

EmbarcaTech Residência em Sistemas Embarcados

Projeto Final da Fase 2: Etapa 2 Arquitetura e Modelagem

Danilo Oliveira e Tífany Severo

Brasília 2025

Arquitetura Geral do Sistema

O sistema proposto é composto por três módulos principais, interligados e integrados ao ambiente hospitalar:

Módulo da Cabine (Interação com o Paciente)

- Estrutura física com sensores para aferição de sinais vitais.
- Interface touchscreen para coleta de dados e anamnese guiada.
- Unidade de processamento embarcada (BitDogLab RP2040) responsável pela comunicação com sensores, processamento preliminar e envio dos dados.

Módulo de Processamento e Integração

- Algoritmo de apoio à decisão para pré-classificação de risco, baseado no Protocolo de Manchester.
- Detecção de sinais críticos e geração de alertas imediatos.
- Módulo de integração com o Prontuário Eletrônico do Paciente (PEP) via protocolos HL7 ou FHIR.
- Protocolo de comunicação para o envio de dados para a estação de enefermagem

Módulo de Supervisão (Estação de Enfermagem)

- Dashboard em tempo real para visualização da fila de pacientes, dados coletados e pré-classificação sugerida.
- Interface para validação final da classificação de risco pelo enfermeiro e emissão de pulseira.
- Registro de auditoria com identificação do profissional responsável e timestamp.

Diagrama de Blocos Funcionais

Figura 1 – Diagrama de Blocos Funcionais

A Figura 1 ilustra a interação entre os três módulos, destacando o fluxo de dados, os eventos de alerta crítico e a integração com o PEP.

Fluxo principal:

Paciente interage com a Cabine \rightarrow dados coletados \rightarrow pré-classificação \rightarrow envio ao Dashboard \rightarrow validação pelo enfermeiro \rightarrow emissão de pulseira.

Obs: Em casos críticos, a cabine gera alerta sonoro/visual direto na estação.

Fluxo de Dados

O fluxo de dados segue esta ordem:

- 1. Entrada: sinais vitais e respostas ao questionário.
- 2. Processamento Local: filtragem, cálculo de médias, detecção de valores críticos.
- 3. Pré-Classificação
- 4. Transmissão: dados e classificação preliminar enviados via rede segura.

- 5. Validação Profissional: ajustes e confirmação no dashboard.
- 6. Armazenamento: registro definitivo no PEP.
- 7. Saídas: emissão de pulseira e relatórios de telemetria.

Considerações de Comunicação

- Cabine → Processamento: comunicação interna via I²C, SPI e UART para sensores e HMI.
- Processamento → Estação: comunicação de dados via rede TCP/IP segura.
- Integração com PEP: protocolo HL7 ou FHIR sobre HTTPS, com autenticação de API.

Arquitetura de Hardware

Figura 2 – Arquitetura de Hardware: esquemático

Descrição dos Módulos

Módulo Cabine

- Sensores médicos:
 - Termômetro IR MLX90614 (I²C) temperatura sem contato.
 - Oxímetro MAX30102 (I²C) SpO₂ e frequência cardíaca.
 - Sensor de distânia
- Interface homem-máquina: Display Nextion (UART) para LGPD, identificação e anamnese.
- Unidade de processamento: BitDogLab RP2040 (dual-core, 133 MHz) executando drivers dos sensores, FSM de triagem, filtro/validação de medidas e empacotamento dos dados.
- Armazenamento local: SD Card (SPI) para logs e operação offline (cache de pacotes FHIR a sincronizar).

Módulo Estação de Enfermagem

- Terminal/PC com o Dashboard (web/app) para fila, visualização, ajuste e confirmação da classificação.
- Monitor dedicado para exibição do painel.
- Rede segura (TCP/IP) conectando a cabine ao ambiente hospitalar e ao HIS/PEP.

Integração hospitalar (externo ao protótipo)

 HIS/PEP recebe dados clínicos, consentimento e registros de auditoria via HL7/FHIR sobre HTTPS.

Figura 3 – Arquitetura de Hardware: distribuição dos componentes por módulo

Interfaces e Protocolos

Origem → Destino	Interface	Função	Observações
MLX90614 → RP2040	I ² C @100–400 kHz	Temperatura	Pull-ups de 4.7 kΩ típicos; end. l²C 0x5A (default)
MAX30102 → RP2040	I ² C @400 kHz	SpO ₂ /FC	Amostragem 50–100 Hz; LED current conforme dedo/pele
VL53L0X ↔ RP2040	I ² C	Distância	

Nextion ↔ RP2040	UART 3.3 V	Interação com usuário	115200 bps (sugestão) com checksum/ACK simples
SD Card ↔ RP2040	SPI @10-20 MHz	Logs/Offline	Cartão ≥8 GB; FS FAT32; wear-leveling do driver
RP2040 ↔ Rede	Ethernet/Wi-Fi	Telemetria/PEP	TLS 1.2+; MQTT/HTTP opcional para telemetria
Cabine/Estação ↔ HIS/PEP	HTTPS + HL7/FHIR	Integração clínica	Autenticação por token/OAuth2; carimbo de tempo

Sincronização Offline: pacotes {dados+sinais, anamnese, pré-classe, consentimento} são serializados (ex.: FHIR Bundle) no SD; um serviço de reconciliação tenta reenvio exponencial ao restaurar a rede.

Fluxograma de Software

Visão Geral

O sistema é composto por dois fluxos principais como citado anteriormente:

- Cabine execução autônoma de triagem e coleta de dados, com operação online ou offline, comunicação segura com o PEP/HIS e emissão de ticket para o paciente.
- Estação de Enfermagem supervisão, revisão e confirmação da classificação, priorização de casos críticos e integração final ao PEP/HIS.

Esses fluxos foram modelados para garantir resiliência (modo offline, repetição em caso de falhas), privacidade (consentimento LGPD, criptografia), usabilidade (HMI guiada), segurança clínica (alerta crítico) e integração (HL7/FHIR via HTTPS).

Fluxo - Cabine

Fluxo – Estação de Enfermagem

Elementos técnicos relevantes ao fluxo

Para além das setas e caixas do fluxograma, o funcionamento considera:

- Operação offline com cache no SD (SPI) e reenvio assíncrono.
- Repetição automática em caso de falha de sensor ou leitura fora da faixa de confiança.
- Controle de acesso no dashboard.
- Integração PEP/HIS via HL7 FHIR.
- Auditoria detalhada de alterações na classificação.

