自测题二(多元函数的微分学)

一、选择题(每题3分,共15分)

1.
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{3xy}{\sqrt{xy+1}-1} = ($$
 $)$

A、3, B、6 C、不存在但不是无穷大, D、∞

2、若
$$\frac{\partial f}{\partial x}|_{(x_0,y_0)}=0$$
, $\frac{\partial f}{\partial y}|_{(x_0,y_0)}=0$,则 $f(x,y)$ 在 (x_0,y_0) (p)

A、连续且可微, B、连续但不一定可微 C、可微但不一定连续

D、不一定可微也不一定连续。()

3、
$$z = f(x, y)$$
 在 (x_0, y_0) 处可微且 $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$,则 $z = f(x, y)$ 在 (x_0, y_0)

$$\text{A. } \lim_{(x,y)\to(0,0)}(f(x,y)-f(0,0))=0 \quad \text{B. } \lim_{x\to0}\frac{f(x,0)-f(0,0)}{x}=\lim_{y\to0}\frac{f(0,y)-f(0,0)}{y}=0$$

C、
$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}} = 0$$
 D、 $f(x,y)$ 在 $(0,0)$ 偏导数存在且连续

B. $\frac{\pi}{4}$

二、填空题 (每题 3 分, 共 15 分)

1.
$$\lim_{(x,y)\to(0,0)} (x+y)\sin\frac{1}{x}\sin\frac{1}{y} = 0$$

2、设
$$f$$
有一阶连续偏导数, $z = f(x^2 - y^2, e^{xy})$,则 $dz = (2^x f_1' + y e^{xy} f_2') dx + (-2 f_1' + x e^{xy} f_2') dy$

3、设连续函数
$$z = f(x, y)$$
 满足 $\lim_{(x,y)\to(0,1)} \frac{f(x,y)-2x-3y}{\sqrt{x^2+(y-1)^2}} = 0$ 则 $dz|_{(0,1)} = 2 dx + 3 dy$

3、设连续函数 z = f(x, y) 满足 $\lim_{(x,y)\to(0,1)} \frac{f(x,y)-2x-3y}{\sqrt{x^2+(y-1)^2}} = 0$ 则 $dz|_{(0,1)} = \underline{2} dx + 3 dy$ 4、 $F(x,y) = \int_0^{xy} \frac{\sin t}{1+t^2} dt$,则 $\frac{\partial^2 F}{\partial x^2}|_{(0,2)} = \underline{4}$ $F_{x} = y \underbrace{\sum_{i=0}^{xy} y}_{1+(xy)}$

二、解下列各题 (每题 10 分, 共 40 分)

1、设
$$z=x^{x^{y}}$$
,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$

$$|x|_{x}^{2} = x^{y}|_{x}^{2}$$

$$|x|_{x}^{2} = \frac{\partial x}{\partial x} = \frac{\partial x}{\partial x} \cdot |x|_{x}^{2} + \frac{1}{2} \cdot x^{y}|_{x}^{2} = (1+y|x|)x^{y-1}$$

$$|x|_{x}^{2} = (1+y|x|) \times x^{y+y-1}$$

$$|x|_{x}^{2} = (1+y|x|) \times x^{y+y-1}$$

4、求由方程 $x^2 + y^2 + z^2 - 2x + 2y - 4z - 10 = 0$ 所确定的函数z = z(x, y)的极值.

b=8 B=0 $C=-\frac{1}{2-1}$, 起 $bC-B^{1}=\frac{1}{Q-1}$ > 0. 三、解下列各题(每题 10 分,共 30 分) な (1)-1 を かれます。 ねば 1 、 は证光滑曲面 F(z-x,y-z)=0 所有切平面都与一固定的非零向量平行.

极大值6.

2、设 u=x+2y+2, v=x-y-1 , z=z(x,y) 有 二 阶 连 续 偏 导 数 , 变 换 方 程 $2z_{xx}+z_{xy}-z_{yy}+z_x+z_y=0 \ .$

3、设u = f(x, y, z)有连续偏导数,且 $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$, $z = r \cos \theta$,证明:若 $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$,则 $u = r \pm z$