Zusammenfassung: Logik für die Informatik

Rico Klimpel

January 29, 2020

Contents Aussagenlogik \mathbf{II} Prädikatenlogik Syntax & Semantik 1.1 1.3 1.4 1.5 Interpretation von Termen 1.6 Interpretation von Formlen 1.7 1.8 Modelierung Relationen in Strukturen defnieren? Erfüllbarkeit einer Formel Äquivalenz 3.1 Äquivalenz von Formeln Regeln der Prädikatenlogik 3.3 3.4 Umbenennen von gebundenen Variablen 3.53.6 Boolsche Normalform 3.6.1 3.6.2 Plenex Normalform 3.6.3 Konjunktive Normalform Folgerungsbeziehungen (Entailment) 5 4.1 Folgerungsbeziehung 5 Beziehung zwischen Erfüllbarkeit und Fol-5 Beweissysteme Natürliches Beweissystem 5 5 Beweisregeln Korrektheit & Vollständigkeit 5.1.2 5 5 5.2.1 Korrektheit & Vollständigkeit 5

Verbindung zwischen Resolution und Logik-Programmierung

5.2.2

Kompaktheit

Informationen Zusammenfassung der Vorlesung Logik für die Informatik an der CAU Kiel aus dem Wintersemester 2019/2020, gehalten von Prof. Dr. Thomas Wilke. Ein Versuch die wichtigsten Aussagen ohne enorm lange Formalitäten drum herum knapp zu Papier zu bringen. Kein Anspruch auf Vollständigkeit. Geschrieben in LATEX. 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4

5

5

Part I Aussagenlogik

Part II

Prädikatenlogik

1 Syntax & Semantik

1.1 Signatur

https://lili.informatik.uni-kiel.de/llocs/ Signatures

Eine Signatur S besteht aus eine Menge S von Symbolen und einer Funktion $\Sigma \colon S \to \mathbb{N} \cup \mathbb{N} \times \{1\}$.

The Elemente von S werden Symbole genannt und wie folgt eingeteilt:

• Ein Symbol f mit $\Sigma(f) = \langle n, 1 \rangle$ für n > 0 ist eine Funktionssymbol.

Menge dieser Symbole: \mathcal{F}_{Σ} oder einfach \mathcal{F} .

• Ein Symbol R mit $\Sigma(R) = n$ für n > 0 ist ein Relationssymbol.

Menge dieser Symbole: \mathcal{R}_{Σ} oder \mathcal{R} .

• Ein Symbol c mit $\Sigma(c) = \langle 0, 1 \rangle$ ist ein Symbol für eine Konstante.

Menge dieser Symbole: \mathcal{C}_{Σ} oder \mathcal{C} .

• Symbol b mit $\Sigma(b)=0$ ist ein Symbol für einen boolschen Wert.

Menge dieser Symbole: \mathcal{B}_{Σ} oder \mathcal{B} .

Im allgemeinen werden Signaturen mit $\mathcal{B} \neq \emptyset$ ignoriert (Signaturen ohne boolsche Werte). Keine Ahnung warum er das sagt.

Beispiele:

$$S = \{\text{zero, one, add, mult}\}\$$

$$\Sigma = \{\text{zero} \mapsto \langle 0, 1 \rangle, \text{one} \mapsto \langle 0, 1 \rangle, \text{add} \mapsto \langle 2, 1 \rangle, \text{mult} \mapsto \langle 2, 1 \rangle\}\$$

Vereinfacht aufgeschrieben sieht das ganze so aus:

$$S = \{\text{zero, one, add}//2, \text{mult}//2\}$$

1.2 Struktur

https://lili.informatik.uni-kiel.de/llocs/Structures

Sei $\mathcal S$ eine Signatur. Eine $\mathcal S$ -Struktur $\mathcal A$ besteht aus:

- Univserum A mit $A \neq \emptyset$
- Für jedes Symbol eine Konstanten $c \in \mathcal{S}$ eine Interpretation $c^{\mathcal{A}} \in A$ von c.
- Für jedes Funktionssymbol $f/\!/n \in \mathcal{S}$ eine Interpretation $f^{\mathcal{A}} \colon A^n \to A$
- Für jedes Relationssymbol $R/n \in \mathcal{S}$ eine Interpretation $R^{\mathcal{A}} \subseteq A^n$

Hier ein Beispiel das ungefähr zu der Signatur oben passt:

$$A = \{0, 1, 2, 3\}$$

$$zero^{\mathcal{A}} = 3$$

$$one^{\mathcal{A}} = 2$$

$$add^{\mathcal{A}}(a, b) = 0 \qquad \text{for } a, b \in A$$

$$mult^{\mathcal{A}}(a, b) = a + b \text{ rest } 4 \qquad \text{for } a, b \in A$$

$$Lt^{\mathcal{N}} = \{\langle a, a \rangle \colon a \in A\}$$

1.3 Terme

https://lili.informatik.uni-kiel.de/llocs/Syntax_of_first-order_logic#Formal_definition_of_terms

Induktive Defintion für alle Terme über eine Signatur S, die auch S-terms genannt wird: Basiselemente:

- Ein Baum mit nur einem Element das eine Variable der Prädikatenlogik enthält ist ein S-term.
- Ein Baum mit nur einem Element das eine Konstante $c \in \mathcal{S}$ enthält ist ein \mathcal{S} -term.

Diese werden die atomaren S-terme genannt. Induktionsregeln:

• Wenn $f//n \in \mathcal{S}$ eine Funktion und t_0, \ldots, t_{n-1} \mathcal{S} -terms sind, dann ist der Baum mit der Wurzel f und den n Teilbäumen t_0, \ldots, t_{n-1} ein \mathcal{S} -term.

1.4 Formeln

https://lili.informatik.uni-kiel.de/llocs/Syntax_of_first-order_logic#Formal_definition_of_formulas

Induktive Defintion für alle Formeln über eine Signatur \mathcal{S} , die auch \mathcal{S} -formulas genannt wird: Basiselemente:

- Der einelementige Baum in dem das einzige Element eines der konstanten Symbole ⊤ oder ⊥ ist, ist eine (prädikatenlogische) Formel.
- Wenn t_0, t_1 Terme sind, dann ist der Baum mit der Wurzel \doteq und den Teilbäumen t_0 und t_1 eine Formel.
- Wenn $R/n \in \mathcal{S}$ eine Relation ist und t_0, \ldots, t_{n-1} Terme sind dann ist der Baum mit der Wurzel R und den n Teilbäumenm t_0, \ldots, t_{n-1} eine Formel.

Diese werden die atomaren Formeln genannt. Induktionsregeln:

- Wenn C ein n-stelliger Junktor ist und $\varphi_0, \ldots, \varphi_{n-1}$ Formeln sind, dann ist der Baum mit der Wurzel C und den n Teilbäumen $\varphi_0, \ldots, \varphi_{n-1}$ eine Formel.
- Wenn x_i eine Variable ist und φ eine Formel, dann ist der Baum mit der Wurzel $\exists x_i$ oder der Wurzel $\forall x_i$ und dem Teilbaum φ eine Formel.

1.5 Interpretation von Termen

https://lili.informatik.uni-kiel.de/llocs/ Semantics_of_first-order_logic#Interpretation_ of_terms

Sei \mathcal{S} eine Signatur und \mathcal{A} eine \mathcal{S} -Struktur. Für eine Belegung (A-Belegung) β , ist der Wert von jedem \mathcal{S} -term t in \mathcal{A} unter β : $[\![t]\!]_{\beta}^{\mathcal{A}}$ defniert durch folgender Induktion. Basiselemente:

- Für alle $i \in \mathbb{N}$ gilt: $[x_i]_{\beta}^{\mathcal{A}} = \beta(x_i)$. Variablen bekommen den ihnen unter β zugewiesenen Wert bei der alleinigen Auswertung.
- Für jedes $c \in C$ gilt: $[\![c]\!]_{\beta}^{A} = c^{A}$ Konstante Symbole werden wie in der Struktur beschriegben ausgwertet wenn sie alleine stehen.

