Next Generation Sequencing File Formats.

Institut du Thorax. Nantes. France

September 23, 2013

You don't need to have a deep knowledge of those formats. (Unless you're doing NGS)

Understand how people have solved their BIG data problems.

Why sequencing?

Well, that's a little more complicated ...

FASTQ

FASTQ

FASTQ: text-based format for storing both a DNA sequence and its corresponding quality scores

FASTQ Example

```
@IL31 4368:1:1:996:8507/1
NTGATAAAGTAATGACAAAATAATGACATTATTGTTACTATGGTTACTGTGGGA
(94**0-)*7=06>>><<<<22@>6:::5:6::63:4?-622647..-.5.%
@IL31 4368:1:1:996:21421/1
NA AGTTA ATTCTTCATTGTCCATTCCTCTGA A ATGATTCAGA A ATACTGGTAGT
(**+*2396, @<+<: @@@;;5)<0)69606>4;5>;>6&<102)0*+8:&137;
@IL31 4368:1:1:997:10572/1
NA ATGTATGTAGACCCTTCACATTCA A AGGCA A ATACA ATATCATCATGTCTTC
(/9**-0032>:>>9>400=>??00:-66,;>;<;6+;255,1;7>>>>3676
@IL31_4368:1:1:997:15684/1
NGCAATCAATGCTATGATTGATCCTGATGGAACTTTGGAGGCTCTGAACAACAT
()1,*37766>@@0>?@<?@@:>@0>>><-888>8;>*;966>;;;@8@4,.2.
@IL31_4368:1:1:997:15249/1
```

FASTQ name

@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG

Brief description
the unique instrument name
the run id
the flowcell id
flowcell lane
tile number within the flowcell lane
'x'-coordinate of the cluster within the tile
'y'-coordinate of the cluster within the tile
the member of a pair, 1 or 2 (paired-end or mate-pair reads only)
Y if the read fails filter (read is bad), N otherwise
0 when none of the control bits are on, otherwise it is an even num
index sequence

FASTQ Quality

Per base sequence quality

FASTQ Quality

A quality value Q is an integer mapping of p (i.e., the probability that the corresponding base call is incorrect).

$$Q_{\text{sanger}} = -10 \log_{10} p$$

FASTQ Quality

Since a human readable format is desired for SAM, 33 is added to the calculated quality in order to make it a printable character ranging from ! - .

$$Q_{\rm sanger} = -10\,\log_{10}p + 33$$

Aligned Reads

44187101 44187111 44187121 44187131 44187141 44187151 44187161 44187171 aaa gagccaggtgtggtggtgcacaccgataggcccagctacgtaggaggctgaggtgggaggatcgcttaaa cggc

CONSENSUS

AAA GAGCCAGGTGTGGTGGTGCACACCTATAGTCCCAGCTACGTAGGAGGCTGAGGTGGGAGGATCGCTTAAA CGGC aaatga CCAGGTGTGGTGGTGCACACCTATAGTCCCAGCTACGTAGGAGGCTGAGGTGGGAGGATCGCTTAAACCC aaatgagcc GGTGTGGTGCACACCTATAGTCCCAGCTACGTAGGAGGTGGGAGGATCGCTTAAACCCGGC AAATGAGCCAGG gtggtggtgcacacctatagtcccagcgacgtaggaggctgaggtgggaggatcgcttaaacccggc AAATGAGCCAGGTGT GTGGTGCACACCTATAGTCCCAGCTACGTAGGAGGCTGAGGTGGGAGGATCGCTTAAACCGGGC ACATGAGCCAGGTGTG tggtgcacacctatagtcccagctacgtaggaggctgaggtgggaggatcgcttaaacccggc aaatgagccaggtgtgg CAATGAGCCAGTTGTGG AAATGAGCCAGGTGAGGT AAATGAGCCAGGTGTGGT aaatgagccaggtgtggtgg AAATGAGCCAGGTGTGGTGG AAATGAGCCAGGTGTGGTGGT aaatgagccaggtgtggtggtg aaatgagccaggtgtggtggtgca aaatgagccaggtgtggtggtgcac aaatgagccaggtgtggtggtgcac

