

B.M.S. COLLEGE OF ENGINEERING

(Autonomous college under VTU)

Bull Temple Rd, Basavanagudi, Bengaluru, Karnataka 560019 2023-2025 Department of Computer Applications

Report is submitted for fulfillment of Lab Task in the subject

"Machine Learning" (22MCA2PCML)

By

HRUTHIK CHAVAN D 1BM23MC038

Under the Guidance

Prof. K. P. Shailaja (Assistant Professor)

B. M. S. COLLEGE OF ENGINEERING, BANGALORE – 19

(Autonomous Institute, Affiliated to VTU)

Department of Computer Applications

(Accredited by NBA for 5 years 2019-2024)

LABORATORY CERTIFICATE

This is to certify that **HRUTHIK CHAVAN D(1BM23MC038)** has satisfactorily completed the course of practical in "**Machine Learning - 22MCA2PCML**" Laboratory prescribed by B.M.S. College of Engineering (Autonomous College under VTU) 2nd Semester MCA Course in this college during the year 2023-2024.

Signature of Batch Incharge

Prof. K. P. Shailaja

Dr. Ch. Ram Mohan Reddy

Examiner:

CONTENTS

SL. No.	Programs	Page No.
1.	 Consider the Smart Phone dataset and perform exploratory data analysis Identify the dimension, structure, and summary of the data set Pre-process the dataset and treat them (like missing values, 'na'?). Justify the treatment Plot the histogram for continuous variables (at least two) to analyze the data. Draw a violin plot to describe the distribution of a numerical variable to analyse the data Recognize the outliers using a box plot (Display the box plot before and after outlier treatment) Display a heat map to display the relationship among the attributes Standardize the continuous variable (if any) 	1
2.	 For the data set in Q1, Show the distribution of continuous variables using Box Plot Identify the relationship between two continuous variables using a scatter plot Find and display the frequency of the categorical values using a count plot Apply point plots to display one continuous and one categorical variable 	9
3.	For the Market-Basket dataset, apply the Apriori algorithm and identify the best rules based on support and confidence.	13
4.	For the data set given in Q3, apply the FP-tree algorithm, show the tree construction, and identify the best rules based on support and confidence.	15
5.	For the Mall-Customer data set, implement the K-means clustering algorithm and visualize the clusters	17
6.	For the Groceries dataset implement an Agglomerative clustering algorithm and visualize the clusters.	19
7.	For the Mall_Customers implement the DBScan clustering algorithm and visualize the clusters.	20
8.	Implement KNN Classification algorithm on the Mall Customers. Analyze the model using different K values and display the performance of the model.	22
9.	Implement Naïve Bayes Classification algorithm on the Online Retail. Analyse the efficiency of the algorithm using different metrics.	25

1. Consider the Smart Phone dataset and perform exploratory data analysis

i. Identify the dimension, structure, and summary of the data set

- #1. Consider the Smart Phone dataset and perform exploratory data analysis.
- #i. Identify the dimension, structure, and summary of the data set import pandas as pd
- # Load the dataset into a Pandas DataFrame df = pd.read_csv("D:\ML\smartphones_cleaned_v6.csv")
- # 1. Dimension of the Dataset num_rows, num_cols = df.shape print(f"The dataset has {num_rows} rows and {num_cols} columns.")
- # 2. Structure of the Dataset print("\nColumn Names and Data Types:") print(df.dtypes)
- # 3. Summary of the Dataset print("\nSummary Statistics:") df.describe()

Column Names and Data Types:	
brand_name	object
model	object
price	int64
rating	float64
has_5g	bool
has_nfc	bool
has_ir_blaster	bool
processor_brand	object
num_cores	float64
processor_speed	float64
battery_capacity	float64
fast_charging_available	int64
fast_charging	float64
ram_capacity	float64
internal_memory	float64
screen_size	float64
refresh_rate	int64
num_rear_cameras	int64
num_front_cameras	float64
os	object
primary_camera_rear	float64
primary_camera_front	float64
extended_memory_available	int64
extended_upto	float64
resolution_width	int64
resolution_height	int64
dtype: object	

Summary Statistics:

!5]:		price	rating	num_cores	processor_speed	battery_capacity	fast_charging_available	fast_charging
	count	980.000000	879.000000	974.000000	938.000000	969.000000	980.000000	769.000000
	mean	32520.504082	78.258248	7.772074	2.427217	4817.748194	0.854082	46.126138
	std	39531.812669	7.402854	0.836845	0.464090	1009.540054	0.353205	34.277870
	min	3499.000000	60.000000	4.000000	1.200000	1821.000000	0.000000	10.000000
	25%	12999.000000	74.000000	8.000000	2.050000	4500.000000	1.000000	18.000000
	50%	19994.500000	80.000000	8.000000	2.300000	5000.000000	1.000000	33.000000
	75%	35491.500000	84.000000	8.000000	2.840000	5000.000000	1.000000	66.000000
	max	650000.000000	89.000000	8.000000	3.220000	22000.000000	1.000000	240.000000

ii. Pre-process the dataset and treat them (like missing values, 'na'?). Justify the treatment

Check for missing values
print(df.isnull().sum())

Output:

brand_name	0
model	0
price	0
rating	101
has_5g	0
has_nfc	0
has_ir_blaster	0
processor_brand	20
num_cores	6
processor_speed	42
battery_capacity	11
fast_charging_available	0
fast_charging	211
ram_capacity	0
internal_memory	0
screen_size	0
refresh_rate	0
resolution	0
num_rear_cameras	0
num_front_cameras	4
os	14
primary_camera_rear	0
primary_camera_front	5
extended_memory_available	0

iii. Plot the histogram for continuous variables (at least two) to analyse the data.

import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

[#] Assuming df is your DataFrame with the Smart Phone data df = pd.read_csv("D:\ML\smartphones_cleaned_v6.csv") # Select two continuous variables for plotting histograms

```
continuous_vars = ['processor_speed', 'battery_capacity']
# Plot histograms using Matplotlib
plt.figure(figsize=(12, 6))
# Plot histogram for Price
plt.subplot(1, 2, 1)
plt.hist(df['processor_speed'], bins=20, color='skyblue', edgecolor='black')
plt.title('Histogram of processor_speed')
plt.xlabel('processor_speed')
plt.ylabel('Frequency')
# Plot histogram for RAM
plt.subplot(1, 2, 2)
plt.hist(df['battery_capacity'], bins=20, color='lightgreen', edgecolor='black')
plt.title('Histogram of battery_capacity')
plt.xlabel('battery_capacity')
plt.ylabel('Frequency')
plt.tight_layout()
   plt.show()
```


iv. Draw a violin plot do describe the distribution of a numerical variable to analyse the data import seaborn as sns

Assuming df is your DataFrame with the Smart Phone data
df = pd.read_csv("D:\ML\smartphones_cleaned_v6.csv")

Plotting a violin plot for the 'Price' variable plt.figure(figsize=(10, 6)) sns.violinplot(x='rating', data=df, color='skyblue') plt.title('Violin Plot of Price Distribution') plt.xlabel('rating')

plt.ylabel('Density')
plt.show()

v. Recognize the outliers using box plot (Display the box plot before and after outlier treatment)

```
import numpy as np

variable = 'price'

plt.figure(figsize=(10, 6))
sns.boxplot(x=df[variable])
plt.title('Box Plot of Price Before Outlier Treatment')
plt.xlabel('Price')
plt.show()

Q1 = df[variable].quantile(0.25)
Q3 = df[variable].quantile(0.75)
IQR = Q3 - Q1

lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
df[variable] = np.where(df[variable] < lower_bound, lower_bound, df[variable])
df[variable] = np.where(df[variable] > upper_bound, upper_bound, df[variable])
plt.figure(figsize=(10, 6))
```

sns.boxplot(x=df[variable])
plt.title('Box Plot of Price After Outlier Treatment')
plt.xlabel('Price')
plt.show()

