Вариант #49

Часть 1

Ответами к заданиям 1-20 являются число или последовательность цифр. Ответ запишите в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерения физических величин писать не нужно.

1

На рисунке представлен график зависимости υ , м/с модуля скорости υ тела от времени ι . Найдите путь, пройденный телом за время от 0 до 12 с.

Ответ: м

2

При исследовании зависимости модуля силы трения скольжения $\vec{F}_{\rm rp}$ от модуля нормальной составляющей силы реакции опоры \vec{N} были получены следующие данные.

$F_{\rm rp}$, H	0,8	1,6	2,4	3,2
<i>N</i> , H	2,0	4,0	6,0	8,0

Определите по результатам исследования коэффициент трения скольжения.

Ответ: _____

3

Тело движется в инерциальной системе отсчёта по прямой в одном направлении. При этом равнодействующая всех сил, действующих на тело, постоянна и равна по модулю 8 H. Каков модуль изменения импульса тела за 4 с?

Ответ: _____ $\kappa \Gamma \cdot M/c$

4

Медный кубик, подвешенный на нити, полностью погружён в воду и не касается дна сосуда. Ребро кубика равно 3 см. Определите силу Архимеда, действующую на кубик.

Ответ: Н

5

Небольшой груз, покоящийся на гладком горизонтальном столе, соединён пружиной со стенкой. Груз немного смещают от положения равновесия вдоль оси пружины и отпускают из состояния покоя, после чего он начинает колебаться, двигаясь вдоль оси пружины, вдоль которой направлена ось Ox. В таблице приведены значения координаты груза x в различные моменты времени t. Выберите все верные утверждения о результатах этого опыта на основании данных, содержащихся в таблице.

t, c	0,0	0,2	0,4	0,6	0,8	1,0	1,2	1,4	1,6
х, см	4,0	2,8	0,0	-2,8	-4,0	-2,8	0,0	2,8	4,0

- 1) В момент времени 0,8 с модуль ускорения груза минимален.
- 2) Период колебаний груза равен 1,6 с.
- 3) Частота колебаний груза равна 0,25 Гц.
- 4) В момент времени 0,4 с кинетическая энергия груза максимальна.
- 5) Модули сил, с которыми пружина действует на груз, в момент времени 0,2 с и в момент времени 0,8 с равны.

Ответ:

После удара в момент времени t=0 шайба начала скользить вверх по гладкой наклонной плоскости с начальной скоростью \vec{v}_0 , как показано на рисунке. В момент времени t_0 шайба вернулась в исходное положение. Графики А и Б отображают изменение с течением времени физических величин, характеризующих движение шайбы.

Установите соответствие между графиками и физическими величинами, изменение которых со временем эти графики могут отображать.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ГРАФИКИ

$0 \xrightarrow{t_0} t$

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- 1) проекция скорости v_x
- 2) проекция ускорения a_x
- 3) кинетическая энергия E_{κ}
- 4) полная механическая энергия $E_{\rm mex}$

Ответ:

7

В сосуде содержится разреженный аргон, абсолютная температура которого равна 150 К. Концентрацию аргона уменьшили в 2 раза, при этом его давление увеличилось в 3 раза. Определите абсолютную температуру газа в конечном равновесном состоянии.

Ответ: К

8

Газ в сосуде сжали, совершив работу, равную 500 Дж. Внутренняя энергия газа при этом увеличилась на 350 Дж. Какое количество теплоты отдал газ окружающей среде?

Ответ: _____ Дж

9

На рисунке представлены графики зависимости температуры t двух тел одинаковой массы от отданного ими при остывании количества теплоты Q. Первоначально тела находились в жидком агрегатном состоянии.

Используя данные графиков, выберите из предложенного перечня все верные утверждения.

