Structural Analysis of Vertical Contracting

Empirical Framework

Siyuan (Bruce) Jin, 3rd Year in Information Systems

Hong Kong University of Science and Technology

March, 2025

Introduction

- Focus: theoretical insights into industry models to estimate firm behavior.
- Framework involves:
 - 1. Supply-side actions (Stage 1)
 - 2. Demand-side actions (Stage 2)
- Outcomes modeled over single or multiple time periods.

Two-Stage Framework for Analysis

- Researchers often model vertical contracting using a two-stage framework.
- Stage 1: Supply
 - Firms negotiate contracts and take payoff-relevant actions (e.g., investment, pricing).
- Stage 2: Demand
 - Consumers purchase products/services provided by upstream and downstream firms.

Contracts

- Contracts represent agreements between upstream and downstream firms.
- Denoted as:

$$C_{ij} \in \mathbb{C}$$

- Where:
 - C_{ii} : Contract between upstream firm i and downstream firm j.
 - C: Set of feasible contracts.
- Null contract (C_0) represents the disagreement (no contract) outcome.

Payoff-Relevant Actions

- Actions not explicitly specified in contracts but affect payoffs.
- Denoted by:

$$a=\{a_0,a_1(\mathbb{C},a_0)\}$$

- Where:
 - *a*₀: Actions chosen simultaneously with contracts.
 - $a_1(\mathbb{C}, a_0)$: Actions chosen after contracts and initial actions.
- Examples:
 - · Downstream pricing, product availability.
 - Effort provision or investment.

Payoff Representation

Detailed Representation:

• Payoffs for each upstream firm i and downstream firm j are represented as:

$$\Pi_{U_i}(\mathbb{C}, \boldsymbol{a}_0), \quad \Pi_{D_j}(\mathbb{C}, \boldsymbol{a}_0)$$

- These payoffs implicitly depend on:
 - Subsequent actions taken by firms $(a_1(\cdot))$.
 - Consumer actions captured by demand functions.

Demand Representation:

- Upstream demand: $\bar{D}(\cdot)$.
- Downstream demand: $\underline{D}(\cdot)$.

Payoff Representation

Demand Representation:

Example (successive monopoly with per-unit pricing):

$$\mathbb{C} = \{w\}, \quad a_0 = \emptyset, \quad a_1 = \{p\}$$

$$\bar{D}(w) = \underline{D}(w) = D(p^m(w + c_R))$$

 In this case, upstream and downstream demand coincide because of a single retailer-manufacturer setup.

General Case:

• When there are multiple upstream firms or consumers do not always purchase upstream products, $\bar{D}(\cdot)$ and $\underline{D}(\cdot)$ will typically differ.

Example: Medical Devices (Grennan, 2013)

- Contracts \mathbb{C} between stent manufacturers (i) and hospitals (j) specify linear prices $\mathbf{w} = \{w_{ij}\}.$
- The null contract \mathbb{C}_0 is represented by $w_{ii} = \infty$, meaning no trade occurs.

Example: Medical Devices (Grennan, 2013)

• The payoff for stent manufacturer *i* is:

$$\Pi_{U_i}(\mathbb{C}) = \sum_{j:\mathbb{C}_{ij} \neq \mathbb{C}_0} \left(w_{ij} - c_i\right) \bar{D}_{ij} \left(\{w_{kj}\}_{k \in \mathcal{I}}\right)$$

- w_{ij} is the price in the contract between manufacturer i and hospital j.
- c_i is the marginal cost of producing stent i.
- $\bar{D}_{ij}(\cdot)$ is the quantity of stent *i* used at hospital *j*, which depends on:
 - Preferences of doctors and patients at hospital j.
 - ► Contracts $\{w_{kj}\}$ for all stents signed by hospital j.
- The payoff for hospital *j* is:

$$\Pi_{D_j}(\mathbb{C}) = W_j\left(\{w_{kj}\}_{k\in\mathcal{I}}\right)$$

• $W_j(\cdot)$ is the welfare of hospital j, which depends on the prices $\{w_{kj}\}$ for all stents it uses.

