TGN: Temporal Graph Networks for Dynamic Graphs

Emanuele Rossi, Twitter

In collaboration with Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti and Michael Bronstein

Background

Graph Neural Networks are a Hot Topic in ML!

ICLR 2020 submissions keyword statistics

Plot: Pau Rodríguez López

Graphs are everywhere

Social Networks

Functional Networks

Molecules

Interaction Networks

From Images to Graphs

- Constant number of neighbors
- Fixed ordering of neighbors

- Different number of neighbors
- No ordering of neighbors

Graph Neural Networks

$$egin{aligned} \mathbf{m}_{ij} &= \mathrm{msg}(\mathbf{v}_i, \mathbf{v}_j, \mathbf{e}_{ij}), \ \mathbf{z}_i &= \sum_{j \in \mathcal{N}_i} h(\mathbf{m}_{ij}, \mathbf{v}_i) \end{aligned}$$

Problem: Many Graphs are Dynamic

Static vs Dynamic Graphs

Static Graph

Dynamic Graph

Why is Learning on Dynamic Graphs Different?

Model needs to:

- Support addition / deletion of node and edges, as well as feature changes
- Make *predictions* (eg. classify a node) at *any point in time*

Using a static model (on a dynamic graph) would mean:

- Inefficiency: computation is repeated each time we want to make a prediction
- Loss of information: Model is able to handle the latest snapshot of the graph, but not how the graph evolved

Dynamic Graphs

- Discrete-time dynamic graphs: sequence of snapshots
- Continuous-time dynamic graphs: sequence of timed-events

Discrete-time dynamic graphs

Learning on Dynamic Graphs

$$t_1 \le t_2 \le t_3 \le t_4 \le t_5 \le t_6 \le t_7$$

- Data is a sequence of ordered timed events (eg. edge addition)
- An epoch goes through the events in chronological order
- Model is trained self-supervised, predicting future edges using all information from previous edges

Model

TGN: Temporal Graph Networks

- Model for dynamic graphs is an encoder-decoder pair
- TGN is an encoder model which is able to generate **temporal node embeddings** $z_i(t) = f(i,t)$ for any node i and time t. Decoder is task-dependent, eg. MLP from two node embeddings to edge probability
- General theoretical framework, which consists of 5 different modules
- Generalizes existing models such as *Jodie*[1], *TGAT*[2] and DyRep[3]

Modules: Memory

- State (vector) for each node the model has seen so far
- Compressed representation of all past interactions of a node
- Analogous to RNN hidden state, for one for each node
- Not a parameter → updated also at test time
- Initialized at 0, it can handle new nodes (inductive)

Memory

Modules: Message Function

- **Given an interaction** (i, j), **computes messages** for the source and the destination
- Messages will be used to update the memory

$$egin{aligned} \mathbf{m}_i(t) &= \mathrm{msg}\left(\mathbf{s}_i(t^-), \mathbf{s}_j(t^-), t, \mathbf{e}_{ij}(t)
ight), \ \mathbf{m}_j(t) &= \mathrm{msg}\left(\mathbf{s}_j(t^-), \mathbf{s}_i(t^-), t, \mathbf{e}_{ij}(t)
ight) \end{aligned}$$

Messages

Modules: Memory Updater

- **Updates memory** using new messages

$$\mathbf{s}_i(t) = \mathrm{mem}\left(ar{\mathbf{m}}_i(t), \mathbf{s}_i(t^-)
ight)$$

Modules: (Graph) Embedding

- Computes the temporal embedding of a node (which can be then used for prediction) using the graph
- **Solves** the **staleness problem** (memory becoming out of date)

TGN: Overview

Learning TGN

- **Problem 1:** DTDGs can be seen as a sequence for each node, but the sequences are inter-dependent
 - We cannot use standard BPTT
 - Interactions need to be processed
- Solution: Process interactions according to a global chronological order

Learning TGN

- **Problem 2**: Memory-related modules do not directly influence the loss and therefore do not receive a gradient
 - The memory must be updated before predicting an interaction
 - However, updating the memory with the same interaction we then predict causes a leakage

- Solution:

- Update memory with messages from previous batches

Learning TGN - Diagram

Scalability

- Memory is not a parameter and we can just think of it as an additional feature vector for each node which we change over time
- Only memory for nodes involved in a batch is in GPU memory at any time
- Model is as scalable as GraphSage → Can scale to very large graphs (even if we don't show this in the paper)

