

Machine Translation

Breaking Down Language Barriers with AI

ITAI 2373: Module 11

Learning Outcomes

- Trace the evolution from rule-based to neural translation.
- Explain encoder-decoder & Transformer architectures.
- Explore real-world applications and business impact
- Examine ethical considerations in cross-cultural communication.

The Translation Challenge

- Languages have different structures and rule
- Cultural context shapes meaning
- Ambiguity exists in all languages
- Idioms and expressions don't translate literally
- One word can have multiple meanings

Evolution of Machine Translation

MT Paradigms

Rule-based

- Uses linguistic rules and dictionaries
- Requires expert knowledge for each language pair
- Predictable and consistent output
- Struggles with ambiguity and exceptions

MT Paradigms

- Learns from large collections of translated texts
- Uses probability to choose best translations
- Requires parallel corpora for training
- Dominated the field from 1990s to 2010s

MT Paradigms

Neural

- Uses deep learning to understand context
- Produces more fluent and natural translations
- Can handle longer sentences and complex structures
- Requires large amounts of training data

Neural MT Architecture

Encoder

• Compress source tokens input sequence to build a hidden representation.

Decoder

 Generates output tokens one by one conditioned on the context vector.

Special tokens

<bos> marks start, <eos> marks end of sequence.

Google Cloud

Encoder -

Decoder

Architecture

The Transformer Revolution

- Attention mechanisms focus on relevant parts of text
- Parallel processing enables faster training
- Better handling of long-range dependencies
- Foundation for modern translation systems
- Multi-head attention: multiple perspectives of context
- Transformers: replace recurrence with attention and positional encodings

Google Cloud

Attention

Mechanism:

Overview

Transformer

GPT*

BERT*

Encoder-only

Encoder-only

^{*}Illustrative example, exact model architecture may vary slightly

MT Evaluation Challenges

- Many correct translations for a single sentence
- Automatic metrics are proxies for quality
- Human judgment required for fluency & adequacy

Evaluation Metrics Three Evaluation Paradigms

Deep Learning (DL) Metrics

 Foundation metrics for neural network training

Large Language Model (LLM) Metrics

Specialized metrics for text generation quality

Machine Translation (MT) Metrics

 Purpose-built metrics for crosslanguage preservation

DL Metrics - The Foundation

Training Metrics

- Loss Functions: Cross-entropy, MSE, Binary crossentropy
- Gradient Norms: Learning signal strength monitoring
- Learning Rate: Convergence optimization tracking

Performance Metrics

- Accuracy: Basic correctness measurement
- AUC-ROC: Threshold-independent classification
- Perplexity: Language modeling uncertainty

Primary Use: Model training, convergence monitoring, basic performance

LLM Metrics - Generation Quality

Semantic Understanding

- BERTScore: Contextual embedding similarity
- Semantic Similarity: Meaning-based comparison

Human-Centric Evaluation

- Helpfulness: User utility assessment
- Harmlessness: Safety and bias evaluation
- Honesty: Factual accuracy verification

Task-Specific

- Pass@k: Code generation success rate
- Exact Match: Factual QA correctness

Primary Use: Open-ended generation, subjective quality, user satisfaction

MT Metrics - Cross-Language Fidelity

Lexical Overlap

- BLEU: N-gram precision with brevity penalty METEOR: Synonymaware with word order consideration
- ROUGE: Recall-oriented content coverage

Translation-Specific

- Adequacy: Meaning preservation accuracy
- Fluency: Target language naturalness
- Multi-reference: Multiple correct translation handling

Primary Use: Source-target preservation, linguistic transformation, meaning fidelity

Three Paradigms

Aspect	Deep Learning	LLM Metrics	MT Metrics
Purpose	Training optimization	Generation quality	Meaning preservation
Reference	Ground truth labels	Variable/None	Source text
Creativity	Not applicable	Valued	Discouraged
Subjectivity	Objective	Highly subjective	Moderately objective
Speed	Very fast	Moderate	Fast

Perplexity

Measures how well a ara model predicts text; Compares generated text to reference text; predects, lower is better

BLEU

n-gram - Compares genefited pattrence to comosanoloys with human-generated used using n-gram Licorused for summization

ROUGE - Compeirtes of in in BERTEOR turyn,
Consterates an canprators with a seman similams with
word dolunperttannd to new orane, used for
translation

METEOR

Evaluates lollpryne text atherin, conduliaties with senatic similarers erplieses, culcutian elseddancs and quations with qualif-contultrived BLEU to for translation

Human Evaluation

Task-+ Spectific Metrics, e.g. Exect-Match, impired Match for quallance cuublits inn nelewed Match, liake an ouptes, uses senantic similation for cucative BLMCk for acsa@k for sale@t/CAM code generation

Most used Metrics for MT

BLEU & METEOR

• BLEU:

- n-gram precision metric; compares candidate to reference
- Scores range from 0 to 1; higher is better

• METEOR:

- aligns unigrams; considers synonyms & stemmed forms
- Balances precision and recall; penalizes word orde errors

TER, ROUGE & ChrF

- TER (Translation Edit Rate):
 - Counts insertions, deletions & substitutions
 - Measures post-editing effort required
- ROUGE:
 - Recall-oriented; measures overlapping n-grams
- · ChrF:
 - F-score at the character level;
 captures morphological differences

Human Evaluation

- Fluency: naturalness and readability
- Adequacy: content conveys the same meaning
- Cultural & pragmatic correctness

Choosing your Metrics

- **BLEU/METEOR**: Quick automatic scoring
- TER: Understanding editing effort needed
- ChrF: Handling different languages and morphology
- Human eval: Final quality check

Speech-to-Speech Translation

Multilingual Models

One model for many languages

- •Multi-language system: One model handles multiple language pairs instead of separate systems for each pair
- •Zero-shot translation: Translates between language combinations never seen in training
- •Shared learning benefits: Learning from many languages improves translation quality across all pairs
- •Resource efficiency: One model requires less computational power than multiple separate systems

Ethics & Responsible Use

- Professional Impact: Effects on human translators
- Cultural Preservation: Maintaining linguistic diversity
- Privacy Concerns: Sensitive information in translation systems
- Quality Responsibility: Who is accountable for translation errors?

Challenges and Limitation

- Cultural Context: Idioms, humor, and cultural references
- Domain Specificity: Technical, legal, and medical terminology
- Low-Resource Languages: Limited training data
- Bias and Fairness: Gender, cultural, and social biases

Future Trends

Handling informal speech, slang & dialects

Domain adaptation & low-resource languages

Energy efficiency & computational cost

Zero-shot and multimodal translation

Key Takeaways

MT evolved from rule-based to statistical to neural

Neural architectures capture context via encoders, decoders & attention

Quality assessed via BLEU, METEOR, TER, ROUGE & ChrF plus human review

Speech translation integrates ASR, NMT & TTS

Applications & future: travel, research, low-resource support & beyond