Mouvements dans un champ de forces centrales conservatives-mouvement newtonien

Table des matières

For	ce cent	trale conservative					
1.1	Force centrale						
1.2	Conservation du moment cinétique						
	1.2.1	Théorème du moment cinétique					
	1.2.2	Première conséquence : Planéité de la trajectoire					
	1.2.3	Deuxième conséquence : loi des aires					
	1.2.4	Formules de Binet					
1.3	Conse	rvation de l'énergie mécanique					
	1.3.1	Conservation de l'énergie mécanique					
	1.3.2	Energie potentielle effective \mathcal{E}_{peff}					
2 Champ de force centrale newtonien							
2.1	Force	newtonienne					
2.2	Etude	des trajectoires en champ newtonien					
		Etude énergétique					
	2.2.2	Equation de la trajectoire					
	2.2.3	Energie et nature des trajectoires					
Lois	s de K	epler-Applications aux planètes 10					
3.1		entiel de Kepler					
3.3		le Kepler					
		etoire circulaire : satellite terrestre					
	1.1 1.2 1.3 Cha 2.1 2.2 Lois 3.1 3.2	1.1 Force 1.2 Conse 1.2.1 1.2.2 1.2.3 1.2.4 1.3 Conse 1.3.1 1.3.2 Champ de 2.1 Force 2.2 Etude 2.2.1 2.2.2 2.2.3 Lois de K 3.1 Référe 3.2 Lois d 3.3 Trajec					

1 Force centrale conservative

1.1 Force centrale

Définition 1 : On définit une force centrale comme étant une force dont le support passe, à tout instant, par un point fixe appelé centre de force dans un référentiel d'étude.

 \bullet le support de la force \overrightarrow{F} passe par le point O à chaque instant ,il s'agit d'une force centrale

Définition 2 : Une force centrale est dite Conservative s'elle s'écrit sous la forme

$$\overrightarrow{F} = -\overrightarrow{grad}E_p(r) = -\frac{dE_p}{dr}\overrightarrow{e}_r = F(r)\overrightarrow{e}_r$$

- $F(r) = -\frac{dE_p}{dr}$ avec $E_p(r)$: l'énergie potentielle associée à la force \overrightarrow{F}
- $\overrightarrow{e}_r = \frac{\overrightarrow{OM}}{OM}$: vecteur unitaire
- \bullet OM = r

Autrement:

- l'intensité d'une force centrale conservative dépend uniquement de la distance r et non de la direction \overrightarrow{e}_r
- $\overrightarrow{\mathcal{M}}_O(\overrightarrow{F}) = \overrightarrow{OM} \wedge \overrightarrow{F} = 0$
- Exemples
 - ► Force gravitationnelle
 - la force appliquée par m_1 sur m_2 est :

$$\overrightarrow{F} = -G \frac{m_1 m_2}{r^2} \overrightarrow{e}_r$$

• le support de \overrightarrow{F} passe à chaque instant par le point fixe O donc il s'agit d'une force centrale

- l'énergie potentielle associée à \overrightarrow{F} : $E_p = -\frac{\alpha}{r} + cte$ avec $\alpha = Gm_1m_2$ (chapitre 3)
- la force gravitationnelle dérive de l'énergie potentielle et s'écrit sous la forme : $\overrightarrow{F} = F(r)\overrightarrow{e}_r$ avec $F(r) = -\frac{dE_p}{dr}$

Conclusion: la force gravitationnelle est une force centrale conservative

► Force coulombienne

la force coulombienne s'écrit sous la forme : (voir l'éléctrostatique)

$$\overrightarrow{F} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2} \overrightarrow{e}_r$$

est une force centrale conservative

1.2 Conservation du moment cinétique

1.2.1 Théorème du moment cinétique

Conclusion : Le moment cinétique d'une force centrale se conserve ,on dit qu'il s'agit d'une constante de mouvement

• Cas particulier : moment cinétique du point M est nul

 $\overrightarrow{L}_O = \overrightarrow{0}$: la particule est abandonnée sans vitesse initiale ou avec avec une vitesse dont le support passe par O . À tout instant \overrightarrow{OM} reste colinéaire à $\overrightarrow{V}(M/R_g)$ et le mouvement de M est rectiligne selon la droite OM_0 .

