

Past Papers Advanced Higher Chemistry

2018 Marking Scheme

Grade	Mark Re	equired	% condidates achieving anada		
Awarded	(/ ₁₃₀)	%	% candidates achieving grade		
Α	88+	67.7%	31.5%		
В	73+	56.2%	27.6%		
С	59+	45.4%	23.2%		
D	52+	40%	8.1%		
No award	< 52	< 40 %	9.6%		

Section:	Multiple Choice	Extended Answer	Project
Average Mark:	18.8 /30	39.3 /70	19.1 /30

20)18	Adv	V Higher Chemistry Marking Scheme
M <i>C</i> Qu	Answer	% Pupils Correct	Reasoning
1	A		☑A Beta particles which are electrons emitted from the nucleus ☑B Gamma rays are a form of electromagnetic radiation with wavelength & frequency ☑C Infrared is a form of electromagnetic radiation with wavelength & frequency ☑D ultraviolet is a form of electromagnetic radiation with wavelength & frequency
2	D		☑A s-block is found in groups 1+2 of the periodic table ☑B p-block is found in groups 2 through to group 0 of the periodic table ☑C d-block is found between groups 2+3 of the periodic table (transition metals) ☑D f-block is the two groups at the bottom of periodic table (Actinides and Lanthanides)
3	A		The d-orbital shown (d_{xy}) in the question will hold a maximum of two electrons.
4	D		F F F F Trigonal planar tetrahedral
5	В		Ni atom: 1s² 2s² 2p6 3s² 3p6 3d8 4s² ∴ Ni²+ ion: 1s² 2s² 2p6 3s² 3p6 3d8 ☑ A Ni²+ ions have 8 electrons in the 3d shell as 4s electrons are removed before 3d ☑ B The six electrons occupy the three lower 3d orbitals after 3d splits into 2 levels ☑ C The ligands in the complex split the 3d orbitals into two levels. ☑ D Ni²+ ions have 8 electrons in the 3d shell as 4s electrons are removed before 3d
6	С		☑A Oxidation number of Mn in $MnO_4^- = +7$ ☑B Oxidation number of Mn in $MnO_4^{2^-} = +6$ ☑C Oxidation number of Mn in $MnO_4^{3^-} = +5$ ☑D Oxidation number of Mn in $MnO_2 = +4$
7	A		☑A increase in temperature decreases K and decreases concentration of SO ₂ ☑B increase in temperature favours reverse endothermic reaction ∴ less products ☑C increase in temperature favours reverse endothermic reaction ∴ K decreases ☑D increase in temperature favours reverse endothermic reaction ∴ K decreases
8	D		H ₂ CO ₃ + CN ⁻ \Longrightarrow HCN + HCO ₃ ⁻ Acid Base Conjugate Acid Conjugate Base Donates H' Accepts H' Formed when Base accepts H' Formed when Acid loses H'
9	В		pH = 8.5 :: $-\log_{10}[H^+] = 8.5$:: $\log_{10}[H^+] = -8.5$:: $[H^+] = 10^{-8.5} = 3.16 \times 10^{-9} \text{ mol } l^{-1}$ $[H^+] [OH^-] = 10^{-14}$:: $[OH^-] = \frac{10^{-14}}{[H^+]} = \frac{1 \times 10^{-14}}{3.16 \times 10^{-9}} = 3.16 \times 10^{-6} \text{ mol } l^{-1}$
10	С		$oxed{\mathbb{Z}}$ A Catalysts do not change the position of equilibrium $oxed{\mathbb{Z}}$ B H_3O^+ ions are a product so adding sulphuric acid will shift equilibrium to left $oxed{\mathbb{Z}}$ C NaOH neutralises H_3O^+ ions so removing a product and shifts equilibrium to right $oxed{\mathbb{Z}}$ D $C_3H_7COO^-$ ions are a product so adding sulphuric acid will shift equilibrium to left
11	D		 ☑ A sodium sulphate solution is neutral pH=7 (strong acid v strong alkali) ☑ B lithium chloride solution is neutral pH=7 (strong acid v strong alkali) ☑ C ammonium nitrate solution is acidic pH<7 (strong acid v weak alkali) ☑ D potassium propanoate solution is alkaline pH>7 (weak acid v strong alkali) H⁺ ions join up with propanoate ions to form molecules of propanoic acid. Water molecules then split into ions to replace H⁺ ions but concentration of OH⁻ builds up as H⁺ is removed.

