STAT253/317 Lecture 8 Generating Functions

For a non-negative-integer-valued random variable T, the generating function of T is the expected value of s^T as a function of s

$$G(s) = E[s^T] = \sum_{k=0}^{\infty} s^k P(T = k),$$

in which s^T is defined as 0 if $T=\infty$. Since $0 \leq \mathrm{P}(T=k) \leq 1$, the generating function is always defined for $-1 \leq s \leq 1$

Examples of Generating Functions

▶ If T has a geometric distribution: $P(T = k) = p(1 - p)^k$, k = 0, 1, 2, ..., the generating function of T is

$$G(s) = \sum_{k=0}^{\infty} s^k P(T = k) = \sum_{k=0}^{\infty} s^k p(1-p)^k = \frac{p}{1 - (1-p)s}$$

▶ If T has a Binomial distribution $P(T = k) = \binom{n}{k} p^k (1-p)^{n-k}$, k = 0, 1, 2, ..., n, the generating function of T is

$$G(s) = \sum_{k=0}^{\infty} s^{k} P(T = k) = \sum_{k=0}^{\infty} s^{k} {n \choose k} p^{k} (1 - p)^{n-k}$$
$$= (ps + (1 - p))^{n}$$

Properties of Generating Function

$$G(s) = E[s^T] = \sum_{k=0}^{\infty} s^k P(T = k)$$

- ▶ G(s) is a power series converging absolutely for all $-1 \le s \le 1$. since $0 \le P(T = k) \le 1$ and $\sum_{k} P(T = k) \le 1$.
- ▶ $G(1) = P(T < \infty)$ $\begin{cases} = 1 & \text{if } T \text{ is finite w/ prob. 1} \\ < 1 & \text{otherwise} \end{cases}$

►
$$P(T = k) = \frac{G^{(k)}(0)}{k!}$$

Knowing $G(s) \Leftrightarrow$ Knowing $P(T = k)$ for all $k = 0, 1, 2, ...$

More Properties of Generating Functions

$$G(s) = E[s^T] = \sum_{k=0}^{\infty} s^k P(T = k)$$

ightharpoonup $E[T] = \lim_{s \to 1^-} G'(s)$ if it exists because

$$G'(s) = \frac{d}{ds} \mathsf{E}[s^T] = \mathsf{E}[Ts^{T-1}] = \sum_{k=1}^{\infty} s^{k-1} k \mathsf{P}(T=k).$$

ightharpoonup $\operatorname{\mathsf{E}}[T(T-1)] = \lim_{s \to 1^-} G''(s)$ if it exists because

$$G''(s) = E[T(T-1)s^{T-2}] = \sum_{k=2}^{\infty} s^{k-2}k(k-1)P(T=k)$$

▶ If T and U are **independent** non-negative-integer-valued random variables, with generating function $G_T(s)$ and $G_U(s)$ respectively, then the generating function of T + U is

$$G_{T+U}(s) = E[s^{T+U}] = E[s^{T}]E[s^{U}] = G_{T}(s)G_{U}(s)$$

Lecture 8 - 4

4.5.3 Random Walk w/ Reflective Boundary at 0

- ► State Space = $\{0, 1, 2, ...\}$
- $ightharpoonup P_{01} = 1, P_{i,i+1} = p, P_{i,i-1} = 1 p = q, \text{ for } i = 1, 2, 3 \dots$
- Only one class, irreducible
- For i < j, define

$$N_{ij} = \min\{m > 0 : X_m = j | X_0 = i\}$$

= time to reach state j starting in state i

- Observe that $N_{0n} = N_{01} + N_{12} + \ldots + N_{n-1,n}$ By the Markov property, $N_{01}, N_{12}, \ldots, N_{n-1,n}$ are indep.
- ightharpoonup Given $X_0 = i$

$$N_{i,i+1} = \begin{cases} 1 & \text{if } X_1 = i+1 \\ 1 + N_{i-1,i}^* + N_{i,i+1}^* & \text{if } X_1 = i-1 \end{cases}$$
 (1)

where $N_{i-1,i}^* \sim N_{i-1,i}$, $N_{i,i+1}^* \sim N_{i,i+1}$, and $N_{i-1,i}^*$, $N_{i,i+1}^*$ are indep.

