

무선 네트워크 3주차

목차

- 요약
 - I. 아두이노 조도, 미세먼지, DHT11
 - II. 아두이노 라즈베리파이 설치 및 프로그래밍
 - III. 아두이노 라즈베리파이 Serial 통신 및 제어
 - IV. InfluxDB 설치
 - V. Grafana 설치 및 모니터링

라즈베리파이 기반 실습 – 아두이노 연동

❖ 아두이노

- ✓ 라즈베리파이 아두이노 IDE 설치
 - sudo apt-get install arduino
- ✓ 아두이노 시뮬레이션 사이트
 - https://www.tinkercad.com/

라즈베리파이 기반 실습 – 아두이노 연동

❖ 아두이노 && 조도센서

포토 레지스터 (PhotoRegistor),

황화카드뮴(Cds)

용도	빛이 많은지 적은 지 파악하기
동작 전압	5V
핀 구성	4핀(GND / VCC / D0 / A0)
특징	가변저항을 조절하여 감도 조정 가능

라즈베리파이 기반 실습 - 아두이노 연동

❖ 조도센서

- 조도센서는 주변의 밝기를 측정하는 센서로 극성이 없으나 빛의 양에 따라 전도율이 변하는 가변 저항 센서
- 조도 센서의 경우 사용시 저항을 연결해야함.
- 밤이 되면, 자동으로 켜지는 가로등, 자동차의 헤드라이트, 밝기에 따라 변하는 스마트폰의 화면 등에 사용

❖ 동작원리

센서 내부의 CdS 광도전체가 빛의 양을 측정하여 빛의 양이 많아지면 전자를 운반하는 캐리어의 밀도가 높아지며 증가된 캐리어는 더 많은 전자를 운반하게 되어 전류가 증가합니다.

이때 생성된 전류는 전국을 타고 리드선으로 흐르게 됩니다. 옴의 법칙에 의해 빛이 강하면 조도 센서의 저항 값이 감소하고 빛이 약하면 증가합니다.

라즈베리파이 기반 실습 – 아두이노 연동

❖ 결선 방법

[결선회로도]

아두이노 우노보드	CdS 조도 센서 모듈		
5V	VCC		
GND	GND		
A1	AO		

아두이노 우노보드	LED		
D3	+ (긴 다리)		
GND	- (짧은 다리)		

라즈베리파이 기반 실습 - 아두이노 연동

❖ 프로그램 코드

```
relay §
int Cds = 0; // 조도 센서 데이터 수신 변수
int LED = 13; // LED 연결한 핀
void setup() {
 Serial.begin(9600):
 pinMode(A1, INPUT); // 조도 센서를 입력 핀으로 설정
 pinMode(LED,OUTPUT); // LED를 출력 핀으로 설정
void loop() {
 Cds = analogRead(A1); // 조도 센서의 측정 값을 Cds에 저장
 Serial.print("CDS_Sensor: ");
 Serial.println(Cds): // 시리얼 모니터에 조도 센서의 측정 값 출력
 if(Cds > 300) { // 측정 값이 300 초과이면
  digitalWrite(LED, HIGH); // LED 켜기
  Serial.println("LED ON"); // 시리얼 모니터에 출력
         // 측정 값이 300 이하이면
 else {
  digitalWrite(LED, LOW); // LED 227
   Serial.println("LED OFF"); // 시리얼 모니터에 출력
 delay(1000);
              // 1초 쉬고 반복(1000ms = 1s)
```

라즈베리파이 기반 실습 – 아두이노 연동

❖ 아두이노 LED 제어


```
\times
○ LED_simple | 아두이노 1.8.13
int led = 8;
int val = 0;
void setup() {
pinMode(led, OUTPUT);
void loop() {
digitalWrite(led, HIGH);
delay(1000);
digitalWrite(led, LOW);
delay(1000);
                                                    Arduino Uno on COM3
```

