	Reg. No.				
	- State (E) multiple (1	81		
	B.Tech. DEGREE EXAMINATION, MAY 2023				
	OPEN BOOK EXAMINATION				
	Fourth Semester				
	18CEC205TZ				
	18CEC205T - STRUCTURAL ANALYSIS				
*	(For the candidates admitted during the academic year 2018-2019 to 2021-202	2)			
	cific approved THREE text books (Printed or photocopy) recommended for the course	ent)			
	dwritten class notes (certified by the faculty handling the course / Head of the Departm				
Time: 3	Hours	Max. I	Mark	cs: 1	00
	Augustiana				
	Answer FIVE questions (Question: No 1 and 2 are compulsory)	Marks	BL	со	PO
1 i	Draw the influence line diagram for shear force and bending moment for a	18	3	1	2
10-1.1	section at 5 m from the left hand support of a simply supported beam, 20 m				
-	long. Hence calculate maximum bending moment and shear force at the				
	section, due to an uniformly distributed rolling load of 8 m span and				
	intensity 10 kN/m run.				
	10 kN/m				
	$A \stackrel{\text{8 m}}{\longleftarrow} B$				
	€ 20 m	1	3	1	2
b· ii.	Determine positive shear force at a section 5 m from A.	1	3	1	2
	(A) 33 kN (B) 44 kN (C) 55 kN (D) 66 kN				
	(C) 55 kN (D) 66 kN				
iii.	Determine the ILD ordinate, at the distance of 5 m from A, during	1	3	1	2
C- 111	calculating the bending moment.				
	(A) 4.75 (B) 3.25				
	(C) 3.5 (D) 3.75				
2 :	A 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (18	3	4	2
2.1.	Analyze the continuous beam by slope deflection method. The support B sinks by 5 mm. Draw the bending moment and shear force diagram. Take				
2a.	EI = 2×10^4 kN-mm ² .				
	20127				
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	3 m $2 m$ $2 m$ $2 m$ $2 m$ D				
ii	Determine the fixed end moment due to loading for the member BA.	1	3	4	2
.b	(A) 50.5 kN.m (B) 38.2 kN.m				
	(C) 33.2 kN.m (D) 43.2 kN.m				

2

2

26MA4-18CEC205T Page 1 of 3

C · 111.	. Arrive the final moment for the member AB, from the slope equation.	deflection	1	3	4	2
	(A) -59.275 kN.m (C) -52.275 kN.m (B) -42.275 kN.m (D) -62.275 kN.m					
3.i. 3 9 ·	A parabolic two hinged arch has a span of 40 m and a rise of concentrated load of 10 kN acts at 15 m from the left support. moment of area varies as a secant of the inclination of the Calculate the horizontal thrust and reactions at the hinge. Als maximum bending moment at this section.	The second arch axis.	18	4	2	2
b· ii.	Determine the vertical left support reaction for the arch, Span of (A) 10 kN (B) 6.25 kN (C) 8.0 kN (D) 12.5 kN	40 m	1	4	2	2
C: iii.	Determine the rise distance at 15 m from the left support (A) 5.12 m (B) 4.68 m (C) 7.12 m (D) 3.52 m		1	3	4	2
4.i. H a ·	Determine the end moments for the continuous beam by using distribution method. EI is constant.	ng moment	18	4	4	2
	25 kN/m 50 kN 50 kN 75 kN/m A B C D					
Ь· ii.	Determine the distribution factor for the member CB (A) 0.4 (B) 0.6 (C) 0.8 (D) 0.2		1	4	4	2
iii.	Determine the fixed end moment for the member BA (A) 55 kNm (B) 95 kNm (C) 85 kNm (D) 75 kNm		1	4	4	2
5.i. 59 .	Determine ILD ordinates for two span continuous beam for to support and plot the ordinates at 3 m interval. 9 m 6 m A B C	he interior	18	3	1	2
b. ii.	Arrive at the left support reaction R_A for two span continuous beautiful (A) 1 kN (B) -0.8 kN (C) -0.5 kN (D) -0.4 kN	am.	1	3	1	2
c. iii.	Determine the constant C_1 for two span continuous beam support. (A) 12.6 (B) 22.4 (C) 54.1 (D) 76.2	at interior	1	3	1	2

6.i. Formulate the flexibility matrix of the frame shown below treating the 18 4 3 2 support reactions at A as redundants.

- ii. Calculate the matrix value f_{11} for the frame
 - (A) -32/EI

(B) 85.33/EI

(C) 21.33/EI

- (D) -10/EI
- . iii. What will be the limit for the span BC?
 - (A) 0 8

(B) 0-4

(C) 4-6

- (D) 4 8
- 7.i. Determine the support reactions of the given continuous beam by using 18 4 5 2 stiffness method.

- ii. What will be the moment at support C due to overhanging load (UDL + 1 3 5 2 Point load)?
 - (A) 40 kNm

(B) 50 kNm

(C) 80 kNm

- (D) 30 kNm
- iii. Calculate the net fixed moment for the support B.
 - (A) -32 kNm

(B) +16 kNm

(C) -48 kNm

(D) 64 kNm

* * * * *

1 3 3 2

1 3 3 2

1 3 5 - 2