

模式识别实验报告

专业: 人工智能

学号: _____58122204

年级: 大二

姓名: _______谢兴_____

签名:

时间:

目录

1	实验	— KNN Classif	lication							4
	1.1	问题描述								4
	1.2	概述								4
	1.3	任务说明								4
	1.4	实现步骤与流	程							4
		1.4.1 实验思	路							4
		1.4.2 数学模	型							5
		1.4.3 关键难	点							6
		1.4.4 算法描	述							6
		1.4.5 马氏距	离梯度计算公司	式推导 .						6
	1.5	实验结果与分	析							9
		1.5.1 数据集	的部分可视化分	分析						9
		1.5.2 实验结	果的分析							9
	1.6	MindSpore 学之	习使用心得体会							11
	1.7	代码附录 (数:	据加载可视化展	屡示部分,	具体见	L knn.ip	oynb 文作	牛)		11
		1.7.1 knn.i	pynb							11
		1.7.2 knn_m	indspore.ip	ynb						11
2	守岭	二 Naïve Bayes	Classification							13
_	2.1	·								
	2.1									
			明							
	2.2									
	2.2		程							
		2.2.1 实验思	路							14

		2.2.2 数学模型	14
		2.2.3 关键难点	14
		2.2.4 算法描述	14
		2.2.5	14
	2.3	实验结果与分析	14
	2.4	MindSpore 学习使用心得体会	14
	2.5	代码附录	14
3	实验	三 Neural Network Image Classification	16
	3.1	问题描述	16
	3.2	概述	16
	3.3	任务说明	16
	3.4	实现步骤与流程	16
		3.4.1 实验环境	16
		3.4.2 实验思路	16
		3.4.3 数学模型	18
		3.4.4 关键难点	18
		3.4.5 算法描述	19
	3.5	实验结果与分析	19
	3.6	MindSpore 学习使用心得体会	23
	3.7	代码附录	23
		3.7.1 cifar-10-scratch.ipynb	23
4	心得	· · · · · · · · · · · · · ·	29
	4.1	关于上课的体会	29
	12	关于 实验的休全	20

1 实验一KNN Classification

1.1 问题描述

1.2 概述

利用 KNN 算法,对 Iris 鸢尾花数据集中的测试集进行分类。

1.3 任务说明

- 1. 利用欧式距离作为 KNN 算法的度量函数,对测试集进行分类。实验报告中,要求在验证集上分析近邻数 k 对 KNN 算法分类精度的影响。
- 2. 利用马氏距离作为 KNN 算法的度量函数,对测试集进行分类。
- 3. 基于 MindSpore 平台提供的官方模型库,对相同的数据集进行训练,并与自己独立实现的算法对比结果(包括但不限于准确率、算法迭代收敛次数等指标),并分析结果中出现差异的可能原因,给出使用 MindSpore 的心得和建议。
- 4. (加分项)使用 MindSpore 平台提供的相似任务数据集(例如,其他的分类任务数据集)测试自己独立实现的算法并与 MindSpore 平台上的官方实现算法进行对比,并进一步分析差异及其成因。

1.4 实现步骤与流程

1.4.1 实验思路

- 1. 导入必要的库,包括 numpy, pandas, matplotlib, plotly 和 seaborn;
- 2. 数据加载和基本信息显示;
 - (a) 从 data/train.csv 文件中加载训练数据集
 - (b) 显示数据集的前几行数据

