Math 255: Analysis I Notes

Franklin She

Spring 2024

Contents

1	Sets	s and functions		
2	Natural numbers and the Peano axioms			
	2.1	Cardinality		
	2.2	Arithmetic		
	2.3	Integers		
	2.4	Rationals		
3	Fields 6			
	3.1	Ordered sets		
	3.2	Ordered fields		
	3.3	A hole in $\mathbb Q$		
	3.4	Least upper bound (LUB) property		
	3.5	Properties of \mathbb{R}		
	3.6	Roots and exponents		
4	Countability 12			
		Power sets		
5	Metric spaces			
	5.1	Limit points and closed sets		
	5.2	Bounded sets		
	5.3	Connected sets		
	5.4	Compact sets		
6	Sequences 23			
		Convergence		
		Cauchy sequences		

1 Sets and functions

Definition 1.1. (Set, naively). A set is an unordered collection of objects (elements) without multiplicity.

Definition 1.2. (Injectivity). A function $f: A \to B$ is injective (or one-to-one) if $\forall x, y \in A$, $f(x) = f(y) \implies x = y$.

Definition 1.3. (Surjectivity). A function $f: A \to B$ is surjective (or onto) if $\forall b \in B, \exists a \in A$ such that f(a) = b.

2 Natural numbers and the Peano axioms

Definition 2.1. (Natural numbers). A set \mathbb{N} with a successor function $S : \mathbb{N} \to \mathbb{N}$ that assigns to every element $n \in \mathbb{N}$ its successor. It has the following properties:

- I. $1 \in \mathbb{N}$.
- II. $\forall n \in \mathbb{N}, S(n) \in \mathbb{N}.$
- III. $\forall n \in \mathbb{N}, S(n) \neq 1$.
- IV. $\forall n, m \in \mathbb{N}, S(n) = S(m) \implies n = m$. (Injectivity of S).
- V. Any subset $A \subseteq \mathbb{N}$ such that $1 \in A$ and $\forall n \in A, S(n) \in A$ must be equal to \mathbb{N} .

Proposition 2.2. $4 \neq 1$.

Proof. By definition of S, 4 = S(3) = S(S(2)) = S(S(S(1))). By I and II, $3 \in \mathbb{N}$. Suppose 4 = 1. S(3) = 1. A contradiction to III.

Proposition 2.3. $6 \neq 2$.

Proof. Assume in contradiction that 6=2. Then S(5)=S(1). By IV, 5=1. A contradiction to III by proof similar to $4\neq 1$.

Proposition 2.4. $\forall n \in \mathbb{N}, S(n) \neq n.$

Proof. By induction on n. For n=1, if S(1)=1, this contradicts III. Assume $S(n)\neq n$, want to show

$$S(S(n)) \neq S(n)$$

Assume by contradiction that S(S(n)) = S(n). By IV, S(n) = n. A contradiction of our assumption.

Remark. This strategy of proof via induction uses property V. We considered the subset

$$A = \{n \in \mathbb{N} \colon S(n) \neq n\} \subseteq \mathbb{N}$$

and showed that $1 \in A$ and $\forall n \in A$, $S(n) \in A$. This implies that $A = \mathbb{N}$ by V.

Axiom 2.5. There exists a set satisfying I - V (Peano axioms). Such a set is called the set of natural numbers and is denoted by \mathbb{N} .

2.1 Cardinality

Definition 2.6. (Equal cardinality). Two sets A and B have equal cardinality, denoted |A| = |B|, if there exists a bijection $f: A \to B$. Denote for $n \in \mathbb{N}$, $\underline{n} = \{1, 2, \dots, n\}$.

Definition 2.7. (Size n set). A set A is said to have size n, |A| = n, if A has equal cardinality to n.

Proposition 2.8. The "equal cardinality" relation is an equivalence relation. That is, it is reflexive, symmetric, and transitive.

Proof. Problem Set 1. \Box

Definition 2.9. (Finite set). A set A is said to be finite if |A| = n for some $n \in \mathbb{N}$ or $A = \emptyset$ (where $|\emptyset| = 0$). Otherwise, A is said to be infinite.

Theorem 2.10. (Uniqueness of cardinality). If |A| = n for some $n \in \mathbb{N}$, then $|A| \neq m$ for any $m \in \mathbb{N}$ such that $m \neq n$.

Lemma 2.11. If |X| = n for some $n \in \mathbb{N}$, then given any $x \in X$, $|X \setminus \{x\}| = n - 1$. (Where n - 1 = 0 if n = 1 and n - 1 = m when n = S(m)).

Proof. of lemma. Prove by induction on n.

Base case:

- For n=1, since |X|=1, there exists a bijection $f:X\to\{1\}$.
- Since f is onto, $\exists y \in X$ such that f(y) = 1. In particular, $X \neq \emptyset$.
- Since f is injective, there are no other elements in X, because $\forall x \in X, f(x) \in \{1\} \implies f(x) = 1 = f(y)$.
- By injectivity, $x = y \implies X = \{y\}$. Hence $\forall x \in X, X \setminus \{x\} = \emptyset$.
- This implies $|X \setminus \{x\}| = 0$. Hence the lemma holds for n = 1.

Inductive step:

• Assume |X| = S(n) for some $n \in \mathbb{N}$. There exists a bijection

$$f: X \to S(n) = \{1, 2, \dots, S(n)\}$$

• Let $x \in X$ be any element. Define $g: X \setminus \{x\} \to \underline{n}$ by

$$g(y) = \begin{cases} f(y) & \text{if } f(y) < f(x) \\ f(y) - 1 & \text{if } f(y) > f(x) \end{cases}$$

- We want to show that g is a bijection. It is clearly onto because f is onto.
- It is also injective because f is injective. If $g(y_1) = g(y_2)$, then $f(y_1) = f(y_2)$.
- If $f(y_1) < f(x)$, then $f(y_1) = g(y_1) = g(y_2) = f(y_2) = f(y_2) = 1$.
- If $f(y_1) > f(x)$, then $f(y_1) 1 = g(y_1) = g(y_2) = f(y_2) 1 \implies f(y_1) = f(y_2)$.
- By injectivity of f, $y_1 = y_2$. Therefore, g is a bijection. This implies that $|X \setminus \{x\}| = n$.

Proof. of theorem. Prove by induction on n.

Base case: If n = 1. Assume in contradiction that $\exists m \in \mathbb{N}$ such that $m \neq 1$ and |X| = m. Since $n \neq m$, there exists $m - 1 \in \mathbb{N}$ such that m = S(m - 1). By the lemma,

3

- 1. On one hand, $|X \setminus \{x\}| = 0$ for any $x \in X \implies X \setminus \{x\} = \emptyset$.
- 2. But on the other hand, $|X \setminus \{x\}| = m 1 \in \mathbb{N} \implies X \setminus \{x\} \neq \emptyset$.

This is a contradiction, proving the base case.

Inductive step: Assume theorem true for $n \in \mathbb{N}$. We want to show that the theorem holds for S(n). TODO: Finish this proof.

Corollary 2.12. \mathbb{N} is infinite.

Proof. Assume in contradiction that $|\mathbb{N}| = n$ for some $n \in \mathbb{N}$.

- By the lemma, $|\mathbb{N} \setminus \{1\}| = n 1 \in \mathbb{N}$
- In particular, $\mathbb{N} \setminus \{1\} \neq \emptyset$.
- But the successor function $S: \mathbb{N} \to \mathbb{N} \setminus \{1\}$ is a bijection, so $|\mathbb{N}| = |\mathbb{N} \setminus \{1\}|$, a contradiction.

Remark. Let X be an infinite set. Does $|X| = |\mathbb{N}|$? No. We will come back to this later.

2.2 Arithmetic

Remark. Denote $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ and define S(0) = 1. Notice one can still induct on \mathbb{N}_0 .

Lemma 2.13. For any $A \subseteq \mathbb{N}_0$, if $0 \in A$ and $\forall n \in A$, $S(n) \in A$, then $A = \mathbb{N}_0$.

Proof. Let A be as above. Denote $A' = A \cap \mathbb{N}$. Since $0 \in A \implies S(0) = 1 \in A \implies 1 \in A'$. For any $n \in A'$, $n \in A$ because $A' \subseteq A$. Hence, $S(n) \in A$. Moreover, $S(n) \in \mathbb{N}$ because $A' \subseteq \mathbb{N}$. This implies that $S(n) \in A'$. By Peano axiom $V, A' = \mathbb{N} \implies A = \mathbb{N}_0$.

Definition 2.14. We'll define the sum in \mathbb{N}_0 inductively. $\forall n \in \mathbb{N}_0$:

- 1. 0 + n = n.
- 2. $\forall m \in \mathbb{N}_0, S(m) + n = S(m+n).$

Proposition 2.15. $\forall m \in \mathbb{N}_0, m+0=m.$

Proof. By induction of $m \in \mathbb{N}_0$. For m = 0, 0 + 0 = 0 by definition. Assume m + 0 = m for some $m \in \mathbb{N}_0$. Then S(m) + 0 = S(m + 0) by definition. By the induction hypothesis, S(m + 0) = S(m). This implies that S(m) + 0 = S(m).

Proposition 2.16. $\forall m, n \in \mathbb{N}_0, m + S(n) = S(m+n).$

Proof. By induction on $m \in \mathbb{N}_0$. For m = 0, 0 + S(n) = S(0 + n) = S(n). Assume m + S(n) = S(m + n). Then S(m) + S(n) = S(m + S(n)) by definition. Then S(m + S(n)) = S(S(m + n)) by the induction hypothesis. Then S(S(m + n)) = S(S(m) + n) by definition.

Definition 2.17. (Order). For $a, b \in \mathbb{N}_0$, we say that $a \leq b$ if and only if $\exists n \in \mathbb{N}_0$ such that a + n = b. a < b if and only if $a \leq b$ and $a \neq b$.

