

Large-Scale Deep Learning for Intelligent Computer Systems

Jeff Dean

Google Brain team in collaboration with many other teams

Growing Use of Deep Learning at Google

Across many products/areas:

Android

Apps

GMail

Image Understanding

Maps

NLP

Photos

Robotics

Speech

Translation

many research uses..

YouTube

... many others ...

Outline

Two generations of deep learning software systems:

- 1st generation: DistBelief [Dean et al., NIPS 2012]
- 2nd generation: TensorFlow (unpublished)

An overview of how we use these in research and products

Plus, ...a new approach for training (people, not models)

TensorFlow: Second Generation Deep Learning System

Motivations

DistBelief (1st system) was great for scalability

Not as flexible as we wanted for research purposes

Better understanding of problem space allowed us to make some dramatic simplifications

TensorFlow: Expressing High-Level ML Computations

- Core in C++
 - Very low overhead
- Different front ends for specifying/driving the computation
 - Python and C++ today, easy to add more

TensorFlow Example (Batch Logistic Regression)

```
graph = tf.Graph()
                                                                                 # Create new computation graph
with graph.AsDefault():
 examples = tf.constant(train dataset)
                                                                                 # Training data/labels
 labels = tf.constant(train labels)
 W = tf.Variable(tf.truncated_normal([image_size * image_size, num_labels]))
                                                                                # Variables
 b = tf. Variable(tf.zeros([num labels]))
 logits = tf.mat_mul(examples, W) + b
                                                                                 # Training computation
 loss = tf.reduce mean(tf.nn.softmax cross entropy with logits(logits, labels))
 optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
                                                                                 # Optimizer to use
 prediction = tf.nn.softmax(logits)
                                                                                # Predictions for training data
```


TensorFlow Example (Batch Logistic Regression)

```
graph = tf.Graph()
                                                                                  # Create new computation graph
with graph.AsDefault():
 examples = tf.constant(train dataset)
                                                                                  # Training data/labels
 labels = tf.constant(train labels)
 W = tf. Variable(tf.truncated normal([image size * image size, num labels]))
                                                                                  # Variables
 b = tf. Variable(tf.zeros([num labels]))
 logits = tf.mat mul(examples, W) + b
                                                                                  # Training computation
 loss = tf.reduce mean(tf.nn.softmax cross entropy with logits(logits, labels))
 optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
                                                                                  # Optimizer to use
 prediction = tf.nn.softmax(logits)
                                                                                  # Predictions for training data
with tf.Session(graph=graph) as session:
 tf.InitializeAllVariables().Run()
 for step in xrange(num_steps):
  _, I, predictions = session.Run([optimizer, loss, prediction])
                                                                                  # Run & return 3 values
  if (step \% 100 == 0):
   print 'Loss at step', step, ':', I
   print 'Training accuracy: %.1f%%' % accuracy(predictions, labels)
```


Devices: Processes, Machines, GPUs, etc

TensorFlow: Expressing High-Level ML Computations

Automatically runs models on range of platforms:

from **phones** ...

to single machines (CPU and/or GPUs) ...

to distributed systems of many 100s of GPU cards

What is in a name?

- Tensor: N-dimensional array
 - 1-dimension: Vector
 - 2-dimension: Matrix
 - Represent many dimensional data flowing through the graph
 - e.g. Image represented as 3-d tensor rows, cols, color
- Flow: Computation based on data flow graphs
 - Lots of operations (nodes in the graph) applied to data flowing through
- Tensors flow through the graph → "TensorFlow"
 - Edges represent the tensors (data)
 - Nodes represent the processing

Flexible

- General computational infrastructure
 - Deep Learning support is a set of libraries on top of the core
 - Also useful for other machine learning algorithms
 - Possibly even for high performance computing (HPC) work
 - Abstracts away the underlying devices/computational hardware

Extensible

- Core system defines a number of standard operations and kernels (device-specific implementations of operations)
- Easy to define new operators and/or kernels

Deep Learning in TensorFlow

- Typical neural net "layer" maps to one or more tensor operations
 - e.g. Hidden Layer: activations = Relu(weights * inputs + biases)
- Library of operations specialized for Deep Learning
 - Dozens of high-level operations: 2D and 3D convolutions, Pooling, Softmax, ...
 - Standard losses e.g. CrossEntropy, L1, L2
 - o Various optimizers e.g. Gradient Descent, AdaGrad, L-BFGS, ...
- Auto Differentiation
- Easy to experiment with (or combine!) a wide variety of different models:
 - LSTMs, convolutional models, attention models, reinforcement learning, embedding models, Neural Turing Machine-like models, ...

No distinct Parameter Server subsystem

- Parameters are now just stateful nodes in the graph
- Data parallel training just a more complex graph

Synchronous Variant

Google Brain project started in 2011, with a focus on pushing state-of-the-art in neural networks. Initial emphasis:

- use large datasets, and
- large amounts of computation

to push boundaries of what is possible in perception and language understanding

Plenty of raw data

- **Text**: trillions of words of English + other languages
- Visual data: billions of images and videos
- Audio: tens of thousands of hours of speech per day
- User activity: queries, marking messages spam, etc.
- Knowledge graph: billions of labelled relation triples
- ...

How can we build systems that truly understand this data?

judo [0.96, <u>web</u>]

tractor [0.91, web]

dishwasher [0.91, web]

judo [0.92, web]

tractor [0.91, web]

car show [0.99, web]

judo [0.91, web]

tractor [0.94, web]

Text Understanding

"This movie should have NEVER been made. From the poorly done animation, to the beyond bad acting. I am not sure at what point the people behind this movie said "Ok, looks good! Lets do it!" I was in awe of how truly horrid this movie was."

