Gyakorló feladatsor az I. anyarészhez ¹

1. Egy (férfi) HR menedzser 200 hölgyet vett fel irodai munkára fényképes, illetve fénykép nélküli önéletrajzuk alapján. A jelentkezők megoszlása a következő volt:

	szőke	barna	vörös
fényképes	10	60	30
fénykép nélkül	20	60	20

- (a) Döntsön 10%-os szignifikanciaszinten arról, hogy a HR menedzsert befolyásolta-e, amikor a fénykép alapján ismerte a jelentkezők hajszínét!
- (b) Az esélyegyenlőségi hivatal szigorúan büntet minden diszkriminációt. Adjon meg olyan szignifikanciaszintet, amely mellett a hivatal már nem vonhatja felelősségre a HR menedzsert!
- (c) Egy korábbi felvételnél 20 szőke, 40 barna illetve 40 vörös hölgyet vett fel fényképes önéletrajz alapján a menedzser. Döntsön 5%-os szignifikanciaszinten arról, változott-e a menedzser ízlése!
- (d) Tudjuk, hogy a szőke nők aránya 20% a teljes populációban. A 200 felvett személy adatai alapján döntsön arról 5%-os szignifikanciaszinten, hogy diszkriminálták-e a szőke nőket!

Minden esetben fogalmazza meg pontosan a hipotéziseket!

2. Kolihéten megkérdeztek 300 hallgatót buli másnapján, hogy mikor keltek aznap ill. fogyasztottake e előző nap alkoholt. Az alábbi eredményeket kapták.

Ébredés ideje (óra)	Fogyasztott alkoholt	Nem fogyasztott alkoholt
6-7	14	27
7-8	20	39
8-9	19	34
9-10	23	47
10-11	24	53
Összesen	100	200

Egy alkalmas próba segítségével döntsön 99%-os megbízhatósági szinten, azonos-e az alkoholt fogyasztó illetve nem fogyasztó hallgatók ébredési idő szerinti eloszlása?

3. Egy főiskolai rendezvényen a másodéves hallgatók nyereménysorsolást tartottak. Azt tervezték, hogy az iskola minden tanulójának nevét beleteszik egy kosárba és véletlenszerűen kihúznak 36 nevet. A nyertesek között 6 gólya volt, 14 másodéves, 9 harmadéves és 7 végzős. Felmerül a gyanú, hogy azért nyerték a másodévesek a legtöbb díjat, mert ők szervezték a sorsolást. A főiskola hallgatói közül 30% gólya, 25% másodéves, 25% harmadéves és 20% végzős.

Döntsön 95%-os megbízhatósági szinten egy alkalmas próba segítségével, vajon történt-e csalás a sorsoláson!

4. Húsvét közeledtével megrendelték a boltba a locsolókölniket. A készletet a következő arányban töltötték fel: 40% Rózsavíz, 30% Pacsuli, 15% DeBüdös és 15% DeOlcsó. Következő nap 80 vevő vásárolt az illatos kölnikből. 38-an vettek Rózsavizet, 23-an Pacsulit, 8-an DeBüdöst és 11-en DeOlcsót.

¹A feladatok Dr. Baran Sándor "Feladatok a hipotézisvizsgálat témaköréből" című oktatási segédanyagából, Pecsora Sándor Statisztika 2 fóliáiról és korábbi ZH feladatokból származnak.

- (a) Megfelelő arányban adta-e le a boltvezető a megrendelést, hogy kielégítse a vásárlók igényeit?
- (b) Igaz-e, hogy a Rózsavíz locsolókölni gyártója a piac 40%-át tudhatja magáénak?

Hipotéziseit pontosan megfogalmazva alkalmas próba segítségével döntsön mindkét esetben 95%-os megbízhatósági szinten!

5. Egy ország két városában (**A** és **B**) a testmagasságokat (cm) vizsgálták (a testmagasságokat tekinthetjük normális eloszlásúnak mindkét városban). Az alábbi táblázatok tartalmaznak néhány statisztikát és vizsgálatot a kapott mintából.

T-Test

Group Statistics

	település	N	Mean	Std.Deviation	Std. Error Mean
magasság	A város	54	171.6446	25.88588	3.52262
	B város	26	157.5638	29.26968	5.74026

Independent Samples Test

		Levene's	Test for
		Equality o	f Variences
		F	Sig.
magasság	Equal variances	1.049	.309
	$\operatorname{assumed}$		
	Equal variances		
	not assumes		

Independent Samples Test

			t-test for Equality of Means				
					Mean	Std.Error	
		t	df	Sig. (2-tailed)	Difference	Difference	
magasság	Equal variances	2.183	78	.032	14.08084	6.44900	
	assumed Equal variances	2.091	44.405	.042	14.08084	6.73494	
	not assumes						

NPar Tests

Binomial Test

				Observed		Asymp.Sig.
		Category	N	Prop.	Test Prop.	(1-tailed)
magasság	Group 1	<=180	52	.7	.6	.213 ^a
	Group 2	> 180	28	.4		
	Total		80	1.0		

- a. Based on Z Approximation.
- (a) Fogalmazza meg pontosan a fenti táblázatokban megadott összes próba esetén, hogy milyen hipotéziseket dönthetünk el a segítségükkel!

