Real Analysis

Hai Le **Professor** LATEX by Rui Zhou University of Michigan

Winter 2024

Contents

2	Integration			2
	2.1	Integration with Respect to a Measure		
		2.1.1	Integration of Nonnegative Functions	2
		2.1.2	Monotone Convergence Theorem	5
		2.1.3	Integration of Real-Valued Functions	8
	2.2	Limits	of Integrals & Integrals of Limits	9
		2.2.1	Bounded Convergence Theorem	9
		2.2.2	Dominated Convergence Theorem	10
		2.2.3	Relationship Between Lebesgue and Riemann Integral	13

Chapter 2

Integration

2.1 Integration with Respect to a Measure

2.1.1 Integration of Nonnegative Functions

Through out this chapter we base our analysis on (X, \mathcal{S}, μ) , which is a measure space.

Definition 2.1.1: S-Partition

An S-partition of X is a finite collection A_1, \dots, A_m of disjoint sets in S such that

$$A_1 \cup \cdots \cup A_m = X$$
.

Definition 2.1.2: Lower Lebesgue Sum

Suppose $f: X \to [0, \infty]$ is an S-measurable function, and P is an S-partition $\{A_1, \dots, A_m\}$ of X. The lower Lebesgue sum L(f, P) is defined by

$$L\left(f,P\right) := \sum_{j=1}^{m} \mu\left(A_{j}\right) \inf_{A_{j}} f.$$

Remark.

- Notice that here we assume f to be nonnegative, so $\inf_{A_j} f$ always exists.
- One convention is that, if any of the two terms is 0, the result is 0 and then neglected (regardless of whether or not the other term is ∞).

Definition 2.1.3: Integral of a Nonnegative Function

The integral of f with respect to μ , denoted by $\int f du$, is defined by

$$\int f \, du = \sup_{P} \{ L(f, P) : P \text{ is an } S\text{-partition of } X \}.$$

The following properties of integral are derived directly from the definition:

Proposition 2.1.4: Properties of Integral

- $\int \chi_E d\mu = \mu(E)$.
- Additivity: $\int (f+g) d\mu = \int f d\mu + \int g d\mu$.
- Multiplication with a constant c: $\int cf d\mu = c \cdot \int f d\mu$.

In the remaining part of this section, we are going to examine each of the property and give proof for each.

Proposition 2.1.5

If $E \in \mathcal{S}$, then

$$\int \chi_E \, \mathrm{d}\mu = \mu \, (E) \, .$$

Proof for Proposition.

We separate the task to prove both $\int \chi_E d\mu \leq \mu(E)$ and $\int \chi_E d\mu \geq \mu(E)$. Consider the partition E, E^c . Obviously $E \cup E^c = X$. From definition,

$$\int \chi_E \, d\mu \ge L \left(\chi_E, \{ E, E^c \} \right)$$

$$= \mu \left(E \right) \cdot \inf_E \chi_E + \mu \left(E^c \right) \cdot \inf_{E^c} \chi_E$$

$$= \mu \left(E \right) + 0$$

$$= \mu \left(E \right)$$

Then we prove the other direction of the inequality, i.e., $\int \chi_E d\mu \le \mu(E)$. It suffices to prove $L(\chi_E, P) \le \mu(E)$.

Consider any S-partition P, A_1, \dots, A_m , such that $A_1 \cup \dots \cup A_m = X$.

$$\mathcal{L}(\chi_E, P) = \sum_{j=1}^{m} \mu(A_j) \inf_{A_j} \chi_E$$

$$= \sum_{j: A_j \subseteq E} \mu(A_j) \cdot 1$$

$$= \mu \left(\bigcup_{j: A_j \subseteq E} A_j \right)$$

$$\leq \mu(E)$$

Taking supremium to both sides, we end with $\int \chi_E d\mu \le \mu(E)$, which when combined with the previous result completes the proof.

Proposition 2.1.6

Suppose E_1, E_2, \dots, E_n are disjoint sets in S. $c_1, c_2, \dots, c_n \in [0, \infty]$. Then

$$\int \left(\sum_{k=1}^{n} c_k \chi_{E_k}\right) d\mu = \sum_{k=1}^{n} c_k \mu(E_k).$$

Proof for Proposition.

When one of the c_1, \dots, c_n is ∞ , the equality is trivially true.

