Раздел 7. Линейные операторы в ЛНП

Лекция 15 Сопряжённый пространства и сопряжённые операторы.

Напоминание: пространством X^* , сопряжённым к ЛНП X, называется ЛНП линейных ограниченных функционалов над X: $X^* = L_O(X, \mathbb{R})$.

Замечание. Мы рассматриваем случай вещественных пространств.

Замечание. Иногда выражение f(x) записывают в симметричном виде: $f(x) = \langle x, f \rangle$.

Утверждение. $\forall x \in X: f(x) = 0 \Rightarrow f = o$. Это определение нулевого функционала.

Утверждение. $\forall f \in X^*: f(x) = 0 \Rightarrow x = o$. То есть если значение всех непрерывных функционалов на некотором элементе равно нулю, то этот элемент может быть только нулевым.

Докажем, что для произвольного ненулевого элемента $x \in X$ найдётся $f \in X^*$ такой, что $f(x) \neq 0$. Рассмотрим одномерное подпространство $L(x) = \{\alpha x, \alpha \in \mathbb{R}\}$. Зададим на нём функционал f по правилу $f(x) = \|x\|$, тогда $f(\alpha x) = \alpha \|x\|$. Функционал непрерывен, его норма равна 1. По теореме Хана-Банаха его можно продолжить на всё пространство с сохраниением нормы, тогда результирующий функционал будет элементом сопряжённого пространства, не зануляющимся на x.

Замечание. Если f(x)=0, то говорят, что элементы $x\in X$ и $f\in X^*$ взаимно ортогональны.

Утверждение: $||x|| = \sup_{\|f\| \le 1} |f(x)|$ Действительно $|f(x)| \le \|f\| \cdot \|x\|$, а в случае $\|f\| = 1$ получаем $|f(x)| \le \|x\|$. С другой стороны, только что доказано, что существует функционал с единичной нормой, для которого неравенство превращается в равенство.

Сравним с определением нормы функционала: $||f|| = \sup_{||x|| \le 1} |f(x)|$ Есть очевидная симметрия, но неполная: в предыдущем случае супремум всегда достигается, так что его можно заменить максимумом. В случае функционала норма может не достигаться.

Теперь мы можем получить ещё одну формулу для нормы оператора: $\|A\| = \sup_{\|f\| < 1, \|x\| < 1} |f(Ax)|$

Типы сходимости в пространствах операторов, функционалов и в исходном ЛНП.

Мы знаем обычную сходимость (по норме) в исходном пространстве X, сходимость по норме (т.е. равномерную) в пространствах $L_O(X,Y)$ и, в частности, в X^* , а также поточечную сходимость в $L_O(X,Y)$ и X^* (в X^* она именуется слабой сходимостью). Введём понятие слабой сходимости в исходном пространстве X.

Говорят, что последовательность элементов (x_1,x_2,\dots) слабо сходится к элементу x_* , если $\forall f\in X^*: f(x_m)\to f(x).$

Если последовательность сходится в обычном смысле (сильно, по норме), то она сходится и слабо. Обратное неверно.

Примеры.

Говорят, что последовательность операторов A_m слабо сходится к A, если на любом элементе $x \in X$ последовательность $A_m x$ слабо сходится к Ax (в пространстве Y). То есть:

```
\forall x \in X \, \forall f \in Y^* : f(A_m x) \to f(A x).
```

Пример.

Утверждение: в пространстве $L_O(X,Y)$ из сходимости последовательности операторов по норме (равномерной) следует поточечная (её ещё называют сильной – по сравнению со слабой), а из последней, в свою очередь, слабая. В исходном пространстве X из сходимости по норме (сильной) следует слабая. В пространстве X^* из сходимости по норме (сильной, равномерной) следует поточечная (слабая).

Есть некоторое несоответствие в терминологии: для функционалов сильная сходимость — это равномерная, а слабая — поточечная, а для операторов сильная — это поточечная, она сильнее слабой, но слабее равномерной.

Второе сопряжённое пространство X^{**} – пространство, сопряжённое к X^* .

Существует естественное вложение X в X^{**} : каждый элемент $x \in X$ задаёт функционал φ_x над X^* по правилу $\varphi_x(f) = f(x)$.

Норма этого функционала равна

```
\|\varphi_x\| = \sup_{\|f\|=1} |\varphi_x(f)| = \sup_{\|f\|=1} |f(x)| = \|x\|,
```

т.е. вложение изометрическое. Пишут: $X \subset X^{**}$ (в том смысле, что X^{**} содержит изометрическую копию X).

