8. Verteilungstests

- χ^2 -Unabhängigkeitstest
- χ^2 -Anpassungstest
- Kolmogorov-Smirnov-Test

Verteilungstests

Bezeichnung für Tests, die einen Verteilungstyp oder eine Verteilungseigenschaft ohne parametrische Annahme prüfen. Hier besprochen:
$\hookrightarrow \chi^2$ -Unabhängigkeitstest (Kontingenztest),
 □ Test mit zwei gebundenen Stichproben □ Nullhypothese: Stichproben zu zwei "unabhängigen Grundgesamtheiter
$\hookrightarrow \chi^2$ -Anpassungstest
 Einstichprobentest Vergleicht diskretes (bzw. diskretisiertes) Merkmal mit einer vorgegebenen endlich-diskreten Verteilung.
\hookrightarrow Kolmogorov-Smirnov-Anpassungstest
□ Einstichprobentest
□ Prüft, ob Daten zu einer vorgegebenen Verteilung passen
 Vergleicht empirische und theoretische Verteilungsfunktion.

8.1 χ^2 -Unabhängigkeitstest (Kontingenztest)

- \hookrightarrow Datenbasis ist verbundene u.i.v.-Stichprobe $(X_1, Y_1), \ldots, (X_n, Y_n)$.
- \hookrightarrow Es soll geprüft werden, ob X_{ℓ}, Y_{ℓ} st.u. sind
- → Kann in dieser Allgemeinheit nicht getestet werden.
- \hookrightarrow Vereinfachende Annahmen (falls nicht erfüllt, durch Klassierung erzwingen):
 - \square X_1, \ldots, X_n sind diskrete ZV mit Werten A_1, \ldots, A_K

1. Hypothese

 $H_0: X$ und Y sind st. unabhängig

VS.

 $H_1: X$ und Y sind st. abhängig

 \hookrightarrow Unter H_0 gilt also

$$P(X_{\ell} = A_i, Y_{\ell} = B_j) = P(X_{\ell} = A_i)P(Y_{\ell} = B_j) \quad \forall i, j \qquad (*)$$

 \hookrightarrow Idee des χ^2 -Tests: Stelle den theoretischen WS geeignete empirische Kennzahlen gegenüber und formuliere (*) approximativ mit diesen Kennzahlen.

Beispiel (vgl. DuW) Sichtung von 84 Bewerbungsmappen:

Ab Zus							
Gym vllt	Real nein	Gym vllt	Gym nein	Real nein	Ges vllt	Real vllt	
Real ja	Gym vllt	Real vllt	Gym nein	Real ja	Gym nein	Gym nein	
Real nein	Ges ja	Real vllt	Gym ja	Gym nein	Gym ja	Gym nein	
Gym vllt	Gym vllt	Gym nein	Ges vIIt	Gym ja	Gym nein	Gym vllt	
Real vllt	Real ja	Real nein	Gym vllt	Gym vllt	Real vIIt	Ges nein	
Gym vllt	Real nein	Gym ja	Gym nein	Gym nein	Gym ja	Gym nein	
Real vllt	Real vllt	Real nein	Real nein	Ges vIIt	Ges vllt	Ges nein	
Gym nein	Gym vllt	Gym vllt	Gym vllt	Gym nein	Gym ja	Real ja	
Gym vllt	Gym vllt	Ges ja	Gym ja	Gym vllt	Real vIIt	Gym vllt	
Gym vllt	Gym ja	Ges nein	Gym vllt	Real vIIt	Real vIIt	Real vllt	
Gym vllt	Ges vllt	Ges vllt	Gym vllt	Real vIIt	Real nein	Ges nein	
Gym nein	Gym nein	Gym vllt	Gym vllt	Gym vllt	Gym nein	Gym vllt	

Ab	ja	vllt	nein	$H_{i\bullet}$
Real	4	12	8	24
Gym	8	24	16	48
Ges	2	6	4	12
H _{●j}	14	42	28	84

