Package 'robregcc'

October 14, 2022

Type Package
Title Robust Regression with Compositional Covariates
Version 1.1
Date 2020-10-10
Maintainer Aditya Mishra <amishra@flatironinstitute.org></amishra@flatironinstitute.org>
Description We implement the algorithm estimating the parameters of the robust regression model with compositional covariates. The model simultaneously treats outliers and provides reliable parameter estimates. Publication reference: Mishra, A., Mueller, C.,(2019) <arxiv:1909.04990>.</arxiv:1909.04990>
URL https://arxiv.org/abs/1909.04990,
https://github.com/amishra-stats/robregcc
Depends R ($>= 3.5.0$), stats, utils
License GPL (>= 3.0)
LazyData true
Imports Rcpp (>= 0.12.0), MASS, magrittr, graphics
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
RoxygenNote 7.1.1
Encoding UTF-8
Author Aditya Mishra [aut, cre], Christian Muller [ctb]
Repository CRAN
Date/Publication 2020-07-25 20:20:03 UTC
R topics documented:
classo

2 classo

Index																			23
	simulate_robregcc	 	• •	 	٠	 •	 •	 ٠	•	 •	•	•	 •	•	•	•	•	•	22
	robregcc_sp																		
	robregcc_sim																		
	robregcc_option .	 		 															15
	residuals																		
	plot_resid	 		 															11
	plot_path	 		 															10
	plot_cv	 		 															8
	cpsc_sp	 		 															6

covariates using method suggested by Pixu shi.

Description

The model uses scaled lasoo approach for model selection.

Usage

```
classo(Xt, y, C, we = NULL, type = 1, control = list())
```

Arguments

Xt	CLR transformed predictor matrix.
у	model response vector
С	sub-compositional matrix
we	specify weight of model parameter
type	1/2 for 11 / 12 loss in the model
control	a list of internal parameters controlling the model fitting

Value

beta model parameter estimate

References

Shi, P., Zhang, A. and Li, H., 2016. Regression analysis for microbiome compositional data. The Annals of Applied Statistics, 10(2), pp.1019-1040.

classo_path 3

Examples

```
library(robregcc)
library(magrittr)
data(simulate_robregcc)
X <- simulate_robregcc$X;</pre>
y <- simulate_robregcc$y</pre>
C <- simulate_robregcc$C</pre>
n \leftarrow nrow(X); p \leftarrow ncol(X); k \leftarrow nrow(C)
# Predictor transformation due to compositional constraint:
Xt <- cbind(1,X)
                           # accounting for intercept in predictor
C \leftarrow cbind(0,C)
                             # accounting for intercept in constraint
bw <- c(0,rep(1,p))</pre>
                             # weight matrix to not penalize intercept
# Non-robust regression, [Pixu Shi 2016]
control <- robregcc_option(maxiter = 5000, tol = 1e-7, lminfac = 1e-12)</pre>
fit.nr <- classo(Xt, y, C, we = bw, type = 1, control = control)
```

classo_path

Compute solution path of constrained lasso.

Description

The model uses scaled lasoo approach for model selection.

Usage

```
classo_path(Xt, y, C, we = NULL, control = list())
```

Arguments

Xt	CLR transformed	predictor matrix.
----	-----------------	-------------------

y model response vector
C sub-compositional matrix

we specify weight of model parameter

control a list of internal parameters controlling the model fitting

Value

betapath solution path estimate
beta model parameter estimate

4 coef_cc

Examples

```
library(robregcc)
library(magrittr)
data(simulate_robregcc)
X <- simulate_robregcc$X;</pre>
y <- simulate_robregcc$y</pre>
C <- simulate_robregcc$C</pre>
n \leftarrow nrow(X); p \leftarrow ncol(X); k \leftarrow nrow(C)
Xt <- cbind(1,X)</pre>
                                              # accounting for intercept in predictor
C <- cbind(0,C)
                                               # accounting for intercept in constraint
                                               # weight matrix to not penalize intercept
bw <- c(0, rep(1,p))
# Non-robust regression
control <- robregcc_option(maxiter = 5000, tol = 1e-7, lminfac = 1e-12)</pre>
fit.path <- classo_path(Xt, y, C, we = bw, control = control)
```

coef_cc

Extract coefficients estimate from the sparse version of the robregcc fitted object.

