Обзорная лекция. Постановки задач оптимизации в машинном обучении

Воронцов Константин Вячеславович vokov@forecsys.ru http://www.MachineLearning.ru/wiki?title=User:Vokov

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

МФТИ • 30 апреля 2021

Содержание

- Обучение с учителем
 - Регрессия и классификация
 - Регуляризация
 - Обучение ранжированию
- 2 Обучение без учителя
 - Восстановление плотности
 - Кластеризация и частичное обучение
 - Обучение представлений и автокодировщики
- Пеклассические парадигмы обучения
 - Перенос обучения и многозадачное обучение
 - Обучение с привилегированной информацией
 - Генеративные состязательные сети (GAN)

Общая оптимизационная задача машинного обучения

Дано: выборка объектов $\{x_i\}_{i=1}^\ell$

Найти: вектор параметров w модели a(x,w)

Критерий: минимум эмпирического риска

$$\sum_{i=1}^{\ell} L_i(w) \to \min_{w}$$

где $L_i(w)$ — функция потерь модели a(x,w) на объекте x_i , или минимум регуляризованного эмпирического риска

$$\sum_{i=1}^{\ell} L_i(w) + \sum_{j=1}^{r} \tau_j R_j(w) \rightarrow \min_{w}$$

где R_j — регуляризаторы, au_j — коэффициенты регуляризации

Оптимизационная задача восстановления регрессии

Обучающая выборка:
$$X^\ell=(x_i,y_i)_{i=1}^\ell,\;\;x_i\in\mathbb{R}^n,\;\;y_i\in\mathbb{R}$$

Фиксируется модель регрессии, например, линейная:

$$a(x, w) = \langle x, w \rangle = \sum_{j=1}^{n} w_j f_j(x), \qquad w \in \mathbb{R}^n$$

Фиксируется функция потерь, например, квадратичная:

$$L_i(w) = (a(x_i, w) - y_i)^2$$

Метод обучения — метод наименьших квадратов:

$$\sum_{i=1}^{\ell} (a(x_i, w) - y_i)^2 \to \min_{w}$$

① Проверка по тестовой выборке $X^k = (\tilde{x}_i, \tilde{y}_i)_{i=1}^k$:

$$Q(X^k) = \frac{1}{k} \sum_{i=1}^k (a(\tilde{x}_i, w) - \tilde{y}_i)^2$$

Оптимизационная задача обучения классификация

Обучающая выборка:
$$X^\ell = (x_i, y_i)_{i=1}^\ell, \ x_i \in \mathbb{R}^n, \ y_i \in \{-1, +1\}$$

Фиксируется модель классификации, например, линейная:

$$a(x, w) = \operatorname{sign}\langle x, w \rangle = \operatorname{sign} \sum_{j=1}^{n} w_j f_j(x)$$

Функция потерь — пороговая или её верхняя оценка:

$$L_i(w) = [a(x_i, w)y_i < 0] = [\langle x_i, w \rangle y_i < 0] \leqslant \mathcal{L}(\langle x_i, w \rangle y_i)$$

Метод обучения — минимизация эмпирического риска:

$$\sum_{i=1}^{\ell} \left[\langle x_i, w \rangle y_i < 0 \right] \leqslant \sum_{i=1}^{\ell} \mathcal{L} \left(\langle x_i, w \rangle y_i \right) \to \min_{w}$$

① Проверка по тестовой выборке $X^k = (\tilde{x}_i, \tilde{y}_i)_{i=1}^k$:

$$Q(X^{k}) = \frac{1}{k} \sum_{i=1}^{k} \left[\langle \tilde{x}_{i}, w \rangle \tilde{y}_{i} < 0 \right]$$

Непрерывные верхние оценки пороговой функции потерь

Часто используемые непрерывные функции потерь $\mathscr{L}(M)$:

$$[M < 0]$$
 — пороговая функция потерь $V(M) = (1-M)_+$ — кусочно-линейная (SVM) $H(M) = (-M)_+$ — кусочно-линейная (Hebb's rule) $L(M) = \log_2(1+e^{-M})$ — логарифмическая (LR) $Q(M) = (1-M)^2$ — квадратичная (FLD) $S(M) = 2(1+e^{M})^{-1}$ — сигмоидная (ANN) $E(M) = e^{-M}$ — экспоненциальная (AdaBoost)

