EXAMPLE 9.2(a) Dilution of Precision Calculation for Optimal Four-satellite GNSS Geometry

	INPUTS:							
Satellite		Azimuth	Elevation		,	Azimuth	Elevation	
		1		0		0	0	0
		2		120		0	2.0943951	0
		3		240		0	4.1887902	0
		4		0	-9	0	0	-1.5708
			degrees		degrees		radians	radians

Calculate Measurement (Geometry) Matrix

From (9.174),
$$\mathbf{H}_{G}^{n} = \begin{pmatrix} -u_{a1,N}^{n} & -u_{a1,E}^{n} & -u_{a1,D}^{n} & 1 \\ -u_{a2,N}^{n} & -u_{a2,E}^{n} & -u_{a2,D}^{n} & 1 \\ -u_{a3,N}^{n} & -u_{a3,E}^{n} & -u_{a3,D}^{n} & 1 \\ -u_{a4,N}^{n} & -u_{a4,E}^{n} & -u_{a4,D}^{n} & 1 \end{pmatrix}$$

$$\mathbf{H}_{G}^{n} = \begin{bmatrix} -1 & 0 & 0 & 1 \\ 0.5 & -0.866025 & 0 & 1 \\ 0.5 & 0.8660254 & 0 & 1 \\ -6.1257E-17 & 0 & 1 & 1 \end{bmatrix}$$

Calculate Local-navigation-frame Cofactor Matrix

From (9.180),
$$\mathbf{\Pi}^n = \left(\mathbf{H}_G^{n^{\mathrm{T}}}\mathbf{H}_G^n\right)^{-1}$$

From (9.180),
$$\begin{pmatrix} D_N^2 & \cdot & \cdot & \cdot \\ \cdot & D_E^2 & \cdot & \cdot \\ \cdot & \cdot & D_V^2 & \cdot \\ \cdot & \cdot & \cdot & D_Z^2 \end{pmatrix} = \Pi^n$$

From (9.181),
$$D_H = \sqrt{D_N^2 + D_E^2}$$

$$D_P = \sqrt{D_N^2 + D_E^2 + D_V^2}$$

$$D_G = \sqrt{D_N^2 + D_E^2 + D_V^2 + D_T^2}$$

HDOP =	1.154700538		
PDOP =	1.632993162		
GDOP =	1.732050808		

EXAMPLE 9.2(b) Dilution of Precision Calculation for Poor GNSS Geometry due to Lack of Azimuth Variation

INPUTS:							
Satellite	ite Azimuth			Elevation		zimuth	Elevation
	1		60	-30		1.04719755	-0.5236
	2		90	-30		1.57079633	-0.5236
	3		120	-30		2.0943951	-0.5236
	4		90	-60		1.57079633	-1.0472
		degrees		degrees		radians	radians

Calculate Measurement (Geometry) Matrix

From (9.174),
$$\mathbf{H}_{G}^{n} = \begin{pmatrix} -u_{a1,N}^{n} & -u_{a1,E}^{n} & -u_{a1,D}^{n} & 1 \\ -u_{a2,N}^{n} & -u_{a2,E}^{n} & -u_{a2,D}^{n} & 1 \\ -u_{a3,N}^{n} & -u_{a3,E}^{n} & -u_{a3,D}^{n} & 1 \\ -u_{a4,N}^{n} & -u_{a4,E}^{n} & -u_{a4,D}^{n} & 1 \end{pmatrix}$$

$$\mathbf{H}_{G}^{n} = \begin{bmatrix} -0.4330127 & -0.75 & 0.5 & 1 \\ -5.305E-17 & -0.866025 & 0.5 & 1 \\ 0.433012702 & -0.75 & 0.5 & 1 \\ -3.0629E-17 & -0.5 & 0.8660254 & 1 \end{bmatrix}$$

Calculate Local-navigation-frame Cofactor Matrix

From (9.180),
$$\mathbf{\Pi}^{n} = \left(\mathbf{H}_{G}^{n}^{\mathsf{T}}\mathbf{H}_{G}^{n}\right)^{-1}$$

From (9.180),
$$\begin{pmatrix} D_N^2 & \cdot & \cdot & \cdot \\ \cdot & D_E^2 & \cdot & \cdot \\ \cdot & \cdot & D_V^2 & \cdot \\ \cdot & \cdot & \cdot & D_Z^2 \end{pmatrix} = \Pi^n$$

From (9.181),
$$D_H = \sqrt{D_N^2 + D_E^2}$$

$$D_P = \sqrt{D_N^2 + D_E^2 + D_V^2}$$

$$D_G = \sqrt{D_N^2 + D_E^2 + D_V^2 + D_T^2}$$

	•
HDOP =	10.68139937
PDOP =	13.90511096
GDOP =	18.78899806

EXAMPLE 9.2(c) Dilution of Precision Calculation for Poor GNSS Geometry due to High Elevations

