DIGITAL LOGIC

Chapter 4 part2: Standard Components

2023 Fall

Today's Agenda

- Recap
- Context
 - Decoder
 - Multiplexer
 - Encoder
- Reading: Textbook, Chapter 4.9-4.11
 - Next Lecture we continue to chapter 5
 - Arithmetic Logic will be taught later

Recap

Outline

- Decoder
- Multiplexer
- Encoder
- Gate Behavior

One-hot Representation

- Represent a set of N elements with N bits
- Exactly one bit is set

Binary	One-hot
000	0000001
001	00000010
010	00000100
011	00001000
100	00010000
101	00100000
110	01000000
111	10000000

Decoder

- A decoder is a combinational circuit that converts binary information from n input lines to m (maximum of 2ⁿ) unique output lines
 - n-to-m-line decoder
- A binary one-hot decoder converts a symbol from binary code to a one-hot code
 - Output variables are mutually exclusive because only one output can be equal to 1 at any time (the 1-minterm)
- Example
 - binary input a to one-hot output b
 - b[i] = 1 if a = i or b = 1 << a
 - a stands for position of 1 in b

1-to-2-Line Decoder

Step1: Specification

Step2: Formulation

X	D_1	D_0
0	0	1
1	1	0

Step3: Optimization

$$D_0 = x'$$
 minterms $D_1 = x$

Step4: Logic Diagram

2-to-4-Line Decoder

Step 1,2

_ a ₁	a_0	b_3	b_2	b_1	b_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	a ₀ 0 1 0 1	1	0	0	0

Step 3

$$b_3 = a_1 a_0$$

 $b_2 = a_1 a_0$ minterms
 $b_1 = a_1 a_0$
 $b_0 = a_1 a_0$

Step 4

3-to-8-Line Decoder

 Each output of the decoder represents one of the eight minterms of the Boolean function

Step 1,2

	Inputs			Output					ıts			
X	y	Z	D_0	D_1	D_2	D_3	D_4	D_5	D ₆	D ₇		
0	0	0	1	0	0	0	0	0	0	0		
0	0	1	0	1	0	0	0	0	0	0		
0	1	0	0	0	1	0	0	0	0	0		
0	1	1	0	0	0	1	0	0	0	0		
1	0	0	0	0	0	0	1	0	0	0		
1	0	1	0	0	0	0	0	1	0	0		
1	1	0	0	0	0	0	0	0	1	0		
1	1	1	0	0	0	0	0	0	0	1		

Logic Diagram vs Block Diagram

- We can use block diagram
 - Clearly denoting the input position and output sequence

Main Usages of Decoders

- Minterm generator (最小项生成器):
 - Generate the 2^n (or fewer) minterms of n input variables. For example: a 3-8 line decoder
- Data demultiplexing (数据分配器):
 - A decoder with enable input can function as a demultiplexer a circuit that receives information from a single line and directs it to one of 2ⁿ possible output lines.
- Display decoding: (显示解码)
 - Decoders are used in display systems to select a specific output line based on the input code and drive the corresponding segment of the display.
- Address decoding:(地址解码):
 - Identify a memory cell, disk sector, or other memory or storage device, to ensure one device can communicate with the processor at one time.

Decoder for logic implementation Example1

- Decoder can be used to implement the logic function by connecting the appropriate minterms to an OR gate.
 - Any combinational circuit with n inputs and m outputs can be implemented with an n-to-2ⁿ decoder in conjunction with m external OR gates

		<u> </u>	_	
X	У	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S(x, y, z) = \sum (1, 2, 4, 7)$$

 $C(x, y, z) = \sum (3, 5, 6, 7)$

Decoder for logic implementation Example2

Exercise:

 Implement Y = A XNOR B using a 2-to-4 line decoder and external OR gate, you need to clearly write down the input and output pins

Y = A XNOR B
=
$$(A \oplus B)$$
'
= A'B' + AB
= $\sum (0, 3)$
Connect output 0 and 3
to an OR gate

Decoder for logic implementation Example3

- On Southern
- 有分科技大学 SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

- MSI 74154: 4-to-16 line decoder
 - If A = B = C = D = 0 the output 0 of the decoder is 0 while all other outputs are 1.(active low) → generate inverse of minterms
 - Example: $F(A,B,C,D) = \sum (0, 1, 5, 8,10,12,13,15)$.
 - = $[(m_0+m_1+m_5+m_8+m_{10}+m_{12}+m_{13}+m_{15})']'$
 - $=(m_0' \cdot m_1' \cdot m_5' \cdot m_8' \cdot m_{10}' \cdot m_{12}' \cdot m_{13}' \cdot m_{15}')'$

TI: Texas Instruments

Enabling

Enabling permits an input signal to pass through to an output.