1.2.2 Première conséquence : Planéité de la trajectoire

- $\overrightarrow{L}_O = \overrightarrow{cte}$
- à $t = 0, \overrightarrow{OM}_0, \overrightarrow{V}_0$ sont dans le plan (oxy)
- $\overrightarrow{L}_O = \overrightarrow{OM}_0 \wedge m\overrightarrow{V}_0$ donc \overrightarrow{L}_O est colinéaire à t=0 \overrightarrow{u}_z
- puisque \overrightarrow{L}_O reste colinéaire avec \overrightarrow{u}_z alors \overrightarrow{OM} et \overrightarrow{V} restent dans le plan (oxy) donc le mouvement est plan

Conclusion : le mouvement d'un point matériel soumise à une force centrale est plan

1.2.3 Deuxième conséquence : loi des aires

- $\overrightarrow{L}_O = \overrightarrow{OM} \wedge m\overrightarrow{V}$
- $\overrightarrow{V} = \dot{r} \overrightarrow{e}_r + r \dot{\theta} \overrightarrow{e}_{\theta}$
- $\overrightarrow{L}_O = r \overrightarrow{e}_r \wedge m(\dot{r} \overrightarrow{e}_r + r\dot{\theta} \overrightarrow{e}_\theta)$ = $mr^2 \dot{\theta} \overrightarrow{e}_z = \overrightarrow{cte}$
- $r^2\dot{\theta} = C$, constante des aires

$$L_O = mC \Rightarrow C = \frac{L_O}{m} = r^2 \dot{\theta}$$

$$d\mathcal{A} = \frac{1}{2}r^2d\theta$$

▶ la vitesse aréolaire

Définition : On définit la vitesse aréolaire par

$$\frac{d\mathcal{A}}{dt} = \frac{1}{2}r^2\dot{\theta} = \frac{C}{2}$$

► Loi des aires $A = \frac{1}{2}Ct + cte$

Loi des aires:

- Dans un mouvement à force centrale le rayon vecteur \overrightarrow{OM} balaye des surfaces égales pendant des intervales de temps égaux .
- la vitesse aréolaire constante s'exprime par

$$\frac{d\mathcal{A}}{dt} = \frac{1}{2}r^2\dot{\theta} = \frac{C}{2}$$

1.2.4 Formules de Binet

- $\overrightarrow{V}(M/R) = \dot{r}\overrightarrow{e}_r + r\dot{\theta}\overrightarrow{e}_{\theta} \Rightarrow V^2 = \dot{r}^2 + r^2\dot{\theta}^2$
- On pose $u = \frac{1}{r} \Rightarrow \frac{dr}{du} = -\frac{1}{u^2}$
- $\dot{r} = \frac{dr}{dt} = \frac{dr}{du}\frac{du}{d\theta}\frac{d\theta}{dt} = -r^2\dot{\theta}\frac{du}{d\theta}$

$$\frac{dr}{dt} = -C\frac{du}{d\theta}$$

on obtient la première formule de Binet

$$V^2 = C^2 \left[\left(\frac{du}{d\theta} \right)^2 + u^2 \right]$$

• $\overrightarrow{a} = (\ddot{r} - r\dot{\theta}^2)\overrightarrow{e}_r + (2\dot{r}\dot{\theta} + r^2\ddot{\theta})\overrightarrow{e}_{\theta}$ de même on montre la deuxième formule de Binet

$$\overrightarrow{a} = -C^2 u^2 \left[\frac{d^2 u}{d\theta^2} + u \right] \overrightarrow{e}_r$$

1.3 Conservation de l'énergie mécanique

1.3.1 Conservation de l'énergie mécanique

- ▶ La seule force \overrightarrow{F} appliqué au point matériel M est conservative,donc l'énergie mécanique de M dans le référentiel R_g galiléen se conserve au cours du mouvement
- $\mathcal{E}_m(M/R_g) = \mathcal{E}_c(M/R_g) + \mathcal{E}_p(M/R_g) = \frac{1}{2}mv^2 + \mathcal{E}_p(r) = \mathcal{E}_m(t=0) = \mathcal{E}_m$

1.3.2 Energie potentielle effective \mathcal{E}_{peff}

- $\mathcal{E}_m(M/R_g) = \mathcal{E}_c(M/R_g) + \mathcal{E}_p(M/R_g) = \frac{1}{2}mv^2 + \mathcal{E}_p(r)$
- $v^2 = \dot{r}^2 + r^2 \dot{\theta}^2$
- $C = r^2 \dot{\theta}$
- $\mathcal{E}_m = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) + \mathcal{E}_p(r) = \frac{1}{2}m\dot{r}^2 + \frac{1}{2}mr^2\dot{\theta}^2 + \mathcal{E}_p(r)$

$$\mathcal{E}_{m} = \frac{1}{2}m\dot{r}^{2} + \frac{1}{2}m\frac{C^{2}}{r^{2}} + \mathcal{E}_{p}(r)$$

