Heavy-Tailed Longitudinal Linear Mixed Models for Multiple Censored Responses Data

Larissa Avila Matos

Co-Authors: Victor H. Lachos, Luis M. Castro and Ming-Hui Chen

October/2016

Summary

Introduction

Preliminaries

SMN-MLMEC model

References

Summary

Introduction

Preliminaries

SMN-MLMEC mode

References

Motivation

- ▶ In AIDS studies it is quite common to observe viral load measurements that are collected irregularly over time. Moreover, these measurements can be subjected to some upper and/or lower detection limits depending on the quantification assays.
- ► A complication arises when these continuous repeated measures have a heavy-tailed behavior.
- ► For such data structures, we propose a robust censored linear mixed model for multiple responses based on the class of multivariate scale mixtures of normal distributions.

Motivating data

A5055 clinical trial

► **A5055** study

- \rightarrow 44 infected patients with the human immunodeficiency virus type 1 (HIV-1) treated with one of the two potent antiretroviral (ARV) therapies;
- \rightarrow 2 outcomes: $log_{10}(RNA)$ and CD4/CD8, where CD4 and CD8 are two immunologic markers frequently used for monitoring disease progression in AIDS studies;
- \rightarrow 33% (106 out of 316) of measurements lying below the limits of assay quantification (left-censored).

Motivating data

A5055 clinical trial

Recent works

Longitudinal Models

Censored longitudinal models with heavy-tailed distribution

- ► Lachos et al. (2011) [Biometrics]
- ► Garay et al. (2014) [Statistical Methods in Medical Research]
- ▶ Matos et al. (2013b) [Statistica Sinica]
- ▶ Wang et al. (2015) [Statistical Methods in Medical Research]

Summary

Introduction

Preliminaries

SMN-MI MEC mode

References

Scale mixture of normal distributions (SMN)

Andrews & Mallows (1974); Lange & Sinsheimer (1993)

Stochastic representation

$$\mathbf{y} = \boldsymbol{\mu} + \kappa(\mathbf{U})^{1/2} \mathbf{Z},\tag{1}$$

where,

- $\blacktriangleright \mu \in \mathbb{R}$ is a location vector;
- ▶ $Z \sim N(0, \Sigma)$:
- ▶ U is a positive random variable with cumulative distribution function (cdf) $H(u|\nu)$ and probability density function (pdf) $h(u|\nu)$ independent of Z;
- \triangleright $\kappa(U)$ is the weight function;
- ▶ Notation: $\mathbf{y} \sim \mathrm{SMN}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}; \mathbf{H})$.

$$\mathbf{y}|\mathbf{U} = \mathbf{u} \sim N(\boldsymbol{\mu}, \kappa(\mathbf{u})\boldsymbol{\Sigma}),$$

$$\mathbf{U} = \mathbf{u} \sim h(\mathbf{u}|\boldsymbol{\nu}). \tag{2}$$

Scale mixture of normal distributions (SMN)

Special cases: $\mathbf{y} \in \mathbb{R}^p$ and $\kappa(u) = 1/u$;

- ► The multivariate normal distribution
 - ▶ Distribution function: $N(\mathbf{y}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \phi_{\rho}(\mathbf{y}; \boldsymbol{\mu}, \boldsymbol{\Sigma}).$
- ► The multivariate Student's-t distribution
 - Distribution function:

$$\mathrm{T}(\mathbf{y}|\boldsymbol{\mu},\boldsymbol{\Sigma},\nu) = \frac{\Gamma(\frac{\rho+\nu}{2})}{\Gamma(\frac{\nu}{2})\pi^{\rho/2}}\nu^{-\rho/2}|\boldsymbol{\Sigma}|^{-1/2}\left(1+\frac{d}{\nu}\right)^{-(\rho+\nu)/2}.$$

- ► The multivariate slash distribution
 - Distribution function:

$$\mathrm{SL}(\mathbf{y}|\boldsymbol{\mu},\boldsymbol{\Sigma},\nu) = \nu \int_0^1 u^{\nu-1} \phi_{\rho}(\mathbf{y};\boldsymbol{\mu},u^{-1}\boldsymbol{\Sigma}) du, \quad u \in (0,1), \quad \nu > 0.$$

- ► The multivariate contaminated normal distribution
 - Distribution function:

$$CN(\mathbf{y}|\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\nu}) = \nu \phi_{P}(\mathbf{y};\boldsymbol{\mu},\boldsymbol{\gamma}^{-1}\boldsymbol{\Sigma}) + (1-\nu)\phi_{P}(\mathbf{y};\boldsymbol{\mu},\boldsymbol{\Sigma}).$$

SAEM Algorithm

SAEM Algorithm - Delyon et al. (1999)

Let θ be the parameter vector and $\mathbf{y}_c = (\mathbf{y}^\top, \mathbf{q}^\top)$ be the vector of complete data, i.e., the observed data \mathbf{y}^\top and the missing/censored data (or the latent variables, depending on the situation) \mathbf{q}^\top . The SAEM algorithm consists in:

► E-Step:

- **1. Simulation-step:** Draw $\mathbf{q}^{(k,l)}$ $(l=1,\ldots,m)$ from the conditional distribution $f(\mathbf{q}|\mathbf{y},\widehat{\boldsymbol{\theta}}^{(k-1)})$;
- **2. Stochastic-approximation-step:** Update $Q(\theta|\widehat{\theta}^{(k)})$ according to

$$Q(\boldsymbol{\theta}|\widehat{\boldsymbol{\theta}}^{(k)}) = Q(\boldsymbol{\theta}|\widehat{\boldsymbol{\theta}}^{(k-1)}) + \delta_k \left[\frac{1}{m} \sum_{l=1}^m \ell_c(\boldsymbol{\theta}|\mathbf{q}^{(k,l)},\mathbf{y}) - Q(\boldsymbol{\theta}|\widehat{\boldsymbol{\theta}}^{(k-1)}) \right],$$

where $\ell_c(\boldsymbol{\theta} \mid \mathbf{y}_c) = \sum_{i=1}^n \ell_i(\boldsymbol{\theta} \mid \mathbf{y}_c)$ is the complete log-likelihood function and δ_k is a smoothness parameter, *i.e.*, a decreasing sequence of positive numbers such that $\sum_{k=1}^\infty \delta_k = \infty$ and $\sum_{k=1}^\infty \delta_k^2 < \infty$.