- 1) Удельная теплота плавления второго тела в 2 раза меньше удельной теплоты плавления первого тела.
- 2) Температура плавления второго тела в 1,5 раза выше, чем температура плавления первого тела
- 3) В твёрдом агрегатном состоянии удельная теплоёмкость второго тела больше, чем первого
- 4) Удельная теплоёмкость первого тела в твёрдом агрегатном состоянии равна удельной теплоёмкости второго тела в жидком агрегатном состоянии.
- 5) В жидком агрегатном состоянии удельная теплоёмкость второго тела в 1,5 раза больше, чем первого.

Ответ:	

10

Один моль идеального газа участвует в процессе 1-2-3, график которого изображён на рисунке в координатах p–V, где p — давление газа, V — объём газа. Как изменяются абсолютная температура газа T в ходе процесса 1-2 и концентрация молекул газа n в ходе процесса 2-3? Масса газа остаётся постоянной.

Для каждой величины определите соответствующий характер изменения:

- 1. увеличивается
- 2. уменьшается
- 3. не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Абсолютная температура газа в ходе процесса 1-2	Концентрация молекул газа в ходе процесса 2-3	

11

На фотографии изображена электрическая цепь. Показания вольтметра даны в вольтах.

Какое напряжение будет показывать вольтметр, если его подсоединить к резистору сопротивлением 3 Ом? Вольтметр считать идеальным.

Ответ:	F
OIBCI.	L

12

Две частицы с зарядами $q_1=q$ и $q_2=2q$ влетают в однородное магнитное поле перпендикулярно вектору магнитной индукции со скоростями $v_1=v$ и $v_2=2v$ соответственно. Определите отношение модулей сил $\frac{F_1}{F_2}$, действующих на них со стороны магнитного поля.

Ответ:

13

При переводе ключа К из положения 1 в положение 2 (см. рисунок) период собственных электромагнитных колебаний в идеальном колебательном контуре увеличился в 1,5 раза. Во сколько раз индуктивность L_x катушки в колебательном контуре больше L?

Ответ: ____

14

Две маленькие бусинки, закреплённые в точках A и B, несут на себе заряды -3q и +1,5q>0 соответственно (см. рисунок).

Из приведённого ниже списка выберите все верные утверждения относительно этой ситуации.

- 1) Если бусинки соединить незаряженной стеклянной палочкой, их заряды станут равными.
- 2) Если бусинки соединить тонкой медной проволокой, то они будут притягивать друг друга.
- 3) Модуль силы Кулона, действующей на бусинку B, равен модулю силы Кулона, действующей на бусинку A.
- 4) На бусинку A со стороны бусинки B действует сила Кулона, направленная горизонтально вправо.
- 5) Напряжённость результирующего электростатического поля в точке C направлена горизонтально вправо.

Ответ:

Световой пучок переходит из воздуха в бензин (см. рисунок). Что происходит при этом с частотой электромагнитных колебаний в световой волне и скоростью её распространения?

Для каждой величины определите соответствующий характер изменения:

- 1. увеличивается
- 2. уменьшается
- 3. не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Частота	Скорость

ı	16
ı	10

Сколько электронов содержится в электронной оболочке нейтрального атома изотопа тория $^{234}_{00}$ Th?

Ответ:

17

Во время лабораторной работы ученики изучают зависимость максимальной кинетической энергии фотоэлектронов, вылетающих с фотокатода, от частоты падающего света. В опытах наблюдается явление фотоэффекта. Частоту падающего света немного увеличивают. Как при этом изменяются энергия фотонов падающего света и работа выхода электронов из материала фотокатода?

Для каждой величины определите соответствующий характер изменения:

- 1. увеличивается
- 2. уменьшается
- 3. не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Энергия фотонов падающего света	Работа выхода электронов

18

Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.

- 1) Период гармонических колебаний колебательной системы обратно пропорционален частоте её колебаний.
- 2) Внутренняя энергия постоянной массы идеального газа увеличивается при понижении абсолютной температуры газа.
- 3) Изначально незаряженные тела в процессе электризации трением приобретают равные по модулю и одинаковые по знаку заряды.
- 4) Индукционный ток возникает в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего контур.
- 5) В планетарной модели атома число протонов в ядре равно числу электронов в электронной оболочке нейтрального атома.

