Active Learning and Semi-Supervised Learning

COMP90049

Semester 2, 2021

Qiuhong Ke, CIS

©2021 The University of Melbourne

Acknowledgement: Tim Baldwin, Karin Verspoor & Kris Ehinger

Roadmap

So far:

- · Supervised learning
- · Unsupervised learning

Today:

- · Active learning
 - · Query Scenarios
 - · Query Strategies
- · Semi-supervised learning
 - · Combine unsupervised and supervised algorithm
 - · Self-training

Active Learning

Active Learning

- Motivation: labelling is a finite resource, which should be expended in a way which optimises machine learning effectiveness.
- · Key idea: the learner
 - · has access to raw unlabeled data.
 - make a query about the label to an oracle (e.g. a human annotator)
- Goal: train a good classifier with reduced annotation cost.

Toy Example: 1D classifier

- Input: Unlabeled data, labels are all 0 then all 1 (left to right)
- · Goal: find classifier (threshold function between 0 and 1)
- · Naive method: annotate all data points
- · Better method: use binary search to reduce annotations

Query Scenarios

- · Query Synthesis
- · Stream-based Sampling
- · Pool-based Sampling

Query Synthesis I

Learner constructs an instance from input space or distribution from scratch

Query Synthesis II

• Problem: Human annotator might not recognize the pseudo instance

Source: Kevin J. Lang and Eric B Baum. Query Learning Can Work Poorly when a Human Oracle is Used, 1992

Stream-based Sampling I

Learner decides query or ignore the observed instance from the continuous data source

Stream-based Sampling II

- · Query data from true distribution
- · Useful if the dataset is too large to load
- Assumption: drawing an instance is less expensive than labeling, e.g., downloading video vs annotating actions

Pool-based Sampling I

Learner chooses the best instance from a large pool of unlabeled examples to query.

Stream-based vs Pool-based Sampling

- Stream-based: the learner observes one instance at a time and makes the decision individually.
- Pool-based: the learner observes whole dataset and choose the best one.

Query Strategies

- · Uncertainty Sampling
- · Query by Committee

Query Strategies I: Uncertainty Sampling

- · Least Confident
- Margin Sampling
- · Entropy Sampling

Uncertainty Sampling I: Least Confident

 Query instances where the classifier is least confident of the classification

$$x^* = \mathop{argmin}_x(P_\theta(\hat{y}|x))$$
 where
$$\hat{y} = \mathop{argmax}_y(P_\theta(y|x))$$

• Example: select instance 2 as the query

	<i>y</i> ₁	y_2	<i>y</i> ₃
Instance 1	0.01	0.9	0.09
Instance 2	0.5	0.3	0.2

Uncertainty Sampling II: Margin Sampling

• Selects queries where the classifier is least able to distinguish between the first and second most probable categories, e.g.:

$$x = \underset{x}{argmin}(P_{\theta}(\hat{y_1}|x) - P_{\theta}(\hat{y_2}|x))$$

- where $\hat{y_1}$ and $\hat{y_2}$ are the first- and second-most-likely labels for x
- · Example: select instance 2 as the query

	<i>y</i> ₁	y_2	<i>y</i> ₃
Instance 1	0.25	0.5	0.25
Instance 2	0.5	0.4	0.1

Example

- Which instance should be the query based on the strategy of least confidence?
- Which instance should be the query based on the strategy of margin sampling?

	<i>y</i> ₁	<i>y</i> ₂	y_3	<i>y</i> ₄
Instance 1	0.2	0.4	0.2	0.2
Instance 2	0.5	0.35	0.1	0.05

Uncertainty Sampling III: Entropy Sampling

 Use entropy as an uncertainty measure to utilize all the possible class probabilities:

$$x = \underset{x}{argmax} - \sum_{i} P_{\theta}(\hat{y}_{i}|x)log_{2}P_{\theta}(\hat{y}_{i}|x)$$

Applications & Other Uncertainty Sampling Methods

- 1 Speech Recognition
- 2 Machine Translation
- 3 Text Classification
- 4 Word Segmentation: classifier margin
- 1 Hakkani-Tür, Dilek, Giuseppe Riccardi, and Allen Gorin. "Active learning for automatic speech recognition." ICASP 2002.
- 2 Haffari, Gholamreza, Maxim Roy, and Anoop Sarkar. "Active learning for statistical phrase-based machine translation." ACL 2009.
- 3 Lewis, David D., and William A. Gale. "A sequential algorithm for training text classifiers." SIGIR 1994.
- 4 Sassano, Manabu. "An empirical study of active learning with support vector machines for japanese word segmentation." ACL 2002.

