Math136 - February 5'rd, 2016 More Theorems Related to Linear Mappings

Range

Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping. The range of l is Range $(L) = \{L(\vec{x}) \in \mathbb{R}^m \mid \vec{x} \in \mathbb{R}^m\}$

Theorem 3.3.2

If $L: \mathbb{R}^n \to \mathbb{R}^m$ is a linear mapping, then Range(L) is a subspace of \mathbb{R}^m

Kernel

The kernel of a linear mapping $L: \mathbb{R}^n \to \mathbb{R}^m$ is $\operatorname{Ker}(L) = \{\vec{x} \in \mathbb{R}^n \mid L(\vec{x}) = \vec{0}\}$

Note: Range(L) $\subseteq \mathbb{R}^m$ is contained in the codomain \mathbb{R}^m , while Ker(L) is contained in the domain \mathbb{R}^n

Fact: $\vec{0} = L(\vec{0})$, so $\vec{0} \in \text{Ker}(L)$ for any L.

Theorem 3.3.3

Ker(L) is a subspace of \mathbb{R}^n

Next, we will discuss concepts analogous to kernel and range, but with relation to a matrix.

Null Space

The null space of A is $Null(A) = \{\vec{x} \in \mathbb{R} \mid A\vec{x} = \vec{0}\}\$

Note: If $L: \mathbb{R}^n \to \mathbb{R}^m$ is a linear mapping, then $[L] \in M_{m \times n}(\mathbb{R})$, and $\operatorname{Ker}(L) = \operatorname{Null}([L])$

Column Space

Let $A = \begin{bmatrix} \vec{a}_1 & \dots & \vec{a}_n \end{bmatrix}$ be an $m \times n$ matrix with columns $\vec{a}_1, \dots, \vec{a}_n$. Then the column space of A is $Col(A) = span\{\vec{a}_1, \dots, \vec{a}_n\}$

Note: If $L: \mathbb{R}^n \to \mathbb{R}^m$ is a linear mapping, then $\operatorname{Range}(L) = \operatorname{col}([L])$