Beach Strans

CLIPS

Studio di Fattibilità v1.0.0

Sommario

Analisi dei capitolati proposti e motivazioni per la scelta del progetto CLIPS

Nome del documento

Versione Data di redazione

> Redazione Verifica

Approvazione

Uso Lista di distribuzione Studio di Fattibilità

1.0.0

2016/04/05

Enrico Bellio

Luca Soldera

Viviana Alessio

 ${\rm Interno}$

prof. Tullio Vardanega

prof. Riccardo Cardin

Miriade SpA

Diario delle modifiche

Versione	Riepilogo	Autore	Ruolo	Data
1.0.0	Verifica completata	Luca Soldera	Verificatore	2016-04-05
0.3.3	Fix minori: cambiate lettere maiuscole all'inizio degli elenchi puntati	Enrico Bellio	Responsabile	2016-04-05
0.3.2	Modifica descrizione capitolato C4, aggiunta termini del glossario, aggiunta sezione riferimenti	Enrico Bellio	Responsabile	2016-04-04
0.3.1	Fix minori: aggiunti ; e . agli elenchi puntati	Enrico Bellio	Responsabile	2016-03-31
0.3.0	Prima verifica	Luca Soldera	Verificatore	2016-03-31
0.2.0	Stesura completata: aggiunta sezione del capitolato scelto	Enrico Bellio	Responsabile	2016-03-25
0.1.0	Prima stesura: aggiunta sezione altri capitolati	Enrico Bellio	Responsabile	2016-03-17

INDICE

Indice

1	Introduzione 3							
	1.1	Scopo del documento	3					
	1.2	Glossario	3					
	1.3	Riferimenti	3					
		1.3.1 Normativi	3					
		1.3.2 Informativi	3					
2	Cap	Capitolato scelto: C2 - CLIPS 4						
	2.1	Descrizione	4					
	2.2		4					
		2.2.1 Dominio Applicativo	4					
			4					
		2.2.3 Conclusioni	1					
3	Altı	tri Capitolati 6						
	3.1	Capitolato C1 - Actorbase	3					
		3.1.1 Scopo del progetto	3					
		3.1.2 Osservazioni	3					
	3.2	Capitolato C3 - Internet of things	ĉ					
			ŝ					
		3.2.2 Osservazioni	3					
	3.3		7					
			7					
			7					
	3.4		7					
	0.1	· · ·	7					
		3.4.2 Osservazioni	3					
	3.5	Capitolato C6 - Sintesi vocale su dispositivi mobili						
	0.0	3.5.1 Scopo del progetto	-					
		3.5.2 Osservazioni						

1 Introduzione

1.1 Scopo del documento

Questo documento ha l'obiettivo di mettere in evidenza i ragionamenti e le motivazioni che hanno portato alla scelta del progetto CLIPS.

È presente l'analisi di tutti e sei i capitolati proposti con particolare attenzione ai casi d'uso e alle tecnologie utilizzabili per ognuno.

1.2 Glossario

Al fine di evitare ogni ambiguità nel linguaggio e massimizzare la comprensione dei documenti, i termini tecnici, gli acronimi e le abbreviazioni che necessitano di definizione sono riportati nel documento " $Glossario\ v1.0.0$ ".

Inoltre ogni occorrenza di un vocabolo presente nel Glossario sarà posta in corsivo e seguita da una 'g' minuscola a pedice (p.es. *Glossario*_g).

1.3 Riferimenti

1.3.1 Normativi

Per le norme di progetto riferirsi al documento "Norme di Progetto v1.0.0"

1.3.2 Informativi

- Capitolato C1 Actorbase: http://www.math.unipd.it/~tullio/IS-1/2015/Progetto/C1.pdf
- Capitolato C2 CLIPS: http://www.math.unipd.it/~tullio/IS-1/2015/Progetto/C2.pdf
- $\bullet \ \, \text{Capitolato C3-Internet of things: http://www.math.unipd.it/~tullio/IS-1/2015/Progetto/C3.pdf} \\$
- Capitolato C4 MaaS: http://www.math.unipd.it/~tullio/IS-1/2015/Progetto/C4.pdf
- Capitolato C5 Quizzipedia: http://www.math.unipd.it/~tullio/IS-1/2015/Progetto/C5.pdf
- Capitolato C6 Sintesi vocale su dispositivi mobili: http://www.math.unipd.it/~tullio/IS-1/2015/Progetto/C6.pdf

2 Capitolato scelto: C2 - CLIPS

2.1 Descrizione

Il progetto CLIPS consiste nel ricercare nuovi scenari per l'implementazione della navigazione indoor e in particolare un nuovo metodo di navigazione alternativo al $GPS_{\rm g}$ che utilizzi la tecnologia $BLE_{\rm g}$ e un dispositivo mobile. Alcuni esempi di applicazione sono i seguenti:

- interrelazione con altri dispositivi e macchinari robotici (per esempio la programmazione di un apparecchio pilota per diversamente abili);
- trasmissione di contenuti attraverso i beacon_g, con sviluppo di un progetti di interazione e comunicazione (per esempio broadcast all'interno di un campus universitario);
- utilizzo dei $beacon_g$ nel social gaming (per esempio la caccia al tesoro).

