TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

ĐỀ THI CUỐI HK1 (2019-2020)

KHOA KỸ THUẬT MÁY TÍNH

KIẾN TRÚC MÁY TÍNH

Đề 00

Thời gian: 70 phút

(Sinh viên không được sử dụng tài liệu. Làm bài trực tiếp trên đề)

<u>STT</u>	Họ và tên:	<u>ĐIỂM</u>
	Phòng thi:	<u></u>

TRẮC NGHIỆM (9.2 điểm, 0.4 điểm/câu), SV chọn 1 đáp án đúng

Câu 1	Câu 2	Câu 3	Câu 4	Câu 5	Câu 6	Câu 7	Câu 8
Câu 9	Câu 10	Câu 11	Câu 12	Câu 13	Câu 14	Câu 15	Câu 16
Câu 17	Câu 18	Câu 19	Câu 20	Câu 21	Câu 22	Câu 23	

Câu 1 Một Terabyte bằng bao nhiều byte? (G1)

A. 2^10 byte B. 2^20 byte	C. 2^30 byte	D. 2^40 byte
---------------------------	--------------	--------------

Câu 2 Trong các loại bộ nhớ sau, bộ nhớ nào có tốc độ nhanh nhất (G1)

A. RAM B. Đĩa Quang	C. Cache	D. Bộ nhớ Flash
---------------------	----------	-----------------

Câu 3 Đoạn lệnh sau tương ứng với đoạn lệnh C nào, với i và k tương ứng với thanh ghi s3 và s5, địa chỉ nền của mảng save là thanh ghi s6? (G1)

```
Loop: sll $t1,$s3,2

add $t1,$t1,$s6

lw $t0,0($t1)

bne $t0,$s5, Exit

addi $s3,$s3,1

j Loop while (save[i] == k)
```

	Exit:
A.	while (save[$i*4$] == k)
	i += 1;
B.	while (save[i] == k)
	i = i + 1;
C.	while (save[i] # k)
	i += 1;
D.	while $(save[i]*4 == k)$
	i += 1;

Câu 4 Điện thoại thông minh (smart phone) thuộc nhóm máy tính nào? (G1)

A.	Máy tính cá nhân
B.	Siêu máy tính
C.	Máy tính chủ
D.	Máy tính nhúng

Câu 5 Một bức ảnh có độ phân giải 2K có kích thước 2560x1440 pixels. Mỗi pixel chứa thông tin 3 màu cơ bản đỏ, xanh lá cây, xanh lam. Mỗi màu cơ bản được thể hiện bởi 8 bits. Để lưu trữ bức ảnh đó trên bộ nhớ thì dụng lượng tối thiểu của bộ nhớ là bao nhiêu Mbytes? (G3)

A 10	R 11	C 12	D 20
Λ. 10	D. 11	C. 12	D. 20

Câu 6 Máy tính Acer E1 có tần số xung clock là 2.0 GHz. Để thực thi một chương trình gồm 2019 lệnh thì máy tính thực hiện trong bao lâu? Biết trung bình mỗi lệnh kéo dài 5 chu kì. (G2)

A. 2024s	B. 2014ns	C. 5047.5ns	D. 5047.5s
----------	-----------	-------------	------------

Câu 7 Một bạn sinh viên sử dụng gói cước super 50 (50Mbps) của nhà mạng FPT và bạn sinh viên đó đang cần download 1 tập phim "Tiếng sét trong mưa tập 33.mp4" có kích thước là 600MB để cho mẹ bạn xem. Hỏi bạn sinh viên đó cần ít nhất bao nhiều thời gian (s) để download xong bộ phim, giả sử rằng toàn bộ băng thông mạng chỉ sử dụng cho việc download phim đó.? (G3)

A. 83s	B. 15s	C. 12s	D. 96s
--------	--------	--------	--------

Câu 8 Trong các câu lệnh assembly MIPS bên dưới. Câu lệnh nào chuyển đúng cho câu lệnh cấp cao a = b - 5, biết biến a, b lưu trữ trong thanh ghi \$s3, \$s4 (G1)

A.	subi \$s3, \$s4, 5
B.	add \$s3, \$s4, -5
C.	sub \$s3, \$s4, 5
D.	addi \$s3, \$s4, -5

Câu 9 Bảng dưới đây mô tả số lệnh và thời gian thực thi tương ứng trên máy tính Acer E1 khi thực hiện một chương trình, trong đó tập lệnh này gồm 4 lớp lệnh (instruction class) A, B, C và D.

