# Hardness results on generalized connectivity\*

Shasha Li, Xueliang Li

Center for Combinatorics and LPMC-TJKLC

Nankai University, Tianjin 300071, China.

Email: lss@cfc.nankai.edu.cn, lxl@nankai.edu.cn

#### **Abstract**

Let G be a nontrivial connected graph of order n and let k be an integer with  $2 \le k \le n$ . For a set S of k vertices of G, let  $\kappa(S)$  denote the maximum number  $\ell$  of edge-disjoint trees  $T_1, T_2, \ldots, T_\ell$  in G such that  $V(T_i) \cap V(T_j) = S$  for every pair i, j of distinct integers with  $1 \le i, j \le \ell$ . A collection  $\{T_1, T_2, \ldots, T_\ell\}$  of trees in G with this property is called an internally disjoint set of trees connecting S. Chartrand et al. generalized the concept of connectivity as follows: The k-connectivity, denoted by  $\kappa_k(G)$ , of G is defined by  $\kappa_k(G) = \min\{\kappa(S)\}$ , where the minimum is taken over all k-subsets S of V(G). Thus  $\kappa_2(G) = \kappa(G)$ , where  $\kappa(G)$  is the connectivity of G, for which there are polynomial-time algorithms to solve it.

This paper mainly focus on the complexity of the generalized connectivity. At first, we obtain that for two fixed positive integers  $k_1$  and  $k_2$ , given a graph G and a  $k_1$ -subset S of V(G), the problem of deciding whether G contains  $k_2$  internally disjoint trees connecting S can be solved by a polynomial-time algorithm. Then, we show that when  $k_1$  is a fixed integer of at least 4, but  $k_2$  is not a fixed integer, the problem turns out to be NP-complete. On the other hand, when  $k_2$  is a fixed integer of at least 2, but  $k_1$  is not a fixed integer, we show that the problem also becomes NP-complete. Finally we give some open problems.

**Keywords:** k-connectivity, internally disjoint trees, complexity, polynomial-time, NP-complete

AMS Subject Classification 2010: 05C40, 05C05, 68Q25, 68R10.

<sup>\*</sup>Supported by NSFC and the "973" program.

### 1 Introduction

We follow the terminology and notation of [1] and all graphs considered here are always simple. The connectivity  $\kappa(G)$  of a graph G is defined as the minimum cardinality of a set Q of vertices of G such that G-Q is disconnected or trivial. A well-known theorem of Whitney [6] provides an equivalent definition of connectivity. For each 2-subset  $S = \{u, v\}$  of vertices of G, let  $\kappa(S)$  denote the maximum number of internally disjoint uv-paths in G. Then  $\kappa(G) = \min{\{\kappa(S)\}}$ , where the minimum is taken over all 2-subsets S of V(G).

In [2], the authors generalized the concept of connectivity. Let G be a nontrivial connected graph of order n and let k be an integer with  $1 \le k \le n$ . For a set S of k vertices of G, let  $\kappa(S)$  denote the maximum number  $\ell$  of edge-disjoint trees  $T_1, T_2, \ldots, T_\ell$  in G such that  $V(T_i) \cap V(T_j) = S$  for every pair i, j of distinct integers with  $1 \le i, j \le \ell$  (Note that the trees are vertex-disjoint in  $G \setminus S$ ). A collection  $\{T_1, T_2, \ldots, T_\ell\}$  of trees in G with this property is called an internally disjoint set of trees connecting S. The k-connectivity, denoted by  $\kappa_k(G)$ , of G is then defined by  $\kappa_k(G) = \min\{\kappa(S)\}$ , where the minimum is taken over all k-subsets S of V(G). Thus,  $\kappa_2(G) = \kappa(G)$ .