SAEM Algorithm

SAEM Algorithm - Delyon et al. (1999)

▶ M-Step: Update $\theta^{(k)}$ according to

$$\widehat{oldsymbol{ heta}}^{(k+1)} = \mathop{\mathsf{argmax}}_{ heta} Q(oldsymbol{ heta}|\widehat{oldsymbol{ heta}}^{(k)}).$$

▶ As proposed by Galarza *et al.* (2015), we will consider the following smoothing parameter

$$\delta_k = \begin{cases} 1, & \text{if } 1 \le k \le cW; \\ \frac{1}{k - cW}, & \text{if } cW + 1 \le k \le W, \end{cases}$$
 (3)

where,

- W is the maximum number of iterations; e
- c is a cut point $(0 \le c \le 1)$ which determines the percentage of the initial iterations.

Summary

Introduction

Preliminaries

SMN-MLMEC model

References

Let
$$\mathbf{Y}_i = [\mathbf{y}_{i1}:\ldots:\mathbf{y}_{ir}]$$
, then
$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{b}_i + \boldsymbol{\epsilon}_i, \quad i = 1,\ldots,n; \tag{4}$$

where:

- ▶ $\mathbf{y}_i = \text{vec}(\mathbf{Y}_i) = (\mathbf{y}_{i1}^\top, \dots, \mathbf{y}_{ir}^\top)^\top$, where $\mathbf{y}_{ij} = (y_{ij1}, \dots, y_{ijn_i})^\top$ is a $n_i \times 1$ vector of the *j*th outcome for the *i*th subject;
- ▶ $X_i = \text{Bdiag}\{X_{i1}, ..., X_{ir}\}$, where X_{ij} is an $n_i \times p_j$ design matrix for fixed effects corresponding to the *j*th outcome of the *i*th subject;
- **Z**_i = Bdiag{ $\mathbf{Z}_{i1}, \dots, \mathbf{Z}_{ir}$ }, onde \mathbf{Z}_{ij} is an $n_i \times q_j$ design matrix for random effects corresponding to the jth outcome of the ith subject, which is generally a subset of \mathbf{X}_{ij} ;
- ▶ $\boldsymbol{\beta} = (\boldsymbol{\beta}_1^\top, \dots, \boldsymbol{\beta}_r^\top)^\top$ is the $p \times 1$ vector of fixed effects associated with the design matrix \mathbf{X}_i , $p = \sum_{j=1}^r p_j$;
- ▶ $\mathbf{b}_i = (\mathbf{b}_{i1}^\top, \dots, \mathbf{b}_{ir}^\top)^\top$ is the $q \times 1$ vector of random effects associated with the design matrix \mathbf{Z}_i , $q = \sum_{i=1}^r q_i$;
- $\epsilon_i = \text{vec}(E_i) = (\epsilon_{i1}^\top, \dots, \epsilon_{ir}^\top)^\top$ is the vector of random errors of dimension $(s_i \times 1)$ $(s_i = n_i \times r)$, where $E_i = [\epsilon_{i1} : \dots : \epsilon_{ir}]$ and ϵ_{ij} corresponds to the error for the ith outcome for the ith subject.

 Considering the multivariate SMN distributions for the random terms, the model can be expressed as

$$\mathbf{y}_i \mid \mathbf{b}_i \quad \stackrel{\text{ind.}}{\sim} \quad \text{SMN}_{s_i}(\mathbf{X}_i\boldsymbol{\beta} + \mathbf{Z}_i\mathbf{b}_i, \mathbf{R}_i; \mathbf{H}_1),$$

$$\mathbf{b}_i \quad \stackrel{\text{ind.}}{\sim} \quad \text{SMN}_q(\mathbf{0}, \mathbf{D}; \mathbf{H}_2), \quad i = 1, \dots, n.$$
 (5)

 Using the stochastic representation (1), the hierarchical representation of the model defined in(4) is given by

$$\mathbf{y}_{i} \mid \mathbf{b}_{i}, \kappa_{i} \quad \stackrel{\text{ind.}}{\sim} \quad \mathrm{N}_{s_{i}}(\mathbf{X}_{i}\boldsymbol{\beta} + \mathbf{Z}_{i}\mathbf{b}_{i}, \kappa_{i}^{-1}\mathbf{R}_{i}),$$

$$\mathbf{b}_{i} \mid \tau_{i} \quad \stackrel{\text{ind.}}{\sim} \quad \mathrm{N}_{q}(\mathbf{0}, \tau_{i}^{-1}\mathbf{D}),$$

$$\kappa_{i} \quad \stackrel{\text{ind.}}{\sim} \quad \mathrm{H}_{1}(\nu),$$

$$\tau_{i} \quad \stackrel{\text{ind.}}{\sim} \quad \mathrm{H}_{2}(\eta);$$

$$(6)$$

where $\mathbf{R}_i = \mathbf{\Sigma} \otimes \mathbf{\Omega}_i$.

Correlation structures - Muñoz et al. (1992)

Damped exponential correlation (DEC):

$$\Omega_{i} = \Omega_{i}(\phi, \mathbf{t}_{i}) = \left[\phi_{1}^{|t_{ij}-t_{ik}|\phi_{2}}\right], i = 1, \dots, n, j, k = 1, \dots, n_{i}, (7)$$

For the DEC structure, we have that:

- (a) if $\phi_2 = 0$, then Ω_i generates the compound symmetry correlation structure;
- (b) when $0 < \phi_2 < 1$, then Ω_i presents a decay rate between the compound symmetry structure and the first-order AR (AR (1)) model;
- (c) if $\phi_2 = 1$, then Ω_i generates an AR(1) structure;
- (d) when $\phi_2>1$, Ω_i presents a decay rate faster than the AR(1) structure; and
- (e) if $\phi_2 \to \infty$, then Ω_i represents the first-order moving average model, MA(1).

