Note del corso di Fisica dei Continui

trascritte da Luca Colombo Gomez

AA 2019/2020

Indice

1	$\mathbf{Me}_{\mathbf{I}}$	morie della termodinamica	:					
	1.1	Potenziale di Helmholtz F (o energia libera di Helmoltz)	,					
	1.2	Entalpia H	۷					
	1.3	Potenziale di Gibbs G (o energia libera di Gibbs)	ţ					
	1.4	Relazioni di Maxwell	(
	1.5	Calori specifici						
	1.6	Processi adiabatici						
2	Ger	Generalità sui continui						
3	\mathbf{Der}	rivata sostanziale di integrali	11					
	3.1	Derivata sostanziale degli integrali di volume	1.					
	3.2	Equazione di continuità - condizione analitica di incomprimibilità						
	3.3	Leggi in forma integrale e locale	1.					
	3.4	Derivata sostanziale degli integrali di linea	1					
4	Sfor	Sforzi; fluidostatica: isotropia e continuità della pressione						
	4.1	Tensore degli sforzi	12					
	4.2	Sforzi (stresses)	12					
		4.2.1 Sforzo normale e sforzo tangenziale	12					
	4.3	Fluidostatica	12					
		4.3.1 Isotropia della pressione in equilibrio	12					
		4.3.2 Continuità di p all'interfaccia	12					
		4.3.3 Tensione superficiale	12					
5	Equ	Equazione di Eulero						
	5.1	Appendice: teorema della divergenza per casi particolari	13					
6	Flui	Fluidostatica: equilibrio meccanico, equilibrio e stabilità dell'atmosfera						
	6.1	Ritorno alla fluidostatica	14					
	6.2	Equilibrio dell'atmosfera - stabilità dell'equilibrio	14					
		6.2.1 Equilibrio meccanico + termico (atmosfera isoterma secca)	1					
		6.2.2 Atmosfera isoentropica (secca)	14					
7	Flui	idostatica di fluidi incomprimibili	15					
	7.1	Barometro di Torricelli	15					
	7.2	Vasi comunicanti - fluidi immiscibili	15					
	7.3	Pressa idraulica	15					
	7.4	Forza di Archimede	15					
	7.5	Centro di spinta ed equilibrio	15					
	7.6	Isotronia	11					

8	Fluidodinamica di fluidi perfetti; flusso di impulso e di energia								
	8.1	Linee di corrente (Stream lines)	16						
	8.2	Flusso di quantità di moto	16						
	8.3	Forza su un tubo a gomito	16						
	8.4	Flusso di energia	16						
		8.4.1 Flusso di energia in campo esterno	16						
9	Flus	Flusso stazionario: equazione di bernoulli e applicazioni							
	9.1		17						
		9.1.1 Fluido incomprimibile	17						
		9.1.2 Fluido reale	17						
	9.2	Teorema di Torricelli	17						
		9.2.1 Tubo di Venturi	17						
		9.2.2 Cavitazione	17						
		9.2.3 Tubo di Pitot - sistema Pitot-statico	17						
		9.2.4 Sifone	17						
		9.2.5 Portanza	17						
		9.2.6 Volo aereo	17						
10	Teo	rema di Kelvin; flusso potenziale	18						
10		, <u> </u>	18						
		Flusso potenziale	18						
	10.2	10.2.1 Flusso attorno ad un ostacolo	18						
	10.3	Condizione di incomprimibilità - una prospettiva fisica	18						
	10.0	10.3.1 Flusso stazionario	18						
		10.3.2 Flusso non stazionario	18						
	10.4	Forza di resistenza nel flusso potenziale oltre a un corpo	18						
11		le di gravità	19						
	11.1	9	19						
		11.1.1 Fluidi perfetti							
	11.2	Condizioni dinamiche generali							
		11.2.1 Fluidi perfetti							
		11.2.2 Flusso potenziale	19						
			19						
		Onde di gravità in un bacino di profondità infinita	19						
		Onde di gravità in un bacino di profondità finita	19						
	11.6	Onde di gravità tra due fluidi limitati in altezza	19						
12	Tras	sporto di energia in onde di gravità; appendici	20						
	12.1	Appendice - velocità di fase e di gruppo (momento minimo)	20						
		Appendice - Vademecum minimo di funzioni iperboliche	20						
13	Flui	di reali: tensori dei gradienti delle velocità e degli sforzi, equazione di Navier-Stokes	21						
		· · · · · · · · · · · · · · · · · · ·	21						
		Fluidi reali (viscosi) - relazione di Cauchy							
		Tensore degli sforzi Newtoniano - equazione di Navier-Stokes							

