MA 544: Homework 1

Carlos Salinas

January 15, 2016

PROBLEM 1.1 (WHEEDEN & ZYGMUND §2, Ex. 1)

Let $f(x) = x \sin(1/x)$ for $0 < x \le 1$ and f(0) = 0. Show that f is bounded and continuous on [0, 1], but that $V[f; 0, 1] = +\infty$.

Proof. It is straightforward to see that f is bounded and continuous on [0,1]. To see that f is continuous we will appeal to an ε - δ argument. Let $\varepsilon > 0$, then for $\delta >$ for any $x \in [0,1]$, any $y \in (\delta - x, x + \delta)$ we have

$$|f(x) - f(y)| \le |x \sin(1/x) - y \sin(1/y)|$$

$$= |(x - y)(\sin(1/x) - \sin(1/y))|$$

$$= |x - y||\sin(1/x) - \sin(1/y)|$$

$$\le \delta \cdot |\sin(1/x) - \sin(1/y)|$$

program@epstopdf

now recall the Taylor expansion of sin about 0, $\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$, then

MA 544: Homework 1

PROBLEM 1.2 (WHEEDEN & ZYGMUND §2, Ex. 2)

Prove theorem (2.1).

Proof. Recall the statement of theorem (2.1):

Theorem (Wheeden & Zygmund, 2.1). (a) If f is of bounded variation on [a, b], then f is bounded on [a, b].

(b) Let f and g be of bounded variation on [a,b]. Then cf (for any real constant c), f+g, and fg are of bounded variation on [a,b]. Moreover, f/g is of bounded variation on [a,b] if there exists an $\varepsilon > 0$ such that $|g(x)| \ge \varepsilon$ for $x \in [a,b]$.

PROBLEM 1.3 (WHEEDEN & ZYGMUND §2, Ex. 3)

If [a',b'] is a subinterval of [a,b] show that $P[a',b'] \leq P[a,b]$ and $N[a',b'] \leq N[a,b]$.

Proof.

PROBLEM 1.4 (WHEEDEN & ZYGMUND §2, Ex. 11)

Show that $\int_a^b f \, d\phi$ exists if and only if given $\varepsilon > 0$ there exists $\delta > 0$ such that $|R_\Gamma - R_{\Gamma'}| < \varepsilon$ if $|\Gamma|, |\Gamma'| < \delta$.

Proof.

PROBLEM 1.5 (WHEEDEN & ZYGMUND §2, Ex. 13)

Prove theorem (2.16).

Proof.

Theorem (Wheeden & Zygmund, 2.16). (i) If $\int_a^b f \, d\phi$ exists, then so do $\int_a^b cf \, d\phi$ and $\int_a^b f \, d(c\phi)$ for any constant c, and

 $\int_{a}^{b} cf \, d\phi = \int_{a}^{b} f \, d(c\phi) = c \int_{a}^{b} f \, d\phi.$

(ii) If $\int_a^b f_1 d\phi$ and $\int_a^b f_2 d\phi$ both exist, so does $\int_a^b (f_1 + f_2) d\phi$, and

$$\int_{a}^{b} (f_1 + f_2) d\phi = \int_{a}^{b} f_1 d\phi + \int_{a}^{b} f_2 d\phi.$$

(iii) If $\int_a^b f \, d\phi_1$ and $\int_a^b f \, d\phi_2$ both exist, so does $\int_a^b f \, d(\phi_1 + \phi_2)$, and

$$\int_{a}^{b} f \, d(\phi_1 + \phi_2) = \int_{a}^{b} f \, d\phi_1 + \int_{a}^{b} f \, d\phi_2.$$

MA 544: Homework 1