Если $X = X^{**},$ то пространство X называется рефлексивным, если $X \subsetneq X^{**},$ то нерефлексивным.

Утверждение: X рефлексивно $\Leftrightarrow X^*$ рефлексивно. (доказать)

Замечание. Если существует функционал $f \in X^*$, норма которого не достигается, то пространство нерефлексивно (доказать).

Примеры.

- 1. Общий вид линейного функционала на \mathbb{R}^n .
- 2. Общий вид линейного ограниченного функционала на \mathbb{R}^n_{\max} , его норма
- 3. Общий вид линейного ограниченного функционала на \mathbb{R}^n_1 , его норма.
- 4. Общий вид линейного ограниченного функционала на c_0 , его норма.
- 5. Общий вид линейного ограниченного функционала на l_1 , его норма.
- 6. Общий вид линейного ограниченного функционала на с.
- 7. Общий вид линейного ограниченного функционала на $\mathbb{R}^n_2 = E^n$, его норма.

8. Общий вид линейного ограниченного функционала на l_2 , его норма.

Сопряжённые показатели.

Положительные числа p и q называются сопряжёнными показателями, если выполняются следующие, эквивалентные дркг другу, равенства:

$$(p-1)(q-1) = 1$$

$$p+q = pq$$

$$p = \frac{q}{q-1} \qquad q = \frac{p}{p-1}$$

$$\frac{1}{p} + \frac{1}{q} = 1$$

Примеры: 3 и 3/2, 4 и 4/3, 5 и 5/4, 10 и 10/9, 100 и 100/99. Один из показателей лежит на полуинтервале (1,2], другой на луче $[2,\infty)$. Особый случай равенства показателей: 2 и 2.

Неравенство Юнга.

$$uv \leq \frac{u^p}{n} + \frac{v^q}{q}$$

Геометрическое доказательство (кривая $v=u^{p-1}$ или $u=v^{q-1}$ разделяет первый квадрент, рассмотреть площади, отсекаемые вертикалью и горизонталью)

Аналитическое доказательство: функция ln выпукла вверх, неравенство Йенсена при $\alpha=1/p,\ \beta=1/q$:

$$\ln\left(\frac{a}{p} + \frac{b}{q}\right) \ge \frac{\ln a}{p} + \frac{\ln b}{q} = \ln\left(a^{1/p}b^{1/q}\right)$$
$$u = a^{1/p} \qquad v = b^{1/q}$$
$$\frac{u^p}{p} + \frac{v^q}{q} \ge uv$$

Равенство при a=b, т.е. при $u^p=v^q$.

Неравенство Гёльдера для конечных последовательностей.

Рассмотрим n-мерные вектора $u=(u_1,\ldots,u_n)$ и $v=(v_1,\ldots,v_n)$ с неотрицательными компонентами, удовлетворяющие условиям нормировки:

 $\sum_{j=1}^n u_j^p = \sum_{j=1}^n v_j^q = 1$. Запишем для каждой пары компонент неравенство Юнга $u_j v_j \leq u_j^p/p + v_j^q/q$ и просуммируем по j:

$$\sum_{j=1}^{n} u_j v_j \le \sum_{j=1}^{n} \left(\frac{u_j^p}{p} + \frac{v_j^q}{q} \right) = \frac{1}{p} \sum_{j=1}^{n} u_j^p + \frac{1}{q} \sum_{j=1}^{n} v_j^q = \frac{1}{p} + \frac{1}{q} = 1$$

Неравенство превращается в равенство при $u_j^p = v_j^q$.

Пусть теперь $x=(x_1,\ldots,x_n)$ и $y=(y_1,\ldots,y_n)$ – n-мерные вектора y=Bv, где u и v удовлетворяют условиям нормировки. Тогда $\sum_{j=1}^n x_j^p = A^p \sum_{j=1}^n u_j^p = A^p,$ $\sum_{j=1}^n y_j^q = B^q \sum_{j=1}^n v_j^q = B^q,$ т.е. с неотрицательными компонентами. Представим их в виде x = Au,

$$\sum_{j=1}^{n} x_{j}^{p} = A^{p} \sum_{j=1}^{n} u_{j}^{p} = A^{p},$$

$$\sum_{j=1}^{n} y_{j}^{q} = B^{q} \sum_{j=1}^{n} v_{j}^{q} = B^{q},$$

$$A = \left(\sum_{j=1}^{n} x_j^p\right)^{1/p}, B = \left(\sum_{j=1}^{n} y_j^q\right)^{1/q}.$$

$$\sum_{j=1}^{n} x_j y_j = AB \sum_{j=1}^{n} u_j v_j \le AB$$

 $\sum_{j=1}^{n} x_j y_j = AB \sum_{j=1}^{n} u_j v_j \leq AB.$ Неравенство превращается в равенство, если вектора с компонентами x_i^p и y_i^q отличаются множителем.

