

■ <mark>분산분석 검진</mark>(ANOVA Diagnostics)

independent & identical distributed

- 기본가정: $\varepsilon_{ij} \sim \text{iid} N(0, \sigma^2)$ \hookrightarrow 잔차분석(residual analysis)

 - 독립성 ➡ 잔차들 간에는 항상 상관관계가 존재 धाँ= Yij-Yij
 - ♥ 정규성
 - 🔿 이상치 유무
- 잔차그림
 - 잔차 vs 적합값
 - 정규확률그림 : 蝸뉴-蝸뉴등¾(Q-Q plot)
 - Box-plot
- 수치적 방법 → NAME XX 제 PL

李树和134mc号对4号1403

$$\circ \underbrace{e_{ij} = Y_{ij} - \widehat{Y}_{ij}}_{ij} = Y_{ij} - \overline{Y}_{i.} \leftarrow \underbrace{\text{2bdol Yij= } \mu_1 + \epsilon_{1j} \rightarrow \epsilon_{1j} = \epsilon_{1j} + \epsilon_{1j} = \mu_1 + \epsilon_{1j} = \mu_1$$

$$\circ \text{ studentized } \sum r_{ij} = \frac{e_{ij}}{\widehat{se(e_{ij})}} \operatorname{Var}(\sigma_{ij}) = \operatorname{Var}(\frac{e_{ij}}{s.e(e_{ij})}) = \frac{\sigma^2}{s.e(e_{ij})^2} \rightarrow (\text{Standard error}) = \frac{\sigma^2}{$$

$$\begin{array}{c} \text{Studentized} \quad \sum_{ij} = r_{ij} - r_{i} \\ \text{(normalize: $$ \underbrace{\text{Mos}_{ij}}_{\text{se}(e_{ij})}$} : r_{ij} = \frac{e_{ij}}{se(e_{ij})} \\ \text{(standard error): $$ \underbrace{\text{Mos}_{ij}}_{\text{se}(e_{ij})}$} = \frac{\sigma^2}{4e(e_{ij})^2} \rightarrow 1 \\ \\ e_{ij} = \frac{n_i - 1}{n_i} Y_{ij} - \frac{1}{n_i} \sum_{k \neq j} Y_{ik} & \in \text{Yi}_{\delta} - \frac{1}{n_i} \underbrace{\frac{N_i}{N_i}}_{\text{kel}} \text{Yik} = \text{Yi}_{\delta} - \frac{1}{n_i} (\text{Yi}_{ij} + \sum_{k \neq j} \text{Yik}) : \text{$$$ \text{Notice with the power of the proof of th$$

$$\circ$$
 studentized deleted 잔차 : $t_{ij} = e_{ij} \left[\frac{N-p-1}{SSE(1-1/n_i)-e_{ij}^2} \right]^{1/2}$

Stud.
$$h_{11} = r_{11} = \frac{90-79.2}{\sqrt{\frac{10-1}{10} \times 223.59}} = 0.16$$
 4tud. del. $h_{11} = t_{11} = 10.8 \times \left(\frac{40-4-1}{8049.4 \times \left((1-\frac{1}{10})-10.8^2\right)}\right)^{\frac{1}{2}} = 0.16$

