Analysis of Hospitalized Diabetes Patients between 1999-2008

Keith-Jordan Wilkinson, Eddy Doering, Cory Chitwood, Kai Gui

Introduction

Keith-Jordan Wilkinson

Eddy Doering

Cory Chitwood

Kai Gui

Linked in

linkedin.com/in/keith-jordan-wilkinson linkedin.com/in/efdoering linkedin.com/in/cchitwood linkedin.com/in/kaigui

Tools:

IDEs

Introduction

- Diabetes affects 10% of the U.S. population, 8th leading cause of death.
- Hospital readmittance is associated with poor patient outcomes.
- Dataset: Diabetes 130-US hospitals for years 1999-2008 (UCI)
 - Can ML predict if hospitalized diabetes patients will be readmitted?
- This information may improve patient outcomes and diabetes care

Questions

- 1. What is the most common age range for diabetes patients?
- 2. What are common diagnoses with diabetes patients?
- 3. How does time spent hospitalized change with patients age?
- 4. Are there any racial disparities in hospital visits for diabetes patients vs. national demographics?
- 5. What features can predict readmittance rates?

Visuals (1/4)

- Patient count increases from ages 40 to 80
- Patient count drops
 steeply at ages 80-100
- Between ages 0-30, there are very few hospitalized diabetes patients

Visuals (2/4)

 Average hospitalization duration increases with age

Complications
 associated with diabetes
 and surgical procedures
 may increase with age

Visuals (3/4)

Primary, Secondary, and Tertiary Diagnosis of Diabetes Patients 1999-2008

Visuals (4/4)

Normalized Uninsured Rate vs Diabetes Admittance Rate

- Does higher uninsured percentage correlate with lower hospitalization rate?
- Hipanics and Caucasians follow hypothesis, African Americans and Asians do not.
- Other possible factors?
 - Language/cultural barriers?

Predicting Readmittance with Machine Learning

- Goal: Predict patient readmittance based on features of the initial stay
- Four different machine learning classification models were employed:
 - Random Forests
 - K-Nearest Neighbors
 - Ridge
 - SGD Classifier.
- Hyperparameters were tuned. Model performance was compared.

Summary of ML Models

Model	Base Accuracy	Optimized Accuracy	Improvement	Optimized AUC	Approx. Runtime (min.)
Random Forest Classifier	0.58421	0.65523	12.156%	0.72	5
Ridge Classifier	0.57886	0.65068	12.406%	0.71	2
SGD Classifier	0.54353	0.63233	16.339%	0.69	15
KNN Classifier	0.49331	0.63648	29.023%	0.62	25
Ensemble Voting Classifier	N/A	0.65175	N/A	N/A	60

- ML Classifiers Optimized: Random Forest, Ridge,SGD, K-Nearest Neighbors
- Random Forest and Ridge were the strongest performers in terms of accuracy, runtime, and AUC.

ROC Plot and Top Features

Feature	Importance				
num_lab_procedures	0.0514				
num_medications	0.0486				
number_inpatient	0.0399				
time_in_hospital	0.0365				
number_diagnoses	0.0281				
num_procedures	0.0248				
number_outpatient	0.0173				
number_emergency	0.0163				
gender_Male	0.0137				
insulin_Yes	0.0102				

Conclusion

- Demographics of hospitalized diabetes patients were explored.
- Optimized ML Models predict hospital readmission better than chance.
- ML Model has room to improve. For future work, we recommend:
 - Develop models specific for select diagnoses/medical specialties.
 - Explore original database for additional features.

