EC813B - Recitation 10 SPRING 2022 Mehmet Karaca

Question 1^1

(Prelim #1, Fall 2005) Consider the following two-period OLG model. The preferences of an agent born at time t are represented by

$$U(c_{t1}, c_{t2}) = \ln c_{t1} + \beta \ln c_{t2}$$

where c_{t1} denotes consumption when young and c_{t2} denotes consumption when old. There is no physical capital and output is produced according to the following Cobb-Douglas production function

$$Y_t = S_t^{\gamma} L_t^{1-\gamma}$$

Here L_t represents the labor services of young, unskilled workers and S_t represents the labor services of old, skilled workers. The number of births per period is fixed at N. When young, agents append a fraction e_t of their non-leisure time working where they earn a wage w_t , and a fraction $1 - e_t$ investing in human capital. It follows that $L_t = e_t N$. The human capital they acquire is given by

$$h_{t+1} = h_t + (1 - e_t) \theta h_t,$$

where θ is a parameter. The idea here is that the young receive the knowledge acquired by the old as a "spillover" and can build upon it. When old, agents just work and earn a wage v_t per unit of human capital. Their labor services at time t depend on the human capital, h_t , they accumulated when young: $S_t = h_t N$.

- (a) Derive the optimal fraction of time allocated to working when young, e^* ?
- (b) What is the equilibrium growth rate of human capital? What is the equilibrium growth rate of output?
- (c) Suppose the government imposes tax rates τ_1 and τ_2 on the wages of the young and old respectively, and transfers the revenue back to them as lump-sums, τ_1 and τ_2 correspond-

¹I highly suggest checking R. Wright's lecture notes on *Overlapping Generations Model* which are very helpful to understand how basic model works and further changes and inclusions (money etc.) affect the model.

ingly, such that in equilibrium $T_1 = \tau_1 e_t w_t$ and $T_2 = \tau_2 v_{t+1} h_{t+1}$. If tax is "progressive", so that $\tau_2 > \tau_1$, how will this affect the optimal fraction of time allocated to working when young and the equilibrium growth rate of output? Explain the intuition behind this.

Solution

(a) Since we have a CRTS production function, we can write output in terms of per capita terms

$$y_t = \frac{Y_t}{N_t} = \frac{S_t^{\gamma} L_t^{1-\gamma}}{N_t} = \frac{(h_t N_t)^{\gamma} (e_t N_t)^{1-\gamma}}{N_t} = h_t^{\gamma} e_t^{1-\gamma}$$

We can write the RA's problem as

$$\max_{\{c_{t1}, c_{t2}\}} \ln c_{t1} + \beta \ln c_{t2} \quad \text{s.t.}$$

$$c_{t1} = w_t e_t$$

$$c_{t2} = v_{t+1} h_{t+1} = v_{t+1} [h_t + (1 - e_t) \theta h_t]$$

Then, the maximization problem becomes

$$\max_{\{e_t\}} \quad \ln\left(w_t e_t\right) + \beta \ln\left(v_{t+1} \left[h_t + (1 - e_t) \theta h_t\right]\right)$$

The FOC w.r.t e_t is

$$w_t \frac{1}{w_t e_t} - \beta v_{t+1} \theta h_t \frac{1}{v_{t+1} [h_t + (1 - e_t) \theta h_t]} = 0$$

Solving for e_t , the optimal fraction of time allocated to working when young is

$$e^* = \frac{1+\theta}{\theta(1+\beta)}$$

(b) The equilibrium growth rate of human capital is

$$\frac{h_{t+1}}{h_t} = \frac{h_t + (1 - e_t) \theta h_t}{h_t} = 1 + \theta - e_t \theta = 1 + \theta - \frac{\theta (1 + \theta)}{\theta (1 + \beta)} = \frac{\beta (1 + \theta)}{(1 + \beta)}$$

²Since we have log utility, w_t and v_{t+1} cancel in the equation but with a different utility function you have to derive w_t and v_{t+1} from Firm's Profit Maximization Problem which is $\max_{\{e_t,h_t\}} Y_t - w_t L_t - v_t S_t$.

The equilibrium growth rate of output is

$$\frac{y_{t+1}}{y_t} = \frac{h_{t+1}^{\gamma} e_{t+1}^{1-\gamma}}{h_t^{\gamma} e_t^{1-\gamma}} = \frac{h_{t+1}^{\gamma}}{h_t^{\gamma}} = (1 + \theta - e_t \theta)^{\gamma} = \left[\frac{\beta (1+\theta)}{(1+\beta)}\right]^{\gamma}$$

the second equality comes from the fact that e_t is constant.

