Analyse eines Forschungsthemas Stochastic Shortest Paths

Maximilian Starke

Fakultät für Informatik Technische Universität Dresden

3. Januar 2023

Section 1

Introduction

► The *simplest* shortest path problem

► The *simplest* shortest path problem

- ► Task
 - ► Find the shortest path (number of hops)!

► The *simplest* shortest path problem

- ► Task
 - ► Find the shortest path (number of hops)!

- Task
 - Find the path with the minimal weight sum!

- Task
 - Find the path with the minimal weight sum!

- ► Task
 - Find the path with the minimal weight sum!
 - Give a strategy to always reach the goal while collecting minimal weight!

- ► Task
 - Find the path with the minimal weight sum!
 - Give a strategy to always reach the goal while collecting minimal weight!

► The *stochastic* shortest path problem

► The *stochastic* shortest path problem

► Markov Decision Process (MDP)

► The *stochastic* shortest path problem

- Markov Decision Process (MDP)
- Task
 - Give a strategy to reach the goal with minimal expected accumulated weights!

definition

An MDP is a tuple

$$\mathcal{M} = (S, Act, P, s_{init}, wgt)$$

definition

An MDP is a tuple

$$\mathcal{M} = (S, Act, P, s_{init}, wgt)$$

where

S is a finite set of states.

definition

An MDP is a tuple

$$\mathcal{M} = (S, Act, P, s_{init}, wgt)$$

- S is a finite set of states.
- Act is a finite set of actions.

definition

An MDP is a tuple

$$\mathcal{M} = (S, Act, P, s_{init}, wgt)$$

- S is a finite set of states.
- Act is a finite set of actions.
- ▶ $P: S \times Act \longrightarrow Distr(S)$ maps every enabled state action pair (s, α) to a probability distribution over the states.

definition

An MDP is a tuple

$$\mathcal{M} = (S, Act, P, s_{init}, wgt)$$

- S is a finite set of states.
- Act is a finite set of actions.
- ▶ $P: S \times Act \longrightarrow Distr(S)$ maps every enabled state action pair (s, α) to a probability distribution over the states.
- ▶ $s_{init} \in S$ is some designated initial state.

definition

An MDP is a tuple

$$\mathcal{M} = (S, Act, P, s_{init}, wgt)$$

- S is a finite set of states.
- Act is a finite set of actions.
- ▶ $P: S \times Act \longrightarrow Distr(S)$ maps every enabled state action pair (s, α) to a probability distribution over the states.
- ▶ $s_{init} \in S$ is some designated initial state.
- ▶ $wgt : S \times Act \rightarrow \mathbb{Z}$ is some weight (reward) function.

Paths

 $\pi \in \operatorname{Paths}(\mathcal{M})$

Paths

$$\pi \in \operatorname{Paths}(\mathcal{M})$$

$$= (s_0, \alpha_0, s_1, \alpha_1, \dots)$$

Paths

$$\pi \in \operatorname{Paths}(\mathcal{M})$$

- $ightharpoonup \pi$ is some maximal finite or infinite path

Paths

$$\pi \in \operatorname{Paths}(\mathcal{M})$$

- $= (s_0, \alpha_0, s_1, \alpha_1, \dots)$
- $ightharpoonup \pi$ is some maximal finite or infinite path

Let $F \subseteq S$ be some set of goal states...

Paths

$$\pi \in \operatorname{Paths}(\mathcal{M})$$

- $\pi = (s_0, \alpha_0, s_1, \alpha_1, \dots)$
- $ightharpoonup \pi$ is some maximal finite or infinite path

Let $F \subseteq S$ be some set of goal states...

accumulated weights until reaching a goal

$$\Phi F : \operatorname{Paths}(\mathcal{M}^{\mathfrak{S}}) \to \mathbb{Q} :$$

$$\Phi F(\pi) = \begin{cases} wgt(\hat{\pi}), & \hat{\pi} \text{ is shortest prefix of } \pi \text{ s.t. } \operatorname{last}(\hat{\pi}) \in F \\ \infty, & \text{otherwise, i.e. } \pi \nvDash \lozenge F \end{cases}$$

Section 2

- **p** given:
 - a single goal state

- given:
 - a single goal state
 - ▶ positive cycle condition: There is no cycle π with $wgt(\pi) \leq 0$

- given:
 - a single goal state
 - **positive cycle condition:** There is no cycle π with $wgt(\pi) \leq 0$
 - goal is reachable from each state

- given:
 - a single goal state
 - **positive cycle condition:** There is no cycle π with $wgt(\pi) \leq 0$
 - goal is reachable from each state
- objective: Minimize the expected accumulated weight until reaching goal state.

$$\mathbb{E}^{\inf}_{\mathcal{M},s}(\Phi goal) \coloneqq \inf_{\mathfrak{S} \in \operatorname{Schedulers}(M)} \mathbb{E}^{\mathfrak{S}}_{\mathcal{M},s}(\Phi goal)$$

- given:
 - a single goal state
 - **p** positive cycle condition: There is no cycle π with $wgt(\pi) \leq 0$
 - goal is reachable from each state
- objective: Minimize the expected accumulated weight until reaching goal state.

$$\mathbb{E}^{\inf}_{\mathcal{M},s}(\oplus goal) := \inf_{\mathfrak{S} \in \operatorname{Schedulers}(M)} \mathbb{E}^{\mathfrak{S}}_{\mathcal{M},s}(\oplus goal)$$

- ▶ Well known for a long time:
 - There exists an optimal memoryless deterministic scheduler S.

