The term operational amplifier was introduced in 1947 by John Ragazzini and his colleagues, in their work on analog computers for the National Defense Research Council after World War II. The first op amps used vacuum tubes rather than transistors.

An op amp may also be regarded as a voltage amplifier with very high gain.

Figure 5.1 A typical operational amplifier. Courtesy of Tech America.

The pin diagram in Fig. 5.2(a) corresponds to the 741 general-purpose op amp made by Fairchild Semiconductor.

5.1 Introduction

Having learned the basic laws and theorems for circuit analysis, we are now ready to study an active circuit element of paramount importance: the *operational amplifier*, or *op amp* for short. The op amp is a versatile circuit building block.

The op amp is an electronic unit that behaves like a voltage-controlled voltage source.

It can also be used in making a voltage- or current-controlled current source. An op amp can sum signals, amplify a signal, integrate it, or differentiate it. The ability of the op amp to perform these mathematical operations is the reason it is called an *operational amplifier*. It is also the reason for the widespread use of op amps in analog design. Op amps are popular in practical circuit designs because they are versatile, inexpensive, easy to use, and fun to work with.

We begin by discussing the ideal op amp and later consider the nonideal op amp. Using nodal analysis as a tool, we consider ideal op amp circuits such as the inverter, voltage follower, summer, and difference amplifier. We will also analyze op amp circuits with *PSpice*. Finally, we learn how an op amp is used in digital-to-analog converters and instrumentation amplifiers.

5.2 Operational Amplifiers

An operational amplifier is designed so that it performs some mathematical operations when external components, such as resistors and capacitors, are connected to its terminals. Thus,

An op amp is an active circuit element designed to perform mathematical operations of addition, subtraction, multiplication, division, differentiation, and integration.

The op amp is an electronic device consisting of a complex arrangement of resistors, transistors, capacitors, and diodes. A full discussion of what is inside the op amp is beyond the scope of this book. It will suffice to treat the op amp as a circuit building block and simply study what takes place at its terminals.

Op amps are commercially available in integrated circuit packages in several forms. Figure 5.1 shows a typical op amp package. A typical one is the eight-pin dual in-line package (or DIP), shown in Fig. 5.2(a). Pin or terminal 8 is unused, and terminals 1 and 5 are of little concern to us. The five important terminals are:

- 1. The inverting input, pin 2.
- 2. The noninverting input, pin 3.
- 3. The output, pin 6.
- 4. The positive power supply V^+ , pin 7.
- 5. The negative power supply V^- , pin 4.

The circuit symbol for the op amp is the triangle in Fig. 5.2(b); as shown, the op amp has two inputs and one output. The inputs are

Figure 5.2 A typical op amp: (a) pin configuration, (b) circuit symbol.

marked with minus (-) and plus (+) to specify *inverting* and *noninverting* inputs, respectively. An input applied to the noninverting terminal will appear with the same polarity at the output, while an input applied to the inverting terminal will appear inverted at the output.

As an active element, the op amp must be powered by a voltage supply as typically shown in Fig. 5.3. Although the power supplies are often ignored in op amp circuit diagrams for the sake of simplicity, the power supply currents must not be overlooked. By KCL,

$$i_o = i_1 + i_2 + i_+ + i_-$$
 (5.1)

The equivalent circuit model of an op amp is shown in Fig. 5.4. The output section consists of a voltage-controlled source in series with the output resistance R_o . It is evident from Fig. 5.4 that the input resistance R_i is the Thevenin equivalent resistance seen at the input terminals, while the output resistance R_o is the Thevenin equivalent resistance seen at the output. The differential input voltage v_d is given by

$$v_d = v_2 - v_1 (5.2)$$

where v_1 is the voltage between the inverting terminal and ground and v_2 is the voltage between the noninverting terminal and ground. The op amp senses the difference between the two inputs, multiplies it by the gain A, and causes the resulting voltage to appear at the output. Thus, the output v_o is given by

$$v_o = Av_d = A(v_2 - v_1)$$
 (5.3)

A is called the *open-loop voltage gain* because it is the gain of the op amp without any external feedback from output to input. Table 5.1

TABLE 5.1

Typical ranges for op amp parameters.

Parameter	Typical range	Ideal values
Open-loop gain, A	$10^5 \text{ to } 10^8$	∞
Input resistance, R_i	10^5 to $10^{13}\Omega$	$\infty \Omega$
Output resistance, R_o	10 to 100Ω	$\Omega \Omega$
Supply voltage, V_{CC}	5 to 24 V	

Figure 5.3 Powering the op amp.

