CMSC5741 Big Data Tech. & Apps.

Ascellute ProjetgexScale posines in https://eduassistpro.github.io/
Add WeChat edu_assist_pro

Prof. Michael R. Lyu
Computer Science & Engineering Dept.
The Chinese University of Hong Kong

Motivation

 Understand t eter estimation method in ter https://eduassistpro.github.io/

Motivation

Assignment Project Exam Help

https://eduassistpro.github.io/

Motivation

What if there are millions of photos, how to make the SVM training scalable?

Outline

- Support Vector Machines

 - Assignment Project Exam Help

 Linear Separa
 - Non-linear Sehttps://eduassistpro.github.io/
 - Soft Margin Add WeChat edu_assist_pro
 - Kernel Trick
- Parameter Estimation
- Further Reading

Outline

- Support Vector Machines

 - Assignment Project Exam Help

 Linear Separa
 - Non-linear Sehttps://eduassistpro.github.io/
 - Soft Margin Add WeChat edu_assist_pro
 - Kernel Trick
- Parameter Estimation
- Further Reading

SVMs: History

- * Theoretically rithm: developed from Statistic https://eduassistpro.githphip/& Chervonenkis) since the second edu_assist_pro
- Empirically good performance: successful applications in many fields (bioinformatics, text, image recognition, . . .)

SVMs: History

- Centralized website: www.kernel-machines.org.
- Several textbooks, e.g. "An introduction to Assignment Project Exam Help Support Vecto tianini and Shawe-Taylor https://eduassistpro.github.io/
- A large and diverse committed edu_assist on them: from machine learning, optimization, statistics, neural networks, functional analysis, etc.

Outline

- Support Vector Machines

 - Assignment Project Exam Help

 Linear SVMs

 - Non-linear SVhttps://eduassistpro.github.io/
 - Soft Margin Add WeChat edu_assist_pro
 - Kernel Trick
- Parameter Estimation
- Further Reading

Linear SVMs

- Data
 - Training examples: $(x_1, y_1), \dots, (x_n, y_n)$ - Assignment Project Exam Help
 - Each
 - Want to fi https://eduassistpro.github.io/ to separate A'd'd fwor hat edu_assist_pro
- What's the best hyperplane defined by w?

- Distance from the separating
 hyperplance corresponds to
 Assignment Project Exam Help
 the "confide"
 prediction https://eduassistpro.github.io/
- Example: Welde Welchneedu_assist_pro confidence to say A and B belong to "+" than C

Support Vectors: Examples closest to Assignment Project Exam Help https://eduassistpro.github.i • Margin ρ : separation between Chat edu_assist support vectors of classes. W Support vector

 Distance from example to the separator is: Assignment Project Exam Help

https://eduassistpro.github.ic/

• Proof:

Add WeChat edu_assist_pro x' - x//w, unit vector is w/||w||, so line is rw/||w||, x' = x - yrw/||w||since x' is on the separator, $w^T x' + b = 0$ so $w^T(x - yrw/||w||) + b = 0, ||w|| = \sqrt{(w^T w)},$ so $w^T x - yr ||w|| + b = 0$, then we get $r = y \frac{w^T x + b}{\| w \|}$

13

 Assume that all data is at least distance 1 from the hyperplane, then the following constraints follow for a training Assignment Project Exam Help

https://eduassistpro.github.io/

- For support vectors, the inequality becomes an equality
- Recall that $r = y \frac{w^T x + b}{\|w\|}$ Margin is: $\rho = \frac{2}{\|w\|}$

Linear SVMs

- Note that we assume that all data points are linearly separated by the hyperplane.
 Assignment Project Exam Help
- The margin is of parameters.
 - i.e. by changi https://eduassistpro.github.io/margin doesn't
 change Add WeChat edu_assist_pro

Linear SVMs

- Maximize the margin
 - Good according to intuition, theory (VC dimension) & Assignment Project Exam Help
- The problem https://eduassistpro.githubliat/ed as:

Add WeChat edu_assist_pro

An equivalent form is:

$$\min_{w} \frac{1}{2} ||w||^2$$
s.t. $y_i(w^T x_i + b) \ge 1 \quad \forall i = 1, \dots, n$

Outline

- Support Vector Machines

 - Assignment Project Exam Help

 Linear Separa
 - Non-linear Sehttps://eduassistpro.github.io/
 - Soft Margin Add WeChat edu_assist_pro
 - Kernel Trick
- Parameter Estimation
- Further Reading

Non-Linear Separable SVMs

- In reality, training samples are usually not linearly separable. Assignment Project Exam Help
- Soft Margin
 - Idea: allow https://eduassistpro.github.io/slack variabled@: We@hnaedu_assist_proerrors
 - Still try to minimize training set errors, and to place hyperplane "far" from each class (large margin)

