

C (11) 10.11.1989
Patenttijulkaisut 10.11.1989
(51) Kv.1k.5 - Int.cl.5

D 21C 9/00, C 12S 3/04

(21) Patentihakemus - Patentansökning	891530
(22) Hakemispäivä - Ansökningsdag	30.03.89
(24) Alkupäivä - Löpdag	30.03.89
(41) Tullut julkiseksi - Blivit offentlig	01.10.90
(44) Nähtäväksipanoni ja kuul.julkaisun pvm. - Ansökan utlagd och utl.skriften publicerad	15.09.92

S U O M I - F I N L A N D
(FI)

Patentti- ja rekisterihallitus
Patent- och registerstyrelsen

(71) Hakija - Sökande

1. Genencor International Europe Oy, Kyllikinportti 2, 00240 Helsinki, (FI)

(72) Keksijä - Uppfinnare

1. Jokinen, Olli, Rajakallio D, 02460 Kantvik, (FI)
2. Kettunen, Jukka, Avainkimpukatu 4 B, 26100 Rauma, (FI)
3. Lepo, Jarkko, Kanavakatu 31-33 C 29, 26100 Rauma, (FI)
4. Niemi, Tapio, 26720 Monnanummi, (FI)
5. Laine, Jaakko E., Adantpolku 11, 02460 Kantvik, (FI)

(74) Asiamies - Ombud: Oy Kolster Ab

(54) Keksinnön nimitys - Uppfinningens benämning

Menetelmä revittävyydeltään parannetun fluffmassan valmistamiseksi
Förfarande för framställning av fluffmassa med förbättrad rivbarhet

(56) Viitejulkaisut - Anfördta publikationer

CA A 758488, FR B 2557894,
Tappi, vol. 67, nro 10, 1984, p. 31,33

(57) Tiivistelmä - Sammandrag

Keksintö koskee menetelmää revittävyydeltään parannetun fluffmassan valmistamiseksi suorittamalla massalle entsyymikäsittely jossakin massan valmistusprosesin vaiheessa. Entsyyymikäsittely suoritetaan edullisesti entsyymivalmisteella, joka sisältää sellulolyyttistä ja/tai hemisellulolyyttistä aktiivisuutta. Entsyyymikäsitelty fluffmassa on erityisen käyttökeloista kertakäyttöisten hygienniaytteiden ja kuivaraianstuotteiden valmistukseen.

Uppfinningen avser ett förfarande för framställning av fluffmassa med förbättrad rivbarhet genom att underkasta massan enzymbehandling i något skede av massans framställningsprocess. Enzymbehandlingen utförs företrädesvis medelst ett enzympreparat, som innehåller cellulolyttisk och/eller hemicellulolyttisk aktivitet. Enzymbehandlad fluffmassa är speciellt användbar vid framställning av engångs-hygieniproducter och torrformade produkter.

Menetelmä revittävyydeltään parannetun fluffmassan valmistamiseksi

Keksinnön kohteena on menetelmä parannettujen fluff-
5 eli revinnäismassojen valmistamiseksi. Lisäksi eksintö
koskee tämän parannetun fluffmassan käyttöä kertakäyttöis-
ten hygieniatuotteiden ja kuivarainaustuotteiden valmistuk-
seen.

Keksinnön mukaisesti fluffmassan revintäominaisuuk-
10 sia parannetaan entsyyymikäsittelyllä.

Fluff- eli revinnäismassoja valmistetaan maailmassa
noin 2,5 miljoonaa tonnia. Valmistukseen käytetään ainoas-
taan pitkäkuituisia havupuita. Massoista yli 90 % on täys-
valkaistuja kemiallisia selluja ja näistä yli 90 % sulfaat-
15 timassoja. CTMP-massojen (kemitermomekaanisten massojen)
osuus on alle 10 %. Ne ovat yleensä peroksidivalkaistuja
vaaleuteen 70 - 80 % ISO. Myös TMP:tä (termomekaanista
massaa) ja hionetta on käytetty vähäisessä määrin fluff-
massana.

20 Kemiallisten fluffmassojen keitto ja valkaisu ei
mainittavasti poikkea paperimassojen valmistuksesta. CTMP-
massojen osalta freenestaso (suotautuvuus) on paperimassoja
selvästi korkeampi eli 500 - 700 ml CSF.

Fluffmassojen rainanmuodostus, märkäpuristus ja
25 kuivatus poikkeaa merkittävästi paperimassan valmistuksesta
ja nämä ovat lopputuotteen laadun sekä prosessoitavuuden
kannalta kriittisiä valmistusvaiheita. Yli 95 % fluffmas-
soista toimitetaan asiakkaalle rullina, joissa massan kos-
teus vaihtelee 5 ja 10 %:n välillä.

