

131

SEQUENCE LISTING

<110> NICKlin, Martin
Barton, Jenny

<120> IL-1L1 GENE AND POLYPEPTIDE PRODUCTS

<130> MSA-021.01

<140> 09/617,720

<141> 2000-07-17

<160> 54

<170> PatentIn Ver. 2.1

<210> 1

<211> 2563

<212> DNA

<213> Homo sapiens

<400> 1
aggggagtct acaccctgtg gagctcaaga tggtccttag tggggcgctg tgcttccgaa 60
tgaaggactc ggcattgaag gtgtttatc tgcataataa ccagctcta gctggagggc 120
tgcatgcagg gaaggcatt aaaggtgaag agatcagcgt ggccccat cggtggctgg 180
atgccacgcgt gtcccccgcc atccctgggtg tccagggtgg aagccagtgc ctgtcatgtg 240
gggtggggca ggagccgact ctaacactag agccagtgaa catcatggag ctctatctt 300
gtgccaagga atccaagagc ttcacctct accggcgaaa catggggctc acctccagct 360
tcgagtcggc tgcctaccgg ggctgggtcc tgcacgggt geetgaagcc gatcagcctg 420
tcagactcac ccagcttccc gagaatgggtg gctggaatgc cccatcaca gacttctact 480
tccagcagtg tgacttagggc aacgtgc(cc) cccagaactc cctggcaga gccagctcg 540
gtgagggggtg agtggaggag acccatgggg gacaatact ctttctgtc tcaggacccc 600
cagggtctgac ttagtggca cctgaccact ttgtcttctg gttcccaatt tgcataaatt 660
ctgagatttg gagctcagtc cagggtcctc cccactggg tggtgcact gctgtggAAC 720
cttgtaaaaaa ccatgtgggg taaactgggataaacatgaa aagatttctg tgggggtggg 780
gtgggggagt gctggaaatc attcctgttt aatggtaact gacaagtgtt accctgagcc 840
cccgaggcca acccatcccc agttggacct tataagggtca gtagctctcc acatgaagtc 900
ctctcactca ccactgtgca ggagaggagg gtggtcataag agtcaggat ctatggccct 960
tggcccagcc ccacccccc ttcccttatcc tgcactgtc atatgttacc tttcttatct 1020
cttcctcat catctgttg tgggcatggag gaggtggta tgcagaaga aatggttcga 1080
gctcagaaga taaaagataa gttaggtatg ctgatccct tttaaaacc caagatacaa 1140
tcaaaatccc agatgctggt ctctattccc atgaaaaagt gctcatgaca tattgagaag 1200
acctacttac aaagtggcat atattgcaat ttattttat taaaagatac ctattttat 1260
atttctttat agaaaaaaagt ctggaagagt ttacttcaat tgttagcaatg tcagggtgt 1320
ggcagtatag gtgattttc ttttaattct gttaattttat ctgtatttcc taattttct 1380
acaatgaaga tgaatttcctt gtataaaaat aagaaaaagaa attaatctt aggttaagcag 1440
agcagacatc atctctgatt gtcctcagcc tccaaatccc cagagtaat tcaaattgaa 1500
tcgagctctg ctgctctgg tgggtgtat agtgcattgg aaacagatct cagaaagcc 1560
actgaggagg aggctgtgt gagtttgggt ggctggaaat tctgggtaaag gaacttaaag 1620
aacaatccc atctgttac tctttccctt aaggatcaca gcccctgggaa ttccaaggca 1680
ttggatccag tctctaagaa ggctgctgtt ctgggtgtat tgcgtcccc tcaaattcac 1740
atccttcttgc gaatctcgt ctgtgagtt atttggagat aaggtctctg cagatgtat 1800
tagttaagac aaggtcatgc tggatgaagg tagacctaaa ttcaatatga ctggtttct 1860
tgtatgaaaa ggagaggaca cagagacaga ggagacgcgg ggaagactat gtaaagatga 1920
aggcagagat cggagtttg cagccacaag ctaagaaaca ccaaggattt gggcaaccat 1980
cagaagcttg gaagaggcaa agaagaattt ttccttagag gcttttagagg gataacggct 2040
ctgctgaaac cttaatctca gacttccagc ctccctgaacg aagaaagaat aaatttcggc 2100
tggtaaagc caccaaggat aattggttac agcagctcta gggaaactaat acagctgcta 2160

aaatgatccc tgcctccatc tgtttacatt ctgtgtgtgt cccctccac aatgtaccaa 2220
 agttgtcttt gtgacccaat agaatatggc agaagtgatg gcatgcact tcgaagatta 2280
 ggttataaaa gacactgcag ctctacttg agccctctct ctctgcacc caccggcccc 2340
 aatcttatctt ggctcaactcg ctctggggga agctagctgc catgctatga gcaggcctat 2400
 aaagagactt acgtggtaaa aatgaagtc tcctgcccac agccacatta gtgaacctag 2460
 aagcagagac tctgtgagat aatcgatgtt tggtttta agttgctcag tttggctca 2520
 acttgttatg cagcaataga taaataatat gcagagaaag aga 2563

<210> 2
 <211> 39
 <212> DNA
 <213> Homo sapiens

<400> 2
 ttgaggaaca ggcagactcc acagctcccg ccaggagaa

39

<210> 3
 <211> 42
 <212> DNA
 <213> Homo sapiens

<400> 3
 aaggaaggag ggagaaggga aggagtgaag gaaggagtga aa

42

<210> 4
 <211> 1284
 <212> DNA
 <213> Murine sp.

