Vector Dark Matter from a Dark SU(2) Gauge Theory

Zhao-Huan Yu (余钊焕)

School of Physics, Sun Yat-Sen University https://yzhxxzxy.github.io

Based on Zexi Hu, Chengfeng Cai, Yi-Lei Tang, Zhao-Huan Yu, Hong-Hao Zhang, arXiv:2103.00220. JHEP

15th Workshop on TeV Physics Beijing, July 19, 2021

Vector Dark Matter

 \uparrow If extra dimensions exist, the first Kaluza-Klein mode of the U(1)_Y gauge boson could be a well motivated vector DM candidate

[Servant & Tait, hep-ph/0206071, NPB; HC Cheng, JL Feng & Matchev, hep-ph/0207125, PRL]

- Gauge theories in the 4D spacetime renormalizable vector DM models
- Stueckelberg/Brout-Englert-Higgs mechanism 👉 gauge boson mass
- At least one gauge boson acts as the DM particle
- For a dark U(1) gauge field A^{μ} , a Z_2 symmetry $A^{\mu} \rightarrow -A^{\mu}$ must be imposed to forbid the kinetic mixing with the U(1)_Y gauge field that leads to DM decays [Lebedev, HM Lee & Mambrini, 1111.4482, PLB; ...]
- Non-abelian dark gauge groups: 🍅 SU(2) [Hambye, 0811.0172, JHEP; ...]
 - $SU(2) \times U(1)$ [CW Chiang, Nomura & Tandean, 0811.0172, JHEP; ...]
 - $SU(2) \times SU(2)$ [Abe, Fujiwara, Hisano & Matsushita, 0811.0172, JHEP]
 - \mathbb{S} U(3) and general SU(N) [Gross, Lebedev & Mambrini, 1505.07480, JHEP; Di Chiara & Tuominen, 1506.03285, JHEP; ...]

Non-abelian Dark Gauge Symmetries

- A dark SU(2) gauge symmetry
 - Spontaneously broken by one SU(2) Higgs doublet
 - Three degenerate gauge bosons acting as vector DM particles
 - A remaining custodial global SU(2) symmetry ensures the stability of vector DM [Hambye, 0811.0172, JHEP]
 - Spontaneously broken by one real SU(2) Higgs triplet
 - **Two degenerate** gauge bosons acting as vector DM particles
 - A U(1) gauge symmetry remains, leading to a massless gauge boson serving as dark radiation [S Baek, P Ko & WI Park, 1311.1035, JHEP]
 - Spontaneously broken by two real SU(2) Higgs triplets (this work)
 - Three gauge bosons can obtain totally different masses
 - Two lighter gauge bosons are odd under a remaining Z_2 symmetry, and the lightest one is stable, acting as a vector DM particle
- \P For a general dark SU(N) gauge group, all the gauge bosons can be made massive if N-1 Higgs fields in the fundamental representation are introduced

Our Model

We consider a dark SU(2)_D gauge symmetry broken by two real Higgs triplets, Φ_a and X_a (a=1,2,3), leading to massive SU(2)_D gauge fields \tilde{A}^a_{ii}

$$\mathcal{L} \supset -\frac{1}{4} \tilde{A}^a_{\mu\nu} \tilde{A}^{a,\mu\nu} + \frac{1}{2} (D_\mu \Phi_a)^{\mathsf{T}} (D^\mu \Phi_a) + \frac{1}{2} (D_\mu X_a)^{\mathsf{T}} (D^\mu X_a) - V_{\mathsf{SM}} - V_{\mathsf{D}} - V_{\mathsf{P}}$$

$$\tilde{A}^a_{\mu\nu} = \partial_\mu \tilde{A}^a_{\nu} - \partial_\nu \tilde{A}^a_{\mu} + g_{\mathsf{D}} \varepsilon^{abc} \tilde{A}^{b,\mu} \tilde{A}^{c,\nu}, \quad D_\mu \Phi_a = \partial_\mu \Phi_a + g_{\mathsf{D}} \varepsilon^{acb} \tilde{A}^c_{\nu} \Phi_b, \quad D_\mu X_a = \partial_\mu X_a + g_{\mathsf{D}} \varepsilon^{acb} \tilde{A}^c_{\mu} X_b$$

