T 3

- 1. Sean $u, v \in \mathbb{R}^3$, dos vectores distintos de cero y linealmente independientes.
 - (a) Demuestra que el conjunto $\{u, v, u \times v\}$ es linealmente independiente.
 - (b) Es un hecho, no lo demuestres, que un conjunto linealmente independiente de tres vectores genera \mathbb{R}^3 . Usando lo anterior muestra que, si p es perpendicular a $u \times v$, entonces existen $s, t \in \mathbb{R}$ tales que p = su + tv (es decir, p está en el plano generado por u y v).
- 2. Sean $u, v \in \mathbb{R}^3$ dos vectores unitarios y perpendiculares y sea $P : \mathbb{R}^3 \to \mathbb{R}^3$, la proyección ortogonal al plano generado por u, v, es decir

$$P(p) = \langle u, p \rangle u + \langle v, p \rangle v.$$

- (a) Toma $w = u \times v$ y denota P_w la proyección ortogonal a la recta generada por w. Demuestra que para todo punto $p \in \mathbb{R}^3$, $P(p) = p P_w(p)$.
 - Sugerencia: empieza probando que $p P_w(p)$ es ortogonal a w por lo tanto, usando el ejercicio 1, $p P_w(p)$ está en el plano generado por u y v.
- (b) Concluye que, para todo $p \in \mathbb{R}^3$, se cumple

$$p = \langle p, u \rangle u + \langle p, v \rangle v + \langle p, w \rangle w.$$

- 3. Para las siguientes funciones, describe los conjuntos de nivel para los valores dados.
 - (a) $f(x,y) = 2x^2 + 4y^2$, c = -2, 0, 2.
 - (b) f(x,y) = 5x + 7y, c = -5, 0, 7.
 - (c) $f(x,y) = (2x y)^2$, c = -1, 0, 2.
 - (d) $f(x,y) = y + 3e^x$, c = -2, 0, 2.
- 4. Para las siguientes funciones, describe los conjuntos de nivel para los valores dados.
 - (a) $f(x, y, z) = x^2 + y^2 + z^2$, c = -1, 0, 1.
 - (b) f(x, y, z) = xyz, c = -4, 0, 4.
 - (c) $f(x, y, z) = e^{x^2} e^{y^3} e^{z^2}$, c = -5.0.5.
 - (d) f(x, y, z) = 2x y + 3z, c = -1, 0, 1.
- 5. Usa coordenadas polares para describir las curvas de nivel de la función dada por

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$$

- 6. Construye una función f(x,y), tal que el conjunto de nivel para c=0 consiste en una cantidad infinita de partes.
- 7. Para cada una de las siguientes trayectorias, da un bosquejo de su traza (pueden usar matlab u otro software).
 - (a) $\gamma(t) = (\cos(t), \sin(t), t), t \in \mathbb{R}.$
 - (b) $\gamma(t) = (\cos(t), \sin(t), e^t), t \in \mathbb{R}.$