$F_{R}(\cdot) PRF$ $G_{R}(\alpha) = rot \left(F_{R}(\alpha)\right) \quad 11000$ $J_{R}(\alpha) = rot \left(F_{R}(\alpha)\right) \quad 01100$ $J_{R}(\cdot) \text{ is a PRF, is } G_{R}(\cdot) \text{ a PRF } = -7eS$ -705 $G_{R}(\cdot) \neq PRF \Rightarrow F_{R}(\cdot) \neq PRF$ $|Pr(D^{G_{R}(\cdot)})|=1) - Pr(D^{f(\cdot)}(D^{(1)})=1) | \neq negl(D^{(1)})$ $|Pr(D^{G_{R}(\cdot)})|=1 \Rightarrow Oracle G_{R}(\cdot)$ $|Oracle F_{R}(\cdot)| \Rightarrow Oracle G_{R}(\cdot)$ $|Pr(\hat{D}^{F_{R(r)}}) - Pr(\hat{D}^{f(r)})| + negl(n)$

 $m=m, ... m_k$ $t_i = mac_k(r||k||i||m_i)$ $t_i = mac_k(r||k||i||m_i)$ $t_i = mac_k(r||k||i||m_i)$ -mix-and-match -reordering -truncation $\langle r, t_2, t_1 \rangle \xrightarrow{\text{tog for}} m_2 m_1$ mot m1 $m = m_1 m_2$ $\langle r, t_1, t_2 \rangle$ $\langle r, t_1, \tau \rangle \longrightarrow m_1$

MAC_R is Secure

F_R(.) IS PRF
$$\Longrightarrow$$
 MAC_R is Secure

 $t = F_R(m)$
 $t = F_R(m)$
 $f_R(\cdot) \neq F_R(\cdot) \neq$

2nd-preimage

A: given x, $H^{2}(x)$ But x' $H^{3}(x) = H^{3}(x')$ $X = H^{3}(x) = H^{3}(x')$

Bob

Fy F2, F2, F4

Fy F2, F3, F4

Mack (H(m))

Mack (H(m))