<400> 4
 ggcacgaggg gagcctgctt tctacttagg tctcaaattt tccagccttg tctttgccta 60
 aaatttcctg ctgttattt caaaataggg tctacatact gtggagctca tgatggttct 120
 gagtggggca ctatgcttcc gaatgaagga ttcaagccttg aaggtactgt atctgcacaa 180
 taaccagctg ctggctggag gactgcacgc agagaaggc attaaagggtg aggagatcag 240
 tgttgtccca aatcgggcac tggatgcac tctgtccct gtcatcctgg gcggtcaagg 300
 aggaagccag tgcctatctt gtggacaga gaaaggccaa attctgaaac ttgagccagt 360
 gaacatcatg gagctctacc tcggggccaa ggaatcaaag agcttcaccc tctaccggcg 420
 ggatatgggt cttacctcca gcttcgaatc cgctgcctac ccaggctggt tccctctgcac 480
 ctcaccggaa gctgaccagc ctgtcaggct cactcagatc cctgaggacc cggcctggga 540
 tgctccatc acagacttct actttcagca gtgtgacttag ggctgcgtgg tccccaaaaac 600
 tccataagca gaggcagagt aggcaactggc ggctcctgtat agaggataga gagacagagg 660
 agctccacag tagtggctt actcctctcc ttccctactg gactcccgct tctgacctaa 720
 ggcacacaga cactctttc tcctgcattc cagtgcgtgt aaatcttctg gtatttggag 780
 ctcaatgtgt agattcttc agattggatg gtactacctc tggtgtggaa cccaatagaa 840
 accacgtagg accaacaataag agcaacataa aagattcttg ggtgaagaag aggtggaaac 900
 tgttcataca tagtaagatc tgacacagta cctcagaagt cctgcattc ttatgttct 960
 ggagaaaatg gaggggggggt caccaagact ttctctggct ggctggcccc ttccctcaa 1020
 cctttctgac atctgcagcc tctctcatc ttgccttcat tctctggcccc tgaaccgaga 1080
 ggggtgatatc aggatagctg acagaagatg accaggcaca ctgtcctggt ttgaaaccag 1140
 aggggacaat aaaaaaccct gattctggtc tctactcaca taaaaagaag cttgtgaaca 1200
 ttaagtggga agagattgct actaaataac atacctgtta atttcatctt aattaaaata 1260
 tacttctcta tattatataat ttta 1284

133

<210> 5
<211> 155
<212> PRT
<213> Homo sapiens

<400> 5
Met Val Leu Ser Gly Ala Leu Cys Phe Arg Met Lys Asp Ser Ala Leu
1 5 10 15

Lys Val Leu Tyr Leu His Asn Asn Gln Leu Leu Ala Gly Gly Leu His
20 25 30

Ala Gly Lys Val Ile Lys Gly Glu Glu Ile Ser Val Val Pro Asn Arg
35 40 45

Trp Leu Asp Ala Ser Leu Ser Pro Val Ile Leu Gly Val Gln Gly Gly
50 55 60

Ser Gln Cys Leu Ser Cys Gly Val Gly Gln Glu Pro Thr Leu Thr Leu
65 70 75 80

Glu Pro Val Asn Ile Met Glu Leu Tyr Leu Gly Ala Lys Glu Ser Lys
85 90 95

Ser Phe Thr Phe Tyr Arg Arg Asp Met Gly Leu Thr Ser Ser Phe Glu
100 105 110

Ser Ala Ala Tyr Pro Gly Trp Phe Leu Cys Thr Val Pro Glu Ala Asp
115 120 125

Gln Pro Val Arg Leu Thr Gln Leu Pro Glu Asn Gly Gly Trp Asn Ala
130 135 140

Pro Ile Thr Asp Phe Tyr Phe Gln Gln Cys Asp
145 150 155

<210> 6
<211> 155
<212> PRT
<213> Murine sp.