Sources

- 1. Ahmad FB, Anderson RN. The Leading Causes of Death in the US for 2020. JAMA. 2021;325(18):1829–1830. DOI: 10.1001/jama.2021.5469
- 2. Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020. Atlanta, GA: Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services; 2020. Link
- 3. McIlvennan CK, Eapen ZJ, Allen LA. Hospital Readmissions Reduction Program. Circulation. 2015;131:1796–1803. DOI: 10.1161/CIRCULATIONAHA.114.010270
- 4. Strack B, DeShazo JP, Gennings C, Olmo JL, Ventura S, Cios KJ, Clore JN. Impact of HbA1c Measurement on Hospital Readmission Rates: Analysis of 70,000 Clinical Database Patient Records. Biomed Res Int. 2014:781670. DOI: 10.1155/2014/781670
- 5. U.S. Census Bureau. HIC-9_ACS. Population Without Health Insurance Coverage by Race and Hispanic Origin: 2008 to 2019. Health Insurance Historical Tables HHI Series. Link
- 6. Cherney, K. (2018, July 6). Age of onset for type 2 diabetes: Risk factors and more. Healthline. Retrieved November 8, 2021, from https://www.healthline.com/health/type-2-diabetes-age-of-onset.

Questions?

Data Platform

Model	Refactor "Readmitted	Encode MedList	Refactor MedList (Y/N)	Tuned	Drop Medical Specialty	Drop Emergency	Score	Percent Improvement
Ridge Classifier	N	N	N	N	Υ	N	0.578860612	0
Ridge Classifier	N	N	N	Y	Υ	N	0.583805733	0.854285317
Ridge Classifier	Υ	N	N	N	Υ	N	0.639636023	10.49914433
Ridge Classifier	Y	N	N	Y	Υ	N	0.649939783	12.27915147
Ridge Classifier	Υ	Υ	N	N	Υ	N	0.640773451	10.69563862
Ridge Classifier	Y	Υ	N	Y	Y	N	0.650675766	12.40629483
Ridge Classifier	Υ	Υ	N	N	N	N	0.64893617	12.10577415
Ridge Classifier	Y	Υ	N	Y	N	Y	0.647326507	11.82769981
Ridge Classifier	Υ	N	Υ	Y	Υ	N	0.649404523	12.18668356
Random Forest Classifier	N	N	N	N	Υ	N	0.584207775	0
Random Forest Classifier	Υ	Υ	N	Y	N	Υ	0.645278726	10.45363531
Random Forest Classifier	Y	Υ	N	Y	N	N	0.650006691	11.26293042
Random Forest Classifier	Υ	Υ	N	Υ	Y	N	0.648735448	11.04532922
Random Forest Classifier	Υ	N	Υ	Y	Y	N	0.655225478	12.15624062
SGD Classifier	N	N	N	N	N	N	0.543526258	0
SGD Classifier	N	N	N	N	Υ	N	0.546455996	0.539024331
SGD Classifier	N	N	N	N	Υ	Υ	0.550074378	1.204747712
SGD Classifier	Υ	N	N	N	Υ	Υ	0.602219274	10.79856132
SGD Classifier	Υ	N	Υ	N	Υ	Υ	0.607928276	11.84892488
SGD Classifier	Υ	N	Υ	Y	Υ	Υ	0.632332248	16.33885923

Model	Refactor "Readmitted"	Encode MedList	Refactor MedList (Y/N)	Tuned	Drop Medical Specialty	Drop "Emergency/Trama" Medical Specalty	Drop "?" Medical Specalty	Drop BUT "Internal Medicine" Medical Specalty	Score	Percent Improvement
KNN Classifier	n	n	n	n	n	n	n	n	0.493309247	0
KNN Classifier	n	n	У	n	n	n	n	n	0.49484812	0.311949003
KNN Classifier	n	У	n	n	n	n	n	n	0.492573264	-0.149193001
KNN Classifier	У	у	n	n	n	n	n	n	0.568714037	15.28550115
KNN Classifier	у	У	n	У	n	у	n	n	0.59	19.60043402
KNN Classifier	у	У	n	У	У	n	n	n	0.586243811	18.83900719
KNN Classifier	у	У	n	У	n	у	У	У	0.636484687	29.0234658
KNN Classifier	у	У	n	У	n	У	У	n	0.614925373	24.65312121