Integers (mod n)

 Z_n denotes the integers mod n.

- 1. If $a, b \in \mathbb{Z}_n$, $a + b \pmod{n}$ is k s.t. $a + b \equiv k \pmod{n}$
- 2. Usual arithmetic hold but not all have multiplicative inverse. Subgroup Theorems Eg. In $\mathbb{Z}_8,2$ does not have a multiplicative inverse. $\not\exists k$ s.t. H is a subgroup of G if and only if $2k \equiv 1 \pmod{8}$.

The following hold for Z_n ,

- 1. $a + b \equiv b + a \pmod{n}$ and same for ab
- 2. $(a+b)+c \equiv a+(b+c) \pmod{n}$ and same for (ab)c
- 3. $a + 0 \equiv a \pmod{n}$ and $a \cdot 1 \equiv a \pmod{n}$
- 4. $\exists -a \text{ s.t. } a + (-a) \equiv 0 \pmod{n}$
- 5. $gcd(a, n) = 1 \iff \exists b \text{ s.t. } ab \equiv 1 \pmod{n}$

Symmetry

- 1. A triangle has 6 symmetries, essentially 3! the permutations of the vertices.
- 2. In the multiplication table for symmetries of a triangle, for every motion there is an inverse.

A group (G, \circ) is a set G with a law of composition $(a, b) \to a \circ b$ To find the order of any element $a \in G$ we have, |a| = n/gcd(a, n)

- 1. $\forall a, b \in G, a \circ b \in G$
- 2. $(a \circ b) \circ c = a \circ (b \circ c)$
- 3. $\exists e \in G \text{ s.t. } \forall a \in G, e \circ a = a \circ e = e$
- 4. $\forall a \in G, \exists a^{-1}s.t., a \circ a^{-1} = a^{-1} \circ a = e$

If $a \circ b = b \circ a$ then the group is abelian.

- Z is a group under addition.
- $(Z_n, +)$ is a group but Z_n is not with modular multiplication
- The group of units U(n) is all $a \in \mathbb{Z}_n$ that are coprime with The cosets of a subgroup partition the larger group G (always). n. So $U(8) = \{1, 3, 5, 7\}$. It is a group under multiplication.
- $M_2(R)$ is set of all 2×2 matrices. Then $GL_2(R)$ the general is [G:H]linear group is the subset that consists of all invertible matri-Eg. $G=Z_6$ and $H=\{0,3\}$ then [G:H]=3ces. The identity of the group is just I. It is a non-abelian lagranges theorem group.
- S_3 the symmetry group is $\{(1), (12), (23), (13), (123), (132)\}$

A group is finite if it has finite order. The order of a finite group is number of elements. $|Z_5| = 5$

Properties of Groups

- Inverse is unique; Identity is unique
- $(ab)^{-1} = b^{-1}a^{-1}$; $(a^{-1})^{-1} = a$
- $ba = ca \lor ab = ac \Rightarrow b = c$

Law of exponents hold as follows,

- $q^m q^n = q^{m+n}; (q^m)^n = q^{mn}$
- $(qh)^n = (h^{-1}q^{-1})^{-n}$

 $(gh)^n = g^n h^n$ only if G is abelian.

- $Q^* = \{p/q : p, q \neq 0\}$ is a subgroup of R^*

Subgroups

A subgroup H of G is a subset H s.t. H is a group under the same operation on G. Every group with at least two elements will have at least two subgroups. $H = \{e\}$ (trivial subgroup) and H = G(proper subgroup)

- $SL_2(R)$ is a subset of $GL_2(R)$ s.t. determinant is 1. It is a sugroup A subset H of G can be a group but not a subgroup (essentially a

group under a diff operation)

- e of G is in H
- $h_1, h_2 \in H$ then $h_1 \circ h_2 \in H$
- $h \in H$ then $h^{-1} \in H$

H is a subgroup of G if and only if $H \neq \phi$ and for $g, h \in H, gh^{-1} \in H$ Cyclic Subgroups

If G is a group and a is an element of G then, $\langle a \rangle = \{a^k : k \in Z\}$ is a subgroup of G, the smallest containing a.

We call a the generator of the subgroup. The order of a is the smallest n such that $a^n = e$ and |a| = n. If order of a is |G| then a is a generator of G.

Eg. Both 1 and 5 generate Z_6 . 1 generates Z and any Z_n

- If a generates G then $a^k = e$ if and only if n divides k if G is
- if $a \in G$ is a generator. If $b = a^k$ then order of b is n/d where $d = \gcd(k,n)$

A normal subgroup is N s.t. $g \in G$ and $n \in N$ we have $gng^{-1} \in N$ Cosets

A left coset of H with a given $g \in G$ is, $gH = \{gh : h \in H\}$ A right coset of H with a given $g \in G$ is, $Hg = \{hgh \in H\}$ The

- following are equivalent for $g_1, g_2 \in G$
 - 1. $g_1 H = g_2 H$
 - 2. $Hg_1^{-1} = Hg_2^{-1}$
 - 3. $g_1H \subset g_2H$
 - 4. $q_2 \in q_1 H$
 - 5. $g_1^{-1}g_2 \in H$

The index of H in G is the number of left cosets of H in G which

H is a subgroup of G and with $g \in G$ the map $\phi : H \to gH$, $\phi(h) = gh$ is bijective. So |H| = |gH|.

- 1. If H is a subgroup of G then |G|/|H| = [G:H]
- 2. Order of $g \in G$ must divide number of elements in G
- 3. |G| = p then any $g \in G \neq e$ is a generator and G is cyclic.

Homomorphisms

A homomorphism between (G, \circ_1) and (H, \circ_2) is a map $\phi : G \to H$ s.t. $\phi(g_1 \circ_1 g_2) = \phi(g_1) \circ_2 \phi(g_2)$

The relation is stronger if its isomorphic.

Eg. $\phi: Z \to G$ s.t. $\phi(n) = g^n$ is a homomorphism from Z to G. The following hold,

- 1. e is identity of G_1 then $\phi(e)$ is of G_2
- 2. For any $g \in G_1$, $\phi(g^{-1}) = [\phi(g)]^{-1}$
- 3. H_1 is a subgroup of G_1 then $\phi(H_1)$ is a subgroup of G_2
- 4. If H_2 is a subgroup of G_2 then $\phi^{-1}(H_2) = \{g \in G_1 : \phi(g) \in$ H_2 } is a subgroup of G_1 .

The subgroup $H = \phi^{-1}(\{e\})$ is called the kernal of ϕ