Does radon activity depend on floor?

Several ways to answer the same question:

- Hypothesis testing (t-test)
- Correlation
- Linear regression model

[1] Quinn G.P. and Keough M.J. Experimental design and data analysis for biologists. Cambridge University Press, 2002

Linear relationship between two variables: Pearson's correlation

(sample) Standard Deviation of
$$x_1$$
: $\sigma_{x1} = \sqrt{rac{1}{N-1}\sum_{i=1}^N (x_{1i} - ar{x_1})^2}$

(sample) Standard Deviation of
$$x_2$$
: $\sigma_{x2} = \sqrt{rac{1}{N-1}\sum_{i=1}^N (x_{2i} - ar{x_2})^2}$

(sample) Covariance:
$$\sigma_{x1,x2}=rac{\sum_{i=1}^N(x_{1i}-ar{x_1})(x_{2i}-ar{x_2})}{N-1}$$

(sample) Correlation:
$$ho_{x1,x2}=rac{\sigma_{x1,x2}}{\sigma_{x1}\cdot\sigma_{x2}}$$

Note: The joint distribution of x_1 and x_2 should be a bivariate normal and their relationship should linear.

A data.frame: 2 × 26

	idnum	state	state2	stfips	zip	region	typebldg	floor	room	basement	•••	startdt	stopdt	activity	pcterr	adjwt	(
	<int></int>	<fct></fct>	<fct></fct>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<fct></fct>	•••	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	-
1	1	ΑZ	ΑZ	4	85920	1	1	1	2	N		112987	120287	0.3	0	136.0610	(
3	3	ΑZ	ΑZ	4	85924	1	1	1	3	N		70788	70788	0.5	0	150.2451	_(

Linear regression model

y = response variable, dependent variable, variable of interest

x = predictor variable, independent variable, covariate

We expect that the predictor variable(s) may provide some explanation for the pattern we see in the response variable.

Three major purposes of linear regression analysis

1) To describe the linear relationship between y and x.

2) To determine how much of the variation (uncertainty) in y can be explained by the linear relationship with x and how much of this variation remains unexplained.

3) To predict new values of y from new values of x.

Consider a set of n observations (x_i, y_i) , i = 1 : n.

The regression line is

$$\hat{y_i} = \hat{y}(x_i) = heta_1 + x_i heta_2$$

The linear regression model is

$$y_i = heta_1 + x_i heta_2 + \epsilon_i$$

The error ϵ_i represents the part of y not explained by the model.

$$\epsilon_i = y_i - \hat{y_i}$$
 (residuals)

We assume that the ϵ_i are i.i.d. and $\epsilon_i \sim \mathcal{N}(0, \sigma_\epsilon^2)$.

$$\hat{y_i} = heta_1 + x_i heta_2$$

Two ways to estimate θ : Ordinary Least Squares (**OLS**) and Maximum Likelihood (**ML**).

OLS: minimizes the sum of the squares of the residuals $\epsilon_i=y_i-\hat{y_i}$ to find the model parameters heta

$$J(heta) = \sum_{i=1}^n (y_i - \hat{y_i})^2 = \sum_{i=1}^n (y_i - heta_1 - x_i heta_2)^2$$

 $J(\theta)=$ energy, cost, objective function

In matricial form (n samples, 1 covariate):

$$oldsymbol{\bullet} \ \mathbf{X} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ \dots & \dots \\ 1 & x_n \end{bmatrix} \rightarrow \mathsf{design} \, \mathsf{matrix} \, (\mathsf{n} \, \mathsf{x} \, \mathsf{2}); \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \dots \\ y_n \end{bmatrix} \rightarrow \mathsf{outcome} \, (\mathsf{n} \, \mathsf{x} \, \mathsf{1}); \\ \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} \rightarrow \mathsf{model} \, \mathsf{parameters} \, (\mathsf{2} \, \mathsf{x} \, \mathsf{1})$$

Hence: $\hat{\mathbf{y}} = \mathbf{X} \cdot \mathbf{\theta}$

and the cost function is:

$$J(heta) = (\mathbf{y} - \mathbf{X} heta)^T(\mathbf{y} - \mathbf{X} heta) = \sum_{i=1}^n (y_i - \mathbf{x_i} heta)^2 = \sum_{i=1}^n (y_i - \hat{y_i})^2$$

where $\mathbf{x_i} = [1, x_i]$

Find the minimum by setting $rac{\partial J(heta)}{\partial heta} = 0$

$$J(\theta) = (\mathbf{y} - \mathbf{X}\theta)^T (\mathbf{y} - \mathbf{X}\theta)$$

