ЛАБОРАТОРНАЯ РАБОТА №6 ЭФФЕКТ КЕРРА

Поляков Даниил, 19.Б23-фз

Цель работы: исследовать эффект Керра, определить постоянную Керра для данной жидкости.

Схема установки

Расчётные формулы

• Напряжённость электрического поля в ячейке Керра:

$$E = \frac{U}{d}$$

U — напряжение на электродах; d = 0.05 см — расстояние между электродами.

• Разность фаз между двумя поляризованными лучами после прохождения ячейки Керра:

$$\delta = 2(\varphi - \varphi_0)$$

 ϕ — угол анализатора, соответствующий минимуму интенсивности на фотодиоде при включенном электрическом поле; ϕ_0 — угол анализатора, соответствующий минимуму интенсивности на фотодиоде при выключенном электрическом поле.

• Связь разности фаз между лучами после прохождения ячейки Керра с напряжённостью электрического поля в ячейке:

$$\delta = 2\pi B l E^2$$

 δ — разность фаз между лучами; B — постоянная Керра исследуемого вещества;

l = 1.3 см — длина исследуемого вещества;

E — напряжённость электрического поля.

- Формулы для вычисления погрешностей:
 - Абсолютная погрешность косвенных измерений:

$$\Delta_{f(x_1, x_2, \dots)} = \sqrt{\left(\frac{\partial f}{\partial x_1} \cdot \Delta_{x_1}\right)^2 + \left(\frac{\partial f}{\partial x_2} \cdot \Delta_{x_2}\right)^2 + \dots}$$

Порядок измерений

- 1. Включим лазер; осциллограф, подключенный к фотодиоду; генератор для подачи напряжения на электроды ячейки Керра; вольтметр, измеряющий напряжение на электродах.
- 2. Установим нулевое напряжение на электродах. Измерим угол анализатора ϕ_0 , соответствующий минимуму интенсивности на осциллографе. Этот угол соответствует направлению поляризации света на входе в ячейку Керра.
- 3. Изменяя напряжение на электродах U от 0 до 300 В с шагом 30 В, измеряем соответствующие углы анализатора φ , соответствующие минимуму интенсивности на осциллографе. Эти углы соответствуют направлению результирующей линейной поляризации света на выходе из компенсатора. Всего выполним 3 серии измерений.

Результаты

<u>Примечание</u>: построение графика и его аппроксимация выполнены с помощью ПО MATLAB. Погрешность коэффициента аппроксимации рассчитана с доверительной вероятностью P=95%.

Цена деления вольтметра: 5 В. Погрешность измерения напряжения примем равной половине цены деления: $\Delta_U = 2.5 \; \mathrm{B}.$

Нониус анализатора имеет цену деления 0.01° . Однако, во время измерений было сложно точно определить, какому именно штриху соответствует текущее значение угла, поэтому погрешность измерения угла примем равной 2.5 цены деления: $\Delta_{\sigma} = 0.025^\circ$.

Таблица. Зависимость разности фаз между лучами от напряжённости электрического поля в ячейке Керра

U, B	<i>E</i> , кВ/м	Серия №1		Серия №2		Серия №3	
		φ, °	δ , $^{\circ}$	φ, °	δ, °	φ, °	δ, °
0	0	46.85	0.00	46.75	0.00	48.15	0.00
30	60	45.60	-2.50	46.65	-0.20	46.50	-3.30
60	120	46.20	-1.30	45.60	-2.30	48.45	0.60
90	180	47.05	0.40	48.70	3.90	49.30	2.30
120	240	48.20	2.70	50.75	8.00	49.80	3.30
150	300	46.65	-0.40	49.75	6.00	50.45	4.60
180	360	48.75	3.80	49.50	5.50	51.40	6.50
210	420	50.50	7.30	50.20	6.90	52.25	8.20
240	480	51.35	9.00	52.60	11.70	53.20	10.10
270	540	53.25	12.80	53.80	14.10	54.55	12.80
300	600	52.60	11.50	53.50	13.50	54.75	13.20

Разброс значений разности фаз δ при одинаковых значениях напряжённости E оказался очень сильным. Это вызвано сложностью точного определения минимума интенсивности на осциллографе.

Изобразим зависимость $\delta(E^2)$, которая теоретически является линейной, и аппроксимируем её зависимостью вида y=ax по всем точкам. Получив коэффициент пропорциональности a, вычислим постоянную Керра.

График. Зависимость разности фаз между лучами от квадрата напряжённости электрического поля в ячейке Керра

$$a = (4.1 \pm 0.4) \cdot 10^{-11} \frac{M^2 \cdot {}^{\circ}}{B^2} \Rightarrow B = \frac{a}{2\pi l} = (8.7 \pm 0.9) \cdot 10^{-12} \frac{M}{B^2}$$

Выводы

В ходе работы было проведено наблюдение эффекта Керра. При поляризации (или ориентации) молекул жидкости под действием электрического поля происходит поляризация проходящего через жидкость света.

Полученное значение постоянной Керра:

$$B = (8.7 \pm 0.9) \cdot 10^{-12} \, \frac{M}{B^2}$$

Основной вклад в погрешность измерений внесла сложность точного определения минимума интенсивности света на осциллографе.