Multi-Agent Systems

Homework Assignment 4

Martynas Vaznonis (2701013) m.vaznonis@student.vu.nl

4 Fictitious Play

- 1. The results are player 1 plays the actions A, B, C with probabilities 0, 0.5, 0.5 respectively and player 2 plays the actions W, X, Y, Z with probabilities 0, 0.6, 0.4, 0 respectively (see fictitious_play.py).
- 2. The results do make sense as can be seen by examining the reward table. Both agents make each other indifferent as to what actions to take. Player 2 plays X with $x = \frac{3}{5}$ and Y with $y = \frac{2}{5}$, thus the expected utility for player 1 is $\mathbb{E}u_1(B, s_2^*) = \mathbb{E}u_1(C, s_2^*) = 3.8$. Player 1 plays B with $b = \frac{1}{2}$ and C with $c = \frac{1}{2}$, thus the expected utility for player 2 is $\mathbb{E}u_2(X, s_1^*) = \mathbb{E}u_1(Y, s_1^*) = 3.5$. The other actions have lower expected utilities and so all have a probability of 0 and are not mixed.

5 Monte Carlo simulation

5.2 Warming up

1. The estimated mean value is $\mathbb{E}(\cos^2(X)) \approx 0.567$ with variance $\sigma^2 \approx 0.12$. The 99.9% confidence interval is 0.567 ± 0.011 . See monte_carlo.py.

5.3 Quantifying the significance of an observed correlation

2. Here $S = \varphi(A)$. Although because the final performance of neural networks is stochastic, more accurately $S \sim \varphi(A)$. To test whether the positive correlation is significant the fraction of A for which A > A' but $\varphi(A) \leq \varphi(A')$ can be computed, $p = \frac{|\{(A,A')|\forall A,A':A\neq A' \land A \geq A' \land \varphi(A) \leq \varphi(A')\}|}{|\{(A,A')|\forall A,A':A\neq A'\}|}$. If only a small proportion (p) of all possible pairs violate the correlation, then it is significant with probability 1-p.

6 Exploration versus Exploitation: Thompson Sampling for Multi-Armed Bandits

6.2 Thompson's Bayesian update rule

Questions:

1. Figure 1 shows the estimate of p as a function of the number of sampled points. It can be easily seen that the right probability is quickly reached and that uncertainty tapers with subsequent sampling. For implementation see thompson.py.

6.3 Thompson sampling for K-armed bandit Problem

Questions:

- 2. See thompson.py.
- 3. Figure 2 shows a comparison between Thompson sampling and UCB. Regret is defined as the $r_i = \max_k(p_k) p_i$ for each arm i. As can be seen Thomson sampling outperforms UCB in 2 out of 4 experiments and can thus be considered competitive. Furthermore, from my experimentation, the better values of c were highly dependent on the values p_k . Thus, every instance of the K-bandit problem would require tuning this value. On the other hand, the Thompson sampling method always performed well, even if it was sometimes outperformed by a well-tuned UCB instance.

Figure 1: The mean estimate and variance of probability p. The shaded area is the standard deviation instead of variance to make the tapering uncertainty effect more salient.

Figure 2: Thompson sampling (solid line) versus UCB (dashed and doted lines) with respect to the cumulative regret. UCB outperforms Thompson sampling with a well tuned c parameter, but grossly underperforms if the values are ill-chosen. The values of p used in this plot are 0.462, 0.956, and 0.975 for arms 1, 2, and 3 respectively.