

大学大学 TSINGHUA UNIVERSITY

1.
$$p_{t+1}(i) = \frac{b_t(i) \exp(-\lambda_t g h_t(k_i))}{2t}$$
 z_t
 z_t

for $i \in I$ & m do $D_{\mathbf{i}}(i) \leftarrow \mathbf{i}$ $\int_{\mathbf{i}}^{\mathbf{i}} \frac{\mathbf{i} \cdot \mathbf{i}}{\mathbf{i}} d\mathbf{i}$ $\int_{\mathbf{i}}^{\mathbf{i}} \frac{\mathbf{i}}{\mathbf{i}} d\mathbf{i}$ $\int_{\mathbf{i}}^{\mathbf{i}} \frac{\mathbf$

(EM) 31)((i) = Q Wie 4 / (x) (x) (x)

D+H (i) = Pty (i) e (x) (x) (x)

= Wie + (x) (x) (x)

= Wie + (x) (x)

= (x)

F'(Otta,el.) = - # 9; hk (x) Wie 1 & day 1, (x)

= - 1 3 yihr (x) FG1 22 0

= - () [(yihk(xi)=]) - () [Qihk(xi)=]

= - ((+ \vec{\xi}_{t,lc}) - \vec{\xi}_{t,lc} \vec{\xi}_{\vec{\xi}_{t,lc}} \vec{\xi}_{\vec{\xi}_{t,lc}}

0 F (armin)

οη = ξ y. hις (κ,) ρ, (i) ξ, e-ny:hk (κ),

(+ ? t.le) en - [t,le en] =