SPRAWOZDANIE

Zajęcia: Matematyka Konkretna Prowadzący: prof. dr hab. Vasyl Martsenyuk

Zadanie 4 Temat: Analiza głównych składowych Wariant 13

> Łukasz Pindel Informatyka II stopień, stacjonarne, 2 semestr, Gr. 1B

1. Polecenie:

Zadaniem do zrealizowania jest obliczenie środka, osi głównych oraz kąta obrotu danych dwuwymiarowych z pliku csv zgodnie z wariantem zadania.

2. Wprowadzane dane:

Wariant 13 – plik csv z wartościami

4	Α		В	С	D		E	F	G	Н	1		J	К		L	М	N	0	Р		Q	R	S
1	1.5967	775565	6407029	98e+00,1	.5608267	57419599	9309e+0	0,1.2678	24541228	986801e+	00,1.688	3045048	3058409	933e-01,	,2.7251	.0844605	8841505e	-01,3.9919	817385303	63533e-0	01,-8.91	1702758	473338796	8e-01,-6.09
2	11788	910592	744072	e-01,3.18	37058670	5544445	84e-01,1	.1064549	935794392	247e+00	7.273042	2896216	972419	e-01,2.	759037	2113267	79371e+0	0,1.832700	931159207	958e+00	,1.5464	285602	60591833e	+00,9.1817
3	676e-	01,3.36	3865949	10663161	l4e+00,1	.8353165	4236593	7220e+0	0,1.47565	14039489	14586e+	00,-5.28	380714	2424021	.9365e-	01,-6.19	47250316	55633264e	-01,1.2581	86691939	9109147	7e+00,-1	1.49587816	617896329
4	.22069	936818	8239479	9e+00,-7.	8676282	71174524	901e-01	,-7.9116	89444740	908073e-	01,2.644	1670351	.935155	591e+00	,1.5218	3275943	6730464e	+00,1.012	345829769	334848e+	00,6.09	9467243	294808280	8e-01,3.30
5	11876	963304	18784416	-01,1.987	73642007	8227604	7e+00,3.	3667771	78659479	119e+00,	1.576235	1839690	054710	e+00,2.3	3178806	50919233	30077e+00	,7.044099	395141240	061e-01,	4.28872	2011783	0038259e-0	01,-1.01131
6	2.132	752054	8003175	98e-01,-3	.4522909	91609476	4572e-0	1,2.5867	86359941	9593 7 9e-	01,9.169	3355477	852578	334e-01,	2.3107	2005191	2120709e	+00,-4.366	299744420	341078e-	-01,2.64	4577724	938575320	5e+00,-1.0
7	84875	964663	49157e	100,1.125	58377276	55789570	e+00,5.2	7863947	37269570	76e-01,1	0711805	1930810)4984e	+00,5.14	1959974	45097566	128e-02,	1.7331076	804194021	08e+00,2	.554880	102472	923298e+0	0,7.894431
8	.95890	092209	6377195	8e+00,-1.	0744198	34405133	223e+00	,3.69150	53619127	79115e-0	1,1.6631	336788	901838	20e+00,	1.8315	1173340	1217867e	+00,1.5714	886477591	61417e+	00,1.03	4917241	1585033176	e+00,1.10
9	2.786	759511	8435399	83e+00,3	1393926	78113724	4688e+0	0,2.0982	33095832	572807e+	00,-4.626	429362	029034	1209e-01	1,3.196	1679143	86900399	e+00,2.707	474373653	850908e	-01,-2.7	7903209	093253202	87e+00,1.0
10	30120	652752	27e+00,1	.5715214	11961294	1579e+00	,3.00403	9306339	896243e-	01,2.7901	3170122	7275940	0e+00,2	2.086942	2509122	20552566	+00,4.15	788226082	9627974e+	00,1.841	584942	6085781	90e+00,-1.	236537294
11	-01,1.	270360	8145731	.18891e+0	00,2.4330	8830165	9120933	e+00,-3.	10080652	10906821	11e-01,2	.386482	867771	1004823	e+00,2.	5826135	36827230	938e+00,-	2.41321825	5288278	158e+0	0,8.8983	3892830653	888788e-02
12	14397	607396	-01,2.85	25693101	18593995	5e+00,3.	8460467	0497225	6869e+00	,3.295491	4966323	32318e-	+00,-1.	7478443	485630	70138e-	01,2.3431	695701846	18244e+00	,1.29817	862171	065012	7e+00,1.06	409497880
13	42094	41e-01	,2.58421	48570733	368954e+	00,3.067	4184219	8849212	8e+00,2.8	38037537	2151460	67e+00,	-2.438	6795161	308572	206e-01,2	2.5312259	459172379	29e+00,1.	94583064	707818	4317e+	00,4.88865	574514539
14	01,2.1	670794	1804364	39902e+0	0,6.57386	58277305	571217e	-01,2.71	16928107	13810076	e+00,2.3	0836183	303144	59517e+	Ю0,-1.9	95903918	47858601	44e-02,3.2	270419493	39085080	7e+00,	3.24961	486818942	2356e+00,6
15	3771e	+00,1.0	0245967	33136866	307e+00,	4.179754	2410215	32479e+	00,9.5219	2279287	3974695e	-01,1.7	394682	4894216	52898e+	+00,-1.86	72398027	14386609	e+00,2.068	01197160	0815819	95e+00,3	3.52011648	887296457
16	2.4898	365576	9918516	26e+00,4	6399709	63340292	2798e+0	0,1.9379	88616707	232215e+	00,1.583	8442184	780308	308e+00	,2.5795	4691088	7874578e	+00,9.506	426203171	617351e-	01,5.01	441314	2230338849	9e+00,3.41