라즈베리파이 기반 실습 – 아두이노 연동

❖ 아두이노 LED 제어 - 1


```
    □ LED_simple_1 | 아두이노 1.8.13

                                                                            LED_simple_1
int val = 0;
void setup() {
  Serial.begin(9600);
  Serial.println("input 0~255");
  pinMode(led, OUTPUT);
void loop() {
  if (Serial.available()) {
   val = Serial.parseInt();
   Serial.println(val);
    analogWrite(led, val);
  delay(50);
스케치는 프로그램 저장 공간 936 바이트(2%)를 사용. 최대 32256 바이트.
전역 변수는 동적 메모리 9바이트(0%)를 사용, 2039바이트의 지역변수가 남음. 최대는 2048 바이트.
                                                                     Arduino Uno on COM3
```

라즈베리파이 기반 실습 - 아두이노 연동

❖ 아두이노 LED 제어 - 1

라즈베리파이 기반 실습 - 아두이노 연동

- ❖ 라즈베리파이 python3 PyFirmate 라이브러리 설치
 - pip3 install pyfirmata

```
File Edit Tabs Help
#!/usr/bin/python3
import pyfirmata <mark>as</mark> pf
import time
board = pf.Arduino('/dev/ttyACM0')
pin13 = board.get_pin('d:13:o')
time.sleep(1)
pin13.write(1)
time.sleep(1)
pin13.write(0)
```

❖ 미세먼지센서(GP2Y1010AU0F)

❖ 미세먼지센서

- DataSheet (GP2Y1010AU0F)

- 센서 중앙 홀을 통해 공기중에 먼지 량을 측정
- 원형 구멍 양옆으로 두개의 소자가 부착됨(적외선LED, 적외선 수신소자),

- ❖ 미세먼지센서 1
 - DataSheet (GP2Y1010AU0F)

Pulse-driven wave form

- 적외선 LED 작동방법
- LED On/Off 총 10ms , (0.32ms LED ON, 9.68ms LED OFF) , 반복

- 데이터 수신
- 적외선 LED 켠 후 0..28ms 흐르고 적외선 수신기를 작동시켜 값을 Read)

- ❖ 미세먼지센서 2
 - 아두이노 프로그램 코드

```
dust §
int Vo = A0;
int V LED = 2;
float Vo value=0;
                                    70.00
                                    107.00
void setup(){
                                    107.00
  Serial.begin(9600);
                                    127.00
  pinMode(V_LED, OUTPUT);
                                    109.00
  pinMode(Vo, INPUT);
                                    125.00
                                    118.00
                                    133.00
void loop()
                                    123.00
                                    105.00
  digitalWrite(V LED, LOW);
                                    112.00
  delayMicroseconds(280);
  Vo value = analogRead(Vo);
  delayMicroseconds(40);
  digitalWrite(V LED, HIGH);
  delayMicroseconds(9680);
  Serial.println(Vo value);
                                     Autoscroll
  delay(1000);
```

- ❖ 미세먼지센서 3
 - 아날로그 데이터 : 전압을 0~1023로 표현
 - 예) 5V 센서 사용시, 0~5V 값을 0 ~ 1023값으로 표현
 - 전압 V: 아날로그 핀 값 x 5.0 / 1023.0 (원래전압)

❖ 출력 해보기

❖ 미세먼지센서 – 4- 전압 값을 이용,미세먼지 양 측정

3-3 Electro-optical Characteristics

(Ta=25°C, Vcc=5V)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Sensitivity	K	(*1)(*2)(*3)(*4)	0.425	0.5	0.575	V/ (100 μ g/m³)
Output voltage at no dust	Voc	(*2)(*3)(*4)	0.1	0.6	1.1	V
Output voltage range	VOH	RL=4./kΩ (*2)(*3)(*4)	3.4	-	-	V
LED terminal current	ILED	LED terminal=0V (*2)(*3)	-	10	20	mA
Supply current	ICC	RL=∞ (*2)(*3)	*	11	20	mA

Fig. 3 Output Voltage vs.

