Homework 3

Ryan Coyne

February 15, 2024

Question 1

Let (G, \circ) be a group, $g \in G$ and $n \in \mathbb{Z}$. We define the notation

$$g^{0} := e$$

$$g^{n} := \underbrace{g \circ g \circ \cdots \circ g}_{n \text{ times}}$$

$$g^{n-1} := \underbrace{g^{-1} \circ g^{-1} \circ \cdots \circ g^{-1}}_{n \text{ times}}.$$

a) Show that

$$\langle g \rangle := \{ g^n | n \in \mathbb{Z} \}$$

is a subgroup of G.

Proof The set $\langle g \rangle$ is non-empty because $e = g^0 \in \langle g \rangle$. Next, let $g^n, g^m \in \langle g \rangle$ for some $m, n \in \mathbb{Z}$. Thus,

$$g^n \circ g^{-m} = \underbrace{g \circ g \circ \cdots \circ g}_{n \text{ times}} \circ \underbrace{g^{-1} \circ g^{-1} \circ \cdots \circ g^{-1}}_{m \text{ times}}.$$

If n > m, then each g^{-1} is canceled by a g. Thus,

$$g^{n} \circ g^{-m} = \underbrace{g \circ g \circ \cdots \circ g}_{n-m \text{ times}}$$
$$= g^{n-m}.$$

Now, $g^n \circ g^{-m} \in \langle g \rangle$ because $n - m \in \mathbb{Z}$. If n < m, then each g is cancelled by a g^{-1} and we have

$$g^{n} \circ g^{-m} = \underbrace{g^{-1} \circ g^{-1} \circ \cdots \circ g^{-1}}_{m-n \text{ times}}$$
$$= (g^{-1})^{m-n}$$
$$= g^{n-m}$$

Now, $g^n \circ g^{-m} \in \langle g \rangle$ because $n - m \in \mathbb{Z}$. If n = m, then each g is cancelled by a g^{-1} and vice-versa. Therefore,

$$g^n \circ g^{-m} = e.$$

Now, $g^n \circ g^{-m} \in \langle g \rangle$ because $e \in \langle g \rangle$. Therefore, $g^n \circ g^{-m} \in \langle g \rangle$ for all $m, n \in \mathbb{Z}$.

b) Consider the group $(S_5, 0)$. Determine the elements of $\langle (12)(345) \rangle$. The set $\langle (12)(345) \rangle = \{(), (12)(345), (354), (12), (345), (12)(543)\}$

Question 2

Consider the group (S_4, \circ) . Find one subgroup of S_4 with:

a) 2 elements: $\{(), (12)\}$

b) 3 elements: $\{(), (123), (132)\}$

c) 4 elements: $\{(), (1234), (13)(24), (1432)\}$

d) 6 elements: $\{(), (12), (23), (123), (132), (13)\}$

e) 8 elements: $\{(), \}$

f) 12 elements: $\{(), \}$

You do not need to justify that your answers are subgroups.