Parallelism and Perpendicularity

Jonathan R. Bacolod

Sauyo High School

 Corresponding Angles Converse Postulate

- Corresponding Angles Converse Postulate
- 2. Alternate Interior Angles Converse Theorem

- Corresponding Angles Converse Postulate
- Alternate Interior Angles Converse Theorem
- 3. Alternate Exterior Angles Converse Theorem

- Corresponding Angles Converse Postulate
- Alternate Interior Angles Converse Theorem
- 3. Alternate Exterior Angles Converse Theorem
- Consecutive Interior Angles Converse Theorem

- Corresponding Angles Converse Postulate
- Alternate Interior Angles Converse Theorem
- Alternate Exterior Angles Converse Theorem
- Consecutive Interior Angles Converse Theorem
- Consecutive Exterior Angles Converse Theorem

What is the Corresponding Angles Converse Postulate?

If two lines are cut by a transversal so that corresponding angles are congruent, then the lines are parallel.

What is the Corresponding Angles Converse Postulate?

If two lines are cut by a transversal so that corresponding angles are congruent, then the lines are parallel.

What is the Alternate Interior Angles Converse Theorem?

If two lines are cut by a transversal so that alternate interior angles are congruent, then the lines are parallel.

What is the Alternate Interior Angles Converse Theorem?

If two lines are cut by a transversal so that alternate interior angles are congruent, then the lines are parallel.

What is the Alternate Exterior Angles Converse Theorem?

If two lines are cut by a transversal so that alternate exterior angles are congruent, then the lines are parallel.

What is the Alternate Exterior Angles Converse Theorem?

If two lines are cut by a transversal so that alternate exterior angles are congruent, then the lines are parallel.

What is the Consecutive Interior Angles Converse Theorem?

If two lines are cut by a transversal so that consecutive interior angles are supplementary, then the lines are parallel.

What is the Consecutive Interior Angles Converse Theorem?

If two lines are cut by a transversal so that consecutive interior angles are supplementary, then the lines are parallel.

If $m \angle 3 + m \angle 5 = 180^{\circ}$, then $\ell \parallel m$

What is the Consecutive Exterior Angles Converse Theorem?

If two lines are cut by a transversal so that consecutive exterior angles are supplementary, then the lines are parallel.

What is the Consecutive Exterior Angles Converse Theorem?

If two lines are cut by a transversal so that consecutive exterior angles are supplementary, then the lines are parallel.

If $m\angle 2 + m\angle 8 = 180^{\circ}$, then $\ell \parallel m$

Example 2

Find the value of x that makes lines u and v parallel.

Example 2

Find the value of x that makes lines u and v parallel.

$$8x + 6 = 7x + 14$$

 $8x - 7x + 6 - 6 = 7x - 7x + 14 - 6$

Example 2

Find the value of x that makes lines u and v parallel.

$$8x + 6 = 7x + 14$$

$$8x - 7x + 6 - 6 = 7x - 7x + 14 - 6$$

$$x = 8$$

1. If two lines are perpendicular to each other, then they form four right angles.

- 1. If two lines are perpendicular to each other, then they form four right angles.
- 2. If the angles in a linear pair are congruent, then the lines containing their sides are perpendicular.

- If two lines are perpendicular to each other, then they form four right angles.
- 2. If the angles in a linear pair are congruent, then the lines containing their sides are perpendicular.
- If two angles are adjacent and complementary, the non-common sides are perpendicular.

Theorem 1

If two lines are perpendicular to each other, then they form four right angles.

Theorem 1

If two lines are perpendicular to each other, then they form four right angles.

If $\ell \perp m$, then $\angle 1, \angle 2, \angle 3$, and $\angle 4$ are right anales.