Lớp	CPI cho Acer E1	Số lệnh	
A	1	650	650
В	5	120	600
С	5	500	2500
D	2	50	100

Tính thời gian thực thi của chương trình biết máy tính có tần số 2Ghz? (G2) 3950 / 2.10^9

A. 2340ns	B 660ns	C. 1925ns	D. 7700ns
11. 23 10115	D. OOOHS	C. 1723115	D. 1100115

Câu 10 Trong các câu lệnh nhị phân biểu diễn dưới dạng thập lục phân bên dưới. Câu lệnh nào dùng để biểu diễn lệnh addi \$t3, \$t5, -146 (G1)

I: 0010_0001_0110_1101_1111_1111_0110_1110

A.	0x21ABFF6E
B.	0x31ABFFD2
C.	0x35ABFF6E
D.	0x29ABFFD2

Câu 11 Trong các câu lệnh assembly MIPS bên dưới. Câu lệnh nào nhảy đến nhãn KTMT, biết thanh ghi \$s1 = \$s0 (G1)

A.	slt \$s1, \$s0, KTMT
B.	beq \$s1, \$s0, KTMT
C.	bne \$s1, \$s0, KTMT
D.	blt \$s1, \$s0, KTMT

Câu 12 Trong các câu lệnh assembly MIPS bên dưới. Câu lệnh nào dùng để biểu diễn lệnh 0x29ABFF79 (G1) 001010_01101_01011_1111_1111_0011

A.	slti \$t3, \$t5, 135
B.	addi \$t3, \$t5, -135
C.	slti \$t3, \$t5, -135
D.	addi \$t3, \$t5, 135

Câu 13 Trong theo slide về kiến trúc tập lệnh đã học kiến trúc MIPS có bao nhiều loại toán hạng? (G1)

A. 2 B. 3	C. 4	D. 5
-----------	------	------

Câu 14 Cho đoạn mã chương trình assembly như bên dưới:

```
slti $t0, $s1, 5

beq $t0, $zero, ELSE

sll $t1, $s1, 2

add $s2, $s2, $t1

j End

ELSE: add $s2, $s1, $zero

End
```

Biết thanh ghi \$s1 = 1, thanh ghi \$s2 = 0. Cho biết thanh ghi \$s2 bằng bao nhiều sau khi thực hiện đoạn lệnh chương trình trên (G1)

D. 1

Câu 15 Chức năng của thanh ghi \$ra (G1)

A.	Thanh ghi lưu tham số truyền tham số cho hàm/thủ tục	
B.	Thanh ghi dùng để lưu giá trị trả về của hàm	
C.	Thanh ghi chứa địa chỉ của lệnh ngay sau lệnh gọi thủ tục	
D.	Thanh ghi dùng để lưu địa chỉ của stack	

Câu 16 Cho biết giá trị của thanh ghi \$t3 sau khi thực hiện lệnh sau

add \$t2, \$t1, \$t0

addi \$t3, \$t2, 80000

Giả sử giá trị ban đầu chứa trong thanh ghi t0 = 0, t1 = 1, t2 = 2 (G1)

A.	t3 = 80000
B.	t3 = 80001
C.	t3 = 80003
D.	Cả 3 đáp án trên đều sai

Câu 17 Thanh ghi nào sau đây mà giá trị của nó không thể thay đổi (G1)