(c) With the implementation of tax, the RA's problem becomes

$$\max_{\{e_t\}} \quad \ln c_{t1} + \beta \ln c_{t2} \quad \text{s.t.} \quad \begin{aligned} c_{t1} &= (1 - \tau_1) w_t e_t + T_1 \\ c_{t2} &= (1 - \tau_2) v_{t+1} h_{t+1} + T_2 = (1 - \tau_2) v_{t+1} \left[h_t + (1 - e_t) \theta h_t \right] + T_2 \end{aligned}$$

Then, the maximization problem becomes

$$\max_{\{e_t\}} \ln \left((1 - \tau_1) w_t e_t + T_1 \right) + \beta \ln \left((1 - \tau_2) v_{t+1} \left[h_t + (1 - e_t) \theta h_t \right] + T_2 \right)$$

The FOC w.r.t e_t is

$$\frac{(1-\tau_1)w_t}{(1-\tau_1)w_t e_t + T_1} - \beta \frac{(1-\tau_2)v_{t+1}\theta h_t}{(1-\tau_2)v_{t+1} [h_t + (1-e_t)\theta h_t] + T_2} = 0$$

Solving for e_t (plug in for T_1 and T_2), the optimal fraction of time allocated to working with tax when young is

$$e^{**} = \frac{1+\theta}{\theta} \cdot \frac{1}{1+\beta\left(\frac{1-\tau_2}{1-\tau_1}\right)}$$

Since we assume that tax is "progressive", so that $\tau_2 > \tau_1$, we get $e^{**} > e^*$.

Now, we compare the equilibrium growth rate of output. Remember we find

$$\frac{y_{t+1}}{y_t} = (1 + \theta - e^{optimal}\theta)^{\gamma}$$

and $e^{**} > e^*$. Thus, the equilibrium growth rate of output decreases when government impose taxes.

Question 2

(Prelim #2, Fall 2015) Consider an overlapping generations economy in which each individual lives for two periods. An individual born at time t consumes c_{t1} in period t and c_{t2} in period

t+1, and derives utility

$$U(c_{t1}, c_{t2}) = u(c_{t1}) + \beta u(c_{t2})$$

where β is the discount factor. Individuals work only in the first period of life, supplying inelastically one unit of labor and earning a real wage of w_t . They consume part of their first-period income and save the rest to finance their second-period consumption. The saving of the young in period t generates the capital stock that is used to produce output in period t+1 in combination with the labor supplied by the young generation in period t+1. Population grows at rate n. Firms act competitively and use the constant return to scale technology y = f(k) where y is output per worker and k is capital-labor ratio.

- (a) Define the goods market equilibrium for this economy in per capita terms.
- (b) Calculate the steady state interest rate using the following specifications

$$U(c_{t1}, c_{t2}) = \ln c_{t1} + \beta \ln c_{t2}$$
$$f(k) = Ak^{\alpha} - \delta k$$

where δ is the depreciation rate so that f(k) is net production.

(c) Provide conditions under which the decentralized equilibrium is dynamically inefficient.

Solution

- (a) We can define the goods market equilibrium as a sequence $\{R_t, s_t, c_{t1}, c_{t2}\}$ such that: (i) given $\{w_t, r_t\}$, RA solves the utility maximization problem; (ii) Firm maximizes profits, and (iii) the market clearing condition $s_t = (1+n)k_{t+1}$ holds for all t.
- (b) Now, we start with RA's problem. It can be written as

$$\max_{\{c_{t1}, c_{t2}\}} \quad \ln c_{t1} + \beta \ln c_{t2} \quad \text{s.t.} \quad c_{t1} = w_t - s_t$$
$$c_{t2} = (1 + r_{t+1})s_t$$

Then, the maximization problem becomes

$$\max_{\{s_t\}} \quad \ln(w_t - s_t) + \beta \ln((1 + r_{t+1})s_t)$$

The FOC w.r.t s_t is

$$\frac{1}{w_t - s_t} = \beta \frac{1}{s_t} \implies s_t = \frac{\beta}{1 + \beta} w_t$$

