

COR-IS1702: COMPUTATIONAL THINKING WEEK 6: LINEAR DATA STRUCTURES

"Bad programmers worry about the code. Good programmers worry about data structures and their relationships." ~ Linus Torvalds

(06) Linear Data Structures Part 1: Abstract Data Types

Video (5mins): https://youtu.be/mLQbkVGdNKU

Road Map

Algorithm Design and Analysis

(Weeks 1 - 5)

Fundamental Data Structures

This week

Week 6: Linear data structures (stack, queue)

- ♦ Week 7: Hierarchical data structure (binary tree)
- → Week 9: Networked data structure (graph)

Computational Intractability and Heuristic Reasoning

(Weeks 10 - 13)

Learning Outcomes

◆ Understand the operations of linear data structures, including stacks, queues, and priority queues

→ Able to apply the appropriate linear data structure in different application contexts

Abstract Data Types (ADT)

Modeling data structures by what they do, not how they do it

- → Abstraction
- → Data Structures:
 - ❖ Linear
 - Hierarchical
 - Networked

Collections of Data Objects

- → In everyday life we often encounter collections
 - course catalog collection of course descriptions
 - car lot collection of cars
- Mathematicians also work with collections
 - matrix
 - * sequence (e.g. 1, 1, 2, 3, 5, 8, ...)
- ◆ In computer science we make a collection by defining a "data structure" that includes references to other objects

Abstract Data Type

Abstract data type is a data type whose representation is hidden from the client.

Robert Sedgewick, "Algorithms," 4th edition, Pearson.

- → Defined by the operations that it support
- Not by the specific implementations

Advantage: Encapsulation

Figure 4-2 in Prichard and Carrano, "Data Abstraction & Problem Solving with Java", 3rd edition, Pearson.

The implementation may be complex, but clients do not need to know.

Advantage: Localization

Figure 4-2 in Prichard and Carrano, "Data Abstraction & Problem Solving with Java", 3rd edition, Pearson.

Any change to the implementation should not affect existing clients.

Advantage: Flexibility

Information Systems

Figure 4-2 in Prichard and Carrano, "Data Abstraction & Problem Solving with Java", 3rd edition, Pearson.

We can swap different implementations of the same ADT without affecting the client. Example SMU

Example: List

- ◆ Items in a list is ordered.
 - Each item except the last has a successor.
- → Operations:
 - creating a new list
 - inserting a new item into the list (at a specific position)
 - retrieving an item at a specific position in the list
 - removing an item at a specific position in the list
 - counting the number of items in the list

List in Python

- → We have been using lists in Python so far
- → Operations:
 - creating a new list a

- inserting a new item into the list a
 - ► a.append("item")
- ❖ inserting a new item into the list a at a specific position i

```
a.insert(i, "item2")
```

- retrieving an item at a specific position i in the list a
 - ► a[i]
- removing an item at a specific position i in the list a
 - ► del a[i]
- counting the number of items in the list
 - ► len(a)

What We Will Cover in the Second Module

Fundamental Data Structures

- ♦ Week 6: Linear data structures (stack, queue, priority queue)
- → Week 7: Hierarchical data structure (binary tree)
- → Week 9: Networked data structure (graph)
- ♦ Week 10: Graph Algorithms

References

- → Indexed data structures: hash tables
 - Not covered in the course, but you are encouraged to read
- → Handout prepared by instruction team
 - Linear data structures: stacks, queues, priority queues
 - Hierarchical data structure: binary trees
 - Networked data structure: graphs

