CCPS 884
Data Mining Project
Andy Lee

TABLE OF CONTENTS

- 1. Clustering
- 2. MLP
- 3. KNN multi-label
- 4. KNN one label vs rest
- 5. KNN probability, classification threshold
- 6. SVC
- 7. Linear Regression
- 8. Logistic Regression

CCPS 844 Data Mining (Project) - Andy Lee

- 1. Select a dataset or datasets of your choice. Here are few links that can be helpful for you to select a dataset.
- 2. Once you have selected a dataset or datasets of your choice. After reading the datasets, check the type of different attributes/columns/features to ensure that you have appropriate types (categorical/numerical) for your columns.
- 3. Use visualization to understand your data
- 4. For exploratory analysis, apply clustering algorithms (K means/ Hierarchical clustering) to improve your understanding
- 5. Apply the concepts learned in Module 9 to select the features
- 6. Try to reduce the dimensions of the data if possible (Apply a dimensionality reduction algorithm). For step 7 use both the original data and the data that you get after applying the Step 6.
- 7. Divide your data in Train and Test or choose cross validation to evaluate the selected model
 - · Apply all learned classification algorithms to choose which one performs best
 - Apply all learned regression algorithms to choose which one performs best

Please note that you need to get your data in appropriate format before applying a classification or regression algorithm. One of the differences is: class variable for a regression model is numeric whereas it is categorical for classification.

Clustering

```
In [189]: % matplotlib inline

from IPython.core.display import display, HTML
    display(HTML("<style>.container { width:90% !important; }</style>"))
    import numpy as np
    import pandas as pd
    pd.set_option('display.max_columns', 100)

df = pd.read_csv('User_Knowledge.csv')

df.loc[df.UNS == 'very_low', 'grade'] = 0
    df.loc[df.UNS == 'Low', 'grade'] = 1
    df.loc[df.UNS == 'Middle', 'grade'] = 2
    df.loc[df.UNS == 'High', 'grade'] = 3

df.sample(5)
```

Out[189]:

	STG	scg	STR	LPR	PEG	UNS	grade
57	0.090	0.600	0.66	0.19	0.59	Middle	2.0
109	0.299	0.295	0.80	0.37	0.84	High	3.0
44	0.115	0.350	0.65	0.27	0.04	very_low	0.0
2	0.060	0.060	0.05	0.25	0.33	Low	1.0
31	0.150	0.295	0.75	0.65	0.24	Low	1.0

Attribute Information

- STG (The degree of study time for goal object materails), (input value)
- SCG (The degree of repetition number of user for goal object materails) (input value)
- STR (The degree of study time of user for related objects with goal object) (input value)
- LPR (The exam performance of user for related objects with goal object) (input value)
- PEG (The exam performance of user for goal objects) (input value)
- UNS (The knowledge level of user) (target value)
 - Very Low: 50
 - Low:129
 - Middle: 122
 - High 130

```
In [190]: y = list(df['UNS'])
#y = df.grade

# feature selection, dropping SCG
X = df.drop(columns=['SCG']).iloc[:,0:4]
# keeping all features
#X = df.iloc[:,0:5]
```

Hierarchical clustering (unnormalized)

```
In [193]: mergings=linkage(X,method='complete')
    dendrogram(mergings,labels=y,leaf_rotation=90,leaf_font_size=6)
    plt.gcf().set_size_inches(40, 15)
    plt.show()
```


normalizing X

```
In [196]: # Hierarchical clustering (normalized)
    mergings=linkage(X_norm,method='complete')
    dendrogram(mergings,labels=y,leaf_rotation=90,leaf_font_size=6)
    plt.gcf().set_size_inches(40, 15)
    plt.show()
```


calculating distance

In [197]: from scipy.cluster.hierarchy import fcluster
labels = fcluster(mergings, 1, criterion='distance')
varieties = list(df['UNS'])
df3 = pd.DataFrame({'labels': labels, 'varieties': varieties})

ct = pd.crosstab(df3.iloc[:,0], df3['varieties'])
df3.count()

Out[197]: labels 258 varieties 258

dtype: int64

In [198]: df3.sample(5)

Out[198]:

	labels	varieties		
114	4	Middle		
111	1	Low		
22	4	Middle		
156	1	Middle		
208	3	very_low		

In [199]: ct

. _

Out[199]:

varieties	High	Low	Middle	very_low
labels				
1	11	14	36	4
2	2	35	8	13
3	12	25	15	7
4	38	9	29	0

K means

```
In [200]: # on goal_results - pairing study time and exam performance for goal objects
          from sklearn.preprocessing import StandardScaler
          sc = StandardScaler()
          X_sc = sc.fit_transform(X)
          from sklearn.decomposition import PCA
          pca = PCA(n components=2)
          X_pca = pca.fit_transform(X_sc)
          from sklearn.cluster import KMeans
          kmeans = KMeans(n clusters=4)
          kmeans.fit(X_pca)
Out[200]: KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
              n_clusters=4, n_init=10, n_jobs=1, precompute_distances='auto',
              random state=None, tol=0.0001, verbose=0)
In [201]: plt.gcf().set_size_inches(10, 10)
          plt.scatter(X_pca[:,0],X_pca[:,1],c=kmeans.labels_,cmap='rainbow')
          plt.title('K means')
          plt.show()
```


MLP

```
In [30]: % matplotlib inline

from IPython.core.display import display, HTML
    display(HTML("<style>.container { width:90% !important; }</style>"))
    import numpy as np
    import pandas as pd
    pd.set_option('display.max_columns', 100)

df = pd.read_csv('User_Knowledge.csv')

df.loc[df.UNS == 'very_low','grade'] = 0
    df.loc[df.UNS == 'Low','grade'] = 1
    df.loc[df.UNS == 'Middle','grade'] = 2
    df.loc[df.UNS == 'High','grade'] = 3

df.sample(5)
```

Out[30]:

	STG	scg	STR	LPR	PEG	UNS	grade
195	0.550	0.100	0.27	0.25	0.29	Low	1.0
227	0.580	0.348	0.06	0.29	0.31	Low	1.0
95	0.255	0.305	0.86	0.62	0.15	Low	1.0
192	0.370	0.600	0.77	0.40	0.50	Middle	2.0
85	0.248	0.300	0.31	0.20	0.03	very_low	0.0

Attribute Information

- STG (The degree of study time for goal object materails), (input value)
- SCG (The degree of repetition number of user for goal object materails) (input value)
- STR (The degree of study time of user for related objects with goal object) (input value)
- LPR (The exam performance of user for related objects with goal object) (input value)
- PEG (The exam performance of user for goal objects) (input value)
- UNS (The knowledge level of user) (target value)
 - Very Low: 50Low:129Middle: 122
 - High 130

```
In [31]: y = list(df['UNS'])
y_grade = df.grade

# feature selection, dropping SCG
X = df.drop(columns=['SCG']).iloc[:,0:4]

X.sample()
```

Out[31]:

	STG	STR	LPR	PEG
211	8.0	0.06	0.31	0.51

```
In [32]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=0)
    sc = StandardScaler()
    X_train=sc.fit_transform(X_train)
    X_test=sc.transform(X_test)
```

MLP

```
In [33]: from sklearn.neural network import MLPClassifier
         MLP clf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden layer sizes=(10,5), rando
         m state=1)
         MLP clf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden layer sizes=(7,2), random
         state=1)
         MLP_clf_pca = MLPClassifier(solver='lbfgs', alpha=1e-5,hidden_layer_sizes=(7,2), ran
         dom_state=1)
         MLP clf.fit(X train,y train)
         #y_pred=clf.predict(X_test)
         #print("MLP accuracy :", metrics.accuracy score(y test, y pred))
Out[33]: MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto', beta_1=0.9,
                beta_2=0.999, early_stopping=False, epsilon=1e-08,
                hidden_layer_sizes=(7, 2), learning_rate='constant';
                learning_rate_init=0.001, max_iter=200, momentum=0.9,
                nesterovs_momentum=True, power_t=0.5, random_state=1, shuffle=True,
                solver='lbfgs', tol=0.0001, validation_fraction=0.1, verbose=False,
                warm start=False)
In [34]: print("MLP accuracy: ",MLP_clf.score(X_test,y_test))
         MLP accuracy: 0.93023255814
```

PCA + MLP approach

```
In [35]: from sklearn.decomposition import PCA
    pca = PCA(n_components=2)
    X_train_pca = pca.fit_transform(X_train)
    X_test_pca = pca.transform(X_test)

MLP_clf_pca.fit(X_train_pca, y_train)
    print("MLP (PCA transformed) accuracy: ", MLP_clf_pca.score(X_test_pca, y_test))

MLP (PCA transformed) accuracy: 0.604651162791
```

```
In [57]: ## KNN multi-label

In [58]: % matplotlib inline

from IPython.core.display import display, HTML
    display(HTML("<style>.container { width:90% !important; }</style>"))
    import numpy as np
    import pandas as pd
    pd.set_option('display.max_columns', 100)

    df = pd.read_csv('User_Knowledge.csv')

    df.loc[df.UNS == 'very_low','grade'] = 0
    df.loc[df.UNS == 'Low','grade'] = 1
    df.loc[df.UNS == 'Middle','grade'] = 2
    df.loc[df.UNS == 'High','grade'] = 3

    df.sample(5)
```

Out[58]:

		STG	SCG	STR	LPR	PEG	UNS	grade
	115	0.285	0.640	0.18	0.61	0.45	Middle	2.0
	158	0.465	0.258	0.73	0.18	0.59	Middle	2.0
Ī	131	0.400	0.180	0.26	0.26	0.67	Middle	2.0
Ī	186	0.495	0.820	0.67	0.01	0.93	High	3.0
	254	0.780	0.610	0.71	0.19	0.60	Middle	2.0

Attribute Information

- STG (The degree of study time for goal object materails), (input value)
- SCG (The degree of repetition number of user for goal object materails) (input value)
- STR (The degree of study time of user for related objects with goal object) (input value)
- LPR (The exam performance of user for related objects with goal object) (input value)
- PEG (The exam performance of user for goal objects) (input value)
- UNS (The knowledge level of user) (target value)
 - Very Low: 50Low:129Middle: 122
 - High 130

```
In [59]: y = list(df['UNS'])
y_grade = df.grade

# feature selection, dropping SCG
X = df.drop(columns=['SCG']).iloc[:,0:4]

X.sample()
```

Out[59]:

	STG	STR	LPR	PEG
173	0.4	0.58	0.75	0.16

```
In [60]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=0)
    sc = StandardScaler()
    X_train=sc.fit_transform(X_train)
    X_test=sc.transform(X_test)
```

KNN

KNN (PCA transformed)

KNN - one-label vs rest with confusion matrix

Attribute Information

- STG (The degree of study time for goal object materails), (input value)
- SCG (The degree of repetition number of user for goal object materails) (input value)
- STR (The degree of study time of user for related objects with goal object) (input value)
- LPR (The exam performance of user for related objects with goal object) (input value)
- PEG (The exam performance of user for goal objects) (input value)
- UNS (The knowledge level of user) (target value)
 - Very Low: 50
 - Low:129
 - Middle: 122
 - High 130

```
In [130]: % matplotlib inline
           from IPython.core.display import display, HTML
           display(HTML("<style>.container { width:90% !important; }</style>"))
           import numpy as np
           import pandas as pd
           pd.set_option('display.max_columns', 100)
           df = pd.read csv('User Knowledge.csv')
           df.loc[df.UNS == 'very low', 'grade'] = 0
           df.loc[df.UNS == 'Low', 'grade'] = 1
           df.loc[df.UNS == 'Middle','grade'] = 2
           df.loc[df.UNS == 'High', 'grade'] = 3
           df.loc[df.UNS == 'very low','vlow'] = 1
           df.loc[df.UNS == 'Low', 'low'] = 1
           df.loc[df.UNS == 'Middle', 'mid'] = 1
           df.loc[df.UNS == 'High', 'high'] = 1
           df.fillna(0, inplace=True)
           df.sample(5)
```

Out[130]:

	STG	SCG	STR	LPR	PEG	UNS	grade	vlow	low	mid	high
239	0.520	0.44	0.82	0.30	0.52	Middle	2.0	0.0	0.0	1.0	0.0
254	0.780	0.61	0.71	0.19	0.60	Middle	2.0	0.0	0.0	1.0	0.0
87	0.270	0.31	0.32	0.41	0.28	Low	1.0	0.0	1.0	0.0	0.0
190	0.445	0.70	0.82	0.16	0.64	Middle	2.0	0.0	0.0	1.0	0.0
256	0.500	0.75	0.81	0.61	0.26	Middle	2.0	0.0	0.0	1.0	0.0

```
In [131]: # defining different labels
y1 = df.vlow
y2 = df.low
y3 = df.mid
y4 = df.high

# feature selection, dropping SCG
X = df.drop(columns=['SCG']).iloc[:,0:4]
X.sample()
```

Out[131]:

	STG	STR	LPR	PEG
20	0.12	0.2	0.78	0.2

```
In [132]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler

X_train, X_test, y_train, y_test = train_test_split(X, y1, test_size=0.33, random_st
    ate=0)
    sc = StandardScaler()
    X_train=sc.fit_transform(X_train)
    X test=sc.transform(X test)
```

KNN one label

```
In [133]: # Classifier implementing the k-nearest neighbors vote

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=3)
knn_pca = KNeighborsClassifier(n_neighbors=3)

knn.fit(X_train, y_train)
y_pred=knn.predict(X_test)

print("KNN Classfier (y1)",knn.score(X_test,y_test))
```

KNN Classfier (y1) 0.976744186047

```
In [134]: | from sklearn.metrics import confusion_matrix
           label = ['very_low', 'Low', 'Middle', 'High']
           confusion = confusion matrix(y test, y pred)
           print(confusion)
           TP = confusion[1, 1]
          TN = confusion[0, 0]
           FP = confusion[0, 1]
           FN = confusion[1, 0]
           accuracy = (TP+TN)/(TP+TN+FP+FN)
           sensitivity = TP/(FN+TP)
           specificity = TN/(TN+FP)
           false_p = FP/(FP+TN)
           precision = TP/(FP+TP)
           print("\nAccuracy: %f\nSensitivty: %f\nSpecificity: %f\nFalse Positive: %f\nPrecisio
          n: %f" % (accuracy, sensitivity, specificity, false p, precision))
          [[79 0]
           [ 2 5]]
          Accuracy: 0.976744
          Sensitivty: 0.714286
          Specificity: 1.000000
          False Positive: 0.000000
          Precision: 1.000000
```

