A log-ratio approach to cluster analysis of count data when the total is irrelevant

M. Comas-Cufí¹ marc.comas@udg.edu

G. Mateu-Figueras¹ gloria.mateu@udg.edu

J.A. Martín-Fernández¹ josepantoni.martin@udg.edu

J. Palarea-Albaladejo² javier.palarea@bioss.ac.uk

²Biomathematics and Statistics Scotland, Edinburgh

¹Department of Computer Science, Applied Mathematics and Statistics, Universitat de Girona, Girona Universitat de Girona, Departament d'Informàtica, Matemàtica Aplicada i Estadística

Compositional data analysis

- Compositional data (CoDa), (p₁,..., p_D), are quantitative descriptions of the parts of some whole, conveying relative information. CoDa are commonly expressed in proportions, percentages, or ppm (Aitchison, 1986).
- The simplex

$$S^D = \left\{ (p_1,\ldots,p_D) \mid p_i > 0, \sum_{i=1}^D p_i = \kappa
ight\},$$

is the sample space of CoDa.

• Log-ratios of parts handle relative information and satisfy desirable properties such as scale invariance and subcompositional coherence:

$$\log\left(\frac{p_i}{p_j}\right), \log\left(\frac{p_j}{\sqrt[D]{\prod_{\ell=1}^D p_\ell}}\right), \sqrt{\frac{j}{j+1}}\,\log\frac{\sqrt[j]{\prod_{\ell=1}^j p_\ell}}{p_{j+1}}, \ldots$$

CoDa and the zero problem

- Zeros prevent from using log-ratios. Most proposals have been focused on the continuous case (zCompositions R package; Palarea-Albaladejo & Martín-Fernández, 2015).
- Compositional count data sets: discrete vectors of number of outcomes falling into mutually exclusive categories.

Municipality	jxsi	psc	pp	catsp	cs	cup
S. Jaume de F.	14	1	0	2	0	5
Gisclareny	20	0	0	0	1	2
:	:	:	:	:	:	:
L'Hosp. de Llob.	23843	28947	14336	16855	29773	7528
Barcelona	326376	100806	80529	85841	155361	87774

- Assumption 1: The relative information is relevant, the total is not.
- Assumption 2: The probability of a part different of zero is not zero. Count zeros due to sampling limitations.

Parametric approaches to cluster compositional count data set (1)

Two sources of variability are considered:

Count (observations) Compositional (probabilities)

- Compositional and count variability not taken into account. Classical methods applied to observed counts (p.e. Gaussian mixtures with the counts).
- Count variability taken into account, but not compositional variability.
 Mixtures of multinomial distributions.
- Compositional variability taken into account, but not count variability.
 Zero multiplicative replacement methods.
 - Dirichlet prior (Martín-Fernández et al., 2015)
 - Log-ratio normal prior (Comas-Cufí et al., 2019)

Parametric approaches to cluster compositional count data set (2)

- Compositional and count variability taken into account.
 - Topic models. Mixture of multinomials where mixing proportions are modelled in the Simplex.
 - Latent Dirichlet Allocations (Blei et al. 2003)
 - Correlated Topic Models (Blei & Lafferty, 2007)
 - Mixtures of compounding distributions.
 - Mixtures of Dirichlet-multinomial distributions (Holmes et al., 2012)
 - Mixtures of log-ratio-normal-multinomial distributions (Comas-Cufí et al., 2017)

Parametric approaches to cluster compositional count data set (2)

- Compositional and count variability taken into account.
 - Topic models. Mixture of multinomials where mixing proportions are modelled in the Simplex.
 - Latent Dirichlet Allocations (Blei et al. 2003)
 - Correlated Topic Models (Blei & Lafferty, 2007)
 - Mixtures of compounding distributions.
 - Mixtures of Dirichlet-multinomial distributions (Holmes et al., 2012)
 - Mixtures of log-ratio-normal-multinomial distributions (Comas-Cufí et al., 2017)

Main limitations

- Dirichlet-based approaches have modelling difficulties.
- Gaussian-based approaches have estimation difficulties.

Our proposal

Classical clustering approaches applied to cluster count data

1. Dealing with zeros.

- Dirichlet-multinomial (DM) distribution: conservative in keeping the covariance structure observed in the original count data set. The regression toward the mean is moderate.
- Zero replacement: conservative in keeping covariance structure observed in the count data set. Counts with small parts tend to define clusters by themselves.
- 2. **Compositional variability**. Model your data using a generic distribution defined on the Simplex. Gaussian mixtures are easy to estimate.
- 3. **Count variability**. Create *B* new samples using the posterior distribution, and find clusters using classical methods on its log-ratio coordinates.
- 4. **Consensus clustering**. Use a clustering ensemble method to build a final cluster (e.g. majority voting (Dudoit & Fridlyand, 2003)).