 Recall that we are interested in the case where left-censored observations can occur. That is, we assume that the observations are of the form

$$y_{ijk} \leq V_{ijk}$$
 se $C_{ijk} = 1$, $y_{ijk} = V_{ijk}$ se $C_{ijk} = 0$,

with
$$i = 1, ..., n, j = 1, ..., n_i$$
 and $k = 1, ..., r$;

- ▶ The observed data for the *i*-th subject is represented by $(\mathbf{V}_i, \mathbf{C}_i)$, where $\mathbf{V}_i = [V_{i1} : \ldots : V_{ir}]$ is an $n_i \times r$ matrix and $\mathbf{C}_i = [C_{i1} : \ldots : C_{ir}]$ is an $n_i \times r$ matrix;
- ▶ The extensions to arbitrary censoring are immediate.

Maximum likelihood estimation - SAEM

- ► The complete data log-likelihood function:
 - $\bullet \ \theta = (\beta, \sigma, \alpha, \phi, \nu, \eta);$
 - ▶ Augmenting data: $\mathbf{y}_c = (\mathbf{V}^\top, \mathbf{C}^\top, \mathbf{y}^\top, \mathbf{b}^\top, \kappa^\top, \tau^\top)^\top$;
 - ▶ [V C y] ⇒ [y].

$$\begin{split} \ell_c(\boldsymbol{\theta}|\mathbf{y}_c) &= \sum_{i=1}^n \left[\log f(\mathbf{y}_i|\mathbf{b}_i,\kappa_i) + \log f(\mathbf{b}_i|\tau_i) + \log h_1(\kappa_i|\nu) + \log h_2(\tau_i|\eta)\right] \\ &= -\frac{1}{2} \sum_{i=1}^n \log |\mathbf{R}_i| - \frac{1}{2} \sum_{i=1}^n \kappa_i (\mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta} - \mathbf{Z}_i \mathbf{b}_i)^\top \mathbf{R}_i^{-1} (\mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta} - \mathbf{Z}_i \mathbf{b}_i) \\ &- \frac{1}{2} \sum_{i=1}^n \log |\mathbf{D}| - \frac{1}{2} \sum_{i=1}^n \tau_i \mathbf{b}_i^\top \mathbf{D}^{-1} \mathbf{b}_i + \sum_{i=1}^n \log h_1(\kappa_i|\nu) + \sum_{i=1}^n \log h_2(\tau_i|\eta) + K, \end{split}$$

with K being a constant that does not depend on the parameter vector θ .

Maximum likelihood estimation - SAEM

▶ Q-function: For the *i*-th subject,

$$\begin{split} Q_{i}\left(\boldsymbol{\theta}|\widehat{\boldsymbol{\theta}}^{(k)}\right) &=& \widehat{\ell h_{1i}}^{(k)} + \widehat{\ell h_{2i}}^{(k)} - \frac{1}{2}\log|\widehat{\mathbf{D}}^{(k)}| - \frac{1}{2}\mathrm{tr}\Big(\widehat{\tau \mathbf{b}_{i}^{2}}^{(k)}\widehat{\mathbf{D}}_{i}^{-1(k)}\Big) - \frac{1}{2}\sum_{i=1}^{n}\log|\widehat{\mathbf{R}}_{i}^{(k)}| \\ &-& \frac{1}{2}\left[\mathrm{tr}\Big(\widehat{\kappa \mathbf{y}_{i}^{2}}^{(k)}\widehat{\mathbf{R}}_{i}^{-1(k)}\Big) - 2\widehat{\boldsymbol{\beta}}^{(k)\top}\mathbf{X}_{i}^{\top}\widehat{\mathbf{R}}_{i}^{-1(k)}\widehat{\kappa \mathbf{y}_{i}}^{(k)} + 2\widehat{\boldsymbol{\beta}}^{(k)\top}\mathbf{X}_{i}^{\top}\widehat{\mathbf{R}}_{i}^{-1(k)}\mathbf{Z}_{i}\widehat{\kappa \mathbf{b}_{i}}^{(k)} \\ &-& 2\mathrm{tr}\Big(\mathbf{Z}_{i}^{\top}\widehat{\mathbf{R}}_{i}^{-1(k)}\widehat{\kappa \mathbf{y}}\widehat{\mathbf{b}_{i}}^{(k)}\Big) + \mathrm{tr}\Big(\mathbf{Z}_{i}^{\top}\widehat{\mathbf{R}}_{i}^{-1(k)}\mathbf{Z}_{i}\widehat{\kappa \mathbf{b}_{i}^{2}}^{(k)}\Big) + \widehat{\kappa_{i}}^{(k)}\widehat{\boldsymbol{\beta}}^{(k)\top}\mathbf{X}_{i}^{\top}\widehat{\mathbf{R}}_{i}^{-1(k)}\mathbf{X}_{i}\widehat{\boldsymbol{\beta}}^{(k)}\Big]\,, \end{split}$$

