

MicroFL: A Lightweight, Secure-by-Design Edge Network Fabric for Decentralized IoT Systems Ronghua Xu, Yu Chen, Jian Li

Binghamton University, SUNY, Binghamton, NY 13902, USA

Introduction

- ➤ Distributed Internet-of-Thing (IoT) systems generate a large amount of data for Machine Learning (ML)
- Federated Learning (FL) facilitates large-scale collaborative learning of a global ML model with privacy preservation
- ➤ Blockchain brings decentralization, security and privacy enforcement into distributed cross-devices FL scenarios
- ➤ Intelligent Fusion based on IoT, FL and Blockchain needs a secure-by-design, self-adaptive, and totally decentralized network architecture

Key Challenges

- Constrained computation and storage resource Energy efficiency and heterogeneous network Data security and privacy concerns Privacy-preserving in learning and aggregation Robust to adversarial attacks and failures Complex incentive mechanism
- The trade-off between scalability and efficiency Blockchain • The computation cost for consensus algorithm
 - The ledger data storage overhead on host

Main Objectives

- Design a secure, self-adaptive, and decentralized network architecture
- Enable an efficient, privacy-preserving and secure cooperative training framework on top of distributed IoT hierarchies, consisting of the cloud, the fog and edge devices
- Integrate an optimized and lightweight blockchain fabric to enhance privacy, security and incentive compatible guarantees for FL
- Build an organic system in which FL and blockchain have a mutual reinforced relationship

Contact Information

Web: https://www.binghamton.edu/ece

Email: rxu22@Binghamton.edu

Phone : +1 (607) 338-8444

System Architecture Model Inference Service Microchained Fabric **Final-committee Consensus** Distributed Ledger Model deployment Cloud Layer Finalize blocks Fog Layer Final committee Oracle Randomness Re-elect new | committees Committee 2 Committee **Intra-committee Consensus** Reconfiguration Edge Layer Federated Training Service

Figure 1: System Architecture of MicroFL

Hierarchical FL Framework •

- cloud-fog-edge Hierarchical computing architecture
- Players: FL clients, aggregators and FL server
- Main workflows: Global model propagation (down-stream) and local model aggregation (upstream)
- Support scalability, flexible management and coordinated central and local decisions for distributed FL service under heterogeneous network and IoT devices

Hybrid Microchained Fabric •

- Interconnect key players in FL to enhance user data & model updates protection and multi-party computing security
- Two-level committee consensus protocols offer an efficient, scalable and privacy-preserving distributed ledgers for hierarchical FL framework
- A bias-resistant public randomness mechanism ensures unpredictable and statistical representative committee formation

Design Rationale

FL acts as upper-level enabling technology to provide Federated Learning decentralized cooperative training and global model inference

Microchain

Immutability

Auditability

Traceability

Microchain provides fundamental networking and security mechanism for FL system

- **Computation & storage**
- Optimization algorithm
- Intelligent services

Microchain Summary

Figure 2: Key Components and Workflows in Microchain [1].

The features of Microchain

	Permissioned Network			
•	Provide basic security primitives,	•		
	such as public key infrastructure (PKI) and access control			
•	Handle heterogeneous networks with varying security requirements	•		

Random Committee Election ased on unbiased randomnes Lower communication cost and high throughput for IoT

Efficient Virtual Mining

arXiv:1909.10948, 2019.

A computational efficient virtu nining manner for probabilist block generation Limited computation and storage overhead as executing on IoT devices

Incentive Capability Adopt incentive compatibility base on rewarding and punishmen

Helpful to address incentive issues in FL system

References: [1] R. Xu, Y. Chen, E. Blasch, and G. Chen, "Microchain: A hybrid consensus mechanism for lightweight distributed ledger for iot," arXivpreprint

Ongoing Efforts and Future Directions

Table 1: Configuration of Experimental Nodes

Table 1: Configuration of Experimental Nodes.			
Device	Dell Optiplex 760	Raspberry Pi 3 Model B+	
CPU	3 GHz Intel Core TM (2 cores)	Broadcom ARM Cortex A53 (ARMv8), 1.4GHz	
Memory	4GB DDR3	1GB SDRAM	
Storage	250G HHD	32GB (microSD card)	
OS	Ubuntu 16.04	Raspbian GNU/Linux (Jessie)	

Microchain (In seconds; computed over 50 runs; Setting I:4 nodes; Setting II: 16 nodes)

Table 2: Network latency for one round of

Setting I | Setting II 0.25 **Commit Transaction Block Proposal** 21.5 Chain Finality

Table 3: Throughput based on average transactions rate (in M/h: Mbytes per hour)

Block size	Transactions rate	
512 K	202	
1 M	293	
2 M	405	
4 M	263	

Table 4: Average processing time of running each Microchain operations with 1 M block size (In milliseconds, computed over 50 runs; Setting I: Desktop; Setting II: Raspberry Pi)

Operations	Setting I	Setting II	
Verify Transaction	47	179	Sett
Mining Block	27	147	Sett
Validate Block	358	492	
Verify Vote	303	436	

CPU usage (%) ting II 15

Our future work includes but not limited to:

- 1) Integrating MicroFL with our current smart surveillance research to enable anomalous behavior detection based on Multi-view cameras;
- 2) Investigating impacts of executing MicroFL in terms of detection accuracy of training algorithm, networking efficiency, data security and privacy protection.