CAN Bus 보안 강화를 위한 Sequence와 Time interval 기반 침입 탐지 및 공격 분류

김형선*, 강도희*, 곽병일 ** *, ** 한림대학교 소프트웨어학부(학부생, 교수)

Data-driven Cybersecurity Research LAB

연구 개요 및 목적

현대 차량은 전자 제어 장치(Electronic Control Unit, ECU)을 사용하여 차량 내부 시스템 관리 및 제어한다. 이러한 ECU는 Controller Area Network (CAN) 통신 프로토콜을 사용하여 정보를 교환한다. 하지만, CAN Bus는 메시지 암호화, 인증과 같은 보안 기능을 제공하지 않아, 사이버보안 위협에 노출되어 있다.

본 연구는 CAN Bus에서의 발생 가능한 공격 탐지 및 식별 방법을 제안한다. 이를 위해 연속된 CAN Dataframe Sequence 및 Time interval을 기반으로 피처를 추출하였으며, XGBoost 알고리즘을 적용하여 성능을 평가하였다.

피처 추출

기존 데이터의 Arbitration ID (AID)와 Byte Data를 10진수로 변환하여 CAN Bus 데이터의 순서와 주기성을 고려한 총 9개의 피처를 추출하였다.

1. Sequence 계열 피처

현재 CAN 데이터를 기준으로 하여 이전 AID 5개를 추출하여 Sequence로 추가하였다. 해당 피처를 통해 CAN 데이터의 순서에 대한 정보를 제공한다.

2. Time interval 기반 피처

AID와 DLC를 고려하여 4가지 피처를 추출했다. 먼저, Time Interval 피처는 현재 데이터와 직전 데이터의 Timestamp 차를 계산하였고, 나머지 3가지의 피처는 아래 Fig.1과 같이 추출되었다.

- AID Gap Time Interval: Fig.1-(a)와 같이 동일한 AID를 가지는 데이터끼리의 Time Interval을 구하였다.
- DLC Time Delta: Fig.1-(b)와 같이 동일한 DLC를 가지는 데이터 간의 Time Interval을 계산하였다.

Fig.1 Time Interval Based Feature Extraction

(c) DLC Transition Time

• **DLC Transition Time :** Fig.1-(c)와 같이 DLC 값이 변할 때, 이전 데이터와 현재 데이터 간 Time Interval을 계산하였다.

Fig.2는 Time Interval 기반 피처 값들을 정상과 공격이 섞여 있는 전체 데이터에 대해 나타낸 그래프이다. Fig2-(a)는 각 공격에 대한 위치를 표시했으며, 그래프를 통해 해당 피처들이 정상과 4가지 공격사이의 값 변화를 명확하게 나타내는 것을 확인할 수 있다. 특히, Fig.2-(b)와 Fig.2-(e)는 Replay 공격 패턴을 두드러지게 나타낸다.

Fig.2 Graph of Time Interval Based Feature

실험 및 평가

4가지 공격(Spoofing, Fuzzing, Flooding, Replay)을 공격으로 구분하였을 때를 True Positive (TP)로 설정한 뒤 계산한 정확도 (Accuracy)와 F1-Score를 Table.1에 나타냈다.

각 피처를 단일로 추가했을 때와 종합적으로 추가했을 때 모두 기존 데이터(AID, Byte Data)만 모델의 입력 데이터로 설정했을 때보다 높은 성능을 보였다. 특히, 종합 피처 적용 시 Replay에 대한 F1-Score가 26.62% 향상되었다.

Feature	Accuracy (%)	F1-Score (%)
AID, Byte Data	99.04	92.66
AID Sequence	99.58	97.25
Time Interval	99.56	96.95
AID Gap Timeinterval	99.39	95.84
DLC Time Delta	99.46	96.04
DLC Transition Time	99.25	94.49
Total Feature	99.88	99.27

Table.1 Accuracy and F1-score by Feature

결론

본 연구는 차량의 CAN Bus에서 발생할 수 있는 4가지 공격 유형에 대한 침입 탐지 및 분류 방법을 제안하였다. CAN 데이터의 순서와 주기성을 고려하여 Sequence 및 Time Interval 기반 피처 9개를 추출하였다. 해당 피처를 단일 및 종합적으로 적용하여 성능을 평가한 결과, 기존 데이터(AID, Byte Data)에 비해 분류 정확도 및 F1-Score가 향상되었음을 확인하였다. 이를 통해 제안된 피처 기반방법이 유용하게 작용함을 입증하였다.

