Архитектура операционной системы Обзор некоторых файловых систем

BTRFS

Btrfs
Разработчик Oracle

Oracle, Fujitsu, Red

Hat^[1]

Файловая система Btrfs

Дата 4.18:

представления август 2018 года [2]

(Linux)

Структура

Содержимое папок B-tree

Размещение

экстент

файлов

Ограничения

Максимальный

16 ЭиБ

размер файла

Максимальная 255 байт^[3]

длина имени файла

Максимальный 16 ЭиБ

размер тома

Допустимые Все байты кроме NUL и

символы в названиях

Возможности

Атрибуты POSIX

Права доступа POSIX, ACL

Фоновая Да (LZO, zlib, начиная с

компрессия ядра 4.14: — zstd)

Фоновое нет

шифрование

Поддерживается Linux

OC

Основные возможности

- Multi-volumes
- Copy-on-Write Style Update
- Data/Metadata Checksum
- Subvolume
- Snapshot
- Transparent Compression
- Поддержка SSD (TRIM)

Понятия

- Subvolume (том) файловая система внутри файловой системы
 - монтируемая
 - с отдельными квотами
- Snapshot копия тома (возможно RO)
 - btrfs subvolume snapshot [-r] ./sub ./snap

История и разработчики

- 2007 начало разработки
- 2011 поддержка компрессии
- 2013 поддержка RAID
- 2014+ стабилизация, производительность
- Разработчики:
 - Fujitsu
 - Fusion-IO
 - Intel
 - Oracle
 - RedHat
 - SUSE

Архитектура

- Page block
- Extent
- COW

Вставка (19)

Удаление (6)

Клонирование (P->Q)

Подсчет ссылок (клонирование)

Вставка ключа (H=>Q)

Исходные деревья P,Q

Затенение С

Затенение Q

Затенение Н

Удаление

Исходные деревья P, Q

Удаление Q

Сборка мусора

Устройство каталога

Устройство листа (leaf node)

block header I_0 I_1 I_2 free space D_2 D_1 D_0

Деревья btrfs

Клонирование (1/3)

Клонирование (2/3)

Клонирование (3/3)

Источники и ссылки

- Roden, Bacik, Mason BTRFS: The Linux B-Tree Filesystem – 2012
- btrfs.wiki.kernel.org
- Satoru Takeuchi. Btrfs Current Status and Future Prospects
- https://www.howtoforge.com/a-beginners-guide-t o-btrfs

Ceph

Темы

- Черты Software Defined Storage
- История Серһ
- Архитектура и технические решения

NB: ссылки на источники, использованные в презентации, приведены на последнем слайде

Software Defined Storage

- SDS «Интеллектуальная» часть сети хранения данных, не привязанная к оборудованию;
- SDS способна самостоятельно принимать решения относительно места хранения, методов защиты и перемещения данных
- Имеет линейно масштабируемую архитектуру
- Control-path отделен от data-path

САР-теорема, или 2 из 3

- Consistency в лобой момент времени данный не противоречат друг другу на узлах
- Availability любой запрос завершается корректным откликом
- Partition tolerance расщепление системы на независимые компоненты не приводит к некорректности отклика от каждой

RAID в прошлом?

- Объем 1 диска растет, время восстановления увеличивается → занимает часы
- RAID требует идентичных резервных дисков
- RAID не защищает от сбоев сети, ОС,...
- Деградация производительности при сбое нескольких дисков

BMecto RAID → Erasure Codes

- стратегия прямой коррекции ошибок:
 - исходное сообщение длинной К
 трансформируется в сообщение длиной N (N>K)
 - по любым К символам сообщение восстановимо
- примеры реализации:
 - Parity в RAID
 - Коды Рида-Соломона

История и развитие Ceph

- 2003, Сейдж Вейл (Sage Weil) часть проекта докторской диссертации ФС
- 2003—2007, Исследовательский проект, развивался сообществом
- 2007—2011, DreamHost, начало промышленного применения
- 2012 Inktank, корпоративная подписка, саппорт
- 2014 Red Hat Inc. (Cisco, CERN и Deutsche Telekom, Dell, Alcatel-Lucent, ...)

RH: A next-generation platform for petabyte-scale storage

Архитектурные принципы

- Все компоненты должны быть масштабируемы
- Нет единой точки отказа
- Решение должно опираться на открытое программное обеспечение
- ПО должно работать на обычном железе (commodity hardware)
- Максимальная самоуправляемость, везде, где возможно

Унифицированный стек Ceph

[Предвзятое] сравнение с открытыми аналогами

Наименование	Отличия
Integrated Rule-Oriented Data System (iRODS)	Сервер метаданных iCAT, является единой точкой отказа, нет блочного хранения, нет RESTful
HDFS	Нет блочного хранения, Сервер метаданных NameNode – потенциальная точка отказа
Lustre	Сервер метаданных – bottle neck, отсутствие встроенного механизма обнаружения и исправления сбоев узлов
GlusterFS	Блочный доступ и удаленная репликация не являются встроенными, а доступны как расширения

Облачные решения использующие Ceph (на 2016)

Архитектура

RADOS: Надежное автономное распределенное объектное хранилище

Концептуальный взгляд

Reliable Autonomic Distributed Object Store → RADOS

- Репликация CRUSH (Controlled Replication Under Scalable Hashing)
- Автоматическое восстановление объектов из копий, при разрушении
- Автоматическая миграция данных