Query Strategies II: Query by Committee

- Use multiple classifiers to predict on unlabelled data, and select instances with the highest disagreement between classifiers
- Assumes that all the classifiers learn something different, so can provide different information
- · Disagreement can be measured by:
 - Vote entropy
 - KL divergence

Disagreement Measure I: Vote Entropy

Select instance with highest vote entropy for query:

$$x = \underset{x}{\operatorname{argmax}} - \sum_{y_i} \left(\frac{V(y_i)}{N} \right) \log_2 \left(\frac{V(y_i)}{N} \right)$$

- $V(y_i)$: number of "votes" that label y_i receives.
- N: total number of "votes" (classifiers).

Example

$$V(y_1) = 0, V(y_2) = 4, V(y_3) = 0$$

$$H = 0$$

classifier	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃
C_1	0.2	0.7	0.1
C_2	0.2	0.6	0.2
C_3	0.05	0.9	0.05
C_4	0.1	0.8	0.1

Example

H = ?

classifier	<i>y</i> ₁	<i>y</i> ₂	y_3
\mathcal{C}_1	0.2	0.7	0.1
C_2	0.1	0.3	0.6
C_3	8.0	0.1	0.1
C_4	0.3	0.5	0.2

Disagreement Measure II: KL Divergence

$$x = \underset{x}{\operatorname{argmax}} \frac{1}{N} \sum_{i=1}^{N} D(P_i || P_m)$$

- *P_m*: mean probability distribution of all the *N* models.
- Kullback Leibler (KL) divergence (relative entropy)

$$D(P_i||P_m) = -\sum_{j=1}^{n_c} P_i(j) \left[\log_2 P_m(j) - \log_2 P_i(j) \right] = \sum_{j=1}^{n_c} P_i(j) \log_2 \frac{P_i(j)}{P_m(j)}$$

- $P_i = [P_i(1), P_i(2), \cdots, P_i(n_c)]$
- $P_m = [P_m(1), P_m(2), \cdots, P_m(n_c)]$
- $P_i(j)$: probability of the j^{th} class in the probability distribution P_i
- $P_m(j)$: probability of the j^{th} class in the probability distribution P_m

Semi-supervised learning

Semi-supervised learning

- Semi-supervised learning is learning from both labelled and unlabelled data
- · Semi-supervised classification:
 - *L* is the set of labelled training instances $\{x_i, y_i\}_{i=1}^{l}$
 - *U* is the set of unlabelled training instances $\{x_i\}_{i=l+1}^{l+u}$
 - Often $u \gg I$
 - Goal: learn a better classifier from $L \cup U$ than is possible from L alone

Semi-Supervised Learning Approach I

- A simple approach: combine a supervised and unsupervised model
- e.g., Find clusters, choose a label for each (most common label?) and apply it to the unlabelled cluster members

Semi-Supervised Learning Approach II

Self-Training (Also known as "Bootstrapping")

- Assume you have $L = \{x_i, y_i\}_{i=1}^l$ labelled and $U = \{x_i\}_{i=l+1}^{l+u}$ unlabelled training instances
- Repeat
 - Supervised learning: Train a model f on L
 - Prediction: y = f(U) to predict the labels on each instance in U
 - Identify a subset U' of U with "high confidence" labels
 - $L \leftarrow L \cup \langle U', f(U') \rangle$
 - U ← U\U'
 - Until L does not change

Active Learning vs Semi-supervised learning

- Same goal: reduce human annotation effort
- · semi-supervised learning:
 - Learner produce labels automatically (e.g., on the data with high confidence)
- · active learning:
 - Learner select unlabeled data (e.g., with low confidence/high uncertainty) to make a query
 - · Oracle annotates the query

Summary

Summary

- What is active learning?
- What are the main sampling strategies in active learning?
- Outline a selection of query strategies in active learning.
- · What is semi-supervised learning?
- · What is self-training, and how does it operate?

References

- Burr Settles. Active learning literature survey. Technical report,
 Department of Computer Sciences, University of Wisconsin, Madison,
 2010.
- Xiaojin Zhu. Semi-supervised learning literature survey. Technical Report Technical Report 1530, Department of Computer Sciences, University of Wisconsin, Madison, 2005.
- · Xiaojin Zhu. Tutorial on semi-supervised learning.
- · Edith Law. Introduction to machine learning-active learning

