Devoir surveillé n°6: corrigé

Problème 1 – Produit de convolution de suites

Partie I – Structure d'anneau de $(E, +, \star)$

- 1. L'élément neutre pour la loi + est évidemment la suite constamment nulle.
- **2.** Soit $(\mathfrak{u}, \mathfrak{v}) \in \mathsf{E}^2$. Soit $\mathfrak{n} \in \mathbb{N}$.

$$\begin{split} (u\star\nu)_n &= \sum_{k=0}^n u_k \nu_{n-k} \\ &= \sum_{j=0}^n u_{n-j} \nu_j \quad \text{via le changement d'indice } j = n-k \\ &= \sum_{j=0}^n \nu_j u_{n-j} \\ &= (\nu\star u)_n \end{split}$$

Ainsi $u \star v = v \star u$. La loi \star est donc bien commutative.

3. Soit $(u, v, w) \in E^3$. Soit $n \in \mathbb{N}$.

$$((u \star v) \star w)_{n} = \sum_{k=0}^{n} (u \star v)_{k} w_{n-k}$$

$$= \sum_{k=0}^{n} \left(\sum_{i=0}^{k} u_{i} v_{k-i} \right) w_{n-k}$$

$$= \sum_{k=0}^{n} \sum_{i=0}^{k} u_{i} v_{k-i} w_{n-k}$$

$$= \sum_{0 \leqslant i \leqslant k \leqslant n} u_{i} v_{k-i} w_{n-k}$$

$$(u \star (v \star w))_{n} = \sum_{k=0}^{n} u_{k} (v \star w)_{n-k}$$

$$= \sum_{k=0}^{n} u_{k} \left(\sum_{i=0}^{n-k} v_{i} w_{n-k-i} \right)$$

$$= \sum_{k=0}^{n} \sum_{j=k}^{n-k} u_{k} v_{i} w_{n-k-i}$$

$$= \sum_{k=0}^{n} \sum_{j=k}^{n} u_{k} v_{j-k} w_{n-j} \quad \text{via le changement d'indice } j = i + k$$

$$= \sum_{0 \leqslant k \leqslant j \leqslant n} u_{k} v_{j-k} w_{n-j}$$

$$= \sum_{0 \leqslant k \leqslant j \leqslant n} u_{i} v_{k-i} w_{n-k} \quad \text{car les indices sont muets}$$

$$= ((u \star v) \star w)_{n}$$

Ainsi $(u \star v) \star w = u \star (v \star w)$. La loi \star est donc bien associative.

4. Soit $u \in E$. Pour tout $n \in \mathbb{N}$,

$$(\varepsilon \star u)_n = \sum_{k=0}^n \varepsilon_k u_{n-k} = \varepsilon_0 u_n = u_n$$

car $\varepsilon_0=1$ et $\varepsilon_k=0$ si $k\neq 0$. Ainsi $\varepsilon\star u=u$ et, comme \star est commutative, $u\star \varepsilon=\varepsilon\star u=u$. La suite ε est donc bien neutre pour la loi \star .

5. Soit $(\mathfrak{u}, \mathfrak{v}, \mathfrak{w}) \in \mathsf{E}^3$. Alors

$$((u+v)*w)_{n} = \sum_{k=0}^{n} (u+v)_{k} w_{n-k}$$

$$= \sum_{k=0}^{n} (u_{k} + v_{k}) w_{n-k}$$

$$= \sum_{k=0}^{n} (u_{k} w_{n-k} + v_{k} w_{n-k})$$

$$= \sum_{k=0}^{n} u_{k} w_{n-k} + \sum_{k=0}^{n} v_{k} w_{n-k}$$

$$= (u*w)_{n} + (v*w)_{n}$$

$$= (u*w+v*w)_{n}$$

Ainsi $(u+v) \star w = (u \star w) + (v \star w)$. Comme \star est commutative, on a également $w \star (u+v) = (w \star u) + (w \star v)$. La loi \star est donc bien distributive sur la loi +.

6. Soit un entier $n \ge N_1 + N_2$. Alors

$$(u\star v)_n = \sum_{k=0}^n u_k v_{n-k}$$

Soit $k \in [0, n]$. Si $k \geqslant N_1$, alors $u_k = 0$ et si $k < N_1$, alors $n - k > n - N_1 \geqslant N_2$ donc $v_{n-k} = 0$. Tous les termes de la somme précédente sont donc nuls. Ainsi $(u \star v)_n = 0$ de sorte que la suite $u \star v$ est nulle à partir du rang $N_1 + N_2$.