Description

S3 methods extracting estimated coefficients for objects generated by robregcc. Robust coeffcient estimate.

Usage

```
coef_cc(object, type = 0, s = 0)
```

Arguments

object Generated by robregcc.

type 0/1 residual estimate before/after sanity check

s 0/1 no/yes 1se rule

Value

coefficient estimate

coef_cc 5

```
library(magrittr)
library(robregcc)
data(simulate_robregcc)
X <- simulate_robregcc$X;</pre>
y <- simulate_robregcc$y</pre>
C <- simulate_robregcc$C</pre>
n \leftarrow nrow(X); p \leftarrow ncol(X); k \leftarrow nrow(C)
Xt \leftarrow cbind(1,X)
                                          # accounting for intercept in predictor
C <- cbind(0,C)
                                           # accounting for intercept in constraint
                                           # weight matrix to not penalize intercept
bw <- c(0, rep(1, p))
example_seed <- 2*p+1
set.seed(example_seed)
# Breakdown point for tukey Bisquare loss function
b1 = 0.5
                             # 50% breakdown point
cc1 = 1.567
                             # corresponding model parameter
b1 = 0.25; cc1 = 2.937
# Initialization [PSC analysis for compositional data]
control <- robregcc_option(maxiter=1000,tol = 1e-4,lminfac = 1e-7)</pre>
fit.init \leftarrow cpsc_sp(Xt, y,alp = 0.4, cfac = 2, b1 = b1,
cc1 = cc1, C, bw, 1, control)
## Robust model fitting
# control parameters
control <- robregcc_option()</pre>
beta.wt <- fit.init$betaR</pre>
                             # Set weight for model parameter beta
beta.wt[1] <- 0
control\$gamma = 1
                              # gamma for constructing weighted penalty
control\$spb = 40/p
                              # fraction of maximum non-zero model parameter beta
control$outMiter = 1000
                             # Outer loop iteration
control$inMiter = 3000
                             # Inner loop iteration
control$nlam = 50
                              # Number of tuning parameter lambda to be explored
# Parameter for constructing sequence of lambda
control$lminfac = 1e-8
                             # Parameter for constructing sequence of lambda
control$tol = 1e-20;
                             # tolrence parameter for converging [inner loop]
control$out.tol = 1e-16
                             # tolerence parameter for convergence [outer loop]
control$kfold = 10
                              # number of fold of crossvalidation
control sigmafac = 2#1.345
# Robust regression using adaptive lasso penalty
fit.ada <- robregcc_sp(Xt,y,C,
                       beta.init = beta.wt, cindex = 1,
                       gamma.init = fit.init$residuals,
                       control = control,
                       penalty.index = 1, alpha = 0.95)
```

6 cpsc_sp

```
# Robust regression using lasso penalty [Huber equivalent]
fit.soft <- robregcc_sp(Xt,y,C, cindex = 1,</pre>
                        control = control, penalty.index = 2,
                        alpha = 0.95)
# Robust regression using hard thresholding penalty
control$lmaxfac = 1e2
                                     # Parameter for constructing sequence of lambda
control$lminfac = 1e-3
                                     # Parameter for constructing sequence of lambda
control$sigmafac = 2#1.345
fit.hard <- robregcc_sp(Xt,y,C, beta.init = fit.init$betaf,</pre>
                        gamma.init = fit.init$residuals,
                        cindex = 1,
                        control = control, penalty.index = 3,
                        alpha = 0.95)
coef_cc(fit.ada)
coef_cc(fit.soft)
coef_cc(fit.hard)
```

cpsc_sp

Principal sensitivity component analysis with compositional covariates in sparse setting.

Description

Produce model and its residual estimate based on PCS analysis.