Döntsön minden esetben 5%-os szignifikanciaszinten!

(b) A testmagasság országos átlaga 165 cm. Az **A** város lakói szerint városuk átlagmagassága 5 cm-rel meghaladja az országos átlagot.

Hipotéziseit pontosan megfogalmazva döntse el 1%-os szignifikanciaszinten, hogy igaza van-e az $\mathbf A$ város lakóinak!

6. A Magyar Autóklub a Hyper Super X-Power Plus (röviden X-Power Plus) nevű motorbenzin teljesítménynövelő hatását vizsgálta két csoport VW Golf V 1.4 16V típusú gépkocsin. Az egyik csoport olyan tesztautókból állt, amikbe az előző 5 tankolásnál X-Power Plus benzin került. A második csoport autói közönséges 95-ös ólommentes benzint tankoltak. A teljesítménymérő padon kapott adatokra lefuttatott SPSS t-próba outputja:

T-Test

Group Statistics

	benzin	N	Mean	Std.Deviation	Std. Error Mean
teljesítmény (LE)	95-ös	?	79.1061	?	.65792
	X Power Plus	12	76.9654	3.37391	.97396

Independent Samples Test

	<u> </u>		
		Levene's	Test for
		Equality o	f Variences
		F	Sig.
teljesítmény (LE)	Equal variances	.371	.547
	$\operatorname{assumed}$		
	Equal variances		
	not assumes		

Independent Samples Test

			t-test for Equality of Means				
					Mean	Std.Error	
		t	df	Sig.(2-tailed)	Difference	Difference	
teljesítmény (LE)	Equal variances	1.893	27	.069	?	?	
	assumed Equal variances not assumes	1.821	20.408	.083	2.1407	1.17536	

- Számítsa ki és írja be a kérdőjeles rubrikákba a megfelelő értékeket!
- Döntse el 95%-os megbízhatósági szinten, hogy igaza van-e az X-Power Plus gyártójának, amikor azt állítja, hogy az X-Power Plus használata esetén teljesítménynövekedés várható!

Az előjelekre figyeljen!

7. A csajágóröcsögei Tejgazdaságban háromféle tehenet tartanak, fehéret, feketét és tarkát. Mehemed, a gazdaság török veztője lemérte 20 kedvenc tehenének literben mért napi tejhozamát és a kapott adatokat az alábbi táblázatban rögzítette:

Fajta	Tehenek száma	A hozamok összege	A hozamok négyzetösszege
	n	$(\sum x)$	$(\sum x^2)$
Fehér	7	98	1400
Fekete	5	85	1465
Tarka	8	160	3268

Feltételezhetjük, hogy a tejhozamok normális eloszlást követnek.

- (a) Hipotéziseit pontosan megfogalmazva döntsön 95%-os megbízhatósági szinten, hogy a tehén fajtájának van-e hatása a napi tejhozamra!
- (b) Igaz-e az az állítás, hogy a tarka tehenek több tejet adnak mint a feketék? Döntsön 95%-os megbízhatósági szinten!

- 8. Az alábbi példában a világ 75 országát vizsgálták meg abból a szempontból, hogy mennyi a lakosok egy főre jutó napi kalóriabevitele (Daily calorie intake). Az egyes országokat 6 gazdasági régióba sorolták: OECD, Kelet-Európa (East Europe), Ázsia és Óceánia (Pacific/Asia), Afrika, Közel-Kelet (Middle East), Latin-Amerika.
 - (a) Töltse ki a hiányzó leíró statisztikákat és a szórásfelbontó táblázatot!
 - (b) Hipotéziseit pontosan megfogalmazva döntsön 10%-os szignifikanciaszinten, igaz-e hogy a 6 gazdasági régióban az átlagos egy főre jutó napi kalóriabevitel megegyezik!

Oneway

Descriptives

Daily calorie intake

	N	Mean	Std. Deviation	Std. Error
OECD	18	3 435,67	229,512	
East Europe	3	3 477,00	278,925	$161,\!037$
Pacific/Asia	11	2514,27	372,156	112,209
Africa		2 152,31	208,234	52,058
Middle East	8	3 083,38		89,776
Latn-America	19	2500,16	$322,\!561$	74,000
Total	75	2753,83	567,828	$65,\!567$

Test of Homogeneity of Variances

Daily calorie intake

Levene			
Statistic	df1	df2	Sig.
1,924	5	69	,101

ANOVA

Daily calorie intake

	Sum of		Mean		
	$\operatorname{Squares}$	df	Square	F	Sig.
Between Groups	18449024,726				.000
Within Groups					
Total					