SUP MPSI3 Corrigé DS08 05 mai 2023

EXERCICE 1 : Étude d'une pile à combustible au méthanol : $(\approx 25 pts)$ (D'après CCINP TSI 2022)

I – Etude de la combustion de l'éthanol liquide dans l'air :

Q1. Les réactifs et produits sont donnés par l'énoncé : La réaction s'écrit donc :

$$CH_3OH_{(l)} + \frac{3}{2}O_{2(g)} = CO_{2(g)} + 2H_2O_{(l)}.$$

Q2. Pour une mole de méthanol brûlée, on obtient 2 moles d'eau.

Déterminons la quantité de matière de méthanol n_{CH_3OH} contenue dans 5,0 L : $n_{CH_3OH} = \frac{m_{CH_3OH}}{M_{CH_3OH}} = \frac{\rho_{CH_3OH} V}{M_{CH_3OH}}$

De plus,
$$d = \frac{\rho_{CH_3OH}}{\rho_{eau}}$$
; Donc $\rho_{CH_3OH} = d \rho_{eau}$; Ainsi : $n_{CH_3OH} = \frac{d \rho_{eau} V}{M_{CH_3OH}}$ avec $\rho_{eau} = 1 \text{ kg.L}^{-1} = 1000 \text{ g.L}^{-1}$.

$$\underline{AN}: n_{CH_3OH} = \frac{0.8 \times 1000 \times 5}{32}$$
; On obtient: $\underline{n_{CH_3OH}} = 125$ moles d'éthanol.

On va donc fabriquer $\underline{250 \text{ moles d'eau}}$ qui ont un volume : $V_{eau} = \frac{m_{eau}}{\rho_{eau}} = \frac{n_{eau} M_{eau}}{\rho_{eau}}$.

$$\underline{AN}: V_{eau} = \frac{250 \times 18}{1000}$$
; On obtient $\underline{V_{eau}} = 4.5 L$.

II – Etude d'une pile à combustible au méthanol :

Q3. A l'anode, il y a une oxydation du réducteur. L'oxydant a le nombre d'oxydation le plus grand.

Ici, dans CO_2 , le no(C)=IV et dans CH_3OH , le no(C)= - II

A l'anode, on considère donc le couple CO_2/CH_3OH (IV/-II).

Sur le même principe, à la cathode, il y a une réduction de l'oxydant.

Ici, dans O_2 , le no(O) = 0 et dans H_2O , le no(O) = -II.

A la cathode, on considère donc le couple O_2/H_2O (0/-II).

Q4. A l'anode, couple CO_2/CH_3OH (IV/-II): $CO_2 + 6e^- + 6H^+ = CH_3OH + H_2O$ A écrire dans le sens d'une <u>oxydation</u>: $CH_3OH + H_2O = CO_2 + 6e^- + 6H^+$. A la cathode, couple O_2/H_2O (0/-II): $\frac{1}{2}O_2 + 2e^- + 2H^+ = H_2O$: C'est bien une <u>réduction</u>.

Q5. Pour obtenir l'équation bilan, on multiplie la deuxième demi-équation par 3 et on les ajoute.

On obtient : $CH_3OH + \frac{3}{2}O_2 = CO_2 + 2H_2O$

Q6. Utiliser des gants et lunettes de protection lors de la manipulation du méthanol.

Se placer **sous hotte** ou à défaut dans un espace bien ventilé.

Éviter toute source de flamme/de chaleur à proximité. Ne pas fumer.

Appeler un centre anti-poison en cas d'ingestion.

En cas de contact cutané, enlever les vêtements et rincer/se doucher.

Stocker dans un endroit ventilé.

EXERCICE 2 : Etude de la solubilité du diiodate de baryum ;

 $(\approx 50 pts)$

2*s*

(D'après Banque PT 2022)

Q1. Réaction de dissolution du précipité :

$$Ba(IO_3)_{2(s)} = Ba^{2+}_{(aq)} + 2IO_{3(aq)}^{-}$$

S

Pour exprimer la solubilité, on **met le précipité en excès** ;

EI:

Alors
$$K_s = [Ba^{2+}]_{ea} [IO_3^-]_{ea}^2 = s \times (2s)^2$$
; Soit : $K_s = 4 s^3$.

Alors $K_s = [Ba^{2+}]_{eq} [IO_3^-]_{eq}^2 = s \times (2s)^2$; Soit : $K_s = 4 s^3$.

