Importing Libraries

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
```

Loading the Datasets

Out[4]:		Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
	0	1	337	118	4	4.5	4.5	9.65	1	0.92
	1	2	324	107	4	4.0	4.5	8.87	1	0.76
	2	3	316	104	3	3.0	3.5	8.00	1	0.72
	3	4	322	110	3	3.5	2.5	8.67	1	0.80
	4	5	314	103	2	2.0	3.0	8.21	0	0.65
	•••									
	395	396	324	110	3	3.5	3.5	9.04	1	0.82
	396	397	325	107	3	3.0	3.5	9.11	1	0.84
	397	398	330	116	4	5.0	4.5	9.45	1	0.91
	398	399	312	103	3	3.5	4.0	8.78	0	0.67
	399	400	333	117	4	5.0	4.0	9.66	1	0.95

400 rows × 9 columns

Training and Testing the Model

In [10]:

y train

```
In [7]:
         x=data.drop(['Chance of Admit '],axis=1) #input data set
         y=data['Chance of Admit '] #output Labels
In [8]:
         from sklearn.model selection import train test split
         x train, x test, y train, y test = train test split(x, y, test size=0.15)
In [9]:
         x_train
              Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA Research
Out[9]:
         155
                   156
                              312
                                          109
                                                                3.0
                                                                     3.0
                                                                           8.69
                                                                                      0
         254
                   255
                              321
                                          114
                                                                4.0
                                                                     5.0
                                                                         9.12
                                                                                      0
         260
                   261
                              327
                                                                5.0
                                                                     3.5
                                                                          9.13
                                          108
                                                                                      1
         257
                   258
                              324
                                                                4.0
                                                                     5.0
                                                                          8.64
                                          100
         181
                   182
                              305
                                          107
                                                                2.5
                                                                     2.5
                                                                           8.42
                                                                                      0
         326
                   327
                              299
                                                                     2.0
                                                                           8.02
                                          100
                                                                2.0
                                                                                      0
         145
                   146
                              320
                                          113
                                                                2.0
                                                                     2.5
                                                                          8.64
          22
                    23
                              328
                                          116
                                                                5.0
                                                                     5.0
                                                                          9.50
          18
                    19
                              318
                                          110
                                                                4.0
                                                                     3.0
