Návrh číslicových systémů (INC)

Otto Fučík

Vysoké učení technické v Brně Fakulta informačních technologií Božetěchova 2, 612 66 Brno

Použitá literatura

N. Frištacký, M. Kolesár, J. Kolenička a J. Hlavatý: "Logické systémy", SNTL Praha, 1986 M. Eysselt: "Logické systémy", SNTL Praha, skriptum VUT v Brně, 1985 J. F. Wakerly: "Digital Design. Principles and Practices", Prentice Hall, ISBN 0-13-769191-2, 2000 V. P. Nelson, H.T.Nagle, B.D.Carroll, J.D.Irwin: "Digital Logic Circuit Analysis & Design", ISBN 0-13-463894-8, 1995 T.L.Floyd: "Digital Fundamentals", Prentice Hall, ISBN 0-13-080850-4, 2000

Kombinační a sekvenční log. obvody

- Kombinační obvod
 - Hodnoty vektoru výstupních proměnných Y jsou funkcí hodnot vektoru vstupních proměnných X
 - Y nezávisí na předchozích hodnotách X (kromě přechodového děje – tzv. hazardu)
- Sekvenční obvod
 - Hodnoty Y jsou funkcí současných i minulých hodnot X - obvod má paměť
 - Paměť si pamatuje současný stav Q (q_i, Present State - PS)
 - Přechodová funkce generuje vektor P následujícího stavu (q_{i+1}, Next State - NS)

Sekvenční obvody: Paměť

- Paměť v sekvenčním obvodu uchovává vnitřní (současný) stav
 - Je volatilní informaci lze ukládat a číst dle potřeby
- Každý vodič či elektronický prvek (např. hradlo) má zpoždění
 - Může tedy pracovat jako krátkodobá paměť
 - Např. hodnota napětí na konci vodiče se po změně hodnoty napětí na jeho vstupu změní až za dobu t, kterou trvá šíření elektronů v tomto vodiči – na konci vodiče tedy máme zapamatován současný stav, který se změní na následující až za dobu t
 - Problém zpoždění závisí na fyzikálních vlastnostech prvku, které se mění s výrobním procesem, teplotou, napájecím napětím atd.
- Elementární volatilní paměťové prvky klopné obvody (KO)
 - Jedná se o nejjednodušší asynchronní sekvenční obvody (jednoduchost = rychlost, snadné použití)
 - Mají dva stavy (0 a 1) proto je nazýváme též bistabilní
 - KO budeme využívat pro stavbu složitých sekvenčních obvodů, jako paměti operandů v procesorech (registry) atd.

Sekvenční chování: Modely - konečné automaty

- Konečný automat je šestice KA = (X, Y, Q, q₀, P, V), kde:
 - X vstupní abeceda (množina hodnot vstupních proměnných)
 - Y výstupní abeceda (množina hodnot výstupních proměnných)
 - Q vnitřní abeceda (množina hodnot vnitřních stavů)
 - q₀∈Q počáteční stav, ze kterého se vždy startuje (reset)
 - P přechodová funkce (P: $X\times Q\rightarrow Q$), $q_{i+1}=P(x_i,q_i)$, pro i=0,1,2,...,n
 - V výstupní funkce Mealy, Moore nebo jejich kombinace
- Varianty konečného automatu dle výstupní funkce
 - Mealyho konečný automat
 - $y_i = V(x_i, q_i)$ výstup je funkcí jak stavu, tak vstupu (V: $X \times Q \rightarrow Y$)
 - Mooreův konečný automat
 - $y_i = V(q_i)$ výstup je funkcí pouze stavu (V: $Q \rightarrow Y$)
- Nedeterministický konečný automat
 - Nebudeme v rámci tohoto kurzu uvažovat

Konečný automat: Struktura

- Přechodová funkce (realizace kombinační logickou sítí KLS)
 - Na základě vstupu a současného stavu (udržovaného v paměti) generuje hodnotu následujícího stavu automatu
- Výstupní funkce (KLS)
 - Moore výstup je funkcí pouze současného stavu
 - Mealy výstup je funkcí současného stavu a vstupu
- Paměť současného stavu
 - Zpoždění signálů, klopný obvod, paměť SRAM apod., viz dále

Konečný automat: Chování

- Graf přechodů mezi stavy (state transition graph/diagram)
 - Stav uzel
 - Počáteční stav tučně vyznačený uzel
 - Přechod orientovaná hrana
 - Vstupy ohodnocení hrany
 - Výstupy (pokud existují) se přiřazují:
 - Hraně (za lomítko) "Mealyho" výstupy
 - Uzlu (za lomítko) "Mooreovy" výstupy

Stav/Výstup (Moore)

 Tabulka přechodů (state table, transition table)

	Vstup (x)
Současný stav	Následující stav
/	/
Výstup (Moore)	Výstup (Mealy)
(q _i /y _{Moore})	(q _{i+1} /y _{Mealy})

