

Alunos:

Iann Nogueira Schmith
Pedro Baffa Carvalho
Eduardo Ferreira Santos
Danilo Holanda Leite
Zenalaabden Ali Zaidan
Gustavo Barreto Silva
Leonardo Albuquerque Avigro
Mateus Simões Marques

Sumário (Live Routine – Dev Daily©)

INTRODUÇÃO	3
IntroduçãoObjetivos a serem alcançadosEscopo principal	3
MODELAGEM	4
Requisitos Funcionais Diagramas de UML Diagrama de Casos de Uso Diagramas de Classe	5 5
BANCO DE DADOS Diagramas Lógico DER Script (dbLiveRoutine.sql)	6
PROTÓTIPO DA INTERFACE	8
CONCLUSÃO	8
REFERÊNCIAS BIBLIOGRÁFICAS	9

1. Introdução

1.1. Introdução

O "Live Routine" tem como missão principal promover a construção de hábitos saudáveis em três pilares fundamentais: alimentação equilibrada, atividade física regular e cuidados com a saúde mental.

1.2. Objetivos a serem alcançados

Por meio de uma abordagem holística e acessível, nosso programa visa:

Educar e Informar: Disponibilizar informações relevantes e atualizadas sobre nutrição, exercícios físicos e saúde mental, empoderando os participantes a fazerem escolhas conscientes para seu bem-estar.

Incentivar a Prática Regular de Exercícios: Oferecer orientações e suporte para a adoção de uma rotina de exercícios físicos adaptada às necessidades e preferências individuais de cada participante

1.3. Escopo principal

Nosso sistema tem como principal foco incentivar e ajudar as pessoas a reestabelecerem uma rotina saudável com o programa.

As principais funcionalidades do nosso programa, será de adicionar e manusear hábitos saudáveis que o usuário desejar, notifica-lo no momento de realizar alguma atividade, seja exercício ou até beber água. Assim auxiliando cada usuário a ter uma rotina mais saudável.

2. Modelagem.

2.1. Requisitos Funcionais

RF – Requisitos Funcionais // RNF – Requisitos Não-Funcionais

RF001	O usuário deve cadastrar-se com usuário e senha
RF002	O usuário deve fazer login com usuário e senha
RF003	O usuário deve selecionar os hábitos que deseja.
RF004	O usuário deve adicionar os hábitos que deseja.
RF005	O usuário deve adicionar a frequência com que deseja ser notificado sobre a prática dos hábitos.
RF006	O usuário deve selecionar o grau de prática do hábito.
RF007	O usuário deve informar se executou a tarefa do dia.
RF008	O usuário pode editar sua foto de usuário.
RF009	O sistema deve atualizar o grau de prática do hábito automaticamente após um dado período de atividade do usuário.
RF010	O sistema deve conter hábitos inseridos de forma nativa, para que o usuário possa escolher dentre os já inseridos.
RF011	O usuário pode deletar seu usuário.
RF012	O usuário pode deletar um hábito inserido.
RF013	O usuário pode editar um dado de login.
RF014	O usuário pode editar um hábito cadastrado.
RF015	O usuário pode editar a frequência que um hábito deve ser praticado.
RF016	O usuário pode editar o grau de prática de um hábito.
RF017	O usuário pode procurar por hábitos no sistema.
RF018	O usuário pode procurar por usuários cadastrados no sistema.
RNF001	O sistema deve ser desenvolvido em Java.
RNF002	O banco de dados do sistema deve ser desenvolvido pelo (banco de dados)
RNF003	O sistema deve ser desenvolvido para acesso local.

2.2 Diagramas de UML

2.1.1. Diagrama de Caso de Uso

2.1.2. Diagrama de Classes

3. Banco de Dados

3.1. Diagrama Lógico (DER)

3.2. Script (dbLiveRoutine.sql)

create database db_liveRoutine;
use db_liveRoutine;

CREATE TABLE tb_pessoa(
id INT PRIMARY KEY AUTO_INCREMENT,
tipo VARCHAR(100),
usuario VARCHAR(30),
senha VARCHAR(30),
nome VARCHAR(60),
idade INT(3),
sexo CHAR(1),
peso DOUBLE(3,1),
altura DOUBLE
);

