	These datasets can be viewed as classification or regression tasks. The classes are ordered and not balanced (e.g. there are much more normal wines than excellent or poor ones). Input variables (based on physicochemical tests): 1 - fixed acidity 2 - volatile acidity 3 - citric acid 4 - residual sugar
	5 - chlorides 6 - free sulfur dioxide 7 - total sulfur dioxide 8 - density 9 - pH 10 - sulphates
n [1]:	import csv
	<pre>import math import random import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn import tree from sklearn.svm import SVC from sklearn import datasets from statistics import variance from sklearn.metrics import r2_score from sklearn.metrics import f1_score</pre>
	from sklearn.linear_model import PCA from sklearn.metrics import recall_score from sklearn.metrics import roc_auc_score from sklearn.metrics import accuracy_score from sklearn.metrics import GaussianNB from sklearn.metrics import precision_score from sklearn.metrics import mean_squared_error from sklearn.metrics import Ridge, RidgeCV from sklearn.preprocessing import StandardScaler from sklearn.model_selection import GridSearchCV from sklearn.metrics import classification_report from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression
	from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import train_test_split random.seed(42) Pré-processamento Ol.leitura dos dados
n [2]:	02.identifcação de outliers e limpeza dos dados 03.transformação 04.normalização ou padronização 05.conjunto de treinamento e conjunto de testes 06.analise descritiva dos dados # 01.leitura dos dados data = pd.read_csv('data/winequality-red.csv') print('linhas, colunas: ', data.shape)
ut[2]:	data.head(5) linhas, colunas: (1599, 12) fixed acidity volatile acidity acid residual sugar chlorides free sulfur dioxide density pH sulphates alcohol quality 0 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 5 1 7.8 0.88 0.00 2.6 0.098 25.0 67.0 0.9968 3.20 0.68 9.8 5 2 7.8 0.76 0.04 2.3 0.092 15.0 54.0 0.9970 3.26 0.65 9.8 5 3 11.2 0.28 0.56 1.9 0.075 17.0 60.0 0.9980 3.16 0.58 9.8 6 4 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 5 # 02.identifcação de outliers e limpeza dos dados #criando uma função para detectar outliers usando o método do IQR, se encontrar outlier, substitui po um NaN def detect_outlier(data): Q1 = data.quantile(0.25)
ut[3]:	Q3 = data.quantile(0.75) IQR = Q3-Q1 mask = ((data < (Q1 - 1.5 * IQR)) (data > (Q3 + 1.5 * IQR))) data[mask] = np.nan return data #colocando os dados de quality em uma série separada, para não aplicar o método de IQR s_quality = pd.Series(data['quality']).to_frame() #realizando drop de quality data.drop(['quality'],axis = 1, inplace = True) #identificando os outliers no restante da base de dados data = detect_outlier(data) #verificando as ocorrências de NaN depois de identificar os outliers data.isnull().sum().sort_values(ascending=False).head(12) residual sugar 155 chlorides 112
n [4]:	<pre>sulphates</pre>
ut[4]:	<pre>data.iloc[i,j] = averages[j] #verificando as ocorrências de NaN depois da substituição data.isnull().sum().sort_values(ascending=False).head(12) alcohol</pre>
