Epileptic Seizure Detection using Phase Space Reconstruction and Machine Learning Algorithms

Introduction

- Epileptic seizures are a sudden burst of electrical signals in the brain
- Detected using EEG signals sensed via electrodes
- EEG siganls are non-stationary and nonlinear making it a challenge to work with

Comparison with Previous work

[1]Guo, Y., Jiang, X., Tao, L., Meng, L., Dai, C., Long, X., Wan, F., Zhang, Y., van Dijk, J., Aarts, R. M., Chen, W., & Chen, C. (2022). Epileptic Seizure Detection by Cascading Isolation Forest-Based Anomaly Screening and EasyEnsemble. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 30, 915–924.

[2] Aayesha, Qureshi, M. B., Afzaal, M., Qureshi, M. S., & Fayaz, M. (2021). Machine learning-based EEG signals classification model for epileptic seizure detection. Multimedia Tools and Applications, 80(12), 17849–17877. https://doi.org/10.1007/s11042-021-10597-6

Key Contributions

- Improved performance compared to literature: 98.9% ACC, SPEC, SENS
- Proved Efficacy of PSR
- Found ideal preprocessing window size: 10 seconds
- First study to implement PSR on multichanel CHB-MIT dataset

Results

Preprocessing with bandpass filtering and Phase space reconstruction improved the performance of RF by 12%

Phase space reconstruction

- PSR is a non-linear timeseries analysis methiod
- It enhances the information present in EEG

Bandpass Filtering

Bandpass filtering done in frequency range 0.5Hz to 25Hz as most seizures fall in this range

Random Forest (RF)

Out of the six classification algorithms test, random forest classifier performed the best