30 Fluffmassoja käytetään kertakäyttöisten hygienia-
tuotteiden, kuten lasten vaippojen, naisten kuukautissi-
teiden, pikkuhousunsuojien sekä aikuisvaippojen ja sairaa-
la-alustojen imukerrosten raaka-aineena sellaisenaan tai
yhdessä superabsorbenttien ja/tai synteettisten kuitujen
35 kanssa. Massoista yli 80 % käytetään lasten vaipoissa.

Fluffmassojen vaativin käyttösovellutus on ns. kui-

varainaustuotteet, kuten kuivapaperit, joita käytetään esimerkiksi kattaustuotteissa, erilaisissa pyyhintäsovel-lutuksissa sekä kotitalouksissa, teollisuuspyyhkeissä ja sairaalatuotteissa. Näiden tuotteiden massantarve on maail-5 massa noin 70000 - 80000 t/a ja kasvu on yli 10 % vuodessa. Käytetty massa on 100-prosenttisesti kemiallista sellua. Osa näistä tuotteista on värjättyjä, jolloin joko sellu on värillistä tai värjäys suoritetaan kuivaraianauksen yh-teydessä.

10 Sekä vaipanvalmistuksen että kuivaraianauksen eräs oleellisimpia prosessivaiheita on massan (yleisimmin sellu tai CTMP) revintä. Revinnässä sellurata (1 - 3 rataa pääl-lekkäin) johdetaan rullalta repijään, joka on yleisimmin ns. vasaramylly, mutta myös piikkimyllyjä ja levyjauhimia 15 käytetään. Joskus revintä voidaan suorittaa kahdessa vai-heessa esimerkiksi levyjauhin-vasaramylly-yhdistelmällä. Paalimassoja käytettäessä massa leikataan ensin suikaleik-si, jotka sitten syötetään repijään erillisen annostelijan kautta. Repijässä massarata joutuu pyörivän revintäelimen, 20 kuten vasaroiden ja vastaterien väliin, joka etäisyys on muutamia millimetrejä. Tällä käsittelyllä massasta (joka sisältää kosteutta tyypillisesti 7 %) pyritään irrottamaan puukuidut toisistaan mahdollisimman ehjinä. Revinnän "hy-vyyttä" voidaan mitata esimerkiksi kuitupituuden alenemi-25 sella, hienoaineeksen eli pölyn muodostumisella sekä hajoamattomien kappaleiden (kuitukimput, massapalat jne.) mää-rällä eli ns. nuppuluvulla, sekä revintäenergialla. Hygie-niatuotteiden valmistuksessa käytetyt energiamääräät vaih-televat hyvin laajalla alueella, 80 - 250 MJ/t massaa.

30 Nuppuluku vaihtelee hygieniatuotteissa tyypillisesti 5 ja 30 %:n välillä, mitattuna SCAN-nuppulukumittarilla (SCAN-CM 37:85). Sen sijaan kuivaraianustuotteissa vaaditaan lähes nuputon tuote eli tason täytyy olla alle 1 %. Tavoitteena on saavuttaa mahdollisimman nuputon tuote mahdolli-35 simman pienellä energiankulutuksella, mutta samalla kuidut ehjinä säilyttäen. Jos energiota käytetään liikaa, siitä

seuraa, paitsi taloudellista menetystä, haittoja kuten kuitupituuden lyhentymistä, pölyn muodostusta ja kuitujen sähköistymistä, mikä puolestaan heikentää tasaisen radan muodostumista.

5 Nuppuluku/revintäenergia-energiasuhde riippuu ensisijaisesti massanvalmistusprosessista sekä massaradan tai -arkin tiheydestä. Tyypillisesti sulfaattimassat ovat "kovempia", ts. vaativat enemmän energiaa kuin sulfiitti- tai CTMP-massat ja märkäpuristuksella tuotettu massaradan 10 tiheyden nosto lisää aina energiantarvetta.

Fluffmassan revittävyyttä (revintäenergia/nuppuluku) on yritetty parantaa kemiallisten ja CTMP-massojen tapauksessa käsittelemällä massa ennen kuivatusta ns. debonding-kemikaaleilla. Näillä on kuitenkin aina massan imuominaisuuksia heikentvä vaikutus, eivätkä useimmat hygieniatuotteiden valmistajat hyväksy niiden käyttöä, minkä vuoksi 15 massanvalmistajat voivat turvautua debonding-käsittelyihin vain hyvin rajoitetusti.