Figure 5.4 The equivalent circuit of the nonideal op amp.

Sometimes, voltage gain is expressed in decibels (dB), as discussed in Chapter 14.

$$A dB = 20 \log_{10} A$$

shows typical values of voltage gain A, input resistance R_i , output resistance R_o , and supply voltage V_{CC} . The concept of feedback is crucial to our understanding of op amp

circuits. A negative feedback is achieved when the output is fed back to the inverting terminal of the op amp. As Example 5.1 shows, when there is a feedback path from output to input, the ratio of the output voltage to the input voltage is called the *closed-loop gain*. As a result of the negative feedback, it can be shown that the closed-loop gain is almost insensitive to the open-loop gain A of the op amp. For this reason, op amps are used in circuits with feedback paths.

A practical limitation of the op amp is that the magnitude of its output voltage cannot exceed $|V_{CC}|$. In other words, the output voltage is dependent on and is limited by the power supply voltage. Figure 5.5 illustrates that the op amp can operate in three modes, depending on the differential input voltage v_d :

- 1. Positive saturation, $v_o = V_{CC}$. 2. Linear region, $-V_{CC} \le v_o = Av_d \le V_{CC}$.
- 3. Negative saturation, $v_o = -V_{CC}$.

If we attempt to increase v_d beyond the linear range, the op amp becomes saturated and yields $v_o = V_{CC}$ or $v_o = -V_{CC}$. Throughout this book, we will assume that our op amps operate in the linear mode. This means that the output voltage is restricted by

$$-V_{CC} \le v_o \le V_{CC} \tag{5.4}$$

Although we shall always operate the op amp in the linear region, the possibility of saturation must be borne in mind when one designs with op amps, to avoid designing op amp circuits that will not work in the laboratory.

Figure 5.5 Op amp output voltage v_o as a function of the differential input voltage v_d .

Throughout this book, we assume that an op amp operates in the linear range. Keep in mind the voltage constraint on the op amp in this mode.

Example 5.1

A 741 op amp has an open-loop voltage gain of 2×10^5 , input resistance of 2 M Ω , and output resistance of 50 Ω . The op amp is used in the circuit of Fig. 5.6(a). Find the closed-loop gain v_o/v_s . Determine current i when $v_s = 2 \text{ V}$.

Figure 5.6 For Example 5.1: (a) original circuit, (b) the equivalent circuit.

An ideal op amp is an amplifier with infinite open-loop gain, infinite input resistance, and zero output resistance.

Although assuming an ideal op amp provides only an approximate analysis, most modern amplifiers have such large gains and input impedances that the approximate analysis is a good one. Unless stated otherwise, we will assume from now on that every op amp is ideal.

For circuit analysis, the ideal op amp is illustrated in Fig. 5.8, which is derived from the nonideal model in Fig. 5.4. Two important characteristics of the ideal op amp are:

1. The currents into both input terminals are zero:

$$i_1 = 0, \qquad i_2 = 0$$
 (5.5)

This is due to infinite input resistance. An infinite resistance between the input terminals implies that an open circuit exists there and current cannot enter the op amp. But the output current is not necessarily zero according to Eq. (5.1).

2. The voltage across the input terminals is equal to zero; i.e.,

$$v_d = v_2 - v_1 = 0 ag{5.6}$$

or

$$v_1 = v_2$$
 (5.7)

Thus, an ideal op amp has zero current into its two input terminals and the voltage between the two input terminals is equal to zero. Equations (5.5) and (5.7) are extremely important and should be regarded as the key handles to analyzing op amp circuits.

Figure 5.8 Ideal op amp model.

The two characteristics can be exploited by noting that for voltage calculations the input port behaves as a short circuit, while for current calculations the input port behaves as an open circuit.

Example 5.2

 $v_{s} \stackrel{i_{2} = 0}{\longrightarrow} v_{1}$ $i_{1} = 0$ $40 \text{ k}\Omega \qquad 0$ $v_{o} \stackrel{\downarrow}{\longrightarrow} 20 \text{ k}\Omega$

Figure 5.9 For Example 5.2.

Rework Practice Prob. 5.1 using the ideal op amp model.