7. La suite ε nulle à partir du rang 1 donc $\varepsilon \in F$.

Soit $(\mathfrak{u}, \nu) \in F^2$. Les suites \mathfrak{u} et ν sont donc nulles respectivement à partir d'un rang $N_1 \in \mathbb{N}$ et $N_2 \in \mathbb{N}$. On vérifie alors sans peine que $\mathfrak{u} - \nu$ est nulle à partir du rang $\max(N_1, N_2)$. Ainsi $\mathfrak{u} - \nu \in F$. De plus, la question précédente montre que $\mathfrak{u} \star \nu$ est nulle à partir du rang $N_1 + N_2$. Ainsi $\mathfrak{u} \star \nu \in F$.

On peut alors en déduire que F est un sous-anneau de E.

Partie II - Suites géométriques et calculs de puissances

8. Pour tout $n \in \mathbb{N}$,

$$([q] \star [r])_n = \sum_{k=0}^n [q]_k [r]_{n-k} = \sum_{k=0}^n q^k r^{n-k}$$

Or

$$q^{n+1} - r^{n+1} = (q-r) \sum_{k=0}^{n} q^k r^{n-k}$$

et $q \neq r$ donc

$$([q] \star [r])_n = \sum_{k=0}^n q^k r^{n-k} = \frac{q^{n+1} - r^{n+1}}{q - r}$$

9. Pour tout $n \in \mathbb{N}$,

$$([q]^2)_{\mathfrak{n}} = \sum_{k=0}^{\mathfrak{n}} [q]_k [q]_{\mathfrak{n}-k} = \sum_{k=0}^{\mathfrak{n}} q^k q^{\mathfrak{n}-k} = \sum_{k=0}^{\mathfrak{n}} q^{\mathfrak{n}} = (\mathfrak{n}+1)q^{\mathfrak{n}}$$

10. Puisque a = [1], la question précédente montre que pour tout $n \in \mathbb{N}$,

$$(a^2)_n = (n+1)1^n = (n+1)$$

Pour tout $n \in \mathbb{N}$,

$$(a^3)_n = (a^2 \star a)_n = \sum_{k=0}^n (a^2)_k a_{n-k} = \sum_{k=0}^n k + 1 = \frac{(n+1)(n+2)}{2}$$

11. On raisonne par récurrence sur p.

$$HR(p): \forall n \in \mathbb{N}, (a^p)_n = \binom{n+p-1}{p-1}$$

HR(1) est vraie puisque pour tout $n \in \mathbb{N}$, $a_n = 1 = \binom{n}{0}$. Supposons que HR(p) soit vraie pour un certain $p \in \mathbb{N}^*$. Alors pour tout $n \in \mathbb{N}$,

$$(a^{p+1})_n = (a^p \star a)_n = \sum_{k=0}^n (a^p)_k a_{n-k}$$

$$= \sum_{k=0}^n {k+p-1 \choose p-1}$$

$$= \sum_{k=0}^n {k+p \choose p} - {k+p-1 \choose p}$$

$$= {n+p \choose p} - {p-1 \choose p}$$

$$= {n+p \choose p}$$

Donc HR(p + 1) est vraie.

Remarque. On a utilisé la convention usuelle stipulant que si k et n sont deux entiers naturels tels que k > n, $\binom{n}{k} = 0$. On vérifie alors que la relation $\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}$ est encore valable lorsque k = n. \blacksquare Par récurrence, HR(p) est vraie pour tout $p \in \mathbb{N}^*$.

12. On remarque que pour tout $n \in \mathbb{N}$

$$(a^p)_n = \frac{\prod_{k=1}^{p-1} (n+k)}{(n-1)!}$$

Or pour tout $k \in [1, p-1]$, $n+k \sim n$ donc

$$(a^p)_n \sim_{n \to +\infty} \frac{n^{p-1}}{(p-1)!}$$

Partie III – Inversibles de l'anneau $(E, +, \star)$

13. Supposons que $u \in E$ soit inversible. Il existe donc $v \in E$ telle que $u \star v = \epsilon$. En particulier,

$$u_0v_0 = (u \star v)_0 = \varepsilon_0 = 1$$

donc $u_0 \neq 0$.

Réciproquement supposons que $u_0 \neq 0$. On peut alors définir une suite $v \in E$ par récurrence en posant $v_0 = \frac{1}{u_0}$ et pour tout $n \in \mathbb{N}^*$

$$v_{n} = -\frac{1}{u_{0}} \sum_{k=0}^{n-1} v_{k} u_{n-k}$$

On a alors $v_0u_0=1$ et donc $(v\star u)_0=\epsilon_0$ et pour tout $n\in\mathbb{N}^*$

$$\sum_{k=0}^{n} \nu_k u_{n-k} = u_0 \nu_n + \sum_{k=0}^{n-1} \nu_k u_{n-k} = 0 = \epsilon_n$$

Ainsi $v \star u = \varepsilon$, ce qui prouve que u est inversible.

