

CHHATTISGARH SWAMI VIVEKANAND TECHNICAL UNIVERSITY छत्तीसगढ़ स्वामी विवेकानंद तकनीकी विश्वविद्यालय

To be filled, scanned and kept at 1st page of Answer Booklet.

Nov-Dec 2021 Examination

Student Name:	V.0	<u>m</u>	Sou	1	Ja	ge	shu	Ja	٠	sh	ar	ma_{\perp}
Mobile No.:	860	272	73	389	1	0						
Email ID:	Nage	shup	ير د	sha	hn	19L	<u>a</u>	22.	ir	m	t.c	Om.
Enrollment No.:	ВЛ	45	99		ild.							
Roll No.:	3 0	3 3	0	2 2	2	0	0	2	0			
	B.Tecl	J			. [8			. Se	neste	r:	3 ^x	d
Branch/Specializa	ation: 🚅	omp	ute	<u>r</u> S	c€	ier)Ce		£ E	ng	ine	ening
Subject Code:	BO	00	3 1		(0	1	4)			
Subject Name:	Mat	nemo	tic	s – Д	<u> </u>					, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Regular/Backlog:	R	egulo	Vr_									
Date of Exam:	21/	<u>گُـر/20</u>	22									
Note:												
1) Only ab	ove forma	at is to be	used	for Nov	-Dec	202	1 Ex	ams.	Olde	r/earl	ler for	mat will

- not be accepted.
- 2) Nomenclature to mentioned Answer Booklet Subject code Roll No. only.
- 3) Only Roll No. generated in Admit Card must be filled (College Transfer students must take care in filling their Roll Nos,).

I certify that above information given there in is correct and I shall be personally responsible for the same if proved wrong/false later on.

	(1)	
Signature:		

(a)

$$SO(^{3}) = \frac{4s+5}{(s-1)^{2}(s+2)} = \frac{A}{(s-1)} + \frac{B}{(s-1)^{2}} + \frac{C}{(s-1)^{2}}$$

$$= > \frac{4s+5}{(s-1)^2(s+2)} = \frac{A(s-1)(s+2) + B(s+2) + C(s-1)^2}{(s-1)^2(s+2)}$$

$$=> \frac{4s+5}{(s-1)^{2}(s+2)} = \frac{A(s-1)(s+2)+B(s+2)+C(s-1)^{2}}{(s-1)^{2}(s+2)} = \frac{A(s-1)(s+2)+B(s+2)+C(s-1)^{2}}{(s-1)^{2}(s+2)+B(s+2)+C(s-1)^{2}} = \frac{A(s-1)(s+2)+B(s+2)+C(s-1)^{2}}{(s-1)^{2}(s+2)+C(s-1)^{2}} = \frac{A(s-1)(s+2)+B(s+2)+C(s-1)^{2}}{(s-1)^{2}(s+2)+C(s-1)^{2}} = \frac{A(s-1)(s+2)+B(s+2)+C(s-1)^{2}}{(s-1)^{2}(s+2)+C(s-1)^{2}} = \frac{A(s-1)(s+2)+B(s+2)+C(s-1)^{2}}{(s-1)^{2}(s+2)+C(s-1)^{2}} = \frac{A(s-1)(s+2)+B(s+2)+C(s-1)^{2}}{(s-1)^{2}(s+2)+B(s+2)+C(s-1)^{2}} = \frac{A(s-1)(s+2)+B(s+2)+C(s-1)^{2}}{(s+2)^{2}(s+2)+B(s+2)+C(s-1)^{2}} = \frac{A(s-1)(s+2)+B(s+2)+C(s-1)^{2}}{(s+2)^{2}(s+2)+C(s-1)^{2}} = \frac{A(s-1)(s+2)+B(s+2)+C(s-1)^{2}}{(s+2)^{2}(s+2)+B(s+2)} = \frac{A(s-1)(s+2)+B(s+2)+B(s+2)+C(s-1)^{2}}{(s+2)^{2}(s+2)+B(s+2)} = \frac{A(s-1)(s+2)+B(s+2)+B(s+2)+B(s+2)+B(s+2)+B(s+2)}{(s+2)^{2}(s+2)^{2}} = \frac{A(s-1)(s+2)+B(s+2)+B(s+2)+B(s+2)+B(s+2)+B(s+2)}{(s+2)^{2}(s+2)^{2}} = \frac{A(s-1)(s+2)+B(s+2)+B(s+2)+B(s$$

