Sparse Automatic Differentiation

The fastest Jacobians in the West

Guillaume Dalle

Alexis Montoison

Adrian Hill

EPFL, INDY lab seminar

28.11.2024

Motivation

- Many algorithms require derivative matrices:
 - ▶ Differential equations → Jacobian
 - ▶ Convex optimization → Hessian
- Large matrices are expensive to compute and store...
- ... except when they are sparse!
- Sparsity can be leveraged automatically.

What is AD?

input	output	
program to compute the function	program to compute the derivative	
$x \longmapsto f(x)$	$x \longmapsto \partial f(x)$	

Two ingredients only:

- 1. hardcode basic derivatives $(+, \times, \exp, \log, ...)$
- 2. handle compositions $f = g \circ h$

For a function $f = g \circ h$, the chain rule gives

standard
$$\partial f(x) = \partial g(h(x)) \circ \partial h(x)$$

adjoint $\partial f(x)^* = \partial h(x)^* \circ \partial g(h(x))^*$

These linear operators apply as follows:

$$\begin{array}{ll} \text{forward} & \partial f(x): u \xrightarrow{\partial h(x)} v \xrightarrow{\partial g(h(x))} w \\ \\ \text{reverse} & \partial f(x)^*: u \xleftarrow{\partial h(x)^*} v \xleftarrow{\partial g(h(x))^*} w \end{array}$$

Forward-mode AD computes Jacobian-Vector Products:

$$u \longmapsto \partial f(x)[u]$$

Reverse-mode AD computes Vector-Jacobian Products:

$$w \longmapsto \partial f(x)^*[w] = w^* \partial f(x)$$

No need to materialize intermediate Jacobian matrices!

Cost of 1 JVP or VJP for $f \propto$ cost of 1 evaluation of f.

To compute the Jacobian matrix J of a composition $f: \mathbb{R}^m \longrightarrow \mathbb{R}^n$:

- product of intermediate Jacobian matrices
- reconstruction from JVPs or VJPs

	forward mode	reverse mode
idea	1 JVP gives 1 column	1 VJP gives 1 row
formula	$J_{\cdot,j} = \partial f(x) \left[e_j \right]$	$J_{i,\cdot} = \partial f(x)^*[e_i]$
cost	n JVPs (input dimension)	m JVPs (output dimension)

When the Jacobian is sparse, we can compute it faster.

If columns $j_1, ..., j_k$ of J are structurally orthogonal (their nonzeros never overlap), we deduce them all from a single JVP:

$$J_{j_1} + \ldots + J_{j_k} = \partial f(x) \left[e_{j_1} + \ldots + e_{j_k} \right]$$

Once we have grouped columns, sparse AD has two steps:

- 1. compressed differentiation of each group $c = \{j_1, ..., j_k\}$
- 2. decompression into individual columns $j_1, ..., j_k$

Compression

Figure 1: Gebremedhin et al. (2005)

Two preliminary steps

When grouping columns, we want to

- guarantee structural orthogonality (correctness)
- form the smallest number of groups (efficiency)

preparation	execution	
1. structure detection	3. compressed differentiation	
2. coloring	4. decompression	

The preparation phase can be amortized across several inputs.

Orthogonal for all (i, j) s.t. $A_{ij} \neq 0$,

• column j is alone in group c(j) with a nonzero in row i

Symmetrically orthogonal for all (i, j) s.t. $A_{ij} \neq 0$,

- either column j is alone in group c(j) with a nonzero in row i
- or column i is alone in group c(i) with a nonzero in row j

Each partition can be reformulated as a specific coloring problem.

