EE360C: ALGORITHMS NETWORK FLOW

PEDRO SANTACRUZ

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
UNIVERSITY OF TEXAS AT AUSTIN

FALL 2014

Network Flow 1/60

Introduction

Minimum C

With American Trov

ruginenting rue

Dipurtite Mutering

---,-----

uestions (

THE SOVIET RAIL NETWORK (1955)

On the history of the transportation and maximum flow problems. Alexander Schrijver, Math Programming, 2002.

Network Flow 2/60

Introduction

Minimum Cut
Maximum Flow
Augmenting Path
Bipartite Matching
Disjoint Paths

MAXIMUM FLOW AND MINIMUM CUT

Max flow and min cut

- Two very rich algorithmic problems
- Cornerstone problems in combinatorial optimization
- Beautiful mathematical duality

Nontrivial applications/reductions

- Data mining
- Open pit mining
- Airline scheduling
- Bipartite matching
- Baseball elimination
- Image segmentation
- Network connectivity

- Network reliability
- Distributed computing
 - Egalitarian stable matching
 - Security of statistical data
- Network intrusion detection
- Multi-camera scene reconstruction
- Many, many more...

Network Flow 3/60

Introduction

Minimum Cut

Maximum Flow

Augmenting Pa

Disjoint Paths

THE MINIMUM CUT PROBLEM

A Flow Network

- An abstraction for material flowing through the edges
- G = (V, E) is a directed graph with no parallel edges
- There are two distinguished nodes: a source (s) and a sink (t)
- c(e) is the capacity of edge e

Introduction

Minimum Cut

Augmenting Pa

. ..

Definition

An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Definition

The capacity of a cut (A, B) is $cap(A, B) = \sum_{e \text{ out of } A} c(e)$.

Introduction

Minimum Cu

Augmenting P

District Bullet

THE MIN CUT PROBLEM

The Min s-t Cut Problem

Find an *s-t* cut of minimum capacity.

Network Flow 6/60

Introduction

Minimum Cut

Maximum Flo

_.

Disjoint Paths

An s-t flow is a function that satisfies:

- Capacity: for each $e \in E$: $0 \le f(e) \le c(e)$
- Conservation: for each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$

Definition

The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$.

An s-t flow is a function that satisfies:

- Capacity: for each $e \in E$: $0 \le f(e) \le c(e)$
- Conservation: for each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$

Definition

The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$.

THE MAXIMUM FLOW PROBLEM

The Max Flow Problem

Find the *s-t* flow of maximum value.

Network Flow 9/60

No. : C

Maximum Flow

Augmenting I

Disjoint Paths

Flow Value Lemma

Let f be any flow, and let (A, B) be any s-t cut. The net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$

Introduction

Minimum Cut

Bipartite Matching

Disjoint Paths

Let f be any flow, and let (A, B) be any s-t cut. The net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$

Introduction

Minimum Cut

Widalitati 110W

Pinantita Matahina

Disjoint Paths

Flow Value Lemma

Let f be any flow, and let (A, B) be any s-t cut. The net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$

Introduction

Minimum Cut

Maximum Flow

Augmenting ratio

Disjoint Paths

Flow Value Lemma

Let f be any flow, and let (A, B) be any s-t cut. The net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$

Proof

$$v(f) = \sum_{e \text{ out of } s} f(e)$$

$$= \sum_{v \in A} (\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e))$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

In the second step, by flow conservation, all terms except v = s are 0.

Introduction

Minimum Cut

Maximum Flow

Bipartite Matching

Disjoint Futis

Let f be any flow and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

Cut capacity = $30 \implies \text{Flow value} \le 30$

Network Flow 14/60

Minimum C

Maximum Flow

Augmenting Paths
Bipartite Matching

Disjoint Fati

Weak Duality

Let f be any flow. Then for any s-t cut (A, B), we have $v(f) \le cap(A, B)$.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} c(e)$$

$$= cap(A, B)$$

Minimum Cut

Maximum Flow

Augmenting F

Dipartite Ma

moetione

Let f be any flow and let (A, B) be any cut. If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Introduction

William Cu

Augmenting Paths

Bipartite Matchin

meetions

TOWARDS A MAX FLOW ALGORITHM

Greedy Algorithm

- Start with f(e) = 0 for all edges $e \in E$
- Find an *s*-*t*path *P* where each edge has f(e) < c(e).
- Augment flow along path *P*
- Repeat until you get stuck

Flow value = 0

Network Flow

Introduction

Minimum Cui

Accessor Core De the

Bipartite Matching

Disjoint Paths

(uestions)

TOWARDS A MAX FLOW ALGORITHM

Greedy Algorithm

- Start with f(e) = 0 for all edges $e \in E$
- Find an *s*-*t*path *P* where each edge has f(e) < c(e).
- Augment flow along path *P*
- Repeat until you get stuck

Flow value = 20

Network Flow

Introduction

Augmenting Paths

Bipartite Matching

. .

• Find an *s*-*t*path *P* where each edge has f(e) < c(e).

• Augment flow along path *P*

• Repeat until you get stuck

But local optimality is not (always) the same as global optimality!

Network Flow 19/60

Introduction

Maximum Flow

Augmenting Paths
Bipartite Matching

Original Edge

• $e = (u, v) \in E$; Flow f(e); capacity c(e)

Residual Edge

- "Undo" flow sent
- e = (u, v) and $e^{R} = (v, u)$
- Residual capacity:

$$c_f(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E \\ f(e) & \text{if } e^R \in E \end{cases}$$

Residual Graph: $G_f = (V, E_f)$

- Residual edges with positive residual capacity
- $E_f = \{e : f(e) < c(e)\} \cup \{e^R : c(e) > 0\}$

Minimum Cu

Maximum Flow

Augmenting Paths Bipartite Matching

Disjoint Paths

RESIDUAL GRAPH EXAMPLE

Minimum Cut
Maximum Flow
Augmenting Paths
Bipartite Matching
Disjoint Paths

- (a) *G* with 20 units of flow on the path *s-u-v-t*
- (b) The resulting residual graph and the new augmenting path
- (c) The residual graph after an additional 10 units of flow on the path *s-v-u-t*

AUGMENTING PATHS IN A RESIDUAL GRAPH


```
\begin{aligned} & \operatorname{augment}(f,P) \\ & \operatorname{Let} \ b = \operatorname{bottleneck}(P,f) \\ & \operatorname{For} \ \operatorname{each} \ \operatorname{edge} \ (u,v) \in P \\ & \operatorname{If} \ e = (u,v) \ \text{is a forward edge then} \\ & \operatorname{increase} \ f(e) \ \operatorname{in} \ G \ \operatorname{by} \ b \\ & \operatorname{Else} \ ((u,v) \ \operatorname{is a backward edge, and let} \ e = (v,u)) \\ & \operatorname{decrease} \ f(e) \ \operatorname{in} \ G \ \operatorname{by} \ b \\ & \operatorname{Endif} \\ & \operatorname{Endfor} \\ & \operatorname{Return}(f) \end{aligned}
```

Minimum C.

Maximum Flow

Augmenting Paths

Bipartite Matching

THE FORD-FULKERSON ALGORITHM


```
Max-Flow
```

```
Initially f(e)=0 for all e in G
While there is an s-t path in the residual graph G_f
Let P be a simple s-t path in G_f
f'=\operatorname{augment}(f,P)
Update f to be f'
Update the residual graph G_f to be G_{f'}
Endwhile
Return f
```

Network Flow

Minimum Cu

Maximum Flow

Bipartite Matching

Questions

Flow value = 0

Network Flow 24/60

- Introduction

Augmenting

Bipartite Matchin

-,-

Flow value = 0

letwork Flow 25/60

Minimum C.

Maximum Flow

Augmenting Paths
Bipartite Matching

. . .

Flow value = 8

Network Flow 26/60

mtroduction

Minimum Ci

Assamantina

Bipartite Matching

-,----

Flow value = 10

Network Flow 27/60

Augmenting

Bipartite Matching

nestions

Flow value = 16

Network Flow 28/60

mtroduction

Minimum Ct

4 C B

Bipartite Matching

Disjoint Pa

Flow value = 18

Network Flow 29/60

- Introduction

Augmenting I

3ipartite Matchi

Flow value = 19

Network Flow

Introduction

Millimum Ct

Bipartite Matchinន្

- --,------

Disjoint Paths

Questions

Augmenting Path Theorem

Flow f is a max flow if and only if there are no augmenting paths.

Max-flow min-cut Theorem

The value of the max flow is equal to the value of the min cut.

Proof Strategy

We can prove both theorems simultaneously by proving that the following are equivalent.

- There exists a cut (A, B) such that v(f) = cap(A, B).
- **2** Flow f is a max flow.
- **3** There is no augmenting path relative to f.

introduction

A D. th

Bipartite Matchin

Questions

Proof of Equivalences

- "There exists a cut (A, B) such that v(f) = cap(A, B)" is equivalent to "Flow f is a max flow" by the corollary to the weak duality lemma.
- "Flow f is a max flow" is equivalent to "There is no augmenting path relative to f" by:
 - Let *f* be a flow. If there exists an augmenting path, then we can improve *f* by sending flow along this path, contradicting the fact that *f* is a max flow (and that (*A*, *B*) is a min cut).

Minimum Cu

Maximum Flow

Augmenting Paths
Bipartite Matching

Disjoint Paths

Questions

Proof of Equivalences (cont.)

- "There is no augmenting path relative to f" is equivalent to "There exists a cut (A, B) such that v(f) = cap(A, B) by:
 - Let *f* be a flow with no augmenting paths.
 - Let *A* be a set of vertices reachable from *s* in the residual graph.
 - By definition of A, $s \in A$; by definition of t, $t \notin A$.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$
$$= \sum_{e \text{ out of } A} c(e)$$
$$= cap(A, B)$$

Minimum Cut

Assumption

Let $C = \sum_{e \text{ out of } s} c_e$. $v(f) \leq C$ for all s-t flows f

ipartite Matchin

Theorem

Disjoint Paths

The algorithm terminates in at most *C* iterations of the while loop. Proof: Each augmentation increases the value by at least 1.

Questions

Corollary

Ford-Fulkerson runs in O(mC) time. Proof: Given a flow f of max value, we can compute an s-t cut of min capacity in O(m) time.

Integrality Theorem

If all capacities are integers, then there exists a max flow f for which every flow value f(e) is an integer.

Proof: Since the algorithm terminates, this follows from the invariant.

Augmenting Paths
Bipartite Matching

Disjoint Paths

Questions

You are given a directed graph G = (V, E) with positive integer capacities on each edge, a designated source (s), and a designated sink (t). You are given an integer max flow in G defined by an f_e on each edge.

I choose one edge $e \in E$ and increase its capacity by 1. Show how to find a max flow in the resulting graph (G') in O(m+n) time.

Hint: first prove that the max flow in G' is either the same as in G or one more than the max flow in G.

EXPONENTIAL NUMBER OF AUGMENTATIONS

Question

Is the (generic) Ford-Fulkerson algorithm polynomial in the input size?

Answer

No. It's also polynimal in C, the max capacity on a link. (Think knapsack.) In such a case, the algorithm can take C iterations (on a pathological input, sure, but asymptotically, the time is still proportional to *C*).

CHOOSING GOOD AUGMENTING PATHS

Use care when selecting augmenting paths

- Some choices lead to exponential algorithms
- Clever choices lead to polynomial algorithms
- If capacities are irrational, the algorithm is not guaranteed to terminate!

Goal: choose augmenting paths so that...

- Can find augmenting paths efficiently
- Results in few iterations of the while loop

Choose augmenting paths with...

- Max bottleneck capacity
- Sufficiently large bottleneck capacity
- Fewest number of edges

Network Flow 37/60

Introduction

Millimum C

Augmenting Pat

Disjoint Paths

Choosing the path with the highest bottleneck capacity increases the flow by the maximum possible amount

- Don't worry about finding the exact highest bottleneck path
- ullet Instead, maintain a scaling parameter Δ
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only edges with capacity at least Δ

Network Flow 38/60

Introduction

Maximum Flow

Di di Mali

Disjoint Paths

```
troduction
```

```
Maximum Flow
```

```
Disjoint Paths
```

```
uestions
```

```
Scaling Max-Flow  \begin{array}{l} \text{Initially } f(e)=0 \text{ for all } e \text{ in } G \\ \text{Initially set } \Delta \text{ to be the largest power of 2 that is no larger} \\ \text{ than the maximum capacity out of } s \colon \Delta \leq \max_{e \text{ out of } s} c_e \\ \text{While } \Delta \geq 1 \\ \text{While there is an } s\text{-}t \text{ path in the graph } G_f(\Delta) \\ \text{ Let } P \text{ be a simple } s\text{-}t \text{ path in } G_f(\Delta) \\ f' = \operatorname{augment}(f,P) \\ \text{ Update } f \text{ to be } f' \text{ and update } G_f(\Delta) \\ \text{Endwhile} \\ \Delta = \Delta/2 \\ \text{Endwhile} \\ \text{Return } f \end{array}
```

Assumption

Let $C = \sum_{e \text{ out of } s} c_e$.

Integrality invariant

All flow and residual capacity values are integral.

Correctness

If the algorithm terminates, the *f* is a max flow.

Proof

- By the integrality invariant, when $\Delta = 1$, $G_f(\Delta) = G_f$
- Upon termination of the $\Delta = 1$ phase, there are no augmenting paths.

Minimum Cut

THE AIRTEAN TION

Bipartite Matchin Disjoint Paths

Ouestions

The outer while loop repeats $1 + \lceil \log_2 C \rceil$ times

• Proof: Initially Δ is at most C. Δ decreases by a factor of 2 each iteration of the outer while loop and never goes below 1.

Lemma 2

Let f be the flow at the end of a Δ -scaling phase. Then the value of the maximum flow is at most $v(f) + m\Delta$. (Proof coming up.)

Lemma 3

There are at most 2*m* augmentations per scaling phase.

- Let *f* be the flow at the end of the previous scaling phase.
- Lemma 2 tells us that $v(f^*) \le v(f) + m(2\Delta)$
- ullet Each augmentation in a Δ -phase increases v(f) by at least Δ

Theorem

The scaling max-flow algorithm finds a max flow in $O(m \log_2 C)$ augmentations. It can be implemented to run in $O(m^2 \log_2 C)$ time.

Network Flow 41/60

Introduction

Maximum Flow

Augmenting I

Disjoint Paths

CAPACITY SCALING: RUNNING TIME

Lemma 2

Let f be the flow at the end of a Δ -scaling phase. Then the value of the max flow is at most $v(f) + m\Delta$. The following proof is almost identical to the max-flow min-cut theorem.

- We show that at the end of a Δ -phase, there exists a cut (A, B) such that $cap(A, B) \leq v(f) + m\Delta$.
- Choose *A* to be the set of nodes reachable from *s* in $G_f(\Delta)$.
- By definition of $A, s \in A$.
- By definition of f, $t \notin A$ (because it is the end of a phase, and we've exhausted all of the s-t paths).

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$\geq \sum_{e \text{ out of } A} (c(e) - \Delta) - \sum_{e \text{ in of } A} \Delta$$

$$= \sum_{e \text{ out of } A} c(e) - \sum_{e \text{ out of } A} \Delta - \sum_{e \text{ in of } A} \Delta$$

$$\geq cap(A, B) - m\Delta$$

Introduction

36 1 77

Augmenting Paths

Bipartite Matching

Matching

- Input: undirected graph G = (V, E)
- M ⊆ E is a matching if each node appears in at most one edge in M
- Max matching: find a max cardinality matching

Introduction

Minimum C

Wide Allitum 110W

Augmenting I

Dipartite iviateri

Asjoint Patns

BIPARTITE MATCHING

Bipartite Matching

- Input: undirected, bipartite graph $G = (L \cup R, E)$
- M ⊆ E is a matching if each node appears in at most one edge in M
- Max matching: find a max cardinality matching

Network Flow 44/60

Introduction

Maximum El

Augmenting I

partite Matchin

BIPARTITE MATCHING

Bipartite Matching

- Input: undirected, bipartite graph $G = (L \cup R, E)$
- M ⊆ E is a matching if each node appears in at most one edge in M
- Max matching: find a max cardinality matching

Network Flow 45/60

Introduction

Marrian II

Augmenting I

partite Matchin

Max flow formulation

G'

- Create directed graph $G' = (L \cup R \cup \{s, t\}), E')$.
- Direct all edges from L to R and assign infinite (or unit) capacities.
- Add source s and unit capacity edges from s to each node in L.
- Add sink t and unit capacity edges from each node in R to t.

Introduction

Minimum Ci

Augmenting F

ipartite Match

BIPARTITE MATCHING: CORRECTNESS

Theorem

The max cardinality of a matching in G equals the value of the max flow in G'

- Given a max matching *M* of cardinality *k*
- Consider a flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k

Network Flow 47/60

Introduction

Augmenting F

Bipartite Mat

BIPARTITE MATCHING: CORRECTNESS (2)

Theorem

The max cardinality of a matching in G equals the value of the max flow in G'

- Let *f* be a max flow in *G'* of value *k*
- The integrality theorem gives us that k is integral, and we can assume f(e) is 0 or 1 for all e
- Consider *M* as the set of edges from *L* to *R* with f(e) = 1.
 - Each node in L and R participates in at most one edge in M (each has c(e) = 1 on a single input edge).
 - |M| = k. Consider the cut $(L \cup s, R \cup t)$.

Network Flow 48/60

Introduction

Maximum Flor

Augmenting P

Bipartite Matchi

ภรุงเทt Paths

Question

When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings

- Clearly, we must have |L| = |R|.
- What other conditions are necessary?
- What other conditions are sufficient?

Minimum Cu

Maximum Flow

Disjoint Paths

Observation

If a bipartite graph $G = (L \cup R, E)$ has a perfect matching, then $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.

Proof

Each node in S has to be matched to a different node in N(S).

No perfect matching:

$$N(S) = \{ 2', 5' \}.$$

Introduction

Minimum Cut

Dipurate mater

Marriage Theorem (Frobenius 1917, Hall 1935)

Let $G = (L \cup R, E)$ be a bipartite graph with |L| = |R|. Then G has a perfect matching iff $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.

The proof in the forward direction is the same as the previous observation. For the proof in the reverse direction. . .

Minimum Cu

Maximum Flow

Bipartite Matchin

PROOF OF THE MARRIAGE THEOREM

Proof

Suppose G does not have a perfect matching. Then we need to show that there exists a set S such that |N(S)| < |S|.

