IMAG/e

Technische Universiteit
Eindhoven
University of Technology

Deep learning for brain MRI segmentation

Pim Moeskops

Medical Image Analysis Group
Department of Biomedical Engineering
Eindhoven University of Technology
The Netherlands

Convolutional neural networks

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." In: NIPS, 2012

30 weeks PMA, coronal T2-w

Neonatal brain MRI

Manual reference segmentation

Neonatal brain MRI

- Unmyelinated white matter
- Cortical grey matter
- Extracerebral CSF
- Ventricular CSF
- Basal ganglia and thalami
- Brain stem
- Cerebellum
- Myelinated white matter

Segmentation with CNNs

Patch-based approach

 25×25 voxels

 51×51 voxels

 75×75 voxels

Trained CNN after the first layer

Dice coefficients

	Neonatal 1	Neonatal 2	Neonatal 3	Adults 1	Adults 2
■ (Unmyelinated) white matter	0.96	0.92	0.92	0.94	0.88
Cortical grey matter	0.84	0.82	0.88	0.91	0.84
■ Extracerebral CSF	0.91	0.86	0.84	-	0.76
■ Ventricular CSF	0.88	0.85	0.81	0.85	0.92
■ Basal ganglia and thalami	0.91	0.86	0.91	0.85	0.81
■ Brain stem	0.87	0.78	0.84	0.92	0.90
■ Cerebellum	0.92	0.93	0.93	0.95	0.90
Myelinated white matter	0.69	0.56	0.55	_	_

134 segmentation classes

Image Reference Automatic

Average Dice of 0.74

Segmentation of white matter hyperintensities

Moeskops et al., Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI, NeuroImage: Clinical, 2018.

Fully convolutional CNNs

Long, J., Shelhamer, E., & Darrell, T. "Fully convolutional models for semantic segmentation." In: CVPR (Vol. 3, p. 4), 2015.

UNet

Ronneberger, Olaf, et al. "U-net: Convolutional networks for biomedical image segmentation." In: MICCAI, 2015

Applying a patch-based method to full images (in 1D)

Receptive field: 7

Dilated convolutional neural networks (in 1D)

Yu et al., "Multi-Scale Context Aggregation by Dilated Convolutions" In: ICLR, 2016

Dilated convolutional neural networks (in 2D)

Layer	1	2	3	4	5	6	7	8
Convolution	3×3	3×3	3×3	3×3	3×3	3×3	3×3	1×1
Dilation	1	1	2	4	8	16	1	1
Truncation	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Receptive field	3×3	5×5	9×9	17×17	33×33	65×65	67×67	67×67

MICCAI Challenge on 6-month infant brain MRI segmentation

http://iseg2017.web.unc.edu

Triplanar dilated CNN

Triplanar dilated CNN + 3D CNN

Triplanar dilated CNN + 3D CNN

Results: validation set

Average Dice coefficients (3 images)	WM	GM	CSF
Triplanar with shared weights	0.856	0.846	0.905
Triplanar with separate weights	0.868	0.871	0.908
Triplanar plus 3D network	0.874	0.877	0.932

Results: validation set

Generative adversarial networks (GANs)

Goodfellow et al., NIPS, 2014

Adversarial networks for segmentation

Luc et al., NIPS workshop on adversarial training, 2016

Moeskops et al., MICCAI deep learning in medical image analysis workshop, 2017

Adversarial networks for segmentation

Reference Without adversarial With adversarial

Adult subjects

Elderly subjects

Dice coefficients

Pipeline in neonatal brain imaging

- Segmentation
- Quantification
- Prediction

Deep learning: direct prediction

Deep learning: direct prediction

Deep learning: multi-source data

Deep learning: multi-source data

Thanks!