

Modeling Molecular Evolution: Hypothesis testing

Maria Anisimova

Institute of Computational Life Sciences
Zurich University of Applied Sciences - ZHAW

Many substitution models exist. Which model to use? The best!

But what does this mean? Need a criterion

Likelihood

The likelihood of model M, parameters θ , Given data D is:

$$L(M; \theta \mid D) = Pr(D \mid M; \theta)$$

Maximum likelihood (ML) inference finds $\hat{\theta}$, the best-supported value of parameters θ : such that L(M; $\hat{\theta}$ I D) \geq L(M; $\hat{\theta}$ I D) for all other θ M with parameters θ describes your hypothesis.

The ML method was pioneered by Sir R.A. Fisher in 1921-22 Lindgren (1968), Edwards (1984)

Likelihood

Hypothesis tests

A hypothesis is a statement about the state of nature. It may need substantiation, verification or rejection.

A test of a hypothesis assigns one of the inferences:

- 'accept' the hypothesis or
- 'reject' the hypothesis for some result of an experiment

Example: Fair coin

Toss coin 100 times, observe 65 heads and 35 tails. Null hypothesis H_0 : "The coin is fair" (i.e. probability 0.5 for Heads)

Calculate the likelihood:

$$L(H_0|D) = {100 \choose 65} \times 0.5^{65} \times 0.5^{35} = 0.000864$$
$$\log(L(H_0|D)) = \log(0.000864) = -7.0541$$

Example: Biased coin

Alternative hypothesis H₁:

"The coin is biased with probability p of heads" The ML estimate of p is 65/100 = 0.65 Optimized the likelihood:

$$L(H_1|D) = {100 \choose 65} \times p^{65} \times (1-p)^{35}$$

$$= {100 \choose 65} \times 0.65^{65} \times 0.35^{35} = 0.08340$$

$$\log(L(H_1|D)) = \log(0.08340) = -2.484$$

H₁ is more likely, but is the result significant?

Hypothesis testing

Test the null hypothesis H₀ against the alternative H₁

- A test statistic T is used as a reduction of the data
- The range of values for rejecting H₀ being
- tested is called the critical region
- There are good and bad tests, leading to the wrong inference or statistical errors:

Type I error: Rejecting H_0 when H_0 is true.

Type II error: Accepting H_0 when H_0 is false

Type I and II errors

- $\cdot \alpha$ = "size of type I error" = P_{H_0} (reject H_0)
- · β = "size of type II error" = P_{H_1} (accept H_0)

Nested hypotheses

Two models are *nested* if one model can be reduced to another model by constraining some of its parameters.

In our example: forcing p = 0.5 in H_1 reduces it to H_0 H_1 has one more parameter than H_0

$$P(H_1, p) = \binom{100}{65} \times p^{65} \times (1 - p)^{35}$$

Fix p to 0.5
 $P(H_1, p = 0.5) = \binom{100}{65} \times 0.5^{65} \times 0.5^{35} = P(H_0)$

Likelihood ratio test (LRT)

Test H₀ against H₁, given they are nested

Use likelihood ratio statistic:

$$\ell_0 = \log\{L(H_0)\}\$$
 $\ell_1 = \log\{L(H_1)\}\$
 $T = 2\delta = 2\log\left(\frac{L(H_1)}{L(H_0)}\right) = 2(\ell_1 - \ell_0)$

When H_0 is correct, the LRT statistic is asymptotically distributed as χ^2 distribution with k degrees of freedom (equal to the difference in the number of parameters in H_0 and H_1)

Significance level and p-value

Choose the rejection region given null is true:

$$P(T \ge t \mid H_0) = \alpha$$

T is the calculated test statistic from data t is the chosen cut-off for the critical region α is the desired significance level Choose a small value of α (e.g. 0.05 or 0.01)

For example, for χ^2 with d.f. = 1: $P(T \ge 3.841) = 0.05$ and $P(T \ge 6.634) = 0.01$ p-value is probability of a result at least as extreme as that observed if H_0 were true

X² distributions

Exampl LRT: Fair vs biased coin

 $2\delta = 2(\ell_1 - \ell_0) = 2(-2.484 - -7.0541) = 9.1401$ 1 more parameter (p) in H₁, so use χ^2 with 1 d.f. p-value = 0.0025 < 0.05

Reject the null H₀ in favour of the alternative H₁

Nested models

Model	Base frequencies	Substitution rates	Free paramet	ers
JC	$\pi_{T} = \pi_{c} = \pi_{A} = \pi_{G}$	a = b = c = d = e = f	0	
K80	$\pi_{T} = \pi_{c} = \pi_{A} = \pi_{G}$	$a = b = c = d \neq e = f$	1	$ \uparrow \qquad \uparrow \qquad$
F81	$\pi_{T} \neq \pi_{c} \neq \pi_{A} \neq \pi_{G}$	a = b = c = d = e = f	3	b a d c
НКҮ	$\pi_{T} \neq \pi_{c} \neq \pi_{A} \neq \pi_{G}$	$a = b = c = d \neq e = f$	4	$A \leftarrow e \rightarrow G$
GTR	$\pi_{T} \neq \pi_{c} \neq \pi_{A} \neq \pi_{G}$	a≠b≠c≠d≠e≠f	8	

Adapted from Posada & Crandall (2001).

LRT: JC vs K80

H₀: JC model

 H_1 : K80 model (with κ or ts/tv rate ratio)

- Both hypotheses use the same tree topology and have
- same number of branch length parameters.
- JC is nested within the K80 model.
- Fixing $\kappa = 1$ in K80 gives the JC model.
- The difference in number of parameters is 1 (κ).
- Perform the LRT by comparing 2δ with χ^2 d.f. = 1

LRT: GTR vs GTR+F

H₀: GTR model

 H_1 : GTR+Γ (GTR parameters + α parameter)

GTR is nested within GTR+ Γ , as $\alpha \rightarrow \infty$ recovers GTR

But, this value is on the boundary of the parameter space, so:

- Test 2δ with 50:50 mixture of point mass 0 and χ^2 with d.f. = 1
- Critical values are 2.71 at 5% and 5.41 at 1%
- See Goldman & Whelan (2000) for further details and table of critical values.

LRT: constant rate over time?

LRT: constant rate over time?

H₁: no clock

Parameters:

2T - 3 = 7 for T taxa

$$b_1 = b_2$$

$$b_4 = b_5$$

$$b_3 = b_4 + b_7$$

$$T - 2 = 3$$
 constraints

 H_0 : clock Parameters: T-1=4

Akaike Information Criterion

$$AIC = 2k - 2\log(L)$$

k is number of free model parametersL is the maximum likelihood

- More parameters lead to a larger penalty
- We choose the model with the lowest AIC value
- Can be used with non-nested models
- Can rank models

AICc and BIC

For small sample size n compared to the number of parameters k (e.g. n / k < 40) use corrected AIC:

$$AIC_c = 2k - 2\log(L) + \frac{2k(k+2)}{n-k-1}$$

Bayesian information criterion is related to AIC. BIC has a larger penalty for parameters than AIC, so is more conservative and prefers simpler models.

$$BIC = k \log(n) - 2 \log(L)$$