Liczby zespolone

Podstawowe własności

- 1. Wykonać podane działania:
- a) (-3+2i)+(4+i), b) (7-6i)-(1+4i),
- c) $(1+i\sqrt{3}) \cdot (3-2i)$, d) $\frac{5+3i}{1-i}$.
- 2. W zbiorze liczb zespolonych rozwiązać podane równania:
- a) $z^2 \bar{z} = 0$,
- b) $z^2 + z 2 = 0$,
- c) $2z + (1+i)\bar{z} = 1 4i$.
- 3. Znaleźć takie liczby rzeczywiste λ i μ aby zachodziły równości:
- a) $\lambda (2+3i) + \mu (4-5i) = 6-2i$,
- b) $\lambda (4-3i)^2 + \mu (1+i)^2 = 7-12i$,
- c) $\frac{2\lambda 3i}{5 + 3i} + \frac{3\mu + 2i}{3 5i} = 0.$

Postać trygonometryczna liczby zespolonej Wzór de'Moivre'a

- **4.** Przedstawić w postaci trygonometrycznej (bez użycia tablic) następujące liczby zespolone:
- a) 1, -1, i, -i, b) 1+i, 1-i, -1-i, c) $\sqrt{6}+\sqrt{2}+i\left(\sqrt{6}-\sqrt{2}\right)$, d) $-\sqrt{5}$.
- **5.** Wykonać działania stosując przedstawienie liczby zespolonej w postaci trygonometrycznej:

a)
$$(1+i)(1-i\sqrt{3})$$
, b) $\frac{1+i}{1-i\sqrt{3}}$, c) $\left(\frac{\sqrt{6}+\sqrt{2}+i(\sqrt{6}-\sqrt{2})}{\sqrt{3}+i}\right)$, d) $(1+i)^7$.

6. Obliczyć. Wynik podać w postaci algebraicznej liczby zespolonej):

1

- a) $\left(\frac{1+i}{i-\sqrt{3}}\right)^{2004}$, b) $\left(\sqrt{3}-i\right)^{100}$, c) $\left(\cos 33^0+i\sin 33^0\right)^{10}$, d) $\left(-\cos\frac{\pi}{7}+i\sin\frac{\pi}{7}\right)^{14}$,
- e) $\left(\frac{1+i}{i-\sqrt{3}}\right)^{2004}$, f) $\operatorname{Re}\left(\frac{\left(\sqrt{3}+i\right)\left(-1+i\sqrt{3}\right)}{\left(1+i\right)^2}\right)$.

- 7. Korzystając ze wzoru de Moivre'a wyprowadzić wzory na:
- $\sin 3x$,
- b) $\cos 5x$, c) $\sin 6x$.
- Udowodnić następujące wzory: 8.

a)
$$\cos 2nx = \sum_{k=0}^{n} {2n \choose 2k} (-1)^k \cos^{2(n-k)} x \sin^{2k} x$$
,

b)
$$\sin 2nx = \sum_{k=0}^{n-1} {2n \choose 2k+1} (-1)^k \cos^{2(n-k)-1} \sin^{2k+1} x,$$

gdzie $x \in \mathbf{R}$, a $n \in \mathbf{N}$.

- Obliczyć i narysować na płszczyźnie zespolonej podane pierwiastki:
- a) $\sqrt{-2i}$, b) $\sqrt[4]{-8+8\sqrt{3}i}$, c) $\sqrt[6]{1}$.
- 10. Przedstawić w postaci algebraicznej pierwiastki kwadratowe następujących liczb zespolonych, bez posługiwania się postacia trygonometryczną liczby zespolonej:

 - a) i, -i, b) 3+4i, 8+6i, c) -2-3i.

- **11.** Obliczyć:
- a) $\sqrt[4]{16}$, b) $\sqrt[4]{-1}$, c) $\sqrt[4]{i}$.
- 12. Znaleźć rozwiązania podanych równań:
- a) $z^4 = (1-i)^4$,
- b) $(z-1)^6 = (i-z)^6$,
- c) $z^3 = (iz + 1)^3$.
- 13. Rozwiazać równanie kwadratowe:
- a) $z^2 3z + 3 + i = 0$,
- b) $(4-3i)z^2 (2+11i)z (5+i) = 0$.
- c) $z^2 + 2(1+i)z + 2i = 0$.
- 14. Rozwiązać równanie dwukwadratowe:
- a) $z^4 2z^2 + 4 = 0$.
- b) $z^4 (18 + 4i)z^2 + 77 36i = 0$.

