Question 2

Let $\mathbf{u} = x^2$, therefore $d\mathbf{u} = 2\mathbf{x} d\mathbf{x}$, therefore $\frac{1}{2}d\mathbf{u} = \mathbf{x} d\mathbf{x}$

Therefore $(\mathbf{u})(\frac{1}{2} d\mathbf{u}) = (x^2)(\mathbf{x} d\mathbf{x})$, therefore $\frac{1}{2} \mathbf{u} d\mathbf{u} = x^3 d\mathbf{x}$

Therefore $\int x^3 \cos(x^2) dx = \frac{1}{2} \int u \cos(u) du$

Let v = u, and dw = cos(u) du, therefore dv = du, and w = sin(u)

Therefore $\int u cos(u) du = \int v dw = vw - \int w dv$ (By integration by parts)

Therefore $\int u cos(u) du = u sin(u)$ - $\int sin(u) du = u sin(u)$ - (-cos(u)) + C_1

= $u\sin(u) + \cos(u) + C_1 = x^2\sin(x^2) + \cos(x^2) + C_1$

Therefore $\frac{1}{2} \int u cos(u) du = \frac{1}{2} \left(x^2 \sin(x^2) + \cos(x^2) + C_1 \right)$

 $= \frac{1}{2} x^2 \sin(x^2) + \frac{1}{2} \cos(x^2) + \frac{1}{2} C_1 = \frac{1}{2} x^2 \sin(x^2) + \frac{1}{2} \cos(x^2) + C$

Therefore $\int x^3 \cos(x^2) dx = \frac{1}{2} x^2 \sin(x^2) + \frac{1}{2} \cos(x^2) + C$, QED