МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» (Университет ИТМО)

Факультет систем управления и робототехники

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

по дисциплине «Практическая линейная алгебра»

по теме: 2D ПРЕОБРАЗОВАНИЯ

Студент:

Группа № R3435 Зыкин Л. В.

Предподаватель:

техник, ассистент Догадин Е. В.

1 ХОД РАБОТЫ

1.1 Выберем числа

Для начала выберем четыре целых числа a,b,c и d таким образом, чтобы все они были различными и ни одно из них не равнялось 0 или ± 1 .

$$a = 2, b = 3, c = 4, d = 5$$

Задание 1. Придумаем матрицы

1. Отражение относительно прямой y = ax = 2x.

Обоснование: матрица отражения относительно прямой через начало с углом наклона $\theta = \arctan(a)$ имеет вид

$$R_{y=ax} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix} = \frac{1}{1+a^2} \begin{bmatrix} 1-a^2 & 2a \\ 2a & a^2-1 \end{bmatrix}.$$

Для a=2 получаем $\cos(2\theta)=\frac{1-a^2}{1+a^2}=-\frac{3}{5}, \sin(2\theta)=\frac{2a}{1+a^2}=\frac{4}{5},$ откуда

$$M_1 = \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}.$$

2. Отображение всей плоскости в прямую y = bx = 3x.

Обоснование: столбцы матрицы — образы базисных векторов. Требуем $e_1 \mapsto (1,3)^{\top}$ (любой ненулевой на прямой y=3x) и $e_2 \mapsto (0,0)^{\top}$ (схлопывание второй координаты). Тогда

$$M_2 = \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix}.$$

3. Поворот на $10c = 40^{\circ}$ против часовой стрелки.

Обоснование: стандартная матрица поворота на угол φ :

$$M_3 = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}, \quad \varphi = 40^{\circ}.$$

4. Центральная симметрия относительно начала координат.

Обоснование: $(x,y) \mapsto (-x,-y)$, то есть $M_4 = -I$:

$$M_4 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}.$$

5. Отражение относительно y=ax, затем поворот на $10d=50^{\circ}$ по часовой стрелке.

Обоснование: композиция линейных преобразований — произведение матриц справа налево. Пусть R — матрица отражения из п.1, а P — поворот на -50° :

$$P = \begin{bmatrix} \cos 50^{\circ} & \sin 50^{\circ} \\ -\sin 50^{\circ} & \cos 50^{\circ} \end{bmatrix}, \quad M_5 = P R.$$

6. Отображение, которое переводит прямую y=0 в y=ax и прямую x=0 в y=bx.

Обоснование: $e_1 = (1,0)^{\top}$ лежит на y = 0, его образ должен лежать на y = ax, возьмём $e_1 \mapsto (1,a)^{\top}$. Аналогично $e_2 = (0,1)^{\top}$ лежит на x = 0, его образ возьмём на y = bx: $e_2 \mapsto (1,b)^{\top}$. Тогда столбцы матрицы — эти образы:

$$M_6 = \begin{bmatrix} 1 & 1 \\ a & b \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}.$$

7. Отображение, которое переводит прямую y = ax в y = 0 и прямую y = bx в x = 0.

Обоснование: требуем, чтобы образы направляющих векторов $v_a=(1,a)^{\top}$ и $v_b=(1,b)^{\top}$ лежали соответственно на осях Ox и Oy. Искомая матрица M_7 удовлетворяет

$$M_7 v_a = (*,0)^{\top}, \quad M_7 v_b = (0,*)^{\top}.$$

Нормировкой можно добиться $M_7v_a=(1,0)^\top$, $M_7v_b=(0,1)^\top$, что означает $M_7=[v_a\ v_b]^{-1}$. Явно

$$M_7 = \frac{1}{b-a} \begin{bmatrix} b & 1 \\ -a & 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix}.$$

8. Отображение, которое меняет местами прямые y=ax и y=bx. Обоснование: требуем, чтобы v_a и v_b были собственными направлениями с собственными значениями, меняющими их местами. Достаточно потребовать $M_8v_a=v_b$ и $M_8v_b=v_a$. Решая по столбцам, получаем

$$M_8 = \begin{bmatrix} 1 & 0 \\ a+b & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 5 & -1 \end{bmatrix}.$$

9. Отображение, которое переводит круг единичной площади в круг площади c=4.

Обоснование: круг \to круг означает изотропное масштабирование с коэффициентом $s=\sqrt{\frac{\text{площадь}}{\text{исх. площадь}}}=\sqrt{c}$. Выбираем без дополнительного поворота:

$$M_9 = \sqrt{c} I = 2I.$$

10. Отображение, которое переводит круг единичной площади в некруг (эллипс) площади d=5.

Обоснование: эллипс получается при неодинаковом масштабировании по взаимно перпендикулярным осям. Выберем диагональную матрицу с $\det M_{10} = d$ (площадь масштабируется как $|\det|$):

$$M_{10} = \begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix}, \quad \det M_{10} = 5 = d.$$

11. Отображение с перпендикулярными собственными векторами, не лежащими на y=0 или y=x.

Обоснование: вещественная симметричная матрица имеет ортогональный базис собственных векторов (спектральная теорема). Выберем симметричную матрицу с несоосными осями:

$$M_{11} = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}.$$

12. Отображение, у которого нет двух неколлинеарных собственных векторов.

Обоснование: жорданов блок размера 2 с собственным значением 1:

$$M_{12} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

13. Отображение, у которого нет вещественных собственных векторов.

Обоснование: поворот на 90° имеет чисто мнимые собственные значения $\pm i$:

$$M_{13} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

14. Отображение, для которого любой ненулевой вектор является собственным.

