UGANDA MARTYRS UNIVERSITY

FACULTY OF SCIENCE DEPARTMENT OF ECONOMICS

UNIVERSITY EXAMINATIONS SEMESTER I, 2012/13

THIRD YEAR EXAMINATIONS FOR BACHELOR OF SCIENCE (B.ECON & GEN)

ECO 3202: ECONOMETRICS II

DATE: 12TH DECEMBER 2012

TIME: 9:00 - 12:00 NOON

Instructions:

- i) Attempt FOUR questions ONLY.
- ii) Clearly indicate all your working..

Ouestion one.

(a) Explain the effect of including an irrelevant variable in the model estimation process

5marks

- (b) Measurement errors are often a problem in linear regressions. Using a standard linear model $Y = \beta X + \varepsilon$, describe the problems if **X** is measured with an error [5marks]
- (c) Explain the traditional approach to model selection

7marks

(d) Given a simple log-linear Earnings model. The standard errors are in parentheses; LGEARN = 1.35 + 0.079S

(0.112) (0.008)

$$R^2 = 0.14$$

Where LGEARN = Natural logarithm of Earnings (in dollars)

S = Years of schooling

Give the interpretation of the slope coefficient in the model

[3marks]

(e) Given the model $Y = \beta_0 + \beta_1 InX + u_i$. State the type of the model and give the interpretation of [5marks] the slope coefficient.

Question two

(a) What is meant by the term multicollinearity and how does it arise?

[6marks]

- (b) Given a multiple linear regression model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u_i$. Show that in the presence of multicollinearity, the parameter estimates of the independent variables will be [6marks] indeterminate
- (c) What do you understand by the term heteroscedasticity and when does it arise (5marks)
- (d) Outline four (4) practical consequences of heteroscedasticity in economic modelling (4marks)
- (e) Given the following data

 RSS_1 based on the first 30 observations = 55, df = 25

 RSS_2 based on the second 30 observations = 140, df = 25

Carry out the Goldfeld-Quandt test of heteroscedasticity at 5% level of significance. (Use

the critical value = 1.94)

4marks

Question three

(a) For each model below, use differential calculus to obtain the slope expressions. Show the manipulations necessary to obtain the elasticities.

(i)
$$InY_i = \alpha + \beta X_i + u_i$$

[5marks]

(ii)
$$Y_i = \alpha + \beta InX_i + u_i$$

[5marks]

(b) The following model represents the household demand for Tilapia in a certain village

$$TIL_{t} = 12.2 + 0.23INC_{t} - 1.33PT + 0.44PB + 3.50C_{t} + 1.22S_{t}$$

(Assume that all the coefficients are statistically different from zero)

Where; TIL = Quantity of Tilapia consumed per month in Kilos

INC = Monthly household income in thousands of shillings

PT = Price per Kilo of Tilapia in thousands of shillings

PB = Price per Kilo of beef in thousands of shillings

C = 1 if household head is a catholic, 0 otherwise

S = 1 if household is located within 0.5 kilometers of Lake Victoria, 0 otherwise

(i) Identify the type of model used in the study above

[2marks]

(ii) Interpret the parameter estimates of the dummy variables in the model

[4marks]

- (iii) Basing on the model and using the knowledge of economics, explain the consumption relationship between Tilapia and Beef [4marks]
- (iv) Given that the monthly household income is 100,000/= and the price per Kilo of Tilapia is 5000/=, compute the quantity of Tilapia consumed by a household headed by a catholic and it is within a distance of 1Km -2 Km from Lake. Victoria [5marks]

Question four

- (a) Discuss the procedure for detecting Autocorrelation in regression models using the Durbin-Watson test and state the assumptions made when using this test (8marks)
- (b) Explain the Cochrane orcutt procedure for detecting autocorrelation in regression models [6marks]
- (c) A researcher obtained the following results for a study of personal consumption expenditure for 60 consumers. (the figures in the parentheses are the standard errors).

$$Y_t = -5.74 + 0.129X_t + 0.13Y_{t-1}$$

(1.39) (0.29) (0.112)

 $R^2 = 0.942$

DW=2.18

Where Y_t = personal consumption expenditure, X_t = Personal disposable income

 Y_{t-1} = Lagged personal consumption expenditure

(i) Carry out the Durbin- Watson test to check for autocorrelation.

(4marks)

(ii) Use Durbin h-test to check for autocorrelation.

(4marks)

(iii) Compare and contrast your results in (b) and (c).what are your conclusion (3marks)

Question five

(a) Briefly explain the following concepts, giving examples where possible

(i) Differential intercept

[4marks]

(ii) Base category

[4marks]

(iii) ANCOVA model

[4marks]

(b). Given a simple model $Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + u_i$ where

 $Y_i = Income$ of the farmer (in dollars)

 $D_{ij} = 1$ if the farmer grows coffee, 0 otherwise

 $D_{2i} = 1$ if the farmer grows cotton, 0 otherwise

Data was collected on the defined variables from farmers in Mpigi District and OLS regression produced the following results

Income	Coef.	t Lai ama	P> t	
D_{1i}	331.8409	2.04	0.001	
D_{2i}	111.7273	2.64	0.132	
cons	158.3864	1.98	0.045	

(i). Write down the fitted model

[2marks]

(ii) Identify the type of model used above

[1mark]

- (iii) Give a written interpretation of each of the coefficient estimates and comment on their statistical significance in the model [6marks]
- (iv) Compute the average income of the farmer who grows both coffee and cotton [4marks]

Question six

Consider the following simultaneous equation model

$$C_t = \alpha_0 + \alpha_1 Y_t + \alpha_2 r_t + \alpha_3 C_{t-1} + u_{1t}$$
 (Consumption)

$$I_{t} = \beta_{0} + \beta_{1}r_{t} + \beta_{2}Y_{t} + \beta_{3}I_{t-1} + u_{2t}$$
 (Investment)

$$Y_t = C_t + I_t + G_t + Z_t$$
 (Income identity)

Where I, Y, r, G and Z represent Investment, Income, Interest rate, Government expenditure and Net exports respectively

a) Identify the endogenous and exogenous variables in the model

[4marks]

b) Is the model complete? Explain.

[3marks]

- c) Investigate the identification of each of the equations and hence the overall model. [8marks]
- d) Obtain the reduced form of the model.

[10marks]

END (GOOD LUCK)