Метод опорных векторов SVM (двухклассовый)

$$M_i(w, w_0) = y_i (\langle w, x_i \rangle - w_0)$$
 — отступ в линейной модели
Кусочно-линейная функция потерь:

$$\sum_{i=0}^{\ell} (1 - M_i(w, w_0))_+ + \frac{1}{2C} ||w||^2 \rightarrow \min_{w, w_0}$$

- *Функция потерь* штрафует объекты за приближение к границе классов
- Регуляризация максимизирует зазор между классами и штрафует за мультиколлинеарность

Важнейшие свойства SVM:

- Задача выпуклого программирования, решение единственно
- Решение разрежено зависит только от опорных объектов
- Обобщение на нелинейные модели: $\langle x, x_i \rangle \to K(x, x_i)$

Логистическая регрессия (двухклассовая)

Линейная модель классификации $a(x,w)=\mathrm{sign}\langle x,w\rangle$ Логарифмическая функция потерь:

$$\sum_{i=1}^{\ell} \ln(1 + \exp(-\langle w, x_i \rangle y_i)) + \frac{\tau}{2} ||w||^2 \rightarrow \min_{w}$$

Логарифмическая функция потерь:

$$\mathscr{L}(M) = \ln(1 + e^{-M})$$

Модель условной вероятности:

$$P(y|x,w)=\sigma(M)=rac{1}{1+e^{-M}}$$
,
где $\sigma(M)$ — сигмоидная функция

Логистическая регрессия (многоклассовая)

Линейный классификатор при произвольном числе классов |Y|:

$$a(x, w) = \arg\max_{y \in Y} \langle w_y, x \rangle, \quad x, w_y \in \mathbb{R}^n$$

Вероятность того, что объект x относится к классу y:

$$P(y|x,w) = \frac{\exp\langle w_y, x \rangle}{\sum_{z \in Y} \exp\langle w_z, x \rangle} = \operatorname{SoftMax}\langle w_y, x \rangle,$$

где $\mathsf{SoftMax} \colon \mathbb{R}^Y o \mathbb{R}^Y$ переводит произвольный вектор в нормированный вектор дискретного распределения.

Максимизация правдоподобия (log-loss) с регуляризацией:

$$-\sum_{i=1}^{\ell} \ln P(y_i|x_i, w) + \frac{\tau}{2} \sum_{y \in Y} \|w_y\|^2 \to \min_{w}.$$

Квантильная регрессия

Функция потерь,
$$\varepsilon = a(x_i, w) - y_i$$
:

$$\mathscr{L}(\varepsilon) = egin{cases} C_{+}|\varepsilon|, & \varepsilon > 0 \ C_{-}|\varepsilon|, & \varepsilon < 0; \end{cases}$$

Модель регрессии: линейная $a(x_i, w) = \langle x_i, w \rangle$.

Сведение к задаче линейного программирования:

замена переменных
$$\varepsilon_i^+ = (a(x_i) - y_i)_+, \ \varepsilon_i^- = (y_i - a(x_i))_+;$$

$$\begin{cases} \sum_{i=1}^{\ell} C_{+} \varepsilon_{i}^{+} + C_{-} \varepsilon_{i}^{-} \to \min_{w}; \\ \langle x_{i}, w \rangle - y_{i} = \varepsilon_{i}^{+} - \varepsilon_{i}^{-}; \\ \varepsilon_{i}^{+} \geqslant 0; \quad \varepsilon_{i}^{-} \geqslant 0. \end{cases}$$

Робастная регрессия

Функция Мешалкина:
$$\mathscr{L}(arepsilon) = b ig(1 - \expig(-rac{1}{b}arepsilon^2ig)ig), \;\; arepsilon = a - y$$

Модель регрессии: a(x, w)

Постановка оптимизационной задачи:

$$\sum_{i=1}^{\ell} \exp\left(-\frac{1}{b}(a(x_i, w) - y_i)^2\right) \to \max_{w}$$

Численное решение — методом Ньютона-Рафсона

SVM-регрессия

Модель регрессии: $a(x) = \langle x, w \rangle - w_0$, $w \in \mathbb{R}^n$, $w_0 \in \mathbb{R}$.

Функция потерь:
$$\mathscr{L}(\varepsilon) = (|\varepsilon| - \delta)_+$$

Постановка оптимизационной задачи:

$$\sum_{i=1}^{\ell} \left(|\langle w, x_i \rangle - w_0 - y_i| - \delta \right)_+ + \frac{1}{2C} ||w||^2 \to \min_{w, w_0}.$$

Сводится к выпуклой задаче квадратичного программирования

Регуляризаторы, штрафующие сложность линейной модели

Регуляризатор — аддитивная добавка к основному критерию:

$$\sum_{i=1}^{\ell} \mathscr{L}ig(\langle x_i, w
angle, y_i ig) + au$$
 штраф $ig(wig)
ightarrow \min_{w}$

где $\mathscr{L}(a,y)$ — функция потерь, au — коэффициент регуляризации L_2 -регуляризация (гребневая регрессия, SVM):

штра
$$\phi(w) = \|w\|_2^2 = \sum_{i=1}^n w_i^2$$
.

