43

CLAIMS

1. A method for producing a steel ingot, which comprises the steps of:

forming a magnesium oxide, in which molten steel is adjusted to contain a sufficient amount of Mg to make oxides admixed in the molten steel so as to have a chemical composition a primary component of which is MgO; and

dissociating the magnesium oxide contained in the molten metal into Mg and oxygen by making a degree of vacuum of the melting environment higher than that of the former process of forming a magnesium oxide whereby making a Mg content in the molten steel to be not more than 50% of that in the former process of forming a magnesium oxide.

- 2. The method according to claim 1, wherein the first step of forming a magnesium oxide comprises casting the molten steel after adjusting it, the step of forming a magnesium oxide being referred to as "a primary melting process", and the second step of dissociating the magnesium oxide is carried out by remelting the cast steel under a degree of vacuum higher than that of the primary melting process, whereby dissociating the magnesium oxide contained in the molten metal into Mg and oxygen thereby making a Mg content in the molten steel to be not more than 50% of that in the primary melting process.
- 3. The method according to claim 2, wherein the

remelting is of a vacuum arc remelting.

- 4. The method according to claim 2 or 3, wherein the steel ingot contains a nitride forming element as a component of the steel.
- 5. The method according to any one of claims 1 to 4, wherein the degree of vacuum in the first step of forming a magnesium oxide is 6 kPa to 60 kPa and the degree of vacuum in the second step of dissociating the magnesium oxide is lowered to less than 0.6 kPa.
- 6. The method according to any one of claims 1 to 5, wherein the relationship between an amount of Mg (Mg_{OXI}) and an amount of Al (Al_{OXI}) is adjusted in the first step of forming a magnesium oxide so as to meet the following equation:

 Al_{OXI} (mass ppm)/ Mg_{OXI} (mass ppm) = 5 to 100.

- 7. The method according to any one of claims 1 to 6, wherein Mg is added into the molten steel as a Ni-Mg alloy which contains from exclusive zero to not more than 20 mass % of Mg.
- 8. The method according to any one of claims 1 to 7, wherein the steel ingot contains 0.01 to 6 mass % of Al.
- 9. The method according to any one of claims 1 to 8, wherein the steel ingot contains 0.1 to 2 mass % of Ti.
- 10. The method according to any one of claims 1 to 9, wherein the steel ingot is of a maraging steel.
- 11. The method according to any one of claims 1

to 9, wherein the steel ingot is of a tool steel.

The method according to claim 10, wherein the maraging steel consists essentially of, by mass, less than 10 ppm of O (oxygen), less than 15 ppm of N (nitrogen), not more than 0.01% C, 0.3 to 2.0% or less of Ti, 8.0 to 22.0% of Ni, 5.0 to 20.0% of Co, 2.0 to 9.0% of Mo, 0.01 to 1.7% of Al, and the balancer of Fe and unavoidable impurities.