Solution:

We may replace the op amp in Fig. 5.7 by its equivalent model in Fig. 5.9 as we did in Example 5.1. But we do not really need to do this. We just need to keep Eqs. (5.5) and (5.7) in mind as we analyze the circuit in Fig. 5.7. Thus, the Fig. 5.7 circuit is presented as in Fig. 5.9. Notice that

$$v_2 = v_s \tag{5.2.1}$$

Since $i_1=0$, the 40-k Ω and 5-k Ω resistors are in series; the same current flows through them. v_1 is the voltage across the 5-k Ω resistor. Hence, using the voltage division principle,

$$v_1 = \frac{5}{5+40}v_o = \frac{v_o}{9} \tag{5.2.2}$$

According to Eq. (5.7),

$$v_2 = v_1 (5.2.3)$$

Substituting Eqs. (5.2.1) and (5.2.2) into Eq. (5.2.3) yields the closed-loop gain,

$$v_s = \frac{v_o}{9} \qquad \Rightarrow \qquad \frac{v_o}{v_s} = 9 \tag{5.2.4}$$

which is very close to the value of 9.00041 obtained with the nonideal model in Practice Prob. 5.1. This shows that negligibly small error results from assuming ideal op amp characteristics.

At node O,

$$i_o = \frac{v_o}{40+5} + \frac{v_o}{20} \text{mA}$$
 (5.2.5)

From Eq. (5.2.4), when $v_s = 1$ V, $v_o = 9$ V. Substituting for $v_o = 9$ V in Eq. (5.2.5) produces

$$i_0 = 0.2 + 0.45 = 0.65 \,\mathrm{mA}$$

This, again, is close to the value of 0.657 mA obtained in Practice Prob. 5.1 with the nonideal model.

Repeat Example 5.1 using the ideal op amp model.

Practice Problem 5.2

Answer: -2, 200 μ A.

5.4 Inverting Amplifier

In this and the following sections, we consider some useful op amp circuits that often serve as modules for designing more complex circuits. The first of such op amp circuits is the inverting amplifier shown in Fig. 5.10. In this circuit, the noninverting input is grounded, v_i is connected to the inverting input through R_1 , and the feedback resistor R_f is connected between the inverting input and output. Our goal is to obtain the relationship between the input voltage v_i and the output voltage v_o . Applying KCL at node 1,

$$i_1 = i_2 \implies \frac{v_i - v_1}{R_1} = \frac{v_1 - v_o}{R_f}$$
 (5.8)

But $v_1 = v_2 = 0$ for an ideal op amp, since the noninverting terminal is grounded. Hence,

$$\frac{v_i}{R_1} = -\frac{v_o}{R_f}$$

Figure 5.10 The inverting amplifier.

A key feature of the inverting amplifier is that both the input signal and the feedback are applied at the inverting terminal of the op amp.

or

$$v_o = -\frac{R_f}{R_1} v_i \tag{5.9}$$

Note there are two types of gains: The one here is the closed-loop voltage $gain A_{\nu}$, while the op amp itself has an open-loop voltage gain A.

The voltage gain is $A_v = v_o/v_i = -R_f/R_1$. The designation of the circuit in Fig. 5.10 as an *inverter* arises from the negative sign. Thus,

An inverting amplifier reverses the polarity of the input signal while amplifying it.

Notice that the gain is the feedback resistance divided by the input resistance which means that the gain depends only on the external elements connected to the op amp. In view of Eq. (5.9), an equivalent circuit for the inverting amplifier is shown in Fig. 5.11. The inverting amplifier is used, for example, in a current-to-voltage converter.

Figure 5.11 An equivalent circuit for the inverter in Fig. 5.10.

Example 5.3

Figure 5.12 For Example 5.3.

voltage v_o , and (b) the current in the 10-k Ω resistor.

Solution:

(a) Using Eq. (5.9),

$$\frac{v_o}{v_i} = -\frac{R_f}{R_1} = -\frac{25}{10} = -2.5$$

$$v_o = -2.5v_i = -2.5(0.5) = -1.25 \text{ V}$$

Refer to the op amp in Fig. 5.12. If $v_i = 0.5$ V, calculate: (a) the output

(b) The current through the 10-k Ω resistor is

$$i = \frac{v_i - 0}{R_1} = \frac{0.5 - 0}{10 \times 10^3} = 50 \,\mu\text{A}$$

Practice Problem 5.3

Figure 5.13 For Practice Prob. 5.3.

Find the output of the op amp circuit shown in Fig. 5.13. Calculate the current through the feedback resistor.

Answer: -3.15 V, 26.25 μ A.