Ćwiczenia z rachunku prawdopodobieństwa

W. Czernous tinyurl.com/cwiczeniazrachunku

27 października 2022

Ćwiczenie 1.

Podaj przykład trzech zdarzeń, które są parami niezależne, ale nie są niezależne.

Ćwiczenie 2.

Podaj przykład dwu zmiennych losowych, które są nieskorelowane

$$(EXY = EXEY),$$

ale nie są niezależne.

Wskazówka: to nie mogą być indykatory zbiorów.

Def. niezależności zbiorów zdarzeń.

Niech $\{\Xi_i : i \in I\}$ będzie rodziną zbiorów zdarzeń. Ξ_i są niezależne wtedy i tylko wtedy, gdy dla każdego zbioru skończonego $J : J \subset I$, dla wszystkich $A_j \in \Xi_j$, $j \in J$ zachodzi

$$P\bigg(\bigcap_{j\in J}A_j\bigg)=\prod_{j\in J}P(A_j).$$

Twierdzenie o niezależnych π -układach.

Niech $\{\Xi_i : i \in I\}$ będzie rodziną π -układów (π -układ to rodzina zbiorów zamknięta na przekroje). Wtedy warunkiem dostatecznym (i koniecznym) niezależności σ -ciał $\{\sigma(\Xi_i) : i \in I\}$ jest niezależność $\{\Xi_i : i \in I\}$.

Ćwiczenie 3.

Czy Ξ_i muszą koniecznie być π -układami?

Wskazówka: minimalny kontrprzykład składa się z 3 zbiorów, tworzących dwie rodziny.

Lemat Leviego o zbieżności monotonicznej.

Dla nieujemnych zmiennych losowych ξ , ξ_1 , ξ_2 , ..., zachodzi:

$$\xi_n \uparrow \xi \implies E\xi_n \uparrow E\xi.$$

Ćwiczenie 4.

Niech $\xi_1, \, \xi_2, \, \dots$ będą niezależnymi zmiennymi losowymi o wartościach w [0,1].

Pokaż, że $E \prod_n \xi_n = \prod_n E \xi_n$.

W szczególności, mamy stąd $P \cap_n A_n = \prod_n PA_n$ dla dowolnych zdarzeń niezależnych A_1, A_2, \ldots

Nierówność Czebyszewa. Dla zmiennej losowej $\xi \geq 0$, takiej że $0 < E\xi < \infty$, mamy:

$$P\{\xi > rE\xi\} \le \frac{1}{r}, \qquad r > 0.$$

(Np. nie więcej niż połowa pracujących może zarabiać 2 średnie pensje i więcej.)

Definicja zbieżności według prawdopodobieństwa.

Dla zmiennych losowych nieujemnych $\xi_1, \ \xi_2, \dots$, mówimy, że ξ_n zbiega do zera według prawdopodobieństwa (co zapisujemy $\xi_n \stackrel{P}{\to} 0$), jeśli

$$\lim_{n \to \infty} P\left\{\xi_n > \varepsilon\right\} = 0, \qquad \varepsilon > 0.$$

Lemat o zbieżności według prawdopodobieństwa.

Dla zmiennych losowych nieujemnych $\xi_1, \, \xi_2, \, \dots, \,$ następujące warunki są równoważne:

- (i) $\xi_n \stackrel{P}{\to} 0$,
- (ii) $E\{\xi_n \wedge 1\} \to 0$,
- (iii) każdy podciąg $N' \subset \mathbb{N}$ zawiera podciąg $N'' \subset N'$, dla którego $\xi_n \to 0$ p.n. przy $n \to \infty$, $n \in N''$.

Ćwiczenie 5. (i) \implies (ii).

Ćwiczenie 6. (ii) \implies (i).

Wskazówka: Jeśli $\varepsilon < 1$, to $x > \varepsilon$ implikuje $x \wedge 1 > \varepsilon$. Następnie skorzystać z nierówności Czebyszewa.