Box Plot of Price Before Outlier Treatment

Box Plot of Price After Outlier Treatment

vi. Display a heat map to display the relationship among the attributes

```
file_path = 'D:/BMSCE/2nd sem/Machine Learning/ML
    Lab/archive/smartphones_cleaned_v6.csv'

df = pd.read_csv(file_path)

numerical_df = df.select_dtypes(include=['float64', 'int64'])

correlation_matrix = numerical_df.corr()

plt.figure(figsize=(12, 10))

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f', linewidths=0.5)

plt.title('Heatmap of Correlation Matrix')
    plt.show()
```


vii. Standardize the continuous variable (if any)

```
from sklearn.preprocessing import StandardScaler
numerical_df = df.select_dtypes(include=['float64', 'int64'])
scaler = StandardScaler()
standardized_values = scaler.fit_transform(numerical_df)
standardized_df = pd.DataFrame(standardized_values, columns=numerical_df.columns)
for col in numerical_df.columns:
    df[col] = standardized_df[col]
print(df.head())
```

```
brand_name
                                    model
                                                                has_5g has_nfc \
                                              price
                                                        rating
0
     oneplus
                           OnePlus 11 5G 1.400820
                                                     1.532998
                                                                  True
                                                                            True
1
     oneplus
              OnePlus Nord CE 2 Lite 5G -0.388606
                                                     0.391286
                                                                  True
                                                                           False
2
                   Samsung Galaxy A14 5G -0.566987 -0.464998
                                                                           False
     samsung
                                                                  True
                    Motorola Moto G62 5G -0.643655
3
    motorola
                                                     0.391286
                                                                  True
                                                                           False
4
      realme
                      Realme 10 Pro Plus -0.132536
                                                     0.534000
                                                                  True
                                                                           False
   has_ir_blaster processor_brand num_cores
                                                processor_speed
                                                                        \
0
            False
                        snapdragon
                                      0.273342
                                                        1.702938
            False
1
                        snapdragon
                                      0.273342
                                                       -0.500706
2
            False
                            exynos
                                      0.273342
                                                       -0.059978
                                                                  . . .
3
            False
                        snapdragon
                                      0.273342
                                                       -0.500706
4
            False
                                      0.273342
                         dimensity
                                                        0.380751
                                                                  . . .
   refresh rate
                 num_rear_cameras
                                     num_front_cameras
                                                              os
0
       0.957568
                          0.239309
                                             -0.175353
                                                         android
       0.957568
1
                          0.239309
                                             -0.175353
                                                         android
2
      -0.077869
                          0.239309
                                             -0.175353
                                                         android
3
       0.957568
                          0.239309
                                             -0.175353
                                                         android
4
       0.957568
                          0.239309
                                             -0.175353
                                                         android
                         primary_camera_front
                                                extended_memory_available
   primary_camera_rear
             -0.009680
0
                                     -0.054330
                                                                 -1.306592
1
                                     -0.054330
                                                                  0.765350
              0.414767
2
             -0.009680
                                     -0.330995
                                                                  0.765350
3
                                                                  0.765350
             -0.009680
                                     -0.054330
4
              1.748742
                                     -0.054330
                                                                 -1.306592
   extended upto
                   resolution_width resolution_height
0
        0.000000
                           1.255610
                                              1.939746
1
        1.099808
                           0.014302
                                              0.382272
2
        1.099808
                           0.014302
                                              0.374523
3
        1.099808
                           0.014302
                                              0.359026
4
        0.000000
                           0.014302
                                              0.382272
```

2. For the data set in Q1,

i. Show the distribution of continuous variables using Box Plot

import seaborn as sns import matplotlib.pyplot as plt

file_path = 'D:/BMSCE/2nd sem/Machine Learning/ML

Lab/archive/smartphones_cleaned_v6.csv' # Update this path to your dataset location df = pd.read_csv(file_path)

numerical_df = df.select_dtypes(include=['float64', 'int64'])

plt.figure(figsize=(15, 10))

for i, col in enumerate(numerical_df.columns): plt.subplot(len(numerical_df.columns) // 3 + 1, 3, i + 1) sns.boxplot(y=df[col]) plt.title(f'Box Plot of {col}')

plt.tight_layout()
plt.show()

ii. Identify the relationship between two continuous variables using scatter plot

```
import pandas as pd
import matplotlib.pyplot as plt
```

file_path = 'D:/BMSCE/2nd sem/Machine Learning/ML Lab/archive/smartphones_cleaned_v6.csv' # Update this path to your dataset location df = pd.read_csv(file_path)

x_var = 'price' # Replace with your chosen variable
y_var = 'battery_capacity' # Replace with your chosen variable

plt.figure(figsize=(10, 6))
plt.scatter(df[x_var], df[y_var], alpha=0.6, edgecolors='w', linewidth=0.5)
plt.title(f'Scatter Plot of {x_var} vs {y_var}')
plt.xlabel(x_var)
plt.ylabel(y_var)

