- 1 Indicate whether the following statements are true(**T**) or false(**F**). You do **not**3+3+4 need to justify your answer.

 points
 - (a) Let V be the line in \mathbb{R}^3 through the origin spanned by $\mathbf{u} = (6, 2, -3)$, and W be the plane in \mathbb{R}^3 whose equation is 2x + 3y + 6z = 0. Then V is a subspace of W.
 - (b) Let $T, S : \mathbb{R}^n \to \mathbb{R}^n$ be linear transformations. If $T \circ S \circ T$ is not one-to-one, then there exists $\mathbf{v} \in \mathbb{R}^n$ such that $\mathbf{v} \notin \operatorname{ran}(T \circ S)$.
 - (c) Let S be a set of nonzero vectors in \mathbb{R}^3 such that |S| = 4. (|A| denotes the number of elements of a finite set A.) If $\operatorname{span}(S) = \mathbb{R}^3$, then the number of possible $S_0 \subset S$ such that S_0 is a basis for \mathbb{R}^3 is at least 2.

Solution.

- (a) True. Since $\mathbf{u} \in W$, $V = \text{span}(\{\mathbf{u}\}) \subset W$.
- (b) True. Let A, B be the standard matrices for T, S. Since ABA is the standard matrix for $T \circ S \circ T$, $0 = \det ABA = (\det A)^2(\det B)$. Thus $\det A = 0$ or $\det B = 0$. Since AB is the matrix representation for $T \circ S$ and $\det AB = \det A \det B = 0$, $T \circ S$ is not onto.
- (c) True. Note that there exists $S_0 \subset S$ such that S_0 is a basis for \mathbb{R}^3 . Thus it suffices to show that the number of possible $S_0 \subset S$ such that S_0 is a basis for \mathbb{R}^3 cannot be 1. Suppose it is 1. Let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \subset S$ be a basis for \mathbb{R}^3 and \mathbf{v}_4 be the last vector of S. Then \mathbf{v}_4 is contained in $\mathrm{span}(\{\mathbf{v}_1, \mathbf{v}_2\}), \mathrm{span}(\{\mathbf{v}_1, \mathbf{v}_3\}), \mathrm{span}(\{\mathbf{v}_2, \mathbf{v}_3\})$. Set

$$\mathbf{v}_4 = a\mathbf{v}_1 + b\mathbf{v}_2 = c\mathbf{v}_2 + d\mathbf{v}_3 = e\mathbf{v}_1 + f\mathbf{v}_3.$$

Since $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent, $\mathbf{v}_4 = 0$, a contradiction. Thus the number of possible $S_0 \subset S$ such that S_0 is a basis for \mathbb{R}^3 is at least 2.

Name:

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ where $\mathbf{v}_1 = (2, 1, -1), \mathbf{v}_2 = (3, 3, 2), \mathbf{v}_3 = (-3, -1, 3)$. Determine whether $\dim(\operatorname{span}(S)) = 3$ or not. Explain your answer.

Solution. If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent, then $\dim(\operatorname{span}(S)) = 3$. Let $A = [\mathbf{v}_1 | \mathbf{v}_2 | \mathbf{v}_3]^T$. Then A is non-singular if and only if $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent. Since $\det A = 1 \neq 0$, A is non-singular. Thus $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent, which means $\dim(\operatorname{span}(S)) = 3$.