Chapter 3: Nonlinear systems of equations

Fall 2020

1.- Consider $G: \mathbb{R}^n \to \mathbb{R}^n$, $\alpha \in (0,1)$, r > 0 and let $\| \|$ be a norm of \mathbb{R}^n , such that G(0) = 0 and

$$||G(x) - G(y)|| \le \alpha ||x - y|| \quad \forall x, y \in B_r := \{z \in \mathbb{R}^n : ||z|| \le r\}.$$

1. Let $v \in \mathbb{R}^n$ be a vector. Prove that if $||v|| \leq (1-\alpha)r$ then the equation

$$z = G(z) + v$$

has a unique solution in B_r .

2. Take $n=2, \| \|_{\infty}, v \in \mathbb{R}^2$ and

$$G\left(\begin{array}{c} z_1 \\ z_2 \end{array}\right) = \frac{1}{3} \left(\begin{array}{c} \sin(z_1 + z_2) \\ \cos(z_1 - z_2) - 1 \end{array}\right).$$

See that the equation z = G(z) + v has a unique solution in \mathbb{R}^2 .

- 3. If we take $z^0 = (0,0)^T$ and $z^i = G(z^{i-1}) + v$, i = 1,2,...; say, as a function of $||v||_{\infty}$, how many iterates we have to perform in order to have an approximation o the solution with an error less than 10^{-6} , using the $||||_{\infty}$ norm.
- 2.- Consider the equations

$$x^{3} + y^{2} + x + y - 2 = 0,$$

 $xy^{2} + x^{2} + x - y = 0,$

that have a solution close to (0.4, 0.8).

- a) Compute this solution with an error smaller than 10⁻⁸ using the Newton method.
- b) Compute this solution with a quasi-Newton method, using the Jacobian matrix only at the initial approximation (0.4, 0.8).
- **3.-** Consider the system

$$Ax = b + \epsilon f(x), \tag{1}$$

where A is an $n \times n$ regular matrix such that $a_{ii} \neq 0$, i = 1, ..., n, $b \in \mathbb{R}^n$, $f : \mathbb{R}^n \longrightarrow \mathbb{R}^n$, and $\epsilon \in \mathbb{R}$.

1. Suppose that there exist a constant K > 0 such that $||f(x) - f(y)||_{\infty} \le K||x - y||_{\infty}$, for all $x, y \in \mathbb{R}^n$. If we write A = L + D + U, where L is strictly lower triangular, D is diagonal and U is strictly upper triangular, we define the following iterative method to find the solution of (1):

$$x^{(k+1)} = D^{-1} \left[b + \epsilon f(x^{(k)}) - (L+U)x^{(k)} \right], \qquad k \ge 0$$

(a) Prove that if $(x^{(k)})_{k\geq 0} \to \alpha$ then $x=\alpha$ is the solution of (1).

- (b) If A is strictly diagonally dominant by rows, prove that there exists $\epsilon_0 > 0$ such that if $|\epsilon| < \epsilon_0$, for any initial condition $x^{(0)} \in \mathbb{R}^n$, the sequence $(x^{(k)})_k$ has a limit and (1) has a unique solution. Determine ϵ_0 as a function of K, $\beta = \max_{1 \le i \le n} \frac{1}{|a_{ii}|} \sum_{j=1, j \ne i}^{n} |a_{ij}|$, i $\gamma = 1/\min_{1 \le i \le n} |a_{ii}|$.
- 2. Now we take

$$A = \begin{pmatrix} 3 & 5 \\ 2 & 3 \end{pmatrix}, \quad b = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad f(x) = \begin{pmatrix} \sin(x_1 + x_2) \\ \cos(x_2) \end{pmatrix},$$

where $x = (x_1, x_2)$.

- (a) Prove that if $|\epsilon|$ is small enough, there exists a solution x of (1) close to the solution when $\epsilon = 0$.
- (b) Find the Taylor expansion of the solution up to second order in ϵ .

4.- Consider the equations

$$x^{3} + y^{2} + x + y = \lambda,$$

 $xy^{2} + x^{2} + x - y = 0.$

Note that, for $\lambda = 0$, we have the solution (x, y) = (0, 0).

- a) Prove that there exists a value $\delta > 0$ and a function $\lambda \in]-\delta, \delta[\mapsto (\bar{x}(\lambda), \bar{y}(\lambda)) \in \mathbb{R}^2$ such that the values $(\bar{x}(\lambda), \bar{y}(\lambda), \lambda)$ solve the previous equation.
- b) Compute $\bar{x}'(\lambda)$ and $\bar{y}'(\lambda)$ for $\lambda = 0$.
- c) Use b) to compute an approximation to the solution of the equation for $\lambda = 0.01$.
- d) Use the Newton method (you can use the same program as in Exercise 2) to solve the equation (with an error smaller than 10^{-8}) using the result of c) as seed. Compare the number of Newton iterations with those needed if the seed is $x^{(0)} = y^{(0)} = 0$.

5.- Consider the equation

$$f(x,\lambda) = x^2 + \sin(x) + \lambda = 0,$$

with $x = \lambda = 0$ as a solution.

- a) Use the Implicit Function Theorem to show that the equation $f(x, \lambda) = 0$ defines a function $\lambda \mapsto \bar{x}(\lambda)$ near $x = \lambda = 0$.
- b) Compute the first and second derivatives of function $\bar{x}(\lambda)$ at $\lambda = 0$. Use them to compute an approximation of the solution for $\lambda = 0.01$.
- c) Find values (x^*, λ^*) satisfying $f(x^*, \lambda^*) = 0$ and such that the Implicit Function Theorem cannot be applied at (x^*, λ^*) . Describe the solutions of $f(x, \lambda) = 0$ near (x^*, λ^*) and discuss if the function $\lambda \mapsto \bar{x}(\lambda)$ defined in a) exists.
- d) Give a value $\lambda_0 > 0$ such that, if $|\lambda| < \lambda_0$ then there exists $x(\lambda)$ such that $f(x(\lambda), \lambda) = 0$ and $x(\lambda) \to 0$ when $\lambda \to 0$.

