树宽不超过 4 的图的路分解问题

答辩人: 易妮萍

导师: 吕长虹 教授

2021年5月16日

内容提要

- 基本概念
- ② Gallai 猜想及相关问题的研究现状
- ③ 主要结果及其证明思路

基本概念

k- 树

- $\bullet K_k \in \mathscr{F};$
- ② 若 $G\ncong K_k$, 存在 $v\in V(G)$, 使得 $G-v\in\mathscr{F}$, 且 $G[N(v)]\cong K_k$, 则 $G\in\mathscr{F}$.

若 $G \in \mathcal{F}$, 我们称 G 为 k- 树 (k-tree).

极点

图 G 为 k-树, $G \ncong K_k$, $v \in V(G)$, d(v) = k,则称 v 为 G 的极点 (Terminal).

基本概念

k- 树

- $\bullet K_k \in \mathscr{F};$
- ② 若 $G \ncong K_k$,存在 $v \in V(G)$,使得 $G v \in \mathscr{F}$,且 $G[N(v)] \cong K_k$,则 $G \in \mathscr{F}$.

若 $G \in \mathcal{F}$, 我们称 G 为 k- 树 (k-tree).

偏 k- 树

若图 G 为 k- 树, $H \subseteq G$,则称 H 为偏 k- 树 (Partial k-tree),G 为 H 的 k- 底树 (Underlying k-tree).

→ 树宽不超过 k 的图就是偏 k- 树

4- 树

偏 4-树

基本概念

性质

- 若图 G 是 k- 树, $|V(G)| \ge k+2$,那么 G 至少有两个极点.
- 若图 G 是 k- 树, |V(G)| ≥ k+2,, 那么 G 中任意两个极点是不相邻的.
- 若图 G 是偏 k- 树, |V(G)| ≥ k, 则存在 k- 底树 G*, 使得 G 包含 G* 的每个极点.

• $\mathbf{a} k - \mathbf{d} G$ 的极点就是 G 的最小 $k - \mathbf{d} G$ 的极点就是

基本概念

- 路分解: ② = {G₁, G₂, ..., G_k} 为 G 的一个分解, G_i(i = 1, ..., k)
 为路, 则称 ② 为 G 的路分解.
- 路圈分解: ② = {G₁, G₂, ..., G_k} 为 G 的一个分解,
 G_i(i = 1, ..., k) 为路或者圈,则称 ② 为 G 的路圈分解.
- 最小路分解数: $pn(G) = min\{|\mathcal{D}||\mathcal{D}|$ 为 G 的路分解}.
 - $\frac{\Delta(G)}{2} \le pn(G) \le |E(G)|$.
- 最小路圈分解数: $pc(G) = min\{|\mathcal{D}||\mathcal{D}|$ 为 G 的路圈分解 $\}$.

路分解

•
$$pn(K_5) = 3$$

- 1 基本概念
- ② Gallai 猜想及相关问题的研究现状
- ③ 主要结果及其证明思路

猜想 (Gallai,1966)

若 G 为 n 个点的连通图,则 $pn(G) \leq \lceil \frac{n}{2} \rceil$.

pc(G) ≤ ⌊ⁿ/₂⌋. (Lovász,1968)
 思路一: 将圈分为路

猜想 (Gallai,1966)

- $pc(G) \leq \lfloor \frac{n}{2} \rfloor$. (Lovász,1968)
 - 思路一: 将圈分为路
 - 若图 G 有 u 个奇点,g 个偶点, $g \ge 1$,则有

$$pn(G) \le \frac{u}{2} + g - 1$$

猜想 (Gallai,1966)

若 G 为 n 个点的连通图,则 $pn(G) \leq \lceil \frac{n}{2} \rceil$.

- $pc(G) \leq \lfloor \frac{n}{2} \rfloor$. (Lovász,1968)
 - 思路一: 将圈分为路
 - 若图 G 有 u 个奇点, g 个偶点, $g \ge 1$, 则有

$$pn(G) \le \frac{u}{2} + g - 1$$

• $pn(G) \leq \lfloor \frac{3}{4}n \rfloor$.(Donald,1980)

猜想 (Gallai,1966)

- $pc(G) \leq \lfloor \frac{n}{2} \rfloor$. (Lovász,1968)
 - 思路一: 将圈分为路
 - 若图 G 有 u 个奇点,g 个偶点, $g \ge 1$,则有

$$pn(G) \le \frac{u}{2} + g - 1$$

- $pn(G) \le \lfloor \frac{3}{4}n \rfloor$.(Donald,1980)
- $pn(G) \leq \lfloor \frac{2}{3}n \rfloor$. (Dean 和 Kouider,2000)

若 G 为 n 个点的连通图,则 $pn(G) \leq \lceil \frac{n}{2} \rceil$.

