

Curso de Tecnologia em Sistemas de Computação Disciplina: Fundamentos de Algoritmos para Computação Professoras: Susana Makler e Sulamita Klein

Gabarito da EP da Aula 12

Observações:

- 1. Em algumas questões serão dadas o desenvolvimento e em outras apenas a resposta.
- 2. É importante que você tente resolver cada exercício justificando cada passo <u>antes</u> de ler o gabarito. Desta forma, você estará mais preparado para entender o raciocínio usado, será capaz de avaliar onde acertou e onde errou.
- Lembre-se que muitos exercícios podem ser resolvidos usando raciocínios diferentes. Nós desenvolvemos apenas um, tente encontrar outras formas, ajuda a compreender melhor os conceitos.
- 1. De quantas maneiras podemos distribuir 6 laranjas entre 2 pessoas?

Resposta: Denominemos as pessoas de a e b. O total de distribuições é igual ao número de soluções inteiras e não negativas de a + b = 6. Portanto, temos $CR_2^6 = CR(2,6) = C(6+2-1,6) = C(7,6) = 7$.

2. Queremos comprar 12 docinhos. De quantas maneiras os podemos escolher se têm 8 variedades diferentes de docinhos?

Resposta: Existem 8 tipos de doce, seja x_i o número de docinhos do tipo i que foram comprados para $1 \le i \le 8$. Logo,

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 12$$

 $x_i \ge 0, \ \forall \ 1 \le i \le 8,$

Portanto, podemos comprar os doces de $CR_8^{12} = C(8+12-1,12) = C(19,12) = \frac{19!}{12!7!}$ formas distintas.

3. De quantas maneiras podemos colocar 20 bolas da mesma cor em 5 caixas de modo que nenhuma caixa fique vazia?

Resposta: Seja x_i o número de bolas na caixa i, para i=1,2,3,4,5. Este problema equivale a calcular o número de soluções inteiras não negativas de $x_1+x_2+x_3+x_4+x_5=20$ com $x_i>0$, ou seja, $x_i\geq 1$ para todo i=1,2,3,4,5. Fazendo $x_i^*=x_i-1$ e substituindo na equação, temos $(x_1^*+1)+(x_2^*+1)+(x_3^*+1)+(x_4^*+1)+(x_5^*+1)=20$ com $x_i^*\geq 0$ para todo $1\leq i\leq 5$.

Portanto, o nosso problema é equivalente a encontrar o número de soluções inteiras não negativas de $x_1^* + x_2^* + x_3^* + x_4^* + x_5^* = 15$ com $x_i^* \ge 0$ para todo i = 1, 2, 3, 4, 5 que corresponde a CR(5, 15) = C(19, 15) = 3876.

4. Quantas são as soluções inteiras não negativas de x + y + z < 10?

Resposta: Note que o número de soluções inteiras não negativas deste problema é igual ao número de soluções inteiras não negativas de $x+y+z\leq 9$, e por sua vez esta inequação tem o mesmo número de soluções inteiras não negativas de x+y+z+u=9.

O total de soluções inteiras e não negativas de x+y+z+u=9 é CR_4^9 = C(4+9-1,9)=C(12,9)=220.

Observação: Tente resolver a questão usando outro raciocínio.

5. Quantas são as soluções inteiras positivas de x + y + z < 10?

Resposta: O problema é equivalente a encontrar as soluções inteiras de x+y+z<10 com $x\geq 1,\ y\geq 1$ e $z\geq 1$. Fazendo as seguintes transformações de variáveis: $x^*=x-1\geq 0,\ y^*=y-1\geq 0$ e $z^*=z-1\geq 0$, temos $x^*+y^*+z^*<7$. Procedendo como na questão anterior, devemos calcular o número de soluções inteiras não negativas de $x^*+y^*+z^*+u=6$ que é $CR_4^6=C(4+6-1,6)=C(9,6)=84$.

6. Quantos números inteiros entre 1 e 100000 inclusive têm soma dos algarismos igual a 6?

Observação: Ao número 1 associe a seqüência 00001.

Resposta: Primeiro notemos que a soma dos algarismos de 100000 não é 6, logo consideraremos números entre 1 e 99999, e convencionaremos que qualquer número será representado por uma seqüência de 5 dígitos.

Representaremos um número qualquer por abcde. Devemos ter a+b+c+d+e=6, com a,b,c,d,e inteiros não negativos. Logo, o total de números é $CR_5^6 = C(5+6-1,6) = C(10,6) = 210$.

