EE 495 Assignment 2: Probe Data Analysis for Road Slope

By: Christopher Tsai and Anuj Karnik

```
In [296]: 

import numpy as np import pandas as pd import requests import gmaps import gmaps.datasets gmaps.configure(api_key='INSERT_KEY') from haversine import haversine, Unit
```

Visualizing ProbePoints in Pandas:

```
In [293]: M ProbePoints = pd.read_csv('Partition6467ProbePoints.csv', header=None, names=['sampleID', 'dateTime', 'sourceCode', 'latitude', 'longitude', 'altitude', 'speed', 'heading']
ProbePoints['dateTime'] = pd.to_datetime(ProbePoints['dateTime'], format='%m/%d/%Y %I:\%M:\%S %p')
ProbePoints.drop_duplicates(inplace=True)
ProbePoints
```

Out[293]:

	sampleID	dateTime	sourceCode	latitude	longitude	altitude	speed	heading
0	3496	2009-06-12 06:12:49	13	51.496868	9.386022	200	23	339
1	3496	2009-06-12 06:12:54	13	51.496682	9.386157	200	10	129
2	3496	2009-06-12 06:12:59	13	51.496705	9.386422	201	21	60
3	3496	2009-06-12 06:13:04	13	51.496749	9.386840	201	0	360
4	3496	2009-06-12 06:13:09	13	51.496864	9.387294	199	0	360
			•••					
3375740	5840319	2010-03-01 05:55:35	13	52.217058	8.974134	130	100	271
3375741	5840319	2010-03-01 05:55:55	13	52.217080	8.966073	130	101	266
3375742	5840319	2010-03-01 05:56:27	13	52.214741	8.953245	136	104	248
3375743	5840319	2010-03-01 05:56:37	13	52.213855	8.949234	138	105	255
3375744	5840319	2010-03-01 05:57:17	13	52.211173	8.932944	138	106	248

3278652 rows × 8 columns

Visualizing LinkData in Pandas and converting "info" columns to list of lists:

```
M LinkData = pd.read_csv('Partition6467LinkData.csv', header=None, names=['linkPVID', 'refNodeID', 'nrefNodeID', 'length', 'functionalClass', 'directionOfTravel', 'speedCate
In [264]:
               LinkData.fillna("0", inplace=True)
               def infoToList(info):
                  return [[float(j) for j in i.split('/')[:2]] for i in info.split('|')] # [:2] in order to ignore latitude in shapeList
               LinkData['shapeList'] = LinkData['shapeInfo'].apply(infoToList)
              LinkData['slopeList'] = LinkData['slopeInfo'].apply(infoToList)
               LinkData
   Out[264]:
                        linkPVID
                                 refNodeID nrefNodeID length functionalClass directionOfTravel speedCategory fromRefSpeedLimit toRefSpeedLimit fromRefNumLanes toRefNumLanes Digitized multiDigitized timeZone
                                            162809070 335.04
                                                                       5
                                                                                      В
                                                                                                   7
                                                                                                                   30
                                                                                                                                  30
                                                                                                                                                   0
                                                                                                                                                                  0
                                                                                                                                                                                      Т
                       62007637
                                 162844982
                                                                                                                                                                                              0.0
                    1 567329767
                                162844982 162981512 134.56
                                                                       5
                                                                                      В
                                                                                                                    0
                                                                                                                                   0
                                                                                                                                                   0
                                                                                                                                                                  0
                                                                                                                                                                                      Т
                                                                                                                                                                                              0.0
                       62007648
                                162877732 162844982 97.01
                                                                       5
                                                                                                                   30
                                                                                                                                  30
                                                                                                                                                   0
                                                                                                                                                                                      Т
                                                                                                                                                                                              0.0
                    3 78670326
                                 162877732 163152693 314.84
                                                                       5
                                                                                      В
                                                                                                   7
                                                                                                                   30
                                                                                                                                  30
                                                                                                                                                   0
                                                                                                                                                                  0
                                                                                                                                                                                      Т
                                                                                                                                                                                             0.0
                                                                       3
                                                                                      В
                                                                                                   6
                                                                                                                   50
                                                                                                                                                   2
                       51881672 174713859 174587951 110.17
                                                                                                                                  50
                                                                                                                                                                  2
                                                                                                                                                                                              0.0
               200084 773675508 1470416664 174625689
                                                                       4
                                                                                      В
                                                                                                                   30
                                                                                                                                  30
                                                                                                                                                                                      Т
                                                     64 34
                                                                                                                                                                                             0.0
                                                                                                                   30
               200085 773675452 1470416431 174731801 82.29
                                                                                      В
                                                                                                                                  30
                                                                                                                                                                                      Τ
                                                                                                                                                                                              0.0
                                                                                      В
                                                                                                   6
               200086 773675471 1470416516 174197627 104.72
                                                                       4
                                                                                                                   50
                                                                                                                                  50
                                                                                                                                                                                      Т
                                                                                                                                                                                              0.0
                       79691343 174771891 174833939 104.21
                                                                       4
                                                                                      В
                                                                                                   6
                                                                                                                   50
                                                                                                                                  50
                                                                                                                                                                                     Т
               200087
                                                                                                                                                                                              0.0
                       79691344 174701000 174717482 124.73
               200088
                                                                                                   6
                                                                                                                   50
                                                                                                                                  50
                                                                                                                                                                                              0.0
              200089 rows × 19 columns
```

