CS361 HW1 Ahram Kim 114055134

CS 361 – Homework 1 Total possible points: 30

- 1. (17 points) Let $A = \{(x), (y), ()\}$ and $B = \{(x), (y)\}$
 - a. Is A a subset of B?
 - b. Is B a subset of A?
 - c. What is $A \cup B$?
 - d. What is $A \cap B$?
 - e. What is $A \times B$?
 - f. What is the power set of A?
 - g. What is $\overline{A \cap B}$?
 - a. No, A is not a subset of B
 - b. Yes, B is a subset of A
 - c. $\{(x), (y), ()\}$
 - d. $\{(x), (y)\}$
 - e. $\{(x, x), (x, y), (y, x), (y, y), ((), x), ((), y)\}$
 - f. $P(A) = {\Theta, {(x)}, {(y)}, {()}, {(x), {(y)}, {(x), {()}, {(x), {()}, {(x), {(y)}, {()}}}} = 2^3=8}$
 - g. {()}
- (5 points) Find the error in the following proof that 2 = 1.
 Consider equation a = b. Multiply both sides of a to obtain a² = ab. Substract b² from both sides to get a² b² = ab b². Now factor each side, (a + b)(a b) = b(a b), and divide each side by (a b) to get (a + b) = b. Finally, let a and b equal to 1, which shows that 2 = 1.
 - Consider equation a = b.
 - Multiply both sides of a to obtain $a^2 = ab$.
 - Subtract b^2 from both sides to get $a^2 b^2 = ab b^2$.
 - Factor each side, (a + b)(a − b) = b(a − b).
 - Divide each side by (a b): $\frac{(a+b)(a-b)}{(a-b)} = \frac{b(a-b)}{(a-b)}$. This part is the error.
 - Since a = b, (a b) is zero. Dividing by 0 is actually impossible mathematically.
 - Thus, the proof is wrong.
- 3. (8 points) Let w be a string over an alphabet Σ . **Prove** that $(w^i)^R = (w^R)^i$, where R is the string's reverse operation and $i \ge 0$ is the string's repetition operation.
 - The first proof:
 - w is the string over an alphabet Σ , and R is the reverse string of w.

CS361 HW1 Ahram Kim 114055134

- Let w be 'apple' and prove that $(w^i)^R = (w^R)^i$
- At first, $(w^i)^R : w^i = apple apple apple \cdots$, then $(w^i)^R = elppa elpp$
- Secondly, $(w^R)^i : w^R = \text{elppa}$, then $(w^R)^i = \text{elppa}$ elppaelppaelppa······.
- According the proof, $(w^i)^R = (w^R)^i$.
- The Second proof:
- $\bullet \quad (w^i)^R = (w^R)^i$
- $w^{iR} = w^{Ri}$
- i * R = R * i
- $(w^i)^R = (w^R)^i$