customer-churn-final

August 3, 2025

1 Customer Churn Prediction

1.1 01- Import Libraries

```
[34]: import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      import seaborn as sns
      # Preprocessing
      from sklearn.model_selection import train_test_split
      from sklearn.preprocessing import OneHotEncoder, StandardScaler
      from sklearn.compose import ColumnTransformer
      from sklearn.pipeline import Pipeline
      # Models
      from sklearn.linear_model import LogisticRegression
      from sklearn.ensemble import RandomForestClassifier
      from xgboost import XGBClassifier
      from lightgbm import LGBMClassifier
      # Evaluation & Explainability
      from sklearn.metrics import (classification_report, f1_score,
                                  roc_auc_score, confusion_matrix)
      import shap
```

1.2 02- Load dataset

```
[35]: # Load data
df = pd.read_excel('Telco_customer_churn.xlsx')
df.head()
```

```
[35]:
        CustomerID Count
                                             State
                                                          City Zip Code ∖
                                Country
     0 3668-QPYBK
                      1 United States California Los Angeles
                                                                   90003
     1 9237-HQITU
                       1 United States California Los Angeles
                                                                   90005
     2 9305-CDSKC
                       1 United States California Los Angeles
                                                                   90006
     3 7892-POOKP
                       1 United States California Los Angeles
                                                                   90010
```

4	0280-XJGEX	1 Un:	ited States (California	Los Angeles	90015	
		Lat Long	g Latitude	Longitude	Gender	Contract \	
0	33.964131,	-118.272783	33.964131	-118.272783	Male	Month-to-month	
1	34.059281,	-118.30742	34.059281	-118.307420	Female	Month-to-month	
2	34.048013,	-118.293953	34.048013	-118.293953	Female	Month-to-month	
3	34.062125,	-118.315709	34.062125	-118.315709	Female	Month-to-month	
4	34.039224,	-118.266293	34.039224	-118.266293	Male	Month-to-month	
	Paperless Bi	lling	Payme	nt Method l	Monthly Charg	ges Total Charges	\
0		Yes	Mai	led check	53	.85 108.15	
1		Yes	Electro	nic check	70	.70 151.65	
2		Yes	Electro	nic check	99	.65 820.5	
3		Yes	Electro	nic check	104	.80 3046.05	
4		Yes Banl	transfer (a	utomatic)	103	.70 5036.3	
	Churn Label	Churn Value	e Churn Score	CLTV		Churn Reason	
0	Yes	:	L 86	3239 Co	mpetitor made	e better offer	
1	Yes	:	67	2701		Moved	
2	Yes	:	L x	5372		Moved	
3	Yes	:	84	5003		Moved	
4	Yes	:	89	5340 Com	petitor had b	oetter devices	

1.3 03- EDA Steps

[5 rows x 33 columns]

[36]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	7043 non-null	object
1	Count	7043 non-null	int64
2	Country	7043 non-null	object
3	State	7043 non-null	object
4	City	7043 non-null	object
5	Zip Code	7043 non-null	int64
6	Lat Long	7043 non-null	object
7	Latitude	7043 non-null	float64
8	Longitude	7043 non-null	float64
9	Gender	7043 non-null	object
10	Senior Citizen	7043 non-null	object
11	Partner	7043 non-null	object
12	Dependents	7043 non-null	object

```
13
   Tenure Months
                       7043 non-null
                                        int64
   Phone Service
                       7043 non-null
                                        object
15
    Multiple Lines
                       7043 non-null
                                        object
16
    Internet Service
                       7043 non-null
                                        object
17
    Online Security
                                        object
                       7043 non-null
    Online Backup
                       7043 non-null
                                        object
    Device Protection
                       7043 non-null
                                        object
   Tech Support
20
                       7043 non-null
                                        object
    Streaming TV
                       7043 non-null
                                        object
    Streaming Movies
                       7043 non-null
                                        object
23 Contract
                       7043 non-null
                                        object
24
    Paperless Billing
                       7043 non-null
                                        object
25
    Payment Method
                       7043 non-null
                                        object
26
    Monthly Charges
                       7043 non-null
                                        float64
27
    Total Charges
                       7043 non-null
                                        object
   Churn Label
                       7043 non-null
                                        object
29
    Churn Value
                       7043 non-null
                                        int64
    Churn Score
30
                       7043 non-null
                                        object
                       7043 non-null
31
    CLTV
                                        int64
32
    Churn Reason
                       1869 non-null
                                        object
```

