- **1 Exercise 0.15** Enumerate all the subcomplexes of S^{∞} , with the cell structure described in this section, having two cells in each dimension.
- **2 Exercise 0.16** Show that $\overline{S^{\infty}}$ is contractible.
- **3 Exercise 0.18** Show that $S^1 * S^1 = S^3$, and more generally $S^n * S^m = S^{n+m+1}$.
- **4 Exercise 0.19** Show that the space obtained from S^2 by attaching n 2-cells along any collection of n circles in S^2 is homotopy equivalent to the wedge sum of n+1 2-spheres.
- **5 Exercise 0.20** Show that the subspace $X \subseteq \mathbb{R}^3$ formed by a klein bottle intersecting itself in a circle is homotopy equivalent to $S^1 \vee S^1 \vee S^2$.
- **6 Exercise 0.23** Show that a CW complex is contractible if it is the union of two contractible subcomplexes whose intersection is also contractible.
- **7 Exercise 0.24** Let X and Y be CW complexes with 0-cells x_0 and y_0 . Show that the quotient spaces $X*Y/(X*\{y_0\}\cup\{x_0\}*Y)$ and $S(X\wedge Y)/S(\{x_0\}\wedge\{y_0\})$ are homeomorphic, and deduce that $X*Y\simeq S(X\wedge Y)$.
- **8 Exercise 0.25** If X is a CW complex with components X_{α} , show that the suspension SX is homotopy equivalent to $Y \bigvee_{\alpha} SX_{\alpha}$ for some graph Y. In the case that X is a finite graph, show that SX is homotopy equivalent to a wedge sum of circles and 2-spheres.