

Advanced Bioinformatics Workshop

Date: Monday, August 19th – Friday, August 23rd, 2019 **Venue**: Adriatico Guest House - Denardo Lecture Hall International Centre for Theoretical Physics

Trieste, Italy

Course URL: http://indico.ictp.it/event/8847/

Material: https://codata-rda-advanced-bioinformatics-2019.readthedocs.io

General theme

Building Machine Learning workflows using NGS Data

This advanced bioinformatics course will provide an overview of the current status of different NGS workflows (variant calling, RNA-Seq, ChIP-Seq, Metagenomics etc), and combine them with the appropriate Machine Learning and Data Mining approaches. The course will heavily rely on hand-on exSercises and tutorials, and attempt to provide a strong foundation on the underlying theory.

Instructors

Fotis Psomopoulos, Institute of Applied Biosciences (INAB | CERTH) / ELIXIR GR
 Contact details: email, website, twitter

• Amel Ghouila, H3BioNet

Contact details: email, website, twitter

Phelelani Mpangase, Sydney Brenner Institute for Molecular Bioscience, University

of the Witwatersrand, Johannesburg

Contact details: email, website

Course Schedule

	Topic	
Day 1		
11:30 - 12:30	Experiments: Design and Analysis	
14:00 - 15:00	Components of an Experiment. What is a good experiment design?	
15:00 - 16:00	Data Distributions and Multiple Hypotheses Adjustment Methods	
16:15 - 18:00	Introduction to basic NGS pipelines	
Day 2		
09:00 - 10:00	Introduction to basic NGS pipelines	
10:00 - 11:00	Short read quality and trimming (part 1)	
11:30 - 12:30	Short read quality and trimming (part 2)	
14:00 - 15:00	Mapping	

15:00 - 16:00	Variant calling (part 1)
16:15 - 18:00	Variant calling (part 2)
Day 3	
09:00 - 10:00	Introduction to DM and ML, Machine Learning basic concepts
10:00 - 11:00	Taxonomy of ML and examples of algorithms
11:30 - 12:30	Applications of ML in Bioinformatics (genomics and metagenomics)
14:00 - 15:00	Practicing using the built-in R data set iris
15:00 - 16:00	RNASeq analysis using clustering in R
16:15 - 18:00	RNASeq analysis in R to be continued
Day 4	
09:00 - 10:00	Introduction to Nextflow
10:00 - 11:00	Parameters, Channels and Processes
11:30 - 12:30	Docker, Executors and Channel Operations
14:00 - 15:00	Practical exercises in Nextflow
15:00 - 16:00	Practical exercises in Nextflow
16:15 - 18:00	Practical exercises in Nextflow
Day 5	
09:00 - 11:00	Q & A and bonus examples
11:30 - 12:30	Closing, Final Remarks, Post-workshop survey

Topics

- 1. Experiments: Design and Analysis.
 - a. Components of an Experiment.
 - b. What is a good experiment design?
 - c. Batch effects and Confounding factors
 - d. Statistical inference
 - e. Data Distributions and Multiple Hypotheses Adjustment Methods
 - f. Correlation and Linear Regression in Life Sciences
- 2. Introduction to NGS Data Analysis
 - a. Quality Assessment, Trimming and Filtering
 - b. Mapping
 - c. Case studies (e.g. Variant Calling, Metagenomics, etc)
- 3. Introduction to Machine Learning
 - a. Basic concepts
 - b. Taxonomy of ML and examples of algorithms
 - c. Applications of ML in Bioinformatics
- 4. Introduction to Nextflow
 - a. Use of workflow systems for automation / reproducibility
 - b. Basic syntax of Nextflow
 - c. Transform and execute a workflow in Nextflow
- 5. Machine learning in NGS
 - a. RNA-Seq analysis using clustering in R
 - b. Metagenomics and Machine Learning

Learning Objectives

Experimental Design

- Importance of a good experimental design
- Identify the key components of an experimental design
- Understand and identify confounding factors
- Understand p-value, confidence interval and power, including the underlying assumptions
- Understanding of the difference between pearson, spearman and kendall correlation
- Understanding of the underlying assumptions of pearson correlation

Introduction to NGS data analysis

- Use fastqc and multiqc
- Visualize read quality
- Quality filter and trim reads
- Distinguishing good/bad quality reads
- Run one end-to-end NGS data analysis pipeline

Introduction to Machine Learning

- Learn Machine Learning basic concepts and jargon
- Understand the Taxonomy of Machine Learning algorithms and differences between basic algorithms categories
- Get familiar with the basic Machine Learning algorithms in supervised and unsupervised learning categories
- Understand different parameters to take into consideration to choose the right
 Machine Learning technique for a given problem
- Understand how to evaluate Machine Learning results in supervised and unsupervised classification

• Machine learning in NGS

Learn about some applications of Machine Learning in Bioinformatics

- Explore and apply some basic R packages to perform supervised and unsupervised classification
- Overview of the different Machine Learning techniques / tools useful in example NGS pipelines (such as RNA-Seq, metagenomics, etc)

Introduction to Nextflow

- Find and use Nextflow tool definitions online
- Understand how to write Nextflow definitions for command line tools
- Use Docker with Nextflow to provide software dependencies and ensure reproducibility
- Join Nextflow tools into a workflow
- Run Nextflow workflows on local and HPC systems

Expected Background

Overall course aimed for novices (no prior knowledge / expectations in NGS data analysis or Machine learning). However, participants should be somewhat familiar with:

- R (base commands)
- Unix shell (running basic commands)

Participants should ideally bring their own laptops - if that is not a possibility, Desktop PCs will be available during the course. Instructions on software / libraries installation will be provided to all participants prior to the workshop.

Course Material

All material, slides and exercises are available through the following URL (CC-BY-SA license)

https://codata-rda-advanced-bioinformatics-2019.readthedocs.io/en/latest/