21-849: Algebraic Geometry

Rohan Jain

January 13, 2025

I don't know what a sheave or a category is. 💙

Table of Contents

1. Introduction	1
1.0.1. Administrivia	1
1.1. Features of algebraic geometry	1
2. Affine algebraic sets	2
2.1. Nullstellensatz	2
3. Projective Spaces	5

1. Introduction

1.0.1. Administrivia

- Grade consists of two takehomes and one presentation/paper.
- Exercise List/Notes: Canvas
- Prerequisites: basic algebra, topology, and "multivariable calculus".
- Textbooks: [G] Gathmann, [H1] Hartshorne, [H2] Harris
- OH: 2-4pm Wednesday, Wean 8113

1.1. Features of algebraic geometry

Consider the two functions e^z and $z^2 - 3z + 2$.

- Both are continuous in \mathbb{R} or \mathbb{C} .
- Both are holomorphic in C.
- Both are analytic (power series expansion at every point).
- Both are C^{∞} .

There are differences as well.

- f(z) = a has no solution or infinitely many solutions for e^z , but for almost all a, 2 solutions for z^2
- e^z is not definable from $\mathbb{Z} \to \mathbb{Z}$ but $z^2 3z + 2$ is.
- $\left(\frac{d}{dz}\right)^{\ell} \neq 0$ for all $\ell > 0$ for e^z but not for $z^2 3z + 2$. For nontrivial polynomials, as $z \to \infty$, p(z) goes to infinity. So, it can be defined as a function from $\hat{C} \rightarrow \hat{C}$. But e^z can be periodic as the imaginary part tends to infinity.

This motivates the following result:

Theorem 1.1 (GAGA Theorems): Compact (projective) \mathbb{C} -manifolds are algebraic.

Here are more cool things about algebraic geometry:

1) Enumeration:

- How many solutions to p(z)?
- How many points in $\{f(x,y) = g(x,y) = 0\}$?
- How many lines meet a given set of 4 general lines in \mathbb{C}^3 ? The answer is 2.
- How many conics ($\{f(x,y)=0\}$, $\deg f=2$) are tangent to given 5 conics (in 2-space)? Obviously it's 3264...
- Now for any question of the previous flavor, the answer is coefficients of chromatic polynomials of graphs.

2) Birationality:

• Open sets are huge. That is, if we have X, Y and $U \subseteq X, V \subseteq Y$ such that $U \cong V$, then X and Y are closely related.

3) Arithmetic Geometry:

- Over $\mathbb{Z}, \mathbb{Z}_p, \mathbb{Q}_p$, etc.
- Weil conjectures: X carved by polynomials with \mathbb{Z} -coefficients. $H^2(X_{\mathbb{C}},\mathbb{Q})$ related to integer solutions.

2. Affine algebraic sets

2.1. Nullstellensatz

Notation: k is an algebraically closed field $(k = \mathbb{C})$.

Definition 2.1 (Affine space): An n-affine space $\mathbb{A}^n_{\mathbb{k}}$ is the set

$$\{(a_1,...,a_n) \mid a_i \in \mathbb{k}, \forall i = 1,...,n\} = \mathbb{k}^n.$$

An affine algebraic subset of \mathbb{A}^n is a subset $Z\subseteq \mathbb{A}^n$ such that

$$Z = \{(a_1,...,a_n) \in \mathbb{A}^n \mid f(a_1,...,a_n) = 0, \forall f \in T\}$$

for some subset $T\subseteq \Bbbk[x_1,...,x_n].$ We write Z=V(T).

Example 2.1 (An affine space):

- $V(x^2 y) \subset \mathbb{A}^2$. This is a parabola.
- $V(x^2 + y^2) \subset \mathbb{A}^2$. Note that $x^2 + y^2 = (x + iy)(x iy)$, so this is two lines.
- $V(x^2-y,xy-z)\subseteq \mathbb{A}^3$. We actually have $V(x^2-y,xy-z)=\{(x,x^2,x^3)\mid x\in \mathbb{k}\}$. Then note that if we project to any two dimensional plane (xy,yz,xz), then we get another affine subset but on \mathbb{A}^2 .

This leads us to the following question:

Question: $X \subseteq \mathbb{A}^n \Rightarrow \pi(X) \subseteq \mathbb{A}^{\{n-1\}}$?

Solution: Consider $V(1-xy)\subseteq \mathbb{A}^2$. If we project this to either axis, then we will miss the origin.