CREATE TABLE tb_habito(
id INT PRIMARY KEY AUTO_INCREMENT,
nome VARCHAR(30),
descricao VARCHAR(200),

```
grau INT.
habilitado boolean
CREATE TABLE tb_pessoa_habito(
fk pessoa id INT,
fk habito id INT,
FOREIGN KEY (fk pessoa id) REFERENCES tb pessoa(id),
FOREIGN KEY (fk_habito_id) REFERENCES tb_habito(id)
);
CREATE TABLE tb timer(
id INT PRIMARY KEY AUTO INCREMENT,
fk habito id INT,
hora toque TIME,
FOREIGN KEY (fk habito id) REFERENCES tb habito(id)
);
CREATE TABLE tb_habito_timer(
fk habito id INT,
fk timer id INT,
FOREIGN KEY (fk_habito_id) REFERENCES tb_habito(id),
FOREIGN KEY (fk timer id) REFERENCES tb timer(id)
);
INSERT INTO tb_pessoa(usuario, senha, tipo, nome, idade, sexo, peso, altura)
VALUES(
'admin',
'adminPass',
'administrador',
'administrador'.
'0',
'M',
'0',
'0'
);
INSERT INTO tb_habito(nome, descricao, grau, habilitado) VALUES(
'Beber água',
'Lembrete para beber água',
'1',
true
);
INSERT INTO to timer(fk habito id, hora toque) VALUES(
'1',
```

```
'10:00'
);

INSERT INTO tb_habito_timer(fk_habito_id, fk_timer_id) VALUES(
'1',
'1'
);

select * from tb_pessoa;
select * from tb_habito;
select * from tb_timer;
select * from tb_ habito timer;
```

4. Protótipo de Interface

5. Conclusão

O desenvolvimento do "Live Routine" apresentou uma abordagem estruturada e abrangente para promover hábitos saudáveis em alimentação, atividade física e saúde mental. Com uma ampla gama de funcionalidades definidas, desde o cadastro de usuários até a gestão de hábitos e notificações, o sistema busca empoderar os participantes a adotarem uma rotina mais equilibrada e saudável.

A modelagem detalhada, incluindo requisitos funcionais e não funcionais, assim como os diagramas UML e o banco de dados, fornecem uma base sólida para o desenvolvimento e implementação do sistema. Os requisitos funcionais delineiam claramente as capacidades que o sistema deve oferecer aos usuários, enquanto os requisitos não funcionais estabelecem diretrizes importantes para sua construção e funcionamento.

O Diagrama de Caso de Uso e o Diagrama de Classes fornecem uma visão geral da interação entre os usuários e o sistema, bem como das entidades e relacionamentos principais dentro do sistema, respectivamente.

Em resumo, o "Live Routine" emerge como uma ferramenta abrangente e poderosa para promover hábitos saudáveis, capacitando os usuários a fazerem escolhas conscientes para melhorar seu bem-estar geral. Com uma base sólida estabelecida, o próximo passo seria a implementação e teste do sistema para garantir sua eficácia e usabilidade.

6. Referências Bibliográficas

6.1 Para pesquisas de campo:

https://jornal.usp.br/ciencias/como-a-pandemia-da-covid-19-impactou-o-setor-de-abastecimento-de-agua-no-brasil/

https://www.saude.ce.gov.br/2021/03/22/consumo-de-agua-melhora-metabolismo-e-contribui-para-tratamento-de-doencas-respiratorias/

https://g1.globo.com/google/amp/sp/sorocaba-jundiai/noticia/2020/05/23/pesquisa-aponta-que-consumo-de-agua-aumentou-durante-a-quarentena-em-sorocaba.ghtml

https://ge.globo.com/google/amp/eu-atleta/saude/noticia/pratica-de-exercicios-fisicos-melhorou-a-qualidade-de-vida-na-pandemia.ghtml

https://ufmg.br/comunicacao/noticias/pandemia-piorou-indicadores-de-atividade-fisica-obesidade-e-morbidade-por-doencas-cronicas

6.2 Para construção de código:

https://www.pactoglobal.org.br/ods-e-agenda-2030/

https://stackoverflow.com/

https://www.w3schools.com/

https://www.youtube.com/watch?v=9zmwLyx0clk