Grundbegriffe

Kartesische Koordinatensysteme

Jeder Punkt im Raum kann mit seinen Koordinaten im Koordinatensystem beschrieben werden

$$^{A}p=egin{array}{c} ^{A}egin{bmatrix} p_{x}\ p_{y}\ p_{z} \end{bmatrix}$$

Robotik, Prof. Dr. Schillhuber

Kinematik Grundlagen

2D Rotation

Rotationsmatrix

$$R(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

$${}^AR_B=R(lpha)=egin{bmatrix}\coslpha&-\sinlpha\ \sinlpha&\coslpha\end{bmatrix}$$
 "dreht von A auf B" "transformiert von B nach A"

 $R^{-1} = R^T = {}^B R_A = R(-\alpha) = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$ Rechenregeln

Koordinatentransformation $^{A}p = {}^{A}R_{B}{}^{B}p$

$$^{A}p = {}^{A}R_{B}{}^{B}p$$

Beispiel

B ist gegenüber A um 30° gedreht $R(30^\circ) =$

Einheitsvektoren

$${}^Bx_B={}^Bigg[egin{array}{ccc}1\0\end{array}igg] \qquad {}^Ax_B=$$

$$Ay_B =$$

$$^{B}x_{A} =$$

$$^B y_A =$$

Robotik, Prof. Dr. Schillhuber

3

Kinematik Grundlagen

2D Koordinatensysteme

Koordinatensystem B ist gegenüber A verschoben und verdreht.

Die Vektoren müssen im gleichen Koordinatensystem dargestellt sein

$${}^{A}p={}^{A}R_{B}\,{}^{B}p+{}^{A}t=egin{bmatrix}\coslpha&-\sinlpha\ \sinlpha&\coslpha\end{bmatrix}\,{}^{B}egin{bmatrix}p_{x}\p_{y}\end{bmatrix}+{}^{A}egin{bmatrix}t_{x}\t_{y}\end{bmatrix}$$

Umschreiben auf Matrix-Vektor-Multiplikation

$${}^{A}p = \begin{bmatrix} \cos \alpha & -\sin \alpha & t_x \\ \sin \alpha & \cos \alpha & t_y \end{bmatrix}^{B} \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha & t_x \\ \sin \alpha & \cos \alpha & t_y \\ 0 & 0 & 1 \end{bmatrix}^B \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$$

homogene Koordinaten

$${}^{A}\tilde{p} = \begin{bmatrix} {}^{A}R_{B} & {}^{A}t \\ 0 & 1 \end{bmatrix} {}^{B}\tilde{p}$$

$${}^A ilde{p}={}^AT_B\,{}^B ilde{p}$$

homogene Transformationsmatrix

Robotik, Prof. Dr. Schillhuber

5

Kinematik Grundlagen

Rechenregel

$${}^{A}T_{B}{}^{B}T_{C} = \begin{bmatrix} {}^{A}R_{B} & {}^{A}t_{1} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{B}R_{C} & {}^{B}t_{2} \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} {}^{A}R_{B}{}^{B}R_{C} & {}^{A}R_{B}{}^{B}t_{2} + {}^{A}t_{1} \\ 0 & 1 \end{bmatrix} = {}^{A}T_{C}$$

$$({}^{A}T_{B})^{-1} = {}^{B}T_{A} = \begin{bmatrix} {}^{B}R_{A} & -{}^{B}R_{A}{}^{A}t \\ 0 & 1 \end{bmatrix}$$

Beispiel

$$\alpha=30^{\circ}$$

$$^{B}p = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$^{\Lambda} ilde{p}=$$

Ursprung von {A} in {B}

$$^{B}\tilde{o} =$$

Robotik, Prof. Dr. Schillhuber

7

Kinematik Grundlagen

3D Koordinatensysteme

3D Rotation

Es gibt unterschiedliche Darstellungen von 3D-Rotationen:

- Drehachse / -winkel
- Eulerwinkel (Winkel und Drehreihenfolge)
- Quaternionen

Man kann die Darstellungen ineinander umrechnen.

Wichtig für die Kinematik ist die Umrechnung von / zu einer

Rotationsmatrix

$$egin{bmatrix} r_{11} & r_{12} & r_{13} \ r_{21} & r_{22} & r_{23} \ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

Rotationsmatrix: die Spalten sind die Koordinatenachsen des B-Systems dargestellt im A-System

Robotik, Prof. Dr. Schillhuber

9

Kinematik Grundlagen

Rotationsmatrix

$${}^AR_B = egin{bmatrix} r_{11} & r_{12} & r_{13} \ r_{21} & r_{22} & r_{23} \ r_{31} & r_{32} & r_{33} \end{bmatrix} = egin{bmatrix} {}^AX_B & {}^AY_B & {}^AZ_B \end{bmatrix}$$

