Übungsblatt LA 1

Computational and Data Science FS2024

Lösungen Mathematik 2

Lernziele:

- > Sie kennen die Begriffe komplexe Zahl, Realteil, Imaginärteil, Betrag und komplex konjugiert und deren wichtigste Eigenschaften.
- > Sie kennen die elementaren Rechenregeln für die komplexe Konjugation.
- Sie können für jede komplexe Zahl ihren Realteil, Imaginärteil, Betrag und ihre komplex Konjugierte bestimmen.
- Sie können Summe, Differenz, Produkt und Quotient von komplexen Zahlen berechnen.
- Sie können einfache Brüche und Potenzen von komplexen Zahlen durch Anwenden der Rechenregeln vereinfachen.

1. Aussagen über komplexe Zahlen

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Es gilt: $\sqrt{2} \notin \mathbb{C}$.		Х
b) Es gilt: $\sqrt{-1} \in \mathbb{C}$.	X	
c) Es gilt: ℚ ⊈ ℂ.		X
d) Das Produkt von zwei reellen Zahlen ist eine komplexe Zahl.	Χ	
e) Die komplexen Zahlen bestehen aus allen reellen Zahlen und		X
der imaginären Einheit i.		
f) Jede komplexe Zahl kann durch zwei reelle Zahlen dargestellt	X	
werden.		
g) Für alle $z \in \mathbb{C}$ gilt: $Im(z) \in \mathbb{R}$.	Χ	
h) $z = 0$ gilt genau dann, wenn $ z = 0$.	Χ	
i) $z_1^* = z_2^*$ gilt genau dann, wenn $z_1 = z_2$.	Χ	
j) Es gibt ein $z \in \mathbb{C}$, so dass $z^2 = -2$.	Χ	
k) Es gilt $ Re(z) \le z $ und $ Im(z) \le z $ für alle $z \in \mathbb{C}$.	X	

2. Real- und Imaginärteil und komplex Konjugierte

	Z	Z*	Re(z)	lm(z)	z
a)	0	0	0	0	0
b)	1	1	1	0	1
c)	İ	-i	0	1	1
d)	3+4i	3-4i	3	4	5
e)	-5-12i	-5+12i	-5	-12	13
f)	8-6i	8+6i	8	-6	10
g)	3i	-3i	0	3	3
h)	-5i	5i	0	-5	5
i)	-π	-π	-π	0	π
j)	$\sqrt{2}i$	$-\sqrt{2}i$	0	$\sqrt{2}$	$\sqrt{2}$

3. Elementares Rechnen mit komplexen Zahlen

Berechnen Sie jeweils die Summe $z_1 + z_2$, die Differenz $z_1 - z_2$, das Produkt $z_1 \cdot z_2$ und den Quotienten z_1/z_2 der gegebenen komplexen Zahlen.

a)
$$z_1 = 3$$
, $z_2 = i$

c)
$$z_1 = 2 + 3i$$
, $z_2 = 2 + 3i$

e)
$$z_1 = -3 + 4i$$
, $z_2 = -3 - 4i$

g)
$$z_1 = 6 + i$$
, $z_2 = 1 - i$

i)
$$z_1 = 7i$$
, $z_2 = 9i$

b)
$$z_1 = i$$
, $z_2 = 3$

d)
$$z_1 = 3 + 4i$$
, $z_2 = 3 - 4i$

f)
$$z_1 = 4 + 9i$$
, $z_2 = 3 + 7i$

h)
$$z_1 = -2 - 2i$$
, $z_2 = -3 + i$

j)
$$z_1 = 1 + \sqrt{3}i$$
, $z_2 = 1 - \sqrt{3}i$

4. Rechenregeln der komplexen Konjugation

Zeigen Sie, dass für die komplexen Zahlen die folgenden Rechenregeln für die komplexe Konjugation gelten.

a)
$$(z_1 + z_2)^* = z_1^* + z_2^*$$

b)
$$(z_1 - z_2)^* = z_1^* - z_2^*$$

c)
$$(z_1 \cdot z_2)^* = z_1^* \cdot z_2^*$$

d)
$$(\frac{z_1}{z_2})^* = \frac{z_1^*}{z_2^*} \text{ mit } z_2 \neq 0$$

a)

