Конспект: Ангармоничность колебаний и генерация гармоник

1 Основные понятия

1.1 Линейный осциллятор

- Описывается уравнением: $\ddot{x} + \omega_0^2 x = 0$
- Решение имеет вид: $x = A\sin(\omega_0 t + \varphi)$
- Характеризуется синусоидальными (гармоническими) колебаниями

1.2 Ангармонические колебания

- Возникают в нелинейных системах
- Форма колебаний отличается от синусоиды
- Проявляются при больших амплитудах

2 Спектральное представление колебаний

2.1 Ряд Фурье

- Общая форма: $x(t) = \sum_{m=-\infty}^{\infty} c_m e^{2\pi i m t/T}$
- Коэффициенты: $c_m = \frac{1}{T} \int_0^T x(t) e^{-2\pi i m t/T} dt$
- Условие действительности: $c_m = c_{-m}^*$

2.2 Тригонометрическая форма

- $x(t) = A_0 + \sum_{m=1}^{\infty} A_m \cos(m\omega t + \varphi_m)$
- Где: $A_0 = c_0, A_m = |c_m|, \varphi_m = \arg c_m$

3 Коэффициент нелинейных искажений

- Определяется формулой: $\chi = \frac{\sqrt{A_2^2 + A_3^2 + A_4^2 + A_5^2 + \dots}}{A_1}$
- Характеризует степень отклонения от гармонических колебаний

4 Нелинейные преобразования

4.1 Нелинейная характеристика

- Разложение в ряд Тейлора: $y = a_1 x + a_2 x^2 + a_3 x^3 + \dots$
- Линейный член: a_1x
- Квадратичная нелинейность: a_2x^2
- Кубическая нелинейность: $a_3 x^3$

4.2 Генерация гармоник

- Квадратичная нелинейность порождает:
 - Постоянную составляющую
 - Вторую гармонику
- Кубическая нелинейность создает:
 - Нелинейную добавку к основной гармонике
 - Третью гармонику

5 Практические примеры

5.1 Оптический эксперимент

• Лазер на неодимовом стекле (ИК-излучение)

• Длина волны: 1,06 мкм

• Частота: $2, 8 \cdot 10^{14}$ Гц

• Преобразование в кристалле ниобата бария

• Результат: зеленый луч (0,53 мкм)

5.2 Акустические явления

• Генерация высших гармоник в звуковых волнах

• Физиологический эффект Гельмгольца