• $pc(G) \leq \lfloor \frac{n}{2} \rfloor$. (Lovász,1968)

思路二: 考虑 G_E 的结构 (G_E 表示图 G 中偶点的诱导子图)

- $pc(G) \leq \lfloor \frac{n}{2} \rfloor$. (Lovász,1968)
 - 思路二: 考虑 G_E 的结构 (G_E 表示图 G 中偶点的诱导子图)
 - 若 $|V(G_E)| \leq 1$, Gallai 猜想成立.

- $pc(G) \leq \lfloor \frac{n}{2} \rfloor$. (Lovász,1968)
 - 思路二: 考虑 G_E 的结构 (G_E 表示图 G 中偶点的诱导子图)
 - 若 $|V(G_E)| \leq 1$, Gallai 猜想成立.
- 若 G_E 为森林,则 $pn(G) \leq \lfloor \frac{n}{2} \rfloor$. (Pyber,1996)

- $pc(G) \leq \lfloor \frac{n}{2} \rfloor$. (Lovász,1968) 思路二:考虑 G_E 的结构 (G_E 表示图 G 中偶点的诱导子图)
 - 若 $|V(G_E)| \leq 1$, Gallai 猜想成立.
- 若 G_E 为森林,则 $pn(G) \leq \lfloor \frac{n}{2} \rfloor$. (Pyber,1996)
- 若 G_E 中的每个区块是 $\Delta-free$, 且最大度不超过 3,则有 $pn(G) \leq \lfloor \frac{n}{2} \rfloor$. (范更华,2005)

- $pc(G) \leq \lfloor \frac{n}{2} \rfloor$. (Lovász,1968) 思路二:考虑 G_E 的结构 (G_E 表示图 G 中偶点的诱导子图)
 - 若 $|V(G_E)| \leq 1$, Gallai 猜想成立.
- 若 G_E 为森林,则 $pn(G) \leq \lfloor \frac{n}{2} \rfloor$. (Pyber,1996)
- 若 G_E 中的每个区块是 $\Delta free$, 且最大度不超过 3,则有 $pn(G) \leq \lfloor \frac{n}{2} \rfloor$. (范更华,2005)
- 若 G_E 中不存在两个三角形共用一个点,则 $pn(G) \leq \lceil \frac{n}{2} \rceil$. (范更 华等,2020)

若 G 为 n 个点的连通图,则 $pn(G) \leq \lceil \frac{n}{2} \rceil$.

- $pc(G) \leq \lfloor \frac{n}{2} \rfloor$. (Lovász,1968) 思路二:考虑 G_E 的结构 (G_E 表示图 G 中偶点的诱导子图)
 - 若 $|V(G_E)| \leq 1$, Gallai 猜想成立.
- 若 G_E 为森林,则 $pn(G) \leq \lfloor \frac{n}{2} \rfloor$. (Pyber,1996)
- 若 G_E 中的每个区块是 $\Delta-free$, 且最大度不超过 3,则有 $pn(G) \leq \lfloor \frac{n}{2} \rfloor$. (范更华,2005)
- 若 G_E 中不存在两个三角形共用一个点,则 $pn(G) \leq \lceil \frac{n}{2} \rceil$. (范更华等,2020)

最大度至多为 5 的图 (Botler 和 Perrett,2019), $\Delta-free$ 的平面图 (Botler 等,2019),6-正则二部图 (范更华等, 2020) 等是满足 Gallai 猜想的.

猜想 (Gallai,1966)

连通图 G 的最小路分解数 $pn(G) \leq \lceil \frac{n}{2} \rceil$.

- 树宽为1的图为树,树宽为1的图是满足 Gallai 猜想的.
- Gallai 猜想对于树宽不超过 2 的图是成立的. (Kindermann, Schlipf 和 Schulz,2019)
- 若图 G 的树宽不超过 3,则 G 为 Gallai 图或者同构于 K_3 或 K_5^- . (Botler,Sambinelli,2019)

(若图 G 满足 $pn(G) \leq \lfloor \frac{n}{2} \rfloor$, 则称 G 为 Gallai 图)

- 基本概念
- ② Gallai 猜想及相关问题的研究现状
- ③ 主要结果及其证明思路

主要结果

主要结果

若图 G 的树宽不超过 4,则 G 为 Gallai 图或者同构于 K_3 , K_5^- 或 K_5 .

证明思路

主要结果

若图 G 的树宽不超过 4, 则 G 为 Gallai 图或者同构于 K_3 , K_5^- 或 K_5 .

