Soru: 
$$(x-h)^2+(y-k)^2=r^2$$
 gembertnin üzerindeki  $P(x_0,y_0)$  nolutasındaki teget doğrusunun deulleminin  $(x_0-h)(x-h)+(y_0-k)(y-y_0)=r^2$  olduğunu gösteriniz. Görüm: Merkez  $C(h,k)$  ve  $m_p=\frac{y_0-k}{x-h}$  olup, teget doğru, yərxapa (normal doğrusuna) dik elduğundarı  $m_{\text{teget}}=m_{\text{t}}=-\frac{x-h}{y-k}$  dır. Egim-noluta deulleminden  $y-y=m_{\text{t}}(x-x_0)\Rightarrow y-y=-\frac{x_0-h}{y_0-k}(x-x_0)$  dan  $(x_0-h)(x-x_0)+(y_0-k)(y-y_0)=0$  dır. Bu son esitliğin thi yanına  $-(x_0-h)h-(y-k)k$  ellenirse  $(x_0-h)(x-h)+(y-k)(y-k)-(x_0-h)x_0-y_0-k)y_0=-(x_0-h)h-(y-k)k$   $(x_0-h)(x-h)+(y-k)(y-k)=(x_0-h)(x_0-h)+(y-k)(y_0-k)=r^2$  olup  $(x_0-h)(x-h)+(y_0-k)(y-k)=r^2$  teget doğrunun denlulemidir.

NOT: Teğet doğrunun eğimi kapalı fonksiyonlardaki türev kuralından

$$(x-h)^{2}+(y-k)^{2}-r^{2}=0 \Rightarrow y'=-\frac{x-h}{y-k} \text{ we } m_{+}=y')=-\frac{x_{0}-h}{y_{0}-k}$$
dansk da bulunstilm!

Soru: x+y+xx-2y-23=0 gemberinn üzerindelii P (3,4) noldasından giztlen teşet doşrunun dentilenini bulunuz

Francis ( $x^2 + 2x + 1$ ) + ( $y^2 - 2y + 1$ ) =  $2x + 1 + 1 \Rightarrow (x + 1)^2 + (y - 2)^2 = 5^2$ standart comber denkleminde merkez C(-1, 1) ve yangap r = 5 for olup  $m_c = \frac{4-1}{3-(1)} = \frac{3}{4}$  ve  $m_t = m_t = -\frac{1}{m_{cp}} = -\frac{4}{3}$  dür.  $y - y = m_t(x - x_1)$  den  $y - 4 = -\frac{4}{3}(x - 3) \Rightarrow 3y - 12 = -4x + 12$ den 4x + 3y - 24 = 0 bulunur.

Not: Bursda <u>denblemi</u> <u>bulunuz</u> <u>dentlmebtedir. Eger</u> tepet doprunun <u>denblemini yozuniz</u> <u>dentlmis</u> olsoydi o zomon (x<sub>0</sub>-h)(x-h)+(y-k)(y-h)=r<sup>2</sup> formülü bullomlabilirdi!

Soru: 22+y2+1x-2y-23=0 gembert ile 7x-y-17=0 dogrusunum (varsa) kestm notalarine bulunuz

Gözümi Verten cember ve doğru dentilemlerinin ortak Gözümü yapılırsa; bunun 1911 y=7x-17 cember dentileminde yerlerine yazılmatıla

 $n^2+49n^2-238n+289+2n-14n+34-23=0 \Rightarrow 50n^2-250n+300=0$  day  $n^2-5n+6=0 \Rightarrow (n-2)(n-3)=0 \Rightarrow n=2$  ve  $n_2=3$  blue kestin notablaring apsistering very Bunlary y=7n-17 de yerletne yezmeths

 $n_1=2$  1947  $y=7.2-17=-3 \Rightarrow A(2,-3)$  comber the degrunum  $n_2=3$  1841  $y=7.3-17=4 \Rightarrow B(3,4)$  hesting notationalist

Soru:  $(x-5)^2+y^2=9$  gembertne teget olan ve ortjinden gegen dogrularen denklemlerini bulunuz

Fögom: Aramlan OK ve OL
doğrularının denklemi

y=mx olsun. By doğru ile sembern ortale denklemi: olan



 $(x-5)^2+(mx)^2=9$  deutleminty

A diskriminante sifter alursa; dopru combere teget almys alur. O halde  $(m_1^2)x^2-10x+15-9=0 \Rightarrow (m_1^2)x^2-10x+16=0$ 

denlleminden  $\Delta = 6^2 - 42c = (-10)^2 - 4.(m^2 + 1).16 = 100 - 64m^2 - 64 den$ 

 $\Delta = 0 \implies 36 - 64m^2 = 0 \implies 64m^2 = 36 \implies m^2 = \frac{36}{64} \text{ deg}$   $m = \mp \frac{6}{8} = \mp \frac{3}{4} \text{ deg}. \qquad 0 \text{ holde } y = \mp \frac{3}{4} \times \text{ degralarg}$ 

aranan teget dogrulander.