사시만 보면 얼마나 거야 박고만시 강이 안 \$ → Variability 불 나 너 를 반면 (1 있는 따 병고나 양 수 있음!	사료	내용	1	2	3	4	5	6	7	8	9	10
	(평균)		_)	4	J	O	/	0	9	10
		관측값 90-19.1	90	76	90	64	86	51	72	90	95	78
	_	잔차	10.8	-3.2	10.8	-15.2	6.8	-28.2	-7.2	10.8	15.8	-1.2
	(79.2)	stud. R.	0.76	-0.23	0.76	-1.07	0.48	-1.99	-0.51	0.76	1.11	-0.08
		stud. Del. R.	0.76	-0.22	0.76	-1.08	0.48	-2.09	-0.51	0.76	1.12	-0.08
		관측값	73	102	118	104	81	107	100	87	117	111
	2	잔차	-27	2	18	4	-19	7	0	-13	17	11
	(100)	stud. R.	-1.90	0.14	1.27	0.28	-1.34	0.49	0.00	-0.92	1.20	0.78
		stud. Del. R.	-1.99	0.14	1.29	0.28	-1.36	0.49	0.00	-0.92	1.21	0.78
		관측값 101-83.9	107	95	97	80	98	74	74	67	89	58
	3	잔차 🦠	23.1	11.1	13.1	-3.9	14.1	-9.9	-9.9	-16.9	5.1	-25.9
	(83.9)	stud. R.	1.63	0.78	0.92	-0.27	0.99	-0.70	-0.70	-1.19	0.36	-1.83
		stud. Del. R.	1.68	0.78	0.93	-0.27	1.00	-0.70	-0.70	-1.21	0.36	-1.90
		관측값	98	74	56	111	95	88	82	77	86	92
	4	잔차	12.1	-11.9	-29.9	25.1	9.1	2.1	-3.9	-8.9	0.1	6.1
	(85.9)	stud. R.	0.85	-0.84	-2.11	1.77	0.64	0.15	-0.27	-0.63	0.01	0.43
		stud. Del. R.	0.86	-0.84	-2.24	1.84	0.64	0.15	-0.27	-0.63	0.01	0.43

(등병사성 성실역부) -> graphically 학인가능!

(등빛난성 성념대부) -> graphically (떠진정도늘보고) 확인가능!

graphically 4 = + x 3 x 5 + 71

□ 등분산 검정

- 반복수가 같은 경우 동일한 분산을 가진다는 가정을 약간 어기는 경우 분산분석 방법은 robust함(☜)
- 반복수가 다르거나 어떤 한 분산이 다른 분산들보다 상당히 큰 경우 분산분석 방법은 robust하지 않음 ➡ 분산들이 같은지 다른지를 검정필요 (만)하기 → 지과 하이 및 바이지!
- ullet 가설: H_0 : $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_p^2$ VS H_1 : 최소한 하나 이상의 분산은 다름

○ Hartley 검정

- 동일 반복수(n)
- 검정통계량 : $H^* = \frac{\max(S_i^2)}{\min(S_i^2)} \sim H(p,n-1)$ → Hartley's Fmax table 이용

$$\circ S_i^2 = \sum (Y_{ij} - \overline{Y}_{i.})^2 / (n_i - 1)$$

- 기각역 : $H^* > H(1-\alpha,p,n-1)$ $\Rightarrow \frac{\max}{\min}$ 이 창국 동병산성이 재심
- 쥐 성장량 (□ 등 (YIS YI.) ¹
 - \circ $S_1^2 = 192.84$, $S_2^2 = 229.11$, $S_3^2 = 246.77$, $S_4^2 = 225.66$
 - $H = \frac{246.77}{192.84} = 1.280$ < H(0.95,4,9) = 6.31 ⇒ 등분산을 만족함

○ Brown-Forsythe 검정

● <mark>절대편차</mark>를 먼저 계산

$$D_{ij} = \left| Y_{ij} - \widetilde{Y}_i \right| = \left| \text{observed is -13912obis} \right|$$
 $\frac{1}{2} + \frac{1}{2} = \left| \frac{1}{2} + \frac{1}$

- \circ Y_i : i 번째 그룹의 중앙값 (Y_i) 전에 대한것
- 검정통계량 : $F_{BF}^{\bullet} = \frac{MSTR^*}{MSE^*} \simeq F_{p-1,N-p}$
- 쥐 성장량

$$\circ$$
 중앙값: $\widetilde{Y}_1=82$, $\widetilde{Y}_2=103$, $\widetilde{Y}_3=84.5$, $\widetilde{Y}_4=87$

○
$$MSTR^* = 12.567$$
, $MSE^* = 76.858$ \Rightarrow $F_{BF}^* = 0.164$ $<$ $F_{0.05,3.36} = 2.866$ $= 5678/3$ $= 568/36$ \Rightarrow Ho 174 \Rightarrow 174 \Rightarrow 175 \Rightarrow 186 \Rightarrow 187 \Rightarrow 188 \Rightarrow 189 \Rightarrow