Let $E_{n+1} = X \setminus (E_1 \cup \cdots \cup E_n)$ and $c_{n+1} = 0$. Then $P = \{E_1, E_2, \cdots, E_n, E_{n+1}\}$ is an S-partition of X. We have

$$\int \left(\sum_{k=1}^{n} c_k \chi_{E_k}\right) d\mu = \int \left(\sum_{k=1}^{n+1} c_k \chi_{E_k}\right) d\mu$$

$$\geq L \left(\sum_{k=1}^{n+1} c_k \chi_{E_k}, \{E_1, \dots, E_{n+1}\}\right)$$

$$= \sum_{k=1}^{n+1} c_k \mu(E_k)$$

$$= \sum_{k=1}^{n} c_k \mu(E_k)$$

Suppose P is an S-partition $\{A_1, \dots, A_m\}$ of X. Then

$$L\left(\sum_{k=1}^{n} c_{k} \chi_{E_{k}}, P\right) = \sum_{j=1}^{m} \mu\left(A_{j}\right) \inf_{A_{j}} \sum_{k=1}^{n} c_{k} \chi_{E_{k}}$$

$$= \sum_{j=1}^{m} \mu\left(A_{j}\right) \min_{\{i: A_{j} \cap E_{i} \neq \}} c_{i}$$

$$= \sum_{j=1}^{m} \left(\sum_{k=1}^{n} \mu\left(A_{j} \cap E_{k}\right) \min_{\{i: A_{j} \cap E_{i} \neq \}} c_{i}\right)$$

$$\leq \sum_{j=1}^{m} \left(\sum_{k=1}^{n} \mu\left(A_{j} \cap E_{k}\right) c_{k}\right)$$

$$= \sum_{k=1}^{n} c_{k} \sum_{j=1}^{m} \mu\left(A_{i} \cap E_{k}\right)$$

$$= \sum_{k=1}^{n} c_{k} \mu\left(E_{k}\right)$$

Note that the equality in the last line stands because of

$$A_1 \cup \dots \cup A_m = X$$

$$\sum_{j=1}^m \mu(A_j \cap E_k) = \mu((A_1 \cup \dots \cup A_m) \cap E_k)$$

$$= \mu(X \cap E_k)$$

$$= \mu(E_k)$$

Corollary 2.1.7

If $f(x) \leq g(x)$ for all $x \in X$, then

$$\int f \, \mathrm{d}\mu \le \int g \, \mathrm{d}\mu.$$

2.1.2 Monotone Convergence Theorem

Definition 2.1.8: Integrals via Finite Simple Functions

$$\int f \, d\mu := \sup_{\{A_j, c_j\}} \left\{ \sum_{j=1}^m c_j \mu \left(A_j \right) : A_1, \cdots, A_m \text{ are disjoint sets of } X, \right.$$

$$\left. c_1, \cdots, c_m \in \left[0, \infty \right], \right.$$

$$\left. f \left(x \right) \ge \sum_{j=1}^m c_j \chi_{A_j} \left(x \right), \forall x \in X \right\}$$

Theorem 2.1.9: Monotone Convergence Theorem

Let $0 \le f_1 \le f_2 \le \cdots$ is an increasing sequence of S-measurable functions. Define $f: X \to [0, \infty]$ as $f(x) := \lim_{k \to \infty} f_k(x)$. Then

$$\lim_{k \to \infty} \int f_k \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu.$$

Proof for Theorem

Since $f_1 \leq f_2 \leq \cdots \leq f$,

$$\int f_1 d\mu \le \int f_2 d\mu \le \dots \le \int f d\mu$$
$$\Longrightarrow \lim_{k \to \infty} \int f_k d\mu \le \int f d\mu$$

Now we are to focus on the other direction. Using the equivalent definition of integration, suppose A_1, \dots, A_m are disjoint sets of X, and $c_1, \dots, c_m \in [0, \infty]$ such that

$$f(x) \ge \sum_{j=1}^{m} c_j \chi_{A_j}(x), \forall x \in X$$

Let $t \in (0,1)$. For $k \in \mathbb{Z}_+$, let

$$E_{k} = \left\{ x \in X : f_{k}\left(x\right) \ge t \sum_{j=1}^{m} c_{j} \chi_{A_{j}}\left(x\right) \right\}$$

