A somatic genetic clock for clonal organisms

Jessie Renton & Benjamin Werner Barts Cancer Institute

1. Somatic genetic clock

Cells accumulate somatic mutations when they divide, leading to somatic genetic variation within

Clonal organisms grow from a single zygote by repeating modules. Somatic mutations become fixed in modules by neutral drift [1].

Fixed mutations accumulate linearly [2] and could provide a somatic genetic clock to estimate the age of clonal organisms.

Can calibrate the clock with clones of known age.

Problem: mutations do not fixate instantaneously, thus it takes time to reach linearity.

3. Model of a clonal organism

Clonal organism represented as a collection of modules that consist of cells. Modules grow to N cells by symmetric cell division at rate b.

At division cells obtain µ new mutations on average. Cells in homeostatic modules continue to proliferate by:

asymmetric division

or **symmetric** division.

Homeostatic modules produce new modules at rate *r* by:

splitting

or branching.

3. Quantifying the delay to linearity

The time to reach linear accumulation is related to the conditional fixation times T.

Fixation by symmetric cell division in homeostatic modules is a Moran process: $T \approx b/N$ [3].

Repeated formation of new modules is approximated as a modified Wright-Fisher process:

branching:

splitting: $T \approx \frac{4N_0}{\pi} (1 - N_0/N)$.

Comparing theory and simulation:

→ asymmetric division & branching

asymmetric division & splitting

symmetric division & splitting

 $N = 100, N_0 = 1$

Longer fixation times correspond to a longer delay to linearity:

4. Conclusions

The somatic genetic clock can be applied when linearity is reached quickly, e.g. for small modules, small initial modules or symmetric cell division.