- 一. 引言
- 二. 离散系统仿真方法
- 三. 离散系统仿真的组成部分

第一章 离散系统仿真的基本原理

一. 引言
1. 什么是仿真

估计实际系统的性能

「方真软件」
「切真软件」
「切真软件」
「「小真软件」
「「小真软件」
「「小真软件」
「「小真软件」
「「小真模型」
「「一点型」
「「一点型」
「「一点型」」
「一点型」
「「一点型」」
「「一点型」」
「「一点型」」
「「一点型」」
「「一点型」」
「「一点型」」
「「一点型」」

第一章 离散系统仿真的基本原理

仿真是以系统理论、随机过程理论、统计理 论以及优化理论为基础,借助计算机和仿真软件 对现实系统或未来系统行为进行动态实验研究的 方法。

系统仿真是指在计算机上运行仿真模型,模拟 实际系统的运行状态和随时间变化的过程,并通过 对仿真运行的观察和统计,得到被仿真系统的基本 特性和参数,以此来估计和推断实际系统性能。

第一章 离散系统仿真的基本原理

模型:

- 模型是现实系统的一种抽象和简化
- 模型应包含那些决定系统性能的主要因素
- 模型应反映出系统中各主要因素之间的逻辑关系和数学关系

仿真模型特点:

- 仿真模型包含实体,属性,活动和状态变量
- 可以在计算机上运行仿真模型,以模仿现实系统的动态行为

4

第一章 离散系统仿真的基本原理

2. 历史回顾

- 1773 蒲丰(Buffon)随机投针试验, 求出π的近似值
- 1876 Gosset 用类似方法求连续函数定积分的近似值
- 1908 Student用随机抽样的方法证明了 t 分布的密度函数
- 1946 冯·诺伊曼(Von Neumar)等人在计算机上用随机抽样的方法模拟了裂变物质中子连锁反应,并以蒙特卡罗(Monte-Carlo)方法作为随机模拟方法的代号。随后,此名字很快得到人们的普遍接受。

第一章 离散系统仿真的基本原理

- 60年代: GPSS (General Purpose Simulation System) 面世。只有大型企业才使用仿真技术,通常由具有 博士学位的研究人员组成仿真小组,程序运行费用 \$600-1000/小时。
- 70-80年代: 计算机高效率、低成本; 仿真语言逐步 完善。通常大型企业使用仿真技术, 而且一般仅用于 企业重大问题的诊断和潜在问题的分析。大学开始将 仿真列为工业工程及运筹学专业的正式课程。

6

- 80-90年代: 随着计算机的及其图形与动画技术讯 猛发展,仿真技术开始进入一般经营活动,而且 较大企业开始在重要项目或投资的论证阶段使用 仿真方法。但在小型企业中的应用仍很少。
- 90年代以后: 仿真系统进一步成熟、完善、良好 的图形与动画技术日趋广泛, 高性能计算机、友 好的人机界面、方便的建模环境、易于集成的软 件包的推出。大多数企业已将仿真方法作为一个 标准工具, 仿真讲入了多数企业的早期决策阶段, 而且正进入越来越多的非传统经营行业。

第一章 离散系统仿真的基本原理

研究热点:

- 离散系统的仿真机制
- 仿真输入/输出数据的统计分析
- 仿真优化理论
- 与其他软件的集成
- 更方便的建模环境 ("傻瓜型")
- 用仿真手段控制实际系统
- 分布式并行仿真
- Internet上的仿真
- 。 虚拟现实 (VR) 仿真
- 可视化交互仿真

第一章 离散系统仿真的基本原理

- 应用领域: 制造业
 - 宏观经济学
 - 金融工程学
 - 交通运输
 - 工程项目
 - 军事
 - 航空航天
 - 社会服务(医疗、餐饮等)
 - 生物医学
 - 计算物理学(如粒子输运计算、量子热 力学计算、空气动力学计算、核工程)

第一章 离散系统仿真的基本原理

3. 何时候需要用仿真

- 当系统存在随机因素,无法用解析方法求解时 如:生产加工程序、交通灯、超级市场的存货策略
- 对昂贵或不可恢复系统的分析
 - 如:车间布局、重要的经济政策、宇宙飞船的发射 与控制

