Дискретная математика

1. Типы выборок k элементов из n

При выборе k элементов из множества из n элементов возможны различные типы выборок в зависимости от того, учитывается ли порядок элементов и допускаются ли повторения.

Перестановки

Перестановка - это упорядоченное расположение всех n элементов множества (т.е. k = n).

Формула для вычисления числа перестановок из п элементов:

$$P(n) = n! = n \times (n-1) \times (n-2) \times ... \times 2 \times 1$$

Перестановки с повторениями

Если имеется n элементов, среди которых есть повторяющиеся (n_1 элементов первого типа, n_2 элементов второго типа и т.д., причем $n_1 + n_2 + ... + n_k = n$), то число различных перестановок вычисляется по формуле:

$$P(n_1, n_2, ..., n_k) = n! / (n_1! \times n_2! \times ... \times n_k!)$$

Размещения

Размещение - это упорядоченный набор из k элементов, выбранных из множества из n элементов ($k \le n$).

Формула для вычисления числа размещений из n элементов по k:

$$A(n, k) = n! / (n-k)! = n \times (n-1) \times ... \times (n-k+1)$$

Размещения с повторениями

Если при составлении размещений допускаются повторения элементов, то число таких размещений:

$$\bar{A}(n, k) = n^k$$

Сочетания

Сочетание - это неупорядоченный набор из k элементов, выбранных из множества из n элементов ($k \le n$).

Формула для вычисления числа сочетаний из n элементов по k:

$$C(n, k) = n! / (k! \times (n-k)!) = A(n, k) / k!$$

$$C^{k_n} = C(n, k) = (n k) = n! / (k! \times (n-k)!)$$

Сочетания с повторениями

Если при составлении сочетаний допускаются повторения элементов, то число таких сочетаний:

$$C(n, k) = C(n+k-1, k) = (n+k-1)! / (k! \times (n-1)!)$$

Сводная таблица типов выборок

Тип выборки	Формула
Перестановки	P(n) = n!
Перестановки с повторениями	$P(n_1, n_2,) = n! / (n_1! \times n_2! \times)$
Размещения	A(n, k) = n! / (n-k)!
Размещения с повторениями	$\bar{A}(n, k) = n^k$
Сочетания	$C(n, k) = n! / (k! \times (n-k)!)$
Сочетания с повторениями	C(n, k) = C(n+k-1, k)

2. Бином Ньютона, следствия

Бином Ньютона

Бином Ньютона - это формула для разложения бинома $(x + y)^n$ в многочлен:

$$(x+y)^n = \sum_{k=0}^n C(n,\,k) \times x^{n-k} \times y^k = C(n,\,0) \times x^n + C(n,\,1) \times x^{n-1} \times y + ... + C(n,\,n) \times y^n$$

где C(n, k) - биномиальные коэффициенты (числа сочетаний).

Свойства биномиальных коэффициентов

- 1. C(n, 0) = C(n, n) = 1
- 2. C(n, k) = C(n, n-k)
- 3. C(n+1, k) = C(n, k-1) + C(n, k)
- 4. $\sum_{k=0}^{n} C(n, k) = 2^{n}$
- 5. $\sum_{k=0}^{n} (-1)^k \times C(n, k) = 0$
- 6. $\sum_{k=0}^{n} k \times C(n, k) = n \times 2^{n-1}$

Треугольник Паскаля

Треугольник Паскаля - это треугольное расположение биномиальных коэффициентов C(n, k), где n - номер строки (начиная с 0), k - номер элемента в строке (начиная с 0).

Каждое число в треугольнике равно сумме двух чисел, расположенных над ним: C(n+1, k) = C(n, k-1) + C(n, k)

Полиномиальная теорема

Полиномиальная теорема является обобщением бинома Ньютона и позволяет разложить выражение $(x_1 + x_2 + ... + x_m)^n$:

$$(x_1 + x_2 + ... + x_m)^n = \sum_{k_1 + k_2 + ... + k_m = n} (n! / (k_1! \times k_2! \times ... \times k_m!)) \times x_1^{k_1} \times x_2^{k_2} \times ... \times x_m^{k_m}$$

где сумма берется по всем наборам неотрицательных целых чисел (k_1 , k_2 , ..., k_m), удовлетворяющих условию $k_1 + k_2 + ... + k_m = n$.

