CS218: design and analysis of algorithms

Yan Gu

Greedy Algorithms

- Among the commonly-used algorithm design strategies, greedy probably is the most intuitive and easiest to understand
- Once decision at a time
- When you need to make a decision, choose the "best" based on a certain criterion
- Not necessarily optimal, need to prove it

What do greedy choice and optimal substructure mean?

Greedy choice (intuitively):

- The element t you greedily choose is not a bad idea!
- It appears in some optimal solution!
- (for any optimal solution, if it doesn't contain t, we can modify it to contain t!)
- So just choose it!

Optimal substructure (intuitively):

- After choosing some element t
- The final optimal solution is just to find the optimal solution for the rest of the (compatible) elements!
- Recursively solve it using the same approach
- So we repeatedly choose the greedy choice!

Well, sometimes greedy is not optimal, is it useless?

They may still provide you with some nice features!

Approximation Algorithms and Competitive Analysis

Ski Rental (rent or buy problem)

- You recently came to UCR and realized that you can go skiing at the Big Bear Lake Resort
- Buying the equipment costs about \$500 and renting it for a weekend costs \$50. Should your buy or rent?
- Clearly it depends on how many more times you go skiing in the future
 - If you will go skiing a total of 11 times or more, then it is better to buy, and to do it now
 - If we will go 9 times or fewer, then it is better to rent
 - If we go 10 times it does not matter

A reasonable strategy

- You will rent it first and buy it later
- You will first rent it for the first 10 times, and buy it if you go for the 11th time

- If you go 10 times or fewer time, then the strategy is optimal
- If you go for the 11th time, you pay $10 \times \$50 + \$500 = \$1000$, while the optimal strategy (buying it on the first time) pays \$500
- You will never pay more than twice of the optimal strategy

Approximation algorithms

- For a minimization problems instance I and an algorithm ALG, let ALG(I) be the quality of the algorithm's output and OPT(I) be the quality of the optimal solution
- For c > 1, ALG is a c-approximation algorithm if for every I, $ALG(I) \le c \cdot OPT(I)$
- The abovementioned is a 2-approximation algorithm for the (online) ski rental problem

Approximation algorithms

- For a maximization problems instance I and an algorithm ALG, let ALG(I) be the quality of the algorithm's output and OPT(I) be the quality of the optimal solution
- For c < 1, ALG is a c-approximation algorithm if for every I, $ALG(I) \ge c \cdot OPT(I)$

Holiday Celebration!

- You work for Riverside City Council and arranging the next Christmas celebration!
- You have the map of the celebration region, and want to have some police on some intersections, so they can help arranging and provide assistance
- You want to minimize the "police stops" but still have police on one of the two intersections of every (segment) of street
- Unfortunately, solving this problem (vertex cover) on a general graph is NP-Complete

Vertex Cover Problem

- It is hard to know the exact number M, but ...
- Consider a simple strategy, I enumerate every street, and if it is "uncovered", I just put police stops on both ends, and let S be the stops we put here
- Lemma: $|S| \ge |M|$
- Proof: S must cover at least one vertex for each edge in M, and this vertex covers no other edge in M

An approximate solution

 Repeatedly find "uncovered" streets and put stops on both ends

- Lemma: $|S| \leq 2 \cdot OPT(G)$
- Proof: For each $e \in E$, at least one endpoint is in M, so S is a valid solution, and $|S| = 2|M| \le 2 \cdot OPT(G)$
- No need to know OPT(G)!

Fun fact: can we replace the constant 2 with $\alpha < 2$?

- No better constant-factor approximation algorithm is known
- The minimum vertex cover problem is APX-complete: it cannot be approximated arbitrarily well unless P = NP
- Using PCP theorem, one can show that $\alpha \ge \sqrt{2}$; if the unique games conjecture is true, then $\alpha = 2$
- More similar ideas will be covered by CS 219 by Amey
- Another course: https://www.cs.cmu.edu/~anupamg/adv-approx/

Bin Packing

• Given n items of different weights and bins each of capacity c, assign each item to a bin such that number of total used bins is minimized. It may be assumed that all items have weights smaller than bin capacity.

Bin Packing

• Given n items of different weights and bins each of capacity c, assign each item to a bin such that number of total used bins is minimized. It may be assumed that all items have weights smaller than bin capacity.

(Optimal Solution) Number of bins = 2

Bin Packing

• Given n items of different weights and bins each of capacity c, assign each item to a bin such that number of total used bins is minimized. It may be assumed that all items have weights smaller than bin capacity.

What strategies will you use?

