6.8 Laplace Transform: General Formulas

Formula	Name, Comments	Sec.	
$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) dt$ $f(t) = \mathcal{L}^{-1}\{F(s)\}$	Definition of Transform Inverse Transform	6.1	
$\mathcal{L}\{af(t) + bg(t)\} = a\mathcal{L}\{f(t)\} + b\mathcal{L}\{g(t)\}\$	Linearity	6.1	
$\mathcal{L}\lbrace e^{at}f(t)\rbrace = F(s-a)$ $\mathcal{L}^{-1}\lbrace F(s-a)\rbrace = e^{at}f(t)$	s-Shifting (First Shifting Theorem)	6.1	
$\mathcal{L}(f') = s\mathcal{L}(f) - f(0)$ $\mathcal{L}(f'') = s^2 \mathcal{L}(f) - sf(0) - f'(0)$ $\mathcal{L}(f^{(n)}) = s^n \mathcal{L}(f) - s^{(n-1)} f(0) - \cdots$ $\cdots - f^{(n-1)}(0)$ $\mathcal{L}\left\{\int_0^t f(\tau) d\tau\right\} = \frac{1}{s} \mathcal{L}(f)$	Differentiation of Function Integration of Function	6.2	
$(f*g)(t) = \int_0^t f(\tau)g(t-\tau) d\tau$ $= \int_0^t f(t-\tau)g(\tau) d\tau$ $\mathcal{L}(f*g) = \mathcal{L}(f)\mathcal{L}(g)$	Convolution	6.5	
$\mathcal{L}\lbrace f(t-a)u(t-a)\rbrace = e^{-as}F(s)$ $\mathcal{L}^{-1}\lbrace e^{-as}F(s)\rbrace = f(t-a)u(t-a)$	t-Shifting (Second Shifting Theorem)	6.3	
$\mathcal{L}\{tf(t)\} = -F'(s)$ $\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\widetilde{s})d\widetilde{s}$	Differentiation of Transform Integration of Transform	6.6	
$\mathcal{L}(f) = \frac{1}{1 - e^{-ps}} \int_0^p e^{-st} f(t) dt$	f Periodic with Period p	6.4 Project	

6.9 Table of Laplace Transforms

For more extensive tables, see Ref. [A9] in Appendix 1.

	$F(s) = \mathcal{L}\{f(t)\}\$	f(t)	Sec.
1	1/s	1	ì
2	1/s ²	,	
3	$1/s^n \qquad (n=1,2,\cdots)$	$t^{n-1}/(n-1)!$	
4	$1/\sqrt{s}$	$1/\sqrt{\pi t}$	6.1
5	1/s ^{3/2}	$2\sqrt{t/\pi}$	
6	$1/s^a$ $(a>0)$	$t^{a-1}/\Gamma(a)$	
7	$\frac{1}{s-a}$	eat	1
22.6		-	
8	$\frac{1}{(s-a)^2}$	te ^{at}	
9	$\frac{1}{(s-a)^n} \qquad (n=1,2,\cdots)$	$\frac{1}{(n-1)!}t^{n-1}e^{at}$	6.1
10	$\frac{1}{(s-a)^k} \qquad (k>0)$	$\frac{1}{\Gamma(k)}t^{k-1}e^{at}$	
11	$\frac{1}{(s-a)(s-b)} \qquad (a\neq b)$	$\frac{1}{a-b}(e^{at}-e^{bt})$	
12	$\frac{s}{(s-a)(s-b)} \qquad (a \neq b)$	$\frac{1}{a-b}(ae^{at}-be^{bt})$	
13	$\frac{1}{s^2 + \omega^2}$	$\frac{1}{\omega}\sin\omega t$)
14	$\frac{s}{s^2 + \omega^2}$	cos ωt	
15	$\frac{1}{s^2-a^2}$	$\frac{1}{a}$ sinh at	
16	$\frac{s}{s^2-a^2}$	cosh at	6.1
17	$\frac{1}{(s-a)^2+\omega^2}$	$\frac{1}{\omega}e^{at}\sinh \omega t$	
18	$\frac{s-a}{(s-a)^2+\omega^2}$	e ^{at} cos ωt	
9	$\frac{1}{s(s^2+\omega^2)}$	$\frac{1}{\omega^2}(1-\cos\omega t)$	1
0	$\frac{1}{s^2(s^2+\omega^2)}$	$\frac{1}{\omega^2}(1-\cos\omega t)$ $\frac{1}{\omega^3}(\omega t-\sin\omega t)$	6.2

6.9 Table of Laplace Transforms

For more extensive tables, see Ref. [A9] in Appendix 1.

