Witt Rings and Brauer Groups

Quadratic forms can be classified by their Witt classes in Witt rings (of concerned fields). This is a slightly coarser classification than the one given by the Clifford algebras (of quadratic forms).

Associative algebras with unity can be studied by means of Brauer groups (of fields); for this one needs to know tensor products of algebras. These topics will be discussed in this chapter.

15.1 Quadratic forms

A quadratic form on a linear space V over a field $\mathbb F$ is a map $Q:V\to\mathbb F$ such that for any $\lambda\in\mathbb F$ and $\mathbf x\in V$

$$Q(\lambda \mathbf{x}) = \lambda^2 Q(\mathbf{x})$$

and such that the map

$$V \times V \to \mathbb{F}$$
, $(\mathbf{x}, \mathbf{y}) \to Q(\mathbf{x} + \mathbf{y}) - Q(\mathbf{x}) - Q(\mathbf{y})$

is bilinear, that is, linear in both arguments. A linear space with a quadratic form on itself is called a *quadratic space*. A quadratic form obeys the parallelogram law

$$Q(\mathbf{x} + \mathbf{y}) + Q(\mathbf{x} - \mathbf{y}) = 2Q(\mathbf{x}) + 2Q(\mathbf{y}).$$

In characteristic $\neq 2$ the quadratic form may be recaptured from its symmetric bilinear form

$$B(\mathbf{x}, \mathbf{y}) = \frac{1}{2}[Q(\mathbf{x} + \mathbf{y}) - Q(\mathbf{x}) - Q(\mathbf{y})]$$

since $Q(\mathbf{x}) = B(\mathbf{x}, \mathbf{x})$. In characteristic $\neq 2$ the theory of quadratic forms is the same as the theory of symmetric bilinear forms, but in characteristic 2 there

are quadratic forms which are not induced by any symmetric bilinear form.

Example. Consider the 2-dimensional space \mathbb{F}_2^2 over $\mathbb{F}_2 = \{0,1\}$. For the quadratic form $Q: \mathbb{F}_2^2 \to \mathbb{F}_2$, $\mathbf{x} = (x_1, x_2) \to x_1 x_2$ there is no symmetric bilinear form B such that $Q(\mathbf{x}) = B(\mathbf{x}, \mathbf{x})$. However, there is a bilinear form B, not symmetric, such that $Q(\mathbf{x}) = B(\mathbf{x}, \mathbf{x})$, namely $B(\mathbf{x}, \mathbf{y}) = x_1 y_2$, but the matrix

$$B(\mathbf{e}_i, \mathbf{e}_j) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

cannot be symmetrized by adding an alternating matrix with entries in $\mathbb{F}_2 = \{0, 1\}$.

Remark. We shall not be concerned with characteristic 2, or non-symmetric B, except at the end of this book when considering the relation between the exterior algebra and the Clifford algebras. The role of non-symmetric B will be described in Chevalley's construction $\mathcal{C}\ell(Q) \subset \operatorname{End}(\bigwedge V)$.

A non-zero vector \mathbf{x} is *null* or *isotropic* if $Q(\mathbf{x}) = 0$. A quadratic form is anisotropic if $Q(\mathbf{x}) = 0$ implies $\mathbf{x} = 0$, and *isotropic* if $Q(\mathbf{x}) = 0$ for some $\mathbf{x} \neq 0$. A bilinear form is *non-degenerate* if $B(\mathbf{x}, \mathbf{y}) = 0$ for all $\mathbf{y} \in V$ implies $\mathbf{x} = 0$. An anisotropic quadratic form is always non-degenerate.

A 2-dimensional isotropic but non-degenerate quadratic space is known as the *hyperbolic plane*. A hyperbolic plane has a quadratic form y_1y_2 or equivalently $x_1^2 - x_2^2$ (choose $y_1 = x_1 + x_2$ and $y_2 = x_1 - x_2$ in characteristic $\neq 2$).

A subspace with a vanishing quadratic form is *totally isotropic*. In a non-degenerate quadratic space with a totally isotropic subspace S, there is another totally isotropic subspace S' such that $S \cap S' = \{0\}$ and $\dim S = \dim S'$. A non-degenerate quadratic space is *neutral* or *hyperbolic* if it is a direct sum of two totally isotropic subspaces (necessarily of the same dimension). A neutral quadratic space is even-dimensional.