○ Bartlett 검정 : 몇만에대한경쟁

• 검정통계량 : $\chi_0^2 = 2.3026 \frac{q}{c} \sim \chi_{p-1}^2$

$$q = (N-p)\log_{10} MSE - \sum_{i=1}^{p} (n_i - 1)\log_{10} S_i^2$$

$$c = 1 + \frac{1}{3(p-1)} \left\{ \sum_{i=1}^{p} \frac{1}{n_i - 1} - \frac{1}{N-p} \right\}$$

- Bartlett's 검정 통계량은 정규 가정에 매우 민감하기 때문에 정규 가정이 의심스러우면 사용할 수 없음
- 쥐 성장량

정규성 검정

- Shapiro-Wilk test, Kolmogorov-Smirnov test, Cramer-von Mises test, Anderson-Darling test
- Jarque-Bera test

기 이 값이 크여된 Ho기가 , 게 차 너
$$\chi$$

$$\underline{JB} = \frac{n}{6} \left(b_1 + \frac{1}{4} (b_2 - 3)^2 \right) ~~\chi^2(2) ~~\chi^2(2) ~~\chi^2(2)$$

 $\sqrt{b_1}$: 왜도(skewness) = $\mathbb{E}[(\frac{\mathbb{E}}{b})^*]$ b_2 : 첨도(kurtosis) = $\mathbb{E}[(\frac{\mathbb{E}}{b})^*]$

71111

□ 문제 발생 시 해결방안

① 변환(transformation)

동빛산성성업이 안된 경우

- त्र १४१ १० माम्सिक्ष पहिला प्रमार्ट स्व
- <mark>분산상수화변환</mark>(variance stablizing transformatio<mark>n, 분산안정화 변화)</mark>
 - \circ 잔차그림에서 잔차의 표준편차(분산)이 (\hat{Y}) 기 값과 연관성을 보이는 경우
 - / 분산을 상수화시키기 위한 변환을 찾는 방법
 - $\sigma_i^2 = Var(Y_{ij})$ 와 $\mu_i = E(Y_{ij})$ 사이에 함수관계가 존재하는 경우: $\sigma_i^2 = f(\mu_i)$
 - 이미: $\sigma_i^2=c\,\mu_i^2$ $(\sigma_i=c\mu_i)$, $\sigma_i^2=c\mu_i$ $(\sigma_i=\sqrt{\mu_i})$
 - $g(Y_{ij})$ 의 분산이 μ_i 에 영향을 받지 않게 하는 함수 $g(\cdot)$ 를 찾는 방법: 동생산년이 당상하다
 - 함수 $g(Y_{ij})$ 를 μ_i 에 대한 1차 테일러전개

$$g(\,Y_{ij}\,)\,\simeq g(\mu_i\,) + (\,Y_{ij} - \mu_i\,)g'(\mu_i\,)$$

$$\begin{array}{lll} -g(Y_{ij}) 의 분산 & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

- $g(Y_{ij})$ 의 분산이 μ_i 와 무관한 상수가 되려면 $\mathcal{C}\simeq\{g'(\mu_i)\}^2f(\mu_i)$

$$\Rightarrow g'(\mu_i)^2 \propto \frac{1}{f(\mu_i)} \Rightarrow g'(\mu_i) \propto \frac{1}{\sqrt{f(\mu_i)}}$$

$$\Rightarrow$$
 변환함수: $g(x) \propto \int \frac{1}{\sqrt{f(x)}} dx$ 기계 (아라이 mal 하片)

$$\bigcirc$$
 $\sigma_i^2 = c\mu_i^2$ $(\sigma_i = c\mu_i)$ \Rightarrow 자연로그변환인 $\log(Y_{ij})$ 를 이용

$$0 \int \frac{1}{(1^2)^{1/2}} dx = \int \frac{1}{1} dx = \ln|x| + c$$

$$\Im \int \frac{1}{(1)^{1/2}} dx = 2\sqrt{3} + 0$$

내데이터가 normal을 따고지않는경우 normal 이 아닌 변부들을 normal type으로 바꿀

- Box-Cox transformation (1964)
 - 최대가능도 추정에 의한 변환선택

પ્રાપ્ત મામ્યુ
$$g(x,\lambda) = \begin{cases} (x^{\lambda}-1)/\lambda, & \lambda \neq 0 \\ \log(x), & \lambda = 0. \end{cases}$$