Column intersection $(j_1, j_2) \in \mathcal{E} \iff \exists i, A_{ij_1} \neq 0 \text{ and } A_{ij_2} \neq 0$ Bipartite $(i, j) \in \mathcal{E} \iff A_{ij} \neq 0 \text{ (2 vertex sets } \mathcal{I} \text{ and } \mathcal{J})$ Adjacency (sym.) $(i, j) \in \mathcal{E} \iff i \neq j \& A_{ij} \neq 0$

Figure 2: Gebremedhin et al. (2005)

Coloring of intersection graph / distance-2 coloring of bipartite graph

Figure 3: Gebremedhin et al. (2005)

Hessian coloring

Star coloring of adjacency graph

Figure 4: Gebremedhin et al. (2005)

Why a "star" coloring? Consider

$$A = \begin{pmatrix} A_{kk} & A_{ki} & \cdot & \cdot \\ A_{ik} & A_{ii} & A_{ij} & \cdot \\ \cdot & A_{ji} & A_{jj} & A_{jl} \\ \cdot & \cdot & A_{lj} & A_{ll} \end{pmatrix}$$
partition:
• $c(i) \neq c(j)$
• $c(i) \neq c(k)$

If coloring c yields a symmetrically orthogonal

Any path on 4 vertices must use at least 3 colors \iff any 2-colored subgraph is a collection of disjoint stars.

Jacobian bicoloring

Bidirectional coloring of bipartite graph, with neutral color

Figure 5: Gebremedhin et al. (2005)

New insights on Jacobian bicoloring

Coloring

- 1. A bicoloring of J is given by a star coloring of $H = \begin{pmatrix} 0 & J \\ J^T & 0 \end{pmatrix}$: we can reuse existing algorithms
- 2. Diagonal of H is now all zero: we can relax star coloring into no zigzag coloring

$$A = \begin{pmatrix} \cdot & A_{ki} & \cdot & \cdot \\ A_{ik} & \cdot & A_{ij} & \cdot \\ \cdot & A_{ji} & \cdot & A_{jl} \\ \cdot & \cdot & A_{lj} & \cdot \end{pmatrix}$$
 No path on 4 vertices colors (c_1, c_2, c_1, c_2) .

No path on 4 vertices can have

Independent packages working together:

- Step 1 (structure detection): SparseConnectivityTracer.jl
- Steps 2 & 4 (coloring, decompression): SparseMatrixColorings.jl
- Step 3 (compressed diffeentiation): Differentiationterface.jl

Impact

	SCT.jl	SMC.jl	DI.jl
lines of code	4719	3600	14332
indirect dependents	387	350	345
downloads / month	10k	17k	19k

Users already include...

- Scientific computing: SciML (Julia's scipy)
 - Differential equations, nonlinear solves, optimization
- Probabilistic programming: Turing.jl
- Symbolic regression: PySR

- GPU-compatible structure detection and coloring
- Pure Julia autodiff engine based on SSA-IR (Mooncake.jl)

On general AD:

- Blondel & Roulet (2024)
- Margossian (2019)
- Baydin et al. (2018)

On sparse AD:

- Griewank & Walther (2008)
- Gebremedhin et al. (2005)
- Walther (2008)

Bibliography

- Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic Differentiation in Machine Learning: a Survey. *Journal of Machine Learning Research*, *18*(153), 1–43. http://jmlr.org/papers/v18/17-468.html
- Blondel, M., & Roulet, V. (2024, July). *The Elements of Differentiable Programming*. arXiv. https://doi.org/10.48550/arXiv.2403.14606
- Gebremedhin, A. H., Manne, F., & Pothen, A. (2005). What Color Is Your Jacobian? Graph Coloring for Computing Derivatives. *SIAM Review*, 47(4), 629–705. https://doi.org/10/cmwds4

Bibliography

- Griewank, A., & Walther, A. (2008). Evaluating derivatives: principles and techniques of algorithmic differentiation (2nd ed). Society for Industrial, Applied Mathematics.
- Margossian, C. C. (2019). A review of automatic differentiation and its efficient implementation. *Wires Data Mining and Knowledge Discovery*, *9*(4), e1305. https://doi.org/10.1002/widm.1305
- Walther, A. (2008). Computing sparse Hessians with automatic differentiation. *ACM Transactions on Mathematical Software*, *34*(1), 1–15. https://doi.org/10.1145/1322436.1322439