		MARKET LICENSE LONG THE PROPERTY OF THE PROPER							
		■ A sodium chloride is made from a strong alkali so no buffer forms							
12	В	B buffers form when salt of a weak alkali (ammonium chloride) dissolves in a weak acid (ammonia)							
		☑C sodium hydroxide is a strong acid and no buffer forms							
		☑D sodium hydroxide is a strong acid and no buffer forms							
		$\Delta G = \Delta H - T\Delta S :: \Delta G - \Delta H = -T\Delta S$							
		If ΔG - ΔH is approximately zero then -T ΔS must also be approximately zero. This means ΔS must							
12		be approximately zero then there must be little change to disorder during the reaction.							
13	U	■ A CO ₂ gas released which increases disorder and increases △S							
		■B Two gases formed from a solid which increases disorder and increases △S							
		$\boxtimes C$ H ₂ gas released which increases disorder and increases $\triangle S$ $\boxtimes D$ Solid and an ion turning into a solid and an ion keeps disorder level ($\triangle S$) similar							
		■ A The overall order is the sum of the individual orders : overall order = 1+2 = 3							
		☑B This reaction must have second step as equal no. of moles of P + Q are used up in the							
4.4	D	equation but the rate determining step has two particles of Q reacting with one particle of							
14	В	P. A second particle of P must react in the other step.							
		☑C Rates of reaction always decrease as concentration of reactants decreases							
		☑D As P is first order then doubling [P] will double the rate of reaction							
15	D	Bond C-H C-C C≡C							
15	В	Type of hybridisation sp³ hybridisation sp hybridisation sp hybridisation							
		h h							
		C C H							
16		formula C_8H_6O							
		$H = c_0 c_c c_H$ gfm = (8x12) + (6x1) + (1x16) = 96+6+16 = 118g							
		☑A W and X in same position in both diagrams but Z and Y in opposite positions							
17	A	☑B XYZ on bottom are in in same anti-clockwise as comparison diagram.							
17	A	☑C XYZ on bottom are in in same anti-clockwise as comparison diagram.							
		☑D XYZ on bottom are in in same anti-clockwise as comparison diagram.							
		☑A sodium + butan-1-ol react to form sodium butoxide CH3CH2CHO-Na+ + H2							
18	Δ	☑B sodium + butanoic acid would form sodium butanoate + hydrogen							
10		E C sodium hydroxide does not react with alcohols							
		☑D sodium hydroxide + butanoic acid would form sodium butanoate + hydrogen							
		☑A Hydration: Adding water across a double or triple bond							
19	C	■B Oxidation: Increasing the oxygen: hydrogen ratio in a compound							
		☑C Hydrolysis: spitting into two molecules with water added at break							
		☑D Hydrogenation: Adding hydrogen across a double bond or triple bond							
		Element Cu O							
		Mass 16g 2g							
		No. of moles $\left \begin{array}{c c} 16 \\ \hline 63.5 \end{array} \right \left \begin{array}{c c} 2 \\ \hline 16 \end{array} \right $							
20	В	(divide % by gfm) = 0.252 = 0.125							
		0.252 0.125							
		Mole ratio O.125 O.125 O.125							
		= 2.02 1.00							
		Round to Whole Number 2 1							
		\blacksquare A gfm CH ₃ OCOCH ₃ = (3x12)+(6x1)+(2x16) = 36+6+32 = 74g							
21		■B gfm CH_3CH_2COOH = $(3\times12)+(6\times1)+(2\times16)$ = $36+6+32$ = $74g$ □ C gfm $CH_3CH_2CH_2CH_2NH_2$ = $(4\times12)+(11\times1)+(1\times14)$ = $48+11+34$ = $73g$							
		I							
		■ A Absorption peak at 3100 - 3000cm ⁻¹ due to C-H stretch in benzene ring							
22		■B Absorption peak at 2962 - 2853cm ⁻¹ due to C-H stretch in an alkane							
22		☑C No absorption peak at 1730 - 1717cm ⁻¹ as there is no C=O aromatic ester in eugenol							
		☑D Absorption peak at 1150 - 1070cm ⁻¹ due to C-O stretch in alkyl ether							

