Enterprise Network Design Topics

Arquitetura de Redes

Mestrado Integrado em Engenharia de Computadores e Telemática DETI-UA

Objectives of Network Design

Network should be Modular

- Support growth and change.
- Scaling the network is eased by adding new modules instead of complete redesigns.

Network should be Resilient

- Up-time close to 100 percent.
 - If network fails in some companies (e.g. financial), even for a second, may represent millions of lost revenue.
 - → If network fails in a modern hospital, this may represent lost of lives.
- Resilience has costs.
 - Resilience level should be a trade-off between available budget and acceptable risk.

Network should have Flexibility

- Businesses change and evolve.
- Network should adapt quickly.

Equipments

Switch

- OSI Layer 2 inter-connection
- Implements VLAN
- Spanning-tree based routing →STP, RSTP, MSTP
- Wireless Access Points

- OSI Layer 3 inter-connection
- Have extra functionalities like QoS, Security, VPN gateway, network monitoring, etc...
- L3 Switch
 - Switch+Router
 - Low-end and mid-end range routing functionalities are limited
 - High-end have full routing functionalities
 - Many have dedicated L2 routing hardware
- Router with switching modules
 - L3 Switch with full routing capabilities
- Security Appliance
 - Firewall
 - IDS/IPS (Intrusion Detection/Prevention System)
 - NAT/PAT
 - VPN Gateway
 - Services proxy

How to Choose the Equipments

- Type
 - L2 Switch, L3 Switch, Router + Switching module, Router, ...
- Manufacturer
 - Reliability
 - → (Expected) Maximum MTBF (mean time between failures) as possible.
 - → Depends on multiple factors:
 - Hardware/Electronics redundant architectures, inherent quality, environmental constrains, etc...
 - Price
 - → Usually (not always), a lower price means lower reliability.
 - Assistance
- Range/Model
 - Processing/Commutation speed
 - Number of bytes/packets processed/commuted per second.
 - Lower than the sum of all ports speed.
 - Software version
 - Supported protocols and functionalities.
 - → Determines also memory requirements.
 - Number of ports (and speed of ports)
 - →Ethernet (10 Mbps, 100 Mbps, 1Gbps, 10Gbps, ...)
 - →Connectors
 - To copper or to fiber.
 - RJ-45, Small form-factor pluggable (SFP), Enhanced small form-factor pluggable (S
 - With or without PoE (Power over Ethernet)
 - For VoIP phones, Access Points, etc...
 - Number of slots
 - For additional port/processing modules.

Hierarchical Network Model

Hierarchical Network Model

Access layer

- Provides user access to network.
- Generally incorporates switched LAN devices that provide connectivity to workstations, IP phones, servers, and wireless access points.
- For remote users or remote sites provide an entry to the network across WAN technology.

Distribution layer

- Aggregates LAN devices.
- Segments work groups and isolate network problems.
- Aggregates WAN connections at the edge of the campus and provides policy-based connectivity.
- Implements QoS policies.

Core layer

- A high-speed backbone.
- Core is critical for connectivity, must provide a high level of availability and adapt quickly to changes.
- Should provide scalability and fast convergence.
- Should provide an integration point for data center.

A Hierarchical Network

Modular Network Design

Network Modules (1)

Campus

- Operating center of an enterprise.
- This module is where most users access the network.
- Combines a core infrastructure of intelligent switching and routing with mobility, and advanced security.

Data Center

- Redundant data centers provide backup and application replication.
- Network and devices offer server and application load balancing to maximize performance.
- Allows the enterprise to scale without major changes to the infrastructure.
- Can be located either at the campus as a server farm and/or at a remote facility.

Branch

- Allows enterprises to extend head-office applications and services to remote locations and users or to a small group of branches.
- Provides secure access to voice, mission-critical data, and video applications.
- Should provide a robust architecture with high levels of resilience for all the branch offices.

Network Modules (2)

WAN and MAN

- Offers the convergence of voice, video, and data services.
- Enables the enterprise a cost-effectively presence in large geographic areas.
- QoS, granular service levels, and comprehensive encryption options help ensure the secure delivery to all sites.
- Security is provided with multiservice VPNs (IPsec and MPLS) over Layer 2 or Layer 3 communications.

Remote User

- Allows enterprises to securely deliver voice and data services to a remote small office/home office (SOHO) over a standard broadband access service.
- Allows a secure log in to the network over a VPN and access to authorized applications and services.

