

Kec: +	ation #3	(w:th. 18:00) 13:00= 27-1-1= 24-1=64-	1=
		(W:th	
17.86)	Desc Hex	M E V Bary	
	-0 8000	0 -62 -0 1 000000 0000000	
	smallest > 2 4001	256 1 2.0039 0 1600000 00000001	
	512 4800	9 512 0 1001 000 0 000000	
	largest desarm COFF	127 -63 1.9971 0 0000000 1111111	
	1 largest denorm OOFF -00 FF00	1 9 512 0 1061 060 0 600 0600 127 -63 1.9921 0 0000000 11111111 0 64 0 1 1111111 00000000	
	0×3880 3880	72 72	
	3.5.50	16 -4 256 0 0111011 1011 0000 5: on Exp Frac	
	Brag= Z5-1-1=15	Bras = 24-1-1=7 Pign Exp Frac	
12.87)	1 01111 001	1 0111 0010	
12.07)	- 15-15 1.001 => - 9	- 7-7 1.000 =) -9	
	0	0	
-	0 10110 011		
		0 1110 0110 + 14-7 1.0110 => 176	
	+ 22-15 1.011 => 176	+ 14-7 1.0110 => 176	
++++-			
	1 00111 010	1 6006 0101	
	- 7-15 1.010 7 - 5 -8	- 0-7+1 0.0101 => - 1024	
-		-6	-
	0 00000 111	0 6000 0001 DR 0 0000 0000 => (0
	+ 0-15+1 0.111 => 7		
	-14	-6	-
	1 1160 000	1 1110 (111 = 0R 1 1111 0000 = -0 2 - 14-7 1.1111 = -248	0
	- 28-15 1.000=)-819	2 - 114-7 1.1111 => -248	
	213	7	
	0 10111 100	6 1111 0000 => 00	
	+ 23-15 1.100 => 384	+	
	8		
4			

B) the First field points to the location for the returned structure. The next two fields are \$1.a and \$1.p The next two fields are solver the result of word-sum is stored (both \$2.5 um and \$2.0 um). (both \$2.5 um and \$2.0 um) (both \$2.5 um and \$2.0 um) (both \$2.5 um and \$2.0 um) (both \$3.5 um) (both \$2.5 um)	3.64)	(A)	15	of 9	o esp	13	51	.9	nta	+	0 0	whe	ere	th	e 4	nne	1,00	<i>i</i> \$	40	F;1(in	its	1
c) the general strategy is to pass the argument structure on the stack, just as any argument is passed. The callee accesses the felicles with offsets relative to "seep. D) The general strategy is for the caller to allocate space in its own stack for the result structure, and than it passes a pointer to this structure as a hidden sist argument to the function. 3.65) Create a system of equations with the knowledge we obtain from the assembly code: B te = 12 B te, t4 + ZB + e = Z ZAB + e = 92 We also know? e. E & O, 1, Z, 33 e. e & E & O, 1, Z, 33 e. e & E & O, 1, Z, 33 And that is B & & & & & & & & & & & & & & & & & &		B)	The The	e fi	rst xt xt (both	field two	£ £ 52.5	eld eld	+3 5 a 6 a	to re re and	the 51.	: 1 ere 2.0	oca:	tian l :	fo SI.p	+ 0	e r	etur	ned -su	5+1	is	stored	Q.
3.65) Create a system of equations with the knowledge we obtain from the assembly code: B + e, + If + 7B + e; = 36 ZAB + e; = 92 We also know: e, e \(\) 0, 1, 7, 3\(\) eres \(\) \(\) \(\) And that: B \(\) \(\		c)	The 5ta	ger ck,	eral just	st as	rate	egy	is	to	pa	·55	th.	e a	rgn	ment	. 4	true	twn	e 0.	^ /	the	
the assembly code: By the also becomes the series of padding where experience of padding where experience of padding the series of		0)	The star	gene the	ral	stra. he	resu	1 3 1+	stra	actual 1	he re,	call a der	er nd	to the	all a	ocati	e =	pace es to	a d	po he	inter Fu	wh	
ZAB+ ez = 92 We also know: e, E & O, 1, Z, 3 \(\frac{3}{2} \) Ez, ez & \(\frac{5}{2} \) And that s B & \(\frac{5}{2} \), \(\frac{10}{2} \) If we rewrite ea #2: 3B + e, + ez = 3Z We can rule out B = 11 and B = 12. Phaging into the other equations we see that the only answer that meets all of our constraints is:	3.65)	Cr the	L a	ssem	bly	code	2.;			ions	W	1+h	+6	·e	kno	wled	lge	we	ab	tain	Fizi	•••	
And that a BE \(\frac{9}{10}, \lambda \) \(\lambda \) \						ZAB+	e3	= 0	12	3	M	nert	2 (e,, pla	er, ces	and of	ez Pa	add in	re g	pote	atro	al	
BE \(\frac{2}{9}, 10, 11, 12\) \\ IF we rewrite eartz: \[3B + e_1 + e_2 = 32 \] We can rule out B = 11 and B = 12. Phagging into the other equations we see that the only answer that meets all of our constraints is:					row	e ez,	ez E	£ (0, 1,	2,3	N												
We can rule out B=11 and B=12. Phagging into the other equations we see that the only answer that meets all of our constraints is:		And	, th	at s		7	36	٤٩,	10,	11,	123												
Phagging into the other equations we see that the only answer that meets all of our constraints is:		IF	we	re	write	3			z = 3	2													
A=S B=9		Ph	gg:	3 1	10	the II of	ot ou	ner	con	gna stra:	+: 01	s v	ne s	iee	the	+	the	00	14	ans	wer		