Principes des Systèmes de Gestion de Bases de Données

#1 – Introduction aux Systèmes de Gestion de Bases de Données

Équipe pédagogique BD 2020–2021

Introduction

Principes des Systèmes de Gestion de Bases de Données

- Organisation du cours : 8 semaines
 - 7h30 cours en amphi
 - 19h30 TD/TP
- Supports de cours : Chamilo

(http://chamilo.grenoble-inp.fr/courses/ENSIMAG4MMPSGS1).

- Notation : Examen
- Équipe Pédagogique :
 - Claudia Roncancio
 - Ugo Comignani
 - Christophe Bobineau
 - Paul-Elliot Anglès d'Auriac

 - Sylvain Bouveret (remplaçant officiel)

Introduction aux SGBD 2 / 43

References

- C.J. Date, An Introduction to Database Systems, Addison Wesley, 1990,
- C. Delobel, M. Adiba, Bases de données et Systèmes Relationnels, Dunod informatique, 1982
- G. Gardarin, *Objet et Relationnel*, Eyrolles, 1999
- W. Kim, Modern Database Systems, Addison Wesley, 1995
- Korth H., A. Silberschatz, Database Systems Concepts, Mc Graw Hill, 1991
- S. Navathe, R. Elamasri, Fundamentals of Database Systems, 2eme. ed.,
 Adison-Wesley Pub, 1994
- J. Ullman, J. Widom, A First Course in Database Systems, Prentice-Hall, 1997
- T. Connolly, C. Begg, Systèmes de Bases de Données, Editions Reynald Goulet, 2005
- Supports de cours de l'Équipe Bases de Données de Grenoble INP Ensimag, voir Chamilo

Introduction aux SGBD 3 / 43

Pourquoi un cours de SGBD?

Le Système d'Information

Tout organisme / entreprise doit établir un système d'information.

Il a pour but :

- d'identifier les événements qui peuvent surgir dans son environnement et dans son fonctionnement;
- d'établir des procédures pour avoir la réaction la plus efficace possible lorsqu'un événement surgit;
- de gérer l'information utile à la gestion de l'organisme (identification, production, diffusion).

Introduction aux SGBD 4 / 43

Le Système d'Information

- Cette gestion se fait le plus souvent grâce à l'outil informatique.
- Un système d'information n'est jamais définitif. Il doit s'adapter à :
 - l'évolution de l'environnement
 - l'autonomie de plus en plus grande des utilisateurs
 - l'augmentation du flux d'information
 - la mise en place de nouvelles techniques

Introduction aux SGBD 5 / 43

Le circuit de l'information

Introduction aux SGBD 6 / 43

Systèmes informatiques

- Les systèmes documentaires traitent des informations textuelles et fournissent le(s) document(s) susceptibles de contenir la réponse à la question posée. Ils ne donnent pas la réponse directement.
- Les systèmes de gestion de bases de données traitent des informations factuelles et numériques et offrent la réponse directe à la question émise.
- Les systèmes experts traitent des « connaissances » et offrent la réponse directe à la question ou au problème soumis.

Introduction aux SGBD 7 / 43

Le programme Sloan Digital Sky Survey (2000-) a des archives de 140 Teraoctets (10^{12}).

Son successeur Large Synoptic Survey Telescope (2016-) acquiert ce volume de données tous les 5 jours

Introduction aux SGBD 8 / 43

Les magasins de la chaine Walmart gèrent plus d'un million de transactions par heure, qui produisent des masses de données estimées à plus de 2.5 Petaoctets (10^{15})

Introduction aux SGBD 9 / 43

Le Grand Collisionneur / accélérateur de Hadrons (LHC) produit près de 15 millions de milliards d'octets par an (10^{15}) . Ces données nécessitent 70 000 processeurs pour être traitées.

Introduction aux SGBD 10 / 43

Facebook quant à lui stocke 250 Petaoctets (10^{15}) de données, 600 Teraoctets de nouvelle données chaque jour; utilise plus de 10 Petaoctet (10^{15}) de données par jour pour ses traitements.

