Lecture 26 – P, NP, and NP-Complete Problems COSE215: Theory of Computation

Jihyeok Park

2023 Spring

Recall

- A language L is recursively enumerable language (REL) if there is a Turing machine (TM) M such that L(M) = L.
- A language L is **decidable language (DL)** if there is a TM M such that 1) L(M) = L and 2) M halts on all inputs.

- What are decision problems and time complexity?
- Learn three classes of decision problems: P, NP, and NP-Complete.

Contents

1. Decision Problems

2. **P**

Time Complexity of TMs P – Polynomial Time Complexity

3. **NP**

Time Complexity of NTMs

NP – Nondeterministic Polynomial Time Complexity

4. NP-complete

Polynomial Time Reduction (\leq_P) **NP-complete** – Hardest Problems in **NP** (**SAT**) – The First **NP-complete** Problem Other **NP-complete** Problems

5. Major Unsolved Problem: P = NP?

Decision Problems

Definition (Decision Problem)

A decision problem π is a computational problem whose answer is either yes or no for a given input.

For example,

- Is word w an even-length palindrome?
- Is a natural number n a prime number?
- Is a graph G a tree?
- Is there a Hamiltonian path in a graph G?
- Is a boolean formula ϕ satisfiable?
- ...

We say that a decision problem π is **decidable** (**solvable**) by a TM M if M halts on all inputs and $L(M) = \{w \mid \pi(w) = \text{yes}\}.$

Time Complexity of TMs

Definition (Time Complexity of TMs)

We say a TM M has a time complexity $T : \mathbb{N} \to \mathbb{N}$ if M halts on w in at most T(n) moves for all $w \in \Sigma^*$ whose length is n.

Definition (**DTIME**)

A decision problem π is in **DTIME**(T(n)) if it is decidable by a TM M whose time complexity is T(n).

We often use a big O notation to describe the time complexity of a TM:

$$f(n) = O(g(n)) \iff \exists k \in \mathbb{N}, n_0 \in \mathbb{N}. \ \forall n \geq n_0. \ f(n) \leq k \cdot g(n)$$

Time Complexity of TMs – Example

 $\langle EvenPalin \rangle$ – Is a word $w \in \{a, b\}^*$ an even-length palindrome?

Time Complexity of TMs - Example

 $\langle EvenPalin \rangle$ – Is a word $w \in \{a, b\}^*$ an even-length palindrome?

B a b a a b a B

The decision problem $\langle \text{EvenPalin} \rangle$ is decidable by a TM $M_{\langle \text{EvenPalin} \rangle}$ whose time complexity is $T(n) = (n+1)(n+2)/2 = O(n^2)$.

 $\langle \mathsf{EvenPalin} \rangle \in \mathsf{DTIME}(\mathcal{O}(n^2))$

P – Polynomial Time Complexity

Definition (P – Polynomial Time Complexity)

A decision problem π is in P if it is decidable by a TM M whose time complexity is a **polynomial function** (i.e., $T(n) = O(n^k)$ for some $k \ge 0$).

$$\mathsf{P} = \bigcup_{k \geq 0} \mathsf{DTIME}(O(n^k))$$

For example, the decision problem $\langle EvenPalin \rangle$ is in P.

$$\langle \mathsf{EvenPalin} \rangle \in \mathsf{DTIME}(\mathit{O}(\mathit{n}^2)) \subseteq \mathsf{P}$$

Definition (Tractable Problems)

A problem π is called a **tractable problem** if it is a P problem.

Time Complexity of NTMs

Definition (Time Complexity of NTMs)

We say a nondeterministic (NTM) M has a **time complexity** $T : \mathbb{N} \to \mathbb{N}$ if M halts on w in at most T(n) moves for all $w \in \Sigma^*$ whose length is n.

Definition (NTIME)

A decision problem π is in NTIME(T(n)) if it is decidable by a NTM M whose time complexity is T(n).

Time Complexity of NTMs – Example

 $\langle MakeEvenPalin \rangle$ – Is a word $w \in \{a, b, c\}^*$ convertible to an even-length palindrome by replacing all c's with a's or b's?

Time Complexity of NTMs – Example

 $\langle MakeEvenPalin \rangle$ – Is a word $w \in \{a, b, c\}^*$ convertible to an even-length palindrome by replacing all c's with a's or b's?

