

Inteligență Artificială

Universitatea Politehnica Bucuresti Anul universitar 2021-2022

Adina Magda Florea

Curs 3

Strategii de cautare

- Cautari locale
- Cautari on-line
- Problema satisfacerii restrictiilor (CSP)

3. Problema satisfacerii restrictiilor

$$\{X_1 ... X_N\}$$
 $\{(X_1, x_1), ..., (X_N, x_N)\}$
 $D = \{D_1 ... D_N\}$
 $R = \{R_1 ... R_k\}$

- Restrictii explicite sau implicite
- Domeniul de valori
- Restrictii unare, binare, globale

Exemple

	1	2	3	4	5	6	7	8	9
Α			3		2		6		
В	9			3		5			1
С			1	8		6	4		
D			8	1		2	9		
Е	7								8
F			6	7		8	2		
G			2	6		9	5		
Н	8			2		3			9
I			5		1		3		

	1	2	3	4	5	6	7	8	9
Α	4	8	3	9	2	1	6	5	7
В	9	6	7	3	4	5	8	2	1
С	2	5	1	8	7	6	4	9	3
D	5	4	8	1	3	2	9	7	6
Ε	7	2	9	5	6	4	1	3	8
F	1	3	6	7	9	8	2	4	5
G	3	7	2	6	8	9	5	1	4
Н	8	1	4	2	5	3	7	6	9
ı	6	9	5	4	1	7	3	8	2

Alldiff (A1,A2,A3,A4,A5,A6,A7,A8,A9) Alldiff (B1,B2,B3,B4,B5,B6,B7,B8,B9) ... Alldiff (A1,B1,C1,D1,E1,F1,G1,H1,I1) Alldiff (A2,B2,C2,D2,E2,F2,G2,H2,I2) ...

Alldiff (A1,A2,A3,B1,B2,B3,C1,C2,C3) Alldiff (A4,A5,A6,B4,B5,B6,C4,C5,C6) ...

Instante ale CSP

- Determinarea unei solutii sau a tuturor solutiilor
- CSP totala
- CSP partiala
- CSP binara graf de restrictii
- CSP problema de cautare, in NP
- Reducerea timpului (reducerea sp. de cautare)
- Metoda de baza: backtracking

3.1 Imbunatatirea performantelor BKT

Algoritmi care modifica spatiul de cautare prin eliminarea unor portiuni care nu contin solutii

- Algoritmi de imbunatatire a consistentei reprezentarii (utilizati inainte de inceperea cautarii)
 - Consistenta locala a arcelor sau a cailor in graful de restrictii
- Algoritmi de cautare (cauta solutia si elimina portiuni din spatiul de cautare)
 - Imbunatatesc performantele rezolvarii prin reducerea numarului de teste.

Utilizarea euristicilor in cautare

3.2 Propagarea locala a restrictiilor

Propagarea restrictiilor

$$D_{X_1} = D_{X_2} = D_{X_3} = \{a,b,c\}$$

Propagarea locala a restrictiilor

$$\begin{array}{c} V{=}\{X,Y,Z\} & D_X{=}D_Y{=}D_Z{=}\{1,2,3,4,5,6\} \\ R{=}\{~X < Y,~Z < X{-}2~\} \\ Deoarece~X < Y~avem~D_X{=}~\{1,2,3,4,5,6\} \\ & D_Y{=}~\{2,3,4,5,6\} \\ D_Z{=}~\{1,2,3,4,5,6\} \\ D_Y{=}~\{2,3,4,5,6\} \\ D_Y{=}~\{2,3,4,5,6\} \\ D_Z{=}~\{1,2\} \\ Apoi~consideram~din~nou~restrictia~X < Y \\ si~avem~D_X{=}~\{4,5\} \\ D_Y{=}~\{5,6\} \\ D_Z{=}~\{1,2\} \\ \end{array}$$

