Calabi-Yau hypersurface and mirror symmetry

Fredrik Meyer

October 31, 2014

1 Preliminaries

- 1. Stanley-Reisner schemes
- 2. Deformations of Stanley-Reisner schemes
- 3. Refer to mirror pdf for defs

2 The deformation

2.1 The Stanley-Reisner scheme K

Let D_6 be a hexagon, and define $\mathcal{K} := D_6 * D_6$ and let $\mathbb{P}(\mathcal{K})$ be the associated Stanley-Reisner scheme together with its embedding in \mathbb{P}^{11} . We will study the deformation theory of \mathcal{K} in some detail.

Denote the vertices of the "left" D_6 by y_1, \dots, y_6 and the vertices of right one by z_1, \dots, z_6 .

Lemma 2.1. The automorphism group of K is $G := D_6 \times D_6 \times \mathbb{Z}/2$ of order 288. There are interesting subgroups $G' := \mathbb{Z}/6 \times \mathbb{Z}/6 \times \mathbb{Z}/2$ and $G'' := \mathbb{Z}/6 \times \mathbb{Z}/6$.

Proposition 2.2. The module T_0^1 is 84-dimensional. The deformations come in three types.

We have 12 weights of type

$$t_i := \frac{y_i}{y_{i+1}y_{i-1}},$$

one for each vertex of K.

Figure 1: The hexagon, a.k.a the polytope associated to a degree 6 del Pezzo surface.

There are 72 more weights:

$$t_{i+1,i-1}^{ij} = \frac{y_i y_j}{y_{i+1} y_{i-1}} \qquad t_{j+1,j-1}^{ij} = \frac{y_i y_j}{y_{j+1} y_{j-1}}.$$

The module T_{-1}^1 is 12-dimensional, they all have the form

$$s_i := \frac{y_i}{y_{i+1}y_{i-1}}.$$

It follows that $K' = \mathcal{K} * \{v\}$ has $\dim_k T_0^1 = 96$.

2.2 Smoothing

Let dP be the polytope associated to the del Pezzo surface of degree 6. See Figure 1.

Proposition 2.3. There is a flat deformation of $\mathbb{P}(\mathcal{K}')$ to the toric variety associated to the polar dual $(dP \times dP)^{\circ}$. The base space is 8-dimensional.

Proof. This can be computed directly, by wisely choosing deformatin parameters. The parameters used are all of the form t_i in the notation of Proposition 2.2. It is also true because $(dP \times dP)^{\circ}$ have a triangulation given by \mathcal{K}' in the sense of [3].

Remark. This is the same as h^{12} of the corresponding Calabi-Yau hypersurface, which again should be the dimension of the moduli space of the mirror Calabi-Yau. This hints that perhaps the mirror lives over the same base space.

Corollary 2.4. There is a flat deformation of $D_6 * D_6$ to a singular three-fold X_t . It has 48 isolated singularities. Of these are 36 ordinary double points (cones over squares), and 12 are cones over hexagons.

Proof. The Stanley-Reisner ideal of $D_6 * D_6$ is a complete intersection in \mathcal{K}' . This deforms (and degenerates) together with \mathcal{K}' . Thus the statement of the first sentence follows from the proposition.

The singularities are inherited from the toric variety, and the toric variety have 48 one-dimensional singular curves, corresponding to 48 non-simplicial cones. \Box

Note: Ordinary double points are not locally smoothable. However, a Macaulay2 computation using the package VersalDeformations gives that the cones over the hexagons are locally smoothable. In fact, the versal base space have two components, on of which is a smoothing component.

Proposition 2.5. X_t have canonical but not terminal singularities.

Proof. Every hypersurface in a Fano toric variety have at most Gorenstein canonical singularities, by Theorem 4.19 in [2] and the remarks in Section 1 in [1], which says that the singularities in the toric stratum X_{θ} are terminal if and only if the only lattice points in the dual face θ° are its vertices. However, in our case, the dual polyhedron have faces with two interior points.

[[TODO: describe resolution, examine smoothing, ...]]

References

- [1] Victor Batyrev and Maximilian Kreuzer. Conifold degenerations of fano 3-folds as hypersurfaces in toric varieties, 2012.
- [2] Victor V. Batyrev. Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebraic Geom., 3(3):493–535, 1994.
- [3] Bernd Sturmfels. Gröbner bases and convex polytopes, volume 8 of University Lecture Series. American Mathematical Society, Providence, RI, 1996.