Exercises 6.3.2 — Problem 1

Problem. For which values of a and b does the improper integral $\int_0^{1/2} x^a |\log x|^b dx$ exist?

Proof. We consider three cases for the value of a: a<-1, a=-1, a>-1. Beginning with a>-1 then we know there exists some $\epsilon>0$ such that $a-\epsilon>-1$. Then $\int_0^{1/2} x^a |\log x|^b dx = \int_0^{1/2} x^{a-\epsilon} x^\epsilon |\log x|^b dx$. Then $\lim_{x\to 0^+} x^\epsilon |\log x|^b = 0$ so we need only worry about the convergence of $\int_0^{1/2} x^{a-\epsilon}$. But $a-\epsilon>-1$ so we know this integral to converge.

Now consider a<-1 then there exists some $\epsilon>0$ such that $a+\epsilon<-1$. Then $\int_0^{1/2} x^a |\log x|^b dx=\int_0^{1/2} x^{a+\epsilon} x^{-\epsilon} |\log x|^b dx$. Then $\lim_{x\to 0^+} x^{-\epsilon} |\log x|^b =\infty$ so we are toast in this case.

When a=-1, we have $\int_0^{1/2} x^a |\log x|^b dx = \int_0^{1/2} \frac{|\log x|^b}{x} dx$. Taking \log to be the natural logarithm, we have $\int_0^{1/2} \frac{|\ln x|^b}{x} dx = \frac{|\ln x|^{b+1}}{b+1} \Big|_0^{1/2}$ (even when b=0) which diverges to $-\infty$ when 0 is plugged in.