1

The different-level quadratic minimization (DLQM) is a new and special optimization problem, which can be described as

minimize
$$ax^{2}(t)/2 + cx(t) + p\dot{x}^{2}(t)/2 + q\dot{x}(t)$$
 (1)

where time variable parameter $t \in [0, t_f] \subseteq [0, \infty)$ and $a, c, p, q, x(t), \dot{x}(t) \in \mathbb{R}$. Besides, for simplicity here, a > 0, c, p > 0 and q are given constant. Note that x(t) and $\dot{x}(t) = \mathrm{d}x(t)/\mathrm{d}t$ vary with time variable parameter t.

For example, $a=1,\ c=1,\ p=1,\ q=-1,$ initial value x(0)=1, and initial value $\dot{x}(0)=1/2.$ Note that you can choose other suitable values for investigations.

$\mathbf{2}$

In addition to the above constant-coefficient DLQM, now let us consider different-level time-varying quadratic minimization (DLTVQM), of which the coefficients vary with time variable parameter $t \in [0, t_f] \subseteq [0, \infty)$.

minimize
$$a(t)x^2(t)/2 + c(t)x(t) + p(t)\dot{x}^2(t)/2 + q(t)\dot{x}(t)$$
. (2)

For example, $a(t) = \sin(t) + 2$, $c(t) = -\cos(t)/2$, $p(t) = \cos(2t) + 3$, $q(t) = \sin(3t)/3$, initial value x(0) = 1, and initial value $\dot{x}(0) = 1/2$. Note that you can choose other suitable analytical forms or numerical values of them for investigations.