Контрольная работа к 1 заданию по линейной алгебре (МФТИ, 2033). ФБВТ.

- 1. Найти размерности и базисы суммы и пересечения подпространств V_1, V_2 в \mathbf{R}^4 , где $V_1 = \left\langle a_1, a_2, a_3 \right\rangle, a_1 = (-1, 3, -3, 3)^t, a_2 = (-5, 4, -2, 3)^t, a_3 = (-7, 10, -8, 9)^t$, а $V_2 10$ подпространство решений системы $\begin{cases} 2x_1 + 6x_2 + 2x_3 x_4 = 0 \\ x_1 + 4x_3 5x_4 = 0 \end{cases}$.
- 2. Линейное преобразование φ в \mathbf{R}^2 отображает векторы $a_1 = (3,2)^T, a_2 = (4,3)^T$ соответственно в векторы $b_1 = (3,-1)^T, b_2 = (2,5)^T$. Записать матрицу этого преобразования в базисе, в котором даны координаты всех векторов. Найти собственные числа и векторы этого преобразования.
- 3. В базисе $e_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$, $e_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ линейное преобразование ϕ имеет матрицу $A = \begin{pmatrix} -2 & 3 \\ 3 & 2 \end{pmatrix}$. Найти матрицу преобразования ϕ в базисе $e_1' = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, $e_2' = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$. Найти собственные числа и векторы этого преобразования.
- 4. Найти базис ядра и базис образа линейного отображения $\varphi: R^4 \to R^4$, заданного матрицей $A_{\varphi} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -2 & 0 & -3 \\ 1 & 1 & -\alpha & 3 \\ 2 & \alpha & -4 & 6 \end{pmatrix}$, при всевозможных значениях

параметра α.