

Trường Đại học Công nghệ Thông tin Khoa Khoa học máy tính

IMAGE CLASSIFICATION Phân loại hình ảnh từ vệ tinh

Giáo viên HD: Mai Tiến Dũng

Sinh viên thực hiện:

Nguyễn Duy Nhật 18520118

Đỗ Nguyễn Thuận Phong

Nguyễn Dương Trúc Phương

18520133

18520126

TPHCM 07/20

BÀI TOÁN

- o Bài toán phân loại hình ảnh vệ tinh
- o Input: 1 tấm hình.
- Output: Nhãn tương ứng.

ỨNG DỤNG

- Khảo sát lập phương án quy hoạch và xây dựng giao thông đường bộ.
- Giám sát mức độ phân bố của các công trình giao thông đường bộ.
- o Giúp hạn chế ùn tắc.
- Là cơ sở nền tảng để ứng dụng ảnh vệ tinh vào trong các lĩnh vực khác (như nông nghiệp, quân sự...)

DATA

o Nguồn: http://weegee.vision.ucmerced.edu/datasets/landuse.html

Freeway

Overpass

Intersection

Parkinglot

DATA

o Thống kê dữ liệu:

DATA

o Tăng thêm data: ImageDataGenerater

7-Aug-20

Train / Test

80% / 20%

MACHINE LEARNING

Accuracy: 65%

RFC

Accuracy: 50%

DEEP LEARNING

o VGG16 Network: https://arxiv.org/pdf/1409.1556.pdf

DEEP LEARNING

• Build model:

```
1 def build_model():
 2 model = Sequential()
 3 model.add(Conv2D(input_shape=(224,224,3),filters=64,kernel_size=(3,3),padding="same", activation="relu"))
 4 model.add(Conv2D(filters=64,kernel_size=(3,3),padding="same", activation="relu"))
 5 model.add(BatchNormalization())
 6 model.add(MaxPool2D(pool_size=(2,2),strides=(2,2)))
 7 model.add(Conv2D(filters=128,kernel_size=(3,3),padding="same", activation="relu"))
 8 model.add(Conv2D(filters=128,kernel_size=(3,3),padding="same", activation="relu"))
 9 model.add(BatchNormalization())
10 model.add(MaxPool2D(pool size=(2,2),strides=(2,2)))
11
12 model.add(Conv2D(filters=256,kernel size=(3,3),padding="same", activation="relu"))
13 model.add(Conv2D(filters=256,kernel size=(3,3),padding="same", activation="relu"))
14 model.add(Conv2D(filters=256,kernel size=(3,3),padding="same", activation="relu"))
15 model.add(BatchNormalization())
16 model.add(MaxPool2D(pool size=(2.2).strides=(2.2)))
17
18 model.add(Conv2D(filters=512,kernel size=(3,3),padding="same", activation="relu"))
19 model.add(Conv2D(filters=512,kernel_size=(3,3),padding="same", activation="relu"))
20 model.add(Conv2D(filters=512,kernel size=(3,3),padding="same", activation="relu"))
21 model.add(BatchNormalization())
22 model.add(MaxPool2D(pool size=(2,2),strides=(2,2)))
23
24 model.add(Conv2D(filters=512,kernel_size=(3,3),padding="same", activation="relu"))
25 model.add(Conv2D(filters=512,kernel_size=(3,3),padding="same", activation="relu"))
26 model.add(Conv2D(filters=512,kernel size=(3,3),padding="same", activation="relu"))
27 model.add(BatchNormalization())
28 model.add(MaxPool2D(pool size=(2,2),strides=(2,2)))
30 model.add(Flatten())
31 model.add(Dense(units=4096,activation="relu"))
32 model.add(Dense(units=4096,activation="relu"))
33 model.add(Dropout(0.5))
34 model.add(Dense(units=4,activation="softmax"))
35 return model
```

DEEP LEARNING

Loss

Accuracy

10

DEMO

- 1 img=cv2.imread('/content/drive/My Drive/Colab Notebooks/ML/ImageClassification/UCN
 - 2 cv2_imshow(img)
 - 3 img=cv2.resize(img,(224,224))
 - 4 img=img/255.0
 - 5 img = np.expand_dims(img, axis=0)
 - 6 result=saved_model.predict(img)
 - 7 print(select_label(result))

Freeway

11

DEMO

- [] 1 img=cv2.imread('/content/drive/My Drive/Colab Notebooks/ML/ImageClassification/UCMerced_LandUse/Images/d
 - 2 cv2_imshow(img)
 - 3 img=cv2.resize(img,(224,224))
 - 4 img=img/255.0
 - 5 img = np.expand_dims(img, axis=0)
 - 6 result=saved_model.predict(img)
 - 7 print(select_label(result))

Intersection

12

DEMO

- [] 1 img=cv2.imread('/content/drive/My Drive/Colab Notebooks/ML/ImageClassification/UCMerced_LandUse/
 - 2 cv2_imshow(img)
 - 3 img=cv2.resize(img,(224,224))
 - 4 img=img/255.0
 - 5 img = np.expand_dims(img, axis=0)
 - 6 result=saved_model.predict(img)
 - 7 print(select_label(result))

7-Aug-20

DEMO

- [] 1 img=cv2.imread('/content/drive/My Drive/Colab Notebooks/ML/ImageClas
 - 2 cv2_imshow(img)
 - 3 img=cv2.resize(img,(224,224))
 - 4 img=img/255.0
 - 5 img = np.expand_dims(img, axis=0)
 - 6 result=saved_model.predict(img)
 - 7 print(select_label(result))

Parkinglot

HANK