Aula – Programação II (INF 09330)

Variáveis e Estados

Prof. Thiago Oliveira dos Santos

Departamento de Informática

Universidade Federal do Espírito Santo

2015

Visão Geral da Aula

- Introdução
- Variável
- Tipos de Dados

Introdução

Computação

- Programas operam sobre os dados (informação)
- Dados são alterados em seqüência para gerar um resultado
- Dados não devem ser perdidos durante o programa

Problema

Como manter os dados dos programas?

Solução

Utilizar a memória do computador: Variável

- É o nome dado a um local de memória
- É capaz de armazenar e recuperar dados (informação)
- Através de seu nome é possível
 - Acessar sua informação
 - Alterar sua informação

Analogia com mundo real

- Pense em um caixa registradora
- Nela existem locais específicos para armazenar
 - Notas e moedas
 - O local de notas é diferente do local de moedas
- Um operador pode dar nomes para cada um dos locais
 - Nota10, Nota5, Nota20, ...
 - Moeda5, Moeda10, ...
- Quando um pagamento é feito
 - O operador busca, pelo nome, o local de cada nota recebida
 - O mesmo é feito caso ele precise de retirar notas para troco

Na memória do computador

- Funciona como na vida real
- Representam o estado atual do programa

Memória do computador

Na memória do computador

- Se em um determinado momento do programa
 - É feito um pagamento de 32,15 reais
 - Notas: 2 de 10, 2 de 5 e 1 de 2; Moedas: 1 de 10, e 1 de 5
 - O estado da memória mudará após a atualização da variáveis

Memória do computador

Atributos de Variáveis

- Nome
 - Identifica a variável
 - Não pode ser alterado
- Informação ou dado
 - Representa o estado atual da variável
 - Pode ser consultado e alterado
- Tipo de dado
 - Representa o conjunto de valores possíveis de se armazenar
 - Não pode ser alterado

Identificador (Nome)

- Para encontrar o local certo de armazenamento usa-se
 - Um identificador, ou nome (Ex. nota10, nota2, ...)
- O identificador visa facilitar o entendimento dos programas
 - Portanto, variáveis devem ser definidas com nome significativos
- Grandes projetos adotam padrões nos nomes das variáveis
 - Facilita a leitura do código
 - Exemplo de padrão
 - Nome simples: começado com letra minúscula e seguido por minúsculas
 - Nome composto: primeira parte iniciada com minúscula e segunda parte com maiúsculas. O restante é escrito com minúsculas.

Nomes de Variáveis em C

- Primeiro caractere deve ser uma letra ou sublinhado
- Os subseqüentes devem ser letras, números ou sublinhados
- Os nomes devem ser únicos
- Maiúsculas e minúsculas diferem
- Exemplos
 - Correto
 - Count, count, test123, test_123, var_iavel, cOuNt, COUNT
 - Incorreto
 - 1count, hi!there, hi...balance
 - Padrão sugerido
 - count, raiz, mediaDosAlunos, idade, idadeDosProfessores

Informática

Contexto

- Dados são armazenados na memória do computador
- A memória é vista como um conjunto ordenado de células
- A memória armazena informação de forma binária
 - Bits = binary digits (0's e 1's)
- Menor porção acessível de memória (célula)
 - Byte = 8 bits = 2^8 = 256 valores differentes
 - Identificada por um endereço (número)
- Conceito de variável permite abstrair
 - Números binários, endereço, etc.

iviemoria								
0	10101110							
1	00000100							
2	00000000							
3	11111111							
	11111111							
	11111111							
	11111111							
n	11111111							

Mamária

Informática

Problemas

- Memória tem tamanho limitado
- Dados podem ter tamanhos infinitos
 - Exemplo: Dados Numéricos (Matemática)
 - Naturais: N = {0,1,2,3,...}
 - Inteiros: Z = {...,-3,-2,-1,0,1,2,3,...}
 - Fracionários: Q = (p/q|p,q pertencem a Z)
 - Reais: R = Q U (números irracionais, ex. PI, raiz de 2, ...)
- Dados deve ser armazenados de forma ótima
 - Tudo deve estar em binário

