Order Delivery Time Prediction Report

Objectives

The objective of this assignment is to build a regression model that predicts the delivery time for orders placed through Porter. The model will use various features such as the items ordered,

the restaurant location, the order protocol, and the availability of delivery partners. The key goals are:

- Predict the delivery time for an order based on multiple input features
- Improve delivery time predictions to optimize operational efficiency
- Understand the key factors influencing delivery time to enhance the model's accuracy

Data Pipeline

The data pipeline for this assignment will involve the following steps:

- 1. Data Loading
- 2. Data Preprocessing and Feature Engineering
- 3. Exploratory Data Analysis
- 4. Model Building
- 5. Model Inference

Data Understanding

The dataset contains information on orders placed through Porter, with the following columns:

Field	Description
market_id	Integer ID representing the market where the restaurant is located.
created_at	Timestamp when the order was placed.
actual_delivery_time	Timestamp when the order was delivered.
store_primary_category	Category of the restaurant (e.g., fast food, dine-in).
order_protocol	Integer representing how the order was placed (e.g., via Porter, call to restaurant, etc.).
total_items	Total number of items in the order.
subtotal	Final price of the order.
num_distinct_items	Number of distinct items in the order.
min_item_price	Price of the cheapest item in the order.
max_item_price	Price of the most expensive item in the order.
total_onshift_dashers	Number of delivery partners on duty when the order was placed.
total_busy_dashers	Number of delivery partners already occupied with other orders.
total_outstanding_orders	Number of orders pending fulfillment at the time of the order.
distance	Total distance from the restaurant to the customer.

1. Loading the Data

2. Data preprocessing and Feature Engineering

- a) Converted created_at and actual_delivery_time features into datetime.
- b) Identified Categorical variables into category data type.
- c) Deduced delivery time in minutes

- d) Dropped unnecessary features such as created_at, actual_delivery_time, and store_primary_category
- e) Finally created train and test data sets.

3. Exploratory Data Analysis

- a) Separated out numerical and categorical features.
- b) Plot distributions for numerical columns in the training set to understand their spread and any skewness

c) Plot distributions for categorical columns in the training set to understand their spread.

d) Plot distributions for target variable.

e) Scatter plot for numeric and categorical features.

f) Created a heatmap of entire features against delivery time to see the relationship among the variables and removed the features with low correlation.

```
# Plot the heatmap of the correlation matrix

traindata = X_train.copy()

traindata['delivery_time_minutes'] = y_train

plt.figure(figsize=(12,8))

sns.heatmap(traindata.corr(), annot=True, linewidth=0.5)

plt.show()
```



```
# Drop 3-5 weakly correlated columns from training dataset
# By Looking at the heatmap, it's clearly visible that market_id', min_item_price' have weak correlation.
X_train = X_train.drop(['market_id','min_item_price'], axis=1)
```

