声明: 1.本人不知道也不可能知道试题的标准答案。以下解答为本人书写, 仅供参考。

2.本人绝对未在考试中实施任何作弊行为,绝对未将试卷带出考场,也绝对未在考试结束前将 试题和答案透露给任何人、也绝对不会将试题和答案透露给工大以外的学生。

3. 仅凭记忆整理,可能不尽准确。有些题目具体数据不记得了,只记得大致方法。

哈尔滨工业大学(深圳)2021 学年秋季学期 代数与几何(期中)试题 A (回忆版本)

【2021.11.13 16:00-17:30】(此卷满分30分)

-、填空题(每题 1 分,共 5 分)

- 1. A_{11} - A_{12} =-4 (提示: 清楚代数余子式的计算方法即可求解)
- 2. L与π的位置关系: L在面上(不要写重合)
- 3. $\alpha \alpha^{T} = (3)$ (提示: $\alpha^{T} \alpha \alpha^{T} \alpha = \alpha^{T} (\alpha \alpha^{T}) \alpha = \alpha \alpha^{T} \alpha^{T} \alpha$)
- 4. $A^* = 0$ (提示: A 为 4 阶方阵但其秩小于 3)

5.
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} A^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} (提示: 初等变换法)$$

二、选择题(每题1分,共5分)

1.已知四阶行列式第一行元素为……, 第三行元素的余子式为……, 求 x=3 (C)

(提示: 乘串行得到结果为 0, 注意余子式和代数余子式的区别。本题易误选 <math>x=-3)

- 2. B = CA, C 为可逆方阵,则(B)
- (A) R(A) > R(B) (B) R(A) = R(B)
- (C) R(A) < R(B) (D) R(A)与 R(B)关系不能确定
- 3. 以下属于反对称矩阵的是(D)

4.
$$|(A^*)^{-1}| = (C. \frac{1}{|A|^{n-1}})$$

5.两条直线的位置关系是

(A) 相交 (B) 平行 (C) 垂直 (D) 异面

判断可用参数式方程(将一条直线的参数式方程代到另一条直线里去,看参数 t 是否有解),也可以用混合积(取两个方向向量,再在两直线上分别找一点构成第三个向量,计算判断这三个向量混合积是否为 0)

三、(5 分) 求过点 M(2,0,-3) 且过直线 $L:\begin{cases} x-2y+4z=7\\ 3x+5y-2z=-1 \end{cases}$ 的平面方程。

解: 设平面方程为Ax + By + Cz + D = 0, 则由平面过M点知 2A - 3C + D = 0 直线L的方向向量为 $\vec{s} = (a, b, c)$, $\vec{s}_1 = (1, -2, 4)$, $\vec{s}_2 = (3, 5, -2)$

则可取 $\vec{s}=\vec{s}_1\times\vec{s}_2=(-16,14,11)$,因而由平面法向量垂直于 \vec{s} 可得 - 16A + 14B + 11C = 0

取直线上一点 $N(-1, \frac{3}{2}, \frac{11}{4})$,因而由平面过N有 $-A + \frac{3}{2}B + \frac{11}{4}C + D = 0$

$$\overrightarrow{MN} = (-3, \frac{3}{2}, \frac{23}{4})$$
,因而由平面垂直于 \overrightarrow{MN} 有 $-3A + \frac{3}{2}B + \frac{23}{4}C = 0$

联立解得
$$\begin{cases} B = \frac{59}{18}C \\ A = \frac{64}{18}C \end{cases}$$
,因此平面方程为 $64x + 59y + 18z - 74 = 0$
$$D = \frac{-74}{18}C$$

四、
$$(5 分)$$
已知 $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 3 & 5 \\ 0 & 0 & 1 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, 计算:$

 $(1) C = A^{-1}B;$

(2) $|2E + (CC^T)^3|$, 其中 E 为阶数合适的单位矩阵。

解: (1) 法一:
$$A^{-1} = \begin{pmatrix} 2 & -1 & 0 & 1 \\ -\frac{3}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{3}{2} \\ 1 & 1 & -1 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
 (提示: 初等变换法),得 $C = \begin{pmatrix} 2 \\ -2 \\ 1 \\ 0 \end{pmatrix}$

法二: $(A \mid B)$ — $(E \mid A^{-1}B)$ 同理可得 C

(2) 易得
$$CC^T = 9$$
,则 $|2E + (CC^T)^3| = |2E + (C^TC)^2CC^T| = |2E + 81CC^T|$
= $2^3 |2E_1 + 9C^TC| = 2^3(2 + 9^3) = 5848$.