Greedy algorithms and their bounds

- If the optimal solution is x
- Next fit (put in the current, start a new one if it doesn't fit the current): no more than 2x bins
- First fit (find the first one that fits): no more than 1. 7x bins
- Best fit (put in the tightest spot): no more than 1.7x bins
- Worst fit (leave the largest space): no more than 2x 2 bins
- First fit decreasing (sort and work on the largest first): no more than (4x+1)/3 bins

Maximum Coverage Problem

The maximum coverage problem

- You will organize a seminar at UCR!
- You want to invite some famous researchers, each of them will present their recent papers
- One paper may have multiple authors anyone of them can give the talk
- A researcher may have multiple papers they can present all of them
- ullet Well, but you only have budget to invite k of them
- You want to maximize the number of papers that may be presented!
- (The general question: given a bipartite graph, choose k vertices on the left to cover as many vertices on the right as possible)

$$n = 5$$

 $m = 8$
 $k = 3$

$$n = 5$$

 $m = 8$
 $k = 3$

$$n = 5$$

• If k = 1,

- m = 8
- Choose the one with the most number of papers!
- k = 3

- Either Alice or Bob
- If k = 2, should we choose the top two with #papers?
 - Not necessarily!
 - Alice + Bob = 5
 - Alice + David (or Erin) = 6
- What is the criteria that we should consider??

Marginal Increase

- Given a set V, we want to select a subset $S \subseteq V$, in order to maximize some function f(S)
 - f(S) is a function on a set
- When adding a new element x to the set, we say the "marginal gain" or "marginal increase" of adding x is

$$f(S \cup \{x\}) - f(S)$$

- Which is the extra benefit we can get by adding x
- For the researcher-paper problem, if we already decide to invite some researchers (set S), the marginal increase of inviting another researcher is the number of extra talks s/he will give

$$n = 5$$

$$m = 8$$

$$k = 3$$

 If we have invited Alice, who is the one with the most "marginal gain"?

n = 5 m = 8 k = 3

- If we have invited Alice, who is the one with the most "marginal gain"?
- f({Alice, Bob}) = 5

- n = 5 m = 8 k = 3
- If we have invited Alice, who is the one with the most "marginal gain"?
- f({Alice, Bob}) = 5
- f({Alice, Charlie}) = 5

$$n = 5$$

$$m = 8$$

$$k = 3$$

- If we have invited Alice, who is the one with the most "marginal gain"?
- f({Alice, Bob}) = 5
- f({Alice, Charlie}) = 5
- f({Alice, David}) = 6

- n = 5 m = 8 k = 3
- If we have invited Alice, who is the one with the most "marginal gain"?

- f({Alice, Bob}) = 5
- f({Alice, Charlie}) = 5
- f({Alice, David}) = 6
- f({Alice, Erin}) = 6

Marginal gain

- n = 5 m = 8 k = 3
- If we have invited Alice and Erin, who is the one with the most "marginal gain"?
- f({Alice, Erin}) = 6

How to maximize the number of presented papers?

 If we have invited Alice and Erin, who is the one with the most "marginal gain"?

f({Alice, Erin, Bob}) = 7

How to maximize the number of presented papers?

n = 5 m = 8 k = 3

Will "marginal gain first" give you the best solution?

• f({Alice, Erin, Bob}) = 7

How to maximize the number of presented papers?

Marginal gain

$$n = 5$$

 $m = 8$
 $k = 3$

Will "marginal gain first" give you the best solution?

Maximum Coverage Problem

- Using the "marginal gain first" strategy, the solution is
 - Not necessary optimal
 - But, can be at least 63% as good as the best solution!
 - I.e., the greedy algorithm gives you a 0.63-approximation
 - The greedy algorithm is essentially the best-possible polynomial time approximation algorithm for maximum coverage unless P = NP
 - This "63%" is actually $1 \frac{1}{e}$

Submodularity

- When your objective is a monotone submodular function, this "marginal gain first" strategy will provide you a solution that is $\left(1-\frac{1}{e}\right)$ competitive
 - Monotone: For sets S and $T \subseteq S$, $f(T) \le f(S)$
 - Submodular: For set S and $T \subseteq S$, and $x \notin S$, $f(T \cup \{x\}) f(T) \ge f(S \cup \{x\}) f(S)$

=> adding an element to a smaller set will have a better marginal gain than adding it to a large set!

- (You can try to verify this on the maximum coverage problem)
- The greedy algorithm will find a solution that is at least $(1-1/e)\approx .63$ as good as optimal

Stable Matching Problem

• n companies and n candidates

 Each candidate will go to one company, and each company will hire one candidate

"preference list"

Alice UGLF

ADCB

ACDB

BADC

- A stable match means that, there is no matching of:
 - A ⇔ 1, B ⇔ 2, where A prefers 2 better than 1, and 2 prefers A better than B
 - (if A move to 2, both of them will be happier!)

