TC 824 c2 A2 M.91:4 LIBRARY
UNIVERSITY OF CALIFORNIA
DAVIS

TC 824 C2 A2

STATE OF CALIFORNIA

DEPARTMENT OF WATER RESOURCES

BULLETIN NO. 91-4

DATA ON WATER WELLS
IN THE WILLOW SPRINGS,
GLOSTER, AND CHAFFEE AREAS,
KERN COUNTY, CALIFORNIA

PREPARED BY

UNITED STATES DEPARTMENT OF INTERIOR GEOLOGICAL SURVEY

FEDERAL-STATE

COOPERATIVE GROUND WATER INVESTIGATIONS

SEPTEMBER 1960

S DAVIS

JAN 13 1961

LIBRARY

STATE OF CALIFORNIA DEPARTMENT OF WATER RESOURCES

BULLETIN NO. 91-4

DATA ON WATER WELLS
IN THE WILLOW SPRINGS,
GLOSTER, AND CHAFFEE AREAS,
KERN COUNTY, CALIFORNIA

PREPARED BY

UNITED STATES DEPARTMENT OF INTERIOR
GEOLOGICAL SURVEY

FEDERAL-STATE
COOPERATIVE GROUND WATER INVESTIGATIONS

SEPTEMBER 1960

LIBRARY UNIVERSITY OF CALIFORNIA DAVIS This report is one of a series of open file reports prepared by the United States Department of Interior Geological Survey, Ground Water Branch, which present basic data on wells obtained from reconnaissance surveys of desert areas. These investigations are conducted by the Geological Survey under a cooperative agreement whereby funds are furnished equally by the United States and the State of California. The reports in this Bulletin No. 91 series are being published by the Department of Water Resources in order to make sufficient copies available for use of all interested agencies and the public at large.

UNITED STATES
DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY
Water Resources Division
Ground Water Branch
2929 Fulton Avenue
Sacramento 21, California

September 15, 1960

Mr. Harvey O. Banks, Director California Department of Water Resources P. O. Box 388 Sacramento 2, California

Dear Mr. Banks:

We have the pleasure to transmit herewith, for publication by the Department of Water Resources, U. S. Geological Survey report "Data on Water Wells in the Willow Springs, Gloster, and Chaffee Areas, Kern County, California," by Fred Kunkel and L. C. Dutcher. This investigation was conducted and the report prepared in accordance with the cooperative agreement between the State of California and the Geological Survey.

This report, one of a series for the Mojave Desert region prepared by the Long Beach subdistrict office, tabulates all available data on wells in the areas and shows reconnaissance geology with special reference to the water-yielding deposits.

Sincerely yours,

Herry D. Wilson, Jr.

District Engineer

CONTENTS

State of the Control	Page
Purpose and scope of the work and report	3
Location and general features of the areas	6
Previous investigations and acknowledgments	8
Geologic features of the area	9
Hydrologic features of the area	12
Well-numbering system	14
References cited	16
SEL D. MARCHA (SELECTION AND ASSESSMENT)	
ILLUSTRATIONS	
Figure 1. Map of part of southern California showing	
area covered by this report	86
2. Map of the Willow Springs, Gloster, and Chaffee	
areas, California	In pocket
tpomas godina.	
TABLES	
Qualitative (Control of the Control	
Table 1. Descriptions of wells in the Willow Springs,	
Gloster, and Chaffee areas, California	17
2. Cross index of other well numbers and	
Geological Survey numbers	43
3. Records of water levels in wells	44
4. Logs of wells	49
5. Chemical analyses of water from wells	76

...

DATA ON WATER WELLS IN THE WILLOW SPRINGS, GLOSTER,
AND CHAFFEE AREAS, KERN COUNTY, CALIFORNIA

By Fred Kunkel and L. C. Dutcher

PURPOSE AND SCOPE OF THE WORK AND REPORT

The data presented in this report were collected by the U.S. Geological Survey in connection with an investigation of water wells and general hydrologic conditions throughout much of the desert region of southern California. The geologic mapping was financed by Federal funds for arid-regions studies, and the canvass of wells and compilation of data were financed under a cooperative agreement with the California Department of Water Resources.

The desert regions of California are characterized by barren mountain ranges and isolated hills surrounding broad valleys, or basins, which are underlain by alluvial debris derived from the surrounding highlands. These basins generally contain ground water which has a wide range in chemical quality and which can be and in some areas has been developed for beneficial use.

The general objective of the cooperative investigation is to collect and to tabulate all available hydrologic data for the individual desert basins in order to provide public agencies and the general public with data for use in planning water utilization and management and for use in subsequent ground-water investigations.

Accordingly, the scope of the work carried out by the Geological Survey in each area has included (1) brief reconnaissance mapping of major geologic features to define the extent and general character of the deposits that contain the ground water; (2) visiting and examining virtually all the water wells in the area; determining and recording their locations in relation to geographic and cultural features and the public-land net, wherever possible; and recording well depths and sizes, types and capacities of installed equipment, uses of the water, and other pertinent information available at the well site; (3) measurement of the depth to the water surface below an established and described measuring point at or near the land surface; (4) selection of representative wells to be measured periodically in order to detect and record changes of water levels; and (5) collection and assembly of well records, including well logs, water-level measurements, and chemical analyses.

The work has been carried on by the U.S. Geological Survey under the general supervision of Harry D. Wilson, Jr., district engineer in charge of ground-water investigations in California, and under the immediate supervision of Fred Kunkel, geologist in charge of the Long Beach subdistrict office. The fieldwork was carried on principally by L. C. Dutcher, Fred Kunkel, W. J. Hiltgen, and F. S. Riley intermittently between April 1951 and March 1959 from the southern California subdistrict office of the Ground Water Branch at Long Beach.

LOCATION AND GENERAL FEATURES OF THE AREAS

The Willow Springs, Gloster, and Chaffee areas cover about 500 square miles and include part of Fremont Valley and the northwestern part of Antelope Valley as defined by Thompson (1929, pls. 16 and 19). The locations and some of the general features are shown on figure 1. The areas of this study lie in the southwestern part of the Mojave Desert region between long 117°57' and 118°30' W. and about lat 34°52' and 35°10' N., near the town of Mojave. The northeastern boundary of the area coincides with the Muroc fault, Bissell Hills, and Edwards Air Force Base; the southern boundary is Edwards Air Force Base and the Rosamond fault; the western boundary is the Tehachapi Mountains.

The area mapped is shown on figure 2 and includes one large ground-water subbasin northeast of Mojave, called the Chaffee area, a relatively large subbasin north of the Rosamond fault near Willow Springs, and several minor basins or subbasins in Antelope Valley in the area east of Willow Springs and north of the Rosamond Hills. The largest of these is the so-called Gloster area between Soledad Mountain and the Rosamond Hills.

Both the Muroc fault and the Rosamond fault are well defined and are barriers to the movement of ground water. The altitude of the water surface on the south side of the Muroc fault is as much as 320 feet higher than it is on the north side. The altitude of the water surface on the north side of the Rosamond fault is as much as 100 feet higher than the altitude of the water surface on the south side of the fault.

Topographically the area southwest of the Muroc fault consists principally of steep alluvial fans and gently sloping alluvial plains built out from the southeastern slopes of the Tehachapi Mountains. In the central and southeastern parts of the area isolated buttes and mountains rise above the alluvial plain. Low, gently rolling hills of granitic rocks limit the alluvial plain on the east.

The Willow Springs, Gloster, and Chaffee areas are shown on parts of the following U.S. Geological Survey topographic quadrangle maps: Castle Butte, Mojave, Rogers Lake, Rosamond, Tehachapi, and Willow Springs, all at a scale of 1:62,500.

Access to the area is provided by U.S. Highways 6 and 466 and several paved and many unpaved roads. The principal town in the area is Mojave, at the intersection of U.S. Highways 6 and 466 and the junction of the Southern Pacific and Santa Fe Railroads.

In the area extending from the Muroc fault to Willow Springs (fig. 2) the economy is based mainly on commerce with travelers using U.S. Highways 6 and 466 and the railroad yards at Mojave. Except for several small fields of alfalfa northeast of Rosamond and in the Gloster area, the only significant irrigation during the period 1954-58 was that in the vicinity of Willow Springs. In this area 10 wells reportedly supplied irrigation water to about 2,000 acres of alfalfa.

PREVIOUS INVESTIGATIONS AND ACKNOWLEDGMENTS

Data on ground water in the Willow Springs, Gloster, and Chaffee areas are contained in two reports: U.S. Geological Survey Water-Supply Paper 578, "The Mohave Desert Region, California" (Thompson, 1929, p. 201-223, 289-371), includes data obtained in 1918 on wells in the area of the present investigation; and a private report (Williams, 1930) contains information collected in 1929 and 1930 on wells in the area. The data on wells from these reports are included herein.

Approximately 95 square miles of the southeastern part of the area of this report lies within Edwards Air Force Base and is closed to civilian development. Data on wells within the military reservation are not included in this report but are contained in a Geological Survey open-file report (Dutcher and Hiltgen, 1955) prepared in cooperation with the U.S. Air Force.

The geology shown on figure 2 was compiled and generalized from the geologic maps of the Castle Butte (Dibblee, 1958) and Mojave (Dibblee, 1959) quadrangles, from unpublished mapping by the junior author, and from unpublished maps of the Rosamond, Tehachapi, and Willow Springs quadrangles by T. W. Dibblee of the U.S. Geological Survey.

The California Department of Water Resources provided access to all pertinent information in its files, including numerous well logs and chemical analyses. In addition, many well owners and drillers provided data from their files. The cooperation and assistance given by these people and agencies contributed materially to the completeness of the data presented in this report and are acknowledged.

GEOLOGIC FEATURES OF THE AREA

The geologic units in the Willow Springs, Gloster, and Chaffee areas can be grouped into two broad categories: Consolidated rocks and unconsolidated deposits. The consolidated rocks are for the most part impervious and, except for minor amounts of water in cracks and weathered zones, yield little or no water. The consolidated rocks comprise the old crystalline, metamorphic, and consolidated sedimentary rocks of pre-Tertiary age which collectively form the basement complex, the consolidated sedimentary rocks of Tertiary age, and the volcanic rocks of Tertiary age.

The consolidated sedimentary and volcanic rocks of Tertiary age are part of the Witnet, Gem Hill, Kinnick, Bopesta, and Horned Toad formations mapped by Dibblee (1959) in the Mojave quadrangle and the Tropico group mapped by Dibblee (1958) in the Castle Butte quadrangle. In the Rosamond, Willow Springs, Tehachapi, and Rogers Lake quadrangles the consolidated sedimentary and volcanic rocks have not been named. Presumably these rocks also are of Tertiary age. They consist mainly of gray and red conglomerate, arkose, cobble gravel, tuff, sandstone, chert, limestone, gravel, sand, silt, and clay. For the most part these rocks are poorly permeable, but locally where penetrated by deep wells they yield small amounts of water to domestic wells.

Volcanic rocks of acidic composition, mainly quartz latite, some andesite, rhyolite, and dacite of Miocene to Pliocene age, also occur in the area. Locally these rocks are part of the Tropico group mapped by Dibblee (1958) in the Castle Butte quadrangle, the Bobtail quartz latite member of the Gem Hill formation mapped by Dibblee (1958) in the Rosamond quadrangle, and the Gem Hill formation mapped by Dibblee (1959) in the Mojave quadrangle.

Extrusive and intrusive basalts of Miocene(?) to Pliocene age also occur in the area. Locally these rocks are part of the Tropico group mapped by Dibblee (1958) in the Castle Butte quadrangle.

The unconsolidated older alluvium of late Pleistocene age consists of compact arkosic gravel, sand, silt, and clay. The deposits are weathered, and locally the feldspar has been altered to clay.

Near the hills the unit is predominantly gravel but beneath the valley areas it is finer grained and better sorted. Because the older alluvium and the older fan deposits overlie the Tertiary continental rocks on which an erosional surface of considerable local relief is present, the thickness of the older deposits varies greatly from place to place. Where saturated the older alluvium contains the main aquifers in the area.

The older fan deposits of Pleistocene age consist of poorly consolidated fanglomerate or unsorted, unbedded boulder gravel occurring as isolated erosional remnants. The materials are mainly of granitic origin but fragments of basalt, andesite, dacite, and metamorphic rocks are common. The unit is nearly everywhere above the water level in wells and therefore is unsaturated. However, the attitude of this unit suggests that locally it extends beneath the younger alluvium in the valley and where saturated may yield small quantities of water to deep wells.

The younger alluvium of Recent age is mostly gravel, sand, and silt, and overlies the older units beneath the central parts of the valleys. These deposits are generally above the water table except in the lower parts of the valley, where they may yield small amounts of water to shallow wells.

The younger fan deposits of Recent age are mostly poorly sorted boulders, arkosic gravel, sand, silt, and clay derived from nearby hills or mountains. The materials have been transported only a short distance and mainly represent mudflow or slope-wash debris. Near the hills and mountains the younger fan deposits are coarse grained, but they become finer with increasing distance from the areas of active erosion. These deposits are poorly sorted and poorly permeable, are generally above the water table, and are believed to be unpromising sources of water.

Unconsolidated coarse to fine dune sand occurs in the lower parts of the valleys. The dunes are, in part at least, actively drifting; locally some small interdune playas are included in the area shown as dune sand on figure 2.

HYDROLOGIC FEATURES OF THE AREA

The surface drainage basins of the region are of the closed type, and infrequent runoff reaches one or another of the small playas, shown on figure 1, or reaches the larger playas known as Koehn Lake, in the northeastern part of Fremont Valley, and Rogers Lake or Rosamond Lake in Antelope Valley. Two principal drainage systems, those of Cache and Oak Creeks (fig. 2) carry occasional surface runoff from the mountains onto the alluvial slopes of the desert floor.

In 1958 the water levels in wells ranged from a few feet below the land surface in the Willow Springs area to more than 300 feet below the land surface beneath the higher alluvial slopes.

Recharge to the area southwest of the Muroc fault occurs by percolation of water from Cache and Oak Creeks and minor streams draining the Tehachapi Mountains and in very minor amounts by deep percolation of rain during infrequent periods of heavy precipitation.

A considerable part of the ground-water recharge from Cache Creek moves generally eastward and discharges across the Muroc fault into the ground-water basin to the north. The remainder of the ground-water flow from Cache Creek moves eastward and southeastward into the central part of the Chaffee area, where the movement is northeastward toward the Muroc fault. Recharge from the Oak Creek drainage system moves generally southeastward toward Soledad Mountain into the Chaffee area, and part moves southward along the west side of the mountain. Of the water that moves southward along the west side of Soledad Mountain, most eventually moves eastward along the south edge of the mountain into the Gloster area and thence into the Chaffee area. Some of the water may move southward and southwestward into the Willow Springs area and eventually discharges across the Rosamond fault into another ground-water basin to the south.

The ground water in the Willow Springs, Gloster, and Chaffee areas is moderately mineralized. The highest concentration of dissolved solids, about 900 ppm (parts per million), occurs in wells drilled near the Muroc fault in the northeastern part of the Chaffee area. The water of best quality comes from wells drilled in the alluvial materials underlying the higher slopes of the younger alluvium in the southern and southwestern parts of the area, where the dissolved-solids content is only about 220 to 500 ppm.

WELL-NUMBERING SYSTEM

The well-numbering system used in this report conforms to that used in virtually all ground-water investigations made by the Geological Survey in California since 1940. It has been adopted as official by the California Department of Water Resources and by the California Water Pollution Control Board for use throughout the State.