A.	Stack Pointer
B.	Zero
C.	Frame Pointer
D.	Return Address

t1 = 1111_1111_1111_1111_1111_1111_0001 $\mathbf{C\hat{a}u} \ \mathbf{18} \ \mathbf{Cho} \ \$t1 = 0 \times \mathbf{fffffff}$

Giá trị của thanh ghi \$t2 và \$t3 là bao nhiều sau khi thực thi lệnh sau: (G1)

sltiu \$t2, \$t1, 0x73

 $t2 = 0x111_0011$

t1<t2

slti \$t3, \$t1, 0x73

A.	\$t2 = 1; \$t3 = 1
B.	\$t2 = 0; \$t3 = 1
C.	\$t2 = 1; \$t3 = 0
D.	\$t2 = 0; \$t3 = 0

Câu 19 Trong kiến trúc máy tính MIPS, khi máy tính thực thi lênh "jal 400" thì (G1)

A.	ra = PC + 4 và PC = 400	
B.	ra = PC và PC = PC + 400	
C.	ra = PC + 4 và PC = 1600	
D.	ra = PC và PC = PC + 1600	lw \$t0, 16(\$s0)

Câu 20 Cần ít nhất bao nhiều lệnh hợp ngữ để biểu diễn câu lệnh trong satio (61)

$$f = g - A[B[4]]$$

add \$t1, \$t0, \$s5 lw \$t1, 0(\$t1)

A. 3 sub \$s₁, \$s₂, \$t₁ B. 4 C. 5

Câu 21 Lệnh MIPS nào tương đương với mã lệnh C sau đây: (G1)

$$if (\$s2 < \$s3)$$

slt \$s1, \$s2, \$s3

\$s1 = 1;

else

\$s1 = 0

A.	beq \$s1,\$s2,\$s3
B.	slt \$s1,\$s2,\$s3
C.	sltu \$s1,\$s2,\$s3
D.	sltu \$s2,\$s1,\$s3

Câu 22 Thực hiện phép nhân cho 2 số 4 bit sau $0010_2 \times 0011_2$ trên phần cứng 3 thanh ghi. Cho biết giá trị của thanh ghi tích bằng bao nhiều sau bước lặp số 2. (G3)

A. 0000 011 <mark>0</mark>	B. 0000 0011	C. 0000 0001	D. 0000 0010

Câu 23 Kết quả thực hiện phép tính 01000110₂+01011100₂ dưới dạng thập phân là: (G3)

Δ 154	B. 168	C 162	D. 160
11. 13 T	D. 100	C. 102	D. 100

Tự Luận (0.8 điểm) (G1, G4)

Chuyển đoạn lệnh C sau sang assembly của MIPS (tối đa 10 câu lệnh).

Biết i và j tương ứng với các thanh ghi \$s0 và \$s1. Mảng A là mảng mà các phần tử là số nguyên, mỗi phần tử chiếm 1 từ nhớ (4 bytes) và địa chỉ nền của mảng A lưu trong thanh ghi \$s3