• l'énergie cinétique radiale \mathcal{E}_{cr}

$$\mathcal{E}_{cr} = \frac{1}{2}m\dot{r}^2$$

• l'énergie cinétique orthoradiale \mathcal{E}_c^{orth}

$$\mathcal{E}_c^{orth} = \frac{1}{2} m r^2 \dot{\theta}^2$$

• On définit l'énergie potentielle effective \mathcal{E}_{peff} par

$$\mathcal{E}_{peff} = \frac{1}{2}m\frac{C^2}{r^2} + \mathcal{E}_p(r)$$

• l'énergie mécanique s'écrit sous la forme

$$\mathcal{E}_m = \mathcal{E}_{cr} + \mathcal{E}_{peff} = cte$$

c'est l'intégrale première de l'énergie

• utilité de \mathcal{E}_{peff} : elle permet de déterminer les domaines accessibles à la trajectoire de la particule qui vérifient

$$|\mathcal{E}_m \geqslant \mathcal{E}_{peff}|$$

$$\mathcal{E}_{cr} = \mathcal{E}_m - \mathcal{E}_{peff} \geqslant 0 \Rightarrow \mathcal{E}_m \geqslant \mathcal{E}_{peff}$$

- \triangleright cas n°1 : le domaine accessible $[r_1, \infty[$ c'est l'état de diffusion
- ightharpoonup cas n°2 : le domaine accessible est $[r_1, r_2]$ c'est l'état liée

2 Champ de force centrale newtonien

2.1 Force newtonienne

Définition : Un point matériel M de masse m , situé à une distance r du centre de force O est soum is à une force centrale newtonienne si elle est de la forme

$$\overrightarrow{F} = -\frac{K}{r^2} \overrightarrow{e}_r$$
 avec $K = cte$

- la force \overrightarrow{F} est attractive si K > 0
- la force \overrightarrow{F} est repulsive si K < 0
- la force \overrightarrow{F} est conservative donc $\overrightarrow{F} = -\frac{d\mathcal{E}_p}{dr}\overrightarrow{e}_r \Rightarrow \mathcal{E}_p = -\frac{K}{r} + cte$
- par convention on choisit : cte = 0 pour que : $\lim_{r \to \infty} \mathcal{E}_p(r) = 0$

$$\mathcal{E}_p(r) = -\frac{K}{r}$$

- Exemples
 - Force gravitationnelle $(K = Gm_1m_2) : \overrightarrow{F} = -G\frac{m_1m_2}{r^2} \overrightarrow{e}_r$

$$\mathcal{E}_p^{grav}(r) = -G\frac{m_1 m_2}{r}$$

$$\begin{split} \mathcal{E}_p^{grav}(r) &= -G\frac{m_1m_2}{r} \\ \bullet \text{ Force \'electrostatique } (K = -\frac{q_1q_2}{4\pi\varepsilon_0}): \overrightarrow{F}_{1\to 2} &= \frac{1}{4\pi\varepsilon_0}\frac{q_1q_2}{r^2} \overrightarrow{e}_{1\to 2} \\ \\ \mathcal{E}_p^{elec}(r) &= \frac{1}{4\pi\varepsilon_0}\frac{q_1q_2}{r} \end{split}$$

$$\mathcal{E}_p^{elec}(r) = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r}$$

2.2Etude des trajectoires en champ newtonien

Etude énergétique 2.2.1

- l'énergie potentielle newtonienne : $\mathcal{E}_p(r) = -\frac{\kappa}{r}$
- l'énergie potentielle effective : $\mathcal{E}_{peff} = \frac{1}{2} m \frac{C^2}{r^2} \frac{K}{r}$
- ightharpoonup Cas d'une force attractive : K > 0

l'énergie potentielle effective admet un minimum pour la distance r_0

•
$$\frac{d\mathcal{E}_{peff}}{dt} = -m\frac{C^2}{r^3} + \frac{K}{r^2} = 0 \Rightarrow r_0 = \frac{mC^2}{K}$$
 et $r \to \infty$

