

[K] Gemastik Corporation

Batas waktu: 1 detik per test case

Batas memori: 128 MB

Deskripsi Masalah

Gemastik Corporation sedang melakukan seleksi terhadap N orang kandidat untuk bergabung di perusahaan. Setiap kandidat akan melalui 3 tahapan tes yang dilaksanakan secara berurutan. Berdasarkan informasi yang telah diperoleh, perusahaan telah mengetahui waktu yang dibutuhkan oleh masing-masing kandidat untuk menyelesaikan setiap tahapan tes. Setiap tahapan tes akan dilaksanakan hanya pada satu ruangan tertentu yang berbeda, yaitu ruang 1 untuk tes tahap 1, ruang 2 untuk tes tahap 2, dan ruang 3 untuk tes tahap 3.

Bantulah Gemastik Corporation untuk menentukan urutan menyeleksi para kandidat sehingga proses keseluruhan dapat selesai dalam waktu seminimal mungkin, dengan aturan sebagai berikut:

- Setiap kandidat harus melaksanakan tes tahap 1, tahap 2, dan tahap 3 secara berurutan.
- Pada satu waktu hanya boleh ada maksimal satu orang kandidat di masing-masing tahapan
- Seorang kandidat hanya boleh melaksanakan sebuah tahapan tes tertentu setelah kandidat di urutan sebelumnya telah menyelesaikan tahapan tersebut.
- Karena tes tahap 2 memiliki tingkat kesulitan yang lebih rendah dibanding kedua tahap lainnya, dapat dipastikan bahwa alokasi waktu maksimal untuk tes tahap 2 selalu lebih kecil atau sama dengan alokasi waktu minimal untuk tahap 1 dan tahap 3. Secara formal, jika didefinisikan $T_{i,1}$, $T_{i,2}$, $T_{i,3}$ berturut-turut adalah waktu yang dialokasikan kepada kandidat kei untuk menyelesaikan tes tahap 1, tahap 2, tahap 3, dengan $1 \le i \le N$, maka berlaku $\max_{1 \leq i \leq N} T_{i,2} \leq \min_{1 \leq j \leq N} T_{j,1} \operatorname{dan} \max_{1 \leq i \leq N} T_{i,2} \leq \min_{1 \leq j \leq N} T_{j,3}.$

Divisi I Pemrograman – Babak Final

Format Masukan dan Keluaran

Baris pertama masukan berisi sebuah bilangan bulat N ($1 \le N \le 10^6$) yang menyatakan jumlah kandidat. N baris berikutnya masing-masing berisi 3 buah bilangan bulat $T_{i,1}$, $T_{i,2}$, $T_{i,3}$ $(1 \le T_{i,1}, T_{i,2}, T_{i,3} \le 10^8)$ yang menyatakan waktu (dalam menit) yang dialokasikan kepada kandidat ke-i $(1 \le i \le N)$ untuk menyelesaikan tes tahap 1, tahap 2, dan tahap 3.

Keluaran berupa satu bilangan bulat yang menyatakan waktu minimal untuk menyelesaikan proses seleksi secara keseluruhan.

Contoh Masukan/Keluaran

		Masukan	Keluaran		
3	F		26		
8	1	5			
4	4	5	•		
6	2	8			
5			42		
4	3	5			
8	4	8			
7	2	10			
5	1	7			
4	4	6			

Divisi I Pemrograman – Babak Final

Penjelasan Contoh

Pada Contoh 1, proses seleksi dapat selesai dalam waktu 26 menit dengan urutan kandidat: 2, 3, 1. Timeline pelaksanaan tes dapat dilihat di tabel berikut.

77 111	Tes Tahap 1		Tes Tahap 2		Tes Tahap 3	
Kandidat	Mulai	Selesai	Mulai	Selesai	Mulai	Selesai
2	0	4	4	8	8	13
3	4	10	10	12	13	21
1	10	18	18	19	21	26

Ilustrasi waktu untuk tabel di atas dapat dilihat pada gambar berikut, dengan daerah berwarna hitam menunjukkan kandidat ke-2, daerah berwarna putih menunjukkan kandidat ke-3, dan daerah dengan garis diagonal menunjukkan kandidat ke-1.

Meskipun kandidat ke-3 sudah menyelesaikan tes tahap 2 pada menit 12, dia baru bisa memulai tes tahap 3 setelah kandidat ke-2 selesai menyelesaikan tes tahap 3 di menit 13.