Example: Health Insurers and Hospitals (Ho and Lee, 2017)

- Contracts between hospitals (upstream) and insurers (downstream) in the U.S. healthcare industry.
- Contracts C specify payments per hospital admission:

$$\mathbf{w} = \{w_{ij}\}$$

Insurers also set premiums for households:

$$\mathbf{p}=\{p_j\}$$

- Demand terms:
 - $\underline{D}_i(\mathbf{p}, \mathbf{N})$: Households enrolled in insurer j.
 - $\bar{D}_{ij}(\mathbf{p}, \mathbf{N})$: Admissions from insurer j's enrollees to hospital i.
- $N = \{ij : \mathbb{C}_{ij} \neq \mathbb{C}_0\}$ represents the network of contracts.

Example: Health Insurers and Hospitals (Ho and Lee, 2017)

Hospital i's payoff:

$$\Pi_{U_i}(\mathbb{C},oldsymbol{
ho}) = \sum_{j:\mathbb{C}_{ij}
eq \mathbb{C}_0} \left(w_{ij} - c_i
ight) ar{D}_{ij}(oldsymbol{
ho},oldsymbol{N}
ight)$$

- w_{ij} : Payment per admission.
- *c_i*: Per-admission cost.
- Insurer *j*'s payoff:

$$\Pi_{D_j}(\mathbb{C},oldsymbol{
ho}) = (
ho_j - \eta_j)\, \underline{D}_j(oldsymbol{
ho},oldsymbol{N}) - \sum_{i:\mathbb{C}_{ii}
eq \mathbb{C}_0} w_{ij}ar{D}_{ij}(oldsymbol{
ho},oldsymbol{N})$$

- p_i: Insurer premium.
- η_i : Non-hospital costs (e.g., physician or drug payments).
- Differences from the previous example:
 - Payoffs depend on premiums, an additional supply-side decision.
 - · Insurers compete for households, so all firms' actions affect payoffs.

Example: Multichannel Television and Vertical Integration

- Crawford and Yurukoglu (2012) and Crawford et al. (2018) study negotiations between:
 - Upstream television channels (i).
 - Downstream multichannel video programming distributors (MVPDs, j), such as cable and satellite firms.
- Contracts C specify linear affiliate fees:

$$\mathbf{w} = \{w_{ij}\}$$

- w_{ij} : Amount distributor j pays channel i per subscriber.
- Distributors choose subscription prices:

$$\mathbf{p} = \{p_j\}$$

Timing and Demand in Multichannel Television

- Timing assumptions:
 - Crawford and Yurukoglu (2012): Subscription prices are set after contracting.
 - Crawford et al. (2018): Subscription prices and contracts are set simultaneously.
- Demand objects:
 - <u>D</u>_j(**p**, **N**): Number of households subscribing to distributor j. **N** = {ij : C_{ij} ≠ C₀}: Network of channel-distributor agreements.

Payoffs in Multichannel Television

• Channel *i*'s payoff:

$$\Pi_{U_i}(\mathbb{C},oldsymbol{
ho}) = \sum_{j:\mathbb{C}_{ij}
eq \mathbb{C}_0} ig(w_{ij}\underline{D}_j(oldsymbol{
ho},oldsymbol{N}ig) + \mathit{ad}_{ij}(oldsymbol{
ho},oldsymbol{N}ig)ig)$$

- $ad_{ij}(\cdot)$: Advertising revenue from distributor j's subscribers.
- w_{ij} : channel fee received from distributor j.
- Distributor *j*'s payoff:

$$\Pi_{D_j}(\mathbb{C}, oldsymbol{
ho}) = \left(p_j - \sum_{i: \mathbb{C}_{ij}
eq \mathbb{C}_0} w_{ij}
ight) \underline{D}_j(oldsymbol{
ho}, oldsymbol{N})$$

- p_j : Subscription price set by distributor j.
- $\underline{D}_{j}(\cdot)$: Number of households subscribing to distributor j.