<400> 6
Met Val Leu Ser Gly Ala Leu Cys Phe Arg Met Lys Asp Ser Ala Leu
1 5 10 15

Lys Val Leu Tyr Leu His Asn Asn Gln Leu Leu Ala Gly Gly Leu His
20 25 30

Ala Glu Lys Val Ile Lys Gly Glu Glu Ile Ser Val Val Pro Asn Arg
35 40 45

Ala Leu Asp Ala Ser Leu Ser Pro Val Ile Leu Gly Val Gln Gly Gly
50 55 60

Ser Gln Cys Leu Ser Cys Gly Thr Glu Lys Gly Pro Ile Leu Lys Leu
65 70 75 80

134
4

Glu Pro Val Asn Ile Met Glu Leu Tyr Leu Gly Ala Lys Glu Ser Lys
85 90 95

Ser Phe Thr Phe Tyr Arg Arg Asp Met Gly Leu Thr Ser Ser Phe Glu
100 105 110

Ser Ala Ala Tyr Pro Gly Trp Phe Leu Cys Thr Ser Pro Glu Ala Asp
115 120 125

Gln Pro Val Arg Leu Thr Gln Ile Pro Glu Asp Pro Ala Trp Asp Ala
130 135 140

Pro Ile Thr Asp Phe Tyr Phe Gln Gln Cys Asp
145 150 155

<210> 7

<211> 141

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Consensus
polypeptide sequence

<400> 7

Met Val Leu Ser Gly Ala Leu Cys Phe Arg Met Lys Asp Ser Ala Leu
1 5 10 15

Lys Val Leu Tyr Leu His Asn Asn Gln Leu Leu Ala Gly Gly Leu His
20 25 30

Ala Lys Val Ile Lys Gly Glu Glu Ile Ser Val Val Pro Asn Arg Leu
35 40 45

Asp Ala Ser Leu Ser Pro Val Ile Leu Gly Val Gln Gly Gly Ser Gln
50 55 60

Cys Leu Ser Cys Gly Pro Leu Leu Glu Pro Val Asn Ile Met Glu Leu
65 70 75 80

Tyr Leu Gly Ala Lys Glu Ser Lys Ser Phe Thr Phe Tyr Arg Arg Asp
85 90 95

Met Gly Leu Thr Ser Ser Phe Glu Ser Ala Ala Tyr Pro Gly Trp Phe
100 105 110

Leu Cys Thr Pro Glu Ala Asp Gln Pro Val Arg Leu Thr Gln Pro Glu
115 120 125

Trp Ala Pro Ile Thr Asp Phe Tyr Phe Gln Gln Cys Asp
130 135 140

<210> 8

<211> 138

<212> PRT

<213> Homo sapiens

135

<400> 8
Phe Arg Ile Trp Asp Val Asn Gln Lys Thr Phe Tyr Leu Arg Asn Asn
1 5 10 15

Gln Leu Val Ala Gly Tyr Leu Gln Gly Pro Asn Val Asn Leu Glu Glu
20 25 30

Lys Ile Asp Val Val Pro Ile Glu Pro His Ala Leu Phe Leu Gly Ile
35 40 45

His Gly Gly Lys Met Cys Leu Ser Cys Val Lys Ser Gly Asp Glu Thr
50 55 60

Arg Leu Gln Leu Glu Ala Val Asn Ile Thr Asp Leu Ser Glu Asn Arg
65 70 75 80

Lys Gln Asp Lys Arg Phe Ala Phe Ile Arg Ser Asp Ser Gly Pro Thr
85 90 95

Thr Ser Phe Glu Ser Ala Ala Cys Pro Gly Trp Phe Leu Cys Thr Ala
100 105 110

Met Glu Ala Asp Gln Pro Val Ser Leu Thr Asn Met Pro Asp Glu Gly
115 120 125

Val Met Val Thr Lys Phe Tyr Phe Gln Glu
130 135

<210> 9
<211> 73
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Consensus
polypeptide sequence

<400> 9
Phe Arg Asp Lys Tyr Leu Asn Asn Gln Leu Ala Gly Leu Val Glu Ile
1 5 10 15

Val Val Pro Pro Leu Gly Gly Cys Leu Ser Cys Gly Glu Leu Leu
20 25 30

Glu Val Asn Ile Leu Lys Lys Phe Phe Arg Asp Gly Thr Ser Phe Glu
35 40 45

Ser Ala Ala Pro Gly Trp Phe Leu Cys Thr Glu Ala Asp Gln Pro Val
50 55 60

Leu Thr Pro Gly Thr Phe Tyr Phe Gln
65 70

<210> 10
<211> 465

<212> DNA
<213> Homo sapiens

<400> 10
atggtcctga gtggggcgct gtgcttccga atgaaggact cggcattgaa ggtgctttat 60
ctgcataata accagcttct agctggaggg ctgcacgcag ggaaggcat taaaggtgaa 120
gagatcagcg tggccccaa tcggtggtg gatgccagcc tgtccccgt catcctgggt 180
gtccagggtg gaagccagtg cctgtcatgt ggggtggggc aggagccgac tctaacaacta 240
gagccagtga acatcatgga gctctatctt ggtccaagg aatccaagag cttcaccttc 300
taccggcggg acatgggct cacctccagc ttcgagtcgg ctgcctaccc gggctggttc 360
ctgtgcacgg tgcctgaagc cgatcaggct gtcagactca cccagcttcc cgagaatgg 420
ggctggaaatg ccccatcac agacttctac ttccagcagt gtgac 465

<210> 11
<211> 465
<212> DNA
<213> Murine sp.