I - Dosage conductimétrique des ions baryum :

Q2. Dispositif expérimental ci-contre.

Réaction du dosage :
$$Ba^{2+}_{(aq)} + SO_4^{2-}_{(aq)} = Ba(SO_4)_{(s)}$$
.

On travaille avec un excès d'eau dans le bécher, de façon à pouvoir négliger le volume ajouté devant le volume initial.

Q3. Avant l'équivalence, on consomme Ba^{2+} et on ajoute 2 Na^+ . Les ions SO_4^{2-} réagissent.

En utilisant la loi de Kohlrausch : $\sigma = \sum_{i} \Lambda^{\circ}_{i} [A_{i}]$,

$$\Lambda^{\circ}(Ba^{2+}) = 13 > 2 \Lambda^{\circ}(Na^{+}) = 2 \times 5 = 10.$$

Ainsi, la conductivité et la conductance de la solution diminuent avant l'équivalence.

Après l'équivalence, on ajoute des ions 2 Na^+ et SO_4^{2-} en excès.

Ainsi, la conductivité et la conductance de la solution augmentent fortement après l'équivalence.

D'où allure de la courbe de dosage ci-contre :

Q4. A l'équivalence, les réactifs sont versés dans les proportions stæchiométriques.

Soit $n_0(Ba^{2+}) = n_{eq}(SO_4^{2-}) = C_1 V_{eq1}$

Ou encore : $[Ba^{2+}] V_1 = C_1 V_{eq1}$; Ainsi : $[Ba^{2+}] = \frac{c_1 V_{eq1}}{V_1}$.

<u>AN</u>: $[Ba^{2+}] = \frac{0.05 \times 11}{50}$; On obtient: $[\underline{Ba^{2+}}] = \underline{s} = 1, 1. 10^{-2} \text{ mol.L}^{-1}$.

II - Dosage redox des ions iodates :

Dans I^- : no(I)= - I; Dans IO_3^- : no(I) = V. **Q5.** Dans I_2 : no(I) = **0**; \blacksquare Diagramme primitif: no = f(pH).

no pH	0	14
V	<i>IO</i> ₃	
0	I_2	
-I	I ⁻	

D'où la correspondance :

- D ou la correspondance.			
① $\leftrightarrow IO_3^-$ (aq)	$\textcircled{2} \leftrightarrow I_{2 \text{ (aq)}}$		

Q6. Frontière séparant les domaines ② et ③ : Couple I_2 / I^- .

Demi-équation redox : $\frac{1}{2}I_{2 \text{ (aq)}} + 1 e^{-} = I^{-} \text{ (aq) ou } I_{2 \text{ (aq)}} + 2 e^{-} = 2 I^{-} \text{ (aq)}$

Relation de Nernst : E($I_{2 \text{ (aq)}}/I^{-}_{\text{ (aq)}}$) = E°($I_{2}/I^{-}_{\text{ (aq)}}$) + 0,03 log $\frac{[I_{2}]}{[I_{2}]}$;

A la frontière : $E_{23} = E^{\circ}(I_{2 \text{ (aq)}}/I^{-}_{\text{ (aq)}} - 0.03 \log c_{T}$.

<u>AN</u>: $E_{23} = 0.62 - 0.03 \log(0.1)$; On trouve: $E_{23} = 0.65 V$.

Q7. D'après la description qui est faite du dosage, on obtient la coloration marron en mélangeant 10 de et 1 en milieu acide.

D'après le diagramme E-pH, on remarque que ces deux espèces ont des domaines de prédominance disjoints <u>en milieu acide</u>, d'où la formation de $I_{2(aa)}$ de couleur marron.

C'est une réaction de médiamutation

$\stackrel{\blacksquare}{\bullet}$ Couple IO_3^-/I_2 .

Demi-équation redox : IO_3^- (aq) + 5 e^- + 6 H^+ = $\frac{1}{2}I_2$ (aq) + 3 H_2O ou $2IO_3^-$ (aq) + $10e^-$ + $12H^+$ = I_2 (aq) + $6H_2O$

$\stackrel{\blacksquare}{\downarrow}$ Couple I_2 / I^- .