Proposition 2.18. The order relation satisfies:

- 1. Trichotomy: $\forall a, b \in \mathbb{N}_0$, exactly one of a < b, a = b, or a > b holds.
- 2. Transitivity: $\forall a, b, c \in \mathbb{N}_0$, if $a \leq b$ and $b \leq c$, then $a \leq c$.

Proof. Problem set. \Box

2.3 Integers

Definition 2.19. (Integers). The set of integers \mathbb{Z} , is the set of formal expressions of the form [a-b], where $a, b \in N_0$. We identify any two integers [a-b] = [c-d] if and only if a+d=b+c. We define addition on \mathbb{Z} by

$$[a-b] + [c-d] = [(a+c) - (b-d)]$$

One can identify $\mathbb{N} \subseteq \mathbb{Z}$ by identifying $n \in \mathbb{N}$ with $[n-0] \in \mathbb{Z}$. This always us to define an order on \mathbb{Z} .

Definition 2.20. (Order on \mathbb{Z}). $[a-b] \leq [c-d]$ if and only if [c-d] = [a-b] + [n-0] for some $n \in \mathbb{N}_0$.

Proposition 2.21. The above order relation on \mathbb{Z} satisfies trichotomy and transitivity.

Proof. Also skipped.

Definition 2.22. (Negation in \mathbb{Z}). The negation of $[a-b] \in \mathbb{Z}$ is defined to be -[a-b] = [b-a].

Definition 2.23. (Subtraction in \mathbb{Z}). Subtraction is defined by [a-b]-[c-d]=[a-b]+(-[c-d]).

Definition 2.24. (Multiplication in N_0). We define inductively $\forall n \in \mathbb{N}_0$:

- 1. $0 \times n = 0$.
- 2. $\forall m \in \mathbb{N}_0, S(m) \times n = (m \times n) + n$.

Definition 2.25. (Multiplication extended to \mathbb{Z}). We define

$$[a-b] \times [c-d] = [(a \times c + b \times d) - (a \times d + b \times c)]$$

2.4 Rationals

Definition 2.26. The set of rationals \mathbb{Q} is the set of formal expressions of the form [p//q], where $p, q \in \mathbb{Z}$ and $q \neq [0-0]$. We identify any two rationals [p//q] = [r//s] if and only if $p \times s = q \times r$. We can identify $N_0 \subseteq \mathbb{Q}$ by identifying $n \in \mathbb{N}_0$ with $[(n-0)]/[1-0] \in \mathbb{Q}$.

Definition 2.27. (Addition in \mathbb{Q}). We define

$$[p//q] + [r//s] = [(p \times s + q \times r)//(q \times s)]$$

Definition 2.28. (Multiplication in \mathbb{Q}). We define

$$[p//q] \times [r//s] = [(p \times r)//(q \times s)]$$

Definition 2.29. Order on \mathbb{Q} . We can define an order on \mathbb{Q} by

- 1. $0 \leq [p/q]$ iff p = [n-0], q = [m-0] for some $n, m \in \mathbb{N}_0$.
- 2. $[p//q] \le [r//s]$ iff [r//s] = [p//q] + [x//y] where $0 \le [x//y]$.

3 Fields

Definition 3.1. (Field). A field is a set \mathbb{F} with a pair of operations

$$\begin{array}{l} +: \mathbb{F} \times \mathbb{F} \to \mathbb{F} \\ \times: \mathbb{F} \times \mathbb{F} \to \mathbb{F} \end{array}$$

satisfying the following properties:

- 1. Commutativity of addition: $\forall x, y \in \mathbb{F}, x + y = y + x$.
- 2. Associativity of addition: $\forall x, y, z \in \mathbb{F}, (x+y) + z = x + (y+z).$
- 3. Existence of neutral element for addition: $\exists 0 \in \mathbb{F}$ such that $\forall x \in \mathbb{F}, x + 0 = x$.
- 4. Existence of additive inverse: $\forall x \in \mathbb{F}, \exists y \in \mathbb{F} \text{ such that } x + y = 0.$
- 5. Commutativity of multiplication: $\forall x, y \in \mathbb{F}, x \times y = y \times x$.
- 6. Associativity of multiplication: $\forall x, y, z \in \mathbb{F}, (x \times y) \times z = x \times (y \times z).$
- 7. Existence of neutral element for multiplication: $\exists 1 \in \mathbb{F}$ such that $\forall x \in \mathbb{F}, x \times 1 = x$.
- 8. Existence of multiplicative inverse: $\forall x \in \mathbb{F} \setminus \{0\}, \exists y \in \mathbb{F} \text{ such that } x \times y = 1.$
- 9. Distributivity: $\forall x, y, z \in \mathbb{F}, \ x \times (y+z) = x \times y + x \times z.$

Example 3.2.

- 1. \mathbb{Q} , \mathbb{R} , \mathbb{C} are fields with the usual operations.
- 2. $\mathbb{F}_3 = \{0, 1, 2\}$ with addition and multiplication modulo 3.

Anti-examples:

- 1. F_6 is not a field with addition and multiplication modulo 6.
- 2. \mathbb{Z} is not a field, no multiplicative inverses. (\mathbb{Z} is a ring).
- 3. R^2 is not a field, no "natural" multiplication operation.

Proposition 3.3. (Cancellation law). $\forall x, y, z \in \mathbb{F}$, if x + y = x + z, then y = z.

Proof. By 4,
$$\exists (-x) \in \mathbb{F}$$
 such that $x+(-x)=0$. By + being well-defined, $(-x)+(x+y)=(-x)+(x+z) \stackrel{2}{\Longrightarrow} ((-x)+x)+y=((-x)+x)+z \stackrel{4}{\Longrightarrow} 0+y=0+z \stackrel{3}{\Longrightarrow} y=z$.

Proposition 3.4. $\forall x \in \mathbb{F}, x \cdot 0 = 0.$

Proof.
$$x \cdot 0 \stackrel{3}{=} x \cdot (0+0) \stackrel{9}{=} x \cdot 0 + x \cdot 0 \stackrel{3}{\Longrightarrow} 0 + x \cdot 0 = x \cdot 0 + x \cdot 0$$
. By the cancellation law, $0 = x \cdot 0$.

Proposition 3.5. $0 \in \mathbb{F}$ does not have a multiplicative inverse.

Proof. Assume in contradiction $\exists y \in \mathbb{F}$ such that $0 \cdot y = 1$. By proposition above, $\forall x \in \mathbb{F}$, $x \cdot 0 = 0$. This implies that 1 = 0 by the cancellation law, a contradiction of 7.

Remark. This is why we disallow taking the multiplicative inverse of 0.

3.1 Ordered sets

Definition 3.6. (Ordered set). An ordered set is a set S with a relation < satisfying:

- 1. Trichotomy: $\forall a, b, c \in S$, exactly one of a < b, a = b, or a > b holds.
- 2. Transitivity: $\forall a, b, c \in S$, if a < b and b < c, then a < c.

Example 3.7. \mathbb{Q} , \mathbb{N} , $\{-1,0,15\}$, $\{a,aa,b,ba,c\}$ with the lexicographic order.

Definition 3.8. (Maximum). A maximum for an ordered set S is an element $y \in S$ such that $\forall x \in S$, $x \leq y$.

Remark. Not all ordered sets have a maximum. For example, \mathbb{N} does not have a maximum. Also $\{\frac{n-1}{n}: n \in \mathbb{N}\}$ does not have a maximum.

Proposition 3.9. $S = \{\frac{n-1}{n} : n \in \mathbb{N}\}$ does not have a maximum.

Proposition 3.10. Assume in contradiction that $\exists y \in S$ such that $\forall x \in S, x \leq y$. Then $y = \frac{m-1}{m}$ for some $m \in \mathbb{N}$. But then $y < \frac{m}{m+1} = \frac{(m+1)-1}{m+1} \in S$, a contradiction that y is the maximum.

Proposition 3.11. If a ordered set S has a maximum, then it is unique. In such a case, we denote the maximum by $\max S$.

Proof. Let y and y' be maxima for S. Then by the definition of maximum, $y \leq y'$ and $y' \leq y$. By trichotomy, y = y'.

Proposition 3.12. Every finite non-empty ordered set has a maximum.

Proof. Proof by induction on n = |S|. For n = 1, $S = \{x\}$, then x is the maximum, trivially. Assume claim true for all ordered sets of size $n \in \mathbb{N}$. Let S be an ordered set of size n + 1. Pick $s_0 \in S$ and set $T = S \setminus \{s_0\}$ with some (restricted) order. By the induction hypothesis, $\exists \max T = t_0$. Now there are two cases.

- 1. $s_0 \le t_0$. Then $\forall x \in T \cup \{s_0\}, x \le t_0 \implies t_0 = \max S$
- 2. $t_0 < s_0$. Then $\forall t \in T$, $t \le t_0 < s_0 \implies t \le s_0$. This implies that $\forall x \in S = T \cup \{s_0\}, x \le s_0 \implies s_0 = \max S$.

In either case, $\max S$ exists.

Definition 3.13. (Upper bound). Let S be an ordered set and let $A \subseteq S$. An upper bound for A in S is an element $z \in S$ such that $\forall a \in A, a \leq z$.

Example 3.14. $T = \{\frac{n-1}{n} : n \in \mathbb{N}\}$ has upper bounds in \mathbb{Q} , e.g. 1, 4, 1000, etc.

Definition 3.15. (Least upper bound). A least upper bound for $A \subseteq S$ is an upper bound z such that for any other upper bound z', they satisfy $z \le z'$.

Proposition 3.16. If $A \subseteq S$ has a least upper bound, it is unique and it is called the supremum of A (in S), denoted sup A.

