

Neural sentence generation from formal semantics

Kana Manome¹, Masashi Yoshikawa², Hitomi Yanaka³, Pascual Martínez-Gómez⁴, Koji Mineshima¹, Daisuke Bekki¹

Ochanomizu University, ²Nara Institute of Science and Technology, ³RIKEN, ⁴Amazon

Abstract

- ➤ Presenting a sequence-to-sequence (seq2seq) [Sutskever et al., 2014] model with attention [Bahdanau et al., 2015] for generating sentences from logical formula based on event semantics
- ➤ Augmenting the seq2seq model with masking to constrain vocabularies of output sentences
- ➤ Using a semantic parsing system [Martínez-Gómez et al., 2016] based on Combinatory Categorial Grammar (CCG) [Steedman, 2000] to obtain pairs of sentence and logical formula
- ➤ Proposing a novel evaluation method for generation using Recognizing Textual Entailment (RTE)
- Our model outperformed a baseline with respect to both BLEU scores and accuracies in RTE

Related Work

- > Rule-based surface realization systems from event semantics:
 - Minimal Recursion Semantics (MRS) [Carroll and Oepen, 2005]
 - CCG [White, 2006; White and Rajkumar, 2009]
 - Treebank Semantics based on event semantics [Butler, 2016]
- > ML/DL-based generation systems with semantic parsing
 - SMT-based system (GeoQuery) [Wong and Mooney, 2007]
 - Neural AMR (AMR-graph) [Konstas et al., 2017]

Seq2seq model with attention

Linearization

- (1) Token-based linearization: [exists, e, (, walk, (, e,), &, Subj, (, e,), ...]
- (2) Graph-based linearization [Wang et al.,2017]: [exists, e, &, &, walk, =, Subj, eddy, ...]
- Masking output probabilities
 - 1. Preparing a mapping from predicates to their realized forms

formula $\exists e.(walk (e) \& (Subj(e) = eddy) \& \exists x.(green(x) \& grass(x) \& on(e, x)))$

3. Setting 1 in mask vector at positions that correspond to predicates and their inflected forms

2. Verbs are mapped to their inflected forms

dict 1 {walk:[walk, walks, walked, walking}

4. Functional words are always available using a predefined list of those words

Logical Formula

➤ Neo-Davidsonian event semantics [Parsons, 1990]

sentence: Eddy walked on the green grass.

formula: $\exists e. (walk(e) \& (subj(e) = eddy) \& \exists x. (green(x) \& grass(x) & on(e, x)))$

Dataset

Experiment

- Creating a dataset from the SNLI corpus [Bowman et al., 2015]
- Using 50k hypothesis sentences and splitting them into train:42k/val:4k/test:4k
- Mapping the sentences into logical formulas using ccg2lambda [Martínez-Gómez et al., 2016]
- Using C&C parser for converting sentences into CCG trees

Evaluation

BLEU does not evaluate meaning preservation

BLEU score is high but no entailment!

- We propose an evaluation method using parsing and RTE
- Parsing an input sentence S1 to obtain a formula P and then generating a sentence S2 from the formula P
- Checking whether S1 entails S2 and vice versa:
 S1 ⇒ S2, S2 ⇒ S1 and S1 ⇔ S2
- Using ccg2lambda for parsing and proving entailment relations

> Result

- The baseline **rule** denotes the Treebank Semantics system [Butler, 2016]
- For the RTE accuracy, the increase in the score of the graph + mask model
 was slightly larger than the increase for the token + mask model

	I			
	BLEU	$S_1 \Rightarrow S_2$	$S_2 \Rightarrow S_1$	$S_1 \Leftrightarrow S_2$
token	43.0	87.3	87.3	87.3
+mask	60.0	92.3	90.8	89.8
graph	42.2	86.3	90.0	86.3
+mask	50.0	92.5	92.3	90.8
rule	38.3	61.5	62.3	58.8

	Input sentence (S_1)	Decoded sentence (S_2)
(1)	the girls are swimming in the ocean.	the girls are swimming in the ocean.
(2)	a dog is playing fetch with his owner.	a dog is playing fetch with owner.
(3)	a man is sitting on the couch.	the men are sitting on a couch.
(4)	a tall man.	the man is tall.
(5)	a child is standing.	the children are standing together.
(6)	there are several people in this picture.	people are pictured in a picture.

Future Work

- Refining our model for generation of longer sentences
- Testing formulas with richer semantic information (the definite-indefinite and singular-plural distinctions for NPs and tense/aspect for VPs)