esp@cenct document view

1/1 ページ

DEST AVAILABLE COPY

SOLID-STATE IMAGE PICKUP DEVICE AND ITS DRIVING METHOD

Patent numbér:

JP9168119

Publication date:

1997-06-24

Inventor:

AKIYAMA IKUO

Applicant:

NEC CORP

Classification:

- International:

H04N5/335

- european:

Application number: JP19950326721 19951215

Priority number(s):

Abstract of JP9168119

level by activating an output amplifier only for a signal output period with the action of an amplifier gate control circuit, pausing the output amplifier for other signal storage period and reducing diffusion of hot electrons.

SOLUTION: A voltage signal amplitude-modulated from a charge detection section 3 is outputted externally at a ratio of one field for 4-field period via an output amplifier 4. The output amplifier 4 consists of, e.g. 2-stage source follower circuits 15, 16. Furthermore, an amplifier gate control circuit 5 is connected to gate terminals of lower MOS load resistors 17, 18 among MOS-FETs being component of the source follower circuits. A voltage of, e.g. nearly +1 to +3V is applied

PROBLEM TO BE SOLVED: To reduce shading of a black

is connected to gate terminals of lower MOS load resistors 17, 18 among MOS-FETs being component of the source follower circuits. A voltage of, e.g. nearly +1 to +3V is applied to the circuit 5 for a signal output period only to activate the output amplifier and 0V (ground voltage) is applied to the circuit 5 for a signal storage period to set an output voltage to be at a pause.

'03 12/25 THU 09:40 FAX 03

(19)日本国特散庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平9-168119

(43)公開日 平成9年(1997)6月24日

(51) Int.Cl.⁶

被別配母 庁内整理番号 FΙ

技術表示箇所

HO4N 5/335

H04N 5/335

P

審査請求 有 請求項の数4 OL (全 6 頁)

(21) 出願番号

(22) 出頭日

特膜平7-326721

平成7年(1995)12月15日

(71) 出頭人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72) 発明者 秋山 郁男

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 升理士 後藤 洋介 (外2名)

(54) [発明の名称] 固体操像装置およびその駆動方法

(57)【要約】

【課題】 高感度モードでも暗電流等による黒レベルの シェーディングが発生しにくい固体撮像装置およびその 駆動方法を提供する。

【解決手段】 固体操像装置は入射光量に応じた信号電 荷を審積する撮像領域1と、信号電荷の蓄積時間を制御 する蓄積時間平段9と、蓄積時間内に蓄積された信号電 荷を順次転送する電荷転送手段2と、転送されてきた信 号電荷を電圧信号に変換する電荷検出部3と、電圧信号 を映像信号として外部に出力するMOSーFETによる ソースフォロア回路で構成された出力アンプ4と、この 出力アンプを構成するMOS負荷抵抗のゲートに接続さ れたアンプゲート制御回路5とを具備する。アンプゲー ト制御回路 5 からの制御電圧の発生により、信号出力区 間ではMOS負荷抵抗をオン状態にして出力アンプ4を 活動状態にし、信号蓄積期間ではMOS負荷抵抗をオフ 状態にして出力アンプ4を休止状態にする。

(2)

20

幹脚平9-168119

【特許請求の範囲】

【請求項1】 入射光量に応じた信号電荷を蓄積する撮 俊備域と、

1

前記信号電荷の書積時間を制御する書積時間手段と、 前記蓄積時間内に蓄積された前記信号電荷を順次転送す る電荷転送手段と、

铵電荷転送手段により転送されてきた前記信号電荷を電 圧信号に変換する電荷検出部と、

該電荷検出部に接続され、前記電圧信号を映像信号とし て外部に出力する少なくとも1段以上のMOS-FET 10 に変換する役割を果たす。 によるソースフォロア回路で構成された出力アンプと、 該出力アンプを構成するMOS负荷抵抗のゲートに接続 されたアンプゲート制御回路とを具備することを特徴と する関体操像装置。

