第2节解三角形中的化边类问题(★★★)

强化训练

1. (2022 •肥东县模拟 •★★) 在 $\triangle ABC$ 中,内角 A, B, C 的对边分别为 a, b, c, 若 $2a^2 = 2b^2 + bc$, $\cos A = \frac{1}{4}$,

则
$$\frac{b}{c}$$
 = ()

(A) $\frac{1}{2}$ (B) $\sqrt{2}$ (C) 1 (D) 2

答案: C

解析: 已知与所求都有边长关系, 故将 $\cos A$ 也化边,

由余弦定理推论, $\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{1}{4}$ ①,

所求的式子中不含a, 故应消去a,

由 $2a^2 = 2b^2 + bc$ 得 $a^2 = \frac{2b^2 + bc}{2}$,代入①整理得: $\frac{b}{c} = 1$.

2. (2022 •辽宁期末 •★★★) 在 Δ*ABC* 中,内角 *A*,*B*,*C* 的对边分别为 *a*,*b*,*c*,且 Δ*ABC* 的面积 $S = \frac{1}{4}abc$,

(A) $2\sqrt{3}$ (B) $\frac{2\sqrt{6}}{3}$ (C) $2\sqrt{6}$ (D) $\frac{3\sqrt{3}}{4}$

答案: D

解析: 已知角 C,求面积把它用上,

因为 $C = \frac{\pi}{3}$,所以 $S = \frac{1}{2}ab\sin C = \frac{\sqrt{3}}{4}ab$ ①,

又由题意, $S = \frac{1}{4}abc$,所以 $\frac{\sqrt{3}}{4}ab = \frac{1}{4}abc$,故 $c = \sqrt{3}$,

由①知要求S的最大值,只需求ab的最大值,对C使用余弦定理会出现该形式,

由余弦定理, $c^2 = a^2 + b^2 - 2ab\cos C$, 所以 $3 = a^2 + b^2 - ab\cos C$

 $ab \ge 2ab - ab = ab$,代入式①得 $S = \frac{\sqrt{3}}{4}ab \le \frac{3\sqrt{3}}{4}$,

当且仅当 a=b 时取等号,结合 $C=\frac{\pi}{3}$ 知此时 $\triangle ABC$ 为正三角形,所以 S 的最大值为 $\frac{3\sqrt{3}}{4}$.

3. $(2022 \cdot 宁乡市期末 \cdot ★★★★)$ 在 $\triangle ABC$ 中,内角 A, B, C 的对边分别为 a, b, c, 若 $\cos B + \sqrt{3} \sin B = 2$,

 $\frac{\cos B}{b} + \frac{\cos C}{c} = \frac{2\sin A \sin B}{3\sin C}, \quad \text{II} \quad \frac{a+b+c}{\sin A + \sin B + \sin C} = ($

(A) 2 (B) 4 (C) 6 (D) 8

答案: A

解析:看到 $\frac{a+b+c}{\sin A+\sin B+\sin C}$,想到正弦定理边化角,

由正弦定理,
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$
,

所以 $a = 2R\sin A$, $b = 2R\sin B$, $c = 2R\sin C$,

故
$$\frac{a+b+c}{\sin A + \sin B + \sin C} = \frac{2R\sin A + 2R\sin B + 2R\sin C}{\sin A + \sin B + \sin C} = 2R$$
 ①,

于是只需求外接圆半径 R, 需要一边及其对角, 由 $\cos B + \sqrt{3} \sin B = 2$ 可求出 B,

由题意,
$$\cos B + \sqrt{3} \sin B = 2 \sin(B + \frac{\pi}{6}) = 2$$
,

所以
$$\sin(B + \frac{\pi}{6}) = 1$$
,又 $0 < B < \pi$,所以 $\frac{\pi}{6} < B + \frac{\pi}{6} < \frac{7\pi}{6}$,

从而
$$B+\frac{\pi}{6}=\frac{\pi}{2}$$
,故 $B=\frac{\pi}{3}$,

还差b,再考虑题干的第二个等式,怎么处理?两侧边长不齐次,不便边化角,且要求的是b,故角化边,

因为
$$\frac{\cos B}{b} + \frac{\cos C}{c} = \frac{2\sin A \sin B}{3\sin C}$$
,且 $B = \frac{\pi}{3}$,

所以
$$\frac{1}{b} \cdot \frac{a^2 + c^2 - b^2}{2ac} + \frac{1}{c} \cdot \frac{a^2 + b^2 - c^2}{2ab} = \frac{2a\sin\frac{\pi}{3}}{3c} = \frac{\sqrt{3}a}{3c}$$

整理得:
$$b = \sqrt{3}$$
, 所以 $2R = \frac{b}{\sin B} = \frac{\sqrt{3}}{\sin \frac{\pi}{3}} = 2$,

- 4. (2022 安康期中 ★★★)已知 a, b, c 分别为 ΔABC 的内角 A, B, C 的对边, $\sin B + 2\sin C\cos A = 0$.
- (1) 证明: $a^2-c^2=2b^2$;
- (2) 请问角 B 是否存在最大值? 若存在,求出角 B 的最大值; 若不存在,说明理由.