Обоснование: это скалярное преобразование kI с $k \neq 0$ — любой вектор сохраняет направление:

$$M_{14} = kI$$
.

15. Пара отображений, где $AB \neq BA$.

Обоснование: сдвиги (срезы) вдоль разных осей обычно не коммутируют. Возьмём

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \quad AB \neq BA.$$

16. Пара отображений, где AB = BA.

Обоснование: скалярная матрица коммутирует с любыми, а также коммутируют сдвиги, зависящие от одной и той же оси. В качестве наглядного примера возьмём

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \quad B = 3I, \quad AB = BA.$$

Задание 2. Проанализируем

Образы и ядра отображений

1. Матрица $M_1=egin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$ Отражение обратимо ($\det M_1=-1
eq 0$), поэтому

Range
$$(M_1) = \mathbb{R}^2$$
, Null $(M_1) = \{\mathbf{0}\}$.

2. Матрица
$$M_2 = \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix}$$

$$M_2 \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 3x \end{bmatrix} \Rightarrow \operatorname{Range}(M_2) = \{(t,3t)^\top\}, \operatorname{Null}(M_2) = \{(0,y)^\top\}.$$

3. Матрица
$$M_{13} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 Поворот обратим, поэтому

Range
$$(M_{13}) = \mathbb{R}^2$$
, Null $(M_{13}) = \{\mathbf{0}\}$.

4. Матрица $M_{14} = kI, k \neq 0$

Range
$$(M_{14}) = \mathbb{R}^2$$
, Null $(M_{14}) = \{\mathbf{0}\}$.

Собственные значения и собственные векторы

1. M_1

Характеристический многочлен даёт $\lambda=\pm 1$. Для $\lambda=1$ направление отражаемой прямой y=ax сохраняется, для $\lambda=-1$ — ортогональное к ней направление меняет знак. Явно получаем $v_{\lambda=1}=(1,2)^{\top}, v_{\lambda=-1}=(2,-1)^{\top}.$

- 2. M_2 $\det(M_2 \lambda I) = -(1 \lambda)\lambda \Rightarrow \lambda \in \{0,1\}.$ Для $\lambda = 1$: $v = (1,3)^\top$; для $\lambda = 0$: $v = (0,1)^\top$.
- 3. M_3 Поворот на 40° : $\lambda=\cos 40^\circ\pm i\sin 40^\circ$ вещественных собственных нет.
- 4. M_4 $\lambda = -1$ кратности 2; любой ненулевой вектор собственный.
- 5. M_8 $\lambda = 1, -1,$ собственные направления прямые y = 0 и x = 0 соответственно.
- 6. M_{11} $\det(M_{11}-\lambda I)=\lambda^2-5$, поэтому $\lambda=\pm\sqrt{5}$; собственные векторы ортогональны.
- 7. M_{12}

Единственное собственное значение $\lambda=1$ с единственным направлением $v=(1,0)^{\top}$ (дефектная матрица).

- 8. M_{13} $\lambda = \pm i;$ вещественных собственных векторов нет.
- 9. M_{14} $\lambda = k$ кратности 2; любой ненулевой вектор собственный.
- 10. A,B из пп.15, 16

В обоих случаях $\lambda_A=1$, для скалярной $B-\lambda_B=3$ (любой ненулевой вектор собственный).

Определители матриц

- 1. $det(M_1) = -1$ (отражение).
- 2. $det(M_2) = 0$ (сжатие в прямую).
- 3. $det(M_3) = 1$ (ортогональная матрица поворота).
- 4. $det(M_4) = 1$ (поворот на 180°).
- 5. $\det(M_5) = -1$ (композиция поворота с отражением даёт ориентацию -).
- 6. $det(M_9) = 4$ (масштаб 2 по обеим осям).
- 7. $\det(M_{10}) = 5$ (анизотропный масштаб, эллипс той же площади).

Где матрица обязательно симметрична?

Матрица *обязательно* симметрична в следующих пунктах задачи (независимо от выбранных представительных матриц внутри класса описанных преобразований):

- 1) Отражение относительно прямой через начало. Любое такое отражение имеет вид $A = Q \operatorname{diag}(1,-1) Q^{\top}$ с ортогональной Q, откуда $A = A^{\top}$.
- 4) Центральная симметрия A = -I симметрична.
- 11) У матрицы есть два взаимно перпендикулярных собственных направления. В этом случае существует ортонормированный базис из собственных векторов, и матрица ортогонально диагонализуема: $A = QDQ^{\top}$, следовательно симметрична.
- 14) Скалярная матрица A = kI симметрична.

В остальных пунктах симметричность не является обязательной: например, в п.9 круг в круг можно переводить с дополнительным поворотом A=sR (не симметрична при $R\neq \pm I$), а в п.10 эллипс можно получить композицией двух разных поворотов с диагональным масштабом $A=R_1\mathrm{diag}(\alpha,\beta)R_2$.

Визуализация линейных отображений

Рисунок 1 — Отображения M_1 – M_6

Рисунок 2 — Отображения M_7 – M_{12}

Рисунок 3 — Отображения M_{13} – BA_{15}

Рисунок 4 — Отображения A_{16} – BA_{16}

Выводы

В работе сконструированы и проанализированы 2D-линейные преобразования, реализующие множество геометрических эффектов: отражения, проекции в прямую, повороты, изотропные и анизотропные масштабирующие отображения, а также примеры некомутации и коммутативности. Для каждого класса даны построения по геометрическим условиям (через образы базисных векторов, ортогональные разложения и жордановы формы), вычислены спектры, образы/ядра и определители. Показано, что симметричность матрицы обязательна лишь для отражений через прямую, центральной симметрии, преобразований с ортогональным базисом собственных векторов и скалярных матриц; в остальных случаях она необязательна.