Then $E_1 \subseteq E_2 \subseteq \cdots$ is an increasing sequence whose union $\bigcup_{k=1}^{\infty} E_k = X$. Thus

$$\lim_{k \to \infty} \mu\left(A_j \cap E_k\right) = \mu\left(A_j \cap \left(\bigcup_{k=1}^{\infty} E_k\right)\right) = \mu\left(A_j\right), \forall j \in \{1, 2, \cdots, m\}$$

Moreover, from the construction of E_k ,

$$f_k(x) \ge t \sum_{j=1}^{m} c_j \chi_{A_j \cap E_k}(x), \forall x \in X$$

Hence,

$$\int f_k \, \mathrm{d}\mu \ge t \sum_{j=1}^m c_j \mu \left(A_j \cap E_k \right)$$

Let $k \to \infty$, we have

$$\lim_{k \to \infty} \int f_k \, d\mu \ge t \sum_{j=1}^m c_j \mu(A_j)$$

Take $t \to 1$, we have

$$\lim_{k \to \infty} \int f_k \, d\mu \ge \sum_{j=1}^m c_j \mu \left(A_j \right).$$

Why only take $t \in (0,1)$ instead of $t \in (0,1]$? Because if t = 1, we may not have $\bigcup_{k=1}^{\infty} E_k = X$.

Next we will deploy Monotone Convergence Theorem to prove that the integration has the property of additivity, as is desired.

A simple function may have different representations, but the corresponding integrals are of the same value, which is formalized in the following proposition.

Proposition 2.1.10: Integral-Type Sums for Simple Functions

Suppose (X, \mathcal{S}, μ) is a measure space. Suppose $a_1, a_2, \dots, a_m, b_1, b_2, \dots, b_n \in [0, \infty)$, and $A_1, A_2, \dots, A_m, B_1, B_2, \dots, B_n \subseteq \mathcal{S}$. Further suppose

$$\sum_{i=1}^{m} a_{i} \chi_{A_{i}}(x) = \sum_{j=1}^{n} b_{j} \chi_{B_{j}}(x), \forall x \in X.$$

Then

$$\sum_{i=1}^{m} a_{i} \mu (A_{i}) = \sum_{j=1}^{n} b_{j} \mu (B_{j}).$$

Remark.

- Here it is not required that $\{a_i\}$, $\{b_i\}$ are distinct or $\{A_k\}$, $\{B_k\}$ are disjoint. From here we do not need to care about multiplicity about representations of simple functions.
- The standard representation for a simple function: $\sum_{i=1}^{m} a_i \chi_{A_i}$, where a_1, a_2, \dots, a_m are distinct and A_1, A_2, \dots, A_m are disjoint.

Proposition 2.1.11: Additivity of Integration

If $f, g \geq 0$ are S-measurable, then

$$\int (f+g) d\mu = \int f d\mu + \int g d\mu.$$

Proof for Proposition.

Let $\{f_k\}$ converges pointwise to f in an increasing order, so does $\{g_k\}$ to g. By MCT (applied to $\{f_k + g_k\}$),

$$\int (f+g) d\mu = \lim_{k \to \infty} \int (f_k + g_k) d\mu$$
$$= \lim_{k \to \infty} \left(\int f_k d\mu + \int g_k d\mu \right)$$
$$= \int f d\mu + \int g d\mu$$

where the equality in the second line stands because both f_k and g_k are simple functions, and the last one holds when applying MCT to $\{f_k\}$ and $\{g_k\}$ respectively.

2.1.3 Integration of Real-Valued Functions

Definition 2.1.12: f^+, f^-

Suppose $f: X \to [-\infty, \infty]$ is S-measurable. Define $f^+: X \to [0, \infty]$ and $f^-: X \to [0, \infty]$ by

$$f^{+}(x) = \begin{cases} f(x) & \text{if } f(x) \ge 0\\ 0 & \text{if } f(x) < 0 \end{cases}$$
$$f^{-}(x) = \begin{cases} 0 & \text{if } f(x) \ge 0\\ -f(x) & \text{if } f(x) < 0 \end{cases}$$

By definition, we see that

$$f(x) = f^{+}(x) - f^{-}(x)$$
$$|f|(x) = |f^{+}(x) + |f^{-}(x)|$$

Definition 2.1.13: Integral of a Real-Valued Function

Suppose $f: X \to [-\infty, \infty]$ is an S-measurable function such that at least one $\int f^+ d\mu$ and $\int f^- d\mu$ is finite. The integral of f is

$$\int f \, \mathrm{d}\mu := \int f^+ \, \mathrm{d}\mu - \int f^- \, \mathrm{d}\mu.$$

Proposition 2.1.14: Properties of Integral

Suppose $f: X \to [-\infty, \infty]$, and $g: X \to [-\infty, \infty]$.

