7 2

Repérage sur le cercle trigonométrique

SPÉ MATHS 1ÈRE - JB DUTHOIT

7.2.1 Enroulement de la droite des réels sur le cercle

Enroulement de la droite des réels

Propriété 7. 9

| Chaque réel de la droite vient s'appliquer sur un point M unique du cercle C.

Propriété 7. 10

Propriété réciproque :

Si un réel a de la droite d se retrouve en M sur le cercle trigonométrique après enroulement de la droite des réels sur le cercle trigonométrique, alors les réels ... $a-4\pi, a-2\pi, a, a+2\pi, a+4\pi, a+6\pi...$ se retrouvent aussi en M après l'enroulement.

Propriété 7. 11

Parmi tous ces réels qui se trouvent en M après enroulement, un seul appartient à l'intervalle $]-\pi;\pi].$

- Approche

l'objectif est de placer $\frac{\pi}{3}$ sur le cercle trigonométrique.

Considérons un triangle TUV équilatéral de coté 1, et soit W milieu de [UV].

Calculer TW et l'angle \widehat{TUV} .

On en déduit donc une manière de construire $\frac{\pi}{6}$ à la règle est au compas :

On procède de la même façon pour les angles $\frac{\pi}{4}$ et $\frac{\pi}{3}$.

7.2.2 Enroulement des nombres réels remarquables

Nombres remarquables à connaître par coeur

Savoir-Faire 7.16

Savoir placer un point sur le cercle trigonométrique On considère le cercle trigonométrique ${\cal C}.$

Placer sur ce cercle les points A,B,C,D images, par enroulement de la droite des réels, des réels suivants :

- 1. $\frac{9\pi}{4}$
- 2. $\frac{-13\pi}{6}$
- 3. $\frac{-135\pi}{4}$
- 4. $\frac{561\pi}{2}$
- 5. $\frac{562\pi}{3}$