NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Introduction – Task definition

Task: Real-world view synthesis

Inputs: sparsely sampled images

Outputs: synthesis views of the scene

Introduction – Task definition

Contribution

- An approach for representing continuous scenes with complex geometry and materials as 5D neural radiance fields, parameterized as basic MLP networks.
- A differentiable rendering procedure based on classical volume rendering techniques. This includes a hierarchical sampling strategy to allocate the MLP's capacity towards space with visible scene content
- A **positional encoding** to map each input 5D coordinate into a higher dimensional space, which enables us to successfully optimize neural radiance fields to represent high-frequency scene content.

Radiance Fields

NERF

1. Ray composition r(t) = o + td

3. Query into MLP

2. Sample 5D points from the ray (Coarse, fine Model)

4. Volume Rendering

Volume Rendering

 The ray is weighted sum of each 3D point using color, density prosperities

Accumulated transmittance

$$C(\mathbf{r}) = \int_{t_n}^{t_f} \frac{\mathbf{T}(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t),\mathbf{d})dt}{\mathbf{T}(t)\sigma(\mathbf{r}(t))\mathbf{d}}, \text{ where } T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s))ds\right)$$

Volume density or Occupancy at a 3D point lying on the ray

Volume Rendering

 The ray is weighted sum of each 3D point using color, density prosperities

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i, \text{ where } T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right),$$

Hierarchical volume sampling

- Problem
 - Rendering strategy of densely evaluating the neural radiance field network at N query points along each camera ray is inefficient: free space and occluded regions that do not contribute to the rendered image are still sampled repeatedly.

Hierarchical volume sampling

$$\hat{C}_c(\mathbf{r}) = \sum_{i=1}^{N_c} w_i c_i, \quad w_i = T_i (1 - \exp(-\sigma_i \delta_i)). \quad \hat{w}_i = w_i / \sum_{j=1}^{N_c} w_j$$

Sample points along the ray in 2 steps. (Coarse to Fine manner)

$$\hat{w}_i = w_i / \sum_{j=1}^{N_c} w_j$$

$$t_i \sim \mathcal{U}\left[t_n + \frac{i-1}{N}(t_f - t_n), \ t_n + \frac{i}{N}(t_f - t_n)\right].$$

- 1) Uniformly divide a ray into No bins, and sample one point per each bin, total No points. (Stratified sampling)
- Then feed forward those points to MLP and get contribution weights. (Coarse Network)
- 2) Sample N_f points according to the probability distribution. (Inverse transform sampling)
- Finally feed forward Nc+Nf sampled points to MLP (Fine Network) and get colors and volume density of that points.

Positional encoding

$$\gamma(p) = (\sin(2^0\pi p), \cos(2^0\pi p), \cdots, \sin(2^{L-1}\pi p), \cos(2^{L-1}\pi p)).$$

- $\gamma: R^L \to R^{2L}$
- Problem
 - Having the network directly operate on $xyz\theta\phi$ input coordinates results in renderings that perform poorly at representing high-frequency variation in color and geometry.
- They additionally show that mapping the inputs to a higher dimensional space using high frequency functions before passing them to the network enables better fitting of data that contains high frequency variation.

Rendering Loss

$$\mathcal{L} = \sum_{\mathbf{r} \in \mathcal{R}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$

architecture

Experiment setting

• batch size of 4096 rays, each sampled at Nc = 64 coordinates in the coarse volume and Nf = 128 additional coordinates in the fine volume.

Adam optimizer

• The optimization for a single scene typically take around 100–300k iterations to converge on a single NVIDIA V100 GPU (about 1–2 days).

Results

	Diffuse S	Synthetic	360° [41]	Realistic Synthetic 360°			Real Forward-Facing [28]		
Method	PSNR↑	$\mathrm{SSIM} \!\!\uparrow$	$LPIPS\downarrow$	PSNR↑	$\mathrm{SSIM} \!\!\uparrow$	$\mathrm{LPIPS}\!\!\downarrow$	PSNR↑	$\mathrm{SSIM} \!\!\uparrow$	$\mathrm{LPIPS}\!\!\downarrow$
SRN [42]	33.20	0.963	0.073	22.26	0.846	0.170	22.84	0.668	0.378
NV [24]	29.62	0.929	0.099	26.05	0.893	0.160	-	-	-
LLFF [28]	34.38	0.985	0.048	24.88	0.911	0.114	24.13	0.798	$\boldsymbol{0.212}$
Ours	40.15	0.991	0.023	31.01	0.947	0.081	26.50	0.811	0.250

Results

Tradeoffs

• The biggest practical tradeoffs between these methods are time versus space.

• LLFF can process a small input dataset in under 10 minutes. However, LLFF produces a large 3D voxel grid for every input image, resulting in enormous storage requirements (over 15GB for one "Realistic Synthetic" scene).

NERF requires only 5 MB for the network weights