- 存在 $FRS\mathscr{P} = \{P, \mathscr{A}, \mathscr{L}\}$ 使得极点 u, v 为孤立点;
 - G_𝒯 为 Gallai 图;
 - G_𝒯 同构于 K₃, K₅⁻ 或 K₅.
- 不存在 $FRS\mathscr{P} = \{P, \mathscr{A}, \mathscr{L}\}$ 使得极点 u, v 为孤立点.

• FRS(Feasible Reducing Scheme,可行约化概型)

 ${\color{red} \underline{\$}} \colon \mathit{FRS}\,\mathscr{P} = \{\mathit{P}, \{\mathit{vx}\}, \{\mathit{buc}\}\}$

FRS

FRS

• $pn(G) \leq pn(G_{\mathscr{P}}) + 1$

证明思路

• 不存在 $FRS\mathcal{P} = \{P, \mathcal{A}, \mathcal{L}\}$ 使得极点 u, v 为孤立点

定理

若 G 存在 $FRS\mathcal{H} = \{H, \mathcal{A}, \mathcal{L}\}$, 则有 $pn(G) \leq pn(G_{\mathcal{H}}) + pn(H)$.

- 若 G_ℋ 为 Gallai 图,则 G 为 Gallai 图.
- 还需讨论 $G_{\mathcal{H}}$ 同构于 K_3 , K_5^- 或 K_5 的情况.

引理(具体说明及证明可参见论文 3-7 页)

- 若图 G 可分解为路 P 和圈 C, 其中 P 至多包含 C 的一条弦,则
 G 可分解为两条路,并且这两条路中只有一条路包含 C 中的一条边.
- 若图 G 可分解为路 P 和长度为 5 的圈 C, 其中 P 至多包含 C 的
 三条弦,则 pn(G) = 2.
- ◆ 若图 G 可以借由对 K₅ 中的两条边进行细分操作得到,则
 pn(G) = 2.
- ◆ 若图 H 可以借由对 K₅ 中的一条边进行细分操作得到,图 G 能被分解为路 P 和图 H,则 pn(G) = 3.

引理(具体说明及证明可参见论文 3-7 页)

- 若图 H 为图 G 的 r- 约化子图,且 C₃⁰ = C₅⁰ = ∅,则有
 H' = H + ∪_{C∈C₃^H∪C₅^HC} 为图 G 的 r + |C₃^H| + 2|C₅^H|-约化子图,并且 G E(H') 的连通分支均不同构于 K₃, K₅⁻ 或 K₅.
- 若 P 为图 G 中的路, x, v, y ∈ V(G), {x, v, y} ∩ V(P) ≠ ∅, 令
 G' = (G E(P)) + xvy, v 为 G' 中的孤立点,又 G' 至少有两个孤立点,G' 的每个连通分支是 Gallai 图或同构于 K3 或 K₅, K₅, 那么 G 中有约化子图.
- 若 P 为图 G 中的路, x, v, y, a, u, b ∈ V(G), v ≠ u,
 {x, v, y} ∩ V(P) ≠ Ø, {a, u, b} ∩ V(P) ≠ Ø, 且 |{a, b} ∩ N(v)| ≤ 1,
 |{x, y} ∩ N(u)| ≤ 1, 令 G' = (G E(P)) + xvy + aub, u, v 为 G'
 中的孤立点,并且 G' 的每个连通分支是 Gallai 图或同构于 K₃ 或 K₅ , K₅, 那么 G 中有约化子图.

证明思路

- 不存在 FRSP = {P, A, L}
 使得极点 u, v 为孤立点
 - 极点的度数均为 3;
 - 每个极点的邻居的诱导子图
 为 K₃;
 - 每对极点有公共邻居 {a, b};
 - a, b 为奇点;
 - {a,b} 为 G 的割点集.

证明思路

- 不存在 FRSP = {P, A, L}
 使得极点 u, v 为孤立点
 - 极点的度数均为 3;
 - 每个极点的邻居的诱导子图
 为 K₃;
 - 每对极点有公共邻居 {a, b};
 - a, b 为奇点;
 - {a,b} 为 G 的割点集.

证明思路

- 不存在 FRSP = {P, A, L}
 使得极点 u, v 为孤立点
 - 极点的度数均为 3;
 - 每个极点的邻居的诱导子图
 为 K₃;
 - 每对极点有公共邻居 {a,b};
 - a, b 为奇点;
 - {a,b} 为 G 的割点集.

证明思路

- 不存在 FRSP = {P, A, L}
 使得极点 u, v 为孤立点
 - 极点的度数均为 3;
 - 每个极点的邻居的诱导子图
 为 K₃;
 - 每对极点有公共邻居 {a, b};
 - a, b 为奇点;
 - {a,b} 为 G 的割点集.