Duyệt đề Khoa/Bộ Môn

Giáo viên ra đề

NAME, MNEMONIC MAT OPERATION (in Verilog) (F. Add Add add R R[rd] = R[rs] + R[rt] (1) 0 / 2 Add Immediate addi I R[rt] = R[rs] + SignExtImm (1,2) 8 Add Imm. Unsigned addiu I R[rt] = R[rs] + SignExtImm (2) 9 Add Unsigned addiu R R[rd] = R[rs] + SignExtImm 0 / 2 And and R R[rd] = R[rs] & R[rt] 0 / 2 And Immediate andi I R[rt] = R[rs] & ZeroExtImm (3) 0 And Immediate andi I R[rt] = R[rs] & ZeroExtImm (4) 4 Branch On Equal beq I if(R[rs] ==R[rt]) (4) 4 Branch On Not Equal bne I if(R[rs] ==R[rt]) (4) 4 Jump j J PC=PC+4+BranchAddr (4) 4 Jump And Link ja1 J R[31] = PC+8; PC=JumpAddr (5) 2 Jump Register jr R PC=R[rs] 0 / 2 Load Byte Unsigned lbu I R[rt] = {24'b0,M[R[rs] + SignExtImm](7:0)} (2) 2 Load Halfword Unsigned lbu I R[rt] = R[rt] = R[rt] (2) 2 Load Linked l1 R[rt] = M[R[rs] + SignExtImm]	JNCT			
Add add R R[rd] = R[rs] + R[rt] (1) 0 / 2 Add Immediate addi I R[rt] = R[rs] + SignExtImm (1,2) 8 Add Imm. Unsigned addiu I R[rt] = R[rs] + SignExtImm (2) 9 Add Unsigned addu R R[rd] = R[rs] + R[rt] 0 / 2 And and R R[rd] = R[rs] & R[rt] 0 / 2 And Immediate andi I R[rt] = R[rs] & ZeroExtImm (3) 0 And Immediate andi I R[rt] = R[rs] & ZeroExtImm (3) 0 And Immediate andi I R[rt] = R[rs] & ZeroExtImm (4) 4 Branch On Equal beq I if(R[rs]==R[rt]) 0 / 2 Branch On Not Equal bne I if(R[rs]==R[rt]) 0 / 2 Branch On Not Equal bne I if(R[rs]=!=R[rt]) 0 / 2 Jump And Link jal J R[31]=PC+4;PC=JumpAddr (5) 2 Jump Register jr R PC=R[rs] 0 / 2 Load Byte Unsigned 1bu I <				
Add Immediate addi I R[rt] = R[rs] + SignExtImm (1,2) 8 Add Imm. Unsigned addiu I R[rt] = R[rs] + SignExtImm (2) 9 Add Unsigned addu R R[rd] = R[rs] + R[rt] 0 / R 0 / R And and R R[rd] = R[rs] & R[rt] 0 / R 0 / R And Immediate andi I R[rt] = R[rs] & ZeroExtImm (3) 0 / R And Immediate andi I R[rt] = R[rs] & ZeroExtImm (3) 0 / R And Immediate andi I R[rt] = R[rs] & ZeroExtImm (4) 4 And Immediate andi I R[rt] = R[rs] R[rt] (4) 4 Branch On Equal beq I if(R[rs] = R[rt]) (4) 4 Branch On Not Equal bne I if(R[rs] = R[rt]) (4) 4 Branch On Not Equal bne I if(R[rs] = R[rt]) (5) 2 Jump j J PC=R[rs] R[rt] (5) 2 <	lex)			
Add Imm. Unsigned addiu I R[rt] = R[rs] + SignExtImm (2) 9 Add Unsigned addu R R[rd] = R[rs] + R[rt] 0 / 1 And and R R[rd] = R[rs] & R[rt] 0 / 1 And Immediate andi I R[rt] = R[rs] & ZeroExtImm (3) 0 Branch On Equal beq I if(R[rs]==R[rt]) (4) 4 Branch On Not Equal bne I if(R[rs]!=R[rt]) (4) 4 Branch On Not Equal bne I if(R[rs]!=R[rt]) (4) 4 Jump And Link jal J PC=PC+4+BranchAddr (4) 5 Jump And Link jal J R[31]=PC+8;PC=JumpAddr (5) 2 Jump Register jr R PC=R[rs] 0 / 6 Load Byte Unsigned lbu I R[rt]={24'b0,M[R[rs]} (2) Load Halfword Unsigned lbu I R[rt]={16'b0,M[R[rs]} (2) 2 Load Linked ll I R[rt]=M[rs				
