

Queenie Huang

Melantha Wang

Michael Jacinto

Kevin Li

Harry Peng

Background to the project

Project

The (challenging) task of predicting building claims costs in SMEs (Small and Medium Enterprises) across Australia

Issues

Insufficient claims experience per occupation to understand occupation-level risks

High heterogeneity between policies \rightarrow aggregate modelling would be inefficient

Less differentiating risk modelling

Goals

- 1) Develop occupational rating scheme both accurate and consistent with domain knowledge
- 2) Build and test models for predicting working claims cost of SME building insurance
- Fast growing SME sector → market potential
- More accurate model \rightarrow sustainable and competitive pricing \rightarrow edge over other insurers

Agenda

2

3

4

5

Data Preparation

Impute missing values and handle invalid data.

Exploratory Data Analysis

Identify patterns in the data, group high cardinal variables.

Occupation Grouping

Cluster occupations by claim size and proportion of fire claims, rank them by claim size.

Claims Cost Model

Propose a GLM-XGBoost hybrid model, demonstrate how it can be applied in practice.

Limitations and Next Steps (including Appendix)

Considered limitations and ways of improvements, further findings

Data Preparation

Building materials was plagued with missing data

floorType, wallType and roofType are 45-47% missing

Imputation not feasible as too many values missing

Data preparation

EDA

Occupation grouping

Claims cost models

Building materials was plagued with missing data

floorType, wallType and roofType are 45-47% missing

Imputation not feasible as too many values missing

Solution: code the missing values as a separate factor

Data preparation

EDA

Occupation grouping

Claims cost models

Invalid data was treated depending on the variable

Anomalies (invalid data)

Out of the 6,746 claims from the data,

20

Claims with a negative incurred amount

35

Claims with incurred amount > sum insured

11

Policies with negative tenure

4

Policies with tenure > 100 years Occupancy

Has a single level: "PropOwner"

Remove Keep Change Remove

Data preparation

EDA

Occupation grouping

Claims cost models

Exploratory DataAnalysis

Fire claims show different behaviours to other claim types

Fire claims, although less frequent, tend to be more severe than all other perils

Data preparation

EDA

Occupation grouping

Claims cost models

Building materials have a significant impact on claim size

Alloywood and wood have higher average claims costs than other materials

Data preparation Claims cost Limitations grouping models Limitations & next steps

Building materials have a significant impact on claim size

Fire Not Fire

Wooden roofs, walls, and floors are more susceptible to fire than other materials

Data preparation Claims cost Limitations grouping models Limitations & next steps

Later modelling must account for superimposed inflation

Postcode risk was **regrouped into Statistical Area (level 4)** to reduce feature cardinality

Data preparation Claims cost Limitations & next steps

^{*}size of circles indicates number of claims

Features were **grouped or combined** to simplify the dataset

Occupation Grouping

The data was **aggregated by ANZSIC2** code

Data preparation

EDA

Occupation grouping

Claims cost models

Claim severity, frequency and fire proportion were used to quantify risk

Variables were **normalised** to minimise the impact of outliers

Variables were **normalised** to minimise the impact of outliers

Data preparation

EDA

Occupation grouping

Claims cost models

Other models, settings, and variables were considered

Data preparation EDA Occupation grouping Claims cost models Limitations & next steps

Other models, settings, and variables were considered

In K-means clustering, choosing the right number of clusters is important

Elbows at 10, 14, 18, 21, 23

Too many clusters lead to overfitting, too many categorical variables

10 clusters chosen

Data preparation

EDA

Occupation grouping

Claims cost models

Choosing the right **number of clusters** is important

Elbows at 10, 14, 18, 21, 23

Too many clusters lead to overfitting, too many categorical variables

Combine groups 9 and 10

9 distinct groups

Data preparation

EDA

Occupation grouping

Claims cost models

Clusters were ranked based on expected claim size

Expected claim size ≈ Claim frequency × Claim severity

Data preparation

EDA

Occupation grouping

Claims cost models

Education and media businesses are prevalent in the low-risk group

Size of bubble indicates proportion of fire claims

Data preparation EDA Occupation Grouping Claims cost Models Limitations & next steps

Retail and hospitality makes up the riskiest occupations

Size of bubble indicates proportion of fire claims

Data preparation EDA Occupation grouping Claims cost models Limitations & next steps

Group 4 suffers from large claims, but benefits from a low claim frequency

Group 4 includes:

- Agriculture
- Transport support services
- Internet service providers

Size of bubble indicates proportion of fire claims

Data preparation

EDA

Occupation grouping

Claims cost models

Claims Cost Models

The data was **split into a training and testing** set

Objective: To accurately model working claims cost for building insurance

The data was randomly split into...

