Problem set 11

Exercises to hand in: 10.20, 10.23, 10.24

10.20 Blue jay morphology

```
data("BlueJays")
```

a. Boxplots

```
attach(BlueJays)
boxplot(Head~KnownSex)
```


boxplot(Mass~KnownSex)

b. Simple logistic regression

```
log2 <- glm(Sex ~ Mass, data = BlueJays, family = binomial)</pre>
  summary(log2)
Call:
glm(formula = Sex ~ Mass, family = binomial, data = BlueJays)
Deviance Residuals:
                   Median
    Min
              1Q
                                 3Q
                                         Max
-1.9514 -1.0402
                   0.6611
                             0.9985
                                      2.0192
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -12.17171
                         3.24990
                                  -3.745 0.000180 ***
              0.17073
                         0.04528
                                    3.770 0.000163 ***
Mass
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 170.44
                           on 122
                                    degrees of freedom
Residual deviance: 153.56 on 121
                                    degrees of freedom
AIC: 157.56
Number of Fisher Scoring iterations: 4
  exp(coef(log2))
 (Intercept)
                     Mass
5.174825e-06 1.186168e+00
```

he p-value of mass is 0.000163 which is less than 0.05. This means that mass is a significant predictor in determining the sex of blue jay. This means that mass has predicting power. If the p-value would have been greater than 0.05, then mass would have no predictive power.

c. Multiple logistic regression

```
log3<-glm(Sex ~ Mass+Head, data = BlueJays, family = binomial)</pre>
  summary(log3)
Call:
glm(formula = Sex ~ Mass + Head, family = binomial, data = BlueJays)
Deviance Residuals:
              1Q
                   Median
    Min
                                 3Q
                                         Max
-2.3174 -0.5250
                   0.1034
                                      2.2532
                            0.6400
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
                                  -5.609 2.04e-08 ***
(Intercept) -89.04780
                        15.87609
Mass
             -0.07609
                         0.06815 -1.116
                                             0.264
                                    5.257 1.46e-07 ***
Head
              1.69650
                         0.32271
___
Signif. codes:
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 170.441
                                    degrees of freedom
                            on 122
Residual deviance: 99.965
                            on 120 degrees of freedom
AIC: 105.96
Number of Fisher Scoring iterations: 5
  exp(coef(log3))
 (Intercept)
                     Mass
2.123410e-39 9.267321e-01 5.454831e+00
```

The p-value of mass is 0.264 which is greater than 0.05 so this means that mass is not a significant predictor in determining the sex of blue jay when we do a multiple regression involving both mass and head.

10.23 Sinking of the Titanic

```
data("Titanic")
```

a. Multiple logistic

```
logisticTitanic1 <- glm(Survived ~ Age+SexCode, data=Titanic, family=binomial)</pre>
  summary(logisticTitanic1)
Call:
glm(formula = Survived ~ Age + SexCode, family = binomial, data = Titanic)
Deviance Residuals:
    Min
               1Q
                  Median
                                  3Q
                                          Max
-1.7541 -0.6905 -0.6504
                             0.7576
                                       1.8628
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.159839
                        0.219651 -5.280 1.29e-07 ***
            -0.006352
                         0.006187 -1.027
                                               0.305
Age
SexCode
              Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 1025.57 on 755
                                      degrees of freedom
Residual deviance: 795.59 on 753 degrees of freedom
  (557 observations deleted due to missingness)
AIC: 801.59
Number of Fisher Scoring iterations: 4
logit(\hat{\pi}) = -1.160 - 0.006352 * Age + 2.465996 * SexCode
\hat{\pi} = \frac{e^{-1.160 - 0.006352*Age + 2.465996*SexCode}}{1 + e^{-1.160 - 0.006352*Age + 2.465996*SexCode}}
```

b. Predictor effectiveness

Since the p-value of sex is less than 0.05, it is a significant predictor in predicting the response variable Survived whereas the p value of Age is greater than 0.05 so it is not a significant predictor in predicting the response variable Survived.

c. Predictions for 18-year-old man

```
\exp(-1.160-0.00635*(18))
[1] 0.2796266
0.2796266/1.279627
[1] 0.218522
\widehat{odds} = 0.2796266 \ \hat{\pi} = 0.218522
```

d. Predictions for 18-year-old woman

```
\exp(1.306157-0.00635*(18))
[1] 3.293191
3.293191/4.293191
[1] 0.767073
\widehat{odds} = 3.293191
\widehat{\pi} = 0.767073
```

e. Redo

```
exp(-1.160-0.00635*(50))
```

[1] 0.2282075

```
\exp(-1.160-0.00635*(50))/(1+\exp(-1.160-0.00635*(50)))
[1] 0.1858053
\widehat{odds} = 0.2282075 \ hat \pi = 0.1858053
\exp(1.306157-0.00635*(50))
[1] 2.687623
\exp(1.306157-0.00635*(50))/(1+\exp(1.306157-0.00635*(50)))
[1] 0.7288226
\widehat{odds} = 2.687623 \ \widehat{\pi} = 0.7288226
2.687623/0.2282075
[1] 11.7771
```

The odds ratio of a woman compared to a man of the same age is 11.7771

f. Odds ratio

The gender odd ratio is the same at all ages. This will always be the case.

10.24 Titanic interaction

a. Explain coefficients

```
Titanic <- Titanic %>%
     drop_na(Age)
  logisticTitanic2 <- glm(Survived ~ Age+SexCode+Age*SexCode, data=Titanic, family=binomial)</pre>
  summary(logisticTitanic2)
Call:
glm(formula = Survived ~ Age + SexCode + Age * SexCode, family = binomial,
   data = Titanic)
Deviance Residuals:
   Min 1Q Median
                             3Q
                                     Max
-2.1262 -0.7348 -0.5194 0.7699
                                  2.2632
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.298750 0.277699 -1.076 0.282
Age
          SexCode
           0.599858 0.408050 1.470
                                        0.142
Age:SexCode 0.065718 0.013686 4.802 1.57e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1025.57 on 755 degrees of freedom
Residual deviance: 770.56 on 752 degrees of freedom
AIC: 778.56
Number of Fisher Scoring iterations: 4
  -0.298750+0.599858
[1] 0.301108
```

-0.036367+0.065718

[1] 0.029351

```
\label{eq:log(odds_survived_female)} $$\log(odds\_survived\_female) = -0.298750 \ -0.036367 \ * Age \\ \log(odds\_survived\_male) = 0.301108 \ + \ 0.029351 \ * Age \\
```

Since the p value is less than 0.05, this difference is statistically significant.

b. Nest likelihood ratio test

```
logisticTitanic3 <- glm(Survived ~ SexCode, data=Titanic, family=binomial)
summary(logisticTitanic3)</pre>
```

Call:

```
glm(formula = Survived ~ SexCode, family = binomial, data = Titanic)
```

Deviance Residuals:

```
Min 1Q Median 3Q Max -1.6735 -0.6776 -0.6776 0.7524 1.7800
```

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1025.57 on 755 degrees of freedom Residual deviance: 796.64 on 754 degrees of freedom

AIC: 800.64

Number of Fisher Scoring iterations: 4

lrtest(logisticTitanic3, logisticTitanic2)

Likelihood ratio test

```
Model 1: Survived ~ SexCode

Model 2: Survived ~ Age + SexCode + Age * SexCode

#Df LogLik Df Chisq Pr(>Chisq)

1  2 -398.32

2  4 -385.28  2 26.088  2.163e-06 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Since the p value is significant, the interaction model is better than using just the SexCode model.