Yeo-Johnson transformation (2000)

$$g(x,\lambda) = \begin{cases} ((x+1)^{\lambda}-1)/\lambda, & \lambda \neq 0, \quad x \geq 0 \\ \log(x+1), & \lambda = 0, \quad x \geq 0 \\ -((-x+1)^{2-\lambda}-1)/(2-\lambda), & \lambda \neq 2, \quad x < 0 \\ -\log(-x+1), & \lambda = 2, \quad x < 0. \end{cases}$$

Modulus transformation (2000)

$$g(x,\lambda) = \begin{cases} sign(x) \frac{(|x|+1)^{\lambda}-1)}{\lambda}, & \lambda \neq 0 \\ sign(x) \log(|x|+1), & \lambda = 0. \end{cases}$$
 Sign(\delta) = \int \text{if } \frac{1}{20} \\ -1 \text{if } \frac{1}{20} \\ -1 \text{if } \frac{1}{20} \\ \end{array}

이전에 ४४% 전 선택 모델의 Ү%는 면속형 ㅋ 보통장치성가정 하지만더 되는 범위의 불당을 따르는 경우가 많지 때문에 일반화

- ② 일반화선형모형(generalized linear models,(GLM)
- Y_{ij} 의 분포 지수족(exponential family)
 - 정규분포, 이항분포, 음의 이항분포, 포아송분포, 감마분포(지수분포), ...
- 구조식

$$\circ \quad E(Y_{ij}) = \mu_i$$

Fink func. $\circ g(\mu_i) = x_{ij}^T \beta$

(씨가 불 시청 연변 시장 g: 연결함수(link function)

 $\begin{cases} \text{logit link: } \log(\mu_i/(1-\mu_i)) \text{ , } 0<\mu_i<1 \text{ You will your link: } \log(\mu_i) \text{ , } \mu_i>0 \text{ You you have the property of the property o$

● 최대가능도법을 이용하여 모수추정(♂)

* 1/2064: Mi= 1igTB = 1/11/11+ 1/12/02+ ... 1/19/8P -> (-00,00) ० एक पा लागराम भार्यन्ति सुरुह्विष्टिन्ति (०.१) → equality 생생을 위해 굉장히 많은 conftraint 필요

→ logit link针的过 (-a, a) 3 性付計台 13 र्जिंद्रपीर्वास्ट्र प्रह count or A 48. 50 0 0 7 75

→ loglink भाक्षाल (-∞, ∞) ३ धभ धार

८ ११९५५ ना १५७

- ③ **비모수적 방법** : 하정에는가항 방법 대신 robust 항 (: 기기)
- 자료의 값 대신 순위(rank)를 사용
 - 자료를 정렬한 후 해당 자료의 순위를 구함
 - tie가 있는 경우 순위의 중간값 사용

$$TSS = \sum_{i} \sum_{j} \left(R_{ij} - \overline{R}_{..}\right)^{2}$$

$$SSE = \sum_{i} \sum_{j} \left(R_{ij} - \overline{R}_{i.}\right)^{2}$$

$$SSTR = \sum_{i} n_{i} \left(\overline{R}_{i.} - \overline{R}_{..}\right)^{2}$$

○ 검정통계량

$$F_0 = \frac{SSTR/(p-1)}{SSE/(N-p)} = \frac{MSTR}{MSE} \sim F_{p-1,N-p}$$

똑같이계산! (T도사용가능, romk이용외의 사이점없음