CAS in Applied Data Science Muerren 2025

Géraldine Schaller-Conti

Bibliography

- Deep Learning book (Goodfellow, Bengio, Courville)
- Machine Learning @ Stanford (Prof Andrew Ng)
- Hands-On Machine Learning with Scikit-Learn & Tensorflow (Aurélien Géron)

Teaching method

Inverted classroom based

- Introduction lectures
- Real content you learn yourself with the notebooks. Either to put in practice your knowledge or to learn ahead of another lecture

Why

- Supposed to be better
- More fun
- Learning by doing

To give back sense to being present (Marcel Lebrun)

Tutorial I: Introduction to torch

<u>Link</u>

→ Copy to drive

Introduction

- Goal: introduction to pytorch
- Program : inverted classroom style
 - Theory
 - Overview to get the big picture of the Notebook
 - Work alone or in groups
- Technical : Google Colab, Pytorch

Theory

Gradient Descent

• Iterative method to find the parameters $\theta = (w, b)$ that minimize $J(\theta)$

Gradient Descent Illustration

Backpropagation

 Efficient implementation of the chain-rule to compute derivatives with respect to network weights

Training

• *Iterative* process

Forward propagation

$$Z = w^T x + b$$

$$A = \sigma(Z)$$

Learning curve

Parameter update (gradient descent)

learning rate α

$$\theta_{t+1} = \theta_t - \alpha \nabla J(\theta_t)$$

Cost function epochs

$$J(w,b) = J(\theta)$$

Backward propagation (dJ/dw, dJ/db)

Optimization pitfalls

Python-based ecosystem of open-source software for mathematics, science, and engineering.

h5py: common package to interact with a dataset that is stored on an H5 file

famous library to plot graphs in Python

IP[y]: **IPython**

interactive coding environments embedded in a webpage

provides simple and efficient tools for data mining and data analysis

Overview of the notebook

Tutorial I (1)

- 1) Load necessary libraries (common libraries) and data
- Create model (class SimpleModel)
 - y = x * (x+2)
- 3) Run the model
 - Test it, look at the output type
- 4) Tensor operations
 - New model : sum_i(x_i+2) (class SimpleModel2)
 - Same for several 1D arrays at one (class SimpleMOdel3): add axis=1
- 5) Exercise 1: calculate mean of array's elements

Tutorial I (1)

6) Optimization:

- New parabolic function to optimize (class FLayer) trainable parameter is t initialized to 0
- Gradient descent applied, SGD optimizer defined
- Plot f(t) results

7) Exercise 2: change the parabolic function, the alpha learning rate,...

Exercise 1

```
O Copier le code
# Define the MeanModel class
class MeanModel(nn.Module):
    def __init__(self):
        super(MeanModel, self).__init__()
    def forward(self, x):
        return torch.mean(x)
# Define data
arr = torch.tensor([[1, 2, 3, 4, 5], [2, 3, 4, 5.1, 6], [25, 65, 12, 12,
# Instantiate the model
model = MeanModel()
# Run the model
result = model(arr)
```

Tutorial II: Optimization and NN introduction

Link

→ Copy to drive

Introduction

- Goal: see how to do optimization in torch and NN introduction
- Program : inverted classroom style
 - Theory
 - Overview to get the big picture of the Notebook
 - Work alone or in groups
- Technical : Google Colab, Pytorch

Theory

Network model

Sigmoid and softmax

Sigmoid (*two-class* classifier) :

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Softmax (*multi-class* classifier) :

$$\operatorname{softmax}(z)_i = \frac{\exp(z_i)}{\sum_j \exp(z_j)}$$

Optimization

Given a task we define

• Training data $\{x^i\}$

$$\{x^i, y^i\}_{i=1,\dots,m}$$

Network

$$f(x;\theta)$$

Cost function

$$J(\theta) = \sum_{i=1}^{m} loss (y^{i}, f(x^{i}; \theta))$$

- Parameter initialization (weights, biases)
 - random weights, biases initialized to small values (0.1)
- Next, we optimize the network parameters θ (training)
- In addition, we have to set values for hyperparameters

Overview of the notebook

Tutorial II (1)

1) Load necessary libraries (common libraries)

2) Linear regression

- Generate data points (80 training, 20 test)
- Linear function (class Linear)
- Loss function (def loss_f)
- Train the model
- Evaluate the model

B) Exercise 1: play with the parameters of the linear regression and the batch size

Tutorial II (2)

- 4) Explanation of the training loop with pseudcode
- 5) Building blocks of a Neural network
 - Model (class Dense)
 - Forward pass
- 5) Build a NN
 - Multilayer NN (dense1, dense2)
 - Overall model (class MyModel)