We get the usual results from the Firm's problem. First, we find w_t as follows

$$w_t = F_{N_t}(K_t, N_t) = \frac{\partial}{\partial N_t} \left[N_t \cdot F\left(\frac{K_t}{N_t}, 1\right) \right]$$

Taking derivatives, we get

$$w_t = 1 \cdot f(k_t) - N_t f'(k_t) \left(\frac{K_t}{N_t^2}\right)$$
$$= f(k_t) - f'(k_t) k_t$$
$$= Ak_t^{\alpha} - \delta k_t - \left(A\alpha k_t^{\alpha - 1} - \delta\right) k_t$$
$$= A(1 - \alpha)k_t^{\alpha}$$

Second, we find r_t as follows

$$r_t = F_{K_t}(K_t, N_t) = \frac{\partial}{\partial K_t} F(K_t, N_t)$$
$$= \alpha A k_t^{\alpha - 1} - \delta$$

Next, using the RA's FOC and the market clearing condition, we get

$$s_t = k_{t+1} = \frac{K_{t+1}}{N_{t+1}} \cdot \frac{N_{t+1}}{N_{t+1}} = k_{t+1}(1+n) \implies k_{t+1}(1+n) = \frac{\beta}{1+\beta}w_t$$

Plugging in for w_t , we obtain

$$k_{t+1}(1+n) = \frac{\beta}{1+\beta}A(1-\alpha)k_t^{\alpha}$$

Now, we solve for k^* assuming the steady-state condition $k_t = k_{t+1} = \cdots = k^*$. We get

$$k^*(1+n) = \frac{\beta}{1+\beta}A(1-\alpha)(k^*)^{\alpha} \implies k^* = \left[\frac{(1-\alpha)\beta A}{(1+n)(1+\beta)}\right]^{\frac{1}{1-\alpha}}$$

We know that $r_t = \alpha A k_t^{\alpha-1} - \delta$. Plugging in for k^* , we obtain

$$r^* = \alpha A \left[\left[\frac{(1-\alpha)\beta A}{(1+n)(1+\beta)} \right]^{\frac{1}{1-\alpha}} \right]^{\alpha-1} - \delta = \frac{\alpha(1+n)(1+\beta)}{(1-\alpha)\beta} - \delta$$

(c) The decentralized equilibrium is dynamically inefficient if $f'(k^*) = r < n$ where $n = f'(k^{GR})$. So the condition required is

$$\frac{\alpha(1+n)(1+\beta)}{(1-\alpha)\beta} - \delta < n$$

Question 3

(OLG with Money) Consider the following infinite horizon economy. Time is discrete. There is measure 1 of newborns in every period. Everyone lives for 2 periods except for the first generation of old people (no population growth). Preferences for the generations born in and after period 0 are

$$U(c_{t1}, c_{t2}) = u(c_{t1}) + \beta u(c_{t2})$$

where c_{ti} is consumption in period t and stage i of life, $u(\cdot)$ is increasing strictly concave and twice differentiable. The initial old generation utility is $u(c_{02})$. Each generation has (e_t, e_t) , the endowment of the single perishable consumption good where $e_t = \gamma^t e, \gamma > 0, t \geq 0$. That is, everyone gets the same endowment in youth and old age but each subsequent generation gets a different endowment than the last generation. Endowments grow/shrink at the gross rate γ . Initial old generation is endowed with money, the money supply is M. The value of money is q_t , and the price level is $p_t = 1/q_t$.

- (a) Define and characterize a stationary competitive monetary equilibrium.
- (b) Restricting attention to $u(c) = \ln c$, what restriction on β is required for existence of an equilibrium in which c_{t1} and c_{t2} both grow at the (gross) rate γ ? Explain why such a requirement is necessary. Given β satisfies this requirement, what is the value of p_{t+1} ?