Given that $(AB)^T=B^TA^T$ and that if x and y are column (or row) vectors, than x^Ty is a real number and is equal to its transpose, thus $x^Ty=(x^Ty)^T=y^Tx$:

$$rac{\partial J(heta)}{\partial heta} = rac{\partial}{\partial heta} ig[y^T y + heta^T X^T X heta - 2 y^T X heta ig] = 0 + 2 X^T X heta - 2 X^T y = 0$$

$$\Rightarrow 2X^TX\theta = 2X^Ty$$

$$\Rightarrow \hat{ heta}_{OLS} = (X^TX)^{-1}X^Ty$$

```
In [13]: y <- radon[ index_MN, "log_activity" ]
    y[ 1 : 5 ]</pre>
```

1.16315080980568 1.16315080980568 1.3609765531356 0.693147180559945 1.41098697371026

The Im function in R uses OLS

```
In [14]:
        lm pooled <- lm(y \sim x)
        summary( lm pooled )
        Call:
        lm(formula = y \sim x)
        Residuals:
            Min
                     10 Median 30
                                            Max
        -1.51801 -0.45017 -0.02409 0.40158 2.28257
        Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
        (Intercept) 1.61332 0.02173 74.242 < 2e-16 ***
                  Χ
        Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
        Residual standard error: 0.6014 on 917 degrees of freedom
        Multiple R-squared: 0.0584, Adjusted R-squared: 0.05737
        F-statistic: 56.88 on 1 and 917 DF, p-value: 1.116e-13
```

One-sample Student's t-test

 $\hat{\theta}$ = Estimate of slope; μ_{θ} = True value of $\hat{\theta}$

- H_0 : $\mu_{\theta} = 0$
- $H_1: \mu_\theta \neq 0$

$$t=rac{\hat{ heta}-0}{\hat{\sigma_{ heta}}/\sqrt{n}}$$

where $\hat{\sigma_{\theta}}/\sqrt{n}$ = standard error of $\hat{\theta}$; n is the number of samples.

```
In [15]:
         # OR:
         index MN <- radon$state=="MN"</pre>
         lm pooled <- lm( log activity ~ floor, data = radon[index MN, ] )</pre>
         summary(lm pooled)
         Call:
         lm(formula = log activity ~ floor, data = radon[index MN, ])
         Residuals:
              Min
                        10 Median
                                     30
                                                 Max
         -1.51801 -0.45017 -0.02409 0.40158 2.28257
         Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
         (Intercept) 1.61332
                                0.02173 74.242 < 2e-16 ***
         floor
                     -0.40165
                                0.05326 -7.542 1.12e-13 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6014 on 917 degrees of freedom Multiple R-squared: 0.0584, Adjusted R-squared: 0.05737

F-statistic: 56.88 on 1 and 917 DF, p-value: 1.116e-13

In [16]: plot(lm_pooled)


```
In [17]: pred_logact <- predict(lm_pooled, radon[index_MN, ]) # predict new data

predicted_df <- data.frame( pred_logact = pred_logact, floor = radon[index_MN,
    "floor"])

ggplot(data = radon[index_MN,], aes(x = floor, y = log_activity)) +

geom_point(alpha=0.5) +

geom_line(color='red',data = predicted_df, aes(x=floor, y=pred_logact)) +

geom_smooth(method = "lm", se = FALSE, lty=2, color="blue") + #ggplot finds t
    he same regression line

theme_bw()</pre>
```


Exercise:

- Considering only the setosa species from the iris data set, compute the linear model of Petal.Width ~ Petal.Length
- Use the model to predict the Petal.Width of the virginica knowing their Petal.Length
- Visually check if the model fits well the setosa data
- Visually check if the model predicts well the virginica data

Solution:


```
In [19]:
         iris setosa <- iris[ iris$Species == "setosa", ]</pre>
         lm setosa <- lm(Petal.Width ~ Petal.Length, data=iris setosa)</pre>
         summary(lm setosa)
         Call:
         lm(formula = Petal.Width ~ Petal.Length, data = iris setosa)
         Residuals:
             Min
                       10 Median
                                        30
                                                Max
         -0.15365 -0.05365 -0.03352 0.06632 0.32623
         Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
         (Intercept) -0.04822 0.12164 -0.396
                                                  0.6936
         Petal.Length 0.20125 0.08263 2.435
                                                  0.0186 *
         Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 0.1005 on 48 degrees of freedom
        Multiple R-squared: 0.11, Adjusted R-squared: 0.09144
```

F-statistic: 5.931 on 1 and 48 DF, p-value: 0.01864

