Techniki Optymalizacji: Metody regresji

Wojciech Kotłowski

Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl

pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek 15:00-16:30 Slajdy dostępne pod adresem: http://www.cs.put.poznan.pl/wkotlowski/

18.11.2013

Spis treści

- 1 Problem regresji
- 2 Metody regresji liniowej
- 3 Minimalizacja kwadratów błędów
- 4 Minimalizacja sumy wartości bezwzględnych błędów
- 5 Przykład: wycena domów

Spis treści

- 1 Problem regresji
- 2 Metody regresji liniowej
- 3 Minimalizacja kwadratów błędów
- 4 Minimalizacja sumy wartości bezwzględnych błędów
- 5 Przykład: wycena domów

Problem regresji

- Przewidywania/wyjaśnienie zmian jednej zmiennej (Y) pod wpływem zmian innych zmiennych (X).
- lacktriangle Powód: zmienne $oldsymbol{X}$ zwykle łatwe do pozyskania, Y trudne lub niemożliwe do pozyskania

Problem regresji

- Przewidywania/wyjaśnienie zmian jednej zmiennej (Y) pod wpływem zmian innych zmiennych (X).
- Powód: zmienne \boldsymbol{X} zwykle łatwe do pozyskania, Y trudne lub niemożliwe do pozyskania

Przykłady

- lacksquare X ceny akcji w ostatnim tygodniu, Y cena akcji jutro.
- X wyniki testów medycznych, Y poziom zaawansowania choroby.
- X wielkość programu, Y czas pisania programu.
- X warunki na drodze, czas, lokalizacja, Y średnia prędkość samochodów.
- lacksquare X cechy domu Y cena domu.

Regresja liniowa

- lacksquare Modelujemy zmienną Y jako funkcję liniową $oldsymbol{X}$.
 - dla jednej zmiennej:

$$\hat{Y} = a_1 X + a_0$$

dla wielu zmiennych:

$$\hat{Y} = a_1 X_1 + \ldots + a_m X_m + a_0 = \boldsymbol{a}^\top \boldsymbol{X} + a_0$$

Regresja liniowa

- lacksquare Modelujemy zmienną Y jako funkcję liniową $oldsymbol{X}$.
 - dla jednej zmiennej:

$$\hat{Y} = a_1 X + a_0$$

dla wielu zmiennych:

$$\hat{Y} = a_1 X_1 + \ldots + a_m X_m + a_0 = \boldsymbol{a}^\top \boldsymbol{X} + a_0$$

- Model liniowy jest ogólniejszy niż myślicie!
 - Przykład: regresja wielomianowa to regresja liniowa!
 - Mając *X*, wprowadzamy zmienne:

$$X_1 = X, X_2 = X^2, X_3 = X^3, \dots$$

$$\hat{Y} = a_1 X + a_2 X^2 + \dots + a_0 \implies \hat{Y} = a_1 X_1 + a_2 X_2 + \dots + a_0$$

Otrzymujemy zbiór danych historycznych, na którym znane są wartości Y:

$$(x_{11}, x_{12}, \dots, x_{1m}, y_1)$$
 (x_1, y_1) $(x_{21}, x_{22}, \dots, x_{2m}, y_2)$ (x_2, y_2) \dots lub w skrócie \dots $(x_{n1}, x_{n2}, \dots, x_{nm}, y_n)$ (x_n, y_n)

Otrzymujemy zbiór danych historycznych, na którym znane są wartości Y:

$$(x_{11}, x_{12}, \dots, x_{1m}, y_1)$$
 (x_1, y_1) (x_2, y_2) (x_2, y_2) \dots lub w skrócie $(x_{n1}, x_{n2}, \dots, x_{nm}, y_n)$ (x_n, y_n)

• Wyznaczamy współczynniki a_0, a_1, \ldots, a_m na danych.

Otrzymujemy zbiór danych historycznych, na którym znane są wartości Y:

$$(x_{11}, x_{12}, \dots, x_{1m}, y_1)$$
 (x_1, y_1) $(x_{21}, x_{22}, \dots, x_{2m}, y_2)$ (x_2, y_2) \dots lub w skrócie \dots $(x_{n1}, x_{n2}, \dots, x_{nm}, y_n)$ (x_n, y_n)

- Wyznaczamy współczynniki a_0, a_1, \ldots, a_m na danych.
- lacktriangle Testujemy nasz model na osobnym zbiorze testowym (również ze znanymi wartościami Y)

Otrzymujemy zbiór danych historycznych, na którym znane są wartości Y:

```
(x_{11}, x_{12}, \dots, x_{1m}, y_1) (x_1, y_1) (x_2, y_2) (x_2, y_2) \dots lub w skrócie (x_{n1}, x_{n2}, \dots, x_{nm}, y_n) (x_n, y_n)
```

- Wyznaczamy współczynniki a_0, a_1, \ldots, a_m na danych.
- lacktriangle Testujemy nasz model na osobnym zbiorze testowym (również ze znanymi wartościami Y)

X	Y	
Rozmiar programu	Oszacowany czas	
186	130	
699	650	
132	99	
272	150	
291	128	
331	302	
199	95	
1890	945	
788	368	
1601	961	
-		

