

Tarea 3

10 de abril de 2024

1º semestre 2024 - Profesores P. Bahamondes - S. Bugedo - N. Alvarado

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 23:59 del 19 de abril a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template LATEX publicado en la página del curso.
 - Cada solución de cada problema debe comenzar en una nueva hoja. *Hint:* Utilice \newpage
 - Los archivos que debe entregar son el archivo PDF correspondiente a su solución con nombre numalumno.pdf, junto con un zip con nombre numalumno.zip, conteniendo el archivo numalumno.tex que compila su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas.
- Si tiene alguna duda, el foro de Github (issues) es el lugar oficial para realizarla.

Problemas

Problema 1

El juego de Sudoku consiste en una matriz de 9×9 cuyas celdas pueden contener un natural de 0 a 8. A su vez, este tablero está dividido en subtableros de 3×3 . Decimos que un tablero está completo si

- Cada celda contiene un número asignado
- No hay números repetidos en ninguna fila
- No hay números repetidos en ninguna columna
- No hay números repetidos en ningún subtablero.

A continuación se muestra un ejemplo de tablero parcialmente completado. Observe que los 9 subtableros se delimitan por líneas más gruesas.

	2		5		1		0	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	0
		2				7		
	0			3			8	
2			8		4			7
	1		0		7		6	

Nos interesa diseñar un verificador de tableros de Sudoku basado en lógica de predicados, para lo cual, consideramos los predicados ternarios V, S, M, el predicado binario \leq y la interpretación $\mathcal I$ dada por

 $\mathcal{I}(dom) := \mathbb{Z}_8 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$

 $\mathcal{I}(V) := V(x,y,z)$ si y solo si el valor z está en la celda x,y del tablero

 $\mathcal{I}(S) := S(x, y, z)$ si y solo si el valor z es la suma de x e y

 $\mathcal{I}(M) := M(x,y,z)$ si y solo si el valor z es la multiplicación de x e y

 $\mathcal{I}(\leq) := x \leq y \text{ si y solo si } x \text{ es menor o igual que } y$

además de contar con el predicado binario = que siempre se interpreta como igualdad.

A continuación, debe definir una serie de predicados compuestos y oraciones en lógica de predicados de manera que sean satisfechos por $\mathcal I$ en ciertas condiciones para cada inciso. Puede construir los predicados compuestos que estime conveniente para simplicar su desarrollo. Demuestre la correctitud de sus respuestas.

- (a) C(x) es un predicado unario satisfecho si y solo si x toma el valor 0.
- (b) φ_1 es una oración satisfecha si y solo si toda celda tiene un valor asignado.

- (c) φ_2 es satisfecha si y solo si ninguna fila tiene valores repetidos.
- (d) φ_3 es satisfecha si y solo si ninguna de las diagonales principales del tablero tiene valores repetidos. Sugerencia: puede serle útil una expresión análoga a (a) para el valor 8.
- (e) φ_4 es satisfecha si y solo si ningún subtablero de 3×3 tiene valores repetidos. Sugerencia: puede serle útil una expresión para el valor 2.

Problema 2

- (a) Considere el símbolo de predicado binario = que en toda interpretación se interpreta como igualdad de elementos. Además, considere el símbolo de predicado ternario S. Determine si las siguientes fórmulas son satisfacibles y demuestre su respuesta.
 - (i) $\varphi_1 := \forall x \forall y \neg (x = y)$
 - (ii) $\varphi_2 := \forall x \exists y \exists z \left[\neg (x = y) \land (x = z \lor y = z) \right]$
 - (iii) $\varphi_3(x) := \forall y \, S(x, y, y) \land S(x, x, y)$
- (b) Considere los símbolos de predicados P, A, G, S y R unarios y D binario. Demuestre la siguiente consecuencia lógica.

$$\forall x (P(x) \to A(x))$$

$$\forall x \forall y [D(x,y) \land G(y) \to \neg \exists z (D(x,z) \land R(z))]$$

$$\forall x [S(x) \to \neg \exists y (D(x,y) \land A(y))]$$

$$\exists x [D(a,x) \land (G(x) \lor P(x))]$$

$$S(a) \to \neg \exists z (D(a,z) \land R(z))$$