PRÁCTICA 3

3.1 Ejercicios propuestos

3.4.1 Enunciados

- 1. Representar la respuesta en frecuencia del sistema LTI caracterizado tener los siguientes ceros: $c_1 = -1$ y $c_2 = 0.6$; y los siguientes polos: $p_1 = 0.7 + 0.6j$ y $p_2 = 0.7 0.6j$; siendo k = 1.
 - 1.1. Representar su diagrama de polos y ceros.

```
ceros = [-1;0.6];
polos = [0.7+1i*0.6; 0.7-1i*0.6];

zplane(ceros, polos);
title('Sstema LTI descrito por sus polos y ceros');
```


1.2. Representar el módulo de la respuesta en frecuencia del sistema en escala lineal, en el rango $[0, 2\pi)$, con 1024 muestras.

```
ceros = [-1;0.6];
polos = [0.7+1i*0.6; 0.7-1i*0.6];

a=poly(polos);
b=poly(ceros);

[H,w] = freqz(b,a,1024, 'whole');
plot(w,abs(H));
title('Módulo de la respuesta en frecuencia');
```


1.3. Obtener y representar su respuesta al impulso para n=0: N_0 .

```
n = 0: 50;

ceros = [-1;0.6];
polos = [0.7+1i*0.6; 0.7-1i*0.6];

a=poly(polos);
b=poly(ceros);

imp = [1 zeros(1,50)];
h = filter(b,a,imp);
figure;
stem(n,h);
title('Respuesta al impulso');
```


1.4. Obtener y representar su respuesta al escalón para n=0: N_0 .

```
n = 0: 50;

ceros = [-1;0.6];
polos = [0.7+1i*0.6; 0.7-1i*0.6];

a=poly(polos);
b=poly(ceros);

escalon = [1 ones(1,50)];
h = filter(b,a,escalon);

stem(n,h)
title('Respuesta al escalón para n= 0:50');
```


1.5. Obtener la salida cuando la entrada es $x[n] = (-1)^n [u[n] - u[n-41]]$. Represente la entrada y la salida en una misma ventana gráfica para n=0: N_0 .

```
ceros = [-1;0.6];
polos = [0.7+1i*0.6; 0.7-1i*0.6];

a=poly(polos);
b=poly(ceros);

n = 0:41;

x= ((-1).^n).*ones(1,length(n));

subplot(2,1,1)
stem(n,x)
title('x[n]')

y = filter(b,a,x);

subplot(2,1,2)
stem(n,y)
title('y[n]')
```


2. Dado el sistema LTI, descrito su función de sistema:

$$H(z) = \frac{1 + \sigma_1 z^{-1} + z^{-2}}{1 - 2\sigma_2 \cdot \cos(W_1) z^{-1} + \sigma_2^2 z^{-2}}$$

2.1. Obtener y representar la respuesta al impulso en el intervalo $n=0:N_0$.

```
n = 0:50;

r = -2*0.8*cos(3*pi/4);

a = [1, r, 0.8^2];
b = [1, -3/2, 1];

imp = [1 zeros(1,50)];
h = filter(b,a,imp);
figure;
stem(n,h);
title('Respuesta al impulso');
```


2.2. Obtener y representar la respuesta en frecuencia (su módulo en escala logarítmica), en el rango $[0, \pi)$, con 1024 muestras.

```
n = 0:50;

r = -2*0.8*cos(3*pi/4);

a = [1, r, 0.8^2];

b = [1, -3/2, 1];

[H,w] = freqz(b,a,1024);

subplot(2,1,1);

plot(w,abs(H));

title('Módulo de la respuesta en frecuencia');

subplot(2,1,2);

plot(w,20*log10(abs(H)));

title('Módulo de la respuesta en frecuencia escala logarítmica');
```


2.3. Obtener y representar el diagrama de polos y ceros del sistema

```
n = 0:50;

r = -2*0.8*cos(3*pi/4);

a = [1, r, 0.8^2];
b = [1, -3/2, 1];

ceros = roots(b);
polos = roots(a);

zplane(ceros,polos);
title('Diagrama de polos y ceros');
```


