Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference Migrate-n version 3.7.2 [April-12-18]

Program started at Tue Jun 1 13:45:40 2021 Program finished at Tue Jun 1 14:16:57 2021

Options

Datatype:	DNA	sequence data
Inheritance scalers in use for Thetas:		
All loci use an inheritance scaler of 1.0		
[The locus with a scaler of 1.0 used as reference]		
Random number seed:	(with internal timer)	2713163115
Start parameters:		
Theta values were generated	from -	guessed values
Theta = 0.01000		
M values were generated	from	guessed values
M-matrix:		
100000.00 [all are the same]		
Connection type matrix:		

Population	1	1	1	1	1	1	1	1	2	2	2	2
1 ElfinCo	*	*	*	*	*	*	*	*	*	*	*	*
1 Bamfiel	*	*	*	*	*	*	*	*	*	*	*	*
1 PortRen	*	*	*	*	*	*	*	*	*	*	*	*
1 WalkOnB	*	*	*	*	*	*	*	*	*	*	*	*
1 BodegaH	*	*	*	*	*	*	*	*	*	*	*	*
1 Davenpo	*	*	*	*	*	*	*	*	*	*	*	*
1 VistaDe	*	*	*	*	*	*	*	*	*	*	*	*
1 HazardR	*	*	*	*	*	*	*	*	*	*	*	*
2 Refugio	*	*	*	*	*	*	*	*	*	*	*	*
2 Carpint	*	*	*	*	*	*	*	*	*	*	*	*

where m = average (average over a group of Thetas or M,

* = free to vary, Thetas are on diagonal

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

			FI	eIII	IIIIIai	y mig	jiale a	naiys	15 01 1	vi. Ca	IIIOII	liarius	s COT Haplotypes	for Evolution 2 :
2 White	Po	*	*	*	*	*	*	* *	*	*	*	*		
2 LaJol	la	*	*	*	*	*	*	* *	*	*	*	*		
Order o	f parameters:													
1	Θ_1							<disp< td=""><td>layed</td><td>!></td><td></td><td></td><td></td><td></td></disp<>	layed	! >				
2	Θ_2^1							<disp< td=""><td>layed</td><td>!></td><td></td><td></td><td></td><td></td></disp<>	layed	! >				
3	N /	2->1						<disp< td=""><td>layed</td><td>!></td><td></td><td></td><td></td><td></td></disp<>	layed	! >				
4	N/I	1->2						<disp< td=""><td>layed</td><td>!></td><td></td><td></td><td></td><td></td></disp<>	layed	! >				
		1-/2												
Mutation	rate among lo	oci:											Mutation	n rate is constant
Analysis	strategy:												В	ayesian inference
Proposal	distributions f	for pa	aramet	er										
Paramet		1				Р	roposa	al						
Theta				Me	etrope		amplin							
М							amplin	•						
					0.		ар	9						
Prior dist	ribution for pa	rame	eter											
Paramet	-		Minimu	ım			Mear	า*	N	/laxir	num		Delta	Bins
Theta	Exp window		.00001			0.0	010000			.000			1.000000	500
М	Exp window		.00010		100		00000					100	000.00000	500
	p	Ū												
Markov o	chain settings:													Long chain
Number	of chains													1
Record	ded steps [a]													1000
Increm	nent (record ev	ery :	x step	[b]										100
Numbe	er of concurre	nt ch	ains (r	epli	cates	s) [c]								3
Visited	l (sampled) pa	ırame	eter va	lue	s [a*l	o*cl								300000
	er of discard tr													1000
		- 1	•		•	,								
Multiple I	Markov chains	s:												
Static	heating schem	ne											4 chains w	rith temperatures
	-										1000	0.00		1.50 1.00
													Swap	ping interval is 1
													•	- -
Print opti	ons:													
Data fi	le:												//mcalifornia	anus_210528.mig
Output	t file:													outfile.txt
•	ior distribution	raw	histog	ıran	n file:									bayesfile
Print d			3											No
	enealogies [oɪ	nlv so	ome fo	r so	ome (data [.]	tvpel:							None
9	J. Journal of Co.	, 5					٠, ٢٥١٠							145110

	Preliminary migrate analysis of M. californianus CO1 haplotypes for Evolution 2 3
1	

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies
1 ElfinCo	1	19
1 Bamfiel	1	23
1 PortRen	1	15
1 WalkOnB	1	16
1 BodegaH	1	7
1 Davenpo	1	17
1 VistaDe	1	19
1 HazardR	1	23
2 Refugio	1	16
2 Carpint	1	19
2 WhitePo	1	11
2 LaJolla	1	8
Total of all populations	1	193

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.08001	0.18001	0.09001	0.03478
1	Θ_2	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01152
1	M _{2->1}	0.0	0.0008	19000.0	26000.0	38000.0	21000.0	18937.1
1	M _{1->2}	44000.0	54000.0	69000.0	82000.0	108000.0	77000.0	76220.1

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Bayesian Analysis: Posterior distribution over all loci

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2282.832882	(1a)
	-2158.052206	(1b)
Harmonic mean	-1886.340945	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	1443/37552	0.03843
Θ_{2}^{1}	7040/37412	0.18817
M^{2}	37516/37516	1.00000
$M_{1->2}^{2->1}$	37492/37492	1.00000
Genealogies	25499/150028	0.16996

MCMC-Autocorrelation and Effective MCMC Sample Size

Autocorrelation	Effective Sampe Size
0.77543	416.88
0.57749	806.46
0.79246	367.72
0.60194	783.24
0.98212	27.08
	0.77543 0.57749 0.79246 0.60194

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very

informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run