Tehokkain tapa parantaa revittävyyttä on siis alentaa massaradan tiheyttä eli estää kuitujenvälisten vety- sidosten syntymistä. Tästä on kuitenkin aina seurausena kuivatuskapasiteetin lasku, mikä merkitsee kannattavuuden heikkenemistä, koska useimmissa fluffmassatehtaisissa nimenomaan kuivatus on kapasiteettia rajoittava tekijä.

25 Eräs ratkaisu fluffmassan revittävyyden parantamiseen on esitetty CA-julkaisussa 1 206305. Tämän julkaisun mukaisesti kemiallista massaa käsitellään vesipitoisen lietteen muodossa kaasumaisella ammoniakilla paineen alaisena, jolloin saadaan revittävyysominaisuksiltaan parantunut fluffmassa. Lopputuotteella ilmoitetaan olevan myös parantuneet imuominaisuudet.

Kuitenkaan tunnetut menetelmät eivät tarjoa riittävää ratkaisua fluffmassan revittävyydessä esiintyviin ongelmiin.

35 Esimerkkejä entsyyymikäsittelystä massan valmistuk- sessa löytyy alan kirjallisuudesta. Esim. FR-patenttijul-

kaisussa nro 2557894 on kuvattu menetelmä sellumassan käsittelemiseksi ksylanaasientsyymillä tarkoituksesta jauhatusajan lyhentäminen. CA-patenttijulkaisu nro 758488 koskee menetelmää massan jauhatusominaisuksien parantamiseksi 5 sellulaasi/pektinaasi/lipaasi-entsyyymikäsittelyllä. FR-patenttijulkaisu nro 2571738 puolestaan koskee menetelmää, jossa sellulaasikäsittelyn avulla saadaan massalle erikoismassan ominaisuudet. JP-patenttijulkaisu nro 60126395 koskee menetelmää parantaa jauhatusprosessia entsyyamilisäyk-10 sellä.

JP-patenttijulkaisussa nro 59009299 on kuvattu menetelmä, jossa lisätään siistausprosessiin painomusteen poistamisen tehostamiseksi alkaalista sellulaasia yhdessä pinta-aktiivisen aineen kanssa.

15 JP-hakemusjulkaisu nro 63059494 koskee menetelmää uusiomassan valkoisuuden parantamiseksi alkaalisen sellulaasin avulla.

20 FR-patenttihakemuksessa nro 8613208 on kuvattu menetelmä esimerkiksi kierrätysmassan ominaisuuksien parantamiseksi sellulaasi/hemisellulaasi-käsittelyllä.

Entsyymikäsittelyn soveltamista fluffmassan valmistukseen ei ole kuitenkaan alalla aikaisemmin kuvattu.

25 Esillä olevan keksinnön kohteena on fluffmassan revittävyysominaisuksien parantaminen entsyyymikäsittelyn avulla. On havaittu, että entsyyymikäsittely ei vaikuta haitallisesti fluffmassan muihin tärkeisiin ominaisuuksiin, kuten kuitupituuteen ja imuominaisuuksiin. Revittävyysominaisuksien paraneminen merkitsee käytännössä sitä, että repimiseen tarvittava energiamäärä vähenee ja revityn massan nuppuluku vähenee.

30 Keksinnön mukaisella entsyyymikäsittelyllä saatu hyöty näkyy käytännössä siten, että
1) fluffmassojen kuivatuskapasiteettia voidaan lisätä oleellisesti, koska massan märkäpuristusta voidaan lisätä 35 revittävyyttä huonontamatta ja koska massan kuiva-aineepitoisuus ennen kuivatusta nousee lisätyn märkäpuristuksen

vaikutuksesta, ja/tai

2) märkäpuristus ja tiheyystaso säilyttäen voidaan oleellisesti parantaa revittävyyttä, imuominaisuksia kuitenkaan heikentämättä.

5 Entsyymikäsittely voidaan keksinnön mukaan suorittaa missä tahansa fluffmassan valmistusprosessin vaiheessa. Massa voidaan siten käsitellä entsyymillä joko ennen massan valkaisua, jonkin massan valkaisuvaiheen yhteydessä tai massan valkaisun jälkeen. Myös massan kuivatuksen yhteydessä joko ennen kuivatuskonetta tai itse kuivatuskoneella tapahtuva entsyymikäsittely on mahdollinen.

10 Kaikissa tapauksissa entsyymi muokkaa kuitujen ja mahdollisen hienoaineen pintaominaisuksia siten että si-toutuminen vähenee ja siten massan revittävysominaisuudet 15 paranevat.

15 Käytettävä entsyymi on edullisesti sellulaasi, hemisellulaasi tai näiden seos, ja sopivina entsyymituotteina voidaan mainita Multifect L250 ja Multifect K, jotka ovat kaupallisia valmisteita, valmistaja Suomen Sokeri Oy.