KNN (PCA transformed)

```
In [135]: from sklearn.decomposition import PCA
    pca = PCA(n_components=2)
    X_train_pca = pca.fit_transform(X_train)
    X_test_pca = pca.transform(X_test)
    knn_pca.fit(X_train_pca, y_train)
    y_pred=knn_pca.predict(X_test_pca)
    print("MLP (PCA transformed) accuracy (y1): ", knn_pca.score(X_test_pca, y_test))
    MLP (PCA transformed) accuracy (y1): 0.918604651163
```

```
In [136]: from sklearn.metrics import confusion matrix
           label = ['very_low', 'Low', 'Middle', 'High']
           confusion matrix(y test, y pred)
           print(confusion)
           TP = confusion[1, 1]
          TN = confusion[0, 0]
           FP = confusion[0, 1]
           FN = confusion[1, 0]
           accuracy = (TP+TN)/(TP+TN+FP+FN)
           sensitivity = TP/(FN+TP)
           specificity = TN/(TN+FP)
           false_p = FP/(FP+TN)
           precision = TP/(FP+TP)
           print("\nAccuracy: %f\nSensitivty: %f\nSpecificity: %f\nFalse Positive: %f\nPrecisio
          n: %f" % (accuracy, sensitivity, specificity, false p, precision))
          [[79 0]
           [ 2 5]]
          Accuracy: 0.976744
          Sensitivty: 0.714286
          Specificity: 1.000000
          False Positive: 0.000000
          Precision: 1.000000
```

against y2. Grade = low

```
In [137]: X_train, X_test, y_train, y_test = train_test_split(X, y2, test_size=0.33, random_st
    ate=0)
    sc = StandardScaler()
    X_train=sc.fit_transform(X_train)
    X_test=sc.transform(X_test)

# KNN
# Classifier implementing the k-nearest neighbors vote

from sklearn.neighbors import KNeighborsClassifier
    knn = KNeighborsClassifier(n_neighbors=3)
    knn_pca = KNeighborsClassifier(n_neighbors=3)

knn.fit(X_train, y_train)
    y_pred=knn.predict(X_test)

print("KNN Classfier (y2)",knn.score(X_test,y_test))

KNN Classfier (y2) 0.953488372093
```

KNN (PCA transformed)

```
In [138]: from sklearn.decomposition import PCA
    pca = PCA(n_components=2)
    X_train_pca = pca.fit_transform(X_train)
    X_test_pca = pca.transform(X_test)

knn_pca.fit(X_train_pca, y_train)
    y_pred=knn_pca.predict(X_test_pca)

print("MLP (PCA transformed) accuracy (y2): ", knn_pca.score(X_test_pca, y_test))
```

MLP (PCA transformed) accuracy (y2): 0.790697674419

against y3. Grade = Mid

```
In [139]: X_train, X_test, y_train, y_test = train_test_split(X, y3, test_size=0.33, random_st
    ate=0)
    sc = StandardScaler()
    X_train=sc.fit_transform(X_train)
    X_test=sc.transform(X_test)

# KNN
# Classifier implementing the k-nearest neighbors vote

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=3)
knn_pca = KNeighborsClassifier(n_neighbors=3)

knn.fit(X_train, y_train)
y_pred=knn.predict(X_test)
print("KNN Classfier (y3)",knn.score(X_test,y_test))
```

KNN Classfier (y3) 0.976744186047

KNN (PCA transformed)

```
In [140]: from sklearn.decomposition import PCA
    pca = PCA(n_components=2)
    X_train_pca = pca.fit_transform(X_train)
    X_test_pca = pca.transform(X_test)
    knn_pca.fit(X_train_pca, y_train)
    y_pred=knn_pca.predict(X_test_pca)
    print("MLP (PCA transformed) accuracy (y3): ", knn_pca.score(X_test_pca, y_test))

MLP (PCA transformed) accuracy (y3): 0.639534883721
```

against y4. Grade = High

```
In [141]: X_train, X_test, y_train, y_test = train_test_split(X, y4, test_size=0.33, random_st
    ate=0)
    sc = StandardScaler()
    X_train=sc.fit_transform(X_train)
    X_test=sc.transform(X_test)

# KNN
# Classifier implementing the k-nearest neighbors vote

from sklearn.neighbors import KNeighborsClassifier
    knn = KNeighborsClassifier(n_neighbors=3)
    knn_pca = KNeighborsClassifier(n_neighbors=3)

knn.fit(X_train, y_train)
    y_pred=knn.predict(X_test)

print("KNN Classfier (y4)",knn.score(X_test,y_test))
```