【請求項2】 前記MOS負荷抵抗がエンハンスメント 型である、請求項1に配載の固体振像装置。

【請求項3】 前記MOS負荷抵抗がデプレッション型 である、請求項1に記載の固体損像装置。

【請求項4】 請求項1に記載の固体操像装置を駆動す る方法であって、

前記アンプゲート制御回路から所定の制御電圧を発生さ せることにより、信号出力区間では前記MOS負荷抵抗 をオン状態にして前記出力アンプを活動状態にし、信号 **若積期間では前記M○S負荷抵抗をオフ状態にして前記** 出力アンプを休止状態にすることを特徴とする箇体操像 装置の駆動方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は善積時間制御方式に よる高感度モードを備えた固体操像装置に関し、特に、 暗電流等によるシェーディングを低減させた固体操像装 世の駆動力法に関する。

[0002]

【従来の技術】図4に従来の2次元固体撮像装置の構成 を示す。従来の2次元固体操像装置は、電荷結合素子 (以後、CCDと呼ぶ) 撮像領域101と、CCD水平 レジスタ102と、電荷検出部103と、出力アンプ1 0.4と、映像信号処理回路105と、フレームメモリ1 06と、CCD駆動回路107と、普積時間制御回路1 08とから構成されている。

【0003】図5は図4に示した従来の2次元固体撮像 装置の動作を説明するためのクイミング図であり、一例 として趨積時間が振彈状態(約1/60秒)の4倍(約 1/15秒) の場合が示されている。

【0004】以下、図4と図5を参照して、従来の2次 元固体操像装置について説明する。まず、図4におい て、入射光量に応じてCCD撮像領域101中の光電変 換案子群(図示せず)に苦積された信号電荷は、所定の 蓄積時間ごとに、すなわち本例の場合には4フィールド 期間(約1/15秒)ごとに、垂直転送パルス $oldsymbol{\Phi}_{oldsymbol{v}}$ に重 50 ところは、高感度モードでも陪電流等による黒レベルの

昼された信号電荷読み出しパルス109により、CCD 競直レジスタ (図示せず) に読み出される。次いで、こ れら信号電荷は所定のタイミングに従ってCCD垂直レ ジスク(図示せず)とCCD水平レジスタ102中を順 次転送され、電荷検出部103へと供給される。

【0005】電荷検出部103は、出力ゲート電極11 0と、フローティング・ディフュージョン領域111 と、リセットゲート電極112と、リセットドレイン1 13とで構成され、転送されて来た信号電荷を電圧信号

【0006】 館荷検出部103からの振幅変調された電 圧信号は、出力アンプ104を介して、4フィールド期 間に1フィールドの割合で外部に出力される。ここで出 カアンプ104は、必要とされる周波数帯域に合わせて 1~3段の金属酸化物半導体電界効果トランジスタ(M OS-FET)によるソースフォロア回路で構成されて ることが多い。本例では、2段のMOS-FETによる ソースフォロア回路114と115で構成された場合が 示されている。またソースフォロア回路を構成するMO S-FETのうち、下側のMOS負荷抵抗(ロードトラ ンジスタとも呼ばれる) 116、117のゲート端子に は、一定の直流電圧VACが印加され低定電流源として動 作するようになっている。ここで、本例ではMOS負荷 抵抗116、117としてエンハンスメント型の場合を 想定しているので、直流電圧VAGの値としては+1~+ 3V程度が適当であるが、デプレッション型の場合には ソース電圧と同じOV (GND電圧) とすることもでき ቆ.

【0007】次に、出力アンプ104から出力される振 幅変調された電圧信号は、映像信号処理回路105で雑 **帝除去されると同時に時系列映像信号に変換され、さら** に規定レベルまでの増幅やガンマ処理等の非線形処理が 施された後に、通常の映像信号として外部に出力され る。但し、映像信号処理回路105から出力される映像 信号は、図5の118に示すごとく、4フィールド期間 に1フィールドの割合で出力される間欠信号であるた め、フレームメモリ106を介して、連続した映像信号 119に変換される。

