Fiche d'exercices : dérivées et tangentes

Exercice 1:

Dans le graphique ci-dessous, on donne la courbe représentative \mathscr{C}_f d'une fonction f ainsi que trois de ses tangentes : T_1 tangente au point A, T_2 tangente au point B et T_3 tangente au point C.

A l'aide de ce graphique déterminer les valeurs de f'(-1), f'(1) et f'(5).

Méthode et solutions

- $\underline{T_1}$: le point de contact entre \mathscr{C}_f et T_1 est le point $A\left(-1\right)$; -3 donc $f'\left(-1\right)$ est le coefficient directeur de T_1 . Grâce au graphique $f'(-1) = \frac{v_1}{h_1} = \frac{2}{-2} = \boxed{-1 = f'(-1)}$
- $\underline{T_2}$: le point de contact entre \mathscr{C}_f et T_2 est le point $B\left(1\right)$; -4 donc $f'\left(1\right)$ est le coefficient directeur de T_2 . Grâce au graphique $f'(1) = \frac{v_2}{h_2} = \frac{0}{1} = \boxed{0 = f'(1)}$
- $\underline{T_3}$: le point de contact entre \mathscr{C}_f et T_3 est le point $C\left(5\right)$; 0 donc $f'\left(5\right)$ est le coefficient directeur de T_3 . Grâce au graphique $f'(5) = \frac{\nu_3}{h_3} = \frac{2}{1} = \boxed{2 = f'(5)}$

Exercice 2:

Dans le graphique ci-dessous, on donne la courbe représentative \mathcal{C}_f d'une fonction f ainsi que trois de ses tangentes : T_1 tangente au point A, T_2 tangente au point B et T_3 tangente au point C.

A l'aide de ce graphique déterminer les valeurs de f'(-4), f'(2) et f'(6).

Solutions

- $\underline{T_1}$: le point de contact entre \mathscr{C}_f et T_1 est le point $A\left(-4\right)$; 4) donc $f'\left(-4\right)$ est le coefficient directeur de T_1 . Grâce au graphique $f'(-4) = \frac{v_1}{h_1} = \frac{2}{1} = \boxed{2 = f'(-4)}$
- $\underline{T_2}$: le point de contact entre \mathscr{C}_f et T_2 est le point $B\left(2;7\right)$ donc $f'\left(2\right)$ est le coefficient directeur de T_2 . Grâce au graphique $f'(2) = \frac{v_2}{h_2} = \frac{2}{-2} = \boxed{-1 = f'(2)}$
- $\underline{T_3}$: le point de contact entre \mathscr{C}_f et T_3 est le point $C\left(6\right)$; -1 donc $f'\left(6\right)$ est le coefficient directeur de T_3 . Grâce au graphique $f'(6) = \frac{v_3}{h_3} = \frac{-3}{1} = \boxed{-3 = f'(6)}$