KNN Classfier (y4) 0.988372093023

KNN (PCA transformed)

```
In [142]: from sklearn.decomposition import PCA
    pca = PCA(n_components=2)
    X_train_pca = pca.fit_transform(X_train)
    X_test_pca = pca.transform(X_test)

knn_pca.fit(X_train_pca, y_train)
    y_pred=knn_pca.predict(X_test_pca)

print("MLP (PCA transformed) accuracy (y4): ", knn_pca.score(X_test_pca, y_test))
```

MLP (PCA transformed) accuracy (y4): 0.697674418605

KNN probability - classification threshold

Attribute Information

- STG (The degree of study time for goal object materails), (input value)
- SCG (The degree of repetition number of user for goal object materails) (input value)
- STR (The degree of study time of user for related objects with goal object) (input value)
- LPR (The exam performance of user for related objects with goal object) (input value)
- PEG (The exam performance of user for goal objects) (input value)
- UNS (The knowledge level of user) (target value)
 - Very Low: 50
 - Low:129
 - Middle: 122
 - High 130

```
In [125]: % matplotlib inline
           from IPython.core.display import display, HTML
           display(HTML("<style>.container { width:90% !important; }</style>"))
           import numpy as np
           import pandas as pd
           pd.set_option('display.max_columns', 100)
           df = pd.read csv('User Knowledge.csv')
           df.loc[df.UNS == 'very low', 'grade'] = 0
           df.loc[df.UNS == 'Low','grade'] = 1
           df.loc[df.UNS == 'Middle','grade'] = 2
           df.loc[df.UNS == 'High', 'grade'] = 3
           df.loc[df.UNS == 'very low','vlow'] = 1
           df.loc[df.UNS == 'Low','low'] = 1
           df.loc[df.UNS == 'Middle', 'mid'] = 1
           df.loc[df.UNS == 'High', 'high'] = 1
           df.fillna(0, inplace=True)
           df.sample(5)
```

Out[125]:

	STG	SCG	STR	LPR	PEG	UNS	grade	vlow	low	mid	high
191	0.420	0.700	0.72	0.30	0.80	High	3.0	0.0	0.0	0.0	1.0
165	0.400	0.330	0.12	0.30	0.90	High	3.0	0.0	0.0	0.0	1.0
170	0.420	0.360	0.63	0.04	0.25	Low	1.0	0.0	1.0	0.0	0.0
25	0.090	0.300	0.68	0.18	0.85	High	3.0	0.0	0.0	0.0	1.0
157	0.495	0.276	0.58	0.77	0.83	High	3.0	0.0	0.0	0.0	1.0

```
In [126]: # defining different labels
          y =df.grade
          y1 = df.vlow
          y2 = df.low
          y3 = df.mid
          y4 = df.high
          # feature selection, dropping SCG
          X = df.drop(columns=['SCG']).iloc[:,0:4]
          X.sample()
```

Out[126]:

	STG	STR	LPR	PEG
12	0.1	0.52	0.78	0.34

```
In [127]: from sklearn.model_selection import train_test_split
          from sklearn.preprocessing import StandardScaler
          X_train, X_test, y_train, y_test = train_test_split(X, y4, test_size=0.33, random_st
          ate=0)
          sc = StandardScaler()
          X train=sc.fit transform(X train)
          X test=sc.transform(X test)
```

KNN

Classifier implementing the k-nearest neighbors vote

```
In [128]: from sklearn.neighbors import KNeighborsClassifier
          knn = KNeighborsClassifier(n_neighbors=3)
          knn_pca = KNeighborsClassifier(n_neighbors=3)
          knn.fit(X_train, y_train)
          y_pred=knn.predict(X_test)
          print("KNN Classfier (y1)",knn.score(X_test,y_test))
          KNN Classfier (y1) 0.988372093023
In [129]: y_pred_prob = knn.predict_proba(X_test)[:,1]
```

```
In [130]: # allow plots to appear in the notebook
%matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams['font.size'] = 14
# histogram of predicted probabilities
plt.hist(y_pred_prob, bins=3)
plt.xlim(0, 1)
plt.title('Histogram of predicted probabilities')
plt.xlabel('Predicted probability of diabetes')
plt.ylabel('Frequency')
```

Out[130]: Text(0,0.5,'Frequency')


```
In [131]: from sklearn.preprocessing import binarize
    y_pred_class = binarize([y_pred_prob], 0.3)
    from sklearn import metrics
    print(metrics.confusion_matrix(y_test, np.reshape(y_pred_class,(-1,1))))

[[64    3]
    [ 0    19]]
```

null accuracy

```
In [132]: max(y_test.mean(), 1-y_test.mean())
Out[132]: 0.7790697674418605
In [133]: y_test.value_counts().head(1)/len(y_test)
Out[133]: 0.0     0.77907
```

