Author and Concept Index

```
\kappa, 258
                                                array-element, 408
\sigma, 291, 379
                                                association list, §74, 402, 421, 547
\tau, 237, 261, 291, 379
                                                    in sets, 102
\tau_f, 237
                                                Atkinson, R., 377
*-name, 113, 257, 285
                                                atom
C, 305
                                                    \muScheme concept, 69
*-name, 9
                                                \mathcal{B}
def, 113, 257, 285
                                                    as basis function in identifier cross-
exp, 113, 257, 285
                                                         reference, 23
formals, 113, 257, 285
                                                Baker, H.G., 205
integer, 9
                                                Barnes, J.G.P., 379
type-formals, 257
                                                Barrett, W., 722
A.721
                                                binary-functor, 528
\mathcal{A}
                                                binary-predicate, 528
    as automatically generated function in
                                                Birtwistle, G., 379, 506
         identifier cross-reference, 23
                                                Bishop, J., 379
Abelson, H., 151, 164, 379
                                                blocks world, §559
Abelson, Harold, 63
                                                Bobrow, D., 505
abstraction, functional, 21
                                                bound variable, 225
accumulating parameters
                                                Budd, T., 502, 505, 506
    method of, 71
                                                Budd, Tim, 416
ad hoc polymorphism, 101
                                                BugInTypeInference[[BugInTypeInference]]
Ada, 6, 346, 378, 379
                                                    in \muML, 294
                                                Burge, W.H., 151
add
    real Clu function, 374
                                                Burstall, R., 151
addtoend, Prolog predicate, 545
                                                C
Aho, A., 722
Algol-60, 64
                                                    scope rules, 9
                                                C
    own variables, 92
                                                    own variables static, 92
Algol 60, 6
                                                    scope rules, 55
Alphard, 346, 378, 379
                                                C (programming language), 6
answer
    nonstandard English in Smalltalk, 403
                                                    overloading, 504
Appel, A., 206
                                                c{a,d}^+r, Scheme functions, 67
append
                                                calculational proof, 77
    Prolog predicate, 546
                                                call/cc, real Scheme function, §150
arithmetic
                                                car, real Clu function, 377
    mixed, 425
                                                careless persons
arity
                                                    misusing unspecified values, 605
    in \muSmalltalk, 408
```

category, syntactic, see syntactic category	continuation, 106
Chang, CL., 579	continuation-passing style
checked run-time error, 25	in Smalltalk, 398, 414
Chez Scheme, 168	core language
choose-move, Prolog predicate, 563	in μ Scheme, 88
Clark, K.L., 579	Cox, B., 505
class primitive	create, real Clu function, 372
in Smalltalk-80, 503	creators, 76
clause, 528	in Smalltalk, 401
clause-or-query, 528	cross-reference
client	explanation of, 23
versus inheritance, 417	
Clinger, W., 151	Dahl, OJ., 379
Clocksin, W.F., 579	data abstraction, §347, 378
close	data-type specification, 378
over free type variables, 299	De Morgan's laws
closing	for exists? and all?, 100
over free type variables, 299	in solving Boolean formulas, 163
Clu, §343	declaration, 358
cluster, 349, 378	def, 8, 234, 281, 282, 358, 408, 521
full	degree, real Clu function, 372
iterators, 416	DeGroot, D., 579
goal of program correctness, 377	delegation
mutable types, 363, 366	in the implementation of Set, 451
vs. immutable types, 366	design patterns
polymorphism, §373, 376	factory, 513
real, §371	Deutsch, L.P., 188, 205, 522
arrays in, 362	diff
exception handling, 376	Clu function, 370
export lists, 352	diff, full Clu function, 372
iterators, 374, 378	diffappend, Prolog predicate, 550
syntax, §371	different, Prolog predicate, 562
type checking, §375	dispatch
recursively-defined data in, 362	of methods in Smalltalk, 403
relation to Pascal, 346	Dybvig, R.K., 151
relation to Smalltalk, 397, 398, 403	dynamic scoping, 119
scope rules, §359	•
semantics, §359	Eiffel (object-oriented language), 505, 514
syntax, §358	either
values, 349	alternative elimination form for sun
Cobol, 6	types, 254
coeff, real Clu function, 372	elaboration, 271
Cohen, J., 205, 579	elements, Clu iterator, 375
Cohen, N.H., 379	emptyset
Colmerauer, A., 524, 579	Scheme function, 159
Common Lisp, 63, 151, 505	enclosed-area, Clu function, 355
CommonLoops (object-oriented extension of	equality type
Lisp), 505	in Standard ML, 318
constructor	equational reasoning, 77
pitfalls as a technical term, 76	execute
protesso as a confined term, to	