Remark. Not all $A \subseteq S$ have a least upper bound. E.g. $\mathbb{N} \subseteq \mathbb{Q}$.

Proposition 3.17. $T = \{\frac{n-1}{n} : n \in \mathbb{N}\} \subseteq \mathbb{Q} \ has \sup T = 1.$

Proof. First $\forall n \in \mathbb{N}, \frac{n-1}{n} \leq 1$. This implies 1 is an upper bound for T. Assume there exists an upper bound $z \in T \subseteq \mathbb{Q}$ such that z < 1. Then z = p/q for some $p, q \in \mathbb{Z}$, and we may assume $q \in \mathbb{N}$. This implies $z < \frac{q}{q+1} \in T$, a contradiction that z is an upper bound. Hence 1 is the least upper bound for T.

3.2 Ordered fields

Definition 3.18. (Ordered field). An ordered field is a field \mathbb{F} which is also an ordered set, satisfying:

- 1. Order respects addition: $\forall x, y, z \in \mathbb{F}$, if x < y, then x + z < y + z.
- 2. Order respects multiplication: If $x, y \in \mathbb{F}$ satisfy x > 0, y > 0, then $x \times y > 0$.

Example 3.19. (Fact). \mathbb{Q} with the order we constructed is an ordered field.

Proposition 3.20. Let \mathbb{F} be an ordered field. If x > 0 and y < 0, then $x \times y < 0$.

Proof. By order respects addition, $y < 0 \implies 0 < -y$. By order respects multiplication, $x \times (-y) > 0$. By order respects addition, we add $x \cdot y$ to both sides. The LHS:

$$x \times (-y) + x \times y = x \times (-y + y)$$
$$= x \times 0$$
$$= 0$$

This implies $x \times y < 0$, as $x \times y$ is the RHS.

Proposition 3.21. Let \mathbb{F} be an ordered field. Then $\forall x \in \mathbb{F}$, x < x + 1.

Proof. Assume in contradiction that 1 < 0. (This is enough, because of order respects addition). $1 < 0 \implies 0 < -1 \implies 0 < -1 \times -1 = 1$, a contradiction to trichotomy. Therefore $0 \le 1$. However, $0 \ne 1$ by an axiom of fields. This implies 0 < 1.

Proposition 3.22. There exists no order on the field \mathbb{F}_3 making it an ordered field.

Proof. Assume in contradiction that \mathbb{F}_3 has such a structure. Then 0 < 1 and 1 < 2 and 2 < 2 + 1 = 0. By transitivity, 0 < 2, a contradiction to trichotomy.

Example 3.23. \mathbb{C} has no structure of an ordered field. Problem set 3.

3.3 A hole in \mathbb{Q}

Lemma 3.24. $\sqrt{2} \notin \mathbb{Q}$. That is, there exists no $x \in \mathbb{Q}$ such that $x^2 = 2$.

Proof. Assume in contradiction that there exists $x \in \mathbb{Q}$ such that $x^2 = 2$.

- Then $\exists m, n \in \mathbb{Z}$ such that x = m/n. (We assume that this is a reduced fraction, i.e. there exists no integer $k \in \mathbb{Z} \setminus \{1\}$ such that k divides both m and n to remainder.)
- This implies $\left(\frac{m}{n}\right)^2 = 2 \implies m^2 = 2n^2$.

Lemma 3.25. The square power of an odd integer is odd.

Proof.

- Let $2k+1 \in \mathbb{Z}$ be any integer, which is odd.
- Then $(2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.
- As $2k^2 + 2k \in \mathbb{Z}$, this implies that $(2k+1)^2$ is odd.

• We know $m^2 = 2n^2$ is an even number (dichotomy). Therefore m is even. Then m = 2k for some $k \in \mathbb{Z}$.

• Then, $(2k)^2 = 4k^2 = 2n^2 \implies 2k^2 = n^2$. This implies that n^2 is even, implying n is also even.

• This is a contradiction to m/n being a reduced fraction.

Proposition 3.26. Consider $A = \{x \in \mathbb{Q} : x^2 < 2\}$. Then $y \in \mathbb{Q}$ is an upper bound for A if and only if y > 0 and $y^2 > 2$.

Proof. $(\Leftarrow =)$.

- If y > 0 and $y^2 > 2$, let $x \in A$ be any element.
- Assume in contradiction y < x. Then both y > 0 and x > 0 (transitivity).
- This implies $x \cdot y > y^2$ and $x^2 > x \cdot y$ (order respects multiplication).
- This implies $x^2 > y^2$ (transitivity). However, we know that $x^2 < 2$ and $2 < y^2$ by $x \in A$ and our assumption.
- This means $x^2 < y^2$, a contradiction to trichotomy.
- Therefore, $\forall x \in A, x \leq y$.

 $(\Longrightarrow).$

- Assume that $y \in \mathbb{Q}$ is an upper bound for A. Since $1 \in A$, we know that $0 < 1 \le y$.
- Assume in contradiction that $y^2 \leq 2$. Since $y \in \mathbb{Q}$ we know $y^2 \neq 2$ hence $y^2 < 2$.
- The idea: Find $\epsilon \in \mathbb{Q}$, $\epsilon > 0$ for which $(y + \epsilon)^2 < 2$.
- This would imply that $y + \epsilon \in A$ and $y < y + \epsilon$, a contradiction to y being an upper bound.

Draft:

$$(y+\epsilon)^2 < 2 \iff y^2 + 2y\epsilon + \epsilon^2 < 2$$

$$\iff \epsilon(2y+\epsilon) < 2 - y^2$$

$$\iff \epsilon < \frac{2-y^2}{2y+\epsilon} \qquad \text{if } y > 0, \epsilon > 0$$

Assume $\epsilon < 1$. Therefore

$$\epsilon < \frac{2 - y^2}{2y + 1} < \frac{2 - y^2}{2y + \epsilon} \implies (y + \epsilon)^2 < 2$$

Now, continuing the proof. Let's fix:

$$\epsilon = 1/2\min\left\{1, \frac{2-y^2}{2y+1}\right\}$$

- This implies $0 < \epsilon \le 1/2 < 1$ and $\epsilon < \frac{2-y^2}{2y+1}$. Therefore, $\epsilon \in \mathbb{Q}$.
- This implies $y + \epsilon \in \mathbb{Q}$ and $(y + \epsilon)^2 < 2 \implies y + \epsilon \in A$.
- This is a contradiction to y being an upper bound for A.

Corollary 3.27. $A \subseteq \mathbb{Q}$ is bounded above but has no supremum.

Proof. First $2^2 > 2$ and 2 > 0. This implies 2 is an upper bound for A. (by the proposition above). Let $y \in \mathbb{Q}$ be an upper bound for A. We will show there exists $y' \in \mathbb{Q}$ such that y' < y which is also an upper bound. That would imply A has no least upper bound. Fix some upper bound $y \in \mathbb{Q}$. By the proposition above, y > 0 and $y^2 > 2$.

Draft: We are looking for $\epsilon > 0 \in \mathbb{Q}$ such that $y - \epsilon > 0 \iff \epsilon < y$ and $(y - \epsilon)^2 > 2 \iff y^2 - 2y\epsilon + \epsilon^2 > 2$. It's enough for $y^2 - 2y\epsilon > 2 \iff \epsilon < \frac{y^2 - 2}{2y}$. So we pick

$$\epsilon = 1/3\min\left\{y, \frac{y^2 - 2}{2y}\right\}$$

This implies $0 < \epsilon \in \mathbb{Q}$ and $\epsilon < y$ and $\epsilon < \frac{y^2-2}{2y}$. This implies $y - \epsilon > 0$ and $(y - \epsilon)^2 > 2$. By previous proposition, $y - \epsilon$ is also an upper bound for A.

3.4 Least upper bound (LUB) property

Definition 3.28. (Least upper bound property). An ordered set S is said to satisfy the LUB property if any $\emptyset \neq A \subseteq S$ which is bounded above has a supremum.

Theorem 3.29. There exists an ordered field, containing \mathbb{Q} with the LUB property. Moreover, any two such fields are "isomorphic". We call such a field \mathbb{R} .

Remark. In ordered set $S, A \subseteq S$

- $y \in S$ is a lower bound for A if $\forall x \in A, y \leq x$.
- $y = \min A$ if $y \in A$ and y is a lower bound for A.
- $y = \inf A$ if y is a lower bound for A and $\forall z \in S$, if z is a lower bound for A, then $z \leq y$.

Remark. It follows from problem set 3 if $\emptyset \neq A \subseteq \mathbb{R}$ is bounded below, then A has an infimum in \mathbb{R} .

3.5 Properties of \mathbb{R}

Proposition 3.30. $\forall x, y \in \mathbb{R}, x > 0, \exists n \in \mathbb{N} \text{ such that } nx > y.$

Proof. • Assume in contradiction that y is an upper bound for $\emptyset \neq A = \{nx : n \in \mathbb{N}\}.$

• By the LUB property, there exists $z = \sup A \in \mathbb{R}$. In particular z - x is not an upper bound for A.

- This implies $\exists n_0 \in \mathbb{N}$ such that $n_0 x \in A$ satisfies $n_0 x > z x$.
- This implies $(n_0 + 1)x > z$. This is a contradiction to z being an upper bound for A.

Corollary 3.31. (Archimedean property of \mathbb{R}).

- 1. $\forall y \in \mathbb{R}, \exists n \in \mathbb{N} \text{ such that } n > y.$
- 2. $\forall \epsilon > 0 \in \mathbb{R}, \exists n \in \mathbb{N} \text{ such that } 1/n < \epsilon.$

That is, \mathbb{R} does not contain an infinitely large element nor an infinitesimally small element.

Proof. For the first part, take x=1 in the proposition above. For the second part, take y=1 and $x=\epsilon$ in the proposition above. This implies $\exists n \in \mathbb{N}$ such that $n\epsilon > 1 \implies 1/n < \epsilon$.

