TD NOMBRES COMPLEXES

Note

La difficulté de chaque exercice est indiquée par un nombre plus ou moins élevé d'astérisques, et va de * pour des exercices d'application directe du cours à *** ou plus pour des exercices plus abstraits ou mélangeant différentes notions.

FORMES ALGÉBRIQUE, TRIGONOMÉTRIQUE, EXPONENTIELLE

Exercice 1 *

Écrire sous forme algébrique les nombres complexes suivants :

1.
$$(2+5i)+(i+3)$$

2.
$$(3-2i)-(-1-i)$$

3.
$$-2(1+3i)+5-2i-(-i+2)$$

4.
$$(1-4i)(1+2i)+2i+8$$

5.
$$-3(4-i) + (3+2i)(1-i)$$

6.
$$2+3i-(2-2i)(i-3)$$

7.
$$(2+i)^2$$

8.
$$(3-2i)^2 + (2-i)(2+i)$$

9.
$$-3(2+3i)^2 + (i-1)(i+1)$$

Exercice 2 *

Dans chaque cas calculer $z_1+\overline{z_2}$, $\overline{z_1}z_2$, $\overline{z_1}\overline{z_2}$, $|z_1|$, $|z_2|$:

1.
$$z_1 = 2 + 3i$$
 et $z_2 = 1 - i$

2.
$$z_1 = -1 + 2i$$
 et $z_2 = 3 + i$

3.
$$z_1 = -i + 2$$
 et $z_2 = 2 + i$

Exercice 3 *

Écrire sous forme algébrique les nombres complexes suivants :

1.
$$\frac{2}{1-2i}$$

4.
$$\left(\frac{1+i}{2-i}\right)^2$$

$$2. \ \frac{1}{1-2i} + \frac{1}{1+2i}$$

5.
$$\frac{2+5i}{1-i} + \frac{2-5i}{1+i}$$

$$3. \ \frac{2+i}{3-2i}$$

6.
$$\left(\frac{1+i}{2-i}\right)^2 + \frac{3+6i}{3-4i}$$

Exercice 4 *

Écrire sous forme trigonométrique et sous forme exponentielle les nombres complexes suivants :

1.
$$-3\sqrt{2}$$

$$7. \ \frac{1-i}{\sqrt{3}+i}$$

2.
$$-\frac{4}{3}i$$

8.
$$(1-i)^8$$

9.
$$(\sqrt{5}-i)(\sqrt{5}+i)$$

4.
$$3 + 3i$$

10.
$$e^{i\frac{\pi}{3}} + e^{i\frac{2\pi}{3}}$$

5.
$$\sqrt{3} - i$$

11.
$$e^{3+4i}$$

6.
$$\sqrt{2} + \sqrt{6}i$$

12.
$$x + x^2 i, x \in \mathbb{R}$$

Exercice 5 **

Soit $z = r(\cos \theta + i \sin \theta)$ un nombre complexe non nul écrit sous forme trigonométrique.

Écrire $\bar{z}, -z, \frac{1}{z}$ sous forme trigonométrique.

Exercice 6 **

1. Montrer que pour tout $\alpha \in \mathbb{R}$ $e^{i\alpha} + e^{-i\alpha} = 2\cos\alpha$.

2. Soit $\theta \in [-\pi, \pi]$, déterminez la forme exponentielle de $e^{i\theta} + e^{2i\theta}$ (on pourra écrire $\theta = \frac{3\theta}{2} - \frac{\theta}{2}$ et $2\theta = \frac{3\theta}{2} + \frac{\theta}{2}$).

3. Même question pour $\theta \in [\pi, 3\pi]$.

AFFIXE D'UN NOMBRE COMPLEXE

Exercice 7 *

On se place dans le plan complexe muni d'un repère orthonormé direct $(0, \overrightarrow{u}, \overrightarrow{v})$.