Propagarea locala a restrictiilor

- Combinatia de valori x si y pentru variabilele X_i si X_j este permisa de restrictia explicita $R_{ij}(x,y)$.
- Un $\operatorname{arc}(X_i, X_j)$ intr-un graf de restrictii orientat se numeste $\operatorname{arc-consistent}$ daca si numai daca pentru orice valoare $x \in D_i$, domeniul variabilei X_i , exista o valoare $y \in D_j$, domeniul variabilei X_i , astfel incat $R_{ij}(x,y)$.
- Graf de restrictii orientat *arc-consistent* orice arc din graf este arc-consistent

AC-3: Realizarea arc-consistentei pentru un graf de restrictii

/* Intoarce fals daca inconsistenta, adevarat in caz contrar */ Creeaza o coada Q $\leftarrow \{ (X_i, X_i) | (X_i, X_i) \in Multime arce, i \neq j \}$ cat timp Q nu este vida executa Elimina primul arc (X_k, X_m) din Q daca Verifica(X_k, X_m) atunci daca $|D_{Xk}| = 0$ atunci intoarce fals $O \leftarrow O \cup \{ (X_i, X_k) \mid (X_i, X_k) \in Multime arce, i \neq k,m \}$ **intoarce** adevarat **Verifica** (X_k, X_m) /* into arce adevarat daca se modifica D_{X_k} */ $modif \leftarrow fals$ **pentru** fiecare $x \in D_{xk}$ **executa daca** nu exista nici o valoare $y \in D_{Xm}$ astfel incat $R_{km}(x,y)$ **atunci** elimina x din D_{xk} $modif \leftarrow adevarat$ /* Modifica domeniul D_{Xk} prin efect lateral */

intoarce modif

Complexitate

- N numarul de variabile
- **a** cardinalitatea maxima a domeniilor de valori ale variabilelor
- e numarul de restrictii.
- Algoritmului de realizare a arc-consistentei AC-3: complexitate timp este $O(e*a^3)$
- S-a gasit si un algoritm de complexitate timp $O(e^*a^2)$ - AC-4

m-Cale-consistență

- O cale de lungime m prin nodurile $i_0,...,i_m$ ale unui graf de restrictii orientat se numeste m-cale-consistenta daca si numai daca pentru orice valoare $x \in D_{i0}$, domeniul variabilei i_0 si o valoare $y \in D_{jm}$, domeniul variabilei i_m , pentru care $R_{i0im}(x,y)$, exista o secventa de valori $z_1 \in D_{i1} ... z_{m-1} \in D_{im-1}$ astfel incat $R_{i0i1}(x,z_1), ..., R_{im-1im}(z_{m-1},y)$
- Graf de restrictii orientat *m-cale-consistent* daca orice cale din graf este cale-consistenta
- Algoritmul de realizare PC-4: complexitatea timp $O(N^3*a^3)$
- 2-cale consistenta
- A face un graf de restrictii m-cale-consistent are o complexitate exponentiala in m

2-Cale-consistență

$$V = \{A,B,C\}$$
 $D_A = D_B = D_C = \{1,2,3\}$

$$R={B>1, AC-2}$$

Putem exprima restrictiile sub forma de matrici booleene

Consistenta pe calea (i,k,j) poate fi detereminata recursiv utilizand ecuatia

$$R_{i,j} \leftarrow R_{i,j} \land (R_{i,k} *R_{k,k} *R_{k,j})$$

De ex
$$R_{AC} \leftarrow R_{A.C} \land (R_{A.B} * R_{B.B} * R_{B.C})$$

Cale consistență (ordin 2)

/* Intari: Multime de variabile V, n=/V/, multime de matrici de restrictii R Iesiri: Matrici de restrictii cale-consistente */

$$\begin{array}{c|c} Y^n \leftarrow R \\ \textbf{repeta} \\ & Y^0 \leftarrow Y^n \\ \textbf{pentru } k=1, n \textbf{ repeta} \\ & \textbf{pentru } i=1, n \textbf{ repeta} \\ & \textbf{pentru } j=1, n \textbf{ repeta} \\ & \textbf{pentru } j=1, n \textbf{ repeta} \\ & \textbf{Y}_{ij}{}^k \leftarrow Y_{i,i}{}^{k-1} \wedge (Y_{i,k}{}^{k-1} * Y_{k,k}{}^{k-1} * Y_{k,j}{}^{k-1}) \\ \textbf{pana } Y^n = Y^0 \\ \textbf{intoarce } Y^0 \\ \textbf{sfarsit} \end{array}$$

