Wydział	Imię i nazwisko		Rok	Grupa	Zespół
	1. Paweł Szewczuk				
WFiIS	2. Ihnatsi Yermakovich		II	03	03
PRACOWNIA	Temat			Nr ćwiczenia	
FIZYCZNA					
WFiIS AGH	Współczynnik :	51			
Data wykonania	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA
04.04.2022	11.04.2022				

Współczynnik załamania światła dla ciał stałych

Ćwiczenie nr 51

Paweł Szewczuk

Ihnatsi Yermakovich

7	Wnioski	7
	6.2 Szkło	6
	6.1 Plexi	
6	Opracowanie wyników	5
		4
	5.2 Szkło	1
	5.1 Plexi	4
5	Wyniki	4
4	Przebieg ćwiczenia	3
•	112y12quy pomiarowe	_
3	Przyrządy pomiarowe	2
2	Wstęp teoretyczny	2
1	Cel ćwiczenia	2

1 Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla ciał stałych metodą pomiaru grubości pozornej płytki za pomocą mikroskopu.

2 Wstęp teoretyczny

Gdy wiązka światła przechodzi przez dwa ośrodki o różnych własnościach optycznych, to na powierzchni granicznej częściowo zostaje odbita, a częściowo przechodzi do drugiego środowiska, ulegając załamaniu. Wielkością charakteryzującą załamanie jest współczynnik załamania ośrodków n. Zależy on od długości fali światła padającego. Można go wyliczyć ze wzoru:

$$n = \frac{\sin\theta_1}{\sin\theta_2} \tag{1}$$

W skutek załamania światła odległości przedmiotów umieszczonych w środowisku optycznie gęstszym obserwowane z powietrza wydają się mniejsze, więc szklana płytka sprawia wrażenie cieńszej, niż jest w rzeczywistości. Sposób powstawania pozornego obrazu płytki płaskorównoległej przedstawia rysunek:

Rysunek 1: Powstanie pozornego obrazu O_1 punktu O leżącego na dolnej powierzchni płytki płasko-równoległej

W ćwiczeniu pomiar przez mikroskop dokonywany jest prawie prostopadle do powierzchni płytki, więc kąty α i β są bardzo małe, dlatego współczynnik n możemy wyliczyć ze wzoru:

$$n = \frac{\sin\alpha}{\sin\beta} \approx \frac{tg\alpha}{tg\beta} = \frac{\frac{AB}{h}}{\frac{AB}{d}} = \frac{d}{h}$$
 (2)

gdzie d jest rzeczywistą grubością płytki, a h grubością pozorną.

3 Przyrządy pomiarowe

- Mikroskop wyposażony w czujnik mikrometryczny i nasadkę krzyżową
- Śruba mikrometryczna
- Płytka szklana i z pleksiglasu z zaznaczonymi miejscami pomiarowymi

Rysunek 2: Schemat budowy mikroskopu: 1 - kondensor, 2 - obiektyw, 3 - okular, 4 - lusterko lub lampa oświetleniowa, 5 - czujnik mikrometryczny, którego stopka spoczywa na ruchomej części mikroskopu, 6 - nasadka krzyżowa XY mocująca z pokrętłami do przesuwu płytki, 7a - pokrętło służące do przesuwu stolika ruchem zgrubnym, 7b - pokrętło służące do przesuwu stolika ruchem dokładnym

4 Przebieg ćwiczenia

Na początku zmierzono śrubą mikrometryczną grubość płytki z plexi d w miejscu przecięcia kresek. Następnie ustawiono badaną płytkę na stoliku mikroskopu w uchwycie i dobrano ostrość tak, aby uzyskać kontrastowy obraz, regulując położenie stolika pokrętłem 7a zaobserwowano górny i dolny ślad zaznaczony na płytce. Kolejno pokrętłem 7b przesuwano stolik mikroskopu do momentu uzyskania ostrego obrazu śladu na górnej powierzchni płytki. Odczytano położenie a_g wskazówki czujnika mikrometrycznego, przesunięto stolik mikroskopu do położenia, w którym widoczny jest ślad na dolnej powierzchni płytki i odczytano położenie a_d wskazówki czujnika. Na koniec czynności powtórzono dla płytki szklanej.

