Usenix 2002 Freenix Track presents

A story of a failed project

that led to a free 802.1x implementation

by Pekka Nikander

Ericsson Research Nomadiclab & Helsinki Institute for Information Technology

http://www.tml.hut.fi/~pnr/EAPOL/

Outline

- The story
 - Once upon a time...
 - The Great Idea
 - The Rise and Fall of iPoints
- The big picture
 - Problems in link layer security
 - 802.1x and friends
 - The fallacy of everybody being trustworthy
- Current status of the project
 - The FreeBSD 802.1x implementation
 - The structure of an integrated access point
- Conclusions

Once upon a time...

- ... or on March 28 2001, to be more exact,
- I was reading the Theory of Money and Credit, by Ludvig von Mises, first published in 1934, and
- I happend to start drinking beer with a few colleagues of mine...
- ... and a great idea was born ...

The Great Idea

(or perhaps it wasn't that great, after all, but let's not care about that)

- Public WLAN Internet access based on payment tokens
- A micro economy of tokens
 - a client sends tokes to the base station and
 - the base station owner may use them elsewhere.
- A captive portal where you can
 - download the payment software and initial tokens,
 - and buy new tokens as you need.
- Eventually run in every WLAN base station
- What do we do then? We mint the tokens!
 - The idea was to run a clearing house of the tokens

The Idea

- Laptop pays for access with tokens, sent to the firewall
- The access firewall could be
 - Integrated into the basestation (for SoHo)
 - A separate box using 802.1x to the access point
- Revenue could be directly split between several parties

The Rise and Fall of iPoints

- So we went and applied for seeding money
- leading to frantic business plan and prototype writing
- until one Thursday night shortly after 9/11
- our financier announced that the story was over.
- There was an unfinished business plan
- There was an unfinished prototype
- There was a bunch of engineers but no management
- There was no money
- So, that story burned out (as I almost did, too)
 - but something rose from the ashes...

The big picture

- How to do Secure Decentralized Public WLAN access?
- Issue 1: The role of trust
 - We were trying to run a bank, anyway
 - and banking is a form of monopolized trust.
 - But that's for a completely different talk
- Issue 2: Security of public WLAN access
 - Problems in link layer security
 - How does 802.1x (and friends) fit into the figure
 - Some peole are still untrustworthy, even if they pay

Problems in link layer security

- Consider an open wireless link, e.g. public WLAN
- There are number of potential threats
 - A malicious node can masquerade as a router
 - Traffic can be directed or later redirected to nowhere or to a wrong or malicious node
 - A malicious node can feed in bad routing information
 - A malicious node can prevent other nodes from getting IP addresses, etc
- On a higher level
 - Only you pay but an attacker gets access, too
 - You are prevented from gaining access at all
 - You are lured to e.g. more expensive access

802.1x and friends

- IEEE 802.1x is an IEEE protocol for LAN authentication
 - Based on Extensible Authentication Protocol (EAP)
 - Runs anything that EAP supports, and has the same pitfalls as EAP has (and some more)
 - Works well on secure point-to-point links, e.g. switched Ethernet
- IEEE 802.11i is an IEEE protocol for WLAN security
 - Defines Robust Security Network (RSN)
 - Uses 802.1x for authentication and key distribution
 - Supports AES; with AES, provides packet integrity
- IETF PANA WG tries to define an IP layer solution
 - Still in requirements discussion phase

The fallacy of everybody being trustworthy

- Let's suppose that we have solved the link layer authentication and access control problems
 - Consequently, only authenticated hosts have access
 - Note: <u>authentication does not imply trustworthiness!</u>
- The local link is still a shared medium
 - It may be useful to run the link in an semi-open mode
 - Even when 802.11i AES is used, there is just one broadcast/multicast key per link
- ARP and IPv6 Neighbor Discovery (ND) depend on broadcast or multicast
- Consequently, even 802.11i does not necessarily protect against ARP/ND spoofing and other attacks
- Work on IPv6 ND starting at the IETF, BoF in Yokohama

Outline

- The story
 - Once upon a time...
 - The Great Idea
 - The Rise and Fall of iPoints
- The big picture
 - Problems in link layer security
 - 802.1x and friends
 - The fallacy of everybody being trustworthy
- → Current status of the project
 - The FreeBSD 802.1x implementation
 - The structure of an integrated access point
- Conclusions

Current status

- Working FreeBSD based 802.1x implementation
 - Architecture described in next two slides
- Implemented as two netgraph modules
 - ng_eapol for EAP over LAN, the hearth of 802.1x
 - ng_macfilter for 802.1x port control
- EAP subprotocols implemented at user level
 - Currently only support OPIE
 - Writing new subprotocols is fairly straightforward
- Some features still missing
 - Mainly support for multiaccess links
- Consider this as an alpha release
 - The code is beautiful, but partially unfinished

The FreeBSD 802.1x implementation

The structure of an integrated access point

Conclusions

- Authentication and access control are a tricky problems in public wireless networks
 - Be careful with your threat and trust models
- 801.1x together with 802.11i is designed to solve the WLAN authentication and link level security
 - It does not seem to protect against ARP spoofing or IPv6 ND attacks
- 802.1x now implemented for FreeBSD with netgraph
 - Currently alpha level code, some features missing
 - Available right now at

```
http://www.tml.hut.fi/~pnr/EAPOL/
```