Generating Function of $N_{i,i+1}$

Let $G_i(s)$ be the generating function of $N_{i,i+1}$. From (1), and by the independence of $N_{i-1,i}^*$ and $N_{i,i+1}^*$, we get that

$$G_i(s) = ps + qE[s^{1+N_{i-1,i}^*+N_{i,i+1}^*}] = ps + qsG_{i-1}(s)G_i(s)$$

So

$$G_i(s) = \frac{ps}{1 - qsG_{i-1}(s)} \tag{2}$$

Since N_{01} is always 1, we have $G_0(s) = s$. Using the iterative relation (2), we can find

$$G_1(s) = \frac{ps}{1 - qsG_0(s)} = \frac{ps}{1 - qs^2} = ps \sum_{k=0}^{\infty} (qs^2)^k = \sum_{k=0}^{\infty} pq^k s^{2k+1}$$

So
$$P(N_{12} = n) =$$

$$\begin{cases} pq^k & \text{if } n = 2k+1 \text{ for } k = 0, 1, 2 \dots \\ 0 & \text{if } n \text{ is even} \end{cases}$$

Similarly,

$$G_{2}(s) = \frac{ps}{1 - qsG_{1}(s)} = \frac{ps(1 - qs^{2})}{1 - q(1 + p)s^{2}}$$

$$= \frac{ps}{1 - q(1 + p)s^{2}} - \frac{pqs^{3}}{1 - q(1 + p)s^{2}}$$

$$= ps \sum_{k=0}^{\infty} (q(1 + p)s^{2})^{k} - pqs^{3} \sum_{k=0}^{\infty} (q(1 + p)s^{2})^{k}$$

$$= \sum_{k=0}^{\infty} pq^{k}(1 + p)^{k}s^{2k+1} - \sum_{k=0}^{\infty} pq^{k+1}(1 + p)^{k}s^{2k+3}$$

$$= ps + \sum_{k=1}^{\infty} pq^{k}[(1 + p)^{k} - (1 + p)^{k-1}]s^{2k+1}$$

$$= ps + \sum_{k=1}^{\infty} p^{2}q^{k}(1 + p)^{k-1}s^{2k+1}$$

So

$$P(N_{23} = n) = \begin{cases} p & \text{if } n = 1\\ p^2 q^k (1+p)^{k-1} & \text{if } n = 2k+1 \text{ for } k = 1, 2, \dots\\ 0 & \text{if } n \text{ is even} \end{cases}$$

Mean of $N_{i,i+1}$

Recall that $G'_i(1) = E(N_{i,i+1})$. Let $m_i = E(N_{i,i+1}) = G'_i(1)$.

$$G_i'(s) = \frac{p(1 - qsG_{i-1}(s)) + ps(qG_{i-1}(s) + qsG'_{i-1}(s))}{(1 - qsG_{i-1}(s))^2}$$

$$= \frac{p + pqs^2G'_{i-1}(s)}{(1 - qsG_{i-1}(s))^2}$$

Since $N_{i,i+1} < \infty$, $G_i(1) = 1$ for all $i = 0, 1, \dots, n-1$. We have

$$m_i = G_i'(1) = \frac{p + pqG_{i-1}'(1)}{(1-q)^2} = \frac{1 + qG_{i-1}'(1)}{p} = \frac{1}{p} + \frac{q}{p}m_{i-1}$$

We get the same iterative equation as in Lecture 7.

4.7 Branching Processes Revisit

Recall a Branching Process is a population of individuals in which

- all individuals have the same lifespan, and
- each individual will produce a random number of offsprings at the end of its life

Let $X_n = \text{size}$ of the *n*th generation, $n = 0, 1, 2, \ldots$ Let $Z_{n,i} = \#$ of offsprings produced by the *i*th individuals in the *n*th generation. Then

$$X_{n+1} = \sum_{i=1}^{X_n} Z_{n,i} \tag{3}$$

Suppose $Z_{n,i}$'s are i.i.d with probability mass function

$$P(Z_{n,i} = j) = P_j, \ j \ge 0.$$

We suppose the non-trivial case that $P_j < 1$ for all $j \ge 0$. $\{X_n\}$ is a Markov chain with state space $= \{0, 1, 2, \ldots\}$.

