

HELLO!

We are Project Teal

MEET THE PROJECT TEAL TEAM

Jenny
Fish
(1) Big Picture
(2) Background

Isha Angadi (3) Research

Adam Claudy (4) Model

Samiha Khan (5) Experiments

Sandeep Pvn (6) Code (8) Future Work

Mehar Chaturvedi (7) Results

WHAT'S THE BIG PICTURE?

Let's start with the high level overview

PROJECT OVERVIEW

- The goal is to build a model that accurately predicts malignant or benign tumors.
- Our Base Model is a research paper, which analyzed data to find out if someone is at serious risk of Ovarian Cancer based on their 49 biomarkers and non-biomarkers.
- We sought to improve the accuracy of the base model by tuning various hyperparameters.

BACKGROUND: OVARIAN CANCER Social Impact

21,000 Diagnoses 14,000 Deaths!

OVARIAN CANCER IMPACTS

- Often asymptomatic until later stages (25% detected at Stage I)
 - Diagnosed early 90% survival rate
- Later stages, very low survival rate
- CA125, HE4, CEA are common biomarkers associated with Ovarian Cancer
 - CA125 considered a gold standard biomarker
 - Current diagnosis algorithm ROMA test (based on CA125 and HE4)

RESEARCH

Ovarian Cancer Scientific Information

OVARIAN CANCER STUDY (PAPER)

"Using Machine Learning to Predict Ovarian Cancer" by Lu, Fan, et al. Published: International Journal of Medical Informatics

Aim:

To improve the accuracy of early diagnosis and detection of ovarian cancer using machine learning feature selection method — MRMR to build decision tree.

Data:

- 171 OC patients and 178 BOT patients, 49 features
- Train/Test split 235/114 values

Isha Angadi

"Using Machine Learning to Predict Ovarian Cancer" Process

OVARIAN CANCER STUDY (PAPER)

"Using Machine Learning to Predict Ovarian Cancer" by Lu, Fan, et al. Published: International Journal of Medical Informatics

Procedure:

- Handling missing data
- Using MRMR feature reduction,
- Building a decision tree model.
 - Performing cross validation.
 - Produce confusion matrix and accuracies.

Results:

CEA and HE4 have the most significant prediction power when it comes to the classification of ovarian cancer vs the benign ovarian tumors.

BUILDING OUR MODEL

Comparing Research Model with Our's

PROJECT PIPELINE

DATA PREPROCESSING

- Convert all feature columns into numeric form.
- Data is missing at random (MAR)
- Remove columns which exceed the specified missing rate tolerance. (25%, 50%)
 - **2 biomarkers removed** (CA72-4, NEU)
- Impute NAs with mean, median or mode.

Adam Claudy

SHOWING DATA SKEWNESS - MEAN VS MEDIAN

Features Histogram

FEATURE SELECTION

Why do we need feature selection?

- Base Model reduced features using Minimum Redundancy -Maximum Relevance (MRMR) (from 48 to 8).
- Experiment using all features to test if feature selection is required.

DECISION TREE MODEL

```
HE4 <= 91.235
                     entropy = 0.957
                      samples = 235
                     value = [146, 89]
                       class = OC
            CEA <= 3.12
                                 entropy = 0.0
          entropy = 0.926
                                samples = 100
           samples = 135
                                value = [100, 0]
          value = [46, 89]
                                  class = OC
            class = BOT
entropy = 0.801
                     entropy = 0.469
samples = 115
                      samples = 20
value = [28, 87]
                      value = [18, 2]
 class = BOT
                       class = OC
```

Hyperparameters

- Impurity Measure
 - Gini
 - Entropy
- Depth of tree

EXPERIMENTS

5

Samiha Khan

EXPERIMENT OUTPUTS

- Confusion Matrix
 - SpecificitySensitivity
 - PPV
 - NPV
- Overall Accuracy
 - F1 Score
- Mean Stratified Cross Validation Accuracy
 - Teal Score

PROJECT TEAL

Sandeep Pvn

CODE Metrics Insight and Code

CODE

Jupyter Notebook:

https://colab.research.google.com/drive/12dhDfeTJQj8N SfUnsfsw06HlpoqOjQcy#scrollTo=00rR7B5NwI2J