Die Spalten sind die Koordinatenachsen des B-Systems dargestellt im A-System

Die 9 Parameter sind nicht unabhängig. Es gibt 6 Nebenbedingungen (3 für Einheitslänge, 3 für paarweise Orthogonalität)

Darstellung mit Rotationsachse und Winkel

Anwendung: Universal Robots, Parameter rx, ry, rz

Rotationsachse (normiert)
$$\hat{K} = \begin{bmatrix} k_x \\ k_y \\ k_z \end{bmatrix}$$

Drehwinkel θ

Anstatt der 3+1 = 4 Parameter wird oft die Kombination (Multiplikation von Achse und Winkel) angegeben

$${}^A\hat{K} heta = \left[egin{aligned} k_x heta \ k_y heta \ k_z heta \end{aligned}
ight] = \left[egin{aligned} r_x \ r_y \ r_z \end{aligned}
ight]$$

Der Winkel berechnet sich somit $heta = \left\| egin{array}{c} A & r_x \\ r_y \\ r_z \end{array} \right\| = \sqrt{r_x^2 + r_y^2 + r_z^2}$

Robotik, Prof. Dr. Schillhuber

Kinematik Grundlagen

Berechnung der Rotationsmatrix

$${}^AR_B = egin{bmatrix} k_x k_x v heta + c heta & k_x k_y v heta - k_z s heta & k_x k_z v heta + k_y s heta \ k_x k_y v heta + k_z s heta & k_y k_y v heta + c heta & k_y k_z v heta - k_x s heta \ k_x k_z v heta - k_y s heta & k_y k_z v heta + k_x s heta & k_z k_z v heta + c heta \end{bmatrix}$$

$$\mathsf{mit} \quad v\theta = 1 - \cos\theta$$

Berechnung des Winkel und der Achse

$$\theta = acos(\frac{r_{11} + r_{22} + r_{33} - 1}{2})$$

$${}^A\hat{K} = egin{bmatrix} k_x \ k_y \ k_z \end{bmatrix} = rac{1}{2\sin heta} egin{bmatrix} r_{32} - r_{23} \ r_{13} - r_{31} \ r_{21} - r_{12} \end{bmatrix}$$

Anmerkung: In der Bildverarbeitungsbibliothek OpenCV gibt es für diese Berechnungen die Funktion Rodrigues()

Robotik, Prof. Dr. Schillhuber

13

Kinematik Grundlagen

Winkeldarstellung

Nach Euler lässt sich jede Rotation durch drei Rotationen um unterschiedliche Koordinatenachsen darstellen

Einzelachsrotationen

$$R_x(lpha) = egin{bmatrix} 1 & 0 & 0 \ 0 & \coslpha & -\sinlpha \ 0 & \sinlpha & \coslpha \end{bmatrix}$$

$$R_y(lpha) = egin{bmatrix} \coslpha & 0 & \sinlpha \ 0 & 1 & 0 \ -\sinlpha & 0 & \coslpha \end{bmatrix}$$

$$R_z(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Es gibt insgesamt 12 Kombinationen von Drehreihenfolgen

Eulersche Drehreihenfolgen:

XYZ, XZY, YZX, YXZ, ZXY, ZYX

Kardanische Drehreihenfolgen:

XYX, XZX, YXY, YZY, ZXZ, ZYZ

Die drei Winkel nennt man Eulerwinkel

Robotik, Prof. Dr. Schillhuber

15

Kinematik Grundlagen

X-Y-Z-(fixed)-Darstellung (KUKA, Motoman, Fanuc)

Rotation um ein festes Koordinatensystem

- 1. Rotation um x-Achse um Winkel gamma (roll)
- 2. Rotation um y-Achse um Winkel beta (pitch)
- 3. Rotation um z-Achse um Winkel alpha (yaw) (nennt man roll-pitch-yaw oder Roll-Nick-Gier)

Robotik, Prof. Dr. Schillhuber

Berechnung der Rotationsmatrix

$${}^{\Lambda}R_B = R_z(\alpha)R_y(\beta)R_x(\gamma)$$

$$\begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \gamma & -\sin \gamma \\ 0 & \sin \gamma & \cos \gamma \end{bmatrix}$$

$$=\begin{bmatrix} c\alpha c\beta & c\alpha s\beta s\gamma - s\alpha c\gamma & c\alpha s\beta c\gamma + s\alpha s\gamma \\ s\alpha c\beta & s\alpha s\beta s\gamma + c\alpha c\gamma & s\alpha s\beta c\gamma - c\alpha s\gamma \\ -s\beta & c\beta s\gamma & c\beta c\gamma \end{bmatrix}$$

