KVM性能优化

美团开放平台

qiujian@meituan.com https://mos.meituan.com

2013/10/22

关于美团开放平台

- 2012年初规划
- 基于OpenStack架构,部分组件自主开发
- 2012年9月开始逐步迁移在线服务系统到云主机
- 2013年5月推出美团开放服务(https://mos.meituan.com), 云主机为第一款产品
- 美团云主机基于KVM虚拟化技术

Agenda

- CPU
 - context switch
 - cache
- Memory
- IO
 - Storage
 - Network

Context Switch - Intel VT-x

Virtualization Technology

ring 0 kernel mode

ring 3 User mode

Context Switch - Intel VT-x

Virtualization Technology

ring 0 kernel mode

ring 3 User mode VMM ring 0 kernel mode

VMM ring 3 User mode

VM ring 0 Kernel mode

VM ring 3 User mode

Context Switch - Intel VT-x

Virtualization Technology

VMM ring 0 kernel mode ring 0 kernel mode VMM ring 3 User mode ring 3 VM ring 0 User mode Kernel mode VM ring 3 User mode

设置:宿主机BIOS中开启,目前默认开启

• 将qemu进程绑定到特定的CPU node或core上

——避免L2/L3 Cache miss

- 将qemu进程绑定到特定的CPU node或core上
 ——避免L2/L3 Cache miss
- Node binding v.s core binding

- 将qemu进程绑定到特定的CPU node或core上
 ——避免L2/L3 Cache miss
- Node binding v.s core binding
- 设置:

- 将qemu进程绑定到特定的CPU node或core上
 ——避免L2/L3 Cache miss
- Node binding v.s core binding
- 设置:
 - taskset

Agenda

- CPU
- Memory
 - Addressing
 - Space
- IO
 - Storage
 - Network

Addressing - EPT (SLAT)

Extended page tables/second level address translation

Addressing - EPT (SLAT)

Extended page tables/second level address translation

Addressing - EPT (SLAT)

Extended page tables/second level address translation

设置:宿主机BIOS中开启,目前默认开启

 减少page table尺寸, 降低查找缓存(TLB)的cache-miss, 加速VM内存地址 转换

- 减少page table尺寸,降低查找缓存(TLB)的cache-miss,加速VM内存地址 转换
 - 默认Page size: 4KB/Hugepage size: 2M

- 减少page table尺寸, 降低查找缓存(TLB)的cache-miss, 加速VM内存地址 转换
 - 默认Page size: 4KB/Hugepage size: 2M
- Transparent hugepage: kernel进程khugepaged周期性扫描内存,自动将地址连续可合并的普通4KB page合并为2MB Hugepage

- 减少page table尺寸, 降低查找缓存(TLB)的cache-miss, 加速VM内存地址 转换
 - 默认Page size: 4KB/Hugepage size: 2M
- Transparent hugepage: kernel进程khugepaged周期性扫描内存,自动将地址连续可合并的普通4KB page合并为2MB Hugepage
 - 设置:

- 减少page table尺寸, 降低查找缓存(TLB)的cache-miss, 加速VM内存地址 转换
 - 默认Page size: 4KB/Hugepage size: 2M
- Transparent hugepage: kernel进程khugepaged周期性扫描内存,自动将地址连续可合并的普通4KB page合并为2MB Hugepage
 - 设置:
 - sysctl -w sys.kernel.mm.transparent_hugepage.enabled=always

- 减少page table尺寸,降低查找缓存(TLB)的cache-miss,加速VM内存地址转换
 - 默认Page size: 4KB/Hugepage size: 2M
- Transparent hugepage: kernel进程khugepaged周期性扫描内存,自动将地址连续可合并的普通4KB page合并为2MB Hugepage
 - 设置:
 - sysctl -w sys.kernel.mm.transparent_hugepage.enabled=always
 - sysctl -w sys.kernel.mm.transparent_hugepage.defrag=always

kbuild bench (shorter is better)

