Q:Two APs have the same common difference. The difference between their 100th terms is 100, what is the difference between their 1000th terms?

Solution:

Let us assume given two APs(Arithmetic Progressions) as X and Y whose first terms are given by x(0) and y(0). Let d be the common difference of the APs. We know that,

nth term of an AP is given by

$$x(n) = x(0) + [(n)d]u(n)$$
 (1)

$$\implies x(99) - y(99) = 100 \tag{2}$$

$$\implies (x(0) + 99d) - (y(0) + 99d) = 100 \tag{3}$$

$$\implies x(0) - y(0) = 100 \tag{4}$$

Now to find the difference between the 1000th terms of APs;

$$\implies x(999) - y(999) = (x(0) + 999d) - (y(0) + 999d) \tag{5}$$

$$= x(0) - y(0) \tag{6}$$

$$= 100 \tag{7}$$

Therefore, the difference between the 1000th terms of two given APs is 100.

We know that,

The Z-transform of a discrete signal x(n) is given by:

$$X(z) = \mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

Considering x(n-1) and y(n-1) as n^{th} terms of the APs(Arithmetic Progressions), Z-transform for x(n-1) and y(n-1) can be given by

$$X(z) = \mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(8)

$$= \sum_{n=0}^{n} x(n)z^{-n}$$
 (9)

$$= x(0)z^{0} + x(1)z^{-1} + x(2)z^{-2} + \dots + x(n)z^{-(n)}$$
(10)

$$= x(0) + (x(0) + d)z^{-1} + (x(0) + 2d)z^{-2} + \dots + (x(0) + (n)d)z^{-n}$$
(11)

$$= x(0)[1 + z^{-1} + z^{-2} + \dots + z^{-n}] + d[1 \cdot z^{-1} + 2 \cdot z^{-2} + \dots + n \cdot z^{-n}]$$
(12)

$$= x(0)(U(z)) + d[-z \cdot \frac{d(U(z))}{dz}]$$
 (13)

$$\implies X(z) = x(0) \cdot U(z) + d \cdot (-z) \cdot \frac{d(U(z))}{dz} \tag{14}$$

$$\implies Y(z) = y(0) \cdot U(z) + d \cdot (-z) \cdot \frac{d(U(z))}{dz} \tag{15}$$

(16)

Variable	Description	Value
x(n)	n^{th} term of X	none
y(n)	n th term of Y	none
n	position of the term in the AP starting from 0	none
d	common difference between the terms of AP	none
X(z)	z-transform of x(n)	$x(0) \cdot U(z) + d \cdot -z \cdot \frac{d(U(z))}{dz}$
Y(z)	z-transform of y(n)	$y(0) \cdot U(z) + d \cdot -z \cdot \frac{dz}{dz}$
U(z)	z-transform of u(n)	$\sum_{n=1}^{\infty} z^{-n}$
$\frac{d(U(z))}{dz}$	Derivative of U(z)	$-\sum_{n=1}^{\infty}nz^{-n-1}$

TABLE 0
INPUT PARAMETERS