Proof of Theorem 3.8

For arbitrary $w \in S$ let $B := \{x \, \big| \, \|x - x^*\| \leq \|w - x^*\| \}$ (Euclidean norm)

 $D := S \cap B$ closed, bounded, non-empty

 $\implies \exists x' \in D: \|x' - x^*\| < \|x - x^*\| \quad \forall x \in D$

 $\implies ||x'-x^*|| \le ||x-x^*|| \quad \forall \, x \in \mathcal{S} \qquad (*)$

Let $c := x' - x^* \neq 0$.

Proof of Theorem 3.8

For arbitrary $w \in S$ let $B := \{x \mid ||x - x^*|| \le ||w - x^*||\}$ (Euclidean norm)

 \implies $D := S \cap B$ closed, bounded, non-empty

 $\implies \exists x' \in D: \|x' - x^*\| \le \|x - x^*\| \quad \forall x \in D$

 $\implies ||x'-x^*|| < ||x-x^*|| \quad \forall \, x \in \mathcal{S} \qquad (*)$

Let $c := x' - x^* \neq 0$. Claim: $c^T x > c^T x^* \ \forall x \in S$.

Proof:

For all $x \in S$ and $\lambda \in (0,1]$: $x' + \lambda (x - x') \in S$ $\implies ||x' - x^*||^2 \leq ||x' + \lambda (x - x') - x^*||^2$

 $= \|x' - x^*\|^2 + 2\lambda(x' - x^*)^T(x - x') + \lambda^2 \|x - x'\|^2$

 $\implies 0 \le (x' - x^*)^T (x - x') + \frac{1}{2} \lambda ||x - x'||^2$

 $\overset{\lambda \to 0}{\Longrightarrow} \quad 0 \le (x' - x^*)^T (x - x') = c^T (x - x')$

 $\implies c^T x \ge c^T x' = c^T x^* + c^T (x' - x^*) = c^T x^* + ||c||^2 > c^T x^*$

D

• W

Polyhedral Cones and Recession Cones

Definition 3.12.

For $A \in \mathbb{R}^{m \times n}$ the polyhedron $\{x \in \mathbb{R}^n \mid A \cdot x \ge 0\}$ is a polyhedral cone.

Remark. Cone $\{0\}$ is the only polyhedral cone in \mathbb{R}^n that is a polytope.

Definition 3.13.

For a non-empty polyhedron $P = \{x \in \mathbb{R}^n \mid A \cdot x \ge b\}$, the recession cone $\operatorname{rec}(P)$ is the polyhedral cone $\{x \in \mathbb{R}^n \mid A \cdot x \ge 0\}$. The non-zero elements of the recession cone are the rays of P.

Example in \mathbb{R}^2 :

Characterization of Recession Cones

Lemma 3.14.

For a non-empty polyhedron $P = \{x \in \mathbb{R}^n \mid A \cdot x \ge b\}$ and $y \in P$,

$$\operatorname{rec}(P) = \{ x \in \mathbb{R}^n \mid y + \lambda \cdot x \in P \text{ for all } \lambda \ge 0 \}$$
.

In particular, if P is a polytope, $rec(P) = \{0\}$.

Proof:

For a non-empty polyhedron $P = \{x \in \mathbb{R}^n \mid A \cdot x \geq b\}$ and $y \in P$,

$$\{x \in \mathbb{R}^n \mid y + \lambda \cdot x \in P \ \forall \lambda \ge 0\} = \{x \in \mathbb{R}^n \mid A \cdot (y + \lambda \cdot x) \ge b \ \forall \lambda \ge 0\}$$
$$= \{x \in \mathbb{R}^n \mid A \cdot x \ge 0\}.$$

 $= \big\{x \in \mathbb{R}^n \mid A \cdot x \geq 0\big\}.$ Observation. The recession cone of $P = \big\{x \in \mathbb{R}^n \mid A \cdot x = b, x \geq 0\big\}$ is $\big\{x \in \mathbb{R}^n \mid A \cdot x = 0, x \geq 0\big\}.$

Extreme Points and Vertices of Polyhedra

Definition 3.15.

Let $P \subseteq \mathbb{R}^n$ be a polyhedron.

 $x \in P$ is an extreme point of P if

$$x \neq \lambda \cdot y + (1 - \lambda) \cdot z$$
 for all $y, z \in P \setminus \{x\}, 0 \le \lambda \le 1$,

i.e., x is not a convex combination of two other points in P.

b $x \in P$ is a vertex of P if there is some $c \in \mathbb{R}^n$ such that

$$c^T \cdot x < c^T \cdot y$$
 for all $y \in P \setminus \{x\}$,

i.e., x is the unique optimal solution to the LP min $\{c^T \cdot z \mid z \in P\}$.

