九州ブロック 福岡ノード

ロボットの概要

熊抱 崚太 / 石原 廉太郎 / 松田 魁琉 / 目野 優輝

Vision System OpenMV H7

メインマイコン: Teensy 4.0

モーター制御や画面表示などの、 ロボット制御を行っています。 以前まではTJ3B Loaderを 使用していましたが、入出力ピン数 の多さや、処理性能の高さから こちらを採用しました。

ボールセンサ:TSSP58038

ールセンサにはTSSP58038を 一機当たり16個搭載しています。 ボールから発せられる赤外線を 距離を計算しています。入手性の高さや 扱いやすさからこちらを使用しています 複数個載せることでボールの正確な場所の 取得も可能にしました。

サブマイコン:ATmega2560

ラインセンサの処理にATmega2560を 採用しました。センサーの値の読み取りや、 動作に必要な計算を行っています。 汎用性が高いため、このマイコンを 採用しました。省スペース化のために 回路を自作しています。

ラインセンサ:S4282-51

ラインセンサにはS4282-51(光変調フォト IC)を一機あたり25個搭載しています。 ト上の白線の読み取りを行っています。 外部からの光に影響を受けないため、 誤作動が起こりにくく扱いやすいので、 こちらを使用しています。また、複数個の 踏んでいるのかの取得を可能にしました。

カメラ:OpenMV H7

ゴール・コートの角度・距離を 計算しています。プログラムの しやすさや、入手性の高さ、 他マイコンとの通信のしやすさ からこのカメラを採用しました。

ジャイロセンサ:MPU6050

最初に向いていた方向から どのくらい角度がずれているのか 計算し、ロボットの姿勢制御に 利用しています。今まで利用していた センサよりもずれが小さく、 エラーが 少ないためこのセンサを採用しました

より早く、より正確に一ラインセンサの改良

コート、ゴール、そして先を見る

います。このカメラを用いて、コートの中心の位置、青・黄ゴール

現在自分がコートの中心からどのくらいの角度・距離にいるのかを

知ることができたり、常に相手のゴールの方向を見ながらボールを

運ぶことを可能にしました。カメラを使うことで、リアルタイムで

常にコートの状況を知ることができるため、たとえロボットがゴー

ルの一部を隠したとしても、空いている方向にロボットを傾けて

ことで、相手ロボットから自陣を守るという行動をとれるように

カメラ

搭載後…

また、ディフェンス機では、自陣のゴールの位置を取得する

僕たちのロボットにはOpenMV H7というカメラを搭載して

の位置を取得しています。これらのデータを用いることで、

コート上の白線を認識する ラインセンサは、円形+十字に配置 したものに改良しました。以前 よりもセンサーが外側に伸びたため、 早くラインに反応することができる ようになりました。また、反応した 位置から角度と距離を求め、条件を 分けることで最適な制御ができる ようになり、ルール改定による 白線外の空間の縮小にも対応する ことができました。

蹴り一つで状況を変えるーソレノイドキッカーの搭載

今季から、ソレノイドキッカーを用いたキック機構を搭載しました。 キック機構を載せることで、ロボットが直接ボールを運ぶよりも 強い力でシュートすることができます。

キック機構を用いることで、自分のロボットとボールを離して シュートできるため、ゴールに入る前に相手ロボットと接触していて もプッシングを取られず、必然的にゴールに入る回数が増えることに なります。また、キック機構と他の機能を一緒に用いることで、より 強力なシュートを打つことができます。例えば、カメラを用いてゴー ルの方向を向きながらボールをキックすることで、前を向いてキック するよりもはるかにゴールへのシュート率を上げることができます。 また、自陣を守るロボットであっても、前方にボールをキックするこ とができるため、アタック・ディフェンス両方の機能を兼ね備えた強 いロボットを作ることができます。

<電圧・コンデンサの容量とキックパワーの関係>

ソレノイドキッカーは、かける電圧とコンデンサの容量によってキック パワーが変化します。そこで、どの電圧をかけ、どのコンデンサを搭載する ことでより長距離にボールをキックできるのかという実験を行いました。

