Точечное оценивание

Пусть имеется выборка $\mathbf{X} = (X_1, \dots, X_n)$ из параметрического семейства распределения \mathcal{F}_{θ} с неизвестным параметром $\theta \in \Theta$ (этот параметр может быть как скалярной так и векторной величиной). Необходимо получить оценку параметра θ - величину θ^* .

Метод моментов

Метод моментов заключается в следующем - любой момент случайной величины ξ зависит, часто функционально, от параметра распределения θ . Но тогда и параметр θ может оказаться функцией от теоретического момента k - го порядка. Подставив в эту функцию вместо неизвестного теоретического момента его выборочный аналог, получим вместо параметра θ оценку θ^* .

Так, например, можно оценить параметры a и σ нормального распределения следующим образом:

Известно, что для нормального распределения математическое ожидание и дисперсия равны соответственно:

$$E\xi = a, D\xi = \sigma^2.$$

Вычислив по заданной выборке X из нормального распределения выборочные аналоги математического ожидания и дисперсии (выборочное среднее \overline{X} и выборочную дисперсию s^2), получаем следующие точечные оценки a и σ :

$$a^* = \overline{X}, \ \sigma^* = \sqrt{s^2}.$$

Метод максимального правдоподобия

Этот метод заключается в том, что в качестве "наиболее правдоподобной" оценки параметра θ берут значение, максимизирующее вероятность получить при n опытах данную выборку $\mathbf{X} = (X_1, \dots, X_n)$.

Обозначим

$$f_{\theta}(x) = \begin{cases} \text{плотность } f_{\theta}(x) \text{ распределения } \mathcal{F}_{\theta}, \text{ если оно абс. непрерывно,} \\ P_{\theta}(X=x), \text{ если распределение } \mathcal{F}_{\theta} \text{ дискретно.} \end{cases}$$

Функцией правдоподобия называется функция

$$f(\mathbf{X}, \theta) = f_{\theta}(X_1) \cdot \dots \cdot f_{\theta}(X_n).$$

Логарифмической функцией правдоподобия назовем

$$L(\mathbf{X}, \theta) = \ln f(\mathbf{X}, \theta).$$

Оценкой максимального правдоподобия θ^* неизвестного параметра θ называется такое значение θ , на котором $f(\mathbf{X},\theta)$ достигает максимума.

Заметим, что функции $f(\mathbf{X}, \theta)$ и $L(\mathbf{X}, \theta)$ достигают максимума в одних и тех же точках, поэтому в качестве оценки максимального правдоподобия можно брать и точку максимума функции $L(\mathbf{X}, \theta)$. Зачастую удобнее максимизировать именно логарифмическую функцию правдоподобия.

Задание

Сгенерировать выборку из 100 элементов, имеющих указанное в вашем варианте распределение. Считая один из параметров распределения неизвестным, найти его точечную оценку:

- а) методом моментов (с помощью указанных в задании моментов);
- б) методом максимального правдоподобия.

Построить график функции правдоподобия и убедиться, что найденная с помощью метода максимального правдоподобия оценка действительно является точкой максимума функции правдоподобия.

Сравнить полученные точечные оценки с истинным значением параметра распределения.

Указания: при реализации метода максимального правдоподобия можно пользоваться встроенными функциями для решения нелинейных уравнений. При этом начальные

значения определять по графику функции правдоподобия или логарифмической функции правдоподобия.

