Verilog project3 b10601002 廖品捷

Github: https://github.com/JamesLiao714/DLD-verilog

Test bench:

```
timescale 1 ns/100ps
//-TestBench-
module alu_test();
    reg (7:0]A;
    reg (7:0]B;
    wire [7:0]out;
    reg (2:0]OP;

alu test(A,B,OP,out);

initial
    begin
    #100
    A = 8'b0; B = 8'b0; OP = 3'b000;
    #600 A = 8'b00000011; B = 8'b00000001; OP = 3'b000;
    #600 A = 8'b00000011; B = 8'b00000001; OP = 3'b001;
    #600 A = 8'b00001011; B = 8'b00000001; OP = 3'b011;
    #600 A = 8'b00001011; B = 8'b00000001; OP = 3'b011;
    #600 A = 8'b00010011; B = 8'b00000001; OP = 3'b100;
    #600 A = 8'b00000011; B = 8'b00000001; OP = 3'b100;
    #600 A = 8'b00000011; B = 8'b00000001; OP = 3'b110;
    #600 A = 8'b00000011; B = 8'b00000001; OP = 3'b111;
    #600 A = 8'b00000011; B = 8'b00000001; OP = 3'b111;
    initial #9000 $finish;
    initial #9000 $finish;
    initial $dumpvars;
    initial begin
    $\frac{\frac{1}{3}}{3}}
    $\frac{\frac{1}{3}}{3}}{3}
    $\frac{1}{3}}
    $\frac{1}{3}}
```

ALU Waveform:

Time	_		1 45		L US	, , , , , , , , , , , , , , , , , , ,	•	4 US		J 43	us /
A[7	:0]	00	07	<u>/</u> 03	0B	03)13	03		10	
B[7	:0]	00	01					Ø8	01		
0P[2	:0]	000		001	010	011	100	101	110	111	
out[7	:0]	00		Ø1	0B	02	EC	FB	04	FF	

Sel	Operation	Description
000	y = 8'b0	Minimum value
001	y = A & B	Bitwise AND
010	$y = A \mid B$	Bitwise OR
011	y = A ^ B	Bitwise exclusive OR
100	y = ~A	Bitwise complement
101	y = A - B	Subtract
110	y = A + B	Add (Assume A and B are unsigned)
111	y = 8'hFF	Maximum value

implementation of \$monitor, \$display and \$time:

ALU Model source code:

```
//ALU model
module alu (
Data_A, // I 8-bit : first input signal
Data_B, // I 8-bit : second input signal
OP_Code, // I 3-bit : operation
Data_Out // I 16-bit : result
);
input [7:0] Data_A, Data_B;
input [2:0] OP_Code;
output [7:0] Data_Out;
reg [7:0] Data_Out;
always@(Data_A or Data_B or OP_Code) begin
case (OP_Code)
    3'b000: Data_Out = 8'b0;
    3'b001: Data_Out = Data_A & Data_B;
    3'b010: Data_Out = Data_A | Data_B;
    3'b011: Data_Out = Data_A ^ Data_B;
    3'b101: Data_Out = Data_A,
    3'b101: Data_Out = Data_A - Data_B;
    3'b110: Data_Out = Data_A - Data_B;
    3'b111: Data_Out = B'hFF;
default : Data_Out = 8'hFF;
default : Data_Out = 16'b0;
endcase
end
endmodule
```