

Block Coordinate Descent on Smooth Manifolds

Liangzu Peng

René Vidal

Center for Innovation in Data Engineering and Science (IDEAS)

General Optimization Problem

Challenge: non-convexity, constraints

Hope: leverage the product structure of $\mathcal M$

Algorithm: Block Coordinate Descent

The idea is to iteratively update one block of variables $x_i^{t+1} \in \mathcal{M}_i$ at a time. Specifically:

- Initialize $x^0 = [x_1^0; ...; x_b^0] \in \mathcal{M}$
- For t=1,...,T and for i=1,...,b:

 Update x_i^{t+1} from $x_{1:i-1}^{t+1}$ and $x_{i+1:b}^{t}$ $[x_1^{t+1};...;x_{i-1}^{t+1}] \qquad [x_{i+1}^{t};...;x_b^{t}]$

We consider two update rules:

- Block exact minimization $x_i^{t+1} \in \operatorname*{argmin}_{F} F \left(x_{1:i-1}^{t+1}, \xi, x_{i+1:b}^{t} \right)$ $\xi \in \mathcal{M}_i$
- Block Riemannian gradient descent

A map from the tangent space $T_{x_i^t}\mathcal{M}_i$ to \mathcal{M}_i

$$x_i^{t+1} = \text{Retr}_{x_i^t}(s_i^t), \text{ where}$$

$$s_i^t := -\lambda_i^t \cdot \widetilde{\nabla}_i F(x_{1:i-1}^{t+1}, x_i^t, x_{i+1:b}^t)$$
epsize Riemannian gradient w.r.t. x_i^t

Examples

Maximum Coding Rate Reduction

• Essential Matrix Estimation

$$\min_{E} (x_1^{\mathsf{T}} E x_1')^2 + \dots + (x_m^{\mathsf{T}} E x_m')^2$$

Here, the essential matrix E is defined by some 3D rotation R and unit vector t, i.e.,

Caution: Figures shown above are not original.

Convergence Theory

Theorem 1 (Asymptotic Convergence) Assume:

- \mathcal{M}_i is a closed subset of \mathbb{R}^{n_i} ($\forall i$)
- Set $\{x: F(x) \le \gamma\}$ is bounded $(\forall \gamma \in \mathbb{R})$
- Minimizing $F(x_{1:i-1}, \xi, x_{i+1:b})$ over $\xi \in \mathcal{M}_i$ has a unique minimizer $(\forall x_i \in \mathcal{M}_i)$

Then the sequence $\{x^t\}_t$ generated by block exact minimization has limit points, and each limit point is a stationary point.

Definition (Block-i Smoothness)

F is block-i L_i -smooth with constant L_i if $\nabla_i F(x_{1:b-1}, \xi, x_{i+1:b}) - \nabla_i F(x_{1:b-1}, \zeta, x_{i+1:b})$ has norm smaller than or equal to $L_i | |\xi - \zeta| |$ for every $\zeta \in \mathcal{M}_i$ and $[x_{1:b-1}; \xi; x_{i+1:b}] \in \mathcal{M}$.

Theorem 2 (Sublinear Convergence)

Assume $(\forall i)$:

- F is block-i L_i -smooth with constant L_i
- \mathcal{M}_i is a compact manifold of \mathbb{R}^{n_i}

Then block exact minimization and block Riemannian gradient descent converge at a sublinear rate: Their iterates $\{x^t\}_t$ satisfy

$$\min_{t=0,\dots,T} \left| \left| \widetilde{\nabla} F(x^t) \right| \right| = O\left(\frac{1}{\sqrt{T}}\right).$$

Ongoing Work

- Prove stronger convergence guarantees
- Discover more applications & examples