# Unsupervised learning

Inteligencia Artificial en los Sistemas de Control Autónomo Máster en Ciencia y Tecnología desde el Espacio

Departamento de Automática





### Objectives

I. TODO

## Bibliography

- TODO Bishop, Christopher M. Pattern Recognition and Machine Learning. 2nd edition. Springer-Verlag. 2011
- TODO Müller, Andreas C., Guido, Sarah. Introduction to Machine Learning with Python. O'Reilly. 2016

### Table of Contents

- I. Clustering
  - Aplications
- 2. K-means
  - Overview
  - K-means algorithm
  - K-means limitations
  - Elbow's method
  - Application: Image segmentation
  - Application: for semi-supervised learning
  - K-means summary

- 3. Other clustering algorithms
  - GMM
  - DBSCAN
  - Summary
  - Agglomerative clustering
  - Agglomerative clustering: Summary
- 4. Anomaly detection
- 5. Dimensionality reduction
- Main approaches for dimensionality reduction
  - PCA



# Clustering

K-means, agglomerative clustering, DBSCAN and GMM

Clustering

# Applications

Set of unsupervised techniques that identify groups of data (named clusters)

• No universal definition of cluster: Centroid, medoid, dense regions, etc

### **Applications**

- Customer segmentation
- Data analysis
- Dimensionality reduction
- Anomaly detection
- Semi-supervised learning
- Search engines
- Image segmentation

### Main algorithms

• K-means, DBScan, GMM, hierarchical clustering, EM, ...





In k-means, clusters are identified by a centroid



# K-means algorithm (I)

# K-means algorithm

1. Set k random centroids

K-means 00000000

- 2. Assign each data point to its closest centroid
- 3. Recompute centroids
- 4. Go to 2 until no point reassignment

### k is an hyperparameter

Number of clusters



# K-means algorithm (II)

### New data points are assigned to its closest centroid





### K-means limitations

#### K-means can fail in several conditions

- Incorrect number of clusters
- Different clusters variance
- Non-spheric clusters  $\Rightarrow$  normalization



(Source)



#### K-means

### Elbow's method

#### Election of k

- Not a problem when domain information is available
- ... that is rarely the case

### Elbow's method

- I. Select K = 1, ..., n
- 2. Visualize performance for each k
- 3. Choose K where metric stabilizes



#### Performance measures

- Inertia: mean squared error between each instance and its closest centroid
- Silhouette:  $(b a)/\max(a, b)$ , where a mean intra-cluster distance, and b is the mean nearest-cluster distance



# K-means

# Application: Image segmentation





(Source)



### K-means

# Application: Clustering for semi-supervised learning

Semi-supervised learning: Only a subset of the dataset is labeled

- Supervised and unsupervised learning
- Quite common in real-world applications (labels use to be expensive)

| f1                   | $f_2$                |       | fn                              | Υ  |
|----------------------|----------------------|-------|---------------------------------|----|
| $\mathfrak{a}_{1,1}$ | $\mathfrak{a}_{2,1}$ | • • • | $\mathfrak{a}_{\mathfrak{n},1}$ | γ1 |
| $\mathfrak{a}_{1,2}$ | $\mathfrak{a}_{2,2}$ | • • • | $\mathfrak{a}_{\mathfrak{n},2}$ |    |
| $\mathfrak{a}_{1,3}$ | $\mathfrak{a}_{2,3}$ | • • • | $\mathfrak{a}_{\mathfrak{n},3}$ |    |
| $\mathfrak{a}_{1,4}$ | $\mathfrak{a}_{2,4}$ | • • • | $\mathfrak{a}_{\mathfrak{n},4}$ | γ4 |
| $\mathfrak{a}_{1,5}$ | $\mathfrak{a}_{2,5}$ | • • • | $\mathfrak{a}_{n,5}$            |    |

### Label propagation

- 1. Obtain k clusters
- Get a representative instance of each cluster (medoid) measuring the distance to the centroid
- 3. Label the members of each cluster with its medoid's label

# K-means: Summary

| Hyperparameters | Advantages          | Disadvantages         |
|-----------------|---------------------|-----------------------|
|                 | Fast                | Simple shapes         |
| k               | Few hyperparameters | Determine k           |
|                 | Scalable            | Random initialization |

# Gaussian Mixure Model (GMM) (I)

# GMM is a generative clustering algorithm

Assumes data coming from a set of multidimensional gaussian distributions

GMM fits a set  $\{(\phi_i, \mu_i, \sigma_i)\}_{i=1,...,k}$ 

- $\phi$  is a weight
- $\mu$  is a multidimensional mean
- $\sigma$  is a covariance matrix
- k is the number of clusters (hyperparameter)





