Scalable Monte Carlo

Babak Shahbaba

Department of Statistics, UCI

May 4, 2017

Introduction

Bayesian inference

• In Bayesian statistics we make inference based on posterior probability distribution $P(\theta|y)$:

$$P(\theta|y) = \frac{P(y|\theta)P(\theta)}{P(y)}$$

$$\propto P(y|\theta)P(\theta)$$

• For example, we can predict future observations, \tilde{y} , given the observed data y:

$$P(\tilde{y}|y) = \int_{\theta} P(\tilde{y}|\theta)P(\theta|y)d\theta$$

• Main challenge: inference almost always involves intractable integrals

4□ > 4□ > 4 = > 4 = > = 90

Bayesian inference

• In Bayesian statistics we make inference based on posterior probability distribution $P(\theta|y)$:

$$P(\theta|y) = \frac{P(y|\theta)P(\theta)}{P(y)}$$

$$\propto P(y|\theta)P(\theta)$$

 \bullet For example, we can predict future observations, $\tilde{y},$ given the observed data y:

$$P(\tilde{y}|y) = \int_{\theta} P(\tilde{y}|\theta)P(\theta|y)d\theta$$

• Main challenge: inference almost always involves intractable integrals

4□ > 4□ > 4 = > 4 = > = 99

Monte Carlo approximation

• In general, we can approximate

$$\mu = \int_{\mathcal{X}} h(x) f(x) dx$$

using iid samples $x^{(1)}, x^{(2)}, ..., x^{(m)}$ from the distribution with density f(x):

$$\hat{\mu} = \frac{1}{m} [h(x^{(1)}) + h(x^{(2)}) + \dots + h(x^{(m)})]$$

 Main challenge: usually we cannot generate iid samples from the distribution

Monte Carlo approximation

• In general, we can approximate

$$\mu = \int_{\mathcal{X}} h(x) f(x) dx$$

using iid samples $x^{(1)}, x^{(2)}, ..., x^{(m)}$ from the distribution with density f(x):

$$\hat{\mu} = \frac{1}{m} [h(x^{(1)}) + h(x^{(2)}) + \dots + h(x^{(m)})]$$

 Main challenge: usually we cannot generate iid samples from the distribution

Markov chain Monte Carlo

• We use Markov chains to generate samples from the distribution

Markov Chain Monte Carlo

Main challenge: finding a good transition probability

Markov chain Monte Carlo

• We use Markov chains to generate samples from the distribution

Main challenge: finding a good transition probability

The Metropolis Algorithm

- Specify a symmetric transition probability $g(\theta, \theta^*)$ and repeat the following steps for many iterations:
 - **(**) Given our current state θ , we propose a new state θ^* according to g.
 - Calculated the acceptance probability,

$$\begin{aligned} \mathsf{a}(\theta, \theta^*) &= & \min(1, \frac{f(\theta^*)}{f(\theta)}) \\ &= & \min\{1, \exp(\log[f(\theta^*)] - \log[f(\theta)])\} \end{aligned}$$

- **②** Accept the proposed state θ^* as the new state with probability $a(\theta, \theta^*)$ or remain at state θ .
- For asymmetrical proposal distribution, we use Metropolis-Hastings (MH),

$$a(\theta, \theta^*) = \min(1, \frac{f(\theta^*)g(\theta^*, \theta)}{f(\theta)g(\theta, \theta^*)})$$

• Main challenge: finding the right proposal-generating mechanism, $g(\theta, \theta^*)$

The Metropolis Algorithm

- Specify a symmetric transition probability $g(\theta, \theta^*)$ and repeat the following steps for many iterations:
 - **(**) Given our current state θ , we propose a new state θ^* according to g.
 - Calculated the acceptance probability,

$$\begin{aligned} \mathsf{a}(\theta, \theta^*) &= & \min(1, \frac{f(\theta^*)}{f(\theta)}) \\ &= & \min\{1, \exp(\log[f(\theta^*)] - \log[f(\theta)])\} \end{aligned}$$

