Dodson Poston, Exercise V.1.1

Peter H. Mao

January 19, 2021

Abstract

"Define addition and scalar multiplication of multilinear maps, by analogy with IV. Exercise 1.4 for the bilinear case, and prove that $L(X_1, ..., X_n; Y)$ is then a vector space."

During our Jan 10, 2021 meeting Joe mentioned that we need to show closure under addition of functions in this vector space.

Consider multilinear functions

$$L \ni F: X_1 \times X_2 \times \dots \times X_n \to Y \tag{1}$$

$$L \ni G: X_1 \times X_2 \times \dots \times X_n \to Y \tag{2}$$

where the X's and Y's are vector spaces and L is the function space $L(X_1,...,X_n;Y)$

We define addition of functions so that for given x_1, \ldots, x_n ,

$$(F +_L G)(x_1, \dots, x_n) = F(x_1, \dots, x_n) +_Y G(x_1, \dots, x_n)$$
(3)

where addition has been subscripted by the space that it takes place in. As a vector space, Y is closed under addition, so the addition of functions produces a map that also sends $X_1 \times \cdots \times X_n$ to Y, ie

$$F +_L G: X_1 \times X_2 \times \dots \times X_n \to Y + Y = Y \tag{4}$$

so $F +_L G \in L$.

Joe rightfully reminds me that it is not enough to show that the mapping $(F +_L G)$ is in L – we must also show that it is multilinear. To that end, we want to show that

$$(F +_L G)(x_1, \dots, x_i + x_i', \dots, x_n) = (F +_L G)(x_1, \dots, x_i, \dots, x_n) +_Y (F +_L G)(x_1, \dots, x_i', \dots, x_n).$$
 (5)

By invoking the definition of $+_L$ from Equation 3, and then the multilinearity of F and G, the left side of Equation 5 becomes

$$F(x_1, ..., x_i, ..., x_n) +_Y F(x_1, ..., x'_i, ..., x_n)$$

+_Y $G(x_1, ..., x_i, ..., x_n) +_Y G(x_1, ..., x'_i, ..., x_n).$

Invoking Equation 3 again to combine the terms containing x_i and, respectively, x'_i , we arrive at the right side of Equation 5:

$$(F +_L G)(x_1, \ldots, x_i, \ldots, x_n) +_V (F +_L G)(x_1, \ldots, x_i', \ldots, x_n)$$