February 3, 2022 Day 1 Tasks

askask Thai (THA)

Ask Ask

บนเส้นจำนวนตั้งแต่ $0,\dots,N-1$ มีระเบิดซ่อนอยู่สองลูกภายในบางพิกัดระหว่าง 0 ถึง N-1

คุณสามารถส่งคำถามได้ โดยส่งเซต S ซึ่งเป็นเซตย่อยของจำนวนเต็มระหว่าง 0 ถึง N-1 ไปถาม อุปกรณ์ช่วยกู้ ระเบิดจะทำการตอบคำถามโดยตอบ ${\tt true}$ หากมีระเบิดที่มีพิกัดอยู่ภายใน S อย่างน้อยหนึ่งลูก และตอบ ${\tt false}$ หากไม่มีระเบิดที่มีพิกัดอยู่ภายใน S

เนื่องจากคุณเป็นนักคอมพิวเตอร์ที่กำลังทำงานจากบ้าน (work from home) อยู่ คุณจึงไม่สามารถสั่งการอุปกรณ์ ช่วยกู้ระเบิดได้ทันที สิ่งที่คุณทำได้คือเตรียมรายการคำถามทั้งหมดไว้ก่อน หลังจากนั้นอุปกรณ์กู้ระเบิดจะตอบ คำถามทั้งหมดภายในครั้งเดียว

งานของคุณคือเขียนโปรแกรมเพื่อหาว่าระเบิดทั้งสองลูกนั้นอยู่ที่พิกัดใด

รายละเอียดการเขียนโปรแกรม

คุณจะต้องเขียนฟังก์ชันต่อไปนี้:

vector<int> find bombs(int N)

- ฟังก์ชันนี้จะถูกเรียก **หลายครั้ง** (รับประกันว่าไม่เกิน 32 ครั้งต่อการตรวจหนึ่งข้อมูลทดสูอบ)
- ฟังก์ชันนี้สามารถเรียกฟังก์ชัน analyse ได้เพียงครั้งเดียวภายในการเรียกใช้ฟังก์์ชันนี้หนึ่งครั้ง
- ฟังก์ชันนี้จะต้องคืนค่าเวกเตอร์ขนาด 2 โดยสมาชิกของเวกเตอร์ระบุพิกัดของระเบิดทั้งสอง เรียงจากน้อยไป มาก

คุณสามารถเรียกฟังก์ชันต่อไปนี้ได้หนึ่งครั้งต่อการเรียกใช้ find bombs หนึ่งครั้ง:

vector<bool> analyse(vector<vector<int>> Z)

- ullet Z เป็นเวกเตอร์ของเซต S ที่จะส่งไปถาม โดยฟังก์ชันนี้จะคืนค่าเป็นเวกเตอร์ที่แต่ละตัวระบุคำตอบของ แต่ละคำถามตามลำดับของเซตที่ส่งไป
- ullet ขนาดของ Z จะต้องมีค่าไม่เกิน N
- ullet เวกเตอร์ S แต่ละตัวใน Z จะต้องมีขนาดไม่เกิน N สมาชิกแต่ละตัวจะต้องอยู่ระหว่าง 0 ถึง N-1 และ ห้ามมีสมาชิกที่ซ้ำกันภายใน S

ขอบเขต

• $N \le 1024$

ปัญหาย่อย

- 1. (4 คะแนน) $N=2,\widetilde{Q}=1$ และรับประกันว่าระเบิดทั้งสองลูกอยู่ภายในพิกัดเดียวกัน
- 2. (6 คะแนน) $N=4,\widetilde{Q}=2$ และรับประกันว่าระเบิดทั้งสองลูกอยู่ภายในพิกัดเดียวกัน
- 3. (9 คะแนน) $N=8,\widetilde{Q}=3$ และรับประกันว่าระเบิดทั้งสองลูกอยู่ภายในพิกัดเดียวกัน
- 4. (28 คะแนน) $N=1024, \widetilde{Q}=10$ และรับประกันว่าระเบิดทั้งสองลูกอยู่ภายในพิกัดเดียวกัน
- 5. (53 คะแนน) N=64

ปัญหาย่อยจะมีการให้คะแนนแบบพิเศษ ดังต่อไปนี้ (โดยให้ Q แทนขนาดของเวกเตอร์ Z ที่ส่งไปถาม)

การให้คะแนนสำหรับปัญหาย่อยที่ 1 ถึง 4

เงื่อนไข	อัตราส่วนของคะแนนที่ได้ต่อคะแนนเต็มของปัญหาย่อยนั้น ๆ
$\widetilde{Q} < Q \leq N$	$rac{N-Q}{N-\widetilde{Q}}$
$Q \leq \widetilde{Q}$	1

การให้คะแนนสำหรับปัญหาย่อยที่ 5

เงื่อนไข	คะแนนที่ได้
$40 < Q \le 64$	$85-rac{5}{4}Q$
$23 < Q \leq 40$	$18\left(rac{40-Q}{17} ight)^2+35$
$Q \leq 23$	53

