GBI Definitionen

RegEx

Wissenswertes:

- Hilfssymbole := $\{|,(,),*,\emptyset\}$
- "* vor · (Konkatenation)"
- "· vor Strich "—" (Oder)
- $\bullet \ \langle R \rangle$ ist die formale Sprache ist, welche mit Rgebildet werden kann
- $\langle \emptyset \rangle = \{\}$
- $\langle R_1 | R_2 \rangle = \langle R_1 \rangle \cup \langle R_2 \rangle$
- $\langle R_1 \cdot R_2 \rangle = \langle R_1 \rangle \cdot \langle R_2 \rangle$
- $\langle R* \rangle = \langle R \rangle^*$
- Es gibt **kein** R+ sondern RR* Bsp.: Statt (ab)+ einfach ab(ab)*

Bsp.:

R = a|b dann ist:

$$\langle R \rangle = \langle a|b \rangle = \langle a \rangle \cup \langle b \rangle = \{a\} \cup \{b\} = \{a,b\}$$

R = (a|b)* dann ist:

$$\langle R \rangle = \langle (a|b)* \rangle = \langle a|b \rangle^* = \{a,b\}^*$$

R = (a * b*)* dann ist:

$$\langle R \rangle = \langle (a * b *) * \rangle = \langle a * b * \rangle^*$$

$$= (\langle a * \rangle \langle b * \rangle)^* = (\langle a \rangle^* \langle b \rangle^*)^* = (\{a\}^* \{b\}^*)^*$$

$$= \{a, b\}^*$$

Graphen

- Ein gerichteter Graph ist das Paar G = (V, E)
 - Knotenmenge V ist endlich und nichtleer (V für engl. vertex)
 - Kantenmenge $E \subseteq V \times V$ (E für engl. edge)
 - * muss damit auch endlich sein, darf aber leer sein
- Pfade können über mehrer Kanten führen
- $V^{(+)}$: Menge der nichtleeren Listen von Elementen aus V
- Ein Pfad ist $p = (v_0, \dots, v_n) \in V^{(+)}$ wenn für jedes $i \in \mathbb{Z}_n$ gilt: $(v_i, v_{i+1}) \in E$
- Die Länge eines Pfades ist die Anzahl der Kanten
- v_n von v_0 ist erreichbar, wenn ein Pfad $p = (v_0, \dots, v_n)$ existiert
- Wenn der start und endpunkt identisch sind heißt der Pfad geschlossen
- Wenn der geschlossene Pfad größer gleich 1 ist, heißt er Zyklus
- Pfad heißt wiederholungsfrei, wenn
 - der erste bis zum vorletzten Konten verschieden sind (v_0, \ldots, v_{n-1})
 - der zweite bis zum letzten Knoten verschieden sind (v_1, \dots, v_n)
 - der erste und letzte Knoten drüfen gleich sein $(v_0 \text{ und } v_n)$
 - Einfach: Außer der letzte und erste darf jeder Knoten nur einmal "betreten" werden
- azyklischer Graph: kein Teilgraph ist zyklisch
- Ein Graph ist streng zusammenhängend wenn
 - zwischen jeden beliebigen zwei Knoten (Knotenpaar) aus dem Graphen ein Pfad existiert. Also jeder Punkt von jedem anderen Punkt (sich eingeschlossen) erreichbar ist.

- Ein Graph ist ein gerichteter Baum wenn:
 - es eine Wurzel $r \in V$ gibt, für die gilt:
 - * zu jedem Knoten existiert genau ein Pfad
 - * Wurzel ist immer eindeutig
- Der Eingangsgrad eines Knoten ist die Anzahl aller Kanten die zu dem Knoten hinführen
- Der Ausgangsgrad eines Knoten ist die Anzahl aller Kanten die von den Knoten wegführen
- Der Grad eines Knoten ist die Anzahl der Kanten des Knotens (Also Ausgangsgrad + Eingangsgrad)
- Knoten eines Baumes werden Blätter genannt, wenn Sie das Ende des Baumes sind, also Ausgangsgrad = 0
- innere Knoten sind dann alle mit Ausgangsgrad > 0
- E^n ist ein Pfad der länge n. Bsp.: E^2 ist ein Pfad der Länge 2
- $\bullet \ (x,y) \in E^2 \Leftrightarrow$ es existiert ein Pfad der Länge 2 von xnach y
- Ein ungerichteter Graph hat einfach nur Kanten und keine "Richtungs" Pfeile
- Knotengrad für ungerichtete Graphen: man zählt alle "Kantenenden"

Beispiel:

$$d(B) = 3$$

Kontextfreie Grammatik

- N sind alle Nichtterminalsymbole
- T sind alle Terminalsymbole
- $N \cap T = \emptyset$
- S ist der Start und $S \in N$
- P Produktionen, endliche Menge und $P \in N \times V^*$
 - $-V = N \cup T$ die Menge aller Symbole
 - Für jeder $(X, w) \in P$ schreibt man $X \to w$
 - Man "ersetz" P durch w

Bei einem Ableitungsschritt wird ein Terminalsymbol durch abgeleitet. Dieser wird dann mit "\Rightarrow" dargestellt, nicht mit Implikations verwechseln!

Bsp.:

$$G = (\{X\}, \{a,b\}, X, P) \text{ mit } P = \{X \to \epsilon, X \to aXb\}$$

Dann gilt zB.: $abaXbaXXXXX \Rightarrow abaXbaaXbXXXX$ als Ableitungsschritt. (Man ersetzt das X nach ba mit aXb)

Man kann auch einfach mit einem Index angeben, wie viele Ableitungsschritt getätigt werden.

- \Rightarrow^2 aber auch $u \Rightarrow^* v$ wenn v aus u ableitbar ist. \Rightarrow^0 ist einfach wieder das selbe.
 - Eine Grammatik erzeugt eine formale Sprache, also einfach alle Wörter die man aus einer Grammtik ableiten kann.
 - -G = (N, T, S, P) erzeugt die formale Sprache $L(G) = \{w \in T^* | S \Rightarrow^* w\}$
 - Diese formalen Sprachen heißen kontextfrei