2.2 Studio del Dominio

Come si evince dalla descrizione, il dominio del progetto è molto ampio, in quanto la tecnologia $BLE_{\rm g}$ può essere applicata in una moltitudine di casi molto diversi l'uno dall'altro. L'obiettivo principale è quello di trovare, se possibile, un nuovo metodo di localizzazione per la navigazione indoor e secondariamente un nuovo tipo di utilizzo.

2.2.1 Dominio Applicativo

Il problema principale affrontato dal capitolato è quello della navigazione indoor. I metodi di localizzazione di un dispositivo in una zona limitata (es.: una stanza all'interno di un edificio) risultano essere molto approssimativi, infatti la maggioranza dei $beacon_g$ viene utilizzata per fornire dei contenuti agli utenti che si trovano nel raggio d'azione del $beacon_g$ stesso, senza sapere la posizione esatta.

2.2.2 Dominio Tecnologico

Le principali conoscenze tecnologiche richieste sono:

- $JAVA_{\rm g}/Objective-C_{\rm g}$: questi sono i linguaggi di programmazioni necessari per sviluppare nativamente un'applicazione per $Android_{\rm g}$ e $iOS_{\rm g}$. Un'alternativa è un framework come $Phonegap_{\rm g}$ che permette di programmare in $HTML_{\rm g}+CSS_{\rm g}+Javascript_{\rm g}$ per sviluppare un'applicazione $multipiattaforma_{\rm g}$;
- Beacong: vista la natura del progetto è necessario essere a conoscenza di come i beacong interagiscono con i dispositivi a loro collegati;
- Database: qualsiasi sia l'ambiente di applicazione scelto, risulta necessario utilizzare un database per il salvataggio dei dati;
- Comunicazione tra database e $beacon_g$: è necessario conoscere dei protocolli di trasferimento dati (es: $HTTP_g$) per gestire la comunicazione tra il database e i $beacon_g$.

In aggiunta potrebbe essere necessario dover realizzare un portale web quindi in tal caso la conoscenza dei linguaggi $HTML_{\rm g},\ CSS_{\rm g},\ Javascript_{\rm g}$ e $PHP_{\rm g}$ risulta molto utile.

2.2.3 Conclusioni

Aspetti positivi:

- l'ampiezza del dominio applicativo consente di scegliere un'applicazione in cui il gruppo si trova a proprio agio a lavorare;
- le conoscenze necessarie allo sviluppo del progetto rientrano per la maggior parte nelle conoscenze necessarie per affrontare alcuni dei corsi del percorso di laurea triennale.

Aspetti negativi:

• l'utilizzo dei beacon_g per la navigazione indoor potrebbe risultare fallimentare vista la quantità di ostacoli che potrebbero causare problemi con la ricezione del segnale (es.: tipo di materiale delle pareti, persone, ecc.).

3 Altri Capitolati

3.1 Capitolato C1 - Actorbase

3.1.1 Scopo del progetto

Il progetto Actorbase consiste nella progettazione di un database non $relazionale_g$ che utilizzi il modello ad attori grazie all'uso delle seguenti tecnologie:

- \bullet la libreria $Akka_{\rm g}$ per l'implementazione del modello ad attori su $JVM_{\rm g};$
- \bullet Java o $Scala_{\rm g}$ come linguaggi di programmazione.

Inoltre è prevista l'implementazione di un $DSL_{\rm g}$ per poter interagire con il database da riga di comando.

3.1.2 Osservazioni

Poiché un progetto in cui viene utilizzato il modello ad attori è già stato affrontato per il progetto del corso di Programmazione Concorrente e Distribuita, il gruppo ha deciso di non intraprendere lo sviluppo di questo capitolato.

3.2 Capitolato C3 - Internet of things

3.2.1 Scopo del progetto

Il progetto Internet of things consiste, citando il capitolato, nella creazione di un un algoritmo predittivo in grado analizzare i dati provenienti da "oggetti", inseriti in diversi contesti, e fornire delle previsioni su possibili guasti, interazioni con nuovi utenti ed identificare dei pattern di comportamento degli utenti per prevedere le azioni degli stessi su altri oggetti o altri contesti.

L'applicativo software dovrà essere composto in tre parti:

- una console web amministrativa per la definizione di regole di apprendimento a seconda del contesto e tipo di dati;
- una console web di amministrazione per le singole aziende;
- \bullet dei servizi web restful $\mathit{JSON}_{\mathrm{g}}$ interrogabili.

La piattaforma dovrà inoltre permettere la comunicazione tramite i protocolli $HTTP_{\rm g}/HTTPS_{\rm g}$ standard e il protocollo $MQTT_{\rm g}.$

Le tecnologie consigliate sono le seguenti:

- MongoDB_g e/o OrientDB_g per il database;
- Amazon Web Services_g per l'infrastruttura;
- $\bullet \ \mathit{JAVA}_{\mathrm{g}}$ e/o $\mathit{Scala}_{\mathrm{g}}$ come linguaggi di programmazione;
- Play Framework_g come framework di sviluppo;
- HTML5g, CSS3g, Javascriptg e il framework Bootstrapg di Twitter per l'interfaccia web.