X	Y		
Rozmiar programu	Oszacowany czas		
$x_1 = 186$	$y_1 = 130$		
$x_2 = 699$	$y_2 = 650$		
$x_3 = 132$	$y_3 = 99$		
$x_4 = 272$	$y_4 = 150$		
$x_5 = 291$	$y_5 = 128$		
$x_6 = 331$	$y_6 = 302$		
$x_7 = 199$	$y_7 = 95$		
$x_8 = 1890$	$y_8 = 945$		
$x_9 = 788$	$y_9 = 368$		
$x_{10} = 1601$	$y_{10} = 961$		

X	Y		
Rozmiar programu	Oszacowany czas		
$x_1 = 186$	$y_1 = 130$		
$x_2 = 699$	$y_2 = 650$		
$x_3 = 132$	$y_3 = 99$		
$x_4 = 272$	$y_4 = 150$		
$x_5 = 291$	$y_5 = 128$		
$x_6 = 331$	$y_6 = 302$		
$x_7 = 199$	$y_7 = 95$		
$x_8 = 1890$	$y_8 = 945$		
$x_9 = 788$	$y_9 = 368$		
$x_{10} = 1601$	$y_{10} = 961$		

Λ	Y		
Rozmiar programu	Oszacowany czas		
$x_1 = 186$	$y_1 = 130$		
$x_2 = 699$	$y_2 = 650$		
$x_3 = 132$	$y_3 = 99$		
$x_4 = 272$	$y_4 = 150$		
$x_5 = 291$	$y_5 = 128$		
$x_6 = 331$	$y_6 = 302$		
$x_7 = 199$	$y_7 = 95$		
$x_8 = 1890$	$y_8 = 945$		
$x_9 = 788$	$y_9 = 368$		
$x_{10} = 1601$	$y_{10} = 961$		

 \mathbf{V}

Spis treści

- 1 Problem regresji
- 2 Metody regresji liniowej
- 3 Minimalizacja kwadratów błędów
- 4 Minimalizacja sumy wartości bezwzględnych błędów
- 5 Przykład: wycena domów

Jak wyznaczyć współczynniki?

Problem optymalizacji

Mając zbiór danych $(x_1, y_1), \ldots, (x_n, y_n)$, wyznacz współczynniki a_0, a_1, \ldots, a_n tak, aby wartości przewidywane przez model:

$$\hat{y}_i = a_1 x_{i1} + \ldots + a_n x_{in} + a_0 = \boldsymbol{a}^\top \boldsymbol{x}_i + a_0$$

na wszystkich danych ($i=1,\ldots,n$) były jak najbliżej prawdziwych wartości y_i .

Jak wyznaczyć współczynniki?

Problem optymalizacji

Mając zbiór danych $(x_1, y_1), \ldots, (x_n, y_n)$, wyznacz współczynniki a_0, a_1, \ldots, a_n tak, aby wartości przewidywane przez model:

$$\hat{y}_i = a_1 x_{i1} + \ldots + a_n x_{in} + a_0 = \boldsymbol{a}^\top \boldsymbol{x}_i + a_0$$

na wszystkich danych $(i=1,\ldots,n)$ były jak najbliżej prawdziwych wartości y_i .

■ Uwaga: zwykle dodajemy jeszcze jedną zmienną wejściową X_0 stale równą 1 i chowamy współczynnik a_0 do wektora a, otrzymując:

$$\hat{y}_i = a_0 x_{i0} + a_1 x_{i1} + \ldots + a_n x_{in} = \boldsymbol{a}^\top \boldsymbol{x}_i$$

Odchylenia (błędy) na danych

Źródło: Hastie, Tibshirani, Friedman, *Elements of statistical learning*.

Odchylenia (błędy) na danych

Źródło: Hastie, Tibshirani, Friedman, Elements of statistical learning.

■ Odchylenie (błąd) na danym x_i to różnica między prawdziwą wartością y_i , a wartością przewidywaną przez model \hat{y}_i (punkt na prostej):

$$\delta_i = y_i - \hat{y}_i = y_i - \boldsymbol{a}^\top \boldsymbol{x}_i$$

Odchylenia (błędy) na danych

Źródło: Hastie, Tibshirani, Friedman, Elements of statistical learning.

■ Odchylenie (błąd) na danym x_i to różnica między prawdziwą wartością y_i , a wartością przewidywaną przez model \hat{y}_i (punkt na prostej):

$$\delta_i = y_i - \hat{y}_i = y_i - \boldsymbol{a}^\top \boldsymbol{x}_i$$

Jak zmierzyć sumaryczny błąd?

 Minimalizacja sumy kwadratów błędów/odchyleń (least squares – LS)

min:
$$z = \sum_{i=1}^{n} \delta_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

 Minimalizacja sumy kwadratów błędów/odchyleń (least squares – LS)

min:
$$z = \sum_{i=1}^{n} \delta_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

 Minimalizacja sumy wartości bezwzględnych błędów/odchyleń (least absolute deviations – LAD)

min:
$$z = \sum_{i=1}^{n} |\delta_i| = \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

 Minimalizacja sumy kwadratów błędów/odchyleń (least squares – LS)

min:
$$z = \sum_{i=1}^{n} \delta_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

 Minimalizacja sumy wartości bezwzględnych błędów/odchyleń (least absolute deviations – LAD)

min:
$$z = \sum_{i=1}^{n} |\delta_i| = \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

 Minimalizacja największego z błędów (minimax – MM)

min:
$$z = \max_{i=1,...,n} |\delta_i| = \max_{i=1,...,n} |y_i - \hat{y}_i|$$

Zalety i wady

	LS	LAD	MM
optymalizacja	analityczny wzór	progr. liniowe	progr. liniowe
stabilność rozwiązania	stabilne	niestabilne	niestabilne
wartości odstające	nieodporna	odporna	bardzo nieodporna

- Zwykle wybór między LS a LAD.
- MM nie nadaje się do stosowania w regresji! (poza wyjatkowymi przypadkami).

