BLOC 7. Termodinàmica i Equilibri químic

BLOC 7.1 Principis de la Termodinàmica. Termoquímica

Treball, calor i energia interna

- **7.1.1** Calcula quin treball realitza un mol de gas ideal que ocupa 1 L en expandir-se fins a 3 L contra la pressió externa indicada en cadascun dels casos següents:
 - a) 0 atm (expansió contra el buit).
 - b) 1 atm.
- **7.1.2** Calcula quin treball desenvolupa un glaçó de gel de 10 g quan es fon a 1 atm de pressió i a 0 °C. En les condicions esmentades de pressió i temperatura, la densitat del gel és de 0.92 g cm⁻³ i la de l'aigua líquida és d'1.00 g cm⁻³.
- **7.1.3** En el cas anterior, calcula quina ha estat la variació d'energia interna del sistema. Se sap que el calor latent de fusió del gel és de 80 cal g⁻¹.

Llei de Hess

7.1.4 Calcula l'entalpia de formació estàndard, $\Delta H^0_{f,298}$, de la cianamida sòlida, CH_2N_2 , si es coneixen les dades següents:

Procés	ΔH^{0}_{298} (kJ mol ⁻¹)
$C_{(grafit)} + O_{2(g)} \rightarrow CO_{2(g)}$	-393.5
$H_{2(g)} + {}^{1}/_{2} O_{2(g)} \rightarrow H_{2}O_{(l)}$	-285.9
$CH_2N_{2(s)} + \frac{3}{2}O_{2(g)} \rightarrow CO_{2(g)} + N_{2(g)} + H_2O_{(l)}$	-741.4

7.1.5 Calcula l'entalpia de la següent reacció:

$$CO_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{2(g)}$$

a partir de les següents dades:

Procés	ΔH^{0}_{298} (kJ mol ⁻¹)	
$C_{(grafit)} + O_{2(g)} \rightarrow CO_{2(g)}$	-393.51	
$C_{(qrafit)} + \frac{1}{2} O_{2(q)} \rightarrow CO_{(q)}$	-110.54	

7.1.6 Els propel·lents per aerosols gairebé sempre són clorofluorometans, com per exemple el freó-11 (CFCl₃) i el freó-12 (CF₂Cl₂). S'ha suggerit que l'ús continuat d'aquests materials destrueix la capa d'ozó estratosfèrica. En l'estratosfera els CFC absorbeixen energia d'alta radiació i produeixen àtoms de clor que tenen un efecte catalític en l'eliminació de l'ozó segons les següents reaccions:

Procés		$\Delta {\sf H}^{\sf 0}_{298} ({\sf kJ mol^{-1}})$
	$O_3 + CI \rightarrow O_2 + CIO$	-30
	$CIO + O \rightarrow O_2 + CI$	-64

Calculeu ΔH per a la reacció total d'eliminació de l'ozó.

7.1.7 Calculeu ∆H per a la transformació del diamant en grafit coneixent les següents reaccions termoquímiques:

Procés	ΔH^{0}_{298} (cal mol ⁻¹)
$C_{(diamant)} + O_{2(g)} \rightarrow CO_{2(g)}$	-94500
$C_{(grafit)} + O_{2(g)} \rightarrow CO_{2(g)}$	-94050

Entalpies de formació (Compte amb les unitats)

Podeu utilitzar les dades que trobareu a la **Taula 1** adjunta.

7.1.8 Calculeu l'entalpia de formació del Ca(OH)_{2(s)} coneixent:

$$CaO_{(s)} + H_2O_{(l)} \rightarrow Ca(OH)_{2(s)} \Delta H^{o}_{298.15} = -15.3 \text{ kcal}$$

7.1.9 Calculeu $\Delta H^{o}_{f, 298.15}$ pel $CH_{2}Cl_{2(q)}$ a partir de les següents dades:

$$CH_2CI_{2(g)} + O_{2(g)} \rightarrow CO_{2(g)} + 2 HCI_{(g)} \Delta H^o = -450 \text{ kJ}$$

Entalpies d'enllaç

7.1.10 Calculeu els valors de les energies d'enllaç N=O (a partir del HNO), N-Cl (a partir del NOCl) i N-Br (a partir del BrNO) utilitzant les següents dades i les taules de les energies dels altres enllaços que trobareu a la *Taula 2*.

