Unsupervised Person Re-identification by Soft Multila	bel Learning
In proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition	on(CVPR)
	Yunseon Byun June 01, 2020

Contents

- 1. Introduction
 - Person re-identification (Re-ID)
 - Multilabel classification
 - Challenges

- 2. Methodology
 - Contributions
 - The proposed method
- 3. Experimental results
- 4. Conclusion

1. Introduction

What is person re-identification(Re-ID)?

Given an image/video of a person taken from one camera, re-identification is the process of identifying the person from images/videos taken from a different camera with non-overlapping fields of views. Re-identification is indispensable in establishing consistent labeling across multiple cameras or even within the same camera to re-establish disconnected or lost tracks.

An end-to-end person re-ID system

- ✓ Non-overlapped image로부터 Gallery 내의 일치하는 사람을 찾는 문제
- ✓ 몸 전체의 특징(의복, 체형, 보행 패턴 등)을 사용해 일치 여부 판정
- ✓ 동일한 카메라에서 찍은 동일한 사람의 다른 이미지, 다른 카메라에서 찍은 이미지에 대해서도 식별함

http://rose1.ntu.edu.sg/PersonReld/, https://medium.com/@niruhan/a-practical-quide-toperson-re-identification-using-alignedreid-7683222da644

1. Introduction

Challenges

Intra-class variation control

- Illumination changes : 일조도, 음영, 실내 및 실외 환경의 색상 변경, 다수의 camera view에서 동일한 물체의 색상 변경
- b. Resolution: 저해상도 camera에서 사람을 구별하기 어려움
- c. Occlusion : 혼잡한 화면에서 다른 사람이 개인의 일부 혹은 전체를 가릴 수 있으므로 전신 이미지를 얻기 어려움
- d. Uniform clothing : 교복, 작업복 등의 복장을 착용한 사람들을 구분 하기 어려움
- e. Scalability: 다수의 camera에서 동일한 사람을 식별하기 어려움
- Lack of annotated data : Labeled data 부족

Images

Images

Examples of person Re-ID dataset

1. Introduction

Link to the multilabel reference learning(MAR) problem

Definition

✓ Unlabeled person에 대하여 auxiliary dataset(reference)의 labeled person과 비교함으로써 soft multilabel을 부여함

Related works

- a. 시각적 특징의 유사도만을 사용
- b. Auxiliary source domain으로부터 discriminative information을 뽑아 target domain으로 옮겨 적용하는 방식
 - → Unlabeled source와 unlabeled target 사이의 domain shift 발생

Illustration of soft multilabel concept

Contributions

- a. The unsupervised Re-ID problem by a novel soft multilabel reference learning method
 - ⇒ Unlabeled data에 대해서는 auxiliary source data와 reference data를 비교함으로써 potential label information을 뽑음
- b. Deep soft multilabel reference learning (MAR)을 통해 하나의 모델로 3가지를 수행함
 - Soft multilabel-guided hard negative mining (MDL)
 - ⇒ Batch 마다 unlabeled data에 대한 positive, negative set을 확보한 후, positive set은 서로 가까워지고 negative set은 서로 멀어지도록 embedding feature를 학습
 - Cross-view consistent soft multilabel learning (CML)
 - ⇒ Camera view에 무관한 soft multilabel 학습을 위해 soft multilabel 분포를 일치시키는 방식
 - Reference agent learning (RAL)
 - ⇒ 효율적인 학습을 위해 joint feature embedding

The overview of methodology: 3가지 loss term (MDL, CML, RAL) 정의

The overview of MAR model

- a. 각 target unlabeled person image f(x)와 auxiliary reference persons a_i 비교를 통한 soft multilabel 학습
- b. Similar pair의 positive / hard negative 여부 판정
- c. Soft multilabel learning and reference learning

- 1) Soft multilabel-guided hard negative mining
 - Target 이미지를 표현하는 soft multilabel을 학습하고 이를 통해 discriminative feature 학습
 - Unlabeled target domain에서 positive pair는 서로 가까워지도록, negative pair는 멀어지도록 embedding feature를 학습
 - ✓ Positive pair: similar feature & similar comparative characteristics (same soft multilabel)
 - ✓ Negative pair: similar feature & not similar comparative characteristics (different soft multilabel)

Inner product : $f(x_i)^T f(x_j)$

Soft multilabel function: $y^{(k)} = l(f(x), \{a_i\}_{i=1}^{N_p})^{(k)} = \frac{\exp(a_k^T f(x))}{\sum_i \exp(a_k^T f(x))}$

Soft multilabel agreement : $A(y_i, y_j) = \sum_{k} \min(y_i^{(k)}, y_j^{(k)}) = 1 - \frac{\|y_i - y_j\|_1}{2}$