Introduction aux SGBD 11 / 43

D'autres chiffres, plus surprenants

- Un Boeing 737 génère 240 To pour un vol intra US.
- 5,7 milliards de / jour des utilisateurs Facebook.
- Google stocke pour chaque utilisateur connecté: info. perso, IP, services utilisés (type, usage et appareil utilisé), requêtes de recherche, localisation...
 (voir https://www.google.com/policies/privacy/#infocollect)
- Plus de 98% de l'information existante a été créée ces cinq dernières années

Introduction aux SGBD 12 / 43

Déluge de données

L'univers digital double tous les 18 mois

0.79 Zettaoctets (10 21) en 2009 \Rightarrow 35 Zettaoctets en 2020 (\times 44)

Ce volume excède de loin notre capacité de traitement.

Déluge de données

Introduction aux SGBD 13 / 43

Vision globale du cours

Objectif général du cours : Bien utiliser un système de gestion de bases de données (SGBD) et comprendre son fonctionnement.

- Introduction SGBD et modèles de données
- Bases de données relationnelles X
 - Modèle relationnel X
 - Algèbre relationnelle X
 - SQL X
- Transactions X
- Conception de bases de données X
 - Analyse, dépendances, normalisation X
 - Modèle entité-associations, traduction en relationnel X

Introduction aux SGBD 14 / 43

Qu'est-ce qu'un Système de Gestion de

Bases de Données?

Pourquoi des SGBD?

Système de Gestion de Bases de Données (SGBD) : système permettant de stocker et d'accéder à de l'information.

Un simple ensemble de fichiers en fait?

Pas tout-à-fait...

Introduction aux SGBD 15 / 43

Problèmes de stockage de l'information

Accès aux données :

- 1. Accès complexe à une information disparate et potentiellement stockée à plusieurs endroits.
 - → besoin d'un mécanisme d'interrogation complexe
- 2. Accès inefficace si quantité de données conséquente
 - ightarrow besoin d'un accès optimisé aux données
- 3. Données potentiellement sensibles (en terme de sécurité)
 - → besoin de mécanismes de contrôle d'accès

Introduction aux SGBD 16 / 43

Problèmes de stockage de l'information

Cohérence de l'information :

- 4. Pas de vérification de la cohérence de l'information entrée dans la base
 - → Expression et vérification de contraintes nécessaires
- 5. Information potentiellement redondante ⇒ risque d'incohérence
 - \rightarrow redondance subje X
 - ightarrow redondance contrôlée (sauvegarde) \checkmark
- 6. Accès concurrents de plusieurs utilisateurs ⇒ problèmes de cohérence
 - ightarrow besoin de mécanismes de gestion des accès concurrents
- 7. Panne pendant une mise-à-jour massive?
 - → besoin de garantir l'atomicité des mises-à-jour (atomique = indivisible, pas de mise à jour à moitié faite)

Introduction aux SGBD 17 / 43

Problèmes de stockage de l'information

- 8. Stockage des données (fichiers, format) : influe sur leur interrogation.
 - ightarrow besoin d'assurer l'indépendance physique des données
- 9. Différents types d'utilisateurs \Rightarrow différents points de vue sur les données.
 - ightarrow besoin d'assurer l'indépendance logique des données

Introduction aux SGBD 18 / 43

SGBD, modèle de données

Système de Gestion de Bases de Données

Un SGBD est un système de stockage de données, qui permet de résoudre tous ces problèmes.

Tout SGBD s'appuie sur un *modèle de données*, permettant de représenter en mémoire des données du monde réel

Introduction aux SGBD 19 / 43

Une brève histoire des SGBD

- Avant 1969 : la préhistoire des SGBD
 - Fichiers, modèles hiérarchique et réseau...
- 1970 : le modèle relationnel (Codd)
- 1970 2000 : Modèle relationnel, SQL, Transactions, Extensions, . . .
 Modèle Données Objet
 - RDBMS DB2, INGRES, Oracle, SQL Server; OLTP; Distributed DB
 - Active Spatial Temporal Multimedia Deductive Object & OR
 - Warehouse, OLAP, Mining, Parallel
- après 2000 : XML, NoSQL & NewSQL,... (nouveaux « outils »)
 - WEB-Data Mgt XML, XQuery
 - Stream. Data Events
 - NoSQL, NewSQL, Cloud

Introduction aux SGBD 20 / 43

Architecture ANSI/X3/SPARC

Introduction aux SGBD 21 / 43

Architecture ANSI/X3/SPARC

- 1. Définition de schémas conceptuels (format source). Exemple : CREATE ENTITY, CREATE RELATIONSHIP;
- 2. Définitions de schémas conceptuels (format objet) et rangement dans le dictionnaire;
- 3. Définitions de schémas conceptuels (format édition) : consultation;
- Définitions des schémas externes (format source). Exemple : DEFINE VIEW;
- Définitions de schémas externes (format objet) et rangement dans le dictionnaire;
- Définitions de schémas internes (format source). Exemple : CREATE INDEX :
- 7. Définitions de schémas internes (format objet) et rangement dans le dictionnaire;