- - □ Unter H_0 gilt: $P(X = A_i, Y = B_j) = P(X = A_i)P(Y = B_j)$
 - □ ML-Schätzungen für die genannten WS sind $\frac{H_{ij}}{n}$, $\frac{H_{i\bullet}}{n}$ und $\frac{H_{\bullet j}}{n}$
 - $\ \square$ Unter H_0 sollte deshalb für alle Häufigkeiten gelten:

$$\frac{H_{ij}}{n} \approx \frac{H_{i\bullet}}{n} \cdot \frac{H_{\bullet j}}{n} \qquad \Leftrightarrow \qquad H_{ij} \approx \frac{H_{i\bullet} \cdot H_{\bullet j}}{n} := \tilde{H}_{ij}$$

- $ilde{H}_{ij}$ sind die unter Unabhängigkeit erwarteten Häufigkeiten.
- \square Abweichungen zwischen H_{ij} und \tilde{H}_{ij} sprechen gegen die Unabhängigkeit.
- \square Eine Teststatistik sollte die Abweichungen $(H_{ij}-\tilde{H}_{ij})^2$ verwenden.

2. Teststatistik V und Verteilung unter H_0

$$V = \sum_{i=1}^K \sum_{j=1}^L \frac{(H_{ij} - \tilde{H}_{ij})^2}{\tilde{H}_{ij}} = n \cdot \left(\sum_{i=1}^K \sum_{j=1}^L \frac{H_{ij}^2}{H_{i\bullet} \cdot H_{\bullet j}} - 1 \right) \overset{approx.}{\sim} \chi^2_{(K-1) \cdot (L-1)}$$

 \hookrightarrow Faustregel: Die Approximation ist ausreichend genau, wenn $\min(\tilde{H}_{ij}) \geq 5$ (d.h. wenn jede Zelle der Kontingenztafel mindestens 5 Einträge enthält)

Ab	ja	$H_{i\bullet}$		
Real	4	12	8	24
Gym	8	24	16	48
Ges	2	6	4	12
$H_{\bullet j}$	14	42	28	84

Approximation hier nicht ausreichend.

5

$$v = \sum_{i=1}^{K} \sum_{j=1}^{L} \frac{(H_{ij} - \tilde{H}_{ij})^2}{\tilde{H}_{ij}} = \frac{(4-4)^2}{4} + \frac{(12-12)^2}{12} + \dots + \frac{(4-4)^2}{4} = 0$$

Rechenweg 2:

$$v = n \cdot \left(\sum_{i=1}^{K} \sum_{j=1}^{L} \frac{H_{ij}^{2}}{H_{i\bullet} \cdot H_{\bullet j}} - 1 \right)$$
$$= 84 \cdot \left(\frac{4^{2}}{24 \cdot 14} + \frac{12^{2}}{24 \cdot 42} + \dots + \frac{4^{2}}{12 \cdot 28} - 1 \right) = 84 \cdot (1 - 1) = 0$$

3. Entscheidungsregel (und *p*-Wert)

Entscheidungsregel:

$$H_0$$
 wird abgelehnt $\iff v > \chi^2_{(1-\alpha);(K-1)\cdot(L-1)}$

p-Wert:

$$p^* = 1 - F_{\chi^2_{(K-1)\cdot(L-1)}}(v)$$

- - geg.: zwei Merkmale X und Y, bestehend aus K=3 und L=5 Klassen
 - hierzu ergibt sich der kritische Wert zum Signifikanzniveau $\alpha = 5\%$ durch: qchisq(1 - 0.05, df = (3 - 1)*(5 - 1)) (Ergebnis: 15.50731)
 - entsprechend ergibt sich der p-Wert einer realisierten Teststatistik v=13 zu 1 - pchisq(13, df = (3 - 1)*(5 - 1)) (Ergebnis: 0.1118496)
- → Durchführung in R: chisq.test(...) (auch für Anpassungstest, s.u.)
- \hookrightarrow Test hat i.d.R. geringe Güte.

