МФТИ, ФПМИ

Алгоритмы и структуры данных, осень 2021 Семинар №1. Асимптотики, простые алгоритмы

Мастер-теорема. Пусть T(n) = aT(n/b) + f(n), где $a \ge 1, b > 1$. Тогда:

- 1. если $\exists \varepsilon > 0 : f(n) = O(n^{\log_b a \varepsilon})$, то $T(n) = \Theta(n^{\log_b a})$;
- 2. если $f(n) = \Theta(n^{\log_b a})$, то $T(n) = \Theta(n^{\log_b a} \cdot \log n)$;
- 3. если $\exists \varepsilon > 0 : f(n) = \Omega(n^{\log_b a + \varepsilon})$, причём $\exists c < 1 : af(n/b) \leqslant cf(n)$, то $T(n) = \Theta(f(n))$.
- 1. Пусть c>0 константа. Докажите, что решение рекурренты T(n)=T(n/3)+T(2n/3)+cn ведёт себя как $\Omega(n \log n)$.
- 2. Найдите решение для каждого из приведённых ниже рекуррентных соотношений в терминах Θ :
 - a) T(n) = 2T(n/3) + 1;
 - 6) T(n) = 5T(n/4) + n;
 - B) T(n) = 7T(n/7) + n;
 - Γ) $T(n) = 9T(n/3) + n^2$;
 - д) $T(n) = 8T(n/2) + n^3$;
 - e) $T(n) = 49T(n/25) + n^{3/2} \log n$;
 - ж) T(n) = T(n-1) + 2;
 - з) $T(n) = T(n-1) + n^c$, где $c \ge 1$ константа;
 - и) $T(n) = T(n-1) + c^n$, где c > 1 константа;
 - K) T(n) = 2T(n-1) + 1;
 - л) T(n) = T(n/2) + 1;
 - M) $T(n) = T(\sqrt{n}) + 1$.
- 3. Истина или ложь?
 - a) $2^{n+3} = \Theta(2^n)$;
 - 6) $2^n = \Theta(2^{n/2});$
 - B) $n^2 = O(2^n)$;

 - $\Gamma) \frac{n}{\log n} = \Omega(\log n);$ д) $\frac{n}{\log n} = \Theta(\frac{n}{2});$ e) $\sqrt{n}^{\sqrt{n}} = O((\log n)^n);$
 - ж) $n^{\log n} = O(1.1^n);$
 - 3) $n^n = O(n!)$.
- **4.** Пусть f, q, s, t функции из \mathbb{N} в \mathbb{N} . Пусть известно, что $f(n) = \xi(s(n))$, а $g(n) = \eta(t(n))$, где ξ и η какие-то из значков O, Ω, Θ . Как можно связать $f(n) \cdot g(n)$ и $s(n) \cdot t(n)$?
- **5.** Пусть a_1, \ldots, a_n и b_1, \ldots, b_m две последовательности чисел. Предложите алгоритм их слияния (относительный порядок элементов в обеих последовательностях должен сохраниться) для получения лексикографически минимальной/максимальной последовательности за O(n+m). Считаем, что список чисел x_1, \ldots, x_k лексикографически меньше списка y_1, \ldots, y_k , если существует такое m < k, что $x_1 =$ $y_1, \dots, x_m = y_m$, но $x_{m+1} < y_{m+1}$. Можете считать, что все данные числа попарно различны.
- **6.** Пусть $a=(a_1,\ldots,a_n),\ b=(b_1,\ldots,b_m)$ две последовательности. Говорят, что a является подпоследовательностью b, если из b можно вычеркнуть некоторые элементы так, чтобы получилась a (без изменения порядка оставшихся элементов). Формальнее, a является подпоследовательностью b, если существует набор $1 \leqslant i_1 < i_2 < \ldots < i_n \leqslant m$, такой что $b_{i_j} = a_j$ для всех $j \in \{1, \ldots, n\}$. За O(m)определите, является ли a подпоследовательностью b.
- 7. По данному числу n найдите все пары целых положительных чисел (a,b), такие что $a \le b \le n$, и а | b. Оцените асимптотическое поведение числа таких пар.
- 8. Число 0 записано в n-разрядной двоичной системе. К нему 2^n-1 раз прибавляется единица. Будем считать, что время, необходимое на прибавление единицы, равно количеству единиц в двоичной записи

числа, которые становятся нулями. Оцените среднюю сложность всех таких операций. Какие операции являются самыми дешёвыми, а какие — самыми дорогими?

- **9.** Изначально есть массив a_1, a_2, \ldots, a_n . К нему применяются q преобразований вида l, r, x, что означает, что числа с l-го по r-е нужно увеличить на x. Выведите массив после всех преобразований. Асимптотика: O(n+q).
- 10. На столе лежит n куч бананов, в i-й из них a_i бананов. Обезьянка может выбрать произвольное число S и есть по S бананов в минуту. Однако съедаемые за минуту бананы должны изначально лежать в одной куче. Если в куче бананов меньше S, то за минуту съедаются они все. Хозяин зоопарка вернётся через M минут, а обезьянка хочет растянуть удовольствие и есть как можно дольше. Найдите минимальное S такое, что обезьянка успеет съесть все бананы до прихода хозяина. Асимптотика: $O(n \log(\max_{i=1}^n a_i))$.

- **1.** Докажем, что $T(n) \geqslant \alpha n \ln n$ индукцией по n. Для n имеем: $T(n) \geqslant \frac{\alpha}{3} n \ln(n/3) + \frac{2\alpha}{3} n \ln(2n/3) + cn$, хотим продолжить $\geqslant \alpha n \ln n$. Раскроем логарифмы, останется неравенство на α , выполнение которого завершает доказательство.
- **2.** В большинстве пунктов можно напрямую воспользоваться мастер-теоремой. Для убедительности можно доказать, что получаемая ей оценка действительно является верной (так мы можем "угадать" ответ и доказать, что он подходит). В пункте м): если $n=2^k$, то T делим пополам степень двойки каждый раз при спуске в рекурсию. Делить пополам можно $\log k$ раз, то есть $T(n) = \Theta(\log \log n)$.
- **3.** a) да;
 - б) нет;
 - в) да;
 - г) да;
 - д) нет;
 - е) да;
 - ж) да;
 - з) нет.
- **4.** Если f = O(s) и $g = \Omega(t)$, то однозначно ничего утверждать нельзя (приведите примеры!). Иначе из значков выбирается самый слабый: $O \cdot O = O, O \cdot \Theta = O, \Theta \cdot \Theta = \Theta, \Theta \cdot \Omega = \Omega, \Omega \cdot \Omega = \Omega$.
- **5.** Первым нужно выписать наименьшее из a_1 и b_1 . Какое следующим?
- 6. Сработает жадный алгоритм.
- **7.** Без доказательства можно использовать факт, что $\sum_{k=1}^{n} \frac{1}{k} = \Theta(\log n)$.
- 8. Для каждого бита посчитайте количество раз, когда он изменит своё значение с единицы на ноль.
- 9. Перейдите к массиву соседних разностей. Как он изменяется после каждого преобразования? Как по нему восстановить исходный массив?
- 10. Вспомните бинарный поиск.