Reactive flux molecular dynamics in Haloalkane Dehalogenase enzyme

reunió de grup 17 de març de 2004

Dynamics of an Enzymatic Substitution Reaction in Haloalkane Dehalogenase

Kwangho Nam, Xavier Prat-Resina, Mireia Garcia-Viloca, Lakshmi S. Devi-Kesavan, and Jiali Gao*

Seminari Gener 2003: CHARMM

- -explicar el model QM/MM
- -El mètode MD i càlcul de PMF sobre l'enzim DHase

Avui: Contribució d'efectes dinàmics a la catàlisi

- -TST i les diferents contribucions
- -Sistemes enzimàtics i aquós: càlcul de PMF
- -Càlcul de la constant de recreuament
- -Friction Kernel i Power spectra (anàlisi de les funcions d'autocorrelació de la força)

VTST

$$k = \gamma \frac{k_B T}{h} e^{-(\Delta G \neq /k_B T)} = \gamma kTST$$

$$\gamma(T) = \kappa(T) \Gamma(T) g(T)$$

 ΔG : efectes termodinàmics

 $\Gamma(T)$: efectes dinàmics

La coordenada de reacció no és única i ha de ser consitent amb ΔG i $\gamma(T)$

Es tracta de fer un càlcul de $\Gamma(t)$ per la reacció en l'enzim i en aigua i analitzar les diferències entre els dos sistemes

Enzim Haloalcano Deshalogenasa

La reacció amb aigua només considera aquests dos components de la reacció. És únic el sistema aquós?

En l'enzim el model QM/MM es construeix amb 15 àtoms QM(AM1-SRP)-GHO + 29511 àtoms MM (CHARMM) PBC (caixa de 65 A)

En el sistema aquós el model QM/MM es construeix amb 15 àtoms QM(AM1-SRP) + 1679 aigües PBC (caixa de 36.8 A)

Friction Kernel

Introducció: TST

Càlcul de PMF: barrera termodinàmica

DHase i Aigua

$$q_{as} = \frac{1}{m_{Cl} + m_O} (m_{Cl} R_{CCl} - m_O R_{OC})$$

Molts estudis analitzen la diferència en ΔG : Anàlisi electrostàtic, ponts d'hydrogen, NAC-effect, solvent effect... Càlcul de la constant de recreuament: EA-VTST (charmm-rate)

$$\gamma(\mathsf{T}) = \langle \kappa_i(\mathsf{T}) \Gamma_i(\mathsf{T}) \rangle$$

Càlcul de la constant de recreuament: reactive flux MD

DHase i Aigua

$$k(t) = \frac{\left\langle v_{as} H[q_{as}(t) - q_{as}^{\neq}] \right\rangle_{\neq}}{1/2 \left\langle \left| v_{as}(0) \right| \right\rangle_{\neq}}$$

40 ps de simulació <u>restringida</u> en el TS

Cada 1 ps es guarden (q,v,v_{rx}) Tenim 40 estructures de les que iniciem 100 trajectòries lliures de 100 fs on la v_{rx} segueix una distribució de Boltz.

En total 4000 trajectòries

Càlcul de la constant de recreuament: reactive flux MD

DHase i Aigua

$$\kappa(t)=0.53$$
 per l'enzim $\kappa(t)=0.26$ en aigua

L'enzim accelera un factor de 2 que són 0.5 kcal/mol en termes de barrera

Friction kernel: estudi dels efectes de solvent

$$\eta(t) = \frac{1}{\mu k_B T} \langle \delta F(t) \delta F(0) \rangle$$

F(t)=-dV/dq_{as} indica la barrera instantània

 $\langle F(t) \rangle = 0$ La simulació es fa en el TS durant 200 ps **constringint** la coordenada de reacció

δF(t): fluctuació de la força (random force) La funció d'autocorrelació dona la resposta del solvent al moviments de la coordenada de la reacció

Friction kernel: funcions d'autocorrelació de δF

Aigua: relaxació lenta degut a la reorganització del solvent Enzim: oscil.lació ràpida pels MNV intramoleculars

Friction kernel: funcions d'autocorrelació de δF

En el cas de l'enzim la fluctuació de la força i de la distància O – C estan molt acoblades

Friction kernel: Transformada de Fourier de les ACF (Power spectra)

Enzim:

les frequències intramoleculars (altes frequencies)

Això crea un "canal" per a la transferència (relaxació) d'energia i la creació de la barrera instantà.

Tot i que hi 1-

Tot i que hi ha contribucions de les fluctuacions del moviment dinàmic de la proteina

Aigua:

les freqüències intramoleculars no acompanyen tant a la reacció i les interaccions intermoleculars són més importants (electrostatic solvation effect)

Friction kernel: Dos experiments ficticis

- 1) Simulació del TS constringint les dues distàncies (stretching assimètric (q_{as}) i stretching simètric)
- 2) Eliminant la contribució electrostàtica de la proteina
- a la part QM (no hi ha polarització de la funció d'ona)

Moviments intramoleculars

....s'acabó