Sampling distribution of a sample mean:

- \overline{X} always has mean μ and standard deviation $\frac{\sigma}{\sqrt{x}}$
- \overline{X} always has a Normal distribution <u>IF</u> the population distribution is Normal.

Central limit theorem:

- \overline{X} is approximately Normal when n is large enough.
- We assume the CLT can be applied for samples of size:
 - 1 if the population is Normal
 - 10 if the population is symmetric
 - for any population, unless we know the population is severely skewed
 - 40 any population

Inference on the Population Proportion p

Distribution: $\hat{p} \sim N\left(p, \sqrt{\frac{pq}{n}}\right)$

Conditions

- Independence
 - Randomization: SRS or randomized experiment
 - Independence: no influence between observations
 - 10%: sample less than 10% of population
- Success/Failure
 - Expect at least 10 successes and at least 10 failures

CI:
$$\hat{p} \pm z^* \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

$$z = \frac{\hat{\boldsymbol{p}} - \boldsymbol{p}_0}{\sqrt{\frac{\boldsymbol{p}_0 \boldsymbol{q}_0}{\boldsymbol{p}_0}}}$$

CI:
$$\hat{p} \pm z^* \sqrt{\frac{\hat{p}\hat{q}}{n}}$$
 Test Stat: $z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}}$ Sample size: $n = \left(\frac{z^*}{M}\right)^2 p^* q^*$

Inference on the Population Mean μ

Distribution:
$$\overline{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

Conditions

- Independence
 - Randomization: SRS or randomized experiment
 - Independence: no influence between observations
 - 10%: sample less than 10% of population
- Nearly Normal: Same as for Central Limit Theorem

CI:
$$\sigma$$
 known: $\overline{X} \pm z^* \frac{\sigma}{\sqrt{r}}$

$$\sigma$$
 not known: $\overline{x} \pm t^* \frac{s}{\sqrt{n}}$

CI:
$$\sigma$$
 known: $\overline{X} \pm z^* \frac{\sigma}{\sqrt{n}}$ σ not known: $\overline{X} \pm t^* \frac{s}{\sqrt{n}}$

Test Stat: σ known: $z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$ σ not known: $t = \frac{\overline{X} - \mu_0}{\frac{s}{\sqrt{n}}}$

$$\sigma$$
 not known: $t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}}$

Sample size:
$$n = \left(\frac{z^* s}{M}\right)^2$$
 Note: for very small n , iterate using t^*

Inference Formulas for Two Samples

Proportions: Conditions

Independence Assumption

- Randomization Condition: The data are drawn independently and randomly.
- **10% Condition:** If without replacement, the data represent less than 10% of the population.

Independent Groups Assumption

• The two groups are independent of each other.

Sample size

• Successes and Failures for both ≥ 10

CI Formula:
$$\hat{p}_1 - \hat{p}_2 \pm z^* \sqrt{\frac{p}{2}}$$

CI Formula:
$$\hat{\rho}_1 - \hat{\rho}_2 \pm z^* \sqrt{\frac{\hat{\rho}_1 \hat{q}_1}{n_1} + \frac{\hat{\rho}_2 \hat{q}_2}{n_2}}$$
 Test Statistic:
$$Z = \frac{\hat{\rho}_1 - \hat{\rho}_2}{\sqrt{\frac{\hat{\rho}\hat{q}}{n_1} + \frac{\hat{\rho}\hat{q}}{n_2}}}$$
 where
$$\hat{\rho} = \frac{x_1 + x_2}{n_1 + n_2}$$

where
$$\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$$

Means: Conditions

Independence

- Same assumptions as proportions
- Between and within groups
- Randomization is evidence of independence.

Nearly Normal Condition

• Same as with a single mean, but must check both.

CI Formula:
$$\overline{x} - \overline{y} \pm t^* \sqrt{\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}}$$
 where df = min(

CI Formula:
$$\overline{X} - \overline{Y} \pm t^* \sqrt{\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}}$$
 where $df = min(n_x - 1, n_y - 1)$
Test Statistic: $T = \frac{\overline{X} - \overline{Y} - \Delta_0}{\sqrt{\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}}}$ where $df = min(n_x - 1, n_y - 1)$

Interpretation of *P*-values

P – value	Strength of Evidence Against H ₀
$0 \le p$ -value ≤ 0.05	very strong
0.05 < <i>p</i> -value ≤ 0.10	strong
0.10 < <i>p</i> -value ≤ 0.20	moderate
0.20 < <i>p</i> -value ≤ 0.50	weak
0.50 < <i>p</i> -value	no

If a significance level $\boldsymbol{\alpha}$ is given for a test, we reject H_0 in favor of H_a if the *p*-value is less than α . Otherwise, we fail to reject H_0 .

Chi-Squared Formulas

Expected Counts: Expected Cell Count = $\frac{\text{(row total)(column total)}}{\text{table total}}$

The test statistic:
$$\chi^2 = \sum_{i=1}^{k=\# \text{cells}} \frac{\left(o_i - e_i\right)^2}{e_i}$$

Degrees of Freedom: df = (r-1)(c-1). If r = 1 or c = 1, then df = k-1.

Conditions when the Chi-Squared Test is appropriate:

No more than 20% of the expected cell counts should be < 5.

No expected cell count should be < 1.