Elective in Robotics - Underactuated Robots

A.Y. 2020/2021

Modeling and Control of a Hybrid Wheeled Jumping Robot

Candidates

Rossella Bonuomo, 1923211 Marco Pennese, 1749223 Veronica Vulcano, 1760405 **Professors**Giuseppe Oriolo
Leonardo Lanari

Supervisor Filippo Smaldone

Introduction

- We apply Model Predictive Control to a wheeled robot with a prismatic extension joint, that can be considered a wheeled-legged system.
- These systems can combine the benefits of both mobile robots and legged systems.

- After showing the **system dynamics**, we propose a scenario in which the robot should swing-up and balance, drive upright and jump over a gap under the control of the MPC.
- We also consider a PD controller in order to make a comparison between the two approaches. To test robustness of both controller, we have also included noise in sensor's reading.

Phase 0 Model

- In the first phase of the simulation, the robot has to slow down and swing-up by applying torque to the
 wheel. We constraints l (length of the body) to be constant, so to simplify the model.
- By considering the forces and torque applied to the car we obtain the dynamic model.

$$\begin{cases} \ddot{\phi} = \frac{\tau}{(I_w + m_t R_w^2)} \\ \ddot{\theta} = \frac{1}{m_b l^2} \left(-m_b l \sin \theta R_w \ddot{\phi} + m_b g l \cos \theta - \tau \right) \end{cases}$$

With:

- ϕ : angle of rotation of the wheel;
- θ : angle of the car with respect to the ground;
- m_t : total mass (sum of the body mass m_b and wheel mass m_w);
- τ: control input consisting in the torque applied to the wheel.

Variable-Length Wheeled Inverted Pendulum

- It consists of a wheel and a pole modeled as a point mass located at a certain distance from the wheel.
- The **prismatic joint** has to mimic the capability of a leg. The distance of the point mass to the wheel is not constant.

The generalized coordinates are $q = \begin{bmatrix} x & z & \phi & l & \theta \end{bmatrix}^T$, the control inputs are $u = \begin{bmatrix} \tau & f \end{bmatrix}^T$

The dynamic model, derived through the Lagrangian method, is:

Model Predictive Control

- MPC includes a family of control methods for achieving optimal performance while satisfying a set of constraints.
- The optimal control action is found by solving an **optimization control problem** over a finite *prediction horizon*.
- The cost function is minimized considering the process dynamics along the horizon.

We want to control the system during different phases:

- Swing-up and balance
- Driving upright
- Jumping over a gap

MPC - Problem formulation

Cost function
$$\min_{X,U,\Lambda} \sum_{i} \left((x_i^* - x_i)^T Q (x_i^* - x_i) + u_i^T U u_i \right) + (x_N^* - x_N)^T P (x_N^* - x_N)$$

Start state
$$x_0 = x_0^*$$

Goal state $x_N = x_N^*$
Dynamics $x_{t+1} = f(x_t, u_t, \lambda_t), t \in [0, N]$

State bounds
$$x^- \le x_t \le x^+, t \in [0, N]$$

Control bounds $u^- \le u_t \le u^+, t \in [0, N-1]$

Flight phase If
$$t \in [T_{tf}, T_{td}]$$
 (no ground force) $\lambda_t = 0$

 $\begin{array}{ll} \textit{Ground phases} & \text{If } t \not \in \left[T_{tf}, T_{td}\right] \\ \textit{(friction cone)} & |\lambda_t^x| \leq \mu \lambda_t^z \\ \textit{(unilateral force)} & \lambda_t^z \geq 0 \end{array}$

No slip on ground $\dot{x}_t = R_w \dot{\phi}_t$

PD Controller

We want to control the robot during the **balancing phase** with a **Proportional Derivative controller**

$$\tau = -K_p^{\theta} e(\theta) - K_D^{\theta} e(\dot{\theta}) - K_p^{\phi} e(\phi) - K_D^{\phi} e(\dot{\phi})$$
$$f = f_{des} + K_P^{l} e(l) + K_D^{l} e(\dot{l})$$

The interpretation of the terms is:

- **Proportional action:** it immediately reacts to the variations of the error that decreases as the proportional constant K_P increases. Of course, there is a limit for the increase of the proportional constant.
- **Derivative action**: it is proportional to the derivative of the error and it is used to improve the transient of the response since it can decrease the overshooting.

Experiments

The simulations have been implemented in Python using the acados solver.

In the simulation, we set the following values for the robot **parameters**:

$$m_b = 4 kg$$

$$m_w = 2 kg$$

$$R_w = 0.17 m$$

$$I_w = m_w R_w^2 = 0.0578 m \cdot kg^2$$

The integrations have been performed using Runge-Kutta of 4th order and the sampling time of the controller is $0.05 \ s$.

- In the phase 0, we set a **prediction horizon** of 0.5 s.
- In the second phase, the **prediction horizon** is equal to 2 s.

We define the problems to be solved with the MPC controller:

1. The first uses the phase 0 model to drive the four-wheels robot from a velocity of $\dot{x}=7~m/s$ up to a velocity of $\dot{x}=0~m/s$; this phase lasts less than one second.

