Nome e mail	Algebra 2	16 Giugno 2016
Matricola		

Esercizio 1 Sull'insieme $G = \mathbb{Z}_4 \times \{-1,1\}$ si definisca un'operazione · ponendo per ogni $(x,u), (y,v) \in G$, (x,u)(y,v) = (x+uy,uv).

- (1) Si dimostri che G con questa operazione è un gruppo non abeliano. (2) Si trovi un sottogruppo di G che non è normale.

J

Esercizio 2 Sia S un insieme. Nell'insieme $\mathcal{P}(S)$ definiamo l'operazione Δ , chiamata differenza simmetrica,

 $X\Delta Y = (X \cup Y) \setminus (X \cap Y),$

per ogni coppia di sottoinsiemi di S.

- (1) Provare che la struttura algebrica $(\mathcal{P}(S), \Delta, \cap)$ è un anello commutativo unitario e che ogni sottoinsieme proprio di S è un divisore dello zero di A.
- (2) Sia $Y \in \mathcal{P}(S)$: provare che l'applicazione $\varphi : \mathcal{P}(S) \to \mathcal{P}(S)$, definita da $\varphi(X) = X \setminus Y$ è un omomorfismo di anelli e determinare $\ker \varphi \in Im\varphi$.
- (3) Sia $Y \in \mathcal{P}(S)$: determinare l'ideale (Y).
- (4) Se S è finito, provare che ogni ideale di $\mathcal{P}(S)$ è principale.