Zadanie domowe 1.

Wykazać (ii) \iff (iii).

Ćwiczenie 7.

Korzystając z lematu (o zbieżności według prawdopodobieństwa), wykazać, że zbieżność p.n. pociąga za sobą zbieżność według prawdopodobieństwa.

Ćwiczenie 8.

Niech $\Omega=[0,1]$, zaś P-miara Lebesgue'a. Weźmy ciąg ξ_n zmiennych losowych, znany pod nazwą "maszyna do pisania":

$$1_{[0,\frac{1}{2}]},1_{[\frac{1}{2},1]},1_{[0,\frac{1}{4}]},1_{[\frac{1}{4},\frac{2}{4}]},1_{[\frac{2}{4},\frac{3}{4}]},1_{[\frac{3}{4},1]},1_{[0,\frac{1}{8}]},1_{[\frac{1}{8},\frac{2}{8}]},\ldots$$

Ile wynoszą, dla ustalonego $\varepsilon \in (0,1)$, wartości a_1, a_2, \ldots, a_{10} , wyrazów ciągu

$$a_n = P(\xi_n > \varepsilon)?$$

A ile wynoszą dla ustalonego $\varepsilon \geq 1$? Pokazać, że ξ_n jest zbieżny do zera według prawdopodobieństwa.

Definicja rozkładu jednostajnego.

Niech ξ będzie taką zmienną losową, że

$$P\{c < \xi < d\} = \frac{d-c}{b-a} \quad \text{dla } a \le c < d \le b.$$

Mówimy wtedy, że ξ ma rozkład jednostajny na [a, b], co zapisujemy $\xi \sim U(a, b)$.

Ćwiczenie 9. Oblicz EX^3 , gdy $X \sim U(0,1)$.

Twierdzenie o mierze produktowej i całce iterowanej (Lebesgue, Fubini, Tonelli).

Niech zmienne losowe $\xi,\,\eta$ będą niezależne, o rozkładach $\mu,\,\nu,$ odpowiednio. Dla dowolnej funkcji mierzalnej

$$f: \mathbb{R}^2 \to \mathbb{R}$$
, o własności $E|f(\xi, \eta)| < \infty$,

zachodzi wtedy

$$Ef(\xi, \eta) = \int \mu(ds) \int f(s, t) \nu(dt)$$
$$= \int \nu(dt) \int f(s, t) \mu(ds).$$

Ćwiczenie 10. Oblicz $E(X+Y)^n$ dla niezależnych $X \sim U(0,1), Y \sim U(0,1).$

Ćwiczenie 11. Niech X_1, X_2, \ldots będą niezależne o jednakowym rozkładzie U(0,1). Oblicz

$$\lim_{n} \frac{X_1^3 + X_2^3 + \ldots + X_n^3}{n}.$$

Jakiego typu to zbieżność?
Wsk.: Skorzystaj z MPWL (p. wykład).

Ćwiczenie 12. Niech $\xi \sim U(0,1)$, zaś $X_n(\omega)$ niech będzie n-tą cyfrą po przecinku w rozwinięciu dziesiętnym liczby $\xi(\omega)$:

Wykaż, że zmienne losowe
$$X_1, X_2, \ldots$$
 są niezależne.

 $\mathcal{E} = 0, X_1 X_2 X_3 \dots$

Ćwiczenie 13. Niech $\xi \sim U(0,1)$, zaś $X_n(\omega)$ niech będzie n-tą cyfrą po przecinku w rozwinięciu dziesięt-

nym liczby
$$\xi(\omega)$$
:
$$\xi = 0, X_1 X_2 X_3 \dots$$

Jakie jest prawdopodobieństwo, że (asymptotycznie) średnio co dziesiąta cyfra liczby ξ jest piątką?