METRICS

Confusion Matrix

Pred	Actual lict	вот	ОС
вот	7	TP	FP
ОС		FN	TN

$$Precision = \frac{TP}{TP + FP}$$

$$Specificity = \frac{TN}{TN + FP}$$

Objective: To reduce FP

- We take 2 metrics, specificity and precision into account.
- We combine the metrics into one score, the Teal score.

$$Teal Score = \frac{1}{1 + \frac{FP}{2} \left[\frac{1}{TN} + \frac{1}{TP} \right]}$$

PROJECT TEAL

Mehar Chaturvedi

RESULTS Model Results

RESULTS

- Why Stratified k-cross validation is required?
- Feature selection
- Why Shuffling is required?
 - What do we mean by shuffling?
- Which impute method is better and why?

RESULTS : Confusion Matrix (Shuffle)

Before Shuffling: Paper

Actual Predicted	вот	ос
вот	80	0
ос	9	25

After Shuffling: Paper

Actual Predicted	вот	ос
вот	43	13
ОС	8	50

Before Shuffling: Teal

Actual Predicted	вот	ос
вот	76	0
ос	13	25

After Shuffling: Teal

Actual Predicted	вот	ос
вот	47	13
ос	4	50

RESULTS: Confusion Matrix (Impute Methods)

*After Stratified-K-Cross Validation and Shuffling

Mean

Actual Predicted	вот	ос
вот	47	13
ос	4	50

Median

Actual Predicted	вот	ос
вот	43	13
ОС	8	50

Mode

Actual Predicted	вот	ос
вот	45	16
ос	6	47

Actual Predicted	Mean	Median	Mode		
Teal Score	0.9798	0.9788	0.9787		
Precision	0.783	0.768	0.738		
Specificity	0.794	0.794	0.746		

RESULTS

							Positive	Negative				
					Sensitivity	16	Predictive	Predictive	F1		Teal	Tree
	TP =					Specificity =		Value =		Accuracy =		
Teal_MRMR_featuresginimean_	80	0		25	0.899	1.000	1.000	0.735	0.947	0.921	1.000	
Teal_MRMR_featuresginimeanstratified_k_cross	80	0	9	25	0.899	1.000	1.000	0.735	0.947	0.921	1.000	2
Teal_all_featuresginimean_	76	0	13	25	0.854	1.000	1.000	0.658	0.921	0.886	1.000	4
Teal_all_featuresginimeanstratified_k_cross	76	0	13	25	0.854	1.000	1.000	0.658	0.921	0.886	1.000	4
Teal_all_featuresentropymedian_	70	0	19	25	0.787	1.000	1.000	0.568	0.881	0.833	1.000	3
Teal_all_featuresentropymedianstratified_k_cross	70	0	19	25	0.787	1.000	1.000	0.568	0.881	0.833	1.000	3
Teal_MRMR_featuresentropymedian_	45	0	44	25	0.506	1.000	1.000	0.362	0.672	0.614	1.000	6
Teal_MRMR_featuresentropymedianstratified_k_cross	45	0	44	25	0.506	1.000	1.000	0.362	0.672	0.614	1.000	6
Teal_all_featuresginimode_	28	1	61	24	0.315	0.960	0.966	0.282	0.475	0.456	0.963	6
Teal_all_featuresginimodestratified_k_cross	28	1	61	24	0.315	0.960	0.966	0.282	0.475	0.456	0.963	6
Teal_MRMR_featuresentropymean_	81	2	8	23	0.910	0.920	0.976	0.742	0.942	0.912	0.947	2
Teal_MRMR_featuresentropymeanstratified_k_cross	81	2	8	23	0.910	0.920	0.976	0.742	0.942	0.912	0.947	2
Teal_all_featuresentropymean_	77	2	12	23	0.865	0.920	0.975	0.657	0.917	0.877	0.947	4
Teal_all_featuresentropymeanstratified_k_cross	77	2	12	23	0.865	0.920	0.975	0.657	0.917	0.877	0.947	4
Teal_MRMR_featuresginimedian_	66	2	23	23	0.742	0.920	0.971	0.500	0.841	0.781	0.945	1
Teal_all_featuresginimedian_	66	2	23	23	0.742	0.920	0.971	0.500	0.841	0.781	0.945	1
Teal_MRMR_featuresginimedianstratified_k_cross	66	2	23	23	0.742	0.920	0.971	0.500	0.841	0.781	0.945	1
Teal_all_featuresginimedianstratified_k_cross	66	2	23	23	0.742	0.920	0.971	0.500	0.841	0.781	0.945	1
Teal_MRMR_featuresginimode_	57	3	32	22	0.640	0.880	0.950	0.407	0.765	0.693	0.914	7
Teal_MRMR_featuresginimodestratified_k_cross	57	3	32	22	0.640	0.880	0.950	0.407	0.765	0.693	0.914	7
Teal_MRMR_featuresentropymode_	53	3	36	22	0.596	0.880	0.946	0.379	0.731	0.658	0.912	3
Teal_all_featuresentropymode_	53	3	36	22	0.596	0.880	0.946	0.379	0.731	0.658	0.912	3
Teal_MRMR_featuresentropymodestratified_k_cross	53	3	36	22	0.596	0.880	0.946	0.379	0.731	0.658	0.912	3
Teal_all_featuresentropymodestratified_k_cross	53	3	36	22	0.596	0.880	0.946	0.379	0.731	0.658	0.912	3
Teal_MRMR_featuresentropymeanshuffle	47	13	4	50	0.922	0.794	0.783	0.926	0.847	0.851	0.788	2

