

Aula 5 – Outros dispositivos semicondutores, Optoeletrônica e Acopladores Ópticos

Disciplina: Eletrônica Analógica e Digital

Professor: Daniel Gueter

Cronograma

- 18/02 Aula 1 Introdução da disciplina e Semicondutores
- 25/02 Aula 2 Revisão de circuitos
- 04/03 Feriado Carnaval
- 11/03 Aula 3 Diodo Zener e Introdução a Transistores
- 18/03 Aula 4 Continuação da aula 3
- 25/03 Aula 5 Outros dispositivos semicondutores, Optoeletrônica e Acopladores Ópticos
- 01/04 Aula 6 (Semana de Oficina)
- 08/04 Aula 7
- 15/04 Prova
- 22/04 Prova substitutiva

Outros dispositivos semicondutores

Outros dispositivos semicondutores

Além dos tipos de Diodos e Transistores apresentados, existem outros tipos de dispositivos semicondutores utilizado em circuitos eletrônicos.

Os componentes abaixo são utilizados **principalmente em aplicações de chaveamento** (On-Off).

São eles:

- FETs
 - JFETs
 - MOSFETs
- Tiristor
- IGBT

FETs – Transistores de efeito de campo

- Enquanto os transistores comuns são utilizado em aplicações lineares, os FETs (Field effect transistors) são os favoritos para aplicações de chaveamento, por poder entrar em corte e saturação mais rápido.
- Dentro da família dos FETs, temos os:
 - **JFETs**: Transistor de efeito de campo de junção
 - MOSFETs: FET de óxido de semicondutor e metal

JFET físico e seu símbolo

MOSFET físico e seu símbolo

Aula 5 – Outros dispositivos semicondutores, Optoeletrônica e Acopladores Ópticos

FETs - Transistores de efeito de campo

- Os FETs sofrem menos com os efeitos de temperatura do que transistores bipolares. Além disso, os **FETs são tipicamente bem menores que os transistores bipolares,** tornando-os vantajosos para circuitos integrados (CIs).
- Adicionalmente, os FETs possuem um baixo consumo de energia em circuitos eletrônicos.
- Os tempos de chaveamento dos MOSFETs são muito baixos, tornando-os indicados para **aplicações de alta frequência** (acima de 20 kHz).
- Por desempenhar bem em aplicações de chaveamento digital, os MOSFETs são os principais semicondutores utilizados em computadores, contendo milhões deles em um computador comum.

Tiristores e IGBTs

- Os Tiristores e o IGBTs (Transistor bipolar com porta isolada Insulated-gate bipolar transistor) são geralmente utilizados em aplicações de chaveamento de alta potência.
- A frequência de chaveamento desses dispositivos são mais baixas do que as dos FETs.

Tiristor

IGBT

Comparação

Dispositivo	Capacidade de potência	Frequência de chaveamento
Transistor	Média	Média
MOSFET	Baixa	Alta
Tiristor	Alta	Baixa
IGBT	Média	Média

Limites de operação de dispositivos semicondutores

Optoeletrônica e Acopladores Ópticos

Optoeletrônica – O que é?

- A optoeletrônica é a combinação de conceitos de ótica (luz) com eletrônica (corrente e tensão).
- Os principais dispositivos optoeletrônicos são:
 - Diodos emissores de luz LEDs (Light-emitting diodes)
 - Fotodiodo
 - Diodo Laser

Optoeletrônica – O que é?

Fotodiodo

Diodo laser

LEDs

- Os **LEDs se comportam exatamente como um diodo**, tendo polaridade e permitindo que passe corrente somente por um sentido.
- Os LEDs emitem luz com a movimentação de elétrons, os quais irradiam energia na forma de fótons. Nos diodos, a mesma energia é irradiada na forma de calor.
- Para um LED funcionar, a tensão aplicada nele tem que ser o suficiente, entretanto a **intensidade luminosa depende da corrente** que passa nele!
- Os LEDs substituíram lâmpadas incandescentes por possuir um **baixo consumo de energia** e tamanho reduzido.

LEDs

Wavelength range (nm)	Colour	Voltage drop (ΔV)	Semiconductor material
<400	Ultraviolet	3.1-4.4	Aluminium nitride (AIN)
			Aluminium gallium nitride (AIGaN)
			Aluminium gallium indium nitride (AlGaInN)
400-450	Violet	2.8-4.0	Indium gallium nitride (InGaN)
450–500	Blue	2.5-3.7	Indium gallium nitride (InGaN)
			Silicon carbide (SiC)
500–570	Green	1.9-4.0	Gallium phosphide (GaP)
			Aluminium gallium indium phosphide (AlGaInP)
			Aluminium gallium phosphide (AlGaP)
570–590	Yellow	2.1-2.2	Gallium arsenide phosphide (GaAsP)
			Aluminium gallium indium phosphide (AlGaInP)
			Gallium phosphide (GaP)
590–610	Orange/amber	2.0-2.1	Gallium arsenide phosphide (GaAsP)
			Aluminium gallium indium phosphide (AlGaInP)
			Gallium phosphide (GaP)
610–760	Red	1.6-2.0	Aluminium gallium arsenide (AlGaAs)
			Gallium arsenide phosphide (GaAsP)
			Aluminium gallium indium phosphide (AlGaInP)
			Gallium phosphide (GaP)
>760	Infrared	<1.9	Gallium arsenide (GaAs)

Cor dos LEDs dependendo do material do semicondutor

Fotodiodo

 Otimizado para ter uma alta sensibilidade à luz incidente, o fotodiodo faz o papel reverso ao LED: Ao invés de gerar luz a partir de uma tensão e corrente, ele recebe luz para gerar tensão e corrente.

 A corrente gerada é reversa, logo um fotodiodo é posicionado com a polaridade invertida.

Optoeletrônica

Acoplador óptico

- Ao juntar um LED e um fotodiodo em um mesmo encapsulamento, temos um acoplador óptico.
- A variação de tensão e corrente do circuito de entrada, ligado ao LED, resulta em uma intensidade luminosa no LED que é transmitida ao fotodiodo, o qual gera uma corrente reversa que alimenta o circuito de saída.
- Essa solução é usada **principalmente para isolamento elétrico do circuito (também chamada de isolação galvânica)**, evitando que um problema (Ex: Curto-circuito) passe de um circuito para o outro.

Acoplador óptico

Circuito básico de um acoplador óptico

Acoplador óptico

Diodo Laser

- O diodo laser é um diodo que contém uma câmera ressonante espelhada que reforça a luz em uma fase, ou seja, gera um feixe estreito de luz intenso, foca e puro, em uma direção.
- Dentre as aplicações de um diodo laser, temos:
 - Telecomunicações
 - Aparelhos CDs e DVDs
 - Aparelhos de medição
 - Tecnologias de fibra ótica

Diodo Laser

Construção interna de um Diodo Laser