DESCRIPTIVE STATISTICS

Zack Kertcher

Statistics for Management Fall 2016

Plan for today

- 1. Plotting numeric variables (cont.)
- 2. Bivariate descriptives

PLOTTING NUMERIC VARIABLES

Numeric variable

✓ Which of the numeric variables in realestate (lotsize, price, bedrooms) follows a normal distribution? In your answer, use histogram, rug, and overlayed density plot for each variable.

DESCIPTIVES WITH TWO VARIABLES

What tools exist to describe two variables?

It depends on the variable types!

Let's start with two categorical variables.

1

Stats: table prop.table()

Vis: mosaicplot()

- ✓ Examine the proportional relationship between recrooms and the house being in a preferred area. Use both a table and a barplot.
- ✓ In constructing the plot use the following arguments:

Title: Recrooms by Location

X-axis title: Preferred area (yes/no)

Legend: bottom right corner (indicating recroom)

Colors: "darkgrey" (without a recroom), "darkgoldenrod1" (with a recroom)

And now with two numerical variables

1

Stats: cor lm()

We will review these later on

Vis: plot()

Essentially this is a scatterplot

Various enhancements

- ✓ What is the relationship between lot size and price?
- ✓ Identify at least three "outliers" (by row number). If they are priced higher than the rest, how many of them are in a preferred area?

Finally, a categorical and numerical variable

1

Stats: table | xtabs | ftable | aggregate | CrosTable() We will review these later on

Vis: boxplot()
We will explore additional options later on

- ✓ What is the relationship between having a finished basement and price?
- ✓ Identify at least three "outliers" (by row number), from those that have and those that do not have a finished basement—so, a total of six. What observations can you make about these outliers?