Лабораторная работа №1

Установка и конфигурация операционной системы на виртуальную машину

Легиньких Г.А.

Российский университет дружбы народов, Москва, Россия

Информация

Докладчик

- Легиньких Галина Андреевна
- НФИбд-02-21
- Российский университет дружбы народов
- 1032216447@pfur.ru
- https://github.com/galeginkikh

Выполнение

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Выполнение лабораторной

работы

Настройка виртуальной

машины

1. Для начала я скачала дистрибутив Rocky с официального сайта.

2. Далее я приступила к созданию виртуальной машины. Указала имя виртуальной машины, тип Linux, RedHat.

Рис. 1: Имя и операционная система виртуальной машины

3. Указала размер основной памяти виртуальной машины и процессор.

Рис. 2: Оборудование

4. Задайте размер диска — $40 \, \Gamma \text{Б}$.

Рис. 3: Виртуальный жёсткий диск

5. Добавила новый привод оптических дисков и выберала образ операционной системы.

Рис. 4: Носители

6. Выберала English в качестве языка интерфейса и перешла к настройкам установки операционной системы.

7. В разделе выбора программ указала в качестве базового окружения Server with GUI , а в качестве дополнения — Development Tools.

10/26

8. Отключите KDUMP.

Рис. 6: KDUMP

9. Включила сетевое соединение и в качестве имени узла указала user.localdomain, где вместо user указала имя своего пользователя в соответствии с соглашением об именовании.

10. Установила пароль для root.

Рис. 8: Root

11. Установила пользователя с правами администратора.

Рис. 9: Пользователь

12. Подключила образ диска дополнений гостевой ОС.

Рис. 10: Гостевая ОС

Домашнее задание

13. Перешла к домашнему заданию. В окне терминала проанализировала последовательность загрузки системы, выполнив команду dmesg.

```
ⅎ
                                     galeginkikh@galeginkikh:~
[galeginkikh@galeginkikh ~]$ dmesg
     0.0000000 Linux version 5.14.0-427.33.1.el9 4.x86 64 (mockbuild@iad1-prod-build@01.bld.egu.rock
vlinux.org) (gcc (GCC) 11.4.1 20231218 (Red Hat 11.4.1-3), GNU ld version 2.35.2-43.el9) #1 SMP PREE
MPT DYNAMIC Wed Aug 28 17:34:59 UTC 2024
     0.000000] The list of certified hardware and cloud instances for Enterprise Linux 9 can be view
ed at the Red Hat Ecosystem Catalog, https://catalog.redhat.com.
     0.000000] Command line: BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.14.0-427.33.1.el9_4.x86_64 root=/dev/
mapper/rl-root ro resume=/dev/mapper/rl-swap rd.lvm.lv=rl/root rd.lvm.lv=rl/swap rhgb quiet
     0.000000] x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point registers'
    0.0000001 x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'
    0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'
    0.0000000] x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]: 256
    0.000000] x86/fpu: Enabled xstate features 0x7, context size is 832 bytes, using 'standard' for
mat.
     0.0000000] signal: max sigframe size: 1776
    0.0000001 BIOS-provided physical RAM map:
     0.000000] BIOS-e820: [mem 0x00000000009fc00-0x00000000009ffff] reserved
    0.000000] BIOS-e820: [mem 0x00000000000f0000-0x000000000fffff] reserved
    0.0000001 BIOS-e820: [mem 0x000000000100000-0x00000000dffeffff] usable
    0.0000001 BIOS-e820: [mem 0x00000000dfff0000-0x0000000dfffffff] ACPI data
    0.0000001 BIOS-e820: [mem 0x00000000fec00000-0x00000000fec00fff] reserved
    0.000000] BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved
    0.000000] BIOS-e820: [mem 0x00000000fffc0000-0x00000000ffffffff] reserved
    0.0000001 BIOS-e820: [mem 0x0000000100000000-0x000000011fffffff] usable
    0.0000001 NX (Execute Disable) protection: active
```

Рис. 11: dmesg

14. Просмотрела вывод команды dmesg | less.

Рис. 12: dmesg | less

- 15. Получила следующую информацию. 1. Версия ядра Linux (Linux version).
- 2. Частота процессора (Detected Mhz processor). 3. Модель процессора (CPU0).
- 4. Объем доступной оперативной памяти (Memory available). 5. Тип обнаруженного гипервизора (Hypervisor detected). 6. Тип файловой системы корневого раздела. 7. Последовательность монтирования файловых систем.

