Family list

9 family members for: JP2002184569

Derived from 6 applications

LUMINESCENT DEVICE

Inventor: OGURA KEIICHI; TAKAHASHI MASAHIRO Applicant: SEMICONDUCTOR ENERGY LAB

EC: IPC: H05B33/04; G09F9/30; H01L27/32 (+19)

Publication info: JP2002184569 A - 2002-06-28

Cutting machine with built-in miter cutting feature

Inventor: LEE WY PERON (US)

Applicant:

IPC: B23D45/02; B26D7/26; B27B5/24 (+6) **EC:** B23D45/02; B26D7/26C2; (+2)

Publication info: US6874399 B2 - 2005-04-05 US2004050232 A1 - 2004-03-18

Light emitting device

Inventor: OGURA KEIITI (JP); TAKAHASHI

Applicant:

MASAHIRO (JP)

EC: H01L51/52C; H05B33/04

IPC: H01L51/52; H05B33/04; H01L51/50 (+2)

Publication info: US6924594 B2 - 2005-08-02 **US2002070663 A1** - 2002-06-13

Cutting machine with built-in miter cutting feature

Inventor: LEE WY PERON (US)

Applicant:

EC: B23D45/02; B26D7/26C2; (+2)

IPC: *B23D45/02; B26D7/26; B27B5/24* (+6)

Publication info: US6978707 B2 - 2005-12-27

US2004211307 A1 - 2004-10-28

Cutting machine with built-in miter cutting feature

Inventor: LEE WY P (US)

Applicant:

EC: B23D47/02; B28D1/04G

IPC: B23D47/02; B26D5/08; B28D1/04 (+4)

Publication info: US2005257657 A1 - 2005-11-24

Light emitting device

Inventor: OGURA KEIITI (JP); TAKAHASHI

Applicant: SEMICONDUCTOR ENERGY LAB

MASAHIRO (JP)

EC: H01L51/52C; H05B33/04

IPC: H01L51/52; H05B33/04; H01L51/50 (+2)

Publication info: US2005260337 A1 - 2005-11-24

Data supplied from the esp@cenet database - Worldwide

LUMINESCENT DEVICE

Patent number:

JP2002184569

Publication date:

2002-06-28

Inventor:

OGURA KEIICHI; TAKAHASHI MASAHIRO

Applicant:

SEMICONDUCTOR ENERGY LAB

Classification:

- international:

H05B33/04; G09F9/30; H01L27/32; H01L51/50; H05B33/10; H05B33/12; H05B33/14; H05B33/22; H05B33/04; G09F9/30; H01L27/28; H01L51/50; H05B33/10; H05B33/12; H05B33/14; H05B33/22; (IPC1-7): H05B33/04; G09F9/30; H05B33/10;

H05B33/12; H05B33/14; H05B33/22

- european:

Application number: JP20010302179 20010928

Priority number(s): JP20010302179 20010928; JP20000304246 20001003

Report a data error here

Abstract of JP2002184569

PROBLEM TO BE SOLVED: To provide a sealing technology for an EL panel of a luminescent device. SOLUTION: An EL element 106 inside a sealed space is provide on it with an absorbent film 107 made of metal having behavior of absorbing water, oxygen or the like (absorbency). With this, it is made easy to give a space 109 a function of absorbing water or oxygen inside as well as to form an absorbent film after another continuously after an EL element 106 is formed, whereby, a sealing structure can be formed without letting in oxygen or moisture inside the space, and thus, the EL element is prevented from degradation.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-184569

(P2002-184569A)

(43)公開日 平成14年6月28日(2002.6.28)

(51) Int.Cl.7		識別記号		FΙ			รี	マコード(参考)
H05B	33/04			H 0 5	B 33/04			3 K 0 0 7
G09F	9/30	3 3 8		G 0 9	F 9/30		338	5 C O 9 4
		365					365Z	
H 0 5 B	33/10			H 0 5	B 33/10			
	33/12				33/12		В	
			審査請求	未請求	請求項の数7	OL	(全 23 頁)	最終頁に続く

(21)出願番号

特願2001-302179(P2001-302179)

(22)出顧日

平成13年9月28日(2001.9.28)

(31)優先権主張番号 特願2000-304246(P2000-304246)

(32)優先日

平成12年10月3日(2000.10.3)

(33)優先権主張国

日本(JP)

(71)出願人 000153878

株式会社半導体エネルギー研究所

神奈川県厚木市長谷398番地

(72)発明者 小倉 慶一

神奈川県厚木市長谷398番地 株式会社半

導体エネルギー研究所内

(72)発明者 髙橋 正弘

神奈川県厚木市長谷398番地 株式会社半

導体エネルギー研究所内

最終頁に続く

(54) 【発明の名称】 発光装置

(57) 【要約】

(修正有)