- (c) 显示数据集的描述性统计信息
- (d) 显示数据集的基本信息,包括数据类型和缺失值情况
- 3. 数据可视化;
 - (a) 使用 Seaborn 绘制数据集的特征两两关系图,并按标签着色
 - (b) 使用 Plotly 绘制数据分布的饼图
 - (c) 分别绘制每个特征(萼片长度、萼片宽度、花瓣长度、花瓣宽度)的箱线图和直方图
- 4. 实现基于 Euiclidean 距离和基于 Mahalanobis 距离的 KNN 算法;
- 5. 数据处理和预测;
 - (a) 加载测试数据集并进行必要的类型转换和缺失值检查
 - (b) 使用预训练模型对测试数据进行预测,并将预测结果保存到 CSV 文件中
- 6. 最后对比欧式距离和马氏距离两种度量方式的分类效果和差异
 - (a) 比较多个预测结果文件 task1_test_prediction.csv 和 task2_test_prediction.csv 之间的差异,找出不同的行和列,并打印出 不同值的位置

1.4.2 数学模型

KNN 算法的数学模型如下:

给定一个测试样本 x,KNN 算法通过计算 x 与训练集中所有样本之间的距离(常用欧氏距离),选择距离最近的 k 个样本,然后通过多数投票法决定 x 的类别。欧氏距离的计算公式为:

$$d(x_1, x_2) = \sqrt{\sum_{i=1}^{n} (x_{1i} - x_{2i})^2}$$

马氏距离的计算公式为:

$$d(x_1, x_2) = \sqrt{(x_1 - x_2)^T \Sigma^{-1} (x_1 - x_2)}$$

其中, Σ 为协方差矩阵。

1.4.3 关键难点

- 1. 如何高效地计算欧氏距离。
- 2. 如何在较大的数据集上进行快速的邻居搜索。
- 3. 如何处理训练数据和测试数据的维度一致性问题。
- 4. 如何在分类时处理类别不均衡的问题。

1.4.4 算法描述

基于 Euiclidean 距离和 Mahalanobis 距离的 KNN 算法的伪代码分别见算法 1 和算法 2。

1.4.5 马氏距离梯度计算公式推导

假设我们有训练数据集 $\{(x_i, y_i)\}_{i=1}^n$,其中 $x_i \in \mathbb{R}^d$ 为样本特征, y_i 为样本类别。为了优化马氏距离下的 KNN 算法,我们需要学习一个矩阵 $A \in \mathbb{R}^{e \times d}$,使得同类样本之间的距离最小化。马氏距离的计算公式为:

$$d_M(x_i, x_j) = \sqrt{(x_i - x_j)^\top A^\top A (x_i - x_j)}$$
(1)

为了优化矩阵 A, 我们使用如下的目标函数:

$$\mathcal{L} = \sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)} p_{ij} \cdot d_M^2(x_i, x_j)$$
(2)

Algorithm 1 K-Nearest Neighbors Based on Euclidean Distance

- 1: 初始化 KNN 分类器, 邻居数为 k
- 2: procedure 拟合 (X_train, y_train)
- 3: 存储训练数据和标签
- 4: end procedure
- 5: **procedure** 预测 (X)
- 6: **for** 每个测试数据 x **do**
- 7: 计算 x 与所有训练样本之间的欧氏距离
- 8: 对距离进行排序,选择最近的 k 个邻居
- 9: 对这 k 个邻居的标签进行多数投票
- 10: 将多数投票结果赋予 x
- 11: end for
- 12: return 预测的标签
- 13: end procedure

其中, $\mathcal{N}(i)$ 表示与 x_i 同类的样本索引集合, p_{ij} 为权重,定义为:

$$p_{ij} = \frac{\exp(-d_M^2(x_i, x_j))}{\sum_{k \in \mathcal{N}(i)} \exp(-d_M^2(x_i, x_k))}$$
(3)

首先, 我们对 $d_M^2(x_i, x_j)$ 进行展开:

$$d_M^2(x_i, x_j) = (x_i - x_j)^{\top} A^{\top} A(x_i - x_j)$$
(4)

