Họ tên: Đỗ Thành Nhơn

MSSV: 1512387 Lớp: CNTN2015

CƠ SỞ TRÍ TUỆ NHÂN TẠO BÁO CÁO ĐÔ ÁN 1 BÀI TẬP 1

Giảng viên lí thuyết: Lê Hoài Bắc Giảng viên hướng dẫn thực hành: Lê Ngọc Thành Nguyễn Ngọc Thảo Nguyễn Hài Minh

Các mốc thực hiện đồ án:

Giai đoạn	Công việc
1	Tìm hiểu các thuật toán BFS, DFS, UCS, GBFS và A*.
2	Thiết kế cấu trúc dữ liệu lưu trữ và thuật toán sử dụng.
3	Tiến hành cài đặt.
4	Viết các Test case, tiến hành kiểm tra và sửa lỗi (nếu có).
5	Viết báo cáo.

- I. Thiết kế lưu trữ đồ thị và các thông tin liên quan.
 - 1. Thiết kế đồ thi.
 - Đồ thị N đỉnh sẽ được lưu trữ trong mảng 2 chiều có kích thước N * N.
 Trong đó Matrix[i][j] = 0 nếu không có đường đi từ i tới j và Matrix[i][j] = a nếu tồn tại đường đi từ i tới j với chi phí là a.
 - Thông tin về giá trị Heuristic sẽ được lưu trong mảng một chiều có kích thước N phàn tử trong đó mỗi phần tử Array[i] là giá trị Heuristic của đỉnh thứ i.
 - 2. Thiết kế chương trình.

Chương trình được viết theo phương pháp lập trình hướng đối tượng.

```
class Graph{
private:
    int n;
    int **a;
    int *heuristic;
    int start;
    int end;
    int* trace;
    vector<int> visit;
public:
    Graph();
    Graph (const Graph&);
    Graph(int, int**, int*);
    ~Graph();
    void set(istream &f);
    void bfs();
    void dfs();
    void ucs();
    void qbfs();
    void astar();
    void print(ostream&);
};
```

Giai thích lưa chon các thuộc tính:

N: lưu số lương đỉnh của đồ thi.

- Mảng hai chiều a: lưu các giá trị thể hiện cạnh và trọng số của đồ thị.
- Mång một chiều heiristic: Lưu các giá tri heuristic.
- Sô nguyên start: đỉnh bắt đầu.
- Số nguyên end: đỉnh kết thúc.
- Mảng một chiều trace: trace[v] = u đánh dấu từ đỉnh u có đường đi đến đỉnh v.
- Mảng một chiều visit: Lưu các đỉnh đã mở.

Giải thích lựa chọn các phương thức:

- Graph(): constructor.
- Graph(cónt Graph&): constructor.
- Graph(int, int**, int*): constructor.
- ~Graph(): destructor.

- Phương thức set: dùng để đọc input và xây dựng đồ thị.
- Phương thức bfs: Hàm tìm kiếm theo chiều rộng.
- Phương thức dfs: Hàm tìm kiếm theo chiều sâu.
- Phương thức ucs: Hàm tìm kiếm chi phí đồng nhất.
- Phương thức gbfs: Hàm tìm kiếm tham lam.
- Phương thức astar: Hàm tìm kiếm A*.
- II. Ví dụ chương trình.
 - 1. Ví dụ 1.

	Output
	BFS
	0 1 2 4 3 5
	0 4 5
	DFS
Input	0 1 3 4 2 5
2112	0 1 3 4 5
6	UCS
0 5	0 1 2 4 3 5
0 2 3 0 5 0	0 1 3 5
2 0 0 4 0 0	GBFS
3 0 0 0 4 0	0 4 5
0 4 0 0 1 2	0 4 5
5 0 4 1 0 5	Astar
0 0 0 2 5 0	0 1 4 2 3 5
6 2 5 2 1 0	0 1 3 5
0 2 3 2 1 0	

2. Ví dụ 2.

- III. Các lưu ý khi chạy chương trình.
 - Phiên bản Visual studio: 2017.
 - Ngôn ngữ sử dụng: C++.
 - Chương trình được gọi bằng tham số dòng lệnh như sau: 1512387_1_1.exe <ten_file_input>
 - Cấu trúc file Input như trong yêu cầu đề bài.
 - Output gồm 5 file ghi lại kết quả theo từng thuật toán.