

Page 27 of 34

What Is Claimed:

3

4 5

1 2

3

1

2

3

1

2

1

2

4

1	. A crystalline silicoaluminophosphate molecular sieve comprising a
porous f	ramework structure and a catalytically active integrated hydrocarbon co-
catalyst,	

wherein the silicoaluminophosphate has a catalytic activity index for methanol conversion at 250°C of at least 2.

- 2. The crystalline silicoaluminophosphate molecular sieve of claim 1, wherein the silicoaluminophosphate has a catalytic activity index for methanol conversion at 250°C of at least 10.
- The crystalline silicoaluminophosphate molecular sieve of claim 1, wherein the catalytically active integrated hydrocarbon co-catalyst is a product of a reaction of any hydrocarbon having a diameter less than a pore-mouth diameter of the crystalline silicoaluminophosphate molecular sieve in contact with the porous framework structure.
 - 4. The crystalline silicoaluminophosphate molecular sieve of claim 1, wherein the catalytically active integrated hydrocarbon co-catalyst comprises 0.1 to 23 weight percent single ring aromatics.
 - 5. The crystalline silicoaluminophosphate molecular sieve of claim 3, wherein the hydrocarbon comprises an oxygenate.
 - 6. The crystalline silicoaluminophosphate molecular sieve of claim 1, wherein the catalytically active integrated hydrocarbon co-catalyst remains active even after being exposed to air at room temperature for 12 hours or after being subjected to heating at 450°C for 0.5 hour.
- The crystalline silicoaluminophosphate molecular sieve of claim 1, wherein the silicoaluminophosphate molecular sieve is selected from the group consisting of SAPO-5, SAPO-8, SAPO-11, SAPO-16, SAPO-17, SAPO-18, SAPO-40, SAPO-41, SAPO-31, SAPO-34, SAPO-35, SAPO-36, SAPO-37, SAPO-40, SAPO-41,

5

6

1

2

1

2

3

Page 28 of 34

- 5 SAPO-42, SAPO-44, SAPO-47, SAPO-56, the metal containing forms thereof, and mixtures thereof. 6
- The crystalline silicoaluminophosphate molecular sieve of claim 7, 8. 1 wherein the silicoaluminophosphate molecular sieve is SAPO-34. 2
- 9. A catalyst for converting an oxygenate feedstock to an olefin product, 1 comprising a crystalline silicoaluminophosphate molecular sieve having a porous 2 framework structure, and a binder, wherein the porous framework structure contains 3 4 an active integrated hydrocarbon co-catalyst,
 - wherein the silicoaluminophosphate has a catalytic activity index for methanol conversion at 250°C of at least 2.
 - The catalyst of claim 9, wherein the silicoaluminophosphate has a 10. catalytic activity index for methanol conversion at 250°C of at least 10.
- 11. The catalyst of claim 9, wherein the catalytically active integrated 1 2 hydrocarbon co-catalyst is a product of a reaction of any hydrocarbon having a diameter less than a pore-mouth diameter of the crystalline silicoaluminophosphate 3 4 molecular sieve in contact with the porous framework structure.
- 12. The catalyst of claim 9, wherein the catalytically active integrated 1 hydrocarbon co-catalyst comprises 0.1 to 23 weight percent single ring aromatics. 2
- The catalyst of claim 11, wherein the hydrocarbon comprises an 1 13. 2 oxygenate.
 - The catalyst of claim 9, wherein the catalytically active integrated 14. hydrocarbon co-catalyst remains active even after being exposed to air at room temperature for 12 hours or after being subjected to heating at 450°C for 0.5 hour.
- The catalyst of claim 9, wherein the silicoaluminophosphate molecular 15. 1 sieve is selected from the group consisting of SAPO-5, SAPO-8, SAPO-11, SAPO-2
- 3 16, SAPO-17, SAPO-18, SAPO-20, SAPO-31, SAPO-34, SAPO-35, SAPO-36,