Examples. 1. A Euclidean space \mathbb{R}^n has an anisotropic (and positive definite) quadratic form on itself, i.e., $\mathbf{x} \neq 0$ implies $\mathbf{x} \cdot \mathbf{x} > 0$. This enables us to introduce the *norm* or *length* $|\mathbf{x}| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$ of $\mathbf{x} \in \mathbb{R}^n$.

- 2. The real quadratic space $\mathbb{R}^{p,q}$ is non-degenerate and for non-zero p,q also isotropic (indefinite). The dimension of its maximal totally isotropic subspace is p or q according as $p \leq q$ or $p \geq q$, respectively. This number is called the *isotropy index* (or Witt index) of $\mathbb{R}^{p,q}$.
- 3. The quadratic form $x_1^2 + x_2^2$ on \mathbb{F}_5^2 is non-degenerate but isotropic, since $1^2 + 2^2 = 0 \mod 5$. It is also neutral.
- 4. The quadratic forms $x_1^2 + 2x_2^2$ and $x_1^2 + 3x_2^2$ are anisotropic on \mathbb{F}_5^2 .

197

Two quadratic spaces (V, Q) and (V', Q') are isometric if there is a linear isomorphism $L: V \to V'$ such that $Q'(L\mathbf{x}) = Q(\mathbf{x})$, or equivalently, in characteristic $\neq 2$,

$$B'(L\mathbf{x}, L\mathbf{y}) = B(\mathbf{x}, \mathbf{y})$$
 for all $\mathbf{x}, \mathbf{y} \in V$.

We will express the isometry as $(V,Q) \simeq (V',Q')$ or simply $Q \simeq Q'$. A self-isometry (or automorphism) of Q on V is a linear isomorphism $L:V \to V$ such that $Q(L(\mathbf{x})) = Q(\mathbf{x})$ for all $\mathbf{x} \in V$; these self-isometries of Q form the orthogonal group O(V,Q).

Two vectors \mathbf{x}, \mathbf{y} such that $B(\mathbf{x}, \mathbf{y}) = 0$ are said to be *orthogonal* (in the case of a symmetric B). If a quadratic space is a direct sum of two subspaces, $(V_1, Q_1) \oplus (V_2, Q_2)$, such that $B(\mathbf{x}_1, \mathbf{x}_2) = 0$ for all $\mathbf{x}_1 \in V_1$ and $\mathbf{x}_2 \in V_2$, it is an *orthogonal sum* denoted by $V_1 \perp V_2$ or $Q_1 \perp Q_2$.

There is also, for two quadratic spaces (V_1, Q_1) and (V_2, Q_2) , the tensor product $V_1 \otimes V_2$ of dimension $(\dim V_1)(\dim V_2)$, with a quadratic form satisfying

$$Q(\mathbf{x}_1 \otimes \mathbf{x}_2) = Q_1(\mathbf{x}_1)Q_2(\mathbf{x}_2)$$

for decomposable elements $\mathbf{x}_1 \otimes \mathbf{x}_2$ with $\mathbf{x}_1 \in V_1$ and $\mathbf{x}_2 \in V_2$.

The symmetric matrix $B(\mathbf{e}_i, \mathbf{e}_j)$ can be diagonalized (in characteristic $\neq 2$); as a consequence any quadratic form is isometric to a diagonal form $d_1x_1^2 + d_2x_2^2 + \ldots + d_nx_n^2$ for some $d_1, d_2, \ldots, d_n \in \mathbb{F}$. We shall write

$$\langle d_1, d_2, ..., d_n \rangle$$
 to denote $d_1 x_1^2 + d_2 x_2^2 + ... + d_n x_n^2$.

The orthogonal sum and the tensor product appear in diagonal form as

$$\langle a_1, \ldots, a_m \rangle \perp \langle b_1, \ldots, b_n \rangle = \langle a_1, \ldots, a_m, b_1, \ldots, b_n \rangle,$$

 $\langle a_1, \ldots, a_m \rangle \otimes \langle b_1, \ldots, b_n \rangle = \langle a_1 b_1, \ldots, a_i b_j, \ldots, a_m b_n \rangle.$

Examples. 1. The real quadratic space $\mathbb{R}^{p,p}$ is neutral and an orthogonal sum of p copies of hyperbolic planes $\mathbb{R}^{1,1}$ each with a quadratic form (1,-1).

