Forester report

version 1.1.4

2023-03-12 12:32:31

This report contains details about the best trained model, table with metrics for every trained model, scatter plot for chosen metric and info about used data.

The best models

This is the **regression** task.

The best model is: **xgboost_bayes**.

The names of the models were created by a pattern Engine_TuningMethod_Id, where:

- Engine describes the engine used for the training (random_forest, xgboost, decision_tree, lightgbm, catboost),
- TuningMethod describes how the model was tuned (basic for basic parameters, RS for random search, bayes for Bayesian optimization),
- Id for separating the random search parameters sets.

More details about the best model are present at the end of the report.

no.	name	mse	r2	mae
46	xgboost_bayes	20019465477	0.8061	91233.10
10	$ranger_RS_6$	20136099053	0.8050	93352.71
1	ranger_model	20806262125	0.7985	94642.38
5	$ranger_RS_1$	21034721439	0.7963	91339.61
45	ranger_bayes	21088257110	0.7958	97276.05
2	$xgboost_model$	21417302625	0.7926	95079.18
12	$ranger_RS_8$	22047436990	0.7865	100513.53
11	$ranger_RS_7$	22499936628	0.7821	101934.84
7	$ranger_RS_3$	22705321932	0.7801	106266.35
13	ranger_RS_9	23875911122	0.7688	108421.42
36	$lightgbm_RS_2$	29894499479	0.7105	122674.08
39	$lightgbm_RS_5$	29894499479	0.7105	122674.08
48	lightgbm_bayes	31074970168	0.6990	125714.65
40	$lightgbm_RS_6$	31579607685	0.6942	125292.62
43	$lightgbm_RS_9$	31579607685	0.6942	125292.62
4	lightgbm_model	32891173014	0.6815	125920.39
44	lightgbm_RS_10	32891173014	0.6815	125920.39
41	lightgbm_RS_7	33164795309	0.6788	133063.34
9	$ranger_RS_5$	34126056622	0.6695	144816.67
47	decision_tree_bayes	34316091895	0.6677	119223.85
38	lightgbm_RS_4	36239460976	0.6490	130688.36

no.	name	mse	r2	mae
6	$ranger_RS_2$	38146990720	0.6306	158780.45
42	lightgbm_RS_8	39835245775	0.6142	151987.37
14	$ranger_RS_10$	40073333196	0.6119	161930.48
35	$lightgbm_RS_1$	41400427683	0.5990	136431.52
8	${\rm ranger_RS_4}$	44127682866	0.5726	168106.95
21	$xgboost_RS_7$	44347693165	0.5705	153698.36
24	$xgboost_RS_10$	44347693165	0.5705	153698.36
3	$decision_tree_model$	51144007059	0.5047	139324.28
25	$decision_tree_RS_1$	51144007059	0.5047	139324.28
26	$decision_tree_RS_2$	51144007059	0.5047	139324.28
27	$decision_tree_RS_3$	51144007059	0.5047	139324.28
28	$decision_tree_RS_4$	51144007059	0.5047	139324.28
29	$decision_tree_RS_5$	51144007059	0.5047	139324.28
30	$decision_tree_RS_6$	51144007059	0.5047	139324.28
31	$decision_tree_RS_7$	51144007059	0.5047	139324.28
32	$decision_tree_RS_8$	51144007059	0.5047	139324.28
33	$decision_tree_RS_9$	51144007059	0.5047	139324.28
34	$decision_tree_RS_10$	51144007059	0.5047	139324.28
37	$lightgbm_RS_3$	55292995222	0.4645	151419.03
19	$xgboost_RS_5$	113027077705	-0.0946	260209.46
23	$xgboost_RS_9$	113027077705	-0.0946	260209.46
20	$xgboost_RS_6$	114481520396	-0.1087	268286.18
15	$xgboost_RS_1$	115523592767	-0.1188	271622.83
17	$xgboost_RS_3$	115523592767	-0.1188	271622.83
18	$xgboost_RS_4$	257551703920	-1.4943	427069.95
22	$xgboost_RS_8$	257551703920	-1.4943	427069.95
16	$xgboost_RS_2$	258582072126	-1.5043	424857.94