23 A		 ☑A Agonist: Binds to the receptor and causes an internal response in the cell ☒B Antagonist: Bind to the receptor but does not cause internal response in the cell ☒C Inhibitor: Block the substrate from entering the receptor
		☑D Receptor: Protein in membrane of cells that allows molecules to bind with it.
	_	no. of mol = volume x concentration = 0.05litres x 2 mol l ⁻¹ = 0.1mol
24	В	concentration = $\frac{\text{no. of mol}}{\text{volume}} = \frac{0.1 \text{ mol}}{0.25 \text{litres}} = 0.4 \text{ mol } l^{-1}$
25	В	 ☑A CH3CH2CH2CHO is an aldehyde and is miscible with water ☑B CH3CH2OCH2CH3 is an ether and is immiscible with water ☑C CH3CH2CH2CH2COOH is an carboxylic acid and is miscible with water ☑D CH3CH(OH)CH2CH3 is an alcohol and is miscible with water
26	D	 ☒A This is a step in a recrystallisation technique ☒B This is a step in a recrystallisation technique ☒C This is a step in a recrystallisation technique ☒D This is a step in gravimetric analysis to show all dissolved ion has precipitated.
27	В	 ☒A Purification should give a melting point over a narrower range ☒B Recrystallisation raises the melting point and narrows the temperature range ☒C Impurities lower the melting point so purification raises the melting point ☒D Impurities lower the melting point so purification raises the melting point
28	С	 ☑A Desiccators remove moisture from the atmosphere not oxygen ☑B Heating the sample removes water from the sample, not the desiccator. ☑C While sample is cooling in desiccator, moisture cannot be reabsorbed by the sample ☑D Desiccators do not prevent decomposition of sample, probably in the heating stage
29	D	 ☒A The distance moved by the solvent does not alter the value of the R_f value ☒B The sample will move the same distance regardless of concentration ☒C The length of TLC plate is not a factor in the R_f value ☒D The solvent used decides how far the sample moves and the R_f value.
30	С	 ☒A Distillation separates the chemicals while refluxing returns the chemical to flask ☒B Distillation separates the chemicals while refluxing returns the chemical to flask ☒C Coldest water (from tap) should be nearest hot vapours entering condenser ☒D If the water travels against the flow in condenser arm then the hottest water is nearest the flask and the vapour will travel further up the condenser