 L_1 -регуляризация (LASSO, ElasticNet — для отбора признаков):

штра
$$\phi(w) = \|w\|_1 = \sum_{i=1}^n |w_i|.$$

 L_0 -регуляризация (критерии Акаике AIC, байесовский BIC):

штра
$$\phi(w) = \|w\|_0 = \sum_{i=1}^n [w_i \neq 0].$$

Негладкие регуляризаторы для отбора признаков

Общий вид регуляризаторов (μ — параметр селективности):

$$\sum_{i=1}^{\ell} \mathscr{L}\big(\langle x_i, w \rangle, y_i\big) + \tau \sum_{j=1}^{n} R_{\mu}(w_j) \ \to \ \min_{w}.$$

Регуляризаторы с эффектом группировки зависимых признаков:

Elastic Net:
$$R_{\mu}(w) = \mu |w| + w^2$$

Support Features Machine (SFM):

$$R_{\mu}(w) = \begin{cases} 2\mu|w|, & |w| \leqslant \mu; \\ \mu^2 + w^2, & |w| \geqslant \mu; \end{cases}$$

Relevance Features Machine (RFM):

$$R_{\mu}(w) = \ln(\mu w^2 + 1)$$

Задачи ранжирования (Learning to Rank, LtR, L2R, LETOR)

Ранжирование нужно везде, где система предоставляет пользователю выбор из большого числа вариантов:

- выдача поисковой системы
- рекомендации книг, фильмов, музыки, и др. товаров
- рекомендации контента в дистанционном образовании
- автоматическое завершение запроса (auto-suggest)
- варианты ответа в диалоговых системах
- варианты перевода в системах машинного перевода

Критерий конструируется по-разному в трёх подходах:

- Point-wise поточечный (аналог регрессии/классификации)
- Pair-wise попарный (качество парных сравнений)
- List-wise списочный (качество ранжированного списка)

Поточечный подход: ранговая регрессия (Ordinal Regression)

Обучающая выборка $(x_i,y_i)_{i=1}^\ell$, где $y_i\in Y=\{1\prec 2\prec \cdots \prec K\}$. Функция ранжирования с параметрами w и порогами $b_0=-\infty$, b_1,\ldots,b_{K-1} , $b_K=+\infty$:

$$a(x, w, b) = y$$
, если $b_{y-1} < g(x, w) \leqslant b_y$

Функция потерь $\mathscr{L}(M)$ — убывающая функция отступа M

Критерий обучения по двум ближайшим порогам:

$$\sum_{i=1}^{\ell} \mathscr{L}(g(x_i, w) - b_{y_i-1}) + \mathscr{L}(b_{y_i} - g(x_i, w)) \to \min_{w, b}$$

Критерий обучения по всем порогам:

$$\sum_{i=1}^{\ell} \sum_{y=1}^{K} \mathcal{L}\left(\left(b_{y} - g(x_{i}, w)\right) \operatorname{sign}\left(y - y_{i}\right)\right) \to \min_{w, b}$$

J.D.M.Rennie, N.Srebro. Loss functions for preference levels: regression with discrete ordered labels. IJCAI-2005.

Попарный (pair-wise) подход к обучению ранжированию

Дано: $X^\ell = \{x_1, \dots, x_\ell\}$ — обучающая выборка $i \prec j$ — правильный порядок на парах (x_i, x_j)

Найти: модель ранжирования $a\colon X \to \mathbb{R}$ такую, что

$$i \prec j \Rightarrow a(x_i, w) < a(x_j, w)$$

Критерий: число неверно упорядоченных пар (x_i, x_j) или аппроксимированный попарный эмпирический риск:

$$\sum_{i \prec j} \left[a(x_j, w) < a(x_i, w) \right] \leqslant \sum_{i \prec j} \mathscr{L} \underbrace{\left(\underbrace{a(x_j, w) - a(x_i, w)}_{M_{ij}(w)} \right)}_{M_{ij}(w)} \rightarrow \min_{w}$$

где $\mathscr{L}(M)$ — убывающая функция парного отступа $M_{ij}(w)$

Списочный (list-wise) подход на основе попарного

Метод стохастического градиента для попарного критерия:

$$w := w - \eta \, \mathscr{L}'(M_{ij}(w)) \, M'_{ij}(w)$$

Q — негладкий критерий, вычисляемый по списку объектов x_i , ранжированному в порядке убывания значений $a(x_i)$.

