## Uploading dataset

```
import pandas as pd
import numpy as np
```

df = pd.read\_csv(r"/content/Churn\_Modelling.csv")

df

|                         | RowNumber | CustomerId | Surname   | CreditScore | Geography | Gender | Age | Tenure      |
|-------------------------|-----------|------------|-----------|-------------|-----------|--------|-----|-------------|
| 0                       | 1         | 15634602   | Hargrave  | 619         | France    | Female | 42  | 2           |
| 1                       | 2         | 15647311   | Hill      | 608         | Spain     | Female | 41  | 1           |
| 2                       | 3         | 15619304   | Onio      | 502         | France    | Female | 42  | 8           |
| 3                       | 4         | 15701354   | Boni      | 699         | France    | Female | 39  | 1           |
| 4                       | 5         | 15737888   | Mitchell  | 850         | Spain     | Female | 43  | 2           |
|                         |           |            |           |             |           |        |     |             |
| 9995                    | 9996      | 15606229   | Obijiaku  | 771         | France    | Male   | 39  | 5           |
| 9996                    | 9997      | 15569892   | Johnstone | 516         | France    | Male   | 35  | 10          |
| 9997                    | 9998      | 15584532   | Liu       | 709         | France    | Female | 36  | 7           |
| 9998                    | 9999      | 15682355   | Sabbatini | 772         | Germany   | Male   | 42  | 3           |
| 9999                    | 10000     | 15628319   | Walker    | 792         | France    | Female | 28  | 4           |
| 10000 rows × 14 columns |           |            |           |             |           |        |     |             |
| 4                       |           |            |           |             |           |        |     | <b>&gt;</b> |

## Handle the Missing values.

df.isnull().sum(1)

Length: 10000, dtype: int64

import seaborn as sns
import matplotlib.pyplot as plt
import sklearn
from scipy.stats import iqr

#### **Perform Below Visualizations.**

- 1. Univariate Analysis
- 2. Bi Variate Analysis
- 3. Multi Variate Analysis

sns.distplot(df['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f45e7db8950>



sns.lineplot(df['Balance'],df['EstimatedSalary'])

/usr/local/lib/python3.7/dist-packages/seaborn/\_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes.\_subplots.AxesSubplot at 0x7fb1ca341650>



sns.lineplot(df['NumOfProducts'],df['IsActiveMember'])

/usr/local/lib/python3.7/dist-packages/seaborn/\_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes.\_subplots.AxesSubplot at 0x7fb1c9c070d0>



sns.scatterplot(df['Age'],df['EstimatedSalary'],hue = df['Gender'])

/usr/local/lib/python3.7/dist-packages/seaborn/\_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7fb1c9cc0990>



Check for Categorical columns and perform encoding.

df.median()

/usr/local/lib/python3.7/dist-packages/ipykernel\_launcher.py:1: FutureWarning: Droppi """Entry point for launching an IPython kernel.

RowNumber 5.000500e+03 CustomerId 1.569074e+07 CreditScore 6.520000e+02 Age 3.700000e+01 Tenure 5.000000e+00
Balance 9.719854e+04
NumOfProducts 1.000000e+00
HasCrCard 1.000000e+00
IsActiveMember 1.000000e+00
EstimatedSalary 1.001939e+05
Exited 0.000000e+00

dtype: float64

Perform descriptive statistics on the dataset.

df.mean()

/usr/local/lib/python3.7/dist-packages/ipykernel\_launcher.py:1: FutureWarning: Droppi """Entry point for launching an IPython kernel.

RowNumber 5.000500e+03 CustomerId 1.569094e+07 6.505288e+02 CreditScore Age 3.892180e+01 Tenure 5.012800e+00 Balance 7.648589e+04 NumOfProducts 1.530200e+00 HasCrCard 7.055000e-01 IsActiveMember 5.151000e-01 EstimatedSalary 1.000902e+05 Exited 2.037000e-01

dtype: float64

df.mode()

