浙江大学

2024~2025学年离散数学期中测验

测试方式:	闭卷 测试时间:	90分钟 卷面总分: 100分	
姓名:	学号:	分数:	

1 A witch invites you to play a game. In the game, there are three propositions: p,q,r.

Game Rules:

- Each round, you can propose a compound proposition composed of:
 - · Each of **p**, **q**, **r** appearing **exactly once**,
 - Logical operators:¬(NOT), ∧ (AND),∨(OR),
 - · **Parentheses** may be used to explicitly group sub-expressions (e.g., $(\mathbf{p} \wedge \mathbf{q}) \vee \neg \mathbf{r}$) (For example, $\mathbf{p} \wedge \mathbf{q}$ is illegal because \mathbf{r} does not appear; $(\mathbf{p} \wedge \mathbf{q} \wedge \mathbf{r} \wedge (\neg \mathbf{p} \wedge \mathbf{q} \wedge \mathbf{r})$ is illegal because $\mathbf{p}, \mathbf{q}, \mathbf{r}$ appearing more than once.)
- The witch then answers whether the compound proposition is true or false.
- After several rounds, if you can uniquely determine the truth values of p,q,r, the game ends.

Assumptions:

- -The witch is **perfectly logical** and will always ensure that:
- · There exists at least one possible truth assignment for **p,q,r** that allows the game to end.
- · She aims to **maximize the number of rounds** before you can uniquely determine the solution.

Example:

-In small example, there only two propositions:p,q.

Your propose Witch's answer

-Round1: $p \wedge q$ False

(Answering 'false' leaves three possible truth-value combinations for (p, q), whereas answering 'true' would only permit one. Consequently, this strategy maximizes the number of rounds in the game.)

- -Round2: $\neg p \land q$ False
- -Round3: $p \land \neg q$ False
- -Round4: $\neg p \land \neg q$ True

(Now the game ends. It takes 4 rounds. You can uniquely determine the truth values of \mathbf{p}, \mathbf{q} ; \mathbf{p} is False and \mathbf{q} is False)

Problem:

- -Provide a strategy to end the game as quickly as possible.
- -Determine the minimum number of rounds required to guarantee the game ends.(10')
- 2 An ordered pair (a,b) can be represented as the set $\{a,\{a,b\}\}$. Please express the following expressions in set notation(can't use ordered pair notation like (a,b)).(10')
- i. $\{1\} \times \{2\}$
- ii. $\{1,2\} \times \{2,3\}$
- iii. $\emptyset \times \{1, 2\}$
- iv. $(1,2) \times \{1,2\}$
- $V. \{\emptyset\} \times \{\emptyset, \{\emptyset\}\}$
- 3 i.Construct a bijection $(0,1) \rightarrow R.$ (6')
- ii. Construct an injection $(0,1)\times(0,1)\to (0,1)$.(Hint: Elements of (0,1) can be represented as $0.a_1a_2...$)(4')
- 4 i. Express an algorithm in pseudocode to find all numbers that appear **exactly twice** in a sequence of length n (where numbers in the sequence are **no greater than 1000**) (8')
- ii. **Directly write** the number of comparisons your algorithm would use in the **worst-case** (excluding comparisons in **for/while** conditions).(2')
- 5 Show that if $\bf a$ and $\bf m$ are relatively prime positive integers, then the inverse of $\bf a$ modulo $\bf m$ is unique modulo $\bf m$.(10')
- 6 Show that if a and b are both positive integers, then $(2^a 1) mod(2^b 1) = 2^{amodb} 1.$ (10')
- 7 i. Compute 3²⁰⁰³ mod 7.(6')
- ii. Compute the lowest digit (e.g.2 is the lowest digit of 8762; 3 is the lowest digit of 123) of $|3^{2003}div7|$ in base-10.(4')
- 8 Show that $[(\mathbf{p}_1 \to \mathbf{p}_2) \land (\mathbf{p}_2 \to \mathbf{p}_3) \land \cdots \land (\mathbf{p}_{n-1} \to \mathbf{p}_n)]$ $\rightarrow [(\mathbf{p}_1 \land \mathbf{p}_2 \land \cdots \land \mathbf{p}_{n-1}) \to \mathbf{p}_n]$ is a **tautology** (always true) using **mathematical induction** whenever $\mathbf{p}_1, \mathbf{p}_2, \cdots, \mathbf{p}_n$ are propositions, where $n \ge 2.(10')$
- 9 Which amounts of money can be formed using just two dollar bills and five-dollar bills? Prove your answer using **strong induction**.(10')
- 10 i. Give **iterative** and **recursive** algorithms for finding the **n**th term of the sequence defined by $\mathbf{a}_0 = 1$, $\mathbf{a}_1 = 3$, $\mathbf{a}_2 = 5$, and $\mathbf{a}_n = \mathbf{a}_{n-1} \cdot \mathbf{a}_{n-2}^2 \cdot \mathbf{a}_{n-2}^3$.(8')
- ii. Which is more efficient?(2')