11

- 对未来系统的设计与分析
 - 如: 大型项目的投资分析、可行性分析
- 其他各种无法用解析方法分析的复杂问题

第一章 离散系统仿真的基本原理 例. 单行道交通系统仿真 在一条通道上有50米需要修理而被封闭,在封闭的单行道 两端设置了交通信号灯控制交通流。 修理路段 · 方向2 方向1 50m 方向1: 到达间隔是均值为12秒的指数分布 方向2: 到达间隔是均值为9秒的指数分布 速度限制(在修理路段): 40km/hr(4.5秒通过) 信号灯的变换循环: GRE1 / RED2 RED1 / RED2 Î RED1 / RED2 RED1 / GRE2²

第一章 离散系统仿真的基本原理 缺点: ❖ 由于随机因素的影响,仿真输出只是随机系统中的一个样本,若处理不当,将无法正确反映系统的真实行为,而其直观性则使人容易接受错误结论。 ❖ 易使人过于依赖仿真,而忽视其他方法。

(运行时间为28800秒,即8小时)								
	Ave.	Min	Max.					
通行时间								
Able	576	254	1421					
Backer	636	326	1512					
等待时间	307. 9	0	1174					
队列长度 利用率	4. 96	0	20					
Able	0. 398	0	1	227				
Baker	0. 450	0	1	157				

例. 报童问题

有关报纸的买卖问题

- 报童早上购买报纸每张0.33元,他可以 成捆购买(50,60,70,....)
- 报童卖报每张0.50元,每张净利0.17元
- 如果报纸购进太多,退价为0.15元,每 张损失0.17元

	<u> </u>	需求类型	
需求	好	中	差
	0. 35	0. 45	0. 20
40	0. 03	0. 10	0. 44
50	0.05	0.18	0. 22
60	0. 15	0.40	0.16
70	0. 20	0. 20	0. 12
80	0. 35	0. 08	0. 06
90	0. 15	0.04	0. 00
100	0. 07	0.00	0. 00

问题:如何确定每天购进报纸的数量,以获得最 大的利润

方案: 每早分别购进报纸50, 60, 70, 80, 90, 100份

仿真:按前面的需求类型、各需求水平及其概率 对不同方案进行仿真建模和运行(20天)

结果:利用仿真结果计算每天的平均利润,找出 最好的购买策略

由上述概率可以利用投针试验计算π值。

设n一投针次数;m一针线相交次数, 当n充分大时,可用频率m/n作为概率p的估 计值,从而求得 π 的估计值为

$$\pi \approx \frac{2l \ n}{am}$$

31

33

实验者

Wolf

Smith

Fox

第一章 离散系统仿真的基本原理								
历史上投针实验结果(a=1)								
时间	l	n	m	m/n	π的估计值			
1853	0.8	5000	2532	0.5064	3.1596			
1855	0.6	3204	1218.5	0.3803	3.1554			
1894	0.75	1030	489	0.4748	3.1595			

32

第一章 离散系统仿真的基本原理

蒲丰试验在计算机上的实现步骤:

(1) 产生随机数: ① y_i~U(0, a),

 $\bigcirc \varphi_i \sim U(0,\pi)$,

③ y_i 与 φ_i 相互独立

其中i=1,2,...,n;

(2) 模拟试验: 检验不等式

 $y_i \leq l \sin \varphi_i$

是否成立。若成立,表示第i次试验成功(即针与平行线相交)。设n次试验中成功次数为m次,则的估计值为

$$\pi \approx \frac{2l \ n}{am}$$
 (a>l,均为预先给定)

第一章 离散系统仿真的基本原理

Lazzarini 1901 | 0.83 | 3408 | 1808 | 0.5305 | 3.1416

蒙特卡罗方法的基本思想:

为求解数学、工程技术或随机服务系统等方面的问题,首先构造一个仿真模型,使所求问题的解正好是该模型的参数或有关。然后通过仿真一统计试验,把得到的统计特征(均值、概率等)的估计值作为所求问题的数值解。

34

第一章 离散系统仿真的基本原理

2. 样本量(实验次数)的确定

做多少次随机实验才能保证Monte-Carlo方法的精度?以投针试验为例,n 次试验中相交(成功)次数 X_n 服从二项分布 (即B(n,p), p是每次投针相交的概率),且