Wells are assigned numbers according to their location in the rectangular system for the subdivision of public land. For example, in the number 11/14-36A1, assigned to a well shown on figure 2, the part of the number preceding the slash indicates the township (T. 11 N.), the part between the slash and the hyphen indicates the range (R. 14 W.), the number between the hyphen and the letter indicates the section (sec. 36), and the letter indicates the 40-acre subdivision of the section as shown in the accompanying diagram.

D	С	В	А
E	F	G	Н
М	L	К	J
N	P	Q	R

Within the 40-acre tract the wells are numbered serially as indicated by the final digit. Thus, well 11/14-36A1 is the first well to be listed in the $NE_{\frac{1}{4}}^{\frac{1}{4}}NE_{\frac{1}{4}}^{\frac{1}{4}}$ sec. 36, T. 11 N., R. 14 W. (San Bernardino base and meridian).

Similarly, well 32/36-22Nl is in the $SW_{ll}^{\frac{1}{2}}SW_{ll}^{\frac{1}{2}}$ sec. 22, T. 32 S., R. 36 E., Mt. Diablo base and meridian. Because all the wells are either in the northwest quadrant of the San Bernardino base and merician lines or in the southeast quadrant of the Mt. Diablo base and meridian lines, the foregoing abbreviations of the township and range are sufficient.

For well numbers where a Z has been substituted for the letter designating the 40-acre tract, the Z indicates that the well is plotted from unverified location descriptions; the indicated sites of such wells were visited but no evidence of a well could be found.

REFERENCES CITED

- Dibblee, T. W., Jr., 1958, Geologic map of the Castle Butte quadrangle, Kern County, Calif.: U.S. Geol. Survey Mineral Inv. Map MF-170.
- 1959, Preliminary geologic map of the Mojave quadrangle, California: U.S. Geol. Survey Mineral Inv. Map MF-219.
- Dutcher, L. C., and Hiltgen, W. J., 1955, Appendix A, Tables of basic data for wells on Edwards Air Force Base: U.S. Geol. Survey open-file rept., 84 p.
- Jenkins, O. P., 1938, Geologic map of California: Calif. Div. Mines.
- Thompson, D. G., 1929, The Mohave Desert region, California: U.S. Geol. Survey Water-Supply Paper 578, 759 p.
- Williams, Cyril, Jr., consulting engineer, San Francisco, Calif.,
 1930, Supply investigation in the vicinity of Mojave, Calif.:
 Prepared for Pacific Portland Cement Co.

Table 1. - Descriptions of wells in the Willow Spring, Gloster, and Chaffee areas, California

USGS number: The number given is the Geological Survey number assigned to the well according to the system described in the section on the well-numbering system.

Source of data and other numbers: The source of data on each line is indicated by the following symbols:

GS, observations and measurements made by the Geological Survey on the dates indicated as well as information reported to the Geological Survey by owners, drillers, or others; CW, from Cyril Williams, Jr. (1930); DGP, from Thompson (1929); DWR, from California Department of Water Resources; Owner, from owner.

A number following the letters is the well number used in the reports by Thompson (1929) or Williams (1930).

Date of observation: Data for each well are given in reverse chronological order, with the most recent information summarized on the top line, opposite the well number. Owner or user: The name given is the owner or user of the well on the date indicated. If more than one set of data are given for a well the name is not repeated unless it is known to be different. Year completed: The completion date was obtained from the driller's log or reported by the owner or others.

Depth: Depths of wells given in whole feet were reported by owners, drillers, or others; depths given in feet and tenths were measured below land-surface datum by the Geological Survey. Type of well and diameter: The type of well construction is indicated by symbols as follows: A auger, C cable tool, D dug, DC dug and deepened by cable tool, R rotary, G gravel packed, RG rotary gravel-packed well. The number following the letter is the diameter of the casing or pit, in inches, and where no casing was installed the symbol N is used.

Pump type and power: The type of pump or method of lift is indicated as follows: A airlift, B bucket, C centrifugal, J jet, L lift, N none, S submersible, T turbine. The type of power is indicated as follows: D diesel engine, E electric motor of undetermined horsepower (where a number appears in this column it indicates the rated horsepower of an electric motor), G gasoline engine, H hand operated, N none, W windmill. Yield: The yield of the well in gallons per minute generally is reported by the driller or owner and is not necessarily the maximum capacity of the well.

resulting from sustained pumping at that rate; the result is expressed in terms of gallons per minute Specific capacity: The specific capacity of a well is its rate of yield per unit of drawdown of the water level in the well. It is determined by dividing the figure in the Yield column by the drawdown per foot of drawdown. The yield and drawdown data are principally from tests performed by the California Electric Power Company and reported by well owners and drillers.

Use: Dm domestic, Ds destroyed or dry, In industrial, Ir irrigation, P poultry raising, Ps public supply, S stock, I test hole, Un unused.

Measuring point: The point from which the water-level measurement(s) by the Geological Survey are made is described as follows: Tee top of casing cover Tdp top of discharge pipe Tmc top of masonry curb Tpb top of pump base Twc top of wooden curb Tap top of access pipe The top of board cover Te top of casing Ls land surface Na no access Bnc bottom of notch in casing Hcc hole in casing cover Hpb hole in pump base Bpb bottom edge of pump base Bhc bottom of hole in casing

wise indicated; however, the measuring points used by Thompson (1929), owners, drillers, and California sometimes hundredths. All measurements of water level are from the same measuring point unless other-The suffix letters N, S, E, and W, indicate the side (north, south, east, or west) where used. The distance of the measuring point above or below(-) land-surface datum is given in feet and tenths and Department of Water Resources are not known. Altituda: The altitude given is the altitude of land-surface datum, the plane of reference approximately at Survey topographic maps, those given in feet and tenths were determined by spirit leveling by Cyril Williams, Jr., (1930), C. F. Hostrup, consulting engineer, Westwood, Calif., the well owner, or the ground surface, at the well. Altitudes given to the nearest foot were interpolated from Geological Geological Survey. Depth to water: Measured depths to water level are given in feet, tenths, and hundredths, or feet and tenths; are below or above (+) land-surface datum. For the measurements made by the Geological Survey (GS) and reported or approximate depths to water level are given in whole feet. The water-level measurements Williams (CW, 1930), the difference in altitude between land-surface datum and the measuring point has been subtracted from or added to the measured water level below the measuring point. The measurement given is the depth to water level below or above land-surface datum.

of water is given in table 5, E electric log for well in the files of the Geological Survey, L driller's log of well is given in table 4, R automatic water-level recorder, installed and maintained by the owner, was operating in the well at the time of the Geological Survey field canvass, W records of Other data: B well reported to have penetrated bedrock (basement complex) at bottom, C chemical analysis water levels in wells are given in table 3; all known records of water levels in wells in the area are given in either table 1 or 3.

	Source	10+c(Well	Well data		Meas	क्र		1	
USGS	of data and other numbers	ලී	Owner or user	Year : :T com- :(ft.): pleted :(ft.):	Depth	: :Type,:Pump :Depth:diam-:type :(ft.): eter: and : :(in.):power	Fump: type: and:(:Type,:Pump : : : : : : : : : : : : : : : : : : :)-4	point f	Nititud of 1sd (feet)	Leyel Depth elow 1sd (feet)	Other
			T. 9 N., R. 12 W.										
12-16	1 GS	3-29-51	R. E. Payne	1949	85	9	L 2	30 Dm	Tmc	1.2	2,390	26.75	æ
1651	n GS	5-24-56 3-29-51	Clara Koch -Gettys	1950	150	z	N N	Ds Un	Ls	0	7°7°2	η • 8η	
16E2	2 GS GS	5-23-56 9-21-51	Clara Koch -Gettys	1951	182.4	Φ	K L L	S	Tap TcE	1.65	2,375	94.15	×
16E3	3 GS	5-24-56	Clara Koch	1955	503	8 0	ы	Dm			2,390	36	
16 1	35 35 35 1	5-24-56 11-5-52 4-17-51	A. C. Scruggs	1951	200	RG 12	T 25	占	TcS	4	2,340	65.75 B, 74.94 60.86	B,C,L
16K1		4-17-51	R. J. Rubees	1945	204	RG 12	T 20	អ	Na		2,360		ы
161	Owner Owner Owner	5-24-56 2-9-51 2-9-51 2-1-47	Frank Miske Mitchell, Erickson	1917		17	T 15	450 Ir 281	E S	0	2,365	89.72 79.5 alll.3	н
	DGT-224	DGT-22A 6-13-17	Johnson		254		1	, p20		* .* ,		35	

					B,L			
		87.14	93.15	Dry 19.9	17.25 b61.58 b61.74 a55.60	Dry 35.95	Dry 26.13	63.74
2,335	2,335	2,370	2,370	2,422	2,423	.65 2,408.7	2,396.0	2,415
		က္	ቱ .	0	1.0	.65	.17	1.0
Na	Na	Tc	Tc	ដូន	H _C		Тc	TCE
ដ	H	Un Dm	P	Ds Un	Un Dm	Ds	Ds Un	ద
10	0							
T 25	T 10	E N N	J J	N	H W	K N	N	L W
7,7	10	9	В 8	AZ	D 12		12	8 0
250		135.0		15.0	354	27.0	19.5	
		1936			1949			1956 233
4-17-51 Peter Thomas	Peter Thomas	C. G. Spencer	5-22-56 C. G. Spencer		Dale Randleman			5-23-56 Dale Randleman
4-17-51	4-17-51	5-22-56 4-9-51	5-22-56	5-21-56 4-12-51	5-22-56 3-2-52 11-15-51 4-9-51 1050	5-22-56 10-8-29	5-22-56 12-7-29	5-23-56
GS	GS	6 8	GS	GS GS	GS GS GS GS Owner	GS CW-18A	GS CW-18B	G S
1691	7695	TML	1 7MZ	1801	18E1	18E2	18E3	18F1

a. Well being pumped. b. Well pumped recently.

	Other data					ы	×			
1	Depth elow lsd (feet)		59.16	63.45 62.85 62.10	69.60 69.60	Flowing Flowing Flowing	71.39	102.82 90 76.03 71.65	59.85	Dry 37.60
	Altitude of lsd : (feet)		2,480		2,486.6	2,463	2,636.8	2,645	2,643.0	2,622.3
1 29	6		0.5	1.0	1.3	.0	0	0	ω.	0
Measu	ρ,		TcS	E C	Toc	ب ا	Ic	e S	T _c	La
	Use		űn	ďn		, ,	D u	Ħ	Ds	Ds
Well data	: :Type,:Pump : : : : : Depth:dlam-:type :Yield:Sp. : :(ft.): eter: and :(gpm):cap.: : :(in.):power: : :		93.5 RG 8 N N	2 8 N N	LW	в б и и	12 SEN	16 T 125	7	D 60 N N
	Dept:		93	67.2	004		282			10.0
	Year Deptloom Com-					1950				
	Owner or user	T. 9 N., R. 13 W.			R. Kirk	Edward Starr	0. S. Hatcher B. L. Neiswinder	Curtis	B. Bellows	G. Frye
]: Date	ු දි		5-22-56	5-22-56 2-9-54 3-4-52 1-15-51	10-10-29	5-23-56 2-10-54 4-18-51	2-10-54 11-15-29	5-21-56 11-19-54 2-8-54 1-20-53	11-10-29	5-23-56 11-10-29
Source	or data and other numbers		SS	ស	CW-1A	88 88 88	GS CW-4A	6 8 88 88	CW-5A	GS CW-7H
	USGS		9/13- 1MI	INI	22	101	14A1	SML	521	7A1

=	7g	GS CW-7F	2-10-53 11-14-29	Willow Springs Co. F. M. Hamilton	38.1		Dm	Нсс Тар	0.7	2,566.0	2.86	W
•	792	ა	2-8-54 2-10-53	Willow Springs Co.	50.6 12	ู	Dm	JC	0	2,560	a5.60 a.83	ပ
•	793	GS CW-7G	5-23-56 11-14-29	Willow Springs Co. F. M. Hamilton	185 R 8	ធ	Dm	Tap	0	2,564.3	c20.90	
•	794	GS CW-7D	5-23-56 11-14-29	Willow Springs Co. F. M. Hamilton	1.0 D	N N	Ds	Tpb	۲.	2,561.0	Dry 2.01	e
Ų.	795	GS CW-7E	5-23-56 11-14-29	Willow Springs Co. F. M. Hamilton	3.0 D	N N	Ds	Tpb	۲.	2,564.0	Dry 20.26	
-	7R1	GS CW-7C	5-23-56 11-14-29	Willow Springs Co. F. M. Hamilton		L W L W	Un Dm	Tdp Tc	7.2	2,564.0	18.80 9.45	
•	7R2	S S S	5-23-56 2-8-54	Willow Springs Co.	37.1 12	N N	Un	Tc	0		23.20	
		GS DW-7B	2-10-53 11-14-29	F. M. Hamilton		ರ		Тc	3.0	2,567.7	13.08	
. –	7R3	GS CW-7Al	5-23-56 . 11-14-29	Willow Springs Co. F. M. Hamilton	100	LW	Un Dm	Bhc	6.5	2,568.2	26.72 24.94	ЪL
~	801	GS CV-3A DGT-16A	2-10-53 11-16-29 A	J. Maquin Naquin	1.0	N N	Ds Un	Ls Tc	.325	2,618.0	Dry 44.06 47	
ĭ	1001	GS CW-1CA	5-23-56	W. S. Webb	38.0 D 60		Ds Un	Ls	0	2,540.5	Dry 54.3	
			•									

a. Well being pumped.c. Nearby well being pumped.