偏 3-树

偏 4-树

• 不存在 $FRS\mathscr{P} = \{P, \mathscr{A}, \mathscr{L}\}$ 使得极点 u, v 为孤立点

主要想法: 寻找同一连通分支的度数不超过 4 的,非 G 中极点的点,并且这个点的邻居的诱导子图为 K_4 .

• 不存在 $FRS\mathscr{P} = \{P, \mathscr{A}, \mathscr{L}\}$ 使得极点 u, v 为孤立点

主要想法: 寻找同一连通分支的度数不超过 4 的,非 G 中极点的点,并且这个点的邻居的诱导子图为 K_4 .

• G^* 为 G 的 k- 底树, $G^* = T_2 \vee K_2$, $T_2 = G - a - b$, T_2 为 2 - 树.

 $(每对极点有两个公共邻居 <math>\{a,b\})$

• 不存在 $FRS\mathcal{P} = \{P, \mathcal{A}, \mathcal{L}\}$ 使得极点 u, v 为孤立点 主要想法: 寻找同一连通分支的度数不超过 4 的,非 G 中极点的 点,并且这个点的邻居的诱导子图为 K_{λ} .

G* 为 G 的 k- 底树, G* = T₂ ∨ K₂, T₂ = G-a-b, T₂ 为 2- 树.
 (每对极点有两个公共邻居 {a,b})

• G-a-b 中的每个连通分支只有一个极点.

- 不存在 FRS𝒯 = {P, 𝒜, ℒ} 使得极点 u, v 为孤立点
 主要想法: 寻找同一连通分支的度数不超过 4 的, 非 G 中极点的点, 并且这个点的邻居的诱导子图为 K₄.
 - G* 为 G 的 k- 底树, G* = T₂ ∨ K₂, T₂ = G-a-b, T₂ 为 2- 树.
 (每对极点有两个公共邻居 {a,b})
 - G-a-b 中的每个连通分支只有一个极点.
 - G₁ 为 G a b 的一个连通分支, G₁ 为偏 2- 树, G₁ 至少有两个
 度数不超过 2 的点,其中必有一个点不为 G 中的极点,设为 v₁.

- 不存在 $FRS\mathcal{P} = \{P, \mathcal{A}, \mathcal{L}\}$ 使得极点 u, v 为孤立点 主要想法: 寻找同一连通分支的度数不超过 4 的,非 G 中极点的 点,并且这个点的邻居的诱导子图为 K_4 .
 - G* 为 G 的 k- 底树, G* = T₂ ∨ K₂, T₂ = G-a-b, T₂ 为 2- 树.
 (每对极点有两个公共邻居 {a,b})
 - G a b 中的每个连通分支只有一个极点.
 - G₁ 为 G a b 的一个连通分支, G₁ 为偏 2- 树, G₁ 至少有两个
 度数不超过 2 的点,其中必有一个点不为 G 中的极点,设为 v₁.
 - 由 $G^* = T_2 \vee K_2$, G_1 为偏 2- 树, 可得 $N(v_1) \cong K_4$.

- 不存在 FRS P = {P, A, L} 使得极点 u, v 为孤立点
 主要想法: 寻找同一连通分支的度数不超过 4 的, 非 G 中极点的点, 并且这个点的邻居的诱导子图为 K₄.
 - G* 为 G 的 k- 底树, G* = T₂ ∨ K₂, T₂ = G-a-b, T₂ 为 2- 树.
 (每对极点有两个公共邻居 {a, b})
 - G-a-b 中的每个连通分支只有一个极点.
 - G₁ 为 G a b 的一个连通分支, G₁ 为偏 2- 树, G₁ 至少有两个
 度数不超过 2 的点,其中必有一个点不为 G 中的极点,设为 v₁.
 - 由 $G^* = T_2 \vee K_2$, G_1 为偏 2- 树, 可得 $N(v_1) \cong K_4$.
 - 两个度数不超过 4 的点在同一分支,且在 G^* 中的诱导子图为 K_4 , 跟前面的证明方法类似,可找到 FRS.

偏 4-树

F. Botler, M. Sambinelli .

Gallai's conjecture for graphs with treewidth 3[J]. Electronic Notes in Discrete Mathematics, 2017, 62, 147-152.

F. Botler, A. Jiménez, and M. Sambinelli.

Gallai's path decomposition conjecture for triangle-free planar graphs[J].

Discrete Mathematics, 2019, 342(5), 1403-1414.

N. Dean, M. Kouider.

Gallai's conjecture for disconnected graphs[J]. Discrete Math, 2000, 213, 43–54.

偏 4-树

L. Pyber.

Covering the edges of a connected graph by paths[J]. Journal of combinatorial theory, 1996, 66(1), 152-159.

G. Fan.

Path decompositions and gallai's conjecture[J]. Journal of combinatorial theory, 2005, 93 (2), 117–125.

谢谢! Thank you!