$$S^{-1}(s+2)$$

$$= A(s-1)(s+2) + B(s+2) + C(s-1)^{2}$$

$$= A(s-1)(s+2) + B(s+2) + C(s^{2}+1-2s)^{2}$$

$$= A(s^{2}+2s-s-2) + B(s+2) + C(s^{2}+1-2s)^{2}$$

$$= A(s^{2}+3s-2) + B(s+2) + C(s^{2}+1-2s)^{2}$$

$$= A(s^{2}+3s-2) + B(s+2) + C(s^{2}+1-2s)^{2}$$

$$=> 0s^{2} + 4s + 5 = A(s^{2} + 2s - s - 2) + B(s + 2) + C(s^{2} + 1 - 2s)$$

$$=> 0s^{2} + 4s + 5 = A(s^{2} + s - 2) + B(s + 2) + C(s^{2} + 1 - 2s)$$

$$=> 0s^{2} + 4s + 5 = A(s^{2} + s - 2) + B(s + 2) + C(s^{2} + 1 - 2s)$$

$$=> 0s^{2} + 4s + 5 = A(s^{2} + s - 2) + B(s + 2) + C(s^{2} + 1 - 2s)$$

$$=> 0s^{2} + 4s + 5 = A(s^{2} + s - 2) + B(s + 2) + C(s^{2} + 1 - 2s)$$

$$=> 0s^{2} + 4s + 5 = A(s^{2} + s - 2) + B(s + 2) + C(s^{2} + 1 - 2s)$$

$$=> 0s^{2} + 4s + 5 = A(s^{2} + s - 2) + B(s + 2) + C(s^{2} + 1 - 2s)$$

$$=> 0s^{2} + 4s + 5 = A(s^{2} + s - 2) + B(s + 2) + C(s^{2} + 1 - 2s)$$

$$=> 0s^{2} + 4s + 5 = A(s^{2} + s - 2) + B(s + 2) + C(s^{2} + 1 - 2s)$$

$$=> 0s^{2} + 4s + 5 = A(s^{2} + s - 2) + B(s + 2) + C(s^{2} + 1 - 2s)$$

on comparing the coefficients of:

(i)
$$S^2$$
, $O = A + C \Rightarrow A = -C$
 $A + B - 2C \Rightarrow 4 = 3$

(i)
$$S^2$$
, $O = A + C$
(ii) S^2 , $A = A + B - 2C \Rightarrow 4 = 3A + B$
(ii) S^2 , $A = A + B - 2C \Rightarrow 4 = 3A + B$

(ii) S,
$$5 = -2A + 2B + C$$

(iii) constants, $5 = -2A + 2B - A$
 $\Rightarrow 5 = -2A + 2B - A$
 $\Rightarrow 5 = -3A + 2B$

$$\begin{array}{cccc}
\Rightarrow & 5 = & 5 \\
& 5 = & 3A + 2B \\
& 5 = & 3A + 2B \\
& 4 = & 3A + 2B \\
& 9 = & 3B \Rightarrow B = 3
\end{array}$$

$$\begin{array}{cccc}
Pg. No. \rightarrow 1
\end{array}$$

$$B = 3 \implies 4 = 3A + B$$

$$4 = 3A + (3)$$

$$A = \frac{1}{3}$$

$$A = -C$$

$$A = -$$

Pg. No. > 2

(b)

Au sol^->
$$1-\cos t$$

Taking Laplace Transform of 1-cost

>> $L \ 21-\cos t$?