The decision problem $\langle MakeEvenPalin \rangle$ is decidable by a NTM whose time complexity is $T(n) = 2(n+1) + O(n^2) = O(n^2)$.

$$\langle \mathsf{MakeEvenPalin} \rangle \in \mathsf{NTIME}(\mathit{O}(\mathit{n}^2))$$

NP - Nondeterministic Polynomial Time Complexity

Definition (NP - Nondeterministic Polynomial Time Complexity)

A decision problem π is in NP if it is decidable by a NTM M whose time complexity is a **polynomial function** (i.e., $T(n) = O(n^k)$ for some $k \ge 0$).

$$\mathsf{NP} = \bigcup_{k \geq 0} \mathsf{NTIME}(O(n^k))$$

For example, the decision problem (MakeEvenPalin) is in NP.

$$\langle \mathsf{MakeEvenPalin} \rangle \in \mathsf{NTIME}(\mathit{O}(\mathit{n}^2)) \subseteq \mathsf{NP}$$

NP - Nondeterministic Polynomial Time Complexity

Definition (NP - Verifier-based Definition)

A decision problem π is in **NP** if there exists a TM M as a **verifier** whose time complexity is a polynomial function such that:

$$\forall w \in \Sigma^*$$
. $\pi(w) = \text{yes} \iff \exists x \in \Sigma^*$. $(w, x) \in L(M)$

For example, the decision problem $\langle MakeEvenPalin \rangle$ is in NP because there exists a polynomial time verifier $M_{\langle EvenPalin \rangle}$.

 $\langle SAT \rangle$ (Boolean SATisfiability problem) – Is a given Boolean formula (consisting of Boolean variables, \land , \lor , and \neg) satisfiable?

NP – Example: **(SAT)**

 $\langle SAT \rangle$ (Boolean SATisfiability problem) – Is a given Boolean formula (consisting of Boolean variables, \land , \lor , and \neg) satisfiable?

For example, is the following Boolean formula satisfiable?

$$(x_1 \vee \neg x_2) \wedge (x_1 \vee x_2 \vee x_3) \wedge \neg x_1$$

 $\langle SAT \rangle$ (Boolean SATisfiability problem) – Is a given Boolean formula (consisting of Boolean variables, \land , \lor , and \neg) satisfiable?

For example, is the following Boolean formula satisfiable?

$$(x_1 \vee \neg x_2) \wedge (x_1 \vee x_2 \vee x_3) \wedge \neg x_1$$

Yes! For example, $x_1 = \#f$, $x_2 = \#f$, and $x_3 = \#f$ is a satisfying assignment.

 $\langle SAT \rangle$ (Boolean SATisfiability problem) – Is a given Boolean formula (consisting of Boolean variables, \land , \lor , and \neg) satisfiable?

For example, is the following Boolean formula satisfiable?

$$(x_1 \vee \neg x_2) \wedge (x_1 \vee x_2 \vee x_3) \wedge \neg x_1$$

Yes! For example, $x_1 = \#f$, $x_2 = \#f$, and $x_3 = \#f$ is a satisfying assignment.

Is it $\langle SAT \rangle$ in NP?

 $\langle SAT \rangle$ (Boolean SATisfiability problem) – Is a given Boolean formula (consisting of Boolean variables, \land , \lor , and \neg) satisfiable?

For example, is the following Boolean formula satisfiable?

$$(x_1 \vee \neg x_2) \wedge (x_1 \vee x_2 \vee x_3) \wedge \neg x_1$$

Yes! For example, $x_1 = \#f$, $x_2 = \#f$, and $x_3 = \#f$ is a satisfying assignment.

Is it $\langle SAT \rangle$ in NP? Yes!

We can construct a polynomial time TM as a verifier for $\langle SAT \rangle$, which takes 1) a Boolean formula and 1) an assignment of Boolean variables, and checks whether the assignment satisfies the formula.

 $\langle SAT \rangle$ (Boolean SATisfiability problem) – Is a given Boolean formula (consisting of Boolean variables, \land , \lor , and \neg) satisfiable?

For example, is the following Boolean formula satisfiable?

$$(x_1 \vee \neg x_2) \wedge (x_1 \vee x_2 \vee x_3) \wedge \neg x_1$$

Yes! For example, $x_1 = \#f$, $x_2 = \#f$, and $x_3 = \#f$ is a satisfying assignment.

Is it $\langle SAT \rangle$ in NP? Yes!

We can construct a polynomial time TM as a verifier for $\langle SAT \rangle$, which takes 1) a Boolean formula and 1) an assignment of Boolean variables, and checks whether the assignment satisfies the formula.

In other words, we can construct a polynomial time NTM for $\langle SAT \rangle$ by 1) generating all assignments of Boolean variables and 2) verifying whether the assignment satisfies the formula using the verifier.