• l'énergie potentielle effective minimale est alors

$$\mathcal{E}_{peff}(r_0) = -\frac{1}{2} \frac{K^2}{mC^2} = -\frac{K}{2r_0}$$

• l'énergie potentielle effective s'annule en $r^* = \frac{1}{2} \frac{mC^2}{K} = \frac{r_0}{2}$

- si $\mathcal{E}_m = \mathcal{E}_{m1}$: le domaine accessible $[r_{min}, +\infty[$ est non borné : état de diffusion
- si $\mathcal{E}_m = \mathcal{E}_{m2}$: le domaine accessible $[r_1, r_2]$ est borné : état lié
- ightharpoonup Cas d'une force répulsive K<0

 $\mathcal{E}_{peff} = \frac{1}{2}m\frac{C^2}{r^2} - \frac{K}{r} > 0$ il n'y a que des états de diffusion

le domaine accessible est $[r_{min}, +\infty[$: état de diffusion

2.2.2 Equation de la trajectoire

- PFD: $m\overrightarrow{a}(M/R_g) = \overrightarrow{F}$
- on pose $u = \frac{1}{r}$
- formule de Binet : $\overrightarrow{a} = -C^2 u^2 \left[\frac{d^2 u}{d\theta^2} + u \right] \overrightarrow{e}_r$
- $\bullet \ -mC^2u^2\left[\frac{d^2u}{d\theta^2} + u\right]\overrightarrow{e}_r = -\frac{K}{r^2}\overrightarrow{e}_r = -Ku^2\overrightarrow{e}_r$

$$\boxed{\frac{d^2u}{d\theta^2} + u = \frac{K}{mC^2}}$$

- la solution générale : $u_1(\theta) = A\cos(\theta + \varphi)$
- la solution particulière : $u_2 = \frac{K}{mC^2}$
- $u = \frac{1}{r} = \frac{K}{mC^2} + A\cos(\theta + \varphi) = \frac{1 + e\cos(\theta + \varphi)}{p}$
 - $ightharpoonup \left| p = \frac{mC^2}{K} \right|$: paramètre du conique
 - ightharpoonup e = Ap: excentricité du conique
- En prenant l'axe ox comme l'axe de symétrie de la conique ,le changement θ en $-\theta$ laisse invariant la fonction $r(\theta)$ donc $\varphi = 0$

$$r = \frac{p}{1 + e\cos\theta}$$

• la nature de la trajectoire dépend de la valeur de l'excentricité e

e > 1	e=1	e < 1	e = 0
hyperbole	prabole	ellipse	cercle

Energie et nature des trajectoires

La relation entre l'énergie mécanique \mathcal{E}_m et l'excentricité du conique peut s'obtenir par deux méthodes:

- ▶ à partir du Vecteur de Range-lenz : $\overrightarrow{A} = \frac{1}{K} \left(\overrightarrow{V}(M/R_g) \wedge \overrightarrow{L}_O(M/R_g) \right) \overrightarrow{e}_r$ $e = ||\overrightarrow{A}||$
 - $\frac{d\overrightarrow{A}}{dt} = \overrightarrow{0}$: \overrightarrow{A} est une constante de mouvement
- ▶ Méthode directe

•
$$\mathcal{E}_m = \frac{1}{2}m\left(\frac{dr}{dt}\right)^2 + \frac{1}{2}m\frac{C^2}{r^2} - \frac{K}{r}$$

•
$$C = r^2 \frac{d\theta}{dt}$$
 et $p = \frac{mC^2}{K}$

•
$$r(t) = \frac{p}{1 + e \cos \theta}$$

•
$$\frac{dr}{dt} = \frac{dr}{d\theta} \frac{d\theta}{dt}$$

•
$$\frac{dr}{dt} = \frac{dr}{d\theta} \frac{d\theta}{dt}$$

• $\frac{dr}{d\theta} = \frac{pe\sin\theta}{(1+e\cos\theta)^2} = \frac{e}{p}r^2\sin\theta$

•
$$\frac{dr}{dt} = \frac{e}{p}r^2\sin\theta\frac{d\theta}{dt}$$

$$\frac{dr}{dt} = \frac{Ce}{p}\sin\theta$$

•
$$\mathcal{E}_m = \frac{1}{2}m\left(\frac{eC}{p}\sin\theta\right)^2 + \frac{1}{2}mC^2\left(\frac{1}{p}(1+e\cos\theta)\right)^2 - \frac{K}{p}(1+e\cos\theta)$$