- 14. [q] est inversible puisque $[q]_0=q^0=1\neq 0$. Comme $y=[q]^{-1}$, $[q]\star y=\epsilon$. En particulier, $[q]_0y_0=([q]\star y)_0=\epsilon_0=1$ donc $y_0=1$ puisque $[q]_0=1$. Ensuite $[q]_0y_1+[q]_1y_0=([q]\star y)_1=\epsilon_1=0$. Ceci signifie que $y_1+q=0$ et donc $y_1=-q$. De la même manière, $[q]_0y_2+[q]_1y_1+[q]_2y_0=([q]\star y)_2=\epsilon_2=0$. Ceci signifie que $y_2-q^2+q^2=0$ et donc $y_2=0$. Enfin, $[q]_0y_3+[q]_1y_2+[q]_2y_1+[q]_3y_0=(x\star y)_3=\epsilon_3=0$. Ceci signifie que $y_3-q^3+0+q^3=0$, ce qui donne à nouveau $y_3=0$.
- 15. On sait déjà que $y_0=1$ et $y_1=-q$ et l'on va montrer que $y_n=0$ pour tout entier $n\geqslant 2$ par récurrence forte. On a déjà montré que $y_2=0$. Supposons qu'il existe un entier $n\geqslant 2$ tel que $y_k=0$ pour tout $k\in [\![2,n]\!]$. Alors

$$0 = \varepsilon_{n+1} = (y \star [q])_{n+1} = \sum_{k=0}^{n+1} y_k[q]_{n+1-k} = y_{n+1}[q]_0 + \sum_{k=0}^n y_k[q]_{n+1-k} = y_{n+1}[q]_0 + y_0[q]_{n+1} + y_1[q]_n$$

puisque $y_k = 0$ pour $k \in [2, n]$. On en déduit donc que

$$y_{n+1} + q^{n+1} - q \cdot q^n = 0$$

et donc que $y_{n+1} = 0$. Il s'ensuit donc que $y_n = 0$ pour tout entier $n \ge 2$ par récurrence forte.

Partie IV – Intégrité de l'anneau $(E, +, \star)$

- **16.** Puisque $\mathfrak u$ et $\mathfrak v$ sont non nulles, les ensembles $\{\mathfrak n\in\mathbb N,\ \mathfrak u_\mathfrak n\neq 0\}$ et $\{\mathfrak n\in\mathbb N,\ \mathfrak v_\mathfrak n\neq 0\}$ sont non vides. Puisqu'il s'agit de deux parties de $\mathbb N$, elles admettent tous deux un minimum.
- 17. Remarquons que par définition de p et q, $u_k = 0$ pour tout k < p et $v_k = 0$ pour tout k < q. Alors

$$\begin{split} (u\star\nu)_{p+q} &= \sum_{k=0}^{p+q} u_k \nu_{p+q-k} \\ &= u_p \nu_q + \sum_{k=0}^{p-1} u_k \nu_{p+q-k} + \sum_{k=p+1}^{p+q} u_k \nu_{p+q-k} \\ &= u_p \nu_q + \sum_{k=0}^{p-1} u_k \nu_{p+q-k} + \sum_{j=0}^{q-1} u_{p+q-j} \nu_j \qquad \text{via le changement d'indice } j = p+q-k \\ &= u_p \nu_q \end{split}$$

puisque $u_k = 0$ pour k < p et $v_j = 0$ pour j < q. Par définition de p et q, $u_p \neq 0$ et $v_q \neq 0$ donc $(u \star v)_{p+q} \neq 0$.

18. La question précédente montre que si u et v sont non nulles, $u \star v$ est non nulle. Par contraposition, si $u \star v$ est nulle, l'une des deux suites u et v est nulle. Ceci prouve l'intégrité de l'anneau $(E, +, \star)$.

Partie V - Résolution d'une équation dans E

On note u la suite de E telle que $u_0 = 1$, $u_1 = -5$, $u_2 = 6$ et $u_n = 0$ pour tout entier $n \ge 3$. On note également v la suite de E telle que $v_0 = v_1 = 1$ et $v_n = 0$ pour tout entier $n \ge 2$.