解:(1)(要证的是边的关系,故将所给等式的角全部化边,其中 sin 用正弦定理、cos 用余弦定理化边)

因为
$$\sin B + 2\sin C\cos A = 0$$
,所以 $b + 2c \cdot \frac{b^2 + c^2 - a^2}{2bc} = 0$,整理得: $a^2 - c^2 = 2b^2$.

(2) (想让角B最大,只需 $\cos B$ 最小,可将 $\cos B$ 化边,结合第1问的结论消元求最值)

由余弦定理推论,
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$$
 ①,(b 只有平方项,所以消 b)

曲 (1) 知
$$a^2 - c^2 = 2b^2$$
,所以 $b^2 = \frac{a^2 - c^2}{2}$,代入式①可得: $\cos B = \frac{a^2 + 3c^2}{4ac} = \frac{1}{4}(\frac{a}{c} + \frac{3c}{a}) \ge \frac{1}{4} \times 2\sqrt{\frac{a \cdot 3c}{c \cdot a}} = \frac{\sqrt{3}}{2}$,

当且仅当
$$\frac{a}{c} = \frac{3c}{a}$$
时等号成立,此时 $a = \sqrt{3}c$,代入 $a^2 - c^2 = 2b^2$ 可得 $b = c$,

所以 $\cos B$ 的最小值为 $\frac{\sqrt{3}}{2}$,又 $0 < B < \pi$,所以 B 的最大值为 $\frac{\pi}{6}$.

- 5. $(2022 \cdot 厦门模拟 \cdot ★★★) 在 △ABC 中,内角 A,B,C 的对边分别为 a,b,c,其面积为 S,且 <math>b(a-b+c)(\sin A+\sin B+\sin C)=6S$.
- (1) 求角B的大小;

(2) 若b=7,求 ΔABC 的周长的取值范围.

解: (1) (先把面积公式代入已知的等式,此处用A,B,C算面积均可)

曲题意, $b(a-b+c)(\sin A + \sin B + \sin C) = 6S = 6 \times \frac{1}{2}ac\sin B = 3ac\sin B$,

(上式左右都有齐次的内角正弦,可考虑角化边,化边后恰好也能约去b,进一步化简)

所以b(a-b+c)(a+b+c)=3acb,故 $(a+c)^2-b^2=3ac$,整理得: $a^2+c^2-b^2=ac$,

所以
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{ac}{2ac} = \frac{1}{2}$$
, 结合 $0 < B < \pi$ 可得 $B = \frac{\pi}{3}$.

(2) 解法 1: 因为b=7,所以 $\triangle ABC$ 的周长L=a+b+c=a+c+7,

(要分析a+c的取值范围,可对角B用余弦定理来沟通 b^2 与a+c和ac)

由余弦定理,
$$b^2 = a^2 + c^2 - 2ac\cos B$$
, 所以 $49 = a^2 + c^2 - ac = (a+c)^2 - 3ac \ge (a+c)^2 - 3(\frac{a+c}{2})^2 = \frac{(a+c)^2}{4}$,

故 $a+c \le 14$, 当且仅当a=c=7时取等号, 所以 $L=a+c+7 \le 21$,

(到此我们求得了 L 的上限, 那下限怎么求呢? 可用两边之和大于第三边来分析)

另一方面,a+c>b=7,所以L=a+c+7>14,故 ΔABC 的周长的取值范围是(14,21].

解法 2: (已知了 B 和 b, 可求出外接圆直径, 并用它来将 a 和 c 边化角)

因为
$$b=7$$
, $B=\frac{\pi}{3}$, 所以 $\frac{a}{\sin A}=\frac{c}{\sin C}=\frac{b}{\sin B}=\frac{14\sqrt{3}}{3}$, 故 $a=\frac{14\sqrt{3}}{3}\sin A$, $c=\frac{14\sqrt{3}}{3}\sin C$,

所以
$$\triangle ABC$$
 的周长 $L = a + b + c = \frac{14\sqrt{3}}{3}(\sin A + \sin C) + 7 = \frac{14\sqrt{3}}{3}[\sin A + \sin(\pi - A - B)] + 7$

$$= \frac{14\sqrt{3}}{3} \left[\sin A + \sin(\frac{2\pi}{3} - A)\right] + 7 = \frac{14\sqrt{3}}{3} \left(\sin A + \frac{\sqrt{3}}{2}\cos A + \frac{1}{2}\sin A\right) + 7$$

$$= \frac{14\sqrt{3}}{3} \left(\frac{3}{2} \sin A + \frac{\sqrt{3}}{2} \cos A\right) + 7 = 14 \sin(A + \frac{\pi}{6}) + 7,$$

因为
$$A+C=\pi-B=\frac{2\pi}{3}$$
,所以 $0,从而 $\frac{\pi}{6},故 $\frac{1}{2}<\sin(A+\frac{\pi}{6})\leq 1$,$$

所以 $14 < 14\sin(A + \frac{\pi}{6}) + 7 \le 21$,即 ΔABC 的周长的取值范围是(14,21].