State bounds	Control bounds			
$X_{lim} = \begin{bmatrix} -\infty & 0 & -\infty & -\infty \\ \infty & \infty & \infty & \infty \end{bmatrix}$	$U_{lim} = \begin{bmatrix} -10\\10 \end{bmatrix}$			

2. Once we reach the target velocity, we switch to the VL-WIP model.

State bounds								Control bounds		
$X_{lim}^{pre-tf} = \begin{bmatrix} -\infty \\ 1.5 \end{bmatrix}$	R_w R_w	-∞ ∞	$2R_w$ $1 + 2R_w$	$-\pi/2$ $\pi/2$	-∞ ∞	-∞ ∞	-∞ ∞	-∞ ∞	$-\infty$	$U_{lim}^{\text{ground}} = \begin{bmatrix} -10 & -200 & -\infty & 0 \\ 10 & 200 & \infty & \infty \end{bmatrix}$
$X_{lim}^{flight} = \begin{bmatrix} -\infty \\ \infty \end{bmatrix}$	$R_w \infty$	-∞ ∞	$2R_w$ $1 + 2R_w$	$-\pi/2$ $\pi/2$	-∞ ∞	-∞ ∞	-∞ ∞	-∞ ∞	$-\infty$ ∞	10 200 00 001
$X_{lim}^{post-td} = \begin{bmatrix} 2\\ \infty \end{bmatrix}$	R_w R_w	-∞ ∞	$2R_w$ $1 + 2R_w$	$-\pi/2$ $\pi/2$	-∞ ∞	-∞ ∞	-∞ ∞	-∞ ∞	_∞ ∞]	$U_{lim}^{\text{flight}} = \begin{bmatrix} -10 & -200 & 0 & 0\\ 10 & 200 & 0 & 0 \end{bmatrix}$

The robot has first to drive horizontally on four wheels, then it should get up and balance on two wheels, drive forward and finally jump over a gap. A two stage controller is used to switch from one model to the other.

State variables

The robot contracts its body by restricting the prismatic joint before the take-off and then extends it before approaching the ground again.

PD vs MPC – simplified model

- We are going to control the robot during the balancing phase only, so we do not care about the floating base; we always want the wheel in contact with the ground.
- ◆ We can use a **simplified model**:
 - x is not an independent variable since $x = R_w \varphi$;
 - z is kept constant and equal to R_w ;
 - The vector of generalized coordinates becomes $q = [\varphi \ l \ \theta]^T$.
- ◆ The new dynamics are derived using the Lagrangian formulation.
- The control inputs are $\mathbf{u} = \begin{bmatrix} \tau \\ f \end{bmatrix}$.

PD vs MPC – results

- We compare the results for the balancing phase, from $q_i = \begin{bmatrix} 0 & 0.5 & \frac{\pi}{8} \end{bmatrix}$ to $q_f = \begin{bmatrix} -\frac{2}{R_W} & 0.8 & 0 \end{bmatrix}$.
- We plot the whole state variables knowing that $x = R_w \phi$ and $z = R_w$

 $K_P^{\theta} = 20, \qquad K_D^{\theta} = 4$ $K_P^{\phi} = 0.125, \qquad K_D^{\phi} = 0.2$ $K_P^{l} = 20, \qquad K_D^{l} = 20$

$$K_P^l = 20, \qquad K_D^l = 20$$

results

State variables

Control variables

PD vs MPC - results

- We compare the results for the balancing phase, from $q_i = \begin{bmatrix} 0 & 0.5 & \frac{\pi}{8} \end{bmatrix}$ to $q_f = \begin{bmatrix} -\frac{2}{R_W} & 0.8 & 0 \end{bmatrix}$.
- We plot the whole state variables knowing that $x = R_w \phi$ and $z = R_w$

State variables

Control variables

PD vs MPC – computational time

We want to compare the computational times for the two controllers considering:

- Mean time: mean time value among all the iterations
- Std dev: standard deviation among all the iterations
- Max time: time that the slowest iteration needs to finish
- Total time: time needed to execute 12 s of simulation

	Mean time	Std dev	Max time	Total time
PD	$8.131 \cdot 10^{-5}$	$2.189 \cdot 10^{-5}$	$2.546 \cdot 10^{-4}$	$1.951 \cdot 10^{-2}$
MPC	$2.534 \cdot 10^{-3}$	$6.131 \cdot 10^{-4}$	$5.418 \cdot 10^{-5}$	$6.082 \cdot 10^{-1}$

MPC is **slower** than PD controller!

Extension: noise on sensor's reading

We added noise on sensor's reading both on MPC and PD for the balancing phase.

- Sensor reading at each step is: $x_{read} = x + \mathcal{N}(0, \sigma \mathbb{I})$
- Noise varies in range 0-0.4 with a step size 0.02.
- For each value of σ we run 40 experiments.

Conclusions

Despite its very simple dynamics, the VL-WIP is able to generate **complex motions**.

- We can also use a PD controller, but we have to tune gains in an empirical way.
- With the MPC we can obtain even more difficult tasks (as jumping) in an easier way; however, the computational times are higher.
- MPC is more robust than PD controller since it is less sensible to noise.

Thank you for listening!

