Computer Structure

X86 Virtual Memory and TLB

Franck Sala
Updated by tomer gurevich
Slides from Lihu and Adi's Lecture

X86 paging

- עבור זיכרון עם כתובת בגודל של 32 ביט וגודל הדף הוא עבור זיכרון עם כתובת בגודל של 4Mb .
 - רוב התהליכים במערכת משתמשים רק במעט זיכרון.
 התקורה של 4Mb עבור כל תהליך היא לרוב יקרה
 ומיותרת. עבור רוב התהליכים טבלת תרגום כזאת תהיה
 רוב הזיכרון שהתהליך צורך.
- ב-26 ישנן מספר רמות של טבלאות תרגום , המסודרות במבנה של עץ. אנו מקצים טבלאות תרגום באופן דינאמי , רק כאשר יש צורך ממשי בטבלה.

32bit Mode: 4KB / 4MB Page Mapping

- 2-level hierarchical mapping: Page Directories and Page tables
 - 4KB aligned
- PDE
 - Present (0 = page fault)
 - Page size (4KB or 4 MB)
 - CR4.PSE=1 ⇒ both 4MB & 4KB pages supported
 - Separate TLBs

32bit Mode: PDE and PTE Format

- 20 bit pointer to a 4K Aligned address
- Virtual memory
 - Present
 - Accessed
 - Dirty (in PTE only)
 - Page size (in PDE only)
 - Global
- Protection
 - Writable (R#/W)
 - User / Supervisor #
 - > 2 levels/type only
- Caching
 - Page WT
 - Page Cache Disabled
 - PAT PT Attribute Index
- 3 bits available for OS usage

Page Directory Entry (4KB page table)

Page Table Entry

4KB Page Mapping in 64 bit Mode

2003: AMD Opteron...

CR3 (PDPTR)

Linear Address Space (4K Page)

PML4: Page Map Level 4 PDP: Page Directory Pointer

256 TB of virtual memory (2⁴⁸) 1 TB of physical memory (2⁴⁰)

2MB Page Mapping in 64 bit Mode

Linear Address Space (2M Page)

1GB Page Mapping in 64 bit Mode

Linear Address Space (1G Page)

- We have a core similar to X86
 - 64 bit mode
 - Support Small Pages (PTE) and Large Pages (DIR)
 - Page table size in each hierarchy is the size of a small page
 - Entry size in the Page Table is 16 byte, in all the hierarchies

63		N4	N3	N2	N1 12	11 0
sigr	n ext.	PML4	PDP	DIR	TABLE	OFFSET

What is the size of a small page?

12 bits in the offset field

$$\rightarrow$$
 2¹² B = 4KB

How many entries are in each Page Table?

Page Table size = Page Size = 4KB

$$PTE = 16B$$

 \rightarrow 4KB / 16B = 2^{12} / 2^4 = 2^8 = 256 entries in each Page Table

- 64 bit (large & small)

- PT size = Page size = 4KB

- PTE = 16B

- Page Table: 256 entries

Question 1

63	N4	N3	N2	N1 12	11 0
sign ext.	PML4	PDP	DIR	TABLE	OFFSET

What are the values of N1, N2, N3 and N4?

Since we have 256 entries in each table, we need 8 bits to address them

- Table [19:12] N1 = 19
- DIR [27:20] N2 = 27
- PDP [35:28] N3 = 35
- PML4 [43:36] N4 = 43

What is the size of a large page?

Large pages are pointed by DIR

So the large pages offset is 20 bits [19:0] \rightarrow large pages size: $2^{20} = 1MB$

We can also say: DIR can point to 256 pages of 4KB = 1MB

- 64 bit (large & small)

- PT size = Page size = 4KB

- Large page size = 1 MB

- PTE = 16B

- Page Table: 256 entries

- We access a sequence of virtual addresses
 For each address, what is the minimal number of tables that were added in all the hierarchies?
- See next foil in presentation mode…

Question 1: sequence of allocations

Translation Look aside Buffer (TLB)

Page table resides in memory

⇒ each translation requires an extra memory access

TLB caches recently used PTEs

- speed up translation
- typically 128 to 256 entries,
 4 to 8 way associative

TLB Indexing

Virtual page i	Offset	
Tag	Set	

- On A TLB miss
 - Page Miss Handler (HW PMH) gets PTE from memory

Virtual Memory And Cache

- TLB access is serial with cache access
- Page table entries are cached in L1 D\$, L2\$ and L3 \$ as data

TLBs

- The processor saves most recently used PDEs and PTEs in TLBs
 - Separate TLB for data and instruction caches
 - Separate TLBs for 4KB and 2/4MB page sizes