Konečný automat: Příklad - Mealy

- Plně definovaný
 - Výstupní funkce je plně definována

q_{i+1}	Х	
q _i	0	1
Α	D/1	C/0
В	B/1	A/1
С	C/0	D/1
D	A/1	B/1

- Neúplně definovaný
 - Výstupní funkce není plně definovaná (don't care)
 - Nedefinované hodnoty značíme "-", "X", "d"
 - Nedefinované hodnoty lze doplnit dle potřeby (viz minimalizace kombinačních sítí)
 - Graf přechodů
 - Tabulka přechodů

q_{i+1}	X		
q _i	0	1	
Α	D/1	C/-	
В	B/-	A/1	
С	C/0	D/1	
D	A/-	B/1	

Konečný automat: Příklad - Moore

- Plně definovaný
 - Výstupní funkce je plně definována

q_{i+1}	>	(
q _i	0	1
A/1	D	С
B/1	В	Α
C/0	С	D
D/1	Α	В

- Neúplně definovaný
 - Výstupní funkce není plně definovaná (don't care)
 - Nedefinované hodnoty lze doplnit dle potřeby (viz minimalizace kombinačních sítí)
 - Graf přechodů
 - Tabulka přechodů

q _{i+1}	X	
q _i	0	1
A/1	D	С
B/1	В	Α
C/0	С	D
D/-	A	В

Konečný automat: Příklad – Mealy + Moore

Plně definovaný

q _{i+1}	Х	
q _i	0	1
A/1	D/1	C/0
B/1	B/1	A/1
C/0	C/0	D/1
D/1	A/1	B/1

Neúplně definovaný

q _{i+1}	Х	
q_i	0	1
A/1	D/1	C/-
B/1	B/-	A/1
C/0	C/0	D/1
D/-	A/-	B/1

 Nedefinované výstupy není třeba uvádět

q_{i+1}	X		
q _i	0	1	
A/1	D/1	C	
B/1	В	A/1	
C/0	C/0	D/1	
D	Α	B/1	

Konečný automat: Příklad – analýza chování

- Mějme následující definici automatu
 - Vstup X nabývá hodnot 0 a 1
 - Výstup Y nabývá hodnot 0 a 1
 - Existují čtyři stavy A, B, C a D
 - Je dána tabulka přechodů a ekvivalentní graf přechodů
 - Počáteční stav: A
- Jak bude automat reagovat na vstupní posloupnost
 - X=0110101100?
- Řešení
 - Y=0100110111

q_{i+1}	X		
q_i	0	1	
Α	D/0	C/1	
В	B/1	A/0	
С	C/1	D/0	
D	A/0	B/1	

Chování logických obvodů v čase

- Specifikace chování (behaviorální, funkce)
 - Definice hodnoty (logické úrovně) každého výstupu pro všechny kombinace vstupních hodnot (logických úrovní)

- Specifikace časování
 - Každý fyzicky realizovaný obvod má zpoždění t_d
 - Definováno např. jako nejhorší potřebná doba pro výpočet (vygenerování) platných logických hodnot výstupů od okamžiku, kdy na vstupech budou platné a stabilní logické hodnoty
 - Při návrhu se zpoždění často zanedbává (t_d = 0)
 - Zpoždění je třeba při implementaci obvodů zohlednit (rychlost) výpočtů, hazardy – viz dále, vliv prostředí atd.)

Chování logických obvodů v čase

- Časový průběh
 - Vizualizace hodnot, kterých nabývají logické proměnné (signály, hodnoty napětí) na spojích mezi logickými členy (vodiče) v průběhu času
- Zpoždění logických členů
 - Doba, za kterou se na základě změny vstupní proměnné změní výstupní proměnná
 - Definují se hodnoty: min typické (standardní) – max
 - Je třeba navrhovat pro nejhorší případ (nejvyšší povolená teplota, nejmenší napájecí napětí)

- Vzestupná doba (rise/rising time)
 - Doba přechodu z nízké (low, 0) do vysoké (high, 1) úrovně
- Sestupná doba (fall/falling time)
 - Doba přechodu z vysoké (high, 1) do nízké (low, 0) úrovně
- Šířka pulsu (pulse width)
 - Doba, po kterou zůstane hodnota konstantní mezi dvěma změnami

Chování logických obvodů v čase: Hrany

- Doba přechodů mezi log úrovněmi (transition time)
 - Je obecně různá pro přechody 0-1 a 1-0
 - Ideální případ žádné zpoždění (a)
 - Aproximace průběhu pro analýzu (b)
 - Skutečný průběh napětí (c)
 - tr...doba přechodu z L do H (rise time)
 - tf...doba přechodu z H do L (fall time)

Závisí na kapacitě zátěže a na vlastnostech výstupních tranzistorů log.
 členů

Chování logických obvodů v čase: Zpoždění

- Doba průchodu (propagation time)
 - Je obecně různá pro přechody 0-1 a 1-0
 - Ideální případ se zanedbáním doby přechodů (a)
 - Aproximace 50 % úrovně signálů (b)
 - t_{pHL}...doba zpoždění ze vstupu na výstup při přechodu z H do L
 - t_{pLH}...doba zpoždění ze vstupu na výstup při přechodu z L do H
 - Závisí na konstrukci obvodu

