ·
	GØ TØ 100		#34	
92	IF(PRINT-SHØIC)95,56,95		y 34	
	WRITE(6.97)		,/35	* **
	FORMAT (1H014HSHØRT PRINTØUT)		r = 2	C ,351
,,	GØ TØ 100			
0.5	WRITE(6,98)		435	
			235	3 .354
	FØRMAT (1HO15HNØRMAL PRINTEUT)			
100	CONTINUE			5
	WRITE16,81)CANØM		· 25	
81	FORMAT (1HO21HANOMALY STEP (DEGR	REE SIE 15 • 8)		
	WRITE(6,101)		√35	9 ,360 "
101	FØRMAT (1HO16HAPØGEE STEPS(MM)	.13Xa	***	7 7 300
	118HPERIGEE RACIUS(KM))	,	* * *	
	DØ 103 I=1,10,2		13.4	
	WRITE(6,102)DAP@GE(1),DAP@GE()	1411	+ <u>3</u> 6	
102	F2RMAT(1H E15.8,15x,E15.8)	1471	√36	2 ,363 ,
103	CONTINUE		√36	5 ,366
	TEMM=0.			7
	TEMP=360-/CANOM		√36	€
	RADDE=DANØM/OPR		√36	
	I=TEMP			
	JCNT=I+1			
	K=2			
	IF(I)2,2,3		√ 27	
3	I=I-1		, /27	
	TEMM=RADDE+TEMM		√37	
	CØSE(K)≃CØS(TEMM)		√37	6
	E(K)=TEMM+CPR		≠ 37	7
	K=K+1		. 37	
	GØ TØ 4			
2	CØSE=1.	- -	. 38	
	E=0.			
	DE23=RADDE/3.			
			438	
	SINI=SIN(INC/CPR)		y'38	
	C3SI=G0S(INC/CPR)		, 38	
	KA =1		√38	5
	KP=1		,138	

KILGO LIFE 06/10/65 EXTERNAL FORMULA NUMBER - SOURCE STATEMENT - INTERNAL FORMULA	NUMBER	.5)
EXTERNAL FORMULA NUMBER - SOURCE STATEMENT - INTERNAL FORMULA		.27
	_ /387	
302 IF(A00-DAP@GE(I+1))300/301/301	4388	
300_1=1+2	_ <u> </u>	
GØ TØ 302	₩39C	
301 DA=CAPØGE(1)	_433 <u>1</u>	
DAG2=DA/2:	₹392	
PER=PØØ	/393	
PER1=R#0	₽394	
<u>APØ=AØØ</u>	¥395	
CALL PDAD	√ 396	
ACTM1=ADØT	1397	
IF(PRINT-DETIC)105,106,105	, 398	
106 WRITE(6,15C)	,399	,400
CALL PRINTI	4401	
150 FORMAT (1H146HAPOGEE, PERIGEE, MAJOR AXIS, AND EARTH RADIUS (KM)/,		
11x, 48HAPØGEE, PERIGEE, MAJØR AXIS RATES (KM/DAY) MASS (KG)/,	•	
21x, 39HASCENDING NECE, ARGUMENT OF PERIGEE (DEG)/.		
31x, 38HNØDE, PERIGEE REGRESSIØN RATES (DEG/DAY)/,		
41X,24HPERIGEE VELOCITYIKM/SECI/,		
51X,19HØRBITAL PERIZC(MIN)/		
61x,29HLIFETIME SPENT(@RBIT AND DAY)/		
71X,47HRHJ(KG/M3), EI(UNITLESS), RIPERG AND RIPAPG(KM)/)		•
GØTE 108	, '402	
105 IF(PRINT-SPRIC)107,106/107	,1403	
107 WRITE(6,109)		.405
109 FORMAT(1H129HAPØGEE, PERIGEE, MAJØR AXIS/AND,		
117H, EARTH RADIUS(MM), 1Xx		
243HAPØGEE, PERIGEE, AND MAJOR AXIS RATES(KM/DAY)/,1X/		
329HLIRETIME SPENT (CRBIT AND DAY))		
WRITE(6,11C)APØ,PER1,AI,RPAI,ADØT,PDØT,SADØTI,REVØL,TIME	₹406	407 ,408
110 FORMAT(1HO6HA E15.8,3X,6HP E15.8,3X,6HAXIS E15.8,3X,		•
16HRADIUSE15.8/,1X,6HADØT E15.8,3x,6HPDØT E15.8,3X,		
DALIANTING ELLS R. 24 (4.408) IT F15.8.334.4T1MF F15.8/)		
26HAXID#TE15.8.3X46H#RBIT_E15.8.3X46HTIME_E15.8/)	1465	**
26HAXIDØTE15.8.3X,6FØRBIT E15.8,3X,6HTIME E15.8/) 108 CØNTINUE	√469 √410	**
26HAXIDØTE15.8,3X,6HØRBIT_E15.8,3X,6HTIME_E15.8/) 108 CØNTINUE 3001 CALL_RK	,41C	-
26HAXIDØTE15.8,3X,6FØRBIT E15.8,3X,6HTIME E15.8/) 108 CØNTINUE 3001 CALL RK	.41C .411	
26HAXIDØTE15.8,3X,6HØRBIT E15.8,3X,6HTIME E15.8/) 108 CØNTINUE 3001 CALL RK 3021 IF(INTERA(KA))400,4C0,401 401 IF(IIME-INTERA(KA))400,402,402	#41C #411 #412	-
26HAXIDØTE15.8,3X,6F@RBIT_E15.8,3X,6HTIME_E15.8/) 108 CØNTINUE 3001 CALL RK 3001 IF(INTERA(KA))400,4C0,4C1 401 IF(IIME-INTERA(KA))400,4C0,4C2 402 AN(KA)=(APØ-DA)+(INTERA(KA)-TIME11*(APØ-(APØ-DA))/(TIME-TIME1)	\$41C \$411 \$412 \$413	
26HAXJD#TE15.8,3X,6F@RBIT_E15.8,3X,6HTIME_E15.8/) 108 CBNTINUE 3001 CALL RK 3021 IF(INTERA(KA))400,4C0,401 401 IF(ITIME=INTERA(KA))400,402,402 402 AN(KA)=(AP0-DA)+(INTERA(KA)-TIME11*(AP0-(AP0-DA))/(TIME-TIME1) KA=KA*1	741C 7411 7412 7413 7414	
26HAXIDØTE15.8,3X,6F@RBIT E15.8,3X,6HTIME E15.8/) 108 CØNTINUE 3001 CALL RK 3021 IF(INTERA(KA))400,4C0,401 401 IF(ITIME-INTERA(KA))400,402,402 402 AN(KA) = (APØ-DA)+(INTERA(KA)-TIME11*(APØ-(APØ-DA))/(TIME-TIME1) KA=KA+1 GØTE3021	941C +411 +412 +413 +414 +415	· · · · · · · · · · · · · · · · · · ·
26HAXIDØTE15.8,3X,6F@RBIT E15.8,3X,6HTIME E15.8/) 108 CØNTINUE 3001 CALL RK 3001 IF(INTERA(KA))400,4C0,401 401 IF(ITME-INTERA(KA))400,402,402 402 AN(KA)=(APØ-DA)+(INTERA(KA)-TIME11*(APØ-(APØ-DA))/(TIME-TIME1) KA=KA±1 GØTØ3021 400 IF(INTERP(KP))403,4C3,4C4	941C 9411 9412 9413 9414 9415 9416	
26HAXID#TE15.8,3X,6F@RBIT_E15.8,3X,6HTIME_E15.8/) 108 C### C### C### C### C### C### C### C#	741C 7411 7412 7413 7414 7415 7416 7417	
26HAXIDØTE15.8,3X,6F@RBIT E15.8,3X,6HTIME E15.8/) 108 CØNTINUE 3001 CALL RK 3021 IF(INTERA(KA))400,4C0,401 401 IF(ITIME—INTERA(KA))400,402,402 402 AN(KA) = (APØ-DA) + (INTERA(KA) - TIME11 * (APØ-(APØ-DA)) / (TIME-TIME1) KA=KA±1 GØTØ3021 400 IF(INTERP(KP))403,4C3,4C4 404 IF(ITIME-INTERP(KP))403,4C5,405 405 PN(KP) = PER+(INTERP(KP) - TIME1) * (PERI-PER) / (TIME-TIME1)	,41C ,411 ,412 ,413 ,414 ,415 ,416 ,417	
26HAXIDØTE15.8,3X,6F@RBIT E15.8,3X,6HTIME E15.8/) 108 CØNTINUE 3001 CALL RK 3001 IF(INTERA(KA))400,4C0,401 401 IF(INTERA(KA))400,402,402 402 AN(KA)**(APØ-DA)*(INTERA(KA)-TIME11*(APØ-(APØ-DA))/(TIME-TIME1) KA=KA*1 GØTØ3021 400 IF(INTERP(KP))403,4C3,4C4 404 IF(TIME-INTERP(KP))403,4C5,4C5 405 PN(KP)**PER**(INTERP(KP)-TIME1)**(PER1-PER)/(TIME-TIME1) KP=KP*1	,41C ,411 ,412 ,413 ,414 ,415 ,416 ,417 ,418 ,419	
26HAXJD#TE15.8,3X,6F@RBIT_E15.8,3X,6HTIME_E15.8/) 108	941C 9411 9412 9413 9414 9415 9416 9417 9418 9420	
26HAXJD8TE15.8,3X,6+8RBIT E15.8,3X,6HTIME E15.8/) 108 CBNTINUE 3001 CALL RK 3021 IF(INTERA(KA))400,4C0,401 401 IF(ITIME-INTERA(KA))400,402,402 402 AN(KA)=(AP0-DA)+(INTERA(KA)-TIME11*(AP0-(AP0-DA))/(TIME-TIME1) KA=KA*1 GBT03021 400 IF(INTERP(KP))403,4C3,4C4 404 IF(ITIME-INTERP(KP))403,4C5,405 405 PN(KP)*PER+(INTERP(KP)-TIME1)*(PER1-PER)/(TIME-TIME1) KP=KP*1 GBT0400 403 CBNTINUE	941C 9411 9412 9413 9414 9415 9417 9417 9419 9420 9421	
26HAXIDØTE15.8,3X,6F@RBIT E15.8,3X,6HTIME E15.8/) 108 CØNTINUE 3001 CALL RK 3021 IF(INTERA(KA))400,4C0,401 401 IF(ITME-INTERA(KA))400,402,402 402 AN(KA)=(APØ-DA)+(INTERA(KA)-TIME11*(APØ-(APØ-DA))/(TIME-TIME1) KA=KA+1 GØTØ3021 400 IF(INTERP(KP))403,4C3,4C4 404 IF(TIME-INTERP(KP))403,4C5,4C5 405 PN(KP)=PER+(INTERP(KP)-TIME1)*(PER1-PER)/(TIME-TIME1) KP=KP+1 GØTØ400 403 CØNTINUE 1=1	411 412 413 414 415 416 417 418 4419 4420 4421 4421	
26HAXJDTE15.8,3X,6F@RBIT E15.8,3X,6HTIME E15.8/) 108 CØNTINUE 3001 CALL RK 3021 IF(INTERA(KA))400,4C0,401 401 IF(ITIME-INTERA(KA))400,4C0,402 402 AN(KA) = (APØ-DA)+(INTERA(KA)-TIME11*(APØ-(APØ-DA))/(TIME-TIME1) KA=KA+1 GOTE3021 400 IF(INTERP(KP))403,4C3,4C4 404 IF(INTERP(KP))403,4C3,4C4 405 PN(KP)=PER+(INTERP(KP)-TIME1)*(PER1-PER)/(TIME-TIME1) KP=KP+1 GOTE300 403 CØNTINUE 1=1 305 IF(APØ-DAPØGE(1+1))203,304,304	41C 4411 4412 4413 4414 4415 4417 4418 4417 4418 4419 4420 4421 4422 4423	
26HAXJD#TE15.8,3X,6F@RBIT_E15.8,3X,6HTIME_E15.8/) 108 CØNTINUE 3001 CALL RK 3021 IF(INTERA(KA))400,4C0,401 401 IF(ITIME=INTERA(KA))400,402,402 402 AN(KA)=(APØ-DA)+(INTERA(KA)-TIME11*(APØ-(APØ-DA))/(TIME-TIME1) KA=KA*1 GØTØ3021 400 IF(INTERP(KP))403,4C3,4C4 404 IF(ITIME-INTERP(KP))403,405,405 405 PN(KP)=PER+(INTERP(KP)-TIME1)*(PER1-PER)/(TIME-TIME1) KP=KP*1 GØTØ400 403 CØNTINUE I=1 305 IF(APØ-DAPØGE(1*1))203,304,304 303 I=1+2	4410 4411 4412 4413 4414 4415 4416 4417 4418 4420 4421 4422 4423 4424	
26HAXIDØTE15.8,3X,6+@RBIT E15.8,3X,6HTIME E15.8/) 108 CØNTINUE 3001 CALL RK 3021 IF(INTERA(KA))400,4C0,401 401 IF(IIME=INTERA(KA))400,402,402 402 AN(KA)=(APØ-DA)+(INTERA(KA)-TIME11*(APØ-(APØ-DA))/(TIME-TIME1) KA=KA±1 GØTE3021 400 IF(INTERP(KP))403,4C3,4C4 404 IF(ITIME-INTERP(KP))403,4C5,405 405 PN(KP)=PER+(INTERP(KP)-TIMB1)*(PER1-PER)/(TIME-TIME1) KP=KP+1 GØTØ400 403 CØNTINUE I=1 305 IF(APØ-DAPØGE(I+1))203,304,304 303 1=1+2 GØ TØ 305	941C 9411 9412 9413 9414 9415 9417 9417 9421 9421 9422 9421 9422 9423 9425	
26HAXJDTE15.8,3X,6+@RBIT E15.8,3X,6HTIME E15.8/) 108 CØNTINUE 8001 CALL RK 8021 IF(INTERA(KA))+00,4C0,401 401 IF(ITIME-INTERA(KA))+(INTERA(KA)-TIME11*(APØ-(APØ-DA))/(TIME-TIME1) KA=KA+1 GOTE3021 400 IF(INTERP(KP))+03,4C3,4C4 404 IF(INTERP(KP))+03,4C3,4C4 405 PN(KP)**DER*+(INTERP(KP)-TIME1)*(PER1-PER)/(TIME-TIME1) KP*KP+1 GOTE300 403 CØNTINUE 1=1 305 IF(APØ-DAPØGE(!+1))203,304,304 303 I=1+2 GØ TØ 305 304 DA=CAPØGE(!)	7410 7411 7412 7414 7415 7418 7419 7420 7421 7422 7423 7424 7425 7426	
26HAXJD#TE15.8,3X,6F@RBIT_E15.8,3X,6HTIME_E15.8/) 108 CØNTINUE 3001 CALL RK 3021 IF(INTERA(KA))400,4C0,401 401 IF(ITIME=INTERA(KA))400,402,402 402 AN(KA) = (APØ-DA) + (INTERA(KA)-TIME11* (APØ-(APØ-DA))/(TIME-TIME1) KA=KA+1 GØTE3021 400 IF(INTERP(KP))403,4C3,4C4 404 IF(ITIME-INTERP(KP))403,4C3,4C4 405 PN(KP) = PER+(INTERP(KP)-TIME1)*(PER1-PER)/(TIME-TIME1) KP=KP+1 GØTE400 403 CØNTINUE 1=1 305 IF(APØ-DAPØGE(1+1))203,304,304 303 I=1+2 GØ TØ 305 304 DA=CAPØGE(1) DAØ2=DAØ2=	7410 7411 7412 7413 7414 7415 7417 7418 7417 7418 7420 7421 7422 7423 7424 7425 7427	
26HAXID#TE15.8,3X,6F@RBIT E15.8,3X,6HTIME E15.8/) 108 C#NTINUE 3001 CALL RK 3021 IF(INTERA(KA))400,4C0,401 401 IF(ITIME-INTERA(KA))400,402,402 402 AN(KA) = (APØ-DA) + (INTERA(KA)-TIME11 * (APØ-(APØ-DA)) / (TIME-TIME1) KA=KA±1 G#TE3021 400 IF(INTERP(KP))403,4C3,4C4 404 IF(ITIME-INTERP(KP))403,4C3,4C5 405 PN(KP) = PER+(INTERP(KP)-TIME1) * (PER1-PER) / (TIME-TIME1) KP=KP±1 G#TE400 403 C#NTINUE I=1 305 IF(APØ-DAPØGE(I+1))203,4304 304 J=1+2 G## TØ 305 304 DA=CAPØGE(I) DAØZ=DA/2* PER=PER1	741C 74112 7412 7414 7415 7416 7416 7416 7416 7420 7420 7421 7422 7423 7426 7426 7428	
26HAXJD#TE15.8,3X,6F@RBIT E15.8,3X,6HTIME E15.8/) 108 CØNTINUE 3001 CALL RK 3021 IF(INTERA(KA))400,4C0,401 401 IF(ITIME-INTERA(KA))400,4C0,402 402 AN(KA) = (APØ-DA) + (INTERA(KA)-TIME11* (APØ-(APØ-DA)) / (TIME-TIME1)	741C 74112 7412 7414 7416 7417 7418 7420 7421 7423 7424 7425 7426 7428 7428	
26HAXID#TE15.8,3X,6F@RBIT E15.8,3X,6HTIME E15.8/) 108 C#NTINUE 3001 CALL RK 3021 IF(INTERA(KA))400,4C0,401 401 IF(ITIME-INTERA(KA))400,402,402 402 AN(KA) = (APØ-DA) + (INTERA(KA)-TIME11 * (APØ-(APØ-DA)) / (TIME-TIME1) KA=KA±1 G#TE3021 400 IF(INTERP(KP))403,4C3,4C4 404 IF(ITIME-INTERP(KP))403,4C3,4C5 405 PN(KP) = PER+(INTERP(KP)-TIME1) * (PER1-PER) / (TIME-TIME1) KP=KP±1 G#TE400 403 C#NTINUE I=1 305 IF(APØ-DAPØGE(I+1))203,4304 304 J=1+2 G## TØ 305 304 DA=CAPØGE(I) DAØZ=DA/2* PER=PER1	741C 74112 7412 7414 7415 7416 7416 7416 7416 7420 7420 7421 7422 7423 7426 7426 7428	