Najprostszy przypadek: Brak \boldsymbol{X} , tylko Y. Model zawiera tylko stałą:

$$\hat{y}=a_0.$$

Najprostszy przypadek: Brak X, tylko Y. Model zawiera tylko stałą:

$$\hat{y} = a_0.$$

Dane: 100 punktów, $y_1=y_2=\ldots=y_{99}=1$ oraz jedna przypadkowo źle wpisana wartość $y_6=1000$. Współczynniki wyznaczone na danych:

Najprostszy przypadek: Brak X, tylko Y. Model zawiera tylko stałą:

$$\hat{y} = a_0.$$

Dane: 100 punktów, $y_1=y_2=\ldots=y_{99}=1$ oraz jedna przypadkowo źle wpisana wartość $y_6=1000$.

Współczynniki wyznaczone na danych:

Minimalizacja kwadratów błędów (LS): $\min_{a_0} \left\{ 99 \cdot (a_0 - 1)^2 + (a_0 - 1000) \right\}$

Najprostszy przypadek: Brak X, tylko Y.

Model zawiera tylko stałą:

$$\hat{y} = a_0.$$

Dane: 100 punktów, $y_1=y_2=\ldots=y_{99}=1$ oraz jedna przypadkowo źle wpisana wartość $y_6=1000$.

Współczynniki wyznaczone na danych:

Minimalizacja kwadratów błędów (LS): $\min_{a_0} \left\{ 99 \cdot (a_0 - 1)^2 + (a_0 - 1000) \right\} \implies a_0 = \operatorname{avg}(\boldsymbol{y}) = 10.99$

Najprostszy przypadek: Brak $m{X}$, tylko Y.

Model zawiera tylko stałą:

$$\hat{y} = a_0.$$

Dane: 100 punktów, $y_1=y_2=\ldots=y_{99}=1$ oraz jedna przypadkowo źle wpisana wartość $y_6=1000$.

- Minimalizacja kwadratów błędów (LS): $\min_{a_0} \left\{ 99 \cdot (a_0 1)^2 + (a_0 1000) \right\} \implies a_0 = \operatorname{avg}(\boldsymbol{y}) = 10.99$
- Minimalizacja wartości bezwzględnych (błędów) (LAD): $\min_{a_0} \left\{99 \cdot |a_0 1| + |a_0 1000|\right\}$

Najprostszy przypadek: Brak \boldsymbol{X} , tylko Y.

Model zawiera tylko stałą:

$$\hat{y} = a_0.$$

Dane: 100 punktów, $y_1=y_2=\ldots=y_{99}=1$ oraz jedna przypadkowo źle wpisana wartość $y_6=1000$.

- Minimalizacja kwadratów błędów (LS): $\min_{a_0} \left\{ 99 \cdot (a_0 1)^2 + (a_0 1000) \right\} \implies a_0 = \operatorname{avg}(\boldsymbol{y}) = 10.99$
- Minimalizacja wartości bezwzględnych (błędów) (LAD): $\min_{a_0} \left\{ 99 \cdot |a_0 1| + |a_0 1000| \right\} \implies a_0 = \text{median}(\boldsymbol{y}) = 1$

Najprostszy przypadek: Brak X, tylko Y.

Model zawiera tylko stałą:

$$\hat{y} = a_0.$$

Dane: 100 punktów, $y_1=y_2=\ldots=y_{99}=1$ oraz jedna przypadkowo źle wpisana wartość $y_6=1000$.

- Minimalizacja kwadratów błędów (LS): $\min_{a_0} \left\{ 99 \cdot (a_0 1)^2 + (a_0 1000) \right\} \implies a_0 = \operatorname{avg}(\boldsymbol{y}) = 10.99$
- Minimalizacja wartości bezwzględnych (błędów) (LAD): $\min_{a_0} \left\{ 99 \cdot |a_0 1| + |a_0 1000| \right\} \quad \Longrightarrow a_0 = \text{median}(\boldsymbol{y}) = 1$
- Minimalizacja największego błędu (MM): $\min_{a_0} \max \{|a_0 1|, |a_0 1000|\}$

Najprostszy przypadek: Brak $m{X}$, tylko Y.

Model zawiera tylko stałą:

$$\hat{y} = a_0.$$

Dane: 100 punktów, $y_1=y_2=\ldots=y_{99}=1$ oraz jedna przypadkowo źle wpisana wartość $y_6=1000$.

- Minimalizacja kwadratów błędów (LS): $\min_{a_0} \left\{ 99 \cdot (a_0 1)^2 + (a_0 1000) \right\} \implies a_0 = \operatorname{avg}(\boldsymbol{y}) = 10.99$
- Minimalizacja wartości bezwzględnych (błędów) (LAD): $\min_{a_0} \left\{ 99 \cdot |a_0 1| + |a_0 1000| \right\} \implies a_0 = \text{median}(\boldsymbol{y}) = 1$
- Minimalizacja największego błędu (MM): $\min_{a_0} \max \left\{ |a_0 1|, |a_0 1000| \right\} \implies a_0 = \text{middle}(\boldsymbol{y}) = 500.5$

Najprostszy przypadek: Brak X, tylko Y.