as a synonym for evaluate, 397	Haskell, §341
exp, 8, 234, 358, 408	Henderson, P., 151
exploding heads, 96, 503	Hewitt, C., 205
exports, 358	higher-order functions, 89
	Hoare, C.A.R., 378, 379
fac	Hogger, C.J., 579
Clu function, 392	Hopcroft, J., 722
factory	Hope (functional language), 151
design pattern, 513	
Felleisen, Matthias, 151	identifier cross-reference
Fenichel, R., 205	explanation of, 23
FinancialHistory, real Smalltalk-10 class, 496	Impcore
first-class functions	interpreter for, §23
vs first-class, nested functions, 88	relation to C, 11, 55
first-class values, 88	scope rules, 55
first-order functions, 89	semantics, §9
Flavors (object-oriented extension of Lisp),	syntax, §8
505	imperative features, 286
Floyd, R., 378	imperative programming, 6
formals, 8, 234, 358, 408, 722	impl, 358
Fortran, 6	induction step
free variable, 225	in a recursive algorithm, 68
Friedman, Dan, 151	instance
function, 8, 234, 358	relation between types, 293
functional abstraction, 21	instantiation
functions	of an ML type scheme, 293
first-order, 89	integer, 113, 257, 285
higher-order, 89	Iswim (functional language), 151
functor, 528	it
Futatsugi, K., 379	automatic binding in Impcore, 44
1 44465481, 11., 910	automatic binding in μ Scheme, 134
Gallier, J., 579	automatic smains in passionis, 191
generality	Johnson, R., 514
of types, 293	Jones, C., 379
generalization	
of types in μ ML, 307	Kaehler, T., 505
generativity	Kamin, S., 379
in Clu, 344	Kay, A., 397
generic	Kelsey, R., 151
meaning defined by recursion over types,	Knuth, D.E., 92, 205
101	Kowalski, R., 524, 579
meaning parametrically polymorphic, 101	
goal, 528	lambda-bound variables, 299
goals, 528	λ -calculus, 524
Goguen, J., 379	inspiration for Lisp, 63
Goldberg, A., 398, 399, 496, 505, 506	Landin, P.J., 151
Graham, Paul, 151	Lee, R.CT., 579
Gries, D., 379	length
ground type, 291	Clu function, 361
Guttag, J., 367, 379	let-bound variables, 299
Guttag, J., 301, 313	let-kenword 113 257 285