In [4], we focused on the investigation of  $\kappa_3(G)$  and mainly studied the relationship between the 2-connectivity and the 3-connectivity of a graph. We gave sharp upper and lower bounds of  $\kappa_3(G)$  for general graphs G, and constructed two kinds of graphs which attain the upper and lower bound, respectively. We also showed that if G is a connected planar graph, then  $\kappa(G)-1 \leq \kappa_3(G) \leq \kappa(G)$ , and gave some classes of graphs which attain the bounds. Moreover, we studied algorithmic aspects for  $\kappa_3(G)$  and gave an algorithm to determine  $\kappa_3(G)$  for general graph G. This algorithm runs in a polynomial time for graphs with a fixed value of connectivity, which implies that the problem of determining  $\kappa_3(G)$ for graphs with a small minimum degree or connectivity can be solved in polynomial time, in particular, the problem whether  $\kappa(G) = \kappa_3(G)$  for a planar graph G can be solved in polynomial time.

In this paper, we will turn to the complexity of the generalized connectivity. At first, by generalizing the algorithm of [4], we obtain that for two fixed positive integers  $k_1$  and  $k_2$ , given a graph G and a  $k_1$ -subset S of V(G), the problem of deciding whether G contains  $k_2$  internally disjoint trees connecting S can be solved by a polynomial-time algorithm. Then, we show that when  $k_1$  is a fixed integer of at least 4, but  $k_2$  is not a fixed integer, the problem turns out to be NP-complete.

**Theorem 1.1.** For any fixed integer  $k_1 \geq 4$ , given a graph G, a  $k_1$ -subset S of V(G) and an integer  $2 \leq k_2 \leq n-1$ , deciding whether there are  $k_2$  internally disjoint trees

connecting S, namely deciding whether  $\kappa(S) \geq k_2$ , is NP-complete.

On the other hand, when  $k_2$  is a fixed integer of at least 2, but  $k_1$  is not a fixed integer, we show that the problem also becomes NP-complete.

**Theorem 1.2.** For any fixed integer  $k \geq 2$ , given a graph G and a subset S of V(G), deciding whether there are k internally disjoint trees connecting S, namely deciding whether  $\kappa(S) \geq k$ , is NP-complete.

The rest of this paper is organized as follows. The next section simply generalizes the algorithm of [4] and makes some preparations. Then Sections 3 and 4 prove Theorem 1.1 and Theorem 1.2, respectively. The final section, Section 5, contains some open problems.

### 2 Preliminaries

At first, we introduce the following result of [4].

**Lemma 2.1.** Given a fixed positive integer k, for any graph G the problem of deciding whether G contains k internally disjoint trees connecting  $\{v_1, v_2, v_3\}$  can be solved by a polynomial-time algorithm, where  $v_1, v_2, v_3$  are any three vertices of V(G).

We first show that the trees we really want has only two types. Then we prove that if there are k internally disjoint trees connecting  $\{v_1, v_2, v_3\}$ , then the union of the k trees has at most  $f(k)n^k$  types, where f(k) is a function on k. For every  $i \in [f(k)n^k]$ , we can convert into a k'-linkage problem the problem of deciding whether G contains a union of k trees having type i. Since the k'-linkage problem has a polynomial-time algorithm to solve it, which has a running time  $O(n^3)$ , see [5], and k is a fixed integer, we finally obtain that the problem of deciding whether  $\kappa\{v_1, v_2, v_3\} \geq k$  can be solved by a polynomial-time algorithm. We refer the readers to [4] for details.

By the similar method, we can also show that given a fixed positive integer k, for any graph G the problem of deciding whether G contains k internally disjoint trees connecting  $\{v_1, v_2, v_3, v_4\}$  can be solved by a polynomial-time algorithm, where  $v_1, v_2, v_3, v_4$  are any four vertices of V(G).

Since for the trees T connecting  $\{v_1, v_2, v_3, v_4\}$ , we only need T belonging to one of the five types in Figure 1, then if there are k internally disjoint trees connecting  $\{v_1, v_2, v_3, v_4\}$ , consider the union of the k trees and it is not hard to obtain that the number of types is at most  $f(k)n^{2k}$ , where f(k) is a function on k and  $f(k)n^{2k}$  is only a rough upper bound.

