Hands-On: Deep Learning

Siegfried Kaidisch

Universal approximation theorem

• "... feedforward networks with non-polynomial activation functions are dense in the space of continuous functions between two Euclidean spaces, with respect to the compact convergence topology."

[https://en.wikipedia.org/wiki/Universal_approximation_theorem]

Universal approximation theorem

• "... feedforward networks with non-polynomial activation functions are dense in the space of continuous functions between two Euclidean spaces, with respect to the compact convergence topology."

[https://en.wikipedia.org/wiki/Universal_approximation_theorem]

• In practice: When you have a set of data and some quantity can in principle be deduced from that data, a feedforward ANN (artificial neural network) can learn to do so.

• Data → ANN → Quantity

- Data → ANN → Quantity
- Watch history → ANN → Personal interests

- Data → ANN → Quantity
- Watch history → ANN → Personal interests
- Sensor readings from a factory machine → ANN → Risk of failure

- Data → ANN → Quantity
- Watch history → ANN → Personal interests
- Sensor readings from a factory machine → ANN → Risk of failure
- Brain scan images → ANN → Presence of a tumor

- Data → ANN → Quantity
- Watch history → ANN → Personal interests
- Sensor readings from a factory machine \rightarrow ANN \rightarrow Risk of failure
- Brain scan images \rightarrow ANN \rightarrow Presence of a tumor
- Function values on R⁺ → ANN → Complex poles

Pole-fitting for complex functions: Enhancing standard techniques by artificialneural-network classifiers and regressors *

Siegfried Kaidisch ^{a b}, Thomas U. Hilger ^c, Andreas Krassnigg ^{a b} △ ☒ , Wolfgang Lucha ^a + Add to Mendeley 🗬 Share 🗦 Cite Get rights and content 7 Under a Creative Commons license 2

Bad descriptors

 When there is no (or a very intangible) connection between data and desired quantity, the ANN <u>cannot</u> learn to derive the quantity from the data

Bad descriptors

- When there is no (or a very intangible) connection between data and desired quantity, the ANN <u>cannot</u> learn to derive the quantity from the data
- Last week's lottery numbers → The next draw

Bad descriptors

- When there is no (or a very intangible) connection between data and desired quantity, the ANN <u>cannot</u> learn to derive the quantity from the data
- Last week's lottery numbers → The next draw
- Name of Titanic passenger → Survival probability
 - Better descriptor: Which deck was the passenger on?

Q: What is happening inside the ANN, that derives the quantity from the data?

Q: What is happening inside the ANN, that derives the quantity from the data?

A: In short, a set of matrices and vectors and a non-polynomial function transform the input into the output.

[https:// upload.wikimedia.org/ wikipedia/commons/b/b2/ MRI_of_Human_Brain.jpg]

[https:// upload.wikimedia.org/ wikipedia/commons/b/b2/ MRI of Human Brain.jpg]

[https:// upload.wikimedia.org/ wikipedia/commons/b/b2/ MRI_of_Human_Brain.jpg]

[https:// upload.wikimedia.org/ wikipedia/commons/b/b2/ MRI of Human Brain.jpg]

[https://upload.wikimedia.org/wikipedia/commons/ 2/2f/Example of a deep neural network.png]

$$ec{o}_2 = arphi \left(\stackrel{\leftrightarrow}{M}_2 ec{o}_1 + ec{b}_2
ight)$$

[https:// upload.wikimedia.org/ wikipedia/commons/b/b2/ MRI of Human Brain.jpg]

$$ec{o}_1 = arphi \left(\stackrel{\leftrightarrow}{M}_1 \, ec{x} + ec{b}_1
ight) \, .$$

$$ec{o}_2 = arphi \left(\stackrel{\leftrightarrow}{M}_2 ec{o}_1 + ec{b}_2
ight)$$

$$\hat{ec{y}} = \overset{\leftrightarrow}{M}_{ ext{out}} ec{o}_{N_{ ext{HL}}} + ec{b}_{ ext{out}} = ext{Diagnosis}$$

Activation functions

Non-polynomial function φ

$$ReLU(x) = max(0, x)$$

$$Sigmoid(x) = \frac{1}{1 + e^{-x}}$$

$$Tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Training ANNs

• In short: ANN = a set of matrices (weights), vectors (biases) and non-polynomial functions

Training ANNs

• In short: ANN = a set of matrices (weights), vectors (biases) and non-polynomial functions

 Change values in matrices and vectors → Change performance of the ANN

Training ANNs

• In short: ANN = a set of matrices (weights), vectors (biases) and non-polynomial functions

 Change values in matrices and vectors → Change performance of the ANN

Training ANN = Changing weights and biases such that performance increases

How can we tell, what the ANN's performance is?

