$12n_{0386} \ (K12n_{0386})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{11} - 3u^{10} - 13u^9 + 39u^8 + 46u^7 - 146u^6 + 10u^5 - 54u^4 - 15u^3 - 91u^2 + 32b + 3u - 1, \ a - 1, \\ u^{13} - 3u^{12} - 14u^{11} + 42u^{10} + 59u^9 - 185u^8 - 36u^7 + 92u^6 - 25u^5 - 5u^4 + 18u^3 - 6u^2 - 3u + 1 \rangle \\ I_2^u &= \langle b^4 - b^2 + 2, \ a + 1, \ u - 1 \rangle \\ I_3^u &= \langle b - 1, \ a + 1, \ u - 1 \rangle \\ I_4^u &= \langle b + 1, \ a + 1, \ u - 1 \rangle \\ I_5^u &= \langle b - 1, \ a, \ u + 1 \rangle \\ I_6^u &= \langle b, \ a + 1, \ u + 1 \rangle \\ I_7^u &= \langle b^4 + 1, \ a + 1, \ u + 1 \rangle \\ I_7^v &= \langle a, \ b - 1, \ v - 1 \rangle \end{split}$$

* 8 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 26 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{11} - 3u^{10} + \dots + 32b - 1, \ a - 1, \ u^{13} - 3u^{12} + \dots - 3u + 1 \rangle$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.0312500u^{11} + 0.0937500u^{10} + \cdots - 0.0937500u + 0.0312500 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.0312500u^{12} - 0.0937500u^{11} + \cdots + 0.0937500u^{2} - 2.03125u \\ \frac{7}{32}u^{12} - \frac{11}{16}u^{11} + \cdots + \frac{5}{8}u + \frac{1}{32} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.187500u^{12} + 0.593750u^{11} + \cdots - 2.65625u - 0.0312500 \\ \frac{7}{32}u^{12} - \frac{11}{16}u^{11} + \cdots + \frac{5}{8}u + \frac{1}{32} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0312500u^{11} + 0.0937500u^{10} + \cdots - 0.0937500u + 0.0312500 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.0312500u^{12} + 0.0937500u^{11} + \cdots - 0.0937500u^{2} + 1.03125u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{9}{16}u^{12} - \frac{31}{16}u^{11} + \cdots - 4u + 2 \\ -0.812500u^{12} + 3.31250u^{11} + \cdots - 4u + 2 \\ -0.812500u^{12} + 0.281250u^{11} + \cdots + 0.781250u + 0.750000 \\ -0.218750u^{12} + 1.09375u^{11} + \cdots + 0.781250u + 0.750000 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.0312500u^{12} + 0.281250u^{11} + \cdots + 0.781250u + 0.7500000 \\ -0.218750u^{12} + 1.09375u^{11} + \cdots + 2.71875u - 0.812500 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{35}{16}u^{12} + \frac{145}{16}u^{11} + \frac{353}{16}u^{10} - \frac{1973}{16}u^9 - \frac{21}{2}u^8 + \frac{4023}{8}u^7 - \frac{3425}{8}u^6 - \frac{643}{8}u^5 + \frac{3897}{16}u^4 - \frac{2063}{16}u^3 + \frac{161}{16}u^2 + \frac{651}{16}u - \frac{231}{8}u^8 - \frac{21}{16}u^8 - \frac{21}{16}u$$

Crossings	u-Polynomials at each crossing
c_1	$u^{13} + 37u^{12} + \dots + 21u + 1$
$c_2, c_5, c_6 \\ c_{11}, c_{12}$	$u^{13} + 3u^{12} + \dots - 3u - 1$
c_3, c_7	$u^{13} - 5u^{12} + \dots + 36u + 26$
c_4,c_9	$u^{13} + 3u^{12} + \dots + 8u + 2$
c_8, c_{10}	$u^{13} + 5u^{12} + \dots + 32u + 4$