15. Rozwiazać równanie:

a)
$$(z^3 - i)(z^2 - 5iz - 6) = 0$$
,

b)
$$z^6 - (1+8i)z^3 + 8i = 0$$
,

c)
$$(z-i)^n + (z+i)^n = 0$$
,

$$d) \quad z^6 = \left(1 - i\sqrt{3}\right)^{12},$$

$$e) \quad z^4 = \frac{-18}{1 + i\sqrt{4}}.$$

16. Niech ε_i oznacza *i*-ty pierwiastek *n*-tego stopnia z jedności, i=11, 2, ..., n - 1. Policzyć

a)
$$\varepsilon_0 + \varepsilon_1 + \dots + \varepsilon_{n-1}$$
,

b)
$$\varepsilon_0 \cdot \varepsilon_1 \cdot \ldots \cdot \varepsilon_{n-1}$$
.

Interpretacja geometryczna liczb zespolonych

17. Podać interpretacje geometryczna zbioru liczb zespolonych spełniajacych warunek:

a)
$$|z - i| = |z + 2|$$
,

$$b) \quad 3 \le |z+i| \le 5$$

c)
$$|z-2+i|=6$$
,

d)
$$Imz \le 3$$
 i $Rez \ge 3$

e)
$$0 < Argz^3 < \frac{\pi}{2}$$
,

f)
$$Arg(z-1) = \frac{\pi}{3}$$
,

a)
$$|z-i| = |z+2|$$
, b) $3 \le |z+i| \le 5$ c) $|z-2+i| = 6$, d) $Imz \le 3$ i $Rez \ge 5$.
e) $0 < Argz^3 < \frac{\pi}{2}$, f) $Arg(z-1) = \frac{\pi}{3}$, g) $0 \le Arg(z-3+2i) \le \frac{\pi}{3}$,

h)
$$\frac{|z-1|}{|z+1|} = \lambda$$
, $\lambda \ge 0$, i) $\log_{\sqrt{3}} \left(\frac{|z|^2 + |z| + 1}{2 + |z|} \right) < 1$.

18. Zaznaczyć na płaszczyźnie zespolonej zbiór $A \cap B$, gdy

a)
$$A = \{z \in \mathbf{C}; \ 1 \le |z+1+2i| \le 2\},$$
 $B = \{z \in \mathbf{C}; \ -\frac{\pi}{2} \le Arg(z+1) \le 0\},$
b) $A = \{z \in \mathbf{C}; \ \operatorname{Im}(z^2) = 2\},$ $B = \{z \in \mathbf{C}; \ [\operatorname{Re}(z+i)]^2 = 1\},$
c) $A = \{z \in \mathbf{C}; \ 0 < Arg(iz) < \frac{\pi}{2}\},$ $B = \{z \in \mathbf{C}; \ |z| = \operatorname{Re}z + 1\},$

$$B = \left\{ z \in \mathbf{C}; \ -\frac{\pi}{2} \le Arg(z+1) \le 0 \right\},\,$$

b)
$$A = \{z \in \mathbb{C}; \text{ Im } (z^2) = 2\},$$

$$B = \{ z \in \mathbf{C}; [\text{Re}(z+i)]^2 = 1 \}$$

c)
$$A = \{ z \in \mathbb{C}; \ 0 < Arg(i \ z) < \frac{\pi}{2} \}$$

$$B = \{ z \in \mathbf{C}; \ |z| = \operatorname{Re} z + 1 \},$$

$$d) \quad A = \{ z \in \mathbf{C}; \ Arg(z^6) = \pi \},\,$$

d)
$$A = \{z \in \mathbb{C}; Arg(z^6) = \pi\},$$
 $B = \{z \in \mathbb{C}; |z+i| + |z-i| < 2\}.$

19. Udowodnić tożsamość:

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2).$$

3

Jaki jest sens geometryczny tej tożsamości?