Polynomial Time Reduction (\leq_P)

Definition (Polynomial Time Reduction (\leq_P))

A decision problem π_1 is **polynomial time reducible** to another decision problem π_2 (denoted by $\pi_1 \leq_P \pi_2$) if there exists a polynomial time computable function $f: \Sigma^* \to \Sigma^*$ such that:

$$\forall w \in \Sigma^*$$
. $\pi_1(w) = \text{yes} \iff \pi_2(f(w)) = \text{yes}$

Polynomial Time Reduction (\leq_P)

Definition (Polynomial Time Reduction (\leq_P))

A decision problem π_1 is **polynomial time reducible** to another decision problem π_2 (denoted by $\pi_1 \leq_P \pi_2$) if there exists a polynomial time computable function $f: \Sigma^* \to \Sigma^*$ such that:

$$\forall w \in \Sigma^*$$
. $\pi_1(w) = \text{yes} \iff \pi_2(f(w)) = \text{yes}$

We say that π_2 is **harder** than π_1 if $\pi_1 \leq_P \pi_2$ because we can solve π_1 in polynomial time if we can solve π_2 in polynomial time.

Polynomial Time Reduction (\leq_P)

Definition (Polynomial Time Reduction (\leq_P))

A decision problem π_1 is **polynomial time reducible** to another decision problem π_2 (denoted by $\pi_1 \leq_P \pi_2$) if there exists a polynomial time computable function $f: \Sigma^* \to \Sigma^*$ such that:

$$\forall w \in \Sigma^*$$
. $\pi_1(w) = \text{yes} \iff \pi_2(f(w)) = \text{yes}$

We say that π_2 is **harder** than π_1 if $\pi_1 \leq_P \pi_2$ because we can solve π_1 in polynomial time if we can solve π_2 in polynomial time.

If a decision problem π_2 is in NP and $\pi_1 \leq_P \pi_2$, then π_1 is in NP.

Consider the following two decision problems:

- $\langle MakeEvenPalin \rangle$ Is a word $w \in \{a, b, c\}^*$ convertible to an even-length palindrome by replacing all c's with a's or b's?
- (SAT) Is a given Boolean formula satisfiable?

Consider the following two decision problems:

- $\langle MakeEvenPalin \rangle$ Is a word $w \in \{a, b, c\}^*$ convertible to an even-length palindrome by replacing all c's with a's or b's?
- (SAT) Is a given Boolean formula satisfiable?

We can show that $\langle MakeEvenPalin \rangle \leq_P \langle SAT \rangle$ by the following polynomial time computable function f:

$$f(a_1 a_2 \cdots a_n) = \bigwedge_{i=1}^n ((x_i \wedge x_{n+1-i}) \vee (\neg x_i \wedge \neg x_{n+1-i})) \\ \wedge \bigwedge \{x_i \mid a_i = a\} \wedge \bigwedge \{\neg x_i \mid a_i = b\}$$

Consider the following two decision problems:

- $\langle MakeEvenPalin \rangle$ Is a word $w \in \{a, b, c\}^*$ convertible to an even-length palindrome by replacing all c's with a's or b's?
- (SAT) Is a given Boolean formula satisfiable?

We can show that $\langle MakeEvenPalin \rangle \leq_P \langle SAT \rangle$ by the following polynomial time computable function f:

$$f(a_1 a_2 \cdots a_n) = \bigwedge_{i=1}^n ((x_i \wedge x_{n+1-i}) \vee (\neg x_i \wedge \neg x_{n+1-i})) \\ \wedge \bigwedge \{x_i \mid a_i = a\} \wedge \bigwedge \{\neg x_i \mid a_i = b\}$$

For example,

$$f(\texttt{acba}) = ((x_1 \land x_4) \lor (\neg x_1 \land \neg x_4)) \land ((x_2 \land x_3) \lor (\neg x_2 \land \neg x_3)) \land x_1 \land \neg x_3 \land x_4$$

Consider the following two decision problems:

- $\langle MakeEvenPalin \rangle$ Is a word $w \in \{a, b, c\}^*$ convertible to an even-length palindrome by replacing all c's with a's or b's?
- (SAT) Is a given Boolean formula satisfiable?

We can show that $\langle MakeEvenPalin \rangle \leq_P \langle SAT \rangle$ by the following polynomial time computable function f:

$$f(a_1 a_2 \cdots a_n) = \bigwedge_{i=1}^n ((x_i \wedge x_{n+1-i}) \vee (\neg x_i \wedge \neg x_{n+1-i}))$$
$$\wedge \bigwedge \{x_i \mid a_i = a\} \wedge \bigwedge \{\neg x_i \mid a_i = b\}$$

For example,

$$f(\texttt{acba}) = ((x_1 \land x_4) \lor (\neg x_1 \land \neg x_4)) \land ((x_2 \land x_3) \lor (\neg x_2 \land \neg x_3)) \land x_1 \land \neg x_3 \land x_4$$

Thus, we can solve $\langle MakeEvenPalin \rangle$ using an NTM for $\langle SAT \rangle$, and it means that $\langle SAT \rangle$ is harder problem than $\langle MakeEvenPalin \rangle$.

