자율주행 및 C-ITS

- 4차 산업혁명 -

수업 개요

- □ 수업 내용
 - □ 산업혁명의 역사
 - 제4차 산업혁명의 개요
 - □ 제4차 산업혁명의 주요 기술
 - □ 주요 국가 대응 현황
 - □ 교통분야에서의 변화
- □ 수업목적
 - 제4차 산업혁명의 개념과 제4차 산업혁명이 우리 교통분야에 미치는 영향 및
 파급효과를 이해하고자 함

3 산업혁명의 역사

산업혁명(The Industrial Revolution)

- ㅁ 의미
 - 인간의 삶에 미치는 기술적, 조직적, 경제적, 사회적 변화를 지칭

출처: 금강일보

〈그래픽=송유미 미술기자〉

제1차 산업혁명

□ 의미

- □ 18세기 중엽부터 19세기 중엽까지 영국을 중심으로 발생했던 기술적, 조직적, 경제적, 사회적 변화를 지칭
- 증기기관이 등장하고 공장이 생기고 공업이 시작되면서 인간의 노동을 기계가 대신하기 시작함

□ 특징

- □ 핵심기술 : 증기기관
 - 1789년 증기기관을 이용한 방직공장 등장
 - 도로 및 운하와 철도 건설 등으로 전국적인 도로망 형성
 - 수송비용의 획기적인 감소
- □ 농업 중심의 사회에서 공업 중심의 사회로 전환
 - 공장제라는 새로운 생산체계 정립

제1차산업혁명

- □ 산업혁명의 시작
 - □ 1784년(우리나라 정조 8년) 영국의 와트가 발명한 증기기관을 개량하여 만든 기계식 설비를 공장에서 대량생산에 사용

제1차 산업혁명

- 산업혁명이 미친 영향
 - □ 인간의 삶 및 교통분야 예 :

출처: 나무위키

제2차산업혁명

- - □ 19세기 후반(1865년부터 1900년) 전기산업, 통신산업, 자동차산업 등 새로운 기술혁신에서 비롯된 산업발전과 경제성장

□ 특징

- 핵심기술 : 전기, 강철, 내연기관 등
 - 1870년(우리나라 고종 7년) 상업용 발전기 도입으로 인해 가격이 저렴하고 전달이 쉬우며 응용범위가 넓은 전기가 증기력을 급격히 대체해 나감
 - 가솔린 및 디젤 기관 등의 내연기관 등장으로 에너지효율이 크게 향상
 - 자동차 및 비행기의 등장
- □ 대량 생산과 대량 소비의 결합
 - 대기업이 기술혁신과 경제성장을 주도
 - 독일과 미국이 주도

제2차산업혁명

- □ 제2차 산업혁명이 미친 영향
 - □ 인간의 삶 및 교통분야 :

<초기 신호등(폴란드,1915)>

<T형 포드자동차 생산 컨베이어 벨트(1908~1927)>

출처: 구글 이미지

출처: 구글 이미지

제3차산업혁명

- - □ 20세기 후반 1965년 경 컴퓨터와 인터넷의 발달로 촉발된 정보혁명
- □ 특징
 - □ 핵심기술 : 반도체, 정보 기술(인터넷) 등
 - 반도체 기술의 발달로 개인용 컴퓨터가 등장하면서 급격히 발전
 - 통신기술과 컴퓨터기술이 결합하여 정보기술 발생 및 인터넷으로 발전
 - 컴퓨터 기반 제어 자동화 기술, 생명공학 기술 등의 등장
 - □ 서비스 경제와 글로벌 경제
 - 탈산업화 : 서비스 산업의 확장
 - 국제 교류의 증대 및 일상화

제3차산업혁명

- □ 제3차 산업혁명이 미친 영향
 - □ 인간의 삶 및 교통분야:

각 산업혁명의 단계 별 변화

□ 각 산업혁명 별 주요 특징

		1차 산업혁명	2차 산업혁명	3차 산업혁명	4차 산업혁명	
시기		18세기 후반	19~20세기 초	20세기 후반	2000년대 이후	
연결성		국가내부 연결성 강화	기업-국가간 연결성 강화	사람·환경·기계의 연결성 강화	자동화, 연결성의 극대화	
최초 사례		방직기 (1784)	신시내티 도축장 (1870)	PLC : Modicon 084 (1969)	-	
혁신동인		증기기관 (Steam Power)	전기에너지 (Electric Power)	컴퓨터, 인터넷 (Electronics & IT)	loT, 빅데이터, Al 기반 초연결 (Hyper-Connection, CPS*)	
		동력원의 변화(유형자산 기반)		정보처리 방식의 변화(무형자산 기반)		
특징	원인	기계화 전기화		정보화	지능화	
	결과	산업화 (Industrialisation)	대량생산 (Mass Production)	자동화 (Automation)	자율화 (Autonomisation)	
				기계, SW가 데이터를 생산	데이터가 기계, SW를 제어	
현상		영국 섬유공업의 거대 산업화	컨베이어 벨트 활용 기반 대량생산 달성한 미국으로 패권 이동	인터넷 기반의 디지털 혁명, 미국의 글로벌 IT기업 부상	사람-사물-공간의 초 연결, 초지능화를 통 한 산업구조 개편	

출처: 김상훈 외, 4차 산업혁명, 산업부 발표자료(2017.2)

13 4차산업혁명의개요

제4차 산업혁명

- 유래

- □ 2016년 세계경제포럼에서 제4차 산업혁명을 의제로 제시하면서 세계적 관심 점화
 - 제4차 산업혁명 개념은 '12년 독일의 '인더스트리 4.0 (Industry 4.0)' 시작 당시 이미 사용되었으나, 세계경제포럼(World Economic Forum, WEF)에서 거론된 후 재조명
 - 국내에서는 이세돌과 알파고의 대국 이후 4차 산업혁명의 핵심기술 중 하나인 인공지능(artificial intelligence, AI)을 중심으로 이목 집중

□ 정의

□ 제3차 산업혁명을 기반으로 한 정보통신기술(Information & Communication Technology, ICT), 생물학, 물리학 등의 경계를 융합하는 기술혁명

제4차 산업혁명

- □ 특징
 - 제3차와 제4차 산업혁명은 정보화 및 기계의 지식노동 대체
 - 제3차는 정보의 산출과 교류에 그치는 반면 제4차에서는 대량정보의 산출,
 소통 및 융합과 지능화를 통하여 연결된 모든 것의 자율화
 - □ 소프트웨어 중심의 가치 창출
 - 제3차 산업혁명까지는 하드웨어 중심의 방식에서, 제4차 산업혁명은 소프 트웨어와 기계의 결합을 통해 지능화
 - 초연결(Hyper-Connectivity) 기반의 지능화(Intelligence)를 통한 자율화 (Autonomization)

제4차 산업혁명이 야기하는 변화

- □ 기술적인 영향
 - □ 모바일 인터넷과 클라우드 기술 발달
 - 컴퓨터 처리 능력과 빅데이터의 확대
 - □ 신에너지 공급과 기술
 - □ 사물인터넷의 발달
 - □ 크라우드 소싱, 공유경제, 개인간 플랫폼 발달

제4차 산업혁명이 야기하는 변화

- □ 사회, 경제적인 영향
 - 작업환경의 변화와 노동 유연화
 - □ 기존 인간 중심의 일자리가 시스템으로 대체
 - □ 신흥시장의 성장
 - □ 기후변화, 자연자원의 제약과 녹색경제로의 이행
 - □ 지정학적 변동성의 확대

18 4차 산업혁명 주요 기술

주요 기술 예시

□ 물리학

- □ 무인 운송수단
 - 센서와 인공지능의 발달로 자율 체계화된 모든 기계의 능력이 빠른 속도로 발전함에 따라 드론, 트럭, 항공기, 보트 등 다양한 무인운송수단 등장
- □ 3D 프린팅
 - 입체적으로 형성된 3D 디지털설계도나 모델에 원료를 층층이 겹쳐 쌓아 유형의 물체를 만드는 기술
- □ 로봇공학
 - 센서의 발달로 로봇은 주변환경에 대한 이해도가 높아져 그에 맞춘 대응과 다양한 업무 수행 및 클라우드 서버를 통한 다른 로봇들과의 협업
- □ 그래핀(신소재)
 - 강철보다 200배 이상 강하고, 두께는 머리카락의 100만분의 1만큼 얇고, 뛰어난 열과 전기의 전도성을 가진 혁신적인 신소재

주요 기술

□ 디지털 기술

- 사물 인터넷(Internet of Things, IoT)
 - 작고 스마트해진 센서들을 통해 연결된 기술과 다양한 플랫폼을 기반으로 사물(제품, 서비스, 장소)과 인간의 관계를 의미
- □ 블록체인 시스템
 - 서로 모르는 사용자들이 공동으로 만들어가는 시스템인데, 프로그래밍이 가능하고 암호화(보완)되어 모두에게 공유되기 때문에 특정 사용자가 시스템을 통제할 수 없음
- □ 인공지능
 - 사람의 지능을 대체할 인공지능의 발달로 인하여 지금까지는 어렸웠던
 방대한 자료의 정확한 분석 등이 가능해짐

주요 기술

- □ 생물학 기술
 - □ 유전학
 - 유전자 편집 기술을 통해 인간의 성체세포를 변형할 수 있고 유전자변형
 동식물도 만들어 낼 수 있음
 - □ 합성생물학
 - DNA데이터를 기록하여 유기체를 제작할 수 있어 심장병, 암 등 난치병
 치료를 위한 의학분야에 직접적인 영향을 줄 수 있음

7대 분야 선정

- □ 기술체계 분류
 - □ 특허청에서 4차 산업혁명 7대 기술 분야 체계 수립(2018년 1월)
 - 전 세계에서 공통으로 사용할 수 있는 국제 표준화를 추진할 계획
 - 선정 방식
 - 제4차 산업혁명 관련 국내외 주요 문헌과 뉴스 키워드 검토를 통해 핵심 기술 분야를 도출하고, 언급 빈도를 분석
 - □ 4차 산업혁명 7대 기술 분야
 - 인공지능, 3D프린팅, 사물인터넷, 자율주행차, 지능형로봇, 클라우드, 빅데이터

인공지능	3D프린팅	사물인터넷	자율주행차	지능형로봇	클라우드	빅테이터
Ai, o	\$	Ϊ́ΘΤ	**			BIG

출처: 특허청 보도자료(2018. 1. 22)

우리나라에서의 시작

- □ 알파고 vs. 이세돌
 - □ 알파고(영어: AlphaGo)는 구글 딥마인드(Google DeepMind)가 개발한 인공지능(Artificial Intelligence, AI) 바둑 프로그램

출처: 갈설리 비밀노트

□ 최신 모델인 알파고 제로는 스스로 학습해서 알파고를 압도

우리나라에서의 시작

- □ 4차산업혁명위원회 출범(2017. 10. 11)
 - □ 2022년 9월 2일, 디지털플랫폼정부위원회(https://dpg.go.kr/)로 대체

<출처: https://www.4th-ir.go.kr/4ir/list>

25 주요 국가 대응 현황

독일

- □ 정책 유형 및 방향
 - □ 장기, 프로젝트형
 - □ 인간과 기계의 협업
 - 독일 제조업의 경쟁력 유지
 - 스마트공장 : 독일 생산기술로 세계의 공장을 만드는 공장의 지위 확보
- □ 동향 및 특징
 - □ 추진 주체 : 대·중·소기업, 협회 및 산학연 연계와 강력한 정부 지원
 - □ 주요 컨소시엄 : Plattform Industrie 4.0
 - □ 인더스트리 4.0을 통해 제조혁신의 전반적 프레임 제시
 - 서비스를 포함한 성공적 혁신 도모를 위해 Smart Service World 2025 추진

미국

- □ 정책 유형 및 방향
 - □ 중장기, 거점형
 - □ 인간관점
 - 기존시설/장비의 전략적 활용
 - IT기술에서 사업모델을 창출하여 수익원천 확보
 - 설계/제조 및 신소재 관련 신프로세스 개발
- 🗖 동향 및 특징
 - □ 추진 주체 : 대기업 위주, IT 기술 위주, 산학연 연계 미흡
 - 주요 컨소시엄 : IIC(Industrial Internet Consortium)
 - 제조업 자체보다는 제조혁신을 도모하기 위한 산업인터넷, 3D프린팅 등 새로운 영역 집중
 - □ 첨단제조 파트너십(Advanced Manufacturing Partnership, AMP), 선진제조연구시설 (Institutes for Manufacturing Innovation, IMI) 설치 등을 통한 첨단제조 육성 지원

일본

- □ 정책 유형 및 방향
 - □ 중단기, 민생해결 및 주력산업형
 - □ 인간중심 자동화
 - 기존 공정 생산성 제고
 - 설비/공장/공정의 미시적 관점에서 방안 모색
 - 기존 강점 제품 기반으로 로봇,기계, 제어계측 등 신산업 분야 집중
- □ 동향 및 특징
 - □ 추진 주체 : 로봇·부품 관련 대기업, 중소 전문 기업, 산학연 연계 초기
 - 주요 컨소시엄: IVI(Industry Value Chain Initiative)
 - 제조업 보완 관점에서 4차 산업혁명을 추진하고 있어, 독일, 미국보다는 보수 적인 접근을 취하고 있음
 - □ IT분야의 전반적 경쟁력 제고방안을 포함한 신산업구조비전(2015)과 4차 산 업혁명 선도전략 (2016)을 발표

중국

- □ 정책 유형 및 방향
 - □ 장기, 복합추구형
 - □ 정부중심 전략 수립
 - 제조대국에서 제조강국으로 의 전환
 - 제조업 및 인터넷 강국을 목표
- 🗖 동향 및 특징
 - □ 거대 내수시장 기반으로, 정부주도 신산업 혁신전략 추진
 - □ 중국제조 2025 : 세계최고 수준의 제조강국 비전을 제시하고 이를 위한 신산업 중심의 제조혁신전략 마련
 - 인터넷플러스: 기존 제조업을 한 단계 발전시키기 위한 수단으로 ICT 기술 활용

30 교통에서의 변화

교통 관련 주요 혁신기술

- □ 교통 분야에 영향을 미치는 주요 혁신 기술
 - 5G 등 초고속 이동형 인터넷
 - 통행 중에 이동 경로나 교통수단을 전환하는 데 필요한 실시간 정보 제공
 - □ 사물인터넷(Internet of things, IoT)
 - 도로 시설 장비를 원격으로 모니터링하고 관리하는 데 활용 가능
 - □ 첨단 재료
 - 내구성이 향상된 재료의 사용으로 도로 유지관리 비용 절감
 - □ 자율주행차량 기술
 - 운전자의 개입이 거의 또는 전혀 없이 도로상에서 차량을 운행
 - □ 실감 있는 인터페이스
 - 차량 내 인터페이스를 통해 도로 표지나 단속 정보 제공
 - 차량 인포테인먼트(Infortainment) 발전
 - 정보(Information) + 오락(Entertainment)