Beispiel Bewerbungsmappe, $\alpha = 0.05$

		Zusag	ge					Zusag	ge	
Ab	ja	vllt	nein	$H_{i\bullet}$		Ab	ja	vIIt	nein	$H_{i\bullet}$
Real	4	12	8	24		Real	4	12	8	24
Gym	8	24	16	48	, erwartet:	Gym	8	28	16	48
Ges	2	6	4	12		Ges	2	6	4	12
$H_{\bullet j}$	14	42	28	84	-	$H_{\bullet j}$	14	42	28	

$$\begin{array}{rcl} v & = & 0 \\ \chi^2_{(1-\alpha);(K-1)\cdot(L-1)} & = & \chi^2_{0.95;2\cdot 2} = 9.48 > v \end{array}$$

Also kann H_0 nicht abgelehnt werden.

Extrembeispiel: Merkmale sind empirisch unabhängig (s. DuW)

Modifiziertes Beispiel "Bewerbungsmappe"

Ab	ja	$H_{i\bullet}$		
Real	4	12	8	24
Gym	20	24	4	48
Ges	2	6	4	12
$H_{\bullet j}$	26	42	16	84

$$v = n \cdot \left(\sum_{i=1}^{K} \sum_{j=1}^{L} \frac{H_{ij}^{2}}{H_{i\bullet} \cdot H_{\bullet j}} - 1 \right)$$

$$= 84 \cdot \left(\frac{4^{2}}{24 \cdot 26} + \frac{12^{2}}{24 \cdot 42} + \frac{8^{2}}{24 \cdot 16} \cdot \dots + \frac{4^{2}}{12 \cdot 16} - 1 \right) = 84 \cdot (0.13) = 10.9$$

$$\hookrightarrow \alpha = 0.05: \quad \chi^2_{(1-\alpha);(K-1)\cdot(L-1)} = \chi^2_{0.95;\;4} = 9.48 < v \quad \Rightarrow H_0 \text{ wird abgelehnt}.$$

$$\leftrightarrow \alpha = 0.01$$
: $\chi^2_{0.99 \ 4} = 13.48 > v \Rightarrow H_0 \text{ wird nicht abgelehnt.}$

$$\hookrightarrow$$
 p-Wert: $p = 1 - F_{\chi_4^2}(10.9) = 0.027$ mit R: 1 - pchisq(10.9, df = 4)

Für den Zusammenhang zwischen Geschlecht und Note bei einer Mathematikklausur ergibt sich folgende Häufigkeitstabelle:

		Note								
Geschlecht	1	2	3	4	5					
m	8	55	87 42	40	122					
W	4	13	42	34	66					

Führen Sie den χ^2 -Test auf Unabhängigkeit per Hand aus (Signifikanzniveau $\alpha=0.01$). Verwenden Sie die Quantilstabelle der nachfolgenden Folie.

Quantile der χ_n^2 -Verteilung zum Signifikanzniveau α :