7. Quantos números inteiros entre 1 e 1000 inclusive têm a soma dos dígitos menor que 7?

Resposta: Observemos que o número 1000 tem a soma dos dígitos menor que 7.

Por separado, analisaremos a quantidade de números inteiros entre 1 e 999 inclusive que têm a soma dos dígitos menor que 7.

Representaremos os números por seqüências de 3 dígitos, abc, e procederemos agora como no ítem anterior. O total de números números inteiros entre 1 e 999 inclusive que têm a soma dos dígitos menor que 7 é igual ao número de soluções inteiras não negativas de $a+b+c \le 6$, que é igual ao número de soluções inteiras não negativas de a+b+c+u=6 dado por $CR_4^6=C(4+6-1,6)=C(9,6)=84$.

Portanto, pelo princípio aditivo, temos que a quantidade de números inteiros entre 1 e 1000 inclusive que têm a soma dos dígitos menor que 7 é 1 + 84 = 85.

8. Quantas soluções inteiras existem para a equação $x_1 + x_2 + x_3 + x_4 = 20$ sendo:

(i)
$$1 \le x_1 \le 6$$
, $x_i \ge 0$ para $i = 2, 3, 4$.

Resposta: Consideramos o conjunto de 4-uplas ordenadas (x_1, x_2, x_3, x_4) , com $x_i \in \mathbb{Z}$ para i = 1, 2, 3, 4 que é $\mathbb{Z}^4 = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ e definimos:

$$U = \{(x_1, x_2, x_3, x_4) \in \mathbb{Z}^4 \mid \sum_{i=1}^4 x_i = 20, x_i \ge 0, i = 1, 2, 3, 4\},\$$

$$A = \{(x_1, x_2, x_3, x_4) \in U \mid 1 \le x_1 \le 6\},\$$

$$B = \{(x_1, x_2, x_3, x_4) \in U \mid x_1 \ge 1\},\$$

$$C = \{(x_1, x_2, x_3, x_4) \in U \mid x_1 \ge 7\}.$$

O conjunto U é o conjunto universo. Observemos que A = B - C e $C \subseteq B$. Portanto, n(A) = n(B) - n(C) (ver exercício 1 da lista correspondente à aula 3). Para resolver nosso problema, que corresponde a calcular n(A), devemos encontrar n(B) e n(C).

Obtenção de n(B): Definindo $x_1^* = x_1 - 1$ temos que n(B) é o número de soluções inteiras não negativas da equação $x_1^* + x_2 + x_3 + x_4 = 19$ com $x_1^* \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$ e $x_4 \ge 0$, que corresponde a $CR_4^{19} = C(19 + 4 - 1, 19) = C(22, 19) = 1540$. Logo, n(B) = 1540.

Obtenção de n(C): Considerando $y_1 = x_1 - 7$ obtemos n(C) como sendo o número de soluções inteiras não negativas da equação $y_1 + x_2 + x_3 + x_4 = 13$ com $y_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$ e $x_4 \ge 0$, dado por $CR_4^{13} = C(13 + 4 - 1, 13) = C(16, 13) = 560$. Logo, n(C) = 560.

Portanto, o número de soluções inteiras não negativas de $x_1 + x_2 + x_3 + x_4 = 20$ com $1 \le x_1 \le 6$, $x_i \ge 0$ para i = 2, 3, 4 é dado por n(A) = n(B) - n(C) = 1540 - 560 = 980.

(ii)
$$1 < x_1 < 6$$
, $1 < x_2 < 7$, $x_i > 0$ para $i = 3, 4$.

Resposta: Consideramos o conjunto universo U da parte (i). Definimos os seguintes conjuntos:

$$A = \{(x_1, x_2, x_3, x_4) \in U \mid 1 \le x_1 \le 6, \ 1 \le x_2 \le 7\}$$

$$B = \{(x_1, x_2, x_3, x_4) \in U \mid x_1 \ge 1, \ x_2 \ge 1\},$$

$$C_1 = \{(x_1, x_2, x_3, x_4) \in U \mid x_1 \ge 7, \ x_2 \ge 1\},$$

$$C_2 = \{(x_1, x_2, x_3, x_4) \in U \mid x_1 \ge 1, x_2 \ge 8\}.$$

Notemos que $A = B - (C_1 \cup C_2)$ e $C_1 \cup C_2 \subseteq B$. Portanto, o número de elementos de A, que é o que queremos calcular, verifica que $n(A) = n(B) - n(C_1 \cup C_2)$.