❖ 미세먼지센서 – 5

- 아두이노 프로그램 코드

```
dust §
int Vo = A0;
int V_LED = 2;
float Vo_value=0;
float Voltage = 0;
float dustDensity = 0;
                                                  Dust Delistry, Jolgs
                                                  Voltage: 0.54
void setup(){
                                                  Dust Density: 47.53
  Serial.begin(9600);
                                                  Voltage: 0.60
  pinMode(V LED, OUTPUT);
                                                  Dust Density: 60.23
  pinMode(Vo, INPUT);
                                                  Voltage: 0.62
                                                  Dust Density: 63.17
                                                  Voltage: 0.57
void loop()
                                                  Dust Density: 54.37
                                                  Voltage: 0.59
  digitalWrite(V_LED,LOW);
                                                  Dust Density: 57.30
  delayMicroseconds(280);
                                                  Voltage: 0.62
  Vo value = analogRead(Vo):
                                                  Dust Density: 64.14
  delayMicroseconds(40);
                                                  Voltage: 0.59
  digitalWrite(V LED, HIGH);
                                                  Dust Density: 57.30
  delayMicroseconds(9680);
                                                  Voltage: 0.44
                                                  Dust Density: 28.95
  Voltage = Vo_value*5.0 / 1023.0;
                                                  Voltage: 0.51
  dustDensity = (Voltage - 0.3)/0.005;
                                                  Dust Density: 42.64
                                                  Voltage: 0.57
  Serial.print("Voltage: " );
                                                  Dust Density: 53.39
  Serial.println(Voltage);
                                                  Voltage: 0.56
  Serial.print("Dust Density: " );
                                                  Dust Density: 52.41
  Serial.println(dustDensity);
  delay(1000);
                                                   Autoscroll
```

❖ DHT11 아두이노 연동

#아두이노DHT11연결

아두이노	DHT11	
5V	VCC	
GND	GND	
Digital 7번 핀	DATA(OUT)	
저항 5.1K음 권장		

- ❖ DHT11 아두이노 라이브러리 다운로드
 - ✓ https://github.com/sonnonet/inhatc
 - ✓ 파일복사 DHT11_library.zip -> /home/pi/sketchbook/libraries

- ❖ DHT11 라이브러리 추가
 - ✓ Sketch -> import Library -> Add Library

❖ 아두이노 소스코드

• DHT11 라즈베리파이 연동 (Command)

```
#include <DHT11.h>
int pinNum = 7;
DHT11 dht11(pinNum);
String input = "";
String cmd = "temp";
String response = "";
void setup() {
 Serial.begin(9600);
 Serial.println("Starting Program....");
void loop() {
 float temp, humi;
 if(Serial.available()){
 input = Serial.readStringUntil('\n');
if(Serial.available() == 0 && input == cmd)
 dht11.read(humi,temp);
 Serial.print("Temperature: ");
 Serial.print(temp);
 Serial.print("humidity: ");
 Serial.print(humi);
 Serial.println();
 input = "";
delay(1000);
```

라즈베리파이 기반 실습 – 프로그래밍(Serial)

- ❖ Python3.11 소스코드 -> 라즈베리파이 Serial 통신
- vim serial_test.py

```
File Edit Format Run Options Window Help
  limport time
 2 import serial
4|seri = serial.Serial('/dev/ttyACMO', baudrate = 9600, timeout = None)
5
 7 while(True):
                                                                        // ~/serial_test.py - Mo.. pi@raspberrypi: ~
        time.sleep(1)
        if seri.in_waiting !=0:
                                                               File Edit Tabs Help
          content = seri.readline()
                                                               54.45
          a = float(content.decode())
                                                               58.36
                                                               52.49
          print(a)
                                                               50.54
                                                               S54.45
                                                               62.27
                                                               60.31
                                                               49.56
                                                               52.49
                                                               48.58
                                                               48.58
                                                               52.49
                                                               S63.25
```

시계열데이터베이스

InfluxDB

https://www.influxdata.com/

InfluxDB is a time series database designed to handle high write and query loads. Get InfluxDB One influxDB

InfluxDB 1.x

InfluxDB 1.x is the open source time series database component of the TICK Stack (Telegraf, InfluxDB, Chronograf, Kapacitor).

InfluxDB 2.0

Currently in beta, InfluxDB 2.0 incorporates everything you need in a time series platform into a single binary.