SM potential
$$V_{\rm SM} = -\mu_0^2 |H|^2 + \lambda_0 |H|^4$$
 with the SU(2)_L Higgs doublet H

$$+\lambda_3\Phi_a\Phi_aX_bX_b+\lambda_4\Phi_a\Phi_a\Phi_bX_b+\lambda_5\Phi_aX_aX_bX_b+\lambda_6(\Phi_aX_a)^2$$

 $x \in \mathbb{R}$ The Lagrangian respects an accidental Z_2 symmetry

$$\Phi \to P_D \Phi = -\Phi$$
, $X \to P_D X = -X$ with dark parity $P_D = \text{diag}(-1, -1, -1)$

$$\P$$
 O(3)_D vectors $\Phi_a \to R_{ab}\Phi_b$, $X_a \to R_{ab}X_b$, $\forall R \in O(3)_D$

$$\mathfrak{P}_{\mathbb{Q}}$$
 O(3)_D axial vector $\tilde{A}^a_{\mu} \to \det(R)R_{ab}\tilde{A}^b_{\mu}$ $\stackrel{\longleftarrow}{\longleftarrow}$ \tilde{A}^a_{μ} is $P_{\mathbb{Q}}$ -even

Backups

Spontaneous Symmetry Breaking

We can always rotate the axes to a configuration that the z-axis is along the $\langle \Phi_a \rangle$ direction and the y-axis lies inside **the plane**

Without loss of generality, the Higgs fields can be expanded as

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_0 + \tilde{h}_0 \end{pmatrix}, \quad \Phi = \begin{pmatrix} \phi_1 \\ \phi_2 \\ v_1 + \phi_3 \end{pmatrix}, \quad X = \begin{pmatrix} \chi_1 \\ v_2 + \chi_2 \\ v_3 + \chi_3 \end{pmatrix}$$

 \uparrow The VEV configuration is preserved under the **reflection** with respect to the y-z **plane**

$$P'_{\rm D} = \text{diag}(-1, +1, +1) \in O(3)_{\rm D}$$

A Z_2' symmetry remains after the spontaneous breaking of the global $O(3)_D$ symmetry

$$\stackrel{\bullet}{\bullet} P'_{\rm D}$$
-odd fields ϕ_1 , χ_1 , \tilde{A}^2_{μ} , \tilde{A}^3_{μ}

 $\stackrel{\checkmark}{\bullet}$ All the other fields are P'_{D} -even

Dark Gauge Bosons

 \red{mass} The mass-squared matrix for the **dark gauge bosons** $(\tilde{A}^1_\mu,\,\tilde{A}^2_\mu,\,\tilde{A}^3_\mu)$ is

$$\mathcal{M}_{A}^{2} = g_{D}^{2} \begin{pmatrix} v_{123}^{2} & & \\ & v_{13}^{2} & -v_{2}v_{3} \\ & -v_{2}v_{3} & v_{2}^{2} \end{pmatrix}, \qquad v_{13} \equiv \sqrt{v_{1}^{2} + v_{3}^{2}}, \quad v_{23} \equiv \sqrt{v_{2}^{2} + v_{3}^{2}} \\ & v_{123} \equiv \sqrt{v_{1}^{2} + v_{2}^{2} + v_{3}^{2}} \end{pmatrix}$$

 \red{h} The masses squared for the mass eigenstates $(A_{\mu}^1,\,A_{\mu}^2,\,A_{\mu}^3)$ are

$$m_{A^{1}}^{2} = g_{D}^{2} v_{123}^{2}, \quad m_{A^{2}}^{2} = \frac{g_{D}^{2}}{2} \left(v_{123}^{2} - \sqrt{v_{123}^{4} - 4v_{1}^{2} v_{2}^{2}} \right), \quad m_{A^{3}}^{2} = \frac{g_{D}^{2}}{2} \left(v_{123}^{2} + \sqrt{v_{123}^{4} - 4v_{1}^{2} v_{2}^{2}} \right)$$

$$\mathcal{O}_{A} = \begin{pmatrix} 1 & & \\ & c_{\theta} & -s_{\theta} \\ & s_{\theta} & c_{\theta} \end{pmatrix}, \quad s_{\theta} \equiv \sin \theta = \frac{\sqrt{2}\nu_{2}\nu_{3}}{\sqrt{\nu_{123}^{4} - 4\nu_{1}^{2}\nu_{2}^{2} + (\nu_{2}^{2} - \nu_{1}^{2} - \nu_{3}^{2})\sqrt{\nu_{123}^{4} - 4\nu_{1}^{2}\nu_{2}^{2}}}, \quad c_{\theta} \equiv \cos \theta$$

