

Universidade do Minho

Escola de Engenharia Departamento de Produção e Sistemas

Mestrado em Engenharia de Sistemas UC de Projeto Integrado I

1.º Ano 2.º Semestre; Ano letivo 2018/19

ESPECIFICAÇÃO DO PROJECTO INTEGRADO DE GESTÃO DA PRODUÇÃO- SIMULAÇÃO

Objetivo do projeto e composição dos grupos de trabalho

Cada grupo de alunos desenvolve um projeto semestral que no essencial tem o objetivo de, recorrendo a modelos de simulação por computador e ao apoio dos professores, estabelecer o modo operatório e avaliar o desempenho de um sistema de produção dependente de **dois mecanismos** diferentes de controlo da atividade produtiva, colocando-os em confronto para determinar qual permite obter melhor desempenho produtivo.

Um aspeto crítico ao projeto passa por estabelecer um procedimento de experimentação robusto e assegurar que os resultados obtidos têm validade estatística. Aspetos como número de replicações, o tempo de cada simulação (replication lenght) e o período aquecimento (warmup period) devem ser tomados em conta na experimentação e, portanto, definidos adequadamente. Testes estatísticos que permitam a comparação de configurações devem também ser usados.

Mecanismos de controlo da atividade produtiva a testar

Entre outros eventualmente a propor pelos próprios alunos, deverão ser considerados para escolha dois mecanismos do seguinte conjunto:

- Base Stock System (BSS)
- Toyota Kanban System (TKS)
- Constant Work-in-process (CONWIP)
- Generic Kanban System (GKS)
- Paired-cell Overlapping Loops of Cards with Authorization (POLCA)
- Generic POLCA
- Drum-Ruffer-Rope (DBR)
- Workload Control (WLC)

Sistema de produção

O sistema de produção em estudo consiste num sistema DRC (*Dual Resource Constrained*) formado por seis estações de trabalho, cada uma com uma máquina, e um número fixo de trabalhadores. Num sistema DRC existem dois tipos de recursos que determinam o nível de output (i.e., a produção) do sistema: as máquinas e os trabalhadores. Nestes sistemas é, portanto, necessário considerar, além do mecanismo de controlo da atividade de produção (CAP), e das regras de despacho dos trabalhos nas máquinas, aspetos relacionados com a alocação do trabalhador, nomeadamente: para onde (*where*) transferir o operador e quando (*when*) o fazer.

A definição do sistema exige, ainda, que se estabeleça as necessidades de produção, os tempos operatórios e datas de entrega dos trabalhos, entre outros aspetos (ver Tabela 1):

Shop Configuration	Pure Flow Shop
Intervalo entre chegadas de trabalhos	Exponencial; média definida de forma a resultar numa utilização dos trabalhadores de 90%
Tempos de processamento	Exponencial, média =1; máximo=4 horas
Folga da data de entrega	Uniform (40, 60) horas

Tabela 1. Características do modelo de simulação

Fatores de Experimentação e Medidas de Desempenho

Como fator de experimentação principal é necessário testar a influência no desempenho do sistema dos **níveis de carga**, medida em horas ou unidades de produto, consoante o mecanismo de CAP usado. Sugere-se que este fator seja testado a 6 níveis. Estes níveis são determinados pelo número de cartões ou pelo valor das normas de carga associados a cada mecanismo de controlo da produção, e influenciam, de acordo com a lei de Little, os tempos de percurso no sistema (throughput times).

É necessário também estabelecer **regras de despacho** em cada estação. Algumas das regras que poderão ser consideradas no estudo são as seguintes:

- FSFS (First-in System-First-Served);
- Due (Due Date).

Relativamente á alocação dos trabalhadores cada grupo deverá definir as suas estratégias, i.e, when to move and where to move. Por último, é necessário testar o número de trabalhadores a diferentes níveis, nomeadamente 4 e 5, admitindo um grau máximo de flexibilidade, ou seja, cada trabalhador pode operar qualquer uma das máquinas.

Na avaliação do desempenho do sistema deverão ser definidos critérios como o trabalho em curso de fabrico (WIP) os tempos médios de percurso (ou em curso) no espaço fabril (shop throughput time) e no sistema (total throughput time), o desvio padrão do atraso (lateness), a percentagem de trabalhos em atraso e o número transferências do operador entre estações de trabalho.

Os alunos poderão ainda eleger outras medidas de desempenho que avaliem melhor as alternativas operatórias em análise.

Relatório – Elementos para a sua elaboração

O relatório deve seguir o *template* fornecido pelos docentes, podendo ter a forma de artigo e se possível ter qualidade para apresentar a uma conferência ou publicar em revista. Os coautores do artigo serão os alunos e professores envolvidos e eventualmente outros que, direta ou indiretamente, deem alguma contribuição importante para a realização do trabalho ou ultimação do artigo.

O relatório/ artigo deve conter:

- 1. Um Sumário (ou abstract)
- 2. Uma Introdução com um enquadramento do problema, objetivos do estudo e métodos utilizados.
- 3. Uma revisão da literatura e contextualização teórica envolvendo a explicação do funcionamento/ utilidade dos mecanismos de controlo da atividade produtiva selecionados e modelados. A revisão da literatura, ainda que breve, poderá ter de ser enriquecida perante a decisão de preparação de uma publicação ou comunicação em encontro técnico-científico. Isto deverá ser avaliado pelos docentes perante a qualidade e esforço adicional potencial requerido.
- 4. O estudo de simulação envolvendo a descrição clara do sistema de produção em estudo, do seu funcionamento e do plano de experimentação.
- A apresentação dos resultados, sua análise e discussão, comparando o desempenho dos mecanismos estudados no contexto dos requisitos de produção e da configuração do sistema de produção modelado.
- 6. Uma conclusão com propostas de trabalho futuro.
- 7. Uma lista da bibliografia para as referências bibliográficas feitas ao longo do texto.
- 8. Anexo(s) descrevendo de forma clara, mas sucinta a implementação dos mecanismos em SIMIO. Particularidades do modelo e aspetos críticos de modelação em SIMIO devem ser também apresentados.

Adicionalmente deve ser elaborado um pequeno manual (duas páginas no máximo) de uso dos modelos de simulação.

Apresentação oral

Haverá uma apresentação oral dos trabalhos que deverá ser partilhada pelos elementos do grupo de trabalho e deverá apoiar-se no Power-Point ou equivalente.

Avaliação:

A avaliação baseia-se na classificação das UCs componentes do projeto, i.e., Gestão de Produção e Simulação com o peso de 30% (15% para cada UC) e das componentes avaliadas do projeto da UC, com peso global de 70%, sendo cada componente ponderada da seguinte forma:

- 50% ao relatório (ou em formato de artigo científico);
- 30% ao protótipo (Simio);
- 20% à apresentação/ discussão.

Datas

A apresentação será realizada no dia xx de xx. O relatório/artigo, em suporte eletrónico, será entregue na data da apresentação. Considerando que da apresentação poderão surgir ensinamentos relevantes ao benefício do próprio relatório/artigo, a sua a versão final poderá

ser entregue **até 3 dias** após a data de apresentação. A não entrega desta versão pressupõe que a versão final foi a entregue na data da apresentação.

Universidade do Minho, 10 de fevereiro de 2019

Corpo Docente:

Coordenador: Luís Dias <a href="mailto:lstage-lstag

Docentes da UC: Leonilde Varela: leonilde@dps.uminho.pt e Nuno Fernandes:

nogf@ipcb.pt

Outros colaboradores da UC: S. Carmo-Silva: scarmo@dps.uminho.pt e Guilherme

Pereira: gui@dps.uminho.pt