Es gilt

$$\underline{(z_1 + z_2)^*} = ((x_1 + y_1i) + (x_2 + y_2i))^* = (x_1 + y_1i + x_2 + y_2i)^*
= (x_1 + x_2 + (y_1 + y_2) \cdot i)^* = x_1 + x_2 - (y_1 + y_2) \cdot i = x_1 + x_2 - y_1i - y_2i
= (x_1 - y_1i) + (x_2 - y_2i) = \underline{z_1^* + z_2^*}.$$

b)

Es gilt

$$\underline{(z_1 - z_2)^*} = ((x_1 + y_1 i) - (x_2 + y_2 i))^* = (x_1 + y_1 i - x_2 - y_2 i)^*$$

$$= (x_1 - x_2 + (y_1 - y_2) \cdot i)^* = x_1 - x_2 - (y_1 - y_2) \cdot i = x_1 - x_2 - y_1 i + y_2 i$$

$$= (x_1 - y_1 i) - (x_2 - y_2 i) = \underline{z_1^* - z_2^*}.$$

$$\underline{(z_1 \cdot z_2)^*} = ((x_1 + y_1 \mathbf{i}) \cdot (x_2 + y_2 \mathbf{i}))^* = (x_1 x_2 - y_1 y_2 + x_1 y_2 \mathbf{i} + x_2 y_1 \mathbf{i})^*
= (x_1 x_2 - y_1 y_2 + (x_1 y_2 + x_2 y_1) \cdot \mathbf{i})^* = x_1 x_2 - y_1 y_2 - (x_1 y_2 + x_2 y_1) \cdot \mathbf{i}
= x_1 x_2 - y_1 y_2 - x_1 y_2 \mathbf{i} - x_2 y_1 \mathbf{i} = (x_1 - y_1 \mathbf{i}) \cdot (x_2 - y_2 \mathbf{i}) = z_1^* \cdot z_2^*.$$

$$\frac{\left(\frac{z_1}{z_2}\right)^*}{\left(\frac{z_1}{z_2}\right)^*} = \left(\frac{x_1 + y_1 \mathbf{i}}{x_2 + y_2 \mathbf{i}}\right)^* = \left(\frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2} \cdot \mathbf{i}\right)^* \\
= \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} - \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2} \cdot \mathbf{i} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + \frac{-x_2 y_1 + x_1 y_2}{x_2^2 + y_2^2} \cdot \mathbf{i} = \frac{x_1 - y_1 \mathbf{i}}{x_2 - y_2 \mathbf{i}} \\
= \frac{z_1^*}{z_2^*}.$$

5. Brüche mit komplexen Zahlen

Vereinfachen Sie den gegebenen Bruch soweit wie möglich mit Hilfe der Rechenregeln für komplexe Zahlen.

a)
$$\frac{1}{i}$$
 b) $\frac{1}{-4+3i}$ c) $2+5\left(\frac{1}{2+i}\right)+3(3-i)$ d) $\frac{(3-2i)(6-8i)}{3+i}$ e) $\frac{7+3i}{(1+i)(1-i)}$ f) $\frac{1+i}{1-i}$

a)
$$\frac{1}{\underline{i}} = \frac{1 \cdot (-i)}{i \cdot (-i)} = \frac{-i}{1} = \underline{-i}.$$

b)

$$\frac{1}{\underline{-4+3i}} = \frac{1 \cdot (-4-3i)}{(-4)^2 + 3^2} = \frac{-4-3i}{25} = \underline{-\frac{4}{25} - \frac{3}{25}i}.$$

c)

$$\underbrace{2+5\cdot\left(\frac{1}{2+i}\right)+3\cdot(3-i)}_{}=2+\frac{5\cdot(2-i)}{2^2+1^2}+9-3i=11-3i+\frac{5\cdot(2-i)}{5}$$

$$= 11 - 3i + 2 - i = 13 - 4i.$$

d)

$$\frac{(3-2i)\cdot(6-8i)}{3+i} = \frac{18-12i-24i-16}{3+i} = \frac{2-36i}{3+i} = \frac{(2-36i)\cdot(3-i)}{3^2+1^2}$$
$$= \frac{6-108i-2i-36}{10} = \frac{-30-110i}{10} = \underline{-3-11i}.$$

e)
$$\frac{7+3i}{(1+i)\cdot(1-i)} = \frac{7+3i}{1^2-i^2} = \frac{7+3i}{1-(-1)} = \frac{7+3i}{2} = \frac{7}{2} + \frac{3}{2}i.$$

f)
$$\frac{1+i}{\underline{1-i}} = \frac{(1+i)\cdot(1+i)}{1^2+(-1)^2} = \frac{1+i+i-1}{1+1} = \frac{2i}{2} = \underline{\underline{i}}.$$

