

VHDL與循序邏輯電路設計

Outline

- Process結構
- If-Then-Else 敘述
 - 基本語法格式
 - 多重判斷條件
 - 巢狀結構敘述
- 時脈觸發
- Case-When 敘述
- Loop 敘述
 - For-Loop敘述
 - While-Loop敘述
 - Exit When
- Exit 敘述

- 正反器設計
 - RS 正反器
 - JK 正反器
 - T型正反器
 - D型正反器
- Generic 敘述
- 計數器設計
 - 二進位計數器設計(隨堂練習)
 - 二進位上/下數計數器設計(隨堂練習)
 - 除N計數器設計(隨堂練習)
 - BCD計數器設計(隨堂練習)
 - BCD加法器設計(隨堂練習)
 - 移位暫存器設計(隨堂練習)

- 時序邏輯設計的重要介面。
- 可使用一個或多個Process結構。
- · 每個Process結構都是同時動作的。

• 標籤:

- •標籤用來標示電路,通常是使用有意義的文字,例如 counter 10、clock_div...等
- End Process後的標籤可以省略,如果有使用標前,則必須與開頭的標籤一致。
- · 整個電路設計若只有一個Process結構,可不放置標籤。

[標籤:] process(敏感信號列)

宣告變數;

Begin

描述電路功能(時序性描述;)

End process [標籤];

- 敏感信號列(Sensitivity List)
 - 可觸發此Process 動作的信號。
 - 若超過一個敏感信號,信號與信號之間須以逗點分隔。
 - Process 結構類似微處理器裡的中斷(Interrupt),並 非隨時都在工作,而是在任一個敏感信號有所變化時, 才會執行Process。內描述的動作。

```
[標籤:] process(敏感信號列)
宣告變數;

Begin
描述電路功能
(時序性描述;)

End process [標籤];
```


- 變數的宣告
 - 在 Process與Begin之間,用來宣告此Process所使用的 信號及變數。而宣告的格式如下:

```
Variable 變數名稱1, 變數名稱2,...: 資料型態 [:=初值];
:
```

```
[標籤:] process(敏感信號列)
宣告變數;

Begin
描述電路功能
(時序性描述;)

End process [標籤];
```

- 描述電路功能
 - 在 Begin與End之間,為此Process 主要的部分,可利用時序性語法,描述電路的動作,而其動作是按描述的順序。

• 基本語法格式

```
If 判斷條件Then
電路描述 1;
Else
電路描述 2;
End If;
```

·若其中有處理程序為不做人和處理時處理任何,應使用「null」。

```
If 判斷條件Then
電路描述;
Else
null;
End If;
```


• 基本語法

```
Library IEEE;
Use IEEE.std logic 1164.all;
Use IEEE.std logic unsigned.all;
Entity ADDSUB is
    Port(A, B:in std logic vector(7 downto 0);
        Cin, ADDSUB: in std logic;
        Co:out std logic;
        Results: out std logic vector (7 downto 0));
End ADDSUB;
Architecture ARCH of ADDSUB is
Begin
    Process (A, B, Cin, ADDSUB)
        Variable TMP: std logic vector(8 downto 0);
    Begin
         If ADDSUB = '1' Then
             TMP := '0' \& A + B + Cin;
        Else
             TMP := '0' \& A - B - Cin;
        End If;
        Results <= TMP(7 downto 0);</pre>
        Co \leq TMP(8);
     End Process;
End ARCH;
```

• 多重判斷條件

```
If 判斷條件1 Then
電路描述 1;
Elsif 判斷條件2 Then
電路描述 2;
::
Else
電路描述 n;
End If;
```


• 巢狀結構敘述

時脈觸發

- 時鐘脈波(簡稱時脈)
- 正緣觸發與負緣觸發

正緣觸發

```
Clk0:Process (clk)
Begin
If clk'event and clk='l' Then
電路動作描述;
End If;
End Process;
```


負緣觸發

```
Clk0:Process (clk)
Begin
If clk'event and clk='0' Then

電路動作描述;
End If;
End Process;
```


Case-When 敘述

- 屬於循序性敘述
- 常被使用在狀態機

```
Case 控制項目is
When 值1 或信號1 =>
電路描述1;
::
When 值2 或信號2 =>
電路描述2;
::
When others =>
電路描述n;
::
End Case;
```


- 控制迴圈結構,用於描述重複的電路動作,分為:
 - For-Loop
 - While-Loop
 - Loop
- 使用Exit When敘述,或結合If-Then-Else與Exit 跳出迴圈。