g) Handling of outliers was performed thereafter. I used boxplot to understand whether there are any outliers in the variables or not. IQR method was also used to find the outliers. Once outliers were found, the rows were dropped accordingly.


```
df = pd.DataFrame(X_train)
# Function to find outlier range for each column
def find_outliers(df):
      outlier_info = {}
      for col in num_col:
            Q1 = df[col].quantile(0.25)
            Q3 = df[col].quantile(0.75)
IQR = Q3 - Q1
            lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
            outliers = df[(df[col] < lower_bound) | (df[col] > upper_bound)]
            outlier_info[col] = {
                  'Q1': Q1,
'Q3': Q3,
                   'IQR': IQR,
                  'Lower Bound': lower_bound,
'Upper Bound': upper_bound,
                   'Outliers': outliers[col].values.tolist()
      return outlier_info
outliers_info = find_outliers(df)
 for col, info in outliers_info.items():
      col, into in outliers_into.items():
print(f" Q1: {info['Q1']}")
print(f" Q3: {info['Q3']}")
print(f" IQR: {info['IQR']}")
print(f" Iower Bound: (info['Lower Bound']}")
print(f" Upper Bound: (info['Upper Bound']}")
```

```
Outlier Info for Column 'total_items':
  Q1: 2.0
  Q3: 4.0
  IQR: 2.0
Lower Bound: -1.0
Upper Bound: 7.0
Outlier Info for Column 'subtotal':
  Q1: 1417.0
Q3: 3405.0
  IQR: 1988.0
  Lower Bound: -1565.0
  Upper Bound: 6387.0
Outlier Info for Column 'num_distinct_items':
  Q1: 2.0
  Q3: 3.0
  IOR: 1.0
  Lower Bound: 0.5
  Upper Bound: 4.5
Outlier Info for Column 'max_item_price':
  Q1: 799.0
Q3: 1395.0
  IQR: 596.0
  Lower Bound: -95.0
  Upper Bound: 2289.0
Outlier Info for Column 'total_onshift_dashers':
  Q1: 17.0
  03: 66.0
  IQR: 49.0
  Lower Bound: -56.5
  Upper Bound: 139.5
Outlier Info for Column 'total_busy_dashers':
  Q1: 15.0
Q3: 63.0
  IQR: 48.0
  Lower Bound: -57.0
  Upper Bound: 135.0
Outlier Info for Column 'total_outstanding_orders':
  Q1: 17.0
  03: 85.0
  IQR: 68.0
  Lower Bound: -85.0
  Upper Bound: 187.0
```

```
# Drop the data above the upper range in all numerical variables
y_train.drop(index=X_train[X_train['total_items']>7].index, inplace=True)
X_train.drop(index=X_train[X_train['total_items']>7].index, inplace=True)
y_train.drop(index=X_train[X_train['subtotal']>6387].index, inplace=True)
X_train.drop(index=X_train[X_train['subtotal']>6387].index, inplace=True)
y_train.drop(index=X_train[X_train['num_distinct_items']>4.5].index, inplace=True)
X_train.drop(index=X_train[X_train['num_distinct_items']>4.5].index, inplace=True)
y_train.drop(index=X_train[X_train['max_item_price']>2289].index, inplace=True)
X_train.drop(index=X_train[X_train['max_item_price']>2289].index, inplace=True)
y_train.drop(index=X_train[X_train['total_onshift_dashers']>139.5].index, inplace=True)
X_train.drop(index=X_train[X_train['total_onshift_dashers']>139.5].index, inplace=True)
y_train.drop(index=X_train[X_train['total_busy_dashers']>135].index, inplace=True)
X_train.drop(index=X_train[X_train['total_busy_dashers']>135].index, inplace=True)
y_train.drop(index=X_train[X_train['total_outstanding_orders']>187].index, inplace=True)
\label{lem:continuous} X\_train.drop(index=X\_train[X\_train['total\_outstanding\_orders']>187].index,\ inplace=True)
y_train.drop(index=X_train[X_train['distance']>47.32].index, inplace=True)
X_train.drop(index=X_train[X_train['distance']>47.32].index, inplace=True)
X_train.shape, y_train.shape
((98775, 12), (98775,))
condition = (y_train <= 69)
X_train = X_train[condition]</pre>
y_train = y_train[condition]
```

4. Model Building

a) Imported the necessary libraries first followed feature scaling.

```
# Import libraries
import statsmodels
import statsmodels.api as sm
from sklearn.preprocessing import MinMaxScaler
from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.feature_selection import RFE
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from sklearn.feature_selection import RFE
```


b) Built the very first model using the train set and model came out to be decent with high R2 (~86) and 0 p-values for all features except one "day_of_week".

