Zadanie 6

Algorytm UCS będzie zawsze wybierał na kolejny do sprawdzenia taki wierzchołek, że koszt dojścia do niego jest najmiejszy z aktualnie możliwych, a suma nieskończonego ciągu $1,\frac{1}{2},\frac{1}{4}\dots$ dąży do 2, zatem wierzchołek docelowy nigdy nie zostanie wybrany. Korzystamy z tego, że UCS jest kompletny, gdy dla każdej krawędzi $koszt \geq \epsilon$.

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete? Time	$\operatorname{Yes}^a O(b^d)$	$\operatorname{Yes}^{a,b} O(b^{1+\lfloor C^*/\epsilon \rfloor})$	No $O(b^m)$	No $O(b^\ell)$	$\operatorname{Yes}^a O(b^d)$	$\operatorname{Yes}^{a,d} O(b^{d/2})$
Space Optimal?	$O(b^d)$ Yes ^c	$O(b^{1+\lfloor C^*/\epsilon \rfloor})$ Yes	O(bm) No	$O(b\ell)$ No	O(bd) Yes ^c	$O(b^{d/2})$ Yes c,d

Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth of the shallowest solution; m is the maximum depth of the search tree; l is the depth limit. Superscript caveats are as follows: a complete if b is finite; b complete if step costs $\geq \epsilon$ for positive ϵ ; c optimal if step costs are all identical; d if both directions use breadth-first search.