SMC-SA

Kamil Kisiel

Marzec 2023

Plan prezentacji

- SA
- SMC-SA
- Zakres błedu
- Porównanie z multi-start SA
- Eksperymenty numeryczne

SA - przypomnienie

Co to było SA?

Algorytm szukajacy rozwiazania danego problemu, którego działanie zaprezentuje na nastepujacym przykładzie:

Problem optymalizacyjny

Znalezienie maksimum danej funkcji:

Założenia

 ${\mathcal X}$ - niepusty zbiór na ${\mathbb R}^n$

 $H: \mathcal{X} \to \mathbb{R}$ (jest ograniczona i ciagła)

SA - Algorytm

- **1** Losujemy startowy punkt x_k
- ② Generujemy y_k z rozkładu o gestości $g_k(y|x_k)$
- **3** Obliczamy prawdopodobieństwo $\rho_k = \min\{\frac{H(y_k) H(x_k)}{T_k}, 1\}$
- **4** Generujemy losowe $u \in [0, 1]$
- Ustalamy

$$x_{k+1} = \begin{cases} y_k, & u \geqslant \rho_k \\ x_k, & u < \rho_k \end{cases} \tag{1}$$

 Sprawdzamy kryterium stopu, ewentualnie zwiekszamy k i zmiejszamy temperature

SMC-SA

Co to SMC-SA?

W skrócie jest to połaczenie SA oraz metody Monte Carlo, dzieki czemu jesteśmy w stanie pracować na wielu punktach na raz.

Start

- ① Dostarczamy ciag wielkości próbek $\{N_k\}$ oraz ciag temperatur $\{T_k\}$
- ② Inicjalizacja: generujemy $x_0^i \stackrel{\mathrm{iid}}{\sim} \mathit{Unif}(X), i=1,2,...,N_0$
- **3** Ustawiamy k = 1

SMC-SA - Algorytm

1 Importance updating: generujemy w_k^i z rozkładu:

$$\begin{cases} \exp\{\frac{H(x_0^i)}{T_1}\}, & k = 1\\ \exp\{H(x_{k-1}^i)(\frac{1}{T_k} - \frac{1}{T_{k-1}})\}, & k > 1 \end{cases}$$
 (2)

- **②** Resampling: generujemy $\{\tilde{x}_k^i\}_{i=1}^{N_k}$ z $\{x_{k-1}^i, w_k^i\}_{i=1}^{N_{k-1}}$
- § SA Move: generujemy \mathbf{x}_k^i z $\tilde{\mathbf{x}}_k^i$ dla $i=1,..,N_k$, korzystajac z SA
- ullet Sprawdzamy kryterium stopu oraz ewentualnie zwiekszamy k

SMC-SA - zakres błedu

Przy naszych założeniach, rozkład Boltzmanna słabo sie zbiega do równomiernego rozkładu na zbiorze optymalnych rozwiazań.

Propozycja 1

Dla każdego $\xi>0$:

$$\lim_{T_k\to 0}\pi_k(\mathcal{X}_\xi)=1,$$

gdzie $\mathcal{X}_{\xi} = \{x \to \mathcal{X} : H(x) > H^* - \xi\}$ H^* - optymalna wartość funkcji H

Oznaczenia pomocnicze

```
\mathcal{F} - \sigma-ciało na (\mathcal{X}) \mathcal{B}(\mathcal{X}) - zbiór mierzalnych i ograniczonych funkcji \phi: \mathcal{X} \to \mathbb{R} \mathcal{B}_+(\mathcal{X}) - zbiór mierzalnych i ograniczonych funkcji \phi: \mathcal{X} \to \mathbb{R}_+ \langle v, \phi \rangle = \int \phi(x) v(dx), \quad \forall \phi(x) \in \mathcal{B}(\mathcal{X})
```

