ImageNet Classification with Deep Convolutional Neural Networks

BY VIJAY VENKATESAN

LeNet-5

- Developed by Yann LeCun
- Earliest CNNs
- ▶ Handwritten digits
- Disadvantages
 - Shallow architecture
 - Complex images
 - Overfitting
 - ▶ Color images
 - ▶ tanh

AlexNet

- Deeper Architecture
- ▶ Trained on ImageNet
- ► ILSVRC-2012
- ▶ Top-1 and Top-5 Error Rates

Masterminds behind AlexNet

- Alex Krizhevsky
- ▶ Ilya Sutskever
- Geoffrey E Hinton (Godfather of A.I.)
- University of Toronto

Abstract

- Image Classification (1.2M)
- Large Parameters (in 2012)
- ▶ ILSVRC-2010, ILSVRC-2012
- ▶ Top-1 and Top-5 error rates

Introduction

- Smaller datasets
- Simpler Tasks
 - ► MNIST dataset
- Various Image Types
- ▶ Large Learning Capacity

The ImageNet Dataset

- ▶ 15M images
- Vast collection of images
- Standard benchmark
- ▶ Train/Validation/Test
- ▶ ILSVRC

The Architecture

- Known So Far
 - Eight layers
 - ▶ 1000 neurons (Output layer)
 - Softmax Activation Function
- Yet To Be Discussed
 - ► ReLU Nonlinearity
 - ► Training on Multiple GPUs
 - ► Local Response Normalization
 - Overlapping Pooling
 - ► Convolution Optimizations

ReLU Nonlinearity

- f(x) = max(0,x)
- Adds nonlinearity
- ▶ Faster model training
- Speed Advantage
 - Simpler equation
 - No vanishing gradient issue

Training on Multiple GPUs

- ► Two GTX 580 GPUs
- Reduced Training Time
- Cross-GPU Parallelization
- Reduced Error Rates

Local Response Normalization

- Scales feature map elements
- Utilizes neighboring feature maps
- Improves generalization and learning
- Reduced error rates

$$b_{x,y}^i = a_{x,y}^i / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^j)^2 \right)^{\beta}$$

Overlapping Pooling

- Overlapping windows
 - ► s -> window size
 - ▶ z -> region size
- Reduced error rates
- ▶ Less prone to overfitting

Convolution Optimizations

- ▶ Larger kernel sizes
 - Broad patterns
- Smaller kernel sizes
 - ► Fine-grained details

Input

0	1	1	0	1
0	1	1	0	1
0	1	1	0	1
0	1	1	0	1
0	1	1	0	1

Filter / Kernel

1	0	1	
1	1	1	
0	0	1	

Overall Architecture

- Eight layers
 - ► Five convolutional layers
 - ▶ Three fully connected layers
- Subsequent convolutional layers
- Softmax activation function

$$s\left(x_{i}\right) = \frac{e^{x_{i}}}{\sum_{j=1}^{n} e^{x_{j}}}$$

How to Combat Overfitting

- Data Augmentation
- Dropout

Data Augmentation

- Random Cropping
 - ► Translation Invariance
 - ► Improve Generalization
- PCA-based Color Augmentation
 - Color variations
 - ▶ Light variations

Dropout

- Set to zero (Neurons)
- Less Dependent
- Model learns robust features
- Invented by Geoffrey Hinton

Details of learning

- Stochastic Gradient Descent (SGD)
- Key Hyperparameters
 - ► Learning Rate = 0.00001
 - ▶ Batch Size = 128
 - ► Momentum = 0.9
 - ▶ Weight Decay = 0.0005
 - ▶ Epochs = 90

Results

- ▶ ILSVRC-2010
 - ▶ Top-1, Top-5 Error Rates
- ► ILSVRC-2012
 - ▶ Top-5 Error Rate
 - ► Large Margin

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs [7]	_	_	26.2%
1 CNN	40.7%	18.2%	_
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	_
7 CNNs*	36.7%	15.4%	15.3%

Qualitative Evaluations

- ▶ LHS
 - ► Eight Test Images (ILSVRC-2010)
- ► RHS
 - Five Test Images (ILSVRC-2010)

Discussion and Takeaways

- Discussion
 - Convolutional layers are important
 - Expand into videos
- ▶ Takeaways
 - Groundbreaking technology (2012)
 - ▶ Deep Learning
 - ► Limitless Possibilities

References

- ▶ R.M. Bell and Y. Koren. Lessons from the Netflix Prize challenge. ACM SIGKDD Explorations Newsletter, **9**(2):75–79, 2007.
- ▶ A. Berg, J. Deng, and L. Fei-Fei. Large scale visual recognition challenge 2010. www.image-net.org/challenges, 2010.
- L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
- D. Cireşan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification. Arxiv preprint arXiv:1202.2745, 2012.
- ▶ D.C. Cireşan, U. Meier, J. Masci, L.M. Gambardella, and J. Schmidhuber. High-performance neural networks for visual object classification. Arxiv preprint arXiv:1102.0183, 2011.

Questions