Add Unsigned addu R R[rd] = R[rs] + R[rt] 0 / And and R R[rd] = R[rs] & R[rt] 0 / And Immediate and I R[rt] = R[rs] & ZeroExtImm (3) of Branch On Equal beq I if(R[rs] == R[rt]) PC = PC + 4 + Branch Addr (4) 4 Branch On Not Equal bne I if(R[rs]! = R[rt]) PC = PC + 4 + Branch Addr (4) 5 Jump j J PC = Jump Addr (5) 2 Jump And Link jal J R[31] = PC + 8; PC = Jump Addr (5) 3 Jump Register jr R PC = R[rs] 0 / R[rt] = {24 b0, M[R[rs] + SignExtImm](7:0)} {22 column Adde Adde Adde Adde Adde Adde Adde Add	hex			
And and R R[rd] = R[rs] & R[rt] 0 / And Immediate and I R[rt] = R[rs] & ZeroExtImm (3) of Branch On Equal beq I if(R[rs] == R[rt]) PC = PC + 4 + Branch Addr (4) 4 Branch On Not Equal bne I if(R[rs]! == R[rt]) PC = PC + 4 + Branch Addr (4) 5 Jump j J PC = Jump Addr (5) 2 Jump And Link jal J R[31] = PC + 8; PC = Jump Addr (5) 3 Jump Register jr R PC = R[rs] 0 / R Load Byte Unsigned 1bu I R[rt] = {24 b0, M[R[rs] + SignExtImm](7:0)} (2) Load Halfword Unsigned 1bu I R[rt] = {16 b0, M[R[rs] + SignExtImm](15:0)} (2) Load Linked 11 I R[rt] = M[R[rs] + SignExtImm] (2,7) 30 Load Upper Imm. 1ui I R[rt] = {imm, 16 b0} f Load Word 1w I R[rt] = M[R[rs] + SignExtImm] (2) 22 Nor nor R R[rd] = ~ (R[rs] R[rt]) 0 / R Or Immediate ori I R[rt] = R[rs] ZeroExtImm (3) definition of the state of the sign of	hex			
And Immediate and I R[rt] = R[rs] & ZeroExtImm (3) or if(R[rs]==R[rt]) Branch On Equal beq I if(R[rs]==R[rt]) PC=PC+4+BranchAddr (4) 4 Branch On Not Equal bne I if(R[rs]!=R[rt]) PC=PC+4+BranchAddr (4) 5 Jump j J PC=PC+4+BranchAddr (5) 2 Jump And Link jal J R[31]=PC+8;PC=JumpAddr (5) 3 Jump Register jr R PC=R[rs] Load Byte Unsigned 1bu I R[rt]={24'b0,M[R[rs] + SignExtImm](7:0)} (2) 6 Load Halfword Unsigned 1hu I R[rt]={16'b0,M[R[rs] + SignExtImm](15:0)} (2) 1 Load Linked 11 I R[rt] = M[R[rs]+SignExtImm] (2,7) 30 Load Upper Imm. 1ui I R[rt] = M[R[rs]+SignExtImm] (2) 22 Load Word 1w I R[rt] = M[R[rs]+SignExtImm] (2) 23 Nor nor R R[rd] = ~(R[rs] R[rt]) Or or R R[rd] = R[rs] R[rt] Or Immediate ori I R[rt] = R[rs] ZeroExtImm (3) definition of the state				
Branch On Equal beq I if(R[rs]==R[rt]) PC=PC+4+BranchAddr (4) 4 Branch On Not Equal bne I if(R[rs]!=R[rt]) PC=PC+4+BranchAddr (4) 5 Jump j J PC=PC+4+BranchAddr (5) 2 Jump And Link jal J R[31]=PC+8;PC=JumpAddr (5) 3 Jump Register jr R PC=R[rs] 0 /r Load Byte Unsigned lbu I R[rt]={24'b0,M[R[rs] + SignExtImm](7:0)} (2) 2 Load Halfword Unsigned lbu I R[rt]={16'b0,M[R[rs] + SignExtImm](7:0)} (2) 2 Load Linked l1 I R[rt] = M[R[rs]+SignExtImm] (2,7) 30 Load Upper Imm lui I R[rt] = {imm, 16'b0} f f Load Word lw I R[rt] = M[R[rs]+SignExtImm] (2) 2 Nor nor R R[rd] = ~ (R[rs] R[rt]) 0 / r 0 / r Or or R R[rd] = R[rs] ZeroExtImm (3) d <td></td>				
