Introduction to Information Security

4. Symmetric-key Encryption

Kihong Heo

Symmetric-key Encryption

- Symmetric: the encryption and decryption keys are the same
- Assume: plaintexts and ciphertexts are all bit vectors from now on (for simplicity)

Perfectly Secret Encryption

- Ideal encryption scheme
- Secure against an adversary with unbounded computational power (e.g., infinite time & memory)
- Two equivalent definitions

An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every probability distribution over \mathcal{M} , every message $m \in \mathcal{M}$, and every ciphertext $c \in \mathcal{C}$ for which $\Pr[C = c] > 0$:

$$\Pr[M = m \mid C = c] = \Pr[M = m]$$

For every $m, m' \in \mathcal{M}$, and every $c \in \mathcal{C}$,

$$\Pr[Enc_K(m) = c] = \Pr[Enc_K(m') = c]$$

Perfect Indistinguishability

- Yet another equivalent definition
- Consider a game with an adversary $\mathcal A$ and an encryption oracle $\Pi=(Gen,Enc,Dec)$

ullet Encryption scheme Π with message space ${\mathscr M}$ is perfectly indistinguishable if for every ${\mathscr A}$

$$Pr[PrivK_{\mathcal{A},\Pi}^{eav} = 1] = 0.5$$

Vernam Cipher

- AKA Vernam's one-time pad (Gilbert Verman, 1917)
- Fix an integer l > 0. The space of \mathcal{M} , \mathcal{K} , \mathcal{C} are $\{0,1\}^l$
- Idea: encrypt plaintext one bit at a time using a random key
 - $m = m_1 m_2 ... m_l$ and $k = k_1 k_2 ... k_l$
- Gen: choose a key from ${\mathscr K}$ with uniform distribution
- $Enc: c_i = m_i \oplus k_i$
- $Dec: m_i = c_i \oplus k_i$
- ullet Key k is randomly chosen and never reused: one-time pad

Proof of Perfect Secrecy

$$Pr[M = m \mid C = c] = \frac{Pr[C = c \mid M = m] \cdot Pr[M = m]}{Pr[C = c]}$$
$$= \frac{2^{-l} \cdot Pr[M = m]}{2^{-l}}$$
$$= Pr[M = m]$$

Confidentiality of Vernam Cipher

- Unbreakable encryption scheme
 - An attacker without the key cannot recover plain text from ciphertext
 - Even given unlimited computing power and time
- So-called information-theoretically secure
 - The best thing the attacker can do is a random guess

Limitations of One-Time Pad

- The OTP should be truly random
- The OTP should be at least as long as the message
- Both copies of the OTPs are destroyed immediately after use

DDR (East-Germany)

Towards Practical Encryption Schemes

- Do not rely on a truly random number generator → pseudo-random number generator
- Do not have a key as large as the message → block cipher
- Do not have the same ciphertext even with the same key and plaintext \rightarrow prob. encryption

Computationally Secure Encryption

- Perfect secrecy: no information leaked to an adversary with unlimited computational power
 - Unnecessarily strong
- In practice, may be okay
 - leakage of a tiny amount of information
 - to an adversary with bounded computational power
- How to define
 - Tiny amount?
 - Bounded computational power?
 - Okay?

Example

- Consider a scheme with the guarantee that
 - no adversary running for at most 280 cycles can break the scheme
 - with a probability better than 2-60
- Is this secure?
 - Supercomputer: 280 keys/year
 - Sender/receiver both struck by lightning in a year: 2-60

Recall: Perfect Indistinguishability

- Yet another equivalent definition
- Consider a game with an adversary $\mathcal A$ and an encryption oracle $\Pi=(Gen,Enc,Dec)$

• Encryption scheme Π with message space \mathscr{M} is perfectly indistinguishable if for every \mathscr{A}

$$Pr[PrivK_{\mathcal{A},\Pi}^{eav} = 1] = 0.5$$

Computational Indistinguishability: Concrete

- Introduce two concrete parameters
 - Bounded adversary capability: time t
 - Tiny probability of failure: probability ϵ
- Encryption scheme $\Pi = (Gen, Enc, Dec)$ is (t, ϵ) -indistinguishable if for every \mathscr{A} running time at most t,

$$\Pr[PrivK_{\mathcal{A},\Pi}^{eav} = 1] \le 0.5 + \epsilon$$

- Problems?
 - Complicated formulation and proof
 - Hard to change parameters (security level)

Asymptotic Formalization

- Standard way for the estimation of the computational complexity of problems
 - Details will be covered in CS300 (Introduction to algorithms)
- Idea: describe the behavior of the algorithm based on the input size n
- Example: worst case time complexity
 - max : int list -> int
 - bubble_sort : int list -> int list
 - Exhaustive password search (i.e., brute-force, 마구잡이)
 - Shortest route that visits each city exactly once and returns to the origin