Name: high, dtype: float64


```
In [11]: ## SVC
In [12]: % matplotlib inline
    from IPython.core.display import display, HTML
    display(HTML("<style>.container { width:90% !important; }</style>"))
    import numpy as np
    import pandas as pd
    pd.set_option('display.max_columns', 100)

    df = pd.read_csv('User_Knowledge.csv')

    df.loc[df.UNS == 'very_low','grade'] = 0
    df.loc[df.UNS == 'Low','grade'] = 1
    df.loc[df.UNS == 'Middle','grade'] = 2
    df.loc[df.UNS == 'High','grade'] = 3

    df.sample(5)
```

Out[12]:

		STG	SCG	STR	LPR	PEG	UNS	grade
1	5	0.12	0.12	0.75	0.35	0.80	High	3.0
2	5	0.09	0.30	0.68	0.18	0.85	High	3.0
4	5	0.17	0.36	0.80	0.14	0.66	Middle	2.0
9		0.00	0.00	0.50	0.20	0.85	High	3.0
14	47	0.33	0.27	0.20	0.33	0.10	very_low	0.0

Attribute Information

- STG (The degree of study time for goal object materails), (input value)
- SCG (The degree of repetition number of user for goal object materails) (input value)
- STR (The degree of study time of user for related objects with goal object) (input value)
- LPR (The exam performance of user for related objects with goal object) (input value)
- PEG (The exam performance of user for goal objects) (input value)
- UNS (The knowledge level of user) (target value)
 - Very Low: 50Low:129Middle: 122
 - High 130

```
In [13]: y = list(df['UNS'])
y_grade = df.grade

# feature selection, dropping SCG
X = df.drop(columns=['SCG']).iloc[:,0:4]

X.sample()
```

Out[13]:

		STG	STR	LPR	PEG
	92	0.251	0.57	0.6	0.09

```
In [14]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=0)
    sc = StandardScaler()
    X_train=sc.fit_transform(X_train)
    X_test=sc.transform(X_test)
```

SVC approach

```
In [15]: from sklearn.svm import SVC

svc = SVC()
svc_pca = SVC()

svc.fit(X_train, y_train)
print("PCA accuracy: ", svc.score(X_test, y_test))
```

PCA accuracy: 0.906976744186

PCA + SVC approach

```
In [16]: from sklearn.decomposition import PCA
    pca = PCA(n_components=2)
    X_train_pca = pca.fit_transform(X_train)
    X_test_pca = pca.transform(X_test)

    svc_pca.fit(X_train_pca, y_train)
    print("PCA + SVC accuracy: ", svc_pca.score(X_test_pca, y_test))

PCA + SVC accuracy: 0.558139534884

In [17]: p=svc.predict(X_test)

In [18]: from sklearn import metrics
    from sklearn.metrics import confusion_matrix
    print("SVM classification accuracy: ",metrics.accuracy_score(y_test, p))
```

SVM classification accuracy : 0.906976744186

Linear Regression

```
In [54]: % matplotlib inline

from IPython.core.display import display, HTML
    display(HTML("<style>.container { width:90% !important; }</style>"))
    import numpy as np
    import pandas as pd
    pd.set_option('display.max_columns', 100)

df = pd.read_csv('User_Knowledge.csv')

df.loc[df.UNS == 'very_low','grade'] = 0
    df.loc[df.UNS == 'Low','grade'] = 1
    df.loc[df.UNS == 'Middle','grade'] = 2
    df.loc[df.UNS == 'High','grade'] = 3

df.sample(5)
```

Out[54]:

	STG	SCG	STR	LPR	PEG	UNS	grade
134	0.400	0.12	0.41	0.10	0.65	Middle	2.0
89	0.290	0.30	0.52	0.09	0.67	Middle	2.0
141	0.420	0.15	0.66	0.78	0.40	Middle	2.0
20	0.120	0.28	0.20	0.78	0.20	Low	1.0
78	0.245	0.10	0.71	0.26	0.20	very_low	0.0

Attribute Information

- STG (The degree of study time for goal object materails), (input value)
- SCG (The degree of repetition number of user for goal object materails) (input value)
- STR (The degree of study time of user for related objects with goal object) (input value)
- LPR (The exam performance of user for related objects with goal object) (input value)
- PEG (The exam performance of user for goal objects) (input value)
- UNS (The knowledge level of user) (target value)
 - Very Low: 50
 - Low:129
 - Middle: 122
 - High 130

```
In [55]: #y = list(df['UNS'])
y = df.grade

# feature selection, dropping SCG
#X = df.drop(columns=['SCG']).iloc[:,0:4]
# keeping all features
X = df.iloc[:,0:5]
X.sample()
```

Out[55]:

	STG	SCG	STR	LPR	PEG
197	0.73	0.2	0.07	0.72	0.26

```
In [56]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_sta
    te=0)

# separating transformed
sc = StandardScaler()
X_train_sc=sc.fit_transform(X_train)
X_test_sc=sc.transform(X_test)
```

Linear regression

```
In [57]: from sklearn.linear_model import LinearRegression
    reg = LinearRegression()
    reg_pca = LinearRegression()
    reg.fit(X_train, y_train)
    reg_y_pred=reg.predict(X_test)
    print("Linear Regression accuracy: ", reg.score(X_test, y_test))
    Linear Regression accuracy: 0.935041373654
```

```
In [58]: from sklearn import metrics
print("MAE: ", metrics.mean_absolute_error(y_test, reg_y_pred))
print("MSE: ", metrics.mean_squared_error(y_test, reg_y_pred))
print("RMSE: ", np.sqrt(metrics.mean_squared_error(y_test, reg_y_pred)))
```

MAE: 0.170240265657 MSE: 0.0532685328268 RMSE: 0.230799767822

Linear regression + SVC approach

```
In [59]: from sklearn.decomposition import PCA
    pca = PCA(n_components=2)
    X_train_pca = pca.fit_transform(X_train_sc)
    X_test_pca = pca.transform(X_test_sc)

    reg_pca.fit(X_train_pca, y_train)
    reg_y_pred_pca = reg_pca.predict(X_test_pca)
    print("Linear Regression (with PCA) accuracy: ", reg_pca.score(X_test_pca, y_test))

Linear Regression (with PCA) accuracy: 0.485295947626
```

MAE: 0.541667047803 MSE: 0.422076808768 RMSE: 0.649674386726

Feature select. Dropping SCG to see whether RMSE improves

```
In [61]: # feature selection, dropping SCG to see whether RMSE improves
         X = df.drop(columns=['SCG']).iloc[:,0:4]
         X.sample()
         from sklearn.model_selection import train test split
         from sklearn.preprocessing import StandardScaler
         X train, X test, y train, y test = train test split(X, y, test size=0.33, random sta
         te=0)
         # separating transformed
         sc = StandardScaler()
         X train sc=sc.fit transform(X train)
         X_test_sc=sc.transform(X_test)
         # Linear regression
         from sklearn.linear model import LinearRegression
         reg = LinearRegression()
         reg pca = LinearRegression()
         reg.fit(X train, y train)
         reg y pred=reg.predict(X test)
         print("Linear Regression accuracy: ", reg.score(X test, y test))
         from sklearn import metrics
         print("MAE: ", metrics.mean_absolute_error(y_test, reg_y_pred))
         print("MSE: ", metrics.mean_squared_error(y_test, reg_y_pred))
         print("RMSE: ", np.sqrt(metrics.mean_squared_error(y_test, reg_y_pred)))
         # Linear regression + SVC approach
         from sklearn.decomposition import PCA
         pca = PCA(n components=2)
         X_train_pca = pca.fit_transform(X_train_sc)
         X test pca = pca.transform(X test sc)
         reg pca.fit(X train pca, y train)
         reg_y_pred_pca = reg_pca.predict(X_test_pca)
         print("Linear Regression (with PCA) accuracy: ", reg_pca.score(X_test_pca, y_test))
         from sklearn import metrics
         print("MAE: ", metrics.mean_absolute_error(y_test, reg_y_pred_pca))
         print("MSE: ", metrics.mean_squared_error(y_test, reg_y_pred_pca))
         print("RMSE: ", np.sqrt(metrics.mean_squared_error(y_test, reg_y_pred_pca)))
         Linear Regression accuracy: 0.932686320712
         MAE: 0.169140096604
         MSE: 0.0551997653979
         RMSE: 0.234946303223
         Linear Regression (with PCA) accuracy: 0.477349803784
         MAE: 0.546350442153
         MSE: 0.428592947546
         RMSE: 0.65467010589
```

Linear Regression has a slight decrease, while Linear Regression with PCA shows a slight increase.

Logistic Regression

Out[19]:

		STG	scg	STR	LPR	PEG	UNS	grade
	191	0.42	0.700	0.72	0.30	0.80	High	3.0
Ī	220	0.61	0.258	0.56	0.62	0.24	Low	1.0
	136	0.38	0.100	0.40	0.48	0.26	Low	1.0
	60	0.09	0.610	0.53	0.75	0.01	Low	1.0
	208	0.55	0.170	0.71	0.48	0.11	very_low	0.0