为了计算梯度 $\nabla_A \mathcal{L}$,我们需要对 \mathcal{L} 关于 A 求导:

$$\mathcal{L} = \sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)} p_{ij} (x_i - x_j)^{\top} A^{\top} A (x_i - x_j)$$

$$\tag{5}$$

对 A 求导时,需要使用链式法则:

$$\frac{\partial \mathcal{L}}{\partial A} = \sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)} \left(\frac{\partial p_{ij}}{\partial A} (x_i - x_j)^{\top} A^{\top} A (x_i - x_j) + p_{ij} \frac{\partial ((x_i - x_j)^{\top} A^{\top} A (x_i - x_j))}{\partial A} \right)$$
(6)

Algorithm 2 K-Nearest Neighbors Based on Mahalanobis Distance

```
max\ iter
2: procedure 拟合 (X train, y train)
      存储训练数据和标签
3:
      初始化矩阵 A 为随机值
4:
      for 迭代次数 iteration = 1, 2, ..., max iter do
5:
         初始化梯度矩阵 \nabla A 为零
6:
         for 每个训练样本 x_i do
7:
            获取与 x_i 同类的样本索引 same\_class\_indices
8:
            for 每个同类样本 x_i do
9:
               if i == j then
10:
                  跳过
11:
               end if
12:
               计算 p_{ij} 值
13:
               计算样本差异 diff = x_i - x_i
14:
               更新梯度 \nabla A + = 2 \cdot p_{ij} \cdot (A \cdot diff) \cdot diff^T
15:
            end for
16:
         end for
17:
         接学习率更新矩阵 A: A = A - \eta \cdot \nabla A/n
18:
      end for
19:
20: end procedure
21: procedure 预测 (X)
      for 每个测试数据 x do
22:
         计算 x 与所有训练样本之间的马氏距离
23:
         对距离进行排序,选择最近的k个邻居
24:
         对这 k 个邻居的标签进行多数投票
25:
         将多数投票结果赋予 x
26:
27:
      end for
      return 预测的标签
28:
29: end procedure
```

1: 初始化 KNN 分类器, 邻居数为 k, 矩阵 A 的维度为 e, 学习率为 η , 最大迭代次数为

首先计算 p_{ij} 对 A 的导数。由于 p_{ij} 包含在指数函数内,我们得到:

$$\frac{\partial p_{ij}}{\partial A} = p_{ij} \left(-\sum_{k \in \mathcal{N}(i)} p_{ik} \cdot 2(x_i - x_k)^\top A^\top \cdot (x_i - x_k) + 2(x_i - x_j)^\top A^\top \cdot (x_i - x_j) \right) \tag{7}$$

然后计算 $(x_i - x_j)^{\mathsf{T}} A^{\mathsf{T}} A (x_i - x_j)$ 对 A 的导数:

$$\frac{\partial((x_i - x_j)^\top A^\top A(x_i - x_j))}{\partial A} = 2A(x_i - x_j)(x_i - x_j)^\top$$
(8)

将以上结果代入梯度公式中,我们得到:

$$\nabla_{A} \mathcal{L} = \sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)} \left[p_{ij} \left(-\sum_{k \in \mathcal{N}(i)} p_{ik} \cdot 2(x_i - x_k)^{\top} A^{\top} \cdot (x_i - x_k) + 2(x_i - x_j)^{\top} A^{\top} \cdot (x_i - x_j) \right) + 2p_{ij} A(x_i - x_j) (x_i - x_j)^{\top} \right]$$

$$(9)$$

整理后得到最终的梯度公式:

$$\nabla_{A} \mathcal{L} = 2 \sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)} p_{ij} \left[A(x_i - x_j)(x_i - x_j)^{\top} - \sum_{k \in \mathcal{N}(i)} p_{ik} A(x_i - x_k)(x_i - x_k)^{\top} \right]$$
(10)

1.5 实验结果与分析

- 1.5.1 数据集的部分可视化分析
 - 1. train.csv 文件中训练数据的 pairplot 图如图 1所示。
 - 2. 训练数据的分布情况如图 2所示,可以看出这三类鸢尾花的数据分布比例是不完全一 致的,但三类的数据量大致相同。

3.