20 Entsyymikäsittelyn lämpötila voi olla alueella 10 - 90 °C, sopivimmin alueella 40 - 70 °C. Käsittelyaika riippuu entsyymiannostuksesta ja käsittelyolosuhteista ja se vaihtelee 10 minuutista vuorokauteen, sopivimmin käsittelyaika on 0,5 - 8 h. Entsyymikäsittely voidaan suorittaa joko mas-

25 sasulpulle, jonka sakeus on 0,2 - 20 %, sopivimmin 2 - 12 %, tai rainatulle radalle, jonka kuiva-aineepitoisuus on 1 - 99 %, sopivimmin 20 - 50 % tai 80 - 95 %.

30 Keksinnön mukaisesti käytettävien eri entsyymilajien sopivat annostukset entsyymiaktiivisuksina ilmaistuna ovat seuraavissa rajoissa (U = aktiivisuusyksikkö):

Sellulaasit:

suodatinpaperiaktiivisuus 0 - 20000 U/kg massaa

CMC-aktiivisuus 0 - 500000 U/kg massaa

Hemisellulaasit:

35 esim. ksylyanaasi 0 - 2000000 U/kg massaa

mannanaasi 0 - 500000 U/kg massaa

Suodatinpaperiaktiivisuuden määritys on kuvattu julkaisussa Ghose, T.K., Patnak, A.N., Bisaria, V.S., Symposium of Enzymatic Hydrolysis of Cellulose, Bailey, M., Enari T.M., Linko, M., Eds. (SITRA, Aulanko, Finland, 5 1975), 111 - 136; CMC (karboksimetyylisellulaasi)-aktiivisuuden määritys julkaisussa Mandels, M., Weber, J., Adv. Chem. Ser. 95 (1969) 391 - 413; ja ksylyanaasin määritys julkaisussa Khan, A.W., Tremblay, D., LeDuy, A., Enzyme Microb. Technol., 8 (1986) 373 - 377.

10 Mannanaasiaktiivisuus määritettiin seuraavasti:
 1 ml:aan "Locust bean gum" -liuosta (0,5 %, Sigma No. G-0753, tehty 50-mM natriumsitraattipuskuriin, pH 5,3) lisättiin 1 ml samaan puskuriin sopivasti laimennettua entsyyymiä. Liuosta inkuboitiin 50 °C:ssa vesihautteessa 10 minuuttia. Reaktio lopetettiin lisäämällä 3 ml DNS-reagenssia ja väri kehitettiin keittämällä 5 minuuttia. Absorbanssi mitattiin 540 mn:n aallonpituudella. Yksi entsyy Miyksikkö (U) vapauttaa yhden mikromoolin pelkistäviä sokereita mannoosiksi laskettuna minuutissa määritysolosuh-
 20 teissa.

Keksintää kuvataan seuraavassa lähemmin laboratorio-koekesiin perustuvan suoritusesimerkin avulla.

Esimerkki 1

Kokeessa käytettiin fluffmassaa, joka oli valmistettu 25 kuusi/mänty-sekahakkeesta NS-AQ-menetelmällä (neutraalisul- fiitti-antrakinoni-menetelmä) ja valkaistu käyttäen O-D-E₀-D sekvenssiä (happi-klooridioksidi-hapella vahvistettu alkaliuutto-klooridioksidi-sekvenssi), ja joka oli otettu tehtaalta valkaisun jälkeiseltä pesusuotimelta laborato-30 rion entsymikäsittelykokeita varten. Entsymikäsittely suoritettiin käyttäen seuraavia olosuhteita:

lämpötila	50 °C
pH	5,0
aika	2 h
35 sakeus	3 %

Käytetyt entsyympreparaatit ja niiden aktiivisuudet
ilmenevät taulukosta 1.

Taulukko 1

Käytetyt entsyympreparaatit ja niiden aktiivisuudet
5

		Entsyyymi	
		Multifect L250	Multifect K
	CMC-akt. U/ml	2800	800
	Ksylanaasiakt. U/ml	500	5000
10	Suod.pap.akt. U/ml	110	40
	Mannanaasiakt. U/ml	90	190

Käytetyt entsyymiannostukset olivat 0 (= vertailu),
ja 2 ja 5 l/1000 kg massan kuiva-ainetta (l/t), jolloin
15 lisättyt entsyyymimäärit ilmoitettuna entsyymiyksikköinä
kg:aa massan kuiva-ainetta kohti olivat seuraavat:

Taulukko 2

Lisättyt entsyytimimäärät kg:aa kohti massan kuiva-ainetta

Entsyymi	Annos (l/t)	CMC-akt. U/kg	Ksylanaasiakt. U/kg	Suod.pap.akt. U/kg	Mannanaasiakt. U/kg
Multifect L250	2	5600	1000	220	180
Multifect L250	5	14000	2500	550	450
Multifect K	2	1600	10000	80	380
Multifect K	5	4000	25000	200	950

