Regente: Jaime Villate

Resolução do exame de 14 de julho de 2015

Problema 1. Existem quatro pontos de contacto entre corpos rígidos:

- 1. Entre a base do livro e a tampa da caixa.
- 2. Entre a base da caixa e o chão.
- 3. Entre os pés do homem e o chão.
- 4. Entre as mãos do homem e a parede lateral direita da caixa (admitindo que está a ser empurrada para a esquerda).

Em 1 há reação normal, N_1 , vertical, e força horizontal, F_1 , de atrito estático porque o livro não está a deslizar sobre a caixa. Em 2 há força de reação normal, N_2 , vertical, e força horizontal, F_2 , de atrito cinético, porque a caixa desliza sobre o chão. Em 3 há reação normal, N_3 , vertical, e força horizontal, F_3 , de atrito estático porque os pés do homem não derrapam sobre o chão (se derrapassem, a caixa não acelerava). Em 4 há apenas reação normal, N_4 , porque o enunciado diz que a força que o homem exerce na caixa é horizontal.

A figura seguinte mostra os diagramas de corpo livre do livro, da caixa e do homem.

A força de atrito estático F_1 deve atuar sobre o livro de direita para esquerda, para que o livro acelere para a esquerda. O mesmo acontece com a força de atrito estático F_3 atuando no homem. Essas duas forças não podem ultrapassar o valor máximo, $\mu_e N$, mas podem ter qualquer valor entre 0 e esse valor máximo. A força de atrito cinético F_2 é no sentido oposto ao movimento da caixa e tem módulo igual a $F_2 = \mu_c N_2 = 0.2 N_2$. Os pesos do livro, da caixa e do homem são: $P_1 = 5.88$ N, $P_c = 78.4$ N e $P_h = 705.6$ N.

As duas equações de movimento de translação do livro são (unidades SI):

$$N_1 = 5.88$$

 $F_1 = m_1 a = 0.6 \times 0.5 = 0.3$

As equações de movimento de translação da caixa são:

$$N_2 = 78.4 + N_1 = 84.28$$

 $N_4 - F_1 - F_2 = m_c a$ \Longrightarrow $N_4 = 8 \times 0.5 + 0.3 + 0.2 \times 84.28 = 21.156$

E as equações de movimento de translação do homem são:

$$N_3 = 705.6$$

 $F_3 - N_4 = m_h a$ \Longrightarrow $F_3 = 72 \times 0.5 + 21.156 = 57.156$

O valor máximo que pode ter F_1 é $0.35 N_1 = 2.058$ e o valor máximo possível de F_3 é $0.4 N_3 = 282.24$. Como os resultados obtidos não ultrapassam esses valores máximos, esses resultados são válidos e a resposta é: a força de atrito entre a caixa e o livro é 0.3 N, a força de atrito entre a caixa e o chão é $0.2 \times 84.28 = 16.856$ N e a força de atrito entre o chão e os pés do homem é 57.156 N.

Problema 2. As derivadas das expressões $x = r \cos \theta$ e $y = r \sin \theta$ são:

$$\dot{x} = \dot{r}\cos\theta - r\dot{\theta}\sin\theta$$
$$\dot{y} = \dot{r}\sin\theta + r\dot{\theta}\cos\theta$$

Substituindo nas equações de evolução, obtém-se as equações de evolução em coordenadas polares:

$$\dot{r}\cos\theta - r\dot{\theta}\sin\theta = r\sin\theta + r^3\cos\theta$$
$$\dot{r}\sin\theta + r\dot{\theta}\cos\theta = -r\cos\theta + r^3\sin\theta$$

que são duas equações lineares para \dot{r} e $\dot{\theta}$. Aplicando qualquer método de resolução de equações lineares, obtém-se essas duas expressões. Por exemplo, o método de eliminação; multiplicando a primeira equação por $\cos \theta$ e a segunda por $\sin \theta$,

$$\dot{r}\cos^2\theta - r\dot{\theta}\sin\theta\cos\theta = r\sin\theta\cos\theta + r^3\cos^2\theta$$
$$\dot{r}\sin^2\theta + r\dot{\theta}\sin\theta\cos\theta = -r\sin\theta\cos\theta + r^3\sin^2\theta$$

e somando as duas equações obtêm-se a expressão para \dot{r}

$$\dot{r} = r^3$$

Multiplicando a primeira equação de evolução por $\sin \theta$ e a segunda por $\cos \theta$,

$$\dot{r}\sin\theta\cos\theta - r\dot{\theta}\sin^2\theta = r\sin^2\theta + r^3\sin\theta\cos\theta$$
$$\dot{r}\sin\theta\cos\theta + r\dot{\theta}\cos^2\theta = -r\cos^2\theta + r^3\sin\theta\cos\theta$$

e subtraindo a primeira equação da segunda obtêm-se a expressão para $\dot{\theta}$

$$r\dot{\theta} = -r$$
 \Longrightarrow $\dot{\theta} = -1$ (se: $r \neq 0$)

Fora da origem, r é positiva e, como tal, $\dot{r}=r^3$ é sempre positiva. Ou seja, o estado do sistema afasta-se sempre da origem (r aumenta). Enquanto o estado se afasta da origem, dá várias voltas no sentido negativo (sentido dos ponteiros do relógio), porque $\dot{\theta}$ é igual a -1. Isso implica que a origem é um foco repulsivo e não existe nenhum ciclo limite.

As expressões para \dot{r} e $\dot{\theta}$ também podem ser obtidas no Maxima com os seguintes comandos:

```
(%i1) x: r*cos(q)$

(%i2) y: r*sin(q)$

(%i3) gradef(r,t,v)$

(%i4) gradef(q,t,w)$

(%i5) e1: diff(x,t) = y+(x^2+y^2)*x;

(%o5) cos(q)v-sin(q)rw=cos(q)r(sin^2(q)r^2+cos^2(q)r^2)+sin(q)r

(%i6) e2: diff(y,t) = -x+(x^2+y^2)*y;

(%o6) cos(q)rw+sin(q)v=sin(q)r(sin^2(q)r^2+cos^2(q)r^2)-cos(q)r

(%i7) trigsimp(solve([e1,e2],[v,w]));

(%o7) [ [v=r^3, w=-1] ]
```

Perguntas

3. E **6.** B **9.** E **12.** A **15.** C

4. E **7.** A **10.** C **13.** E **16.** D

5. B **8.** E **11.** E **14.** D **17.** D