SMARTWIZ

GRADE 10 Physical Science EXAM

MARKS: 150	MARKS	
TIME: 2 hour		
SCHOOL		
CLASS (e.g. 10A)		
SURNAME		
NAME		-

MYSTPATHWORKS

Instructions for Students:

- > Read all instructions carefully before beginning the exam.
- > Write your name and student ID clearly on the answer sheet/booklet.
- > Answer all questions unless otherwise stated.
- > Show all your work/calculations where applicable.
- > Write clearly and legibly.
- > Use blue or black ink only. * Do not use correction fluid/tape.
- > No electronic devices (calculators, phones, etc.) are allowed unless explicitly permitted.
- > Raise your hand if you have any questions.
- > Do not talk to other students during the exam.
- > Any form of cheating will result in disqualification.

QUESTION 1: MULTIPLE CHOICE ($10 \times 2 = 20 \text{ marks}$)

Circle the correct letter (A–D)!!!
-----------------------------	---------

- **1.1** The unit of energy is:
- A. Watt
- B. Newton
- C. Joule
- D. Volt
- **1.2** A vector quantity must have:
- A. Magnitude only
- B. Direction only
- C. Magnitude and direction
- D. No units
- **1.3** Which of the following is a non-contact force?
- A. Friction
- B. Tension
- C. Magnetic
- D. Air resistance

MYST PATHWORKS

- **1.4** What happens to resistance if length of a wire increases?
- A. It decreases
- B. Stays the same
- C. Increases
- D. Doubles
- **1.5** Which wave can travel through a vacuum?
- A. Sound
- B. Water
- C. Light
- D. Seismic
- **1.6** Which of the following is an example of a transverse wave?
- A. Sound
- B. Water wave
- C. Shock wave
- D. Earthquake P-wave
- 1.7 What does Ohm's Law state?
- A. Power = current \times voltage
- B. Current = resistance \times voltage

- C. Voltage = current \times resistance
- D. Energy = power \times time
- **1.8** Which circuit element stores charge?
- A. Switch
- B. Resistor
- C. Battery
- D. Capacitor
- **1.9** Acceleration is:
- A. Distance per time
- B. Rate of change of speed
- C. Mass × velocity
- D. Force per mass
- **1.10** What is the gravitational field strength on Earth?
- A. 5 N/kg
- B. 9.8 N/kg
- C. 1.6 N/kg
- D. 0 N/kg

QUESTION 2: MATCHING COLUMNS (10 x 1 = 10 marks)

Match **Column A** with the correct answer from **Column B**. Write only the letter of the correct answer (e.g., 2.1 - F).

COLUMN A	COLUMN B
2.1 Displacement	A. Resistance to motion
	B. Travels parallel to energy
2.2 Newton's 2nd	C. Push or pull
Law	D. Rate of doing work
	E. Measured in volts
2.3 Inertia	F. Mass × acceleration
	G. Opposes flow of current
2.4 Longitudinal	H. Flow of electric charge
wave	I. Vector quantity
	J. SI unit of resistance
2.5 Power	
2.6 Electric current	

2.7 Ohm	
2.8 Force	
2.9 Potential	
difference	
2.10 Resistor	
2.1	
2.2	
2.3	
2.5	
2.6	
2.7	
2.9	
2.10	
QUESTION 3: 3.1 Define the term acc	MOTION & FORCES (30 marks) relevation. (2)
3.2 A car changes its sp Calculate its acceleration	peed from 8 m·s ⁻¹ to 20 m·s ⁻¹ in 6 seconds.
	
3.3 A ball is dropped fr Use the formula $v2=u2$ hitting the ground. (Take $g = 9.8 \text{ m} \cdot \text{s}^{-2}$) (4)	$+2a\Delta xv^2 = u^2 + 2a\Delta xv^2 = u^2 + 2a\Delta x$ to calculate its speed just before

3.4 A crate of mass 12 kg is pushed with a net force of 60 N. Use Newton's 2nd Law to calculate the acceleration. (3)	
3.5 Draw and label a free-body diagram showing the forces acting on a box on (4)	a flat surface.
MYST PATHWORKS	
3.6 Explain how seatbelts apply Newton's First Law during a car crash. (4)	
3.7 A ball is thrown upwards at 20 m·s ⁻¹ . How long will it take to reach the top $m \cdot s^{-2}$) (4)	? (g = 9.8

QUESTION	N 4: WAVES AND SOUND (20 marks)
4.1 Define a <i>trans</i> of	verse wave. (2)
	travels at 340 m·s ⁻¹ and has a frequency of 170 Hz. elength. Use: $v=f\lambda v=f\lambda (3)$
4.3 State one diffe	rence between mechanical and electromagnetic waves. (2)
4.4 Label the follo	wing parts on the wave diagram below: (4)
CrestTroughWavelength	

(You may draw a basic wave below and label it.)

