Setup and Regularization for training

Most of this material is from Prof. Andrew Ng'and Chang's slides

Contents

- Setup for training
- Bias & Variance
- Regularization for training effectiveness

Applied ML is a highly iterative process

 Making good choices in how you set up your training, development, and test sets can make a huge difference for you to find a high performance neural network quickly

Applied ML is a highly iterative process

- When training a neural network, you have to make a lot of decisions:
 - # of layers
 - # of hidden units
 - learning rates
 - activation functions

- ..

Applied ML is a highly iterative process

- When training a neural network you have to make a lot of decisions:
 - # of layers
 - # of hidden units
 - learning rates
 - activation functions

- ...

 It is almost impossible to correctly guess the right values for hyperparameters

Applied ML is a highly iterative process

- When training a neural network you have to make a lot of decisions:
 - # of layers
 - # of hidden units
 - learning rates
 - activation functions

_

- It is almost impossible to correctly guess the right values for hyperparameters
- Therefore, in practice, applied machine learning is a highly iterative process

Train/Dev/Test Sets Data training set - hold-out cross validation set - development set ("dev" set) rule of thumb for splitting data Previous era (# of samples = 100 or 1,000 or 10,000): training/test = 70/30 % training/dev/test = 60/20/20 %

Mismatched train/test distribution

Goal: Cat Detector

Dev/test sets: Training set:

(high-density) cat pictures

from webpages

(low-density) cat pictures from users using your app

Mismatched train/test distribution

Goal: Cat Detector

Training set: Dev/test sets:

(high-density) cat pictures (low-density) cat pictures from webpages from users using your app

rule of thumb for splitting data:

- Make sure dev and test sets come from same distribution
- Even Not having a test set might be okay (only having dev set) for better training

Bias and Variance

- Bias and variance tradeoff is a very important problem in traditional machine learning
- But, in deep learning era, it's importance has been somewhat reduced

Bias and Variance

Cat classification

Train set error:	1%	15%	15%	0.5%
Dev set error:	11%	16%	30%	1%
	high variance	high bias	high bias & high variance	low bias & low variance

Human's classification error ≈ 0%

Bias and Variance

Cat classification

Train set error:	1%	15%	15%	0.5%
Dev set error:	11%	16%	30%	1%
	high variance	high bias	high bias & high variance	low bias & low variance

• If human's error \approx 15%, then the second case does not have the high bias problem

Cat classification

						bias
	Train set error:	1%	15%	15%	0.5%	Jius
	Dev set error:	11%	16%	30%	1%	
variance		high variance	high bias	high bias &	low bias &	
= DS err	or – TS error			high variance	low variance	

Human's classification error ≈ 0%

Regularization

• Regularization helps to prevent overfitting, or to reduce the variance of your network

Regularization for Logistic Regression

$$\min_{w,b} J(w,b) \qquad w \in \mathbb{R}^n, b \in \mathbb{R}$$

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Regularization for Logistic Regression

$$\min_{w,b} J(w,b) \qquad w \in \mathbb{R}^n, b \in \mathbb{R}$$

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} ||w||_{2}^{2} + \frac{\lambda}{2m} b^{2}$$

$$L_{2} \text{ regularization:} \quad ||w||_{2}^{2} = \sum_{j=1}^{n} w_{j}^{2} = w^{T} w$$

Regularization for Logistic Regression

$$\min_{w,b} J(w,b) \qquad w \in \mathbb{R}^n, b \in \mathbb{R}$$

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} ||w||_{2}^{2} + \frac{\lambda}{2m} b^{2}$$

 $L_2 \text{ regularization:} \quad ||w||_2^2 = \sum_{i=1}^n w_i^2 = w^T w$

$$L_1$$
 regularization: $||w||_1 = \sum_{j=1}^n |w_j| \longrightarrow \text{sparse w}$

Regularization for Logistic Regression

$$\min_{w,b} J(w,b)$$
 $w \in \mathbb{R}^n, b \in \mathbb{R}$ λ : regularization parameter

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} ||w||_{2}^{2} + \frac{\lambda}{2m} b^{2}$$

$$L_2$$
 regularization: $||w||_2^2 = \sum_{j=1}^n w_j^2 = w^T w$

$$L_1$$
 regularization: $||w||_1 = \sum_{j=1}^n |w_j| \longrightarrow \text{sparse w}$

Regularization for Neural Network

$$J(W^{[1]}, b^{[1]}, \dots, W^{[L]}, b^{[L]}) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \sum_{l=1}^{L} \|W^{[l]}\|_{F}^{2}$$

Frobenius norm:
$$\|W^{[l]}\|_F^2 = \sum_{i=1}^{n^{[l]}} \sum_{j=1}^{n^{[l-1]}} \left(w_{ij}^{[l]}\right)^2 \qquad W^{[l]}: \left(n^{[l]}, n^{[l-1]}\right)$$