with

$$\begin{split} \widehat{\ell h_{1i}}^{(k)} &= E \left[\log h_1(\kappa_i | \nu) | \mathbf{V}_i, \mathbf{C}_i, \widehat{\boldsymbol{\theta}}^{(k)} \right], \quad \widehat{\ell h_{2i}}^{(k)} = E \left[\log h_2(\tau_i | \eta) | \mathbf{V}_i, \mathbf{C}_i, \widehat{\boldsymbol{\theta}}^{(k)} \right] \\ \widehat{\kappa \mathbf{y}_i^{2(k)}} &= E \left[\kappa_i \mathbf{y}_i \mathbf{y}_j^{\mathsf{T}} | \mathbf{V}_i, \mathbf{C}_i, \widehat{\boldsymbol{\theta}}^{(k)} \right], \qquad \widehat{\kappa \mathbf{y}_i}^{(k)} = E \left[\kappa_i \mathbf{y}_i | \mathbf{V}_i, \mathbf{C}_i, \widehat{\boldsymbol{\theta}}^{(k)} \right], \\ \widehat{\kappa \mathbf{b}_i^{2(k)}} &= E \left[\kappa_i \mathbf{b}_i \mathbf{b}_j^{\mathsf{T}} | \mathbf{V}_i, \mathbf{C}_i, \widehat{\boldsymbol{\theta}}^{(k)} \right], \qquad \widehat{\kappa \mathbf{b}_i}^{(k)} = E \left[\kappa_i \mathbf{b}_i | \mathbf{V}_i, \mathbf{C}_i, \widehat{\boldsymbol{\theta}}^{(k)} \right], \\ \widehat{\tau \mathbf{b}_i^{2(k)}} &= E \left[\tau_i \mathbf{b}_i \mathbf{b}_i^{\mathsf{T}} | \mathbf{V}_i, \mathbf{C}_i, \widehat{\boldsymbol{\theta}}^{(k)} \right], \qquad \widehat{\kappa \mathbf{y} \mathbf{b}_i}^{(k)} = E \left[\kappa_i \mathbf{y}_i \mathbf{b}_i^{\mathsf{T}} | \mathbf{V}_i, \mathbf{C}_i, \widehat{\boldsymbol{\theta}}^{(k)} \right], \\ \widehat{\kappa_i}^{(k)} &= E \left[\kappa_i | \mathbf{V}_i, \mathbf{C}_i, \widehat{\boldsymbol{\theta}}^{(k)} \right]. \end{split}$$

SAEM - E-step

► Simulation-step: Gibbs Sampler

$$\begin{aligned} \mathbf{y}_{i}^{c}|\mathbf{V}_{i}^{c},\mathbf{y}_{i}^{o},\mathbf{b}_{i},\kappa_{i},\tau_{i},\boldsymbol{\theta} \sim \mathrm{TN}_{s_{i}^{c}}(\boldsymbol{\mu}_{i},\kappa_{i}^{-1}\mathbf{S}_{i};\mathbb{A}_{i}), \\ \text{with } \mathbb{A}_{i} &= \{\mathbf{y}_{i}^{c} = (y_{i1}^{c},\ldots,y_{is_{i}^{c}}^{c})^{\top}|y_{i1}^{c} \leq V_{i1}^{c},\ldots,y_{is_{i}^{c}}^{c} \leq V_{is_{i}^{c}}^{c}\}, \\ \boldsymbol{\mu}_{i} &= (\mathbf{X}_{i}^{c}\boldsymbol{\beta} + \mathbf{Z}_{i}^{c}\mathbf{b}_{i}) + \mathbf{R}_{i}^{co}(\mathbf{R}_{i}^{oo})^{-1}(\mathbf{y}_{i}^{o} - \mathbf{X}_{i}^{o}\boldsymbol{\beta} - \mathbf{Z}_{i}^{o}\mathbf{b}_{i}) \quad \text{e} \\ \mathbf{S}_{i} &= \mathbf{R}_{i}^{cc} - \mathbf{R}_{i}^{co}(\mathbf{R}_{i}^{oo})^{-1}\mathbf{R}_{i}^{oc}. \\ \text{Then } \mathbf{y}_{i}^{(k,l)} &= (y_{i1},\ldots,y_{is_{i}^{o}},y_{is_{i}^{o}+1}^{c(k,l)},\ldots,y_{is_{i}^{c}}^{c(k,l)}) \text{ is the generated sample.} \\ \text{Step 2. Sample } \mathbf{b}_{i}^{(k,l)} \text{ from } f(\mathbf{b}_{i}|\mathbf{y}_{i}^{(k,l)},\kappa_{i}^{(k,l-1)},\tau_{i}^{(k,l-1)},\widehat{\boldsymbol{\theta}}^{(k)}), \text{ where} \\ \mathbf{b}_{i}|\mathbf{y}_{i},\kappa_{i},\tau_{i}\sim \mathbf{N}_{q}(\mathbf{\Psi}_{i}\mathbf{Z}_{i}^{\top}\mathbf{R}_{i}^{-1}\kappa_{i}(\mathbf{y}_{i}-\mathbf{X}_{i}\boldsymbol{\beta}),\mathbf{\Psi}_{i}), \\ \text{with } \mathbf{\Psi} &= (\kappa_{i}\mathbf{Z}_{i}^{\top}\mathbf{R}_{i}^{-1}\mathbf{Z}_{i}+\tau_{i}\mathbf{D}^{-1})^{-1} \text{ (Arellano-Valle et al., 2005, Lemma 2).} \end{aligned}$$

Step 1. Sample \mathbf{y}_i^c de $f(\mathbf{y}_i^c | \mathbf{V}_i^c, \mathbf{y}_i^o, \mathbf{b}_i^{(k,l-1)}, \kappa_i^{(k,l-1)}, \tau_i^{(k,l-1)}, \widehat{\boldsymbol{\theta}}^{(k)})$, where

SAEM - E-step

Step 3. Sample
$$\kappa_i^{(k,l)}$$
 from $f(\kappa_i|\mathbf{y}_i^{(k,l)},\mathbf{b}_i^{(k,l)},\tau_i^{(k,l-1)},\widehat{\boldsymbol{\theta}}^{(k)})$.

Step 4. Sample
$$\tau_i^{(k,l)}$$
 from $f(\tau_i|\mathbf{y}_i^{(k,l)},\mathbf{b}_i^{(k,l)},\kappa_i^{(k,l)},\widehat{\boldsymbol{\theta}}_i^{(k)})$.