Introduction aux SGBD 22 / 43

Architecture ANSI/X3/SPARC

- 8. Manipulation de données externes (format source). Exemple : commandes RETRIEVE, APPEND, MODIFY, DELETE sur des objets externes;
- 9. Manipulation de données externes (format objet);
- Manipulation de données conceptuelles (format objet): compilation des commandes RETRIEVE, APPEND, MODIFY, DELETE sur des objets conceptuels;
- Manipulation de données internes (format objet) : généré par le processeur de transformation conceptuel à interne afin de manipuler des données internes;
- 12. Interface du système de stockage de données (lire ou écrire une page);
- 13. Interface mémoires secondaires : E/S sur disque ;
- 14. Interface d'accès au dictionnaire de données.

Introduction aux SGBD 23 / 43

Une architecture plus réaliste?

Introduction aux SGBD 24 / 43

Utilisateurs des SGBD

- l'administrateur de la base de données, qui s'occupe de l'installation globale du SGBD et des outils qui gravitent autour, et qui s'assure que le tout fonctionne de manière efficace;
- le concepteur de la base de données (ou administrateur de données) dont le rôle est d'établir le schéma conceptuel de la base;
- le développeur d'applications, en charge de programmer des applications qui interagissent directement avec le SGBD par l'envoi de requêtes d'interrogation et / ou de mise à jour des données;
- l'utilisateur « avisé », qui interagit directement avec le SGBD grâce au langage d'interrogation (SQL) :
- l'utilisateur profane, qui ne voit les données qu'au travers un des programmes développés par le développeur d'applications.

Introduction aux SGBD 25 / 43

Fonctions d'un SGBD

- Description des données, grâce à un DDL, permettant :
 - à l'administrateur des données (entreprise), de décrire le schéma conceptuel de la base.
 - à l'administrateur de la base de données, de décrire les correspondances entre les structures physiques et le schéma conceptuel,
 - à l'administrateur d'application, de décrire les correspondances entre les vues et le schéma conceptuel;
- Recherche de données, grâce à un *DML*;
- Mise-à-jour des données, grâce au DML;
- Transformation de données, c'est-à-dire d'établir une correspondance entre des données décrites à deux niveau différents (interne, conceptuel, externe);
- Contrôle d'intégrité, grâce au DDL;
- **Gestion des transactions**, grâce à un *CL*;
- Gestion des droits d'accès, grâce au CL.

Introduction aux SGBD 26 / 43

À propos de modèles de données

Modèle de données

Modèle = représentation formelle abstraite (simplifiée) de la réalité.

Modèle de données = représentation formelle abstraite des données du monde réel à manipuler.

Permet de décrire :

- la structure des données (types d'objets, relations entre ces types, etc.)
 Exemple: « un étudiant est un objet qui possède un numéro INSEE, un nom, un prénom, une adresse... »
- 2. les occurrences des données

Exemple: « Dark Vador est un étudiant possédant le numéro INSEE 1770901142555, le nom 'Vador', le prénom 'Dark', l'adresse vador@imag.fr »

Introduction aux SGBD 27 / 43

Concepts pour la représentation des données

- Hiérarchique : arbres d'enregistrements
- Réseau : graphes d'enregistrements
- Relationnel : relations (tables)
- Semi-structuré : arbres, graphes

Introduction aux SGBD 28 / 43

Modèle hiérarchique : définition des types

Introduction aux SGBD 29 / 43

Modèle hiérarchique : exemple d'instanciation

Introduction aux SGBD 30 / 43

Le modèle réseau

Un modèle défini par le CODASYL.

Des articles et des liens (pprox pointeurs)

Introduction aux SGBD 31 / 43

Le modèle relationnel

Dans ce cours, nous nous focaliserons uniquement sur

le modèle relationnel

- développé par Codd en 1970
- très simple conceptuellement (tableaux 2D)
- très puissant grâce à l'Algèbre Relationnelle
- modèle sur lequel s'appuie la norme SQL2, standard encore à l'heure actuelle

Introduction aux SGBD 32 / 43

Modèles semi-structurés

Modèles structurés (hiérarchique, réseau, relationnel...) : séparation claire schéma / données

Ce n'est plus le cas pour les modèles semi-structurés.

