Semi-Supervised Learning for Document Classification

Anastasia Krithara

Xerox Research Centre Europe LIP6 - Pierre and Marie Curie University(paris VI)

MLSS 2007

Motivation

Supervised Learning:

Given a training set $\{(x_i, y_i)\}$, estimate a decision function (a probability P(y|x))

Problem

• The annotation process is often costly and time-consuming...

 \Longrightarrow Semi-Supervised Learning

Motivation

Supervised Learning:

```
Given a training set \{(x_i, y_i)\}, estimate a decision function (a probability P(y|x))
```

Problem:

• The annotation process is often costly and time-consuming...

⇒Semi-Supervised Learning

Motivation

Supervised Learning:

Given a training set $\{(x_i, y_i)\}$, estimate a decision function (a probability P(y|x))

Problem:

• The annotation process is often costly and time-consuming...

⇒Semi-Supervised Learning

Outline

- Semi-Supervised Learning (SSL)
 - semi-supervised PLSA (ssPLSA)
 - ssPLSA with a "Fake label" model
 - ssPLSA with a mislabeling error model
- Evaluation
 - Experiments
 - Results
- Conclusion

Outline

- Semi-Supervised Learning (SSL)
 - semi-supervised PLSA (ssPLSA)
 - ssPLSA with a "Fake label" model
 - ssPLSA with a mislabeling error model
- 2 Evaluation
 - Experiments
 - Results
- Conclusion

Semi-Supervised Learning (SSL)

Supervised Learning:

```
Given a training set \{(x_i, y_i)\}, estimate a decision function (a probability P(y|x))
```

Semi-Supervised Learning (SSL):

Same goal as in supervised learning but in addition, a set of unlabeled data x_i is available

(in general unlabeled data >> labeled data)

Unlabeled data can give us some valuable information about P(X)

Semi-Supervised Learning (SSL)

Supervised Learning:

```
Given a training set \{(x_i, y_i)\}, estimate a decision function (a probability P(y|x))
```

Semi-Supervised Learning (SSL):

Same goal as in supervised learning but in addition, a set of unlabeled data x_i is available

(in general unlabeled data >> labeled data)

Unlabeled data can give us some valuable information about P(X)

Semi-Supervised Learning (SSL)

Supervised Learning:

```
Given a training set \{(x_i, y_i)\}, estimate a decision function (a probability P(y|x))
```

Semi-Supervised Learning (SSL):

Same goal as in supervised learning but in addition, a set of unlabeled data x_i is available

(in general unlabeled data >> labeled data)

Unlabeled data can give us some valuable information about P(X)

Data representation

We represent our document collection as co-occurences of documents and terms

Problems

- Synonyms: different words have the same meaning
- Polysems: words with multiple meanings
 - ⇒ Disconnection between topics and words

Solution

PLSA aims to discover something about the <u>meaning</u> behind the words, about the *topics* of the document.

Problems

- Synonyms: different words have the same meaning
- Polysems: words with multiple meanings
 - ⇒ Disconnection between topics and words

Solution

PLSA aims to discover something about the $\underline{meaning}$ behind the words, about the topics of the document.

• We model our data using a mixture model, under the assumption that *d* and *w* are independent:

$$P(w,d) = P(d) \sum_{\alpha} P(w|\alpha) P(a|d)$$

($\alpha = 1 \dots A$ is the index over A latent components)

- $P(w|\alpha) \Rightarrow$ the profile of a topic (component)
- $P(\alpha|d) \Rightarrow$ the topics of a document

We model our data using a mixture model, under the assumption that d
and w are independent:

$$P(w,d) = P(d) \sum_{\alpha} P(w|\alpha) P(a|d)$$

($\alpha = 1 \dots A$ is the index over A latent components)

- $P(w|\alpha) \Rightarrow$ the profile of a topic (component)
- $P(\alpha|d) \Rightarrow$ the topics of a document

ssPLSA with a "fake label" model

When the ratio of labeled and unlabeled documents is very low:

- ⇒ Some components may contain only unlabeled examples
 - In this case, arbitrary probabilities will be assigned to these components

Solution

Introduce an additional "fake" label Z_0

- All labeled examples keep their own label
- All unlabeled examples get the new "fake" label

ssPLSA with a "fake label" model

Model

Parameters:

$$\Lambda = \{ p(\alpha \mid d), p(y \mid \alpha), p(w \mid \alpha) : \alpha \in A, d \in \mathcal{D}, w \in \mathcal{W} \}$$

Log-likelihood:

$$\mathcal{L}_1 = \sum_{x \in \mathcal{Z}_l \cup \mathcal{X}_u} \log p(x, y) = \sum_{x \in \mathcal{Z}_l \cup \mathcal{X}_u} \log p(w, d, y)$$

• EM (Expectation-Maximization)algorithm

"Fake labels"

We distribute the probability obtained for the "fake label" on the "true" ones:

$$P(y|x) \propto \sum_{\alpha} P(\alpha|x)P(y|\alpha) + \lambda \sum_{\alpha} P(\alpha|x)P(y=0|\alpha)$$

where $\lambda << 1$ and $y = 1, \dots, K$

ssPLSA with a mislabeling error model

- For all unlabeled data we assume that there exists:
 - \Rightarrow a perfect label (the true one *y*)
- \Rightarrow an imperfect label (the estimated one \tilde{y})
- We model these labels by the following probabilities: $\forall (k,h) \in \mathcal{C} \times \mathcal{C}, \beta_{kh} = p(\tilde{y} = k|y = h)$ subject to the constaint that $\forall h, \sum_{k} \beta_{kh} = 1$

Labeled documents

Unlabeled documents

ssPLSA with a mislabeling error model

Model

• Parameters:

$$\Phi = \{ p(\alpha \mid d), p(w \mid \alpha), \beta_{\tilde{y}|y} : d \in \mathcal{D}, w \in \mathcal{W}, \alpha \in A, y \in \mathcal{C}, \tilde{y} \in \mathcal{C} \}$$

• Log-likelihood:

$$\mathcal{L}_2 = \sum_{d \in D_l} \sum_{w} n(w, d) \log \sum_{\alpha} p(d) p(w|\alpha) p(\alpha|d) p(y|\alpha)$$

$$+ \sum_{d \in D_u} \sum_{w} n(w, d) \log p(w, d, \tilde{y})$$

EM algorithm

Outline

- Semi-Supervised Learning (SSL)
 - semi-supervised PLSA (ssPLSA)
 - ssPLSA with a "Fake label" model
 - ssPLSA with a mislabeling error model
- Evaluation
 - Experiments
 - Results
- Conclusion

Experiments

Characteristics of the datasets

Dataset	20Newsgroups	WebKB	Reuters
Size of the collecion	20000	4196	4381
# of classes, K	20	4	7
Size of the vocabulary, $ \mathcal{W} $	38300	9400	4749
Training set, $ D_l \cup D_u $	16000	3257	3504
Test set	4000	839	876

Evaluation measures

We calculate the F-score: $F = \frac{2PR}{P+R}$

 $P \Rightarrow$ Precision (ratio of true positives over all returns)

 $R \Rightarrow$ Recall (ratio of true positives over all positives)

Results

Results

Outline

- Semi-Supervised Learning (SSL)
 - semi-supervised PLSA (ssPLSA)
 - SELSA WILLIA FALE LABOR HIGGE
 - ssPLSA with a mislabeling error model
- 2 Evaluation
 - Experiments
 - Results
- Conclusion

Summary

Motivation

Reduce the annotation cost for the text classicafication task

Work presented

- Two semi-supervised variants of the PLSA algorithm
 - ssPLSA with a"fake label" model
 - ssPLSA with a mislabeling error model
- Evaluation of the above algorithms

Thank you

Questions?