Delhi Technological University Department of Applied Maths B.Tech Sem-I 2017 Assignment No. 5

Que 1. Find
$$d\vec{w}/dt$$

(a) $\vec{w}(t) = (3t\hat{i} + 5t^2\hat{j} + 6\hat{k}).(t^2\hat{i} - 2t\hat{j} + t\hat{k})$
(b) $\vec{w}(t) = (t\hat{i} + e^t\hat{j} - t^2\hat{k})X(t^2\hat{i} + \hat{j} + t^3\hat{k})$

Que 2. Show that (a)
$$\nabla^2(logr) = 1/r^2$$
 (b) $\nabla^2 r^n = n(n+1)r^{n-2}$.

Que 3. If
$$\vec{r} = xi + yj + zk$$
, Show that (a) $gradr = \vec{r}/r$ (b) $grad(1/r) = -\vec{r}/r^3$ (c) $\nabla r^n = nr^{n-2}\vec{r}$.

Que 4. If u and \vec{r} have continuous second order partial derivative , then show that

- (a) curl(gradu) = 0
- (b) $div(curl\vec{r}) = 0.$

Que 5. If
$$\vec{r} = xi + yj + zk$$
 and $r = |\mathbf{r}|$. Show that (a) $div(\mathbf{r}/r^3) = 0$ (b) $grad(1/r) = -\hat{r}/r^2$.

Que 6. Find a unit normal vector to the surface $xy^2 + 2yz = 8$ at the point (3,-2,1). (Ans- $(2i-5j-2k)/\sqrt{33}$)

Que 7. Find the normal vector and the equation of the tangent plane to the surface $z = \sqrt{x^2 + y^2}$ at point (3,4,5).

Que 8. Find the directional derivative of $F(x, y, z) = x^2y^3 + xy$ at (2,1), in the direction of a unit vector which makes an angle of $\pi/3$ with x-axis. (Ans- $(5 + 14\sqrt{3})/2$)

Que 9. Find the directional derivative of $F(x, y, z) = xy^2 + 4xyz + z^2$ at the point (1,2,3) in the direction of 3i + 4j - 5k. (Ans- $78/5\sqrt{2}$)

DELHI TECHNOLOGICAL UNIVERSITY

Assignment 6 B.tech.1st Semester-2017

Vector Integral Calculus

- 1. If $\vec{r} = t \ \hat{i} t^2 \ \hat{j} + (t 1) \ \hat{k}$ and $\vec{s} = 2t^2 \ \hat{i} + 6t \ \hat{k}$, evaluate $\int_0^2 \vec{r} \times \vec{s} \ dt$. (ans: $-24\hat{i} \frac{40}{3}\hat{j} + \frac{64}{5}\hat{k}$)
- 2. Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = xy \ \hat{i} + (x^2 + y^2) \ \hat{j}$ and C is the arc of the parabola $y = x^2 4$ from A(2,0) to B(4,12) in the xy plane. (ans: 732)
- 3. Evaluate $\iint_S (yz \ \hat{i} + zx \ \hat{j} + xy \ \hat{k}) \cdot dS$ where S is the surface of the surface $x^2 + y^2 + z^2 = a^2$ in the first octant. (ans: $\frac{3a^4}{8}$)
- 4. Evaluate $\iint_S \vec{F} \cdot \hat{n} \ dS$ where $\vec{F} = 2 \ \hat{i} + x \ \hat{j} 3y^2z \ \hat{k}$ and S is the surface of the cylinder $x^2 + y^2 = 16$ included in the first octant between z = 0 and z = 5. (ans: 90)
- 5. Evaluate $\int_C (y \sin x) dx + \cos x dy$ by using Green's theorem, where C is the triangle whose vertices are $(0,0), (\frac{\pi}{2},0), (\frac{\pi}{2},1)$. (ans: $\frac{-2}{\pi} \frac{\pi}{4}$)
- 6. Evaluate by Green's theorem, $\int_C (x^2 \cosh y) dx + (y + \sin x) dy$, where C is the rectangle with vertices $(0,0), (\pi,0), (\pi,1), (0,1)$. (ans: $\pi \cosh 1 \pi$)
- 7. Using Stokes' theorem prove that curl grad $\phi = 0$.
- 8. Verify Stokes' theorem for $\vec{F} = xy^2 \ \hat{i} + y \ \hat{j} + z^2x \ \hat{k}$ for the surface of a rectanglar lamina bounded by x = 0, y = 0, x = 1, y = 2, z = 0.
- 9. Verify Stokes' theorem for $\vec{F} = (x^2 y^2) \hat{i} + 2xy \hat{j}$ in the rectangular region in the xy plane given by (0,0), (a,0), (0,b), (a,b).
- 10. Using divergence theorem, evaluate $\iint_S \vec{r} \cdot dS$, where S is the surface of the sphere $x^2 + y^2 + z^2 = 9$. (ans: 108π)
- 11. Verify divergence theorem for $\vec{F}=(4x^3\ \hat{i}-x^2y\ \hat{j}+x^2z\ \hat{k})$ taken over the region bounded by the cylinder $x^2+y^2=a^2, z=0, z=b$. (ans: $3\pi a^4b$)
- 12. Evaluate $\iint (xdydz + ydzdx + zdxdy)$ over the surface of a sphere of radius 2. (ans: 32π)