n [5]:	<pre>volatile acidity</pre>
	<pre>#inserindo a serie quality novamente no data frame pós tratamento dos outliers data = pd.concat([data,s_quality],axis=1) #aplicando o one-hot encoding nos dados, se for o caso data = pd.get_dummies(data) #convertendo para numpy data_convert = data.to_numpy() nrow,ncol = data_convert.shape y = data_convert[:,-1] X = data_convert[:,0:(ncol-1)] # 04.normalização ou padronização scaler = StandardScaler().fit(X) X = scaler.transform(X) # 05.conjunto de treinamento e conjunto de testes (80/20)</pre>
	<pre>x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42) # 06.analise descritiva dos dados #balanceamento das classes classes = data[data.columns[-1]] cl = np.unique(classes) ncl = np.zeros(len(cl)) for i in np.arange(0, len(cl)): a = classes == cl[i] ncl[i] = len(classes[a]) numbers = np.arange(0, len(cl))</pre>
	plt.bar(numbers, ncl, alpha=.75, label='quality') plt.xticks(numbers, cl) plt.title('Número de elementos em cada classe') plt.legend() plt.show(True) Número de elementos em cada classe 1400 1200 1000 400 200
	<pre>#aplicando PCA para separação de classes pca = PCA(n_components=2) pca_result = pca.fit_transform(X) colors = ['r', 'g', 'b'] aux = 0 plt.figure(figsize=(15,5)) #considerando todas as classificações igual a um como bom e igual a zero como ruim. for c in cl: if c == 1: lb = 'bom' else: lb = 'ruim' nodes = np.where(y == c)</pre>
	<pre>plt.scatter(pca_result[nodes,0], pca_result[nodes,1], s=50, color = colors[aux], label = lb) aux = aux + 1 plt.legend() plt.xlabel("First component", fontsize=15) plt.ylabel("Second component", fontsize=15) plt.xticks(color='k', size=10) plt.yticks(color='k', size=10) plt.show(True) 4 purpose</pre>
[10]:	#atributos que mais explicam a variância dos dados pca = PCA() pca_result = pca.fit_transform(X) var exp = pca.explained variance ratio
	<pre>var_exp = pca.explained_variance_ratio_ importances = var_exp attributes = data.columns[0:(len(data.columns)-1)] indices = np.argsort(importances) attributes_rank = [] for i in indices: attributes_rank.append(attributes[i]) plt.title('Feature Importances') plt.tight_layout() plt.barh(range(len(indices)), importances[indices], color='g', align='center') plt.yticks(range(len(indices)), attributes_rank, fontsize=25) plt.xlabel('Relative Importance', fontsize=15)</pre>
	plt.xticks(color='k', size=10) plt.yticks(color='k', size=10) plt.show() Feature Importances fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide
[11]:	#mudança da variância conforme número de componentes pca = PCA().fit(X)
	<pre>plt.figure(figsize=(15,5)) ncomp = np.arange(0, np.shape(X)[1]) plt.plot(ncomp, np.cumsum(pca.explained_variance_ratio_), 'ro-') plt.xlabel('number of components', fontsize=15) plt.ylabel('cumulative explained variance', fontsize=15); plt.xticks(color='k', size=15) plt.yticks(color='k', size=15) plt.grid(True) plt.show(True)</pre>
	0.9 0.8 0.7 0.6 0.7 0.9 0.7 0.6 0.7 0.7 0.7 0.8 0.9 0.7 0.9 0.9 0.7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