Observation: Note that since $\mathbf{y}_i \mid \mathbf{b}_i$ is independent of τ_i ; \mathbf{b}_i independent of κ_i ; and κ_i and τ_i are mutually independent, then we have

$$f(\kappa_i|\mathbf{y}_i,\mathbf{b}_i,\tau_i) \propto f(\mathbf{y}_i|\mathbf{b}_i,\kappa_i)f(\kappa_i)$$

and

$$f(\tau_i|\mathbf{y}_i,\mathbf{b}_i,\kappa_i)\propto f(\mathbf{b}_i|\tau_i)f(\tau_i).$$

SAEM - E-step

Distribution of ϵ_i	Distribution of κ_i	Distribution of $\kappa_i \mathbf{y}_i, \mathbf{b}_i, \tau_i$		
$\mathrm{T}_{\mathit{si}}(0,\mathbf{R}_{i},\nu)$	$Gamma(\nu/2,\nu/2)$	Gamma $\left((u+s_{\widetilde{i}})/2,(D_{e_{\widetilde{i}}}^2+ u)/2 ight)$		
$\mathrm{SL}_\mathit{Si}(0,\mathbf{R}_i,\nu)$	$Beta(\nu,1)$	TGamma $\left(u+s_{i}/2,D_{e_{i}}^{2}/2,1 ight)$		
$\mathrm{CN}_{si}(0,\mathbf{R}_i, u_1, u_2)$	$\nu_1 \mathbb{I}_{\{\nu_2\}}(\kappa_i) + (1-\nu_1) \mathbb{I}_{\{1\}}(\kappa_i)$	$P(\kappa_i = \nu_2) = 1 - P(\kappa_i = 1) = \rho_1/\rho_1 + \rho_2$ $\rho_1 = \nu_1 \nu_2^{s_i/2} \exp\{-\frac{1}{2}D_{e_i}^2 \nu_2\}$ $\rho_2 = (1 - \nu_1) \exp\{-\frac{1}{2}D_{e_i}^2\}$		
$D_{e_i}^2 = (\mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta} - \mathbf{Z}_i)$	$(\mathbf{b}_i)^{\top} \mathbf{R}_i^{-1} (\mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta} - \mathbf{Z}_i \mathbf{b}_i)$			
Distribution of b _i	Distribution of $ au_i$	Distribution of $ au_i \mathbf{y}_i, \mathbf{b}_i, \kappa_i$		
$\mathrm{T}_q(0,\mathbf{D},\eta)$	$Gamma(\eta/2,\eta/2)$	Gamma $\left((\eta+q)/2,(D_{f b_i}^2+\eta)/2 ight)$		
$\mathrm{SL}_q(0,\mathbf{D},\eta)$	$Beta(\eta,1)$	TGamma $\left(\eta+q/2,D_{\mathbf{b}_{i}}^{2}/2,1 ight)$		
$\mathrm{CN}_q(0,\mathbf{D},\eta_1,\eta_2)$	$\eta_1 \mathbb{I}_{\{\eta_2\}}(\tau_i) + (1 - \eta_1) \mathbb{I}_{\{1\}}(\tau_i)$	$\begin{split} P(\tau_i = \eta_2) &= 1 - P(\tau_i = 1) = q_1/q_1 + q_2 \\ q_1 &= \eta_1 \eta_2^{q/2} \exp\{-\frac{1}{2}D_{\mathbf{b}_i}^2 \eta_2\} \\ q_2 &= (1 - \eta_1) \exp\{-\frac{1}{2}D_{\mathbf{b}_i}^2\} \end{split}$		
$D_{\mathbf{b}_i}^2 = \mathbf{b}_i^{\top} \mathbf{D}^{-1} \mathbf{b}_i$				

SAEM - E-step

Stochastic-approximation-step: $(\mathbf{y}_i^{(k,l)}, \mathbf{b}_i^{(k,l)}, \kappa_i^{(k,l)}, \tau_i^{(k,l)}), \ l = 1, \ldots, m$:

$$\begin{split} \widehat{\kappa \mathbf{y}_i^2}^{(k)} &= \widehat{\kappa \mathbf{y}_i^2}^{(k-1)} + \delta_k \left(\frac{1}{m} \sum_{l=1}^m \kappa_i^{(k,l)} \mathbf{y}_i^{(k,l)} \mathbf{y}_i^{(k,l)} \mathbf{y}_i^{(k,l)} - \widehat{\kappa \mathbf{y}_i^2}^{(k-1)} \right), \\ \widehat{\kappa \mathbf{y}_i}^{(k)} &= \widehat{\kappa \mathbf{y}_i}^{(k-1)} + \delta_k \left(\frac{1}{m} \sum_{l=1}^m \kappa_i^{(k,l)} \mathbf{y}_i^{(k,l)} - \widehat{\kappa \mathbf{y}_i^2}^{(k-1)} \right), \\ \widehat{\kappa \mathbf{b}_i^2}^{(k)} &= \widehat{\kappa \mathbf{b}_i^2}^{(k-1)} + \delta_k \left(\frac{1}{m} \sum_{l=1}^m \kappa_i^{(k,l)} \mathbf{b}_i^{(k,l)} \mathbf{b}_i^{(k,l)} - \widehat{\kappa \mathbf{b}_i^2}^{(k-1)} \right), \\ \widehat{\kappa \mathbf{b}_i^2}^{(k)} &= \widehat{\kappa \mathbf{b}_i^2}^{(k-1)} + \delta_k \left(\frac{1}{m} \sum_{l=1}^m \kappa_i^{(k,l)} \mathbf{b}_i^{(k,l)} - \widehat{\kappa \mathbf{b}_i^2}^{(k-1)} \right), \\ \widehat{\kappa \mathbf{y}}^{(k)} &= \widehat{\kappa \mathbf{y}}^{(k-1)} + \delta_k \left(\frac{1}{m} \sum_{l=1}^m \kappa_i^{(k,l)} \mathbf{y}_i^{(k,l)} \mathbf{b}_i^{(k,l)} - \widehat{\kappa \mathbf{y}}^{(k-1)} - \widehat{\kappa \mathbf{y}}^{(k-1)} \right), \\ \widehat{\tau \mathbf{b}_i^2}^{(k)} &= \widehat{\tau \mathbf{b}_i^2}^{(k-1)} + \delta_k \left(\frac{1}{m} \sum_{l=1}^m \tau_i^{(k,l)} \mathbf{b}_i^{(k,l)} \mathbf{b}_i^{(k,l)} - \widehat{\tau \mathbf{y}_i^2}^{(k-1)} \right), \\ \widehat{\kappa_i^2}^{(k)} &= \widehat{\kappa_i^2}^{(k-1)} + \delta_k \left(\frac{1}{m} \sum_{l=1}^m \kappa_i^{(k,l)} - \widehat{\kappa_i^2}^{(k-1)} \right), \\ \widehat{\ell h_{1i}}^{(k)} &= \widehat{\ell h_{1i}}^{(k-1)} + \delta_k \left(\frac{1}{m} \sum_{l=1}^m \log h_1(\kappa_i^{(k,l)} | \widehat{\nu}^{(k-1)}) - \widehat{\ell h_{1i}}^{(k-1)} - \widehat{\ell h_{1i}}^{(k-1)} \right), \\ \widehat{\ell h_{2i}}^{(k)} &= \widehat{\ell h_{2i}}^{(k-1)} + \delta_k \left(\frac{1}{m} \sum_{l=1}^m \log h_2(\tau_i^{(k,l)} | \widehat{\eta}^{(k-1)}) - \widehat{\ell h_{1i}}^{(k-1)} - \widehat{\ell h_{2i}}^{(k-1)} \right). \end{split}$$