5-23-56 Clifford Burton 5-23-56 Clifford Burton 1955 5-23-56 J. Jones 1953 5-23-56 C. O. McLennan 1936 5-23-56 C. O. McLennan 1936 5-23-56 J. Jones 1946 5-21-56 E. Jordan 1946 5-21-56 Miss Ball 1-30-53 1-30-53 1-30-53 F. M. Hamilton 1-30-53 1-30-53 5. L. Henson 11-4-29					,		ы						3	
GS 5-23-56 Clifford Burton GS 5-23-56 Clifford Burton GS 5-23-56 Clifford Burton GS 5-23-56 J. Jones Owner 1953 190 RG 8 I. W Dm Rcc5 T. 9 N., R. 14 W. GS 5-23-56 J. sess Butler GS 5-23-56 J. sess Butler GS 5-21-56 E. Jordan GS 5-21-56 Miss Ball 1950 170 RG I. W Dm Tck9 GS 5-21-56 Miss Ball 1950 170 RG I. W Dm Tck9 GS 5-23-56 Kred Hamilton GS 5-23-56 Kred Hamilton GS 5-23-56 Gress Burlor GS 5-23-56 Gress Burlor GS 5-21-56 Gress Burlor GS 7-23-56 Gress Burlor G	27 16	(+•)0	62 62	82.14 70	73.30		115.00	81.80	69.86 a68.46 67.79		63.46 60.15 59.14	57	124.63	148.70
GS 5-23-56 Clifford Burton 108.4 12 1 F Fon Fs ToN- Fs Ton Ps Ton Ton Ps Ton	o like	C6+62	2,450	2,470	2,455		2,700	2,680	2,675	2,670	2,670		2,735	2,746.3
GS 5-23-56 Clifford Burton GS 5-23-56 Clifford Burton GS 5-23-56 J. Jones Owner 1955 GS 5-23-56 J. Jones GS 5-23-56 C. O. McLennan GS 5-23-56 C. O. McLennan GS 5-23-56 Jess Butler GS 5-23-56 Jess Butler GS 5-21-56 Miss Ball GS 5-21-56 Miss Ball GS 5-21-56 Miss Ball GS 1-30-53 GS 1-30-53 GS 7-23-56 Fred Hamilton GS 5-23-56 Fred Hamilton GS 7-23-56 G. O. McHenson GS 7-23-56 G. O. M	7	0.0		·.	0		0	o.	1.5		1.0		2.0	2.1
GS 5-23-56 Clifford Burton GS 5-23-56 Clifford Burton GS 5-23-56 J. Jones GS 5-23-56 J.	E	TCI		Hcc	НСС		Tc	Пс	TcN		Tc		H _C	J.
GS 5-23-56 Clifford Burton GS 5-23-56 Clifford Burton GS 5-23-56 Clifford Burton GS 5-23-56 C. O. McLenman GS 5-23-56 C. O. McLenman GS 5-23-56 C. O. McLenman GS 5-23-56 G. O. McLenman GS 5-21-56 E. Jordan GS 5-21-56 Miss Ball GS 5-21-56 Miss Ball GS 5-21-56 Miss Ball GS 5-23-56 Fred Hamilton GS 5-23-56 GS 5-23-56 GS 7-23-56	ŕ	ፓ ^ተ ሜ	PB	Ö	Dm		пп	Ä	Un	P	Da		Da	Ds
GS 5-23-56 Clifford Burton GN 1955 GN 1955 GN 1955 GN 1955 GN 1953 GN 1953 GN 1953 GN 1953 GN 1953 GN 1954 GN 188 Ball GS 5-21-56 Miss Ball GS 5-23-56 GN 188 Ball GS 1-30-54 GS 2-10-54 GS 2-10-55 GS 2-10-54 GS 2-10-55 GS 2-10-54 GS 2-10-55 GS 2-10-56 GS 2-10-56 GS 2-10-56 GS 2-10-56 GS 2-10-56 GS 2-10-57 GS 2-10-	ı	ر									*			
GS 5-23-56 Clifford Burton GS 5-23-56 Clifford Burton GS 5-23-56 J. Jones GS 5-23-56 C. O. McLennan 1936 200 GS 5-23-56 Jess Butler 1950 945 GS 5-21-56 E. Jordan 1946 221 GS 5-21-56 Miss Ball 1950 170 GS 5-21-56 Miss Ball 1950 170 GS 5-21-56 Fred Hamilton 1936 210 GS 5-23-56 Fred Hamilton 1926 250 GS 5-23-56 Fred Hamilton 1926 250 GS 7-23-56 Fred Hamilton 1926 250 GS 7-23-56 Fred Hamilton 1926 250			EH											7
GS 5-23-56 Clifford Burton GS 5-23-56 Clifford Burton GS 5-23-56 C. O. McLennan 1936 GS 5-23-56 C. O. McLennan 1936 GS 5-23-56 G. O. McLennan 1936 GS 5-23-56 G. O. McLennan 1936 GS 5-21-56 E. Jordan 1946 GS 5-21-56 Miss Ball 1950 GS 5-21-56 Miss Ball 1950 GS 5-21-56 Miss Ball 1936 GS 1-30-53 S. L. Henson 1926							RG							
GS 5-23-56 Clifford Burton GS 5-23-56 Clifford Burton GS 5-23-56 J. Jones GS 5-23-56 C. O. McLennan T. 9 N., R. 14 W. T. 9 N., R. 14 W. GS 5-23-56 E. Jordan GS 5-21-56 E. Jordan GS 5-21-56 Miss Ball 1-30-53 Wagon Wheel Ranch GS 5-23-56 Fred Hamilton GS 5-23-56 Fred Hamilton GS 5-23-56 Fred Hamilton GS 1-30-53 F. M. Hamilton GS 1-30-53 GS 1-30-53 GS 1-30-53 GS 1-30-53 F. M. Hamilton	(108		190	200		945	221	170	210	170	186	250	164 155
GS Owner GS				1953	1936		1950	1946	1950	1936	1912		1926	
GS Owner GS		Clifford Burton	Clifford Burton		C. O. McLennan	T. 9 N., R. 14 W.	Jess Butler		Miss Ball	Wagon Wheel Ranch		F. M. Hamilton	S. L. Henson	
		5-23-56	5-23-56 1955	5-23-56 1953	5-23-56		5-23-56	5-21-56 1946	5-21-56 2-10-54 1-30-53	1-30-53	5-23-56 2-10-54		1-30-53	11-4-29
14F2 14F2 14F2 14F2 171 171 171 171 171 271 271 271		GS S	GS Owner	GS Owner	GS		GS	GS	GS .	GS	S S	GS DGT-154	GS	CW-2A D72: 24A
±1./6 25		THE	14F2	1411	1412		- 1M	111	191	1R1	1.122		237	221
							9/14		25					

a. Well being pumped.

••	Other					C,L,B					ບ
Water	Depth below 1sd (feet)		Dry 250	•	Dry	4.4.36 1.86.38	62.29	62.3		134.87	
,	Altitude of lsd (feet) it		2,925		2,515	.78 2,497.5 .5	2,505.1	2,504.0	.,	2,575.1	2,630
ring			0			.5	0	ů.		≠ .	:
Measuring	Dų .		Ls			Dm, S Toc TcE	TcN	Bpb	7	Dm, S Tec	Na
	Use		Ds		Ds	DE S	ď	ង		Da, S	Un
	<pre>Year : :Type,:Pump : com- :Depth:diam-:type :Yield:Sp. :Use; pleted:(ft.): eter: and :(gpm):cap.:</pre>					06					
Well data	Lype, Pump : liam-:type : eter: and : (in.):power:		Z Z		N	<u>ច</u>	N N	EH		I G	z
	Type, Pump diam-:type eter: and (in.):powe		12		15	10	27			c 14	
	: :Type,:Pump :Depth:diam-:type ;(ft.): eter: and : :(in.):power	ıed	242.5 550		6.65	500	65.2			215	
	Year com- pleted	Contin			1910	1952	1910				
	Owner or user	T. 9 N., R. 14 W., Continued	John Lane	T. 10 N., R. 11 W.		Robert Fetters			T. 10 N., R. 12 W.	C. W. Roberts	Southern Pacific Co.
Date	ઇ		5-21-56 A		9-11-52	11-2-55 12-2-52 9-18-52	11-4-55	2-18-30 10-4-29		10-27-55	9-21-51
Source	of data and other numbers		GS DGT-13A		S	જે જે જે	GS	CW-84 CW-84		GS	SS
	USGS number		18th - 41/6		L-7A1	뗦	W		(2-2B1	la)
	חמ		9/14.		10/11-741	26				10/12-281	

b. Well pumped recently.

••••	Other data						ပ				
Water	Depth Other below 1sd data (feet)		55.30 55.33		49.93	70.88 50.00	65	63.64	58.31	89	65
, , , , , , , , , , , , , , , , , , ,	of lsd (feet) b		2,251.1	2,560	2,563		2,562.0	2,560	2,570	2,611	2,610
	Ę.		0.8		0		0	1.0	1.0		
Measuring	ň,		Tes	Na	TCE		La s	٦ç	TcW	Na	Na
•• ••	Use		dn	A	ď	g G	E	ជួ	$\mathbf{q}_{\mathbf{p}}$	A	ďn
	ype, Pump : : : : : : : : : : : : : : : : : : :										
Well data	Pump type and power		. Z	ب ت	N	r M	r d ¥3	N	N	J J	J 12
Well	Type, Pump diam-:type eter: and (in.):powe		в 6		10		12	c 7½	8 ၁	9	ж 8
	Year : Type, Pump com : Depth: diam : type com : (ft.): eter: and pleted : (ft.): eter: and	pent	236:0		175		275	175.0	175	154	178
	Year com- pletec	Continued	1955	1952	1932			1955		1949	1955
	Owner or user	T. 10 N., R. 12 W.,	W. D. McMillan	Fred Mushler	J. Actis		J. Actis	3-5-56 J. Actis	3-5-56 James Kempu	Norma Moody	3-5-56 Mrs. Killain
Date	ਰ		5-22-56 11-4-55	3-5-56	9-11-55	3-4-52 11-16-51 9-21-51	9-11-52	3-5-56	3-5-56	9-26-51	3-5-56
Source	or data and other numbers		GS	SS	SS	8 8 8 8 8	GS CW-16A	GS	ક્ક	SS	ક્ષ
	USGS		10/12 , 1502	15E1	15M	28	15M2	15M3	161	INGI	16N2

		,												
16P1	GS	11-24-52	Charles Halcomb	1950	200	9	H T		Ē	Na		2,605	70	
1691	SS	3-5-56	Brown			8	ы Б		D	TeW	1.0	2,680		
16R1	88 88 88	5-22-56 9-11-52 11-27-51	M. White			ω	ر 1		Q	qdн	·	2,577	65.63 66.05 65.62	
1861	SS	5-22-56				5	လ မ		P	Na		2,735		
1901	G S	3-5-56	Collender	1954	300	12	T 45	400	Ħ			2,777		
20 B1	GS CW-20A	9-21-51 9-27-29	O. J. Backus R. M. Sopp	1912	200	16	N		пп	TcW	1.0	2,638.6	89.92	L, W
500.7	GS CW-20D CW-20D CW-20D CW-20D CW-20D	11-13-52 2-19-30 12-13-29 12-13-29 12-8-29	O. J. Backus	1917	107.8 DC 12 161	X 12	EH EH 67.02	75	됩니	Trac	0	2,650.5	99.28 a128 98.89 98.30	нο
2002	GS	11-24-52	O. J. Backus	1918	107.8 DC	ပ္			Un	Na		2,650.5		
2003	88 88 88 89	3-9-59 11-4-58 3-4-58 11-13-52	O. J. Backus	1914	128	ω	မ မ	35	D	Врь	0	2,645	93.50 93.86 93.12 93.32	
20Ch	GS	3-5-56	O. J. Backus	1954	625	G 12	T 30	. 6	ង			5,660		
ZONI	GS	11-13-52			82.6	10	N	A	Ds	TcN	0	2,660	Dry	
а. М	ell bei	Well being pumped.												

	Other data		ħ	T, O					П	
	Water : level : Depth : C : below lsd: (feet) :		Dr.y 84.72 84.80	b	47.5 45.41	Dry 37.12 37.05	36.70 36.29	38.15	\$6.80 38.90	40 a69
	Altitude of lsd (feet)	•	2,632.2	2,570	2,575	2,539.0	2,550		2,552.3	2,540
	suring boint A		0.7		1.0	ন	1.0	0	1.0	
	Measuring point		T _C	Na	TCE	H _o	TcW	Tc	Tc	Na
	Use		Ds Un	셤	d	Ds Un	ďn	пп	da ri	D m
	: Yield:Sp. (gpm):cap.								270	1.6
	್ ದ ಕ	TD MOD	N N	1	ئ ع	Z :	N	z		J J
	Well dat Type,:Pump dlam-:type eter: and		70	9	ж 8	ω	7	10		в 6
	epth ft.)	ned	82.0 97	150	125	4.3	57.7	41.0	41.0 240	125
	Year L com-	Continued		1951						1953
	Owner or user	T. 10 N., R. 12 W.,	G. H. Buckley	L. Wiggenton	Cole Investment Co.	Pittman and Kemper E. E. Warren			A. L. Kemper	Cole Investment Co.
2 - 1; 300	: Date : of :observa-		11-13-52 2-18-30 10-5-29	9-11-55	5-22-56 3-2-56	11-24-52 2-18-30 9-27-29	5-24-56 9-12-52	5-24-56	2-18-30 9-27-29	3-2-56 3-2-56
-	Source of data and other numbers		GS CW-20B CW-20B	SS	ა ე აე	GS CW-22E CW-22E	88 88	ુક્ક ક્ક	สส	និង និង
	USGS		10/12-20P1	ZIRI	30	2201	2201	22E1		22F1

			O	B,L	Д	βR	
38.95 a64	38.13 ₈ 98	48.96 50.56 49.60	79.31 50.62 54.01	49.43 Dry 57.20 57.20	58.61 58.25 58.32 61.69 61.90	63.34 b63.32	54.55
2,540	2,540	2,563	25.00	2,540.5	2,585.0	2,549.2	2,560.0
·	ċ	÷	φ.	o °	0 0	1.0	0
Tc	Врр	TcN	වූරු	rc Inc	Hes	TcS	Тс
Un	Ħ	Un	₽ F	ង ខ្ម	Un	Un	Ds
1.5	390						
N N	T 15	N	₩ E	z z	N	L W	
9 o	C 12	10	12	D 48	10	0/	12
125	200	60.8	125	100 42.2 66	9.62	105.0	
1924	1924	1919	1919			1920	
3-2-56 Cole Investment Co.	Cole Investment Co.	Mrs. Leitch	Mrs. Leitch	J. Kawall W. Fusek	W. D. Miller	E. Faires J. D. Faires	F. A. Jungquist
3-2-56	3-2-56 3-2-56	5-22-56 5-5-54 9-11-52	5-22-56 9-11-52 9-21-51	9-27-29 11-24-52 2-19-30 11-4-29	5-24-56 1-20-53 11-13-52 2-18-30 10-5-29	5-22-56 2-19-30	CW-28C 2-18-30 CW-28C 12-19-29
95 95	S S	ស ស ស ស ស	GS GS GS	GS CW-27A CW-27A	GS GS GS CW-28A CW-28A	GS CW-28B	28Z1 CW-28C CW-28C
22F2	22F3	SZNI	SZNZ	27L1 0	2801	28JJ C	28Z1 C

a. Well being pumped. b. Well pumped recently.

