E15 Deep Learning (C++/Python)

18340013 Conghao Chen

December 22, 2020

Contents

1	The	e CIFAR-10 dataset	2
2	Convolutional Neural Networks (CNNs / ConvNets)		
	2.1	Architecture Overview	2
	2.2	Layers used to build ConvNets	3
		2.2.1 Convolutional Layer	4
		2.2.2 Pooling Layer	6
3	Dee	ep Learning Softwares	7
4	Tas	sks	7
5	Coc	odes and Results	
	5.1	Codes	8
	5.2	Results	9

1 The CIFAR-10 dataset

The CIFAR-10 dataset (http://www.cs.toronto.edu/~kriz/cifar.html) consists of 60000 32 × 32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images from each class. Here are the classes in the dataset, as well as 10 random images from each:

The classes are completely mutually exclusive. There is no overlap between automobiles and trucks. "Automobile" includes sedans, SUVs, things of that sort. "Truck" includes only big trucks. Neither includes pickup trucks.

2 Convolutional Neural Networks (CNNs / ConvNets)

Chinese version: https://www.zybuluo.com/hanbingtao/note/485480

English version: http://cs231n.github.io/convolutional-networks/#layers

2.1 Architecture Overview

Regular Neural Nets don't scale well to full images. In CIFAR-10, images are only of size $32 \times 32 \times 3$ (32 wide, 32 high, 3 color channels), so a single fully-connected neuron in a first hidden layer of a regular Neural Network would have 32 * 32 * 3 = 3072 weights. This amount still seems manageable, but clearly this fully-connected structure does not scale to larger images. For example,

an image of more respectable size, e.g. $200 \times 200 \times 3$, would lead to neurons that have 200*200*3 = 120,000 weights. Moreover, we would almost certainly want to have several such neurons, so the parameters would add up quickly! Clearly, this full connectivity is wasteful and the huge number of parameters would quickly lead to overfitting.

Convolutional Neural Networks take advantage of the fact that the input consists of images and they constrain the architecture in a more sensible way. In particular, unlike a regular Neural Network, the layers of a ConvNet have neurons arranged in 3 dimensions: width, height, depth. (Note that the word depth here refers to the third dimension of an activation volume, not to the depth of a full Neural Network, which can refer to the total number of layers in a network.) For example, the input images in CIFAR-10 are an input volume of activations, and the volume has dimensions $32 \times 32 \times 3$ (width, height, depth respectively). As we will soon see, the neurons in a layer will only be connected to a small region of the layer before it, instead of all of the neurons in a fully-connected manner. Moreover, the final output layer would for CIFAR-10 have dimensions $1 \times 1 \times 10$, because by the end of the ConvNet architecture we will reduce the full image into a single vector of class scores, arranged along the depth dimension. Here is a visualization:

Left: A regular 3-layer Neural Network. Right: A ConvNet arranges its neurons in three dimensions (width, height, depth), as visualized in one of the layers. Every layer of a ConvNet transforms the 3D input volume to a 3D output volume of neuron activations. In this example, the red input layer holds the image, so its width and height would be the dimensions of the image, and the depth would be 3 (Red, Green, Blue channels).

2.2 Layers used to build ConvNets

A simple ConvNet is a sequence of layers, and every layer of a ConvNet transforms one volume of activations to another through a differentiable function. We use three main types of layers to build ConvNet architectures: Convolutional Layer, Pooling Layer, and Fully-Connected Layer (exactly as seen in regular Neural Networks). We will stack these layers to form a full ConvNet architecture.

Example Architecture: Overview. We will go into more details below, but a simple ConvNet for CIFAR-10 classification could have the architecture [INPUT - CONV - RELU - POOL - FC]. In more detail:

- INPUT $[32 \times 32 \times 3]$ will hold the raw pixel values of the image, in this case an image of width 32, height 32, and with three color channels R,G,B.
- CONV layer will compute the output of neurons that are connected to local regions in the input,
 each computing a dot product between their weights and a small region they are connected to
 in the input volume. This may result in volume such as [32 × 32 × 12] if we decided to use 12 filters.
- RELU layer will apply an elementwise activation function, such as the max(0, x) thresholding at zero. This leaves the size of the volume unchanged ([32 × 32 × 12]).
- POOL layer will perform a downsampling operation along the spatial dimensions (width, height), resulting in volume such as $[16 \times 16 \times 12]$.
- FC (i.e. fully-connected) layer will compute the class scores, resulting in volume of size [1 × 1 × 10], where each of the 10 numbers correspond to a class score, such as among the 10 categories of CIFAR-10. As with ordinary Neural Networks and as the name implies, each neuron in this layer will be connected to all the numbers in the previous volume.

