Théorème des bornes atteintes

Exercice 1 [01813] [Correction]

Montrer qu'une fonction continue et périodique définie sur $\mathbb R$ est bornée.

Exercice 2 [01812] [Correction]

Soient $f: \mathbb{R} \to \mathbb{R}$ bornée et $g: \mathbb{R} \to \mathbb{R}$ continue.

Montrer que $g \circ f$ et $f \circ g$ sont bornées.

Exercice 3 [01810] [Correction]

Soient $f, g: [a; b] \to \mathbb{R}$ continues telles que

$$\forall x \in [a; b], f(x) < g(x).$$

Montrer qu'il existe $\alpha > 0$ tel que

$$\forall x \in [a;b], f(x) \le g(x) - \alpha.$$

Exercice 4 [01811] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que

$$\lim_{+\infty} f = \lim_{-\infty} f = +\infty.$$

Montrer que f admet un minimum absolu.

Exercice 5 [01815] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ continue. On suppose que chaque $y \in \mathbb{R}$ admet au plus deux antécédents par f.

Montrer qu'il existe un $y \in \mathbb{R}$ possédant exactement un antécédent.

Corrections

Exercice 1 : [énoncé]

Soit T > 0 une période de f.

Sur $[0\,;T],\;f$ est bornée par un certain M car f est continue sur un segment.

Pour tout $x \in \mathbb{R}$, $x - nT \in [0, T]$ pour n = E(x/T) donc

 $|f(x)| = |f(x - nT)| \le M.$

Ainsi f est bornée par M sur \mathbb{R} .

Exercice 2 : [énoncé]

Soit $M \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R}, |f(x)| \le M.$$

Pour tout $x \in \mathbb{R}$, $|f(g(x))| \leq M$ donc $f \circ g$ est bornée.

Puisque la fonction g est continue sur le segment [-M;M], elle y est bornée par un certain M'.

Pour tout $x \in \mathbb{R}$, $|g(f(x))| \leq M'$ car $f(x) \in [-M; M]$ ainsi $g \circ f$ est bornée.

Exercice 3: [énoncé]

Posons $\varphi \colon [a;b] \to \mathbb{R}$ définie par

$$\varphi(x) = g(x) - f(x)$$

 φ est continue sur le segment $[a\,;b]$ donc y admet un minimum en un certain $c\in[a\,;b].$

Posons $\alpha = \varphi(c) = g(c) - f(c) > 0$. Pour tout $x \in [a; b], \varphi(x) \ge \alpha$ donc $f(x) \le g(x) - \alpha$.

Exercice 4: [énoncé]

Posons M = f(0) + 1.

Puisque $\lim_{+\infty} f = \lim_{-\infty} f = +\infty$, il existe $A, B \in \mathbb{R}$ tels que

$$\forall x \leq A, f(x) \geq M \text{ et } \forall x \geq B, f(x) \geq M.$$

On a $A \le 0 \le B$ car f(0) < M.

Sur [A;B], f admet un minimum en un point $a \in [A;B]$ car continue sur un segment.

On a $f(a) \le f(0)$ car $0 \in [A; B]$ donc $f(a) \le M$.

Pour tout $x \in [A; B]$, on a $f(x) \ge f(a)$ et pour tout $x \in]-\infty; A] \cup [B; +\infty[$, f(x) > M > f(a).

Ainsi f admet un minimum absolu en a.

Exercice 5 : [énoncé]

Soit y une valeur prise par f. Si celle-ci n'a qu'un antécédent, c'est fini. Sinon, soit a < b les deux seuls antécédents de y.

f est continue sur $[a\,;b]$ donc y admet un minimum en c et un maximum en d, l'un au moins n'étant pas en une extrémité de $[a\,;b]$. Supposons que cela soit c. Si f(c) possède un autre antécédent c' que c.

Si $c' \in [a;b]$ alors f ne peut être constante entre c et c' et une valeur strictement comprise entre f(c) = f(c') et $\max_{[c;c']} f$ possède au moins 3 antécédents. Si $c' \notin [a;b]$ alors une valeur strictement intermédiaire à y et f(c) possède au moins 3 antécédents. Impossible.