Math 100 Part 15 Fall '21

Vector Spaces

Definition of Vector Space: A vector space is a nonempty set V of objects, called vectors, with two operations defined on them, addition and scalar multiplication and are subject to ten axioms. These axioms must hold for all vectors, $\mathbf{u}, \mathbf{v}, \mathbf{w}$ and all scalars c and d.

Axioms:

1.		6.
2.		7.
3.		8.
4.		9.
5.	1	0.

$\underline{\textbf{Examples of Vector Spaces}}:$

	: A subspace of a vector space V is	a subset H of V tha	t satisfies these three
properties.			
1.			
2.			
3.			

Examples of Subspaces:

Subspace	Spanned	by	a	Set:
Theorem	<u>1</u> :			
Examples	<u>s 14.2</u> :			