RESULTS METRICS

PAPER

Experiment = Teal_MRMR_features__gini__mean_

						Sensitivity			Negative Predictive	F1		Teal	Tree
TP	Ŧ	FP =	FN =		TN =	(Recall) =	Specificity =	Value =	Value =	score =	Accuracy =	score =	depth \Xi
	80	0		9	25	0.899	1.000	1.000	0.735	0.947	0.921	1.000	2
	81	2		8	23	0.910	0.920	0.976	0.742	0.942	0.912	0.947	2

TEAL

Teal_MRMR_features__entropy__mean__stratified_k_cross

DECISION TREE COMPARISON

PAPER TEAL

 The tree achieves the best mean cross-validation accuracy 87.65957 +/-4.73852
 % on training dataset

CONFUSION MATRIX COMPARISON

PAPER TEAL

FUTURE WORK

Neural Networks

FUTURE WORK AND SUGGESTIONS

- **Customization:** run the model on any generalized data set
 - implement customizing imputing techniques for each column
 - Try to obtain and use genetic data
- Gini vs. Entropy
- **Grid search:** Increase code efficiency and compute the optimum values of hyperparameters.
- **Neural Network:** Running the model through a neural network to improve the accuracies.
- Analyse and predict if and when BOT converts to OC
 - Change is system. Need Time Series Data

FUTURE WORK AND SUGGESTIONS

01	Customization	 Run the model on any generalized set Implement customizing imputing techniques for each column 	
02	Genetic Data	Try to obtain and use genetic dat	a
03	Grid search & Pipelining	 Increase code efficiency and community the optimum values of hyperparameters. Use pipelining to speed up 	npute
04	Neural Network	Running the model through a neu- network to improve the accuracies	
05	BOT to OC	 Analyse and predict if and when to converts to OC Change is system. Need Time Separate 	

QUESTIONS FOR PROF. PREM

QUESTIONS FOR REFLECTION

- When we shuffle our data, it is making a very big difference Why does shuffling makes such a big difference with our results?
- Why is mean giving a better result than median and mode?

THANKS

Any questions?

SOURCES

Lu, M., Fan, Z., Xu, B., Chen, L., Zheng, X., Li, J., Znati, T., Mi, Q. and Jiang, J., 2021. Using machine learning to predict ovarian cancer.
https://www.sciencedirect.com/science/article/pii/S138650

https://www.sciencedirect.com/science/article/pii/S138650 5620302781