SummaC: Re-visiting NLI for Summary Consistency

Philippe Laban, Tobias Schnabel, Paul Bennett, Marti Hearst TACL Paper - ACL 2022 Presentation

What is summary factual consistency?

... and why is it important?

Example Inconsistent Summary

Scientists are studying Mars to learn about the Red Planet and find landing sites for future missions.

One possible site, known as Arcadia Planitia, is covered in strange sinuous features.

The shapes could be signs that the area is actually made of glaciers, which are large masses of slowmoving ice.

Arcadia Planitia is in Mars' northern lowlands.

Document

There are strange shape patterns on Arcadia Planitia.

The shapes could indicate the area might be made of glaciers.

This makes Arcadia Planitia ideal for future missions.

Summary

Steps to Tackling Factual Inconsistency

1.

Collect data to measure problem

2.

Build models that can detect errors **3**.

Build models that can fix / avoid errors

Steps to Tackling Factual Inconsistency

1.

Collect data to measure problem

2.

Build models that can detect errors **3**.

Build models that can fix / avoid errors

Focus of this work

1. Datasets

The SummaC benchmark standardizes 6 large summary consistency dataset into a single benchmark.

Model Name	Size Valid	Size Test	% Consistent
CGS (Falke, 2019)	1,281	400	49.8

<u>CGS</u>: Consistency as ranking problem, with pairs of (consistent, inconsistent) sentences.

The SummaC benchmark standardizes 6 large summary consistency dataset into a single benchmark.

Model Name	Size Valid	Size Test	% Consistent
CGS (Falke, 2019)	1,281	400	49.8
XSF (Maynez 2020)	1,250	1,250	10.2

XSF: Differentiates between *extrinsic* and *intrinsic* factual errors. Focus on the XSum dataset, which models struggle with more.

The SummaC benchmark standardizes 6 large summary consistency dataset into a single benchmark.

Model Name	Size Valid	Size Test	% Consistent
CGS (Falke, 2019)	1,281	400	49.8
XSF (Maynez 2020)	1,250	1,250	10.2
Polytope (Huang 2020)	634	634	6.6

<u>Polytope:</u> error typology based on MQM, with 5 accuracy errors subtypes.

The SummaC benchmark standardizes 6 large summary consistency dataset into a single benchmark.

Model Name	Size Valid	Size Test	% Consistent
CGS (Falke, 2019)	1,281	400	49.8
XSF (Maynez 2020)	1,250	1,250	10.2
Polytope (Huang 2020)	634	634	6.6
FactCC (Kryscinski 2020)	931	503	85.5

<u>FactCC:</u> Annotated by experts rather than crowd-workers. Also contains synthetic training dataset.

The SummaC benchmark standardizes 6 large summary consistency dataset into a single benchmark.

Model Name	Size Valid	Size Test	% Consistent
CGS (Falke, 2019)	1,281	400	49.8
XSF (Maynez 2020)	1,250	1,250	10.2
Polytope (Huang 2020)	634	634	6.6
FactCC (Kryscinski 2020)	931	503	85.5
SummEval (Fabbri 2021)	850	850	90.6

<u>SummEval:</u> Extensive effort with annotations for 23 summarizers. Uses 5-pt Likert scale rather than binary tag.

The SummaC benchmark standardizes 6 large summary consistency dataset into a single benchmark.

Model Name	Size Valid	Size Test	% Consistent
CGS (Falke, 2019)	1,281	400	49.8
XSF (Maynez 2020)	1,250	1,250	10.2
Polytope (Huang 2020)	634	634	6.6
FactCC (Kryscinski 2020)	931	503	85.5
SummEval (Fabbri 2021)	850	850	90.6
FRANK (Pagnoni 2021)	671	1,575	33.2

<u>FRANK:</u> Introduces error-typology with 7 error types. Analysis both on CNN/DM and XSum.

Objectives of the Benchmark

- 1. Standardize the task. By standardizing the task (binary classification) and the metrics (balanced accuracy).
- 2. Broader evaluation. By seeing which models generalize well across datasets / settings.
- **3. Ease of access.** The benchmark is available for download publicly to accelerate research.

2. Models

NLI-based

NLI-based

Older methods / Low accuracy

More recent / Higher accuracy

NLI-based

Older methods / Low accuracy

NLI-based

Zooming in on NLI models

Scientists are studying Mars to learn about the Red Planet and find landing sites for future missions.

One possible site, known as Arcadia Planitia, is covered in strange sinuous features.

NLI (

The shapes could be signs that the area is actually made of glaciers, which are large masses of slowmoving ice.

Arcadia Planitia is in Mars' northern lowlands.

Document

There are strange shape patterns on Arcadia Planitia.

The shapes could indicate the area might be made of glaciers.