An unstable matching:

- Alice prefers Linkedin better than Facebook
- Linked in prefers Alice better than Bob (current employee)
- So Alice should move to Linkedin, and Linked in should also accept Alice (replace Bob)

- A stable match means that, there is no matching of:
 - A ⇔ 1, B ⇔ 2, where A prefers 2 better than 1, and 2 prefers A better than B
 - (if A move to 2, both of them will be happier!)

A stable matching:

- No one has a better choice
- E.g., Bob will work at Linkedin, he/she will be happier to be at Uber
- However, Uber got its best choice, so it will not accept Bob
- No one will move

LGUF ——Google

BADC

Finding a good match (Gale-Shapley algorithm)

• Round 1:

- All candidates go to the company on the top of its list for an interview
- For any company:
 - No candidate comes: do nothing
 - 1 candidate: accept
 - Multiple candidate: choose the one based on its preference list. Reject all others.
- Candidate: if got rejected, remove the company from the list.

• Round 2 - ?

- All candidates goes to the company on the top of its list for an interview
- For any company:
 - No candidate comes: do nothing
 - Given any candidate: look at the one x with the highest preference. If x is better than the current employee (or no current), replace (yes, cold-blooded employer!). Otherwise, keep the current.
- Candidate: if got fired or rejected, remove the company from the list.

Gale-Shapley Algorithm

- The algorithm must give you a stable matching First, it must stop
- In each round, either 1) all applicants have a job, which means the algorithm stops, or 2) at least one applicant will apply for a job
- We will show that, 2) can't continue forever
 - An applicant will traverse all companies in the list, so one day s/he should have done interviews in all companies
 - For a company, as long as anyone applied for the job, the position will be taken
 - This means, when any applicant finish the list, all companies must have their employees hired
 - Contradiction!

Gale-Shapley Algorithm Alice

Linkedin>Facebook

Second, it must be stable!

Bob

- An applicant's job is only getting worse over time
 Assume 3 Alice at Facebook and Bob at Linkedin, where Alice likes Linkedin.
- more than Facebook, and Linkedin likes Alice more than Bob
- · So Alice must have applied for job at Linkedin before Facebook
- If Linkedin didn't make an offer to Alice, it must have a better choice than Ali

- Note that
 - A company's employee is only getting better over time
 - An applicant's job is only getting worse over time
- Assume ∃ Alice at Facebook and Bob at Linkedin, where Alice likes Linkedin more than Facebook, and Linkedin likes Alice more than Bob
 - So Alice must have applied for job at Linkedin before Facebook
 - If Linkedin didn't make an offer to Alice, it must have a better choice than Alice
 - So Linkedin couldn't end up offering the job to someone worse than Alice (Bob)
 - Contradiction!

- This algorithm is usually described for matching a set of man and women, in order to find "stable marriage"
 - There doesn't exist Alice and Bob, such that Alice like Bob more than her husband, and Bob like Alice more than his wife (otherwise?)
- Gale–Shapley algorithm gives a solution to such problems

- So how does this model "marriage"?
 - In the first round,
 - each single man proposes to the woman he prefers most, and
 - each woman accept the suitor she prefers most and say "no" to all other suitors.
 - "accept" mean "provisionally engaged" or "in relationship" not marrying!
 - In later rounds,
 - each single man proposes to the most-preferred woman who hasn't said "no" to him
 - each woman accept the most preferred suiter if she was single, or if her most preferred suitor is better than her current partner, update
 - Finally the process stops, that would be a stable marriage!

- So how does this model "marriage"?
 - It somehow indicates the following result for the algorithm
 - A man's partner will get worse and worse (but they have the chance to propose to their top choice)
 - A woman's partner will get better and better (but they can only choose among those that have proposed to them)
- The algorithm is used in applicant-job matching (doctor-hospital) much earlier than it's formally studied!
 - A simple algorithm and is easy to implement
 - Somehow people feel like it will work intuitively
 - but don't know why for a while

- This algorithm is usually described for matching a set of man and women, in order to find "stable marriage"
 - There doesn't exist Alice and Bob, such that Alice like Bob more than her husband, and Bob like Alice more than his wife (otherwise?)
- Gale–Shapley algorithm gives a solution to such problems
 - It does not need a centralized authority to "run" the algorithm
 - It only needs to tell each participant (or applicant/company) what the best strategy is. They will play the game automatically and get a stable solution!

Other interesting greedy algorithms

- Decision tree: find the feature with the best "Information gain"
 - The reduction in entropy or surprise by transforming a dataset
 - Intuitively: find a feature such that: one branch is mostly "yes" and the other is mostly "no"

Summary for today's lecture

- How to handle NP-hard problems or other problems with their best solutions being very slow?
- Approximation algorithms can be useful in this case, and oftentimes we can prove the quality of the solutions
- Sometimes it is also theoretically interesting to understand the impossible results for approximation
 - Take CS 215 and 219 (Spring 2023) for more details

Next lecture...

Data structure I: tournament trees and augmented trees