Entsyyymikäsittelyn/vertailukäsittelyn jälkeen massasta valmistettiin ns. fluff-arkkeja, joiden tavoiteneliö-paino oli 600 g/m^2 . Arkit tehtiin ns. isolla arkkimuotilla (= arkkimuotti malli KCL, mutta kooltaan isompi) ja valmis-tuksen jälkeen ne puristettiin (paine 10 bar, aika 3 min) ja kuivattiin (ilmakuivatus: lämpötila 80°C , aika 8 h).

Kuivauksen jälkeen arkit ilmastoitiin ja testattiin eli fluffattiin ja mitattiin fluffatun massan ominaisuudet. Testaustulokset ovat taulukossa 3.

Taulukko 3
Arkkiien fluffaus (= revintä) - ominaisuudet

Entsyymi	Annos 1/t	Energian kulutus fluffaukseissa MJ/t	Nuppuuluku fluffauksen jälkeen g	Fluffatun massan kuitupituus mm	Fluffatun massan tioaika s
Vertailu 1	-	172	17	2,12	3,6
Vertailu 2	-	168	19	2,05	3,2
Vertailu 3	-	170	14	2,03	4,0
Multifect L250	2	134	8	2,00	3,6
"	5	123	19	1,87	5,3
Multifect K	2	145	8	2,01	3,6
"	5	130	12	1,98	3,1

Vertailukäsittelyt tehtiin kolmeen kertaan, jotta nähtäisiin koetulosten hajonta. Taulukon 3 tuloksista nähdään hyvin selvästi, että entsyymikäsittely parantaa massan fluffattavuutta eli sen revittävyysominaisuksia (tarvitava energiamäärä pienenee, samoin kuin nuppuluku). Entsyyymikäsittelyllä ei ollut vaikutusta fluffatun massan muihin tärkeisiin ominaisuuksiin (kuitupituus ja absorptioaika).

Esimerkki 2

10 Toistettiin esimerkin 1 mukainen koe siten, että entsyymikäsittelylämpötila oli 45 °C ja valmistettujen fluffarkkien tiheys vakioitiin arvoon 540 kg/m³ neliömassan ollessa 760 g/m². Muuten koejärjestelyt ja -olosuhteet olivat esimerkin 1 mukaiset. Lisätty entsyymimäärit on 15 esitetty taulukossa 4 ja testaustulokset taulukossa 5.

Taulukko 4

Lisätty entsyymimäärit kg:aa kohti massan kuivaainetta

	Entsyymi	Multifect L250	Multifect L250
Annos (l/t)	1,0	2,0	
CMC-akt. U/kg	2800	5600	
Ksylanaasiakt. U/kg	500	1000	
25 Suod.pap.akt. U/kg	110	220	
Mannanaasiakt. U/kg	90	180	

Taulukko 5

Arkkien fluffaus (= revintä)-ominaisuudet

	Entsyymi	Annos l/t	Energian kulutus fluffauksessa MJ/t	Nuppuluku fluf- fauksen jälkeen %
-	-	-	173	17
35 Multifect L250	1,0	160		14
Multifect L250	2,0	157		13

Taulukon 4 tuloksista havaitaan, että myös tässä tapauksessa entsyyymikäsittely on parantunut massan fluffattavuutta eli revintäominaisuuksia.

Esimerkki 3

5 Esimerkissä 1 mainitulla NS-AQ-massalla tehtiin tehdasmittakaavainen entsyyymikäsittelykoe. Laimennettu entsyyymiliuos lisättiin massavirtaan valkaistun massan varastotornin jälkeisen pumpun imupuolelle. Olosuhteet entsyyymikäsittelyssä olivat seuraavat:

- 10 - lämpötila 43 - 45 °C
- pH 4,5 - 5,0
- massan sakeus n. 3 %
- reaktioaika 1,5 h.

15 Keskimääräinen entsyyymiannostus kokeen aikana oli 1,1 l/1 000 kg massan kuiva-ainetta, jolloin lisätty entsyyymimäärä aktiivisuusyksikköinä kg:aa massan kuiva-ainetta (U/kg) kohti ilmenee taulukosta 6.