Designing the Access Layer

- High availability
 - Default gateway redundancy using multiple connections from access switches to redundant distribution layer switches.
 - Redundant power supplies.
- Other considerations
 - Convergence: the access layer should provide seamless convergence of voice into data network and providing roaming wireless LAN (WLAN).
 - Security: for additional security against unauthorized access to the network, the access layer should provide tools such as IEEE 802.1X, port security, DHCP snooping and dynamic ARP inspection (DAI).
 - Quality of service (QoS): The access layer should allow prioritization of critical network traffic using traffic classification and queuing as close to the ingress of the network as possible.
 - IP multicast: the access layer should support efficient network and bandwidth management using features such as Internet Group Management Protocol (IGMP) snooping.

Designing the Distribution Layer

- Uses a combination of Layer 2 and multilayer switching to segment workgroups and isolate network problems, preventing them from impacting the core layer.
- Connects network services to the access layer and implements QoS, security, traffic loading balancing, and implements routing policies.
- Major design concerns: high availability, load balancing, QoS, and provisioning.
- In some networks, offers a default route to access layer routers and runs dynamic routing protocols when communicating with core routers.
- The distribution layer it is usually used to terminate VLANs from access layer switches.
- •To further improve routing protocol performance, summarizes routes from the access layer.
- To implement policy-based connectivity, performs tasks such as controlled routing and filtering and QoS.

Avoid Daisy Chaining

- When using a L3 link between Distribution layer switches
 - In Access layer, any path from a switch should not require another switch from the Access layer.
 - In Distribution layer, any path between Distribution layer switches should not require a switch from the Access layer.
- When using a L2 link between Distribution layer switches
 - Daisy chain is acceptable, however
 - Could overload some Access layer switches.
 - Could increase STP convergence in case of failure.

Designing the Core Layer

- Backbone for campus connectivity and is the aggregation point for the other layers.
- Should provide scalability, high availability, and fast convergence to the network.
 - The core layer should scale easily.
 - High-speed environment that should use hardware-acceleration, if possible.
 - The core should provide a high level of redundancy and adapt to changes quickly.
 - →Core devices should be more reliable
 - -Accommodate failures by rerouting traffic and respond quickly to changes in the network topology.
 - Implements scalable protocols and technologies.
 - Provides alternate paths and load balancing.
 - Packet manipulation should be avoided, such as checking access lists and filtering, which could slow down the switching of packets.
- Not all campus implementations require a campus core.
- The core and distribution layer functions can be combined at the distribution layer for a smaller campus.

Provide Alternate Paths

 An additional link providing an alternate path to a second core switch from each distribution switch offers redundancy to support a single link or node failure.

Core Redundant Triangles

Triangles: Link or box failure does not require routing protocol convergence.

Squares: Link or box failure requires routing protocol convergence.

Model B

Without a Core Layer

Collapsed Core Layer Architecture

- In smaller networks, the core and the distribution layer can be only one,
 - Eliminates the need for extra switching hardware and simplifies the network implementation.
- However, eliminates the advantages of the multilayer architecture, specifically fault isolation.

Avoid Single Points of Failure

- With an hierarchical design,
 - In Distribution and Core Layers the single points of failure are easy to avoid with redundant links.
 - Don't forget redundant power and cooling!
 - In Access Layer, all L2 switches are single points of failure (only) to the user connected to them,
 - Solution 1, redundant backup hardware activated by a (proprietary) supervision mechanism to "replace" faulty equipment.
 - Copies full configuration and state to backup hardware.
 - Solution 2, have multiple connections between each user terminal and different access switches
 - Requires multiple network cards in user terminals and more plugs/wiring.
 - Cheaper?

Avoid Too Much Redundancy

- Increases,
 - Routing complexity
 - Number of ports used
 - Wiring

Optimal Redundancy

Access Layer Partitions (V)LAN

Virtual LANs

- Group of individual switch ports into switched logical workgroup
 - Restrict the broadcast domain to designated VLAN member ports
 - Communication between VLANs requires a router.
- Solves the scalability problems of large flat networks
 - By breaking a single broadcast domain into several smaller broadcast domains.

Implementing VLANs

 VLAN is a logical group of end devices with a common set of requirements independent of their physical location.

VLAN Segmentation Models

- End-to-End VLAN
 - VLAN are associated with switch ports widely dispersed over the network

- Local VLAN
 - Local VLANs are generally confined to a wiring closet.

VLAN Segmentation (examples)

Local VLANs

- Per service/function
 - → VoIP phones, Video conference, printers, cameras, PCs, servers, ...
- Per user role
 - Engineers I, engineers II, technicians, administrators, ...
- Per location
 - Building I, floor 4, right wing, etc...
- Mixture of service/function, role, location
 - e.g.: VLAN of VoIP phones, of the Engineers in Building I.

End-to-end VLANs

- Services/roles that have a global scope within the network.
- Wireless network
 - Same IP network (same IP address) independently of location.
 - To avoid IP changes when moving from location to location.
- Administration VLAN (optional)
 - VLAN used by the network administrator to remotely access network equipments.
 - Same administrator of (all) equipments independent of location.