100081

【発明が解決しようとする課題】しかしながら、従来の 団体協像装置では、出力アンプ104の発熱、あるいは 出力アンプ104を構成するMOS一FETのショート チャネル効果に超因して発生するホットエレクトロンの 拡散により、アンプ近傍の光電変換素子群に他の領域よ りも多くの不要電荷(暗電流)が響程され、再生画面の 左上をピークとする黒レベルのシェーディングが発生 し、再生画像が著しく劣化している。

【0009】そこで、本発明はこのような従来技術の欠 点を解決すべくなされたものであって、その課題とする

→→→ YOUNG&THOMPSON

(3)

10

特別平9-168119

シューディングが発生しにくい固体撮像装置およびその 駆動方法を提供することにある。

[0010]

【課題を解決するための手段】本発明による固体操像装 徴は、入射光量に応じた信号電荷を蓄積する撮像領域 と、信号電荷の審積時間を制御する蓄積時間手段と、蓄 種時間内に普積された信号電荷を順次転送する電荷転送 手段と、この電荷転送手段により転送されてきた信号電 荷を電圧信号に変換する電荷検出部と、この電荷検出部 に接続され、電圧信号を映像信号として外部に出力する 少なくとも1段以上のMOS-FETによるソースフォ ロア回路で構成された出力アンプと、この出力アンプを 構成するMOS負荷抵抗のゲートに接続されたアンプゲ - ト制御回路とを具備することを特徴とする。

【0011】また、本発明による固体操像装置の駆動方 法は、上記固体撮像装置を駆動する方法であって、アン プゲート制御回路から所定の制御電圧を発生させること により、信号出力区間ではMOS負荷抵抗をオン状態に して出力アンプを活動状態にし、信号薔積期間ではMO ることを特徴とする。

[0012]

【発明の実施の形態】以下、本発明の実施形態について 図面を参照して詳細に説明する。

【0013】図1に、本発明の一実施形態による2次元 園体操像装置の構成を示す。図1に示された2次元団体 损像装置は、CCD撮像領域1と、CCD水平レジスタ 2と、電荷検出部3と、出力アンプ4と、アンプゲート 制御回路5と、映像信号処理回路6と、フレームメモリ 7と、CCD駆動回路8と、薔積時間制御回路9とから 構成されている。図1に示された本発明に係る2次元間 体操像装置と図4に示した従来の2次元固体操像装置と の相違点は、本発明のものではアンプゲート制御回路5 が備えられたことにある。

【0014】図2は図1に示した2次元団体操像装置の 動作を説明するためのタイミング図であり、一例として 蓄積時間が標準状態(約1/60秒)の4倍(約1/1 6秒)の場合が示されている。

【0015】以下、図1と図2を参照して、本実施形態 による2次元団体撮像装置について説明する。まず、図 1において、入射光量に応じてCCD提像領域1中の光 電変換案子群(図示せず)に蓄積された信号電荷は、所 定の蓄積時間ごとに、すなわち本例の場合には1フィー ルド期間(約1/15秒)ごとに、垂直転送パルスΦν に重掛された信号電荷読み出しパルス10により、CC D垂直レジスク(図示せず)に読み出される。次いで、 これら信号電荷は所定の駆動タイミングに従ってCCD **垂直レジスタ(図示せず)とCCD水平レジスタ2中を** 順次転送され、電荷検出部3へと供給される。

【0016】電荷検出部3は、出力ゲート電極11と、

フローティング・ディフュージョン領域12と、リセッ トゲート電板13と、リセットドレイン14とで構成さ れ、転送されて来た信号電荷を電圧信号に変換する役割 を果たす。

【0017】電荷検出部3からの振幅変調された電圧信 号は、出力アンプ4を介して、4フィールド期間に1フ ィールドの割合で外部に出力される。ここで出力アンプ 4は、一例として2段のソースフォロア回路15と16 で構成された場合が示されている。またソースフォロア 回路を構成するMOS-FETのうち、下側のMOS負 荷抵抗17、18のゲート端子には、アンプゲート制御 回路5が接続されている。

【0018】ここで、アンプゲート制御回路5の働き は、信号出力期間のみ+1~+3 V程度の電圧を印加し て出力アンプ4が活動状態になるようにし、信号装積期 間ではOV(GND電圧)の電圧を印加して出力アンプ 4が休止状態となるように動作している。

