

Bengali Number Recognition by Deep Learning

- NAME: Amit Kishor Das
- D: 13301096
- NAME: Tasnuva Tarannum
- D:14101133

ABOUT OUR TOPIC

COMPLETE SUPERVISED LEARNING

CLASSIFICATION

IMAGE PROCESSING

MACHINE LEARNING

DATASET

- > Total images of 1547.
- Started from 0 to 9.
- About 80% images are taken for Training Set.
- 20% images are taken for Test set.

Figure 1: Training and Test set.

ABOUT PROJECT

ABOUT PROJECT

- Why Deep Learning?
- A system for image recognition.
- Convolutional Neural Network.
 - Convolution.Flattening.
 - Max Pooling.
 Fully Connected Layer.
- We used:
 - > Theano
 - > Tensorflow
 - Keras
 - OpenCV

WORK PROCESS Convolutional Neural Network

Figure 2: Steps of Convolutional Neural Network

Step 1: Convolution

Figure 3: Animated Figure of Convolution Procedure.

Step 2: Max Pooling

Convolved Pooled feature

Figure 4: Animated Figure of Max Pooling Procedure.

Step 3: Flattening

Figure 5: Figure of Flattening Procedure.

Step 4: Fully Connected Layer

Figure 6: Figure of Fully Connected Layer.

PROPOSED MODEL

- Detect Canny Age of every Image in the Training Set
- Training CNN model as per CNN convention.
- 3. 80% dataset for Training set and 20% dataset for Test set.
- 4. Creating CNN Classifier Model.
- 5. Input unique image to recognize the digit.
- 6. Predict the as output.

Figure 7: Proposed Model of Number Recognition.

RESULT

Model Accuracy

➤ Has provided 84% accuracy.

> Formula of total accuracy-

$$Accuracy = \frac{TotalRecognized}{TotalInput}$$

Figure 8: Graph of Model's Accuracy.

RESULT(CONTINUE)

Model Accuracy

- Has given 80% or more accuracy for each test set after implementing CNN model with Canny Edge Detection.
- Providing 83% exactness of our model work by averaging all the accuracy.

Round	Number of Image	Detection			
		True	False	Accuracy of True Detection	Average Accuracy
1	20	16	4	80%	
2	35	30	5	85%	83%
3	50	42	8	84%	

Table 1: Accuracy of True Detection.

CONCLUSION

1. Publication target: Yes, in future

2. A better knowledge about : Image processing and machine learning

REFERENCES

- 1. Where did you get the idea (journal, conference, website)
- 2. Dataset:
- https://www.kaggle.com/debdoot/bdrw/data
- 3. Basic code:
- https://www.udemy.com/machinelearning/learn/v4/content
- 4. Tutorial we are following:
- Machine Learning A-Z™: Hands-On Python & R In Data Science

THANK YOU

Deep learning isn't magic.
But it is very good at finding patterns.

Any Question