Branch On Equal beq I PC=PC+4+BranchAddr (4) Branch On Not Equal bne I if(R[rs]!=R[rt]) PC=PC+4+BranchAddr (4) Jump j J PC=PC+4+BranchAddr (5) 2 Jump And Link jal J R[31]=PC+8;PC=JumpAddr (5) 3 Jump Register jr R PC=R[rs] 0/6 Load Byte Unsigned 1bu I R[rt]={24'b0,M[R[rs] + SignExtImm](7:0)} (2) Load Halfword Unsigned 1bu I R[rt]={16'b0,M[R[rs] + SignExtImm](15:0)} (2) Load Linked 11 I R[rt]=M[R[rs]+SignExtImm] (2,7) 36 Load Upper Imm. 1ui I R[rt] = M[R[rs]+SignExtImm] (2) 25 Load Word 1w I R[rt] = M[R[rs]+SignExtImm] (2) 25 Nor nor R R[rd] = ~(R[rs] R[rt]) 0/6 Or Immediate ori I R[rt] = R[rs] ZeroExtImm (3) december 1.55	hex			
Jump j	hex			
Jump And Link jal J R[31]=PC+8;PC=JumpAddr (5) 3 Jump Register jr R PC=R[rs] 0 / 6 Load Byte Unsigned lbu I R[rt]={24'b0,M[R[rs] + SignExtImm](7:0)} (2) Load Halfword Unsigned lhu I R[rt]={16'b0,M[R[rs] + SignExtImm](15:0)} (2) Load Linked l1 I R[rt]=M[R[rs]+SignExtImm] (2,7) 36 Load Upper Imm. lui I R[rt]= {imm, 16'b0} f f Load Word lw I R[rt]= M[R[rs]+SignExtImm] (2) 22 Nor nor R R[rd]= ~(R[rs] R[rt]) 0 / 6 Or or R R[rd]= R[rs] R[rt] 0 / 6 Or Immediate ori I R[rt]= R[rs] ZeroExtImm (3) d	hex			
Jump Register jr R PC=R[rs] 0 / PC PC PC PC PC PC PC PC	hex			
Load Byte Unsigned 1bu I R[rt]={24*b0,M[R[rs] +SignExtImm](7:0)} (2) 24 Load Halfword Unsigned 1bu I R[rt]={16*b0,M[R[rs] +SignExtImm](15:0)} (2) 25 Load Linked 11 I R[rt] = M[R[rs]+SignExtImm] (2,7) 36 Load Upper Imm. 1ui I R[rt] = {imm, 16*b0} f Load Word 1w I R[rt] = M[R[rs]+SignExtImm] (2) 25 Nor nor R R[rd] = ~(R[rs] R[rt]) 0 / 10 Or Immediate ori I R[rt] = R[rs] ZeroExtImm (3) definition of the sign o	hex			
Load Byte Unsigned 1bu	08 _{hex}			
Unsigned	4 _{hex}			
	5 _{hex}			
	0 _{bex}			
	hex			
Nor nor R $R[rd] = \sim (R[rs] \mid R[rt])$ 0 / Or or R $R[rd] = R[rs] \mid R[rt]$ 0 / Or Immediate ori I $R[rt] = R[rs] \mid ZeroExtImm$ (3)	3 _{bex}			
Or or $R R[rd] = R[rs] R[rt]$ O/Or Immediate ori $R[rt] = R[rs] R[rt]$ Or Immediate (3)	27 _{hex}			
Or Immediate ori I $R[rt] = R[rs] ZeroExtImm$ (3)	25 _{hex}			
	hex			
	2a _{hex}			
	hex			
Set Less Then Imm P[st] = (P[st] < SignEntImm)	hex			
Set Less Than Unsig. sltu R R[rd] = (R[rs] < R[rt]) ? 1:0 (6) 0/	2bber			
	00 _{hex}			
	02 _{hex}			
MIDI1: C: F11(7.0)				
Store Byte sb I $R[t]/SignExtIning(7.5)$ 20	8 _{hex}			
MIDI-11 C:E-d1 - DI-41	8 _{hex}			
Store Halfword sh I $M[R[rs]+SignExtInm](15:0) = R[rt](15:0)$ (2)	9 _{hex}			
Store Word sw I $M[R[rs]+SignExtImm] = R[rt]$ (2) 21	b _{hex}			
Subtract sub R $R[rd] = R[rs] - R[rt]$ (1) 0/	22 _{bex}			
Subtract Unsigned subu R R[rd] = R[rs] - R[rt] 0/	23 _{hex}			
(1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{1b'0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.) (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic				

