GROUPES ET ANNEAUX 2 CONTRÔLE CONTINU N°2

Exercice 1. Soit G un groupe, $K \triangleleft G$ un sous-groupe distingué, et H < G un sous-groupe.

- (i) Montrer que $G=K\rtimes H\Leftrightarrow$ la projection canonique $\pi:G\to G/K$ se restreint à un isomorphisme entre H et G/K.
- (ii) Montrer que, si $G = K \rtimes H$, alors tout sous-groupe K < L < G vérifie $L = K \rtimes (H \cap L)$.

Exercice 2. Soit I un idéal d'un anneau A.

- (i) Montrer que, si I est un idéal premier, alors, pour tout idéaux I_1 et I_2 de A, on a que $I_1I_2 \subset I$ implique $I_1 \subset I$ ou $I_2 \subset I$.
- (ii) Montrer que, si I n'est pas un idéal premier, alors ils existent deux idéaux $I_1 \neq I \neq I_2$ de A satisfaisant $I_1I_2 \subset I \subset I_1 \cap I_2$.
- **Exercice 3.** Soit G un groupe d'ordre 150. En utilisant les théorèmes de Sylow, montrer que G n'est pas simple (on rappelle que, par définition, un groupe G est simple si ses seuls sous-groupes distingués sont $\{e\}$ et G).
- **Exercice 4.** Construire un corps avec exactement 27 éléments. *Indication :* Utiliser le fait que, si k est un corps, alors, pour tout polynôme $P(X) \in k[X]$ de degré n > 0, l'anneau A = k[X]/(P(X)) est un espace vectoriel de dimension n sur k, et que k0 est un corps si et seulement si k1 est irréductible.