VLAN Segmentation Purpose

- Joint in the same logical network services/terminals/users with same traffic/security/QoS policies.
 - Each VLAN must have an unique IP (sub-)network.
 - May have more than one IP (sub-)network.
 - Including IPv4 public and IPv4 private networks.
 - And, IPv6 networks.
- Neighbor (local) VLANs with similar traffic/security/QoS policies should have IP (sub-)networks that can be summarized/aggregated.
 - ▶ E.g.: VLAN of VoIP phones in Building 1 (VLAN 21: 200.0.0.0/24)
 - VLAN of VoIP phones in Building 2 (VLAN 22: 200.0.1.0/24)
 - Summarized/aggregated address of VLAN21+VLAN22: 200.0.0/23.

Special Services Considerations

- VoIP (SIP / H.323)
 - Uses a proxy server to establish connections.
 - → Communication over NAT/PAT have multiple functional issues.
 - Proxy may rely also multimedia data.
 - Local VLANs, no public IPv4 addresses required.
- Video conference
 - Similar to VoIP, however is common to establish direct conference calls to the exterior or through external servers.
 - NAT issues (SIP) → Requires IPv4 public addresses.
- Corporate TV.
 - Constant traffic from a central internal server to several equipments.
 - May use multicast routing.
 - No public IP addresses required.
- Video-surveillance
 - Constant traffic from several equipments to a central internal server.
- Authentication services.
 - Isolated core VLAN just for isolated secure communications (not common, but good idea).
- Management VLAN
 - A end-to-end VLAN used to perform management actions in equipments.

Trunk Links

- A VLAN trunk carries traffic for multiple VLANs by using IEEE 802.1Q.
 - Inter-Switch Link (ISL) encapsulation is an alternative but it getting obsolete.
- Trunks may transport all VLAN or only some!

Inter-(V)LAN Routing

VLAN 3

Switching

Inter-(V)LAN Traffic (1)

- End-to-end VLANs traffic <u>should be switched</u> over the Distribution/Core layers
 - Using a trunk (for end-to-end VLANs only).
- Local VLANs traffic <u>should be routed</u> over the Distribution/Core layers
 - Using standard layer 3 Links.
 - Using static routing (not the best solution!).
 - Exchange the routing information only through the L3 links
 - End-to-end VLAN should be passive interfaces for the routing processes.
 - Routes are not exchanged → Traffic is not routed!

Inter-(V)LAN Traffic (2)

- Layer 2 and Layer 3 traffic should share the same physical link!
 - The layer 3 link is replaced by an Interconnection/Core VLAN.
- Interconnection/Core VLANs
 - VLAN used only for interconnection between local-VLANs.
 - Allows the mixture of VLAN segmentation models.
- Interconnection trunks should allow ONLY:
 - Ends-to-end VLANS
 - Interconnection/Core VLANs
- Exchange of routing information <u>should</u> only be done through the interconnection VLAN.
 - Other VLAN should be passive-interfaces for the routing processes.

VLAN 101 is the interconnection VLAN.

Virtual Extensible LAN (VXLAN)

- Encapsulates OSI Layer 2 Ethernet frames within Layer 4 UDP datagrams.
 - Default port 4789.
- Alternative to 802.1Q.

Spanning Tree Protocol

- STP enables the network to deterministically block interfaces and provide a loop-free topology in a network with redundant links.
- There are several STP Standards and Features:
 - STP is the original IEEE 802.1D version (802.1D-1998) that provides a loop-free topology in a network with redundant links.
 - RSTP, or IEEE 802.1W, is an evolution of STP that provides faster convergence of STP
 - Multiple Spanning Tree (MST) is an IEEE standard. MST maps multiple VLANs into the same spanning-tree instance.
 - Per VLAN Spanning Tree Plus (PVST+) is a Cisco enhancement of STP that provides a separate 802.1D spanning-tree instance for each VLAN configured in the network.
 - RPVST+ is a Cisco enhancement of RSTP that uses PVST+. It provides a separate instance of 802.1W per VLAN.
- Recommended Practices for STP
 - Define by configuration (using STP priority) the root bridge/switch.
 - Use the same cost in all interfaces (if possible).

Core Types

Layer 2 vs. Layer 3 Core

- Layer 3 switched backbones have several advantages:
 - Reduced router peering.
 - Flexible topology with no spanning-tree loops.
 - Multicast and broadcast control in the backbone.
 - Scalability to arbitrarily large size.