Memorie della termodinamica

Il primo principio della termodinamica, visto come legge di bilancio energetico, parte dall'energia interna U di un sistema, la cui equazione dU è in generale scrivibile come

$$dU = TdS - pdV + \mu dN$$

(con μ potenziale chimico e N numero molare; se ci sono più componenti scriviamo $\sum_i \mu_i dN_i$, ma la sostanza è la stessa) e allora per un sistema termostatato isolato che non scambia altro che calore (dV =0, dN = 0)

$$\delta Q = dU = TdS \to dS = \frac{\delta Q}{T}$$

sia la trasformazione reversibile o meno.

È utile osservare di U, che essa è funzione di S,V,N, tutte grandezze estensive, ed è esa stessa estensiva, vale a dire

$$U(\lambda S, \lambda V, \lambda N) = \lambda \cdot U(S, V, N) \qquad \forall \lambda \in \Re^+$$
(1.1)

ovvero U è una funzone omogenea di grado 1. Per le funzioni omogenee di grado n si ha $f(\lambda x) = \lambda^n f(x)$, o anche, data $f(x_1, \ldots, n_m)$

$$\sum_{i=1}^{m} x_i \frac{\partial}{\partial x_i} f(x_1, \dots, x_m) = n \cdot f(x_1, \dots, x_m)$$
(1.2)

che, applicato a U(S,V,N), da

$$U(S, V, N) = \frac{\partial U}{\partial S}S + \frac{\partial U}{\partial V}V + \frac{\partial U}{\partial N}N$$
(1.3)

Da $dU=TdS-pdV+\mu dN$ si ottengono le equazioni di stato

$$T = \frac{\partial U}{\partial S}; \qquad p = -\frac{\partial U}{\partial V}; \qquad \mu = \frac{\partial U}{\partial N}$$
 (1.4)

e per confronto con la relazione di Eulero si ha

$$U(S, V, N) = TS - pV + \mu N \tag{1.5}$$

1.1 Potenziale di Helmholtz F (o energia libera di Helmoltz)

F da una misura del lavoro estraibile da un sistema chiuso a T,V costanti (vediamo sotto). Si ottiene come trasformazione di Legendre di U rispetto a S:

$$F \doteq U - \frac{\partial U}{\partial S}S = U - TS \tag{1.6}$$

e si ha, da U(S,V,N), una funzione $F=F(\frac{\partial U}{\partial S} \to T,V,N)$

Inoltre

$$F = U - TS = TS - pV + \mu N - TS = -pV + \mu N \tag{1.7a}$$

$$dF = dU - TdS - SdT = TdS - pdV + \mu dN - TdS - SdT = -SdT - pdV + \mu dN$$
(1.7b)

Possiamo dunque dimostrare l'affermazione iniziale. Preso un sistema S formato da costituenti in contatto termico con un termostato R a temperatura T^R (reservoir infinito di calore), il lavoro massimo estraibile dal sistema è

$$dL^{max} = -dF^S (1.8)$$

Infatti

$$dL = -dU^S - dU^R \underbrace{=}_{\text{R termostato}} - dU^S - T^R dS^R$$

Poiché il sistema non scambia calore con l'esterno, l'entropia non decresce:

$$dS^S + dS^R \ge 0 \implies -dS^R \le dS^S$$

$$\implies dL = -dU^S - T^R dS^R \le -dU^S + T^R dS^S = -d(U^S - T^R S^S) \underbrace{\qquad}_{T^R = T^S \text{(contatto termico)}} - d(U^S - T^S S^S)$$

cioè $dL \leq -dF^S$, il cui massimo appunto è $dL^{max} = -dF^S$ (caso di trasformazione reversibile)

