视频编码原理

编码率/比特率直接与文件体积有关。且编码率与编码格式配合是否合适, 直接关系到视频文件是否清晰。

在视频编码领域,比特率常翻译为编码率,单位是 Kbps,例如 800Kbps。

其中,1K=10241M=1024K,b 为比特(bit)这个就是电脑文件大小的计量单位,1KB=8Kb,区分大小写,B代表字节(Byte)s为秒(second)p为每(per)

以 800kbps 来编码表示经过编码后的数据每秒钟需要用 800K 比特来表示。 1MB=8Mb=1024KB=8192Kb

Windows 系统文件大小经常用 B(字节)为单位表示,但网络运营商则用 b(比特),也就是为什么 2Mb 速度宽带在电脑上显示速度最快只有约 256KB 的原因,网络运营商宣传网速的时候省略了计量单位。

完整的视频文件是由音频流与视频流 2 个部分组成的,音频和视频分别使用的是不同的编码率,因此一个视频文件的最终技术大小的编码率是音频编码率+视频编码率。例如一个音频编码率为 128Kbps,视频编码率为 800Kbps 的文件,其总编码率为 928Kbps,意思是经过编码后的数据每秒钟需要用 928K 比特来表示。

了解了编码率的含义以后,根据视频播放时间长度,就不难了解和计算出最终文件的大小。编码率也高,视频播放时间越长,文件体积就越大。不是分辨率越大文件就越大,只是一般情况下,为了保证清晰度,较高的分辨率需要较高的编码率配合,所以使人产生分辨率越大的视频文件体积越大的感觉。

计算输出文件大小公式:

(音频编码率(Kbit 为单位)/8+视频编码率(Kbit 为单位)/8) *影片总长度(秒为单位)=文件大小(MB 为单位)

这样以后大家就能精确的控制输出文件大小了。

例:有一个1.5 小时(5400 秒)的影片,希望转换后文件大小刚好为700M计算方法如下:

700 **×**8/5400 **×**1024**≈**1061Kbps

意思是只要音频编码率加上视频编码率之和为 1061Kb,则 1 个半小时的影片转换后文件体积大小刚好为 700M。

当然不经过压缩文件的计算公式又不同:

声音为,数据量(位/秒)=(采样频率(Hz)×采样位数(bit)×声道数) 其中,单声道的声道数为 1,立体声的声道数为 2。

数据量×时间/8=文件总字节

例如 CD 即为未经压缩的音频文件, 采样 44.1k,16 位,双声道。

数据量 = 44.1×16×2=1411kb/1024=1.38Mb,一般的 MP3 压缩后为 128kbps 如果以一张 CD 放一个小时计算的话, CD 总量 = 1.38×3600/8=621MB,当然 CD 大约放 1 小时多点,顶多也就 700MB。

图象应该是,数据量(位/秒)=(画面尺寸×彩色位数(bit)×帧数)数据量×时间/8=文件总字节

例如 2 分钟,25 帧/秒,640×480 分辨率,24 位真彩色数字视频的不压缩的数据量约为,数据量 = $640 \times 480 \times 24 \times 25 = 184320 \text{Kb} = 180 \text{Mb}$,而 VCD、MKV 标准编码率(加上音频)分别为 1152 Kbps 和 30 Mbps (1080 p 高清)

2 分钟文件字节 = 180Mb×120/8=2700000KB=2636.71875MB = 2.57GB,而 压缩后一部 90 分钟高质量 DVD 电影可以达到 9GB。

常见视频编码格式:

一种编码格式和一种文件格式是不一样的,这里的文件格式指的是一个文件的后缀。一般人都认为以.avi 为扩展名的文件肯定不是MPEG文件,那是错误的。至少是不对的。

视频编码格式的例子有: MPEG1, MPEG2, DivX。

文件格式的例子有: MPG, AVI, ASF, divx, div。

本文要叙述的主要是媒体编码格式,在解释了每一种媒体编码格式之后,还会注明按照这种编码格式产生的可能的文件格式类型种类,但是这种文件格式并不是绝对的。另外我需要指出的是,本文的重点是媒体编码格式中的视频编码部分,对于音频编码,这里不加叙述。

1. MPEG:

MPEG 是 Motion Picture Experts Group 的缩写,它是视频编码格式中的一个大家族,也是我们平时所见到的最普遍的一种视频格式。从它衍生出来的格式非常多,包括以 mpg、mpe、mpa、m15、m1v、mp2 等等为后缀名的视频文件都是出自这一家族。MPEG 格式包括 MPEG 视频、MPEG 音频和 MPEG 系统(视频、音频同步)三个部分,MP3(MPEG-3)音频文件就是 MPEG 音频的一个典型应用,视频方面则包括 MPEG-1、MPEG-2 和 MPEG4。

MPEG-1 压缩算法被广泛应用在 VCD 的制作和一些视频片段下载方面,其中最多的就是 VCD——几乎所有 VCD 都是使用 Mpeg-1 格式压缩的(*.dat 格式的文件)。MPEG-1 的压缩算法可以把一部 120 分钟长的电影(原始视频文件)压缩到 1.2 GB 左右大小。利用这种压缩算法制成的文件格式一般为 mpg 和 dat 文件。

MPEG-2 压缩算法则应用在 DVD 的制作上(*.vob 格式的文件),同时也在一些 HDTV(高清晰电视广播)和一些高要求视频编辑、处理有相当的应用。 使用 MPEG-2 的压缩算法制作一部 120 分钟长的电影(原始视频文件)在 4GB