### Gaussian Mixure Model (GMM) (II)

Gaussian parameters are fit with the Expectation-Maximization (E-M) algorithm

• E-M is a generalization of K-means

## Expectation-Maximization algorithm

- 1. Init parameters randomly
- 2. Expectation step: Assign each instance to a cluster
  - Assignment is probabilistic
- 3. Maximization step: Update cluster parameters
  - Each cluster is updated using all the data
  - Instances contribution to a cluster parameters is weighted by the probability that it belongs to it
- 4. Go to 2

GMM can be seen as a fuzzy clustering algorithm



### Gaussian Mixure Model (GMM) (III)

Gaussian parameters are fit with the Expectation-Maximization (E-M) algorithm

• E-M is a generalization of K-means

## Expectation-Maximization algorithm

- 1. Init parameters randomly
- 2. Expectation step: Assign each instance to a cluster
  - Assignment is probabilistic
- 3. Maximization step: Update cluster parameters
  - Each cluster is updated using all the data
  - Instances contribution to a cluster parameters is weighted by the probability that it belongs to it
- 4. Go to 2

GMM can be seen as a fuzzy clustering algorithm



# Gaussian Mixure Model (GMM) (IV)

issiaii wiixure wodei (Giviivi) (1 v

### GMM provides a probability of an instance to belong to a cluster

- This can be used to detect anomalies
- Just assign a probability threshold





**GMM: Summary** 

| Hyperparameters        | Advantages               | Disadvantages         |
|------------------------|--------------------------|-----------------------|
| Number of clusters     | Probabilistic clustering | Number of clusters    |
| Covariance matrix type | Generative model         | Gaussian data         |
|                        | Anomaly detection        | Sensitive to outliers |



# Other clustering algorithms DBSCAN (I)

### DBSCAN: Density-Based Spatial Clustering of Applications with Noise

- Identifies high density regions (dense regions) in feature space
- Asumtion: Clusters form dense regions separated by empty areas

#### Hyperparameters

- ullet  $\epsilon$ : Radius of a neighborhood
- min\_samples: Minumun cluster size

### Type of points

- Core instance
- Outliers



(Source)





**DBSCAN: Summary** 

| Hyperparameters | Advantages                     | Disadvantages                     |
|-----------------|--------------------------------|-----------------------------------|
| $\epsilon$      | No explicit number of clusters | Slower than K-means               |
| min_samples     | Scales relatively well         | Clusters with different densities |
|                 | Almost deterministic           |                                   |
|                 | Robust to outliers             |                                   |
|                 | Anomaly detection              |                                   |



# Agglomerative clustering (I)

# Agglomerative clustering

- 1. Initially, each instance forms a cluster
- 2. Merge the two most similar clusters according to a metric
- 3. Repeat 2 until a stop criterion is satisfied









We need a similarity measure between two clusters

- Ward: Minimizes variance within merged clusters. Leads to equally sized clusters
- Average: Minimizes average distances between their points
- Complete: Minimizes maximun distance between their points



Agglomerative clustering (II)

Agglomerative clustering is a special case of hierarchical clustering





# Agglomerative clustering: Summary

| Hyperparameters | Advantages                                | Disadvantages |
|-----------------|-------------------------------------------|---------------|
|                 | Complex shapes<br>Hierarchical clustering |               |
|                 | Therarchical clustering                   |               |



Anomaly detection

Two related concepts

Outlayer detection and novelty detection

Adaptation of clustering and classification algorithms

• PCA, GMM, autoencoders, etc

#### One-Class SVM



#### LOF



#### Isolation Forest



(Source)



PCA and manifold learning



## Main approaches for dimensionality reduction (I)

Two main approaches to dimensionality reduction: Projection and manifold learning

### Projection





Figure 8-3. The new 2D dataset after projection

(Source)





Main approaches for dimensionality reduction (II)



### Manifold learning algorithms

 Isomap, T-distributed Stochastic Neighbor Embedding (t-SNE), Multi-dimensional Scaling (MDS), Locally Linear Embedding (LLE), ...



### Principal Components Analysis (I)

Dimensionality reduction transforms data into more convenient representations

- Reduce data dimensionality
- Visualize multidimensional data

Main algorithms



### Principal Components Analysis (I)

### Dimensionality reduction transforms data into more convenient representations

- Reduce data dimensionality
- Visualize multidimensional data

### Main algorithms

- Isomap
- T-distributed Stochastic Neighbor Embedding (t-SNE)
- Principal Components Analysis (PCA)



### Principal Components Analysis (II)

#### PCA maximizes data variance





### Principal Components Analysis (III)

Example: Hand-written digits recognition

- Images of hand-written digits
- 8x8 images (64 dimensions)
- 10 digits
- Classification problem







