Fairness Constraints: A Mechanism for Fair Classification

Muhammad Bilal Zafar

with Isabel Valera, Manuel Gomez Rodriguez and Krishna P. Gummadi

Max Planck Institute for Software Systems (MPI-SWS)

Data Driven Decision Making

- Data driven decision making used in
 - Spam classifiers
 - Recommendation systems
 - Bail-granting classifiers
 - Job hiring
 - Loan approval
 - ...
- These tasks work by learning from past data
 - Human decision making follows intuition
 - Data driven approach automates the human decision making

Classification Tasks in Practice

- Given some items along with their features, predict their class labels
 - Making a decision to hire a job applicant
- Classifiers designed to discriminate based on features
- All features are not equal!
 - Non-sensitive features: educational level, work experience, etc.
 - Sensitive features: gender, race, etc.
- Discriminating on sensitive features prohibited

Classifiers and Direct Discrimination

- Historical biases in the data
 - Gender discrimination
 - Racial biases
- Classifiers try to optimize for accuracy
 - Any past human biases will get transferred to the learnt classifiers
 - Bias against females in the past data -> bias against females in the future classifier decisions

Classifiers and Indirect Discrimination

- One might chose not to use sensitive features
- Correlations between sensitive and nonsensitive features [Pedreschi et al.]
 - People from a certain race live in a specific neighborhood
 - Biases can get captured through these correlations
- Discrimination can happen even in the lack of intent

This Talk

- Proposing a framework for fair classification
 - Defining Fairness
 - Introducing fairness constraints and incorporating them into classifiers
 - Evaluation: Analyzing performance trade-offs of fair classifiers

This Talk

- Proposing a framework for fair classification
 - Defining Fairness
 - Introducing fairness constraints and incorporating them into classifiers
 - Evaluation: Analyzing performance trade-offs of fair classifiers

Defining Fairness: Motivation

- Doctrine of disparate impact
 - US law concerning employment, housing, etc.
 - "practices [...] considered discriminatory and illegal if they have a disproportionate adverse impact on persons in a protected class"
- Does not focus on the inputs or the process but on the outcome!
- What constitutes "disproportionality"?

Applying Doctrine of Disparate Impact: 80% Rule

- The 80% rule
 - If 50% of male applicants get selected for the job, at least 40% of females should also get selected
- A fair system might not always be 80:100
 - In certain scenarios, the prescribed proportion could be 50:100
- Our goal is to enable a range of "fair" proportions

Fair Classifier

A classifier whose output achieves a given proportion of items (in positive class) with different values of sensitive feature

This Talk

- Proposing a framework for fair classification
 - ✓ Defining Fairness
 - Introducing fairness constraints and incorporating them into classifiers
 - Evaluation: Analyzing performance trade-offs of fair classifiers

Ensuring Fair Classification

- Classifiers try to optimize certain objectives
 - Logistic regression
 - Support vector machines
- Introduce fairness constraints
 - Optimize the given function under the constraints
- Idea: Optimize such that ratio of females/ males is greater than 80% threshold

Ensuring Fair Classification

- Classifiers try to optimize certain objectives
 - Logistic regression
 - Support vector machines
- Introduce fairness constraints
 - Optimize the given function under the constraints
- Idea: Optimize such that ratio of females/ males is greater than 80% threshold
 - Hard to encode and solve these constraints

Fairness Constraints

Key Idea: Limit the cross-covariance between sensitive feature value and distance from decision boundary

An Instance of Implementing Fairness Constraints

An Instance of Implementing Fairness Constraints

$$\left|\frac{1}{N}\sum_{i=1}^{N} \left(\mathbf{z}_i - \overline{\mathbf{z}}\right) \mathbf{b}^T [-1 \ \mathbf{x}_i]\right| \le \mathbf{c}$$

25:58 0.43

An Instance of Implementing Fairness Constraints

25:58 0.43 50 : 50 1.0

Modifying the Logistic Regression Classifier

$$p(y_i = 1 | \mathbf{x}_i) = \frac{1}{1 + e^{-b_0 + \sum_j b_j x_{ij}}}$$

maximize
$$\sum_{i=1}^{N} \log p(y_i|\mathbf{x}_i)$$

Modifying the Logistic Regression Classifier

$$p(y_i = 1 | \mathbf{x}_i) = \frac{1}{1 + e^{-b_0 + \sum_j b_j x_{ij}}}$$

maximize
$$\sum_{i=1}^{N} \log p(y_i | \mathbf{x}_i)$$
subject to
$$\frac{1}{N} \sum_{i=1}^{N} (\mathbf{z}_i - \overline{\mathbf{z}}) \mathbf{b}^T [-1 \ \mathbf{x}_i] \leq \mathbf{c},$$
$$\frac{1}{N} \sum_{i=1}^{N} (\mathbf{z}_i - \overline{\mathbf{z}}) \mathbf{b}^T [-1 \ \mathbf{x}_i] \geq -\mathbf{c}$$

