

Geometria Analitica

Videoaula 3.10

Produto Vetorial

Departamento de Matemática (UF\$C)

Professora ALDA MORTARI

Professor CHRISTIAN WAGNER

Professor FELIPE TASCA

Professor GIULIANO BOAVA

Professor LEANDRO MORGADO

Professora MARÍA ASTUDILLO

Professor MYKOLA KHRYPCHENKO

Produto Vetorial

Sejam $\vec{u} = (x_1, y_1, z_1)$ e $\vec{v} = (x_2, y_2, z_2)$ vetores em \mathbb{R}^3 .

O **produto vetorial** entre \vec{u} e \vec{v} é o vetor dado por:

$$\vec{u} \times \vec{v} = (y_1 z_2 - z_1 y_2) \vec{i} - (x_1 z_2 - z_1 x_2) \vec{j} + (x_1 y_2 - y_1 x_2) \vec{k}.$$

Método Prático

\vec{i}	$ec{j}$	\vec{k}
x_1	x_2	x_3
y_1	y_2	y_3

Exemplo

Calcule o produto vetorial entre $\vec{u} = (2, -1, 0)$ e $\vec{v} = (-1, 4, 3)$.

Para quaisquer vetores no espaço, são válidas as seguintes propriedade do produto vetorial:

$$\bullet \quad \vec{u} \times \vec{u} = \vec{0}.$$

$$\bullet \quad \vec{u} \times \vec{v} = -\vec{v} \times \vec{u}.$$

Para quaisquer vetores no espaço, são válidas as seguintes propriedade do produto vetorial:

- $\vec{u} \times \vec{v} = \vec{0}$ se e somente se \vec{u} e \vec{v} são colineares.
- $\vec{u} \times \vec{v}$ é ortogonal a \vec{u} e $\vec{u} \times \vec{v}$ é ortogonal a \vec{v} .

Para quaisquer vetores no espaço, são válidas as seguintes propriedade do produto vetorial:

$$\bullet \quad \vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}.$$

$$\bullet \quad (\lambda \ \vec{u}) \times \vec{v} = \lambda \ (\vec{u} \times \vec{v}) = \vec{u} \times (\lambda \ \vec{v}).$$

Para quaisquer vetores no espaço, são válidas as seguintes propriedade do produto vetorial:

•
$$|\vec{u} \times \vec{v}|^2 = |\vec{u}|^2 |\vec{v}|^2 - (\vec{u} \cdot \vec{v})^2$$
.

• Se $\vec{u} \neq \vec{0}$, $\vec{v} \neq \vec{0}$ e θ é o ângulo entre os vetores \vec{u} e \vec{v} , então:

$$|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| sen(\theta).$$

Interpretação Geométrica

O módulo do produto vetorial é a área do paralelogramo determinado pelos vetores.

Exemplo

Calcule a área do paralelogramo que tem um vértice no ponto A=(3,2,1) e uma diagonal de extremidades B=(1,1,1) e C=(0,1,2).