Azzolini Riccardo 2020-04-21

Calcolo a tableaux – Correttezza

1 Coppie complementari

Definizione: Una coppia di formule $A, \neg A$ si dice **complementare**.

Una coppia complementare di formule non è soddisfacibile: per ogni valutazione $v, v \models A$ se e solo se $v \not\models \neg A$, e viceversa. In particolare, nel caso degli insiemi di letterali, vale il seguente risultato:

Proposizione: Un insieme di letterali è soddisfacibile se e solo se non contiene coppie complementari.

Dimostrazione: Sia Γ un insieme di letterali che non contiene coppie complementari, e sia v la seguente valutazione:

$$\widetilde{\forall} p \in VAR \quad v(p) = \begin{cases} 1 & \text{se } p \in \Gamma \\ 0 & \text{se } p \notin \Gamma \end{cases}$$

Allora, $v \models \Gamma$, perché, considerando una formula (un letterale) $H \in \Gamma$:

- se $H = p \in VAR$, per costruzione di v si ha $v \models p$;
- se invece $H = \neg p, \ p \in VAR$, per ipotesi deve essere $p \notin \Gamma$ (altrimenti Γ conterrebbe la coppia complementare $p, \neg p$), quindi $v \not\models p$, che implica $v \models \neg p$.

Questa proposizione è interessante perché stabilisce una relazione tra una proprietà sintattica, l'esistenza in Γ di coppie complementari, e una proprietà semantica, la sod-disfacibilità di Γ .

2 Rami di un tableau

Definizione: Sia \mathcal{T} un tableau (non necessariamente completo) per un insieme di formule Γ. Un **ramo** di \mathcal{T} è una sequenza $\rho = N_1, \ldots, N_k$ di nodi di \mathcal{T} tali che:

- N_1 è la radice di \mathcal{T} ;
- $\widetilde{\forall} i=1,\ldots,k-1,\; N_{i+1}$ è un successore diretto (figlio) di N_i ;
- N_k è una foglia dell'albero.

In altre parole, un ramo è una sequenza di nodi che vanno dalla radice a una foglia, e che comprende, nell'ordine, tutti i nodi su tale percorso.

3 Rami/tableaux chiusi e aperti

Definizioni:

- Un *ramo* di un tableau è **chiuso** se un nodo appartenente al ramo contiene una coppia complementare.
- Un tableau è chiuso se tutti i suoi rami sono chiusi.
- Un ramo di un tableau è aperto se non è chiuso.
- Un tableau è aperto se non è chiuso, ovvero se ha almeno un ramo aperto.

3.1 Esempi

• Come primo esempio, si considera il seguente tableau (rappresentato come albero), nel quale, per chiarezza, sono mostrati anche i "nomi" dei nodi:

Poiché ci sono rami aperti (in questo caso, tutti i rami sono aperti), il tableau è aperto.

• Un altro esempio è:

Siccome tutte le foglie contengono una coppia complementare, ogni ramo è chiuso, e allora il tableau è complessivamente chiuso.

4 Rapporto fra tableaux e semantica

Teorema (di validità e completezza di T_{CPL}): Un insieme finito di formule Γ è insoddisfacibile se e solo se esiste un tableau completo chiuso per Γ.

Questo è un risultato centrale nell'ambito della logica. In generale, i teoremi di validità e completezza dei calcoli sono i risultati principali per ogni logica, in quanto riducono il problema di verificare una proprietà semantica essenziale a quello di verificare una proprietà sintattica.

Nel caso della logica proposizionale, è comunque possibile ragionare direttamente sulla semantica, dato che la si può descrivere mediante tavole di verità finite. Questa è, però, una caratteristica specifica proprio della logica proposizionale classica: già passando alla logica predicativa (del primo ordine) si perde la possibilità di avere una rappresentazione finita della semantica di una formula. Allora, il teorema di validità e completezza diventa più significativo, in quanto riduce lo studio della semantica, la quale fa appunto riferimento a valutazioni effettivamente infinite, allo studio di oggetti finiti.