4.5 Give two ways in which the speed of sound can change. (2)	
4.6 A submarine uses sonar to detect fish 680 m below. If the signal takes 2 sec what is the speed of sound in water? (4)	conds to return,
4.7 Name two uses of ultrasonic sound in real life. (3)	
MYST PATHWORKS	
QUESTION 5: ELECTRICITY (30 marks)	
5.1 Define resistance. (2)	
5.2 A circuit has a voltage of 12 V and current of 3 A. Calculate resistance using Ohm's Law. (3)	

5.3 Draw a simple series circuit with a battery, a bulb, and a switch. Label all c (4)	omponents.
5.4 In a circuit with two resistors ($R_1 = 4 \Omega$, $R_2 = 6 \Omega$) in series, calculate: a) Total resistance (2)	
b) Total current if connected to 10 V battery (3)	
5.5 State two differences between a series and parallel circuit. (4)	
5.6 Give two safety features used in household wiring. (2)	
	- P - N / /
5.7 A 60 W bulb is on for 5 hours. Calculate the total energy used in kWh. (Us	$e \mathbf{E} = \mathbf{P} \times \mathbf{t}$) (4

(3)	
QUESTION 6: ENERGY & WORK (30 m	arks)
6.1 Define work and give its formula. (2)	
6.2 A man pushes a box with a force of 80 N over 5 m. Calculate the work done. (3)	
MYST PATHWORK	S
6.3 A 3 kg object is lifted to a height of 4 m.	
Calculate the potential energy. Use: PE=mghPE = mghPE=mgh (g =	$= 9.8 \text{ m} \cdot \text{s}^{-2}) (3)$
6.4 A car has 5000 J of kinetic energy and a speed of $10 \text{ m} \cdot \text{s}^{-1}$. Calculate the mass of the car. Use: KE= $12\text{mv}2\text{KE} = \frac{1}{2}\text{mv}$	^2KE=21mv2 (4)

6.5 Draw a labelled energy conversion diagram for a coal power station. (5)
6.6 Give two advantages and two disadvantages of solar energy. (4)
6.7 Explain the law of conservation of energy using an example. (3)
6.8 A 100 W iron is used for 3 hours. a) How much energy is used in kWh? (3)
b) If electricity costs R1.80 per kWh, what is the total cost? (3)

TOTAL: 150 MARKS

♥ PHYSICAL SCIENCES MEMO – PHYSICS PAPER (GRADE 10)

Total: 150 Marks

QUESTION 1: MULTIPLE CHOICE ($10 \times 2 = 20 \text{ marks}$)

1.1 C **✓**

1.2 C **✓**

1.3 C **✓**

1.4 C **✓**

1.5 C **✓**

1.6 B **✓**

1.7 C **✓**

1.8 D **✓**

1.9 B **✓**

1.10 B **✓**

QUESTION 2: MATCHING COLUMNS (10 x 1 = 10 marks)

2.1 I **√**

2.2 F **✓**

2.3 A **✓**

2.4 B **✓**

2.5 D **✓**

2.6 H **✓**

2.7 J **✓**

2.8 C **✓**

2.9 E **✓**

2.10 G ✓

QUESTION 3: MOTION & FORCES (30 marks)

3.1 Acceleration: The rate of change of velocity. ✓✓

$$3.2 \text{ a} = (\text{v} - \text{u})/\text{t} = (20 - 8)/6 = 2 \text{ m} \cdot \text{s}^{-2} \checkmark \checkmark \checkmark$$

$$3.3 \text{ v}^2 = \text{u}^2 + 2\text{a}\Delta\text{x} \rightarrow \text{v}^2 = 0 + 2(9.8)(25) = 490$$

 $v = \sqrt{490} = 22.14 \text{ m} \cdot \text{s}^{-1} \checkmark \checkmark \checkmark \checkmark$

