Matrix exponential
$$e^{ft}$$

$$x(t) = e^{ft(t+t)} x_0 + \int_0^t e^{f(t+t)} Bu(t) dt$$

$$y(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{f(t+t)} Bu(t) dt + Du(t)$$

$$y(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{f(t+t)} Bu(t) dt + Du(t)$$

$$y(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{f(t+t)} Bu(t) dt + Du(t)$$

$$y(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{f(t+t)} Bu(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{f(t+t)} Bu(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{f(t+t)} Bu(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{f(t+t)} Bu(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{f(t+t)} Bu(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{f(t+t)} Bu(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{f(t+t)} Bu(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{f(t+t)} Bu(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{f(t+t)} Bu(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{ft(t+t)} Bu(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{ft(t+t)} Bu(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{ft(t+t)} Bu(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{ft(t+t)} Bu(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{ft(t+t)} Au(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{ft(t+t)} Au(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{ft(t+t)} Au(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{ft(t+t)} Au(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{ft(t+t)} Au(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{ft(t+t)} Au(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{ft(t+t)} Au(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{ft(t+t)} Au(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{ft(t+t)} Au(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{ft(t+t)} Au(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{ft(t+t)} Au(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{ft(t+t)} Au(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{ft(t+t)} Au(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{ft(t+t)} Au(t) dt + Du(t)$$

$$f(t) = Ce^{ft(t+t)} x_0 + \int_0^t Ce^{ft(t+t)} Au(t) dt$$

b) (1, v) eigenvalue, eigenvector pair of A, we have AV= AV
At At $\left[1 + At + \frac{A^2 t^2}{2!} + \cdots + \frac{A^k t^k}{k!} + \cdots \right] \nabla$ $A^{2}V = AAV = A^{2}V = \lambda^{2}V = \lambda^{2}V$, $A^{K}V = \lambda^{K}V$ $= v + \lambda v + + \frac{\lambda^2 v}{2!} + \dots + \frac{\lambda^2 v}{|\kappa|} + \dots$ $= V \begin{bmatrix} 1 + \lambda t + \frac{\lambda^2 t}{2!} + \dots + \frac{\lambda^{(t)} t}{k!} + \dots \end{bmatrix} = V \stackrel{\lambda t}{e} = e V$ Realization Problems 1) Giren transfer furtion, find state-space realization that realizes it 2) Given sequence, find shife-space realization that realizes it - Controllable Canonical Form $H(5) = \frac{N(5)}{D(5)} = \frac{\beta_{r1}}{5^{n}} + \frac{\alpha_{r1}}{5^{n}} + \frac{\beta_{r1}}{5^{n}} + \frac{\beta_{r1$

A _{cont} =	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 1 Cont	TOT	
Cont = [β_0 β_1 \cdots β_{n-1}	[] / Dicent	= d _o	
Dual of Aoba = A Bobs = C	Cont			
For the Canonical Aobs =	Same fransfor form 1's given (0 0 0 0 1 0 0 1 0 1 0 0 0	by 0 - 0	1(5), the Bohy = Bohy : Bn-1	8 hservable

```
Cohs = [O O ··· O ]] , Dobs = do
PBH tost
Controllability:
a system is controllable if YA eig (A):
              van/4 [] [-A B] =n
Observa bility.
a system is observable if the eig (A);
              runk[XI-AT CT] =n
Observers
  \begin{cases} \dot{x} = A \times f \beta u_1 & x_0 \\ \gamma = C \times f \beta u_2 & x_0 \end{cases}

\begin{cases}
\hat{x} = A\hat{x} + B\alpha + L(y - \hat{y}) \\
\hat{y} = C\hat{x}
\end{cases}

      e = x - x
      = Ax + Bu - [A$ + Bu - 2 (y-9)]
        = Ax + Bu - [Ax + Bu-L(Cx-Cx)]
        = A x + Bu - Ax - Bu + LCx - LCx
```

$$= Ax - A\hat{x} + L(x - L(\hat{x}))$$

$$= A(x - \hat{x}) + LC(x - \hat{x})$$

$$= (A + LC)(x - \hat{x})$$

$$= (A + LC) e$$

$$Logiange Formula$$

$$x(t) = e^{A(t + G)} \hat{x}_0 + \int_0^t e^{A(t - T)} Bu(x) dx$$

$$y(t) = Ce^{A(t - G)} \hat{x}_0 + \int_0^t c^{A(t - T)} Bu(x) dx + Du(x)$$

$$e^{At} = e^{(TAT^{d})} e^{A(t - T)} e^{A(t - T)} Bu(x) dx + Du(x)$$

$$e^{At} = e^{(TAT^{d})} e^{A(t - T)} e^{$$

ARMA modely AR - auto-regessive: express the output as a function of previous octats Y= X YK-1 + X2 YK-2 + ... + Xn Y1K-n M - moving average: express the output as a function of current and previous inputs Y = 180 UK + 18 UK-1 + -- + 18 UK-m ARMA: combine these two Y = X Y + ... + X Y + B U, + ... + B U, -m Transfer Functions Wxu (5) = (5]-A) B Wyn(5) = C(5 [-4) B + D $\chi(\xi) = \psi_{\chi_{\alpha}}(\varsigma) u(\xi)$ y(f) = Wyals) w(f) 5 = d $5. I \times (t) = 5 I \cdot (t) I \times (t) I \times (t) I \times (t) I \times (t)$

$$= A \times (E) + Bu(E)$$

$$S[x(E) = A \times (E) + Bu(E)]$$

$$S[x(E) - A \times (E) = Bu(E)]$$

$$S[x(E) = (SI - A)^{T} Bu(E)]$$

$$S[x(E) = (SI - A)^{T} Bu(E)] + Du(E)$$

$$= C[(SI - A)^{T} Bu(E)] + Du$$

Reduced Lyapun Need only link	ov Criteria; at eigs of A
	asymptotically stable;
ρΤ.: ΙλΙ ζ	
2) if at least	one ety (3 cnghasle;
$D_{i}T_{i}'_{i} \lambda > 1$ $O_{x} f_{3} unglab$	n'e
) In other car	ses cannot conclude anything