Example: 2017 Catalan regional election

Multivariate count data set

- 947 municipalities. To illustrate the approach we only consider three parts obtained with the following amalgamations.
 - Pro-independence parties (ind): CUP (cup), Esquerra Repúblicana de Catalunya (erc), Junts per Catalunya (jxcat).
 - Anti-independence parties (esp): Ciutadans (cs), Partit Popular (pp), Partit Socialista de Catalunya (psc).
 - Mixed opinions (other): Catalunya si que es pot (catsp), others (other).

mun	catsp	CS	cup	erc	jxcat	other	pp	psc
Abella de la Conca	4	9	8	30	50	0	0	13
Abrera	815	2559	198	1411	634	158	321	1487
Agramunt	80	472	100	1148	956	7	125	161
Aguilar de Segarra	1	12	38	37	85	0	3	9
:	:	:	:	:	:	:	:	:

Multivariate count data set

- 947 municipalities. To illustrate the approach we only consider three parts obtained with the following amalgamations.
 - Pro-independence parties (ind): CUP (cup), Esquerra Repúblicana de Catalunya (erc), Junts per Catalunya (jxcat).
 - Anti-independence parties (esp): Ciutadans (cs), Partit Popular (pp), Partit Socialista de Catalunya (psc).
 - Mixed opinions (other): Catalunya si que es pot (catsp), others (other).

mun	ind	esp	other
Abella de la Conca	88	22	4
Abrera	2243	4367	973
Agramunt	2204	758	87
Aguilar de Segarra	160	24	1
:	•	:	:

- Most municipalities lie between ind and esp parties.
- Some municipalities have some count zero (•).

- Most municipalities lie between ind and esp parties.
- Some municipalities have some count zero (•).
- \rightarrow We will deal with zeros first.

Here, we consider two different approaches:

- Geometric Bayesian multiplicative (Martín-Fernández, 2015), and
- Dirichlet-multinomial smoothing after replacing by the expected posterior probabilities.

Basis ${\cal B}$	ind	esp	other
B1	1	-1	0
B2	1	1	-1

Clustering directly in count data

We can cluster our compositional data for example using k-means.

- Duda-Hart test was used to discard one cluster.
- Calinski-Harabasz index was used to select k between 2 and 10.

Clustering directly in count data

We can cluster our compositional data for example using k-means.

- Duda-Hart test was used to discard one cluster.
- Calinski-Harabasz index was used to select k between 2 and 10.

Clustering directly in count data

Limitations

- In the zero-replacement approach, observations with a small amount of counts tend to create clusters.
- In DM smoothing results can be affected by the Dirichlet prior.

Compositional variability

Modelling using Gaussian mixtures

Find a distribution to model the original sample. Mixtures of Gaussian distribution are a good option (Nguyen & McLachlan, 2018).

→ According to BIC criterion, a mixture of 7 and 5 spherical Gaussian distributions with equal volume were respectively used.

Compositional variability

Modelling using Gaussian mixtures

Find a distribution to model the original sample. Mixtures of Gaussian distribution are a good option (Nguyen & McLachlan, 2018).

→ According to BIC criterion, a mixture of 7 and 5 spherical Gaussian distributions with equal volume were respectively used.

Sampling from the posterior distribution

For each count observation \mathbf{x}_i , we sample from the posterior distribution $P(\mathbf{h} \mid \mathbf{x}_i; f)$, where f is the mixture of Gaussian distributions.

• Metropolis–Hastings using $g(\mathbf{h}) = f(\mathbf{h}) \cdot \text{Mult}(\mathbf{x}_i; \mathbf{ilr}_{\mathcal{B}}^{-1}(\mathbf{h}))$ with proposal step defined by the Laplace approximation of $P(\mathbf{h} \mid \mathbf{x}_i; f)$ centred at zero.

Sampling from the posterior distribution

For each count observation \mathbf{x}_i , we sample from the posterior distribution $P(\mathbf{h} \mid \mathbf{x}_i; f)$, where f is the mixture of Gaussian distributions.