BASIC INSTRUCTION FORMATS

SIC II	43 I HUCI IU	IN FURINA	13			
R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 11	10 6	5 0
I	opcode	rs	rt		immediate	e
	31 26	25 21	20 16	15		0
J	opcode			address		
	31 26	25				0

ARITHMETIC (CORE INSTRUCTION SET
	FOR-

			/ FMT /FT
	FOR-		/ FUNCT
NAME, MNEMONIC	MAT		(Hex)
Branch On FP True bolt	FI	if(FPcond)PC=PC+4+BranchAddr (4)	, ,
Branch On FP False belf	FI	if(!FPcond)PC=PC+4+BranchAddr(4)	
Divide div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0///1a
Divide Unsigned divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	0///1b
FP Add Single add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add		${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	
Double add.d	FR	{F[ft],F[ft+1]}	11/11//0
FP Compare Single c.x.s*	FR	FPcond = (F[fs] op F[ft])?1:0	11/10//y
EP Compare		$FPcond = ({F[fs],F[fs+1]}) op$	
Double c.x.d*	rĸ	{F[ft],F[ft+1]})?1:0	11/11//y
* (x is eq, 1t, or 1e) (op is	==, <, or <=) (y is 32, 3c, or 3e)	
FP Divide Single div.s	FR	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$	11/11//3
Double		{F[ft],F[ft+1]}	
FP Multiply Single mul.s	FR	F[fd] = F[fs] * F[ft]	11/10//2
FP Multiply mul.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} *$	11/11//2
Double		{F[ft],F[ft+1]}	
FP Subtract Single sub.s	FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} -$	11/11//1
Double		{F[ft],F[ft+1]}	
Load FP Single lwcl	I	F[rt]=M[R[rs]+SignExtImm] (2)	31//
Load FP	I	F[rt]=M[R[rs]+SignExtImm]; (2)	35///
Double		F[rt+1]=M[R[rs]+SignExtImm+4]	
Move From Hi mfhi	R	R[rd] = Hi	0 ///10
Move From Lo mflo	R	R[rd] = Lo	0 ///12
Move From Control mfc0	R	R[rd] = CR[rs]	10 /0//0
Multiply mult	R	$\{Hi,Lo\} = R[rs] * R[rt]$	0///18
Multiply Unsigned multu		$\{Hi,Lo\} = R[rs] * R[rt] $ (6)	
Shift Right Arith. sra	R	R[rd] = R[rt] >> shamt	0///3
Store FP Single swc1	I	M[R[rs]+SignExtImm] = F[rt] (2)	39//
Store FP	I	M[R[rs]+SignExtImm] = F[rt]; (2)	3d///
Double	•	M[R[rs]+SignExtImm+4] = F[rt+1]	500-5/10/10

OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	:
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME MNEMONIC	OPERATION
Branch Less Than blt if(R[rs]<	R[rt] PC = Label
Branch Greater Than bgt if(R[rs]>I	R[rt]) PC = Label
Branch Less Than or Equal ble if(R[rs]<	=R[rt]) PC = Label
Branch Greater Than or Equal bge if(R[rs]>	=R[rt]) PC = Label
Load Immediate 1i R[rd] = ir	mmediate
Move $move R[rd] = R$	[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVEDACROSS A CALL?
Szero	0	The Constant Value 0	N.A.
Şat	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
Sra	31	Return Address	Yes

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design. 4th ed.