Chování logických obvodů v čase: Zpoždění

- Inerční (setrvačné) zpoždění (inertial delay)
 - Dáno součtem dob průchodů 0-1 a 1-0
 - Vzniká díky setrvačnosti příslušných elektronických prvků (parazitní kapacity, rychlost tranzistorů apod.)
 - Platí, že puls kratší, než je inerční zpoždění daného prvku, tímto prvkem neprojde
 - Příklad: Puls s délkou trvání 8 ns "neprojde" obvodem s inerčním zpožděním 10 ns
- Transportní zpoždění (transport delay)
 - Dáno rychlostí šíření signálů v daném médiu
 - V log. systémech se uplatňuje ve spojích mezi jednotlivými log. členy
 - Transportní zpoždění není na rozdíl od inerčního v relaci s rychlostí změn signálů (délka pulsů)

Chování logických obvodů v čase: Zpoždění

- Každý vodič či elektronický prvek (např. hradlo) má "zpoždění", díky čemuž může pracovat jako krátkodobá paměť
 - Zpoždění lze využít pro tvorbu struktur, které jsou schopny si "pamatovat" informaci – jedná se o elementární paměťové prvky – klopné obvody, více viz dále
- Příklad: zpožďovací linka
 - Využívá konečné rychlosti šíření signálů (akustických, elektrických apod.) ve vhodném médiu (rtuť, vodič apod.)
 - Informace vložená do linky na jejím začátku se objeví na jejím konci až za jistou dobu – linka si informaci po jistou dobu "pamatuje"
 - Využíváno např. v prvních elektronických počítačích

Sekvenční obvod SET

- Vezměme hradlo (např. OR)
 - Zaveďme zpětnou vazbu
 - Excitační vstup S (SET)
 - Výstup Y (Mooreův)

- Obvod má sekvenční chování
 - Díky zpoždění má krátkodobou paměť vnitřního stavu

Lze modelovat jako konečný automat

Sekvenční obvod SET

- Graf přechodů
 - Obvod má dva stavy q₀ a q₁
 - Předpokládejme, že je obvod na počátku ve stavu q₀
 - Pokud přivedeme log.0 na vstup S, obvod setrvá ve stavu q₀ výstup Y=0
 - Pokud přivedeme log.1 na vstup S, obvod přejde do stavu q₁ výstup Y=1
 - Pokud položíme S=0 či S=1, obvod zůstane (do odpojení napájení) ve stavu q₁ - výstup Y=1
- Nepříliš užitečná funkce...

Sekvenční obvod SET

Za hradlo OR zařad'me dva invertory

Hradlo OR a invertory nahraďme dvěma hradly NOR

 Na vstup (nazvěme jej R – RESET) druhého hradla NOR přiveďme log. 0 – funkce stejná jako u obvodu SET

Sekvenční obvod RESET-SET: R-S KO hladinový

- R-S Latch
 - Sekvenční obvod RESET-SET nazýváme R-S klopný obvod (KO)
 - Obvod se překlápí mezi stavy log. úrovněmi (hladinami) na vstupech R a S – nazýváme jej hladinový (anglicky R-S Latch)
 - Po změně hodnoty (excitaci) některého ze vstupů přejde obvod (po uplynutí doby Δt) ze stavu q_i do stavu q_{i+1}
 - Signály q_i, q_{i+1} a Y se ustálí na stejné hodnotě (q_i=q_{i+1}=Y)
- V ustáleném stavu (po přechodu) můžeme tedy obvod překreslit bez zpoždění
 - Pamatujeme si ale, že reálný obvod má zpoždění vždy
- V praxi je výhodné mít i komplementární výstup YN
 - Dostáváme tzv. R-S KO sestavený z hradel NOR

- Klopné obvody mají pouze dva stabilní stavy - jsou bistabilní
- Je žádoucí, aby přechody mezi stavy byly co nejkratší
 - Omezení doby trvání tzv. metastabilního stavu
- Po přivedení napájecího napětí se náhodně překlopí do stavu 0 či 1
- Přechodové funkce klopného obvodu $V_{out1} = f(V_{in1})$ $V_{out2} = f(V_{in2})$

- SET
 - R=0, S=1, nastavuje obvod do stavu q₁ (kód 0), výstup Y=1
- RESET
 - S=0, R=1 vnutí přechod do stavu
 q₀ (kód 1), výstup Y=0 = nulování
- HOLD
 - S=R=0 obvod si pamatuje poslední stav
- Nedovolená kombinace
 - S=R=1 funkce SET i RESET zároveň, což u bistabilního obvodu nemá smysl (stav q₂=U – undefined), u reálného obvodu z hradel NOR budou oba výstupy Y=YN=0

- Pokud R-S KO z hradel NOR uvedeme nedovolenou kombinací vstupů S=R=1 do stavu, ve kterém jsou oba výstupy v log.0, a pak na vstupy přivedeme současně S=R=0, může KO zareagovat následovně:
 - 1. Přejde náhodně do stavu $q_0(Y=0)$ nebo $q_1(Y=1)$
 - 2. Bude oscilovat mezi stavy $(Y=0 \rightarrow 1 \rightarrow 0 \rightarrow 1...)$
 - 3. Přejde na nedefinovanou dobu do metastabilního stavu $(Y \neq \{0,1\})$