	Source	Date			[Me]	Well data		Me	Measuring		Water :	
USGS number	or data and other numbers	a of observa- tion	Owner or user	Year Depth of com. (ft.):	: :Type,:Pump :Depth:diam-:type :(ft.): eter: and : (in.):power	Type, Pump:diam:type:eter:and:(in.):power:	Yield:Sp. (gpm):cap.:	Use	point (feet)	Altitude of lsd (feet)	Depth below 1sd (feet)	Other data
			T. 10 N., R. 12 W., Continued	Continu	ed							
10/12-30A1	. GS CW-30A CW-30A	11-13-52 2-18-30 11-2-29	R. M. Freeman		94.3 10	0	Н	Ds Ls Tc	0 .	2,664.1	Dry 99.70 98.70	B,L
			T. 10 N., R. 13 W.								ı	
10/13- 4DI SS	GS CW-4A	11-13-52 10-19-29	M. D. Schmidt	••	285.5 8	Z J	Ds Un	Ds Tc Un	1.5	3,140 3,070.5	Dry 290.5	
τοητ	GS GS	11-24-52 11-24-52	Seaton	1952	463 R 12	හ ස	360 D	Dm Tc	.5	o 1 84°	d253 a340	T, D
1871	GS	1-20-53	Cactus Mine			표 단	H	ជ		2,960	306	
TW61	GS Owner	1-20-53	Dewey Butler	1952 7	770 RG 16	N	Un 450	n Bhc	ic 1.0	2,905	291 . 61 a460	L,W
2201	GS	1-20-53	Marsh	1953 3	300+ c 6		Д Д	n Na		2,875	282	Ţ
24B1	GS CW-24B CW-24B	11-13-52 2-19-30 12-8-29	R. Livingstone		17.4 7	C C	Ds Dm	s n Tap	6.	2,762.6	Dry 185.65 186.20	

ပ	ပ	•		ы	1			H	B, C, L, W
184.23 184.14 184.17	184.7 2,757.6 b180.90 179.40	218.34	255.65 247.78	282.74 282.74 275.26		186.34 181.49			162.30 B,C,L,W
2,775	2,757.6	2,800	2,860	2,880	2,825	2,795	2,780	2,775	2,740
2.	2.5	0	÷	i.		0			•5
TcW	Tc Tc	TcW	TcW	TCE		TCE	Na	Na	$\mathbf{T}^{\mathbf{c}}$
Ä	ညီ လ	Ħ	Ä	H	Į.	Ţ.	뉨	占	긥
6 L l	12 S E L W	16 T 200 2200	16 T 150	. 16 T 200	G 16 T 200	.16 T 150	T 50	16 T 200	16 т 200
۵	0	O RG	0	Ð †1		O RG		5 R	5 R
252	009	1953 1250	1952 750	1952 834	1952 407	1952 1000		1949 1345	1951 805
Mrs. DeBoard	Montmorency C. E. Patterson	Paul Adler	M and P Ranch	M and P Ranch	M and P Ranch	CCC Ranch	CCC Ranch	Lombardi and Frew	5-21-56 Lombardi and Frew
3-4-52 11-16-51 9-26-51	9-26-51 2-19-30 11-2-29	2-8-54	2-8-54 1-20-53	11-29-54 2-8-54 1-20-53	1-20-53	2-10-54 1-30-53	1-30-53	1-20-53	5-21-56
65 65 65 65	GS CW-24A CW-24A	GS	G S	GS GS GS	85	SS S	GS	GS	SS
24CJ	24F1 (29ML	30B1	3001	30K1	31E1	31ML	3201	32M1
					33				1

Well being pumped. Well pumped recently. Tape smeared. ф.

	Source	: Date	••		Well data	-	Ă.	Measuring		1	Water :	
USGS	or data and other numbers	observa- tion	Owner or user	Year Depth com- (ft.)	: Type, :Pump :Depth:diam-:type :(ft.): eter: and : (in.):power	: Yield:Sp. (gpm):cap.	Use	point (feet)	5	Altitude of 1sd 'be (feet)	sd (Other data
			T. 10 N., R. 14 W.									
10/14-36A1		2-10-54 1-30-53 7-5-50	CCC Ranch	1950 986	RG 16 T 15	T 150 1500	ដ	Tes O.	0.5 2,	2,855	241.92 237.29 8336	C,L
	Owner Owner	5-31-50 5-31-50 5-2-50		·							8336 8332 8330	
34			T. 11 N., R. 11 W.								3	
191 -11/11	. G S	11-1-55	A. H. Kent	761.5	R6 NN		E	Tc 1.	1.5 2,	2,450	33.25	C, W
ZNZ	က က က လ လ လ	11-1-55 10-21-55 9-10-52	H. L. Miller	e303.5	12 N N	-	Un 1	TcS.	.		90.19 90.24	٥
	445	2-27-30 10-15-29 1918		1	N	-	Un		તું .	2,512.0	91.29 91.30 92	
SDL	និ	2-3-58	Southern Pacific Land Co.	1957 670	C 14 N N	390	Un	Tap•	.78 2,	2,630.9	204.22 (C,L,W

		C,L,W	C,W	C,L,W			ы
254.28 254.42 255.0 254.97 258.30 258.20	Dry	201.63	198.43 198.32 218.30 205	124.73	213.02 220.6 217.9	Dry 131.10 131.29	310.60 314.50
2,681.0	2,680	2,627.9	2,624.5	2,549.6	2,639.5	2,561.0	2,763.0
1.7		.85	1.0	1.19	1.3	2.8	ч.
TcW		Tap	Bhc Te	Tap	TcN Bpb	J.	Bpb
un un	Ds	un	Un Un	Un	un Un	Ds	Ds
		96	η 50	230			
n n	N	N	N N	N	N G	N	
12	12	ς 14	12	C 14	c 12	12	
257.1	245.8	414.0	e275.0 f204.0	421	220	76.2	1512
		1956		1956	•		1929
Glenn Ward F. Ward		Southern Pacific Land Co.	Zetta Thorning A. T. Thorning	Southern Pacific Land Co.	B. Hammett Natl. Bank of Italy Co.	A. E. Morse	Southern Pacific Land Co.
9-30-55 3-15-54 1-21-53 12-3-52 2-27-30 9-28-29	3-2-55	2-3-58	10-21-55 9-29-55 2-27-30 1918	2-3-58	12-2-52 2-28-30 9-28-29	12-5-52 2-19-30 9-27-29	GS 12-5-52 CW-23A 12-15-29 10-15-29
GS GS GS CW-6A CW-6A	SS	GS	GS GS CW-8A DGT-49	GS S	GS CW-18A CW-18A	GS CW-20A CW-20A	GS JW-23A
(D)	6ML	7A1	80 10	941	1801	2001	23JJ
				35			

Well being pumped. Well cleaned to bottom. Depth of obstruction in well. ଞ୍ଚ ଓ ଖ

: :Other 8d: data				0.	•	0100		
Water level Depth	(feet		Dry	124.20	124.9 124.9 125.2	Dry 113.52 113.58	Dry 69.60 70.8	70.8
Altitude level of lsd below lsd: data	:		2,585		2,560.0	2,550.5	2,501.4	
3 ** ** ** **	(feet)		•	0.5	, m	. Q ,	0 8.5	
Measuring point			1	Tpc	Tc	Tmc	H H H	
eld:Sp. II.			Ds	Un		Ds Un	Ds Un	D E
Well data : :Type,:Pump : : : :Depth:diam-:type :Yield:Sp.): eter: and :(gpm):cap.: :(in.):power:		N N L	8 L W	Z Z	D 60 N N		
Year : Ty	نب	W., Continued	21.2	146.2	140	112.0 D	190	800
Owner or user		T. 11 N., R. 11 W.,	•		F. H. Forbes	B. N. Peterson	Mission Sisters of	Sacreu neart Rathbun
	tion:		12-2-52	9-27-55	2-19-30 9-25-29	9-27-55 2-19-30 11-26-29	11-4-55 9-28-51 2-19-30	CW-33A 11-26-29 DGT-8A
Source of data and	numbers		GS	S S S	CW-30A CW-30A	GS CW-32A CW-32A	GS GS CW-33A	CW-33A 1 DGT-8A
USGS			11/11-3001	30KI		35NJ	33P1	

			ပ		ы			O
78.25 78.15 78.32 78.44	2	Dry 291.30	267.57 f270.18 267.39	270.00 270.30	Dry 268.20 267.50	Dry	Dry	
		2,718.0	2,695.0	2,695.0	2,705.4	2,665	2,670	
÷		8.5	1.5	1.5	0.0			
Na Tcw		Ds Dm,P Tdp	TcN	Э	Fc			
un . A		Ds Dm, P	Un	Пр	Ds Un	Ds	Ds	Δ
	ਰ	r r	z z	N N	N N N N	NN	N N	L 1
10		D 48	8		12	ω	12	9
282.3	200	261.0	e318.5	139.5	262.8	185.8	1.601	300
		1912						
	Rathbun T. 11 N., R. 12 W.	G. A. Arper G. A. Arper		J. W. Johnson	H. S. Knowles	J. Carr		A. Capello
9-27-55 11-11-52 9-15-52 3-4-52 11-16-51 9-26-51		9-10-52 11-12-29 1918	11-1-55 10-21-55 10-20-55	12-2-52 2-27-30 1929	9-17-52 2-28-30 12-12-29	9-17-52	9-17-52	9-17-52
	DGT-7A	GS CW-12A DGT-53		GS CW-12B CW-12B	GS CW-14A CW-14A	SS	GS	GS
34мт		11/12-12D1 0 1	ISM	37	1041)	INT	74N2	1831

Well cleaned to bottom. Depth of obstruction in well which is above water table. . .

		Source	Date			Well data		1	Measuring	100			
USGS		or data and other numbers	දි	Owner or user	Year Depth: d com- (ft.);	: Type, Pump : Depth: diam-: type : (ft.): eter: and : (in.): power:	: Yield:Sp. (gpm):cap.	Use	point (feet		Altitude of 1sd (feet)	Depth elow lsd: (feet):	Other data
		1		T. 11 N., R. 12 W., Continued									
11/12-1885	8B2	GS	9-28-55	9-28-55 E. A. Koch	300	12 N N		ď	Ten	1.0	2,825	241.82	
ű	2201	GS	9-15-55	Mojave Public Util-	1914 d206.3	N N 7T		Dв			2,687.4	Dry	н
3		CW-22A CW-22A	CW-22A 2-19-30 CW-22A 12-10-29	×	. •			un	E C	4.1	2,687.7	249.9 250.00	
- त्र 38	2401	83	12-16-55		199.8	N N 7T		Ds		·	2,650	Dry	
8	26J	SD	9-27-55	9-27-55 Monolith Portland	225.0	N N 7T		ďa	Tes	1.0	2,594.0	156.37	C,L,W
)	-	CW-26A DGT-50	3-1-30 1918	HE	7	r M	200 + 270	ໝໝ	Twc	9.	2,594.6	158.2 155	
%	26J2	& ; =	12-4-52	Monolith Portland Cement Co.	1948 321	RG 14 T G	800	ä	TcS	1.0	2,595	156.97	ы
58	29D1	· & & .	9-30-55		1952 283.0	G 12 N N		Un 1	Na Tes	1.0	2,765	176.95	

	Ö		æ		ឯ	ы	C,L	ы	В,С
	179.95	176.43	187.76		279.65 275.77 268.19 a327 217	a277 147	a337 145	545	d250
2,770	2,765	2,765	2,690		3,610	3,600	3,600	3,600	2,840
	÷	1.0	1.0		1.0				1.0
	Hpb	Tcc	Tes		Fcc				Tc
Ps	됩	뎔	ďn		Un	Un	Un	Ds	Dm
									•
04	04				58	65	8		
T 15	T $7\frac{1}{2}$	J J	N		N			N	T G
10	10	c 5	R 5		c 16	o 16	c 16	ပ	8
300	265		245.0		430	375	388	430	357
	1922	1955	1955		1953	1954	1954	1953	1948 h357
11-25-52 Dr. L. Schultz	Goodwin Knight	Miehl	10-4-55 Verdi Develop- ment Co.	T. 11 N., R. 13 W.	California Port- land Cement Co., well l	California Portland Cemant Co., well 4	California Portland Cement Co., well 3	California Portland Cement Co.	Spicer and Sil- vestro
11-25-52	12-4-52	10-4-55 Miehl	10-4-55		5-24-56 3-19-56 10-6-55 12-10-53	354 354	35 ⁴ 35 ⁴	1956 1153	12-5-52
GS	GS	GS	SS	4	GS DWR GS Owner	Owner	Owner Owner	Owner	GS
32E1	3252	32E3	32R1		1,/13-19C1 0	S 1962 Owner	1903 Owner Owner	1921 Owner Owner	24A1

a. Well being pumped. d. Tape smeared.

	Source	Date				Well	Well data		Measuring	ring		Water : level	
USGS	of data and other mumbers	중	Owner or user	Year com- pleted	Depth:	: Type, :Pump :Depth:diam-:type :(ft.): eter: and : :(in.):powe:	:Pump : type : y = and : (Year : :Type,:Pump : : : : Com-:Depth:diam-:type :Yield:Sp. :Use com-:(ft.): eter: and :(gpm):cap.:pleted : :(in.):power:	Δ,	13	of 1sd (feet)	Depth elow 1sd (feet)	Other data
			T. 11 N., R. 13 W.,	Continued	med								
11/13-29MI	1 GS	10-6-55	California Portland Cement Co., 2	1954	6ħL	o 16	N N	73 Un	Tec	1.0	3,350	321.24	L, W
31A1	r GS	10-6-55	Tull	1954	900	RG 16	NN	500 Ds			3,300	£450	н
31A2	55 5	10-6-55	Tull	1954	009	RG 16	N	500 Ds			3,300		
€ 36B1	r 68	9-28-55	Dr. James Gillis	1953	280	RG 16	N	Un	Tcc	1.3	2,900	295.03	1
3601	SD 1	9-28-55	Dr. James Gillis	1953	611	RG 14	NN	ប្រ	Tec	₹.	2,910	301.80	1 .
36KL	S9 1	9-28-55	Dr. James Gillis	1954	630	RG 16	NN	ал 006	Tcc	÷	2,888	281.79	ы
3611	S9 1	9-28-55	Dr. James Gillis	1954	585	RG 14	Z H	900 Un	Rpb	ď	2,913	302.70	
	aling.		T. 11 N., R. 14 W.		•		,					nud * g	
1341-41/11	Owner Owner	3-19-56 1954 1954	California Portland Cement Co., well 5	1954	æే	c 16		In 350	Tc	္ထ	000 4	24.97 a50 25	J.E
1482	14B2 Owner Owner	1954 1954	California Portland Cement Co., well 6	1954	\$	c 16		500 In			3,990	828 12	ы

\rightarrow 1
-
H)
-11
וייי
- 1
•
2
•
-
~
1
2
- 31
امت
£.1

12/11-3411	IJ	જ	9-10-55			95.4	8	N N		Ds			2,550	Dry	
				T. 12 N., R. 12 W.											
12/12-35R1	RI	GS	2-3-58	Southern Pacific Land Co.	1957	049	c 14	N	980	Un	Пс	1.02	2,743.3	316.12	C,L,W
				T. 32 S., R. 36 E.											-
32/36-20MI	Ę,	GS	9-30-55				12	N		H	Tc	0	2,930	485.70	
2101	ಡ	GS	11-3-55	J. J. Wonders	1949 3805		RG 10	F G	263	Ps	Tapw 1.0	1.0	2,798.9	372.88	B,C,L,
SSNI	Ę	68	9-18-52	W. M. Kinkade	1947	370	9	L G	76	P			2,760		ပ
1087 41		GS CW-28A	7-17-57 1929	R. Gannt R. Gannt		1,06.1 1,07	c 12	N		Ds T	H H	0.0	2,832	Dry Dry	
13 † E		GS CW-34A	12-2-52 1930	Maddock				z z		Ds	Эc	Φ.	2,760 2,745.5	332.0	
34)	3452	85 85 85	10-18-57 12-20-57 2-3-58	Mojave Public Util. ity District	1957	800	RG 16	N N	1650	Пп	Bnc	2.0	2,760	325.53 325.52 325.44	
3501	נמ	GS	7-17-57	Southern Pacific Land Co.	1956	800	C 14	N	895	Пn	Bnc	.25	2,692.0	263.93	C,L,W

Well being pumped. Depth of obstruction in well which is above water table. Well drilled to 1,356 feet. Demented off at 805 feet. 9 1 5

	Source	: : Date	••••		Well	Well data		Me	Measuring		Water	
USGS number	or data and other mumbers	or data of and observa-	Owner or user	Year : Dept com-	:Type,:Pump h:diam-:type): eter: and :(in.):power	Pump type and power	Year : Type, : Pump : : : com- : Depth: diam-: type : Yield: Sp. : Use: pleted: (ft.): eter: and : (gpm): cap.: : (in.): power: : :	Jse	(feet)	point Altitude Depth Other of 1sd below 1sd data (feet): (feet):	Depth Depth Selow 1sd (feet)	Other data
			T. 32 S., R. 36 E.,	Continued								
32/36-35R1	GS	7-17-57	Southern Pacific Land Co.	1956 800	C 14	C 14 N N 1900		Un Te	ıp 2.51	Tap 2.51 2,631.9 206.52 C,L,W	206.52	C,L,W
35R2	35R2 GS	7-17-57	Southern Pacific Land Co.	1956 720	R 8 N N	NN		Un Te	3.42	Tc 3.42 2,634.5 207.99	207.99	L, W

Table 2.--Cross index of other well numbers and U. S. Geological Survey numbers

The first column shows the number assigned to the well by others and the second column shows the Geological Survey number assigned to a same well. The numbers in the first column are listed consecutively. The missing in the consecutive listings are for wells outside the sea or for wells for which data are not available.