INPUTS:							
Satellite		Azimuth		Elevation	Azimuth		Elevation
	1		0	60		0	1.047198
	2		120	60	2.094	3951	1.047198
	3		240	60	4.188	7902	1.047198
	4		0	90		0	1.570796
		degrees		degrees	rac	dians	radians

Calculate Measurement (Geometry) Matrix

From (9.174),
$$\mathbf{H}_{G}^{n} = \begin{pmatrix} -u_{a1,N}^{n} & -u_{a1,E}^{n} & -u_{a1,D}^{n} & 1 \\ -u_{a2,N}^{n} & -u_{a2,E}^{n} & -u_{a2,D}^{n} & 1 \\ -u_{a3,N}^{n} & -u_{a3,E}^{n} & -u_{a3,D}^{n} & 1 \\ -u_{a4,N}^{n} & -u_{a4,E}^{n} & -u_{a4,D}^{n} & 1 \end{pmatrix}$$

$$\mathbf{H}_{G}^{n} = \begin{bmatrix} -0.5 & 0 & -0.8660254 & 1 \\ 0.25 & -0.433013 & -0.8660254 & 1 \\ 0.25 & 0.4330127 & -0.8660254 & 1 \\ -6.1257E-17 & 0 & -1 & 1 \end{bmatrix}$$

Calculate Local-navigation-frame Cofactor Matrix

From (9.180),
$$\Pi^n = \left(\mathbf{H}_G^{n^{\mathrm{T}}}\mathbf{H}_G^n\right)^{-1}$$

$$\Pi^n = \begin{bmatrix} 2.666666667 & -7.89E-16 & -4.5076E-15 & -4.1E-15 \\ -7.8949E-16 & 2.6666667 & -3.3147E-15 & -2.9E-15 \\ -4.5076E-15 & -3.31E-15 & 74.2837506 & 66.81965 \\ -4.0878E-15 & -2.87E-15 & 66.8196489 & 60.35555 \end{bmatrix}$$

From (9.180),
$$\begin{pmatrix} D_N^2 & \cdot & \cdot & \cdot \\ \cdot & D_E^2 & \cdot & \cdot \\ \cdot & \cdot & D_V^2 & \cdot \\ \cdot & \cdot & \cdot & D_Z^2 \end{pmatrix} = \Pi^n$$

From (9.181),
$$D_H = \sqrt{D_N^2 + D_E^2}$$

$$D_P = \sqrt{D_N^2 + D_E^2 + D_V^2}$$

$$D_G = \sqrt{D_N^2 + D_E^2 + D_V^2 + D_T^2}$$

HDOP =	2.309401077
PDOP =	8.922840573
GDOP =	11.83100297

EXAMPLE 9.2(d)

Dilution of Precision Calculation for Poor GNSS Geometry due to Signal Reception from Opposing Directions Only

INPUTS:							
Satellite	Azimuth		Elevation	Azir	muth	Elevation	
	1		-10	-30	-0.	17453293	-0.5236
	2		10	-75	0.	17453293	-1.309
	3		-170	-75	-2.	96705973	-1.309
	4		170	-30	2.	96705973	-0.5236
		degrees		degrees		radians	radians

Calculate Measurement (Geometry) Matrix

From (9.174),
$$\mathbf{H}_{G}^{n} = \begin{pmatrix} -u_{a1,N}^{n} & -u_{a1,E}^{n} & -u_{a1,D}^{n} & 1 \\ -u_{a2,N}^{n} & -u_{a2,E}^{n} & -u_{a2,D}^{n} & 1 \\ -u_{a3,N}^{n} & -u_{a3,E}^{n} & -u_{a3,D}^{n} & 1 \\ -u_{a4,N}^{n} & -u_{a4,E}^{n} & -u_{a4,D}^{n} & 1 \end{pmatrix}$$

Calculate Local-navigation-frame Cofactor Matrix

From (9.180),
$$\Pi^n = \left(\mathbf{H}_G^{n^{\mathrm{T}}}\mathbf{H}_G^n\right)^{-1}$$

From (9.180),
$$\begin{pmatrix} D_N^2 & \cdot & \cdot & \cdot \\ \cdot & D_E^2 & \cdot & \cdot \\ \cdot & \cdot & D_V^2 & \cdot \\ \cdot & \cdot & \cdot & D_Z^2 \end{pmatrix} = \Pi^n$$

From (9.181),
$$D_H = \sqrt{D_N^2 + D_E^2}$$

$$D_P = \sqrt{D_N^2 + D_E^2 + D_V^2}$$

$$D_G = \sqrt{D_N^2 + D_E^2 + D_V^2 + D_T^2}$$

HDOP =	8.337082661		
PDOP =	8.608913872		
GDOP =	8.765736873		