Задание 1в. Отображения

Если каждому элементу множества A поставлен в соответствие ровно один элемент множества B, то говорят, что задана функция (отображение) на множестве A со значениями в множестве B (также: функция из A в B). Обозначение $f:A\to B$ (читается: f функция из A в B). Элемент, сопоставляемый элементу $x\in A$, называется образом x при отображении f или значением f в точке x и обозначается f(x); также пишут $x\mapsto y$, если y=f(x). Если $x\mapsto y$, то x называется прообразом y. Множество тех $y\in B$, которые представляются в виде f(x) для некоторого $x\in A$ называется образом f и обозначается $\mathrm{Im} f=\{f(x)|x\in A\}$.

Отображение $f:A\to B$ называется **инъективным**, если у каждого $y\in B$ не более одного прообраза. Отображение $f:A\to B$ называется **сюрьективным**, если у каждого $y\in B$ не менее одного прообраза (то есть $\mathrm{Im} f=B$). Отображение $f:A\to B$ называется **биективным** или **взаимно однозначным**, если у каждого $y\in B$ ровно один прообраз.

Отображения $f,g:A\to B$ являются равными, если их значения на каждом элементе A совпадают, иными словами f=g тогда и только тогда, когда $\forall x\in A$ f(x)=g(x).

Отображение может быть задано

- явно, перечислением образов элементов. Пример: $f: \{1,2\} \to \{100,200\}, 1 \mapsto 200, 2 \mapsto 100;$
- формулой. Пример: $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$;

Задача 1. Выпишите (задавая явно) все отображения между следующими конечными множествами A и B и определите их количество. Определите среди них инъективные, сюрьективные и биективные, Im, а также их количество.

- (1) $A = \{1, 2\}, B = \{\diamondsuit, \blacktriangle\};$
- (4) $A = \{ \circlearrowleft \},$ $B = \{ \blacktriangle, \circlearrowleft, \odot, \{ 1, 4, 5, 6 \}, \{ 1, 2 \} \};$
- (7) $A = \{1, 2, 3\}, B = \{\diamondsuit, \blacktriangle\};$

- (2) $A = \{ \diamondsuit, \blacktriangle, \odot, \{1\}, \{1, 2\} \}, B = \{ \blacktriangle \};$
- (5) $A = \emptyset, B = \{ \heartsuit, \blacktriangle \};$
- (8) $A = \{1, 2\}, B = \{ \circlearrowleft, \blacktriangle, 100 \};$

- (3) $A = \{ \diamondsuit, \blacktriangle \}, B = A;$
- (6) $A = \{ \diamondsuit, \blacktriangle \}, B = \varnothing;$
- (9) $A = \{1, 2, 3\}, B = A;$

Задача 2. Среди этих отображений найдите инъективные, сюрьективные, биективные, а также вычислите ${\rm Im} f$:

- (1) $f: \mathbb{R} \to \mathbb{R}, f(x) = x;$
- (4) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$;
- (7) $f: \mathbb{R} \to \mathbb{R}, f(x) = 2x;$

- (2) $f: \mathbb{Z} \to \mathbb{Z}, f(x) = -x;$
- (5) $f: \mathbb{R} \to \{x \in \mathbb{R} | x \geqslant 0\}, f(x) = x^2;$ (8) $f: \mathbb{Q} \to \mathbb{N}, x$ переходит в знаме-
 - (8) $f: \mathbb{Q} \to \mathbb{N}$, x переходит в знаменатель записи x в виде несократимой дроби;

- (3) $f: \mathbb{N} \to \mathbb{Q}, f(x) = x;$
- (6) $f: \mathbb{N} \to \mathbb{N}, f(x) = 2x;$

Если $f:A\to B$, а $g:B\to C$ для некоторых множеств A,B и C, то определена операция **композиции** (**суперпозиции**) $g\circ f:A\to C$, которая задана следующим образом: $g\circ f(x)=g(f(x))$.