到 8GB 大小左右,当然其图像质量方面的指标是 MPEG-1 所无法比拟的。利用这种压缩算法制成的文件格式一般为 vob 文件。

MPEG-4是一种新的压缩算法,使用这种压缩算法可以将一部 120 分钟长的电影(原始视频文件)压缩至 300MB 左右。现在,MPEG 的这种压缩算法被许多编码格式沿用,例如 ASF、DivX、Xvid、mp4(Apple 公司的 mpeg-4 编码格式)等等都采用了 MPEG-4 的压缩算法。在后面我会具体介绍那几个编码格式。

2. AVI 编码格式

AVI 是 Audio Video Interleave 的缩写,这种格式在微软 WIN3.1 时代就已经出现了。它最直接的优点就是兼容好、调用方便而且图像质量好,因此也常常与 DVD 相并称。但它的缺点也是十分明显的:体积大。2 小时影像的 AVI 文件的体积与 MPEG-2 相差无计,不过这只是针对标准分辨率而言的:根据不同的应用要求,AVI 的分辨率可以随意调。窗口越大,文件的数据量也就越大。降低分辨率可以大幅减低它的体积,但图像质量就必然受损。与 MPEG-2 格式文件体积差不多的情况下,AVI 格式的视频质量相对而言要差不少,但制作起来对电脑的配置要求不高,经常有人先录制好了 AVI 格式的视频,再转换为其他格式。

这里简单提一下 nAVI。 nAVI 是 newAVI 的缩写,这是一个名为 ShadowRealm 的地下组织发展起来的一种新视频格式。它是由 Microsoft ASF 压缩算法的修改而来的(并不是想象中的 AVI),视频格式追求的无非是压缩率和图像质量,所以 nAVI 为了追求这个目标,改善了原始的 ASF 格式的一些不足,让 nAVI 可以拥有更高的帧率(frame rate)。当然,这是牺牲 ASF 的视频流特性作为代价的。概括来说, nAVI 就是一种去掉视频流特性的改良型 ASF 格式。

3. REAL VIDEO 格式

Real 公司一开始定位的就是在视频流应用方面的,也可以说是视频流技术的始创者。它可以在用 56K MODEM 拨号上网的条件实现不间断的视频播放,当然,其图像质量和 MPEG2、DIVX 等相比确实要差好多。RM 主要用于在低速率的网上实时传输视频的压缩格式,它同样具有小体积而又比较清晰的特点。RM 文件的大小完全取决于制作时选择的压缩率。在 2002 年 Real 公司又退出了它的 Real Video9 编码方式,使用该技术同上一版相比,画质提高了30%。使用 Real Video9 编码格式的文件名后缀一般为 rmvb,RMVB 中的 VB 是VBR 即 Variable Bit Rate 的缩写,中文是"可变比特率"。它比普通的 RM 文件有更高的压缩比(同样画质)和更好的画质(同样压缩比)。rmvb 文件一般用realone 播放器播放,当然也可以用安装了相应插件的 realplay 播放(不过播放的

时候要将 rmvb 改成 rm)。以前的 real video 文件名后缀多为 RM、RA、RAM。

4. ASF

ASF 是 Advanced Streaming format 的缩写,它是 Windows Media 技术的核心,采用的是 MPEG-4 压缩算法,由于它使用了 MPEG-4 的压缩算法,所以压缩率和图像的质量都很不错。因为 ASF 是以一个可以在网上即时观赏的视频"流"格式存在的,所以它的图像质量比 VCD 差一点点并不出奇,但比同是视频流格式的 RAM 格式要好。利用这种编码方式制成的文件名后缀一般为 asf。

5. Quicktime 格式

QuickTime (MOV)是 Apple 公司专有的一种视频格式。在开始一段时间里,他都是以 qt 或 mov 为扩展名的,使用他们自己的编码格式。但是自从MPEG4 组织选择了 Quicktime 作为 MPEG4 的推荐文件格式以后,它们的 mov 文件就以 mpg 或 mp4 为其扩展名,并且采用了 MPEG4 压缩算法。Quicktime6 将 mp4 文件作为它的第一选择,利用 quicktime6 可以制作出专业级质量的、ISO兼容的 MPEG4 音频和视频文件,而且这些文件也可以被任何兼容 MPEG4 的播放器播放。

6. DivX

DivX 视频编码技术可以说是针对 DVD 而产生的,同时它也是为了打破 ASF 的种种约束而发展起来的。正如上面所提到的那样,它采用的是 MPEG-4 算法,这样以来,压缩一部 DVD 只需要 2 张 VCD,而且播放这种编码,对机器 的要求也不高。目前 DivX 有两个版本,第一个 DivX 版本以 DivX3.11 为例,而 第二个版本就是后来的 DivX5,但是实际上第二个编码格式的作者跟 divx3.11 的 作者根本不是同一个人,这两种编码格式的设计思路也不同。所以,如果要解 压缩按照 DivX3.11 编码的媒体文件时,最好采用 DivX3.11 的解码器,而不要用 DivX5 的解码器来解码。目前大部分的 DivX 视频采用的是.avi 的文件后缀,当 然也有以 DivX 和 Div 为后缀名的。

7. Xvid

Xvid 编码格式是由一些精通视频编码的程序员(包括原 DivX 3.11 的开发者)设计开发出来的,它也是使用的 MPEG4 压缩算法。XviD 这种全新的编码平台,实际上与DivX 5是属于同一技术核心,可解码几乎所有的 DVDrip。这里需要解释一下 DVDrip,DVDrip 就是指的经过 DivX 技术压缩至原来 DVD 文件大小的 1/10 左右的媒体文件,其核心的技术主要分成三部分:用 Mpeg4 来进行视频压缩,用 MP3 或 AC-3 等压缩音频,同时结合字幕播放软件来外挂字幕。所以一般来说,你只要安装了 Xvid 解码器,你的机器就能播放所有的 DivX 媒体文件。目前用 Xvid 技术编码的文件大多以 avi 为扩展名。