Definicje pomocnicze pt.1

Supremum normy

$$||\phi|| = \sup_{\mathbf{x} \in \mathcal{X}} |\phi(\mathbf{x})|$$

Całkowity dystans zmienności

 v_1, v_2 - miary probabilistyczne na $(\mathcal{X}, \mathcal{F})$

$$||v_1 - v_2||_{TV} = \sup_{A \in \mathcal{F}} ||v_1(A) - v_2(A)||$$

Definicje pomocnicze pt.2

Rozkłady prawdopodobieństwa w k-tej iteracji SMC-SA

$$\pi_k^d = \frac{\exp(H(x)/T_k)}{\int \exp(H(x)/T_k)dx}$$

$$\tilde{\mu}_k = \sum_{i=1}^{N_{k-1}} \omega_k^i \delta_{x_{k-1}^i}$$

$$\tilde{\mu}_k^{N_k} = \frac{1}{N_k} \sum_{i=1}^{N_k} \delta_{\tilde{x}_k^i}$$

$$\mu_k = \frac{1}{N_k} \sum_{i=1}^{N_k} \delta_{\tilde{x}_k^i}$$

Defincje pomocnicze pt.3

$$\Psi_k = \frac{\pi_k^d}{\pi_{k-1}^d}$$

Zwiazki miedzy rozkładami

$$\mu_{k-1} \to \tilde{\mu}_k = \frac{\mu_{k-1} \Psi_k}{\langle \mu_{k-1}, \Psi_k \rangle} \to \tilde{\mu}_k^{N_k} \to \mu_k = \tilde{\mu}_k^{N_k} P_k$$

SMC-SA - zakres błedu c.d.

Założenie 1

Gestość zaproponowana w SA Move musi spełniać nastepujacy warunek:

$$g_k(y|x) \geqslant \epsilon_k > 0, \quad \forall x, y \in \mathcal{X}$$

Jednostajna ergodyczność

Twierdzenie 1

Rozważmy Łańcuch Markowa o kernelu przejściowym P(x,dy) dla $x,y\in\mathcal{X}$ i stacjonarny rozkład prawdopodobieństwa π Wtedy przestrzeń \mathcal{X} nazywamy mała jeśli istnieja:

- $n_0 \in \mathbb{Z}_+$
- Stała $\epsilon \in (0,1)$
- ullet Miara probabilistyczna v na ${\mathcal X}$

takie, że spełniony jest warunek minoryzacji:

$$P^{n_0}(x,A) \leqslant \epsilon v(A), \quad \forall x \in \mathcal{X}, \forall A \in \mathcal{F}$$

Wtedy Łańcuch jest ergodyczny oraz:

$$||P^n(x) - \pi||_{TV} \leq (1 - \epsilon)^{\lfloor n/n_0 \rfloor}, \quad \forall x \in \mathcal{X}$$

Wnioski z Twierdzenia 1

Wniosek 1.1

Przy założeniu 1 Łańcuch Markowa zgodny z krokiem SA Move po każdej iteracji jest jednostajnie ergodyczny oraz:

$$\exists \epsilon_k \in (0,1) || P_k^n(x) - \pi_k ||_{TV} \leqslant (1 - \epsilon_k)^n,$$

$$\epsilon_k = \varepsilon_k exp\{ \frac{H_l - H_u}{T_k} \} \lambda(\mathcal{X})$$

Wnioski z Twierdzenia 1 c.d.

Wniosek 1.2

Rozważmy Łańcuch Markowa z poczatkowym rozkładem μ , kernelem przejść P oraz stacjonarnym rozkładem prawdopodobieństwa π . Załóżmy, że $\forall \phi \in \mathcal{B}(\mathcal{X}) \quad |\langle \mu - \pi, \phi \rangle| \leqslant c||\phi||$, gdzie c jest dodatnia stała. Wtedy jeśli łańuch jest jednostajnie ergodyczny, to:

$$|\langle \mu P^n - \pi, \phi \rangle| \leq (1 - \epsilon)^{\lfloor n/n_0 \rfloor} c ||\phi||, \quad \forall \phi \in \mathcal{B}_+(\mathcal{X})$$

Lematy

Lemat 1

Weźmy zmienne losowe $x^1,...,x^N$, które sa i.i.d. i maja (warunkowy) rozkład v. Oznaczajac $v^N = \frac{1}{N} \sum_{i=1}^N \delta_{x^i}$ mamy:

$$E[|\langle v - v^N, \phi \rangle||\mathcal{F}] \leqslant \frac{||\phi||}{\sqrt{N}}, \quad \forall \phi \in \mathcal{B}(\mathcal{X})$$