Model zawiera tylko stałą:

$$\hat{y} = a_0.$$

Dane: 100 punktów, $y_1=y_2=\ldots=y_{99}=1$ oraz jedna przypadkowo źle wpisana wartość $y_6=1000$.

Współczynniki wyznaczone na danych:

- Minimalizacja kwadratów błędów (LS): $\min_{a_0} \left\{ 99 \cdot (a_0 1)^2 + (a_0 1000) \right\} \implies a_0 = \operatorname{avg}(\boldsymbol{y}) = 10.99$
- Minimalizacja wartości bezwzględnych (błędów) (LAD): $\min_{a_0} \left\{ 99 \cdot |a_0 1| + |a_0 1000| \right\} \implies a_0 = \text{median}(\boldsymbol{y}) = 1$
- Minimalizacja największego błędu (MM): $\min_{a_0} \max \{|a_0 1|, |a_0 1000|\} \implies a_0 = \text{middle}(\boldsymbol{y}) = 500.5$

Gdy są X, prosta regresji dla LS i MM będzie przyciągana zbyt mocno do wartości odstających! (szczególnie MM: tragedia!)

Spis treści

- 1 Problem regresj
- 2 Metody regresji liniowej
- 3 Minimalizacja kwadratów błędów
- 4 Minimalizacja sumy wartości bezwzględnych błędów
- 5 Przykład: wycena domów

"Metoda najmniejszych kwadratów"

$$\min_{\boldsymbol{a}}: L(\boldsymbol{a}) = \sum_{i=1}^{n} (y_i - \boldsymbol{a}^{\top} \boldsymbol{x}_i)^2$$

"Metoda najmniejszych kwadratów"

$$\min_{\boldsymbol{a}}: L(\boldsymbol{a}) = \sum_{i=1}^{n} (y_i - \boldsymbol{a}^{\top} \boldsymbol{x}_i)^2$$

■ Funkcja wypukła, kwadratowa.

"Metoda najmniejszych kwadratów"

$$\min_{\boldsymbol{a}}: L(\boldsymbol{a}) = \sum_{i=1}^{n} (y_i - \boldsymbol{a}^{\top} \boldsymbol{x}_i)^2$$

- Funkcja wypukła, kwadratowa.
- Rozwiązanie poprzez przyrównanie pochodnych po wszystkich a_j do 0:

$$oldsymbol{a}_{LS} = igg(\sum_{i=1}^n oldsymbol{x}_i oldsymbol{x}_i^ op igg)^{-1} igg(\sum_{i=1}^n y_i oldsymbol{x}_iigg),$$

■ Funkcja celu:

$$L(\boldsymbol{a}) = \sum_{i=1}^{n} (y_i - \boldsymbol{a}^{\top} \boldsymbol{x}_i)^2$$

■ Funkcja celu:

$$L(\boldsymbol{a}) = \sum_{i=1}^{n} (y_i - \boldsymbol{a}^{\top} \boldsymbol{x}_i)^2$$

Pochodne:

$$\frac{\partial L(\boldsymbol{a})}{\partial a_j} = \sum_{i=1}^n -2(y_i - \boldsymbol{a}^\top \boldsymbol{x}_i) x_{ij}$$

■ Funkcja celu:

$$L(\boldsymbol{a}) = \sum_{i=1}^{n} (y_i - \boldsymbol{a}^{\top} \boldsymbol{x}_i)^2$$

Pochodne:

$$\frac{\partial L(\boldsymbol{a})}{\partial a_j} = \sum_{i=1}^n -2(y_i - \boldsymbol{a}^\top \boldsymbol{x}_i) x_{ij}$$

Przyrównanie do zera:

$$\sum_{i=1}^{n} -2(y_i - \boldsymbol{a}^{\top} \boldsymbol{x}_i) x_{ij} = 0 \quad \Longrightarrow \quad \sum_{i=1}^{n} y_i x_{ij} = \sum_{i=1}^{n} \sum_{k=1}^{m} a_k x_{ik} x_{ij}$$

Funkcja celu:

$$L(\boldsymbol{a}) = \sum_{i=1}^{n} (y_i - \boldsymbol{a}^{\top} \boldsymbol{x}_i)^2$$

Pochodne:

$$\frac{\partial L(\boldsymbol{a})}{\partial a_j} = \sum_{i=1}^n -2(y_i - \boldsymbol{a}^\top \boldsymbol{x}_i) x_{ij}$$

Przyrównanie do zera:

$$\sum_{i=1}^{n} -2(y_i - \boldsymbol{a}^{\top} \boldsymbol{x}_i) x_{ij} = 0 \implies \sum_{i=1}^{n} y_i x_{ij} = \sum_{i=1}^{n} \sum_{k=1}^{m} a_k x_{ik} x_{ij}$$

■ Funkcja celu:

$$L(\boldsymbol{a}) = \sum_{i=1}^{n} (y_i - \boldsymbol{a}^{\top} \boldsymbol{x}_i)^2$$

