

DMPA Project

Analyzing Bank Marketing Dataset for effectiveness of campaign

Uthej Reddy-Reg No: 170953036, Roll No:10

Narayan Hari-Reg No: 170953020, Roll No: 06

Mahir Jain-Reg No: 170953068, Roll No: 20

Information about predictors in our dataset: -

```
In [3]:
         1 #attribute information
         2 bank.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 41188 entries, 0 to 41187
       Data columns (total 21 columns):
            Column Non-Null Count Dtype
                          -----
        0
            age
                          41188 non-null int64
                          41188 non-null object
            job
        1
        2
            marital
                         41188 non-null object
        3 education
                         41188 non-null object
        4 default
                         41188 non-null object
                         41188 non-null object
        5
           housing
                         41188 non-null object
        6 loan
        7 contact
8 month
                         41188 non-null object
                         41188 non-null object
            day_of_week 41188 non-null object duration 41188 non-null int64
        9
        10 duration
        11 campaign
                         41188 non-null int64
                           41188 non-null int64
        12 pdays
        13 previous
14 poutcome
                         41188 non-null int64
                         41188 non-null object
        15 emp.var.rate 41188 non-null float64
        16 cons.price.idx 41188 non-null float64
        17 cons.conf.idx 41188 non-null float64
        18 euribor3m 41188 non-null float64
                         41188 non-null float64
        19 nr.employed
                           41188 non-null object
       dtypes: float64(5), int64(5), object(11)
       memory usage: 6.6+ MB
```

We divided our data(predictors) in 4 parts

- Client related data
- Bank related data
- Social and economic related data
- Other factors that can be related

We have done exploratory data analysis, Pre-processing for each of the divided part individually

Client data: -

Now we will do exploratory data analysis for each of the predictor individually

1- Age: -

• Firstly, we find the max, minimum and null values

 Secondly, we tried to find importance of AGE by plotting the graphs

```
In [7]:

1 fig, ax = plt.subplots()
2 fig.set_size_inches(20, 8)
3 sns.countplot(x = 'age', fata = bank_client)
4 ax.set_xlabel('age', fontsize=15)
5 ax.set_ylabel('Count', fontsize=15)
6 ax.set_title('age count Distribution', fontsize=15)
7 sns.despine()

Age Count Distribution
```

```
In [8]: 1 fig, (ax1, ax2) = plt.subplots(nrows = 1, ncols = 2, figsize = (13, 5))
2 sns.boxplot(x = 'age', data = bank_client, orient = 'v', ax = ax1)
3 ax1.set_xlabel('People Age', fontsize=15)
4 ax1.set_ylabel('Age', fontsize=15)
5 ax1.set_title('Age Distribution', fontsize=15)
6 ax1.tick_params(labelsize=15)
                    sns.distplot(bank_client['age'], ax = ax2)
sns.despine(ax = ax2)
ax2.set_xlabel('Age', fontsize=15)
ax2.set_ylabel('Occurence', fontsize=15)
ax2.set_title('Age x Ocucurence', fontsize=15)
ax2.tick_params(labelsize=15)
                           plt.subplots_adjust(wspace=0.5)
                     16 plt.tight_layout()
                                                                                                                                                                                                                   Age x Ocucurence
                                                                             Age Distribution
                           100
                              90
                                                                                                                                                                  0.05
                              80
                                                                                                                                                                 0.04
                              70
                                                                                                                                                            Occurence
                              60
                                                                                                                                                                  0.03
                              50
                                                                                                                                                                 0.02
                              40
                              30
                                                                                                                                                                  0.01
                              20
                                                                                                                                                                  0.00
                                                                                                                                                                                                                                                                80
                                                                                                                                                                                                                                                                                      100
                                                                                                                                                                                                                                       60
                                                                                    People Age
                                                                                                                                                                                                                                   Age
```

 Also, we find Mean and Standard Deviation as this will give us the spread of our data

```
In [9]:
1  # Calculating some values to evaluete this independent variable
2  print('MEAN:', round(bank_client['age'].mean(), 1))
3  # A low standard deviation indicates that the data points tend to be close to the mean or expected value
4  # A high standard deviation indicates that the data points are scattered
5  print('STD :', round(bank_client['age'].std(), 1))

MEAN: 40.0
STD : 10.4
```

Conclusion about 'AGE' variable: according to the graph we find that age can be related to the output variable 'y'.