Lemma 3.32. Any $\emptyset \neq A \subseteq \mathbb{N}$ has a minimum.

Proof. Let $\emptyset \neq A \subseteq \mathbb{N}$. Consider $1 \in L = \{l \in \mathbb{N} : \forall a \in A, l \leq a\}$. L is the set of lower bounds for A. Either

 $1. \ \exists n \in \mathbb{N} \text{ such that } n \in L \text{ but } n+1 \not\in L \implies \exists a \in A \text{ such that } n \leq a < n+1 \implies a = n \implies a = \min A.$

2. $\forall n \in L, n+1 \in L \implies L = \mathbb{N}$ by induction. By corollary, $A = \emptyset$, a contradiction.

Corollary 3.33. Every $\emptyset \neq A \subseteq \mathbb{Z}$ which is bounded below has a minimum.

Proof. If $\exists n \in \mathbb{N}$ such that n is a lower bound for A, then $\emptyset \neq A \subseteq \mathbb{N}$. By the lemma, this implies $\exists \min A$. Otherwise, the set $A \cap \{-n : n \in \mathbb{N}_0\}$ is finite. This implies $A \cap \{-n : n \in \mathbb{N}_0\}$ has a minimum. That will also be a minimum for A. (Exercise, fill in details.)

Definition 3.34. (Ceiling). The ceiling of $x \in \mathbb{R}$ is $[x] := \min\{k \in \mathbb{Z} : x \ge k\}$.

Proposition 3.35. (Denseness of \mathbb{Q} in \mathbb{R}). $\forall x, y \in \mathbb{R}$, x < y, $\exists q \in \mathbb{Q}$ such that x < q < y.

Proof. Let $x < y \in \mathbb{R}$. Since y - x > 0. There exists $m \in \mathbb{N}$ such that m(y - x) > 1, i.e. my - mx > 1. (think rescaling distance between x and y). It'll suffice to show $\exists k \in \mathbb{Z}$ with mx < k < my. Then x < k/m < y with $k/m \in \mathbb{Q}$. In fact, take $k = \lceil mx \rceil + 1$. Indeed,

- k < my because $k < \min\{l \in \mathbb{Z} : l \ge my\} = \lceil my \rceil$.
- $k mx = \lceil mx \rceil + 1 mx \ge my 1 mx = (my mx) 1 > 0$. This implies mx < k.

Therefore, we have found $k \in \mathbb{Z}$ such that mx < k < my. This implies $\exists q = k/m \in \mathbb{Q}$ such that x < q < y.

3.6 Roots and exponents

Proposition 3.36. $\forall n \in \mathbb{N}$ and $\forall x > 0$, there exists a unique y > 0 such that $y^n = x$. We denote this number $y = x^{1/n} = \sqrt[n]{x}$.

Proof. Uniqueness: $\forall 0 < y_1 < y_2, y_1^n < y_2^n$. This implies $y_1^n \neq x \neq y_2^n$.

Existence: Consider $E = \{z \in \mathbb{R} : z^n < x\}$. First, if $t = \frac{x}{1+x}$, then t < 1 and t < x. This implies $t^n \le t < x \implies E \ne \emptyset$. Second, $\forall t > 1 + x$ $t^n \ge t > x \implies t \notin E$. This implies if $z \in E$, then $z \le 1 + x$, so E is bounded above.

Proposition 3.37. $y = \sup E \text{ satisfies } y^n = x.$

Proof. Proof for all n by induction, an exercise.

Proof of existence continues. TODO.

4 Countability

Proposition 4.1. If S is countable and $A \subseteq S$ is infinite, then A is countable.

Proof.

- S is countable, so $\exists g : \mathbb{N} \to S$ that is a bijection.
- We can write $S = \{x_1, x_2, \ldots\}$ where $x_n = g(n)$.
- We define $m_1 = \min\{l \in \mathbb{N} : x_l \in A\}$.
- For all $n \in \mathbb{N}$, we define $m_{n+1} = \min\{l \in \mathbb{N} : l > m_n, x_l \in A\}$.
- Denote $f: \mathbb{N} \to A$ by $f(n) = x_{m_n}$. Since A is infinite, f is well-defined, i.e. f(n) is unique for all n.
- f is injective since by definition $m_{n+1} > m_n \implies m_n < m_k$ for all k > n. Since g is injective, if n < k, $x_{m_n} \neq x_{m_k}$.
- f is surjective. Let $a \in A$. Since g is surjective, $\exists N \in \mathbb{N}$ such that $a = x_N$. Consider $n = \min\{l \in \mathbb{N} : m_l \geq N\}$. We want to show $a = x_{m_n}$, showing that f(n) = a. By definition $m_n \geq N$ and $m_{n-1} < N$. By construction of m_n from m_{n-1} , we know $m_n \leq N$ because $x_N = \in A$. This implies $m_n = N$ and $a \in f(\mathbb{N})$.

Corollary 4.2. \mathbb{Q} is countable.

Proof. Consider the following function $h: \mathbb{Q} \to \mathbb{Z}^2$ sending $q \in \mathbb{Q}$ to $(m,n) \in \mathbb{Z}^2$ where (m,n) is the unique pair satisfying q = m/n is reduced and $n \in \mathbb{N}$. Denote $A = h(\mathbb{Q}) \subseteq \mathbb{Z}^2$. Then A is infinite. (e.g. $(m,1) \in A$ for all $m \in \mathbb{Z}$). This implies that A is countable by the proposition above $(\mathbb{Z}^2$ is countable). Since h is injective, we deduce that $|\mathbb{Q}| = |A|$.

Corollary 4.3. The set of prime numbers is countable.

Lemma 4.4. The union of a countable collection of countable sets, i.e., given $\{S_1, S_2, \ldots\} = \{S_n : n \in \mathbb{N}\}$ where $|S_n| = |\mathbb{N}|$ for all $n \in \mathbb{N}$, then $\bigcup_{n \in \mathbb{N}} S_n$ is countable.

Proof. (Sketch). Assume disjoint, that $S_{n_1} \cap S_{n_2} = \emptyset$ for all $n_1 \neq n_2$. There exists a bijection $f_n : \mathbb{N} \to S_n$ for all $n \in \mathbb{N}$. Construct $F : \mathbb{N} \times \mathbb{N} \to \bigcup_{n \in \mathbb{N}} S_n$ by $F(n,m) = f_n(m)$. F is a bijection.

Corollary 4.5. Any union of countably many finite sets is at most countable. That is, it is either finite or countable.

Theorem 4.6. (Cantor). $(0,1) \subseteq \mathbb{R}$ is uncountable.

Proof. Assume in contradiction that (0,1) is countable. Hence, we can write $(0,1) = \{x_1, x_2, \ldots\}$.

- 1. Pick $I_1 = [a_1, b_1] \subseteq (0, 1)$ such that $a_1 < b_1$ and which satisfies $x_1 \notin I_1$.
- 2. For n=2 pick, $I_2=[a_2,b_2]\subseteq I_1$ that $x_2\not\in I_2$.
- 3. Once we have chosen $I_1 \supseteq I_2 \supseteq \ldots \supseteq I_n$, such that $x_k \notin I_k$ for all $1 \le k \le n$.
- 4. Pick $I_{n+1} = [a_{n+1}, b_{n+1}] \subseteq I_n$ such that $x_{n+1} \notin I_{n+1}$.

Denote $A = \{a_n : n \in \mathbb{N}\} \subseteq (0,1)$, then $A \neq \emptyset$ is bounded above by b_1 because $A \subseteq I_1$. By the lower bound property, $\exists z = \sup A \in \mathbb{R}$. (Actually, $\forall k \in \mathbb{N}$, b_k is an upper bound for A, verify). This implies $z \leq b_k$ for all $k \in \mathbb{N}$ and $a_k \leq z$. $\Longrightarrow z \in I_k$ for all $k \in \mathbb{N}$ $\Longrightarrow z \in \bigcap_{n \in \mathbb{N}} I_n \neq \emptyset$. However, $x_n \notin \bigcap_{k \in \mathbb{N}} I_k$ for all $n \in \mathbb{N}$, a contradiction of our assumption that $(0,1) = \{x_1, x_2, \ldots\}$ and in particular that z is in this list. \square

Corollary 4.7. \mathbb{R} is uncountable.

Theorem 4.8. (Cantor's diagonal argument, sketch).

Proof. Assume in contradiction that (0,1) is countable. Hence, we can write $(0,1) = \{x_1, x_2, \ldots\}$. E.g. $x_1 = 0.1246789\ldots, x_2 = 0.9876543\ldots$, etc. Let's construct $y \in (0,1)$ such that $y \neq x_n$ for all $n \in \mathbb{N}$. We do this by choosing y such that its n-th digit is not equal to the n-th digit of x_n . Therefore, $y \neq x_n$ for all $n \in \mathbb{N}$, a contradiction.

Corollary 4.9. There are uncountably many irrational numbers in \mathbb{R} . I.e., $\mathbb{R} \setminus \mathbb{Q}$ is uncountable.

Proof. If $\mathbb{R} \setminus \mathbb{Q}$ were countable, then \mathbb{R} would be countable, a contradiction.

4.1 Power sets

Definition 4.10. (Power set). The power set of a set A is the set of all subsets of A. We denote the power set of A by $\mathcal{P}(A) = \{E : E \subseteq A\}$.

Theorem 4.11. (Cantor, again). For any set A, $|A| \neq |\mathcal{P}(A)|$.

Proof. Assume in contradiction that there exists a bijection $\Phi: A \to \mathcal{P}(A)$. Consider $E = \{y \in A : y \notin \Phi(y)\} \in \mathcal{P}(A)$. Since Φ is onto, $\exists e \in A$ such that $\Phi(e) = E$.

- 1. If $e \in E$, then $e \in \Phi(e) = E$, implying $e \notin E$, a contradiction.
- 2. If $e \notin E$, then $e \notin \Phi(e) = E$, implying $e \in E$, a contradiction.

Corollary 4.12. $\mathcal{P}(\mathbb{N})$ is uncountable.

5 Metric spaces

Definition 5.1. (Metric space). A metric space is a set X together with a distance function $d: X \times X \to \mathbb{R}$ satisfying:

- 1. Positivity: $d(x,y) \ge 0$ for all $x,y \in X$ and d(x,y) = 0 if and only if x = y.
- 2. Symmetry: d(x,y) = d(y,x) for all $x,y \in X$.
- 3. Triangle-inequality: $d(x,y) + d(y,z) \ge d(x,z)$ for all $x,y,z \in X$.

Example 5.2.

- 1. \mathbb{R} with the standard metric d(x,y) = |x-y|.
- 2. \mathbb{R}^k with the standard metric $d(x,y) = \sqrt{\sum_{i=1}^k (x_i y_i)^2}$.
- 3. Any set X with the discrete metric $d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$.

Definition 5.3. (r-neighborhood). Let (X, d) be a metric space. The r-neighborhood of a point $p \in X$ is the set $N_r(p) = \{x \in X : d(x, p) < r\}$ with r > 0.

Example 5.4. In \mathbb{R} , the interval $(a,b) = N_{\frac{b-a}{2}} \left(\frac{a+b}{2} \right)$.

Definition 5.5. (Interior point). Let (X,d) be a metric space and $E \subseteq X$. A point $p \in X$ is an interior point in E if there exists $\epsilon > 0$ such that $N_{\epsilon}(p) \subseteq E$.

Definition 5.6. (Open set). A set $E \subseteq X$ is open if every point in E is an interior point.

Example 5.7. $(0,1) \subseteq \mathbb{R}$ is open because $\forall x \in (0,1), x$ is an interior point by taking $\epsilon = \min\{x, 1-x\}$.

Lemma 5.8. Let (X,d) be a metric space. $\forall p \in X, r > 0, N_r(p)$ is open.

Proof. Let $q \in N_r(p)$. We want to find an $\epsilon > 0$ such that $N_{\epsilon}(q) \subseteq N_r(p)$. Let $\epsilon < r - d(p,q)$. r - d(p,q) > 0 because $q \in N_r(p)$. For any $x \in N_{\epsilon}(q)$,

$$d(x,p) \le d(x,q) + d(q,p)$$
 (Triangle inequality)

$$< \epsilon + d(q,p)$$
 $(x \in N_{\epsilon}(q))$

$$= r$$
 $(\epsilon < r - d(p,q))$

This implies that $x \in N_r(p)$, so $N_{\epsilon}(q) \subseteq N_r(p)$, so q is an interior point of $N_r(p)$.

Proposition 5.9. Let (X, d) be a metric space.

1. Let $\{G_{\alpha}\}_{{\alpha}\in I}$ be any collection of open sets in X. Then $\bigcup_{{\alpha}\in I} G_{\alpha}$ is open.

Proof.

- Let $p \in \bigcup_{\alpha \in I} G_{\alpha}$.
- Then $\exists \alpha_0 \in I \text{ such that } p \in G_{\alpha_0}$.
- Since G_{α_0} is open, $\exists \epsilon > 0$ such that $N_{\epsilon}(p) \subseteq G_{\alpha_0} \subseteq \bigcup_{\alpha \in I} G_{\alpha}$.
- Therefore, p is an interior point of $\bigcup_{\alpha \in I} G_{\alpha}$, so $\bigcup_{\alpha \in I} G_{\alpha}$ is open.

2. If G_1, G_2, \ldots, G_n are open, then $\bigcap_{i=1}^n G_i$ is open.

Proof.

- Let $p \in \bigcap_{i=1}^n G_i$.
- Since G_i is open for all $1 \le i \le n$, there exists $\epsilon_1, \ldots, \epsilon_n$ such that $N_{\epsilon_i}(p) \subseteq G_i$ for all $1 \le i \le n$.

- Let $\epsilon = \min\{\epsilon_1, \dots, \epsilon_n\} > 0$.
- Then $N_{\epsilon}(p) \subseteq N_{\epsilon_i}(p) \subseteq G_i$ for all $1 \leq i \leq n$, so $N_{\epsilon}(p) \subseteq \bigcap_{i=1}^n G_i$.
- Therefore, p is an interior point of $\bigcap_{i=1}^n G_i$, so $\bigcap_{i=1}^n G_i$ is open.

Example 5.10. Counterexample for an infinite intersection. Consider $\{G_n = (-\frac{1}{n}, \frac{1}{n}) : n \in \mathbb{N}\}$. Then $\bigcap_{n=1}^{\infty} G_n = \{0\}$, which is not open.

5.1 Limit points and closed sets

Definition 5.11. (Limit point, isolated point, closed set). Let (X,d) be a metric space. Let $E \subseteq X$.

- 1. A point $p \in X$ is a limit point of E if $\forall \epsilon > 0$, $N_{\epsilon}(p) \cap (E \setminus \{p\}) \neq \emptyset$. In other words, $\forall \epsilon > 0$, $N_{\epsilon}(p) \cap E$ contains $q \neq p$.
- 2. A point $p \in E$ is called isolated if it is not a limit point. Equivalently, $\exists \epsilon > 0$ such that $N_{\epsilon}(p) \cap E = \{p\}$.
- 3. A set E is closed if it contains all of its limit points.

Example 5.12. All examples in \mathbb{R} .

- 1. E = (0, 1). The set of limit points of E is [0, 1], so E is not closed.
- 2. E = [0, 1]. The set of limit points of E is [0, 1], so E is closed.
- 3. \emptyset and \mathbb{R} are both open and closed.
- 4. $E = \{\frac{1}{n} : n \in \mathbb{N}\}$. All elements in this set are isolated, so E is not closed. But set of limit points of E is $\{0\}$.
- 5. $E = \mathbb{Q}$. The set of all limit points of E is \mathbb{R} (density of \mathbb{Q} in \mathbb{R}).

Proposition 5.13. Any neighborhood of a limit point p of $E \subseteq X$ contains infinitely many points of E.

Proof. We want to show that if $p \in X$ is a limit point of E and $\epsilon > 0$, then $N_{\epsilon}(p) \cap E$ is infinite. Assume in contradiction that $\exists \epsilon_0 > 0$ such that $N_{\epsilon_0}(p) \cap E = \{p_1, \dots, p_n\}$ is finite. Let $\delta = \min\{d(p, p_i) : 1 \le i \le n \text{ and } p_i \ne p\}$. Then $N_{\frac{\delta}{2}}(p) \cap E = \{p\}$ (verify). Therefore, p is not a limit point of E, which is a contradiction.

Corollary 5.14. Finite sets have no limit points.

Corollary 5.15. All finite sets are closed.

Proposition 5.16. E is open iff $E^c := X \setminus E$ is closed.

Proof. (\Longrightarrow) Assume E is open.

- Let p be a limit point of E^c . This means that $\forall \epsilon > 0$, $N_{\epsilon}(p)$ contains elements of E^c .
- In particular, $N_{\epsilon}(p) \not\subseteq E$, so p is not an interior point of E. This implies that p cannot be in E because E is open.
- Therefore, $p \in E^c$, so E^c is closed.

 (\Leftarrow) Assume E^c is closed.

• Hence, $\forall p \in E$, p is not a limit point of E^c .

- This implies $\exists \epsilon > 0$ such that $N_{\epsilon}(p) \cap E^c = \emptyset$.
- This means that $N_{\epsilon}(p) \subseteq E$, so p is an interior point of E.
- Therefore, E is open.

Remark.

- 1. Since $(E^c)^c = E$, we have that E is closed iff E^c is open.
- 2. Some metric spaces have non-empty clopen subsets that are not X. For example $X = [0,1] \cup [2,3]$ with d(x,y) = |x-y|. Check with [0,1] is open and closed.

Corollary 5.17. Let (X, d) be a metric space.

- 1. Let $\{F_{\alpha}\}_{{\alpha}\in I}$ be any collection of closed sets. Then $\bigcap_{{\alpha}\in I}F_{\alpha}$ is closed.
- 2. If F_1, F_2, \ldots, F_n are closed, then $\bigcup_{i=1}^n F_i$ is closed.

Proof.

- Notice that $\left(\bigcap_{\alpha\in I}F_{\alpha}\right)^{c}=\bigcup_{\alpha\in I}F_{\alpha}^{c}$ and $\left(\bigcup_{i=1}^{n}F_{i}\right)^{c}=\bigcap_{i=1}^{n}F_{i}^{c}$.
- To prove the first statement, since F_{α} is closed $\forall \alpha \in I, F_{\alpha}^{c}$ is open.
- This implies that $\bigcup_{\alpha \in I} F_{\alpha}^{c}$ is open (arbitrary union of open sets are open).
- This implies $\left(\bigcap_{\alpha\in I}F_{\alpha}\right)^{c}$ is open, so $\bigcap_{\alpha\in I}F_{\alpha}$ is closed.
- The second statement follows similarly.

Remark. There exists sets in \mathbb{R} that are neither open nor closed. For example, \mathbb{Q} , $\left\{\frac{1}{n}:n\in\mathbb{N}\right\}$.

Definition 5.18. (Closure). The closure of a set $E \subseteq X$ is the set

 $\overline{E} := \{ x \in X \colon x \in E \text{ or } x \text{ is a limit point of } E \}$

.

Example 5.19.

