

Распознавание городских объектов при различных погодных условиях

Лучинский Владимир Дмитриевич, 344 группа

Научный руководитель:

Смирнов Михаил Николаевич

Консультант:

Пенкрат Николай Александрович,
Руководитель проектов
ООО «Системы компьютерного зрения»

Основные трудности

- Неустойчивость к изменению освещённости
- Неустойчивость к изменениям окружающих условий
 - Изменение сезона (зима, лето)
 - Изменение времени суток (день, ночь)
 - Изменение погоды (дождь, снег)

Источник: https://taesung.me/cyclegan/2017/03/25/yosemite-supplemental-best.html

- Обучить нейронную сеть распознавать городские объекты в летних и зимних условиях
- Проверить пользу применения генеративных сетей в решении данной задачи.

- Обучить генеративную соревновательную сеть (GAN) преобразовывать летние изображения в зимние
- Расширить датасет состоящий из летних фотографий объектов
- Обучить нейронную сеть выделять вектора признаков объектов, инвариантные к погодным условиям

Получение инвариантных признаков

- С помощью добавления сгенерированных данных других сезонов
- С помощью смешивания изображений нейронной сетью (Smart Augmentation)

Обзор существующих GAN

CycleGAN

- Обучается на непарных данных
- Для обучения необходима видеокарта на 6 GB

UNIT

- Обучается на непарных данных
- Способна значительно изменять форму изображения
- Для обучения необходима видеокарта на 12 GB

Сравнение результатов CycleGAN

Готовая модель авторов

Полученная модель

Схема применения Smart Augmentation

Сезон	Ошибка	Точность
Лето	6.954	0.692±0.019
Зима	9.024	0.315±0.039

Таблица 1. Результаты без применения GAN

Сезон	Ошибка	Точность
Лето	6.251	0.722±0.019
Зима	7.905	0.403±0.040

Таблица 2. Результаты с применением GAN

Сезон	Ошибка	Точность
Лето	5.218	0.743±0.018
Зима	6.751	0.423±0.041

Таблица 3. Результаты с применением GAN и Smart Augmentation

- Проведен анализ GAN, выбрана и обучена нейронная сеть CycleGAN
- Реализована и интегрирован алгоритм Smart Augmentation
- Проведено тестирование подхода с помощью сверточной сети
- Выработан подход получения инвариантных признаков

- Преобразование изображений в другие сезоны
- Экспериментирование с различными архитектурами сетей для распознавания
- Расширение датасета