

Capstone Project 3 Mobile Price Range Prediction

Individual Project
Sajeer Abdul Rahman
sajeeraniyaram@gmail.com

Problem statement

In the competitive mobile phone market companies want to understand sales data of mobile phones and factors which drive the prices.

The objective is to find out some relation between features of a mobile phone(eg:- RAM,Internal Memory, etc) and its selling price. In this problem, we do not have to predict the actual price but a price range indicating how high the price is.

Points to discuss

- Data description and summary
- Exploratory data analysis
- Heat map
- Machine learning algorithms
- 1. Logistic regression
- 2. Decision tree
- 3. Random forest classifier
- 4. Xgboost classifier
- conclusion

Data Description

The data contains information regarding mobile phone features, specifications etc and their price range. The various features and information can be used to predict the price range of a mobile phone.

- Battery_power Total energy a battery can store in one time measured in mAh
- Blue Has bluetooth or not
- Clock_speed speed at which microprocessor executes instructions
- Dual_sim Has dual sim support or not
- Fc Front Camera mega pixels
- Four_g Has 4G or not
- Int_memory Internal Memory in Gigabytes
- M_dep Mobile Depth in cm
- Mobile_wt Weight of mobile phone
- N_cores Number of cores of processor

ΑI

- Pc Primary Camera mega pixels
- Px_height Pixel Resolution Height
- Px_width Pixel ResolutionWidth
- Ram RandomAccess Memory in Mega Bytes
- Sc_h Screen Height of mobile in cm
- Sc_w ScreenWidth of mobile in cm
- Talk_time longest time that a single battery charge will last when you are
- Three_g Has 3G or not
- Touch_screen Has touch screen or not
- Wifi Has wifi or not
- Price_range This is the target variable with value of 0(low cost), 1(medium cost), 2(high cost) and 3(very high cost).

Exploratory Data Analysis

Price

There are mobile phones in 4 price ranges.
 the number of elements is almost similar.

Battery

 This plot shows how the battery mAh is spread. there is a gradual increase as the price range increases

Bluetooth

RAM

• Half the devices have Bluetooth, and half don't.

 Ram has continuous increase with price range while moving from Low cost to Very high cost.

Px width

There is not a continuous increase in pixel width as we move from Low cost to Very high cost. Mobiles with 'Medium cost' and 'High cost' has almost equal pixel width. so, we can say that it would be a driving factor in deciding price_range.

Px_height

 Pixel height is almost similar as we move from Low cost to Very high cost. Little variation in pixel_height.

FC (front camera megapixels)

 This features distribution is almost similar along all the price ranges variable, it may not be helpful in making predictions.

PC (Primary camera Megapixels)

 Primary camera megapixels are showing a little variation along the target categories, which is a good sign for prediction.

MobileWeight

Costly phones are lighter

screen size

- Combining the sc_height and sc_width into one column that is sc_size, Screen Size shows little variation along the target variables. This can be helpful in predicting the target categories
- 50% of the phones support 4_g and 76% of phones support 3_g, feature 'three_g' play an important feature in prediction.

4G and 3G

Heat Map

- RAM and price_range shows high correlation which is a good sign, it signifies that RAM will play major deciding factor in estimating the price range.
- There is some collinearity in feature pairs ('pc',
 'fc') and ('px_width', 'px_height'). Both
 correlations are justified since there are good
 chances that if front camera of a phone is good,
 the back camera would also be good.
- Also, if px_height increases, pixel width also increases, that means the overall pixels in the screen. We can replace these two features with one feature. Front Camera megapixels and Primary camera megapixels are different entities despite of showing collinearity. So, we'll be keeping them as they are.

ML algorithms

- 1. Logistic regression
- 2. Decision tree
- 3. Random Forest classification
- 4. Xgboost

Logistic Regression

Train accuracy: 92% Test_accuracy: 90%

from sklearn.metrics import classification_report print('Classification report for Logistic Regression (Test set)= ') print(classification_report(y_pred_test, y_test))

Classification report for Logistic Regression (Test set)= precision recall f1-score 0.97 0.96 107 0.95 0.86 0.87 0.86 92 0.82 0.82 0.82 0.92 111 0.92 0.93 400 0.90 accuracy 0.89 macro avg 0.89 0.89 0.90 0.90 weighted avg 0.90

Seaborn Confusion Matrix with labels

Predicted Values

Decision Tree

Descision Tree withHyperparameter Tuning

A

Test accuracy: 84%

```
# Evaluation metrics for test
print('Classification report for Decision Free (Test set)+ ')
print(classification_report(y_pred_test, y_test))
Classification report for Decision Tree (Test set)=
              precision
                           recall fi-score
                                              support
                                       0.92
                                                   93
                   0.67
                             0.98
                   0.41
                             0.73
                                       0.27
                                                   101
                   0.78
                             0.67
                                       0.72
                                                   105
                                                   98
                   0.81
                             0.93
                                       0.57
                                       0.82
                                                   466
    accuracy
   macro avg
                   e.82
                             6.63
                                       6.82
                                                   466
                                                   466
weighted avg
                   0.82
                             e.82
                                       0.82
```

Test_accuracy: 82%

Seaborn Confusion Matrix with labels

Random Forest Classifier With Hyper parameter Tuning

Train accuracy: 86.5%

RAM, battery_power, pixels

Test accuracy: 89%

	precision	cocall.	f1-score	support
	precision	(crait	11-5COLE	Suppor C
0	0.95	0.93	0.94	105
1	0.83	0.88	0.85	91
2	0.81	0.84	0.82	92
3	0.94	0.89	0.92	112
accuracy			0.89	400
macro avg	0.88	0.89	0.88	400
eighted avg	0.89	0.89	0.89	400

Xgboost With Hyper parameter Tuning

Test_ccuracy: 90%

```
score = classification_report(y_test, y_pred_test)
print('Classification Report for tuned XGBoost(Test set)= ')
print(score)
Classification Report for tuned XGBoost(Test set)=
                         recall f1-score support
             precision
                                     0.94
                                                105
                                                 91
                  0.85
                            0.89
                                     0.87
                                                 92
                  0.84
                            0.87
                                     0.86
                  0.95
                            0,90
                                     0.93
                                                112
    accuracy
                                     0.90
                                                400
   macro avg
                  0.90
                            0.90
                                     0.90
weighted avg
                  0.90
                            0.90
                                     0.90
```

Seaborn Confusion Matrix with labels

Predicted Values

Conclusion

- From EDA, we can see that there are mobile phones in 4 price ranges. The number of elements is almost similar.
- Half the devices have Bluetooth, and half doesn't.
- There is a gradual increase in battery as the price range increases.
- Ram has continuous increase with price range while moving from Low cost to Very high cost.
- Costly phones are lighter.
- RAM, battery power, pixels played more significant role in deciding the price range of mobile phone.
- From all the above experiments, we can conclude that logistic regression and XGboosting with using hyperparameters we got the best results.
- The accuracy and performance of the model is evaluated by using confusion matrix.