Osservazioni:

- ne consegue che lo stato di equilibrio del sistema termostatato è quello che minimizza l'energia libera di Helmoltz; (in equivalente è minima U, $dU = dU^S + d^R = 0 \implies dF = 0, FF$ stazionaria)
- F (come tutti i potenziali termodinamici) è definito all'equilibrio altrimenti si deve supporre un insieme di sottosistemi in equilibrio e isotermi;
- esempio di lavoro energia libera è il lavoro molare di estrazione di un metallo, che è pari alla variazione di F in una mole di e^- nel passare dal metallo all'esterno

1.2 Entalpia H

H da una misura del lavoro estraibile da un sistema chiuso a p costante. Si ottiene come trasformazione di Legendre di U rispetto a V:

$$H \doteq U - \frac{\partial U}{\partial V}V = U + pV \tag{1.9}$$

e si ha, da U(S,V,N), una funzione $H=H(,S\frac{\partial U}{\partial V}\to p,N)$

Inoltre

$$H = U + pV = TS - pV + \mu N + pV = TS + \mu N$$

$$dH = dU + pdV + Vdp = TdS - pdV + \mu dN + pdV + Vdp = TdS + Vdp + \mu dN$$
 (1.10)

Se il sistema è chiuso (non scambia massa) e mantenuto a p costante, $dH = TdS = \delta Q_{rev}$ il calore assorbito in una trasformazione reversibile è pari alla variazione di H.

Nota: è questo il caso delle trasformazioni gatte a T costante; infatti p è costante, i potenziali chimici sono uguali¹, e il numero di moli (la massa) nel complesso è conservato $(dN^{(1)} + dN^{(2)} = 0) \implies Vdp + \sum_i \mu^{(i)} dN^{(i)} = 0$, da cui vediamo che il calore latente di trasformazione è la differenza di entalpia per unità di massa tra le fasi.

¹ce lo dice Josiah Willard Gibbs alla pagina seguente

Similmente al caso dell'energia libera, si può dimostrare che preso un sistema chiuso S di costituenti mantenuti a p costante da un reservoir di pressione a $p = p^R$, il lavoro massimo estraibile da S è

$$dL^{max} = -dH^S$$

e lo stato di equilibrio di un sistema mantenuto a p costante di un reservoir di pressione è quello che minimizza l'entalpia.

Nota: Landau chiama $w \doteq H/M$ entalpia per unità di massa. $w = \varepsilon + pv = \varepsilon + p/\rho; v = \dot{\varepsilon} + V/M$ volume specifico = $1/\rho$

1.3 Potenziale di Gibbs G (o energia libera di Gibbs)

G da una misura del lavoro estraibile da un sistema chiuso a T,p costanti. Si ottiene come trasformazione di Legendre di U rispetto a S e V:

$$G \stackrel{.}{=} U - \frac{\partial U}{\partial S}S - \frac{\partial U}{\partial V}V = U - TS + pV$$

e si ha, da U(S,V,N), una funzione $H=H(\frac{\partial U}{\partial S}\to T,\frac{\partial U}{\partial V}\to p,N)$

Inoltre

$$G = U - TS + pV = TS - pV + \mu N - TS + pV = \mu N$$
(1.11)

 $(\mu = G/N)$ poteniale di Gibbs molare coincide con potenziale chimico)

$$dG = dU - TdS - SdT + pdV + Vdp = TdS - pdV + \mu dN - TdS - SdT + pdV + Vdp = -SdT + Vdp + \mu dN$$

$$(1.12)$$

Si può dimostrare che preso un sistema chiuso S i cui costituenti sono mantenuti a T e p costanti da reservoir di temperatura (termostato) a T^R e di pressione a p^R , il lavoro massimo estraibile da S è

$$dL^{max} \le -dG^S$$

e lo stato di equilibrio di un sistema a T e p costanti grazie a reservoir ideali di T,p è quello che minimizza il potenziale di Gibbs.