1.5.2 实验结果的分析

1. 对于基于欧氏距离的 KNN 算法, 当 k = 3 时,测试集的准确率为 93.33%;

图 1: train.csv 训练数据的 pairplot 图

图 2: train.csv 训练数据分布比例

- 2. 对于基于马氏距离的 KNN 算法, 当 k=3 时,测试集的准确率为 93.33%;
- 3. 将 k 从 1 到 50 遍历,分析出基于欧氏距离的 KNN 算法对 Iris 数据集进行分类的准确率随 k 的变化情况,如图 3所示。

显然,基于欧式距离的最佳 k 值为 5 或 27 或 29,此时的准确率最高,为 100%,说明 k=5, k=27, k=29 时能完全正确的将 Iris 数据集中三类鸢尾花进行分类。

图 3: 分类准确率随 k 的变化情况

- 1.6 MindSpore 学习使用心得体会
- 1.7 代码附录(数据加载可视化展示部分,具体见 knn.ipynb 文件)
- 1.7.1 knn.ipynb

1#实验一代码

1.7.2 knn_mindspore.ipynb

实验一代码

2 实验二 Naïve Bayes Classification

2.1 问题描述

2.1.1 概述

利用朴素贝叶斯算法,对 MNIST 数据集中的测试集进行分类。

2.1.2 任务说明

1. 在课程学习中同学们已经学习了贝叶斯分类理论并掌握了其基本原理,即利用贝叶斯公式

$$p(\omega_j|x) = \frac{p(x|\omega_j)p(\omega_j)}{p(x)}$$

对 $p(\omega_j|x)$ 作出预测。由于 p(x) 为一固定值,所以一般不在计算过程中求得 p(x) 的 具体值。在实际运用中,为了方便计算,通常假设数据特征之间相互独立,即

$$p(x|\omega_j) = p(x_1|\omega_j) \cdot p(x_2|\omega_j) \cdots p(x_d|\omega_j), \quad x \in \mathbb{R}^d,$$

这便是著名的朴素贝叶斯算法。

- 2. MNIST 数据集本身以二进制形式保存,所以首先需要选择合适的编程语言编写读写二进制数据的程序完成对图片、标记信息的初步提取工作。读取了图片信息后,发现每个像素点的值在 [0,1] 区间内,这是图像压缩后的结果,所以可以先将像素值乘以255 再取整,得到每一个点的灰度值。将图像二值化,得到可以用于分类的 28×28 个特征向量以及对应的标签数据,之后便可以交由贝叶斯分类器进行学习。
- 3. 基于 MindSpore 平台提供的官方模型库,对相同的数据集进行训练,并与自己独立实现的算法对比结果(包括但不限于准确率、算法迭代收敛次数等指标),并分析结果中出现差异的可能原因,给出使用 MindSpore 的心得和建议。

- 4. (加分项)使用 MindSpore 平台提供的相似任务数据集(例如,其他的分类任务数据集)测试自己独立实现的算法并与 MindSpore 平台上的官方实现算法进行对比,并进一步分析差异及其成因。
- 2.2 实现步骤与流程
- 2.2.1 实验思路
- 2.2.2 数学模型
- 2.2.3 关键难点
- 2.2.4 算法描述

