_	
_	The density of a graph or subgraph with a nodes is
	the number of edges the number of edges
	maximum possible number of edges n(n-1)
	2
_	A CLIQUE is a subgraph with density = 1, i.e., a
	complete subcraph
_	A digue of size 3 (nodes) is called a TRIANGLE:
_	A common graph mining task is to find communities (or cliques, or dense subgraphs).
	(or cliques, or dense subgraphs).
	Degree
_	The degree of a node is the number of edges connected to it.
£	0 3 B
	degree(A)=2
	0 <u> </u>
늭	For directed graphs, each node can be associated with in-degree
-	(number of incoming edges) and out-degree (num of outgoing edges)
-	
-	shortest paths/Diameter
-	
1	The diameter of a graph is the maximum shortest path
-	between any pair of vertices. In the above example:
-	shortest pah A-B =1
-	A-C = 1
-	A-D=2 maximum shortest path=2,
-	B-C= SO DIMETER = 2
-	C-D=1
-	
-	For data analytics using DIAMETER, see
-	"six degrees of separation"
-	and "the small world phenomenon