【課題】 発光装置が有するELパネルの封止技術を提 供する。

【解決手段】 本発明では封止された空間内部のEL素 子106上に、水や酸素などを吸収する性質(吸収性) を有する金属からなる吸収膜107を備える。これによ り空間109内部に水や酸素を吸収させる機能を容易に 持たせることができ、また、EL素子106を形成した 後、連続的に吸収膜を形成させることができるため空間 内に酸素や水分を侵入させることなく封止構造を形成す ることができ、EL素子106の劣化を防止することが できる。

【特許請求の範囲】

【請求項1】基板上にEL素子を有する発光装置において、前記EL素子上に吸収膜が形成され、前記EL素子は、前記基板と前記吸収膜とに挟まれていることを特徴とする発光装置。

【請求項2】基板上にEL素子を有する発光装置において、前記EL素子上に吸収膜が形成され、かつ前記EL素子は、前記基板と、封止基板と、シール剤とで囲まれた空間に備えられていることを特徴とする発光装置。

【請求項3】請求項2に記載の発光装置において、前記シール剤は前記吸収膜と重ならない位置に備えられていることを特徴とする発光装置。

【請求項4】基板上にEL素子を有する発光装置において、前記EL素子は、陽極、EL層および陰極からなり、前記陰極上には吸収膜が形成されており、前記EL素子は、前記基板と前記吸収膜とに挟まれていることを特徴とする発光装置。

【請求項5】請求項4に記載の発光装置において、前記 陰極上には、吸収膜が形成され、前記EL層、前記陰極 および前記吸収膜は、不活性ガス雰囲気下で連続的に形 成されることを特徴とする発光装置。

【請求項6】基板上にTFTを有する発光装置において、前記TFTと電気的に接続されたEL素子を有し、前記EL素子上には、吸収膜が形成され、前記EL素子は、前記基板と前記吸収膜とに挟まれていることを特徴とする発光装置。

【請求項7】請求項1乃至請求項6のいずれか一に記載の発光装置において、前記吸収膜は、アルカリ土類金属を含むことを特徴とする発光装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

【0002】本発明は、EL(エレクトロルミネッセンス)素子を基板上に作り込んで形成された装置(以下、発光装置という)に関する。特に発光装置が有する、基板上に形成したEL素子を封止したELパネルの封止技術に関する。なお、本明細書中ではELパネルにFPCが接続され、FPCを介してIC(集積回路)が直接実装されたモジュールを発光装置とよぶ。

[0003]

【従来の技術】近年、発光型の素子としてEL素子を有した発光装置の研究が活発化しており、特に、EL材料として有機材料を用いた発光装置が注目されている。この発光装置は有機ELディスプレイ(OELD:Organic EL Display)又は有機ライトエミッティングダイオード(OLED:Organic Light Emitting Diode)とも呼ばれている。

【0004】発光装置は、液晶表示装置と異なり自発光.型であるため視野角の問題がないという特徴がある。即ち、屋外に用いられるディスプレイとしては、液晶ディ

スプレイよりも適しており、様々な形での使用が提案されている。

2

【0005】EL素子は一対の電極間にEL層が挟まれた構造となっているが、EL層は通常、積層構造となっている。代表的には、コダック・イーストマン・カンパニーのTangらが提案した「正孔輸送層/発光層/電子輸送層」という積層構造が挙げられる。この構造は非常に発光効率が高く、現在、研究開発が進められている発光装置は殆どこの構造を採用している。

【0006】また、他にも陽極上に正孔注入層/正孔輸送層/発光層/電子輸送層、または正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層の順に積層する構造も良い。発光層に対して蛍光性色素等をドーピングしても良い。また、これらの層は、全て低分子系の材料からなる膜で形成しても良いし、全て高分子系の材料からなる膜で形成しても良い。

【0007】本明細書において、陰極と陽極との間に設けられる全ての層を総称してEL層という。したがって、上述した正孔注入層、正孔輸送層、発光層、電子輸20 送層及び電子注入層は、全てEL層に含まれる。

【0008】なお、本明細書中では、陰極、EL層及び 陽極で形成される発光素子をEL素子といい、これに は、互いに直交するように設けられた2種類のストライ プ状電極の間にEL層を形成する方式(単純マトリクス 方式)、又はTFTに接続されマトリクス状に配列され た画素電極と対向電極との間にEL層を形成する方式 (アクティブマトリクス方式)、の2種類がある。

【0009】EL素子の中で、EL層に蛍光性の有機化合物を用いたものは、有機EL素子と呼ばれているが、 30 有機EL素子の実用化における最大の問題は、素子の寿命が不十分な点である。また、素子の劣化は、長時間発光させると共に非発光領域(ダークスポット)が広がるという形で現れるが、その最大の原因は、陰極の剥離によるものであるといわれている。