Soft Margin Classification

The problem becomes:

Assignment Project Exam Help

- Minimize $\|w\|^2$ https://eduassistpro.github.io/aining mistakes Set C using cross validation edu_assist_pro

Soft Margin Classification

- If point x_i is on the wrong side of the margin Assignment Project Exam Help then get pe
- Thus all mis https://eduassistpro.github.io/equally-bad!Add-WeChat-edu_assist_pro

Slack Penalty C

$$\min_{w} \frac{1}{2} ||w||^2 + C \sum \xi_i$$
s.t. $y_i(w^T x_i + b) \ge 1 - \xi_i, \quad \xi_i \ge 0 \quad \forall i = 1, \dots, n$
Assignment Project Exam Help

- What is the https://eduassistpro.github.io/
 - -C=0: can set ξ_i Chat edu_assist_pro anything, then w=0 (basically ignore the data)
 - $-C = \infty$: Only want w, b to separate the data

Soft Margin Classification

SVM in the "natural" form

Assignment Project Exam Help

Marghttps://eduassistpro.github.jo/ L

• SVM uses "Hinge Loss":

In-class Practice

Go to <u>practice</u>

Assignment Project Exam Help

https://eduassistpro.github.io/

Outline

- Support Vector Machines
 - Assignment Project Exam Help

 Linear SVMs

 - Non-linear SVhttps://eduassistpro.github.io/
 - Soft Margin Add WeChat edu_assist_pro
 - Kernel Trick
- Parameter Estimation
- Further Reading

Non-linear Separable SVMs

 Linear classifiers aren't complex enough sometimes.

Assignment Project Exam Help

— Map data int e including nonlinear featurehttps://eduassistpro.github.io/

- Then construct a hyperplat edu_assistages so all other equations are the same

Non-linear Separable SVMs

Formally, process the data with:

Assignment Project Exam Help

Then learn th

https://eduassistpro.github.io/

Example: Polynomial Mapping

$$\Phi:R\to R^2$$

$$(x_1)\mapsto (z_1,z_2)\mapsto (x_1,x_2)$$

$$\text{https://eduassistpro.github.io/}$$

$$\text{Add WeChat edu_assist_pro}$$

Example: Polynomial Mapping

$$\Phi: \mathbb{R}^2 \to \mathbb{R}^3$$

$$(x_1, x_2) \mapsto (z_1, z_2, z_3) := (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

Assignment Project Exam Help

https://eduassistpro.github.io/

Example: MNIST

• Data: 60,000 training examples, 10000 test examples, 28x28

• Linear SVM has arou https://eduassistpro.github.io/

MINST Results

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Choosing a good mapping $\Phi(\cdot)$ (encoding prior knowledge + getting right complexity of function class) for your problem improves results.

SVMs: Kernel Trick

 The Representer theorem (Kimeldorf & Wahba, 1971) shows that (for SVMs as a special case): Assignment Project Exam Help

https://eduassistpro.github.io/

for some variables α , inst edu_assist proting w directly, we can optimize α .

- The decision rule is: $f(x) = \sum_{i=1}^{m} \alpha_i \Phi(x_i) \cdot \Phi(x) + b$
 - We call $K(x_i, x) = \Phi(x_i) \cdot \Phi(x)^{i}$ the kernel function.

Kernels

- Why kernels?

 - Make non-separable problem separable.
 Assignment Project Exam Help
 Map data int
- Common used https://eduassistpro.github.io/
 - Add WeChat edu_assist_pro Linear
 - Polynomial $K(x_i, x_i) = (1 + x_i^T \cdot x_i)^d$
 - Gives feature conjunctions
 - Radial basis function

$$K(x_i, x_j) = e^{-\|x_i - x_j\|^2 / 2\sigma^2}$$

Outline

- Support Vector Machines

 - Assignment Project Exam Help

 Linear Separa
 - Non-linear Sehttps://eduassistpro.github.io/
 - Soft Margin Add WeChat edu_assist_pro
 - Kernel Trick
- **Parameter Estimation**
- Further Reading

SVM: How to Estimate w, b

We take the soft margin classification for example:

Assignment Project Exam Help

https://eduassistpro.github.io/

- Standard way
 - Add WeChat edu_assist_pro ___ Solver: software for finding ____ to "common" optimization problems, e.g. LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
- Problems: Solvers are inefficient for big data!