6.- Consider the following system of equations:

$$x + y^3 = \lambda$$

$$y^2 - x^2 = \lambda x - \lambda.$$

It is easy to see that $(x, y, \lambda) = (0, 0, 0)$ and $(x, y, \lambda) = (1, -1, 0)$ are solutions of this system.

- a) Show that, for λ close to 0, the system defines a function $\lambda \mapsto (x(\lambda), y(\lambda))$ in a suitable neighbourhood of $\lambda = 0$, such that x(0) = 1, y(0) = -1. Compute (x'(0), y'(0)) and (x''(0), y''(0)).
- b) For $\lambda=0$ and $\delta>0$ small enough, say which is the correct answer, using the Implicit Function Theorem:
 - i) There exists a solution close to (x,y)=(0,0) for all λ such that $|\lambda|<\delta$.
 - ii) There exists a solution close to (x,y)=(0,0) for all λ such that $-\delta < \lambda \leq 0$.
 - iii) There exists a solution close to (x,y)=(0,0) for all λ such that $0 \le \lambda < \delta$.

7.- Consider the system of equations:

$$x + \mu \cos(x + y) = \mu^{2},$$

$$x + \frac{1}{2}\mu y + \mu x^{2} + y^{2} = 0$$

- 1. If $\mu=1$ ithe system has the solution (x,y)=0. Prove that for μ clos to 1, the equations define a function $(\bar{x}(\mu), \bar{y}(\mu))$ in a suitable neighbourhood of $\mu=1$. Compute $(\bar{x}'(1), \bar{y}'(1)), (\bar{x}''(1), \bar{y}''(1))$.
- 2. For $\mu = 0$ we also have a solution at (x, y) = (0, 0). If $\delta > 0$ is small enough, use the Implicit Function Theorem to find which option is correct:
 - (a) There exists a solution near x = y = 0, for all μ such that $|\mu| < \delta$.
 - (b) There exists a solution near x = y = 0 when $-\delta < \mu \le 0$.
 - (c) There exists a solution near x = y = 0 when $0 \le \mu < \delta$.

8.- Consider the system of equations:

$$x^{4} + ax^{2} + bx + c = 0,$$

$$4x^{3} + 2ax + b + 2 = 0,$$

$$36x^{4} + 12ax^{2} + 4x + a^{2} = 0.$$

- 1. It is immediate to see that the system has the solution (x, a, b, c) = (0, 0, -2, 0). Prove that for a close to zero, the equation define infinitely differentiable functions x(a), b(a), c(a), such that x(0) = c(0) = 0 i b(0) = -2.
- 2. Compute the Taylor expansion of x(a), b(a), c(a) up to second order about a=0.

14

3. Which of the functions x(a), b(a), and c(a) do have a maximum or a minimum at a=0?

9.- The equations

$$x^2 + y^2 = 1,$$

 $x^2 + z^2 = 1,$

have the solution (x, y, z) = (0, 1, 1).

- a) Is there a curve of solutions going through the point (x, y, z) = (0, 1, 1)?
- b) If so, study if some of the variables (x, y and z) have a maximum/minimum when going through (x, y, z) = (0, 1, 1).

10.- The equations

$$x^{2} + y^{2} = 2\lambda,$$

 $x^{2} + z^{2} = 2\lambda,$
 $y^{2} + z^{2} = 2,$

have, for $\lambda = 1$, the solution (x, y, z) = (1, 1, 1). Discuss the existence of solutions for λ close to 1. If there exist a curve of solutions, compute its Taylor polynomial (with respect to λ) of degree 2.

11.- Assume that $f, g: \mathbb{R}^3 \to \mathbb{R}$ are C^1 functions, and consider the equations

$$f(x, y, z) = 0,$$

$$g(x, y, z) = 0.$$

- a) Assume that there exists a point (x_0, y_0, z_0) such that $f(x_0, y_0, z_0) = g(x_0, y_0, z_0) = 0$ and that the vectors $u = \nabla f(x_0, y_0, z_0)$ and $v = \nabla g(x_0, y_0, z_0)$ are different from zero. Moreover, if u and v are not parallel, do the surfaces f = 0 and g = 0 intersect on a curve?
- b) Consider

$$x^4 + y^4 - 2 = 0,$$

$$xz + y - 2 = 0,$$

and note that (x, y, z) = (1, 1, 1) satisfies both equations. Study the existence of a curve of solutions near (x, y, z) = (1, 1, 1). Discuss if one of the variables goes through a maximum or minimum at (x, y, z) = (1, 1, 1) when we move along this curve.

12.- a) The equations

$$x^4 + y^4 = 2,$$

 $(x-1)^2 + (y-1)^2 = \lambda,$

have the solution x = y = 1, $\lambda = 0$. Study the existence of a curve of solutions going through this point and, using a Taylor polynomial of suitable degree (larger than 1), give an approximation to the solution (or solutions) for $\lambda = 0.01$.

15

b) Let $f:(x,y) \in \mathbb{R}^2 \to \mathbb{R}$ be a C^1 map, and assume we know a point $(x_0,y_0) \in \mathbb{R}^2$ such that $f(x_0,y_0) = 0$. If $\nabla f(x_0,y_0) \neq 0$ use the Implicit Function Theorem to show, if h is small enough, that the following equations admit two solutions.

$$f(x,y) = 0,$$

$$(x-x_0)^2 + (y-y_0)^2 = h^2,$$