Definition 2.2 (Ideal): Let $Z \subseteq \mathbb{A}^n$ be an algebraic subset. Then

$$I(Z) = \{f \in \Bbbk[x] \mid f(p) = 0, \forall p \in Z\}.$$

Example 2.2:

- 0) $Z = V(x^2) \subseteq \mathbb{A}^2$, then $I(Z) = \langle x \rangle$.
- 1) If $Z = V(x^2 y)$, then $I(Z) = \langle x^2 y \rangle$
- 2) If $Z = V(x^2 y, xy z)$, then $I(Z) = \langle x^2 y, xy z \rangle$.

Proposition 2.1:

- 1) I(Z) an ideal. $Z_1 \subseteq Z_2 \Rightarrow I(Z_1) \supseteq I(Z_2)$.
- 2) $T \subseteq \mathbb{k}[x]$. $V(T) = V(\langle T \rangle)$ AND $V(T) = V(f_1, ..., f_m)$ for some f_i .
- 3) For $\mathfrak{a} \subseteq \mathbb{k}[x]$ ideal, $V(\mathfrak{a}) = V(\sqrt{\mathfrak{a}})$, where $\sqrt{\mathfrak{a}} = \{f \in \mathbb{k}[x] \mid f^m \in \mathfrak{a}, \exists m > 0\}$.
- 4) Algebraic subsets of \mathcal{A}^n are closed under finite unions and arbitrary intersections.

PROOF: We prove number 2 by using the Hilbert Basis Theorem. In particular, k[x] is Noetherian.

Theorem 2.2 (Nullstellensatz): Let Z be an algebraic subset. Then V(I(Z)) = Z and $I(V(\mathfrak{a})) = \sqrt{\mathfrak{a}}$. That is,

{algebraic subsets of \mathbb{A}^n } \leftrightarrow {radical ideals in $\mathbb{k}[x]$ }.

Proof:

- 1) Finite type field extensions $L\supseteq F$ are finite. Rember that finite type means that $F[x_1,...,x_m] \twoheadrightarrow L$.
- 2) This implies that maximal ideals of $\mathbb{k}[x]$ are of the form $\langle x_1 a_1, ..., x_n a_n \rangle$ for $a_i \in \mathbb{k}$, using the fact that \mathbb{k} is algebraically closed. So, $k[x]/\mathfrak{m} \simeq \mathbb{k}$.
- 3) (Weak Nullstellensatz) $V(\mathfrak{a}) = \emptyset \iff \mathfrak{a} = \langle 1 \rangle$. That is, $\mathfrak{a} \subsetneq k[x], \exists \mathfrak{m} \supseteq \mathfrak{a}$.
- 4) So if $f \in I(V(\mathfrak{a}))$, then consider $\mathfrak{a} + \langle 1 yf \rangle \subseteq k[x,y]$. So for any $(a_1,...,a_n,b)$ that vanishes on $\mathfrak{a} + \langle 1 yf \rangle$, we realize that since 1 yf = 1, we have a unit ideal. That is, we can say $1 = g_1h_1 + g_2(1-yf)$ for $h_1 \in \mathfrak{a}$ and $g_1,g_2 \in k[x,y]$. From here, we can conclude that $f^\ell \in \mathfrak{a}$ for some ℓ .

But also

$$k[x,y]/\langle 1-yf\rangle \simeq k[x]\left[\frac{1}{f}\right] = R.$$

So,

$$\frac{1}{1} = g_1 + \frac{g_2}{f} + \frac{g_3}{f^2} + \dots + \frac{g_\ell}{f^{\ell-1}}$$

for $g_i \in \text{ideal } \mathfrak{a} \text{ inside } R$.

Remark: We say R is Jacobson if every radical ideal $= \bigcap_{\mathfrak{m} \supset I} \mathfrak{m}$.

Theorem 2.3: R Jacobson $\Rightarrow R[x]$ Jacobson.

Definition 2.3 (Coordinate ring): The coordinate ring A(X) of $X\subseteq \mathbb{A}^n$ is $\mathbb{k}[x]/I(X)$. 1) $X\stackrel{f}{\to} \mathbb{k}$

- 2) maxSpec $A(X) = \{\text{maximal ideals in } A(X)\} = X.$

3. Projective Spaces

 $\textbf{Definition 3.1: } \mathbb{P}^n = \left(\mathbb{k}^{n+1} \setminus \{0\} \right) / \sim. \text{ That is, } v \sim v' \text{ if } v = \lambda v' \text{ for some } \lambda \in \mathbb{k}. \text{ That is, } \mathbb{P}^n = \left\{ 1\text{-subspaces of } \mathbb{k}^{\{n+1\}} \right\} \text{. For } (a_0,...,a_n) \in k^{n+1} \setminus \{0\}, \text{ we write } [a_0:...:a_n] \in \mathbb{P}^n.$

Remark: $V \simeq \mathbb{k}^{n+1}$. $\mathbb{P}V = V \setminus \{0\} / \sim$

Definition 3.2: $f \in \mathbb{k}[\underline{x}]$ is homogeneous if $f(\lambda x_1, ..., \lambda x_n) = \lambda^{\ell} f(x_1, ..., x_n)$.

