

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

(NASA-CR-144612) RESULTS OF AN AERODYNAMIC INVESTIGATION OF A SPACE SHUTTLE ORBITER/747 CARRIER FLIGHT TEST CONFIGURATION TO DETERMINE SEPARATION CHARACTERISTICS UTILIZING 0.0125-SCALE MODELS (CHRYSLER

JUN 1976

N76-25322

HC \$18.75

G3/18 41821

· SPACE SHUTTLE

AEROTHERMODYNAMIC DATA REPORT

JOHNSON SPACE CENTER HOUSTON, TEXAS

DATA MANagement services

SPACE DIVISION CHRYSLER CORPORATION

DMS-DR-2273 NASA CR-144,612 VOLUME 1 OF 5

RESULTS OF AN AERODYNAMIC INVESTIGATION OF A

SPACE SHUTTLE ORBITER/747 CARRIER FLIGHT TEST

CONFIGURATION TO DETERMINE SEPARATION CHARACTERISTICS

UTILIZING 0.0125-SCALE MODELS (48-0/AX1318I-1) IN

THE LTV 4 × 4-FOOT HIGH SPEED WIND TUNNEL (CA26)

Ъу

R. L. Gillins Shuttle Aerosciences Rockwell International Space Division

Prepared Under NASA Contract Number NAS9-13247

bу

Data Management Services Chrysler Corporation Space Division New Orleans, La. 70189

for

Engineering Analysis Division

Johnson Space Center National Aeronautics and Space Administration Houston, Texas

WIND TUNNEL TEST SPECIFICS:

Test Number: LTV HSWT 559

NASA Series Number: CA26

Model Number: 48-0 Orbiter/AX1318I-1 747

Test Dates: August 1 through August 15, 1975

Occupancy Hours:

FACILITY COORDINATOR:

Mr. Tom Baker Vought Systems Division Gas Dynamics Laboratories P. O. Box 1046 Grand Prairie, Texas 75050 Phone: (214) 266-4462

PROJECT ENGINEERS:

R. L. Gillins, V. Esparza Carl Ziegler

Gas Dynamics Laboratories Rockwell International

Space Division P. O. Box 1046

12214 Lakewood Blvd. Grand Prairie, Texas 75050

Mail Code ACO7 Phone: (214) 266-4462

Downey, Calif. 90241 Phone: (213) 922-4994

AERODYNAMICS ANALYSIS ENGINEERS:

P. H. Kief, A. L. Mena: C. R. Mullen L. Perez, D. Homan

Rockwell International The Boeing Company NASA/JSC

Space Division Orgn. B-8241 OL-21 Bldg. 13, EX33 12214 Lakewood Blvd. Seattle, Washington Houston, Texas Mail Code AC07 98007 77058

Downey, Calif. 90241 Phone: (206) 342-1112 Phone: (713)

Phone: (213) 922-4771 483~4701

DATA MANAGEMENT SERVICES:

Prepared by: Liaison--J. W. Ball, T. L. Mulkey, D. A. Sarver

Operations--G. W. Klug

Reviewed by: D. E. Poucher

J. J. Sdynn, Manager N. D. Kemp, Manager

Concurrence:

Data Operations Data Management Services

Chrysler Corporation Space Division assumes no responsibility for the data presented other than display characteristics.

RESULTS OF AN AERODYNAMIC INVESTIGATION OF A

SPACE SHUTTLE ORBITER/747 CARRIER FLIGHT TEST

CONFIGURATION TO DETERMINE SEPARATION CHARACTERISTICS

UTILIZING 0.0125-SCALE MODELS (48-0/AX13181-1) IN THE

LIV 4 x 4-FOOT HIGH SPEED WIND TUNNEL (CA26)

bу

R. L. Gillins Shuttle Aerosciences Rockwell International Space Division

ABSTRACT

This report presents results of tests conducted on a 0.0125-scale model of the VC70-000002 Space Shuttle Orbiter and a 0.0125-scale model of the 747 CAM configuration in the LTV 4 x 4-foot High Speed Wind Tunnel. Force and moment data were obtained for each vehicle separately at a Mach number of 0.6 and for each vehicle in proximity to the other at Mach numbers of 0.3, 0.5, 0.6 and 0.7.

The enclosed data present the proximity effects of each vehicle on the other at separation distances (from the mated configuration) ranging from 1.5 feet to 75 feet; 747 Carrier angles of attack from 0 degrees to 6 degrees and angles of sideslip of 0° and -5° were tested. The Orbiter was tested in proximity to the 747 at incidence angles of 4 degrees, 6 degrees and 8 degrees and angles of sideslip of 0 degrees and ±5 degrees. The Orbiter alone was tested at angles of attack from 0 degrees to 17 degrees at angles of sideslip of 0 degrees.

ABSTRACT (Concluded)

Model variables include orbiter elevon, aileron and body flap deflections, orbiter tailcone on and off, and 747 stabilizer and rudder deflections. The tests, designated CA26, were conducted from August 1 through August 15, 1975.

TABLE OF CONTENTS

	Page
ABSTRACT	iii
INDEX OF MODEL FIGURES	2
INDEX OF DATA FIGURES	3
NOMENCLATURE	24
REMARKS	28
CONFIGURATION INVESTIGATED	29
INSTRUMENTATION	32
TEST FACILITY DESCRIPTION	33
DATA REDUCTION	35
REFERENCES	36
TABLES	
I. TEST CONDITIONS	37
II. DATA SET/RUN NUMBER COLLATION SUMMARY	38
III. MODEL DIMENSIONAL DATA	
A. ORBITER MODEL	49
B. CARRIER MODEL	62
IV. CA26 DATA SET DESCRIPTION	76
FIGURES MODEL DATA	7 7 97
VOLUME 1 (FIGURES 4 - 83)	
VOLUME 2 (FIGURES 84 - 164)	
VOLUME 3 (FIGURES 165 - 240)	
APPENDIX - TABULATED SOURCE DATA	97
VOLUME 4 (ORBITER)	
VOLUME 5 (CARRIER)	

INDEX OF MODEL FIGURES

Figures	Title	Page
i	Axis systems	
	a. General	77
	b. Orbiter/747 Angular Relations	78
•	c. Orbiter/747 Flight Test Configuration Reference Dimensions	79
2.	Model Instrumentation Sketches	
	a. SSV Orbiter Configuration (VC70-000002)	80
	b. Orbiter Tail Cone TC4 (X3B)	81
	c. Elevon - Elli	82
	d. 747-100 Configuration (Model AX1318I-1)	83
	e. In-flight Spoiler Configuration	84
	f. Simulated Attach Structure AT $_{96}$ and AT $_{99}$ (AT $_{x}$)	85
	g. Simulated Attach Structure AT112 and AT113 (ATy)	86
	h. Orbiter Alone Installation Sketches	87
	i. Carrier and Separation Installation Sketches	88
	j. Orbiter Base Pressure Tap Locations	. 89
	k. Sting and Strut Pressure Tap Locations	90
	1. Orbiter/747 Moment Transfers (Mated)	91
3	Model Installation Photographs	
•	a. Orbiter Alone	92
	b. 747 Alone	93
	c. Front View, Orbiter Separating From 747	94
	d. Rear View, Orbiter Separating From 747	95

FIGURE NUMBER	TITLE	COEFFICIENT SCHEDULE	, PAGES
VOLUME			
4	ORBITER ISOLATED, ALPHA SWEEP, AFEOO1	· F	1-8
5	ORBITER ISOLATED, ALPHA SWEEP, AFEOO2	F	9-16
6	ORBITER ISOLATED, ALPHA SWEEP, AFEOO3	F	17-24
7	ORBITER ISOLATED, ALPHA SWEEP, AFEO04	F	25-32
8	ORBITER ISOLATED, ALPHA SWEEP, AFEOO5	F	33-40
. 9	ORBITER ISOLATED, ALPHA SWEEP, AFEOO6	F	41-48
10	ORBITER ISOLATED, DELZ SWEEP, AFEOO7	С	49-56
11	ORBITER ISOLATED, ALPHA SWEEP, AFEOO8	F	57-64
12	ORBITER ISOLATED, ALPHA SWEEP, AFEOO9	F	65-72
13	ORBITER ISOLATED, ALPHA SWEEP, AFEO10	F	73-80
14	ORBITER ISOLATED, ALPHA SWEEP, AFEO11	F	81-88
15	ORBITER ISOLATED, ALPHA SWEEP, AFEO12	F	89~96
16	ORBITER ISOLATED, ALPHA SWEEP, AFE013	F	97-10
17	ORBITER ISOLATED, ALPHA SWEEP, AFE014	G	105-11
18	ORBITER ISOLATED, ALPHA SWEEP, AFE015	G	113-12
19	ORBITER ISOLATED, ALPHA SWEEP, AFE131	G	121-12
20	ORBITER ISOLATED, ALPHA SWEEP, AFE132	G	129-13

FIGURE NUMBER	TITLE	COEFFICIENT SCHEDULE	PAGES
21	ORBITER ISOLATED, ALPHA SWEEP, AFE133	G '	137-144
22	ORBITER ISOLATED, ALPHA SWEEP, AFE134	F	145-152
- 23	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 0, IORB = 4, BETAC = 0, BETAO = 0, AFEO30	C .	153-160
24	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 0, IORB = 6, BETAC = 0, BETAO = 0, AFEO31	c ·	161-168
25 .	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 0, IORB = 6, BETAC = 0, BETAO = 0, AFEO32	С	169-176
26	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 0, IORB = 6, BETAC = 0, BETAO = 0, AFEO33	С	177-184
. 27	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 0, IORB = 8, BETAC = 0, BETAO = 0, AFEO34	·c	185-192
28	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 0, IORB = 4, BETAC = 0, BETAO = 5, AFEO 35	С .	193 – 200
29 ,	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 0, IORB = 6, BETAC = 0, BETAO = 5, AFEO36	· C	201–208
30	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 0, IORB = 8, BETAC = 0, BETAO = 5, AFEO37	С	209-216
31	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 0, IORB = 4, BETAC = 0, BETAO = 0, AFEO38	с.	217-224
32	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 0, IORB = 6, BETAC = 0, BETAO = 0, AFEO39	C	225-232

FIGURE NUMBER	TITLE	COEFFICIENT SCHEDULE	PAGES
33 _.	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 0, IORB = 8, BETAC = 0, BETAO = 0, AFEO40	С	233-240
34	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 4, BETAC = 0, BETAO = 0, AFEO41	С	241-248
35	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFEO42	C	249-256
36	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 4, BETAC = 0, BETAO = 0, AFEO 45	с .	257-264
37	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFEO46	С	265-272
38	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 8, BETAC = 0, BETAO = 0, AFEO47	С	273–280
39	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 4, BETAC = 0, BETAO = 5, AFEO48	С	281-288
40	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 5, AFEO49	С	289-296
41	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 8, BETAC = 0, BETAO = 5, AFEO50	С	297 - 304
42	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 4, BETAC = 0, BETAO = 0, AFEO51	С	305-312
43	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFEO52	С	313-320

ψı

FIGURE NUMBER	TITLE	COEFFICIENT SCHEDULE	PAGES
44	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFEO53	E	321-328
45	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFEO54	. · E	329–336
46	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFEO55	E .	337-344
47	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 5, AFEO56	. Е	345-352
48	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 5, AFEO57	E	353-360
49	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 5, AFEO58	Е	361-368
50	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFEO59	E	369-376
51	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFEO60	E	377-384
52	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFEO61	E	385-392
53	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFEO62.	D	393-400
54	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFEO63	. D	401-408

δ

FIGURE NUMBER	TITLE	COEFFICIENT SCHÉDULE	PAGES
55	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFEO64	D	409-416
56	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 5, AFEO65	D	· 417-424
57	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 5, AFEO66	D	425-432
58 .	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 5, AFEO67	D	433-440
59	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 4, BETAC = 0, BETAO = 0, AFEO68	· . c	441~448
60	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFEO 69	С	449–456
61	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 8, BETAC = 0, BETAO = 0, AFEO70	C	457–464
62	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 4, BETAC = 0, BETAO = 0, AFEO71	С	465-472
63	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFEO72	С	473-480
64	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 8, BETAC = 0, BETAO = 0, AFEO73	С	481-488
65	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 4, BETAC = 0, BETAO = 0, AFEO74	C	489-496

FIGURE NUMBER	TITLE	COEFFICIENT SCHEDULE	PAGES
66	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFEO75	С	497-504
67	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2 IORB = 8, BETAC = 0, BETAO = 0, AFEO76	·C	505~512
68	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFEO77	С	513-520
69	ORB. DATA, CAR. PROXIMITY, ALPHAC = 2, IORB = 6 BETAC=BETAO = 0, AILRON = -5, AFEO78	, C	521-528
70	ORB. DATA, CAR. PROXIMITY, ALPHAC = 2, IORB = 6 BETAC=BETAO = 0, RUDDER = 10, AFEO79	С	529-536
71	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 4, BETAC = -5, BETAO = -5, AFEO80	С	537-544
72	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = -5, BETAO = -5, AFEO81	С	545552
73	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 8, BETAC = -5, BETAO = -5, AFEO82	С	553-560
74	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = -5, BETAO = 0, AFEO83	· D	561–568
75	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = -5, BETAO = 0, AFEO84	D	569~576
76	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = -5, BETAO = 0, AFEO85	D	577~584

FIGURE NUMBER	TITLE	COEFFICIENT SCHEDULE	PAGES
NOTED EIK_	111112	OCHEDOLE	TAGEO
77	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = -5, BETAO = 0, AFEO86	. Е	585~592
78	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = -5, BETAO = 0, AFEO87	E	593-600
79	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = -5, BETAO = 0, AFEO88	E	601-608
80	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 4, IORB = 4, BETAC = 0, BETAO = 0, AFEO89	. С	609-616
81	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 4, IORB = 6, BETAC = 0, BETAO = 0, AFEO90	С	617624
82	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 4, IORB = 8, BETAC = 0, BETAO = 0, AFEO91	C	625-632
83 VOLUME	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 4, IORB = 4, BETAC = 0, BETAO = 5, AFEO92	С	633-640
84	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 4, IORB = 6, BETAC = 0, BETAO = 5, AFEO93	С	641-648
85	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 4, IORB = 8, BETAC = 0, BETAO = 5, AFEO94	C	649-656
86	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 4, IORB = 4, BETAC = 0, BETAO = 0, AFEO95	C	657664
87	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 4, IORB = 6, BETAC = 0, BETAO = 0, AFEO96	С	665672

9

FIGURE NUMBER	TITLE	COEFFICIENT SCHEDULE	PAGES
88	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 4, IORB = 8, BETAC = 0, BETAO = 0, AFEO97	c	673–680
. 89	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 4, .IORB = 4, BETAC = 0, BETAO = 0, AFEO98		681–688
90	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 4, IORB = 6, BETAC = 0, BETAO = 0, AFEO99	С	689-696
91	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 4, IORB = 8, BETAC = 0, BETAO = 0, AFE100	С	697-704
92	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 4, IORB = 4, BETAC = -5, BETAO = -5, AFE101	c ·	705-712
93	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 4, IORB = 6, BETAC = -5, BETAO = -5, AFE102	С	713-720
94	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 4 IORB = 8, BETAC = -5, BETAO = -5, AFE103	С	721-728
95	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 5.5, IORB = 6, BETAC = 0, BETAO = 0, AFE104	С	729-736
96	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 0, IORB = 4, BETAC = -5, BETAO = -5, AFE105	С	737–744
97	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 0, IORB = 6, BETAC = -5, BETAO = -5, AFE106	Ċ	745-752
98	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 0, IORB = 8, BETAC = -5, BETAO = -5, AFE107	C	753-760

FIGURE NUMBER	TITLE	COEFFICIENT SCHEDULE	PÁGES
99	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFE108	С	761 – 768
100	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 4, BETAC = 0, BETAO = 0, AFE109	C	769776
101	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFE110	С	777-784
102	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 8, BETAC = 0, BETAO = 0, AFE111	С	785 – 792
103	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFE112	D	793~800
104	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFE113	D	801-808
105 .	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFE114	D	809-816
106	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFE115	E	817-824
107	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFE116	E	825-832
108	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFE117	E	833–840
109	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2. IORB = 6, BETAC = 0, BETAO = 0, AFE118	С	8 4 1-848

_

FIGURE NUMBER	TITLE	COEFFICIENT SCHEDULE	PAGES
110	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, AFE119	С	849-856
111	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = -5, BETAO = -5, AFE120		857-864
112	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 4, IORB = 4, BETAC = 0, BETAO = 0, AFE121	С	865-872
113	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 4, IORB = 6, BETAC = 0, BETAO = 0, AFE122	С	873–880
114	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 4, IORB = 8, BETAC = 0, BETAO = 0, AFE123	C	881-888
115	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 0, IORB = 4, BETAC = 0, BETAO = 0, AFE124	С	889-896
116	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 0, IORB = 6, BETAC = 0, BETAO = 0, AFE125	С	897-904
117	ORB. DATA, CARRIER PROXIMITY, ALPHAC = 0, IORB = 8, BETAC = 0, BETAO = 0, AFE126	С	905-912
118	ORB. DATA, CAR. PROXIM., ALPHAC = 2, IORB =6, BETAC = 0, BETAO = 0, DELPHI = 7.5, AFE127	С	913-920
119	ORB. DATA, CAR. PROXIM., ALPHAC = 2, IORB =6, BETAC = 0, BETAO = 0, DELPHI = 7.5, AFE128	С	921-928
120	ORB. DATA, CAR. PROXIM., ALPHAC = 2, IORB =6, BETAC = 0, BETAO = 5, DELPHI = 7.5, AFE129	C	929-936