朴素贝叶斯算法实现的伪代码如算法 3 所示。

- 2.2.5
- 2.3 实验结果与分析
- 2.4 MindSpore 学习使用心得体会
- 2.5 代码附录
- 1#实验二代码

Algorithm 3 Optimized Multinomial Naive Bayes

- 1: **Input:** 平滑参数 α
- 2: Initialize:
- 3: 类别数 n classes
- 4: 特征数 n features
- 5: 类别计数 class count
- 6: 特征计数 feature count
- 7: 类别对数先验 class log prior
- 8: 特征对数概率 feature log prob
- 9: **procedure** 拟合 (X, y)
- 10: 获取唯一类别 classes = np.unique(y)
- 11: 初始化类别计数 class count 和特征计数 feature count
- 12: **for** 每个类别 $c \in classes$ **do**
- 13: 获取属于类别 c 的样本 X_c
- 14: 更新类别计数 class_count[c]
- 15: 更新特征计数 feature count[c,:]
- 16: end for
- 17: 计算类别对数先验 class_log_prior
- 18: 计算特征对数概率 feature log prob
- 19: end procedure
- 20: procedure 预测 (X)
- 21: 计算对数似然 $log\ likelihood = X \times feature\ log\ prob^T$
- 22: 计算对数后验概率 log posterior = log likelihood + class log prior
- 23: 返回类别 $classes[np.argmax(log\ posterior, axis = 1)]$
- 24: end procedure

3 实验三 Neural Network Image Classification

3.1 问题描述

3.2 概述

利用神经网络算法,对 CIFAR 数据集中的测试集进行分类。

3.3 任务说明

- 1. 基于神经网络模型及 BP 算法,根据训练集中的数据对你设计的神经网络模型进行训练,随后对给定的打乱的测试集中的数据进行分类。
- 2. 基于 MindSpore 平台提供的官方模型库,对相同的数据集进行训练,并与自己独立实现的算法对比结果(包括但不限于准确率、算法迭代收敛次数等指标),并分析结果中出现差异的可能原因。
- 3. (加分项)使用 MindSpore 平台提供的相似任务数据集(例如,其他的分类任务数据集)测试自己独立实现的算法并与 MindSpore 平台上的官方实现算法进行对比,并进一步分析差异及其成因。

3.4 实现步骤与流程

3.4.1 实验环境

实验环境见表 1。

3.4.2 实验思路

- 1. 数据加载与预处理:
 - (a) 从 CIFAR-10 数据集中加载图像数据和标签。
 - (b) 将图像数据从原始格式转换为适用于神经网络的格式(32x32x3 → 3072)。

表 1: Experiment Environment

Items	Version Intel Core i5-1135G7		
CPU			
RAM	16 GB		
Python	3.11.5		
Operating system	Windows11		

(c) 将图像数据进行归一化处理,将像素值缩放到 [0,1] 范围内。

2. 数据划分:

- (a) 将加载的训练数据划分为训练集和验证集,以便在训练过程中进行模型评估。
- 3. 定义全连接神经网络结构:
 - (a) 输入层:包含3072个神经元,对应每张图像的3072个像素值。
 - (b) 隐藏层:包含100个神经元,使用ReLU激活函数。
 - (c) 输出层:包含10个神经元,对应10个类别,使用Softmax激活函数。

4. 定义前向传播与反向传播:

- (a) 前向传播: 计算输入数据通过网络后的输出。
- (b) 反向传播:根据预测结果和实际标签计算损失,并更新网络权重。

5. 模型训练:

- (a) 使用小批量梯度下降(Mini-Batch Gradient Descent)优化网络权重。
- (b) 在每个 epoch 结束后, 计算并记录训练损失、验证损失和验证准确率。

6. 模型评估:

- (a) 在测试集上评估模型性能,计算并输出测试集准确率。
- (b) 绘制训练过程中损失和准确率的变化曲线。

7. 混淆矩阵:

- (a) 计算混淆矩阵,分析分类结果的具体表现。
- (b) 绘制混淆矩阵,直观展示模型在各个类别上的分类效果。

本实验的超参数如表 2 所示。

表 2: 训练参数

参数	值			
learning rate	0.01			
epochs	100			
loss function	Cross Entropy			
performance	accuracy			
batch size	16			
num_hiddens	128			

