Projet FTML 2025 – Exercice C: Régression

Groupe FTML

July 5, 2025

Objectif de l'exercice

Ce projet vise à réaliser une tâche de régression sur le dataset fourni dans FTML/Project/data/regression/, avec pour objectifs :

- Comparer au moins deux modèles de régression.
- Atteindre une performance test supérieure à $\mathbb{R}^2 > 0.88$.
- Respecter la séparation train / validation / test sans fuite de données.
- Optimiser les modèles en incluant la sélection des hyperparamètres.
- Reproduire un estimateur proche du Bayes optimal, avec $R^2 \approx 0.92$.

Chargement et exploration des données

Les données ont été chargées depuis les fichiers .npy fournis. Une visualisation de la distribution des cibles (train/test) est proposée ci-dessous :

Figure 1: Distribution de la variable cible (train vs test)

Méthodologie

L'ensemble X_train a été séparé en X_tr / X_val (80/20) pour effectuer la sélection de modèles et l'optimisation d'hyperparamètres. Le test set X_test n'a été utilisé qu'à la fin.

Chaque modèle a été encapsulé dans un pipeline scikit-learn comprenant une standardisation et une étape de régression. La validation croisée 5-fold a été utilisée pour chaque modèle.

Modèles comparés

Nous avons testé 5 modèles :

- OLS (régression linéaire simple)
- Ridge avec et sans réduction de dimension (PCA)
- Lasso avec sélection automatique de variables
- Gradient Boosting Regressor (GBR)
- XGBoost, avec et sans PCA

Un test de corrélation a été mené pour évaluer la redondance entre variables :

Figure 2: Corrélation entre les variables d'entrée

Résultats de validation

- **OLS** : $R_{\text{val}}^2 = 0.5867$
- Ridge ($\alpha=2.55$) : $R_{\mathrm{val}}^2=0.6724$

• XGBoost + PCA : $R_{\text{val}}^2 = 0.0679$

• Lasso $(\alpha = 0.001)$: $R_{\rm val}^2 = 0.9396$

Résultats finaux sur le test set

Le modèle final sélectionné est ${f Lasso}$, entraı̂né sur l'intégralité de ${f X_train}$. Les résultats sur ${f X_test}$ sont :

• R^2 : 0.9217

• MSE: 0.0576

• MAE: 0.1963

Figure 3: Comparaison des prédictions Lasso vs valeurs vraies (test set)

Analyse comparative

Modèle	R^2	MSE	MAE
OLS	0.5867	0.4164	0.5101
Ridge	0.7195	0.2065	0.3624
XGBoost	0.7007	0.2203	0.3741
Lasso	0.9217	0.0576	0.1963

Conclusion

La meilleure performance est obtenue avec Lasso, qui réalise automatiquement une sélection de variables et généralise efficacement malgré une forte dimension. Ce modèle dépasse le score attendu de $R^2 > 0.88$ et atteint la performance du Bayes estimator ($R^2 \approx 0.92$).

Toutes les étapes de modélisation, validation et test respectent strictement les consignes du sujet : absence de fuite du test set, tuning par validation croisée, et comparaison rigoureuse de plusieurs estimateurs.