Evan Wesley, Ledger 2.3 — Unified Locks & Predictions

Version: v2.3 (frozen)

What this is. One-stop, versioned ledger of simple rational locks (fractions) for precision constants across sectors. Each lock is an exact fraction p/q. We keep it simple and falsifiable. This v2.3 integrates a prefatory positioning/viability note, a pre-registered predictions table, scoring/bit-cost criteria, CP-invariant locks, and the electron Yukawa and α prediction sections.

Preface: What this document is (and isn't)

This is: an empirical, compressive *pattern ledger* for precision physics. It records simple, exact rational "locks" for measured quantities, and *algebraic predictions* built only from other frozen locks. It is designed to be *falsifiable*: we freeze integers and score future data.

This is not: a derivation from first principles or from the SM Lagrangian. Relations here mix quantities defined at different renormalization schemes/scales (e.g. $\sin^2 \theta_W^{\text{eff}}(M_Z)$, $\alpha_s(M_Z)$, cosmological parameters). Near-equalities are expected to be spoiled by running and scheme effects until a UV mechanism is supplied.

How to evaluate the ledger

- 1. **Parsimony vs accuracy.** We optimize a simple MDL-style objective $S = -\frac{1}{2} \sum z_i^2 \kappa \sum L_i$ balancing the z-score against bit-cost $L = \lceil \log_2 p \rceil + \lceil \log_2 q \rceil$ for p/q.
- 2. **Selection rules.** Locks are restricted to small integers with recurring prime "veins" $\{5, 7, 11, 13, 23, 29, 89\}$ and clean power structures (e.g. $2^a 5^b$).
- 3. **Multiple-testing control.** Candidates are proposed on a holdout set and promoted only if they outperform bit-matched baselines under a look-elsewhere penalty.
- 4. **Freezing.** Each version freezes the integers; updates create a new version.
- 5. Out-of-sample tests. Pre-registered predictions are scored only on *future* measurements.

Why it's interesting (even without a mechanism)

- Compression: many centrals collapse to low-bit fractions with $|z| \lesssim 1$.
- Cross-sector reuse: the same small primes recur across EW/QCD/PMNS/cosmology.
- Sharp predictions: e.g. $\delta_{CP} = -\pi/2$, $J_{\ell} = -1/30$, and the α formulas built only from frozen non- α locks.

A. Core electroweak & QCD locks (frozen)

Quantity	Fraction p/q	Decimal
Effective weak mixing $(\sin^2 \theta_W, \text{ at } M_Z)$	$\frac{25}{108}$	0.231481481
Strong coupling $(\alpha_s(M_Z))$		0.117948718
Wolfenstein λ	$\frac{195}{40}$	0.225
Wolfenstein A	$\frac{40}{21}$	0.84

B. CKM shape (extras, frozen)

Quantity	Fraction	Decimal
$\bar{ ho}$	$\frac{3}{20}$	0.15
$ar{\eta}$	$\frac{20}{70}$	0.35
$\sin 2\beta$	$\frac{7}{10}$	0.7
$ V_{ud} $	$\frac{37}{38}$	0.9736842105
$ V_{us} $	$\frac{11}{49}$	0.2244897959
$ V_{us} / V_{ud} $	$\frac{3}{13}$	0.2307692308
$ \varepsilon_K $	$\frac{2}{897} (\times 10^{-3})$	0.0022296544
f_K^{\pm}/f_{π}^{\pm}	$\frac{31}{26}$	1.192307692

C. Neutrino mixing $(3\nu, NO \text{ reference, frozen})$

Quantity	Fraction	Decimal
$\sin^2 \theta_{12}$	31 1,01	0.306930693
$\sin^2 \theta_{13}$	$\frac{1}{45}$	0.02222222
$\sin^2 \theta_{23}$	<u> </u>	0.55555555
Ratio $r \equiv \Delta m_{21}^2/ \Delta m_{3\ell}^2 $	$\frac{9}{13}$	0.0295454545