											α										
n	0.005	0.01	0.02	0.025	0.03	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.95	0.97	0.975	0.98	0.99	0.995
1	0.000	0.000	0.001	0.001	0.001	0.004	0.016	0.064	0.148	0.275	0.455	0.708	1.074	1.642	2.706	3.841	4.709	5.024	5.412	6.635	7.879
2	0.010	0.020	0.040	0.051	0.061	0.103	0.211	0.446	0.713	1.022	1.386	1.833	2.408	3.219	4.605	5.991	7.013	7.378	7.824	9.210	10.597
3	0.072	0.115	0.185	0.216	0.245	0.352	0.584	1.005	1.424	1.869	2.366	2.946	3.665	4.642	6.251	7.815	8.947	9.348	9.837	11.345	12.838
4	0.207	0.297	0.429	0.484	0.535	0.711	1.064	1.649	2.195	2.753	3.357	4.045	4.878	5.989	7.779	9.488	10.712	11.143	11.668	13.277	14.860
5	0.412	0.554	0.752	0.831	0.903	1.145	1.610	2.343	3.000	3.655	4.351	5.132	6.064	7.289	9.236	11.070	12.375	12.833	13.388	15.086	16.750
6	0.676	0.872	1.134	1.237	1.330	1.635	2.204	3.070	3.828	4.570	5.348	6.211	7.231	8.558	10.645	12.592	13.968	14.449	15.033	16.812	18.548
7	0.989	1.239	1.564	1.690	1.802	2.167	2.833	3.822	4.671	5.493	6.346	7.283	8.383	9.803	12.017	14.067	15.509	16.013	16.622	18.475	20.278
8	1.344	1.646	2.032	2.180	2.310	2.733	3.490	4.594	5.527	6.423	7.344	8.351	9.524	11.030	13.362	15.507	17.010	17.535	18.168	20.090	21.955
9	1.735	2.088	2.532	2.700	2.848	3.325	4.168	5.380	6.393	7.357	8.343	9.414	10.656	12.242	14.684	16.919	18.480	19.023	19.679	21.666	23.589
10	2.156	2.558	3.059	3.247	3.412	3.940	4.865	6.179	7.267	8.295	9.342	10.473	11.781	13.442	15.987	18.307	19.922	20.483	21.161	23.209	25.188
11	2.603	3.053	3.609	3.816	3.997	4.575	5.578	6.989	8.148	9.237	10.341	11.530	12.899	14.631	17.275	19.675	21.342	21.920	22.618	24.725	26.757
12	3.074	3.571	4.178	4.404	4.601	5.226	6.304	7.807	9.034	10.182	11.340	12.584	14.011	15.812	18.549	21.026	22.742	23.337	24.054	26.217	28.300
13	3.565	4.107	4.765	5.009	5.221	5.892	7.042	8.634	9.926	11.129	12.340	13.636	15.119	16.985	19.812	22.362	24.125	24.736	25.472	27.688	29.819
14	4.075	4.660	5.368	5.629	5.856	6.571	7.790	9.467	10.821	12.078	13.339	14.685	16.222	18.151	21.064	23.685	25.493	26.119	26.873	29.141	31.319
15	4.601	5.229	5.985	6.262	6.503	7.261	8.547	10.307	11.721	13.030	14.339	15.733	17.322	19.311	22.307	24.996	26.848	27.488	28.259	30.578	32.801
16	5.142	5.812	6.614	6.908	7.163	7.962	9.312	11.152	12.624	13.983	15.338	16.780	18.418	20.465	23.542	26.296	28.191	28.845	29.633	32.000	34.267
17	5.697	6.408	7.255	7.564	7.832	8.672	10.085	12.002	13.531	14.937	16.338	17.824	19.511	21.615	24.769	27.587	29.523	30.191	30.995	33.409	35.718
18	6.265	7.015	7.906	8.231	8.512	9.390	10.865	12.857	14.440	15.893	17.338	18.868	20.601	22.760	25.989	28.869	30.845	31.526	32.346	34.805	37.156
19	6.844	7.633	8.567	8.907	9.200	10.117	11.651	13.716	15.352	16.850	18.338	19.910	21.689	23.900	27.204	30.144	32.158	32.852	33.687	36.191	38.582
20	7.434	8.260	9.237	9.591	9.897	10.851	12.443	14.578	16.266	17.809	19.337	20.951	22.775	25.038	28.412	31.410	33.462	34.170	35.020	37.566	39.997

8.2 χ^2 -Anpassungstest

- \hookrightarrow Prüft die Hypothese: Ist F_0 Stichprobenverteilung einer u.i.v.-Stichprobe X_1, \ldots, X_n ?
- \hookrightarrow Test prüft nicht die Ausgangshypothese, sondern eine Vergröberung durch...
- $\hookrightarrow \dots$ Klassierung des Stichprobenraums, z.B. Intervalle A_1, \dots, A_K , Konkretisierung anhand der unter F_0 gegebenen Klassen-W'keiten p_1, \dots, p_K .