<400> 11
atggttctga gtggggcact atgcttccga atgaaggatt cagcctgaa ggtactgtat 60
ctgcacaata accagctgct ggctggagga ctgcacgcag agaaggcat taaaggtgag 120
gagatcagtg ttgtcccaa tcgggcactg gatgccagtc tgtccccgt catcctggc 180
gtcaaggag gaagccagtg cctatctgt gggacagaga aaggccaat tctgaaaactt 240
gagccagtga acatcatgga gctctaccc gggccaagg aatcaaagag cttcaccttc 300
taccggcggg atatgggtct tacctccagc ttcaaatccg ctgcctaccc aggctggttc 360
ctctgcacct caccggaagc tgaccagcct gtcaggctca ctcagatccc tgaggacccc 420
gcctggatg ctccatcac agacttctac ttccagcagt gtgac 465

<210> 12
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Conserved
consensus DNA sequence

<220>
<221> modified_base
<222> (1)..(41)
<223> "n" represent a variable base

<400> 12
acaatnaaaa nccngatnc tggctctan tcncatnaaa a

41

<210> 13
<211> 155
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Recombinant
IBR polypeptide

<400> 13
 Met Val Leu Ser Gly Ala Leu Cys Phe Arg Met Lys Asp Ser Ala Leu
 1 5 10 15
 Lys Val Leu Tyr Leu His Asn Asn Gln Leu Leu Ala Gly Gly Leu His
 20 25 30
 Ala Gly Lys Val Ile Lys Gly Glu Glu Ile Ser Val Val Pro Asn Arg
 35 40 45
 Trp Leu Asp Ala Ser Leu Ser Pro Val Ile Leu Gly Val Gln Gly Gly
 50 55 60
 Ser Gln Cys Leu Ser Cys Gly Val Gly Gln Glu Pro Thr Leu Thr Leu
 65 70 75 80
 Glu Pro Val Asn Ile Met Glu Leu Tyr Leu Gly Ala Lys Glu Ser Lys
 85 90 95
 Ser Phe Thr Phe Tyr Arg Arg Asp Met Gly Leu Thr Ser Ser Phe Glu
 100 105 110
 Ser Ala Ala Tyr Pro Gly Trp Phe Leu Cys Thr Val Pro Glu Ala Asp
 115 120 125
 Gln Pro Val Arg Leu Thr Gln Leu Pro Glu Asn Gly Gly Trp Asn Ala
 130 135 140
 Pro Ile Thr Asp Phe Tyr Phe Gln Gln Cys Asp
 145 150 155

<210> 14
<211> 154
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Recombinant
IBR polypeptide

<400> 14
Val Leu Ser Gly Ala Leu Cys Phe Arg Met Lys Asp Ser Ala Leu Lys
1 5 10 15
Val Leu Tyr Leu His Asn Asn Gln Leu Leu Ala Gly Gly Leu His Ala
20 25 30
Gly Lys Val Ile Lys Gly Glu Glu Ile Ser Val Val Pro Asn Arg Trp
35 40 45
Leu Asp Ala Ser Leu Ser Pro Val Ile Leu Gly Val Gln Gly Gly Ser
50 55 60
Gln Cys Leu Ser Cys Gly Val Gly Gln Glu Pro Thr Leu Thr Leu Glu
65 70 75 80