교통공학

- □ 교통계획, 교통운영, 교통안전 등
 - □ 빅데이터(Bigdata) 기반의 분석, 예측 및 계획
 - 핸드폰, SNS, 카드자료 등 빅데이터 기반 분석을 통해 현재 상황 및 짧은 미래의 상황을 정밀하게 예측 가능
 - 빅데이터 분석을 통해 통행 패턴 변화 등을 감지하여 장기적인 예측을 수행하며 능동적으로 대책 수립에 활용
 - 예: 버스카드 정보와 유동인구 정보를 이용한 버스노선 개선
 - □ 인공지능(Artificial intelligence, AI) 기반의 운영
 - 복잡한 모델을 사용하지 않고, 현장에서 수집된 데이터를 기반으로 최적 화 수행을 통한 운영
 - 예: 교통신호 최적화 및 운영

C-ITS 및 자율주행차량

- C-ITS(Cooperative intelligent transportation system, C-ITS)
 - □ 기존의 ITS에서 협력형 시스템인 C-ITS로 전환
 - 기존의 검지기 뿐만 아니라 차량센서, 개인 통신 단말기 등으로 자료 수집
 - 클라우드 데이터베이스를 통해 저장 및 가공
 - 이동통신 단말기, 차량 탑재 단말기 등을 통해 통행자에게 제공
- □ 자율주행자동차(Autonomous vehicle 또는 automated vehicle)
 - 운전자의 개입이 거의 필요 없는 높은 수준의 자율주행
 - 센서 및 카메라 등을 통한 운행 상황 인지와 알고리즘을 통한 해석
 - 해석된 자료에 기반을 둔 경로선택, 가·감속 및 조향 등에 대한 계획
 - 계획된 의사결정을 실행 가능한 명령으로 전환하고 조향장치, 브레이크 등의 차량제어시스템에 전달하여 실행하는 행위

공유모빌리티

- □ 공유모빌리티
 - □ 공유모빌리티 활성화
 - 차량위치추적 기술, 모바일 전자결제 서비스 등으로 인해 카셰어링의 사용이 용이
 - 향후 자율주행차량의 상용화로 값비싼 고급 차량기술을 저비용으로 이용 하려는 공유모빌리티의 새로운 수요층을 형성할 것으로 전망
- □ 통합교통서비스 플랫폼
 - MaaS(Mobility as a Service)
 - 통행자 개개인의 수요에 부응할 수 있도록 카셰어링, 버스, 택시 등 여러 교통서비스를 통합하여 제공하는 모빌리티 솔루션
 - 통행의 기점에서 종점까지 교통수단의 조합을 편리하게 선택할 수 있도록 지원

35 종합토론 및 숙제

종합토론

□ 제4차 산업혁명 시대에 교통인으로서 무엇을 준비해야하나?

숙제

- □ 읽기 숙제
 - □ 제4차 산업혁명 관련 자료 읽기
- □ 쓰기 숙제
 - Assignment #1

참고문헌

- □ 4차산업혁명 관련 참고문헌
 - □ 김상훈(2017), 4차 산업혁명 -주요 개념과 사례-, KIET 산업경제 2017년 5월호, 산업연구원
 - □ 이은민(2016), 4차 산업혁명과 산업구조의 변화, 정보통신방송정책 제28권 15호 통권 629호, 정보통신정책연구원
 - □ 현재호 외(2016), 4차 산업혁명 정의 및 거시적 관점의 대응방안 연구, 산업통 상자원부
 - □ 송성수(2017), 산업혁명의 역사적 전개와 4차 산업혁명론의 위상, 과학기술 학연구 제17권 제2호 5p~40p, 한국과학기술학회
 - □ 김광호(2017), 제4차 산업혁명으로 인한 교통 운영·관리의 변화, 국토 제 424호 36p~43p, 국토연구원
 - □ 조윤정(2017), 한국형 4차 산업혁명 대응전략, 산은조사월보 제736호, KDB산 업은행