GCACACGTAAAGTCCCAGCTACGCAGGAGGCTGAGGTGGGAGGATCGCTTAAACCCCGGC cacacctatagtcccagctacgcacgaggctgaggtgggaggatcgctttaacccggc cacacctatagtcccagctacgcaggaggctgaggtgggaggatcgcttaaacccggc acacctatagtcccagctacgcaggaggctgaggtgggaggatcgctttaacccggc cctatagtcccagctacgtaggaggctgaggtgggaggatcgcttaaacccggc TATAGTCCCAGCTACGCAGGAGGCTGAGGTGGTAGGATCGCATAAACCCGGC TAGTCCCAGCTACGTAGGAGGCTGAGTTGGGAGGATCTCTTAAACCCCGGC TCGTCCCAGCTACGCAGGAGGCTTAGGTGGGAGGATCGCTTAAACCCCGGC AGTCCCAGCTACGTAGGAGGCTGAGGTGGGAGGATCGGTTAAACCCCGGC cccagctacgcaggaggctgaggtgggaccatcgcttaaaccccgc CCAGCTACGTAGTAGGCTGAGGTGGGAGGATCGCTTAAACCCCGGC

SAM

SAM Format

"SAM (Sequence Alignment/Map) format is a generic format for storing large nucleotide sequence alignments"

SAM Format

- Is flexible enough to store all the alignment information generated by various alignment programs;
- Is simple enough to be easily generated by alignment programs or converted from existing alignment formats;
- Is compact in file size;
- Allows most of operations on the alignment to work on a stream without loading the whole alignment into memory;
- Allows the file to be indexed by genomic position to efficiently retrieve all reads aligning to a locus.

SAM Format

```
+ HEADER
   -version
   -program parameters
   +GENOME
    - chrom1 size
    - chrom2 size
    - chrom3 size
    - (..)
   +GROUPS
    - group1 : sample1, lane 4
    - group2 : sample2, lane 1
+ BODY
  - READ1 -> group1
  - READ2 -> group1
  - READ3 -> group1
  - READ4 -> group2
```

SAM Header Section

SAM Example Simple example

```
@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
roo1 163 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
roo2 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA *
roo3 0 ref 9 30 5S6M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
roo4 0 ref 16 30 6M14N5M * 0 0 ATAGCTTCAGC *
roo3 2064 ref 29 17 6H5M * 0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;
roo1 83 ref 37 30 9M = 7 -39 CAGCGGCAT * NM:i:1
```

SAM Header

```
        @HD VN:1.0 S0:coordinate

        @SQ SN:1 LN:249250621 AS:NCBI37 UR:file:/data/local/ref/GATK/human_gik_v37.fasta M5:1b22b98cdeb4a9304cl

        @SQ SN:2 LN:243199373 AS:NCBI37 UR:file:/data/local/ref/GATK/human_gik_v37.fasta M5:a0d9851da00400decl

        @SQ SN:3 LN:198022430 AS:NCBI37 UR:file:/data/local/ref/GATK/human_gik_v37.fasta M5:a0d9851da00400decl

        @SQ SN:4 LN:198
```

