

CSE4102

Lambda Calculus Part II

Overview

- Computing with Lambda
- How to represent
 - Booleans, Naturals
- Combinators
 - I
 - K
 - **- S**
- Recursion
 - Y

Lambda Calculus

- As a programming language
 - We must be able to express
 - Constants
 - Booleans
 - Naturals
 - Elementary operations
 - Successor
 - Addition
 - Multiplication
 - We must be able to deal with recursion

Booleans

- How to represent true & false.
 - Hint
 - Think about them as functions
 - What are boolean used for ?

Branching

λ

Naturals

What we need

- A function to represent ZERO
- A function to get the successor of a natural *n*
- A function to get the predecessor of a natural n
- A function to test for ZERO

Church numerals

- Zero: $\lambda s.\lambda z.z$

- One: $\lambda s. \lambda z. s. z$

- Two: $\lambda s. \lambda z. s (s z)$

- Three: $\lambda s. \lambda z. s (s (s z))$

Successor

• How to define successor?

- Successor

-n+1 of them

IsZero

- Testing for Zero
 - Input
 - A Natural: n
 - Output
 - True if n is zero
 - False in all other cases otherwise
 - Idea
 - Make an induction on the church numeral
 - For zero λs.λz.z return true. How?
 - For others: return false, always.

Pairing & Lists

- How to define a Pair?
 - A function
 - Takes two inputs
 - Returns something that denotes a pair (a function!)
 - Objective
 - We should be able to ask a pair for
 - Its first element
 - Its second element
 - Suggestions ?

Predecessor

- How to define n-1 from n?
 - Question
 - Can we eliminate applications within a numeral directly?

Predecessor

- How to define n-1 from n?
 - Question
 - Can we eliminate applications within a numeral directly?
 - Idea
 - Form a function that computes < n,n+1 > from < n-1,n > 1
 - Apply the function n times starting with <?,zero>
 - What is the final pair?

Predecessor

- How to define *n-1* from *n*?
 - Question
 - Can we eliminate applications within a numeral directly?
 - Idea
 - Form a function that computes <n,n+1> from <n-1,n>
 - Apply the function n times starting with <?,zero>
 - What is the final pair?

```
Pair = \lambda x. \lambda y. \lambda z. z x y

First = \lambda p. p true

Second= \lambda p. p false

np = \lambda p. Pair (Second p) (succ (Second p))

pred = \lambda n. First (n np (Pair zero zero))
```

λ

Addition

- Objective
 - Compute m+n from naturals m,n
- Idea?

λ

Multiplication

- Objective
 - Compute m*n from naturals m,n
- Idea?

Overview

- Computing with Lambda
- How to represent
 - Booleans, Naturals
- Combinators
 - I
 - K
 - **- S**
- Recursion
 - Y

Combinators

• What are these things?

Combinator I

- Purpose
 - Provide the Identity transformation
 - Take a lambda expression as input
 - Produce the lambda expression unchanged
 - Definition

$$I = \lambda x \cdot x$$

Combinator K

- Purpose
 - Create a constant *function*
 - Take as input an expression
 - Produce as output a function that returns the expression
 - Definition

$$K = \lambda x \cdot \lambda y \cdot x$$

Combinator S

Purpose

- Provide a general form of composition.
- Definition

$$S = \lambda x . \lambda y . \lambda z . x z (y z)$$

Expressiveness

• What does SKK simplify to ?

```
I = \lambda x.x
K = \lambda x.\lambda y.x
S = \lambda x.\lambda y.\lambda z.x z (y z)
```


Recursion

- Is achieved with one more combinator
 - Y
- Topic of next lecture is exclusively recursion