EN	X	F
0	0	0
0	1	0
1	0	0
1	1	1

Decoder with Enable Input

Decoder with enable control (E)

Decoder with Active-Low Enable

- Constructed with NAND gates
 - decoder minterms in their complemented form (more economical)

	E	\boldsymbol{A}	B	D_0	D_1	D_2	D_3	_	$A \rightarrow \begin{bmatrix} \\ \\ \end{bmatrix}$		○ — D ₀
High → disable	$\frac{d}{d} \frac{1}{0}$	$X \\ 0$	$X \\ 0$	1 0	1 1	1 1	1 1	Output in complement	Inputs B	2 × 4 decoder	$\begin{array}{c} \mathbf{D} - D_1 \\ \mathbf{D} - D_2 \\ \mathbf{D} - D_3 \end{array}$
Active Low	0	0 1	$\frac{1}{0}$	1 1	0 1	1	1	form	E	Ĵ	_
Enable	_ 0	1	1	1	1	1	0		Enable		

$$D_0 = (E'A'B')'$$

 $D_1 = (E'A'B)'$
 $D_2 = (E'AB')'$
 $D_3 = (E'AB)'$

Decoder Expansion

 Larger decoders can be implemented with smaller decoders
 To prevent confusion, interse

A 4-to-16-line decoder from two 3-to-8-line decoders

Other Decoders

- BCD-to-7-Segment Display Decoder
 - input (ABCD), output (abcdefg)(MSB to LSB)
 - ABCD:0000~1001(0~9)

BCD Input	7-Segment Display
A B C D	a b c d e f g
0 0 0 0	1111110
0 0 0 1	0110000
0 0 1 0	1101101
0 0 1 1	1111001
0 1 0 0	0110011
0 1 0 1	1011011
0 1 1 0	1011111
0 1 1 1	1110000
1 0 0 0	1111111
1 0 0 1	1111011
All other inputs	0000000

Outline

- Decoder
- Multiplexer
- Encoder
- Gate Behavior

Multiplexers (MUX)

 A Multiplexer selects (usually by n select lines) binary information from one of many (usually 2ⁿ) input lines and directs it to a single output line.

equation

Function table

unctio	Jii labic	
S	Υ	
0	I_0	Logic equat
1	I_1	$Y = S'I_0 + SI_1$

2:1 multiplexer

function table lists the input that is passed to the output for each combination of the binary selection values

4:1 MUX

Function table

$egin{array}{cccc} 0 & 0 & I_0 \ 0 & 1 & I_1 \ 1 & 0 & I_2 \ 1 & 1 & I_2 \ \end{array}$	S_1	S_0	Y
1 1	_	0 1 0 1	$I_0 \\ I_1 \\ I_2 \\ I_3$

Logic equation

$$Y = s_1's_0'I_0 + s_1's_0I_1 + s_1s_0'I_2 + s_1s_0I_3$$

MUX Composition

- MUX = decoder + OR gate
 - The device has two control or selection lines S₁ and S₀,
 - Logic equation: $Y = s_1's_0'I_0 + s_1's_0I_1 + s_1s_0'I_2 + s_1s_0I_3$

- Implement AND function using MUX
 - can be used as a look-up table
 - 4:1 multiplexer can be used (truth table)

Exercise: Implement XNOR function using

- 1) a 4:1 MUX
- 2) a 2:1 MUX

- What if only 2:1 MUX is allowed to use?
 - By using variable as data inputs

- Implement the function $Y(A,B,C) = \sum_{A,B,C} (0,3,4,5)$ with MUX
 - 1. using 8:1 MUX