5 Wyniki

5.1 Plexi

Pomiary wstępne:

• Materiał: Plexi

• Grubość rzeczywista $d=3,845\,[mm]$

• Niepewność u(d) = 0,00577[mm]

Lp	Wskazanie czujnika		Grubość pozorna	
ьр	$a_d [mm]$	$a_g [mm]$	$h = a_d - a_g [mm]$	
1	6,742	9,305	2,563	
2	6,720	9,310	2,590	
3	6,782	9,330	2,548	
4	6,810	9,395	2,585	
5	6,791	9,339	2,548	
6	6,778	9,318	2,540	
7	6,710	9,380	2,670	
8	6,765	9,425	2,660	
9	6,697	9,360	2,663	
10	6,720	9,326	2,606	

Tabela 1: Pomiary grubości pozornej h dla plexi

• Średnia grubość pozorna h = 2,5973 [mm]

• Niepewność u(h) = 0,0160 [mm]

5.2 Szkło

Pomiary wstępne:

• Materiał: Szkło

• Grubość rzeczywista d = 3,871 [mm]

• Niepewność u(d) = 0,00577 [mm]

Lp	Wskazanie czujnika		Grubość pozorna	
цр	$a_d [mm]$	$a_g [mm]$	$h = a_d - a_g [mm]$	
1	6,735	9,364	2,629	
2	6,800	9,371	2,571	
3	6,725	9,370	2,645	
4	6,838	9,340	2,502	
5	6,687	9,360	2,673	
6	6,752	9,388	2,636	
7	6,750	9,285	2,535	
8	6,665	9,331	2,666	

Tabela 2: Pomiary grubości pozornej \boldsymbol{h} dla szkła

• Średnia grubość pozorna $h=2,6071\,[mm]$

• Niepewność u(h) = 0,0224 [mm]

6 Opracowanie wyników

6.1 Plexi

Najpierw obliczymy niepewność pomiaru grubości płytki rzeczywistej u(d) (niepewność typu B):

$$u(d) = \frac{0.01}{\sqrt{3}} = 5,7735 \times 10^{-3} \ (mm) \tag{3}$$

Teraz policzymy średnia wartość grubości pozornej h:

$$\bar{h} = \frac{\sum_{i=1}^{n} h_i}{n} = 2,5973 \,(mm) \tag{4}$$

A następnie policzymy niepewność pomiaru grubości pozornej h (niepewność typu A):

$$u(h) = \sqrt{\frac{\sum_{i=1}^{n} (h_i - \overline{h})}{n(n-1)}} = 0,0160 (mm)$$
 (5)

Policzymy wartość współczynnik załamania następująco:

$$n = \frac{d}{a_d - a_g} = \frac{d}{h} = \frac{3,845}{2,5973} = 1,48 \tag{6}$$

Niepewność złożoną współczynnika załamania z prawa przenoszenia niepewności można obliczyć jako:

$$u\left(n\right) = \sqrt{\left(\frac{1}{h}u\left(d\right)\right)^{2} + \left(\frac{-d}{h^{2}}u\left(h\right)\right)^{2}} = \sqrt{\left(\frac{0,00577}{2,5973}\right)^{2} + \left(\frac{-3,845}{2,5973^{2}}0,016\right)} = 0,0094\ (mm) \tag{7}$$

A względną niepewność współczynnika załamania obliczymy z prawa przenoszenia niepewności względnych:

$$\frac{u(n)}{n} = \sqrt{\left(\frac{u(d)}{d}\right)^2 + \left(\frac{u(h)}{h}\right)^2} = \sqrt{\left(\frac{0,00577}{3,845}\right)^2 + \left(\frac{0,016}{2,5973}\right)^2} = 0,00635 \ (mm)$$
 (8)

W końcu możemy zapisać:

$$u(n) = n \cdot \frac{u(n)}{n} = n\sqrt{\left(\frac{u(d)}{d}\right)^2 + \left(\frac{u(h)}{h}\right)^2} = 1,48 \cdot 0,00635 = 0,0094 \ (mm)$$
 (9)

Zauważmy, że u(n) obliczone z prawa przenoszenia niepewności jest równe niepewności u(n) obliczonej korzystając z prawa przenoszenia niepewności względnych.