 $\mathcal{E}_m = \frac{1}{2}\frac{mC^2}{p}\frac{e^2}{p} + \frac{mC^2}{p}\frac{1}{p}\left(\frac{1}{2}+e\cos\theta\right) - \frac{K}{p}(1+e\cos\theta) = \frac{K}{2p}(e^2-1)$
 $\mathcal{E}_m = \frac{K}{2p}(e^2-1)$ ou $\mathcal{E}_m = \frac{K^2}{2mC^2}(e^2-1)$

▶ la nature de la trajectoire directement de l'énergie mécanique

e = 0	0 < e < 1	e=1	e > 1
cercle	ellipse	parabole	hyperbole
$\mathcal{E}_m = -\frac{K}{2mC^2}$	$\mathcal{E}_m < 0$	$\mathcal{E}_m = 0$	$\mathcal{E}_m > 0$

Exemple

ightharpoonup si $\mathcal{E}_m = E_0$: trajectoire circulaire

ightharpoonup si $\mathcal{E}_m = E_1$: trajectoire elliptique

ightharpoonup si $\mathcal{E}_m = E_2$: trajectoire parabolique

▶ si $\mathcal{E}_m = E_3$: trajectoire hyperbolique

3 Lois de Kepler-Applications aux planètes

3.1 Référentiel de Kepler

Référentiel de Kepler R_k : Son origine est est le centre d'inertie du soleil et ses axes sont parallèles à ceux de Copernic

• R_k est un bon référentiel galiléen

3.2 Lois de Kepler

Le mouvement du planète quelconque qui gravite autour du soleil est régi par les lois de Kepler

Première Loi : Dans un référentiel de Kepler, une planète (P) décrit une ellipse, de demigrand axe a avec une période T, dont le centre du soleil s est l'un des foyers .

Deuxième Loi : Le rayon vecteur soleil-planète \overrightarrow{SP} balaye des aires égales en des temps égaux .

Troisième Loi : Le rapport $\frac{T^2}{a^3}$ est le même pour toutes les planètes du système solaire .

$$\frac{T^2}{a^3} = \frac{4\pi^2}{GM_s}$$

- a : demi grand-axe de l'ellipse
- T : période du mouvement
- M_s : masse du soleil

3.3 Trajectoire elliptique : planètes

Soit une planète M de masse m qui décrit un ellipse de demi-grand axe a et de demi-petit axe b

•
$$r = \frac{p}{1 + e \cos \theta}$$

• Apogée (aphélie) : point A ($\dot{r} = 0$; $\theta = \pi$)

$$r_{max} = \frac{p}{1 - e}$$

• Périgée (périhélie) : point A' ($\dot{r} = 0; \theta = 0$)

$$r_{min} = \frac{p}{1+e}$$

• demi-grand axe $a: r_{min} + r_{max} = 2a$

$$a = \frac{p}{1 - e^2}$$

• petit-grand axe $b: b = \sqrt{ap}$

$$b = \frac{p}{\sqrt{1 - e^2}}$$

► Vitesse aréolaire

• la 2^{eme} loi de Kepler s'identifie avec la loi des aires . Le vecteur \overrightarrow{SP} balaye la surface $\mathcal{A}=\pi ab$ pendant une période T .

•
$$\frac{d\mathcal{A}}{dt} = \frac{C}{2} \text{ donc } \frac{\mathcal{A}}{T} = \frac{C}{2} = \frac{\pi ab}{T}$$

•
$$\frac{(\pi ab)^2}{T^2} = \frac{C^2}{4}$$
 avec $p = \frac{mC^2}{K} = \frac{b^2}{a}$; $K = GM_s m$
donc $\frac{\pi^2 a^2 b^2}{T^2} = \frac{b^2 K}{4ma} = \frac{b^2 Gm M_s}{4am}$

$$\frac{T^2}{a^3} = \frac{4\pi^2}{GM_s}$$

ightharpoonup Energie mécanique \mathcal{E}_m

•
$$\mathcal{E}_m = \mathcal{E}_c + \mathcal{E}_p = \frac{1}{2}m\dot{r}^2 + \frac{mC^2}{2r^2} - \frac{K}{r}$$