Definition 3.3: A projective algebraic set, $X \subseteq \mathbb{P}^n$ is

$$V(T) = \{[x_0: \cdots: x_n] \mid f(x) = 0, \forall f \in T\}$$

for T a set of homogeneous polynomials.

We have that $\mathbb{P}^n \supset U_i = \{[x_0: \ldots: x_n] \mid x_i \neq 0, x_i = 1\}$. So then

$$\mathbb{P}^n = (U_i = \mathbb{A}^n) \sqcup \mathbb{P}^{n-1}.$$

Example 3.1: Let $W \subseteq \mathbb{k}^{n+1}$ of $\dim_k W = m+1$. Then $\mathbb{P}W \subseteq \mathbb{P}^n$ is a projective algebraic subset which is an m-plane in \mathbb{P}^n .

Example 3.2 (Twisted cubic curve): We have $\mathbb{P}^3 \supset C = \{[s^3: s^2t: st^2: t^3] \mid [s:t\} \in \mathbb{P}^1]\}$. Then we have that $C = V(x_0x_3 - x_1x_2, x_1^2 - x_0x_2, x_2^2 - x_1x_3)$. Then $U_0 \cap C = \{[1:t:t^2:t^3]\}$. Additionally, we have $C \setminus U_0 = \{[0:0:0:1]\}$. Another way we can view this is

$$V\bigg(2 \text{ by } 2 \text{ minors of } \begin{pmatrix} x_0 & x_1 & x_2 \\ x_1 & x_2 & x_3 \end{pmatrix}\bigg).$$

Now note that for a matrix A, rank $(A) \le r \iff \text{all } (r+1) \times (r+1) \text{ minors} = 0$.

Question: Can there exist F, G such that V(F, G) = C? (Answer is yes)

For $X \subseteq \mathbb{P}^n$, algebraic subset, let

$$I(X) = \{\text{homogeneous } f \in \mathbb{k}[x] \mid f(p) = 0, \forall p \in X\}$$

be the homogeneous ideal of X.

Exercise 3.3:

$$\{\emptyset \neq X \subseteq \mathbb{P}^n \text{ algebraic subsets}\} \longleftrightarrow$$

{homogeneous radical ideals $\mathfrak{a} \subseteq \mathbb{k}[\underline{x}]$ such that $\mathfrak{a} \neq \mathbb{k}[\underline{x}]$ or $\langle x_0, ..., x_n \rangle$ }.

This last part is called the "irrelevant ideal".

Definition 3.4 (General Position): In \mathbb{P}^n , any subset of size $\leq n+1$ points are linearly independent.

Theorem 3.1: Every set Γ of 2n points in \mathbb{P}^n in general position is carved out by quadrics.

PROOF: We want to show that if $q \in V(\{\text{all quadrics vanishing on }\Gamma\})$, then $q \in \Gamma$. Suppose q is given. For any partition of $\Gamma = \Gamma_1 \sqcup \Gamma_2$, $|\Gamma_i| = n$, $\operatorname{span}(\Gamma_1)$ is a hyperplane. Then for every such equi-partition, $q \in \operatorname{span}(\Gamma_1)$ or $q \in \operatorname{span}(\Gamma_2)$.

Let $p_1,...,p_k$ be a minimal subset of Γ whose span $\ni q$ $(k \le n)$. Now pick any Λ such that $|\Lambda| = n-k+1$ which does not contain any of the p_i . We claim that $q \notin \operatorname{span}(p_2,...,p_k,\Lambda)$.

We then conclude that for any $|S|=n-1,\ S\subseteq \Gamma\setminus p_1,...,p_k$, we have that $\operatorname{span}(p_1,S)\ni q.$ Because then

$$\bigcap_{S}\operatorname{span}(p,S)$$

is the intersection at least n many hyperplanes, each of them containing p_1, q . But the intersection of n many hyperplanes is a point, so $q = p_1$. This also concludes that in fact k = 1.

Definition 3.5: Two sets $X, X' \subset \mathbb{P}^n$ are projectively equivalent if $X' = g \cdot X, \exists g \in PGL_{n+1}$.