Determinant formulas for symmetric polynomials of eigenvalues

Jules Jacobs

January 9, 2021

Abstract

Abstract

1 Introduction

Theorem 1.1. Let \mathbb{K} be a finite index set, and let $A^{(k)}$ be $n \times n$ matrices for $k \in \mathbb{K}$. Then the quantity

$$\sum_{K \in \mathbb{K}^{n \times n}} p_K \det_{ij}(A_{ij}^{(K_{ij})}) \tag{1}$$

is independent of the basis of the $A^{(k)}$ if p_K is symmetric (i.e. $p_K = p_{K'}$ if K' is the same as K up to a row and column permutation).

Theorem 1.2. Let \mathbb{K} be a finite index set, and let $A^{(k)}$ be commuting $n \times n$ matrices with eigenvalues $a_i^{(k)}$ for $k \in \mathbb{K}$, then

$$\sum_{K \in \mathbb{K}^{n \times n}} p_K \det_{ij} \left(A_{ij}^{(K_{ij})} \right) = \sum_{K \in \mathbb{K}^{n \times n}} p_K \prod_{i=1}^n a_i^{(K_{ii})}$$
 (2)

if p_K is symmetric ($p_K = p_{K'}$ if K' is the same as K up to a row and column permutation).

Let *A* be a 2×2 matrix with eigenvalues a_1, a_2 , then

$$a_1^n a_2^k + a_1^k a_2^n = \det(A_1^n, A_2^k) + \det(A_1^k, A_2^n)$$

where A_i^n is the *i*-th column of A^n .