PMH Page miss handler

- כאשר ישנה גישה לזיכרון מתרחש התהליך הבא:
- . ראשית , ניגש ל- TLB המתאים עם ה- VPN ראשית , ניגש ל-
- ישנם dTLB ו − i dTLB אשר מכילים תרגום של מידע וזיכרון בהתאמה.
 - ה- TLBs מחולקים גם לדפים קטנים וגדולים בהתאמה.
 - . נשתמש בתרגום שמצאנו , TLB HIT אם ישנו
 - PMH -נפנה ל- TLB MISS במקרה של

STLB -secondary TLB

- . STLB -מכיל את ה PMH − ה
- לאחר ה- TLB MISS ניגש ל- STLB . ה-STLB מהווה עוד "רמה " של TLB . הוא מכיל יותר PTE גם הוא.
 - .. TLB MISS -- נפנה אליו לאחר ה
 - ה- STLB מכיל גם זיכרון של פקודות וגם של מידע. כמו כן , הוא מכיל גם תרגומים של דפים גדולים.
 - . STLB-אנו משתמשים ב- VPN כדי לחפש ב- TLB
 - עבור STLB HIT , נשתמש בתרגום שמצאנו •
 - . Page walk יבצע PMH -ה, STLB MISS שבור •

- רוא מטייל על Page Walk חייב לבצע PMH-ה, ה-• בשלב הזה ,ה-• ה-• אות הדפים החל מהשורש (PML4) .
- כדי לקצר את התהליך ה- PMH שומר cache עבור הרמות הגבוהות של התרגום: PML4 cache,PDP cache,DIR cache
 - ? Table cache מדוע אין צורך לשמור •

מכיוון שה-TLB שומר תרגום מלא של כתובת, אין צורך ב- Table מכיוון שה-Cache אלא רק עבור הרמות הגבוהות יותר, אשר מהוות תרגום חלקי.

cache	Accessed with virtual address bits	If hits, returns
DIR cache	[47:21]	PDE
PDP cache	[47:30]	PDP entry
PML4 cache	[47:39]	PML4 entry

- אנו פונים עם הסיביות ששימשו אותנו גם לפנייה cache אל כל לרמה גבוהה יותר .
- ◆ אם ברמה כלשהיא של ה- cache התרחשה פגיעה. אזי הצלחנו לחסוך (לפחות) את כל הגישות לרמה הנוכחית ולרמות הגבוהות יותר.
- נמצא PDP cache hit נמצא PDP נחסוך נחסוך PDP בור PML4 עבור PDP בייה ל-PML4 עדיין נצטרך לגשת לזיכרון עבור הרמות הנמוכות יותר.

- ה-PMH ניגש לכל המטמונים במקביל ובוחר ברמה הנמוכה ביותר עבורה היה HIT .
 - את שארית התרגום נבצע כרגיל , באמצעות גישה לטבלאות אשר שמורות בזיכרון .
 - . PAGE TABLE-נשים לב לכל הפחות נהיה חייבים לגשת ל
- את טבלת הדפים המתאימה נחפש בהירארכיית הזיכרון כרגיל: ניגש קודם ל-L3 cache , L2 cache , L1 cache יורק לבסוף ניגש לזיכרון .

Caches and Translation Structures

- Processor similar to X86 64 bits
- Pages of 4KB
- The processor has a TLB

63	43	35	27	19 12	11 0
sign ext.	PML4	PDP	DIR	TABLE	OFFSET

- TLB Hit: we get the translation with no need to access the translation tables
- TLB Miss: the processor has to do a Page Walk
- The hardware that does the Page Walk (PMH) contains a cache for each of the translation tables
- All Caches and TLB are empty on Reset
- For the sequence of memory access below, how many accesses are needed for the translations?

Address	memory access	Explanations
0000022334455666H		
0000022334455777H		
0000022884455777H		

- Processor similar to X86 64 bits
- Pages of 4KB
- The processor has a TLB

63	43	35	27	19 12	11 0
sign ext.	PML4	PDP	DIR	TABLE	OFFSET

- TLB Hit: we get the translation with no need to access the translation tables
- TLB Miss: the processor has to do a Page Walk
- The hardware that does the Page Walk (PMH) contains a cache for each of the translation tables
- All Caches and TLB are empty on Reset
- For the sequence of memory access below, how many accesses are needed for the translations?