Коэффициент при $x_1^{k1} \times x_2^{k2} \times ... \times x_m^{km}$ называется полиномиальным коэффициентом и обозначается:

$$C(n; k_1, k_2, ..., k_m) = n! / (k_1! \times k_2! \times ... \times k_m!)$$

3. Разбиение множества

Разбиением множества A называется такое семейство непустых подмножеств A_1 , A_2 , ..., A_k множества A, что:

- 1. $A_1 \cup A_2 \cup ... \cup A_k = A$ (объединение всех подмножеств дает исходное множество)
- 2. $A_i \cap A_j = \emptyset$ для всех $i \neq j$ (подмножества попарно не пересекаются)

Числа Стирлинга II рода

Число Стирлинга второго рода S(n, k) определяет количество способов разбить множество из n элементов на k непустых непересекающихся подмножеств.

Рекуррентное соотношение для вычисления чисел Стирлинга II рода:

$$S(n, k) = k \times S(n-1, k) + S(n-1, k-1), n > 0, k > 0$$

с граничными условиями:

- S(n, 0) = 0 для n > 0
- S(0, 0) = 1
- S(n, k) = 0 для k > n

Числа Белла

Число Белла B(n) определяет общее количество различных разбиений множества из n элементов (на любое количество подмножеств).

Связь с числами Стирлинга II рода:

$$B(n) = \sum_{k=1}^{n} S(n, k)$$

Рекуррентное соотношение для чисел Белла

Числа Белла можно вычислить по следующему рекуррентному соотношению:

$$B(n+1) = \sum_{k=0}^{n} C(n, k) \times B(k)$$

Также для чисел Белла существует треугольная схема вычисления:

$$B(0) = 1$$

где аі, і вычисляются по формуле:

- a_{i,o} = B(i)
- $a_{i,j} = a_{i,j-1} + a_{i-1,j-1}$

4. Формула включений и исключений

В терминах множеств

Формула включений и исключений позволяет вычислить мощность объединения нескольких конечных множеств.

Для двух множеств: $|A \cup B| = |A| + |B| - |A \cap B|$

Для трех множеств: $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$

Для n множеств: $|A_1 \cup A_2 \cup ... \cup A_n| = \sum_i |A_i| - \sum_i <_j |A_i \cap A_j| + \sum_i <_j <_k |A_i \cap A_j \cap A_k| - ... + (-1)^{n+1} |A_1 \cap A_2 \cap ... \cap A_n|$

или в более компактной форме: $|\cup_{i=1}^n A_i| = \sum_{k=1}^n (-1)^{k+1} \sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq n} |A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k}|$

В терминах свойств

Если U - универсальное множество, а A_i - множество элементов, обладающих свойством i, то формула включений и исключений позволяет найти количество элементов, обладающих хотя бы одним из n свойств:

$$|A_1 \cup A_2 \cup ... \cup A_n| = \sum_{k=1}^n (-1)^{k+1} \sum_{1 \le i_1 \le i_2 \le ... \le i_k \le n} N(i_1, i_2, ..., i_k)$$

где $N(i_1, i_2, ..., i_k)$ - количество элементов, обладающих свойствами $i_1, i_2, ..., i_k$ одновременно.

Формула для вычисления числа элементов, обладающих ровно k свойствами

Пусть $N_{=k}$ - количество элементов, обладающих ровно k свойствами из n. Тогда:

$$N_{=k} = \sum_{i=k}^{n} (-1)^{i-k} \times C(i, k) \times N_i$$

где N_i - количество элементов, обладающих по крайней мере і свойствами.

Альтернативно, можно выразить через количество элементов, обладающих ровно і свойствами:

$$N_{=k} = \sum_{j=0}^{n-k} (-1)^{j} \times C(n-k, j) \times N(k+j)$$

где N(i) - количество элементов, обладающих всеми і указанными свойствами.

Формула для вычисления числа элементов, обладающих не менее чем к свойствами

Пусть N≥_k - количество элементов, обладающих не менее чем k свойствами из n. Тогда:

$$N \ge_k = \sum_{i=k}^n N_{=i} = \sum_{i=k}^n \sum_{j=0}^{n-k} (-1)^j \times C(n-i, j) \times N(i+j)$$

Используя формулу включений и исключений:

$$N \ge_k = \sum_{i=k}^n (-1)^{i-k} \times C(i-1, k-1) \times N(i)$$

где N(i) - количество элементов, обладающих всеми і указанными свойствами.