Nota: dato un sistema a due fasi in equilibrio, se una tra p e T è fissata, lo è anche l'altra, e $\mu^{(1)} = \mu^{(2)}$. Ciò perchè

$$G = \mu^{(1)} dN^{(1)} + \mu^{(2)} dN^{(2)}$$

e

$$dG = \mu^{(1)}dN^{(1)} + \mu^{(2)}dN^{(2)}$$

ma la massa complessiva non varia $\implies N^{(1)} + N^{(2)} = cost \iff dN^{(1)} + dN^{(2)} = 0$

$$\implies dG = \mu^{(1)}dN^{(1)} - \mu^{(2)}dN^{(1)} = (\mu^{(1)} - \mu^{(2)})dN^{(1)}$$

Equilibrio
$$\iff dG = 0 \implies \mu^{(1)}(p,T) = \mu^{(2)}(p,T)$$

Questa, essendo i $\mu^{(i)}$ rappresentativi di fasi diverse e di funzioni diverse, rappresenta un'espressione implicita della relazione tra p e T; se p fissata \implies determinata anche T.

Nota: Landau chiama $\phi = G/M$ energia libera di Gibbs per unità di massa

Poiché

$$G = \sum_{i} \mu^{(i)} N^{(i)} \implies dG = \sum_{i} \mu^{(i)} dN^{(i)} + \sum_{i} N^{(i)} d\mu^{(i)}$$

ma anche da

$$G = U - TS + pV \implies dG = -SdT + Vdp + \sum_{i} \mu^{(i)} dN^{(i)}$$

Si ottiene l'equazione di Gibbs - Duhem

$$\sum_{i} N^{(i)} d\mu^{(i)} = -SdT + Vdp \tag{1.13}$$

Si può anche derivare l'equazione di Clausius - Clapeyron, che descrive la pendenza della curva di equilibrio dp/dT tra due fasi di una sostanza.

Le due fasi in equilibrio, 1 e 2, hanno lo stesso potenziale di Gibbs:

$$G_1(T,p) = G_2(T,p) \implies dG_1(p,T) = dG_2(p,T)$$

$$\implies \frac{\partial G_1}{\partial p} dp + \frac{\partial G_1}{\partial T} dT = \frac{\partial G_2}{\partial p} dp + \frac{\partial G_2}{\partial T} dT \quad (1.14)$$

Da $dG = -SdT + Vdp + \sum_{i} \mu^{(i)} dN^{(i)}$:

$$\begin{cases} \frac{\partial G}{\partial T} = -S \\ \frac{\partial G}{\partial p} = V \end{cases}$$

$$V_1 dp - S_1 dT = V_2 dp - S_2 dT \implies \frac{dp}{dT} = \frac{S_1 - S_2}{V_1 - V_2}$$
 (1.15)

A T costante

$$S_2 - S_1 = \int_1^2 \frac{\delta Q}{T} = \frac{1}{T} \int_1^2 \delta Q = \frac{\lambda M}{T}$$
 (1.16)

Con λ calore latente di trasformazione per unità ti massa, M=massa. Detto v = V/M volume specifico

$$\frac{dp}{dT} = \frac{\lambda}{T(V_2 - V_1)} \tag{1.17}$$

1.4 Relazioni di Maxwell

Lavoreremo tipicamente in sistemi senza scambio di massa, ignorando quindi il termine $\sum_i \mu_i dN_i$

• Dal primo principio della termodinamica

$$U = U(S, V)$$

$$dU = TdS - pdV \implies dU = \underbrace{\frac{\partial U}{\partial S}\Big|_{V=cost}}_{T} dS + \underbrace{\frac{\partial U}{\partial V}\Big|_{S=cost}}_{-p} dV$$

$$T = \frac{\partial U}{\partial S}\Big|_{V=cost}; \qquad p = -\frac{\partial U}{\partial V}\Big|_{S=cost}$$

Per il teorema di Schwarz, vale $\frac{\partial^2 U}{\partial S \partial T} = \frac{\partial^2 U}{\partial T \partial S}$ quindi

$$\frac{\partial T}{\partial V}\Big|_{S=cost} = \frac{\partial}{\partial V} \left(\frac{\partial U}{\partial S} \Big|_{V} \right)_{S} = \frac{\partial}{\partial S} \left(\frac{\partial U}{\partial V} \Big|_{S} \right)_{V} = -\frac{\partial p}{\partial S} \Big|_{V=cost}$$

$$\frac{\partial T}{\partial V}\Big|_{S=cost} = -\frac{\partial p}{\partial S} \Big|_{V=cost}$$
(1.18)