Usage

```
cpsc_sp(
    X0,
    y0,
    alp = 0.4,
    cfac = 2,
    b1 = 0.25,
    cc1 = 2.937,
    C = NULL,
    we,
    type,
    control = list()
)
```

cpsc_sp 7

Arguments

X0	CLR transformed predictor matrix.
y0	model response vector
alp	(0,0.5) fraction of data sample to be removed to generate subsample
cfac	initial value of shift parameter for weight construction/initialization
b1	tukey bisquare function parameter producing desired breakdown point
cc1	tukey bisquare function parameter producing desired breakdown point
С	sub-compositional matrix
we	penalization index for model parameters beta
type	1/2 for 11 / 12 loss in the model
control	a list of internal parameters controlling the model fitting

Value

betaf TModel parameter estimate

residuals residual estimate

References

Mishra, A., Mueller, C.,(2019) *Robust regression with compositional covariates. In prepration.* arXiv:1909.04990.

```
library(robregcc)
library(magrittr)
data(simulate_robregcc)
X <- simulate_robregcc$X;</pre>
y <- simulate_robregcc$y</pre>
C <- simulate_robregcc$C</pre>
n \leftarrow nrow(X); p \leftarrow ncol(X); k \leftarrow nrow(C)
Xt <- cbind(1,X) # include intercept in predictor</pre>
C \leftarrow cbind(0,C) # include intercept in constraint
bw <- c(0,rep(1,p)) # weights not penalize intercept
example_seed <- 2*p+1
set.seed(example_seed)
# Breakdown point for tukey Bisquare loss function
b1 = 0.5
                              # 50% breakdown point
cc1 = 1.567
                              # corresponding model parameter
b1 = 0.25; cc1 = 2.937
```

8 plot_cv

```
# Initialization [PSC analysis for compositional data]
control <- robregcc_option(maxiter = 1000,
   tol = 1e-4,lminfac = 1e-7)
fit.init <- cpsc_sp(Xt, y,alp = 0.4, cfac = 2, b1 = b1,
cc1 = cc1,C,bw,1,control)</pre>
```

plot_cv

Plot cross-validation error plot

Description

S3 methods plotting crossvalidation error using the object obtained from robregcc.

Usage

```
plot_cv(object)
```

Arguments

object

robregcc fitted onject

Value

generate cv error plot

```
library(magrittr)
library(robregcc)
data(simulate_robregcc)
X <- simulate_robregcc$X;</pre>
y <- simulate_robregcc$y</pre>
C <- simulate_robregcc$C</pre>
n \leftarrow nrow(X); p \leftarrow ncol(X); k \leftarrow nrow(C)
Xt \leftarrow cbind(1,X)
                                             # accounting for intercept in predictor
C <- cbind(0,C)</pre>
                                              # accounting for intercept in constraint
bw <- c(0, rep(1,p))
                                              # weight matrix to not penalize intercept
example_seed <- 2*p+1
set.seed(example_seed)
# Breakdown point for tukey Bisquare loss function
b1 = 0.5
                               # 50% breakdown point
cc1 = 1.567
                               # corresponding model parameter
b1 = 0.25; cc1 = 2.937
```

plot_cv 9

```
# Initialization [PSC analysis for compositional data]
control <- robregcc_option(maxiter=1000,tol = 1e-4,lminfac = 1e-7)</pre>
fit.init \leftarrow cpsc_sp(Xt, y,alp = 0.4, cfac = 2, b1 = b1,
cc1 = cc1, C, bw, 1, control)
## Robust model fitting
# control parameters
control <- robregcc_option()</pre>
beta.wt <- fit.init$betaR</pre>
                             # Set weight for model parameter beta
beta.wt[1] <- 0
control$gamma = 1
                             # gamma for constructing weighted penalty
control\$spb = 40/p
                             # fraction of maximum non-zero model parameter beta
control$outMiter = 1000
                             # Outer loop iteration
control$inMiter = 3000
                             # Inner loop iteration
control$nlam = 50
                             # Number of tuning parameter lambda to be explored
# Parameter for constructing sequence of lambda
control$lminfac = 1e-8
                           # Parameter for constructing sequence of lambda
control$tol = 1e-20;
                           # tolrence parameter for converging [inner loop]
control$out.tol = 1e-16
                           # tolerence parameter for convergence [outer loop]
control$kfold = 10
                             # number of fold of crossvalidation
control$sigmafac = 2#1.345
# Robust regression using adaptive lasso penalty
fit.ada <- robregcc_sp(Xt,y,C,</pre>
                       beta.init = beta.wt, cindex = 1,
                       gamma.init = fit.init$residuals,
                       control = control,
                       penalty.index = 1, alpha = 0.95)
# Robust regression using lasso penalty [Huber equivalent]
fit.soft <- robregcc_sp(Xt,y,C, cindex = 1,</pre>
                        control = control, penalty.index = 2,
                        alpha = 0.95)
# Robust regression using hard thresholding penalty
control$lmaxfac = 1e2
                                    # Parameter for constructing sequence of lambda
control$lminfac = 1e-3
                                    # Parameter for constructing sequence of lambda
control sigmafac = 2#1.345
fit.hard <- robregcc_sp(Xt,y,C, beta.init = fit.init$betaf,</pre>
                        gamma.init = fit.init$residuals,
                        cindex = 1,
                        control = control, penalty.index = 3,
                        alpha = 0.95)
plot_cv(fit.ada)
plot_cv(fit.soft)
plot_cv(fit.hard)
```

