Name's of student
School Name

BIOLOGY PAPER II P530/2 **SENIOR SIX OCTOBER**

COMPREHENSIVE BIOLOGY TRANSFORMATION INITIATIVE. **UACE POST MOCK- EXAMINATION**

S.6 CANDIDATES-2023

PAPER 2

2 HOURS AND 30 MINUTES

INSTRUCTIONS TO THE CANDIDATES:

This paper consists of section A and B.

Answer question one in section A plus 3 questions in section B

Candidates are advised to read questions carefully, organize their answers and present them precisely and logically, illustrating with well labelled diagram wherever necessary.

SECTION B (40 MARKS).

N.B Question 1.0 is Compulsory to all Candidates.

1.0. A student investigated the effect of different sugars: Maltose, glucose, sucrose and lactose on the respiration rate in yeast.

The student followed the following key steps.

- Prepared a stock solution of yeast containing 10g of dried yeast in 250cm³ of pH buffer. Prepared solutions of each sugar containing 5g of sugar in 250cm³ of distilled water. Kept the yeast and sugar solutions in a water bath at 35°C. Set up the apparatus with a 250cm³ conical flask connected by a rubber tube to a 100cm³ gas syringe. Added 25cm³ of yeast solution and 25cm³ of sugar solution to the flask, immediately connected the flask to the gas syringe and start the clock. Recorded the volume of gas produced after every 30s for 7 minutes.
- •Repeated the experiment 5 times for each different sugar. The student calculated mean values for each sugar and plotted the results on a graph. The graph is shown below.

a) Calculate the rate of respiration for each sugar. during the first five minutes.	(03 marks)	
b) Describe the changes in the volume of gases colle	cted by the	
following sugars.		
(i) Maltose.		
(ii) Glucose.		
(iii) Sucrose.		
(iv) Lactose.	(10 marks)	
c) Explain the changes described in (b) for each carl	bohydrate.	
(i) Lactose. (ii) Sucrose. (iii) Maltose. (iv) Glucose.	(02 marks)	
(ii) Sucrose.	(05 marks)	
(iii) Maltose.	(05 marks)	
(iv) Glucose.	(05 marks)	
d) Suggest explanations for the following.		
(i) Why Maltose had the highest volume of gas collected		
after 5 minutes?	(03 marks)	
(ii) What would happen to the volume of gas co		
sucrose and glucose if the experiment is contin		
2 minutes?	(03 marks)	
(iii) Addit <mark>ion of the P^H buff</mark> er to the set up.	(02 marks)	
(iv) Temperature of water bath kept at 35°C.	(02 marks)	
SECTION B (60 MINUTES)	in R	
Question. 2.0.		
a (i)What is meant by the term leaf area index?	(03 marks)	
(ii) Explain the significance of the leaf area index to		
	(07 marks)	
b) Describe how communities change over time.	(10 marks)	
N X.X		
Question 3.0.		
a) Explain how the following organisms show evolution	onary adaptations	
to their habitats.		
(i) Migratory fish.	(05 marks)	
(ii) Sea birds.	(05 marks)	
b) How does disruptive selection explain the varied be	eak shape in the	
Galapagos finches?	(10 marks)	

Question 4.0.

a) Describe the adaptations of the pre-synaptic bulb to its role.

(10 marks)

b) Explain how the synapses are able to control communications along the nervous system. (10 marks)

Question 5.0.

- a) Explain ways how the control and coordination of enzymes is achieved. (10 marks)
- b) Describe Alpha and Beta pleated sheet as examples of secondary structure in fibrous proteins. (10 marks)

W. S. V

Question 6.o.

- a) Distinguish between Classical conditioning and Operant conditioning as forms of associative learning. (05 marks)
- b) Describe the different types of social interactions among two or more animals. (15 marks)

END

Transforming Biology Pedagogy.