• Dal differenziale dell'entalpia

$$H = H(S, p)$$

$$dH = TdS + Vdp \implies dH = \underbrace{\frac{\partial H}{\partial S}\Big|_{p=cost}}_{T} dS + \underbrace{\frac{\partial H}{\partial p}\Big|_{S=cost}}_{V} dp$$

$$T = \frac{\partial H}{\partial S}\Big|_{p=cost}; \qquad V = \frac{\partial H}{\partial p}\Big|_{S=cost}$$

Per il teorema di Schwarz, uguagliando le due derivate parziali miste

$$\left. \frac{\partial T}{\partial p} \right|_{S=cost} = \left. \frac{\partial V}{\partial S} \right|_{p=cost}$$
 (1.19)

• Dal differenziale del potenziale di Helmholtz

$$F = F(T, V)$$

$$dF = -SdT - pdV \implies dF = \underbrace{\frac{\partial F}{\partial T}\Big|_{V=cost}}_{-S} dT + \underbrace{\frac{\partial F}{\partial V}\Big|_{T=cost}}_{-p} dV$$

$$S = -\frac{\partial F}{\partial T}\Big|_{V=cost}; \qquad p = -\frac{\partial F}{\partial V}\Big|_{T=cost}$$

Per il teorema di Schwarz, uguagliando le due derivate parziali miste

$$\frac{\partial S}{\partial V}\Big|_{T=cost} = \frac{\partial p}{\partial T}\Big|_{V=cost}$$
 (1.20)

• Dal differenziale del potenziale di Gibbs

$$G = G(T, p)$$

$$dG = -SdT + Vdp \implies dG = \underbrace{\frac{\partial G}{\partial T}\Big|_{p=cost}}_{-S} dT + \underbrace{\frac{\partial G}{\partial p}\Big|_{T=cost}}_{V} dp$$

$$S = -\frac{\partial G}{\partial T}\Big|_{p=cost}; \qquad V = \frac{\partial G}{\partial p}\Big|_{S=cost}$$

Per il teorema di Schwarz, uguagliando le due derivate parziali miste

$$\frac{\partial S}{\partial p}\Big|_{T=cost} = -\left. \frac{\partial V}{\partial T} \right|_{p=cost}$$
 (1.21)

1.5 Calori specifici

la capacità termica C di una porzione di materia M, è il rapporto tra calore δQ assorbito e aumento di temperatura dT. La capacità termica per unità di massa è detta calore specifico $C \doteq \delta Q/dT$

$$c \stackrel{.}{=} \frac{1}{M} \frac{\delta Q}{dT}; \quad \text{oppure per mole} \quad C \stackrel{.}{=} \frac{1}{N} \frac{\delta Q}{dT}$$

Questo valore dipende dal tipo di processo in cui avviene lo scambio di $\delta Q,$ ovvero a pressione o volume costante

$$c_p = \frac{1}{M} \frac{\delta Q}{dT} \Big|_{p=cost} \quad \left(C_p = \frac{1}{N} \frac{\delta Q}{dT} \Big|_{p} \right); \qquad c_v = \frac{1}{M} \frac{\delta Q}{dT} \Big|_{V=cost} \quad \left(C_V = \frac{1}{N} \frac{\delta Q}{dT} \Big|_{V} \right)$$

• Dal 1 principio della termodinamica $dU = \delta Q - pd$; per una trasformazione quasi-statica a V costante $dU = \delta Q$

$$\implies c_V = \frac{1}{M} \frac{\partial U}{\partial T} \Big|_V = \frac{1}{M} \frac{\partial \varepsilon}{\partial T} \Big|_V$$

avendo $\varepsilon \stackrel{.}{=} U/M$ energia interna per unità di massa

• lavorando a p
 costante sfruttiamo dH = TdS + Vdp, e per trasformazione quasi-statica, reversibile,
 $dH = TdS = \delta Q$

$$\implies c_p = \frac{1}{M} \frac{\delta Q}{\partial T} \Big|_p = \frac{T}{M} \frac{\partial S}{\partial T} \Big|_V = T \frac{\partial S}{\partial T} \Big|_p$$

