Turing Categories and Computability

Amittai Siavava

05/23/2024

Contents

Introduction	1
§1. Preliminaries	1
1.1 Categories	1
1.2 Restriction Categories	3
§2. Turing Categories	3
2.1 Basic Properties of Turing Categories	4
References	4

Introduction

In this paper, we construct a turing category \Bbbk and study the resulting implications on computability.

1 Preliminaries

1.1 Categories

Definition 1.1. A *category* \mathscr{A} consists of:

- **1.** A collection $ob(\mathscr{A})$ of objects;
- **2.** For each pair of objects $A, B \in \mathbf{ob}(\mathscr{A})$, a set $\mathscr{A}(A, B)$ of **arrows** or **morphisms** or **maps** from A to B;
- **3.** For each $A, B, C \in \mathbf{ob}(\mathscr{A})$, a function

$$\circ_{A,B,C}: \mathscr{A}(B,C) \times \mathscr{A}(A,B) \to \mathscr{A}(A,C)$$

$$(f,g) \mapsto f \circ g$$

called *composition*; where $(f \circ g)(x) = f(g(x))$ for all $x \in A$.

4. For each $A \in \mathbf{ob}(\mathscr{A})$, an arrow $\mathsf{id}_A \in \mathscr{A}(A,A)$ called the *identity* on A;

such that the following axioms hold:

- **1.** associativity: for all $f \in \mathcal{A}(A, B)$, $g \in \mathcal{A}(B, C)$, and $h \in \mathcal{A}(C, D)$, $(h \circ g) \circ f = h \circ (g \circ f)$.
- **2.** identity laws: for all $f \in \mathcal{A}(A, B)$, $f \circ id_A = f = id_B \circ f$.

Remark 1.2. As simplifications, we write:

- (a) $A \in \mathscr{A}$ to mean $A \in \mathbf{ob}(\mathscr{A})$;
- (b) $f: A \to B$ or $A \xrightarrow{f} B$ to mean $f \in \mathcal{A}(A, B)$;
- (c) fg for $f \circ g$;

 \Diamond

Examples 1.3. 1. There is a category Set, where

- (a) **ob**(Set) is the collection of all sets;
- (b) Set(A, B) is the set of all functions from A to B;
- (c) composition is ordinary function composition;
- (d) the identity on A is the identity function on A.
- 2. There is a category Grp, where
 - (a) **ob**(Grp) is the collection of all groups;
 - (b) $\mathsf{Grp}(G,H)$ is the set of all group homomorphisms from G to H;
 - (c) composition is ordinary function composition;
 - (d) the identity on G is the identity homomorphism on G.
- 3. There is a category Top of topological space and continuous maps.
- 4. For each field k, there is a category Vect_k of vector spaces over k and linear maps between them.

 \Diamond

Definition 1.4. A map $f: A \to B$ in a category \mathscr{A} is an *isomorphism* if there exists a map $g: B \to A$ such that $fg = \mathrm{id}_A$ and $gf = \mathrm{id}_B$. Ee call g the *inverse* of f and write $f^{-1} = g$, and say that A and B are *isomorphic* if there exists an isomorphism between them.

Examples 1.5. 1. In Set, isomorphisms are bijections.

- 2. In Grp and Ring, isomorphisms are group and ring isomorphisms respectively.
- **3.** In $Vect_k$, isomorphisms are linear isomorphisms.

 \Diamond

1.2 Restriction Categories

Definition 1.6. A *restriction category* is a category $\mathscr A$ with a *restriction* operation that assigns to each arrow $f:A\to B$ an arrow $\bar f:A\to A$ such that:

- 1. $\bar{f} \circ f = f$;
- **2.** $\bar{f} \circ \bar{g} = \bar{g} \circ \bar{f}$ whenever $\operatorname{dom}(f) = \operatorname{dom}(g)$;
- **3.** $\overline{f \circ \overline{g}} = \overline{g} \circ \overline{f}$ whenever $\operatorname{dom}(f) = \operatorname{dom}(g)$.
- **4.** $\bar{g} \circ f = \bar{g} \circ f \circ \bar{g}$ whenever $\operatorname{dom}(f) = \operatorname{range}(g)$.

