Mustererkennung - Aufgabenblatt 10

André Hacker und Dimitri Schachmann

1. NMF

Implementierung

Wir haben den NMF Algorithmus in Matlab implementiert. Dabei haben wir zwei Implementierungen erstellt. Eine die einfach zu implementieren war und eine mit viel repmat-Magic, die dafür viel effizienter ist:

```
function [W H] = nmf(V, w_size, num_of_iterations)
 % random start values
 W = rand(size(V,1), w_size);
 H = rand(size(W, 2), size(V, 2));
  % repmat magic utility
  H_{rep\_index} = reshape(repmat([1:size(H,1)], size(V,1),1),1,[]);
  V_{rep\_index} = reshape(repmat([1:size(V,2)], size(W,2),1),1,[]);
  for i = 1:num\_of\_iterations
    [i num_of_iterations]
    % compute current prediction
    V_{-}dash = W * H;
    \%\ compute\ quotien\ between\ current\ prediction\ and\ actual\ image
    V_by_V = V_V / V_dash;
    % repmat magic utility
    V_by_V_dash = repmat(sum(V_by_V, 2), 1, size(W, 2));
    % recompute W
    tmp1 = repmat(V_by_V, size(H, 1), 1);
    tmp2 = H(H_rep_index,:);
    big_sum = reshape(sum(tmp1 .* tmp2,2), size(W));
    W = W .* big\_sum;
    % normalize W
    sigma_W = repmat(sum(W, 1), size(W, 1), 1);
    W = W. / sigma_W;
    % repmat magic
    tmp1 = repmat(W, 1, size(V, 2));
    tmp2 = V_by_V(:, V_rep_index);
    \label{eq:sum_size}  \mbox{big\_sum} \; = \; \mathbf{reshape} \left( \mathbf{sum} (\; \mathrm{tmp1} \;\; . * \;\; \mathrm{tmp2} \; , 1 \; ) \; , \\ \mathbf{size} \left( H \right) \; \right);
    \% recompute H
    H = H .* big_sum;
 end
end
function [W H] = nmf2(V, w_size, num_of_iterations)
 W = rand(size(V,1), w_size);
 H = rand(size(W,2), size(V,2));
  for k = 1:num\_of\_iterations
    V_{-}dash = W * H;
    V\_by\_V \,=\, V.\,/\,V\_dash\,;
    factor = zeros(size(W));
    for i = [1: size(W, 1)]
       for a = [1: size(W, 2)]
```

```
\mathbf{for} \ \mathrm{mu} = \ [\, 1 : \mathbf{size} \, (\mathrm{H}, 2 \, ) \, ]
               factor(i,a) = factor(i,a) + (V_by_V(i,mu) * H(a,mu));
            end
         end
      \quad \mathbf{end} \quad
     W=W .* factor;
      \mathrm{sigma} \text{\_W} \; = \; \mathrm{repmat} \left( \mathbf{sum}(W\!,1 \,) \;, \mathbf{size} \left( W\!,1 \, \right) \;, 1 \, \right);
     W = W./sigma_W;
      factor = zeros(size(H));
      for a = [1: size(W, 2)]
         for mu = [1: size(H, 2)]
            \mathbf{end}
      end
     H = H .* factor;
  \quad \text{end} \quad
\mathbf{end}
```

Ein paar Bilder und deren Rekonstruktionen 1000 Iterationen 20 Codewörter

Im Folgenden sieht man in 2 Doppelreihen die ersten 8 Originalen Bilder (jeweils oben) und die zugehörigen Rekonstruktionen (jeweils unten).

Ein paar Bilder und deren Rekonstruktionen 300 Iterationen 50 Codewörter

Im Folgenden sieht man in 2 Doppelreihen die ersten 8 Originalen Bilder (jeweils oben) und die zugehörigen Rekonstruktionen (jeweils unten). Insbesondere bei der Ziffer 5 sieht man, dass bei einem größeren Codebook die Reproduktion optisch besser erkennbar ist. In Aufgabe 2 stellen wir jedoch fest, dass sich das sehr geringfügig auf die Erkennungsraten auswirkt.

