IGME 309 Exercise 06: 3D Math

Please upload a clear document file, scanned copy, or photograph of your answer to MyCourses.

- 1. (40 points) Given two vectors $\vec{a} = (1, 2, 2)$ and $\vec{b} = (3, 4, 0)$, compute the following:
 - (1) The magnitude of $\vec{a} = \underline{}$
 - (2) The magnitude of $\vec{b} = \underline{\qquad}$ 5.0
 - (3) The dot product $\vec{a} \cdot \vec{b} = \underline{\qquad}$ 11.0
 - (4) The cross product $\vec{a} \times \vec{b} =$ (-8.0, 6.0, -2.0)
- 2. (30 points) \vec{a} and \vec{b} are two 3D vectors. Choose an answer from the provided choices for each of the following questions. "×" means cross product, and "·" means dot product.

 - (2) $\vec{a} \cdot \vec{a} = \underline{\qquad \qquad}$
 - (3) $||\overrightarrow{b} \times \overrightarrow{b}|| = \underline{\underline{\hspace{1cm}}}$
 - A. 0 B. $||\vec{a}||$ C. $||\vec{b}||$ D. $||\vec{a}||^2$ E. $||\vec{b}||^2$ F. 1 G. None of them
- 3. (30 points) Finding the intersection point of two lines is a fundamental operation to detect collisions. Given two lines in 2D defined using equations: $g(t) = P_0 + td_0$, where $P_0 = (2,3)$ and $d_0 = (2,-1)$, and $h(s) = P_1 + sd_1$, where $P_1 = (0,1)$ and $d_1 = (-1,1)$, compute the intersection point of the two lines.

Intersection = [-6.0, 7.0]

t = -4.0, s = 6.0