```
In [20]: predict_setosa <- predict(lm_setosa, iris_setosa)
    iris_setosa$predicted_Petal.Width <- predict_setosa
    ggplot( data = iris_setosa, aes(x = Petal.Length, y = Petal.Width) ) +
        geom_point( color = 'orange' ) +
        geom_line( color = 'red', aes(x = Petal.Length, y = predicted_Petal.Width) )
        theme_bw()</pre>
```



```
In [21]: iris_virginica <- iris[iris$Species=="virginica",]
    predict_virginica <- predict(lm_setosa, iris_virginica)
    iris_virginica$predicted_Petal.Width <- predict_virginica
    ggplot(data = iris_virginica, aes(x = Petal.Length, y = Petal.Width)) +
        geom_point(color='green') +
        geom_line(color='red',aes(x=Petal.Length, y=predicted_Petal.Width)) +
        theme_bw()</pre>
```


If x = [Group 1, Group 2]


```
In [22]: index_MN_floor0 <- (radon$state == "MN") & (radon$floor == 0)
    index_MN_floor1 <- (radon$state == "MN") & (radon$floor == 1)
    y0 <- log(radon[index_MN_floor0,"activity"] + 1)
    y1 <- log(radon[index_MN_floor1,"activity"] + 1)
    t_test <- t.test(y0, y1)
    t_test</pre>
```

Welch Two Sample t-test

```
data: y0 and y1
t = 7.1247, df = 206.35, p-value = 1.711e-11
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    0.2905067 0.5127922
sample estimates:
mean of x mean of y
    1.613323 1.211673
```

```
In [23]:
         index MN floor01 <- (radon$state == "MN") & (radon$floor %in% c(0,1))
         x <- radon[index MN floor01, "floor"]</pre>
         y <- log(radon[index MN floor01, "activity"] + 1)</pre>
         lm 01 < - lm(y \sim x)
         summary(lm 01)
         Call:
         lm(formula = y \sim x)
         Residuals:
              Min
                        10 Median
                                          30
                                                  Max
         -1.51801 -0.45017 -0.02409 0.40158 2.28257
         Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
                                 0.02173 74.242 < 2e-16 ***
         (Intercept) 1.61332
                                 0.05326 -7.542 1.12e-13 ***
                     -0.40165
         Χ
         Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 0.6014 on 917 degrees of freedom
         Multiple R-squared: 0.0584, Adjusted R-squared: 0.05737
         F-statistic: 56.88 on 1 and 917 DF, p-value: 1.116e-13
```

```
In [24]: index_MN_floor01 <- (radon$state == "MN") & (radon$floor %in% c(0,1))
    x <- radon[index_MN_floor01,"floor"]
    y <- log(radon[index_MN_floor01,"activity"] + 1)
    cor(x,y)</pre>
```

-0.241662618997735

If we scale x and y, then cor = θ_2