Ćwiczenie 14. Oblicz granicę, przy $n \to \infty$, wyrażenia

zenia
$$\int_0^1 \int_0^1 \cdots \int_0^1 \frac{x_1^3 + x_2^3 + \ldots + x_n^3}{x_1 + x_2 + \ldots + x_n} dx_1 dx_2 \cdots dx_n.$$

Centralne twierdzenie graniczne (CTG).

Dla niezależnych zmiennych losowych o jednakowym rozkładzie $\xi_1, \, \xi_2, \, \dots$, takich że $E\xi_1 = 0$ i $E\xi_1^2 = 1$,

$$\lim_{n} P\left(\frac{\xi_1 + \xi_2 + \ldots + \xi_n}{\sqrt{n}} \le x\right) = \Phi(x),$$

gdzie Φ jest dystrybuantą rozkładu N(0,1).

Ćwiczenie 15. Mamy 100 żarówek, których czas życia jest niezależny, o rozkładzie wykładniczym ze średnią 5 godzin (a więc wariancją 25). Oszacuj prawdopodobieństwo, że po 525 godzinach będziemy mieć jeszcze działającą żarówkę, jeśli używamy tylko jednej naraz, zaś natychmiast po zepsuciu wymieniamy ją na następną.

Ćwiczenie 16. Firma ubezpieczeniowa wystawiła 10000 polis. Wartość oczekiwana roszczeń, zrealizowanych w ciągu roku, wynosi 1200, zaś odchylenie standardowe 4000. Obliczyć prawdopodobieństwo, że całkowita suma roszczeń, w ciągu jednego roku, przekroczy 13,5 miliona.

Twierdzenie (nierówność Bernsteina)

Jeśli S_n jest liczbą sukcesów w schemacie n prób Bernoulliego z prawdopodobieństwem sukcesu p, to dla każdego $\varepsilon>0$

$$\lim_{n \to \infty} P\left(\left| \frac{S_n}{n} - p \right| > \varepsilon \right) \le 2e^{-2n\varepsilon^2}.$$

Lemat Borela-Cantelliego.

Niech $A = \bigcap_m \bigcup_{n \geq m} A_n$. Wtedy:

- (i) P(A) = 0, jeśli $\sum_{n=1}^{\infty} P(A_n) < \infty$.
- (ii) P(A) = 1, jeśli zdarzenia A_1, A_2, \ldots , są niezależne i $\sum_{n=1}^{\infty} P(A_n) = \infty$.

Zadanie domowe 2.

Korzystając z nierówności Bernsteina i lematu Borela-Cantelliego, wykazać mocne prawo wielkich liczb Bernoulliego: $S_n/n\to p$ p.n.

Wskazówka: dla ciągu funkcji mierzalnych o wartościach w przestrzeni polskiej (metrycznej, ośrodkowej i zupełnej), zbiór, na którym ciąg ten ma granicę, jest zbiorem mierzalnym. Na przykład, dla ciągu $S_n/n-p$.

Zadanie domowe 3. Weźmy ciąg ξ_1, ξ_2, \ldots niezależnych zmiennych losowych o jednakowym rozkładzie, z własnością: $P\{|\xi_n| > t\} > 0$ dla każdego t > 0. Wykazać istnienie stałych c_n , takich że $c_n\xi_n \to 0$ według prawdopodobieństwa, ale nie p.n.

Warunkowa wartość oczekiwana $E^{\mathcal{F}}\xi = E(\xi|\mathcal{F})$.

