Linguaggi Acontestuali ad estensione dei regolari

Dato l'alfabeto Σ , definizione come *classe dei linguaggi acontestuali* Σ il seguente insieme:

$$\mathsf{CFL} = \{ L \subseteq \Sigma^* \mid \exists CFG \ G \ t. \ c \ L = L(G) \}$$

Conversione da DFA a CFG

Date due classi dei linguaggi REG e CFL, si ha che:

 $\mathsf{REG}\subseteq\mathsf{CFL}$

Dimostrazione:

- Dato $L \in \mathsf{REG}$, sia $D = (Q, \Sigma, \delta, q_0, F)$ il DFA tale che L = L(D).
- Consideriamo quindi la **CFG** $G = (V, \Sigma, R, S)$ tale che:
 - Esiste una funzione biettiva: $arphi:Q o V:q_i\mapsto V_i$
 - S = $\varphi(q_0) = V_0 \mathsf{k}$
 - Dati $q_i,q_j\in Q$ e $a\in \Sigma$, si ha che: $\delta(q_i,a)=q_i\implies \varphi(q_i)\to a\varphi(q_i)\implies V_i\to aVj$
 - $egin{array}{ll} -q_f \in F \implies arphi(q_f)
 ightarrow arepsilon \implies V_f
 ightarrow arepsilon \end{array}$
 - A questo punto, per costruzione stessa di G si ha che: $w \in L(D) \iff w \in L(G)$ implicando dunque che $L(D) \in \mathsf{CFL}$ e di conseguenza che: $\mathsf{REG} \subseteq \mathsf{CFL}$

Esempio

Consideriamo il seguente DFA

- Una CFG G = (V, Σ, R, S) equivalente è costituita da:
 - $V = V_1, V_2, V_3, V_4$
 - $S = V_1 R$ definito come:
 - $V_1
 ightarrow 0 V_1 \mid 1 V_2$
 - $V_2
 ightarrow 0 V_2 \mid 1 V_3$
 - $V_3
 ightarrow 0 V_3 \mid 1 V_4$
 - $V_4
 ightarrow 0 V_4 \mid 1 V_4 \mid arepsilon$

Infatti, sia il **DFA** sia la **CFG** descrivono il seguente linguaggio: $L = \{w \in \Sigma^* | |w|_1 \geq 3\}$

Linguaggi acontestuali estensione dei linguaggi regolari

Date le due classi dei linguaggi **REG** e **CFL**, si ha che: REG ⊊ CFL

Forma normale di Chomsky

Chomsky's Normal Form (CNF)

Una $CFG\ G = (V, \Sigma, R, S)$ viene detta in **Chomsky's Normal Form (CNF)** se tutte le regole in R assumono una delle seguenti tre forme:

$$A o BC$$
 $A o a$ $S o arepsilon$

 $\text{dove } A \in V, a \in \Sigma \text{ e } B, C \in V - S.$

Teorema: Conversione in Forma Normale di Chomsky

Per ogni CFG G, si ha che:

$$\exists \mathsf{CFG}\ G' \mathsf{ in \ CNF} \mid L(G) = L(G')$$

Dimostrazione

Data una CFG $G = (V, \Sigma, R, S)$, costruiamo una CFG G' in CNF equivalente a G:

1. Aggiunta della variabile iniziale

Viene aggiunta una nuova variabile S_0 e una regola:

$$S_0 o S$$

dove S_0 è la nuova variabile iniziale.

2. Eliminazione delle ε-regole

Finché in R esiste una ε -regola $A \to \varepsilon$ dove $A \in V - \{S_0\}$:

- tale regola viene eliminata;
- per ogni regola in *R* contenente occorrenze di *A*, vengono aggiunte nuove regole ottenute eliminando tutte le possibili combinazioni di occorrenze di *A*.
- Esempio:

Se viene rimossa $A \to \varepsilon$ e in R esiste $B \to uAvAw$ con $u,v,w \in (V \cup \Sigma)^*$, vengono aggiunte le regole:

$$B o uvAw \mid uAvw \mid uvw$$

3. Eliminazione delle regole unitarie

Ogni regola nella forma $A \rightarrow B$ (dette *regole unitarie*) viene eliminata.

