- 1. Consider the network diagram in Figure 13.14. For each directed edge, the first number is the capacity and the second value is intended to give a flow  $\phi$  in the network. However, the flow suggested is not valid.
  - a. Identify the reason(s)  $\phi$  is not valid.
  - b. Without changing any of the edge capacities, modify  $\phi$  into a valid flow  $\widehat{\phi}$ . Try to use as few modifications as possible.



**Figure 13.14.** An invalid flow in a network

**2.** Alice claims to have found a (valid) network flow of value **20** in the network shown in Figure 13.15. Bob tells her that there's no way she's right, since no flow has value greater than 18. Who's right and why?



**Figure 13.15.** A network

**3.** Find an augmenting path P with at least one backward edge for the flow  $\phi$  in the network shown in Figure 13.16. What is the value of  $\delta$  for P? Carry out an update of  $\phi$  using P to obtain a new flow  $\hat{\phi}$ . What is the value of  $\hat{\phi}$ ?



Figure 13.16. A network with flow

**5.** Find the capacity of the cut (L, U) with

$$L = \{S, F, H, C, B, G, I\} \qquad \text{and} \qquad U = \{A, D, E, T\}$$

in the network shown in Figure 13.16.



10. Figure 13.18 shows a network. Starting from the zero flow, i.e., the flow with  $\phi(e)=0$  for every directed edge e in the network, use the Ford-Fulkerson labeling algorithm to find a maximum flow and a minimum cut in this network.



Figure 13.18. A network