Matching points to links by using minimum Great Circle distance from each point to links:

```
In [265]: M def linkMatching(lat, lon):
                  probePoint = [lat, lon]
                  tmp = LinkData[['linkPVID', 'shapeInfo', 'shapeList']]
                  tmp['distFromLink'] = tmp['shapeInfo'].apply(lambda shapeInfo: min(haversine(probePoint, [float(j) for j in i.split('/')[:2]], unit=Unit.METERS) for i in shapeInfo.spli
                  matchedLinkID = tmp.iloc[tmp['distFromLink'].idxmin()]['linkPVID']
                  distFromLink = tmp['distFromLink'].min()
                  indexOfLink = tmp[tmp['linkPVID'] == matchedLinkID].index.tolist()[0]
                  refProbePoint = tmp['shapeList'][indexOfLink][0]
                  distFromRef = haversine(probePoint, refProbePoint, unit=Unit.METERS)
                  return matchedLinkID, distFromRef, distFromLink
              columns = ['sampleID', 'dateTime', 'sourceCode', 'latitude', 'longitude', 'altitude', 'speed', 'heading', 'linkPVID', 'directionOfTravel', 'distFromRef', 'distFromLink']
              MatchedPoints = pd.DataFrame(columns=columns)
              N = 500 # N = ProbePoints.shape[0] = 3278652 takes way too long
              for i in range(N):
                  print("Matching probe point", i, "out of", N - 1)
                 matchedLinkID = linkMatching(ProbePoints['latitude'][i], ProbePoints['longitude'][i])[0]
                  distFromRef = linkMatching(ProbePoints['latitude'][i], ProbePoints['longitude'][i])[1]
                  distFromLink = linkMatching(ProbePoints['latitude'][i], ProbePoints['longitude'][i])[2]
                  indexOfLink = LinkData[LinkData['linkPVID'] == matchedLinkID].index.tolist()[0]
                  matchedPoint = pd.DataFrame([[ProbePoints['sampleID'][i], ProbePoints['dateTime'][i], ProbePoints['sourceCode'][i], ProbePoints['latitude'][i], ProbePoints['longitude']
                  MatchedPoints = MatchedPoints.append(matchedPoint)
              MatchedPoints.to_csv('.../Results/Partition6467MatchedPoints.csv', index=False)
              MatchedPoints = MatchedPoints.reset index(drop=True)
              MatchedPoints
```

Visualizing MatchedPoints by grouping rows with respect to linkPVID:

```
In [266]: MatchedPoints2 = MatchedPoints[['linkPVID', 'sampleID', 'dateTime', 'sourceCode', 'latitude', 'longitude', 'altitude', 'speed', 'heading', 'directionOfTravel', 'distFromRef MatchedPoints3 = MatchedPoints2.groupby(['linkPVID']).apply(lambda MatchedPoints2: MatchedPoints2.sort_values(by=['linkPVID', 'sampleID', 'dateTime'])).drop(columns=['linkFMatchedPoints3

Out[266]:
```