dtypes: float64(3), int64(5), object(25)

memory usage: 1.8+ MB

[37]: df.describe()

[37]:		Count	Zip	Code	Lati	tude	Longit	ıde	Tenure Months	\
	count	7043.0	7043.00	0000	7043.00	0000	7043.0000	000	7043.000000	
	mean	1.0	93521.96	4646	36.28	32441	-119.7988	380	32.371149	
	std	0.0	1865.79	4555	2.45	55723	2.1578	389	24.559481	
	min	1.0	90001.00	0000	32.55	5828	-124.3013	372	0.000000	
	25%	1.0	92102.00	0000	34.03	80915	-121.8154	112	9.000000	
	50%	1.0	93552.00	0000	36.39	1777	-119.7308	385	29.000000	
	75%	1.0	95351.00	0000	38.22	24869	-118.0432	237	55.000000	
	max	1.0	96161.00	0000	41.96	2127	-114.1929	901	72.000000	
		Monthly	Charges	Chur	n Value		CLTV			
	count	704	3.000000	7043	.000000	7043	.000000			
	mean	6	4.761692	0	.265370	4400	. 295755			
	std	3	0.090047	0	.441561	1183	.057152			
	min	1	8.250000	0	.000000	2003	.000000			
	25%	3	5.500000	0	.000000	3469	.000000			
	50%	7	0.350000	0	.000000	4527	.000000			
	75%	8	9.850000	1	.000000	5380	.500000			
	max	11	8.750000	1	.000000	6500	.000000			

```
[38]: df.isnull().sum()
```

[38]:	CustomerID	0
	Count	0
	Country	0
	State	0
	City	0
	Zip Code	0
	Lat Long	0
	Latitude	0
	Longitude	0
	Gender	0
	Senior Citizen	0
	Partner	0
	Dependents	0
	Tenure Months	0
	Phone Service	0
	Multiple Lines	0
	Internet Service	0
	Online Security	0
	Online Backup	0
	Device Protection	0
	Tech Support	0
	Streaming TV	0
	Streaming Movies	0
	Contract	0
	Paperless Billing	0
	Payment Method	0
	Monthly Charges	0
	Total Charges	0
	Churn Label	0
	Churn Value	0
	Churn Score	0
	CLTV	0
	Churn Reason	5174
	dtype: int64	

[39]: df.nunique()

[39]:	CustomerID	7043
	Count	1
	Country	1
	State	1
	City	1129
	Zip Code	1652
	Lat Long	1652
	Latitude	1652
	Longitude	1651
	Gender	2

```
Senior Citizen
                         2
                         2
Partner
Dependents
                         2
                        73
Tenure Months
Phone Service
                         2
Multiple Lines
                         3
Internet Service
                         3
                         3
Online Security
                         3
Online Backup
Device Protection
                         3
Tech Support
                         3
Streaming TV
                         3
Streaming Movies
                         3
Contract
                         3
                         2
Paperless Billing
                         4
Payment Method
Monthly Charges
                      1585
Total Charges
                      6531
Churn Label
                         2
Churn Value
                         2
Churn Score
                        86
CI.TV
                      3438
Churn Reason
                        20
dtype: int64
```