- $\int cf d\mu = c \int f d\mu$, if $c \in \mathbb{R}$.
- $\int (f+g) d\mu = \int f d\mu + \int g d\mu$, if $\int |f| d\mu < \infty$ and $\int |g| d\mu < \infty$.
- $\int f d\mu \leq \int g d\mu$, if $f(x) \leq g(x)$ for all $x \in X$.
- Triangle inequality: $|\int f d\mu| \leq \int |f| d\mu$.

2.2 Limits of Integrals & Integrals of Limits

2.2.1 Bounded Convergence Theorem

Definition 2.2.1: Integration on a Subset

Suppose (X, \mathcal{S}, μ) is a measure space and $E \in \mathcal{S}$. Let $f : X \to [-\infty, \infty]$ be a \mathcal{S} -measurable function. The integral of f over E is defined by

$$\int_E f \, \mathrm{d}\mu := \int f \cdot \chi_E \, \mathrm{d}\mu.$$

The special case is that $\int_X f d\mu = \int f \cdot \chi_X d\mu = \int f d\mu$. So when we refer to integration over the whole set X, we can simply write as $\int f d\mu$ and omit the denotation of X.

Proposition 2.2.2: Bounding an Integral

Suppose (X, \mathcal{S}, μ) is a measure space, $E \in \mathcal{S}$, and $f : X \to [-\infty, \infty]$ is a function such that $\int_E f \, d\mu$ is defined. Then

$$\left| \int_{E} f \, d\mu \right| \le \mu(E) \cdot \sup_{E} |f|.$$

Proof for Proposition.

$$\left| \int_{E} f \, d\mu \right| = \left| \int f \cdot \chi_{E} \, d\mu \right|$$

$$\leq \int |f| \cdot \chi_{E} \, d\mu$$

$$\leq \int \sup_{E} |f| \cdot \chi_{E} \, d\mu$$

$$= \mu(E) \cdot \sup_{E} |f|$$

Theorem 2.2.3: Bounded Convergence Theorem

Suppose (X, \mathcal{S}, μ) is a measure space with $\mu(X) < \infty$. Suppose a sequence of \mathcal{S} -measurable functions f_1, f_2, \cdots converges pointwise to f. Suppose there exists $c \in (0, \infty)$ such that $|f_k(x)| \leq c$, for all $x \in X, k \geq 1$. Then

$$\lim_{k \to \infty} \int f_k \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu.$$

Proof for Theorem

Fix $\varepsilon > 0$. By Egorov's theorem, there exists $E \in \mathcal{S}$ such that

$$\mu\left(X\backslash E\right) \leq \frac{\varepsilon}{4c}$$

and f_1, f_2, \cdots converges to f uniformly on E. Then

$$\left| \int f_k \, d\mu - \int f \, d\mu \right| = \left| \int_{X \setminus E} f_k \, d\mu - \int_{X \setminus E} f \, d\mu + \int_E f_k \, d\mu - \int_E f \, d\mu \right|$$

$$\leq \left| \int_{X \setminus E} (f_k - f) \, d\mu \right| + \left| \int_E (f_k - f) \, d\mu \right|$$

$$\leq \mu \left(X \setminus E \right) \sup_{X \setminus E} |f_k - f| + \mu \left(E \right) \sup_E |f_k - f|$$

$$\leq \frac{\varepsilon}{4c} \cdot 2c + \mu \left(X \right) \cdot \frac{\varepsilon}{2 \left(\mu \left(X \right) + 1 \right)}$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Hence, $|\int f_k d\mu - \int f d\mu| \le \varepsilon$ when k is big enough. This implies that

$$\lim_{k \to \infty} \int f_k \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu.$$

Here it is in the last approximation of $\sup_{E} |f_k - f|$ that we used the definition (or, property) of uniform convergence. Egorov's theorem is a powerful tools in proofs that involves interchanging limits and integrals.

