Random Walks

Tom Eichlersmith

Background

Method

Results

Questions

Random Walks on Simple Two-Dimensional Manifolds

Tom Eichlersmith

Hamline University

teichlersmith01@hamline.edu

April 19, 2018

Vocabulary

Random Walks

Tom Eichlersmith

Background

Method

resuits

Questions

- Random
- Walk
- Simple
- ▶ Two-Dimensional
- Manifolds
- Smooth Surfaces
- Geodesic Equations
- Christoffel Symbols
- Escape Regions

"Smooth" Surfaces

Figure: By Leonid_2 - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=8643414

Random Walks

Tom Eichlersmith

Background

Method

Results

Geodesic Equations

Tom Eichlersmith

Background

Method

Courto

- 1. Extend definition of line to other surfaces
- 2. Assume a path is a geodesic contained in a coordinate patch
- 3. Derive geodesic equations for coordinate functions of path

Christoffel Symbols

Random Walks

Tom Eichlersmith

Background

Method

uestions

- ► Represent surface in geodesic equations
- ► Characterize properties of surface

C++ Implementation

Random Walks

Tom Eichlersmith

Background

Method

uestions

- ► Runge-Kutta 4th Order Method
- Stack Linked List
- ► Function Pointers

Random Walks

Tom Eichlersmith

Background

Method

Results

Random Walks

Tom Eichlersmith

Background

Method Results

uestions

Random Walks

Tom Eichlersmith

Backgroun

Methoc

Results

Random Walks

Tom Eichlersmith

Background

Method Results

uestions

Sphere

Random Walks

Tom Eichlersmith

Background

Metho

Results

estions

Sphere

Random Walks

Tom Eichlersmith

Backgroun

Method Results

Sphere

Random Walks

Tom Eichlersmith

Background

Method Results

)uestions

Background

Method

Questions

Questions?

Coordinate Patch $\mu: U \to V:$ continuous functions mapping from $U \subseteq \mathbb{R}^2$ to a subset of the surface V

Chart: covers entire surface

Regular Surfaces:

- ▶ Differentiable the coordinate functions of μ in \mathbb{R}^3 have continuous partial derivatives for all orders
- lacktriangle Homeomorphic μ and its inverse are continuous
- \blacktriangleright Satisfies the Regularity Condition The differential of μ is a one-to-one linear transformation

Overall Package

Package Attributes

- Versatility
- Flexibility
- Speed

Specific Parts

- Stepper
- Coordinate Wrappers
- Escape Checks

$$u'' + \frac{\mu_{uu} \cdot \mu_{u}}{\mu_{u} \cdot \mu_{u}} (u')^{2} + \frac{\mu_{vv} \cdot \mu_{u}}{\mu_{u} \cdot \mu_{u}} (v')^{2} + 2 \frac{\mu_{uv} \cdot \mu_{u}}{\mu_{u} \cdot \mu_{u}} u'v' = 0$$

$$v'' + \frac{\mu_{uu} \cdot \mu_{v}}{\mu_{v} \cdot \mu_{v}} (u')^{2} + \frac{\mu_{vv} \cdot \mu_{v}}{\mu_{v} \cdot \mu_{v}} (v')^{2} + 2 \frac{\mu_{uv} \cdot \mu_{v}}{\mu_{v} \cdot \mu_{v}} u'v' = 0$$

Stepping Method

Runge-Kutta 4th Order Method (RK4)

$$\frac{dy}{dt} = F(y) \quad y_0 = y(0)$$

Numerically solve up to t = h with N iterations.

$$\delta \leftarrow h/N$$

$$y \leftarrow y_0$$

$$loop \ N \ times:$$

$$k_1 \leftarrow F(y)$$

$$k_2 \leftarrow F(y + (\delta/2)k_1)$$

$$k_3 \leftarrow F(y + (\delta/2)k_2)$$

$$k_4 \leftarrow F(y + \delta k_3)$$

$$y \leftarrow y + (\delta/6)(k_1 + 2k_2 + 2k_3 + k_4)$$

Define

$$p = \frac{du}{dt}$$
 and $q = \frac{dv}{dt}$

Then the geodesic equations become

$$\begin{aligned}
\frac{du}{dt} &= p \\
\frac{dv}{dt} &= q \\
\frac{dp}{dt} &= -\Gamma_{uu}^{u} p^{2} - 2\Gamma_{uv}^{u} pq - \Gamma_{vv}^{u} q^{2} \\
\frac{dq}{dt} &= -\Gamma_{uu}^{v} p^{2} - 2\Gamma_{uv}^{v} pq - \Gamma_{vv}^{v} q^{2}
\end{aligned}$$

Coordinate Wrapping

Tom Eichlersmith

- Collection of every step point
- Number of steps in RK4
- Simplifications due to symmetry
 - ▶ Plane with radius representation
 - ► Sphere with polar angle representation
- Method of "compressing" the data

Tom Eichlersmith

Tom Eichlersmith