					71 2 0
	Α	В	С	Y	1 $s_2 s_1 s_0$ 000
•	0	0	0	1	000
	0	0	1	0	001
	0	1	0	0	010
	0	1	1	1	011 Ly
	1	0	0	1	100
	1	0	1	1	101
	1	1	0	0	<u> </u>
	1	1	1	0	<u> 111 </u>
			·	•	0

2. using 4:1 MUX

We can use 4:1 MUX
 by reducing the truth
 table to four rows by
 letting A,B as select bit
 s₁ and s₀

Α	В	С	Y	A	В	Y
0	0	0	1	0	0	C'
0	0	1	0	0	1	C
0	1	0	0	1	0	1)
0	1	1	_1	1	1	0)
(1	0	0	1		l	
1	0	1	_1/ /	,		
(1	1	0	0/			
\1	1	1	0			

- Implement the function $Y(A,B,C) = \sum (0,3,4,5)$ with MUX
 - 3. Using 2:1 MUX?

- Implement F (A, B, C, D) = (1, 3, 4, 11, 12, 13, 14, 15) with three selection inputs Multiplexer.
 - A must be connected to selection input S₂ so that A, B, and C correspond to selection inputs S₂, S₁, and S₀, respectively

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	D	F	
0	0 0	0	0 1	0 1	F = D
0	$\begin{array}{c} 0 \\ 0 \end{array}$	1 1	0 1	0 1	F = D
0	1 1	0 0	0 1	1 0	F = D'
0	1 1	1 1	0 1	0	F = 0
1 1	0	0	0 1	0	F = 0
1 1	0	1 1	0 1	0 1	F = D
1 1	1 1	0	0 1	1 1	<i>F</i> = 1
1 1	1 1	1 1	0 1	1 1	<i>F</i> = 1

Quadruple 2:1 MUX (4-bit 2:1 MUX)

E	S	Output <i>Y</i>
1	X	all 0's
0	0	select <i>A</i>
0	1	select <i>B</i>

Function table

four 2:1 MUX with enable

MUX Expansion

 Wider multiplexers, such as 8:1 and 16:1 multiplexers, can be built with smaller multiplexers

Function table

$$\begin{array}{c|cccc} S_1 & S_0 & Y \\ \hline 0 & 0 & D_0 \\ 0 & 1 & D_1 \\ \end{array} f_1 = S_0'D_0 + S_0D_1 \\ \hline 1 & 0 & D_2 \\ 1 & D_3 \\ \end{array} f_2 = S_0'D_2 + S_0D_3$$

Logic equation

$$Y = s_1'f_1 + s_1f_2$$

= $s_1(s_0'D_0 + s_0D_1) + s_1(s_0'D_2 + s_0D_3)$
= $s_1's_0'D_0 + s_1's_0D_1 + s_1s_0'D_2 + s_1s_0D_3$

4:1 MUX with three 2:1 MUX

MUX Expansion

- How to build a 16-to-1 multiplexer using five 4-to-1 multiplexers?
 - $16 = 2^4$
 - 4 bits for selection

Exercise: How to build a 8-to-1 multiplexer using two 4-to-1 MUX and a 2-to-1 MUX? You must carefully connect the selection and input pins

Demultiplexer

- A decoder with enable input can function as demultiplexer
 - a circuit that receives information from a single line and directs it to one of 2ⁿ possible output lines.
 - Because decoder and demultiplexer operations are obtained from the same circuit, a decoder with an enable input is referred to as a demultiplexer.

Outline

- Decoder
- Multiplexer
- Encoder
- Gate Behavior

Encoder

- An encoder is an inverse of a decoder
- Encoder is a logic module that converts a one-hot input signal to a binary-encoded output signal
- Other input patterns are forbidden in the truth table
- Example: a 4->2 encoder

_ a ₃	a_2	a_1	a_0	b ₁	b_0
0	0	0	1	0	0
0	0	1	0	0 1	1
0			0	1	0
1	0	0	0	1	1

$$b_0 = a_3 + a_1$$

 $b_1 = a_3 + a_2$

Encoder

- A combinational logic that performs the inverse operation of a decoder
 - Only one input has value 1 at any given time
 - Can be implemented with OR gates
- However, when both D3 and D6 goes 1, the output will be 111 (ambiguity)! illegal inputs !Use priority encoder!