For COMP 105, Tufts University, Spring 2014 only --- do no

letrec	in Smalltalk-80, 498
less polymorphic than expected, 300	metaclasses
lexical scoping, 118	in full Smalltalk-80, 503
Liebermann, H., 205	method dispatch, 403
lies, damn lies, and the logical interpretation	method- $definition, 408$
of Prolog, 538	Meyer, B., 505, 514
Lindstrom, G., 579	mini-index
linear congruential method for generating	explanation of, 23
random numbers, 92	Minsky, M., 205
Liskov, B., 367, 376, 377, 379	mixed arithmetic
Lisp, §62	in μ Smalltalk, 425
inspired by λ -calculus, 63	mode-change, 528
object-oriented extensions of, 505	Modula-2, 6, 346, 378, 379
recursion in, 64, 66	monomorphic, 235, 249
list, real Lisp function, 68	monomorphic function
literal, 66, 113, 257, 285, 408	defined, 100
Lloyd, J.W., 579	monotype, 291
locals, 408	Moon, D.A., 505
locations	more general
mutable	used to relate two types, 293
in Scheme closures, 91	mutability
Loeckx, J.J.C., 379	of queues, 437
logic programming, 578	mutators
iogic programming, ovo	in Smalltalk, 401
Maier, D., 579	III Dilicilican, 401
Manna, Z., 379, 579	naive-sort, Prolog predicate, 548
mathematical logic, 524	Naur, P., 64
as a programming language, §525	nearer-origin, Clu function, 352
conjunctive normal form, 569, 572, 577	Nilsson, N.J., 579
first-order predicate logic, §571, 577	nonlocal return
Horn clause logic, 571, 578	in Smalltalk, 449
mechanical theorem proving, 578	not_member, Prolog predicate, 562
propositional logic, §567, 578	, , , , , , , , , , , , , , , , , , , ,
relation to Prolog, §566	Objective C (object-oriented language), 505
resolution, 569, 573, 578	observers, 76
McCarthy, J., 63, 64, 141, 205	in Smalltalk, 401
McCarthy, John, 151	occurs check
McGettrick, A.D., 378, 379	in ML type inference, 316
Mellish, C.S., 579	in Prolog, 535
member, Prolog predicate, 547	ordered, Prolog predicate, 548
member-also, Prolog predicate, 547	overloading, 101, 504
member?	Owl (object-oriented language), 505
Scheme function, 159	"own" variables, §92
memory management, §173	, 0
copying garbage collection, §189	${\cal P}$
mark-and-sweep garbage collection, §183	as primitive function in identifier cross-
reference counting, §200	reference, 23
message categories	pair?
in Smalltalk-80, 498	Scheme primitive, 76
message pattern	parameters
mossage parretti	

accumulating	clause, 526
method of, 71	closed-world assumption, 545, 577
parametric polymorphism, 101	conclusion
Parnas, D., 378, 379	of rule, 526
partial application	difference lists, 550, 577
of a curried function, 95	encourages code re-use, 547
partition, Prolog predicate, 549	fact, 526
Pascal	head
as imperative language, 6	of rule, 526
overloading, 504	logical interpretation, §530
relation to Clu, 346	logical variable, 526, 578
type-checking, 371	occurs check, 564, 578
path, 379	pattern-matching, 545
path-parameter, 380	predicate, 526
Patterson, D., 505	premises
Payne, J., 506	of rule, 526
Perlis, A., 64	primitive predicates, §543
permutation, Prolog predicate, 548	procedural interpretation, §536
phase distinction, 246	differs from logical interpretation, 538,
Poisson distribition	547, 566, 575
in discrete-event simulation, 432	real, $\S 564$
Poly, real Clu cluster, 372, 374	the cut , 577
polymorphic, 249	negation in, 565
polymorphic function	semantics, §564
defined, 100	syntax, §564
polymorphism, 101, 504	relation to Scheme, 545
$ad\ hoc,\ 101$	relation to mathematical logic, §566
parametric, 101	resolution as basis for, 570, 573, 576
subtype, 101	running programs "backwards", 531
three kinds of, 101	semantics, §530
polytype, 291	syntax, §527
Pop-2 (functional language), 151	unification, 535, 578
predicate, 528	proofs
primitive, 9, 113, 234, 285	by calculation, 77
program verification	proper tail recursion, 148
abstraction function, 378	property list, 74
Floyd-Hoare proof rules, 378	pseudorandom numbers
homomorphism (abstraction function),	generated using the linear congruential
378	method, 92
inductive assertion, 378	
loop invariant, 378	quadrant, Clu function, 352
representation invariant, 378	query, 528
Prolog, 2, §524, 524	quicksort, Prolog predicate, 549
argument, 526	
as artificial intelligence language, 577	random numbers
as parallel-processing language, 579	generated using the linear congruential
best-known logic programming language,	method, 92
524, 577	recfac, Clu function, 392
body	recursion, 11, 12
of rule, 526	avoided with difference lists, 550