Demi-équation redox : $\frac{1}{2}I_{2 \text{ (aq)}} + 1$ $e^- = I^- \text{ (aq) ou } I_{2 \text{ (aq)}} + 2$ $e^- = 2$ $I^- \text{ (aq)}$

Mais attention au sens car I^- est réactif : 2 I^- (aq) = I_2 (aq) + 2 e^- (× 5)

Réaction de médiamutation :

 $2IO_{3}^{-}_{(aq)} + 10I_{(aq)}^{-} + 12H^{+} = 6I_{2}_{(aq)} + 6H_{2}O \text{ ou encore : } IO_{3}^{-}_{(aq)} + 5I_{(aq)}^{-} + 6H^{+} = 3I_{2}_{(aq)} + 3H_{2}O.$ Constante d'équilibre : $K = \frac{[I_{2}]_{eq}^{3}}{[IO_{3}^{-}]_{eq}[I^{-}]_{eq}^{5}[H^{+}]_{eq}^{6}}.$

Relation de Nernst au 1^{er} couple : $E(IO_3^-/I_2) = E_2^0 + \frac{0.06}{10} \log \left(\frac{[IO_3^-]^2 [H^+]^{12}}{I} \right)$

Relation de Nernst au $2^{\text{ème}}$ couple : $E(I_2/I^-) = E_1^{\circ} + \frac{0.06}{2} \log \left(\frac{[I_2]}{[I^{-1}]^2}\right) = E_1^{\circ} + 0.06 \log \left(\frac{\sqrt{[I_2]}}{[I^{-1}]}\right)$

A l'équilibre, les potentiels sont égaux, soit : $E_{eq}(IO_3^-/I_2) = E_{eq}(I_2/I^-)$

D'où:
$$E_2^{\circ} + \frac{0.06}{10} \log \left(\frac{[IO_3^{-}]_{eq}^2 [H^+]_{eq}^{-12}}{[I_2]_{eq}} \right) = E_1^{\circ} + 0.06 \log \left(\frac{\sqrt{[I_2]_{eq}}}{[I^-]_{eq}} \right)$$

(× 5), il vient :
$$5 E_2^{\circ} + 0.06 \log \left(\frac{[IO_3^{-}]_{eq} [H^{+}]_{eq}^{6}}{\sqrt{[I_2]_{eq}}} \right) = 5 E_1^{\circ} + 0.06 \log \left(\frac{[I_2]_{eq}^{5/2}}{[I^{-}]_{eq}^{5}} \right)$$

Alors, il vient : $5(E_2^\circ - E_1^\circ) = 0.06 \log \frac{[I_2]_{eq}^3}{[IO_3^-]_{eq}[I^-]_{eq}^5[H^+]_{eq}^6} = 0.06 \log K$

Alors: $K = 10^{\frac{5(E^{\circ}2^{-E^{\circ}1})}{0.06}}$; AN: $K \approx 10^{48}$; La <u>réaction de dismutation est totale.</u>

Q8. En exploitant la réaction de médiamutation et en supposant que 10_3^- est réactif limitant, on obtient :

$$n(IO_3^-)=\frac{n(I_2)}{3}.$$

D'autre part, le diiode I_2 est dosé par les ions thiosulfates : $S_2O_3^{2-}$

(Réaction entre l'oxydant le plus fort et le réducteur le plus fort)

Première demi équation redox : $I_{2 \text{ (aq)}} + 2 e^{-} = 2 I^{-}_{\text{(aq)}}$

Deuxième demi équation redox : $2 S_2 O_3^{2-}$ $_{(aq)} = S_4 O_6^{2-}$ $_{(aq)} + 2 e^-$

D'où la réaction de dosage : $2 S_2 O_3^{2-}{}_{(aq)} + I_2{}_{(aq)} = S_4 O_6^{2-}{}_{(aq)} + 2 I_{(aq)}^{-}$.

A l'équivalence, les réactifs sont versés dans les proportions stœchiométriques.

Soit
$$n_0(I_2) = \frac{n_{eq}(s_2o_3^{2-})}{2} = \frac{c_2v_{eq2}}{2}$$

Or, on a vu que $n(IO_3^-) = \frac{n(I_2)}{2}$, ainsi ; $n(IO_3^-) = \frac{c_2 V_{eq2}}{2}$.

