

davidcorzo@ufm.edu (Sign out)

Home

My Assignments

Grades

Communication

Calendar

My eBooks

← MC 006, section B, Fall 2019

10.4 & Aacute; reas Coordenadas Polares (Homework)

DECEMBER 21 11:59 PM CST

Request Extension

Assignment Submission & Scoring

Assignment Submission

For this assignment, you submit answers by question parts. The number of submissions remaining for each question part only changes if you submit or change the answer.

Assignment Scoring

Your last submission is used for your score.

-/2 points SCalcET8 10.4.001.

My Notes

Ask Your Teacher

Find the area of the region that is bounded by the given curve and lies in the specified sector.

$$r=e^{-\theta/12}, \quad \pi/2 \le \theta \le \pi$$

2. **-/2 points** SCalcET8 10.4.002.

My Notes

Ask Your Teacher

Find the area of the region that is bounded by the given curve and lies in the specified sector.

$$r = 4 \cos(\theta), \quad 0 \le \theta \le \pi/6$$

3. **-/2 points** SCalcET8 10.4.501.XP.

Ask Your Teacher

Find the area of the shaded region.

$$r = \sqrt{\theta}$$

4. **-/2 points** SCalcET8 10.4.005.

My Notes

Ask Your Teacher

Find the area of the shaded region.

$$r^2 = \sin(2\theta)$$

5. **-/2 points** SCalcET8 10.4.007.

My Notes

Ask Your Teacher

Find the area of the shaded region.

$$r = 4 + 3\sin(\theta)$$

6. **-/2 points** SCalcET8 10.4.AE.001.

My Notes

Ask Your Teacher

Video Example (1)

EXAMPLE 1 Find the area enclosed by one loop of the four-leafed rose $r = 3\cos(2\theta)$.

SOLUTION The curve $r = 3\cos(2\theta)$ is sketched in the figure to the left. Notice from the figure that the region enclosed by the right loop is swept out by a ray that rotates from $\theta = -\pi/4$ to $\theta = \pi/4$. Therefore this formula gives

$$A = \int_{-\pi/4}^{\pi/4} \frac{1}{2} r^2 d\theta$$

$$\pi/4 \left(\frac{1}{2} \right)$$

$$= \frac{1}{2} \int_{-\pi/4}^{\pi/4} d\theta$$

$$\pi/4 \left(\frac{1}{2} \right)$$

$$= \frac{9}{2} \int_{0}^{\pi/4} \frac{1}{2} (1 + \cos(4\theta)) d\theta$$

$$= \frac{9}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) + \cos(4\theta) \right]$$

$$= \frac{1}{2} \int_{0}^{\pi/4} \frac{1}{2} (1 + \cos(4\theta)) d\theta$$

$$= \frac{9}{2} \left[\frac{1}{2} \right]$$

$$= \frac{1}{2} \int_{0}^{\pi/4} \frac{1}{2} (1 + \cos(4\theta)) d\theta$$

7. **-/2 points** SCalcET8 10.4.010.

My Notes

Ask Your Teacher

Sketch the curve.

$$r = 5 - \sin(\theta)$$

Find the area that it encloses.

//	

8. -/2 points SCalcET8 10.4.512.XP.

My Notes

Ask Your Teacher

Find the area that the curve encloses and then sketch it.

$$r = 4\cos(3\theta)$$

9. **-/2 points** SCalcET8 10.4.019.

My Notes

Ask Your Teacher

Find the area of the region enclosed by one loop of the curve.

$$r = \sin(10\theta)$$

10. **-/0 points** SCalcET8 10.4.AE.002.

My Notes

Ask Your Teacher

EXAMPLE 2 Find the area of the region that lies inside the circle $r = 12 \sin(\theta)$ and outside the cardioid $r = 4 + 4 \sin(\theta)$.

