

❖基本内容

- 校正的一般原理
- PID控制器
- 局部反馈校正

控制系统设计的一般流程:

- 1. 明确系统需要完成的任务
- 2. 选择搭建系统的元部件(综合能量、精度、成本等因素)
- 3. 检验所搭建系统性能是否满足要求
 - 闭环系统不稳定,无法工作
 - 闭环系统稳定,但稳态误差较大
 - 闭环系统稳定,但响应较慢或振荡较大
- 4. 如果不满足要求,设计补偿装置进行校正,直到符合要求

典型的二阶系统 (期望阳尼 $0.4 < \zeta < 0.7$):

5	γ	σ	$M_{ m r}$
0.4	44°	25.4%	1.364
0.7	60°	4.6%	1.002

- (1) 更高的性能指标意味着更高的成本
- (2) 多个指标之间可能存在冲突

时间域指标:从响应曲线读取,调整时间、超调量等

工程上的指标:

(1) 时间域指标:从响应曲线读取,调整时间、超调量等,比较直观

(2) 频率域指标:从Bode图上读取,便于计算

系统性能	频率域评价指标	期望范围
相对稳定性	相角裕量γ	$45^0 \le \gamma \le 60^0$
们为少个总人上一工	增益裕量 Kg	$K_g \ge 10dB$
精度	误差系数 K_p, K_v, K_a	
响应速度	截止频率 ω_c	
超调	谐振峰 M _r	$1.0 < M_r < 1.4$

主要校正方法 (按系统结构分)

串联校正:

特点:

- (1) 分析与设计简单
- (2) 可能需要外加放大器

局部反馈校正:

特点:

- (1) 多回路框架,分析与设计较复杂
- (2) 简单的设计可能给出特殊效果

(1) 比例校正 (P), $k(s) = k_p$

设
$$G_g(s) = \frac{1}{Ts(Ts+2\zeta)}$$

当 $k_p = 1$ 特征方程为: $T^2s^2 + 2\zeta Ts + 1 = 0$

当 $k_p \neq 1$ 特征方程为: $T^2s^2 + 2\zeta Ts + k_p = 0$

$$T'=rac{T}{\sqrt{k_p}},\; \zeta'=rac{\zeta}{\sqrt{k_p}}$$

当 k_p 变大,T'变小,系统的响应快,但是 ζ' 也变小,振荡加剧

(2) 积分校正(I)
$$k(s) = \frac{1}{T_1 s}$$

设
$$G_g(s) = \frac{1}{s(Ts+1)}, \quad G_{+}(s) = \frac{1}{T_1 s^2(Ts+1)}$$

特征方程: $T_1Ts^3 + T_1s^2 + 1 = 0$

显然系统不稳定

如果
$$G_g(s) = \frac{1}{T_0 s + 1}$$
, $k(s) = \frac{1}{T_1 s}$
特征方程 $T_1 s(T_0 s + 1) + 1 = 0$

$$T_1 T_0 s^2 + T_1 s + 1 = 0$$

$$T' = \sqrt{T_1 T_0}, \zeta' = \frac{1}{2} \sqrt{\frac{T_1}{T_0}}$$

$$t_s \approx \frac{3T'}{\zeta'} = 6T_0$$
,与不加积分比较,系统响应变慢

不加积分的特征方程为:
$$T_0s + 1 + 1 = 0$$

$$T'=rac{T_0}{2}$$
 , $t_s=3T'=rac{3T_0}{2}$

可见加积分 优点-对克服静差有利 缺点-系统变慢,甚至于不稳定

(3) 比例+积分 (PI)

$$k(s) = k_p \left(1 + \frac{1}{T_1 s} \right) = k_p \frac{T_1 s + 1}{T_1 s}$$
, if $G_g(s) = \frac{1}{T_0 s + 1}$

$$G_{\overrightarrow{[J]}}(s) = \frac{k_p (T_1 s + 1)}{T_1 s (T_0 s + 1) + k_p (T_1 s + 1)} = \frac{k_p (T_1 s + 1)}{T_1 T_0 s^2 + (k_p + 1) T}$$

$$= \frac{T_1 s + 1}{T_1 T_0 s^2} \xrightarrow{k_p \gg 1} \frac{T_1 s + 1}{T_1 T_0 s^2 + T_1 s + 1}$$

$$\approx \frac{T_1 s + 1}{(T_1 s + 1) (\frac{T_0}{k_p} s + 1)} = \frac{1}{\frac{T_0}{k_p} s + 1}$$

