Approximation			
Bon packing problem			
Assume there are nitems of sizes			
Trey need to fit in minimum	number of	unit size	boxes.
· 4, · 6, · 2, · 8	,		
some parring . 6	• 8		

0 4 · 4 · 6 8 · 6

Best-fit

First-fit

Next-fit

First-fit

- traverse from 1st to lost bit.
- if it fits in a bin place it there
 - otherwise open a new bin

correctness: trivially. Approximation factor: can these two bins are both are loss than half full. Not the case here. If C bins are used by the algorithm. ait & be the optimum number of bins can be used.

$$\frac{2}{2}$$

scheduling jobs ion identical parallel machines. Minimise maraspan Fryd: Assign jobs into those machines such that the maximum load to any machine its minimum. onthut: 5, 7, 3, 2, 4 5 4 mit m_2 $\sqrt{5}$ m_3 $\boxed{4 \boxed{3}}$ m_3 $\boxed{3}$ $\boxed{2}$

Algo: - Take jobs one-by-one.

= Assign to a machine whose load is minimum so far.

Approx factor:

6pt is the obtinum load

of $\frac{5t'}{m}$

opt > tmax

d'bethe maxes ban just before adding Jx. Total makespan < obt + obt = 20H.