203	2018 Adv Higher Chemistry Marking Scheme										
Long Qu	Answer					F	Reas	onin	9		
1 a(i)	sodium			Elen Waveler Col	gth/nm 554 our gree	m Calcium 620 n orange-re	Copper 522 ed blue-gree	Lithium 671 n crimson	Potassium 405 lilac	Sodium 589 orange-yellow	
1a(ii)	425nm			E= <u>L</u>	<u>λ × h × c</u>	$\lambda = \frac{L \times h}{E}$		5 x 10 ⁻⁷ m	¹ × 6.63×10 282 × 1000) ⁻³⁴ J s x 3: J mol ⁻¹	×10 ⁸ m s ⁻¹
1a(iii)	87				e Intensity 3 e Intensity	_	→ 43	35mg kg ⁻¹ 35mg kg ⁻¹ ; 87mg kg ⁻¹			
1b(i)	Orbitals fill up in order of increasing energy			Elect	<u>au Principle</u> : rons fill up in 2p 3s 3p 4s 3d		3	3,	1 2 3 4 7 4 7 8	25 2p 9 3d ds 4p 4d dis 5p 5d 6d 7p 6d 7s 7p	6 6 9 4f 5f
	n	l m _l	ms	l l	Principal Angular Momentum	Quantum Number	l = Typ l = s sub:	oe/Shape of su	= 1 l :	goes from 0 up = 2	o to n-1 = 3 oshell
1b(ii)	3	1 0 or or +1	$+\frac{1}{2}$ or $-\frac{1}{2}$	m _l	Magnetic Quantum Number Magnetic Quantum Number Magnetic Quantum		-2 -3 -2	here m ₁ goes fr Value of m ₁ 0 -1 0 1 0 1 1 1 1 1 1 1 1 1 1	2 2 3		
				H₂O is b	ooth a reactan		•		an electron and	i nas enner van	16 01 + 5 01 5
2a(i)	K _α = [HOOC] [HO	CH2CH(OH)CC	00-] [H₃O+] 0COOH]	K _α = -	[HOOCCH2CH [HOOCCH2CH	-1(0H)COO -1(0H)COO]¹ x [H₃O⁺] ^¹ I]¹ x [H₂O]	$\frac{1}{1} = \frac{[HC]}{[HC]}$		(OH)COO ⁻] CH(OH)CO	
2a(ii)	Equat	ion show	ving:	H00	CCH2CH(OH)COO- +	H ₂ O	→ -000	CH2CH(O)H)COO-	+ H ₃ O⁺
2b(i)	2.90				рН	$= -\frac{1}{2} \log_{10}$	½pKa blog10Ka b(3.2×10 ⁻⁴ x -3.49) 1.75 2.90) - $\frac{1}{2}$	$ \frac{1}{2}\log_{10} $ $ \frac{1}{2}\log_{10} $ $ \times \log_{10}(0. $ $ (\frac{1}{2} \times -2.2 $ $ (-1.15) $	c .0051) 29)	
2b(ii)	•	ogen bor veen cho	_	Each unit within a pectin chain has two hydroxyl -OH groups which would allow hydrogen bonding between the pectin chains and thicken the jam.							
3a		our of ing requ		ca	solve sodium rbonate in onised water		he solution rinsings	standard/	a 250cm³ 'volumetric ask	flask with	to the line deionised ter

		Average titre = $\frac{19.5 + 19.4}{2}$ = 19.45 cm ³									
	0.0348mol	no . of mol = volume \times concentration = 0.01945 litres \times 0.358 mol l ⁻¹ = 6.97 \times 10 ⁻³ mol									
3b(i)		Na ₂ C	CO₃ + 2H	Cl —	→ 2No	aCl	$+ H_2O +$	CO ₂			
30(1)	0.03 +011101	1mol 2mol									
		3.48×10			> _	40.4	10- ³				
			25cm³ sodium carbonate solution 3.48×10 ⁻³ mol								
			250cm³ sodium carbonate solution 3.48×10⁻² mol gfm Na₂CO₃ = (2×23)+(1×12)+(3×16) = 46+12+48 = 106g								
		J		o. of mol >	gfm = 0.0348 >						
			mass of water	=	of hydrated n carbonate		s of unhydrated dium carbonate				
			mass of water		8.10g -		3.69g				
			mass of water		4.41g	Ι					
			Chemical	1	<u>√a₂CO₃</u>		H ₂ O				
3b(ii)	7		Mass		3.69g		4.41g				
			no. of mol		3.69 106		4.41 18				
			(divide by gfm)	=	0.0348		= 0.245				
			Divide by		0.0348		0.235 0.0348				
			smallest value	2	0.0348		= 7.04				
			Formula of hyd	Irated so	rated sodium carbon						
		3 ma	rk answer		ark answer		1 mark an	swer			
		Demonstrates	a <u>good</u>		Demonstrates a <u>reasonable</u>		Demonstrates a <u>limite</u>	<u>d</u>			
3.0	Open Question to include:	involved. A go	of the chemistry od comprehension of	involved, making some			understanding of the chemistry involved. The candidate has made				
3c		11	v has provided in a ect, including a		statement(s) which are relevant to some statement the situation, showing that the relevant to the						
		statement of the principles problem is understood. involved and the application of			that at least a little of chemistry within the p						
			ond to the problem.				understood.				
4 a	One answer from:	Unpaired d electro	' '	illed/incomp bitals	· ·			nd accepting trons			
		H	3 C	CH ₃							
4b			C = C								
40		H /		Н							
		structural formula		Ske	letal	formula					
		But-1-ene	e has two hydr	ogens or	one end of	C=C	11.6	Н			
1 -	0	But-1-ene has two hydrogens on one end of $C=C$ But-1-ene has three hydrogens attached to $C=C$									
4c	One answer from:	Swanning any of the around on the C-C always									
		results in the same structure									
		ΔH°	= ΣΛ	Hf ^o (produc	ts) -		ΣΔH _f ^o (reactants)	,			
1 4				(1x-6.99)			((1×119)+(1×0)				
4d(i)	-126 kJ mol ⁻¹		=	-6.99	-		(119 + 0)				
PART A			= 121	-6.99	- - 1-1		119				
				5.99 kJ m			∇Λ€ 0.				
		Δ G °		\G ^o (product (1x-65.9)	s) - -		$\Sigma\Delta G^{\circ}$ (reactants) ((1x185)+(1x0))			
			=	-65.9	-	-	(185 + 0)	,			
4d(i)	-23.2 J K ⁻¹ mol ⁻¹		=	-65.9	-		185				
PART B	10.1 0 K IIIOI			9.1 kJ mo		124					
		$\Delta G^{\circ} = \Delta H^{\circ}$	o - TΔS° ∴ ΔS° =	<u>Δσ - ΔΙ</u> -Τ	-298	8	-= -0.0232 kJ K ⁻¹	mol ⁻¹			
							= -23.2 J K ⁻¹ mol				