• For-Loop 敘述

```
[標籤:] For 控制變數in 範圍 Loop
電路描述 1;
::
End Loop [標籤];
```

- 標籤: 增加電路描述的可讀性,可有可無。
- 控制變數: 不須宣告(ex.i、j、k、cnt···)
- 範圍:重複執行迴圈
 - 數值範圍:例如「0 to 7」
 - 列舉資料型態

• For-Loop 敘述範例

```
Library IEEE;
Use IEEE.std logic 1164.all;
Entity Parity11 is
    Port( Din:in std logic vector(0 to 10);
          ODD:out std logic);
End Parity11;
Architecture ARCH of Parity11 is
Begin
    Process (Din)
    Variable TMP: Boolean;
Begin
    TMP := false;
    For I in 0 to Din'length -1 Loop
        If Din(I) = '1' Then
        TMP := not TMP;
        End If;
    End Loop;
    If TMP Then
        ODD <= '1';
    Else
    ODD <= '0';
    End If;
End Process;
End ARCH;
```

• For-Loop 敘述範例一

```
Library IEEE;
Use IEEE.std logic 1164.all;
Entity Parity11 is
    Port( Din:in std logic vector(0 to 10);
          ODD:out std logic);
End Parity11;
Architecture ARCH of Parity11 is
Begin
    Process (Din)
    Variable TMP: Boolean;
Begin
    TMP := false;
    For I in 0 to Din'length -1 Loop
        If Din(I) = '1' Then
        TMP := not TMP;
        End If;
    End Loop;
    If TMP Then
        ODD <= '1';
    Else
    ODD <= '0';
    End If;
End Process;
End ARCH;
```

• For-Loop 敘述範例二

• While-Loop 敘述

提供先決條件判斷的迴圈敘述,只要判斷條件成立,則執行迴圈內的電路描述,其語法格式如下:

```
[標籤:] While 判斷條件 Loop
電路描述 1;
::
End Loop [標籤];
```

基本上, While-Loop 敘述是用在撰寫測試平台(Test Bench), 產生激勵信號,以進行電路模擬,而不適用於合成電路。

• Exit When 敘述

在 Loop 迴圈裡,可利用Exit When 敘述跳出迴圈,其語法格式如下:

• Exit 敘述

對於無窮盡的 Loop 迴圈,可利用If-Then 敘述與Exit 敘述跳出迴圈,其語法格式如下:

```
Loop
電路描述 1;
::
If 判斷條件Then Exit;
End Loop;
```


- 正反器(Flip-Flop)常被使用在各種循序邏輯的電路設計上,分為以下4種:
 - RS 正反器
 - JK 正反器
 - D 型正反器
 - T 型正反器

· RS正反器與JK正反器(簡單版本)

0

0

0

不允許

J	K	Q	Q
0	0	Q	$\overline{\overline{Q}}$
0	1	0	1
1	0	1	0
1	1	$\overline{\overline{Q}}$	Q

· JK正反器幾乎可以取代RS正反器。

不允許

· RS正反器與JK正反器(加入時脈、預設、清除)

PR	CL	CK	S	R	Q	$\overline{\overline{Q}}$
0	1	-	-	-	1	0
1	0	-	-	-	0	1
1	1	1	0	0	Q	Q
1	1	1	0	1	0	1
1	1	↑	1	0	1	0
1	1	1	1	1	X	X

PR	CL	CK	J	K	Q	$\overline{\overline{Q}}$
0	1	-	-	1	1	0
1	0	-	-	1	0	1
1	1	1	0	0	Q	$\overline{\overline{Q}}$
1	1	1	0	1	0	1
1	1	1	1	0	1	0
1	1	1	1	1	Q	Q

• CK: 時脈(Clock) / PR: 預設(Preset) / CL: 清除(Clear)

• VHDL for RS正反器

End ARCH;

```
Library IEEE;
Use IEEE.std logic 1164.all;
Entity RSFF1 is
    Port( PR, CL, CK, R, S:in std logic;
          Q, Qbar: out std logic);
End RSFF1;
Architecture ARCH of RSFF1 is
Begin
    Process (PR, CL, CK)
    Variable TMP:std logic;
    Begin
        If PR='0' Then TMP := '1';
        Elsif CL='0' Then TMP := '0';
        Elsif Rising edge (CK) Then
            If S='0' and R='1' Then TMP := '0';
            Elsif S='1' and R='0' Then TMP := '1';
            Elsif S='1' and R='1' Then TMP := 'X';
            Else null;
            End If:
        End If;
        O <= TMP;
        Obar <= not TMP;
    End Process;
```