10 plot_path

plot_path

Plot solution path at different value of lambda

Description

S3 methods plotting solution path of model parameter and mean shift using the object obtained from robregcc.

Usage

```
plot_path(object, ptype = 0)
```

Arguments

object Generated by robregcc.

ptype path type 0/1 for Gamma/Beta path respectively

Value

plot solution path

```
library(magrittr)
library(robregcc)
data(simulate_robregcc)
X <- simulate_robregcc$X;</pre>
y <- simulate_robregcc$y</pre>
C <- simulate_robregcc$C</pre>
n \leftarrow nrow(X); p \leftarrow ncol(X); k \leftarrow nrow(C)
Xt <- cbind(1,X)</pre>
                                             # accounting for intercept in predictor
C <- cbind(0,C)
                                              # accounting for intercept in constraint
bw <- c(0, rep(1, p))
                                              # weight matrix to not penalize intercept
example_seed <- 2*p+1
set.seed(example_seed)
# Breakdown point for tukey Bisquare loss function
                             # 50% breakdown point
b1 = 0.5
cc1 = 1.567
                              # corresponding model parameter
b1 = 0.25; cc1 = 2.937
# Initialization [PSC analysis for compositional data]
control <- robregcc_option(maxiter=1000,tol = 1e-4,lminfac = 1e-7)</pre>
fit.init \leftarrow cpsc_sp(Xt, y,alp = 0.4, cfac = 2, b1 = b1,
cc1 = cc1, C, bw, 1, control)
```

plot_resid 11

```
## Robust model fitting
# control parameters
control <- robregcc_option()</pre>
beta.wt <- fit.init$betaR</pre>
                             # Set weight for model parameter beta
beta.wt[1] <- 0
control$gamma = 1
                             # gamma for constructing weighted penalty
control\$spb = 40/p
                             # fraction of maximum non-zero model parameter beta
control$outMiter = 1000
                             # Outer loop iteration
control$inMiter = 3000
                             # Inner loop iteration
control$nlam = 50
                             # Number of tuning parameter lambda to be explored
control$lmaxfac = 1
                             # Parameter for constructing sequence of lambda
control$lminfac = 1e-8
                             # Parameter for constructing sequence of lambda
                             # tolrence parameter for converging [inner loop]
control$tol = 1e-20;
control$out.tol = 1e-16
                             # tolerence parameter for convergence [outer loop]
control$kfold = 10
                             # number of fold of crossvalidation
control$sigmafac = 2#1.345
# Robust regression using adaptive lasso penalty
fit.ada <- robregcc_sp(Xt,y,C,</pre>
                       beta.init = beta.wt, cindex = 1,
                       gamma.init = fit.init$residuals,
                       control = control,
                       penalty.index = 1, alpha = 0.95)
# Robust regression using lasso penalty [Huber equivalent]
fit.soft <- robregcc_sp(Xt,y,C, cindex = 1,</pre>
                        control = control, penalty.index = 2,
                        alpha = 0.95)
# Robust regression using hard thresholding penalty
control$lmaxfac = 1e2
                                    # Parameter for constructing sequence of lambda
control$lminfac = 1e-3
                                    # Parameter for constructing sequence of lambda
control$sigmafac = 2#1.345
fit.hard <- robregcc_sp(Xt,y,C, beta.init = fit.init$betaf,</pre>
                        gamma.init = fit.init$residuals,
                        cindex = 1,
                        control = control, penalty.index = 3,
                        alpha = 0.95)
plot_path(fit.ada)
plot_path(fit.soft)
plot_path(fit.hard)
```

plot_resid

Plot residuals estimate from robregcc object

Description

S3 methods extracting residuals from the objects generated by robregcc.