138
8

Pro Val Asn Ile Met Glu Leu Tyr Leu Gly Ala Lys Glu Ser Lys Ser
85 90 95

Phe Thr Phe Tyr Arg Arg Asp Met Gly Leu Thr Ser Ser Phe Glu Ser
100 105 110

Ala Ala Tyr Pro Gly Trp Phe Leu Cys Thr Val Pro Glu Ala Asp Gln
115 120 125

Pro Val Arg Leu Thr Gln Leu Pro Glu Asn Gly Gly Trp Asn Ala Pro
130 135 140

Ile Thr Asp Phe Tyr Phe Gln Gln Cys Asp
145 150

<210> 15

<211> 157

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Recombinant
IBR polypeptide

<400> 15

Gly Ser Ser Val Leu Ser Gly Ala Leu Cys Phe Arg Met Lys Asp Ser
1 5 10 15

Ala Leu Lys Val Leu Tyr Leu His Asn Asn Gln Leu Leu Ala Gly Gly
20 25 30

Leu His Ala Gly Lys Val Ile Lys Gly Glu Glu Ile Ser Val Val Pro
35 40 45

Asn Arg Trp Leu Asp Ala Ser Leu Ser Pro Val Ile Leu Gly Val Gln
50 55 60

Gly Gly Ser Gln Cys Leu Ser Cys Gly Val Gly Gln Glu Pro Thr Leu
65 70 75 80

Thr Leu Glu Pro Val Asn Ile Met Glu Leu Tyr Leu Gly Ala Lys Glu
85 90 95

Ser Lys Ser Phe Thr Phe Tyr Arg Arg Asp Met Gly Leu Thr Ser Ser
100 105 110

Phe Glu Ser Ala Ala Tyr Pro Gly Trp Phe Leu Cys Thr Val Pro Glu
115 120 125

Ala Asp Gln Pro Val Arg Leu Thr Gln Leu Pro Glu Asn Gly Gly Trp
130 135 140

Asn Ala Pro Ile Thr Asp Phe Tyr Phe Gln Gln Cys Asp
145 150 155

a

139
9

<210> 16
<211> 73
<212> DNA
<213> Homo sapiens

<400> 16
ctggcaatgg caggcagggaa agacagagga aggaaggagg gagaagggaa ggagtgaagg 60
aaggagtgaa aaa 73

<210> 17
<211> 16
<212> PRT
<213> Homo sapiens

<400> 17
Met Ala Gly Arg Lys Asp Arg Gly Arg Lys Glu Gly Glu Gly Lys Glu
1 5 10 15

<210> 18
<211> 54
<212> DNA
<213> Homo sapiens

<400> 18
ttggagggAAC aggcagactc cacagctccc gccaggagaa aggaacattc tgag 54

<210> 19
<211> 10
<212> DNA
<213> Homo sapiens

<400> 19
tccaaaatacg 10

<210> 20
<211> 10
<212> DNA
<213> Homo sapiens

<400> 20
gatgttcag 10

<210> 21
<211> 10
<212> DNA
<213> Homo sapiens

<400> 21
tttccccacag 10

<210> 22
<211> 10

a

140
10

<212> DNA
<213> Homo sapiens

<400> 22
ctgccggcag

10

<210> 23
<211> 10
<212> DNA
<213> Homo sapiens

<400> 23
ctggcaatgg

10

<210> 24
<211> 10
<212> DNA
<213> Homo sapiens

<400> 24
ttggaggaac

10

<210> 25
<211> 10
<212> DNA
<213> Homo sapiens

<400> 25
gggagtctac

10

<210> 26
<211> 10
<212> DNA
<213> Homo sapiens

<400> 26
aatgaaggac

10

<210> 27
<211> 10
<212> DNA
<213> Homo sapiens

<400> 27
gtgaagagat

10

<210> 28
<211> 10
<212> DNA
<213> Homo sapiens

<400> 28

141
xx

ccagtgaaca

10

<210> 29
<211> 10
<212> DNA
<213> Homo sapiens

<400> 29
agtggaaaaag

10

<210> 30
<211> 10
<212> DNA
<213> Homo sapiens

<400> 30
acattctgag

10

<210> 31
<211> 10
<212> DNA
<213> Homo sapiens

<400> 31
tgtgcttccg

10

<210> 32
<211> 10
<212> DNA
<213> Homo sapiens

<400> 32
gtcattaaag

10

<210> 33
<211> 10
<212> DNA
<213> Homo sapiens

<400> 33
aacactagag

10

<210> 34
<211> 10
<212> DNA
<213> Homo sapiens

<400> 34
agagaaaagag

10

<210> 35

a 142
12

<211> 10
<212> DNA
<213> Homo sapiens

<400> 35
gtaaggaaga

10

<210> 36
<211> 10
<212> DNA
<213> Homo sapiens

<400> 36
gtatgctctg

10

<210> 37
<211> 10
<212> DNA
<213> Homo sapiens

<400> 37
gtgagtgtat

10

<210> 38
<211> 10
<212> DNA
<213> Homo sapiens

<400> 38
gttgggtatg

10

<210> 39
<211> 10
<212> DNA
<213> Homo sapiens

<400> 39
gtgagacttg

10

<210> 40
<211> 10
<212> DNA
<213> Homo sapiens

<400> 40
aaacaaaatgc

10

<210> 41
<211> 104
<212> PRT
<213> Homo sapiens

143

<400> 41
Met Val Leu Ser Gly Ala Leu Cys Phe Arg Met Lys Asp Ser Ala Leu
1 5 10 15