>> $\frac{1}{s} - \frac{s}{s^2+1}$

By using division property

By using division property $\Rightarrow L\left\{\frac{1-\cos t}{t}\right\} = \int_{-\infty}^{\infty} \left(\frac{1}{s} - \frac{s}{s^2+1}\right) ds$ $= \left[\log S - \frac{1}{2} \log (S^2 + 1)\right]_{S}^{\infty}$ = - $\log S + \frac{1}{2} \log (S^2 + 1)$ $= \frac{1}{2} \log \left(\frac{s^2 + 1}{s} \right)$ Again Now $L\left(\frac{1-\cos t}{t^2}\right) = \frac{1}{2} \int_{-\infty}^{\infty} 1. \log\left(\frac{s^2+1}{s^2}\right) ds$

$$= \frac{1}{2} \left[S. \log \left(\frac{S^2 + 1}{S^2} \right) - S \frac{S^2}{S^2 + 1} \frac{S^2(2S) - (S^2 + 1)}{S^4} \right]$$

$$= \frac{1}{2} \left[S \log \left(\frac{S^2 + 1}{S} \right) + 2 \frac{dS}{S^2 + 1} \right]_S$$

$$= \frac{1}{2} \left[S \log \left(\frac{S^2 + 1}{S} \right) + 2 \frac{dS}{S^2 + 1} \right]_S$$

$$= \frac{1}{2} \left[S \log \left(\frac{S^2 + 1}{S} \right) + 2 \frac{dS}{S^2 + 1} \right]_S$$

=
$$\frac{1}{2} \left[-s \log \left(\frac{s^2 + 1}{s^2} \right) + 2 \left(\frac{s^2 - tants}{s} \right) \right]$$

= $\cot^2 s - \frac{1}{2} s \log \left(1 + \frac{1}{s^2} \right)$ Ay

(D)
Sol"> Taking Laplace transform
of both sides of the eq" and
using that
$$L \left\{ t(f(t)) \right\} = -\frac{d}{ds} \left[L \left\{ f(t) \right\} \right], \text{ we get}$$

$$-\frac{d}{ds} \left[s^2 \overline{y} - \mathbf{s} y(0) - y'(0) \right] + 2 \left[s \overline{y} - y(0) \right]$$

$$-\frac{d}{ds} \left[y \right] = \frac{1}{s^2 + 1}$$
or
$$-\left(s^2 \frac{d \overline{y}}{ds} + 2 s \overline{y} \right) + y(0) + 0 + 2 s \overline{y} - 2 y(0)$$

$$-\frac{d}{ds} \left(\overline{y} \right) = \frac{1}{s^2 + 1}$$
or
$$-\left(s^2 + 1 \right) \frac{d \overline{y}}{ds} - 1 = \frac{1}{s^2 + 1} \quad \therefore y(0) = 1$$

$$-\left(s^2 + 1 \right) \frac{d \overline{y}}{ds} = \frac{1}{s^2 + 1} + 1$$

 $\frac{d\bar{y}}{ds} = \frac{-1}{(s^2+1)^2} - \frac{1}{(s^2+1)}$

Pg. No.>> 4

On iver inversion and noting that

$$L^{-1}[F'(s)] = -tf(t), \text{ we get}$$

$$-tg = -\sin t - \left(\frac{1}{2}\sin t - \frac{t\cosh t}{2}\right)$$

$$= \frac{1}{2}(-3\sin t + t\cosh t)$$

$$\Rightarrow y = \frac{1}{2}\left(\frac{3\sin t}{t} - \cos t\right)$$
which is the desired solution

Pg.No=>5

Unit -2 Sol"> We have given Z = f(x2+y2, z-xy) Let $x^2+y^2=u$, and z-xy=V, so, that f(u, v) = 0Differentially w.r.t 'n' and 'y' 34 (3x + 3x p) + 3f (3x + 3x p) = 0 we have, or of (2n) + of (-y+p) = 0 - 0 and 35 (34 + 34 9) + 35 (34 + 3× 9) or $\frac{\partial f}{\partial u}(2y) + \frac{\partial f}{\partial v}(-x+9) = 0 - 0$ Eliminating 35 and 35 from eq 0 we have |2n-y+p |=0 or > x9-yp=x2+y2 which is the required partial Differential Equation. Pg. No.→6

(b)
Sol'
$$\rightarrow \chi(y^2-z^2)p+y(z^2-x^2)q-z(x^2-y^2)=0$$

Sol' $\rightarrow \chi(y^2-z^2)p+y(z^2-x^2)q-z(x^2-y^2)=0$

Fiven that, the partial differential Equation $\chi(y^2-z^2)p+y(z^2-x^2)q-z(x^2-y^2)=0$