Metastabilní stav hodnota napětí na výstupu Y bude mezi L a H a po nedefinované době přejde do L nebo H

- Podobně může KO reagovat, pokud jsou na vstupech S a R pulsy kratší, než je definovaná doba t_p puls $0 \rightarrow 1 \rightarrow 0$
 - Pozn.: pro R-S KO sestavený z hradel NAND platí výše vedené s komplementárními hodnotami na excitačních vstupech

- Alternativní způsob kreslení
 - V literatuře se často výstupy značí Q a QN místo Y a YN

- Symbol
 - Komplementární výstup se značí
 - Q s "bublinou"
 - QN
 - \overline{Q} apod.
 - Pozn.: Není správné značit QN a "bublinou" zároveň = dvojí negace (v literatuře se však často vyskytuje)

Tabulka přechodů (stavů)

Q_{i+1}	SR				
Qi	00	01	10	11	II 0 mm K0
0	0	0	1	U 🔩	U=0 pro KC hradel NOR
1	1	0	1	U	

Excitační (Karnaughova) mapa

Q _i SR	00	01	11	10	
0	0	0	J	1	
1	1	0	U	1	

Graf přechodů

- Charakteristická rovnice
 - Z excitační mapy nalezneme výraz pro následující stav Q_{i+1}
 - Q_{i+1} = (podmínka nastavení)
 + (podmínka přidržení) · Q

- Poznámky

 - Označení stavu: Q (Mooreův výstup, kód stavu = hodnotě výstupu)

- Excitační tabulka (budicí tabulka)
 - Definuje následující stav na základě hodnot na excitačních vstupech a současného stavu

Vst	иру	Současný stav Q	Následující stav Q _{i+1}	Činnost
S	R	stav Q	Stav Q _{i+1}	
0	0	0	0	Beze změny -
0	0	1	1	přidrž, pamatuj (Hold)
0	1	0	0	Nuluj (Reset)
0	1	1	0	
1	0	0	1	Nastav
1	0	1	1	(Set)
1	1	0	U	Nedovolená
1	1	1	U	kombinace

- Slovník přechodů (inverzní tabulka, input table)
 - Na základě současného a požadovaného následujícího stavu definuje potřebné hodnoty na excitačních vstupech

Qi	Q_{i+1}	S	R
0	0	0	Χ
0	1	1	0
1	0	0	1
1	1	Χ	0

- Poznámka
 - Pro nedovolenou kombinaci vstupů má KO nedefinovaný stav U - v reálném NOR S-R KO budou oba výstupy v log.0

- R-S KO hladinový (NOR)
 - Reálné obvody mají zpoždění (nereagují okamžitě)
 - t_{HL}- zpoždění od okamžiku aktivní log. úrovně na excitačním vstupu k přechodu výstupu z úrovně H na úroveň L
 - t_{LH} zpoždění od okamžiku aktivní log. úrovně na excitačním vstupu k přechodu výstupu z úrovně L na H
 - Výstupy Q a QN nejsou v době přechodových dějů komplementární (u NOR R-S KO QN reaguje rychleji na S, resp. Q na R)

- Realizace pomocí log. členů NAND
 - Excitační vstupy jsou aktivní v nule

- Příklad možného použití
 - Při sepnutí spínače dochází ke kmitání kontaktů
 - Dáno jejich mechanickými vlastnostmi - nežádoucí jev
- Eliminace zákmitů
 - První aktivní kmit se zapamatuje a další již nemění výstup KO

RESET-SET

HOLD

SET-RESET

• RESET-RESET

SET-SET

R-S KO s povolovacím vstupem

- Gated R-S Latch
 - Povolovací vstup C (Control, Enable) přídavný vstup, který povoluje činnost KO – obvod lze nastavit či nulovat, jen pokud je vstup C aktivní (zde např. C=1)
- Logický symbol
- Realizace pomocí NOR R-S KO
- Realizace pomocí NAND R-S KO

R-S KO s povolovacím vstupem

Excitační tabulka

- Excitaciii tabalka					
Povolovací	Vstupy		Současný	Následující	Činnost
vstup C	S	R	stav Q	stav Q _{i+1}	
0	Χ	Χ	0	0	_
0	Χ	Χ	1	1	Pamatuj - přidrž (Hold)
1	0	0	0	0	priarz (riola)
1	0	0	1	1	
1	0	1	0	0	Nuluj
1	0	1	1	0	(Reset)
1	1	0	0	1	Nastav
1	1	0	1	1	(Set)
1	1	1	0	U	Nedovolená
1	1	1	1	U	kombinace

Graf přechodů

 Charakteristická rovnice

$$Q_{i+1} = S \cdot C + (\overline{R} + \overline{C}) \cdot Q$$

- Přechod ze "zakázaného" stavu
 - Metastabilní stav

Časový diagram pro R-S KO realizovaný z hradel NAND:
 S=R=C=1→Q=QN=1(U)
 S=R=1, C=0→metastabilní stav

1))))**))))**

J-K KO s povol. vstupem

- Gated J-K Latch
- Zavedením zpětné vazby lze eliminovat zakázanou kombinaci R-S KO (R=S=1)
- J-K = Jack Kilby (patent 1958)
 - Vstupy nazýváme J (místo S), resp. K (místo R)
- Excitační tabulka
- Příklad realizace logické schéma
 - S použitím R-S KO NOR

