2nd seminar for foreign students Non-coherent demodulation in AWGN channel

Main point of non-coherent detection

If the phase is changed by ϕ in transmission line

If this phase change is not taken into account in coherent detection, the signal could not be detected correctly

Differential encoding QPSK

QPSK

Modulate the phase of data

$$s(i) = exp(j\theta_i)$$

DQPSK

Modulate phase difference data from previous symbol

$$s(i) = exp(j\theta_i)$$
 Phase diff.
= $exp\{j(\theta_{i-1} + \Delta\theta_i)\}$

	$\Delta heta_{\iota}$
00	0
01	$\pi/2$
11	π
10	$3\pi/2$

Non-coherent detection

Coherent detection

Carrier wave needs to be regenerated

Non-coherent detection

Carrier wave needs not to be regenerated in receiver

Differential encoding and non-coherent detection

$$d(i) = r(i) \cdot r^*(i-1)$$

$$= \{s(i)e^{j\phi} + n(i)\} \cdot \{s(i-1)e^{j\phi} + n(i-1)\}^*$$

$$= s(i)s^*(i-1) + \underline{s(i)n^*(i-1)e^{j\phi} + s^*(i-1)n(i)e^{-j\phi} + n(i)n^*(i-1)}$$

 $s(i) = e^{j\Delta\theta_i}s(i-1) \rightarrow s(i)s^*(i-1) = e^{j\Delta\theta_i}|s(i-1)|^2$ $= e^{j\Delta\theta_i} \qquad (|s(i)|^2 = 1)$

Demodulation is possible even if there is a phase change in transmission line

Task

- build the DQPSK and non-coherent detector using C language
- measure BER with simulation
 - AWGN channel
 - ✓ Compare with theoretical result
 - ✓ Compare with coherent detection result
 - Apply random phase change to transmitted symbols
 - ✓ Compare with theoretical result
 - ✓ Compare with coherent detection result
- BER for DQPSK:

$$P_e \simeq rac{1}{2} \mathrm{erfc} \left\{ 2 \sqrt{\gamma} \sin \left(rac{\pi}{8} \right) \right\}$$
 (γ is E_b/N_0 (not dB))