

Acomputero Technology Performance Metrics

CS 154: Computer Architecture
WeChatLectatel Sorcs
Winter 2020

Ziad Matni, Ph.D.

Dept. of Computer Science, UCSB

Administrative

Lab 01 – how did Friday go?

Assignment Project Exam Help
• Gradescope account?

https://tutorcs.com

• Piazza account? WeChat: cstutorcs

• Remember: due date is Wednesday on Gradescope!

Job/Help Opportunity

Disabled Students Program Notetaker Needed

CMPSC 154 MW 12:30 Assignment Project Exam Help

\$25 per unit (of the class)
(prorated based on the number of weeks for which they are selected)

Questions can be sent to DSP Notetaking

Email: notes@sa.ucsb.edu

Potential Notetakers can apply online at http://dsp.sa.ucsb.edu/services

Lecture Outline

- Tech Details
 - Trends
 - Historical Assignment Project Exam Help
 - The manufacturing process of losm

- Important Performance Measures
 - CPU time
 - CPI
 - Other factors (power, multiprocessors)
 - Pitfalls

Single-Thread Processor Performance

Computing Devices for General Purposes

• Charles Babbage (UK)

- Analytical Engine could calculate polynomial functions and differentials
- Inspired by older generation of relating ject machines made by Blaise Pascal (1623-1662, France)
- Calculated results, but alshttps://tutorcs.com stored intermediate findings (i.e. precursor to computerments): cstutorosbbage (1791 – 1871)

"Father of Computer Engineering"

Ada Byron Lovelace (UK)

- Worked with Babbage and foresaw computers doing much more than calculating numbers
- Loops and Conditional Branching
- "Mother of Computer Programming"

Part of Babbage's Analytical Engine

Images from Wikimedia.org

A. Byron Lovelace (1815 - 1852)

The Modern Digital Computer

- Calculating machines kept being produced in the early 20th century (IBM was established in the US in 1911)
- Instructions were very simple, which made hardware Assignment Project Exam Help implementation easier, but this hindered the creation of complex programs.

 https://tutorcs.com

Alan Turing (UK) WeChat: cstutorcs

- Theorized the possibility of computing machines capable of performing any conceivable mathematical computation as long as this was representable as an algorithm
 - Called "Turing Machines" (1936) ideas live on today...
 - Lead the effort to create a machine to successfully decipher the German "Enigma Code" during World War II

A. Turing (1912 – 1954)

Zuse Z3 (1941)

- Built by Konrad Zuse in wartime Germany using 2000 relays
- Could do floating-point arithmetic with hardware
- 22-bit word lengt By mook Pregisen by of 120-bit word 12-5 Hz!!

• 64 words of memprod!!//tutores.com

Two-stage pipeline
 1) fetch & execute, 2) writebac

- No conditional branch
- Programmed via paper tape

Replica of the Zuse Z3 in the Deutsches Museum, Munich

ENIAC (1946)

- First electronic general-purpose computer
- Constructed during WWII to calculate firing tables for US Army
 - Trajectories (for bombs) computed in 30 seconds instead of 40 hours Assignment Project Exam Help
 Was very fast for its time started to replace human "computers"
- Used vacuum tube sittipans istatororead of the en invented yet)
- Weighed 30 tons, occupied 1800 sq ft
- It used 160 kW of power (about 3000 light bulbs worth)
- It cost \$6.3 million in today's money to build.
- Programmed by plugboard and switches, time consuming!
- As a result of large number of tubes, it was often broken (5 days was longest time between failures!)

[Public Domain, US Army Photo]

Comparing today's cell phones (with dual CPUs), with ENIAC, we see they

cost 17,000X less are 40,000,000 ighter Project E use 400,000X less power are 120,000X lighter well well are 120,000X lighter well are 120,000X ligh

are 1,300X more powerful.

EDVAC (1951)

• ENIAC team started discussing **stored-program concept** to speed up programming and simplify machine design Assignment Project Exam Help

https://tutorcs.com

• Based on ideas by John von Nuemann & Herman Goldstine WeChat: cstutorcs

Still the basis for our general CPU architecture today

Commercial computers: BINAC (1949) and UNIVAC (1951) at **EMC**

- Eckert and Mauchly left academia and formed the Eckert-Mauchly Computer Corporation (EMC)
 Assignment Project Exam Help
- World's first commence was BINAC which didn't work...