KILGØ LIFE	06/18/65	
BXTERNAL FØRMULA NUMBER - SØURCE STATEMENT - I	NTERNAL FORMULA NUMBERLS)	
113 WRITE(6,11C)APØ,PER1,AI,RPAI,ADØT,PDØT,SADØTI,REVØL,TIME	,432 ,433	.434
GØ TØ 114	,435	
112 CALL PRINTT	443€	
114 IF(CUTØFF-AID)115,116,115	+437	
116 IF(APØ-CUT2FF(2))13C,13C,3001	¥438	
115 1F(CUTØFF-PID)117,118,117	,439	
118 IF(PER1-CUT%FF(2))130,130,3001	144C	
117 IF(PER1-AE)13C,130,30C1	,1441	
130 IF(PRINT-DETIC)131,132,131	4442	
131 IF(PRINT-SHZIC)133,132,133	,!443	
132 CALL PRINTT	ş: 4 4 4	
GØ TØ 3000	7445	
133 WRITE(6,11C)APØ,PER1,AI,RPAI,ADØT,PCØT,SADØTI,REVØL,TIME	<u> </u>	,448
GØ TØ 3000	,i449	
000 IF(INTERA)500,500,501		
501 WRITE(6,502)		
502 FØRMAT (1H033HAPØGEE ALTITUDE INTERPØLATIØN(KM),3X,		
112HTIME IN DAYS)		
KA=KA-1	<u>√453</u>	
DØ 504 I=1.KA	4454	
WRITE(6,503)AN(I),INTERA(I)	.,455 ,456	,145
503 F2RMAT(1H0E15.8,5X,E15.8)		
504 CONTINUE	,458 ,459	
500 IF(INTERP)505,505,506	446C	
506 WRITE(6,507)		
507 FØRMAT(1H034HPERIGEE ALTITUDE INTØRPØLATIØN(KM),3X√ 112HTIME IN DAYS)		
KP=KP=1	. !463	
DØ 509 I=1,KP	1464	
WRITE(6,508)PN(1),INTERP(1)		:46
508 F@RMAT(1H0E15.8,5X,E15.8)	, , , , , , , , , , , , , , , , , , , ,	•
509 CONTINUE	₹468 •469	
505 CENTINUE	₹47C	
TIME=0.	₄ 471	
T1ME1=0.	1472	
REVEL-O.	4473	
REV1=0.	,1474	
RETURN	¥475	
020 STØP	, 476	
END	√ 477	