2- Jobs: -

3- Marital: -

4- Education: -

5- Default, Housing, Loan: -

```
In [13]: 1 # Default, has credit in default ?
               fig, (ax1, ax2, ax3) = plt.subplots(nrows = 1, ncols = 3, figsize = (20,8))
               sns.countplot(x = 'default', data = bank_client, ax = ax1, order = ['no', '
                                                                                                  'unknown', 'yes'])
               ax1.set_title('Default', fontsize=15)
            5 ax1.set_xlabel('')
6 ax1.set_ylabel('Count', fontsize=15)
7 ax1.tick_params(labelsize=15)
            9 # Housing, has housing loan ?
           10 sns.countplot(x = 'housing', data = bank_client, ax = ax2, order = ['no', 'unknown', 'yes'])
           11 ax2.set_title('Housing', fontsize=15)
           12 ax2.set_xlabel('')
13 ax2.set_ylabel('Count', fontsize=15)
           14 ax2.tick_params(labelsize=15)
           15
           16 # Loan, has personal loan ?
           17 sns.countplot(x = 'loan', data = bank_client, ax = ax3, order = ['no', 'unknown', 'yes'])
           18 ax3.set_title('Loan', fontsize=15)
           19 ax3.set_xlabel('')
20 ax3.set_ylabel('Count', fontsize=15)
           21 ax3.tick_params(labelsize=15)
           23 plt.subplots_adjust(wspace=0.25)
```


Since the graph does not provide exact numbers, we try to find the exact numbers.

```
1 print('Default:\n No credit in default:'
In [14]:
      Default:
      No credit in default: 32588
      Unknown credit in default: 8597
Yes to credit in default: 3
      In [15]:
      Housing:
No housing in loan: 18622
      Unknown housing in loan: 990
Yes to housing in loan: 21576
                  In [16]:
      1 print('Housing:\n No to personal loan:'
                 '\n Yes to personal loan:'
      Housing:
      No to personal loan: 33950
      Unknown to personal loan: 990
      Yes to personal loan: 6248
```

Now, we pre-process the categorical data: -

Final client data: -

```
In [19]:
            1 print(bank_client.shape)
            2 bank_client.head()
          (41188, 7)
Out[19]:
              age job marital education default housing loan
           0
           1
                3
                                     3
                                             1
                                                      0
                                                           0
                    7
                2
                                     3
                                             0
                                                           0
                2
                    0
                                      1
                                             0
                                                      0
                                                           0
```

Bank Campaign related data: -

```
1 # Slicing DataFrame to treat separately, make things more easy
In [20]:
              bank_related = bank.iloc[: , 7:11]
           3 bank_related.head()
Out[20]:
              contact month day_of_week duration
          0 telephone
          1 telephone
                                            149
                        may
                                    mon
          2 telephone
                                            226
                        mav
                                    mon
          3 telephone
                                            151
                        may
                                    mon
          4 telephone
                                            307
In [21]: 1 bank_related.isnull().any()
Out[21]: contact
                         False
                         False
          day_of_week
                        False
          duration
                         False
          dtype: bool
```

1- Duration

Analysis on duration of contact with customer: -

```
In [23]: 1 print("Max duration call in minutes: ", round((bank_related['duration'].max()/60),1))
2 print("Min duration call in minutes: ", round((bank_related['duration'].min()/60),1))
3 print("Mean duration call in minutes: ", round((bank_related['duration'].mean()/60),1))
4 print("STD duration call in minutes: ", round((bank_related['duration'].std()/60),1))
5 # Std close to the mean means that the data values are close to the mean
                   Max duration call in minutes:
Min duration call in minutes:
                   Mean duration call in minutes:
STD duration call in minutes:
                                                                                   4.3
  In [24]:
                     1 # Quartiles
                      1 # quartites
2 print('1º Quartile: ', bank_related['duration'].quantile(q = 0.25))
3 print('2º Quartile: ', bank_related['duration'].quantile(q = 0.50))
4 print('3º Quartile: ', bank_related['duration'].quantile(q = 0.75))
5 print('4º Quartile: ', bank_related['duration'].quantile(q = 1.00))
                      print('Duration calls above: ', bank_related['duration'].quantile(q = 0.75) +

1.5*(bank_related['duration'].quantile(q = 0.75) - bank_related['duration'].quantile(q = 0.25)), 'are
                           4
                   1º Quartile: 102.0
                   2º Quartile: 180.0
3º Quartile: 319.0
4º Quartile: 4918.0
                    Duration calls above: 644.5 are outliers
In [25]: 1 print('Numerber of outliers: ', bank_related[bank_related['duration'] > 644.5]['duration'].count())
                    print('Number of clients: ', len(bank_related))
#outliers in %
                    4 print('Outliers are:', round(bank_related[bank_related['duration'] > 644.5]['duration'].count()*100/len(bank_related),2), '%
                 Numerber of outliers: 2963
                 Number of clients: 41188 Outliers are: 7.19 \%
```

2- Contact, Month, Day of Week

Now we pre-process the data as these are categorical in nature

Last Campaign data is: -

In [31]:	1	bank_	related	d.head()	
Out[31]:		contact	month	day_of_week	duration
	0	1	6	1	3
	1	1	6	1	2
	2	1	6	1	3
	3	1	6	1	2
	4	1	6	1	3

Social and economic related Data: -

In [32]:	1	bank_se = bank_se.h	rate', 'c	ons.price.i		
out[32]:		emp.var.rate	cons.price.idx	cons.conf.idx	euribor3m	nr.employed
	0	1.1	93.994	-36.4	4.857	5191.0
	1	1.1	93.994	-36.4	4.857	5191.0
	2	1.1	93.994	-36.4	4.857	5191.0
	3	1.1	93.994	-36.4	4.857	5191.0
	4	1.1	93.994	-36.4	4.857	5191.0

