Machine learning notes: week 2

Lars Yencken

Linear regression with multiple variables

Notation for multiple features

- Suppose we have multiple numeric input features
- $x_1 \dots x_n$ are the input features, where n is the number of features
- The $j^{
 m th}$ feature of the $i^{
 m th}$ training example is $x_i^{(i)}$
- Convention: $\boldsymbol{x}_0^{(i)} = 1$ for every training example
- Hypothesis:

-
$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \cdots + \theta_n x_n$$

-
$$h_{\theta}(x) = \theta^T x$$
 using matrix notation

• Call the parameter vector $\theta_0, \ldots, \theta_n$ just θ for short

Gradient descent

- We can now generalise our update rule
- $\theta_j=\theta_j-\alpha\frac{1}{m}\sum_{i=1}^m(h_{\theta}(x^{(i)})-y^{(i)})x_j^{(i)}$ for $j=0,\dots,n$ Thanks to our $x_0^{(i)}=1$ convention, this lines up neatly with our earlier one-variable rule

Making it converge faster

- Feature scaling
 - Idea: ensure features are of a similar scale
 - Gradient descent works faster on a function with a symmetric bowl shape rather than a distored elipsis bowl shape
 - Harder to pick a good value of α if feature scale varies widely
 - Ideal case: every feature in to a $-1 \le x_i \le 1$, or a range of similar magnitude
- Mean normalisation
 - Replace x_i with $\frac{x_i-\mu_i}{\max(x_i)-\min(x_i)}$ Dividing by the standard deviation σ_i is fine too

Debugging gradient descent

- Plot $J(\theta)$ against the number of iterations
- · It's working properly if
 - It decreases every iteration
 - It decreases reasonably quickly
 - It plateaus at the end
- If it's bowl-shaped or bouncing, α is too big
- ullet If it doesn't plateau at the bottom, lpha may be too small or more iterations may be needed
- Try values of α with several different orders of magnitude
 - E.g. ..., 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, ...

Features and polynomial regression

- Sometimes combined features can be more useful than features in isolation
- We can fit polynomial features (e.g. x, x^2, x^3) by just adding them as if they were new features
- Since these features will vary widely by scale, you should use feature scaling
- Other non-polynomial functions (e.g. sqrt) might be useful feature transformations too

Normal equation

- A way to solve for θ directly, without iteration
- Intution: if $J(\theta)$ was quadratic, we could set the derivative to zero and solve it directly
- Solving the multivariate case:
 - 1. Build a matrix X of the data (including x_0 column set to 1) and y vector
 - 2. Then $\theta = (X^T X)^{-1} X^T y$
- In Octave: pinv(X'*X)*X'*y
- No need to do feature scaling when using the normal method
- Favour gradient descent when n is large (e.g. > 1000)
 - Inverting a matrix is an $O(n^3)$ operation, slowing the normal equation down
- Favour the normal equation when n is relatively small (e.g. ≤ 1000)
 - Don't need to pick α
 - Don't need to monitor convergence
- (Advanced) what if X^TX is non-invertible ("singular")
 - Octave handles this case with the pinv function, but not if you use inv instead
 - This only happens if you have redundant features (e.g. $x_2=3\ast x_1$), or too many features for your training set size

3

– If you have a lot of parameters, you can use *regularization* to handle this case better (covered