MAX FLOW MIN CUT PROBLEM

Swarup Kr Ghosh

Ford-Fulkerson Algorithm:

Augmenting path	Bottle neck capacity
1. S→A→D→T	MIN(10,8,10)= 8
2. S→ C→D→T	MIN (10, 9, 2) = 2
3. $S \rightarrow C \rightarrow D \rightarrow A \rightarrow B \rightarrow T$	MIN(8, 7, 8, 4,10)=4
4. S→A→D→B→T	MIN(2, 4, 6, 6) = 2
5. S→C→D→B→T	MIN (4,3,4,4)=3

 $Residual \ capacity = capacity - current \ flow$

Problem:

For a given graph which represents a flow network at which every edge has a capacity. Also given two vertices source (S) and sink (T) in the graph. Find the maximum possible flow from S to T subject to the following constraints:

- a. Flow on an edge does not exceed the given capacity of the edge.
- b. In-flow is equal to Out-flow for every vertex except S and T.

Terminology:

- 1. <u>Residual graph:</u> It is a graph which indicates additional possible flow. If there is such path from source to sink then there is a possibility to add flow.
- 2. Residual capacity: It is the original capacity of the edge minus flow.
- 3. <u>Minimal cut:</u> It is also known as bottle neck capacity which decide maximum possible flow from source to sink through the augmenting path.
- 4. Augmenting path: It is defined in two ways:
 - a. Non-full forward edges (Residual capacity >0)
 - b. Non-empty backward edges (Residual capacity =0)

Algorithm: Ford-Fulkerson for Max-Flow Min-Cut

Procedure: FordFulkerson()

<u>Step 1:</u> Start with an initial flow as 0 (FLOW $\leftarrow 0$)

<u>Step 2:</u> While there is an augmenting path from S to T, add two path FLOW to FLOW

Step 3: return (FLOW)

End procedure

Pseudocode: FordFulkerson

Set FLOW = 0

Repeat until there is no path from S to T:

Run Depth First Search (DFS) from source vertex S to find a flow path to end vertex T

Let f be the minimum capacity value on the path

Add f to FLOW

For each edge $u \rightarrow v$ on the path:

Decrease capacity of the edge $c(u \rightarrow v)$ by f

Time Complexity: O (Max_Flow*E)

Drawback:

Iteration	A	В	С	D
0	0	INF	INF	INF
1	0	4	INF	5

2	0	-2	8	5
3	0	-2	8	3
	0	-4	6	3
	0			

B-D-C: total weigh= -2