Funkcja celu:

$$L(\boldsymbol{a}) = \sum_{i=1}^{n} (y_i - \boldsymbol{a}^{\top} \boldsymbol{x}_i)^2$$

Pochodne:
$$\frac{\partial L(\boldsymbol{a})}{\partial a_j} = \sum_{i=1}^n -2(y_i - \boldsymbol{a}^\top \boldsymbol{x}_i) x_{ij}$$

■ Funkcja celu:
$$L(\boldsymbol{a})$$

$$L(\boldsymbol{a}) = \sum_{i=1}^{n} (y_i - \boldsymbol{a}^{\top} \boldsymbol{x}_i)^2$$

Pochodne:
$$\frac{\partial L(\boldsymbol{a})}{\partial a_j} = \sum_{i=1}^n -2(y_i - \boldsymbol{a}^\top \boldsymbol{x}_i) x_{ij}$$

Gradient:
$$\nabla_L(\boldsymbol{a}) = -2\sum_{i=1}^n (y_i - \boldsymbol{a}^\top \boldsymbol{x}_i) \boldsymbol{x}_i$$

Funkcja celu:
$$L(\boldsymbol{a}) = \sum_{i=1}^n (y_i - \boldsymbol{a}^\top \boldsymbol{x}_i)^2$$

Pochodne:
$$\frac{\partial L(\boldsymbol{a})}{\partial a_j} = \sum_{i=1}^n -2(y_i - \boldsymbol{a}^\top \boldsymbol{x}_i) x_{ij}$$

Gradient:
$$\nabla_L({\bm a}) = -2\sum_{i=1}^n (y_i - {\bm a}^\top {\bm x}_i) {\bm x}_i$$

■ Drugie pochodne:
$$\frac{\partial^2 L(a)}{\partial a_j a_k} = \sum_{i=1}^n 2x_{ik}x_{ij}$$

$$L(\boldsymbol{a}) = \sum_{i=1}^{n} (y_i - \boldsymbol{a}^{\top} \boldsymbol{x}_i)^2$$

$$\frac{\partial L(\boldsymbol{a})}{\partial a_j} = \sum_{i=1}^n -2(y_i - \boldsymbol{a}^\top \boldsymbol{x}_i) x_{ij}$$

$$abla_L(oldsymbol{a}) = -2\sum_{i=1}^n (y_i - oldsymbol{a}^ op oldsymbol{x}_i) oldsymbol{x}_i$$

$$\frac{\partial^2 L(\boldsymbol{a})}{\partial a_j a_k} = \sum_{i=1}^n 2x_{ik} x_{ij}$$

$$oldsymbol{H}_L(oldsymbol{a}) = \sum_{i=1}^n 2oldsymbol{x}_i oldsymbol{x}_i^ op$$

Gradient:
$$\nabla_L(\bm{a}) = -2\sum_{i=1}^n (y_i-\bm{a}^\top \bm{x}_i)\bm{x}_i$$
 Hesjan:
$$\bm{H}_L(\bm{a}) = \sum_{i=1}^n 2\bm{x}_i\bm{x}_i^\top$$

Hesjan:

$$oldsymbol{H}_L(oldsymbol{a}) = \sum_{i=1}^n 2oldsymbol{x}_ioldsymbol{x}_i^{
ceil}$$

$$lacksquare$$
 Gradient: $abla_L(m{a}) = -2\sum_{i=1}^n (y_i - m{a}^ op m{x}_i) m{x}_i$

Hesjan:

$$oldsymbol{H}_L(oldsymbol{a}) = \sum_{i=1}^{i=1} 2oldsymbol{x}_i oldsymbol{x}_i^ op$$

Rozwiązanie początkowe: $a_0 = 0$.

$$abla_L(oldsymbol{a}_0) = -2\sum_{i=1}^n y_i oldsymbol{x}_i, \qquad oldsymbol{H}_L(oldsymbol{a}_0) = \sum_{i=1}^n 2oldsymbol{x}_i oldsymbol{x}_i^ op$$

Gradient:
$$\nabla_L({\boldsymbol a}) = -2\sum_{i=1}^n (y_i - {\boldsymbol a}^\top {\boldsymbol x}_i) {\boldsymbol x}_i$$

Hesjan:

$$oldsymbol{H}_L(oldsymbol{a}) = \sum_{i=1}^n 2oldsymbol{x}_ioldsymbol{x}_i^ op$$

■ Rozwiązanie początkowe: $a_0 = 0$.

$$abla_L(oldsymbol{a}_0) = -2\sum_{i=1}^n y_i oldsymbol{x}_i, \qquad oldsymbol{H}_L(oldsymbol{a}_0) = \sum_{i=1}^n 2oldsymbol{x}_ioldsymbol{x}_i^ op$$

■ Krok metodą Newtona-Rapshona:

$$\boldsymbol{a}_1 = \boldsymbol{a}_0 - \boldsymbol{H}_L^{-1}(\boldsymbol{a}_0) \nabla_L(\boldsymbol{a}_0)$$

Gradient:
$$\nabla_L(\boldsymbol{a}) = -2\sum_{i=1}^n (y_i - \boldsymbol{a}^\top \boldsymbol{x}_i) \boldsymbol{x}_i$$

Hesjan:

$$oldsymbol{H}_L(oldsymbol{a}) = \sum_{i=1}^n 2oldsymbol{x}_ioldsymbol{x}_i^ op$$

