Example 37.1.

- 1. Let $E = \mathbb{R}$, and d(x, y) = |x y|, the absolute value of x y. This is the so-called natural metric on \mathbb{R} .
- 2. Let $E = \mathbb{R}^n$ (or $E = \mathbb{C}^n$). We have the Euclidean metric

$$d_2(x, y) = (|x_1 - y_1|^2 + \dots + |x_n - y_n|^2)^{\frac{1}{2}},$$

the distance between the points (x_1, \ldots, x_n) and (y_1, \ldots, y_n) .

- 3. For every set E, we can define the discrete metric, defined such that d(x, y) = 1 iff $x \neq y$, and d(x, x) = 0.
- 4. For any $a, b \in \mathbb{R}$ such that a < b, we define the following sets:

$$[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}, \quad \text{(closed interval)}$$

$$(a,b) = \{x \in \mathbb{R} \mid a < x < b\},$$
 (open interval)

$$[a,b) = \{x \in \mathbb{R} \mid a \le x < b\},$$
 (interval closed on the left, open on the right)

$$(a,b] = \{x \in \mathbb{R} \mid a < x \le b\},$$
 (interval open on the left, closed on the right)

Let
$$E = [a, b]$$
, and $d(x, y) = |x - y|$. Then, $([a, b], d)$ is a metric space.

We will need to define the notion of proximity in order to define convergence of limits and continuity of functions. For this we introduce some standard "small neighborhoods."

Definition 37.2. Given a metric space E with metric d, for every $a \in E$, for every $\rho \in \mathbb{R}$, with $\rho > 0$, the set

$$B(a, \rho) = \{ x \in E \mid d(a, x) \le \rho \}$$

is called the closed ball of center a and radius ρ , the set

$$B_0(a, \rho) = \{x \in E \mid d(a, x) < \rho\}$$

is called the open ball of center a and radius ρ , and the set

$$S(a, \rho) = \{x \in E \mid d(a, x) = \rho\}$$

is called the sphere of center a and radius ρ . It should be noted that ρ is finite (i.e., not $+\infty$). A subset X of a metric space E is bounded if there is a closed ball $B(a, \rho)$ such that $X \subseteq B(a, \rho)$.

Clearly,
$$B(a, \rho) = B_0(a, \rho) \cup S(a, \rho)$$
.

Example 37.2.