6. Potenzen mit komplexen Zahlen

Vereinfachen Sie den gegebenen Term soweit wie möglich mit Hilfe der Rechenregeln für komplexe Zahlen.

a)
$$i^3$$

c)
$$(-i)^2$$

$$d)(-i)^{2}$$

e)
$$(2i)^7 + (7i)^2$$

d)
$$(-i)^3$$

f) $(-\sqrt{2}i)^8 + (3i)^4$

a)
$$i^3 = i^{2+1} = i^2 \cdot i = 0$$

a)

$$\underline{\underline{i}}^3 = i^{2+1} = i^2 \cdot i = (-1) \cdot i = \underline{\underline{-i}}$$

b)
$$\underline{\underline{i}}^{\underline{4}} = i^{2+2} = i^2 \cdot i^2 = (-1) \cdot (-1) = \underline{\underline{1}}.$$

$$\underbrace{(-i)^2}_{1} = (-1)^2 \cdot i^2 = 1 \cdot (-1) = \underline{-1}.$$

$$\underline{\underline{(-i)^3}} = (-1)^3 \cdot i^3 = (-1) \cdot (-i) = \underline{\underline{i}}.$$

$$\underline{(2i)^7 + (7i)^2} = 2^7 \cdot i^7 + 7^2 \cdot i^2 = 128 \cdot i^{4+3} + 49 \cdot (-1) = 128 \cdot i^4 \cdot i^3 - 49$$

$$= 128 \cdot 1 \cdot (-i) - 49 = \underline{-49 - 128i}$$

$$\underbrace{\left(-\sqrt{2}\,\mathrm{i}\right)^8 + \left(3\mathrm{i}\right)^4}_{} = \left(-1\right)^8 \cdot \left(2^{\frac{1}{2}}\right)^8 \cdot \mathrm{i}^8 + 3^4 \cdot \mathrm{i}^4 = 1 \cdot 2^{\frac{8}{2}} \cdot \mathrm{i}^{4 \cdot 2} + 81 \cdot 1 = 1 \cdot 2^4 \cdot 1 + 81$$

$$= 16 + 81 = \underline{97.}$$

Übungsblatt LA 1

Computational and Data Science BSc FS 2023

Lösungen

Analysis und Lineare Algebra 2

1. Aussagen über komplexe Zahlen

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) Es gilt $\sqrt{2} \notin \mathbb{C}$.	0	•
b) Es gilt $\sqrt{-1} \in \mathbb{C}$.	•	0
c) Es gilt $\mathbb{Q} \not\subseteq \mathbb{C}$.	0	•
d) Das <i>Produkt</i> von zwei <i>reellen Zahlen</i> ist in jedem Fall eine <i>komplexe Zahl</i> .	•	0
e) Die komplexen Zahlen bestehen genau aus allen reellen Zahlen und der imaginären Einheit i.	0	•
f) Jede komplexe Zahl kann durch zwei reelle Zahlen dargestellt werden.	•	0

2. Komplex-Konjugierte, Real- und Imaginärteil und Betrag

Wir ergänzen die fehlenden Werte in der folgenden Tabellen.

	z	z^*	$\operatorname{Re}(z)$	$\operatorname{Im}(z)$	
a)	0	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
b)	1	1	1	<u>0</u>	1
c)	i	<u>—i</u>	<u>0</u>	1	1
d)	3 + 4i	$\frac{3-4\mathrm{i}}{}$	<u>3</u>	<u>4</u>	<u>5</u>
e)	$\frac{-5-12i}{}$	-5 + 12i	<u>-5</u>	<u>-12</u>	<u>13</u>

(1)

	z	z^*	$\operatorname{Re}(z)$	$\operatorname{Im}(z)$		
f)	<u>8 – 6i</u>	<u>8 + 6i</u>	8	-6	<u>10</u>	
g)	3i	<u>—3i</u>	<u>0</u>	3	<u>3</u>	(0)
h)	<u>-5i</u>	5i	<u>0</u>	<u>-5</u>	<u>5</u>	(2)
i)	$\frac{-\pi}{}$	$\frac{-\pi}{}$	$-\pi$	0	<u>#</u>	
j)	<u>√2 i</u>	$\frac{-\sqrt{2}i}{}$	0	$\sqrt{2}$	$\frac{\sqrt{2}}{}$	

3. Elementare Operationen mit komplexen Zahlen

Keine Lösung verfügbar.