Tutorial III: Fully connected NNs

Link

→ Copy to drive

Introduction

- Goal: handwritten digit recognition with a fully connected NN
- Program : inverted classroom style
 - Theory
 - Overview to get the big picture of the Notebook
 - Work alone or in groups
- Technical : Google Colab, Pytorch

Theory

MNIST Dataset

- MNIST database with hand-written digits
- 60000 training images and 10000 testing images
- Created in 1994
- 128x128 binary images

Network model

Sigmoid and softmax

Sigmoid (*two-class* classifier) :

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Softmax (*multi-class* classifier) :

$$\operatorname{softmax}(z)_i = \frac{\exp(z_i)}{\sum_j \exp(z_j)}$$

Optimization

Given a task we define

- Training data $\{x^i, y^i\}_{i=1,...,m}$
- Network $f(x; \theta)$
- Cost function $J(\theta) = \sum_{i=1}^{m} \log (y^i, f(x^i; \theta))$
- Parameter initialization (weights, biases)
 - random weights, biases initialized to small values (0.1)
- Next, we optimize the network parameters θ (training)
- In addition, we have to set values for hyperparameters

Overview of the notebook

Tutorial III (1)

- 1) Load necessary libraries (common libraries) and data
- 2) Training loop (similar to Tutorial II)
 - Explanation
- 3) Building blocks of a NN (similar to Tutorial II)
- 4) Structure of a NN
 - Definition of a model and the forward pass (class MyModel)

Tutorial III (2)

- 5) Load the data (MNIST dataset)
 - Training data, test data, normalization
 - Plot examples
- 6) Build a NN
 - Model, loss function, optimizer
 - Training function
 - Testing function
 - Train the model (loss curves)
 - Get the accuracy of the model

Tutorial III (2)

7) Exercise 1: build a NN with two layers

Exercises

```
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
# Définition du réseau
class SimpleNN(nn.Module):
    def init (self):
        super(SimpleNN, self).__init__()
        self.fc1 = nn.Linear(784, 1500) # Input size = 784 (ex: MNIST), output = 1500
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(1500, 10) # Output size = 10 (classes)
        self.softmax = nn.Softmax(dim=1)
    def forward(self, x):
        x = self.fc1(x)
       x = self.relu(x)
       x = self.fc2(x)
        x = self.softmax(x)
        return x
# Données fictives pour l'exemple
# 784 features (ex: pixels de MNIST), 1000 échantillons
X = \text{torch.rand}(1000, 784)
y = torch.randint(0, 10, (1000,)) # Classes entre 0 et 9
# Dataset et DataLoader
dataset = TensorDataset(X, y)
dataloader = DataLoader(dataset, batch size=64, shuffle=True)
# Initialisation du modèle, de la fonction de perte et de l'optimiseur
model = SimpleNN()
criterion = nn.CrossEntropyLoss() # Perte adaptée pour classification
optimizer = optim.Adam(model.parameters(), lr=0.001) # Taux d'apprentissage initial
```

Exercise 1

```
# Entraïnement du modèle
def train model(dataloader, model, criterion, optimizer, epochs=10, lr scheduler-model)
    for epoch in range(epochs):
       total loss = 0
        for inputs, labels in dataloader:
           optimizer.zero grad() # Réinitialiser les gradients
           outputs = model(inputs) # Passage avant
           loss = criterion(outputs, labels) # Calcul de la perte
           loss.backward() # Calcul des gradients
           optimizer.step() # Mise à jour des paramètres
           total loss += loss.item()
       # Ajustement dynamique du taux d'apprentissage
       if lr scheduler:
           lr_scheduler.step()
       print(f"Epoch {epoch+1}/{epochs}, Loss: {total_loss:.4f}, LR: {optimizer.param_gro
# Ajustement du Learning rate avec ReduceLROnPlateau
scheduler = optim.lr scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patien
# Entraîner le modèle
train_model(dataloader, model, criterion.optimizer, epochs=10, lr_scheduler=scheduler)
```

Tutorial IV: Convolutions

<u>Link</u> → Copy

Introduction

- Goal: basics to perform image recognition (Inception)
- Program : inverted classroom style
 - Theory
 - Overview to get the big picture of the Notebook
 - Work alone or in groups
- Technical : Google Colab, Pytorch

Theory

Human vision

Computer vision

Kernel (filter)

- Used to detect features (vertical/horizontal filter,...)
- Different kernels to create different feature maps → learn to see various patterns and details in images