Discussion

- Key difference from Example 11:
 - Here, fees w_{ij} are paid for all subscribers (\underline{D}_i) .
 - In Example 11, fees were paid only for specific hospital admissions (\bar{D}_{ij}) .

Sequential vs Simultaneous Timing

- Timing assumptions play a critical role in contracting models:
 - Simultaneous: Actions like pricing and contracting are decided together.
 - Sequential: Contracting concludes before other actions are taken (e.g., pricing).
- Implications:
 - Simultaneous timing simplifies calculations but ignores downstream adjustments.
 - Sequential timing captures adjustment dynamics but increases computational complexity.
- Example: Multichannel TV contracts often assume sequential timing for pricing decisions.

Modeling Contract Formation

- Different approaches to modeling contract formation:
 - 1. Take-It-Or-Leave-It (TIOLI) Offers:
 - ▶ One side (e.g., upstream firms) makes offers to the other side.
 - Example: Villas-Boas (2007) for manufacturer-retailer contracts.
 - 2. Nash-in-Nash Bargaining:
 - Firms bargain simultaneously over terms.
 - Useful for capturing mutual leverage and flexibility in negotiations.
- Choice of model depends on the industry and available data.

Contracting Between Manufacturers and Retailers

- Villas-Boas (2007) models contracting and pricing between:
 - Manufacturers (yogurt producers, indexed by i).
 - Retailers (supermarkets, indexed by j).
- Two stages:
 - Stage 1: Manufacturers simultaneously offer contracts to retailers.
 - Stage 2: Retailers choose retail prices given contracts.
- Contracts may include:
 - Linear wholesale prices $\mathbf{w} = \{w_{ij}\}.$
 - Two-part tariffs (fixed fees and variable prices).
- Assumptions:
 - Each manufacturer produces one product.
 - · Each retailer carries all products.

Retailer Profit and Pricing

• Retailer *j*'s profit:

$$\Pi_{D_j}(\boldsymbol{w},\boldsymbol{\rho}) = \sum_i \left(p_{ij} - w_{ij} - c_{Dj} \right) D_{ij}(\boldsymbol{\rho})$$

- p_{ij} : Retail price of product i at store j.
- w_{ij} : Wholesale price offered by manufacturer i.
- c_{Dj} : Retailer j's marginal cost.
- $D_{ii}(\mathbf{p})$: Demand for product i at store j.
- Retail prices under Nash-Bertrand competition:

$$\mathbf{p} = \mathbf{w} + \mathbf{c}_D - (\mathbf{T} * \Lambda_D)^{-1} \mathbf{D}(\mathbf{p})$$

- T(m, n): 1 if m, n share the same retailer, 0 otherwise.
- $\Lambda_D(m,n) = \frac{\partial D_n}{\partial p_m}$: Demand sensitivity to price changes.
- *: Element-wise multiplication.

Manufacturer Profit

Manufacturer i's profit:

$$\Pi_{U_i}(\boldsymbol{w}) = \sum_j (w_{ij} - c_{Ui}) D_{ij}(\boldsymbol{p}(\boldsymbol{w}))$$

- w_{ij} : Wholesale price offered to retailer j.
- c_{Ui}: Manufacturer i's marginal cost.
- $D_{ij}(p(w))$: Demand for product i at store j, given equilibrium prices.
- Equilibrium wholesale prices:

$$\mathbf{w} = \mathbf{c}_U - (I_{I \times J} * (\Lambda_P' \Lambda_D))^{-1} \mathbf{D}(\mathbf{p}(\mathbf{w}))$$

- $I_{I \times J}$: Identity matrix for all product-retailer combinations.
- $\Lambda_P(m,n) = \frac{\partial p_n}{\partial w_m}$: Pass-through matrix.
- Villas-Boas uses this framework to analyze price-cost margins and conduct assumptions.