- 2. The hyperbolic plane over \mathbb{F} , char $\mathbb{F} \neq 2$, is isometric with x_1x_2 and $x_1^2 x_2^2 \simeq \langle 1, -1 \rangle$.
- 3. In \mathbb{F}_5 , $\langle 1 \rangle \not\simeq \langle 2 \rangle$ since $2 \notin \mathbb{F}_5^{\square}$, the set of non-zero squares, but $\langle 2 \rangle \simeq \langle 3 \rangle$ since $2x_1^2 = 3(2x_1)^2$.
- 4. The quadratic forms $\langle 1, 2 \rangle$ and $\langle 1, 3 \rangle$ are isometric on \mathbb{F}_5^2 as can be seen by the identity $x_1^2 + 2x_2^2 = x_1^2 + 3(2x_2)^2 \mod 5$ and the linear isomorphism $(x_1, x_2) \to (x_1, 2x_2)$.
- 5. The quadratic forms $\langle 1, 1 \rangle$ and $\langle 1, -1 \rangle$ are isometric on \mathbb{F}_5^2 since $x_1^2 x_2^2 = x_1 + (2x_2)^2$.

15.2 Witt rings

Two quadratic spaces V,Q and V',Q' are said to be in the same Witt class if $Q \perp (-Q')$ is neutral. A non-degenerate quadratic space is an orthogonal sum $V = V_a \perp V_h$ of an anisotropic subspace V_a and a neutral subspace V_h . The anisotropic part V_a is unique up to isometry. It follows that V and V' are in the same Witt class iff $Q_a \perp (-Q'_a)$ is neutral, or equivalently iff $Q_a \simeq Q'_a$. This results in a correspondence

Witt class of
$$V = V_a \oplus V_h \longleftrightarrow$$
 isometry class of V_a

exactly one anisotropic isometry class being included in each Witt class.

Examples. Let the ground field be \mathbb{F}_5 .

- 1. From the orthogonal sum $\langle 1 \rangle \perp \langle 1, 2 \rangle \simeq \langle 1, 1, 2 \rangle$ we can cancel the hyperbolic plane $\langle 1, 1 \rangle$ to extract the anisotropic part $\langle 2 \rangle$. So the sum $\langle 1 \rangle \perp \langle 1, 2 \rangle$ is in the Witt class of $\langle 2 \rangle$.
- 2. From the tensor product $\langle 1,2 \rangle \otimes \langle 3 \rangle \simeq \langle 3,2 \cdot 3 = 1 \rangle$ there is nothing to cancel since $\langle 3,1 \rangle \simeq \langle 1,2 \rangle$ is anisotropic. So $\langle 1,2 \rangle \otimes \langle 3 \rangle$ is in the Witt class of $\langle 1,2 \rangle$.

The orthogonal sum \perp and the tensor product \otimes provide the set of all the Witt classes over \mathbb{F} with a ring structure yielding the Witt ring $W(\mathbb{F})$.

The opposite of Q is represented by -Q in $W(\mathbb{F})$. The neutral quadratic forms, in particular $\langle 0 \rangle$, represent the zero of $W(\mathbb{F})$. The 1-dimensional form $\langle 1 \rangle$ corresponds to the multiplicative unity of $W(\mathbb{F})$. The zero $\langle 0 \rangle$ and the unity $\langle 1 \rangle$ are the only idempotents in $W(\mathbb{F})$. The even-dimensional quadratic forms induce an ideal of $W(\mathbb{F})$.

