COSC264 Introduction to Computer Networks and the Internet

Introduction to Routing

Dr. Barry Wu Wireless Research Centre University of Canterbury barry.wu@canterbury.ac.nz

An overview for this term

Given that we know how to transport data from A to B, how will we share data? **APP TRANSPORT** How to transport data from A to B in a **NETWORK** reliable way? How to find a route from A to B?

Outline

- Network layer overview
- Routing overview
- Link-state routing (Dijkstra's algorithm)
- Distance-vector routing (Bellman-Ford)
- Summary

Outline - today

- Network layer overview
- Routing overview
- Link-state routing (Dijkstra's algorithm)
- Distance-vector routing (Bellman-Ford)
- Summary

Outline

- Network layer overview
- Routing overview
 - General idea
 - Hierarchical routing
 - Forwarding vs routing
 - Classification of routing algorithms

Outline

- Network layer overview
- Routing overview
 - General idea
 - Hierarchical routing
 - Forwarding vs routing
 - Classification of routing algorithms

Protocol layering and data

Each layer takes data from above

adds header information to create new data unit

How to find a route from A to B?

Possible services of general network layer

- Possible ones:
 - Guaranteed delivery (/with bounded delay);
 - In-order delivery;

Service of the Internet network layer

- Best-effort service (No guarantee at all!);
- There are other networks (ATMasynchronous transfer mode -network) providing certain guarantees but they are not heard now.

A look inside the Internet's network layer

Outline

- Network layer overview
- Routing overview
 - General idea
 - Hierarchical routing
 - Forwarding vs routing
 - Classification of routing algorithms

What is routing?

 Routing refers to the network-wide process that determines the end-to-end paths that packets take from source to destination.

Source: Google maps

Why does routing matter?

- The network needs to work out the path from the sender to the receiver automatically;
- More precisely, from the sending router to the receiving router!!

Where does routing happen?

In the routers!

How does routing happen

Outline

- Network layer overview
- Routing overview
 - General idea
 - Hierarchical routing
 - Forwarding vs routing
 - Classification of routing algorithms

The scale of the Internet

 According to Cisco, 500 billion devices are expected to be connected to the Internet by 2030.

Hierarchical routing in the Internet

Autonomous System (AS)

- Each Internet Service Provider (ISP) is an AS
 - e.g., Google has an AS number (ASN): 15169,
 Facebook: 32934, Vodafone: 9500
 - Other AS examples: corporations, universities
- Exhibits the following characteristics:
 - is a set of routers and networks managed by a single organization;
 - consists of a group of routers exchanging information via a common routing protocol;
 - is connected;

An example

As Number

As Number

As Name

University of Canterbury

CIDR Range

132.181.0.0/16

Monitor this

As Number

As Name

University of Canterbury

University of Canterbury

Monitor this

University of Canterbury

202.36.178.0/23

Monitor this

Source: MXtoolbox

CIDR Range

```
C:\Users\xwu25>ping www.canterbury.ac.nz

Pinging www.canterbury.ac.nz [132.181.106.9] with 32 bytes of data:

Reply from 132.181.106.9: bytes=32 time=1ms TTL=252

Reply from 132.181.106.9: bytes=32 time=1ms TTL=252

Reply from 132.181.106.9: bytes=32 time=1ms TTL=252

Reply from 132.181.106.9: bytes=32 time=1ms TTL=252
```

WHOIS IP Lookup Tool

The IPWHOIS Lookup tool finds contact information for the owner of a specified IP address.

Enter a host name or an IP address:

```
202.36.178.0 Go »
```

Related Tools: DNS Traversal Traceroute Vector Trace Ping WHOIS Lookup

```
Source: whois.apnic.net
         IP Address: 202.36.178.0
% [whois.apnic.net]
% Whois data copyright terms http://www.apnic.net/db/dbcopyright.html
% Information related to '202.36.178.0 - 202.36.179.255'
% No abuse contact registered for 202.36.178.0 - 202.36.179.255
inetnum:
               202.36.178.0 - 202.36.179.255
               CCOE-NZ
netname:
               Christchurch College of Education
descr:
               PO Box 31-065
descr:
descr:
               Christchurch
country:
               NZ
admin-c:
              AB175-AP
               AB175-AP
tech-c:
              ASSIGNED PORTABLE
status:
                                                   Source: Ultratools.com
nomanke.
```

Three different types of AS

ASs are categorized according to the way they are connected each other ASs (not by their size).