■ Rozwiązanie początkowe: $a_0 = 0$.

$$abla_L(oldsymbol{a}_0) = -2\sum_{i=1}^n y_i oldsymbol{x}_i, \qquad oldsymbol{H}_L(oldsymbol{a}_0) = \sum_{i=1}^n 2oldsymbol{x}_i oldsymbol{x}_i^ op$$

Krok metodą Newtona-Rapshona:

$$oldsymbol{a}_1 = oldsymbol{a}_0 - oldsymbol{H}_L^{-1}(oldsymbol{a}_0)
abla_L(oldsymbol{a}_0) = igg(\sum_{i=1}^n oldsymbol{x}_i oldsymbol{x}_i^ op igg)^{-1} igg(\sum_{i=1}^n y_i oldsymbol{x}_iigg)$$

$$lacksquare$$
 Gradient: $abla_L(oldsymbol{a}) = -2 \sum_{i=1}^n (y_i - oldsymbol{a}^ op oldsymbol{x}_i) oldsymbol{x}_i$

 $m{H}_L(m{a}) = \sum_{i=1}^n 2 m{x}_i m{x}_i^ op$

Rozwiązanie początkowe: $a_0 = 0$.

$$abla_L(\boldsymbol{a}_0) = -2\sum_{i=1}^n y_i \boldsymbol{x}_i, \qquad \boldsymbol{H}_L(\boldsymbol{a}_0) = \sum_{i=1}^n 2\boldsymbol{x}_i \boldsymbol{x}_i^{ op}$$

Krok metodą Newtona-Rapshona:

$$oldsymbol{a}_1 = oldsymbol{a}_0 - oldsymbol{H}_L^{-1}(oldsymbol{a}_0)
abla_L(oldsymbol{a}_0) = igg(\sum_{i=1}^n oldsymbol{x}_i oldsymbol{x}_i^ op igg)^{-1} igg(\sum_{i=1}^n y_i oldsymbol{x}_iigg)$$

■ Newton-Rapshon rozwiązuje MNK w jednym roku!

lacktriangle Co jeśli hesjan H_L jest osobliwy (nieodwracalny)?

- Co jeśli hesjan H_L jest osobliwy (nieodwracalny)?
- Dodajemy do hesjanu macierz jednostkową I przemnożoną przez (małą) stałą λ :

$$m{a} = \left(\sum_{i=1}^n m{x}_i m{x}_i^{ op} + \lambda m{I}\right)^{-1} \left(\sum_{i=1}^n y_i m{x}_i\right).$$

- Co jeśli hesjan H_L jest osobliwy (nieodwracalny)?
- Dodajemy do hesjanu macierz jednostkową I przemnożoną przez (małą) stałą λ :

$$oldsymbol{a} = \left(\sum_{i=1}^n oldsymbol{x}_i oldsymbol{x}_i^ op + \lambda oldsymbol{I}
ight)^{-1} \left(\sum_{i=1}^n y_i oldsymbol{x}_i
ight).$$

Czy istnieje modyfikacja problemu regresji, które rozwiązaniem jest jeden krok Levenberga-Marquada?

- Co jeśli hesjan H_L jest osobliwy (nieodwracalny)?
- Dodajemy do hesjanu macierz jednostkową I przemnożoną przez (małą) stałą λ :

$$oldsymbol{a} = \left(\sum_{i=1}^n oldsymbol{x}_i oldsymbol{x}_i^ op + \lambda oldsymbol{I}
ight)^{-1} \left(\sum_{i=1}^n y_i oldsymbol{x}_i
ight).$$

 Czy istnieje modyfikacja problemu regresji, które rozwiązaniem jest jeden krok Levenberga-Marquada?
 Regresja grzbietowa.

■ Funkcja celu:

$$L(a) = \sum_{i=1}^{n} (y_i - a^{\top} x_i)^2 + \lambda ||a||^2.$$

■ Funkcja celu:

$$L(a) = \sum_{i=1}^{n} (y_i - a^{\top} x_i)^2 + \lambda ||a||^2.$$

■ Pochodne:

$$\frac{\partial L(\boldsymbol{a})}{\partial a_j} = \sum_{i=1}^n -2(y_i - \boldsymbol{a}^\top \boldsymbol{x}_i)x_{ij} + 2\lambda a_j$$

Funkcja celu:

$$L(a) = \sum_{i=1}^{n} (y_i - a^{\top} x_i)^2 + \lambda ||a||^2.$$

■ Pochodne:

$$\frac{\partial L(\boldsymbol{a})}{\partial a_j} = \sum_{i=1}^n -2(y_i - \boldsymbol{a}^\top \boldsymbol{x}_i)x_{ij} + 2\lambda a_j$$

Przyrównanie pochodnych do zera daje:

$$\sum_{i=1}^{n} y_i x_{ij} = \sum_{i=1}^{n} \sum_{k=1}^{m} a_k x_{ik} x_{ij} + \lambda a_j$$

Funkcja celu:

$$L(a) = \sum_{i=1}^{n} (y_i - a^{\top} x_i)^2 + \lambda ||a||^2.$$

Pochodne:

$$\frac{\partial L(\boldsymbol{a})}{\partial a_j} = \sum_{i=1}^n -2(y_i - \boldsymbol{a}^\top \boldsymbol{x}_i)x_{ij} + 2\lambda a_j$$