Crossings	Riley Polynomials at each crossing
c_1	$y^{13} - 237y^{12} + \dots + 173y - 1$
c_2, c_5, c_6 c_{11}, c_{12}	$y^{13} - 37y^{12} + \dots + 21y - 1$
c_3, c_7	$y^{13} - 65y^{12} + \dots - 5360y - 676$
c_4, c_9	$y^{13} - 5y^{12} + \dots + 32y - 4$
c_8, c_{10}	$y^{13} + 7y^{12} + \dots + 480y - 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.584997 + 0.104914I		
a = 1.00000	-0.88948 + 5.75156I	-12.6714 - 7.2274I
b = 1.224250 - 0.653734I		
u = -0.584997 - 0.104914I		
a = 1.00000	-0.88948 - 5.75156I	-12.6714 + 7.2274I
b = 1.224250 + 0.653734I		
u = 0.140736 + 0.561263I		
a = 1.00000	1.39701 - 2.29590I	-8.94612 + 4.81765I
b = -0.773695 + 0.343562I		
u = 0.140736 - 0.561263I		
a = 1.00000	1.39701 + 2.29590I	-8.94612 - 4.81765I
b = -0.773695 - 0.343562I		
u = -0.571799		
a = 1.00000	-4.92305	-18.0630
b = 1.29852		
u = 0.530717 + 0.126593I		
a = 1.00000	0.109607 - 0.527741I	-11.42537 + 2.37191I
b = 0.900850 + 0.616546I		
u = 0.530717 - 0.126593I		
a = 1.00000	0.109607 + 0.527741I	-11.42537 - 2.37191I
b = 0.900850 - 0.616546I		
u = 0.297204		
a = 1.00000	-0.561817	-17.7590
b = 0.282107		
u = 2.49582 + 0.80059I		
a = 1.00000	16.3066 - 9.5421I	-15.4017 + 4.1459I
b = 3.34031 + 4.21214I		
u = 2.49582 - 0.80059I		
a = 1.00000	16.3066 + 9.5421I	-15.4017 - 4.1459I
b = 3.34031 - 4.21214I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -2.63506 + 0.50378I		
a = 1.00000	18.2542 + 3.1219I	-13.76946 - 0.20883I
b = 4.40111 - 2.78969I		
u = -2.63506 - 0.50378I		
a = 1.00000	18.2542 - 3.1219I	-13.76946 + 0.20883I
b = 4.40111 + 2.78969I		
u = 3.38017		
a = 1.00000	10.7959	-17.7500
b = 9.23373		

II.
$$I_2^u = \langle b^4 - b^2 + 2, \ a+1, \ u-1 \rangle$$

$$a_{6} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1 \\ b \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} b-1 \\ -b^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} b^{2} + b - 1 \\ -b^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1 \\ b + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -b \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} b^{3} - 1 \\ -b^{2} + 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} b^{2} - b - 1 \\ -b^{3} + b \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4b^2 20$

Crossings	u-Polynomials at each crossing
$c_1, c_5, c_{11} \\ c_{12}$	$(u-1)^4$
c_{2}, c_{6}	$(u+1)^4$
c_3,c_4,c_7 c_9	$u^4 - u^2 + 2$
c ₈	$(u^2 - u + 2)^2$
c_{10}	$(u^2 + u + 2)^2$

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_5 c_6, c_{11}, c_{12}	$(y-1)^4$		
c_3, c_4, c_7 c_9	$(y^2 - y + 2)^2$		
c_8, c_{10}	$(y^2 + 3y + 4)^2$		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	-2.46740 - 5.33349I	-18.0000 + 5.2915I
b = 0.978318 + 0.676097I		
u = 1.00000		
a = -1.00000	-2.46740 + 5.33349I	-18.0000 - 5.2915I
b = 0.978318 - 0.676097I		
u = 1.00000		
a = -1.00000	-2.46740 + 5.33349I	-18.0000 - 5.2915I
b = -0.978318 + 0.676097I		
u = 1.00000		
a = -1.00000	-2.46740 - 5.33349I	-18.0000 + 5.2915I
b = -0.978318 - 0.676097I		

III.
$$I_3^u = \langle b-1, a+1, u-1 \rangle$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -24

Crossings	u-Polynomials at each crossing
$c_1, c_3, c_4 \\ c_5, c_8, c_{11} \\ c_{12}$	u-1
c_2, c_6, c_7 c_9, c_{10}	u+1

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1	

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	-6.57974	-24.0000
b = 1.00000		

IV.
$$I_4^u = \langle b+1, a+1, u-1 \rangle$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -24

Crossings	u-Polynomials at each crossing
$c_1, c_5, c_7 \\ c_8, c_9, c_{11} \\ c_{12}$	u-1
c_2, c_3, c_4 c_6, c_{10}	u+1

