THESIS PROPOSAL

HMM modelling for the spread of the SARS-CoV-2

Martin Beneš

Supervisor: Krzysztof Bartoszek

Presentation structure

- Data description
- Research questions
- Methods to solve the questions
- Possible bottlenecks
- Similar research

Covid-19 statistics

- Daily, weekly
- Attributes
 - ▶ **Tests** = number of performed tests (RT-qPCR + antigen)
 - Confirmed cases = number of newly positively tested people
 - Deaths = number of deceased on/with Covid-19
 - Hospitalized = number of new hospitalized
 - Recovered = number of recovered/released from hospital
- ► Country-wise, regions, municipalities

Covid-19 statistics: Czechia

- ► https://onemocneni-aktualne.mzcr.cz/api/v2/covid-19
- Country: RT-qPCR + antigen tests
- District: deaths, tests, hospital capacities, hospital stock states
 - ▶ Per age group: incidence, prevalence, hospitalized, vaccinated
 - Cases with age and gender: confirmed, deaths
- Municipality: confirmed

Covid-19 statistics: Poland

- https://www.gov.pl/web/koronawirus/pliki-archiwalne-powiaty
- https://twitter.com/MZ_GOV_PL
- Country: tests, recovered, hospitalized, quarantined
- Region/municipality: confirmed, deaths,

Covid-19 statistics: Sweden

- https://www.folkhalsomyndigheten.se/smittskyddberedskap/utbrott/aktuella-utbrott/covid-19/statistik-och-analyser/
- https://scb.se/om-scb/nyheter-ochpressmeddelanden/overdodligheten-fortsatter-att-sjunka-eftertoppen-i-april/
- Country: deaths, icu, confirmed (daily)
- Region: icu (weekly), vaccines, tests antibody
- Municipality: confirmed, deaths (weekly)

Covid-19 statistics: Italy and others

- https://covid19datahub.io/
- Unified datahub for Covid-19 data
- ► Italy + Switzerland:
 - Municipality: deaths, confirmed, tests, recovered, hospitalized, icu
- Implemented:
 https://github.com/covid19datahub/COVID19/blob/master/inst/ext
 data/src.csv

Demographical statistics

- Mortality
 - https://ec.europa.eu/eurostat/web/products-datasets/-/demo r mweek3
- Population
 - ▶ https://ec.europa.eu/eurostat/web/products-datasets/-/tgs00096
- ▶ Area, ...

Research questions

- Data: To what extent are the collected data reliable?
- ▶ Model: What are the distributions of parameters of Covid-19?
 - Incubation period
 - ▶ Infection fatality ratio
 - ► Reproduction number
 - Duration of disease
- Simulation: Are the reported statistics projected in the results?
- Simulation: Are there visible patterns or similarities between regions?
- ▶ **Simulation**: Are the introduced restrictions in the region/country projected in the numbers yielded by the simulation?

Data: To what extent are the collected data reliable?

- Evaluate the sampling method.
- Is number of performed tests sufficient?
- Analyze the data for discrepancies.

Figure 21. P-values for equal ratio t-test (eq. 10).			
Day	Country		
	Czechia	Poland	Sweden
Monday	0.581	0.001	0.429
Tuesday	0.496	0.06	0.088
Wednesday	0.784	0.112	0.731
Thursday	0.375	0.181	0.924
Friday	0.298	0.764	0.507
Saturday	0.112	0.737	0.394
Sunday	0.294	0.044	0.947

Source: own unpublished research project

Model: What are the distributions of parameters of Covid-19?

- ▶ SIR* model
 - ▶ Parameters a,b,c,d needed
- Objective of other papers

Source: 10.7326/M20-0504

Model: What are the distributions of parameters of Covid-19?

- HMM model
 - ► Transition/emission matrices based on SIR*

Transition matrix structure

susceptible susceptible
exposed exposed
infected infected

(tests) (tests)

Model: What are the distributions of parameters of Covid-19?

► HMM model

$$P(\delta^{(1)} = 1) = P(\delta = 1)$$

$$P(\delta^{(k)} = 1 | \delta^{(k-1)} = 0, \dots, \delta^{(1)} = 0) = \frac{P(\delta = k)}{\prod_{i=1}^{k-1} P(\delta^{(i)} = 0)}$$
(2.4)

Source: Master thesis

Source: Master thesis

Simulation: Are the reported statistics projected in the results?

- Do the reported statistics describe similar situation as the simulation results?
- Are confirmed cases a good measure of the situation?
- Is there a visible connection with testing strategy?

Simulation: Are there visible patterns or similarities between regions?

- Comparison of infected.
- Possible usage of EM to drop less certain parameters.

Simulation: Are the restrictions projected in the simulated data?

- Evaluation of the situation in different regions in the context of local implemented restrictions.
- Evaluation of restriction efficiency.
- ▶ Data of restrictions: media, official websites, Covid-19 Data Hub

Bottlenecks

Symptoms / asymptomatic

- Different R0 number distribution (less cautious)
- Different probabilities of being tested
- Non-permanent immunity
 - ▶ Additional connection of R → S
- Infectious incoming from abroad
 - ▶ Additional additive term in the equation
- Vaccination
 - ► Lower susceptibles
 - Problem of data
- Test errors
 - Test is wrong with a certain probability (specificity + sensitivity)
- ► Infectiousness / symptoms
 - Not the same

$$\begin{aligned} \frac{dS}{dt} &= -aSI \\ \frac{dE}{dt} &= aSI - cE \\ \frac{dI}{dt} &= cE - bI - dD \\ \frac{dR}{dt} &= bI \\ \frac{dD}{dt} &= dD \end{aligned}$$

Source: Master thesis

- ► Similar research already exists
 - ► From second half of the year 2020
- Parameters per population, not per-age

Source: Master thesis

- Tracking the early depleting transmission dynamics of COVID-19 with a time-varying SIR model
- https://www.nature.com/articles/s41598-020-78739-8
- Compartment model
- Data from Malaysia
- ▶ Latent variable is R0

- ► COVID-19 dynamics in an Ohio prison
- https://doi.org/10.1101/2021.01.14.21249782
- Compartment model
- Measured in Ohio prison, where was outbreak
- Might include very different parameter estimates
- Not reviewed preprint

- Symptom-based testing in a compartmental model of Covid-19
- https://doi.org/10.1101/2020.10.11.20211037
- Compartment model
- Does not specify what data is used
- Not reviewed preprint

Thank you for attention.

Martin Beneš