		sampleID	dateTime	sourceCode	latitude	longitude	altitude	speed	heading	direction Of Travel	distFromRef	distFromLink
linkPVID												
51865408	147	4553	2009-06-13 11:42:55	13	53.051923	8.807315	34	40	309	В	12.851820	12.851820
	148	4553	2009-06-13 11:43:00	13	53.052166	8.806392	33	53	291	В	78.754134	8.336686
	149	4553	2009-06-13 11:43:05	13	53.052412	8.805452	33	0	360	В	147.202331	60.461695
	356	4556	2009-06-13 08:29:57	13	53.052119	8.806147	52	56	119	В	91.546048	10.682700
	357	4556	2009-06-13 08:30:01	13	53.051856	8.806967	52	56	117	В	31.063158	31.063158
811768917	91	4552	2009-06-13 11:49:41	13	53.069274	8.798756	46	0	199	В	23.107349	1.235121
	92	4552	2009-06-13 11:49:46	13	53.069274	8.798756	46	0	177	В	23.081681	1.263576
	93	4552	2009-06-13 11:49:51	13	53.069274	8.798756	46	0	196	В	23.086928	1.263585
	94	4552	2009-06-13 11:49:56	13	53.069274	8.798756	46	0	190	В	23.088686	1.263776
	95	4552	2009-06-13 11:50:01	13	53.069279	8.798779	46	4	74	В	22.336300	2.583370

500 rows × 11 columns

Calculating slope of links by using distance and altitude difference of points that are matched to each link:

```
In [287]: | LinkedSlopes = pd.DataFrame(columns=['linkPVID', 'slopesList', 'averageSlope'])
              for linkPVID, group in MatchedPoints2.groupby(['linkPVID']): # groupby outputs a dictionary type
                  slopesList = []
                  for i in range(len(MatchedPoints3.loc[linkPVID]) - 1):
                      probePoint1 = [MatchedPoints3.loc[linkPVID, :].reset_index(drop=True).loc[i, 'latitude'], MatchedPoints3.loc[linkPVID, :].reset_index(drop=True).loc[i, 'longitude']
                      probePoint2 = [MatchedPoints3.loc[linkPVID, :].reset index(drop=True).loc[i + 1, 'latitude'], MatchedPoints3.loc[linkPVID, :].reset index(drop=True).loc[i + 1, 'lor
                      distance = haversine(probePoint1, probePoint2, unit=Unit.METERS)
                      changeInAltitude = MatchedPoints3.loc[linkPVID, :].reset_index(drop=True).loc[i + 1, 'altitude'] - MatchedPoints3.loc[linkPVID, :].reset_index(drop=True).loc[i, 'altitude']
                      slope = np.arctan(changeInAltitude/distance)
                      slopesList.append(slope)
                      averageSlope = sum(slopesList)/len(slopesList)
                      linkedSlope = pd.DataFrame([[linkPVID, slopesList, averageSlope]], columns=['linkPVID', 'slopesList', 'averageSlope'])
                      LinkedSlopes = LinkedSlopes.append(linkedSlope)
              LinkedSlopes = LinkedSlopes.reset index(drop=True)
              LinkedSlopes['groundTruthAverageSlope'] = LinkData['slopeList'].apply(lambda slopeList: sum([slope[1] for slope in slopeList])/len(slopeList) if len(slopeList) > 1 else 0.6
              LinkedSlopes['absAverageSlopeError'] = abs(LinkedSlopes['averageSlope'] - LinkedSlopes['groundTruthAverageSlope'])
              LinkedSlopes.to csv('../Results/Partition6467SlopeResults.csv', index=False)
              LinkedSlopes
```

Out[287]:

	linkPVID	slopesList	averageSlope	groundTruthAverageSlope	absAverageSlopeError
0	51865408	[-0.014848655965818238, 0.0, 0.322861327837228	-0.014849	0.000	0.014849
1	51865408	[-0.014848655965818238, 0.0, 0.322861327837228	-0.007424	0.000	0.007424
2	51865408	[-0.014848655965818238, 0.0, 0.322861327837228	0.102671	0.000	0.102671
3	51865408	[-0.014848655965818238, 0.0, 0.322861327837228	0.077003	0.000	0.077003
4	51866677	[-0.04937019685324395, 1.108069157942699]	-0.049370	-0.014	0.035370
314	811768917	$[0.0, \hbox{-}1.103392124292288, 0.0, 0.0, 0.0, 0.0, \dots$	-0.183899	0.000	0.183899
315	811768917	$[0.0, \text{-}1.103392124292288, 0.0, 0.0, 0.0, 0.0, \dots$	-0.157627	0.000	0.157627
316	811768917	$[0.0, \text{-}1.103392124292288, 0.0, 0.0, 0.0, 0.0, \dots$	-0.137924	0.000	0.137924
317	811768917	$[0.0, \text{-}1.103392124292288, 0.0, 0.0, 0.0, 0.0, \dots$	-0.122599	0.000	0.122599
318	811768917	$[0.0, \text{-}1.103392124292288, 0.0, 0.0, 0.0, 0.0, \dots$	-0.110339	0.000	0.110339