Taulukko 6

Lisätty entsyyymimäärä entsyyymiaktiivisuusyksikköinä
20 kg:aa kohti massan kuiva-ainetta

Annos (l/t)	1,1
CMC-akt. U/kg	3 080
Ksylanaasiakt. U/kg	330
Suod.pap.akt. U/kg	121
Mannanaasiakt. U/kg	99

25 Entsyyymikoe kesti 45 tuntia. Massan tiheys pidettiin vakiona ($0,56 \text{ kg/dm}^3$). Kokeen aikana seurattiin massan kuivatakoneen käyttäytymistä ja joka toisesta konerullasta tehtiin massalle esimerkissä 1 mainitut mittaukset. Lisäksi massan kuivatakoneen käyttäytymistä seurattiin ja massan ominaisuuksia mitattiin 4 tuntia ennen kokeen alkamista ja 3 tuntia kokeen päättymisen jälkeen. Yhteenvedo kokeen-tuloksista on esitetty taulukossa 7.

30 Taulukosta nähdään selvästi, että myös tehdasmit-tataavassa massan käsittely sellulolyytisillä ja hemisel-

lulolyyttisillä entsyymimeillä on parantanut NS-AQ-massan fluffattavuutta eli revintäominaisuksia.

Taulukko 7

5 Entsyymikäsittelyn (Multifect L 250) vaikutus kuivatuskoneen nopeuteen ja massan revintäominaisuksiin NS-AQ-revinnäismassan valmistuksessa, sekä entsyymikäsittelykoe että vertailukoe tehtiin vakiotiheydessä (560 kg/m^3).

		Vertailu	Multifect L 250
10	Annos, l/t	-	1,1

Kuivatuskone:

15	- Märkäpuristus, kN/m	92	85
	- Koneen nopeus, m/min	<85	92
	- Tuotanto, t/h	18	>20
	- Puhkaisulujuus, kPa	>1 500	<1 200

Revintäominaisuudet:

20	- Energian kulutus, MJ/t	220	200-205
	- Nuppupitoisuus, %	12	7
	- Bulkki, cm ³ /g	20,5	21,0
	- vanhentamisen		
	jälkeen	21,5	22,0
	- Absorptioaika, s	2,7	2,8
25	- vanhentamisen		
	jälkeen	3,1	3,2
	- Absorptiokapasiteetti, g/g	11,0	11,3
	- vanhentamisen		
	jälkeen	11,1	11,6

30 Esimerkki 4

Kokeessa käytettiin puumassaa, joka oli valmistettu kuusi/mänty-sekahakkeesta sulfaattimenetelmällä ja valkaistu käyttäen O-C+D-E-O-D-E-D-sekvenssiä (happi-kloorin ja klooridioksidiin seos-alkaliuutto-happi-klooridioksidi-alkaliuutto-klooridioksidi) ja otettu tehtaalta kuivatus-

konetta edeltävästä varastosäiliöstä laboratorioon entsyy-mikäsittelykokeita varten. Entsyyymikäsittely tehtiin käyt-täen seuraavia olosuhteita:

- lämpötila 50 °C
- pH 5,0
- reaktioaika 1 h
- massan sakeus 3 %

Käytetyt entsyympreparaatit ja niiden aktiivisuudet ilmenevät taulukosta 8.

10 Taulukko 8.

Käytetyt entsyympreparaatit ja niiden aktiivisuudet

Multifect L250	Multifect L250/ Multifect K
----------------	--------------------------------

CMC-akt. U/ml	2 800	1 800
Ksylanaasiakt. U/ml	500	2 750
Suod.pap.akt. U/ml	110	75
Mannanaasiakt. U/ml	90	140

Käytetyt entsyymiannostukset olivat 0 (= vertailu) ja 1, 2 ja 4 1/1 000 kg massan kuiva-ainetta (l/t), jolloin lisättyt entsyyminäät ilmoitettuna entsyymiaktiivi-suusyksikköinä kg:aa massan kuiva-ainetta kohti ilmenevät taulukosta 9.

Entsyyymikäsittelyn/vertailukäsittelyn jälkeen mas-sasta valmistettiin ns. fluff-arkkeja samalla tavalla kuin esimerkissä 1 ja arkit testattiin esimerkissä 1 mainitulla tavalla. Testaustulokset ovat taulukossa 10.

Taulukosta 10 nähdään selvästi, että entsyyymikä-sittely parantaa myös sulfaattimassan revittävyysominaisuuksia eli revintään tarvittavan energian määrä pienenee, samoin massan nuppupitoisuus.

Taulukko 9

Lisättyt entsyymiäärät entsyymiaktiivisuuksina kg:aa massan kuiva-ainetta kohti.