EXERCICE 3 : Étude de traitements de quelques effluents :

 $(\approx 52 pts)$

(D'après CCINP PSI 2022)

I - Déchromatation :

Q1. De bas en haut du diagramme, les espèces sont placées par ordre croissant de nombre d'oxydation. Le chrome est au nombre d'oxydation :

- \blacksquare 0 dans $Cr_{(s)}$ et +II dans Cr^{2+} .
- + HIII dans Cr^{3+} et $Cr(OH)_{3(s)}$.
- + VI dans $Cr_2O_7^{2-}$ et CrO_4^{2-} .
- ♣ D'autre part, l'espèce acide est majoritaire à pH faible par rapport à l'espèce basique : Réaction acido-basiques : $Cr_2O_7^{2-} + H_2O = 2 CrO_4^{2-} + 2 H^+$: Couple $Cr_2O_7^{2-} / CrO_4^{2-}$, car c'est $Cr_2O_7^{2-}$ qui libère les protons.
 - \blacksquare Enfin, l'espèce $Cr(OH)_{3(s)}$ est plus basique que Cr^{3+} .

D'où diagramme primitif : no = f(pH) :

no pH	0	14
+VI	$Cr_2O_7^{2-}$ CrO_4^{2-}	
+III	Cr^{3+} $Cr(OH)_{3(s)}$	
+II	Cr^{2+}	
0	$\mathit{Cr}_{(s)}$	

Et par identification:

Espèce	A	В	С	D	E	F
Domaine	$Cr_{(s)}$	Cr^{2+}	Cr ³⁺	$Cr(OH)_{3(s)}$	$Cr_2O_7^{2-}$	CrO_4^{2-}

Q2. Soit la réaction de dissolution du précipité : $Cr(OH)_{3(s)} = Cr^{3+} + 3OH^{-}$.

A la limite de précipitation
$$Q_{r lim} = [Cr^{3+}]_0 [OH^-]_{lim}^3 = C_0 \times [OH^-]_{lim}^3 = K_s$$

Avec $[H_3O^+]_{lim} = 10^{-pH_{lim}}$ et $[OH^-]_{lim} = \frac{Ke}{[H_3O^+]_{lim}} = \frac{Ke}{10^{-pH_{lim}}} = Ke \times 10^{pH_{lim}}$;

Doù
$$K_s = C_0 \times Ke^3 \times 10^{3pH_{lim}}$$
;
On lit: $pH_{lim} = 4$; $AN : K_s = 10^{-1} \times 10^{-42} \times 10^{3\times4}$; On trouve: $K_s = 1.10^{-31}$.

Q3. Couple $\mathcal{C}r^{2+}$ / $\mathcal{C}r_{(s)}$: ½ équation redox : $\mathcal{C}r^{2+}$ + 2 e^- = $\mathcal{C}r_{(s)}$.

Nernst:
$$E(Cr^{2+}/Cr_{(s)}) = E^{\circ}(Cr^{2+}/Cr_{(s)}) + 0.03 \log([Cr^{2+}])$$
;

Sur la frontière entre Cr^{2+} et $Cr_{(s)}$, $[Cr^{2+}] = C_0$.

Soit
$$E_{Front}(Cr^{2+}/Cr_{(s)}) = E^{\circ}(Cr^{2+}/Cr_{(s)}) + 0.03 \log(C_0)$$
;

Soit
$$E_{Front}(Cr^{2+}/Cr_{(s)}) = E^{\circ}(Cr^{2+}/Cr_{(s)}) + 0.03 \log(C_0)$$
;
Ainsi, $E^{\circ}(Cr^{2+}/Cr_{(s)}) = E_{Front}(Cr^{2+}/Cr_{(s)}) - 0.03 \log(C_0)$
On nous indique que $E_{Front}(Cr^{2+}/Cr_{(s)}) = -0.94 \text{ V}$.

AN:
$$E^{\circ}(Cr^{2+}/Cr_{(s)}) = -0.94 - 0.03 \log(10^{-1}) = -0.94 + 0.03$$
; On obtient: $\underline{E^{\circ}(Cr^{2+}/Cr_{(s)})} = -0.91 \text{ V}.$

Q4. On nous donne $E^{\circ}(Cr_2O_7^{2-}/Cr^{3+}) = E_{1}^{\circ} = 1,33 \text{ V et } E^{\circ}(SO_4^{2-}/HSO_3^{-}) = E_{2}^{\circ} = 0,17 \text{ V}$

Réaction entre l'oxydant le plus fort et le réducteur le plus fort, donc entre $Cr_2O_7^{2-}$ et HSO_3^{-} .