CAN Bus 보안 강화를 위한 Sequence와 Time interval 기반 침입 탐지 및 공격 분류

김형선*, 강도희*, 곽병일 ** *, ** 한림대학교 소프트웨어학부(학부생, 교수)

Data-driven Cybersecurity Research LAB

Background & Purpose

현대 차량은 전자 제어 장치(Electronic Control Unit, ECU)을 사용하여 차량 내부 시스템 관리 및 제어한다. 이러한 ECU는 Controller Area Network (CAN) 통신 프로토콜을 사용하여 정보를 교환한다. 하지만, CAN Bus는 메시지 암호화, 인증과 같은 보안기능을 제공하지 않아, 사이버보안 위협에 노출되어 있다.

본 연구는 CAN Bus에서의 발생 가능한 공격 탐지 및 식별 방법을 제안한다. 이를 위해 연속된 CAN Dataframe Sequence 및 Time interval을 기반으로 피처를 추출하였으며, XGBoost 알고리즘을 적용하여 성능을 평가하였다.

Feature Extraction

기존 데이터의 Arbitration ID (AID)와 Byte Data를 10진수로 변환하여 CAN Bus 데이터의 순서와 주기성을 고려한 총 9개의 피처를 추출하였다.

1. Sequence 계열 피처

현재 CAN 데이터를 기준으로 하여 이전 AID 5개를 추출하여 Sequence로 추가하였다. 해당 피처를 통해 CAN 데이터의 순서에 대한 정보를 제공한다.

2. Time interval 기반 피처

AID와 DLC를 고려하여 4가지 피처를 추출했다. 먼저, Time Interval 피처는 현재 데이터와 직전 데이터의 Timestamp 차를 계산하였고, 나머지 3가지의 피처는 아래 Fig.1과 같이 추출되었다.

- AID Gap Time Interval: Fig.1-(a)와 같이 동일한 AID를 가지는 데이터끼리의 Time Interval을 구하였다.
- DLC Time Delta: Fig.1-(b)와 같이 동일한 DLC를 가지는 데이터 간의 Time Interval을 계산하였다.

(c) DLC Transition Time

Fig.1 Time Interval Based Feature Extraction

• **DLC Transition Time :** Fig.1-(c)와 같이 DLC 값이 변할 때, 이전 데이터와 현재 데이터 간 Time Interval을 계산하였다.

Fig.2는 Time Interval 기반 피처 값들을 정상과 공격이 섞여 있는 전체 데이터에 대해 나타낸 그래프이다. Fig2-(a)는 각 공격에 대한 위치를 표시했으며, 그래프를 통해 해당 피처들이 정상과 4가지 공격사이의 값 변화를 명확하게 나타내는 것을 확인할 수 있다. 특히, Fig.2-(b)와 Fig.2-(e)는 Replay 공격 패턴을 두드러지게 나타낸다.

Fig.2 Graph of Time Interval Based Feature

Experiments & Evaluations

4가지 공격(Spoofing, Fuzzing, Flooding, Replay)을 공격으로 구분하였을 때를 True Positive (TP)로 설정한 뒤 계산한 정확도 (Accuracy)와 F1-Score를 Table.1에 나타냈다.

각 피처를 단일로 추가했을 때와 종합적으로 추가했을 때 모두 기존 데이터(AID, Byte Data)만 모델의 입력 데이터로 설정했을 때보다 높은 성능을 보였다. 특히, 종합 피처 적용 시 Replay에 대한 F1-Score가 26.62% 향상되었다.

Feature	Accuracy (%)	F1-Score (%)
AID, Byte Data	99.04	92.66
AID Sequence	99.58	97.25
Time Interval	99.56	96.95
AID Gap Timeinterval	99.39	95.84
DLC Time Delta	99.46	96.04
DLC Transition Time	99.25	94.49
Total Feature	99.88	99.27

Table.1 Accuracy and F1-score by Feature

Conclusion

본 연구는 차량의 CAN Bus에서 발생할 수 있는 4가지 공격 유형에 대한 침입 탐지 및 분류 방법을 제안하였다. CAN 데이터의 순서와 주기성을 고려하여 Sequence 및 Time Interval 기반 피처 9개를 추출하였다. 해당 피처를 단일 및 종합적으로 적용하여 성능을 평가한 결과, 기존 데이터(AID, Byte Data)에 비해 분류 정확도 및 F1-Score가 향상되었음을 확인하였다. 이를 통해 제안된 피처 기반방법이 유용하게 작용함을 입증하였다.