I Questions de cours

1 - Exercice 62 banque CCINP:

Soient E un espace vectoriel sur \mathbb{R} ou \mathbb{C} et $f \in \mathcal{L}(E)$ tel que $f^2 - f - 2\mathrm{Id}_E = 0$.

- a) Prouver que f est bijectif et exprimer f^{-1} en fonction de f.
- b) Prouver que $E = \operatorname{Ker}(f + \operatorname{Id}_E) \oplus \operatorname{Ker}(f 2\operatorname{Id}_E)$ de deux manières différentes (avec puis sans le lemme des noyaux).
- c) Dans cette question, on suppose que E est de dimension finie.

Prouver que $\operatorname{Im}(f + \operatorname{Id}_E) = \operatorname{Ker}(f - 2\operatorname{Id}_E)$.

2 - Exercice 93 banque CCINP :

Soient E un espace vectoriel réel de dimension finie n>0 et $u\in\mathcal{L}(E)$ tel que $u^3+u^2+u=0$.

- a) Montrer que $E = \text{Ker}(u) \oplus \text{Im}(u)$.
- b) Énoncer le lemme des noyaux pour deux polynômes et en déduire que $\text{Im}(u) = \text{Ker}\left(u^2 + u + \text{Id}_E\right)$.
- c) On suppose dans cette question que u est non bijectif. Déterminer les valeurs propres de u en justifiant la réponse.
- 3 Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie. Donner la dimension ainsi qu'une base de $\mathbb{K}[u]$.

II Exercices axés sur le calcul

Exercice 1:

Donner le polynôme minimal des matrices suivantes et préciser si elles sont, ou non, diagonalisables dans $\mathcal{M}_3(\mathbb{R})$:

$$M = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{pmatrix}, \ J = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Exercice 2:

Soit A la matrice carrée d'ordre 3 suivante :

$$A = \begin{pmatrix} -1 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

- 1 Montrer que A n'a pas de polynôme annulateur (non nul) de degré inférieur ou égal à 2.
- 2 Trouver le polynôme minimal de A.
- 3 Montrer que A est inversible et préciser A^{-1} .

Exercice 3:

Soit $J \in \mathcal{M}_n(\mathbb{R})$ la matrice ne comportant que des 1.

Déterminer un polynôme annulateur pour J et en déduire une expression de J^k pour tout $k \in \mathbb{N}$.

III Exercices axés sur le raisonnement

Exercice 4:

Soient $n \in \mathbb{N} \setminus \{0; 1\}$ et A une matrice carrée d'ordre n à coefficients réels telle que $A^2 + A + I_n = 0_{M_n(\mathbb{R})}$.

- 1 La matrice A est-elle diagonalisable dans $\mathcal{M}_n(\mathbb{R})$?
- 2 Montrer que $Tr(A) \in \mathbb{Z}$.

Exercice 5:

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et B la matrice de $\mathcal{M}_{2n}(\mathbb{K})$ définie par $B = \frac{1}{2} \begin{pmatrix} A & A \\ A & A \end{pmatrix}$.

- 1 Justifier que B n'est pas inversible.
- 2 Préciser la matrice B^2 .
- 3 Pour $Q \in \mathbb{K}[X]$ tel que Q(0) = 0, exprimer Q(B) en fonction de Q(A).
- 4 Montrer que B est diagonalisable si, et seulement si, A est diagonalisable.

$Exercice \ 6:$

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$.

- 1 Montrer que la matrice AB est inversible si, et seulement si, A et B le sont.
- 2 En déduire une condition nécessaire et suffisante pour que $\chi_A(B) \in \mathrm{GL}_n(\mathbb{C})$.

IV Exercices avec questions ouvertes

Exercice 7:

Soient $n \in \mathbb{N} \setminus \{0; 1\}$ et $A \in \mathcal{M}_n(\mathbb{C})$.

- 1 Montrer que si la suite $(A^k)_{k\in\mathbb{N}}$ converge de limite la matrice nulle, alors pour tout $\lambda\in \operatorname{Sp}_{\mathbb{C}}(A), |\lambda|<1$.
- 2 La réciproque de la question précédente est-elle vraie?
- 3 Montrer que si la suite $(A^k)_{k\in\mathbb{N}}$ converge, alors pour tout $\lambda\in \mathrm{Sp}_{\mathbb{C}}(A), \, |\lambda|<1$. La réciproque est-elle vraie?