Kernel example

Padding, Stride, Dilation

	ad	pa						
nad	0	0	0	0	0	0	0	0
pad	0	0	0	0	0	0	0	0
	0	0	2	82	94	133	0	0
	0	0	102	187	40	24	0	0
	0	0	126	232	70	24	0	0
	0	0	202	184	63	87	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

1	2	3
4	5	6
7	8	9

	1	2	3		
>		4	5	6	
			7	8	9

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	2	813	94	123	0	0
0	0	30	37	44	34	0	0
0	0	124	234	114	34	0	0
0	0	143	204	10	49	0	9
0	0	0	0	0	0	0	a
0	0	0	0	0	0	0	0

Inception V3 model

- Deep learning model based on Convolutional Neural Networks
- Used for image classification
- Released in year 2015
- It has 42 layers

Overview of the notebook

Tutorial IV (1)

- 1) Load necessary libraries (common libraries and personal modules)
- 2) Images
- 3) Convolutions

Tutorial IV (2)

- Pre-processing of the image
 - Gray-scale, cropping, float conversion, normalization
 - Add dimensions (batch, channel, height, width) (in get_convolved)
 - Convert Numpy to pytorch (in get_convolved)

- Define the convolution
 - Forward model (class Model)
 - Apply 4 convolutions one after each other (inside class Model, call conv_2d function)
- Define the filter
 - Identity filter
 - Convert to np.array (in get_convolved)
 - Add dimensions
 - Convert Numpy to pytorch

```
flt_mtx = [
     [ 0, 0, 0, 0, 0, ],
     [ 0, 0, 0, 0, 0, ],
     [ 0, 0, 1, 0, 0, ],
     [ 0, 0, 0, 0, 0, ],
     [ 0, 0, 0, 0, 0, ],
] # identity transformation
```

Tutorial IV (3)

- Use it ! (ims_convolved = get_convolved(img_raw, flt_mtx))
 - You get back 5 figures

• Exercise :

- 1. experiment with different filters and understand what they do, e.g.:
- · identity transformation
- identity transformation with positive non-unit values
- identity transformation with negative unit value
- identity transformation off center
- · blurring with box filter
- edge detection with + and bands
- try whatever you like
- 2. experiment with convolution parameters:
- padding = 1, 2, 3
- stride = 2
- dilation = 2

0	0	0	0	0
0	0	0	0	0
0	0	30	0	0
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	0	0	0	0
0	0	-1	0	0
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	1	0	0
0	0	0	0	0

1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

0	-1	1	0	0
0	-1	1	0	0
0	-1	1	0	0
0	-1	1	0	0
0	-1	1	0	0

Tutorial IV (4)

filter type	effect
gaussian	bluring
first derivative of gaussian	detection of edges
second derivative of gaussian	detection of peaks

Most common filters

- Define 1D functions
- Create 2D filters by repeating the 1D filters along axis 0 (np.tile)
- Multiply by transpose() to get the horizontal dimension (filter size does not change)
- Use them ! (ims_convolved = get_convolved(img_raw, flt_mtx)

4) Homework (leave it for now)

Tutorial IV (5)

- 5) Load a pretrained model (inception V3) from torchhub
- 6) Test the model
- Preprocessing of the image (cropping, shuffle sizes, totensor, normalize adds batch size) \rightarrow [1,3,299,299]
- Desactivate the gradient (eval mode)
- Get the logits (1000 values), then the probabilities (applying softmax)
- Print out the 5 most probable classes
- Do the same with 100 classes

Tutorial V: Transfer Learning

Link

Introduction

 Goal: use the Inception model to classify images of different nature (it/de), learn how to save a model

- Program : inverted classroom style
 - Theory
 - Overview to get the big picture of the notebook
 - Work alone or in groups
- Technical: Google Colab, Pytorch

Theory

Transfer Learning

- Try to find an existing neural network that accomplishes a similar task to the one you are trying to tackle
- reuse the lower layers of this network
 - Output layer should usually be replaced
- Speeds up training and requires much fewer training data

Training Loop

• *Iterative* process

Gradient descentParameter update

Forward propagation
Make a prediction

Backward propagation

Learning curve

Cost function *Compute the error function*

Measure the error contribution from each connection

Dataset Augmentation

 Apply realistic transformations to data to create new synthetic samples, with same label

Overview of the notebook

Tutorial V (1)

- 1) Load necessary libraries (common libraries and personal modules)
- 2) Transfer Learning
- Load the inception model (base_model)
- Build new model using the base_model (model)
 - Define a head function (in_features, n_classes=2) : use of sigmoid
- Optimization: define the loss function (criterion) and the optimizer
- Helper functions to get the prediction (get_predictions) and to compute the batch accuracy (calculate accuracy batch)