Then for every  $i \in [f(k)n^{2k}]$ , we can convert into a k'-linkage problem the problem of deciding whether G contains a union of k trees having type i. Since the k'-linkage problem has a polynomial-time algorithm and k is a fixed integer, we obtain that the problem of deciding whether  $\kappa\{v_1, v_2, v_3, v_4\} \geq k$  can be solved by a polynomial-time algorithm.



Figure 1: Five types of trees we really want, where  $\{v_{i_1}, v_{i_2}, v_{i_3}, v_{i_4}\} = \{v_1, v_2, v_3, v_4\}$ .

Now, for two fixed positive integers  $k_1$  and  $k_2$ , if we replace the set  $\{v_1, v_2, v_3, v_4\}$  with a  $k_1$ -subset S of V(G) and replace k with  $k_2$ , the problem can still be solved by a polynomial-time algorithm. The method is similar.

Since for the trees T connecting the  $k_1$ -subset S of V(G), the number of types of T we really want is at most  $f_1(k_1)$ , where  $f_1(k_1)$  is a function on  $k_1$ , then if there are  $k_2$  internally disjoint trees connecting S, consider the union of the  $k_2$  trees and it is not hard to obtain that the number of types is at most  $f_2(k_1, k_2)n^{(k_1-2)k_2}$ , where  $f_2(k_1, k_2)$  is a function on  $k_1$  and  $k_2$  and  $f_2(k_1, k_2)n^{(k_1-2)k_2}$  is only a rough upper bound. Next, by the same way, for every  $i \in [f_2(k_1, k_2)n^{(k_1-2)k_2}]$ , convert into a k'-linkage problem the problem of deciding whether G contains a union of  $k_2$  trees having type i and a polynomial-time algorithm is then obtained.

**Lemma 2.2.** For two fixed positive integer  $k_1$  and  $k_2$ , given a graph G and a  $k_1$ -subset S of V(G), the problem of deciding whether G contains  $k_2$  internally disjoint trees connecting S can be solved by a polynomial-time algorithm.

Note that Lemma 2.2 is a generalization of Lemma 2.1. When  $k_1 = 3$  and  $k_2 = k$ , Lemma 2.2 is exactly Lemma 2.1.

Before proceeding, we recall the following two basic NP-complete problems.

### 3-DIMENSIONAL MATCHING (3-DM)

Given three sets U, V, and W of equal cardinality, and a subset T of  $U \times V \times W$ , decide whether there is a subset M of T with |M| = |U| such that whenever (u, v, w) and (u', v', w') are distinct triples in M,  $u \neq u'$ ,  $v \neq v'$ , and  $w \neq w'$ ?

### **BOOLEAN 3-SATISFIABILITY (3-SAT)**

Given a boolean formula  $\phi$  in conjunctive normal form with three literals per clause, decide whether  $\phi$  is satisfiable?

### 3 Proof of Theorem 1.1

For the problem in Lemma 2.2, when  $k_1 = 4$  and  $k_2$  is not a fixed integer, we denote this case by Problem 1.

**Problem 1.** Given a graph G, a 4-subset S of V(G) and an integer  $2 \le k \le n-1$ , decide whether there are k internally disjoint trees connecting S, namely decide whether  $\kappa(S) \ge k$ ?

At first, we will show that Problem 1 is NP-complete by reducing 3-DM to it, as follows.

**Lemma 3.1.** Given a graph G, a 4-subset S of V(G) and an integer  $2 \le k \le n-1$ , deciding whether there are k internally disjoint trees connecting S, namely deciding whether  $\kappa(S) \ge k$ , is NP-complete.

*Proof.* It is clear that Problem 1 is in NP. So it will suffice to show that 3-DM is polynomially reducible to this problem.