(ray di sydera di succ		Part 1.		Numbers use	d		2	the second secon	-	
	Other number	:	USGS number	:	Other :		USGS number	:	Other number	:	USGS number
	7A		11/11-34M1	:	15A		9/14- 1R2		50		11/12-26J1
	8A		11/11-33P1	:	16A		9/13-8D1	•	51		11/11- 2N1
	13A		9/14- 4B1	:	22A		9/12-16L1	:	52		12/10-3121
	14A		9/14- 2Z1	:	49	1	11/11- 8D1	•	53		11/12-12D1

3					
F	art 2. Numbe	rs used by (yril Williams	s, Jr., (1930	0)
9/12-18A	9/12-18E2	10/12-16A	10/12-15M2	11/11-33A	11/11-33Pl
18B	18E3	20A	20B1	11/12-12A	11/12-12D1
9/13- 1A	9/13- 1N1	20B	20Pl	128	12M1
4A	4A1	20D	2001	14A	14D1
5A	521 :	22A	22E1 :	22A	22D1
7A1	7R3	22B	22112	26A	26J1
7B	7R2	22E	2201	30/37-24A	30/37 - 34Bl
7C	7R1	27A	27L1	24B	24ML
7D	7Q ¹ 4	28A	2801	24C	24R2
, 7E	7 9 .5	28B	28л	26A	26Z1
7F	701	28C	28Z1	36A	36 G 1
7G	793	30A	30A1	30/38-30A	30/38-30El
7H	7Al	10/13- 4A	10/13- 4D1	30B	30B1
8A	8D1	24A	24F1	32A	32G1
10A	10A1	24B	24B1	31/37-14A	31/37-14L1
14B	14A1	11/11- 2A	11/11- 2M1	22A	2201
14C	14E1	6A	6D1	26A	26KI
9/14- 2A	9/14- 221	8A	8D1	30A	30F1
10/11- 8A	10/11-8M1	18A	1801	32B	32A1
10/12-10A	10/12-1021	20A	2001	33A	33Z1
1018	10R1	23A	23Л	34A	34A1
12A	12K1	30A	30KJ	32/36-28A	32/36-28N1
120	12H1	32A	32N1	34A	34E1

Table 3. -- Records of water levels in wells

Included are all known records of water-level measurements in wells where six or more measurements have been made; records for wells where less than six measurements have been made are shown in table 1.

Altitudes given are in feet above mean sea level for the land-surface datum at the well. Land-surface datum is a plane of reference which approximates land surface. Altitudes given in whole feet are interpolated from topographic maps. Altitudes given in whole feet are interpolated from topographic maps. Altitudes given in feet and tenths were determined by spirit leveling from records by Cyril Williams, Jr. (1930); C. F. Hostrup, consulting engineer, Westwood, Calif.; or the Geological Survey.

Measurements. All measurements of water level have been adjusted to depth below land-surface datum. That is, the altitudes of the measuring points as reported above land-surface datum have been subtracted from the water-level measurements below the described measuring point.

All measurements are by the Geological Survey unless otherwise indicated.

9/12-16E2 (CW-18A). Clara Koch. Depth 182.4 ft. Altitude about 2,375 ft. Measuring point: Top of casing 1.0 ft above 1sd prior to May 23, 1956; top of access pipe 1.65 ft above 1sd after that date.

. Date	Water level	Date	Water level	Date	Water level
Sep. 21, 1951	92.94	Mar. 5, 1952	a95.09	Mar. 13, 1953	89.20
Nov. 15	90.89	Nov. 6	92.24	May 23, 1956	94.15

9/13-4A 2,636.8 ft.	1 (CW-4A). Measuring	O.S.	Hatcher . Top of	Depth a casing at	bout 282 lsd.	ft.	Altit	ude
Nov. 15, 1929				74.49			1957	

	17, 1727		1404. 14, 1322		זכפו נכו יאסאו	
Feb.	10, 1954	71.39	Mar. 21, 1956	74.75	Mar. 4, 1958	78.43
	29				Nov. 4	_
	1, 1955		Mar. 5. 1957			

9/13-7Q1 (CW-7F). Willow Springs Co. Depth 38.1 ft. Altitude 2,566.0 ft. Measuring point: Hole in casing cover at 1sd.

Nov. 14, 1929	ъ3.10	Nov. 14, 1955		Nov. 15, 1957 16.40
Feb. 10, 1953	2.86	Mar. 21, 1956	12.39	Mar. 4, 1958 al5.01
Feb. 8, 1954	4.86 13.76	• •	17.95 21.52	Nov. 4 27.56 Mar. 9, 1959 20.58
Nov. 29 Mar. 1, 1955	8.72	Mar. 5, 1957	11.58	Mar. 9, 1979 20.70

9/14-2Jl. S. L. Henson. Depth about 250 ft. Altitude about 2,735

10.	Measuring	point:	Top of casing, 2.0 it above isd.	
Jan. Feb. Nov.	30, 1953 10, 1954 29	124.63 119.12 127.11		
Nov.	1, 1955 14	128.78	Mar. 9, 1957 130.11 Mar. 9, 1959 130.59	

10/12-20B1 (CW-20A). O. J. Backus. Depth 117.6 ft. Altitude 88.6 ft.

2,030.0 It.					
Sep. 27, 19	29 ъ90.60	Mar. 4, 1952		May 22, 1956	89.98
Feb. 19, 19	30 ъ90.19	Nov. 13	89.63	Sep. 26	91.17
Sep. 21, 19		Jan. 20, 1953	89.82	Mar. 5, 1957	90.00
Nov. 16	89.95	May 5, 1954	89.63	Nov. 15	Dry

a. Well being pumped.

b. Measurement by Williams (1930).

c. Well pumped recently.

10/12-28J1 (CW-28B). E. Faires. Depth 105.0 ft. Altitude 2.549.2 ft. Measuring point: Top of casing 1.0 ft above lad.

Date	Water level	Date	Water ' le v el	Date	Water level
Oct. 31, 1 Feb. 19, 1	1929 b62.10 1930 bc63.32	Sep. 21, 1951 Nov. 16	65.80 64.09	Mar. 3, 1952 Nov. 2	60.68 61.64
				May 22, 1956	63.34

		Butler. Depth a nt: Hole in cas		out
Jan. 20, 1953 Feb8, 1954		Mar. 21, 1956 May 21	Nov. 15 Mar. 4	304.11 305.60
Nov. 29	299.20	Sep. 26	Nov. 4	307.32

10/13-32M about 2,740 ft	1. Lombard . Measuri						
Jan. 20, 1953 Mar. 1, 1954 Nov. 14, 1955	131.95 143.82	May 21 Nov. 15	, 1956 , 1957	162.30: 162.99 164.77	Nov.	4, 1958 9, 1959	165.67

11/11-1Q1. A. H. Kent. Depth 761.5 ft. Altitude about 2,450 ft. Measuring point: Top of casing, 1.5 ft above 1sd prior to August 14, 1957; top of extension on casing 1.98 ft above 1sd thereafter.

Dec. 11, 1952 Sep. 29, 1955		Aug. 14, 1957 Sep. 24	Oct. 15, 1957 Nov. 19	31.48
Nov. 1	33.25		 	

11/11-5D1. Southern Pacific Land Co. Depth about 670 ft. Altitude 2,630.9 ft. Measuring point: Top of access pipe 0.78 ft above 1sd.

	204.23	Oct. Nov.	 1957	204.22 204.23		204.24
Sep. 24	204.23		 			

11/11-7Al. Southern Pacific Land Co. Depth 414.0 ft. Altitude 2,627.9 ft. Measuring point: Top of access pipe 0.85 ft above 1sd.

July 17, 1957 Aug. 14	201.66	Oct. 15, 1957 Nov. 19	201.65	Dec. 20, Feb. 3,	
Sep. 24	201.69				

b. Measurement by Williams (1930).

c. Well pumped recently.

11/11-8D1 (CW-8A). Zetta Thorning. Depth 204.0 ft prior to October 21, 1955; 275.0 ft thereafter. Altitude 2,624.5 ft. Measuring point: Bottom

of hole in casing 1.0 ft above 1sd.

	Date	Water level	Date	Water level	Date	Water level
Feb. Sep. Mar.	1918 28, 1929 27, 1930 10, 1952 15, 1954 2, 1955 29	b218.60 b218.30 198.79 198.50	Oct. 21, 1955 Mar. 21, 1956 Oct. 19 Mar. 6, 1957 June 17 Aug. 14 Sep. 24	198.11 Nov. 199.95 Dec. 198.19 Feb. 198.73 Nov.	20 3, 1958	198.71 198.73 198.74 198.70 198.97 198.09

11/11-9Al. Southern Pacific Land Co. Depth about 422 ft. Altitude 2,549.6 ft. Measuring point: Top of access pipe 1.19 ft above 1sd.

THE R. P. LEWIS CO., LANSING, MICH.	-	The state of the s				
Oct. 17, 1956	124.59	Sep. 24, 1957	124.75	Dec. 20,		
July 17, 1957	124.75	Oct. 15	124.73	Feb. 3,	1958	124.73
	124.75	Nov. 19	124.74			

11/12-26J1 (CW-26A). Monolith Portland Cement Co. Depth 225.0 ft. Altitude 2,594.0 ft. Measuring point: Top of casing 1.0 ft above 1sd.

								-					
		1918	155	Sep. 2	7,]	1955	156.37		Nov.	15,	1957	156.19	
Sep.	26.	1929	b161.2	Mar. 2	1, 1	1956	156.24		Dec.	20		156.20	
			ъ158.2	Oct. 1	•		156.22		Feb.	3,	1958	156.16	
			156.46	Mar.	5,]	L957	156.25		Mar.	12		156.15	
			156.40	July 1			156.16		Nov.	4		156.06	
Mar.	15,	1954	156.60	Aug. 1	4		156.23		Mar.	10,	1959	156.10	
Nov.	29		156.49	Sep. 2	4		156.23						
			156.46	Oct. 1	5		156.19						

11/13-29Ml. California Portland Cement Co., well 2. Depth about 749 ft. Altitude about 3,350 ft. Measuring point: Top of casing cover 1.0 ft above 1sd.

Feb.	4, 1954 d300 4 ad517 6, 1955 d322	Oct. 6, 1955 321.24 Feb. 1, 1956 d317 Mar. 5 d324	Mar. 19, 1956 e322.27
------	---	---	-----------------------

a. Well being pumped.

b. Measurement by Williams (1930).

d. Measurement reported by owner.

e. Measurement by California Department of Water Resources.

12/12-35Rl. Southern Pacific Land Co. Depth about 640 ft. Altitude 2,743.3 ft. Measuring point: Top of casing 1.02 ft above 1sd.

Date	Water level		Date	9	Water level	Dat	е	Water level
July 17, 1957 Aug. 14 Sep. 24	316.11 316.11 316.18	Oct. Nov.		1957	316.13 316.16		1957 1958	316.14 316.12

ft.	32/36-21Q Measuring					ude 2,	798.9
Mar.	3, 1950 2, 1955 3	370.88		370.89 371.26			372.90 372.29

32/36-35D1. Scuthern Pacific Land Co. Depth about 800 ft. Altitude 2,692.0 ft. Measuring point: Bottom of notch in casing 0.25 ft above 1sd.

July 17, 1957 Aug. 14	263.93	Oct. 15, 1957 Nov. 19		Feb. 3, 1958 Nov. 4	
Sep. 24	264.96	Dec. 20	264.96	Mar. 10, 1959	265.01

32/36-35Rl. Southern Pacific Land Co. Depth about 800 ft. Altitude 2,631.9 ft. Measuring point: Top of access pipe 2.51 ft above 1sd.

	206.53	Oct. 15, 1957 Nov. 19	206.55 206.57	20, 1957 3, 1958	
Sep. 24	206.56				2

32/36-35R2. Southern Pacific Land Co. Depth about 720 ft.

Altitude 2,634.5 ft. Measuring point: Top of casing 3.42 ft above 1sd.

Dec. 10, 1956, 207.89 Mar. 7, 1957, 208.19 Oct. 24, 1957, 208.09

Dec. 10, 1956 15 19 26	207,89 208.07 f209.18 208.16	Mar. 7, 1957 July 17 Aug. 14 Sep. 24	203,19 207,99 208,01 208,04	Nov. 19 Dec. 20 Feb. 3, 1958	208.05 208.10 208.08 208.03
26 29	208.16 208.08	Sep. 24	208:04	Feb. 3, 1958	208.03

f. Nearby well being pumped.

Table 4. -- Logs of wells

9/12-1671. A. C. Scruggs. Altitude about 2,340 ft. Drilled by 12-inch casing. Frank Rottman. Depth Thickness (feet) (feet) 50 50 Gravel and sand ------20 70 Clay and gravel 20 90 20 110 Clay ------Rock and gravel 40 150 Boulders ------20 170 180 10 20 200 Drilled by 9/12-16Kl. R. J. Rubees. Altitude about 2,360 ft. Frank Rottman. 1.2-inch casing, perforated from 72 to 204 ft. Clay -----10 10 Clay and boulders -----20 30 40 10 Sand warpennessessessessessessessessessesses 60 Clay and boulders -----20 Sand and gravel -----5 65 Sand; hard, boulders and clay -----25 90 Rock and clay 20 110 Boulders and clay -----20 130 Sand and boulders -----1.58 28 Clay and rock ------12 170 Sand ------175 204 9/12-16L1 (DGT, Antelope Valley 22). Frank Miske. Altitude about 2,365 ft. Drilled by R. H. Orr. 14-inch casing, perforated 71-251 ft. 32 32 1 33 Clay -----60 27 Sand -----61 1 Clay -----78 17 Sand -------2 80 Clay -----90 10 Sand ------3 93 140 47 7,53 160 17

Continued

	Thickness (feet)	Depth (feet)
Sand	.3	163
Clay	7	170
Sand		173
11ay	7	180
Sand		182
Clay	38	220
Sand		222
1287	10	233
Sand		231
Clay		254
9/12-1851. Dale Randleman. Altitude about 2 Frank Pottman. 12-inch casing, perforated from 15		lled by
urfsgg	10	10
ravel		140
and and gravel	150	290
and and gravel; hard, and some clay	- 64	354
ock nard, and some clay		35 ¹ +
	7 frage - 1 frage -	
9/13-101. Edward Starr. Altitude about 2,463 Pengilloy. 6-inch casing.	ft. Drille	d by
engilley. 6-inch casing.		d by 69
engilicy. 6-inch casing.	- 69 - 135	
engilicy. 6-inch casing.	- 69 - 135	69 204
engilicy. 6-inch casing. lluvium ock Ore", red	69 135	69 ·
engilicy. 6-inch casing. lluvium ock Ore", red	69 135	69 204 209
engillay. 6-inch casing. lluvium ock ock	- 69 - 135 - 5 - 33	69 204 209 242
engilicy. 6-inch casing. lluvium	- 69 - 135 - 5 - 33	69 204 209 242
engilley. 6-inch casing. lluvium	69 135 5 33	69 204 209 242
engilicy. 6-inch casing. lluvium	69 135 5 33	69 204 209 242 school.
engillay. 6-inch casing. lluvium	69 135 5 33	69 204 209 242 school.
engillay. 6-inch casing. lluvium	- 69 - 135 - 5 - 33 - 33 - 76 - 14	69 204 209 242 school.
engillay. 6-inch casing. lluvium	- 69 - 135 - 5 - 33 - 33 - 11ow Springs - 76 - 14 - 10	69 204 209 242 school.
engillay. 6-inch casing. lluvium	- 69 - 135 - 5 - 33 - 33 - 11ow Springs - 76 - 14 - 10	69 204 209 242 school. 76 90 100

9/14-1H1. Jess Butler. Altitude about 2,700 ft. Drilled by Frank Rottman. 18-inch casing.