Este o extindere a algoritmului Floyd Warshall (all shortest path) in care minimizarea este inlocuita cu conjunctia si aduarea cu multiplicarea matricilor

3.3 Cautare cu BKT

- BKT algoritmul de baza
- Imbunatatiri
- Realizarea arc-consistentei pe parcursul cautarii
- Backjumping

Backtracking

sfarsit

```
/* Intrari: variabile V, restrictii R
  Iesiri: Atribuiri pt X si adev daca R satisfacute, fals in caz contrar */
/* L- variabile instantiate, U – variabile neinstantiate */
(b,L) \leftarrow BKT(V, \{\}, R)
daca b atunci intoarce L
intoarce fals
                                                          Consistent(L,R)
sfarsit
                                                          pentru fiecare r ∈ R repeta
BKT(U,L,R)
                                                           daca Variabile(r) \subseteq L)
                                                           atunci
daca U={} atunci intoarce (adevarat, L)
                                                               daca not(Satisfacut(r,L)
X \leftarrow Selectie(U)
                                                               atunci intoarece fals
pentru fiecare x \in D_x repeta
                                                           intoarce adevarat
   b \leftarrow Consistent(L \cup \{X=x\},R)
   daca b atunci<sub>|</sub> (b,L) \leftarrow BKT(U \setminus \{X\}, L \cup \{(X,x)\}, R)
                     daca b atunci intoarce (b,L)
intoarce fals
```

Realizarea arc-consistentei pe parcursul cautarii

- Forward checking
- Maintaining Arc-Consistency (MAC)
- Dupa ce s-a alocat o valoare unei variabile X, algoritmul apeleaza AC-3 dar in loc sa faca o coada cu toate arcele din problema, se introduce in coada numai arcele (X,Y₁) pentru toate variabilele Y₁ neinstantiate care sunt legate de X printr-o restrictie
- AC-3 face propagarea restrictiilor si, daca un domeniul este redus la multimea vida, intoarce fals si se intra in backtracking

Backtracking cu MAC

```
/* Intrari: variabile V, restrictii R
  Iesiri: Atribuiri pt X si adev daca R satisfacute, fals in caz contrar */
/* L- variabile instantiate, U – variabile neinstantiate */
(b,L) \leftarrow BKT MAC(V, \{\}, R,D)
daca b atunci intoarce L
intoarce fals
sfarsit
BKT\_MAC(U,L,R,D)
daca U={} atunci intoarce (adevarat, L)
X \leftarrow Selectie(U)
pentru fiecare x \in D_x repeta
  (b,D') \leftarrow AC-3'(L \cup \{(X,x),R,D)\}
  daca b atunci, (b,L) \leftarrow BKT\_MAC(U\setminus\{X\}, L\cup\{(X,x)\},R,D')
                   daca b atunci intoarce (b,L)
intoarce fals
sfarsit
```

Backjumping

■ BKT cu salt – determina nivelul in care apare eventual un conflict

Exemplu

$$V = \{A,B,C,D\}$$
 $D_A = D_B = D_C = D_D = \{1,2,3,4\}$
 $R = \{A > D\}$

```
Backjumping
/* Intrari: variabile V, restrictii R
  Iesiri: Atribuiri pt X si adev daca R satisfacute, fals in caz contrar */
(n,L) \leftarrow Backjump(V, \{\}, R, 0) /* n - variabila intreaga */
daca n=|V|+1 atunci intoarce L
intoarce fals
sfarsit
Backjump(U,L,R,p)
/*Intrari: U, L, R, nivel anterior p, Iesiri: L sau nivelul de salt pt variabila conflict*/
daca U=\{\} atunci intoarce (|L+1|, L)
X \leftarrow Selectie(U) m \leftarrow 0 /* init variabila jump */
pentru fiecare x \in D_x repeta
   (b,j) \leftarrow Consistent(L \cup \{(X,x,p+1), R, p+1) /* b \ var \ booleana, j \ var \ intraga */
   daca b atunci
               \mathbf{m} \leftarrow \mathbf{p}
               (n,L) \leftarrow \text{Backjump}(U \setminus \{X\}, L \cup \{(X,x,p+1)\}, R, p+1) /* n \text{ intreg */}
               daca (n \neq p+1) atunci intoarce (n,L)
           altfel
               m \leftarrow \max\{m,j\}
intoarce (m,.)
```

