Γ Ц Φ О. 9 КЛАСС. 2014/15.

18	На примусе, расходующем $\mu=0.1$ кг бензина в час, стоит котелок, в котором находится $m=1$ кг воды. График зависимости тепловой мощности P , выделяемой в окружающую среду, от времени приведен на рисунке. Постройте график зависимости температуры воды в котелке от времени. Теплоемкость котелка $C=800~\rm{Дж/(kr\cdot ^{\circ}C)}$. Удельная теплота сгорания бензина $q=43~\rm{MДж/kr}$. Начальная температура воды $T=20~\rm{C}$. Принять, что в любой момент времени температура котелка и воды совпадают.
22	Утюг устроен следующим образом: его нагреватель выключается, если температура утюга становится больше некоторой температуры t_2 , и включается, как только его температура падает ниже t_1 (эти температуры неизвестны). Если включенный утюг стоит с открытой металлической поверхностью, его нагреватель работает в среднем $k=1/4$ всего времени. При этом мощность теплоотдачи можно считать постоянной. Если утюгом начинают гладить, то промежуток времени между последовательными моментами включения нагревателя становится в $n=4/3$ раза меньше. В этом случае мощность теплоотдачи также остается постоянной. Какую часть времени он работает в среднем во втором случае?
23	Школьница Василиса проводит опыты с пружиной. Сначала Василиса обнаружила, что длина пружины в нерастянутом состоянии составляет 10 см, а груз массой m г, подвешенный к пружине, дополнительно растягивает ее на $0.01m$ см. Затем Василиса подвесила пружину с грузом над сосудом в форме прямоугольного параллелепипеда, как показано на рисунке, и стала наливать в сосуд воду. Груз имеет форму куба длиной ребра 10 см, его плотность равна плотности воды. В начале опыта расстояние от нижней грани груза до дна сосуда составляет 30 см. Площадь основания сосуда составляет 1000 см 2 . Нижняя грань куба во время опыта сохраняла горизонтальное положение. Постройте график зависимости длины пружины l от объема воды V , налитой в сосуд. При каких значениях объема V груз находился в воздухе? был частично погружен в воду? был полностью погружен в воду?
24	Фонтан в Женеве бьет на высоту h . Расход воды составляет P кг за 1 секунду. Найдите площадь сечения сопла фонтана. Ускорение свободного падения равно g , плотность жидкости ρ . Пренебречь сопротивлением воздуха, поверхностным натяжением и вязкостью жидкости.
25	На горизонтальный скользкий цилиндр аккуратно, без зазоров намотали широкую ленту. На оба конца ленты подвесили одинаковые грузики массы m . Давление ленты на цилиндр при этом оказалось равно P . Найдите диаметр окружности цилиндра. Ширина ленты l , ускорение свободного падения g . Массой ленты по сравнению с массой грузов пренебречь, трение ленты о саму себя и о цилиндр отсутствует. Ширина ленты много меньше диаметра окружности цилиндра.
26	Шар массы m_1 налетает со скоростью v на покоящийся шар массы m_2 . Между ними происходит центральный, абсолютно упругий удар. Какая часть кинетической энергии первого шара перейдет ко второму? Постройте график зависимости доли переданной энергии от массы m_2 .