- 1. Donner les affixes des points A, B, C et D.
- 2. Placer les points E d'affixe $z_E=3+2i$, F d'affixe $z_F=-1+3i$, G d'affixe $z_G=-\frac{1}{2}-i$ et H d'affixe $z_H=2+\frac{3}{4}i$
- 3. Quels points se trouvent sur un même cercle de centre O?

Exercice 8 *

Soient A,B et C trois points du plan complexe d'affixes

$$z_A = \sqrt{2}e^{i\frac{\pi}{4}}, \ z_B = 4 + 2i, \ z_C = -5 - i.$$

Calculer les affixes des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et montrer que A,B et C sont alignés.

Exercice 9 **

Soit z=x+iy un nombre complexe différent de -2 et $Z=\frac{z+3i}{z+2}.$

- 1. Exprimer Z sous forme algébrique.
- 2. Déterminer l'ensemble des points M du plan complexe d'affixe z vérifiant Z est imaginaire pur.

Exercice 10 **

Dans le plan complexe rapporté à un repère orthonormal centré en 0 on considère les points A, B et M d'affixes res-

pectives 1 + i, 1 - i et $\sqrt{2} e^{i\pi/3}$.

- 1. Placer les points A, B et M dans le plan complexe.
- 2. Ces points sont-ils alignés?
- 3. Calculer le module et l'argument de 1 i.
- 4. Ces points sont-ils sur un même cercle de centre 0? Si oui, quel est le rayon de ce cercle?

Exercice 11 **

Dans le plan complexe rapporté à un repère orthonormal centré en 0 on considère les points A, B, O et M d'affixes respectives i, 2-i, 0 et z.

- 1. Supposons que z=1. Placer les points A, B et M dans le plan complexe. Les points A, B et M sont-ils alignés?
- 2. Supposons que z=1+i. Placer les points A,B et M dans le plan complexe. Quel est le module de z? Quel est l'argument de z? Le triangle est-il rectangle en M?

Exercice 12 *

Pour chacun des nombres complexes donnés ci-dessous sous forme exponentielle, placer le point d'affixe ce complexe sur le cercle trigonométrique, et l'écrire sous forme algébrique :

- 1. $e^{i\frac{\pi}{6}}$
- 2. $e^{-i\frac{\pi}{3}}$
- 3. $e^{i\frac{3\pi}{4}}$

- 5. $e^{i\frac{\pi}{2}}$
- 6. $e^{-i\pi}$

- 7. $e^{-\frac{2i\pi}{3}}$
- 8. $e^{i\frac{7\pi}{6}}$
- 9. $e^{i\frac{8\pi}{3}}$

FORMULE DU BINÔME DE NEWTON

Exercice 13 **

Résultat:

La formule du binôme $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$ est encore valable pour $a, b \in \mathbb{C}$ et $n \in \mathbb{N}$.

- 1. Faire les 5 premières lignes du triangle de Pascal.
- 2. Développer $(1+2i)^4$ et $(2-i)^3$.

Exercice 14 **

Calculer:

- 1. $(1+i)^2 + (1-i)^2$
- 3. $(1+i)^4 + (1-i)^4$ 4. $(1+i)^5 + (1-i)^5$
- 2. $(1+i)^3 + (1-i)^3$

5. Le tableau suivant donne les coefficients binomiaux pour n=10:

k = 0	k=1	k=2	k = 3	k=4	k = 5
1	10	45	120	210	252
k = 6	k = 7	k = 8	k = 9	k = 10	
210	120	45	10	1	

Calculer $(1+i)^{10} + (1-i)^{10}$.

Exercice 15 **

Pour tout $n \in \mathbb{N}$, calculer :

- 1. $(1+i)^n + (1-i)^n$,
- 2. $(1+i)^n (1-i)^n$,
- $3. \left(\frac{-1+\sqrt{3}i}{2}\right)^n + \left(\frac{1-\sqrt{3}i}{2}\right)^{2n}.$

APPLICATIONS À LA TRIGONOMÉTRIE

Exercice 16 *

Soient $z_1 = 3\sqrt{2}(1+i)$, $z_2 = \sqrt{3} + i$.

