Sl. No. :

	. w 3	TAT	A TIA	10
Register Number				

2018

MECHANICAL AND AUTOMOBILE ENGINEERING (Diploma Standard)

Time Allowed: 3 Hours]

[Maximum Marks: 300

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

1. The applicant will be supplied with Question Booklet 15 minutes before commencement of the examination.

2. This Question Booklet contains 200 questions. Prior to attempting to answer the candidates are requested to check whether all the questions are there in series and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed it shall be reported to the Invigilator within first 10 minutes and get it replaced with a complete Question Booklet. If any defect is noticed in the Question Booklet after the commencement of examination it will not be replaced.

3. Answer all questions. All questions carry equal marks.

4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.

5. An answer sheet will be supplied to you, separately by the Room Invigilator to mark the answers.

6. You will also encode your Question Booklet Number with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, action will be taken as per commission's notification.

7. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.

8. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Blue or Black ink Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

9. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the time of examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.

10. The sheet before the last page of the Question Booklet can be used for Rough Work.

11. Do not tick-mark or mark the answers in the Question Booklet.

12. Applicants have to write and shade the total number of answer fields left blank on the boxes provided at side 2 of OMR Answer Sheet. An extra time of 5 minutes will be given to specify the number of answer fields left blank.

13. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.

2000158

- The process used for relieving the internal stresses in the metal and for improving 1. machinability of steel is (A) normalising annealing (C) spheroidising (D) case hardening A steel with 0.8% carbon is known as 2.
- - eutectoid steel
 - (B) hyper eutectoid steel
 - (C) hypo eutectoid steel
 - none of the above (D)
- Mild steel belongs to the following category 3.
 - low carbon steel
 - (B) medium carbon steel
 - (C) high carbon steel
 - (D) alloy steel
- A cold chisel is made of 4.
 - (A) Mild steel
 - (B) Cast iron
 - (C) H.S.S.
 - High carbon steel
- The property of material which allows it to be drawn into a smaller section is called 5.
 - (A) Elasticity
 - Drawability (B)
 - (C) Plasticity
 - Ductility

- For welding heavy parts such as rails, broken machines frames, rebuilding of large gears, 6. the welding process used generally is
 - (A) Resistance welding
 - Gas welding (B)

- (D) Spot welding .
- Which of the following operation is first performed? 7.
 - **Tapping**

(B) Boring

Drilling

- (D) Spot facing
- 8. Which one of the following is a natural abrasives?
 - (A) Silicon carbide

Boran carbide (B)

(C) Aluminium oxide

- Diamond
- The cutting edge of a standard twist drill are called 9.
 - (A) Flutes

(B) Wedges

- (D) Flanks
- In resistance welding, the heat generated is given by 10.
 - (A) $H = \frac{I^2 \times R}{T}$

(B) $H = \frac{I^2 \times T}{R}$

$$H = I^2 \times R \times T$$

(D)
$$H = \frac{R \times T}{I^2}$$

where

H =Heat generated

R =Resistance of metal being welded

T = Duration of current flow

I = Current in amperes through weld

11. Compression ratio in diesel engine is of the order of				
	(A)	5 – 7	(B)	7 – 10
	(C)	10 – 12	(B)	14 – 20
12.	Dyna	amic viscosity has the dimensions as		
	(A)	MLT ⁻²	(35)	$\mathrm{ML^{-1}T^{-1}}$
	(C)	$\mathrm{ML^{-1}T^{-2}}$	(D)	$ML^{-1}T^{-1}$ $M^{-1}L^{-1}T^{-1}$
13.	The	soap bubble (or) falling drops of wate	r acquire	e spherical shape because of
	(A)	Cohesion	(B)	Adhesion
	(C)	Viscosity	40)	Surface tension
14.	The	constant volume cycle is also called a	s	
	(A)	Carnot cycle	(B)	Joule cycle
	100	Otto cycle	(D)	Diesel cycle
15.	A flo	w is said to be laminar when		
	(A)	The fluid particles moves in a zig z	ag mann	er
	(B)	Reynolds number is high		
	VE	Fluid particles move in layers		
	(D)	Vanes directly with distance		
16.	In M	PFI engine, fuel is injected in the por	t during	
	W	the suction stroke	(B)	the beginning of compression stroke
	(C)	the end of compression stroke	(D)	the power stroke
17.	Inac	catalytic convertor, the catalyst Platic	num and	Palladium are used to oxidise
	(A)	CO	(B)	CO, NO _x

(C)

HC, NO_x

CO, HC

18.	The fi	e firing order is the		
	(A) ·	sequence in which the cylinders are	number	red
	DY.	sequence in which the cylinders deliv	ver thei	r power strokes
	(C)	sequence in which the valves closes		
	(D)	sequence in which the valves open		
19.	A the	rmistor used in an alternator regulato	or is to	
,	(A)	control maximum voltage	2	
	(B)	control maximum current		
	(C)	control maximum voltage and curren	nt	
	D	compensate for temperature change		
20.	The c	olour of positive plate of lead acid batt	tery is	
	(4)	Brown	(B)	Grey
•	(C)	White	(D)	Black
21.	A spa	rk plug having a longer path of heat t	ravel is	s called as
	VIS .	Hot plug		
	(B)	Cold plug		
	(C)	Spark plug with resistor		
	(D)	Spark plug centre electrode		
22.	What	is the purpose of a condenser in a bat	ttery co	il ignition system?
	(A)	To safeguard the primary circuit		
	(B)	To safeguard the secondary circuit		
	(C)	To safeguard the cam		
	101	To safeguard the breaker points		
23.	In mo	odern vehicles, the headlight dimming	switch	is mounted on the
	45	steering column	(B)	dash board
	(C)	flour board	(D)	side panel
•				
	3 5 4 /4 0			