【反思】已知一角及其对边的求范围问题,常用余弦定理结合不等式,或正弦定理边化角两种方法求解.

- 6. $(2022 \cdot 济南模拟改 \cdot ★★★) 锐角 <math>\triangle ABC$ 中,内角 A, B, C 的对边分别为 a, b, c, 若 b=1, 且 $(\sin A + \sin B)(a-b) = \sin C(\sqrt{3}a-c)$.
- (1) 求B;
- (2) 求 $a^2 + c^2$ 的最大值.

解:(1)(若将所给边角等式边化角,则下一步按角化简不易,所以角化边)

因为 $(\sin A + \sin B)(a-b) = \sin C(\sqrt{3}a-c)$,所以 $(a+b)(a-b) = c(\sqrt{3}a-c)$,整理得: $a^2 + c^2 - b^2 = \sqrt{3}ac$ ①,

所以
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{\sqrt{3}ac}{2ac} = \frac{\sqrt{3}}{2}$$
, 结合 $0 < B < \pi$ 可得 $B = \frac{\pi}{6}$.

(2) (要求 $a^2 + c^2$ 的最大值,注意到式①已建立了 $a^2 + c^2$ 和 ac 的关系,直接用 $ac \le \frac{a^2 + c^2}{2}$ 即可求最值)

将
$$b = 1$$
代入式①可得 $a^2 + c^2 - 1 = \sqrt{3}ac \le \sqrt{3} \cdot \frac{a^2 + c^2}{2}$, 所以 $a^2 + c^2 \le 4 + 2\sqrt{3}$,

当且仅当a=c时取等号,此时 ΔABC 为等腰三角形,结合 $B=\frac{\pi}{6}$ 知满足 ΔABC 为锐角三角形,

所以 $a^2 + c^2$ 的最大值为 $4 + 2\sqrt{3}$.

【反思】按上面求得 $B = \frac{\pi}{6}$ 后,则已知了一角及其对边,也可用正弦定理将边化角分析最值,但偏麻烦.

- 7. $(2023 \cdot 全国甲卷 \cdot ★★★)$ 记 $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c, 已知 $\frac{b^2 + c^2 a^2}{\cos A} = 2$.
 - (1) 求bc;
 - (2) 若 $\frac{a\cos B b\cos A}{a\cos B + b\cos A} \frac{b}{c} = 1$, 求 ΔABC 的面积.

解: (1) (条件等式中有 $b^2+c^2-a^2$,想到余弦定理)

由余弦定理, $a^2 = b^2 + c^2 - 2bc\cos A$, 所以 $b^2 + c^2 - a^2 = 2bc\cos A$,

代入
$$\frac{b^2 + c^2 - a^2}{\cos A} = 2$$
 可得 $\frac{2bc\cos A}{\cos A} = 2$, 故 $bc = 1$.

(2) (己有 bc, 求面积还差 A, 怎样将所给等式化简求 A? 可以用正弦定理边化角分析,但较麻烦. 注意到等式中的角全是余弦,故也可考虑化边来看)

由题意,
$$\frac{a\cos B - b\cos A}{a\cos B + b\cos A} - \frac{b}{c} = 1,$$

所以
$$\frac{a \cdot \frac{a^2 + c^2 - b^2}{2ac} - b \cdot \frac{b^2 + c^2 - a^2}{2bc}}{a \cdot \frac{a^2 + c^2 - b^2}{2ac} + b \cdot \frac{b^2 + c^2 - a^2}{2bc}} - \frac{b}{c} = 1,$$

化简得:
$$\frac{a^2-b^2}{c^2}-\frac{b}{c}=1$$
, 所以 $a^2-b^2-bc=c^2$, 从而

$$b^2 + c^2 - a^2 = -bc$$
, $\dot{\boxtimes} \cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{-bc}{2bc} = -\frac{1}{2}$,

结合
$$0 < A < \pi$$
可得 $A = \frac{2\pi}{3}$,

所以
$$S_{\triangle ABC} = \frac{1}{2}bc\sin A = \frac{1}{2} \times 1 \times \sin \frac{2\pi}{3} = \frac{\sqrt{3}}{4}$$
.