

CHEMISTRY

22nd and 23rd Class, 11-10-2021

Dr. K. Ananthanarayanan
Associate Professor (Research)
Department of Chemistry
Room No 319, 3rd Floor, Research Building

Email: ananthak@srmist.edu.in
Phone: 9840154665

11 October 2021

21CYB101J

Page 1

In this class..

Estimation of amount of chloride content in a water sample

Expt. No.: 3

11 October 2021

21CYB101J

Drinking water standards

INDIAN STANDARD SPECIFICATIONS FOR DRINKING WATER IS: 10500

S.NO.	Parameter	Requirement desirable Limit	Remarks		
1.	Colour	5	May be extended up to 50 if toxic substances are suspected		
2.	Turbidity	10	May be relaxed up to 25 in the absence of alternate		
3.	pH	6.5 to 8.5	May be relaxed up to 9.2 in the absence		
4.	Total Hardness	300	May be extended up to 600		
5.	Calcium as Ca	75	May be extended up to 200		
6.	Magnesium as Mg	30	May be extended up to 100		
7.	Copper as Cu	0.05	May be relaxed up to 1.5		
8.	Iron	0.3	May be extended up to 1		
9.	Manganese	0.1	May be extended up to 0.5		
10.	Chlorides	250	May be extended up to 1000		
11.	Sulphates	150	May be extended up to 400		
12.	Nitrates	45	No relaxation		
13.	Fluoride	0.6 to 1.2	If the limit is below 0.6 water should be rejected, Max. Limit is extended to 1.5		

Drinking water standards require chloride level not to exceed 250 mg/l (salinity)

11 October 2021

CYB101

3

Experiment

☐ Aim:

To estimate the amount of chloride in a water sample by **Mohr's method**

■ Materials required:

Conical flask, 100 mL standard flask, pipette, burette, funnel, glass rod.

□ Chemicals required :

Silver nitrate solution (AgNO₃), standard NaCl solution, K₂CrO₄ indicator, sample water and distilled water.

11 October 2021

21CYB101J

Precipitation reaction

- ☐ A precipitation reaction refers to the formation of an insoluble salt when two solutions containing soluble salts are combined.
- ☐ The insoluble salt that falls out of solution is known as the **precipitate**, hence the reaction's name.
- ☐ Precipitation reactions can help determine the presence of **various ions in solution**.

11 October 2021

1CYB101.

5

Argentometric titration (precipitation)

- ☐ A titration involving the **silver (I) ion**.
- ☐ Used to determine the <u>amount of chloride</u> present in a sample. The sample solution is titrated <u>against a solution of silver nitrate of known concentration</u>.
- ☐ The indicator (potassium chromate) is added to visualize the endpoint, demonstrating presence of silver ions, solubility product of silver chromate exceeded, and it forms a brick reddish-brown precipitate.
- ☐ This stage is taken as evidence that all chloride ions have been consumed and only excess silver ions have reacted with chromate ions.

11 October 2021

21CYB101J

Mohr's method (1855 by Karl Friedrich Mohr)

- ☐ It is an example of precipitation reaction.
- ☐ The reaction between chloride and silver nitrate is direct and simple. It proceeds as follows:

$$AgNO_3 + NaCI \rightarrow AgCI \downarrow + NaNO_3$$

 $Ag^+ + CI^- \rightarrow AgCI \downarrow$

- \Box The completion of the reaction in this case is observed by employing potassium chromate (K₂CrO₄) solution as an indicator.
- ☐ K₂CrO₄ indicator will not be precipitated as Ag₂CrO₄, until all the chlorides in the solution have been precipitated as AgCl

11 October 2021

1CYB101J

7

Potassium chromate indicator

- \square Potassium chromate is an inorganic compound with the formula (K_2CrO_4).
- $lue{}$ It is the potassium salt of the chromate anion.

☐ Before the addition of any silver nitrate the chromate indicator gives the clear solution a **bright lemon-yellow color**.

11 October 2021

21CYB101J

Principle

- ☐ Before the equivalence point there is an excess of the chloride ion in solution.
- ☐ As the silver ions are added, the chloride ion concentration slowly decreases and the amount of precipitate, silver chloride, increases.
- ☐ At the equivalence point, all of the chloride ions in solution have reacted and no more precipitate will form.
- ☐ After the equivalence point, the excess silver ion concentration increases and is in excess.
- ☐ The equivalence point of a precipitation titration is defined as being the point at which the precipitate no longer forms.
- ☐ Silver cations are reduced to silver metal in bright light. Therefore silver solutions are typically stored in dark colored containers and titrations are performed in low light

per 2021 21CYB101.I

Principle contd..

- □ Before the titration endpoint, addition of Ag⁺ ions leads to formation of silver chloride precipitate, making the solution cloudy.
- □ At the end point all the Cl⁻ ions have precipitated. The slightest excess of Ag⁺ precipitates with the chromate indicator giving a slight red-brown coloration.

 $2AgNO_3 + K_2CrO_4 \rightarrow Ag_2CrO_4 + 2KNO_3$

11 October 2021

21CYB101J

Principle, requirements

- ☐ The <u>rate of reaction</u> between the precipitant and the substance to be precipitated <u>must be fast</u>.
- ☐ There should be no co-precipitation. The precipitate should be insoluble.
- ☐ A <u>suitable indicator</u> should be used to locate the end point of the titration (for colorless precipitate).
- ☐ The process of precipitation titration is completely based on the concept of solubility product. The solubility product constant (K_{sp}) describes the equilibrium between a solid and its constituent ions in a solution.

11 October 2021

21CYB101

11

Principle

□ Silver can form a precipitate by reaction with chloride (AgCl; $\mathbf{K_{sp}} = \mathbf{1.8 \times 10^{-10}}$) and with chromate (Ag₂CrO₄; $\mathbf{K_{sp}} = \mathbf{1.9 \times 10^{-12}}$).