KILGØ PDAD 06/	18/65
BXTERNAL FØRMLLA NUMBER - SØURCE STATEMENT - INTERNAL	
SUBROUTINE PDAD	
REAL JJ, KERTH, INTA, INTP, MASS, MT, INTERA, INTERP, INC, NI	
DIMENSION CATE(3). XMONTH(12)	
DIMENSION FTENB(152), FTEN(153), AP\$153)	
DIMENSION CORREC(11C).SOLAR(3C1)	
CIMENSIAN PR(16)	
DIMENSION TN(6), INTERA(6), TN1(6), ENTERP(6),	
1COSE(365),E(365),CCPRIM(25),AREA(45),CN(45), 2ATTACK(45),STEPA(365),FTEPR(365),MASS(25)	
COMMON /ARCC/TEMPT, TEMK, PRESS, POMP,	
1PSPØ,RHØ,RFØSRØ,VISC,VISCSL,KVISC,VS,G	
DATA DPR/57.2957795/, PI/3.14159291/, SNBCI/6HSINE /	
DATA DINGRIGHA GRMAL / DIMNIGHMEAN / DINGNIGHAGNE /	
DATA AIDAGEA /,PID/GHP /,GETID/GHDETAIL/,	
1SHØID/6HSHØRT /	
DATA BNDID/6HEND /	
DATA AT1/6FAREC /,AT2/6HLSSTD /,AT3/6HPPE /,AT4/6HSMALL /,	
1AT5/6HSPECAR/	
COMMON/CLK/APO, PER1, TIME, AE, SINI, WO, F, JJ, KERTH,	-
1CØSI, JCNT, CDPRIM, AREA, ATTACK, CN,	
2MASS,ADØT,PDØT,PDØAC,TIMED	
3, CØSE,E,DAØ2,PER,TIME1,HH,DEØ3	
4, CAPDM1, CAPID, SMAM1, ACTM1, APOM1, SMAH, SMACM1, SMAID, CAPM1, CAPW	
5,CAPØ,OATE,XMONTH,FTENB,AP	
6, INTERA, INTERP, DD, CANZM, DARØGE (101, CDA (50)	
7, PRINT; CUTØFF(2), AI, RPAI, SADØTI	
8, REV@U, MY, VPI, PDI	
9,PN(6),AN(6),REVI	
1, CØRREC, SØLAR, ATMØS, FTEN, DIURNL, XUAG√RHØXX, SØ, SA	
1, EI, RIPP, RIPA, AMPR	
DELYR=DATE(3)-1957.	
xDays=delyr*365.	∮ 2
XLEAP=DELYR/4.	
I=XLEAP	#4
XLEAP=I	<u> </u>
XDAYS=XDAYS+XLEAP	∮ €
K≈DAT8(1)	
YDAYS=0.	4 8
K≈K−1	. , , , , , , , , , , , , , , , , , , ,
DØ 1706 F=1,K	≠ 10
1706 YDAYS=XMØNTH(I)+YDAYS	√11 ,12
XDAYS=XDAYS+YCAYS+DATE(2)	√ 13
IF(CATE(1)-2.)1702,1701,1701	14
1701 XLPE=DATE(3)-1956.	√ 15
1704 XLPE=XLPE-4.	,16
IF(XLPE)1702,1703,1704	≠17
1703 XCAYS=XDAYS+1.	≠18
1702 XDAYS=XDAYS-365.	418
AI=(APØ+PER1)/2.	√ 20
EI=(APØ-PER1)/(APØ+PER1)	≠21
IF(TIME)10,10,11	√22
10 RPAI=AE*(1(SINI*SINI*SIN(WØ/DPRI**2/F))	
B1=1→3.*SINI*SINI/2.	₹24
TEMP=1EI*EI	₹25

	KILGØ PDAD	06/18/65	
	EXTERNAL FØRMILA NUMBER - SØURCE STATEMENT - 1	MTERNAL FERMULA	NUMBER(S)
	TEMP1=SQRT(TEMP)		√ 26
	NI=1.4(JJ4AE/AI+AE/AI+BI/(TEMP#TEMPI))		J27
	NI=SQRT(KERTH/(AI+AI+AI))+NI+24.+36CO.+DPR		√28
	SMAID=JJ+NI+(AE/LAI+TEMP))++2+(215.+SINI+SINI/2.)		₹29
	CAPID=-JJ*NI*(AE/(AI*TEMP))**2*CØ\$I		, 130
	CAPM1=CARØ	_	√ 31
	SWAP1=WØ		√32
	SMAW=#0		433
	CAPW=CAPØ		#34
	APØM1=APØ		y 3 5
	CAPCM1=CAPID .		√ 36
	SMACM1 = SMA ID		+37
	GØ TØ 12		#38
11	DTI=(APØ-APØM1)/ADTM1		139
	IF(AMPR)468,468,469		¥40
468	SINTA=0.		J41
	SINTP=0.		•142
	SINTW=0.		.43
	GØT£470		144
469	CALL SØRAP(XDAYZ:AI,EI;CAPW,SMAW,INC,AMPR,KERTH,SCW,SDRA,SDR	P)	¥45
	SINTA= (2.4 SDRA-SDRP)/3./5.729578		,46
	SINTP=9DRP/3./5.729578		147
	SINTW=SDW+10./3.		¥48
470	SMAW=SMAM1+DT1*(SMACM1+SINFW)		149
2102	IF(SMAW-36C.)2100,2101,21C1		¥50
2101	SMAW=SMAW-360.		√51
	GØT@ 2102		¥52
2100	SMAW=SMAW		, 53
	CAPW=CAPM1+CAPDM1+CTI		√ 54
2105	IF(CAPW-36C.)2103,2104,21C4		55
	CAPW=CAPW=360.		¥56
	GØTØ2105	-	157
2103	CAPW=CAPW		y 58
	B1=13.*SINI*SINI/2.		√59
	TEMP=1EI*EI		¥60
	TEMP1=SORT(TEMP)		√61
	NI=1.+(JJ*AE/AI*AE/AI*B1/(TEMP*TEMP1))		√ 62
	NI=SQRT(KERTH/(AI+AI+AI))+NI+24.+36CO.+DPR		√ 63
	CAPID=-JJ*NI*(AE/(AI*TEMP)) ++ 2 + C @SI		√64
	SMAID=JJ*NI*(AE/(AI*TEMP))**2*(2.45.*SINI*SINI/2.)		, e 5
	RPAI=AE*(1(SINI*SINI*SIN,(SMAW/DRR)**2/F))		₹ 66
12	CONTINUE	•	, 67
	PDI=2.*PI/60.*SQRT(AI*AI*AI/KERTHI		√68
	VPI=SORT(KERTH) + SORT(2./PER1+(1JJ/3.+AE		700
1	./PERIMAE/PERI*(3:*SINI*SINI*SIN(SMAH/DPR)*SIN		
	(SMAWADPR)-1.))-1./A[)		.69
_	L=JCNF		¥70
	J=1		771
1502	IF(L)1500,150C,1501		¥72
	L=L+1		•73
	RI=AI*(1.~EI*EI)/(1.+EI*C@SE(J))+		* ()
1	(2./3.*JJ/AI*AE/(1EI*EI)*AE)*((\$INI*SINI)*(1		
	SIN((SMAW+E(J))/DPR)**2/2.)5)-3%/10.*HH/		
	JJ+AE+SINI+(SIN((SMAW+E(J))/DPR)-3IN(IWB		
	+E(J))/DPR))		176
_	RIP=RI-AE*(1SINI*SINI*		≠74
	The state of the s		

KILGØ POAD 06/18/	<u></u>
BXTERNAL FORMULA NUMBER - SOURCE STATEMENT - INTERNAL FOR	
1SIN((SMAW+E(J))/DPR)**2/F)	<u> </u>
IF(E(J))19CC,1900,1901 1900 RIPP=RIP	∮ 76
1900 KIPP=KIP	√77 √78
GRT 01903 1901 IF ((ABS (E(J)-180.))001)1902,1902,1903	
1902 RIPA=RIP	79 180
1903 CONTINUE	
	≠82
IF(RIP)80,81,61 80 RIP=0:	783
81 CØNTINUE	JE4
28 1F(RIA-CDARIM(I+1))29,30,31 29 1=I+2	√.85
28 1F(RIB-CDPRIM(I+1))29.30.31	₽86
29 I=I+2	¥87
IF(I-24)28, 28, 7001	\$ 88
IF(I-24)28,28,7001 31	√ES
32 CDP=CDPRIM(I-2)+(CCPRIM(I)-CDPRIM(I-2))*(RIP-	. —
1CDPRIM(I-1))/(CDPRIM(I+1)-CDPRIM(I-1))	√ 90
GØ TØ 26	7 / -
GØ TØ 26 20 CDP=CDPR!M(I) 26 IF(CDA-SYBCI)100,1C1,100 101 I=2	√ 52
26 IF(CDA-SYBCI)100,1C1,100	₽ 93
101 I=2	, 94
103 IF(TIME-CDAt1+1))11c0,110C,11C2	₹95
1102 [=[+2	• 96
IF(I-44)11C3,1103,7C01	√ 97
1100 CDAX=CDA(F)	498
CDAREA = COP + CN (2) + AREA (2) + (CDP + CN (4) + AREA (4)	
IF(I-44)11C3,1103,7CO1 1100 CDAX=CDALF) CDARE4=CDP+CN(2)+AREA(2)+(CDP+CN(4)+AREA(4) 1-CDP+GN(2)+AREA(2))+(ABS(SIN((CDAX +E(J)+ATJACK)/	,159
2DPR))) GØ_ TØ_ 500·	_ 410C
100 l=1	/101
203 IF(E(J)-ATTACK(I+1))2CO,2C1,2C2	¥102
202 1=1+2	1103
202 1=1+2 IF(1-44)203,2C3,70C1 200 IF(1-1)201,2014204	1104
200 IF(1-1)201,201,204	1105
204 ALDHASATTACKITSSAIATTACKITSSATTAGKITSSI	
1+(E(J)-ATTACK(I-1))/(ATTACK(I+1)- 2ATTACK(I-1)) GØ TØ 205	
2ATTACK(I-1))	√ 10€
GØ TØ 205	• 1G7
201 ALPHA=ATTACK(I)	+108
205 IF(CN-BCITIM)34,33,34	√ 109
34 1=2	, 11C
38 IF(ALPHA-CN(I+1))35,36,37	¥111
GØ TØ 205 201 ALP+A⇒ATTACK(I) 205 IF(CN~BCITIM)34,33,34 34 I=2 38 IF(ALPHA-CN(I+1))35,36/37 37 I=I+2 IF(I-44)38,38,700)	¥112
IF(I-44)38,38,7C01	
IF(I-44)38,38,7001 35 IF(I-2)36,36;39 39 CNN=CN(I-2)+(CN(I)-CN(I-2))*(ALPHA- 1CN(I-1))/(CN(I+1)-CN(I-1))	\$114
39 CNN=CN(I-2)+(CN(I)-CN(I-2))*(ALPHA-	
	₹11 <u>5</u> ₹116
GØ TØ 40	#110 #117
36 CNN=CN(I) GØ TØ 40	<i>↓</i> 118
	₩116 ₩119
33 I=2 53 IF(TIME-CN(I+1))50,51,52 52 I=1+2	
53 [F(TIME=CH(T+1))50+31+32 52 I=I+2	¥121
IF(1-44)53,53,7001	√122
50 IF(I-2151,51,54	√123
54 CNN=CN(I)	¥124
NA CORP. OLE Y.	•