Turnaround Time and Effect on Research

- Minutes, Hours:
 - Interactive research! Instant gratification!
- 1-4 days
 - Tolerable
 - Interactivity replaced by running many experiments in parallel
- 1-4 weeks:
 - High value experiments only
 - Progress stalls
- >1 month
 - Don't even try

Important Property of Neural Networks

Results get better with

more data +
bigger models +
more computation

(Better algorithms, new insights and improved techniques always help, too!)

How Can We Train Large, Powerful Models Quickly?

- Exploit many kinds of parallelism
 - Model parallelism
 - Data parallelism

Model Parallelism

Model Parallelism: Partition model across machines

Parameter Servers

Parameter Servers Model Replicas Data

Parameter Servers Δρ Model Replicas Data

Data Parallelism

Parameter Servers $\Delta p'$ Model Replicas Data

Data Parallelism

Data Parallelism

Data Parallelism Choices

Can do this **synchronously**:

- N replicas eqivalent to an N times larger batch size
- Pro: No noise
- Con: Less fault tolerant (requires recovery if any single machine fails)

Can do this **asynchronously**:

- Con: Noise in gradients
- Pro: Relatively fault tolerant (failure in model replica doesn't block other replicas)

(Or **hybrid**: M asynchronous groups of N synchronous replicas)

Data Parallelism Considerations

Want model computation time to be large relative to time to send/receive parameters over network

Models with fewer parameters, that reuse each parameter multiple times in the computation

Mini-batches of size B reuse parameters B times

Certain model structures reuse parameter many times within each example:

- Convolutional models tend to reuse hundreds or thousands of times per example (for different spatial positions)
- Recurrent models (LSTMs, RNNs) tend to reuse tens to hundreds of times (for unrolling through T time steps during training)

What are some ways that deep learning is having a significant impact at Google?

Sequence to Sequence Models

Oriol Vinyals, Ilya Sutskever & Quoc Le started looking at how to map one

sequence to another sequence:

Sequence to Sequence Model

High dimensional

Connect two, you get a machine translation system

It works well

WMT'14	BLEU	
State-of-the-art	37.0	
Neural Translation Model	37.3	

Sequence to Sequence Learning with Neural Networks Ilya Sutskever, Oriol Vinyals, Quoc V. Le (NIPS 2014)

Addressing Rare Word Problems in Neural Translation Models (arxiv.org/abs/1410.8206) Thang Luong, Ilya Sutskever, Oriol Vinyals, Quoc V. Le, Wojciech Zaremba

... or a chatbot.

It produces sensible conversations.

```
User> hello , i have a problem with my machine
BrainStop> hi
BrainStop> this is shiva .
BrainStop> how are you doing today ?
User> hi shiva , how are you ?
BrainStop> i ' m fine , thank you !
BrainStop> how may i assist you today ?
User> i want to access using vpn
BrainStop> currently the computer is connected to corp network ?
User> no
BrainStop> check this solution :
BrainStop> https://INTERNAL_HOSTNAME_REDACTED/articles/connecting - to - disconnecting - from - ssl - vpn # heading - 4
User> thanks , bye !
BrainStop> thank you .
```


... or a parser.

It works well

Completely learned parser with no parsing-specific code

State of the art results on WSJ 23 parsing task

Grammar as a Foreign Language, Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton (to appear in NIPS 2015) http://arxiv.org/abs/1412.7449

... or something that can learn graph algorithms

Object Recognition Improvement Over Time

Predicted Human Performance

Image Models

Going Deeper with Convolutions Szegedy et al. CVPR 2015

Good Fine-Grained Classification

"hibiscus"

"dahlia"

Good Generalization

Both recognized as "meal"

Sensible Errors

"dog"

Works in practice... for real users

Wow.

Works in practice... for real users

Google Plus photo search is awesome. Searched with keyword 'Drawing' to find all my scribbles at once:D

Connect sequence and image models, you get a captioning system

It works well (BLEU scores)

Dataset	Previous SOTA	Show & Tell	Human
MS COCO	N/A	67	69
FLICKR	49	63	68
PASCAL (xfer learning)	25	59	68
SBU (weak label)	11	27	N/A

Show and Tell: A Neural Image Caption Generator, Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan (CVPR 2015)

A man holding a tennis racquet on a tennis court.

A group of young people playing a game of Frisbee

Two pizzas sitting on top of a stove top oven

A man flying through the air while riding a snowboard

Synchronous Variant

Nurturing Great Researchers

- We're always looking for people with the potential to become excellent machine learning researchers
- The resurgence of deep learning in the last few years has caused a surge of interest of people who want to learn more and conduct research in this area

Google Brain Residency Program

New one year immersion program in deep learning research

Learn to conduct deep learning research w/experts in our team

- Fixed one-year employment with salary, benefits, ...
- Goal after one year is to have conducted several research projects
- Interesting problems, TensorFlow, and access to computational resources

Google Brain Residency Program

Who should apply?

- people with BSc or MSc, ideally in computer science, mathematics or statistics
- completed coursework in calculus, linear algebra, and probability, or equiv.
- programming experience
- motivated, hard working, and have a strong interest in Deep Learning

Google Brain Residency Program

Program Application & Timeline

Google Brain Residency Program Brain Residency

For more information:

g.co/brainresidency

Contact us:

brain-residency@google.com

Questions?