Примеры негладких критериев Q: MAP, NDCG, pFound и др.

 ΔQ_{ij} — изменение Q при перестановке $x_i \leftrightarrows x_i$ в списке.

LambdaRank: домножение градиента на $|\Delta Q_{ij}|$ приводит к приближённой оптимизации негладкого критерия Q:

$$w := w - \eta \mathcal{L}'(M_{ij}(w)) M'_{ij}(w) \cdot |\Delta Q_{ij}|$$

C.Burges. From RankNet to LambdaRank to LambdaMART: an overview. 2010

Задача восстановления плотности распределения

Дано: обучающая выборка $\{x_i\colon i=1,\ldots,\ell\}$

Найти: вектор параметров θ в модели $p(x|\theta)$

Критерий: максимум правдоподобия

$$\sum_{i=1}^{\ell} \ln p(x_i|\theta) \to \max_{\theta}$$

или максимум апостериорной вероятности

$$\sum_{i=1}^{\ell} \ln p(x_i|\theta) + \ln p(\theta|\gamma) \rightarrow \max_{\theta}$$

где γ — вектор гиперпараметров априорного распределения

Задача восстановления смеси плотностей распределения

Дано: обучающая выборка $\{x_i : i = 1, \dots, \ell\}$

Найти: параметры w_j , θ_j в модели $p(x|\theta,w) = \sum\limits_{j=1}^K w_j p(x|\theta_j)$

Критерий: максимум правдоподобия

$$\sum_{i=1}^{\ell} \ln p(x_i|\theta,w) \to \max_{\theta,w}$$

или максимум апостериорной вероятности

$$\sum_{i=1}^{\ell} \ln p(x_i|\theta,w) + \ln p(\theta,w|\gamma) \rightarrow \max_{\theta,w}$$

где γ — вектор гиперпараметров априорного распределения

Задача кластеризации (clustering)

Дано: обучающая выборка $\{x_i \in \mathbb{R}^n \colon i=1,\ldots,\ell\}$

Найти:

- центры кластеров $\mu_i \in \mathbb{R}^n$, $j=1,\ldots,K$
- какому кластеру принадлежит каждый объект $a_i \in \{1,\ldots,K\}$

Критерий: минимум внутрикластерных расстояний

$$\sum_{i=1}^{\ell} \|x_i - \mu_{a_i}\|^2 \to \min_{\{a_i\}, \{\mu_j\}}$$

в случае евклидовой метрики

$$||x - \mu_j||^2 = \sum_{d=1}^n (f_d(x) - \mu_{jd})^2$$

Одноклассовый SVM (one-class SVM, OSVM)

Дано: обучающая выборка $\{x_i \in \mathbb{R}^n \colon i=1,\ldots,\ell\}$

Найти: центр $c \in \mathbb{R}^n$ и радиус r шара, охватывающего всю выборку кроме аномальных объектов-выбросов

Критерий: минимизация радиуса шара и суммы штрафов за выход из шара:

$$\nu r^2 + \sum_{i=1}^{\ell} \mathscr{L}\left(\underbrace{r^2 - \|x_i - c\|^2}_{\zeta_i = \mathsf{margin}(c,r)}\right) \to \min_{c,r}$$

При $\mathscr{L}(\zeta) = (-\zeta)_+$ свойства решения аналогичны SVM:

- Выпуклая задача квадратичного программирования
- Решение разрежено зависит только от опорных объектов
- ullet Обобщение на нелинейные модели: $\langle x_i, x_j
 angle o K(x_i, x_j)$

Задача частичного обучения (semi-supervised learning, SSL)

Дано:

$$X^k = \{x_1, \dots, x_k\}$$
 — размеченные объекты (labeled data); $\{y_1, \dots, y_k\}$

 $U = \{x_{k+1}, \dots, x_\ell\}$ — неразмеченные объекты (unlabeled data).