INDEX OF DATA FIGURES (Continued)

FIGURE		COEFFICIENT	, °
NUMBER	TITLE	SCHEDULE	PAGES
121	ORB. DATA, CAR. PROXIM., ALPHAC = 2, IORB = 6, BETAC = -5, BETAO = 0, DELPHI = 7.5, AFE130	С	937-944
122	CARRIER ISOLATED, RFE016	В	945-952
123	CARRIER ISOLATED, RFE017	В	953 – 960
124	CARRIER ISOLATED, RFE018	В	961-968
125	CARRIER ISOLATED, RFE019	В	969-976
126	CARRIER ISOLATED, RFEO20	В	977-984
127	CARRIER ISOLATED, RFE021	В	985-992
128	CARRIER ISOLATED, RFE022	В	993-1000
129	CARRIER ISOLATED, RFE023	В	1001-1008
130	CARRIER ISOLATED, DELZ SWEEP, RFEO24	С	1009-1016
131	CARRIER ISOLATED, DELX SWEEP, RFEO25	D	1017-1024
132	CARRIER ISOLATED, RFE026	В	1025-1032
. 133	CARRIER ISOLATED, RFE027	В	1033-1040
134	CARRIER ISOLATED, RFE028	В	1041-1048
135	CARRIER ISOLATED, RFE029	В	1049-1056
136	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 0, IORB = 4, BETAC = 0, BETAO = 0, RFEO30	С	1057-1064

FIGURE NUMBER	TITLE	COEFFICIENT SCHEDULE	PAGES
137	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 0, IORB = 6, BETAC = 0, BETAO = 0, RFEO31	С	1065-1072
138	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 0, IORB = 6, BETAC = 0, BETAO = 0, RFEO.32	C	1073-1080 -
139	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 0, IORB = 6, BETAC = 0, BETAO = 0, RFEO33	С	1081-1088
140	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 0, IORB = 8, BETAC = 0, BETAO = 0, RFEO34	С	1089-1096
141	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 0, IORB = 4, BETAC = 0, BETAO = 5, RFEO35	. с	1097~1104
142	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 0, IORB = 6, BETAC = 0, BETAO = 5, RFEO36	С	1105-1112
143	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 0, IORB = 8, BETAC = 0, BETAO = 5, RFEO37	C	1113-1120
144	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 0 IORB = 4, BETAC = 0, BETAO = 0, RFE038	С	1121-1128
145	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 0, IORB = 6, BETAC = 0, BETAO = 0, RFEO39	C	1129-1136
146	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 0, IORB = 8, BETAC = 0, BETAO = 0, RFEO40	С	1137-1144
147	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 4, BETAC = 0, BETAO = 0, RFEO41	С	1145-1152

FIGURE NUMBER	TITLE	COEFFICIENT SCHEDULE	PAGES
148	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, RFEO42	С	1153–1160
149	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 4, BETAC = 0, BETAO = 0, RFEO45	С	1161-1168
150	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, RFEO46	C	1169-1176
151	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 8, BETAC = 0, BETAO = 0, RFEO47	С	1177-1184
152	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, . IORB = 4, BETAC = 0, BETAO = 5, RFEO48	С	1185-1192
153	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 5, RFEO49	С	1193-1200
154	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 8, BETAC = 0, BETAO = 5, RFEO50	С	1201-1208
155	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 4, BETAC = 0, BETAO = 0, RFEO51	С	1209-1216
156	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, RFEO52	С	1217-1224
157	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, RFEO53	E	1225–1232
158	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, REFQ54	E	1233-1240

FIGURE NUMBER	TITLE	COEFFICIENT SCHEDULE	PAGES
159	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, RFE055	E	1241-1248
160	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 5, RFE056	E ,	1249-1256
161	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 5, RFE057	. Е	1257-1264
162	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 5, RFE058	E	1265-1272
163	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6. BETAC = 0. BETAO = 0. RFE059	E .	1273-1280
164	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6. BETAC = 0. BETAO = 0, REFO60.	E .	1281-1288
VOLUME 165	3 CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6. BETAC = 0. BETAO = 0, REFO61	Е	1289-1296
166	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6. BETAC = 0, BETAO = 0, REF062	D	1297-1304
167 [.]	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, REF063	. Д	1305-1312
168	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, REF064	D	1313-1320
169	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 5, RFEO65	D	1321-1328

16

FIGURE NUMBER	TITLE	COEFFICIENT SCHEDULE	PAGES
170	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0. BETAO = 5, RFE066	D	1329-1336
171	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 5, RFEO67	D -	1337-1344
172	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 4, BETAC = 0, BETAO = 0, RFE068	С	1345-1352
173	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, RFE069	· c	1353-1360
174	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 8, BETAC = 0, BETAO = 0, RFEO70	c ·	1361-1368
1,75	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 4, BETAC = 0, BETAO = 0, RFE071	С	1369-1376
176	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, RFEO72	С,	1377-1384
177	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 8, BETAC = 0, BETAO = 0, RFE073	C	1385-1392
178	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 4, BETAC = 0, BETAO = 0, RFE074	c ·	1393-1400
179	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, RFEO75	С	1401-1408
180	CARRIER DATA, ORB, PROXIMITY, ALPHAC = 2, IORB = 8, BETAC = 0, BETAO = 0, RFE076	С	1409-1416

FIGURE NUMBER	, TITLE ,	COEFFICIENT SCHEDULE	PAGES .
181	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, RFE077.	c ·	1417-1424
182	CAR. DATA, ORB. PROXIMITY, ALPHAC = 2, .IORB=6, BETAC=BETAO = 0, AILRON = -5, RFEO78	С	1425–1432
183	CAR. DATA, ORB. PROXIMITY, ALPHAC = 2, IORB=6, BETAC=BETAO = 0, RUDDER = 10, RFE079	С	1433-1440
184	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 4, BETAC = -5, BETAO = -5, RFEO80	C	1441-1448
185	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = -5, BETAO = -5, RFEO81	С	1449~1456
186	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 8, BETAC = -5, BETAO = -5, RFEO82	C	1457-1464
18 ⁷	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = -5, BETAO = 0, RFEO83	D	1465-1472
188	CARRIER DATA, ORB, PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = -5, BETAO = 0, RFE084	D	1473–1480
189	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = -5, BETAO = 0, RFE085	D	1481–1488
190	CARRIER DATA, ORB, PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = -5, BETAO = 0, RFE086	E	1489-1496
191	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = -5, BETAO = 0, RFEO87	E	1497–1504

FIGURE NUMBER	TITLE	COEFFICIENT SCHEDULE	PAGES
192	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = -5, BETAO = 0, RFE088	E	1505–1512
193	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 4, IORB = 4, BETAC = 0, BETAO = 0, RFE089	С	1513-1520
194	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 4, IORB = 6, BETAC = 0, BETAO = 0, RFE090	С	1521-1528
195	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 4, IORB = 8, BETAC = 0, BETAO = 0, RFE091	С	1529-1536
196	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 4; IORB = 4, BETAC = 0, BETAO = 5, RFE092	C	1537-1544
197	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 4, IORB = 6, BETAC = 0, BETAO = 5, RFE093	С	1545-1552
198	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 4, IORB = 8, BETAC = 0, BETAO = 5, RFE094	С	1553-1560
199	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 4, IORB = 4, BETAC = 0, BETAO = 0, RFEO95	С	1561-1568
200	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 4, IORB = 6, BETAC = 0, BETAO = 0, RFE096	С	1569-1576
201	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 4 IORB = 8, BETAC = 0, BETAO = 0, RFE097	c	1577–1584
202	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 4, IORB = 4, BETAC = 0, BETAO = 0, RFE098	С	1585-1592

FIGURE NUMBER	TITLE	COEFFICIENT SCHÉDULE	PAGES
203	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 4, IORB = 6, BETAC = 0, BETAO = 0, RFE099	С	1593-1600
204	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 4, IROB = 8, BETAC = 0, BETAO = 0, RFE100	C .	1601-1608
205	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 4, IORB = 4, BETAC = -5, BETAO = -5, RFE101	C.	1609-1616
206	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 4, IORB = 6. BETAC = -5. BETAO = -5. RFE102	· C	1617-1624
207	CARRIER DATA, ORB. PROXIMITY. ALPHAC = 4, IORB = 8, BETAC = -5, BETAO = -5, RFE103	C	1625-1632
208	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 5.5, IORB = 6, BETAC = 0, BETAO = 0, RFE104	С	1633-1640
209	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 0, IORB = 4, BETAC = -5, BETAO = -5, RFE105	С	1641-1648
210	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 0, IORB = 6, BETAC = -5, BETAO = -5, RFE106	С	1649-1656
211	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 0, IORB = 8, BETAC = -5, BETAO = -5, RFE107	С	1657-1664
212	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BATAC = 0, BETAO = 0, RFE108	. C -	1665-1672
213	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2 IORB = 4, BETAC = 0, BETAO = 0, RFE109	С	1673-1680 ·

FIGURE NUMBER		COEFFICIENT SCHEDULE	PAGES
214	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, RFE110	C .	1681-1688
215	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 8, BETAC = 0, BETAO = 0, RFE111	С	168,9–1696
216	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, RFE112	, р	1697-1704
217	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, REF113	D	1705-1712
218	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IQRB = 6, BETAC = 0, BETAO = 0, RFE114	D	1713-1720
219	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, RFE115	Е	1721-1728
220	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, RFE116	E .	1729-1736
221	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, RFE117	Е	1737-1744
222	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, RFE118	С	1745-1752
223	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, RFE119	C .	1753-1760
224	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 2; IORB = 6, BETAC = -5, BETAO = -5, RFE120	С	1761–1768

FIGURE NUMBER	TITLE	COEFFICIENT SCHEDULE	PAGES
225	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 4, IORB = 4, BETAC = 0, BETAO = 0, RFE121	С	1769-1776
226	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 4, IORB = 6, BETAC = 0, BETAC = 0, RFE122	c ~	1777-1784
227	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 4, .IORB = 8, BETAC = 0, BETAO = 0, RFE123	· c	1785-1792
228	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 0, IORB = 4, BETAC = 0, BETAO = 0, RFE124	С	1793-1800
229	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 0, IORB = 6, BETAC = 0, BETAO = 0, RFE125	C	1801-1808
230	CARRIER DATA, ORB. PROXIMITY, ALPHAC = 0, IORB = 8, BETAC = 0, BETAO = 0, RFE126	С	1809-1816
231	CAR. DATA, ORB. PROXIM., ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, DELPHI = 7.5, RFE127	С	1817-1824
232	CAR. DATA. ORB. PROXIM., ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 0, DELPHI = 7.5, RFE128	С	1825-1832
233	CAR. DATA, ORB. PROXIM., ALPHAC = 2, IORB = 6, BETAC = 0, BETAO = 5, DELPHI = 7.5, RFE129	Ċ	1833-1840
234	CAR. DATA, ORB. PROXIM., ALPHAC = 2, IORB = 6, BETAC = -5, BETAO = 0, DELPHI = 7.5, RFE130	; c	1841-1848

FIGURE NUMBER	TITLE	, ,	COEFFICIENT SCHEDULE	CONDITIONS VARYING	*PAGES
235	LAT-DIRECT AERO VS DELZ, ALPHA747 = 0.0		A	BETAO, BETAC	1849-1863
236	LAT-DIRECT AERO VS DELZ, ALPHA747 = 2.0	1	A	BETAO, BETAC	1864–1878
237	LAT-DIRECT AERO VS DELZ, ALPHA747 = 4.0		Α .	BETAO, BETAC	1879-1893
238	LAT-DIRECT AERO VS DELZ, ALPHA747 = 0.0, DELBETA = 5.0		Α .	BETAO, BETAC	1894-1908
239	LAT-DIRECT AERO VS DELZ. ALPHA747 = 2.0, DELBETA = 5.0	•	A	BETAO, BETAC	1909-1923
240	LAT-DIRECT AERO VS DELZ. ALPHA747 = 4.0, DELBETA = 5.0		. А	BETAO, BETAC	1924-1938
COEFFIC	IENT SCHEDULE:				
(A)	CY, CYN, CBL, CPS1, CPS2, CYB, CYNB, CBLB, DCPSB versus DZ		(E) CN, CLM, CD versus	CA, CY, CYN; CBL,	CL,
(B)	CN, CLM, CA, CY, CYN, CBL, CL, CD versus ALPHAC		(F) CN, CLM, CD versus	CA, CY, CYN, CBL, S ALPHAO	CL,
(C)	CN, CLM, CA, CY, CYN, CBL, CL, CD versus DZ		(G). CN, CLM, CD versus	CA, CY, CYN, CBL, INCID	CL,
(D)	CN, CLM, CA, CY, CYN, CBL, CL, CD versus DX				

NOMENCLATURE General

SYMBOL	PLOT SYMBOL	DEFINITION
a		speed of sound; m/sec, ft/sec
c_{p}	CP	pressure coefficient; $(p_1 - p_{\infty})/q$
М	MACH	Mach number; V/a
р		pressure; N/m ² , psf
đ	Q(NSM) Q(PSF)	dynamic pressure; 1/2 pV2, N/m2, psf
RN/L	RN/L	unit Reynolds number; per m, per ft
V		velocity; m/sec, ft/sec
α	ALPHA	angle of attack, degrees
β	BETA	angle of sideslip, degrees
ψ	PSI	angle of yaw, degrees
ϕ	PHI .	angle of roll; degrees
Þ		mess density; kg/m ³ , slugs/ft ³
	Refe	erence & C.G. Definitions
Ab.	,	base area; m ² , ft ²
Ъ	BREF	wing span or reference span; m, ft
c.g.		denter of gravity
ℓ _{RÈF} ē	LREF	reference length or wing mean aerodynamic chord; m, ft
S	SREF	wing area or reference area; m^2 , ft^2
	MRP	moment reference point
	XMRP .	moment reference point on X axis
	YM RP	moment reference point on Y axis
	ZMRP	moment reference point on Z axis
SUBSCRIPTS b 1 s t w		base local static conditions total conditions free stream wing

NOMENCLATURE (Continued)

Body-Axis System

SYMBOL	PLOT SYMBOL	DEFINITION
c^{M}	CN	normal-force coefficient; normal force qS
CA	CA	axial-force coefficient; axial force qS
$c_{\underline{Y}}$	CY	side-force coefficient; side force qS
$^{\mathrm{C}}\mathrm{A}_{\mathrm{b}}$	CAB	base-force coefficient; base force qS - $A_b(p_b-p_{\omega})/qS$
$\mathbf{c_{A_f}}$	CAF	forebody axial force coefficient, $C_{\mbox{\scriptsize A}}$ - $C_{\mbox{\scriptsize Ab}}$
C _m	CLM	pitching-moment coefficient; pitching moment $qs \ell_{REF}$
c_n	CYN	yawing-moment coefficient; yawing moment qSb
c _L	CBL	rolling-moment coefficient; rolling moment
•		Stability-Axis System
$\mathtt{c}^{\mathtt{r}}$	CL	lift coefficient; $\frac{\text{lift}}{\text{qS}}$
$C^{\mathbf{D}}$	CD	drag coefficient; drag
c_{D_D}	CDB	base-drag coefficient; base drag
$\mathbf{c}_{\mathbf{D_{f}}}$	CDF	forebody drag coefficient; c_{D} - $c_{D_{b}}$
$\mathtt{C}^{\mathbf{X}}$	CY	side-force coefficient; side force qS
$C_{\mathbf{m}}$	CLM	pitching-moment coefficient; pitching moment qS/REF
^C n	CLN	yawing-moment coefficient; yaving moment
$^{\mathrm{c}}\!\ell$	CSL	rolling-moment coefficient; rolling moment
r/d	L/D	lift-to-drag ratio; $c_{ m I}/c_{ m D}$
$\mathrm{L/D_f}$	L/DF	lift to forebody drag ratio; $c_{\rm I}/c_{\rm D_{\rm f}}$

NOMENCLATURE (Continued)

SYMBOL	PLOT SYMBOL	DEFINITION
BSTA		Longitudinal carrier station, in.
BWL		Vertical carrier station, in.
BL		Lateral carrier station, in.
δà	AILRON	Orbiter aileron deflection angle, $\delta_{a} = \frac{\delta_{eL} - \delta_{eR}}{2}, \text{ degrees}$
$\delta_{ m BF}$	BDFLAP	Orbiter body flap surface deflection angle, positive deflection trailing edge down, degrees
δe	ELEVON	Orbiter elevon surface deflection angle, positive deflection trailing edge down, degrees
δr	RUDDĒR	747 rudder surface deflection angle, positive deflection trailing edge to the left, degrees
$\delta_{ extsf{S}}$	STAB	747 stabilizer surface deflection angle, positive deflection trailing edge down, degrees
$^{\text{C}}_{\text{y}_{\beta}}$	CAB	Side force coefficient due to beta
с _{ув} .c _{nв}	CANB	Yawing moment coefficient due to beta
$c_{\ell_{\beta}}$	CBLB	Rolling moment coefficient due to beta
$\Delta c_{P_{S_{\beta}}}$	DCPSB	Differential right hand and left hand strut pressure coefficient due to beta
		ORBITER
$c_{P_{B1}}$	CPB1	Orbiter (tail cone off) base pressure coefficient, l
$c_{\mathrm{P}_{\mathrm{B2}}}$	CPB2	Orbiter (tail cone off) base pressure coefficient, 2
c _{PB3}	CPB3	Orbiter (tail cone off) base pressure coefficient, 3

NOMENCLATURE (Concluded)

SYMBOL	PLOT SYMBOL	DEFINITION
$^{\mathrm{CP}}$ CO	CPCO	Orbiter balance cavity pressure coefficient
$c_{\mathtt{P}_{\mathtt{S1}}}$	CPS1	Orbiter strut L. H. side pressure coefficient
$c_{P_{\$2}}$	CPS2	Orbiter strut R. H. side pressure coefficient
c_{PCC}	GPCC	747 cavity pressure coefficient
$c_{\mathtt{PSB1}}$	CPSB1	747 upper forward sting cavity pressure coefficient
C _{PSB2}	CPSB2	747 upper center sting cavity pressure coefficient
$c_{P_{SB3}}$	CPSB3	747 upper aft sting cavity exit pressure coefficient
		SEPARATION PARAMETERS
Δχ	DELX	Orbiter longitudinal displacement from mated position, positive aft, feet
Δу	DELY	Orbiter lateral displacement from mated position, positive right, feet
Δz	DELZ	Orbiter vertical displacement from mated position, positive up, feet
Δφ	DPHI DELPHI	Incremental roll angle, Orbiter FRP, degrees
i _O	IORB	Orbiter incidence angle, orbiter FRL to 747 FRL ($i_0 = \alpha_0 - \alpha_c$), degrees
	INCID	Orbiter incidence angle (accounts for tunnel flow angularity variation from tunnel ξ to tunnel wall) $i_0 = \alpha_0 - \alpha_c - \Delta Z(0059)$, degrees.
α_{O}	ALPHAO	Orbiter angle of attack (tunnel flow angularity from tunnel & to tunnel wall not applied), degrees
$\alpha_{\mathbf{c}}$	ALPHAC	Carrier FRL angle of attack, degrees
Δβ	DELBETA	Incremental sideslip angle, orbiter to 747 FRL, degrees

REMARKS

The model component surface deflection angles called out in the run summary are nominal values. The actual angles tested are outlined below.