- **②** Accept the proposed state θ^* as the new state with probability $a(\theta, \theta^*)$ or remain at state θ .
- For asymmetrical proposal distribution, we use Metropolis-Hastings (MH),

$$a(\theta, \theta^*) = \min(1, \frac{f(\theta^*)g(\theta^*, \theta)}{f(\theta)g(\theta, \theta^*)})$$

• Main challenge: finding the right proposal-generating mechanism, $g(\theta, \theta^*)$

Random walk Metropolis

• A simple proposal generating mechanism is random walk: $\theta^* \sim N(\theta, \epsilon^2 I)$

Hamiltonian Monte Carlo (HMC)

Hamiltonian Monte Carlo

 HMC proposes states that are distant from the current state, but nevertheless have a high probability of acceptance.

Hamiltonian Monte Carlo

ullet The sampler is viewed as a dynamic system moving on a surface defined by the *energy* function U: negative log density of the target distribution

 Distant proposals are found by numerically simulating Hamiltonian dynamics for some specified amount of fictitious time

Hamiltonian Monte Carlo

ullet The sampler is viewed as a dynamic system moving on a surface defined by the *energy* function U: negative log density of the target distribution

• Distant proposals are found by numerically simulating Hamiltonian dynamics for some specified amount of fictitious time

Posterior sampling

For Bayesian inference, posterior distribution is the target distribution

Potential energy

$$U(\theta) = -\sum_{i=1}^{N} \log P(y_i|\theta) - \log P(\theta)$$

We augment the parameter space with fictitious momentum variables

Kinetic energy

$$K(p) = \frac{1}{2}p^{\top}M^{-1}p$$

- Define the Hamiltonian function $H(\theta, p) = U(\theta) + K(p)$
- The joint density of (θ, p) is

$$P(\theta, p) \propto \exp\{-H(\theta, p)\} = \exp\{-U(\theta)\} \cdot \exp\{-K(p)\}$$

The marginal distribution of θ is the posterior distribution

Hamiltonian Dynamics

 We can generate a proposal by starting from the current state at time 0 and moving to the state at time t:

$$(\theta, p) = (\theta^{(0)}, p^{(0)}) \stackrel{\mathsf{HD}}{\longrightarrow} (\theta^{(t)}, p^{(t)}) = (\theta^*, p^*)$$

ullet Hamilton's equations determine how heta and p change over [fictitious] time

Hamilton's equations

$$\begin{array}{rcl} \frac{d\theta_j}{dt} & = & \frac{\partial H}{\partial p_i} & = & [M^{-1}p]_i \\ \frac{dp_j}{dt} & = & -\frac{\partial H}{\partial \theta_j} & = & -\frac{\partial U}{\partial \theta_j} \end{array}$$

- Important properties:
 - Reversibility: the target distribution remain invariant
 - **Volume preservation**: the Jacobin determinant is 1
 - ▶ Conservation of Hamiltonian: the acceptance rate is one; θ^* is the next sample if HD is analytically solvable

Numerical Integration

Numerical integration is employed when analytic solution is not available

Leapfrog

$$p_{j}(t+\epsilon/2) = p_{j}(t) - (\epsilon/2)\frac{\partial U}{\partial \theta_{j}}(\theta(t))$$

$$\theta_{j}(t+\epsilon) = \theta_{j}(t) + \epsilon\frac{\partial K}{\partial p_{j}}(p(t+\epsilon/2))$$

$$p_{j}(t+\epsilon) = p_{j}(t+\epsilon/2) - (\epsilon/2)\frac{\partial U}{\partial \theta_{j}}(\theta(t+\epsilon))$$