Now the Langrange's auxilliary equation are,

$$\frac{d\chi}{\chi(y^2-z^2)}=\frac{d\chi}{\chi(z^2-x^2)}=\frac{dz}{z(x^2-y^2)}$$

Using χ,y,z as multipliers, we get each fraction, get each fraction,
$$\frac{\chi(y^2-z^2)+\chi^2(z^2-x^2)+z^2(x^2-y^2)}{\chi^2(y^2-z^2)+\chi^2(z^2-x^2)+z^2(x^2-y^2)}$$

$$=\chi d\chi+\chi d\chi+\chi d\chi+\zeta dz$$

Using x, y, z as

get each fraction, $= \frac{x dx + y dy + z dz}{x^3 (y^2 - z^2) + y^2 (z^2 - x^2) + z^2 (x^2 - y^2)}$ $= \frac{x dx + y dy + z dz}{0}$ $\Rightarrow x dx + y dy + z dz = 0$ $\Rightarrow x dx + y dy + z dz = 0$ On integrating we have, $x^2 + y^2 + z^2 = C, \qquad -(i)$

Pg. No. > 7

similarly using $\frac{1}{\pi}$, $\frac{1}{y}$, $\frac{1}{z}$ as multipliers, we get $\frac{dx}{x} + \frac{dy}{y} + \frac{dz}{z} = 0$ On integrating we have, xyz = (z - 1)

On integrating

From eq² (1) $f(x^2 + y^2 + z^2, xyz) = 0$ $\therefore f(x^2 + y^2 + z^2 + z^2 = f(xyz))$

(D)

Sol = Fiven $2q^{n} - 3u = 4 - 3u - 0$ and $u(0,y) = 8e^{-3y} - 2$ Assume the sol^{2} u(x,y) = xy - 3 u(x,y) = xySubstituting in the given $2q^{2}$, we have x'y = 4 y'x

And a social of the

Pg. No. >> 8

$$\Rightarrow \frac{x'}{x} = 4 \stackrel{\checkmark}{y} = k \text{ (Let)}$$

$$\Rightarrow \frac{x'}{x} = k \text{ and } \frac{4y'}{y} = k$$

$$\Rightarrow \log x = kx + \log C_1$$

$$\Rightarrow \log \frac{x}{C_1} = kx \Rightarrow x = C_1 e^{kx} - \Theta$$

$$\text{Now } \frac{4y'}{y} = k$$

$$\Rightarrow 4 \log y = ky + \log C_2$$

$$\Rightarrow \log \frac{y}{C_2} = \frac{ky}{4}$$

$$\Rightarrow y = C_2 e^{ky} - \Theta$$

$$\therefore \text{ sol}^2 \quad \text{u}(x,y) = C_1 C_2 e^{kx} + \frac{ky}{4}$$

$$= c e^{kx} + \frac{ky}{4} - \Theta$$

$$\text{Using condition } \text{u}(0,y) = 8 e^{-3} \sin \Theta$$

$$\text{Using condition } \text{u}(0,y) = 8 e^{-3} \sin \Theta$$

$$\Rightarrow 8 e^{-3}y = C e^{ky} + C = 8, k = -12$$

$$\therefore \text{ solution of } \text{sq}^{\alpha} \text{ (u}(x,y) = 8 e^{-12x-3y} \text{ At}$$

A HOLD WAR

Pg. No. > 9

(a)

$$sol \rightarrow (i)$$
 $E(x) = -\frac{3}{6} + \frac{6}{2} + \frac{9}{3}$
 $= -\frac{1}{2} + 3 + 3$
 $= -\frac{1+6+6}{2}$
 $= \frac{12-1}{2}$

$$E(x) = \frac{11}{2}$$

(ii)
$$E(x^2) = \frac{9}{6} + \frac{36}{2} + \frac{81}{3}$$

= $\frac{9 + 108 + 162}{6}$

$$=\frac{279}{6}$$

$$E(x^2) = \frac{279}{6} = \frac{93}{2}$$

rg.No.→10

(b) If x is a random variable then by the definition of probability j f(n) dx =1 => $\int_{0}^{2} f(x) dx + \int_{0}^{4} f(x) dx + \int_{0}^{4} f(x) dx = 1$ => \int \kndn+\bigg\{2kdn+\bigg\{Ekn+6k\}dn=1} => $\frac{K}{2} [x^2]_0^2 + 2K[x]_1^4 + [-\frac{K}{2}[x^2]_4^6 + 6K[x]_4^6] = 1$ $\Rightarrow \frac{4k}{2} + 2k^{(2)} - \frac{k}{2}^{(36-16)} + 6k^{(2)} = 1$ 2k +4k -10k +12k =1 8K =1 $k = \frac{1}{8}$