Nash-in-Nash Bargaining Model

- Nash-in-Nash bargaining captures simultaneous negotiations between pairs of firms.
- Necessary condition:

$$\widehat{\mathbb{C}}_{ij} \in \arg\max_{\mathbb{C}_{ij} \in \mathcal{C}^+_{ij}(\widehat{\mathbb{C}}_{-ij})} \left[\underbrace{\left(\Pi_{Dj}(\{\mathbb{C}_{ij}, \widehat{\mathbb{C}}_{-ij}\}) - \Pi_{Dj}(\{\mathbb{C}_{0}, \widehat{\mathbb{C}}_{-ij}\})\right)^{b_{ij}}}_{\Delta_{ij}\Pi_{Dj}(\{\mathbb{C}_{ij}, \widehat{\mathbb{C}}_{-ij}\})} \cdot \underbrace{\left(\Pi_{Ui}(\{\mathbb{C}_{ij}, \widehat{\mathbb{C}}_{-ij}\}) - \Pi_{Ui}(\{\mathbb{C}_{0}, \widehat{\mathbb{C}}_{-ij}\})\right)^{1-b_{ij}}}_{\Delta_{ij}\Pi_{Ui}(\{\mathbb{C}_{ij}, \widehat{\mathbb{C}}_{-ij}\})}$$

- Key terms:
 - $\Delta D_j(C)$: Gains from trade for downstream firm j.
 - $\Delta U_i(C)$: Gains from trade for upstream firm i.
 - bij: Bargaining parameter for downstream firm j.
- Assumes contracts of other pairs are held fixed during negotiations.

Health Insurer-Hospital Negotiations (Ho and Lee, 2017)

- Health insurers negotiate contracts \mathbb{C} with hospitals, specifying per-admission payments w, while simultaneously negotiating premiums p with employers.
- Payoffs are based on Example 11 (Π_{U_i} for hospitals and Π_{D_i} for insurers).

Example: Health Insurers and Hospitals (Ho and Lee, 2017)

Hospital i's payoff:

$$\Pi_{U_i}(\mathbb{C},oldsymbol{
ho}) = \sum_{j:\mathbb{C}_{ij}
eq \mathbb{C}_0} \left(w_{ij} - c_i
ight) ar{D}_{ij}(oldsymbol{
ho},oldsymbol{N}
ight)$$

- w_{ij} : Payment per admission.
- *c_i*: Per-admission cost.
- Insurer *j*'s payoff:

$$\Pi_{D_j}(\mathbb{C},oldsymbol{p}) = (p_j - \eta_j)\,\underline{D}_j(oldsymbol{p},oldsymbol{N}) - \sum_{i:\mathbb{C}_{i:}
eq \mathbb{C}_0} w_{ij}ar{D}_{ij}(oldsymbol{p},oldsymbol{N})$$

- p_i: Insurer premium.
- η_i : Non-hospital costs (e.g., physician or drug payments).
- Differences from the previous example:
 - Payoffs depend on premiums, an additional supply-side decision.
 - · Insurers compete for households, so all firms' actions affect payoffs.

Health Insurer-Hospital Negotiations (Ho and Lee, 2017)

• Nash-in-Nash bargaining conditions govern hospital payments w_{ij} , incorporating premiums \boldsymbol{p} as supply-side actions (first-order condition):

$$\widehat{w}_{ij} \times \overline{D}_{ij}(\cdot) = (1 - b_{ij}) \times \Delta_{ij} \Pi_{D_j} \left(\{ w_{ij} = 0, \widehat{\mathbb{C}}_{-ij} \}, \widehat{\boldsymbol{\rho}} \right) - b_{ij} \times \Delta_{ij} \Pi_{U_i} \left(\{ w_{ij} = 0, \widehat{\mathbb{C}}_{-ij} \}, \widehat{\boldsymbol{\rho}} \right)$$

- Terms in the equation:
 - $\bar{D}_{ij}(\cdot)$: Number of insurer j's enrollees admitted to hospital i.
 - b_{ij} : Bargaining weight of hospital i in negotiations with insurer j.
 - $\Delta_{ij}\Pi_{D_i}$: Insurer j's gain from trade if the payment to hospital i is set to zero.
 - $\Delta_{ij}\Pi_{U_i}$: Hospital i's gain from trade under the same condition.

