RÉSOUDRE UNE INÉQUATION DE DEGRÉ 2

Exercice résolu

Soit f la fonction définie sur \mathbb{R} par $f(x) = -x^2 + 2x + 38$

- Conjecturer, à l'aide de la calculatrice graphique, l'ensemble des solutions de l'inéquation $f(x) \leq 3$.
- Démontrer algébriquement cette conjecture.

→ Propriété Résoudre graphiquement une inéquation du second degré

Soit f une fonction du second degré définie sur un domaine de définition \mathscr{D} et qui à tout $x \in \mathscr{D}$ associe un nombre f(x).

Les solutions de l'inéquation $f(x) \le 0$ (resp. $f(x) \ge 0$) sont <u>tous</u> les nombres x du domaine D qui ont une image négative (resp. positive). Graphiquement, il s'agit de trouver toutes les abscisses des points de la courbe caractéristique C_f situées sous (resp. au-dessus de) l'axe des abscisses.

Pour résoudre une inéquation du second degré :

- 1 On se ramène à une inéquation avec second membre nul.
- 2 Graphiquement, on lit sur l'axe des abscisses l'ensemble des nombres satisfaisants l'inéquation posée.
- 3 Algébriquement :
- a) on résout l'équation du type $ax^2 + bx + c = 0$;
- b) on dresse le tableau de signes de $ax^2 + bx + c$;
- c) on détermine l'ensemble des solutions de l'inéquation demandée.

Solution

D'abord, on se ramène à une inéquation à second membre nul. Résoudre $f(x) \leqslant 3$, soit $-x^2 + 2x + 38 \leqslant 3$ équivaut à résoudre l'inéquation $-x^2+2x+35 \le 0$ (on soustrait 3 dans chaque membre).

Sur la calculatrice graphique, on trace la courbe caractéristique de la fonction définie par l'expression $-x^2+2x+35$ et on lit l'ensemble des nombres x ayant, ici, une image négative par cette fonction. Ici, on conjecture la réunion d'intervalles $]-\infty;-5] \cup [7;+\infty[$.

2. Algébriquement, on résout l'équation $-x^2 + 2x + 35 = 0$ (pour trouver les racines éventuelles). Le discriminant Δ vaut = $\Delta = 2^2 - 4 \times (-1) \times 35 = 4 + 140 = 144$.

$$\Delta > 0, \ \text{l'équation a donc deux solutions} : \ x_1 = \frac{-2 - \sqrt{144}}{2 \times (-1)} = \frac{-14}{-2} = 7 \ \text{et} \ \ x_2 = \frac{-2 + \sqrt{144}}{2 \times (-1)} = -5$$

On dresse alors le tableau de signes de $-x^2 + 2x + 35$:

χ	$-\infty$	- 5	7	$+\infty$
$-x^2 + 2x + 35$	_	0	+ 0	_

On en déduit que l'ensemble des solutions de l'inéquation $-x^2 + 2x + 38 \le 3$, équivalent à celui de l'inéquation $-x^2 + 2x + 35 \le 0$ est $\mathscr{S} =]-\infty; -5] \cup [7; +\infty[$.

La conjecture est donc confirmée.

ATTENTION!

Si l'inéquation à résoudre avait été $-x^2 + 2x + 35 < 0$, il aurait l'ensemble des solutions aurait été : $\mathcal{S} =]-\infty; -5[\cup]7; +\infty[$. Si l'inéquation à résoudre avait été $-x^2 + 2x + 35 < 0$, il aurait fallu **exclure les racines** du polynômes et