angle_style class2 command

angle_style class2/omp command

Syntax:

angle_style class2

Examples:

```
angle_style class2
angle_coeff * 75.0
angle_coeff 1 bb 10.5872 1.0119 1.5228
angle coeff * ba 3.6551 24.895 1.0119 1.5228
```

Description:

The class2 angle style uses the potential

$$E = E_a + E_{bb} + E_{ba}$$

$$E_a = K_2(\theta - \theta_0)^2 + K_3(\theta - \theta_0)^3 + K_4(\theta - \theta_0)^4 + \kappa_5 (\theta - \theta_0)^5$$

$$E_{bb} = M(r_{ij} - r_1)(r_{jk} - r_2) + \kappa_6 (\theta - \theta_0)^6$$

$$E_{ba} = N_1(r_{ij} - r_1)(\theta - \theta_0) + N_2(r_{jk} - r_2)(\theta - \theta_0)$$

where Ea is the angle term, Ebb is a bond-bond term, and Eba is a bond-angle term. Theta0 is the equilibrium angle and r1 and r2 are the equilibrium bond lengths.

See (Sun) for a description of the COMPASS class2 force field.

Coefficients for the Ea, Ebb, and Eba formulas must be defined for each angle type via the <u>bond_coeff</u> command as in the example above, or in the data file or restart files read by the <u>read_data</u> or <u>read_restart</u> commands.

These are the 4 coefficients for the Ea formula:

- theta0 (degrees)
- K2 (energy/radian^2)
- K3 (energy/radian^3)
- K4 (energy/radian^4) . k5 . k6 Added

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of the various K are in per-radian.

For the Ebb formula, each line in a <u>bond_coeff</u> command in the input script lists 4 coefficients, the first of which is "bb" to indicate they are BondBond coefficients. In a data file, these coefficients should be listed under a "BondBond Coeffs" heading and you must leave out the "bb", i.e. only list 3 coefficients after the angle type.

- bb
- M (energy/distance^2)
- r1 (distance)
- r2 (distance)

For the Eba formula, each line in a <u>bond_coeff</u> command in the input script lists 5 coefficients, the first of which is "ba" to indicate they are BondAngle coefficients. In a data file, these coefficients should be listed under a "BondAngle Coeffs" heading and you must leave out the "ba", i.e. only list 4 coefficients after the angle type.

- ba
- N1 (energy/distance^2)
- N2 (energy/distance^2)
- r1 (distance)
- r2 (distance)

The theta0 value in the Eba formula is not specified, since it is the same value from the Ea formula.

Styles with a *cuda*, *gpu*, *omp*, or *opt* suffix are functionally the same as the corresponding style without the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They are only enabled if LAMMPS was built with those packages. See the <u>Making LAMMPS</u> section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the <u>-suffix command-line switch</u> when you invoke LAMMPS, or you can use the <u>suffix</u> command in your input script.

See <u>Section_accelerate</u> of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the CLASS2 package. See the <u>Making LAMMPS</u> section for more info on packages.

Related commands:

angle_coeff

Default: none

(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).

dihedral_style class2 command

dihedral_style class2/omp command

Syntax:

dihedral_style class2

Examples:

```
dihedral_style class2
dihedral_coeff 1 100 75 100 70 80 60
dihedral_coeff * mbt 3.5945 0.1704 -0.5490 1.5228
dihedral_coeff * ebt 0.3417 0.3264 -0.9036 0.1368 0.0 -0.8080 1.0119 1.1010
dihedral_coeff 2 at 0.0 -0.1850 -0.7963 -2.0220 0.0 -0.3991 110.2453 105.1270
dihedral_coeff * aat -13.5271 110.2453 105.1270
dihedral_coeff * bb13 0.0 1.0119 1.1010
```

Description:

The *class2* dihedral style uses the potential

$$E = E_d + E_{mbt} + E_{ebt} + E_{at} + E_{aat} + E_{bb13}$$

$$E_d = \sum_{n=1}^{3} K_n [1 - \cos(n\phi - \phi_n)] \qquad \qquad \uparrow$$

$$E_{mbt} = (r_{jk} - r_2) [A_1 \cos(\phi) + A_2 \cos(2\phi) + A_3 \cos(3\phi)]$$

$$E_{ebt} = (r_{ij} - r_1) [B_1 \cos(\phi) + B_2 \cos(2\phi) + B_3 \cos(3\phi)] + (r_{kl} - r_3) [C_1 \cos(\phi) + C_2 \cos(2\phi) + C_3 \cos(3\phi)]$$

$$E_{at} = (\theta_{ijk} - \theta_1) [D_1 \cos(\phi) + D_2 \cos(2\phi) + D_3 \cos(3\phi)] + (\theta_{jkl} - \theta_2) [E_1 \cos(\phi) + E_2 \cos(2\phi) + E_3 \cos(3\phi)]$$

$$E_{aat} = M(\theta_{ijk} - \theta_1) (\theta_{jkl} - \theta_2) \cos(\phi) \xrightarrow{\text{delete cos}(\phi)}$$

$$E_{bb13} = N(r_{ij} - r_1) (r_{kl} - r_3)$$

where Ed is the dihedral term, Embt is a middle-bond-torsion term, Eebt is an end-bond-torsion term, Eat is an angle-torsion term, Eaat is an angle-angle-torsion term, and Ebb13 is a bond-bond-13 term.