[12]:	#matriz de correlação corr = data.corr() plt.figure(figsize=(10, 5)) plt.imshow(corr, cmap='Greys', interpolation='none', aspect='auto') plt.colorbar() plt.xticks(range(len(corr)), corr.columns, rotation='vertical') plt.yticks(range(len(corr)), corr.columns); plt.suptitle('Correlation between variables', fontsize=15, fontweight='bold')
	plt.grid(False) plt.show() Correlation between variables fixed acidity -
	free sulfur dioxide - density - density - duality - dual
	Classificação O1. Kvizinhos O2. Árvore de decisão O3. Naive Bayes
[13]:	04.SVM 05.Random Forest # 01.Kvizinhos cv_knn = StratifiedKFold(n_splits=10, shuffle=True, random_state=42) mauc_knn = [] macc_knn = [] vk = [] for k in range(1, 30):
	<pre>vauc_knn = [] vacc_knn = [] for train_index, test_index in cv_knn.split(X, y): x_train, x_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] model_knn = KNeighborsClassifier(n_neighbors=k, metric = 'euclidean') model_knn.fit(x_train,y_train) y_pred_knn = model_knn.predict(x_test) score = accuracy_score(y_pred_knn, y_test) vauc_knn.append(roc_auc_score(y_test, y_pred_knn)) vacc_knn.append(accuracy_score(y_pred_knn, y_test)) macc_knn.append(np.mean(vacc_knn))</pre>
	<pre>macc_knn.append(np.mean(vacc_knn)) mauc_knn.append(np.mean(vauc_knn)) vk.append(k) best_k = np.argmax(mauc_knn)+1 print('Melhor k:', best_k, ' AUC:',mauc_knn[best_k-1]) plt.figure(figsize=(10,5)) plt.plot(vk, mauc_knn, '-ro', label= 'AUC') plt.plot(vk, macc_knn, '-bo', label = 'Accuracy') plt.xlabel('k', fontsize = 15) plt.ylabel('Score', fontsize = 15) plt.legend()</pre>
	Melhor k: 1 AUC: 0.767517132539028 0.90 0.85 0.80
	0.70 0.65 0.60 AJUC Accuracy 0 15 20 25 30
[14]:	<pre>#aplicando o modelo para o melhor k model_KNN = KNeighborsClassifier(n_neighbors=best_k, metric = 'euclidean') model_KNN.fit(x_train,y_train) y_pred_KNN = model_KNN.predict(x_test) score = accuracy_score(y_pred_KNN, y_test) print('</pre>
[15]:	Accuracy: 0.90 F1 score: 0.78 Precision: 0.78 Recall: 0.78 # 02.Árvore de decisão model_DTC = tree.DecisionTreeClassifier(criterion = 'entropy', random_state=42) model_DTC.fit(x_train,y_train) y_pred_DTC = model_DTC.predict(x_test)
	<pre>print('</pre>
[16]:	<pre># 03.Naive Bayes model_NBC = GaussianNB() model_NBC.fit(x_train,y_train) y_pred_NBC = model_NBC.predict(x_test) print('</pre>
[17]:	Naive Bayes Accuracy: 0.85 F1 score: 0.70 Precision: 0.68 Recall: 0.71 # 04.SVM cv_svm = StratifiedKFold(n_splits=10, shuffle=True, random_state=42) mauc_svm = [] macc_svm = []
	<pre>macc_svm = [] vc = [] for c in range(1, 30): vauc_svm = [] vacc_svm = [] for train_index, test_index in cv_svm.split(X, y):</pre>
	<pre>vauc_svm.append(roc_auc_score(y_test, y_pred_svm)) vacc_svm.append(accuracy_score(y_pred_svm, y_test)) macc_svm.append(np.mean(vacc_svm)) mauc_svm.append(np.mean(vauc_svm)) vc.append(c) best_c = np.argmax(mauc_svm)+1 print('Melhor c:', best_c, ' AUC:',mauc_svm[best_c-1]) plt.figure(figsize=(10,5)) plt.plot(vc, mauc_svm, '-ro', label= 'AUC') plt.plot(vc, macc_svm, '-bo', label = 'Accuracy') plt.xlabel('c', fontsize = 15) plt.ylabel('Score', fontsize = 15)</pre>
	plt.legend() plt.show() Melhor c: 29 AUC: 0.7545803560426644 0.90 0.85
	0.70 - 0.65 - 0.60 - 0.