	W. 1. 0.0				
	KILGØ PDAD-			06/18/65	•
	_ EXTERNAL FØRMULA NUMBER –	SØURCE ST	TATEMENT -	INTERNAL FØRMULA	NUMBER (S)
					*
	GØ TØ 40				√125
51	CNN=CN(I)			_	√12¢
_40	CD=CDP *CNN				√127
	IF(AREA-BCITIM)60,61,60			•	128
60	I=2				
	IF(ALPHA-AREA(I+1))62,63,64				1125
	I=I+2				#13C
0 7					/131
43	IF(1-44)65,65,7001				J132
	IF(I-2)63,63,66				4133
	ARAA=AREA(I-2)+(AREA(I)-AREA(I-2)1	* (ALPHA-			
	LAREA(I-1))/(AREA(I+1)-AREA(I-1))				√134
	GØ TØ 70				√ 135
. 63	ARAA=AREA(I)				√136
	GØ TØ 70			=	√137
61	1=2				√138
74	IF(TIME-AREA(I+1))71,72,73				V139
73	I=I+2				√14C
	IF(1-44)74,74,7001				V141
71	IF(I-2)72,72,75				#142
	ARAA=AREA(I)				
	GØ TØ 70				√143
72	ARAA=AREA(I)				1144
	CDAREA=ARAA+CD				#145
500					∤146
	IF(RIP-700.)3C0,301,301				#147
301	RHØ=0.				√148
	G2T@ 503				1149
300	IF(ATMØS-AT1)302,3C3,302				√15C
303	CALL ARDC59(RIP*1.E3)				√151
	GØ TØ 503				√152
302	IF(ATM2S-AT2)304,3C5,304				, 153
305	PR(1)=RIP*1.E3				v154
	CALL PRA63(PR, ERRØR)			-	J155
	RHØ=PR(6)/9.81				√ 156
	GØ TØ 503		•	~	157
304	IF(ATMØS-AT3)206,3C7,306				√158
307	X=RI *CØS((SMAW+E(J))/DPR)				¥159
	Y=RI *SIN((SMAW+E(J))/DPR)				
	XP=X				/16C
	YP=Y+SQRT(1SINI++2)				/ 161
	ZP=Y+SINF				162
	TEMP=CØS(CAPW/DPR)				¥163
				•	¥164
	TEMC=SIN(CAPW/DPR)				√165
	XS=XP4TEMP-YP*TEMQ			, ,	√ 166
	YS=XP*TEMO+YP*TEMP				#167
	ZS=ZP				¥168
	RS=SQRT(XS*XS+YS*YS+ZS*ZS)				,169
-	IF(ATMØS-AT3)350,351,350				√17C
351	D=XCAYS+T FME				171
	CALL POEAT(RIP, RHO, C, XS, YS, ZS, RS)				√172
	RHØ=RHØ*515.7/9.81			•	173
	GØT@ 503				≠174
350	D=XCAYS+T IME+36203.			• • • •	175
	CALL SMATMS(XS/YS,ZS,SA,D,RHØ,RIPI				#176
	RH0=RH0/9.81		* *		- #177 · —
	GØ TØ 503				
306	IF(ATMØS-AT4)308,3C7,308				√178
					1179

	KILGØ PDAD 06/18/65 BXTERNAL FØRMULA NUMBER - SØURCE STATEMENT - INTERNAL FØRMU	
	BXTERNAL FORMULA NUMBER - SOURCE STATEMENT - INTERNAL FORMU	LA NUMBERLS
308	IF(ATM@S-AT5)310,311,31C	#18C
311	CALL ARDC55(RIP*1.E3)	¥181
	RHØ=RHØ*9:81	182
	COT 0 312	2177
310	PR(1)=RIP+1.E2	
	CALL PRA63(PR,ERRØR)	¥185
	RH2=PR16)	, 186
312	I=1	√187 1187
	IF(CORRECTI)-ENDID) 345,346,345	. 189 √189
346	DCC=CØRREC(I-2)	119 <u>C</u>
345	GOT0318 IF(RIP-CORREC(1+1))313,314,315	119 <u>1</u>
313	I=I+2	√192
717	1F(1-42)316,316,7CC1	,(193
315		194
317	IF(I-1)314,314,317 DCC=CORREC(I-2)+(CORREC(I)-CORREC(I-2))*(RIP-	- 5334
	1CORREC([-1])/(CORREC([+1)-CORREC([-1])	,195
	G0 T0 318	196
314	DCC=CGRREC(I)	, 197
318	15/010-120 1219 215 220	¥198
319	RHØ=RHØ*DCC/9.81	, 199
	CA TA END	1266
320	YERR=1958:+(TIME+XCAYS)/365.24	J201
	XDAYZ=XDAYS+TIME+362042	√202
	IF(FTENB)322,321,322	, 203
321	CONTINUE	√204 √205
	TEMP=[XDAYZ-36030.)/409C.+4.*PI TEMC=CØS(TEMP)*15.	, 206
	TEMP=(XDAYZ-36340.)/4090.+2.+PI	,207
	TEMR=C0\$(TEMP)+75.	√208
	FTENBX=135.+TEMR+TEMO	,209
		₹21C
322	GBT04206 I=1 IF(FTENBLI)-ENDID)4201,42C0,4201 FTENBX=FTENB(I-2)	- ,211
4205	IF(FTENB(I)-ENDID)4201,4209,4201	*212
4200	FTENBX=FTENB(I-2)	J213
	GPTE 4206	√214
4201	IF(FTENB(I+1)-YERR)42C4,42C3,42C2	,215
4204	I=I+2	¥216
	G0TE4205	#217
4203	FTENBX = FTENBII)	¥218
	GØTØ 4206	
	16(1-1)4203,4203,7200	√22C
	FTENBX = FTENB(I-2)+(YERR-FTENB(I-11)*(FTENB(I)-FTENB(I-2))/ 1(FTENB(I+1)-FTENB(I-1))	₹221
4204	IF(FTBN)4207, 4208, 4207	,222
4200	ETENV-ETENBY	223
4200	GO TO 4215	224
4207	<u> </u>	1225
4214	IF(FTEN(I)-ENCID)42C9,421C/42C9	
4210	FTFNX=FTENII-2)	, 227
	GOTE 4215	#228
4209	IF(FTEN(I+1)~YERR)421144212,4213	,1229
	I=I+2	, 23C
	GØ TØ 4214	1231
4212	FTENX=FTEN(I)	,232
_	GØT@ 4215	√ 233

ris .	KILGØ ADAD BX_ERNAL_EØRMULA NUMBER - SØURCE STATEMENT -	06/18/65 Internal Formula Number(S)
	IF(I-1)4212,4212,52C1 FTENX=FTEN(I-2)+LYERR-FTEN(I-1))+(FTEN(I)-FTEN(I-2))/	√234
	1(FTENLI+1)-FTEN(I-1))	, 235
	IF(AP)4216,4217,4216	¥236
4217	APX=0.	≠237
	GØT@343	√238
4216		√23 9
	IF(APLI)-ENDIC)4218,4219,4218	≠24 C
4417	APX=AR(I-2) GØT0343	<u> √241</u>
4218	IF(APLI+1)-YERR)422C,4221,4222	√242
4220	I=I+2	<u>-, 243</u>
	GØTØ4223	√244 √245
4221	APX=AR(I)	• 246
	GØTØ343	1247
4222	IF(I-1)4221,4221,52C2	1248
5202	APX=AP(I-2)+(YERR-AP(I-1))+(AP(I)+AP(I+2))/	72.10
	1(AP(I+1)-AP(I+1))	.249
343	SBAR=25.+.8#FTENBX+.4#(FTENX-FTENBX)+APX#10.	√25C
	TEMP=LXDAY.Z-38047.1/365.25	√251
	TEMC= .06 * CØS(4. *PI * TEMP)	∳ 252
	TEMR==0025*CØS(2.*PI*TEMP)	1253
	GIT=TBMR-TEMQ	
	SS=SBAR*EXP (GTT)	₽255
400	IF(CIURNL→CIN@R)40C,403,400 CØNTINUE	√256
402	COSPP=C3S(75./DPR)	J257
TOE	GRT 0 404	√258
403	CØNTINUE	√259 134¢
,	TEMP=\$SS-160.)/90.	426 <u>C</u> √261
	TEMR==.00567*(RIP-2CO.)+EXP(01455*(RIP-200.))	• 262
	TEMG=18.5+21.5*EXP(0315*(RIP-20G.))	,263
	TEMS=(18.5+30.*EXP(TEMR)+TEMQ*TEMR+4.*(1TEMP*TEMP))/DPR	,264
	IF(TEMS-54)51C4510,511	, 265
511	TEMS=5.	+266
510	XLAG*TEMS*DPR	√ 267
	XLAMS=.017203**DAYZ+.0335*SIN(.0172C3*XDAYZ)-1.41	√ 268
	TEMP=CØS(XLAMS)	¥269
	TEMQ=SIN(XLAMS)	. 27C
	XLS=TBMP TEMR=CØS(ECLIPT/DPR)	√271
•	TEMS=SINLECLIPT/DPR)	+272
	XMS=TEMR*TEMQ	¥273 ¥274
•	XNS=TBMS*TEMQ	+275 +275
	RAS=ATAN2(XMS, XLS)	,27E
	RAB=RAS-XLAG/CPR	277
	XLB=SORT(XNS+XNS+XLS+XLS)+CØS(RAB1	·278
	XMB=SQRT(XNS+XNS+XLS+XLS)+SIN(RABI	+279
	xnb=xns	- 28C
	X=RI +COS((SMAW+E(J))/DPR)	√281
	Y=RI *SIN((SMAW+E(J))/DPR)	√282
	XP=X	√283
	YP=Y*SQRT(1SINI**2)	
	ZP=Y+SINF TEMP=CØS(CAPW/DPR)	√ 285
	TEMC=SIN(CAPW/DPR)	- , 286
	TOTAL TO LITTORY BY DENY	√287