• pour $\dot{r} = 0$ on a deux solutions : r_{min} et r_{max} $\mathcal{E}_m = \frac{mC^2}{2r^2} - \frac{K}{r} \text{ donc}$

$$\boxed{\mathcal{E}_m r^2 + Kr - \frac{mC^2}{2} = 0}$$

• la somme des deux solutions

$$r_{min} + r_{max} = 2a = -\frac{K}{\mathcal{E}_m}$$

donc

$$\mathcal{E}_m = -\frac{K}{2a} = -\frac{GmM_s}{2a}$$

Conclusion : L'énergie mécanique d'une planète M(m) décrivant un ellipse de demigrand axe a est inversement proportionnel au grand axe a

$$\mathcal{E}_m = -\frac{K}{2a} = -\frac{GmM_s}{2a}$$

Remarque : la constante des aires $C = ||\overrightarrow{r} \wedge \overrightarrow{v}||$

$$r_{min}.v_{A'} = r_{max}.v_A = C$$

3.4 Trajectoire circulaire : satellite terrestre

- On choisit le référentiel géocentrique ,supposé galiléen,pour étudier le mouvement d'un satellite terrestre
- Considérons un satellite terrestre , assimilé à un point matériel M de masse m décrit une orbite circulaire de centre O (centre de la terre), de rayon r, avec une vitesse angulaire ω constante .

•
$$\overrightarrow{V} = r\omega \overrightarrow{e}_{\theta}$$

$$\bullet \ \overrightarrow{a} = -r\omega^2 \overrightarrow{e}_r = -\frac{V^2}{r} \overrightarrow{e}_r$$

•
$$m\overrightarrow{a} = -G\frac{m_Tm}{r^2}\overrightarrow{e}_r$$

$$V = \sqrt{\frac{Gm_T}{r}} = \sqrt{\frac{g_0 R_T^2}{r}}$$

 R_T : rayon de la terre

- \bullet la vitesse V reste constante le long de la trajectoire circulaire
- ullet première vitesse cosmique V_{c1}

Définition : On appelle première vitesse cosmique du satellite la vitesse V_{c1} sur l'orbite circulaire de rayon $r = R_T$, avec R_T : le rayon de la terre

$$V_{c1} = \sqrt{g_0 R_T}$$

- $ightharpoonup R_T = 6400km; g_0 = 9,8ms^{-2} \Rightarrow V_{c1} = 7,92km.s^{-1}$
- ▶ la première vitesse cosmique est la vitesse circulaire maximale
- Période T du mouvement

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{r^3}{Gm_T}}$$

$$\frac{T^2}{r^3} = \frac{4\pi^2}{Gm_T}$$

c'est la troisième loi de Kepler , donc le mouvement circulaire est un cas particulier du mouvement elliptique (le demi-grand axe s'identifie avec le rayon r)

• Energie mécanique \mathcal{E}_m

$$\mathcal{E}_c = \frac{1}{2} m v^2 = \frac{1}{2} m g_0 \frac{R_T^2}{r}$$

$$\triangleright \mathcal{E}_p = -\frac{Gmm_T}{r}$$

$$\mathcal{E}_m = \mathcal{E}_c + \mathcal{E}_p = \frac{1}{2} m g_0 \frac{R_T^2}{r} - m g_0 \frac{R_T^2}{r}$$

$$\mathcal{E}_m = -mg_0 \frac{R_T^2}{2r} = \frac{\mathcal{E}_p}{2} = -\mathcal{E}_c$$

- $\triangleright \mathcal{E}_m < 0$: état liée
- Vitesse de libération (seconde vitesse cosmique V_{c2})

Définiton : la vitesse de libération V_{c2} représente la vitesse initiale du satellite qui lui permet d'échapper l'attraction terrestre et de parvenir en un point infiniment éloigné avec une vitesse nulle .

▶ conservation de l'énergie mécanique entre le sol et un point à l'infini

$$(\mathcal{E}_m(\infty) = 0
\mathcal{E}_m = \frac{1}{2}mV_{c2}^2 - \frac{Gmm_T}{R_T} = 0
V_{c2} = \sqrt{2g_0R_T} = \sqrt{2}V_{c1} = 11, 2km.s^{-1}$$

• Satellite géostationnaire

Définition : Un satellite est géostationnaire s'il a la même période T de rotation que la terre sur elle même

•
$$T = 24h = 86400s \text{ et } V = R\omega = \frac{2\pi R}{T} = \sqrt{\frac{Gm_T}{R}}$$

▶ le rayon du trajectoire du cercle

$$R = \left(\frac{T^2 G m_T}{4\pi^2}\right)^{\frac{1}{3}}$$

► AN : R = 42300km avec $R_T = 6370km$ donc l'altitude $h = R - R_T = 36000km = 5,6R_T$