 $E(X_n)=np, Var(X_n)=np(1-p)$

由中心极限定理知, 当n充分大时

$$\frac{X_n - np}{\sqrt{np(1-p)}} \sim N(0, 1)$$

35

第一章 离散系统仿真的基本原理

☆ 知识点回顾-中心极限

以均值为 μ ,方差为 σ^2 的独立同分布的随机变量 $X_1, X_2, ..., X_n$ 之和 $\sum_{k=1}^n X_k$ 的标准化变量,当n充分大时,有

$$\frac{\sum_{k=1}^{n} X_k - n\mu}{\sqrt{n} \sigma} \sim N(0, 1)$$

进一步地,因为
$$\frac{1}{n}\sum_{k=1}^{n}X_{k}-\mu = \frac{\overline{X}-\mu}{\sigma/\sqrt{n}}$$
,则

$$\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$$
或 $\bar{X} \sim N(\mu, \sigma^2/n)$

因此对于给定的置信度 $1-\alpha$,有

$$P\left\{\left|\frac{X_n - np}{\sqrt{np(1-p)}}\right| \le z_{1-\frac{\alpha}{2}}\right\} = 1 - \alpha$$

即

$$P\left\{ \left| \frac{X_n}{n} - p \right| \le z_{1 - \frac{\alpha}{2}} \sqrt{\frac{p(1 - p)}{n}} \right\} = 1 - \alpha$$

 $z_{1-\frac{\alpha}{2}}$ 一 正态分布的临界值

37

第一章 离散系统仿真的基本原理

☆ 知识点回顾-置信区间

设总体X的分布函数 $F(x,\theta)$ 含有一个未知参数 $\theta \in \Theta$,对于给定值 $0 < \alpha < 1$,若由来自X的样本 $X_1, X_2, ..., X_n$ 确定的两个统计量 $\overline{\theta}$ 和 $\underline{\theta}$,对于任意 $\theta \in \Theta$ 满足

$$P\{\theta < \theta < \overline{\theta}\} \ge 1 - \alpha$$

则称随机区间 $(\underline{\theta}, \overline{\theta})$ 是 θ 的置信水平为 $1-\alpha$ 的置信区间, $1-\alpha$ 为置信水平。

38

第一章 离散系统仿真的基本原理

☆ 知识点回顾-置信区间

设正态分布 $N(\mu,\sigma^2)$, \bar{X} 和 S^2 分别为样本均值和样本方差,当方差 σ^2 已知时,均值 μ 的置信水平为 $1-\alpha$ 的置信区间为

$$[\overline{X} \pm \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}}]$$

当方差 σ^2 未知时,均值 μ 的置信水平为 $1-\alpha$ 的置信区间为

$$[\overline{X}\pm\frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1)]$$

39

第一章 离散系统仿真的基本原理

若要求误差(精度)为 ε ,只需下式成立:

$$z_{1-\frac{\alpha}{2}}\sqrt{\frac{p(1-p)}{n}} < \varepsilon$$

$$n > \frac{z_{1-\alpha/2}^2 p(1-p)}{\varepsilon^2}$$

뭐.

例. 要求实验精度 ε =0.01, 置信度为1- α =95%, $Z_{0.975}$ =1.96, 取p=0.5093, 则试验次数n=9600次。 如果精度提高一位,即 ε =0.001, n=?

...

第一章 离散系统仿真的基本原理

几个投针实验结果

实验者	n	l/a	$p=2l/(\pi a)$	π– π^	1- α
裴鹿成等	50万	0.83	0.530496	0.00061	80.6%
Lazzarini	3408	0.83	0.530496	0.0000029	50%
Smith	3204	0.83	0.530496	0.0137	93.9%
Wolf	5000	0.80	0.509296	0.018	99.5%
Fox	1120	0.83	0.530496	0.00031	50.8%

41

第一章 离散系统仿真的基本原理

3. Monte-Carlo方法的收敛性

用仿真方法求解实际问题时,经常用随机变量X的简单样本 $\{X_1,X_2,\ldots,\ X_n\}$ 的样本均值 \overline{X}_n 和样本方差 S_n^2 来估计E(X)和 $\sigma^2=Var(X)$,其中

$$\overline{X}_{n} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$S_{n}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X}_{n})^{2}$$

