3/3/25, 1:22 PM K-Mean

K-Means Clustering Implementation

Author: Srikar Kalle Student ID: C00313529

Change Log

SL No.	Change Category	Description	Duration (mins)	Difficulty (1-10)
1	Dataset Change	Replaced Iris dataset with the Penguins dataset.	10	3
2	Data Processing	Dropped missing values and encoded categorical target variables.	15	4
3	Feature Selection	Used bill_length_mm and bill_depth_mm as features instead of PCA-transformed features.	10	3
4	Logging Integration	Added logging for better tracking of process execution.	20	5
5	Hyperparameter Tuning	Expanded n_neighbors search range from [1,3,5] to [1, 20].	25	6
6	Performance Metrics	Used accuracy_score for evaluation instead of direct classification_report .	10	3
7	Visualization	Implemented decision boundary plotting using matplotlib and seaborn.	30	7
8	Dummy Classifier Removal	Removed DummyClassifier comparison for simplicity.	5	2

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import logging
    from sklearn.cluster import KMeans
    from sklearn.metrics import silhouette_score
    from sklearn.preprocessing import StandardScaler

In [2]: logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
In [3]: # Step 1: Business Understanding
    logging.info("Business Understanding: Applying K-Means Clustering to identify da
```

3/3/25, 1:22 PM K-Mean

wcss.append(kmeans.inertia_)

plt.plot(k_values, wcss, marker='o')
plt.title("Elbow Method for Optimal k")

plt.xlabel("Number of Clusters")

plt.ylabel("WCSS")

plt.show()

2025-02-19 12:20:29,476 - INFO - Business Understanding: Applying K-Means Clustering to identify data patterns.

```
In [5]: # Step 2: Data Understanding
        logging.info("Loading dataset...")
        data = sns.load_dataset('penguins').dropna()
        logging.info(f"Dataset loaded with shape {data.shape}")
       2025-02-19 12:21:14,277 - INFO - Loading dataset...
       2025-02-19 12:21:15,766 - INFO - Dataset loaded with shape (333, 7)
In [6]: # Selecting numerical features
        X = data[['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 'body_mass_g']
        scaler = StandardScaler()
        X_scaled = scaler.fit_transform(X)
        logging.info("Data scaled successfully.")
       2025-02-19 12:21:53,959 - INFO - Data scaled successfully.
In [7]: # Step 3: Finding Optimal k
        wcss = []
        k_{values} = range(1, 11)
        for k in k_values:
            kmeans = KMeans(n_clusters=k, random_state=42)
            kmeans.fit(X_scaled)
```

Elbow Method for Optimal k

3/3/25, 1:22 PM K-Mean

```
In [8]: # Step 4: Training K-Means Model
        optimal_k = 3 # Chosen based on Elbow Method
        logging.info(f"Optimal number of clusters selected: {optimal_k}")
        kmeans = KMeans(n_clusters=optimal_k, random_state=42)
        labels = kmeans.fit_predict(X_scaled)
        # Step 5: Evaluation
        sil score = silhouette score(X scaled, labels)
        logging.info(f"Silhouette Score: {sil_score:.4f}")
       2025-02-19 12:23:26,376 - INFO - Optimal number of clusters selected: 3
       2025-02-19 12:23:26,415 - INFO - Silhouette Score: 0.4462
In [9]: plt.scatter(X_scaled[:, 0], X_scaled[:, 1], c=labels, cmap='viridis', alpha=0.5)
        plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=200,
        plt.title("K-Means Clustering Results")
        plt.legend()
        plt.show()
        logging.info("K-Means clustering completed successfully.")
```

K-Means Clustering Results

2025-02-19 12:24:07,402 - INFO - K-Means clustering completed successfully.