- Important properties:
 - **Stability**: numerically stable if ε is appropriately chosen
 - Reversibility and Volume preservation: still hold
 - Conservation of Hamiltonian: broken, but can be corrected by MH correction step with acceptance rate

$$\alpha = \min[1, \exp(-H(\theta^*, p^*) + H(\theta, p))]$$

Algorithm 1: HMC algorithm

Initialize $\theta^{(0)} = \text{current } \theta$

Sample new momentum $p^{(0)} \sim \mathcal{N}(0, M = I)$

Calculate current
$$H(\theta^{(0)}, p^{(0)}) = U(\theta^{(0)}) + \frac{1}{2}(p^{(0)})^{\top}p^{(0)}$$

for
$$\ell=1$$
 to L (leapfrog steps) do
$$p^{(\ell+\frac{1}{2})}=p^{(\ell)}-\epsilon/2\nabla_{\theta}\textit{U}(\theta^{(\ell)})$$

$$\theta^{(\ell+1)} = \theta^{(\ell)} + \epsilon p^{(\ell+\frac{1}{2})}$$

$$p^{(\ell+1)} = p^{(\ell+\frac{1}{2})} - \epsilon/2\nabla_{\theta} U(\theta^{(\ell+1)})$$

end for

Accept or reject according to the Metropolis acceptance probability

Example: logistic regression with $N(0, \sigma^2 I)$ prior

$$\nabla_{\beta_j} U(\beta) = -\sum_{i=1}^N [y_i - \frac{\exp(x_i \beta)}{1 + \exp(x_i \beta)}] x_{ij} + \beta_j / \sigma^2$$

A special case: Langevin Monte Carlo

- A special case: L = 1 and M = I
- This is called Langevin Monte Carlo,

Langevin dynamics

$$\theta^* = \theta - \frac{\epsilon^2}{2} \nabla_{\theta} U(\theta) + \epsilon p$$

$$p^* = p - \frac{\epsilon}{2} \nabla_{\theta} U(\theta) - \frac{\epsilon}{2} \nabla_{\theta} U(\theta^*)$$

 Alternatively, we could ignore the momentum variable p and use the following asymmetrical proposal with MH acceptance probability

$$\theta^* \sim N(\theta - \frac{\epsilon^2}{2} \nabla_{\theta} U(\theta), \epsilon^2 I)$$

 Dropping the accept/reject step leads to an approximate Langevin method (see Neal, 1993)

A more general case: Riemannian Manifold HMC

- Girolami and Calderhead (2011) have introduced a new method, called Riemannian Manifold HMC (RMHMC)
- They argue that it is more natural to put the Hamiltonian dynamic on Riemannian manifold of distributions rather than Euclidean space
- They follow Amari (2000) and use the Fisher information matrix, $G(\theta) = E\left[\nabla_{\theta}^2 U(\theta)\right]$, as a metric on the manifold
- ullet That is, they use position specific mass matrix, $M=\mathcal{G}(heta)$
- Example: logistic regression

$$G_{jk}(\beta) = \sum_{i=1}^{N} x_{ij} x_{ik} \frac{\exp(x_{i\beta})}{[1 + \exp(x_i\beta)]^2}, \quad j \neq k$$

- We can explore the parameter space more efficiently by exploiting its geometric properties
- The resulting dynamics is non-separable so instead of the standard leapfrog method we need to use the generalized leapfrog method

HMC vs. RMHMC

A main challenge: high computational cost

- For high-dimensional problems (big n and/or big d) and complex models, these methods tend to be computationally expensive
- We have proposed several variations of HMC:
 - Split HMC (S. et al., 2011)
 - Lagrangian Monte Carlo (Lan, et al., 2012)
 - Spherical HMC (Lan et al., 2013)
 - ▶ Wormhole HMC (Lan et al., 2013)
 - ▶ HMC with precomputing strategy (Zhang et al., 2015)
 - ▶ HMC with surrogate functions (Zhang et al., 2015)

Scalable HMC

Subsampling

- In recent years, computational methods based on mini-batches of data have been quite successful
 - ▶ The underlying assumption: there is redundancy in big data
 - ▶ The overall information can be retrieved from a small subset
 - We can approximate functions at low computational cost
- Welling and Teh (2011) used this approach (stochastic gradient) for Langevin dynamics using mini-batches of size n from N observations

$$\theta^* = \theta + \frac{\epsilon^2}{2} (\nabla_{\theta} P(\theta) + \frac{N}{n} \sum_{i=1}^n \nabla_{\theta} \log P(x_i | \theta)) + \epsilon p$$