- Consider a set $S \subset L$.
- Let (A, B) be a min cut in G'.
- Select (A, B) such that $S \subseteq A$ and that $N(S) \subseteq A$. How? Consider any $x \in S$ that is connected to a $y \notin A$ such that c(x, y) = 1. We can move y from B to A without changing the (total) capacity of the cut (because, by definition, y is also connected to t).
- By the max-flow min-cut theorem and the fact that the max flow is less than |L|, cap(A,B) < |L|.
- Because all of the edges that cross the cut must either leave s and go to some node in L but not in A or leave A and go to t, cap(A, B) = |L ∩ B| + |R ∩ A|.
- Consider $S = L \cap A$. $N(S) \subseteq A$ (by construction of A).
- $|L \cap B| = |L| |S|$ and $|R \cap A| \ge |N(S)|$
- Putting it all together: $cap(A, B) = |L \cap B| + |R \cap A| \ge |L| |S| + |N(S)|$ then $|L| |S| + |N(S)| \le cap(A, B) < |L|$ or |L| |S| + |N(S)| < |L|, so |N(S)| < |S|

Introduction

Minimum (

Maximum Flow

Augmenting P

partite Match

Disjoint path problem

Given a directed graph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s-t paths.

Definition

Two paths are edge-disjoint if they have no edge in common.

Example: communication networks

Introduction

Minimum Ci

Maximum Flov

Bipartite Match

Disjoint Path

Disjoint path problem

Given a directed graph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s-t paths.

Definition

Two paths are edge-disjoint if they have no edge in common.

Example: communication networks

Introduction

Minimum Cu

Maximum Flo

Bipartite Match

Disjoint Path

Ouestions

EDGE DISJOINT PATHS

Max Flow Formulation

Assign unit capacity to every edge.

Theorem

The max number of edge-disjoint s-t paths equals the max flow value.

Proof (Part 1)

- Suppose there are k edge-disjoint paths P_1, \ldots, P_k .
- Set f(e) = 1 if e participates in some path P_i ; else set f(e) = 0.
- Since paths are edge-disjoint, *f* is a flow of value *k*.

Network Flow 55/60

Introduction

Minimum Cı

Maximum Fic

Bipartite Matchi

Disjoint Paths

EDGE DISJOINT PATHS

Max Flow Formulation

Assign unit capacity to every edge.

Theorem

The max number of edge-disjoint s-t paths equals the max flow value.

Proof (Part 2)

- Suppose the max flow value is *k*.
- The integrality theorem tells us that there exists a 0-1 flow f of value k
- Consider edge (s, u) with f(s, u) = 1
- By conservation, there exists an edge (u, v) with f(u, v) = 1
- Continue until we reach *t*, always choosing a new edge.
- This produces *k* edge disjoint paths.

Network Flow 56/60

Introduction

Minimum Cu

Maximum Flow

Augmenting Pati

Disjoint Dath

Duestions

Given a directed graph G = (V, E) and two nodes s and t, find the minimum number of edges whose removal disconnects t from s.

Definition

A set of edges $F \subseteq E$ disconnects t from s if all s-t paths use at least one edge in F.

Network Flow 57/60

Introduction

Minimum Cu

Wiaxiiituiii Fic

Bipartite Mat

Jisjoint Path

Proof (Part 1)

- Suppose the removal of $F \subseteq E$ disconnects t from s and |F| = k.
- All *s-t* paths use at least one edge in *F*. Hence, the number of edge-disjoint paths is at most *k*.

Network Flow 58/60

Introduction

Minimum C

Maximum Flow

Dimentite Matel

Dicioint Path

Duestions

Theorem

The maximum number of edge-disjoint *s-t* paths is equal to the minimum number of edges whose removal disconnects *t* from *s*.

Proof (Part 2)

- ullet Suppose that the max number of edge-disjoint paths is k
- Then the max flow value is *k*
- The max-flow min-cut theorem gives us that there is a cut (A, B) of capacity k
- Let *F* be the set of edges going from *A* to *B*.
- |F| = k and disconnects t from s.

Introduction

Minimum Cu

Widxiiitdiii 11

Ripartito Mate

Disioint Path

Minimum Cut

Maximum Flow

Augmenting Path

Bipartite Matchin

Jugetione