Откажемся от предположения о неотрицательности компонент векторов x и y и применим полученное неравенство к их абсолютным величинам. Тогда

$$\left| \sum_{j=1}^n x_j y_j \right| \leq \sum_{j=1}^n |x_j| \cdot |y_j| \leq \left(\sum_{j=1}^n |x_j|^p \right)^{1/p} \cdot \left(\sum_{j=1}^n |y_j|^q \right)^{1/q}.$$
 Неравенство превращается в равенство, если вектора с компонентами

 $|x_i|^p \operatorname{sign} x_i$ и $|y_i|^q \operatorname{sign} y_i$ отличаются множителем.

Полученное неравенство носит название неравенства Гёльдера.

(Замечание. Можно вектора счистать комплексными, ничего не изме-

Частным случаем этого неравенства при p=q=2 является неравенство Коши-Буныковского-Шварца.

9. Общий вид линейного ограниченного функционала на \mathbb{R}_p^n , его норма.

Неравенство Гёльдера для бесконечных последовательностей.

Обобщим неравенство Гёльдера на бесконечные последовательности. Пусть x и y – последовательности, для которых сходятся ряды из p-х

и
$$q$$
-х степеней модулей соответственно: $\sum_{j=1}^{\infty}|x_j|^p<\infty, \ \sum_{j=1}^{\infty}|y_j|^q<\infty.$ Тогда

$$\sum_{j=1}^{n} |x_j y_j| \le \left(\sum_{j=1}^{n} |x_j|^p\right)^{1/p} \cdot \left(\sum_{j=1}^{n} |y_j|^q\right)^{1/q} \le$$

$$\le \left(\sum_{j=1}^{\infty} |x_j|^p\right)^{1/p} \cdot \left(\sum_{j=1}^{\infty} |y_j|^q\right)^{1/q} < \infty.$$

Это значит, что ряд с неотрицательными членами $\sum_{j=1}^{\infty}|x_jy_j|$ сходится, поскольку его частичные суммы ограничены в совокупности, а ряд $\sum_{j=1}^{\infty} x_j y_j$ сходится абсолютно.

Теперь мы можем перейти к пределу при $n \to \infty$ в неравенстве Гёльдера и получить неравенство Гёльдера для рядов:

$$\left| \sum_{j=1}^{n} x_j y_j \right| \le \left(\sum_{j=1}^{n} |x_j|^p \right)^{1/p} \cdot \left(\sum_{j=1}^{n} |y_j|^q \right)^{1/q}.$$

10. Общий вид линейного ограниченного функционала на l_p , его норма.

Неравенство Гёльдера для функций.

- 11. Общий вид линейного ограниченного функционала на $L_p[a,b]$, его норма (без доказательства общности).
- 12. Общий вид линейного ограниченного функционала на C[a,b], его норма (без доказательства). Понятие об обобщённых функциях.

Сопряжённый оператор.

Пусть $A: X \to Y, f \in Y^*$. Рассмотрим f(Ax) как функционал над X: f(Ax) = g(x). Ограниченный:

$$|g(x)| = |f(Ax)| \le \|f\| \cdot \|Ax\| \le \|f\| \cdot \|A\| \cdot \|x\| \Rightarrow \|g\| \le \|f\| \cdot \|A\|.$$
 Тогда $g \in X^*.$

Зафиксируем A и будем рассматривать зависимость g от f. Отображение $A^*: f \mapsto g$ называется сопряжённым оператором.

Утверждение: A^* – линейное отображение. (доказать)

Утверждение: $A^*: Y^* \to X^*$ – ограниченный оператор, и $||A^*|| \le ||A||$ (поскольку $||g|| \le ||A|| \cdot ||f||$).

Докажем, что есть равенство:

$$\begin{split} \|A^*\| &= \sup_{\|f\| \le 1} \|A^*f\| = \sup_{\|f\| \le 1} \sup_{\|x\| \le 1} |(A^*f)(x)| = \\ &= \sup_{\|x\| \le 1} \sup_{\|f\| \le 1} |f(Ax)| = \sup_{\|x\| \le 1} \|Ax\| = \|A\|. \end{split}$$