ВВЕДЕНИЕ

Симбиотические двойные — это системы, в спектре которых можно выделить линии поглощения, характерные для холодных звёзд, и эмиссионные линии, характерные для горячих туманностей.

Предполагается, что они состоят из близко расположенных красного гиганта и белого карлика, которые традиционно называются холодным и горячим компонентами. Из-за гравитации белого карлика красный гигант перестаёт быть сферически симметрчиным и приобретает каплевидную форму. Кроме того, может происходить перенос массы с красного гиганта на белый карлик, за счёт чего образуется аккреционный диск. Вещество может перетекать с помощью звёздного ветра — или напрямую с поверхности, если холодный компонент полностью заполняет свою полость Роша.

Поскольку красный гигант не является сферически симметричным, при движении по орбите его блеск меняется. Такая переменность называется эллипоидальной. Помимо чисто геометрического эффекта, на переменность также влияет гравитационное потемнение — зависимость температуры от ускорения силы тяжести в конкретной точке поверхности звезды. Из-за него полюса красного гиганта будут наиболее горячими и яркими, а «носик», расположенный на экваторе и направленный в сторону точки Лагранжа — наиболее холодным.

В данной работе анализируются кривые блеска Т Северной Короны, измеренные в Крымской обсерватории ГАИШ МГУ в 1996–2003 и 2008-2021. На их основе мы определяем соотношение масс компонентов и наклонение орбиты — то есть решаем обратную задачу.

Т Северной Короны — повторная новая. Она вспыхивала в 1866, 1946 и, предполагается, должна вспыхнуть в 2024 [1]. Повторные новые возникают, когда на поверхности белого карлика скапливается достаточно много водорода, перетекшего с красного гиганта, и начинается термоядерная реакция. Светимость в результате повышается на ~10 звёздных величин и медленно снижается в течение десятков дней.

Цель работы — получить распределение вероятностей наклонения и соотношения масс компонентов двойной звезды Т Северной Короны.

Методами исследования являются компьютерное моделирование кривых

блеска и статистический вывод. Мы применили байесовский подход, воспользовавшись библиотекой для вероятностного программирования Turing.;1 [2].

Вероятностное программирование — парадигма программирования, предназначенная для работы с вероятностными моделями, которая позволяет автоматизировать статистический вывод и проверку гипотез. Главными идеями вероятностного программирования является автоматизированное применение теоремы Байеса, которое позволяет получить апостериорное распределение вероятностей для параметров задачи, и семплирование из него с помощью марковских цепей. Байесовский подход позволяет легко комбинировать данные от разнородных наблюдений.

Задачами работы являются:

- 1) Численное моделирование физики переменности, получение модельных кривых блеска.
- 2) Построение вероятностной модели, учитывающей статистические свойства экспериментальных данных.
- 3) Получение апостериорного распределения вероятностей для параметров модели (наклонение, соотношение масс) и семплирование из него.
- 4) Анализ распределения, получение оценок параметров и их доверительных интервалов.

Настоящая работа была представлена на конференции МФТИ в 2024.

Новизна исследования заключается в применении байесовского подхода к обратной задаче астрофизики.

Значимость работы заключается в получении оценок параметров двойной звезды Т Северной Короны, создании вероятностной модели переменности, в которую можно добавлять реалистичные модели звёздных атмосфер, и которая может быть использована для анализа других симбиотических двойных.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Announcing T CrB pre-eruption dip / B. E. Schaefer [et al.]. 2023. URL: https://www.aavso.org/news/t-crb-pre-eruption-dip. AAVSO.
- 2 *Ge H.*, *Xu K.*, *Ghahramani Z.* Turing: A Language for Flexible Probabilistic Inference // Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics / ed. by A. Storkey, F. Perez-Cruz. PMLR, 2018. URL: https://proceedings.mlr.press/v84/ge18b.html.