- 1) Soft multilabel-guided hard negative mining
 - Target 이미지를 표현하는 soft multilabel을 학습하고 이를 통해 discriminative feature 학습
 - Unlabeled target domain에서 positive pair는 서로 가까워지도록, negative pair는 멀어지도록 embedding feature를 학습
 - ✓ Positive pair: similar feature & similar comparative characteristics (same soft multilabel)
 - ✓ Negative pair: similar feature & not similar comparative characteristics (different soft multilabel)

Assign (i,j) to the set: $P = \{(i,j)|f(x_i)^T f(x_j) \ge S, A(y_i, y_j) \ge T\}$

$$N = \{(k,l)|f(x_k)^T f(x_l) \ge S, A(y_k, y_l) \blacktriangleleft T\}$$

The similarity threshold according to the feature similarity

• cosine similarity (inner product)

The threshold for the soft multilabel agreement

Loss for soft multilabel guided discriminative embedding learning:

$$L_{MDL} = -log \frac{\bar{P}}{\bar{P} + \bar{N}}$$

$$\bar{P} = \frac{1}{|P|} \sum_{P} \exp(-\|f(z_i) - f(z_j)\|_2^2), \quad \bar{N} = \frac{1}{|N|} \sum_{N} \exp(-\|f(z_i) - f(z_j)\|_2^2)$$

2) Cross-view consistent soft multilabel learning

- Camera view에 robust한 feature 학습을 위해 soft multilabel 분포를 일치시킴 (cross-view consistent)
- Soft multilabel이 camera view와 독립이기 위한 loss 정의
 - ✓ 'Soft multilabel의 분포는 camera view에 대해 독립적이다'라는 가정이 있음
 - ✓ Camera view에는 무관하고, target domain에서 사람의 외형 분포에만 dependent 해야 함
 - ✓ 분포 비교를 위해 KL-divergence, Wasserstein distance 등을 활용 가능함

Loss for cross-view consistent soft multilabel learning:

$$L_{CML} = \sum_{v} d(P_v(y), p(y))^2$$

(Using 2-Wasserstein distance to simplify)

$$L_{CML} = \sum_{v} \|\mu_{v} + \mu\|_{2}^{2} + \|\sigma_{v} + \sigma\|_{2}^{2}$$

Mean vector Standard deviation vector

3) Reference agent learning

- Reference space와 target space에 대하여 동시에 discriminative한 feature를 학습하도록 함
- Agent learning(AL)과 reference agent joint embedding learning(RJ)을 고려한 loss 설정
 - ✓ Agent: reference data의 각각의 identity를 표현하는 feature

$$L_{RAL} = L_{AL} + \beta L_{RJ}$$

Agent learning (AL)

: Reference space에 feature embedding 하였을 때 서로 다른 identity에 대해 discriminative한 학습을 진행함으로써 multilabel function $l(\)$ 에 validity 부여

- --▶ Soft label 값이 1이 되도록 학습
 - Reference에서 같은 사람의 agreements 값은 1이 되고 다른 사람의 agreement 값은 0이 되도록 학습

$$L_{AL} = \sum_{k} -\log l(f(z_k), \{a_i\})^{(w_k)} = \sum_{k} -\log \frac{\exp(a_{w_k}^T f(z_k))}{\sum_{j} \exp(a_j^T f(z_k))}$$

3) Reference agent learning

- Reference space와 target space에 대하여 동시에 discriminative한 feature를 학습하도록 함
- Agent learning(AL)과 reference agent joint embedding learning(RJ)을 고려한 loss 설정
 - ✓ Agent: reference data의 각각의 identity를 표현하는 feature

Reference agent joint embedding learning (RJ)

: Unlabeled target data에 대해 discriminative한 feature를 학습하기 위함

$$L_{RJ} = \sum_{i} \sum_{j \in M_i} \sum_{k \in W_i} \left[m - \left\| a_i - f(x_j) \right\|_2^2 \right]_+ + \left\| a_i - f(z_k) \right\|_2^2$$

$$M_i = \{j \mid ||a_i - f(x_j)||_2^2 < m\}, W_i = \{k \mid w_k = i\}$$

- Reference agent마다 시각적으로 비슷한 unlabeled person을 찾은 후, discriminative하도록 학습
- 서로 비슷한 cross-domain pair가 멀어지도록 학습
- Reference agent와 해당 label에 대응되는 reference image를 가깝도록 학습

4) Model training and testing

- Compute the cosine feature similarity of each probe(query) gallery pair
- Obtain the ranking list of the probe image against the gallery images
- Train the model by stochastic gradient descent (SGD)
- Minimize the below loss function