4				
24.	Whic	ch one of the following is used in	trucks?	
	(A)	Semi-floating rear axle		
	D	Fully-floating rear axle		
	(C)	Three-quarter floating rear axle	e	
	(D)	Non-floating rear axle		
25.	Whic	th one of the following is used to 1	reverse the d	lirection of rotation in a gearbox?
	(A)	Main shaft	(B)	Primary drive
	(C)	Lay shaft	(B)	Idler gear
26.	By u	sing synchronizing device, the tw	o involved a	djacent gears have their speeds
	(A)	increased	(B)	reduced
	198	equalized	(D)	unequalized
27.	The p	ourpose as a recirculating ball typ	pe steering g	gear box is to reduce the
	4	operating friction	(B)	operating cost
	(C)	toe-out during turns	(D)	number
	× 2			
28.	Trea	d distortion is least on	— tyres.	
	4	radial ply tyres	(B)	cross ply tyres
	(C)	cross ply belted tyres	(D)	bias ply tyres
29.	Whic	h one of the following is NOT an	effect of whe	eel lock?
	(A)	reduced steerability		
	(B)	swings around		
	(C)	results in flat spots on tyre		
	100	increased tread life		
30.	Late	ral bending of the frame side men	nbers may b	e caused on account of
	(A)	weight of passengers	437	side wind
	(C)	engine torque	(D)	braking torque

31.							
	gear to rotate						
	(A)	one time		two times			
	(C)	three times	(D)	four times			
32.	Whie	h one of the following is not a part of a	car ch	assis?			
	(A)	Wheels	(B)	Front axle			
	(C)	Steering system	(2)	Trunk			
33.	The f	rame may get distorted to a parallelogr	am sł	nape due to ————			
	(A)	Weight of the vehicle	(B)	Weight of the passengers			
	(C)	Cornering force	Diges	Impact with road obstacle			
34.	Aerod	lynamic lift force is influenced by					
Pressure difference between lower and upper regions of a car							
	(B)	Flow over many exterior components	of the	car			
	(C)	Pressure difference between frontal a	nd rea	ar regions of a car			
	(D)	Internal flow through the car					
35.	In hea	avy commercial vehicle, the load on the	body	is supported by			
	(A)	Suspension system	(B)	Axles			
	10	Chassis frame	(D)	Tyres			
36.	The c	entral gear of an epicyclic gear set is ca	alled a				
	(A)	Ring gear					
	P	Sun gear					
	(C)	Planet gear					
	(D)	None of these					

01.	III G	62-Diffing of counter boaring	cycle, the	e ieuce	er K refers to "
	(A)	Distance from I to R level		(B)	Dwell time
	(C)	Feed rate		(B)	No. of repeats
	~				
38.	Мсо	des in CNC par programs are			
	(1)	Switching functions			
	(B)	Measurement functions			
	(C)	Preparatory functions			
	(D)	Compensation functions			
39.	GUI	is the acronym for			
	(A)	Graphical Universal Interfa	ce		
	(B)	Graphical Unique Interaction	on		
	40	Graphical User Interface	4		
	(D)	Graphical Unique Interface			
10.	Dwel	l is the time			
	45	For which the contact break	er points	remai	in closed
,	(B)	For which the point remain	open		
	(C)	Time during which intet and	l exhaust	valve	s are open
	(D)	None of the above			
11.	Merc	ury does not wet glass. This is	due to pr	ropert	ty of liquid known as
	(A)	Adhesion		(B)	Cohesion
	101	Surface tension		(D)	Viscosity
12.	Bin c	ards are used for —	in indust	ries	
	(A)	Machine Loading		(25)	Stores
	(C)	Accounts		(D)	Inventory control

43.	The.l	The lower age limit for driving motor vehicles					
	(A).	16 years (2) 1	8 years				
	(C)	21 years (D) N	lo age limit				
44.	The f	fuel cost in road transport costing is					
	(A)	Fixed cost R	unning cost				
×	(C)	Capital cost (D) In	nterest cost				
45.	Traff	fficators are light signals used for					
	(A)	Heavy traffic					
	(B)	Light traffic					
	(C)	Reversing the car in traffic					
	(00)	Indicating the direction in which the vehicle is	sturning				
46.	A pat	athline describes					
	(A)	The velocity direction at all points on the line					
	·(B)	The path followed by the particles in a flow					
	40)	The path over a period of times of a single par	ticle that has passed out at a point				
	(D)	The instantaneous position of all particles that	t have passed a point				
47.	Whic	ich one of the following material is commonly use	ed for crane hooks?				
	(A)	Cast iron					
	95	Wrought iron					
	(C)	Mild steel					
	(D)	High speed steel					
48.	Conta	tact breaker points used in ignition system are g	enerally made of				
	(A)	Plastic (B) C	opper				
	401	Tungsten (D) S	teel				