Given: $\ell \perp m$

Prove: $\angle 1, \angle 2, \angle 3$, and $\angle 4$ are right angles

Given: $\ell \perp m$ Prove: $\angle 1, \angle 2, \angle 3$, and $\angle 4$

are right angles

Proof:

Statements	Reasons

m

Prove: $\angle 1, \angle 2, \angle 3$, and $\angle 4$

are right angles

Statements	Reasons
1. ℓ ⊥ m	1. Given

Given: $\ell \perp m$

Prove: $\angle 1, \angle 2, \angle 3$, and $\angle 4$

are right angles

Statements	Reasons
1. $\ell \perp m$	1. Given
2. <i>m</i> ∠1 = 90°	2. Def. of Perpendicular lines

Given: $\ell \perp m$

Prove: $\angle 1, \angle 2, \angle 3,$ and $\angle 4$

are right angles

Statements	Reasons
1. ℓ ⊥ m	1. Given
2. <i>m</i> ∠1 = 90°	2. Def. of Perpendicular lines
3. ∠1,∠2 form a linear pair	3. Def. of Linear Pair

Given: $\ell \perp m$

Prove: $\angle 1, \angle 2, \angle 3$, and $\angle 4$

are right angles

Statements	Reasons
1. $\ell \perp m$	1. Given
2. <i>m</i> ∠1 = 90°	2. Def. of Perpendicular lines
3. ∠1,∠2 form a linear pair	3. Def. of Linear Pair
4. ∠1 and ∠2 are supplementary	4. Linear Pair Postulate

Given: $\ell \perp m$

Prove: $\angle 1, \angle 2, \angle 3$, and $\angle 4$

are right angles

Statements	Reasons
1. $\ell \perp m$	1. Given
2. <i>m</i> ∠1 = 90°	2. Def. of Perpendicular lines
3. ∠1, ∠2 form a linear pair	3. Def. of Linear Pair
4. ∠1 and ∠2 are supplementary	4. Linear Pair Postulate
5. $m\angle 1 + m\angle 2 = 180^{\circ}$	5. Def. of Supplementary Angles

Given: $\ell \perp m$

Prove: $\angle 1, \angle 2, \angle 3$, and $\angle 4$

are right angles

Statements	Reasons
1. $\ell \perp m$	1. Given
2. <i>m</i> ∠1 = 90°	2. Def. of Perpendicular lines
3. ∠1,∠2 form a linear pair	3. Def. of Linear Pair
4. ∠1 and ∠2 are supplementary	4. Linear Pair Postulate
5. $m\angle 1 + m\angle 2 = 180^{\circ}$	5. Def. of Supplementary Angles
6. $90^{\circ} + m\angle 2 = 180^{\circ}$	6. Substitution Property

Given: $\ell \perp m$

Prove: $\angle 1, \angle 2, \angle 3$, and $\angle 4$

are right angles

Statements	Reasons
1. $\ell \perp m$	1. Given
2. <i>m</i> ∠1 = 90°	2. Def. of Perpendicular lines
3. ∠1,∠2 form a linear pair	3. Def. of Linear Pair
4. ∠1 and ∠2 are	4. Linear Pair Postulate
supplementary	4. Lilledi Fali Fositilale
5. $m\angle 1 + m\angle 2 = 180^{\circ}$	5. Def. of Supplementary Angles
6. $90^{\circ} + m\angle 2 = 180^{\circ}$	6. Substitution Property
7. <i>m</i> ∠2 = 90°	7. Subtraction Property

Given: $\ell \perp m$

Prove: $\angle 1, \angle 2, \angle 3$, and $\angle 4$

are right angles

Statements	Reasons
1. $\ell \perp m$	1. Given
2. <i>m</i> ∠1 = 90°	2. Def. of Perpendicular lines
3. ∠1, ∠2 form a linear pair	3. Def. of Linear Pair
4. ∠1 and ∠2 are	4. Linear Pair Postulate
supplementary	4. Lilledi i dii i ostalare
5. $m \angle 1 + m \angle 2 = 180^{\circ}$	5. Def. of Supplementary Angles
6. 90° + <i>m</i> ∠2 = 180°	6. Substitution Property
7. <i>m</i> ∠2 = 90°	7. Subtraction Property
8. ∠1 ≅ ∠3 and ∠2 ≅ ∠4	8. Vertical Angles theorem

