Find Strings

A substring is defined as a contiguous sequence of one or more characters in the string. More information on substrings can be found here.

You are given n strings w[1], w[2],, w[n]. Let S[i] denote the set of all unique substrings of the string w[i]. Let $S = \{S[1] \cup S[2] \cup \ldots S[n]\}$, that is, S is a set of strings that is the union of all substrings in all sets S[1], S[2], S[n]. There will be many queries. For each query you will be given an integer 'k'. Your task is to find the kth element of the **1-indexed** lexicographically ordered set of substrings in the set S. If there is no element S, return **INVALID**.

For example, your strings are w=[abc,cde]. All of the substrings are $S[1]=\{a,b,c,ab,bc,abc\}$ and $S[2]=\{c,d,e,cd,de,cde\}$. Combine the two sets and sort them to get $S=\{a,ab,abc,b,bc,c,cd,cde,d,de,e\}$. So, for instance if k=1, we return 'a'. If k=5, we return 'bc'. If k=20 though, there is not an S[20] so we return INVALID.

Function Description

Complete the *findStrings* function in the editor below. It should return array of strings.

findStrings has the following parameter(s):

- w: an array of strings
- · queries: an array of integers

Input Format

The first line contains an integer n, the number of strings in the array w.

Each of the next n lines consists of a string w[i].

The next line contains an integer q, the number of queries.

Each of the next *q* lines consists of a single integer *k*.

Constraints

$$1 \le n \le 50$$
 $1 \le |w[i]| \le 2000$ $1 \le q \le 500$ $1 \le k \le 10^9$ Each character of $w[i] \in ascii[a-z]$

Output Format

Return an array of q strings where the ith string is the answer to the ith query. If a k is invalid, return "INVALID" for that case.

Sample Input

2

aab

aac

Sample Output

aab

0

INVALID

Explanation

For the sample test case, we have 2 strings "aab" and "aac".

S1 = {"a", "aa", "aab", "ab", "b"} . These are the 5 unique substrings of "aab".

S2 = {"a", "aa", "aac", "ac", "c" } . These are the 5 unique substrings of "aac".

Now, $S = \{S1 \cup S2\} = \{"a", "aa", "aab", "aac", "ab", "ac", "b", "c"\}$. Totally, 8 unique strings are present in the set S.

The lexicographically 3rd smallest string in S is "aab" and the lexicographically 8th smallest string in S is "c". Since there are only 8 distinct substrings, the answer to the last query is "INVALID".