plt.show()

plt.grid(True)

iii. Find and display the frequency of the categorical values using count plot

 $file_path = 'D:/BMSCE/2nd\ sem/Machine\ Learning/ML$

 $Lab/archive/smartphones_cleaned_v6.csv' \ \# \ Update \ this \ path \ to \ your \ dataset \ location \ df = pd.read_csv(file_path)$

categorical_var = 'os' # Replace with your chosen categorical variable

plt.figure(figsize=(10, 6))
sns.countplot(x=df[categorical_var], order=df[categorical_var].value_counts().index)
plt.title(f'Count Plot of {categorical_var}')
plt.xlabel(categorical_var)
plt.ylabel('Frequency')
plt.xticks(rotation=45) # Rotate labels if necessary for better readability
plt.show()

iv. Apply point plots to display one continuous and one categorical variable file_path = 'D:/BMSCE/2nd sem/Machine Learning/ML

Lab/archive/smartphones_cleaned_v6.csv' # Update this path to your dataset location

df = pd.read_csv(file_path)

continuous_var = 'price' # Replace with your chosen continuous variable categorical_var = 'os' # Replace with your chosen categorical variable

plt.figure(figsize=(10, 6))

sns.pointplot(x=categorical_var, y=continuous_var, data=df, capsize=0.2, markers='o', linestyles='-')

plt.title(f'Point Plot of {continuous_var} vs {categorical_var}')

plt.xlabel(categorical_var)

plt.ylabel(continuous_var)

plt.xticks(rotation=45) # Rotate labels if necessary for better readability plt.show()

3. For the Market-Basket dataset, apply Apriori algorithm and identify the best rules based on support and confidence.

```
import pandas as pd
from mlxtend.frequent_patterns import apriori, association_rules
df=pd.read_csv("basket.csv")
all_items=list(item for sublist in df.values.tolist() for item in sublist if pd.notna(item))
unique items = list(set(all items))[:200]
df_subset = df.head(200)
encoded_df=pd.DataFrame(0,index=range(len(df)),columns=unique_items)
for index,transaction in df_subset.iterrows():
  for item in transaction.dropna():
    encoded_df.loc[index,item]=1
min_support=0.3
min_confident=0.7
# Step 4: Apply the Apriori algorithm to find frequent itemsets
frequent_items = apriori(encoded_df, min_support=min_support, use_colnames=True)
# Step 5: Generate association rules based on the frequent itemsets
rules = association rules(frequent items, metric="confidence",
min_threshold=min_confident)
# Output the frequent itemsets and association rules
print("Frequent Itemsets:")
print(frequent_items)
print("\nAssociation Rules:")
print(rules)
```

sample dataset:

bread	milk	cookie	eggs
bread	milk	cookie	soup
bread	milk	cookie	
turkey	eggs		
eggs	cookies		
milk	diaper	bread	
bread	diaper		
bread	milk	cookie	avocado
bread	milk	cookie	
bread	milk	cookie	eggs

Output

Frequent Itemsets:

	support	itemsets
0	0.500000	(bread)
1	0.363636	(cookie)
2	0.454545	(milk)
3	0.409091	(eggs)
4	0.363636	(bread, cookie)
5	0.409091	(bread, milk)
6	0.363636	(milk, cookie)
7	0.363636	(bread, milk, cookie)

Association Rules:

	antecedents	consequents	antecedent support	consequent support
0	(bread)	(cookie)	0.500000	0.363636
1	(cookie)	(bread)	0.363636	0.500000
2	(bread)	(milk)	0.500000	0.454545
3	(milk)	(bread)	0.454545	0.500000
4	(milk)	(cookie)	0.454545	0.363636
5	(cookie)	(milk)	0.363636	0.454545
6	(bread, milk)	(cookie)	0.409091	0.363636
7	(bread, cookie)	(milk)	0.363636	0.454545
8	(milk, cookie)	(bread)	0.363636	0.500000
9	(bread)	(milk, cookie)	0.500000	0.363636
10	(milk)	(bread, cookie)	0.454545	0.363636
11	(cookie)	(hread milk)	a 363636	a 1a9a91

import pandas as pd

4. For the data set given in Q3, apply FP-tree algorithm, show the tree construction and identify the best rules based on support and confidence.