 WeChat: cstutorcs
- Second commercial computer was UNIVAC
 - Famously used to predict presidential election in 1952
 - Eventually 46 units sold at >\$1M each

IBM 650 (1953)

• The first mass-produced computer

• Low-end system aimed at businesses rather than https://tutores.com scientific enterprises

WeCh

Almost 2,000 produced

[Cushing Memorial Library and Archives, Texas A&M, Creative Commons Attribution 2.0 Generic]

Improvements in C.A.

- IBM 650's instruction set architecture (ISA)
 - 44 instructions in base instruction set, expandable to 97 instructions

Assignment Project Exam Help

• Hiding instruction set completely from programmer using the concept of *high Pevel Vanguages* like Fortran (1956), ALGOL (1958) and COBOL (1959) orcs

• Allowed the use of stack architecture, nested loops, recursive calls,

interrupt handling, etc...

Adm. Grace Hopper (1906 – 1992), inventor of several High-level language concepts

Manufacturing ICs

Yield: the proportion of working dies per wafer; often expressed as a number between 0 and 1

Example: Intel Core i7 Wafer

• 300mm (diameter) signment Project Exam Help

• 280 chips

https://tutorcs.com

• Each chip is 20.7 mm x 10.5 mm

WeChat: cstutorcs

• 32nm CMOS technology (the size of the smallest piece of logic and the type of Silicon semiconductor used)

Costs of Manufacturing ICs

$$Y = rac{N_{
m good}}{N_{
m total}}$$

WeChat: cstutorcs

- Wafer cost and area are fixed
- Defect rate determined by manufacturing process
- Die area determined by architecture and circuit design

Cost per die =
$$\frac{\text{Cost per wafer}}{\text{Dies per wafer} \times \text{Yield}}$$

Dies per wafer $\approx \text{Wafer area/Die area}$

Yield = $\frac{1}{(1+(\text{Defects per area} \times \text{Die area/2}))^2}$

Examples

A 300 mm wafer of silicon has 500 die on it, of which 100 are not working or malfunctioning. What is the yield of this wafer?

If the wafer costs \$200ttphat/isithercost per die?

• Cost per die = (\$200)/(500 * 0.8) = \$200/400 = \$0.50 WeChat: cstutorcs

A 300 mm wafer of silicon has N dies that are 0.5 mm x 1 mm each. What is N?

• Area of wafer/Area of each die $= (\pi * (300/2 * 10^{-3})^2) / (0.5 * 1 * 10^{-6}) = 141,370.605$ So, N = 141,370 (round down)

Response Time and Throughput

- Response time (aka Latency)
 - How long it takes to do a *fixed task* Assignment Project Exam Help
- Throughput https://tutorcs.com
 - Total work done per a *fixed time*WeChat: cstutorcs
 e.g., tasks/transactions/... per hour
- How are response time and throughput affected by
 - Replacing the processor with a faster version?
 - Adding more processors?

Latency vs. Throughput Which is more important?

- They are different.
- It depends on what your goals are...

 Assignment Project Exam Help

 Scientific program? Latency

 - Web server? https://otushorus.com
- Example: Move people it miles
 - capacity = 5, speed = 60 mph • Via car:
 - Via bus: capacity = 60, speed = 20 mph
 - Latency: car = 10 minutes, bus = 30 minutes
 - Throughput: car = 15 PPH, bus = 60 PPH (consider round-trips)

Performance Measures

- Execution Time: Total response time, including EVERYTHING
 - CPU time (processing), I/O use, OS overhead, any idle time
 - This determines system performance Assignment Project Exam Help
- CPU time: https://tutorcs.com
 - Time spent just processing a given job

 WeChat(disdutions)

 Time spent just processing a given job

 WeChat(disdutions)
 - CPU time = user CPU time + system CPU time
- Define Performance = 1/Execution Time
- Relative performance
 - The performance of system A vs performance of system B, ie. P_A / P_B

CPU Clocking

Most digital hardware today operates to a constant-rate clock

Assignment Project Exam Help

- Clock **period**: duration of a clock cycle
 - e.g. 250 ps = 0.25 http25/0tx1010s.com
- Clock frequency: clock rate or cycles per second
 - e.g. $4.0 \text{ GHz} = 4000 \text{ MHz} = 4.0 \times 10^9 \text{ Hz}$
- Hertz (Hz) is "cycles per second", so
 clock freq. = 1 / clock period

