It's now time to give our formal language a semantics.

The meaning of not:

р	¬р
Т	F
F	Т

The meaning of or:

р	q	(p ∨ q)
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

The meaning of and:

р	q	(p ∧ q)
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

The meaning of iff:

р	q	(p ≡ q)
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

How do we account for the meaning of if then?

Like so

р	q	(p⊃q)
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Three explanations.

$$(p \supset q) = \neg p \lor q$$
.

 $(p \supset q)$ = it's false that p is true but q is false; true otherwise = $\neg(p \land \neg q)$

And also this:

We want to $p \supset q$ to license the following two inferences.

Modus Ponens

- 1. $P \supset Q$
- 2. P
- 3. So Q

Modus Tollens

- 1. P⊃Q
- 2. ¬Q
- 3. So ¬P

But we don't want our analysis of *if then* to license the following inference.

Affirming the consequent (No good)

- 1. $P \supset Q$
- 2. Q
- 3. So P

How do we set up the truth tables for $P \supset Q$ such that we get MP, MT, but not Affirming the consequent?

For MP we need a truth table that looks like this.

р	q	(p ⊃ q)
Т	Т	Т
Т	F	F
F	Т	?
F	F	?

Whenever $(p \supset q)$ is true and p is true, we want q to also be true.

So we set $(p \supset q)$ to be true when p is true and q is true, and false when p is true but q is false.

For MT we need a truth table that looks like this.

р	q	(p ⊃ q)
Т	Т	?
Т	F	F
F	Т	?
F	F	Т

Whenever $(p \supset q)$ is true and q is false, we want p to be false.

So for p is true and q is false, we want $(p \supset q)$ to be false. And for p is false and q is false, we want $(p \supset q)$ to be true.

So any two-place operator that licenses MP and MT will have the following truth table.

р	q	(p ⊃ q)
Т	Т	Т
Т	F	F
F	Т	?
F	F	Т

So the question becomes: what do we say when p is false but q is true?

If we let $(p \supset q)$ be false when both p and q are false, then the only time $(p \supset q)$ and q are both true, p is true. But that's the inference affirming the consequent, which is no good.

Notice also that defining $(p \supset q)$ in this way will make $(p \supset q)$ equivalent to $(p \equiv q)$.

р	q	(p ⊃ q) (not correct)
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

So to avoid having $(p \supset q)$ license $(p \supset q)$, q, therefore p, we have to make it so that when p is false and q is true, $(p \supset q)$ is true.

р	q	(p⊃q)
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

On this second way of doing things, when $(p \supset q)$ is true and q is true, it's not forced that p is also true.

р	q	(p⊃q)
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Hence the above is the correct semantics for \supset .