-	Outputs				Inputs						
-	Z	y	X	D ₇	D ₆	D ₅	D_4	D_3	D ₂	D ₁	D ₀
	0	0	0	0	0	0	0	0	0	0	1
$X = D_4 + D_5 + D_6 + D_7$	1	0	0	0	0	0	0	0	0	1	0
$y = D_2 + D_3 + D_6 + D_7$	0	1	0	0	0	0	0	0	1	0	0
•	1	1	0	0	0	0	0	1	0	0	0
$z = D_1 + D_3 + D_5 + D_7$	0	0	1	0	0	0	1	0	0	0	0
	1	0	1	0	0	1	0	0	0	0	0
	0	1	1	0	1	0	0	0	0	0	0
	1	1	1	1	0	0	0	0	0	0	0

Priority Encoder

- Ensure only one of the input is encoded
- Assuming D₃ has the highest priority, while D₀ has the lowest priority.
- X is the don't care conditions, V is the valid output indicator.

	Inp	uts	0	utput	s	
D_0	D ₁	D ₂	D ₃	X	y	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

$$V = D_0 + D_1 + D_2 + D_3$$

Priority Encoder

Outline

- Decoder
- Multiplexer
- Encoder
- Gate Behavior

Gate Delays

 When the input to a logic gate is changed, the output will not change immediately. The output of the gate experiences a propagation delay in response to changes in the input.

delay between an input change and the subsequent output change for a buffer

- (a) ideal behavior without gate delay
- (b) a more realistic illustration
- (c) switching incorporating the delay

Effect of gate delays

- The analysis of a combinational circuit ignoring delays can predict only its steady-state behavior.
- Predicts a circuit's output as a function of its inputs assuming that the inputs have been stable for a long time, relative to the delays in the circuit's electronics.
- Because of circuit delays, the transient behavior of a combinational logic circuit may differ from what is predicted by steady-state analysis.

assume each gate has a propagation delay of 20 ns

Hazard (Glitches)

- Timing hazard: Unwanted switching transients (glitches) appearing in the output while the input to a combinational circuit changes.
 - static-1 hazard is a short 0 glitch when for a changed input, we expect (by logic theorems) the output to remain constant 1.
 - static-0 hazard is a short 1 glitch when we expect the output to remain constant 0.

Circuit with a static 1 Hazard

- Assume each gate has a propagation delay of 10 ns
 - if A = C = 1 and B changes from 1 to 0, F should be a stable 1. Change propagates to output F along two paths with different delays, resulting in a glitch in F.

If any two adjacent 1's are not covered by the same circle, a 1-hazard exists for the transition between the two 1's.

Circuit with a static 0 Hazard

- Assume gate delay: Inverter = 3ns, AND/OR = 5ns
 - if A = 0, B = 1, D = 0, and C changes from 0 to 1, F should be a stable 0. Change propagates to output F along two paths with different delays., resulting in a glitch in F.

13

10

Y

Z

If any two adjacent 0's are not covered by the same circle, a 0-hazard exists for the transition between the two 0's.

Removing Hazard

 We can eliminate the 1-hazard or 0-hazards by adding additional circle that covers the adjacent 1's or 0's not already covered within a common circle.

Term (C+D'), (A+B'+D), (A'+B'+C') are added to eliminate 0 hazard

Example

• What happens when A = 0, C = 1, B falls?

$$Y = A'B' + BC$$

Example

 To eliminate the 1-hazard, add an additional circles that cover the adjacent 1's not already covered by a common circle.

Testing of Logic Circuits

- In the logic circuit, a wrong output may be due to
 - Incorrect design
 - Gates connected wrong
 - Wrong input signals to the circuit
 - Defective gates
 - Defective connecting wires
- Logic circuit with incorrect output
 - A = B = C = D = 1, F should be 0 but an incorrect 1 is generated, what's wrong?

Tri-state

Tri-state driver (buffer) has three possible output states:
0, 1, Z (high impedance).

E	Α	Y
0	0	Z
0	1	Z
1	0	0
1	1	1

Sel	Υ
0	Α
1	В

2:1 MUX using tri-state