3.4.3 数学模型

BP 神经网络的数学模型如图 4 所示。

3.4.4 关键难点

在训练过程中实时评估模型的性能,并根据评估结果调整模型的超参数,如学习率、批次大小、隐藏层神经元数量等。需要平衡模型的复杂度和泛化能力,避免过拟合或欠拟合。

图 4: 全连接神经网络结构示意图

3.4.5 算法描述

使用 BP 神经网络训练算法,如算法 4 所示。

3.5 实验结果与分析

- 1. 准确率曲线本实验训练集和验证集上的准确率随 epoch 的变化曲线如图 5所示。从图中可以看出,随着 epoch 的增加,验证集的准确率逐渐提高,最终收敛到 **50%**。
- 2. 损失曲线本实验验证集上的损失随 epoch 的变化曲线如图 6所示。从图中可以看出,随着 epoch 的增加,训练接和验证集的损失逐渐降低,最终收敛到一个稳定值。其中训练集损失稳定在 1.0 左右,验证集损失稳定在 1.4 左右。
- 3. 混淆矩阵本实验的混淆矩阵如图 7所示。从图中可以看出,模型在不同类别上的分类效果,以及各类别之间的混淆情况。

Algorithm 4 全连接神经网络训练算法

```
1: 初始化网络的权重 W1, W2 和偏置 b1, b2 为随机值
 2: procedure 训练 (X train, Y train, X val, Y val, batch size, learning rate, epochs)
       for 每个 epoch do
 3:
           for 每个 mini-batch do
 4:
               前向传播:
 5:
                 设输入X
 6:
                 计算第一层的输出和激活值:
 7:
                    Z1 = XW1 + b1
 8:
                    \mathbf{A1} = \max(0, \mathbf{Z1})
                                                                              ▷ ReLU 激活函数
 9:
                 计算第二层的输出和激活值:
10:
                    \mathbf{Z2} = \mathbf{A1W2} + \mathbf{b2}
11:
                    A2 = softmax(Z2)
12:
               计算损失:
13:
                 使用交叉熵损失函数计算损失 L
14:
               反向传播:
15:
                 计算输出层的误差 \delta^{(2)}
16:
                 计算隐藏层的误差 \delta^{(1)}
17:
                 计算梯度:
18:
                    \nabla_{\mathbf{W2}} = \mathbf{A1}^T \delta^{(2)}
19:

abla_{\mathbf{b2}} = \sum \delta^{(2)}
20:
                    \nabla_{\mathbf{W}_1} = \mathbf{X}^T \delta^{(1)}
21:

abla_{\mathbf{b1}} = \sum \delta^{(1)}
22:
               更新权重和偏置:
23:
                 使用学习率 \eta 更新 W1, b1, W2, b2
24:
           end for
25:
           计算训练集和验证集的损失和准确率
26:
       end for
27:
28: end procedure
```