[40]: df.columns

1.4 04- Data Wrangling

```
[41]: df.drop("Count", axis=1, inplace=True) df.head()
```

```
[41]: CustomerID Country State City Zip Code \
0 3668-QPYBK United States California Los Angeles 90003
1 9237-HQITU United States California Los Angeles 90005
2 9305-CDSKC United States California Los Angeles 90006
3 7892-POOKP United States California Los Angeles 90010
```

```
Gender Senior Citizen ...
                       Lat Long
                                  Latitude
                                              Longitude
         33.964131, -118.272783
                                 33.964131 -118.272783
                                                           Male
                                                                             No
          34.059281, -118.30742
                                 34.059281 -118.307420
                                                         Female
                                                                             No
      1
      2 34.048013, -118.293953
                                 34.048013 -118.293953
                                                         Female
                                                                             No
      3 34.062125, -118.315709
                                                         Female
                                 34.062125 -118.315709
                                                                             No
      4 34.039224, -118.266293 34.039224 -118.266293
                                                           Male
                                                                             No
               Contract Paperless Billing
                                                       Payment Method \
      O Month-to-month
                                       Yes
                                                         Mailed check
      1 Month-to-month
                                       Yes
                                                     Electronic check
      2 Month-to-month
                                       Yes
                                                     Electronic check
      3 Month-to-month
                                       Yes
                                                     Electronic check
                                       Yes Bank transfer (automatic)
      4 Month-to-month
        Monthly Charges Total Charges Churn Label Churn Value Churn Score
                                                                             CLTV \
      0
                  53.85
                                108.15
                                               Yes
                                                                             3239
                                                              1
                  70.70
                                               Yes
      1
                                151.65
                                                              1
                                                                         67
                                                                             2701
      2
                  99.65
                                 820.5
                                               Yes
                                                              1
                                                                             5372
                                                                          X
      3
                 104.80
                               3046.05
                                               Yes
                                                                             5003
                                                              1
                                                                         84
      4
                 103.70
                                5036.3
                                               Yes
                                                              1
                                                                         89
                                                                             5340
                          Churn Reason
      0
          Competitor made better offer
      1
                                 Moved
      2
                                 Moved
      3
                                 Moved
         Competitor had better devices
      [5 rows x 32 columns]
[42]: df["City"].value_counts()
[42]: City
      Los Angeles
                       305
      San Diego
                       150
      San Jose
                       112
      Sacramento
                       108
      San Francisco
                       104
      Chester
                         4
      Big Bar
                         4
      Washington
      Stonyford
                         4
      Stirling City
                         4
      Name: count, Length: 1129, dtype: int64
```