4. Rekonstruktion von Real- und Imaginärteil mittels komplexer Konjugation

Jede komplexe Zahl und ihre komplex Konjugierte können trivialerweise durch Real- und Ima-ginärteil ausgedrückt werden. Umgekehrt lassen sich Real- und Imaginärteil auch durch die komplexe Zahl und ihre komplex Konjugierte rekonstruieren.

a) Für alle $z = x + yi \in \mathbb{C}$ gilt

$$\frac{z+z^*}{2} = \frac{x+yi+x-yi}{2} = \frac{2x}{2} = x = \underbrace{\text{Re}(z)}_{}.$$
 (3)

b) Durch die Summe von z und z^* in (3) konnte der $Imagin \ddot{a}rteil$ eliminiert werden, während der Realteil verdoppelt wurde. Analog lässt sich durch die Differenz von z und z^* der Realteil eliminieren. Für alle z=x+yi $\in \mathbb{C}$ gilt

$$\frac{z - z^*}{2i} = \frac{x + yi - x + yi}{2i} = \frac{2yi}{2i} = y = \underline{\text{Im}(z)}.$$
 (4)

5. Rechenregeln der komplexen Konjugation

Bemerkenswerterweise kommutiert die komplexe Konjugation mit den algebraischen Grundoperationen in den komplexen Zahlen. Wir beweisen dazu die folgenden Rechenregeln für $z_1 = x_1 + y_1 i \in \mathbb{C}$ und $z_2 = x_2 + y_2 i \in \mathbb{C}$.

a) Es gilt

$$\underbrace{(z_1 + z_2)^*}_{===} = ((x_1 + y_1 i) + (x_2 + y_2 i))^* = (x_1 + y_1 i + x_2 + y_2 i)^*
= (x_1 + x_2 + (y_1 + y_2) \cdot i)^* = x_1 + x_2 - (y_1 + y_2) \cdot i = x_1 + x_2 - y_1 i - y_2 i
= (x_1 - y_1 i) + (x_2 - y_2 i) = z_1^* + z_2^*.$$
(5)

b) Es gilt

$$(z_1 - z_2)^* = ((x_1 + y_1i) - (x_2 + y_2i))^* = (x_1 + y_1i - x_2 - y_2i)^*$$

$$= (x_1 - x_2 + (y_1 - y_2) \cdot i)^* = x_1 - x_2 - (y_1 - y_2) \cdot i = x_1 - x_2 - y_1 i + y_2 i$$

$$= (x_1 - y_1 i) - (x_2 - y_2 i) = z_1^* - z_2^*.$$
(6)

c) Es gilt

$$\underline{(z_1 \cdot z_2)^*} = ((x_1 + y_1 i) \cdot (x_2 + y_2 i))^* = (x_1 x_2 - y_1 y_2 + x_1 y_2 i + x_2 y_1 i)^*
= (x_1 x_2 - y_1 y_2 + (x_1 y_2 + x_2 y_1) \cdot i)^* = x_1 x_2 - y_1 y_2 - (x_1 y_2 + x_2 y_1) \cdot i
= x_1 x_2 - y_1 y_2 - x_1 y_2 i - x_2 y_1 i = (x_1 - y_1 i) \cdot (x_2 - y_2 i) = z_1^* \cdot z_2^*.$$
(7)

d) Falls $z_2 \neq 0$ gilt

$$\frac{\left(\frac{z_1}{z_2}\right)^*}{\left(\frac{z_1}{z_2}\right)^*} = \left(\frac{x_1 + y_1 \mathbf{i}}{x_2 + y_2 \mathbf{i}}\right)^* = \left(\frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2} \cdot \mathbf{i}\right)^*$$

$$= \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} - \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2} \cdot \mathbf{i} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + \frac{-x_2 y_1 + x_1 y_2}{x_2^2 + y_2^2} \cdot \mathbf{i} = \frac{x_1 - y_1 \mathbf{i}}{x_2 - y_2 \mathbf{i}}$$

$$= \frac{z_1^*}{z_2^*}.$$
(8)

6. Bruch-Terme mit komplexen Zahlen

Wir vereinfachen jeweils den gegebenen Term, soweit als möglich, mit Hilfe der Rechenregeln für komplexe Zahlen.