Lys Val Leu Tyr Leu His Asn Asn Gln Leu Leu Ala Gly Gly Leu His
20 25 30

Ala Gly Lys Val Ile Lys Gly Glu Glu Ile Ser Val Val Pro Asn Arg
35 40 45

Trp Leu Asp Ala Ser Leu Ser Pro Val Ile Leu Gly Val Gln Gly Gly
50 55 60

Ser Gln Cys Leu Ser Cys Gly Val Gly Gln Glu Pro Thr Leu Thr Leu
65 70 75 80

Glu Val Asn Ile Met Glu Leu Tyr Leu Gly Ala Lys Glu Ser Lys Ser
85 90 95

Phe Thr Phe Tyr Arg Arg Asp Met
100

<210> 42
<211> 100
<212> PRT
<213> Homo sapiens

<400> 42
Arg Lys Ser Ser Lys Met Gln Ala Phe Arg Ile Trp Asp Val Asn Gln
1 5 10 15

Lys Thr Phe Tyr Leu Arg Asn Asn Gln Leu Val Ala Gly Tyr Leu Gln
20 25 30

Gly Pro Asn Val Asn Leu Glu Glu Lys Ile Asp Val Val Pro Ile Glu
35 40 45

Pro His Ala Leu Phe Leu Gly Ile His Gly Gly Lys Met Cys Leu Ser
50 55 60

Cys Val Lys Ser Gly Asp Glu Thr Arg Leu Gln Leu Glu Val Asn Ile
65 70 75 80

Thr Asp Leu Ser Glu Asn Arg Lys Gln Asp Lys Arg Phe Ala Phe Ile
85 90 95

Arg Ser Asp Ser
100

<210> 43
<211> 6540
<212> DNA
<213> Homo sapiens

<400> 43
catgagcaaa gatgttaata caaagatgtt tgtcacaaca tggtttcaa tagcaaaaaa 60

agagagaaaa atatataaaa gacaaataac agtggatagg tttcaataaa taatgttaca 120
gtgatacagt taaatactat acagctattg aagcatgtca ttattcatat ttagtatgga 180
aagatattt gctatttgc tacatgaaaa aatgagggttg gaaaaagtat aggtttgtg 240
aatctgtgt atgaaagctg tctatagttt catgtgtatg tgtgtggagg aaaaagtgtt 300
gtcattgggt ttctgtatgactcagaa aagacaagta ttcacatTT ttcttggtggc 360
tgcattggat ttccaggtt ttctacaatg aacatgttagg ctgaacattc cctaagcagg 420
agagtcccac ctctaacatc tcctgttaggc ctggcaatgg caggcaggaa agacagagga 480
aggaaggagg gagaaggaa ggagtgaagg aaggagtgaa aaagtaagg aagaaaggaa 540
atagggagg aagggaggaa atgggaaaggaa aagaaaggaa aggaaggaaa gagggaggaa 600
agaaaggaag ggaaaaggaa gggagttagt gaatgaaaaga tggaaaagaa gaagaaaggaa 660
agggaggcag ggaggaaaga aagttgcgt tcccttgc tgccatggc actgacttt 720
agggtctgaa agcccctgag atgaaaagc ctatgtctca caaagagctg gaaagcctca 780
aggaagttt tcaatattt tggaaaggaaa ctgtctccag aagctccct ccccacgaca 840
gataatgagc agcaagtgc tctggcact taggtgtatg taaaatcagc ctggaaatcc 900
tgctccctcct caggtcctgg cagtttcagg gcccctccctt aggccttact taaaaggctg 960
aggcatcctt ggaggaaacag gcagactcca cagtcctccgc caggagaaag gaacattctg 1020
agttatgtctc tggggcgctg gtgttacgg agtctctcc tgaccctcaga cccagaatct 1080
gtccgtgga ggctgttac atgctgggaa gctcggtgca gctgcttgc ccccgacacc 1140
cagccaaactc agcctcttc tccatgattt tctttgttt attccaaaat aggggagtt 1200
acaccctgtg gagctcaaga tggctctgag tggggcgctg tgctccgtt gagtgtatga 1260
ggccctgggt tgggtgggtc ctccggagga agtgagttt ggttagaccc gttgtccagc 1320
tctgagcagg agggaggaag ggaggggtcg ccattgcagc tggaaattt tgaccagcac 1380
ctcattgtctc ttaggtttt ccacgcctt ttccaaatagg ggcaggactg gggcaggcca 1440
tctcacaagg ggtccctgtat gctgaggggg acaagtgaac ctcacgtct agagctccag 1500
ccaagtctat ccaaggtggg aacgggggcc aggtccctg ctcagagctc cgccattgtc 1560
ccccatcaca gtgaatggat gtaagctcac ccactctgtg cccctaccc cctgtactc 1620
tttggggata ataataaaaac aaaaccattt accatcagcc agtctgtcca cccactggca 1680
tgtaccaagc cagacactct gccgtgttct gggcttaaca acagaggatg agagtggtc 1740
tttctctcag tctaataaaag cacttccac gatgtttct atgggactcg attagaggag 1800
tcccacagag gcatccagga gatgtttac acagtggagc tctctgtatca agtaaatgca 1860
ggaaattctg ctttctacat cctctctaa gagaaccaca gcccagctca gcatatgagt 1920
gactgaggtt ttctgaagta aggcaactt gttaatcgta ttttagctatg catcgaccca 1980
attttacac tgcattccctt tcccccataa aacttttggaa gaaaccact tttaggataca 2040
tcttccacct cataggatgc caggaaatca actgagttca aagatgagaa acaactttga 2100
aaagttaaat aaaagaaatt taaattttaa gaaactcctc acttagtaag gaatataatga 2160
ccaaatagaa atacatgtat cttgaagaat tgaagaatca ggcttaacg tggaagaggc 2220
ctggatgtta tccaaaccat catcttagt tagcaatggg gaggctcagg cccagagtg 2280
gcgagagagt tgcattctgc gactcagcag cattggaggc atagatgggg caagaaccta 2340
gggctctgac tcaccgtgca gcttcttctc caacaggaga tgggttgggg cagaaaaggt 2400
tgaatagggtt gaaggagcaa accacagact ccagtgggg actgtggggt catcctccct 2460
gtagggcatg agcccagcag ggctgggaga caaggctgtg ctgttacttc tggcacagta 2520
ggaagaaaga gagacaaaat gcctgagatc agggggttct ctggatccag ggcattgtgg 2580
agtgtccacc ctcctccataa tgcattctc accccttctt gatgtttcag aatgaaggac 2640
tcggcattga aggtgtttt tctgcataat aaccagcttc tagctggagg gtcgtatgca 2700
gggaaggtca ttaaagggtt gtgtgaaac atgacccact ttccttggtc tctataact 2760
ctcaggggag gggcctgaa gagggcttag aatagtctata cagattagca taggcctaca 2820
gagcccagggc attagggcag cacaaccat gctctaagca aaggcaataaa aataactaca 2880
cctctcagca aagtgaagac acacgctctg gggccacctg aagcttctgt gcagaagtga 2940
gaatgttttcaagaggctt gtctgtcat tcccttacag gtatgtttt gtcacggatt 3000
gcattccctg ggagccagta agtaccaagg agagaactaa cgtatgttctt ctataccctt 3060
tttccctat gggagttgtt ttctgcctt ccaccctggg tcccctctgc tctctgaaga 3120
tcctcagtc ctttagagtgg agggaccatc agaacaggtt gcatgttgg acctctgtct 3180
tgctcactt gccccatgca ctgcaacagg tccctctcta aaatagttt cacctgccc 3240
cctggggcac cttgctgag cacatgtcc aggttagatcc ttcagctagg ccatatgtgt 3300
atgtgtgtgc ttactgggt atgtatgtt gcatgtcaggc atatatgtt gaggcatatgt 3360
gtgcattgtat gatctgtat gtaaccatgt atgtgttagt gcaggtatgt aggtatgagc 3420
atgtgtgtgtt atatgtat gttgtcatgc atgtatgtt gcatgtatgtt atctgtatgt 3480
tgtgggtgtt gagggatgtt acagagaccc ttttgcctt cagcaaccc 3540