SAM Alignment Section

SAM Example Simple example

```
IL31 4368:1:1:996:8507 77 * 0 0 * * 0 0 NTGATAAAGTAATGACAAAATAATGACATTATTGTTACTATGGTTACTGTGGGGÅ (94**0-
TL31 4368:1:1:996:8507 141 * 0 0 * * 0 0 TCCCTTACCCCCAAGCTCCATACCCTCCTAATGCCCCCACACCTCTTACCTTAGGA FFCEFF
IL31 4368:1:1:996:21421 77 * 0 0 * * 0 0 NAAGTTAATTCTTCATTGTCCATTCCTCTGAAATGATTCAGAAATACTGGTAGT (**+*2
IL31 4368:1:1:996:21421 141 * 0 0 * * 0 CAAAAACTTTCACTTTACCTGCCGGGTTTCCCAGTTTACATTCCACTGTTTGAC >DBDDD
IL31_4368:1:1:997:10572 77 * 0 0 * * 0 0 NAATGTATGTAGACCCTTCACATTCAAAGGCAAATACAATATCATCATCTTCTCTC (/9**-
IL31_4368:1:1:997:10572 141 * 0 0 * * 0 0 GATCTTCTGTGACTGGAAGAAAATGTGTTACATATTACATTTCTGTCCCCATTG E?=EE
IL31 4368:1:1:997:15684 83 chr1 241356612 60 54M = 241356442 -224 ATGTTGTTCAGAGCCTCCAAAGTTCCATCAGGATCA
TL31 4368:1:1:997:15684 163 chr1 241356442 60 54M = 241356612 224 CAGCCTCAGATTCTCAAATTCAGCTGCGGG
IL31_4368:1:1:997:15249 77 * 0 0 * * 0 0 NCGTTATAATGGAATTATTTTTCTTCCTTTATTTAATGTGTTGACAAAGAGAÅC (91692)
IL31 4368:1:1:997:15249 141 * 0 0 * * 0 0 AATGTTCTGAAACCTCTGAGAAAGCAAATATTTATTTTAATGAAAAATCCTTAT EDEEC
IL31_4368:1:1:997:6273 77 * 0 0 * * 0 0 NTACGAAGAAGTATTTCATTGGGAGGAGCTTATCCAAATATTTCCTGTCTATC¢ (**4*5-
TL31 4368:1:1:997:6273 141 * 0 0 * * 0 0 ACATTTACCAAGACCAAAGGAAACTTACCTTGCAAGAATTAGACAGTTCATTTG EEAAFF
IL31 4368:1:1:997:1657 83 chr1 143630364 60 54M = 143630066 -352 TACCTTTTTAAAGAGTCTAAAATTGTCACATGGTTA
IL31 4368:1:1:997:1657 163 chr1 143630066 60 54M = 143630364 352 CCCACCTCTCTCAATGTTTTCCATATGGCAGGGGACTC
IL31_4368:1:1:997:5609 77 * 0 0 * * 0 0 NGGTGTCTCTTACGGACAGCATTAAGCTAGATTCTTTTTAGACCGATCTGCCAA (*+*&,1-
IL31 4368:1:1:997:5609 141 * 0 0 * * 0 0 TCACTATCAGAAACAGAATGTATAACTTCCAAATCAGTAGGAAACACAAGGAAA AEECEC
IL31 4368:1:1:997:14262 77 * 0 0 * * 0 0 NGAGAACCAATGGGAAGCTGAGCTGCTGGAACCTATTCCCCATGACTTCA (91362
TL31 4368:1:1:998:19914 77 * 0 0 * * 0 0 NAGAGCATTGACACACATAAAAAATTAAAACAACCCTTTGTACTTACGGTAGAA (/892<
IL31 4368:1:1:998:19914 141 * 0 0 * * 0 0 GAATGAAAGCAGAGACCCTGATCGAGCCCCAGAAAGATACACCTCCAGATTTTA C?=CE
```

SAM Example Sorted SAM

One row is one read, NOT one fragment.

```
IL31_4368:1:107:15207:19097 163 chr1 17 0 54M = 21 58 CCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAAC
```

SAM Specifications Record Column

Col	Field	Type	Brief description
1	QNAME	String	Query template NAME
2	FLAG	Int	bitwise FLAG
3	RNAME	String	Reference sequence NAME
4	POS	Int	1-based leftmost mapping POSition
5	MAPQ	Int	MAPping Quality
6	CIGAR	String	CIGAR string
7	RNEXT	String	Ref. name of the mate/next read
8	PNEXT	Int	Position of the mate/next read
9	TLEN	Int	observed Template LENgth
10	SEQ	String	segment SEQuence
11	QUAL	String	ASCII of Phred-scaled base QUALity+33
12	META	metadata	

SAM Specifications Record Column

Col	Field	Туре
1	QNAME	IL31_4368:1:42:12530:7509
2	FLAG	137
3	RNAME	chr1
4	POS	10
5	MAPQ	30
6	CIGAR	54M
7	RNEXT	=
8	PNEXT	100
9	TLEN	90
10	SEQ	TAACCCTAACCCTAACCCTAACCCTAACCCTAAC
11	QUAL	GGGGGGFEGGGCFGGGGGGGGGGGGGGGGGGGGGGGGGG
12	META	XT:A:R NM:i:3 SM:i:0 AM:i:0 X0:i:11 X1:i:0 XM:i:3 XO:i:0 X

SAM FLAGS

□ read paired.
☐ read mapped in proper pair.
\square read unmapped.
\square mate unmapped.
\square read reverse strand.
\square mate reverse strand.
☐ first in pair.
\square second in pair.
□ not primary alignment.
\square read fails platform/vendor quality checks.
□ read is PCR or optical duplicate

SAM FLAGS

not primary alignment

SAM CIGAR

The CIGAR string is a sequence of of base lengths and the associated operation. They are used to indicate things like which bases align (either a match/mismatch) with the reference, are deleted from the reference, and are insertions that are not in the reference.