Attribute Information

- STG (The degree of study time for goal object materails), (input value)
- SCG (The degree of repetition number of user for goal object materails) (input value)
- STR (The degree of study time of user for related objects with goal object) (input value)
- LPR (The exam performance of user for related objects with goal object) (input value)
- PEG (The exam performance of user for goal objects) (input value)
- UNS (The knowledge level of user) (target value)
 - Very Low: 50
 - Low:129
 - Middle: 122
 - High 130

```
In [20]: #y = list(df['UNS'])
y = df.grade

# feature selection, dropping SCG
#X = df.drop(columns=['SCG']).iloc[:,0:4]
# keeping all features
X = df.iloc[:,0:5]

X.sample()
```

Out[20]:

	STG	SCG	STR	LPR	PEG
184	0.38	0.59	0.31	0.62	0.2

```
In [21]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_sta
    te=0)

# separating transformed
sc = StandardScaler()
X_train_sc=sc.fit_transform(X_train)
X_test_sc=sc.transform(X_test)
```

Linear regression

```
In [22]: from sklearn.linear_model import LogisticRegression
    reg = LogisticRegression()
    reg_pca = LogisticRegression()
    reg.fit(X_train, y_train)
    reg_y_pred=reg.predict(X_test)
    print("Logistic Regression accuracy: ", reg.score(X_test, y_test))
    Logistic Regression accuracy: 0.720930232558
```

```
In [23]: from sklearn import metrics
print("MAE: ", metrics.mean_absolute_error(y_test, reg_y_pred))
print("MSE: ", metrics.mean_squared_error(y_test, reg_y_pred))
print("RMSE: ", np.sqrt(metrics.mean_squared_error(y_test, reg_y_pred)))
```

MAE: 0.279069767442 MSE: 0.279069767442 RMSE: 0.528270543795

Linear regression + SVC approach

```
In [24]: from sklearn.decomposition import PCA
    pca = PCA(n_components=2)
    X_train_pca = pca.fit_transform(X_train_sc)
    X_test_pca = pca.transform(X_test_sc)

reg_pca.fit(X_train_pca, y_train)
    reg_y_pred_pca = reg_pca.predict(X_test_pca)
    print("Logistic Regression (with PCA) accuracy: ", reg_pca.score(X_test_pca, y_test ))

Logistic Regression (with PCA) accuracy: 0.546511627907
```

MAE, MSE, RMSE

In [25]: from sklearn import metrics
print("MAE: ", metrics.mean_absolute_error(y_test, reg_y_pred_pca))
print("MSE: ", metrics.mean_squared_error(y_test, reg_y_pred_pca))
print("RMSE: ", np.sqrt(metrics.mean_squared_error(y_test, reg_y_pred_pca)))

MAE: 0.476744186047 MSE: 0.523255813953 RMSE: 0.723364233256

Feature selection. Dropping SCG to see whether RMSE improves

```
In [26]: # feature selection, dropping SCG to see whether RMSE improves
         X = df.drop(columns=['SCG']).iloc[:,0:4]
         X.sample()
         from sklearn.model_selection import train test split
         from sklearn.preprocessing import StandardScaler
         X train, X test, y train, y test = train test split(X, y, test size=0.33, random sta
         te=0)
         # separating transformed
         sc = StandardScaler()
         X train sc=sc.fit transform(X train)
         X_test_sc=sc.transform(X_test)
         # Linear regression
         from sklearn.linear model import LinearRegression
         reg = LinearRegression()
         reg pca = LinearRegression()
         reg.fit(X train, y train)
         reg y pred=reg.predict(X test)
         print("Logistic Regression accuracy: ", reg.score(X test, y test))
         from sklearn import metrics
         print("MAE: ", metrics.mean_absolute_error(y_test, reg_y pred))
         print("MSE: ", metrics.mean_squared_error(y_test, reg_y_pred))
         print("RMSE: ", np.sqrt(metrics.mean_squared_error(y_test, reg_y_pred)))
         # Linear regression + SVC approach
         from sklearn.decomposition import PCA
         pca = PCA(n_components=2)
         X_train_pca = pca.fit_transform(X_train_sc)
         X test pca = pca.transform(X test sc)
         reg pca.fit(X train pca, y train)
         reg_y_pred_pca = reg_pca.predict(X_test_pca)
         print("Logistic Regression (with PCA) accuracy: ", reg_pca.score(X_test_pca, y_test
         ))
         from sklearn import metrics
         print("MAE: ", metrics.mean_absolute_error(y_test, reg_y_pred_pca))
         print("MSE: ", metrics.mean_squared_error(y_test, reg_y_pred_pca))
         print("RMSE: ", np.sqrt(metrics.mean_squared_error(y_test, reg_y_pred_pca)))
         Logistic Regression accuracy: 0.932686320712
         MAE: 0.169140096604
         MSE: 0.0551997653979
         RMSE: 0.234946303223
         Logistic Regression (with PCA) accuracy: 0.477349803784
         MAE: 0.546350442153
         MSE: 0.428592947546
         RMSE: 0.65467010589
```

Logistic Regression with 4 columns increases significantly. However Logistic Regression with PCA decreases.