CASE STUDY

Predictive & Prescriptive Analysis

Submitted To:

Dr. Alekh Gour

Submitted By:

Rohith Kannan Luv Saxena Nikhil Tarala Sivaganesh Mariappan Prakash Yasrap

TVS Credit

Empowering India.
One Indian at a
Time

As part of the \$8.5 billion TVS Group, we empower Indians from various socio-economic backgrounds with financial products that serve their needs.

Product Portfolio

Two-Wheeler Loans

No.1 TVS Motor financier with a market share of 49.7%

Used Car Loans

Among the top 3 players in the market

Tractor Loans

Key financier for New Tractors, Used Tractors & Agri-implements

Consumer Durable Loans

9000 dealer points touching 1200 towns.

Used Commercial Vehicle Loans

Asset size of Rs.1000 crore with 1000+ channel partners.

Business Loans

Launched in 2018 with focus on Tier2 and Tier3 customers.

Retailer Loans

Launched in 2020 with focus on small retailers.

InstaCard Programme

Launched in 2020, it offers a continuous credit line to over 1 lakh+ customers

Challenge

Post Asset Verification (PAV) on Two Wheeler Customer Base

Problem

One of the activities undertaken by TVS Credit to control fraud at the customer level is Post Asset Verification (PAV) check.

Since this check requires an employee to visit the customer's address to verify the details, the cost of this activity is high. It is not feasible for the company to do the PAV check for each and every single customer

Mission Statement

66

The objective of this case study is to use analytics to identify the segment of customers, who have a higher probability of being fraudulent. This would help the company in reducing the cases of fraud.

Approach

Roadmap

Dataset Information

The dataset has 22 features with around 11000 rows of information such as:

- Customer Information
- Location of the customer
- Rate of Interest
- Loan Amount
- Qualification

- Asset Cost
- Net Salary
- Date of Disbursal of Loan
- Employment Type
- Processing Fee

Cleaning the data

The dataset had 5 columns

with missing values, but with
very low percentage(0.03%).

Those rows missing values

were removed

•	The 'CIBIL' score column had
	60% of missing data

34182 34182 34182
34182

CIBIL Score 60.681935

Target Variable ●0 ●1

% of Fraudulent/Non-Fraudulent based on Product Type

Product

TYPE

Presented to Dr. Alekh Gour | | GIM PGDM ~ BDA

Target Variable ●0 ●1

EDA

Based on

Gender

Target Variable ●0 ●1

EDA

Based on

Dealer Type

EDA

Based on

State

Dealing with Outliers and Skewness

Befo	ore		After
	Skewness		Skewness
Loan Amount	1.168	Loan Amount	0.407
Asset Cost	1.76346	Asset Cost	-0.015599
EMI	1.369546	EMI	0.350432
Net Salary	14.300964	Net Salary	0.435927

Dealing with Outliers and Skewness

Challenges Faced

Dealing with lot of categorical levels

5394

Pin Code

The Column 'Pin Code' had 5394 different Pin codes(levels). Hence it was difficult to analyze them.

Area Code

The Column 'Area Code' had 68 different Area codes(levels). Hence it was difficult to analyse them.

Approach – Binning and Categorization

Risk Factor : 1 – Lowest 5 - Highest

Findings

% of Fraudulent Transaction by Area Code

Fraudulent/ Not Fraudulent • 0 • 1

Area Codes 3061, 3008, 3018, 3031, 3030, 3015 were the riskiest of all.

Im-balanced Dataset Problem

Target Variable	Count
0	7592
1	596

After Under-sampling and Over-Sampling

Target Variable	Count
0	4181
1	4181

Logistic Regression - ROC Curve

Features which contribute to the prediction

- Area Code
- State
- O Dealer Type
- Rate of Interest
- Net Salary
- © Employment
- And few others

Logistic Regression - Report

Using 0.5 as threshold:

Accuracy = 0.92705 Precision = 0.49728 Recall = 0.78205

F1 score = 0.60797

weighted avg

support	f1-score	recall	Report recision	Classification r
3001	0.96	0.94	0.98	0
234	0.61	0.78	0.50	1
3235	0.93			accuracy
3235	0.78	0.86	0.74	macro avg

0.93

0.95

3235

0.93

Logistic Regression - Report

Using 0.5 as threshold:

Accuracy = 0.92705 Precision = 0.49728 Recall = 0.78205

F1 score = 0.60797

CIGSSITIC	acto	ii ikepoi e			
		precision	recall	f1-score	support
	0	0.98	0.94	0.96	3001
	1	0.50	0.78	0.61	234
accur	асу			0.93	3235
macro	avg	0.74	0.86	0.78	3235
weighted	avg	0.95	0.93	0.93	3235

In this particular case, our

objective is to minimize the

False Negatives, so the

Performance Metric we

are interested in is

Recall/TPR

Logistic Regression - Optimization

		Threshold	Accuracy	Precision	TPR	FPR	F1	Specificity	СМ
	6	0.30	0.783308	0.230681	0.854701	0.222259	0.363306	0.777741	[[2334, 667], [34, 200]]
	7	0.35	0.843586	0.295796	0.841880	0.156281	0.437778	0.843719	[[2532, 469], [37, 197]]
Ì	8	0.40	0.893045	0.385714	0.807692	0.100300	0.522099	0.899700	[[2700, 301], [45, 189]]

By setting the Threshold to 0.35, we are getting an Accuracy of 84% and

Recall of 84%, Hence for our case 0.35 will be the Optimal Threshold

Decision Tree - Report

Accuracy = 0.92519
Precision = 0.48507
Recall = 0.55556
F1 score = 0.51793
[[2863 138]
[104 130]]
FPR 0.04598467177607464
Specificity 0.9540153282239253

	 •••	
0	1	
2863	138	6
104	130	

Predicted

Model Selection

Logistic Regression

Decision Trees

Final Decision

84% Accuracy

84%
Recall

We are choosing **Logistic Regression**

Model for this specific Case to solve the

problem and hence **reduce the cost** for

TVS Credit

THANK YOU

Presented to Dr. Alekh Gour | | GIM PGDM ~ BDA