•	Nominal Nominal	Actual
Orbiter Elevon:	0° +5° +10°	0° +5.0° +9.8°
Orbiter Aileron: $(^{\delta}_{e} = 5, ^{\delta}_{a} = -5)$ 747 Stabilizer:	0°/10° -1° +3° +5°	0°/+9.8° -0.75° 3.27°
747 Rudder:	+10°	5.32° +10.7°

During the early separation $\triangle z$ sweep runs, it was noted that for $\triangle z$ in the 0 to 15 foot range, the coefficient polars had different characteristics for $\triangle z$ decreasing than for $\triangle z$ increasing. Subsequent pitch/pause data runs demonstrated that there was a proximity hysterisis effect. All runs thereafter were made with pitch/pause points in close proximity and constant sweep beyond 10 feet.

CONFIGURATIONS INVESTIGATED

The orbiter model, 48-0, was an 0.0125-scale representation of the . Space Shuttle Orbiter VC70-000002 lines, illustrated in figure 2a. The Orbiter model was tested both with and without a tail cone fairing which covered the MPS nozzles and the OMS pod base as shown in figure 2b. Orbiter alone runs were made with a base sting mount, the sting replacing the upper MPS nozzle, figure 2h. The following orbiter configurations were tested:

$$O_2 = B_{64} C_{14} F_{14} E_{44} M_{18} N_{94} N_{92} W_{116}$$

$$O_4 = B_{64} C_{14} F_{14} E_{44} M_{18} N_{105} N_{92} R_{18} V_{23} W_{116} \text{ (upper MPS nozzle off)}$$

$$O_6 = B_{64} C_{14} F_{14} E_{44} M_{18} W_{116} TC_4$$

where:

Component	Description
В64	Orbiter fuselage per Rockwell lines VC70-000002, Model drawing SS-A01377
C ₁₄	Orbiter canopy per Rockwell lines VC70-000002, Model drawing SS-A01377
$\mathbb{E}_{l_{\downarrow}l_{\downarrow}}$	Orbiter full span, unswept hingeline, 6-inch gapped elevons per Rockwell lines VC70-000002, Model drawing SS-A01377
F ₁ 14	Orbiter body flap per Rockwell lines VC70-000002, Model drawing SS-A01377
M ₁₈	Orbiter OMS/RCS pods per Rockwell lines VC70-000002, Model drawing SS-A01377
_N 92	Orbiter OMS engine nozzles per Rockwell lines VC70-000002, Model drawing SS-A01377
N94	Orbiter main engine nozzles per Rockwell lines VC70-00002, Model drawing SS-A01377
N ₁₀₅	Same as N _{O4} with upper nozzle removed.

CONFIGURATIONS INVESTIGATED - (Continued)

Component	Description
R ₁₈	Orbiter rudder per Rockwell lines VC70-000002, Model drawing SS-A01377
V ₂₃	Orbite: vertical tail per Rockwell lines VC70-000002, Model frawing SS-A01377
^W 116	Orbiter double delta wing per Rockwell lines VC70-000002, Model drawing SS-A01377
TC ₄ .	Orbiter tail cone fairing which covers the MPS nozzles and the OMS nozzles and base

Orbiter elevon, aileron and body flap deflection angles were varied. Configuration O_{\downarrow_1} was the sting mounted orbiter configuration, and O_2 and O_6 were blade mounted configurations.

Orbiter-to-carrier attach structure was simulated. These included faired and unfaired strut members as identified below and illustrated in figures 2f and 2g:

$$AT_y = AT_{112} + AT_{113}$$

 $AT_x = AT_{96} + AT_{99}$

where:

Component	Description		
AT ₁₁₂	Fwd: attach structure, short fairing, io = 4°		
^{AT} 113	Aft attach structure, unfaired draglink, other members faired		
4T96	Fwd attach structure, faired, $i_0 = 4^{\circ}$		
VT ₉₅	Aft attach structure, faired		

CONFIGURATIONS INVESTIGATED - (Concluded)

The carrier model, AX1318I-1, was an 0.0125-scale representation of the Boeing 747-100 aircraft with surface contours built to represent the 747 under loads it would experience with a 600,000 pound gross weight flying at Mach 0.86 at an altitude of 5,000 feet. The CAM (Carrier Aircraft Modification) kit tested on the model included 200 square foot tip fins on the horizontal tail panels and simulated orbiter-to-carrier attach structure. In-flight speed brakes were deployed for most runs in the configuration shown in figure 2e. Stabilizer and rudder deflections were varied during the test. The carrier was tested both isolated and in proximity to the orbiter. Configurations investigated were:

 $747/1 = B_{27.8} \text{ W44.1 V9.1 H15.6 M25 M26 N57 N58 $1-12 T14 AU()}$ $747/4 = \text{Same as } 747/1 \text{ except no H}_{15.6}$

where:

Component	Description	ORIGINAL PAGE IS
B ₂₇ .8	Fuselage	ORIGINAL PAGE TO OF POOR QUALITY
W44.1	Wing	
V 9.1	Vertical Tail	
H ₁₅	Horizontal tail, basic	
#15.6 · ·	Horizontal tail, with	200 ft. 2 tip fins
i4 ₂₅	Inboard nacelle struts	
M26	Outboard nacelle strut	s
N57	Inboard nacelles	
N58	Outboard nacelles	
S ₁₋₁₂	Spoiler Panels	
T <u>1</u> 4 .	Flap track fairings	

INSTRUMENTATION

Force instrumentation consisted of a six-component internal force balance mounted in each model. The orbiter balance measured orbiter forces and the carrier balance measured carrier data.

Pressure instrumentation for the orbiter consisted of 3 base pressure orifices (tailcone off only) and 1 balance cavity orifice. Pressure instrumentation for the carrier consisted of 1 balance cavity orifice and 3 sting/boattail cavity pressure orifices as shown below. Also, see figure 2k. All pressures were measured by individual pressure transducers.

	Pressure
Orbiter pressures:	PC_{O}
	PB1
	PB ₂
•	PB3
Carrier pressures:	PCC
	PSBl
	PSB2
	PSB3
Strut pressures:	PS1
	PS2
Tailcone pressure:	PTC

TEST FACILITY DESCRIPTION

The Vought Aeronautics Company High Speed Wind Tunnel is a blowdown-to-atmosphere, transonic-supersonic adjustable Mach number facility.

Six tanks with a total of 28,000 cubic feet air storage capacity receive the reheated air until a maximum storage pressure of 600 psia is reached. The compressor discharge is then vented to atmosphere until the tank pressure is reduced below 400 psia. An alumina pebble bed in each tank absorbs heat during pump up and dissipates heat during air discharge to maintain a near constant supply temperature.

The time required to recharge the air storage tanks following a run varies from 15 to 45 minutes depending upon the final tank pressure. A nominal tank pressure increase rate is 9 psi per minute.

Mach number control at the supersonic test section velocities is accomplished with an adjustable contour nozzle. Two flexible stainless steel plates, 3/4-inch thick, 48 inches wide, and 453 inches long, are contoured to produce a uniform test section flow using 28 nozzle jacks on each plate spaced at 10- to 18-inch intervals. During nozzle changes the plates are hydraulically extended to permit positioning of the threaded nozzle jacks. After the nozzle jacks are properly set, the plates are retracted against the nozzle jack stops. Microswitches on the stops indicate plate contact. Strain indicators at each jack position protect the nozzle plate from excessive stresses.

During each run the hydraulic cylinders are charged with high pressure to hold each plate support rigidly against the nozzle jack stops.

TEST FACILITY DESCRIPTION (Concluded)

For transonic operation the supersonic diffuser is removed and the transonic test section and ejector section are set in place. The model cart is relocated downstream approximately 11 feet into the transonic test section. Test section window locations relative to the model cart are the same for either section. Conversion time is nominally 2 hours.

The transonic test section has normal hole perforated walls with 22.5% porosity. Test section size is nominal 4 x 4 feet with each side wall converged 25 minutes. Subsonic Mach number control is accomplished with hydraulic servo-actuated choking flaps downstream of the test section. A control system maintains the preset ratio of static to total pressure during each run by causing small changes in choking area. Above Mach number 0.9, approximately, the choking flaps are fully open and Mach control is switched to a set of plenum chamber bleed control flaps. These hydraulically-actuated, servo-controlled "Mach flaps" remove test section air through the porous walls by ejection pumping of the plenum chamber. A maximum Mach number of 1.15 can be attained with a sonic nozzle. To obtain Mach numbers greater than 1.5, it is necessary to contour the nozzle plates in addition to utilizing plenum pumping. A maximum Mach number of 1.8 is possible in the transonic test section, although the supersonic test section is recommended for Mach numbers of 1.4 and greater.

DATA REDUCTION

Force and moment data were reduced in both body and stability axes using standard data reduction procedures. Coefficient data for each vehicle were computed based on their respective reference dimensions. Separation distances Δx , Δy , and Δz were computed in the carrier body axis system and represent the movement of the orbiter from the base (mated) position.

	Carri	er	Orbit	er	
Symbol	Model Scale	Full Scale	Model Scale	Full Scale	Description
s	0.859	5500 .	0.420	2690	reference area, ft.2
, b	29.351	2348.04	11.709	936.68	reference span, in.
Ċ.	4.097	327.78	5.935	474.81	reference MAC, in.
MRC					moment reference center, in.
X_c or X_o	16.749	1339.90	13.862	1109	
Yc or Yo	0.0	0.0	0.0	0.0	
Zc or Zo	2.385	190.75	4.687	375	•

No base or cavity pressure corrections were applied to the data.

Wind tunnel data were interpolated versus angle of attack, angle of sideslip, orbiter incidence angle and separation distances Δx , Δy and Δz . Both basic and interpolated data are presented in this report.

REFERENCES

SD75-SH-0054, "Pretest Information for a Test of an 0.0125-scale Model 48-0 orbiter/747 Flight Test Configuration in the LTV 4 x 4-foot High Speed Wind Tunnel (CA23)," February 17, 1975

VC70-000002, "Design Geometry - Orbiter," June 10, 1974

SS-A01377, "Orbiter Assembly - #48-0, 0.0125-Scale SSV, Ferry/Separation,"
August 9, 1974

SS-A01378, "Model Installation - 0.0125-Scale SSV Orbiter, Ferry/Separation (LAV)"

SS-A01452, "Tail Cone Assy - 0.0125-Scale SSV Orbiter, #48-0"

SS-A01559, "Fwd and Aft attach Supports, 48-0, 0.0125-Scale SSV Orbiter, March 11, 1975

W-1132SA, "Sting Assy - 48-0 SSV, Carrier, Ferry/Separation," August 9, 1974

W-1133SA "Sting Assy - Orbiter Ferry Separation, #48-0," January 13, 1975
The Beeing Company - 747 Carrier

747-MD-461, "General Arrangement - 747 Space Shuttle Orbiter Carrier

Aircraft (Piggyback Configuration)," July 15, 1974

747-MD-654, "Forward Support Structure Instl. -747 CAM"

747-MD-658, "Support Structure Instl. -Aft"

AX 1318I-1, "747 Model Drawings 0.0125-Scale."

65C13609, "Model Assy AX1318I-1"

65-89588, "Body Lines AX1318I-1"

TABLE I.

EST : CA26		TABLE	d. •	DATE : Post Test
		TEST COI	אחודוחוג	
		TEST COI	ADI HONS	
		•		
	REY	NOLDS NUMBER	DYNAMIC PRESSURE	STAGNATION TEMPERATUR
MACH NUMBER	(р	er unit length)	PSF	(degrees Fahrenheit)
0.3	2.6 x	: 10 ⁶ /ft	200	119
0.5		: 10 ⁶ /ft	445	115
0.6		.9 x 10 ⁶ /ft	570 - 6 2 5	89 - 132
. 0.7	5.1 x	10 ⁶ /ft	720	96
-				
•			<u> </u>	
			'	<u> </u>
BALANCE UTILIZEI			1.0-inch MK XIV	
BALANCE UTILIZEI	·	CAPAC	TY:	
	, C	rbiter	Carrier	Accuracy
	NF	800 1ъ.	1000 lb.	<u> </u>
	\$F	400 lb.	800 1ъ.	0.2%
	AF	100 16.	200 1ъ	. 0.2%
•	PM		1000 inlb.	0.2%
	RM	250 inlb.	hoo inlb.	0.2%
	YM		1200 inlb.	0.2%
COMMENTS:				•
			•	
_		•		
			,	•

ၾ

NASA-MSFC-MAF

SEE PAGE 46 FOR COEFFICIENT SCHEDULE

^{*} STING MOUNTED

SCHEDULES

TABLE II (Continued) TEST: DATE: CAZ6 POST TEST DATA SET/RUN NUMBER COLLATION SUMMARY CARRIER ORBITER MACH NUMBERS DATA SET CONFIGURATION IDENTIFIER a B De Or $\delta_{\rm e}$ $\delta_{\rm gr}$ $\delta_{\rm q}$ $\Delta \times$ ΔY Δz α_{o} βο ϕ_{o} 0.6 RFEOIL 747/1 ATY 5 5 0 25.1 5 0 24 SSO 00 18 21 ٥ 0 27 0 Ж С 2 28 NUMBERS 5 24 0 25.2 ZS ٥ 0 25.3 747/1 26 0 0 19 00 0 28 0 20 29 747/4 22 67 75 76 COEFFICIENTS IDVAR(1) IDVAR(2) NDV $\alpha \circ P \beta$ x = 0 +0 40 feet

TÉST: (LAZ6				DAT.	A SE	T/RU	N NUI	MBER	COLI	ATIO	N SUMM	IARÝ		DATE	: P	05T	TES	72	
DATA SET					RIER	,				ORBIT				,,,,,,,,,,,		1	MACHN	IUMBERS	······	
IDÈNTIFIER	CONFIC	URATION	a	β	$\delta_{\mathcal{S}_{-}}$	δr	$\delta_{ m e}$	δgF	δ_{α}	Δx	ΔY	ΔZ	160	βο	$\phi_{\mathcal{O}}$	0.3	D.5	0.6	0.7	
R/AFF030	747/1	ATY ØZSI	0	0	5	0	5	-117	0	0	0	/3\	4	0	0			30.1	,	
31.						,						32	6	,				30.2		
· 3Z	<u> </u>	`							,			3.	6	. ,		, _ ,		30.3	1	
<i>3</i> 3	·				,							33	6					34.2	,	
34		'		-		,						3	8					31		
35		ı	0	0	5	Õ	5	-11:7	Ò	0	0	/3\	4	5	0	· · · · ·		33.1		3,1
36	· · · ·											3	6					33.2		15
37	·				,	,						3	8					34.1		RUN
38		-	0	0	-1	0	5	-11.7	0	0	0	3	4	0	0		,	35.1	J	N C W B
· 39												3	9					35.2		808
40												3'	8					36		<u>د</u> ا
41.			2	0	-1	0	5	-11.7	0	0	0	34	4	0	0			37.1		
42						:						33	6	•				37.2		
43	NO DAT	A AVAILA	BI	=								3₹	ප	-		<u> </u>	Magazinamor/	.38.1		
44		A AVAIL A	9	•	}							33	8	>				38.2		}
45			2	1	5	0	5	-11.7	0	0	0	/3	4	0	0	,		39.1	,	
46									, '			/3\	9	1		44	43	39,2	42	
. 47												3	8	,		-		40.1		
1 , 7	1	3 19		,	25 ·		31		37		43	49	,	55		61 ´		67	7	s 76
التثاليا	لمديي		A		سيا		پيد	OEFFI	LL	7	سل	ىلىد	L.L.i.	11.		نينا	AR(1),	IDVA	R(2)	7DV
, a OR	р =	S DZ IN	Cr	69:	SIV	3 , r	ره ر	aus	es.		<u>.</u>	1 3 4				ي رو	<u> جاڻا د</u>	paus paus	322	401
, SÇH€DU	LES <u>{</u>	32 VS 9	ڍ٧	20	211	37	у б-	han.	292			437.	4) 7	220	, 200		7		HEEC H	