	KILGØ PDAD 06/18/65 EXTERNAL FØRMLLA NUMBER - SØURCE STATEMENT - INTERNAL FØRMUL	A NUMBERICA
	XS=XP*TEMP-YP*TEMQ YS=XP*TEMO+YP*TEMP	≠288 ≠289
		129 <u>C</u>
	YI - YCADI	291
	XM=YS/RI	¥292
		293
	CASPEXI *XI B+XM*XMB+XN*XNB	1294
404	CØSPP=XL*XLB+XM*XMB+XN*XNB XK=(3.+2.5*((RIP-36C.)/24C.)5*(1RIP-36C.)/24C.)**2)* 1((5.6-CØSPP)/6.6)	·
,	1((5.6-C0SPP)/6:6) TEMP={EXP (.0C55*R[P]-:19)*:19 XMLTP> (1:+(TEMP)*((1.+C0SPP)/2.)**3)/	√ 295
405	TEMP=(EXP (.0C55*R]P)-:19)4.19	.296
	XMLTP= (1:+(TEMP)*((1.+CØSPP)/2.)(*3)/	
	1(1_+(TEMP)+((1_+C05(75_/DPR))/2_)++3)	1297
406		≠ 298
	GØ TØ 503	¥299
503	RHØ=RHØ*9:81	43GC
	RHØXX⊐RHØ	√ 201
	TERM=CDAREA*R+ 0*(SCRT(1.+2.*EI*C0SE(J)	- 5-4-
	1+EI*E})/({1.+EI*CØSE(J))**2)}	√ 302
	STEPALJ)=TERM=(12+C0SE(J))	¥303
	STEPP(J)=TERM=(1:-C0SE(J))	√ 304
	J=J+1	√305 √306
1500	GØ TØ 1502 INTA=0	#307
1200	INTA=0.	1308
	TERM1=-86:4E6*SQRT(KERTH)/6.2831858*SQRT(AI)	1309
	L=JCNY-1	√31C
	M=1	/311
1506	IF(L)1504,1504,1505	312
	L=L-2	¥313
	INTA=INTA+STEPA(M)+STEPA(M+2)+STEPA(M+1)*4.	v314
	INTP=INTP+STEPP(M)+STEPP(M+2)+STEPP(M+1)=4.	,315
	M=M+2	¥316
	GØ TØ 1506	/317
	CONTINUE	√318
	INTA=INTA+CE03	319
	INTP=INTP=CE03	#32C
	ADØTP=TERM1+(INTA+(1.+EI)++2-SINTA)	#321 <u></u>
	PDØTP=TERM1*(INTP*(1EI)**2-SINT#)	¥322
,-,-,-, -	IF(MASS-BC ITIM)1601,160C,1601	•323
1601	IF(MASS(3))16C3,16C2,16C3	¥324
1602	MT=MASS(2)	#325 #326
1.00	GØ TØ 1700	√327
1604	IF(TIME)16C2,1602,1604	¥328
1604	IF(MT-MASS(I+1))16C5,16C6,16O6	1329
1607	MT=MASS(1)=TIME	,33C
1000	GØ TØ 1700	√331
1605	I=I+2	,332
1003	IF(MASS(1)-ENCID)1,2,1	,1333
2	MT=MASS(I~1)	, 334
-	GØTE 1700	¥335
1	IF(I=24)1607.1607.7001	√336
	I=2 - "	¥337
	IF(TIME-MASS(I+1))1000/18C1,1802	¥338
1802	I=I+2	√ 339
	IF(MASS(1)-ENCID)3,4,3	• 34C

	KILGØ PDAD	06/18/65
	BXTERNAL FØRMULA NUMBER - SØURCE STATEMEN	T - INTERNAL FERMULA NUMBER(S)
3	IF(I-24)18C3,18C3,7CO1	∤341
4	MT=MASS(1-2)	√342
	G8T8 1700	v343
	IF(I-2)1801,1801,18C4	, 344
1804	MT=MASS(1)	,/345
	GØ TØ 1700	∤346
	MT=MASS(I)	<u>-</u> 4347
1700	AD2T=AD3TP/MT	√ 348
	PDØT=PDØTP/MT	/349
	SACETI=(ADET+PDET)/2.	√ 350
	PDØAD=PDØT/ADØT	
	TIMED=MT/AC2TP	√ 352
	REVOL=REV1+(TIME-TIME1)+1440./PDI	/353
	RETURN	₽354
7001	WRITE(6,70C2)	
	CALL DUMR	∤ 357
	STOP	y35e
7002	FORMAT(1H020HTABLE VALUE EXCEEDECI	
	END	

KILGØ PRINTT 06/18/65
EXTERNAL FORMULA NUMBER - SOURCE STATEMENT - INTERNAL FORMULA NUMBER(S)
SUBROUTINE PRINTT
KEAL JJ, KERTH, INTA, INTP, MASS, MT, INTERA, INTERP, INC, NI
DIMENSION DATE(3), XMONTH(12)
DIMENSION FTENB(153), FTEN(153), AP\$153)
DIMENSION CORREC(11C), SOLAR(3C1)
DIMENSIAN IN(6), INTERA(6), INTERP(6),
1C0SE(365), E(365), CCPR IM(25), AREA (45), CN(45),
2ATTACK(45), STEPA(365), STEPP(365), MASS(25)
COMMON /ARCC/TEMPT, TEMK, PRESS, POMP.
1PSP&,RHØ,RHØSRØ,VISC,VISCSL,KVISC,VS,G
DATA DPR/57.2957795/, PIX3.14159291/.SNBCI/6HSINE /
1.BCITIM/6HTIME /
DATA AID/6HA /,PID/6HP /,CETID/6HDETAIL/,
15H0ID/6H5HCRT /
DATA BNDID/6HEND /
COMMON/CLK/APO, PERI, TIME, AE, SINI, NO, F, JJ, KERTH,
1C2SI, JCNT, CDPRIM, AREA, ATTACK, CN.
2MASS, ADØT, PDØT, PDØAC, TIMED
3, CØSE, E, DAØ2, PER, TIME1, HH, DE 03
4, CAPOMI, CAPID, SMAMI, ADIMI, APZMI, SMAD, SMADMI, SMAID, CAPMI, CAPW
5, CAPO, DATE, XMENTH, FTENB, AP
6, INTERA, INTERP, DD, CANOM, DAROGE (10), CDA (5C)
7, PRINT, CUTØFF(2), AI, RPAI, SACØTI
8, REV@L, MT, VPI, PDI
9, PN(6), AN(6), REV1
1, CORREC, SØLAR, ATMØS, FTEN, DIURNL, XUAG, RHØXX, SØ, SA
1.EI.RIPP.RIPA.AMPR
WRITE(6,151)APØ,PER1,AI,RPAI,ADØTJPCØT,SADØTI,
lmT, CAPW, SMAW, CAPID, SMAID, VRI, PDI, REVØL, TIME, RHØXX
1,EI,RIPP,RIPA ,1 ,2 ,3
RETURN 34
151 FORMAT(1HO6HA E15.8,3X,6HP E15.8,3X,6HAXIS E15.8,3X,
16HRADIUSE15.8/,1X,6HADØT E15.8,3%,6HPDØT E15.8.3%.
26HAXIDØTE15.8,3X,6HMASS E15.8/,1X,6HNØDE E15.8,3X,
36HARGP E15.8,3X,6+CNØDE E15.8,3X,6+DARGP E15.8/.1X,
46HVPERIGE15.8,3X,6HPERIØDE15.8,3X,6HØRBIT E15.8,3X,
56HTIME E15.8/,1X,6+RHØ E15.8,3X,6HEI E15.8,3X,
16HRIPERGE15.8,3X,6HRIPAPGE15.8/)
END

	SUBROUTINE RK		· · · · · · · · · · · · · · · · · · ·
	REAL JJ, KERTH, INTA, INTP, MASS, MT, INTERA, INTERP, INC, NI		
	DIMENSION CATE(3), xMonth(12)		
	DIMENSION FTENB(153), FTEN(153), AP(153)		
	DIMENSION CORREC(11C), SOLAR (3C1)		
	DIMENSION IN(6), INTERA(6), INTERP(6),		
	1C0SE(365), E(365), CCPRIM(25), AREA (45), CN(45),		
	2ATTACK(45),STEPA(365),STEPP(365),MASS(25)		
	CØMMØN /ARCC/TEMPT,TEMK.PRBSS.PØMP.		
	1PSP0,RH0,RH0SR0,VISC,VISCSL,KVISC,VS,G		
	DATA DPR/57.2957795/, PI/3.14159291/, SNBCI/6HSINE /		
	1.BCITIM/6HTIME /		
	DATA AID/6HA /,PID/6HP /,BETID/6HDETAIL/,	-	
	1SHØID/6HSHØRT /		
	DATA BNDID/6HEND /		
	COMMON/CLK/APO, PERI, TIME, AE, SINI, NO, F, JJ, KERTH;		
	1CØSI, JCNT, CDPRIM, AREA, ATYACK, CN,		
	2MASS, ADOT, PDOT, PDOAC, TIMED		
	3, GØSE, E, DAØ2, PER, TIME1, HH, DE 03		
	4. CAPDM1, CAPID, SMAM1, ADTM1, APOM1, SMAH, SMACM1, SMAID, CAPM1, CAPW		
	5, CAPØ, DATE, XM2NTH, FTENB, AP		
	6, INTERA, INTERP, DD. DANOM, DAROGE (101, CDA (5C)		
-	7, PRINT, CUTØFF(2), AI, RPAI, SADØTI		
	8, REVØL, MT, VPI, PDI		
	9, PN(6), AN(6), REV1		
	1, CORREC, SOLAR, ATMOS, FTEN, DIURNL, XLAG, RHEXX, SE, SA		
	1, EI, RIPP, RIPA, AMPR		
	IF(ADØT)1,1,2		
1	DAØ2=-ABS(CAØ2)		- 11
•	G0T63		, 12
2	DAØ2=ABS(DAØ2)		· · · · · · · · · · · · · · · · · · ·
3	CONTINUE		4
,	CK1=DAØ2*PCØÁC	-	
			# <u>6</u>
	PER1=PER+CK1		
	APØ=APØ+DAØ2		4 E
	CK1X=DA02*TIMED		, 19
	TIME=TIME1+CK1X		, 10
	CALL PDAD		. /11
	IF(ADØT)4,4,5		√12
.4	DAØ2=-ABS(CAØ2)		_ #13
_	GØTØ6		¥14·
5	DA02=ABS(DA02)		¥15
6	CONTINUE		y 16
	CK2=DAØ2+PCØAC		. #17
	PER1=PER+CK2		#18
	CK2X=DA224TIMED		·19
	TIME=FIME1+CK2X		, 20
	CALL PDAD		₽21
	IF(ADØT)7,·7,8		122
7	DAØ2=→ABS{CAØ2)		123
	GØT 29		#24
8	DAØ2=ABS(DAØ2)		425
9	CØNTINUE		126
	CK3=DAØZ*PCØAC		127
	PER1=GK3+CK3+PER		128
			• • •

	KILGØ RK 06/18/6	
	EXTERNAL FØRMILA NUMBER - SØURCE STATEMENT	- INTERNAL FORMULA NUMBER(S
	AP0=AP0+DA02	₉ 129
	CK3X=DA02*TIMED	, /30
	TIME=CK3X+CK3X+TIME1	/31
	CALL PDAD	√ 32
	IF(AD3T)10,10,11	√ 33
10	DA02=-ABS(CA02)	<i>#</i> 34
	Getele	35
11	DA02=ABS(DA02)	₽3.6
12	CONTINUE	,/37
	DELT=((DAØ2*PCØAD)+CK3+CK2+CK1+CK2+CK3)/3.	√38
	PER1=DELT+PER	139
	TIME=(((DA02*TIMED)+CK3X+CK2X+CK1X+CK2X	
	1+CK3X)/3.)+TIME1	, 46
	CALL POAD	y'41
	IF(AD0T)13,13,14	442
13	DAØ2=-ABS(DAØ2)	∤ 43
	GØT@15	<u>,44</u>
14	DA@2=ABS(DA@2)	,45
15	CONTINUE	√ 46
	ACTM1=ADØT	· +47
	SMACM1 = SMAID	·48
	CAPCM1 = CAPID	, 49
	SMAM1=SMAW	
	CAPM1=CAPW	≠ 51
	AP@M1=APØ	√ 52
	REV1=REVOU	√ 53
	RETURN	154
	END	₁ 55