 $\operatorname{con}\,s\stackrel{\cdot}{=}S/M$

• Per gas perfetti, pV = NRT; H = U + pV = U + NRT derivando rispetto a T

$$\frac{\partial H}{\partial T} = \frac{\partial U}{\partial T} + NR$$

$$\implies \frac{1}{N} \frac{\partial H}{\partial T} = \frac{1}{N} \frac{\partial U}{\partial T} + R$$

$$C_p = C_V + R$$

1.6 Processi adiabatici

Una trasformazione è adiabatica quando avviene senza scambio di calore.

Poiché $\delta Q = 0 \implies dU + pdV = 0$

$$NC_V dT + \frac{NRT}{V} dV = 0$$

dividendo per NC_VT

$$\implies \frac{dT}{T} + \frac{R}{C_V} \frac{dV}{V} = 0 \implies d(\log T) + \frac{R}{C_V} d(\log V) = 0$$

$$\implies d\left(\log T + \log V^{\frac{R}{C_V}}\right) = 0$$

$$\implies \log(TV^{R/C_V}) = \text{costante} \implies TV^{R/C_V} = \text{costante}$$

Definito $\gamma \doteq \frac{C_P}{C_V}$ si ha

$$\gamma = \frac{C_V + R}{C_V} = 1 + \frac{R}{C_V} \implies \frac{R}{C_V} = \gamma - 1$$

$$TV^{\gamma - 1} = \text{costante}$$
(1.22)

che è l'equazione della trasformazione adiabatica.

Usando pV = NRT si può scrivere equivalentemente

$$T \propto pV \implies pV^{C_p/C_V}$$

$$pV^{\gamma} = \text{costante}$$
 (1.23)

$$V \propto Tp^{-1} \implies T\left(\frac{T}{p}\right)^{\gamma-1} = T^{\gamma}p^{1-\gamma} = \text{costante} \implies Tp^{\frac{1-\gamma}{\gamma}}$$

$$Tp^{\frac{1}{\gamma-1}} = \text{costante}$$
(1.24)

Generalità sui continui

Particella o masserella fluida: porzione di mezzo continuo di dimensione lineare infinitesima.

Continui: mezzo materiale in cui, una volta stabilita la massima lunghezza d¹ che si possa trattare come infinitesima, presa una regione di diametro d, il numero di costituenti microscopici in essa contenuti è grande abbastanza da risultare statisticamente significativo.

In un solido o liquidi, possiamo stimare che le distanza intermolecolari/interatomiche siano dell'ordine di $1-10\,\text{Å}$, cioè $0.1-1\,mm$; in un cubo di lato $1\,\mu m$ ci saranno perciò $>10^9$ costituenti elementari. $1\,\mu m$ è perciò una lunghezza

- infinitesima se studiamo un fluido macroscopico, o al più oggetti nel fluido come granuli ($\sim 10-100 \, \mu m$); OK trattazione come continuo.
- NON infinitesima per un nanotecnologo, che ha a che gare con scale $\leq 1 \,\mu m$; NON va bene l'ipotesi di continuo

Per un gaso come l'aria, una mole, cioè $\sim 10^{23}$ particelle, occupa ≈ 22 litri in condizioni normali (1 atm - 0 °C), cioè un cubo di $\sim 0.28\,m$ di spigolo $\sim 10^5\,\mu m$; nel cubo di $\sim 1\mu m^3$ avremo $10^{23}/10^{15}=10^8$ particelle, ancora un numero statisticamente sufficiente; ma nella parte più alta dell'atmosfera terrestre (> $100\,km$), con pressioni di un ordine di grandezza inferiori, la statistica non è più plausibile e non siamo in regime di continuo.