Given: $\ell \perp m$

Prove: $\angle 1, \angle 2, \angle 3$, and $\angle 4$

are right angles

Statements	Reasons
1. $\ell \perp m$	1. Given
2. <i>m</i> ∠1 = 90°	2. Def. of Perpendicular lines
3. ∠1,∠2 form a linear pair	3. Def. of Linear Pair
4. ∠1 and ∠2 are	4. Linear Pair Postulate
supplementary	
5. $m\angle 1 + m\angle 2 = 180^{\circ}$	5. Def. of Supplementary Angles
6. $90^{\circ} + m\angle 2 = 180^{\circ}$	6. Substitution Property
7. m∠2 = 90°	7. Subtraction Property
8. ∠1 ≅ ∠3 and ∠2 ≅ ∠4	8. Vertical Angles theorem
9. $m \angle 3 = 90^{\circ}$ and $m \angle 4 = 90^{\circ}$	9. Def. of Congruent Angles

Given: $\ell \perp m$

Prove: $\angle 1, \angle 2, \angle 3$, and $\angle 4$

are right angles

Statements	Reasons
1. ℓ ⊥ m	1. Given
2. <i>m</i> ∠1 = 90°	2. Def. of Perpendicular lines
3. ∠1, ∠2 form a linear pair	3. Def. of Linear Pair
4. ∠1 and ∠2 are	4. Linear Pair Postulate
supplementary	4. Linear all rostalate
5. $m\angle 1 + m\angle 2 = 180^{\circ}$	5. Def. of Supplementary Angles
6. $90^{\circ} + m\angle 2 = 180^{\circ}$	6. Substitution Property
7. $m\angle 2 = 90^{\circ}$	7. Subtraction Property
8. ∠1 ≅ ∠3 and ∠2 ≅ ∠4	8. Vertical Angles theorem
9. $m \angle 3 = 90^{\circ}$ and $m \angle 4 = 90^{\circ}$	9. Def. of Congruent Angles
10. ∠1, ∠2, ∠3, and ∠4 are	10. Def. of Right Angles
right angles	10. Del. di Rigiti Aligies

Theorem 2

If the angles in a linear pair are congruent, then the lines containing their sides are perpendicular.

Theorem 2

If the angles in a linear pair are congruent, then the lines containing their sides are perpendicular.

Given: $\angle 1 \cong \angle 2$

Prove: $\ell \perp m$

Given: $\angle 1 \cong \angle 2$

Prove: $\ell \perp m$

Proof:

т

Given: $\angle 1 \cong \angle 2$

Prove: $\ell \perp m$

Statements	Reasons
1. ∠1 ≅ ∠2	1. Given

Given: $\angle 1 \cong \angle 2$

Prove: $\ell \perp m$

Statements	Reasons
1. ∠1 ≅ ∠2	1. Given
2. <i>m</i> ∠1 = <i>m</i> ∠2	2. Def. of Congruent Angles

Given: $\angle 1 \cong \angle 2$

Prove: $\ell \perp m$

Statements	Reasons
1. ∠1 ≅ ∠2	1. Given
2. <i>m</i> ∠1 = <i>m</i> ∠2	2. Def. of Congruent Angles
3. ∠1,∠2 form a linear pair	3. Def. of Linear Pair

Given: $\angle 1 \cong \angle 2$

Prove: $\ell \perp m$

Statements	Reasons
1. ∠1 ≅ ∠2	1. Given
2. m∠1 = m∠2	2. Def. of Congruent Angles
3. ∠1,∠2 form a linear pair	3. Def. of Linear Pair
4. ∠1 and ∠2 are supplementary	4. Linear Pair Postulate

