数学分析I

第2次 讨 论 班

2024年11月13日

- 1/讨论下列几种叙述能否作为函数极限 $\lim_{x \to a} f(x) = A$ 的等价定义? They are all equivalent
 - (1) $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得对于 $\forall x : 0 < |x a| < \delta$, 总有 $|f(x) A| \le \varepsilon$.
 - (2) $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得对于 $\forall x : 0 < |x a| < \delta$, 总有 $|f(x) A| < k\varepsilon$ (k 为与 ε 无关的正常数).
 - (3) $\forall n \in \mathbb{N}^*, \exists \delta > 0$, 使得对于 $\forall x : 0 < |x a| < \delta$, 总有 $|f(x) A| < \frac{1}{\alpha}$.
 - $(4) \forall \varepsilon > 0, \exists n \in \mathbb{N}^*,$ 使得对于 $\forall x : 0 < |x a| < \frac{1}{n},$ 总有 $|f(x) A| < \varepsilon.$
- ②(1)设 $\lim_{x\to 0} f(x^3) = A$,是否成立 $\lim_{x\to 0} f(x) = A$. ↓
 (2)设 $\lim_{x\to 0} f(x^2) = A$,是否成立 $\lim_{x\to 0} f(x) = A$? ×
 (3)设 $\lim_{x\to a} f(x) = A(a \ge 0)$,证明: $\lim_{x\to \sqrt{a}} f(x^2) = A$. ↓
- Method 1: 92" Xo}
- 3/ 设f(x)在 $(0,+\infty)$ 上满足函数方程f(2x)=f(x),且 $\lim_{x\to +\infty}f(x)=A$,证明 $\lim_{x\to +\infty}f^{(x_0)}=U$ $\lim_{x\to +\infty}f^{(x_0)}=U$ $\lim_{x\to +\infty}f^{(x_0)}=U$

Method 2: proof by contradiction

- $_{\times}$ (1)方程f(x)=c都恰有2个解 $\mathcal{G}_{\text{o.}}$, there is no function which
- (2)方程f(x) = c都恰有3个解

- for = c have > colutions. (& CER) 5. 设常数 a_1, a_2, \dots, a_n 满足 $a_1 + a_2 + \dots + a_n = 0$. 求证:
 - $\lim_{x\to+\infty}\sum_{k=1}^n a_k\sin\sqrt{x+k}=0 \iff \lim_{x\to+\infty}\sum_{k=1}^n a_k\sin\sqrt{x+k}-\sum_{k=1}^n a_k\sin\sqrt{x+k}$ I E OK SIN THE - SINT) > 0 (x > 60)
- 6. 已知f(x), g(x)在[0,1]上连续,无穷点集 $\{x_n\}_{n=1}^{+\infty}$ 满足 $x_n \in [0,1]$ 且 $f(x_n) = g(x_{n+1})$,证明

- 7. 证明:非常值的连续周期函数必有最小正周期。举例说明若没有连续条件则结论不成立
- 8. 设f(x)定义在 \mathbb{R} 上,且满足 $f(x+y)=f(x)+f(y), \forall x,y\in\mathbb{R}$,分别在下述条件下证明

$$f(x) = f(1)x, \ x \in \mathbb{R}$$

- (1)若f(x)在 \mathbb{R} 上连续
- (2)若 $\exists [a,b] \in \mathbb{R}$,使f(x)在[a,b]上单调
- (3)若 $\exists [a,b] \in \mathbb{R}$,使f(x)在[a,b]上有界
- 9. f(x)在[a,b]上的每点极限都存在,记 $g(x) = \lim_{t \in [a,b], t \to x} f(t)$,证明:
 - (1)g(x)在[a,b]上连续
 - $(2)\forall \varepsilon > 0$,集合 $E = \{x \in [a,b]; |f(x) g(x)| > \varepsilon\}$ 是有限集