3 Koeficient determinácie

$$y_i = \beta_0 + \beta_1 x_{i,1} \dots + \beta_{k-1} x_{i,k-1} + \varepsilon_i, \quad i = 1, \dots, n$$
 (M1)

Príklad 3.1. Vypočítajte \mathbb{R}^2 v modeli (M1) ak n=k. Skúste vyjadriť aj $\overline{\mathbb{R}}^2$.

Príklad 3.2. Ukážte, že ak v (M1) pridáme regresor, tak RSS nestúpne a \mathbb{R}^2 neklesne.

Príklad 3.3. Uvažujme priamkovú regresiu $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$. Ukážte, že **a)** $R^2 = \hat{\rho}^2(X,Y)$, kde X je "náhodná premenná" s realizáciami x_1, \ldots, x_n a Y je náhodná premenná s realizáciami y_1, \ldots, y_n ; **b)** $R^2 = \hat{\rho}^2(Y,\hat{Y})$, kde \hat{Y} je "náhodná premenná" s realizáciami $\hat{y}_1, \ldots, \hat{y}_n$.

Príklad 3.4. Nech pre rovnakú vysvetľovanú premennú má prvý model k_1 parametrov a druhý model k_2 parametrov, pričom tieto modely môžu obsahovať rôzne vysvetľujúce premenné. Ukážte, že $\bar{R}_1^2 > \bar{R}_2^2$ práve vtedy, keď $S_1^2 < S_2^2$.

Príklad 3.5. Uvažujme model $y_i = \beta x_i + \varepsilon_i$, pre ktorý sme namerali hodnoty dané tabuľkou:

Vypočítajte a) MNŠ odhad β a súčet rezíduí, b) RSS, ESS a TSS.

Príklad 3.6. Pre model $y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \varepsilon_i \ (i = 1, ..., n)$ máme nasledovné výsledky:

$$\mathbf{X}^{T}\mathbf{X} = \begin{pmatrix} 33 & 0 & 0 \\ 0 & 40 & 20 \\ 0 & 20 & 60 \end{pmatrix}, \quad \mathbf{X}^{T}\mathbf{Y} = \begin{pmatrix} 132 \\ 24 \\ 92 \end{pmatrix}, \quad \text{TSS} = 150.$$

Nájdite R^2 , \bar{R}^2 .

Príklad 3.7 (*jednofaktorová analýza rozptylu*). Máme k typov hnojív, pričom každé hnojivo aplikujeme na n_i poliach s obilím, na ktorých následne meriame výnosy. Nech $y_{ij} = \mu_i + \varepsilon_{ij}$, kde y_{ij} je výnos pri i-tom hnojive na j-tom poli $(i = 1, \ldots, k, j = 1, \ldots, n_i)$ a μ_i je očakávaný výnos pri i-tom hnojive. Nájdite MNŠ odhady μ_1, \ldots, μ_k .