Solution

(a) A competitive monetary equilibrium is a sequence $\{R_t, q_t, c_{t1}, c_{t2}\}$ such that: $c_{02} = e_2 + q_0 M$; given $\{q_t\}$, (c_{t1}, c_{t2}) solves the maximization problem for all $t \geq 1$; and the market

clearing condition $c_{t1} + c_{t-1,2} = e_1 + e_2$ holds for all t or $m_t = M$ as long as $q_t > 0$.³ To characterize the equilibrium, we start with RA's problem. It can be written as

$$\max_{\{c_{t1}, c_{t2}\}} u(c_{t1}) + \beta u(c_{t2}) \quad \text{s.t.} \quad c_{t1} = e_t - q_t m_t$$
$$c_{t2} = e_t + q_{t+1} m_t$$

Then, the maximization problem becomes

$$\max_{\{m_t\}} u\left(e_t - q_t m_t\right) + \beta u\left(e_t + q_{t+1} m_t\right)$$

The FOC w.r.t m_t is

$$q_t u'(c_{t1}) = \beta q_{t+1} u'(c_{t2}) \implies \frac{u'(c_{t1})}{u'(c_{t2})} = \beta \frac{q_{t+1}}{q_t} = \mu(c_{t1}, c_{t2})$$

Then, the equilibrium $\{q_t\}$ is such that

- (i) $\mu(e_t q_t m_t, e_t + q_{t+1} m_t) = \beta \frac{q_{t+1}}{q_t}$, and
- (ii) $\{q_t\}$ is bounded.
- (b) We have $c_{t1} = \gamma c_{t-1,1}$ and $e_t = \gamma^t e$. We start with plugging in for c_{t1}

$$e_{t} - q_{t}m_{t} = \gamma(e_{t-1} - q_{t-1}m_{t})$$

$$\gamma^{t}e - q_{t}M = \gamma(\gamma^{t-1}e - q_{t-1}M) \implies \text{(use } m_{t} = M)$$

$$q_{t} = \gamma q_{t-1}$$

$$\frac{q_{t}}{q_{t-1}} = \gamma$$

From the RA's FOC, we get

$$\frac{q_t}{q_{t-1}} = \gamma = \frac{\mu(c_{t1}, c_{t2})}{\beta}$$

Using $u(c) = \ln c$, we obtain

$$\gamma = \frac{c_{t2}}{\beta c_{t1}}$$

Now, plugging in for c_{t1} and c_{t2} we can write

$$\gamma \beta(e_t - q_t M) = e_t + q_{t+1} M$$

³We know (by Walras' law) that the goods market clears if and only if the money market clears.

Solving for M, we get

$$M = \frac{(\gamma \beta - 1)e_t}{(\gamma \beta q_t + q_{t+1})}$$

We need M > 0 for the existence of equilibrium. Thus, the condition required for β is

$$\beta > \frac{1}{\gamma}$$

Now, we can find p_{t+1} . We know that $p_{t+1} = \frac{1}{q_{t+1}}$. Hence we can start with

$$\frac{q_{t+1}}{q_t} = \frac{e_t + q_{t+1}M}{\beta(e_t - q_t M)}$$

$$\gamma\beta(e_t - q_t M) = e_t + q_{t+1}M$$

$$\gamma\beta(\gamma^t e - q_t M) = \gamma^t e + \gamma q_t M$$

$$(\gamma\beta - 1)\gamma^t e = (1 + \beta)\gamma q_t M$$

$$q_t = \frac{(\gamma\beta - 1)\gamma^t e}{(1 + \beta)\gamma M}$$

Finally, we can find $p_{t+1} = \frac{1}{q_{t+1}}$ as

$$p_{t+1} = \frac{(1+\beta)\gamma M}{(\gamma\beta - 1)\gamma^{t+1}e}$$

Question 4

(Prelim #1, Fall 2004) Consider an overlapping generations economy where $t = 0, 1, 2, \ldots$ All agents in the generation born at t have the same utility function,

$$U(c_{t1}, c_{t2}) = c_{t1} + \frac{\beta}{1 - \alpha} c_{t2}^{1 - \alpha}$$

where $\alpha < 1$, and endowment $e_t = (e_1, e_2)$. The stock of fiat money grows at rate γ , so that $M_{t+1} = (1 + \gamma)M_t$ for all t, and new money is distributed via lump-sum transfers to old agents.

- (a) Solve for the "money demand" function.
- (b) Give necessary and sufficient conditions such that a monetary equilibrium exists.

(c) Prove that in the case $e_2 = 0$, any monetary equilibrium satisfies the difference equation $z_{t+1} = a_0 + a_1 z_l$ where z_t is the log of real balances at t, while a_0 and a_1 are constants for you to determine.