Come studiare un fluido? Due punti di vista:

- Euleriano: osservo la variazione temporale delle grandezze di interesse in un punto \overline{x} fissato
- Lagrangiano: seguo una particella fluida (= un punto materiale) nella sua evoluzione, nel suo moto che quindi è in una $\bar{x}(t)$

Le grandezze che osservo sono quindi grandezze lagrangiane $F(\bar{x}(t),t)$ che dipende da t esplicitamente e implicitamente attraverso $\bar{x}(t)$

Data $F(\bar{x},t)$ grandezza estensiva per unità di massa (udm). Per consolidare la sua derivata temporale seguendo la particella fluida che a t si trova in $\bar{x}(t)$ in moto, dobbiamo considerare che F dipende dal tempo sia esplicitamente che attraverso $\bar{x}(t)$, cioè $F = F(\bar{x},t)$, quindi la derivata è la derivata di funzione composta a più variabili e si indica come

$$\frac{D}{Dt}$$
 = DERIVATA SOSTANZIALE o MATERIALE o CONVETTIVA.

Per la regola delle derivate di funzione composta

$$\frac{D}{Dt}F(\bar{x}(t),t) = \frac{\partial}{\partial t}F(\bar{x},t) + \sum_{i=1}^{3} \underbrace{\frac{\partial F(\bar{x},t)}{\partial x_{i}} \underbrace{\frac{\partial x_{i}(t)}{\partial t}}_{v_{i}(\bar{x},t)}}_{q_{i}(\bar{x},t)}$$

¹Diametro = distanza massima tra due punti del volume

$$\frac{D}{Dt}F(\bar{x}(t),t) = \frac{\partial F}{\partial t} + \bar{v}(\bar{x},t) \cdot \bar{F}(\bar{x},t)$$
(2.1)

e questa gode delle proprietà di tutte le derivate ordinarie; per esempio la variazione DF della F seguendo il continuo nel suo moto naturale è

$$DF(\bar{x},t) = F(\bar{x}(t+dt), t+dt) - F(\bar{x}(t), t) = \frac{D}{Dt}F(\bar{x}(t), t)dt$$
 (2.2)

al primo ordine (relazione tra differenziali e derivata sostanziale)

Dim: $F(\bar{x}(t), t) = F(g(x))$ con $g(t) = g(x_1(t), x_2(t), x_3(t), t)$

$$\begin{split} \dot{g}(t) &= \frac{d}{dt}g(t) = \left(\frac{dx_1}{dt}, \frac{dx_2}{dt}, \frac{dx_3}{dt}, 1\right) = (v_1, v_2, v_3, 1) \\ &\implies \frac{d}{dt}F(g(t)) = \frac{\partial F}{\partial g_1}\dot{g}_1 + \frac{\partial F}{\partial g_2}\dot{g}_2 + \frac{\partial F}{\partial g_3}\dot{g}_3 + \frac{\partial F}{\partial g_4}\dot{g}_4 \\ &= \frac{\partial F}{\partial x_1}v_1 + \frac{\partial F}{\partial x_2}v_2 + \frac{\partial F}{\partial x_3}v_3 + \frac{\partial F}{\partial t} = \frac{\partial F}{\partial t} + \bar{v} \cdot grad\bar{F}(\bar{x}, t) \end{split}$$

Si tratta di una derivata fatta seguendo il moto della particella di continuo

Derivata sostanziale di integrali

3.1 Derivata sostanziale degli integrali di volume

Dato un continuo e presa una regione R(t) che al tempo t è occupata da parte di questo continuo, consideriamo una grandezza estensiva che prende il valore $\mathbb{F}(t)$ sul volume R(t); la grandezza per unità di volume associata a $\mathbb{F}(t)$ sia chiamata $F(\bar{x}(t),t)$, ovvero vale

$$\mathbb{F}(t) = \int_{R(t)} F(\bar{x}(t), t) d^3x \tag{3.1}$$

 $\mathbb{F}(t)$ dipende dal tempo sia esplicitamente, sia implicitamente perché seguendo il continuo nel suo moto naturale, $\mathbf{R}(t)$ evolve nel tempo la derivata temporale di $\mathbb{F}(t)$ è una derivata sostanziale. Si dimostra che

- 3.2 Equazione di continuità condizione analitica di incomprimibilità
- 3.3 Leggi in forma integrale e locale

contenuto...