Dep. Variable:	delive	ry_time_min	utes	R-squ	ared:	0.8	59
Model:			OLS	Adj. R-squ	ared:	0.8	59
Method:		Least Squ	iares	F-stat	istic:	4.994e+	04
Date:	S	at, 29 Mar	2025 F	rob (F-stati	stic):	0.	00
Time:		01:2	1:32	Log-Likelih	ood:	-2.4708e+	05
No. Observations:		98	8026	AIC:		4.942e+	05
Df Residuals:		98	8013		BIC:	4.943e+	05
Df Model:			12				
Covariance Type:		nonro	bust				
		coef	std err	t	P> t	[0.025	0.975]
	const	35.0565	0.050	705.202	0.000	34.959	35.154
order_pro	otocol	-3.8925	0.039	-100.646	0.000	-3.968	-3.817
total_	items	-0.4830	0.099	-4.871	0.000	-0.677	-0.289
sul	btotal	8.4841	0.102	82.830	0.000	8.283	8.685
num_distinct_	items	1.4569	0.055	26,644	0.000	1.350	1.564
max_item	_price	1.1808	0.085	13.841	0.000	1.014	1.348
total_onshift_da	shers	-52.2586	0.149	-350.305	0.000	-52.551	-51.966
total_busy_da	shers	-18.9793	0.146	-129.785	0.000	-19.266	-18.693
total_outstanding_d	orders	67.9804	0.129	528.129	0.000	67.728	68.233
dis	tance	22.0129	0.053	418.304	0.000	21.910	22.116
	hour	-5.3490	0.027	-194.960	0.000	-5.403	-5.295
day_of_		0.0284	0.049	0.585	0.559	-0.067	0.124
isWee	ekend	1.4863	0.035	42.565	0.000	1.418	1.555

```
Make predictions
y_test_pred = lr_model.predict(X_test_sm)
y_test_pred
139667
          38.682745
80077
           43.935203
41872
           45.139708
151215 39.062535
          51.588530
46607
159653
          41.783802
78090
           37.372877
98746
          62.324136
           49.880708
3735
Length: 52734, dtype: float64
# Find results for evaluation metrics
mae = mean_absolute_error(y_test, y_test_pred)
mse = mean_squared_error(y_test, y_test_pred)
r2 = r2_score(y_test, y_test_pred)
print(f"Mean Absolute Error (MAE): {mae:.2f}")
print(f"Mean Squared Error (MSE): {mse:.2f}")
print(f"Root Mean Squared Error (RMSE): {rmse:.2f}")
print(f"R^2 \ Score: \ \{r2: \textbf{.4f}\}")
Mean Absolute Error (MAE): 2.34
Mean Squared Error (MSE): 11.05
Root Mean Squared Error (RMSE): 3.32
```

c) Built the model and fit RFE to select the most important features. We used RFE to reduce less significant features one-by-one and then chose the best model among all of them.

All the models came out to be significant and quite close. It was a difficult choice to choose any one model. Finally, I chose the last model which had only relevant features to determine whether delivery time will increase or decrease.

```
5.3 Build the model and fit RFE to select the most important features [7 marks]
For RFE, we will start with all features and use the RFE method to recursively reduce the number of features one-by-one.
After analysing the results of these iterations, we select the one that has a good balance between performance and number of features.
# Loop through the number of features and test the model
model = LinearRegression()
rfe = RFE(estimator=model, n_features_to_select=(X_train.shape[1]-1))
# Fit RFE on training data
rfe.fit_transform(X_train, y_train)
list(zip(X_train.columns, rfe.support_, rfe.ranking_))
[('order_protocol', True, 1),
 ('total_items', True, 1),
('subtotal', True, 1),
('num_distinct_items', True, 1),
 ('max_item_price', True, 1),
 ('total_onshift_dashers', True, 1),
 ('total_busy_dashers', True, 1),
 ('total_outstanding_orders', True, 1),
 ('distance', True, 1),
 ('hour', True, 1),
('day_of_week', False, 2),
('isWeekend', True, 1)]
```

```
2nd Model

: # Creating the model again after removing day_of_week

# Add a constant
X_train_sm = sm.add_constant(X_train)

# Create Model
lr = sm.OLS(y_train, X_train_sm)

# Fit the model
lr_model = lr.fit()

lr_model.summary()
```

		OLS Regres	ssion Res	sults			
Dep. Variable:	deliver	y_time_mir	nutes	R-squ	ared:	0.8	59
Model:			OLS	Adj. R-squ	ared:	0.8	59
Method:		Least Squ	uares	F-stat	istic:	5.448e+	04
Date:	S	at, 29 Mar	2025 P	rob (F-stati	stic):	0.	00
Time:		01:2	21:33	Log-Likelih	ood:	-2.4708e+	05
No. Observations:		9	8026		AIC:	4.942e+	05
Df Residuals:		9	8014		BIC:	4.943e+	05
Df Model:			11				
Covariance Type:		nonro	bust				
		coef	std err	t	P> t	[0.025	0.975]
	const	35.0655	0.047	741.754	0.000	34.973	35.158
order_pro	otocol	-3.8927	0.039	-100.656	0.000	-3.969	-3.817
total	items	-0.4830	0.099	-4.872	0.000	-0.677	-0.289
su	btotal	8.4840	0.102	82.830	0.000	8.283	8.685
num_distinct_	items	1.4569	0.055	26.644	0.000	1.350	1.564
max_item	_price	1.1807	0.085	13.840	0.000	1.013	1.348
total_onshift_da	ashers	-52.2425	0.147	-356.290	0.000	-52.530	-51.955
total_busy_da	shers	-18.9896	0.145	-130.807	0.000	-19.274	-18.705
total_outstanding_o	orders	67.9759	0.128	529.019	0.000	67.724	68.228

```
3rd Model

: # Creating the model again after removing day_of_week

# Add a constant
X_train_sm = sm.add_constant(X_train)

# Create Model
1r = sm.OLS(y_train, X_train_sm)

# Fit the model
1r_model = 1r.fit()

1r_model.summary()
```

