Designing NN-Based Generative Models of Music (Part 3)

Computational Music Creativity, SMC (2022/23)

Prepared by Behzad Haki, February 2023

Architecture

Unique Words

Transformers are designed to work with tokens! But, we want to represent our inputs more directly without tokenization! We should adapt the I/O layers!

Embedding

A look-up table of {"Token N" : "Representation Vector N"}

0.125 -0.814 0.992 0.002

KickOnset, Velocity_100, Silence_0.25,

Onset, Velocity_90, Silence_0.3, Onset, Velocity 30, Silence_2,

Table

Architecture: Transformer for Piano Rolls Input/Outputs KickOnset, Velocity_100, Silence_0.25, HiHatOnset, Velocity 80, Silence_2, HiHatOnset, Velocity_0.4, ... Output **Step 1:** Replace Embedding layer Probabilities With a Feed-forward fully connected Softmax layer Linear Add & Norm Add & Norm Feed Feed Forward Forward N× N× Add & Norm Add & Norm Multi-Head Multi-Head Attention Attention Embedding Positional Positional A look-up table of {"Token N" : "Representation Vector N"} Encoding Encoding Input FF **Unique Words** Embedding **Token Lookup Table** Inputs Inputs 0.125 -0.814 0.992 0.002

Sequence of tokens
Onset, Velocity 90, Silence_0.3,

Onset, Velocity 30, Silence_2,

Piano Roll Representation

0.2

-0.35 0.6

0.23

1

0.4

1

Architecture: Transformer for Piano Rolls Input/Outputs

Architecture

A few limitations:

- 1. We haven't implemented any control parameters for the generations
- 2. We can't generate any variations for a given input! (For one input groove, we get a single drum pattern)
- 3. We can't generate from scratch using this model!

We'll try to make improvements to the architecture by modifying it into a Variational Auto-encoder (VAE)

Drum Pattern

Architecture

Drum Pattern **Architecture** Hits Vels Offset Sigmoid TOM HIGH TOM MID TOM LOW Linear Add & Norm Feed Forward N× Add & Norm Multi-Head Attention stdev (σ) mean (μ) Add & Norm Feed Forward N× Add & Norm Multi-Head Attention Positional Encoding FF Input Monotonic Groove 0.2 0.9 Inputs

Training

Two sets of Parameters:

1. Trainable:

- 1. Weights of Network
- 2. Biases of Network

Learnt from training data using back-propagation

0.2

2. Hyper-Parameters (Non-trainable):

- 1. Number of Enc/Dec layers
- 2. FF dimensionality
- 3. Z dimensionality

Drum Pattern Vels Add & Norm Feed Forward N× Add & Norm Attention stdev (σ) mean (μ) Add & Norm Feed Forward N× Add & Norm Multi-Head Attention Positional Encoding FF Input Monotonic Groove Inputs

Training

2. Hyper-Parameters (Non-trainable):

- 1. Number of Enc/Dec layers
- 2. FF dimensionality
- 3. Z dimensionality

. . .

Tuned by Trial and Error (AKA Hyper-parameter Tuning)

Read more:

https://docs.wandb.ai/quides/sweeps

Validation by Global Comparison (Feature-based)

Extract musical features and compare models against one another by comparing the global distribution of features

See more here:

https://wandb.ai/anonmmi/AIMC2022/reports/Absolute-Analysis--VmlldzoxOTU2OTc1

Validation by Global Comparison (Feature-based)

Now do the comparison per genre

Number of Instruments

Validation by Global Comparison (Velocity Heat-maps)

See more here:

https://wandb.ai/anonmmi/AIMC2022/reports/Velocity-heatmaps-for-Run-northern-sweep-26---VmlldzoxNTAxNjMy

Validation by Global Comparison (Velocity Heat-maps)

Validation by Global Comparison (Velocity Heat-maps)

Validation of Embeddings

Use dimension reduction techniques (such as UMAP, T-SNE) to visualize the clustering of embeddings

Check out in supplementary material:

UMAP_drawn_river_6.html UMAP_noble-field-7.html

Additional Reading

For detailed discussions on topics discussed today:

https://behzadhaki.com/blog/2022/trainingGrooveTransformer/

Focus of this week!

RECAP:

Create a real-time drum generation system that accompanies a given instrumental performance

Limitations of the trained model:

- Non-causal Generation (at any time-step, we take into account future events)
- Limited to 2 bars of drums

Is inference fast enough for real-time deployment?

• < 10ms (running in python)

Do we need any delay compensation? —-> Not in this looping setting

Is inference fast enough for real-time deployment?

• < 10ms (running in python)

Do we need any delay compensation? —-> Not in this looping setting

Is inference fast enough for real-time deployment?

• < 10ms (running in python)

Do we need any delay compensation? —-> Not in this looping setting

Is inference fast enough for real-time deployment?

• < 10ms (running in python)

Is inference fast enough for real-time deployment?

• < 10ms (running in python)

Is inference fast enough for real-time deployment?

• < 10ms (running in python)

Is inference fast enough for real-time deployment?

• < 10ms (running in python)

Is inference fast enough for real-time deployment?

• < 10ms (running in python)

Is inference fast enough for real-time deployment?

• < 10ms (running in python)

One major issue with the model:

Always uses 2-bars of input! —> What about long term coherence of the generations?

Ideally, the system should have been trained on longer sequences

One major issue with the model:

Always uses 2-bars of input! —> What about long term coherence of the generations?

Ideally, the system should have been trained on longer sequences

One major issue with the model:

Always uses 2-bars of input! —> What about long term coherence of the generations?

Ideally, the system should have been trained on longer sequences

One major issue with the model:

Always uses 2-bars of input! —> What about long term coherence of the generations?

Ideally, the system should have been trained on longer sequences

One major issue with the model:

Always uses 2-bars of input! —> What about long term coherence of the generations?

Ideally, the system should have been trained on longer sequences

One major issue with the model:

Always uses 2-bars of input! —> What about long term coherence of the generations?

Ideally, the system should have been trained on longer sequences

One major issue with the model:

Always uses 2-bars of input! —> What about long term coherence of the generations?

Ideally, the system should have been trained on longer sequences

One major issue with the model:

Always uses 2-bars of input! —> What about long term coherence of the generations?

Ideally, the system should have been trained on longer sequences

One major issue with the model:

Always uses 2-bars of input! —> What about long term coherence of the generations?

Ideally, the system should have been trained on longer sequences