Monzero v_1 , v_2 , and v_3 **No degeneracy** in the mass eigenstates

 $\stackrel{\bullet}{\bullet}$ Mass hierarchy $m_{A^2} \leq m_{A^3} \leq m_{A^1}$ $\stackrel{\bullet}{\bullet}$ $P'_{\rm D}$ -even A^1_{μ} $\stackrel{\bullet}{\bullet}$ $P'_{
m D}$ -odd A^2_{μ} , A^3_{μ}

The lightest gauge boson A^2 is a stable vector DM candidate

Dark Goldstone and Higgs Bosons

$$\stackrel{\longleftarrow}{\bullet} P'_{\text{D}}$$
-even $G_1 = v_{123}^{-1}(v_1\phi_2 + v_3\chi_2 - v_2\chi_3)$

$$\stackrel{\bullet}{\bullet} P_{\rm D}' - {\rm odd} \ G_2 = (c_\theta^2 v_1^2 + s_\theta^2 v_2^2 + c_\theta^2 v_3^2)^{-1/2} [-c_\theta v_1 \phi_1 + (s_\theta v_2 - c_\theta v_3) \chi_1]$$

$$\stackrel{\bullet}{\bullet} P_{\mathrm{D}}' - \mathbf{odd} \ G_3 = (s_{\theta}^2 v_1^2 + c_{\theta}^2 v_2^2 + s_{\theta}^2 v_3^2)^{-1/2} [s_{\theta} v_1 \phi_1 + (c_{\theta} v_2 + s_{\theta} v_3) \chi_1]$$

Dark Higgs bosons orthogonal to these Goldstone bosons can be chosen as

$$\tilde{h}_1 = v_{23}^{-1}(v_2\chi_2 + v_3\chi_3), \quad \tilde{h}_2 = (v_{23}v_{123})^{-1}(v_{23}^2\phi_2 - v_1v_3\chi_2 + v_1v_2\chi_3), \quad \tilde{h}_3 = \phi_3$$

 \P These Higgs bosons mix with the SM one $ilde{h}_0$, and the mass-squared matrix \mathcal{M}^2_{κ} for $(\tilde{h}_0, \tilde{h}_1, \tilde{h}_2, \tilde{h}_3)$ can be diagonalized by an orthogonal matrix \mathcal{O}_h :

$$\mathcal{O}_h^{\mathrm{T}} \mathcal{M}_h^2 \mathcal{O}_h = \mathrm{diag}(m_{h_0}^2, m_{h_1}^2, m_{h_2}^2, m_{h_3}^2)$$

 \P The **Higgs mass eigenstates** (h_0, h_1, h_2, h_3) are defined by $\tilde{h}_i = \mathcal{O}_{h,i}h_i$

 \mathbf{V} We require h_0 to be the SM-like Higgs boson which receives the most contribution from \tilde{h}_0 , and adopt a mass hierarchy convention $m_{h_1} \leq m_{h_2} \leq m_{h_3}$

DM-nucleon Scattering

$$\kappa_i = \frac{2g_{\rm D}^2}{v_0} \left\{ \frac{\mathcal{O}_{h,1i}}{v_{23}} (s_\theta v_2 - c_\theta v_3)^2 - \frac{\mathcal{O}_{h,2i} v_1 v_2}{v_{23} v_{123}} (s_{2\theta} v_2 - c_{2\theta} v_3) + \mathcal{O}_{h,3i} c_\theta^2 v_1 \right\}$$

 \blacktriangle Spin-independent (SI) A^2 -nucleon scattering cross section

$$\sigma_N^{ ext{SI}} = rac{G_{A^2N}^2 \mu_{A^2,N}^2}{4\pi m_{A^2}^2}, \quad \mu_{A^2,N} = rac{m_{A^2} m_N}{m_{A^2} + m_N}, \quad G_{A^2N} = -m_N \sum_q f_q^N \sum_{i=0}^3 rac{\kappa_i \mathcal{O}_{h,0i}}{m_{h_i}^2}$$

 \oint_a^N are the nucleon form factors for quarks

The scattering cross section $\sigma_N^{\rm SI}$ is constrained by the **XENON1T direct detection** experiment [XENON Coll., 1805.12562, PRL]

The future **LZ direct detection** experiment could improve the sensitivity [Mount *et al.*, 1703.09144]