	VIICA DAEAT		
	VICOB PECMI	06/18/65 TERNAL FERPULA	NUMBER(S)
С	HG=GEØMETRIC ALTITUDE	0406	
С	N=LENGTH ØF TABLE	0407	
Č	HB=ALTITUDE BASE	0408	
č	ATMESPHERE DATA LEEKUP-GSK	0409	
Č	RHØE=BASE CENSITY	C412	
č	GIVEN HG, N, HB(1) TO HB(N) , TMB(1) TO TMB(N), GLMB(1) TO	0417	
č	GLME(N), RHOB(1) TO RHOB(N)	0418	
č	CZMPUTE TarkHø.P.V	0419	
Č	R=GEØCENTRIC CISTANCE OF THE FIELD POINT	C42C	
Č	CLS, CMS, CNS = DIRECTION COSINES OF SUN	C421	
Č		0422	
C	CL, CM, CN=DIRECTION COSINES OF FIELD POINT	0423	
C	AVERAGE LENGITUDINAL LAG OF DIURNAL BULGE - 55 RADIANS	0424	
	SEPS, CEPS=SINE AND COSINE OF THE INCLINATION OF THE ECLIPTIC		
C	PSIP=GESCENTRIC ANGLE BETWEEN DIURNAL BULGE AND FIELD PRINT	0425	
С		0426	
	SUBROUTINE POEATING, RHO, DJX, Y, Z, RI		
	DIMENSION HB(18) THE(18) PGLMB(18) RHØB(18)	0428	
	IF(N-12)50C,1C,500		
500	CONTINUE	043C	√ 2
	N=12	C431	43
	HB(1)=0.	0432	J 4
	HB(2)=36089,239	0433	,15
	HB(3)=8202C.997	0434	, €
	HB(4)=154199.475	0435	47
	HB(5)=173884.514	0436	4 €
	HB(6)=259186.352	0437	√ .S
•	HB(7)=295275.591	0438	10
	HB(8)=344488.189	0439	/11
	HB(9)⇒524934.383	0440	,12
	HB(10) = 557742.782	0441	,13
	HB(11)=656167.979	0442	114
	HB(12) = 2296587.493	C443	,15
		0444	116
	TMB(1)=518.69	0445	
	TMB(2)=389.988		.17
	TMB(3)=389.988	0446	≠18
	TMB(4) = 508.788	.0447	19
	TMB(5)=509.788	0448	√ 20
	TMB(6)=298.188	0449	√21
	TMB(7)=298.188	C45C	∤ 22
	TM8(8)=406.188	0451	• 23
	TMB(9)=2386.188	C452	91 Z 4
	TMB(10)=2566.188	0453	, 25
	TM8(11)=2836.188	0454	√26
	TMB(12)=5986.188	C455	.27
	GLME(1)=-3.56616E-3	0456	√28
	GLMB(2)=0.	0457	¥29
-	GLMB(3)=1:646592E-3	C458	#30
	GLME(4)=0.	0459	,31
	GLME(5)=-2.46888E-3	C46C	v 32
	GLME(6)=0.	0461	, 33
	GLME(7)=2.19456E-3	0462	134
	GLME(8)=1:C9728E-2	0463	√35
	GLMB(9)=5.4864E-3	0464	+36
	GLMB(10)=2.7432E-3	0465	¥37
	GLMB(11)=1.92C24E=3	0466	- 38
	OCHO(117-1-72024C-3	0766	₩

KILGØ PØEAT EXTERNAL FØRMLLA NUMBER - SØURCE STATEMENT - INTERN	06/18/65 AL FORMILA	NUMBER (S)
EXIEKWĀĒ ENKWOTA NOMJEK — 1290KOE ŽINIEKEVI — IVIEKA	AL PERFULA	MOMERRESI
GLMB(12)=1,92C24E-3	0467	J 39
RH0B(1)=2:3769E-3	0468	,40
RHØB(2)=7.0547E-4	0469	,41
RHØE(3)=7:7615E-5	0470	,42
RH0B(4)=2:8829E-6	C471	,43
RHØB(5)=1.3964E-6	C472	•144
RH0B(6)=4:1123E-8	C473	145
RH0E(7)=4.256CE-9	0474	,46
RH2B(8) =2.2243E-10	0475	147
RHØE(9)=1.8477E-12	C476	148
RHØB(10)=1.3357E-12	C477	,49
RHØE(11)=6,1161E-13	0478	√50
RHØP(12)=4,468E-16	0475	/51
10 PI=3.14159265	C48C	, 52
HG=FG*3280.833		. 53
T1=C.017203*D	0481	154
TENBE=2.30258509	0462	V55
SLAMB=T1+0.0325*SIN (T1)-1.41C	•	,156
SEPS=SIN (.4052)		,15 7
CEPS=CØS (.4092)		, 58
CLS=CØS (SLAME)		, 59
SSLAMB=SIN (SLAMB)		• 6 C
CMS=SSLAMB*CEPS	0488	, e 1
CNS=SSLAMB • SEPS	0489	,62
1 HNM=HG/6076.1C03	045C	¥63
H=(20855531.*+G)/(2C855531+HG)	0451	, 64
100 DØ 111 I=1,N	0452	65
(F(F-HB(I))121,111,111	0453	,166
111 CØNT[NUS	0494	,67 ,6
200 T=TMB(N)+GLMB(N)*(F-HB(N))	0455	169
GØ TØ 50	0456	,7G
121 IF(I-1)123,122,123	0457	771
122 I=2	0458	,72
123 IF(GLMB(T-1))131,/141,131	0455	73
141 T=TMB(I-1)	0500	•74
RH@=RHØB(I-1)*EXP (-(H-HB(I-1))*32.1740485/(1716.4827*	, 0266	117
·	0502	₄ 75
1TMB([-1)))	0502	¥76
GØ TØ 60		
131 T=TMB([-1)+GLMB([-1)*(H-HB([-1))	0504	
RHD=RHDB(I-1)*EXP (-(1.+32.1740485/(1716.4827*GLMB		. 7 0
1(1-1)) *ALØG (T/IMB(1-1))	0607	78
GØ TØ 60	05C7	,79
50 RHØ=RHØB(N)*EXP (-(1.+32.1740485/\$1716.4827*GLME(N)))		
1+ALEG (T/TMB(N)))		08'
60 V=SCRT (1:4*(1716-4827*T))		√ 81
P=P+0*(1716.4827*T)	0511	, 82
[F(C)1000,100C,260	_ C5 <u>1</u> 2	83
.000 RETURN	C 5 1 3	484
260 CN=Z/R	C 5 <u>1 4</u>	,185
202 1F(+NM-764)10C0,10CC,25C	C517	186
250 CL=X/R	0518	,√87
CM=Y/R	0519	≠ 88
CLCLS=CL+CLS	C52C	8
CMCMS=CM+QMS	C521	, 150
CNCNS=CN*CNS	0522	/ 91

KILGØ PØEAT	06/18/65	
BXTERNAL FØRMLLA NUMBER - SØURCE STATEMENT - INTE	RNAL FERMULA	NUMBERLS
1*SIN (.55)+CN*CNS		J92
F10=1.5+.0*CØS (PI*C/2C10.)		,193
FB=.85*F10	05 <i>26</i>	154
IF(+NM-108.)3C0,35C,3C1	0527	√ 55
301 1F (HNM-378.)350,4CC,4GC	0528	¥96
13B RHØ=RHØ*(10.3*CN**3*(1CØS (2.*PI*(HNM-16.)/34.))		
1*COS (2.*PI*(C+9.)/365.))		¥57
P=R+Ø*(1716.4827*T)	0531	# 98
V=SCRT (1.4*(1716.4827*T))		, /99·
RETURN	0533	,10C
300 RHØ=5.606E-12*(76./FNM)**7.18*((108HNM)/32.+FB*	0534	
1((HNM-76.)/32.)**(4.0/3.0))*(1.+(HNM-76.)/153.*((1.+C@PSIP)/2.)	0535	
2**3)	0536	£101
P=R+Ø*(1716.4627*T)	C537	√102
V=SCRT (1.4*(1716.4827*T))		,103
RETURN	0529	104
350 RHØ=FB*EXP (TENBE*(-15.7380C368*HNM+6.363*EXP (0048		-
1*HNM)))*(1.+.19*(EXP (0.0102*HNM)-1.9)*((1.+C@PSIP)/2.)**3)		√1C5
P=R+Ø*(1716.4827*T)	0542	J106
V=SCRT (1.4*(1716.4827*T))		•1G7
RETURN	C544	≠108 ·· .
400 RHE=0.0504*F10/(HNM)**5*(((1.+CEPSIP)/2.)**3*(16.E+6	0545	
1/HNM*43)+6.E+6/HNM**3)	0546	, 109
P=R+0*(1716.4827*T)	0547	#11C
V=SCRT (1.4*(1716.4827*T))		/111
RETURN	0549	√ 112
END	055C	√113

Α.

KILGE SMAINS	5
EXTERNAL FORMULA NUMBER - SOURCE STATEMENT - INTERNAL FORM	ULA NUMBERIS)
SUBROUTINE SMATMS(x,Y,Z,SS,T,RHØ,HKM)	
DIMENSION RHOS (53)	
S=SS	/1
IF_IFLAG-1)60C.4300,60C	. , , 2
600 CONTINUE	13
PI=3.1415927	- 44
P12=2.4PI	#5
P14=4.*P1	#£
CØNV=920:	₽ 7
RHØS=0.	🚜
RHØ5(2)=0:	9, 2
RHØS(3)=0.℃	₹10
RHØS(4)=1:225E-3	≠11
RHØS(5)=0.	¥12
RHCS(6)=1:225E-3	√13
D09C 1=7:45:2	/14
90 RHES(I)=RHES(I-2)+5.	y15 y1
RHØS(8)=7:3643E-4	<u>≠17</u>
RH2S(10)=4.1351E-4	≠18
RHØS(12)=1.9475E-4	√1 <u>9</u>
RHØS(14)=8.8910E-5	₽26 ₽21
RHBS(16)=4.0084E-5	- √22 √22
RHØS(18)=1.8410E-5	√23
RH05(20)=8:4634E-6	124
RHØS(22)=3.9957E-6	, 24 ,425
RH0S(24)=1.9663E-6	√ 26
RHØS(26)⇒1.0269E-6	27
RHØS(28)=5.6C75E-7	√28
RHØS(30)=3.0592E-7	√ 29
RH05(32)=1.6665E-7	·30
RHØS(34)=8.7535E-8	/31
RHØS(36)=4.335E-8	, 32
RHØS(38)=1.959E-8	,/33
RHØS(40)=7.955E-9	v34
RHØS(42)=3.170E-9	, 25
RHOS(44)=1.265E-9	√ 36
RHØS(46)=5.070E-1C RHØS(48)=2.07CE-10	,37
RH0S(48)=2.07CE-10	#38
RHØS(50)=8.75CE-11	¥39
RH0S(51)=116.C RH0S(52)=3.253E-11	,40
RHØS(53)=1.E22	y/4 <u>1</u>
151 AC-1	√ 42
300 R=SCRY (X**2+Y**2+Z**2)	
CL=X/R	44
CM=Y/R	,45
CN=Z/R	₉ '46
IF (HKM) 200,200,4201	<u> ,47</u>
200 RHØ =2.3765E-3	, 48
GØ TØ 1000	,49
201 [F(FKM-116.)311,312,312	√5 G
11 CALL TBL(HKM, RHØS)	/51
IF (HKM-30.) 110,11C,111	√ 52
	J53_