3.4 Derivata sostanziale degli integrali di linea

Sforzi; fluidostatica: isotropia e continuità della pressione

4.1 Tensore degli sforzi

contenuto...

- 4.2 Sforzi (stresses)
- 4.2.1 Sforzo normale e sforzo tangenziale
- 4.3 Fluidostatica
- 4.3.1 Isotropia della pressione in equilibrio contenuto...
- 4.3.2 Continuità di p all'interfaccia

contenuto...

4.3.3 Tensione superficiale

Equazione di Eulero

5.1 Appendice: teorema della divergenza per casi particolari

Fluidostatica: equilibrio meccanico, equilibrio e stabilità dell'atmosfera

- 6.1 Ritorno alla fluidostatica
- 6.2 Equilibrio dell'atmosfera stabilità dell'equilibrio
- $\textbf{6.2.1} \quad \textbf{Equilibrio meccanico} + \textbf{termico (atmosfera isoterma secca)} \\ \textbf{contenuto...}$
- **6.2.2** Atmosfera isoentropica (secca) contenuto...

Fluidostatica di fluidi incomprimibili

7.1 Barometro di Torricelli

contenuto...

7.2 Vasi comunicanti - fluidi immiscibili

contenuto...

7.3 Pressa idraulica

contenuto...

7.4 Forza di Archimede

contenuto...

7.5 Centro di spinta ed equilibrio

contenuto...

7.6 Isotropia

Fluidodinamica di fluidi perfetti; flusso di impulso e di energia

8.1 Linee di corrente (Stream lines)

contenuto...

8.2 Flusso di quantità di moto

contenuto...

8.3 Forza su un tubo a gomito

contenuto...

8.4 Flusso di energia

contenuto...

8.4.1 Flusso di energia in campo esterno

Flusso stazionario: equazione di bernoulli e

applicazioni Equazione di Bernoulli 9.1Fluido incomprimibile contenuto... 9.1.2 Fluido reale

contenuto...

9.2Teorema di Torricelli

Tubo di Venturi 9.2.1

contenuto...

9.2.2 Cavitazione

contenuto...

Tubo di Pitot - sistema Pitot-statico

contenuto...

9.2.4 Sifone

contenuto...

9.2.5 Portanza

contenuto...

9.2.6 Volo aereo

Teorema di Kelvin; flusso potenziale

- 10.1 Teorema di Kelvin conservazione della circolazione contenuto...
- 10.2 Flusso potenziale
- 10.2.1 Flusso attorno ad un ostacolo contenuto...
- 10.3 Condizione di incomprimibilità una prospettiva fisica
- 10.3.1 Flusso stazionario

contenuto...

 $10.3.2 \quad {\bf Flusso \ non \ stazionario}$

contenuto...

10.4 Forza di resistenza nel flusso potenziale oltre a un corpo contenuto...

Onde di gravità

- 11.1 Condizioni cinematiche generali
- 11.1.1 Fluidi perfetti

contenuto...

- 11.2 Condizioni dinamiche generali
- 11.2.1 Fluidi perfetti

contenuto...

11.2.2 Flusso potenziale

- 11.3 Linearizzazione delle condizioni all'interfaccia contenuto...
- 11.4 Onde di gravità in un bacino di profondità infinita contenuto...
- 11.5 Onde di gravità in un bacino di profondità finita contenuto...
- 11.6 Onde di gravità tra due fluidi limitati in altezza contenuto...

Trasporto di energia in onde di gravità; appendici

- 12.1 Appendice velocità di fase e di gruppo (momento minimo) contenuto...
- 12.2 Appendice Vademecum minimo di funzioni iperboliche contenuto...

Fluidi reali: tensori dei gradienti delle velocità e degli sforzi, equazione di Navier-Stokes

13.1 Tensore dei gradienti delle velocità - decomposizione e significato geometrico

contenuto...

13.2 Fluidi reali (viscosi) - relazione di Cauchy

contenuto...

13.3 Tensore degli sforzi Newtoniano - equazione di Navier-Stokes contenuto...