ECE 2140 System on a Chip

Dr Ray Hoare

rayhoare@gmail.com

rayhoare@concurrenteda.com

412-687-8800

Overview

Description

• Transistor density doubles every 18 months which enables more and more features to be placed into a single VLSI chip. System-on-a-Chip refers to VLSI chips that contain both logic and CPUs that work together to implement a single system. Designing these devices involves both hardware and software design and presents numerous design tradeoffs. What should be in logic and what should be kept in software? How do these difference components talk to each other? Most of these tradeoffs are application-specific and as such, this course will be entirely project-based.

Instructor:

- Dr. Ray Hoare rayhoare@concurrenteda.com
- No on-campus office, so office hours will be held after class as needed and if requested.

Topics

The following topics will be covered in class and through team projects:

- SOC Overview
- Xilinx Zynq FPGAs
- Performance Analysis
- Hardware/Software Partitioning
- Test Planning and Test Benches
- Integration and Testing

Prerequisite

- Computer Engineering background
- ECE 2120 Hardware Design Methodologies
- VHDL design experience
- Personal laptop with Vivado Webpack Installed (www.xilinx.com)

Schedule

	Class Schedule	1/9	1/16	1/23	1/30	2/6	2/13	2/20	2/27	3/6	3/13	3/20	3/27	4/3	4/10	4/17	4/24
Prof	SOC Overview, Project Presentation Req																
	No Class (MLK)																
Prof	VHDL Cram Course																
Team PPT	Project Presentations: Overview																
Prof	Zynq and AXI Interconnect (JumpStart), Project Mtg																
Prof	VHDL Cram Course, SW Demo Req																
Prof/ Mtg Performance Analysis and HW/ SW Partitioning, Test Pl			q														
Team PPT	Project Presentations: SW Demo																
	Spring Break																
Prof/ Mtg	VHDL Cram Course: Test Benches, Baseline Demo Req																
Team PPT	Project Presentations: HW/SW Parition and Test Plan																
Mtg	Project Mtgs																
Team PPT	Project Presentations: Baseline Demo																
Open	Open																
Team PPT	Final Presentations & Demo																

Work/Task Schedule

Task Schedule	1/9	1/16	1/23	1/30	2/6	2/13	2/20	2/27	3/6	3/13	3/20	3/27	4/3	4/10	4/17	4/24
Research																
Software Development																
Executable Spec - Baseline/Proof-of-Concept																
HDL Design																
Testbench Design, VHDL																
Testbench Design, SW																
Testing and Integration																
Executable Spec - Advanced																
HDL Design																
Testbench Design, VHDL																
Testbench Design, SW																
Testing and Integration																

Grading

Presentations	25
Software Demonstration	15
Test Bench Design	10
HW/SW Test Bench + HDL Framework	10
HDL Functionality and Performance	20
Integrated Solution	15
On Schedule	5
Advanced Features	5 Point Bonus

NVIDIA TEGRA SOC

Intel Clover Trail

CPU Active

Projects

- 4 People per team.
 - Software
 - VHDL
 - Testing and Integration
- Projects
 - 10/40 Gb/s Ethernet MAC
 - Network on a Chip
 - Data Compression / Decompression
 - DSP CPU Implement basics of MIPS using a DSP Slice
 - UDP/ TCP Offload Engine
 - Convolutional Neural Networks

Ethernet MAC

Network on a Chip

Data Compression

https://sourceforge.net/projects/liblzw/?source=typ redirect

DSP CPU

http://www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html

AlexNet (CNN)