SAM Cigar

Ор	BAM	Description
M	0	alignment match (can be a sequence match or mismatch)
I	1	insertion to the reference
D	2	deletion from the reference
N	3	skipped region from the reference
S	4	soft clipping (clipped sequences present in SEQ)
H	5	hard clipping (clipped sequences NOT present in SEQ)
P	6	padding (silent deletion from padded reference)
=	7	sequence match
Х	8	sequence mismatch

SAM Cigar

http://genome.sph.umich.edu/wiki/SAM

```
RefPos: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Reference: C C A T A C T G A A C T G A C T A A C Read: ACTAGAATGGCT
```

Aligning these two:

```
RefPos: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Reference: C C A T A C T G A C T G A C T A A C Read:

A C T A G A A T G G C T
```

With the alignment above, you get:

POS: 5

CIGAR: 3M1I3M1D5M

or

CIGAR: 3=1I3=1D2=1X2=

optional fields on a SAM/BAM Alignment. A TAG is comprised of a two character TAG key, they type of the value, and the value:

The types, A, i, f, Z, H are used to indicate the type of value stored in the tag.

Type	Description						
Α	character						
i	signed 32-bit integer						
f	single-precision float						
Z	string						
Н	hex string						

SAM Fomat optional TAGs

- XT:A:U user defined tag called XT. It holds a character.
 The value associated with this tag is 'U'.
- NM:i:2 predefined tag NM means: Edit distance to the reference (number of changes necessary to make this equal the reference, excluding clipping)

SAM Example Sorted SAM

IL31_4368:1:107:15207:19097 163 chr1 17 0 54M = 21 58 CCTAACCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCTAACCTAACCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTA

IL31_4368:1:54:13142:21400 163 chr1 37 0 54M = 44 61 TAACCCTAACCACACCAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAAC

BAM

BGZF Format

The SAM/BAM file format (Sequence Alignment/Map) comes in a plain text format (SAM), and a compressed binary format (BAM). The latter uses a modified form of gzip compression called BGZF (Blocked GNU Zip Format), which can be applied to any file format to provide compression with efficient random access

VCF Variant Call Format

VCF Format

VCF is a text file format (most likely stored in a compressed manner). It contains meta-information lines, a header line, and then data lines each containing information about a position in the genome.

```
##fileformat=VCFv4.0
##file Date = 20090805
##source=myImputationProgramV3.1
##reference=1000GenomesPilot-NCBI36
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF.Number=...Type=Float.Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2.Number=0.Type=Flag.Description="HapMap2 membership">
##FILTER=<ID=q10, Description="Quality below 10">
##FILTER=<ID=s50, Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS
               ID
                         RFF ALT
                                     QUAL FILTER INFO
FORMAT
            NA00001
                            NA00002
                                           NA00003
20
       14370
               rs6054257 G
                                         29
                                              PASS
                                                     NS=3;DP=14;AF=0.5;DB;H2
                                 Α
GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.
                                                     NS=3:DP=11:AF=0.017
20
       17330
                                         3
                                              a10
                                 Α
GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3
                                           0/0:41:3
       1110696 rs6040355 A
                                              PASS
                                                     NS=2:DP=10:AF=0.333.0.667:AA=T:DB GT
20
                             G.T
                                         67
2/2:35:4
20
       1230237 .
                                         47
                                              PASS
                                                     NS=3;DP=13;AA=T
GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
       1234567 microsat1 GTCT G.GTACT 50
                                              PASS
                                                     NS=3:DP=9:AA=G
20
GT:GQ:DP
            0/1:35:4
                            0/2:17:2
                                           1/1:40:3
```

- CHROM
- POS
- ID
- REF
- ALT
- QUAL
- FILTER
- INFO
- FORMAT
- SAMPLE-1
- SAMPLE-2
- SAMPLE-3
- ..

