Cir Patch Feed Disk Yagi Student Edition

SOFTWARE

Data Acquisition
Averaging
Auto File Saving

Basic Software Hydrogen 21 cm Radio Telescope

find the Milky Way

Planetarium Software Astronomical Sky Display Stellarium

H Line Acquisition:

Air Spy
SDR Sharp Studio
IF Average Plug-In

System Hardware and Software

Hardware & Software System Block Diagram

SOFTWARE AirSpy SDR# Studio

Control the SDR Software Defined Radio module Real Time Spectral Display of Data

Software Block Diagram

Air-Spy SDR Sharp Software AirSpy SDR# Studio If Average * AIRSPY SDR# Studio v1.0.0.1822 - AIRSPY R2 / Mini KamSoft. √ Window 001.420.406.700 **IBFS** Zoom Contrast Number of files to \$12 -52 -53 -54 -55 -56 Delay between rec. 0 E\Feb10_22 AGO_10Feb4m 1,420 000 G 1.420 500 G 1.421 000 G 1.420 250 G 1.420 750 G Range Offset Atik Cameras desktop ini

a pettit jr Aug24

Software Block Diagram

Air-Spy SDR Sharp Software AirSpy SDR# Studio & IF Average

Software Block Diagram

Air-Spy SDR Sharp Software AirSpy SDR# Studio & IF Average

 1419.650000000
 0.000014132

 1419.651464844
 0.000014170

 1419.652929688
 0.000014190

 1419.654394531
 0.000014222

 1419.655859375
 0.000014283

 1419.657324219
 0.000014371

 1419.658789063
 0.000014409

 1419.660253906
 0.000014577

 1419.663183594
 0.000014577

 1419.663183594
 0.000014775

 1419.664648438
 0.000014777

 1419.6667578125
 0.000014873

 1419.669042969
 0.000014879

 1419.670507813
 0.000014919

 1419.673437500
 0.000014949

 1419.674902344
 0.000015012

 1419.677832031
 0.000014986

 1419.679296875
 0.000015044

 1419.680761719
 0.000015019

SOFTWARE AirSpy SDR# Studio

IF_Ave Ver 2.8 PlugIn for SDR# Studio allows Setting Up Averaging, Creating a Background Correction File and auto saving of a sequence of *.txt data files

Auto Saved Files Name Date modified Type Size D23CPY_Dec40_0001.txt 2/25/2024 6:47 AM Text Document 15 KB D23CPY_Dec40_0002.txt 2/25/2024 6:51 AM Text Document 15 KB D23CPY_Dec40_0003.txt 2/25/2024 6:56 AM Text Document 15 KB D23CPY Dec40 0004.txt 2/25/2024 7:01 AM Text Document 15 KB D23CPY_Dec40_0005.txt 2/25/2024 7:06 AM Text Document 15 KB D23CPY_Dec40_0006.txt 2/25/2024 7:11 AM Text Document 15 KB D23CPY_Dec40_0007.txt 2/25/2024 7:16 AM Text Document 15 KB

Freq/Ampl data columns in one file

2/25/2024 7:21 AM

2/25/2024 7:26 AM

Text Document

Text Document

15 KB

15 KB

D23CPY_Dec40_0008.txt

D23CPY Dec40 0009.txt

2/25/2024 7:47:	04 AM Count:
1419.655700000	0.000053754
1419.658629688	0.000053759
1419.661559375	0.000053886
1419.664489063	0.000053979
1419.667418750	0.000054071
1419.670348438	0.000054310
1419.673278125	0.000054432
1419.676207813	0.000054544
1419.679137500	0.000054713
1419.682067188	0.000054844
1419.684996875	0.000054961
1419.687926563	0.000055087
1419.690856250	0.000055222
1419.693785938	0.000055195
1419.696715625	0.000055159
1419.699645313	0.000055169

001.420.405.000 ()

Allows FFT Size / High Count Averaging / Spectrum Saving at Selected Time Rates

Name	Date modified	Туре	Size
FLoop_ASmini_5m_D0_RA500_4Oct21_0079.txt	10/4/2021 1:38 PM	Text Document	30 KB
FLoop_ASmini_5m_D0_RA500_4Oct21_0078.txt	10/4/2021 1:33 PM	Text Document	30 KB
FLoop_ASmini_5m_D0_RA500_4Oct21_0077.txt	10/4/2021 1:28 PM	Text Document	30 KB
FLoop_ASmini_5m_D0_RA500_4Oct21_0076.txt	10/4/2021 1:23 PM	Text Document	30 KB
FLoop_ASmini_5m_D0_RA500_4Oct21_0075.txt	10/4/2021 1:18 PM	Text Document	30 KB
FLoop_ASmSm_D0_RA500_4Oct21_0074.txt	10/4/2021 1:13 PM	Text Document	30 KB
_asmin_5m_D0_RA500_4Oct21_0073.txt	10/4/2021 1:08 PM	Text Document	30 KB
FLoop_ASmini_5m_D0_RA500_4Oct21_0072.txt	10/4/2021 1:03 PM	Text Document	30 KB
FLoop_ASmini_5m_D0_RA500_4Oct2 071.txt	10/4/2021 12:57 PM	Text Document	30 KB

