计网第四次作业

彭程 2020011075

第一题:

1.1

网络环境为:

校园网 Tsinghua-Secure

DNS 服务器为:

166, 111, 8, 28/166, 111, 8, 29/101, 7, 8, 9

如下图:

```
      E接特定的 DNS 后缀
      tsinghua.edu.cn

      描述.
      MediaTek Wi-Fi 6 MT7921 Wireless LAN Card

      物理地址.
      90-E8-68-2B-9A-75

      DHCP 已用.
      是

      自动配置已启用.
      2402:f0000:5:a801:29df:a9b9:cfcc:84e(首选)

      临时 IPv6 地址.
      2402:f0000:5:a801:415f:a673:37a7:c39b(首选)

      本地链接 IPv6 地址.
      101.5:171.45(首选)

      FP4 地址.
      101.5:171.45(首选)

      FP4 地址.
      255:255.248.0

      交積租约的时间.
      2022年10月22日 10:33:52

      租约过期的时间.
      2022年10月22日 11:34:13

      默认网关.
      fe80::9203:25ff:feb9:7f06%3

      101.5: 168.1
      101.5: 168.1

      DHCP 服务器.
      166.111.8.5

      DHCPv6 IAID.
      59828328

      DHCPv6 SP沖端 DUID.
      00-01-00-01-28-BC-28-BD-04-42-1A-02-B7-79

      DNS 服务器.
      166.111.8.29

      101.7.8.9
      101.7.8.9

      TCPIP 上的 NetBIOS.
      已启用
```

1.2

访问时首先向本地 DNS 服务器(166. 111. 8. 28/166. 111. 8. 29/101. 7. 8. 9) 发送请求,本地 DNS 服务器依次向根 DNS 服务器、顶级域 DNS 服务器、(可能 有中间 DNS 服务器)、权威 DNS 服务器发送请求。

1.3

能够确定。如果短时间内(还未超过 TTL)校内的一台计算机访问过一台外部 Web 站点,那么本地 DNS 服务器在这一次请求中接收了关于这个外部 Web 站点的一个 DNS 回答(该 Web 站点服务器的主机名到 IP 地址的映射),并将映射缓存在本地存储器中。当我再一次去访问这个外部 Web 站点时,本地 DNS 服务器就能很快地直接提供其 IP 地址(即使其不是该 Web 服务器主机名的权威服务器)。因此,通过请求的时间长短,我们可以确定几秒前是否有校内的计算机访问过这一外部 Web 站点。

第二题:

2. 1

对于 Client-Server 结构, 我们知道其分发时间为:

$$D_{cs} = max\{\frac{NF}{u_s}, \frac{F}{d_{min}}\}$$

N=10 时:

$$\frac{NF}{u_s} = \frac{10 \times 500 \text{Mbit}}{50 \text{Mbps}} = 100 \text{s}$$

$$\frac{F}{d_{min}} = \frac{500Mbit}{2Mbps} = 250s$$

所以№10时:

$$D_{cs} = \max\{\frac{NF}{u_s}, \frac{F}{d_{min}}\} = 250 \text{ s}$$

N=1000 时:

$$\frac{NF}{u_s} = \frac{1000 \times 500 \text{Mbit}}{50 \text{Mbps}} = 10000 s$$

$$\frac{F}{d_{min}} = \frac{500Mbit}{2Mbps} = 250s$$

所以 N=1000 时:

$$D_{cs} = \max\{\frac{NF}{u_s}, \frac{F}{d_{min}}\} = 10000 \text{ s}$$

2.2

对于 P2P 结构, 我们知道其分发时间为:

$$D_{P2P} = max\{\frac{F}{u_s}, \frac{F}{d_{min}}, \frac{NF}{u_s + \sum_{i=1}^{N} u_i}\}$$

N=10 时:

$$\frac{F}{u_s} = \frac{500\text{Mbit}}{50\text{Mbps}} = 100s$$

$$\frac{F}{d_{min}} = \frac{500Mbit}{2Mbps} = 250s$$

$$\frac{NF}{u_s + \sum_{i=1}^{N} u_i} = \frac{10 \times 500 \text{Mbit}}{50 \text{Mbps} + 10 \times 1 \text{Mbps}} \approx 83s$$

所以 №10 时:

$$D_{P2P} = \max\{\frac{F}{u_s}, \frac{F}{d_{min}}, \frac{NF}{u_s + \sum_{i=1}^{N} u_i}\} = 250 \text{ s}$$

N=1000 时:

$$\frac{F}{u_s} = \frac{500\text{Mbit}}{50\text{Mbps}} = 100s$$

$$\frac{F}{d_{min}} = \frac{500Mbit}{2Mbps} = 250s$$

$$\frac{NF}{u_s + \sum_{i=1}^{N} u_i} = \frac{1000 \times 500 \text{Mbit}}{50 Mbps + 1000 \times 1 \text{Mbps}} \approx 476s$$

所以 N=1000 时:

$$D_{P2P} = \max\{\frac{F}{u_s}, \frac{F}{d_{min}}, \frac{NF}{u_s + \sum_{i=1}^{N} u_i}\} = 476 \text{ s}$$

