Started on	Thursday, 12 June 2025, 4:53 PM
State	Finished
Completed on	Thursday, 12 June 2025, 5:01 PM
Time taken	7 mins 50 secs
Marks	13.00/15.00
Grade	86.67 out of 100.00
Question 1	
Complete	
Mark 1.00 out of 1.00	
In a standard RNN, t	he hidden state h _t is updated as:
\bigcirc a. $h_t = tanh(W$	$x_t + b$)
b. h _t =tanh(W)	$(t_t + U h_{t-1} + b)$
\bigcirc c. $h_t = ReLU(x_t)$	
$ d. h_t = \sigma(W x_t +$	
o d. Ht-o(w xt i	o,
Question 2	
Complete	
Mark 1.00 out of 1.00	
In an I STM coll what	: is the function of the cell state C_{t} ?
ili ali LSTIVI Celi, Wila	is the function of the cell state C_t :
a. Calculates g	radionte
_	
b. Acts as the o	
c. Stores hidde	
d. Stores long-	term memory
Question 3	
Complete	
Mark 0.00 out of 1.00	
In an LSTM cell, whic	h gate controls how much of the previous hidden state should be carried forward?
-	
a. Forget gate	
b. Input gate	
c. Memory gat	re
d. Output gate	

L/L0, 0.0L	Sayri_twit_data.rweinptrenen
Question 4	
Mark 1.00 o	ut of 1.00
IVIAIR 1.00 0	
In seque	ence-to-sequence models, what is the role of the encoder?
a.	Translate output sequence
O b.	Predict next token
C.	Encode input sequence into a fixed representation
O d.	Update output vocabulary
Question 5	
Mark 1.00 o	ut of 1.00
What do	pes teacher forcing refer to during RNN training?
a.	Feeding the ground truth output at time t-1 to predict time t
b.	Using the model's own output as input
О с.	Pre-training the encoder before decoder
O d.	Resetting hidden states between batches
Question 6	
Complete	
Mark 1.00 o	ut of 1.00
What is	gradient clipping in the context of training RNNs?
О а.	Reducing batch size to avoid overfitting
O b.	Limiting updates to only the final layer
C.	Restricting the magnitude of gradients to prevent exploding gradients
O d.	Applying dropout to avoid vanishing gradients
Question 7	
Complete	
Mark 1.00 o	ut of 1.00
What is	the main reason RNNs struggle with learning long-term dependencies?
a.	Vanishing gradients
O b.	Lack of activation functions
O c.	Insufficient parameters
d.	

