Fundamentos de la programación

Tipos: Detalles técnicos

ANEXO

Grado en Ingeniería Informática Grado en Ingeniería del Software Grado en Ingeniería de Computadores

Luis Hernández Yáñez Facultad de Informática Universidad Complutense

Índice

int	214
float	216
Notación científica	217
double	218
char	220
bool	221
string	222
Literales con especificación de tipo	223

Intervalo de valores:

-2147483648 .. 2147483647

Bytes de memoria: 4*

Literales:

1363, -12, 010, 0x1A

(*) Depende de la máquina 4 bytes es lo más habitual Se puede saber cuántos se usan con la función sizeof(int)

Luis Hernández Yáñez Luis Hernández Yáñez Renández Yáñez Renández

Fundamentos de la programación: Tipos e instrucciones I (Anexo)

Página 214

int

Números enteros

Números en notación octal (base 8: dígitos entre 0 y 7):

-010 = -8 en notación decimal

$$10 = 1 \times 8^1 + 0 \times 8^0 = 1 \times 8 + 0$$

0423 = 275 en notación decimal

$$423 = 4 \times 8^2 + 2 \times 8^1 + 3 \times 8^0 = 4 \times 64 + 2 \times 8 + 3 = 256$$

+16 + 3

Números en notación hexadecimal (base 16):

Dígitos posibles: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

0x1F = 31 en notación decimal

$$1F = 1 \times 16^1 + F \times 16^0 = 1 \times 16 + 15$$

0xAD = 173 en notación decimal

$$AD = A \times 16^{1} + D \times 16^{0} = 10 \times 16 + 13 = 160 + 13$$

Intervalo de valores:

Bytes de memoria: 4*

(*)sizeof(float)

Punto flotante. Precisión: 7 dígitos

Literales (punto decimal):

✓ Notación normal: 134.45, -1.1764

✓ Notación científica: 1.4E2, -5.23e-02

Fundamentos de la programación: Tipos e instrucciones I (Anexo)

Página 216

Notación científica

Siempre un número (con o sin signo) con un solo dígito de parte entera, seguido del exponente (potencia de 10):

- -5.23e-2
- \rightarrow -5.23 x 10⁻²
- **→** -0,0523

- 1.11e2
- \rightarrow 1,11 x 10² \rightarrow 111,0

- 7.4523e-04 \rightarrow 7,4523 x 10⁻⁴ \rightarrow 0,00074523

- $-3.3333e+06 \rightarrow -3.33333 \times 10^6 \rightarrow -3.333.300$

Intervalo de valores:

Bytes de memoria: 8*

(*)sizeof(double)

Punto flotante. Precisión: 15 dígitos

Literales (punto decimal):

✓ Notación normal: 134.45, -1.1764

✓ Notación científica: 1.4E2, -5.23e-02

Luis Hernández Váñez

Fundamentos de la programación: Tipos e instrucciones I (Anexo)

Página 218

char

Caracteres

Intervalo de valores:

Juego de caracteres (ASCII)

Bytes de memoria: 1 (FC)

Literales:

Constantes de barra invertida:

(O secuencias de escape)

Para caracteres de control

'\t' = tabulador, '\n' = salto de línea, ...

char

Juego de caracteres ASCII:

American Standard Code for Information Interchange (1963)

Caracteres con códigos entre 0 y 127 (7 bits)

- Caracteres de control: Códigos del 0 al 31 y 127 Tabulación, salto de línea,...
- Caracteres imprimibles: Códigos del 32 al 126

Juego de caracteres ASCII extendido (8 bits):

ISO-8859-1

+ Códigos entre 128 y 255

Multitud de codificaciones: EBCDIC, UNICODE, UTF-8, ...

Página 220

Fundamentos de la programación: Tipos e instrucciones I (Anexo)

bool

Luis Hernández Yáñez

Valores lógicos

Sólo dos valores posibles:

- Verdadero (true)
- Falso (false)

Bytes de memoria: 1 (FC)

Literales:

true, false

En realidad, cualquier número distinto de 0 es equivalente a true y el número 0 es equivalente a false

string

"Hola", "Introduce el numerador: ", "X142FG5TX?%A"

Secuencias de caracteres

Se asigna la memoria que se necesita para la secuencia concreta Requieren la biblioteca string con el espacio de nombres std: #include <string> using namespace std;

99 ¡Ojo!

Las comillas tipográficas (apertura/cierre) "..." te darán problemas al compilar. Asegúrate de utilizar comillas rectas: "..."

Fundamentos de la programación: Tipos e instrucciones I (Anexo)

Página 222

Literales con especificación de tipo

Por defecto un literal entero se considera un dato int

— long int: 35L, 15461

— unsigned int: 35U, 1546u

— unsigned long int: 35UL, 1546ul

Por defecto un literal real se considera un dato double

— float: 1.35F, 15.46f

- long double: 1.35L, 15.461

Abreviaturas para modificadores de tipos

short ≡ short int

long ≡ long int

Es preferible evitar el uso de tales abreviaturas:

Minimizar la cantidad de información a recordar sobre el lenguaje

Acerca de Creative Commons

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

- Reconocimiento (*Attribution*): En cualquier explotación de la obra autorizada por la licencia hará falta reconocer la autoría.
- No comercial (*Non commercial*): La explotación de la obra queda limitada a usos no comerciales.
- Compartir igual (*Share alike*):

 La explotación autorizada incluye la creación de obras derivadas siempre que mantengan la misma licencia al ser divulgadas.

Pulsa en la imagen de arriba a la derecha para saber más.

Fundamentos de la programación: Tipos e instrucciones I (Anexo)

Página 224

Luis Hernández Yáñez