PR	CL	CK	S	R	Q	$\overline{\overline{Q}}$
0	1	-	-	-	1	0
1	0	-	-	-	0	1
1	1	1	0	0	Q	$\overline{\overline{Q}}$
1	1	1	0	1	0	1
1	1	↑	1	0	1	0
1	1	1	1	1	X	X

• VHDL for JK正反器

End ARCH;

```
Library IEEE;
                                               PR
                                                    CL
                                                        CK
Use IEEE.std logic 1164.all;
Entity JKFF1 is
                                                0
    Port( PR, CL, CK, J, K:in std logic;
                                                     0
          Q, Qbar:out std logic);
End JKFF1;
Architecture ARCH of JKFF1 is
Begin
    Process (PR, CL, CK)
    Variable TMP:std logic;
    Begin
        If PR='0' Then TMP := '1';
        Elsif CL='0' Then TMP := '0';
        Elsif Rising edge (CK) Then
             If J='0' and K='1' Then TMP := '0';
             Elsif J='1' and K='0' Then \underline{TMP} := '1';
             Elsif J='1' and K='1' Then TMP := not TMP;
             Else null;
             End If:
        End If;
        O <= TMP;
        Obar <= not TMP;</pre>
    End Process;
```

0

O

0

0

0

• T型正反器

PR	CL	СК	T	Q	$\overline{\overline{Q}}$
0	1	-	-	1	0
1	0	-	-	0	1
1	1	↑	0	Q	$\overline{\overline{Q}}$
1	1	↑	1	Q	Q

• VHDL for T型正反器

```
Library IEEE;
Use IEEE.std logic 1164.all;
Entity TFF1 is
    Port( PR,CL,CK,T:in std logic;
          Q, Qbar: out std logic);
End TFF1;
Architecture ARCH of TFF1 is
Begin
    Process (PR, CL, CK)
        Variable TMP:std logic;
    Begin
        If PR='0' Then TMP := '1';
        Elsif CL='0' Then TMP := '0';
        Elsif Rising edge (CK) Then
             If T='1' Then TMP := not TMP;
            Else null;
            End If;
        End If;
        Q <= TMP;
        Obar <= not TMP;</pre>
    End Process;
End ARCH;
```

PR	CL	СК	T	Q	$\overline{\overline{Q}}$
0	1	-	-	1	0
1	0	-	-	0	1
1	1	↑	0	Q	$\overline{\overline{Q}}$
1	1	↑	1	$\overline{\overline{Q}}$	Q

• D型正反器

PR	CL	CK	D	Q	$\overline{\overline{Q}}$
0	1	•	-	1	0
1	0	-	-	0	1
1	1	↑	0	0	1
1	1	↑	1	1	0

• VHDL for D型正反器

```
Library IEEE;
Use IEEE.std logic 1164.all;
Entity DFF1 is
    Port( PR,CL,CK,D:in std logic;
          Q, Qbar: out std logic);
End DFF1;
Architecture ARCH of DFF1 is
Begin
    Process (PR, CL, CK)
    Variable TMP:std logic;
    Begin
        If PR='0' Then TMP := '1';
        Elsif CL='0' Then TMP := '0';
        Elsif Rising edge (CK) Then
             If D='1' Then TMP := '1';
            Else TMP := '0';
            End If;
        End If:
        Q \ll TMP;
        Qbar <= not TMP;</pre>
    End Process;
End ARCH;
```

PR	CL	СК	D	Q	$\overline{\overline{Q}}$
0	1	-	-	1	0
1	0	-	-	0	1
1	1	↑	0	0	1
1	1	↑	1	1	0

• 各種正反器比較

PR	CL	CK	S	R	Q	\overline{Q}
0	1	-	-	1	1	0
1	0	-	-	1	0	1
1	1	1	0	0	Q	$\overline{\overline{Q}}$
1	1	1	0	1	0	1
1	1	1	1	0	1	0
1	1	1	1	1	X	X

PR	CL	CK	J	K	Q	$\overline{\overline{Q}}$
0	1	-	-	-	1	0
1	0	-	-	-	0	1
1	1	1	0	0	Q	$\overline{\overline{Q}}$
1	1	↑	0	1	0	1
1	1	1	1	0	1	0
1	1	1	1	1	\overline{Q}	Q

PR	CL	CK	T	Q	$\overline{\overline{Q}}$
0	1	-	-	1	0
1	0	-	-	0	1
1	1	↑	0	Q	$\overline{\overline{Q}}$
1	1	↑	1	$\overline{\overline{Q}}$	Q

PR	CL	СК	D	Q	$\overline{\overline{Q}}$
0	1	-	-	1	0
1	0	-	-	0	1
1	1	↑	0	0	1
1	1	↑	1	1	0

• Generic 敘述的功能是將參數傳入設計裡,其格式如下:

• Generic範例:

Q為4bit匯流排,只要修改N,就可以修改匯流排寬度。

· 當作為Component電路時,需在Port Map敘述前使用Generic Map敘述將參數引入Component其格式如下:

Generic Map (參數)

• ex:

欲設定上升時間為1ns、下降時間為1ns,如下:

Generic Map(tRise => 1 ns, tFall => 1 ns)

• Generic 敘述範例

```
DEF1電路
Library IEEE;
Use IEEE.std logic 1164.all;
Entity DFF1 is
    Generic (wid:positive);
    Port( CL, CK:in std logic;
          D:in std logic vector( wid-1 downto 0);
          Q:out std logic vector(wid-1 downto 0));
    End DFF1;
Architecture ARCH of DFF1 is
Begin
    Process (CL, CK)
    Variable TMP : std logic vector( wid-1 downto 0);
    Begin
        If CL='1' Then
            TMP := (others => '0') ;
        Elsif Rising Edge (CK) Then
            For I in TMP'range Loop
                TMP(I) := D(I);
            End Loop;
        End If:
        O <= TMP;
    End Process;
End ARCH:
```

• Generic 敘述範例(續)

```
引用DEF1
零件
```

```
Library IEEE;
Use IEEE.std logic 1164.all;
Entity NewDesign is
    Port( CL, CK:in std logic;
          Din:in std logic vector(7 downto 0);
          Dout: out std logic vector(7 downto 0));
End NewDesign;
Architecture ARCH of NewDesign is
    Component DFF1
        Generic (wid:positive);
        Port( CL, CK:in std logic;
              D:in std logic vector(wid-1 downto 0);
              Q:out std logic vector( wid-1 downto 0) );
        End Component;
    Constant wid8: positive := 8;
Begin
                                              類似Class
   DFF8: DFF1 Generic Map(wid8)
                                              與Object
    Port Map (CL, CK, Din, Dout);
End ARCH;
```

計數器設計

• 二進位上數計數器設計(隨堂練習)

PR	CL	СК	T	Q	$\overline{\overline{Q}}$
0	1	-	-	1	0
1	0	-	-	0	1
1	1	↑	0	Q	$\overline{\overline{Q}}$
1	1	↑	1	$\overline{\overline{Q}}$	Q

CK	Q0	Q0'	Q1	Q1'	Q2	Q2'	Q3	Q3'
0	0	1	0	1	0	1	0	1
1	1	0	0	1	0	1	0	1
0	1	0	0	1	0	1	0	1
1	0	1	1	0	0	1	0	1
0	0	1	1	0	0	1	0	1
0	1	0	1	0	0	1	0	1
0	1	0	1	0	0	1	0	1
0	0	1	0	1	1	0	0	1
0	0	1	0	1	1	0	0	1
1	1	0	0	1	1	0	0	1
0	1	0	0	1	1	0	0	1
0	0	1	1	0	1	0	0	1
0	0	1	1	0	1	0	0	1
0	1	0	1	0	1	0	0	1
0	1	0	1	0	1	0	0	1
1	0	1	0	1	0	1	1	0
0	0	1	0	1	0	1	1	0
1	1	0	0	1	0	1	1	0
0	1	0	0	1	0	1	1	0
0	0	1	1	0	0	1	1	0
0	0	1	1	0	0	1	1	0
1	1	0	1	0	0	1	1	0
0	1	0	1	0	0	0	1	0
1	0	1	0	1	1	0	0	1

• 二進位下數計數器設計

PR	CL	СК	T	Q	$\overline{\overline{Q}}$
0	1	-	-	1	0
1	0	-	-	0	1
1	1	↑	0	Q	$\overline{\overline{Q}}$
1	1	↑	1	Q	Q