- given:
 - a single goal state
 - **p** positive cycle condition: There is no cycle π with $wgt(\pi) \leq 0$
 - goal is reachable from each state
- objective: Minimize the expected accumulated weight until reaching goal state.

$$\mathbb{E}^{\inf}_{\mathcal{M},s}(\oplus goal) := \inf_{\mathfrak{S} \in \operatorname{Schedulers}(M)} \mathbb{E}^{\mathfrak{S}}_{\mathcal{M},s}(\oplus goal)$$

- Well known for a long time:
 - ► There exists an optimal memoryless deterministic scheduler 𝔾.
 - ▶ S is computable by solving a LP

- given:
 - a single goal state
 - **p** positive cycle condition: There is no cycle π with $wgt(\pi) \leq 0$
 - goal is reachable from each state
- objective: Minimize the expected accumulated weight until reaching goal state.

$$\mathbb{E}^{\inf}_{\mathcal{M},s}(\oplus goal) := \inf_{\mathfrak{S} \in \operatorname{Schedulers}(M)} \mathbb{E}^{\mathfrak{S}}_{\mathcal{M},s}(\oplus goal)$$

- ▶ Well known for a long time:
 - There exists an optimal memoryless deterministic scheduler S.
 - S is computable by solving a LP
 - iterative algorithm:

- given:
 - a single goal state
 - **p** positive cycle condition: There is no cycle π with $wgt(\pi) \leq 0$
 - goal is reachable from each state
- objective: Minimize the expected accumulated weight until reaching goal state.

$$\mathbb{E}^{\inf}_{\mathcal{M},s}(\oplus goal) := \inf_{\mathfrak{S} \in \operatorname{Schedulers}(M)} \mathbb{E}^{\mathfrak{S}}_{\mathcal{M},s}(\oplus goal)$$

- ▶ Well known for a long time:
 - There exists an optimal memoryless deterministic scheduler S.
 - S is computable by solving a LP
 - iterative algorithm:
 - start at any feasible scheduler

- given:
 - a single goal state
 - **p** positive cycle condition: There is no cycle π with $wgt(\pi) \leq 0$
 - goal is reachable from each state
- objective: Minimize the expected accumulated weight until reaching goal state.

$$\mathbb{E}^{\inf}_{\mathcal{M},s}(\oplus goal) := \inf_{\mathfrak{S} \in \operatorname{Schedulers}(M)} \mathbb{E}^{\mathfrak{S}}_{\mathcal{M},s}(\oplus goal)$$

- Well known for a long time:
 - There exists an optimal memoryless deterministic scheduler S.
 - S is computable by solving a LP
 - iterative algorithm:
 - start at any feasible scheduler
 - iterative improvement

- given:
 - a single goal state
 - **positive cycle condition:** There is no cycle π with $wgt(\pi) \leq 0$
 - goal is reachable from each state
- objective: Minimize the expected accumulated weight until reaching goal state.

$$\mathbb{E}^{\inf}_{\mathcal{M},s}(\oplus goal) := \inf_{\mathfrak{S} \in \operatorname{Schedulers}(M)} \mathbb{E}^{\mathfrak{S}}_{\mathcal{M},s}(\oplus goal)$$

- Well known for a long time:
 - There exists an optimal memoryless deterministic scheduler S.
 - S is computable by solving a LP
 - iterative algorithm:
 - start at any feasible scheduler
 - iterative improvement
 - stop at an optimal vertex of the LP (corresponding to some MD scheduler)

► Can we do it better?

► Can we do it better? — YES! - using spider construction!

- ► Can we do it better? → YES! using spider construction!
- given:
 - a single goal state
 - ▶ positive cycle condition: There is no cycle π with $wgt(\pi) \leq 0$

- ► Can we do it better? YES! using spider construction!
- given:
 - a single goal state
 - $ightharpoonup \mathcal{M}$ is an MDP with arbitrary integer weights

- ► Can we do it better? YES! using spider construction!
- given:
 - a single goal state
 - \triangleright \mathcal{M} is an MDP with arbitrary integer weights
 - goal is reachable from each state

- ► Can we do it better? → YES! using spider construction!
- piven:
 - a single goal state
 - \triangleright \mathcal{M} is an MDP with arbitrary integer weights
 - ▶ goal is reachable from each state
- ► The following can be solved in polynomial time:
 - ► Check: $\mathbb{E}^{inf}_{\mathcal{M},s}(\Phi \text{goal}) > -\infty$?
 - ightharpoonup Compute $\mathbb{E}^{inf}_{\mathcal{M},s}$ if it is finite

lacktriangle Idea: construct a new MDP ${\mathcal N}$ from the given MDP ${\mathcal M}$

- lacktriangle Idea: construct a new MDP ${\mathcal N}$ from the given MDP ${\mathcal M}$
- ▶ Pick a 0-BSCC \mathcal{E} of \mathcal{M} and some vertex s_0 in \mathcal{E} .

- lacktriangle Idea: construct a new MDP ${\mathcal N}$ from the given MDP ${\mathcal M}$
- ▶ Pick a 0-BSCC \mathcal{E} of \mathcal{M} and some vertex s_0 in \mathcal{E} .
- $\blacktriangleright \ \mathcal{M} \mapsto \mathcal{N} \coloneqq \mathrm{Spider}_{\mathcal{E}, s_0}(\mathcal{M})$

- lacktriangle Idea: construct a new MDP ${\cal N}$ from the given MDP ${\cal M}$
- ▶ Pick a 0-BSCC \mathcal{E} of \mathcal{M} and some vertex s_0 in \mathcal{E} .
- $ightharpoonup \mathcal{M} \mapsto \mathcal{N} \coloneqq \mathrm{Spider}_{\mathcal{E}, s_0}(\mathcal{M})$
- The spider construction is done by applying the following steps:
 - 1. Remove all actions $(s, \alpha_s) \in \mathcal{E}$

- lacktriangle Idea: construct a new MDP ${\mathcal N}$ from the given MDP ${\mathcal M}$
- ▶ Pick a 0-BSCC \mathcal{E} of \mathcal{M} and some vertex s_0 in \mathcal{E} .
- $ightharpoonup \mathcal{M} \mapsto \mathcal{N} \coloneqq \operatorname{Spider}_{\mathcal{E}, s_0}(\mathcal{M})$
- The spider construction is done by applying the following steps:
 - 1. Remove all actions $(s, \alpha_s) \in \mathcal{E}$
 - 2. Add actions (s, τ) for all $s \in \mathcal{E} \setminus \{s_0\}$ such that
 - $P_{\mathcal{N}}(s,\tau,s_0) := 1$