$$\Delta H^0_{f,298}(HNO)=99.6kJ/mol; \Delta H^0_{f,298}(CINO)=51.7kJ/mol; \Delta H^0_{f,298}(BrNO)=82.1kJ/mol$$

Energia lliure de Gibbs

7.1.11 La síntesi de l'amoníac té lloc segons la reacció:

$$N_{2(q)} + 3H_{2(q)} \leftrightarrow 2NH_{3(q)}$$

- a) Calculeu ΔG a 25°C i 1 atm sabent que $\Delta G^{\circ}_{f}(NH_{3})$ =-16.6kJ/mol i $\Delta G^{\circ}_{f}(N_{2})$ = $\Delta G^{\circ}_{f}(H_{2})$ =0
- **b)** Aquesta reacció en aquestes condicions està desplaçada cap a productes? És a dir en l'equilibri hi ha més productes que reactius?
- c) Quin és el valor de ΔG de la reacció inversa?
- **7.1.12** Les molècules de N_2 i O_2 constitueixen el 99% de l'aire no contaminat. Avalueu ΔG° per a la següent reacció:

$$N_{2(g)} + O_{2(g)} \leftrightarrow 2NO_{(g)}$$

Aquesta reacció en condicions estàndard està desplaçada cap a productes? Dades: $\Delta G^{\circ}_{f}(NO)=86.57 \text{ kJ/mol}; \Delta G^{\circ}_{f}(N_{2})=0; \Delta G^{\circ}_{f}(O_{2})=0$

Energia lliure de Gibbs i l'estat d'equilibri

- 7.1.13 Calculeu la temperatura a la qual cap de les formes de l'estany (la cúbica i tetragonal) està termodinàmicament afaborida: $Sn_{(cúbic)} \leftrightarrow Sn_{(tetragonal)} \Delta H^0=2.1$ kJ/mol i ΔS^0 =7.2 J/mol K. Suposeu que tant ΔH^0 com ΔS^0 es mantenen constants amb la temperatura.
- **7.1.14** L'O_{3(g)} es pot formar a partir de l'O₂ segons la reacció:

$$3/2O_{2(g)} \leftrightarrow O_{3(g)}$$

La variació d'energia lliure estàndard és 39.1 kcal/mol a 298 K. Quina és la constant d'equilibri per a aquesta reacció a 298K?

- **7.1.15** Calculeu la variació d'energia lliure estàndard per a la reacció $2 \text{ NO}_{(g)} + \text{O}_{2(g)} \leftrightarrow 2 \text{ NO}_{2(g)}$, si se sap que la constant d'equilibri de la reacció a 227°C és de 6.45×10^{5} .La reacció està desplaçada cap a productes o cap a reactius?
- **7.1.16** Per la reacció entre gasos ideals $PCl_{5(g)} \leftrightarrow PCl_{3(g)} + Cl_{2(g)}$ se sap que $\Delta G^0_{298} = 37.2$ kcal/mol. Calculeu per aquesta reacció el valor de K_P a 298 K.

BLOC 7.2 Equilibri Químic

Nota: Podeu suposar que la pressió estàndard és de 1 atm.

Constant d'equilibri

- **7.2.1** La K_c per a la reacció $2SO_{2(g)} + O_{2(g)} \leftrightarrow 2SO_{3(g)}$ és 4.5 a 600°C. En un matràs d'un litre es col·loca una quantitat de SO_3 a la temperatura de 600°C; a l'equilibri la quantitat d' O_2 en el matràs és de 1 mol. Quin és la quantitat inicial de SO_3 ?
- **7.2.2** A 2000 K la constant de formació del NO a partir dels seus elements segons l'equació:

$$N_{2(g)} + O_{2(g)} \leftrightarrow 2NO_{(g)}$$

és $4\cdot10^4$. Si es determina que la pressió del NO a l'equilibri és 0.2 atm i que la pressió del N_2 és igual a la del O_2 , determineu les pressions parcials de N_2 i O_2 a l'equilibri.

7.2.3 L'amoníac es descompon a 600K segons la reacció $NH_{3(g)} \leftrightarrow 1/2 N_{2(g)} + 3/2 H_{2(g)}$ on K_c =0.395. Si tenim un recipient de 1 litre a 600 K on injectem 2.65 g de NH_3 . Quines seran les concentracions de totes les espècies a l'equilibri?