Remark 1.7. It follows from the definition that \bar{f} is **idempotent**. That is, $\bar{f} \circ \bar{f} = \bar{f}$. Furthermore, the operation $f \mapsto \bar{f}$ is also monotonic, with $\bar{\bar{f}} = \bar{f}$.

Examples 1.8. Here are a few examples of restriction categories. [2]

- 1. All categories admit the trivial restriction operation that maps $f: A \to B$ to $\bar{f} = id_A$.
- **2.** The category Par of partial functions between sets admits a restriction operation that maps $f: A \rightharpoonup B$ to $\bar{f} = \mathsf{id}_{\mathbf{dom}(f)}$.

 \Diamond

2 Turing Categories

A Turing category is a cartesian restriction category \mathcal{T} equipped with:

- 1. cartesian products to pair (the codes of) data and programs;
- 2. a restriction structure representing the notion of partiality for represent programs (morphisms) which do not necessarily halt;
- **3.** and a *Turing object* A to represent the "codes" of all programs. A Turing object is an object A such that for any $X, Y \in \mathcal{T}$, there is a universal application morphism $\tau_{X,Y} : A \times X \to Y$ that represents the application of a program (in A) to data (in X) to produce a result (in Y). [1]

Turing categories provide an abstract framework for computability: a "category with partiality" equipped with a "universal computer", whose programs and codes thereof constitute the objects of interest. [1]

2.1 Basic Properties of Turing Categories

Definition 2.1. Given two objects $A, B \in \mathcal{C}$, A is a **retract** of B if there exist morphisms $s : A \to B$ and $r : B \to A$ such that $r \circ s = id_A$. s is called a **retraction** and r is called a **retraction**.

$$A \overset{s}{\underset{r}{\swarrow}} B$$

Lemma 2.2. In a Turing category $\mathscr C$ with a Turing object A, every object $B \in \mathscr C$ is a retract of A.

Examples 2.3. Here are some examples of Turing categories:

1. The classical recursion category \mathscr{R} , where objects are sets and morphisms are partial computable ("recursive") functions. Since Turing machine (or register-machine)—computable functions are exactly the partial computable functions, one may consider the codes of Turing machines corresponding to the partial computable functions as the objects of \mathscr{R} , with $\varphi_i : \mathbb{N} \to \mathbb{N}$ representing the machine with code i. [1] When $f = \varphi_e$, we say that e is a code for f.

Key properties of classical recursion include:

(a) The existence of a universal partial computable function Φ such that for each $e \in \mathbb{N}$,

$$\Phi(e, x_1, x_2, \dots, x_n) = \varphi_e(x_1, x_2, \dots, x_n).$$

(b) The **s-m-n Theorem**: There are computable and injective functions s_m^n for each m, n > 0 such that

$$\varphi_e(x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n) = \varphi_{s_m^n(e, x_1, x_2, \dots, x_m)}(y_1, y_2, \dots, y_n).$$

Define

•:
$$\mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

 $(e, x) \mapsto \varphi_e(x).$

Consider the category $\mathsf{Comp}(\mathbb{N})$ with the following properties:

- (a) $\mathbf{ob}(\mathsf{Comp}(\mathbb{N})) = \{ \mathbb{N}^i \mid i \in \mathbb{N} \};$
- (b) $f: \mathbb{N}^k \to \mathbb{N}^m$ is an m-tuple of partial computable functions of k variables each.

 \Diamond

Some of the key results in computability theory carry over to Turing categories, including the following.

Theorem 1. (smn) For $\varphi: A \to B$ partial computable, there exists a partial computable function $s: \mathbb{N} \to \mathbb{N}$ such that $\varphi(\langle i, n \rangle) = \varphi_{s(i)}(n)$ for all $x \in \mathbf{dom}(\varphi)$.

References

- [1] J.R.B. Cockett and P.J.W. Hofstra, *Introduction to turing categories*, Annals of Pure and Applied Logic **156** (2008), no. 2, 183–209.
- $[2] \ \ {\rm Tom\ Leinster}, \ {\it Basic\ category\ theory}, \ 2016.$