

(一)国际工业互联网:快速发展中的创新、

International Industrial Internet: Fast Innovation, Adjustment and Evolution

- (以互联网和信息通信技术重构先进制造业体系,变革商业模式,重塑国际格局) 跨国企业: GE、PTC、思科、微软、罗克韦尔、霍尼韦尔...
- 初创企业: Uptake、C3IoT、Particle、FogHorn... 欧洲 (德国: 强化工业技术与互联网技术双向融合, 巩固和扩大德国工业尤其是生产及工程技术的领先 地位)
 - 西门子、ABB、博世、施耐德、SAP、诺基亚...
- 日本 (将互联网与自动化、机器人技术结合,保持比较优势—互联工业)
 - 三菱、日立、NEC、富士......

- 技术与服务创新
 - 关注工业现场实时应用,推出边缘计算
 - 推动生产设备互联互通,引入新型网络技术(TSN、5G) 完善行业解决方案,聚焦数字化模型分析技术(数据分析与数字双胞胎)
- 提升平台应用开发效率,布局低代码开发技术 产业合作与产业生态
 - 技术合作 (云计算等基础技术, 人工智能等前沿技术) 行业合作(供给侧企业与行业用户;供给侧企业间整合技术及行业知识)
- 资本合作 (大型企业股权投资深, 大型企业对创新企业的战略投资) 平台与行业应用
 - 平台建设与应用创新协同推进: 工业互联网平台的设备连接数量、服务客户和开 发者数量以及部署的解决方案数量大幅增长 应用范围和应用深度不断拓展

国际工业互联网应用进展

Progress of International Industrial Internet Application

来源: LNS Research

设备连接与简单数据转发	67%
通过持续数据流的实时看板和监控	62%
机器学习、聚类分析、人工智能等高级分析	47%
自动简单的单步操作	32%
未来12个月投资计划	
增加投资	78%
保持投资	20%
减少投资	0%

平台的实践

-从公有云平台到私有云部署的扩展

Prodix 公有云平台

(二)我国工业互联网发展的七大主要特点 Characteristics of Industrial Internet Development in China

1.顶层设计:顶层设计基本形成

—战略与政策:院《关于深化:"互联网+先进制造业"发展工业互联网的指导意见》

—技术体系: 从三大要素(网络、数据、安全)到三大功能体系的塑造(网络、平台、安全)

2.模式创新:构架在丰富工业场景和强劲转型需求上的应用创新和商业模式

—中国企业对数字技术和互联网更高的接受和理解

数据驱动的初步智能化 7.应用实践: ──逐见成效的工业和ICT(包括互联网)界的相互融合 模式创新和基础能力的综合差距

3.网络体系:

—网络化的补课和新体系的创新

4.平台体系:

快速增长下跟随与创新的交织,极为丰富的

--标识解析体系的变革机遇和体系化挑战

5.安全体系:

6.技术产业:

先行者的探索与试错、商业模式的构建、企业的闲惑与困难.....

工智能、区块链、APP......)

已知与未知的安全交织 (网络安全Security和工业安全Safety)

深层次的综合和基础差距与新技术追赶(新型网络、边缘计算、人

工业互联网产业联盟 (AII) —12+9+X

Alliance of Industrial Internet --12+9+X

公 边缘计算

工业互联网应用: 3大路径和4大模式初步形成 Industrial Internet Application: Initial Success in 3 Routes and 4 Models