1. Hypothese:

$$H_0: P(X=j) = p_j, \quad \forall j \in \{1,\ldots,K\}$$

 \hookrightarrow Vergleich erwarteter Häufigkeiten und beobachteter Häufigkeiten $H(A_j)$

2. Teststatistik und Nullverteilung

$$V = \sum\limits_{i=1}^K rac{(H(A_i) - n \cdot p_i)^2}{n \cdot p_i} \overset{approx}{\sim} \chi^2_{K-1} \; ext{für min} (n \cdot p_1, \dots, n \cdot p_K) \geq 5$$

χ^2 -Anpassungstest

3. Entscheidungsregel (und *p*-Wert)

Entscheidungsregel (Signifikanzniveau α):

$$H_0$$
 wird abgelehnt

$$\iff$$

$$v > \chi^2_{(1-\alpha); K-1}$$

12

p-Wert:

$$p^* = 1 - F_{\chi^2_{\kappa-1}}(v)$$

Prüfung d. Kassendaten einer Eisdiele durch Steuerfahndung (n = 180)

Für die führende Ziffer^a wird bei einwandfreier Kassenführung die **Benford-Verteilung** angenommen: $p_j = \log_{10}(j+1) - \log_{10}(j), \ j=1,2,\ldots,9.$

Die Kassendaten einer Eisdiele sollen darauf geprüft werden, ob sie einer Benford-Verteilung genügen:

	j	1	2	3	4	5	6	7	8	9	Σ
Daten	$H(A_j)$	45	36	26	20	17	11	13	6	6	180
theo- retisch	Pj n ∙ pj	0.301 54.19	0.176 31.70	0.125 22.49	0.097 17.44			0.058 10.44	0.051 9.21	0.046 8.24	1 180
Test- statistik	$\frac{(H(A_j) - n \cdot p_j)^2}{\frac{(H(A_j) - n \cdot p_j)^2}{n \cdot p_j}}$	84.37 1.56	18.52 0.58	12.33 0.55	6.53 0.37	7.55 0.53	1.10 0.09	6.56 0.63	10.29 1.12	5.00 0.61	v = 6.038

- \hookrightarrow Zum Signifikanzniveau $\alpha=$ 0.05 gilt $\nu=$ 6.038 $\leq\chi^2_{0.95;~8}=$ 15.50731,
- \hookrightarrow d.h. H_0 : "einwandfreie Kassenführung" kann nicht abgelehnt werden.
- \hookrightarrow Der *p*-Wert beträgt $p^*=1-F_{\chi^2_8}(6.038)pprox 0.643>lpha$

abspw. hat 13,80 € die führende Ziffer x = 1 und -0,00057 die führende Ziffer x = 5

Übung: Schreiben Sie eine R-Funktion leading.digit(x), welche aus einer beliebigen Zahl $x \neq 0$ die führende Ziffer der Mantisse berechnet.

```
Eine rekursive Möglichkeit:
leading.digit<-function(x){</pre>
if(x==0){NA}else{
t=abs(x)
if(t<1){leading.digit(10*t)}else{</pre>
if(t>=10){leading.digit(t/10)}else{return(trunc(t))}
}
Eine andere Möglichkeit:
leading.digit<-function(x){</pre>
if(x==0){NA}else{
t=abs(x)
expo=floor(log(t,base=10))
floor(t/(10^expo))
}}}
```

Übung: Der Pseudozufallszahlen-Generator des TI-59 war der lineare Kongruenzgenerator $y_{i+1} \equiv (24298 \cdot y_i + 99991) \mod 199017$. Schreiben Sie ein R-Programm, welches mit Startwert $y_0 = 0$ die Pseudozufallszahlen $u_i = \frac{y_i}{199017}$, $i = 1, \ldots, 200$ erzeugt. Prüfen Sie, ob die Annahme einer Gleichverteilung nicht abgelehnt werden kann.

```
nextTI <-function(x) {(24298*x+99991)%%199017} #TI-59-recursion
x=0 #Initialization
y=c()#Initialization of y-vector
for(i in 1:200) {
    x<-nextTI(x) # generate next y
    y<-c(y,x) # append to y-vector
}
    u=y/199017 # pseudo random numbers
    uk=cut(u,breaks=seq(0,1,0.1)) # categorization, 10 intervals
chisq.test(table(uk),p=rep(1/10,10)) # result of chisquare-test
#Chi-squared test for given probabilities
#data: table(uk)
#X-squared = 11.3, df = 9, p-value = 0.255
# RNG cannot be rejected at standard levels</pre>
```

