

Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

GRADE 100%

Neural Network Basics

I ATFST	SUBMISSION	GRADE

100%

1. What does a neuron compute?

1 / 1 point

A neuron computes an activation function followed by a linear function (z = Wx + b)

A neuron computes the mean of all features before applying the output to an activation function

A neuron computes a function g that scales the input x linearly (Wx + b)

- $igoreal{igoreal}$ A neuron computes a linear function (z = Wx + b) followed by an activation function

Correct, we generally say that the output of a neuron is a = g(Wx + b) where g is the activation function (sigmoid, tanh, ReLU, ...).

2. Which of these is the "Logistic Loss"?

1 / 1 point

- $igcap \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = \mid y^{(i)} \hat{y}^{(i)} \mid$
- $igcup \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = max(0,y^{(i)}-\hat{y}^{(i)})$
- $\bigcirc \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = -(y^{(i)}\log(\hat{y}^{(i)}) + (1 y^{(i)})\log(1 \hat{y}^{(i)}))$
- $\bigcirc \ \, \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = \mid y^{(i)} \hat{y}^{(i)}\mid^2$

✓ Correct

Correct, this is the logistic loss you've seen in lecture!

3. Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector?

1 / 1 point

- x = img.reshape((32*32*3,1))
- x = img.reshape((3,32*32))
- x = img.reshape((1,32*32,*3))
- x = img.reshape((32*32,3))

✓ Correct

4. Consider the two following random arrays "a" and "b":

1 / 1 point

a = np.random.randn(2, 3) # a.shape = (2, 3)b = np.random.randn(2, 1) # b.shape = (2, 1)c = a + b

What will be the shape of "c"?

- c.shape = (3, 2)
- c.shape = (2, 1)
- The computation cannot happen because the sizes don't match. It's going to be "Error"!
- c.shape = (2, 3)

✓ Correct

Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed to each column of a.

5. Consider the two following random arrays "a" and "b":

1 / 1 point

Wh	at will be the shape of "c"?	
•	The computation cannot happen because the sizes don't match. It's going to be "Error"!	
\circ	c.shape = (3, 3)	
0	c.shape = (4,2)	
0	c.shape = (4, 3)	
	Correct Indeed! In numpy the "*" operator indicates element-wise multiplication. It is different from "np.dot()". If you would try "c = np.dot(a,b)" you would get c.shape = (4, 2).	
6. Sup	opose you have n_x input features per example. Recall that $X=[x^{(1)}x^{(2)}x^{(m)}]$. What is the dimension of X?	1/1 point
0	(m,n_x)	
0	(m,1)	
	(1,m)	
	(n_x, m)	
•	(**z; ***)	
	✓ Correct	
7 D		
	all that "np.dot(a,b)" performs a matrix multiplication on a and b, whereas "a*b" performs an element-wise Itiplication.	1 / 1 point
Cor	nsider the two following random arrays "a" and "b":	
	np.random.randn(12288, 150)	
Wh	at is the shape of c?	
•	c.shape = (12288, 45)	
\circ	c.shape = (150,150)	
\circ	c.shape = (12288, 150)	
\circ	The computation cannot happen because the sizes don't match. It's going to be "Error"!	
	 Correct Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes 	
	match because :	
	"number of columns of a = 150 = number of rows of b"	
8. Cor	nsider the following code snippet:	1 / 1 point
# a	a.shape = (3,4)# b.shape = (4,1)for i in range(3): for j in range(4): c[i][j] = a[i][j] + b[j]	
Hov	w do you vectorize this?	
\circ	c = a.T + b.T	
•	c = a + b.T	
\circ	c = a + b	
\circ	c = a.T + b	
	✓ Correct	
9. Cor	nsider the following code:	1 / 1 point
a =	np.random.randn(3, 3)b = np.random.randn(3, 1)c = a*b	
Wh	at will be c? (If you're not sure, feel free to run this in python to find out).	
•	This will invoke broadcasting, so b is copied three times to become (3,3), and * is an element-wise product so c.shape will be (3, 3)	
0	It will lead to an error since you cannot use "*" to operate on these two matrices. You need to instead use	

np.dot(a,b)

- This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector. That is, c.shape = (3,1). ☐ This will invoke broadcasting, so b is copied three times to become (3, 3), and * invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)
 - ✓ Correct

10. Consider the following computation graph.

What is the output J?

- $\int J = (b 1) * (c + a)$
- $\int J = (c 1)*(b + a)$
- $\int J = a*b + b*c + a*c$
- J = (a 1) * (b + c)

✓ Correct Yes. J = u + v - w = a*b + a*c - (b + c) = a * (b + c) - (b + c) = (a - 1) * (b + c).