49.	The market price of a product is Rs. 2/unit. To make, we need a fixed cost of Rs. 16,000/- and variable cost of Rs. 10/unit. Find the break even point.						
	(A)	1000	(B)	1500			
	مری	2000	(D)	2500			
50.		h ISO stands for 'Quality Manage ces standard'	ement and	quality system elements – Guidelines for			
	(A)	ISO 9001	(B)	ISO 9002			
	(C)	ISO 9003	0	ISO 9004			
51.	The I	Father of Industrial Engineering a	nd Manage	ement is			
	(A)	Adam Smith	(B)	James Watt			
	(C)	Henry L. Gantt		Frederic Taylor			
52.	The r	notivational needs according to Hy	giene theo	ry are			
	(A)	Salary	(B)	Security			
i	(C)	Status		All (A), (B) and (C)			
53.	year. of inv	It is found that cost of placing an	order is R se price is	terial for producing a particular item per s. 50 and cost of carrying inventory is 20% Rs. 10 per kg. Determine the optimum lot 1500 kg/order			
	(A)	500 kg/order	(D)	100 kg/order			
	(50)	500 kg/order	(1)	100 kg/order			
54.	Paret	to principle advocates					
	(A)	60–40 rule	(B)	20–80 rule			
	407	8020 rule	(D)	40–60 rule			
55.	What	is the total cost in break even ana	llysis?				
	(A)	Fixed Cost	(B)	Variable Cost			
	40	Fixed Cost + Variable Cost	(D)	Fixed Cost + Variable Cost + Overheads			
Ω			11	MVIMA/18			

56. In two handed process chart, which symbol denotes hold an object?				
	(A)	Inspection	(3)	Storage .
	(C)	Delay	(D)	Operation
57.	The	different types of movement in flow	diagram a	are noted by different
	(A)	Thickness	. (B)	Symbols
	4	Colours	(D)	Numberings
58.	The	symbol below used in method study	denotes	
		D		
	(A)	Operation	(B)	Inspection
	LOP	Delay	(D)	Storage
59.	Arra	nge the steps involved in method st	tudy proced	dure in Ascending order.
	i.	EXAMINE		
	ii.	DEVELOP		
	iii.	RECORD		
	iv.	SELECT		
	(A)	ii, i, iv, iii	(2)	iv, iii, i, ii
	(C)	i, ii, iii, iv	(D)	iii, iv, ii, i
60.		work measurement, which one for	ocuses on	recording of delays, interruptions and
	(1.1)	Production study	(B)	Time study
	(C)	Ratio delay study	(D)	Analytical estimating
61.		time .		% and Standard Rating = 100%. Calculate
	((())	1.2 min	(B)	1.5 min
*	(C)	2.1 min	(D)	2.4 min
MVII	VIA/18	3	19	0

62.	Che	mical reaction between finely divided aluminium and iron oxide takes place in
	(A)	Oxy Acetylene Welding
	(B)	Spot Welding
	(C)	Percussion Welding
		Thermit Welding
63.	How	can you feed the work piece in up milling process?
		against the rotating cutter
	(B)	at angle of 60° to the cutter
	(C)	in the direction of the cutter
	(D)	at the right angle to the cutter
64.	In a	shomen the metal is seen at 1
04.	in a s	shaper, the metal is removed during
	(D)	forward stroke
	(B)	return stroke
	(C)	both the forward and return stroke
	(D)	neither the forward stroke nor return stroke
65.	The h	ottles from thermoplastic material are made by
	(A)	Compression moulding
	(B)	Injection moulding
	(L)	Blow moulding
	(D)	Extrusion moulding
	(1)	The dotter modified
66.	A cas	ting defect which results in general enlargement of casting is known as

(A)

(D)

Shift

Swell

Sand wash

Blow hole

67. One Horse power is equal to the power used to lift — of for a distance of one meter in one second

- (A) 25 kg
- 75 kg

- (B) 50 kg
- (D) 100 kg

68. The property which opposes the establishment of magnetic flux in it is called as

- (A) Magneto motive force
- (B) Magnetic flux density

(2) Reluctance

(D) Magnetic flux

69. Find the total resistance in this circuit

70. Ohm's law states that V =

- (A) I/R
- (B) I R
- IR
- (D) I + R

Where

V = voltage

R = Resistance

I = Current

71. The Electrical potential is defined by

- (B) Work done / Second
- (C) Work done / Volt
- (D) Work done / Resistance

72.	Consider the	following	assumptions in	theory	of bending
-----	--------------	-----------	----------------	--------	------------

- 1. The material of the beam is perfectly homogeneous throughout.
- 2. The stress induced is not proportional to the strain
- 3. The loads are applied in the plane of bending. Which of the above statements are true?
- (A) 1 only

(a) 1 and 3

(C) 2 only

(D) 2 and 3

73. A solid circular shaft transmits 22 kW power at 200 rpm. What is the torque in Nm?

(A) 400

(B) 700

(C) 900

1050

 $\sqrt{M^2+T}$

(B) $M^2 + T^2$

(C) $\sqrt{M^2-T^2}$

(D) $\frac{M^2 + T^2}{2}$

75. In laminated spring, the load at which the plates become straight is called as

(A) Working load

(B) Safe load

(C) Dead load

Proof load

15

(A) 2 kW

(B) 4 kW

(C) 60 kW

(D) 120 kW

77. The critical point of water is

- 221.297 bar and 374.15°C
- (B) 101.325 bar and 374.15°C
- (C) 230.297 bar and 100°C
- (D) 101.325 bar and 100°C

