$\underset{\text{Solid State Physics}}{\text{PHYS}} \, 5243$

Sheena Murphy • Spring 2015 • University of Oklahoma

Last Revision: February 18, 2015

Contents

Chapter 1 - About Condesned Matter Physics - (2015-01-09)															ii	
Syllabus																ij
Class Notes																ij
Book Notes																
1.1 - What is Condensed Matter Physics? .																iii
1.2 - Why study Condensed Matter Physics?	٠.										٠					iii
1.3 - Why Solid State?																iii

Chapter 1 - About Condesned Matter Physics - (2015-01-09)

Syllabus

Read Chapters 1 and 2 before next lecture

Graduate Student $\rightarrow 15\%$ of the grade is HW.

2 Midterms: Wednesday nights (~ 4 hours are given to do them).

The Final counts for $\sim 25\%$ of grade for Graduate and Undergraduate Students.

Get the other books required for class \rightarrow they are important!

Graduate Studnet difference \rightarrow potentially a physics simulation will be required.

Class Notes

Collections of atoms

Somewhat under atomic physics field Solids, liquids, and polymers

Hamiltonian:

$$\hat{H} = \underbrace{\frac{\mathbf{p_n}^2}{2M_n}}_{momentum} + \underbrace{\frac{\mathbf{p_e}^2}{2M_e}}_{of} + \underbrace{\frac{e^2}{r_{i1} - r_{j1}}}_{tins} + \underbrace{\frac{e^2}{r_{i2} - r_{j2}}}_{repulsion} - \underbrace{\frac{e^2}{r_{i1} - r_{j2}}}_{titraction}$$

At the moment only ~ 100 atoms can be solved (using supercomputer) \rightarrow very difficult!

Emergent phenomenon is common

Superconductivity is emergent from collection of atoms

Book Notes

1.1 - What is Condensed Matter Physics?

Number of consituents is large

interactions among constituents is strong

1.2 - Why study Condensed Matter Physics?

Good Questions

Why are metals shiny and cold? Why is glass transparent?

Why is water fluid, why is it wet?

Why is rubber soft?

Engineering

Awesomeness

Higgs-Anderson mechanism \rightarrow ties to Higgs Boson and superconductivity (Anderson coined Condensed Matter)

Renormalization group

Topological QFT \rightarrow in lab of CMP

black hole string theory \rightarrow CMP

reductionism doesn't work

Just accept it: (

QM and Stat Mech are basis for CMP

1.3 - Why Solid State?

Subfield of CMP \rightarrow very large

$$C = \frac{dE}{dT}$$

How much energy you need to increase the temperature.

 $C_v = C_p$ for solids, so we do not need to specify $C_{v,p}$ subscripts.

Heat Capacity per mole at room temperature is 3R. (for solids)

$$R = k_B N_A$$

How do we know?

Start with the heat capacity per atom \rightarrow which we get from the energy for each atom.

We construct a 3D particle in a box connected by springs along each axis and find the energy:

$$E = \underbrace{\frac{1}{2}mv_x^2 + \frac{1}{2}mv_y^2 + \frac{1}{2}mv_z^2}_{kinetic\ energy} + \underbrace{\frac{1}{2}k_x^2 + \frac{1}{2}k_y^2 + \frac{1}{2}k_z^2}_{potential\ energy}$$

Equipartition of energy

each DOF gives $\frac{1}{2}k_BT$ (but only when quadratic! (power of 2))

Therefore, for solids $\rightarrow 6] frac12k_BT = 3k_BT$.

$$\Rightarrow \langle E \rangle = 3k_BT$$
.

and Law of Dulon Petit (1819) is $C = \frac{d\langle E \rangle}{dT} = 3k_B$ (or 3R for molar).