Collinearity of independent variables

Collinearity is a condition in which some of the independent variables are highly correlated.

Why is this a problem?

Collinearity tends to inflate the variance of at least one estimated regression coefficient, $\hat{\beta}_i$.

This can cause at least some regression coefficients to have the wrong sign.

The standard error of \widehat{eta}_j has the form

$$\sigma S_j$$
,

where S_j depends only upon the values of the independent variables. If collinearity is present, at least one S_j will be large.

Ways of dealing with collinearity:

- 1) Ignore it. If prediction of y values is the object of your study, then collinearity is not a problem.
- 2) Use an estimator of the regression coefficients other than the least squares estimators. An alternative is to use *ridge regression* estimators; Draper and Smith (1981), *Applied Regression Analysis*, 2nd edition, pp. 313-324.
- 3) Get rid of the "redundant" variables by using a variable selection technique.

How is collinearity identified?

- Examine the correlation coefficient for each pair of independent variables. A value of the correlation near ±1 indicates that the two variables are highly correlated. Use Analyze → Correlate → Bivariate in SPSS to obtain the correlation coefficients.
- 2) The variance inflation factors are also very useful. VIF(j) is the factor by which the variance of $\widehat{\beta}_j$ is increased over what it would be if x_j was uncorrelated with the other independent variables. If all values of VIF(j) are near 1, then collinearity is not a problem. VIF(j) > 10 indicates serious collinearity.

The variance inflation factors are obtained via $Regression \rightarrow Linear \rightarrow Statistics \rightarrow Collinearity diagnostics.$

Variable selection

We'd like to select the smallest subset of independent variables that explains almost as much of the variation in the response as do *all* the independent variables.

Several methods can be used for variable selection, including \mathbb{R}^2 , adjusted \mathbb{R}^2 , Mallow's \mathbb{C}_p , forward selection, and backward elimination.

$\underline{R^2}$

Generally speaking, models with high \mathbb{R}^2 values are good. However, one must be careful not to carry this idea too far.

Model 1: contains x_1, x_2, \ldots, x_k

Model 2: contains x_1, x_2, \ldots, x_k plus other independent variables

 \mathbb{R}^2 for Model 2 must be at least as big as \mathbb{R}^2 for Model 1.

If the increase in \mathbb{R}^2 is small in comparison to the number of extra independent variables, it's usually not a good idea to use the more complicated model.

Parsimony, or Occam's razor applied to statistical modeling: Use the simplest model that's consistent with the data.

Adjusted R^2

For a model with m independent variables,

$$R_{\text{adj}}^2 = 1 - (1 - R^2) \left(\frac{n-1}{n-m-1} \right).$$

Choose the model that maximizes R_{adj}^2 .

Mallow's C_p

For a model with p regression coefficients (including the intercept),

$$C_p = \frac{SSE_p}{MSE} - (n - 2p),$$

where SSE_p is the SSE for the model with p independent variables and MSE is the mean squared error for the full model.

Good models are ones with small C_p values and/or values of C_p close to p.

Forward selection

- Variables are chosen sequentially in a series of m steps. (Total number of independent variables is m.)
- At each step, one variable is added to ones that were chosen on previous steps.
- ullet A variable is added at step j if
 - i) it maximizes \mathbb{R}^2 among all models containing a new variable and variables added at steps $1, \ldots, j-1$, and
 - ii) its P-value (using a Type II F-test) is smaller than a prespecified threshold.

Note: Take the threshold to be larger than the usual 0.05 if you want to ensure that all variables end up being entered. Consider a case with 8 independent variables: x_1, x_2, \dots, x_8 .

After step 2, suppose the variables in the model are x_1 and x_8 .

Let $R^2(x_1, x_8, x_j)$ be the R^2 for a model that contains x_1 , x_8 and x_j .

- Compute $R^2(x_1, x_8, x_j)$ for j = 2, 3, 4, 5, 6, 7.
- Let's suppose $R^2(x_1, x_8, x_5)$ is the largest of these six numbers.
- Variable x_5 is added at step 3 if its Type II SS P-value in the model containing x_1, x_5, x_8 is smaller than the threshold.
- If the *P*-value is larger than the threshold, no further steps are performed.

The forward selection method is obtained in SPSS via $Analyze \rightarrow Regression \rightarrow Linear$.

- From the drop down menu next to Method: select Forward.
- By default the entry threshold is 0.05. If you want a different one, click *Options* and change the number next to Entry: to the desired threshold. (Note: The number next to *Removal*: must be bigger than the entry threshold.)

Soil Evaporation Data

Data recorded from June 16 to July 21 at a location in west central Texas.

Response y is daily amount of evaporation from the soil.

Ten independent variables:

- x_1 : maximum soil temperature
- x_2 : minimum soil temperature
- x_3 : average soil temperature

- x_4 : maximum air temperature
- x_5 : minimum air temperature
- x_6 : average air temperature
- x_7 : maximum relative humidity
- x_8 : minimum relative humidity
- x_9 : average relative humidity
- x_{10} : total wind (miles per day)

Summary of Soil Evaporation Analysis

- 1. There are strong correlations between some of the variables, and hence the possibility of collinearity problems.
- 2. Collinearity verified by large variance inflation factors in the model with all ten independent variables.
- 3. Several insignificant t-tests indicate the likelihood that not all ten variables are needed in the model. So, we proceeded to variable selection.
- 4. Forward selection and use of adjusted- R^2 suggest using model 6, the one with variables $x_1, x_3, x_6, x_8, x_9, x_{10}$.

- 5. Personally, I prefer model 4 that has the four independent variables x_3, x_6, x_9, x_{10} . Why?
 - Model 4 is simpler but still has an \mathbb{R}^2 that is only a bit smaller than that of model 6.
 - All the variance inflation factors for model 4 are smaller than 10, while three variance inflation factors for model 6 are larger than 20.
 - No P-value for a model 4 t-test is larger than 0.120, while model 6 has three t-tests with P-values larger than 0.20.
- 6. Before definitely choosing a model, residual plots should be examined to investigate possible nonlinear relationships.