Examples. 1. The Witt ring $W(\mathbb{F}_5)$ contains four anisotropic isometry classes $\langle 0 \rangle$, $\langle 1 \rangle$, $\langle 2 \rangle$, $\langle 1, 2 \rangle$. The addition and multiplication tables of $W(\mathbb{F}_5)$ are

	$\langle 1 \rangle$	$\langle 2 \rangle$	$\langle 1, 2 \rangle$	⊗	$\langle 1 \rangle$	$\langle 2 \rangle$	$\langle 1, 2 \rangle$
(1)	$\langle 0 \rangle$	$\langle 1, 2 \rangle$	(2) (1) (0)	(1)	$\langle 1 \rangle$ $\langle 2 \rangle$ $\langle 1, 2 \rangle$	$\langle 2 \rangle$	$\langle 1, 2 \rangle$
$\langle 2 \rangle$	$\langle 1, 2 \rangle$	$\langle 0 \rangle$	$\langle 1 \rangle$	$\langle 2 \rangle$	$\langle 2 \rangle$	$\langle 1 \rangle$	$\langle 1, 2 \rangle$
$\langle 1, 2 \rangle$	$\langle 2 \rangle$	$\langle 1 \rangle$	$\langle 0 \rangle$	$\langle 1, 2 \rangle$	$\langle 1, 2 \rangle$	$\langle 1, 2 \rangle$	$\langle 0 \rangle$

The Witt ring $W(\mathbb{F}_5)$ is isomorphic to the group algebra $\mathbb{Z}_2[\mathbb{F}_5^{\times}/\mathbb{F}_5^{\square}]$; and the additive group of $W(\mathbb{F}_5)$ is $\mathbb{Z}_2 \times \mathbb{Z}_2$, but as a ring $W(\mathbb{F}_5) \not\simeq \mathbb{Z}_2 = \mathbb{Z}_2 \times \mathbb{Z}_2$. 2. The 1-dimensional line \mathbb{F}_5 with quadratic form $\langle 2 \rangle$ has the quadratic field extension $\mathbb{F}_5(\sqrt{2}) \simeq \mathbb{F}_{25}$ as its Clifford algebra. The Clifford algebras of both $\langle 1 \rangle$ and $\langle -1 \rangle$ split as the double-ring ${}^2\mathbb{F}_5 = \mathbb{F}_5 \times \mathbb{F}_5$. Therefore, as algebras $\mathcal{C}\ell(\langle 2 \rangle, \mathbb{F}_5) \not\simeq \mathcal{C}\ell(\langle 1 \rangle, \mathbb{F}_5) \simeq \mathcal{C}\ell(\langle -1 \rangle, \mathbb{F}_5)$.

¹ Denoting the Clifford algebra of the n-dimensional quadratic space $p(1) \perp q(-1)$ by

15.2 Witt rings 199

3. The Witt ring $W(\mathbb{F}_7)$ contains four anisotropic isometry classes $\langle 0 \rangle$, $\langle 1 \rangle$, $\langle 1, 1 \rangle$, $\langle 1, 1, 1 \rangle$, and $W(\mathbb{F}_7) \simeq \mathbb{Z}_4$.

The finite fields \mathbb{F}_q . The Witt ring of \mathbb{F}_q , $q = p^m$, char $p \neq 2$, contains four anisotropic isometry classes

$$\langle 0 \rangle$$
, $\langle 1 \rangle$, $\langle s \rangle$, $\langle 1, s \rangle$ where $s \notin \mathbb{F}_q^{\square}$ for $p = 1 \mod 4$, $\langle 0 \rangle$, $\langle 1 \rangle$, $\langle 1, 1 \rangle$, $\langle 1, 1, 1 \rangle$ for $p = 3 \mod 4$.

The corresponding Witt rings are $W(\mathbb{F}_q) \simeq \mathbb{Z}_2[\mathbb{F}_q^{\times}/\mathbb{F}_q^{\square}]$, $q = 1 \mod 4$, and $W(\mathbb{F}_q) \simeq \mathbb{Z}_4$, $q = 3 \mod 4$. All quadratic forms over the finite fields are isotropic in dimensions n > 3.

The real field \mathbb{R} . A field \mathbb{F} is ordered if there is a subset $P \subset \mathbb{F}$ (of positive numbers) such that for all $a,b \in P$ also $a+b,ab \in P$, and, for all $a \in \mathbb{F}$ exactly one of $a \in P$, a=0, and $-a \in P$ holds. The statement $a-b \in P$ is also written a>b. An ordered field \mathbb{F} has an absolute value $\mathbb{F} \to P$, $x \to |x|$ defined by setting |0|=0, |x|=x for x>0, and |x|=-x for -x>0.