[18]:	<pre>#aplicando o modelo para o melhor c model_SVM = SVC(C = best_c, gamma = 'auto', random_state=42) model_SVM.fit(x_train, y_train) y_pred_SVM = model_SVM.predict(x_test) print('SVM') print('Accuracy:', '%.2f' % accuracy_score(y_test, y_pred_SVM)) print('F1 score:', '%.2f' % f1_score(y_test, y_pred_SVM, average="macro")) print('Precision:', '%.2f' % precision_score(y_test, y_pred_SVM, average="macro")) print('Recall:', '%.2f' % recall_score(y_test, y_pred_SVM, average="macro"))</pre>
[19]:	Accuracy: 0.94 F1 score: 0.87 Precision: 0.88 Recall: 0.87 # 05.Random Forest cv_rfc = StratifiedKFold(n_splits=10, shuffle=True, random_state=1) mauc_rfc = [] macc_rfc = []
	<pre>vn = [] for n in range(1, 50,2): vauc_rfc = [] vacc_rfc = [] for train_index, test_index in cv_rfc.split(X, y): x_train, x_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] model_rfc = RandomForestClassifier(n_estimators=n, random_state=42) model_rfc.fit(x_train,y_train) y_pred_rfc = model_rfc.predict(x_test) score = accuracy_score(y_pred_rfc, y_test) vauc_rfc.append(roc_auc_score(y_test, y_test))</pre>
	<pre>vacc_rfc.append(accuracy_score(y_pred_rfc, y_test)) macc_rfc.append(np.mean(vacc_rfc)) mauc_rfc.append(np.mean(vauc_rfc)) vn.append(n) best_n = np.argmax(mauc_rfc)+1 print('Melhor n:', best_n, ' AUC:',mauc_rfc[best_n-1]) plt.figure(figsize=(10,5)) plt.plot(vn, mauc_rfc, '-ro', label= 'AUC') plt.plot(vn, macc_rfc, '-bo', label = 'Accuracy') plt.xlabel('n', fontsize = 15) plt.ylabel('Score', fontsize = 15) plt.legend()</pre>
	Delt.show() Melhor n: 10 AUC: 0.7446796712827366 0.900 0.875 0.850
	0.825 0.800 0.775 0.750 0.725 0.725
[20]:	<pre>#aplicando o modelo para o melhor n model_RFC =RandomForestClassifier(n_estimators=best_n, bootstrap=True, class_weight=None, criterion=' ni',</pre>
	<pre>model_RFC.fit(x_train,y_train) y_pred_RFC = model_RFC.predict(x_test) print('</pre>
[21]:	Precision: 0.92 Recall: 0.73 Ordenação de atributos 01.ordenando os atributos do random forest # 01.ordenando os atributos do random forest
.21]:	<pre>importances_rfc = model_RFC.feature_importances_ attributes_rfc = data.columns[0:(len(data.columns)-1)] indices_rfc = np.argsort(importances_rfc) attributes_rank_rfc = [] for i in indices_rfc: attributes_rank_rfc.append(attributes_rfc[i]) plt.title('Feature Importances') plt.tight_layout() plt.barh(range(len(indices_rfc)), importances_rfc[indices_rfc], color='b', align='center') plt.yticks(range(len(indices_rfc)), attributes_rank_rfc, fontsize=25) plt.xlabel('Relative Importance', fontsize=15) plt.xticks(color='k', size=10)</pre>
	plt.xticks(color='k', size=10) plt.yticks(color='k', size=10) plt.show() Feature Importances volatile acidity citric acid fixed acidity density total sulfur dioxide
	chlorides - free sulfur dioxide -
	Regressão
[22]:	Regressão 01.regressão linear para predizer a porcentagem de álcool 02.comparação entre método Lasso e Ridge Regression com erro quadrático médio
	Regressão 01.regressão linear para predizer a porcentagem de álcool 02.comparação entre método Lasso e Ridge Regression com erro quadrático médio # 01.regressão linear para predizer a porcentagem de álcool # definindo os dados para regressão, alcohol como variável alvo y_regression = data['alcohol'] # coniderando todos os outros atributos na regressão. x_regression = data.drop(['alcohol'],axis = 1, inplace=False) # convertendo para numpy y_regression_np = y_regression.to_numpy() x_regression_np = x_regression.to_numpy() # definindo conjunto de treino e conjunto de testes p = 0.2 x_regression_train, x_regression_test, y_regression_train, y_regression_test = train_test_split(x_reg_sion_np, y_regression_np, test_size = p, random_state = 42) # aplicando o modelo de regressão linear múltipla, calculando R2 e plotando os resultados