【0010】陰極の酸化や剥離等によるダークスポットの発生には、大気中の酸素や水分が起因する場合が多い。例えば、MgAg合金等の安定な金属で作製した電極を用いると大気中で素子を動作させることも可能であるが、素子の寿命は短くなる。よって、良好な素子特性を得るために、素子の作製を一貫して真空又は、不活性ガス雰囲気下のグローブボックス中で行うのが理想的とされている。

【0011】つまり、実用的な寿命を持つ素子を作製するためには、封止技術が重要となる。一般的には、乾燥窒素や不活性ガス雰囲気下で素子をガラス基板で覆い、周囲を樹脂で封止するといった方法が採られる。

【0012】しかし、封止した基板でもダークスポットの成長が観察される。これは、素子駆動時の高い電界によって電極と残留不純物との反応が促進されるためであ 50 ると考えられている。つまり、封入されるガスの純度を 高くしても表面吸着物や封止用の樹脂からの放出物があ るため、酸素や水分といった物質を完全に除去するのは 難しい。それに対して以下に示すような工夫がなされて いる。

【0013】図16に一般的なELパネルの封止におけ る断面構造を示す。図16において、1601は基板、 1602は陽極、1603はEL層、1604は陰極で ある。陽極1602および陰極1604は、それぞれ外 部電源に電気的に接続されている。そして、陽極160 2、EL層1603および陰極1604からなる基板1 601上のEL素子は、封止基板1607によりシール 剤1608を介して封止される。

【0014】ここで、空間1609に存在する酸素及び 水分によるEL素子の劣化を防ぐために吸湿性の物質か らなる吸湿剤(捕水剤ともいう)1606を添加すると いうものである。これについては、以下に示す文献に詳 細が記されている。 (文献:川見伸、内藤武実、大畑 浩、仲田仁:有機EL素子の封止における捕水剤の効 果、第45回応用物理学関係連合講演会講演予稿集、1 223 (1998))

【0015】なお、吸湿剤としては、シリカゲル、合成 ゼオライトなどに代表される物理吸着性のものと、五酸 化リンや塩化カルシウムなどに代表される化学吸着性の ものとがあるが、化学吸着性の物質は、吸着した水分を 結晶水として取り込み、再放出することがないことから 酸化バリウム(BaO)等の化学吸着性の物質が用いら れることが多い。

【0016】また、吸湿剤を備える方法としては、封止 基板に吸湿剤を備えるスペース(窪み等)を設けて、そ こに吸湿剤を備えたあと、合成樹脂等のフィルムに粘着 性を持たせたもので吸湿剤が分散しないように貼り付け たり、通気性の材質からなる袋に吸湿剤を入れたものを 封止基板に貼り付けるなどして吸湿剤が空間1609に 分散しないように備えるといった方法が採られている。 しかし、空間1609に吸湿剤を直接分散させて備える 方法も採られている。

[0017]

【発明が解決しようとする課題】図16に示したように 空間1609には、酸化バリウム等の吸湿剤1606が 備えられている。

【0018】なお、酸化バリウム等の吸湿剤は、通常粉 末状の固体であることから、空間1609内にそのまま 分散させて備えたり、高分子系の材料からなるフィルム 等で包んだものを封止基板等に貼り付けたりして備える 方法が採られている。

【0019】また、一般的に吸湿剤は手作業で封入され るため、不活性ガス雰囲気下での作業に困難を生じた り、また包装した吸湿剤を備えたりする場合には、その 包装に手間がかかるといった問題がある。

【0020】これに対し、不活性ガス雰囲気下での作業 50 【0028】また、ここで設けられるシール剤として

の困難性から大気中で吸湿剤の封入が行われる場合もあ る。しかし、この場合には、当然大気中の酸素や水分が 空間1609に含まれるという問題を避けることができ ない。

4

【0021】本発明は、上述したことに鑑み、EL素子 の封止において、水や酸素が侵入しない構造を有し、さ らにこれらを吸収する吸湿剤等を容易に、かつ効率的に 添加する方法を提供することにより、EL素子の劣化を 防ぐことを目的とする。

[0022] 10

【発明を解決するための手段】上記問題点を解決するた めに本発明は、基板上に形成したEL素子を封止する際 にその内部に添加する酸素や水といった不純物を吸収す る性質(以下、吸収性という)の材料および添加方法の 改良を行った。これによりEL素子上に吸収性の膜(以 下、吸収膜という)を容易に形成させることができ、さ らに酸素や水分によりEL素子の劣化を防ぐというもの である。