NP-complete – Hardest Problems in NP

Definition (NP-hard – Harder Problems Than NP)

A decision problem π is in NP-hard if $\forall \pi' \in NP$, $\pi' \leq_P \pi$.

In other word, π is in NP-hard if π is harder than all problems in NP.

NP-complete – Hardest Problems in NP

Definition (NP-hard – Harder Problems Than NP)

A decision problem π is in NP-hard if $\forall \pi' \in NP$, $\pi' \leq_P \pi$.

In other word, π is in NP-hard if π is harder than all problems in NP.

Definition (NP-complete – Hardest Problems in NP)

A decision problem π is in **NP-complete** if

- $\mathbf{0}$ π is in **NP**, and
- **2** π is in NP-hard (i.e., $\forall \pi' \in \text{NP}, \ \pi' \leq_P \pi$).

In other word, π is in NP-complete if π is the hardest problem in NP.

Theorem (Cook–Levin theorem)

(SAT) is in NP-complete.

¹https://en.wikipedia.org/wiki/Cook-Levin_theorem

Theorem (Cook–Levin theorem)

 $\langle SAT \rangle$ is in NP-complete.

We need to show that

- \bullet (SAT) is in NP, and
- \bigcirc (SAT) is in NP-hard.

We already know that $\langle SAT \rangle$ is in NP.

¹https://en.wikipedia.org/wiki/Cook-Levin_theorem

Theorem (Cook–Levin theorem)

⟨SAT⟩ *is in* NP-complete.

We need to show that

- \bigcirc (SAT) is in NP, and
- \bigcirc $\langle SAT \rangle$ is in NP-hard.

We already know that $\langle SAT \rangle$ is in NP.

To show that $\langle SAT \rangle$ is in NP-hard, we need to show that $\forall \pi \in NP$, $\pi \leq_P \langle SAT \rangle$.

¹https://en.wikipedia.org/wiki/Cook-Levin_theorem

Theorem (Cook–Levin theorem)

 $\langle SAT \rangle$ is in NP-complete.

We need to show that

- ⟨SAT⟩ is in NP, and
- \bigcirc (SAT) is in NP-hard.

We already know that $\langle SAT \rangle$ is in NP.

To show that $\langle SAT \rangle$ is in NP-hard, we need to show that $\forall \pi \in NP$, $\pi \leq_P \langle SAT \rangle$.

The core idea is to simulate an NTM M for π using a Boolean formula ϕ such that ϕ is satisfiable if and only if M accepts w. But, we skip the details of the proof. Please refer to the link¹ for the details.

https://en.wikipedia.org/wiki/Cook-Levin_theorem

Other NP-complete Problems

Theorem (Lemma)

A decision problem π is in NP-hard if $\langle SAT \rangle \leq_P \pi$

 $^{^2 \}verb|https://en.wikipedia.org/wiki/List_of_NP-complete_problems|$

Other NP-complete Problems

Theorem (Lemma)

A decision problem π is in NP-hard if $\langle SAT \rangle \leq_P \pi$

This lemma is very useful to show that a decision problem π is in **NP-complete** by showing that 1) π is in **NP** and 2) \langle **SAT** $\rangle \leq_P \pi$.

²https://en.wikipedia.org/wiki/List_of_NP-complete_problems

Other NP-complete Problems

Theorem (Lemma)

A decision problem π is in NP-hard if $\langle SAT \rangle \leq_P \pi$

This lemma is very useful to show that a decision problem π is in **NP-complete** by showing that 1) π is in **NP** and 2) \langle **SAT** $\rangle \leq_P \pi$. We can show that all of the following decision problems are in **NP-complete** by using this lemma:

- $\langle \mathbf{SubsetSum} \rangle$ Given a set of integers S and an integer t, is there a subset $S' \subseteq S$ such that $\sum S' = t$?
- ⟨Clique⟩ Given a graph G and an integer k, is there a clique of size k in G?
- (VertexCover) Given a graph G and an integer k, is there a vertex cover of size k in G?
- ...2

²https://en.wikipedia.org/wiki/List_of_NP-complete_problems

Major Unsolved Problem: P = NP?

"If P = NP, then the world would be a profoundly different place than we usually assume it to be. There would be no special value in creative leaps, no fundamental gap between solving a problem and recognizing the solution once it's found."

— Scott Aaronson, UT Austin

Summary

1. Decision Problems

- 2. **P**
- Time Complexity of TMs

 P Polynomial Time Complexity
- 3. **NP**
 - Time Complexity of NTMs
 - NP Nondeterministic Polynomial Time Complexity
- 4. NP-complete
 - Polynomial Time Reduction (\leq_P)
 - NP-complete Hardest Problems in NP
 - ⟨SAT⟩ The First NP-complete Problem
 - Other NP-complete Problems
- 5. Major Unsolved Problem: P = NP?

Next Lecture

Course Review

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr