Задание к контрольному мероприятию №2 по курсу «Методы оптимального приема сигналов в аппаратуре потребителей СРНС»

Во вложении к этому PDF-файлу, для каждого варианта задания дана выборка $\mathbf{Y}_1^N = \{y_k\}$, $k = \overline{0,(N-1)}$ наблюдений сигнала ГЛОНАСС L1OF на выходе 3-уровневого АЦП:

$$y_k = a \cdot G(kT_d - \tau_3)\cos(2\pi(f_0 + f_{\pi}) \cdot kT_d + \varphi_0) + n_k,$$

где n_k — ДБГШ с дисперсией $\sigma_n^2=1$; a — неизвестная постоянная амплитуда сигнала, распределенная по рэлеевскому закону $p(a)=\frac{a}{\sigma_a^2}\mathrm{e}^{-a^2/2\sigma_a^2}$ с параметром $\sigma_a=0.06$, что соответствует среднему отношению мощности сигнала к спектральной плотности шума $q_{c/n_0}=10\lg\frac{a^2}{2N_0}=48$ дБГц; T_d - интервал лискретизации, соответствующий частоте лискретизации

интервал дискретизации, соответствующий частоте дискретизации $F_d=1/T_d=33$ МГц; интервал наблюдений $T=NT_d=1$ мс, отсюда число отсчетов в выборке $N=T\cdot F_d=33000$; $f_0=8$ МГц — промежуточная частота сигнала; f_{π} — неизвестная доплеровская частота сигнала, принимающая значения от -2 кГц до +2 кГц с равномерной плотностью вероятности; ϕ_0 — неизвестная начальная фаза сигнала, принимающая значения в интервале от 0 до 2π с равномерной плотностью вероятности; τ_3 — неизвестное время запаздывания сигнала, равномерно распределенное на интервале $0...T_{DK}=1$ мс; $G(kT_d-\tau_3)$ — двоичная функция псевдослучайной последовательности (ПСП) дальномерного кода (ДК) ГЛОНАСС L1OF, вид которой приведен на рис. 1;

Рисунок 1 – Вид двоичной псевдослучайной последовательности дальномерного кода.

Функция G(t) принимает значения +1 или -1, длительность элементарного символа (чипа) составляет τ_c = 1/511 мс, период $T_{Z\!\!K}$ =1 мс, общее количество символов ПСП равно 511. Последовательность бит дальномерного кода ГЛОНАСС L1OF:

При передаче нуля символ G(t)=+1, при передаче единицы G(t)= -1. Последовательность 511-ти символов (+1 или -1) функции G(t) дана во вложенном файле DK LxOF.txt.

Требуется выполнить поиск заданного сигнала с неизвестной начальной фазой, разбив область возможных значений задержки сигнала τ_3 на 1022 дискретных значения в диапазоне от 0 до T_{DK} , и область возможных значений доплеровской частоты — на 9 дискретных значений в интервале от 2 кГц до +2 кГц. Поиск выполняется для каждого возможного значения частоты и задержки сигнала. (Всего получается 1022x9=9198 ячеек поиска). Для каждой ячейки поиска найти величину отклика на выходе коррелятора $X^2 = (I^2 + Q^2)$, выбрать максимум по всем ячейкам поиска, сравнить его с порогом.

1) Построить на 3D-графике зависимость отклика на выходе коррелятора от доплеровской частоты и задержки опорного сигнала как функцию 2-х аргументов. Пример такого графика дан на рис. 2. Записать величину максимума и рассчитанную величину порога обнаружения.

Рисунок 2 – Пример построения поля поиска по частоте и задержке

2) Определить приближенные значения задержки входного сигнала τ_3 в мс и доплеровской частоты $f_{\rm д}$ в Γ ц, соответствующие максимальному корреляционному отклику.

- 3) Найти количество ячеек поиска, в которых превышен порог обнаружения и приближенно оценить вероятность ложной тревоги $P_{\scriptscriptstyle F}$ как отношение этого количества к общему числу ячеек поиска.
 - 4) Привести код программы, выполняющей расчеты.

Рекомендуемая литература: [1], разделы 4.2.3, 4.3.2, 6.2; [2], глава 2, раздел 3.4; [3], раздел 8.8.

- 1. Перов А.И. Статистическая теория радиотехнических систем. Учеб. пособие для вузов. М.: Радиотехника. 2003. 400 с.
- 2. Перов А.И. Методы и алгоритмы оптимального приема сигналов в аппаратуре потребителей спутниковых радионавигационных систем. Учеб. пособие для вузов. М.: Радиотехника. 2012. 240 с., ил.
- 3. Перов А.И., Замолодчиков В.Н., Чиликин В.М. Радиоавтоматика. Учебник для вузов. М.: Радиотехника, 2014. 320 с., ил.