- lacktriangle Idea: construct a new MDP ${\mathcal N}$ from the given MDP ${\mathcal M}$
- ▶ Pick a 0-BSCC \mathcal{E} of \mathcal{M} and some vertex s_0 in \mathcal{E} .
- $ightharpoonup \mathcal{M} \mapsto \mathcal{N} \coloneqq \mathrm{Spider}_{\mathcal{E}, s_0}(\mathcal{M})$
- ► The spider construction is done by applying the following steps:
 - 1. Remove all actions $(s, \alpha_s) \in \mathcal{E}$
 - 2. Add actions (s, τ) for all $s \in \mathcal{E} \setminus \{s_0\}$ such that
 - \triangleright $P_{\mathcal{N}}(s, \tau, s_0) := 1$

- lacktriangle Idea: construct a new MDP ${\cal N}$ from the given MDP ${\cal M}$
- ▶ Pick a 0-BSCC \mathcal{E} of \mathcal{M} and some vertex s_0 in \mathcal{E} .
- $ightharpoonup \mathcal{M} \mapsto \mathcal{N} \coloneqq \mathrm{Spider}_{\mathcal{E}, s_0}(\mathcal{M})$
- The spider construction is done by applying the following steps:
 - 1. Remove all actions $(s, \alpha_s) \in \mathcal{E}$
 - 2. Add actions (s, τ) for all $s \in \mathcal{E} \setminus \{s_0\}$ such that
 - \triangleright $P_{\mathcal{N}}(s, \tau, s_0) := 1$
 - 3. For each $s \in \mathcal{E} \setminus \{s_0\}$ and $\beta \in \operatorname{Act}_{\mathcal{M}}(s) \setminus \{\alpha_s\}$ let us replace (s,β) by (s_0,β) where
 - $P_{\mathcal{N}}(s_0,\beta,u) := P_{\mathcal{M}}(s,\beta,u)$

A path $\pi \in InfPaths(\mathcal{M})$ is called

▶ pumping : \Leftrightarrow lim inf_{n→∞}(wgt(pref(π , n))) = ∞

A path $\pi \in \text{InfPaths}(\mathcal{M})$ is called

- ightharpoonup pumping : $\Leftrightarrow \liminf_{n\to\infty} (\operatorname{wgt}(\operatorname{pref}(\pi,n))) = \infty$

A path $\pi \in InfPaths(\mathcal{M})$ is called

- ▶ pumping : $\Leftrightarrow \liminf_{n\to\infty} (\operatorname{wgt}(\operatorname{pref}(\pi, n))) = \infty$
- ightharpoonup gambling : $\Leftrightarrow \pi$ is positively and negatively weight divergent

A path $\pi \in InfPaths(\mathcal{M})$ is called

- ightharpoonup pumping : $\Leftrightarrow \liminf_{n\to\infty} (\operatorname{wgt}(\operatorname{pref}(\pi,n))) = \infty$
- lacktriangle gambling : $\Leftrightarrow \pi$ is positively and negatively weight divergent
- ▶ bounded from below : $\Leftrightarrow \liminf_{n\to\infty} \operatorname{wgt}(\operatorname{pref}(\pi, n)) \in \mathbb{Z}$

We distinguish end components by the following types

▶ pumping ECs: \exists scheduler \mathfrak{S} : \mathbb{P} r $(\pi$ is pumping) = 1

We distinguish end components by the following types

- ▶ pumping ECs: \exists scheduler \mathfrak{S} : \mathbb{P} r $(\pi$ is pumping)=1
- (positively) negatively weight divergent ECs:

```
\exists scheduler \mathfrak{S}: \mathbb{Pr}\Big(\pi \text{ is} \begin{array}{c} 	ext{(positively)} \\ 	ext{negatively} \end{array}  weight divergent \Big)=1
```

We distinguish end components by the following types

- lacksquare pumping ECs: \exists scheduler $\mathfrak{S}: \mathbb{Pr}(\pi \text{ is pumping}) = 1$
- (positively) weight divergent ECs:
 - \exists scheduler $\mathfrak{S}: \mathbb{Pr}\Big(\pi \text{ is} egin{pmatrix} ext{(positively)} \\ ext{negatively} \end{pmatrix}$ weight divergent $\Big)=1$
- ▶ gambling ECs: There is a scheduler s.t. $\mathbb{E}(MP) = 0$ and it is positively and negatively weight divergent

We distinguish end components by the following types

- lacksquare pumping ECs: \exists scheduler $\mathfrak{S}: \mathbb{Pr}(\pi \text{ is pumping}) = 1$
- (positively) weight divergent ECs:
- \exists scheduler $\mathfrak{S}: \mathbb{Pr}\Big(\pi \text{ is} egin{pmatrix} ext{(positively)} \\ ext{negatively} \end{pmatrix}$ weight divergent $\Big)=1$
- ▶ gambling ECs: There is a scheduler s.t. $\mathbb{E}(MP) = 0$ and it is positively and negatively weight divergent
- bounded EC: There exists an upper bound and a lower bound

Check Weight-Divergence of a SCC

> can be done in PTime

Check Weight-Divergence of a SCC

- can be done in PTime
- two cases:
 - "yes, weight-divergent": finds a gambling or a pumping scheduler

Check Weight-Divergence of a SCC

- can be done in PTime
- two cases:
 - "yes, weight-divergent": finds a gambling or a pumping scheduler
 - ightharpoonup "no": returns an *equivalent* MDP ${\mathcal N}$ without 0-ECs

- Markov Decision Process (MDP)
- Task
 - Give a strategy to reach the goal with minimal expected accumulated weights!