	Regressão 01.regressão linear para predizer a porcentagem de álcool 02.comparação entre método Lasso e Ridge Regression com erro quadrático médio # 01.regressão linear para predizer a porcentagem de álcool #definindo os dados para regressão, alcohol como variável alvo y_regression = data['alcohol'] #coniderando todos os outros atributos na regressão. x_regression = data.drop(('alcohol'), axis = 1, inplace-False) #convertendo para numpy y_regression_np = y_regression.to_numpy() x_regression_np = x_regression.to_numpy() #definindo conjunto de treino e conjunto de testes p = 0.2 x_regression_train, x_regression_test, y_regression_train, y_regression_test = train_test_split(x_reg_ssion_np, y_regression_np, test_size = p, random_state = 42)
	Regressão 01.regressão linear para predizer a porcentagem de álcool 02.comparação entre método Lasso e Ridge Regression com erro quadrático médio # 01.regressão linear para predizer a porcentagem de álcool 02.comparação entre método Lasso e Ridge Regression com erro quadrático médio # 01.regressão linear para predizer a porcentagem de álcool # definindo os dados para regressão, alcohol como variável alvo y regression = data['alcohol'] # coniderando todos os outros atributos na regressão. x_regression = data.drop(['alcohol'], axis = 1, inplace=False) # convertendo para numpy y_regression.pm = y_regression.to_numpy() x_regression.pm = y_regression.to_numpy() x_regression.pm = x_regression.to_numpy() # definindo conjunto de treino e conjunto de testes p = 0.2 x_regression_train, x_regression_test, y_regression_train, y_regression_test = train_test_split(x_regression_np, y_regression_np, test_size = p, random_state = 42) # aplicando o modelo de regressão linear múltipla, calculando R2 e plotando os resultados Im = LinearRegression() Im.fit(x_regression_train, y_regression_test) 1 = plt.plot(y_pred_lm, y_regression_test, 'bo') plt.setp(1, markersize=10) plt.slabel("trediction", fontsize=15) # mostra os valores preditos e originais
	Regressão Of progressão incor para prodizor a parametagos de alcosi 02.comparação entre méticos Lasas e Ridge Regression com erro quadrático medio 02.comparação entre méticos Lasas e Ridge Regression com erro quadrático medio 02.comparação entre méticos Lasas e Ridge Regression com erro quadrático medio 04.comparação entre méticos Lasas e Ridge Regression com variáves alvo y progression e doma doma (['shobol']] paris = 1, implaco-False) ### ### ### ### ### ### ### ### ### #
[23]:	Regressão Ol. regressão linear para presizer a porcentagem de álcool O2.comparação entre metodo Lusso e kidge Regression com erro quadrático medio \$ 01. regressão linear para presizer a porcentagem de álcool O2.comparação entre metodo Lusso e kidge Regression com erro quadrático medio \$ 01. regressão linear para presizer a porcentagem de álcool \$ 02.comparação entre metodo Lusso e kidge Regression com erro quadrático medio \$ 03. regressão linear para presizer a porcentagem de álcool \$ 04.comparação entre atal'alcondil \$ 05.comparação de desa para recreasão, alcohal come variavel alvo \$ 2.compassion de data.drap(['alcohol'], exts = 1, incluson False) \$ 2.compassion para mumu \$ 2.eompassion para mumu \$ 3.eompassion para mumu \$ 3.eompa
[23]:	Regressão 01.repressão linear para predicer a porcentagem de alcool 01.corporação centro adordo poro a siday Asgrandiam and com como quadránica módio 2.01.repressão linear para predicer a porcentagem de alcool 2.01.repressão linear para predicer a porcentagem de alcool 2.01.repressão linear para predicer a porcentagem de alcool 2.02.repressão de com com completo de completo de alcool 2.02.repressão de completo de complet
