Лабораторная работа №

«Прогнозирование временного ряда в Python с помощью метода Хольта-Уинтерса»

Цель работы: получение навыков прогнозирования с помощью метода Хольта-Уинтерса и оценки результатов в Python.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Как мы знаем, временной ряд можно разложить на 3 составляющие: тренд, сезонность и случайная составляющая. Модель Хольта-Уинтерса использует идеи экспоненциального сглаживания, но является более сложной и может применяться к рядам, содержащим тенденцию и сезонность. Она работает по следующим формулам:

$$\begin{split} L_t &= \alpha * \frac{Y_t}{S_{t-s}} + (1-\alpha)(L_{t-1} + T_{t-1}) \\ T_t &= \beta (L_t - L_{t-1}) + (1-\beta)T_{t-1} \\ S_t &= \gamma \frac{Y_t}{L_t} + (1-\gamma)S_{t-s} \\ \hat{Y}_{t+p} &= (L_t + pT_t)S_{t-s+p} \end{split}$$

где

Lt – новая сглаженная величина;

 α – постоянная сглаживания для данных (0 \leq α \geq 1);

Yt – новое наблюдение или реальное значение ряда в период t;

 β - постоянная сглаживания для оценки тренда (0 \leq β \leq 1);

Тt - собственно оценка тренда;

(гамма) - постоянная сглаживания для оценки сезонности;

St – оценка сезонности;

s – длительность периода сезонного колебания;

р – количество периодов вперед, на которое делается прогноз;

 \hat{Y} t+p - прогноз на р периодов вперед.

К счастью, модель реализована в одной из библиотек Python и не требуется

программировать все формулы самостоятельно. Прогнозирование можно осуществить используя метод statsmodels.tsa.holtwinters.ExponentialSmoothing().

В данном методе, в зависимости от наличия во временном ряде тренда и сезонности, добавляются или убираются параметры **trend** и **seasonal**, также нужно определить периодичность сезонности параметром **seasonal_periods**.

Пример 1

Для начала нужно скачать необходимые компоненты, нам понадобятся следующие библиотеки: **pandas** для упрощения работы с табличными данными, **numpy** для математических операций, **statsmodels** для разбиения временного ряда на компоненты и последующего прогнозирования, а также **sklearn** для оценки построенной модели.

Перед началом работы нам потребуется установить данные библиотеки, это можно сделать с помощью следующих команд:

!pip install pandas

!pip install numpy

!pip install statsmodels

!pip install sklearn

В данной работе попробуем спрогнозировать среднюю месячную зарплату в Беларуси. Для этого понадобится скачать данные по <u>ссылке</u> или с официального сайта Белстат. После скачивания необходимо будем провести действия по приведению данных в одинаковый вид (убрать комментарии, привести значения средней заработной платы в вид 2016 г. с учетом всех деноминаций). После данной операции, прочитаем данные с помощью метода **pandas.read_csv()**, поставив первую колонку как индекс и сбросим 2022 год для упрощения последующих вычислений.

df = pandas.read_csv('salary.csv', index_col=0).drop(2022)

В итоге наша таблица примет следующий вид:

	Январь	Февраль	Март	Апрель
Год				
1991	0.0000026600	0.0000026800	0.0000029500	0.0000035800
1992	0.0000125600	0.0000150700	0.0000211700	0.0000244500
1993	0.0001293900	0.0001625200	0.0001889800	0.0002360000
1994	0.0018846900	0.0020437900	0.0023852500	0.0039695900
1995	0.0339666000	0.0387739000	0.0653853000	0.0692137000
1996	0.0950903000	0.1015329000	0.1066554000	0.1062414000
1997	0.1526205000	0.1639575000	0.1732454000	0.1898682000
1998	0.3024216000	0.3389950000	0.3698217000	0.3669287000

Сейчас данные представлены в табличном виде, однако для вычислений нам потребуется чтобы данные за каждый месяц шли один за другим.

```
monthly_salaries = []
for row in range(len(df)):
  monthly_salaries.extend(list(df.iloc[row]))
```

Получим следующий вид:

```
0 0.0000026600

1 0.0000026800

2 0.0000029500

3 0.0000035800

4 0.0000040900

...

367 1,463.2000000000

368 1,442.7000000000

369 1,478.9000000000

370 1,675.3000000000

Length: 372, dtype: object
```

Для того чтобы избавиться от вероятности применения неправильной модели - логарифмируем наши данные (данная операция позволит без опасений применять аддитивную модель разложения временного ряда) - это можно сделать с помощью метода **log()** библиотеки **numpy**. Далее произведем предобработку данных:

- Заменим индекс на Datetime
- Определим параметр frequency как месячный

```
monthly_salaries = pandas.Series(monthly_salaries,
index=pandas.date_range(start='1/1/1991', periods=len(monthly_salaries),
freq='M'))
```

Всего у нас есть 372 наблюдений, для тренировки оставим 350, а для тестирования оставшиеся 22.

```
train = monthly_salaries [:350]
test = monthly_salaries [350:]
```

Теперь тренируем нашу модель

```
fitted_model =
statsmodels.tsa.holtwinters.ExponentialSmoothing(train,trend='add',seasonal='add',
seasonal_periods=12).fit()
```

Делаем прогноз

test_predictions = fitted_model.forecast(len(test))

Визуализируем результаты

В целом наше предсказание соответствует действительности, теперь займемся его оценкой:

В начале глянем на остатки, ими является разница между нашим предсказанием и реальными данными

Лучшим результатом являются стационарные остатки около нуля, в нашем случае они растут со временем и не являются стационарными, что является очень плохим признаком.

MSE (Mean Squared Error)

Следующая мера оценки - средняя квадратичная ошибка, она, в отличие от средней ошибки, наказывает за сильное отклонение от истинного значения. Она считается по следующей формуле:

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2$$

MSE = mean squared error

n = number of data points

 Y_i = observed values

 \hat{Y}_i = predicted values

Но, так как в нашем случае мы имеем ошибки от 0 до 1 - будет правильно взять **RMSE (Root Mean Squared Error)** для интерпретации результатов. Данный показатель вычисляется, беря квадрат из **MSE**.

Для вычислений используется метод **mean_squared_error()** с параметром **squared=False** (для получения **RMSE**), пакета **sklearn.metrics**.

```
sklearn.metrics.mean_squared_error(test, test_predictions, squared=False)
0.08022773325133858
```

В нашем случае он равняется **0.08** или около 1% от последних значений, что являлось бы приемлемым значением, если бы наш ряд был стационарен и следующий показатель тоже имел приемлемое значение.

R-квадрат (Коэффициент детерминации)

Она показывает, насколько условная дисперсия модели отличается от дисперсии реальных значений Y. Если этот коэффициент близок к 1, то условная дисперсия модели достаточно мала и весьма вероятно, что модель неплохо описывает данные. Если же коэффициент **R-квадрат** сильно меньше, например, меньше 0.5, то, с большой долей уверенности модель не отражает реальное положение вещей. Вычисление можно произвести с помощью метода **r2_score()**, пакета **sklearn.metrics**.

```
sklearn.metrics.r2_score(test, test_predictions)
0.09488777860417452
```

В нашем случае коэффициент детерминации ~0.095, что говорит о полном отличии дисперсии предсказанных значений от дисперсии реальных значений.

Самостоятельно задание:

Скачайте в интернете набор данных временного ряда и сделайте прогноз на ближайшее время с помощью метода Хольта-Винтерса, производите оценку своего прогноза и интерпретируйте её.

Контрольные вопросы:

- 1. Какие еще есть методы прогнозирования временных рядов?
- 2. В каком случае высокий коэффициент детерминации не говорит о низком отличии реальной и предсказанной дисперсии?
- 3. Перечислите способы оценки методов классификации в машинном обучении и объясните как их интерпретировать.