图 5: train.csv 训练数据分布比例

图 6: train.csv 训练数据分布比例

图 7: train.csv 训练数据分布比例

3.6 MindSpore 学习使用心得体会

3.7 代码附录

3.7.1 cifar-10-scratch.ipynb

```
import pickle
    import numpy as np
    import os
    import matplotlib.pyplot as plt
    # 加载 CIFAR-10 批次数据
    def load_cifar10_batch(filename):
        with open(filename, 'rb') as f:
            datadict = pickle.load(f, encoding='bytes')
            X = datadict[b'data']
            Y = datadict[b'labels']
11
            X = X.reshape(10000, 3, 32, 32).astype("float")
            Y = np.array(Y)
            return X, Y
14
15
    # 加载所有 CIFAR-10 数据
16
    def load_cifar10(ROOT):
17
        xs = []
       ys = []
        for b in range(1, 6):
            f = os.path.join(ROOT, 'data_batch_%d' % (b,))
21
            X, Y = load_cifar10_batch(f)
            xs.append(X)
            ys.append(Y)
24
        Xtr = np.concatenate(xs)
25
       Ytr = np.concatenate(ys)
       del X, Y
        Xte, Yte = load_cifar10_batch(os.path.join(ROOT, 'test_batch'))
        return Xtr, Ytr, Xte, Yte
    ROOT = './cifar-10-batches-py'
31
    X_train, y_train, X_test, y_test = load_cifar10(ROOT)
32
33
    # 全连接神经网络类
    class FullyConnectedNN:
```

```
def __init__(self, input_size, hidden_size, output_size):
            self.W1 = np.random.randn(input_size, hidden_size) * 0.01
37
            self.b1 = np.zeros((1, hidden_size))
            self.W2 = np.random.randn(hidden_size, output_size) * 0.01
39
            self.b2 = np.zeros((1, output_size))
40
41
        def relu(self, Z):
42
            return np.maximum(0, Z)
        def softmax(self, Z):
            expZ = np.exp(Z - np.max(Z))
            return expZ / expZ.sum(axis=1, keepdims=True)
        def forward(self, X):
            self.Z1 = np.dot(X, self.W1) + self.b1
50
            self.A1 = self.relu(self.Z1)
51
            self.Z2 = np.dot(self.A1, self.W2) + self.b2
            self.A2 = self.softmax(self.Z2)
            return self.A2
        def compute_loss(self, Y, Y_hat):
            m = Y.shape[0]
57
            log_likelihood = -np.log(Y_hat[range(m), Y])
            loss = np.sum(log_likelihood) / m
59
            return loss
60
61
        def backward(self, X, Y, Y_hat):
            m = X.shape[0]
            dZ2 = Y_hat
            dZ2[range(m), Y] = 1
            dZ2 /= m
            dW2 = np.dot(self.A1.T, dZ2)
            db2 = np.sum(dZ2, axis=0, keepdims=True)
69
            dA1 = np.dot(dZ2, self.W2.T)
            dZ1 = dA1 * (self.Z1 > 0)
73
            dW1 = np.dot(X.T, dZ1)
            db1 = np.sum(dZ1, axis=0, keepdims=True)
75
```

```
self.W1 -= self.learning_rate * dW1
            self.b1 -= self.learning_rate * db1
            self.W2 -= self.learning_rate * dW2
            self.b2 -= self.learning_rate * db2
80
81
        def compute_accuracy(self, X, Y):
82
            Y_hat = self.forward(X)
83
            predictions = np.argmax(Y_hat, axis=1)
84
            accuracy = np.mean(predictions == Y)
            return accuracy
        def train(self, X_train, Y_train, X_val, Y_val, epochs=300,
     learning_rate=0.01):
            self.learning_rate = learning_rate
            train_losses = []
90
            val_losses = []
91
            val_accuracies = []
92
            for epoch in range(epochs):
                # 打乱训练数据
                indices = np.arange(X_train.shape[0])
                np.random.shuffle(indices)
97
                X_train = X_train[indices]
98
                Y_train = Y_train[indices]
99
100
                # 小批量梯度下降
101
                for start_idx in range(0, X_train.shape[0], batch_size):
                    end_idx = min(start_idx + batch_size, X_train.shape[0])
                    X_batch = X_train[start_idx:end_idx]
104
                     Y_batch = Y_train[start_idx:end_idx]
105
106
                     # 前向传播
107
                     Y_hat_train = self.forward(X_batch)
