Michael Astwood

MASTWOOD.GITHUB.IO

MRASTWOO@UWATERLOO.CA

Education

University of Waterloo - 2021

BSc Honours. Mathematical Physics Pure Mathematics Minor Astrophysics Specialization

Westwood Collegiate - 2017

International Baccalaureate Diploma Graduated with Honours CAP Physics Exam Scholarship UWaterloo Merit Scholarship

Programming

Scientific Computing

- MATLAB
 - CasADI, Optimization Toolkit, Parallelization Toolkit
- **Python**NumPy, GEKKO, FEniCS

General Programming

- C#
 - NET, XNA, Monogame
- JavaScript
 - NodeJS, Express, Cheerio, Request, DiscordJS
- Java
- Arduino
- HTML, CSS, XML, Markdown

Outreach

UWaterloo Science Ambassador

Representing mathematical physics as one of three ambassadors to incoming applicants and first year students at open houses and outreach events

• **Director, Physics Interconnected** *Coordinated marketing and de-*

veloped the structure of the mentoring service in Fall 2018

• Creative Director, Science Society

Designed marketing materials for science society events at UWaterloo during Summer 2018

Professional Experience

Perimeter Institute for Theoretical Physics Research Assistant - September 2019 to Present Supervised by Dr. William Donnelly

- Investigating BRST-like symmetries in 2-dimensional Yang-Mills gauge theories
- Readings in topological quantum field theory and string theory

Ingalls Quantitative Cell Biology Group Research Assistant (NSERC USRA) - May 2019 to September 2019 Supervised by Dr. Brian Ingalls and Nate Braniff

- Numerically simulated stochastic dynamical systems using the Gillespie stochastic simulation algorithm to characterize optimal experimental designs
- Investigated various optimization algorithms for use in characterizing statistical models of genetic toggle switches
 - Presented work at the end of the term to the Department of Applied Math

iGEM UWaterloo Mathematics and Modeling Team Lead - October 2018 to Present

Team Member - February 2018 to October 2018

- Developed reaction-diffusion model for chemical uptake and degradation in plant roots for use in environmental analysis and prediction of our system behaviour
 - Solved nonlinear reaction-diffusion model with the Finite Element Method
- Implemented a model predictive control scheme in python for controlling genetic and chemical mechanisms on a cellular level

Physics Undergraduate Society President - January 2019 to May 2019 Other Positions - September 2017 to Present

- Ran series of seminars and lectures on topics in math and physics, including a weekly lecture series in undergraduate quantum field theory
- Managed a variety of projects over 5 terms, increasing outreach into the growing physics community significantly

Posters and Presentations

Engineering Herbicide Tolerance in Rhizobia

Conference Poster, Talk (iGEM 2019 Competition)

Characterization of Optimal Experimental Designs and Parameter Estimation Methods for a Genetic Toggle-Switch

Conference Poster (Canadian Undergrad Math Conference 2019) Talk (UW Department of Applied Mathematics)

Dynamic Optogenetic Control of Co-Cultures

Conference Poster, Talk (iGEM 2018 Competition)

Projects

Geonomaly - CSA SpaceApps Challenge (National Finalist)

• Developed algorithm for detecting anomalous signals in geomagnetic data taken by GO-Canada magnetometers using modern techniques from signal processing such as the Hilbert-Huang transform and Short-Time Fourier Transform.

PHYS375 - Astrophysics III (Stars) Final Project

• Implemented Runge Kutta 45 (Fehlberg) algorithm in order to solve equations of stellar structure for modified main sequence stars