Given: $\angle 1 \cong \angle 2$

Prove: $\ell \perp m$

Statements	Reasons
1. ∠1 ≅ ∠2	1. Given
2. <i>m</i> ∠1 = <i>m</i> ∠2	2. Def. of Congruent Angles
3. ∠1,∠2 form a linear pair	3. Def. of Linear Pair
4. ∠1 and ∠2 are supplementary	4. Linear Pair Postulate
5. $m \angle 1 + m \angle 2 = 180^{\circ}$	5. Def. of Supplementary Angles

Given: $\angle 1 \cong \angle 2$

Prove: $\ell \perp m$

Statements	Reasons
1. ∠1 ≅ ∠2	1. Given
2. m∠1 = m∠2	2. Def. of Congruent Angles
3. ∠1,∠2 form a linear pair	3. Def. of Linear Pair
4. ∠1 and ∠2 are	4. Linear Pair Postulate
supplementary	4. Linear all rostalate
5. $m \angle 1 + m \angle 2 = 180^{\circ}$	5. Def. of Supplementary Angles
6. $m \angle 1 + m \angle 1 = 180^{\circ}$	6. Substitution Property

Given: $\angle 1 \cong \angle 2$

Prove: $\ell \perp m$

Statements	Reasons
1. ∠1 ≅ ∠2	1. Given
2. m∠1 = m∠2	2. Def. of Congruent Angles
3. ∠1,∠2 form a linear pair	3. Def. of Linear Pair
4. ∠1 and ∠2 are	4. Linear Pair Postulate
supplementary	4. Lilledi Fali Fositilale
5. $m \angle 1 + m \angle 2 = 180^{\circ}$	5. Def. of Supplementary Angles
6. $m \angle 1 + m \angle 1 = 180^{\circ}$	6. Substitution Property
$7.2m\angle 1 = 180^{\circ}$	7. Simplification

Given: $\angle 1 \cong \angle 2$

Prove: $\ell \perp m$

Statements	Reasons
1. ∠1 ≅ ∠2	1. Given
2. m∠1 = m∠2	2. Def. of Congruent Angles
3. ∠1, ∠2 form a linear pair	3. Def. of Linear Pair
4. ∠1 and ∠2 are	4. Linear Pair Postulate
supplementary	4. Lilledi Fali Fosialale
5. $m\angle 1 + m\angle 2 = 180^{\circ}$	5. Def. of Supplementary Angles
6. $m \angle 1 + m \angle 1 = 180^{\circ}$	6. Substitution Property
7. $2m\angle 1 = 180^{\circ}$	7. Simplification
8. <i>m</i> ∠1 = 90°	8. Division Property

Given: $\angle 1 \cong \angle 2$

Prove: $\ell \perp m$

Statements	Reasons
1. ∠1 ≅ ∠2	1. Given
2. <i>m</i> ∠1 = <i>m</i> ∠2	2. Def. of Congruent Angles
3. ∠1, ∠2 form a linear pair	3. Def. of Linear Pair
4. ∠1 and ∠2 are supplementary	4. Linear Pair Postulate
5. $m \angle 1 + m \angle 2 = 180^{\circ}$	5. Def. of Supplementary Angles
6. $m \angle 1 + m \angle 1 = 180^{\circ}$	6. Substitution Property
7. 2 <i>m</i> ∠1 = 180°	7. Simplification
8. <i>m</i> ∠1 = 90°	8. Division Property
9. ∠1 is a right angle	9. Def. of Right Angles

Given: $\angle 1 \cong \angle 2$

Prove: $\ell \perp m$

Statements	Reasons
1. ∠1 ≅ ∠2	1. Given
2. <i>m</i> ∠1 = <i>m</i> ∠2	2. Def. of Congruent Angles
3. ∠1, ∠2 form a linear pair	3. Def. of Linear Pair
4. ∠1 and ∠2 are	4. Linear Pair Postulate
supplementary	4. Linear rail rostalate
5. $m\angle 1 + m\angle 2 = 180^{\circ}$	5. Def. of Supplementary Angles
6. $m \angle 1 + m \angle 1 = 180^{\circ}$	6. Substitution Property
7. $2m \angle 1 = 180^{\circ}$	7. Simplification
8. <i>m</i> ∠1 = 90°	8. Division Property
9. ∠1 is a right angle	9. Def. of Right Angles
10. ℓ ⊥ m	10. Def. of Perpendicular Lines

Theorem 3

If two angles are adjacent and complementary, then the non-common sides are perpendicular.