【0023】本発明においては、まず基板上に陽極、E 20 L層および陰極からなるEL素子を形成し、EL素子上 に吸収膜を形成させる。なお、本発明における吸収膜と しては、酸素により酸化されやすい仕事関数の低い金属 であり、さらにその酸化物が水と反応して水和物を形成 し、水分の再放出が生じないような材料からなる膜のこ とをいう。なお、これらの金属材料としては、ベリリウ ム、マグネシウム、カルシウム、ストロンチウム、バリ ウム及びラジウムといったアルカリ土類金属を用いるこ とができる。また、本明細書中では、このような材料か らなる膜のことを吸収膜と呼ぶ。

【0024】これらの吸収膜を成膜する方法としては、 蒸着法やスパッタリング法が挙げられるが、EL素子の 形成後、連続的に成膜できる方法が好ましい。また、蒸 着法を用いる場合には、抵抗加熱による方法(RE法:Re sistivity Evaporation法)と電子ビームによる方法(E B法:Electron Beam法)を用いることができる。

【0025】さらに、これらの吸収膜は、EL素子上に 直接設けられていても良いが、吸収膜に吸着した水分が EL素子の電極に直接接するのを防ぐために窒化珪素 や、酸化珪素といった絶縁膜からなるバリア膜をEL素 40 子上に形成させた後で形成しても良い。

【0026】また、吸収膜は、EL素子を覆うように形 成されるが、EL素子を囲むように、また後から備えら れるシール剤と重なることがないようにメタルマスク等 を用いて選択的に成膜を行う必要がある。

【0027】吸収膜形成後は、封止基板を基板との間に EL素子を挟むような位置に備え、基板と封止基板との 間にシール剤を備えて封止構造を形成する。つまり、こ こで形成された封止構造の内部に存在する酸素及び水分 等は先に形成された吸収膜により捕捉される。

は、熱硬化性樹脂や紫外線硬化性樹脂であることが好ま しい。なお、シール剤は、EL素子上に形成された吸収 膜を囲むように設けられている。

【0029】なお、本発明においては、上記の封止構造を形成させた後で、さらに封止基板及びシール剤を覆うように金属膜等を設けて、封止された内部に酸素や水分がより侵入しにくくなる構造を有しても良い。

【0030】ただし、この場合には、封止構造の外部に 形成された、EL素子の電極と電気的に接続された配線 (接続配線)上に窒化珪素や酸化珪素からなる絶縁膜を 予め形成させておく必要がある。また、EL素子を外部 の駆動回路と接続するために形成される接続部は、メタ ルマスク等で遮断して金属膜が成膜されることのないよ うにしておく必要がある。

[0031]

【発明の実施の形態】本発明の実施の形態においては、 基板上に形成されたEL素子を封止する方法について説 明する。

【0032】図1 (A) に本発明で用いるELパネルの 上面図と図1 (B) にその断面構造を示す。

【0033】図1(A)、(B)において、101は基板、102は封止基板であり、基板101と封止基板102との間には、EL素子106が設けられている。なお、EL素子106は、陽極103と陰極104との間にEL層105が設けられた構造を有している。

【0034】なお、EL素子を形成する陽極103は、スッパッタリング法により形成し、材料としては、酸化スズと酸化インジウムの合金であるITO、酸化インジウムに2~20%の酸化亜鉛(ZnO)を混合した化合物及び酸化亜鉛と酸化ガリウムからなる化合物を用いることができる。また、陰極104は、蒸着法によりMg:AgやYbといった仕事関数の小さい金属により形成することができる。また、陽極103の端部は、絶縁性の材料からなる絶縁体110により覆われている。

【0035】また、EL層105は、蒸着法、塗布法又は、印刷法といった成膜技術を用いることができる。さらに、EL層105の構造としては、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、正孔阻止層、バッファー層を自由に組み合わせて積層構造又は、単層構造とすればよい。

【0036】また、EL層105には、公知の有機EL材料を用いることができるが、高分子(ポリマー)系材料を用いても良いし、低分子(モノマー)系材料を用いることもできる。さらに、低分子系の材料からなる膜と高分子系の材料からなる膜を積層して形成しても良い。

【0037】なお、本発明は、アクティブマトリクス型のELパネルだけではなく、パッシブマトリクス型のELパネルについても適用することが可能である。

【0038】吸収膜107は、基板101上に形成されたEL素子106を完全に覆うように形成されている。

ここで形成される吸収膜107は、EL素子106形成後に窒素や希ガスといった不活性ガス雰囲気下で連続的に成膜される。

6

【0039】さらに、封止基板102は熱硬化樹脂や紫外線硬化樹脂といった材料からなるシール剤108により封止構造が形成されるが、ここで基板101と封止基板102に囲まれた領域を空間109とよび、EL素子106は、不活性ガスを有する空間109の内部に位置している。なお、シール剤は、吸収膜と重ならない位置10に備えられている。