路径3: 面向开放生态的平台运营—工业互联网平台 汇聚协作企业、产品、用户等产业链资源,实现向平台运营的转变

打通企业内外部价值链, 实现产品、生产和服务创新

路径2: 面向企业外部的价值链延伸—智能产品/服务/协同

路径1: 面向企业内部的生产率提升—智能工厂

打通设备、产线、生产和运营系统, 获取数据, 实现提质增效, 决策优化

数据驱动的生态运营能力

钢铁等行业

装备、工程机械、家电等、航空航天等

数据驱动的业务创新能力 家电、纺织、服装、家具、工程机械、航空航天、

汽车、船舶等

数据驱动的智能生产能力 电子信息、家电、医药、航空航天、汽车、石化、

服务化延伸 机器即服务

衍生金融服务

个性化定制 复杂产品 简单产品

制造即服务

网络化协同 协同设计 协同制造

供应链协同

智能化生产 车间级 丁厂级

离散行业工业互联网探索

Exploration of Industrial Internet in Discrete Industry

1. 多品种小批量离散行业(航空、船舶、工程机械等)产品种类多、规模小、价值高、研制和生产周期长,零部件复杂、协同程度高 产品价值高、生命周期长, 产品种类繁多结构复杂。 产品质量要求高,但自 零件数量级大, 供应 现状 动化水平较低 商体系庞大 后服务成本高 设计周期长 网络化协同设计 应用 单点工艺优化 应用 供应链优化管理 应用 设备健康管理 应用

У				
	现状 单一品种向多品种发 现状 展,多为消费品	现状 批量大,质量缺陷 导致巨大经济损失	现状 高效率是大批量 生产的必要条件	现状 产品后市场服务需 求多样化
	应用 个性化设计	应用 质量优化	应用 生产管理优化	应用 后市场服务
	2 小只孙士业是家数行业 (汽车	宝由 电子笔) 女兄孙老小 规模士	对立口氏是和此立效应而改变 立口	孙米点女提供学园

2. 少品种人瓜里离散行业(汽车、家电、电子等) 产品种类少、规模大,对产品质量和生产效率要求局,产品种类问多样性友族

流程行业的工业互联网路径探索

Exploration of Industrial Internet in Process Industry

4、高价值装备和资产管理问题

1、不同来源原材料的生产工艺参数优化问题 ——— 2、大宗商品批量生产与市场需求对接问题 3、高风险行业安全环保问题 保安全

	4	数
4		据
		集
		成
		滞度
		和
		产
		度
		不
		断
		提

降风险

路径1:数据+模型驱动的全流程优化 -以数字双胞胎为核心的智能工厂建设

以模型为核心的全数据集成打通

路径2: 以数据可视化为核心的HSE系统

信息系统数据的集成打诵

—基于数字化三维模型的风险管控、事故预警与模拟 制造系统数据的集成打诵

路径3: 基于数据的全供应链优化 —用电子商务等手段强化供产销对接,减少库存

基于生产过程的实时监控,避免泄露爆炸等

以模型为核心驱动全流程优化。实现原料配

事故,实现危险品的全生命周期监控

从原料采购、库存到销售的全流程优化, 在

最低的价格买入最合适的原材料,并在保证

较小库存的情况下, 在成品价格高点售出

效益

比优化、工艺优化、装备装置健康管理等

◇ 助接计算

三大体系进展-网络体系:从新网络技术到"网络连接+数据互通" Progress on 3 Systems - Network System: from New Network Technology to "Network Connection + Data Interconnectivity"

- 网络体系: 工厂网络化改造未完成, 差距较大; 工厂外网络能力较强 (电信运营商) 产业基础: 总体网络技术产业国际一流(如光网络、4G/5G等); 工厂内网络方面 差距很大
- 新技术:新网络技术的研究和应用部署新型取得积极进展,并已经在装备制造、石油 开采等领域初步取得很好效果

时间敏感网络(TSN)、工业无源光网络(PON+数据采集)、IPv6、软件定义网

络 (SDN)、窄带物联网 (NB-IoT)、WIA-PA/FA、5G

TSN (时间敏感性网络)

统一工业以太网标准

■ 打造开放产业

- 同时支撑生产控制与信息应用
- 共同构建统一标准体系 时延<8微秒, 抖动<100ns

SDN管理, 边缘计算平台

2018年汉诺威工业展AII联盟与ECC联盟联合展示的TSN (时间敏感网络) +OPC UA测试床

三大体系进展—平台体系:模式创新与基础差距

Progress on 3 Systems - Platform System: Model Innovation and Infrastructure Gap

- 初步模底统计(2018年3月), 我国有269个平台类产品, 装备、 消费品、原材料、电子信息是主要应用方向
- 模式创新是亮点 (平台+订单、平台+信贷、平台+保险、平台+新 能源.....)
- 基础差距大,尤以工业能力最为突出(工业连接能力、工业机理模 型、平台分析工具、微服务等)

WLESTER!