Рис. 13: Версия ядра

```
[galeginkikh@galeginkikh ~]$ dmesg | grep -i "Detected Mhz processor"
[galeginkikh@galeginkikh ~]$ dmesg | grep -i "processor"
[ 0.000009] tsc: Detected 2496.002 MHz processor
[ 0.181697] smpboot: Total of 2 processors activated (9984.00 BogoMIPS)
[ 0.190256] ACPI: Added _OSI(Processor Device)
[ 0.190256] ACPI: Added _OSI(Processor Aggregator Device)
[galeginkikh@galeginkikh ~]$ ■
```

Рис. 14: Частота процессора

```
[galeginkikh@galeginkikh ~]$ dmesg | grep -i "CPUO"
[ 0.180022] smpboot: CPUO: 11th Gen Intel(R) Core(TM) i5-1155G7 @ 2.50GHz (fa
mily: 0x6, model: 0x8c, stepping: 0x2)
[galeginkikh@galeginkikh ~]$
```

Рис. 15: Модель процессора

```
[galeginkikh@galeginkikh ~]$ dmesg | grep -i "Memory available"
[galeginkikh@galeginkikh ~]$ dmesg | grep -i "memory"
[ 0.001127] ACPI: Reserving FACP table memory at [mem 0xdfff00f0-0xdfff01e3]
[ 0.001128] ACPI: Reserving DSDT table memory at [mem 0xdfff020-0xdfff2962]
[ 0.001129] ACPI: Reserving FACS table memory at [mem 0xdfff0200-0xdfff023f]
[ 0.001139] ACPI: Reserving FACS table memory at [mem 0xdfff0200-0xdfff023f]
[ 0.001130] ACPI: Reserving APIC table memory at [mem 0xdfff0240-0xdfff029b]
[ 0.001130] ACPI: Reserving SSDT table memory at [mem 0xdfff0240-0xdfff060b]
[ 0.001396] Early memory node ranges
[ 0.012270] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x0000 ffff]
```

Рис. 16: Объем доступной оперативной памяти

```
[galeginkikh@galeginkikh ~]$ dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
```

Рис. 17: Тип обнаруженного гипервизора

```
[galeginkikh@galeginkikh ~]$ df -Th
Filesystem
                              Size Used Avail Use% Mounted on
                    Type
devtmpfs
                    devtmpfs 4.0M
                                          4.0M
                                                 0% /dev
tmpfs
                    tmpfs
                              2.0G
                                         2.0G
                                                 0% /dev/shm
tmpfs
                    tmpfs
                              784M
                                   9.2M
                                          774M
                                                 2% /run
/dev/mapper/rl-root xfs
                               35G
                                   5.2G
                                           30G
                                                15% /
/dev/sda1
                                    272M
                                          689M
                              960M
                                                29% /boot
tmpfs
                    tmpfs
                              392M
                                    108K
                                          392M
                                                 1% /run/user/1000
/dev/sr0
                    iso9660
                                     51M
                                             0 100% /run/media/galeginkikh/VBox
GAs_7.0.12
[galeginkikh@galeginkikh ~]$
```

Рис. 18: Тип файловой системы корневого раздела

```
[galeginkikh@galeginkikh ~ls mount
proc on /proc type proc (rw.nosuid.nodev.noexec.relatime)
sysfs on /sys type sysfs (rw.nosuid.nodev.noexec.relatime.seclabel)
devimpfs on /dev_type_devimpfs (rw.nosuid.seclabel.size=4096k.nr inodes=493252.m
ode=755.inode64)
securityfs on /sys/kernel/security type securityfs (rw.nosuid.nodey.noexec.relat
ime)
tmpfs on /dev/shm type tmpfs (rw.nosuid.nodev.seclabel.inode64)
devpts on /dev/pts type devpts (rw.nosuid.noexec.relatime.seclabel.gid=5.mode=62
0.ptmxmode=000)
tmpfs on /run type tmpfs (rw.nosuid.nodev.seclabel.size=801936k.nr_inodes=819200
,mode=755,inode64)
cgroup2 on /sys/fs/cgroup type cgroup2 (rw.nosuid.nodev.noexec.relatime.seclabel
.nsdelegate.memory recursiveprot)
pstore on /sys/fs/pstore type pstore (rw.nosuid.nodev.noexec.relatime.seclabel)
bpf on /sys/fs/bpf type bpf (rw.nosuid.nodev.noexec.relatime.mode=700)
/dev/mapper/rl-root on / type xfs (rw.relatime.seclabel.attr2.inode64.logbufs=8.
logbsize=32k.noguota)
selinuxfs on /sys/fs/selinux type selinuxfs (rw,nosuid,noexec,relatime)
systemd-1 on /proc/sys/fs/binfmt misc type autofs (rw.relatime.fd=29.pgrp=1.time
out=0.minproto=5.maxproto=5.direct.pipe ino=19483)
```

Рис. 19: Последовательность монтирования файловых систем

Вывод

Вывод

Приобрела практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.