- 1. $\overline{(0,1)} = [0,1].$
- 2. $\overline{\mathbb{Q}} = \mathbb{R}$.
- 3. $\overline{\left\{\frac{1}{n}:n\in\mathbb{N}\right\}}=\{0\}\cup\left\{\frac{1}{n}:n\in\mathbb{N}\right\}.$

Remark. A set $A \subseteq B$ is said to be dense in B if $\overline{A} = B$.

Proposition 5.20. For any $E \subseteq X$, \overline{E} is the smallest closed set containing E. That is, \overline{E} is closed and for any closed set $F \subseteq X$ with $E \subseteq F$, $\overline{E} \subseteq F$.

Proof. First we show \overline{E}^c is open. Let $p \in \overline{E}^c$. Since $p \notin \overline{E}$, we know that $p \notin E$ and p is not a limit point of E. This implies that $\exists \epsilon > 0$ such that $N_{\epsilon}(p) \cap E = \text{FINISH THIS PROOF}$.

Let $F \subseteq X$ be closed with $E \subseteq F$ and let p be a limit point of E. This means that $\forall \epsilon > 0$, $N_{\epsilon}(p) \cap (E \setminus \{p\}) \neq \emptyset$. Because $N_{\epsilon}(p) \cap (E \setminus \{p\}) \subseteq N_{\epsilon}(p) \cap (F \setminus \{p\})$, we have that p is a limit point of F. This implies that $p \in F$, so $\overline{E} \subseteq F$.

Remark. Consider $\mathbb{F} = \{ F \subseteq X \colon E \subseteq F \text{ and } F \text{ is closed} \}$. Then $\overline{E} = \bigcap_{F \in \mathbb{F}} F$.

Proof. $\overline{E} \in \mathbb{F}$ implies $\bigcap_{F \in \mathbb{F}} F \subseteq \overline{E}$. $\forall F \in \mathbb{F}$, $\overline{E} \subseteq F$ implies $\overline{E} \subseteq \bigcap_{F \in \mathbb{F}} F$.

Proposition 5.21. If $\emptyset \neq E \subseteq \mathbb{R}$ is bounded above then $\sup E \in \overline{E}$.

Proof. Let $z = \sup E$. If $z \in E$, then $z \in \overline{E}$. Otherwise, we show that z is a limit point of E. $\forall \epsilon > 0$, $z - \epsilon$ is not an upper bound of E. This implies that $\exists q \in E$ such that $z - \epsilon < q \le z$. Since $z \notin E$, we have the strict inequality $z - \epsilon < q < z$. Or in other words, $q \in N_{\epsilon}(z) \cap E \setminus \{z\}$. Therefore, z is a limit point of E, so $z \in \overline{E}$.

5.2 Bounded sets

Definition 5.22. (Bounded set). A set $E \subseteq X$ is bounded if $\exists M > 0$ such that $\forall p, q \in E, d(p, q) \leq M$.

Proposition 5.23. For any $\emptyset \neq E \subseteq \mathbb{R}$, E is bounded if and only if $\exists \tilde{M} > 0$ and $p_0 \in X$ such that $E \subseteq N_{\tilde{M}}(p_0)$.

Proof. (\Longrightarrow) Assume E is bounded. Fix $p_0 \in E$. Then $\exists M > 0$ such that $\forall q \in E, d(p_0, q) \leq M$. This implies that $E \subseteq N_M(p_0)$.

 (\Leftarrow) Assume $\exists \tilde{M} > 0$ and $p_0 \in X$ such that $E \subseteq N_{\tilde{M}}(p_0)$. Then $\forall p, q \in E$,

$$d(p,q) < d(p,p_0) + d(p_0,q) < \tilde{M} + \tilde{M} = 2\tilde{M}.$$

So E is bounded by a constant $2\tilde{M}$.

Corollary 5.24. $E \subseteq \mathbb{R}$ is bounded if any only if it is bounded both above and below.

5.3 Connected sets

Definition 5.25. $E \subseteq X$ is disconnected if there exists two non-empty subsets $A, B \subseteq X$ such that $E = A \cup B$ and both $A \cap \overline{B} = \emptyset$ and $\overline{A} \cap B = \emptyset$. A set is called connected if it is not disconnected.

Example 5.26.

- 1. $\{0,1\}$ is disconnected by taking $A = \{0\}$ and $B = \{1\}$.
- 2. $[-1,0) \cup (0,1]$ is disconnected by taking A = [-1,0) and B = (0,1].
- 3. \mathbb{Q} is disconnected by taking $A = \mathbb{Q} \cap (-\infty, \sqrt{2})$ and $B = \mathbb{Q} \cap (\sqrt{2}, \infty)$.
- 4. [-1,1], (-1,1), and \mathbb{R} are all connected.

Proposition 5.27. $E \subseteq \mathbb{R}$ is connected if and only if $\forall x < y \in E$, then $[x,y] \subseteq E$.

Proof. (\Longrightarrow)

- Assume E is connected and assume in contradiction that $\exists x < z < y$ such that $x, y \in E$ but $z \notin E$.
- Consider $E = A \cup B$ where $A = E \cap (-\infty, z)$ and $B = E \cap (z, \infty)$.
- Since $x \in A$, $y \in B$, we have $A \neq \emptyset$ and $B \neq \emptyset$.
- Next $\overline{A} \subseteq \overline{(-\infty, z)} = (-\infty, z]$.
- Hence, $\overline{A} \cap B \subseteq (-\infty, z] \cap (z, \infty) = \emptyset$.
- Similarly, $A \cap \overline{B} \subset (-\infty, z) \cap [z, \infty) = \emptyset$.
- This implies that E is disconnected, which is a contradiction.

 (\Leftarrow)

• Assume $\forall x < y \in E$, then $[x, y] \subseteq E$.

- Let $E = A \cup B$ where $A \neq \emptyset$, $B \neq \emptyset$, and $A \cap B = \emptyset$.
- Without loss of generality, let $x \in A$, $y \in B$ such that x < y.
- Denote $z = \sup\{t \in A : t < y\} = \sup(A \cap (-\infty, y)).$
- Then $z \in \overline{A}$ by a previous proposition (because $z \in (A \cap (-\infty, y)) \subseteq \overline{A}$).
- We have two cases:
 - 1. If $z \in B$, then $\overline{A} \cap B \neq \emptyset$. Hence, $E = A \cup B$ is not a witness to E being disconnected.
 - 2. If $z \notin B$, then in particular $z \neq y$ and hence $x \leq z < y \implies [z,y] \subseteq [x,y] \subseteq E \implies (z,y) \subseteq E \setminus A \subseteq B \implies z \in \overline{(z,y)} \subseteq \overline{B}$. Also, since $z \notin B \implies z \in A$, so we conclude that $z \in A \cap \overline{B} \neq \emptyset$. Again showing $E = A \cup B$ is not a witness to E being disconnected.

 \bullet Therefore, E is connected.

Proposition 5.28. X is disconnected if and only if $X = A \cup B$ where A and B are non-empty and disjoint open sets.

Proof. (Idea). If
$$X = A \cup B$$
 and $A \cap \overline{B} = \emptyset$, then $\overline{B} = A^c$ is closed.

Remark. The induced metric on a subset $Y \subseteq X$ is just the restriction of d to $Y \times Y$, i.e. the distance in Y between any two points in Y is the same as their distance in X. A set $U \subseteq Y \subseteq X$ is open if it is open as a subset $U \subseteq Y$ with respect to the induced metric on Y. $Y \subseteq X$ is disconnected if and only if $Y = A \cup B$ where A and B are non-empty and disjoint open sets in Y.

5.4 Compact sets

Definition 5.29. A collection $\{G_{\alpha}\}_{{\alpha}\in I}$ is called an open cover of a subset $E\subseteq X$ if each G_{α} , ${\alpha}\in I$, is an open set and $E\subseteq \bigcup_{{\alpha}\in I}G_{\alpha}$

An open cover is called finite if it contains finitely many open sets. It is called infinite otherwise.

Given an open cover $\{G_{\alpha}\}_{{\alpha}\in I}$ of a subset $E\subseteq X$, a subcover is a subcollection $\{V_{\beta}\}_{{\beta}\in J}\subseteq \{G_{\alpha}\}_{{\alpha}\in I}$ that is still an open cover of E. That is, still satisfying $E\subseteq \bigcup_{{\beta}\in J}V_{\beta}$.

Example 5.30.

1. E = [0, 1] with

$$\left\{ G_x = \left(x - \frac{1}{10}, x + \frac{1}{10} \right) \right\}_{x \in [0,1]}$$

has a finite sub-cover. E.g.

$$\left\{G_0, G_{\frac{1}{10}}, \dots, G_{\frac{9}{10}}, G_1\right\}$$

2. A = (0,1) with

$$\left\{ G_x = \left(x - \frac{1}{10}, x + \frac{1}{10} \right) \right\}_{x \in [0,1]}$$

has a finite sub-cover.

3. $\{W_n = (\frac{1}{n}, 2)\}_{n \in \mathbb{N}}$ is also an open cover of A without a finite subcover. This is because any finite subcollection

$$\{W_{n_1},\ldots,W_{n_k}\}\subseteq\{W_n\}_{n\in\mathbb{N}}$$

would satisfy

$$\bigcup_{i=1}^{k} W_{n_i} \subseteq \left(\frac{1}{M}2\right)$$

where $M = \max\{n_1, ..., n_k\}$.

Definition 5.31. (Compact set). A subset $K \subseteq X$ is called compact if every open cover of K has a finite subcover.

Example 5.32.

- 1. In \mathbb{R} , A = (0,1] is not compact. See above example 2.
- 2. In \mathbb{R} , \mathbb{Z} is not compact.
- 3. Every finite set in X is compact.
- 4. In \mathbb{R} , $E = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$ is compact.