They also dropped the accept/reject step

Subsampling

- In recent years, computational methods based on mini-batches of data have been quite successful
 - ► The underlying assumption: there is redundancy in big data
 - ▶ The overall information can be retrieved from a small subset
 - We can approximate functions at low computational cost
- Welling and Teh (2011) used this approach (stochastic gradient) for Langevin dynamics using mini-batches of size n from N observations

$$\theta^* = \theta + \frac{\epsilon^2}{2} (\nabla_{\theta} P(\theta) + \frac{N}{n} \sum_{i=1}^n \nabla_{\theta} \log P(x_i | \theta)) + \epsilon p$$

They also dropped the accept/reject step

Shahbaba (UCI)

Subsampling

- In recent years, computational methods based on mini-batches of data have been quite successful
 - ▶ The underlying assumption: there is redundancy in big data
 - ▶ The overall information can be retrieved from a small subset
 - We can approximate functions at low computational cost
- Welling and Teh (2011) used this approach (stochastic gradient) for Langevin dynamics using mini-batches of size n from N observations

$$\theta^* = \theta + \frac{\epsilon^2}{2} (\nabla_{\theta} P(\theta) + \frac{N}{n} \sum_{i=1}^n \nabla_{\theta} \log P(x_i | \theta)) + \epsilon p$$

They also dropped the accept/reject step

◆ロ > ◆回 > ◆ 注 > ◆ 注 > ・ 注 ・ か Q (*)

Shahbaba (UCI)

- Finding optimum subsets by exploiting regularity in data space is difficult
- Using random subsets could lead to non-ignorable loss of information
- Therefore, we previously proposed to identify a subset of influential points to split the Hamiltonian function (Leimkuler and Reich, 2004) into two parts (S. et al., 2011)
- Recently, we have switched our focus from data space to parameter space
 - We exploit the smoothness and regularity of parameter space
 - We precompute functions (e.g., gradient) on a relatively small sample of parameters
 - MCMC algorithms use these precomputed values to approximate functions
 - We use the exact target distribution for the accept/reject step to ensure convergence to the right stationary distribution

- Finding optimum subsets by exploiting regularity in data space is difficult
- Using random subsets could lead to non-ignorable loss of information
- Therefore, we previously proposed to identify a subset of influential points to split the Hamiltonian function (Leimkuler and Reich, 2004) into two parts (S. et al., 2011)
- Recently, we have switched our focus from data space to parameter space
 - We exploit the smoothness and regularity of parameter space
 - We precompute functions (e.g., gradient) on a relatively small sample of parameters
 - MCMC algorithms use these precomputed values to approximate functions
 - We use the exact target distribution for the accept/reject step to ensure convergence to the right stationary distribution

- Finding optimum subsets by exploiting regularity in data space is difficult
- Using random subsets could lead to non-ignorable loss of information
- Therefore, we previously proposed to identify a subset of influential points to split the Hamiltonian function (Leimkuler and Reich, 2004) into two parts (S. et al., 2011)
- Recently, we have switched our focus from data space to parameter space
 - We exploit the smoothness and regularity of parameter space
 - We precompute functions (e.g., gradient) on a relatively small sample of parameters
 - MCMC algorithms use these precomputed values to approximate functions
 - We use the exact target distribution for the accept/reject step to ensure convergence to the right stationary distribution

- Finding optimum subsets by exploiting regularity in data space is difficult
- Using random subsets could lead to non-ignorable loss of information
- Therefore, we previously proposed to identify a subset of influential points to split the Hamiltonian function (Leimkuler and Reich, 2004) into two parts (S. et al., 2011)
- Recently, we have switched our focus from data space to parameter space
 - We exploit the smoothness and regularity of parameter space
 - We precompute functions (e.g., gradient) on a relatively small sample of parameters
 - MCMC algorithms use these precomputed values to approximate functions
 - We use the exact target distribution for the accept/reject step to ensure convergence to the right stationary distribution

