Exercises in Marine Ecological Genetics

10. DNA barcoding

- Process Sanger reads to obtain barcodes
- Identify samples with the Barcode of Life Data System
- Evaluate genetic distances

Martin Helmkampf

Download course materials using git

Go to project directory

```
cd dir  # e.g. Documents/meg23_exercises
ls -l  # view directory contents, long format
```

Update course repository

```
cd meg23_repo
git pull
```


In case of an error message

Avoiding version conflict

Please do not save over files in the course repository. Instead, save your own scripts to the local subdirectory (including copies of course scripts you would like to edit), e.g with

cp code/10_barcode.txt ../local/10_barcode_lc.txt # cp [source] [destination]

#Fischdetektive

Citizen science project at GEOMAR (2017)

Adapted for university class

Jan Steffen, GEOMAR

COI barcode

Approx. 650 bp in 5' region of cytochrome c oxidase subunit I (COI)

>MN604318.1 Oncorhynchus keta cytochrome c oxidase subunit I gene, complete cds; mitochondrial GTGGCAATCACACGATGATTCTTCTCAACCAACCACAAAGACATTGGCACCCTCTATTTAGTATTTGGTGCCTGAGCCGGGATAGTAGGCACCGCCCTG AGCCTACTAATTCGGGCAGAACTAAGCCAGCCAGGCGCTCTTCTAGGGGATGACCAGATCTACAATGTAATCGTTACAGCCCATGCCTTCGTTATAATT ATAAGCTTCTGACTCCTACCTCCGTCCTTCCTCCTCCTTCTTCATCTGGAGTTGAAGCCGGCGCTGGTACCGGGTGGACAGTTTATCCCCCTCTA ACGACCATTATCAACATAAAACCCCCAGCTATTTCTCAGTACCAAACCCCGCTTTTTGTCTGAGCTGTACTAATCACTGCTGTACTTCTACTATTATCA CAACACCTCTTTTGATTCTTCGGTCACCCAGAGGTCTATATTCTGATCCTCCCAGGCTTTGGTATAATTTCACATATCGTTGCATATTACTCTGGTAAG AAAGAACCTTTCGGGTACATAGGAATAGTGTGAGCTATAATAGCCATCGGCTTGTTAGGATTTATCGTTTGAGCCCACCACACATATTTACTGTCGGGATG GACGTGGACACTCGTGCCTACTTTACATCTGCCACCATAATTATCGCTATCCCCACAGGAGTAAAAGTATTTAGCTGACTAGCTACACTGCACGGAGGC TCGATCAAATGAGAGACACCACTTCTCTGAGCCCTAGGATTTATCTTCCTATTTACAGTGGGCGGATTAACGGGCATCGTCCTTGCTAACTCCTCATTA GACATTGTTTTACATGACACTTATTACGTAGTCGCCCATTTCCACTACGTACTCTCAATAGGAGCTGTATTTGCCATTATGGGCGCTTTCGTACACTGA TTCCCCCTATTCACAGGGTACACCCTTCACAGCACATGAACCAAAATCCATTTTGGAATTATATTTATCGGTGTAAATTTAACCTTTTTCCCACAGCAT TTCCTAGGCCTCGCAGGGATACCACGACGGTACTCTGACTACCCGGACGCCTACACGCTATGAAACACTGTATCCTCAATCGGATCCCTTGTCTCCTTA GTAGCTGTAATTATGTTCCTATTTATTCTTTGAGAGGCTTTTGCTGCCAAACGAGAAGTAGCATCAATCGAAATAACTTCAACAAACGTAGAATGACTA CACGGATGCCCCCCCCCCCACCACACACTTCGAGGAACCAGCATTTGTCCAAGTACGAACGTACTAA

Sanger sequencing

Estevezj, CC BY-SA 3.0

Sequence alignment

G A T G T T C G A A
G A T C - - - G A A
G A C C - T C G - T

Arranges nucleotide or amino acid sequences so that the number of mismatches and gaps are minimized

Multiple sequence alignments can be constructed progressively from pairwise alignments

Computationally complex, often requires heuristic solutions

Key to identify evolutionary relationships between sequences (e.g. homology)

AAGCCAGCCAGGCGCTCTTCTAGGGGATGACCAGATCTACAATGTAATCG AAGTCAACCTGGTGCACTTCTTGGTGATGATCAAATTTATAATGTGATCG # 50 positions total

13 differences

Uncorrected distance

$$p = 13 / 50 = 0.26$$

K2P distance (Kimura 1980)

$$K = 0.33$$

$$K=-rac{1}{2}\ln((1-2p-q)\sqrt{1-2q})$$

p: proportion of transitions (A<>G, C<>T)

$$8/50 = 0.16$$

q: proportion of transversions

$$5/50 = 0.1$$

Portable 3rd gen sequencing

NANOPORE SEQUENCING

At the heart of the MinION device, an enzyme unwinds DNA, feeding one strand through a protein pore. The unique shape of each DNA base causes a characteristic disruption in electrical current, providing a readout of the underlying sequence.

DNA double helix

Unwinding enzyme

Membrane

Current

Sequence A A C T C G T

blogs.nature.com

whatech.com

Basic Local Alignment Search Tool (BLAST)

Algorithm overview

- Split query into very short segments (*k*-mers or words)
- Find exact matches between words and sequences in database (seeds)
- Extend matches to local alignments (HSP; stops once too many mismatches occur)
- Evaluate statistical significance of each HSP (e-value)

		Description	Scientific Name	Max Score		Query Cover			Acc. Len	Accession
6	~	Oncorhynchus keta mitochondrial COX1 gene for cytochrome c oxidase subunit 1, partial cds, isolate: OK M08F	Oncorhynchus keta	1029	1029	100%	0.0	99.64%	772	LC094471.1
	~	Oncorhynchus keta mitochondrial COX1 gene for cytochrome c oxidase subunit 1, partial cds, isolate: OK_M01F	Oncorhynchus keta	1029	1029	100%	0.0	99.64%	772	LC094464.1
6	~	Oncorhynchus keta isolate 10_Narva cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial	Oncorhynchus keta	1029	1029	100%	0.0	99.64%	655	KR778851.1

- - -

Course outline

Class	Date	Topics	Script
01	Apr 14	Introduction, software installation	01_intro.R
02	Apr 21	Hardy-Weinberg equilibrium	02_hwe.R
03	Apr 28	Genetic drift and effective population size	03_drift.R
04	May 05	Population structure and gene flow	04_structure.R
05	May 12	Isolation by distance (lecture online, exercises in person)	05_ibd.R
_	May 19	Himmelfahrt break	_
06	May 26	Genome sequencing and assembly	06_genseq.sh
07	Jun 02	Genotyping, SNPs and population genomics	07_snps.sh
08	Jun 09	Recombination and linkage disequilibrium	08_recomb.R
_	Jun 16	Student presentations	_
09	Jun 23	Selection and mutation	09_sel.R
10	Jun 30	DNA barcoding	10_barcode.txt
11	Jul 07	Metabarcoding I	11_meta.txt
12	Jul 14	Metabarcoding II	