In an ordered field, $\mathbb{F}^{\square} \subset P$. If all the positive numbers have square roots, then there is a unique ordering with $P = \mathbb{F}^{\square}$. The following holds for any ordered field \mathbb{F} such that $P = \mathbb{F}^{\square}$, but we shall only consider the real field \mathbb{R} .

There exist exactly two anisotropic forms on \mathbb{R}^n , namely the positive definite $(1, 1, \ldots, 1)$ and the negative definite $(-1, -1, \ldots, -1)$. A non-degenerate quadratic form on \mathbb{R}^n is isometric to

$$x_1^2 + \ldots + x_p^2 - x_{p+1}^2 - \ldots - x_{p+q}^2, \quad p+q=n,$$

which we abbreviate as $p\langle 1 \rangle \perp q\langle -1 \rangle$. The real quadratic space with this quadratic form is denoted by $\mathbb{R}^{p,q}$. The integer p-q is called the *signature* of $\mathbb{R}^{p,q}$.

The signature map sending $\mathbb{R}^{p,q}$ to p-q gives a ring isomorphism $W(\mathbb{R}) \simeq \mathbb{Z}$. As a consequence, the Clifford algebras of non-degenerate real quadratic spaces can be listed by the symbols $\mathcal{C}\ell_{p,q}$, denoted more fully by $\mathcal{C}\ell_{p,q}(\mathbb{R}^n) = \mathcal{C}\ell(\mathbb{R}^{p,q})$ or $\mathcal{C}\ell(p\langle 1 \rangle \perp q\langle -1 \rangle, \mathbb{R}^n)$.

The complex field \mathbb{C} . The Witt ring of \mathbb{C} contains only two anisotropic isometry classes, namely $\langle 0 \rangle$ and $\langle 1 \rangle$, and $W(\mathbb{C}) \simeq \mathbb{Z}_2$. We only have to distinguish between even- and odd-dimensional spaces over \mathbb{C} .

Exercises 1,2

 $[\]mathcal{C}\ell_{p,q}(\mathbb{F}^n)$, this example shows that the notion $\mathcal{C}\ell_{p,q}$ does not reach all the Clifford algebras over arbitrary fields \mathbb{F} .

² The real linear space \mathbb{R}^n with the positive definite quadratic form $n(1) = \langle 1, 1, \ldots, 1 \rangle$ is the Euclidean space \mathbb{R}^n .

15.3 Algebras

An algebra A over a field \mathbb{F} is a linear (that is a vector) space A over \mathbb{F} together with a bilinear map $A \times A \to A$, $(a,b) \to ab$, the algebra product. Bilinearity means distributivity (a+b)c = ac+bc, a(b+c) = ab+ac and $(\lambda a)b = a(\lambda b) = \lambda(ab)$ for all $a,b,c \in A$ and $\lambda \in \mathbb{F}$.

Examples. 1. The 2-dimensional real linear space \mathbb{R}^2 together with the product $(x_1, y_1)(x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1)$ results in the real algebra of complex numbers \mathbb{C} .

- 2. The double-ring ${}^2\mathbb{F}$ of a field \mathbb{F} has a product $(a_1,b_1)(a_2,b_2)=(a_1a_2,b_1b_2)$ making it a 2-dimensional algebra over the subfield denoted by $\mathbb{F}(1,1)=\{(\lambda,\lambda)\mid\lambda\in\mathbb{F}\}.$
- 3. The matrix algebra of real 2×2 -matrices $Mat(2, \mathbb{R})$ is a 4-dimensional real associative algebra with unity I.
- 4. The real linear space \mathbb{R}^3 together with the cross product $\mathbf{a} \times \mathbf{b}$ is a (non-associative) Lie algebra.

An algebra is without zero-divisors if ab = 0 implies a = 0 or b = 0. In a division algebra \mathbb{D} the equations ax = b and ya = b have unique solutions x, y for all non-zero $a, b \in \mathbb{D}$. A division algebra is without zero-divisors, and conversely, every finite-dimensional algebra without zero-divisors is a division algebra. If a division algebra is associative, then it has a multiplicative unity and each non-zero element admits a unique inverse (on both sides).

An algebra with a multiplicative unity is said to admit inverses if each non-zero element admits an inverse.

Examples. 1. The quaternions \mathbb{H} form a real associative but non-commutative division algebra with unity 1.