- How can we tell, what the ANN's performance is?
- We need data, where we know what the output should be!

- How can we tell, what the ANN's performance is?
- We need data, where we know what the output should be!
 - E.g. brainscans with diagnoses created by a doctor

- How can we tell, what the ANN's performance is?
- We need data, where we know what the output should be!
 - E.g. brainscans with diagnoses created by a doctor
- Feed the data (brainscans) to the ANN and compare its outputs/predictions to the correct results (diagnoses by doctor)

- How can we tell, what the ANN's performance is?
- We need data, where we know what the output should be!
 - E.g. brainscans with diagnoses created by a doctor
- Feed the data (brainscans) to the ANN and compare its outputs/predictions to the correct results (diagnoses by doctor)
- Loss function: a function of the correct result and the prediction of the ANN, that is a measure of how good the prediction is:

$$loss(\hat{y_i}, y_i)$$

- How can we tell, what the ANN's performance is?
- We need data, where we know what the output should be!
 - E.g. brainscans with diagnoses created by a doctor
- Feed the data (brainscans) to the ANN and compare its outputs/predictions to the correct results (diagnoses by doctor)
- Loss function: a function of the correct result and the prediction of the ANN, that is a measure of how good the prediction is:

$$loss(\hat{y_i}, y_i)$$

small prediction is good

• Q: How effective will a certain treatment be for a patient?

- Q: How effective will a certain treatment be for a patient?
- Data: brainscan

$$x_i =$$

- Q: How effective will a certain treatment be for a patient?
- Data: brainscan
- Quantity to find: Effectiveness of treatment = Number between 0 and 100

$$x_i =$$

$$y_i = 80$$

- Q: How effective will a certain treatment be for a patient?
- Data: brainscan
- Quantity to find: Effectiveness of treatment = Number between 0 and 100
- Loss function: Mean squared error: $loss(\hat{y}_i, y_i) = (y_i \hat{y}_i)^2$

$$x_i =$$

$$y_i = 80$$

- Q: How effective will a certain treatment be for a patient?
- Data: brainscan
- Quantity to find: Effectiveness of treatment = Number between 0 and 100
- Loss function: Mean squared error: $loss(\hat{y}_i, y_i) = (y_i \hat{y}_i)^2$

$$x_i =$$

$$\hat{y_i}$$
= 40 $\longrightarrow loss(\hat{y_i}, y_i)$ = 1600

$$y_i = 80$$

Loss function – example

- Q: How effective will a certain treatment be for a patient?
- Data: brainscan
- Quantity to find: Effectiveness of treatment = Number between 0 and 100
- Loss function: Mean squared error: $loss(\hat{y}_i, y_i) = (y_i \hat{y}_i)^2$

$$x_i =$$

$$\hat{y_i}$$
= 40 $\longrightarrow loss(\hat{y_i}, y_i)$ = 1600

$$y_i = 80$$

$$\hat{y_i}$$
= 75 $\longrightarrow loss(\hat{y_i}, y_i)$ = 25

The loss function tells us how good a single prediction of the ANN is

- The loss function tells us how good a single prediction of the ANN is
- Cost function: = Loss function averaged over a batch of data

$$J = \frac{1}{M} \sum_{i=1}^{M} loss(\hat{y}_i, y_i)$$

- The loss function tells us how good a single prediction of the ANN is
- Cost function: = Loss function averaged over a batch of data
 - Tells us the average/expected performance of the ANN

$$J = \frac{1}{M} \sum_{i=1}^{M} loss(\hat{y}_i, y_i)$$

- The loss function tells us how good a single prediction of the ANN is
- Cost function: = Loss function averaged over a batch of data
 - Tells us the average/expected performance of the ANN

$$J = \frac{1}{M} \sum_{i=1}^{M} loss(\hat{y_i}, y_i) \qquad \qquad \text{small} \iff \text{ANN is good}$$

- The loss function tells us how good a single prediction of the ANN is
- Cost function: = Loss function averaged over a batch of data
 - Tells us the average/expected performance of the ANN

$$J = rac{1}{M} \sum_{i=1}^{M} loss(\hat{y_i}, y_i)$$
 small \Longrightarrow ANN is good

Training ANN =

- The loss function tells us how good a single prediction of the ANN is
- Cost function: = Loss function averaged over a batch of data
 - Tells us the average/expected performance of the ANN

$$J = rac{1}{M} \sum_{i=1}^{M} loss(\hat{y_i}, y_i)$$
 small \Longrightarrow ANN is good

Training ANN = Adapting weights and biases, such that cost function gets smaller

 Training ANN = Adapting weights and biases, such that cost function gets smaller

 Training ANN = Adapting weights and biases, such that cost function gets smaller

Q: How do we actually do this?

