

DEHRADUN CAMPUS

PRACTICAL FILE / TERM WORK

CBNST LAB

PMA-502

B.Tech CSE

V

2024-25

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GRAPHIC ERA HILL UNIVERSITY, DEHRADUN

SUBMITTED TO

Mr. PURUSHOTTAM DAS

ASST. PROFESSOR

DEPARTMENT OF COMPUTER

SCIENCE & ENGG.

SUBMITTED BY

NAME:

Examination Roll No.:

Course / Sem:

DEHRADUN CAMPUS

THIS IS TO	CERTIF	Y THAT Mr	. / Ms.							
HAS SATISFA	ACTORIL	Y COMPLET	ED ALL	THE EXP	PERIMENTS 1	N THE	E LABO	ORATO	RY O	FTHIS
COLLEGE.	THE	COURSE	OF	THE	EXPERIME	NTS	/	TERM	1	WORK
				IN	PARTIAL	FULL	FILLM	1ENT	OF	THE
REQUIREMEN	NT IN _		SEMEST	TER OF E	B.TECH (CSE) / M.	TECH(()/B	CA /	MCA /
BBA / MBA D	EGREE (COURSE PRE	SCRIBE	D BY GR	APHIC ERA H	HILL U	NIVER	RSITY,	DEHF	RADUN
DURING THE	YEAR _									
CONCERNED	FACULT	Υ				HE	EAD O	F DEPA	ARTM	ENT
NAME OF EXA	AMINER:									
SIGNATURE (OF EXAM	INER:								

Department of Computer Science & Application

Lab Details

Name of the Lab: - CBNST Lab

Lab Code: - PMA-502

Subject Credit: - 2

Course: - B.Tech

Branch: - CSE

Semester: - V

Section: - K1

Number of students enrolled: -

Name of the Faculty: - Mr. Purushottam Das

Name of Lab Instructor: -

Lab Number:-

Lab Time Table

Lab Session Day		Lecture Number	Timing		
1	Wednesday	7 - 8	04:00PM - 05:50PM		

Department of Computer Science & Application

List of Practical's

Subject Code: PMA-502 Subject Name: CBNST Lab

Course: B.Tech CSE Branch & Sem:-V

- 1. WAP to find the roots of non-linear equation using Bisection method.
- 2. WAP to find the roots of non-linear equation using False position method.
- 3. WAP to find the roots of non-linear equation using Newton's Raphson method.
- 4. WAP to find the roots of non-linear equation using Iteration method.
- 5. WAP to interpolate numerically using Newton's forward difference method.
- 6. WAP to interpolate numerically using Newton's backward difference method.
- 7. WAP to interpolate numerically using Lagrange's method.
- 8. WAP to Integrate numerically using Trapezoidal rule.
- 9. WAP to Integrate numerically using Simpson's 1/3 rules.
- 10. WAP to Integrate numerically using Simpson's 3/8 rules.
- 11.WAP to find numerical solution of ordinary differential equations by Euler'smethod.
- 12.WAP to find numerical solution of ordinary differential equations by Runge-Kutta(fourth order) method.
- 13.WAP to linear Curve fitting by least square approximations.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING STUDENT LAB REPORT SHEET CBNST LAB (PMA-502)

Name of Student	Mo. No
Address Permanent	
Father's Name	Mo No
Mother's Name	Mo No
SectionSemes	ter Class Roll No
Local Address	EmailGrade A B C
	Marks F 2 1

S. No.	Name of the Experiment	D.O.P.	Date of Submiss- ion	Grade (Viva)	Grade (Report File)	Total Marks (out of 10)	Student's Signature	Teacher's Signature
1	WAP to find the roots of							
	non-linear equation using							
	Bisection method.							
2	WAP to find the roots of							
	non-linear equation using							
	False position method.							
3	WAP to find the roots of							
	non-linear equation using							
	Newton's Raphson							
	method.							
4	WAP to find the roots of							
	non-linear equation using							
	Iteration method.							
5	WAP to interpolate							
	numerically using							
	Newton's forward							
	difference method.							
6	WAP to interpolate							
	numerically using							
	Newton's backward							
	difference method.							
7	WAP to interpolate							
	numerically using							
	Lagrange's method.							
8	WAP to Integrate							
	numerically using							
	Trapezoidal rule.							

9	WAP to Integrate				
	numerically using				
	Simpson's 1/3 rules.				
10	WAP to Integrate				
	numerically using				
	Simpson's 3/8 rules.				
11	WAP to find numerical				
	solution of ordinary				
	differential equations by				
	Euler'smethod.				
12	WAP to find numerical				
	solution of ordinary				
	differential equations by				
	Runge-Kutta(fourth				
	order) method.				
13	WAP to linear Curve				
	fitting by least – square				
	approximations.				

Total No of Practical allotted:
Total No of Practical completed:
Percentage Attendance of Practical:

ACKNOWLEDGEMENT

Name of Student

DEHRADUN CAMPUS

INDEX

EXP. NO.	DATE	EXPERIMENT	PAGE NO.	REMARKS

Term work:

- [1] Write a program in C to find absolute, relative and percentage error for round-off and truncation cases.
- [2] Write a program in C find the roots of non-linear equation using Secant method.
- [3] Write a program in C to solve the system of linear equations using Gauss Elimination method.
- [4] Write a program in C to solve the homogeneous system of linear equations using Gauss Jordan method.
- [5] Write a program in C to solve given system of linear equations using Gauss-Siedal iterative method.
- [6] Write a program in C to interpolate using Gauss forward Interpolation formula for given values.
- [7] Write a C Program to implement curve fitting for a straight line.
- [8] Write a C Program to implement parabolic curve fitting.
- [9] Write a C Program to implement regression lines.