Remark: The only possible vertex of a polyhedral cone C is $0 \in C$.

M. Skutella ADM I (winter 2019/20) 54

Active and Binding Constraints

In the following, let $P\subseteq\mathbb{R}^n$ be a polyhedron defined by

$$a_i^T \cdot x \ge b_i$$
 for $i \in M$,
 $a_i^T \cdot x = b_i$ for $i \in N$,

with $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$, for all i.

Definition 3.16.

If $x^* \in \mathbb{R}^n$ satisfies $a_i^T \cdot x^* = b_i$ for some i, then the corresponding constraint is active (or binding) at x^* .

Lemma 3.17.

If $P \neq \emptyset$ and none of the constraints $a_i^T \cdot x \geq b_i$ for $i \in M$ is active for all $x \in P$, then $\dim(P) = k := n - \operatorname{rank}\{a_i \mid i \in N\}$.

Proof of Lemma 3.17

'\(\leq'\): dim(P) \(\leq k\) since
$$\emptyset \neq P \subseteq \underbrace{\left\{x \in \mathbb{R}^n \mid {a_i}^T \cdot x = b_i \ \forall \ i \in N\right\}}_{\text{dim}(\cdots) = k}$$
.

'
$$\geq$$
': Let $d_j \in \mathbb{R}^n$, $j = 1, ..., k$, linearly indep. with $a_i^T \cdot d_j = 0 \ \forall \ i \in N$. For $i \in M$, let $x^i \in P$ with $a_i^T \cdot x^i > b_i$; let $y := \frac{1}{|M|} \sum_{i \in M} x^i \in P$.

Notice that $a_i^T \cdot y > b_i$ for all $i \in M$. Thus, for $\varepsilon > 0$ small enough,

$$a_i^T \cdot (y + \varepsilon d_j) \ge b_i$$
 for all $i \in M, j = 1, \dots, k$.

Thus, $y + \varepsilon d_j \in P$ for j = 1, ..., k, and

$$\{y\} \cup \{y + \varepsilon \, d_j \mid j \in \{1, \dots, k\}\}$$
 affinely independent.

Therefore $\dim(P) \ge k$.

M. Skutella ADM I (winter 2019/20) 5

Reminder: Basic Facts from Linear Algebra

Theorem 3.18.

Let $x^* \in \mathbb{R}^n$ and $I = \{i \mid a_i^T \cdot x^* = b_i\}$. The following are equivalent:

- there are n vectors in $\{a_i \mid i \in I\}$ which are linearly independent;
- ii the vectors in $\{a_i \mid i \in I\}$ span \mathbb{R}^n ;
- x^* is the unique solution to the system of equations $a_i^T \cdot x = b_i$, $i \in I$.

Vertices, Extreme Points, and Basic Feasible Solutions

Definition 3.19.

- $x^* \in \mathbb{R}^n$ is a basic solution of P if
 - ▶ all equality constraints are active and
 - ▶ there are *n* linearly independent constraints that are active.
- **b** A basic solution satisfying all constraints is a basic feasible solution.

Example:

M. Skutella ADM I (winter 2019/20) 5

Vertices, Extreme Points, and Basic Feasible Solutions

Definition 3.19.

- $\mathbf{z}^* \in \mathbb{R}^n$ is a basic solution of P if
 - all equality constraints are active and
 - ▶ there are *n* linearly independent constraints that are active.
- **b** A basic solution satisfying all constraints is a basic feasible solution.

Theorem 3.20.

For $x^* \in P$, the following are equivalent:

- x^* is a vertex of P;
- x^* is an extreme point of P;
- x^* is a basic feasible solution of P.

Existence of Extreme Points

Definition 3.21.

A polyhedron P is called pointed if it contains at least one vertex.

Definition 3.22.

A polyhedron $P \subseteq \mathbb{R}^n$ contains a line if there is $x \in P$ and a direction $d \in \mathbb{R}^n \setminus \{0\}$ such that

$$x + \lambda \cdot d \in P$$
 for all $\lambda \in \mathbb{R}$.

Theorem 3.23.

Consider non-empty $P \subseteq \mathbb{R}^n$ as on Slide 55. The following are equivalent:

- **III** P does not contain a line.
- $\min \text{ rank}\{a_i \mid i \in M \cup N\} = n.$

M. Skutella ADM I (winter 2019/20) 61