Question 8		
Complete		
Mark 1.00 out of 1.00		
What is the primary advantage of using bidirectional RNNs?		
what is the primary advantage of using bidirectional knivs:		
a. Replaces the need for attention mechanisms		
b. Access to both past and future context		
c. Works with images		
d. Reduced computation time		
Question 9		
Complete		
Mark 1.00 out of 1.00		
What technique is commonly used during inference in seq2seq models to improve generation quality?		
a. Batch normalization		
b. Adam optimizer		
© c. Dropout		
d. Beam search		
G. Beam search		
Question 10		
Complete		
Complete Mark 1.00 out of 1.00		
Mark 1.00 out of 1.00		
Mark 1.00 out of 1.00 Which loss function is most commonly used in training sequence-to-sequence models with RNNs for classification?		
Mark 1.00 out of 1.00 Which loss function is most commonly used in training sequence-to-sequence models with RNNs for classification? a. Binary Crossentropy		
Mark 1.00 out of 1.00 Which loss function is most commonly used in training sequence-to-sequence models with RNNs for classification? a. Binary Crossentropy b. Mean Squared Error		
Which loss function is most commonly used in training sequence-to-sequence models with RNNs for classification? a. Binary Crossentropy b. Mean Squared Error c. Categorical Crossentropy		
Mark 1.00 out of 1.00 Which loss function is most commonly used in training sequence-to-sequence models with RNNs for classification? a. Binary Crossentropy b. Mean Squared Error		
Which loss function is most commonly used in training sequence-to-sequence models with RNNs for classification? a. Binary Crossentropy b. Mean Squared Error c. Categorical Crossentropy		
Mark 1.00 out of 1.00 Which loss function is most commonly used in training sequence-to-sequence models with RNNs for classification? a. Binary Crossentropy b. Mean Squared Error c. Categorical Crossentropy d. Hinge Loss		
Which loss function is most commonly used in training sequence-to-sequence models with RNNs for classification? a. Binary Crossentropy b. Mean Squared Error c. Categorical Crossentropy d. Hinge Loss		
Mark 1.00 out of 1.00 Which loss function is most commonly used in training sequence-to-sequence models with RNNs for classification? a. Binary Crossentropy b. Mean Squared Error c. Categorical Crossentropy d. Hinge Loss		
Which loss function is most commonly used in training sequence-to-sequence models with RNNs for classification? a. Binary Crossentropy b. Mean Squared Error c. Categorical Crossentropy d. Hinge Loss		
Which loss function is most commonly used in training sequence-to-sequence models with RNNs for classification? a. Binary Crossentropy b. Mean Squared Error c. Categorical Crossentropy d. Hinge Loss Question 11 Complete Mark 1.00 out of 1.00		
Which loss function is most commonly used in training sequence-to-sequence models with RNNs for classification? a. Binary Crossentropy b. Mean Squared Error c. Categorical Crossentropy d. Hinge Loss		
Which loss function is most commonly used in training sequence-to-sequence models with RNNs for classification? a. Binary Crossentropy b. Mean Squared Error c. Categorical Crossentropy d. Hinge Loss Question 11 Complete Mark 1.00 out of 1.00 Which mechanism allows RNN-based models to focus on specific parts of the input during decoding?		
Which loss function is most commonly used in training sequence-to-sequence models with RNNs for classification? a. Binary Crossentropy b. Mean Squared Error c. Categorical Crossentropy d. Hinge Loss Question 11 Complete Mark 1.00 out of 1.00 Which mechanism allows RNN-based models to focus on specific parts of the input during decoding? a. Batch normalization		
Mark 1.00 out of 1.00 Which loss function is most commonly used in training sequence-to-sequence models with RNNs for classification? a. Binary Crossentropy b. Mean Squared Error c. Categorical Crossentropy d. Hinge Loss Question 11 Complete Mark 1.00 out of 1.00 Which mechanism allows RNN-based models to focus on specific parts of the input during decoding? a. Batch normalization b. Dropout		
Mark 1.00 out of 1.00 Which loss function is most commonly used in training sequence-to-sequence models with RNNs for classification? a. Binary Crossentropy b. Mean Squared Error c. Categorical Crossentropy d. Hinge Loss Question 11 Complete Mark 1.00 out of 1.00 Which mechanism allows RNN-based models to focus on specific parts of the input during decoding? a. Batch normalization b. Dropout c. Attention		
Mark 1.00 out of 1.00 Which loss function is most commonly used in training sequence-to-sequence models with RNNs for classification? a. Binary Crossentropy b. Mean Squared Error c. Categorical Crossentropy d. Hinge Loss Question 11 Complete Mark 1.00 out of 1.00 Which mechanism allows RNN-based models to focus on specific parts of the input during decoding? a. Batch normalization b. Dropout		

Question 12		
Complete		
Mark 0.00 out of 1.00		
Which (of the following statements about GRU is incorrect?	
· · · · · · · · · · · · · · · · · · ·	A the following statements about one is interrect.	
a.	GRU has a separate memory cell c_t like LSTM	
O b.	GRU has fewer parameters than LSTM	
O c.	GRU is generally faster to train than LSTM	
d.	GRU combines the forget and input gates into a single update gate	
1	2	
Question 1 Complete	3	
Mark 1.00 c	ut of 1 00	
Wark 1.00 C		
Which one is not a typical application of RNNs?		
a.	Object detection	
) b.	Machine translation	
О с.	Sentiment analysis	
	Speech recognition	
o u.	Speech recognition	
Question 1	4	
Complete		
Mark 1.00 c	ut of 1.00	
Which RNN variant is specifically designed to solve the vanishing gradient problem?		
О а.	Bidirectional RNN	
b.	Vanilla RNN	
C.	LSTM	
d.		
Question 1	5	
Complete		
Mark 1.00 out of 1.00		
Why are	e RNNs not inherently parallelizable across time steps?	
a.	They use convolutional filters	
b.	They have attention layers	
O c.	Due to weight sharing	
d.		