- **7.2.4** Per a la reacció $2SO_{2(g)} + O_{2(g)} \leftrightarrow 2SO_{3(g)}$ K_p =3.18 a 1000 K. Tenim un recipient que només conté SO_2 , SO_3 i O_2 en equilibri a 1000 K. A l'equilibri la pressió total és 5.5 atm i hi ha 3.90 g de O_2 . Quines seran les pressions parcials de SO_2 i SO_3 si el volum total és de 10 litres?
- 7.2.5 La producció de NO mitjançant la reacció de N_2 i O_2 en un motor de combustió és una font important de contaminació. A 1000 °C té una K_p =4.8·10⁻⁷. Si les pressions parcials de N_2 i O_2 en un cilindre una vegada el motor està en marxa són 33.6 atm i 4.0 atm, respectivament, i la mescla té una temperatura de 1000 °C, calculeu la pressió parcial de NO a la barreja quan s'hagi assolit l'equilibri $(N_{2(q)} + O_{2(q)} \leftrightarrow 2NO_{(q)})$.

Relació entre K_P, K_c, i K_x

7.2.6 En la síntesi de l'amoníac a 500 °C i 120 atm de pressió total s'ha obtingut, a l'equilibri, una barreja formada per: 20% de NH₃, 20% de N₂ i 60% d'H₂, en volum. Calculeu la constant d'equilibri de la reacció (K_p i K_c).

$$3H_2(g) + N_2(g) \leftrightarrow 2NH_3(g)$$

Recordeu que el % en volum es directament proporcional al % en mols (és a dir, a la fracció molar multiplicada per 100) sempre que el procés es porti a terme a pressió constant, que és el cas d'aquest problema.

- 7.2.7 Es permet que una mostra de SO₃(g) es descompongui en SO₂ i O₂ a 900 K
 - (a) Escriviu la reacció igualada per a la formació d'un mol de O2
 - **(b)**A l'equilibri es troben les concentracions següents: $[SO_3]=0.262$ mol/l, $[O_2]=0.0162$ mol/l i $[SO_2]=0.0324$ mol/l, quin és el valor de K_c ?
 - **(c)**Trobeu el valor de K_p a 900 K
- **7.2.8** Per a la reacció ${}^{1}/{}_{2}Cl_{2(g)} \leftrightarrow Cl_{(g)}$ a 1600 K i 1 atm, el grau de dissociació del clor és 0.071. Calcula les tres constants d'equilibri, sempre suposant comportament ideal.
- **7.2.9** Les pressions parcials dels compostos CO, Br_2 i $COBr_2$ (oxobromur de carboni) gasosos en l'equilibri $CO_{(g)} + Br_{2(g)} \leftrightarrow COBr_{2(g)}$ són, respectivament, 0.222 atm, 0.124 atm i 0.086 atm a 35°C. Calcula les constants d'equilibri K_P i K_c . Considera que la pressió de l'estat estàndard és P^0 =1 atm.

Factors que afecten l'equilibri: Principi de Le Châtelier

7.2.10 La urea CO(NH₂)₂, substància utilitzada com a adob, és molt soluble en aigua (119 g en 100 g d'aigua a 25°C). Sabent que aquesta dissolució és un procés endotèrmic, com variarà la solubilitat de la urea amb la temperatura?

7.2.11 La reacció global del procés fotosintètic pot escriure's com:

hv
$$6CO_2(q) + 6H_2O(l) + 669.62 \text{ kcal} \leftrightarrow C_6H_{12}O_6(s) + 6O_2(q)$$

Prevegeu si queda afavorida la producció de glucosa:

- a) Si augmenta la pressió total
- **b)** Si augmenta la temperatura ambient
- c) Si augmenta la concentració de CO₂ atmosfèric
- d) Si augmenta l'aigua de la planta
- e) Si s'afegeix un enzim adequat
- **7.2.12** Per a la reacció següent: $2SO_2(g) + O_2(g) \leftrightarrow 2SO_3(g)$ ΔH =-2.273·10⁴ cal, indiqueu l'efecte que produiran els següents canvis en la posició d'equilibri
 - a) Addició d'O₂
 - b) Disminució del volum del sistema
 - c) Addició de N₂(g) al sistema, sense variar el volum
 - d) Addició de SO₃
 - e) Augment de la temperatura
- **7.2.13** Pel equilibri següent:

$$CO(g) + H_2O(g) <==> CO_2(g) + H_2(g) + calor$$

Indicar quin seria l'efecte sobre l'equilibri de les accions següents:

- a) Addició d'H₂O
- **b)** Eliminació de part del H₂
- c) Augment de la temperatura
- d) Augment de la pressió
- e) Afegir un catalitzador
- 7.2.14 Considera la reacció química de formació de l'amoníac:

$$N_{2(g)} + 3H_{2(g)} \iff 2NH_{3(g)}$$

la qual presenta una constant d'equilibri $K_P=6.7600\cdot 10^5$ a 298K. En un recipient proveït d'un èmbol, i que inicialment té la capacitat d'un litre, s'aboquen 1 mol de N_2 i 3 mols de H_2 . Es deixa evolucionar el sistema fins assolir l'equilibri. Calcula la concentració dels reactius i productes en les tres situacions que segueixen:

- a) quan el sistema ha assolit l'equilibri.
- b) quan el volum del sistema es dobla.
- c) si es recupera el volum inicial del sistema però llavors s'hi afegeixen 2 mols de gas amoníac.

Comenta els teus resultats en relació al principi de Le Châtelier.

7.2.15 Per la reacció:

$$CO_{(g)} + CI_{2(g)} <===> COCI_{2(g)}$$

s'arriba a l'equilibri quan les concentracions de reactius i productes són iguals a 2.0 M pel CO i el Cl $_2$ i a 20.0 M pel COCl $_2$. Calcular la nova composició de l'equilibri quan al sistema inicial:

- a) s'hi afegeix 1mol/L de Cl₂.
- b) quan el seu volum es fa el doble que l'inicial.

Dependència amb la temperatura (equació de Vant'Hoff).

5.2.17 En la reacció:

3 Fe₂O₃(s)
$$\leftrightarrow$$
 2 Fe₃O₄(s) + 1/2 O₂(g) Δ H°_{298K}=55.5 kcal i Δ G°_{298K}=46.5 kcal

- a) Quina és la Kp d'aquesta reacció a 25°C i a 125°C?
- b) S'ha fet alguna aproximació en aquest càlcul?

Dades: 1 cal = 4.1868 J; R = 8.3145 J/(K·mol)

Taules addicionals de dades

Les dades d'alguns problemes es troben en aquestes taules.

Taula 1 - Entalpies estàndard de formació d'alguns compostos a 298.15K

Substàncies	$\Delta H^0_{f,298.15}$	Substàncies	Δ H ⁰ _{f,298.15}
	(kJ mol ⁻¹)		(kJ mol ⁻¹)
C _(grafit)	0.0	CH _{4(g)} metà	-74.8
$C_{(diamant)}$	1.9	$C_2H_{6(g)}$ età	-84.6
$CO_{(g)}$	-110.5	C ₃ H _{8(g)} propà	-103.7
$CO_{2(g)}$	-393.5	$C_4H_{10(g)}$ butà	-124.6
HCI _(g)	-92.3	C ₂ H _{4(g)} etilè	52.2
$NO_{(g)}$	90.4	C ₃ H _{6(g)} propè	20.4
$H_2O_{(I)}$	-285.8	$C_4H_{8(g)}$ 1-butè	1.2
$H_2O_{(g)}$	-241.6	$C_2H_{2(g)}$ etí	226.5
$H_2S_{(g)}$	-20.1	CH₃OH _(I) metanol	-238.3
$SO_{2(g)}$	-296.9	C ₂ H ₅ OH _(I) etanol	-277.6
$SO_{3(g)}$	-394.8	CH₃COOH _(l) àc. acètic	-487.0
$NH_{3(g)}$	-46.2	C ₆ H _{6(I)} benzè	48.9
$NO_{2(g)}$	33.8	C ₆ H ₁₂ O _{6(s)} α-D-glucosa	-1274.4
NaCl _(s)	-411.0	C ₁₂ H ₂₂ O _{11(s)} sacarosa	-2221.6
KCI _(s)	-436.3	CaCO _{3(s)}	-1206.9
O _{3(g)}	143.0	CaO _(s)	-635.09

Taula 2 - Entalpies estàndard d'enllaç a 298.15K

Enllaç	ΔH ⁰ _{298.15} (kJ mol ⁻¹)	Enllaç	ΔH ⁰ _{298.15} (kJ mol ⁻¹)
H-H	436	C-H	413
C-C	313	N-H	391
C=C	615	O-H	463
C≡C	812	F-H	563
0-0	139	CI-H	432
O=O	495	Br-H	366
N-N	161	I-H	299
N=N	418	C-O	351
N≡N	946	C=0	711
CI-CI	243	C-N	292
Br-Br	192		