	Thickness (feet)	Depth (feet
Surface soil	20	20
Sand and gravel, fine	_30	50
Gravel	32	82
Clay and sand	38	120
Clay		167
Sand and gravel, fine	28	195
Clay and gravel	20	215
Gravel	20	235
Clay	43	278
Clay and gravel	22	300
Clay, sand, and gravel	40	340
Gravel, and a few boulders	20	360
Sand, clay streaks	10	370
Clay, sand, boulders	10	380
Clay streaks and boulders	20	400
Sand and gravel	25	425
Sand, clay and gravel	25	450
Sand, boulders, gravel	20	470
Clay	25	495
Gravel	12	507
Gravel, streaks of clay	16	523
Sand and boulders, hard	42	565
Sand, hard	15	580
Sand; hard and bentonite	20	600
Sand and rock	32	632
Sand hard	23	655
Sand, hard	22	677
Sand and clay, hard	23	700
Sand and clay streaks	22	722
Rock and boulders	18	740
Sand and boulders		765
Sand and rock	45	810
Gravel, fine	92	902
Not logged	43	945
NOT TORRED	ر .	ラマノ

10/11-8E1. Robert Fetters. Altitude 2,497.5 ft. Drilled by AV Pump and Drilling Co. 10-inch casing.

Pump and Drilling Co. 10-inch casing.			
	Thickness	Depth	-
	(feet)	(feet)	_
Sand	112	112	
Rock	5	117	
Gravel	70	187	
Bottomed in rock (red)	10	200	
20000mcd in 10ck (1ea)		200	
to the control of the		ار. والم	6.
10/12-9Al. Mrs. Dorothy McAllister. Altitude 2 Pengilley Bros. 8-inch casing, perforated from 158 t		Drilled by	y ,
Clay, sand, etc	198	198	
Sand and gravel, coarse	10	208	
Rock, solid	-	208+	٠.
	~~~ .		
10/12-20D1 (CW-20A). O. J. Backus. Altitude 2, casing.	638.6 ft.	16-inch	.,
Alternating beds of clay and sand	125	125	
Gravel	5	130	
Clay	2	132	
Quicksand	_ 3	135	
	·		-
20/20 0002 /GV 002) * 0 T 7 7 1 1 1 1 2 2	(=0 = 0)		
10/12-2001 (CW-200). O. J. Fackus. Altitude 2, by O. J. Backus. 12-inch casing.		Drilled	
Shaft (no data)	•, •	93	
Clay, blue, stiff	62	155	
Water gravel	6	161	
**			- 0
10/12-20P1 (CW-20B). G. H. Buckley. Altitude 2 inch casing.	,632.2 ft.	10-	10
Alternate clay and sand in alternating beds	50	50	
Sandstone, red	7	57	
Clay and sand in alternating beds	40	97	
			_

10/12-21R1. Wiggenton. Altitude about 2,570 ft. Drilled by

engilley	Bros.	6-inch	casing.

	Thickness (feet)	Depth (feet)
Sand; coarse, rather tight, one slightly harder streak	150	150
10/12-22El (CW-22A). A. L. Kemper. Altitude 2 inch casing. Uncased hole below 241 ft.	,552.3 ft.	10-
Sand and clay in alternate streaks	169	169
Gravel, fine	19	188
Clay and some sand streaks	53	241
Boulders; rounded, and sand		300
10/12-27L1 (CW-27A). W. Fusek. Altitude 2,540 dug well.	., 201 10-	
Sand	61	61
Granite, rotten	5	66
10/12-30Al (CW-30A). Freeman. Altitude 2,664. casing.	l ft. 10-i	nch
casing.		
Soil, gravelly	60	60
casing.	60	

10/13-14Q1. Seaton. Altitude about 2,840 ft. Drilled by Frank

	Thickness (feet)	Depth (feet)
Sand, hard	50	50
Sand and boulders	50	100
Sand, hard	50	150
Boulders and clay	50	200
Sand; coarse, little	20	220
Boulders and sand	30	250
Boulders		280 -
Sand and clay	20	300
Boulders and clay	50	350
Sand	20	370
Boulders and sand		400
Sand and clay		430
Boulders and clay	. 20	450
Clay	13	463
10/13-19M1. Dewey Butler. Altitude about 2,90 by Frank Rottman. 16-inch casing.	5 ft. Dril	led

by Frank Rottman. 16-inch casing.		
Sand and boulders	90	90
Boulders and hard sand	22	112
Boulders and sand	22	134
Gravel; fine, and sand	23	157
Sand and boulders, hard	22	179
Rock, sandy	23	202
Clay, sandy	22	224
Clay streaks, sand, some boulders	23	247
Clay and fine gravel	22	269
Clay; sandy, hard	23	292
Clay and gravel	23	315
Clay, fine sand	21	336
Clay and boulders	24	360
Clay and gravel	44	7 107
Clay, coarse rock	23	427
Clay, fine sand	22	449
Gravel and clay	45	494
Clay, fine sand	23	517
Gravel and clay	67	584
Clay; red, and rock	23	607
Clay and gravel	22	629
Clay and boulders	45	674
Clay and shale	23	697
Clay, red, and rocks	23	720
Clay and gravel	22	742
Not logged	28	770

10/13-22Dl. Marsh. Altitude about 2,875 ft. Drilled by G.

M	ont	tmo	ren	cy.	6-1	incl	h c	asi	ng.	

	Thickness (feet)	Depth (feet)
Sand	1 -	70
Clay		120
Sand	10	3.30
Clay	157	287
Sand. water	13	300
Clay	-	. ?

10/13-30D1.	M and P Ranch.	Altitude	about	2,880 ft.	Drilled
Frank Rottman.	16-inch casing				

by Frank Rottman. 16-inch casing.	-	
Surface sand and gravel	73	73
Not logged	23	96
Sand; hard, and gravel	43	1.39
Sand and small gravel	22	161
Clay and fine sand	22	133
Sand; hard, and clay	22	205
Gravel and clay	68	273
Sand and gravel	23	296
Sand: hard, clay	44	340
Sand, hard	23	363
Sand, clay, small gravel	22	385
Sand and gravel with clay streaks	23	408
Sand streaks; hard, and clay streaks	22	430
Clay and sand	22	452
Clay, fine sand	23	475
Clay	22	497
Clay sand	22	51 9
Clay and sand streaks	68	587
Clay and gravel	22	609
Sand. gravel, few boulders	22	631
Sand and gravel	22	653
Clay: red. streaks of sand	23	676
Clay, sand	22	698
Sand; hard, and red clay streaks	23	721
Shale: blue. hard	23	744
Shale: blue, clay	22	766
Shale and clay, red	22	788
Not logged	46	834

10/13-30Kl. M. and P Ranch. Altitude about 2,825 ft. Drilled by Frank Rottman. 16-inch casing, perforated from 200 to 400 ft.

Clay and gravel		Depth (feet)	
Clay	78 78 78 78 78 78 78 78 78 78 78 78 78 7		

10/13-32D1. Lombardi and Frew. Altitude about 2,775 ft. Drilled by Frank Rottman. 16-inch casing.

Surface soil	- 30	30	
Clay		95	
Clay with sand		156	
Sand, fine		178	
Sand, fine, and gravel		201	800
Clay and boulders		222	Pa
Clay and gravel	23	245	
Clay and sand and gravel	23	268	
Clay, sand, gravel and boulders		290	
Clay, sand and boulders		328	
Sand, fine		351	1 =
		486	
Gravel, fine			
Gravel and clay		506	
Tufa and some gravel	. 23	529	•
Clay and gravel		641	
Gravel, fine		664	
Clay and gravel		731	
ATION OF THE PERSON OF THE PER	Continued	19=	
	COllettined		-

10	/12	32Dl.	Co	&	
TO.	/ エン・	-3201.	UO	ntini	1ea

10/13-32DlContinued		
	Thickness (feet)	Depth (feet)
Gravel		
Gravel, red		797
		820
Boulders and clayClay and gravel	•	865
		888
Clay and gravel, some boulders	22	910
Sand and clay		956
	44	1,000
Gravel; fine, and boulders		1,022
Clay, fine sand, and boulders		1,046
Clay, gravel, and boulders	22	1,068
Rock cuttings	112	1,180
Clay and gravel	142	1,322
Gravel, fine	23	1,345
10/13-32ML. Lombardi and Frew. Altitude about by Frank Rottman. 16-inch casing.	2,740 ft.	Drilled
Surface	89	89
Clay	23	112
Boulders and clay	22	134
Clay and fine sand	23	157
Shale, hard	43	200
Boulders and clay	44	244
Fravel and boulders	. 23	267
Clay and boulders	44	311
Clay and gravel	23	334
Gravel, fine	23	357
Fravel	44	401
Boulders and clay	23	424
Rock	44	468
Sand; packed, hard	112	580
miley positiony man	116	
lay, boulders and fine sand	23	603
lay, boulders and fine sand		603 625
Clay, boulders and fine sand	23	_
lay, boulders and fine sand	23 22	625
lay, boulders and fine sand	23 22 23	625 648

10/14-36Al. CCC Ranch. Altitude about 2,855 ft. Drilled by

Frank Rottman. 16-inch casing.

	Thickness (feet)	Depth (feet)
Sand and gravel	64	64
Clay and streaks of fine sand	88	152
Clay and streaks of sand and boulders	148	300
Clay and streaks of sand and shale		350
Sand; fine, and streaks of clay and gravel	117	467
Sand, gravel and shale streaks	71,71	511
Clay, gravel, sand and few boulders	45	556
Sand, gravel, few boulders	· 44	600
Gravel; coarse, and sand	45	645
Gumbo clay, fine sand	67	712
Clay and heavy streaks of gravel and sand	202	914
Sand; fine, small gravel	72	986

11/7-32E1. Boron Community Services District, well 8. Altitude about 2,455 ft. Drilled by Rottman Drilling Co. in July 1956. 10-inch casing zero to 502 ft, perforated 262 to 502 ft.

Clay and sand	50	. 50	*
Clay and gravel	22	72	200
Clay and sand	22	94	1 5 13
Sand, coarse	22	116	٠,
Sand; coarse, and clay	24	140	•
Sand and clay	44	184	
Sand and clay streaks	26	210	-0
Clay, hard	22	232	
Clay and gravel	24	256	
Clay and sand streaks	- 22	278	
Gravel and clay streaks	22	÷ 300	.= 1
Gravel	23 -		
Boulders, clay, and sand	55	345	
Gravel and boulders	26	371	137
Gravel; packed hard	21	. 392	
Clay; packed hard, and gravel	23	415	6 .
Clay; hard, and gravel	66	481	4
Gravel and hard clay	21	502	
		702	

11/7-32G2. Franklin. Altitude about 2,460 ft. Drilled by owner in 1954. 5-inch casing. (Log not complete.)

	Thickness (feet)	Depth (feet)
Overburden	8	8
Caliche, hard	102	110
Clay, brown, sticky	20	130
Caliche and brown calcareous sandy silt		210

11/11-5D1. Southern Pacific Land Co. Altitude 2,630.9 ft. Drilled by Roscoe Moss Co. 14-inch casing, perforated at intervals between 270 and 514 ft.

Sand, loose	2	2
Clay; brown, sandy, few hard streaks	210	212
Sand. coarse	2	214
Silt and sand, fine	14	228
Clay; red, sticky	8	236
Clay, sandy with gravel streaks	34	270
Sand and gravel	6	276
Clay, sandy	8	284
Gravel, \(\frac{1}{4}\) to 3/4-inch	16	300
Clav. sandy	20	320
Sand, muddy	20	340
Sand, muddy with clay streaks	40	380
Sand; coarse \(\frac{1}{4}\)- to 1-inch gravel	4	384
Clay, sandy	52	436
Sand and gravel, $\frac{1}{4}$ to 1-inch	26	462
Clay; yellow, sticky	36	498
Sand and gravel, cemented	ĭ6	514
Clay, sandy, hard	6	520
Clay; sandy, streaks hard and soft	40	560
Clay; sandy, hard	20	580
Sand, loose	2	582
Clay; sandy, packed	50	632
Clay; sandy, with small gravel	10	642
Clay; sandy, hard, quartz gravel	4	646
Granite; red and brown, decomposed	4	650
Conglomerate, very hard	12	662
Granite; decomposed, very hard	8	670
oranite; decomposed, very mara	0	010

11/11-7Al. Southern Pacific Land Co. Altitude 2,627.9 ft. Drilled by Roscoe Moss Co. 14-inch casing, perforated 305 to 356 ft.

Materials classified by U. S. Geological Survey.			
	Thickness (feet)	Depth (feet	
Silt, sandy, clayey; yellowish-brown; 3 to 5 percent subangular to angular coarse sand consisting mainly of quartz and feldspar but some volcanic material is present			-00
Silt, sandy, clayey; yellowish-brown; 3 to 5 percent subangular to subrounded, fairly well-	2 98	298	
coarse sand, silty, clayey; yellowish-brown; 3 to 4 percent subangular to subrounded granules, 2 to 3 percent angular pebbles; quartz and feldspar predominate but contains some volcanic ash,	34	332	
metamorphic, and dark mineralsClay and coarse sand; yellowish-brown; clastics: 3 to 5 percent; quartz, feldspar, some ash, and	24	356	
dark minerals; very adhesiveQuartz monzonite showing weathering effects and	10	366	
limonite stains	46	412	
11/11-9A1. Southern Pacific Land Co. Altitude Drilled by Roscoe Moss Co. 14-inch casing, perforate and 352 to 362 ft. Materials classified by U.S. Geo Survey.	d 262 to 29	95	· ·
Sand and silt; streaky	50	50	,
present	100	150 250	
Silt, sandy, clayey; yellowish-brown; 5 to 10 percent clastics: very coarse subangular sand Very coarse sand, silty; yellowish-brown; sub- angular, fair sorting; 5 to 10 percent granules;	12	262	15.

288

290

26

2

Continued

predominantly quartz, feldspar, green tuff or

quartz, feldspar, biotite -----

ash, some volcanics, muscovite and pyrite -----Weathered boulder; grayish-white (salt and pepper appearance); 30 to 40 percent clastics: angular;

	Thickness (feet)	
Very coarse sand; yellowish-brown; subangular, fair sorting; 5 to 10 percent granule size; predominant quartz, feldspar, green tuff or ash, some volcanic	•	295
Sand, silty, clayey; yellowish-brown; 10 to 20 per- cent coarse clastics; subrounded quartz and feldspar	55	350
Sand, medium to coarse; reddish-brown; grains of quartz, feldspar and mica; angular to subangular granules and sand grains. Some chips up to 1.4	//	
cm. long	12	362
Franite or quartz monzonite; decomposed, becoming progressively harder	59	421

11/11-23J1 (CW-23A). Southern Pacific Land Co., of Altitude 2,763.0 ft.	oil-wel	L test.
Surface sands, gravel, lime shells	570	570
