Energy Production In A Combined-cycle Power Plant

PROJECT TITLE: "ENERGY PRODUCTION IN

A COMBINED-CYCLE POWER PLANT "

MENTOR NAME: Mr. Karthik Muskula

GROUP NO.: 4

START DATE: 29 AUG 2023

Group details

MR. SRIHARSHA NOORBHASHA	sriharsha.nsh02@gmail.com	9959905437
Mr. Akshay haridas rautray	akshayrautray6@gmail.com	9637637670
Ms. Jayshree Ramesh Bhoyar	jayashribhoyar27@gmail.com	9146611282
Ms.Devangam Ramya	ramyad7799@gmail.com	9573448642
Mrs. Afrin Fathima Abulkalam Azath	afrinazath@gmail.com	971 558554503 (UAE number)
Vrushali Laxman Bagul	vrushibagul.96@gmail.com	9175057012
Ms.Ashwini Eknath Jadhav	jadhavashwini4454@gmail.com	9373287718

Business Objective:

A combined-cycle power plant comprises gas turbines, steam turbines, and heat recovery steam generators. In this type of plant, the electricity is generated by gas and steam turbines combined in one cycle. Then, it is transferred from one turbine to another. We have to model the energy generated as a function of exhaust vacuum and ambient variables and use that model to improve the plant's performance.

Business Problem

- ☐ To develop a predictive model to predict full-load power output in a combined-cycle power plant.
- **■** Evaluate the performance of the model

Since the goal is to predict the output power based on some parameters, this is a **regression problem.** Regression aims to establish a relationship between predictors (variables that help us make a prediction) and the target (the value we want to predict).

Project Architecture / Project Flow

Understanding the Business Problem Dataset Understanding EDA process **Feature Engineering Model Building Model Evaluation and Feedback Deployment**

Data Set Details:

In this project variable to be predicted is **energy production**

The data file contains **9568 observations** with **five variables** collected from a combined cycle power plant over six years when the power plant was set to work with a full load.

The variables, or features, are the following:

- 1. temperature, in degrees Celsius.
- exhaust_vacuum, in cm Hg.
- 3. amb_pressure, in millibar. (Ambient pressure)
- 4. r_humidity, in percentage. (Relative humidity)
- 5. energy_production, in MW, net hourly electrical energy output.

Independent Variables

Dependent Variables

Data Set

In [5]: data

Out[5]:

	temperature	exhaust_vacuum	amb_pressure	r_humidity	energy_production
0	9.59	38.56	1017.01	60.10	481.30
1	12.04	42.34	1019.72	94.67	465.36
2	13.87	45.08	1024.42	81.69	465.48
3	13.72	54.30	1017.89	79.08	467.05
4	15.14	49.64	1023.78	75.00	463.58
	5550	(505)	1010	(555)	5530
9563	17.10	49.69	1005.53	81.82	457.32
9564	24.73	65.34	1015.42	52.80	446.92
9565	30.44	56.24	1005.19	56.24	429.34
9566	23.00	66.05	1020.61	80.29	421.57
9567	17.75	49.25	1020.86	63.67	454.41

9568 rows × 5 columns

Exploratory Data Analysis (EDA) and Feature Engineering

- ☐ In the given dataset the datatype of the observations in each variables are **floating point datatypes**.
- In data set each features contain **non-null values**.
- There are total **41 duplicate observations** present in dataset, and that has been removed.
- Now the cleaned dataset contain **9527** observation and **5 features**.

☐From the Statistical Summary

- •Ambient Temperature in the range 1.81°C and 37.11°C,
- Ambient Pressure in the range 992.89 1033.30 millibar,
- Relative Humidity in the range of 25.56% to 100.16%
- Exhaust Vacuum in the range 25.36 81.56 cm Hg
- Net hourly electrical energy output 420.26 495.76 MW

□ Data Distribution:

- 1. temperature and r_humidity Negatively Skewed or left Skewed
- 2. exhaust_vacuum, amb_pressure, and energy_production Positively Skewed or Right Skewed.

Outlier Detection:

Outliers were present in amb_pressure and r_humidity

Box Plots of Variables before removing the outliers

outliers were removed successfully. Now the dataset contain 9416 observations and 5 features.