【0040】図1(B)において、矢印は、EL素子106から発せられた光が放出される方向を示している。つまり、EL素子106の構造としては、EL層105から見て、基板101側に陽極103が形成され、封止基板102側に陰極104が形成されている。

【0041】EL素子の素子構造を陰極と陽極を入れ替えることで光の放出方向を矢印と反対の方向にすることは可能であるが、本発明において用いる吸収膜107は、水分を吸着するにつれて透過率が低下してしまうので、図1(B)に示すような素子構造とするのが好ましい。

【0042】なお、図1(A)(B)では、一枚の基板から1枚のELパネルが形成される場合について説明している。一枚の基板から複数のパネルを形成する場合においても本発明を適用することは可能である。

【0043】そして、EL素子106形成後に連続的に 吸収膜107が形成されている。ここで形成される吸収 膜107は、仕事関数の低い金属で形成される。なお、 本明細書中における仕事関数が低い金属とは、2.0~ 304.0eVの範囲の仕事関数を示す金属のことをいう。

【0044】また、本発明で用いる吸収膜107は、その成膜温度の点から蒸着法による成膜が好ましいが、低温での処理が可能であれば、CVD法やスパッタ法を用いて成膜することも可能である。

【0045】次に、吸収膜107が形成されると不活性ガス雰囲気下で封止が行われるが、封止に用いる封止基板102としては、ガラス、石英、プラスチック(プラスチックフィルムも含む)、金属(代表的にはステンレス)セラミックスといった材料を用いることができる。なお、プラスチックとしては、FRP(Fiberglass-Rei

40 なお、プラスチックとしては、FRP (Fiberglass-Rei nforced Plastics) 板、PVF (ポリビニルフルオライド) フィルム、マイラーフィルム、ポリエステルフィルム、アクリル樹脂フィルムを用いることができる。

【0046】本発明は、上記構成により封止により形成される空間に酸素や水分等が混入された場合、これらが直接EL素子106に侵入するのを防ぐことができる。好ましくは、EL素子が基板と吸収膜に密閉され、その結果EL素子が空間109の雰囲気に曝されることを防ぐことができる。そして、EL素子106が酸素や水分50により劣化するのを抑えることができる。

[0047]

【実施例】以下に本発明の実施例について説明する。

【0048】 [実施例1] 本発明を実施する上で用いた E L 素子の素子構造についての概略図を図2に示す。図2において、201は基板であり、ガラスや石英といった透光性の材料を用いることができる。また、202は、陽極であり、酸化スズと酸化インジウムの合金であるITOで形成されるが、酸化インジウムに2~20%の酸化亜鉛(ZnO)を混合した化合物や、酸化亜鉛と酸化ガリウムからなる化合物を用いても良い。また、陽極202の端部は、絶縁性の材料からなる絶縁体214により覆われている。

【0049】次に正孔注入層203、正孔輸送層204、発光層205およびバッファー層206からなる積層構造を有するEL層207が形成される。具体的には、正孔注入層203としては、銅フタロシアニン(Cu-Pc)や、ポリチオフェン誘導体であるPEDOTを用いて形成することができる。

【0050】なお、銅フタロシアニンのような低分子系の材料を用いる場合には、蒸着法により膜を形成し、PEDOTのような高分子系の材料を用いる場合には、スピンコート法やインクジェット法を用いると良い。また、正孔輸送層204としては、MTDATAやα-NPDを用いることができる。

【0051】次に、発光層205としては、公知の有機 EL材料を用いることができ、高分子系のEL材料若し くは低分子系のEL材料を用いることができる。なお、 本実施例では、赤色の発光を示す赤色発光層と緑色の発 光を示す緑色発光層及び青色の発光を示す青色発光層の 三色からなる発光層を形成する場合について説明する。 【0052】赤色発光層は、Alq3にDCMをドーピ ングしたものを用いて形成することができる。その他に もEu錯体 (Eu (DCM) 3 (Phen)、アルミキ ノリラト錯体(Alq3)にDCM-1をドーパントと して用いたもの等を用いることができる。次に、緑色発 光層は、CBPとIr (ppy) 3を共蒸着することに より形成させることができる。なお、この他にもアルミ キノリラト錯体(Alq3)、ベンゾキノリノラトベリ リウム錯体 (BeBa) を用いることができる。さらに は、アルミキノリラト錯体(AIq3)にクマリン6や キナクリドンといった材料をドーパントとして用いたも のも可能である。そして、青色発光層には、ジスチリル 誘導体であるDPVBiや、アゾメチン化合物を配位子 に持つ亜鉛錯体及びDPVB i にペリレンをドーピング したものを用いることができる。