DM Annihilation

The DM relic density is determined by **DM annihilation** in the early Universe

would be significant if their masses are close

We utilize micrOMEGAs to evaluate the freeze-out effective annihilation cross section $\langle \sigma_{\rm ann} \nu \rangle_{\rm FO}$ and the relic density $\Omega_{\rm DM} h^2$ including the coannihilation effect

In the present Universe, A^2A^2 annihilation basically occurs in the low-velocity limit, and the corresponding cross section $\langle \sigma_{\rm ann} \nu \rangle_0$ is constrained by the **Fermi-LAT** γ -ray observations of 27 dwarf galaxies for 11 years [Hoof, Geringer-Sameth & Trotta, 1812.06986, JCAP]

Random Parameter Scan

Free parameters: g_D , λ_0 , λ_1 , λ_2 , λ_3 , λ_4 , λ_5 , λ_6 , λ_{10} , λ_{20} , λ_{30} , ν_1 , ν_2 , ν_3

Random scan in logarithmic scales within the following ranges

$$\begin{split} 10^{-3} < g_D, \ \lambda_0, \ \lambda_1, \ \lambda_2, \ |\lambda_3|, \ |\lambda_4|, \ |\lambda_5|, \ |\lambda_6|, \ |\lambda_{10}|, \ |\lambda_{20}|, \ |\lambda_{30}| < 1 \\ 10 \ \text{GeV} < \nu_1, \ \nu_2, \ \nu_3 < 10^3 \ \text{GeV} \end{split}$$

Require the **SM-like Higgs mass** m_{h_0} lying within the 3σ range of the measured value 125.10 ± 0.14 GeV [PDG 2020]

The SM-like Higgs boson h_0 is further tested 95% C.L. by Lilith based on current LHC Higgs measurements [Kraml et al., 1908.03952, SciPost Phys.]

The exotic Higgs bosons h_1 , h_2 , and h_3 should pass the constraints from direct searches at the LEP and the LHC [Falkowski *et al.*, 1502.01361, JHEP]

The deviations of the electroweak precision observables Γ_Z , R_ℓ , R_b , m_W , and $\sin\theta_{\rm eff}^{\,\ell}$ due to one-loop corrections of the exotic Higgs bosons should be within the 2σ ranges of the experimental values [PDG 2020]

Require the predicted **DM relic density** $\Omega_{\rm DM}h^2$ lying within the 3σ range of the Planck measured value 0.1200 ± 0.0012 [Planck coll., 1807.06209, A&A]

Red points: excluded by Fermi-LAT

Purple points: excluded by both XFNON1T & Fermi-LAT

Green points survive from all bounds

) The $h_0/h_1/h_2$ resonance effects and h_1h_1 threshold effects could result in nonstandard values of $\langle \sigma_{\rm ann} \nu \rangle_{\rm FO}$

 10^{-34}

 10^{1}

 10^{3}

 10^{2}

 m_{A^2} (GeV)

Benchmark Points (BMPs)

- **BMP1**: standard (sd) $\langle \sigma_{\text{ann}} \nu \rangle_{\text{FO}} \simeq \langle \sigma_{\text{ann}} \nu \rangle_{\text{sd}}$
- **BMP2**: h_1 resonance $\langle \sigma_{\text{ann}} \nu \rangle_{\text{FO}} > \langle \sigma_{\text{ann}} \nu \rangle_{\text{sd}}$
- SMP3: h_0 resonance $\langle \sigma_{\text{ann}} v \rangle_{\text{FO}} < \langle \sigma_{\text{ann}} v \rangle_{\text{sd}}$
- \Longrightarrow BMP4: h_1h_1 threshold $\langle \sigma_{\rm ann} \nu \rangle_{\rm FO} > \langle \sigma_{\rm ann} \nu \rangle_{\rm sd}$