CK	Q0	Q0"	01	Q1"	O 2	Q2"	Q3	Q3'	1
0	0	0	Q1 0	0	Q2 0	0	0	1	\cdot
1	1	1	1	1	1	1	1	0	┨
0	1	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	0	1
0	0	0	1	1	1	1	1	0	1
1	1	1	0	0	1	1	1	0	1
0	1	1	0	0	1	1	1	0	1
1	0	0	0	0	1	1	1	0	1
0	0	0	0	0	1	1	1	0	1
1	1	1	1	1	0	0	1	0	1
0	1	1	1	1	0	0	1	0	1
1	0	0	1	1	0	0	1	0	1
0	0	0	1	1	0	0	1	0	1
1	1	1	0	0	0	0	1	0	1
0	1	1	0	0	0	0	1	0	1
1	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	1	0	1
1	1	1	1	1	1	1	0	1	1
0	1	1	1	1	1	1	0	1	1
1	0	0	1	1	1	1	0	1	
0	0	0	1	1	1	1	0	1	
1	1	1	0	0	1	1	0	1	
0	1	1	0	0	1	1	0	1	
1	0	0	0	0	1	1	0	1	
0	0	0	0	0	1	1	0	1	
1	1	1	1	1	0	0	0	1	
0	1	1	1	1	0	0	0	1	-
1	0	0	1	1	0	0	0	1	
0	0	0	1	1	0	0	0	1	1
1	1	1	0	0	0	0	0	1	
0	1	1	0	0	0	0	0	1	J. Sicar
1	0	0	0	0	0	0	0	1	2

• 二進位上/下數計數器設計(隨堂練習)

PR	CL	CK	T	Q	\overline{Q}
0	1	-	-	1	0
1	0	-	-	0	1
1	1	↑	0	Q	\overline{Q}
1	1	↑	1	\overline{Q}	Q

輸	入	輸出
A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

互斥或閘之真值表

•除N計數器設計(隨堂練習)

• Q=N的值接至Clear清除目前輸出值重新計算。

PR	CL	CK	T	Q	$\overline{\overline{Q}}$
0	1	-	-	1	0
1	0	-	-	0	1
1	1	↑	0	Q	$\overline{\overline{Q}}$
1	1	↑	1	$\overline{\overline{Q}}$	Q

- BCD計數器設計(隨堂練習)
 - 十進位數字轉BCD碼

- BCD計數
 - · 各位數逢B1001進位
 - 逢168清除

- BCD加法器設計(隨堂練習)
 - 整數加法
 - 十進位數字轉BCD碼

- 移位暫存器設計(隨堂練習)
 - 串列/並列轉換電路

PR	CL	СК	D	Q	$\overline{\overline{Q}}$
0	1	-	-	1	0
1	0	-	-	0	1
1	1	↑	0	0	1
1	1	↑	1	1	0

*每次CK上緣觸發都會把輸入D的狀態更新到輸出Q

隨堂練習

- ·請使用VHDL完成下列電路,並完成紀錄,包括 VHDL Source Code、模擬波形圖。
 - a) 二進位計數器設計
 - b) 二進位上/下數計數器設計
 - c) 除N計數器設計
 - d) BCD計數器設計
 - e) BCD加法器設計
 - f) 8-bit移位暫存器設計
- ·本次實驗完成後需助教確認正確,全部完成後, 將專案與報告壓縮上傳EE-Class。
- Lecture8_組別XX. ZIP

隨堂練習(一)

• 二進位計數器設計(1/2)


```
Library IEEE;
 Use IEEE.std_logic_1164.all;
□Entity Counter4B is
    Port( CL, PulseIn:in std_logic;
          Q:out std_logic_vector(3 downto 0));
 End Counter4B;
□Architecture ARCH of Counter4B is
Component DFF1
Port( CL,CK,T:in std_logic;
             Q.Obar:out std_logic);
    End Component;
    Signal TMP: std_logic_vector(4 downto 0);
    Begin
       TMP(0) \le PulseIn;
       LP1: For I in 0 to 3 Generate
          U : DFF1 Port Map (CL, TMP(I), '1', Q(I), TMP(I+1));
       End Generate:
 End ARCH;
```

```
Library IEEE;
 Use IEEE.std_logic_1164.all:
□Entity DFF1 is
    Port( CL,CK,T:in std_logic;
          Q,Qbar:out std_logic );
 End DFF1:
□Architecture ARCH of DFF1 is
⊟Begin
    Process(CL,CK)
       Variable TMP:std_logic;
       Beain
          If CL='1' Then TMP := '0';
          Elsif Rising_Edge(CK) Then
If T='1' Then TMP := not TMP:
             Else null;
              End If;
          End If:
          Q \le TMP;
          Qbar <= not TMP;
    End Process:
 End ARCH;
```