|      | RowNumber | CustomerId | Surname | CreditScore | Geography | Gender | Age  | Tenure | Е |
|------|-----------|------------|---------|-------------|-----------|--------|------|--------|---|
| 0    | 1         | 15565701   | Smith   | 850.0       | France    | Male   | 37.0 | 2.0    |   |
| 1    | 2         | 15565706   | NaN     | NaN         | NaN       | NaN    | NaN  | NaN    |   |
| 2    | 3         | 15565714   | NaN     | NaN         | NaN       | NaN    | NaN  | NaN    |   |
| 3    | 4         | 15565779   | NaN     | NaN         | NaN       | NaN    | NaN  | NaN    |   |
| 4    | 5         | 15565796   | NaN     | NaN         | NaN       | NaN    | NaN  | NaN    |   |
|      |           |            |         |             |           |        |      |        |   |
| 9995 | 9996      | 15815628   | NaN     | NaN         | NaN       | NaN    | NaN  | NaN    |   |
| 9996 | 9997      | 15815645   | NaN     | NaN         | NaN       | NaN    | NaN  | NaN    |   |
| 9997 | 9998      | 15815656   | NaN     | NaN         | NaN       | NaN    | NaN  | NaN    |   |
| 9998 | 9999      | 15815660   | NaN     | NaN         | NaN       | NaN    | NaN  | NaN    |   |
| 9999 | 10000     | 15815690   | NaN     | NaN         | NaN       | NaN    | NaN  | NaN    |   |
|      |           |            |         |             |           |        |      |        |   |

10000 rows × 14 columns

```
df.var()
```

/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:1: FutureWarning: Droppi """Entry point for launching an IPython kernel. RowNumber 8.334167e+06 CustomerId 5.174815e+09 CreditScore 9.341860e+03 Age 1.099941e+02 Tenure 8.364673e+00 Balance 3.893436e+09 NumOfProducts 3.383218e-01 HasCrCard 2.077905e-01 IsActiveMember 2.497970e-01 EstimatedSalary 3.307457e+09 Exited 1.622225e-01 dtype: float64

### df.std()

/usr/local/lib/python3.7/dist-packages/ipykernel\_launcher.py:1: FutureWarning: Droppi """Entry point for launching an IPython kernel.

| RowNumber       | 2886.895680  |
|-----------------|--------------|
| CustomerId      | 71936.186123 |
| CreditScore     | 96.653299    |
| Age             | 10.487806    |
| Tenure          | 2.892174     |
| Balance         | 62397.405202 |
| NumOfProducts   | 0.581654     |
| HasCrCard       | 0.455840     |
| IsActiveMember  | 0.499797     |
| EstimatedSalary | 57510.492818 |
| Exited          | 0.402769     |

dtype: float64

### df.min()

RowNumber 1 CustomerId 15565701 Surname Abazu CreditScore 350 Geography France Gender Female Age 18 Tenure 0 Balance 0.0 NumOfProducts 1 HasCrCard 0 IsActiveMember 0 EstimatedSalary 11.58 Exited

dtype: object

### iqr(df['Age'])

12.0

```
q = df.quantile([0.75,0.25])
q
```

|      | RowNumber | CustomerId  | CreditScore | Age  | Tenure | Balance   | NumOfProducts | Has |
|------|-----------|-------------|-------------|------|--------|-----------|---------------|-----|
| 0.75 | 7500.25   | 15753233.75 | 718.0       | 44.0 | 7.0    | 127644.24 | 2.0           |     |
| 0.25 | 2500.75   | 15628528.25 | 584.0       | 32.0 | 3.0    | 0.00      | 1.0           |     |
| ∢    |           |             |             |      |        |           |               | •   |

### print(df.skew())

| RowNumber       | 0.000000  |
|-----------------|-----------|
| CustomerId      | 0.001149  |
| CreditScore     | -0.071607 |
| Age             | 1.011320  |
| Tenure          | 0.010991  |
| Balance         | -0.141109 |
| NumOfProducts   | 0.745568  |
| HasCrCard       | -0.901812 |
| IsActiveMember  | -0.060437 |
| EstimatedSalary | 0.002085  |
| Exited          | 1.471611  |
| J+ C1 - + C4    |           |

dtype: float64

/usr/local/lib/python3.7/dist-packages/ipykernel\_launcher.py:1: FutureWarning: Droppi """Entry point for launching an IPython kernel.