		The reaction becomes thermodynamically feasible when ΔG° = 0						
4d(ii)	5431	$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = 0$: $T\Delta S^{\circ} = \Delta H^{\circ}$: $T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{-126 \times 1000 \text{ J mol}^{-1}}{-23.2 \text{ J K}^{-1} \text{ mol}^{-1}} = 5431 \text{K}$						
5a	Conjugated system	A conjugated system is a section of a compound with alternating C=C double bonds and C-C single bonds.						
		1st Mark Electrons move from HOMO to LUMO (Highest Occupied Molecular Orbital) (Lowest Unoccupied Molecular Orbital)						
5b	Answer to include:	2 nd Mark Absorption of light (from the visible part of the spectrum) means that light of the complementary colour is seen						
5c	Answer to include:	1 st Mark One from: less a shorter sequence of alternating a smaller conjugation double and single bonds chromophore						
		2 nd Mark Larger gap between HOMO and LUMO and greater energy (absorbed) as shorter wavelength has greater energy						
6a	One answer from:	Ligands donate pairs of electrons to metal atom (lone pairs or non-bonding pair) Ligands form dative covalent bonds with metal ion						
6b(i)	<i>C</i> ₃ H ₈ O ₃ S ₃	SH O						
6b(ii)	Bidentate	An electron pair on each Sulphur in the thiol -SH groups donate one of their lone pairs to the Mercury ion and forms a dative covalent bond.						
6b(ii)	4	Each DMPS ligand molecule donates lone pairs of from two of its sulphur atoms to give four dative covalent bonds on the Mercury ion in the centre.						
6c(i)	Gravimetric	Gravimetric analysis involves measuring the mass accurately to calculate the number of moles of substances.						
6c(ii)	96.1%	no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{4.82g}{388.7 \text{ g mol}^{-1}} = 0.0167 \text{mol}$ 0.0167mol complex contains 0.0167mol Ni ions mass of Ni = no. of mol × gfm = 0.167mol × 58.7g mol ⁻¹ = 0.98g % mass = $\frac{\text{mass of Ni}}{\text{mass of Alloy}} \times 100 = \frac{0.98}{1.02} \times 100 = 96.1\%$						
7a(i)	Electrophilic Substitution	Adding onto a benzene ring is electrophilic substitution. The H on the benzene ring is joins to the Cl and the remainder of that molecule joins onto the benzene ring.						
7 a(ii)	Secondary	Primary Amine Secondary Amine Tertiary Amine H—N—C ₃ H ₇ H ₃ C—N—C ₂ H ₅ H ₃ C—N—CH ₃ H CH ₃ 1 Carbon attached to the Nitrogen 2 Carbons attached to the Nitrogen 3 Carbons attached to the Nitrogen 3						
70(:::)	lithium	Step 3 converts a ketone into a secondary alcohol. This reaction is reduction and a						
7a(iii)	aluminium hydride	reducing agent like lithium aluminium hydride LiAlH4 will carry out this reaction.						
7a(iv)	Step 3	A chiral centre is when the carbon has four different groups attached. OH H Groups attached to chiral carbon (circled) OH Groups attached to chiral carbon (circled) OH Group OH Grou						