 $y=\frac{3}{4},x \Rightarrow [3x-4y=0] \text{ ve } y=-\frac{3}{4}x \Rightarrow [3x+4y=0]$ 

Not: Gember denkleminden S(2,0), T(8,0) ve |KT|=r=3br olup KOC Jegeninde Pisagordan  $|OK|=5^2-3^2=4^2$  den|OK|=4 olup  $tan = tan(KOC) = \frac{3}{4} = m$  ve de  $m = -\frac{3}{4}$  olur.

Böylece aranılan denklemler  $y=\frac{3}{4}\pi$  ve  $y=-\frac{3}{4}\pi$  dir. Arreak bu gözüm yolu analitik geometri yolu deşildir. Braz sentetik geometride (koordinatsız geometriden) yararlanılmıştır. Sorus sinx. sinzx, sin3x carpinini bir toplam olarak yazınız (Kam-Kar Syf 64-65)

Gözüm: Sinx.sinzx.sin3x = (stn3x.stnx). smzx olup sin 3x.smx =  $-\frac{1}{2} \left[ \cos(3x+x) - \cos(3x-x) \right] = -\frac{1}{2} \left( \cos4x - \cos2x \right)$  olup

SIME. SANZX. SIMBLE (SIMBLE, SIMBLE) SIMBLE =  $-\frac{1}{2}$  (cos4x-cosbe) SIMBLE =  $-\frac{1}{2}$  cos4x. SIMBLE  $+\frac{1}{2}$  SIMBLE dem

sinx. sinzx =  $\frac{1}{4}$  sin4x -  $\frac{1}{2}$  cos4x. sinzx olup bursdada

cos4x. sinzx =  $\frac{1}{2}$  [sin(4x+2x) = sin(4x-2x)] =  $\frac{1}{2}$  (sin6x-sinzx)

olduğundan

 $3 \text{ in } x. \text{ sin } x. \text{ sin } x. = \frac{1}{4} \text{ sin } 4x - \frac{1}{2} \cdot \frac{1}{2} (\text{ sin } 6x - \text{ sin } xx)$   $= \frac{1}{4} \text{ sin } 4x - \frac{1}{4} \text{ sin } 6x + \frac{1}{4} \text{ sin } 2x \quad \text{den} \quad \text{Yand}$ 

Sinx, Sinzx, Sinzx =  $\frac{1}{4}$  (sinzx + sin4x - sin6x) beatminde toplan olarah yazılır!

Soru:  $\cos 3\pi - \cos 2\pi + \cos \pi = 0$  dentherming  $\cos 3\pi - \cos \pi = 0$  bulling.

Gorism:  $\cos 3\pi + \cos \pi = 2\cos \frac{3\pi + \alpha}{2} \cdot \cos \frac{3\pi - \alpha}{2} = 2\cos 2\pi \cdot \cos \pi$  dup  $(\cos 3\pi + \cos \pi) - \cos 2\pi = 2\cos 2\pi \cdot \cos \pi - \cos 2\pi = 2\cos 2\pi \cdot \cos \pi - \frac{1}{2}) = 0$  day

(Bir garpining sofir almost iging garpanlardon en az birt sifir almostivity)  $\cos 2\pi = 0 \Rightarrow \cos 2\pi = \cos \left(\mp \frac{\pi}{2}\right) \Rightarrow 2\pi = \mp \frac{\pi}{2} + 2\tan \pi \cdot \ln \pi$   $\pi = \mp \frac{\pi}{4} + \ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{4} + \ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{4} + \ln \pi \cdot \ln \pi$ Regularly  $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \pm \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$   $\pi = \frac{\pi}{3} + 2\ln \pi \cdot \ln \pi$ 