78.	In a vapour compression refrigeration system, the function of a condenser is						
	(A) to convert high pressure liquid refrigerant into high pressure vapour refrigera						
	to convert high pressure vapour refrigerant into high pressure liquid refrig						
	(C) to convert low pressure liquid refrigerant into low pressure vapour refrigera						
	(D)			nto low pressure liquid refrigerant			
79.	Find	out the name of the cycle based on	which the	steam turbine works			
	(A)	Diesel cycle	(B)	Dual cycle			
	(C)	Otto cycle	(D)	Rankine cycle			
	(-)						
80.	The f	uel used in a pressurised water rea	actor is				
00.	(A)	Radium	(B)	Thorium			
	(A) (C)	Lead	401	Enriched uranium			
	(0)	Dou					
		, , , , , , , , , , , , , , , , , , , ,	- :lac	4him 0?			
81.							
	1.	The blades are symmetrical		the inch washing blodge			
	2.						
	3.	The steam impinges on the bucket with kinetic energy					
	(A)	1 only					
	(B)	1 and 2					
	(C)	2 and 3					
	D	2 only					
82.	In M	IS Excel, keyboard short cut for cha	art creation	n is			
	4	F 11	(B)	F 12			
	(C)	F 10	(D)	F 9			
83.	In M	IS Excel, making No. of cells into o	ne is calle	d			
	(A)	Stretching	. 4	Merging			
	(C)	Tracking	(D)	Mixing			

84. A definite area or space where some thermodynamic process takes place is known as

- (B) Thermodynamic cycle
- (C) Thermodynamic process
- (D) Thermodynamic law

85. What is the formula to find out theoretical discharge through a venturimeter?

 a_1 – area of Cross section of pipe

 a_2 – area of cross section of venturi

h – difference in head

(A)
$$\frac{\sqrt{{a_1}^2 - {a_2}^2}}{a_1 \cdot a_2} \sqrt{2gh}$$

(B)
$$\frac{\sqrt{{a_1}^2 - {a_2}^2}}{a_1 a_2} + \sqrt{2gh}$$

(C)
$$\frac{a_1 a_2}{\sqrt{a_1^2 - a_2^2}} + \sqrt{2gh}$$

$$\frac{a_{1} a_{2}}{\sqrt{{a_{1}}^{2} - {a_{2}}^{2}}} \sqrt{2gh}$$

86. Surface tension is expressed in

N/m

(B) N/m^2

(C) Nm

(D) N

87. Which of the following statements are true about Kaplan turbine?

- 1. These are low head turbine
- 2. Blades are adjustable
- 3. It is a tangential flow type turbine
- (A) 1 only

(b) 1 and

17

(C) 3 only

(D) 1, 2 and 3

ASS" part classification and cod	(B)	Cleaning Priming
ASS" part classification and cod	ding e	Priming
ASS" part classification and cod	ding e	
	ming 5	ystem Ninth and tenth digits represents
nape .	(B)	Shape elements
al code	Dy	Tolerance codes
— is a 3D object consists of s	set of	points together with the edges connecting
		a supplied that suggest confidenting
ame modeling		
frame modeling		
ame modeling		
frame modeling		
ndards, GKS stands for		
ric Kernal System		
s Kernal System		
ric Kernal Standard		
s Kernal Standard		
design attribute in parts classi	ificati	on and coding system.
on sequence		
to diameter ratio		
finish		
ze .		
	frame modeling ame modeling ame modeling frame modeling Indards, GKS stands for Indards System Index Kernal System Index Kernal Standard Index Kernal Standard Index Kernal Standard	— is a 3D object consists of set of ame modeling frame modeling frame modeling frame modeling frame modeling frame modeling frame skernal System as Kernal System aric Kernal Standard as Kernal Standard design attribute in parts classification sequence to diameter ratio finish

93.	When the length of the journal is equal to the diameter of the journal, then the bearing is said to be a					
	(A)	Short bearing				
	(B)	Long bearing				
	(C)	Medium bearing				
	(3)	Square bearing				
94.	Ina	a full journal bearings, the angle of contact of the	e bearing with the journal is			
	(A)	120° (B)	180°			
	(C)	270°	360°			
95.	18–4	-4–1 High Speed steel contains				
	(A)	18% chromium, 4% tungston and 1% vanadiu	um			
	(B)	18% vanadium, 4% tungston and 1% chromit				
	400	18% tungston, 4% chromium and 1% vanadiu	um			
	(D)	8% tungston, 14% chromium and 1% vanadiu	ım			
96.	The a	e ability of a material to resist deformation unde	r stress is called			
	(A)	Strength (B)	Ductility			
	(C)	Malleability	Stiffness			
97.	Acco	ording to Indian Standard specification, 100 H6	g5 means basic size is 100 mm and			
	(1)	Tolerance grade for the hole is 6 and for shaf	t is 5			
	(B)	Tolerance grade for the shaft is 6 and for hole	e is 5			
	(C)	Tolerance grade for the shaft is 4 to 8 and for	the hole is 3 to 6			
	(D)	Tolerance grade for the hole is 4 to 8 and for	the shaft is 3 to 7			