Theta1 and theta2 are equilibrium angles and r1 r2 r3 are equilibrium bond lengths.

See (Sun) for a description of the COMPASS class2 force field.

Coefficients for the Ed, Embt, Eebt, Eat, Eaat, and Ebb13 formulas must be defined for each dihedral type via the <u>dihedral coeff</u> command as in the example above, or in the data file or restart files read by the <u>read data</u> or <u>read restart</u> commands.

These are the 6 coefficients for the Ed formula:

- K1 (energy)
- phi1 (degrees)
- K2 (energy)
- phi2 (degrees)
- K3 (energy)
- phi3 (degrees)

For the Embt formula, each line in a <u>dihedral_coeff</u> command in the input script lists 5 coefficients, the first of which is "mbt" to indicate they are MiddleBondTorsion coefficients. In a data file, these coefficients should be listed under a "MiddleBondTorsion Coeffs" heading and you must leave out the "mbt", i.e. only list 4 coefficients after the dihedral type.

- mbt
- A1 (energy/distance)
- A2 (energy/distance)
- A3 (energy/distance)
- r2 (distance)

For the Eebt formula, each line in a <u>dihedral_coeff</u> command in the input script lists 9 coefficients, the first of which is "ebt" to indicate they are EndBondTorsion coefficients. In a data file, these coefficients should be listed under a "EndBondTorsion Coeffs" heading and you must leave out the "ebt", i.e. only list 8 coefficients after the dihedral type.

- ebt
- B1 (energy/distance)
- B2 (energy/distance)
- B3 (energy/distance)
- C1 (energy/distance)
- C2 (energy/distance)
- C3 (energy/distance)
- r1 (distance)
- r3 (distance)

For the Eat formula, each line in a <u>dihedral_coeff</u> command in the input script lists 9 coefficients, the first of which is "at" to indicate they are AngleTorsion coefficients. In a data file, these coefficients should be listed under a "AngleTorsion Coeffs" heading and you must leave out the "at", i.e. only list 8 coefficients after the dihedral type.

- D1 (energy/radian)
- D2 (energy/radian)
- D3 (energy/radian)
- E1 (energy/radian)
- E2 (energy/radian)
- E3 (energy/radian)
- theta1 (degrees)
- theta2 (degrees)

Theta1 and theta2 are specified in degrees, but LAMMPS converts them to radians internally; hence the units of D and E are in energy/radian.

For the Eaat formula, each line in a <u>dihedral_coeff</u> command in the input script lists 4 coefficients, the first of which is "aat" to indicate they are AngleAngleTorsion coefficients. In a data file, these coefficients should be listed under a "AngleAngleTorsion Coeffs" heading and you must leave out the "aat", i.e. only list 3 coefficients after the dihedral type.

- aat
- M (energy/radian^2)
- theta1 (degrees)
- theta2 (degrees)

Theta1 and theta2 are specified in degrees, but LAMMPS converts them to radians internally; hence the units of M are in energy/radian^2.

For the Ebb13 formula, each line in a <u>dihedral_coeff</u> command in the input script lists 4 coefficients, the first of which is "bb13" to indicate they are BondBond13 coefficients. In a data file, these coefficients should be listed under a "BondBond13 Coeffs" heading and you must leave out the "bb13", i.e. only list 3 coefficients after the dihedral type.

- bb13
- N (energy/distance^2)
- r1 (distance)
- r3 (distance)

Styles with a *cuda*, *gpu*, *omp*, or *opt* suffix are functionally the same as the corresponding style without the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They are only enabled if LAMMPS was built with those packages. See the <u>Making LAMMPS</u> section for more info.

You can specify the accelerated styles explicitly in your input script by including their

suffix, or you can use the $\underline{\text{-suffix command-line switch}}$ when you invoke LAMMPS, or you can use the $\underline{\text{suffix}}$ command in your input script.

See <u>Section_accelerate</u> of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This dihedral style can only be used if LAMMPS was built with the CLASS2 package. See the <u>Making LAMMPS</u> section for more info on packages.

Related commands:

dihedral coeff

Default: none

(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).