Soru:  $2\cos x + 3 = 4\cos \frac{x}{2}$  denklemini  $4\ddot{\circ} z \ddot{\circ} m\ddot{\circ} z$ Chozum:  $\cos x = 2\cos \frac{x}{2} - 1$  olup  $2\cos x = 4\cos \frac{x}{2} - 2 dx$ . O halde  $2\cos x + 3 = 4\cos \frac{x}{2} \Rightarrow 4\cos \frac{x}{2} - 2 + 3 = 4\cos \frac{x}{2} \Rightarrow 4\cos \frac{x}{2} - 4\cos \frac{x}{2} + 1 = 0$ Burrodan  $(2\cos \frac{x}{2} - 1) = 0 \Rightarrow 2\cos \frac{x}{2} - 1 = 0 \Rightarrow \cos \frac{x}{2} = \frac{1}{2}$  den  $\cos \frac{x}{2} = \cos (+\frac{\pi}{3}) = \cos (+\frac{\pi}{3} + 2\ln \pi)$ ,  $k \in \mathbb{Z}$  den  $\frac{x}{2} = +\frac{\pi}{3} + 2\ln \pi$ ,  $k \in \mathbb{Z} \Rightarrow \pi = \frac{2\pi}{3} + 4\ln \pi$  vey  $2\cos \frac{x}{2} + 4\ln \pi$ ,  $k \in \mathbb{Z}$ .

Soru:  $\sin 3x$  in açılmından yararlanarak  $\sin x$  in  $\sin x$  ve  $\sin 3x$  türünden özdesini bulunuz

Gözün:  $\sin 3x = \sin(2x+x) = \sin 2x \cdot \cos x + \cos 2x \cdot \sin x =$   $= (2\sin x) \cdot \cos x + (1-2\sin^2 x) \sin x = 2\sin x \cdot \cos^2 x + \sin x - 2\sin^2 x$   $= 2\sin x(1-\sin^2 x) + \sin x - 2\sin^2 x = 3\sin x - 4\sin^2 x$  dir. Yani  $\sin 3x = 3\sin x - 4\sin^2 x$  olup  $\cos x = 3\sin x - 4\sin^2 x$  olup  $\cos x = 3\sin x - \sin x = 3\sin x - 4\sin x$  dir.

Not: Benzer selilde  $\cos x$  in de  $\cos x$  ve  $\cos 3x$  chasinden bedeşi ise  $\cos^3 x = \frac{3}{4}\cos x + \frac{1}{4}\cos x$  dir. (Kontrof edinze!)

Soru:  $0 \le \operatorname{arctank} < \frac{\pi}{2}$  olmak steere arctank in arksinishi özdeşini bulunuz (Kam-Kar, Syf 77)

Gözim arctank= $\alpha$  denthrse  $\tan \alpha = \alpha = \frac{\sin \alpha}{\cos \alpha} \Rightarrow \sin \alpha = \tan \alpha.\cos \alpha$   $1+\tan \alpha = \frac{1}{\cos^2 \alpha} \Rightarrow \cos^2 \alpha = \frac{1}{1+\tan^2 \alpha} \Rightarrow \cos \alpha = \frac{1}{\sqrt{1+\tan^2 \alpha}} \frac{\sin \alpha}{\sqrt{1+\alpha^2}} \frac{\sin \alpha}{1+\alpha^2} \frac{\sin \alpha}{\sqrt{1+\alpha^2}} \frac{\sin \alpha}{\sqrt{1+\alpha^2}} \frac{\sin \alpha}{1+\alpha^2} \frac{\sin \alpha}{1$ 

Sorus  $2rcsin(x+3) = \frac{\pi}{3}$  den leminden x i bulunuz  $\frac{G}{3}$   $\frac{\pi}{3}$   $\frac{\pi}{3}$ 

Some arctan (x2-1) = 0 dentlemini ciozanios

 $(x+1)(x-1)=0 \Rightarrow x^2-1=\tan 0=0 \Rightarrow x^2-1=0 \ day$   $(x+1)(x-1)=0 \Rightarrow x+1=0 \Rightarrow x=-1; x-1=0 \ day$   $q. K_1=\{-1,1\} \ dir,$ 

Sorus eos (zarccosx) in x türünden özdesini bulunuz Götüm arccosx= x dentirse eos x= x dr.

