EQUATIONS

A few of the more commonly used equations for Machine Learning/Data Mining

Distance Metrics

Euclidean distance

$$\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Manhattan distance

$$\sum_{i=1}^{n} |x_i - y_i|$$

Hamming distance (x and y are binary vectors)

$$\sum_{i=1}^{n} |x_i - y_i|$$

Minkowski distance

$$\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right)^{1/p}$$

Quadratic equation

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Univariate Statistics

Population mean

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Standard deviation

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Variance

$$\sigma_x^2 = \sum_{i=1}^n (x_i - \bar{x})^2$$

Pre-processing

Normalization

$$z = \frac{x - \mu}{\sigma}$$

Standardizing

$$X_{standarize} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Comparing two vectors

Pearson Correlation

$$\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}$$

Spearman Correlation

$$ho_s =
ho_{X_{[i]},Y_{[i]}} = 1 - rac{6\sum d_i^2}{n(n^2-1)}$$

Cosine Similarity

$$cos(\boldsymbol{x}, \boldsymbol{y}) = \frac{\boldsymbol{x} \cdot \boldsymbol{y}}{||\boldsymbol{x}|| \cdot ||\boldsymbol{y}||}$$

Co-Variance

$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Eigenvector and Eigenvalue

$$Av = \lambda v$$

Binomial distribution

$$p_k = \binom{n}{x} \cdot p^k \cdot (1-p)^{n-k}$$

Gaussian distribution

Univariate

$$p(x) \sim N(\mu | \sigma^2)$$
 $p(x) \sim rac{1}{\sqrt{2\pi\sigma^2}} e^{-rac{1}{2}(rac{x-\mu}{\sigma})^2}$

multivariate

$$p(oldsymbol{x}) \sim N(oldsymbol{\mu}|\Sigma)$$
 $p(oldsymbol{x}) \sim rac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}}e^{-rac{1}{2}(oldsymbol{x}-oldsymbol{\mu})^t\Sigma^{-1}(oldsymbol{x}-oldsymbol{\mu})}$

Maximum Likelihood Estimate

Given,

$$D = \{\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n\}$$

Assuming the samples are i.i.d.,

$$p(D|\boldsymbol{\theta}) = p(\boldsymbol{x}_1|\boldsymbol{\theta}) \cdot p(\boldsymbol{x}_2|\boldsymbol{\theta}) \cdot \dots p(\boldsymbol{x}_n|\boldsymbol{\theta})$$

$$p(D|\boldsymbol{\theta}) = \prod_{k=1}^n p(\boldsymbol{x}_k|\boldsymbol{\theta})$$

The Log likelihood is

$$\Rightarrow l(\theta) = \sum_{k=1}^{n} ln|p(x_k|\theta)$$

Differentiating and solving for (θ)

$$abla_{m{ heta}} \equiv egin{bmatrix} rac{\partial}{\partial heta_1} \ rac{\partial}{\partial heta_2} \ \dots \ rac{\partial}{\partial heta_p} \end{bmatrix}$$

$$abla_{m{ heta}}l(m{ heta}) \equiv egin{bmatrix} rac{\partial L(m{ heta})}{\partial heta_1} \ rac{\partial L(m{ heta})}{\partial heta_2} \ \dots \ rac{\partial L(m{ heta})}{\partial heta_p} \end{bmatrix} = egin{bmatrix} 0 \ 0 \ \dots \ 0 \end{bmatrix}$$

Linear Discriminant Analysis

In-between class scatter matrix

$$S_w = \sum_{i=1}^c S_i$$

where,

$$S_i = \sum_{oldsymbol{x} \in D_i}^n (oldsymbol{x} - oldsymbol{m}_i) \; (oldsymbol{x} - oldsymbol{m}_i)^T$$

$$oldsymbol{m}_i = rac{1}{n_i} \sum_{oldsymbol{x} \in D_i}^n oldsymbol{x}_k$$

Between class scatter matrix

$$S_b = \sum_{i=1}^c (oldsymbol{m}_i {-} oldsymbol{m}_i {-} oldsymbol{m}_i)^T$$

$$\Phi_{lda} = \arg\max_{\Phi} \frac{|\Phi^T S_b \Phi|}{|\Phi^T S_w \Phi|}$$

$$\boldsymbol{X}\boldsymbol{w}=\boldsymbol{y}$$

$$\begin{bmatrix} x_1 & 1 \\ \cdots & 1 \\ x_n & 1 \end{bmatrix} \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} y_1 \\ \cdots \\ y_n \end{bmatrix}$$

$$\boldsymbol{w} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Contour Regression

$$Xw = y$$

$$\begin{bmatrix} x_1 & 1 \\ \cdots & 1 \\ x_n & 1 \end{bmatrix} \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} y_1 \\ \cdots \\ y_n \end{bmatrix}$$

Step 1: Initizalize ${m w}$ using ${m w} = ({m X}^T{m X})^{-1}{m X}^T{m y}$

Step 2: Repeat until convergence

Step 2a: Reorder $m{X}$ based on latest \hat{y}

Step 2b: Estimate $oldsymbol{w}$ using

$$\boldsymbol{w} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T (y + \hat{y}_{[i]})$$

Naive Bayes' classifier

Posterior probability:

$$P(\omega_j|x) = rac{p(x|\omega_j) \cdot P(\omega_j)}{p(x)}$$

$$\Rightarrow posterior = \frac{likelihood \cdot prior}{evidence}$$

Decision rule:

$$rac{p(x|\omega_1)\cdot P(\omega_1)}{p(x)}>rac{p(x|\omega_2)\cdot P(\omega_2)}{p(x)}$$