Objectif : représenter des structures de données

- Irrégulières : on peut comparer des données dans des formats différents (e.g. une chaîne de caractères avec un n-uplet)
- Implicites : données et structures (grammaire, schéma) sont mélangées
- Partielles : coexistence de données structurées et non structurées

Introduction aux SGBD 33 / 43

Représentation des données semi-structurées

- Pas de séparation entre les données et le schéma : données sans schéma ou auto-descriptives
- Idée : ensemble de paires (étiquette valeur)
- Modèle sous-jacent : arbre ou graphe orienté
 - nœuds = objets / valeurs complexes
 - libellés sur les arcs
 - valeurs atomiques sur les feuilles
- Flexibilité: pas de restriction sur les libellés des arcs sortants d'un nœud (ni sur le nombre de successeurs)
- Typage possible (implicite ou par annotation)

Introduction aux SGBD 34 / 43

Exemple de données semi-structurées

Un fichier HTML...

```
<html>
<head>
<title>Ma page HTML...</title>
link rel="stylesheet" type="text/css" href="style.css"/
>
</head>
<body>
<a href="link1.html">Mon lien.</a>
</body>
</html>
```

Introduction aux SGBD 35 / 43

L'arbre DOM du fichier HTML

Introduction aux SGBD 36 / 43

Une généralisation : XML

XML est un langage de représentation de données s'appuyant sur une syntaxe à balises similaire à HTML (HTML : un sous-langage de XML).

Structure d'un document XML :

prologue dont la présence est facultative, mais fortement conseillée

```
<?xml version="1.0" standalone="yes" ?>
```

• arbre d'éléments, dont la présence est obligatoire

```
<document>
  <salutation> Monsieur </salutation>
</document>
```

Introduction aux SGBD 37 / 43

Dans le domaine de l'échange de données sur le Web, XML tend à être progressivement remplacé par JSON (*JavaScript Object Notation*).

```
{"BARS": [
    {"NAME": "Joe's Bar",
     "BEER":
         {"NAME": "Bud",
          "PRICE": "2.50"},
         {"NAME": "Miller",
          "PRICE": "2.75"}]
    },
    {"NAME": "Sue's Bar",
     "BEER" - [
         {"NAME": "Bud",
          "PRICE": "2.50"},
         {"NAME": "Miller",
          "PRICE": "3.00"}]
    }]
```

Introduction aux SGBD 38 / 43

Not Only SQL

Tendance très forte à l'heure actuelle : NO-SQL (Not Only SQL)

- Il ne s'agit pas de dire que SQL ne devrait pas être utilisé, ni qu'il est mort...
- Il s'agit de reconnaître que pour certains problèmes particuliers, d'autres solutions de stockage sont plus adaptées.

Tendances : taille, connexion, données semi-structurées, architecture...

Introduction aux SGBD 39 / 43

Les modèles de données NO-SQL

- Clef-valeur : Dynamo, Voldemort, Riak, Redis, Cassandra,...
- BD orientées document : MongoDB, CouchDB, Redis...
- BD orientées colonnes : Big Table, Hbase, Hypertable, Cassandra,...
- BD orientées graphes : Neo4J, FlockDB, Pregel...

Introduction aux SGBD 40 / 43

Dans ce cours

Nous ne traiterons cette année que les bases de données relationnelles (SQL).

- Les SGBD relationnels restent encore largement majoritaires à l'heure actuelle
- Les problématiques fondamentales restent les mêmes quels que soient les modèles de données

Introduction aux SGBD 41 / 43

Le mot de la fin

Vision globale du cours

- Introduction SGBD et modèles de données ✓
- Bases de données relationnelles X
 - Modèle relationnel X
 - Algèbre relationnelle X
 - SQL X
- Transactions X
- Conception de bases de données X
 - Analyse, dépendances, normalisation X
 - Modèle entité-associations, traduction en relationnel X

Introduction aux SGBD 42 / 43

Ce Qu'il Faut Retenir

- Problèmes liés au stockage persistant des données
- Définition d'un SGBD et architecture basique
- Fonctions et utilisateurs d'un SGBD
- Définition d'un modèle de données
- Principaux modèles de données

Introduction aux SGBD 43 / 43