4.1 Schema della dimostrazione

Tipicamente, per dimostrarlo, questo teorema viene affrontato separando gli aspetti di validità e di completezza, cioè i due versi del "se e solo se":

- Teorema (di validità o correttezza di T_{CPL}): Se esiste un tableau completo chiuso per Γ , allora Γ è insoddisfacibile.
 - Questo teorema è detto di validità o di correttezza in quanto dimostra che l'esistenza di un certo oggetto sintattico (in questo caso, un tableau completo chiuso per Γ) è effettivamente una "certificazione" della proprietà semantica considerata (che qui è l'insoddisfacibilità).
- Teorema (di completezza di T_{CPL}): Se un insieme finito di formule Γ è insoddisfacibile, allora esiste un tableau completo chiuso per Γ .

In generale, per qualunque logica, il teorema di validità è la parte "facile" da dimostrare (è sufficiente ragionare sulla forma delle regole del calcolo), mentre il teorema di completezza è un risultato "difficile", che richiede dei ragionamenti più articolati. Spesso, per questo motivo, l'intero teorema di validità e completezza (con il "se e solo se") è chiamato semplicemente teorema di completezza.

5 Teorema di validità – Lemma principale

Nel caso dei calcoli a tableaux, il lemma principale per dimostrare il teorema di validità è quello che garantisce che le regole di $T_{\rm CPL}$ preservano la soddisfacibilità:

Lemma: Per ogni (istanza di) regola \mathcal{R} di T_{CPL} , se la premessa di \mathcal{R} è soddisfacibile, allora almeno una delle conclusioni è soddisfacibile.

Dimostrazione: Come esempio, si considera il caso della regola

$$\frac{\Gamma, \neg (A \land B)}{\Gamma, \neg A \mid \Gamma, \neg B} \neg \land$$

Si assume che la premessa sia soddisfacibile, cioè che esista una valutazione v tale che $v \models \Gamma, \neg(A \land B)$. Allora:

Quindi, è dimostrato che v verifica almeno una delle due conclusioni $\Gamma, \neg A$ e $\Gamma, \neg B$. La dimostrazione per le altre regole è analoga.

6 Dimostrazione del teorema di validità

Utilizzando il lemma appena dimostrato, si può provare il teorema di validità (correttezza) di T_{CPL}. Innanzitutto, si ricorda l'enunciato di tale teorema:

Teorema: Se esiste un tableau completo chiuso per Γ , allora Γ è insoddisfacibile.

Dimostrazione: Sia \mathcal{T} un tableau completo chiuso per Γ . Si dimostra che, per ogni nodo N di \mathcal{T} , l'insieme di formule Γ_N associato a tale nodo è insoddisfacibile. Evidentemente, questo significa che anche l'insieme associato alla radice dell'albero, cioè Γ , è insoddisfacibile.

La dimostrazione procede per induzione sull'altezza h(N) di un nodo N nell'albero \mathcal{T} , così definita:

$$h(N) = \begin{cases} 0 & \text{se } N \text{ è una foglia di } \mathcal{T} \\ h(N') + 1 & \text{se } N \text{ ha un solo figlio } N' \\ \max\{h(N'), h(N'')\} + 1 & \text{se } N \text{ ha due figli } N', N'' \end{cases}$$

- Base: h(N) = 0 significa che N è una foglia. Essendo \mathcal{T} completo e chiuso, l'insieme Γ_N contiene una coppia complementare di letterali, quindi è insoddisfacibile.
- Ipotesi induttiva: Per ogni nodo M di \mathcal{T} con $h(M) = k \geq 0$, Γ_M è insoddisfacibile.
- Passo induttivo: Sia N un nodo di \mathcal{T} con h(N) = k + 1. Poiché la sua altezza è maggiore di 0 (dato che $k \geq 0$), sicuramente N non è una foglia, ovvero ha uno o due figli, a seconda che la regola \mathcal{R} applicata a Γ_N nella costruzione del tableau sia una α -regola o una β -regola.

In ogni caso, per definizione, l'altezza dei figli di N è minore di h(N) (cioè $\leq k$), quindi si può applicare l'ipotesi induttiva, con la quale si deduce che Γ_M è insoddisfacibile per ogni figlio M di N.

Ma gli insiemi di formule associati ai figli di N sono le conclusioni dell'applicazione di \mathcal{R} . Allora, per il lemma dimostrato in precedenza, anche la premessa della regola, ovvero Γ_N , è insoddisfacibile (se non lo fosse, allora dovrebbe essere soddisfacibile almeno una delle conclusioni, al contrario di quanto afferma l'ipotesi induttiva).

¹Questa è la definizione convenzionale dell'altezza di un nodo in un albero.