(C) $\frac{PE}{Al}$

(D) $\frac{PA}{lE}$

99. Babbilt metal is a

- (A) lead base alloy
- (B) copper base alloy

(D) cadmium base alloy

100. Rankine's theory is used for

- (A) ductile materials
- (B) elastic materials
- (C) plastic materials

101. The ratio of the ultimate stress to the design stress is known as

Factor of safety

- (B) Elastic limit
- (C) Bulk modulus
- (D) Youngs modulus

102. The ability of the material by which it can be flattened into thin sheets by hammering or rolling is known as

- (A) plasticity
- (B) elasticity

(D) ductility

Work pieces which are heavy, irregular, unsymmetrical or bulky can be conveniently held 103. and machined using Jig boring machine (A) (B) Drilling machine Horizontal boring machine (D) Plain milling machine The following operation are possible on vertical boring machine 104. Machines a cylindrical surface and turning a flat surface (A) Cutting off and rearing operation for downward movement of the saddle (B) Machines flat surface and turning cylindrical surface Taper boring and taper turning operation by down feed movement of the tool head (D) 105. does not influence wheel wander. (A) excessive caster (B) loose steering linkages (C) worn steering gears excessive side thrust In arc welding processes, penetrates is least for 106. Direct current reverse polarity (B) Direct current straight polarity (C) Direct Current (D) Alternative current When large number of components are machined from a bar on a automatic machine, the bar 107. is held in (A) magnetic chuck collect chuck (C) four jaw chuck (D) three jaw chuck

108. The knocking tendency in spark ignition engines may be decreased by

- (A) controlling the air-fuel mixture
- (B) controlling the ignition timing

reducing the compression ratio

(D) increasing the compression ratio

109. A low specific speed Francis turbine is —

(A) axial flow turbine

(B) tangential flow turbine

(C) mixed flow turbine

radial flow turbine

110. The dimensionless specific speed of a centrifugal pump is

(A) $\frac{N\sqrt{P}}{H^{3/4}}$

(B) $\frac{N\sqrt{Q}}{H^{5/4}}$

 $\frac{N\sqrt{Q}}{(gH)^{3/4}}$

(D) $\frac{N\sqrt{Q}}{H^{3/4}}$

111. A series of operations, which takes place in a certain order and restore the initial condition is known as

(A) reversible cycle

(B) irreversible cycle

thermodynamic cycle

(D) thermodynamic system

112. Air standard Otto cycle efficiency is expressed as

(A) $1 - \left(\frac{1}{R}\right)^{\frac{\gamma-1}{\gamma}}$

(B) $1 - \left(\frac{1}{R}\right)^{\frac{\gamma+1}{\gamma}}$

(C) $\left(\frac{1}{R}\right)^{\frac{1}{\gamma-1}}$

 $1 - \left(\frac{1}{R}\right)^{\gamma - 1}$

 $\gamma = \frac{C_P}{C_V},$

R =Compression ratio.

113. Super chargers connected in SI engines will increase				
	(A)	pressure of air	(B)	pressure of fuel
	100	pressure of air-fuel mixture	(D)	temperature of air-fuel mixture
114.	The d	lirection of air-flow in a Solex carburet	or is	
	(A)	up-draft	(25)	down draft
	(C)	semi-down draft	(D)	side draft
115.	A the	rmostat valve in a water cooling system	n gene	erally allows water to flow just above
	(A)	50°C	(B)	55°C
	(C)	60°C	(3)	80°C
	•			
116.	In a 4	-stroke IC engine, how many revolution	ns of c	crank shaft produces power in each cycle?
	(A)	One	(0)	Two
	(C)	Three	(D).	Four
117.	In a C	ERDI diesel engine, the function of com-	mon r	ail is to
	(A)	collect the excess fuel	(B)	pump the fuel
	(C)	inject the fuel	(2)	store the fuel and maintain its pressure
	•			
118.	The ve	olume that the piston displaces as it me	oves f	rom BDC to TDC is the
	(A)	Clearance volume	(B)	Cylinder volume
	(C)	Piston volume	Diff.	Stroke volume
119.	The de	evice that controls the amount of air en	terin	g the spark-ignition engines is the
	(A)	Exhaust manifold	B	Throttle valve
	(C)	Air filter	(D)	Intake manifold

120.	O. Rotation of the reluctor							
	4	moves a magnetic field through the pi	ckup	coil				
	(B)	trips the contacts in the distributor						
	(C)	controls the secondary voltage						
	(D)	limits vacuum advance						
121.	In the		m, an	actuator motor (or) vacuum servo connect				
	(A)	transmission linkage	(D)	throttle linkage				
	(C)	speedometer cable	(D)	brake cable				
122.	In the	e working principle of a generator the d	lirecti	on of flow of current is determined by				
	(A)	Ohm's law						
	(B)	Kirchoff's law						
	VOY-	Fleming's left hand rule						
	(D)	Fleming's right hand rule						
123.	A disc	charged lead-acid battery has		on its plates.				
	(A)	PbO_2	0	PbSO ₄				
	(C)	Pb	(D)	Pb_3O_4				
124.	The g	ap between the electrodes in a spark p	lus is	approximately				
	(A)	0.2 mm	(B)	1.5 mm				
	45	0.8 mm	(D)	0.1 mm				
125.	The s	mallest gears in the differential caring	are					
	4	planet gears	(B)	sun gears				
	(C)	side gears	(D)	annulus				