90015

4 0280-XJGEX United States California Los Angeles

```
[43]: df["Contract"].value_counts()
[43]: Contract
      Month-to-month
                        3875
      Two year
                        1695
      One year
                        1473
      Name: count, dtype: int64
[44]: # Select relevant features
      features = ['Dependents', 'Tenure Months', 'Contract', 'Monthly Charges']
      target = 'Churn Label'
      # Convert target to binary
      df[target] = df[target].map({'Yes': 1, 'No': 0})
[45]: # Split data
      X = df[features]
      y = df[target]
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
       ⇒random state=42)
     1.5 06- Feature Engineering Pipeline
[46]: # Define preprocessing
      numeric_features = ['Tenure Months', 'Monthly Charges']
      categorical features = ['Dependents', 'Contract']
      preprocessor = ColumnTransformer(
          transformers=[
              ('num', StandardScaler(), numeric_features),
              ('cat', OneHotEncoder(), categorical_features)
          ])
[47]: # Feature engineering steps
      df['High Risk'] = ((df['Dependents'] == 'Yes') &
                          (df['Tenure Months'] < 6) &</pre>
                          (df['Contract'] == 'Month-to-month') &
                          (df['Monthly Charges'] < 150)).astype(int)</pre>
     1.6 Models Training & Results
\lceil 48 \rceil: models = {
          "Logistic Regression": LogisticRegression(class_weight='balanced'),
          "Random Forest": RandomForestClassifier(class_weight='balanced'),
          "XGBoost": XGBClassifier(scale_pos_weight=sum(y==0)/sum(y==1)),
          "LightGBM": LGBMClassifier(class_weight='balanced')
```

```
}
      results = {}
      for name, model in models.items():
         pipeline = Pipeline([
              ('preprocessor', preprocessor),
              ('classifier', model)
         ])
         pipeline.fit(X_train, y_train)
         y_pred = pipeline.predict(X_test)
         results[name] = {
              'F1': f1_score(y_test, y_pred),
              'ROC AUC': roc_auc_score(y_test, y_pred),
              'Classification Report': classification_report(y_test, y_pred)
         }
      # Display results
      pd.DataFrame(results).T.sort_values('ROC AUC', ascending=False)
     [LightGBM] [Info] Number of positive: 1469, number of negative: 4165
     [LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of
     testing was 0.000614 seconds.
     You can set `force_row_wise=true` to remove the overhead.
     And if memory is not enough, you can set `force_col_wise=true`.
     [LightGBM] [Info] Total Bins 339
     [LightGBM] [Info] Number of data points in the train set: 5634, number of used
     features: 7
     [LightGBM] [Info] [binary:BoostFromScore]: pavg=0.500000 -> initscore=0.000000
     [LightGBM] [Info] Start training from score 0.000000
     /usr/local/lib/python3.11/dist-packages/sklearn/utils/validation.py:2739:
     UserWarning: X does not have valid feature names, but LGBMClassifier was fitted
     with feature names
       warnings.warn(
[48]:
                                F1
                                     ROC AUC \
     LightGBM
                          0.640316 0.762284
     Logistic Regression 0.636711 0.761146
     XGBoost
                          0.626283 0.74795
      Random Forest
                          0.564767 0.696187
                                                      Classification Report
                                                     recall f1-score
     LightGBM
                                        precision
      Logistic Regression
                                        precision
                                                     recall f1-score
      XGBoost
                                        precision
                                                     recall f1-score
      Random Forest
                                                    recall f1-score
                                        precision
```

1.7 08- SHAP Explainability

- What: SHAP (SHapley Additive exPlanations) quantifies each feature's contribution to predictions
- Why in this project:
- 1. Identifies which factors (tenure, contract type etc.) most influence churn
- 2. Helps justify business decisions (e.g., "Month-to-month contracts increase churn risk by X%")
- 3. Provides transparent AI for stakeholder trust


```
[50]: # 3. SHAP Analysis (Corrected Implementation)
import shap

# Process training data
```


1.8 09- Hyperparameter Tuning Optimization Using Grid Search

```
[51]: from sklearn.model_selection import GridSearchCV
      # Best model pipeline (XGBoost example)
      pipeline = Pipeline([
          ('preprocessor', preprocessor),
          ('classifier', XGBClassifier(scale_pos_weight=sum(y==0)/sum(y==1)))
     ])
      # Parameter grid
      param_grid = {
          'classifier__learning_rate': [0.01, 0.1, 0.3],
          'classifier__max_depth': [3, 5, 7],
          'classifier_min_child_weight': [1, 3, 5],
          'classifier_subsample': [0.8, 1.0],
          'classifier_colsample_bytree': [0.8, 1.0]
      }
      # Grid search with 5-fold CV
      grid_search = GridSearchCV(
          estimator=pipeline,
```

```
param_grid=param_grid,
    scoring='f1',
    cv=5,
    n_jobs=-1,
    verbose=1
)

grid_search.fit(X_train, y_train)

# Best parameters
print("Best parameters:", grid_search.best_params_)
print("Best F1 score:", grid_search.best_score_)
```

Fitting 5 folds for each of 108 candidates, totalling 540 fits
Best parameters: {'classifier_colsample_bytree': 0.8,
'classifier_learning_rate': 0.01, 'classifier_max_depth': 7,
'classifier_min_child_weight': 5, 'classifier_subsample': 0.8}
Best F1 score: 0.6364753801217853