Per ogni regola nella forma $B \to u$, dove $u \in (V \cup \Sigma)^*$, si aggiunge la regola corrispondente $A \to u$

4. Riduzione delle regole con più di due simboli

Per ogni regola $A \to u_1 u_2 \dots u_k$ con $k \ge 3$ e $\forall i \in [1,k], \ u_i \in (V \cup \Sigma)$:

- vengono aggiunte nuove variabili A_1, A_2, \dots, A_{k-2} ;
- si introducono le seguenti regole:

$$egin{aligned} A & o u_1 A_1 \ A_1 & o u_2 A_2 \ dots \ A_{k-3} & o u_{k-2} A_{k-2} \ A_{k-2} & o u_{k-1} u_k \end{aligned}$$

La regola iniziale $A o u_1 u_2 \dots u_k$ viene poi eliminata.

5. Sostituzione dei terminali nelle regole binarie

Per ogni regola rimanente della forma $A \to u_1u_2$ con $u_1, u_2 \in (V \cup \Sigma)$:

- se $u_1 \in \Sigma$, si aggiunge una nuova variabile U_1 e una regola $U_1 \to u_1$, sostituendo la regola originale con $A \to U_1 u_2$;
- analogamente, se $u_2 \in \Sigma$, si introduce una nuova variabile U_2 con regola $U_2 \to u_2$.

Conclusione

Poiché le operazioni svolte dall'algoritmo **non modificano le stringhe generabili** dalla CFG, segue automaticamente che:

$$L(G) = L(G')$$

Esempio di trasformazione in CNF

Consideriamo la seguente grammatica G non in CNF, dove S è la variabile iniziale:

$$G:S
ightarrow ASA\mid aB\ A
ightarrow B\mid S\ B
ightarrow b\mid arepsilon$$

- Aggiungiamo S_0 e la regola $S_0 \to S$:
 - $egin{aligned} G:S_0 &
 ightarrow S \ S &
 ightarrow ASA \mid aB \ A &
 ightarrow B \mid S \ B &
 ightarrow b \mid arepsilon \end{aligned}$
- Eliminazione della arepsilon-regola B o arepsilon

$$\begin{array}{l} G:S_0\to S\\ S\to ASA\mid aB\mid a\\ A\to B\mid S\mid \varepsilon\\ B\to b\mid \mathscr{L} \end{array}$$

• Eliminazione della arepsilon-regola A
ightarrow arepsilon

$$G:S_0 o S \ S o ASA\mid aB\mid a\mid SA\mid AS\mid S \ A o B\mid S\mid
otag$$

• Eliminazione di $S \rightarrow S$:

$$\begin{array}{l} G:S_0\to S\\ S\to ASA\mid aB\mid a\mid SA\mid AS\mid \cancel{S}\\ A\to B\mid S\\ B\to b \end{array}$$

• Eliminazione di $S_0 \rightarrow S$:

$$G:S_0 o \mathscr{S}\mid ASA\mid aB\mid a\mid SA\mid AS\ S o ASA\mid aB\mid a\mid SA\mid AS\ A o B\mid S\ B o b$$

• Eliminazione di $A \rightarrow B$ e $A \rightarrow S$:

$$G:S_0 o ASA\mid aB\mid a\mid SA\mid AS \ S o ASA\mid aB\mid a\mid SA\mid AS \ A o B\mid \beta\mid b\mid ASA\mid aB\mid a\mid SA\mid AS \ B o b$$

Separazione delle regole con più di due elementi a destra

$$\begin{array}{l} G:S_0 \rightarrow ASA \mid AA_1 \mid aB \mid a \mid SA \mid AS \\ S \rightarrow ASA \mid AA_1 \mid aB \mid a \mid SA \mid AS \\ A \rightarrow b \mid ASA \mid AA_1 \mid aB \mid a \mid SA \mid AS \\ A_1 \rightarrow SA \\ B \rightarrow b \end{array}$$

• Conversione dei terminali nelle regole binarie

$$egin{aligned} G:S_0
ightarrow AA_1 \mid \mathscr{AB} \mid UB \mid a \mid SA \mid AS \ S
ightarrow AA_1 \mid \mathscr{AB} \mid UB \mid a \mid SA \mid AS \ A
ightarrow b \mid AA_1 \mid \mathscr{AB} \mid UB \mid a \mid SA \mid AS \ A_1
ightarrow SA \ U
ightarrow a \ B
ightarrow b \end{aligned}$$

Grammatica finale in CNF

$$\begin{array}{l} G: S_0 \to AA_1 \mid UB \mid a \mid SA \mid AS \\ S \to AA_1 \mid UB \mid a \mid SA \mid AS \\ A \to b \mid AA_1 \mid UB \mid a \mid SA \mid AS \\ A_1 \to SA \\ U \to a \\ B \to b \end{array}$$