SAEM - CM-step

Update $\widehat{\boldsymbol{\theta}}^{(k)}$ by the maximization of $Q(\boldsymbol{\theta}|\widehat{\boldsymbol{\theta}}^{(k)})$, which leads to the following expressions:

$$\begin{split} \widehat{\boldsymbol{\beta}}^{(k+1)} &= \left(\sum_{i=1}^n \widehat{\kappa_i}^{(k)} \mathbf{X}_i^\top \widehat{\mathbf{R}}_i^{-1(k)} \mathbf{X}_i\right)^{-1} \sum_{i=1}^n \mathbf{X}_i^\top \widehat{\mathbf{R}}_i^{-1(k)} \left(\widehat{\kappa} \widehat{\mathbf{y}}_i^{(k)} - Z_i \widehat{\kappa} \widehat{\mathbf{b}}_i^{(k)}\right), \\ \widehat{\sigma_{jl}^2}^{(k+1)} &= \left\{ \begin{array}{ll} \left(\sum_{i=1}^n n_i\right)^{-1} \sum_{i=1}^n \operatorname{tr} \left(\widehat{\Omega}_i^{-1(k)} \widehat{\kappa} \widehat{\kappa} \widehat{\epsilon}_{jj}^{(k)}\right) & \text{for } j = l, \\ \left(2 \sum_{i=1}^n n_i\right)^{-1} \sum_{i=1}^n \operatorname{tr} \left[\widehat{\Omega}_i^{-1(k)} \left(\widehat{\kappa} \widehat{\epsilon}_{ijl}^{(k)} + \widehat{\kappa} \widehat{\epsilon}_{ijj}^{(k)}\right)\right] & \text{for } j \neq l, \\ \widehat{\boldsymbol{\phi}}^{(k+1)} &= \underset{\boldsymbol{\phi} \in (0,1) \times \mathbb{R}^+}{\operatorname{argmax}} \left\{ -\frac{r}{2} \sum_{i=1}^n \log |\Omega_i(\boldsymbol{\phi}, \mathbf{t}_i)| -\frac{1}{2} \sum_{i=1}^n \operatorname{tr} \left[\left(\widehat{\boldsymbol{\Sigma}}^{(k)} \otimes \Omega_i(\boldsymbol{\phi}, \mathbf{t}_i)\right)^{-1} \widehat{\kappa} \widehat{\mathbf{E}}_i\right] \right\}, \\ \widehat{\boldsymbol{D}}^{(k+1)} &= \underset{\boldsymbol{\nu}}{\operatorname{argmax}} \sum_{i=1}^n \widehat{\ell h_{1i}}^{(k)}(\boldsymbol{\nu}), \\ \widehat{\boldsymbol{\eta}}^{(k+1)} &= \underset{\boldsymbol{\eta}}{\operatorname{argmax}} \sum_{i=1}^n \widehat{\ell h_{2i}}^{(k)}(\boldsymbol{\eta}). \end{split}$$

The likelihood function

$$L_o(\boldsymbol{\theta}; \mathbf{y}^{obs}) = \prod_{i=1}^n \int \left[\int_0^\infty f(\mathbf{y}_i | \mathbf{b}_i, \kappa_i; \boldsymbol{\theta}) h_1(\kappa_i) d\kappa_i \right] f(\mathbf{b}_i | \boldsymbol{\theta}) d\mathbf{b}_i.$$

Partitioning y_i , we have

$$L_{o}(\boldsymbol{\theta}; \mathbf{y}^{obs}) = \prod_{i=1}^{n} \int \left[\int_{0}^{\infty} \phi_{s_{i}^{o}}(\mathbf{y}_{i}^{o}; \mathbf{X}_{i}^{c}\boldsymbol{\beta} - \mathbf{Z}_{i}^{c}\mathbf{b}_{i}, \kappa_{i}^{-1}\mathbf{R}_{i}^{oo}) \Phi_{s_{i}^{c}}(\mathbf{V}_{i}^{c}; \boldsymbol{\mu}_{i}, \kappa_{i}^{-1}\mathbf{S}_{i}) h_{1}(\kappa_{i}) d\kappa_{i} \right] \times f(\mathbf{b}_{i}|\boldsymbol{\theta}) d\mathbf{b}_{i} = \prod_{i=1}^{n} \int g(\mathbf{y}_{i}|\mathbf{b}_{i}, \kappa_{i}; \boldsymbol{\theta}) f(\mathbf{b}_{i}|\boldsymbol{\theta}) d\mathbf{b}_{i}$$
(8)

where $g(\mathbf{y}_i|\mathbf{b}_i,\kappa_i;\theta)=\int_0^\infty\phi_{s_i^p}(\mathbf{y}_i^o;\mathbf{X}_i^o\boldsymbol{\beta}-\mathbf{Z}_i^o\mathbf{b}_i,\kappa_i^{-1}\mathbf{R}_i^{oo})\Phi_{s_i^p}(\mathbf{V}_i^o;\boldsymbol{\mu}_i,\kappa_i^{-1}\mathbf{S}_i)h_1(\kappa_i|\nu)d\kappa_i$. The integral involved in (8) can be compute using an importance sampling strategy. In fact, we have