由中心极限定理知, 当n充分大时,

$$P\left\{\left|\frac{\overline{X}_n - E(X)}{\sigma/\sqrt{n}}\right| \le z_{1-\frac{\alpha}{2}}\right\} \approx 1 - \alpha \qquad (2-1)$$

这表明 $\left|\overline{X}_n - E(X)\right| < \frac{z_{1-\frac{\alpha}{2}} \cdot \sigma}{\sqrt{n}}$ 近似地以概率

 $1-\alpha$ 成立。可见 \overline{X}_n 随试验次数 n的增加按统计规律 (2-1)逐步收敛于问题的解。收敛的速度是 $O(\frac{1}{\sqrt{n}})$ 。

这样的收敛速度当要求把仿真结果的精度提高一位,就要增加100倍的工作量。

43

第一章 离散系统仿真的基本原理

三. 离散系统仿真的组成部分

- 随机离散事件
- 仿真时钟及其推进方式
- 未来事件表
- 随机数发生器
- 自动汇集各种统计数据, 打印报告

44

第一章 离散系统仿真的基本原理

1. 系统状态变量

反映系统特征及状态的随机变量。如 当前时间、队长、处于忙态的机器数等。

2. 实体

实体是系统研究的对象或组成部分, 包括流动实体和固定实体。

流动实体: 顾客,零件,航行器,船只等 固定实体: 服务台,机器,轨道,码头等

45

第一章 离散系统仿真的基本原理

3. 属性

描述流动实体特征的一组数值,由建模 人员定义。属性可看作实体上所贴的标签, 如零件的编号、到达时间、完工时间等。

4. 离散事件

在离散时刻随机发生,且引起系统状态 发生瞬间变化的事情,简称事件。如:到达 事件,离开事件等。

离散事件是离散系统仿真的核心。

46

第一章 离散系统仿真的基本原理

5. 仿真时钟及其推进方式

仿真时钟是仿真过程中的当前时间指示,记为 TNOW。两种不同的时钟推进方式:

(1) 面向事件的仿真时钟

面向事件的仿真时钟,按下一离散事件将要发生的时刻向前推进,即每次都跳跃性地推进到下一事件的发生时刻。

(2) 面向时间间隔的仿真时钟

面向时间间隔的仿真时钟,它以充分小的时间 间隔等距向前推进。

6. 未来事件表

由事件发生时间大于TNOW的事件所构 成的时序列表。

当t=TNOW时,应系统中的以下内容:

- ① 系统状态。
- ② 系统正在执行的活动。
- ③ 当前活动将要产生的事件及时间。
- ④ 系统统计数据的当前值和累计计数等。

49

第一章 离散系统仿真的基本原理

仿真过程的终止

- 规定仿真的最大运行时间 T_F

 $TNOW \ge T_E$ 时终止

- 规定终止事件E

若 E 发生则终止

此时的终止时间为随机时刻

50

	未来事件表(FEL)							
TNOW	当前事	可能产生	FEL	系统状态				
TNOW	件类型	的新事件	FEL	NIQ	Status			
0	A ₁	(A ₂ ,4),(D ₁ ,6)	(A ₂ ,4),(D ₁ ,6), (E,60)	0	1			
4	A ₂	(A ₃ ,10)	(D ₁ ,6),(A ₃ ,10), (E,60)	1	1			
6	D ₁	(D ₂ ,13)	(A _{3,} ,10), (D ₂ ,13),(E,60)	0	1			
10	A ₃	(A ₄ ,15)	(D ₂ ,13),(A ₄ ,15),(E,60)	1	1			
13	D ₂	(D ₃ ,17)	(A ₄ ,15),(D ₃ ,17), (E,60)	0	1			
15	A_4	(A ₅ ,18)	(D ₃ ,17),(A ₅ ,18), (E,60)	1	1			
17	D_3	(D ₄ ,25)	(A _{5,} ,18),(D ₄ ,25),(E,60)	0	1			
18	A ₅	(A ₆ ,25)	(D ₄ ,25),(A ₆ ,25),(E,60)	1	1			
25	D ₄	(D ₅ ,30)	(A ₆ ,25),(D ₅ ,30),(E,60)	0	1			
25	A ₆	(A ₇ ,29)	(A ₇ ,29),(D ₅ ,30),(E,60)	1	1			
29	A ₇	(A ₈ ,31)	(D ₅ ,30),(A ₈ ,31),(E,60)	2	1			
30	D ₅	(D ₆ ,36)	(A ₈ ,31),(D ₆ ,36),(E,60)	1	51 1			