                                                                           8.80
                                                                                      0
          43
                    44
                              332
                                          117
                                                            4 4.5
                                                                    4.0
                                                                          9.10
                                                                                      0
        340 rows × 8 columns
```

Out[10]: 155 0.77 254 0.85 260 0.87 0.78 257 181 0.71 . . . 326 0.63 145 0.81 22 0.94 18 0.63 43 0.87 Name: Chance of Admit , Length: 340, dtype: float64

In [11]: x_test

Out[11]:

[1]:		Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research
	121	122	334	119	5	4.5	4.5	9.48	1
	199	200	313	107	3	4.0	4.5	8.69	0
	365	366	330	114	4	4.5	3.0	9.17	1
	87	88	317	107	2	3.5	3.0	8.28	0
	175	176	320	111	4	4.5	3.5	8.87	1
	317	318	300	99	1	1.0	2.5	8.01	0
	47	48	339	119	5	4.5	4.0	9.70	0
	28	29	295	93	1	2.0	2.0	7.20	0
	30	31	300	97	2	3.0	3.0	8.10	1
	102	103	314	106	2	4.0	3.5	8.25	0
	385	386	335	117	5	5.0	5.0	9.82	1
	337	338	332	118	5	5.0	5.0	9.47	1
	206	207	315	99	2	3.5	3.0	7.89	0
	316	317	298	101	2	1.5	2.0	7.86	0
	62	63	304	105	2	3.0	3.0	8.20	1

174	175	321	111	4	4.0	4.0	8.97	1
319	320	327	113	4	3.5	3.0	8.69	1
190	191	324	111	5	4.5	4.0	9.16	1
220	221	313	103	3	4.0	4.0	8.75	0
168	169	293	97	2	2.0	4.0	7.80	1
65	66	325	112	4	3.5	3.5	8.92	0
49	50	327	111	4	3.0	4.0	8.40	1
330	331	327	113	3	3.5	3.0	8.66	1
165	166	322	110	5	4.5	4.0	8.97	0
204	205	298	105	3	3.5	4.0	8.54	0
89	90	316	109	4	4.5	3.5	8.76	1
202	203	340	120	5	4.5	4.5	9.91	1
157	158	309	104	2	2.0	2.5	8.26	0
184	185	316	106	2	2.5	4.0	8.32	0
12	13	328	112	4	4.0	4.5	9.10	1
221	222	316	110	3	3.5	4.0	8.56	0
250	251	320	104	3	3.0	2.5	8.57	1
308	309	312	108	3	3.5	3.0	8.53	0
111	112	321	109	4	4.0	4.0	8.68	1
272	273	294	95	1	1.5	1.5	7.64	0
143	144	340	120	4	4.5	4.0	9.92	1
314	315	305	105	2	3.0	4.0	8.13	0
163	164	317	105	3	3.5	3.0	8.56	0
214	215	331	117	4	4.5	5.0	9.42	1
0	1	337	118	4	4.5	4.5	9.65	1
61	62	307	101	3	4.0	3.0	8.20	0

348	349	302	99	1	2.0	2.0	7.25	0
183	184	314	110	3	4.0	4.0	8.80	0
277	278	320	101	2	2.5	3.0	8.62	0
307	308	325	112	4	4.0	4.0	9.00	1
17	18	319	106	3	4.0	3.0	8.00	1
82	83	320	110	5	5.0	4.5	9.22	1
301	302	319	108	2	2.5	3.0	8.76	0
350	351	318	107	3	3.0	3.5	8.27	1
38	39	304	105	1	3.0	1.5	7.50	0
201	202	315	110	2	3.5	3.0	8.46	1
259	260	331	119	4	5.0	4.5	9.34	1
291	292	300	102	2	1.5	2.0	7.87	0
41	42	316	105	2	2.5	2.5	8.20	1
116	117	299	102	3	4.0	3.5	8.62	0
299	300	305	112	3	3.0	3.5	8.65	0
188	189	331	115	5	4.5	3.5	9.36	1
269	270	308	108	4	4.5	5.0	8.34	0
129	130	333	118	5	5.0	5.0	9.35	1
320	321	317	106	3	4.0	3.5	8.50	1

In [12]:

y_test

Out[12]: **121**

121 0.94

199 0.72

365 0.86

87 **0.66**

175 0.85

317 0.58 47 0.89

27	0.46
30	0.65
102	0.62
385	0.96
337	0.94
206	0.63
316	0.54
62	0.54
174	0.87
319	0.80
190	0.90
220	0.76
168	0.64
65	
49	0.55 0.78
330	0.80
165	0.78
204	0.69
89	0.74
202	0.97
157	0.65
184	0.72
12	0.78
221	0.75
250	0.74
308	0.69
111	0.69
272	0.49
143	0.97
314	0.66
163	0.68
214	0.94
9	0.92
61	0.47
348	0.57
183	0.75
277	0.70
307	0.80
17	0.65
82	0.92
301	0.66
350	0.74
38 201	0.52 0.72
∠Ø.T	0.72

```
259
       0.90
291
      0.56
41
       0.49
116
      0.56
299
      0.71
188
      0.93
269
      0.77
129
      0.92
320
      0.75
Name: Chance of Admit, dtype: float64
```

Model Evaluation

```
In [13]:
          from sklearn.ensemble import GradientBoostingRegressor
          model = GradientBoostingRegressor()
          model.fit(x train,y train)
Out[13]: GradientBoostingRegressor()
In [14]:
          model.score(x test,y test)
Out[14]: 0.9001495780119302
In [16]:
          y predict=model.predict(x test)
In [17]:
          from sklearn.metrics import mean squared error, r2 score,mean absolute error
          import numpy as np
          print('Mean Absolute Error:', mean absolute error(y test, y predict))
          print('Mean Squared Error:', mean squared error(y test, y predict))
          print('Root Mean Squared Error:', np.sqrt(mean squared error(y test, y predict)))
          Mean Absolute Error: 0.03203649015083984
          Mean Squared Error: 0.0019843024735634158
          Root Mean Squared Error: 0.044545510139220715
In [18]:
          y_train = (y_train>0.5)
```