INFO fields should be described as follows

```
##INFO=<ID=ID , Number=number , Type=type ,
Description="description">
```

```
##NFO→(ID= NS, Number=1, Type=Integer, Description="Number of Samples With Data">
(\ldots)
INFO
                                   FORMAT
                                                NA00001
                                                                NA00002
                                                                               NA00003
                                                      NS=3:DP=14:AF=0.5:DB:H2
20
       14370
               rs6054257 G
                                               PASS
GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
       17330
                                                      NS=3; DP=11; AF=0.017
20
                                               q10
GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3
```

FILTERs that have been applied to the data should be described as follows:

```
##FILTER=<ID=ID, Description="description">
```

```
##FILTER=<ID=q10, Description="Quality below 10">
##FILTER=<1D=s50, Description="Less than 50 percent of samples have data">
#CHROM POS
               ID
                         RFF ALT
                                    QUAL FILTER INFO
FORMAT
                           NA00002
                                          NA00003
            NA00001
       14370
               rs6054257 G
                                             PASS
                                                    NS=3;DP=14;AF=0.5;DB;H2
GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:
       17330
                                              a10
                                                    NS=3:DP=11:AF=0.017
GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3
      1110696 rs6040355 A G.T
                                             PASS
                                                    NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT
2/2:35:4
```

Genotype fields specified in the FORMAT field should be described as follows:

```
##FORMAT=<ID=ID , Number=number , Type=type ,
Description="description">
```

```
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
#CHROM POS
               ID
                          REF ALT
                                     QUAL FILTER INFO
            NA00001
                            NA00002
                                           NA00003
FORMAT
       14370
               rs6054257 G
                                              PASS
                                                      NS=3:DP=14:AF=0.5:DB:H2
:GQ:DP:HQ 0 0:48:1:51,51 1/0:48:8:51,51 1/1:43:5:.
       17330
                                                      NS=3;DP=11;AF=0.017
                                               q10
:GQ:DP:HQ 0|0:49:3:58.50 0/1:3:5:65.3
                                         0/0:41:3
       1110696 rs6040355 A
                                              PASS
                                                      NS=2:DP=10:AF=0.333.0.667:AA=T:DB
                                         67
2/2:35:4
20
       1230237
                                         47
                                              PASS
                                                      NS=3;DP=13;AA=T
:GQ:DP:HQ 0 0:54:7:56,60 0/0:48:4:51.51 0/0:61:2
       1234567 microsat1 GTCT G,GTACT 50
                                              PASS
                                                      NS=3;DP=9;AA=G
20
          0/1:35:4
                          0/2:17:2
:GQ:DP
                                         1/1:40:3
```

Tabix

Binning

1																
2				3				4				5				
6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
-	٠-					'	В ———						C –			

Building the TABIX index

```
$ bgzip -f file.vcf
$ tabix -p vcf file.vcf.gz
```

Querying the TABIX index

```
$ tabix file.vcf.gz chr3:1235-456778
```

API

Reading SAM with the samtools C library

```
#include <stdlib.h>
#include <stdio.h>
#include "bam.h"
#include "sam.h"
int main(int argc, char *argv[]) {
  samfile_t* sam=samopen(argv[1], "rb", 0);
  bam1_t *b= bam_init1();
  long n=0L;
  while (samread (sam, b) > 0)
   if (!(b->core.flag&BAM_FUNMAP)) ++n;
  bam_destroy1(b);
  samclose(sam);
  printf("%lu\n",n);
  return 0;
```

Reading SAM with the java picard library

```
import java.io. File;
import net.sf.samtools.*;
public class CountMapped {
  public static void main(String[] args) {
    long n=0L:
    File f = new File (args [0]);
    SAMFileReader sam = new SAMFileReader(f);
    for(SAMRecord rec : sam)
      if (! rec . getReadUnmapped())
       ++n;
    sam.close();
    System.out.println(n);
```

End

Credits

- Angus: http://ged.msu.edu/angus/
- Wikipedia: https://en.wikibooks.org/wiki/C%2B%2B_ Programming/Programming_Languages/C%2B%2B/Code/ Statements/Variables
- Abecasis Group Wiki: http://genome.sph.umich.edu/wiki/SAM
- Genome Research http://genome.cshlp.org/content/12/6/996

