МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ "БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ"

Кафедра ИИТ

ОТЧЁТ

По лабораторной работе №3

«Атака на алгоритм шифрования RSA посредством метода бесключевого чтения»

Выполнил: Студент группы ИИ-22 Варицкий М.И. Проверила: Хацкевич А.С. **Цель работы:** изучить атаку на алгоритм шифрования RSA посредством метода бесключевого чтения

Ход работы

Вариант	Блок зашифрованного текста			Модуль		
80	C_1	C_2	C_3	N_1	N_2	N_3
18	104966282544616483404003 535769182765842655887396 334268296647872337468221 231519559284326799505859 750158515199122122656241 467455982590488707215297 450908908900723108219852 569451241303372210218811 159346796424156790814480 554643140211156155170686 74414063576283468072991 40926995768666750982540 294954343285990883653662 587944721980977469107226 122181868229359600035848 495602982349827762479458 088052741882724750627576 084041184127610519288777 573117888907370238359582 6685197055678358560042428 023676814398039513924139 490758484492668040719167 459452097604673083482502 209130879146628841153479	532510796922675377780551703 388383679447594074733655086 102582513518450796058771162 220917312323156380165968371 419199574916265775459125362 247298194393630889329679701 359288287099310227323422031 059858362504303960319163414 132048920419880841502767609 778809003103451615182761378 012105422517627256378239164 337159261649781946390747273 103890890792646696846711582 873172720502996005606560079 474603563319213900277603190 989389642970153495734445954 241931140830522671442488803 036717480241619796743856974 267542913604658494959000501 405364216678838637967263409 712330532573393653044631178 302835945279098269424191309 5390657769316207093164	116026541957240913348730 013742306831479767345990 714692034116945268400650 112928162694647158256941 840414017452612974117235 176967078530705812887623 443860262198018417712471 365453180651767120591936 027870195929488655174159 241227626115276738326315 441740922081330692613657 722053844556671839415037 722053844556671839415037 722053844556671839415037 722053844556671839415037 722053844556671839415037 72053844556671839415037 72053844556671839415037 72053844556671839415037 72053847366235337580663 458254048747366235337580063 45825404874938256017821740 462524645997897638902697 4625348845383338449397 4445381503704533356205796 825053973862121956282448	N1 1988823447795522235486025614 9591781307886469688980288373 5007595570828029581036373236 68318975632166996924915585707 2258048697436072769765678313 59869380458477162229646629 9652248816417371941796429668 8831241165612106403576876704 66978942405094324133884151404 1684952633610963967998965811 8201448601716804672660911458 9913260030681570327952220974 3526941313493450957409519182 4164277158000378191123796831 9662644289161937101454344942 5992347833310185483400955730 6981127433099625774842429719 5732122500031360688053933012 9982067096054289247026443788 0342978927462866388838226438 5750786040731818091262167046 4620518330017695759175571179	164622154264892552258925 848690377355776197630659 985198608388016373800309 275916722268447904148152 296634358631810051117996 669202609103328191214330 391507637505151547698444 207072667789707358314728 102576255185358368072566 013339993212597089160652 027765961057161204542046 396329650573616878195382 2978056556881687880346979 386310051940488972947425 240617016863702227982731 968408291984923467664927 026347060347003255719013 810562950478555865997958 417078729972416374238276 44067307604667321916258 401787403961202276146902 992320018753840857385367 99340026547128897434383	137062158936547318678499 261868163260431805244063 362119096717098098731978 844434977376735568606733 777266305868005304196870 117004622943528918341393 351922881403839912941480 262667990782431872052901 255003444757846120480420 187838401478051897882560 815486295277870321188876 836955114172783154503350 379405404354107126894372 670601776782083002174694 65255211061531452977176 93635807088755547067174 189427922123527359347558 991525094364581538664830 977805803838651798010309 97805803838651798010309 97805803838651798010309 94849321891492138603780 392294238348855709593243 218730586465305072874060 836838899742623496789550
33	918066192362215805556456 42094551129889193		975630414480408795906937 24605867166234775		279997791357294011228618 75632063844321783	392971543110996218888578 49283747864955581