Space - KSM

- Kernel same-page merging
- kernel进程ksmd周期性扫描内存,将内容相同的 page合并,减少物理内存使用量

Agenda

- CPU
- Memory
- 10
 - Storage
 - Network

Full virtualization v.s. paravirtualization

virtio

半虚拟化I/O设备框架,标准化guest与host之间数据交换接口,简化流程,减少内存拷贝,提升虚拟机I/O效率

Agenda

- CPU
- Memory
- 10
 - Storage
 - Network

virtio-blk

• 基于virtio框架的虚拟PCI磁盘设备

/dev/vdx

virtio-blk

• 基于virtio框架的虚拟PCI磁盘设备

/dev/vdx

-drive file=win_xp.img,if=none,id=drive_0,cache=none,aio=native -device virtio-blk-pci,drive=drive_0,bus=pci.0,addr=0x5

virtio-SCSI

- 基于virtio框架的虚拟SCSI磁盘设备
- /dev/sdx

virtio-SCSI

- 基于virtio框架的虚拟SCSI磁盘设备
- /dev/sdx

-drive file=win_xp.img,if=none,id=drive_0,cache=none,aio=native -device virtio-scsi-pci,drive=drive_0,bus=pci.0,addr=0x5

缓存模式

Guest User Space

Guest FS page cache

Brk Driver writeback cache

Qemu

Host FS page cache

Kernel

缓存模式(cont)

	page cache	writeback cache	写同步 (flush)	说明
directsync	NO	NO	N/A	无优化
writethrough	YES	NO	YES	依靠Host操作系统优化IO性能
none/off	NO	YES	N/A	关闭Host page cache. 优化写性能,并保证安全性
writeback	YES	YES	YES	优化读写性能,可能丢失数据
unsafe	YES	YES	NO	优化读写行呢干,不保证数据安全

-drive file=win_xp.img,if=none,id=drive_0,cache=none,aio=native -device virtio-blk-pci,drive=drive_0,bus=pci.0,addr=0x5

KVM Block I/O Performance - Impact of KVM Caching on Direct-Attached Storage

File System = ext3; I/O Block Size = 8KB; LVM Volume on 8 x DS3400 Disk Arrays

■ KVM Virtio (4 vcpus, 8GB, no cache)
■ KVM Virtio (4 vcpus, 8GB, writethrough)

Native AlO

- Native aio: kernel AlO
- threaded aio: user space AIO emulated by posix thread workers

Native AlO

- Native aio: kernel AlO
- threaded aio: user space AIO emulated by posix thread workers

-drive file=win_xp.img,if=none,id=drive_0,cache=none,aio=native -device virtio-blk-pci,drive=drive_0,bus=pci.0,addr=0x5

块设备IO调度器

cfq	per-process IO queue	较好公平性 较低aggregate throughput
deadline	per-device IO queue	较好实时性,较好aggregate throughput 不够公平,容易出现VM starvation

块设备IO调度器

 cfq
 per-process IO queue
 较好公平性 较低aggregate throughput

 deadline
 per-device IO queue
 较好实时性,较好aggregate throughput 不够公平,容易出现VM starvation

sysctl -w sys.block.sdb.queue.scheduler=cfq

Agenda

- CPU
- Memory
- 10
 - Storage
 - Network

virtio-net

• 基于virtio框架的虚拟以太网设备

virtio-net

• 基于virtio框架的虚拟以太网设备

-netdev type=tap,id=pub226,ifname=pub226,vhost=on,script=up.sh,downscript=down.sh -device virtio-net-pci,netdev=pub226,mac=00:02:dc:04:59:36,bus=pci.0,addr=0xf

vhost net

内核进程vhost_xxx负责tap设备和guest virtio queue之间的数据交换,减少qemu通过用户态和tap设备交换数据的system call和内存拷贝

vhost net

内核进程vhost_xxx负责tap设备和guest virtio queue之间的数据交换,减少qemu通过用户态和tap设备交换数据的system call和内存拷贝

vhost net

内核进程vhost_xxx负责tap设备和guest virtio queue之间的数据交换,减少qemu通过用户态和tap设备交换数据的system call和内存拷贝

-netdev type=tap,id=pub226,ifname=pub226,vhost=on,script=up.sh,downscript=down.sh -device virtio-net-pci,netdev=pub226,mac=00:02:dc:04:59:36,bus=pci.0,addr=0xf

其他优化选项

- CPU: scheduler
- Memory: NUMA
- Storage: PCI-passthrough
- Network: SR-IOV, PCI-passthrough
- 提升硬件指标

Thank you Q&A

https://mos.meituan.com