LeBail Fit

Mantid Algorithm/CurveFitting

Problem To Solve

- Brief: Fit multiple peaks from model to powder diffraction data;
- Parameters to fit
 - Lattice constant: a, b, c, alpha, beta, gamma
 - Backgrounds
 - Zero shift
 - For POWGEN: Zero, Zerot
 - Powder diffractometer instrument geometry:
 - For POWGEN: Dtt1, Dtt2, Dtt1t, Dtt2t
 - Peak profile
 - For POWGEN: : alph0, alph1, beta0,
- Workflow from parameters to diffraction pattern
 - Read input
 - Parameters to fit
 - Non-annihilated reflections (Miller indices)
 - Calculate background
 - Calculate peaks' intensities
 - From input peak parameters and observed diffraction pattern
 - Calculate peaks
 - Each peak's profile parameters are calculated from d-spacing, dtt1, dtt2, alph0, alph1, beta1 and etc.

LeBail Function – From Inputs To Peaks

- For each input peak (Miller Index)
 - 1. Calculate its peak position in d-spacing
 - Lattice constants (a, b, c, alpha, beta, gamma)
 - 2. Calculate its peak position in TOF
 - 1. Instrument geometry (Dtt1, Dtt2, Dtt1t, Dtt2t)
 - 3. Calculate peak profile parameters as function of d-spacing
 - 1. alph0, alph1, alph0t, alph1t
 - 2. beta0, beta1, beta0t, beta1t
 - 3. Sig0, Sig1, Sig 2
 - 4. Gam0, Gam1, Gam2
 - 4. Calculate peak profile function

Notes

Math: The formulas are listed in the PDF file

 Name: In Mantid, the curving fitting function is name LeBailFunction, which may not be general enough. Because it uses the formalism of thermal neutron peak profile (Fullprof peak profile #10).

Code Structure

LeBail Function

Parameters To Fit Each Reflection (in *function1D*) d-spacing Beta1 TOF_h Alph0t, Alph1t, Beta0t, Beta1t, Sig0, Sig1, Sig2 alpha, beta, sigma, gamma Gam0, Gam1, Gam2 Thermo Neutron Peak Function Calculated Pattern