С	J	K	Q	Q_{i+1}	Činnost
0	X	X	0	0	
0	Χ	Х	1	1	Pamatuj
1	0	0	0	0	(Hold)
1	0	0	1	1	
1	0	1	0	0	Reset
1	0	1	1	0	
1	1	0	0	1	Set
1	1	0	1	1	
1	1	1	0	1	Překlop
1	1	1	1	0	(Toggle)

T KO s povolovacím vstupem

- Gated T Latch
 - Spojení vstupů J-K KO vznikne klopný obvod typu T (Toggle, Trigger)

С	Т	Q	Q_{i+1}	Činnost
0	0	0	0	
0	1	1	1	Pamatuj
1	0	0	0	(Hold)
1	0	1	1	
1	1	0	1	Překlop
1	1	1	0	(Toggle)

- Pokud je C=J=K=1, resp. C=T=1, tak výstupy J-K, resp. T KO se mohou neustále překlápět (oscilovat)
 - Oscilace lze eliminovat hodinový puls musí být kratší, než je doba průchodu signálu klopným obvodem, Master-Slave struktura KO, Edge-Triggered struktura KO (viz dále)

D KO s povolovacím vstupem

- D Latch, Delay Latch, Transparent Latch
 - Příklad obvodu z NAND R-S KO hladinového s povolovacím vstupem
 - Propojení vstupu R se vstupem S přes invertor
- Transparentní mód
 - Na základě aktivní úrovně povolovacího signálu se přenáší data ze vstupu D na výstup Q
- Latch mód
 - Na základě neaktivní úrovně hodinového signálu se na výstupu Q podrží (přidrží, blokuje, pamatuje) poslední hodnota

D KO s povolovacím vstupem

- Excitační tabulka
 - Store ulož log.0, nebo log.1
 - Hold pamatuj

С	D	Q	Q_{i+1}	Činnost
0	X	0	0	Pamatuj
0	Х	1	1	(Hold)
1	0	0	0	Ulož 0
1	0	1	0	(Store 0)
1	1	0	1	Ulož 1
1	1	1	1	(Store 1)

• Charakteristick<u>á</u> rovnice $Q_{i+1} = S \cdot C + \overline{R} \cdot q + \overline{C} \cdot Q$

$$= D \cdot C + \overline{\overline{D}} \cdot Q + \overline{C} \cdot Q$$

$$= D \cdot C + D \cdot Q + \overline{C} \cdot Q$$

$$= D \cdot C + \overline{C} \cdot Q$$

Graf přechodů

Logické schéma (z NOR R-S KO)

Časový diagram

D KO s povolovacím vstupem

- Pro správnou činnost je třeba dodržet správné pořadí vstupních signálů
 - Setup time signál D musí být stabilní po dobu t_{setup} před aktivním signálem C
 - Hold time signál D musí být stabilní po dobu t_{hold} po aktivním C
 - Violation nedodržení Setup nebo Hold časů
 - Metastabilní stav výstup KO nemá definovanou log. úroveň po jistou dobu
- Varianta z hradel NAND

R-S KO dvoufázový

- Master-Slave R-S Flip-Flop
 - Realizace pomocí dvou R-S KO s povolovacím vstupem
 - Informace z excitačních vstupů se při CLK=0 zapisuje do "Master" R-S KO a následně se při CLK=1 přepisuje do R-S KO "Slave"

R-S KO dvoufázový

- Spouštěný záporným pulsem
 - Master je povolen při C=1 a nastavuje se na základě hodnot na excitačních vstupech R a S
 - Po změně C=1→0 se Slave nastaví na hodnotu Q_M, na kterou byl naposledy nastaven Master (ne excitační vstupy R a S)

- Pokud jsou oba excitační vstupy R=S=1 a C=1→0
 - KO může mít nedefinované chování a přejít do metastabilního stavu

R-S KO dvoufázový

Excitační tabulka

Χ			Činnost
^	0	0	
Χ	1	1	Pamatuj (Hold)
0	0	0	(Hold)
0	1	1	
1	0	0	Nuluj
1	1	0	(Reset)
0	0	1	Nastav
0	1	1	(Set)
1	0	U	Nedovolená
1	1	U	kombinace
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0	0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 1 1

Symbolem ^J označujeme, že obvod pracuje na základě pulzu (zde kladného 0→1→0) přivedeného na vstup CLK Pokud tuto skutečnost víme, nemusíme sloupec CLK uvádět

- Obvod pracuje, jen pokud je CLK aktivní, jinak si pamatuje předchozí stav
 - Důsledkem je zjednodušení návrhu složitých sekvenčních obvodů
- Při popisu chování můžeme abstrahovat od přítomnosti CLK
 - Víme, že obvod pracuje na základě pulsu na vstupu CLK
 - Charakteristická rovnice je pak stejná jako u R-S KO hladinového
 - Stejně též graf přechodů