2.3

为便于表示,我们首先规定 u_i 为第 i 个 client 的最大上传速率, u_s 为 server 的最大上传速率。

根据 P2P 的流程,我们应尽可能利用 client 的上传能力,所以分发思路应当是 server 将文件分块传输给 client 的同时,client 利用流水线的模式将接收到的文件块分发给其余 N-1 个 client。

首先考虑 server 的上传能力比较小从而成为制约时间的关键因素,server 应当将文件分成不同大小的文件块 F_i 分发给第 i 个 client, F_i 和第 i 个 client 的上传能力成正比,由正比关系我们可以知道:

$$F_i = \frac{u_i}{\sum_{i=1}^N u_i} \times F$$

那个分配给第 i 个用户的上传带宽为:

$$r_i = \frac{u_i}{\sum_{i=1}^N u_i} \times u_s$$

那么完成传输所需要的时间为:

$$t_1 = \frac{F}{u_s}$$

现考虑 client,对于第 i 个 client,当其开始接收文件块 F_i 时,其利用流水线同时将 F_i 分发给其余 N-1 个 client。

那么第 i 个 client 对于其余每个 client 的分发带宽均为:

$$v = \frac{u_i}{N - 1}$$

因此耗时:

$$t_2 = \frac{F_i}{v} = \frac{F}{\frac{\sum_{i=1}^{N} u_i}{N-1}}$$

可以观察到,当 u_s 比较小时,总体时间始终受到 t_1 制约。当 u_s 逐渐增大到 $\frac{\sum_{i=1}^N u_i}{N-1}$ 时, t_1 和 t_2 相等,接下来讨论 $u_s > \frac{\sum_{i=1}^N u_i}{N-1}$ 的情况。

当 $u_s > \frac{\sum_{i=1}^N u_i}{N-1}$ 的时候,反映出 client 的上传能力不够,流水线第二段的耗时大于第一段,为了使流水线重新达到平衡,我们考虑增加 server 分发块的大小,减小 client 分发块的大小,使得流水线重新达到平衡。

假设 server 在原来的分发基础上,还要额外分别向每个用户分发 $F_{N+1}'=x$ 大小的文件,使得 server 分发总时间等于 client 分发时间。

假设第 i 块的大小为 F_i ',分发前 N 个块的带宽分别为 r_i ',分发第 N 个块对应 N 个带宽,每个带宽为 r_{N+1} ' = $\frac{u_s - \sum_{i=1}^N r_i'}{N}$ (为保证高效,显然块大小跟带宽成正比)。显然有:

$$\sum_{i=1}^{n} F_i' + x = F$$

于是 server 分发 N+1 中不同的块,其中前 N 个块中第 i 块发送给第 i 个 client,第 N+1 个块向 N 个 client 都分发一份,由于希望 server 分发总时间等于 client 分发时间,故:

$$\frac{F_i'}{r_i'} = \frac{F_i'}{\frac{u_i}{N-1}}$$

所以:

$$r'_{i} = \frac{u_{i}}{N-1}$$

$$r_{N+1}' = \frac{u_{s} - \sum_{i=1}^{N} \frac{u_{i}}{N-1}}{N}$$

由于为保证每块传输时间相同, $F=r\times t$,将上两式代入 $\sum_{i=1}^n F_i^{'}+x=F$ 可以得到:

$$t = \frac{NF}{u_S + \sum_{i=1}^{N} u_i}$$

$$\begin{aligned} F_{i}' &= r_{i}' \times t = \frac{u_{i}}{N-1} \times \frac{NF}{u_{s} + \sum_{i=1}^{N} u_{i}} \\ F_{N+1}' &= r_{N+1}' \times t = \frac{u_{s} - \sum_{i=1}^{N} \frac{u_{i}}{N-1}}{N} \times \frac{NF}{u_{s} + \sum_{i=1}^{N} u_{i}} \end{aligned}$$

回到本题条件,我们发现 u_s 是满足我们讨论的第二种情况,故方案应该为:按照上述分割方法,将文件 F 分割成 1001 份(即 N+1 份),每一份的大小如上述 F_i '和 F_{N+1} ',server 向第 i 个 client 发送 F_i '和 F_{N+1} ',第 i 个 client 利用流水线将 F_i '分发给其余 N-1 个 client。

第三题:

3. 1

由于是混合文件,考虑视频和音频的全部组合: N^2 ,即需要存储 N^2 个文件 3.2

由于是分别发送, 故视频和音频的单独存储: 2N, 即需要存储 2N 个文件

第四题:

4. 1

4. 2

因为 TCP 是面向连接的,实现进程到进程的可靠字节流传输(可靠的,保序的),serverSocket 是用于和用户握手和创建 TCP 连接的套接字,而connectionSocket 是单独对于每一个客户进行数据传输和写响应的套接字,两者共同保证可靠保序的传输。UDP 是无连接的,不对交付负责,serverSocket只提供一些基本的响应。(对于更加本质的原因相信会在第三章学习到)

对于 TCP: 有一个公共的 serversocket, 和 N 个面向不同客户的 connectionsocket, 所以共有 N+1 个 socket 对象。

对于 UDP, 只有一个公共的 serversocket, 故只有一个 socket 对象。