左上図より、コンデンサの 容量を220µF~4700µFで 変化させた時、距離がほぼ 一次関数的に伸びていくことが わかりました。 また、左下図より、電圧を 15V~40Vで変化させた時も 同様に、ほぼ一次関数的に 変化していることが わかりました。 このような結果から、コンデン サの容量を大きく、電圧を高く することで威力を高められるこ とがわかりました。そのため、 僕たちのロボットでは、コンデ

237 248 216 107 110 111 120 128 65 80 91 載せることのできる最大サイズ 0 43 20 25 30 35 40 45 50 55 60(9 モータースピード

モータのスピードと制動距離の関係

2023ルールから、コートの白線外の場所が狭くなり、ラインアウト判定が「壁に触れたとき」に変更 されたため、必然的にラインで正確に止まる必要が出てきました。しかし、僕たちのロボットは 「速く、正確に」を目指しており、正確さをとるために速さを犠牲にしたくないので、速さ・正確さを 両立させるギリギリを探す必要がありました。そこで、モータのスピードによってどのくらい白線の外に 出てしまうのか、という実験を行いました。

1) 白線からそれぞれ820mm、320mm離れた位置にロボットを静止させる。 2)一定のエータースピードでロボットを助走させる。

3) 白線を踏んだ時点でモーターにブレーキをかけ、 白線からはみ出た距離を計測する。

4)モータースピードを変化させて同様に実験する。

<結果・考察>

この長さを計測する (制動距離) 150 $\nabla \mathcal{A}$

助走距離(820mm/320mm)

左のグラフのような結果となりました。 ライン外空間の幅は120mmであるため、 このグラフから見ると、助走が長いときは 30%程度、助走が短いときは50%程度で モータを動かせばよいことがわかり ました。しかし、この実験では、移動開始 時は停止しているため、実際の試合では 慣性によって、同じモータースピードでも ラインアウトする可能性があります。その ため、この結果を参考にしつつ、どのよう な処理をすればラインアウトをしない ギリギリで停止できるのかを調整していく 必要があります。

ツールを駆使する一様々なサービスの利用

ロボット製作をスムーズに行うため、様々なツールを駆使して活動を 行っています。例えば、ロボットの設計を早く、正確に行うために、 Fusion360(機体設計) や、KiCad(回路設計)などのソフトを 活用しています。ロボットの設計以外にも、チーム内で「今自分が 何をすべきなのか」、「まだどのタスクが終わってないのか」を はっきりさせるために、「Asana」というツールを利用しタスクの 明確化のみならず、日程の管理や情報伝達にも活用し、チーム内 での活動を円滑に進めています。また、Githubなどのデータ共有 サービスを利用し、チーム内での最新の進捗を常に素早く共有 しています。これらのおかげで、わずかな活動時間でも大きな進捗 を生み出せています。

駆使するツールはそれだけにとどまりません。例えば、SNSは 新しい技術や情報を身に着ける重要なツールの一つです。 僕たちは、RCJに参加するうえで、技術の共有をしていくことは 必要不可欠であると考えています。そのため、Twitterのアカウン

チームのウェブサイトを作成し、私たちが持っている技術の公開・共有 を行っています。プレゼンシート右上にTwitterのユーザー名と ブログのORコードを掲示しているので、ぜひ一度お訪ねください。

スポンサー

僕たちがロボット製作をしていくうえで、金銭面や技術面からサポートしていただいて おります。この場を借りてお礼申し上げます。

JLCPCB 様

基板の発注に際する発注費用や送料などの面でサポートをしていただいております。

佐賀大deラボ 様

3Dプリンタ、レーザーカッターなどの機械を利用させてもらうだけでなく、技術交流 の場としても活用させていただいております。

WSL-043

何もないと入らないこのシュートも…

シュートすることができます。

なりました。

カメラでゴールの角度を計算することでゴールに向かってシュートすることができる