- 1. Déterminer les formes exponentielles et trigonométriques de z_1 et z_2 .
- 2. Déterminer la forme cartésienne de $z = \frac{z_1}{z_2^2}$.
- 3. Déterminer les formes exponentielle et trigonométrique de z.
- 4. En déduire les valeurs de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

Exercice 17 *

- 1. Exprimer $\cos(2\alpha)$ et $\sin(2\alpha)$ en fonction de $\cos\alpha$ et $\sin\alpha$.
- 2. Exprimer $\cos \frac{\alpha}{2}$ et $\sin \frac{\alpha}{2}$ en fonction de $\cos \alpha$ et $\sin \alpha$.
- 3. Sachant que $\cos \frac{\pi}{5} = \frac{1+\sqrt{5}}{4}$ et $\sin \frac{\pi}{5} = \frac{\sqrt{5-\sqrt{5}}}{2\sqrt{2}}$, donner les valeurs de $\cos \frac{\pi}{10}$ et $\sin \frac{\pi}{10}$.

Exercice 18 **

Soit α un réel non congru à $\frac{\pi}{2}$ modulo π et $t=\tan\alpha$. On pose $z=\frac{1+i\tan\alpha}{1-i\tan\alpha}=\frac{1+it}{1-it}$.

- 1. Montrer que $z=\frac{\cos\alpha+i\sin\alpha}{\cos\alpha-i\sin\alpha}$. En déduire la forme exponentielle de z.
- 2. Mettre z sous forme algébrique (en fonction de t) et en déduire que $\cos(2\alpha)=\frac{1-t^2}{1+t^2}$ et $\sin(2\alpha)=\frac{2t}{1+t^2}$.
- 3. Exprimer en fonction de t les quantités suivantes : $\cos(4\alpha)$, $\sin(4\alpha)$, $\tan(2\alpha)$, $\tan(3\alpha)$, $\tan(4\alpha)$, $\tan(5\alpha)$.

Exercice 19 **

Méthode:

Pour calculer des expressions comme $\cos(nx)$ avec $n \in \mathbb{N}^*$, on peut utiliser la **formule de Moivre**

$$\cos(nx) = \operatorname{Re}\left(\cos(x) + i\sin(x)\right)^{n}.$$

Exprimer en fonction de $\cos\alpha$ et $\sin\alpha$ les formules trigonométriques suivantes :

- 1. $\cos(3\alpha)$
- 3. $\cos(4\alpha)$
- $2. \sin(3\alpha)$
- 4. $\sin(5\alpha)$

Exercice 20 **

Méthode:

Pour linéariser des formules du type $\cos^n(x)$ avec $n \in \mathbb{N}$, on peut utiliser les **formules d'Euler** et du binôme pour développer $\cos^n(x) = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^n$.

Soit α un nombre réel. Linéariser les formules trigonométriques suivantes :

- 1. $\cos^4 \alpha$
- $2. \sin^4 \alpha$
- 3. $\sin \alpha \cos^3 \alpha$

Exercice 21 **

Soient $\alpha \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Déterminer la valeur de $\sum_{k=0}^{n-1} \sin(k\alpha)$.

RACINES CARRÉES D'UN NOMBRE COMPLEXE

Exercice 22 *

Donner les racines carrées complexes des nombres suivants sous forme algébrique :

1. 1

4. -5i

2. -1

5. 3 + 4i

3.4i

6. i-2

Exercice 23 *

Donner les racines carrées complexes des nombres suivants sous forme exponentielle :

1. 4

3. -25i

2. $2e^{i\frac{2\pi}{5}}$

4. $-1 + i\sqrt{3}$

Exercice 24 *

- 1. Calculer les racines carrées de $\frac{1+i}{\sqrt{2}}$ sous forme algébrique et exponentielle.
- 2. En déduire les valeurs de $\cos(\pi/8)$ et $\sin(\pi/8)$.
- 3. En utilisant la même méthode, calculer les valeurs de $\cos(\pi/12)$ et $\sin(\pi/12)$.

