

Database Management Systems

Dr.R.Gururaj CS&IS Dept.

Relational Data Model & Relational Constraints

Content

- 1. What is Relational model
- 2. Characteristics
- 3. Relational constrains
- 4. Representation of schemas

Relational Model

Edgar Codd proposed Relational Data Model in 1970. It is a representational or implementation data model.

Using this representational (or implementation) model we represent a database as *collection of relations*.

The notion of *relation* here is different from the notion of *relationship* used in ER modeling.

Relation is the main construct for representing data in relational model.

Every relation consists of a relation schema and Relation instance.

Relation Schema is denoted by

The number of columns in a relation is known as its *degree* or *arity*'.

Relation instance or Relation State (r) of R (thought of as a table)

Each *row* in the table represents a collection of related data.

Each row contains facts about some entity of some entity-set.

R =
$$(A_1, A_2, A_3, ..., A_n)$$

 $r(R)$ is a set of n tuples in R
 $r = \{t_1, t_2, t_3, ..., t_n\}$

r is an instance of R each t is a tuple and is a ordered list of values.

 $t = (v_1, v_2, ..., v_n)$ where v_i is an element of domain of A_i

Entities of each type/set are stored as rows in a single relation.

Hence in general, a *relation* corresponds to a single entity type in ER.

In some cases a relationship between two entities can have some specific attributes which can be captured in a relation (table).

A row is called a *tuple*.

The columns of the table represent attributes of that entity-set.

The column header is known as *attribute* or *field*. *Data type or format* of an attribute: is the format of data for that attribute. Ex. Character strings, numeric, alphanumeric etc.

Values that can appear in a column for any row is called the *domain* of that attribute.

Relational Database Schema is denoted by

Attribute A of relation R is accessed by notation- R.A.

Ex: Student (name, age, branch). Here Student is the relation name.

Student.age - denotes age attribute of Student relation.

Characteristics of a Relation:

- Ordering of tuples is not significant.
- Ordering of values in a tuple is important.
- ❖ Values in a tuple under each column must be atomic (simple & single).

Figure 5.1
The attributes and tuples of a relation STUDENT.

Relational Model Terminology

<u>Informal Terms</u>	<u>Formal Terms</u>
Table	Relation
Column Header	Attribute
All possible Column Values	Domain
Row	Tuple
Table Definition	Schema of a Relation
Populated Table	State of the Relation

Relational Constraints

Constraints are restrictions on data of a relation.

□ Domain level Constrains – Format of data Ex. Character numeric etc.

Semantic – Not NULL etc.

- □ Entity integrity constraints Primary key, unique key
- □ Referential integrity constraints—Foreign key
- □Dependencies -

Functional dependency: What attributes value defines the value of another attribute is known as dependency.

This concept is used in database design.

Referential integrity

The Referential Integrity constraint is specified between two relations and is used to maintain consistency among the tuples of two relations. FK DK

The FK attribute R_1 has the same domain as the primary key attribute of R_2 .

The attribute c in R_1 is said to reference the attribute p in R_2 .

The value of FK in a tuple t of R_1 either occurs as a value under p in R_2 for some tuple, or is a NULL.

 $R_1 \rightarrow$ is known as referencing relation $R_2 \rightarrow$ is known as referenced relation

Constraints can be specified while defining the structure & also as triggers.

Relational Schema Representation

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
							,		

DEPARTMENT

Dname Dnumb	er Mgr_ssn	Mgr_start_date
-------------	------------	----------------

DEPT_LOCATIONS

<u>Dnumber</u>	Dlocation
----------------	-----------

PROJECT

Pname Pnumber Plocation Dnum

WORKS_ON

Essn	<u>Pno</u>	Hours
------	------------	-------

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
		00%		110.00.00

Figure 5.5

Schema diagram for the COMPANY relational database schema.

Relational Schema Representation

Figure 5.7Referential integrity constraints displayed on the COMPANY relational database schema.

Operations on Relations and constraints

The following table indicates the constraints need to be taken care while performing certain operations on a relation.

Operation on relations	Constraints need to be	
	taken care	
Insert	Null, Not Null, PK, unique, FK,	
	format, Domain	
Delete	FK	
Update	Null, Not Null, PK, unique, FK,	
	domain, and Semantic	

Actions need to be taken when FK is set , on operations like

update, insert, and delete.

If insert a tuple in R1 where the value for c is not in p of R2, then don't allow.

What if a tuple in R2 is deleted: Cascade, don't allow, set to default, set to null.

What if update on R2's p happens:

Cascade, don't allow, set to default, set to null.

Summary

- ✓ What are basics of relational model
- ✓ Relation instance
- ✓ Relational data constraints
- ✓ Referential integrity
- ✓ Relational scheme representation