2.4. Observando el diagrama de polos y ceros (o la respuesta en frecuencia), proponer una señal de entrada x[n] tal que, la salida correspondiente a dicha entrada tienda a ser nula. (Sugerencia: probar con señales sinusoidales). Represente la señal de entrada y la de salida correspondiente en una misma ventana gráfica.

```
n = 0:50;
r = -2*0.8*cos(3*pi/4);
a = [1, r, 0.8^2];
b = [1, -3/2, 1];
ceros = roots(b);
polos = roots(a);
s = angle(0.75-1i*0.6614);
x = sin(s.*n);
subplot(2,1,1);
stem(n, x);
title('Entrada para generar señal nula');

y = filter(b, a, x);
subplot(2,1,2);
stem(n,y);
title("Salida nula");
```

```
ceros =

0.7500 + 0.6614i

0.7500 - 0.6614i
```


- 3. Ejecutando [b,a]=butter(N, [ω_1 , ω_2], 'stop') se obtienen los coeficientes de un filtro de Butterwoth de orden $2 \cdot N$.
 - 3.1. Represente el diagrama de polos y ceros del sistema. Copie los valores numéricos de los polos y ceros e inclúyalos en la presentación de resultados.

```
[b, a]= butter(3, [0.3, 0.7], 'stop');
ceros=roots(b);
polos=roots(a);
figure; zplane(ceros, polos);
title('Diagrama de ceros y polos');
```



```
>> ceros
ceros =
  -0.0000 + 1.0000i
  -0.0000 - 1.0000i
  0.0000 + 1.0000i
  0.0000 - 1.0000i
  0.0000 + 1.0000i
  0.0000 - 1.0000i
>> polos
polos =
  0.4398 + 0.6347i
  0.4398 - 0.6347i
  -0.4398 + 0.6347i
  -0.4398 - 0.6347i
  0.0000 + 0.3980i
  0.0000 - 0.3980i
```

3.2. Represente, en escala lineal y logarítmica en el rango $[0, 2\pi)$, el módulo de la respuesta en frecuencia del filtro diseñado. ¿Qué tipo de filtrado (paso bajo, paso alto, ...) realiza el filtro?

```
polos=roots(a);

[H, w]=freqz(b, a, 1024, 'whole');

subplot(211);
plot(w, abs(H));
title('Módulo de H(w), respuesta lineal');

subplot(212);
plot(w, 20*log10 (abs(H)));
title('Módulo de H(w), respuesta logarítmica');
```


3.3. Represente la fase de la respuesta en frecuencia del filtro diseñado

```
ceros=roots(b);
[b, a]= butter(3, [0.3, 0.7]);

ceros=roots(b);
polos=roots(a);

[H, w]=freqz(b, a, 1024, 'whole');

plot(w, angle(H));
title('Fase de la respuesta en frecuencia');
```


3.4. Represente, en el intervalo $n=0:N_0$, las siguientes señales de entrada junto a la salida correspondiente (en una misma ventana gráfica usando "subplot", añada títulos o etiquetas para distinguir la señal de entrada y la de salida).

```
3.4.1. x_1[n] = A_0 \cos(2\pi n) u[n - L]
```

```
n = 0: 50;
[b, a] = butter(3, [0.3, 0.7]);
x = 2.*(n>=5);
x1 = cos((2*pi).*n).*x;
y1 = filter(b,a,x1);
subplot(211);
stem(n,x1);
title('Entrada x1[n]');
subplot(212);
stem(n, y1);
title('Salida y1[n]');
```



```
3.4.2. x_2[n] = A_0 \cos(\pi n) u[n - L]
```

```
n = 0: 50;
[b, a]= butter(3, [0.3, 0.7]);

x= 2.*(n>=5);

x2 = cos(pi.*n).*x;
y2 = filter(b,a,x2);

subplot(211);
stem(n,x2);
title('Entrada x2[n]');

subplot(212);
stem(n, y2);
title('Salida y2[n]');
```



```
3.4.3. x_3[n] = A_0 \sin(W_2 n + \varphi) u[n - L].
```

```
n = 0: 50;
[b, a]= butter(3, [0.3, 0.7]);
u=zeros(size(n));
u(n>=5)=1;

x3 = 2.*sin(0.5*pi.*n + pi/4).*u;
y3 = filter(b,a,x3);

subplot(211)
stem(n, x3);
title('Entrada x3[n]');

subplot(212);
stem(n, y3);
title('Salida y3[n]');
```


3.4.4. Justifique los resultados obtenidos en este apartado 2.5.

Tanto en la salida y1 y la salida y2 son señales que se anulan debido a que la entrada x1 y x2 son señales con una pulsación que coincide con la pulsación de uno de los ceros de la respuesta en frecuencia. En cambio, la salida y3 no se anula.

3.4.2 Valores de las constantes