	OLS Regres	ssion Res	sults			
Dep. Variable: delive	ery_time_min	utes	R-squ	ared:	0.8	58
Model:		OLS	Adj. R-squ	ared:	8.0	58
Method:	Least Squ	ıares	F-stat	tistic:	6.574e+	04
Date:	Sat, 29 Mar	2025 P	rob (F-stati	istic):	0.	.00
Time:	01:2	21:35	Log-Likelih	nood:	-2.4762e+	05
No. Observations:	98	8026		AIC:	4.953e+	05
Df Residuals:	9	8016		BIC:	4.953e+	05
Df Model:		9				
Covariance Type:	nonro	bust				
	coef	std err	t	P> t	[0.025	0.975]
const	35.3429	0.045	788.443	0.000	35.255	35.431
order_protocol	-3.9299	0.039	-101.103	0.000	-4.006	-3.854
subtotal	10.1274	0.067	151.115	0.000	9.996	10.259
max_item_price	0.4163	0.068	6.088	0.000	0.282	0.550
total_onshift_dashers	-52.2017	0.147	-354.074	0.000	-52.491	-51.913
total_busy_dashers	-19.0456	0.146	-130.482	0.000	-19.332	-18.760
total_outstanding_orders	67.9779	0.129	526.146	0.000	67.725	68.231
distance	22.0200	0.053	416.160	0.000	21.916	22.124
hour	-5.3788	0.028	-195.228	0.000	-5.433	-5.325
isWeekend	1.5219	0.021	73.440	0.000	1.481	1.563

Finally, I chose the latest model as I mentioned and below are the results of my final model:

```
All the models are almost similar with just minor difference in the R2, so we are considering the last model as final model.

# Build the final model with selected number of features

X_train.sm = sm.add_constant(X_train)

# Create Model

lr = sm.OLS(y_train, X_train_sm)

# Fit the model

lr_model = lr.fit()

lr_model.summary()
```

	OLS Regression I			esults			
Dep. Variable:	deliver	y_time_min	utes	R-squ	ared:	0.8	35
Model:			OLS	Adj. R-squ	ared:	0.8	35
Method:		Least Squ	iares	F-stat	tistic:	8.255e+	04
Date:	S	at, 29 Mar i	2025	Prob (F-statistic):		0.00	
Time:		01:21:36		Log-Likelihood:		-2.5499e+05	
No. Observations:		98	8026	AIC:		5.100e+05	
Df Residuals:		98	8019		BIC:	5.101e+	05
Df Model:			6				
Covariance Type:		nonro	bust				
		coef	std er	r t	P> t	[0.025	0.975]
14	const	34.6984	0.04	1 836.576	0.000	34.617	34.780
sub	total	11.0125	0.06	0 183.306	0.000	10.895	11.130
total_onshift_da	shers	-53.2507	0.15	9 -335.670	0.000	-53.562	-52.940
total_busy_da	shers	-19.1701	0.15	7 -122.087	0.000	-19.478	-18.862
total_outstanding_o	rders	68.3947	0.13	9 491.188	0.000	68.122	68.668
dist	tance	22.1283	0.05	7 387.949	0.000	22.017	22.240
	hour	-5.4608	0.03	0 -184.732	0.000	-5.519	-5.403

```
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
X_test_sm = sm.add_constant(X_test)
# Make predictions
y_test_pred = lr_model.predict(X_test_sm)
final_coef=lr_model.params
final_coef
                              34.698378
const
subtotal 11.012462
total_onshift_dashers -53.250700
total_busy_dashers -19.170141
total_outctardis
total_outstanding_orders 68.394668
                             22.128334
distance
                               -5.460835
hour
dtype: float64
# Find results for evaluation metrics
mae = mean_absolute_error(y_test, y_test_pred)
mse = mean_squared_error(y_test, y_test_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_test_pred)
# Print results
print(f"Mean Absolute Error (MAE): {mae:.2f}")
print(f"Mean Squared Error (MSE): {mse:.2f}")
print(f"Root Mean Squared Error (RMSE): {rmse:.2f}")
print(f"R2 Score: {r2:.4f}")
Mean Absolute Error (MAE): 2.59
Mean Squared Error (MSE): 12.66
Root Mean Squared Error (RMSE): 3.56
R<sup>2</sup> Score: 0.8542
```