- Markov Decision Process (MDP)
- Task
 - Give a strategy to reach the goal with minimal expected accumulated weights!

- Markov Decision Process (MDP)
- Task
 - Give a strategy to reach the goal with minimal expected accumulated weights!

- Markov Decision Process (MDP)
- Task
 - Give a strategy to reach the goal with minimal expected accumulated weights!

- Markov Decision Process (MDP)
- Task
 - Give a strategy to reach the goal with minimal expected accumulated weights!

Section 3

Different variants of the stochastic shortest path problem

Assume:

...to not reach goal with probability 1

Assume:

- ...to not reach goal with probability 1
- …having non-negative integer weights

Assume:

- ...to not reach goal with probability 1
- …having non-negative integer weights
- ▶ ...having two sets of states $F, G \subseteq S$

Assume:

- ...to not reach goal with probability 1
- ...having non-negative integer weights
- ▶ ...having two sets of states $F, G \subseteq S$

$$\mathbb{CE} := \mathbb{E}(\Phi \text{goal} \mid \Diamond \text{goal})$$

Assume:

- ...to not reach goal with probability 1
- ...having non-negative integer weights
- ▶ ...having two sets of states $F, G \subseteq S$

$$\mathbb{CE} \coloneqq \mathbb{E}(\Phi \mathrm{goal} \mid \Diamond \mathrm{goal})$$

$$\mathbb{CE} \coloneqq \mathbb{E}(\oplus F \mid \Diamond G)$$

Assume:

- ...to not reach goal with probability 1
- …having non-negative integer weights
- ▶ ...having two sets of states $F, G \subseteq S$

$$\mathbb{CE} \coloneqq \mathbb{E}(\Phi \mathrm{goal} \mid \Diamond \mathrm{goal})$$

$$\mathbb{CE} \coloneqq \mathbb{E}(\Phi F \mid \Diamond G)$$

$$\mathbb{CE}^{max} \coloneqq \sup_{\mathfrak{S} \in \mathfrak{V}} \mathbb{E}^{\mathfrak{S}}_{\mathcal{M}, s_{init}}(\Phi F \mid \Diamond G)$$

Assume:

- ...to not reach goal with probability 1
- …having non-negative integer weights
- \blacktriangleright ...having two sets of states $F, G \subseteq S$

$$\mathbb{CE} \coloneqq \mathbb{E}(\bigoplus \mathrm{goal} \mid \Diamond \mathrm{goal})$$

$$\mathbb{CE} \coloneqq \mathbb{E}(\bigoplus F \mid \Diamond G)$$

$$\mathbb{CE}^{max} \coloneqq \sup_{\mathfrak{S} \in \mathfrak{V}} \mathbb{E}^{\mathfrak{S}}_{\mathcal{M}, s_{init}} (\bigoplus F \mid \Diamond G)$$

$$\mathfrak{V} \coloneqq \{ \mathfrak{S} \in \mathrm{Schedulers}(\mathcal{M}) \mid \mathbb{Pr}^{\mathfrak{S}}_{\mathcal{M}, s_{init}} (\Diamond G) > 0 \text{ and }$$

$$\mathbb{Pr}^{\mathfrak{S}}_{\mathcal{M}, s_{init}} (\Diamond F \mid \Diamond G) = 1 \}$$

conditional expected accumulated reward

conditional expected accumulated reward

Finding the best scheduler...

 \mathfrak{S}_n : select $\beta^n \alpha$, $n \in \mathbb{N} \cup \{\infty\}$

conditional expected accumulated reward

Finding the best scheduler...

$$\mathfrak{S}_n$$
: select $\beta^n \alpha$, $n \in \mathbb{N} \cup \{\infty\}$

$$\mathbb{CE} = \frac{\frac{r}{2} + \frac{1}{2} \cdot \frac{1}{2}^{n} \cdot n}{\frac{1}{2} + \frac{1}{2}^{n+1}}$$

choose scheduler \mathfrak{S}_{r+2}

▶ There is a **PTime algorithm** to decide: Is \mathbb{CE}^{max} finite?

- ▶ There is a **PTime algorithm** to decide: Is \mathbb{CE}^{max} finite?
- ▶ There is a **pseudo-PTime algorithm** to calculate an upperbound $\mathbb{CE}^{ub} \geq \mathbb{CE}^{max}$

- ▶ There is a **PTime algorithm** to decide: Is \mathbb{CE}^{max} finite?
- ▶ There is a **pseudo-PTime algorithm** to calculate an upperbound $\mathbb{CE}^{ub} \geq \mathbb{CE}^{max}$
- ▶ If we have F = G and $\forall s \in \operatorname{States}(\mathcal{M}) : s \models \exists \Diamond G \Rightarrow \mathbb{Pr}^{min}_{\mathcal{M},s}(\Diamond G) > 0$ there is a **PTime algorithm** to calculate an upperbound $\mathbb{CE}^{ub} > \mathbb{CE}^{max}$

- ▶ There is a **PTime algorithm** to decide: Is \mathbb{CE}^{max} finite?
- ▶ There is a **pseudo-PTime algorithm** to calculate an upperbound $\mathbb{CE}^{ub} \geq \mathbb{CE}^{max}$
- ▶ If we have F = G and $\forall s \in \operatorname{States}(\mathcal{M}) : s \models \exists \Diamond G \Rightarrow \mathbb{Pr}_{\mathcal{M},s}^{min}(\Diamond G) > 0$ there is a **PTime algorithm** to calculate an upperbound $\mathbb{CE}^{ub} > \mathbb{CE}^{max}$
- ▶ The problem Decide if $\mathbb{CE}^{max} \bowtie t$ where we have
 - $ightharpoonup t \in \mathbb{Q} \dots$ some rational threshold

