Nirma University

Institute of Technology

Semester End Examination (RPR), December-2017

B.Tech. in Computer Engineering/Information Technology, Semester -VI CE601 – Design and Analysis of Algorithms

Roll / Exam N	Supervisor's Initial with Date	
Time: 3	7	
Instru	52 (1986) 1985 (1986) 1986 (1986) 1986 (1986) 1986 (1986) 1986 (1986) 1986 (1986) 1986 (1986) 1986 (1986) 1986	
Q-1	Do as directed	[18]
a)	Prove the correctness of "INSERTION SORT" algorithm.	[6]
b)	Illustrate the working of Bubble sort algorithm by applying it on the sequence of elements: - <70, 30, 40, 10, 80, 20, 60, 50>	[6]
c)	Prove the correctness of "PARTITION" procedure in Quick sort.	[6]
Q-2	Do as directed	[16]
a)	Apply Recursion Tree method on the following recurrence relation :- $T(n) = 3T(n/3) + n^2$	[6]
	OR	
a)	Apply Recursion Tree method on the following recurrence relation: $T(n) = 4T(n/3) + n$	[6]
b)	Solve the following recurrence relation using "Change of variable" method: $T(n) = 2T(\sqrt{n}) + \log n$	[6]
c)	Solve the following recurrence relation using Master method: $T(n) = 3T(n/2) + 3n/4 + 1$	[4]
Q-3	Do as directed	[16]
a)	The weight of the Minimum Spanning Tree (MST) of the graph G = (V, E), containing 200 vertices and 320 edges, is 150. If the weight of each of the edge of the MST is increased by 5 units, then what would be the weight of the updated MST? OR	[6]
a)	How many spanning trees will a complete undirected graph on 4 vertices contain? Draw all such spanning trees.	[6]
b)	Write "Heap sort" algorithm and analyse its time complexity.	[6]
c)	Prove the correctness of MERGE SORT algorithm.	[4]
Q-4	Do as directed	[18]
a)	Explain the operations of "Disjoint Set Structures" in detail.	[6]
b)	Describe the operations of "Binomial Heap" in detail.	[6]
c)	Differentiate between the following terms:-	[6]
	i) Prim's algorithm vs. Kruskal's algorithm.	
	ii) Diilestra's algorithm vs. Floyd's algorithm	

Q-5	Do as directed	[16]
a)	Write an algorithm to compute "Longest Common Subsequence".	[6]
	OR	
a)	Write an algorithm to perform "Matrix Chain Multiplication".	[6]
b)	Explain "0/1 Knapsack problem" with a suitable example.	[6]
c)	Which important properties must be possessed by the problems	[4]
	that are solved using "Dynamic Programming"?	
0.6	The said the said	[16]
Q-6	Do as directed	- C
a)	Given a set S of n activities with start time, Si, and finish time, Fi, of	[6]
	an ith activity. Design a greedy algorithm which computes the	
	maximum size of mutually compatible activities.	
	OR	
a)	Given an array A of size n and containing integer values (Z). Design	[6]
-50/64	an algorithm to compute the maximum sum of the subarray.	
b)	What is the primary requirement to perform search operation using	[6]
	"binary search"? Can we use linked list to implement "binary	
	search"? Give suitable reasons for your answer.	
c)	Differentiate :- Greedy approach and Dynamic Programming	[4]