$$L_o(\boldsymbol{ heta}; \mathbf{y}^{obs}) = \prod_{i=1}^n \int g(\mathbf{y}_i | \mathbf{b}_i, \kappa_i; \boldsymbol{ heta}) rac{f(\mathbf{b}_i | \boldsymbol{ heta})}{f^*(\mathbf{b}_i | \boldsymbol{ heta})} d\mathbf{b}_i,$$

where f^* is the importance distribution. Consequently, $L_o(\theta; \mathbf{y}_i^{\text{obs}})$ is estimated through the following approximation

$$L_o(\boldsymbol{\theta}; \mathbf{y}^{obs}) = \prod_{i=1}^n \left[\frac{1}{M} \sum_{m=1}^M g(\mathbf{y}_i | \mathbf{b}_{im}, \kappa_i; \boldsymbol{\theta}) \frac{f(\mathbf{b}_{im} | \boldsymbol{\theta})}{f^*(\mathbf{b}_{im} | \boldsymbol{\theta})} \right],$$

with $\mathbf{b}_{i1}, \ldots, \mathbf{b}_{im}$ being drawn from $f^*(\mathbf{b}_i|\boldsymbol{\theta})$.

Model selection criteria

► AIC and BIC

$$\mathsf{AIC} = 2\,m - 2\,\ell_{max} \ \text{and} \ \mathsf{BIC} = m\log\,N - 2\,\ell_{max}.$$

► AIC and BIC decomposition (Zhang et al., 2014)

Let
$$\mathbf{y}_{i1}^{\star} = (\mathbf{y}_{i1}^{\top}, \dots, \mathbf{y}_{ir^{\star}}^{\top})^{\top}$$
 and $\mathbf{y}_{i2}^{\star} = (\mathbf{y}_{ir^{\star}+1}^{\top}, \dots, \mathbf{y}_{ir}^{\top})^{\top}$, where $\mathbf{y}_i = (\mathbf{y}_{i1}^{\star \top}, \mathbf{y}_{i2}^{\star \top})^{\top}$ and $r^{\star} \in \{1, \dots, r\}$, then the AIC and BIC have the following decompositions:

$$\mathsf{AIC} = \mathsf{AIC}_{\boldsymbol{y}_1^\star} + \mathsf{AIC}_{\boldsymbol{y}_2^\star|\boldsymbol{y}_1^\star} \ \mathrm{and} \ \mathsf{BIC} = \mathsf{BIC}_{\boldsymbol{y}_1^\star} + \mathsf{BIC}_{\boldsymbol{y}_2^\star|\boldsymbol{y}_1^\star}.$$

Assessment criteria

$$\Delta \mathsf{AIC} = \mathsf{AIC}_{\boldsymbol{y}_{2,0}^{\star}} - \mathsf{AIC}_{\boldsymbol{y}_{2}^{\star}|\boldsymbol{y}_{1}^{\star}} \ \ \mathrm{and} \ \ \Delta \mathsf{BIC} = \mathsf{BIC}_{\boldsymbol{y}_{2,0}^{\star}} - \mathsf{BIC}_{\boldsymbol{y}_{2}^{\star}|\boldsymbol{y}_{1}^{\star}}.$$

A5055 clinical trial

$$y_{i1k} = \beta_{10} + \beta_{11}t_{ik} + \beta_{12}\mathsf{treat}_i + \beta_{13}t_{ik}^{0.5} + \beta_{14}\mathsf{treat}_i \times t_{ik} + b_{i10} + b_{i11}t_{ik} + e_{i1k},$$

$$y_{i2k} = \beta_{20} + \beta_{21}t_{ik} + \beta_{22}\mathsf{treat}_i + \beta_{23}\mathsf{treat}_i \times t_{ik} + b_{i20} + b_{i21}t_{ik} + e_{i2k},$$

$$i=1,\ldots,44,$$

- \triangleright y_{i1k} is the \log_{10} (RNA) outcome for subject i measured roughly at day_{ik};
- \triangleright y_{i2k} is the log(CD4/CD8) outcome for subject i measured roughly at day_{ik};
- 316 observations;
- 33% of all viral load measurements are below the detection limit;
- $t_{ik} = \text{day}_{ik}/7 \text{ (week)}$, for $k = 1, ..., s_i$, where the weeks are: 0, 7, 14, 28, 56, 84, 112, 140 e 168;
- treat; is the treatment indicator (= 0 FOR treatment 1; = 1 for treatment 2);
- lacktriangle b_{ij0} and b_{ij1} are the random intercept and random slope, respectively, for y_{ijk} , j=1,2.
- This dataset was previously analyzed by Wang et al. (2015).

A5055 clinical trial

Information criteria for the SMN-MLMEC models under DEC structure:

	Distribution ϵ / Distribution ${f b}$								
	N/N	SL/N	T/N	N/SL	N/T	SL/SL	SL/T	T/SL	T/T
AIC	789.85	742.18	739.59	791.98	792.29	744.47	744.54	741.85	741.51
BIC	896.62	853.41	850.81	903.20	903.51	860.14	860.21	857.52	857.19

A5055 clinical trial

ML estimates with standard errors for the SMN-LMMC model under the T/N distribution:

Structure	Parameters	Estimate (SE)	Parameters	Estimate (SE)	Parameters	Estimate (SE)
	β ₁₀	3.743 (0.134)	d ₁₁	0.1446 (0.0829)	σ_{11}	0.409 (0.076)
DEC	β_{11}	0.130 (0.026)	d ₂₁	0.0011 (0.0133)	σ_{21}	-0.039 (0.020)
	β_{12}	-0.005 (0.067)	d ₂₂	-0.0884 (0.1182)	σ_{22}	0.050 (0.011)
	β_{13}	-0.957 (0.098)	d ₃₁	-0.0011 (0.0033)	ϕ_1	0.704 (0.065)
	β_{14}	-0.007 (0.025)	d ₃₂	0.0034 (0.0027)	ϕ_2	0.632 (0.131)
	β_{20}	-1.284 (0.077)	d ₃₃	-0.0122 (0.0116)	ν	4.737 (0.003)
	β_{21}	0.005 (0.005)	d_{41}	-0.0004 (0.0004)		
	β_{22}	0.252 (0.084)	d_{42}	0.2727 (0.0861)		
	β_{23}	-0.003 (0.007)	d ₄₃	0.0008 (0.0015)		
			d ₄₄	0.0001 (0.0001)		
	loglik	-344.79	AIC	739.59	BIC	850.81
	β ₁₀	3.718 (0.135)	d ₁₁	0.4089 (0.1463)	σ_{11}	0.263 (0.053)
UNC	β_{11}	0.129 (0.026)	d ₂₁	-0.0112 (0.0153)	σ_{21}	-0.024 (0.012)
	β_{12}	0.003 (0.091)	d ₂₂	-0.0964 (0.1251)	σ_{22}	0.028 (0.005)
	β_{13}	-0.955 (0.075)	d ₃₁	0.0002 (0.0030)	ν	4.340 (0.004)
	β_{14}	-0.008 (0.027)	d ₃₂	0.0054 (0.0029)		
	β_{20}	-1.278 (0.076)	d ₃₃	-0.0132 (0.0116)		
	β21	0.005 (0.004)	d ₄₁	-0.0006 (0.0004)		
	β_{22}	0.286 (0.081)	d ₄₂	0.2953 (0.0785)		
	β23	-0.006 (0.006)	d ₄₃	0.0002 (0.0015)		
			d ₄₄	0.0001 (0.0001)		
	loglik	-357.97	AIC	761.94	BIC	864.26

A5055 clinical trial

Decomposition of AIC and BIC for the best SMN-MLMEC model:

AIC	739.59	BIC	850.81
$AIC_{\mathbf{y}_{2}^{\star} \mathbf{y}_{1}^{\star}}$	92.65	$BIC_{\mathbf{y}_{2}^{\star} \mathbf{y}_{1}^{\star}}$	158.80
$AIC_{\mathbf{y}_{2,0}^{\star}}$	125.26	$BIC_{\mathbf{y}_{2,0}^{\star}}$	166.58
ΔΑΙС	32.61	ΔΒΙΟ	7.77

Summary

Introduction

Preliminaries

SMN-MLMEC mode

References

References 1

- Andrews, D. F. & Mallows, C. L. (1974). Scale mixtures of normal distributions. Journal of the Royal Statistical Society. Series B, pages 99–102.
- Arellano-Valle, R. B., Bolfarine, H. & Lachos, V. (2005), Skew-normal linear mixed models, Journal of Data Science, 3, 415-438,
- Delyon, B., Lavielle, M. & Moulines, E. (1999). Convergence of a stochastic approximation version of the em algorithm. *Annals of Statistics*, pages 94–128.
- Dempster, A., Laird, N. & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B., 39, 1–38.
- Garay, A. M., Castro, L. M., Leskow, J. & Lachos, V. H. (2014). Censored linear regression models for irregularly observed longitudinal data using the multivariate-t distribution. Statistical Methods in Medical Research, page DOI: 10.1177/0962280214551191.
- Jank, W. (2006). Implementing and diagnosing the stochastic approximation EM algorithm. Journal of Computational and Graphical Statistics. 15(4), 803–829.
- Kuhn, E. & Lavielle, M. (2005). Maximum likelihood estimation in nonlinear mixed effects models. Computational Statistics & Data Analysis, 49(4), 1020–1038.
- Lachos, V. H., Bandyopadhyay, D. & Dey, D. K. (2011). Linear and nonlinear mixed-effects models for censored hiv viral loads using normal/independent distributions. Biometrics. 67, 1594–1604.
- Lange, K. L. & Sinsheimer, J. S. (1993). Normal/independent distributions and their applications in robust regression. Journal of Computational and Graphical Statistics, 2, 175–198.
- Matos, L., Lachos, V., Balakrishnan, N. & Labra, F. (2013a). Influence diagnostics in linear and nonlinear mixed-effects models with censored data. Computational Statistical & Data Analysis. 57(1), 450–464.
- Matos, L., Prates, M., Chen, M.-H. & Lachos, V. (2013b). Likelihood based inference for linear and nonlinear mixed-effects models with censored response using the multivariate-t distribution. Statistica Sinica. 23, 1323–1345.
- Muñoz, A., Carey, V., Schouten, J. P., Segal, M. & Rosner, B. (1992). A parametric family of correlation structures for the analysis of longitudinal data. Biometrics. 48, 733–742.
- Samson, A., Lavielle, M. & Mentré, F. (2006). Extension of the SAEM algorithm to left-censored data in nonlinear mixed-effects model: application to HIV dynamics model. Computational Statistics & Data Analysis, 51(3), 1562–1574.

References II

- Vaida, F. & Liu, L. (2009). Fast implementation for normal mixed effects models with censored response. Journal of Computational and Graphical Statistics. 18(4), 797–817.
- Vaida, F., Fitzgerald, A. & DeGruttola, V. (2007). Efficient hybrid EM for linear and nonlinear mixed effects models with censored response. Computational Statistics & Data Analysis, 51(12), 5718–5730.
- Wang, W.-L., Lin, T.-I. & Lachos, V. H. (2015). Extending multivariate-t linear mixed models for multiple longitudinal data with censored responses and heavy tails. Statistical Methods in Medical Research, page doi: 096280215620229.
- Wei, G. C. & Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms.

 Journal of the American Statistical Association, 85(411), 699–704.
- Zhang, D., Chen, M.-H., Ibrahim, J. G., Boye, M. E., Wang, P. & Shen, W. (2014). Assessing model fit in joint models of longitudinal and survival data with applications to cancer clinical trials. Statistics in Medicine, 33(27), 4715–4733.

Thank you!