KILGØ SMATMS	06/18/65
EXTERNAL FØRMULA NUMBER - SØURCE STATEMENT - INT	ERNAL FORMULA NUMBER(S)
1/365.251)	↓54
RHØ=RHØS*C	≠ 55
GØ TØ 1000	4 56
110 RHØ=RHØS	√ 57
G2 T0 1000	458
312 CØNTINUE	#59
HKM=HKM+4.C	√ 60
IF (S) 100,100,101	/ 61
100 FBAR=135.+75.*CØS (PI2*(T-36340.)/4C90.)+15.*CØS (PI4*(T-3603C	•)
1/40904)	 462
TCON=LT-38C47.)/365.25	<u>√63</u>
GT=.025*CØS (PI2*TCEN)06*CØS (PI4*TCEN)	₹ 64
S=(50:+.8*FBAR)*EXP (GT)	, ∤65
101 CALL HPC(CL, CM, CN, FKM, S, T, RHØHC)	; 66
RHØ=RHØHC&CØNV	, ∕67
.000 RETURN	#68
END	
KILGØ TBL BXTERNAL FØRMULA NUMBER – SØURCE STATEMENT – INT	06/18/65 ERNAL FORMULA NUMBER(S)
SUBRØUTINE TBL (HKM,RHØS) DIMENSIØN RHØS(1)	
DØ 10 I=5,51,2	, '1
IF(FKM-RHØS(I))20,3C,10	
A CONTINUE	#3 ,4
O CØNTINUE	
O RHØS=RHØS(I-1)+(RHØS(I+1)-RHØS(I-1))*(HKM	
	∮ 5
0 RHØS=RHØS(I-1)+(RHØS(I+1)-RHØS(I-1))≠(HK♥ 1-RHØS(I-2))/(RHØS(I)-RHØS(I-2))	, 6
0 RHØS=RHØS(I-1)+(RHØS(I+1)-RHØS(I-1))*(HK♥ 1-RHØS(I-2))/(RHØS(I)-RHØS(I-2)) 5 RETURN	₹ <u>€</u> ₹7
0 RHØS=RHØS(I-1)+(RHØS(I+1)-RHØS(I-1))*(HK♥ 1-RHØS(I-2))/(RHØS(I)-RHØS(I-2)) 15 RETURN	, 6

	KILGØ HPC EXTERNAL FØRMULA NUMBER -	SØURCE STATEMENT -	06/18/65 INTERNAL FERMU	
:	1-36.733,-27.057,-37.373,-27.681,-	38.414,-39.088,-39.689.		
	1-40.208,-40.645,-41.004,-41.300,-			
	DATA (SS5(I), I=1,35)/			
	1-24.065,-25.947,-26.978,-27.721,-			
	1-30,488,-31.016,-31.500,-31 <u>.9</u> 50,-		-	
	1-33.513,-33.859,-34.192,-34.514,-			
	1-35.710,-35.990,-36.265,-36.534,- 1-38.923,-39.425,-39.880,-40.285,-			
	PARF(X,Y,Z)=X+DT+(Y+(DT2-DT)/DT1+			
•	IF(IFUAG-1)601,600,601	2-10,11,017,01277(01140127	·	- ·/1
601	CONTINUE			42
	H(1)=120.	•	, -	
	DØ 1400 I=1,34			#4
	IF(I-4)103C,1C30,1C31			y ' <u>5</u>
1030	H(I+1)=H(I)+2C.			⊀€
1021	GØ TØ 1490			¥7
	IF(I-24)1032,1032,1033 H(I+1)=H(I)+4C↓			. '48
1032	GØ TØ 1400			10
1033	H([+1]=H([)+1CO.			711
	CENTINUE			/12 ,13
	PI=3.1415927			√14
	IFLAG=1	•		. ≠15
600	CENTINUE			√16
	CAPM= 10172C3*(T-362C3.)			17
	SL=CAPM+20335*SIN (CAPM)-1241 CLS=CØS (SL)			√18 √19
	SINSL=SIN (SL)	,	~	
	CMS=.9175*SINSL			#21
	CNS=.3977*SINSL			122
400	00 20 I=1,135			,123
	DT=+(I)-HKM			124
	IF(CT) 20,121, 21 CONTINUE			√25 √26 •27
20	GØ TØ 9001			#28 #28
21	LPT=I			129
	IF(I-35)10C2,9001,9C01			#30
9001	RHØA=0.0		•	v 31
	GØ TØ 3000			
1002	CØNTINUE DT1=H(LPT)-H(LPT-1)			433 134
	DT2=H(LPT+1)-H(LPT)	·		√34 √35
	DT=-DF			, 36
	IF(S-1502)30,31,31			₹37
_ 30	DØ 40 I=1,13			138
	LP=LPT-2+I			139
,	0(1,I)=\$1(LP)			4.4 G
40	Q(2,I)=S2(LP) Q(3,I)=S3(LP)			.41 .42 .43
70	IG0=1		•	942 943 944
42	DØ 41 I=1,43			45
	Q1=Q(1,2)	•		146
	Q2=C(I,2)=Q(I,1)			. ↓47
	Q3=C(1,3)-C(1,2)			√48 (48
41	P(I)=PARF(C1,C2,Q3) G0 T0 (500C,5C01),IG0			√49 ,50 √51
	05 15 (3000) 300 17 160			7 - 1

KILGØ HPC 06/18/	
BXTERNAL FORMULA NUMBER - SOURCE STATEMENT - INTERNAL FOR	
The state of the s	
5000 DØ 240 I=1,3	. \$52
LP=LPT-2+F	y 53
R(1,1)=SS1(LP)	, , , , , , , , , , , , , , , , , , ,
R(2, I) *SS2(LP)	₹55
240 R(3,1)=SS3(LP)	√56 <u>•57</u>
5001 D0 241 1=1,3	458 450
R1=R(1,2) R2=R(1,2)=R(1,1)	<u></u>
R3=R(1,3)-R(1,2)	#61
241 PP(I)=PARP(R1,R2,R3)	y62 ,63
GØ TØ (43,44),1GØ	164
43 DT=S-1004	y 65
DT1=30.	
DT2=50.	 ≉67
45 RHON=EXP [PARF[P[2],P(2]-P(1],P(3)-P(2)]]	
RHØX= EXP (PARFIPP(2),PF12)-PP(1),PP(3)-PP(2)))	, 69
G2 TØ 410	70
31 DØ 140 1=1,3	¥71
LP=LPT-2+} Q(1,1)=S3(LP)	• • 72
Q(2,1)*S4(LP)	¥7 4
140 Q(3,1)=\$5(LP)	75 ,76
160=2	.77
DØ 349 I=1,3	,78
LP=LPT~2+}	79 نو
R(1,1)=SS3(LP)	, ′80
R(2,1) = SS4(LP)	√81
340 R(3,I)=SS5(LP)	£2 £3
GØ TØ 42	
44 DT=S-2003	√ 85
DT1=50. DT2=50.	• <u>•86</u> •87
GØ TØ 45	#88
410 SIG=(S-160.)/90.	√89
\$IG2=\$IG**2	,50
PHIN=591.+32.5*SIG-E.5*SIG2	√ 91
PHIM=96.+2C.*SIG+1C.*SIG2	, 92
HN=1115.+5C7.5*SIG+52.5*SIG2	√ 93
DELF=590.+355.+\$IG+35.+\$IG2	. <u>+94</u>
HS=325.+27.*SIG-5.*SIG2	, '95
ZETA=([HKM-HN]/DEL+)**2	
FZ=06+.03*ZETA+1.C6*EXP (-3.7*ZETA) PHI=PI*(PHIN-PHIM*FZ-4.47+.01174*HKM+EXP (04*(HKM-HS)))/12CC.	; 97 , 98
IF(PHI-24)420,421,421	59
421 PHI=2:	,10c
GØ TØ 430	√101
420 IF(PHI-1a)425,430,430	¥10Z
425 PHI=12	₹103
430 EPSI=ALØG (1.+SQRT [RH@X/RH@N))/AL@G (2./(1.+C@S [PHI]))	104 ہے
GAMMA=PI*[18.5+30.*EXP (00567*[HKM-20C.]+EXP (01455*[HKM-200.	
1)))+(18.5+21.5*EXP (0315*(HKM-2CO.)))*SIG+4.*(1SIG2))/180-	. 105
IF(GAMMA-5.)320,32C,2003	≠106
2003 GAMMA=5.	₹107
320 CPSIPU=(CL*CLS+CM*CMS)*CØS (GAMMAX+(CM*CLS-CL*CMS)*SIN (GAMMA)+CN* 1CNS	√1 08
1000 RHØA*RHØN+ (RHØX-RHØN)*((1.+CPSIPL)/2.)**EPSI	105
TOTAL MANAGEMENT THE PARTY OF T	****