	BMP1	BMP2	BMP3	BMP4
g_{D}	0.232	0.392	0.190	0.293
λ_0	0.130	0.171	0.129	0.128
λ_1	0.112	0.757	0.0134	0.431
λ_2	0.0631	0.0830	0.0312	0.0103
λ_3	0.00144	-0.00810	0.00362	0.00877
λ_4	0.00654	-0.0367	-0.0228	-0.0616
λ_5	0.00795	-0.0207	-0.0200	0.00587
λ_6	0.00177	0.0414	0.136	0.578
λ_{10}	0.0124	0.0353	-0.00189	-0.0574
λ_{20}	0.00105	-0.108	-0.00107	0.0024
λ_{30}	0.00117	0.00371	-0.0115	0.00621
v_1 (GeV)	714	179	692	973
v_2 (GeV)	647	485	353	410
v_3 (GeV)	35.3	12.0	247	204
m_{A^1} (GeV)	224	203	155	315
m_{A^2} (GeV)	149	70.2	62.2	117
m_{A^3} (GeV)	167	190	142	293
m_{h_1} (GeV)	51.3	147	182	118
m_{h_2} (GeV)	462	402	215	1140
m_{h_3} (GeV)	676	441	412	1810
$\frac{\langle \sigma_{\rm ann} \nu \rangle_{\rm FO}}{\rm cm^3/s}$	1.88×10^{-26}	4.52×10^{-26}	7.55×10^{-27}	3.87×10^{-20}
$\frac{\langle \sigma_{\rm ann} \nu \rangle_0}{\rm cm^3/s}$	2.10×10^{-26}	3.89×10^{-30}	1.93×10^{-28}	6.96×10^{-29}
$\sigma_N^{\rm SI} ({\rm cm}^2)$	2.02×10^{-47}	1.41×10^{-47}	1.04×10^{-50}	8.58×10^{-4}
$\Omega_{\rm DM} h^2$	0.122	0.118	0.117	0.117
17141				

Generalization to Arbitrary $SO(N)_D$ Cases

Our vector DM setup for a dark $SU(2)_D \simeq SO(3)_D$ gauge theory can be generalized to a dark $SO(N)_D$ (N>3) gauge theory

 $\stackrel{\bullet}{\text{--}}$ Introduce N-1 real Higgs multiplets in the N-dimensional fundamental representation to completely break the $SO(N)_D$ gauge symmetry

 $\stackrel{ ext{}}{\hookrightarrow}$ We can prove that all renormalizable terms in the Lagrangian are invariant under a **dark parity** $P_{\rm D} \in {\rm O}(N)_{\rm D}$ with ${\rm det}(P_{\rm D}) = -1$

ightharpoonup The Lagrangian accidentally respects a global $O(N)_D$ symmetry

♠ All the N-1 linearly independent VEVs of the Higgs multiplets determine a (N-1)-dimensional hypersurface in the representation space

The reflection $P_{\rm D}'\in {\rm O}(N)_{\rm D}$ with respect to this hypersurface indicates a remaining Z_2' symmetry that ensures the stability of the lightest $P_{\rm D}'$ -odd dark gauge boson, which serves as a vector DM candidate

N(N-1)/2 gauge fields A^{μ}_{ab} $(a,b=1,2,\cdots N)$ satisfying $A^{\mu}_{ab}=-A^{\mu}_{ba}$

 $\stackrel{\longleftarrow}{\bullet}$ N-1 fields A^{μ}_{a1} (a>1) are $P'_{\rm D}$ -odd $\stackrel{\longleftarrow}{\bullet}$ The other A^{μ}_{ab} $(a\neq b)$ are $P'_{\rm D}$ -even

Summary

- We propose a vector DM model with a dark SU(2)_D gauge symmetry that is spontaneously broken by two real SU(2)_D Higgs triplets
- All dark gauge bosons become massive, and the lightest one is a vector DM candidate whose stability is guaranteed by a **remaining** Z'_2 **symmetry**
- We study the parameter space constrained by the Higgs and electroweak measurements, exotic Higgs searches, the DM relic density, and direct and indirect detection experiments
- We prove that the similar methodology can be used to construct vector DM models from an arbitrary SO(N) gauge group

ector DM Model Phenomenology Generalization Summary Backup.

O 000 00000 O • 0000

Summary

- We propose a vector DM model with a dark SU(2)_D gauge symmetry that is spontaneously broken by two real SU(2)_D Higgs triplets
- All dark gauge bosons become massive, and the lightest one is a vector DM candidate whose stability is guaranteed by a **remaining** Z'_2 **symmetry**
- We study the parameter space constrained by the Higgs and electroweak measurements, exotic Higgs searches, the DM relic density, and direct and indirect detection experiments
- We prove that the similar methodology can be used to construct vector DM models from an arbitrary SO(N) gauge group

Thanks for your attention!