【0053】また、バッファー層206として、フッ化リチウム(LiF)、酸化アルミニウム($A1_2O_3$)、リチウムアセチルアセトネート(Liacac)といった材料を用いることができる。

【0054】以上でEL層207の積層構造が完成す

る。なお、EL層を形成する材料が低分子系の材料である場合には、蒸着法により形成すれば良く、また、高分子系の材料を用いた場合には、スピンコート法やインクジェット法といった塗布法や印刷法などを用いて形成すればよい。

8

【0055】次に、EL層207上に陰極208を形成する。陰極から電子が注入されることを考慮すると仕事関数の低い金属材料が必要である。しかし、仕事関数の低い金属は、大気中で不安定であり、酸化や剥離が問題10となる。そのため、マグネシウム(Mg)と銀(Ag)を9:1の割合で共蒸着させることにより形成させた合金(MgAg)を用いるのが効果的である。また、陰極材料としては、アルミニウムとリチウムやカルシウム及びマグネシウムの合金を用いてもよい。さらには、イッテルビウム(Yb)を用いることも可能である。

【0056】また、本実施例では、陰極における抵抗を低くし、陰極の酸化を抑える目的で銀(Ag)からなる保護電極209を設けている。なお、保護電極は、必ずしも設けなければならないものではなく、必要に応じて20 設ければよい。

【0057】次にバリア膜210を形成する。ここでは、吸収膜で吸収された酸素及び水分が直接陰極に接触するのを防ぐために設けられている。なお、バリア膜は、必ず設ける必要はなく必要に応じて設ければよい。なお、バリア膜を形成する材料としては、絶縁材料、具体的には、銅フタロシアニンや窒化珪素、酸化珪素といった材料を用いて形成すればよい。

【0058】次にバリア膜210上に吸収膜211を形成する。吸収膜211としては、仕事関数の小さい金属30を用いる。これは、仕事関数の小さい金属は酸化され易いためである。さらに、ここで用いる金属は、酸化により生じた酸化物が水分を取り込んで水和物になるものを用いる。具体的には、バリウム(Ba)を用いることができる。バリウムは、酸素及び水と次のように反応することが知られている。

 $[0059]2Ba+O_2\rightarrow 2BaO$

[0060]

 $BaO+9H_2O \rightarrow Ba(OH)_2 \cdot 8H_2O$

【0061】すなわち、この式に示すようにバリウム 40 は、空間に存在する酸素や水分等と反応して取り込む機 能を有している。つまり、この化学的性質を吸収膜とし て利用しているのである。

【0062】また、EL層207、陰極208、保護電極209、バリア膜210及び吸収膜211の形成は、その界面に酸素や水分が含まれないように行うことが望ましい。従って真空条件下でこれらの膜を連続成膜するか、EL層207を窒素や希ガスといった不活性ガス雰囲気下で形成した後、酸素や水分に触れないようにする必要がある。

50 【0063】本実施例では、マルチチャンバー方式(ク

ラスターツール方式)の成膜装置を用いることで上述の ような成膜を可能とする。

【0064】以上のように形成した後で、シール剤21 2を用いて封止基板213を基板201に貼り合わせ る。本実施例においては、シール剤212として紫外線 硬化樹脂を用いた。なお、本明細書中では基板201、 封止基板213およびシール剤212で囲まれた領域を 空間215という。

【0065】封止基板としては、ガラス、石英、プラスチック(プラスチックフィルムも含む)、金属(代表的にはステンレス)セラミックスといった材料を用いることができる。なお、プラスチックとしては、FRP(Fiberglass-Reinforced Plastics)板、PVF(ポリビニルフルオライド)フィルム、マイラーフィルム、ポリエステルフィルム、アクリル樹脂フィルムを用いることができる。

【0066】本実施例において、上述した封止構造を有するELパネルについて、パネル作製時からのEL素子の劣化の様子をEL素子に印加する電圧に対して得られる輝度により評価を行った。なお、図2には示されていないが、EL素子の陽極及び陰極は、それぞれ外部の電源に電気的に接続されている。

【0067】また、評価に用いたEL素子の素子構成は、以下に示すとおりである。はじめに、ガラス基板上にITOで陽極を形成した後、EL層を形成する。EL層は、以下に示す積層構造を有する。

【0068】まず、正孔注入層として、銅フタロシアニンを20nmの膜厚に形成した後正孔輸送層として(4,4',4''-tris(3-methylphenylphenylamino)triphenylamine)(以下、「MTDATA」と示す)を20nm、4,4'ービス(Nー(1ーナフチル)ーNーフェニルーアミノ)ービフェニル(以下、「αーNPD」と示