126.	Air can enter into the hydraulic brake system because of								
	(A)	self adjusters not working							
	(B)	failure of one section of hydraulic syst	em						
	(C)	(C) linings contaminated with oil or brake fluid							
	0	low brake oil level in the reservoir of r	naste	er cylinder					
127.	An e	picyclic gear box includes the following e	excep	t					
	(A)	a sun gear	P	a worm gear					
	(C)	a ring gear	(D)	a planet-pinion carrier					
128.	<u> </u>	is termed as the interior room	f of a	passenger car.					
	(A)	Firewall	(B)	Tunnel					
	JEN P	Headliner	(D)	Parcel tray					
129.	Choo	ose the incorrect statement with respect	to co	nstruction of a moned.					
140.	(A) The frame itself acts as a vehicle body								
	Fuel tank is not an integral part of the frame								
	(C) Components are mounted on the body								
	(D)	Bench type seat for passenger and pill							
130.	Pick	the suitable choice for the given stateme	ent.						
	State	ement: The rear position is joined to t easy access between the two rea		ain vehicle body by covered pilot allowing					
	(A)	Micro bus							
	(B)	Double deck bus							
	LOP	Articulated bus							
	(D)	Two level single deck bus							
131.	Whic	ch one of the following vehicle is not an I	LCV?						
	(A)	Isuzu D-max	(B)	Mahindra Jeeto					
	C	Tata Indigo	(D)	Ashok Leyland Dost					

132.	are called ———— 'G' functions						
	(A)	Fashion Modal					
	(C)	Digital (D) Miscellaneous					
133.	Prim	itive instances are combined using Boolean set operations to create complex objects is					
•	Carlo Carlo	Constructive solid geometry					
	(B)	Boundary representation					
	(C)	All of the above					
	(D)	None of the above					
134.		software that controls computer's work flow, organize its data and perform house ing function is					
	(4.1)	Operating software					
	(B)	Graphics software					
	(C)	Application software					
	(D)	Programming software					
135.	In th	e CNC part program, the function G01 represents					
	(A)	Rapid Positioning					
	(3)	Linear Interpolation					
	(C)	Circular Interpolation CW					
	(D)	Circular Interpolation CCW					
136.		AD, the representation by which the primitive instances are combined using Boolean set ations to create complex objects is known as					
	(A)	Spatial enumeration					
	COT!	Constructive solid geometry					
	(C)	Cell decomposition					
	(D)	Boundary representation					
MVI	MA/18	26					

137	Gant	t chart is used for		
	(A)	Inventory control	(B)	Material handling
	100	Production schedule	(D)	Routing
138.	In ma	aterials management, when you order t	he eco	onomic ordering quantity Q, then
	(A)	Ordering cost will be more		
	(B)	Carrying cost will be more		
	(C)	Total cost will be more		
		Total cost will be minimum		
139.		ding to FW Taylor's principles of man	ageme	ent which among the following factors will
	(A)	Participative management		
	(B)	Job enrichment		
	(C)	Good personnel policy		
	0	Unfair wages and salary		
140.	Choos	se the correct one among the following	indica	tors as a sign of motivation
	(A)	Low output		
	(B)	Increase in accident rate		
	(C)	Indiscipline		
	(3)	Sense of belonging to the organisation	ı	
141.	'Make	e' (or) 'Buy' Decision is related with		
	(A)	Demand forecasting	(B)	Routing
	(C)	Scheduling	(2)	Product planning
142.	Ident	ify which one of the following functions	of PI	PC department is not under planning
	(A)	Demand forecasting	(B)	Routing
	(C)	Scheduling	1	Despatching
U		27		MVIMA/18 ITurn over

143.		magnetic Alpha iron erature on heating.	transforms	to pa	ramagnetic alpha	iron at	the	following
	(A)	723°C		(2)	777°C			
	(C)	910°C		(D)	1400°C			
144.	The u	unit of conductance is —	and :	it is de	noted by symbol —	.		
	(A)	Henry, C		(B)	Farad, G			
	(C)	Ohms, C		(3)	Siemen, G			
145.	Unit	of energy is						
	(1)	Joule		(B)	Newton			
	(C)	Watt		(D)	Henry			
146.	The d	ry cell is a						
•	4.5	Primary cell		(B)	Secondary cell			
	(C)	Voltaic cell		(D)	Polarised cell			
147.	Four	capacitors each of 50 μF	are connect	ed in p	arallel. The equiva	lent capac	itanc	e will be
	(A)	40 μF		(B)	80 μF			
	(C)	120 μF		9	160 μF			
148.	The p	ourpose of using laminati	ons in the ar	mature	e core of a DC gener	cator is		
		to increase the resistan						
	(B)	to reduce the current						
	(Ċ)	to increase the e.m.f.						
	0	to reduce eddy current l	loss					
149.		n one of the following is lad a hole?	known as the	opera	tion of smoothing a	nd squari	ng th	e surface
	(A)	Counter sinking		(B)	Counter boring			
	(C)	Trepanning		0	Spot facing	,		
MVII	MA/18		2:	8				t