Rees, J., 151	Simula 67, 346, 378, 379, 506
reflection	inspiration for Smalltalk, 397, 503, 505
in Smalltalk, 409	Slade, S., 151
in Smalltalk-80, 502	Smalltalk
Reingold, E.M., 151	class, 398
returns, 358	instance variable, 398
Reynolds, R., 379	message, 398
Ringwood, G.A., 579	method, 398
Roberts, E.S., 151	mutable types, 401
Robinson, J.A., 579	object, 398
Robson, D., 398, 399, 496, 505, 506	protocol, 398
Rohl, J.S., 151	terminology (compared to Clu), 398
rotate, Clu function, 352	Smalltalk, 2, 378, §396
Rowe, N.C., 579	abstract class, 416, 417, 421, 446, 454,
	501, 503
S-exp, 66, 113, 257, 285	answer, 397
Schaffert, C., 377, 505	class, 397, 503
Scheme	full, §496
continuation, 150	binary messages, 499
data abstraction in, 379	blocks, 503
dynamically-bound (fluid) variables, 164	class hierarchy, 398, 416, 501
own variables implemented in, 92	
polymorphism, §373	class variables, 500, 503
recursion in, 65	Collection hierarchy, §502
relation to Prolog, 545	everything an object, 504
semantics, §65	literals, 500
	numbers, §501
Smalltalk blocks related, 413	precedence, 499
values (S-expressions), §65	semantics, §500
Schiffman, A.M., 522	syntax, 400, §496, 504
Schmucker, K., 505	UndefinedObject class, $\S 445$
Schorr, H., 188, 205	inheritance, 504
Schriber, T., 506	multiple, 504
scoping	instance variable, 402, 403, 410, 504
dynamic, 119	message, $397, 410, 504$
lexical, 118	method, 397, 410, 504
static, 118	method dispatch, 411
seed	method search, 411, 445, 504, 522
of a pseudorandom-number generator,	mutable types, 404, 416, 422, 451
92	object, 397, 504
sentinel	overloading, 504
in μ Smalltalk lists, 454	polymorphism, 419, 504
sets, §72	protocol, 397, 504
S-expressions, 65	receiver, 397
Shapiro, E., 559, 577, 579	relation to Clu, 397, 398, 403
shared mutable state	self, 410, 504
in a resettable counter, 91	Simula 67 inspiration for, 397, 503, 505
side effect, 7	simulation in, §427
side effects, 9, 248	subclass, 397, 504
Siekmann, J., 579	super, 411, 504
signals, 358	
,	$\mathtt{super},410$

type variable

superclass, 397, 504 syntax, §407 terminology (compared to Clu), 397 type checking difficult in, 514 μSmalltalk arity of message names, 408 Snyder, A., 376, 377, 379 sort real Clu function, 376 sorting, §72 soundness as applied to inference rules, 303 soundness proof for inference rules using explicit substitutions, 303 sqrdist, Clu function, 352 Standish, T.A., 205 static scoping, 118 Steele, G.L., Jr., 151, 164 Steele, Guy L., Jr., 63, 151 Sterling, L., 559, 577, 579 streams used in μScheme to read definitions from a file, 222 subtype polymorphism, 101 sugared-function, 358 suggest, Prolog predicate, 563 super messages to, 410 suspension, 645 Sussman, G.J., 151, 164, 379 Sussman, Gerald J., 63 syntactic category, 7 precise definition of, 53	key to understanding thereof, 260 type-exp, 257, 358 type-formals, 358 type-lambda in Typed μScheme, 257, 262 types, 358 tyvar, 379 Ullman, J., 722 unchecked run-time error, 25 from using an unspecified value, 122 unfold, 648 Ungar, D., 205 unifier, 301 unspecified in μScheme semantics, 122 unspecified values preventing misuse by careless persons, 605 use, 528 value, 8, 234, 358 value restriction, 714 variable, 528 Waite, W., 188, 205 Warren, D.S., 579 Wexelblat, R., 64 Wilensky, R., 151 Winograd, T., 579 Winston, P.H., 579 Winston, Patrick H., 151 Wirth, N., 379 Wos, L., 579
syntax, context-free, §721	Wrightson, G., 579 Wulf, W., 379
T (Scheme dialect), 151 Tarnlund, S.A., 579	Yochelsen, J., 205
term, 528 thunk, 645 toplevel, 721 Touretzky, D., 151 tracing Smalltalk, 491	Zilles, S., 379
transform, Prolog predicate, 562 transform2, Prolog predicate, 563	
tree traversal, $\S 83$, 183 , 188 , 205	
type, 234 type scheme, 291	