Given three sets of equal cardinality, denoted by  $U = \{u_1, u_2, \ldots, u_n\}$ ,  $V = \{v_1, v_2, \ldots, v_n\}$  and  $W = \{w_1, w_2, \ldots, w_n\}$ , and a subset  $T = \{T_1, T_2, \ldots, T_m\}$  of  $U \times V \times W$ , we will construct a graph G', a 4-subset S of V(G') and an integer  $k \leq |V(G')| - 1$  such that there are k internally disjoint trees connecting S in G' if and only if there is a subset M of T with |M| = |U| = n such that whenever  $(u_i, v_j, w_k)$  and  $(u_{i'}, v_{j'}, w_{k'})$  are distinct triples in M,  $u_i \neq u_{i'}$ ,  $v_j \neq v_{j'}$  and  $w_k \neq w_{k'}$ .

We define G' as follows:

$$\begin{split} V(G') &= \{\hat{u}, \hat{v}, \hat{w}, \hat{t}\} \cup \{u_i : 1 \leq i \leq n\} \cup \{v_i : 1 \leq i \leq n\} \\ & \cup \{w_i : 1 \leq i \leq n\} \cup \{t_i : 1 \leq i \leq m\} \cup \{a_i : 1 \leq i \leq m - n\}; \\ E(G') &= \{\hat{u}u_i : 1 \leq i \leq n\} \cup \{\hat{v}v_i : 1 \leq i \leq n\} \cup \{\hat{w}w_i : 1 \leq i \leq n\} \\ & \cup \{\hat{t}t_i : 1 \leq i \leq m\} \cup \{\hat{u}a_i : 1 \leq i \leq m - n\} \cup \{\hat{v}a_i : 1 \leq i \leq m - n\} \\ & \cup \{\hat{w}a_i : 1 \leq i \leq m - n\} \cup \{t_ia_j : 1 \leq i \leq m, 1 \leq j \leq m - n\} \\ & \cup \{t_iu_j : u_j \in T_i\} \cup \{t_iv_j : v_j \in T_i\} \cup \{t_iw_j : w_j \in T_i\}. \end{split}$$

Then let  $S = \{\hat{u}, \hat{v}, \hat{w}, \hat{t}\}$  and k = m.

Suppose that there is a subset M of T with |M| = |U| = n such that whenever  $(u_i, v_j, w_k)$  and  $(u_{i'}, v_{j'}, w_{k'})$  are distinct triples in M,  $u_i \neq u_{i'}$ ,  $v_j \neq v_{j'}$  and  $w_k \neq w_{k'}$ . Then for every  $T_i \in M$ , we can construct a tree whose vertex set consists of S,  $t_i$  and three vertices corresponding to three elements in  $T_i$ . For each  $T - i \notin M$ ,  $G[t_i, a_j, \hat{u}, \hat{v}, \hat{w}, \hat{t}]$  is a tree connecting S, for some  $1 \leq j \leq m - n$ . So we can easily find out k internally disjoint trees connecting S in G'.

Now suppose that there are k=m internally disjoint trees connecting S in G'. Since  $\hat{u}, \hat{v}, \hat{w}$  and  $\hat{t}$  all have degree m, then among the m trees, there are n trees, each of which contains the vertices in S, a vertex from  $\{t_i: 1 \leq i \leq m\}$ , a vertex from  $\{u_i: 1 \leq i \leq n\}$ , a vertex from  $\{v_i: 1 \leq i \leq n\}$  and can not contain any other vertex. Since the n trees are internally disjoint, it can be easily checked that n 3-sets  $T_i \in U \times V \times W$  corresponding to n vertices  $t_i$  in the n trees form a subset M of T with |M| = |U| = n such that whenever  $(u_i, v_j, w_k)$  and  $(u_{i'}, v_{j'}, w_{k'})$  are distinct triples in M,  $u_i \neq u_{i'}$ ,  $v_j \neq v_{j'}$  and  $w_k \neq w_{k'}$ . The proof is complete.

Now we show that for a fixed integer  $k_1 \geq 5$ , in Problem 1 replacing the 4-subset of V(G) with a  $k_1$ -subset of V(G), the problem is still NP-complete, which can easily be proved by reducing Problem 1 to it.