Tutorial V (2)

3) Dataset

- Images :
 - Get them from ML3 folder
 - Preprocessing using transforms.Compose (resize, tensor, normalize)
 - Shape [3,299,299]
 - Transform to numpy array for display (im_numpy)
- Labels
- Split dataset into train/test samples
 - Torch.utils.data.random_split
 - Train_test_split with stratify enabled from scikit-learn
- Create data loaders for training/val (beware shuffle param)
- Example: batch of 10 images, plot them, print logits and output classes (res)

Tutorial V (3)

4) Training

- Train model function
 - Contains the loop on epochs
 - Calls the train and validate functions (beware the params)
 - Save history (loss, accuracy) and model for a given epoch
 - Train function: reset gradients, compute logits and loss, compute gradients (backward prop), update parameters, calculate accuracy of the batch (helper functions), returns train loss and train accuracy
 - Validate function: structure BUT (no optimizer, no backward, no update of the params), returns test loss and test accuracy
- Plot_history function
- Run it ! history = train_model(...) using 70 epochs

Tutorial V (4)

- 5) Load trained variables from checkpoint
 - Choose epochs values
 - Load corresponding models
 - Call validate function to get the validation loss and validation accuracy (see how it evolves)
- 6) Save final model for inference

7) Inference:

- Load the model, eval() mode
- Get an image, preprocess (convert to tensor, add batch dimension)
- Get the logits and associated class

Tutorial V (4)

- 8) Improve the results: data augmentation
 - Load images from ML3 folder
 - Preprocess (resize, Randomcrop, tensor, normalize)
 - Convert to Numpy for plotting purposes (im_numpy)
 - The rest of the code is similar to previous code

9) Exercise

Tutorial VI: RNNs

<u>Link</u>

Introduction

 Goal: use Recurrent Neural Networks to predict and generate text sequence

- Program : inverted classroom style
 - Theory
 - Overview to get the big picture of the notebook
 - Work alone or in groups
- Technical: Google Colab, Pytorch

Theory

Overview of the notebook

Tutorial VI (1)

- 1) Load necessary libraries (common libraries and personal modules)
- 2) Text data
 - Read the data (rnn.txt), print the first 100 words
- 3) Build the dataset
 - 2 dictionaries: word → id (dictionary) and id → word (reverse_dictionary)
 - Build_dictionaries function
 - Vocabulary size = 493 (0=most common word)
 - Helper functions to get sequences of int or words (text_to_ints, ints_to_text)
 - Print example : first 100 words (or int), length of input data=2118 (words_as_int)

Tutorial VI (2)

3) Data streaming

- Create dataset using WordDataSet class to create blocks of text
 - Block length = n_input+1 = 3+1 = 4
- Create DataLoader with batch size=50, preprocess data (separate input and target sequences, stack data and convert Numpy > tensors, put them to GPU)
 - Length of dataset = Number of blocks in sequence = Total length/Block length = 2118/4=529
- Example: print the 50 samples that are in the 1st batch

Tutorial VI (3)

- 4) Construct model
- Create class RNN
 - Embedding layer (vocab_size, embedding_dim=128)
 - Loop to add the 3 LSTM layers
 - FC layer with vocab size
- Define sequence of 3 words (n_input), define dimension of 3 LSTM, call the RNN class
- Investigate the model using Tensorboard
 - Create an input of size=5 (x), transform to tensor, add batch
 - SummaryWriter to save the model and be able to open it with tensorboard
 - Print the output size of y: [5,1,493]
- Test the NOT trained model and see that it is bad
 - Get the first batch (break), apply the model, get the predictions, compare to true

Tutorial VI (4)

5) Train the model

- Params : n_input = 3, batch_size=50 , one LSTM layer (128),n_epochs=200
- Create the data loader (preprocess data)
- Optimization part : criterion, optimizer (RMSprop)
- Training loop on epochs, then on batches
 - Initialize gradients
 - Get the output (seq_len, batch_size, vocab_size), reshape it to (seq_len*batch_size, vocab_size)
 - Reshape labels (seq_len, batch_size) to (seq_len*batch_size)
 - Compute the loss between output and true labels
 - Backward prop, param update
 - Compute loss and accuracy
- Plot loss and accuracy

Tutorial VI (5)

- 6) Generate text with RNN
- Function to generate text (gen_long)
 - Input parameters: model, input sequence, number of words to generate (128)
 - No_grad() because we are in an evaluation mode
 - Loop on number of words, convert to tensor, predict, ...)