	KILG# HPC 06	5/18/65
		FORMULA NUMBER(S)
1001	BETA=TAN2PI(CLJCM)-TAN2PI(CLS,CMS1-180.*GAMMA/PI	4110
	1 IF(BETA) 2000,2001,2001	J111
	D BETA=BETA+360.	J112
	GB TB 2002	J113
2001	CONTINUE	4114
	AMP#HRM/4000.+C.91+144+SIG+.38+SIG2)+EXP (-(2HKM/(405.+143.+SIG)	
	1)**2)	4115
710	AMPS==245+.0425+SIGC625+SIG2	√116
\	U=AMP&C-108+EXP 1-1(BETA-250.)/551)++2)+AMPS*EXP (-((BETA-135.)/	
-	13411-4211+AMP-4.E-6-BETA	J117
	FACT=1:+(1CN++2)+U	1118
	RHØA=RHØA=FACT	<u> </u>
3000	RETURN	412C
	END	1121
		F
-		
	KILGE TANZPI OC	5/18/65
		FERMULA NUMBER(S)
	State diese and installed and a second of the second of th	
-		
	FUNCTION TANZPI(XXY) TANZPI=ARCTAN(Y/X)	6985
	TANZPE EQUAL OR LESS THAN 2PE	0986
		0987
	TAN2PI EQUAL OR GREATER THAN ZERO	
	RADCEG=5712957795	• • •
_	_IF(Y)11/2/3	C985 /2
	1 F(X)5;446	6956 #3
	TAN2PF=140E+3C	_0951
	GØ TØ 20	C952 #5
5	190 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	
		0953 46
	GØ TØ 20	0953 JE
_ 6		0953 46 0954 47 0955 48
_ 6	GØ TØ 20	0952 46 0994 47 0995 48 0996 49
	GØ TØ 20 TAN2PF=010	0953 46 0954 47 0955 48
1	GØ TØ 20 TAN2PF=0-0 GØ TØ 20	0952 46 0994 47 0995 48 0996 49
1	G8 T8 20 TAN2P;=020 G8 T8 20 IF(x)7;8;9 TAN2P:=180.+RADDEG+ATAN(Y/X)	0953 46 0954 47 0955 48 0956 49
1	GØ TØ 20 TAN2P;=020 GØ TØ 20 IF(x)7;8;99 TAN2P;=180.+RADDEG+ATAN(Y/X) GØ TØ 20	0953 #6 0954 #7 0955 #8 0956 #9 0957 #10 #11 0959 #12
1	GØ TØ 20 TAN2PF=0=0 GØ TØ 20 IF(x)Pf=849 TAN2PF=180.+RADCEG=ATAN(y/x) GØ TØ 20 TAN2PF=270.0	0953 #6 0954 #7 0955 #8 0956 #9 0957 #10 #11 0959 #12 09551 #13
1	GØ TØ 20 TAN2P;=0.0 GØ TØ 20 IF(x)7;8;9 TAN2P;=180.+RADDEG*ATAN(Y/X) GØ TØ 20 TAN2P;=270.0 GØ TØ 20	0953 46 0954 47 0955 48 0956 49 0957 410 411 0959 412 09551 413 09598 414
- 1	GØ TØ 20 TAN2PF=020 GØ TØ 20 IF(X)7j8j9 TAN2PF=180.+RADDEG*ATAN(Y/X) GØ TØ 20 TAN2PF=270.0 GØ TØ 20 TAN2PF=360.+RADDEG*ATAN(Y/X)	0953 #6 0954 #7 0955 #8 0956 #9 0957 #10 #11 0959 #12 09591 #13 09556 #14
8	G# T# 20 TAN2P;=0.0 G# T# 20 IF(X)7;8;9 TAN2P;=180.+RADDEG*ATAN(Y/X) G# T# 20 TAN2P;=270.0 G# T# 20 TAN2P;=360.+RADDEG*ATAN(Y/X) G# T# 20	0953 #6 0954 #7 0955 #8 0956 #9 0957 #10 #11 0959 #12 09551 #13 09550 #14 #15
8	G# T# 20 TAN2P;=020 G# T# 20 IF(X)P; 8;9 TAN2P;=180.+RADDEG*ATAN(Y/X) G# T# 20 TAN2P;=270.0 G# T# 20 TAN2P;=360.+RADDEG*ATAN(Y/X) G# T# 20 IF(X)P; 10;11	0953 #6 0954 #7 0955 #8 0956 #9 0957 #10 #11 0959 #12 09551 #13 09598 #14 #15 09596 #16
8	GØ TØ 20 TAN2P;=0.0 GØ TØ 20 IF(X)P;8;9 TAN2P;=180.+RADDEG*ATAN(Y/X) GØ TØ 20 TAN2P;=270.0 GØ TØ 20 TAN2P;=360.+RADDEG*ATAN(Y/X) GØ TØ 20 IF(X)P;10;11 TAN2P;=90.0	0953 #6 0954 #7 0955 #8 0956 #9 0957 #10 #11 0959 #12 09551 #13 09556 #14 #15 09556 #16
9	GØ TØ 20 TAN2P;=0:0 GØ TØ 20 IF(X)7;8;9 TAN2P!=180.+RADDEG*ATAN(Y/X) GØ TØ 20 TAN2P!=270.0 GØ TØ 20 TAN2P!=360.+RADDEG*ATAN(Y/X) GØ TØ 20 ITAN2P!=360.+RADDEG*ATAN(Y/X) GØ TØ 20 IF(X)7;10;11 TAN2P!=90:C GØ TØ 20	0953 #6 0954 #7 0955 #8 0956 #9 0957 #10 #11 0959 #12 09591 #13 09596 #14 #15 09596 #16 09596 #17 09596 #17
9 3 10	G# T# 20 TAN2P;=0.0 G# T# 20 IF(x)7;#;#9 TAN2P;=180.+RADDEG*ATAN(Y/X) G# T# 20 TAN2P;=270.0 G# T# 20 TAN2P;=360.+RADDEG*ATAN(Y/X) G# T# 20 IF(x)7;10;11 IAN2P;=90.0 G# T# 20 TAN2P;=90.0 TAN2P;=90.0 TAN2P;=90.0 TAN2P;=90.0	0953 #6 0954 #7 0955 #8 0956 #9 0957 #10 #11 0959 #12 09591 #13 09556 #16 09556 #16 09556 #17 09556 #18 09557 #18
8 9 10	GØ TØ 20 TAN2P;=0:0 GØ TØ 20 IF(X)7;8;9 TAN2P!=180.+RADDEG*ATAN(Y/X) GØ TØ 20 TAN2P!=270.0 GØ TØ 20 TAN2P!=360.+RADDEG*ATAN(Y/X) GØ TØ 20 ITAN2P!=360.+RADDEG*ATAN(Y/X) GØ TØ 20 IF(X)7;10;11 TAN2P!=90:C GØ TØ 20	0953 #6 0954 #7 0955 #8 0956 #9 0957 #10 #11 0959 #12 09591 #13 09596 #14 #15 09596 #16 09596 #17 09596 #17

REFERENCES

- 1. Kilgo, H. F.: MSFC/LMSC Satellite Orbit Decay and Orbital Lifetime Program. Lockheed Missiles and Space Company Technical Report HREC/0082-1, LMSC/HREC A710725, June 18, 1965.
- 2. Small, H. W.: Atmospheric Density Between 70 and 200 Nautical Miles from Satellite Observations. Lockheed Missiles and Space Company, Tracking Note No. 23, LMSC/A376332, Sunnyvale, California, July 1964.
- 3. Solar Geophysical Data, Part B. U. S. Department of Commerce, National Bureau of Standards, Central Radio Propagation Laboratory, Boulder, Colorado.
- 4. Jacchia, Luigi G.: A Variable Atmospheric Density Model from Satellite Accelerations. Smithsonian Institution Astrophysical Observatory Special Report No. 39. Cambridge, Massachusetts, March 30, 1960.
- 5. Kurtz, H. F., Jr.; Naumcheff, M.; and McNair, Ann R.: Orbital Tracking and Decay Analysis of the Saturn I Flights. AIAA/NASA Flight Testing Conference Paper Number 65-215, February 1965.
- 6. Nicolet, M.: Solar Radio Flux and Temperature of the Upper Atmosphere. J. Geophys. Rev. Vol. 68, No. 22, November 15, 1963.
- 7. Poe, R. F.: A Review of the Geophysical Model. Lockheed Missiles and Space Company, Tracking Note No. 2, LMSC/4082333, Sunnyvale, California, September 25, 1961.
- 8. Ladner, James E.; and Ragsdale, George C.: Earth Orbital Satellite Lifetime. George C. Marshall Space Flight Center Report MTP-AERO-62-77, Huntsville, Alabama, October 14, 1962.

APPROVAL

EARTH ORBITAL LIFETIME PREDICTION MODEL AND PROGRAM

 $\mathbf{B}\mathbf{y}$

Ann R. McNair and Edward P. Boykin

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

This report has also been reviewed and approved for technical accuracy.

Meinder.

E. D. GEISSLER

Director, Aero-Astrodynamics Laboratory

DISTRIBUTION

R-AERO-DIR Dr. Geissler

Mr. Jean

R-AERO-P

Mr. McNair

Mr. Thionnet

Mr. Teague

Mr. Ledford

Mr. McAnnally

Mr. Tomlin

R-AERO-A

Mr. Dahm

Mr. Ballance

R-AERO-D

Mr. Horn

R-AERO-DA

Mr. Winch

Mr. Cremin

Mr. Gillis

Mrs. Chandler

Mr. Lester

R-AERO-G

Mr. Baker

Mr. Schwaniger

R-AERO

Mr. Thomas

Mr. Scott

R-AERO-Y

Mr. Vaughn

Mr. P. Smith

Mr. Scoggins

R-AERO-F

Mr. Lindberg

R-AERO-FM

Mr. Stone

Mr. Hardage

R-AERO-F

Mr. Fulmer

R-AERO-FO

Mr. Hill (15)

Mr. Benson

Mr. Fleishman

R-ASTR-DIR

Dr. Haeussermann

R-ASTR-NG

Mr. B. Moore

Mr. S. Seltzer

R-ASTR-S

Mr. J. Mack

R-ASTR-A

Mr. F. Digesu

R-ASTR-I

Mr. L. Barr

Mr. H. Golden

R-P&VE-DIR

Mr. Cline

R-P&VE-A

Mr. E. Goerner

DISTRIBUTION (Concluded)

R-P&VE-VO Headquarters Mr. W. Kistler Bellcomm, 1124 Mr. R. L. Wagner R-AS Mr. Kaskey Mr. F. Williams OMSF/MAT Mr. H. Ruppe Mr. Smith Mr. de Fries OMSF/MAO Mr. Abernathy I-MO Dr. F. Speer **GSFC** Mr. F. Kurtz Dr. Von Mr. M. Naumchiff Dr. J. W. Serig/Code 554 Mrs. A. McNair (5) Mr. J. Donegan/Code 554 Mr. P. Larson I-I/IB-E Mr. F. Vreuls North American Aviation, Inc. Mr. D. Germany Space and Information Systems Division Building 6, Dept. 692-401 Mr. R. Callaway Downey, California I-I/IB-F Attn: Mr. Earl Lucas Mr. J. Fikes Lockheed Missles and Space Company I-V-EHuntsville Research & Engineering Center Mr. L. Bell 4800 Bradford Drive Huntsville, Alabama I-V-T Attn: Mr. G. Christopher (1)Mr. H. Burns Dr. R. Beal Mr. Cassara (1) EXTERNAL Mr. T. Richards (5)Mr. H. Kilgo MSC/FM Mr. P. Boykin (5) Mr. J. Mayer Mr. J. McAnulty IBM Mr. L. Jenkins 150 Sparkman Drive Mr. L. Huss Huntsville, Alabama Mr. F. McCreary Mr. W. Bosarge Attn: MSC/PS3 Mr. C. Perrins, Jr. Mr. R. Ward (5)

DISTRIBUTION (Concluded)

```
MS-IP

MS-IL (8)

MS-T

Jean Bond (6)

MS-H

CC-P

Scientific and Technical Information Facility (25)
Attn: NASA Rep. (S-AK/RKT)

P. O. Box 33

College Park, Maryland
```