2.2.1 Convolutional Layer

To summarize, the Conv Layer:

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S,

- the amount of zero padding P.
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:

$$- W_2 = (W_1 - F + 2P)/S + 1$$

$$-H_2 = (H_1 - F + 2P)/S + 1$$
 (i.e. width and height are computed equally by symmetry)

$$-D_2=K$$

- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

A common setting of the hyperparameters is F = 3, S = 1, P = 1. However, there are common conventions and rules of thumb that motivate these hyperparameters.

2.2.2 Pooling Layer

It is common to periodically insert a Pooling layer in-between successive Conv layers in a ConvNet architecture. Its function is to progressively reduce the spatial size of the representation to reduce the amount of parameters and computation in the network, and hence to also control over-fitting. The Pooling Layer operates independently on every depth slice of the input and resizes it spatially, using the \mathbf{MAX} operation. The most common form is a pooling layer with filters of size 2×2 applied with a stride of 2 downsamples every depth slice in the input by 2 along both width and height, discarding 75% of the activations. Every \mathbf{MAX} operation would in this case be taking a max over 4 numbers (little 2×2 region in some depth slice). The depth dimension remains unchanged. More generally, the pooling layer:

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires two hyperparameters:
 - their spatial extent F,
 - the stride S,
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:

$$- W_2 = (W_1 - F)/S + 1$$
$$- H_2 = (H_1 - F)/S + 1$$
$$- D_2 = D_1$$

- Introduces zero parameters since it computes a fixed function of the input
- For Pooling layers, it is not common to pad the input using zero-padding.

3 Deep Learning Softwares

4 Tasks

- 1. Given the data set in the first section, please implement a convolutional neural network to calculate the accuracy rate. The major steps involved are as follows:
 - (a) Reading the input image.
 - (b) Preparing filters.
 - (c) Conv layer: Convolving each filter with the input image.
 - (d) ReLU layer: Applying ReLU activation function on the feature maps (output of conv layer).
 - (e) Max Pooling layer: Applying the pooling operation on the output of ReLU layer.
 - (f) Stacking conv, ReLU, and max pooling layers

- 2. You can refer to the codes in cs231n. Don't use Keras, TensorFlow, PyTorch, Theano, Caffe, and other deep learning softwares.
- 3. Please submit a file named E15_YourNumber.rar, which should include the code files and the result pictures, and send it to ai_2020@foxmail.com

5 Codes and Results

5.1 Codes

本次实验是使用已经给出的代码,按照 TA 的提示进行修改,最终跑通了整个代码。 运行环境: Windows10+Anaconda+Python3.6(因为 Conda 内有 vs2015 的包所以很方便) 这里列出修改的地方:

• 将 cs231n 文件夹内的 __init__.py 的内容删除至空,重新创一个 Python 文件,命名为 result.py,放在与 cs231n 文件夹同级的地方,内容通过略微修改原来的 __init__.py 文件 得到:

result.py

```
from cs231n.data_utils import *
from cs231n.classifiers.cnn import *
from cs231n.solver import Solver
import matplotlib.pyplot as plt
data = get_CIFAR10_data()
[print(key, value.shape) for (key, value) in data.items()]
cnn = ThreeLayerConvNet(reg=1e-3)
solver = Solver(cnn, data,
                update_rule='adam',
                optim_config={
                  'learning_rate': 1e-3,
                1r_decay=0.95,
                num_epochs=50,
                batch_size=100,
                print_every=100)
solver.train()
print(solver.check_accuracy(data['X_train'], data['y_train']))
print(solver.check_accuracy(data['X_test'], data['y_test']))
fig = plt.figure()
ax = fig.add_subplot(111)
```

```
ax.set_xlabel("Iteration")
ax.set_ylabel("Loss")
ax.plot(solver.loss_history)
plt.show()
```

• 修改 data_utils.py 文件内的第 52 行导入训练集的路径(在此之前要用 bash 运行脚本获得训练集):

```
cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
```

• 剩下的就是安装没有的包,以及 cs231n 文件夹内的文件 import 时可能会出现报错,修改一下引用目录就好。

5.2 Results

运行时先切换到 cs231n 文件夹, 执行命令:

```
python setup.py build_ext --inplace
```

然后切换回上一层, 执行 python result.py 即可。结果如下:

```
(Epoch 50 / 50) train acc: 0.905000; val_acc: 0.640000 0.8560204081632653 0.652
```