Asymptotically Secure

- Introduce an integer-valued security parameter *n*
 - Typically a key length
 - Parameterize both the running time of the adversary and the attack success probability
- Asymptotically secure:
 - Any probabilistic polynomial-time (PPT) adversary succeeds in breaking the scheme with at most negligible probability
 - Probabilistic: access a random bit
 - Polynomial: efficient algorithm or running in polynomial time for given n
 - Negligible: asymptotically smaller than any inverse polynomial function

Computational Indistinguishability

• Consider a game with a PPT adversary \mathcal{A} and an encryption oracle $\Pi = (Gen, Enc, Dec)$

• Encryption scheme Π is computationally indistinguishable if for every PPT \mathscr{A} , there is a negligible function negl such that for all n,

$$\Pr[PrivK_{\mathcal{A},\Pi}^{eav}(n) = 1] \le 0.5 + negl(n)$$

Semantic Security

Semantically secure

computationally indistinguishable

Kihong Heo

Pseudorandom Generators (PRGs)

- An efficient algorithm that transforms a short random string (seed) into a longer "randomlooking" output string
- "Random-looking"?
 - The output of PRG should look like a random string to any efficient observer
- Remember: "efficient" means "polynomial" in CS most of the time

Formal Definition of PRGs

• $G: \{0,1\}^n \to \{0,1\}^{poly(n)}$ is a pseudorandom generator if for any PPT algorithm D (distinguisher), there is a negligible function negl such that

$$|\Pr[D(G(s)) = 1] - \Pr[D(r) = 1]| \le negl(n)$$

where
$$D(w) = \begin{cases} 1 \text{ if } D \text{ concludes that } w = G(s), s \text{ is drawn from } \{0,1\}^n \\ 0 \text{ if } D \text{ concludes that } w \text{ is drawn from } \{0,1\}^{poly(n)} \end{cases}$$

- Do such PRGs exist?
 - Don't know but believed based on some assumptions (closely related to $P \neq NP$)
 - Many practical PRGs in use everyday (e.g., /dev/random)

Towards Practical Encryption Schemes

- Do not rely on a truly random number generator → pseudo-random number generator
- Do not have a key as large as the message \rightarrow block cipher
- Do not have the same cipher text even with the same key and plaintext \rightarrow prob. encryption

Block Cipher

- Encrypt data in blocks of fixed lengths (e.g., 128-bits)
 - C.f., Stream cipher: encrypt 1 bit of data at a time (e.g., Vernam Cipher)
- Basic building block of many encryption schemes
- Idea: key = permutation
 - For a fixed key k, a block cipher with n-bit block length is a permutation
- Example: DES, AES (Advanced Encryption Standard)

Pseudo-Random Permutation (PRP)

- Given a key length s and block length n
- Ideal block cipher
 - A collection $E = \{\pi_1, ..., \pi_{2^s}\}$ of random permutations $\pi_i : \{0,1\}^n \to \{0,1\}^n$
- Practical block cipher using PRP $\pi: \{0,1\}^s \times \{0,1\}^n \to \{0,1\}^n$
 - Encryption $c=\pi_k(m)$ and decryption $m=\pi_k^{-1}(c)$ where k is the key
 - For any $k \in \{0,1\}^s$, π_k is a one-to-one function from $\{0,1\}^n \to \{0,1\}^n$
 - For any $k \in \{0,1\}^s$, there is an "efficient" algorithm to evaluate $\pi_k(x)$ and $\pi_k^{-1}(x)$
 - For any $k \in \{0,1\}^s$, π_k is indistinguishable from a random permutation

Indistinguishability

- How many possible π ? (truly random permutation)
 - $(2^n)!$
 - If n = 3, then 30,320
 - If n = 7, then 2.856205 x 10^{215}
- How many possible π_k when the key length is s?
 - 2^s
- For larger s, π_k is indistinguishable from a random permutation

Example

• Block length: 2 bits

Key length: 2 bits

$$key = 00$$

$$key = 01$$

$$key = 10$$

$$key = 11$$

AES

- Advanced Encryption Standard
 - Based on the Rijndael cipher developed by Rijmen and Daemen (2001)
- Symmetric key block cipher to replace DES (1977)
- Key length: 128, 192, and 256 bits
- 10 to 14 rounds of permutation
 - 10 rounds for 128-bit key, 12 for 192, 14 for 256
- 3 big ideas: confusion, diffusion, and key secrecy

Confusion

- Obscure the relationship between the plaintext and the ciphertext
- Example: Caesar cipher
 - Plaintext: attack at dawn
 - Ciphertext: DWWDFN DW GDZQ