InfluxDB Cloud

InfluxDB Cloud is a fast, elastic, serverless time series platform as a service — easy to use with usage-based pricing

라즈베리파이 기반 실습 - InfluxDB 설치 및 설정

❖ 참고 사이트 주소 : https://github.com/sonnonet/2024 inhatc

라즈베리파이 기반 실습 - InfluxDB 프로그래밍

- Python Serial to InfluxDB 프로그래밍
- vim serial_dust.py

```
import time
import requests, json
from influxdb import InfluxDBClient as influxdb
import serial

seri = serial.Serial('/dev/ttyACMO', baudrate = 9600, timeout = None)

while(True):
    time.sleep(1)
    if seri.in_waiting !=0:
        content = seri.readline()
        a = float(content.decode())
```

라즈베리파이 기반 실습 – InfluxDB 프로그래밍

Python Serial to InfluxDB 프로그래밍 - 1

```
14
         data = \{\{\}
15
               'measurement' : 'dust',
16
               'tags':{
                   'InhaUni' : '2222',
17
18
19
20
21
22
23
24
25
26
27
28
              'fields':{
                   'dust' : a,
         client = None
         try:
              client = influxdb('localhost',8086,'root','root','dust')
         except Exception as e:
            print ("Exception" + str(e))
          if client is not None:
29
              trv:
30
                   client.write_points(data)
31
              except Exception as e:
32
                   print("Exception write " + str(e))
33
              finally:
34
                   client.close()
35
         print("running influxdb OK")
```

라즈베리파이 기반 실습 - InfluxDB 설치 및 설정

❖ Python 프로그램 실행 시 influxdb 라이브러리 문제

```
pi@raspberrypi:~ $ python serial_dust.py
Traceback (most recent call last):
   File "/home/pi/serial_dust.py", line 3, in <module>
     from influxdb import InfluxDBClient as influxdb
ModuleNotFoundError: No module named 'influxdb'
```

```
pi@raspberrypi:~ $ pip install influxdb
error: externally-managed-environment
 This environment is externally managed
   To install Python packages system-wide, try apt install
    python3-xyz, where xyz is the package you are trying to
   install.
   If you wish to install a non-Debian-packaged Python package,
    create a virtual environment using python3 -m venv path/to/venv.
   Then use path/to/venv/bin/python and path/to/venv/bin/pip. Make
    sure you have python3-full installed.
   For more information visit http://rptl.io/venv
note: If you believe this is a mistake, please contact your Python installation
or OS distribution provider. You can override this, at the risk of breaking your
 Python installation or OS, by passing --break-system-packages.
hint: See PEP 668 for the detailed specification.
```

라즈베리파이 기반 실습 – InfluxDB 설치 및 설정

❖ Python 프로그램 실행 시 influxdb 라이브러리 문제 해결방법

```
pi@raspberrypi:~ $ sudo rm /usr/lib/python3.11/EXTERNALLY-MANAGED
oi@raspberrypi:~ $ pip install influxdb
Defaulting to user installation because normal site-packages is not writeable
Looking in indexes: https://pypi.org/simple, https://www.piwheels.org/simple
Collecting influxdb
Downloading https://www.piwheels.org/simple/influxdb/influxdb-5.3.2-py2.py3-no
ne-any.whl (79 kB)
                                         --- 79.4/79.4 kB 247.9 kB/s eta 0:00:00
Collecting python-dateutil>=2.6.0
 Downloading https://www.piwheels.org/simple/python-dateutil/python_dateutil-2.
9.0.post0-py2.py3-none-any.whl (229 kB)
                                      ---- 229.9/229.9 kB 113.4 kB/s eta 0:00:00
Requirement already satisfied: pytz in /usr/lib/python3/dist-packages (from infl
uxdb) (2022.7.1)
Requirement already satisfied: requests>=2.17.0 in /usr/lib/python3/dist-package
s (from influxdh) (2 28 1
```

❖ 참고 사이트 주소 : https://github.com/sonnonet/2024_inhatc

- ❖ Grafana 초기 로그인 (ID : admin, PW : admin) 변경 하지 말 것.
- ❖ Data sources (데이터 연결)

❖ Data sources (데이터 연결) -> influxdb

< -별칭

< - 가져올 influxdb ip주소 및 포트

❖ Dashboards (데이터 표현) -> Create dashboard

❖ Dashboards (데이터 표현) -> Add visualization

❖ Select data source (Data sources 설정한 별칭 선택)

❖ Queries 데이터 조회

❖ Queries 데이터 조회 - 1

3주차 수업이 끝났습니다

고생하셨습니다.