Endereço

Solução Encontrada pelos Criadores

- Definir tipos de dados com regras de armazenamento
 - Inteiros, Reais, Lógicos, Caracteres
- Definir limites para os dados de um tipo
- Definir operação para eles
- Associar variáveis a um tipo de dado

Tipos de Dados

- Delimitam o espaço de armazenamento das variáveis
- Definem as operações que podem ser realizadas nas variáveis

Problemas Associado a Limites

- Overflow (extrapolação)
 - Ex.: Definir um tipo inteiro com 2 bytes
 - Tentar armazenar números menores que -32 768
 - Tentar armazenar números maiores que 32 767

Informática

Variável em Memória

Variável em Memória

0	11111111
	11111111
90	00010100
91	00000000
92	00101110
93	00000000
	00000000
	00000000
	00000000
	11111111
N	11111111

idade do tipo inteira

sexo do tipo caractere

nivelAcoolico do tipo real

Tipos Básicos de Dados

- São os tipos disponíveis na linguagem de programação
- Cada linguagem tem seu próprio conjunto de tipos básicos
- Cada tipo de dado tem seu conjunto próprio de operações
- Diferentes tipos de dado possuem tamanhos diferentes
 - Portanto, requerem quantidades diferentes de memória

Tipos

- Inteiro
 - Representação: int
- Real
 - Representação: float ou double
- Lógico
 - Não existe um representação em C
 - Usa-se: int
- Caractere
 - Representação: char

Modificadores (de char e de int)

- long
- short
- unsigned
- signed (redundante para inteiros)

Informática

Inteiro

- Exemplos de combinação de declarações
 - short int
 - int
 - long int
 - short unsigned int
 - unsigned int
 - long unsigned int
- Exemplos de constantes
 - **-** 6, 5, -1, 0, 1000
 - 0xa(hexadecima = 10 decimal)
 - 012(octal = 10 decimal)

Informática

Real

- Exemplos de combinação de declarações
 - float
 - double
 - long double
- Exemplos de constantes
 - **-** 2.0, 3.0, -1., -3.3, -1.771
 - -1.575E1 = 15.75
 - 1575e-2 = 15.75
 - -2.5e-3 = -0.0025
 - -25E-4=0.0025

Informática

Caractere

- Exemplos de combinação de declarações
 - char
 - unsigned char
 - signed char
- Exemplos de constantes
 - 'a', 'b', '_', '1'

Informática

Caractere

Tabela ASCII

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	0	96	60	`
1	01	Start of heading	33	21	!	65	41	A	97	61	a
2	02	Start of text	34	22	"	66	42	В	98	62	b
3	03	End of text	35	23	#	67	43	С	99	63	c
4	04	End of transmit	36	24	Ş	68	44	D	100	64	d
5	05	Enquiry	37	25	*	69	45	E	101	65	e
6	06	Acknowledge	38	26	٤	70	46	F	102	66	f
7	07	Audible bell	39	27	1	71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	Н	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	OA	Line feed	42	2A	*	74	4A	J	106	6A	j
11	OB	Vertical tab	43	2 B	+	75	4B	K	107	6B	k
12	OC.	Form feed	44	2C	,	76	4C	L	108	6C	1
13	OD	Carriage return	45	2 D	_	77	4D	M	109	6D	m
14	OE	Shift out	46	2 E		78	4E	N	110	6E	n
15	OF	Shift in	47	2 F	/	79	4F	0	111	6F	o
16	10	Data link escape	48	30	0	80	50	P	112	70	р
17	11	Device control 1	49	31	1	81	51	Q	113	71	a
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	ន	115	73	s
20	14	Device control 4	52	34	4	84	54	Т	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	V	118	76	v
23	17	End trans, block	55	37	7	87	57	W	119	77	ឃ
24	18	Cancel	56	38	8	88	58	X	120	78	х
25	19	End of medium	57	39	9	89	59	Y	121	79	У
26	1A	Substitution	58	3A	:	90	5A	Z	122	7A	z
27	1B	Escape	59	3 B	;	91	5B	[123	7B	{
28	1C	File separator	60	3 C	<	92	5C	١	124	7C	ı
29	1D	Group separator	61	3 D	=	93	5D]	125	7D	}
30	1E	Record separator	62	3 E	>	94	5E	۸	126	7E	~
31	1F	Unit separator	63	3 F	?	95	5F	_	127	7F	