319 rows × 5 columns

Printing average of averages of slope error of each link:

```
In [289]: Mprint("Average absAverageSlopeError =", LinkedSlopes['absAverageSlopeError'].mean(), "degrees")
```

Average absAverageSlopeError = 0.24347067152685037 degrees

Visualizing probe point and link pairing in gmaps (using very small sample size of 5):

```
In [312]: MatchedPoints4 = pd.DataFrame(columns=columns)
                                   N2 = 5
                                   for i in range(N2):
                                             matchedLinkID2 = linkMatching(ProbePoints['latitude'][i], ProbePoints['longitude'][i])[0]
                                             distFromRef2 = linkMatching(ProbePoints['latitude'][i], ProbePoints['longitude'][i])[1]
                                             distFromLink2 = linkMatching(ProbePoints['latitude'][i], ProbePoints['longitude'][i])[2]
                                             indexOfLink2 = LinkData[LinkData['linkPVID'] == matchedLinkID2].index.tolist()[0]
                                             matchedPoint2 = pd.DataFrame([[ProbePoints['sampleID'][i], ProbePoints['dateTime'][i], ProbePoints['sourceCode'][i], ProbePoints['latitude'][i], ProbePoints['latitude'][i], ProbePoints['latitude'][i], ProbePoints['sourceCode'][i], ProbePoint
                                             MatchedPoints4 = MatchedPoints4.append(matchedPoint2)
                                   <ipython-input-265-d691d6bd0038>:4: SettingWithCopyWarning:
                                   A value is trying to be set on a copy of a slice from a DataFrame.
                                   Try using .loc[row_indexer,col_indexer] = value instead
                                   See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pand
                                   as-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)
                                       tmp['distFromLink'] = tmp['shapeInfo'].apply(lambda shapeInfo: min(haversine(probePoint, [float(j) for j in i.split('/')[:2]], unit=Unit.METERS) for i in shapeInfo.spli
                                   t('|')))
```

```
In [382]: MatchedPoints4 = MatchedPoints4.reset_index(drop=True)
              MatchedPoints5 = MatchedPoints4[['linkPVID', 'sampleID', 'dateTime', 'sourceCode', 'latitude', 'longitude', 'altitude', 'speed', 'heading', 'directionOfTravel', 'distFromRe
              MatchedPoints6 = MatchedPoints5.groupby(['linkPVID']).apply(lambda MatchedPoints5: MatchedPoints5.sort_values(by=['linkPVID', 'sampleID', 'dateTime'])).drop(columns=['linkF
              fig = gmaps.figure()
              colors = ['red', 'green', 'blue']
              color_idx = 0
              for linkPVID, group in MatchedPoints5.groupby(['linkPVID']):
                  pointsList = []
                  linksList = []
                  if (color_idx > len(colors)):
                      color_idx = 0
                  for i in range(len(LinkData[LinkData['linkPVID'] == linkPVID].reset_index(drop=True).loc[0, 'shapeList']) - 1):
                      refNode = tuple(LinkData[LinkData['linkPVID'] == linkPVID].reset index(drop=True).loc[0, 'shapeList'][i])
                      nrefNode = tuple(LinkData[LinkData['linkPVID'] == linkPVID].reset_index(drop=True).loc[0, 'shapeList'][i + 1])
                      link = gmaps.Line(start=refNode, end=nrefNode, stroke_weight=15.0, stroke_color=colors[color_idx], stroke_opacity=0.75)
                      linksList.append(link)
                  layer1 = gmaps.drawing_layer(features=linksList)
                  fig.add_layer(layer1)
                  for i in range(len(MatchedPoints6.loc[linkPVID])):
                      pointsList.append([MatchedPoints6.loc[linkPVID, :].reset_index(drop=True).loc[i, 'latitude'], MatchedPoints6.loc[linkPVID, :].reset_index(drop=True).loc[i, 'longitu']
                  layer2 = gmaps.symbol_layer(pointsList, fill_color=colors[color_idx], stroke_color=colors[color_idx], scale=5)
                  fig.add layer(layer2)
                  color_idx += 1
```

((

Googlekauf Hofgeismar

(https://maps.google.com/maps?ll=51.496754,9.386695&z=19&t=m&hl=en-US&gl=US&mapclient=apiv3)

Map data ©2020 GeoBasis-DE/BKG (©2009)