A DZ increasing or decreasing with pauses NASA-MSFC-MAF

TABLE II (Continued)

rest:	CA26] · 		DAT	A SET	ſ/RU	N NUI				4 SUMM	IARY		DATE	Post	TES	T	<u> </u>
DATA SET	CONFIGURATION	_		RIER					ORBIT		· · · · · · · · · · · · · · · · · · ·		-		MACH	NUMBERS		•
IDENTIFIER		α	β	δ <u>a</u>	$\delta_{\rm r}$	$\delta_{ m e}$	OBE	δ_{α}	Δx	ΔΥ	Δz	io	βο	ϕ_{O}		0.6		4
VAFE048	747/1ATY 0251	2	0	5	0	5	0	0.	0	0	[3]	4	5	0		41.1		
49					<u> </u>	<u> </u>			<u></u>		3	6				41.2		
50		<u> </u>									3	8				40.2		1
51	747/1 ATX 0251	2	0	5	0	5	0	0	0	0	[3]	4	0	0		45.1		1
52											3	6				45.2		
53	747/1 ATY 0251	2	0	ท	0	5	٥	0	0	4	0	6	0	0		46.1		
54	•										15		ļ			46.2		
55											60					46.3		
56		2	0	v	0	N	0	0	٥	4	0	6	5	٥		47.1		
57											15					47.2		
<i>5</i> 8											60					47.3]
<i>5</i> 9		Z	0	5	0	5	0	0	10	4	0	6	0	0		48.1		
60									•		15					48.2		
61											60					48.3		
62		2	0	5	0	IJ	0	0	/5\	0	0	و	0	0		49.1		
63											15					49.2		
64		-							,		60					49.3		
44	,								,									l
	7 13 19	·	<u></u>	25	<u> </u>	31		37	<u> </u>	43	49	<u> </u>	55	<i>t</i>	61	67	-	75
النبلني			لب						بنب	لبنا	ىلب		بلب		ببيب	1,544	<u>ل</u> ب	
α OR SCHEDU	·	10	40	10	fee	t	EFFI	CIEN	TS		5	∇X	* O	40 2	O feet	IDVAR	(2)	NI ·

	r			
•	٠	-	-	
ſ	١		3	

TABLE II (Continued)

TEST:	CAZ6			DAT	4 SET	ſ∕RU	N NUI	MBER	COLL	_ATI01	v SUMM	IARY		DATE	; P	DST	TEST		
DATA SET			CAR	RIER			··		ORBIT	ER					T	MACHN	UMBERS		_
IDENTIFIER	CONFIGURATION	а	β	$\delta_{m{A}}$	δ_{τ}	$\delta_{ m e}$	δ_{RF}	δα	Δx	ΔY	∆z	lo	βo	ϕ_{0}			0.6		
R/AFE065	741/1 ATY 0251	2	0	5	0	5	0	0	5	0	0	0	5	0			50.1		
66											15		<u></u>		<u> </u>		50.2		
. 67	•										60		ļ <u> </u>		<u> </u>	<u> </u>	50.3		İ
68		2	0	5	0	0	16.3	0	0	0	3	4	0	0		<u> </u>	51.1		
6 9.											<u> </u>	6			<u> </u>	<u> </u>	51.2		
70	•											8			<u> </u>	ļ	52		
71	•	2	0	IJ	0	0	5	0	0	٥	3	4	0	0			53.1		
72												6			<u> </u>		53.2		2
73	•											8					54		0
74		12	0	W	٥	0	0	0	0	0	3	4	0	0			55.1		ו ניי
75												6				<u> </u>	55.2		ľ
76												8					56		
77		Z	0	5	0	10	0	0	0	٥	3	6	0	0			57]	
78		12	0	5	0	5	0	-5	0	0	3	6	0	0	<u></u>		58		l
79		Z	0	5	10	5	0	٥	0	0	3	6	0	0			59		ĺ
80		2	-5	5	0	5	0	0	0	0	3	4	-5	0			60.1		
81												6	<u> </u>			<u> </u>	60.2		
82												8			<u> </u>		61		L
,	7 13 19			25		31		37		43	49)	55		61		67	7	5
41111		1.1	<u> </u>		1.1.1		OEFF:		IIII NTS	111			11.	1111	ID\	/AR(1)	IDVAR (2) 1	ND
a OR SCHEDI	•									-							NACA MC		<u>. </u>

. . . .

	•		
•	۰	•	

TEST:	CAZ6			DAT	A SE			·	ontin		n Sumh	IADV		DATE	: Pos	T TES		
DATA SET		_		RIER	A 3L	1780	N NO		ORBIT		IN JUMN	1 A K				CH NUMBERS		
IDENTIFIER	CONFIGURATION	а	β	Os	δr	$\delta_{ m e}$	δer		Δx	ΔY	Δz	160	βο	φο		0.6		Ţ
R/AFE083	747/1 ATY \$251	2	-5	5	٥	5	0	0	15	0	0	6	0	0		62.1		
84	,										15					62.2	•	j
9	• ,										60					62.3		
		2	-5	5	0	5	0	0	0	4	0	6	0	0		్రవే.1		
27											15					63.2	•	
88	,										60					63.3		
89		4	0	5	0	5	0	၁	0	0	3	4	0	0		64.1		ı
90				_								ی				64.2		
91												8				65		
92	,	4	0	15	0	5	0	0	0	0	3	4	5	0		66.1		
93												9				66.2		
94]												8				67		l
95		4	0	- 1	0	5	0	0	0	U	3	4	0	0		68.1		
96												9				68.Z		
97												8				69		
98		4	0	15	0	0	0	0	0	0	3	4	0	٥		70.1		
99												6				70.2		
100												8				71		
7	13 '19			25	· · · · · · · · · · · · · · · · · · ·	3 1	44.	37	***************************************	43	49	, 66 to 10 and	\$5		£1	<u>5</u> 7	7	5
ع OR	8		لت				EFFI		TS	<u> </u>		1-1-1-	111		IDVAR(I)	IDVAR((2) 1	-6
SCHEDU	,		N														V-100	, ,

TEA DIT TO	T T	(Continued)	
TABLE	11	(Continued)	

TEST: (CA26 .				4 SET	r/RU	N NUI				u SUMM	IARY		DATE:	POST		<u>T.</u>
DATA SET	CONFIGURATION	Contract		RIER		 	·		ORBIT			-		- Company	MACH	NUMBERS	-
Carrier September 1997 Comment			_	Sa		$\delta_{ m e}$	δ _B F	00	Δx	ΔΥ	Δz	10	βο	φ _O		0.6	
MAFE/OI	747/1 ATY ØZSI	4	-5	5	0	5	0	0	0	0	3	4	<u>-s</u>			72.1	
102								<u> </u>		<u> </u>	<u> </u>	6	ļ			72.2	
103									<u>'</u>	ļ	<u> </u>	8				73	
104		5.5	0	5	0	5	0	٥	0	0	3	6	0	0		74	
105		٥	-5	5	٥	5	0	0	0	0	3	4	-5	0		75.1	
106	•											6				75.2	
107						<u> </u>						8				76	
108	747/1 ATY 0651	2	0	5	0	5	-11.7	0	0	0	3	_ ص	0	0		77	
109		2	٥	5	0	0	-11.7	0	0	0	3	4	0	0		78.1	
							·					0			,	78.2	
						·						8				79	
112		Z	0	ผ	0	0	-11.7	0	5	0	0	6	0	٥		81.1	
113											15					81.2	$\neg \neg$
114											90					81.3	
IIS		2	0	ผ	0	0	-11.7	0	0	4	0	6	0			82.1	
116											15					82.2	
117							·				60					82.3	
. '	· · · · · · · · · · · · · · · · · · ·																
1 7	13 19		الحبيب :	25		31	See	37		43	49		55	·	61	67	75
البيليم				<u> </u>		با	OEFFI	111	TS	<u></u>	بليد		111		IDVAR(1)	IDVAR	
& OR SCHEDU	•								 ·	•							

SCHEDULES

TABLE II (Continued) TEST: CAZG DATE: POST TEST DATA SET/RUN NUMBER COLLATION SUMMARY CARRIER DATA SET ORBITER MACH NUMBERS. CONFIGURATION IDENTIFIER a B DA $\delta_{\rm r}$ $\delta_{\rm e}$ $\delta_{\rm gr}$ $\delta_{\rm q}$ Δx ΔY Δz βο ϕ_{α} 0.6 R/AFE118 747/1 ATY \$651 1-11.7 /3` 0 0 0 83 \circ 0 0 119 0 0 1-117 84 10 0 0 6 \mathcal{O} 0 120 -5 5 0 85 \circ 5 17.1 0 -11.7 <u> 3\</u> \Box 122 86.2 6 123 87 124 00 /3\ Δ 1-11.71 0 88.1 Š 125 6 88.2 SUMBERS 126 89 127 /3` 20 \Diamond -11.77 5 \bigcirc 0 7.5 90 0 747/1 ATY 0251 20 128 5 0 0 7.5 91 0 \circ 0 0 20 129 5 0 0 0 0 7.5 92 0 5 0 130 0 5 0 93 \circ OZ SI AFE 131 94.1 0 132 94.2 0 0 133 94.3 13* 134 \bigcirc \bigcirc \bigcirc \bigcirc 25 75 76 COEFFICIENTS IDVAR(1) IDVAR(2) NDV α OR β

ORIGINAL PAGE IS

TABLE II (Continued)

DATA SET 1st	,		
CHARACTER	DATA SET	INDEPENDENT VARIABI	Æ
IDENTIFIER	NUMBER	FIRST SECOND	DEPENDENT VARIABLES
ΑŴ	1-6	MACH ALPHAO	BETAO, CN, CLM, CA, CY, CYN, CBL, CL, CD
AW	7	MACH DZ	DY, DX, CN, CLM, CA, CY, CYN, CBL, CL, CD
. AW	8-13	MACH ALPHAO	BETAO, CN, CLM, CA, CY, CYN, CBL, CL, CD
WA	14-15	MACH INCID.	CN, CLM, CA, CY, CYN, CBL, CL, CD
AWRY	30-52	MACH DZ	DY, DX, CN, CLM, CA, CY, CYN, CBL, CL, CD
AWRY	53-61	MACH DY	DX, DZ, CN, CLM, CA, CY, CYN, CBL, CL, CD
AWRY	62~67	MACH DX	DY, DZ, CN, CLM, CA, CY, CYN, CBL, CL, CD
ĄWRY	68-82	MACH DZ	DY, DX, CN, CLM, CA, CY, CYN, CBL, CL, CD
` AWRY	83-85	MACH DX	DY, DZ, CN, CLM, CA, CY, CYN, CBL, CL, CD
AWRY	86-88	MACH DY	DX, DZ, CN, CLM, CA, CY, CYN, CBL, CL, CD
AWRY	89-111	MACH DZ	DY, DX, CN, CLM, CA, CY, CYN, CBL, CL, CD
AWRY	112-114	MACH DX	DY, DZ, CN, CLM, CA, CY, CYN, CBL, CL, CD
AWRY	115-117	MACH DY	DX, DZ, CN, CLM, CA, CY, CYN, CBL, CL, CD
AWRY	118-130	MACH DZ	DY, DX, CN, CLM, CA, CY, CYN, CBL, CL, CD
AW	131-133	MACH INCID	CN, CLM, CA, CY, CYN, CBL, CL, CD
AW	134	MACH ALPHAO	BETAO, CN, CLM, CA, CY, CYN, CBL, CL, CD
BX	1-4	MACH ALPHAO	CPCO, CPB1, CPB2, CPB3
BX	56	MACH ALPHAO	CPCO, CPB1, CPB2, CPB3, CPS1, CPS2
BX	7	MACH DZ	CPCO, CPB1, CPB2, CPB3, CPS1, CPS2, ALPHAO, BETAO
BX	8-11	MACH ALPHAO	CPCO, CPB1, CPB2, CPB3, CPS1, CPS2
BX	12-13	MACH ALPHAO	CPCO, CPS1, CPS2
BX	14-15	MACH INCID	CPCO, CPS1, CPS2
BX	30-52	MACH DZ	CPCO, CPB1, CPB2, CPB3, CPS1, CPS2, ALPHAO, BETAO,
,			INCID, ALPHAC
BX	53-61	MACH DY	CPCO, CPB1 CPB2, CPB3, CPS1, CPS2, ALPHAO, BETAO,
			INCID, ALPHAC.
BX	62-67	MACH DX	CPCO, CPB1, CPB2, CPB3, CPS1, CPS2, ALPHAO, BETAO
			INCID, ALPHAC

TABLE II (Continued)

DATA SET 1st CHARACTER	DATA SET	INDEPENDEN	NT VARIABLE	
IDENTIFIER	NUMBER	FIRST	SECOND	DEPENDENT VARIABLES
ВХ	68-82	МАСН	DZ	CPCO, CPB1, CPB2, CPB3, CPS1, CPS2, ALPHAO, BETAO, INCID, ALPHAC
BX	83-85	MACH	DX	CPCO, CPB1, CPB2, CPB3, CPS1, CPS2, ALPHAO, BETAO, INCID, ALPHAC
ВХ	86-88	MACH	DY	CPCO, CPB1, CPB2, CPB3, CPS1, CPS2, ALPHAO, BETAO, INCID, ALPHAC
BX	89-111	MACH	DZ	CPCO, CPB1, CPB2, CPB3, CPS1, CPS2, ALPHAO, BETAO, INCID, ALPHAC
BX	112-114	MACH	DX	CPCO, CPS1, CPS2, ALPHAO, BETAO, INCID, ALPHAC
BX	115~117	MACH	DY	CPCO, CPS1, CPS2, ALPHAO, BETAO, INCID, ALPHAC
BX	118-130	MACH	DZ	CPCO, CPS1, CPS2, ALPHAO, BETAO, INCID, ALPHAC
BX ·	131-133	MACH	INCID	CPCO, CPS1, CPS2
BX	134	MACH	ALPHAO	CPCO, CPB1, CPB2, CPB3, CPS1, CPS2
RY	16-23	MACH	ALPHAC	BETAC, CN, CLM, CA, CY, CYN, CBL, CL, CD
RY	24	MACH	DZ	DY, DX. CN, CLM, CA, CY, CYN, CBL, CL, CD
RY	25	MACH	DX	DY, DZ, CN, CLM, CA, CY, CYN, CBL, CL, CD
RY	26-29	MACH	ALPHAC	BETAC, CN, CLM, CA, CY, CYN, CBL, CL, CD
SZ	16-23	MACH	ALPHAC	CPCC, CPSB1, CPSB2, CPSB3, Q(PSF)
SZ	24	MACH	DZ	CPCC, CPSB1, CPSB2, CPSB3, Q(PSF), ALPHAC, BETAC
SZ	25	MACH	DX	CPCC, CPSB1, CPSB2, CPSB3, Q(PSF), ALPHAC, BETAC
SZ	26-29	MACH	ALPHAC	CPCC, CPSB1, CPSB2, CPSB3, Q(PSF)
SZ	30-52	MACH	DZ	CPCC, CPSB1, CPSB2, CPSB3, Q(PSF), ALPHAC, BETAC, ALPHAO, BETAO, INCID
SZ	53-61 ·	MACH	DA	CPCC, CPSB1, CPSB2, CPSB3, Q(PSF), ALPHAC, BETAC, ALPHAO, BETAO, INCID
SZ	62-67	MACH	DX	CPCC, CPSB1, CPSB2, CPSB3, Q(PSF), ALPHAC, BETAC, ALPHAO, BETAO, INCID

TABLE II (Concluded)

DATA SET 1st			•	,
CHARACTER	DATA SET	INDEPENDEN	T VARIABLE	•
IDENTIFIER	NUMBER	FIRST	SECOND	DEPENDENT VARIABLES
•				•
SZ	68-82	MACH	\mathbf{DZ}	CPCC, CPSB1, CPSB2, CPSB3, Q(PSF), ALPHAC, BETAC,
				ALPHAO, BETAO, INCID
SZ	83-85	MACH	DX	CPCC, CPSB1, CPSB2, CPSB3, Q(PSF), ALPHAC, BETAC,
		-		ALPHAO., BETAO., INCID
SZ	86-88	MACH	DY	CPCC, CPSB1, CPSB2, CPSB3, Q(PSF), ALPHAC, BETAC,
	,			ALPHAO, BETAO, INCID
SZ	89-111	MACH	DZ	CPCC, CPSB1, CPSB2, CPSB3, Q(PSF), ALPHAC, BETAC,
				ALPHAO, BETAO, INCID
SZ	112-114	MACH	DX	CPCC, CPSB1, CPSB2, CPSB3, Q(PSF), ALPHAC, BETAC,
				ALPHAO, BETAO, INCID
SZ	115-117	MACH	, DA	CPCC, CPSB1, CPSB2, CPSB3, Q(PSF), ALPHAC, BETAC,
				ALPHAO, BETAO, INCID
SZ	118-130	MACH	DZ	CPCC, CPSB1, CPSB2, CPSB3, Q(PSF), ALPHAC, BETAC,
				ALPHAO, BETAO, INCID

TABLE III (MODEL DIACNSIONAL DATA)