Couple
$$Cr_2O_7^{2-}/Cr^{3+}$$
: ½ équation redox : $\frac{1}{2}Cr_2O_7^{2-} + 3e^- + 7H^+ = Cr^{3+} + \frac{7}{2}H_2O$. (× 2)

Couple SO_4^{2-}/HSO_3^{-} (VI/IV): ½ équation redox : $SO_4^{2-} + 2e^{-} + 3H^{+} = HSO_3^{-} + H_2O_3^{-}$

Dans le sens inverse, il vient :
$$HSO_3^- + H_2O = SO_4^{2-} + 2e^- + 3H^+$$
. (× 3)

Dans le sens inverse, il vient : $HSO_3^- + H_2O = SO_4^{2-} + 2e^- + 3H^+$. (× 3) Il vient l'équation <u>bilan d'oxydoréduction</u> : $Cr_2O_7^{2-} + 3HSO_3^- + 5H^+ = 2Cr^{3+} + 3SO_4^{2-} + 4H_2O$.

Q4 (suite). Calcul de la constante d'équilibre :
$$K_1 = \frac{[cr^{3+}]_{eq}^2 [so_4^{2-}]_{eq}^3}{[cr_2o_7^{2-}]_{eq}[Hso_3^-]_{eq}^3 [H^+]_{eq}^5}$$
.

Demi-équation redox : $\frac{1}{2} Cr_2O_7^{2-} + 3 e^- + 7 H^+ = Cr^{3+} + \frac{7}{2} H_2O$.

$$\blacksquare$$
 Demi-équation redox : $\frac{1}{2} Cr_2O_7^{2-} + 3e^- + 7H^+ = Cr^{3+} + \frac{7}{2}H_2O$.

Nernst au couple
$$Cr_2O_7^{2-}/Cr^{3+}$$
: $E_1 = E_1^{\circ} + 0$, $02\log\left(\frac{[Cr_2O_7^{2-}]^{1/2}[H^+]^7}{[Cr^{3+}]}\right)$

♣ Demi-équation redox :
$$SO_4^{2-} + 2e^- + 3H^+ = HSO_3^- + H_2O_3^-$$

Nernst au couple
$$SO_4^{2-}/HSO_3^-: E_2 = E_2^{\circ} + 0,03 \log \left(\frac{[SO_4^{2-}][H^+]^3}{[HSO_3^-]} \right)$$

A l'équilibre :
$$E_{1eq} = E_{2eq}$$

$$\operatorname{Soit}: E^{\circ}_{1} + 0.02 \log \left(\frac{\left[cr_{2}o_{7}^{2-} \right]^{1/2}_{eq} [H^{+}]^{7}_{eq}}{\left[cr^{3+} \right]_{eq}} \right) = E^{\circ}_{2} + 0.03 \log \left(\frac{\left[So_{4}^{2-} \right]_{eq} [H^{+}]^{3}_{eq}}{\left[HSO_{3}^{-} \right]_{eq}} \right)$$

$$(\times 6) ; \text{D'où} : 6 E_{1}^{\circ} + 0.06 \log \left(\frac{\left[cr_{2}O_{7}^{2-} \right]_{eq} \left[H^{+} \right]^{14} e_{q}}{\left[cr^{3+} \right]_{eq}^{2}} \right) = 6 E_{2}^{\circ} + 0.06 \log \left(\frac{\left[sO_{4}^{2-} \right]_{eq}^{3} \left[H^{+} \right]^{9} e_{q}}{\left[HSO_{3}^{-} \right]_{eq}^{3}} \right)$$

Soit:
$$6(E_1^{\circ} - E_2^{\circ}) = 0.06 \log \left(\frac{\left[SO_4^{2-}\right]_{eq}^3 \left[Cr^{3+}\right]_{eq}^2}{\left[HSO_3^{-}\right]_{eq}^3 \left[Cr_2O_7^{2-}\right]_{eq}\left[H^{+}\right]_{eq}^5} \right) = 0.06 \log (K_1)$$

Ainsi: $K_1 = 10^{\frac{6}{0.06}(E_1^{\circ} - E_2^{\circ})}$; Ou encore: $K_1 = 10^{\frac{(E_1^{\circ} - E_2^{\circ})}{0.01}}$

Ainsi :
$$K_1 = 10^{\frac{6}{0.06}(E^{\circ}_1 - E^{\circ}_2)}$$
 ; Ou encore : $K_1 = 10^{\frac{(E^{\circ}_1 - E^{\circ}_2)}{0.01}}$

AN:
$$K_1 = 10^{\frac{(1,33-0,17)}{0,01}}$$
; On obtient: $K_1 = 10^{116} \gg 10^3$.