Найти: классификации $\{a_{k+1},\ldots,a_\ell\}$ неразмеченных объектов

Критерий без модели классификации (transductive learning):

$$\sum_{i=1}^{\ell} \|x_i - \mu_{a_i}\|^2 + \lambda \sum_{i=1}^{k} \left[a_i \neq y_i \right] \to \min_{\{a_i\}, \{\mu_j\}}$$

При построении модели классификации, $a_i = a(x_i, w)$:

$$\sum_{i=1}^{\ell} \|x_i - \mu_{a_i}\|^2 + \lambda \sum_{i=1}^{k} \mathcal{L}(a(x_i, w), y_i) \rightarrow \min_{\{a_i\}, \{\mu_j\}, w}$$

Meтод TSVM — трансдуктивный SVM

$$M_i = (\langle w, x_i \rangle - w_0) y_i$$
 — отступ объекта x_i

- ullet Функция потерь $\mathscr{L}(M) = (1-M)_+$ штрафует за уменьшение отступа
- ullet Функция потерь $\mathscr{L}(M) = ig(1 |M|ig)_+$ штрафует за попадание объекта внутрь разделяющей полосы

Обучение весов w, w_0 по частично размеченной выборке:

$$\sum_{i=1}^{k} (1 - M_i(w, w_0))_+ + \gamma \sum_{i=1}^{\ell} (1 - |M_i(w, w_0)|)_+ + \frac{\|w\|^2}{2C} \to \min_{w, w_0}$$

Частный случай SSL: PU-learning (Positive and Unlabeled)

Примеры задач, когда известны объекты только одного класса:

- обнаружение мошеннических транзакций
- рекомендательные системы, персонализация рекламы
- медицинская диагностика при неизвестном анамнезе
- автоматическое пополнение базы знаний фактами

Модель двухклассовой классификации $a(x_i, w)$.

Неразмеченные трактуются как негативные с весом $\mathcal{C}_{-} \ll \mathcal{C}_{+}$:

$$C_{+}\sum_{i=1}^{k} \mathscr{L}(a(x_{i},w),+1) + C_{-}\sum_{i=k+1}^{\ell} \mathscr{L}(a(x_{i},w),-1) + R(w) \rightarrow \min_{w}$$

Один из успешных методов — Biased SVM.

Gang Li. A Survey on Positive and Unlabelled Learning. 2013. J. Bekker, J. Davis. Learning From Positive and Unlabeled Data: A Survey. 2020.

Задачи низкорангового матричного разложения

- Понижение размерности для классификации/регрессии
- Формирование векторных представлений объектов
- Восстановление пропущенных значений в матрице

Дано: матрица
$$Z=\|z_{ij}\|_{n imes m},\;\;(i,j)\in\Omega\subseteq\{1..n\} imes\{1..m\}$$

Найти: матрицы $X=\|x_{it}\|_{n imes k}$ и $Y=\|y_{tj}\|_{k imes m}$ такие, что

$$||Z - XY|| = \sum_{(i,j)\in\Omega} \mathscr{L}\left(z_{ij} - \sum_{t} x_{it} y_{tj}\right) \to \min_{X,Y}$$

Почему на практике отказываются от классического SVD:

- ullet неквадратичная функция потерь ${\mathscr L}$
- ullet неотрицательное матричное разложение: $x_{it}\geqslant 0,\ y_{ti}\geqslant 0$
- ullet разреженные данные: $|\Omega| \ll nm$
- ортогональность не нужна или не интерпретируема

Задача построения автокодировщика (обучение без учителя)

$$X^{\ell} = \{x_1, \dots, x_{\ell}\}$$
 — обучающая выборка $f: X \to Z$ — кодировщик (encoder), кодовый вектор $z = f(x, \alpha)$

$$g: Z \rightarrow X$$
 — декодировщик (decoder), реконструкция $\hat{x} = g(z, \beta)$

Суперпозиция $\hat{x} = g(f(x))$ должна восстанавливать исходные x_i :

$$\mathscr{L}_{\mathsf{AE}}(\alpha,\beta) = \sum_{i=1}^{\ell} \mathscr{L}(\mathbf{g}(f(\mathbf{x}_i,\alpha),\beta),\mathbf{x}_i) \to \min_{\alpha,\beta}$$

Квадратичная функция потерь: $\mathscr{L}(\hat{x},x) = \|\hat{x} - x\|^2$

Пример 1. Линейный автокодировщик: $x \in \mathbb{R}^n$, $z \in \mathbb{R}^m$

$$f(x,A) = \underset{m \times n}{A} x, \qquad g(z,B) = \underset{n \times m}{B} z$$