W końcu wartość współczynnika załamania wynosi:

$$n = 1,48 \pm 0,01 \tag{10}$$

Zauważmy, że otrzymana wartość jest zgodna z wartością teoretyczną dla PMMA (pleksiglas) równej 1,49 w granicach niepewności. O dokładności pomiaru świadczy też brak potrzeby stosowania niepewności rozszerzonej.

6.2 Szkło

Najpierw obliczymy niepewność pomiaru grubości płytki rzeczywistej u(d) (niepewność typu B):

$$u(d) = \frac{0.01}{\sqrt{3}} = 5,7735 \times 10^{-3} \ (mm) \tag{11}$$

Teraz policzymy średnią wartość grubości pozornej h:

$$\overline{h} = \frac{\sum_{i=1}^{n} h_i}{n} = 2,6071 \, (mm) \tag{12}$$

A następnie policzymy niepewność pomiaru grubości pozornej h (niepewność typu A):

$$u(h) = \sqrt{\frac{\sum_{i=1}^{n} (h_i - \overline{h})}{n(n-1)}} = 0,0224 \ (mm)$$
 (13)

Policzymy wartość współczynnik załamania następująco:

$$n = \frac{d}{a_d - a_g} = \frac{d}{h} = \frac{3,871}{2,6071} = 1,485$$
 (14)

Niepewność złożoną współczynnika załamania z prawa przenoszenia niepewności można obliczyć jako:

$$u(n) = \sqrt{\left(\frac{1}{h}u(d)\right)^2 + \left(\frac{-d}{h^2}u(h)\right)^2} = \sqrt{\left(\frac{0,00577}{2,6071}\right)^2 + \left(\frac{-3,871}{2,6071^2}0,0224\right)} = 0,01295 \ (mm) \quad (15)$$

A względną niepewność współczynnika załamania obliczymy z prawa przenoszenia niepewności względnych:

$$\frac{u(n)}{n} = \sqrt{\left(\frac{u(d)}{d}\right)^2 + \left(\frac{u(h)}{h}\right)^2} = \sqrt{\left(\frac{0,00577}{3,871}\right)^2 + \left(\frac{0,0224}{2,6071}\right)^2} = 0,00872 \ (mm)$$
 (16)

W końcu możemy zapisać:

$$u(n) = n \cdot \frac{u(n)}{n} = n\sqrt{\left(\frac{u(d)}{d}\right)^2 + \left(\frac{u(h)}{h}\right)^2} = 1,485 \cdot 0,00872 = 0,01295 \ (mm) \tag{17}$$

Zauważmy, że u(n) obliczone z prawa przenoszenia niepewności jest równe niepewności u(n) obliczonej korzystając z prawa przenoszenia niepewności względnych.

W końcu wartość współczynnika załamania wynosi:

$$n = 1,49 \pm 0,02 \tag{18}$$

Zauważmy, że otrzymana wartość jest zgodna z wartością teoretyczną dla szkła równej około 1,50 w granicach niepewności. O dokładności pomiaru świadczy też brak potrzeby stosowania niepewności rozszerzonej.

7 Wnioski

- 1. Podczas zajęć wyznaczono współczynnik załamania światła dla ciał stałych metodą wyznaczania grubości pozornej h z wykorzystaniem mikroskopu dla płytek pleksiglasowej i szklanej różnej grubości.
- 2. Na podstawie otrzymanych wyników $n=(1,49\pm0,02)~mm$ dla szkła oraz $n=(1,48\pm0,01)~mm$ dla pleksiglasu. Wartości tablicowe dla obu materiałów zawierają się w okolicach n=1,5, więc otrzymane wyniki są bardzo bliskie do wartości teoretycznych.