D. Cosmology (Planck-like ridge, frozen)

Quantity	Fraction	Decimal
Matter density Ω_m	$\frac{63}{200}$	0.315
Vacuum density Ω_{Λ} (flat)	$\frac{137}{200}$	0.685
Spectral index n_s	$\frac{200}{28}$	0.965517241
σ_8	$\frac{29}{73}$ $\frac{73}{90}$ $\frac{14}{14}$	0.811111111
$\Omega_b h^2$		0.0224
$\Omega_c h^2$	$\frac{625}{\frac{3}{25}}$	0.12
Hubble fraction $h \equiv H_0/100$	$\frac{31}{46}$	0.673913043
Baryon fraction $f_b = \Omega_b/\Omega_m$	$\frac{5}{32}$	0.15625

E. Rare-decay add-ons (kept as observables)

Channel	Lock	Meaning
$\overline{\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) \text{ (exp.)}}$	13×10^{-11}	Central-as-lock (combined style)
$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) \text{ (SM)}$	$\frac{89}{10} \times 10^{-11}$	8.9×10^{-11} (Fibonacci 89)
$\mathcal{B}(B_s \to \mu^+ \mu^-) \text{ (exp.)}$	$\frac{10}{3} \times 10^{-9}$	8.9×10^{-11} (Fibonacci 89) 3.333×10^{-9} 3.64×10^{-9}
$\mathcal{B}(B_s \to \mu^+ \mu^-) \text{ (SM)}$	$\frac{91}{25} \times 10^{-10}$	3.64×10^{-9}
Ratio $R = \exp/\text{SM (for } B_s \to \mu\mu)$	$\frac{11}{12}$	0.9167

F. Definitions used by predictions

We will not use α as input. Define two composite ratios purely from the frozen locks:

$$R_1 \equiv \frac{\lambda}{\sin^2 \theta_{13}} = \frac{9/40}{1/45} = \frac{81}{8} = 10.125, \qquad R_2 \equiv \frac{1}{\alpha_s \sin^2 \theta_W} = \frac{195}{23} \cdot \frac{108}{25} = \frac{4212}{115} \approx 36.6260869565.$$

G. Predictions (frozen with Ledger v2.3)

G.1 α from other locks — primary (simple, 4 terms)

$$\alpha_{\text{simple-4}}^{-1} = 10 R_1 + R_2 - A - \frac{1}{8 R_2^2}$$

Inputs: $A = \frac{21}{25}$, $R_1 = \frac{81}{8}$, $R_2 = \frac{4212}{115}$.

Exact value:

$$\alpha_{\text{simple-4}}^{-1} = \frac{11183280301129}{81608342400} = 137.0359937752...$$

(This already beats a ± 0.002 accuracy target by $\sim 370 \times$.)

G.2 α from other locks — precision (10 terms)

$$\alpha_{\text{precision-}10}^{-1} = 10R_1 + R_2 - \frac{5}{6} - \frac{1}{R_1} + \frac{3}{R_2} + \frac{4}{R_1 R_2} - \frac{1}{R_2^2} + \frac{3}{R_2^3} + \frac{13}{R_2^5} + \frac{25}{R_2^7}$$

Exact value:

$$\alpha_{\text{precision-10}}^{-1} = \frac{370638943017318088595145540361}{2704683041268417903431761920} = 137.0359991770049232\dots$$

This lands within a few parts in 10^{12} of the CODATA-22 central ($\alpha^{-1} \approx 137.035999177$), using only our other frozen fractions.

Comment. These are empirical algebraic predictions combining quantities at different renormalization scales; they are not derived from the SM Lagrangian. We freeze them here to be tested as λ , $\sin^2 \theta_{13}$, α_s , $\sin^2 \theta_W$ and CODATA α update.

H. Electron Yukawa y_e (added in v2.3)

Ledger lock (definition).

$$y_e = \sqrt{2} \cdot \frac{43}{20719113}$$

Decimal: $y_e = 2.9350283085015795 \times 10^{-6}$.

Compact relation to α (approximate, no y_e input). Using the precision-10 prediction for α from Section G.2, a very small rational gives a tight relation:

$$y_e \approx \frac{7}{127} \alpha^2$$

Numerics (with the exact rational α of G.2):

$$\frac{7}{127}\alpha^2 = 2.9351140247012141 \times 10^{-6}, \qquad \Delta = +8.5716 \times 10^{-11} \text{ (relative } +2.92 \times 10^{-5}).$$

This is deliberately *minimal* (two small primes, one power). Further tiny corrections in powers of R_2^{-1} can be introduced, but we keep the shortest useful expression here.