Twierdzenie. Niech $L^1(\mathcal{F})$ będzie zbiorem zmiennych losowych całkowalnych i \mathcal{F} -mierzalnych. Dla dowolnego σ -ciała \mathcal{F} istnieje jednoznaczny (p.n.) operator liniowy $E^{\mathcal{F}}: L^1 \to L^1(\mathcal{F})$, taki że:

(i)
$$E(E^{\mathcal{F}}\xi; A) = E(\xi; A)$$
, dla $\xi \in L^1$, $A \in \mathcal{F}$;

Operator $E^{\mathcal{F}}$ ma następujące własności (przy założeniu, że odpowiednie wyrażenia istnieją dla wartości bezwzględnych):

- (ii) $\xi \ge 0 \implies E^{\mathcal{F}} \xi \ge 0$ p.n. (dodatniość),
- (iii) $E|E^{\mathcal{F}}\xi| \leq E|\xi|$ (zwężanie w L^1),
- (iv) $0 \le \xi_n \uparrow \xi \implies E^{\mathcal{F}} \xi_n \uparrow E^{\mathcal{F}} \xi$ p.n. (zbieżność monotoniczna),
- (v) $E^{\mathcal{F}}\xi\eta = \xi E^{\mathcal{F}}\eta$, gdy ξ jest \mathcal{F} -mierzalna (wyłączanie),
- (vi) $E(\xi E^{\mathcal{F}} \eta) = E(\eta E^{\mathcal{F}} \xi) = E(E^{\mathcal{F}} \xi)(E^{\mathcal{F}} \eta)$ (samosprzężenie),
- (vii) $E^{\mathcal{F}}E^{\mathcal{G}}\xi = E^{\mathcal{F}}\xi$ p.n., gdy $\mathcal{F} \subset \mathcal{G}$ ('tower rule').

W szczególności, $E^{\mathcal{F}}\xi=\xi$ p.n., gdy ξ jest \mathcal{F} -mierzalne, zaś $E^{\mathcal{F}}\xi=E\xi$ p.n., gdy $\xi\perp\!\!\!\perp\mathcal{F}$.

Ćwiczenie 17.

Łączny rozkład zmiennych losowych $X,\,Y$ dany jest tabelka:

Ćwiczenie 18. Niech $\Omega=[0,1],$ P-miara Lebesgue'a na [0,1]. Znaleźć $E(f|\mathcal{F}),$ jeśli

- a) $f(x) = \sqrt{x}$, \mathcal{F} jest σ -ciałem generowanym przez zbiory $[0, \frac{1}{4})$, $[\frac{1}{4}, 1]$.
- b) f(x) = -x, \mathcal{F} jest σ -ciałem generowanym przez zbiory $[0, \frac{1}{2})$, $[\frac{1}{3}, 1]$.

Lemat Fatou. Dla nieujemnych $\xi_1, \, \xi_2, \, \dots, \, \text{mamy}$

$$\liminf_{n} E\xi_n \ge E \liminf_{n} \xi_n.$$

Dowód. Zauważmy, że

$$\xi_m \ge \inf_{k > n} \xi_k, \qquad m \ge n,$$

a stąd

$$\inf_{m>n} E\xi_m \ge E \inf_{k>n} \xi_k, \qquad n \in \mathbb{N}.$$

Biorąc $n \to \infty$, mamy (jak?) z lematu Leviego o zbieżności monotonicznej:

$$\lim_{n \to \infty} \inf E \xi_n \ge \lim_{n \to \infty} E \inf_{k \ge n} \xi_k$$

$$= E \lim_{n \to \infty} \inf \xi_n. \quad \Box$$

Ćwiczenie 19. Wykazać warunkowy lemat Fatou: dla nieujemnych, całkowalnych $\xi_1, \, \xi_2, \, \dots, \,$ mamy p.n.

$$\liminf_{n} E^{\mathcal{F}} \xi_n \ge E^{\mathcal{F}} \liminf_{n} \xi_n.$$

Jakich własności warunkowej wartości oczekiwanej należy użyć?

Bibliografia

[JS10] Jacek Jakubowski, Rafał Sztencel. Wstęp do teorii prawdopodobieństwa. SCRIPT, Warszawa, 2010.

[Kal21] Olav Kallenberg. Foundations of Modern Probability. Springer, 2021.