a) Wir erhalten

$$\frac{1}{\underline{\mathbf{i}}} = \frac{1 \cdot (-\mathbf{i})}{\mathbf{i} \cdot (-\mathbf{i})} = \frac{-\mathbf{i}}{1} = \underline{-\mathbf{i}}.$$
 (9)

b) Wir erhalten

$$\frac{1}{\underline{-4+3i}} = \frac{1 \cdot (-4-3i)}{(-4)^2 + 3^2} = \frac{-4-3i}{25} = \underline{\frac{4}{25} - \frac{3}{25}}i.$$
 (10)

c) Wir erhalten

$$\underbrace{\frac{2+5\cdot\left(\frac{1}{2+i}\right)+3\cdot(3-i)}{2+1^2}=2+\frac{5\cdot(2-i)}{2^2+1^2}+9-3i=11-3i+\frac{5\cdot(2-i)}{5}}_{=11-3i+2-i=\underline{13-4i}}$$
(11)

d) Wir erhalten

$$\frac{(3-2i)\cdot(6-8i)}{3+i} = \frac{18-12i-24i-16}{3+i} = \frac{2-36i}{3+i} = \frac{(2-36i)\cdot(3-i)}{3^2+1^2}$$

$$= \frac{6-108i-2i-36}{10} = \frac{-30-110i}{10} = \frac{-3-11i}{10}$$
(12)

e) Wir erhalten

$$\frac{7+3i}{\underline{(1+i)\cdot(1-i)}} = \frac{7+3i}{1^2-i^2} = \frac{7+3i}{1-(-1)} = \frac{7+3i}{2} = \frac{7}{\underline{2}} + \frac{3}{2}i.$$
 (13)

f) Wir erhalten

$$\frac{1+i}{1-i} = \frac{(1+i)\cdot(1+i)}{1^2+(-1)^2} = \frac{1+i+i-1}{1+1} = \frac{2i}{2} = \underline{i}.$$
 (14)

7. Potenz-Terme mit komplexen Zahlen und natürlichen Exponenten

Wir vereinfachen jeweils den gegebenen Term, soweit als möglich, mit Hilfe der Rechenregeln für komplexe Zahlen.

a) Wir erhalten

$$\underline{\underline{i}}^{3} = \mathbf{i}^{2+1} = \mathbf{i}^{2} \cdot \mathbf{i} = (-1) \cdot \mathbf{i} = \underline{-\mathbf{i}}.$$
 (15)

b) Wir erhalten

$$\underline{\mathbf{i}}^{4} = \mathbf{i}^{2+2} = \mathbf{i}^{2} \cdot \mathbf{i}^{2} = (-1) \cdot (-1) = \underline{1}. \tag{16}$$

c) Wir erhalten

$$(-i)^{2} = (-1)^{2} \cdot i^{2} = 1 \cdot (-1) = \underline{-1}.$$
(17)

d) Wir erhalten

$$(-i)^3 = (-1)^3 \cdot i^3 = (-1) \cdot (-i) = \underline{i}.$$
(18)

e) Wir erhalten

$$\underline{(2i)^{7} + (7i)^{2}} = 2^{7} \cdot i^{7} + 7^{2} \cdot i^{2} = 128 \cdot i^{4+3} + 49 \cdot (-1) = 128 \cdot i^{4} \cdot i^{3} - 49$$

$$= 128 \cdot 1 \cdot (-i) - 49 = -49 - 128i.$$
(19)

f) Wir erhalten

$$\underbrace{\left(-\sqrt{2}\,\mathrm{i}\right)^{8} + \left(3\mathrm{i}\right)^{4}}_{= (-1)^{8} \cdot \left(2^{\frac{1}{2}}\right)^{8} \cdot \mathrm{i}^{8} + 3^{4} \cdot \mathrm{i}^{4} = 1 \cdot 2^{\frac{8}{2}} \cdot \mathrm{i}^{4 \cdot 2} + 81 \cdot 1 = 1 \cdot 2^{4} \cdot 1 + 81$$

$$= 16 + 81 = 97. \tag{20}$$

8. Aussagen über komplexe Zahlen

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) Für alle $z \in \mathbb{C}$ gilt $\mathrm{Im}(z) \in \mathbb{R}$.	•	0
b) Es gilt $z = 0$ genau dann, wenn $ z = 0$.	•	0
c) Es gilt $z_1^* = z_2^*$ genau dann, wenn $z_1 = z_2$.	•	0
d) Es gibt ein $z \in \mathbb{C}$, so dass $z^2 = -2$.	•	0
e) Es gilt $ \operatorname{Re}(z) \le z $ und $ \operatorname{Im}(z) \le z $ für alle $z \in \mathbb{C}$.	•	0