Other attributes: -

```
bank_o = bank.loc[: , ['campaign', 'pdays', 'previous', 'poutcome']]
In [33]:
            2 bank_o.head()
Out[33]:
              campaign pdays previous poutcome
                                    0 nonexistent
           0
                         999
                         999
                                    0 nonexistent
                         999
                                    0 nonexistent
                                    0 nonexistent
                         999
                         999
                                    0 nonexistent
```

Since data is categorical, we must do some pre-processing: -

```
In [34]: 1 bank_o['poutcome'].unique()
Out[34]: array(['nonexistent', 'failure', 'success'], dtype=object)
In [35]: 1 bank_o['poutcome'].replace(['nonexistent', 'failure', 'success'], [1,2,3], inplace = True)
```

We have now completed the pre-processing and visualization. Now, we have to combine all the divided data in one and then split it into training and testing data.

Splitting data into training and testing

Since there is high difference in values, we must do standardise these values:-

```
In [39]: 1  from sklearn.preprocessing import StandardScaler
2  sc_X = StandardScaler()
3  X_train = sc_X.fit_transform(X_train)
4  X_test = sc_X.transform(X_test)
```

Here our pre-processing task is completed, now data is ready for modelling.

Model Creation and Testing Accuracy

1- Logistic Regression: -

2- KNN-

```
In [41]: 1 from sklearn import model_selection
               from sklearn.neighbors import KNeighborsClassifier
             4 X_trainK, X_testK, y_trainK, y_testK = train_test_split(bank_final, y, test_size = 0.2, random_state = 101)
             6 #Neighbors
7 neighbors = np.arange(0,25)
             9 #Create empty list that will hold cv scores
            10 cv scores = []
            12 #Perform 10-fold cross validation on training set for odd values of k:
            13 for k in neighbors:
                     k value = k+1
                      knn = KNeighborsClassifier(n_neighbors = k_value, weights='uniform', p=2, metric='euclidean')
                     kfold = model_selection.KFold(n_splits=10, random_state=123)

scores = model_selection.cross_val_score(knn, X_trainK, y_trainK, cv=kfold, scoring='accuracy')

cv_scores.append(scores.mean()*100)

print("k=%d %0.2f (+/- %0.2f)" % (k_value, scores.mean()*100, scores.std()*100))
            21 optimal_k = neighbors[cv_scores.index(max(cv_scores))]
            22 print ("The optimal number of neighbors is %d with %0.1f%" % (optimal_k, cv_scores[optimal_k]))
            24 plt.plot(neighbors, cv_scores)
            25 plt.xlabel('Number of Neighbors K')
26 plt.ylabel('Train Accuracy')
           27 plt.show()
```

Here we try to find optimal k values by checking all values between 1 to 25.

Result: -

```
k=1 87.84 (+/- 0.59)
k=2 89.73 (+/- 0.50)
k=3 89.69 (+/- 0.49)
k=4 90.02 (+/- 0.51)
k=5 89.98 (+/- 0.41)
k=6 90.07 (+/- 0.47)
k=7 90.24 (+/- 0.41)
k=8 90.28 (+/- 0.48)
k=9 90.33 (+/- 0.46)
k=10 90.35 (+/- 0.49)
k=11 90.33 (+/- 0.51)
k=12 90.32 (+/- 0.59)
k=13 90.37 (+/- 0.51)
k=14 90.40 (+/- 0.48)
k=15 90.44 (+/- 0.47)
k=16 90.41 (+/- 0.50)
k=17 90.41 (+/- 0.50)
k=18 90.38 (+/- 0.52)
k=19 90.43 (+/- 0.45)
k=20 90.38 (+/- 0.48)
k=21 90.42 (+/- 0.46)
k=22 90.37 (+/- 0.48)
k=23 90.45 (+/- 0.44)
k=24 90.34 (+/- 0.49)
k=25 90.44 (+/- 0.47)
The optimal number of neighbors is 22 with 90.4%
```


Here we found best accuracy at k=22

Selecting k=22

3- Support Vector Classifier

```
In [43]: 1  from sklearn.svm import SVC
    svc= SVC(kernel = 'sigmoid')
    svc.fit(X_train, y_train)
    4  svcpred = svc.predict(X_test)
    5  print(confusion_matrix(y_test, svcpred))
    6  print(round(accuracy_score(y_test, svcpred),2)*100)
    7  SVCCV = (cross_val_score(svc, X_train, y_train, cv=k_fold, n_jobs=1, scoring = 'accuracy').mean())

[[6719    560]
    [ 605    354]]
    86.0
```

4- Decision Tree

5- Random Forest

6- Gaussian Naive Bayes

7- XGBoost

8- Gradient Boosting

<u>Conclusion: -</u> As shown below, Gradient Boosting and XGBoost had the highest score. However, by research, it shows that XGBoost has a lower training time hence that is most favourable model.

