

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS ESCUELA DE INGENIERÍA Y CIENCIAS DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN CC3501-2

TAREA N°1, OPCIÓN N°2: Flappy Bird

Integrantes
Matías Torres Navarrete.

Profesora:

Nancy Hitschfeld K.

Auxiliares:

Alonso Utreras Nelson Marambio Q. Pablo Pizarro R.

Fecha de Entrega:

02/Mayo/2022

$\acute{\mathbf{I}}\mathbf{ndice}$

1		ución propuesta Arquitectura de la solución	2
2	Inst 2.1 2.2	trucciones de ejecución Argumentos que recibe	
3	Res	sultados	4
		Lista de figuras	
	1 2	Diagrama de solución propuesto	
	3	Así luce al esquivar los tubos	
	4	Así luce el juego al colisionar en una tubería superior	
	5	Así luce el juego al colisionar con una tubería inferior	
	6	Así luce el juego al salirse de los topes superiores e inferiores	
	7	Así luce el aviso al perder por colisión	

Lista de tablas

1 Solución propuesta

1.1 Arquitectura de la solución

El patrón utilizado para el diseño de esta solución, es el de diseño Modelo-Vista-Controlador, donde el usuario a través del controlador, manipula el modelo, el cuál actualiza la vista que por consiguiente verá el usuario, quien de ser necesario, puede volver a usar el controlador para modificar el patrón, y de cierta manera, crear así un bucle.

Figura 1: Diagrama de solución propuesto.

2 Instrucciones de ejecución

Para este código, se utilizan las librerías: OpenGL, GLFW, sys, Random, Typing, Grafica.

2.1 Argumentos que recibe.

• Se ejecuta el juego a través de: $(.../T1 > flappy_bird.py)$

2.2 Teclas de control.

• Flecha del teclado (†), genera un salto en el "pájaro" para mantenerlo en vuelo.

3 Resultados

Se adjuntan imágenes para una descripción más visual del juego:

Figura 2: Así luce el juego al comienzo.

Figura 3: Así luce al esquivar los tubos.

Figura 4: Así luce el juego al colisionar en una tubería superior.

Figura 5: Así luce el juego al colisionar con una tubería inferior.

Figura 6: Así luce el juego al salirse de los topes superiores e inferiores.

GAME OVER

Figura 7: Así luce el aviso al perder por colisión.