Colbyn's Exam #1 Corrections

Colbyn Wadman

September 28, 2020

Question #1

Question: Consider the angle θ in with measure -495° .

The problem with this question is that I was trying to be smart by simplifying -495° to 225° , so thereafter all of my subsequent work was using an angle coterminal to -495° . In this context, my mistake was equating co-terminal angles as being the same, but this only applies to the output of periodic functions where co-terminal angles **map to the same value**, but the arguments themselves represent different measures.

Question #1 (A)

Using the following relation:

$$x^{\circ} = \frac{x}{360}\tau \text{ rad} \tag{1}$$

I can express -495° in terms of turns (or τ) like so:

$$-495^{\circ} = \frac{-495}{360}\tau \text{ rad}$$

$$= -\frac{11}{8}\tau \text{ rad}$$

$$= -1\frac{3}{8}\tau$$
(2)

Since this angle is expressed in terms of turns, we have a intuitive idea about how the graph the given angle. I.e. because $-\frac{3}{8}$ can be considered a ratio of a circle, which is easy to picture, in the same manner that $\frac{3}{4}$ of a circle is easy to imagine, compared to e.g. $\frac{3}{2}$ half circles.

Therefore, I know that this angle makes one full revolution, and $-\frac{3}{8}$ of a revolution (going clockwise), which results in the following figure correctly drawn in the context of a -495° angle:

Question #1 (B)

Using the following relation:

$$x^{\circ} = \frac{x}{360}(2\pi) \text{ rad} \tag{3}$$

I can **correctly** express -495° degrees in terms of radians like so:

$$-495^{\circ} = \frac{-495}{360} (2\pi) \text{ rad}$$

$$= -\frac{11}{8} (2\pi) \text{ rad}$$

$$= -\frac{11}{4} \pi \text{ rad}$$
(4)

Answer: $-\frac{11}{4}\pi$ rad

Question #1 (C)

Question #3

This should have been correct, what happens is my brain frequently gets things mixed up, i.e. there was a disconnect between my internal thoughts and what manifested on paper. I know that $\sec(x)$ is the reciprocal of $\cos(x)$, just as $\csc(x)$ is the reciprocal of $\sin(x)$, and that $\cot(x)$ is the reciprocal of $\tan(x)$, and furthermore in the context of the unit circle, that $\sin(\theta)$ represents the y value, and that $\cos(\theta)$ represents the x value.

Therefore, given the some P(-20, 21) for θ :

$$r = \sqrt{x^2 + y^2} = 29$$

$$\sin(\theta) = \frac{y}{r} = \frac{21}{29}$$

$$\sec(\theta) = \frac{r}{x} = \frac{29}{-20} = -\frac{29}{20}$$
(5)

Answer: $\sin(\theta) = \frac{21}{29}, \sec(\theta) = -\frac{29}{20}$

Question #4

This was one of those questions where I wonder if I'm just dumb, or if it's legitimately a hard problem... Either way something I would have failed at regardless.

Question #5

Question #6