Sand, buff	20	590
Shale; brown, sandy	20	610
Not logged	710	1,320
Sand, brown	10	1,330
Not logged	129	1,459
Lime; gray-blue, hard	,8	1,467
Sand and shale, gray-blue	45	1,512

11/12-14D1 (CW-14A). H. S. Knowles, oil-well test. Altitude

2,705.4 ft. 12-inch casing.

	Thickness (feet)	Depth (feet)	_
Gravel and clay	270	270	
Gravel, water	80	350	
Sand and gravel	` 5	355	
Clay, yellow	45	. 400	
Conglomerate	150	550	
Lime, blue	220	770	,
Not logged	100	870	
Shale, brown	10	880	
Conglomerate, medium hard	10	890	*
Shale, dark	5	895	
Hard capping	5	900	
Shale, dark	5	905	*
Shale, brown	40	945	
Shale, dark	5	950	
Shale; blue, and hard shells	25	975	
Shale; brown, and hard shells	20	995	
Shells; hard, and water	15	1,010	
Shell, hard	30	1,040	

11/12-22D1 (CW-22A). Mojave Public Utility District, well 1. Altitude 2,687.4 ft. 14-inch casing.

Gravel and adobeGravel, decomposed	. 42	3 45	
Adobe, sandy	20	65	
Sand and gravel	25	90	
Adobe, sandy	15	105	
Gravel, fine	55	160	
Adobe, fine sandy, and hardpan	57	217	
Sand, loose, coarse	13	230	
Hardpan	30	260	
Sand, soft, fine	10	270	
Sand, fine; water	7	277	
Sand, coarse, or gravel, fine	3	280	
Hardpan	31	311	
Sand, fine	14	325	
Gravel, coarse	10	335	
Hardpan, sandy	13	348	

11/12-26J1 (DGT-50, CW-26A). Monolith Portland Cement Co.

Altitude	2.594.0	ft. 1	4-inch	casing.
----------	---------	-------	--------	---------

	Thickness (feet)	Depth (feet)
Clay and sand streaks	125	125
Sand, water	10	135
Clay; heavy, and packed sand	15	150
Sand and fine gravel, water		160
Clay and packed sand		230
Gravel, up to 2 inches in diameter; water	-	250 .

11/12-26J2. Monolith Portland Cement Co. Altitude about 2,595 ft. Drilled by Frank Rottman. 14-inch casing.

Surface soil and clay	20	20
Shale and boulders; hard	15	35
Sand, clay, and boulders; hard	55	.90
Clay, hard	20	110
Clay and boulders	55	165
Clay, gravel, and boulders	35	200
Clay and gravel	40	240
Gravel	5	245
Clay and sand	25	270
Clay	30	300
Clay, sand, and boulders	21	321
		•

11/13-19Cl. California Portland Cement Co., well 1. Altitude about 3,610 ft. Drilled by Roscoe Moss Co. 16-inch casing, perforated from 230 to 358 ft and from 376 to 430 ft.

Sand and gravel, 3-inch	. 6	6
Clay and boulders	42	48
Sand and gravel, 4-inch	2	50
Granite boulders	70	120
Clay and gravel, 1-inch	71,71	164
Clay and boulders	36	200
Clay and gravel, 1-inch	10	210
Clay and coarse sand, \frac{1}{4}-inch	145	355
Granite, decomposed	13	368
Clay, red	12	380
Granite	50	430

11/13-1902. California Portland Cement Co., well 4. Altitude about 3,600 ft. Drilled by Roscoe Moss Co. 16-inch casing, perforated from 160 to 354 ft.

Thickness (feet)	Depth (feet)
105	105
70	175
23	198
82	280
70	350
25	375
	(feet) 105 70 23 82 70

11/13-19C3. California Portland Cement Co., well 3. Altitude about 3,600 ft. Drilled by Roscoe Moss Co. 16-inch casing, perforated from 150 to 366 ft.

			_
Sand	48	48	
Clay and boulders	102	150	
Gravel, 2-inch	18	168	
Clay and boulders	24	192	
Clay and gravel, 1-inch	91	283	
Clay and boulders	57	340	
Clay and gravel, 1 inch	40	380	
Quartz, sharp	-8	388	
	2*		

11/13-19Z1. California Portland Cement Co. Altitude about 3,600 ft. Drilled by Roscoe Moss Co. Bailed dry, casing pulled.

Sand	40	40	
Sand and clay		85	
Sand and granite boulders	40	125	
Clay and boulders	55	180	
Clay	⁴ 55 ³	235	
Clay; sandy, with small gravel		248	
Gravel, 1-inch	2	250	
Clay; sandy, and gravel, $\frac{1}{4}$ -inch	130	380	
Sand and gravel, I inch	4	384	
Clay; sandy, hard	6	390	
Quartzite	40	430	
•			,

11/13-29Ml. California Portland Cement Co., well 2. Altitude about 3,350 ft. Drilled by Roscoe Moss Co. 16-inch casing, perforated from 520 to 724 ft.

	Thickness (feet)	Depth (feet)
Top soil	5	5
Sand, cemented		25
Clay and boulders	73	98
Clay and gravel, 2-inch	60	158
Granite boulders	120	278
Clay and gravel, 1-inch	242	520
Gravel, 2-inch; water-bearing	5	525
Clay and gravel, 1-inch	45	570
Clay, sticky	20	590
Gravel, 5-inch; clean	14	604
Clay and gravel, $\frac{1}{4}$ -inch	24	628
Sand and gravel, 3-inch; cemented	4	632
Granite, decomposed	76	708
"Hill top" (bedrock?)	27	735
Quartzite	14	749
·		

11/13-31A1. Tull. Drilled by J. M. Scoggin. Altitude about 3,300 ft. Log reported by George Marsh. 16-inch casing.

Shale	40	40
Sand and gravel, dirty	350	390
Shale	10	400
Sand, water	100	500
Beach sand, white	40	540 600
Sand, red and white	60	600
Sandstone	-	600+

11/13-36B1. Dr. James Gillis. Drilled by J. M. Scoggin. Altitude about 2,900 ft. Log reported by George Marsh. 16-inch casing, perforated from 400 to 580 ft.

	Thickness (feet)	Depth (feet)
No data	377	395
Sand, water	85	480
Shale	10	490
Sand, water	40	530
Lime	10	530 5ko
Sand, water	40	580
Shale, green	. •	580+

11/13-36C1. Dr. James Gillis. Altitude about 2,910 ft. Drilled by J. M. Scoggin. Log reported by George Marsh. 14-inch casing.

		<u> </u>
No data		400
Sand, water		500
Conglomerate		-510
Sand, water	50	560
Shale		570
Sand, water	_40°	610
Lime	1	611
Shale, green	=	611+

11/13-36Kl. Dr. James Gillis. Altitude about 2,888 ft. Drilled by J. M. Scoggin. Log reported by George Marsh. 16-inch casing, perforated from 380 to 630 ft.

: "

Gravel.	20*-	20 · ···
Shale	180	200
Sand and pea-gravel	125	325
Loam, black	55	380
Sand, good water	120	500
Shale, gray	10	510
Sand, water	50	560
Lime	10	570
Sand, water	60	630
Shale, green	-	630+

11/14-14B1. California Portland Cement Co., well 5. Altitude about 4,000 ft. Drilled by Roscoe Moss Co. 16-inch casing,

perforated	from	30-60	ft.

	Thickness (feet)	Depth (fest)
Top soil	54 18	8 62 80 84
	11 6. Alti	tude
11/14-14B2. California Portland Cement Co., we about 3,990 ft. Drilled by Roscoe Moss Co. 16-inch from 20 to 46 ft.		

12/12-35R1. Southern Pacific Land Co. Altitude 2,743.3 ft. Drilled by Roscoe Moss Co. 14-inch casing, perforated at intervals between 373 and 560 ft.

	Thickness (feet)	Depth (feet)
Dirt and gravel Clay and gravel Sand and gravel, 3/4-inch Clay, sandy Sand and gravel, ½-inch Clay, sandy Sand and gravel, to 2 inches Clay and gravel Sand and gravel, 2 inches Clay with sand streaks Sand and gravel, 3/8-inch Clay with sand streaks Sand and gravel, 3/4-inch Clay, sandy Sand and gravel, 1-inch Clay with some gravel Sand and gravel, 1-inch Clay, sandy Conglomerate (consolidated rock)	30 250 5 18 8 35 14 10 10 15 7 18 14 16 22 8	30 280 285 303 311 346 360 370 380 395 402 420 434 450 472

32/36-2191. J. J. Wonders. Altitude 2,798.9 ft. Drilled by Frank Rottman. 10-inch casing to 805 feet, uncased and cemented off below 805 ft.

	Thickness (feet)	Depth (feet)
No data	340	-
Gravel and coarse sand		340
No data		540
Gravel, very fine, well sorted	21	561
Sand, medium to coarse, unweathered	22	583
Sand, fine to coarse, very silty		605
Sand, fine to coarse, some fine gravel	.20	625
Sand, fine to coarse, considerable fine gravel	23	649
No data	44	693
Sand, coarse; and gravel, fine; silty	22	71 5
Sand, fine to medium, and silt; tight	22	737
No data	73	-
Silt and clay, tight	-	810
No data	35	845
Gravel, fine, silty	71	916
Sand, coarse, and fine gravel	55	971
No data	271	-
Sand, fine to medium	-	1,242
No data	22	-
Sand, fine to medium	-	1,264
No data	21	-
Silt, sandy	-	1,285
No data	5	-
Silt, sandy	-	1,290
No data	33	1,323
Rock; granitic, somewhat decomposed	33	1,356

Material below 800 feet reported to be poorly water bearing, and may be Tertiary continental deposits.

32/36-35D1. Southern Pacific Land Co. Altitude 2,692.0 ft. Drilled by Roscoe Moss Co. 14-inch casing, perforated at intervals between 339 and 725 ft.

	Thickness (feet)	Depth (feet)
Soil	.10.	10
Sand and gravel to 2 inches	30	40
Clay, sandy	248	288
Sand and gravel	19	307
Clay, sand, and gravel	31	338
Sand and gravel, 12-inch, some cement		360 ·
Clay with sand streaks	18 ′	378
Clay	15	393
Sand and gravel; coarse, $\frac{1}{2}$ -inch	18	411
Clay	13	424
Sand and gravel, $\frac{1}{2}$ -inch	42	466
Clay with sand streaks		480
Sand and gravel, $\frac{1}{2}$ -inch	14	494
Clay, sandy	26 ·	520
Sand and gravel, 1/2-inch	10 .	530 -
Clay, sandy	10 .	540
Sand and gravel, 3/4-inch	10 " "	550
Clay, sandy	12	562
Sand and gravel, 1/2-inch	8	570
Clay, sandy	- ' 6 ·	576
Sand and gravel, 2-inch, some clay	.30,	606
Clay, sandy	4 .	610 ·
Sand and gravel, 3/4-inch	19	629
Clay, sandy	11	640
Sand with clay streaks	- 35	675
Clay; hard, sandy	41	716
Sand and gravel, 3/4-inch	9	725
Clay; sandy, hard	· 75	800
(3)		

32/36-35R1. Southern Pacific Land Co. Altitude 2,631.9 ft. Drilled by Roscoe Moss Co. 14-inch casing, perforated at intervals between 333 and 694 ft. Materials classified by U. S. Geological Survey.

	Thickness (feet)	Depth (feet)
Silt, sandy, clayey; yellowish-brown; 5 to 10 percent clastics: sand to pebble size is predominantly quartz, feldspar, dark minerals Silt, clayey, sandy; yellowish-brown; 10 to 20 percent grains of granule to pebble size but granules predominate; quartz, feldspar, olivine,	80	80
and dark minerals; moderately well sorted. Some pyrite in quarts	5	85
Silt, clayey, sandy; same as above but the percentage of granule to pebble-size material is reduced to about 5	5	90
as is some pyrite	10	100
Silt, sandy, clayey; same as above, but the percentage of clastics is reduced to about 5 Silt, sandy, clayey; yellowish-brown; about 10 percent clastics of granule to pebble size	10	110
which are mainly quartz and feldspars, but olivine and some hematite are present	70	180
feldspars predominate	10	190
crystals	17	207
minerals	3	210
angular to subrounded	43 Continued	253

32/36-35R1--Continued.

	Thickness (feet)	Depth (feet)
Clay; yellowish-brown; very few clastics,		
very adhesive	7	260
Silt, sandy, clayey; greenish, yellowish.		
and brown; 5 to 10 percent grains of		
granule to pebble size, moderately well		
sorted; quartz and feldspar predominate	^	
but dark minerals are present; clay		
lenses are present in this interval	10	270
Silt; same as above; dark minerals not as	20	210
abundant as in above samples	10	280
Gravel, sandy, silty, clayey; yellowish-	10	200
brown; clasts are fairly well sorted,		I.
angular to subrounded; quartz predominates		100
but feldspars, olivine, and dark minerals		
are present. Grains are granule to pebble		
size (70 percent granules, 30 percent		
medium pebbles). Overall the material		下
is about 60 to 70 percent gravel and sand,		
30 to 40 percent silty clay	10	000
	10	290
Very coarse sand, silty, clayey; yellowish-		
brown; poorly sorted, angular to subrounded;		
(silt and clay 30 to 40 percent, pebbles		,
10 to 20 percent, cobbles 3 to 5 percent).		•
Quartz and feldspar with rhyolite and other		, al.
volcanic clasts	14	304
Silt, sandy, clayey; medium brown; about		
5 to 10 percent clastics; sandstone spheres		
2 to 3 inches in diameter are present	26	330
Very coarse sand, silty; yellowish-brown; fair	-tof	
sorting; angular to subrounded; about 30		
percent coarse sand, 5 to 10 percent granules,		
2 to 3 percent pebbles, and 3 percent cobbles		
of granite, basalt, or marble	5	335
Sand; yellowish-brown; fine to very coarse;		
subangular to subrounded, fairly well sorted;		
5 to 10 percent granules (orthoclase, granite,		
diorite), 5 percent pebbles, 3 to 5 percent cobbles		***
of orthoclase granite which are subrounded. A		
few pebbles are flat and subrounded	21	356
Sand, silty; fine to very coarse, fair sorting,		
subangular to subrounded, quartz and feldspar		
predominate, no cobbles as above	-7	363

32/36-35R1--Continued.

32/30-33A1Continued.	Thickness (feet)	Depth (feet)
Silt, clayey, sandy; yellowish-brown;		