SVM: How to Estimate w, b

- Want to estimate w, b ! $\min_{w} \frac{1}{2} ||w||^2 + C \sum \xi_i$
- Alternative approach: $s.t. \forall i \ y_i(w^Tx_i + b) \ge 1 \xi_i, \ \xi_i \ge 0$ Assignment Project Exam Help
 - Want to mini

https://eduassistpro.github.io/

- How to minimize convex functions f(z)
- Use gradient descent: $\min_{z} f(z)$
- Iterate: $z_{t+1} \leftarrow z_t \eta f'(z_t)$

SVM: How to Estimate w?

Want to minimize f(w,b):

Assignment Project Exam Help

https://eduassistpro.github.io/

irical loss L

Compute the gradient

Add WeChat edu_assist_pro

$$\nabla(j) = \frac{\partial f(w, b)}{\partial w^{(j)}} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_j)}{\partial w^{(j)}}$$

$$\frac{\partial L(x_i, y_j)}{\partial w^{(j)}} = \begin{cases} 0 & \text{if } y_i(w \cdot x_i + b) \ge 1\\ -y_i x_i^{(j)} & \text{otherwise} \end{cases}$$

SVM: How to Estimate w?

Gradient descent:

Assignment Project Exam Help

https://eduassistpro.github.io/

- Problem:
 - Computing $\nabla(i)$ takes O(n) time
 - n ... size of the training dataset

SVM: How to Estimate w?

Stochastic Gradient Descent

We just had:

$$\nabla(j) = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$$

 Instead of evaluating gradient over all examples, Assignment Project Exam Help evaluate it for each individual training example

https://eduassistpro.github.io/

- Stochastic gradient Weshet edu_assist_pro
 - Iterate untial convergence:
 - For $i=1,\ldots,n$ - For $j=1,\ldots,d$ * Evaluate: $\nabla(j,i)$ * Upadate: $w^{(j)} \leftarrow w^{(j)} - \eta \nabla(j,i)$

Example: Text Categorization

- Example by Leon Bottou:
 - Reuters RCV1 document corpus
 Assignment Project Exam Help
 Predict a category of a document
 - - One vs. th https://eduassistpro.github.io/
 - n = 781,000 training exam ents) Add WeChat edu_assist_pro
 - 23,000 test examples
 - -d = 50,000 features
 - One feature per word
 - Remove stop-words
 - Remove low frequency words

Examples: Text Categorization

Questions:

- Is SGD successful at minimizing f(w,b)?
 Assignment Project Exam Help
 How quickly
- of **f(w,b)**?
- What is the e https://eduassistpro.github.io/

- SGD-SVM is successful at minimizing the value of f(w,b)
- SGD-SVM is super fast
- SGD-SVM test set error is comparable

Optimization "Accuracy"

Assignment Project Exam Help

https://eduassistpro.github.io/

SGD vs. Batch Conjugate Gradient

- SGD on full dataset vs. Batch Conjugate
 - Gradient on a sample of n training examples Assignment Project Exam Help

https://eduassistpro.github.io/

• Need to choose learning rate η and t_0

$$w_{t+1} \leftarrow w_t - \frac{\eta_t}{\operatorname{Assign}} \left(w_t + C \frac{\partial L(x_i, y_i)}{\operatorname{Exam}} \right)$$

- Leon suggests

 - https://eduassistpro.github.io/ al updates are – Choose t_0 so comparable while white what edu_assist he weights
 - Choose η :
 - Select a small subsample
 - Try various rates η (e.g., 10,1,0.1,0.01,...)
 - Pick the one that most reduces the cost
 - Use η for next 100k iterations on the full dataset

- Sparse Linear SVM:
 - Feature vector x_i is sparse (contains many zeros) Do not do:

 - But represe https://eduassistpro.github[(i/0/1), (9, 5), ...]
 - Can we do the SGD update edu_assist_pro?
 - Approximated in 2 steps:

$$w \leftarrow w - \eta C \frac{\partial L(x_i, y_i)}{\partial w}$$
$$w \leftarrow w(1 - \eta)$$

Cheap: Xi is sparse and so few coordinates **j** of **w** will be updates Expensive: w is not sparse, all coordinates need to be updated

- Solution 1: $\mathbf{w} = \mathbf{s} \cdot \mathbf{v}$
 - Represent vector w as the product of scalar s Assignment Project Exam Help and the vector v
 - Then the u https://eduassistpro.github.io/
 - 1) $v=v-nG_{\mathbf{d}}^{\partial L(x_i,y_i)}$ hat edu_assist_pro
 - 2) $s = s(1 \eta)$
- Solution 2:
 - Perform only step 1) for each training example
 - Perform step 2) with lower frequency and higher η

Stopping criteria:

How many iterations of SGD?
Assignment Project Exam Help

- Early st dation
 - Create valid https://eduassistpro.github.io/
 - Monitor cost functione or that edu_assiset pro
 - Stop when loss stops decreasing

Stopping criteria:

How many iterations of SGD?
Assignment Project Exam Help

- Early Stoppin
 - Extract two https://eduassistpro.github.io/ing data
 - Train on A, stapley wabidatin edu_assist_pro
 - Number of epochs is an estimate of k
 - Train for **k** epochs on the full dataset

What about Multiple Classes?