Пример 2. Двухслойная сеть с функциями активации σ_f, σ_g :

$$f(x, A) = \sigma_f(Ax + a), \qquad g(z, B) = \sigma_g(Bz + b)$$

Автокодировщики для обучения с учителем

Данные: размеченные $(x_i, y_i)_{i=1}^k$, неразмеченные $(x_i)_{i=k+1}^\ell$ **Совместное обучение кодировщика** f, декодировщика g и предсказательной модели (классификации, регрессии или др.):

$$\sum_{i=1}^{\ell} \mathscr{L}(g(f(x_i,\alpha),\beta),x_i) + \lambda \sum_{i=1}^{k} \widetilde{\mathscr{L}}(\hat{y}(f(x_i,\alpha),\gamma),y_i) \to \min_{\alpha,\beta,\gamma}$$

$$egin{aligned} z_i &= f(x_i, lpha) - \mathsf{кодировщик} \ \hat{x}_i &= g(z_i, eta) - \mathsf{декодировщик} \ \hat{y}_i &= \hat{y}(z_i, \gamma) - \mathsf{предиктор} \end{aligned}$$

Функции потерь:

$$\mathscr{L}(\hat{x}_i,x_i)$$
 — реконструкция $\tilde{\mathscr{L}}(\hat{y}_i,y_i)$ — предсказание

Dor Bank, Noam Koenigstein, Raja Giryes. Autoencoders. 2020

Многомерное шкалирование (multidimensional scaling, MDS)

Дано: $(i,j) \in E$ — выборка рёбер графа $\langle V, E \rangle$, R_{ij} — расстояния между вершинами ребра (i,j).

Найти: векторные представления вершин $z_i \in \mathbb{R}^d$, так, чтобы близкие (по графу) вершины имели близкие векторы.

Критерий стресса (stress):

$$\sum_{(i,j)\in E} w(R_{ij}) (\rho(z_i,z_j) - R_{ij})^2 \to \min_{Z}, \quad Z \in \mathbb{R}^{V \times d},$$

где $ho(z_i,z_j)=\|z_i-z_j\|$ — обычно евклидово расстояние, $w(R_{ij})$ — веса (какие расстояния важнее, большие или малые).

Обычно решается методом стохастического градиента (SG).

I. Chami et al. Machine learning on graphs: a model and comprehensive taxonomy. 2020.

Многомерное шкалирование для визуализации данных

При d=2 осуществляется проекция выборки на плоскость

- Используется для визуализации кластерных структур
- Форму облака точек можно настраивать весами и метрикой
- Недостаток искажения неизбежны
- Наиболее популярный метод для визуализации t-SNE

Laurens van der Maaten, Geoffrey Hinton. Visualizing data using t-SNE. 2008

Графовые (матричные) разложения (graph factorization)

Дано: $(i,j) \in E$ — выборка рёбер графа $\langle V, E \rangle$, S_{ij} — близость между вершинами ребра (i,j). Например, $S_{ii} = [(i,j) \in E]$ — матрица смежности вершин.

Найти: векторные представления вершин, так, чтобы близкие (по графу) вершины имели близкие векторы.

Критерий для **не**ориентированного графа (S симметрична):

$$\sum_{(i,j)\in E} (\langle z_i, z_j \rangle - S_{ij})^2 \to \min_{Z}, \quad Z \in \mathbb{R}^{V \times d}$$

Критерий для ориентированного графа (S несимметрична):

$$\sum_{(i,j)\in E} \left(\langle \varphi_i, \theta_j \rangle - S_{ij}\right)^2 \to \min_{\Phi,\Theta}, \quad \Phi, \Theta \in \mathbb{R}^{V \times d}$$

Обычно решается методом стохастического градиента (SG).

I. Chami et al. Machine learning on graphs: a model and comprehensive taxonomy. 2020.

GraphEDM: обобщённый автокодировщик на графах

Graph Encoder Decoder Model — обобщает более 30 моделей:

 $W \in \mathbb{R}^{V imes V}$ — входные данные о рёбрах

 $X \in \mathbb{R}^{V imes n}$ — входные данные о вершинах, признаковые описания

 $Z \in \mathbb{R}^{V imes d}$ — векторные представления вершин графа

 $\mathsf{DEC}(Z;\Theta^D)$ — декодер, реконструирующий данные о рёбрах

 $\operatorname{DEC}(Z;\Theta^S)$ — декодер, решающий supervised-задачу

 y^{S} — (semi-)supervised данные о вершинах или рёбрах

 \mathcal{L} — функции потерь

I. Chami et al. Machine learning on graphs: a model and comprehensive taxonomy. 2020.

Глубокая свёрточная сеть как способ векторизации изображений

Визильтер Ю.В., Горбацевич В.С. Структурно-функциональный анализ и синтез глубоких конволюционных нейронных сетей. ММРО-2017.