# Find the outliers and replace the outliers

sns.boxplot(df['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/\_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes.\_subplots.AxesSubplot at 0x7fb1c7c87c10>



```
q = df.quantile([0.75,0.25])
q
```

|      | RowNumber | CustomerId  | CreditScore | Age  | Tenure | Balance   | NumOfProducts | Has |
|------|-----------|-------------|-------------|------|--------|-----------|---------------|-----|
| 0.75 | 7500.25   | 15753233.75 | 718.0       | 44.0 | 7.0    | 127644.24 | 2.0           |     |
| 0.25 | 2500.75   | 15628528.25 | 584.0       | 32.0 | 3.0    | 0.00      | 1.0           |     |
| 4    |           |             |             |      |        |           |               | •   |

```
iqr = q.iloc[0] - q.iloc[1]
iqr
```

| 4999.5000   |
|-------------|
| 4999.5000   |
| 124705.5000 |
| 134.0000    |
| 12.0000     |
| 4.0000      |
| 127644.2400 |
| 1.0000      |
| 1.0000      |
| 1.0000      |
| 98386.1375  |
| 0.0000      |
|             |

dtype: float64

| RowNumber       | 1.499950e+04 |
|-----------------|--------------|
| CustomerId      | 1.594029e+07 |
| CreditScore     | 9.190000e+02 |
| Age             | 6.200000e+01 |
| Tenure          | 1.300000e+01 |
| Balance         | 3.191106e+05 |
| NumOfProducts   | 3.500000e+00 |
| HasCrCard       | 2.500000e+00 |
| IsActiveMember  | 2.500000e+00 |
| EstimatedSalary | 2.969675e+05 |
| Exited          | 0.000000e+00 |

dtype: float64

| RowNumber       | -4.998500e+03 |
|-----------------|---------------|
| CustomerId      | 1.544147e+07  |
| CreditScore     | 3.830000e+02  |
| Age             | 1.400000e+01  |
| Tenure          | -3.000000e+00 |
| Balance         | -1.914664e+05 |
| NumOfProducts   | -5.000000e-01 |
| HasCrCard       | -1.500000e+00 |
| IsActiveMember  | -1.500000e+00 |
| EstimatedSalary | -9.657710e+04 |
| Exited          | 0.000000e+00  |

dtype: float64

sns.boxplot(df['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/\_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes.\_subplots.AxesSubplot at 0x7fb1c7c072d0>



from sklearn.preprocessing import LabelEncoder,OneHotEncoder

```
le = LabelEncoder()
oneh = OneHotEncoder()

df['Gender'] = le.fit_transform(df['Gender'])
df.head()
```

|   | RowNumber | CustomerId | Surname  | CreditScore | Geography | Gender | Age | Tenure | Ba:  |
|---|-----------|------------|----------|-------------|-----------|--------|-----|--------|------|
| 0 | 1         | 15634602   | Hargrave | 619         | France    | 0      | 42  | 2      |      |
| 1 | 2         | 15647311   | Hill     | 608         | Spain     | 0      | 41  | 1      | 838  |
| 2 | 3         | 15619304   | Onio     | 502         | France    | 0      | 42  | 8      | 1596 |
| 3 | 4         | 15701354   | Boni     | 699         | France    | 0      | 39  | 1      |      |
| 4 | 5         | 15737888   | Mitchell | 850         | Spain     | 0      | 43  | 2      | 1255 |
| 4 |           |            |          |             |           |        |     |        | •    |

```
df['Geography'] = le.fit_transform(df['Geography'])
df['Surname'] = le.fit_transform(df['Surname'])
```

df.head()

|   | RowNumber | CustomerId | Surname | CreditScore | Geography | Gender | Age | Tenure | Bal               |
|---|-----------|------------|---------|-------------|-----------|--------|-----|--------|-------------------|
| 0 | 1         | 15634602   | 1115    | 619         | 0         | 0      | 42  | 2      |                   |
| 1 | 2         | 15647311   | 1177    | 608         | 2         | 0      | 41  | 1      | 8380              |
| 2 | 3         | 15619304   | 2040    | 502         | 0         | 0      | 42  | 8      | 15960             |
| 3 | 4         | 15701354   | 289     | 699         | 0         | 0      | 39  | 1      |                   |
| 4 | 5         | 15737888   | 1822    | 850         | 2         | 0      | 43  | 2      | 1255 <sup>-</sup> |
| 4 |           |            |         |             |           |        |     |        | •                 |

Split the data into dependent and independent variables.