2. Define the following product for pairs of quaternions:

$$(x_1,y_1)\circ(x_2,y_2)=(x_1x_2-\bar{y}_2y_2,y_2x_1+y_1\bar{x}_2).$$

This makes the real linear space $\mathbb{H} \times \mathbb{H}$ a real algebra, the Cayley algebra of octonions \mathbb{O} . The Cayley algebra is non-associative, $a \circ (b \circ c) \neq (a \circ b) \circ c$, but alternative, $(a \circ a) \circ b = a \circ (a \circ b)$, $a \circ (b \circ b) = (a \circ b) \circ b$. It is a division algebra with unity 1.

3. Consider a 3-dimensional real algebra with basis $\{1, i, j\}$ such that 1 is the unity and $i^2 = j^2 = -1$ but ij = ji = 0. The algebra is commutative, non-associative and non-alternative. It admits inverses, but the inverses of the elements of the form xi + yj are not unique, $(xi + yj)^{-1} = \lambda(yi - xj) - \frac{ix + jy}{x^2 + y^2}$. It has by definition zero-divisors, and cannot be a division algebra.

An isomorphism or anti-isomorphism of algebras A and B is a linear isomor-

201

phism $f: A \to B$ such that

$$f(xy) = f(x)f(y)$$
 or $f(xy) = f(y)f(x)$,

respectively. An automorphism or anti-automorphism of an algebra A is an isomorphism or anti-isomorphism $A \to A$, respectively. An automorphism or anti-automorphism f of A such that f(f(x)) = x for all $x \in A$ is an involution or an anti-involution, respectively.

The only algebra automorphisms of \mathbb{C} , regarded as a real algebra, are the identity and the complex conjugation $z \to \bar{z}$.

The only automorphisms of the real algebra ${}^2\mathbb{R}$ are the identity and the swap

$${}^{2}\mathbb{R} \to {}^{2}\mathbb{R}, \ (\lambda, \mu) \to \operatorname{swap}(\lambda, \mu) = (\mu, \lambda).$$

The swap acts like the complex conjugation of \mathbb{C} , since

$$swap[\lambda(1,1) + \mu(1,-1)] = \lambda(1,1) - \mu(1,-1).$$

Two automorphisms or anti-automorphisms α, β of an algebra A are said to be *similar* if there is an automorphism γ of A such that $\alpha\gamma = \gamma\beta$. If no such γ exists then α and β are said to be *dissimilar*.

The identity automorphism is similar only to itself. Consequently, the two involutions of the real algebra $\mathbb C$ are dissimilar, and the two involutions of the real algebra ${}^2\mathbb R$ are dissimilar.

Exercises 3,4

15.4 Tensor products of algebras, Brauer groups

The tensor product of two algebras A and B over a field \mathbb{F} is the linear space $A \otimes B$ made into an algebra with the product satisfying

$$(a\otimes b)(a'\otimes b')=(aa')\otimes (bb')$$

for $a, a' \in A$ and $b, b' \in B$. This algebra is also denoted by $A \otimes B$ or, to emphasize the ground field, by $A \otimes_{\mathbb{F}} B$.

In the special case of finite-dimensional associative algebras with multiplicative unity, the statement $C = A \otimes B$ can be tested by the following conditions posed on the subalgebras A and B of C:

- (i) ab = ba for any $a \in A$ and $b \in B$,
- (ii) C is generated as an algebra by A and B,
- (iii) $\dim C = (\dim A)(\dim B)$.

Examples. 1. $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{H} \simeq \operatorname{Mat}(2,\mathbb{C})$ the real matrix algebra of 2×2 -matrices with complex numbers as entries.

- 2. $\operatorname{Mat}(p,\mathbb{R}) \otimes \operatorname{Mat}(q,\mathbb{R}) \simeq \operatorname{Mat}(pq,\mathbb{R})$.
- 3. $\operatorname{Mat}(p,\mathbb{R}) \otimes \operatorname{Mat}(q,\mathbb{C}) \simeq \operatorname{Mat}(pq,\mathbb{C})$.