Entsyymi	Annos 1/t	CMC-akt. U/kg	Ksyli. akt. U/kg	Suod.pap.akt. U/kg	Mann.akt. U/kg
Multifect L250	1	2 800	500	110	90
	2	5 600	1 000	220	180
	4	11 200	2 000	440	360
Multifect L250/Multifect K	1	1 800	2 750	75	140
	2	3 600	5 500	150	280
	4	7 200	11 000	300	560

Taulukko 10

Entsyymillä käsitellyistä sulfaattimassasta valmistettujen arkkien fluffaus (=revintä-)ominaisuudet

Entsyymi	Annos l/t	Revintäenergian kulutus, MJ/t	Revityn massan nuppupit., %	Revityn massan absorptio - aika, s
Vertailu	-	139	12	4,2
Multifect L250	1	130	10	3,9
"	2	121	12	4,4
"	4	117	9	4,9
Multifect L250/Multifect K	1	126	10	3,9
"	2	124	9	4,0
"	4	116	9	4,8

Esimerkki 5

Tehtiin esimerkin 1 mukainen koe käyttäen kuusi-hakkeesta valmistettua ja O-D-E_oP-D-sekvenssillä (happi-klooridioksidi-hapella vahvistettu alkaliutto + peroksidti - klooridioksidi) valkaistua ns. bisulfiitti-soodamassaa.

Entsyymikokeita varten massa otettiin tehtaalta valkaisun jälkeiseltä pesurilta. Koejärjestelyt ja olosuhteet olivat esimerkin 1 mukaiset, sillä erolla, että nyt käytettiin 1 h:n reaktioaikaa esimerkissä 1 mainitun 2 h:n asemesta. Lisätyt entsyymimäärit on esitetty taulukossa 11 ja testaustulokset taulukossa 12.

Taulukko 11

Lisätyt entsyymimäärit (Multifect L250) entsyymi-aktiivisuksina kg:aa kohti massan kuiva-ainetta				
15	Annos, l/t	1	2	4
	CMC-akt., U/kg	2 800	5 600	11 200
	Ksylanaasiakt., U/kg	500	1 000	2 000
	Suod.pap.akt., U/kg	110	220	440
	Mannanaasiakt., U/kg	90	180	360

Taulukko 12

Arkkien revintäominaisuudet

25	Entsyymi	Annos l/t	Revintäenergian kulutus, MJ/t	Revityn massan nuppupit., %
	Vertailu	-	100	1
	Multifect L250	1	96	0
	"	2	96	0
	"	4	86	0

30 Taulukosta 12 havaitaan, että entsyymikäsittely parantaa myös bisulfiitti-sooda-massan revintäominaisuuk-sia.

Patenttivaatimuksset

1. Menetelmä revittävyydeltään parannetun fluffmassan valmistamiseksi, tunnettu siitä, että fluffmassan valmistusprosessin aikana massalle suoritetaan entsyymikäsittely.

5 2. Patenttivaatimuksen 1 mukainen menetelmä, tunnettu siitä, että fluffmassa on kemiallista massaa tai kemitermomekaanista massaa, termomekaanista massaa tai 10 hiocketta.

10 3. Patenttivaatimuksen 2 mukainen menetelmä, tunnettu siitä, että massa on valkaisematon massaa.

15 4. Patenttivaatimuksen 2 mukainen menetelmä, tunnettu siitä, että massa on valkaistua massaa.

5 5. Patenttivaatimuksen 4 mukainen menetelmä, tunnettu siitä, että entsyymikäsittely suoritetaan ennen massan valkaisua.

20 6. Patenttivaatimuksen 4 mukainen menetelmä, tunnettu siitä, että entsyymikäsittely suoritetaan jonkin massan valkaisuvaiheen yhteydessä.

7. Patenttivaatimuksen 4 mukainen menetelmä, tunnettu siitä, että entsyymikäsittely suoritetaan massan valkaisun jälkeen.

25 8. Jonkin edellisen patenttivaatimuksen mukainen menetelmä, tunnettu siitä, että entsyymikäsittely suoritetaan massan kuivatuksen yhteydessä.

9. Jonkin edellisen patenttivaatimuksen mukainen menetelmä, tunnettu siitä, että entsyymikäsittely suoritetaan käyttäen entsyymivalmistetta, joka sisältää sellulolyyttistä aktiivisuutta ja/tai hemisellulolyyttistä aktiivisuutta.

30 10. Patenttivaatimuksen 9 mukainen menetelmä, tunnettu siitä, että entsyymivalmistetta lisätään määäränä, joka vastaa 0 - 10000 yksikköä sellulolyyttistä aktiivisuutta suodatinpaperiaktiivisuutena ilmaistuna, 0 - 35 200000 yksikköä sellulolyyttistä aktiivisuutta CMCaasi-

aktiivisuutena ilmaistuna, 0 - 2000000 yksikköä hemisellulolyyttistä aktiivisuutta ksylyanaasiaktiivisuutena ilmaistuna ja/tai 0 - 500000 yksikköä hemisellulolyyttistä aktiivisuutta mannanaasiaktiivisuutena ilmaistuna, kg:aa kohti
5 massan kuiva-ainetta.