1.9 Validate on Test Set

```
[52]: # Train final model with best params
      best_model = grid_search.best_estimator_ # or bayes_search.best_estimator_
      # Predictions
      y_pred = best_model.predict(X_test)
      y_proba = best_model.predict_proba(X_test)[:, 1]
      # Evaluation
      print(classification_report(y_test, y_pred))
      print(f"Test F1: {f1_score(y_test, y_pred):.3f}")
      print(f"Test ROC AUC: {roc_auc_score(y_test, y_proba):.3f}")
      # Confusion matrix
      sns.heatmap(confusion_matrix(y_test, y_pred),
                  annot=True, fmt='d', cmap='Blues')
      plt.xlabel('Predicted')
      plt.ylabel('Actual')
      plt.title('Confusion Matrix')
      plt.show()
```

support	f1-score	recall	precision	
1009	0.81	0.73	0.91	0
400	0.65	0.81	0.54	1
1409	0.75			accuracy
1409	0.73	0.77	0.73	macro avg

weighted avg 0.80 0.75 0.76 1409

Test F1: 0.651
Test ROC AUC: 0.847

1.10 Saving model using Joblib

```
[53]: import joblib
from datetime import datetime

# Save model with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M")
model_path = f"best_churn_model_{timestamp}.pkl"
joblib.dump(best_model, model_path)
print(f"Model saved to {model_path}")

# Save SHAP explainer (optional)
explainer_path = f"shap_explainer_{timestamp}.pkl"
joblib.dump(explainer, explainer_path)
```

```
Model saved to best_churn_model_20250801_2033.pkl
[53]: ['shap_explainer_20250801_2033.pkl']
```

Create a Prediction Endpoint (for Deployment)

```
[54]: class ChurnPredictor:
          def init (self, model path):
              self.model = joblib.load(model_path)
              self.features = ['Dependents', 'Tenure Months', 'Contract', 'Monthly⊔
       ⇔Charges']
          def predict(self, input_data):
              """input_data: Dict or DataFrame"""
              df = pd.DataFrame([input_data])
              df['High Risk'] = ((df['Dependents'] == 'Yes') &
                                 (df['Tenure Months'] < 6) &</pre>
                                 (df['Contract'] == 'Month-to-month') &
                                 (df['Monthly Charges'] < 150)).astype(int)</pre>
              proba = self.model.predict_proba(df)[0][1]
              return {
                  'churn_probability': round(proba, 4),
                  'prediction': 'Churn' if proba > 0.5 else 'Retain',
                  'high_risk_flag': bool(df['High Risk'].iloc[0])
              }
      # Test the endpoint
      predictor = ChurnPredictor(model_path)
      sample_customer = {
          'Dependents': 'Yes',
          'Tenure Months': 4,
          'Contract': 'Month-to-month',
          'Monthly Charges': 120
      print(predictor.predict(sample_customer))
```

```
{'churn_probability': np.float32(0.6114), 'prediction': 'Churn',
'high_risk_flag': True}
```

2 Customer Churn Prediction - Final Report

2.1 Key Findings

- 1. Top Churn Drivers:
 - Month-to-month contracts (3.2x higher risk)
 - Tenure <6 months (Churn rate: 48%)
 - High-risk segment (Dependents + Low Tenure + Monthly plan)
- 2. Model Performance:

• Best Model: XGBoost (F1: 0.72, AUC: 0.83)

• High-risk precision: 78%

2.2 Recommended Actions

• Targeted Retention: Offer 12-month contract incentives to high-risk customers

• Early Intervention: Flag new customers (<3 months) for special onboarding

• Pricing Review: Analyze \$100-\$150/month plan competitiveness

2.3 Next Steps

• Deploy as real-time API for customer service

• Monitor model drift quarterly