Solution

(a) We start with RA's problem as follows

$$\max_{\{c_{t1}, c_{t2}\}} c_{t1} + \frac{\beta}{1 - \alpha} c_{t2}^{1 - \alpha} \quad \text{s.t.} \qquad c_{t1} = e_1 - q_t m_t$$
$$c_{t2} = e_2 + q_{t+1} (m_t + \tau_t)$$

The problem becomes

$$\max_{\{m_t\}} (e_1 - q_t m_t) + \frac{\beta}{1 - \alpha} [e_2 + q_{t+1} (m_t + \tau_t)]^{1 - \alpha}$$

The FOC is

$$q_t = \beta q_{t+1} \left[e_2 + q_{t+1} \left(m_t + \tau_t \right) \right]^{-\alpha} \implies \frac{q_{t+1}}{q_t} = \frac{1}{\beta} \left[e_2 + q_{t+1} \left(m_t + \tau_t \right) \right]^{\alpha}$$

Since new money is distributed via lump-sum transfers, define $\tau_t = M_{t+1} - M_t = \gamma M_t$. Using market clearing condition $m_t = M_t$ we get

$$\frac{q_{t+1}}{q_t} = \frac{1}{\beta} \left[e_2 + q_{t+1} \left(M_t + \gamma M_t \right) \right]^{\alpha}$$

The "money demand" function is

$$M_t = \left[\left(\beta \frac{q_{t+1}}{q_t} \right)^{\frac{1}{\alpha}} - e_2 \right] \frac{1}{(1+\gamma)q_{t+1}}$$

(b) We start with writing $\mu(\cdot)$ in terms of real money balances, $S_t = q_t M_t$.

$$\frac{q_{t+1}}{q_t} = \frac{1}{\beta} \left[e_2 + q_{t+1} \left(m_t + \tau_t \right) \right]^{\alpha}$$

$$\frac{q_{t+1}}{q_t} = \frac{1}{\beta} \left[e_2 + q_{t+1} \left(M_t + \gamma M_t \right) \right]^{\alpha}$$

$$\frac{q_{t+1}}{q_t} = \frac{1}{\beta} \left[e_2 + q_{t+1} (1 + \gamma) M_t \right]^{\alpha}$$

$$\frac{M_{t+1}}{M_{t+1}} \frac{M_t}{M_t} \frac{q_{t+1}}{q_t} = \frac{1}{\beta} \left[e_2 + q_{t+1} M_{t+1} \right]^{\alpha}$$

$$\frac{M_t}{M_{t+1}} \frac{S_{t+1}}{S_t} = \frac{1}{\beta} \left[e_2 + S_{t+1} \right]^{\alpha}$$

$$\frac{1}{(1+\gamma)} \frac{S_{t+1}}{S_t} = \frac{1}{\beta} \left[e_2 + S_{t+1} \right]^{\alpha}$$

Assume that at the steady state $S_t = S_{t+1} = S^*$. Now we solve for S^* and we get

$$S^* = \left(\frac{\beta}{(1+\gamma)}\right)^{\frac{1}{\alpha}} - e_2$$

For existence of monetary equilibrium, we must have $S^* > 0$. Thus, the condition required is

$$\left(\frac{\beta}{(1+\gamma)}\right) > e_2^{\alpha} \implies \beta > (1+\gamma)e_2^{\alpha}$$

(c) We find earlier that

$$\frac{1}{(1+\gamma)} \frac{S_{t+1}}{S_t} = \frac{1}{\beta} \left[e_2 + S_{t+1} \right]^{\alpha}$$

Rearranging the equation, we find

$$S_{t+1} = \left(\frac{\beta}{(1+\gamma)}\right)^{\frac{1}{\alpha}} \left(\frac{S_{t+1}}{S_t}\right)^{\frac{1}{\alpha}} - e_2$$

Assuming $e_2 = 0$, we get

$$S_{t+1} = \left(\frac{\beta}{(1+\gamma)}\right)^{\frac{1}{\alpha}} \left(\frac{S_{t+1}}{S_t}\right)^{\frac{1}{\alpha}}$$

Taking log of both sides, we get

$$\log S_{t+1} = \frac{1}{\alpha} \left[\log \beta - \log(1+\gamma) \right] + \frac{1}{\alpha} \left[\log S_{t+1} - \log S_t \right]$$
$$\log S_{t+1} = \frac{1}{\alpha - 1} \left[\log \beta - \log(1+\gamma) \right] - \frac{1}{\alpha - 1} \log S_t$$

Thus, we showed that equilibrium satisfies the difference equation $z_{t+1} = a_0 + a_1 z_l$.