PROJETO 3 - Física Estatística Computacional - IFSC - USP - 2024 EQUAÇÕES DE ONDAS - II - ANÁLISE DE FOURIER

Consideremos o programa do segundo projeto onde as extremidades são fixas. Rodeo para um pacote Gaussiano inicial localizado em $x_0 = L/2$. Armazene os resultados de Y(L/4,t) para vários tempos. Façamos uma análise espectral dos dados calculando-se as transformadas de Fourier temporais senos e cossenos dos dados (use o seu programa desenvolvido no primeiro projeto). A maneira mais rápida de extrairmos boa parte da física do problema é analizarmos, ao invés das transformadas senos $Y^s(f)$ ou cossenos $Y^c(f)$ o espectro de potências $P(f) = (Y^s(f))^2 + (Y^c(f))^2$. Mostre o gráfico $P(f) \times f$.

(a) Compare os picos obtidos com as frequências correspondentes aos modos estacionários. Os comprimentos de onda de tais modos são: $\lambda_1 = \frac{2L}{1}$, $\lambda_2 = \frac{2L}{2}$, $\lambda_3 = \frac{2L}{3}$, ..., $\lambda_k = \frac{2L}{k}$, $k = 1, 2, \ldots$ Veja a figura abaixo.

$$\lambda_1 = 2L/1$$

$$\lambda_2 = 2L/2$$

$$\lambda_3 = 2L/3$$

$$\lambda_k = 2L/k$$

Consequentemente as frequências normais são $f_k = \frac{c}{\lambda_k} = \frac{ck}{2L}, k = 1, 2, \dots$ Apareceram que modos? Faltam alguns?

Considere nos itens (b)-(e) abaixo pacotes gaussianos com centro em x_0 e meia largura $\sigma = L/30$.

- (b) Inicie o pacote Gaussiano na posição $x_0 = \frac{L}{4}$ e repita a análise espectral anterior. Que modos aparecem agora? Quais estão perdidos?
- (c) Inicie o pacote Gaussiano na posição $x_0 = \frac{L}{3}$ e repita a análise anterior. Que modos surgem?
 - (d) Inicie agora com o pacote em $x_0 = \frac{L}{20}$ e repita a análise. Que modos faltam?

Como entender tais resultados?*

Agora que você já "conversou com os Deuses" e tem a sua teoria vamos testá-la.

^{*}Se voce escrever o pacote Gaussiano inicial como $Y_0(x) = \sum_{n=1}^{\infty} a_n \operatorname{sen}(2\pi f_n x)$, que componentes seriam nulas? Repare que todos os senos satisfazem às condições de bordas fixas $Y_0(0) = Y_0(L) = 0$. Deixe a sua imaginação viajar que você chega lá.

(e) Refaça os programas do projeto 2 para o caso em que uma das extremidades, por exempo x=0, é fixa e a outra x=L é livre. Teste suas conclusões escolhendo apropriadamente a posição inicial x_0 para alguns pacotes iniciais. A condição de borda livre é aquela em que a derivada espacial parcial da amplitude é nula. Isto implica que a amplitude na borda é a mesma que a do ponto adjacente.