AgCI
$$\neq$$
 Ag⁺ + CI⁻
 $K_{sp} = S \times S$ $(K_{sp} = 1.8 \times 10^{-10})$ solubility product
 $S = \sqrt{K_{sp}} = 1.34 \times 10^{-5}$ $K_{sp} = (2s)^2 \times S = 4s^3$
 $K_{sp} = (1.1 \times 10^{-12})$
 $S = 3\sqrt{\frac{K_{sp}}{4}} = 0.65 \times 10^{-4}$

AgCl is less soluble than Ag_2CrO_4 so if Ag^+ ions are added to a solution containing BOTH Cl⁻ ions and CrO_4^{2-} ions, the added Ag^+ ions will have a greater attraction for the Cl⁻ ions, so the precipitate of AgCl will form first.

11 October 2021

21CYB101J

Key points

- Has to be performed at a neutral or weak basic solution of pH 7-9 (or 6-10)
- In a lower pH (acid solution)

$$CrO_4^{2-}(aq) + H^+(aq) \rightarrow H_2CrO_4$$

 $H_2CrO_4 \leftrightarrow 2H^+(aq) + CrO_4^{2-}(aq)$

• In a higher pH (basic solution)

$$Ag^{+}(aq) + OH^{-}(aq) \rightarrow AgOH(s)$$

- It is important to rinse the burette with the titrant before beginning the titration
- AgNO₃ to be stored in brown bottle

11 October 2021

21CYB101

13

Procedure

<u>Titration I : Standardization of silver nitrate solution</u>

- □ 10 ml of standard NaCl solution (0.017 N) is pipetted out into a clean conical flask.
- □ 4-5 drops of 2% K₂CrO₄ indicator is added to it. The solution turns bright lemon yellow in color.
- ☐ It is titrated against <u>AgNO₃ solution</u> taken in the burette.
- □ During each addition of AgNO₃, the content in the conical flask is <u>shaken well</u>. At the end point, <u>yellow color changes into reddish brown</u> (which does not disappear even after shaking).
- ☐ The titration is repeated till the **concordant value** is obtained

11 October 2021

21CYB101J

Procedure <u>Titration II: Estimation of chloride</u> □ The given chloride solution is <u>diluted to 100 ml</u> using distilled water in a standard flask. Exactly <u>10 ml</u> of this solution is pipetted out into a clean conical flask. □ To this solution <u>4-5 drops of 2% K₂CrO₄</u> indicator is added and is titrated against standardized AgNO₃ solution from the burette. □ The addition of AgNO₃ solution is continued until the solution produced a <u>permanent reddish-brown color</u>. The titration is repeated till the concordant value is obtained. □ From the <u>volume of AgNO₃ consumed</u>, the strength of chloride and hence its <u>amount is calculated</u>.

Tabular column

Table I: Standardization of silver nitrate solution

S.No.	Volume of NaCl solution (ml)	Burette Reading (ml)		Concordant	
		Initial	Final	Value (ml)	Indicator
					2 % Potassium
					chromate
					(1 mL)

11 October 2021 21CYB101J 16

Calculation

Titration I: Standardization of silver nitrate solution

Normality of NaCl Solution =

Volume of NaCl Solution =

Volume of AgNO₃ Solution = V_2 (end point)

Normality of AgNO₃ Solution = $_{--} ? N_2$

 $N_2 = V_1 X N_1 / V_2$

ctober 2021 21CYB101J

Tabular column

Table II: Estimation of chloride

S.No.	Volume of chloride solution (ml)	Burette Reading (ml)		Concordant		
		Initial	Final	Value (ml)	Indicator	
					2 % Potassium	
					chromate	
					(1 mL)	

11 October 2021 21CYB101J 18

Calculation

Titration II: Estimation of chloride content

Volume of chloride solution = 20 m1 (V_1) Normality of chloride solution = $? N_1$

Volume of AgNO₃ solution = V_2 (end point) Normality of AgNO₃ solution = N_2 (from tit I)

 $N_1 = V_2 X N_2 / V_1$

Amount of chloride ion present in the water of the given solution

 $N_1 \times Equivalent wt of CI$ (35.45)

10

11 October 2021 21CYB101J

Table 1

S No	Volume of	Burette reading		Concordant	Indicator
	pipette solution (mL)	Initial (mL)	Final (mL)	value (mL)	used
1	10	0	13.4		
2	10	0	13.4	13.4	K ₂ CrO4

11 October 2021 21 CYB101J 20

Table 2

S No	Volume of pipette solution (mL)	Burette reading		Concordant	Indicator
		Initial (mL)	Final (mL)	value (mL)	used
1	10	0	19.7	19.7	K ₂ CrO4
2	10	0	19.7		

11 October 2021 21 CYB101J 21

Drawbacks

- ☐ The Mohr's method suffers with a drawback as it has an inherent titration error.
- ☐ The end point is not observed immediately after the equivalence point but after a little over titration, i.e., after adding a little extra silver nitrate.
- ☐ A definite amount of indicator must be used to provide a certain concentration of chromate ions, otherwise silver chromate may form too soon or not soon enough.
- ☐ Caution should be made to notice indicator color change as it can varies person to person. The usual range is 0.2 to 0.4 mL of titrant.

11 October 2021

21CYB101J

Result

☐ Amount of chloride present in the given solution is =

11 October 2021

21CYB101

23

Thank you all for your attention

Information presented here were collected from various sources – textbooks, articles, manuscripts, internet and newsletters. All the researchers and authors of the above mentioned sources are greatly acknowledged.

11 October 2021

21CYB101J Page 24