145

<210> 44
<211> 152
<212> PRT
<213> *Homo sapiens*

146
~~16~~

<400> 44
Arg Pro Ser Gly Arg Lys Ser Ser Lys Met Gln Ala Phe Arg Ile Trp
1 5 10 15

Asp Val Asn Gln Lys Thr Phe Tyr Leu Arg Asn Asn Gln Leu Val Ala
20 25 30

Gly Tyr Leu Gln Gly Pro Asn Val Asn Leu Glu Glu Lys Ile Asp Val
35 40 45

Val Pro Ile Glu Pro His Ala Leu Phe Leu Gly Ile His Gly Gly Lys
50 55 60

Met Cys Leu Ser Cys Val Lys Ser Gly Asp Glu Thr Arg Leu Gln Leu
65 70 75 80

Glu Ala Val Asn Ile Thr Asp Leu Ser Glu Asn Arg Lys Gln Asp Lys
85 90 95

Arg Phe Ala Phe Ile Arg Ser Asp Ser Gly Pro Thr Thr Ser Phe Glu
100 105 110

Ser Ala Ala Cys Pro Gly Trp Phe Leu Cys Thr Ala Met Glu Ala Asp
115 120 125

Gln Pro Val Ser Leu Thr Asn Met Pro Asp Glu Gly Val Met Val Thr
130 135 140

Lys Phe Tyr Phe Gln Glu Asp Glu
145 150

<210> 45
<211> 153
<212> PRT
<213> Homo sapiens

<400> 45
Ala Pro Val Arg Ser Leu Asn Cys Thr Leu Arg Asp Ser Gln Gln Lys
1 5 10 15