	$F(s) = \mathcal{L}\{f(t)\}\$	f(t)	Sec.
1	1/s	1)
2	1/s2	t	
3	$1/s^n \qquad (n=1,2,\cdots)$	$t^{n-1}/(n-1)!$	
4	$1/\sqrt{s}$	$1/\sqrt{\pi t}$	6.1
5	$1/s^{3/2}$	$2\sqrt{\iota/\pi}$	
6	$1/s^a \qquad (a>0)$	$t^{a-1}/\Gamma(a)$	
7	$\frac{1}{s-a}$	e^{at}	1
8	$\frac{1}{(s-a)^2}$	te ^{at}	
9	$\frac{1}{(s-a)^n} \qquad (n=1,2,\cdots)$	$\frac{1}{(n-1)!}t^{n-1}e^{at}$	6.1
10	$\frac{1}{(s-a)^k} \qquad (k>0)$	$\frac{1}{\Gamma(k)} t^{k-1} e^{at}$	
11	$\frac{1}{(s-a)(s-b)} \qquad (a\neq b)$	$\frac{1}{a-b}\left(e^{at}-e^{bt}\right)$	
12	$\frac{s}{(s-a)(s-b)} \qquad (a \neq b)$	$\frac{1}{a-b}(ae^{at}-be^{bt})$	
13	$\frac{1}{s^2+\omega^2}$	$\frac{1}{\omega}\sin\omega t$	1
14	$\frac{s}{s^2+\omega^2}$	cos ωt	
15	$\frac{1}{s^2-a^2}$	$\frac{1}{a} \sinh at$	
16	$\frac{s}{s^2-a^2}$	cosh at	6.1
17	$\frac{1}{(s-a)^2+\omega^2}$	$\frac{1}{\omega}e^{\alpha t}\sinh \omega t$	
18	$\frac{s-a}{(s-a)^2+\omega^2}$	e ^{at} cos ωt	
19	$\frac{1}{s(s^2+\omega^2)}$	$\frac{1}{\omega^2}(1-\cos\omega t)$	
20	$\frac{1}{s^2(s^2+\omega^2)}$	$\frac{1}{\omega^3}(\omega t - \sin \omega t)$	6.2

(continued)

Table of Laplace Transforms (continued)

	$F(s) = \mathcal{L}\{f(t)\}\$	f(t)	Sec.
21	$\frac{1}{(s^2+\omega^2)^2}$	$\frac{1}{2\omega^3}(\sin \omega t - \omega t \cos \omega t)$	
22	$\frac{s}{(s^2+\omega^2)^2}$	$\frac{t}{2\omega}\sin\omega t$	6.0
23	$\frac{s^2}{(s^2+\omega^2)^2}$	$\frac{1}{2\omega}(\sin\omega t + \omega t\cos\omega t)$	
24	$\frac{s}{(s^2 + a^2)(s^2 + b^2)} (a^2 \neq b^2)$	$\frac{1}{b^2 - a^2} (\cos at - \cos bt)$	
25	$\frac{1}{s^4 + 4k^4}$	$\frac{1}{4k^3}(\sin kt\cos kt - \cos kt\sinh kt)$	
26	$\frac{s}{s^4+4k^4}$	$\frac{1}{2k^2}\sin kt \sinh kt$	
27	$\frac{1}{s^4-k^4}$	$\frac{1}{2k^3}(\sinh kt - \sin kt)$	
28	$\frac{s}{s^4-k^4}$	$\frac{1}{2k^2}(\cosh kt - \cos kt)$	
29	$\sqrt{s-a}-\sqrt{s-b}$	$\frac{1}{2\sqrt{\pi t^3}}(e^{bt}-e^{at})$	
30	$\frac{1}{\sqrt{s+a}\sqrt{s+b}}$	$e^{-(a+b)t/2}I_0\left(\frac{a-b}{2}t\right)$	15.5
31	$\frac{1}{\sqrt{s^2 + a^2}}$	$J_0(at)$	J 5.4
32	$\frac{s}{(s-a)^{3/2}}$	$\frac{1}{\sqrt{\pi t}}e^{at}(1+2at)$	
33	$\frac{1}{(s^2-a^2)^k} \qquad (k>0)$	$\frac{\sqrt{\pi}}{\Gamma(k)} \left(\frac{t}{2a}\right)^{k-1/2} I_{k-1/2}(at)$	1 5.5
34	e ^{-as} /s	u(t-a)	6.3
35	e ^{-as}	$\delta(t-a)$	6.4
36	$\frac{1}{s}e^{-k/s}$	$J_0(2\sqrt{kt})$	J 5.4
37	$\frac{1}{\sqrt{s}}e^{-k/s}$	$\frac{1}{\sqrt{\pi t}}\cos 2\sqrt{kt}$	
38	$\frac{1}{s^{3/2}}e^{k/s}$ $e^{-k\sqrt{s}} \qquad (k>0)$	$\frac{1}{\sqrt{\pi k}} \sinh 2\sqrt{kt}$	
39	$e^{-k\sqrt{s}}$ $(k>0)$	$\frac{k}{2\sqrt{\pi t^3}}e^{-k^2/4t}$	

251

ew Questions and Problems

Table of Laplace Transforms (continued)

	$F(s) = \mathcal{L}\{f(t)\}\$	f(t)	Sec.
40	$\frac{1}{s} \ln s$	$-\ln t - \gamma (\gamma \approx 0.5772)$	γ 5.5
41	$ \ln \frac{s-a}{s-b} $	$\frac{1}{t}(e^{bt}-e^{at})$	
42	$\ln\frac{s^2+\omega^2}{s^2}$	$\frac{2}{t}(1-\cos\omega t)$	6.6
43	$\ln \frac{s^2 + \omega^2}{s^2}$ $\ln \frac{s^2 - a^2}{s^2}$	$\frac{2}{t}(1-\cosh at)$	
44	$\arctan \frac{\omega}{s}$	$\frac{1}{t}\sin \omega t$	
45	$\frac{1}{s}$ arccot s	Si(t)	App. A3.1

Generated by CamScanner