19

Запишите показания вольтметра с учётом абсолютной погрешности измерений. Абсолютная погрешность прямого измерения напряжения равна цене деления вольтметра.

Otbet: (\pm) B

В бланк ответов N = 1 перенесите только числа, не разделяя их пробелом или другим знаком.

20

Ученику необходимо на опыте обнаружить зависимость давления газа, находящегося в сосуде, от массы газа. У него имеются пять различных сосудов с манометрами. Сосуды наполнены аргоном разной массы при различных температурах (см. таблицу). Какие два сосуда необходимо взять ученику, чтобы провести исследование?

№ сосуда	Объём сосуда, л	Температура газа в сосуде, К	Масса газа в сосуде, г
1	6	320	10
2	4	350	6
3	6	320	8
4	4	340	6
5	5	300	10

Запишите в таблицу номера выбранных сосудов.

Не забудьте перенести все ответы в бланк ответов № 1 в соответствии с инструкцией по выполнению работы. Проверьте, чтобы каждый ответ был записан в строке с номером соответствующего задания.

Часть 2

Для записи ответов на задания 21-26 используйте БЛАНК ОТВЕТОВ № 2. Запишите сначала номер задания (24, 25 и т.д.), а затем решение соответствующей задачи. Ответы записывайте чётко и разборчиво.

21

На рис. 1 приведена зависимость концентрации n идеального одноатомного газа от его давления p в процессе 1-2-3. Количество вещества газа постоянно. Постройте график этого процесса в координатах p–V (где V — объём газа). Точка, соответствующая состоянию 1, уже отмечена на рис. 2. Построение объясните, опираясь на законы молекулярной физики.

Полное правильное решение каждой из задач 22-26 должно содержать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчёты с численным ответом и при необходимости рисунок, поясняющий решение.

22

Автомобиль массой 1750 кг движется по прямолинейному участку дороги вдоль оси OX. Координата автомобиля изменяется с течением времени согласно графику, приведённому на рисунке. Определите максимальную кинетическую энергию автомобиля на этом участке дороги.

23

По двум горизонтально расположенным параллельным проводящим рельсам с пренебрежимо малым сопротивлением, замкнутым на конденсатор с электроемкостью C=100 мкФ, поступательно и равномерно скользит проводящий стержень. Расстояние между рельсами $\ell=1$ м. Рельсы со стержнем находятся в вертикальном однородном магнитном поле с индукцией B=1 Тл (см. рисунок, вид сверху). Через достаточно большой про-

межуток времени от начала движения энергия электрического поля конденсатора W=50 мкДж. Какова скорость движения стержня? Рельсы закреплены на диэлектрической подложке.

24

Сосуд разделен тонкой перегородкой на две части, отношение объемов которых $\frac{V_2}{V_1} = 3$.

В первой части сосуда находится воздух с относительной влажностью $\varphi_1 = 60\%$, а во второй — воздух с относительной влажностью $\varphi_1 = 70\%$. Чему будет равна относительная влажность воздуха в сосудах, если убрать перегородку? Считайте, что температура воздуха в частях сосуда одинакова и не изменилась после снятия перегородки.

25

К изолированному заряженному конденсатору с электроемкостью C=1 нФ и зарядом q=12 нКл параллельно подключили незаряженный конденсатор электроемкостью 2C. Найдите установившееся напряжение на первом конденсаторе.

26

Пластилиновый шарик в момент t=0 бросают с горизонтальной поверхности Земли под углом α к горизонту. Одновременно с некоторой высоты над поверхностью Земли начинает падать из состояния покоя другой такой же шарик. Шарики абсолютно неупруго сталкиваются в воздухе. Сразу после столкновения скорость шариков направлена горизонтально. Время от столкновения шариков до их падения на Землю равно τ . С какой начальной скоростью υ_0 был брошен первый шарик? Сопротивлением воздуха пренебречь.

Обоснуйте применимость законов, используемых для решения задачи.

Проверьте, чтобы каждый ответ был записан рядом с номером соответствующего задания.