Diffusion

- Spread out the message
- Example: column transposition
 - Plaintext: attack at dawn
 - Ciphertext: ACD TKA TAW ATN

Key Secrecy

- Kerckhoffs's principle (1883)
- A cryptosystem should be secure even if
 - Everything about the system is public (i.e., algorithm)
 - Except for the key
- Why?
 - Easier to keep small things secret than large things
 - |System design| >> |Key|

AES in a Nutshell (1)

- Consider the minimum case of 128-bit key
- Input and output: 4 x 4 matrix of bytes

AES in a Nutshell (2): SubBytes

- Non-linear byte substitution for confusion
- Independent operation on each byte of the state using a substitution table (S-box)
- Example: if $s_{1,1} = 53$ then $s'_{1,1} = ed$

		У															
		0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
x	0	63	7c	77	7b	f2	6b	6f	с5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c 0
	2	b7	fd	93	26	36	3f	f7	C	34	a5	e 5	f1	71	d8	31	15
	3	04	c 7	23	с3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
	4	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e 3	2f	84
	5	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
	6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a8
	7	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	£3	d2
	8	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e 4	79
	b	e 7	c 8	37	6d	8d	d5	4e	a 9	6с	56	f4	ea	65	7a	ae	80
	С	ba	78	25	2e	1c	a6	b4	с6	e 8	dd	74	1f	4b	bd	8b	8a
	d	70	3e	b 5	66	48	03	f6	0e	61	35	57	b 9	86	c1	1d	9e
	е	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e 9	ce	55	28	df
	f	8c	a1	89	0d	bf	e 6	42	68	41	99	2d	0f	b0	54	bb	16

AES in a Nutshell (3): ShiftRows

- Cyclic shift over different numbers of bytes for diffusion
 - i-th row: i-byte shift
- Example: if $s_2 = 0a23$ then $s_2' = 230a$

AES in a Nutshell (4): MixColumns

- Matrix multiplication on each column for diffusion
 - Multiplied by a fixed array

$$\begin{bmatrix} s_{0,c} \\ s_{1,c} \\ s_{2,c} \\ s_{3,c} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,c} \\ s_{1,c} \\ s_{2,c} \\ s_{3,c} \end{bmatrix}$$

$$\begin{bmatrix} s_{0,c}' \\ s_{1,c}' \\ s_{3,c}' \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,c} \\ s_{1,c} \\ s_{3,c} \end{bmatrix}$$

$$= \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,c} \\ s_{1,c} \\ s_{2,c} \\ s_{3,c} \end{bmatrix}$$

$$s'_{1,c} = s_{0,c} \oplus (\{02\} \bullet s_{1,c}) \oplus (\{03\} \bullet s_{2,c}) \oplus s_{3,c} \\ s'_{2,c} = s_{0,c} \oplus s_{1,c} \oplus (\{02\} \bullet s_{2,c}) \oplus (\{03\} \bullet s_{3,c}) \\ s'_{2,c} = s_{0,c} \oplus s_{1,c} \oplus (\{02\} \bullet s_{2,c}) \oplus (\{03\} \bullet s_{3,c}) \\ s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus (\{02\} \bullet s_{3,c}) \\ s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus (\{02\} \bullet s_{3,c}) \\ s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus (\{02\} \bullet s_{3,c}) \\ s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus (\{02\} \bullet s_{3,c}) \\ s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus s_{2,c} \oplus s_{3,c} \\ s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus s_{2,c} \oplus s_{3,c} \\ s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus s_{2,c} \oplus s_{3,c} \\ s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus s_{2,c} \oplus s_{3,c} \\ s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus s_{2,c} \oplus s_{3,c} \\ s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus s_{2,c} \oplus s_{3,c} \\ s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus s_{2,c} \oplus s_{3,c} \\ s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus s_{2,c} \oplus s_{3,c} \\ s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus s_{2,c} \oplus s_{3,c} \\ s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus s_{2,c} \oplus s_{3,c} \\ s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus s_{2,c} \oplus s_{3,c} \\ s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus s_{2,c} \oplus s_{3,c} \\ s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus s_{2,c} \oplus s_{3,c} \\ s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus s_{2,c} \oplus s_{2,c} \oplus s_{3,c} \oplus s_{2,c} \oplus$$

AES in a Nutshell (5): AddRoundKey

- A round key is added to the state by a simple bitwise XOR for secrecy
- The round key is determined by the key schedule algorithm

AES in a Nutshell (6): Put it All Together

- Encryption
 - For each round: AddRoundKey MixColumns ShiftRows SubBytes
- Decryption: the inverse of the encryption
 - For each round: SubBytes-1 ShiftRows-1 MixColumns-1 AddRoundKey-1

Practical Use of Block Cipher

- If |plaintext| = block length?
 - Encrypt the plaintext using π_k
- If the last plaintext block < block length?
 - Padding with "filler" characters
- Then, the encryption algorithm is as follows:
 - 1. Pad the plaintext with filler characters
 - 2. Split the padded plaintext into equal-size blocks
 - 3. Apply π_k for each block and concatenate them

Problem

Identical plaintext blocks → identical cipher text blocks

Plaintext

Ciphertext of the Naive block cipher

Ciphertext we want!