plot_resid

Usage

```
plot_resid(object, type = 0, s = 0)
```

Arguments

object Object generated by robregcc.

type 0/1 residual estimate before/after sanity check

s 0/1 no/yes 1se rule

Value

plot estimated residual

```
library(magrittr)
library(robregcc)
data(simulate_robregcc)
X <- simulate_robregcc$X;</pre>
y <- simulate_robregcc$y</pre>
C <- simulate_robregcc$C</pre>
n \leftarrow nrow(X); p \leftarrow ncol(X); k \leftarrow nrow(C)
Xt <- cbind(1,X)
                                            # accounting for intercept in predictor
C <- cbind(0,C)</pre>
                                             # accounting for intercept in constraint
bw <- c(0, rep(1,p))
                                             # weight matrix to not penalize intercept
example_seed <- 2*p+1
set.seed(example_seed)
# Breakdown point for tukey Bisquare loss function
b1 = 0.5
                              # 50% breakdown point
cc1 = 1.567
                              # corresponding model parameter
b1 = 0.25; cc1 = 2.937
# Initialization [PSC analysis for compositional data]
control <- robregcc_option(maxiter=1000,tol = 1e-4,lminfac = 1e-7)</pre>
fit.init \leftarrow cpsc_sp(Xt, y,alp = 0.4, cfac = 2, b1 = b1,
cc1 = cc1,C,bw,1,control)
## Robust model fitting
# control parameters
control <- robregcc_option()</pre>
beta.wt <- fit.init$betaR</pre>
                               # Set weight for model parameter beta
beta.wt[1] <- 0
control$gamma = 1
                               # gamma for constructing weighted penalty
                               # fraction of maximum non-zero model parameter beta
control$spb = 40/p
```

residuals 13

```
control$outMiter = 1000
                             # Outer loop iteration
control$inMiter = 3000
                             # Inner loop iteration
control$nlam = 50
                             # Number of tuning parameter lambda to be explored
control$lmaxfac = 1
                             # Parameter for constructing sequence of lambda
control$lminfac = 1e-8
                             # Parameter for constructing sequence of lambda
control$tol = 1e-20;
                             # tolrence parameter for converging [inner loop]
control$out.tol = 1e-16
                             # tolerence parameter for convergence [outer loop]
control$kfold = 10
                             # number of fold of crossvalidation
control$sigmafac = 2#1.345
# Robust regression using adaptive lasso penalty
fit.ada <- robregcc_sp(Xt,y,C,</pre>
                       beta.init = beta.wt, cindex = 1,
                       gamma.init = fit.init$residuals,
                       control = control,
                       penalty.index = 1, alpha = 0.95)
# Robust regression using lasso penalty [Huber equivalent]
fit.soft <- robregcc_sp(Xt,y,C, cindex = 1,</pre>
                        control = control, penalty.index = 2,
                        alpha = 0.95)
# Robust regression using hard thresholding penalty
control$lmaxfac = 1e2
                                    # Parameter for constructing sequence of lambda
control$lminfac = 1e-3
                                    # Parameter for constructing sequence of lambda
control$sigmafac = 2#1.345
fit.hard <- robregcc_sp(Xt,y,C, beta.init = fit.init$betaf,</pre>
                        gamma.init = fit.init$residuals,
                        cindex = 1,
                        control = control, penalty.index = 3,
                        alpha = 0.95)
plot_resid(fit.ada)
plot_resid(fit.soft)
plot_resid(fit.hard)
```

residuals

Extract residuals estimate from the sparse version of the robregcc fitted object.

Description

Robust residuals estimate

14 residuals

Usage

```
## S3 method for class 'robregcc'
residuals(object, ...)
```

Arguments

object robregcc fitted onject
... Other argumnts for future usage.