Варианты заданий

- 1. **X** выборка из показательного распределения E_{λ} , где $\lambda=2$. Найти оценку параметра λ , считая его неизвестным. Метод моментов реализовать с помощью моментов 1-го и 2-го порядка.
- 2. **X** выборка из биномиального распределения B_p^n , где p=0.6, n=50. Найти оценку параметра p, считая его неизвестным. Метод моментов реализовать с помощью момента 1-го порядка.
- 3. **X** выборка из распределения Фишера $F_{k,m}$, где k=2, m=10. Найти оценку параметра k, считая его неизвестным. Метод моментов реализовать с помощью момента 2-го порядка.
- 4. **X** выборка из распределения Пуассона Π_{λ} , где $\lambda = 3$. Найти оценку параметра λ , считая его неизвестным. Метод моментов реализовать с помощью моментов 1-го и 2-го порядков.
- 5. **X** выборка из биномиального распределения B_p^n , где $p=0.7,\ n=40$. Методом моментов найти оценку параметра n, считая его неизвестным. Реализовать этот метод с помощью моментов 1-го и 2-го порядков. Методом максимального правдоподобия найти оценку параметра p, считая его неизвестным.
- 6. **X** выборка из бета-распределения $\beta_{m,n}$, где m=2, n=3. Найти оценку параметра m, считая его неизвестным. Метод моментов реализовать с помощью моментов 1-го и 2-го порядка.
- 7. **X** выборка из геометрического распределения G_p с параметром p=0.6. Найти оценку параметра p, считая его неизвестным. Метод моментов реализовать с помощью момента 1-го порядка.
- 8. **X** выборка из гамма-распределения $\Gamma_{1,\lambda}$, где $\lambda=5$. Найти оценку параметра λ , считая его неизвестным. Метод моментов реализовать с помощью моментов 1-го и 2-го порядков.
- 9. **X** выборка из показательного распределения E_{λ} , где $\lambda=4$. Найти оценку параметра λ , считая его неизвестным. Метод моментов реализо-

- вать с помощью моментов 1-го и 2-го порядка.
- 10. **X** выборка из биномиального распределения B_p^n , где p=0.9, n=30. Найти оценку параметра p, считая его неизвестным. Метод моментов реализовать с помощью момента 1-го порядка.
- 11. **X** выборка из распределения Фишера $F_{k,m}$, где $k=3,\ m=5$. Найти оценку параметра m, считая его неизвестным. Метод моментов реализовать с помощью момента 1-го порядка.
- 12. **X** выборка из распределения Пуассона Π_{λ} , где $\lambda=2$. Найти оценку параметра λ , считая его неизвестным. Метод моментов реализовать с помощью моментов 1-го и 2-го порядков.
- 13. **X** выборка из биномиального распределения B_p^n , где $p=0.8,\ n=50$. Методом моментов найти оценку параметра n, считая его неизвестным. Реализовать этот метод с помощью моментов 1-го и 2-го порядков. Методом максимального правдоподобия найти оценку параметра p, считая его неизвестным.
- 14. **X** выборка из распределения χ_k^2 , где k=3. Найти оценку параметра k, считая его неизвестным. Метод моментов реализовать с помощью моментов 1-го и 2-го порядков.
- 15. **X** выборка из геометрического распределения G_p с параметром p=0.2. Найти оценку параметра p, считая его неизвестным. Метод моментов реализовать с помощью момента 1-го порядка.
- 16. **X** выборка из гамма-распределения $\Gamma_{1,\lambda}$, где $\lambda=0.7$. Найти оценку параметра λ , считая его неизвестным. Метод моментов реализовать с помощью моментов 1-го и 2-го порядков.
- 17. **X** выборка из бета-распределения $\beta_{m,n}$, где m=4, n=5. Найти оценку параметра n, считая его неизвестным. Метод моментов реализовать с помощью моментов 1-го и 2-го порядка.
- 18. **X** выборка из выборка из показательного распределения E_{λ} , где $\lambda=3$. Найти оценку параметра λ , считая его неизвестным. Метод моментов реализовать с помощью моментов 1-го и 2-го порядка.
- 19. **X** выборка из распределения Фишера $F_{k,m}$, где k=4, m=4. Найти оценку параметра k, считая его неизвестным. Метод моментов реализовать с помощью момента 2-го порядка.
- $20.~{f X}$ выборка из распределения χ^2_k , где k=5. Найти оценку параметра k, считая его неизвестным. Метод моментов реализовать с помощью моментов 1-го и 2-го порядков.