Supply Estimation and Identification

- Estimation involves recovering key parameters:
 - Marginal costs (c^U, c^D) .
 - Bargaining parameters (b_{ij}) .
 - Gains from trade $(\Delta D_j, \Delta U_i)$.
- Ideal data scenario:
 - Observed wholesale prices (w).
 - Observed demand system (D(p)).
 - Marginal cost c_R and c_M .
- Missing data (e.g., marginal costs) requires additional assumptions or instruments.

Demand Estimation

- A key input for vertical contracting models is estimating consumer demand.
- Demand estimation helps predict:
 - Upstream and downstream quantities (D(p, x, w)).
 - Consumer responses to prices and product characteristics (x).
- Techniques:
 - Use exogenous variation in prices and characteristics to identify demand.
 - Estimate demand functions for both upstream and downstream firms.

Example: Estimating Demand in Healthcare

- Ho and Lee (2017): Model demand for health insurance plans and hospital services.
- Consumer utility for insurer *j*:

$$u_{cjm} = \beta v_{cjm} + x_{jm}\beta_x + \xi_{jm} + \epsilon_{cjm}$$

- v_{cjm} : Willingness to pay (WTP) for insurer j's hospital network.
- x_{jm} : Observed characteristics (e.g., premiums).
- ξ_{im} : Unobserved demand shocks.
- ϵ_{cjm} : Idiosyncratic preferences.
- Model jointly estimates insurer and hospital demand.

Usage Models for Bundles

- When consumers purchase bundles, usage data can inform valuation.
- Example: Multichannel TV (Crawford et al., 2018)
 - Consumer utility for distributor *j*:

$$u_{cjm} = \beta v_{cjm}(C_j) + x_{jm}\beta_x + \xi_{jm} + \epsilon_{cjm}$$

- $v_{cjm}(C_j)$: Viewership utility for channels in bundle C_j .
- Viewership data helps estimate valuations for individual channels.
- Usage models reduce data requirements by linking upstream and downstream choices.

Upstream Choice-Only Models

- In some cases, only upstream demand is modeled.
- Example: Grennan (2013) Medical devices
 - Focuses on hospitals' choice of medical devices.
 - Does not model patient flows across hospitals.
- Simplifies computation but ignores some competitive effects.

Consumer Selection in Demand Estimation

- Selection bias arises when observed consumption depends on unobserved preferences.
- Example: Multichannel TV (Crawford and Yurukoglu, 2012)
 - Consumers who purchase bundles may have higher valuations for included channels.
 - Ignoring selection leads to overestimating valuations.
- Solution:
 - · Jointly estimate upstream and downstream demand.
 - Use techniques like Heckman correction or joint estimation of preferences.

Joint Estimation of Demand and Supply

- Demand and supply parameters can be jointly estimated for efficiency.
- Example: Crawford et al. (2018)
 - Wholesale prices (w_{ij}) used to infer demand valuations.
 - · Assumes content with higher fees has higher consumer value.
- Benefits:
 - Increases precision of demand estimates.
 - · Captures interactions between demand and supply.

Policy Applications: Horizontal Mergers in Vertical Markets

- Structural models are used to analyze merger impacts.
- Example: Gowrisankaran et al. (2015)
 - Study hospital mergers and their effects on insurer-hospital bargaining.
 - Simulate price increases under Nash-in-Nash bargaining.
- Policy implications:
 - Mergers can increase bargaining leverage but harm consumer welfare.
 - Quantifying competitive effects is crucial for antitrust decisions.

Policy Applications: Vertical Integration

- Vertical integration affects competition through:
 - Efficiencies: Reducing double marginalization.
 - Foreclosure: Denying rivals access to key inputs.
- Example: Crawford et al. (2018)
 - Study integration between cable distributors and sports channels.
 - Find positive average welfare effects but harm to rival distributors.
- Policy implications:
 - Effects of vertical integration vary across markets.
 - Requires case-specific analysis for mergers.