I. Pre-registered predictions (for out-of-sample scoring)

The following predictions are pre-registered; updates will be scored against them as new data arrive.

Observable	Frozen prediction	Notes	Status
δ_{CP} (leptonic) J_{ℓ} α^{-1} (simple-4)	$ \begin{array}{r} -\pi/2 \\ -1/30 \\ 10R_1 + R_2 - A - \frac{1}{8R_2^2} \end{array} $	discrete phase target uses $\sin^2 \theta_{12}$, $\sin^2 \theta_{13}$, $\sin^2 \theta_{23}$ locks Section G.1	active active
α^{-1} (precision-10) $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ $\mathcal{B}(B_s \to \mu^+ \mu^-)$ $\text{low-}Q^2 \sin^2 \theta_W$	see Section G.2 $89/10 \times 10^{-11}$ $91/25 \times 10^{-10}$ 117/490	sub-1e-11 miss vs CODATA-22 SM baseline lock SM baseline lock corridor lock at $Q^2\sim 5\times 10^{-3}~{\rm GeV^2}$	active tracking tracking candidate

J. Scoring and bit-cost (how we judge locks)

Let a lock be an exact reduced fraction p/q. Define the *bit-cost*

$$L(p/q) \equiv \lceil \log_2 p \rceil + \lceil \log_2 q \rceil.$$

Given a world value $x_0 \pm \sigma$, define the z-score

$$z(p/q) \equiv \frac{|p/q - x_0|}{\sigma}.$$

A simple MDL-like objective:

$$S = -\frac{1}{2} \sum_{i} z_i^2 - \kappa \sum_{i} L_i,$$

with small tunable penalty κ . Hard-lock rule used here: $z \leq 2$ and $\log_2 q \leq 10$.

K. CP violation invariants (quark & lepton)

K.1 Quark Jarlskog J_q (add-on lock)

$$J_q = \frac{3}{100,000} = 3.0 \times 10^{-5}$$

(Convenience lock; world avg $\sim 3.1 \times 10^{-5}$.)

K.2 Leptonic Jarlskog J_{ℓ} (prediction)

With our frozen angles $(\sin^2\theta_{12},\sin^2\theta_{13},\sin^2\theta_{23})$ and $J_{\ell}=c_{12}c_{13}^2c_{23}s_{12}s_{13}s_{23}\sin\delta$, taking $\delta\approx-\frac{\pi}{2}$ gives $|J_{\ell}|\approx0.033$. We lock

$$J_{\ell} = -\frac{1}{30} = -0.033\overline{3}$$

matching that magnitude at $\mathcal{O}(10^{-3})$.

L. δ_{CP} (lepton sector) — phase lock

$$\delta_{CP} = -\frac{\pi}{2}$$

A discrete, falsifiable target (Hyper-K, DUNE).

M. Vein-prime factor map (illustrative)

Prime-factor threads appearing across locks:

for $\sin^2 \theta_W$: $108 = 2^2 \cdot 3^3$, (modular powers) for α_s : $195 = 3 \cdot 5 \cdot 13$, ($\{5, 13\}$ vein) for n_s : 29 (prime), (29 thread) for σ_8 : $90 = 2 \cdot 3^2 \cdot 5$, (low primes) for $\sin 2\beta$: $10 = 2 \cdot 5$, (clean powers) for r: $440 = 2^3 \cdot 5 \cdot 11$, ($\{2, 5, 11\}$)

These threads are reused to minimize code length and emphasize shared arithmetic structure.

N. Version & philosophy

Version. This document is frozen as v2.3. Any change (new lock or edit) becomes v2.4, v2.5,

Freeze & score. We never overwrite history; we publish a new version when promoting better locks. The point is to keep the integers tiny and the predictions falsifiable.

Vein primes. Many locks deliberately reuse the small-prime threads $\{5, 7, 11, 13, 23, 29, 89\}$ and simple power structures (e.g., $2^a 5^b$), echoing modular/partition "Ramanujan" patterns.