10 to 20 percent fine to very coarse		
sand, fair sorting, subangular to		
subrounded; quartz and feldspars	15	378
Silt, sandy, clayey; yellowish-brown;		
10 to 20 percent pebbles	10	388
Silt, sandy, clayey; yellowish-brown;		
no material larger than coarse sand size	. 2	390
Silt, clayey, sandy; yellowish-brown; sand		
is very fine to coarse, 10 to 20 percent	00	1,20
very coarse sand, 3 to 5 percent pebbles	29	419
Sand, silty, clayey; yellowish-brown; sand	ν.	
is mainly very coarse, fairly well sorted,		
subangular to subrounded but mostly subangular. 10 to 20 percent granule size (quartz and		
metamorphics) 2 to 3 percent pebbles (light		
green volcanic ash)	12	431
Silt, coarse sandy, clayey; yellowish-brown;		471
2 to 3 percent granules which are subangular		
to subrounded, 2 to 3 percent pebbles of		
granite or felsite	13	444
Sand, silty, clayey; yellowish-brown; very		
coarse, fairly well sorted, subangular to		
subrounded; quartz and feldspar predominate,		
granitic origin; granules and pebbles are		
present	. 16	460
Silt, sandy, clayey; yellowish-brown; sand is		
very coarse, 2 to 3 percent granules, 2 to 3		
percent subrounded pebbles; clay has sand		٠. ٥
stringers	. 18	478
Sand, coarse, silty, clayey; yellowish-brown;		
fair sorting, subangular to subrounded; 30		
to 40 percent granules showing fair sorting,		
5 to 10 percent pebbles which are subangular	26	الماد
to subrounded but mostly are subrounded	. 16	494
Clay, sandy, silty; yellowish-brown; 5 to	. 6	500
10 percent granules	. 0	700
Sand, very coarse, silty, clayey; yellowish, greenish, brown; fair sorting, subangular		
to subrounded, granules 5 to 10 percent,		
pebbles 3 to 5 percent, cobbles 3 percent;		
light green volcanic ash is present. Thin		
clay lenses in above sample	. 8	508
	Continued	-

32/36-35R1--Continued.

32/30-33A1Continued.	Thickness (feet)	Depth (feet)
Clay, silty; very adhesive, very few clastics, few grains of coarse sand and granules,	6r	
quartz and feldspar	65	573
mostly subangular; 5 to 10 percent pebbles; orthoclase, granite, and feldspar predominate Silt, clayey; yellowish-brown; very adhesive;	5	578
5 percent pebbles and granules	22	600
5 to 10 percent granules, 5 percent pebbles which are metamorphics and volcanics	8	608
very adhesive	40	648
light green volcanic ash is present	12 8	660 668
green volcanic ash is present	110	681
chert or chalcedony and light green volcanic ash - Silt, clayey, sandy; medium brown	13. 21	694 715
subangular to subrounded	3 6	718 724
granule size; quartz and feldspar	8 ontinued	732

32	136-	35R1	C	ont	inu	ha.
341	30-	コンいエ		OHIL	HIIU	eu.

	Thickness (feet)	
Clay and volcanic rocks; interbedded; clayey silt- stone and mudstone; purplish-brown with streaks of green interbedded; 10 to 15 percent subangular clastics, mostly quartz with a few feldspars; very hard drilling	- 68	800(<u>+</u> 1)

32/36-35R2. Southern Pacific Land Co. Altitude 2,634.5 ft. Drilled by Orange County Pump Co. 8 5/8-inch casing, perforated from 220 to 720 ft.

11011 220 00 (20:10:		
Top soil, sandy	10 173	10 183
Sand; coarse, and \(\frac{1}{4}\)-inch gravel	±13	188
Sand and clay, muddy	116	304
Clav. sandy	27	331
Clay, sandy	33	364
Clay; sandy, fine 1/8-inch gravel	61	425
Sand and gravel	33	458
Clay, brown	21	479
Sand and $\frac{1}{4}$ -inch gravel	11	490
Clay, brown	8 8	498 506
Sand and 1 -inch gravel	7 6	582
Clay and sandClay and ½-inch gravel	18	600
Sand and 2-inch gravel	10	610
Clay, brown	40	650
Sand and 3-inch gravel	20	670
Sand and 3- to 4-inch rock	25	695
Clay, brown	13	708
Clay and sand	12	720

Table 5.- Chemical analyses of water from wells

Constituents: Where the value for sodium is preceded by the letter
a it indicates sodium and potassium expressed as sodium. The
value for dissolved solids is the analytically determined
value reported by the laboratory. The sum of determined
constituents is the sum of the tabulated constituents minus
approximately half (50.8 perent) of the bicarbonate. Because
all the major constituents (except silica in many of the
analyses) that commonly occur in ground water were analytically
determined, the values for dissolved solids and sum of determined constituents should be approximately the same. Constituents
shown in parentheses are values calculated by the Geological
Survey, Ground Water Branch. All values have been rounded where
necessary to conform to the standards of the Geological Survey,
Quality of Water Branch.

Temperature: For the Geological Survey analyses (GW, GP, and QW), where the temperature is given the sample was collected from the pump discharge; where the temperature is omitted the samples were collected mainly from a storage facility at the well. For the other analyses the point of collection was mainly from the pump discharge.

Analyzing laboratory: CT, Curtis and Tompkins, San Francisco, California; DWR, State of California, Department of Water Resources; GP, U. S. Geological Survey, Geochemistry and Petrology Branch; GW, U. S. Geological Survey, Ground Water Branch; H, Hornkohl Co.; QW, U. S. Geological Survey; Quality of Water Branch; SE, Smith-Emery Co.; USN U. S. Navy. For analyses for which the analyzing laboratory is not given the agency from which the analysis was collected is given: CW, Cyril Williams, Jr. (1930); DGT, Thompson (1929); SP, Southern Pacific Co.

Well number	: 9/12. : 16J1		9/13-70	2	: 10/11- : 8E1
Constituents in parts per mill:	ion			,	
Silica (SiO ₂) Iron (Fe)					
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	49 16 .8 3.1	32 7.1 30 52 . 2	37 2 47 1.7		13 3 94 2.5
Bicarbonate (HCO ₃) Carbonate (CO ₃) Sulfate (SO ₄) Chloride (C1)	188 0 116 58	0 65		143 14	120 99 52
Fluoride (F) Nitrate (NO ₃) Boron (B)	1.2 2.0)	3.0		1.2
Dissolved solids Sum of determined constituent Hardness as CaCO ₃	s (419) (188)	223 (250) (109)	264 (237) (101)	103	(32A) 45
Percent sodium (%Na) Specific conductance	47	50	50		81
(micromhos at 77°F) pH Temperature (°F) Date collected Depth of well in feet Analyzing laboratory (Lab.) Laboratory number (No.)	7.2 8-15-53 200 GP	6-4-53 50.6 DWR	416 7.3 70 10-19-54 50.6 DWR R-404 R	7.4 52 5-23-56 50.6 DWR	7.7 66 5 12-2-52 200 QW

			a gen error	t tj. og			1 10 6 50 50 74
Well number		: 10/12 : 4B1	10/12 432	10/12- 10R1		10/12-15M2	
Constituents	in parts	per million	ı". ',			1.521	ir 1997
S10 ₂ Fe						30	
Ca Mg Na K						34 6 a54	
HCO ₃ CO ₃ SO ₁₄ C1		25	24	13	28	142 6 70 20	
F NO3 B	· .	•				0	
Dis. S. Sum Hardness		215	200	160	89	(290)	•
%Na Micromhos pH OF		668	643	529	389	_ ,: 55 	
Date Depth Lab. No.	· ·	11-7-51 GW	12-4-52 200 GW	12-4-52 300 GW	12-5 275 GW	275	

Well number		:	10/12-2001			: 10/12 - : 22N2	
Constitue	ents	in parts	per million	2			
SiO ₂ Fe			25				
Ca Mg Na K			32 5 a49	36 3•3 44 3•1	31 6 38 1.5	33 6 41 1.7	
HCO ₃ CO ₃ SO ₁₄ C1			130 0 69 21	131 72 19	125 0 65 18	115 75 16	18
F NO ₃			•	2.5 .03	.6 .7	2.9 .04	
Dis. S. Sum Hardnes			(265) 100	(245) (104)	270 (223) (102)	(233) 107	131
%Na Micromhos pH or	r.		55	47 413 7•2 69	47 372 7•2	45 387 8.1 66	423
Date Depth Lab. No.			3-6-30 161 CT 107781	2-4-52 107.8 QW 5871	107.8 Dwr		12-4-52 125 GW

Well number		10/13- 1401	10	0/13-2401	10	0/13-24F1	11
Constituents	in parts per m	illion			-11-4		1 110
SiO ₂ Fe						17	-
Ca Mg Na K			*	27 4 45 .8		22 4 853	
HCO ₃ SO ₄ C1		17	17	101 64 16	21	103 0 66 21	ě
F NO ₃		,		•3 5.8 •01		o	. :
Dis. S. Sum Hardness		79	90	236 (213) (84)	7 9	(23 ⁴) (71)	
%Na Micromhos pH OF	3	66	382	53 359 7.6	365	64	
Date Depth Lab. No.	4	2-4-52 63 GW	11-7-5: 252 GW	1 10-20-54 252 DWR R-398	12-4-58 600 GW	2 3 - 6-30 600 CT 107782	o q

Well number				- : 11/11- : 1Q1		: 11/11- : 5D1
Constituents	in parts pe	r million	1			
SiO ₂ Fe						31 0
Ca Mg Na K		36 9 49 1.7	66 8.1 82 3	1.6 .5 140 5.8	37 8.3 47 3.5	44 17 32
HCO ₃ CO ₃ SO ₄ C1		149 0 78 24	99 0 240 29	185 75 (26) 38	192 0 (47) 15	152 0 86 33
F NO B		.6 4.5 .12	11 •2 0	5.6 .7 1.2	.4 6.2 .15	.4 .3 ¹ 4
Dis. S. Sum Hardness		295 (291) (127)	(488) (198)	(385) 6	260 127	395 (319) 180
%Na Micromhos pH OF			735	96 691 9 . 6	459	
Date Depth Lab. No.	В	3-8-56 805	986	10-21-55 761.5 QW 17237	303.5	2-16-57 670 USN

					-6-
Well number	: 11/11- : 7A1	11/11- 8D1		: 11/12- : 12Ml	:11/12- : 18B1
Constituents in parts pe	r million				e
SiO ₂ Fe	20		30 0		i
Ca Mg Na K	22 5 38	30 8.1 56 3.7	26 8.8 37	17 2.4 86 8.9	40 8.1 61 1.5
HCO ₃ CO ₃ SO ₄ C1	146 0 25 9	235 5 (16) 11	178 0 12 16	225 0 (6.7) 35	213 0 37 29
F NO ₃	.15	.4 .7 .29	•3 •05	.8 97 .61	13.2
Dis. S. Sum Hardness	265 (192) 76	(247) 108	308 (218) 100	(365) (52)	(295) (133)
%Na Micromhos pH OF	373 8•3	52 կկկ 8 . 5	45 360 8.0	75 547 8 . 2	¥85
Date Depth Lab. No.	11-2-56 414.0 USN	10-21-55 275.0 QW 17235	10-19-50 421 USŅ	6 10-20-5 318.5 QW 17234	5 6-4-53 300 DWR P-678

Well nur	nber	: 11/12- : : 26J1 :	11/12	-32E1	11/12	-32E2
Constitu	ents in parts	per million			-	
SiO ₂ Fe		23		20		
Ca Mg Na K		28 5 a38	33 14 45 1.4	50 10 50 1.9		54 17 54 1.5
HCO ₃ CO ₃ SO ₄ C1		124 0 49 15	98 10 118 17	119 0 155 17	12	115 0 193 19
F NO ₃		0	°5 •10	0.4 0.05		.4 4.0 .20
Dis. S Sum Hardne		254 (219) 90	305 (287) (140)	318 (363) (166)	212	375 (400) (205)
%Na Micrombo pH OF	os	52	(41) 451 8.3 78	(39) 529 7• 9	622	(36) 630 8.1
Date Depth Lab. No.		6-3-30 225.0 CT 107783	7-12-55 300 DWR	7-1-57 300 DWR T-893	12 - 4-52 265	7-12-55 265 DWR 5936

Well number	: 11/12- : 32E2	11/13- 1903	11/13- 24A1	12/12- 35R1	: 32/36- : 2191	13
Constituents in parts po	er million					- 11
S10 ₂ Fe	21			29 0		ęż.
Ca Mg Na K	45 7 49 1.5	72 42 60 1.8	46 4.9 74 2.6	44 18 a52	20 63 196 7	100
HCO ₃ CO ₃ SO ₄ C1	134 0 113 15	471 0 70 17	177 42 45	196 0 85 32	342 0 371 49	d 0
F . NO ₃ . B	.8 2.2 .20	1.0 8.4 .28	52 •16	•2 •5	.2 12 2.0	7
Dis. S. Sum Hardness	390 (321) (141)	538 (504) (353)	(354) 135	455 (358) 181	(888) (309)	0
Na Micromhos OH OF Oate Oepth	(43) 559 7.8 7-21-57 265	27 902 7•3 59 2-18-55 388	54 588 7•4 76 12-5-52 357	38 595 8.0 3-5-57 640	1,280 8.0 6-4-53 805	-,
ab. lo.	DWR T-892	DWR 1872	QW 5878	USN	DWR P-677	q

Well number	32/3	6 - 21 Q 1	32/36	6-22NI	32/36-: 35D1:	32/36- 35R1
Constituents in	parts per	million				
SiO ₂ Fe		20			14 .26	31 O
Ca Mg Na K	55 28 188 6.8	82 30 191 7.4	87 27 158 9.8	31 51 160 6.8	97 59 102	90 27 61
HCO ₃ CO ₃ SO ₄ C1	244 0 375 48	363 0 370 49	276 392 46	205 7 372 49	149 0 376 67	191 0 235 50
F NO ₃	•5 4•5 2•4	.6 4.9 2.0	2.2 1.2	.8 5.0 2.7	•5	•2 •47
Dis. S. Sum Hardness	836 (828) (252)	842 (936) (328)	(859) 328	805 (786) (287)	824 (789) 378	685 (589) 338
%Na Micromhos pH OF	61 1,260 7.8	(55) 1,420 7•5	50 1,290 7.2 75	(54) 1,260 8.2	7.4	28 955 7 . 6 78
Date Depth Lab. No.	7-12-55 805 DWR R-746	7-2-57 805 DWR T-875	12-2-52 370 QW 5867	7-12-55 370 DWR 5935	11-29-56 800 USN	1012 - 56 800 USN

U.S. 118°3 T. 32 S. T. 12 N.

.

<u>U. S.</u> 118°3 T. 32 S. T. 12 N.

ase from U.S. Geological Survey tapagraphic maps, scale 1.62,500, 1959

MAP OF THE WILLOW SPRINGS, GLOSTER, AND CHAI SHOWING RECONNAISSANCE GEOLOGY AND LOCA

> (INCLUDES PART OF ANTELOPE AND FREMONT STATE OF CALIFORNIA

DEPARTMENT OF WATER RESOURCE

FEDERAL-STATE COOPERATIVE GROUND WA

PREPARED BY U S. GEOLOGICAL SURVE

R, AND CHAFFEE AREAS, CALIFORNIA

'E AND FREMONT VALLEYS)

ATER RESOURCES

ALIFORNIA

ROUND WATER INVESTIGATIONS

EOLOGICAL SURVEY

largely generalized after published and unpublished mapping by T. W. Dibblee, Jr. and L. C. Dutcher

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL

LIBRARY, UNIVERSITY OF CALIFORNIA, DAYIS
Book Slip-20m-8,'61 (C1623s4)458

PHYS: SOIEN' LIBRAE

EIBRAFY
UMTVERSITY OF C __IFORNIM
CAVIS

240517