Yakeen NEET 2.0 2026

Physical Chemistry By Amit Mahajan Sir Chemical Equilibrium

DPP: 1

Q1 In lime kiln, reversible reaction

$$CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$$

Proceeds to completion because

- (A) High temperature
- (B) CO_2 escapes
- (C) CaO removed
- (D) Low temperature
- **Q2** Which is a reversible reaction?
 - (A) $\mathrm{H_2} + \mathrm{I_2} o 2\mathrm{HI}$

(B)
$$\mathrm{H_2SO_4} + \mathrm{Ba(OH)_2} \longrightarrow \mathrm{BaSO_4} \downarrow +2\mathrm{H_2O}$$

- (C) $NaCl + AgNO_3 \longrightarrow NaNO_3 + AgCl \downarrow$
- (D) $2KClO_3 \longrightarrow 2KCl + 3O_2 \uparrow$
- Q3 Which one is reversible process?
 - (A) Melting of ice at $10\,^\circ\mathrm{C}$
 - (B) Mixing of two gases by diffusion
 - (C) Evaporation of water at $100^{\circ}\mathrm{C}$ and 1 atm pressure
 - (D) None of these
- **Q4** The active mass of 64 gm of HI in a two litre flask would be
 - (A) 2

(B) 1

(C)5

- (D) 0.25
- **Q5** A chemical reaction is at equilibrium when
 - (A) Equal amounts of reactants and products are present
 - (B) Formation of products is minimized
 - (C) Reactants are completely transformed into products

- (D) Rates of forward and backward reactions are equal
- **Q6** For the system $3~A+2~B \rightleftharpoons C$, the expression for equilibrium constant is
 - (A) $\frac{[3 \text{ A}][2 \text{ B}]}{[4 \text{ A}]}$
 - (B) $\frac{[C]}{[3 \text{ A}][2 \text{ B}]}$
 - (C) $\frac{[A]^3[B]^2}{[B]^3}$
 - (D) $\frac{[C]}{[A]^3[B]^2}$
- Q7 Which of the following graph correctly represents a relation between rate of reaction w.r.t. time

- **Q8** A reversible reaction having two reactants is in equilibrium, if the concentration of reactants are doubled, the equilibrium constant will:
 - (A) Become 4 times
 - (B) Become $\frac{1}{4}^{th}$ times
 - (C) Become $\frac{1}{16}$ th times
 - (D) Remains the same
- $\begin{tabular}{ll} \bf Q9 & For the hypothetical reaction, the \\ & equilibrium constant (K) values are given \\ \end{tabular}$

$$A \rightleftharpoons B, \quad K_1$$

$$B \rightleftharpoons C, K_2$$

$$C \rightleftharpoons D$$
, K_3

The equilibrium constant (K) for the reaction

$$A
ightleftharpoons D$$
 is

(A)
$$K_1 + K_2 + K_3$$

(B)
$$K_1 \cdot K_2 \cdot K_3$$

(C)
$$\mathrm{K}_1 + \mathrm{K}_2 - \mathrm{K}_3$$

(D)
$$\frac{\mathrm{K_1+K_2}}{\mathrm{K_3}}$$

Q10 In the reversible reaction

$$2HI(g) \rightleftharpoons H_2(\ g) + I_2(\ g), K_p$$
 is

- (A) Greater than K_C
- (B) Less than K_{C}
- (C) Equal to $K_{\rm C}$
- (D) Zero
- Q11 For the reaction

$$\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_2(|\mathrm{g})
ightleftharpoons \mathrm{COCl}_2(|\mathrm{g})$$
 , the $\frac{\mathrm{K}_p}{\mathrm{K}_c}$ is equal to

- (A) $\frac{1}{RT}$
- (B) m RT

- (c) \sqrt{RT}
- (D) 1
- Q12 $NH_4 COONH_2(s) \rightleftharpoons 2 NH_3(g) + CO_2(g)$. If equilibrium pressure of gaseous mixture is 3 atm then K_p will be:
 - (A) 4

(B) 27

(C) $\frac{4}{27}$

(D) $\frac{1}{27}$

Answer Ke	y
------------------	---

Q1	(B)	Q7	(C)
Q2	(A)	Q7 Q8 Q9 Q10 Q11 Q12	(D)
Q3	(C)	Q9	(B)
Q4	(D)	Q10	(C)
Q5	(D)	Q11	(A)
Q6	(D)	Q12	(A)

Master NCERT with PW Books APP