Exercice 25 *

Résoudre dans C les équations suivantes :

1. $z^2 + z + 1 = 0$

2. $z^2 + 2iz - 1 = 0$

3. $z^2 - iz + 2 = 0$

4. $(3-i)z^2 + (4i-2)z - 8i + 4 = 0$

5. $z^2 = \overline{z}$ (on pourra déterminer d'abord les solutions réelles)

Exercice 26 *

Soit $\theta \in \mathbb{R}$ un nombre réel. Résoudre dans \mathbb{C} les équations $z^2-2\cos(\theta)z+1=0$ puis $z^4-2\cos(2\theta)z^2+1=0$.

Exercice 27 **

Note:

Quand rien n'est précisé, dans un produit de facteurs linéaires, exprimer les nombres complexes sous leur forme algébrique.

Exprimer comme produit de facteurs linéaires les polynômes suivants :

1. $iz^2 - 1$

2. $z^2 - 3z + 2$

3. $2z^2 + iz - 3$

4. $z^2 - 2z + 4i$

Exercice 28 **

Exprimer comme produit de facteurs linéaires le polynôme $z^4 - 3iz^3 - (1+3i)z^2$ en trouvant des racines "évidentes".

Exercice 29 ***

Résoudre dans C les équations suivantes :

1. $z^3 - 3z^2 + 4z - 2 = 0$

2. $z^3 + z^2 + z + 1 = 0$

3. $iz^3 + (1-2i)z^2 + 2(i-1)z + 2 = 0$

RACINES N-IÈMES ET ÉQUATIONS DANS C

Exercice 30 *

- 1. Déterminer les formes cartésiennes, trigonométriques et exponentielles des racines 8-èmes de l'unité.
- 2. Dessiner les racines 8-èmes de l'unité dans le plan cartésien, et décrire la figure obtenue en joignant les racines avec arguments consécutifs.
- 3. Lesquelles sont des racines 8-èmes primitives?

Exercice 31 **

- 1. Quelles sont les racines quatrièmes de l'unité? En déduire une expression de z^4-1 comme produit de facteurs linéaires.
- 2. Placer ces racines sur le cercle unité dans le plan complexe, quelle figure obtient-on en reliant les points ainsi obtenus?
- 3. Exprimer comme produit de facteurs linéaires les polynômes z^2+i et z^2-i
 - en utilisant la forme exponentielle des racines carrées de i et de -i.
 - puis en utilisant leurs formes algébriques.
- 4. En déduire une expression de $iz^2 1$ et de $z^4 + 1$ comme produit de facteurs linéaires.
- 5. Retrouver l'expression de z^4+1 comme produit de facteurs linéaires en utilisant directement des racines quatrièmes.

Exercice 32 **

On note z_1,z_2,\ldots,z_6 les racines sixièmes de l'unité et M_1,M_2,\ldots,M_6 les points du plan complexe correspondants

- 1. Déterminer les solutions complexes de l'équation $z^6=1$ (sous forme exponentielle). Placer approximativement les points M_1,M_2,\ldots,M_6 sur le cercle unité du plan complexe.
- 2. Montrer géométriquement que

$$z_1 + z_2 + z_3 + z_4 + z_5 + z_6 = 0$$

- 3. Quel est le coefficient du terme de degré 5 du produit $(z-z_1)(z-z_2)(z-z_3)(z-z_4)(z-z_5)(z-z_6)$? En déduire algébriquement que $z_1+z_2+z_3+z_4+z_5+z_6=0$. (Ce résultat se généralise : pour tout entier $n\geq 2$, la somme des racines n-ièmes de l'unité est nulle)
- 4. Montrer que pour tout $z \in \mathbb{C}$,

$$z^6 - 1 = (z - 1)(z^5 + z^4 + z^3 + z^2 + z + 1)$$

5. En déduire l'expression de $z^5 + z^4 + z^3 + z^2 + z + 1$ comme produit de facteurs linéaires (en utilisant les formes exponentielles puis algébriques des racines).