# Independent variables

|         | CreditScore     | Geography | Gender | Age | Tenure | Balance   | NumOfProducts | HasCrCaı |
|---------|-----------------|-----------|--------|-----|--------|-----------|---------------|----------|
| 0       | 619             | 0         | 0      | 42  | 2      | 0.00      | 1             |          |
| 1       | 608             | 2         | 0      | 41  | 1      | 83807.86  | 1             |          |
| 2       | 502             | 0         | 0      | 42  | 8      | 159660.80 | 3             |          |
| 3       | 699             | 0         | 0      | 39  | 1      | 0.00      | 2             |          |
| 4       | 850             | 2         | 0      | 43  | 2      | 125510.82 | 1             |          |
|         |                 |           |        |     |        |           |               |          |
| 9995    | 771             | 0         | 1      | 39  | 5      | 0.00      | 2             |          |
| 9996    | 516             | 0         | 1      | 35  | 10     | 57369.61  | 1             |          |
| 9997    | 709             | 0         | 0      | 36  | 7      | 0.00      | 1             |          |
| 9998    | 772             | 1         | 1      | 42  | 3      | 75075.31  | 2             |          |
| 9999    | 792             | 0         | 0      | 28  | 4      | 130142.79 | 1             |          |
| 10000 ו | rows × 10 colum | ns        |        |     |        |           |               |          |
| 4       |                 |           |        |     |        |           |               | •        |

## Dependent varaiables

```
y=df['Exited']
y
```

9 :

```
1 0
2 1
3 0
4 0
...
9995 0
9996 0
9997 1
9998 1
9999 0
Name: Exited, Length: 10000, dtype: int64
```

### Scale the independent variables

```
from sklearn.preprocessing import StandardScaler,MinMaxScaler
sc = StandardScaler()
x_scaled = sc.fit_transform(x)
x scaled
     array([[-0.32622142, -0.90188624, -1.09598752, ..., 0.64609167,
              0.97024255, 0.02188649],
            [-0.44003595, 1.51506738, -1.09598752, ..., -1.54776799,
              0.97024255, 0.21653375],
            [-1.53679418, -0.90188624, -1.09598752, ..., 0.64609167,
             -1.03067011, 0.2406869 ],
            [0.60498839, -0.90188624, -1.09598752, ..., -1.54776799,
              0.97024255, -1.00864308],
            [1.25683526, 0.30659057, 0.91241915, ..., 0.64609167,
             -1.03067011, -0.12523071],
            [1.46377078, -0.90188624, -1.09598752, ..., 0.64609167,
             -1.03067011, -1.07636976]])
```

### Split the data into training and testing

```
-1.03067011, 1.41441489],
[-0.62627792, 1.51506738, -1.09598752, ..., 0.64609167,
0.97024255, 0.84614739],
[-0.28483432, 0.30659057, -1.09598752, ..., 0.64609167,
-1.03067011, 0.32630495]])
```

### x\_test

```
array([[-0.55385049, 0.30659057, -1.09598752, ..., 0.64609167, 0.97024255, 1.61304597],
[-1.31951189, -0.90188624, -1.09598752, ..., 0.64609167, -1.03067011, 0.49753166],
[ 0.57394806, 1.51506738, -1.09598752, ..., 0.64609167, 0.97024255, -0.4235611 ],
...,
[ 0.35666577, -0.90188624, 0.91241915, ..., 0.64609167, 0.97024255, 1.17045451],
[ 0.4290932, -0.90188624, 0.91241915, ..., 0.64609167, 0.97024255, -0.50846777],
[ 0.83261746, 0.30659057, -1.09598752, ..., 0.64609167, 0.97024255, -1.15342685]])
```

Colab paid products - Cancel contracts here

• ×