)=**0.9**1

This makes Arcadia Planitia ideal for future missions.

Summary

Zooming in on NLI models

Scientists are studying Mars to learn about the Red Planet and find landing sites for future missions.

One possible site, known as Arcadia Planitia, is covered in strange sinuous features.

The shapes could be signs that the area is actually made of glaciers, which are large masses of slowmoving ice.

Arcadia Planitia is in Mars' northern lowlands.

Document

There are strange shape patterns on Arcadia Planitia.

The shapes could indicate the area might be made of glaciers.

This makes Arcadia Planitia ideal for future missions.

NLI (Di, Sj)

Summary

Mismatch in granularity between

NLI datasets sentence-level

Consistency detection document-level

How do we adjust the granularity?

 Split the document and summary into blocks (sentences, paragraphs, etc.)

Run each (doc, summ) block through NLI model. Form an MxN matrix.

3. Take max for each column, and mean over the rows.

Two undefined parameters: which NLI model, and which NLI label to use.

SummaC Benchmark Results

Туре	Model Name	CGS	XFS	PT	FCC	SE	Fr	Total
Classifier	FactCC-CLS	63.1	57.6	61.0	75.9	60.1	59.4	62.8
Parsing	DAE	63.4	50.8	62.8	75.9	70.3	61.7	64.2
QAG	FEQA	61.0	56.0	57.8	53.6	53.8	69.9	58.7
QAG	QuestEval	62.6	62.1	70.3	66.6	72.5	82.1	69.4
NLI	NLI Doc Level	53.0	57.5	61.0	61.3	66.6	63.6	56.8
INLI	SummaC ZS	70.4	58.4	62.0	83.8	78.7	79.0	72.1

Results of inconsistency detectors on the SummaC Benchmark (Balanced Accuracy)

The max operator is limiting: it removes a lot of information. Can we do better?

1. Build NLI (MxN) matrix (identical to SummaC ZS).

2. For each column, compute a bin (fixed size).

Input each histogram into a trained 1-d convolution layer.

4. Take the mean of all convolution outputs.

SummaC Benchmark Results

Туре	Model Name	CGS	XFS	PT	FCC	SE	Fr	Total
Classifier	FactCC-CLS	63.1	57.6	61.0	75.9	60.1	59.4	62.8
Parsing	DAE	63.4	50.8	62.8	75.9	70.3	61.7	64.2
046	FEQA	61.0	56.0	57.8	53.6	53.8	69.9	58.7
QAG	QuestEval	62.6	62.1	70.3	66.6	72.5	82.1	69.4
	NLI Doc Level	53.0	57.5	61.0	61.3	66.6	63.6	56.8
NLI	SummaC ZS	70.4	58.4	62.0	83.8	78.7	79.0	72.1
	SummaC Conv	64.7	66.4	62.7	89.5	81.7	81.6	74.4

Results of inconsistency detectors on the SummaC Benchmark (Balanced Accuracy)

NLI Model Selection

Benchmark Acc.

Model	NLI Dataset	ZS	Conv.
Decomp Attn	SNLI	56.9	56.4
	SNLI	66.6	64.0
BERT-Base	MNLI	69.5	69.8
	MNLI + VitC	67.9	71.2
	SNLI	66.6	62.4
BERT-Large	MNLI	70.9	73.0
	MNLI + VitC	72.1	74.4

Highlights:

- 1. Better NLI leads to better inconsistency detection.
- 2. SummaCConv only leads to improvements over ZS for better NLI.

NLI Category Selection

Category			SummaCConv Acc.		
E	N	С	MNLI + VitC	MNLI	
/			74.4	72.6	
	/		71.2	66.4	
		~	72.5	72.6	
~	/		73.1	72.6	
✓		✓	74.0	73.0	
	/	✓	69.2	72.6	
V	V	V	69.7	73.0	

Highlights:

- 1. **E**ntailment-only models are very strong.
- 2. **N**eutral is not useful.
- 3. **C**ontradiction helps the MNLI model a little.

Interpretation:

Inconsistency detection is not about detecting contradictions. It is more about finding support (entailment) for summary claims.

Discussion

- 1. **Choice of granularity.** See paper for experiment. TL/DR: finer granularity is better.
- 2. **Focus on News Summarization.** Future annotations should focus on new domains (dialogue, medical, etc.) and languages for annotation.
- 3. **Towards Consistent Summarization.** Inconsistency detection is the first step. Can we make the next generation of summarizers consistent?

Thank you

TL;DR: New SummaC Benchmark to tackle factual consistency. Two new NLI-based models: SummaCZS, SummaCConv are strong performers.

Code/Data: github.com/tingofurro/summac

Questions? Get in touch, in person at ACL or

online: plaban@salesforce.com