

Q1: Convert (KB $\wedge \ | \alpha$) into Conjunctive Normal

- □ KB: $(B_{11} \Leftrightarrow P_{12} \lor P_{21}) \land B_{11}$, $\alpha: P_{12}$
- □ Sentence: $(B_{11} \Leftrightarrow P_{12} \lor P_{21}) \land [B_{11} \land] P_{12}$
- Solution:
 - 1. Eliminate Bidirectional
 - 2. Eliminate Implication
 - 3. De Morgan (Not)
 - 4. Distribution of V over ∧
 - 5. Double negation elimination
- $\begin{array}{ll} ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) & \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) & \text{associativity of } \vee \\ \neg (\neg \alpha) \equiv \alpha & \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) & \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) & \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) & \text{biconditional elimination} \\ \neg (\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) & \text{de Morgan} \\ \neg (\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) & \text{de Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) & \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) & \text{distributivity of } \vee \text{ over } \wedge \\ \end{array}$

 $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ commutativity of \lor

Conclusion (CNF):

 $(|\mathsf{B}_{11} \, \mathsf{V} \, \mathsf{P}_{12} \, \mathsf{V} \, \mathsf{P}_{21}) \, \wedge (|\mathsf{P}_{12} \, \mathsf{V} \, \mathsf{B}_{11}) \, \wedge (|\mathsf{P}_{21} \, \mathsf{V} \, \mathsf{B}_{11}) \, \wedge \, |\mathsf{B}_{11} \, \wedge \, \mathsf{P}_{12}$

Q2: Use the PL inference rules to prove P

- □ R₁: R ∨ T,
- □ R₂: Q ∧ U,
- □ R_{4:}] R ∨ S

Solution:

- R₁ R₄ Resolution Rule
 - R₅: S ∨ T
- R₃, R₅ modus ponens
 - R₆: Q ⇒ P
- R₂ and-elimination
 - F₁: Q
- F₁, R₅ modus ponens
 - Conclusion: p

Q3: Translate facts into prepositional logic and prove.

- □ A is on the right of B: R_{AB}
 □ B is on the left of A: L_{BA}
 □ C is on the top of B: T_{CB}
- □ C is on the top of A: TCA
- □ If A is on the right of B, then B is on the left of A:

$$R_1: R_{AB} \Rightarrow L_{BA}$$

□ If C is on the top of B which is on the left of A, then it is not on the top of A.

$$R_2:T_{CB} \wedge L_{BA} \Rightarrow T_{CA}$$

Q3: Translate facts into prepositional logic and prove, Cont...

- Rules
 - $\hfill \square$ R1: Rab \Rightarrow Lba , R2:Tcb \land Lba \Rightarrow $\hfill \square$ Tca
- □ Fact (knowing that R_{AB} and T_{CB})
 - Б1: RAB ,F2: Тсв
- □ Prove (]TcA)

F1 & R1 modus ponens gives F3: LBA

F2 & F3 and-introduction gives F4:T_{CB} ∧ L_{BA}

F4 & R2 modus ponens gives conclusion]Toal

Q4: deduce who is the prize winner and if he is happy or not?

- Rules
 - R₁: ∀x Won_Prize(x) ⇒Happy(x)
 - R₂: ∀y Play_Game(y) ^ Lucky(y) ⇒ Won_Prize(y)
- ¬ Facts
 - □ F₁:Play_Game(Ali), F₂:Play_Game(Mona), F₃:Lucky(Ali), F₄:Happy(Mona)
- ¬ Solution
- □ F₁ & F₃ and-introduction gives F₅: Play_Game(Ali) ∧ Lucky(Ali)
- □ F₆ & R₁ modus ponens gives **conclusion
- Conclusion
 - Ali won and Ali is happy

^{*} We concluded using MGU to Subst{y/Ali}

^{**} We concluded using MGU to Subst{x/Ali}

Q5: Represent statements using first order logic.

- Predicates: Bigger(x,y), Apple(x), Red(x), Delicious(x)
- All red apples are delicious.
 - □ \forall x, Apple(x) \land Red(x) \Rightarrow Delicious(x)
- Every delicious apple is bigger than some red apple.
 - $□ \forall x, \exists y: Apple(x) \land Delicious(x) \Rightarrow Apple(y) \land Red(y) \land Bigger(x,y)$

Q6: Prove Above (A,C).

Rules

- R1: \forall x, y On(x, y) \Rightarrow Above(x, y)
- R2: \forall x, y, z On(x, y) \land Above(y, z) \Rightarrow Above(x, z)

Fact

- **□** F1: On(A, X), F2: On(X, C)
- Solution

```
F2 & R1 modus ponens gives *F3: Above(X, C) 
F1 & F3 and-introduction gives **F5: On(A, X) \land Above(X, C) 
F5 & R2 modus ponens gives conclusion
```

- Conclusion
 - Above (A,C)

^{*} We concluded using MGU to Subst{y/C, x/X}

^{**} We concluded using MGU to Subst{x/A, y/X, z/C}

Extra Q: $KB \models \alpha$?

- Rules
 - \blacksquare R₁: A \Rightarrow B
 - R₂: (B ⇒ C) V A
 - R₃: C ⇒ B
 - □ R4:]B
 - **α:]A**
- □ $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable
- 1. Put *KB* ∧ ¬α into CNF
 - $lue{}$ (|AVB) \wedge (|B \vee C \vee A) \wedge (|C \vee B) \wedge (|B) \wedge A

Extra Q: $KB \models \alpha$?

2. Resolution of KB ∧ ¬α

- 3. An empty clause appear, then $(KB \land \neg \alpha)$ is unsatisfaiable
 - **□** *KB* | α