Файловая система OSD Ceph

- Файловые системы:
 - btrfs
 - xfs
 - ext4
- Поддержка (xATTRs):
 - xattr_name → xattr_value,

Мониторы Ceph

- Монитор демон обеспечивающий поддержание режима членства в кластере, хранение настроек и состояния.
- Карты:
 - монитора
 - OSD
 - PG
 - CRUSH
 - MDS
- Согласованность принятия решений обеспечивает paxos
 - → число мониторов нечетно, >=3

Алгоритм PAXOS

- Обеспечивает консенсус
- Соответствует показателям:
 - Согласованность → решение принимается только единогласно
 - Нетривиальность → количество вариантов решения известно заранее и больше 1
 - Живучесть → если предлагается принять решение, то решение (не обязательно предложенное) рано или поздно будет принято.

KRBD

- предоставление блочного хранения гипервизорам и виртуальным машинам
- реализация thin provisioning
- Поддержка:
 - XEN
 - KVM
 - QEMU

Шлюз объектов Ceph (RADOS)

- Amazon S3
 RESTful API
- OpenStack Swift API
- HTTP RESTful API (Admin)

Сервер метаданных MDS Ceph

- Ceph MDS демон, обеспечивающий
 - возможность монтировать на клиентах POSIX
 ФС произвольного размера
 - управление filesystem namespace
 - координация доступа к OSD кластеру

CephFS

- Реализована в libcephfs
- поддержка:
 - NFS
 - CIFS
 - SMB
- Альтернатива Hadoop HDFS

CRUSH

- CRUSH: Controlled Replication Under Scalable Hashing
- CRUSH map (см. пример)
- Типы корзинок (размен между производительностью и организационной
 - Uniform
 - List
 - Tree
 - Straw

Алгоримтмы распределения

- Uniform все веса строго одинаковы. Подходит, когда кластер состоит из совершенно одинаковых машин и дисков
- List перемещаемые данные с некоторой вероятностью попадают в новое или старое хранилище. Expanding cluster.
- Tree бинарные деревья, оптимизация скорости помещения объектов в хранилище.
- Straw комбинация стратегий List и Tree для реализации принципа «разделяй и властвуй». Обеспечивает быстрое размещение, но иногда создает проблемы для реорганизации

Placement groups (PG)

Группа размещения

 логическая
 коллекция объектов,
 внутри пула.

• Группа реплицируется на несколько OSD

Пулы Ceph

- Устойчивость
 - установка количества копий объекта
 - для EC количество кодированных блоков (chunks)
- Группы размещения
- CRUSH правила
 - для пула можно определить правила избыточности
- Снапшоты
- Установка владельца

Источники и ссылки

- http://ceph.com
- Karan Singh «Learning Ceph» Packt Publishing
- Sage A. Weil et al. RADOS: A Scalable, Reliable Storage Service for Petabyte-scale Storage Clusters
- Sage A. Weil et al. CRUSH: Controlled, Scalable, Decentralized Placement of Replicated Data
- http://rus-linux.net/nlib.php?name=/MyLDP/file-sys/ceph/ceph.html
- https://github.com/carmstrong/multinode-cephvagrant

GlusterFS

Определение

- GlusterFS = GNU + Cluster
 - масштабируемая
 - сетевая файловая система
 - ориентированная на интенсивный обмен данными типа:
 - облачное хранилище
 - потоковое мультимедиа,
 - использующая типовое [commodity] оборудование

Терминология

- Brick
- Tom
- FUSE
- Транслятор
- Cluster
- Namespace

Транслятор

- Транслятор модуль, конвертирующий запросы
 - от пользователей к хранилищу
 - от запроса к запросу
 - реализация возможностей
 - построение стека

Типы [уровни] трансляторов

- Storage
- Debug
- Cluster
- Encryption
- Protocol
- Performance

- Binding
- System
- Scheduler
- Реализация дополнительных возможностей [квоты, фильтры, блокировки]

Типовой стек трансляторов

Client side

IO Stat

md-cache

Open-Behind

Quick-Read

IO-Cache

Read Ahead

Write Behind

DHT

Auto File Replicate

Server side

Posix

Changelog

gluster-control

lock

io-thread

index

marker

quota

IO Stat

<u>Translator type</u>

Performance

Cluster

Feature

Типы томов

- Распределенный том (по-умолчанию)
- Реплицированный том
- Распределенный реплицированный
- Страйп
- Распределенный страйп

Распределенный том

Реплицированный том

Распределенный реплицированный том

Страйп

Распределенный страйп

Возможности

- Распределенные Хэш таблицы
- Split Brain Resolution
- libgfapi
- Non Uniform File Access
- Export via pNFS
 - Ganesha
- Интеграция с oVirt

- Интеграция с qemu
- Rebalance
- WORM (Write Once Read Many)
- Распрелеленная георепликация
- Шардинг транслятор
- Tiering
- Automatic File Replication
- Файловые снапшоты
- Brick Failure Detection

Источники и ссылки

- http://www.gluster.org/
- http://gluster.readthedocs.org/en/latest/
- https://github.com/gluster/glusterfs