

IMPLANTABLE MICROELECTRONIC DEVICE:

DESIGN AND TEST OF MICROELECTRONIC DEVICE FOR OPTOGENETIC APPLICATIONS

1. OVERVIEW OF THE PROJECT

Lim, D. H., & LeDue, J. (2017) What Is Optogenetics and How Can We Use It to Discover More About the Brain? Frontiers for young minds.

Low power device (Just to supply a LED) Wireless Power (Magnetic coupling power harvesting) Flexible substrate (must be adaptable to the Surface) Biocompatibility (encapsulation is crutial)

John Rogers' Research Group → Different designs from the most simple to "higher" complexity.

In their work Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research (2018) in Nature Electronics:

Stimulation

Pi layer

Copper layer

Components

bottom

Stimulation control

Power management

John Rogers' Research Group → Different designs from the most simple to "higher" complexity.

In their work A wireless closed-loop system for optogenetic peripheral neuromodulation (2019) in Nature:

	Component	Product number
CO	86.5 pF	WCAP-CSGP 0402
C1	80 mF	XH414HG-IV01E
C2	1 µF	GRM033R71E102KA01J
C3	0.1 µF	CL03A104K03NNNC
C4	1 µF	CL03A105MP3ZSNH
C5	10 μF	CL05A106MP5NUNC
C6	12 pF	GRM0335C1E120GA01D
C7	47 µF	GRM188R60J476ME150
C8	10 pF	GRM033R71E102KA01J
C9	2.2 nF	GRM033R71A222KA01D
C10	47 nF	GRM033C80J473KE19D
R0	0 Ω	RC0603J000CS
R1	40.2 kΩ	RC0201FR-0740K2L
R2	220 kΩ	ERJ-1GEF2203C
R3	68 kΩ	ERJ-1GEF6802C
R4	22 kΩ	RC0201FR-0722KL
R5	1 ΜΩ	RC0201FR-071ML
11	Schottky Diode	BAS40XY, 115
12	DC Converter	LTC3255
13	Crystal	CX2520DB16000D0WZRC1
14	Antenna	2450AT18A100E
15	Microcontroller	NRF51822
16	Amplifier	INA333AIDGKR
17	Balun	2450BM14E0003T

John Rogers' Research Group → Different designs from the most simple to "higher" complexity.

In their work Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research (2018) in Nature Electronics:

Technical Features

- **Substrate**: Pyralux AP8535R, a flexible substrate for bioimplantable devices.
- Microcontroler (μ C): **ATtiny84(Atmel)** \rightarrow many documentation available.
- LDO: **NCP161 ON semiconductor** → Good specs. for low power device.
- Cree® TR2227TM LEDs \rightarrow 3.15 V and 20mA.
- Other passive components: 0201 and 0402 package size.

Possible Problems

- Accesibility to the μ C: just once before the surgery.
- Temperature of the implant due to the µC performance.
- Biocompatibility problema when adding a μC in an implant (soldering components, resins, etc)

Ada Poon' Research Group → Simple design with a magnetic coupling.

Ho, J. S., Tanabe, Y., Iyer, S. M., Christensen, A. J., Grosenick, L., Deisseroth, K., ... & Poon, A. S. (2015). Self-tracking energy transfer for neural stimulation in untethered mice. Physical Review Applied, 4(2), 024001.

Ada Poon' Research Group → Simple design with a magnetic coupling.

Technical Features

- Magnetic Coupling: Three turn coil with SMD capacitor (4pF) and resonant frequency of 1.5GHz.
- Power consumption: approximately 4W.

Possible Problems

- Designed for only 1 or more leds working at the same pulse.
- No control structure implemented.
- Usage of non biocompatible-flexible substrate.

3. IDEAS FOR IMPROVEMENT