Towards Practical Encryption Schemes

- Do not rely on a truly random number generator → pseudo-random number generator
- Do not have a key as large as the message → block cipher
- Do not have the same cipher text even with the same key and plaintext \rightarrow prob. encryption

Probabilistic Encryption

- Probabilistic encryption: different cipher texts for the same plaintext
 - All state-of-the-art encryption schemes are probabilistic
- How to generate different c_i for the same m?
- How to obtain the same m from different c_i ?

Kihong Heo

Block Cipher Mode of Operation

- Determine how to repeatedly apply a single-block operation to a sequence of blocks
- Pseudo-random permutation only guarantees the confidentiality of a single block
- Different modes of operations
 - ECB: Electronic Code Book
 - CBC: Cipher Block Chaining
 - CFB: Cipher FeedBack
 - OFB: Output FeedBack
 - CTR: CounTeR mode

Electronic Code Book Moe (ECB)

$$C_i = \pi_k(P_i)$$

$$P_i = \pi_k^{-1}(C_i)$$

- Advantages
 - Simple and efficient (i.e., parallelizable) to compute
- Disadvantages
 - Same plaintext always corresponds to same cipher text

Cipher Block Chaining Mode (CBC)

Introduction to Information Security

$$\begin{split} C_i &= \pi_k(P_i \oplus C_{i-1}) \\ P_i &= \pi_k^{-1}(C_i) \oplus C_{i-1} \\ C_0 &= IV \quad \text{(Initialization Vector)} \end{split}$$

- Advantages
 - Semantic security
- Disadvantages
 - Cannot be parallelized

Padding

- Block cipher: a fixed block size
- What if the message size is not a multiplication of the block size?
- Example: 64-bit block (8 bytes)

Padding Schemes

- What kind of padding scheme can you imagine?
- Zero padding: padded with zero
 - | 00 11 22 33 44 55 66 77 | 88 99 00 00 00 00 00 |
 - Not reversible
- PKCS#5 (and PKCS#7): padded with the number of bytes that are added
 - | 00 11 22 33 44 55 66 77 | 88 99 **05 05 05 05 05**
 - Most commonly used
- Many others

Padding Oracle

- A service that checks whether the plaintext is correctly padded or not
- Usually for providing detailed error messages
 - E.g., Invalid data, Invalid padding, etc Is this service secure? **OK / Invalid PW / Invalid Padding**

Padding Oracle Attack

- An attacker can obtain the plaintext using the oracle
- Discovered in 2002

*Serge Vaudenay, Security Flaws Induced by CBC Padding Applications to SSL, IPSEC, WTLS..., Eurocrypt 2022

Example (1)

Assume 64-bit (8 bytes) block size

Example (2)

Assume 64-bit (8 bytes) block size

Example (3)

• Construct C_1' by randomly changing the last byte of C_1 and send $C_1' \mid \mid C_2$ to the oracle

Example (4)

• Suppose we are sure that $P_2'[7] = 0x01$

Example (5)

• Construct C_1' by randomly changing the last two bytes of C_1 and send $C_1' \mid \mid C_2$ to the oracle

Example (6)

- Finally, $\pi_k^{-1}(C_2)$ will be discovered by the attacker
- Apply the same attack for all the other blocks

Lessons Learned

- Be careful when you design a secure service based on cryptography
- What if we do not allow such an oracle?
 - Security vs usability
- "Chaining" is not a good idea

52 / 54

Counter Mode (CTR)

$$X_0 = IV$$

$$X_i = X_0 + i$$

$$C_i = \pi_k(X_i) \oplus P_i$$

$$P_i = \pi_k(X_i) \oplus C_i$$

- Advantages
 - Semantic security and parallelization
- Disadvantages
 - Maintenance of synchronous counters

Summary

- Symmetric-key cryptography: the same key for encryption and decryption
- Vernam cipher (one-time pad): unbreakable but impractical
- Block cipher: basic building block of many schemes using pseudo-random permutation
- Block cipher mode of operations

	Advantages	Disadvantages
ECB	Simple Parallelizable enc / dec	Pattern leackage
CBC	Semantic security	Only dec parallelizable Padding oracle attack
CTR	Semantic security Parallelable enc / dec	Counter maintenance