Alignment of whole genomes using MUMmer Presentation in Algorithms in Bioinformatics (TÖ111F)

Hannes Pétur Eggertsson

November 18, 2014

Meanwhile in bioinformatics...

- The number of completely sequenced genomes were low but increasing very fast.
- Whenever a new genome is sequenced, one could ask himself:
 - How does this genome align to the other genomes we have sequenced?

Meanwhile in bioinformatics...

- The number of completely sequenced genomes were low but increasing very fast.
- Whenever a new genome is sequenced, one could ask himself:
 - How does this genome align to the other genomes we have sequenced?

Problem:

- We had algorithms that were made for single gene sequences.
- They didn't work well with whole genomes.
- It's simple: Size matters.
 - Require way too much memory or
 - take extremely long time to compute.

Problem description

In Two genomes, A and B. Both could be very large (millions of nucleotides)

Out Align the two genomes to maximize the number of matches using insertions and deletions.

Introduction to MUMmer

MUMmer:

- Was published in 1999.
- Is a system used to align whole genome sequences.
- Idea: Find large chunks of exact matches on both genomes in linear time and assume they're part of the global alignment.
- Doesn't guarantee the optimal solution, just a good one.

Step 1: Creating a suffix tree

A suffix tree stores all possible suffixes in a tree.

- Square nodes are leaves.
 - Store information about the starting position of the suffix.
- Circular nodes are internal nodes.
 - Store information about the length of the shared prefix.

Creating a suffix tree takes O(n) time and space.

Step 2: MUM decomposition

MUM is a abbreviation for Maximal Unique Matches.

Definition

A sequence is a MUM if and only if:

- The sequence has an exact match on both genomes
- and it is not a subsequence of another matched sequence
- and it is unique

Example

 $\verb|tcgatcGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAcgactta| \\ \verb|gcattaGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAtccagag| \\$

Step 3: Sorting the matches found in the MUM alignment

We enumerate the found MUMs like this:

Problem: We cannot align all MUMs because they aren't in the same order in both genomes.

Solution: Align as many MUMs as we can:

Step 4: Closing the gaps

Everything in between the MUMs is called **gaps**.

Genome A: $\frac{1}{1}$ $\frac{2}{2}$ $\frac{4}{4}$ $\frac{6}{6}$ $\frac{7}{7}$

- To find alignment for the gaps we can use any alignment algorithm.
- MUMmer uses the Smith-Waterman algorithm.

Diving deeper

How do we go from suffix trees to finding MUMs?

Example

In Two genomes

Genome A: ABBA
Genome B: ABABB

Out List of all MUMs.

Combined string: ABBA\$ABABB

Finding MUMs from suffix tree

Let's recall which conditions MUMs must satisfy:

- Exact matches on both genomes.
- Surrounded by mismatches.
- Unique.

We satisfy conditions 1 and 3 by finding a internal node with:

- Exactly two leafs.
- Both leaves' starting positions are on each side of the dollar sign.

We'll need to check for condition 2 afterwards.

Finding potential MUMs

Finding potential MUMs

Potential MUMs to MUMs

We have the following potential MUMs:

- ABB.
- BA.
- BB.

Potential MUMs to MUMs

We have the following potential MUMs:

- ABB.
- BA.
- BB.

Our string: ABBA\$ABABB. Let's check if condition 2 is satisfied

- ABB satisfies condition 2.
- BA satisfies condition 2.
- BB does NOT satisfy condition 2.

Resulting MUMs: ABB and BA.

- Two strains of tuberculosis that are >99% identical
 - 5 seconds to create the suffix tree.
 - 45 seconds to sort the MUMs.
 - 5 seconds to generate alignments of the gaps.

- Two strains of tuberculosis that are >99% identical
 - 5 seconds to create the suffix tree.
 - 45 seconds to sort the MUMs.
 - 5 seconds to generate alignments of the gaps.
- Two 'cousin' genomes. Genome of M.genitalium (580,074 nucleotides) and M.pneumoniae (816,394 nucleotides)
 - 6.5 seconds to create the suffix tree.
 - 0.02 seconds to sort the MUMs.
 - ▶ 116 seconds to generate alignments of the gaps.

- Two strains of tuberculosis that are >99% identical
 - 5 seconds to create the suffix tree.
 - 45 seconds to sort the MUMs.
 - 5 seconds to generate alignments of the gaps.
- Two 'cousin' genomes. Genome of M.genitalium (580,074 nucleotides) and M.pneumoniae (816,394 nucleotides)
 - 6.5 seconds to create the suffix tree.
 - 0.02 seconds to sort the MUMs.
 - 116 seconds to generate alignments of the gaps.

So in conclusion:

- If the two genomes are very similar, MUM sequences will...
 - ...be long and cover most of the genome.
 - ...rarely be a random match.
 - ...make the algorithm run fast.

- Two strains of tuberculosis that are >99% identical
 - 5 seconds to create the suffix tree.
 - 45 seconds to sort the MUMs.
 - 5 seconds to generate alignments of the gaps.
- Two 'cousin' genomes. Genome of M.genitalium (580,074 nucleotides) and M.pneumoniae (816,394 nucleotides)
 - 6.5 seconds to create the suffix tree.
 - 0.02 seconds to sort the MUMs.
 - 116 seconds to generate alignments of the gaps.

So in conclusion:

- If the two genomes are very similar, MUM sequences will...
 - ...be long and cover most of the genome.
 - ...rarely be a random match.
 - ...make the algorithm run fast.
- If the genomes are very different, MUM sequences will...
 - ...be short and cover a small part of the genome.
 - ...often be a random match.
 - ...make the algorithm run slow.

MUMmer 3

- MUMmer 3 is the latest version of MUMmer
- It was released in 2004 and is open-source.
- Requires less memory and is a lot faster than the initial MUMmer.
- Most notable features added since the initial MUMmer:
 - You can allow tolarence for mismatches when finding MUMs.
 - Can handle non-unique MUMs.
 - All sorts of visualization tools.

Thank you!

Feel free to ask any questions.

Original papers:

http://mummer.sourceforge.net/MUMmer.pdf by Arthur L. Delcher, Simon Kasif, Robert D. Fleischmann, Jeremy Peterson, Owen White and Steven L. Salzberg.

and

http://mummer.sourceforge.net/MUMmer3.pdf by Stefan Kurtz, Adam Phillippy, Arthur L. Delcher, Michael Smoot, Martin Shumway, Corina Antonescu and Steven L. Salzberg.