สำหรับการตรวจในข้อนี้ ในแต่ละปัญหาย่อยจะมีหลายข้อมูลทดสอบ โดยในแต่ละข้อมูลทดสอบอาจมีการเรียกใช้ ฟังก์ชัน ${
m find_bombs}$ หลายครั้ง (รับประกันว่าไม่เกิน 32 ครั้ง) ผลลัพธ์ Q ของแต่ละข้อมูลทดสอบคือค่า **มากสุด** ระหว่าง Q จากการเรียก ${
m find_bombs}$ แต่ละครั้ง และคะแนนของแต่ละปัญหาย่อยคือคะแนน **ต่ำสุด** ระหว่าง คะแนนของแต่ละข้อมูลทดสอบ

ตัวอย่าง

หมายเหตุ: ตัวอย่างนี้ไม่สอดคล้องกับข้อมูลทดสอบปัญหาย่อยใดเลย เป็นเพียงตัวอย่างคร่าว ๆ เท่านั้น เริ่มต้น เกรดเดอร์ทำการเรียก find_bombs ดังนี้ (สมมติว่าระเบิดซ่อนอยู่ที่พิกัด 0 และ 3)

หลังจากนั้น วิธีการหนึ่งที่เป็นไปได้คือ ผู้เข้าแข่งขันส่งคำถามโดยการเรียกใช้ฟังก์ชันดังนี้

```
analyse([[0], [1], [2], [3]])
```

โดยฟังก์ชันจะคืนค่าเวกเตอร์ [true, false, false, true] หลังจากนั้นผู้เข้าแข่งขันจึงทราบว่าระเบิด อยู่ที่ตำแหน่ง 0 และ 3 และคืนค่า [0, 3] มาในรูปเวกเตอร์

ตัวอย่างต่อมาสอดคล้องกับข้อมูลทดสอบในปัญหาย่อยที่ 2 ดังนี้ เริ่มต้น เกรดเดอร์ทำการเรียก $find_bombs$ ดังนี้ (สมมติว่าระเบิดซ่อนอยู่ที่พิกัด $find_bombs$

```
find_bombs(4)
```

หลังจากนั้น วิธีการหนึ่งที่เป็นไปได้คือ ผู้เข้าแข่งขันส่งคำถามโดยการเรียกใช้ฟังก์ชันดังนี้

```
analyse([[0, 2, 3]])
```

ฟังก์ชันจะคืนค่า [false] ทำให้ผู้เข้าแข่งขันทราบว่าไม่มีระเบิดอยู่ในตำแหน่ง $0,\ 2$ และ 3 จึงทำให้สรุปได้ว่า ระเบิดทั้งสองอยู่ที่พิกัด 1 อย่างแน่นอน ผู้เข้าแข่งขันจึงทำการคืนค่า $[1,\ 1]$ มาในรูปเวกเตอร์

เกรดเดอร์ตัวอย่าง

เกรดเดอร์ตัวอย่างอ่านข้อมูลในรูปแบบดังต่อไปนี้:

ullet บรรทัดที่ 1: N x_1 x_2

(เมื่อ x_1 และ x_2 แทนพิกัดของระเบิดลูกที่หนึ่งและสองตามลำดับ)

- หากเงื่อนไขของการถามถูกต้อง และคำตอบถูกต้อง เกรดเดอร์ตัวอย่างจะส่งออกผลลัพธ์ Correct Answer: Q เมื่อ Q แทนขนาดของเวกเตอร์ที่ส่งไปถาม
- หากเงื่อนไขของการถามถูกต้องแต่คำตอบผิด
 - o หากคำตอบไม่ได้มีขนาด 2 เกรดเดอร์ตัวอย่างจะส่งออก Wrong Answer: output size is not 2
 - o หากคำตอบมีขนาด 2 เกรดเดอร์ตัวอย่างจะส่งออกผลลัพธ์ <code>wrong Answer: expected x_1 x_2 but found y_1 y_2 เมื่อ x_1 กับ x_2 แทนพิกัดของระเบิดจริง และ y_1 กับ y_2 แทน พิกัดที่ได้รับมาจากผลการคืนค่าของฟังก์ชัน find_bombs</code>
- หากเงื่อนไขของการถามผิด
 - \circ หากคำถามมี Q>N เกรดเดอร์ตัวอย่างจะส่งออกผลลัพธ์ <code>Invalid Query: too many queries</code>
 - ง หากคำถามมีเวกเตอร์ S ที่มีขนาดมากกว่า N หรือมีสมาชิกที่มีค่าซ้ำกัน หรือมีสมาชิกบางตัวนอก ขอบเขต $0,\dots,N-1$ เกรดเดอร์ตัวอย่างจะส่งออกผลลัพธ์ Invalid Query: invalid query

ข้อจำกัด

Time limit: 1 secondMemory limit: 512 MB