Experiments

Experiments: Future Edge Prediction

	Wikipedia		Reddit		Twitter	
	Transductive	Inductive	Transductive	Inductive	Transductive	Inductive
GAE*	91.44 ± 0.1	†	93.23 ± 0.3	†		†
VAGE*	91.34 ± 0.3	†	92.92 ± 0.2	†		†
DeepWalk*	90.71 ± 0.6	†	83.10 ± 0.5	†	·	†
Node2Vec*	91.48 ± 0.3	†	84.58 ± 0.5	†		†
GAT^*	94.73 ± 0.2	91.27 ± 0.4	97.33 ± 0.2	95.37 ± 0.3	67.57 ± 0.4	62.32 ± 0.5
GraphSAGE*	93.56 ± 0.3	91.09 ± 0.3	97.65 ± 0.2	96.27 ± 0.2	65.79 ± 0.6	60.13 ± 0.6
CTDNE	92.17 ± 0.5	†	91.41 ± 0.3	†	_	†
Jodie	94.62 ± 0.5	93.11 ± 0.4	97.11 ± 0.3	94.36 ± 1.1	85.20 ± 2.4	79.83 ± 2.5
TGAT	95.34 ± 0.1	93.99 ± 0.3	98.12 ± 0.2	96.62 ± 0.3	70.02 ± 0.6	66.35 ± 0.8
DyRep	94.59 ± 0.2	92.05 ± 0.3	97.98 ± 0.1	95.68 ± 0.2	83.52 ± 3.0	78.38 ± 4.0
TGN-attn	98.46 ± 0.1	97.81 \pm 0.1	98.70 ± 0.1	97.55 \pm 0.1	94.52 ± 0.5	91.37 \pm 1.1

Experiments: Dynamic Node Classification

	Wikipedia	Reddit	
GAE*	74.85 ± 0.6	58.39 ± 0.5	
VAGE*	73.67 ± 0.8	57.98 ± 0.6	
GAT^*	82.34 ± 0.8	64.52 ± 0.5	
GraphSAGE*	82.42 ± 0.7	61.24 ± 0.6	
CTDNE	75.89 ± 0.5	59.43 ± 0.6	
JODIE	84.84 ± 1.2	61.83 ± 2.7	
TGAT	83.69 ± 0.7	65.56 ± 0.7	
DyRep	84.59 ± 2.2	62.91 ± 2.4	
TGN-attn	87.81 ± 0.3	67.06 ± 0.9	

Ablation Study

(Future edge prediction)

- Faster and more accurate than other approaches
- Memory (TGN-att vs TGN-no-mem) leads to a vast improvement in performance
- Embedding module is also extremely important (TGN-attn vs TGN-id) and graph attention performs best
- Last message aggregator, while discarding some information, performs extremely well while being very fast (TGN-attn vs TGN-mean)
- Using the memory makes it enough to have 1 graph attention layer

	Mem.	Mem. Updater	Embedding	Mess. Agg.	Mess. Func.
Jodie	node	RNN	time	†	id
TGAT	_	_	attn (21, 20n)*	_	_
DyRep	node	RNN	id	‡	attn $^{\parallel}$
TGN-attn	node	GRU	attn (11, 10n)	last	id
TGN-21	node	GRU	attn (21, 10n)	last	id
TGN-no-mem	_	_	attn (11, 10n)	_	_
TGN-time	node	GRU	time	last	id
TGN-id	node	GRU	id	last	id
TGN-sum	node	GRU	sum (11, 10n)	last	id
TGN-mean	node	GRU	attn (11, 10n)	mean	id

Future Work

- Benchmark datasets for dynamic graphs (see OGB)
- Time in ML: Improve how we use timestamp information in ML
- **Method Extensions:** *Global* (graph-wise) *memory, continuous models* (eg. neural ODEs) to model the memory evolution
- **Training Algorithm**: Coming up with an even *more efficient training algorithm* for dynamic graphs
- **Scalability**: Propose methods which scale better (possibly combining with literature on graph sampling, but not trivial)
- **Applications**: Twitter, biology (molecular pathways, cancer evolution), finance (transaction networks) and more?

Conclusion

- Dynamics graphs are very common, but have received little attention so far
- We propose **TGN**, which **generalizes existing models** and achieves **SOTA results** on a variety of benchmarks
- We design an efficient algorithm for training the memory-related modules
- The ablation study shows the importance of the different modules

Questions?

