# Symplectic singularities reading group

Balázs Elek

October 2, 2015

We follow [1] sections 1.1.,1.2.,1.4. very closely.

### 1 Symplectic Geometry

By a manifold M, we mean a complex algebraic manifold (smooth variety over  $\mathbb{C}$ ). A holomorphic 2-form  $\omega$  on M is *symplectic* if

- $d\omega = 0$ ,
- The map  $\widetilde{\omega}_m: T_mM \to T_m^*M$  given by  $X \mapsto \omega(X, -)$  is an isomorphism for all m.

In this case we say  $(M, \omega)$  is a sympelctic manifold.

**Remark 1.1.** The above conditions are actually equivalent to that  $\omega = \sum_{i=1}^{n} p_i \wedge q_i$  in a local chart (this is the Darboux theorem). Note that unlike Riemannian geometry, there is no local invariant like curvature.

We have implicitly used that  $\mathbb{C}^{2n}$  with coordinates  $q_1, \ldots, q_n, p_1, \ldots, p_n$  and

$$\omega = \sum_{i=1}^{n} dp_i \wedge dq_i$$

is a symplectic vector space, hence a symplectic manifold.

**Proposition 1.2.** Let M be a manifold, then  $T^*M$  has a canonical symplectic form  $\omega$ .

*Proof.* Let  $\pi: T^*M \to M$  be the bundle projection map and  $\pi_*: T(T^*M) \to TM$  its differential. Then at any point  $(m, \alpha) \in T^*M$ ,

$$\pi_{*(m,\alpha)}:T_{(m,\alpha)}(T^*M)\to T_mM$$

is a linear map. Define  $\lambda \in \Omega^1(T^*M)$  by

$$\lambda_{(m,\alpha)}(X) = \alpha(\pi_{*(m,\alpha)}X)).$$

Let  $\omega = d\lambda$ . Exercise: check that  $\omega$  is non-degenerate.

Q.E.D.

#### 2 Poisson Structures

In algebraic geometry, we know  $\mathcal{O}(M)$  is more important than M. So we would like to know what structure does  $\mathcal{O}(M)$  get if  $(M,\omega)$  is symplectic. If  $f,g\in\mathcal{O}(M)$ , then  $df,dg\in\Omega^1(M)$ . Since  $\widetilde{\omega}_m$  is an isomorphism, there exist vector fields  $X_f,X_g$ , called Hamiltonian vector fields for f,g, such that  $\omega(-,X_f)=df,\omega(-,X_g)=dg$  (i.e.  $-df=\iota_{X_f}\omega$ ). These vector fields have the property that

$$\begin{split} L_{X_f}\omega &= (di_{X_f} + i_{X_f}d)\omega \\ &= d(\omega(X_f, -)) \\ &= d(-df) \\ &= 0. \end{split}$$

If a vector field X satisfies  $L_X\omega = 0$ , i.e. if flow along it preserves  $\omega$ , then we say that X is symplectic. So we have a well-defined map  $\mathcal{O}(M) \to \{\text{symplectic vector fields on } M\}$ . Note that if we have two symplectic vector fields X, Y then [X, Y] is symplectic as

$$L_{[X,Y]}\omega = (L_X L_Y - L_Y L_X)\omega = 0 + 0.$$

We may also define

$$\{f,g\} = \omega(X_f, X_g) = dg(X_f) = -df(X_g) = -X_g(f) = X_f(g) \in \mathcal{O}(M).$$

Called the *Poisson bracket* of f and g. We want to prove that the assignment  $f \mapsto X_f$  intertwines the Poisson and Lie brackets, i.e. that

$$X_{\{f,g\}} = [X_f, X_g].$$

Recall that for any two vector fields Y, Z on M, we have

$$[L_Y, i_Z] = i_{[Y,Z]}$$

and for any vector fields Y on M, we have

$$\begin{split} X(\omega(Y,Z)) &= L_X(\omega(Y,Z)) \\ &= L_X(i_Z(i_Y(\omega))) \\ &= (i_Z L_X + i_{[X,Z]})(i_Y(\omega)) \\ &= i_Z L_X(i_Y(\omega)) + \omega(Y,[X,Z]) \\ &= i_Z((i_Y L_X + i_{[X,Y]})(\omega)) + \omega(Y,[X,Z]) \\ &= i_Z(i_Y(L_X(\omega))) + i_Z(i_{[X,Y]}(\omega)) \\ &= (L_X \omega)(Y,Z) + \omega(L_X Y,Z) + \omega(Y,L_X Z) \end{split}$$

In particular, if X is a symplectic vector field, then

$$X(\omega(Y,Z)) = \omega([X,Y],Z) + \omega(Y,[X,Z]).$$

Since Hamiltonian vector fields are symplectic, for any Y,

$$\begin{split} X_f(\omega(X_g,Y)) &= \omega([X_f,X_g],Y) + \omega(X_g,[X_f,Y]) \\ X_f(-dg(Y)) &= \omega([X_f,X_g],Y) - dg([X_f,Y]) \\ -X_f(Y(g)) &= \omega([X_f,X_g],Y) - X_f(Y(g)) + Y(X_f(g)) \\ -Y(X_f(g)) &= \omega([X_f,X_g],Y) \\ -Y(\{f,g\}) &= \omega([X_f,X_g],Y) \\ \omega(X_{\{f,g\}},Y) &= \omega([X_f,X_g],Y) \end{split}$$

And since Y was arbitrary, we conclude that

$$X_{\{f,q\}} = [X_f, X_q].$$

Since (symplectic) vector fields with the Lie bracket [-,-] form a *Lie algebra*, i.e. a vector space with an antisymmetric bilinear bracket satisfying the Jacobi identity, we have defined a Lie algebra structure on  $\mathcal{O}(M)$ . Moreover, since

$${fh,g} = X_q(fh) = fX_q(h) + X_q(f)h = f{h,g} + {f,g}h,$$

the bracket  $\{f, -\}$  is a derivation (it satisfies the Leibniz rule). This algebraic structure is called a *Poisson algebra*.