Value

residuals estimate

```
library(magrittr)
library(robregcc)
data(simulate_robregcc)
X <- simulate_robregcc$X;</pre>
y <- simulate_robregcc$y</pre>
C <- simulate_robregcc$C</pre>
n \leftarrow nrow(X); p \leftarrow ncol(X); k \leftarrow nrow(C)
Xt <- cbind(1,X)
                                            # accounting for intercept in predictor
                                             # accounting for intercept in constraint
C <- cbind(0,C)</pre>
bw <- c(0, rep(1,p))
                                             # weight matrix to not penalize intercept
example_seed <- 2*p+1
set.seed(example_seed)
# Breakdown point for tukey Bisquare loss function
b1 = 0.5
                              # 50% breakdown point
cc1 = 1.567
                              # corresponding model parameter
b1 = 0.25; cc1 = 2.937
# Initialization [PSC analysis for compositional data]
control <- robregcc_option(maxiter=1000,tol = 1e-4,lminfac = 1e-7)</pre>
fit.init \leftarrow cpsc_sp(Xt, y,alp = 0.4, cfac = 2, b1 = b1,
cc1 = cc1, C, bw, 1, control)
## Robust model fitting
# control parameters
control <- robregcc_option()</pre>
beta.wt <- fit.init$betaR  # Set weight for model parameter beta</pre>
beta.wt[1] <- 0
                               # gamma for constructing weighted penalty
control$gamma = 1
```

robregcc_option 15

```
control\$spb = 40/p
                             # fraction of maximum non-zero model parameter beta
control$outMiter = 1000
                             # Outer loop iteration
control$inMiter = 3000
                             # Inner loop iteration
control$nlam = 50
                             # Number of tuning parameter lambda to be explored
control$lmaxfac = 1
control$lminfac = 1e-8
                             # Parameter for constructing sequence of lambda
                             # Parameter for constructing sequence of lambda
control$tol = 1e-20;
                             # tolrence parameter for converging [inner loop]
control$out.tol = 1e-16
                             # tolerence parameter for convergence [outer loop]
control$kfold = 10
                             # number of fold of crossvalidation
control$sigmafac = 2#1.345
# Robust regression using adaptive lasso penalty
fit.ada <- robregcc_sp(Xt,y,C,</pre>
                       beta.init = beta.wt, cindex = 1,
                       gamma.init = fit.init$residuals,
                       control = control,
                       penalty.index = 1, alpha = 0.95)
# Robust regression using lasso penalty [Huber equivalent]
fit.soft <- robregcc_sp(Xt,y,C, cindex = 1,</pre>
                        control = control, penalty.index = 2,
                        alpha = 0.95)
# Robust regression using hard thresholding penalty
control$lmaxfac = 1e2
                                    # Parameter for constructing sequence of lambda
control$lminfac = 1e-3
                                     # Parameter for constructing sequence of lambda
control$sigmafac = 2#1.345
fit.hard <- robregcc_sp(Xt,y,C, beta.init = fit.init$betaf,</pre>
                        gamma.init = fit.init$residuals,
                        cindex = 1,
                        control = control, penalty.index = 3,
                        alpha = 0.95)
residuals(fit.ada)
residuals(fit.soft)
residuals(fit.hard)
```

robregcc_option

Control parameter for model estimation:

Description

The model approach use scaled lasoo approach for model selection.

robregcc_option

Usage

```
robregcc_option(
 maxiter = 10000,
 tol = 1e-10,
 nlam = 100,
 out.tol = 1e-08,
 lminfac = 1e-08,
 lmaxfac = 10,
 mu = 1,
 nu = 1.05,
  sp = 0.3,
 gamma = 2,
 outMiter = 3000,
  inMiter = 500,
 kmaxS = 500,
  tolS = 1e-04,
 nlamx = 20,
 nlamy = 20,
  spb = 0.3,
  spy = 0.3,
 lminfacX = 1e-06,
 lminfacY = 0.01,
 kfold = 10,
 fullpath = 0,
 sigmafac = 2
)
```

Arguments

maxiter	maximum number of iteration for convergence
tol	tolerance value set for convergence
nlam	number of lambda to be genrated to obtain solution path
out.tol	tolernce value set for convergence of outer loop
lminfac	a multiplier of determing lambda_min as a fraction of lambda_max
lmaxfac	a multiplier of lambda_max
mu	penalty parameter used in enforcing orthogonality
nu	penalty parameter used in enforcing orthogonality (incremental rate of mu)
sp	maximum proportion of nonzero elements in shift parameter
gamma	adaptive penalty weight exponential factor
outMiter	maximum number of outer loop iteration
inMiter	maximum number of inner loop iteration
kmaxS	maximum number of iteration for fast S estimator for convergence
tolS	tolerance value set for convergence in case of fast S estimator
nlamx	number of x lambda

robregcc_sim 17

nlamy number of y lambda spb sparsity in beta

spy sparsity in shift gamma

lminfacX a multiplier of determing lambda_min as a fraction of lambda_max for sparsity

in X

lminfacY a multiplier of determing lambda_min as a fraction of lambda_max for sparsity

in shift parameter

kfold nummber of folds for crossvalidation

fullpath 1/0 to get full path yes/no

sigmafac multiplying factor for the range of standard deviation

Value

a list of controling parameter.