- Idea 1:
 - One against all Assignment Project Exam Help Learn 3 classifi
 - + vs. {o,-}
 https://eduassistpro.github.io/
 - - vs. {o,+} Add WeChat edu_assist_pro
 - o vs. {+,-}

Obtain: $w_{+}b_{+}, w_{-}b_{-}, w_{o}b_{o}$

Return class c

 $\operatorname{arg\,max}_c w_c x + b_c$

What about Multiple Classes?

- Idea 2:
 - Learn 3 sets of weights simultaneously
 Assignment Project Exam Help
 Want the cor est m
 - est margin:

https://eduassistpro.github.io/

Multiclass SVM

Optimization problem:

Assignment Project Exam Help

https://eduassistpro.github.io/

– To obtain par class c, we can use similar techniques Weehat edu_assist_pro

SVM is widely perceived a very powerful learning algorithm

Demo

Libsvm package for R:
Assignment Project Exam Help
http://cran.r-project.org/web/packages/e1071/index.html

https://eduassistpro.github.io/

Demo

```
> # load library, class, a dependence for the SVM library
> library(class)
> # load library, SVM
> library(e1071) Assignment Project Exam Help
> # load library, mlbench, a collection of some datasets from the UCI repository
> library(mlbench)
                                https://eduassistpro.github.io/
> # load data, has 7 classes,
http://archive.ics.uci.edu/ml/datasets/Glass+Id
> data(Glass, package = "mlbencolor WeChat edu_assist_pro
> # get the index of all data
> index <- 1:nrow(Glass)</pre>
> # generate test index
> testindex <- sample(index, trunc(length(index)/3))
> # generate test set
> testset <- Glass[testindex, ]
> # generate trainin set
> trainset <- Glass[-testindex, ]
```

Demo

```
> # train svm on the training set
> # cost=100: the penalizing parameter for C-classification
> # gamma=1: the radial basis function-specific kernel parameter
> # Output values include SV index costs represent Parameter
> svm.model <- svm(Type~ ., data = trainset, cost = 100, gamma = 1)
> # a vector of predicted val
> # for classification: a vecto

https://eduassistpro.github.io/
> svm.pred <- predict(svm.model, testset[, -10])
> # a cross-tabulation of the truedd WeChat edu_assist_pro
> # versus the predicted values
> table(pred = svm.pred, true = testset[, 10])
```

One-slide Takeaway

- SVM:
 - Linear Separable SVMs
 Assignment Project Exam Help
 Non-linear Se argin and Kernel
 - Non-linear Se argin and Kernel
 Trick https://eduassistpro.github.io/
- Parameter EstimatiweChat edu_assist_pro
 - Solver: e.g. libsvm, not efficient
 - Stochastic gradient descent

Outline

- Support Vector Machines

 - Assignment Project Exam Help

 Linear Separa
 - Non-linear Sehttps://eduassistpro.github.io/
 - Soft Margin Add WeChat edu_assist_pro
 - Kernel Trick
- Parameter Estimation
- Further Reading

Further Reading

- Early paper about SVM algorithm: http://

 link.springer.com/content/pdf/10.1007%2FBF0099

 4018.pdf Assignment Project Exam Help
- More kernel t https://eduassistpro.github.io/
 - Schölkopf, Berahart Eurat edu_assipher C.; and Smola, Alexander J. (editors); Advances in Kernel Methods: Support Vector Learning, MIT Press, Cambridge, MA, 1999. ISBN 0-262-19416-3.

Further Reading

- More efficient learning algorithm for SVM:
 - Parallelizing Support Vector Machines on Distributed Assignment Project Exam Help Computers: https://code.google.com/p/psvm/

https://eduassistpro.github.io/

Reference

- http://www.stanford.edu/class/cs246/slides/13-svm.pdf
- http://www.stanford.edu/class/cs276/handouts/lecture14-SVMs.p
 pt
 Assignment Project Exam Help
- http://i.stanford.e
- http://www.svms.
 http://www.svms.
- http://www.cs.columdid.WdeChattedu_assistcuprents/jason_svm m tutorial.pdf
- http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- Chang, E, Zhu, K, Wang, H, Bai, H, Li, J, Qiu, Z, and Cui, H. PSVM: Parallelizing support vector machines on distributed computers. NIPS, 20:257-264. 2007.

In-class Practice

(2,3)

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

 Consider building an SVM over the (very little) data set shown in above figure, compute the each SVM decision boundary.