108
                     train_loss = self.compute_loss(Y_batch, Y_hat_train)
109
110
                     # 反向传播
                     self.backward(X_batch, Y_batch, Y_hat_train)
113
                # 每个 epoch 结束后计算验证集上的损失和准确率
114
                Y_hat_val = self.forward(X_val)
                val_loss = self.compute_loss(Y_val, Y_hat_val)
```

```
val_accuracy = self.compute_accuracy(X_val, Y_val)
117
118
                 # 存储损失和准确率
119
                 train_losses.append(train_loss)
                 val_losses.append(val_loss)
                 val_accuracies.append(val_accuracy)
                 # 打印每个 epoch 的损失和准确率
124
                 print(f'Epoch [{epoch + 1}], train_loss: {train_loss:.4f},
      val_loss: {val_loss:.4f}, val_acc: {val_accuracy:.4f}')
126
             return train_losses, val_losses, val_accuracies
127
128
    # 预处理数据
129
    X_{\text{train}} = X_{\text{train.reshape}}(X_{\text{train.shape}}[0], -1) / 255.0
130
    X_{\text{test}} = X_{\text{test.reshape}}(X_{\text{test.shape}}[0], -1) / 255.0
132
    # 将训练数据分成训练集和验证集
133
    split_index = int(0.8 * X_train.shape[0])
134
    X_val, y_val = X_train[split_index:], y_train[split_index:]
135
    X_train, y_train = X_train[:split_index], y_train[:split_index]
136
    # 超参数
138
    input_size = 3072 # 32*32*3
139
    hidden_size = 100
140
    output_size = 10
141
    learning_rate = 0.01
    epochs = 100
    batch_size = 64
144
145
    # 初始化并训练模型
146
    model = FullyConnectedNN(input_size, hidden_size, output_size)
147
    train_losses, val_losses, val_accuracies = model.train(X_train, y_train,
148
     X_val, y_val, epochs, learning_rate)
149
    # 在测试集上进行预测
150
    y_pred = np.argmax(model.forward(X_test), axis=1)
151
    accuracy = np.mean(y_pred == y_test)
152
    print(f'测试集准确率: {accuracy:.4f}')
153
154
    #绘制损失曲线
155
```

```
epochs_range = range(epochs)
156
    plt.figure(figsize=(8, 4))
157
    plt.plot(epochs_range, train_losses, label='训练损失')
158
    plt.plot(epochs_range, val_losses, label='验证损失')
159
    plt.xlabel('Epochs')
160
    plt.ylabel('Loss')
161
    plt.legend(loc='upper right')
162
    plt.title('损失曲线')
163
    plt.show()
    #绘制准确率曲线
166
    plt.figure(figsize=(8, 4))
167
    plt.plot(epochs_range, val_accuracies, label='验证准确率')
168
    plt.xlabel('Epochs')
169
    plt.ylabel('Accuracy')
170
    plt.legend(loc='lower right')
171
    plt.title('准确率曲线')
172
    plt.show()
173
174
175
    # 计算混淆矩阵
176
    def compute_confusion_matrix(y_true, y_pred, num_classes):
177
        cm = np.zeros((num_classes, num_classes), dtype=int)
178
        for i in range(len(y_true)):
179
             cm[y_true[i], y_pred[i]] += 1
180
         return cm
181
    #绘制混淆矩阵
183
    def plot_confusion_matrix(cm, classes, title='混淆矩阵', cmap=plt.cm.Blues):
184
        plt.figure(figsize=(16, 12))
185
        plt.imshow(cm, interpolation='nearest', cmap=cmap)
186
        plt.title(title)
187
        plt.colorbar()
188
        tick_marks = np.arange(len(classes))
189
        plt.xticks(tick_marks, classes, rotation=45)
190
        plt.yticks(tick_marks, classes)
191
192
        fmt = 'd'
193
        thresh = cm.max() / 2.
194
        for i, j in np.ndindex(cm.shape):
195
             plt.text(j, i, format(cm[i, j], fmt),
196
```

```
horizontalalignment="center",
197
                      color="white" if cm[i, j] > thresh else "black")
198
199
        plt.ylabel('真实标签')
200
        plt.xlabel('预测标签')
201
        plt.tight_layout()
202
        plt.show()
203
204
    # CIFAR-10 标签
205
    cifar10_labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', '
     frog', 'horse', 'ship', 'truck']
207
    # 计算并绘制混淆矩阵
208
    cm = compute_confusion_matrix(y_test, y_pred, len(cifar10_labels))
209
    plot_confusion_matrix(cm, classes=cifar10_labels)
210
```

4 心得体会

- 4.1 关于上课的体会
- 4.2 关于实验的体会
- **4.3** 总的体会