Robotik, Prof. Dr. Schillhuber

17

Kinematik Grundlagen

Berechnung der Winkel

gegeben:
$${}^AR_B = egin{bmatrix} r_{11} & r_{12} & r_{13} \ r_{21} & r_{22} & r_{23} \ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

gesucht: α, β, γ

$$eta = atan2(-r_{31}, \sqrt{r_{11}^2 + r_{21}^2})$$
 $lpha = atan2(r_{21}/\cos(eta), r_{11}/\cos(eta))$
 $\gamma = atan2(r_{32}/\cos(eta), r_{33}/\cos(eta))$

Singularität bei $\beta = 90^{\circ}$

Z'-Y'-X'-Darstellung

Rotation um aktuelle / mitdrehende Koordinatensysteme

- 1. Rotation um z-Achse um Winkel alpha
- 2. Rotation um neue y-Achse um Winkel beta
- 3. Rotation um neue x-Achse um Winkel gamma

Robotik, Prof. Dr. Schillhuber

19

Kinematik Grundlagen

Berechnung der Rotationsmatrix

$$\begin{split} {}^{A}R_{B} &= {}^{A}R_{B'}{}^{B'}R_{B''}{}^{B''}R_{B'''} \\ & \begin{bmatrix} \cos\alpha & -\sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ -\sin\beta & 0 & \cos\beta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\gamma & -\sin\gamma \\ 0 & \sin\gamma & \cos\gamma \end{bmatrix} \\ & = \begin{bmatrix} c\alpha c\beta & c\alpha s\beta s\gamma - s\alpha c\gamma & c\alpha s\beta c\gamma + s\alpha s\gamma \\ s\alpha c\beta & s\alpha s\beta s\gamma + c\alpha c\gamma & s\alpha s\beta c\gamma - c\alpha s\gamma \\ -s\beta & c\beta s\gamma & c\beta c\gamma \end{bmatrix} \end{split}$$

→ 3 Rotationen um feste Achsen ergeben die gleiche Orientierung wie die 3 Rotationen um bewegte Achsen in umgekehrter Reihenfolge

Z-Y-Z-Darstellung

- 1. Rotation um z-Achse um Winkel alpha
- 2. Rotation um y-Achse um Winkel beta
- 3. Rotation um z-Achse um Winkel gamma

$${}^{A}R_{B} = \begin{bmatrix} c\alpha c\beta c\gamma - s\alpha s\gamma & -c\alpha c\beta s\gamma - s\alpha c\gamma & c\alpha s\beta \\ s\alpha c\beta c\gamma + c\alpha s\gamma & -s\alpha c\beta s\gamma + c\alpha c\gamma & s\alpha s\beta \\ -s\beta c\gamma & s\beta s\gamma & c\beta \end{bmatrix}$$

Inverses Problem

$$eta = atan2(\sqrt{r_{31}^2 + r_{32}^2}, r_{33})$$
 $lpha = atan2(r_{23}/\sin(eta), r_{13}/\sin(eta))$
 $\gamma = atan2(r_{32}/\sin(eta), -r_{31}/\sin(eta))$

Singularität bei $\beta = 0^{\circ}$

Robotik, Prof. Dr. Schillhuber

21

Kinematik Grundlagen

Z-Y-X-Darstellung (bzw. X'-Y'-Z'-Darstellung) (Stäubli)

- 1. Rotation um z-Achse um Winkel gamma
- 2. Rotation um y-Achse um Winkel beta
- 3. Rotation um x-Achse um Winkel alpha

$${}^{A}R_{B} = egin{bmatrix} ceta c\gamma & -ceta s\gamma & seta \ slpha seta c\gamma + clpha s\gamma & -slpha seta s\gamma + clpha c\gamma & -slpha ceta \ -clpha seta c\gamma + slpha s\gamma & clpha seta s\gamma + slpha c\gamma & clpha ceta \end{bmatrix}$$

Inverses Problem

$$\beta = atan2(r_{13}, \sqrt{r_{23}^2 + r_{33}^2})$$

$$\alpha = atan2(-r_{23}/\cos(\beta), r_{33}/\cos(\beta))$$

$$\gamma = atan2(-r_{12}/\cos(\beta), -r_{11}/\cos(\beta))$$

Singularität bei $\beta = 90^{\circ}$

3D Position und Orientierung

$${}^{A}\tilde{p} = {}^{A}T_{B}{}^{B}\tilde{p}$$

$${}^{A}\begin{bmatrix}p_{x}\\p_{y}\\p_{z}\\1\end{bmatrix} = \begin{bmatrix}{}^{A}R_{B} & {}^{A}t\\0 & 1\end{bmatrix}{}^{B}\begin{bmatrix}p_{x}\\p_{y}\\p_{z}\\1\end{bmatrix}$$

Rechenregeln wie bei 2D

Robotik, Prof. Dr. Schillhuber

23

Kinematik Grundlagen

Beispiel

{B} ist gegenüber {A} um 30° um z-Achse gedreht und um $^At=\begin{bmatrix} 4\\3\\0 \end{bmatrix}$ verschoben

$$^{A}T_{B} =$$

$$^BT_A =$$