 $3.4 \text{ a} = \text{F/m} = 60/12 = 5 \text{ m} \cdot \text{s}^{-2} \checkmark \checkmark \checkmark$

3.5 Free-body diagram showing:

- Weight (down) ✓
- Normal force (up) ✓
- Friction (left) ✓
- Applied force (right) ✓

3.6 Seatbelts stop the person from continuing to move forward when the car stops.

Demonstrates Newton's First Law 🗸 🗸

3.7 v = u + at; at top v = 0

 $0 = 20 - 9.8t \rightarrow t = 20/9.8 = 2.04 \text{ s} \checkmark \checkmark \checkmark \checkmark$

3.8 Examples:

- Static friction: Holding an object in place ✓
- Kinetic friction: Pushing a sliding box ✓

QUESTION 4: WAVES AND SOUND (20 marks)

- 4.1 Transverse wave: A wave where particles move perpendicular to direction of wave ✓✓
- $4.2 \lambda = v/f = 340/170 = 2 \text{ m} \checkmark \checkmark \checkmark$
- 4.3 Mechanical waves need a medium; EM waves do not ✓✓
- 4.4
 - Crest ✓
 - Trough ✓
 - Amplitude ✓
 - Wavelength ✓
 - 4.5 Speed changes due to:
 - Medium ✓
 - Temperature ✓
 - $4.6 \text{ Total distance} = 680 \times 2 = 1360 \text{ m}$

Speed = distance/time = $1360 / 2 = 680 \text{ m} \cdot \text{s}^{-1} \checkmark \checkmark \checkmark \checkmark$

4.7 Any two:

- Medical imaging (ultrasound) ✓
- SONAR ✓
- Cleaning small parts ✓

QUESTION 5: ELECTRICITY (30 marks)

- 5.1 Resistance: Opposition to current flow ✓✓
- $5.2 R = V/I = 12 / 3 = 4 \Omega \checkmark \checkmark$
- 5.3 Correct series diagram with labels:
 - Battery ✓
 - Bulb ✓
 - Switch ✓

Wires ✓

5.4 a)
$$R_{total} = R_1 + R_2 = 4 + 6 = 10 \Omega \text{ } \text{\checkmark} \text{ }$$

b) $I = V/R = 10 / 10 = 1 \text{ A } \text{\checkmark} \text{\checkmark} \text{ }$

5.5 Differences:

- Series: one path; Parallel: multiple ✓
- Series: same current; Parallel: same voltage ✓✓✓✓
 5.6 Any two:
- Fuse √
- Circuit breaker ✓
- Earth wire ✓

5.7 E = P × t =
$$60 \times 5 = 300 \text{ Wh} = 0.3 \text{ kWh} \checkmark \checkmark \checkmark \checkmark$$

5.8 Total E = $60 \times 3 \times 2 = 360 \text{ Wh} = 0.36 \text{ kWh}$
Cost = $0.36 \times R2.00 = R0.72 \checkmark \checkmark \checkmark$

QUESTION 6: ENERGY & WORK (30 marks)

6.1 Work: Force \times distance \checkmark Formula: W = F \times d \checkmark

 $6.2 \text{ W} = 80 \times 5 = 400 \text{ J} \checkmark \checkmark \checkmark$

6.3 PE = mgh = $3 \times 9.8 \times 4 = 117.6 \text{ J} \checkmark \checkmark \checkmark$

 $6.4 \text{ KE} = \frac{1}{2} \text{mv}^2 \rightarrow 5000 = \frac{1}{2} \text{m}(100)$

 \rightarrow m = 5000 \div 50 = 100 kg \checkmark

- 6.5 Diagram includes:
 - Coal \rightarrow Heat \checkmark
 - Boiler → Steam ✓
 - Turbine \rightarrow Generator \checkmark
 - Generator → Electrical energy ✓
 - Labeled flow diagram ✓

6.6 Advantages: renewable, clean ✓✓

Disadvantages: expensive, depends on weather 🗸

6.7 Energy cannot be created or destroyed, only transferred or transformed (e.g.

toaster: electrical \rightarrow heat) $\checkmark\checkmark\checkmark$

6.8 a) $100 \text{ W} = 0.1 \text{ kW} \times 3 \text{ h} = 0.3 \text{ kWh } \checkmark \checkmark \checkmark$

b) $0.3 \times 1.80 = R0.54 \checkmark \checkmark \checkmark$

♥ TOTAL: 150 MARKS