Przyrównanie pochodnych do zera daje:

$$\sum_{i=1}^{n} y_i x_{ij} = \sum_{i=1}^{n} \sum_{k=1}^{m} a_k x_{ik} x_{ij} + \lambda a_j$$

Wektorowo:

$$\sum_{i=1}^{n} y_i \boldsymbol{x}_i = \left(\sum_{i=1}^{n} \boldsymbol{x}_i \boldsymbol{x}_i^{\top}\right) \boldsymbol{a} + \lambda \boldsymbol{a} = \left(\sum_{i=1}^{n} \boldsymbol{x}_i \boldsymbol{x}_i^{\top} + \lambda \boldsymbol{I}\right) \boldsymbol{a}$$
$$\Longrightarrow \boldsymbol{a} = \left(\sum_{i=1}^{n} \boldsymbol{x}_i \boldsymbol{x}_i^{\top} + \lambda \boldsymbol{I}\right)^{-1} \left(\sum_{i=1}^{n} y_i \boldsymbol{x}_i\right).$$

Spis treści

- 1 Problem regresj
- 2 Metody regresji liniowej
- 3 Minimalizacja kwadratów błędów
- 4 Minimalizacja sumy wartości bezwzględnych błędów
- 5 Przykład: wycena domów

Minimalizacja sumy wartości bezwzględnych błędów (LAD):

$$\min_{m{a}}: L(m{a}) = \sum_{i=1}^n |y_i - m{a}^ op m{x}_i|.$$

Minimalizacja sumy wartości bezwzględnych błędów (LAD):

$$\min_{\boldsymbol{a}}: L(\boldsymbol{a}) = \sum_{i=1}^{n} |y_i - \boldsymbol{a}^{\top} \boldsymbol{x}_i|.$$

Sprowadzamy do problemu programowania liniowego:

■ Dla każdego $i=1,\dots,n$ wprowadzamy dwie zmienne $\sigma_i^+,\sigma_i^- \geq 0$ takie, że $y_i - \boldsymbol{a}^\top \boldsymbol{x}_i = \sigma_i^+ - \sigma_i^-.$

Minimalizacja sumy wartości bezwzględnych błędów (LAD):

$$\min_{\boldsymbol{a}}: L(\boldsymbol{a}) = \sum_{i=1}^{n} |y_i - \boldsymbol{a}^{\top} \boldsymbol{x}_i|.$$

Sprowadzamy do problemu programowania liniowego:

- Dla każdego $i=1,\dots,n$ wprowadzamy dwie zmienne $\sigma_i^+,\sigma_i^- \geq 0$ takie, że $y_i \boldsymbol{a}^\top \boldsymbol{x}_i = \sigma_i^+ \sigma_i^-.$
- Zauważmy, że wtedy:

$$|y_i - \boldsymbol{a}^\top \boldsymbol{x}_i| \le \sigma_i^+ + \sigma_i^-,$$

Minimalizacja sumy wartości bezwzględnych błędów (LAD):

$$\min_{a}: L(a) = \sum_{i=1}^{n} |y_i - a^{\top} x_i|.$$

Sprowadzamy do problemu programowania liniowego:

- Dla każdego $i=1,\dots,n$ wprowadzamy dwie zmienne $\sigma_i^+,\sigma_i^- \geq 0$ takie, że $y_i \boldsymbol{a}^\top \boldsymbol{x}_i = \sigma_i^+ \sigma_i^-.$
- Zauważmy, że wtedy:

$$|y_i - \boldsymbol{a}^\top \boldsymbol{x}_i| \le \sigma_i^+ + \sigma_i^-,$$

czyli

$$L(\boldsymbol{a}) \le \sum_{i=1}^{n} \sigma_i^+ + \sigma_i^-,$$

Minimalizacja sumy wartości bezwzględnych błędów (LAD):

$$\min_{\boldsymbol{a}}: L(\boldsymbol{a}) = \sum_{i=1}^{n} |y_i - \boldsymbol{a}^{\top} \boldsymbol{x}_i|.$$

Sprowadzamy do problemu programowania liniowego:

- Dla każdego $i=1,\ldots,n$ wprowadzamy dwie zmienne $\sigma_i^+,\sigma_i^-\geq 0$ takie, że $y_i-\boldsymbol{a}^\top\boldsymbol{x}_i=\sigma_\cdot^+-\sigma_\cdot^-.$
- Zauważmy, że wtedy:

$$|y_i - \boldsymbol{a}^{\top} \boldsymbol{x}_i| \le \sigma_i^+ + \sigma_i^-,$$

czyli

$$L(\boldsymbol{a}) \le \sum_{i=1}^{n} \sigma_{i}^{+} + \sigma_{i}^{-},$$

i równość zachodzi dokładnie gdy dla każdego $i=1,\ldots,n$, jedno z σ_i^+,σ_i^- jest równe 0.

Rozwiązujemy problem:

min
$$L'(\boldsymbol{a}, \boldsymbol{\sigma}^+, \boldsymbol{\sigma}^-) = \sum_{i=1}^n \sigma_i^+ + \sigma_i^-$$

p.o. $y_i - \boldsymbol{a}^\top \boldsymbol{x}_i = \sigma_i^+ - \sigma_i^ i = 1, \dots, n$
 $\sigma_i^+, \sigma_i^- \ge 0$ $i = 1, \dots, n$.