File	E	t	FOI	rmat	Serie 1	View		elp				
10/4	1/	2 / 2	21	12:	38	3:54	P	M	C	ou	nt	5 :
1419	9.	650	000	000	0	0.	00	000	14	13	2	
1419	9.	651	L46	484	4	0.	00	000	14	17	0	
1419	9.	652	292	968	8	0.	00	000	14	19	0	
1419						0.	00	000	14	122	2	
1419	9.	655	85	937	5	0.	00	000	14	28	3	
1419	9.	657	732	421	9	0.	00	000	14	137	1	
1419	9.	658	378	906	3	ο.	00	000	14	40	9	
1419	9.	660	025	390	6	0.	00	000	14	48	1	
1419	9.	663	171	875	O	0.	00	000	14	157	1	
1419				A->2 Table 5		0.	00	000	14	65	O	
1419	9.	664	164	843	8	0.	00	000	14	170	5	
1419	9.	666	511	328	1					177		
1419	9 - 1	667	757	812	5	0.	00	000	14	180	3	
1419	~ -									87		
1419	9 - 1	670	050	781	3	0.	00	000	14	91	9	
1419										94		
1419	9.	67	343	750	0	0.	00	000	14	95	1	
1419	9.	674	190	234	4	0.	00	000	15	01	2	
1419	9.	676	536	718	8	0.	00	000	14	98	6	
1419	9 - 1	677	783	203	1	0.	00	000	14	99	9	
1419	9.	679	929	687	5	0.	00	000	15	04	4	
1419	9.	680	076	171	9	0.	00	000	15	01	9	
1419	9	687	222	656	3	0.	00	000	1 5	01	6	

Hydrogen 21-cm wavelength RF Emission Spectrum

Hydrogen 21-cm wavelength RF Emission Spectrum

Convert col B to dB use the formula dB = 20*LOG10(col B values)

Then offset entire column by a fixed value to make Cold Sky == 0 dB (in this case 84.97)

When you first create col C, it has a large - dB value. As a starting point put C1 value into Cell D1
Then add that fixed cell to all col C values (C1 .. C512)
Finally, Adjust as req'd to shift the Y axis.
so Cold Sky == 0 dB

a pettit jr Aug24

=20*LOG10(B1)

Hydrogen 21-cm wavelength RF Emission Spectrum

Frequency MHz

I captured a comparison between 10 second and 300 averages.

Wolfgang recommends sampling at \sim 1/10 the beam width of your antenna .. If that is 12.5 degrees, that equates to 1.25 degrees per sample and that = 300 Seconds.

Acquiring at 10 secs/frame = 0.042 degrees = 1/300 the beam width of a 12.5 deg antenna

You " do not loose **Useful** *spatial resolution* " as much as you gain **Un-Useful** *Noise*

Same setup, different sample times

SOFTWARE Links misc info

https://www.rtl-sdr.com/cheap-and-easy-hydrogen-line-radio-astronomy-with-a-rtl-sdr-wifi-parabolic-grid-dish-lna-and-sdrsharp/

https://www.youtube.com/watch?v=C6NCefVxNL8

SARA 2022 Eastern Conference

Galactic Hydrogen 1.42 GHz RF Emission Radio Astronomy for \$300 Alex Pettit SARA www.radio-astronomy.org

The \$300 SARA 'Scope in a Box' Radio Telescope System and Beyond
A beginner's introduction into receiving and processing 1.42 GHz RF emission signals
from neutral hydrogen regions within the Milky Way Alex Petit

This presentation will briefly overview the history and value of radio astronomy. It will describe the Analog RF and Digital Signal hardware components and the basic software needed to acquire, process, and display the data. Drift Scan data recording will be explained, and several upgrades will be suggested for improvements in signal amplitude and quality.

Radio Astronomy Presentations from the Society of Amateur Radio Astronomers Eastern Conference July 2022

Introduction to Radio Astronomy

https://www.youtube.com/watch?v=AOgvjRXnins

Dr. Wolfgang Herrmann Keynote Amateur Radio Astronomy Possibilities and Limitations,...

https://www.youtube.com/watch?v=8j1bVpC6M94

Alex Pettit: Galactic Hydrogen 1.42 GHz RF Emission Radio Astronomy

https://www.youtube.com/watch?v=C6NCefVxNL8

Milky Way 21cm Neutral Hydrogen Line Brightness Intensity Chart

With Permission Marcus Leech CCERA Canadian Centre Experimental Radio Astronomy

Stellarium Planetarium Program find when Milky Way is overhead and RA Time

https://stellarium.org,