- 150. ABC analysis deals with

 (A) Analysis of process chart

 (B) Flow of material

 (C) Ordering schedule of job
- 151. Malcolm Baldrige National Quality Award (MBNQA) is for
 - Total Quality Management
 - (B) Total Quality Control
 - (C) International Standard Organization

Controlling inventory cost

- (D) Total Productive Maintenance
- 152. Which one of the following is the objective of ISO-9000 family of quality management?
 - (A) Employee Satisfaction
 - (B) Skill enhancement
 - Customer satisfaction
 - (D) Environmental issues
- 153. What is the correct sequence of operations in production planning control?
 - Routing Scheduling Dispatching Controlling
 - (B) Scheduling Routing Dispatching Controlling
 - (C) Dispatching Routing Scheduling Controlling
 - (D) Routing Scheduling Controlling Dispatching
- 154. In cumulative type of stop watch time study, the hands of stop watch returned to zero at
 - (A) End of every element
 - End of every complete process
 - (C) Half the element
 - (D) Half the process

155.	Which	n one of the following is the mechanical	facto	r of accident?
	(A)	Long Working Hours	•	
	(B)	Poor Lighting		
	(C)	High Temperature		
	D	Ungaurged Moving Parts		
156.	Which	h of principle of plant layout reduces th	e pro	duction cost?
	(A)	Principle of Integration		
		Principle of Movement		
	(C)	Principle of Flow		
	(D)	Principle of Cubic Space Usage		
157.	Cold	working of steel is defined as working		
	(A)	at its recrystallisation temperature		
	(B)	above its recrystallisation temperatur	е	
	COM	below its recrystallisation temperatur	е	
	(D)	at two thirds of the melting temperatu	are of	the metal
158.	The e	equation $VT^n = C$ is known as Taylor's	equa	tion. The value of 'n' for High speed tool is
	(1)	0.1	(B)	0.20 to 0.25
	(C)	0.28 to 0.30	(D)	0.40 to 0.55
•				
159.	The o	peration of finishing and sizing a hole i	s call	ed as
	(A)	Boring	0	Reaming
	(C)	Counter boring	(D)	Taper boring
160.	Whic	h of the following material is traded in	the n	ame of "BOROZON"?
	(A)	Coated carbide tools		
	(3)	Cubic boron nitride		
	(C)	High speed steels		
	(D)	Cemented carbide tools		
		He man and a second sec		

161. State the purpose of riser

- (A) Deliver molten metal into the mould cavity
- Feed the molten metal to the casting in order to compensate for the shrinkage
- (C) Act as a reservoir for the molten metal
- (D) Deliver molten metal from pouring basin to gate

162. Which one happens during charging of battery?

- The anode becomes dark chock late brown and cathode becomes grey metallic lead
- (B) Specific gravity of acid decreases
- (C) Voltage of cell decreases
- (D) The cell gives out energy

163. Which type of motor can be brought to rest immediately to rest?

- (A) Induction motor
- (B) Stepper motor
- Servo motor
- (D) Universal motor

164. In 3ϕ AC, the relation between line voltage and phase voltage in star connection

(A) $V_L = V_{Ph}$

 $V_L = \sqrt{3} V_{Ph}$

(C) $V_L = \sqrt{2} V_{Ph}$

(D) $V_L = \sqrt{3} V_{Ph} \cos \phi$

165. In 3ϕ AC, if similar ends of three phases are joined together to form a common junction is called

31

(A) Delta connection

(B) Mesh connection

(C) Series connection

Star connection

166. The value of form factor is always

(A) 1

(B) (

(6) 1.11

(D) 0.57

$$E = \frac{9 \, KC}{3 \, K + C}$$

(B)
$$C = \frac{9EK}{3K + E}$$

(C)
$$K = \frac{9EC}{3E + C}$$

(D)
$$K = \frac{9EC}{E + 3C}$$

168. The ratio between "Moment of Inertia about the neutral axis" and "Distance of the most distant point of the section from the neutral axis" is known as

- (A) Bulk modulus
- (B) Rigidity modulus
- Section modulus
- (D) Young's modulus

169. The ratio of linear stress to linear strain is known as

(A) Poisson's Ratio

(B) Modulus of Rigidity

(C) Bulk modulus

Modulus of Elasticity

170. The corrosion resistance property of steel is improved by adding

(A) Tungsten

(B) Silicon

(C) Sulphur

Chromium

171. Robert Hooke discovered experimentally that within elastic limit

(A) Stress = Strain

 $\frac{\text{Stress}}{\text{Strain}} = \text{Constant}$

(C) $Stress = 3 \times Strain$

(D) Strain = $3 \times Stress$

172. The bending equation is written as

(A) $\frac{M}{I} = \frac{Y}{\sigma} = \frac{E}{R}$

(B) $\frac{M}{I} = \frac{\sigma}{Y} = \frac{R}{E}$

 $\frac{M}{I} = \frac{\sigma}{Y} = \frac{E}{R}$

(D) $\frac{M}{I} = \frac{Z}{d} = \frac{C}{R}$

U		33			MVIMA/18 [Turn over
	10	Constant volume cycle	(D)	Constant temperature cycle	
	(A)	Constant pressure cycle	(B)	Constant entropy cycle	
177.	Otto	cycle is also known as			
	,				
	(D)	Babcock and Wilcox boiler			
	(C)	Cochran boiler			THE WA
	(B)	Locomotive boiler			
170.	(A)	Lancashire boiler			
176.	Whiel	h of the following is a water tube boiler	?		
1		1, 2 and 3			
	(C)	3 only			
	(B)	2 and 3			
	(A)	1 and 2			
		h of the above statements are correct?			
	3.	It gives more uniform torque.			
	2.	It reduces the leakage loss considerable	ly		
	1.	Improves volumetric efficiency for the		pressure ratio	
175.		ider the following statements related to			
			4		
	(D)	Wet Bulb Depression			
•	101	Dew Point temperature			
	(B)	Wet Bulb temperature			
	(A)	Dry Bulb temperature			
174.		cemperature of air recorded by thermon	neter,	when the moisture present	in it begins to
	(D)	Heating and Humidification			
	(C)	Humidification			
•	(0)	Cooling and DeHumidification			
	(A)	De Humidification			

