1 Let A be a commutative ring. Let M be a module, and N a submodule. Let $N = Q_1 \cap \ldots \cap Q_r$ be a primary decomposition of N. Let $\bar{Q}_i = Q_i/N$. Show that $0 = \bar{Q}_1 \cap \ldots \bar{Q}_r$ is a primary decomposition of 0 in M/N. State and prove the converse.

1. Each \bar{Q}_i is primary

Given $a \in A$, a_{M/Q_i} is either injective or nilpotent, we must show that, given $a \in A$, $a_{(M/N)/(Q_i/N)}$ is either injective or nilpotent.

The function a_{M/Q_i} is a particular function from M/Q_i to itself. Via the isomorphism $\sigma: M/Q_i \mapsto (M/N)/(Q_i/N)$, define \hat{a} as a function from $(M/N)/(Q_i/N)$ to itself (Is just quoting the isomorphism theorem sufficient here?)

Since they are both multiplication by a, $a_{(M/N)/(Q_i/N)}$ and \hat{a} are the same function on $(M/N)/(Q_i/N)$. Thus if a_{M/Q_i} is injective (resp. nilpotent) then $a_{(M/N)/(Q_i/N)}$ is injective (resp. nilpotent).

2. Their intersection is $0 = \bar{Q}_1 \cap ... \cap \bar{Q}_r$

Assume this is false.

Take element $a \neq (0) \in \bar{Q}_1 \cap ... \cap \bar{Q}_r$. (Better way to write this?) The pre-image of a under the canonical homomorphism $M \mapsto M/N$ is also not in N, since N is exactly the kernel of this homomorphism.

However it a *is* in each \bar{Q}_i so its preimage has to be in Q_i , so has to be in N, a contradiction.

3. If 0 is primary decom, then N is primary decomp

Showing that Q_i is primary given that \bar{Q}_i is primary is identical to part 1 by following the isomorphism $M/Q_i \cong (M/N)/(Q_i/N)$ the other direction.

The proof that the intersection is N is also directly analogous to part 2, shown here:

Assume it is false.

Take some x not in N but in $N = Q_1 \cap ... \cap Q_r$. Under the canonical homomorphism the image of x is in each of \bar{Q} , thus is 0. However this is a contradiction since the image of x is non-zero.

2 Let \mathfrak{p} be a prime ideal and \mathfrak{a} , \mathfrak{b} be ideals of A. If $\mathfrak{ab} \subset \mathfrak{p}$, show that $\mathfrak{a} \subset \mathfrak{p}$ or $\mathfrak{b} \subset \mathfrak{p}$.

If $\mathfrak{a} \not\subset \mathfrak{p}$ and $\mathfrak{b} \not\subset \mathfrak{p}$, prove that $\mathfrak{ab} \not\subset \mathfrak{p}$

Pick a in \mathfrak{a} and b in \mathfrak{b} but not in \mathfrak{p} . Since \mathfrak{p} is prime, ab cannot be in \mathfrak{p} .

3 Let \mathfrak{q} be a primary ideal. Let \mathfrak{a} , \mathfrak{b} be ideals, and assume $\mathfrak{a}\mathfrak{b} \subset \mathfrak{q}$. Assume that \mathfrak{b} is finitely generated. Show that $\mathfrak{a} \subset \mathfrak{q}$ or there exists some positive integer n such that $\mathfrak{b}^n \subset \mathfrak{q}$.

Assume that $\mathfrak{a} \not\subset \mathfrak{q}$. We will show that this implies there exists some positive integer n such that $\mathfrak{b}^n \subset \mathfrak{q}$. Take a_0 to be in \mathfrak{a} but not in \mathfrak{q} .

An arbitrary element of \mathfrak{b} , being finitely generated, looks like $k_1b_1+k_2b_2+\ldots+k_rb_r$ (where k_i are positive integers and r and n are unrelated). For each k_ib_i , since $a_0(k_ib_i)$ in \mathfrak{q} but a_0 is not and \mathfrak{q} is primary, $(k_ib_i)^{n_i}\in\mathfrak{q}$ for some finite n_i . Our goal is to find some n large enough such that every term of $(k_1b_1+k_2b_2+\ldots+k_rb_r)^n$ is in \mathfrak{q} , since, being additively closed, that would imply b^n itself were in \mathfrak{q} .

Take $n = \prod_{i=1}^r n_i$. Each term of $(k_1b_1 + k_2b_2 + ... + k_rb_r)^n$ is a homogenous monomial of degree n, thus in general looks like $\prod_{i=1}^r (k_ib_i)^{m_i}$ where the m_i 's sum to n.

If any $m_i \geq n_i$, then the term itself will be in \mathfrak{q} , since $(k_i b_i)^{n_i}$ is in \mathfrak{q} as are its subsequent powers and anything multiplied by it, since ideals absorb multiplication.

It is impossible for all $m_i < n_i$, since then they would not fully sum to n, so therefore at least one is and the term is in \mathfrak{q} . Since r is finite, so too is n, thus proving the statement.

4 Let A be Noetherian and let \mathfrak{q} be a \mathfrak{p} -primary ideal. Show that there exists some $n \geq 1$ such that $\mathfrak{p}^n \subset \mathfrak{q}$

 $\mathfrak q$ being $\mathfrak p\text{-primary}$ means that the radical of $\mathfrak q$ is $\mathfrak p.$ Hence $\sqrt{\mathfrak q}=\{r\in A|r^n\in\mathfrak q\}=\mathfrak p$

Since A is Noetherian, \mathfrak{p} is finitely generated, so an arbitrarily element of p is of the form $k_1p_1 + k_2p_2 + ... + k_rp_r$, where k_i and r are positive integers.

For every $k_i p_i$, there's an n_i such that $(k_i p_i)^{n_i}$ is in \mathfrak{q} . For the same reasoning as 3) above, $n = \prod_{i=1}^r n_i$ is such that this arbitrary p is in \mathfrak{q} .

8. Let A be a local ring. Show that any idempotent $\neq 0$ in A is necessary the unit element.

We have to show that $e * e = e \Rightarrow e = 1$

If e is a unit, we're done (Left multiplication by e^{-1} shows e = 1).

So assume e is not a unit. Then it must be in the maximal ideal \mathfrak{m} (otherwise it would generate a proper ideal not contained in \mathfrak{m}). Not quite sure how to finish...