Mass-squared Matrix for the Neutral Higgs Bosons

Minimization conditions for the potential give

$$\begin{split} \mu_0^2 &= \lambda_0 v_0^2 + \lambda_{10} v_1^2 + \lambda_{20} v_{23}^2 + \lambda_{30} v_1 v_3 \\ \mu_1^2 &= 2\lambda_1 v_1^2 + \lambda_3 v_{23}^2 + \lambda_4 v_1 v_3 + \frac{1}{2} \lambda_{10} v_0^2 \\ \mu_2^2 &= 2\lambda_2 v_{23}^2 + \lambda_3 v_1^2 + \lambda_5 v_1 v_3 + \frac{1}{2} \lambda_{20} v_0^2 \\ \mu_3^2 &= \lambda_4 v_1^2 + \lambda_5 v_{23}^2 + 2\lambda_6 v_1 v_3 + \frac{1}{2} \lambda_{30} v_0^2 \end{split}$$

Mass-squared matrix for the neutral Higgs bosons $(\tilde{h}_0, \tilde{h}_1, \tilde{h}_2, \tilde{h}_3)$

$$\mathcal{M}_{\hbar}^{2} = \begin{pmatrix} 2\lambda_{0}v_{0}^{2} & 2\lambda_{20}v_{0}v_{23} + \frac{\lambda_{30}v_{0}v_{1}v_{3}}{v_{23}} & \frac{\lambda_{30}v_{0}v_{2}v_{123}}{v_{23}} & 2\lambda_{10}v_{0}v_{1} + \lambda_{30}v_{0}v_{3} \\ * & 8\lambda_{2}v_{23}^{2} + 4\lambda_{5}v_{1}v_{3} + \frac{2\lambda_{6}v_{1}^{2}v_{3}^{2}}{v_{23}^{2}} & 2\lambda_{5}v_{2}v_{123} + \frac{2\lambda_{6}v_{1}v_{2}v_{3}v_{123}}{v_{23}^{2}} & 4\lambda_{3}v_{1}v_{23} + 2\lambda_{5}v_{3}v_{23} + \frac{2v_{1}v_{3}(\lambda_{4}v_{1} + \lambda_{6}v_{3})}{v_{23}} \\ * & * & \frac{2\lambda_{6}v_{2}^{2}v_{123}^{2}}{v_{23}^{2}} & \frac{2\lambda_{4}v_{1}v_{2}v_{123}}{v_{23}} + \frac{2\lambda_{6}v_{2}v_{3}v_{123}}{v_{23}} \\ * & * & 8\lambda_{1}v_{1}^{2} + 4\lambda_{4}v_{1}v_{3} + 2\lambda_{6}v_{3}^{2} \end{pmatrix}$$

Backups

Corrections to Electroweak Gauge Boson Self-energies

The shifts to the $g^{\mu\nu}$ coefficients of the electroweak gauge boson vacuum polarization amplitudes contributed by **one-loop corrections** from the **exotic** Higgs bosons are given by

$$\delta\Pi_{\gamma\gamma}(p^2) = \delta\Pi_{Z\gamma}(p^2) = 0$$

$$\delta\Pi_{WW}(p^2) = \frac{m_W^2}{4\pi^2v_0^2} \left\{ \sum_{i=0}^3 \mathcal{O}_{h,i0}^2 \left[\frac{m_{h_i}^2}{4} \ln m_{h_i}^2 + F(p^2, m_W^2, m_{h_i}^2) \right] - \frac{m_{h_{\rm SM}}^2}{4} \ln m_{h_{\rm SM}}^2 - F(p^2, m_W^2, m_{h_{\rm SM}}^2) \right\}$$

$$\delta\Pi_{ZZ}(p^2) = \frac{m_Z^2}{4\pi^2v_0^2} \left\{ \sum_{i=0}^3 \mathcal{O}_{h,i0}^2 \left[\frac{m_{h_i}^2}{4} \ln m_{h_i}^2 + F(p^2, m_Z^2, m_{h_i}^2) \right] - \frac{m_{h_{\rm SM}}^2}{4} \ln m_{h_{\rm SM}}^2 - F(p^2, m_Z^2, m_{h_{\rm SM}}^2) \right\}$$

$\langle \sigma_{\rm ann} v \rangle_{\rm FO}$ versus m_{A^2}/m_{h_i}

Backups

Comparison between $\langle \sigma_{\rm ann} v \rangle_{\rm FO}$ and $\langle \sigma_{\rm ann} v \rangle_{\rm 0}$

