Feuille d'exercice n° 13 : Continuité

Exercice 1 Etudier la continuité des fonctions suivantes.

1)
$$f: x \mapsto x + \sqrt{x - |x|}$$

2)
$$g: x \mapsto |x| + \sqrt{x - |x|}$$

Exercice 2 (%) Les fonctions suivantes sont-elles prolongeables par continuité sur \mathbb{R} ?

1)
$$f: x \mapsto \sin(x)\sin\left(\frac{1}{x}\right)$$

1)
$$f: x \mapsto \sin(x) \sin\left(\frac{1}{x}\right)$$
 2) $g: x \mapsto \frac{1}{x} \ln\left(\frac{e^x + e^{-x}}{2}\right)$ 3) $h: x \mapsto \frac{1}{1-x} - \frac{2}{1-x^2}$

3)
$$h: x \mapsto \frac{1}{1-x} - \frac{2}{1-x^2}$$

Inverse généralisé d'une fonction –

Soit $f:\mathbb{R}\to\mathbb{R}$ une application croissante et continue. On définit, pour tout réel x, F(x)= $\sup \{ y \in \mathbb{R} \mid f(y) \leqslant x \}.$

- 1) F est-elle toujours définie?
- **2)** On prend pour cette question $f: \mathbb{R} \to \mathbb{R}$ telle que $\forall x \in \mathbb{R}_+, f(x) = x^2, \text{ et } f|_{\mathbb{R}_-} = 0.$ Déterminer F.
- 3) On prend pour cette question $f: x \mapsto \begin{cases} x-1 & \text{si } x \leqslant -1 \\ -2 & \text{si } |x| < 1 \\ 2x-4 & \text{si } x \geqslant 1 \end{cases}$

Déterminer F, étudier sa continuité, continuité à droite, à gauche.

Que peut-on dire de $f \circ F$ et de $F \circ f$?

4) Que peut-on dire si f est bijective ?

On considère la fonction f définie sur \mathbb{R} par $f: x \mapsto \begin{cases} x & \text{si } x \in \mathbb{R} \setminus \mathbb{Q} \\ 1/x & \text{si } x \in \mathbb{Q} \setminus \{0\} \\ 0 & \text{si } x = 0. \end{cases}$ Exercice 4

- 1) Montrer que f est une bijection de \mathbb{R} sur \mathbb{R} .
- a) En revenant à la définition de continuité, montrer que f est continue en 1 et en -1.
 - b) Soient $a \in \mathbb{Q}$ et $b \in \mathbb{R} \setminus \mathbb{Q}$. Donner, en la justifiant, la valeur des quantités suivantes, pour tout $n \in \mathbb{N}^*$.

$$\mathbf{i)} \ f\bigg(a + \frac{1}{n}\bigg)$$

i)
$$f\left(a+\frac{1}{n}\right)$$
 ii) $f\left(a+\frac{\sqrt{2}}{n}\right)$ iii) $f\left(b+\frac{1}{n}\right)$ iv) $f\left(\frac{\lfloor 10^n b \rfloor}{10^n}\right)$

iii)
$$f\left(b+\frac{1}{n}\right)$$

$$\mathbf{iv)} \ f\left(\frac{\lfloor 10^n b \rfloor}{10^n}\right)$$

- c) Que dire de la continuité de f en $x \in \mathbb{R} \setminus \{-1, 1\}$?
- 3) À quoi ressemblerait la courbe représentative de f, vue par un myope ?

Soient I un intervalle de \mathbb{R} et $f:I\to\mathbb{R}$ continue telle que $\forall x\in I, f(x)^2=1$. Montrer Exercice 5 que f = 1 ou f = -1.

Exercice 6 Soient $(a, b) \in \mathbb{R}^2$ tel que a < b, soit f, g définies et continues sur [a; b] telles que

$$\forall x \in [a; b], \ 0 < g(x) < f(x).$$

Montrer que

$$\exists \lambda \in \mathbb{R}_+^*, \ \forall x \in [a; b], \ (1 + \lambda)g(x) < f(x).$$

Exercice 7 ($\stackrel{\triangleright}{\rightharpoonup}$) Trouver toutes les fonctions vérifiant $f: \mathbb{R} \to \mathbb{R}$ vérifiant les propriétés suivantes.