Exercises 5,6

A two-sided ideal T of an algebra A is a subalgebra such that $ta \in T$ and $at \in T$ for all $t \in T$ and $a \in A$. An algebra A is called *simple* if it has no two-sided ideals other than 0 and A. The *center* Cen(A) of an algebra A consists of the elements commuting with all the elements of A:

$$Cen(A) = \{c \in A \mid ac = ca \text{ for all } a \in A\}.$$

An algebra with multiplicative unity 1 is called *central* if $\operatorname{Cen}(A) = \mathbb{F} \cdot 1 \simeq \mathbb{F}$. A finite-dimensional central simple associative \mathbb{F} -algebra A with multiplicative unity is isomorphic to $\operatorname{Mat}(d,\mathbb{D})$ for some suitable division ring \mathbb{D} (and division algebra over \mathbb{F}).

The opposite A^{opp} of an algebra A is the linear space A with a new product opp[ab] of $a,b \in A$ given by opp[ab] = ba. Two central simple associative \mathbb{F} -algebras A and B are in the same Brauer class if $A \otimes B^{\text{opp}} \cong \text{Mat}(d,\mathbb{F})$ for some integer d. The tensor product of algebras induces a product for Brauer classes, making the set of Brauer classes a group, called the Brauer group $Br(\mathbb{F})$ of the field \mathbb{F} .

Examples.
$$Br(\mathbb{R}) \simeq \{\mathbb{R}, \mathbb{H}\}, \ Br(\mathbb{C}) \simeq \{\mathbb{C}\}, \ Br(\mathbb{F}_5) \simeq \{\mathbb{F}_5\}.$$

An algebra A is graded over $\mathbb{Z}_2 = \{0,1\}$ if it is a direct sum of two subalgebras $A = A_0 \oplus A_1$ so that $A_i A_j \subset A_{i+j}$ [the indices are added modulo 2]. For two graded algebras $A = A_0 \oplus A_1$ and $B = B_0 \oplus B_1$ the graded tensor product $A \otimes B$ is the linear space $A \otimes B$ provided with the product determined by the formula

$$(a \otimes b)(a' \otimes b') = (-1)^{ij}(aa') \otimes (bb')$$

for homogeneous $a' \in A_i$ and $b \in B_j$. The graded opposite A^{opp} of a graded algebra $A = A_0 \oplus A_1$ is the linear space A with a new product opp[ab] of $a, b \in A$ given by $\text{opp}[ab] = (-1)^{ij}ba$ for homogeneous elements $a \in A_i$ and $b \in B_j$.

Exercises

- 1. Determine the addition and the multiplication tables of the anisotropic isometry classes $\langle 0 \rangle$, $\langle 1 \rangle$, $\langle 1, 1 \rangle$, $\langle 1, 1, 1 \rangle$ of $W(\mathbb{F}_7)$.
- 2. Identify as matrix algebras all the Clifford algebras of non-degenerate quadratic forms over \mathbb{F}_5 .

203

- 3. Show that the two involutions $\alpha(\lambda, \mu) = (\mu, \lambda)$ and $\beta(\lambda, \mu) = (\bar{\mu}, \bar{\lambda})$ are similar involutions of the real or complex algebra ${}^{2}\mathbb{C}$.
- 4. Consider the four anti-involutions of $Mat(2, \mathbb{R})$ sending

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \text{to} \quad \begin{pmatrix} a & c \\ b & d \end{pmatrix}, \quad \begin{pmatrix} a & -c \\ -b & d \end{pmatrix}, \quad \begin{pmatrix} d & b \\ c & a \end{pmatrix}, \quad \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Determine which ones of these four anti-involutions are similar or dissimilar to each other. Hint: keep track of what happens to the matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

with squares I, I, and -I.

- 5. Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \simeq \mathbb{C} \oplus \mathbb{C}$.
- 6. Show that $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{H} \simeq \operatorname{Mat}(4, \mathbb{R})$.

Solutions

1.