SOLUTION The cardioid (in blue) and the circle (in red) are sketched in the figure. The value of *a* and *b* in this formula are determined by finding the points of

$12 \sin(\theta) =$	
	//
	//

intersection of the two curves. They intersect when , which gives $\sin(\theta) = \boxed{}$, so $\theta = \pi/6$, $\theta = 5\pi/6$. The desired area can be found by subtracting the area inside the cardioid between $\theta = \pi/6$, $5\pi/6$ from the area inside the circle from $\pi/6$ to $5\pi/6$. Thus

$$A = \frac{1}{2} \int_{\pi/6}^{5\pi/6} (12\sin(\theta))^2 d\theta - \frac{1}{2} \int_{\pi/6}^{5\pi/6} (4 + 4\sin(\theta))^2 d\theta.$$

Since the region is symmetric about the vertical axis $\theta = \pi/2$, we can write

$$A = 2 \left[\frac{1}{2} \int_{\pi/6}^{\pi/2} 144 \sin^2(\theta) d\theta - \frac{16}{2} \int_{\pi/6}^{\pi/2} (1 + 2 \sin(\theta) + \sin^2(\theta)) d\theta \right]$$

$$= \int \frac{\pi/6}{\pi/2} d\theta$$

$$= \int_{\pi/6}^{\pi/2} \left(\frac{1}{\pi} - 64 \cos(2\theta) - \frac{1}{\pi} \sin(\theta) \right) d\theta$$
[because $\sin^2(\theta) = \frac{1}{2} (1 - \cos(2\theta))$

11. **-/0 points** SCalcET8 10.4.024.

My Notes

Ask Your Teacher

Find the area of the region that lies inside the first curve and outside the second curve.

$$r = 7 - 7\sin(\theta), \quad r = 7$$

12. **-/2 points** SCalcET8 10.4.026.

My Notes

Ask Your Teacher

Find the area of the region that lies inside the first curve and outside the second curve.

$$r = 1 + \cos(\theta), \quad r = 2 - \cos(\theta)$$

13. **-/2 points** SCalcET8 10.4.030.

My Notes

Ask Your Teacher

Find the area of the region that lies inside both curves.

$$r = 4 + \cos(\theta), \quad r = 4 - \cos(\theta)$$

14. **-/0 points** SCalcET8 10.4.AE.004.

My Notes

Ask Your Teacher

EXAMPLE 4 Find the length of the cardioid $r = 6 + 6 \sin(\theta)$.

SOLUTION The cardioid is shown in the figure. Its full length is given by the parameter interval $0 \le \theta \le 2\pi$, so

$$\int_{0}^{2\pi} \sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} d\theta$$

$$2\pi \sqrt{(6 + 6\sin(\theta))^{2} + \left(\frac{d\theta}{d\theta}\right)^{2}} d\theta$$

$$= \int_{0}^{2\pi} d\theta$$

$$= \int_{0}^{2\pi} d\theta$$

We could evaluate this integral by multiplying and dividing the integrand by $\sqrt{2-2\sin(\theta)}$, or we could use a computer algebra system. In any event, we find

that the length of the cardioid is .

15. **-/2 points** SCalcET8 10.4.047.

Ask Your Teacher

Find the exact length of the polar curve.

$$r = \theta^2$$
, $0 \le \theta \le 3\pi/4$

16. **-/2 points** SCalcET8 10.4.050.

Ask Your Teacher

Find the exact length of the curve. Use a graph to determine the parameter interval.

$$r = \cos^2(\theta/2)$$

//	

17. **-/2 points** SCalcET8 10.4.516.XP.

My Notes

Ask Your Teacher

Find the exact length of the polar curve.

$$r = e^{8\theta}, \quad 0 \le \theta \le 2\pi$$

-/2 points SCalcET8 10.4.518.XP. 18.

Ask Your Teacher

Find the area of the region that is bounded by the given curve and lies in the specified sector.

$$r = e^{\theta/2}, \quad \pi/4 \le \theta \le 4\pi/3$$

Submit Assignment

Save Assignment Progress

<u>Home</u>

My Assignments

Extension Request

Copyright 2019 Cengage Learning, Inc. All Rights Reserved