Enhancing Fairness in Al-driven Credit Approval Systems

I - Motivation

- . The rise of Al-powered credit decision systems has revolutionized the risk assessment processes, optimizing the credit decision-making landscape.
- Still, there are concerns regarding the fairness, equity, and unbiased nature of these decision-making processes have surfaced, leading to a growing demand for clarity on their underlying logic.
- Provides a pivotal opportunity to ensure ethical compliance and societal responsibility, reinforcing the trust and confidence of consumers and stakeholders in digital finance platforms.

III - EDA

Distribution of favourable outcomes (Approval) among privilege and unprivileged groups:

Gender

Marital Status

Race

It was observed that a most significant level of bias existed between married and unmarried individuals, with the unmarried group being more likely to face rejection for credit approval, than the other sensitive features.

IV - Neural Network

- Input Layer: 15 features
- Number of Hidden layers: 3
- Output Layer: Binary Label (Approved)
- ☐ Activate Function: 'logistic'
- ☐ Max-iter:10000
- □ Solver: adam
- ☐ Alpha: 0.01

Yuetong Jiang Yiwen Ma Chenyang Huan

Network model, we exam the Australian credit card approval dataset for potential biases, employ Reweighting model for debiasing on Marital Status, and subsequently employ Permutation Feature Importance analysis to highlight the enhancements in fairness and decision-making accuracy.

V - Bias Detection

Statistical Parity Difference

Indicates the difference in probability of members from unprivileged group and privileged group being assigned the favorable label, Ideal: 0, indicating equal probability.

Disparate Impact

Estimates unintentional bias in a label assignment task which occurs when a group is assigned widely different outcomes to a protected class.

Ideal: 1, indicating a disadvantage for the unprivileged group.

Training Set Comparison

Metrics	Before Debiasing	After Debiasing
Statistical Parity Difference	-0.2326	0
Disparate Impact	0.5136	1
Accuracy	0.79	0.79

Testing Set Comparison

Metrics	Before Debiasing	After Debiasing
Statistical Parity Difference	-0.1955	0.09
Disparate Impact	0.646	1.19
Accuracy	0.83	0.77

After reweighting for variable 'Married', the metrics all reached ideal values on training set, and is much better on the testing set. The model accuracy is not much impacted.

II - Dataset

Data #	columns (total Column	16 columns): Non-Null Count	Dtype
0	Gender	690 non-null	int64
1	Age	690 non-null	float64
2	Debt	690 non-null	float64
3	Married	690 non-null	int64
4	BankCustomer	690 non-null	int64
5	Industry	690 non-null	object
6	Ethnicity	690 non-null	object
7	YearsEmployed	690 non-null	float64
8	PriorDefault	690 non-null	int64
9	Employed	690 non-null	int64
10	CreditScore	690 non-null	int64
11	DriversLicense	690 non-null	int64
12	Citizen	690 non-null	object
13	ZipCode	690 non-null	int64
14	Income	690 non-null	int64
15	Approved	690 non-null	int64
-1 4	61+64/31	1-+C4/40/ -F1	+/2/

- Binary Indicators: Gender, Marital Status, Bank Customer Status, Employment, Prior Defaults, Driver's License Possession.
- Numerical Values: Age, Debt, Years
 Employed, Credit Score, Zip Code, Income.
- . Categorical Data: Industry Sector, Ethnicity, Citizenship Status.
- Target Variable: 'Approved' (1 for approval, 0 for non-approval).

VI - Permutation Feature Importance

Purpose

Aims to evaluate and compare the influence of various features on credit card approval predictions before and after applying a debiasing method.

Before & After

Results of Permutation Feature Importance

Feature	Before Debiasing	After Debiasing
Employed	0.087	0.034
Credit Score	0.077	0.101
age_group_> 40	0.029	0.010
Income	0.019	0.019
Years Employed	0.019	0.010
Married	0.010	-0.014
age_group_2 0-30	0.010	0.014
age_group_3 0-40	-0.019	-0.000
Citizen By Other Means	-0.019	-0.010
Debt	-0.010	0.010
Drivers License	-0.010	0.014
Race_White	-0.010	0.000
Gender	0.000	-0.014
Bank Customer	0.000	-0.014
Citizen Temporary	0.000	-0.005

PFI indicates the bias associated with "Married" has been successfully eliminated.