Chapter 3 DC-AC Converter (Inverter)

PWM Buck Converter (Revisited)

DC-AC Converter : Inverter (*Derivation from buck converter*)

Inverter : *Derivation from buck converter*

S1	S2	V_{ao}
ON	OFF	$+V_{DC}/2$
OFF	ON	$-V_{DC}$ / 2
ON	ON	Not allow
OFF	OFF	Uncontrolled Voltage

Half-Bridge Inverter: Pulse-Width Modulation

Real-World Pulse-Width Modulation with Embedded System

Switch Realization

Half-Bridge Inverter : Output waveform

Full-Bridge Inverter

$$V_m^* \leq V_{DC}$$

• Utilize the whole DC Bus Voltage: the amplitude of AC voltage can be up to DC bus voltage VDC!!

Concept:

$$v_o^*(t) = v_{ab}^*(t) = V_m^* \sin(2\pi f^* t + \phi^*)$$

$$v_{ao}^{*}(t) = \frac{V_m^{*}}{2} \sin(2\pi f^{*} t + \phi^{*})$$

$$v_{bo}^{*}(t) = \frac{V_{m}^{*}}{2} \sin(2\pi f^{*} t + \phi^{*} + \pi)$$

• There are 2 ref. voltages which are out of phase.

Full-Bridge Inverter: Pulse-Width Modulation

Full-Bridge Inverter : Output waveform

3-Phase Inverter

3-Phase Inverter: Output waveform