Key point: Possible to solve this problem efficiently

Modifying the Logistic Regression Classifier

$$p(y_i = 1 | \mathbf{x}_i) = \frac{1}{1 + e^{-b_0 + \sum_j b_j x_{ij}}}$$

maximize
$$\sum_{i=1}^{N} \log p(y_i | \mathbf{x}_i)$$
subject to
$$\frac{1}{N} \sum_{i=1}^{N} (\mathbf{z}_i - \overline{\mathbf{z}}) \mathbf{b}^T [-1 \ \mathbf{x}_i] \leq \mathbf{c},$$
$$\frac{1}{N} \sum_{i=1}^{N} (\mathbf{z}_i - \overline{\mathbf{z}}) \mathbf{b}^T [-1 \ \mathbf{x}_i] \geq -\mathbf{c}$$

Key point: Possible to solve this problem efficiently

Also implemented for SVM and hinge loss classifiers

This Talk

- Proposing a framework for fair classification
 - ✓ Defining Fairness
 - ✓ Introducing fairness constraints and incorporating them into classifiers
 - Evaluation: Analyzing performance trade-offs of fair classifiers

Evaluation: Key Questions

- Does introducing cross-covariance (fairness) constraints ensure fair classification?
 - Can one vary the thresholds for cross-covariance to achieve different proportions?
- Do "fairness" constraints lead to optimal performance?

Dataset

- Census income dataset
 - 45,222 subjects
 - 14 features
 - Non-sensitive features: Educational level, number of hour of work per week, etc.
 - Sensitive features: Gender and race
- Prediction task: Whether a person earns
 >50K\$ (positive) or <50K\$ (negative) per year

Lack of Fairness in Census Income Dataset

Gender	<50K	>50K
Female	89%	11%
Male	69%	31%

Race	<50K	>50K
American-Indian/Eskimo	88%	12%
Asian/Pacific-Islander	72%	28%
Black	87%	13%
White	74%	26%
Other	87%	13%

Lack of Fairness in Census Income Dataset

Gender	<50K	>50K	
Female	89%	11%	0.25
Male	69%	31%	0.35

Race	<50K	>50K
American-Indian/Eskimo	88%	12%
Asian/Pacific-Islander	72%	28%
Black	87%	13%
White	74%	26%
Other	87%	13%

Logistic Regression Classifier (without constraints)

- Achieves 81% accuracy
 - Sensitive features not used

Logistic Regression Classifier (without constraints)

- Achieves 81% accuracy
 - Sensitive features not used

Gender	<50K	>50K	
Female	94%	6%	0.30
Male	80%	20%	

Race	<50K	>50K	
American-Indian/Eskimo	95%	5%	
Asian/Pacific-Islander	81%	19%	
Black	89%	11%	0.65
White	83%	17%	
Other	92%	8%	

Logistic Regression Classifier (with constraints)

Introduce cross-covariance constraints

$$\left| \frac{1}{N} \sum_{i=1}^{N} (\mathbf{z}_i - \overline{\mathbf{z}}) \mathbf{b}^T [-1 \mathbf{x}_i] \right| \le \mathbf{c}$$

 Vary the fairness threshold (c) to achieve different proportions of sensitive feature values

Tightening the Constraints Increases Fairness

Normalized cross-covariance threshold (c)

Tightening the Constraints Increases Fairness

Fairness vs. Accuracy Trade-off

- Random classifier
- Ad-hoc classifier: Switch females to +ve class until fairness ratio is achieved

Fairness vs. Accuracy Trade-off

- Random classifier
- Ad-hoc classifier: Switch females to +ve class until fairness ratio is achieved

Introducing Fairness for Multiple Features

Introducing Fairness for Multiple Features

Normalized cross-covariance threshold (c)

Similar results for SVM and hinge loss classifiers

Advantages of Fairness Constraints

- Do not need the sensitive feature value at decision time
 - Sensitive features are not always available
- Can cater to categorical as well as continuous values of sensitive features
 - Categorical sensitive features with more than two values can also be handled
- Optimality (under given constraints)

- Getting insights into the dataset
 - Analyzing which weights get adjusted while controlling for fairness
 - These changes can be used to better understand the dataset [Chang et al.]
 - Example scenario (hypothetical)

Unconstrained (unfair) classifier

# hours/week	marital status	education
1.3	0.5	 1.5

- Getting insights into the dataset
 - Analyzing which weights get adjusted while controlling for fairness
 - These changes can be used to better understand the dataset [Chang et al.]
 - Example scenario (hypothetical)

Unconstrained (unfair) classifier

# hours/week	marital status	education
1.3	0.5	 1.5

Constrained (fair) classifier

# hours/week	marital status	education
1.2	0.4	 6.1

- Applications to other domains
 - Spam detection
 - Online ads
- Effectiveness of fairness constraints in different datasets
- Comparison to other techniques

- Applications to other domains
 - Spam detection
 - Online ads
- Effectiveness of fairness constraints in different datasets
- Comparison to other techniques

Questions?