2.2.2 Dominated Convergence Theorem

Suppose (X, \mathcal{S}, μ) is a measure space. If $f, g: X \to [-\infty, \infty]$ are \mathcal{S} -measurable functions and $\mu(\{x \in X : f(x) \neq g(x)\}) = 0$, then the definition of an integral implies that $\int f d\mu = \int g d\mu$ (or both are undefined). This is true because what happens on a set of measure 0 does not matter generally.

Definition 2.2.4: μ -Almost Every

Suppose (X, \mathcal{S}, μ) is a measure space. A set $E \in \mathcal{S}$ is said to contain μ -almost every element of X if

$$\mu(X \backslash E) = 0.$$

Example.

Almost every real number is irrational (with respect to the usual Lebesgue measure on \mathbb{R}) because $\mu^*(\mathbb{Q}) = 0$.

Remark.

- For two functions f and g, if $\mu(\{x \in X : f(x) \neq g(x)\}) = 0$, we usually say $f = g(\mu)$ -almost everywhere (a.e.).
- Theorems about integrals can almost always be relaxed so that the hypothesis apply

only almost everywhere instead of everywhere. One example is $\lim_{k\to\infty} f_k(x) = f(x)$ for all $x\in X$ in Bounded Convergence Theorem.

Proposition 2.2.5: Integrals on Small Sets are Small

Suppose (X, \mathcal{S}, μ) is a measure space. Suppose $g: X \to [0, \infty]$ is \mathcal{S} -measurable and $\int g \ d\mu < \infty$. Then for every $\varepsilon > 0$, there exists $\delta > 0$ such that if $\mu(B) < \delta$, then $\int_B g \ d\mu < \varepsilon$.

Proof for Proposition.

Fix $\varepsilon > 0$. Construct $h: X \to [0, \infty)$ to be a simple S-measurable function such that $0 \le h \le g$ and $\int g \, d\mu - \int f \, d\mu \le \frac{\varepsilon}{2}$. (The existence can be show via the equivalent definition of Lebesgue integral.)

Let $H = \max\{h(x) : x \in X\}$ and let $\delta > 0$ be such that $H \cdot \delta \leq \frac{\varepsilon}{2}$.

$$\begin{split} \int_{B} g \, \mathrm{d}\mu &= \left(\int_{B} g \, \mathrm{d}\mu - \int_{B} h \, \mathrm{d}\mu \right) + \int_{B} h \, \mathrm{d}\mu \\ &\leq \frac{\varepsilon}{2} + \mu \left(B \right) \cdot \sup_{B} h \\ &\leq \frac{\varepsilon}{2} + \delta \cdot H \\ &\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \varepsilon \end{split}$$

Proposition 2.2.6: Integrable Functions Live Mostly on Sets of Finite Measure

Let $g: X \to [0, \infty]$ and $\int g \, d\mu < \infty$. Then for every $\varepsilon > 0$, there exists $E \in \mathcal{S}$ such that $\mu(E) < \infty$ and $\int_{X \setminus E} g \, d\mu \le \varepsilon$.

Proof for Proposition.

Let $\varepsilon > 0$. Let P be an S-partition A_1, \dots, A_m of X such that

$$\int g \, \mathrm{d}\mu \le \varepsilon + L(g, P)$$

Let E be the union of those A_i $(i=1,\cdots,m)$ such that $\inf_{A_i}g>0$. We can safely claim that $\mu(E)<\infty$; otherwise we would have $L(g,P)=\infty$, which contradicts the hypothesis that $\int g \ d\mu < \infty$. Now

$$\int_{X \setminus E} g \, d\mu = \int g \, d\mu - \int \chi_E \cdot g \, d\mu$$

$$\leq \varepsilon + L(g, P) - L(\chi_E \cdot g, P)$$

$$= \varepsilon$$

Note that the second line follows from our construction and the definition of the integral, and the last line holds because $\inf_{A_j} g = 0$ for each A_j not contained in E.

