federico ardila

homework four . due thursday oct 23 at the beginning of class.

Note. You are encouraged to work together on the homework, but you must state who you worked with **in each problem**. You must write your solutions independently and in your own words. (I recommend putting away the notes from your discussions with others, and reproducing the solutions by yourself.)

- 1. (On formal power series.) Let $\mathbb{C}[[x]]$ be the ring of formal power series with complex coefficients.
 - (a) Prove that $\mathbb{C}[[x]]$ is an integral domain.
 - (b) Prove that $a_0 + a_1 x + a_2 x^2 + \cdots$ is invertible in $\mathbb{C}[[x]]$ if and only if $a_0 \neq 0$.
- 2. (Personalized Catalan problem.) Prove that the combinatorial objects assigned to you are enumerated by the Catalan numbers.
- 3. (A quadratic recurrence.) Find the unique sequence a_0, a_1, a_2, \ldots satisfying

$$\sum_{k=0}^{n} a_k a_{n-k} = 1.$$

for any $n \geq 0$.

4. (A functional equation.) Find (and prove the uniqueness of) the formal power series B(x) such that

$$[x^n](B(x))^{n+1} = 1$$

for all $n \geq 0$. (Hint: Use Lagrange inversion.)

- 5. (Ordered set partitions.) Let l_n be the number of ways of partitioning the set [n] into non-empty blocks, putting the blocks in a linear order, and putting the elements of each block in a linear order.
 - (a) Use generating functions to compute l_n .
 - (b) Give a combinatorial proof.
- 6. (Bonus problem: Paths in a $2 \times n$ grid.) Consider a grid of height 2 and length n. Find the number of paths of length n which start in the lower left corner of the grid, which consist of unit steps up, down, or right, and which never retrace their steps.