Regularization for Neural Network

$$J\big(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]}\big) = \frac{1}{m}\sum_{i=1}^{m}\mathcal{L}\big(\hat{y}^{(i)},y^{(i)}\big) + \frac{\lambda}{2m}\sum_{l=1}^{L}\big\|W^{[l]}\big\|_{F}^{2}$$

Frobenius norm:
$$\|W^{[l]}\|_F^2 = \sum_{i=1}^{n^{[l]}} \sum_{j=1}^{n^{[l-1]}} \left(w_{ij}^{[l]}\right)^2 \qquad W^{[l]}: \left(n^{[l]}, n^{[l-1]}\right)$$

Gradient descent:
$$dW^{[l]} = (\text{from backprop})$$

$$W^{[l]} \coloneqq W^{[l]} - \alpha \cdot dW^{[l]} \qquad \left(dW^{[l]} = \frac{\partial J}{\partial W^{[l]}}\right)$$

Regularization for Neural Network

$$J(W^{[1]}, b^{[1]}, \dots, W^{[L]}, b^{[L]}) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \sum_{l=1}^{L} \left\| W^{[l]} \right\|_{F}^{2}$$

Frobenius norm:
$$\|W^{[l]}\|_F^2 = \sum_{i=1}^{n^{[l]}} \sum_{j=1}^{n^{[l-1]}} \left(w_{ij}^{[l]}\right)^2 \qquad W^{[l]}: \left(n^{[l]}, n^{[l-1]}\right)$$

Gradient descent:
$$dW^{[l]} = (\text{from backprop}) + \frac{\lambda}{m} W^{[l]} \quad \left(:: \frac{\partial ||W^{[l]}||_F^2}{\partial W^{[l]}} = 2W^{[l]} \right)$$
$$W^{[l]} := W^{[l]} - \alpha \cdot dW^{[l]}$$

Regularization for Neural Network

$$J\big(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]}\big) = \frac{1}{m}\sum_{i=1}^{m}\mathcal{L}\big(\hat{y}^{(i)},y^{(i)}\big) + \frac{\lambda}{2m}\sum_{l=1}^{L}\big\|W^{[l]}\big\|_F^2$$

Frobenius norm:
$$\|W^{[l]}\|_F^2 = \sum_{i=1}^{n^{[l]}} \sum_{j=1}^{n^{[l-1]}} \left(w_{ij}^{[l]}\right)^2 \qquad W^{[l]}: \left(n^{[l]}, n^{[l-1]}\right)$$

Gradient descent:
$$dW^{[l]} = \left| (\text{from backprop}) + \frac{\lambda}{m} W^{[l]} \right| \left(\because \frac{\partial ||W^{[l]}||_F^2}{\partial W^{[l]}} = 2W^{[l]} \right)$$
$$W^{[l]} := W^{[l]} - \alpha \cdot dW^{[l]} \iff$$

"Weight decay":
$$W^{[l]} \coloneqq W^{[l]} - \alpha \cdot \left[(\text{from backprop}) + \frac{\lambda}{m} W^{[l]} \right]$$
$$= W^{[l]} - \frac{\alpha \lambda}{m} W^{[l]} - \alpha (\text{from backprop})$$
$$= \left(1 - \frac{\alpha \lambda}{m} \right) W^{[l]} - \alpha (\text{from backprop})$$

Regularization for Neural Network

$$J(W^{[1]}, b^{[1]}, \dots, W^{[L]}, b^{[L]}) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \sum_{l=1}^{L} \|W^{[l]}\|_{F}^{2}$$

Frobenius norm:
$$\|W^{[l]}\|_F^2 = \sum_{i=1}^{n^{[l]}} \sum_{j=1}^{n^{[l-1]}} \left(w_{ij}^{[l]}\right)^2 \qquad W^{[l]}: \left(n^{[l]}, n^{[l-1]}\right)$$

Gradient descent:
$$dW^{[l]} = \left| (\text{from backprop}) + \frac{\lambda}{m} W^{[l]} \right| \left(\because \frac{\partial ||W^{[l]}||_F^2}{\partial W^{[l]}} = 2W^{[l]} \right)$$
$$W^{[l]} := W^{[l]} - \alpha \cdot dW^{[l]} \iff 0$$

"Weight decay":
$$W^{[l]} := W^{[l]} - \alpha \cdot \left[(\text{from backprop}) + \frac{\lambda}{m} W^{[l]} \right]$$
$$= W^{[l]} - \frac{\alpha \lambda}{m} W^{[l]} - \alpha (\text{from backprop})$$
$$= \left[\left(1 - \frac{\alpha \lambda}{m} \right) W^{[l]} - \alpha (\text{from backprop}) \right]$$

How does regularization prevent overfitting?

$$\begin{split} \lambda \uparrow \Rightarrow |W^{[l]}_{ij}| \downarrow &\Rightarrow |z^{[l]}| \downarrow \quad \left(\because z^{[l]} = W^{[l]}a^{[l-1]} + b^{[l]}\right) \\ &\Rightarrow \text{every layers} \approx \text{get close to linear} \approx \text{get simple} \end{split}$$

Dropout Regularization

Dropout Regularization $\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}$ keeping prob = 0.5

Why does dropout work?