(ii) Mean value of x is $\int_{0}^{6} x f(x) dx = \int_{0}^{2} x f(x) dx + \int_{0}^{4} x f(x) dx + \int_{0}^{4} x f(x) dx$

Pg. No -> 11

$$= \int_{0}^{4} k x^{2} dx + \int_{0}^{4} 2kx dx + \int_{0}^{4} (-kx^{2} + 6kx) dx$$

$$\Rightarrow \frac{k}{3} \left[x^{3}\right]_{0}^{2} + \frac{2k}{2} \left[x^{2}\right]_{2}^{4} - \frac{k}{3} \left[x^{3}\right]_{4}^{6} + \frac{6k}{2} \left[x^{2}\right]_{4}^{6}$$

$$\Rightarrow \frac{8k}{3} + 12k - \frac{k}{3} \left(216 - 64\right) + 3k \left[36 - 16\right]$$

$$\Rightarrow \frac{8}{3} k + 12k - \frac{k}{3} \left(152\right) + 60k$$

$$\Rightarrow \frac{8}{3} k + 12k - \frac{152k}{3} + 60k$$

$$\Rightarrow \frac{8k + 36k - 152k + 180k}{3}$$

$$\Rightarrow \frac{72k}{3}$$

$$\Rightarrow \frac{72k}{3}$$

$$\Rightarrow \frac{74k}{3}$$

dol" > Total families = 800 Since the probability of boys & girls are equal ' p(B) = p(G) = 1/2By Binomial distributions probability of r success is given by: $p(x) = {}^{n}C_{x} p^{x} q^{n-x}$ (a) In case of 3 boy Number of families $= 80 \times {}^{5}C_{3} \left(\frac{1}{2}\right)^{3} \times \left(\frac{1}{2}\right)^{2} = 250$ (b) In case of 5 girls Number of families $= 800 \times 5C_{45} \times (1/2) \times (\frac{1}{2}) = 25$ (c) In case of 2 or 3 boys Number of families = $800 \left[5C_2 \times \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^3 + 5C_3 \times \left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^3 \right]$ = 800 [= + =] = 500

Unit = 4

(α)						
201"-	→ x	y	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Δ²y.	\triangle^3	\ \D'\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	0	6	4		v	
	· 5	10		a-14	NJ - 20	
	10	a	a-10	27-20	41-30	b+6a-102
	15	17	17-a	b+a-34	b+3a-6	b+6a-102 143-4b -4a
ga it	20	Ь	b-17	48-26	82-3b-a	
	25	31	31- b			
*			3		-	

only four entries are given, hence the function of (n) can be represented by 3rd degree polynomial.

$$\Delta^{\dagger} \chi = 0 \quad \beta \quad \Delta^{\dagger} \gamma_{i} = 0$$

 \Rightarrow b + 6a - 102 = 0 & 143 - 4b - 4a = 0 \Rightarrow (b + 6a = 102) x4 & 4a + 4b = 143

Now, on solving these equations
$$24a + 4b = 408$$

$$-4a + 4b = 143$$

$$-20a = 265$$

$$a = 13.25$$

$$b = 22.5$$

So, values of a 4 b are 13.25 f 22.5 respectively.

$$\chi \rightarrow 20$$
 30 40 50 $f(\chi) \rightarrow 512$ 439 346 243

Taking
$$\chi_0 = 30$$
, $h = 10$, $P = \frac{35-30}{10}$
 $P = \frac{1}{2}$
or $P = 0.5$

The	di	fferen	e tabl	e is \$^2 f(n)	D3+(2)
×	P	f(n)	27(19		
20	-1	512	-73	-23	
30	0	439	-93	10	13
40	1	346		-10	<u> </u>
50	2	243	-103		
1.	,		J	0	. No -> 15