Exercice 33 **

- 1. Donner une racine 6-ème primitive de l'unité sous forme cartésienne et exponentielle.
- 2. Vérifier que 2+i est une racine 6-ème de w=-117+44i.
- 3. Déterminer les formes exponentielles et cartésiennes de toutes les racines 6-èmes de w.
- 4. Dessiner les racines 6-èmes de w dans le plan cartésien, et décrire la figure obtenue en joignant les racines avec arguments consécutifs.

Exercice 34 **

- 1. Déterminer les formes cartésiennes, trigonométriques et exponentielles des racines 4-èmes de $1+i\sqrt{3}$.
- 2. En déduire les valeurs de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

Exercice 35 **

- 1. Soit $\mu=(\sqrt{5}-1+i\sqrt{10+2\sqrt{5}})/4$. Montrer que $\mu=e^{i2\pi/5}$.
- 2. Écrire sous forme cartésienne $z=e^{i\pi/3}$.
- 3. Écrire μ/z sous forme trigonométrique, exponentielle et cartésienne.
- 4. En déduire les valeurs de $\cos \frac{\pi}{15}$ et $\sin \frac{\pi}{15}$.

Exercice 36 ***

Le but de cet exercice est d'écrire sous forme "explicite" (au moyen de racines carrées de nombres réels) les nombres $\cos\frac{\pi}{5}$, $\sin\frac{\pi}{5}$, $\cos\frac{\pi}{10}$ et $\sin\frac{\pi}{10}$.

- (a) Écrire les formes trigonométriques et exponentielles des racines 5-èmes de l'unité, et les dessiner de façon approximative dans le plan cartésien.
- (b) Soit z=x+iy une racine 5-ème de l'unité. Montrer que le quotient y/x peut prendre au plus cinq valeurs possibles, qu'on déterminera. Indication: utiliser l'égalité $z^5/x^5=(1+iy/x)^5$ pour calculer y/x.
- (c) Trouver la valeur de $\tan \frac{2\pi}{5}$ puis de $\tan \frac{\pi}{10}$.
- (d) Trouver la valeur de $\tan \frac{4\pi}{5}$ puis de $\tan \frac{\pi}{5}$.
- (e) En utilisant le fait que $\cos^2 + \sin^2 = 1$, en déduire les valeurs de $\cos \frac{\pi}{5}$, $\sin \frac{\pi}{5}$, $\cos \frac{\pi}{10}$ et $\sin \frac{\pi}{10}$.

Exercice 37 **

Résoudre dans $\mathbb C$ les équations suivantes :

- 1. $z^4 + 1 = 0$.
- 2. $z^5 + 1 = 0$
- 3. $z^6 = \frac{1+i\sqrt{3}}{1-i\sqrt{3}}$
- 4. $\overline{z}^2 2i\overline{z} + i = 0$
- 5. $z^4 + 2z^2 + 4 = 0$
- 6. $z^6 2iz^3 1 = 0$.

Exercice 38 ***

Déterminer les nombres complexes z tels que :

- 1. $|\bar{z} i| = 1$,
- 2. $i \operatorname{Re}(z^2) \operatorname{Im}(z^2) = z$
- 3. $z^2 + \overline{z} 1$ est réel,
- 4. $z^2 + 2\overline{z} 2$ est imaginaire pur,
- 5. $arg(z+2\overline{z}) = \frac{\pi}{3} \mod 2\pi$.