from mlxtend.frequent_patterns import fpgrowth # Example dataset data = [['bread', 'milk', 'cookie', 'eggs'], ['bread', 'milk', 'cookie', 'soup'], ['bread', 'milk', 'cookie'], ['turkey', 'eggs'], ['eggs', 'cookies'], ['milk', 'diaper', 'bread'], ['bread', 'diaper'], ['bread', 'milk', 'cookie', 'avocado'], ['bread', 'milk', 'cookie'], ['bread', 'milk', 'cookie', 'eggs']] # Create a DataFrame with one-hot encoding df = pd.DataFrame(data)df = df.stack().reset_index().pivot_table(index='level_0', columns=0, aggfunc=lambda x: 1, fill_value=0) # Apply the FP-growth algorithm frequent_itemsets = fpgrowth(df, min_support=0.2, use_colnames=True) # Display frequent itemsets print(frequent_itemsets)

```
itemsets
    support
                                              ((level_1, bread))
0
        0.8
1
        0.7
                                               ((level_1, milk))
2
        0.6
                                             ((level 1, cookie))
3
        0.4
                                               ((level_1, eggs))
        0.2
                                             ((level 1, diaper))
4
5
        0.7
                            ((level_1, bread), (level_1, milk))
                           ((level_1, cookie), (level_1, milk))
6
        0.6
7
        0.6
                          ((level_1, cookie), (level_1, bread))
             ((level_1, cookie), (level_1, bread), (level_1...
8
        0.6
9
        0.2
                           ((level_1, cookie), (level_1, eggs))
10
        0.2
                             ((level_1, eggs), (level_1, milk))
        0.2
                            ((level_1, eggs), (level_1, bread))
11
             ((level_1, cookie), (level_1, eggs), (level_1,...
        0.2
12
13
        0.2
             ((level_1, cookie), (level_1, eggs), (level_1,...
             ((level_1, eggs), (level_1, bread), (level_1, ...
14
        0.2
             ((level_1, cookie), (level_1, eggs), (level_1,...
15
        0.2
        0.2
                          ((level_1, bread), (level_1, diaper))
16
```

FP-tree structure:

5. For the Mall-Customer data set, implement K-means clustering algorithm and visualize the clusters.

import pandas as pd import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.preprocessing import LabelEncoder data=pd.read_csv("Mall_Customers.csv") #data.sample(5)

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
22	23	Female	46	25	5
100	101	Female	23	62	41
36	37	Female	42	34	17
53	54	Male	59	43	60
191	192	Female	32	103	69

X=data[['Annual Income (k\$)','Spending Score (1-100)']]

kmean=KMeans(n_clusters=7,random_state=0)

y_kmeans=kmean.fit_predict(X)

data['Cluster']=y_kmeans

#data.head(5)

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
0	1	Male	19	15	39	3
1	2	Male	21	15	81	5
2	3	Female	20	16	6	3
3	4	Female	23	16	77	5
4	5	Female	31	17	40	3

plt.figure(figsize=(8,6))

plt.scatter(X.iloc[:,0],X.iloc[:,1],c=y_kmeans,s=50)

centroids = kmean.cluster_centers_

plt.scatter(centroids[:, 0], centroids[:, 1], c='red', s=200, marker='+', label='Centroids')

plt.title('k mean clustering ')

plt.xlabel('Annual Income (k\$)')

plt.ylabel('Spending Score (1-100)')

plt.show()

6. For the Groceries dataset implement the Agglomerative clustering algorithm and visualize the clusters.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import AgglomerativeClustering
from sklearn.preprocessing import StandardScaler
from scipy.cluster.hierarchy import dendrogram,linkage
featues=data[['Annual Income (k\$)','Spending Score (1-100)']]
#scalling the feature
scaler=StandardScaler()
scaled_feature=scaler.fit_transform(featues)
Apply agglomerative clustering
agg_clustering=AgglomerativeClustering(n_clusters=5)
data['Cluster']=agg_clustering.fit_predict(scaled_feature)

linkage_matrix=linkage(scaled_feature,method='ward')
plt.figure(figsize=(20,17))
dendrogram(linkage_matrix)
plt.title('Dendogram')
plt.xlabel('levels')
plt.ylabel('Distance')
plt.show()