Réaction totale qui permet bien l'élimination des ions chrome VI, classés cancérogènes.

II - Décyanuration :

Q5. Détermination du pKa du couple : $HClO / ClO^-$:

Réaction A/B : $HClO = ClO^- + H^+$;

Ainsi :
$$pH = pKa + \log\left(\frac{[clo^-]}{[Hclo]}\right)$$
.

Et à la frontière : $[ClO^-] = [HClO]$;

Soit $pKa = pH_{Front}$;

On lit $pKa(HClO / ClO^-) \approx 7.5$.

Q6. Il faut superposer les diagrammes E-pH

du chlore et du cyanure :

L'énoncé donne

$$E^{\circ}(CNO^{-}/CN^{-}) = E^{\circ}_{3} = -0.13 \text{ V}.$$

Il faut déterminer l'équation de la frontière :

Couple CNO^-/CN^- (I/-I):

½ équation redox :

$$CNO^- + 2e^- + 2H^+ = CN^- + H_2O$$

Nernst au couple *CNO*⁻/*CN*⁻

$$E_3 = E_3^{\circ} + 0.03 \log \left(\frac{[CNO^{-}][H^{+}]^2}{[CN^{-}]} \right)$$

A la frontière : $[CN^-] = [CNO^-]$

Soit : $E_{3Front} = E_3^{\circ} + 0.03 \log([H^+]^2)$ Ou encore : $E_{3Front} = E_3^{\circ} - 0.06 pH$ Ainsi, en pH = 12, $E_{3Front} = -0.13 - 0.06 \times 12$

Soit E = - 0,59 V. On ajoute cette équation sur le diagramme figure 2 ainsi que les DP de CNO et CN-.

Les **domaines de stabilité de** *CN*⁻ **et** *ClO*⁻ **sont vraiment disjoints** (écart supérieur à 0,5 V à tout pH). Ainsi, ClO^- oxyde CN^- de façon quasi-totale suivant la réaction : $CN^- + ClO^- = CNO^- + Cl^-$.

Q7. Point de vue thermodynamique :

- Pour pH < pKa = 7.5, il se produit la réaction acido-basique : $ClO^- + H^+ = HClO$.
- Pour $pH < pH_{lim} \approx 2$ ou 2, 5 (cf diagramme E-pH), les domaines de prédominance de HClO et Cl^- sont disjoints. Il y a média-mutation de HClO et Cl^- en Cl_2 .
- Etude de la réaction de médiamutation :
- Couple $HClO / Cl_2 : (I/0)$; 1/2 équation redox: $HClO + 1e^- + 1$ $H^+ = \frac{1}{2}Cl_2 + H_2O$

Ou encore : $2 HClO + 2 e^- + 2 H^+ = Cl_2 + 2 H_2O$

- Couple Cl_2 / Cl^- : (0/-I); 1/2 équation redox : $Cl_2 + 2e^- = 2Cl^{--}$; Sens réel : **2** $Cl^- = Cl_2 + 2e^-$.
- Bilan par addition, il vient : $2 HClO + 2 Cl^- + 2 H^+ = 2 Cl_2 + 2 H_2O$
- Et par simplification, on obtient : $\overline{HClO + Cl^- + H^+ = Cl_2 + H_2O}$; **Réaction de médiamutation**; On peut aussi proposer : $\overline{ClO^- + Cl^- + 2H^+ = Cl_2 + H_2O}$.

Conclusion : Cl₂ étant très toxique, il ne faut pas acidifier une solution d'eau de Javel.

PROBLEME: Problèmes d'un cabinet dentaire:

(D'après Centrale Supelec TSI 2022)

I - Formation de tartre dans la bouche :

Q1. Analyse : Il y a formation de tartre, si la condition de précipitation est satisfaite,

donc si: $Q_{rEI} > K_s(CaCO_{3(s)}) = 10^{-8.4}$.