- ▶ There is a **PTime algorithm** to decide: Is \mathbb{CE}^{max} finite?
- ▶ There is a **pseudo-PTime algorithm** to calculate an upperbound $\mathbb{CE}^{ub} \geq \mathbb{CE}^{max}$
- ▶ If we have F = G and $\forall s \in \operatorname{States}(\mathcal{M}) : s \models \exists \Diamond G \Rightarrow \mathbb{Pr}_{\mathcal{M},s}^{min}(\Diamond G) > 0$ there is a **PTime algorithm** to calculate an upperbound $\mathbb{CE}^{ub} \geq \mathbb{CE}^{max}$
- ▶ The problem Decide if $\mathbb{CE}^{max} \bowtie t$ where we have
 - $ightharpoonup t \in \mathbb{Q} \dots$ some rational threshold
 - $\blacktriangleright \bowtie \in \{<, \leq, \geq, >\}$

- ▶ There is a **PTime algorithm** to decide: Is \mathbb{CE}^{max} finite?
- ▶ There is a **pseudo-PTime algorithm** to calculate an upperbound $\mathbb{CE}^{ub} \geq \mathbb{CE}^{max}$
- ▶ If we have F = G and $\forall s \in \operatorname{States}(\mathcal{M}) : s \models \exists \Diamond G \Rightarrow \mathbb{Pr}_{\mathcal{M},s}^{min}(\Diamond G) > 0$ there is a **PTime algorithm** to calculate an upperbound $\mathbb{CE}^{ub} \geq \mathbb{CE}^{max}$
- ▶ The problem Decide if $\mathbb{CE}^{max} \bowtie t$ where we have
 - $ightharpoonup t \in \mathbb{Q} \dots$ some rational threshold
 - $\triangleright \bowtie \in \{<, \leq, \geq, >\}$

is **PSpace-hard**, solvable in **ExpTime** and *for acyclic MDPs* **PSpace-complete**

- ▶ There is a **PTime algorithm** to decide: Is \mathbb{CE}^{max} finite?
- ▶ There is a **pseudo-PTime algorithm** to calculate an upperbound $\mathbb{CE}^{ub} \geq \mathbb{CE}^{max}$
- ▶ If we have F = G and $\forall s \in \operatorname{States}(\mathcal{M}) : s \models \exists \Diamond G \Rightarrow \mathbb{Pr}^{min}_{\mathcal{M},s}(\Diamond G) > 0$ there is a **PTime algorithm** to calculate an upperbound $\mathbb{CE}^{ub} \geq \mathbb{CE}^{max}$
- ▶ The problem Decide if $\mathbb{CE}^{max} \bowtie t$ where we have
 - $ightharpoonup t \in \mathbb{Q} \dots$ some rational threshold
 - $\triangleright \bowtie \in \{<, \leq, \geq, >\}$

is **PSpace-hard**, solvable in **ExpTime** and *for acyclic MDPs* **PSpace-complete**

▶ In **ExpTime** we can compute \mathbb{CE}^{max} together with an optimal scheduler

- **PTime** algorithm: given \mathcal{M}, F, G , two possible outcomes:
 - (1) $\mathbb{CE}^{max} = \infty$
 - (2) \mathbb{CE}^{max} is finite, equivalent MDP \mathcal{N} with two trap states goal, fail

- **PTime** algorithm: given \mathcal{M}, F, G , two possible outcomes:
 - (1) $\mathbb{C}\mathbb{E}^{max} = \infty$
 - (2) \mathbb{CE}^{max} is finite, equivalent MDP \mathcal{N} with two trap states goal, fail

equivalence of ${\mathcal M}$ and ${\mathcal N}$, properties of ${\mathcal N}'$

$$\mathbb{E}^{\textit{max}}_{\mathcal{M}, \textit{s}_{\textit{init}}}(\diamondsuit \textit{F} \mid \lozenge \textit{G}) = \mathbb{E}^{\textit{max}}_{\mathcal{N}, \textit{s}_{\textit{init}}}(\diamondsuit \textit{goal} \mid \lozenge \textit{goal})$$

- **PTime** algorithm: given \mathcal{M}, F, G , two possible outcomes:
 - (1) $\mathbb{C}\mathbb{E}^{max} = \infty$
 - (2) \mathbb{CE}^{max} is finite, equivalent MDP \mathcal{N} with two trap states goal, fail

equivalence of ${\mathcal M}$ and ${\mathcal N}$, properties of ${\mathcal N}$

$$\mathbb{E}^{max}_{\mathcal{M},s_{init}}(\Phi F\mid \lozenge G) = \mathbb{E}^{max}_{\mathcal{N},s_{init}}(\Phi goal\mid \lozenge goal)$$

in $\mathcal N$ the state goal is reachable from all states $s \in \mathcal S_{\mathcal N} \setminus \{\mathit{fail}\}$ and

$$\mathbb{P}$$
r $^{ extit{min}}_{\mathcal{N},s}\Big(\diamondsuit(extit{goal}ee extit{fail})\Big)=1$

- **PTime** algorithm: given \mathcal{M}, F, G , two possible outcomes:
 - (1) $\mathbb{C}\mathbb{E}^{max} = \infty$
 - (2) \mathbb{CE}^{max} is finite, equivalent MDP \mathcal{N} with two trap states goal, fail

equivalence of ${\mathcal M}$ and ${\mathcal N}$, properties of ${\mathcal N}$

$$\mathbb{E}^{\textit{max}}_{\mathcal{M}, \textit{s}_{\textit{init}}}(\lozenge \textit{F} \mid \lozenge \textit{G}) = \mathbb{E}^{\textit{max}}_{\mathcal{N}, \textit{s}_{\textit{init}}}(\lozenge \textit{goal} \mid \lozenge \textit{goal})$$

in $\mathcal N$ the state goal is reachable from all states $s \in \mathcal S_{\mathcal N} \setminus \{\mathit{fail}\}$ and

$$\mathbb{P}$$
r $^{ extit{min}}_{\mathcal{N},s}\Big(\diamondsuit(extit{goal}ee extit{fail})\Big)=1$

 $\mathcal N$ has no *critical* scheduler $\mathfrak S\colon \mathbb{Pr}^{\mathfrak S}(\diamondsuit \mathit{fail})=1$ and there is a reachable positive $\mathfrak S$ -cycle.