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
5	6	Female	22	17	76	3
11	12	Female	35	19	99	3
150	151	Male	43	78	17	0
67	68	Female	68	48	48	2
155	156	Female	27	78	89	1

7. For the Mall_Customers implement DBScan clustering algorithm and visualize the clusters.

```
import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.cluster import DBSCAN
    from sklearn.preprocessing import StandardScaler
    data=pd.read_csv('Mall_Customers.csv')
    data['Gender']=data['Gender'].map({'Male':0,'Female':1})
    data.sample(5)
    features=data[['Gender','Age','Annual Income (k$)','Spending Score (1-100)']]
    #standardizing the features to enure all variables are in same scallable
    scalar=StandardScaler()
    scaled_features=scalar.fit_transform(features)
    #Applay db sacan clustering
    dbscan=DBSCAN(eps=0.5,min_samples=5)
    clusters=dbscan.fit_predict(scaled_features)
    data['Cluster']=clusters
    marks=['o','s','D','^','P','*']
    plt.figure(figsize=(10,7))
    sns.scatterplot(data=data,x="Annual Income (k$)",y="Spending Score (1-
100)",hue="Cluster",palette='viridis',s=100)
    plt.title("DBSCAN Clustering of mall customers")
    plt.xlabel('Annual Income (k$)')
    plt.ylabel('Spending Score (1-100)')
    plt.legend()
    plt.show()
```

Cluster				
-1	105			
3	18			
2	18			
7	17			
4	15			
5	7			
8	6			
0	5			
1	5			
6	4			

Name: count, dtype: int64

8. Implement KNN Classification algorithm on the Mall Customers. Analyse the model using different K values and display the performance of the model.

```
import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.metrics import classification_report,accuracy_score
    data=pd.read_csv('Mall_Customers.csv')
    data['Gender']=data['Gender'].map({'Male':0,'Female':1})
    # Define the target variable (e.g., categorize Spending Score into low (0) and high (1))
    # Assuming scores <= 50 are "low spenders" and > 50 are "high spenders"
    data['Spending_Category'] = data['Spending Score (1-100)'].apply(lambda x: 1 if x > 50 else
0)
    X=data[['Gender','Age','Annual Income (k$)']]
    y=data['Spending_Category']
    #Standardize the feature
    scaler=StandardScaler()
    X_scaled=scaler.fit_transform(X)
    X_train,X_test,y_train,y_test=train_test_split(X_scaled,y,test_size=0.2,random_state=42)
    # Define the range of K values to tX_test
    k_values=range(1,10)
    accuracy_scores=[]
    for k in k_values:
       # Initialize the KNN classifire
       knn=KNeighborsClassifier(n_neighbors=k)
       # Fit the data model on training data
       knn.fit(X train,y train)
       # predict on the testing data
       y_pred=knn.predict(X_test)
       accuracy_accuracy_score(y_test,y_pred)
       accuracy_scores.append(accuracy)
       print(f"\nK={k} Classification Report: ")
       print(classification_report(y_test,y_pred))
    print("\nAccuracy scores for different K values:")
    # Display the accuracy scores for different K values
    for k in k_values:
       print(f"K={k}: {accuracy:.4f}")
```

```
plt.figure(figsize=(10, 6))
plt.plot(k_values, accuracy_scores, marker='o', linestyle='--', color='b')
plt.title('KNN Accuracy for Different K Values')
plt.xlabel('K (Number of Neighbors)')
plt.ylabel('Accuracy')
plt.grid(True)
plt.show()
```

K=1 Classification Report:

	precision	recall	f1-score	support
0	0.70	0.70	0.70	23
1	0.59	0.59	0.59	17
accuracy			0.65	40
macro avg	0.64	0.64	0.64	40
weighted avg	0.65	0.65	0.65	40

K=2 Classification Report:

	precision	recall	f1-score	support
0	0.60	0.78	0.68	23
1	0.50	0.29	0.37	17
accuracy			0.57	40
macro avg	0.55	0.54	0.52	40
weighted avg	0.56	0.57	0.55	40