MODEL COMPONENT BODY - CML - B64		
GENERAL DESCRIPTION : The body is a	in clongated str	ecture containing
the Crew Module and Cargo Bay. Same a	s IML plus l" T	PS.
		<u>.</u>
MODEL SCALE: 0.0125		
DRAWING NUMBER . VC70-000002, SS-AC)1377	
\tag{\tag{\tag{\tag{\tag{\tag{\tag{		
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length ($\Sigma_0 = 235$ to 1519), In.	1284.0	16.050
Max Width (X _O = 1516.8), In.	262.718	3.284
Max Depth (Xo = 1463.316), In.	248.575	3.107
Fineness Ratio	5.1365	5.1365
Area - Ft ²		
Max. Cross-Sectional	340.82	0.053
Planform		-
Wetted		
Base		

which covers the Crew Module. One inch	TPC thickness	on the canopy.
Configuration 140C.		
MODEL SCALE: 0.0125		
DRAWING NUMBER: VC70-000002, SS-A03	1377	
		•
•		•
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length (X ₀ =4,35.196 - 670.0), In.	_231,.80	2.935
Max Width $(X_0 = 594.0)$, In.	195.58	2.445
. Max Depth		
Fineness Ratio		
. Area´		
Max. Cross-Sectional		
Planform	-	
Wetted		·
Base		
IDSHIELD PLANES: .7012 X ₀ 2552 Y ₀ 6656 Z ₀ - 6 .5710 X ₀ 5641 Y ₀ 5965 Z ₀ +32 .2636 X ₀ 7564 Y ₀ 5965 Z ₀ +18	.7354 = 0	

MODEL COMPONENT ELEVON - EAA		
GENERAL DESCRIPTION 6.0 In. F.S. gar	s machined int	o E ₂₆ elevon.
Flinger doors, centerbody pieces, and tir	seals are not	simulated. (Dat
are for one side.)		
MODEL SCALE: 0.0125		
DRAWING NUMBER Not available.		
		•
DIMENSIONS:	FULL SCALE	MODEL SCALE
Area - Ft^2	210.00	0.033
Span (equivalent), In.,	349.2	4.365
Inb'd equivalent chord, In.	118.0	1.475
Outb'd equivalent chord, In.	55.19	0.690
Ratio movable surface chord/ total surface chord		THE AMERICAN AND AND AND AND AND AND AND AND AND A
At Inb'd equiv. chord	0,2096	0:096
At Outh'd equiv. chord	0.4004	0.1,004
Sweep Back Angles, degrees	·	
Leading Edge	o.00	0.00
Trailing Edge	- 10.056	- 10.056
Hingeline	0.00	0.00
(Product of area & c) Area Moment (Naxwatovchangecisas), Ft	1587.25	0.003
Mean Aerodynamic Chord, In.	90.7	1.134

MOCEL COMPONENT: RODY FLAP - F14		
GENERAL DESCRIPTION: The body flap is a second coated at the aft end of the body.	ondary movable air	foil
MODEL SCALE: 0.0125		
DRAWING NUMBER: VC70-000002		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area - Ft ²	135.75	0.021
Span (equivalent), In.	241.33	3.017
Inb'd equivalent chord, In.	0.18	1.013
Outb'd equivalent chord, In.	81.0	1.013
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord	0.0	_0.0
At Outb'd equiv. chord	0.0	0.0
Sweep Back Angles, degrees		
Leading Edge	0.0	0.0
Tailing Edge	_0.0	_0.0
Hingeline (Product of Area & c) 3 Area Moment (Normakstaskingsskins), Ft	<u>0.0</u> 916.31	0.00
Mean Aerodynamic Chord, In.	81.0	1.013

MODEL COMPONENT : OMS PODS (OMI	<u> </u>	
GENERAL DESCRIPTION : The OMS pods a	are nacelles hous	ing the maneuvering
engines and are located on the fuselag	ge on either side	of the vertical
tail. Same as IML plus 1/2" TPS.		
MODEL SCALE: 0.0125		
DRAWING NUMBER	-81,3001	
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length (X ₀ =1311 - 1511), In.	200.00	2.500
Max Width $(X_O = 30l_t)$, In.	135.75	1.697
Max Depth $(X_0 = 304)$, In.	71.5	0.931
Fineness Ratio	Markey and the second s	The second secon
Area - Ft ²		
Max. Cross-Sectional	58.1.69	0.009
Planform		Name of the Control o
Wetted		No. of Contrast of
Base		

MODEL COMPONENT:	NCZZIĖS – N ₉₂	1	
GENERAL DESCRIPTION	The two orbiter ma	aneuvering system n	ozzles are lavel-bel
shaped and are loca	ted at the aft end of the	he OMS pods. These	dimensions are
external and are no	ot to be used for plume	tests.	**************************************
MODEL SCALE: C	0.0125		
DRAWING NUMBER:	MC62100009, VC70-000002	, VL70-008401, Aero	jet 1181900
DIMENSIONS:		FULL SCALE	MODEL SCALE
MACH NO.			•
Length - In. Gimbal Poin Throat to E	t to Exit Plane xit Plane	56.00 56.00	0.700
Diameter - In. Exit Throat Inlet		45.09	0.564
Area - ft ² Exit Throat		11.09	0.139
Gimbal Point (S	tation) - In.		
X Y Z		1518.0 	18.975 1.100 6.150
Null Position -	Deg.		
Pitch Yaw		15.82° 6.5°	15.82°

MODEL COMPONENT: MPS NOZZLES - N94		
GENERAL DESCRIPTION: The main propulsion	nozzles are Lave	l-bell shaped
and are located on the aft planes of the orbi	ter. These dime	ensions are ex-
ternal, and are not to be scaled for plume tes	ts.·	
MODEL SCALE: 0.0125	•	•
DRAVING NUMBER: VC70-000002, VL70-008144; R	S009169, RE00910	07, 13M15000
DIMENSIONS:	FULL SCALE	MODEL SCALE
MACH NO.	•	
Length - In. Gimbal Point to Exit Plane Throat to Exit Plane	157.00	1.963
Diameter - In. Exit Throat Inlet	97.914	1,224
Area - ft ² Exit Throat	52.290	0.008
Gimbal Point (Station) In. Upper Nozzle XO YO ZO	1445.0 0.0 443.0	18.063 0,0 5.538
Lower Nozzles YO YO ZO	1468.170 53.00 342.640	18.352 0.663 4.283
Null Position - Deg. Upper Nozzle Pitch Yaw	16.0	16.0
Lower Nozzle Pitch Yaw	10.0	10.0

a. Orbiter Model MODEL COMPONENT: MPS NOZZLES - N105 GEHERAL DÉSCRIPTION: Same as Nob except the upper nozzle is removed. MODEL SCALE: 0.0125 DRAWING NUMBER: VC70-000002, VL70-008144; RS009169, RS009107, 13M15000 DIMENSIONS: FULL SCALE MODEL SCALE MACH NO. Length - In. Gimbal Point to Exit Plane 157.00 1.963 Throat to Exit Plane Diameter - In. Exit 97.914 1.224 Throat Inlet Area_- ft² Ēxit · 52.290 0.008 Throat Gimbal Point (Station) - In. Upper Nozzle . Х Υ . \mathbf{z} Lower Nozzles 1468.170 18.352 X^{O} `Y0 53.00 375.670 Null Position - Deg. Upper Nozzle Pitch Yaw Lower Nozzle 10.0 Pitch 10.0 Yaw

MODEL COMPONENTRUDDER - R ₁₈						
GENERAL DESCRIPTION The ruddor is	s a secondary move	able airfoil at the				
trailing edge of the vertical fin that	t imparts yaw for	ces. This dimensional				
data was calculated from the OML miste	er dimensions 7-19	9-74.				
MODEL SCALE: 0.0125						
DRAWING NUMBER						
SWEIGONS	•					
DIMENSIONS	FULL SCALE	MODEL SCALE				
Area $= Ft^2$	97.148	0.015				
Span (equivalent) , In.	198.614	2.483				
Inb'd equivalent chord, In.	Inb'd equivalent chord, In. 90.07 1.126					
Outb'd equivalent chord, In.	Outb'd equivalent chord , In. 50.80 0.635					
Ratio .novable surface chord/ total surface chord						
At Inb'd equiv. chord	0.400	0.400				
At Outb'd equiv. chord 0.400 0.400						
Sweep Back Angles, degrees	Sweep Back Angles, degrees					
Leading Edge	Leading Edge 34.833 34.833					
Trailing Edge <u>26.249</u> <u>26.249</u>						
Hingeline (MAC X AREA, Ft ³)	34.833	34.833				
Area Moment (Marzardoxochxxgadxxxx) 584.99 0.0011						
Mean Aerodynamic Chord, In.	72.260	0.903				

MODEL COMPONENT ORBITER TAILCO	ne – Tc ₄	
GENERAL DESCRIPTION : Fairing mount	ed on orbiter fus	elage base for
ferry missions configuration.		····
MODEL SCALE: 0.0125		
DRAWING NUMBER: SS-A01452		
,		•
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length	435.76	5.447
Max Width	300.80	3.76
Max Depth Height	266.40	3.33
, Fineness Ratio		-
Area - Ft ²		
Max. Cross-Sectional	462.37	0.0722
Planform	635.803	0.0993
Wefted	**************************************	Water State Control of the Control o
Base	41-17-20-17-17-17-17-17-17-17-17-17-17-17-17-17-	

a. Orbiter Model

MODEL COMPONENT: VERTICAL - V 23 (Outer Hold	Lines)	
GENERAL DESCRIPTION: The vertical tail is o	•	ed and mounted
dorsally on the aft fuselage. These data co	orrespond to conf	iguration 1400
	٤, `	
MODEL SCALE: 0.0125	,	
DRAWING NUMBER: VC70-000002, master dimens	ions.	
DIMENSIONS:	FULL SCALE	MODEL SCALE
TOTAL DATA	·	•
Area (Theo) - Ft ² Planform Span (Theo) - In. Aspect Ratio Rate of Taper Taper Ratio Sweep-Back Angles, Degrees. Leading Edge Trailing Edge O.25 Element Line Chords: Root (Theo) WP MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC	413.253 315.72 1.675 0.507 0.404 45.000 26.25 41.13 268.50 108.47 199.61 1463.50 635.52 0.0	0.065 3.947 1.675 0.507 0.404 45.000 26.25 41.13 3.356 1.356 2.498 18.294 7.944
Airfoil Section Leading Wedge Angle - Deg. Trailing Wedge Angle - Deg. Leading Edge Radius	10.00 14.92 2.00	10.00 14.92 0.0250
Void Area	<u>13.17</u>	0.0002
Blanketed Area	0.0	0.0

ORIGINAL PAGE IS OF POOR QUALITY

TABLE III (Cont'd) a. Orbiter Lodel

vodel covpovevi: Wing-Wallo			
GENERAL DESCRIPTION:			
MOTT: Identical to Walk except airfoil thick	ness: Dihedral an	rle is aloné	
trailing edge of wing. Geometric twis			
· NODEL SCALE: 0.0125			
TEST NO.	DWG. NO. VL70	-0001604, -000200	
ORIGINAL PAGE IS OF POOR QUALITY	FULL-SCALE	MODEL SCALE	
TOTAL DATA Area (.neo.) Ft ²	• .		
Planform	2690.00	_0.420	
Span (Theo In. Aspect Ratio	<u> </u>	11.709 2.265	
Rate of Taper Taper Ratio	1.177 0.200	1.177 0.200	
Dihedral Angle, degrees	3.500	3,500	
Inc dence Angle, degrees Aerodynamic Twist, degrees	0.500	0.500	
Sweep Back Angles, de grees Leading Edge	45.00	45.00	
Trailing Edge 0.25 Element Line	- 10.056	- 10:056 ·	
Chords:	35:209	35.20 <u>9</u>	
Root (Theo) B.P.O.O. Tip, (Theo) B.P.	689 <u>.24</u>	<u>.e.616</u> 1.723	
MÁC Fus. Stár of 25 MAC	474.81 1136.83	5.935 14.210	
W.P. of .25 MAC B.L. of .25 MAC	290.58	3.632	
EXPOSED DATA	182,13	2.277	
Area (Theo) Ft Span; (Theo) In, BP108	<u> 1751.50 </u>	0.274 9.009	
Aspect Ratio	2.059	2.059	
Taper Ratio Chords	O., 21,5	0.2li5	
Root BP108 Tip 1.00 b	562.09 137.85	7.026 1.723	
MAC Z	392.83	4.910	
Fus. Sta. of .25 MAC W.F. of .25 MAC	1185,98 294,30 ·-	14.825 3.679	
B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA)	251.77	3,147	
XXXX ~6 4			
Root <u>b</u>	0.113	0.113	
Tip b = 2	0.120	0.120	
Data for (1) of (2) Sides			
Leading Edge Cuff 2	113,18	0.0177	
Leading Edge Intersects Fus W. L. 0 Sta Leading Edge Intersects Wing 0 Sta	. 500.0 1024.0	6.250 12.800	
60	Control of the Public of the P	and the state of t	

TABLE III (MODEL DIMENSIONAL DATA) a. Orbiter Model (Concluded)

MODEL COMPONENT : Mounting Strut - S1			
GENERAL DESCRIPTION: Blade strut attachment to orbiter aft upper			
fuselage where vertical tail is normally mounted. Strut	leading edge		
and lower trailing edge conform to the vertical tail pla	nform. Airfoil		
section is blunted diamond. The tip of the strut mounts	to a sting.		
MODEL SCALE: 0.0125 DRAWING NUMBER: Rockwell W-11335H			
	٠.		
DIMENSIONS:	MODEL SCALE		
Theoretical intersection of L.E. with fuselage ML, in.			
x _o ··	15.973		
Z _o	6.250		
Leading edge sweep angle, deg.	45.0		
Trailing edge sweep angle, deg.	45.0		
chord length, in.	2.38		
maximum thickness, in.	0.52		
distance from L.E. to maximum thickness, in.	1.42		
position of sting Q , in. Z_0	12.835		

TABLE III (MODEL DIMENSIONAL DATA)

b. Carrier Model

MODEL COMPONENT: ATTACH STRUCTURE - AT96

GENERAL DESCRIPTION: Forward attach structure between the Orbiter and

Carrier, faired struts, $i_0 = 4^{\circ}$

MCDEL SCALE: 0.0125

DRAWING NO.: Boeing Dwg. 747-MD-654, SS-A01559-4, -18, -35

DIFENSIONS:		FULL SCALE	MODEL SCALE
i _O , Incidence angle, deg. (Orbiter FRL to 747 FRL)		4.0	4.0
Fairing chord, right and left,	In.	31.0	0.388
Fairing T/C		0.226	0.226
Carrier attach points, In.	BSTA	689.4	8.617
	BMT .	372.0	4.650
	BL	66.3	0.829
Orbiter attach points, In.	x^{o}	388.15	4.852
	z ₀	283.11	3.539
••	Yo	0.0	0.0
	BSTA	681.52	8.519
•	BWL	480,4	6.005

b. Carrier Model

MODEL COMPONENT: ATTACH STRUCTURE - AT99

GENERAL DESCRIPTION: Aft attach structure between orbiter and carrier, same as AT_{95} with a single fairing covering the main strut and drag strut on each side, and a fairing on the sway brace.

MODEL SCALE: 0.0125

DRAWING NO.: Boeing Dwg 747-MD-658, W-1135A-11, -12, SS-A01559-33, -34, -35

DIMENSIONS:		FULL SCALE	MODEL SCA
Orbiter attach points, In.	x_0	1317.0	16.462
	YO	<u>+</u> 96.51	<u>+</u> 1.206
	Zo, BL	267.5	3.344
	BSTA	1607.0	20.087
	BWL	400.0	5.000
Main fairing:			•
Root chord, In.		250.0	3.125
T/c of root chord .		0.09	0.09
Tip chord, In.		120.0	1.500
T/c of tip chord		0.14	0.14
Sway brace:			
Chord, In.		31.0	0.388
T/c		o.226	0.226
		•	

. b. Carrier Model

MODEL COMPONENT: ATTACH STRUCTURE - AT112

GENERAL DESCRIPTION: Forward attach structure between the Orbiter and Carrier with truncated strut fairings. The Orbiter/strut attach point is covered with a "bathtub" fairing, and the 747/strut attach points are also faired over. Struts are set in the $\hat{\mathbf{1}}_0 = 4^{\circ}$ position.

MODEL SCALE: 0.0125

DRAWING NO.: Boeing Dwgs. 747-MD-680 (Modified), AX 1319-224

dimensions:		FULL SCALE	MODEL SCALE
io, Incidence angle, deg. (Orbiter FRL to 747 FRL)	4. 0	4.0
Strut Fairing Chord, In. t/c Length, (Each side), In.		18.667 0.480 112.0	0.233 0.480 1.400
Orbiter/Strut "Bathtub" Fai Chord, In. t/c	ring	87.20 0.275	1.09 0.275
Carrier Attach Points, In.	BSTA BVL BL	680.0 372.0 ±66.3	8.500 4.650 ±0.829
Orbiter Attach Point, In.	X _O Z _O Y _O BSTA BWL	388.15 283.11 0.0 680.0 480.4	4.852 3.539 0.0 8.500 6.005

b. Carrier Model

MODEL COMPONENT: ATTACH STRUCTURE - AT113

GENERAL DESCRIPTION: Aft attach structure between Orbiter and Carrier, all components except the drag struts are faired. Consists of two faired vertical members, two sway braces, and two drag struts. There are fairing blisters at each end of the sway braces and on the forward end of the drag struts.