Rysunek 1: Zawartość pliku csv

3. Wykorzystane komendy:

Wczytywanie i przygotowanie danych:

Dane z pliku "13.csv" są wczytywane za pomocą funkcji **read_csv**() z biblioteki Pandas. Parametr sep=',' określa separator kolumn w pliku, a header=None oznacza, że plik nie zawiera wiersza nagłówkowego. Następnie dane są konwertowane na tablicę NumPy za pomocą funkcji **to_numpy**(), aby były gotowe do dalszej analizy.

Generowanie chmury punktów:

$$X = R @ np.diag(sig) @ data + np.diag(xC) @ np.ones((2,nPoints))$$

Na podstawie wczytanych danych tworzona jest chmura punktów X. Dane są transformowane przy użyciu macierzy rotacji R, wektora odchylenia standardowego sig i wektora średnich xC.

Obliczanie średniej i macierzy kowariancji:

$$Xavg = np.mean(X,axis=1)$$

 $B = X - np.tile(Xavg,(nPoints,1)).T$

W tej części obliczana jest średnia wartość dla każdej współrzędnej punktów w chmurze danych X, a następnie tworzona jest macierz kowariancji B poprzez odjęcie od chmury danych X macierzy średnich Xavg.

Dekompozycja SVD:

$$U, S, VT = np.linalg.svd(B/np.sqrt(nPoints),full_matrices=0)$$

Dekompozycja SVD macierzy kowariancji B. Wynikiem są macierz lewych wektorów singularnych U, wektor wartości singularnych S oraz macierz prawych wektorów singularnych VT.

Rysowanie wykresów:

```
ax2.plot(X[0,:],X[1,:], '.', color='k')
ax2.plot(Xavg[0] + Xstd[0,:], Xavg[1] + Xstd[1,:],'-',color='r',linewidth=3)
```

Na pierwszym wykresie przedstawiona jest chmura punktów X, gdzie każdy punkt reprezentuje jedną obserwację z danych. Na drugim wykresie ta sama chmura punktów zostaje ponownie przedstawiona w celu nałożenia na nią analizy PCA. Dodatkowo na drugim wykresie rysowane są elipsy reprezentujące 1-, 2- i 3-krotne odchylenia standardowe od środka danych oraz linie reprezentując

Link do repozytorium:

https://github.com/denniak/MK/tree/main/MK 4

4. Wynik działania:

Rysunek 2: Przedstawienie obserwacji w postaci chmury punktów

Rysunek 3: Przedstawienie obserwacji wraz z nałożoną analizą PCA

5. Wnioski:

Na podstawie otrzymanego wyniku można stwierdzić, że przeprowadzona analiza PCA umożliwiła identyfikację środka danych oraz głównych osi zmienności. Średnia wartość dla każdej współrzędnej punktów wskazuje na ich centrum, natomiast osie główne, otrzymane dzięki dekompozycji SVD, reprezentują kierunki maksymalnej zmienności w danych dwuwymiarowych. Dodatkowo, obecność elips na wykresie drugim wskazuje na rozkład punktów wokół środka danych oraz ilustruje ich zmienność w różnych kierunkach.