Generating Functions of the Branching Processes

Let $g(s) = \mathbb{E}[s^{Z_{n,i}}] = \sum_{k=0}^{\infty} P_k s^k$ be the generating function of $Z_{n,i}$, and $G_n(s)$ be the generating function of X_n , $n = 0, 1, 2, \ldots$

Then $\{G_n(s)\}$ satisfies the following two iterative equations.

(i)
$$G_{n+1}(s) = G_n(g(s))$$
 for $n = 0, 1, 2, ...$

(ii)
$$G_{n+1}(s) = g(G_n(s))$$
 if $X_0 = 1$, for $n = 0, 1, 2, ...$

$$E[s^{X_{n+1}}|X_n] = E\left[s^{\sum_{i=1}^{X_n} Z_{n,i}}\right] = E\left[\prod_{i=1}^{X_n} s^{Z_{n,i}}\right]$$

$$= \prod_{i=1}^{X_n} E[s^{Z_{n,i}}] \quad \text{by indep. of } Z_{n,i}\text{'s}$$

$$= \prod_{i=1}^{X_n} g(s) \quad \text{as } g(s) = E[s^{Z_{n,i}}]$$

$$= g(s)^{X_n}$$

From which, we have

$$G_{n+1}(s) = E[s^{X_{n+1}}] = E[E[s^{X_{n+1}}|X_n]] = E[g(s)^{X_n}] = G_n(g(s))$$

since $G_n(s) = E[s^{X_n}]$.

Proof of (ii) $G_{n+1}(s) = g(G_n(s))$ if $X_0 = 1$

Suppose there are k individuals in the first generation ($X_1 = k$). Let Y_i be the number offspring of the ith individual in the first generation in the (n+1)st generation. Obviously,

$$X_{n+1} = Y_1 + \ldots + Y_k.$$

Observe Y_1, \ldots, Y_k 's are indep and each has the same distn. as X_n since they are all the size of the nth generation of a single ancestor. Thus, by ndep. of Y_i 's

$$E[s^{X_{n+1}}|X_1=k] = E[s^{Y_1+...+Y_k}] = E\left[\prod_{i=1}^k s^{Y_i}\right] = \prod_{i=1}^k E[s^{Y_i}]$$

Since Y_i 's have the same dist'n as X_n and $G_n(s) = E[s^{X_n}]$, we have

$$\mathsf{E}[s^{X_{n+1}}|X_1=k]=\prod_{i=1}^k G_n(s)=(G_n(s))^k$$

Since $X_0 = 1$, $X_1 = Z_{1,1}$, and hence $P(X_1 = k) = P_k$.

$$G_{n+1}(s) = E[s^{X_{n+1}}] = \sum_{k=0}^{\infty} E[s^{X_{n+1}}|X_1 = k]P_k = \sum_{k=0}^{\infty} (G_n(s))^k P_k = g(G_n(s)),$$

where the last equality comes from that $g(s) = \sum_{k=0}^{\infty} P_k s^k$.

Example

Suppose $X_0 = 1$, and $(P_0, P_1, P_2) = (1/4, 1/2, 1/4)$. Find the distribution of X_2 .

Sol.

$$g(s) = \frac{1}{4}s^0 + \frac{1}{2}s^1 + \frac{1}{4}s^2 = (1+s)^2/4.$$

Since $X_0 = 1$, $G_0(s) = E[s^{X_0}] = E[s^1] = s$. From (i) we have $G_1(s) = G_0(g(s)) = g(s) = (1+s)^2/4$

$$G_1(s) = G_0(g(s)) = g(s) = (1+s)/4$$

$$G_2(s) = G_1(g(s)) = \frac{1}{4}(1+\frac{1}{4}(1+s)^2)^2 = \frac{1}{64}(5+2s+s^2)^2$$

$$= \frac{1}{64}(25+20s+14s^2+4s^3+s^4) = \sum_{k=0}^{\infty} P(X_2 = k)s^k$$

The coefficient of s^k in the polynomial of $\mathcal{G}_2(s)$ is the chance that

