

planetmath.org

Math for the people, by the people.

criterion of surjectivity

Canonical name CriterionOfSurjectivity
Date of creation 2013-03-22 18:04:56
Last modified on 2013-03-22 18:04:56

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 4

Author pahio (2872) Entry type Theorem Classification msc 03-00

Synonym surjectivity criterion

Related topic Function
Related topic Image
Related topic Subset

Theorem. For surjectivity of a mapping $f: A \to B$, it's necessary and sufficient that

$$B \setminus f(X) \subseteq f(A \setminus X) \quad \forall X \subseteq A. \tag{1}$$

- *Proof.* 1º. Suppose that $f: A \to B$ is surjective. Let X be an arbitrary subset of A and y any element of the set $B \setminus f(X)$. By the surjectivity, there is an x in A such that f(x) = y, and since $y \notin f(X)$, the element x is not in X, i.e. $x \in A \setminus X$ and thus $y = f(x) \in f(A \setminus X)$. One can conclude that $B \setminus f(X) \subseteq f(A \setminus X)$ for all $X \subseteq A$.
- $2^{\underline{o}}$. Conversely, suppose the condition (1). Let again X be an arbitrary subset of A and y any element of B. We have two possibilities:
- a) $y \notin f(X)$; then $y \in B \setminus f(X)$, and by (1), $y \in f(A \setminus X)$. This means that there exists an element x of $A \setminus X \subseteq A$ such that f(x) = y.
- b) $y \in f(X)$; then there exists an $x \in X \subseteq A$ such that f(x) = y. The both cases show the surjectivity of f.