Plots for all models

```
[1] "no."
             "name"
                      "engine" "tuning" "mse"
                                                 "r2"
                                                          "mae"
                     engine
                                    tuning
  no.
                name
                                                   mse
                                                                       mae
   46 xgboost_bayes xgboost
                                 bayes_opt 20019465477 0.8061156
                                                                  91233.10
1
2
                                                                  93352.71
        ranger_RS_6 ranger random_search 20136099053 0.8049861
3
       ranger_model ranger
                                    basic 20806262125 0.7984957
                                                                  94642.38
4
    5
        ranger_RS_1 ranger random_search 21034721439 0.7962831
                                                                  91339.61
5
       ranger_bayes ranger
                                 bayes_opt 21088257110 0.7957646
                                                                  97276.05
6
                                    basic 21417302625 0.7925779
                                                                  95079.18
    2 xgboost_model xgboost
7
        ranger_RS_8 ranger random_search 22047436990 0.7864752 100513.53
         ranger_RS_7 ranger random_search 22499936628 0.7820928 101934.84
8
    11
9
         ranger_RS_3 ranger random_search 22705321932 0.7801037 106266.35
        ranger_RS_9 ranger random_search 23875911122 0.7687668 108421.42
   13
  xgboost_bayes ranger_RS_6 ranger_model ranger_RS_1 ranger_bayes xgboost_model
      0.8061156
                 0.8049861
                               0.7984957
                                           0.7962831
                                                        0.7957646
                                                                      0.7925779
  ranger_RS_8 ranger_RS_7 ranger_RS_3 ranger_RS_9
   0.7864752
              0.7820928
                           0.7801037
                                       0.7687668
```

R2 comparison

RMSE Train vs Test plot

Plots for the best model - xgboost_bayes

Feature Importance for the best model - xgboost bayes

Root mean square error (RMSE) loss after permutatic

Details about data

CHECK DATA REPORT -

The dataset has 246 observations and 17 columns which names are:

Id; Condition; PropertyType; PropertySubType; Bedrooms; Bathrooms; AreaNet; AreaGross; Parking; Latitude; Longitude; Country; District; Municipality; Parish; Price.M2; Price;

With the target value described by a column: Price.

** Static columns are: **Country; District; Municipality;

With dominating values: Portugal; Lisboa; Lisboa;

These column pairs are duplicate: District - Municipality;

No target values are missing.

No predictor values are missing.

No issues with dimensionality.

Strongly correlated, by Spearman rank, pairs of numerical values are:

Bedrooms - AreaNet: 0.77; Bedrooms - AreaGross: 0.77; Bathrooms - AreaNet: 0.78; Bathrooms - Area Gross: 0.78; AreaNet - AreaGross: 1;

^{**} Strongly correlated, by Crammer's V rank, pairs of categorical values are: **

PropertyType - PropertySubType: 1;

These observation migth be outliers due to their numerical columns values:

145 146 196 44 5 51 57 58 59 60 61 62 63 64 69 75 76 77 78;

Target data is not evenly distributed with quantile bins: 0.25 0.35 0.14 0.26

Columns names suggest that some of them are IDs, removing them can improve the model. Suspicious columns are:

 Id

Columns data suggest that some of them are IDs, removing them can improve the model. Suspicious columns are:

 Id

------ CHECK DATA REPORT END

The best model details

----- Xgboost model -----

Parameters

niter: 15
evaluation_log:

iter : train rmse

1: 476244.897073358 2: 327432.980112583 3: 236386.934942405 4: 176361.318182452 5: 135291.939991913 6: 104979.966191163 7: 82787.6845203692 8: 66090.1209296145 9: 53088.237395824 10: 44430.7065202948

12 : 32829.8814129894 13 : 27986.07969806 14 : 25245.5741694385 15 : 21583.0437507795

11 : 37213.8807278742