- 19. Puisque $u_0 = 1 \neq 0$, u est inversible. Alors $u \star x = v \iff x = u^{-1} \star v$, ce qui prouve l'existence et l'unicité de
- **20.** Tout d'abord $u_0x_0 = (u \star x)_0 = v_0 = 1$ donc $x_0 = 1$ puisque $u_0 = v_0 = 1$. Ensuite, $u_0x_1 + u_1x_0 = (u \star x)_1 = v_1 = 1$ donc $x_1 = 6$ puisque $u_0 = 1$ et $u_1 = -5$.
- **21.** Soit $n \in \mathbb{N}$. D'une part

$$(u \star x)_{n+2} = \sum_{k=0}^{n+2} u_k x_{n-k} = u_0 x_{n+2} + u_1 x_{n+1} + u_2 x_n = x_{n+2} - 5x_{n+1} + 6x_n$$

D'autre part

$$(u \star x)_{n+2} = v_{n+2} = 0$$

Ainsi pour tout $n \in \mathbb{N}$,

$$x_{n+2} - 5x_{n+1} + 6x_n = 0$$

22. Le polynôme caractéristique associée à la relation de récurrence précédente est $X^2 - 5X + 6$. Ses racines sont 2 et 3. Il existe donc $(\lambda, \mu) \in \mathbb{R}^2$ tel que

$$\forall n \in \mathbb{N}, x_n = 2^n \lambda + 3^n \mu$$

Or $x_0 = 1$ et $x_1 = 6$ donc $\lambda + \mu = 1$ et $2\lambda + 3\mu = 6$, ce qui donne $\lambda = -3$ et $\mu = 4$. On en déduit donc que

$$\forall n \in \mathbb{N}, \ x_n = 4 \cdot 3^n - 3 \cdot 2^n$$

- **23.** $\{a\}$ est inversible puisque $\{a\}_0 = 1 \neq 0$. De plus, la question **III.15** montre que $[a]^{-1} = \{a\}$ et donc $\{a\}^{-1} = a$.
- 24. Analyse: Soient a et b deux réels. On suppose que $u = \{a\} \star \{b\}$. Notamment $\{a\}_0\{b\}_1 + \{a\}_1\{b\}_0 = u_1$, ce qui donne a + b = 5. De plus, $\{a\}_0\{b\}_2 + \{a\}_1\{b\}_1 + \{a\}_2\{b\}_0 = u_2$, ce qui donne ab = 6. On en déduit que a et b sont les racines du polynômes $X^2 5X + 6$, à savoir 2 et 3.

Synthèse: On pose a=2 et b=3. On vérifie sans peine que $(\{a\} \star \{b\})_0=1=u_0$. Les calculs précédents montrent en fait que $(\{a\} \star \{b\})_1=-a-b=-5=u_1$ et que $(\{a\} \star \{b\})_2=ab=6=u_2$. Donnons-nous maintenant un entier $n\geqslant 3$.

$$(\{a\} \star \{b\})_n = \sum_{k=0}^n \{a\}_k \{b\}_{n-k}$$

Soit $k \in [0,n]$. Si $k \geqslant 2$, alors $\{a\}_k = 0$ et si $k \leqslant 1$, alors $n-k \geqslant n-1 \geqslant 2$ donc $\{b\}_{n-k} = 0$. On a donc bien $(\{a\} \star \{b\})_n = 0 = u_n$.

Finalement $u = \{2\} \star \{3\}$.

25. On rappelle que $x = u^{-1} \star v$. Or $u = \{2\} \star \{3\}$ donc $u^{-1} = \{3\}^{-1} \star \{2\}^{-1} = [3] \star [2]$. D'après la question **II.8**, pour tout $n \in \mathbb{N}$,

$$(u^{-1})_n = \frac{3^{n+1} - 2^{n+1}}{3 - 2} = 3^{n+1} - 2^{n+1}$$

Alors $x_0 = (u^{-1} \star v)_0 = (u^{-1})_0 v_0 = 1$ et pour tout $n \in \mathbb{N}^*$,

$$\begin{split} x_n &= (u^{-1} \star v)_n \\ &= (v \star u^{-1})_n \\ &= \sum_{k=0}^n v_k (u^{-1})_{n-k} \\ &= v_0 (u^{-1})_n + v_1 (u^{-1})_{n-1} \quad \text{car } v_k = 0 \text{ pour } k \geqslant 2 \\ &= 3^{n+1} - 2^{n+1} + 3^n - 2^n \\ &= 3 \cdot 3^n + 3^n - 2 \cdot 2^n - 2^n \\ &= 4 \cdot 3^n - 3 \cdot 2^n \end{split}$$

L'égalité est en fait encore valable pour n = 0.

Partie VI - Un peu de Python

26. On peut être extrêmement concis en utilisant des listes en compréhension.

```
def convol(U, V) :
   N = min(len(U), len(V)) - 1
   return [sum([U[k] * V[n - k] for k in range(n + 1)]) for n in range(N + 1)]
```

Mais on peut évidemment utiliser des boucles "standard" si on préfère.

```
def convol(U, V) :
    N = min(len(U), len(V)) - 1
    L = []
    for n in range(N + 1) :
        sum = 0
        for k in range(n + 1) :
            sum += U[k] * V[n - k]
        L.append(sum)
    return L
```