Bio 2	21/51/120,	Exercise	#3
Due:	10 Octobe	r 2006	

Name:	•	

Mortality and natality data for a cohort of Belding's ground squirrel, *Citellus beldingi* (after Zammuto and Sherman 1986, Can. J. Zool. 64 602-605). Squirrels were censused once per year in mid-summer, shortly after weaning; m_x is the average number of female young just weaned by a female of age x.

Age class x	Number alive N_x	Annual Survival S_x	Cumulative survival l_x	Expected life e_x	Fecundity m_x	Realized fecundity $l_x m_x$	Reproductive value V_x	Cohort size at SAD C_x
		————			x			
0	238				0.0			
1	93				1.7			
2	49				2.1			
3	18				2.4			
4	12				3.0			
5	6				2.1			
6	0							

- 1. Fill in the life table.
- 2. What proportion of squirrels live to be 2 years old?
- 3. Of those squirrels that live to be 1 year old, what proportion survive to the 2nd year?
- 4. What is the expected future lifespan of a 1 year old squirrel?
- 5. Calculate R_0 . Write it with the correct units. If there are 100 squirrels in mid-summer this year, how many would you expect to find in mid-summer next year? How many the year after?
- 6. Write the correct general equation for calculating reproductive value V_x for a post-breeding model.
- 7. If you were managing this population of squirrels and a users group wanted to harvest as many squirrels as possible on a sustained yield basis, which age class would you recommend that they exploit? Explain.

BIO 21/51/120: EXAMPLE OF LIFE TABLE CALCULATIONS

Cohort life table for little brown bat Myotis lucifugus (based on annual pre-breeding censuses*)

_	solition and the second part of the second property of the second pr														
x	$N_{\rm x}$	S_x	l_x	e_x	m_{x}	$l_x m_x$	V_x	C_x	$\lambda^{-x} l_x$	$l_x m_x x$	v_x	v_{x+1}	v_{x+2}	v_{x+3}	v_{x+4}
1*	320	0.4	1	0.82	0	0	1.1	0.563	0.968	0	0	0.4	0.42	0.28	0
2	128	0.7	<u>0.4</u>	1.05	1	0.4	<u>2.75</u>	0.218	0.375	0.80	1	1.05	0.7	0	
3	90	0.5	0.28	0.5	1.5	0.42	2.5	0.148	0.254	1.26	1.5	1	0		
4	45	0	0.14	0	2	0.28	2	0.071	0.123	1.12	2	0			
5	0		0			0		0	0	0					
\sum_{\cdot}						1.10		1.000	1.718	3.18					

* The value of x in the first row of the table is the approximate age at the time of sampling of the youngest individuals that are recognized (with a pre-breeding census, the table starts with x = 1; with a post-breeding census, the table starts with x = 0).

 $N_{\rm x}$ = Number in cohort surviving to age x (measured; e.g., from marked individuals).

 S_x = Annual probability of survival

= Probability that an individual of age x will survive to age x+1.

 N_{x+1}/N_{x} eq.

0.40 = 128 / 320

 l_{y} = Cumulative Survivorship

Proportion of individuals in age class 0 that survive to age class x. Note that $l_0 = 1.0$ by definition.

 $= l_{x-1} \cdot S_{x-1}; \qquad \text{eq. } 1$

0.4 = $1 \cdot 0.4$ i.e., $l_1 = l_0 \cdot P_0$

 $0.28 = 0.4 \cdot 0.7$

 e_x = Expected life

= Expectation of future life given survival to age x.

 $= \left(\sum_{i=x+1}^{\infty} l_i\right) \bullet \frac{1}{l_x}$ eq. 3

1.05 = (0.28 + 0.14) / 0.4

 m_x = **Fecundity at age x** (average number of female offspring produced during the next year that survive to the time of the next census; e.g., average number of female bats produced last summer that survived to the next spring; measured in nature). Note that this is sometimes denoted as b_x in life table models. Note that we define m_x differently in a post-breeding model.

 $l_x m_x = \text{Realized fecundity}$

 $l_{r} \cdot m_{r}$ eq.

Probability of survival to age $x \cdot$ Fecundity given survival.

= Female offspring in year x per initial female of age 1

 $0.42 = 0.28 \cdot 1.5 \text{ females / female}$

 R_{θ} = Net reproductive rate (per capita progeny / lifetime, individuals • individual⁻¹ • lifetime⁻¹)

Average number of offspring produced by an average newborn offspring during its entire lifetime. Also equals the reproductive value for age class $0 (RV_0)$.

 $= \sum_{x=0}^{\infty} l_x m_x$ eq. 5

Average difference between the birth of an individual and the birth of its own progeny

$$\approx \left(\sum_{x=0}^{\infty} l_x m_x x\right) / R_0.$$
 eq.

2.89 = 3.18 / 1.10.

r = Intrinsic rate of increase (individuals • individual⁻¹ • year⁻¹)

 $\ln R_0$ / G. eq. 7 An exact solution requires iteration with Euler's equation.

 $0.033 \approx \ln 1.10 / 2.89$

 λ = Finite rate of increase. (pronounced lambda)

$$= e^r$$
 eq. 8

 $1.034 = e^{0.033}$

 V_x = Reproductive value^a

= Age-specific expectation of future offspring (females of age 1 / female of age x)

= Expected reproduction during the remainder of its life for an organism of age x

$$= m_x + \sum_{i=x+1}^{\infty} \left(\frac{l_i}{l_x} \cdot m_i \right)$$
 eq. 9 Note that columns in the table labelled v_0, v_I , etc., show values used in the summation for each V_x

 $2.75 = 1 + .28 / .4 \cdot 1.5 + .14 / .4 \cdot 2$

= 1 + 1.05 + 0.7

^a This equation can be different in alternative life table models. Derive it as Eq 10 for a post-breeding census model.

 C_x = Cohort size at stable age distribution

= Proportion of total population of age x at stable age distribution

$$= \frac{\lambda^{-x} \cdot l_x}{\sum_{x=0}^{\infty} (\lambda^{-x} \cdot l_x)}.$$
 eq. 11

0.563 = 1/1.718

0.218 = 0.375 / 1.718

Given current population size, N_0 , future population size at time t can be projected using r or λ assuming that (1) mortality and natality schedules remain the same and (2) the population is at a stable age distribution.

$$N_t = N_0 \cdot e^{r \cdot t}$$
 eq. 12

e.g., if $N_0 = 100$, and r = 0.033, $N_{10} = 139$

$$N_t = \lambda^t \cdot N_0$$
 eq. 13

e.g., if $N_0 = 100$, and $\lambda = 1.034$, $N_{10} = 139$