173. In summer air-conditioning the process used is known as

178.	rina	the odd-man out			
	(A)	Bit map	•	(B)	JPEG
	(C)	GIF		(P).	DOC
179.	WAN	stands for	•	·	
	(1)	Wide Area Network		(B)	World Area Network
	(C)	Wide Artificial Network		(D)	Wide Access Network
180.	An o	perating system is			
	(A)	Integrated software		(B)	Application software
, *	(C)	CD-ROM software		45	System software
181.	Ina	computer, the ————	- subsystem s	erves	as a manager of the other systems
	(A)	ALU		(B)	Input/Output
	(C)	Memory		0	Control Unit
182.	The s	speed of a dot matrix printe	er is measure	d	
	(A)	Lines per inch		(B)	Lines per second
	VOT	Characters per second		(D)	Characters per inch
183.	CPU ⁻	stands for			
	(A)	Central Production Unit			
	D	Central Processing Unit			
	(C)	Critical Power Unit			
	(D)	Control Processing Unit			
184.	Whic	h one of the following comp	outer is the ex	trem	ely fast computer?
	(A)	Mini computer			
	(B)	Mainframe computer			
	(C)	Personal computer			
	D	Super computer			

- 185. Hydraulic press works based on
 - Pascal's law

(B) Buoyancy law

(C) Continuity equation

- (D) Bernoulli's theorem
- 186. According to Bernoulli's theorem
 - (A) $Z + \frac{P}{w} + \frac{V^2}{g} = \text{const.}$
- $Z + \frac{P}{w} + \frac{V^2}{2g} = \text{const.}$

(C) $Z - \frac{P}{w} + \frac{V^2}{2g} = \text{const.}$

- (D) $Z + \frac{P}{w} \frac{V^2}{g} = \text{const.}$
- 187. The simplest form of manometer is called
 - (A) U-tube Manometer
 - (B) Single column Manometer
 - (C) Differential Manometer
 - Piezometer
- 188. The ratio between weight of a fluid to its volume is called
 - (A) Specific gravity

Specific weight

(C) Mass Density

- (D) Specific volume
- 189. The latent heat of vapourisation at critical point is
 - (A) Less than zero

(B) Greater than zero

Equal to zero

(D) Equal to unity

35

- 190. Which one of the following statement is true?
 - (A) Ideal Fluid is compressible
 - Ideal Fluid has no viscosity
 - (C) Real fluid does not have viscosity
 - (D) The unit for dynamic viscosity is cm²/S

The degree of tightness or looseness between the two mating parts is called as 191.

(A) Tolerance

(C) Interference

Allowance

The heat generated in journal bearing is termed as: 192.

(Where μ = coefficient of friction

W = Load on the bearing .

V = Rubbing Velocity)

- (A) $Q_g = \mu V$
- (B) $Q_g = \frac{\mu W}{V}$

The bearing which can support steady loads without any relative motion between the journal 193. and bearing is called as

- (A) Thick film bearing
- (B) Thin film bearing.
- (C) Zero film bearing

Hydro static bearing

194. What is the difference between the upper limit and lower limit of a dimension?

- (A) Nominal size
- (B) Basic size
- (C) Actual size

195.	In C	NU system, MICU stands for		
	(A)	Modem Computer Unit		
3	(B)	Machine Computer Unit		
	101	Machine Control Unit		
	(D)	Modem Control Unit		
196.		NC Electric Discharge Machining, ange of	the gap l	between the electrode and work piece is in
	(A)	0.006 mm to 0.06 mm		
T.,	(B)	0.004 mm to 0.04 mm		
	400	0.005 mm to 0.05 mm		
	(D)	0.007 mm to 0.07 mm		
, E				
197.	In Cl	NC Electric Discharge Machining,	the amoun	at of heat produced due to spark is about
	(A)	1100°C	0	1200°C
	(C)	1500°C	(D)	1700°C
198.	The t	time required to change a tool in a	CNC Macl	hine using ATC is around
	(A)	4 – 6 Seconds	40	3-7 Seconds
	(C)	1-3 Seconds	(D)	8 – 10 Seconds
1				
199.	In Cl	NC Machine, the principle motion of	of cutting t	tool or the work piece designated by
	(A)	A Axis	(0)	X Axis
	(C)	Y Axis	(D)	B Axis
200.	In CI	NC Programming G76 is for		
	(A)	Finish turning canned cycle		
	(B)	Multiple facing cycle		
	101	Multiple thread cutting cycle		33.36.00 1.6.131
	(D)	Peck drilling cycle		