sfarsit

```
Consistent(L,R,nivel)
/* into arca nivelal vari
```

```
/* intoarce nivelul variabilei conflictuale */
j \leftarrow \text{nivel}
b \leftarrow fals
pentru fiecare r ∈ R repeta
 daca Variabile(r) \subseteq L)
 atunci
      daca not(Satisfacut(r,L)
      atunci
        b \leftarrow adevarat
        j \leftarrow \min\{j, \max_k (X \in Variabile(r) si(X,x,l) \in L si(k < l)\}
daca b
atunci intoarce (fals, j)
intoarce (adevrat,.)
sfarsit
```

3.4 Euristici

Euristici generale

Ordonarea variabilelor – vezi functie Selectie(U)

- aleator
- Minimum remaining value (MRV) se incepe cu variabila cea mai restrictionata intai (fail-first) variabila cu cele mai putine valori legale
- Degree heuristic selectie variabila care este implicata in cel mai mare numar de restrictii cu variabile neinstantiate

Ordonarea valorilor

■ Least-constrained value — selectie valoarea care elimina cele mai putine valori din domeniul variabilelor neinstantiate cu care este legata prin restrictii (fail-last)

O solutie: variabila fail-first, valoare fail last

Toate solutiile: variabila fail-last, valoare fail first

3.5 CSP partiala

- Memoreaza cea mai buna solutie gasita pana la un anumit moment (gen IDA*) – distanta d fata de solutia perfecta
- Abandoneaza calea de cautare curenta in momentul in care se constata ca acea cale de cautare nu poate duce la o solutie mai buna
- NI numarul de inconsistente gasite in "cea mai buna solutie" depistata pana la un moment dat *limita necesara*

CSP partiala

- S limita suficienta specifica faptul ca o solutie care violeaza un numar de S restrictii (sau mai putine), este acceptabila.
- PBKT(Cale, Distanta, Variabile, Valori)
 - Semnificatie argumente
 - Rezultat: GATA sau CONTINUA
- variabile globale: CeaMaiBuna, NI, S

Algoritm: CSP Partiala PBKT(Cale, Distanta, Variabile, Valori)

/* intoarce GATA sau CONTINUA */

- daca Variabile = { }
 atunci
 - 1.1 CeaMaiBuna ← Cale
 - 1.2 NI ← Distanta
 - 1.3 daca NI ≤ S atunci intoarce GATA altfel intoarce CONTINUA
- 2. altfel
 - 2.1 daca Valori = {} atunci CONTINUA
- /* s-au incercat toate valorile si se revine la var ant. */
 - 2.2 altfel
 - 2.2.1 daca Distanta ≥ NI atunci intoarce CONTINUA

/* revine la var ant pentru gasirea unei solutii mai bune*/

```
2.2.2 altfel
```

- i. $Var \leftarrow first(Variabile)$
- ii. $Val \leftarrow first(Valori)$
- iii. DistNoua ← Distanta
- iv. Cale \leftarrow Cale
- v. cat timp Cale1 <> {} si DistNoua < NI executa
 - $(VarC, ValC) \leftarrow first(Cale1)$
 - daca Rel(Var,Val,VarC,ValC) = fals
 - atunci DistNoua ← DistNoua + 1
 - Cale1 \leftarrow Rest(Cale1)

vi. daca DistNoua < NI si

PBKT(Cale+(Val, Var), DistNoua, Rest(Variabile), ValoriNoi)

$$= GATA$$

/* ValoriNoi - domeniul de valori asociat primei variabile din Rest(Variabile) */

atunci intoarce GATA

altfel intoarce

PBKT(Cale, Distanta, Variabile, Rest(Valori)

sfarsit