【0019】図3にMOS負荷抵抗(ロードトランジス タ)17、18の伝達特性を示す。本実施の形態では、 S負荷抵抗をオフ状態にして出力アンプを休止状態にす 20 MOS負荷抵抗としてエンハンスメント型を想定してい るため、アンブゲート登圧(ゲート・ソース間電圧) V AGとして約+2Vを印加したとき所定の量のドレイン電 流 I D が流れ、出力アンプ4が活動状態となることが分 かる。また、アンプゲート電圧VAGが0Vのときにはド レイン電流Ip が零となり、MOS負荷括抗17、18 がカットオフして出力アンプ4が休止状態となることが 分かる。

> 【0020】次に、出力アンプ4から出力される振幅変 調された電圧信号は、映像信号処理回路6で雑音除去さ れると同時に時系列映像信号に変換され、さらに規定レ ベルまでの増幅やガンマ処理等の非線形処理が施された 後に、通常の映像信号として外部に出力される。但し、 映像僧号処理回路6から出力される映像信号は、図2の 19に示すごとく、4フィールド期間に1フィールドの 割合で出力される間欠信号であるため、フレームメモリ 7を介して、連続した映像信号20に変換される。

> 【0021】本発明は上述した実施の形態には限定せ ず、本発明の趣旨を逸脱しない範囲内で積々の変更が可 能である。例えば、MOS負荷抵抗はデプレッション型 でも良い。この場合には、信号出力期間ではアンプゲー ト電圧VAGとしてOV(GND電圧)を印加することに より、MOS負荷抵抗をオン状態にして出力アンプを活 動状態にし、また、信号蓄積区間ではアンプゲート電圧 VAGとして-8~-9 V程度の電圧を印加することによ り、MOS負荷抵抗をオフ状態にして出力アンプを休止 状態にすれば良い。

[0022]

【発明の効果】以上の説明より明らかなように、本発明 の固体操像装置では、アンプゲート制御回路の作用によ 50 り、信号出力期間のみ出力アンプが活動状態となり、そ

(4)

特期平9-168119

6

の他の信号蓄積期間では出力アンプが休止状態となっている。このため、出力アンプの発熱、および出力アンプを構成するMOSーFETのショートチャネル効果に起因して発生するホットエレクトロンの拡散は、上記実施の形態の場合、従来例の約1/4に軽減される。さらに、蓄積時間が長くなるに従って、すなわち、高感度になるに従って、この効果は顕著となる。このため、アンプ近傍の光電変換素子群に他の領域よりも多くの不要電荷(暗電流)が蓄積されることによって発生する再生画面の左上をピークとする黒レベルのシェーディングを低 10

【図面の簡単な説明】

減することができ、その効果は大きい。

【図1】本発明の一実施形態による2次元団体操像装置の構成を示すブロック図である。

【図2】図1に示した2次元団体操像装置の動作を説明 するためのタイミング図である。

【図3】図1に示した2次元固体操像装置に使用される 出力アンプを構成するMOS負荷抵抗の伝達特性を示す 図である。

【図4】 従来の2次元固体操像装置の構成を示すブロッ 20

ク図である。

【図5】図4に示した2次元図体操像装置の動作を説明 するためのタイミング図である。

【符号の説明】

- 1 CCD操像領域
- 2 CCD水平レジスタ
- 3 電荷検出部
- 4 出力アンプ
- 5 アンプゲート制御回路
- 6 映像信号処理回路
 - 7 フレームメモリ
 - 8 CCD駆動回路
 - 9 警積時間制御回路
 - 11 出力ゲート電極
 - 12 フローティング・ディフュージョン領域
 - 13 リセットゲート電極
 - 14 リセットドレイン
 - 15,16 ソースフォロア回路
 - 17, 18 MOS負荷抵抗(ロードトランジスタ)

[図3]

アンプゲート電圧 Vag にV3

[図2]

[図5]

(5)

特開平9-168119

'03 12/25 THU 09:43 FAX 03

(6)

特開平9-168119

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ SKEWED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.