Intuition: Can't rely on any one feature, so have to spread out weights.

Why does dropout work?

Intuition: Can't rely on any one feature, so have to spread out weights.

Normalizing training sets

Normalizing training sets

1. subtract mean:

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$

$$x^{(i)} \coloneqq x^{(i)} - \mu$$

Normalizing training sets $x_{2} \qquad x = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$ $x_{1} \qquad x_{1} \qquad x_{2} \qquad x_{2}$ $x_{1} \qquad x_{1} \qquad x_{1} \qquad x_{1}$ 1. subtract mean: $\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)} \qquad \sigma_{i}^{2} = \frac{1}{m} \sum_{i=1}^{m} \left\{ x_{j}^{(i)} \right\}^{2}$ $x^{(i)} := x^{(i)} - \mu \qquad x_{j}^{(i)} := x_{j}^{(i)} / \sigma_{j}$

Vanishing/exploding gradients

Vanishing/exploding gradients
$$x_1 \longrightarrow \widehat{y}$$

$$x_2 \longrightarrow W^{[1]} \longrightarrow W^{[2]} \longrightarrow \widehat{y}$$

$$g(z) = z \qquad b^{[1]} = 0$$

$$\widehat{y} = W^{[L]}W^{[L-1]}W^{[L-2]} \dots W^{[3]}W^{[2]}W^{[1]}x$$

$$W^{[1]} = \begin{bmatrix} 1.5 & 0 \\ 0 & 1.5 \end{bmatrix} \longrightarrow \widehat{y} = \begin{bmatrix} 1.5 & 0 \\ 0 & 1.5 \end{bmatrix}^L x = \begin{bmatrix} 1.5^L & 0 \\ 0 & 1.5^L \end{bmatrix} x \longrightarrow \text{activations increase exponentially!!}$$

$$W^{[1]} = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \longrightarrow \widehat{y} = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix}^L x = \begin{bmatrix} 0.5^L & 0 \\ 0 & 0.5^L \end{bmatrix} x \longrightarrow \text{activations decrease exponentially!!}$$

$$W^{[1]} = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \longrightarrow \widehat{y} = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix}^L x = \begin{bmatrix} 0.5^L & 0 \\ 0 & 0.5^L \end{bmatrix} x \longrightarrow \text{activations decrease exponentially!!}$$

$$W^{[1]} = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \longrightarrow \widehat{y} = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix}^L x = \begin{bmatrix} 0.5^L & 0 \\ 0 & 0.5^L \end{bmatrix} x \longrightarrow \text{activations decrease exponentially!!}$$

$$W^{[1]} = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \longrightarrow \widehat{y} = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix}^L x = \begin{bmatrix} 0.5^L & 0 \\ 0 & 0.5^L \end{bmatrix} x \longrightarrow \text{activations decrease exponentially!!}$$

$$W^{[1]} = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \longrightarrow \widehat{y} = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix}^L x = \begin{bmatrix} 0.5^L & 0 \\ 0 & 0.5^L \end{bmatrix} x \longrightarrow \text{activations decrease exponentially!!}$$

Weight Variance initialization for deep network

$$z = w_1x_1 + w_1x_1 + \dots + w_nx_n + b$$

if large $n \to \text{smaller variance of } w_i$

 $\therefore \operatorname{Var}(w_i) = \frac{1}{n}$ when b exists for general case

Weight Variance initialization for deep network

$$z = w_1x_1 + w_1x_1 + \dots + w_nx_n + b$$

if large $n \to \text{smaller variance of } w_i$

 $\therefore Var(w_i) = \frac{2}{n}$ for ReLU activation, which has been claimed by some experiments

Weight Variance initialization for deep network

$$z = w_1x_1 + w_1x_1 + \dots + w_nx_n + b$$

if large $n \rightarrow \text{smaller variance of } w_i$

$$\therefore \operatorname{Var}(w_i) = \frac{2}{n} \quad \text{for ReLU activation}$$

Other variants for tanh activation

$$Var(w_i) = \frac{1}{n^{[l-1]}}$$

: Xavier initialization

$$Var(w_i) = \frac{2}{n^{[l-1]} + n^{[l]}}$$

: proposed by Bengio