- 1) La fonction f est continue en 0 et $\forall x \in \mathbb{R}, \ f(2x) = f(x) \cos x$.
- 2) La fonction f est continue et $\forall x \in \mathbb{R}, \ f(2x+1) = f(x)$

Exercice 8 (\bigcirc Montrer qu'une fonction définie sur \mathbb{R} , continue, périodique et non constante possède une plus petite période (strictement positive).

Exercice 9 () Fonctions contractantes –

Soit $a, b \in \mathbb{R}$ avec a < b. Soit $f : [a, b] \to [a, b]$ telle que, pour tout $x, x' \in [a, b]$ avec $x \neq x'$, on a :

$$|f(x) - f(x')| < |x - x'|.$$

- 1) Montrer que f est continue sur [a, b].
- 2) Montrer que l'équation f(x) = x admet une unique solution dans [a, b].

Exercice 10 (%)

Soit P un polynôme de degré impair et à coefficients réels. Montrer que P possède une racine réelle.

Exercice 11 Soit $a, b \in \mathbb{R}$, avec a < b. Soit $f, g \in \mathcal{C}([a, b], \mathbb{R})$. On suppose que

$$\forall x \in [a, b], \ \exists x' \in [a, b], \ f(x) = g(x').$$

On veut montrer que

$$\exists c \in [a, b], \ f(c) = g(c).$$

Raisonnons par l'absurde et supposons que, pour tout $x \in [a, b], f(x) \neq g(x)$.

- 1) Montrer qu'alors f g est de signe constant et ne s'annule pas.
- 2) On suppose que f g > 0.
 - a) Montrer que f et g possèdent chacune un maximum sur [a,b]. On les notera M_f et M_g .
 - **b)** Montrer que $M_g \geqslant M_f$ et conclure.
- 3) Retrouver le résultat si f g < 0.

Exercice 12 Soit $a, b \in \mathbb{R}$ avec a < b, soit $f : [a, b] \longrightarrow \mathbb{R}$ une fonction continue telle que f(a) = f(b).

- 1) Montrer que la fonction $g: t \mapsto f\left(t + \frac{b-a}{2}\right) f(t)$ s'annule en au moins un point de $\left[a, \frac{a+b}{2}\right]$.
- 2) Application : une personne parcourt 4 km en 1 heure. Montrer qu'il existe un intervalle de 30 mn pendant lequel elle parcourt exactement 2 km.

Exercice 13 (%) - TVI à l'infini -

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ continue, ayant une limite $\ell \in \mathbb{R}$ en $+\infty$. Montrer que f prend toute valeur comprise entre f(0) et ℓ (ℓ exclu).

Exercice 14 Soit $a, b \in \mathbb{R}$ avec a < b. Soit f et g deux fonctions continues de [a, b] dans [a, b], telles que

$$\forall x \in [a, b], \ f \circ g(x) = g \circ f(x) \ .$$

On pose $E = \{ x \in [a, b] \mid f(x) = x \}.$

- 1) Montrer que E a une borne inférieure et une borne supérieure. On notera $\alpha = \inf E$ et $\beta = \sup E$.
- 2) Montrer qu'il existe une suite (α_n) d'éléments de E telle que $\alpha_n \xrightarrow[n \to +\infty]{} \alpha$. On montrerait de même qu'il existe une suite (β_n) d'éléments de E telle que $\beta_n \xrightarrow[n \to +\infty]{} \beta$.
- 3) Montrer que α et β sont dans E.
- **4)** Montrer que $g(\alpha)$ et $g(\beta)$ sont dans E.
- 5) Établir que $\exists x_0 \in [a, b], \ f(x_0) = g(x_0)$ (on pourra considérer la fonction h = g f).