1	$\langle 1 \rangle$	$\langle 1, 1 \rangle$	$\langle 1, 1, 1 \rangle$
$\langle 1 \rangle$ $\langle 1, 1 \rangle$	$\langle 1, 1 \rangle$ $\langle 1, 1, 1 \rangle$	$\langle 1, 1, 1 \rangle$ $\langle 0 \rangle$	⟨0⟩ ⟨1⟩
$\langle 1, 1, 1 \rangle$	(0)	\(\frac{0}{1}\rangle	$\langle 1, 1 \rangle$
8	(1)	$\langle 1, 1 \rangle$	$\langle 1, 1, 1 \rangle$
$\langle 1 \rangle$ $\langle 1, 1 \rangle$ $\langle 1, 1, 1 \rangle$	$ \begin{vmatrix} \langle 1 \rangle \\ \langle 1, 1 \rangle \\ \langle 1, 1, 1 \rangle \end{vmatrix} $	$\langle 1, 1 \rangle$ $\langle 0 \rangle$ $\langle 1, 1 \rangle$	$\langle 1, 1, 1 \rangle$ $\langle 1, 1 \rangle$ $\langle 1 \rangle$

2. A non-degenerate quadratic form $\langle a_1, a_2, \ldots, a_n \rangle$ over \mathbb{F}_5 is isometric to $p\langle 1 \rangle \perp q\langle 2 \rangle$ where the numbers p and q mean, respectively, occurrences of 1,4 and 2,3 in a_1, a_2, \ldots, a_n . The Clifford algebra $\mathcal{C}\ell(p\langle 1 \rangle \perp q\langle 2 \rangle, \mathbb{F}_5^n)$ is isomorphic, as an associative algebra, to the matrix algebra

$$\operatorname{Mat}(2^{n/2}, \mathbb{F}_5)$$
 p and q even $\operatorname{Mat}(2^{n/2}, \mathbb{F}_5)$ p and q odd p and q odd p odd, q even $\operatorname{Mat}(2^{(n-1)/2}, \mathbb{F}_5(\sqrt{2}))$ p even, q odd.

For instance, $\mathcal{C}\ell(\langle 1,2\rangle,\mathbb{F}_5^2)\simeq \mathrm{Mat}(2,\mathbb{F}_5)$ by the correspondences

$$\mathbf{e}_1 \simeq \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad \mathbf{e}_2 \simeq \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$$

of an orthogonal basis $\{e_1, e_2\}$ of $\langle 1, 2 \rangle$ on \mathbb{F}_5^2 .

- 3. Choose $\gamma(\lambda, \mu) = (\bar{\lambda}, \mu)$ or $\gamma(\lambda, \mu) = (\lambda, \bar{\mu})$ to find $\alpha \gamma = \gamma \beta$.
- 4. Only two of the anti-involutions are similar,

$$\alpha \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & -c \\ -b & d \end{pmatrix}, \quad \beta \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} d & b \\ c & a \end{pmatrix},$$

as can be seen by choosing the intertwining automorphism

$$\gamma \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

for which $\alpha \gamma = \gamma \beta$.

- 5. We must have $1 \otimes 1 \simeq (1,1)$ and may choose $i \otimes i \simeq (1,-1)$ or $i \otimes i \simeq (-1,1)$. If we choose the latter, we may still choose $1 \otimes i \simeq (i,i)$, $i \otimes 1 \simeq (i,-i)$ or $1 \otimes i \simeq (i,-i)$, $i \otimes 1 \simeq (i,i)$ or opposites of both.
- 6. Choose for $a = a_0 + ia_1 + ja_2 + ka_3$, $b = b_0 + ib_1 + jb_2 + kb_3$ in \mathbb{H} the matrix representations

$$a \simeq egin{pmatrix} a_0 & -a_1 & -a_2 & -a_3 \ a_1 & a_0 & -a_3 & a_2 \ a_2 & a_3 & a_0 & -a_1 \ a_3 & -a_2 & a_1 & a_0 \end{pmatrix}, \quad b \simeq egin{pmatrix} b_0 & b_1 & b_2 & b_3 \ -b_1 & b_0 & -b_3 & b_2 \ -b_2 & b_3 & b_0 & -b_1 \ -b_3 & -b_2 & b_1 & b_0 \end{pmatrix},$$

and check that the matrices commute and form two isomorphic images of the ring H.

Bibliography

- M.-A. Knus: Quadratic Forms, Clifford Algebras and Spinors. Univ. Estadual de Campinas, SP, 1988.
- T.Y. Lam: The Algebraic Theory of Quadratic Forms. Benjamin, Reading, MA, 1973, 1980.
- E. Witt: Theorie der quadratischen Formen in beliebigen Körpern. J. Reine Angew. Math. 176 (1937), 31-44.