Ser Leu Val Met Ser Gly Pro Tyr Glu Leu Lys Ala Leu His Leu Gln
20 25 30

Gly Gln Asp Met Glu Gln Gln Val Val Phe Ser Met Ser Phe Val Gln
35 40 45

Gly Glu Glu Ser Asn Asp Lys Ile Pro Val Ala Leu Gly Leu Lys Glu
50 55 60

Lys Asn Leu Tyr Leu Ser Cys Val Leu Lys Asp Asp Lys Pro Thr Leu
65 70 75 80

Gln Leu Glu Ser Val Asp Pro Lys Asn Tyr Pro Lys Lys Met Glu
85 90 95

Lys Arg Phe Val Phe Asn Lys Ile Glu Ile Asn Asn Lys Leu Glu Phe
100 105 110

147

Glu Ser Ala Gln Phe Pro Asn Trp Tyr Ile Ser Thr Ser Gln Ala Glu
115 120 125

Asn Met Pro Val Phe Leu Gly Gly Thr Lys Gly Gly Gln Asp Ile Thr
130 135 140

Asp Phe Thr Met Gln Phe Val Ser Ser
145 150

<210> 46
<211> 159
<212> PRT
<213> Homo sapiens

<400> 46
Ser Ala Pro Phe Ser Phe Leu Ser Asn Val Lys Tyr Asn Phe Met Arg
1 5 10 15

Ile Ile Lys Tyr Glu Phe Ile Leu Asn Asp Ala Leu Asn Gln Ser Ile
20 25 30

Ile Arg Ala Asn Asp Gln Tyr Leu Thr Ala Ala Leu His Asn Leu
35 40 45

Asp Glu Ala Val Lys Phe Asp Met Gly Ala Tyr Lys Ser Ser Lys Asp
50 55 60

Asp Ala Lys Ile Thr Val Ile Leu Arg Ile Ser Lys Thr Gln Leu Tyr
65 70 75 80

Val Thr Ala Gln Asp Glu Asp Gln Pro Val Leu Leu Lys Glu Met Pro
85 90 95

Glu Ile Pro Lys Thr Ile Thr Gly Ser Glu Thr Asn Leu Leu Phe Phe
100 105 110

Trp Glu Thr His Gly Thr Lys Asn Tyr Phe Thr Ser Val Ala His Pro
115 120 125

Asn Leu Phe Ile Ala Thr Lys Gln Asp Tyr Trp Val Cys Leu Ala Gly
130 135 140

Gly Pro Pro Ser Ile Thr Asp Phe Gln Ile Leu Glu Asn Gln Ala
145 150 155

<210> 47
<211> 157
<212> PRT
<213> Homo sapiens

<400> 47
Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn
1 5 10 15

148
18

Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp
20 25 30

Met Thr Asp Ser Asp Cys Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile
35 40 45

Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile
50 55 60

Ser Val Lys Cys Glu Lys Ile Ser Thr Leu Ser Cys Glu Asn Lys Ile
65 70 75 80

Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys
85 90 95

Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys
100 105 110

Met Gln Phe Glu Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Cys Glu
115 120 125

Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu
130 135 140

Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp
145 150 155

<210> 48

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Consensus
peptide sequence

<220>

<221> MOD_RES

<222> (1)..(6)

<223> Xaa represents a variable amino acid

<400> 48

Leu Lys Xaa Leu Xaa Leu

1 5

<210> 49

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Consensus
peptide sequence

<220>

<221> MOD_RES

149
x9

<222> (1)..(7)
<223> Xaa represents a variable amino acid

<400> 49
Ile Thr Asp Phe Xaa Xaa Gln
1 5

<210> 50
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Consensus
peptide sequence

<220>
<221> MOD_RES
<222> (1)..(12)
<223> Xaa represents a variable amino acid

<400> 50
Tyr Leu Xaa Asn Asn Gln Leu Xaa Ala Gly Xaa Leu
1 5 10

<210> 51
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Consensus
peptide sequence

<220>
<221> MOD_RES
<222> (1)..(9)
<223> Xaa represents a variable amino acid

<400> 51
Leu Glu Xaa Val Asn Ile Xaa Xaa Leu
1 5

<210> 52
<211> 24
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Consensus
peptide sequence

<220>
<221> MOD_RES
<222> (1)..(24)

a

150
20

<223> Xaa represents a variable amino acid

<400> 52

Thr Xaa Ser Phe Glu Ser Ala Ala Xaa Pro Gly Trp Phe Leu Cys Thr
1 5 10 15

Xaa Xaa Glu Ala Asp Gln Pro Val
20

<210> 53

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Binding domain

<400> 53

Phe Gly Phe Arg
1

but
C1

<210> 54

<211> 13

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: N-terminal
extension

<400> 54

Gly Ser Ser Gly Leu Arg Arg Ala Ser Leu Gly Ser Ser
1 5 10