Something like Martin et al. 2015 in Stan

10/4/2018

Reformat data for Stan

The first thing we have to do is put the simulated data in a format Stan can read. Stan requires data in lists, so we have to do the following manipulation. Note each of the objects in the list correspond to a data element defined in the stan programs.

Estimate the Poisson model for bycatch interactions

First, we'll estimate the rate of interaction per set using the Poisson model specification.

```
## Warning in readLines(file, warn = TRUE): incomplete final line found
## on '/Users/Jon/Dropbox/Documents/NOAA_postdoc/groundfish_bycatch/
## poisson_model.stan'
```

Now, lets check out the fit parameter to see if it comes close to what we know as the true rate parameter of 0.002.

```
print(pois_fit)
```

```
## Inference for Stan model: poisson_model.
## 4 chains, each with iter=1000; warmup=500; thin=1;
## post-warmup draws per chain=500, total post-warmup draws=2000.
##
                                            50%
##
                                     25%
                         sd 2.5%
                                                   75% 97.5% n_eff Rhat
          mean se_mean
## eta
          0.00
                  0.00 0.00
                            0.0
                                    0.00
                                           0.00
                                                  0.00
                                                         0.00
                  0.02 0.74 -43.8 -41.95 -41.53 -41.32 -41.26
## lp__ -41.79
## Samples were drawn using NUTS(diag_e) at Thu Oct 4 12:08:59 2018.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
plot(pois_fit)
```

```
## ci_level: 0.8 (80% intervals)
## outer_level: 0.95 (95% intervals)
```


All tough we can't see the parameter estimate because it's being masked by 0 because of rounding, the Rhat close to 1 indicates we got model convergence. In the plot of the parameter we can see the posterior distribution for eta. Looks pretty good!

Estimate the binomial model for mortality resulting from bycatch interaction

```
binom_fit <- stan(file = "binomial_model.stan",</pre>
                 data = dat_stan,
                 iter = 1000,
                 chains = 4,
                 seed = 1234)
## Warning in readLines(file, warn = TRUE): incomplete final line found
## on '/Users/Jon/Dropbox/Documents/NOAA_postdoc/groundfish_bycatch/
## binomial model.stan'
print(binom_fit)
## Inference for Stan model: binomial_model.
## 4 chains, each with iter=1000; warmup=500; thin=1;
## post-warmup draws per chain=500, total post-warmup draws=2000.
##
##
                               2.5%
                                        25%
                                               50%
                                                      75% 97.5% n_eff Rhat
           mean se_mean
                          sd
                                      0.39
## theta
           0.45
                   0.00 0.08
                               0.28
                                              0.44
                                                     0.50
                                                            0.61
                                                                   763 1.01
## lp__ -19.13
                   0.03 0.74 -21.27 -19.28 -18.84 -18.66 -18.61
                                                                   820 1.00
##
## Samples were drawn using NUTS(diag_e) at Thu Oct 4 12:09:04 2018.
```

```
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
plot(binom_fit)
## ci_level: 0.8 (80% intervals)
## outer_level: 0.95 (95% intervals)
theta
                                     0.4
                 0.3
                                                          0.5
                                                                               0.6
```

Again, given we only have 20 observations to estimate the model with, this looks pretty good to the known true value.