Esercizi Laboratorio Calcolo Numerico 1 - Settimana 8 -

Nota: per i comandi non esplicitamente introdotti nel video di spiegazione si può utilizzare help oppure doc dei comandi stessi

1. È dato il sistema lineare $A\mathbf{x} = \mathbf{b}$, con matrice A di dimensione 100×100 di elementi

$$a_{ij} = \begin{cases} (-1)^i & \text{se } i = j, \\ \frac{1}{1 - i - j} & \text{se } |i - j| = 1, \\ 0 & \text{altrimenti.} \end{cases}$$

Si calcoli il vettore termine noto \mathbf{b} in modo tale che la soluzione esatta sia il vettore \mathbf{x} avente tutti gli elementi uguali a 1.

- Si approssimi la soluzione \mathbf{x} con il metodo di Jacobi utilizzando come vettore di innesco $\mathbf{x}^{(0)}$ avente tutti gli elementi uguali a 0 e test d'arresto $||\mathbf{x} \mathbf{x}^{(k)}||_2 < 10^{-5}$. Sia K il numero di iterazioni eseguite.
- Si vuole confrontare l'errore calcolato all'iterata K-esima, $||\mathbf{x} \mathbf{x}^{(K)}||_2$, ottenuto utilizzando il vettore \mathbf{x} della soluzione esatta, con la maggiorazione, nota dalla teoria,

$$||\mathbf{x} - \mathbf{x}^{(K)}||_2 \le \underbrace{\frac{(||B||_2)^K}{1 - ||B||_2} ||\mathbf{x}^{(1)} - \mathbf{x}^{(0)}||_2}_{M_K}$$

dove B è la matrice di iterazione del metodo Jacobi.

2. Si consideri la matrice A di dimensione $n \times n$, con n = 40 oppure n = 80 così definita:

$$A = \begin{pmatrix} n & \frac{1}{n} & \frac{2}{n} & \frac{3}{n} & \dots & \frac{n-3}{n} & \frac{n-2}{n} & \frac{n-1}{n} \\ \frac{1}{n} & 2n & \frac{1}{n} & \frac{2}{n} & \frac{3}{n} & \dots & \frac{n-3}{n} & \frac{n-2}{n} \\ \frac{2}{n} & \frac{1}{n} & 3n & \frac{1}{n} & \frac{2}{n} & \frac{3}{n} & \dots & \frac{n-3}{n} \\ \dots & \dots \\ \frac{n-3}{n} & \dots & \frac{3}{n} & \frac{2}{n} & \frac{1}{n} & (n-2)n & \frac{1}{n} & \frac{2}{n} \\ \frac{n-2}{n} & \frac{n-3}{n} & \dots & \frac{3}{n} & \frac{2}{n} & \frac{1}{n} & (n-1)n & \frac{1}{n} \\ \frac{n-1}{n} & \frac{n-2}{n} & \frac{n-3}{n} & \dots & \frac{3}{n} & \frac{2}{n} & \frac{1}{n} & n^2 \end{pmatrix}$$

• Costruire la matrice di iterazione B del metodo di Jacobi e verificare che B è una matrice convergente. A tale scopo si calcoli il raggio spettrale $\rho(B)$

1

• Sapendo che vale la seguente proprietà:

$$\underbrace{I + B + B^2 + B^3 + \dots + B^k}_{S_k} + \dots = \underbrace{(I - B)^{-1}}_{O},$$

trovare il minimo valore K per cui risulta $E_K \equiv ||S_K - Q||_2 < 10^{-8}$. [Per il calcolo della matrice $Q = (I - B)^{-1}$ si utilizzi il comando MATLAB inv].

3. Si consideri la matrice

$$A = \begin{pmatrix} X & O & O & Y \\ O & X & Y & O \\ O & Y & X & O \\ Y & O & O & X \end{pmatrix}, \ X = \begin{pmatrix} 1 & \frac{1}{\alpha} & 0 & 0 \\ -\frac{1}{\alpha} & 1 & \frac{1}{\alpha} & 0 \\ 0 & -\frac{1}{\alpha} & 1 & \frac{1}{\alpha} \\ 0 & 0 & -\frac{1}{\alpha} & 1 \end{pmatrix}, \ Y = \frac{1}{\alpha}I_4, \ O = 0_4, \ \alpha \in \mathbb{R},$$

dove I_4 e 0_4 sono, rispettivamente, la matrice identità e la matrice nulla $\in \mathbb{R}^{4\times 4}$.