- Stub AS
 - has only one connection to another AS
 - e.g., AS1, AS5
- Multi-homed AS
 - has more than one connection to other ASs, but does not allow traffic pass through
 - e.g., AS2
- Transit AS
 - is connected more than one AS and also allows the traffic to pass through
 - e.g., AS3, AS4

Hierarchical Routing in the Internet

Outline

- Network layer overview
- Routing overview
 - General idea
 - Hierarchical routing
 - Forwarding vs routing
 - Classification of routing algorithms

Forward vs Routing

- Routing determines the path to take
 - [analogy: planning trip from source to destination]
 - Routing is (general) not done per packet
 - Forwarding table entries populated by routing
 - Routing algorithm independent of forwarding
- Forwarding transfers packets hop-by-hop
 - [analogy: determining which exits to take on a drive]
 - Forwarding is per packet decision
 - Each switch (router) makes decision on which link to send

Routing vs. Forwarding (2)

- Routing: Computing paths the packets will follow
 - routers talking amongst themselves
 - o normally only between routers
 - non-real time: latency up to 2 minutes
 - Jointly creating <u>forwarding tables</u>
- Forwarding:
 - Directing every data packet to an outgoing link
 - Done in real time; may be implemented in specialised hardware
 - Individual router using a <u>forwarding table</u>

Forwarding Table

- The forwarding table:
 - results from the execution of the routing protocol (dynamic routing), or static / preconfigured (static routing)
 - is consulted for every packet
 - is changed on relatively large timescales, e.g. upon topology changes, load changes or changes in metrics
- A forwarding table within a router maps to each destination address:
 - an outgoing interface (next-hop)

[NZTA] 29

A forwarding table- a toy example

Destination address	Interface
200.23.16.0	0
200.23.16.1	0
200.23.16.2	0
•••	
200.23.16.255	0
200.23.17.0	1

Another forwarding table

Destination address range	Interface
range1	0
range2	1
range3	2

e.g., range1 – 200.23.16.0/24; CIDRised address 11001000 00010111 00010000 00000000

<u>11001000 00010111 00010000</u> 11111111

Apply longest prefix match when there are overlaps among range values.

Routing and Forwarding

Outline

- Network layer overview
- Routing overview
 - General idea
 - Hierarchical routing
 - Forwarding vs routing
 - Classification of routing algorithms

Q. What is the difference between routing algorithms and routing protocols?

Routing Algorithms and Routing Protocols

- A routing algorithm solves a routing problem with ideal assumptions.
- A routing protocol
 - embeds a routing algorithm into a real networking context:
 - o It operates in a distributed environment
 - o It incorporates explicit information exchange among nodes
 - o Information exchange takes time and might fail, the protocol must consider these possibilities

Routing Algorithms and Routing Protocols

Routing Protocols	Routing Algorithms
RIP	Bellman-Ford (Distance-vector) Algorithm
OSFP	Dijkstra's Algorithm
BGP	Bellman-Ford (Distance-vector) Algorithm

Routing algorithms classification

- Static or dynamic
- Global or decentralised
- Load-sensitive or load-insensitive

Static or dynamic

Static

- Routes change very slowly over time, often as a result of human intervention;
- Dynamic (adaptive)
 - Algorithm re-compute routes in response to topology or traffic change;
 - Route computation may occur
 - o Periodically
 - o In direct response to changes in topology and traffic
 - More responsive to changes;
 - o Routing loops and oscillation in routes

Global or decentralised

- State (topology and link costs)
- Global
 - Each node (router) has global knowledge (state) of the network;
 - Example: Dijkstra's algorithm;
- Decentralised
 - No node (router) has complete information (state) about the network;
 - Exchange information with its neighbours;
 - Example: Bellman-Ford algorithm;

Load-sensitive or load-insensitive

- Load-sensitive:
 - Link costs vary dynamically to reflect the current level of congestion in the link;
- Load-insensitive

The Internet routing protocols (RIP, OSPF, and BGP) are *load-insensitive*.

Summary

- Network layer overview
- Routing overview
 - General idea
 - Hierarchical routing
 - Forwarding vs routing
 - Classification of routing algorithms

References

- [KR3] James F. Kurose, Keith W. Ross, Computer networking: a top-down approach featuring the Internet, 3rd edition.
- [PD5] Larry L. Peterson, Bruce S. Davie, Computer networks: a systems approach, 5th edition
- [TW5] Andrew S. Tanenbaum, David J. Wetherall, Computer network, 5th edition
- [LHBi]Y-D. Lin, R-H. Hwang, F. Baker, Computer network: an open source approach, International edition

Acknowledgements

- All slides are developed based on slides from the following two sources:
 - Dr DongSeong Kim's slides for COSC264, University of Canterbury;
 - Prof Aleksandar Kuzmanovic's lecture notes for CS340, Northwestern University, https://users.cs.northwestern.edu/~akuzma/classes/CS340-w05/lecture notes.htm