Given a domain $\Omega \subset R^d$ and two measureable functions (weights) $g, \nu : \Omega \to (0, \infty)$, the author defines the weighted Sobolev space $W^r_{p,g}(\Omega)$, and the weighted Lebesgue space $L_{q,\nu}(\Omega)$. A review is presented of the cases where one has exact estimates for the Kolmogorov n-widths of the unit ball of $W^r_{p,g}(\Omega)$ in $L_{q,\nu}(\Omega)$. In this paper are to be found two examples of order estimates of these Kolmogorov (and linear) n-widths

In this paper are to be found two examples of order estimates of these Kolmogorov (and linear) n-widths where Ω is a John domain and the weights g, ν are functions of distance to some h-subset of $\partial \Omega$. And also where $\Omega = R^d$ and the weights are powers of 1 + |x|. The exact definitions and theorems are rather technical in nature.