

RenMab

Fully Human Antibody Mouse Revolutionizes Antibody Drug Discovery

Key Features of RenMab™ Mouse:

- 1. An intact immune system compared to wildtype mouse
- 2. Full human VDJ expression in the variable domains of heavy chain and kappa light chain genes
- 3. Fully human antibody repertoire as shown by CDR3 analysis
- 4. Highly similar immune responses compared to wild-type mouse

Generation of RenMab™ Mouse

RenMab

Biocytogen has developed a fully human antibody mouse (RenMab $^{\text{TM}}$ Mouse), whose genes that encode entire antibody variable regions are replaced *in situ* by human Ig heavy chain and κ light chain using Mb-scale chromosome. Constant region of mouse gene has been maintained to ensure proper B cell development. RenMab $^{\text{TM}}$ Mouse provides an efficient platform for fully human antibody generation, characterization, therapeutic antibody discovery, and rapid *in vivo* efficacy screening.

Mouse variable regions of the heavy and k light chains are replaced by the human counterparts in situ

RenMab™ Technical Advantages

I: RenMab[™] Mouse demonstrates an intact immune system compared to wild-type mouse

Representative sections of spleen (a and d), inguinal lymph node (b and e), and Peyer's patch (c and f) from WT (a-c) or RenMab™ (d-f) mice were H&E stained. Both WT (C57BL/6) and RenMab™ mice demonstrate normal anatomical structures with well-defined follicles and show no significant difference in histological morphology.

The percentages of immune cells in spleen were analyzed by flow cytometry. In RenMab™ Mouse, the percentage of B cells,T cells, NK cells, CD4+ T cells and CD8+ T cells in spleen were identical to those of wild type mice.

(A) IgM and IgD expression on B220⁺ splenocytes were analyzed by flow cytometry. Transitional type 1 (T1, B220⁺IgM⁺IgD⁻),

Transitional type 2 (T2, B220⁺IgM⁺IgD⁺),

Mature (M, B220⁺IgM^{low}IgD⁻) cell population.

(B) CD21 and CD23 expression on the surface of B220⁺ splenocytes were analyzed by flow cytometry. Marginal-zone (MZ, B220⁺CD21⁺CD23⁻) and Follicular (F0, B220⁺CD21^{LOW}CD23⁺) B cells were quantitatively analyzed. No significant difference was observed between RenMab™ mouse and wild type mouse.

II. Full human VDJ expression in the variable domains of heavy chain and kappa light chain genes

III. RenMab™ Mouse produces fully human antibody repertoire as shown by CDR3 analysis

IV. RenMab™ Mouse demonstrates highly similar immune responses compared to WT mouse

After 2nd and 3rd immunization with BCMA, Siglec15, and SIRPα antigens, antigen-specific antibody titer of blood taken from WT (C57BL/6) and RenMab™ mice were analyzed by ELISA. The results showed that the immune effects of RenMab™ and WT mice were consistent.

Serum Ig Subtype Levels of RenMab™ Mouse vs. WT mouse

Different Ig subtypes in the serum of RenMab™ and WT mice were quantitatively measured by ELISA (n=6). No significant differences (n=6) in IgA, IgG1, IgG2b, IgG2c, IgG3 and IgM levels were observed.