The loss objective of deep soft multilabel reference learning:

$$\boldsymbol{L_{MAR}} = L_{MDL} + \lambda_1 L_{CML} + \lambda_2 L_{RAL}$$

$$\boldsymbol{L_{MDL}} = -log \frac{\bar{P}}{\bar{P} + \bar{N}}$$

$$\boldsymbol{L_{CML}} = \sum_{v} d(P_v(y), p(y))^2$$

$$\boldsymbol{L_{RAL}} = L_{AL} + \beta L_{RJ}$$

3. Experiments

Dataset

- a. Market-1501
 - 32,668 person images of 1,501 identities
 - 6 camera views
- b. DukeMTMC-reID
 - 36,411 person images of 1,404 identities
 - 8 camera views
- c. MSMT17 (Auxiliary)
 - 126,441 person images of 4,101 identities

Dataset examples

Parameter setting

- Batch size = 368
- $\lambda_1 = 0.0002$
- $\lambda_2 = 50$
- The mining ratio = 5%
- $\beta = 0.2$

3. Experiments

Results

Ablation study

Methods	Market-1501			
Wethous	rank-1	rank-5	rank-10	mAP
Pretrained (source only)	46.2	64.4	71.3	24.6
Baseline (feature-guided)	44.4	62.5	69.8	21.5
MAR w/o L_{CML}	60.0	75.9	81.9	34.6
MAR w/o $L_{CML}\&L_{RAL}$	53.9	71.5	77.7	28.2
MAR w/o L_{RAL}	59.2	76.4	82.3	30.8
MAR	67.7	81.9	87.3	40.0
Mathada	DukeMTMC-reID			
Mathods		DukeMT	MC-reID	
Methods	rank-1	DukeMT rank-5	MC-reID rank-10	mAP
Methods Pretrained (source only)	rank-1 43.1			mAP 28.8
		rank-5	rank-10	
Pretrained (source only)	43.1	rank-5 59.2	rank-10 65.7	28.8
Pretrained (source only) Baseline (feature-guided)	43.1 50.0	rank-5 59.2 66.4	rank-10 65.7 71.7	28.8 31.7
Pretrained (source only) Baseline (feature-guided) MAR w/o L _{CML}	43.1 50.0 63.2	rank-5 59.2 66.4 77.2	rank-10 65.7 71.7 82.5	28.8 31.7 44.9
Pretrained (source only) Baseline (feature-guided) MAR w/o L_{CML} MAR w/o L_{CML} & L_{RAL}	43.1 50.0 63.2 60.1	rank-5 59.2 66.4 77.2 73.0	rank-10 65.7 71.7 82.5 78.4	28.8 31.7 44.9 40.4

Comparison to the unsupervised results

For the Market-1501 dataset,

Methods	Reference	Market-1501			
Wicthods	Reference	rank-1	rank-5	mAP	
LOMO [20]	CVPR'15	27.2	41.6	8.0	
BoW [59]	ICCV'15	35.8	52.4	14.8	
DIC [16]	BMVC'15	50.2	68.8	22.7	
ISR [21]	TPAMI'15	40.3	62.2	14.3	
UDML [29]	CVPR'16	34.5	52.6	12.4	
CAMEL [52]	ICCV'17	54.5	73.1	26.3	
PUL [8]	ToMM'18	45.5	60.7	20.5	
TJ-AIDL [48]	CVPR'18	58.2	74.8	26.5	
PTGAN [50]	CVPR'18	38.6	57.3	15.7	
SPGAN [7]	CVPR'18	51.5	70.1	27.1	
HHL [62]	ECCV'18	62.2	78.8	31.4	
DECAMEL [53]	TPAMI'19	60.2	76.0	32.4	
MAR	This work	67.7	81.9	40.0	

For the DukeMTMC-reID dataset,

Methods	Reference	DukeMTMC-reID		
		rank-1	rank-5	mAP
LOMO [20]	CVPR'15	12.3	21.3	4.8
BoW [59]	ICCV'15	17.1	28.8	8.3
UDML [29]	CVPR'16	18.5	31.4	7.3
CAMEL [52]	ICCV'17	40.3	57.6	19.8
PUL [8]	ToMM'18	30.0	43.4	16.4
TJ-AIDL [48]	CVPR'18	44.3	59.6	23.0
PTGAN [50]	CVPR'18	27.4	43.6	13.5
SPGAN [7]	CVPR'18	41.1	56.6	22.3
HHL [62]	ECCV'18	46.9	61.0	27.2
MAR	This work	67.1	79.8	48.0

4. Conclusion

Summary

- Unlabeled target Re-ID data에 대하여 potential label information을 찾기 위해 auxiliary source Re-ID data를 활용하였음
- Soft multilabel-guided hard negative mining, the cross-view consistent soft multilabel learning, the reference agent learning을 동시에 진행하는 MAR model 제안
- Domain adaption 분야의 문제 해결에 의의가 있음

Visual results of the soft multilabel-guided hard negative mining

Yunseon Byun June 01, 2020