Theorem 3

If two angles are adjacent and complementary, then the non-common sides are perpendicular.

If $\angle CVB$ and $\angle AVC$ are complementary and adjacent, then $\overrightarrow{VA} \perp \overrightarrow{VB}$.

Given: ∠CVB and ∠AVC are complementary

Prove: $\overrightarrow{VA} \perp \overrightarrow{VB}$

Given: ∠CVB and ∠AVC are complementary

Prove: $\overrightarrow{VA} \perp \overrightarrow{VB}$

Statements	Reasons

Given: ∠CVB and ∠AVC are complementary

Prove: $\overrightarrow{VA} \perp \overrightarrow{VB}$

Statements	Reasons
1. ∠CVB and ∠AVC are	1. Given
complementary	1. Giveri

Given: $\angle CVB$ and $\angle AVC$ are complementary

Prove: $\overrightarrow{VA} \perp \overrightarrow{VB}$

Statements	Reasons
 ∠CVB and ∠AVC are complementary 	1. Given
2. <i>m∠CVB</i> + <i>m∠AVC</i> = 90°	2. Def. of Complementary Angles

Given: $\angle CVB$ and $\angle AVC$ are complementary

Prove: $\overrightarrow{VA} \perp \overrightarrow{VB}$

Statements	Reasons
1. ∠CVB and ∠AVC are	1. Given
complementary	
2. <i>m</i> ∠ <i>CVB</i> + <i>m</i> ∠ <i>AVC</i> = 90°	2. Def. of Complementary
	Angles
3. $m\angle AVB = m\angle CVB + m\angle AVC$	3. Angle Addition Postulate

Given: $\angle CVB$ and $\angle AVC$ are complementary

Prove: $\overrightarrow{VA} \perp \overrightarrow{VB}$

Statements	Reasons
1. ∠CVB and ∠AVC are	1. Given
complementary	1. Olveri
2. <i>m</i> ∠ <i>CVB</i> + <i>m</i> ∠ <i>AVC</i> = 90°	2. Def. of Complementary
	Angles
3. $m\angle AVB = m\angle CVB + m\angle AVC$	3. Angle Addition Postulate
4. <i>m∠AVB</i> = 90°	4. Transitive Property

Given: $\angle CVB$ and $\angle AVC$ are complementary

Prove: $\overrightarrow{VA} \perp \overrightarrow{VB}$

Statements	Reasons
1. ∠CVB and ∠AVC are	1. Given
complementary	
2. m∠CVB + m∠AVC = 90°	2. Def. of Complementary
	Angles
3. $m\angle AVB = m\angle CVB + m\angle AVC$	3. Angle Addition Postulate
4. m∠AVB = 90°	4. Transitive Property
5. ∠AVB is a right angle	5. Def. of Right Angles

Given: $\angle CVB$ and $\angle AVC$ are complementary

Prove: $\overrightarrow{VA} \perp \overrightarrow{VB}$

Statements	Reasons
1. ∠CVB and ∠AVC are	1. Given
complementary	
2. <i>m</i> ∠ <i>CVB</i> + <i>m</i> ∠ <i>AVC</i> = 90°	2. Def. of Complementary
	Angles
3. $m\angle AVB = m\angle CVB + m\angle AVC$	3. Angle Addition Postulate
4. <i>m∠AVB</i> = 90°	4. Transitive Property
5. ∠AVB is a right angle	5. Def. of Right Angles
6. $\overrightarrow{VA} \perp \overrightarrow{VB}$	6. Def. of Perpendicular Lines

Thank you for attending the virtual class.