MODEL SCALE: 0.0125

DRAWING NO.: Boeing Dwgs. 747-MD-683, AX 1319-213

DIMENSIONS:		FULL SCALE	MODEL SCALE
Orbiter Attach Points, In.	X _o Y _o Z _o BSTA BWL	1317.0 196.51 267.5 1607.0 400.0	16.462 *1.206 3.344 20.087 5.000
747 Attach Points, In.	BSTA BWL BL	1607.0 320.0 ±96.51	20.087 4.000 ±1.206
Main Strut Fairings Root chord (BWL 320- 358.8), In. t/c, Root chord Tip chord, Theoretical (BWL 398), In. t/c, Tip chord, Theoretical		80.0 0.183 137.0 0.250	0.183 1.713 0.250
Sway Brace Fairings Chord, In. t/c Length (Fach side), In.		40.28 0.180 56.0	0.504 0.180 0.700
Drag Struts Fwd attach points	BSTA, in. BWL, in. BL, in.	1443 320 196.51	18.038 4.000 ±1.206
Diameter, In.		12.0	0.150

MODEL COMPONENT : BODY - B27.8	Öarrier Model		
GENERAL DESCRIPTION: Body 74-7 Project with A.P.V.			
MODEL SCALE: 0.0125	MODEL DUG: 13181-	1	
DRAWING NUMBER,: 65013609, 1318	3-54		
DIMENSIONS:	FULL SCALE	MODEL SCALE	
Length , In.	2702.0	33.78	
Max Width , In.	255.3	3.19	
Max Depth			
Fineness Ratio	9.73	9.73	
Area - Ft ²	A CONTRACTOR OF THE PARTY OF TH	**************************************	
Max. Cross—Sectional			
Planform			
Wetted	. 14.093	2.20	
- Base			

b. Carrier Model

MODEL COMPONENT: HORIZONTAL TAIL - H15.6

GEMERAL DESCRIPTION: Horizontal tail, H₁₅, with vertical fins on each

tio at body B.L. 427.3

MODEL SCALE: 0.0125 MODEL DWG: 13181-1

DRAWING NO.: 65Cl3609, 1318-5, 1318-70

DIMENSIONS:		FULL SCALE	MODEL SCALE
Fin	Exposed Data (one side):		
	$Area = Ft^2$	200.0	0.0312
	Span, In.	252.0	3.15
	Chord, In.	113.6	1.42

b. Carrier Model

MODEL COMPONENT: M25

GENERAL DESCRIPTION: Inboard 747, JT9D nacelle strut

MODEL SCALE: 0.0125 MODEL DWG: 13181-1

DRAWING NO.: 65013609, 1318-60

b. Carrier Model

MODEL COMPONENT: M26

GENERAL DESCRIPTION: Outboard 747, JT9D

Strut

MODEL SCALE: 0.0125 MODEL DWG: 1318I-1

DRAWING NO.: 65Cl3609, 1318-60

DIMENSIONS:	FULL SCALE	MODEL SCAL
W L of C _L , In.	834.0	10.425
Cant angle, deg. inboard	2.0	2.0

b. Carrier Model

MODEL COMPONENT: N₅₇

GENERAL DESCRIPTION: Inboard fan cowl and primary 747 nacelle, flow-

through type.

MODEL SCALE: 0.0125 MODEL DWG: 13181-1

DRAWING NO.: 65C13609, 1318-60

b. Carrier Model

MODEL COMPONENT: N₅₈

MODEL DESCRIPTION: Outboard fan cowl and primary 747 nacelle, flow-

through type.

MCDEL SCALE: 0.0125 MODEL DWG: 13181-1

DRAWING NO.: 65013609, 1318-60

b. Carrier Model

MODEL COMPONENT: SPOILERS - S₁₋₁₂

GFNERAL DESCRIPTION: Multi-panel flight spoilers. Four outboard and two inboard spoilers per side. Subscript denotes spoiler panel S_1 is the most outboard L.H. panel and S_{12} is most outboard R.H. panel.

MODEL SCALE: 0.0125 MODEL DWG: 1318I-1

DRAWING NO.: 65Cl3609, 1318-56

DIMENSIONS: (ONE PANEL)	FULL SCALE	MODEL SCALE
Outboard S_{1-h} and S_{9-12} (Ft ²)	21.48	0.0034
Span (equivalent), In.	75.00	0.94
Chord, In.	41.28	0.52
Inboard, S_{5-6} and S_{7-8} (Ft ²)	35.31	0.0055
Span (equivalent), In.	90.00	1.130
Chord, In.	56.52	0.71

b. Carrier Model

MODEL COMPONENT: T14

GENERAL DESCRIPTION: Flap track fairings, four on each side \cdot

MCDEL SCALE: 0.0125

DRAWING NO.: 65013609, 1318-67

DIMENSIONS:	FULL SCALE	MODEL SC
WBL of Track No. 1, In.	235.3	2.94
2, In.	353.0	4.41
3, In.	585.0	7.31
· l _t , In.	743.6	9.30
Distance from wing		
Trailing edge to:	•	
Track trailing edge, In.	44.0	0.55

b. Carrier Model

MODEL COMPONENT: VERTICAL - $V_{9.1}$

GENERAL DESCRIPTION: Swept vertical tail

MODEL SCALE: 0.0125 MODEL DWG: 13181-1

DRAWING NO.: 65Cl3609, 1318-8

DIMENSIONS:	FULL SCALE	MODEL SCALE
TOTAL DATA		
Area (Theo), Ft ²	630.0	0.098
Span (Theo), In.	386.5	4.830
Sweepback angles, deg., L.E.	50.12	50.12
Aspect ratio	1.25	1.25
Chord:		•
Root (Theo), WP, In.	461.67	5.77
Tip (Theo), WP, In.	157.0	1.96
Mean Aerodynamic Chord, In.	33116	0.43
Fus. Sta. of 0.25 MAC	2529.6	31.62
W.P. of 0.25 MAC	528.0	6.60

TABLE IJI (Concluded)

. b. Carrier Model

MODEL COMPONENT: WING - WALL

GENERAL DESCRIPTION: Swept 747 wing

MODEL SCALE: 0.0125 MODEL DWG: 13181-1

W.P. of 0.25 MAC

DRAWING NO.: 65013609, 1318-46

DIM: 110. • O/OT/OO/, T/10-40		
DIMENSIONS:	FULL SCALE	MODEL SCALE
Total Data:	•	
Area (Theo.), Ft ²		
Planform	. 5500.00	0.860
Span (Theo.), In.	2348.0 .	29.35
Aspect ratio	6.96	6.96
Incidence angle, deg.	7.0	7.0
Chords, In.:		•
MAC	327.8	4.10
Fus. sta. of 0.25 MAC	1339.87	16.75

190.42 2.38

TABLE IV.

CA-26 DATASET DESCRIPTION

Dataset	Туре	Description
RFEXXX SFEXXX	YFEXXX ZFEXXX	Carrier main balance data. Due to the large amount of data, alternate points were placed in corresponding datasets, e.g., R + S = total. Y and Z contain additional variables supplementary to R and S, respectively.
AFEXXX BFEXXX	WFEXXX XFEXXX	Orbiter balance data. Data were separated similar to the carrier data where W and X contain the supplementary variables.

Notes:

a. General

Figure 1. Axis systems.

b. Orbiter/747 Angular RelationsFigure 1. Axis systems

REFERENCE DIMENSIONS (FS)

c. Orbiter/747 Flight Test Configuration Reference Dimensions Figure 1. Axis systems

a. SSV Orbiter Configuration (VC70-000002) Figure 2. Model Instrumentation Sketches

b. Orbiter Tail Cone -- TC4 (X3B)
Figure 2. Model Instrumentation Sketches

E₄₄ elevon with 6.0 inch gaps installed. Flipper doors, centerbody pieces, and tip seals are not simulated.

(ALL DIMENSIONS ARE FULL SCALE, INCHÉS)

(VIEW IS PERPENDICULAR TO WING'
REFERENCE PLANE)

c. Elevon - E44

Figure 2. Model Instrumentation Sketches

Figure 2. Model Instrumentation Sketches

f. Simulated Attach Structure AT96 and AT99 (AT $_{\rm X}$) Figure 2. Model Instrumentation Sketches

g. Simulated Attach Structure AT_{112} and AT_{113} (AT_y) Figure 2. Model Instrumentation Sketches

CONFIGURATION AS

h. Orbiter Alone Installation Sketches

Figure 2. Model Instrumentation Sketches

CONFIGURATION AL

i. Carrier and Separation Installation Sketches. . . Figure 2. Model Instrumentation Sketches

j. Orbiter Base Pressure Tap LocationsFigure 2. Model Instrumentation Sketches

k. Sting and Strut Pressure Tap Locations
Figure 2. Model Instrumentation Sketches

$$\Delta \star o = 2.925 \text{ COS} (i_0 + 27.336)$$

 $\Delta t_0 = 2.925 \text{ S1H} (i_0 + 27.336) - 1.343$
 $X_{\text{TRANSFER}} = 0.740 + \triangle X_{\text{O}}$
 $Z_{\text{TRANSFER}} = 3.958 + \triangle Z_{\text{O}}$

1. Orbiter/747 Moment Transfers (Mated)
Figure 2. Model Instrumentation Sketches

a. Orbiter Alone

Figure 3. Model Installation

b. 747 Alone

Figure 3. - Model Installation

Front View, Orbiter Separating From 747
 Figure 3. - Model installation

(Reverse

of this page

18

blank.)

d. Rear View, Orbiter Separating From 747 Figure 3. Model installation

DATA FIGURES

PRECEDING PAGE BLANK NOT FILMED

ORBITER ANGLE OF ATTACK, ALPHAO

FIG. 4 ORBITER ISOLATED, ALPHA SWEEP, AFEODI

FIG. 4 ORBITER ISOLATED, ALPHA SWEEP, AFEODI

FIG. 4 ORBITER ISOLATED, ALPHA SWEEP, AFEOO1

3

15

13 14

(AFE001)

FIG. 4 ORBITER ISOLATED, ALPHA SWEEP, AFEOOI

FIG. 4 ORBITER ISOLATED, ALPHA SWEEP, AFEOO1

FIG. 4 ORBITER ISOLATED, ALPHA SWEEP, AFEO01

5 6 7 8 9 10 11 1 ORBITER ANGLE OF ATTACK, ALPHAO

9 10 11 12

13 14

15

FIG. 4 ORBITER ISOLATED, ALPHA SWEEP, AFEODI

3

FIG. 4 ORBITER ISOLATED, ALPHA SWEEP, AFEOUL

FIG. 5 ORBITER ISOLATED, ALPHA SWEEP, AFEOO2

Ġ

Ż

8 ORBITER ANGLE OF ATTACK, ALPHAO

9 10 11 12

13 14

FIG. 5 ORBITER ISOLATED, ALPHA SWEEP, AFEO02

9

8

ORBITER ANGLE OF ATTACK, ALPHAO

13

12

FIG. 5 ORBITER ISOLATED, ALPHA SWEEP, AFEO02

FIG. 5 ORBITER ISOLATED, ALPHA SWEEP, AFEOO2

FIG. 5 ORBITER ISOLATED, ALPHA SWEEP, AFEO02

FIG. 5 ORBITER ISOLATED, ALPHA SWEEP, AFEOO2

Ż

8 ORBITER ANGLE OF ATTACK, ALPHAO

FIG. 5 ORBITER ISOLATED, ALPHA SWEEP, AFEOO2

3

-.08

9 10 11 12 13 14 15 16

FIG. 5 ORBITER ISOLATED, ALPHA SWEEP, AFEOO2

FIG. 6 ØRBITER ISOLATED, ALPHA SWEEP, AFEOO3

FIG. 6 ORBITER ISOLATED, ALPHA SWEEP, AFEOO3

FIG. 6 ORBITER ISOLATED, ALPHA SWEEP, AFEOO3

19

SQ.FT.

IN. IN. XO IN. YO IN. ZO

FIG. 6 ORBITER ISOLATED, ALPHA SMEEP, AFEOO3

FIG. 6 ORBITER ISOLATED, ALPHA SWEEP, AFEOO3

FIG. 6 ORBITER ISOLATED, ALPHA SWEEP, AFEOO3

ORBITER ANGLE OF ATTACK, ALPHAO

10

FIG. 6 ORBITER ISOLATED, ALPHA SWEEP, AFEOO3

3

16

13

14

FIG. 6 ORBITER ISOLATED, ALPHA SWEEP, AFEOO3

FIG. 7 ORBITER ISOLATED, ALPHA SWEEP, AFEOO4

15

1'3

5 6 7 8 9 10 11 12 ORBITER ANGLE OF ATTACK, ALPHAO

FIG. 7 ORBITER ISOLATED, ALPHA SWEEP, AFEOO4

-.028

1.5

FIG. 7 ORBITER ISOLATED, ALPHA SWEEP, AFEOO4

Ż

-.015基

11 12

9

8 ORBITER ANGLE OF ATTACK, ALPHAO

FIG. 7 ORBITER ISOLATED, ALPHA SWEEP, AFEOO4

FIG. 7 ORBITER ISOLATED, ALPHA SWEEP, AFEOO4

(AFE004)

FIG. 7 ORBITER ISOLATED, ALPHA SWEEP, AFEOO4

ORBITER ANGLE OF ATTACK, ALPHAO

FIG. 7 ORBITER ISOLATED, ALPHA SWEEP, AFEO04

ż

0-

اسطَ80.-

31

13

FIG. 7 ORBITER ISOLATED, ALPHA SWEEP, AFEOO4

FIG. 8 ORBITER ISOLATED, ALPHA SWEEP, AFEODS

FIG. 8 ORBITER ISOLATED, ALPHA SWEER, AFEOOS

FIG. 8 ORBITER ISOLATED, ALPHA SWEEP, AFEOO5

Ż

8 ORBITER ANGLE OF ATTACK, ALPHAO

Э

. Մադ

-.016[

-.024[

9 10 11 12 13 14 15 16

FIG. 8 ORBITER ISOLATED, ALPHA SWEEP, AFEOOS

FIG. 8 ORBITER 1SOLATED, ALPHA SWEEP, AFEOOS

FIG. 8 ORBITER ISOLATED, ALPHA SWEEP, AFEOOS

FIG. 8 ORBITER ISOLATED, ALPHA SWEEP, AFEOOS

FIG. 8 ORBITER ISOLATED, ALPHA SWEEP, AFEOOS

FIG. 9 ORBITER ISOLATED, ALPHA SWEEP, AFEOOG

FIG. 9 ORBITER ISOLATED, ALPHA SWEEP, AFEOOS.

.005 0-Ø -.005 Ø -.010 <u>Luluu</u> 9 10 11 12 13 14 15 Ż 8 6 ORBITER ANGLE OF ATTACK, ALPHAO FIG. 9 ORBITER ISOLATED, ALPHA SWEEP, AFEOOG 43 PAGE

FIG. 9 ORBITER ISOLATED, ALPHA SWEEP, AFEOOG

FIG. 9 ORBITER ISOLATED, ALPHA SWEEP, AFEOOG

FIG. 9 ORBITER ISOLATED, ALPHA SWEEP, AFEOOG

ORBITER ANGLE OF ATTACK, ALPHAO

FIG. 9 ORBITER ISOLATED, ALPHA SWEEP, AFEOOG

FIG. 9 ORBITER ISOLATED, ALPHA SWEEP, AFEOOG

PAGE

FIG. 10 ORBITER ISOLATED, DELZ SWEEP, AFEOO7

FIG. 10 ORBITER ISOLATED, DELZ SWEEP, AFEOO'T

FIG. 10 ØRBITER ISOLATED, DELZ SWEEP, AFEOO7

(AFE007)

FIG. 10 ORBITER ISOLATED, DELZ SWEEP, AFEOO7

PARAMETRIC VALUES

SYMBOL MACH

FIG. 10 ORBITER ISOLATED, DELZ SWEEP, AFEOO7

REFERENCE INFORMATION

FIG. 11 ORBITER ISOLATED, ALPHA SWEEP, AFEOO8

FIG. 11 ORBITER ISOLATED, ALPHA SWEEP, AFEOO8

FIG. 11 ORBITER ISOLATED, ALPHA SWEEP, AFEOO8

FIG. 11 ORBITER ISOLATED, ALPHA SWEEP, AFEOD8

(AFE008)

FIG. 11 ORBITER ISOLATED, ALPHA SWEEP, AFEOO8

FIG. 11 ORBITER ISOLATED, ALPHA SWEEP, AFEOO8

REFERENCE INFORMATION

FIG. 11 ORBITER ISOLATED, ALPHA SWEEP, AFEOO8

FIG. 11 ORBITER ISOLATED, ALPHA SWEEP, AFEOO8

FIG. 12 ORBITER ISOLATED, ALPHA SWEEP, AFEOO9

FIG. 12 ORBITER ISOLATED, ALPHA SWEEP, AFEOO9

REFERENCE INFORMATION PARAMETRIC VALUES SYMBOL MACH SQ.FT. IN. IN. IN. XO IN. YO IN. ZO 2690.0000 474.8100 936.6800 1109.0000 .0000 375.0000 .0125 SREF LREF BREF XMRP YMRP ZMRP ZMRP SCALE Ö ELEVON .591 .000 .000 **BETAO** 16.300 BOFLAP .060 .055 .050-045 ᠐ చ Q .040 COEFFICIENT, .035 .030 .025 FORCE Ø .020 AXIAL .015 .010 .005 0--.005[16 10 11 12 14 15 3 8 ġ 13 ORBITER ANGLE OF ATTACK, ALPHAO

FIG. 12 ORBITER ISOLATED, ALPHA SWEEP, AFEOO9

FIG. 12 ORBITER ISOLATED, ALPHA SWEEP, AFEOOS

ġ ORBITER ANGLE OF ATTACK, ALPHAO

12 ORBITER ISOLATED, ALPHA SWEEP, AFEOO9

-.0020

-.0022

15

13

12

FIG. 12 ORBITER ISOLATED, ALPHA SWEEP, AFECO9

5 6 7 8 9 10 11 1 ORBITER ANGLE OF ATTACK, ALPHAO

11 12

13 14

FIG. 12 ORBITER ISOLATED, ALPHA SWEEP, AFEOO9

-.16

FIG. 12 ORBITER ISOLATED, ALPHA SWEEP, AFEOO9.

