END TERM EXAMINATION

FOURTH SEMESTER [B. TECH] MAY-JUNE 2018

Paper Code: ETCS-206

Subject: Theory of Computation (Batch 2013 Onwards)

Time: 3 Hours

Maximum Marks: 75

Note: Attempt any five questions including Q no.1 which is compulsory.

Assume missing data if any.

- Q1 (a) What is Finite Automation? Differentiate between DFA and NFA? (5)
 - (b) Construct a DFA over the alphabet {0, 3}, such that number of 0's in the string is always even.
 - (c) Construct a PDA accepting the set of all even-length palindromes over a, b by empty store.
 - (d) State Church's Hypothesis about computability of a machine. (5)
 - (e) Prove that graph coloring problem is NP-complete. (5)
- Q2 (a) State and prove Kleen's Theorem. (6.25)
 - (b) Construct a Mealy machine which is equivalent to the More machine given in Table 1: (6.25)

Table 1: Transition table for Mealy machine

Present State	Next State a=0 a=1		Output	
. →qo	q_1	q_2	1	
- q ₁	Q3	q ₂	0	
· q2	q ₂	q1	1	
q ₃	qo	q ₃	1	

Q3 (a) Minimize the following FDA:

(6.25)

(b) Construct a DFA equivalent to the NFA M whose transition table is given in Table 2. (6.25)

Table 2: Transition table of NFA M

Present State	0	1	2 q ₂ , q ₃	
	q1, q4	q ₂		
· q1 '	-	Q4	-	
. q ₂ .	q1, q3	-	Q2, Q4	
Q3	-	Q4	-	
· (94)	-	Q1, Q3	-	

Q4	(a) State and Pur (b) Construct a F	mping PDA to	Lemma fo find the 2	or Context Free 2's- complemen	lang t of b	uag ina	ges. Iry nu	mber. (6	5.25) 5.25)
Q5	(a) Construct	a	DFA	equivalent	to	· ·	the	gran	imar

 $S \to aS|bS|aA$, $A \to bB$, $B \to aC$, $C \to A$. (6.25)(b) Reduce the grammar $S \to AB$, $A \to a$, $B \to Cb$, $C \to D$, $D \to E$, $E \to a$ to

Chomsky Normal Form.

(a) Construct a Turing machine that enumerates $\{0^n1^n \mid n \ge 1\}$ Q6 (6.25)

(b) Construct a Turing machine for the language $\{a^nb^nc^n \mid n \ge 1\}$ (6.25)

(a) Explain Universal Turing Machine with the help of an example. (6.25) Q7 (b) Explain recursive and recursively enumerable languages and the relationship between them. (6.25)

ipjugaad.cor