3

	Page 29 of 34	
4	SAPO-37, SAPO-40, SAPO-41, SAPO-42, SAPO-44, SAPO-47, SAPO-56, the metal	
5	containing forms thereof, and mixtures thereof.	
1	16. The catalyst of claim 15, wherein the silicoaluminophosphate	
2	molecular sieve is SAPO-34.	
1	17. A method of making an olefin product from an oxygenate feedstock,	
2	comprising:	
3	contacting a silicoaluminophosphate molecular sieve having a porous	
4	framework structure with a hydrocarbon at conditions effective to form at least a	
5	integrated hydrocarbon co-catalyst within the porous framework, and	
6	contacting the silicoaluminophosphate molecular sieve containing the	
7	integrated hydrocarbon co-catalyst with an oxygenate feedstock under conditions	
8	effective to convert the feedstock to the olefin product,	
9	wherein the silicoaluminophosphate has a catalytic activity index for methanol	
10	conversion at 250°C of at least 2.	
1	18. The method of claim 17, wherein the silicoaluminophosphate has a	
2	catalytic activity index for methanol conversion at 250°C of at least 10.	
1	19 The method of claim 17, wherein the catalytically active integrated	
2	hydrocarbon co-catalyst is a product of a reaction of any hydrocarbon having a	
3	diameter less than a pore-mouth diameter of the crystalline silicoaluminophosphate	
4	molecular sieve in contact with the porous framework structure.	
1	20. The method of claim 17, wherein the catalytically active integrated	
2	hydrocarbon co-catalyst comprises 0.1 to 23 weight percent single ring aromatics.	
1	The method of claim 19, wherein the hydrocarbon comprises an	
2	oxygenate.	
	on general.	
1	The method of claim 17, wherein the catalytically active integrated	
2	hydrocarbon co-catalyst is remains active even after being exposed to air at room	

temperature for 12 hours or after being subjected to heating at 450°C for 0.5 hour.

Page 30 of 34

1	23.	The method of claim 17, wherein the silicoaluminophosphate				
2	molecular sieve is selected from the group consisting of SAPO-5, SAPO-8, SAPO-1					
3	SAPO-16, S	SAPO-16, SAPO-17, SAPO-18, SAPO-20, SAPO-31, SAPO-34, SAPO-35, SAPO-				
4	36, SAPO-3	36, SAPO-37, SAPO-40, SAPO-41, SAPO-42, SAPO-44, SAPO-47, SAPO-56, the				
5	metal containing forms thereof, and mixtures thereof.					
1	24.	The catalyst of claim 23, wherein the silicoaluminophosphate				
2	molecular sieve is SAPO-34.					
1	25.	An olefin product made according to the method of claim 17.				
1	26.	The olefin product of claim 25 comprising ethylene and propylene.				
1	27.	A method of making a polyolefin from an oxygenate feedstock,				
2	comprising:					
3	contacting a silicoaluminophosphate molecular sieve having a porous					
4	framework s	tructure with a hydrocarbon at conditions effective to form at least a				
5	integrated hydrocarbon co-catalyst within the porous framework,					
6	contacting the silicoaluminophosphate molecular sieve containing the					
7	integrated hydrocarbon co-catalyst with an oxygenate feedstock under conditions					
8	effective to convert the feedstock to an olefin product, and					
9	contacting the olefin product with a polyolefin-forming catalyst under					
10	conditions effective to form the polyolefin,					
11	wher	ein the silicoaluminophosphate containing the integrated hydrocarbon co				
12	catalyst has	a catalytic activity index for methanol conversion at 250°C of at least 2.				
1	28.	A polyolefin made by the process of claim 27.				
1	29.	The polyolefin of claim 28 comprising polyethylene.				
1	30.	The polyolefin of claim 28 comprising polypropylene.				
1	31.	A crystalline silicoaluminophosphate molecular sieve comprising a				
2	porous frame	ework structure and a catalytically active integrated hydrocarbon co-				
3	catalyst,					

1

3

4

Page 31 of 34

4	wherein the catalytically active integrated hydrocarbon co-catalyst is a product
5	of a reaction of a hydrocarbon in contact with the porous framework.

