

A SECURE SIMILAR DOCUMENT COMPARISON PROTOCOL

Alan J. Fret[§], Samuel Li[†], Alexander Studor[‡], and Maalik Winters[‡]

[§]University of Puerto Rico, allanjonuel@gmail.com; [†]Princeton University, seli@princeton.edu; [‡]Missouri University of Science & Technology, {ajs6z9, mcw8f7}@mst.edu; NSF REU Program in Cloud Security, Missouri University of Science & Technology, Summer 2017

APPLICATION INTERFACE

Contribution

- Problem: Let there be a client (C) and a server (S) such that C wants to compare a query document d_q with every document in the server collection and retrieve the top-k similarity scores, without revealing either party's documents to the other party.
- Objective: To develop protocol to achieve this comparison without a trusted third party.

Background: IR & Cryptography

- Document Model: Vector Space Model. Term weight is given by: $term\ wt. = term\ doc.\ freq. * term\ inv.\ doc.\ freq.$

$$score(q, d) = \sum_{t \in q} tf(t, d) \cdot idf(t)^2$$
 (1)

• Cryptosystem: Paillier - Asymmetric with homomorphic properties: If $c_1 = E(m_1) \& c_2 = E(m_2)$ then,

$$D(c_1 \cdot c_2) = (m_1 + m_2 \mod n) \&$$

$$D(c_1^r) = (m_1 \cdot r \mod n)$$

• Adversary Model: Semi-honest as defined in Secure Multiparty Computation (SMP) protocol literatures.

ALGORITHM

Require: Server has $< d_1,...d_n >$ and client has d_q .

- 1: Server:
 - (a). for i = 1 to n do Index(d_i)
 - (b). Create dictionary of terms
 - (c). for i = 1 to n do create vector v_i
 - (d). Send dictionary to client
- 2: Client:
 - (a). Index(d_q)
 - (b). Create vector \mathbf{v}_{q}
 - (c). PaillierEncrypt(v_q) $\rightarrow E(v_q)$
 - (d). Send $E(v_q)$ to server
- 3: Server:
 - (a). for i = 1 to n do

 $homomorphic(v_q) \rightarrow E(s_i)$

- (b). Send $\langle E(s_i), ...E(s_n) \rangle$ to client
- 4: Client:
 - (a). PaillierDecrypt($\langle E(s_i), ...E(s_n) \rangle$) $\rightarrow \langle s_1, ...s_n \rangle$

Figure 2: Client Application

LABELED APPLICATION FEATURES

- 1. <u>Lucene Indexing</u>: The Apache Lucene library efficiently indexes the documents for vector creation
- 2. Multiple Collections: The client will be able to choose between multiple collections to query to
- 3. Open master port: All clients initially connect via the master port (3333)
- 4. Connect to server: Client must provide host name and master port
- 5. Top-k scores: Client displays scores

Exit

Figure 3: Encryption time versus dictionary size

Figure 4: Encryption time versus public key size

We found that the client query encryption is the bottleneck of our protocol. Test cases carried out on varying parameters indicate a linear relationship between encryption time and dictionary size, and a quadratic relationship between encryption time and public key size.

FUTURE WORK

- Implement SMIN: Adopt secure SMIN protocol developed by Jiang et. al. so that client only receives top-k scores
- Improve efficiency: Modify our implementation to calculate comparisons faster.