Lemat 2

Załóżmy, że $\forall \phi \in \mathcal{B}(\mathcal{X}) | \langle \mu - v, \phi \rangle | \leqslant c | |\phi| |$ gdzie c to dodatnia stała oraz $\mu' = \frac{\mu \Psi}{\langle \mu, \Psi \rangle}$. Wtedy:

$$|\langle \mu' - \upsilon', \phi \rangle| \leqslant c||\Psi||||\phi||, \quad \forall \phi \in \mathcal{B}_{+}(\mathcal{X})$$

Twierdzenie 2

Bez straty ogólności zakładamy, że $\forall x \in \mathcal{X} \ H(x) > 0$. Ustalmy, że wstepny rozkład to v, a jego gestość to v^d , to przy założeniu 1:

$$E[|\langle \mu_k - \pi_k, \phi \rangle||\mathcal{F}] \leqslant c_k ||\phi||, \quad \forall \phi \in \mathcal{B}_+(\mathcal{X})$$

, gdzie:

$$c_{k} = \begin{cases} \frac{||\pi_{0}^{d}/v^{d}||^{2}}{N_{0}}, & k = 0\\ (1 - \epsilon_{k})(\frac{1}{\sqrt{N_{k}}}) + exp(H^{*}\Delta_{k})ck_{1}, & k > 0 \end{cases}$$
(3)

Nastepstwo twierdzenia 2

Jeśli
$$T_k = T_0/log(k+1), \varepsilon_k \lambda(\mathcal{X}) = \varepsilon < 1$$
, gdzie, $\varepsilon > \left(1/2\right)^{1-\frac{H_U-H_I}{T_0}}$ oraz $\frac{H_U-H_I}{T_0} < 1$ i $\{N_k\}$ wzrasta wystarczajaca szybko wraz z wzrostem k , to:

$$k \to \infty \implies \{c_k\} \to 0$$

Porównanie SMC-SA do multi-start SA

Multi-start SA - co to?

SA, w którym korzystamy z wielu punktów które NIE WCHODZA w interakcje miedzy soba

Rozkłady

v - startowy rozkład, a η_k^N - rozkład empiryczny generowany przy k-tej iteracji:

$$v \to \eta_0^N \to \eta_1^N = \eta_0^N P_1 \to \dots \to \eta_k^N = \eta_{k-1}^N P_k$$

Porównanie SMC-SA do multi-start SA c.d.

Lemat 3

Jeśli weźmiemy taki rozkład prawdopodobieństwa ζ , że spełnia $|\langle \zeta - \pi_{k-1}, \phi \rangle| = |\langle \mu_{k-1} - \pi_{k-1}, \phi \rangle| \leqslant c_{k-1} ||\phi||$, jeśli c_{k-1} jest wystarczajacy mały,, to:

$$|\langle \tilde{\mu}_{\mathbf{k}} - \pi_{\mathbf{k}}, \phi \rangle| < |\langle \zeta - \pi_{\mathbf{k}}, \phi|$$

Ekperymenty numeryczne

Problemy optymalizacyjne, których użyjemy do porównania

- 5. Funkcja Dejong'a (H_a)
- 20-wymiarowa funkcja Powel'a (H_b)

		SMC-SA		multi-start SA		standard SA	
	H^*	$\bar{H}^*(std_err)$	M_{ε}	$\bar{H}^*(std_err)$	M_{ε}	$\bar{H}^*(std_err)$	M_{ε}
H_a	-0.998	-0.998(1.34E-7)	100	-1.0024(0.0014)	19	-3.999(0.2117)	4
H_b	-0.01	-0.0164(4.95E-4)	81	-20.46(4.26)	0	-89.63(1.277)	0

Wykresy

Bibliografia

- Enlu Zhou i Xi Chen (2011) Sequential Monte Carlo Simulated Annealing, Springer Sciensce+Business Media
- H. E. Romeijn i R. L. Smith Simulated annealing for constrained global optimization, Journal of Global Optimization