ISGS LATEXBeginner Workshop 2016 LATEX Exercise Sheet #2

Patrick Wolf patrick.wolf@cs.uni-kl.de

December 02, 2016

Contents

1	Booktabs with Multicolumn & Multirow	1
2	Math 2.1 Alignment 2.2 Dot-less Vectors 2.3 Golden Ratio 2.4 1+1=2	1 1 1 2 2
3	Theorems & Definitions	2
1	Booktabs with Multicolumn & Multirow	
1 4	5 6 7 8 9	
2	Math	
2. 1	1 Alignment	
	9	(1) (2)
2.2	2 Dot-less Vectors	

 $\vec{k} = \vec{\imath} \times \vec{\jmath}$

2.3 Golden Ratio

Two quantities a and b are said to be in the golden ratio φ if

$$\frac{a}{b} = \frac{a+b}{a} = \varphi \tag{3}$$

By the way: $\varphi = 1 + \frac{1}{\varphi}$.

$2.4 \quad 1+1=2$

Often you see complicated equations like this:

$$1 + 1 = 2 \tag{4}$$

This complicated formula can be significantly simplified. As you know,

$$1 = \ln e \tag{5}$$

$$1 = \sin^2 \alpha + \cos^2 \alpha \tag{6}$$

and

$$2 = \sum_{n=0}^{\infty} \frac{1}{2^n} \tag{7}$$

Inserting equations (5) - (7) into (4) yields

$$\ln e + (\sin^2 \alpha + \cos^2 \alpha) = \sum_{n=0}^{\infty} \frac{1}{2^n}$$
 (8)

Furthermore,

$$1 = \cosh \varphi \cdot \sqrt{1 - \tanh^2 \varphi} \tag{9}$$

and

$$e = \lim_{c \to \infty} \left[1 + \frac{1}{c} \right]^c \tag{10}$$

With this knowledge we finally can simplify equation (4) to

$$\ln\left(\lim_{c\to\infty} \left[1 + \frac{1}{c}\right]^c\right) + (\sin^2\alpha + \cos^2\alpha) = \sum_{n=0}^{\infty} \frac{\cosh\varphi \cdot \sqrt{1 - \tanh^2\varphi}}{2^n} \quad (11)$$

3 Theorems & Definitions

Definition 1. This is a user definition definition.

Lemma 1. This is a lemma. Have a look at the number of Definition 1 and this lemma.