Crossings		Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1	

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	-6.57974	-24.0000
b = -1.00000		

V.
$$I_5^u = \langle b-1, a, u+1 \rangle$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -18

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	u
c_3, c_4, c_6 c_7, c_9, c_{11} c_{12}	u-1
c_8, c_{10}	u+1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	y
c_3, c_4, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0	-4.93480	-18.0000
b = 1.00000		

VI.
$$I_6^u = \langle b, a+1, u+1 \rangle$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6	u-1
$c_3, c_4, c_7 \\ c_8, c_9, c_{10}$	u
c_5, c_{11}, c_{12}	u+1

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_{11}, c_{12}$	y-1
c_3, c_4, c_7 c_8, c_9, c_{10}	y

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.00000	-3.28987	-12.0000
b = 0		

VII.
$$I_7^u = \langle b^4 + 1, \ a + 1, \ u + 1 \rangle$$

a₁ Arc colorings
$$a_{6} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1 \\ b \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -b+1 \\ b^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -b+1 \\ b^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1 \\ b+1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1 \\ b \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} b^{3} - b^{2} \\ 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} b^{2} - b - 1 \\ -b^{3} + b \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -16

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6	$(u-1)^4$
c_3, c_4, c_7 c_9	$u^4 + 1$
c_5, c_{11}, c_{12}	$(u+1)^4$
c_8,c_{10}	$(u^2+1)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_{11}, c_{12}$	$(y-1)^4$
c_3, c_4, c_7 c_9	$(y^2+1)^2$
c_8, c_{10}	$(y+1)^4$

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.00000	-1.64493	-16.0000
b = 0.707107 + 0.707107I		
u = -1.00000		
a = -1.00000	-1.64493	-16.0000
b = 0.707107 - 0.707107I		
u = -1.00000		
a = -1.00000	-1.64493	-16.0000
b = -0.707107 + 0.707107I		
u = -1.00000		
a = -1.00000	-1.64493	-16.0000
b = -0.707107 - 0.707107I		

VIII.
$$I_1^v = \langle a,\ b-1,\ v-1
angle$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -18

Crossings	u-Polynomials at each crossing
c_1, c_8, c_{10}	u+1
c_2, c_3, c_4 c_5, c_7, c_9	u-1
c_6, c_{11}, c_{12}	u

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_7 c_8, c_9, c_{10}	y-1
c_6, c_{11}, c_{12}	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0	-4.93480	-18.0000
b = 1.00000		

IX. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u(u-1)^{11}(u+1)(u^{13}+37u^{12}+\cdots+21u+1)$
c_2, c_6	$u(u-1)^{6}(u+1)^{6}(u^{13}+3u^{12}+\cdots-3u-1)$
c_3, c_7	$u(u-1)^{3}(u+1)(u^{4}+1)(u^{4}-u^{2}+2)(u^{13}-5u^{12}+\cdots+36u+26)$
c_4, c_9	$u(u-1)^{3}(u+1)(u^{4}+1)(u^{4}-u^{2}+2)(u^{13}+3u^{12}+\cdots+8u+2)$
c_5, c_{11}, c_{12}	$u(u-1)^{7}(u+1)^{5}(u^{13}+3u^{12}+\cdots-3u-1)$
c ₈	$u(u-1)^{2}(u+1)^{2}(u^{2}+1)^{2}(u^{2}-u+2)^{2}(u^{13}+5u^{12}+\cdots+32u+4)$
c_{10}	$u(u+1)^{4}(u^{2}+1)^{2}(u^{2}+u+2)^{2}(u^{13}+5u^{12}+\cdots+32u+4)$

X. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y(y-1)^{12}(y^{13}-237y^{12}+\cdots+173y-1)$
$c_2, c_5, c_6 \\ c_{11}, c_{12}$	$y(y-1)^{12}(y^{13}-37y^{12}+\cdots+21y-1)$
c_3, c_7	$y(y-1)^4(y^2+1)^2(y^2-y+2)^2(y^{13}-65y^{12}+\cdots-5360y-676)$
c_4, c_9	$y(y-1)^4(y^2+1)^2(y^2-y+2)^2(y^{13}-5y^{12}+\cdots+32y-4)$
c_{8}, c_{10}	$y(y-1)^{4}(y+1)^{4}(y^{2}+3y+4)^{2}(y^{13}+7y^{12}+\cdots+480y-16)$