Els grafs: xarxes, camins i connexions

De la matemàtica discreta a la realitat

Aniol Garcia i Serrano

Presentació del treball, Gener 2017

El meu primer graf

El meu primer graf El primer graf Breu història

El primer graf

El primer graf

Breu història

Leonhard Euler

Gottfried W. Leibniz

Geometria de la posició

El meu primer graf El primer graf Breu història Geometria de la posició

Els grafs: xarxes, camins i connexions

De la matemàtica discreta a la realitat

Aniol Garcia i Serrano

Presentació del treball, Gener 2017

Objectius i Hipòtesi

Objectius

- Conèixer la teoria de grafs
- Estudiar i implementar algorismes
- Mostrar-ne algunes de les aplicacions

Hipòtesi

La teoria de grafs, com a branca de la matemàtica discreta, ens proporciona eines per modelitzar estructures i processos i ens permet crear aplicacions pràctiques mitjançant procediments algorísmics.

Tipus de grafs

 ${\sf Complet}$

 v_2 v_1 v_3 v_4 v_5

Complementari de G

Bipartit complet

 (v_0)

Buit

Nul

Graf Lineal

Propietats i demostracions

A tall d'exemple:

Propietat: El graf lineal d'un graf amb n nodes, e arestes i amb vèrtexs de graus $g(v_i)$ té n'=e nodes i e' arestes, on

$$e' = \frac{1}{2} \sum_{i=1}^{n} g(v_i)^2 - e$$

Demostració: Cada node v_i amb grau $g(v_i)$ del graf original generarà un graf complet de $g(v_i)$ nodes $(K_{g(v_i)})$. Un graf complet té $\binom{n}{k} = \frac{n(n-1)}{2}$ arestes, per tant, en aquest cas se'n generen $\frac{g(v_i)(g(v_i)-1)}{2}$. Però això es compleix per a cada vèrtex, i llavors podem escriure

$$\sum_{i=1}^n \frac{1}{2} g(v_i)(g(v_i)-1) = \frac{1}{2} \sum_{i=1}^n (g(v_i)^2 - g(v_i)) = \frac{1}{2} \sum_{i=1}^n g(v_i)^2 - \frac{1}{2} \underbrace{\sum_{i=0}^n g(v_i)}_{|E|} = \frac{1}{2} \sum_{i=1}^n g(v_i)^2 - e$$

Altres classificacions

Algorismes

- Camins
 - Euler
 - Hamilton
 - Dijkstra
 - Bellman-Ford
 - Floyd-Warshall
- MST
 - Kruskal
 - Prim
- Exploració
 - DFS

Plantejament

Organització


```
def metro(Adj, inici, final, k): #on k és el temps de parada acada estació
    recorregut=[]
    print "Punt inicial:", inici.decode("ISO-8859-15")
    print "Punt final:", final.decode("ISO-8859-15")
    dist, tree = OrderedDijkstra(Adj, inici, k)
    i = final
    while tree[i] != inici:
        recorregut.append(tree[i])
        i = tree[i]
    recorregut.append(inici)
    recorregut.reverse()
    total= dist[final]-k
    print "Temps amb estacions del recorregut:", dist[final], "Temps real:", total
    if total < 60:
        print "Temps total del recorregut: ",int(total), "segons"
    else.
        minuts = total/60
        segons = (total%60)
        print "Temps total del recorregut:", int(minuts), "minuts i", int(segons), "segons"
    print "Recorregut:",
    print "[".
    for i in range(0,len(recorregut)):
        print recorregut[i].decode("ISO-8859-15")+",",
    print final.decode("ISO-8859-15"),"]"
```

```
def OrderedDijkstra(Adj, s, k):
    Q = dict.fromkeys(Adj.keys(), float("inf"))
    dist = dict.fromkeys(Adj.keys(), float("inf"))
    tree = {}
    0[s] = 0
    while Q:
        u = min(Q, key=Q.get)
        dist[u] = Q[u]
        for v in Adj[u]:
            if v in Q:
                if Q[v] > Q[u] + Adj[u][v]:
                    Q[v] = Q[u] + Adj[u][v] + k
                    tree[v] = u
        Q.pop(u)
```


Exemple d'execució

```
metro(metro_barcelona, "4_Llucmajor", "9S_Aeroport T1", 25)
```

```
Punt inicial: 4_Llucmajor
Punt final: 9S_Aeroport T1
Temps net del recorregut: 3565
Temps total del recorregut: 59 minuts i 25 segons
Recorregut: [ 4_Llucmajor, 4_Maragall, 4_Guinardó Hospital de
     Sant Pau, 4_Alfons X, 4_Joanic, 4_Verdaguer, 5_Verdaguer,
     5_Diagonal, 5_Hospital Clínic, 5_Entença, 5_Sants Estació,
 \hookrightarrow
     5_Plaça de Sants, 5_Badal, 5_Collblanc, 9S_Collblanc,
\hookrightarrow
     9S_Torrassa, 9S_Can Tries Gornal, 9S_Europa Fira, 9S_Fira,
 \hookrightarrow
     9S_Parc Logístic, 9S_Mercabarna, 9S_Les Moreres, 9S_El Prat
 \hookrightarrow
     Estació, 9S_Cèntric, 9S_Parc Nou, 9S_Mas Blau, 9S_Aeroport
\hookrightarrow
     T2, 9S_Aeroport T1 ]
 \hookrightarrow
```

Conclusions

- Objectius assolits.
- Podem trobar grafs a una gran quantitat d'àmbits i amb moltes aplicacions diferents.
- Importància de la computació en procediments matemàtics.
- Queda molta feina per fer.

Programari Iliure

- Ubuntu i Debian com a S.O.
- Python com a llenguatge de programació
- LaTeX i els seus paquets per a la redacció de la memòria
- Git com a sistema de control de versions
- Geogebra, Spyder, Scilab, Vim, Meld... i molts d'altres!

Més informació del treball a aniolgarcia.github.io/grafs

Moltes gràcies!

Aniol Garcia i Serrano aniolgarcia@gmail.com

