CS3383, Winter 2019 Assignment # 2

Rasoul Shahsavarifar

Faculty of Co	omputer Scien	ce, UNB	Due time:	Wednesday,	Jan/23/	2019, 9	9:20 8	a.m

Student's full name: Student ID:.....

Note:

- No submission after the due time will be accepted.
- The full credit will be given only for correct solutions that are described clearly.

Question 1: (7 marks) For an inpu with the size of n, consider Alg1 to be a recursive algorithm structured as follows:

- For n = 1, Alg1 requires 3 time units to return an answer.
- For n > 1, Alg1 recurses 4 times on sub-problems each of size $\frac{n}{4}$.
- To combine the recursion results, Alg1 requires \sqrt{n} calculation.
- a) write the recurrence T(n) for the running time of Alg1
- b) Using the recursion tree analysis method, solve T(n) and compute the asymptotic running time of Alg1.

Question 2 (8 marks) (From the DPU textbook, Exercise 2.5) Using the Master theorem or recursion tree methods, solve the following recurence relations and give Θ bound for each of them.

- a) $T(n) = 9T(n/3) + 3n^2 + 12n 4$, where $n \ge 1$.
- b) $T(n) = T(n-1) + n^c$, where $n \ge 1$ and c > 0
- c) $T(n) = T(\sqrt{n}) + 1$, where n > b and T(b) = 2.

Question 3: (10 marks) Suppose we have a subroutine merge2 to merge two sorted arrays in linear time $(\Theta(kn))$. The purpose is to design a divide and conquer algorithm (Alg2) to merge k sorted arrays using merge2 recursively.

- a) Write a pseudocode for Alg2. (Hint: Assume that the input is given in a $(k \times n)$ array with the rows and columns sorted in ascending order)
- b) Write the running time of Alg2 as a recurrence relation. T(k) = ?
- c) Construct a recursion tree with $\log k$ levels and $\Theta(kn)$ work per level to represent the recurance relation obtained in part (b).
- d) Since k is a constant, is Alg2 asymptotically faster than an algorithm with running time $\Theta(n \log n)$? why?