

# SegFormer3D: an Efficient Transformer for 3D Medical Image Segmentation



Shehan Perera, Pouyan Navard, Alper Yilmaz Photogrammetric Computer Vision Lab, The Ohio State University

#### **Motivation:**

- Adoption of Vision Transformers (ViTs) in 3D Medical Imaging has resulted in significant advancements.
- However, converting 2D ViTs to handle 3D sequences have resulted in extremely large architectures that increases training and deployment complexities.
- In addition, large scale architectures require significant pretraining efforts to perform well in situations with limited datasets which is often seen in medical imaging.
- Question: Can we develop a Transformer based solution that is efficient, lightweight and high performing? YES!



# Segformer3D Highlights:

- ☐ We introduce a lightweight memory efficient segmentation model that preserves the performance characteristics of larger models for 3D medical imaging.
- With 4.5M parameters and 17 GFLOPs Segformer3D presents a 34x and 13x reduction in parameter count and model complexity compared SOTA and well established architectures.
- Why you should care: We showcase highly competitive results without pretraining against large well established architectures.

## **Segformer 3D:**



 Key Takeaway: The Sequence Reduction Capability of Segformer3D helps reduce long sequence lengths [Sequence, H, W, C] ideal for 3D Medical Imaging, Video Analysis, and instances with Volumetric or Time Series Data

### **Experimental Results (Qualitative):**



### **Experimental Results (Quantitative):**

| Methods            | Params | Avg %↑ | AOR   | LIV   | LKID  | RKID  | GAL   | PAN   | SPL   | STO   |
|--------------------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| nnFormer[32]       | 150.5  | 86.57  | 92.04 | 96.84 | 86.57 | 86.25 | 70.17 | 83.35 | 90.51 | 86.83 |
| Ours               | 4.5    | 82.15  | 90.43 | 95.68 | 86.53 | 86.13 | 55.26 | 73.06 | 89.02 | 81.12 |
| MISSFormer[12]     | -      | 81.96  | 86.99 | 94.41 | 85.21 | 82.00 | 68.65 | 65.67 | 91.92 | 80.81 |
| UNETR[11]          | 92.49  | 79.56  | 89.99 | 94.46 | 85.66 | 84.80 | 60.56 | 59.25 | 87.81 | 73.99 |
| SwinUNet[3]        | -      | 79.13  | 85.47 | 94.29 | 83.28 | 79.61 | 66.53 | 56.58 | 90.66 | 76.60 |
| LeVit-UNet-384[29] | 52.17  | 78.53  | 87.33 | 93.11 | 84.61 | 80.25 | 62.23 | 59.07 | 88.86 | 72.76 |
| TransClaw U-Net[4] | -      | 78.09  | 85.87 | 94.28 | 84.83 | 79.36 | 61.38 | 57.65 | 87.74 | 73.55 |
| TransUNet[5]       | 96.07  | 77.48  | 87.23 | 94.08 | 81.87 | 77.02 | 63.16 | 55.86 | 85.08 | 75.62 |
| R50-ViT+CUP[5]     | 86.00  | 71.29  | 73.73 | 91.51 | 75.80 | 72.20 | 55.13 | 45.99 | 81.99 | 73.95 |
| ViT+CUP[5]         | 86.00  | 67.86  | 70.19 | 91.32 | 74.70 | 67.40 | 45.10 | 42.00 | 81.75 | 70.44 |

Table 3: Synapse comparisons ranked based on average performance across classes. Segformer3D is highly competitive, outperforming well-established solutions and second to only nnformer with 34x parameters.

| Methods                  | Params  | Avg %↑ | Whole   | Enhancing | Tumor  |
|--------------------------|---------|--------|---------|-----------|--------|
| Methods                  | raianis | Avg /0 | Tumor ↑ | Tumor ↑   | Core ↑ |
| nnFormer[32]             | 150.5   | 86.4   | 91.3    | 81.8      | 86.0   |
| Ours                     | 4.5     | 82.1   | 89.9    | 74.2      | 82.2   |
| UNETR[11]                | 92.49   | 71.1   | 78.9    | 58.5      | 76.1   |
| TransBTS[25]             | -       | 69.6   | 77.9    | 57.4      | 73.5   |
| CoTr[28]                 | 41.9    | 68.3   | 74.6    | 55.7      | 74.8   |
| CoTr w/o CNN Encoder[28] | -       | 64.4   | 71.2    | 52.3      | 69.8   |
| TransUNet[5]             | 96.07   | 64.4   | 70.6    | 54.2      | 68.4   |
| SETR MLA[31]             | 310.5   | 63.9   | 69.8    | 55.4      | 66.5   |
| SETR PUP[31]             | 318.31  | 63.8   | 69.6    | 54.9      | 67.0   |
| SETR NUP[31]             | 305.67  | 63.7   | 69.7    | 54.4      | 66.9   |

Table 2: BRaTs comparison table ranked based on average performance across all classes. Segformer3D is highly competitive out performing well established solutions across all categories.

| Methods             | Params | Avg %↑ | RV    | Myo   | LV    |
|---------------------|--------|--------|-------|-------|-------|
| nnFormer [32]       | 150.5  | 92.06  | 90.94 | 89.58 | 95.65 |
| Ours                | 4.5    | 90.96  | 88.50 | 88.86 | 95.53 |
| LeViT-UNet-384 [29] | 52.17  | 90.32  | 89.55 | 87.64 | 93.76 |
| SwinUNet [3]        | -      | 90.00  | 88.55 | 85.62 | 95.83 |
| TransUNet [5]       | 96.07  | 89.71  | 88.86 | 84.54 | 95.73 |
| UNETR [11]          | 92.49  | 88.61  | 85.29 | 86.52 | 94.02 |
| R50-VIT-CUP [5]     | 86.00  | 87.57  | 86.07 | 81.88 | 94.75 |
| VIT-CUP [5]         | 86.00  | 81.45  | 81.46 | 70.71 | 92.18 |

Table 4: ACDC comparison ranked based on average performance across classes. Segformer3D is highly competitive outperforming well established solutions and is within 1% of SOTA with 150 million parameters.