Пред-обучение нейронных сетей (pre-training)

Свёрточная сеть для обработки изображений:

- $z = f(x, \alpha)$ свёрточные слои для векторизации объектов
- ullet y=g(z,eta) полносвязные слои под конкретную задачу

Jason Yosinski, Jeff Clune, Yoshua Bengio, Hod Lipson. How transferable are features in deep neural networks? 2014.

Перенос обучения (transfer learning)

 $f(x,\alpha)$ — универсальная часть модели (векторизация) $g(x,\beta)$ — специфичная для задачи часть модели

Базовая задача на выборке $\{x_i\}_{i=1}^\ell$ с функцией потерь \mathscr{L}_i :

$$\sum_{i=1}^{\ell} \mathcal{L}_i(f(x_i, \alpha), g(x_i, \beta)) \rightarrow \min_{\alpha, \beta}$$

extstyle Целевая задача на другой выборке $\{x_i'\}_{i=1}^m$, с другими \mathscr{L}_i' , g':

$$\sum_{i=1}^{m} \mathcal{L}_{i}'(\mathbf{f}(\mathbf{x}_{i}',\alpha),\mathbf{g}'(\mathbf{x}_{i}',\beta')) \rightarrow \min_{\beta'}$$

при $m \ll \ell$ это может быть намного лучше, чем

$$\sum_{i=1}^{m} \mathcal{L}'_{i}(f(x'_{i},\alpha),g'(x'_{i},\beta')) \rightarrow \min_{\alpha,\beta'}$$

Sinno Jialin Pan, Qiang Yang. A Survey on Transfer Learning. 2009

Многозадачное обучение (multi-task learning)

 $f(x,\alpha)$ — универсальная часть модели (векторизация) $g_t(x,\beta)$ — специфичная часть модели для задачи $t\in T$

Одновременное обучение модели f по задачам X_t , $t \in T$:

$$\sum_{t \in \mathcal{T}} \sum_{i \in X_t} \mathscr{L}_{ti}\big(\mathbf{f}(\mathbf{x}_{ti}, \alpha), g_t(\mathbf{x}_{ti}, \beta_t)\big) \ \to \ \min_{\alpha, \{\beta_t\}}$$

Обучаемость (learnability): качество решения отдельной задачи $\langle X_t, \mathscr{L}_t, g_t \rangle$ улучшается с ростом объёма выборки $\ell_t = |X_t|$.

Learning to learn: качество решения каждой из задач $t \in T$ улучшается с ростом как ℓ_t , так и общего числа задач |T|.

Few-shot learning: для решения задачи t достаточно небольшого числа примеров, иногда даже одного.

M. Crawshaw. Multi-task learning with deep neural networks: a survey. 2020 Y. Wang et al. Generalizing from a few examples: a survey on few-shot learning, 2020

Перенос обучения и многозадачное обучение Обучение с привилегированной информацией Генеративные состязательные сети (GAN)

Самостоятельное обучение (self-supervised learning)

Модель векторизации $z=f(x,\alpha)$ обучается предсказывать взаимное расположение пар фрагментов одного изображения

Unsupervised visual representation learning by context prediction, Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015

Преимущество: сеть выучивает векторные представления объектов без размеченной обучающей выборки (без ImageNet).

Дистилляция моделей или суррогатное моделирование

Обучение сложной модели a(x, w) «долго, дорого»:

$$\sum_{i=1}^{\ell} \mathcal{L}(\mathbf{a}(\mathbf{x}_i, \mathbf{w}), \mathbf{y}_i) \rightarrow \min_{\mathbf{w}}$$

Обучение простой модели b(x, w'), возможно, на других данных:

$$\sum_{i=1}^k \mathcal{L}\big(b(x_i',w'), a(x_i',w)\big) \rightarrow \min_{w'}$$

Примеры задач:

- замена сложной модели (климат, аэродинамика и др.), которая вычисляется на суперкомпьютере месяцами, «лёгкой» аппроксимирующей суррогатной моделью
- замена сложной нейросети, которая обучается неделями на больших данных, «лёгкой» аппроксимирующей нейросетью с минимизацией числа нейронов и связей

Задача обучения с привилегированной информацией

 x_i^st — информация об объекте x_i , доступная только на обучении

Раздельное обучение модели-ученика и модели-учителя:

$$\sum\limits_{i=1}^{\ell} \mathscr{L}ig(a(x_i,w),y_i ig) o \min_{w} \qquad \sum\limits_{i=1}^{\ell} \mathscr{L}ig(a(x_i^*,w^*),y_i ig) o \min_{w}$$