[24]:	Regressão Ol recressão linear para preditor a porcentegea de álocol Ul compareção entre método feaso e fitigo Regresation com ento quaeratico metro 2 Ol recressão linear para preditor a porcentegea de álocol 2 Ol recressão linear para preditor a porcentegea de álocol 2 Ol recressão linear para preditor a porcentegea de álocol 2 Ol recressão linear para preditor a porcentegea de álocol 2 Ol recressão linear para preditor a porcentegea de álocol 2 Ol recressão linear para preditor a porcentegea de álocol 2 Ol recressão linear para preditor a porcentegea de álocol 2 Ol recressão linear para preditor a porcentegea de álocol 2 Ol recressão linear para preditor a porcentegea de álocol 2 Ol recressão linear para preditor a porcentegea de álocol 2 Ol recressão linear para preditor a preditor de linear para preditor a porcentegea de álocol 2 Ol recressão para para para preditor a conformativa de vectos 2 porquestado pera nuevo e conforma de vectos 2 porquestado pera nuevo e conforma de vectos 2 porquestado pera para para preditor a conformativa preditor para preditor de vectos 2 porquestado pera para para preditor de vectos 2 porquestado pera para para preditor de vectos 3 porquestado pera para para preditor de vectos 4 porquestado pera para para preditor de vectos 4 porquestado pera para para preditor de vectos pera para para para para para para para

la la y_ RS pr	LASSO asso = Lasso(alpha=0.001, normalize=True, max_iter=1e5) asso.fit(x_regression_train, y_regression_train) _pred_lasso = lasso.predict(x_regression_test) SME_lasso = mean_squared_error(y_regression_test, y_pred_lasso) rint('RSME:', '%.2f' % RSME_lasso) SME: 0.52 verificando variação do coeficiente R2 de acordo com a variação de alpha pelo método lasso
vI va fc	R2 = [] alpha = [] or alpha in np.arange(0.001,2.1,0.1): lasso_a = Lasso(alpha = alpha, normalize = True) lasso_a.fit(x_regression_train, y_regression_train) y_pred_lasso_a = lasso_a.predict(x_regression_test) r2 = r2_score(y_regression_test, y_pred_lasso_a) vR2.append(r2) valpha.append(alpha) lt.plot(valpha, vR2, '-ro') lt.xlabel("alpha", fontsize=15)
p]	lt.xlabel("alpha", fontsize=15) lt.ylabel("R2", fontsize=15) lt.show(True) 0.5 0.4 0.0 0.0 0.0 0.0 0.0 0.0
i la la fe di pi pi pi fi	<pre>alpha verificando atributos mais importantes, se algum atributo apresenta coeficiente zero, ele não cont para a regressão asso = Lasso(alpha = 0.01, normalize = True) asso.fit(x_regression_train, y_regression_train) eatures = x_regression.columns[0:(len(x_regression.columns))] ic = dict(zip(features,lasso.coef_)) rint(dic) rint('Os atributos density e quality são os que mais influenciam na predição de alcohol.') 'fixed acidity': -0.0, 'volatile acidity': -0.0, 'citric acid': 0.0, 'residual sugar': 0.0, 'chlor</pre>
es 'r	s': -0.0, 'free sulfur dioxide': -0.0, 'total sulfur dioxide': -0.0, 'density': -55.14692217079710 pH': 0.0, 'sulphates': 0.0, 'quality': 0.0931080328147085} s atributos density e quality são os que mais influenciam na predição de alcohol. Conclusão 01.discussão de resultados - pré-processamento 02.discussão de resultados - classificação 03.discussão de resultados - ordenação dos atributos 04.discussão de resultados - regressão
ia ia ia	d. discussão de resultados - pré-processamento a sessão de pré-processamento, foi realizada uma identificação de outliers através do método de interquartil IQR. Neste caso, os val apeados como outlier foram substituidos pelas suas respectivas médias. om relação aos dados sobre a qualidade do vinho (atributo em estudo) foi feita uma classificação dos valores entre bom e ruim, ansformando os resultados da avaliação, que era um score de 0 à 10, em uma variável dicotômica. Foi considerado que vinhos com ualidade maior que 6.5 são bons e abaixo disso, ruins. om relação à divisão dos dados em conjunto de treinamento e conjunto de testes, foi definida 80% para treinamento e 20% para test pi apresentada também uma análise descritiva dos dados, onde foi observado que: * As classes estão desbalanceadas. Exite muito mais vinhos classificados como ruins do que como
