

# **Distributing Candies**

Дејче спрема n кутии со слатки за посетителите на Доручек на Камени мост. Кутиите се нумерирани со 0 до n-1 и на почеток се празни. Кутијата i (  $0 \le i \le n-1$ ) има капацитет од c[i] слатки.

Дејче троши q денови за подготовка на кутиите. На j-иот ден (  $0 \le j \le q-1$ ), тој ја прави следната акција зададена преку 3 цели броја  $l[j],\ r[j]$  и v[j] каде  $0 \le l[j] \le r[j] \le n-1$  и  $v[j] \ne 0$ . За секоја кутија k за која  $l[j] \le k \le r[j]$ :

- Ако v[j]>0, Дејче додава слатки во кутијата k, една по една, се дури не додаде v[j] слатки или дури не ја наполни кутијата. Поинаку кажано, ако во кутијата имало p слатки пред акцијата, ќе има  $\min(c[k], p+v[j])$  слатки по акцијата.
- Ако v[j] < 0, Дејче вади слатки во кутијата k, една по една, се дури не извади v[j] слатки или дури не ја испразни кутијата. Поинаку кажано, ако во кутијата имало p слатки пред акцијата, ќе има  $\max(0, p + v[j])$  слатки по акцијата. Ваша задача е да го одредите бројот на слатки во секоја кутија после q-те денови.

## Implementation Details

Треба да ја имплементирате процедурата:

```
int[] distribute_candies(int[] c, int[] l, int[] r, int[] v)
```

- c: низа со должина n. За  $0 \le i \le n-1$ , c[i] го дава капацитетот на кутијата i.
- $l,\ r$  и v: три низи со должина q. На денот j, за  $0 \le j \le q-1$ , Дејче прави акција зададена со броевите  $l[j],\ r[j]$  и v[j], според погорниот опис.
- Оваа процедура треба да врати низа со должина n. Означете ја низата со s. За  $0 \le i \le n-1, \ s[i]$  треба да е бројот на слатки во кутијата i после q дена.

# **Examples**

#### Example 1

Нека е даден следниот повик:

```
distribute_candies([10, 15, 13], [0, 0], [2, 1], [20, -11])
```

Ова значи дека кутијата 0 има капацитет од 10 слатки, кутијата 1 капацитет од 15 слатки, а кутијата 2 капацитет од 13 слатки.

На крај на денот 0, кутијата 0 има  $\min(c[0],0+v[0])=10$  слатки, кутијата 1 има  $\min(c[1],0+v[0])=15$  слатки и кутијата 2 има  $\min(c[2],0+v[0])=13$  слатки.

На крај на денот 1, кутијата 0 има  $\max(0,10+v[1])=0$  слатки, кутијата 1 има  $\max(0,15+v[1])=4$  слатки. Бидејќи 2>r[1], нема промена во бројот на слатки во кутијата 2. Бројот на слатки после секоја акција е даден подолу во табелата:

| Ден | <b>Кутија</b> 0 | Кутија 1 | Кутија 2 |
|-----|-----------------|----------|----------|
| 0   | 10              | 15       | 13       |
| 1   | 0               | 4        | 13       |

Така, процедурата треба да врати [0,4,13].

### Constraints

- $1 \le n \le 200\,000$
- $1 \le q \le 200\,000$
- $1 \leq c[i] \leq 10^9$  (за сите  $0 \leq i \leq n-1$ )
- $0 \leq l[j] \leq r[j] \leq n-1$  (за сите  $0 \leq j \leq q-1$ )
- $-10^9 \leq v[j] \leq 10^9, v[j] 
  eq 0$  (за сите  $0 \leq j \leq q-1$ )

### **Subtasks**

- 1. (3 поени)  $n,q \leq 2000$
- 2. (8 поени)  $\,v[j]>0$  (за сите  $\,0\leq j\leq q-1$ )
- 3. (27 поени)  $\,c[0]=c[1]=\ldots=c[n-1]\,$
- 4. (29 поени) l[j]=0 и r[j]=n-1 (за сите  $0\leq j\leq q-1$ )
- 5. (33 поени) Без дополнителни ограничувања.

# Sample Grader

Sample grader-от го чита влезот во следниот формат:

- ред 1: *n*
- ред 2: c[0] c[1]  $\dots$  c[n-1]
- ред 3: *q*
- ред 4+j (  $0\leq j\leq q-1$ ): l[j] r[j] v[j]

Sample grader-от го печати одговорот во следниот формат:

• ред 1: s[0] s[1] ... s[n-1]