Naive Grid Approximation (GHMC)

$$\frac{dp_j}{dt} = -\frac{\partial U}{\partial \theta_j}$$

$$\frac{d\theta_j}{dt} = [M^{-1}p]_j$$

Denote

Force

$$F = -\nabla U$$

piecewise constant approximation

$$\tilde{F}(\theta) = F_{i,j} \stackrel{\triangle}{=} F(c_{i,j}), \quad \text{if } \theta \in C_{i,j}$$

piecewise linear approximation

$$\tilde{F}(\theta) = F_{i,j} + \nabla F_{i,j} \cdot (q - c_{i,j}), \text{ if } \theta \in C_{i,j}$$

Force map of a logistic regression model

True
$$\beta = (-1,1)$$

Shahbaba (UCI) Scalable Monte Carl

GHMC-Examples

Experiment	Method	AR	s/Iteration	min(ESS)/s	Spped-up
LR	HMC GHMC	0.9225 0.7981	7.0157 <i>E</i> -4 3.318 <i>E</i> -4	1425.4 3013.9	1 2.1
					2.1
BD	HMC GHMC	0.9353 0.6587	3.8703 <i>E</i> -4 1.4498 <i>E</i> -4	962.1 1651.6	1.7

Sparse Grid for Higher Dimensions (SGHMC)

- In higher dimensions, we use a sparse gird interpolation method based on Smolyak's formula (Barthelmann, 2000; Bungartz, 1998 & 2004)
- It employs $\mathcal{O}(N \cdot (\log(N))^{d-1})$ points only, with approximation accuracy preserved up to a logarithmic factor

Gaussian Process model

Elliptic PDE inverse problem

Γ	Experiment	Method	AR	s/Iteration	min(ESS)/s	Speed-up
ſ	GP	HMC SGHMC	0.9472 0.7066	2.3547 <i>E</i> -1 2.9851 <i>E</i> -2	1.3 8.7	1 6.7
ſ	ePDE	HMC SGHMC	0.7719 0.6141	2.02 <i>E</i> -1 6.1952 <i>E</i> -2	1.5 4.3	1 2.9

Shahbaba (UCI) Scalable Monte Carlo May 4, 2017 24 /

SGHMC-Examples

• However, this approach reaches its limit quite fast

HMC with Surrogate Functions

NNS-HMC

- In recent years, several methods have been proposed based on constructing surrogate Hamiltonians using Gaussian process models (Rasmussen, 2003; Meeds and Welling, 2015; Lan et. al., 2015)
- We have instead used a simple generalized additive model, which can be regarded as a shallow neural network,

$$\tilde{U}(\theta) = \sum_{i=1}^{s} v_i g(\mathbf{w}_i \cdot \theta + d_i) + d_0$$

with the softplus function: $g(z) = \log(1 + \exp(z))$

Shahbaba (UCI) Scalable Monte Carlo May 4, 2017

Extreme Learning Machine (ELM)

For training, we randomly assign input weights and biases, and then obtain the least-square estimates of the output weights $\boldsymbol{\nu}$

ELM (Huang, 2006)

Given a training set $\mathcal{T} = \{(I_j, t_j) | I_j \in \mathbb{R}^n, t_j \in \mathbb{R}^m, j = 1, ..., N\}$, activation function $\sigma(x)$ and hidden node number s

- **Q** Randomly assign input weight w_i and bias d_i , $i=1,\ldots,s$
- Calculate the hidden layer output matrix H

$$H_{ji} = \sigma(w_i I_j + d_i), \quad i = 1, \dots, s, j = 1, \dots, N$$

Calculate the output weight v

$$v = H^{\dagger} T$$
, $T = [t_1, t_2, \ldots, t_N]^T$

where H^{\dagger} is the Moore-Penrose generalized inverse of matrix H

◆ロト ◆問 > ◆意 > ◆意 > ・意 → からぐ

NNS-HMC

Target function

Neural network approximation

- The training process (using pre-convergence samples) and the approximation of functions in the sampling phase can be easily incorporated in HMC
- The approximate geometric information (e.g., gradient and Hessian) is obtained by differentiating the neural network directly,

$$\frac{\partial \tilde{U}}{\partial \theta} = \sum_{i=1}^{s} v_i g'(\boldsymbol{w}_i \cdot \boldsymbol{\theta} + d_i) \boldsymbol{w}_i$$