(Anekdote: Durch falsch programmierte Floating-Point-Arithmetik hatte der Generator Sequenzen der Periode 406.)

8.3 Kolomogorov-Smirnov Anpassungstest

- $\hookrightarrow \ \, \text{Anwendung: Tests von Standardzufallszahlen (,, Diehard-Testbatterie")}$
- \hookrightarrow bei kleiner Stichprobe Alternative zum χ^2 -Anpassungstest (höhere Güte)
- \hookrightarrow keine Kategorisierung der Daten, dafür nur Vergleich mit stetiger Verteilung(sfunktion)

Gegeben eine u.i.v.-Stichprobe X_1, \ldots, X_n mit (stetiger) Verteilungsfunktion F und angeordneter Stichprobe $X_{(1)} < \cdots < X_{(n)}$ (d.h. keine Bindungen)

1. Hypothese

$$H_0$$
: $F(x) = F_0(x) \ \forall x \ \text{mit vorgegebener VF } F_0$.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

2.1 Teststatistik

- \hookrightarrow basiert auf der empirischen VF $\hat{F}_n(x)$ der Realisationen x_1, \ldots, x_n $\hat{F}_n(x)$ ist der Anteil der Beobachtungen, die höchstens den Wert x aufweisen
- \hookrightarrow die Teststatistik misst den größten vertikalen Abstand zwischen hypothetischer und empirischer Verteilungsfunktion

$$\Box D_n = \sup_{x \in \mathbb{R}} |F_0(x) - \hat{F}_n(x)| = \max_{i \in \{0,1\}, j \in \{1,\dots,n\}} \left\{ \left| F_0(X_{(j)}) - \frac{j-i}{n} \right| \right\}$$

$$\Box V = \sqrt{n} \cdot D_n$$

$\overline{2.2 \text{ Verteilung } F_V \text{ von } V \text{ unter } H_0 : F = F_0$

 \hookrightarrow für *n* klein: numerische Berechnung von F_V nach Durbin

$$\hookrightarrow$$
 Approximativ $(n > 40)$: $P(V \le t) = 1 + 2 \cdot \sum_{j=1}^{\infty} (-1)^j \cdot \exp(-2 \cdot j^2 \cdot t^2)$

 \hookrightarrow Quantile $d_{n,\alpha}$ durch numerische Inversion der VF.

Tabelle der Quantile (bei fehlendem Eintrag nächstgrößerer Stichprobenumfang):

							n						
α	5	6	7	8	9	10	15	20	25	30	35	40	> 40
0.90	1.14	1.15	1.15	1.16	1.16	1.17	1.18	1.18	1.19	1.19	1.19	1.20	1.22
0.95	1.26	1.27	1.28	1.28	1.29	1.29	1.31	1.32	1.32	1.32	1.33	1.33	1.36
0.99	1.49	1.51	1.52	1.53	1.54	1.55	1.57	1.58	1.58	1.59	1.59	1.59	1.63

(nach Durbin)

3. Entscheidungsregel

Entscheidungsregel (Signifikanzniveau α):

 H_0 wird abgelehnt

$$\iff$$

$$v \geq d_{n,1-\alpha}$$

19

```
in R: ks.test(x, y = "p<distr>",...)
dabei ist p<distr> die zu testende VF
```

```
ks.test(x = rnorm(50), y = "pgamma", shape = 3, rate = 2)
testet, ob ein Vektor bestehend aus 50 standardnormalverteilten Beobachtungen
einer Gamma-Verteilung mit Parametern shape = 3 und rate = 2 folgt
```