隨堂練習(一)

• 二進位計數器設計(2/2)

隨堂練習(二)

• 二進位上/下數計數器設計(1/2)


```
Library IEEE;
 Use IEEE.std_logic_1164.all;
□Entity UDC_4B is
    Port( CL, UD, PulseIn: in std_logic;
          Q:out std_logic_vector(3 downto 0));
 End UDC_4B;
□ Architecture ARCH of UDC_4B is
    Component DFF1
       Port( CL,CK,T:in std_logic;
             Q.Obar:out std_logic);
     End Component :
    Signal TMP: std_logic_vector(4 downto 0);
 Begin
    TMP(0) \le PulseIn;
    LP1:For I in 0 to 3 Generate
       U: DFF1 Port Map (CL, TMP(I) xor UD, '1', Q(I), TMP(I+1));
    End Generate:
 End ARCH;
```

```
Library IEEE;
 Use IEEE.std_logic_1164.all;
□Entity DFF1 is
    Port( CL,CK,T:in std_logic;
          0.Obar:out std_logic );
 End DFF1:
□Architecture ARCH of DFF1 is
⊟Begin
    Process(CL,CK)
       Variable TMP:std_logic;
        Begin
           If CL='1' Then TMP := '0';
           Elsif Rising_Edge(CK) Then
              If T='1' Then TMP := not TMP;
              Else null;
              End If:
           End If:
           Q \leq TMP;
           Obar <= not TMP:
    End Process;
 End ARCH:
```


隨堂練習(二)

• 二進位上/下數計數器設計(1/2)

隨堂練習(三)

• 除N計數器設計, N=12(1/2)


```
Library IEEE;
 Use IEEE.std_logic_1164.all;
□Entity MOD12 is
    Port( PulseIn:in std_logic;
           Q:out std_logic_vector(3 downto 0));
 End MOD12;
FIArchitecture ARCH of MOD12 is
    Component DFF1
        Port( CL,CK,T:in std_logic;
              Q,Qbar:out std_logic);
       End Component;
       Signal CL: std_logic;
       Signal TMP1: std_Togic_vector(4 downto 0);
       Signal TMP2: std_logic_vector(3 downto 0);
 Begin
    TMP1(0) <= PulseIn;
    LP1:For I in 0 to 3 Generate
       U: DFF1 Port Map (CL, TMP1(I), '1', TMP2(I), TMP1(I+1));
    End Generate;
    CL \leftarrow TMP2(3) and TMP2(2);
    Q <= TMP2;
 End ARCH;
```

```
Library IEEE;
 Use IEEE.std_logic_1164.all;
□Entity DFF1 is
    Port( CL,CK,T:in std_logic;
           Q.Obar:out std_logic );
 End DFF1:
□Architecture ARCH of DFF1 is
⊟Begin
    Process(CL,CK)
        Variable TMP:std_logic;
        Begin
           If CL='1' Then TMP := '0';
⊟
           Elsif Rising_Edge(CK) Then
              If T='1' Then TMP := not TMP;
              Else null:
              End If:
           End If;
           Q \leq TMP;
           Obar <= not TMP:
    End Process;
 End ARCH;
```


隨堂練習(三)

• 除N計數器設計, N=12(2/2)

隨堂練習(四)

