Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-228. Вариант 30

- 1. Пусть $z=\frac{3}{2}-\frac{3\sqrt{3}i}{2}$. Вычислить значение $\sqrt[5]{z^2}$, для которого число $\frac{\sqrt[5]{z^2}}{\sqrt{3}-i}$ имеет аргумент $\frac{\pi}{30}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(14-13i) + y(12-10i) = -69+5i \\ x(-13-7i) + y(3+4i) = 91+316i \end{cases}$$

- 3. Найти корни многочлена $-x^6 11x^5 55x^4 135x^3 + 26x^2 + 796x + 680$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = -2 4i$, $x_2 = -4 + i$, $x_3 = 2$.
- 4. Даны 3 комплексных числа: 7+16i, 13+23i, 2+12i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -\sqrt{3} i$, $z_2 = -2i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 5i| < 1\\ |arg(z + 3i)| < \frac{2\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (7, 1, -1), b = (-5, -6, 0), c = (-3, -10, -1). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-8,-10,5) и плоскость P: 4x-42y+8z+494=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-11, -7, -9), $M_1(-2, -14, -14)$, $M_2(-12, 1, -14)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -17x - 19y - 20z - 388 = 0 \\ 2x - 15y - 6z - 239 = 0 \end{cases} \qquad L_2: \begin{cases} -19x - 4y - 14z - 1868 = 0 \\ -11x - 7y + 18z - 147 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.