- Training ANN = Adapting weights and biases, such that cost function gets smaller
- Q: How do we actually do this?

Supervised learning: Use manually created data

- Training ANN = Adapting weights and biases, such that cost function gets smaller
- Q: How do we actually do this?

- Supervised learning: Use manually created data
 - E.g.: 10.000(=N) brainscans $(=x_i)$ and the corresponding correct diagnosis $(=y_i)$, determined by a doctor

48

- Training ANN = Adapting weights and biases, such that cost function gets smaller
- Q: How do we actually do this?

- Supervised learning: Use manually created data
 - E.g.: 10.000(=N) brainscans(= x_i) and the corresponding correct diagnosis(= y_i), determined by a doctor

$$\{(x_i, y_i), i = 1, ...N\}$$

• Data: $\{(x_i, y_i), i = 1, ...N\}$

- Data: $\{(x_i, y_i), i = 1, ...N\}$
- Goal: minimize cost function

$$J = \frac{1}{M} \sum_{i=1}^{M} loss(\hat{y}_i, y_i)$$

- Data: $\{(x_i, y_i), i = 1, ...N\}$
- Goal: minimize cost function

$$J = \frac{1}{M} \sum_{i=1}^{M} loss(\hat{y}_i, y_i)$$

• Procedure (backpropagation and stochastic gradient descent):

- Data: $\{(x_i, y_i), i = 1, ...N\}$
- Goal: minimize cost function

$$J = \frac{1}{M} \sum_{i=1}^{M} loss(\hat{y}_i, y_i)$$

- Procedure (backpropagation and stochastic gradient descent):
 - Calculate ANN prediction for a batch of data (e.g. 100 brainscans)

- Data: $\{(x_i, y_i), i = 1, ...N\}$
- Goal: minimize cost function

$$J = \frac{1}{M} \sum_{i=1}^{M} loss(\hat{y}_i, y_i)$$

- Procedure (backpropagation and stochastic gradient descent):
 - Calculate ANN prediction for a batch of data (e.g. 100 brainscans)
 - Calculate cost function

- Data: $\{(x_i, y_i), i = 1, ...N\}$
- Goal: minimize cost function

$$J = \frac{1}{M} \sum_{i=1}^{M} loss(\hat{y}_i, y_i)$$

- Procedure (backpropagation and stochastic gradient descent):
 - Calculate ANN prediction for a batch of data (e.g. 100 brainscans)
 - Calculate cost function
 - Calculate derivative of the cost function w.r.t. ANN parameters (weights and biases)

- Data: $\{(x_i, y_i), i = 1, ...N\}$
- Goal: minimize cost function

$$J = \frac{1}{M} \sum_{i=1}^{M} loss(\hat{y}_i, y_i)$$

- Procedure (backpropagation and stochastic gradient descent):
 - Calculate ANN prediction for a batch of data (e.g. 100 brainscans)
 - Calculate cost function
 - Calculate derivative of the cost function w.r.t. ANN parameters (weights and biases)
 - Update ANN parameters

$$p \to p - \alpha \frac{\partial J}{\partial p}$$

- Data: $\{(x_i, y_i), i = 1, ...N\}$
- Goal: minimize cost function

$$J = \frac{1}{M} \sum_{i=1}^{M} loss(\hat{y}_i, y_i)$$

- Procedure (backpropagation and stochastic gradient descent):
 - Calculate ANN prediction for a batch of data (e.g. 100 brainscans)
 - Calculate cost function
 - Calculate derivative of the cost function w.r.t. ANN parameters (weights and biases)
 - Update ANN parameters
 - Repeat with next batch ...

$$p \to p - \alpha \frac{\partial J}{\partial p}$$

Supervised Learning: use manually created data to train ANN

$$\{(x_i, y_i), i = 1, ...N\}$$

Supervised Learning: use manually created data to train ANN

$$\{(x_i, y_i), i = 1, ...N\}$$

• \rightarrow ANN learns to derive quantity from data (ANN: $x_i \rightarrow y_i$)

Supervised Learning: use manually created data to train ANN $\{(x_i, y_i), i = 1, ...N\}$

$$\{(x_i,y_i), i-1,...N\}$$

 \rightarrow ANN learns to derive quantity from data (ANN: $x_i \rightarrow y_i$)

 \rightarrow Can apply ANN to new data x_i , where quantity, y_i , is unknown (undiagnosed brain scans)

• Supervised Learning: use manually created data to train ANN $\{(x_i,y_i),i=1,...N\}$

• \rightarrow ANN learns to derive quantity from data (ANN: $x_i \rightarrow y_i$)

• \rightarrow Can apply ANN to new data x_i , where quantity, y_i , is unknown (undiagnosed brain scans)

Cheap, fast and accurate

Supervised Learning: Use manually created data to train ANN

- Supervised Learning: Use manually created data to train ANN
- Important: ANN will usually perform better on the data that it was trained on, than on data, that it has never seen!

- Supervised Learning: Use manually created data to train ANN
- Important: ANN will usually perform better on the data that it was trained on, than on data, that it has never seen!
 - → Performance may seem better than it actually is!

- Supervised Learning: Use manually created data to train ANN
- Important: ANN will usually perform better on the data that it was trained on, than on data, that it has never seen!
 - → Performance may seem better than it actually is!
- Reason: Overfitting

- Supervised Learning: Use manually created data to train ANN
- Important: ANN will usually perform better on the data that it was trained on, than on data, that it has never seen!
 - → Performance may seem better than it actually is!
- Reason: Overfitting
 - E.g., may have 10.000 brainscans but ANN has 100.000 parameters

- Supervised Learning: Use manually created data to train ANN
- Important: ANN will usually perform better on the data that it was trained on, than on data, that it has never seen!
 - → Performance may seem better than it actually is!
- Reason: Overfitting
 - E.g., may have 10.000 brainscans but ANN has 100.000 parameters
 - ANN may not actually learn to detect patterns, but just memorizes the training data

- Supervised Learning: Use manually created data to train ANN
- Important: ANN will usually perform better on the data that it was trained on, than on data, that it has never seen!
 - → Performance may seem better than it actually is!
- Reason: Overfitting
 - E.g., may have 10.000 brainscans but ANN has 100.000 parameters
 - ANN may not actually learn to detect patterns, but just memorizes the training data
- Solution: Split manually prepared data up

Split data into three separate sets:

- Split data into three separate sets:
 - Training set: Update parameters to enhance performance

- Split data into three separate sets:
 - Training set: Update parameters to enhance performance
 - Validation set: Check performance during training → detect overfitting
 - Never used to update ANN parameters!

- Split data into three separate sets:
 - Training set: Update parameters to enhance performance
 - Validation set: Check performance during training → detect overfitting
 - Never used to update ANN parameters!

Splitting up data: testing

- Split data into three separate sets:
 - Training set: Update parameters to enhance performance
 - Validation set: Check performance during training, prevent overfitting
 - Test set: Unbiased performance evaluation, when hyperparameters have been chosen and training is finished

Splitting up data: testing

- Split data into three separate sets:
 - Training set: Update parameters to enhance performance
 - Validation set: Check performance during training, prevent overfitting
 - Test set: Unbiased performance evaluation, when hyperparameters have been chosen and training is finished

Hyperparameters:

- Number and size of hidden layers
- Batch size
- Choice of loss function
- Optimization algorithm and learning rate
- •

• Goal: Predict a vector of real numbers

Goal: Predict a vector of real numbers

Goal: Predict a vector of real numbers

Goal: Predict a vector of real numbers

$$\{(x_i,y_i),i=1,...N\}$$

House i:
$$x_i = (200, 10, 1, ...)$$
 $y_i = \begin{pmatrix} 1,000,000 \\ 5,000 \end{pmatrix}$

- Goal: Predict a vector of real numbers
- Loss function: Mean-Squared Error (MSE)

$$loss(\hat{y}_i, y_i) = \frac{1}{k} \sum_{j=1}^{k} (y_{i,j} - \hat{y}_{i,j})^2$$

$$\{(x_i,y_i),i=1,...N\}$$

House i:
$$x_i = (200, 10, 1, ...)$$

$$y_i = egin{pmatrix} 1,000,000 \ 5,000 \end{pmatrix}$$

- Goal: Predict a vector of real numbers
- Loss function: Mean-Squared Error (MSE)

$$loss(\hat{y}_i, y_i) = \frac{1}{k} \sum_{j=1}^{k} (y_{i,j} - \hat{y}_{i,j})^2$$

- ANN output = ANN prediction
- Example: Find house price and rental income from size, location score, ag

House i:
$$x_i$$
 = (200, 10, 1, ...) $y_i = \begin{pmatrix} 1,000,000 \\ 5,000 \end{pmatrix}, \quad \hat{y}_i = \begin{pmatrix} 800,000 \\ 4,500 \end{pmatrix}$

• Goal: Assign input to class

Goal: Assign input to class

Goal: Assign input to class

27. Feb. 2025 NanoGraz

27. Feb. 2025

Goal: Assign input to class

NanoGraz

Goal: Assign input to class

$$\{(x_i,y_i),i=1,...N\}$$

[Karen Zack (@TeenyBiscuit)]

$$x_i = egin{pmatrix} y_i = egin{pmatrix} 1 \ 0 \end{pmatrix}$$
NanoGraz

 $x_i =$

- Goal: Assign input to class
- Loss function: Cross-Entropy Loss

$$x_i = egin{pmatrix} y_i = egin{pmatrix} 1 \ 0 \end{pmatrix}$$

27. Feb. 2025 NanoGraz

[Karen Zack (@TeenyBiscuit)]

- Goal: Assign input to class
- Loss function: Cross-Entropy Loss

$$p_{i,c} = \frac{exp(\hat{y}_{i,c})}{\sum_{c'} exp(\hat{y}_{i,c'})}$$

$$x_i = egin{bmatrix} y_i = egin{pmatrix} 1 \ 0 \end{pmatrix}, \quad p_i = egin{pmatrix} 0.8 \ 0.2 \end{pmatrix}$$
NanoGraz

[Karen Zack (@TeenyBiscuit)]

- Goal: Assign input to class
- Loss function: Cross-Entropy Loss

$$p_{i,c} = \frac{exp(\hat{y}_{i,c})}{\sum_{c'} exp(\hat{y}_{i,c'})} \qquad loss(\hat{y}_{i}, y_{i}) = -\sum_{c} y_{i,c} * log(p_{i,c})$$

 $\{(x_i, y_i), i = 1, ...N\}$

$$x_i =$$

$$x_i = egin{pmatrix} y_i = egin{pmatrix} 1 \ 0 \end{pmatrix}, \quad p_i = egin{pmatrix} 0.8 \ 0.2 \end{pmatrix}$$

NanoGraz

- Goal: Assign input to class
- Loss function: Cross-Entropy Loss

$$p_{i,c} = \frac{exp(\hat{y}_{i,c})}{\sum_{c'} exp(\hat{y}_{i,c'})} \qquad loss(\hat{y}_i, y_i) = -\sum_{c} y_{i,c} * log(p_{i,c})$$

- ANN prediction: $argmax_c(p_{i,c})$
- Example: Chihuahua or muffin?
 - 2 classes

$$x_i =$$

$$y_i = egin{pmatrix} 1 \ 0 \end{pmatrix}, \quad p_i = egin{pmatrix} 0.8 \ 0.2 \end{pmatrix}$$
 Chihuahua

27. Feb. 2025 NanoGraz

[Karen Zack (@TeenyBiscuit)]

"DeepLearningAI" YouTube channel

 Start with "Course 1 of the Deep Learning Specialization"

Hands-on part

27. Feb. 2025 NanoGraz 92

Hands-on example

MNIST

https://www.kaggle.com/datasets/scolianni/mnistasjpg

https:// upload.wikimedia.org/ wikipedia/commons/2/27/ MnistExamples.png

(Feedforward) Artificial neural networks

[https://upload.wikimedia.org/wikipedia/commons/ 2/2f/Example of a deep neural network.png]

[https:// upload.wikimedia.org/ wikipedia/commons/b/b2/ MRI of Human Brain.jpg]

$$ec{o}_1 = arphi \left(\stackrel{\leftrightarrow}{M}_1 \, ec{x} + ec{b}_1
ight)$$

$$ec{o}_2 = arphi \left(\stackrel{\leftrightarrow}{M}_2 ec{o}_1 + ec{b}_2
ight)$$

$$\hat{ec{y}} = \overset{\leftrightarrow}{M}_{ ext{out}} ec{\sigma}_{N_{ ext{HL}}} + ec{b}_{ ext{out}} = ext{Diagnose}$$