• BCD計數器設計(1/2)

```
Library IEEE;
                                                                A:=Tmp2;
 Use IEEE.std_logic_1164.all;
                                                                Dig2: For I in 0 to 3 Loop
 Use IEEE.std_logic_unsigned.all;
                                                                   If ((A mod 2)=1) Then Output(I):= '1';
                                                                   Else Output(I):= '0':

⊟Entity BCDcounter is
                                                                   End If;
    Generic(n:integer range 0 to 999:=168);
                                                                   A := A/2;
    Port( CK:in std_logic;
                                                                End Loop;
    Y2,Y1,Y0:out std_logic_vector(3 downto 0));
                                                                n2 <= Output;
 End BCDcounter;
                                                             End Process:
□Architecture ARCH of BCDcounter is
                                                             BCDcount:Process(CK)
     Signal Tmp2, Tmp1, Tmp0: integer range 0 to 9;
                                                                Variable Digit2:std_logic_vector(3 downto 0) := "0000";
    Signal n2,n1,n0: std_logic_vector(3 downto 0);
                                                                Variable Digit1:std_logic_vector(3 downto 0) := "0000";
⊟Begin
                                                                Variable Digit0:std_logic_vector(3 downto 0) := "0000";
    Process(Tmp2,Tmp1,Tmp0)
                                                                Begin
    Variable Output:std_logic_vector(3 downto 0);
                                                                If Rising_Edge(CK) Then
    Variable A:integer range 0 to 9;
                                                                   DigitO := DigitO + '1';
     Begin
                                                                   If (Digit0=n0) and (Digit1=n1) and (Digit2=n2) Then
       A:=Tmp0;
                                                                      Digit0 := "0000";
       DigO: For I in 0 to 3 Loop
                                                                      Digit1 := "0000";
Digit2 := "0000";
          If ((A mod 2)=1) Then Output(I):= '1';
           Else Output(I):= '0';
                                                                   Elsif DigitO="1010" Then
           End If:
                                                                      DigitO := "0000";
          A := A/2;
                                                                      Digit1 := Digit1 + '1';
       End Loop;
                                                                      If Digit1="1010" Then
       n0 <= Output;
                                                                         Digit1 := "0000";
                                                                         Digit2 := Digit2 + '1';
       A:=Tmp1;
                                                                      End If:
       Dig1: For I in 0 to 3 Loop
                                                                   End If:
           If ((A mod 2)=1) Then Output(I):= '1';
                                                                End If:
           Else Output(I):= '0';
                                                                Y0 <= Digit0;
           End If:
                                                                Y1 <= Digit1;
           A := A/2;
                                                                Y2 <= Digit2;
        End Loop:
                                                             End Process BCDcount:
        n1 <= Output;
                                                          End ARCH:
```

隨堂練習(四)

• BCD計數器設計(2/2)

	Nam	ne	Value at 0 ps	100 _. 0 ns	110 _. 0 ns	120.0 ns	130.0 ns	140.0 ns	150,0 ns	160 _. 0 ns	170.0 ns	180,0 ns	190 <u>.</u> 0 ns	201 ^
			o ps											
<u></u>	CK	В	0	חחחחחחחחח	חחחחחחחחחחחח	חחחחחחחחחחחחח	חחחחחחחחחח	חחחחחחחחחחחחח	וחחחחחחחחחחחח	חחחחחחחחחחחחח	וחחחחחחחחחחח	וחחחחלחחחחח	וחחחחחחחחחחחח	טטטטע
*	> Y0	U	0	890123450	3789012345	6789012345	6789012345	X6\7\8\9\@\1\2\3\4\5\	6789012345	X6\7\8\9\0\1\2\3\4\5	6\78\9\0\12\3\4\5	X6\7\8\9\0\1\2\3\4\5	6789012345	X6\7\8\9
*	> Y1	U	0	Χ ο	X 1	2	Х 3	X 4	X 5	X 6	X 7	X 8	X 9	
*	> Y2	U	0						1					
<			>	<										> ∨
													0%	00:00:00

	Nam	ne	Value at 0 ps	00.0 ns	210.0 ns	220 _. 0 ns	230 <u>.</u> 0 ns	240 <u>.</u> 0 ns	250,0 ns	260,0 ns	270 _. 0 ns	280,0 ns	290 _. 0 ns	300,0 ^
in_	СК		во	mmm	mmimm	mmimm	m	nnninnn	mmmmm.	mmimm	mmimm	nnninnnn	nnnýnnn	mmi
*	> Y0	-	υo	00123456	X7890X1234X	5678901234	X6\7\8\9\ 0 \1\2\3\4\5	X6\7\8\9\@\1\2\3\4\5	X6X78X9X0X12X3X4	5/6/7/8/9/0/1/2/3/4/	5678901234	X67890XX23X45	6789012345	X67890X
*	> Y1	ı	U O	χ ο	X 1	2	3	X 4	X	5 X 6	X 7	8	9	X
*	> Y2	1	υo	X					2					
<			>	<	:			:	:	:	:	:	:	> ∨
													09	6 00:00:00

隨堂練習(五)