### 3 The Moment Map

If a function  $f \in \mathcal{O}(M)$  is constant, then since df = 0 and  $\omega$  is nondegenerate,  $X_f = 0$ . Otherwise, however,  $X_f \neq 0$ , and in particular, we have the following exact sequence

$$0 \to \mathbb{C} \to \mathcal{O}(M) \to \{\text{Symplectic vector fields on } M\}.$$

However, the final map may not be surjective. By Cartan's magic formula, we know that

$$L_X(\omega) = (di_X + i_X d)(\omega)$$
$$= d(i_X \omega)$$

which is equal to 0 if and only if  $i_X\omega$  is closed. For Hamiltonian vector fields,

$$i_{X_f}\omega = -df$$

is exact, so we can complete the above sequence to

$$0 \to \mathbb{C} \to \{\text{Symplectic vector fields on } M\} \to H^{0,1}(M) \to 0$$

(hopefully  $H^{0,1}(M)$  is right, in the real case it should be  $H^1_{dR}(M)$ ).

For us, a Lie group G will always be complex. Let

$$g = T_e G$$

be the tangent space to the identity. It is a vector space of dimension  $\dim(G)$ . Using the action of G on itself by left translation, we see that  $\mathfrak{g}$  is isomorphic to  $\mathrm{Lie}(G)$ , the vector space of left-invariant vector fields on G. By this we mean the following: Let  $L_g: G \to G$  denote the map  $h \mapsto gh$ . Then we say that a vector field X is left-invariant if for all  $g, h \in G$ ,

$$(dL_{ah^{-1}})(X_h) = X_a.$$

Exercise: Check that the Lie bracket of left-invariant vector fields is left-invariant. Hence  $\mathfrak g$  is a Lie algebra.

A Lie group action on a manifold is a smooth map

$$G \to \operatorname{Aut}(M)$$

and by differentiating we get

$$\mathfrak{g} \to \{ \text{Vector fields on } M \}.$$

If a Lie group G acts on M preserving  $\omega$ , i.e.

$$G \to \operatorname{Sympl}(M)$$

then

$$\mathfrak{g} \to \{\text{Symplectic vector fields on } M\}.$$

Whenever this map lands inside Hamiltonian vector fields, or, in other words, when we have a lifting



we say that the action of G on  $(M,\omega)$  is Hamiltonian. A choice of a lifting (note that any shift by constants will work too)  $\mu^{\#}:\mathfrak{g}\to\mathcal{O}(M)$  is called a comoment map, and we define the moment map

$$\mu:M\to\mathfrak{g}^*$$

by

$$\mu(m)(X) = (\mu^{\#}(X))(m)$$

for any  $X \in \mathfrak{g}$ . The map  $\mu$  has many wonderful properties, we describe two of them related to our discussion of Poisson structures and moment maps. Consider  $\mathbb{C}[\mathfrak{g}^*]$ . Linear functions on  $\mathfrak{g}^*$  correspond to  $\mathfrak{g}$ , where we have the Lie bracket

$$[-,-]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}.$$
 (1)

We can extend this bracket to  $\mathbb{C}[\mathfrak{g}^*]$  via the Leibniz rule and obtain a Poisson algebra structure on  $\mathbb{C}[\mathfrak{g}^*]$ . Also, G acts on itself by conjugation, which fixes the identity, hence by differentiating the action map

$$(-)^g: G \to G$$
  
 $h \mapsto qhq^{-1}$ 

at the identity, we get

$$Ad_g: \mathfrak{g} \to \mathfrak{g}$$
  
 $h \mapsto ad_q(h)$ 

or, in other words, we get a representation

$$Ad: G \to GL(\mathfrak{g}).$$

We can take the contragradient (dual) representation

$$Ad^*: G \to GL(\mathfrak{q}^*)$$

to get a G-action on g\*, called the coadjoint representation. Now we can state the theorem

**Theorem 3.1** (Kostant). 1. The map

$$\mu^*: \mathbb{C}[\mathfrak{g}^*] \to \mathcal{O}(M)$$

induced by  $\mu$  intertwines the Poisson brackets.

2. If G is connected then  $\mu$  is G-equivariant relative to the coadjoint action on  $\mathfrak{g}^*$ .

*Proof.* 1. It suffices to verify this for linear functions. Let  $X, Y \in \mathfrak{g}$ , we have

$$\begin{split} \{\mu^*X,\mu^*Y\} &= \mu^*[X,Y] \quad \text{ as the lifting } \mathfrak{g} \to \mathcal{O}(M) \text{ is a Lie algebra homomorphism} \\ &= \mu^*\{X,Y\} \end{split}$$
 by (1)

2. Skipped (see [1], Lemma 1.4.2. if interested).

Q.E.D.

## References

[1] Chriss, N.,Ginzburg, V. Representation theory and complex geometry, Birkhäuser, Boston, 1997, x + 495 pp., ISBN 0-8176-3792-3