$$X_2 = k$$
.
 k 0 1 2 3 4
 $P(X_2 = k)$ $\frac{25}{64}$ $\frac{20}{64}$ $\frac{14}{64}$ $\frac{4}{64}$ $\frac{1}{64}$

and $P(X_2 = k) = 0$ for $k \ge 5$. Lecture 8 - 12

Extinction Probability of a Branching Process

Let
$$\pi_0 = \lim_{n \to \infty} \mathrm{P}(X_n = 0 | X_0 = 1)$$

= $\mathrm{P}(\text{the population will eventually die out} | X_0 = 1)$

As $G_n(s) = \mathbb{E}[s^{X_n}] = \sum_{k=0}^{\infty} P(X_n = k) s^k$, plugging in s = 0, we get

$$G_n(0) = P(X_n = 0) = P(\text{extinct by the } n \text{th generation}).$$

Recall that if $X_0 = 1$, $G_1(s) = g(s)$, and $G_{n+1}(s) = g(G_n(s))$. We can compute $G_n(0)$ iteratively as follows

$$G_1(0) = g(0)$$

 $G_{n+1}(0) = g(G_n(0)), \quad n = 1, 2, 3, ...$

Finally, we can get the extinction probability by taking the limit

$$\pi_0 = \lim_{n \to \infty} G_n(0).$$

Extinction Probability of a Branching Process

If $X_0=1$, the extinction probability π_0 is a **smallest root** of the equation

$$g(s) = s \tag{4}$$

in the range $0 \ll s \ll 1$, where $g(s) = \sum_{k=0}^{\infty} P_k s^k$ is the generating function of $Z_{n,i}$.

Proof.

A Branching Process Will Become Extinct If $\mu \leq 1$

Let $\mu = \mathrm{E}[Z_{n,i}] = \sum_{j=0}^{\infty} j P_j$. If $\mu \leq 1$, the extinction probability π_0 is 1 unless $P_1 = 1$. $\mathrm{mu} = \mathrm{g'}(1) = \mathrm{slope}$ of the curve $\mathrm{g}(\mathrm{x})$ at $\mathrm{x} = 1$ *Proof.*

Formal Proof

Let
$$h(s) = g(s) - s$$
. Since $g(1) = 1$, $g'(1) = \mu$,
$$h(1) = g(1) - 1 = 0$$
,
$$h'(s) = \Big(\sum_{j=1}^{\infty} jP_j s^{j-1}\Big) - 1 \le \Big(\sum_{j=1}^{\infty} jP_j\Big) - 1 = \mu - 1 \quad \text{for } 0 \le s < 1$$
Thus $\mu \le 1 \Rightarrow h'(s) \le 0$ for $0 \le s < 1$

$$\Rightarrow h(s) \text{ is non-increasing in } [0, 1)$$

$$\Rightarrow h(s) > h(1) = 0 \text{ for } 0 \le s < 1$$

$$\Rightarrow g(s) > s \qquad \text{for } 0 \le s < 1$$

$$\Rightarrow There \text{ is no root in } [0, 1).$$

Extinction Probability When $\mu > 1$

If $\mu > 1$, there is a unique root of the equation g(s) = s in the domain [0,1), and that is the extinction probability.

Proof.

Formal Proof

Let
$$h(s)=g(s)-s$$
. Observe that
$$h(0)=g(0)=P_0>0$$

$$h'(0)=g'(0)-1=P_1-1<0$$
 Then $\mu>1\Rightarrow h'(1)=\mu-1>0$
$$\Rightarrow h(s) \text{ is increasing near } 1$$

$$\Rightarrow h(1-\delta)< h(1)=0 \text{ for } \delta>0 \text{ small enough}$$

Since h(s) is continuous in [0,1), there must be a root to h(s)=s. The root is unique since

$$h''(s)=g''(s)=\sum\nolimits_{j=2}^{\infty}j(j-1)P_{j}s^{j-2}\geq 0\quad\text{for }0\leq s<1$$

$$h(s)\text{ is convex in }[0,1).$$
 g(s) is also convex.