Réaction susceptible de se produire : $Ca^{2+} + CO_3^{2-} = CaCO_{3(s)}$

D'après la réaction de précipitation : $Q_{rEI} = [Ca^{2+}]_i [CO_3^{2-}]_i$

On connait $[Ca^{2+}]_i = 3.10^{-2} \text{ mol.L}^{-1}$, mais pas celle en CO₃²⁻.

Et d'après l'énoncé, $[CO_2]_{(aa)} = 2.10^{-3} \text{ mol.L}^{-1}$. Il nous faut $[CO_3^{2-}]_i$:

Domaines de prédominances acido-basiques des couples liés à CO_2 : D'après les données, on obtient :

Le pH est égal à 6,75 donc
$$[\underline{H_3O^+}] = 10^{-6,75} \text{ mol.L}^{-1}$$
.
 $\underline{AN} : [CO_2]_{aq} = \frac{2.10^{-3}}{3,2.10^{-14}} \cdot 10^{-6,4} \times 10^{-10,3}$; On obtient $[\underline{CO_3^{2-}}]_{aq} = 1,25.10^{-6} \text{ molL}^{-1}$.
Alors $Q_{rEI} = 3.10^{-2} \times 1,25.10^{-6}$; On obtient : $Q_{rEI} = 3,75.10^{-8} > K_s(CaCO_{3(s)}) = 10^{-8,4} \approx 4.10^{-9}$

Alors
$$Q_{rEI} = 3.10^{-2} \times 1,25.10^{-6}$$
; On obtient: $Q_{rEI} = 3,75.10^{-8} > K_s(caco_{3(s)}) = 10^{-8,4} \approx 4.10^{-9}$

Conclusion: Il peut y avoir formation de tartre dans la bouche.

II - Produit de blanchiment pour les dents :

Q2. Couple $H_2O_{2(aq)}/H_2O_{(l)}$: (-I ;-II); Attention, dans $H_2O_{2(aq)}$, no(O) = -I; c'est une exception!! $\frac{1}{2}$ équation redox : $\frac{1}{2} H_2 O_{2(aq)} + 1 e^- + 1 H^+ = H_2 O_{(l)}$ ou $H_2 O_{2(aq)} + 2 e^- + 2 H^+ = 2 H_2 O_{(l)}$.

 \blacksquare Couple $O_{2(g)}/H_2\overline{O_{2(ag)}:(0:-I)}$

Louple
$$O_{2(g)}/H_2O_{2(aq)}$$
: (0:-1)
 $1/2$ équation redox : $\frac{1}{2}O_{2(g)} + 1e^- + 1H^+ = \frac{1}{2}H_2O_{2(aq)}$ ou $O_{2(g)} + 2e^- + 2H^+ = H_2O_{2(aq)}$.

- Q3. Comme le potentiel standard du couple $H_2O_{2(aq)}/H_2O_{(l)}$ (E_1°) est bien supérieur à celui du couple $O_{2(g)}/H_2O_{2(aq)}$, (E_2°) la <u>réaction se fait entre l'oxydant le plus fort sur le réducteur le plus fort</u> selon la réaction d'oxydoréduction : $2 H_2 O_{2(aq)} = 2 H_2 O_{(l)} + O_{2(g)}$; Ainsi, le nombre d'oxydation de l'oxygène augmente et diminue dans la même réaction, il s'agit d'une réaction de dismutation.
- Q4. Couple acidobasique $H_2O_{2(aq)}/HO_2^-_{(aq)}$: $H_2O_{2(aq)} + H_2O_{(l)} = HO_2^-_{(aq)} + H_3O_{(aq)}^+$. La constante d'équilibre est $K_{eq} = Ka3 = 10^{-pKa3} = 2, 5. 10^{-12}$.