Box Plots of Variables after removing the outliers

Correlation Matrix

: ccpp_new.corr()

executed in 14ms, finished 11:32:28 2023-09-06

	temperature	exhaust_vacuum	amb_pressure	r_humidity	energy_production
temperature	1.000000	0.843689	-0.508222	-0.543947	-0.947908
exhaust_vacuum	0.843689	1.000000	-0.415718	-0.312214	-0.869900
amb_pressure	-0.508222	-0.415718	1.000000	0.101631	0.518687
r_humidity	-0.543947	-0.312214	0.101631	1.000000	0.391175
energy_production	-0.947908	-0.869900	0.518687	0.391175	1.000000

- A correlation matrix is a structured approach to ranking the importance of predictors or input variables (input variables that have the most impact) on the output. To do this we plot the heatmap of the correlation matrix using Seaborn.
- ☐ Correlation is measured on a scale of -1 to 1. -1 means complete negative correlation and 1 means complete positive correlation. 0 means no correlation at all.

When visualized we can easily see that there is a distinctive pattern (negative correlation) seen on temperature and exhaust_vacuum in relation to energy_production.

We can also notice that temperature and exhaust_vacuum are highly correlated with each other. This is usually not a good thing as our features should be independent of each other. This problem is called *multicollinearity*.

One way of solving this problem is to select the feature(s) that more strongly correlates with our target variable (energy_production). In this case that will be temperature (-0.95). In some cases, we can choose to live with the problem and use our features like that.

Normalization:

Normalization of data is carried out to bring all the observations on same scale.

Splitting the data set:

- 1. X independent variables and Y- dependent variable
- 2. Data is splitted in Train and test

Train dataset- containing 7532 observations and 4 variables

Test dataset- containing 1884 observations and 4 variables

Feature Engineering

- The initial observation of the data suggests that we will need to use a linear regression model to predict the power output.
- Though we have obtained a linear model earlier using the statsmodel library, it was a simple mathematical derivation using the data.
- ☐ The actual observed value is **481.30**, which is not very far from the predicted value **480.27**
- □ Now will use the sklearn library, which provides different machine learning models.

Feature Selection:

One of the most important steps in creating a machine learning model is to divide the data set into good predictors to train the algorithm on.

Model Building

Those selected features are trained on below regression models,

1. Linear Regression

2. Decision Tree Regression

3. Random Forest Regression

4. Ridge Regression

5. Lasso Regression

6. ElasticNet Regression

7. XGBoost Regression

8. Gradient Boosting Regression

9. Support Vector Regression

10. AdaBoost Regression

11. KNN

Model Evaluation

- For Regression problems, there are **3 key performance metrics** that are used to assess how well your model is performing. There are
- 1. Root Mean Squared Error (RMSE): measures the average error performed by the model in predicting the outcome for an observation.
- 2. R-Squared: It means how much of the variation in the target variable that can be explained by the set of features used in training the model.
- 3. Mean Absolute Error: measures how far predicted values are away from the actual values.

Performance metrics

Model Name	Mean Squared Error	R-squared	Mean Absolute Error
Linear	1.40716e-07	0.999008	0.000291153
DecisionTree	2.8402e-07	0.997997	0.000380482
Random Forest	1.04044e-07	0.999266	0.000185098
Ridge	8.75697e-06	0.938247	0.002361
Lasso	0.000141809	-2.3696e-05	0.0102863
Elasticnet	0.000141809	-2.3696e-05	0.0102863
XGBoost	1.4989e-07	0.998943	0.000232755
GBR	9.45496e-08	0.999333	0.000170246
SVR	1.76706e-05	0.875389	0.00367206
AdaBoost	2.59826e-06	0.981677	0.00128764
KNN	1.22613e-06	0.991353	0.000790051

Plotted the value from Gradient Boosting Regression

Top 4 Feature Importances

Model Results

- Now that we have evaluated all our models, we can see that the Gradient Boosting Regression Algorithm (with all features) gave us the best performance.
- ☐ The **R-squared is 0.999333** (which means that **99.93**% of the variation in the target variable can be explained by the model).
- ☐ Similarly, it yields the lowest MSE of **9.45496e-08**.
- We can conclude from our results that **Gradient Boosting Regression** should be selected as best regression model to predict future values.

Deployment of Model

Challenges

- Removing the outliers: Outliers can negatively affect the performance of machine learning models by introducing noise or causing convergence issues in the model performance.
- * Feature Selection: Choosing the right variables (features) to include in our model was crucial. Selecting irrelevant or redundant features could negatively impact the model's performance.
- * Model Selection: Deciding which Regression algorithm to use for predicting energy production was a challenging task. Different models have different strengths and weaknesses.
- Hyperparameter Tuning: finding the best set of hyperparameters for a given algorithm or model to achieve optimal performance.
- Deployment: Integrating our model using streamlit, ensuring it runs reliably in real-time, and make it user friendly.

References

- 1.https://pandas.pydata.org/
- 2.https://numpy.org/doc/
- 3.https://matplotlib.org/
- 4.https://seaborn.pydata.org/
- 5.https://scikit-learn.org/
- 6.https://www.statsmodels.org/

Thank You