3.2.2 Osservazioni

La progettazione di un algoritmo predittivo è un argomento che interessa ai membri del gruppo ma la complessità dell'argomento e la mancanza delle conoscenze richieste per lo svolgimento del progetto hanno portato all'esclusione del capitolato da parte del gruppo.

3.3 Capitolato C4 - MaaS

3.3.1 Scopo del progetto

Il progetto MaaS consiste nella realizzazione di una piattaforma per rendere facilmente accessibile i dati contenuti in un database a coloro che non possiedono conoscenze in ambito informatico (es.: uomini d'affari). L'applicazione dovrà essere accessibile tramite un servizio web per le compagnie che ne usufruiranno e sfruttare $MaaP_{\rm g}$ per la rappresentazione grafica dei dati, inoltre dovrà estenderlo con le seguenti funzioni:

- SaaS_g: deve essere disponibile come unica istanza disponibile a più gruppi di persone, dedicando a ciascun gruppo una propria area di lavoro;
- DSL_g : deve essere possibile modificare online le definizioni del DSL_g , inoltre dovrebbero anche essere rese disponibili delle azioni predefinite (es.: esporta il csv_g del documento) e la $dashboard_g$.

I requisiti tecnologici sono i seguenti:

- $Node.js_g$ per il backend, per la precisione deve supportare la versione LTS_g $Argon_g$;
- $MongoDB_g$ con versione non inferiore alla 3 come database;
- il framework Loopback_g per la gestione del sistema;
- rendere disponibile il servizio su $Heroku_g$;
- \bullet utilizzare $github_{\rm g}$ o $bitbucket_{\rm g}$ per il versionamento.

3.3.2 Osservazioni

La carenza delle conoscenze necessarie per sviluppare il progetto ha portato il gruppo a decidere di scartare il capitolato data la grande quantità di tempo necessaria per colmare le lacune.

3.4 Capitolato C5 - Quizzipedia

3.4.1 Scopo del progetto

Il progetto Quizzipedia consiste nella progettazione di un sistema composto da:

- Un archivio di domande;
- Un sistema di test che somministra all'utente una serie di domande relative all'argomento scelto.

Le domande devono essere raccolte attraverso uno specifico linguaggio chiamato QML (Quiz Markup Language).

I requisisti minimi da soddisfare sono i seguenti:

- Archiviare i quiz in un server e suddividerli per argomento;
- Tradurre le domande archiviate da QML a $HTML_g$;
- Il QML deve poter gestire risposte vero/falso, a scelta multipla, testi ed immagini;
- Archiviare questionari contenenti le domande archiviate nel server;
- Proporre questionari preconfezionati;
- Valutare le risposte date dall'utente.

Il sistema dovrà essere utilizzato con tecnologie web quali:

- $JAVA_g$ e server $Tomcat_g$ oppure $Javascript_g$ e server $Node.js_g$ per la parte server;
- \bullet $HTML5_{\rm g},\ CSS_{\rm g}$ e $Javascript_{\rm g}$ per il client che dovrà essere eseguibile in un browser.

La parte destinata ai creatori di domande e quiz dovrà essere utilizzabile su PC mentre la parte destinata agli esaminandi dovrà funzionare con qualunque dispositivo.

3.4.2 Osservazioni

I membri del gruppo si sono trovati interessati allo sviluppo dell'applicazione visto che le conoscenze necessarie per lo sviluppo rientrano nelle conoscenze possedute dai membri stessi. Sfortunatamente non è stato possibile scegliere il capitolato in quanto non più disponibile al momento della creazione del gruppo.

3.5 Capitolato C6 - Sintesi vocale su dispositivi mobili

3.5.1 Scopo del progetto

Il progetto consiste nella realizzazione di un'applicazione che aggiunga nuove funzioni su smartphone e/o tablet per la sintesi vocale. L'applicazione deve usare il motore di sintesi $Flexible\ and\ Adaptive\ Text-To-Speechmcat_g\ e\ deve\ rispettare\ i\ seguenti\ requisiti\ obbligatori:$

- gestire i problemi causati dall'utilizzo di un servizio remoto (es.: gestire il caso in cui non si è in grado di accedere ad internet);
- \bullet implementare un'interfaccia grafica per la configurazione dei servizi $TTS_{\rm g}$.

I requisiti opzionali sono:

- supporto multipiattaforma;
- utilizzo e integrazione di servizi aggiuntivi (es.: l'integrazione del servizio di personalizzazione della voce nell'applicazione o l'utilizzo di risorse esterne per ottenere contenuti).

Per quanto riguarda le tecnologie da utilizzare, l'unico vincolo è quello di utilizzare il motore di sintesi Flexible and Adaptive Text-to-Speech.

3.5.2 Osservazioni

Il gruppo non ha riscontrato alcun interesse nello sviluppo di applicazioni riguardanti il $TTS_{\rm g}$.