@ K*D&TA

战略和政策层面的顶层设计

Next Step: Top Level Design on Strategy and Policy

2017年11月27日, 国务院发布

发展工业互联网的指导意见》

《关于深化"互联网+先进制造业"

— "323" 行动

网络体系 产业 大型企业集成创新 平台体系 生态 中小企业应用普及 安全体系 国际化

推讲2类应用

构筑3大支撑

出台了《工业互联网APP培育工程实施方案 (2018-2020年) 《工业互联网平台建设及推广 《工业互联网平台评价方法》、 《推动企业上云实施指南(2018-2020年)》等政策。 预计还会陆续发布工业互联网网络化改造、工业互联网安全等相关政策性文件

打造3大体系

2018年6月7日, 工信部印发《工业互联网发展行动计划(2018-2020年)》

ᅡᆽ

APP

超30万个工业

目标: 2020年底, 初步建成工业互联网基础设施和产业体系

网络基础设施 平台体系 高可靠、广覆盖、大 - 10个左右跨行业

带宽、可定制的企业 外网基础设施, 具备 IPv6支持能力

重点企业内网改造典

型模式

标识解析体系

跨领域平台 - 30万家以上企业

安全保障体系 设备、平台、数据等

5个国家顶级节点

标识注册量超20亿

至少10项安全标准

重点任务8大行动

- 基础设施能力提升行动 标识解析体系构建行动
- 丁业互联网平台建设行动 核心技术标准突破行动
- 新模式新业态培育行动 产业生态融通发展行动
- 安全保障水平增强行动 开放合作实施推进行动

(四)工业互联网中的边缘计算

Edge Computing in Industrial Internet

边缘计算与制造体系变革

Edge Computing and Manufacture System Reform

当前重点实现数据接入、协议转换、数据预处理与边缘智能应用等功能 平台层 工业互联网平台 : 机床健康管理 FOXCONN HMV 3、数据预处理 SCADA 2. 协议解析 边缘层 1、数据接入 ModBus/Profinet/CCLink/HostLink/.

设备层

未来进一步融合部分控制功能

工业互联网平台 TSN #

OPC-UA

NOVO.

设备届1/0

2

- 边缘智能与OPC-UA、 TSN等新技术融合, 替代 传统PLC功能
- 新型制造体系具备扁平化、 低时延、高带宽等特征

边缘到云,从工厂自动化到云端商业应用 From Edge to Cloud, From Factory Automation to Cloud Business Application

边缘人工智能: 机器学习与预测性维护
Al at Edge: Machine Learning and Predictive Maintenance
加速器 信号状态系统 加速器采集系统 CPPS OPC-UA服务器 可视化服务器 HMI

伺服电机

PLC/CNC

OPC-UA客户端

存储设备

云端学习建模 模型输出 人工智能应用工具 故障诊断模型 数据分类、图像辨识、回 归预测、语意识别…… 迭代优 产品分类模型 T小数据样本 工业现场数据交互 在制品外型特征 与预处理

工作方案智能决策

现场状态精准评估

基于机器学习的预测性维护 非监督学习:第一步,检测或发现数据中的新信息 以用于机器监控 监督学习:在分析主轴和机器整体行为基础上解决

特定问题,资产(设备)可用性提高20%,每天预期可增加3小时的使用时间

来源: IIC, "Making Factories Smarter Throu." "Machine learning-based CPS for clustering conditions", NAMRC 45

2018年由中国信通院牵头,沈自所、仪综所、 中国联通、树根互联、重庆中光电等企业参与 共同承担2018年工业互联网创新发展工程的

"工业互联网边缘计算基础标准和试验验证" 项目:

2019年,中国信诵院以专项工作要求为基础。 联合产业各方, 共同开展面向工业互联网的边 缘计算参考架构、关键技术、核心产品等方面 的标准制定:

中国信通院将联合各项目单位。在 北京、广州、重庆等地区建设对边 缘计算技术、产品进行试验验证的 平台。通过平台对边缘节点的关键 技术能力、功能性能进行验证, 同 时对多节点联动、边云协同等关键 技术进行试验。

欢迎产业各方积极参与!

