1 Data Preprocess & Corpus & Feature

First, read .csv file with pandas and drop lines with null value. Then, for each line in file, replace column named 'data' with new_text. The transform from raw_text to new_text includes following steps.

- 1. Remove all punctuations and line breaks.
- 2. Remove extra spaces.
- 3. Turn all letters to lowercase.

After cleaning all text, build the corpus with all texts from training set. Finally, we can extract features with this corpus. In function extract_feature, use parameter use_tfidf to control whether to extract TF-IDF or just 0-1 feature. The implementation of these parts are in DataPreprocess.py, corpus.py, feature.py.

2 Log-linear Model

The parameters of the Loglinear Class are given as follows:

- θ : parameters of log-linear model, it's a $class_num \times length$ dimensional matrix.
- class num: Number of classes.
- length: Length of a feature.

The functions of the Loglinear Class are given as follows:

- predict: given a text, predict classification for each text.
- cal_grad : given a single sample x_k , calculate gradient for parameters θ .
- update: given an epoch of training set, update parameters θ .

Here come the details of these functions:

predict For each text-class y of instance x, compute a score: $score(x,y) = \sum_i \theta_{yi} f_i(x,y)$ then return the index of text-class corresponding to the highest score.

cal_grad According to the course slide, we need to maximize:

$$LL(\theta) = \sum_{k} \theta \cdot f(x_k, y_k) - \sum_{k} \log \sum_{y'} \exp(\theta \cdot f(x_k, y'))$$

Considering the function of cal_grad is just calculate gradient for parameters θ with a single sample x_k , we set k = 1 and the formula above will be

$$LL(\theta) = \theta \cdot f(x_k, y_k) - \log \sum_{y'} exp(\theta \cdot f(x_k, y'))$$

So the gradients for each θ_j can be written as:

$$\frac{\partial LL(\theta_{\mathbf{j}})}{\partial \theta_{ji}} = f_i(x_k, y_k) - \sum_{y'} f_i(x_k, y') p(y'|x_k; \theta_{\mathbf{j}})$$

After adding relular term to avoid overfitting, the gradient can be written as:

$$\frac{\partial LL(\theta_{\mathbf{j}})}{\partial \theta_{ji}} = f_i(x_k, y_k) - \sum_{y'} f_i(x_k, y') p(y'|x_k; \theta_{\mathbf{j}}) - \alpha \theta_j$$

The details of function update will be introduced in the next section. The Loglinear Class is implemented in model.py. In this file, there is another function named my_dot , it will be called to calculate dot product between two sparse vectors with high efficiency.

3 Update Algorithm

The Update algorithm is mini-batch gradient descent. At each step, we randomly sample a mini-batch (epoch) from training data. And the number of samples is the same for each type of text-class. Then we feed it to the *update* function. The *update* function will call cal_grad function to calculate gradients Δ_k for every single text x_k from the epoch. For each gradient Δ_k , update parameters θ to $\theta + learning_rate \cdot \Delta_k$. After that, we need to add relular term, and update parameters θ to $\theta - learning_rate \cdot \alpha \cdot \theta$. The operation above is equal to the update formula on course slide.

课程名称: 自然语言处理基础 2023 年 4 月 1 日

4 Evaluation & Results

Function evaluation is implemented in eval.py: given a list of text, evaluate log-linear model with accuracy and macro-f1. For binary classification tasks, F1 score is defined as following formula:

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 = \frac{2 \times Pre \times Rec}{Pre + Rec}$$

For multi-classification tasks, Macro-F1 score is given by:

$$MacroF1 = \frac{1}{n} \times \sum_{i=1}^{n} F_i 1$$

After trying tons of groups of Hyperparameters, it turns out that $batch_size(100,200,300,500)$ are tested) have little effect on scores, while lr and α have significant effect. The effect of these Hyperparameters are showed below, here I just post out five groups, one of which is the best Hyperparameters I found. The best Hyperparameters: lr = 0.01, $\alpha = 0.001$.

Hyperparameters	Train epoch		Test set	
$batch_size = 200$	Accuracy	Macro-F1	Accuracy	Macro-F1
$lr = 10^{-2}, \alpha = 10^{-2}$	0.995	0.99443	0.76823	0.76531
$lr = 10^{-2}, \alpha = 10^{-3}$	1.0	1.0	0.80098	0.79620
$lr = 10^{-2}, \alpha = 10^{-4}$	0.995	0.99443	0.78620	0.77946
$lr = 10^{-1}, \alpha = 10^{-3}$	1.0	1.0	0.74562	0.74225
$lr = 10^{-3}, \alpha = 10^{-3}$	0.905	0.89695	0.70911	0.69411

Tab 1: Effect of Hyperparameters on model lr: learning rate, α : relular parameter Note: The scores on training epoch are the heighest scores among all training epoches when training. It is not the scores on the whole training set. Keep 5 decimal places.

If you run run.sh directly, the default parameters will be $batch_size = 200$, lr = 0.01, $\alpha = 0.001$, and scores on test set will be about Accuracy = 0.80, MacroF1 = 0.79. There may be small data fluctuations caused by random sampling.