2. Auswertung

Wir haben die Erkennungsraten mit NMF, PCA und ohne Vorverarbeitung mit folgendem Code verglichen. Eine effiziente kNearestNeighbors Funktion haben wir dem Internet entnommen. Das ergebnis war wie folgt (k=3):

	Erkennungrate
NMF (32 Codewörter)	94.51%
NMF (20 Codewörter)	94.51%
NMF (4 Codewörter)	60.74%
PCA (100 Dimensionen)	96.86%
PCA (60 Dimensionen)	96.88%
PCA (30 Dimensionen)	96.82%
PLAIN	96.86%

Unsere Tests haben ergeben, dass 20 eine gute Größe für ein Codebuch ist.

```
function compute_knn
 tra_p = load('usps.ascii/train_patterns.txt');
tra_l = load('usps.ascii/train_labels.txt');
  tes_p = load('usps.ascii/test_patterns.txt');
  tes_l = load('usps.ascii/test_labels.txt');
  [neighbors distances] = kNearestNeighbors(tra_p', tes_p', 3)
 save('plain_neighbors3.mat', 'neighbors');
 % pca
 traX = tra_p ';
 traY = dummyToNumber(tra_l');
  tesX = tes_p;
  tesY = dummyToNumber(tes_l');
  pcaBase = pca_get_base(traX);
  traX<sub>-t</sub> = pca<sub>-</sub>transform(pcaBase, traX, 60); % Original has 256
  tesX<sub>t</sub> = pca_transform(pcaBase, tesX, 60); % Original has 256
  [neighbors distances] = kNearestNeighbors(traX_t, tesX_t, 3);
 save('pca_neighbors3.mat', 'neighbors');
 % nmf
 W = load('w1000_32.mat'); W = W.W;
 H = load(',h1000_32.mat'); H = H.H;
  H_{tes} = ((W*W)^{-1})*W*tes_{p};
  [neighbors distances] = kNearestNeighbors(H', H_tes', 3);
 save('nmf_neighbors3.mat', 'neighbors');
function numbers = dummyToNumber(dummies)
  [value index] = \max(\text{dummies}, [], 2);
 numbers = index - 1;
function run_nmf(iterations)
 tra_p = load('usps.ascii/train_patterns.txt');
  sizes = [40 60 80];
 Ws = cell(8,1);
 Hs = cell(8,1);
  parfor i = 1:3
    [W H] = nmf(tra_p, sizes(i), iterations);
    Ws\{i\}(:,:) = W;
    Hs\{i\}(:,:) = H;
```

```
for i = 1:3
    num = sprintf('%d', sizes(i));
its = sprintf('%d', iterations);
    W = Ws\{i\}(:,:);
    ... - Ws[i](:,:);
H = Hs[i](:,:);
nw = ['w' its '_' num '.mat']
nh = ['h' its '_' num '.mat']
    save(nw, 'W');
save(nh, 'H');
  end
end
function test_results
  tra_p = load('usps.ascii/train_patterns.txt');
tes_p = load('usps.ascii/test_patterns.txt');
  tra_l = load('usps.ascii/train_labels.txt');
  [val tra_l] = max(tra_l);
  tra_l = tra_l - 1;
  tes_l = load('usps.ascii/test_labels.txt');
  [val tes_l] = max(tes_l);
  tes_l = tes_l - 1;
  p = predict(tra_l, 'nmf_neighbors3.mat');
  isVsShould = [p' tes_l'];
  diff = isVsShould(:,1) - isVsShould(:,2);
  right = size(diff(diff==0));
  NmfSuccessRate = right /size(diff)
  p = predict(tra_l, 'plain_neighbors3.mat');
  isVsShould = [p' tes_l'];
  diff = isVsShould(:,1) - isVsShould(:,2);
  right = size(diff(diff==0));
  PlainSuccessRate = right /size(diff)
  p = predict(tra_l, 'pca_neighbors3.mat');
  p = predict(vral, pearing nborson mat);

isVsShould = [p' tes_l'];

diff = isVsShould(:,1) - isVsShould(:,2);
  right = size(diff(diff==0));
  PcaSuccessRate = right / size(diff)
function r = predict(tra_l, filename)
  results = load(filename, 'neighbors');
  results = results.neighbors;
  r = mode(tra_l(results)');
end
```

3. Das Codebuch

Im Folgenden ist ein Codebuch mit 20 Codewörtern nach 1000 Iterationen dargestellt:

Ein paar transformierte Testbilder:

