Data Mining **MIE524** Eldan Cohen

Slides modified from Leskovec, Rajaraman, Ullman (http://www.mmds.org)

Data contains value and knowledge

Data Mining

- But to extract the knowledge data needs to be
 - Stored
 - Managed
 - And ANALYZED ← this class

Data Mining ≈ Predictive Analytics ≈
Data Science ≈ Machine Learning ≈
Data-Centric Al

What is Data Mining?

- Given lots of data
- Discover patterns and models that are:
 - Valid: hold on new data with some certainty
 - Useful: should be possible to act on the item
 - Unexpected: non-obvious to the system
 - Understandable: humans should be able to interpret the pattern

Data Mining Tasks

Descriptive methods

- Find human-interpretable patterns that describe the data
 - Example: Clustering

Predictive methods

- Use some variables to predict unknown or future values of other variables
 - **Example:** Recommender systems

This class: MIE524

Data Mining

Algorithms for Scalable Data Mining and Machine Learning

Algorithms for Scalable Data Mining and Machine Learning

What will we learn?

- We will learn to mine different types of data:
 - Data is high dimensional
 - Data is a graph
 - Data is labeled
 - Data is infinite/never-ending (?)
- We will learn to use different models of computation:
 - Single machine in-memory
 - MapReduce/Spark
 - GPU, mini-batch

What will we learn?

We will learn to solve real-world problems:

- Recommender systems
- Association Rules
- Tentative: Language Models

We will learn various "tools":

- Linear algebra (SVD, Rec. Sys.)
- Optimization (stochastic gradient descent)
- Dynamic programming (frequent itemsets)
- Hashing (LSH)

MIE524: Course Topics (Tentative)

MIE1520: Learning with Graphs and Sequences

- Graduate research course
- Winter 2025
- Deep neural architectures for sequences and graph data
 - Transformers, Language Models
 - Graph Neural Networks (GNNs)
 - Advanced training techniques (e.g., using RL) and inference algorithms (e.g., beam search and variants).
- Research focus

About The Course

MIE524: Where to Look

Course logistics

- Syllabus (on Quercus)
- Quercus (Announcements, Pages, ...)

Lectures

- Slides posted on Quercus
- Reading posted on Quercus

Assignment and Lab Links

Quercus Modules

All questions

Office Hours (lecture materials), Piazza (assignment questions)

Quizzes

During lab time, after tutorials

How NOT to succeed in the course?

Lectures & Labs

Skip lectures and/or labs

Assignments

Miss assignment submission deadlines (see assignment instructions)
Don't do assignments yourself

Quizzes

Don't attend quizzes (missed quiz = 0)

Office Hours and Piazza

Be inactive on *Piazza* discussion forum

Quercus

Ignore Quercus announcements and update notifications

Alternate Labs

- Week 0 (this week):
 Optional Python tutorial
- Week 1 (next week):
 Post Assignment #1
 Tutorial on new assignment
 No code review (first week)
- Week 2:
 Supervised lab time (by TA) to work on the assignment
 In some cases: additional tutorial material
- Week 3:
 Post Assignment #2
 Tutorial on new assignment
 Quiz on previous Assignment #1 material

0

10

- Assignments and Labs:
 - Python + Jupyter notebooks
 - Environment: ECF + Google Colab
 - Verify access before lab
 - Why Python:
 - Rich libraries make it tool of choice for data analysis in industry
 - Portable (not OS dependent) and shareable (e.g., Jupyter)
 - Why Jupyter notebooks:
 - Easy to structure code and re-run parts of code
 - Interactive data science environment (code, visualization, analysis (text)). Can be exported as PDF/HTML report
 - Very popular, used in industry, extended to other languages.

Assignments

- Can involve coding and free-text questions, implementation of algorithms, application of algorithms, data analysis.
- All submitted code and answers should be your own work.
- Co-pilot and other generative AI solutions are not allowed.
- Submission via GitHub (instruction on first lab).

Late submission

 Projects submitted up to 48 hours late will be given a 30% late penalty (of assignment maximum mark). Projects submitted 48 hours late or more will be given a mark of zero.

Quizzes

- Either a Quercus Quiz or a one-to-one quiz with TA/instructor
- o Can include different questions, e.g., coding questions, free text questions, multiple choice, etc.
- Material related to the assignment (both theoretical background and coding skills)
- To succeed:
 - Complete the assignment
 - Understand your code
 - Understand your answers
 - Understand the (theoretical and practical) material related to the assignment

- Assignment plan (<u>tentative</u>):
 - Assignment 1: Spark, Association rules
 - Assignment 2: Gradient boosting, NN autoencoders
 - Assignment 3: Locality-sensitive hashing, Dimensionality reduction
 - Assignment 4: Graph processing
 - Assignment 5: Neural language models

This course requires you to write substantial code in Python

Grading through a combination of manual assignment grading + post-assignment quizzes

The course does not teach Python.

Optional python tutorial during lab today

Grading

- Assignments:
 - Deliverables: 20% of your final grade
 - Post-assignment in-class quizzes: 15% of your final grade
- Midterm: 25% of your final grade
- Final Exam: 40% of your final grade
 - The Final Exam is mandatory and will result in course grade of incomplete (INC)
 assigned on the transcript if not attempted.

Quercus Page

- Syllabus
- Assignment List
- Readings
- Lecture slides
- Lab materials
- Piazza (soon)
- ...

Textbook

Mining of Massive Datasets 3rd Edition. Leskovec, Rajaraman, and Ullman. Cambridge University Press. 2020.

- Available online: http://www.mmds.org/
- Readings from other textbooks may be provided

Communication

Questions on course content

- Office hours (tentatively): Wednesday 2-3pm in BA8106
- Additional hours will be scheduled before midterm/final

Questions on homework assignments

- During labs
- On Piazza

Advice on career, grad school, Al/ML projects, etc.

- Happy to meet with MIE524 students to discuss the above or anything else
- Email to set up a meeting

To-Do: Complete GitHub Information Form

Due date: September 12

Link on **Assignment List** on Quercus