所关心的系统性能测度 完工零件数 零件在队列中的平均与最大等待时间 $\sum_{i=1}^{n} D_i / n$ $Max\{D_i\}$ 零件在系统中的平均与最大逗留时间 平均与最大队长 $\frac{1}{60} \int_{0}^{\infty} Q(t) dt$ $Max\ Q(t)$ 设备平均利用率 $\frac{1}{15} \int_{0}^{15} B(t) dt$

第一章 离散系统仿真的基本原理

零	件的到达间隔与加工的	时间					
零件号 到达间隔时间 加工时间							
1	0	6					
2	4	7					
3	6	4					
4	5	8					
5	3	5					
6	7	6					
7	4	7					
8	2	4					
9	4	5					
10	8	6					

未来事件表(FEL)									
	记 A _i — 第i个零件到达 D _i — 第i个零件加工完成 E —仿真终止事件(当TNOW=60分停止仿真)								
TNOW	NOW 当前 可能产生 FEL 事件 的新事件 FEL			系约 NIQ	状态 Status				
0	A ₁	(A ₂ ,4), (D ₁ ,6)	(A ₂ ,4),(I	D ₁ ,6), (E,	60)	0	1	
4	A ₂	(A ₃ ,1	0)	(D ₁ ,6), (A	A ₃ ,10),(E,	60)	1	1	
• 6	D ₁	(D ₂ ,1	3)	(A ₃ ,10),	(D ₂ ,13),(E	Ξ,60)	0	1	
10	A ₃	(A ₄ ,1	5)	(D ₂ ,13),	(A ₄ ,15),(E	Ξ,60)	1	1	
*	零件号 到达间 到达时间			加工时间	加工完 成时间	等待時	村间	_	
	1	0	0	6	6	0			
	2 3	6	4 10	7 4	13 17	2 3			
	4	5	15	8	25	2			
	5	3	18	5	30	7			
	6	7	25	6	36	5		64	

未来事件表(FEL)							
TNOW 当前事		可能产生			状态		
	件类型	的新事件		NIQ	Status		
0	A ₁	(A ₂ ,4),(D ₁ ,6)	(A ₂ ,4),(D ₁ ,6), (E,60)	0	1		
4	A ₂	(A ₃ ,10)	(D ₁ ,6),(A ₃ ,10), (E,60)	1	1		
6	D ₁	(D ₂ ,13)	(A ₃ ,10), (D ₂ ,13),(E,60)	0	1		
10	A ₃	(A ₄ ,15)	(D ₂ ,13),(A ₄ ,15),(E,60)	1	1		
13	D ₂	(D ₃ ,17)	(A ₄ ,15),(D ₃ ,17), (E,60)	0	1		
15	A ₄	(A ₅ ,18)	(D ₃ ,17),(A ₅ ,18), (E,60)	1	1		
17	D ₃	(D ₄ ,25)	(A _{5,} ,18),(D ₄ ,25),(E,60)	0	1		
18	A ₅	(A ₆ ,25)	(D ₄ ,25),(A ₆ ,25),(E,60)	1	1		
25	D_4	(D ₅ ,30)	(A ₆ ,25),(D ₅ ,30),(E,60)	0	1		
25	A ₆	(A ₇ ,29)	(A ₇ ,29),(D ₅ ,30),(E,60)	1	1		
29	A ₇	(A ₈ ,31)	(D ₅ ,30),(A ₈ ,31),(E,60)	2	1		
30	D ₅	(D ₆ ,36)	(A ₈ ,31),(D ₆ ,36),(E,60)	1	65 1		

本章基本要求:

了解离散系统仿真的基本原理,理解随机离散事件、仿真时钟的推进模式、未来事件表、以及时钟推进/事件调度的仿真机制等重要概念。

第一章 离散系统仿真的基本原理