Solutions Notebook for Advanced Calculus by James J. Callahan

Jose Fernando Lopez Fernandez

23 March, 2020 - March 23, 2020

Contents

1	Starting Points		
	1.1	Substitution	1
	1.2	Work and path integrals	1
	1.3	Polar coordinates	2
	1.4	Exercises	2

iv CONTENTS

Chapter 1

Starting Points

1.1 Substitution

1.2 Work and path integrals

Definition 1.1. The work done by the constant force $\mathbf{F} = (P, Q)$ in displacing an object along the segment $\Delta x = (\Delta x, \Delta y)$ is

$$W = \mathbf{F} \cdot \Delta x = P\Delta x + Q\Delta y = W_x + W_y.$$

Definition 1.2. A smooth, simple, oriented curve \overrightarrow{C} in \mathbb{R}^n is the image of a smooth 1–1 map,

$$\mathbf{x} : [a,b] \to \mathbb{R}^n : t \mapsto \mathbf{x}(t),$$

where $\mathbf{x}'(t) \neq 0$ for all a < t < b. The point $\mathbf{x}(a)$ is the **start** of \overrightarrow{C} and $\mathbf{x}(b)$ is its **end**.

Definition 1.3 (Smooth path integral).

$$\int_{\overrightarrow{C}} \mathbf{F} \cdot d\mathbf{x} = \lim_{\substack{k \to \infty \\ \text{mesh} \to 0}} \sum_{i=1}^{k} \mathbf{F} \left(\mathbf{x}_{i} \right) \cdot \Delta \mathbf{x}_{i},$$

if the limit exists when taken over all ordered partitions $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{k+1}$ of \overrightarrow{C} with $\mathbf{mesh} = \max_i ||\Delta \mathbf{x}_i||$ and $\Delta \mathbf{x}_i = \mathbf{x}_{i+1} - \mathbf{x}_i, i = 1, \dots, k$.

Definition 1.4. The **work** done by the force **F** along the smooth oriented path \overrightarrow{C} is

$$W = \int_{\overrightarrow{C}} \mathbf{F} \cdot \Delta \mathbf{x}. \tag{1.1}$$

Theorem 1.1. Suppose \overrightarrow{C} is a smooth, simple, oriented curve in \mathbb{R}^n that is parametrized by $\mathbf{x}(t)$, $a \leq t \leq b$. If $\mathbf{F}(\mathbf{x})$ is a continuous vector function defined on \overrightarrow{C} , then the integral of \mathbf{F} over the path \overrightarrow{C} exists, and

$$\int_{\overrightarrow{C}} \mathbf{F} \cdot \Delta \mathbf{x} = \int_{a}^{b} \mathbf{F} (\mathbf{x} (t)) \cdot \mathbf{x}' (t) dt.$$
 (1.2)

1.3 Polar coordinates

1.4 Exercises

Exercise 1.1. Evaluate $\int_0^\infty \frac{dx}{1+x^2}$ and $\int_{-\infty}^1 \frac{dx}{1+x^2}$.

Solution (1). Let $x = \tan u$.

$$x = \tan u$$
$$= \frac{\sin u}{\cos u}$$

We differentiate x to find the trigonometric substitution factor.

$$\frac{d}{du}(x) = \frac{f'(u)g(u) - g'(u)f(u)}{[g(u)]^2}$$

$$\frac{dx}{du} = \frac{\left[\left(\sin(u)'\right) \cdot (\cos u)\right] - \left[\left(\cos(u)'\right) \cdot (\sin u)\right]}{\left[\cos(u)\right]^2}$$

$$= \left[\cos u \cdot \cos u\right] - \left[-\sin u \cdot \sin u\right]$$