Address	memory access	Explanations
0000022 <mark>33</mark> 4455666H		
0000022 <mark>33</mark> 4455777H		
0000022884455777H		

- Processor similar to X86 64 bits
- Pages of 4KB
- The processor has a TLB sign
- 63 43 35 27 19 12 11 0 sign ext. PML4 PDP DIR TABLE OFFSET
 - TLB Hit: we get the translation with no need to access the translation tables
 - TLB Miss: the processor has to do a Page Walk
- The hardware that does the Page Walk (PMH) contains a cache for each of the translation tables
- All Caches and TLB are empty on Reset
- For the sequence of memory access below, how many accesses are needed for the translations?

Address	memory access	Explanations
0000022 33 44 55666 H	4	We need to access the memory for each of the 4 translation tables
0000022 <mark>33</mark> 4455777H		
0000022884455777H		

- Processor similar to X86 64 bits
- Pages of 4KB
- The processor has a TLB

63	43	35	27	19 12	11 0
sign ext.	PML4	PDP	DIR	TABLE	OFFSET

- TLB Hit: we get the translation with no need to access the translation tables
- TLB Miss: the processor has to do a Page Walk
- The hardware that does the Page Walk (PMH) contains a cache for each of the translation tables
- All Caches and TLB are empty on Reset
- For the sequence of memory access below, how many accesses are needed for the translations?

Address	memory access	Explanations
0000022 33 44 55666 H	4	We need to access the memory for each of the 4 translation tables
0000022 <mark>33</mark> 44 55777 H	0	Same pages as above → TLB hit → No memory access
0000022 <mark>88</mark> 44 55777 H		

- Processor similar to X86 64 bits
- Pages of 4KB
- The processor has a TLB

63	43	35	27	19 12	11 0
sign ext.	PML4	PDP	DIR	TABLE	OFFSET

- TLB Hit: we get the translation with no need to access the translation tables
- TLB Miss: the processor has to do a Page Walk
- The hardware that does the Page Walk (PMH) contains a cache for each of the translation tables
- All Caches and TLB are empty on Reset
- For the sequence of memory access below, how many accesses are needed for the translations?

Address	memory access	Explanations
0000022 33 44 55 666H	4	We need to access the memory for each of the 4 translation tables
0000022 <mark>33</mark> 44 55777 H	0	Same pages as above → TLB hit → No memory access
0000022884455777H	3	We hit in PML4 cache. Then we miss in the PDP and so we need to access the memory 3 times: PDP, DIR, PTE

- L1 data Cache: 32KB 2 ways of 64B each
- How can we access this cache before we get the physical address?

```
64B \rightarrow 6 bits offset bits [5:0]
32KB = 2^{15} / (2 ways * 2^{6} bytes) = 2^{8} = 256 sets [13:6]
```

- → 12 bits are not translated: [11:0]
- → we lack 2 bits [13:12] to get the set address
- → So we do a lookup using 2 un-translated bits for the set address
- → Those bits can be different from the PFN obtained after translation, therefore we need to compare the whole PFN to the tag stored in the Cache Tag array

Question 2: Read Acces

Question 2: example

L1 data Cache: 32KB

Question 2: Virtual Alias

- 2 ways of 64B each
- What will happen when we access with a given offset the virtual page A and after this, there is an access with the same offset in the virtual page B, which is mapped by the OS to the same physical page as A?

Question 2: Virtual Alias

- L1 data Cache: 32KB
- 2 ways of 64B each
- What will happen when we access with a given offset the virtual page A and after this, there is an access with the same offset in the virtual page B, which is mapped by the OS to the same physical page as A?

- Avoid having the same data twice in the cache
 xxxx01.set.ofset and yyyy00.set.ofset
- Check 4 sets when we allocate a new entry and see if the same tag appears
- If yes, evict the second occurrence of the data (the alias)

Question 2: Snoop

- L1 data Cache: 32KB
- 2 ways of 64B each
- What happens in case of snoop in the cache?

The cache is snooped with a physical address [40:0]

Since the 2 MSB bits of the set address are virtual, a given physical address can map to 4 different sets in the cache (depending on the virtual page that is mapped to it)

So we must snoop 4 sets * 2 ways in the cache

Core similar to X86 in 64 bit mode

63	55	47	35	23 12	<u>11 0</u>
sign ext.	PML4	PDP	DIR	TABLE	OFFSET

- Supports small pages (pointed by PTE) and large pages (pointed by DIR).
- Size of an entry in all the different page tables is 8 Bytes
- PMH Caches at all the levels
 - 4 entries direct mapped
 - Access time on hit: 2 cycles
 - Miss known after 1 cycle
- PMH caches are accessed at all the levels in parallel
- In each level, when there is a HIT, the PMH cache provides the relevant entry in the page table in the relevant level
- In each level, when there is a miss: the core accesses the relevant page table in the main memory.
- Access time to the main memory is 100 cycles, not including the time needed to get the PMH cache miss.

63	55	47	35	23 12	<u>11 0</u>
sign ext.	PML4	PDP	DIR	TABLE	OFFSET

What is the size of the large pages?

The large page is pointed by DIR, therefore, all the bits under are offset inside the large page: $2^{24} = 16 \text{ MB}$

How many entries in each Page Table ?

• PTE: 2¹²

• DIR: 2¹²

• PDP: 2¹²

• PML4: 2⁸

63 55 47 3 sign ext. PML4 PDP	35 23 DIR T	12 11 0 ABLE OFFSET	TLB 4entries Direct mapped TLB hit: 2 cycles
Virtual Addr.	Cycles	Comment	TLB miss: 1 cycle Memory access: 100 cycle
FF81 2345 6789 ABCD			
FF81 2340 6789 ABCD			
FF80 2340 6789 ABCD			
FF81 2340 6709 ABCD			
FF81 2340 6709 A0CD			

63	55	47	35	23 12	11 0
sign ext.	PML4	PDP	DIR	TABLE	OFFSET

Virtual Addr.	Cycles	Comment	Memory access: 100 cycle
FF81 2345 6789 ABCD	401	Miss and memory access 1+ 4 *100 = 401 cycles	s at each level:
FF81 2340 6789 ABCD			
FF80 2340 6789 ABCD			
FF81 2340 6709 ABCD			
FF81 2340 6709 A0CD			

63	55	47	35	23 12	11 0
sign ext.	PML4	PDP	DIR	TABLE	OFFSET

TLB 4entries
Direct mapped
TLB hit: 2 cycles

TLB miss: 1 cycle

Virtual Addr.	Cycles	Comment	Memory access: 100 cycle
FF81 2345 6789 ABCD	401	Miss and memory access 1+ 4 *100 = 401 cycles	s at each level:
FF81 2340 6789 ABCD	202	(PML4, PDP, DIR, sTLB) PDP TLB read 1 mc DIR TLB: Miss 100 c PTE TLB: Miss 100 c	ore cycle ycles
FF80 2340 6789 ABCD			
FF81 2340 6709 ABCD			
FF81 2340 6709 A0CD			

63	55	47	35	23 12	11 0
sign ext.	PML4	PDP	DIR	TABLE	OFFSET

Virtual Addr.	Cycles	Comment	Memory access: 100 cycle
FF81 2345 6789 ABCD	401	Miss and memory access 1+ 4 *100 = 401 cycles	s at each level:
FF81 2340 6789 ABCD	202	(PML4, PDP, DIR, sTLB) PDP TLB read 1 mc DIR TLB: Miss 100 c PTE TLB: Miss 100 c	ore cycle ycles
FF80 2340 6789 ABCD	401	PMH cache miss in all th 1 + 4*100 = 401 cycles	e levels:
FF81 2340 6709 ABCD			
FF81 2340 6709 A0CD			

63	55	47	35	23 12	11 0	
sign ext.	PML4	PDP	DIR	TABLE	OFFSET	

Virtual Addr.	Cycles	Comment	Memory access: 100 cycle
FF81 2345 6789 ABCD	401	Miss and memory access 1+ 4 *100 = 401 cycles	s at each level:
FF81 2340 6789 ABCD	202	DIR TLB: Miss 100 c	ore cycle
FF80 2340 6789 ABCD	401	PMH cache miss in all the levels: 1 + 4*100 = 401 cycles	
FF81 2340 6709 ABCD	302	(PML4, PDP, DIR, sTLB) PDP: the entry 234 that v second access was replated that was filled in access 3 set → miss 2 + (3 × 100) = 302	was filled for the aced by the entry
FF81 2340 6709 A0CD			

63	55	47	35	23 12	11 0
sign ext.	PML4	PDP	DIR	TABLE	OFFSET

Virtual Addr.	Cycles	Comment	Memory access: 100 cycle	
FF81 2345 6789 ABCD	401	Miss and memory access 1+ 4 *100 = 401 cycles	s at each level:	
FF81 2340 6789 ABCD	202	DIR TLB: Miss 100 c	ore cycle	
FF80 2340 6789 ABCD	401	PMH cache miss in all th 1 + 4*100 = 401 cycles	e levels:	
FF81 2340 6709 ABCD	302	(PML4, PDP, DIR, sTLB) = (H,M,M,M) 1 cyc PDP: the entry 234 that was filled for the second access was replaced by the entry that was filled in access 3, as it is in the same set \rightarrow miss 2 + (3 × 100) = 302		
FF81 2340 6709 A0CD	2	Hit in TLB – no need to g	o to PMH: 2 cycles	

Backup Slides