Easy generalization to Riemannian Manifold HMC (NNS-RMHMC)

Surrogate Induced Hamiltonian Flow

Experiments

Experiment	Method	AP	s/Iter	min(ESS)/s	Spped-up
LR (Simulation)	HMC	0.6656	3.573 <i>E</i> -01	1.45	1
	RMHMC	0.8032	3.794	0.06	0.04
	NNS-HMC	0.6726	1.364 <i>E</i> -02	37.83	26.09
	NNS-RMHMC	0.8162	1.027 <i>E</i> -01	2.17	1.50
LR (Bank Marketing)	HMC	0.8038	7.400 <i>E</i> -02	6.51	1
	RMHMC	0.9210	6.305 <i>E</i> -01	0.56	0.08
	NNS-HMC	0.7944	7.508 <i>E</i> -03	58.22	8.94
	NNS-RMHMC	0.9064	2.741 <i>E</i> -02	14.41	2.21
LR (Adult Data)	HMC	0.8300	7.898 <i>E</i> -02	0.21	1
	RMHMC	0.8526	5.842 <i>E</i> -01	1.06	4.81
	NNS-HMC	0.8096	9.914 <i>E</i> -03	2.66	12.09
	NNS-RMHMC	0.8400	3.300 <i>E</i> -02	18.68	84.90
Elliptic PDE	HMC	0.7077	1.568	0.061	1
	RMHMC	0.8014	4.388	0.228	3.74
	NNS-HMC	0.7138	7.419 <i>E</i> -02	1.410	23.11
	NNS-RMHMC	0.6584	9.720 <i>E</i> -02	4.375	71.72

Variational HMC

Free-form variational Bayes

- Alternatively, we can make inference based on an approximate distribution, similar to variational Bayes, but with a better and more flexible approximation (see for example, de Freitas et al., 2001; Salimans et al., 2015)
- For variational Bayes, we typically use a parametrized distribution $q_{\eta}(\theta)$ to approximate the target posterior $p(\theta|Y)$ by minimizing the KL divergence
- Here, we use the approximate distribution based our neural network model

$$Q_{v}(\theta) \propto \exp(-\tilde{U}(\theta)) = \exp[-\sum_{i=1}^{s} v_{i}g(\mathbf{w}_{i} \cdot \theta + d_{i}) + \phi(v)]$$

This is simply a flexible exponential family model

Shahbaba (UCI) Scalable Monte Carlo May 4, 20

Free-form variational Bayes

 \bullet To find $Q_{\rm v}$, we follow Hyvarinen (2005) and minimize the score-matching distance

$$\tilde{D}_{SM}(P(\theta|Y)||Q_{\nu}(\theta)) = \frac{1}{2} \int Q_{\nu}(\theta) \|\nabla_{\theta} \tilde{U}(\theta) - \nabla_{\theta} U(\theta)\|^{2} d\theta$$

ullet For this, we use HMC to generate samples from Q_{ν}

$$\frac{d\theta}{dt} = \frac{\partial \tilde{H}}{\partial p} = M^{-1}p$$

$$\frac{dp}{dt} = -\frac{\partial \tilde{H}}{\partial \theta} = -\nabla_{\theta} \tilde{U}(\theta)$$

where the modified Hamiltonian is

$$\tilde{H}(\theta, p) = \tilde{U}(\theta) + K(p)$$

Then minimize the regularized empirical distance

$$\hat{v} = \arg\min_{v} \frac{1}{2} \sum_{n=1}^{t} \|\nabla_{\theta} \tilde{U}(\theta_n) - \nabla_{\theta} U(\theta_n)\|^2 + \frac{\lambda}{2} \|v\|^2$$