Training set

80% of data

Testing set

20% of data

To aid in model tuning and fitting processes

To evaluate **performance** across models

Root mean square error (RMSE)

- Learning objective (for training models)
- Performance metric (for model selection)

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\widehat{y_i} - y_i)^2}{n}}$$

Data preparation

EDA

Occupation grouping

Claims cost models

We **fit a normal distribution** to the **log transformed** data to optimise the GLM

Distribution of total incurred

Empirical and fitted parametric CDFs (without predictors)

Data preparation

EDA

Occupation grouping

Claims cost models

Sum insured was treated as a predictor

Incurred by exposure groups

Incurred per exposure by exposure groups

Relationship between incurred and sum insured may not be strictly pro-rata

Data preparation

EDA

Occupation grouping

Claims cost models

Other model considerations were assessed and included to the model

Material types, fire protection, occupations, postcodes

In line with EDA results

Superimposed inflation

yearIncurred as a categorical predictor

Fire/non-fire vs aggregate model

Balanced the lack of data and the significantly different distributions

Data preparation

EDA

Occupation grouping

Claims cost models

The models need to be both **accurate and interpretable** to meet business objectives

Business objectives

High - Accurate prediction for claim costs is the basis for competitive and sustainable pricing schemes.

High - It is crucial to understand the risk drivers in order to inform product design and risk management, and communicate the insights to other teams and/or management.

Low - The dataset is relatively small (thousands of observations x 10-20 features). The models need not to be re-trained frequently.

Data preparation

EDA

Occupation grouping

Claims cost models

But it is well known that a **compromise exists** between accuracy and interpretability

To balance these objectives, our team proposes an innovative model: **XGBoosted GLM!**

Baseline GLM as the backbone

Captures the overall pattern

Interpretative power from GLM ensures compliance

XGBoosting layer

Learns remaining model structure in the GLM residuals

Prediction accuracy from XGBoost

Data preparation

EDA

Occupation grouping

Claims cost models

XGBoosted GLM maintains XGBoost's accuracy while retaining interpretability of GLM

Error comparison of GLM, XGBoost, and XGBoosted GLM

RMSE	GLM	XGBoost	XGBoosted GLM	XGBoosted GLM: Improvement over GLM baseline
Fire claims	525,465	505,244	508,709	3.2%
Non-fire claims	22,841	22,482	22,456	1.7%
Aggregate	73,707	71,333	71,660	2.8%

Data preparation

EDA

Occupation grouping

Claims cost models

GLM identified different significant predictors for fire and non-fire claims

	Fire		
Variable	Estimated effect	F-statistics	Significance
buildingSI	1.17e-07	8.008	***
YearIncurred	Multiple factors	1.126	
yearsInsured	-7.38e-03	0.424	
regionRisk	Multiple factors	1.650	* \$ \$
locality	Multiple factors	1.123	
roofType_resist	-6.25e-01	1.429	
wallType_resist	-1.25	1.017	
floorType_resist	4.53e-01	0.307	
fire_detection	6.50e-01	5.695	★ ☆☆
fire_extinguishing	3.23e-01	1.327	
hazard	Multiple factors	1.988	☆ ☆ ☆

Non-fire						
Variable	Estimated effect	F-statistics	Significance			
buildingSI	2.28e-08	9.433	**☆			
YearIncurred	Multiple factors	12.950	***			
yearsInsured	−8.19e-03	6.382	★☆☆			
regionRisk	Multiple factors	2.245	***			
locality	Multiple factors	1.413				
roofType_resist	−7.76e-02	0.438				
wallType_resist	4.94e-01	0.107				
floorType_resist	-6.03e-01	6.928	***			
fire_detection	8.93e-02	0.363				
fire_extinguishing	−5.75e-02	0.868				
hazard	Multiple factors	3.813	***			
peril	Multiple factors	18.985	***			

The split models together have an **RMSE of 73,726**, a vast improvement over the previous two models!

Data preparation

EDA

Occupation grouping

Claims cost models

XGBoost effectively picked up the remaining patterns: fire example

XGBoost effectively picked up the **remaining patterns**: fire example

We make three recommendations to make our model commercially viable

Converting models into rating tables

Further experimentation with the hybrid model

Integration with peril classifier (either model or underwriter)

On risk drivers identified by GLM (e.g., buildingSI, yearIncurred, occupation)

Consider other parametric models for baseline and/or deep learning techniques for learning residuals

Instead of assuming known perils, we can integrate our model with peril classifier that estimates Pr(fire claim)

Data preparation

EDA

Occupation grouping

Claims cost models

Our results inherited any limitations in the data sources

Data preparation

EDA

Occupation grouping

Claims cost models