Theorem 4.9. If there exists a quasi-interior subeigenvector u of A such that $u \in D(m)$, then B is closable and the closure \overline{B} of B is the generator of a positive semigroup $(S(t))_{t \ge 0}$ which is dominated by $(T(t))_{t \ge 0}$.

For the proof of the theorem we need the following lemma.

<u>Lemma</u> 4.10. Let A and B be generators of positive semigroups $(T(t))_{t\geq 0}$ and $S(t)_{t\geq 0}$, respectively. If $(T(t))_{t\geq 0}$ dominates $(S(t))_{t\geq 0}$, then $s(B) \leq s(A)$.

Proof of Lemma 4.10. Let $\lambda > s(A)$. Then for all $\mu > \max\{\lambda, s(B)\}$ one has $0 \le R(\mu,A) \le R(\lambda,A)$ (by B-II,Lemma 1.9), and so $\|R(\mu,B)\| \le \|R(\mu,A)\| \le \|R(\lambda,A)\|$. Thus $dist(\mu,\sigma(B)) \ge \|R(\mu,B)\|^{-1} \ge \|R(\lambda,A)\|^{-1}$. This implies that $[\lambda,\infty) \subset \rho(B)$. Hence $s(B) \le \lambda$.

Proof of Theorem 4.9. There exists $\mu > 0$ such that $Au \leq \mu u$. Let $\lambda > \max \{s(A), \mu\}$. Then $\lambda R(\lambda, A) u = AR(\lambda, A) u + u \leq \mu R(\lambda, A) u + u$. Hence $R(\lambda, A) u \leq c \cdot u$ where c > 0. It follows that $R(\lambda, A) E_u \subset E_u \cap D(A) \subset D(B)$. Hence D(B) is dense.

Let $f \in D(B)$, $\phi \in D(A')_+$ and set $P_+ := P_f^+$, $P_- := P_f^-$. Then

(4.11) $\langle P_+ Bf, \phi \rangle \leq \langle f^+, A' \phi \rangle$.

In fact,
$$\langle P_{+} | Bf, \phi \rangle = \langle P_{+} | Af, \phi \rangle + \langle P_{+} | m \cdot f, \phi \rangle$$

$$= \langle P_{+} | Af, \phi \rangle + \langle m \cdot f^{+}, \phi \rangle$$

$$\leq \langle P_{+} | Af, \phi \rangle$$

$$\leq \langle f^{+}, A^{+}, \phi \rangle \qquad (by (3.6)).$$

But (4.11) implies (4.4). So it follows from Theorem 4.3 that B is closable. Moreover, if we can show that $(\lambda - \overline{B})D(\overline{B})$ is dense in E, it follows that \overline{B} is the generator of a semigroup $(S(t))_{t\geq 0}$. In that case (4.11) implies that $(S(t))_{t\geq 0}$ is dominated by $(T(t))_{t\geq 0}$ (by Proposition 4.5).

Now we show that $(\lambda - \overline{B})D(\overline{B})$ is dense in E .

Let $\mathbf{m}_n = \sup \left\{ \mathbf{m}, -\mathbf{n} \mathbf{1}_X \right\}$ $(\mathbf{n} \in \mathbb{N})$ and $\mathbf{B}_n = \mathbf{A} + \mathbf{m}_n$. Then \mathbf{B}_n is the generator of a positive semigroup and it follows from Proposition 4.8 that $0 \leq \mathbf{R}(\lambda, \mathbf{B}_{n+1}) \leq \mathbf{R}(\lambda, \mathbf{B}_n) \leq \mathbf{R}(\lambda, \mathbf{A})$ for all $\mathbf{n} \in \mathbb{N}$, $\lambda > \mathbf{s}(\mathbf{A})$. (Note that $\mathbf{s}(\mathbf{B}_n) \leq \mathbf{s}(\mathbf{A})$ by Lemma 4.10). Let $0 \leq \mathbf{f} \in \mathbf{E}_u$ and $\mathbf{g}_n = \mathbf{R}(\lambda, \mathbf{B}_n) \mathbf{f}$. Then $\mathbf{g} = \inf_{\mathbf{n} \in \mathbb{N}} \mathbf{g}_n = \lim_{\mathbf{n} \to \infty} \mathbf{g}_n$ exists. Moreover $\mathbf{g}_n \in \mathbf{D}(\mathbf{B})$ and $\lim_{\mathbf{n} \to \infty} (\lambda - \mathbf{B}) \mathbf{g}_n = \mathbf{f} + \lim_{\mathbf{n} \to \infty} (\mathbf{B}_n - \mathbf{B}) \mathbf{g}_n = \mathbf{f}$, since $\left| (\mathbf{B}_n - \mathbf{B}) \mathbf{g}_n \right| \leq (\mathbf{m}_n - \mathbf{m}) \left| \mathbf{g}_n \right| = (\mathbf{m}_n - \mathbf{m}) \left| \mathbf{R}(\lambda, \mathbf{B}_n) \mathbf{f} \right| \leq (\mathbf{m}_n - \mathbf{m}) \mathbf{R}(\lambda, \mathbf{A}) \left| \mathbf{f} \right| \leq \mathbf{c}'$ $(\mathbf{m}_n - \mathbf{m}) \mathbf{u}$ for some positive constant \mathbf{c}' .