Example custom input for a new customer: Female, 30 years old, Annual Income 70k custom_data = pd.DataFrame([[1, 20, 20]],columns= ['Gender', 'Age', 'Annual Income (k\$)']

```
) # Female, Age 30, Annual Income 70k
# Scale the custom data
custom_data_scaled = scaler.transform(custom_data)
# Predict the category for the custom data
predicted_category = knn.predict(custom_data_scaled)
# Output the predicted category
if predicted_category[0] == 1:
  print("Predicted Spending Category: High Spender")
else:
  print("Predicted Spending Category: Low Spender")
```

Output:

Predicted Spending Category: High Spender

9. Implement Naïve Bayes Classification algorithm on the Online Retail. Analyse the efficiency of the algorithm using different metrics.

```
import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.naive bayes import GaussianNB
    from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
    import matplotlib.pyplot as plt
    import seaborn as sns
    dataset = pd.read_csv("Online_Retail.csv", encoding='latin1')
    print(dataset.head())
    # Dropping rows with missing CustomerID as we need it for classification
    dataset = dataset.dropna(subset=['CustomerID'])
    dataset['InvoiceDate'] = pd.to_datetime(dataset['InvoiceDate'])
    dataset['InvoiceDay'] = dataset['InvoiceDate'].dt.day
    dataset['InvoiceMonth'] = dataset['InvoiceDate'].dt.month
    dataset['InvoiceHour'] = dataset['InvoiceDate'].dt.hour
    X = dataset[['Quantity', 'UnitPrice', 'InvoiceDay', 'InvoiceMonth', 'InvoiceHour']]
    y = dataset['Country']
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
    model = GaussianNB()
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    print(f"Accuracy: {accuracy:.4f}")
    print("\nClassification Report:")
    print(classification_report(y_test, y_pred))
    print("\nConfusion Matrix:")
    conf_matrix = confusion_matrix(y_test, y_pred)
    print(conf_matrix)
    plt.figure(figsize=(10, 7))
    sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=model.classes_,
vticklabels=model.classes )
    plt.title('Confusion Matrix of Naive Bayes Classification')
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
    plt.show()
```

InvoiceNo StockCode 0 536365 85123A 1 536365 71053 2 536365 84406B 3 536365 84029G 4 536365 84029E InvoiceDate	CREAM KNITTED UNI	WHIT CUPID HEA ON FLAG H OLLY HOTT	TIE WHITE HE	OLDER NTERN ANGER OTTLE	6 6 8 6
0 2010-12-01 08:26:00	2.55	17850.0 United		Kingdom	
1 2010-12-01 08:26:00	3.39	17850	0.0 United	Kingdom	
2 2010-12-01 08:26:00	2.75	17850	0.0 United	Kingdom	
3 2010-12-01 08:26:00	3.39	17850.0 United Ki		Kingdom	
4 2010-12-01 08:26:00	3.39	9 17850.0 United K		Kingdom	
Accuracy: 0.0105					
p	recision	recall	f1-score	support	
A	0.00	0.00	0.00	270	
Australia	0.00	0.00	0.00	370	
Austria	0.00	0.00	0.00	116	
Bahrain Balai	0.00	0.60	0.00	5	
Belgium	0.01	0.09	0.01	625	
Brazil	0.27	1.00	0.43	9	
Canada	0.00	0.00	0.00	44	
Channel Islands	0.00	0.00	0.00	230	
Cyprus	0.00	0.00	0.00	186	
Czech Republic	0.00	0.00	0.00	9	
Denmark	0.01	0.01	0.01	124	
EIRE	0.00	0.00	0.00	2322	
European Community	0.00	0.00	0.00	16	
Finland	0.00	0.00	0.00 0.00	213	
France	0.00	0.00		2525	
Germany	0.02	0.75	0.05	2785	
Greece Iceland	0.00 0.00	0.00 0.00	0.00 0.00	45 53	
Israel	0.00	0.00	0.00	75	
Italy			0.00	261	
	0.00	0.00			
Japan	0.00	0.00	0.00	96 45	
Lebanon	0.29	1.00	0.45	15	
Lithuania	0.00	1.00	0.01	9	
Malta Netherlands	0.00	0.00	0.00	34 710	
	0.11	0.00	0.01	719	
Norway	0.00	0.00	0.00	340	
Poland	0.00	0.00	0.00	92	
Portugal	0.00	0.00	0.00	469	
RSA	0.12	1.00	0.21	23	