On reprend la réaction précédente : **Réaction négligeable** car $K_{eq} = Ka3 = 2,5.10^{-12}.<10^{-3}$ **Q5.**

$$H_2O_{2(aq)} + H_2O_{(l)} = HO_2^{-}_{(aq)} + H_3O_{(aq)}^{+}$$
; Avec $K_{eq} = Ka3 = 2.5.10^{-12}. < 10^{-3}$

ΕI \mathcal{C} Excès

EE
$$C$$
 ε ;

$$Ka3 = \frac{[H_{02}^{-}]_{eq}[H_{3}O^{+}]_{eq}}{[H_{2}O_{2(aq)}]_{eq}} = \frac{[H_{3}O^{+}]_{eq}^{2}}{c}; \text{ Soit : } [H_{3}O^{+}]_{eq} = \sqrt{C \times K_{a3}}$$
Et $\mathbf{pH} = -\log [H_{3}O^{+}]_{eq} = \frac{1}{2} (pK_{a3} - \log C)$; $\underline{AN} : \underline{pH} = 7.3.$

Et
$$pH = -\log [H_3 O^+]_{eq} = \frac{1}{2} (pK_{a3} - \log C)$$
 ; $AN : pH = 7.3$

Q5 (suite). Vérification avec un diagramme de prédominance :

Conclusion : A pH = 7,3, c'est bien $H_2O_{2(aq)}$ qui prédomine, mais le **pH** devrait être inférieur à 7 (pour un acide faible mis en solution).

Q6. Bilan des acides et des bases présents :

Bilan des Acides	Bilan des bases
$H_2O_{2(aq)} (H_2O_{2(aq)}/HO_2^{-}_{(aq)})$ de pKa3= 11,6	$H_2O (H_3O^+ / H_2O) \text{ de pK}_A = 0$
$H_2O (H_2O / HO^-)$ de pk _A = 14	

Il faudrait donc tenir compte de la réaction secondaire :

<u>L'autoprotolyse de l'eau</u> : $2 H_2 O_{(l)} = H_3 O_{(aq)}^+ + O H_{(aq)}^-$

III - Utilisation d'un autoclave :

Q7. Tant que la soupape est fermée, le système est fermé et l'air est assimilé à un gaz parfait.

A l'instant initial, $P_0 = \frac{nR T_0}{V}$ et juste avant que la soupape ne s'ouvre : $P_1 = \frac{nR T_1}{V}$;

En faisant le rapport, il vient : $\frac{P_1}{P_0} = \frac{T_1}{T_0}$; Soit $\boxed{P_1 = P_0 \frac{T_1}{T_0}}$; $\underline{AN} : P_1 = 1 \frac{273 + 85}{293}$; On obtient $\underline{P_1} \approx 1.22 \ bar.$

4 Le mélange air et vapeur d'eau est supposé idéal, les pressions partielles des sous-systèmes s'additionnent. Ainsi $P_{air} + P_{eau} = P_f = P_0 + \Delta P$ avec $P_f = P_0 + \Delta P = 1,69$ bar.

Alors
$$P_{eau} = P_0 + \Delta P - P_{air} = P_0 + \Delta P - P_1$$
.

Alors $P_{eau} = P_0 + \Delta P - P_{air} = P_0 + \Delta P - P_1$. AN: $P_{eau} = 1,69 - 1,22$; On obtient $P_{eau} = 0,47$ bar au moment où la soupape se soulève.

Q8. Lorsque tout l'air a été chassé $P_{sat} = P_0 + \Delta P = 1,69$ bar et d'après la loi de Duperray $P_{sat} = P_0 \left(\frac{t}{100}\right)^4$. Alors $\frac{t}{100} = \left(\frac{P_{sat}}{P_0}\right)^{1/4}$; Ainsi $t = 100 \left(\frac{P_{sat}}{P_0}\right)^{1/4}$. AN: $t = 100 \left(\frac{1,69}{1}\right)^{1/4}$; On obtient $t \approx 114^{\circ}C$.

Q9. On ne souhaite pas travailler avec des pressions plus élevées pour des raisons de sécurité (et peut-être aussi de coût).

Autoclave à usage médical:

Q10. Il faut évacuer l'air présent dans l'autoclave pour ne plus garder que la vapeur d'eau.

Q11. On reprend la loi de Duperray : $P'_{sat} = P_0 \left(\frac{t}{100}\right)^4$ avec $t = 134^{\circ}C$.

Alors $P'_{sat} = 1 \left(\frac{134}{100}\right)^4$; On obtient $\underline{P'_{sat}} \approx 3.22 \text{ bar.}$

Cette pression est bien supérieure à celle obtenue avec un autocuiseur.

Q12. Le test c a échoué, car le centre de la feuille n'a pas atteint la température requise et est resté gris, contrairement au test b (réussi) qui, lui, présente une teinte noire homogène. L'image a sert de référence.