Pada Contoh 2, proses seleksi dapat selesai dalam waktu 42 menit dengan urutan: 4, 1, 5, 3, 2.

[L] Faktor Intrinsik

Batas waktu: 2 detik per test case Batas memori: 512 MB

Deskripsi Masalah

Sebuah barisan A, yaitu $A_1, A_2, A_3, ...$, dikatakan terfaktorkan secara intrinsik jika dan hanya jika untuk setiap indeks i, nilai dari $2 \cdot A_i$ tidak lebih kecil dari jumlah A_j untuk semua j yang merupakan faktor dari i.

Gema mempunyai barisan A yang terdiri atas N bilangan, $[A_1, A_2, A_3, ..., A_N]$. Dalam satu operasi, Gema memilih sebuah indeks i ($1 \le i \le N$) dan membuat nilai A_i bertambah sebesar 1.

Untuk setiap k dari 1 sampai N, Gema ingin menghitung, jika semua k-1 elemen pertama dari barisan A diubah menjadi 0, berapa banyak minimal operasi untuk membuat barisan A terfaktorkan secara intrinsik?

Format Masukan dan Keluaran

Baris pertama masukan terdiri atas satu bilangan bulat N ($1 \le N \le 200.000$). Baris berikutnya berisikan N buah bilangan yang menyatakan A_i $(1 \le i \le N)$ dengan $0 \le A_i \le 10^9$.

Keluaran berupa N bilangan bulat yang dipisahkan dengan spasi, dengan bilangan ke-k merepresentasikan banyaknya operasi minimal untuk membuat barisan A terfaktorkan secara intrinsik jika semua k-1 elemen pertama pada barisan A diubah menjadi 0.

Contoh Masukan/Keluaran

Masukan	Keluaran			
5	8 2 0 0 0			
3 2 4 0 2				

Divisi I Pemrograman – Babak Final

Penjelasan Contoh

Barisan A yang dipunyai Gema adalah [3, 2, 4, 0, 2].

Jika 0 elemen pertama dari A diubah menjadi 0, maka barisan A tidak berubah sama sekali. Untuk membuat A terfaktorkan secara intrinsik, Gema bisa melakukan 1 operasi di indeks 2, 6 operasi di indeks 4, dan 1 operasi di indeks 5 untuk membuat barisan A menjadi [3, 3, 4, 6, 3]. Untuk melihat bahwa barisan [3, 3, 4, 6, 3] terfaktorkan secara intrinsik, diperhatikan bahwa:

- $2 \cdot A_1 = 6 \operatorname{dan} A_1 = 3$. Maka, berlaku $2 \cdot A_1 \ge A_1$.
- $2 \cdot A_2 = 6 \text{ dan } A_1 + A_2 = 6$. Maka, berlaku $2 \cdot A_2 \ge A_1 + A_2$.
- $2 \cdot A_3 = 8 \operatorname{dan} A_1 + A_3 = 7$. Maka, berlaku $2 \cdot A_3 \ge A_1 + A_3$.
- $2 \cdot A_4 = 12 \operatorname{dan} A_1 + A_2 + A_4 = 12$. Maka, berlaku $2 \cdot A_4 \ge A_1 + A_2 + A_4$.
- $2 \cdot A_5 = 6 \text{ dan } A_1 + A_5 = 6$. Maka, berlaku $2 \cdot A_5 \ge A_1 + A_5$.

Jika 1 elemen pertama dari A diubah menjadi 0, maka barisan A akan menjadi [0, 2, 4, 0, 2]. Untuk membuat A terfaktorkan secara intrinsik, Gema bisa melakukan 2 operasi di indeks 4 untuk membuat barisan A menjadi [0, 2, 4, 2, 2].

Jika 2 elemen pertama dari A diubah menjadi 0, maka barisan A akan menjadi [0, 0, 4, 0, 2]. Tanpa melakukan operasi apapun, A telah terfaktorkan secara intrinsik.

Jika 3 elemen pertama dari A diubah menjadi 0, maka barisan A akan menjadi [0, 0, 0, 0, 2]. Tanpa melakukan operasi apapun, A telah terfaktorkan secara intrinsik.

Jika 4 elemen pertama dari A diubah menjadi 0, maka barisan A akan menjadi [0, 0, 0, 0, 2]. Tanpa melakukan operasi apapun, A telah terfaktorkan secara intrinsik.