1. Data Manipulation

Dong-Gyu, Lee

Dept. of Statistics, KU

2020, Jan 14

Contents

- 1 Analysis Goal
- 2 Introduce to CNN
- FER2013 Data set
- Preprocessing
- Mext time
- 6 Reference

Analysis Goal

- Fit Neural Networks using unbalanced data.
- Compare the performance of NNs in balanced and unbalanced data.
- In this time, we will consider various types of CNN(Convolutional Neural Networks).

CNN

• CNN has the following structure:

Figure 1: CNN Structure

Figure 2: Example of CNN Architecture

FER2013 Data

 The FER2013 used in the ICML 2013 workshop[2] is a dataset to classify face emotion. Abbreviation 'FER' stands for facial emotion recognition.

Figure 3: FER2013 Images

- It has 7 labels: Anger, Disgust, Fear, Happiness, Sadness, Surprise, Neutral
- If you want to get more information, visit the following website: https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge

FER2013 Data

- ullet Using FER2013 dataset, human accuracy was $65\pm5\%$
- With the various CNN models, the best accuracy at this point is well over 75%
- The best CNN model under the 'Null' condition in 2013 obtains an accuracy of 60%. Also using an ensemble of such models, the it obtained an accuracy of 65.5% in the same period
- 56 teams submitted on the final dataset. And the accuracy without any constraints exceeded 70% of the first team, and the rest was less than 70%.

FER2013 Data

- The fact that human accuracy was only 65% means that the dataset itself is incorrect.
- Or the answer between the label and the data may be wrong.
- To complement this, the FER+ dataset was released in 2016.

FER2013 Data Structure

 The data dimension is 35887×3 where rows are the data size and columns are 'emotion', 'pixels', 'Usage'.

Figure 4: Dataset in Excel & Python

- 0:Anger, 1:Disgust, 2:Fear, 3:Happiness, 4:Sadness, 5:Surprise,
 6:Neutral
- 'Usage' is divided into three classes: Training, Private test, Public test

FER2013 Data Structure

 Based on the previous dataset, the number of labels which are divided by purpose of use can be checked as follows:

Happiness	8989	Happiness	7215	Happiness	879	Happiness	895
Neutral	6198	Neutral	4965	Neutral	626	Sadness	653
Sadness	6077	Sadness	4830	Sadness	594	Neutral	607
Fear	5121	Fear	4097	Fear	528	Fear	496
Anger	4953	Anger	3995	Anger	490	Anger	466
Surprise	4002	Surprise	3171	Surprise	416	Surprise	415
Disgust	547	Disgust	436	Disgust	55	Disgust	56
dtype: int64		dtype: int64		dtype: int64		dtype: int64	
Total: 358	87	Train: 2870	ə 9	Private tes	st: 3588	Public test	3588

Figure 5: The Number of Labels for Each Use

FER2013 Data Structure

• And this can be represented by the following pieplot.

Figure 6: The Ratio of Labels for Each Use

Preprocessing

 First, useless data is hidden in the FER2013 dataset. It is shown as a black image.

Figure 7: Black Image

 The total number of black images is 12, which consists of 11, 0, 1 black images in training, private test, public test repectively.

Preprocessing

• You can also see the the number of data by usage below.

		Before		After			
Counts	Training	Private Test	Public Test	Training	Private Test	Public Test	
	28709	3589	3589	28698	3589	3588	

Table 1: Data Counts

Preprocessing

 Second, FER2013 is a small data(48×48 pixels) basically. For improvement of model, all images are preferred to change 256×256 pixels[3]

Figure 8: 48×48 Pixels and 256×256 Pixels

All work is done in Python.

Next

- In preprocessing, data augumentation can be expressed in various ways :
 - Flip all data left and right for small number of labels.
 - Make an object(data) through the rotation or translation invariance.
 - 3 Use the ADASYN, SMOTE, GAN, etc.
 - Balance the label with other data.
- Also we will cover the various model such as the Alexnet, VGG, ResNet etc.
- And last, we will talk about the various ensembles like voting system, through the combination of above models[1, 4]

Reference

- [1] Yang Fei and Guo Jiao. Research on facial expression recognition based on voting model. In *IOP Conference Series: Materials Science and Engineering*, volume 646, page 012054. IOP Publishing, 2019.
- [2] Ian J Goodfellow, Dumitru Erhan, Pierre Luc Carrier, Aaron Courville, Mehdi Mirza, Ben Hamner, Will Cukierski, Yichuan Tang, David Thaler, Dong-Hyun Lee, et al. Challenges in representation learning: A report on three machine learning contests. In *International Conference* on Neural Information Processing, pages 117–124. Springer, 2013.
- [3] Hong-Wei Ng, Viet Dung Nguyen, Vassilios Vonikakis, and Stefan Winkler. Deep learning for emotion recognition on small datasets using transfer learning. In *Proceedings of the 2015 ACM on international conference on multimodal interaction*, pages 443–449. ACM, 2015.
- [4] Alessandro Renda, Marco Barsacchi, Alessio Bechini, and Francesco Marcelloni. Comparing ensemble strategies for deep learning: An application to facial expression recognition. Expert Systems with Applications, 2019.