**Lemma 3.2.** For any fixed integer  $k_1 \geq 5$ , given a graph G, a  $k_1$ -subset S of V(G) and an integer  $2 \leq k_2 \leq n-1$ , deciding whether there are  $k_2$  internally disjoint trees connecting S, namely deciding whether  $\kappa(S) \geq k_2$ , is NP-complete.

*Proof.* Clearly, the problem is in NP. We will prove that Problem 1 is polynomially reducible to it.

For any given graph G, a 4-subset  $S = \{v_1, v_2, v_3, v_4\}$  of V(G) and an integer  $2 \le k \le n-1$ , we construct a new graph G' = (V', E') and a  $k_1$ -subset S' of V(G') and let  $k_2 = k$ 

be such that there are  $k_2 = k$  internally disjoint trees connecting S' in G' if and only if there are k internally disjoint trees connecting S in G.

We construct G' = (V', E') by adding  $k_1 - 4$  new vertices  $\{\hat{a}^1, \hat{a}^2, \dots, \hat{a}^{k_1 - 4}\}$  to G and for every  $i \leq k_1 - 4$ , adding  $k_2$  internally disjoint  $\hat{a}^i v_1$ -paths  $\{\hat{a}^i a_j^i v_1 : 1 \leq j \leq k_2\}$  of length two, where  $a_j^i$  is also a new vertex and if  $i_1 \neq i_2$ ,  $a_{j_1}^{i_1} \neq a_{j_2}^{i_2}$ . Then let  $S' = \{v_1, v_2, v_3, v_4, \hat{a}^1, \hat{a}^2, \dots, \hat{a}^{k_1 - 4}\}$ . It is not hard to check that  $\kappa_{G'}(S') \geq k_2 = k$  if and only if  $\kappa_G(S) \geq k$ . The proof is complete.

Combining Lemma 3.1 with Lemma 3.2, we obtain Theorem 1.1, namely, we complete the proof of Theorem 1.1.

### 4 Proof of Theorem 1.2

For the problem in Lemma 2.2, when  $k_2 = 2$  and  $k_1$  is not a fixed integer, we denote this case by Problem 2.

**Problem 2.** Given a graph G and a subset S of V(G), decide whether there are two internally disjoint trees connecting S, namely decide whether  $\kappa(S) \geq 2$ ?

Firstly, the following lemma will prove that Problem 2 is NP-complete by reducing 3-SAT to it.

**Lemma 4.1.** Given a graph G and a subset S of V(G), deciding whether there are two internally disjoint trees connecting S, namely deciding whether  $\kappa(S) \geq 2$ , is NP-complete.

*Proof.* Clearly, Problem 2 is in NP. So it will suffice to show that 3-SAT is polynomially reducible to this problem.

Given a 3-CNF formula  $\phi = \bigwedge_{i=1}^m c_i$  over variables  $x_1, x_2, \ldots, x_n$ , we construct a graph  $G_{\phi}$  and a subset S of  $V(G_{\phi})$  such that there are two internally disjoint trees connecting S if and only if  $\phi$  is satisfiable.

We define  $G_{\phi}$  as follows:

$$V(G_{\phi}) = \{\hat{x}_{i} : 1 \leq i \leq n\} \cup \{x_{i} : 1 \leq i \leq n\} \cup \{\bar{x}_{i} : 1 \leq i \leq n\}$$

$$\cup \{c_{i} : 1 \leq i \leq m\} \cup \{a\};$$

$$E(G_{\phi}) = \{\hat{x}_{i}x_{i} : 1 \leq i \leq n\} \cup \{\hat{x}_{i}\bar{x}_{i} : 1 \leq i \leq n\}$$

$$\cup \{x_{i}c_{j} : x_{i} \in c_{j}\} \cup \{\bar{x}_{i}c_{j} : \bar{x}_{i} \in c_{j}\}$$

$$\cup \{x_{1}x_{i} : 2 \leq i \leq n\} \cup \{x_{1}\bar{x}_{i} : 2 \leq i \leq n\} \cup \{\bar{x}_{1}x_{i} : 2 \leq i \leq n\}$$

$$\cup \{ax_{i} : 1 \leq i \leq n\} \cup \{a\bar{x}_{i} : 1 \leq i \leq n\} \cup \{ac_{i} : 1 \leq i \leq m\},$$

where the notation  $x_i \in c_j(\bar{x}_i \in c_j)$  signifies that  $x_i(\bar{x}_i)$  is a literal of the clause  $c_j$ . Then let  $S = \{\hat{x}_i : 1 \le i \le n\} \cup \{c_i : 1 \le i \le m\}$ .

Suppose that there is a true assignment t satisfying  $\phi$ . Then for every clause  $c_i(1 \le i \le m)$ , there must exist a literal  $x_j \in c_i$  such that  $t(x_j) = 1$  or  $\bar{x_j} \in c_i$  such that  $t(x_j) = 0$ , for some  $1 \le j \le m$ . For such literals  $x_j$  or  $\bar{x_j}$ , let  $T_1$  be a graph such that  $E(T_1) = \{c_i x_j \text{ (or } c_i \bar{x_j}) : 1 \le i \le m\}$ . Obviously, at most one of the two vertices  $x_j$  and  $\bar{x_j}$  exists in  $V(T_1)$ . If neither  $x_j$  nor  $\bar{x_j}$  is in  $V(T_1)$ , we can add any one of them to  $V(T_1)$ . Now, if  $x_1 \in V(T_1)$ , add  $x_1 x_i$  (if  $x_i \in V(T_1)$ ) or  $x_1 \bar{x_i}$  (if  $\bar{x_i} \in V(T_1)$ ) to  $E(T_1)$ , for  $1 \le i \le m$ . Otherwise, add  $\bar{x_1} x_i$  (if  $x_i \in V(T_1)$ ) or  $\bar{x_1} \bar{x_i}$  (if  $\bar{x_i} \in V(T_1)$ ) to  $E(T_1)$ . Finally, add edges  $x_i \hat{x_i}$  (if  $x_i \in V(T_1)$ ) or  $\bar{x_i} \hat{x_i}$  (if  $\bar{x_i} \in V(T_1)$ ) to  $E(T_1)$ , for  $1 \le i \le m$ . Now it is easy to check that  $T_1$  is a tree connecting S. Then let  $T_2$  be a tree containing  $ac_i$  for  $1 \le i \le m$ ,  $ax_j$  and  $x_j \hat{x_j}$  (if  $\bar{x_j} \in V(T_1)$ ) or  $a\bar{x_j}$  and  $ax_j \hat{x_j}$  (if  $ax_j \in V(T_1)$ ) or  $ax_j \in V(T_1)$  for  $ax_j \in V(T$ 

Now suppose that there are two internally disjoint trees  $T_1, T_2$  connecting S. Since  $a \notin S$ , only one tree can contain the vertex a. Without loss of generality, assume that  $a \notin V(T_1)$ . Since for every  $1 \le i \le n$ ,  $\hat{x_i} \in S$  has degree two,  $V(T_1)$  must contain one and only one of its two neighbors  $x_i$  and  $\bar{x_i}$ . Then let the value of a variable  $x_i$  be 1 if its corresponding vertex  $x_i$  is contained in  $V(T_1)$ . Otherwise let the value be 0. Moreover, because  $a \notin V(T_1)$ , for every  $c_i (1 \le i \le m)$ , there must exist some vertex  $x_j \in V(T_1)$  such that  $c_i x_j \in E(T_1)$  or  $\bar{x_j} \in V(T_1)$  such that  $c_i \bar{x_j} \in E(T_1)$ . So,  $\phi$  is obviously satisfiable by the above true assignment. The proof is complete.

Now we show that for a fixed integer  $k \geq 3$ , in Problem 2 if we want to decide whether there are k internally disjoint trees connecting S rather than two, the problem is still NP-complete, which can easily be proved by reducing Problem 2 to it.