す)を10nmの膜厚に形成し、次に発光層としてトリス (8-キノリノラト) ーアルミニウム (以下、「A1q3」と示す)を50nmの膜厚に形成し、バッファー層としてリチウムアセチルアセトネート (以下、「Liacac」と示す)を2nmの膜厚に形成する。以上によりEL層が形成される。

【0069】次に、陰極として、Mg:Agが、150 nmの膜厚に形成され、その上に保護電極としてAgを 150nmの膜厚に形成した。ここまで形成したEL素子を窒素雰囲気下でガラス基板と紫外線硬化樹脂を用いて封止構造を形成させたものを「Ba無し」とし、さらに、保護電極上にバリア膜として銅フタロシアニンを 20nm形成し、その上にバリウムを1500nmの膜厚に形成した後、窒素雰囲気下でガラス基板と紫外線硬化樹脂を用いて封止構造を形成させたものを「Ba有り」とした。

【0070】ここで得られた結果を図3に示す。作製し 化珪素膜301a(組成比Si=32%、O=27%、たE L素子の初期特性を作製日とし、温度60%、湿度 50 N=24%、H=17%)を形成した。次いで、下地膜

95%の高温高湿条件下で1日放置した後で測定した結果を1日後、2日放置した後で測定した結果を2日後として示している。なお、ここでの駆動電圧は、7Vである。

10

【0071】図3の結果から、「Ba無し」のEL素子は1日後でやや輝度が落ち、2日後には、1000カンデラ以上も減少しているのに対し、「Ba付き」のEL素子は、2日後であってもほとんど輝度の減少は見られない。

【0072】さらに、ここで観察された、EL素子について「Ba無し」のEL素子の写真を図11に、「Ba付き」のEL素子の写真を図12に示す。なお、図11及び図12については、いずれも(A)に作製直後のEL素子の様子を示し、(B)には、高温高湿条件で1日放置した後、また、(C)には、2日放置した後のEL素子の様子をそれぞれ示す。

【0073】図11において、「Baなし」のEL素子は、1日後に既に劣化している様子が確認される。これに対して、図12の「Ba付き」のEL素子は、1日後20には、劣化の様子が見られない。2日後には、やや劣化の兆候が見られるが、「Ba付き」のEL素子の方がEL素子の劣化が遅くなることが分かる。よって、バリウムからなる吸収膜を形成することによりEL素子の劣化を抑えられることが確認された。

【0074】 [実施例2] 次に、本実施例では、本発明をアクティブマトリクス型の発光装置に用いた場合について説明する。はじめに、同一基板上に画素部と、画素部の周辺に設ける駆動回路のTFT(nチャネル型TFT及びpチャネル型TFT)を同時に作製し、さらにE 30 L素子までを形成する方法について詳細に図4~図7を用いて説明する。

【0075】まず、本実施例ではコーニング社の#7059ガラスや#1737ガラスなどに代表されるバリウムホウケイ酸ガラス、またはアルミノホウケイ酸ガラスなどのガラスからなる基板300を用いる。なお、基板300としては、透光性を有する基板であれば限定されず、石英基板を用いても良い。また、本実施例の処理温度に耐えうる耐熱性を有するプラスチック基板を用いてもよい。

【0076】次いで、基板300上に酸化珪素膜、窒化 珪素膜または酸化窒化珪素膜などの絶縁膜から成る下地膜301を形成する。本実施例では下地膜301として 2層構造を用いるが、前記絶縁膜の単層膜または2層以上積層させた構造を用いても良い。下地膜301の一層 目としては、プラズマCVD法を用い、SiH4、N H3、及びN2Oを反応ガスとして成膜される酸化窒化珪素膜301aを10~200nm(好ましくは50~100m)形成する。本実施例では、膜厚50nmの酸化窒 化珪素膜301a(組成比Si=32%、O=27%、N=24% H=17%)を形成した 次いで 下地膜

301の二層目としては、プラズマCVD法を用い、SiH4、及びN2Oを反応ガスとして成膜される酸化窒化 珪素膜 301 bを $50\sim200$ nm(好ましくは $100\sim150$ nm)の厚さに積層形成する。本実施例では、膜厚 100 n mの酸化窒化珪素膜 301 b(組成比Si= 32%、O=59%、N=7%、H=2%)を形成した。