7b	0.15mg	500ppm = 500mg per litre .: 1 litre of adrenaline solution contains 500mg adrenaline 1000cm³ of adrenaline solution contains 500mg adrenaline 0.3cm³ of adrenaline solution contains 500mg adrenaline × 0.3/1000 = 0.15mg
7c	Diagram showing:	Labelled start positions of the extract and pure samples on a horizontal line. This line must be above the level of the solvent.
8a	0.97	In Step 1, 13% ethanol is produced 13cm³ ethanol and 87cm³ water 1cm^3 ethanol = 0.79g \therefore 13cm³ ethanol = 10.27g 1cm^3 water = 1.00g \therefore 87cm³ ethanol = 87.00g $d = \frac{m_1 + m_2}{100} = \frac{10.27 + 87.00}{100} = 0.9727 \text{ g cm}^3$
8b	One answer from:	Boiling points (some) water evaporates at any mention of attraction or are similar ethanol's boiling point forces between water and ethanol
8c	One answer from:	Water molecules ethanol molecules ethanol molecules water molecules pass water molecules are smaller than are too large to are larger than through but ethanol are trapped in ethanol molecules pass through water molecules molecules cannot the sieve
8d	Open Question to include:	3 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the application of these to respond 3 mark answer 2 mark answer Demonstrates a limited understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the a little of the chemistry within the
9a		to the problem. problem is understood. problem is understood.
/ ~	(Base-induced) Elimination	Elimination reactions involve the removal of a small water leaving behind a C=C double bond. Elimination reactions are the opposite reactions to addition reaction.
9b		Elimination reactions involve the removal of a small water leaving behind a C=C
	Elimination	Elimination reactions involve the removal of a small water leaving behind a C=C double bond. Elimination reactions are the opposite reactions to addition reaction. 1st Mark

	1.32×10 ⁻⁴ l mol ⁻¹ s ⁻¹	rate = k[C ₄ H ₉ Br][OH ⁻]
04		k = <u>rate</u> [C ₄ H ₉ Br] x [OH ⁻]
9d(ii)		$= \frac{3.3 \times 10^{-6} \text{ mol } l^{-1} \text{ s}^{-1}}{0.25 \text{ mol } l^{-1} \times 0.10 \text{ mol } l^{-1}}$
		= $1.32 \times 10^{-4} \text{ l mol}^{-1} \text{ s}^{-1}$
10a	Delocalised electrons	Benzene rings have six delocalised electrons which provide the stability in a benzene molecule.
10b	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷	Co atom: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^7 4s^2$ $Co^{2+} ion : 1s^2 2s^2 2p^6 3s^2 3p^6 3d^7$
10c(i)	All fours sections required:	solutions of known suitable Mention of a Absorbance/transmittance concentration are prepared used blank or solvent of each solution is measurement measured/plotted
10c(i)	Both sections required:	The absorbance/transmittance of the unknown is measured mention of using the graph to turn unknown's absorbance/transmittance back into concentration
10c(ii)	Propan-1-ol	Propanal is an aldehyde and will reduce to for the primary alcohol propan-1-ol. Other reduction reactions: carboxylic acid
10d	1	Every bond in the decamethylcobaltocene is identical i.e. aromatic carbon with a methyl -CH3 group attached