5. Производящие функции

Производящая функция для последовательности $\{a_n\}_{n=0}^\infty$ - это формальный степенной ряд:

$$G(x) = \sum_{n=0}^{\infty} a_n \times x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + ...$$

Свойства производящих функций

Сложение

Если
$$G_1(x) = \sum_{n=0}^{\infty} a_n \times x^n$$
 и $G_2(x) = \sum_{n=0}^{\infty} b_n \times x^n$, то:

$$G_1(x) + G_2(x) = \sum_{n=0}^{\infty} (a_n + b_n) \times x^n$$

Умножение

Если
$$G_1(x) = \sum_{n=0}^{\infty} a_n \times x^n$$
 и $G_2(x) = \sum_{n=0}^{\infty} b_n \times x^n$, то:

$$G_1(x) \times G_2(x) = \sum_{n=0}^{\infty} C_n \times x^n$$
, где $C_n = \sum_{k=0}^{\infty} a_k \times b_{n-k}$

Это соответствует свертке последовательностей $\{a_n\}$ и $\{b_n\}$.

Дифференцирование

Если
$$G(x) = \sum_{n=0}^{\infty} a_n \times x^n$$
, то:

$$G'(x) = \sum_{n=1}^{\infty} n \times a_n \times x^{n-1} = \sum_{n=0}^{\infty} (n+1) \times a_{n+1} \times x^n$$

Это позволяет извлечь коэффициенты с весами n.

Интегрирование

Если
$$G(x) = \sum_{n=0}^{\infty} a_n \times x^n$$
, то:

$$\int G(x)dx = C + \sum_{n=0}^{\infty} a_n \times x^{n+1}/(n+1) = C + \sum_{n=1}^{\infty} a_{n-1} \times x^n/n$$

где С - константа интегрирования.

Примеры применения производящих функций

Последовательность Фибоначчи

Для последовательности Фибоначчи $\{F_n\}_{n=0}^\infty$, где $F_0=0$, $F_1=1$, $F_{n+2}=F_{n+1}+F_n$, производящая функция:

$$G(x) = x / (1 - x - x^2)$$

Биномиальные коэффициенты

Производящая функция для биномиальных коэффициентов C(n, k) при фиксированном n:

$$G(x) = (1 + x)^n = \sum_{k=0}^n C(n, k) \times x^k$$

6. Однородные и неоднородные линейные рекуррентные соотношения

Линейные рекуррентные соотношения

Линейное рекуррентное соотношение порядка k - это соотношение вида:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k} + f(n)$$

где $c_1, c_2, ..., c_k$ - константы, $c_k \neq 0$, a f(n) - заданная функция.

Однородные линейные рекуррентные соотношения

Если f(n) = 0, то рекуррентное соотношение называется однородным:

$$a_n = C_1 a_{n-1} + C_2 a_{n-2} + ... + C_k a_{n-k}$$

Характеристическое уравнение

Для решения однородного линейного рекуррентного соотношения порядка k используется характеристическое уравнение:

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - ... - c_{k} = 0$$

Теорема об общем виде решения однородного линейного рекуррентного соотношения порядка k

Пусть r_1 , r_2 , ..., r_s - различные корни характеристического уравнения с кратностями m_1 , m_2 , ..., m_s соответственно ($m_1 + m_2 + ... + m_s = k$).

Тогда общее решение однородного линейного рекуррентного соотношения порядка k имеет вид:

$$a_n = \sum_{i=1}^{s} (\alpha_{1i} + \alpha_{2i}n + \alpha_{3i}n^2 + ... + \alpha_{mii}n^{mi-1}) \times r_i^n$$

где α_1 , α_2 , ..., α_{mii} - произвольные константы, определяемые из начальных условий.

Частные случаи:

1. Если все корни r_1 , r_2 , ..., r_k различны (все $m_i = 1$), то общее решение: $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + ... + \alpha_k r_k^n$

2. Если есть кратные корни, то для корня r_i кратности m_i соответствующая часть решения: $(\alpha_{1i} + \alpha_{2i}n + \alpha_{3i}n^2 + ... + \alpha_{mii}n^{mi-1}) \times r_i^n$

Неоднородные линейные рекуррентные соотношения

Для неоднородного линейного рекуррентного соотношения:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k} + f(n)$$

общее решение представляется в виде:

$$a_n = a_n' + a_n''$$

где a_n ' - общее решение соответствующего однородного уравнения, а a_n '' - частное решение неоднородного уравнения.

Для нахождения частного решения используются методы:

- 1. Метод неопределенных коэффициентов (если f(n) многочлен, экспонента или их произведение)
- 2. Метод вариации произвольных постоянных
- 3. Использование производящих функций