- Si costruiscano le matrici di iterazione $B_{J,\alpha}$ e $B_{G,\alpha}$ relative, rispettivamente, ai metodi di Jacobi e Gauss-Seidel e si calcolino i valori dei rispettivi raggi spettrali $\rho(B_{J,\alpha})$ e $\rho(B_{G,\alpha})$ al variare di $\alpha=2^k$, k=3,4,5,6.
- Supponendo inoltre che siano note le seguenti relazioni tra i valori di α e i valori dei raggi spettrali delle matrici di iterazione:

$$\rho(B_{J,\alpha}) \approx C_1 \frac{1}{\alpha^p}, \quad \rho(B_{G,\alpha}) \approx C_2 \frac{1}{\alpha^q},$$

si calcolino i valori dei rapporti

$$\frac{\rho(B_{J,\alpha})}{\rho(B_{J,2\alpha})}, \quad \frac{\rho(B_{G,\alpha})}{\rho(B_{G,2\alpha})}, \quad \alpha = 2^k, \ k = 3, 4, 5,$$

e si deduca per quali p e q le relazioni sono verificate.

4. Si considerino le matrici 50×50

$$A_{(\alpha)} = \begin{pmatrix} 2\alpha & -1 & 0 & 0 & \dots & 0 & \sqrt{\alpha} \\ -1 & 2\alpha & -1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 2\alpha & -1 & \dots & 0 & 0 \\ 0 & 0 & -1 & 2\alpha & \dots & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & \dots & -1 & 2\alpha & -1 & 0 \\ 0 & 0 & \dots & 0 & -1 & 2\alpha & -1 \\ \sqrt{\alpha} & 0 & \dots & 0 & 0 & -1 & 2\alpha \end{pmatrix}, \ P_{(\alpha)} = \begin{pmatrix} 2\alpha & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 2\alpha & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 2\alpha & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & 2\alpha & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 2\alpha & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 & 2\alpha & 0 \\ 0 & 0 & \dots & 0 & 0 & 2\alpha & 0 \\ 0 & 0 & \dots & 0 & 0 & 0 & 2\alpha \end{pmatrix}, \ \alpha \in \mathbb{R}$$

e il sistema lineare $A_{(\alpha)}\mathbf{x} = \mathbf{b}$, con $b_i = 100, \forall i = 1, ..., 50$ e $\alpha = 2, 4, 8$.

Per la risoluzione del sistema lineare si consideri il metodo iterativo

$$\mathbf{x}^{(k+1)} = (I - P_{(\alpha)}^{-1} A_{(\alpha)}) \mathbf{x}^{(k)} + P_{(\alpha)}^{-1} \mathbf{b}, \quad k \ge 0, \quad \mathbf{x}^{(0)} = [0 \ 0 \ 0...0]^T,$$

avente matrice di iterazione $B_{(\alpha)} = I - P_{(\alpha)}^{-1} A_{(\alpha)}$.

- Calcolare il raggio spettrale $\rho(B_{(\alpha)})$ della matrice di iterazione
- \bullet Calcolare il numero di iterazioni \widehat{K} necessarie affinchè

$$T^{(\widehat{K})} \equiv \|\mathbf{x}^{(\widehat{K})} - \mathbf{x}^{(\widehat{K}-1)}\|_{\infty} \le 10^{-6}.$$

5. Per ciascun valore di n=10,20,30,40 si consideri il vettore riga $\mathbf{x}=\left[\frac{1}{n}\ \frac{2}{n}\ \frac{3}{n}\dots\frac{n-1}{n}\ 1\right]\in\mathbb{R}^{1,n}$ e il sistema lineare $A\mathbf{u}=\mathbf{b}$ con

$$A = \mathbf{x}^T \mathbf{x} + \frac{n}{2} I, \ \mathbf{b} = [1 \ 1 \ \dots 1 \ 1]^T,$$

dove I è la matrice Identità di ordine n.

Assegnato il vettore iniziale $\mathbf{u}^{(0)}$ di componenti $x_i^{(0)} = \sin(i*n), \ i=1,...,n,$ si consideri il metodo iterativo,

$$\mathbf{u}^{(k+1)} = \mathbf{u}^{(k)} - \alpha \left(A \mathbf{u}^{(k)} - \mathbf{b} \right), \ \alpha = \frac{2}{\lambda_M + \lambda_m}, \ \operatorname{con} \lambda_M = \max_{i=1,\dots,n} \lambda_i(A), \ \lambda_m = \min_{i=1,\dots,n} \lambda_i(A),$$

dove $\lambda_i(A)$, i = 1, ..., n sono gli autovalori della matrice A.

Calcolare il raggio spettrale ρ della matrice di iterazione $B = (I - \alpha A)$ e determinare il numero di iterazioni K necessarie affinchè $\|\mathbf{b} - A\mathbf{u}^{(K)}\|_2 < 10^{-8}$.