Induktionsregel:

• Für alle $f//n \in \mathcal{F}$ und die \mathcal{S} -terms t_0, \ldots, t_{n-1} gilt: $[\![f(t_0, \ldots, t_{n-1})]\!]_{\beta}^{\mathcal{A}} = f^{\mathcal{A}}([\![t_0]\!]_{\beta}^{\mathcal{A}}, \ldots, [\![t_{n-1}]\!]_{\beta}^{\mathcal{A}})$

1.6 Interpretation von Formlen

https://lili.informatik.uni-kiel.de/llocs/ Semantics_of_first-order_logic#Interpretation_ of formulas

So dieses mal einfach direkt die Induktive Definition: Basiselemente:

• Für die boolschen konstannten Symbole gilt:

$$[\![\bot]\!]_{\beta}^{\mathcal{A}} = 0 \tag{1}$$

$$\llbracket \top \rrbracket_{\beta}^{\mathcal{A}} = 1 \tag{2}$$

• Für alle Terme t_0, t_1 gilt:

$$\llbracket t_0 \doteq t_1 \rrbracket_{\beta}^{\mathcal{A}} = \begin{cases} 1 & \text{if } \llbracket t_0 \rrbracket_{\beta}^{\mathcal{A}} = \llbracket t_1 \rrbracket_{\beta}^{\mathcal{A}} \\ 0 & \text{sonst} \end{cases}$$
(3)

• Für alle Relationen $R/n \in \mathcal{R}$ und Terme t_0, \ldots, t_{n-1} gilt:

$$[\![R(t_0,\ldots,t_n)]\!] = \begin{cases} 1 & \text{if } \langle [\![t_0]\!]_{\beta}^{\mathcal{A}},\ldots,[\![t_{n-1}]\!]_{\beta}^{\mathcal{A}} \rangle \in R^{\mathcal{A}} \\ 0 & \text{sonst} \end{cases}$$
(4)

Induktionsregeln:

• blubb

1.7 Freie Variablen

https://lili.informatik.uni-kiel.de/llocs/Free_variables

1.8 Koinzidenzlemma

https://lili.informatik.uni-kiel.de/llocs/Coincidence_lemma_(first-order_logic)

2 Modelierung

2.1 Relationen in Strukturen defnieren?

https://lili.informatik.uni-kiel.de/llocs/Definable_relations

2.2 Erfüllbarkeit einer Formel

3 Äquivalenz

3.1 Äquivalenz von Formeln

https://lili.informatik.uni-kiel.de/llocs/Formula_
equivalence_(first-order_logic)

3.2 Regeln der Prädikatenlogik

3.3 Quantorenregeln

3.4 Umbenennen von gebundenen Variablen

3.5 Scope von Quantoren

https://lili.informatik.uni-kiel.de/llocs/Scope_
(4) of_quantifiers_in_first-order_logic

3.6 Normalformen

3.6.1 Boolsche Normalform

https://lili.informatik.uni-kiel.de/llocs/Boolean_normal_form_(first-order_logic)

3.6.2 Plenex Normalform

https://lili.informatik.uni-kiel.de/llocs/Prenex_normal_form

3.6.3 Konjunktive Normalform https://lili.informatik.uni-kiel.de/llocs/ Conjunctive_normal_form_(first-order_logic) Folgerungsbeziehungen (Entail-4 ment) Folgerungsbeziehung 4.1 4.2 Beziehung zwischen Erfüllbarkeit und Folgerungsbeziehung Beweissysteme 5 Natürliches Beweissystem 5.15.1.1 Beweisregeln Korrektheit & Vollständigkeit 5.1.2Resolutionsbeweise 5.2Korrektheit & Vollständigkeit 5.2.1Verbindung zwischen Resolution und Logik-Programmierung

6 Kompaktheit