We assume that we have such an MDP ${\mathcal N}.$

We assume that we have such an MDP \mathcal{N} .

Observation

▶ \exists saturation point $t \in \mathbb{N}$ such that

We assume that we have such an MDP \mathcal{N} .

Observation

- ▶ \exists saturation point $t \in \mathbb{N}$ such that
 - ▶ after π with $wgt(\pi) \ge t$ we can rely on a memoryless, deterministic scheduler maximizing the probability to reach goal.

We assume that we have such an MDP \mathcal{N} .

Observation

- ▶ \exists saturation point $t \in \mathbb{N}$ such that
 - ▶ after π with $wgt(\pi) \ge t$ we can rely on a memoryless, deterministic scheduler maximizing the probability to reach goal.
 - ▶ Until reaching *t* a deterministic reward-based scheduler is sufficient.

We assume that we have such an MDP \mathcal{N} .

Observation

- ▶ \exists saturation point $t \in \mathbb{N}$ such that
 - ▶ after π with $wgt(\pi) \ge t$ we can rely on a memoryless, deterministic scheduler maximizing the probability to reach goal.
 - Until reaching t a deterministic reward-based scheduler is sufficient.

Threshold Algorithm

lacktriangle input: MDP ${\mathcal N}$ as before, threshold $t\in {\mathbb Q}_{\geq 0}$

We assume that we have such an MDP \mathcal{N} .

Observation

- ▶ \exists saturation point $t \in \mathbb{N}$ such that
 - ▶ after π with $wgt(\pi) \ge t$ we can rely on a memoryless, deterministic scheduler maximizing the probability to reach goal.
 - Until reaching t a deterministic reward-based scheduler is sufficient.

Threshold Algorithm

- ▶ input: MDP \mathcal{N} as before, threshold $t \in \mathbb{Q}_{\geq 0}$
- output:
- case (1) "no", we do not have $\mathbb{CE}^{max} > t$
- case (2) "yes", $\mathbb{CE}^{max} > t$ and we found a deterministic, reward-based scheduler \mathfrak{S} s.t.

We assume that we have such an MDP \mathcal{N} .

Observation

- ightharpoonup \exists saturation point $t \in \mathbb{N}$ such that
 - ▶ after π with $wgt(\pi) \ge t$ we can rely on a memoryless, deterministic scheduler maximizing the probability to reach goal.
 - Until reaching t a deterministic reward-based scheduler is sufficient.

Threshold Algorithm

- ▶ input: MDP \mathcal{N} as before, threshold $t \in \mathbb{Q}_{\geq 0}$
- output:
- case (1) "no", we do not have $\mathbb{CE}^{max} > t$
- case (2) "yes", $\mathbb{CE}^{max} > t$ and we found a deterministic, reward-based scheduler \mathfrak{S} s.t. \mathfrak{S} is memoryless after some saturation point.

conditional expectation	partial expectation

conditional expectation	partial expectation
CE	PE

conditional expectation	partial expectation
CE	PE
$\mathbb{CE} = \mathbb{E}(\Phi \text{goal} \mid \Diamond \text{goal})$	$\pi \nvDash \Diamond \operatorname{goal} \Rightarrow \operatorname{wgt}'(\pi) := 0$

$$\oplus goal(\pi) := \left\{ \begin{array}{ll} \oplus(\pi), & \pi \vDash \Diamond F \\ 0, & \text{otherwise, i.e. } \pi \nvDash \Diamond F \end{array} \right.$$

conditional expectation	partial expectation
CE	PE
$\mathbb{CE} = \mathbb{E}(\Phi_{goal} \mid \Diamond_{goal})$	$\pi \nvDash \Diamond \operatorname{goal} \Rightarrow \operatorname{wgt}'(\pi) := 0$

$$\oplus \textit{goal}(\pi) := \left\{ \begin{array}{ll} \oplus(\pi), & \pi \vDash \Diamond F \\ 0, & \text{otherwise, i.e. } \pi \nvDash \Diamond F \end{array} \right.$$

conditional expectation	partial expectation
CE	PE
$\mathbb{CE} = \mathbb{E}(\Phi_{\text{goal}} \mid \Diamond_{\text{goal}})$	$\pi \nvDash \Diamond \operatorname{goal} \Rightarrow \operatorname{wgt}'(\pi) := 0$
may lead to quite high \mathbb{CE} paired with a low probability of reaching goal	good approximation for maximizing probability of rea- ching goal and reward until goal

$$\oplus \textit{goal}(\pi) := \left\{ \begin{array}{ll} \oplus(\pi), & \pi \vDash \Diamond F \\ 0, & \text{otherwise, i.e. } \pi \nvDash \Diamond F \end{array} \right.$$

conditional expectation	partial expectation
CE	PE
$\mathbb{CE} = \mathbb{E}(\Phi_{goal} \mid \Diamond_{goal})$	$\pi \nvDash \Diamond \operatorname{goal} \Rightarrow \operatorname{wgt}'(\pi) := 0$
may lead to quite high \mathbb{CE} paired with a low probability of reaching goal	good approximation for maximizing probability of rea- ching goal and reward until goal

For both we know...

PTime algorithm to check finiteness of \mathbb{CE}^{max} (\mathbb{PE}^{max})

$$\oplus \textit{goal}(\pi) := \left\{ \begin{array}{ll} \oplus(\pi), & \pi \vDash \Diamond F \\ 0, & \text{otherwise, i.e. } \pi \nvDash \Diamond F \end{array} \right.$$

conditional expectation	partial expectation
CE	PE
$\mathbb{CE} = \mathbb{E}(\Phi_{goal} \mid \Diamond_{goal})$	$\pi \nvDash \Diamond \operatorname{goal} \Rightarrow \operatorname{wgt}'(\pi) := 0$
may lead to quite high \mathbb{CE} paired with a low probability of reaching goal	good approximation for maximizing probability of rea- ching goal and reward until goal

For both we know...