Obtenção de n(B): Temos que n(B) é igual ao número de soluções inteiras não negativas da equação $x_1^* + x_2^* + x_3 + x_4 = 18$ com $x_1^* = x_1 - 1 \ge 0$, $x_2^* = x_2 - 1 \ge 0$, $x_3 \ge 0$ e $x_4 \ge 0$, que corresponde a $CR_4^{18} = C(18 + 4 - 1, 18) = C(21, 18) = 1330$. Isto é, n(B) = 1330. Obtenção de $n(C_1 \cup C_2)$: Pelo princípio de inclusão e exclusão, sabemos que:

$$n(C_1 \cup C_2) = n(C_1) + n(C_2) - n(C_1 \cap C_2).$$

O número de elementos de $n(C_1)$ é igual ao número de soluções inteiras não negativas da equação $x_1^* + x_2^* + x_3 + x_4 = 12$ com $x_1^* = x_1 - 7 \ge 0$, $x_2^* = x_2 - 1 \ge 0$, $x_3 \ge 0$ e $x_4 \ge 0$, que é dado por $CR_4^{12} = C(12 + 4 - 1, 12) = C(15, 12) = 455$. Isto é, $n(C_1) = 445$. Usando o mesmo raciocínio para calcular $n(C_2)$, obtemos que $n(C_2) = CR_4^{11} = C(11 + 4 - 1, 11) = C(14, 11) = 364$. Como $n(C_1 \cap C_2)$ corresponde às soluções inteiras não negativas de $x_1^* + x_2^* + x_3 + x_4 = 5$ com $x_1^* = x_1 - 7 \ge 0$, $x_2^* = x_2 - 8 \ge 0$, $x_3 \ge 0$ e $x_4 \ge 0$, resulta $n(C_1 \cap C_2) = CR_4^5 = C(8, 5) = 56$.

 $Logo, n(C_1 \cup C_2) = 455 + 364 - 56 = 763.$

Portanto, n(A) = 1330 - 763 = 567 que é o queriamos calcular.

(iii)
$$1 \le x_1 \le 6$$
, $1 \le x_2 \le 7$, $1 \le x_3 \le 8$, $1 \le x_4 \le 9$.

Resposta: Para o desenvolvimento deste ítem é usado o mesmo raciocínio da parte (ii).

Consideramos o conjunto universo da parte (i). Definimos os seguintes conjuntos:

$$A = \{(x_1, x_2, x_3, x_4) \in U \mid 1 \le x_1 \le 6, 1 \le x_2 \le 7, 1 \le x_3 \le 8, 1 \le 8,$$

```
\begin{aligned} x_4 &\leq 9 \}, \\ B &= \{ (x_1, x_2, x_3, x_4) \in U \mid x_1 \geq 1, \ x_2 \geq 1, x_3 \geq 1, x_4 \geq 1 \}, \\ C_1 &= \{ (x_1, x_2, x_3, x_4) \in U \mid x_1 \geq 7, \ x_2 \geq 1, x_3 \geq 1, x_4 \geq 1 \}, \\ C_2 &= \{ (x_1, x_2, x_3, x_4) \in U \mid x_1 \geq 1, x_2 \geq 8, x_3 \geq 1, x_4 \geq 1 \}, \\ C_3 &= \{ (x_1, x_2, x_3, x_4) \in U \mid x_1 \geq 1, x_2 \geq 1, x_3 \geq 9, x_4 \geq 1 \}, \\ C_4 &= \{ (x_1, x_2, x_3, x_4) \in U \mid x_1 \geq 1, x_2 \geq 1, x_3 \geq 1, x_4 \geq 10 \}. \end{aligned} Temos que A = B - (C_1 \cup C_2 \cup C_3 \cup C_4), sendo C_1 \cup C_2 \cup C_3 \cup C_4 \subseteq B. Portanto, n(A) = n(B) - n(C_1 \cup C_2 \cup C_3 \cup C_4). Pelo princípio de inclusão e exlusão temos que: n(C_1 \cup C_2 \cup C_3 \cup C_4) = n(C_1) + n(C_2) + n(C_3) + n(C_4) - [n(C_1 \cap C_2) + n(C_1 \cap C_3) + n(C_1 \cap C_4) + n(C_2 \cap C_3) + n(C_1 \cap C_2 \cup C_3) + n(C_1 \cup C_2 \cup C_
```

Logo, resta calcular cada somando da igualdade acima. Continue com o desenvolvimento.