

# 理想、均质不可压、 定常



$$\mu = 0$$
,  $\rho = \text{const}$ ,  $\frac{\partial}{\partial t} = 0$ 









沿流线的伯 努利方程

#### ↓基础知识



守恒定律、牛顿第二定律、物质导数、描述流体运动的两种方法



#### 第四章 理想流体运动基础

### 欧拉方程

### 伯努利方程

伯努利方程的应用





### 雷诺数Re



### 粘性流动最重要的准则数,无量纲

$$\mathbf{Re} = \frac{\rho VL}{\mu}$$

惯性力/粘性力

### ◎ 无粘流动的必要条件 ➤ Re >> 1







### 4.1 欧拉方程



$$\sum \vec{F} = m\vec{a}$$

**◎ 表面力** 
$$\longrightarrow$$
  $-\nabla p \delta x \delta y \delta z$ 

@ 牛顿第二定律



$$\rho \delta x \, \delta y \, \delta z \, \frac{D\vec{V}}{Dt} = -\nabla p \, \delta x \, \delta y \, \delta z + \vec{g} \, \rho \delta x \, \delta y \, \delta z$$



欧拉方程 
$$\Rightarrow$$
  $\frac{D\vec{V}}{Dt} = -\frac{1}{\rho}\nabla p + \vec{g}$ 



## 4.3 伯努利方程

### 流体运动时,速度,压强和高度之间有什么关系?











#### 伯努利方程的导出1

### 定常流动欧拉运动微分方程沿流线的积分

$$f_x - \frac{1}{\rho} \frac{\partial p}{\partial x} = \frac{Du}{Dt}$$
 (1)

$$f_{y} - \frac{1}{\rho} \frac{\partial p}{\partial y} = \frac{Dv}{Dt}$$
 (2)

$$f_z - \frac{1}{\rho} \frac{\partial p}{\partial z} = \frac{Dw}{Dt}$$
 (3)

$$f_{x} - \frac{1}{\rho} \frac{\partial p}{\partial x} = \frac{Du}{Dt}$$
 (1) 
$$f_{y} - \frac{1}{\rho} \frac{\partial p}{\partial y} = \frac{Dv}{Dt}$$
 (2) 
$$f_{z} - \frac{1}{\rho} \frac{\partial p}{\partial z} = \frac{Dw}{Dt}$$
 (3) 
$$\frac{\partial p}{\partial z} = \frac{Dw}{Dt}$$
 (3)



#### 伯努利方程的适用条件

### 伯努利方程适用条件



$$\frac{V^2}{2} + gz + \frac{p}{\rho} = C$$

Bernoulli equation

- @ 理想均质不可压流体
- @ 定常流动
- @ 质量力有势且只有重力
- @ 沿同一条流线成立
- @ 无其它能量输入输出



#### 伯努利方程的物理意义

$$\frac{{V_1^2}}{2} + gz_1 + \frac{p_1}{\rho} = \frac{{V_2^2}}{2} + gz_2 + \frac{p_2}{\rho}$$

energy per unit mass

单位质量流体的重力势能 potential energy

机械能守恒方程,单位质量流体的重力势能 +压力能+动能沿流线守恒



#### 伯努利方程的几何意义

### 单位重量流体的伯努利方程



energy per unit weight

$$\frac{{V_1^2}}{2g} + z_1 + \frac{p_1}{\rho g} = \frac{{V_2^2}}{2g} + z_2 + \frac{p_2}{\rho g}$$



potential head

位置水头,流体质 点相对于基准面的 位置高度





#### 伯努利方程的几何意义

 $\frac{V^2}{2\alpha}$ 

速度水头,不考虑阻力时流体以速度 V 垂直上射的高度 velocity head

$$\frac{p}{\rho g}$$

压强水头,测压管高度,产生压强p所需的流体柱高度

pressure head





#### | 总能头线和测压管水头线1



Energy line 总能头线

Hydraulic grade line 测压管水头线

$$H = z + \frac{p}{\rho g} + \frac{V^2}{2g} = \text{const}$$
 总能头 (总水头) total head

沿一条流线总能头为常数,总能头线为水平直线



### 总能头线和测压管水头线2



- ② 总能头线  $\longrightarrow$  水平直线,与自由面等高,V=0, $p_{\rm m}=0$
- ② 测压管水头线  $\longrightarrow$  水平直线,与管口等高, $p_{\rm m}=0$
- @ 由管道与测压管水头线的相对位置判断管中压强正负



### 静压、动压、滞止压强

### 流体水平流动时,或者高度差的影响不显著时 (如气体的流动)

$$p + \frac{1}{2} \rho \overline{V}^2 = C$$
static
pressure 静压 动压









## 4.4 伯努利方程的应用







奥林匹克号, 1912 玛丽皇后号, 1942





50km/h, 吸引力8千克











飞机机翼升力







水巢船







2015-4-7





pitot-static probe



$$V = \sqrt{2gh\frac{\rho_0 - \rho}{\rho}}$$









#### 一 伯努利方程的应用6

自由表面1,喷嘴2,自由面与喷嘴之间的高度差 为h,求喷嘴出口速度v,和h之间的关系。

#### 对1,2两点列伯努利方程

$$z_1 + \frac{p_1}{\rho g} + \frac{V_1^2}{2g} = z_2 + \frac{p_2}{\rho g} + \frac{V_2^2}{2g}$$

$$p_1 = p_2 = p_a$$





$$V_2 = \sqrt{2gh}$$
 Torricelli 1644





实际中由于粘性、表面张力等,需要修正

$$Q = C_d A \sqrt{2gh}$$





### 虹吸管

siphon pipe



$$V_2 = \sqrt{2gL}$$

@ 最高截面表压

$$p_{3m} = -\rho g \left( H + L \right)$$

@ 注意冷沸腾现象





### 



### 文丘里流量计

Venturi meter

$$Q = A_2 \sqrt{\frac{2gh(\rho_0 - \rho)}{\left[1 - \left(\frac{d_2}{d_1}\right)^4\right]\rho}}$$

@ 考虑粘性影响,需 乘以流量系数 $c_d$ 





### 节流式流量计





孔板 流量计

orifice meter



喷嘴 流量计

nozzle meter



### 作业: P.130~132

- @4.8
- @ 4.12
- @ 4.13
- @4.18
- @4.20



### 欧拉方程



适用条件,牛顿第二定律



$$\frac{D\vec{V}}{Dt} = -\frac{1}{\rho}\nabla p + \vec{g}$$



### 沿流线积分及总流伯努利方程



适用条件,物理意义,应用



沿流线积分的 伯努利方程

$$\frac{{V_1^2}}{2} + gz_1 + \frac{p_1}{\rho} = \frac{{V_2^2}}{2} + gz_2 + \frac{p_2}{\rho}$$

$$\frac{{V_1^2}}{2g} + z_1 + \frac{p_1}{\rho g} = \frac{{V_2^2}}{2g} + z_2 + \frac{p_2}{\rho g}$$