Proof. Let $\{G_{\alpha}\}_{\alpha\in I}$ be an open cover of E. Then, $\exists \alpha_0$ such that $0\in G_{\alpha_0}$. Since G_{α_0} is open, there exists $\epsilon>0$ such that $N_{\epsilon}(0)=(-\epsilon,\epsilon)\subseteq G_{\alpha_0}$. Take $m=\max\left\{n\colon \frac{1}{n}\geq \epsilon\right\}$. Then $E\setminus G_{\alpha_0}\subseteq\left\{1,\frac{1}{2},\ldots,\frac{1}{m}\right\}$. So we can pick m more elements of $\{G_{\alpha}\colon G_{\alpha_1},\ldots,G_{\alpha_m}\}$ such that $E\subseteq\bigcup_{i=0}^m G_{\alpha_i}$. \square

Proposition 5.33. If $K \subseteq X$ is compact then K is closed.

Proof. We'll show K^c is open. Let $p \in K^c$. For any $q \in K$, since $p \neq q$, d(p,q) > 0 and

$$p \notin N_{\frac{d(p,q)}{2}}(q) =: V_q$$

Consider $\{V_q\}_{q\in K}$. Then $\{V_q\}_{q\in K}$ is an open cover of K. Since K is compact, there exists a finite subcover $\{V_{q_1},\ldots,V_{q_n}\}\subseteq \{V_q\}_{q\in K}$ such that $K\subseteq \bigcup_{i=1}^n V_{q_i}$ Denote

$$r = \min\left\{\frac{d(p, q_i)}{2} : 1 \le i \le n\right\} > 0$$

. Then

$$N_r(p) \cap \bigcup_{i=1}^n V_{q_i} = \emptyset$$

Otherwise, if

$$x \in N_r(p) \cap \bigcup_{i=1}^n V_{q_i}$$

then $\exists 1 \leq j \leq n$ such that $x \in N_r(p) \cap V_{q_j}$. This implies

$$d(p, q_j) \le d(p, x) + d(x, q_j) < r + \frac{d(p, q_j)}{2} \le d(p, q_j)$$

A contradiction. This implies that $N_r(p) \subseteq (\bigcup_{i=1}^n V_{q_i})^c \subset K^c$. This implies p is an interior point of K^c . \square

Proposition 5.34. If $K \subseteq X$ is compact, then K is bounded.

Proof. Consider the following open cover of K:

$$\{N_1(q)\}_{q\in K}$$

Since K is compact, $\exists q_1, \ldots, q_n \in K$ such that

$$\forall p \in k \exists 1 \leq i \leq n \text{ such that } d(p, q_i) < 1$$

Denote $D = \max\{d(q_i, q_j): 1 \leq i, j \leq n\}$. Let $x, y \in K$. Then $\exists 1 \leq i \leq n$ such that $d(x, q_i) < 1$ and $\exists 1 \leq j \leq n$ such that $d(y, q_j) < 1$. Using the triangle inequality, we have

$$d(x,y) \le d(x,q_i) + d(q_i,q_i) + d(q_i,y) < 1 + D + 1 = D + 2 =: M$$

Hence, we've shown that $\forall x, y \in K, d(x, y) \leq M$. Therefore K is bounded.

Proposition 5.35. Let $K \subseteq X$ be compact. Any infinite subset $E \subseteq K$ has a limit point in K.

Proof.

- Let $E \subseteq K$ be a set without a limit point in K. We will show E is finite (or empty).
- Let $q \in K$. Since q is not a limit point of E we know there exists a neighborhood V_q of q satisfying $E \cap V_q \subseteq \{q\}$
- Consider the open cover $\{V_q\}_{q \in K}$. Since K is compact, there exists a finite subcover $\{V_{q_1}, \ldots, V_{q_n}\} \subseteq \{V_q\}_{q \in K}$ such that $K \subseteq \bigcup_{i=1}^n V_{q_i}$.

$$E = E \cap \left(\bigcup_{i=1}^{n} V_{q_i}\right) = \bigcup_{i=1}^{n} (E \cap V_{q_i}) \subseteq \bigcup_{i=1}^{n} \{q_i\}$$

 \bullet Therefore, E is finite.

Proposition 5.36. For any a < b, $[a, b] \subseteq \mathbb{R}$ is compact.

Proof.

- Assume in contradiction that there exists an open cover $\{G_{\alpha}\}_{\alpha}$ of I=[a,b] which does not contain a finite sub-cover.
- Notation: Given an interval J=[c,d]. Denote $J^L=[c,\frac{c+d}{2}]$ and $J^R=[\frac{c+d}{2},d]$.
- At most one of $\{I^L, I^R\}$ can be covered by finitely many G_{α} . (Since if $\exists \alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_m$ such that $I^L \subseteq \bigcup_{i=1}^n G_{\alpha_i}$ and $I^R \subseteq \bigcup_{i=1}^m G_{\beta_i}$, then
- $\{G_{\alpha_1}, \dots, G_{\alpha_n}, G_{\beta_1}, \dots, G_{\beta_m}\}$ is a finite subcover of I.)
- Denote $I_1 = I^L$ if I^L cannot be covered by finitely many G_{α} and set $I_1 = I^R$ otherwise.
- For any $n \geq 1$, if I_n cannot be covered by finitely many G_{α} , then at least one of
- $\{I_n^L, I_n^R\}$ also cannot be covered by finitely many G_{α} .
- Denote $I_{n+1} = I_n^L$ if it cannot be covered by finitely many G_{α} and set $I_{n+1} = I_n^R$ otherwise.
- Notice that the length of I^n is $2^{-n}(b-a)$.
- Also notice that $I \supseteq I_1 \supseteq I_2 \supseteq \dots$
- We've seen before (in the proof of Cantor's Theorem) that in this situation in \mathbb{R} , $\bigcap_{n\in\mathbb{N}}I_n\neq\emptyset$.
- Let $z \in \bigcap_{n \in \mathbb{N}} I_n$. In particular, $z \in [a, b]$.
- Since $\{G_{\alpha}\}$ covers [a,b], $\exists \alpha_0$ is open, $\exists \epsilon > 0$ for which $N_{\epsilon}(z) \subseteq G_{\alpha_0}$
- Since $\exists n_0 \in \mathbb{N}$ with $2^{-n_0}(b-a) < \epsilon$, and since $z \in I_{n_0}$, we have that $I_{n_0} \subseteq N_{\epsilon}(z) \subseteq G_{\alpha_0}$.
- This is a contradiction of our construction which ensured that I_{n_0} cannot be covered by finitely many G_{α} .

Corollary 5.37. Every infinite subset of $[a,b] \in \mathbb{R}$ has a limit point.

Remark. A similar statement holds for k-cells in \mathbb{R}^n .

$$[a_1,b_1] \times \ldots \times [a_k,b_k]$$

These are all compact in \mathbb{R}^n .

Proposition 5.38. If $K \subseteq X$ is compact and $F \subseteq K$ is closed, then F is compact.

Proof.

- Let $\{G_{\alpha}\}_{{\alpha}\in I}$ be an arbitrary open cover of F.
- Then $\{G_{\alpha}\}_{{\alpha}\in I}\cup\{F^c\}$ is an open cover of K. $(\{F^c\})$ is open because F is closed).
- Since K is compact, there exists a finite subcover $\{G_{\alpha_1}, \dots, G_{\alpha_n}, F^c\}$ of K.
- $\Longrightarrow \{G_{\alpha_1}, \dots, G_{\alpha_n}\}$ is a finite subcover of F.
- Since $\{G_{\alpha}\}_{{\alpha}\in I}$ was arbitrary, this implies that F is compact.

Corollary 5.39. If $K \subseteq X$ is compact and $F \subseteq X$ is closed then $F \cap K$ is compact.

Proof. $F \cap K$ is closed in K and K is compact.

Theorem 5.40. In \mathbb{R}^n , the following are equivalent (TFAE) for $\mathbb{E} \subseteq \mathbb{R}^n$:

- 1. E is bounded and closed.
- 2. E is compact.
- 3. Every infinite subset of E has a limit point in E.

Proof. We'll show that $(1) \implies (2) \implies (3) \implies (1)$.

- 1. $(1) \implies (2)$.
 - Assume E is bounded and closed. Then there exists a cell $C = [a_1, b_1] \times ... \times [a_n, b_n]$ such that $E \subseteq C$. (E.g. $R^n = \bigcup_{k \in \mathbb{N}} [-k, k] \times ... \times [-k, k]$).

- $\implies E \subseteq C$ is a closed subset of a compact set, so E is compact.
- 2. (2) \implies (3). Shown in previous proposition.
- 3. (3) \implies (1). Prove by contrapositive.
 - Assume E is unbounded. Then $\forall n \in \mathbb{N}, \exists x_n \in E \text{ such that } d(x_n, x_0) \geq n \text{ for some } x_0 \in \mathbb{R}^n \text{ (e.g. the origin)}.$
 - Consider $J_1 = \{x_n\}_{n \in \mathbb{N}}$. Then J_1 is infinite (verify). If J_1 were finite, then it would have been bounded
 - J_1 is without a limit point (verify). If it had a limit point, it would see infinite amount of points in its neighborhood, which is impossible.
 - Assume E is not closed. Then $\exists q \in X \setminus E$ such that q is a limit point of E.
 - Since q is a limit point of $E, \forall n \in \mathbb{N}, \exists y_n \in E \text{ such that } y_n \in N_{1/n}(q)$
 - Consider $J_2 = \{y_n\}_{n \in \mathbb{N}}$. Then J_2 is infinite (verify).
 - We claim that the only limit point of J_2 is q. Hence, J_2 is without a limit point in E.
 - Assume q' is a limit point of J_2 . For any $n \in \mathbb{N}$, there exists infinitely many elements of J_2 in $N_{1/n}(q')$.
 - In particular, $\exists k > n$ such that $y_k \in N_{1/n}(q')$. \Longrightarrow

$$d(q, q') \le d(q, y_k) + d(y_k, q')$$

$$< \frac{1}{k} + \frac{1}{n} \le \frac{2}{n}$$

• Since this holds for all $n \in \mathbb{N} \implies d(q, q') = 0 \implies q' = q$.