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Bsp: Test auf Gleichverteilung (
$$\alpha=0.05,\ n=10$$
)

 $H_0: F_0=Re(0,1)$ vs. $H_1: F_0 \neq Re(0,1)$ (unter H_0 gilt $F_0(x)=x$)

 j 1 2 3 4 5 6 7 8 9 10

 $\left|F_0(x_j)-\frac{j-1}{n}\right|$ 0.07 0.01 0.08 0.03 0.03 0.03 0.17 0.18 0.16 0.08

 $\frac{j-1}{n}$ 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

 x_j 0.07 0.09 0.28 0.33 0.37 0.53 0.77 0.88 0.96 0.98

 $\frac{j}{n}$ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

 $\left|F_0(x_j)-\frac{j}{n}\right|$ 0.03 0.11 0.02 0.07 0.13 0.07 0.07 0.08 0.06 0.02

in R:

x = c(0.07, 0.09, 0.28, 0.33, 0.37, 0.53, 0.77, 0.88, 0.96, 0.98)

ks.test(x, "punif", min = 0, max = 1, alternative = "two.sided")

 $\sqrt{10} \cdot D_n = \sqrt{10} \cdot 0.18 = 0.5691 < 1.29 = d_{10, 0.95}$ \Rightarrow Nichtablehnung von H_0

Gegeben sind die folgenden 5 Beobachtungen: -1.0, -0.2, 0.45, 1.05, 1.69. Testen Sie, ob die Daten einer Normalverteilung mit $\mu=0.5$ und $\sigma=1$ folgen!

Nutzen Sie die folgende Tabelle zur Bestimmung von $F_0(x)$ (wählen Sie μ geeignet; $\sigma=1$ ist bereits vorgegeben):

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
×	-1.000	-0.950	-0.500	-0.050	0.000	0.050	0.500	0.950	1.000		
-1.00			0.309	0.171	0.159	0.147	0.067	0.026	0.023		
-0.20	0.788	0.773	0.618	0.440	0.421	0.401	0.242	0.125	0.115		
0.45	0.926	0.919	0.829	0.691	0.674	0.655	0.480	0.309	0.291		
	0.980	0.977	0.939	0.864	0.853	0.841	0.709	0.540	0.520		
1.69	0.996	0.996	0.986	0.959	0.954	0.949	0.883	0.770	0.755		

Gegeben sind die folgenden 5 Beobachtungen: -1.0, -0.2, 0.45, 1.05, 1.69.

						μ				
	x	-1.000	-0.950	-0.500	-0.050	0.000	0.050	0.500	0.950	1.000
			0.480	0.309	0.171	0.159	0.147	0.067	0.026	0.023
-0.2	20	0.788	0.773	0.618	0.440	0.421	0.401	0.242	0.125	0.115
0.4	15	0.926	0.919	0.829	0.691	0.674	0.655	0.480	0.309	0.291
1.0)5	0.980	0.977	0.939	0.864	0.853	0.841	0.709	0.540	0.520
1.6	59	0.996	0.996	0.986	0.959	0.954	0.949	0.883	0.770	0.755

Bestimmen Sie zunächst die Realisation der zugehörigen Teststatistik!

$$D_5 = \max\{|0.067 - 0/5|, |0.067 - 1/5|, \\ |0.242 - 1/5|, |0.242 - 2/5|, \\ |0.480 - 2/5|, |0.480 - 3/5|, \\ |0.709 - 3/5|, |0.709 - 4/5|, \\ |0.883 - 4/5|, |0.883 - 5/5|\}$$

$$= |0.242 - 2/5| = 0.158$$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Gegeben sind die folgenden 5 Beobachtungen: -1.0, -0.2, 0.45, 1.05, 1.69.

