PART 1

 The data assimilation step aims to correct The model error The initial condition error Bor both of the above *
 2. The Lorenz96 model, used as a benchmark, is said to be "chaotic" because: A. It is unpredictable B. It contains non-derivative functions C. It is non-physical D. It is very sensitive to initial conditions *
 3. In the standard setup what is the approximate value of the root mean square error (RMSE) of the analysis (at 10⁻² precision)? A. 0.20 B. 50 C. 2.71 D. 0.14
4. If you change the observation error standard deviation to σ obs= 0.1 (instead of the standard value of 0.1), what is the approximate value of the root mean square error of the analysis (analysis RMSE , at 10^{-2} precision)? A. 0.20 B. 0.10 C. 2.71 D. 0.14 *
PART 2
 5. In the standard configuration, how many parameters are optimised in the neural network? A. 80 B. 5000 C. 4783 * D. 500
 6. In the standard configuration, what is the approximate value of the correlation (R2) computed on the validation set (at 10⁻² precision)? A. 0.80 B. 1.00 C. 0.18 * D. 0.20
7. Change the neural network to have only one internal layer containing 5 units with a

kernel size of 7 and a 'tanh' activation function. Run the whole training process again. What

is then the approximate value of the correlation (R2) computed on the validation set (at 10^{-2} precision)?

- A. 0.80
- B. 0.20
- C. 0.18
- D. 0.14 *

PART 3

- 8. What is the forecast lead time below which the hybrid model has a significant lower error than the physical model?
 - A. 3.5 MTU
 - B. 10.0 MTU
 - C. By construction, the hybrid model is expected to always have a lower error.