Examples

```
# default options
library(robregcc)
control_default = robregcc_option()
# manual options
control_manual <- robregcc_option(maxiter=1000,tol = 1e-4,lminfac = 1e-7)</pre>
```

robregcc_sim

Simulation data

Description

Simulate data for the robust regression with compositional covariates

Usage

```
robregcc_sim(n, betacc, beta0, 0, Sigma, levg, snr, shft, m, C, out = list())
```

Arguments

n sample size

betacc model parameter satisfying compositional covariates

beta0 intercept

0 number of outlier

Sigma covariance matrix of simulated predictors

levg 1/0 whether to include leveraged observation or not

snr noise to signal ratio

18 robregcc_sim

shft	multiplying factor to model variance for creating outlier
m	test sample size
С	subcompositional matrix
out	list for obtaining output with simulated data structure

Value

a list containing simulated output.

References

Mishra, A., Mueller, C., (2019) Robust regression with compositional covariates. In prepration. arXiv:1909.04990.

```
## Simulation example:
library(robregcc)
library(magrittr)
## n: sample size
## p: number of predictors
## o: fraction of observations as outliers
## L: {0,1} => leveraged {no, yes},
## s: multiplicative factor
## ngrp: number of subgroup in the model
## snr: noise to signal ratio for computing true std_err
## Define parameters to simulate example
p <- 80
                      # number of predictors
n <- 300
                      # number of sample
                     # number of outlier
0 <- 0.10*n
L <- 1
s <- 8
ngrp <- 4
                     # number of sub-composition
snr <- 3
                       # Signal to noise ratio
example_seed <- 2*p+1 # example seed
set.seed(example_seed)
# Simulate subcomposition matrix
C1 <- matrix(0,ngrp,23)</pre>
tind <-c(0,10,16,20,23)
for (ii in 1:ngrp)
  C1[ii,(tind[ii] + 1):tind[ii + 1]] <- 1</pre>
C <- matrix(0,ngrp,p)</pre>
C[,1:ncol(C1)] <- C1</pre>
# model parameter beta
beta0 <- 0.5
beta <-c(1, -0.8, 0.4, 0, 0, -0.6, 0, 0, 0, -1.5, 0, 1.2, 0, 0.3)
beta <- c(beta,rep(0,p - length(beta)))</pre>
# Simulate response and predictor, i.e., X, y
```

robregcc_sp 19

robregcc_sp

Robust model estimation approach for regression with compositional covariates.

Description

Fit regression model with compositional covariates for a range of tuning parameter lambda. Model parameters is assumed to be sparse.

Usage

```
robregcc_sp(
   X,
   y,
   C,
   beta.init = NULL,
   gamma.init = NULL,
   cindex = 1,
   control = list(),
   penalty.index = 3,
   alpha = 1,
   verbose = TRUE
)
```

Arguments

Χ	predictor matrix
у	phenotype/response vector
С	conformable sub-compositional matrix
beta.init	initial value of model parameter beta
gamma.init	inital value of shift parameter gamma

20 robregcc_sp

cindex index of control (not penalized) variable in the model control a list of internal parameters controlling the model fitting

penalty.index a vector of length 2 specifying type of penalty for model parameter and shift

parameter respectively. 1, 2, 3 corresponding to adaptive, soft and hard penalty

alpha elastic net penalty

verbose TRUE/FALSE for showing progress of the cross validation

Value

Method Type of penalty used

betapath model parameter estimate along solution path shift parameter estimate along solution path

lampath sequence of fitted lambda)

k0 scaling factor

cver error from k fold cross validation

selInd selected index from minimum and 1se rule cross validation error

beta estimate corresponding to selected index

gamma0 mean shift estimate corresponding to selected index residual0 residual estimate corresponding to selected index inlier0 inlier index corresponding to selected index

betaE Post selection estimate corresponding to selected index residualE post selection residual corresponding to selected index