Lógico ???

- Não existe em C
- Utiliza números (int) para representar verdadeiro e falso
 - Zero é usado para falso
 - Qualquer outro valor é verdadeiro
- Exemplos
 - ...-3, -2, -1, 1, 2, 3, 4, ... = verdadeiro
 - 0 = falso

Informática

Diferença Entre Tipos

- Atentar que
 - $-1.0 \neq 1 \neq '1'$
 - $.0 \neq 0 \neq '0'$

Declaração de Variáveis

- Informática
- Deve ser feita antes do uso (geralmente no início do bloco)
- Sintaxe
 - <tipo> <lista_de_variaveis>;
 - tipo = tipo de dados válido
 - lista_de_variaveis = lista de nomes da variável separados por vírgula

Declaração de Variáveis

Informática

- Exemplos com números
 - int count;
 - unsigned int a, b, c;
 - short int d;
 - double distancia;
 - float tamanho;
- Exemplos com caractere
 - char letra;
- Exemplos com lógico
 - int souEspecial;

Declaração de Variáveis

Declaração

```
#include <stdio.h>
//Cálculo da média
int main() {
  double N1, N2, Media;
  //Leitura das notas
  scanf("%lf", &N1);
  scanf("%lf", &N2);
  //Cálculo da média
  Media = (N1+N2)/2.0;
  //Impressão do resultado
  if (Media \geq 7)
    printf("Aprovado\n");
  else
    printf("Reprovado\n");
  return 0;
```

Atribuição de Valores à Variáveis

Informática

Atribuição

- Semântica
 - Armazena valor em uma variável
- Sintaxe
 - <nome_da_variavel> = <expressão>;
- Ordem de execução
 - Avaliação da expressão da direita
 - Armazenamento do valor na variável da esquerda
- Restrição
 - Os dois termos devem possuir o mesmo tipo

Cuidado! É uma atribuição e não uma igualdade

Atribuição de Valores à Variáveis

Atribuição

```
#include <stdio.h>
//Cálculo da média
int main() {
  double N1, N2, Media;
  //Leitura das notas
  scanf("%lf", &N1);
  scanf("%lf", &N2);
  //Cálculo da média
  Media = (N1+N2)/2.0;
  //Impressão do resultado
  if (Media \geq 7)
    printf("Aprovado\n");
  else
    printf("Reprovado\n");
  return 0;
```

Inicialização de Variáveis

- O programador deve atentar para inicialização das variáveis
- Valor inicial é lixo!
 - Causa resultados imprevisíveis
- Pode ser inicializada na declaração
- Exemplos
 - int count = 0;
 - unsigned int a = 1, b = 2, c = 3;
 - short int d = 10;
 - double distancia = 100.;
 - float tamanho = 10.1;
 - char letra = 'a';
 - int souEspecial = 0;

Atribuição de Valores à Variáveis

Atribuição

```
#include <stdio.h>
//Cálculo da média
int main() {
  double N1=0, N2=0, Media=0;
  //Leitura das notas
  scanf("%lf", &N1);
  scanf("%lf", &N2);
  //Cálculo da média
  Media = (N1+N2)/2.0;
  //Impressão do resultado
  if (Media \geq 7)
    printf("Aprovado\n");
  else
    printf("Reprovado\n");
  return 0;
```

Perguntas???

Informática