Useful Prefixes (Multipliers) to Know

Prefix	Symbol	Multiplier	In words	Scientific Notation
Kilo	k	1,000	thousand	10 ³
Mega	M As	signment Project Ex	xamoHelp	10 ⁶
Giga	G	1,000,000,000 https://tutorcs.com	billion	109
Tera	Т	1,000,000,000,000	trillion	10 ¹²
Peta	Р	1,0000haqo,ooqqqorc	Squadrillion	10 ¹⁵
Prefix	Symbol	Multiplier	In words	Scientific Notation
milli	m	0.001	thousandth	10-3
micro	μ	0.00001	millionth	10 ⁻⁶
nano	μ n	0.000001 0.00000001	millionth billionth	10 ⁻⁶ 10 ⁻⁹

CPU Time

- - Reducing number of the control of the
 - Increasing clock rate
 - Hardware designer Must Cheat ir soft biff @1668 rate against cycle count
- Example: it took the CPU 1000 cycles to run the program. The clock cycle time (i.e. period) is 10 ns, so the CPU time is: 1000 x 10 ns = 10000 ns = 10 μ s, or **10 x 10**⁻⁶ s

$$|CPUTime = \frac{Instructions}{Program} \times \frac{Clock\ cycles}{Instruction} \times \frac{Seconds}{Clock\ cycle}$$

Instruction Count and CPI

Clock Cycles = Instruction Count × Cycles per Instruction

CPU Time = Instruction Count × CPI × Clock Cycle Time

AssignstreptoPicoent × CPI m Help

Clock Rate

- Instruction Count for the sognation of the sound for the
 - Determined by program, ISA and compiler WeChat: cstutorcs
- Average cycles per instruction (CPI)
 - Determined by CPU hardware
 - If different instructions have different CPI, then Average CPI is affected by instruction mix
- Example: next slide

CPI Example

- Cycle Time = 250 ps, CPI = 2.0 cycle• Computer A:
- Computer B: Cycle Time = 500 ps, CPI = 1.2 c
- Same Instructions Set Architecture (SA) Exam Help
- Which is faster?
 - CPU Time = Instruction Pount x CP CVCP Time
 - CPU_Time_A = NI x 2.0 x 250 x 10⁻¹² s = NI x 500 x 10⁻¹² s
 CPU Time B = NI x 1.2 x 500 x 10⁻¹² s = NI x 600 x 10⁻¹² s
 - CPU_Time_B = NI x 1.2 x 5
 - So, CPU A is faster than CPU B
- By how much is it faster?
 - Relative Performance = NI x 600 x 10⁻¹² s / NI x 500 x 10⁻¹² s = 1.2
 - So, CPU A is 1.2 times faster than B (or you could say it's 20% faster)

CPI Example using Weighted Classes

- An instruction class = instruction type
 - e.g. arithmetic type vs. branching type vs. jump type, etc...
- A CPU compiles code sequences Project Lexion in Helpes A, B, C

Class https://t	A	В	С
CPI for class	utones.c	2	3
IC in sequence 1	2	1	2
IC in sequence 2	c estuto	1	1

- Sequence 1: IC = 5, so Clock Cycles = 2x1 + 1x2 + 2x3 = 10
- So, Avg. CPI = 10/5 = 2.0
- Sequence 2: IC = 6, so Clock Cycles = 4x1 + 1x2 + 1x3 = 9
- So, Avg. CPI = 9/6 = 1.5

Other Factors to CPU Performance: Power Consumption

Market trends DEMAND that power consumption of CPUs keep decreasing.

Power and Performing nember N' Problem & Extrage Help

- https://tutorcs.com
 Power = Capacitive Load x Voltage² x Clock Frequency
- WeChat: cstutorcs • So:
 - Decreasing Voltage helps to get lower power, but it can make individual logic go slower!
 - Increasing clock frequency helps performance, but increases power!
- It's a dilemma that has contributed to Moore's Law "plateau"

YOUR TO-DOs for the Week

BRING YOUR MIPS REF CARDS TO CLASS!!!

• Do your reading for next class (see syllabus)

https://tutorcs.com

- Finish up Assignment #1 for lab (*lab01*) WeChat: cstutorcs
 - You have to submit it as a PDF using Gradescope
 - Due on Wednesday, 1/15, by 11:59:59 PM

Assignment Project Exam Help

