STAT 2006 Assignment 3

Due Time and Date: 5 p.m., 23 April, 2020

1. Let X_1, X_2, \dots, X_n be a random sample from $N(\mu, \sigma^2)$, then the pivotal quantity $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$, and we can make use of its quantiles a, b to construct a $100(1-\alpha)\%$ confidence interval for σ . The quantiles a, b need to satisfy the constraint

$$G(b) - G(a) = Pr\left\{a \le \frac{(n-1)S^2}{\sigma^2} \le b\right\} = 1 - \alpha$$

where G is the CDF of $\chi^2(n-1)$. Obviously there are many possible choices for a and b.

- (a) Construct the $100(1-\alpha)\%$ confidence interval for σ in terms of the quantiles a,b defined above. Let k be the length of the confidence interval. Express k in terms of n, s^2, a and b.
- (b) Show that the k is minimized when a, b also satisfy

$$a^{\frac{n}{2}}e^{-\frac{a}{2}} - b^{\frac{n}{2}}e^{-\frac{b}{2}} = 0.$$

Combining with the constraint above, we can numerically solve for the optimal pair of quantiles a, b to minimize the length of the confidence interval.

- 2. It is reported that in a telephone poll of 2000 adult, 1325 of them are nonsmokers. Also, $y_1 = 650$ of nonsmokers and $y_2 = 425$ of smokers said yes to a particular question. Let p_1, p_2 equal the proportions of nonsmokers and smokers that would say yes to this question respectively
 - (a) Find a two-sided 95% confidence interval for $p_1 p_2$.
 - (b) Find a two-sided 95% confidence interval for p, the proportion of adult who would say yes to this question.
- 3. Let Y be Binomial(50, p). To test $H_0: p = 0.08$ against $H_1: p < 0.08$, we reject H_0 if and only if $Y \le 7$.
 - (a) Determine the significance level α of the test
 - (b) Calculate the value of the power function if in fact p = 0.05.
- 4. The mean birth weight in the United States is $\mu = 3320$ grams, with a standard deviation of $\sigma = 580$. Let X equal the birth weight in Rwanda. Assume that the distribution of X is $N(\mu, \sigma^2)$. We shall test the hypothesis $H_0: \sigma = 580$ against the alternative hypothesis $H_1: \sigma < 580$ at an $\alpha = 0.05$ significance level.
 - (a) What is your decision if a random sample of size n=81 yields $\bar{X}=2989$ and s=516?
 - (b) What is the approximate *p*-value of this test?
- 5. Assume that IQ scores for a certain population are approximately $N(\mu, 100)$. To test

$$H_0: \mu = 110$$
 against $H_1: \mu > 110$

we take random sample of size n=16 from this population and observe $\bar{X}=114$

- (a) Do we accept or reject H_0 at the 1% significance level?
- (b) Do we accept or reject H_0 at the 5% significance level?
- (c) What is the p-value of this test?

6. The following text was shown to a large class of students for 30 seconds, and they were told to report the number of F's that they found:

IN FINANCIAL TRANSACTIONS, SIMPLE INTEREST IS OFTEN USED FOR FRACTIONS OF AN INTEREST PERIOD FOR CONVENIENCE.

Let p equal the proportion of students who find 6F's. We shall test the null hypothesis

$$H_0: p = 0.5$$
 against $H_1: p < 0.5$

- (a) Given a sample size of n=230, define a critical region with an approximate significance level of $\alpha=0.05$.
- (b) If y = 110 students report that they found 6F's, what is your conclusion?
- (c) what is the *p*-value of this test?
- 7. In 1000 tosses of a coin, 560 heads and 440 tails appear. Using direct calculation or normal approximation, test whether the coin is fair, at the 5% significance level.
- 8. For a random sample X_1, \dots, X_n of Bernoulli(p) variables, it is desired to test

$$H_0: p = 0.49$$
 against $H_1: p = 0.51$

Use the Central Limit Theorem to determine, approximately, the sample size needed so that the two probabilities of error are both about 0.01. Use a test function that rejects H_0 if $\sum_{i=1}^{n} X_i$ is large. Find the critical value as well.

9. Let X_1, \dots, X_n be a random sample from the uniform distribution on $(\theta, \theta + 1)$. To test $H_0: \theta = 0$ versus $H_1: \theta > 0$, use the test

reject
$$H_0$$
 if $Y_n \ge 1$ or $Y_1 \ge k$,

where k is a constant, $Y_1 = \min\{X_1, \dots, X_n\}, Y_n = \max\{X_1, \dots, X_n\}$. Determine k, in terms of n and α , so that the test would have significance level α .

10. In a given city it is assumed that the number of automobile accidents in a given year follows a Poisson distribution. In past years the average number of accidents per year was 15, and this year it was 10. Test whether the accident rate has dropped, at the 5% significance level.