Rozwiązujemy problem:

min
$$L'(\boldsymbol{a}, \boldsymbol{\sigma}^+, \boldsymbol{\sigma}^-) = \sum_{i=1}^n \sigma_i^+ + \sigma_i^-$$

p.o. $y_i - \boldsymbol{a}^\top \boldsymbol{x}_i = \sigma_i^+ - \sigma_i^ i = 1, \dots, n$
 $\sigma_i^+, \sigma_i^- \ge 0$ $i = 1, \dots, n$

- Minimalizujemy górne ograniczenie funkcji L(a).
- Wiemy, że w optimum dokładnie jedno z σ_i^+, σ_i^- jest równe 0.

Rozwiązujemy problem:

min
$$L'(\boldsymbol{a}, \boldsymbol{\sigma}^+, \boldsymbol{\sigma}^-) = \sum_{i=1}^n \sigma_i^+ + \sigma_i^-$$

p.o. $y_i - \boldsymbol{a}^\top \boldsymbol{x}_i = \sigma_i^+ - \sigma_i^ i = 1, \dots, n$
 $\sigma_i^+, \sigma_i^- \ge 0$ $i = 1, \dots, n$

- lacktriangle Minimalizujemy górne ograniczenie funkcji $L(oldsymbol{a}).$
- Wiemy, że w optimum dokładnie jedno z σ_i^+, σ_i^- jest równe 0.
- Dowód: jeśli oba $\sigma_i^+, \sigma_i^->0$, to możemy oba zmniejszyć o δ , zachowując ograniczenia, a zmniejszając funkcję celu o 2δ sprzeczność!

Rozwiązujemy problem:

min
$$L'(\boldsymbol{a}, \boldsymbol{\sigma}^+, \boldsymbol{\sigma}^-) = \sum_{i=1}^n \sigma_i^+ + \sigma_i^-$$

p.o. $y_i - \boldsymbol{a}^\top \boldsymbol{x}_i = \sigma_i^+ - \sigma_i^ i = 1, \dots, n$
 $\sigma_i^+, \sigma_i^- \ge 0$ $i = 1, \dots, n$

- Minimalizujemy górne ograniczenie funkcji L(a).
- Wiemy, że w optimum dokładnie jedno z σ_i^+, σ_i^- jest równe 0.
- Dowód: jeśli oba $\sigma_i^+, \sigma_i^- > 0$, to możemy oba zmniejszyć o δ , zachowując ograniczenia, a zmniejszając funkcję celu o 2δ sprzeczność!
- Wniosek: W optimum

$$L'(\boldsymbol{a}, \boldsymbol{\sigma}^+, \boldsymbol{\sigma}^-) = L(\boldsymbol{a}),$$

więc rozwiązaliśmy problem LAD.

Spis treści

- 1 Problem regresj
- 2 Metody regresji liniowej
- 3 Minimalizacja kwadratów błędów
- 4 Minimalizacja sumy wartości bezwzględnych błędów
- 5 Przykład: wycena domów

Wycena domów

- Den Bosch ('s-Hertogenbosch), Holandia
- 119 domów.

	X	Y
	living area	sale price
$\overline{x_1}$	385	788
x_2	156	449
x_3	90	169
x_4	86	269
x_5	73	225
x_6	125	298

Wycena domów

■ 119 domów, opisanych 9 cechami wejściowymi (X) i 1 wyjściową (Y).

DISTR	type of district, four categories ranked from bad (1) to good (4)
AREA	total area including garden
BEDR	number of bedrooms
TYPE	apartment (1), row house (2), corner house (3),
	semidetached (4), detached (5), villa (6)
VOL	volume of the house
STOR	number of storeys
GARD	type of garden, four categories ranked from bad to good
GARG	no garage (1), normal garage (2), large garage (3)
YEAR	build year
PRICE	selling price

Wycena domów

Zbiór danych:

	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	Y
	DISTR	AREA	BEDR	TYPE	VOL	STOR	GARD	GARG	YEAR	PRICE
\boldsymbol{x}_1	4	385	5	6	775	3	3	3	1934	788
\boldsymbol{x}_2	3	156	2	1	350	1	1	1	1996	449
\boldsymbol{x}_3	4	90	3	1	200	1	1	1	1950	169
\boldsymbol{x}_4	3	86	3	2	410	3	2	1	1966	269
\boldsymbol{x}_5	1	73	3	2	330	3	3	1	1950	225
\boldsymbol{x}_6	3	125	2	1	300	2	1	2	1950	298

Weźmy tylko jedną zmienną $X=X_2$ (AREA) dla zilustrowania wyników na płaszczyźnie.

Wykres Y = PRICE w funkcji X = AREA:

Weźmy tylko jedną zmienną $X=X_2$ (AREA) dla zilustrowania wyników na płaszczyźnie.

Metoda najmniejszych kwadratów (LS):

Weźmy tylko jedną zmienną $X=X_2$ (AREA) dla zilustrowania wyników na płaszczyźnie.

Minimalizacja sumy wartości bewzględnych (LAD):

Weźmy tylko jedną zmienną $X=X_2$ (AREA) dla zilustrowania wyników na płaszczyźnie.

Minimalizacja największego błędu (MM):

Koniec na dzisiaj :)