Модель-ученик обучается повторять ошибки модели-учителя:

$$\sum_{i=1}^{\ell} \mathcal{L}(a(x_i, w), y_i) + \mu \mathcal{L}(a(x_i, w), a(x_i^*, w^*)) \rightarrow \min_{w}$$

Совместное обучение модели-ученика и модели-учителя:

$$\sum_{i=1}^{\ell} \mathcal{L}(a(x_i, w), y_i) + \lambda \mathcal{L}(a(x_i^*, w^*), y_i) + \mu \mathcal{L}(a(x_i, w), a(x_i^*, w^*)) \rightarrow \min_{w, w^*}$$

D.Lopez-Paz, L.Bottou, B.Scholkopf, V.Vapnik. Unifying distillation and privileged information. 2016.

Обучение с использованием привилегированной информации

 x_i^* — информация об объекте x_i , доступная только на обучении Варианты LUPI (Learning Using Priveleged Information):

V. Vapnik, A. Vashist. A new learning paradigm: Learning Using Privileged Information // Neural Networks. 2009.

Генеративная состязательная сеть (Generative Adversarial Net)

Генератор G(z) учится порождать объекты x из шума z Дискриминатор D(x) учится отличать их от реальных объектов

Antonia Creswell et al. Generative Adversarial Networks: an overview. 2017. Zhengwei Wang et al. Generative Adversarial Networks: a survey and taxonomy. 2019. Chris Nicholson. A Beginner's Guide to Generative Adversarial Networks. https://pathmind.com/wiki/generative-adversarial-network-gan. 2019.

Постановка задачи GAN

Дано: выборка объектов $\{x_i\}_{i=1}^m$ из X

Найти:

вероятностную генеративную модель G(z, lpha): $x \sim p(x|z, lpha)$ вероятностную дискриминативную модель D(x, eta) = p(1|x, eta)

Критерий:

обучение дискриминативной модели D:

$$\sum_{i=1}^{m} \ln D(x_i, \boldsymbol{\beta}) + \ln (1 - D(G(z_i, \alpha), \boldsymbol{\beta})) \rightarrow \max_{\boldsymbol{\beta}}$$

обучение генеративной модели G по случайному шуму $\{z_i\}_{i=1}^m$:

$$\sum_{i=1}^{m} \ln(1 - D(G(z_i, \alpha), \beta)) \rightarrow \min_{\alpha}$$

Ian Goodfellow et al. Generative Adversarial Nets. 2014

Примеры GAN для синтеза изображений и видео

Chuan Li, Michael Wand. Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks. 2016.

Xiaoxing Zeng, Xiaojiang Peng, Yu Qiao. DF2Net: A Dense Fine Finer Network for Detailed 3D Face Reconstruction. ICCV-2019

Caroline Chan, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros. Everybody Dance Now. ICCV-2019

Вместо резюме. Типология задач машинного обучения

- Предварительная обработка (data preparation)
 - извлечение признаков (feature extraction)
 - отбор признаков (feature selection)
 - восстановление пропусков (missing values)
 - фильтрация выбросов (outlier detection)
- ② Обучение с учителем (supervised learning)
 - классификация (classification)
 - регрессия (regression)
 - ранжирование (learning to rank)
 - прогнозирование (forecasting)
- Обучение без учителя (unsupervised learning)
 - кластеризация (clustering)
 - поиск ассоциативных правил (association rule learning)
 - восстановление плотности (density estimation)
 - одноклассовая классификация (anomaly detection)
- Частичное обучение (semi-supervised learning)
 - трансдуктивное обучение (transductive learning)
 - обучение с положительными примерами (PU-learning)

Вместо резюме. Типология задач машинного обучения

- Обучение представлений (representation learning)
 - обучение признаков (feature learning)
 - матричные разложения (matrix factorization)
 - обучение многообразий (manifold learning)
- Глубокое обучение (deep learning)
- Обучение близости/связей (similarity/relational learning)
- Обучение структуры модели (structure learning)
- Привилегированное обучение (privileged learning, distilling)
- Состязательное обучение (adversarial learning)
- Динамическое обучение (online/incremental learning)
- Активное обучение (active learning)
- Обучение с подкреплением (reinforcement learning)
- Перенос обучения (transfer learning)
- Многозадачное обучение (multitask learning)
- Мета-обучение (meta-learning, AutoML)