Layer 2 Switched Core

Single VLAN

Core VLAN A VLAN B

Split Layer 2

الللا الللا الللا الللا

- The core is a single Layer 2 switched domain VLAN with a star topology.
 - A single IP subnet is used in the core.
- Because there are no loops, spanning-tree protocol does not put any links in blocking mode.
 - Spanning-tree protocol convergence will not affect the core.
 - To prevent spanning-tree protocol loops, the links into the core should be defined as routed interfaces, not as VLAN trunks/inter-switch ports.
- All broadcasts and multicasts packets flood the core.

- The core is two Layer 2 switched VLANs that form two totally separate redundant cores.
 - There is no trunk linking the VLANs

Server Farm

حسد حسد حسد

- Each Layer 3 switch in the distribution layer now has two distinct equal-cost paths to every other distribution-layer switch.
 - If the VLAN A path is disconnected, the Layer 3 switch will immediately route all traffic over VLAN B.
- The advantage of the Split Layer 2 backbone design is that two equal-cost paths provide fast convergence.
- The extra cost of the dual-core design is associated with the extra links from each distribution switch to each backbone switch.

Layer 3 Switched Core

- The main advantage of a Layer 3 Core with dual paths design is that each distribution-layer switch maintains two equal-cost paths to every destination network.
 - Recovery from any link failure is fast.
 - Provides double the bandwidth capacity into the core.
- The inter-connection between the access layer and the Layer 3 switched core can be done using a split Layer 2 (dual interconnection VLAN) approach.

Implementation of Local and End-to-End VLANs

- End-to-End VLANs are switched at Layer 3 Distribution and Core Switches.
 - Allowed over core trunks.
 - Routing protocol "should be passive" in end-to-end VLANs.
 - Announces network, does not provide routing path.
- Local VLAN are routed over Core (Interconnection) VLANs.
 - Local VLANs are not allowed over core trunks.
 - Core (Interconnection) VLANs are allowed over core trunks and run routing protocol.

Wireless / Wired Networks Interconnection

Wireless Network(s)

- Wireless networking technologies should have an integration point at core or distribution layers.
- In terms of network architecture a WLAN can be seem as any LAN.
 - Except that we have mobility and must have seamless roaming while moving.
- A large number of AP can be managed by a (Wireless) LAN Controller.

VLANs on Access Points

- AP have trunk ports to distribution/core switches.
- "Wired" VLANs must/can be extended to the wireless domain.
 - e.g., VLAN 30 "Green" and VLAN 10 "Red".
- Each SSID can be mapped to a VLAN.
 - Different SSID/VLAN can have different security policies.
- Wireless VLANs should be configured as end-to-end.
 - Mobility and AP roaming should not break Layer 3 connectivity.
 - IP address should be the same → same VLAN with campus.
- A Native VLAN is required to provide management capability and client authentications.
 - Never extended to the wireless domain!!
 - → e.g., VLAN 1.

AP Placement and Channel Allocation

 802.11n or 802.11ac 5GHz deployment does not have the overlap or collision domain issues of 2.4GHz.

Equipment/Network High-level Dimensioning

Traffic Bandwidth Requirements (1)

- Determination of minimum equipment performance in terms of forwarding/routing speed.
 - Usually, express in terms of bits per second (bps) or packets per second (pps)
 - $P_{pps} = P_{bps} / MPS$
 - MPS→ Mean Packet Size in bits.
- Aggregated traffic requirements: A_{bps}=N*F_{bps}*SF*GF
 - N → Number of terminals.
 - F_{bps} → Upload+Download traffic requirements (bps)
 - SF → Simultaneity Factor (or diversity factor)
 - Probability that a particular equipment/user will generate traffic coincidentally (in time) with another equipment/user.
 - GF → Growing Factor (or slack factor)
 - Factor by which the traffic may grow at medium-term.
 - May depend on number of users, user behavior, and application protocols/behaviors

Traffic Bandwidth Requirements (2)

- At each layer, an equipment must be ablr to process all traffic from all equipment connected to him in the lower layers.
 - May be considered an additional Slack Factor.
- Aggregated traffic requirements for layer i, section j:
 - A_{i,j}=sum(A_{i-1,j'}), for all lower layer j' sections connected to section j of the upper layer.
- Most parameters are subjective (and result mainly from empirical analysis) and depend on many technical and management factors.
 - In networks with a monitoring history may be possible to infer/extrapolate current and future values/behaviors more accurately.

Example

Recommended Reading

- [Chapters 1 and 2] A Practical Approach to Corporate Networks Engineering, António Nogueira, Paulo Salvador, River Publishers, ISBN-13: 978-8792982094, 2013.
- [Chapters 1 and 2] Designing Cisco Network Service Architectures (ARCH), John Tiso, Cisco Press, ISBN-13: 978-1587142888, 3rd Edition, 2011.
- Cisco's White Paper, "Gigabit Campus Network Design Principles and Architecture". (Available at moodle.ua.pt)