Семестровое задание

Куликова Д., БПМ-17-1

Задание:

$$J(x) = \big||x-a|\big|^2 \to inf, \qquad x \in X = \Big\{x \in E^n \colon \big||x|\big|^2 \le 2\langle b,x\rangle, \big||b|\big|^2 \le \langle b,x\rangle\Big\},$$
 где $a,b \in E^n$ — известные вектора.

Пример 1.

$$a = (2, -1, 1, 0, 1)^T,$$

 $b = (0, 1, 3, 0, -2)^T.$

Пример 2.

$$a = (1, 2, 3, -1)^T,$$

 $b = (-1, 2, 0, 3)^T.$

1 Аналитическое решение:

$$J(x) = \|x - a\|_{E^{n}}^{2} - \sin \xi,$$

$$x \in X = \int x \in E^{n} : \|x\|^{2} \le 2 < 6, x >, \|6\|^{2} \le < 6, x > \xi,$$

$$ge \ a, b \in E^{n} - uzbecomune beknopa,$$

$$\|x\| = \sqrt{x}, x > = \sqrt{\sum_{i=1}^{n} (x_{i})^{2}}.$$

$$Shecmobore npullepti:$$

$$Spullep 1. \quad a = (2, -1, 1, 0, 1)^{T},$$

$$b = (0, 1, 3, 0, -2)^{T}.$$

$$= > \|a\|^{2} = 7, \|b\|^{2} = 14, < 0, 6 > = 0.$$

$$Spullep 2. \quad a = (1, 2, 3, -1)^{T},$$

$$b = (-1, 2, 0, 3)^{T}.$$

$$= > \|a\|^{2} = 15, \|b\|^{2} = 14, < a, 6 > = 0.$$

$$Daulax zagara pablo culotia zagare npoekmupobalus a na ukosnecibo X.$$

$$Pacculot pulle uho mecibo X.$$

$$Pacculot pulle uho mecibo X.$$

$$\langle 6, x > = \|b\|^{2} - runepniockocimo c bekmopen hopuali b u npoxogsusas repez morky b.$$

$$\|a\|^{2} - 2 < 6, x > = \|x - 6\|^{2} - \|b\|^{2} \le 0$$

$$||a|^{2} - 2 < 6, x > = \|x - 6\|^{2} - \|b\|^{2} \le 0$$

$$||a|^{2} - 2 < 6, x > = \|x - 6\|^{2} - \|b\|^{2} \le 0$$

$$||a|^{2} - 2 < 6, x > = \|x - 6\|^{2} - \|b\|^{2} \le 0$$

$$||a|^{2} - 2 < 6, x > = \|x - 6\|^{2} - \|a|^{2} \le 0$$

$$||a|^{2} - 2 < 6, x > = \|x - 6\|^{2} - \|a|^{2} \le 0$$

$$||a|^{2} - 2 < 6, x > = \|x - 6\|^{2} - \|a|^{2} \le 0$$

$$||a|^{2} - 2 < 6, x > = \|x - 6\|^{2} - \|a|^{2} \le 0$$

$$||a|^{2} - 2 < 6, x > = \|x - 6\|^{2} - \|a|^{2} \le 0$$

$$||a|^{2} - 2 < 6, x > = ||a|^{2} - ||a|^{2} - ||a|^{2} < 0$$

$$||a|^{2} - 2 < 6, x > = ||a|^{2} - ||a|^{2} < 0$$

$$||a|^{2} - 2 < 6, x > = ||a|^{2} - ||a|^{2} < 0$$

$$||a|^{2} - 2 < 6, x > = ||a|^{2} - ||a|^{2} < 0$$

$$||a|^{2} - 2 < 6, x > = ||a|^{2} - ||a|^{2} < 0$$

$$||a|^{2} - 2 < 6, x > = ||a|^{2} < 0$$

$$||a|^{2} - 2 < 6, x > = ||a|^{2} < 0$$

$$||a|^{2} - 2 < 6, x > = ||a|^{2} < 0$$

$$||a|^{2} - 2 < 6, x > = ||a|^{2} < 0$$

$$||a|^{2} - 2 < 6, x > = ||a|^{2} < 0$$

$$||a|^{2} - 2 < 6, x > = ||a|^{2} < 0$$

$$||a|^{2} - 2 < 6, x > = ||a|^{2} < 0$$

$$||a|^{2} - 2 < 6, x > = ||a|^{2} < 0$$

$$||a|^{2} - 2 < 6, x > = ||a|^{2} < 0$$

$$||a|^{2} - 2 < 6, x > = ||a|^{2} < 0$$

$$||a|^{2} - 2 < 6, x > = ||a|^{2} < 0$$

$$||a|^{2} - 2 < 6, x > = ||a|^{2} < 0$$

$$||a|^{2} - 2 < 6, x > = ||a|^{2} < 0$$

$$||a|^{2} - 2 < 6, x > = ||a|^{2} < 0$$

$$||a|^{2} - 2 < 6, x > = ||a|^{2} < 0$$

$$||a|^{2} - 2 < 6, x > = ||a|^{2} < 0$$

$$||a|^{2} - 2 < 6, x > = |$$

Інаким образом, учитывая, 2mo < a, b > = 0 в обоч × примерах, получим спедующую картику.

Если $\|a\| \le \|b\|$, то проекцией тогки а на множество X бурет являться проекция а на инерплостость $< b, x > = \|b\|^2$, равнях (a+b).

Sipunep 1:

$$\|a\| < \|b\|$$

 $= x = a + b = (2,0,4,0,-1)$
 $J_{*} = 14$.

Sipumep 2: $\|a\| > \|b\|$ $= 2 \times 2 \times \frac{\|b\|}{\|a\|} + b = (\sqrt{\frac{14}{15}} - 1, 2\sqrt{\frac{14}{15}} + 2, 3\sqrt{\frac{14}{15}}, 3 - \sqrt{\frac{14}{15}})^{2} = (-0,034; 3,932; 2,898; 2,034)^{\frac{1}{15}} + (3\sqrt{\frac{14}{15}} - 3)^{2} + (4-\sqrt{\frac{14}{15}})^{2} = \sqrt{\frac{14}{15}} - 2)^{2} + 4 - \frac{14}{15} + (3\sqrt{\frac{14}{15}} - 3)^{2} + (4-\sqrt{\frac{14}{15}})^{2} = \sqrt{\frac{14}{15}} - 3\sqrt{\frac{14}{15}} + 29 = 43 - 2 \cdot \sqrt{2} + 20^{7} \approx 14,017.$

2 Численное решение:

Для численного решения задачи был использован экстраградиентный метод с постоянным шагом.

При решении для обоих тестовых примеров были выбраны следующие параметры:

- 1. IIIar $\alpha = 0.001$;
- 2. Начальное приближение $x_0 = b$, $\lambda_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$;
- 3. Метод останова $||x_{k+1} x_k|| + ||\lambda_{k+1} \lambda_k|| < eps = 10^{-7}$.

Результаты, полученные для первого тестового примера, представлены на рисунке 1. Найденное решение совпадает с аналитическим решением. На графике представлены зависимости значения функционала (голубая линия) и координат x от итерации.

$$x = [2. -0. 4. 0. -1.]$$

lambda = [0. 2.]
 $J(x) = 14.0$

Рисунок 1 – Пример 1

На рисунке 2 представлены результаты для второго тестового случая. Найденное решение также совпадает с аналитическим. Обозначения на графике аналогичны первому примеру.

$$x = [-0.034 \ 3.932 \ 2.898 \ 2.034]$$

lambda = $[0.035 \ 2.]$
 $J(x) = 14.017$

Рисунок 2 – Пример 2

3 Сравнение работы метода при разных параметрах

3.1. Сравним работу метода для разных значений шага. На рисунке 3 представлены полученные значения, слева - для первого тестового случая, справа — для второго. По таблицам видно, что в первом случае метод быстрее всего сходится при значении шага от 0.23 до 0.27, во втором случае — при 0.13.

Пример	0 1		
Nº	Шаг	Число итераций	
1	0.1	92	
2	0.11	84	
3	0.12	78	
4	0.13	74	
5	0.14	70	
6	0.15	67	Пример 2
7	0.16	65	++
8	0.17	63	№ Шаг Число итераций
9	0.18	61	<u>+</u>
10	0.19	60	1 0.01 1257
11	0.2	59	2 0.02 621
12	0.21	58	3 0.03 399
13	0.22	57	4 0.04 291
14	0.23	56	5 0.05 222
15	0.24	56	6 0.06 179
16	0.25	56	7 0.07 143
17	0.26	56	8 0.08 122
18	0.27	56	9 0.09 100
19	0.28	57	10 0.1 88
20	0.29	58	11 0.11 75
21	0.3	59	12 0.12 66
22	0.31	60	13 0.13 59
23	0.32	61	14 0.14 64
24	0.33	64	15 0.15 96
25	0.34	95	16 0.16 328
+	- 	- 	++

Рисунок 3 – Изменение шага

3.2. Рассмотрим теперь различные варианты начального приближения, зафиксировав для каждого из примеров значения шага, при котором совершается наименьшее число итераций.

Зададим вектор $x_0 = kx_*$, где $k\epsilon\{0.5, 0.99, 1, 1.01, 1.5\}$, вектор $\lambda_0 = \lambda_* + (l_1, l_2)^T$, где $l_1, l_2 \in \{-0.01, 0, 0.01\}$ (x_*, λ_* - решения соответствующих примеров). Полученные результаты представлены на рисунке 4.

Быстрее всего метод сходится в точках близких к решению.

							_			
						N≅	11	12	k	Число итераций
						1	-0.01	-0.01	0.5	58
						2	-0.01	0	0.5	58 i
						3	-0.01	0.01	0.5	58 i
						4		-0.01		58
						5		0		58
						6		0.01		58
							0.01			
							0.01			58
						_	0.01			58
							-0.01			
						11		0		
Приме	0 1					12		0.01		
+	+	+	+	+	+			-0.01		
Nº	11	12	k	Число итераций			0		0.99	1 11
+	+	' +		·	-		0	0.01		
1	1 0	-0.01	0.5	54			0.01			1 11
1 2		0	0.5	54			0.01			
3		0.01		54			0.01			
		-0.01		54		19		-0.01		40
1 1		0.01		54		20		0	1	36
	0.01		0.5	54		21		0.01		40
7		-0.01				22		-0.01		40
8	0 0	0				23		0	1	1
9	0 0		0.99	!			0			40
1 10	-	-0.01		40 39			0.01			40
111		-0.01 0		39 39			0.01		1	36
				!			0.01			40
12		0.01		39		28				
13		-0.01		17				-0.01		
			1	1		29		0		
15			1	17		30		0.01		
16		-0.01		36		31		-0.01		
17		0	1	36		32		0		
18		0.01		36		33				
19		-0.01					0.01			
			1.01	!			0.01			
21	0	0.01	1.01				0.01			
22	0.01	-0.01	1.01	41		37		-0.01		
23	0.01	0	1.01	41		38		0		
24	0.01	0.01	1.01	41		39				
25	0	-0.01	1.5	54			0			
26	0	0	1.5	54		41		0		
27	0	0.01	1.5	54				0.01		
28	0.01	-0.01	1.5	54			0.01			
29	0.01	0	1.5	54			0.01			55
30	0.01	0.01	1.5	54		45			1.5	55
+	+	+	+	+	+ +	+			+	++

Пример 2

Рисунок 4 – Изменение начального приближения

3.3. Рассмотрим два метода останова:

I -
$$||x_{k+1} - x_k|| + ||\lambda_{k+1} - \lambda_k|| < eps = 10^{-7}$$

II - $|J(x_{k+1}) - J(x_k)| < eps = 10^{-7}$

Пример	Метод останова	Число итераций
1 1	I I	56 42
2	I	59
2	II	62

Рисунок 5 – Изменение метода останова

По рисунку 5 видно, что изменение метода останова незначительно влияет на число итераций. В первом тестовом примере метод сходится быстрее со вторым методом останова, а во втором примере – с первым методом останова.

Однако, при использовании второго метода останова также ухудшается точность решения (рис. 6).

Пример) Метод	x](x)	
1 1 1 2 2	Аналит. реш. I метод II метод Аналит.реш. I метод II метод	[2, 0, 4, 0, -1] [20. 4. 01.] [2.000e+00 -2.000e-03 3.994e+00 0.000e+00 -9.960e-01] [-0.034, 3.932, 2.898, 2.034] [-0.034 3.932 2.898 2.034] [-0.035 3.933 2.898 2.036]	14 14.0 13.946 14.017 14.036	

Рисунок 6 – Точность решения