Online updating of the weight vector

• Given the current weight vector $v^{(t)}$ and a new training data point $(\theta_{t+1}, \nabla_{\theta} U(\theta_{t+1}))$, the updating formula for the estimator is given by

$$v^{(t+1)} = v^{(t)} + W^{(t+1)}(\nabla_{\theta} U(\theta_{t+1}) - A_{t+1} v^{(t)})$$

where

$$W^{(t+1)} = C^{(t)} A'_{t+1} \left[I_d + A_{t+1} C^{(t)} A'_{t+1} \right]^{-1}$$
$$A_{t+1} = (A_1(\theta_{t+1}), \dots, A_s(\theta_{t+1}))$$

with $A_i(\theta_{t+1}) := \sigma'(w_i \cdot \theta_{t+1} + d_i)w_i$, and $C^{(t)}$ can be updated by Sherman-Morrison-Woodbury formula:

$$C^{(t+1)} = C^{(t)} - W^{(t+1)} A_{t+1} C^{(t)}$$

Shahbaba (UCI)

Example: a beta-binomial model

For illustration, we consider the following beta-binomial model:

$$P(y_j|m,K) = \binom{n_j}{y_j} \frac{B(Km + y_j, K(1-m) + n_j - y_j)}{B(Km, K(1-m))}$$

 The following plot shows approximate posterior distributions for different numbers of hidden neurons (basis functions)

Example: beta-binomial model

Example: Independent Component Analysis

- In this example, we apply ICA to MEG data
- The following plot compares our method to HMC and SGLD (Welling and Teh, 2011) using the Amari distance (Amari et al., 1996), $d_A(\overline{W}, W_0)$, for the unmixing matrix W

- It is essential to develop scalable Bayesian inference methods as high-dimensional problems and complex models become commonplace in scientific studies
- Subsampling strategies have provided promising results
- However, we believe that focusing on parameter space, as opposed to data space, and exploiting its structure and regularity would lead to more reliable methods
- While methods based on surrogate functions could scale well, they might not be very effective for big data analysis
- Our variational HMC method provides a framework to bring together MCMC and Variational Bayes in order to construct robust and scalable Bayesian inference methods with both approximation accuracy and computational efficiency

- It is essential to develop scalable Bayesian inference methods as high-dimensional problems and complex models become commonplace in scientific studies
- Subsampling strategies have provided promising results
- However, we believe that focusing on parameter space, as opposed to data space, and exploiting its structure and regularity would lead to more reliable methods
- While methods based on surrogate functions could scale well, they might not be very effective for big data analysis
- Our variational HMC method provides a framework to bring together MCMC and Variational Bayes in order to construct robust and scalable Bayesian inference methods with both approximation accuracy and computational efficiency

- It is essential to develop scalable Bayesian inference methods as high-dimensional problems and complex models become commonplace in scientific studies
- Subsampling strategies have provided promising results
- However, we believe that focusing on parameter space, as opposed to data space, and exploiting its structure and regularity would lead to more reliable methods
- While methods based on surrogate functions could scale well, they might not be very effective for big data analysis
- Our variational HMC method provides a framework to bring together MCMC and Variational Bayes in order to construct robust and scalable Bayesian inference methods with both approximation accuracy and computational efficiency

- It is essential to develop scalable Bayesian inference methods as high-dimensional problems and complex models become commonplace in scientific studies
- Subsampling strategies have provided promising results
- However, we believe that focusing on parameter space, as opposed to data space, and exploiting its structure and regularity would lead to more reliable methods
- While methods based on surrogate functions could scale well, they might not be very effective for big data analysis
- Our variational HMC method provides a framework to bring together MCMC and Variational Bayes in order to construct robust and scalable Bayesian inference methods with both approximation accuracy and computational efficiency

- It is essential to develop scalable Bayesian inference methods as high-dimensional problems and complex models become commonplace in scientific studies
- Subsampling strategies have provided promising results
- However, we believe that focusing on parameter space, as opposed to data space, and exploiting its structure and regularity would lead to more reliable methods
- While methods based on surrogate functions could scale well, they might not be very effective for big data analysis
- Our variational HMC method provides a framework to bring together MCMC and Variational Bayes in order to construct robust and scalable Bayesian inference methods with both approximation accuracy and computational efficiency

Acknowledgements

- Collaborators:
 - Hongkai Zhao
 - Cheng Zhang
- Fundings:

Thank you!