Theorem 2.2.7: Dominated Convergence Theorem

Suppose (X, \mathcal{S}, μ) is a measure space. Let $f: X \to [-\infty, \infty]$ and $f_1, f_2, \dots : X \to [-\infty, \infty]$ be \mathcal{S} -measurable functions such that $\lim_{k \to \infty} f_k(x) = f(x)$ for almost every $x \in X$. If there exists an \mathcal{S} -measurable function $g: X \to [0, \infty]$ such that $\int g \, d\mu < \infty$ and $|f_k(x)| \leq g(x)$ for all k > 0 and almost every $x \in X$, then

$$\lim_{k \to \infty} \int f_k \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu.$$

Proof for Theorem

Suppose $g: X \to [0, \infty]$ satisfies the hypotheses of this theorem. For any set $E \in \mathcal{S}$, we have the following estimates

$$\left| \int f_k \, d\mu - \int f \, d\mu \right| = \left| \int_{X \setminus E} f_k \, d\mu - \int_{X \setminus E} f \, d\mu + \int_E f_k \, d\mu - \int_E f \, d\mu \right|$$

$$\leq \int_{X \setminus E} |f_k| \, d\mu + \int_{X \setminus E} |f| \, d\mu + \left| \int_E (f_k - f) \, d\mu \right|$$

$$\leq 2 \int_{X \setminus E} g \, d\mu + \left| \int_E (f_k - k) \, d\mu \right|$$

Assume first for now that $\mu(X) < \infty$. Let $\varepsilon > 0$. From the proposition that integrals on small sets are small, there exists $\delta > 0$ such that $\int_B g \ d\mu \le \frac{\varepsilon}{4}$ for every set $B \in \mathcal{S}$ such that $\mu(B) < \varepsilon$. By Egorov's theorem (since $\mu(X) < \infty$), there exists $E \in \mathcal{S}$ such that

$$\mu\left(X\backslash E\right)\leq\delta$$

and f_1, f_2, \cdots converges uniformly on E. We then have

$$\left| \int f_k \, d\mu - \int f \, d\mu \right| \le 2 \int_{X \setminus E} g \, d\mu + \left| \int_E (f_k - f) \, d\mu \right|$$

$$\le 2 \cdot \frac{\varepsilon}{4} + \mu(E) \cdot \sup_E |f_k - f|$$

$$\le \frac{\varepsilon}{2} + \mu(E) \cdot \frac{2\varepsilon}{\mu(E)}$$

$$\le \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Then consider the case where $\mu\left(X\right)=\infty$. Let $\varepsilon>0$. By proposition 3, there exists $E\in\mathcal{S}$ such that $\mu\left(E\right)<\infty$ and $\int_{X\setminus E} \ \mathrm{d}\mu\leq\frac{\varepsilon}{4}$. Then we have

$$\left| \int f_k \, d\mu - \int f \, d\mu \right| \le 2 \int_{X \setminus E} g \, d\mu + \left| \int_E (f_k - f) \, d\mu \right|$$
$$\le 2 \cdot \frac{\varepsilon}{4} + \left| \int_E (f_k - k) \, d\mu \right|$$

By the first case as applied to the sequence $f_1|_E, f_2|_E, \cdots$ the last term on the right is less than $\frac{\varepsilon}{2}$ for all sufficiently large k. Thus $\lim_{k\to\infty} \int f_k \ d\mu = \int f \ d\mu$, completing the proof of the second case.

Remark.

- Advantages of DCT
 - We do not require the functions to be nonnegative.
 - We do not require the sequence to be increasing.
 - We do not require the measure space to be finite.
 - We do not require the sequence of functions to be uniformly bounded.

All these hypotheses are replaced only by a requirement that the sequence of functions is pointwise bounded by a function with a finite integral.

• Bounded Convergence Theorem follows immediately from the result of Dominated Convergence Theorem. Simply take g to be an appropriate constant function and use the hypothesis in the Bounded Convergence Theorem that $\mu(X) < \infty$.

2.2.3 Relationship Between Lebesgue and Riemann Integral

Theorem 2.2.8: Riemann Integrable is Equivalent to Continuous Almost Everywhere

Suppose a < b and $f : [a,b] \to \mathbb{R}$ is a bounded function. Then f is Riemann integrable if and only if $\mu^* (\{x \in [a,b] : f \text{ is not continuous at } x\}) = 0$. Moreover, if f is Riemann integrable,

$$\int_{a}^{b} f \, \mathrm{d}x = \int_{[a,b]} f \, \mathrm{d}\lambda$$

where λ is the Lebesgue measure.