

<u>Help</u>

sandipan\_dey >

Next >

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Calendar</u> <u>Discussion</u> <u>Notes</u>

## ☆ Course / Unit 1: Functions of two variables / Problem Set 1B



You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more



Previous

44:25:48





□ Bookmark this page

Problem Set B due Aug 4, 2021 20:30 IST Completed



### **Synthesize**

We continue to explore the function  $f\left(x,t
ight)=\sin\left(x-t
ight)$ .

Another way to think about this function is to think about fixing the value of t. For any fixed value of  $t_0$ , the single-variable function  $f(x,t_0)=\sin{(x-t_0)}$  is a sine function shifted to the right by  $t_0$ .

At t=0, we have the function  $f\left( x,0\right) =\sin \left( x
ight) .$ 



At t=1/2, we have the function  $f\left(x,1/2\right)=\sin\left(x-1/2\right)$ .



At t=1, we have the function  $f\left( x,1\right) =\sin \left( x-1\right) .$ 



At t=3/2, we have the function  $f\left(x,3/2
ight)=\sin\left(x-3/2
ight)$ .



At t=2, we have the function  $f\left( x,2\right) =\sin \left( x-2\right) .$ 





To understand this function as both a function of x and t, we need one snapshot of the function f(x,t) for each time t. Putting these in order, what we end up with is a function that changes in time, or an animation of a function over time.

In this case, we observe a sine function that appears to travel to the right over time.



**Definition 4.1** A function of the form  $\sin{(ax-bt)}$  is called a **traveling wave**.

### Connection to level curves

1/1 point (graded)

The following two graphics are level curves of traveling waves. Which of the traveling waves is traveling faster?







#### **Solution:**

The faster a traveling wave is moving, the further it will move in the x direction over a similar time t. The slope of a level curves gives the change in x over the change in time t. So a level curve with the greater slope corresponds to a traveling wave that is moving faster.

Submit

You have used 1 of 1 attempt

**1** Answers are displayed within the problem

## 4. Thinking in terms of time

**Hide Discussion** 

**Topic:** Unit 1: Functions of two variables / 4. Thinking in terms of time

Add a Post





 $https://learning.edx.org/course/course-v1:MITx+18.02.1x+2T2021/block-v1:MITx+18.02.1x+2T2021+type@sequential+block@ps\_1B-sequential/block-v1:MITx+18.02.1x+2T2021+type@vertical+block@ps\_1B-tab4+type@sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequential-block@ps\_1B-sequen$ 

© All Rights Reserved



# edX

**About** 

**Affiliates** 

edX for Business

Open edX

Careers

**News** 

# Legal

Terms of Service & Honor Code





**Accessibility Policy Trademark Policy** <u>Sitemap</u>

# **Connect**

<u>Blog</u>

**Contact Us** 

Help Center

Media Kit

**Donate** 















© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>