U I 2 3 4 5 6 7 8 9 10 11 12 13 14

ORBITER ANGLE OF ATTACK, ALPHAO

FIG. 13 ORBITER ISOLATED, ALPHA SWEEP, AFEO10

-.08

-.16[

FIG. 13 ORBITER ISOLATED. ALPHA SWEEP, AFEO10

ORBITER ANGLE OF ATTACK, ALPHAO

FIG. 13 ORBITER ISOLATED, ALPHA SWEEP, AFEO10

FIG. 13 ORBITER ISOLATED, ALPHA SWEEP, AFEO10

FIG. 13 ORBITER ISOLATED, ALPHA SWEEP, AFEO10

FIG. 13 ORBITER ISOLATED, ALPHA SWEEP, AFEO10

ġ

10

8

ORBITER ANGLE OF ATTACK, ALPHAO

11 12

13 14

15

FIG. 13 ORBITER ISOLATED, ALPHA SWEEP, AFEO10

FIG. 13 ORBITER ISOLATED, ALPHA SWEEP, AFEO10

FIG. 14 ORBITER ISOLATED, ALPHA SWEEP, AFEO11

FIG. 14 ORBITER ISOLATED, ALPHA SWEEP, AFEO11

SO.FT. IN. IN. IN. XO IN. YO IN. ZO

FIG. 14 ORBITER ISOLATED, ALPHA SHEEP, AFEO11

ORBITER ANGLE OF ATTACK, ALPHAO

FIG. 14 ORBITER ISOLATED, ALPHA SWEEP, AFEO11

Э

12

10 11

FIG. 14 ORBITER ISOLATED, ALPHA SWEEP, AFEO11.

-.08

FIG. 15 ORBITER ISOLATED, ALPHA SWEEP, AFEO12

5 6 7 8 9 10 11 12 ORBITER ANGLE OF ATTACK, ALPHAO

10 11 12

FIG. 15 ORBITER ISOLATED, ALPHA SWEEP, AFEO12

·-.040

-.048

Ó

13 14 15

FIG. 15 ORBITER ISOLATED, ALPHA SWEEP, AFEO12

FIG. 15 ORBITER ISOLATED, ALPHA SWEEP, AFEO12

ORBITER ANGLE OF ATTACK, ALPHAO

9 10 11 12 13 14 15

FIG. 15 ORBITER ISOLATED, ALPHA SWEEP, AFEO12

5

-.16[

FIG. 15 ORBITER ISOLATED, ALPHA SWEEP, AFE012

ORBITER ANGLE OF ATTACK, ALPHAO

9

10

11

FIG. 16 ORBITER ISOLATED, ALPHA SWEEP, AFEO13

3

-.16E

15

12

13

FIG. 16 ORBLITER ISOLATED, ALPHA SWEEP, AFEO13

FIG. 16 ORBITER ISOLATED, ALPHA SWEEP, AFEO13

FIG. 16 ORBITER ISOLATED, ALPHA SWEEP, AFEO13

FIG. 16 ORBITER ISOLATED, ALPHA SWEEP, AFEO13

8

ORBITER ANGLE OF ATTACK, ALPHAO

9 10 11 12

.0144€

.0140 %...

13 14 15

FIG. 16 ORBITER ISOLATED, ALPHA SWEEP, AFEO13

ORBITER ANGLE OF ATTACK, ALPHAO

FIG. 16 ORBITER ISOLATED, ALPHA SWEEP, AFEO13

FIG. 16 ORBITER ISOLATED, ALPHA SWEEP, AFEO13

FIG. 17 ORBITER ISOLATED, ALPHA SWEEP, AFEO14

FIG. 17 ORBITER ISOLATED, ALPHA SWEEP, AFEO14

FIG. 17 ORBITER ISOLATED, ALPHA SWEEP, AFE014

FIG. 17 ORBITER ISOLATED, ALPHA SWEEP, AFEO14

ġ

ORBITER INCIDENCE RELATIVE TO 747 FRL. INCID

10

FIG. 17 ORBITER ISOLATED, ALPHA SWEEP, AFEO14

FIG. 17 ORBITER ISOLATED, ALPHA SWEEP, AFEO14

10 11

8

ORBITER INCIDENCE RELATIVE TO 747 FRL. INCID

FIG. 17 ORBITER ISOLATED, ALPHA SWEEP, AFEO14

-.08

12 13 14 15

SYMBOL

REFERENCE INFORMATION

FIG. 17 ORBITER ISOLATED, ALPHA SWEEP, AFEO14

FIG. 18 ORBITER ISOLATED, ALPHA SWEEP, AFEO15

FIG. 18 ORBITER ISOLATED, ALPHA SWEEP, AFE015

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ORBITER INCIDENCE RELATIVE TO 747 FRL, INCID FIG. 18 ORBITER ISOLATED, ALPHA SWEEP, AFEO15

-.040

-.048

-.056

FIG. 18 ORBITER ISOLATED, ALPHA SWEEP, AFEO15

FIG. 18 ORBITER ISOLATED, ALPHA SWEEP, AFEO15

FIG. 18 ORBITER ISOLATED, ALPHA SWEEP, AFEO15

FIG. 18 ORBITER ISOLATED, ALPHA SWEEP, AFEO15

FIG. 19 ORBITER ISOLATED, ALPHA SWEEP, AFE131

PITCHING

FIG. 19 ORBITER ISOLATED, ALPHA SWEEP, AFE131

FIG. 19 ORBITER ISOLATED, ALPHA SWEEP, AFE131

FIG. 19 ORBITER ISOLATED, ALPHA SWEEP, AFE131

FIG. 19 ORBITER ISOLATED, ALPHA SWEEP, AFE131

FIG. 19 ORBITER ISOLATED, ALPHA SWEEP, AFE131

FIG. 19 ORBITER ISOLATED, ALPHA SWEEP, AFE131

ORBITER INCIDENCE RELATIVE TO 747 FRL. INCID

FIG. 20 ORBITER ISOLATED, ALPHA SWEEP, AFE132

10 11

12

FIG. 20 ORBITER ISOLATED, ALPHA SWEEP, AFE132

FIG. 20 ORBITER ISOLATED, ALPHA SWEEP, AFE132

FIG. 20 ORBITER ISOLATED, ALPHA SWEEP, AFE132

FIG. 20 ORBITER ISOLATED, ALPHA SWEEP, AFE132

FIG. 21 ORBITER ISOLATED, ALPHA SWEEP, AFE133

FIG. 21 ORBITER ISOLATED, ALPHA SWEEP, AFE133

FIG. 21 ORBITER ISOLATED, ALPHA SWEEP, AFE133

FIG. 21 ORBITER ISOLATED, ALPHA SWEEP, AFE133

FIG. 21 ORBITER ISOLATED, ALPHA SWEEP, AFE133

FIG. 21 ORBITER ISOLATED, ALPHA SWEEP, AFE133

-.08
-.16
-.16
-.3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ORBITER INCIDENCE RELATIVE TO 747 FRL, INCID

FIG. 21 ORBITER ISOLATED, ALPHA SWEEP, AFE133

0-

FIG. 21 ORBITER ISOLATED, ALPHA SWEEP, AFE133

FIG. 22 ORBITER ISOLATED, ALPHA SWEEP, AFE134

FIG. 22 ORBITER, ISOLATED, ALPHA SWEEP, AFE134

FIG. 22 ORBITER ISOLATED, ALPHA SWEEP, AFE134

Ż

ORBITER ANGLE OF ATTACK, ALPHAO

FIG. 22 ORBITER ISOLATED, ALPHA SWEEP, AFE134

8 9 10 11 12 13 14 15 16

FIG. 22 ORBITER ISOLATED, ALPHA SWEEP, AFE134

-,0012 -.0014 S 6 7 8 9 10 11 12 13 ORBITER ANGLE OF ATTACK, ALPHAO FIG. 22 ORBITER ISOLATED, ALPHA SWEEP, AFE134

-.0006

-.0008

-.0010

FIG. 22 ORBITER ISOLATED, ALPHA SWEEP, AFE134

FIG. 22 ORBITER ISOLATED, ALPHA SWEEP, AFE134

FIG. 23 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=4, BETAC=0, BETAO=0, AFEO30

FIG. 23 ORB. DATA, CARRIER PROXIMITY, ALPHAC=C, IORB=4, BETAC=0, BETAO=0, AFEO30
PAGE 154

FIG. 23 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=4, BETAC=0, BETAO=0, AFEO30

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE030)

FIG. 23 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=4, BETAC=0, BETAO=0, AFEO30 156 PAGE

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE030)

FIG. 23 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=4, BETAC=0, BETAO=0, AFEO30

FIG. 23 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=4, BETAC=0, BETAO=0, AFEO30

FIG. 23 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=4, BETAC=0, BETAO=0, AFEO30

LTV44-559(CA26) 747/1 ATY 132 S1 (ORBITER DATA) (AFE031)

FIG. 24 ORB. DATA, CARRIER PROXIM.TY, ALPHAC=O, IORB=6, BETAC=0, BETAO=0, AFEO31

FIG. 24 ORB. DATA, CARRIER PROXIMITY, ALPHAC=C, IORB=6, BETAC=0, BETAO=0, AFEO31

LTV44-559(CA26) 747/1 ATY ()2 SI (ORBITER DATA) (AFEO31)

FIG. 24 ORB. DATA, CARRIER PROXIM: TY, ALPHAC=0, IORB=6, BETAC=0, BETAO=0, AFEO31

FIG. 24 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=0, AFEO31

LTV44-559(CA26) 747/1 ATY (12 S1 (ORBITER DATA) (AFEO31)

165

FIG. 24 ORB. DATA, CARRIER PROXIM.TY, ALPHAC=O, IORB=6, BETAC=0, BETAO=0, AFEO31

LTV44-559(CA26) 747/1 ATY ()2 S1 (ORBITER DATA) (AFE031)

FIG. 24 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=0, AFEO31

FIG. 24 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=0, AFEO31

FIG. 25 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=0, AFEO32

FIG. 25 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=0, AFEO32

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE032)

171

FIG. 25 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=0, AFEO32

FIG. 25 ORB. DATA, CARRIER PROXIMITY, ALPHAC=O, IORB=6, BETAC=0, BETAO=0, AFEO32

FIG. 25 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=0, AFE032

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE032)

FIG. 25 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=0, AFEO32

FIG. 25 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=0, AFE032

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE033)

FIG. 26 ORB. DATA, CARRIER PROXIMITY, ALPHAC=O, IORB=6, BETAC=O, BETAO=O, AFEO33

FIG. 26 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0- IORB=6, BETAC=0, BETAO=0, AFE033

PAGE 178

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE033)

FIG. 26 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=0, AFEO33

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE033)

FIG. 26 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=0, AFE033

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE033)

FIG. 26 ORB. DATA, CARRIER PROXIMITY, ALPHAC=O, IORB=6, BETAC=O, BETAO=O, AFEO33

FIG. 26 ORB. DATA, CARRIER PROXIMITY, ALPHAC=O, IORB=6, BETAC=0, BETAO=0, AFEO33

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE033)

FIG. 26 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=0, AFEO33

FIG. 26 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=0, AFE033

FIG. 27 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=8, BETAC=0, BETAO=0, AFEO34

PAGE 185

FIG. 27 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=8, BETAC=0, BETAO=0, AFEO34

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE034)

FIG. 27 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=8, BETAC=0, BETAO=0, AFEO34

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE034)

FIG. 27 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=8, BETAC=0, BETAO=0, AFEO34

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE034)

FIG. 27 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=8, BETAC=0, BETAO=0, AFEO34

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE034)

FIG. 27 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=8, BETAC=0, BETAO=0, AFEO34

LTV44-559(CA26) 747/1 ATY 02 \$1 (ORBITER DATA) (AFE034)

FIG. 27 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=8, BETAC=0, BETAO=0, AFEO34

FIG. 27 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=8, BETAC=0, BETAO=0, AFEO34

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE035)

FIG. 28 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=4, BETAC=0, BETAO=5, AFEO35

FIG. 28 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=4, BETAC=0, BETAO=5, AFEO35

_

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE035)

195

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE035)

FIG. 28 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=4, BETAC=0, BETAO=5, AFEO35

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE035)

FIG. 28 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=4, BETAC=0, BETAO=5, AFEO35

LTV44+559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE035)

FIG. 28 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=4, BETAC=0, BETAO=5, AFEO35

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE035)

FIG. 28 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=4, BETAC=0, BETAO=5, AFE035

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE036)

FIG. 29 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=5, AFEO36

FIG. 29 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=5, AFEO36
PAGE 202

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE036)

FIG. 29 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=5, AFEO36

FIG. 29 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=5, AFEO36
PAGE 204

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE036)

205

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE036)

FIG. 29 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=5, AFEO36

LTV44-559(CA26) 747/1 ATY 02-S1 (ORBITER DATA) (AFE036)

FIG. 29 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=5, AFEO36

FIG. 29 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=5, AFEO36

PAGE 208

FIG. 30 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=8, BETAC=0, BETAO=5, AFEO37

FIG. 30 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=8, BETAC=0, BETAO=5, AFEO37

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE037)

FIG. 30 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=8, BETAC=0, BETAO=5, AFEO37

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE037)

FIG. 30 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=8, BETAC=0, BETAO=5, AFEO37

PAGE 214

FIG. 30 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=8, BETAC=0, BETAO=5, AFEO37

FIG. 30 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=8, BETAC=0, BETAO=5, AFEO37

FIG. 31 ORB. DATA, CARRIER PROXIMITY, ALPHAC=O, IORB=4, BETAC=0, BETAO=O, AFEO38

FIG. 31 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=4, BETAC=0, BETAO=0, AFEO38
PAGE 218

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE038)

FIG. 31 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=4, BETAC=0, BETAO=0, AFEO38

FIG. 31 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=4, BETAC=0, BETAO=0, AFEO38

PAGE 220

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE038)

22

FIG. 31 ORB. DATA. CARRIER PROXIMITY.ALPHAC=0. IORB=4.BETAC=0.BETAO=0. AFEO38

PAGE 222;

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE038)

FIG. 31 ORB. DATA, CARRIER PROXIMITY, ALPHAC=O, IORB=4, BETAC=0, BETAO=0, AFEO38

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE038)

FIG. 31 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=4, BETAC=0, BETAO=0, AFEO38

PAGE 224:

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE039)

FIG. 32 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=0, AFEO39

FIG. 32 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=0, AFEO39

PAGE 226

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE039)

FIG. 32 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=0, AFEO39

FIG. 32 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=0, AFEO39

PAGE 228%

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE039)

PAGE 229

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE039)

FIG. 32 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=0, AFEO39

PAGE 230

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE039)

FIG. 32 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=0, AFEO39

FIG. 32 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=6, BETAC=0, BETAO=0, AFEO39

PAGE 232

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE040)

FIG. 33 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=8, BETAC=0, BETAO=0, AFEO40

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE040)

FIG. 33 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=8, BETAC=0, BETAO=0, AFEO40
PAGE 234

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFEO40)

235

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE040)

FIG. 33 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=8, BETAC=0, BETAO=0, AFEO40 PAGE 236

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE040)

FIG. 33 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=8, BETAC=0, BETAO=0, AFEO40

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE040)

FIG. 33 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=8, BETAC=0, BETAO=0, AFEO40

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE040)

FIG. 33 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=8, BETAC=0, BETAO=0, AFEO40

FIG. 33 ORB. DATA, CARRIER PROXIMITY, ALPHAC=0, IORB=8, BETAC=0, BETAO=0, AFEO40
PAGE 240

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE041)

FIG. 34 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO41

LTV44-559(CA26) 747/1 ATY 02 SI (ORB!TER DATA) (AFE041)

FIG. 34 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO41

PAGE 244::

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFEO41)

FIG. 34 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO41

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE041)

FIG. 34 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO41

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE042)

PAGE'

249

FIG. 35 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO42

FIG. 35 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO42

FIG. 35 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO42

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE042)

253

FIG. 35 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO42

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE042)

255

PAGE

FIG. 35 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO42

PAGE 256

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE045)

IG. 36 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO45

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE045)

FIG. 36 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO45

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE045)

FIG. 36 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO45

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE045)

FIG. 36 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO45

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE045)

FIG. 36 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO45

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFEO45)

FIG. 36 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO45

FIG. 36 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO45

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE046)

FIG. 37 ORB. DATA, CARRIER PROXIMITY.ALPHAC=2, IORB=6,BETAC=0.BETAO=0, AFEO46

FIG. 37 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO46

PAGE : 266

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE046)

267

FIG. 37 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, 10RB=6, BETAC=0, BETAC=0, AFEO46

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE046)

269

FIG. 37 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO46

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE046)

FIG. 37 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO46

FIG. 37 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO46

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE047)

FIG. 38 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO47

FIG. 38 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO47

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE047)

FIG. 38 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO47

FIG. 38 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO47

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFEO47)

`PAGE 277

FIG. 38 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO47

·LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE047)

FIG. 38 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO47

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE048)

FIG. 39 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=5, AFEO48

FIG. 39 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=5, AFEO48

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE048)

FIG. 39 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=5, AFEO48
PAGE 284

LTV44-559(CA26) 747/1 ATY 132 S1 (ORBITER DATA) (AFEO48)

FIG. 39 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=5, AFEO4

FIG. 39 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=5, AFEO48

PAGE 286

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE048)

FIG. 39 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=5, AFEO48

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE048)

FIG. 39 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=5, AFEO48

PAGE 288 E

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE049)

FIG. 40 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO49

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE049)

FIG. 40 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO49

PAGE 290%

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE049)

FIG. 40 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO49

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE049)

FIG. 40 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO49

PAGE 292

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE049)

293

FIG. 40 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO49

PAGE 294

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE049)

PAGE 295

FIG. 40 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO49

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE050)

FIG. 41 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=5, AFEO50

LTV44-559(CA26) 747/1 ATY 02 St (ORBITER DATA) (AFE050)

FIG. 41 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=5, AFEO50

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE050)

FIG. 41 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=5, AFEO50

FIG. 41 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=5, AFEO50

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE050)

FIG. 41 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=5, AFEO50

*4. 4.