- **PTime** algorithm to check finiteness of \mathbb{CE}^{max} (\mathbb{PE}^{max})
- Both have a saturation point: reward-based schedulers vs. memoryless, det. schedulers

Finding the best scheduler...

 \mathfrak{S}_n : select $\beta^n \alpha$, $n \in \mathbb{N} \cup \{\infty\}$

Finding the best scheduler...

$$\mathfrak{S}_n$$
: select $\beta^n \alpha$, $n \in \mathbb{N} \cup \{\infty\}$

$$\mathbb{CE} = \frac{\frac{r}{2} + \frac{1}{2} \cdot \frac{1}{2}^{n} \cdot n}{\frac{1}{2} + \frac{1}{2}^{n+1}}$$

choose scheduler \mathfrak{S}_{r+2}

Finding the best scheduler...

$$\mathfrak{S}_n$$
: select $\beta^n \alpha$, $n \in \mathbb{N} \cup \{\infty\}$

$$\mathbb{CE} = \frac{\frac{r}{2} + \frac{1}{2} \cdot \frac{1}{2}^{n} \cdot n}{\frac{1}{2} + \frac{1}{2}^{n+1}}$$

$$\mathbb{PE} = \frac{1}{2}r + \frac{1}{2} \cdot \frac{1}{2}^{n} \cdot n$$

choose scheduler
$$\mathfrak{S}_{r+2}$$

choose scheduler \mathfrak{S}_1 or \mathfrak{S}_2

▶ It's not ensured that a saturation point exists

- ▶ It's not ensured that a saturation point exists
- Optimal schedulers may need infinite memory

- It's not ensured that a saturation point exists
- Optimal schedulers may need infinite memory
- Optimal values may even become irrational

- lt's not ensured that a saturation point exists
- Optimal schedulers may need infinite memory
- Optimal values may even become irrational
- ► LPs are not anymore sufficient for solving

Switching to integer weights...

- lt's not ensured that a saturation point exists
- Optimal schedulers may need infinite memory
- Optimal values may even become irrational
- LPs are not anymore sufficient for solving
- There are approximation methods using LPs

Section 4

Keep an eye on the variance

Given:

lacktriangle MDP ${\mathcal M}$ with non-negative integer weights

Given:

- lacktriangle MDP ${\cal M}$ with non-negative integer weights
- only one trap state goal which is reachable from all other states

Given:

- lacktriangle MDP ${\cal M}$ with non-negative integer weights
- only one trap state goal which is reachable from all other states
- all states are reachable from s_{init}

Given:

- lacktriangle MDP ${\cal M}$ with non-negative integer weights
- only one trap state goal which is reachable from all other states
- ▶ all states are reachable from sinit

Variance-penalized expectation

$$\mathbb{VPE}[\lambda]^{\mathfrak{S}}_{\mathcal{M}} \coloneqq \mathbb{E}^{\mathfrak{S}}_{\mathcal{M}}(\Phi_{goal}) - \lambda \cdot \mathbb{V}^{\mathfrak{S}}_{\mathcal{M}}(\Phi_{goal})$$

Given:

- \blacktriangleright MDP ${\cal M}$ with non-negative integer weights
- only one trap state goal which is reachable from all other states
- ▶ all states are reachable from sinit

Variance-penalized expectation

$$\begin{split} \mathbb{VPE}[\lambda]^{\mathfrak{S}}_{\mathcal{M}} &\coloneqq \mathbb{E}^{\mathfrak{S}}_{\mathcal{M}}(\oplus goal) - \lambda \cdot \mathbb{V}^{\mathfrak{S}}_{\mathcal{M}}(\oplus goal) \\ \\ \mathbb{VPE}[\lambda]^{max}_{\mathcal{M}} &\coloneqq \sup_{\mathfrak{S}} \mathbb{VPE}[\lambda]^{\mathfrak{S}}_{\mathcal{M}} \end{split}$$

complexity result

➤ Computing a variance-minimal scheduler among all E-optimal schedulers is doable in **PTime**. The scheduler can be chosen memoryless.

complexity result

- Computing a variance-minimal scheduler among all E-optimal schedulers is doable in PTime. The scheduler can be chosen memoryless.
- ▶ In **ExpSpace** we can compute \mathbb{VPE}^{max} and a deterministic scheduler as witness.

complexity result

- Computing a variance-minimal scheduler among all E-optimal schedulers is doable in PTime. The scheduler can be chosen memoryless.
- ▶ In **ExpSpace** we can compute \mathbb{VPE}^{max} and a deterministic scheduler as witness.
- ▶ The threshold problem, i.e. checking $\mathbb{VPE}^{max} \ge t$ is decidable in **NExpTime** and is known to be **ExpTime-hard**.

1. PTime transformation $\mathcal{M} \mapsto \mathcal{M}'$ such that

- 1. PTime transformation $\mathcal{M} \mapsto \mathcal{M}'$ such that
 - ▶ M' has no 0-ECs

- 1. PTime transformation $\mathcal{M} \mapsto \mathcal{M}'$ such that
 - ► M' has no 0-ECs
 - ▶ There are mappings from schedulers of \mathcal{M} to \mathcal{M}' and vice versa s.t.