Задача 3. Пусть Country — множество стран, City — множество городов. f: Country \to City ставит в соответствие каждой стране столицу этой страны. g: City \to Country ставит в соответствие каждому городу ту страну, в которой он находится. Определить, какие выражения корректны и вычислить их значения:

(1) f(Дрезден)

(4) $q(\Phi$ ранция)

(7) $q \circ f(\text{Солт Лейк Сити})$

(2) g(Новосибирск)

(5) $f \circ g($ Колумбия)

(8) $q \circ f(Венгрия)$

(3) f(Россия)

(6) $f \circ q(Мумбай)$

(9) $q \circ f \circ q(Actaha)$

Задача 4. Вычислите суперпозицию функций f и g:

- (1) $f(x) = 4x^2, g(x) = \sin x;$
- (4) $f(x) = x, q(x) = 15x^4$;
- (7) $f(x) = x^x, q(x) = 3;$

- (2) $f(x) = \frac{1}{x}, g(x) = \sin x + \cos x;$
- (5) $f(x) = \sin(\ln x), g(x) = x;$
- (8) $f(x) = \sqrt{x}, g(x) = 16x + 4$;

- (3) $f(x) = x \cos x, g(x) = \frac{1}{x}$;
- (6) $f(x) = \frac{1}{x+1}, g(x) = \ln x;$
- (9) $f(x) = e^x$, $q(x) = 2 \ln 3$;

Задача 5. Представьте следующие функции в виде суперпозиции более простых функций f и g:

(1) $h(x) = \sin(\cos x)$

(4) $h(x) = 3\sin(x^2)$

(7) $h(x) = \sqrt{18x^2 + 1}$

(2) $h(x) = e^{2x+4}$

 $(5) \quad h(x) = \sin^2(x)$

(8) $h(x) = \frac{1}{2x \sin \ln x}$

- (3) $h(x) = \sin(-5x + 2)$
- (6) $h(x) = \ln \frac{1+x}{1-x}$

 $(9) \quad h(x) = x^x$

Задача 6. Докажите, что композиция инъективных инъективна, композиция сюрьективных сюрьективна, композиция биективных биетивна. Если $g \circ f$ инъективно, верно ли, что а) f инъективно? б) g инъективно? Если $g \circ f$ сюрьективно, верно ли, что а) f сюрьективно? б) g сюрьективно? б) g сюрьективно?

Если A множество, то отображение $id_A:A\to A$, задаваемое формулой $id_A(x)=x$ называется тождественным отображением множества A. Если $f:A\to B$, то отображение $g:B\to A$ называется обратным f, если $g\circ f=id_A$ и $f\circ g=id_B$.

Задача 7. а) Докажите, что обратные отображения имеются только у взаимно однозначных функций. б) Для каждого из биективных отображений задачи 1 найдите обратное. в) Выразите обратное композиции $f \circ g$ через обратные к f и g.

Если существует взаимно однозначное отображение между множествами A и B, то такие множества называются равномощными, запись: |A| = |B|.

Задача 8. Докажите, что если |A| = |B| и |B| = |C|, то |A| = |C|.

Задача 9. Докажите (находя взаимно однозначное отображение) равномощность следующих множеств:

- (1) $\{1,2,3\}$ и $\{\mathfrak{D},\mathfrak{Q},\blacktriangle\}$;
- (2) \mathbb{Z} и \mathbb{Z} ;
- (3) \mathbb{Z} и $\{x \in \mathbb{Z} | x > 1\};$
- $(4) \ \mathbb{Z} \ \text{if } 2\mathbb{Z} = \{2x | x \in \mathbb{Z}\};$
- (5) [0,1] и [0,2] ([0,1] это отрезок, то есть множество $\{x \in \mathbb{R} | 0 \leqslant x \leqslant 1\}$);
- (6) [0,1] μ [-1,1];

- (7) [0,1] и (0,1] ((0,1] это полуинтервал, то есть множество $\{x \in \mathbb{R} | 0 < x \leqslant 1\}$);
- (8) (0,1] и $[1,\infty)$;
- (9) [0,1] и \mathbb{R} ;
- (10) любые два отрезка на плоскости;
- (11) отрезок и окружность;
- (12) множество всех подмножеств \mathbb{N} и множество всех бесконечных последовательностей 0 и 1;

Задача 10 (Теорема Кантора). Множество всех подмножеств множества A обозначается через 2^A . Рассматривая для отображения $f:A\to 2^A$ множество $\{x\in A|x\not\in f(x)\}$ докажите, что A не может быть равномощно 2^A .