L'usage da la calculatrice et du mobile est interdit.

N.B.

- 1- Il sera tenu compte de la présentation de la copie.
- 2- Les réponses doivent être justifiées.

21 Janvier 2014

3- Le barème est approximatif.

Exercice 1 : (4 pts) Soit la matrice définie par :
$$A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -3 & 0 \end{pmatrix}$$
.

- 1- Calculer le polynôme caractéristique de A.
- 2- Dire pourquoi A n'est pas diagonalisable sur \mathbb{R} .
- 3- Dire pourquoi A est diagonalisable sur C.
- 4- On note les valeurs propres de-A sur $\mathbb C$ par : α, β et δ où $\alpha \in \mathbb R$ et $\beta \in \mathbb C \setminus \mathbb R$ de partie imaginaire positive.
 - a- Déterminer un vecteur propre non nul v de A associé à la valeur propre β .
- b- En déduire un vecteur propre non nul w de A associé à la valeur propre δ . (Indication: on admettra que Si $A \in M_3(\mathbb{R})$ admet une valeur propre $\lambda \in \mathbb{C} \setminus \mathbb{R}$ et que $\nu = (x, y, z) \in \mathbb{C}^3$ est un vecteur propre de A associé à λ , alors $\overline{\lambda}$ est une valeur propre de A de vecteur propre associé $\bar{v}=(\bar{x},\bar{y},\bar{z})\in\mathbb{C}^3$).
 - c- Déterminer une matrice inversible P et une matrice diagonale A' telles que :

 $A'=P^{-1}.A.P.$

Exercice 2: (5 pts) Soit (S) le système linéaire suivant:

$$\begin{cases}
\alpha x - y + z = \beta \\
2x + y -z = -\lambda \\
x + 2y +z = 1
\end{cases}$$
 où α, β et $\lambda \in \mathbb{R}$.

- 1- Calculer le déterminant de la matrice du système (S) (on note la matrice du système par A).
- 2- Pour quelles valeurs de α, β et λ le système (S) est-il de Cramer ? Dans ce cas Résoudre
- 3- Résoudre dans \mathbb{R}^3 le système (S), suivant les valeurs de α , β et λ dans le cas où (S) n'est pas de Cramer.

Exercice 3: (8 pts)

Soit la matrice:
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
 et soit $f \in End(\mathbb{R}^3)$ tel que $E = M_B(f)$ où B est la base

canonique de \mathbb{R}^3 .

- 1- Vérifier que A n'est pas diagonalisable sur \mathbb{R} .
- 2- Soit λ_1 et λ_2 les deux valeurs propres réelles distinctes de A telles que $\lambda_1 < \lambda_2$.
 - a- Déterminer v_1 et v_2 les vecteurs propres respectifs de λ_1 et λ_2 .
 - **b** Déterminer un vecteur $v_3 = (x, y, z) \in \mathbb{R}^3$ vérifiant : $A \cdot v_3 = v_2 + 2 \cdot v_3$.
 - c- Vérifier que la famille de vecteurs $C = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 .
- d- On désigne par P la matrice de passage de B vers C. Déterminer la matrice $A' = P^{-1}.A.P$
- e- Montrer que A' s'écrit comme somme de deux matrices dont l'une est diagonale que l'on note par D et l'autre est nilpotente que l'on note par N.

(On rappelle qu'une matrice N carrée est dite nilpotente s'il existe un entier naturel non nul k tel que $N^k = 0$).

f- Utiliser le binôme de Newton pour déterminer $(A')^n$ pour tout entier $n \in \mathbb{N}$ (vérifier d'abord que l'on peut utiliser le binôme de Newton).

g- En déduire A^n pour tout entier $n \in \mathbb{N}$.

h- Soient les suites récurrentes réelles (u_n) (w_n) et (z_n) définies par $u_0 = 1$, $w_0 = 1$, $z_0 = -1$ et :

$$\begin{cases} u_{n+1} = 2u_n \\ w_{n+1} = 2v_n \\ z_{n+1} = u_n \end{cases} \quad 2v_n + z_n \quad \text{pour tout } n \in \mathbb{N}.$$

Déduire de ce qui précède les termes généraux de (u_n) , (w_n) et (z_n) .

Exercice 4: (3 pts) Soit $A \in M_3(\mathbb{R})$ telle que son polynôme caractéristique est égal à : $P_A(X) = (1 - X)(\alpha - X)(\beta - X)$ où α et $\beta \in \mathbb{R}$.

1- Donner une condition suffisante sur α et β pour que A soit diagonalisable.

2- Soit $f \in End(\mathbb{R}^3)$ tel que $A = M_B(f)$ où B est la base canonique de \mathbb{R}^3 .

On suppose que : $\alpha = 1$ et $\beta = -1$ et que les sous-espaces propres de f, respectivement de $\alpha = 1$ et $\beta = -1$ sont : $E_1 = \langle v_1 = (1, 1, 1), v_2 = (0, 1, 1) \rangle$ et $E_{-1} = \langle v_3 = (0, 0, 1) \rangle$. Déterminer la matrice A.