	<pre>bons. * Na separação de classes usando PCA, não é possível observar regiões claras de separação para a qualidade do vinho. * Observa-se que seis componentes são suficientes para explicar 90% da variância dos dados. 2. discussão de resultados - classificação onsiderando a seguinte matriz de confusão para o problema da classificação dos vinhos, temos: * Verdadeiro Positivo (VP) = Vinho detectado como bom, sendo realmente bom. * Verdadeiro Negativo (VN) = Vinho detectado como ruim, sendo realmente ruim. * Falso Positivo (FP) = Vinho detectado como bom, sendo ruim.</pre>
ca √e -1 -2r	* Falso Negativo (FN) = Vinho detectado como ruim, sendo bom. remissa considerada para análise: FN é mais prejudicial que um FP, pois safras de ótima qualidade são difíceis de serem encontrada aso o modelo classifique como ruim uma safra boa, o prejuízo comercial pode ser grande, considerando que elas seriam comercializa or um preço muito menor. erificando os processos de classificação, o SVM e o Random Forest apresentaram os melhores resultados:
AG F1 Pr Al Ra	Ccuracy: 0.92 1 score: 0.79 recision: 0.92 ecall: 0.73 lém do SVM apresentar uma acurácia um pouco maior, será levado em consideração que o recall apresentado foi bem maior do que andom Forest. O recall pode ser utilizado nas situações em que FN são considerados mais prejudiciais que FP, portanto, um modelo to recall minimiza os erros de classificação de um vinho de excelente qualidade como sendo ruim. ortanto, o SVM foi o método de classificação que obteve os melhores resultados, dada a premissa estabelecida.
Da áld	B.discussão de resultados - ordenação dos atributos ada a possibilidade de ordenar os atributos de acordo com sua importância, os resultados obtidos para o random forest mostraram que cool é o principal atributo para a classificação de uma safra. Como visto no gráfico da mudança de variância versus número de atributo componentes já explicam 90% dos dados, portanto, em um caso onde haja necessidade de selecionar os principais atributos para a assificação dos vinhos é possível elencá-los da seguinte forma: 1) alcohol 2) sulphates 3) volatile acidity 4) citric acid 5) fixed acidity 6) density
Recarrent Record	A.discussão de resultados - regressão ealizando uma regressão linear múltipla para predizer a porcentagem de álcool, o modelo apresentou um R2 de 0.57, ou seja, o efeitausal das demais variáveis sobre o fator do álcool é um pouco maior que 50%. O RSME obtido com este modelo é de 0.48 (sem egularização). ealizando a regularização utilizando ridge regression, a curva de variação de alpha com R2 mostra que para alpha > 0, o coeficiente minui, assim o ajuste tradicional de alpha = 0 tem o melhor resultado, assim a regressão linear múltipla é a melhor opção. tilizando o método Lasso o RSME foi de 0.52. A curva de variação de alpha mostra que R2 é maior apenas para alpha = 0, sendo qu dos os outros valores de alpha geram um R2 = 0. Portanto, em comparação com o ridge regression o R2 diminui ainda mais, assim,
fix vo cit restor to de ph su	asso servirá para ajudar a selecionar os atributos mais importantes. Neste caso, os atributos que apresentam coeficiente igual a zero entribuem para a regressão. Os dados obtidos são apresentados a seguir: (ed acidity: -0.0 clatile acidity: -0.0 tric acid: 0.0 sidual sugar: 0.0 nlorides: -0.0 ee sulfur dioxide: -0.0 tal sulfur dioxide: -0.0 ensity: -55.146922170797104 -1: 0.0 ulphates: 0.0
Pa	uality: 0.0931080328147085 ara uma regressão com relação ao alcohol, os atributos que contribuem para sua previsão são o density e o quality, os dem ão interferem.