```
In [25]:
         index MN floor01 <- (radon$state == "MN") & (radon$floor %in% c(0,1))
         x <- scale(radon[index MN floor01, "floor"])</pre>
         y <- scale(log(radon[index MN floor01, "activity"] + 1))</pre>
         print(paste("Pearson's cor = ", cor(scale(x), scale(y)), sep=""))
         lm 01 <- lm(scale(y) \sim scale(x))
         print("lm summary:")
         summary(lm 01)
         [1] "Pearson's cor = -0.241662618997735"
         [1] "lm summary:"
         Call:
         lm(formula = scale(v) \sim scale(x))
         Residuals:
             Min
                      10 Median
                                      30
                                             Max
         -2.4505 -0.7267 -0.0389 0.6483 3.6847
         Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
         (Intercept) -8.560e-16 3.203e-02 0.000
         scale(x) -2.417e-01 3.204e-02 -7.542 1.12e-13 ***
         Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 0.9709 on 917 degrees of freedom
         Multiple R-squared: 0.0584, Adjusted R-squared: 0.05737
         F-statistic: 56.88 on 1 and 917 DF, p-value: 1.116e-13
```

Regression slope and Pearson's correlation

Minimize
$$J(heta) = \sum_{i=1}^n (y_i - heta_1 - heta_2 x_i)^2$$

expanding the square and deriving with respect to θ_1 and θ_2 we get:

$$egin{aligned} ullet \hat{ heta}_1 &= E[y] - \hat{ heta}_2 E[x] \ ullet \hat{ heta}_2 &= rac{\sum_{i=1}^n (x_i - E[x])(y_i - E[y])}{\sum_{i=1}^n (x_i - E[x])^2} = rac{\sigma_{x,y}}{\sigma_x^2} \end{aligned}$$

$$ho_{x,y} = rac{\sigma_{x,y}}{\sigma_x \cdot \sigma_y}$$

Then,
$$\hat{ heta_2} =
ho_{x,y} rac{\sigma_y}{\sigma_x}$$

And if
$$\sigma_y = \sigma_x$$
 , then $\hat{ heta_2} =
ho_{x,y}$

If x = [Group 1, Group 2, Group 3]

If x = [Group 1, Group 2, Group 3]

Analysis Of VAriance (ANOVA) $\hat{y_i} = heta_1 + x_i heta_2$

Source of variation	SS	df	MS	Expected mean square
Regression: Variability of y due to the relationship with x Residual: Variability of y not explained by the relationship with x Total: Total variability of y		already estimated 2 param.: θ 1 and θ 2 $n-2$	$\frac{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}{ }$ $\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2}$	$\sigma_{\varepsilon}^{2} + \theta_{2}^{2} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$ σ_{ε}^{2} \downarrow If homoscedasticity holds

Null hypothesis in regression:

$$\hat{y_i} = heta_1 + x_i heta_2$$

- $\bullet \,\, H_0:\theta_2=0$
- $H_1: heta_2
 eq 0$

We can use the one sample t-test to test H_0 .

If H_0 is true, both $MS_{Regression}$ and $MS_{Residual}$ estimate σ^2_ϵ .

Hence
$$rac{MS_{Regression}}{MS_{Residual}} \leq 1$$

If
$$H_0$$
 is NOT true, $rac{MS_{Regression}}{MS_{Residual}} \geq 1$

ANOVA

Under the assumptions of: normality, independence and homoscedasticity, if H_0 is true:

$$F = rac{MS_{Regression}}{MS_{Residual}} \sim F{
m -}$$
distribution $ightarrow$ p-value

Nested models

The F-test basically compares the fit to the data of a model that includes a slope term to the fit of a model that does not:

$$y_i = heta_1 + x_i heta_2 + \epsilon_i$$
 o its unexplained variance is $\sum_{i=1}^n (y_i - \hat{y}_i)^2 = SS_{Residual}$

 $y_i = \theta_1 + \epsilon_i \rightarrow$ its unexplained variance is $\sum_{i=1}^n (y_i - \bar{y})^2 = SS_{Total}$ because all predicted values \hat{y}_i coincide with the intercept, which is \bar{y} .

$$SS_{Total} - SS_{Residual} = SS_{Regression}$$

and we can use $\frac{MS_{Regression}}{MS_{Residual}}$ to test if adding x to the model explains some variance.

Notes:

$$ullet R^2 = rac{SS_{Regession}}{SS_{Total}} = 1 - rac{SS_{Residual}}{SS_{Total}}$$

• If we use ML, we may do a Likelihood Ratio Test.

```
In [26]: index_MN <- radon$state == "MN"
    res.aov <- aov( log_activity ~ floor, data = radon[index_MN, ] )
# Summary of the analysis:
    summary(res.aov)</pre>
```

```
Df Sum Sq Mean Sq F value Pr(>F)
floor 1 20.6 20.573 56.88 1.12e-13 ***
Residuals 917 331.7 0.362
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
In [27]:
         summary( lm( log activity ~ floor, data=radon[index MN, ] ) ) # The F-test is t
         he same!
         Call:
         lm(formula = log activity ~ floor, data = radon[index MN, ])
         Residuals:
             Min
                       1Q Median
                                        30
                                                Max
         -1.51801 -0.45017 -0.02409 0.40158 2.28257
         Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
                                0.02173 74.242 < 2e-16 ***
         (Intercept) 1.61332
                                0.05326 -7.542 1.12e-13 ***
         floor
                    -0.40165
         Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 0.6014 on 917 degrees of freedom
         Multiple R-squared: 0.0584, Adjusted R-squared: 0.05737
         F-statistic: 56.88 on 1 and 917 DF, p-value: 1.116e-13
```

In [28]: model0 <- lm(log_activity ~ 1, data=radon[index_MN,]) model1 <- lm(log_activity ~ floor, data=radon[index_MN,]) anova(model0, model1) # The F-test is the same!</pre>

\triangle allova. \triangle \wedge (А	a:	anova: 2	O
--	---	----	----------	---

Res.Df	RSS	RSS Df		F	Pr(>F)
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
918	352.2736	NA	NA	NA	NA
917	331.7006	1	20.57307	56.87511	1.116116e-13

Exercise:

• Does the (log) activity of radon depends on the state?

Solution:

```
In [29]:
         model state <- lm(log activity ~ state, data=radon)</pre>
         summary(model state)
         Call:
         lm(formula = log activity ~ state, data = radon)
         Residuals:
             Min
                      10 Median
                                     30
                                            Max
         -1.8559 -0.4999 -0.0989 0.3970 4.1048
         Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
         (Intercept)
                     0.79558
                                0.01879
                                          42.35
                                                 <2e-16 ***
         stateIN
                      0.44693
                                0.02487
                                          17.97 <2e-16 ***
         stateMA
                     0.39748
                                0.02594
                                          15.32
                                                  <2e-16 ***
         stateMN
                     0.75087
                                0.02989
                                          25.12
                                                  <2e-16 ***
                                          11.59
                                                  <2e-16 ***
         stateM0
                     0.28907
                                0.02494
                                                  <2e-16 ***
         stateND
                      1.06037
                                0.02577
                                          41.14
                                                  <2e-16 ***
         statePA
                     0.76189
                                0.02372
                                          32.12
                                                  <2e-16 ***
                                0.02981
                                          12.11
         stateR5
                     0.36100
         - - -
         Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 0.7049 on 12482 degrees of freedom
         Multiple R-squared: 0.1609, Adjusted R-squared: 0.1605
```

F-statistic: 342 on 7 and 12482 DF, p-value: < 2.2e-16

Dummy variables

Categorical variables are converted to dummy variables.

model.matrix creates a design (or model) matrix, e.g. by expanding factors to a set of dummy variables.

In [30]: | state_f <- factor(radon\$state)</pre> dummies <- model.matrix(~state_f)</pre> dummies

A matrix: 124 (Intercept)			state_fMN	state_fMO	state_fND	state_fPA	state_fR5
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0

(Intercept)	state_fIN	state_fMA	state_fMN	state_fMO	state_fND	state_fPA	state_fR5
:	:	:	:	:	:	:	:
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
4	^	^	^	^	^	^	4

```
In [31]: # One factor is excluded to avoid multicollinearity
    print( length(unique(radon$state)) )
    print( ncol(dummies) - 1 )
    print( unique(radon$state) )
    print( colnames(dummies) )
[1] 8
[1] 7
```

```
[1] 8
[1] 7
[1] AZ IN MA MN MO ND PA R5
Levels: AZ IN MA MN MO ND PA R5
[1] "(Intercept)" "state_fIN" "state_fMA" "state_fMN" "state_fMO"
[6] "state_fND" "state_fPA" "state_fR5"
```

```
In [32]:
        # we can have more than one covariate
         summary( lm( log activity ~ floor + state, data=radon ) )
         Call:
         lm(formula = log activity ~ floor + state, data = radon)
         Residuals:
            Min
                     10 Median
                                     30
                                           Max
         -1.9164 -0.4840 -0.1048 0.3761 4.0670
         Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
         (Intercept) 1.21063
                                0.02361 51.271 < 2e-16 ***
                                0.01537 -27.669 < 2e-16 ***
         floor
                    -0.42532
         stateIN
                     0.23783
                                0.02530
                                         9.400 < 2e-16 ***
         stateMA
                     0.02023
                                0.02863
                                         0.707 0.479851
                                0.03157 12.880 < 2e-16 ***
         stateMN
                     0.40664
         stateM0
                     0.03513
                                0.02589 1.357 0.174768
                                0.02811 25.110 < 2e-16 ***
         stateND
                     0.70581
                                0.02663 14.710 < 2e-16 ***
         statePA
                     0.39171
                     0.10149
                                0.03042
                                        3.336 0.000852 ***
         stateR5
         - - -
         Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 0.6843 on 12481 degrees of freedom
         Multiple R-squared: 0.2094, Adjusted R-squared: 0.2089
```

F-statistic: 413.3 on 8 and 12481 DF, p-value: < 2.2e-16

Exercise:

- Compare the three nested models:
 - log_activity ~ 1
 - log_activity ~ floor
 - log_activity ~ floor + state
- Which model better describes the data?

Solution

```
In [33]: model0 <- lm(log_activity ~ 1, data=radon)
    model1 <- lm(log_activity ~ floor, data=radon)
    model2 <- lm(log_activity ~ floor + state, data=radon)
    anova_df <- anova(model0,model1,model2)
    anova_df[,"model"] <- c("Intercept", "floor", "floor+state")
    anova_df</pre>
```

A anova: 3×7

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)	model
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>
12489	7391.730	NA	NA	NA	NA	Intercept
12488	6464.799	1	926.9314	1979.7655	0.000000e+00	floor
12481	5843.637	7	621.1617	189.5278	4.397432e-268	floor+state

In []: