EARLY DETECTION OF CHRONIC KIDNEY DISEASE

USING MACHINE LEARNING

ASSIGNMENT - 2

Date	26th September 2022
Team ID	PNT2022TMID27851
Student Name	JEEVITHA R(311519104026)
Domain Name	HealthCare
110,0001 (011110	Early Detection of Chronic Kidney Disease using Machine Learning
Maximum Marks	2 Marks

1.) IMPORT THE REQUIRED LIBRARIES

2.)DOWNLOAD AND UPLOAD THE DATASET

3.)HANDLE MISSING VALUES IN THE DATASET

```
    Handle the Missing Values in the Dataset

  [ ] #Removing Unwanted Values
       df = df.drop(columns=['RowNumber','CustomerId','Surname'])
   [ ] df.isnull().sum()
       CreditScore
                         0
       Geography
                         0
       Gender
                         0
                         0
       Age
       Tenure
                         0
       Balance
                         0
       NumOfProducts
                         0
       HasCrCard
                         0
       IsActiveMember
                         0
       EstimatedSalary
                         0
       Exited
                         0
       dtype: int64
```

4.) PERFORM THE DESCRIPTIVE STATISTICS ON THE DATASET

5.) PERFORM VARIOUS VISUALISATIONS

a.) UNIVARIANTE ANALYSIS

b.) BI - VARIANTE ANALYSIS

```
    Bi - Variante Analysis

  [ ] def countplot_2(x,hue,title=None,figsize=(6,5)):
          plt.figure(figsize=figsize)
          sns.countplot(data=df[[x,hue]],x=x,hue=hue)
          plt.title(title)
          plt.show()
  [ ] countplot_2('IsActiveMember','NumOfProducts','Credit Card Holders Product Details')
                       Credit Card Holders Product Details
                                                NumOfProducts
          2500
                                                     2
                                                   3
          2000
                                                       4
       1500
8
          1000
           500
             0
                          Ó
                                IsActiveMember
```

c.) MULTI - VARIANTE ANALYSIS

df.corr()									
	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
CreditScore	1.000000	-0.003965	0.000842	0.006268	0.012238	-0.005458	0.025651	-0.001384	-0.027094
Age	-0.003965	1.000000	-0.009997	0.028308	-0.030680	-0.011721	0.085472	-0.007201	0.285323
Tenure	0.000842	-0.009997	1.000000	-0.012254	0.013444	0.022583	-0.028362	0.007784	-0.014001
Balance	0.006268	0.028308	-0.012254	1.000000	-0.304180	-0.014858	-0.010084	0.012797	0.118533
NumOfProducts	0.012238	-0.030680	0.013444	-0.304180	1.000000	0.003183	0.009612	0.014204	-0.047820
HasCrCard	-0.005458	-0.011721	0.022583	-0.014858	0.003183	1.000000	-0.011866	-0.009933	-0.007138
IsActiveMember	0.025651	0.085472	-0.028362	-0.010084	0.009612	-0.011866	1.000000	-0.011421	-0.156128
EstimatedSalary	-0.001384	-0.007201	0.007784	0.012797	0.014204	-0.009933	-0.011421	1.000000	0.012097
Exited	-0.027094	0.285323	-0.014001	0.118533	-0.047820	-0.007138	-0.156128	0.012097	1.000000

6.) FIND AND REPLACE THE OUTLIERS

Replace the Outliers [] Q1 = df.CreditScore.quantile(0.25) Q3 = df.CreditScore.quantile(0.75) IQR = Q3-Q1upper limit = Q3 + (1.5*IQR) $lower_limit = Q1 - (1.5*IQR)$ [] df['CreditScore'] = np.where(df['CreditScore']<lower_limit,650,df['CreditScore'])</pre> sns.boxplot(df.CreditScore) C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: warnings.warn(<AxesSubplot:xlabel='CreditScore'> 600 800 400 500 700 CreditScore

7.) CHECK FOR CATEGORICAL COLUMNS AND ENCODE THEM

8.) SPLIT DATA INTO DEPENDENT AND INDEPENDENT VARIABLES

9.) SCALE THE INDEPENDENT VARIABLES

•	Sc	ale the Independent Variables
	[]	<pre>from sklearn.preprocessing import MinMaxScaler scale = MinMaxScaler() X_scaled = pd.DataFrame(scale.fit_transform(X),columns=X.columns)</pre>

10.) SPLIT THE DATA INTO TRAINING AND TESTING

•	Sp	lit the data into Training and Testing
		<pre>from sklearn.model_selection import train_test_split x_train , y_train , x_test , y_test = train_test_split(X_scaled,Y,test_size=0.2,random_state=0)</pre>
		X_scaled.shape
		(10000, 10)
		x_train.shape
		(8000, 10)