- Metropolis–Hastings using $g(\mathbf{h}) = f(\mathbf{h}) \cdot \text{Mult}(\mathbf{x}_i; \mathbf{ilr}_{\mathcal{B}}^{-1}(\mathbf{h}))$ with proposal step defined by the Laplace approximation of $P(\mathbf{h} \mid \mathbf{x}_i; f)$ centred at zero.
- $i = \text{``Argelaguer''}, \mathbf{x}_i = (\text{ind: 259, esp: 19, other: 14})$

Sampling from the posterior distribution

For each count observation \mathbf{x}_i , we sample from the posterior distribution $P(\mathbf{h} \mid \mathbf{x}_i; f)$, where f is the mixture of Gaussian distributions.

- Metropolis–Hastings using $g(\mathbf{h}) = f(\mathbf{h}) \cdot \text{Mult}(\mathbf{x}_i; \mathbf{ilr}_{\mathcal{B}}^{-1}(\mathbf{h}))$ with proposal step defined by the Laplace approximation of $P(\mathbf{h} \mid \mathbf{x}_i; f)$ centred at zero.
- i = "Gisclareny", $\mathbf{x}_i =$ (ind: 1, esp: 21, other: 1)

Sampling from the posterior distribution

For each count observation \mathbf{x}_i , we sample from the posterior distribution $P(\mathbf{h} \mid \mathbf{x}_i; f)$, where f is the mixture of Gaussian distributions.

- Metropolis–Hastings using $g(\mathbf{h}) = f(\mathbf{h}) \cdot \text{Mult}(\mathbf{x}_i; \mathbf{ilr}_{\mathcal{B}}^{-1}(\mathbf{h}))$ with proposal step defined by the Laplace approximation of $P(\mathbf{h} \mid \mathbf{x}_i; f)$ centred at zero.
- $i = \text{"Barcelona"}, \mathbf{x}_i = (\text{ind: } 429782, \text{esp: } 405924, \text{other: } 96748)$

Creating new samples

ightarrow Using the posterior distribution we can create B new samples (B = 100),

- ightarrow Using the posterior distribution we can create B new samples (B = 100),
- \rightarrow and applying a clustering algorithm (k-means, $k \in \{2, \dots, 10\}$, Calinski-Harabasz index).

- ightarrow Using the posterior distribution we can create B new samples (B = 100),
- ightarrow and applying a clustering algorithm (k-means, $k \in \{2, \dots, 10\}$, Calinski-Harabasz index).

- ightarrow Using the posterior distribution we can create B new samples (B = 100),
- ightarrow and applying a clustering algorithm (k-means, $k \in \{2, \dots, 10\}$, Calinski-Harabasz index).

- Using the posterior distribution we can create B new samples (B = 100),
- \rightarrow and applying a clustering algorithm (k-means, $k \in \{2, ..., 10\}$, Calinski-Harabasz index).

- ightarrow Using the posterior distribution we can create B new samples (B=100),
- ightarrow and applying a clustering algorithm (k-means, $k \in \{2, \dots, 10\}$, Calinski-Harabasz index).

- ightarrow Using the posterior distribution we can create B new samples (B = 100),
- ightarrow and applying a clustering algorithm (k-means, $k \in \{2, \dots, 10\}$, Calinski-Harabasz index).

- ightarrow Using the posterior distribution we can create B new samples (B = 100),
- ightarrow and applying a clustering algorithm (k-means, $k \in \{2, \dots, 10\}$, Calinski-Harabasz index).

- ightarrow Using the posterior distribution we can create B new samples (B=100),
- ightarrow and applying a clustering algorithm (k-means, $k \in \{2, \dots, 10\}$, Calinski-Harabasz index).

- Consensus clustering can be applied to summarise all B clusterings.
 - → Majority voting (Dudoit and Fridlyand, 2003)).

- Consensus clustering can be applied to summarise all B clusterings.
 - → Majority voting (Dudoit and Fridlyand, 2003)).

- Consensus clustering can be applied to summarise all B clusterings.
 - → Majority voting (Dudoit and Fridlyand, 2003)).

- Consensus clustering can be applied to summarise all B clusterings.
 - → Majority voting (Dudoit and Fridlyand, 2003)).
- Only four municipalities differ in the final clustering.

Final remarks

- An approach to cluster count data when only the relative relation between parts is of interest has been presented.
- A parametric approach can be constructed in such a way that the variability coming from a multinomial counting process can be incorporated to the observed compositional variability.
- To obtain a final clustering, consensus clustering algorithms can be applied to clustering obtained from each sample.