E=3

Код программы:

```
from sympy import mod_inverse, integer_nthroot
def chinese_remainder_theorem(c1, c2, c3, n1, n2, n3):
    M \equiv c1 \pmod{n1}
    M \equiv c2 \pmod{n2}
    M \equiv c3 \pmod{n3}
    N = n1 * n2 * n3
    N1 = N // n1
    N2 = N // n2
    N3 = N // n3
    y1 = mod_inverse(N1, n1)
    y2 = mod_inverse(N2, n2)
    y3 = mod_inverse(N3, n3)
    M = (c1 * N1 * y1 + c2 * N2 * y2 + c3 * N3 * y3) % N
    return M
def decrypt_rsa_cubic_root(M):
    Извлекает кубический корень из М.
    low, high = 0, M
    while low <= high:
        mid = (low + high) // 2
        mid\_cubed = mid ** 3
        if mid_cubed == M:
            return mid
        elif mid_cubed < M:</pre>
            low = mid + 1
        else:
            high = mid - 1
    # Если не нашли точного куба, попробуем найти наименьший приближённый
    return low - 1 # возвращаем приближённое значение
```

```
c1 = int(
```

[&]quot;10496628254461648340400353576918276584265588739633426829664787233746822123151955928432679950585975015851519912212265624146745598259048870721529745090890890072310821985256945124130337221021881115934679642415679081448055464314021115615517068674414063576283468007299140926995768666750985254029495434328599088365366258794472

19809774691072261221818682293596000358484956029823498277624794580880527418827247506275760840411841276105192 88777573117888907370238359582658519705567835856402428023676814398039513924139490758484492668040719167459452 09760467308348250220913087914662884115347991806619236221580555645642094551129889193") c2 = int("5325107969226753777805517033883836794475940747336350861025825135184507960587711622209173123231563801659683 71419199574916265775459125362247298194393630889329679701359288287099310227323422031059858362504303960319163 72731038908907926466968467115828731727205029960056065600794746035633192139002776031909893896429701534957344 45954241931140830522671442488803036717480241619796743856974267542913604658494959000501405364216678838637967 2634097123305325733935630446311783028359452790982694241913095390657769316207093164") c3 = int("1160265419572409133487300137423068314797673459907466920341169452684006501129281626946471582569418404140174 52612974117235176967078530705812887623443860262198018417712471365453180651767120591936027870195929488655174 15924122762611527673832631544174092208133069261365772205384455667183941503716743804829276835966140906858260 71208600543744938256017821740462524645997897638902697952653088485383338419397444538150370453356205796825053 97386212195628244824008625910960433871964297563041448040879590693724605867166234775") n1 = int("1988823447795522235486025614959178130788646968898028837350075955708280295810363732366831897563216696924915 58570722580486974360727697656783135986938045847716222396466229965224881641737194179642966888312411656121064 03576876704669789424050432413388415140416849526336109639679989658118201448601716804672660911458991326003068 78333101854834009557306981127433099625774842429719573212250003136068805393301299820670960542892470264437880 34297892746286638838226438575078604073181809126216704646205183300176957591755711791") n2 = int("1646221542648925522589258486903773557761976306598951986083880163708003092759167222684479041481522966343586 31810051117996669202609103328191214330391507637505151547698444207072667789707358314728102576255185358368072 56601353999321259708916065202776596105716120454204639632965057361687819538291514727126827446240669829780565 19013810562950478555865997958417078729972416374238276840663507604667321916258401787403961202276146902992320 01875384085738536799340026547128897434438327999779135729401122861875632063844321783") n3 = int("1370621589365473186784992618681632604318052440483621109067170980987319788444349773767355686067337772663058

"13706215893654731867849926186816326043180524404836211090671709809873197884443497737673556860673377726630586800530419687011700462294352891834139335192288140383991294148062666799078243187205290125500344475784612048042018783840147805189788256081548629527787032118887683695511417278315450335037940540435410712689437267060177678208300217469465255211061531452977176264862598540523403966377169363580708875554706717418942792212352735934755899152509436458153866483097780580383865179801030968459321891492138603780329229423834885570959324321873058646530507287406083683889974262349678955039297154311099621888857849283747864955581")

```
# Восстановление исходного текста
M = chinese_remainder_theorem(c1, c2, c3, n1, n2, n3)
original_message = decrypt_rsa_cubic_root(M)
print("Восстановленное исходное сообщение:", original message)
```

Результат работы:

Восстановленное исходное сообщение: 1229771639122320569313926292185234783538628392757221011872412178663922119133644734422614790088463050543896434470668011

Process finished with exit code (

Вывод: изучил атаку на алгоритм шифрования RSA посредством метода бесключевого чтения