J-K KO dvoufázový

- Spouštěný záporným pulsem
 - Master je povolen při C=1

 a nastavuje se na základě
 hodnot na excitačních
 vstupech J a K
 - Po změně C=1→0 se Slave nastaví na hodnotu Q_M, na kterou byl naposledy nastaven Master (ne

excitační vstupy J a K)

QM

QM L

Q

QN

Příklad

 Realizace z R-S KO s povolovacím vstupem

J-K KO dvoufázový

- Master-Slave J-K Flip-Flop
 - JK=00 Pamatuj (Hold)
 - JK=01 Nuluj (Reset)
 - JK=10 Nastav (Set)
 - JK=11 Překlápěj (Toggle)

Excitační tabulka - úplná

С	J	K	Q	Q_{i+1}	Činnost
0	X	X	0	0	
0	X	X	1	1	Pamatuj (Hold)
	0	0	0	0	(Hold)
	0	0	1	1	
	0	1	0	0	Reset
	0	1	1	0	
	1	0	0	1	Set
	1	0	1	1	
	1	1	0	1	Překlop
J	1	1	1	0	(Toggle)

- Graf přechodů
 - Neuvádíme hodnoty na vstupu C – KO přechází mezi stavy na základě pulsu

- Excitační tabulka kompaktní
 - Popisuje činnost v úsporné formě
 - Předpokládá se, že víme, jakou strukturu KO máme buzený kladným / záporným pulsem, z jakých KO je sestaven atd.

T KO dvoufázový

- Master-Slave T Flip-Flop
 - Vznikne z J-K KO spojením vstupů J=K
- Příklad
 - T KO z R-S KO NAND s povolovacím vstupem sestavených do dvoufázové struktury
 - Citlivý na kladný puls

CLK	Т	Q	Q_{i+1}	Činnost
0	Х	0	0	
0	Χ	1	1	Pamatuj
٦	0	0	0	(Hold)
٦	0	1	1	
Ĺ	1	0	1	Překlop
J	1	1	0	(Toggle)

Excitační tabulka – kompaktní

T	
CLK-	\bar{Q}

Т	Qi	Q_{i+1}
0	0	0
0	1	1
1	0	1
1	1	0

D KO derivační

- Edge-Trigerred D Flip-Flop
 - Obvod je citlivý na aktivní hranu (změnu) hodinového signálu (zde kladnou)
 - Funkce je z hlediska použití stejná jako v případě dvoufázového uspořádání
 - Symbol ">" značí, že hodinový signál je aktivní jen v době kladné hrany (přechod z log. nuly do log. jedničky derivace)
- Existují různé konstrukce
 - Např. jako D KO dvoufázový "Master-Slave D Flip-Flop"
 - S derivačním obvodem atd.

CLK	D	Q	Q_{i+1}	Činnost
0	Χ	0	0	Pamatuj
0	Х	0	1	(Hold)
1	0	0	0	Ulož 0
1	0	1	0	(Store 0)
1	1	0	1	Ulož 1
1	1	1	1	(Store 1)

D KO dvoufázový - derivační

- Příklad realizace
 - Citlivý na kladnou hranu hodin
 - Sestaven z Master KO typu D a Slave KO typu R-S
 - Master KO kopíruje D na Q_M při C=0
 - Slave KO kopíruje z Q_M na Q při C=1

CLK	D	Q	Q_{i+1}	Činnost
0	Χ	0	0	Pamatuj
0	Х	1	1	(Hold)
J	0	0	0	Ulož 0
J	0	1	0	(Store 0)
	1	0	1	Ulož 1
J	1	1	1	(Store 1)

D KO dvoufázový - derivační

- Příklad realizace pomocí log. členů NAND
 - KO je doplněn o asynchronní vstupy (nejsou závislé na hodinovém vstupu) pro nastavení (PR- preset) a nulování (CLR - clear) aktivními v nule
 - Sestaven z R-S KO NAND s povolovacími vstupy propojenými do dvoufázové struktury

- Poznámka
 - Chování dvoufázového D KO je z hlediska výstupů stejné jako u derivačního D KO

D KO dvoufázový - derivační

- Příklad: standardní IO 747
 - Signál PRE (preset)
 - Asynchronní nastavovací vstup aktivní v nule
 - Má vyšší prioritu než hodinový signál – pokud je aktivní, tak je obvod nastaven (Q=1)

- Asynchronní resetovací vstup aktivní v nule
- Má vyšší prioritu než hodinový signál – pokud je aktivní, tak je obvod resetován (Q=0)

	Inp	uts		Out	puts	
\overline{PRE}	\overline{CLR}	D	CLK	Q	$\overline{\mathcal{Q}}$	Mode
L	Н	×	×	Н	L	Set
H	L	×	×	L	Н	Clear
L	L	×	×	Н	H	Not allowed
H	H	H	\uparrow	H	L	Clocked operation
H	H	L	↑	L	H	Clocked operation
H	Н	×	L	Q_0	$\overline{\mathcal{Q}}_0$	Hold

R-S KO derivační

- Edge-Trigerred R-S Flip-Flop
- Principiální realizace detekce hrany hodinového signálu
 - Úmyslné generování log. hazardu pomocí nestejné délky logické větve – zpoždění invertoru > zpoždění vodiče
 - Výstupní puls (glitch) je velmi krátký (derivace) a může tedy povolovat činnost KO s povolovacím vstupem po krátkou dobu