- 1 32. The crystalline silicoaluminophosphate molecular sieve of claim 31, 2 wherein the hydrocarbon comprises an oxygenate.
- 1 33. The crystalline silicoaluminophosphate molecular sieve of claim 31, 2 wherein the catalytically active integrated hydrocarbon co-catalyst comprises 0.1 to 3 23 weight percent single ring aromatics.
 - 34. The crystalline silicoaluminophosphate molecular sieve of claim 31, wherein the catalytically active integrated hydrocarbon co-catalyst is remains active even after being exposed to air at room temperature for 12 hours or after being subjected to heating at 450°C for 0.5 hour.
- The crystalline silicoaluminophosphate molecular sieve of claim 31, wherein the silicoaluminophosphate molecular sieve is selected from the group consisting of SAPO-5, SAPO-8, SAPO-11, SAPO-16, SAPO-17, SAPO-18, SAPO-20, SAPO-31, SAPO-34, SAPO-35, SAPO-36, SAPO-37, SAPO-40, SAPO-41, SAPO-42, SAPO-44, SAPO-47, SAPO-56, the metal containing forms thereof, and mixtures thereof.
- 1 36. The crystalline silicoaluminophosphate molecular sieve of claim 35, 2 wherein the silicoaluminophosphate molecular sieve is SAPO-34.
- 1 37. A method of making an integrated hydrocarbon co-catalyst, 2 comprising:
- preparing an silicoaluminophosphate molecular sieve having a porous
 framework structure and
- contacting said silicoaluminophosphate with a hydrocarbon at conditions
 effective to form at least said integrated hydrocarbon co-catalyst within the porous
 framework.

Page 32 of 34

8	wherein said the silicoaluminophosphate comprising said integrated
9	hydrocarbon co-catalyst has a catalytic activity index for methanol conversion at
10	250°C of at least 2.

- The method of claim 37, wherein said conditions effective to form at least said integrated hydrocarbon co-catalyst comprises contacting a hydrocarbon having a diameter less than a pore-mouth diameter of the crystalline silicoaluminophosphate molecular sieve.
- 1 39. The method of claim 38, wherein said contacting comprises first contacting at a lower temperature and second contacting at a higher temperature.
- 1 40. The method of claims 39, wherein a difference between said higher temperature and said lower temperature is at least 10°C.
- 1 41. The method of claims 39, wherein a difference between said higher temperature and said lower temperature is at least 25°C.
- 1 42. The method of claims 39, wherein the hydrocarbon contacted in said 2 first contacting is different from that contacted in said second contacting.
- 1 43. The method of claims 42, wherein a difference between said higher 2 temperature and said lower temperature is at least 10°C.
- 1 44. The method of claims 42, wherein a difference between said higher temperature and said lower temperature is at least 25°C.
- 1 45. The method of claim 37, wherein the silicoaluminophosphate has a catalytic activity index for methanol conversion at 250°C of at least 10.
- 1 46. The method of claim 37, wherein the catalytically active integrated 2 hydrocarbon co-catalyst comprises 0.1 to 23 weight percent single ring aromatics.
- 1 47. The method of claim 37, wherein the hydrocarbon comprises an 2 oxygenate.

Page 33 of 34

1	48.	The method of claim 37, wherein the catalytically active integrated
2	hydrocarbon	co-catalyst is remains active even after being exposed to air at room
3	temperature for 12 hours or after being subjected to heating at 450°C for 0.5 hou	

- The method of claim 37, wherein the silicoaluminophosphate
 molecular sieve is selected from the group consisting of SAPO-5, SAPO-8, SAPO-11,
 SAPO-16, SAPO-17, SAPO-18, SAPO-20, SAPO-31, SAPO-34, SAPO-35, SAPO36, SAPO-37, SAPO-40, SAPO-41, SAPO-42, SAPO-44, SAPO-47, SAPO-56, the
 metal containing forms thereof, and mixtures thereof.
- 1 50. The catalyst of claim 49, wherein the silicoaluminophosphate 2 molecular sieve is SAPO-34.