Modeling the 802.11 Protocol under Different Capture and Sensing Capabilities

Mathilde Durvy¹ Olivier Dousse² Patrick Thiran¹

¹EPFL, Switzerland ²Deutsche Telekom Laboratories, Germany

Context

- Multi-hop ad hoc networks
- A single channel
- High traffic load (saturated traffic conditions)
- Decentralized MAC protocols
- Use a backoff mechanism to regulate the access to the channel
- E.g.: wifi protocol à la 802.11

Goal

- Investigate the performance and properties of protocols based on a backoff mechanism
- Show how the sensing and capture capabilities of the network nodes affect the performance of such protocols
- Explain why these protocols can organize the transmissions in a network but also lead to the starvation of some of the network links

- Average exchange time: $1/\mu$
- Average backoff time: $1/\lambda$
- \bullet $\rho = \lambda/\mu$
- Continuous backoff distribution → no collision

- Average exchange time: $1/\mu$
- Average backoff time: $1/\lambda$
- \bullet $\rho = \lambda/\mu$
- Continuous backoff distribution → no collision

- Average exchange time: $1/\mu$
- Average backoff time: $1/\lambda$
- \bullet $\rho = \lambda/\mu$
- Continuous backoff distribution → no collision

- Average exchange time: $1/\mu$
- Average backoff time: $1/\lambda$
- \bullet $\rho = \lambda/\mu$
- Continuous backoff distribution → no collision

- Request-To-Send (RTS)
- Clear-To-Send (CTS)
- DATA packet
- ACKnowledgement

- Symmetric exclusion domain
- Asymmetric exclusion domain

- Symmetric exclusion domain
- Asymmetric exclusion domain

- Symmetric exclusion domain
- Asymmetric exclusion domain

- Symmetric exclusion domain
- Asymmetric exclusion domain

Capture effect

- The strongest signal arrives first
- There is capture at Node 4 ($P_3/P_6 > \text{thr}$)
- Node 4 can continue to decode the packet from Node 3

Capture effect

- The strongest signal arrives first
- There is capture at Node 4 ($P_3/P_6 > \text{thr}$)
- Node 4 can continue to decode the packet from Node 3

Capture effect

- The strongest signal arrives first
- There is capture at Node 4 ($P_3/P_6 > \text{thr}$)
- Node 4 can continue to decode the packet from Node 3

- The strongest signal arrives in second position
- Full capture: Node 1 can resynchronize on the strongest signal (the DATA transmission can take place)
- Limited capture: Node 1 can not resynchronize on the strongest signal

- The strongest signal arrives in second position
- Full capture: Node 1 can resynchronize on the strongest signal (the DATA transmission can take place)
- Limited capture: Node 1 can not resynchronize on the strongest signal

- The strongest signal arrives in second position
- Full capture: Node 1 can resynchronize on the strongest signal (the DATA transmission can take place)
- Limited capture: Node 1 can not resynchronize on the strongest signal

- The strongest signal arrives in second position
- Full capture: Node 1 can resynchronize on the strongest signal (the DATA transmission can take place)
- Limited capture: Node 1 can not resynchronize on the strongest signal

Symmetric case

Asymmetric case - full capture

Asymmetric case - limited capture

Example, $\rho = 620$