PI 控制的优点:

- 1) 积分对克服静态误差有利
- 2) 使响应可达到非振荡状态且 t_s 不长, $t_s = 3\frac{T_0}{k_p}$

(不加比例积分:
$$t_s = \frac{3T_0}{2}$$
)

3) 从本质上看增加一个负实零点,改善动态性能,缓和极点带来的不利影响

(4) 超调的控制

考虑比例控制器

$$k(s) = k_p$$

控制信号

$$\mathbf{u}(\mathbf{t}) = k_p e(t)$$

只要y(t) < 1, e(t) > 0, 就产生使y(t) 增大的控制作用, 当 $t = t_1$, e = 0 时, y(t)还在增加, 会出现超调现象

比例+微分 (PD)

$$k(\mathbf{s}) = k_p(1 + T_D \mathbf{s})$$

控制信号 $u(\mathbf{t}) = k_p e(t) + k_p T_D \frac{de(t)}{dt}$

加了微分作用 u(t) 在 $t = t_1' < t_1$ 时为零,在 t_1' 到 t_1 这段时间内 u(t) < 0 ,抑制 y(t) 的增加,好像在车辆到达目标之前,提前制动一样。

微分控制器可以预测被控量的变化趋势,抑制超调,改善动态性能。相当于增加了一个零点。

(5) 比例+积分+微分 (PID)

$$K(s) = K_p + \frac{1}{T_I s} + T_D s$$

综合了比例、积分和微分的优点,本质上增加了两个零点

- ·PID控制器综合了比例积分加微分的优点,兼顾了控制系统的静态和动态性能
- · 参数具有明显的物理意义, 直观易用
- •在工业生产中应用极为广泛,直到今日,仍是最常用的控制器
- •实际应用中有多种变化,对经验依赖较多,需要深入学习
- ·PID控制器为全局控制,数学形式为增加零极点,应进一步采用精准的控制器

局部反馈核延

局部反馈校正

通常用局部反馈改善局部特性, 再配以串联校正

设
$$G(s) = \frac{K}{Ts+1}, G_c(s) = k$$
 小闭环等效为
$$\frac{\frac{K}{Ts+1}}{1+\frac{Kk}{Ts+1}} = \frac{K}{Ts+1+kK} = \frac{\frac{K}{1+kK}}{\frac{T}{1+kK}s+1}$$
 当 $kK \gg 1$ 时 $\Rightarrow \frac{1}{k}$

当 G 中 T 较大时,采用局部反馈可减少惰性。

例:对开环对象 $G(s) = \frac{K}{1+0.1s}$ 设计和比较不同的校正装置,使得闭环系统在阶跃输入下的稳态输出为 $c(\infty) = 0.9$

- (1) 根据终值定理, 当 K = 0.9 时开环系统的输出稳态值为0.9, 此时系统的时间常数为 T = 0.1 s
- (2) 单位反馈下,闭环传递函数为

$$G_1(s) = \frac{K}{1+K+0.1s}$$
 此时, $K = 9$ 时输出稳态值为0.9 时间常数 $T = 0.01 s$

(3) 串联校正

超前校正
$$G_c(s) = 0.5 \frac{1+0.1s}{1+0.05s}$$

$$G_{R\to C}(s) = \frac{0.5K}{1+0.5K+0.05s}$$

当K = 18时,稳态输出误差为0.9,此时闭环系统时间常数T = 0.005 s

(4) 局部反馈校正

$$G_{R\to C}(s) = \frac{G(s)}{1+(1+k)G(s)} = \frac{K}{1+K+kK+0.1s}$$

R(s) + E(s) + G(s) -k K(s) + E(s) + G(s)

对于同样的 K = 18, $\mathbb{Q} k = 1/18$ 时

可使输出稳态值到达0.9,此时闭环系统时间常数为 T=0.005 s

可见, 简单的反馈与超前校正达到相同的效果

(5) 反馈滞后校正

$$G_{R\to C}(s) = \frac{100K(s+a)}{s^2 + (10+a)s + 10(a+kK)}$$

容易计算, 当

$$K = 9.23$$
 $k = 391.12$ $\alpha = 390$

闭环系统输出稳态值为0.9,二阶环节特征时间常数为 T=0.005 s,阻尼系数 $\zeta=1$.

因此,反馈滞后校正加快了系统的响应速度,效果类似于串联超前校正

本章结束