MATH 53 WORKSHEET 11/30

(1) Consider the vector field

$$\mathbf{F}(x, y, z) = \frac{1}{(x^2 + y^2 + z^2)^{3/2}} \langle x, y, z \rangle.$$

Does $\mathbf{F} = \nabla \times \mathbf{G}$ for some vector field \mathbf{G} ? Hint: Review question 3 on the worksheet on 11/28.

- (2) True or false
 - (a) If a smooth vector field \mathbf{F} on \mathbb{R}^3 is curl free and divergence free, then \mathbf{F} has a potential function f and satisfies $\Delta f = 0$.
 - (b) There exists a vector field **F** such that $\nabla \times \mathbf{F} = \langle 1, 1, 1 \rangle$.
 - (c) There exists a vector field **F** such that $\nabla \times \mathbf{F} = \langle x, y, z \rangle$.
 - (d) Let **F** be a smooth vector field on \mathbb{R}^3 and suppose that S_1 and S_2 are oriented surfaces with boundary curve C, and C is in the direction that is compatible with the orientations of S_1 and S_2 . Then

$$\int \int_{S_1} \mathbf{F} \cdot \mathbf{n} \ dS = \int \int_{S_2} \mathbf{F} \cdot \mathbf{n} \ dS.$$

(3) Find $\oint_C \mathbf{F} \cdot d\mathbf{r}$, where $F = \langle \cos x + y + z, x + z, x + y \rangle$ and C is the intersection of the surfaces $x^2 + \frac{y^2}{2} + \frac{z^2}{3} = 1$ and $z = x^2 + 2y^2$, oriented counterclockwise if viewed from above.

(4) Find $\int \int_S \mathbf{F} \cdot \mathbf{n} \ dS$, where

$$\mathbf{F} = \langle 2x, 2z - 2x, 2x - 2z \rangle$$

and

$$S = \{(x, y, z) \mid z = e^{y}(1 - x^{2} - y^{2})(1 - y^{5})\cos x, \ x^{2} + y^{2} \le 1\}$$

with upward pointing normal. Hint: Find a **G** such that $\mathbf{F} = \nabla \times \mathbf{G}$. Let $\mathbf{G} = \langle G_1, G_2, 0 \rangle$ for some scalar functions G_1 and G_2 .