2arccosx= 2x olup cos (2x) = 2cosx-1= 2x-1, bulunur

0 holde her  $x \in [-1,1]$  14m |  $\cos(2 \arccos x) = 2n^2-1$  dir

Soru:  $\cos x = \frac{1}{2}$  deallemini côzóvióz  $\cos x = \cos \frac{\pi}{3}$  dup  $x = \frac{\pi}{3}$  trian verp  $x = -\frac{\pi}{3}$  trian dr.  $k \in \mathbb{R}$ .

Sorus sunx = 1/2 denllement gozoning

Gögüm:  $\sin x = \sin \frac{\pi}{6} \Rightarrow x = \frac{\pi}{6} + r \ln v = x = (\pi - \frac{\pi}{6}) + r \ln \sqrt{\kappa} \in \mathbb{Z}$ yani  $x = \frac{\pi}{6} + r \ln v = x = \frac{5\pi}{6} + r \ln \kappa \in \mathbb{Z}$  din

Not:  $\sin \frac{\pi}{6} = \frac{1}{2} \text{ we sm} (\pi - \frac{\pi}{6}) = \frac{1}{2} \text{ dm}$ 

Sorus sinh 
$$x = -1$$
 denblemini gözönüz

Gözön, sinh  $x = \frac{e^x - e^x}{2}$  old.  $\frac{e^x - e^x}{2} = 1 \Rightarrow e^x - e^x = 2$ ;

 $e^x(e^x - e^x) = 2 \cdot e^x$  den  $e^x - 1 = 2e^x$ ,  $(e^x)^2 - 2e^x - 1 = 0$  olup

 $e^x = t$  dentlirse  $t^2 - 2t - 1 = 0$  dan  $t_{1/2} = \frac{2 \mp \sqrt{4} + 4}{2} = \frac{2 \mp \sqrt{8}}{2} = \frac{2 \mp 2\sqrt{2}}{2}$ 
 $t_{1/2} = 1 \mp \sqrt{2}$  of  $t_{1/2} = e^x$  and  $t_{1/2} = e^x$  and  $t_{1/2} = e^x$  of  $t_{1/2} = 1 + \sqrt{2} = e^x$  and  $t_{1/2} = e^x$  of  $t_{1/2} = 1 + \sqrt{2} = e^x$  and  $t_{1/2} = e^x$  of  $t_{1/2} = 1 + \sqrt{2} = e^x$  and  $t_{1/2} = e^x$  of  $t_{1/2} = 1 + \sqrt{2} = e^x$  and  $t_{1/2} = 1 + \sqrt{2} = e^x$  of  $t$ 

Soru:  $\cosh 2x = \cosh^2 x + \sinh^2 x$  özdesliginin doğruluğunu kontrol edmiz Gözüm;  $\cosh 2x = \frac{2x}{2} + \frac{2x}{2} = \frac{(e^x)^2 + (e^x)^2}{2}$  olup, öte yandan  $e^x = \cosh x + \sinh x$ ;  $e^x = \cosh x - \sinh x$  olduğundan  $\cosh 2x = \frac{(\cosh x + \sinh x)^2 + (\cosh x - \sinh x)^2}{2}$   $= \frac{\cosh^2 x + 2\cosh x \sinh x + \sinh^2 x}{2} = \cosh^2 x + 2\cosh x \sinh x + \sinh^2 x}{2}$   $= \frac{2\cosh^2 x + 2\sinh^2 x}{2} = \cosh^2 x + \sinh^2 x$  dx.  $\forall an$ 

Sorue lun 2=4 oldugum opstermiz Gözem! YE>0 sapsins harsilik br 8(E)>0 reel sapsi bulunsboth mi? Tylelis O</n-2/<5(E) iken 12-4/< E olsun. 122-4/< E dan harehetle [n-4] = | (n-2)(nf2) | = |x-2| |x+2| = |x-2| |(n-2)+4| < |x-2|(1x-2)+4) 1x-21<5 olmon tskndtginden 12-21 (12-21+4) < 5(5+4) = E denilirse 5+48=== = 52+48+4= 4+ε = (5+2)=4+ε => |S+2| = √4+€ => S+2 = √4+€ => 5=√4+€-2 bulunur. Yani her  $\epsilon>0$  sapsına harrılıh br  $\delta(\epsilon) = \sqrt{4+\epsilon'}-2$  bulunsleiliyer ve 1x-21 < 8(E) then | n2-4 | < E dur. 0 holde  $\lim_{x\to 2} x^2 = 4$  don. II. yol: 6. Fonksiyonlarda lamit 130617 ders notu syf 28. II. yol: Thomas Calculus (Turke) httap saylos 196.