**Lemma 4.2.** For any fixed integer  $k \geq 3$ , given a graph G and a subset S of V(G), deciding whether there are k internally disjoint trees connecting S, namely deciding whether

 $\kappa(S) \geq k$ , is NP-complete.

*Proof.* Clearly, the problem is in NP. We will show that Problem 2 is polynomially reducible to this problem.

Note that k is an fixed integer of at least 3. For any given graph G and a subset S of V(G), we construct a graph G' = (V', E') by adding k - 2 new vertices to G and joining every new vertex to all vertices in S. Then let S' be a subset of V(G') such that S' = S.

If  $\kappa_G(S) \geq 2$ , it is clear that  $\kappa_{G'}(S') \geq k$ .

Suppose that there are k internally disjoint trees connecting S' in G', namely  $\kappa_{G'}(S') \ge k$ . Since there are only k-2 new vertices, at least two trees can not contain any new vertex, which means the two trees are actually two internally disjoint trees connecting S' = S in G. The proof is complete.

Combining Lemma 4.1 with Lemma 4.2, we obtain Theorem 1.2, namely, we complete the proof of Theorem 1.2.

## 5 Open problems

As Theorem 1.1, we only show that for any fixed integer  $k_1 \geq 4$ , given a graph G, a  $k_1$ -subset S of V(G) and an integer  $2 \leq k_2 \leq n-1$ , deciding whether  $\kappa(S) \geq k_2$  is NP-complete, while for  $k_1 = 3$ , the complexity is not known. However, we tend to believe that it is NP-complete.

Conjecture 5.1. Given a graph G, a 3-subset S of V(G) and an integer  $2 \le k \le n-1$ , deciding whether there are k internally disjoint trees connecting S, namely deciding whether  $\kappa(S) \ge k$  is NP-complete.

By Lemma 2.1, we know that given a fixed positive integer k, for any graph G and a 3-subset S of V(G) the problem of deciding whether  $\kappa(S) \geq k$  can be solved by a polynomial-time algorithm. Moreover, by the definition  $\kappa_3(G) = \min\{\kappa(S)\}$ , where the minimum is taken over all 3-subsets S of V(G), we therefore obtain that the problem of deciding whether  $\kappa_3(G) \geq k$  can also be solved by a polynomial-time algorithm [4].

Similarly, since we know that given two fixed integers  $k_1 \geq 4$  and  $k_2$ , for any graph G and a  $k_1$ -subset S of V(G) the problem of deciding whether  $\kappa(S) \geq k_2$  can be solved by a polynomial-time algorithm and  $\kappa_{k_1}(G) = \min\{\kappa(S)\}$ , where the minimum is taken

over all  $k_1$ -subsets S of V(G), we can also obtain that the problem of deciding whether  $\kappa_{k_1}(G) \geq k_2$  can be solved by a polynomial-time algorithm.

However, if  $k_2$  is not a fixed positive integer, the complexity of the problem is still not known, including the case of  $k_1 = 3$ . We conjecture that it could be NP-complete, as follows.

**Conjecture 5.2.** For a fixed integer  $k_1 \geq 3$ , given a graph G and an integer  $2 \leq k \leq n-1$ , the problem of deciding whether  $\kappa_{k_1}(G) \geq k$  is NP-complete.

### References

- [1] J.A. Bondy and U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
- [2] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks, 55(4)(2010), 360–367.
- [3] C. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15(1930), 271–283.
- [4] Shasha Li, Xueliang Li, Wenli Zhou, Sharp bounds for the generalized connectivity  $\kappa_3(G)$ , Discrete Math, in press, DOI 10.1016/j.disc.2010.04.011.
- [5] N. Robertson, P. Seymour, Graph minors XIII. The disjoint paths problem, J. Combin. Theory Ser.B, 63(1995), 65–110.
- [6] H. Whitney, Congruent graphs and the connectivity of graphs and the connectivity of graphs, Amer. J. Math. 54(1932), 150–168.