Análise exploratória de dados

Sara Mortara, Andrea Sanchez-Tapia, Diogo S. S. Rocha

aula 5

sobre a aula

- 1. análise exploratória de dados
- 2. estatísticas descritivas
- 3. gráficos
- 4. relações entre variáveis
- 5. extra: PCA & regressão linear

1. análise exploratória de dados (AED)

a vida sem análise exploratória de dados

Explanatory Data Analysis de John Tukey

conheça seus dados!

1. controlar a qualidade dos dados

- 1. controlar a qualidade dos dados
- 2. sugerir hipóteses para os padrões observados

- 1. controlar a qualidade dos dados
- 2. sugerir hipóteses para os padrões observados
- 3. apoiar a escolha dos procedimentos estatísticos de testes de hipótese

- 1. controlar a qualidade dos dados
- 2. sugerir hipóteses para os padrões observados
- apoiar a escolha dos procedimentos estatísticos de testes de hipótese
- 4. avaliar se os dados atendem às premissas dos procedimentos estatísticos escolhidos

- 1. controlar a qualidade dos dados
- 2. sugerir hipóteses para os padrões observados
- apoiar a escolha dos procedimentos estatísticos de testes de hipótese
- 4. avaliar se os dados atendem às premissas dos procedimentos estatísticos escolhidos
- 5. indicar novos estudos e hipóteses

alerta!

análise exploratória não é tortura de dados

"If you don't reveal some insights soon, I'm going to be forced to slice, dice, and drill!"

alerta!

análise exploratória não é tortura de dados

"If you don't reveal some insights soon, I'm going to be forced to slice, dice, and drill!"

assume-se que pesquisador(a) formulou *a priori* **hipóteses** plausíveis amparadas pela **teoria**

dicas

▶ pode levar entre 20 e 50% do tempo das análises

dicas

- ▶ pode levar entre 20 e 50% do tempo das análises
- deve ser iniciada ainda durante a coleta de dados

dicas

- ▶ pode levar entre 20 e 50% do tempo das análises
- deve ser iniciada ainda durante a coleta de dados
- utiliza-se largamente técnicas visuais

importânica do gráfico e quarteto de Anscombe

- criado pelo matemático Francis Ascombe
- 4 conjuntos de dados com as mesmas estatísticas descritivas, mas muito diferentes graficamente

os dados de Anscombe

```
# claro que o conjunto já existe dentro do R
data("anscombe")
# média dos dados
apply(anscombe, 2, mean)
               x2 x3 x4 y1 y2 y3
       x1
## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
# variância dos dados
apply(anscombe, 2, var)
##
                x2
                         x3 x4
        x1
                                          v1
## 11.000000 11.000000 11.000000 11.000000 4.127269 4.127629 4.122620
##
        y4
## 4.123249
```

vamos olhar para os dados

##		x1	x2	xЗ	x4	у1	у2	у3	y 4
##	1	10	10	10	8	8.04	9.14	7.46	6.58
##	2	8	8	8	8	6.95	8.14	6.77	5.76
##	3	13	13	13	8	7.58	8.74	12.74	7.71
##	4	9	9	9	8	8.81	8.77	7.11	8.84
##	5	11	11	11	8	8.33	9.26	7.81	8.47
##	6	14	14		_	9.96	8.10	8.84	7.04
##	7	6	6	6	8	7.24	6.13	6.08	5.25
##	8	4	4	4	19	4.26	3.10	5.39	12.50
##	9	12	12	12	8	10.84	9.13	8.15	5.56
##	10	7	7	7	8	4.82	7.26	6.42	7.91
##	11	5	5	5	8	5.68	4.74	5.73	6.89

correlação entre x e y

```
# correlação
cor(anscombe$x1, anscombe$y1)
## [1] 0.8164205
cor(anscombe$x2, anscombe$y2)
## [1] 0.8162365
cor(anscombe$x3, anscombe$y3)
## [1] 0.8162867
cor(anscombe$x4, anscombe$y4)
## [1] 0.8165214
```

coeficientes da regressão linear de x e y

```
# coeficientes da regressão
coef(lm(anscombe$y1 ~ anscombe$x1))
## (Intercept) anscombe$x1
    3.0000909 0.5000909
##
coef(lm(anscombe$y2 ~ anscombe$x2))
## (Intercept) anscombe$x2
      3.000909
##
                 0.500000
coef(lm(anscombe$v3 ~ anscombe$x3))
## (Intercept) anscombe$x3
    3.0024545 0.4997273
##
coef(lm(anscombe$y4 ~ anscombe$x4))
## (Intercept) anscombe$x4
##
    3.0017273 0.4999091
```

agora sim vamos olhar para os dados do Anscombe

perguntas que nos devemos fazer

- Onde os dados estão centrados? Como os dados estão distribuídos? Os dados são simétricos, assimétricos, bimodais?
- 2. Existem outliers?
- 3. As variáveis seguem uma distribuição normal?
- 4. Existem relações entre as variáveis? As relações entre variáveis são lineares?
- 5. As variáveis precisam ser transformadas?
- 6. O esforço amostral foi o mesmo para cada observação ou variável?

conferência de dados no R

```
# lendo os dados da idade da população que usa fraldas
#fraldas <- read.csv("../data/idade_fraldas.csv")
```

3. gráficos

4. relações entre variáveis

5. extra: PCA & regressão linear