 Derivační obvod lze vytvořit pro detekci (kladný glitch) kladné hrany (hazard v log. 0 - hradlo AND) či záporné hrany (hazard v log. 1 – hradlo NOR)

CLK _

- Principiální schéma R-S KO derivačního
 - Sestaven pomocí R-S KO s povolovacím vstupem a derivačního obvodu

R-S KO derivační

- Reaguje jen na hranu hodinového signálu
 - Hrana přechod z 0 do 1
 (pozitivní, vzestupná, náběžná,
 >, ↑), anebo z 1 do 0 (negativní,
 sestupná, doběžná, <, ↓)
- Zjednodušení návrhu
 - Stačí mít excitační vstupy platné jen v definovaném okolí hrany
 > výrazné usnadnění syntézy synchronních sekvenčních obvodů
 - KO vzorkuje vstupní hodnoty, na základě kterých generuje výstupy pouze v okamžiku aktivní hrany

CLK	R	S	Q	Q_{i+1}	Činnost
0	X	Χ	0	0	
0	Х	Χ	1		Pamatuj (Hold)
1	0	0	0	0	(Hold)
↑	0	0	1	1	
↑	0	1	0	1	Nastav
1	0	1	1	1	(Set)
1	1	0	0	0	Nuluj
1	1	0	1	0	(Reset)
1	1	1	0	U	Nedovolená
1	1	1	1	U	kombinace

J-K KO derivační

- Edge-Trigerred J-K Flip-Flop
 - Principiální schéma s využitím J-K KO s povolovacím vstupem sestavený z log. členů NAND
 - Derivační obvod povoluje J-K KO po velmi krátkou dobu
- Demonstrace funkce
 - Překlápěj (Toggle) J=K=1
 - Obvod dělí frekvenci hodinového signálu CLK dvěma často používaná funkce

J-K KO derivační

- Časový diagram
 - Verze s hodinovým signálem CLK aktivním při sestupné hraně

- Excitační tabulka kompaktní
- Graf přechodů

J	K	Q _{i+1}
0	0	Qi
0	1	0
1	0	1
1	1	not(Q _i)

CLK _

Excitační tabulka - úplná

C	J	K	Q	Q_{i+1}	Činnost
0	X	X	0	0	
0	X	X	1	1	Pamatuj (Hold)
\rightarrow	0	0	0	0	(Hold)
\rightarrow	0	0	1	1	
\rightarrow	0	1	0	0	Reset
\rightarrow	0	1	1	0	
\rightarrow	1	0	0	1	Set
\rightarrow	1	0	1	1	
\downarrow	1	1	0	1	Překlop
\downarrow	1	1	1	0	(Toggle)

T KO derivační

- Edge-Trigerred T Flip-Flop
 - Příklad realizace s asynchronními vstupy PRE a CLR aktivními v nule
 - Sestupná hrana hodin CLK (C) je aktivní
- Konstrukce
 - Nejčastěji s využitím jiných KO
 - Např. J-K KO ve funkci Překlápěj (Toggle), kdy T=J=K

CLK	Т	Q	Q_{i+1}	Činnost
0	Χ	0	0	
0	Χ	1	1	Pamatuj (Hold)
1	0	0	0	(Hold)
1	0	1	1	
1	1	0	1	Překlápěj
1	1	1	0	(Toggle)

Klopné obvody: Příklady

- J-K KO derivační sestaven pomocí
 - D KO derivačního (D=JQ'+K'Q)
- T KO derivační sestaven pomocí
 - R-S KO derivačního

• D KO derivačního (T=1)

 J-K derivačního s asynchronními vstupy Preset a Clear

Klopné obvody: Povolování hodinového signálu

- Clock Enable CE
- Řízení toku hodinového signálu CLK hradlováním
 - Nesprávné řešení vnáší zpoždění do cesty hodinového signálu, který pak nemusí mít správné parametry
 - Používá se pro zastavení činnosti celých subsystémů s ohledem na snižování příkonu (CMOS technologie odebírá proud především při přechodech mezi úrovněmi, viz dále)
- Speciální vstup CE
 - Výhodné řešení pro stavbu synchronních sekvenčních obvodů
 - CLK je rozveden na všechny KO, jejichž činnost se řídí (povoluje) pomocí CE

CE	CLK	D	Q	Q_{i+1}	Činnost
0	↑	Х	0	0	Pamatuj
0	↑	Х	0	1	(Hold)
1	↑	0	0	0	Ulož 0
1	↑	0	1	0	(Store 0)
1	↑	1	0	1	Ulož 1
1	↑	1	1	1	(Store 1)

Klopné obvody: Registry

- V řadě případů je výhodné sdružovat KO do skupin
 - KO mají společné řídicí vstupy
- Příklad n-bitového D registru
 - Synchronizační hodinový signál (CLK)
 - Asynchronní vstupy pro nastavení (PRE) či nulování (CLR)
 - Povolení činnosti hodin (CE)
 - Nezávislé vstupy (D0..Dn)
 - Nezávislé výstupy (Q0..Qn)
- Použití
 - Při konstrukci automatů na místě paměti kódu vnitřního stavu
 - Paměť operandů ALU atd.

