$\begin{array}{c} COM \ S \ 331 \\ Homework \ 4 \end{array}$

Christian Shinkle

September 23, 2017

- 1. Proof by Contradiction: Assume L is regular, then $\exists m \in \mathbb{N}, \forall x \in L, |x| > m, \exists a, b, c \in w^*, x = abc, |ab| \leq m, |b| > 0,$ $\forall k \in \mathbb{N}, ab^kc \in L$. Consider ww and denote each substring w as w_1 and w_2 . Then, decompose it in any possible way into abc satisfying $|ab| \leq m$, |b| > 0. Then, set k = 0 for any b that was chosen. Three cases can arise:
 - (a) b is entirely in w_1
 - (b) b is entirely in w_2
 - (c) b is partially in w_1 and w_2

The first two cases are trivial because under pumping b^0 will make either w_1 or w_2 no longer equal to the original w. If the thrid cases arises, then both w_1 and w_2 will both not be equal to the w. In all three cases, a contradiction has occurred.

2. Proof by Contradiction: Assume L is regular. Then, using the Closure property of Homomorphism, we can say $L' = \{w \in \{0,1\}^* : |w|_0 \neq |w|_1\}$ is obtained from the homomorphism $a \to 0$ and $b \to 1$. Then, using the Closure property of Complementation, we say $L'' = \{w \in \{0,1\}^* : |w|_0 = |w|_1\}$. Then, using the Closure property of Concatenation, we say $L''(M_1) * L''(M_2) = L''' = \{w \in \{0,1\}^* : ww\}$. However, note that L''' is regular, but using the proof from problem one, L''' is nonregular, a contradiction.