x	-1.000	-0.950	-0.500	-0.050	$_{0.000}^{\mu}$	0.050	0.500	0.950	1.000
-1.00	0.500	0.480	0.309	0.171	0.159	0.147	0.067	0.026	0.023
-0.20	0.788	0.773	0.618	0.440	0.421	0.401	0.242	0.125	0.115
0.45	0.926	0.919	0.829	0.691	0.674	0.655	0.480	0.309	0.291
	0.980	0.977	0.939	0.864	0.853	0.841	0.709	0.540	0.520
1.69	0.996	0.996	0.986	0.959	0.954	0.949	0.883	0.770	0.755

Entscheiden Sie mit Hilfe der kritischen Werte nach Durbin, ob H_0 zu einem Signifikanzniveau von $\alpha = 5\%$ verworfen werden kann!

$$\sqrt{n} \cdot D_5 = \sqrt{5} \cdot 0.158$$

$$= 0.353 < 1.26 = d_{5, (1-0.05)}^N$$

Somit kann H_0 nicht verworfen werden.

Spezialfall für den Test auf Normalverteilung:

- \hookrightarrow für fixe Parameter μ_0, σ_0^2 : $F_0(x) = \Phi\left(\frac{x-\mu_0}{\sigma_0}\right)$
- \hookrightarrow für nicht spezifierte Parameter ist der KS-Test nicht direkt anwendbar (hält das Signifikanzniveau strikt ein, lehnt H_0 zu selten ab: "zu konservativ")
- $\hookrightarrow \ \mathsf{stattdessen} \ \mathsf{Vorgehensweise} \ \mathsf{mit} \ \mathsf{modifizierten} \ \mathsf{kritischen} \ \mathsf{Werten} :$
 - \Box die Parameter μ, σ werden aus der Stichprobe geschätzt; die Verteilung hängt nicht mehr von den unbekannten Parametern ab, unterscheidet sich jedoch von der ursprünglichen Verteilung von D_n .

$$\sqrt{n} \cdot D_n^N = \sqrt{n} \cdot \sup_{x} \left| \hat{F}_n(x) - \Phi\left(\frac{x - \bar{x}}{s}\right) \right|$$

- \Box H_0 wird abgelehnt, falls $\sqrt{n} \cdot D_n^N \geq d_{n,(1-\alpha)}^N$
- \Box kritische Werte $d_{n,\alpha}^N$ aus Simulationsstudien (Lilliefors):

	5 8 10 20 30 > 30									
α	5	8	10	20	30	> 30				
0.90	0.72 0.76 0.91	0.74	0.76	0.79	0.80	0.81				
0.95	0.76	0.81	0.82	0.85	0.88	0.89				
0.99	0.91	0.94	0.94	1.03	1.03	1.04				

Bsp: Test auf Normalverteilung

x = (0.69, 1.78, 1.93, 2.30, 2.50, 2.53, 2.56, 2.63, 2.64, 2.65, 2.88, 2.93, 2.98, 3.02, 3.31, 3.46, 3.78, 3.93, 4.06, 4.43)

$$H_0: F_0 = \mathcal{N}(\bar{x}, \sigma_x^2)$$
 vs. $H_1: F_0 \neq \mathcal{N}(\bar{x}, \sigma_x^2)$

$$\sqrt{20} \cdot D_n^N = \sqrt{20} \cdot 0.142 = 0.636 < 0.85 = d_{20,0.95}^N$$

 $\Rightarrow H_0$ kann nicht abgelehnt werden.

27

Bsp: Test auf Normalverteilung (II)

x = (0.045, 0.089, 0.117, 0.127, 0.387, 0.700, 0.862, 1.031, 1.428, 1.506, 1.644, 1.963, 2.007, 2.032, 2.033, 2.347, 4.386, 4.423, 4.560, 12.743)

$$H_0: F_0 = \mathcal{N}(\bar{x}, \sigma_x^2)$$
 vs. $H_1: F_0 \neq \mathcal{N}(\bar{x}, \sigma_x^2)$

$$\sqrt{20} \cdot D_n^N = \sqrt{20} \cdot 0.2824 = 1.263 > d_{20,0.95}^N = 0.85$$

 $\Rightarrow H_0$ wird abgelehnt.