Name: Chaitanya Sardesai UTA ID: 1001536420

To detect the credit card transaction is fraudulent or authentic.

Class sample distribution:

As we can see there is **significant difference in number of samples of each class**.

Procedure:

- 1. Rescaling and splitting the data between train and test data before under sampling.
 - a. 'Time' and 'Amount' features are rescaled between range [0, 1]
 - b. All class 1 samples are present at the end of the dataset, hence shuffle all the data to get a better split
 - c. Train data = 80%, Test Data = 20%
- 2. Now under sample the train data, to get class sample distribution as [0.5, 0.5] in train data
 - a. Pick all the class 0 samples and pick the same amount of class 1 samples at random.
- 3. Create a **forest of 5 trees**
 - a. Reshuffle the train data so as remove class bias while dividing it into 5 subsets of data set.
 - b. Divide train data to create 5 different datasets without overlapping of any data sample.

Name: Chaitanya Sardesai UTA ID: 1001536420

- 4. **Build 5 different trees**, based on these different smaller datasets
 - a. As all the features are continuous, need to pick best threshold and best attribute based on information gain.
 - b. 50 different thresholds are generated based on feature's minimum and maximum value
 - c. threshold = min_val + k * (max_val min_val) / 51 ... where k iterates from 1 to 50
 - d. Create nodes till all the examples are exhausted.
- 5. **Test the model** using test data
 - a. For every sample in test data, get the classification by each tree
 - b. Take a vote, and classify the data to a class whichever class has higher votes (count)
- 6. Compute the confusion matrix and get the Recall metric value.
- 7. **Calculate accuracy** simply based on target class, predicted class.

Results:

Code is executed 10 times to check the performance of the algorithm.

Number of Trees	Confusion Matrix	Recall Metric	Accuracy
5	[[53929 2925] [17 91]]	0.8425925925925926	0.9483515326006812
5	[[54228 2632] [8 94]]	0.9215686274509803	0.9536533127348057
5	[[54562 2298] [9 93]]	0.9117647058823529	0.959499315333029
5	[[54858 1995] [12 97]]	0.8899082568807339	0.9647659843404375
5	[[54302 2538] [18 104]]	0.8524590163934426	0.95512798005688
5	[[54267 2590] [6 99]]	0.9428571428571428	0.9544257575225589
5	[[54169 2688] [10 95]]	0.9047619047619048	0.95263509006004
5	[[54838 2038] [6 80]]	0.9302325581395349	0.9641164284961904
5	[[54736 2130] [13 83]]	0.86458333333333334	0.9623784277237456
5	[[53665 3212] [5 80]]	0.9411764705882353	0.9435237526772234
5	[[54841 2025] [6 90]]	0.9375	0.9643446508198448

Average Recall: 0.903582, **Standard Deviation Recall:** 0.034706

Average Accuracy: 0.95662, **Standard Deviation Accuracy:** 0.007038

Using Random Forest, we have achieved good results by looking at the Recall and Accuracy values, their average and std for this classification problem.