Predicting Football Match Outcomes

Machine Learning Project - Bar Ilan University

- Presented by: Leonardo Romano
- Course: Machine Learning (Spring 2025)

Challenges

- Separated datasets
- Selecting the working environment
- Computer crashes
- Project workflow not so smooth

Executive Summary

Objective: Predict match result (Home Win / Draw / Away Win)

- Dataset from Kaggle:
 https://www.kaggle.com/datasets/t
 echnika148/football-database
- Multi-step pipeline:
 - Data cleaning & feature engineering
 - Exploratory analysis & statistical testing
 - Model training & tuning
- Final model: XGBoost Classifier with >99% accuracy

- 1. Linked PlayerID to TeamID
- 2. Date parsing & time feature extraction
- 3. EDA
- 4. Creating categorical features to handle outliers with low cardinality
- 5. Run MICE to fill missing values due to outliers removal
- 6. Feature Engineering and Selection
- 7. Model selection and final Model used XGboost

1. Linked PlayerID to TeamID

	playerID	teamID	playerName	teamName
0	560	89	Sergio Romero	Manchester United
1	557	89	Matteo Darmian	Manchester United
2	548	89	Daley Blind	Manchester United
3	628	89	Chris Smalling	Manchester United
4	1006	89	Luke Shaw	Manchester United
-				
10101	7396	176	Loic Bessile	Bordeaux
10102	9566	175	Yanis Lhéry	Saint-Etienne
10103	9565	175	Mathys Saban	Saint-Etienne
10104	9568	181	Charles Costes	Dijon
10105	9567	181	Erwan Belhadji	Dijon

3. EDA-

- Class balance: Nearly even across 3 outcomes
- Key variables:
 - Goals, Shots, xG(goals and assist), Corners, Cards
- Statistical tests:
 - T-tests for numeric vars
 - Chi-square for categoricals

Correlations

4. Creating categorical features to handle outliers with low cardinality

~

6

away_Goals

8

home_Goals

6000 -

away total assists Distribution

away_total_saved_shots

home total assists Distribution

home_total_saved_shots

5. Run MICE to fill missing values due to

outliers removal

6. Feature engineering

- Created 30+ features:
 - Rolling averages
 - Goal efficiency ratios
 - Disciplinary scores
- Plotted distributions of engineered features

6. Feature Selection

- Univariate tests (t-test, chi-squared)
- Multivariate: Lasso, Random Forest, Gradient Boosting
- Kept top 18 most important features

0	home_Goals	2536	non-null	int64
1	away Goals	2536	non-null	int64
2	home GoalsHalfTime	2536	non-null	int64
3	home xGoals	2536	non-null	float64
4	home shots	2536	non-null	float64
5	home ppda	2536	non-null	float64
6	home corners	2536	non-null	float64
7	home total assists	2536	non-null	int64
8	away xGoals	2536	non-null	float64
9	away ppda	2536	non-null	float64
10	away total assists	2536	non-null	int64
11	away total red cards	2536	non-null	int64
12	home shotsOnTarget cat	2536	non-null	float64
13	away shotsOnTarget cat	2536	non-null	float64
14	home total assists cat	2536	non-null	float64
15	away total assists cat	2536	non-null	float64
16	home Goals cat	2536	non-null	float64
17	away Goals cat	2536	non-null	float64
18	gameresult	2536	non-null	int64
19	split	2536	non-null	object
	· ·			

7. Modeling and predictions

Model: XGBClassifier

model	Ассигасу	Precision	Recall	f1-score	Log-loss	AUC
Logistic Regression	1.000000	1.000000	1.000000	1.000000	0.005162	1.000000
XGB	0.998028	0.998034	0.998028	0.998026	0.005235	1.000000
RandomForest	0.998028	0.998034	0.998028	0.998026	0.014983	0.999991
GBM	0.999211	0.999213	0.999211	0.999211	0.007243	0.999971
SVM	0.994479	0.994501	0.994479	0.994485	0.012243	0.999957
Decision Tree	0.998028	0.998037	0.998028	0.998027	0.071064	0.998098
ADABoost	0.662066	0.855655	0.662066	0.680578	0.645262	0.963105

The project is not complete - definitely there is still work to do

Thanks