- Hladinový (Latch)
 - Vstupní budicí (excitační) signály přímo ovlivňují (řídí) stav KO
 - R-S KO (NOR, NAND)
 - Latched data blokování, pamatování dat
- S povolovacím vstupem (Gated Latch)
 - Excitační signály nastavují stav KO, jen pokud je povolovací (control, enable) vstup aktivní
 - Gated Latch název pro KO R-S, J-K a T
 - Transparent Latch, D Latch, Delay Latch názvy pro KO D
 - Transparentní mód data jsou přenášena skrz latch po dobu, ve které je povolovací vstup aktivní
 - Latch mód data jsou pamatována (blokována) po dobu,
 ve které je povolovací vstup neaktivní
- Příklad Transparent D Latch
 - Transpatent: C=1
 - Latch: C=0

Q

C

Latch

- Mění výstupy na základě hodnot na excitačních vstupech při aktivním povolovacím vstupu
- Používají se pro zachycení hodnot na vstupech obvodů (pro paměťové dekodéry apod.), jako paměťové prvky v asynchronních sekvenčních obvodech a jako stavební prvky pro stavbu flip-flopů

Flip-flop

- Mění výstupy na základě hodnot vstupů, které jsou vzorkovány hodinovým signálem – pulsem (dvoufázový - Master-Slave R-S, J-K a T) či hranou (derivační - Edge-Trigerred D, R-S, J-K a T)
- Jsou výhodné pro uchování operandů a stavbu synchronních systémů, ve kterých izolují části kombinačních logických sítí (KLS) od sebe - výstup KLS1 se vzorkuje po odeznění přechodových dějů (hazardů) - díky tomu se hazardy nešíří dále do KLS2

- Chování jednotlivých typů Flip-Flop KO se liší nejen podle hodnot na excitačních vstupech, ale též s ohledem na hodinový signál
- R-S a J-K KO dvoufázové (Master-Slave Flip-Flop)
 - Pokud je Master povolen, tak se jeho výstupy nastaví na základě hodnot na excitačních vstupech
 - Pokud je povolen Slave, tak se jeho výstupy nastaví na hodnotu, na kterou byl naposledy nastaven Master (Q_M), ne excitační vstupy KO výstup KO tedy nezávisí na posledních hodnotách na excitačních vstupech v době povoleného Mastera, ale na stavu Mastera
- D KO dvoufázový = derivační (Edge-Triggered Flip-Flop)
 - Výstup KO závisí na posledních hodnotách excitačních vstupů v době platné hrany hodin
 - Je dáno tím, že použité D KO s povolovacím vstupem jsou po dobu aktivní úrovně hodin transparentní – přenáší excitační vstup D přes Master KO na vstup D Slave KO
 - Vzhledem k jeho výhodné funkci a jednoduchosti se v současnosti používá pro konstrukci logických systémů téměř výhradně

- Značení
 - Pro upřesnění funkce KO (s ohledem na jeho konstrukci) se pro označení hodinového signálu požívají různé symboly
 - Derivační KO: >...kladná hrana a <...záporná hrana
 - Dvoufázový KO: J...kladný puls a 1...záporný puls
- Hladinový

S povolovacím vstupem

Dvoufázový

Master-Slave Flip-Flop

Derivační

Edge-Trigered Flip-Flop

- Tabulka přechodů (příklad pro R-S KO)
 - Obecný nástroj pro definici a analýzu chování konečných automatů implementovaných jako sekvenční obvody
- Slovník přechodů (příklad pro R-S KO)
 - Pro použití klopných obvodů při návrhu
 - Pro požadovaný přechod ze současného do následujícího stavu, určuje potřebné hodnoty excitačních vstupů KO
- Excitační tabulka (příklad pro R-S KO)
 - Pro návrh (syntézu) sekvenčních obvodů z klopných obvodů
 - Na základě tabulky přechodů a slovníku přechodů příslušného KO definuje přechodovou a výstupní funkci konečného automatu

Q_{i+1}	SR			
Qi	00	01	10	11
0	0	0	1	U
1	1	0	1	U

Qi	Q_{i+1}	S	R
0	0	0	Χ
0	1	1	0
1	0	0	1
1	1	Х	0

S	R	Q	Q_{i+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	U
1	1	1	U

 Pro všechny konstrukce KO (hladinový, s povolovacím vstupem, dvoufázový a derivační) lze jejich chování popsat stejnou excitační tabulkou i grafem přechodů

S	R	Qi	Q_{i+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	U
1	1	1	U

•	Předpokládáme, že přechod nastane v době, ve které
	jsou aktivní povolovací či hodinové signály (control, clock
	– hladina, puls či hrana)

D	Q_{i}	Q_{i+1}
0	0	0
0	1	0
1	0	1
1	1	1

J	K	Q _{i+1}
0	0	Q_t
0	1	0
1	0	1
1	1	not(Q _t)

Т	Q_{i}	Q _{i+1}
0	0	0
0	1	1
1	0	1
1	1	0

