INTRODUCTION:

The elements in which the differentiating electron enters the d-orbital of the penultimate shell are called d - block element.

- d-block elements are present in between electropositive s-block elements and electronegative p-block elements in the periodic table.
- There are 4 series of d-block elements.
- First 3 series conation 10 elements each and fourth series is incomplete.
- 3d series present in IV period starting from Sc(21) to Zn (30)
- 4d series present in V period starting from Y(39) to Cd (48)
- 5d series present in VI period starting from La(57) to Hg (80)
- 6d series starts from Ac(89) and in complete. Present in VII period.
- d- block elements are also called transition elements, as they bring about the change from electropositive to electronegative in a gradual manner by being present in between s-block and p-blocks.
- All d-block element are not transition elements but all transition element are d-block elements.
- In, Cd and Hg are not transition elements as they contain completely filled (n −1)d orbitals.
- Cu, Ag and Au are called typical transition elements though they contain completely filled
 - (n-1) d-orbitals because they show some similarities with other transition elements.
- A true transition element has partly filled d-sub level either in elemental state or in stable oxidation state of it's ion.
- d-block elements occupy III B VII B, VIII, I B, II B groups of periodic table in 4th, 5th, 6th and 7th periods. VIII group has 3 elements. i.e transition triad.
- The outer electronic configuration of d-block elements is $ns^{1 \text{ or } 2}$ (n -1) d^{1-10} .
- Some d-block elements have exceptional configuration, to acquire the extra stability having half filled and completely filled d-orbtials, due to greater exchange energy.
- The following elements violate aufbau principle.

Ex: 1) Chromium - $4s^1 3d^5$

2) Copper $-4s^1 3d^{10}$

3) Molybdenum - 5s¹ 4d⁵

4) Palladium - 5s⁰ 4d¹⁰

5) Silver - $5s^1 4d^{10}$

6) Platinum - $6s^{0}3d^{10}$ or $6s^{1}5d^{9}$

7) Gold $-6s^1 5d^{10}$

• Transition of electrons between ns and (n −1) d levels takes place easily because the energy difference between these two levels is small.

Typical characteristic properties:

- The transition elements exhibit the following typical characteristic properties due to small size, large nuclear charge and presence of d-electrons.
 - i) Variable oxidation states
 - ii) Para and ferromagnetic properties
 - iii) Formation of coloured hydrated ions and salts
 - iv) Alloy formation
 - v) Catalytic properties
 - vi) Complex formation.

Variable oxidation states:

- They show variable oxidation states and variable valency due to the involvement of (n-1)d electrons along with ns electrons.
- Smaller energy difference between (n-1)d and ns electrons permit the (n-1)d electrons to participate in bonding.
- Cr and Cu can exhibit +1 oxidation state. Highest oxidation state is exhibited by Mn i.e.
 +7 in
 3d series.
- The number of oxidation states increases from left to middle and then decreases.
- The stability of oxidation state is related to stable electronic configuration.
 - Fe^{3+} (3d⁵) is more stable than Fe^{2+} (3d⁶)
 - Mn^{2+} (3d⁵) is more stable than all it's other oxidation state.
 - $Cu^{2+}(3d^9)$ is more stable than $Cu^{+1}(3d^{10})$ due to greater hydration energy.
- The maximum oxidation state of these elements is the sum of ns electrons and unpaired (n-1)d electrons.
- Co \rightarrow + 2, + 3, + 4
- Cr \rightarrow + 1,+2,+3,+5,+6 oxidation state are possible
- Sc \rightarrow + 3; Ni \rightarrow + 2, + 4
- Mn \rightarrow +2, +3, +4, +5, +6, +7.oxidation states are possible.
- Ti \rightarrow + 2, + 3, + 4
- Cu \rightarrow +1, + 2 oxidation states are possible
- $V \rightarrow +2, +3, +4, +5$
- Fe \rightarrow + 2, + 3, + 4, + 5, + 6

Oxidation states which are underlined are stable.