Lab: Efficient Algorithms for Selected Problems

Prof. Dr. Heiko Röglin Joshua Könen, Sarah Sturm & Aaron Weinmann

Summer Term 2025

Topic of the lab

Competitive programming

Solving challenging programming exercises with limited resources by combining efficient algorithms and efficient implementations.

Structure of the lab

Plan for the term

- There will be five exercise sheets, about 35 exercises in total
- Upload your solutions to our server
- After sheet 2: (Fixed) teams are allowed, we track individual contributions
- Meet every 2-3 weeks to present solutions
- Hand in report at the end of the term
- Grading based on # of correct solutions (1/3), active participation in the meetings & presentation of solutions (1/3) and the report (1/3)
- You may upload solutions after the presentation (will count slightly less towards your grade)
- Mandatory attendance to the lab meetings

Submitting solutions

Automatic testing

- Upload source code, server will compile and execute
- Server runs code on (secret) inputs and compares output (be careful with spaces/newlines)
- Read input from standard input
- Server applies strict time and memory limits
- Response: Correct, Wrong Answer, Timeout, Runtime error, Compile error
- New testcases might be added during the semester

Supported languages

- C++17: g++-12.2.0-14
- Java 17: openjdk-17.0.10
- Python 3: 3.11.2 (no numpy)

Lab server at

https://competitive-programming2.informatik.uni-bonn.de

→ Demonstration

If you choose to participate in the Lab, please send an email to s6aawein@uni-bonn.de. We will then send you your Login-Information via mail.

Presentation of Solutions

- Short presentation of problem setting and solution idea
- Code segments are allowed to be shown but should not be a substitute for presentation
- Someone (with average coding experience) who did not read the problem description should be able to solve the problem after hearing the presentation
- Depending on difficulty of the exercise the presentation length can vary, we estimate a time length of \approx 3 minutes for easier exercises and \approx 10 minutes for more difficult ones
- If you want to present a specific problem, please write us an email in advance until the thursday before the next meeting

Guideline/Suggestions for Presentations

- Introduce problem setting:
 - What is the problem about? What do we want to solve?
 - How is the input given?
 - What is the main difficulty?
 - Possible further remarks if given by problem description
- Idea of the algorithm:
 - How does the algorithm work? What technique(s) does it use?
 - Why does the (approximation) algorithm work? What is the proof idea/ how can one show that the algorithm works correctly?
 - What is the asymptotic runtime (and why)?
- Images/Figures are nice to have but not required
- Presentation can also be made at the whiteboard

Timeline

Meetings and Presentations

Meeting	Presentation	Release
08.04.2025	Organization	Sheet 1
22.04.2025	Solutions Sheet 1	Sheet 2
06.05.2025	Solutions Sheet 2	Sheet 3
27.05.2025	Solutions Sheet 3	Sheet 4
24.06.2025	Solutions Sheet 4	Sheet 5
15.07.2025	Solutions Sheet 5	

Deadline for final reports (preliminary): 24.08.2025 Registration in Basis: 17.04.2025 - 30.04.2025