Remark. The equivalence of $(2) \iff (3)$ holds in any metric space. So does $(2) \implies (1)$. The structure of \mathbb{R}^n is used to show $(1) \implies (2)$. $(1) \implies (2)$ does not hold in general, e.g. if X is infinite with the discrete metric. (Every subset of X are closed and bounded, but only finite sets are compact)

Example 5.41. Middle- $\frac{1}{3}$ Cantor set.

- $C_0 = [0, 1].$
- $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1].$
- $C_2 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1].$
- This process continues.
- The middle- $\frac{1}{3}$ Cantor set is defined as $C_{\frac{1}{3}} = \bigcap_{n \in \mathbb{N}} C_n$.
- For each n: C_n is the union of 2^n closed intervals of length 3^{-n} . C_{n+1} is given by removing the middle $\frac{1}{3}$ of each of these intervals in C_n .

Facts:

- 1. $C_{\frac{1}{2}} \neq \emptyset$ and $C_{\frac{1}{3}}$ is compact.
- 2. $C_{\frac{1}{2}}$ is uncountable.
- 3. The "length" of $C_{\frac{1}{3}}$ is 0.
- 4. Every point in $C_{\frac{1}{3}}$ is a limit point. (No isolated points).
- 5. There are no interior points in $C_{\frac{1}{3}}$.

6 Sequences

6.1 Convergence

Definition 6.1. (Sequence). A sequence $(p_n)_{n=1}^{\infty}$ in X is a function $p: \mathbb{N} \to X$.

Remark. We're allowed repetitions in sequences. Order matters.

Example 6.2. in \mathbb{R} :

- 1. $a_n \equiv 0 \ \forall n \in \mathbb{N}$.
- 2. $b_n = \begin{cases} n & \text{if } n \text{ is odd} \\ \frac{1}{n^2} & \text{if } n \text{ is even} \end{cases}$
- 3. q_n some enumeration of \mathbb{Q} . $(q:\mathbb{N}\to\mathbb{Q}$ is a bijection).

Definition 6.3. (Convergence). A sequence $(p_n)_n$ in X is said to converge to $q \in X$, denoted $p_n \to q$ or $\lim_{n\to\infty} p_n = q$, if

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } \forall n \geq N, p_n \in N_{\epsilon}(q)$$

Example 6.4.

- $a_n \equiv 0$ converges to 0.
- $b_n = \frac{1}{n^2}$ converges to 0. $\forall \epsilon > 0$, take $N > \frac{1}{\sqrt{\epsilon}} \implies \forall n \geq N, |b_n| = \frac{1}{n^2} < \frac{1}{N} < \epsilon. \implies b_n \in N_{\epsilon}(0)$.

Definition 6.5. (Convergent sequence). A sequence $(p_n)_n$ in X is called convergent if $\exists q \in X$ such that $p_n \to q$. Otherwise, $(p_n)_n$ is called divergent.

Example 6.6. Divergent sequences:

- $a_n = n$ in \mathbb{R} is divergent.
- $b_n = \frac{1}{n}$ in (0,1] is divergent.
- $c_n = (-1)^n = \{-1, 1, -1, \ldots\}$ in \mathbb{R} is divergent.
- q_n = some enumeration of \mathbb{Q} in \mathbb{R} is divergent.

Proposition 6.7. (Uniqueness of limit). If $p_n \to q$ and $p_n \to q'$, then q = q'.

Proof.

- Let $\epsilon > 0$, there exists $N_1 \in \mathbb{N}$ such that $\forall n \geq N_1, p_n \in N_{\epsilon}(q)$.
- Also, there exists $N_2 \in \mathbb{N}$ such that $\forall n \geq N_2, p_n \in N_{\epsilon}(q')$.
- So, for all $n \ge \max\{N_1, N_2\}, p_n \in N_{\epsilon}(q) \cap N_{\epsilon}(q')$.
- This implies $d(q, q') \le d(q, p_n) + d(p_n, q') < 2\epsilon$.
- But, $\epsilon > 0$ was arbitrary. So, $d(q, q') = 0 \implies q = q'$.

Definition 6.8. (Subsequence). A subsequence $(p_{n_k})_k$ of a sequence $(p_n)_n$ in X is given by a function $\mathbb{N} \to \mathbb{N}$ sending $k \mapsto n_k$ where $n_{k+1} > n_k$ for all $k \in \mathbb{N}$. That is, $(p_{n_k})_k$ is the function $k \mapsto p_{n_k}$.

Remark. The idea is that $(p_1, p_2, p_3, ...)$ is a sequence and $(p_{n_1}, p_{n_2}, p_{n_3}, ...)$ is a subsequence, where we never pick the same element twice and we never backtrack.

Example 6.9. Let $b_n = \frac{1}{n}$ in \mathbb{R} be our sequence

• $a_k = b_{k^2}$ is a subsequence where $n_k = k^2$. Explicitly, $a_k = \frac{1}{k^2}$.

Proposition 6.10. (Limits are hereditary). If $p_n \to q$, then any subsequence $(p_{n_k})_k$ of $(p_n)_n$ also converges to q.

Proof.

- Notice that for all $k \in \mathbb{N}$, $n_k \geq k$.
- Let $\epsilon > 0$, then $\exists N \in \mathbb{N}$ such that $\forall n \geq N, p_n \in N_{\epsilon}(q)$.
- In particular for all $k \geq N$, $n_k \geq k \geq N \implies p_{n_k} \in N_{\epsilon}(q)$.
- Hence, $p_{n_k} \to q$ as $k \to \infty$ by definition.

Example 6.11. $c_n = (-1)^n$ in \mathbb{R} is divergent. Because otherwise, there exists $x \in \mathbb{R}$ such that $a_k = c_{2k} = 1 \to x$ and $b_k = c_{2k+1} = -1 \to x$. This implies 1 = x = -1, which is a contradiction.

Proposition 6.12. If $K \subseteq X$ is compact and $(p_n)_n$ is a sequence in K, then $(p_n)_n$ has a convergent subsequence with a limit in K.

Proof.

- Denote $E = \{p_n \in K : n \in \mathbb{N}\}.$
- If E is finite, $E = \{p_1, \dots, p_m\}$, then $\exists 1 \leq i < m$ such that $p_{n_k} = p_i$ for some sequence $n_k \in \mathbb{N}$ with $n_{k+1} > n_k$.
- In particular, $p_{n_k} \to p_i \in K$ as $k \to \infty$.
- If E is infinite, then by a previous proposition we've shown, E has a limit point $q \in K$.
- Recall that this means that $\forall \epsilon > 0, N_{\epsilon}(q) \setminus \{q\}$ contains infinitely many elements of E.
- For all $k \in \mathbb{N}$, pick $p_{n_1} = p_1$. For each $k \in \mathbb{N}$, pick $n_{k+1} > n_k$ satisfying that $p_{n_k+1} \in N_{\frac{1}{k+1}}(q)$.
- We can always pick such an n_{k+1} because $E \cap N_{\frac{1}{k+1}}(q) \setminus \{p_i : 1 \le i \le n_k\}$ is infinite.
- By construction, $(p_{n_k})_k$ is a subsequence of $(p_n)_n$.
- And, $\forall \epsilon > 0$ take $N \geq 2$ such that $\frac{1}{N} < \epsilon$.
- Then $\forall k \geq N, p_{n_k} \in N_{\frac{1}{k}}(q) \subseteq N_{\frac{1}{N}}(q) \subseteq N_{\epsilon}(q)$.
- $\bullet \implies \lim_{k \to \infty} p_{n_k} = q.$

Corollary 6.13. Any sequence $(a_n)_n$ in $[a,b] \subseteq \mathbb{R}$ has a convergent subsequence.

Definition 6.14. (Bounded sequence). A sequence $(p_n)_n$ is called bounded if $E = \{p_n : n \in \mathbb{N}\} \subseteq X$ is a bounded set.

Proposition 6.15. If $(p_n)_n$ is convergent, then it is bounded.

Proof.

- Denote $q = \lim_{n \to \infty} p_n$. Then $\exists N \in \mathbb{N}$ such that $\forall n \geq N, p_n \in N_1(q)$.
- Set $M = \max\{1, d(p_1, q), \dots, d(p_{N-1}, q)\} \implies 0 < M < \infty$.
- Then $\forall n \in \mathbb{N}, p_n \in N_{M+\frac{1}{2}}(q)$.
- Then $(p_n)_n$ is bounded.

6.2 Cauchy sequences

Example 6.16. Consider the sequence:

$$a_n = \sum_{p \text{ prime, } p \le n} 2^{-p}$$

For example, $a_{10} = 2^{-2} + 2^{-3} + 2^{-5} + 2^{-7}$. Notice that $\forall n > m$

$$a_n - a_m = \sum_{p \text{ prime, } m$$

For example, $a_{10^9} - a_{10^6} \le 2^{-10^6}$.

Definition 6.17. (Cauchy sequence). A sequence $(p_n)_n$ in X is called Cauchy if

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } \forall n, m \geq N, d(p_n, p_m) < \epsilon$$

Example 6.18. $b_n = \frac{1}{n}$ in (0,1] is divergent, but it is Cauchy. $\forall \epsilon > 0$, take $N > \frac{1}{\epsilon}$. Then $\forall n, m \geq N$, $|b_n - b_m| = \frac{1}{n} + \frac{1}{m} < \frac{2}{N} < \epsilon$.

Definition 6.19. (Complete metric space). A metric space X is called complete if every Cauchy sequence in X is convergent.