11. Patenttivaatimuksen 9 mukainen menetelmä, t u n-
n e t t u siitä, että entsyyymivalmistetta lisätään mää-
rävä, joka vastaa noin 20 - 600 yksikköä sellulolyyttistä
aktiivisuutta suodatinpaperiaktiivisuutena ilmaistuna, noin
10 500 - 10000 yksikköä sellulolyyttistä aktiivisuutta CMC-
aasi-aktiivisuutena ilmaistuna, noin 500 - 100000 yksik-
köä hemisellulolyyttistä aktiivisuutta ksylyanaasiaktiivi-
suutena ilmaistuna, ja/tai noin 50 - 10000 yksikköä hemi-
sellulolyyttistä aktiivisuutta mannanaasiaktiivisuutena il-
15 maistuna, kg:aa kohti massan kuiva-ainetta.

12. Jonkin patenttivaatimuksen 1 - 11 mukaisella
menetelmällä valmistetun fluffmassan käyttö kertakäyttöis-
ten hygieniaotteiden valmistukseen.

13. Jonkin patenttivaatimuksen 1 - 11 mukaisella
20 menetelmällä valmistetun fluffmassan käyttö kuivarainaus-
tuotteiden valmistukseen.

Patentkrav

1. Förfarande för framställning av fluffmassa med
förbättrad rivbarhet, kännetecknadt därav, att
5 massan underkastas enzymbehandling under fluffmassans
framställningsprocess.

2. Förfarande enligt patentkravet 1, kännetecknadt därav, att fluffmassan utgörs av kemisk
massa eller kemitermomekanisk massa, termomekanisk massa
10 eller slipmassa.

3. Förfarande enligt patentkravet 2, kännetecknadt därav, att massan utgörs av oblekt massa.

4. Förfarande enligt patentkravet 2, kännetecknadt därav, att massan utgörs av blekt massa.

15 5. Förfarande enligt patentkravet 4, kännetecknadt därav, att enzymbehandlingen utförs före
blekning av massan.

6. Förfarande enligt patentkravet 4, kännetecknadt därav, att enzymbehandlingen utförs i samband med något blekningssteg av massan.

20 7. Förfarande enligt patentkravet 4, kännetecknadt därav, att enzymbehandlingen utförs efter
blekning av massan.

25 8. Förfarande enligt något av de föregående patentkraven, kännetecknadt därav, att enzymbehandlingen utförs i samband med torkning av massan.

30 9. Förfarande enligt något av de föregående patentkraven, kännetecknadt därav, att enzymbehandlingen utförs genom att använda ett enzympreparat, som innehåller cellulolytisk aktivitet och/eller hemicellulolytisk aktivitet.

35 10. Förfarande enligt patentkravet 9, kännetecknadt därav, att enzympreparatet tillsätts i en mängd, som motsvarar 0 - 10000 enheter cellulolytisk aktivitet uttryckt som filterpapperaktivitet, 0 - 200000

enheter cellulolytisk aktivitet uttryckt som CMCas-aktivitet, 0 - 2000000 enheter hemicellulolytisk aktivitet uttryckt som xylanasaktivitet och/eller 0 - 500000 enheter hemicellulolytisk aktivitet uttryckt som mannanasaktivitet, per kg torrsubstans i massan.

5 11. Förfarande enligt patentkravet 9, kännetecknade härav, att enzympreparat tillsätts i en mängd, som motsvarar cirka 20 - 600 enheter cellulolytisk aktivitet uttryckt som filterpapperaktivitet, cirka 500 - 10000 enheter cellulolytisk aktivitet uttryckt som CMCas-aktivitet, cirka 500 - 100000 enheter hemicellulolytisk aktivitet uttryckt som xylanasaktivitet, och/eller cirka 50 - 10000 enheter hemicellulolytisk aktivitet uttryckt som mannanasaktivitet, per kg torrsubstans i massan.

10 15. Användning av fluffmassan framställd medelst ett förfarande enligt något av patentkraven 1 - 11 för framställning av engångshygieniprodukter.

15 20. Användning av fluffmassan framställd medelst ett förfarande enligt något av patentkraven 1 - 11 för framställning av torrformade produkter.

TRANSLATION OF ABSTRACT FOR FI87372

Abstract

Fluff pulp with improved defibration properties is produced by exposing the pulp to an enzyme treatment at any stage during the pulp production process. The enzyme treatment may be carried out using an enzyme preparation containing cellulolytic and/or hemicellulolytic activity. The enzyme treated fluff pulp is useful in the manufacture of disposable hygiene products and air-laid products.