五、(5 分)已知 A为n阶方阵.

- (1) B为 $m \times n$ 矩阵。若BA=0, B \neq 0, 证明A不可逆;
- (2) C 为方阵, 若 CA 可用有限个初等矩阵的乘积表示, 证明 A 可逆;
- (3) 若对任意的 $n \times 1$ 矩阵 α , $AX = \alpha$ 都有解,证明对任意的 $n \times 1$ 矩阵 β , $A^*X = \beta$ 都有解,且解是唯一的。

证明:

- (1) 由 BA=0,有 R(BA)=0,因此 $R(A)+R(B) \le n$,由于 $B \ne 0$,则有R(B) > 0,故 R(A) < n,故 A 不可逆。
- (2) $CA = P_1...P_n$, 两边取行列式得: $|A||C| = |P_1||P_2|...|P_n|$ 由 $P_1,...,P_n$ 都是可逆的,因此 $|P_1||P_2|...|P_n| \neq 0$,因此 $|A||C| \neq 0$ 因此 $|A| \neq 0$,所以A可逆。
- (3) 解一: (Cramer 法则)

因为对任意的 $n \times 1$ 矩阵 α , $AX = \alpha$ 都有解,所以 $|A| \neq 0$,所以A可逆。所以 A^{-1} 存在 所以 $A^* = |A| A^{-1}$, $|A^*| = |A|^{n-1} \neq 0$,所以方程组 $A^*X = \alpha$ 的系数行列式不为0 因此,对任意的 $n \times 1$ 矩阵 β , $A^*X = \beta$ 都有解,且解是唯一的。

解二:

因为对任意的 $n \times 1$ 矩阵 α , $AX = \alpha$ 都有解,所以 $|A| \neq 0$,所以A可逆。所以 A^{-1} 存在 所以 $A^* = |A|$ A^{-1} ,所以方程组 $A^*X = \beta$ 可化为 |A| $A^{-1}X = \beta$,两边同时左乘A和除以 |A| 得 $X = \frac{A\beta}{|A|}$,所以对于一个确定的 β ,X由A唯一确定。因此,对任意的 $n \times 1$ 矩阵 β , $A^*X = \beta$ 都有解,且解是唯一的。

六、 $(5 \, \mathbf{\mathcal{G}})$ 已知 $A \, \mathbf{\mathcal{G}}_n \times m$ 矩阵,证明:

存在非零列向量
$$X_0$$
, $X_0=\begin{pmatrix}k_1\\k_2\\\dots\\k_m\end{pmatrix}$, $AX_0=0$, 当且仅当 $R(A)< m$ 。

证明:(可自行对照课本第 4 章,以下仅供参考)首先,由 $R(A) \leq min(m,n)$,必有 $R(A) \leq m$. 再证明 R(A) = m时不成立:假设 R(A) = m,由 $AX_0=0$,有 $R(AX_0)=0$,因此 $R(A)+R(X_0)$ $\leq m$,由于 R(A) = m,故 $R(X_0)=0$,与题设矛盾。故只能 R(A) < m。

接下来,我们证明 R(A) < m 时,总能找到一个符合题意的 X_0 :

由R(A) < m,可知存在有限个初等矩阵 $P_1, \ldots, P_n, Q_1, \ldots, Q_s$,使得 $P_1, \ldots, P_n A Q_1, \ldots Q_s = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$. 由 $P_1, \ldots, P_n, Q_1, \ldots, Q_s$ 都是可逆矩阵,因此令 $P = P_1, \ldots, P_n, Q = Q_1, \ldots, Q_s$,则P、Q也可逆.

即存在可逆矩阵
$$P$$
、 Q , $PAQ = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$ 。设 X 为一 $m \times 1$ 矩阵, $X = \begin{pmatrix} 0_{r \times 1} \\ \alpha_{(m-r) \times 1} \end{pmatrix}$, $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \dots \\ a_{m-r} \end{pmatrix}$,

且 a_1, a_2, \dots, a_{m-r} 至少有一个不为0.在 $PAQ = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$ 的左右两边同时右乘X,

得 $PAQX = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix} X = 0$, 再在该式左右两边同时左乘 P^{-1} , 得AQX = 0.

下面证明QX非零:由于X非零,故 $R(X) > 0.则<math>R(QX) \ge R(X) + R(Q) - m = R(X)$,因此R(QX) > 0,故QX非零.则QX即为所求的 X_0 . #