5. Results and Inference

a) Performed Residual analysis and created error term distribution which has mean at 0 which means our assumption is satisfied.

```
# Perform residual analysis using plots like residuals vs predicted values, Q-Q plot and residual histogram
residuals = y_test - y_test_pred
#residuals vs predicted values
plt.figure(figsize=(6,4))
sns.scatterplot(x=y_test_pred, y=residuals)
plt.axhline(y=0, color='red', linestyle='--')
plt.xlabel("Predicted Values")
plt.ylabel("Residuals")
plt.title("Residuals vs Predicted Values")
plt.show()
                         Residuals vs Predicted Values
     25
     20
     15
     10
Residuals
      5
      0
     -5
   -10
                  20
                                 40
                                                60
                                                              80
                                                                            100
                                   Predicted Values
```


b) Performed coefficient analysis to check how changes in the features affect the target.

```
# Compare the scaled vs unscaled features used in the final model
#Extracting the Coef
coef_scaled = final_coef
coef_scaled = coef_scaled.drop('const')
# Extracting the features
final_features = X_train.columns
# Create dataframe
coef_df = pd.DataFrame({"Feature": final_features, "Scaled_Coef": coef_scaled})
# Separating numerical features
num_features = ['subtotal', 'total_onshift_dashers', 'total_busy_dashers',
       'total_outstanding_orders', 'distance', 'hour']
# Calculate standard deviation
feature_sd = X_train[num_features].std()
# Compute unscaled coefficients for numerical features
coef_df["Unscaled_Coef"] = np.nan
coef_df.loc[coef_df["Feature"].isin(num_features), "Unscaled_Coef"] = (
    coef_df.loc[coef_df["Feature"].isin(num_features), "Scaled_Coef"].values
    / feature sd.values
# Sort by absolute impact
#coef_df["Absolute Impact"] = np.abs(coef_df["Unscaled Coefficient"])
#coef_df = coef_df.sort_values(by="Absolute Impact", ascending=False)
# Display the coefficient comparison
print(coef_df[["Feature", "Scaled_Coef", "Unscaled_Coef"]])
                                            Feature Scaled_Coef Unscaled_Coef

        subtotal
        subtotal
        11.012462
        61.880985

        total_onshift_dashers
        total_onshift_dashers
        -53.250700
        -241.748818

total_busy_dashers
                                total_busy_dashers -19.170141
                                                                        -90.953517
                                           distance 22.128334
total_outstanding_orders total_outstanding_orders
                                                                        293.029990
                                                                       120.960194
distance
```

```
# Analyze the effect of a unit change in a feature, say 'total_items'
unit_change = 1 # define unit change total_items
# Get the coefficient for 'total_items'
coef_total_outstanding_orders = coef_df.loc[coef_df["Feature"] == "total_outstanding_orders", "Scaled_Coef"].values[0]
impact_on_time_taken = round(unit_change * coef_total_outstanding_orders,2)
print("Impact of unit change in total_items is :", impact_on_time_taken)
Impact of unit change in total_items is : 68.39
Additionally, we can analyse the effect of a unit change in a feature. In other words, because we have scaled the features, a unit change in the features will not translate
directly to the model. Use scaled and unscaled coefficients to find how will a unit change in a feature affect the target.
# Analyze the effect of a unit change in a feature, say 'total_items'
# I am doing this analysis on total_outstanding_orders as it has huge impact on the delivery time.
unit_change = 1 # define unit change in total_outstanding_orders
# Get the coefficient for 'total_outstanding_orders'
coef_total_outstanding_orders = coef_df.loc[coef_df["Feature"] == "total_outstanding_orders", "Scaled_Coef"].values[0]
impact_on_time_taken = round(unit_change * coef_total_outstanding_orders,2)
print("Impact of unit change in total_items is :", impact_on_time_taken)
Impact of unit change in total_items is : 68.39
```

6. Conclusion:

- a) total outstanding orders has the highest impact on the target variable/
- b) total_onshift_dashers and distance have the significant impact on the model
- c) Outlier handling improved the overall model performance. d)