MMIP-205

M.E./M.Tech., II Semesters

Examination, May 2018

Finite Element and Computer Aided Engineering

Time: Three Hours

Maximum Marks: 70

Note: i) Attempt any five questions.

http://www.rgpvonline.com

- ii) All questions earry equal marks.
- iii) Assume suitable data, if any.
- 1. a) A rod fixed at its ends is subjected to a varying body force as shown in figure. Use the Rayleigh-Ritz method with an assumed displacement field $u = a_0 + a_1x + a_2x^2$ to determine displacement u(x) and stress $\sigma(x)$

 b) Consider the differential equation along with the initial condition

$$\frac{dy}{dx} + 3u = x, \ 0 \le x \le 1$$

$$n(0) = 1$$

Solving this using Galetkin's method assuming an initial approximation $n + a + bx + cx^2$

MMIP-205 PTO

http://www.rgpvonline.com

http://www.rgpvonline.com

2. a) Consider the functional I for minimization given by

$$I = \int_0^L \frac{1}{2} k \left(\frac{\partial y}{\partial x}\right)^2 dx + \frac{1}{2} h(a_0 - 800)^2 \text{ with } y = 20 \text{ at } x = 60.$$
Given $k = 20$, $h = 25$ and $L = 60$, determine a_0 a_1 and a_2 using the polynomial approximation $y(x) = a_0 + a_1 x + a_2 x^2$ in the Rayleigh-Ritz method.

A two-element finite element solution for a rod in following figure has been obtained as $Q = \begin{bmatrix} 0 & 0.5 & 0.25 \end{bmatrix}^t$ mm. If the element shape function used where $N_1 = \frac{\begin{bmatrix} 1 - \xi \end{bmatrix}^2}{4}$.

 $N_2 = \frac{[1+\xi]^2}{4}$ evaluate the displacement *u* at the midpoint of element 1 - 2.

- a) What is the basic idea of MESH GENERATION SCHEME? Explain it by given suitable example.
 - b) What is Counter Plotting and explain its applications?

MMIP-205

- a) What is the system customization and Design Automation.
 - b) for the beam and loading shown in following fig. determine (1) the slope at 2 and 3 and (2) the verticle deflection at the midpoint of the distributed load.

- 5. a) Determine the stiffness matrix for beams on elastic support.
 - Determine the modelling and boundary conditions for overlaying beams with gap.
- 6. a) Find the deflection at the load and the slopes at the ends
 for the steel shaft shown in fig. consider the shaft to be
 simply supported at bearings A and B.

oo ch a

PTO

http://www.rgpvonline.com

http://www.rgpvonline.com

http://www.rgpvonline.com

MMIP-205

- b) Determine the stiffness matrix for Plane Frames.
- A three span beam is shown in fig. Determine the deflection curve of the beam and evaluate the reaction at the supports.

- b) Discuss the shape function for beam element.
- 8. Write short notes on:
 - a) Weighted residual approach
 - b) Product data exchange (IGES/STEP)
 - c) Variational formulation

http://www.rgpvonline.com