

### Anggota Kelompok:

- 1. Muhammad Rafly Al Ajid 2019110022
- 2. M. Rafli Apriansyah 2019110044
- 3. Muhammad Al-Idrus 2019110037
- 4. Arda Damayanti 2019110043
- 5. Muhammad Musadad Husin 2019110065

## **PENDAHULUAN**

Jenis koi dapat dibedakan dari corak warna ditubuhnya, Masalah pengenalan warna dalam koi dapat diselesaikan dengan menerapkan metode Content Based Image Retrieval (CBIR) berbasis Color Histogram dengan Euclidean Distance. Dengan menerapkan metode ini, penentuan jenis ikan koi berdasarkan corak warna pada tubuh koi dapat diselesaikan. CBIR merupakan suatu aplikasi computer vision dengan teknik pencarian gambar yang diambil dari basis data yang menyediakan gambar



20XX Pitch deck title

# PERBANDINGAN COLOR HISTOGRAM ANTARA CITRA KOHAKU1 DENGAN CITRA KOHAKU1.



Pada proses uji ini hanya untuk membuktikan jika citra acuan di uji dengan citra yang sama, maka akan memiliki color histogram yang sama pula.

## PERBANDINGAN COLOR HISTOGRAM ANTARA CITRA KOHAKU1 DENGAN CITRA KOHAKU2.



Pada uji ke 2 ini terlihat color histogram pada kohaku2 tidak jauh berbeda dengan citra acuan. Hanya saja warna merah pada Kohaku2 cenderung lebih banyak dan lebih terang

## **PENGHITUNGAN JARAK HISTOGRAM**

Penghitungan jarak dapat dilakukan dengan metode Euclidean Distance, yaitu metode klasifikasi dengan menghitung jarak antara dua buah obyek. Rumus perhitungan Euclidean Distance ditulis sebagai berikut:

$$d(A,B) = \sqrt{\sum_{j=1}^{n} (Ai - Bi)^2}$$

#### Keterangan:

- d(A,B) = jarak antara dua gambar dengan Euclidean Distance
- Ai = nilai pada citra acuan
- Bi = nilai pada citra uji
- n = jumlah data pada histogram

Maka jarak antara dua obyek A dan B dinyatakan dengan :

$$d(A,B) = \sqrt{(A1-B1)^2 + (A2-B2)^2 + (A3-B3)^2 \dots + (An-Bn)^2}$$

Obyek A merupakan citra Kohakul dan Obyek B merupakan 15 citra uji, jika rumus ini di implementasikan ke dalam Matlab maka hasil penghitungan Euclidean Distance antara dua histogram adalah

#### Tabel Hasil perhitungan jarak histogram dengan Euclidean Distance

| Citra Uji   | Hasil Euclidean Distance |
|-------------|--------------------------|
| Kohaku1.bmp | 0                        |
| Kohaku2.bmp | 69002000                 |
| Kohaku3.bmp | 58246000                 |
| Shiro1.bmp  | 120790000                |
| Shiro2.bmp  | 104710000                |
| Shiro3.bmp  | 85449000                 |
| Showa1.bmp  | 77276000                 |
| Showa2.bmp  | 132550000                |
| Showa3.bmp  | 137290000                |
| Shusui1.bmp | 161710000                |
| Shusui2.bmp | 84752000                 |
| Shusui3.bmp | 118550000                |
| Tancho1.bmp | 150250000                |
| Tancho2.bmp | 102160000                |
| Tancho3.bmp | 172270000                |

## MEAN SQUARE ERROR DAN VALIDASI HASIL

Teknik MSE dapat didefinisikan secara matematis sebagi berikut:

$$MSE = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} (A_{ij} - B_{ij})^2$$

Aij merupakan nilai perkiraan dari citra Kohakul dan Bij merupakan nilai verifikasi dari 15 citra uji, jika rumus ini di implementasikan ke dalam Matlab maka hasil penghitungan Mean Square Error antara dua citra adalah:

#### Tabel Hasil perhitungan Mean Square Error

| Citra Uji   | Hasil Mean Square Error |
|-------------|-------------------------|
| Kohaku1.bmp | 0                       |
| Kohaku2.bmp | 211.797                 |
| Kohaku3.bmp | 146.082                 |
| Shiro1.bmp  | 398.894                 |
| Shiro2.bmp  | 463.364                 |
| Shiro3.bmp  | 433.377                 |
| Showa1.bmp  | 294.328                 |
| Showa2.bmp  | 284.326                 |
| Showa3.bmp  | 299.481                 |
| Shusui1.bmp | 216.888                 |
| Shusui2.bmp | 393.303                 |
| Shusui3.bmp | 299.264                 |
| Tancho1.bmp | 213.998                 |
| Tancho2.bmp | 1.053.409               |
| Tancho3.bmp | 254.460                 |
| Jumlah      | 4.963.971               |

### MEAN SQUARE ERROR DAN VALIDASI HASIL

Pada tabel diatas didapatkan 15 hasil Mean Square Errordari citra uji. Untuk menentukan citra uji mana yang sejenis dengan citra acuan dapat di lihat hasil Mean Square Error nya, jika hasil nya antara nilai threshold 0 - 213.000 maka citra uji tersebut sejenis dengan citra acuan. Tetapi jika hasil nya lebih dari 213.000 maka citra tersebut bukan sejenis dengan citra acuan.

Dari hasil yang sudah didapatkan, maka dapat disimpulkan bahwa citra yang sejenis dengan citra acuan adalah Kohaku1, Kohaku2 dan Kohaku3. Dan untuk memperoleh validasi hasil, dapat ditentukan dengan mengitung rata-rata dari jumlah hasil Mean Square Error nya. Validasi hasil = Jumlah Hasil Mean Square Error

```
Validasi hasil = \frac{Jumlah Hasil Mean Square Error}{Jumlah Citra Uji}
= \frac{4.963.971}{15}
= 330.931
```

Berdasarkan perhitungan validasi hasil diatas, menunjukan bahwa Content based image retrieval berbasis color histogram menghasilkan tingkat akurasi validasi hasil sebesar 330.931 pixel untuk ketepatan pemilihan gambar.