FIG. 41 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=5, AFEO50

FIG. 41 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=5, AFEO50
PAGE 304

LTV44-559(CA26) 747/1 ATX 02 SI (ORBITER DATA) (AFEOSI)

FIG. 42 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO51

FIG. 42 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO51

PAGE 306

FIG. 42 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO51

FIG. 42 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO51

PAGE 308:

LTV44-559(CA26) 747/1 ATX 02 S1 (ORBITER DATA) (AFE051)

FIG. 42 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO51
PAGE 310

.

LTV44-559(CA26) 747/1 ATX 02 S1 (ORBITER DATA) (AFE051)

FIG. 42 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO51

FIG. 42 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO51

LTV44-559(CA26) 747/1 ATX 02 SI (ORBITER DATA) (AFE052)

313

FIG. 43 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFE052

LTV44-559(CA26) 747/1 ATX 02 S1 (ORBITER DATA) (AFE052)

LTV44-559(CA26) 747/1 ATX 132 S1 (ORBITER DATA) (AFE052)

LTV44-559(CA26) 747/1 ATX 02 S1 (ORBITER DATA) (AFE052)

LTV44-559(CA26) 747/1 ATX 02 S1 (ORBITER DATA) (AFE052)

FIG. 43 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO52

FIG. 43 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAØ=0, AFEO52

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE053)

FIG. 44 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO53

FIG. 44 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO53

PAGE 322

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE053)

FIG. 44 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFE053 PAGE 324

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE053)

FIG. 44 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFE053

LTV44~559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE053)

FIG. 44 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=C, BETAO=0, AFEO5

FIG. 44 ØRB. DATA, CARRIER PROXIMITY, ALPHAC=2, IØRB=6, BETAC=0, BETAØ=0, AFEO5

PAGE 3:

FIG. 45 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO5

FIG. 45 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO54 .3(PAGE

FIG. 45 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO54

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE054)

FIG. 45 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO54

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBINER DATA) (AFE054)

FIG. 45 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO54

FIG. 45 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO54

FIG. 45 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO54

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE055)

FIG. 46 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFE055

FIG. 46 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO55

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE055)

PAGE

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE055)

FIG. 46 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO55

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE055)

FIG. 46 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFE055

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE055)

FIG. 46 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO55

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE055)

FIG. 46 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFE055

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE056)

FIG. 47 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO56

PAGE 346

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE056)

FIG. 47 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO56

FIG. 47 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO56

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE056)

FIG. 47 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO56

FIG. 47 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO56

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE056)

FIG. 47 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO56

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE057)

FIG. 48 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO57

FIG. 48 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO57

PAGE 354

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE057)

FIG. 48 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO57

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE057)

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE057)

FIG. 48 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO57

PAGE : 358:

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE057)

FIG. 48 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO57

PAGE 360

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE058)

FIG. 49 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO58

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE058)

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE058)

FIG. 49 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFE058

PAGE 364

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE058)

FIG. 49 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO58

PAGE 366

FIG. 49 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO58

PAGE 367

FIG. 49 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO58
PAGE. 368:

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE059)

→ PAGE 369

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE059)

FIG. 50 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO59

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE059)

FIG. 50 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO59

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE059)

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE059)

FIG. 50 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO59

LTV44~559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE059)

FIG. 50 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFE059

FIG. 50 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO59

PAGE 376

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE060)

FIG. 51 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO60

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE060)

FIG. 51 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO60

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE060)

FIG. 51 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO60

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE060)

FIG. 51 ORB. DATA, CARRIER PRUXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO60

FIG. 51 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO60

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE061)

FIG. 52 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO61

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE061)

FIG. 52 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEC61

PAGE 388 =

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE061)

FIG. 52 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO61

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFEO61)

FIG. 52 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFFO61

PAGE 392

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFEO62)

FIG. 53 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO62

FIG. 53 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO62

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE062)

FIG. 53 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO62

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE062)

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE062)

FIG. 53 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO62

FIG. 53 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO62

FIG. 53 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO62

FIG. 54 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO63

FIG. 54 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO63

FIG. 54 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO63

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE063)

FIG. 54 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAG=0, AFEO63

FIG. 54 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO63

FIG. 54 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO63

FIG. 55 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO64

FIG. 55 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO64

LTV44-559(CA26) 747/1 ATY, 02 SI (ORBITER DATA) (AFE064)

FIG. 55 ØRB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO64

FIG. 55 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO64

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE064)

FIG. 55 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFF.O64

FIG. 55 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO64

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE064)

FIG. 55 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO64

FIG. 55 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO64

FIG. 56 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO65

FIG. 56 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO65

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE065)

FIG. 56 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO65

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE065)

FIG. 56 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO65

FIG. 56 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO65

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE065)

FIG. 56 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAQ=5, AFEO65

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE066)

FIG. 57 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO66

FIG. 57 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO66

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFEO66)

FIG. 57 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO66

FIG. 57 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO66

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE066)

FIG. 57 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, 10RB=6, BETAC=0, BETAO=5, AFEO66

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE066)

FIG. 57 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO66

FIG. 57 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO66

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE067)

FIG. 58 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFFO67

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE067) REFERENCE INFORMATIO SYMBOL MACH PARAMETRIC VALUES 2690.0000 474.8100 936.6800 1109.0000 SQ IN SREF LREF 0 .609 **ALPHAC** 2.000 BETAC .000 5.000 **ELEVON** 5.000 STAB BREF ĪN .000 XMRP YMRP BETLAP .000 DY ĪN IN 6.000 DΖ 60.000 IORB ZMRP SCALE 375,0000 .0125 IN BETAO 5.000 RUDDER .000 .0341-.0340[.0339[.0338‡ CA .0337 COEFFICIENT .0336‡ .0335 .0334 FORCE .0333‡ AXIAL .0332-.0331 .0330# Θ .0329 .0328[-4 -2 0 2 4 6 3 10 12 14 16 18 20 22 24 26 0RBITER LONG. DISPLACEMENT FROM MATED POSITION, POSITIVE AFT, DX 20 22 24 26 28

FIG. 58 ORB. DATA, CARRIER PROXIMITY ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO67

FIG. 58 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO67

LTV44-559(CA26) 747/1 ATY 02 51 (ORBITER DATA) (AFE067)

FIG. 58 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO67

FIG. 58 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO67

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFEO67)

FIG. 58 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO67

FIG. 58 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=5, AFEO67

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE068)

FIG. 59 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO68

FIG. 59 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, TORB=4, BETAC=0, BETAO=0, AFEO68

FIG. 59 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO68

FIG. 59 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO68

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE068)

445

FIG. 59 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO68

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE068)

447

FIG. 59 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO68

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE069)

FIG. 60 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO69

PAGE 450

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE069)

451

FIG. 60 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO69

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE069)

FIG. 60 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO69

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE069)

455

FIG. 60 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO69

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE070)

FIG. 61 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO70

FIG. 61 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO70
PAGE 458

FIG. 61 ØRB. DATA, CARRIER PRØXIMITY, ALPHAC=2, IØRB=8, BETAC=0, BETAØ=0, AFEO70

FIG. 61 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO70

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE070)

FIG. 61 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO70

FIG. 61 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO70

FIG. 61 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO70

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE071)

FIG. 62 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO71
PAGE 466

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE071)

FIG. 62 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO71

FIG. 62 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO71

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE071)

FIG. 62 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO71

FIG. 62 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, 10RB=4, BETAC=0, BETAO=0, AFEO71

FIG. 62 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO71

FIG. 63 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO72

FIG. 63 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO72

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE072)

FIG. 63 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO72

PAGE 476

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE072)

FIG. 63 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO72

PAGE 478

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE072)

FIG. 63 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0; AFEO72

PAGE 480

FIG. 64 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO73

FIG. 64 ORB. DATA. CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFE073

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE073)

FIG. 64 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO73

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE073)

FIG. 64 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO73

PAGE 486

IG. 64 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO73

FIG. 64 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO73

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE074)

PAGE , 489

FIG. 65 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO74

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE074)

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE074)

FIG. 65 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO74

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE074)

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE074)

FIG. 65 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO74

PAGE 494

LTV44-559(CA26) 747/1 ATY 02 S1 (0RBITER DATA) (AFE074)

IG. 65 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFE074

FIG. 65 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=0, BETAO=0, AFEO74

497

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE075)

FIG. 66 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFE075

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE075)

FIG. 66 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO75

PAGE 500

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE075)

FIG. 66 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO75
PAGE 502

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE075)

FIG. 66 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFE075

FIG. 67 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO76

FIG. 67 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO76

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE076)

FIG. 67 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO76

FIG. 67 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO76

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE076)

FIG. 67 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO76

FIG. 67 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO76

FIG. 67 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO76

FIG. 67 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=0, BETAO=0, AFEO76

PAGE 512

FIG. 68 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO77

FIG. 68 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO77

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE077)

FIG. 68 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO77

FIG. 68 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFE077

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE077)

FIG. 68 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO77

FIG. 68 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO77

FIG. 68 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=0, BETAO=0, AFEO77

FIG. 69 ORB DATA, CAR. PROXIMITY, ALPHAC=2, IORB=6, BETAC=BETAO=0, AILRON=-5, AFEO78

PAGE 521

FIG. 69 ORB DATA, CAR. PROXIMITY, ALPHAC=2, IORB=6, BETAC=BETAO=0, AILRON=-5, AFEO78

FIG. 69 ORB DATA, CAR. PROXIMITY, ALPHAC=2, IORB=6, BETAC=BETAO=0, AILRON=-5, AFEO78

PAGE 523

FIG. 69 ORB DATA, CAR. PROXIMITY, ALPHAC=2, IORB=6, BETAC=BETAO=0, AILRON=-5, AFEO78

FIG. 69 ORB DATA, CAR. PROXIMITY, ALPHAC=2, IORB=6, BETAC=BETAO=0, AILRON=-5, AFEO78

FIG. 69 ORB DATA, CAR. PROXIMITY, ALPHAC=2, IORB=6, BETAC=BETAO=0, AILRON=-5, AFEO78

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE078)

FIG. 69 ORB DATA, CAR. PROXIMITY, ALPHAC=2, IORB=6, BETAC=BETAO=0, AILRON=-5, AFEO78

PAGE 527

FIG. 69 ORB DATA, CAR. PROXIMITY, ALPHAC=2, IORB=6, BETAC=BETAO=0, AILRON=-5, AFEO78
PAGE 528

FIG. 70 ORB DATA, CAR. PROXIMITY, ALPHAC=2, IORB=6, BETAC=BETAO=0, RUDDER=10, AFEO79

PAGE 529

FIG. 70 ORB DATA, CAR. PROXIMITY, ALPHAC=2, IORB=6, BETAC=BETAO=0, RUDDER=10, AFEO79
PAGE 530

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE079)

FIG. 70 ORB DATA, CAR. PROXIMITY, ALPHAC=2, IORB=6, BETAC=BETAO=0, RUDDER=10, AFE079
PAGE 531

FIG. 70 ORB DATA, CAR. PROXIMITY, ALPHAC=2, IORB=6, BETAC=BETAO=0, RUDDER=10, AFEO79
PAGE 532

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE079)

FIG. 70 ORB DATA, CAR. PROXIMITY, ALPHAC=2, IORB=6, BETAC=BETAO=0, RUDDER=10, AFEO79

FIG. 70 ORB DATA, CAR. PROXIMITY, ALPHAC=2, IORB=6, BETAC=BETAO=0, RUDDER=10, AFEO79 534 PAGE

FIG. 70 ORB DATA, CAR. PROXIMITY, ALPHAC=2, IORB=6, BETAC=BETAO=0, RUDDER=10, AFEO79
PAGE 535

FIG. 70 ORB DATA, CAR. PROXIMITY, ALPHAC=2, IORB=6, BETAC=BETAO=0, RUDDER=10, AFE079

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE080)

FIG. 71 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=-5, BETAO=-5, AFEO80

FIG. 71 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=-5, BETAO=-5, AFEO80

FIG. 71 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=-5, BETAO=-5, AFEO80
PAGE 539

FIG. 71 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=-5, BETAO=-5, AFEO80
PAGE 540

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE080)

541

-FIG. 71 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=-5, BETAO=-5, AFEO80

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE080)

FIG. 71 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=-5, BETAO=-5, AFEO80

PAGE

543

FIG. 71 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=4, BETAC=-5, BETAO=-5, AFEO80 PAGE 544

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE081)

FIG. 72 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=-5, AFEO81

FIG. 72 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=-5, AFEO81

PAGE 546

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFEO81)

FIG. 72 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=-5, AFEO81

547

FIG. 72 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=-5, AFEO81

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER_DATA) (AFE081)

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFEO81)

FIG. 72 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=-5, AFEO81

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFEO81)

FIG. 72 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=-5, AFEO81
PAGE 552

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE082)

FIG. 73 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=-5, BETAO=-5, AFEO82

FIG. 73 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=-5, BETAO=-5, AFEO82

FIG. 73 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=-5, BETAO=-5, AFEO82

FIG. 73 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=-5, BETAO=-5, AFEO82

LTV44-559(CA26) 747/1 ATY: 02 S1 (ORBITER DATA) (AFE082)

FIG. 73 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=-5, BETAO=-5, AFEO82

FIG. 73 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=-5, BETAO=-5, AFEO82

FIG. 73 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=8, BETAC=-5, BETAO=-5, AFEO82

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE083)

561

PAGE

FIG. 74 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO83

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE083)

FIG. 74 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO83

FIG. 74 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO83

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE083)

FIG. 74 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO83

FIG. 74 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO83

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE083)

567

PAGE

FIG. 74 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO83

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE084)

FIG. 75 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO84

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE084)

FIG. 75 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO84

FIG. 75 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO84

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE084)

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE084)

FIG. 75 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO84

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE084)

FIG. 75 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO84

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE085)

FIG. 76 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO85

FIG. 76 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, 10RB=6, BETAC=-5, BETAO=0, AFEO85

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE085)

FIG. 76 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO85

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE085)

FIG. 76 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO85 582 PAGE

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE085)

FIG. 76 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO85

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE086)

FIG. 77 ØRB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO86

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE086)

587

FIG. 77 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO86 588 PAGE

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE086)

FIG. 77 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO86 PAGE 590

FIG. 77 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO86

FIG. 77 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO86

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE087)

FIG. 78 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO87

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFEO87)

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE087)

FIG. 78 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO87

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFEO87)

PAGE

FIG. 78 ORB. DATA; CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO87

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFEO87)

FIG. 78 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO87

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE087)

FIG. 78 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO87

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE088)

FIG. 79 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO88 PAGE 602

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE088)

FIG. 79 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO88

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE088)

FIG. 79 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO88

PAGE

FIG. 79 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO88

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE088)

* PAGE 607

FIG. 79 ORB. DATA, CARRIER PROXIMITY, ALPHAC=2, IORB=6, BETAC=-5, BETAO=0, AFEO88

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE089)

FIG. 80 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=4, BETAC=0, BETAO=0, AFEO89

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE089)

611

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE089)

FIG. 80 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=4, BETAC=0, BETAO=0, AFEO89 612 PAGE

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE089)

FIG. 80 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=4, BETAC=0, BETAO=0, AFEO89

FIG. 80 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=4, BETAC=0, BETAO=0, AFEO89

FIG. 81 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=6, BETAC=0, BETAO=0, AFEO90

FIG. 81 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=6, BETAC=0, BETAO=0, AFEO90 618 PAGE

FIG. 81 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=6, BETAC=0, BETAO=0, AFEO90

FIG. 81 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=6, BETAC=0, BETAO=0, AFEO90
PAGE 620

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE090)

621

FIG. 81 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=6, BETAC=0, BETAO=0, AFEO90

FIG. 81 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=6, BETAC=0; BETAO=0, AFEO90

FIG. 81 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=6, BETAC=0, BETAO=0, AFEO90

FIG. 82 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=8, BETAC=0, BETAO=0, AFEO91

FIG. 82 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=8, BETAC=0, BETAO=0, AFEO91

LTV44-559(CA26) 747/1 ATY 02 SI (ORBITER DATA) (AFE091)

627

FIG. 82 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=8, BETAC=0, BETAO=0, AFEO91

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE091)

629

PAGE

FIG. 82 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=8, BETAC=0, BETAO=0, AFEO91

FIG. 82 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=8, BETAC=0, BETAO=0, AFEO91

FIG. 82 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=8, BETAC=0, BETAO=0, AFEO91

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE092)

FIG. 83 ØRB. DATA, CARRIER PRØXIMITY, ALPHAC=4, IORB=4, BETAC=0, BETAO=5, AFEO92

FIG. 83 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=4, BETAC=0, BETAO=5, AFEO92

LTV44-559(CA26) 747/1 ATY 02 S1 (ORBITER DATA) (AFE092)

635

PAGE

FIG. 83 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=4, BETAC=0, BETAO=5, AFEQ92 PAGE 636

637 .

FIG. 83 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=4, BETAC=0, BETAO=5, AFEO92

FIG. 83 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=4, BETAC=0, BETAO=5, AFEO92

FIG. 83 ORB. DATA, CARRIER PROXIMITY, ALPHAC=4, IORB=4, BETAC=0, BETAO=5, AFEO92