inlierE post selection inlier index corresponding to selected index

References

Mishra, A., Mueller, C.,(2019) Robust regression with compositional covariates. In prepration. arXiv:1909.04990.

```
library(magrittr)
library(robregcc)

data(simulate_robregcc)
X <- simulate_robregcc$X;
y <- simulate_robregcc$y
C <- simulate_robregcc$C
n <- nrow(X); p <- ncol(X); k <- nrow(C)

Xt <- cbind(1,X)  # accounting for intercept in predictor
C <- cbind(0,C)  # accounting for intercept in constraint
bw <- c(0,rep(1,p))  # weight matrix to not penalize intercept
example_seed <- 2*p+1</pre>
```

robregcc_sp 21

```
set.seed(example_seed)
# Breakdown point for tukey Bisquare loss function
b1 = 0.5
                            # 50% breakdown point
cc1 = 1.567
                            # corresponding model parameter
b1 = 0.25; cc1 = 2.937
# Initialization [PSC analysis for compositional data]
control <- robregcc_option(maxiter=1000,tol = 1e-4,lminfac = 1e-7)</pre>
fit.init <- cpsc_sp(Xt, y,alp = 0.4, cfac = 2, b1 = b1,
cc1 = cc1,C,bw,1,control)
## Robust model fitting
# control parameters
control <- robregcc_option()</pre>
beta.wt <- fit.init$betaR</pre>
                           # Set weight for model parameter beta
beta.wt[1] <- 0
control$gamma = 1
                             # gamma for constructing weighted penalty
control\$spb = 40/p
                             # fraction of maximum non-zero model parameter beta
control$outMiter = 1000
                             # Outer loop iteration
control$inMiter = 3000
                             # Inner loop iteration
control$nlam = 50
                            # Number of tuning parameter lambda to be explored
control  maxfac = 1
                            # Parameter for constructing sequence of lambda
control$lminfac = 1e-8
                           # Parameter for constructing sequence of lambda
control$tol = 1e-20;
                            # tolrence parameter for converging [inner loop]
control$out.tol = 1e-16
                            # tolerence parameter for convergence [outer loop]
control$kfold = 10
                             # number of fold of crossvalidation
control$sigmafac = 2#1.345
# Robust regression using adaptive lasso penalty
fit.ada <- robregcc_sp(Xt,y,C,</pre>
                       beta.init = beta.wt, cindex = 1,
                       gamma.init = fit.init$residuals,
                       control = control,
                       penalty.index = 1, alpha = 0.95)
# Robust regression using lasso penalty [Huber equivalent]
fit.soft <- robregcc_sp(Xt,y,C, cindex = 1,</pre>
                        control = control, penalty.index = 2,
                        alpha = 0.95)
# Robust regression using hard thresholding penalty
control$lmaxfac = 1e2
                                    # Parameter for constructing sequence of lambda
control$lminfac = 1e-3
                                    # Parameter for constructing sequence of lambda
control$sigmafac = 2#1.345
fit.hard <- robregcc_sp(Xt,y,C, beta.init = fit.init$betaf,</pre>
                        gamma.init = fit.init$residuals,
                        cindex = 1,
                        control = control, penalty.index = 3,
                        alpha = 0.95)
```

22 simulate_robregcc

simulate_robregcc	Simulated date for testing functions in the robregcc package (sparse setting).

Description

A list of response (y), predictors (X) and sub-cpmposition matrix (C).

Usage

```
data(simulate_robregcc)
```

Format

- A list with three components:
- **X** Compositional predictors.
- y Outcome with outliers.
- C Sub-emposition matrix.

Details

Vector y, response with a certain percentage of observations as outliers.

Matrix X, Compositional predictors.

Source

Similated data

```
library(robregcc)
data(simulate_robregcc)
X <- simulate_robregcc$X;
y <- simulate_robregcc$y
C <- simulate_robregcc$C
n <- nrow(X); p <- ncol(X); k <- nrow(C)</pre>
```

Index

```
* datasets

simulate_robregcc, 22

classo, 2

classo_path, 3

coef_cc, 4

cpsc_sp, 6

plot_cv, 8

plot_path, 10

plot_resid, 11

residuals, 13

robregcc_option, 15

robregcc_sim, 17

robregcc_sp, 19

simulate_robregcc, 22
```