Area Between Curves

		_
5	1	ว
J.		_

Area of region enclosed by a curve and *x* or *y*-axes

Volume of revolution about *x* or *y*-axes

$$A = \int_a^b |y| dx$$
 or $A = \int_a^b |x| dy$

$$V = \int_a^b \pi y^2 dx \text{ or } V = \int_a^b \pi x^2 dy$$

A= SFGDAX -SGGDAX

gruph

Determine the area of the region enclosed by $y=x^2$ and $y=\sqrt{x}$.

Determine the area of the region bounded by $y=x\mathbf{e}^{-x^2}$, y=x+1, x=2, and the y-axis.

Determine the area of the region enclosed by $y=\sin x$, $y=\cos x$, $x=rac{\pi}{2}$, and the y-axis.

- y + 110 = (y-2)2

Determine the area of the region bounded by $x=-y^2+10$ and $x=\left(y-2
ight)^2$.

Volumes of Revolution

5.	1	2
5.	1	2

Area of region enclosed by a curve and *x* or *y*-axes

 $A = \int_a^b |y| dx$ or $A = \int_a^b |x| dy$

Volume of revolution about *x* or *y*-axes

$$V = \int_a^b \pi y^2 dx \text{ or } V = \int_a^b \pi x^2 dy$$

Determine the volume of the solid obtained by rotating the region bounded by $y=x^2-4x+5$, x=1, x=4, and the x-axis about the x-axis.

Determine the volume of the solid obtained by rotating the portion of the region bounded by $y=\sqrt[3]{x}$ and

 $y=rac{x}{4}$ that lies in the first quadrant about the y-axis.

Determine the volume of the solid obtained by rotating the region bounded by $y=x^2-2x$ and y=x about the line y=4.

Determine the volume of the solid obtained by rotating the region bounded by $y=2\sqrt{x-1}$ and y=x-1 about the line x=-1.