- 1. PTime transformation $\mathcal{M} \mapsto \mathcal{M}'$ such that
 - ► M' has no 0-ECs
 - ▶ There are mappings from schedulers of \mathcal{M} to \mathcal{M}' and vice versa s.t.
 - ightharpoonup \mathbb{E}, \mathbb{V} are preserved

- 1. PTime transformation $\mathcal{M} \mapsto \mathcal{M}'$ such that
 - ► M' has no 0-ECs
 - ▶ There are mappings from schedulers of \mathcal{M} to \mathcal{M}' and vice versa s.t.
 - ► E, V are preserved
- 2. Transformation $\mathcal{M}' \mapsto \mathcal{M}''$ such that

- 1. PTime transformation $\mathcal{M} \mapsto \mathcal{M}'$ such that
 - ► M' has no 0-ECs
 - ▶ There are mappings from schedulers of \mathcal{M} to \mathcal{M}' and vice versa s.t.
 - ► E, V are preserved
- 2. Transformation $\mathcal{M}' \mapsto \mathcal{M}''$ such that
 - ▶ All actions not leading to \mathbb{E}^{max} are removed.

- 1. PTime transformation $\mathcal{M} \mapsto \mathcal{M}'$ such that
 - ▶ M' has no 0-ECs
 - ▶ There are mappings from schedulers of \mathcal{M} to \mathcal{M}' and vice versa s.t.
 - ► E, V are preserved
- 2. Transformation $\mathcal{M}' \mapsto \mathcal{M}''$ such that
 - ▶ All actions not leading to \mathbb{E}^{max} are removed.
 - $ightharpoonup \mathcal{M}''$ has no end components

- 1. PTime transformation $\mathcal{M} \mapsto \mathcal{M}'$ such that
 - ▶ M' has no 0-ECs
 - ▶ There are mappings from schedulers of \mathcal{M} to \mathcal{M}' and vice versa s.t.
 - ► E, V are preserved
- 2. Transformation $\mathcal{M}' \mapsto \mathcal{M}''$ such that
 - All actions not leading to E^{max} are removed.
 - $ightharpoonup \mathcal{M}''$ has no end components
 - ▶ All schedulers of \mathcal{M}'' have equal value for \mathbb{E} .

- 1. PTime transformation $\mathcal{M} \mapsto \mathcal{M}'$ such that
 - ▶ M' has no 0-ECs
 - ▶ There are mappings from schedulers of \mathcal{M} to \mathcal{M}' and vice versa s.t.
 - ► E, V are preserved
- 2. Transformation $\mathcal{M}' \mapsto \mathcal{M}''$ such that
 - ▶ All actions not leading to \mathbb{E}^{max} are removed.
 - \triangleright \mathcal{M}'' has no end components
 - All schedulers of M" have equal value for E.
- 3. Solve a system of linear equations to find V^{min} + witnessing scheduler

- 1. PTime transformation $\mathcal{M} \mapsto \mathcal{M}'$ such that
 - ▶ M' has no 0-ECs
 - ▶ There are mappings from schedulers of \mathcal{M} to \mathcal{M}' and vice versa s.t.
 - ightharpoonup \mathbb{E}, \mathbb{V} are preserved
- 2. Transformation $\mathcal{M}' \mapsto \mathcal{M}''$ such that
 - ightharpoonup All actions not leading to \mathbb{E}^{max} are removed.
 - $ightharpoonup \mathcal{M}''$ has no end components
 - All schedulers of M" have equal value for E.
- 3. Solve a system of linear equations to find \mathbb{V}^{min} + witnessing scheduler
 - ► The scheduler can be chosen memoryless and deterministic

 Worst-case expected termination times of probabilistic programs

- Worst-case expected termination times of probabilistic programs
- Finding optimal controls for a motion planning scenario having random external influences

- Worst-case expected termination times of probabilistic programs
- Finding optimal controls for a motion planning scenario having random external influences
- ► Traffic control systems, energy grids

- Worst-case expected termination times of probabilistic programs
- ► Finding optimal controls for a motion planning scenario having random external influences
- ► Traffic control systems, energy grids
- Decision making in financial markets

- Worst-case expected termination times of probabilistic programs
- ► Finding optimal controls for a motion planning scenario having random external influences
- ► Traffic control systems, energy grids
- ▶ Decision making in financial markets

Limits of applicability?

The problem

Given a

 $ightharpoonup \mathbb{Z}$ -weighted MDP \mathcal{M}

The problem

Given a

- ► Z-weighted MDP M
- lacktriangle weight threshold $t\in\mathcal{M}$

The problem

Given a

- ► Z-weighted MDP M
- ▶ weight threshold $t \in \mathcal{M}$
- ▶ probability threshold $\alpha \in [0,1] \cap \mathbb{Q}$

The problem

Given a

- ► Z-weighted MDP M
- ▶ weight threshold $t \in \mathcal{M}$
- ▶ probability threshold $\alpha \in [0,1] \cap \mathbb{Q}$

Decide: Is there a scheduler such that $\mathbb{P}\Gamma(\Phi(\pi) \leq t) \geq \alpha$?

The problem

Given a

- ightharpoons \mathbb{Z} -weighted MDP \mathcal{M}
- lacktriangle weight threshold $t\in\mathcal{M}$
- ▶ probability threshold $\alpha \in [0,1] \cap \mathbb{Q}$

Decide: Is there a scheduler such that $\mathbb{Pr}(\Phi(\pi) \leq t) \geq \alpha$?

...PSpace-hard

The problem

Given a

- ► Z-weighted MDP M
- ▶ weight threshold $t \in \mathcal{M}$
- ▶ probability threshold $\alpha \in [0,1] \cap \mathbb{Q}$

Decide: Is there a scheduler such that $\mathbb{Pr}(\Phi(\pi) \leq t) \geq \alpha$?

- ...PSpace-hard
- ...decidable in pseudo-PTime

The problem

Given a

- ► Z-weighted MDP M
- ▶ weight threshold $t \in \mathcal{M}$
- ▶ probability threshold $\alpha \in [0,1] \cap \mathbb{Q}$

Decide: Is there a scheduler such that $\mathbb{Pr}(\Phi(\pi) \leq t) \geq \alpha$?

- ...PSpace-hard
- ...decidable in pseudo-PTime
- ...There is an optimal deterministic scheduler, computable in ExpTime

Tools

- ► Storm model checker
- Prism model checker