

Son herramientas estadísticas que muestran el comportamiento o la variaciones de cierta característica de calidad de un proceso con respecto al tiempo.

GRÁFICO X

Se analizan las variaciones del proceso respecto a la media \bar{x} .

GRÁFICO R

Se analizan las variaciones del proceso respecto al rango "R".

¿Para qué ? ? sirven?

- •Representar los valores medios durante el funcionamiento de un proceso y controlarlo.
- •Incorporar límites de control (superior e inferior) que reflejan los límites naturales de la variabilidad normal del proceso.
- •Identificar tendencias no naturales (no aleatorias) en las variables de proceso.

¿Cuándo se ? ? utilizan?

- Para evaluar el desempeño de un proceso
- Para mejorar el desempeño de un proceso
- Para mantener el desempeño de un proceso

¿Cómo se elabora?

GRAFICO X
$$\begin{bmatrix}
I.Cs = \overline{x} + A_2 \overline{R} \\
I.C = \overline{x} \\
I.Ci = \overline{x} - A_2 \overline{R}
\end{bmatrix}$$
GRAFICO R
$$\begin{bmatrix}
I.Cs = D_4 \overline{R} \\
I.C = \overline{R}
\end{bmatrix}$$
I.Ci = $D_3 \overline{R}$

GRAFICO R

LCs =
$$D_4 \overline{R}$$

LCi = \overline{R}

Crear gráficos X-R, trazando los límites de control (LC,LCI,LCS)

Analizar las variaciones y concluir

EJEMPLO

(!

Durante tres días, se tomó una muestra de tubos de PVC con la finalidad de evaluar la variación de longitud en pulgadas de los tubos que fabrica una empresa mexicana. Los datos de las muestras se ecuentran en la siguiente tabla.

HORA	DIA 1	DIA 2	DIA 3	X	R
06:00	15.9	27.5	22.7	22.03	11.6
07:00	22.5	22.8	20.3	21.86	2.5
08:00	22.8	22.5	20.5	21.93	2.3
09:00	19.3	20.2	20.4	19.96	1.1
10:00	19.5	20.1	20.3	19.96	0.8
11:00	20.8	22.7	22.5	22.00	1.9
12:00	22.7	22.5	20.2	21.80	2.5
13:00	20.0	20.0	22.1	20.70	2.1
				₹= 21.28	R= 3.1

Calcular (media, media de las medias, rango y media del rango)

EJEMPLO

Durante tres días, se tomó una muestra de 24 tubos de PVC con la finalidad de evaluar la variación de longitud en pulgadas de los tubos que fabrica una empresa mexicana. Los datos de las muestras se ecuentran en la siguiente tabla.

HORA	DIA 1	DIA 2	DIA 3	X	R
06:00	15.9	27.5	22.7	22.03	11.6
07:00	22.5	22.8	20.3	21.86	2.5
08:00	22.8	22.5	20.5	21.93	2.3
09:00	19.3	20.2	20.4	19.96	1.1
10:00	19.5	20.1	20.3	19.96	0.8
11:00	20.8	22.7	22.5	22.00	1.9
12:00	22.7	22.5	20.2	21.80	2.5
13:00	20.0	20.0	22.1	20.70	2.1
				₹= 21.28	R= 3.1

Calcular los límites de control para el gráfico X-R.

GRAFICO
X
$$\begin{bmatrix}
1.C_{s} = \overline{x} + A_{2}\overline{R} \\
1.C = \overline{x} \\
1.C_{i} = \overline{x} - A_{2}\overline{R}
\end{bmatrix}$$

- LCs= 21.28 + [(0.373)(3.1)] = 22.44
- LC= 21.28
- LCi=21.28 [(0.373)(3.1)] = 20.12

GRAFICO
R

LC:
$$D_4\overline{R}$$
LC: \overline{R}
LC: $D_3\overline{R}$

- LCs= (1.86)(3.1) = 5.76
- LC= 3.1
- LCi= (0.136)(3.1)= 0.42

TABLA DE FACTORES PARA GRÁFICOS DE CONTROL

TABLA DE FACTORES PARA GRÁFICOS DE CONTROL

_	Const	antes p	ara G	ráficos	de Co	ontrol										
n	A	A2	A3	c4	1/04	B3	B4	B5	B6	d2	d3	1/d2	D1	D2	D3	D4
2	2.121	140	2.659	0.798	1.253	0.000	3.267	0.000	2.606	1.128	0.853	0.886	0.000	3.686	0400	3.47
3	1.732	1.023	1.954	0.886	1.128	0.000	2.568	0.000	2.276	1.693	0.888	0.591	0.000	4.358	0.00	2.75
4	1.500	0.129	1.628	0.921	1.085	0.000	2.266	0.000	2.088	2.059	0.880	0.486	0.000	4.698	0.00	2.232
5	1.342	0.77	1.427	0.940	1.064	0.000	2.089	0.000	1.964	2.326	0.864	0.430	0.000	4.918	0.00	2.114
6	1.225	0.483	1.287	0.952	1.051	0.030	1.970	0.029	1.874	2.534	0.848	0.395	0.000	5.079	0.00	2.004
7	1.134	0.419	1.182	0.959	1.042	0.118	1.882	0.113	1.806	2.704	0.833	0.370	0.205	5.204	0.76	1.524
8	◆001	0.373	1.099	9966	··1:836·	0.185	1:915	8:179	1991	2.047	0.828	0.351	0:333	•5:307	0.136	1.864
9	1.000	0.337	1.032	0.969	1.032	0.239	1.761	0.232	1.707	2.970	0.808	0.337	0.547	5.394	0.184	1.816
10	0.949	0.308	0.975	0.973	1.028	0.284	1.716	0.276	1.669	3.078	0.797	0.325	0.686	5.469	0.223	1.777
11	0.905	0.285	0.927	0.975	1.025	0.321	1.679	0.313	1.637	3.173	0.787	0.315	0.811	5.535	0.256	1.744
12	0.866	0.266	0.886	0.978	1.023	0.354	1.646	0.346	1.610	3.258	0.778	0.307	0.923	5.594	0.283	1.717
13	0.832	0.249	0.850	0.979	1.021	0.382	1.618	0.374	1.585	3.336	0.770	0.300	1.025	5.647	0.307	1.693
14	0.802	0.235	0.817	0.981	1.019	0.406	1.594	0.398	1.563	3.407	0.763	0.294	1.118	5.696	0.328	1.672
15	0.775	0.223	0.789	0.982	1.018	0.428	1.572	0.421	1.544	3.472	0.756	0.288	1.203	5.740	0.347	1.653
16	0.750	0.212	0.763	0.983	1.017	0.448	1.552	0.440	1.527	3.532	0.750	0.283	1.282	5.782	0.363	1.637
17	0.728	0.203	0.739	0.985	1.016	0.466	1.534	0.459	1.510	3.588	0.744	0.279	1.356	5.820	0.378	1.622
18	0.707	0.194	0.718	0.985	1.015	0.482	1.518	0.475	1.496	3.640	0.739	0.275	1.424	5.856	0.391	1.609
19	0.688	0.187	0.698	0.986	1.014	0.497	1.503	0.490	1.483	3.689	0.733	0.271	1.489	5.889	0.404	1.596
20	0.671	0.180	0.680	0.987	1.013	0.510	1.490	0.503	1.470	3.735	0.729	0.268	1.549	5.921	0.415	1.585
21	0.655	0.173	0.663	0.988	1.013	0.523	1.477	0.516	1.459	3.778	0.724	0.265	1.606	5.951	0.425	1.575
22	0.640	0.167	0.647	0.988	1.012	0.534	1.466	0.528	1.448	3.819	0.720	0.262	1.660	5.979	0.435	1.565
23	0.626	0.162	0.633	0.989	1.011	0.545	1.455	0.539	1.438	3.858	0.716	0.259	1.711	6.006	0.443	1.557
24	0.612	0.157	0.619	0.989	1.011	0.555	1.445	0.549	1.429	3.895	0.712	0.257	1.759	6.032	0.452	1.548
25	0.600	0.153	0.606	0.990	1.010	0.565	1.435	0.559	1.420	3.931	0.708	0.254	1.805	6.056	0.459	1.541

SALEARY O HATE

EJEMPLO

7		4	
	Ш	ı	
	R	4	

HORA	DIA 1	DIA 2	DIA 3
06:00	15.9	27.5	22.7
07:00	22.5	22.8	20.3
08:00	22.8	22.5	20.5
09:00	19.3	20.2	20.4
10:00	19.5	20.1	20.3
11:00	20.8	22.7	22.5
12:00	22.7	22.5	20.2
13:00	20.0	20.0	22.1

GRAFICO
X

$$LCs = (1.86)(3.1) = 5.76$$

Crear gráficos X-R, trazando los límites de control (LC,LCI,LCS)

==

R=

CONCLUSIONES

De acuerdo al gráfico X, el proceso se sale de control a las 09:00 y 10:00 hrs, el promedio de las longitudes muestreadas están por debajo del límite de control inferior (tubos cortos).

De acuerdo al gráfico R, el proceso se sale de control a las 06:00, la variación de las longitudes muestreadas están por encima del límite de control superior (tubos largos).