• BCD加法器設計(1/2)

```
Library IEEE;
 Use IEEE.std_logic_1164.all;
 Use IEEE.std_logic_unsigned.all;
□Entity BCDadder is
    Port( A,B:in integer range 0 to 99;
           Y2,Y1,Y0:out std_logic_vector(3 downto 0));
 End BCDadder;
□Architecture ARCH of BCDadder is
⊟Begin
    Process(A,B)
        Variable Sum:integer range 0 to 200;
        Variable Output:std_logic_vector(3 downto 0);
        Variable TMP:integer range 0 to 9;
     Begin
        Sum := A+B;
        TMP := Sum rem 10;
        Dig0: For I in 0 to 3 Loop
           If ((TMP mod 2)=1) Then Output(I):= '1';
Else Output(I):= '0';
           End If;
           TMP := TMP/2;
        End Loop:
        YO <= Output;
```

```
TMP := (Sum/10) rem 10;
      Dig1: For I in 0 to 3 Loop
         If ((TMP mod 2)=1) Then Output(I):= '1';
         Else Output(I):= '0';
         End If;
         TMP := TMP/2;
      End Loop;
      Y1 <= Output;
      TMP := Sum/100;
      Dig2: For I in 0 to 3 Loop
         If ((TMP mod 2)=1) Then Output(I):= '1';
         Else Output(I):= '0';
         End If:
         TMP := TMP/2;
      End Loop;
      Y2 <= Output;
   End Process:
End ARCH;
```


隨堂練習(五)

• BCD加法器設計(2/2)

	Name	Value 0 ps	e at) ns	520	0 ns	54	0.0 ns	56	60 _, 0 ns	s 5	1 0 _, 08	ns	600	0 ns	62).0 ns	5 6	540 _, 0	ns	660	0 ns	68	0 <mark>.</mark> 0 ns	5 7	00,0 n	is 7	720 _. 0 i	ns 7	40,0	ns	760 _; 0	ns	780,0	ns	800,0	ns	820,0	ns	840	0 ns	860.0) ns	880,0) ns	900,0	0 ns	920	0 ns	940	0 ns	960.0	ns	980,0	ns 1.0	u ^
	> A	u o		50	51	52	53	X 54	X 55	56	5 \ 5	7 X 5	58 X	59	60	61	62) <u>6</u>	з Х	54 X	65	66	67	68	6	9 X 7	0 \ 7	1 X 7	² × 7	3 X	74 X	75 🗶	76 X	77 X	78	79 🛚 8	80	81 X	82 X	83 X	84	85 X	86	87	88 X	89	90	91	92	93	94	95	96	97 (98 🛚 9	9
-	> B	UO		50 X	51	52	53	54	55	X 56	5 (5	7 X 5	58 X	59 X	60	61	62) (6	з 🛴	54 X	65	66	67	68	6	9 🗸 7	0 \ 7	1 🛚 🗸 7	72 🛚 7	3 X :	74 X	75 X	76 🗶	77 X	78	79 X 8	BO X	81 X	82 X	83 X	84	85 X	86	87	88	89	90	91	92	93	94	95	96	97 X !	98 🖁 9	9
*	> Y0	UO		o X	2	4	6	8 🗴	χo	X 2	X 4		6 X	8	0	2	X <u>4</u>	X	6 X	8 X	0	2	4	X 6	X 8	X		2 X	4 X 6	X	8 X	οX	2 X	4 X	6 X	8	οX	2 X	4 X	6 X	8	o X	2	4 X	6 X	8	0	2	4	6	8		2	4 X	6 X 8	3
*	> Y1	UO				0			$X \subseteq$		1			\equiv X	\equiv		2			\equiv X			3			X			4		=X			5		=X $=$			6		=			7		=X			8					9		_
*	> Y2	UO																													1																									-
<			>	<																																																				V .

隨堂練習(六)

• 移位暫存器設計(1/2)


```
Library IEEE;
 Use IEEE.std_logic_1164.all;
□Entity SRegister is
     Port( Si,CK,CL:in std_logic;
           Q:out std_logic_vector(7 downto 0));
 End SRegister;
□Architecture ARCH of SRegister is
⊟Begin
    Process(Si,CK,CL)
        Variable RegT: std_logic_vector(7 downto 0);
     Begin
        if Rising_Edge(CK) Then
If CL='1' Then
              RegT := "00000000";
              RegT := RegT(6 downto 0) & Si;
           End If:
           Q <= RegT;
        end if:
     End Process;
  End ARCH;
```


隨堂練習(六)

• 移位暫存器設計(2/2)