7g. No -> 15

Now using stirling's formula. to find f(35),

$$y_{p} = y_{0} + P(\frac{\Delta y_{0} + \Delta y_{-1}}{2}) + \frac{P^{2}}{2!} \Delta^{2} y_{-1}$$

$$+ \frac{P(P^{2} - 1)}{3!} (\Delta^{3} y_{-1} + \Delta^{2} y_{-2})$$

$$+ \frac{P(P^{2} - 1)}{3!} \Delta^{3} y_{-1} + \Delta^{2} y_{-2}$$

$$y_{0.5} = 439 + (0.5) (-93) + (0.5) (-0.5)$$

- X - - X

Now, by newton's divide difference formula ->

$$f(x) = y_0 + (x_0 - x_0) [x_0, x_1] + (x_0 - x_0)$$

$$(x_0, x_1, x_2] + \cdots - \cdots$$

$$f(9) = 48 + (5)(52) + (5)(4)(5) + (5)(4)(2)(1)$$

$$f(9) = 48 + 260 + 300 + 90$$

$$f(9) = 648$$

Pg.No.→17

for
$$\chi = 15$$
,

$$f(15) = 48 + (15 - 4)(52) + (15 - 4)(15 - 5)(15 + 4)(15 - 5)(15 + 4)(15 - 5)(15 + 4)(15 - 5)(15 + 4)(15 - 5)(15 + 4)(15 - 5)(15 + 4)(15 - 5)(15 + 4)(15 - 5)(15 + 4)(15 - 5)(15 - 5)(15 + 4)(15 - 5)($$

Unit-5

(a)
At => Here,
$$\frac{dy}{dx} = x-y$$

 $f(x,y) = x-y$
 $x_0 = 0$, $y_0 = 1$

Firstly approximation by Picard's y(1) = yo + 5 f(x, yo) dr $y'(x) = 1 + \int_{0}^{x} (x - y_0) dx$ = 1+ 5 (m-1) dx = 1+ (n-1) dn $= 1 + \frac{\chi^2}{2} - \chi$ $y'(1) = 1 + \frac{1}{2} - 1$ y'(1) = 0.5

Dy Here,

$$\frac{dy}{dx} = x + y$$

Here,
$$\chi(x) = 1 + \chi(1) + \frac{\chi^{2}(2)}{2!} + \frac{\chi^{3}(2)}{8!}$$

$$\frac{\Delta t}{y(0.1)} = 1 + 0.1 + \frac{(0.1)^2}{2!} + \frac{(0.1)^3}{3!} \times 2 + \frac{(0.1)^3 \times 2}{4!} + \frac{(0.1)^3}{4!} \times 2 + \frac{(0.$$

$$y(0.2) = 1.2427$$

$$f(x,y) = \frac{y^2 - x^2}{y^2 + x^2}$$

$$y_0 = 0$$
, $y_0 = 1$, $h = 0.2$

 $K_1 = h f(n_0, y_0) = 0.2 f(0, 1) = 0.2000$ K2 = hf (20+ 1/2, yo+ 1/2) = 0.19672 K3 = hf (no+ \frac{h}{2}, yo+ \frac{k_2}{2}) = 0.1967 K4= hf(x0+h, y0+k3) = \$0.1891 $K = \frac{1}{6} (K_1 + 2K_2 + 2K_3 + K_4) = 0.19599$ Hence y(0.2) = y.+k = 1.196 Now we find 7(0.4). $\chi_1 = 0.2$, $\gamma_1 = 1.196$, h = 0.2K, = h f(x, yi) = 0.1891 $K_2 = h f(\chi_1 + h/2, y_1 + \frac{K_1}{2}) = 0.1795$ $K_3 = hf(n_1 + h/2, y_1 + k_2/2) = 0.1793$ Ko4 = hf(x,+h, y,+k3) = 0.1688 $K = \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4) = 0.1792$ y(0.4) = y1+k=1.3752

Mg. No.→ 22

Pg. No. -> 23

Pg. No. -> 24

Roye no. 26

Page no. 28

Page no.37

Page . 110. 38