【0077】次いで、下地膜301上に半導体層302 ~306を形成する。半導体層302~306は、非晶 質構造を有する半導体膜を公知の手段(スパッタ法、L PCVD法、またはプラズマCVD法等)により成膜し た後、公知の結晶化処理(レーザー結晶化法、熱結晶化 法、またはニッケルなどの触媒を用いた熱結晶化法等) を行って得られた結晶質半導体膜を所望の形状にパター ニングして形成する。この半導体層302~306の厚 さは25~80nm (好ましくは30~60nm) の厚 さで形成する。結晶質半導体膜の材料に限定はないが、 好ましくは珪素 (シリコン) またはシリコンゲルマニウ ム (Si χ G $e_{1-\chi}$ (X=0.0001~0.02)) 合 金などで形成すると良い。本実施例では、プラズマCV D法を用い、55nmの非晶質珪素膜を成膜した後、ニ ッケルを含む溶液を非晶質珪素膜上に保持させた。この 非晶質珪素膜に脱水素化 (500℃、1時間) を行った 後、熱結晶化(550℃、4時間)を行い、さらに結晶 化を改善するためのレーザーアニ―ル処理を行って結晶 質珪素膜を形成した。そして、この結晶質珪素膜をフォ トリソグラフィー法によるパターニング処理によって、 半導体層302~306を形成した。

【0078】また、半導体層302~306を形成した後、TFTのしきい値を制御するために微量な不純物元素(ボロンまたはリン)のドーピングを行ってもよい。

【0079】また、レーザー結晶化法で結晶質半導体膜 を作製する場合には、パルス発振型または連続発光型の エキシマレーザーやYAGレーザー、YVO₄レーザー を用いることができる。これらのレーザーを用いる場合 には、レーザー発振器から放射されたレーザー光を光学 系で線状に集光し半導体膜に照射する方法を用いると良 い。結晶化の条件は実施者が適宜選択するものである が、エキシマレーザーを用いる場合はパルス発振周波数 300Hzとし、レーザーエネルギー密度を100~4 O O m J/cm2(代表的には200~300 m J/cm²)とする。 また、YAGレーザーを用いる場合にはその第2高調波 を用いパルス発振周波数30~300Hzとし、レーザ ーエネルギー密度を300~600mJ/cm²(代表的には 350~500mJ/cm²)とすると良い。そして幅100 ~1000 μm、例えば400 μmで線状に集光したレ ーザー光を基板全面に渡って照射し、この時の線状レー ザー光の重ね合わせ率 (オーバーラップ率)を50~9 0%として行えばよい。

【0080】次いで、半導体層302~306を覆うゲ 50 し、第2の導電膜をA1膜とする組み合わせ、第1の導

ート絶縁膜307を形成する。ゲート絶縁膜307はプラズマCVD法またはスパッタ法を用い、厚さを $40\sim150$ nmとして珪素を含む絶縁膜で形成する。本実施例では、プラズマCVD法により110nmの厚さで酸化窒化珪素膜(組成比Si=32%、O=59%、N=7%、H=2%)で形成した。勿論、ゲート絶縁膜は酸化窒化珪素膜に限定されるものでなく、他の珪素を含む絶縁膜を単層または積層構造として用いても良い。

12

【0081】また、酸化珪素膜を用いる場合には、プラ10 ズマCVD法でTEOS(Tetraethyl Orthosilicate)とO₂とを混合し、反応圧力40Pa、基板温度300~400℃とし、高周波(13.56MHz)電力密度0.5~0.8 W/cm²で放電させて形成することができる。このようにして作製される酸化珪素膜は、その後400~500℃の熱アニールによりゲート絶縁膜として良好な特性を得ることができる。

【0082】次いで、図4(A)に示すように、ゲート 絶縁膜307上に膜厚20~100mmの第1の導電膜 308と、膜厚100~400nmの第2の導電膜30 20 9とを積層形成する。本実施例では、膜厚30nmのT a N膜からなる第1の導電膜308と、膜厚370nm のW膜からなる第2の導電膜309を積層形成した。T a N膜はスパッタ法で形成し、Taのターゲットを用 い、窒素を含む雰囲気内でスパッタした。また、W膜 は、Wのターゲットを用いたスパッタ法で形成した。そ の他に6フッ化タングステン(WF6)を用いる熱CV D法で形成することもできる。いずれにしてもゲート電 極として使用するためには低抵抗化を図る必要があり、 W膜の抵抗率は $20\mu\Omega$ cm以下にすることが望まし 30 い。W膜は結晶粒を大きくすることで低抵抗率化を図る ことができるが、W膜中に酸素などの不純物元素が多い 場合には結晶化が阻害され高抵抗化する。従って、本実 施例では、高純度のW(純度99.999%)のター ゲットを用いたスパッタ法で、さらに成膜時に気相中か らの不純物の混入がないように十分配慮してW膜を形成 することにより、抵抗率 9~20μΩ c mを実現するこ とができた。

【0083】なお、本実施例では、第1の導電膜308をTaN、第2の導電膜309をWとしたが、特に限定40 されず、いずれもTa、W、Ti、Mo、Al、Cu、Cr、Ndから選ばれた元素、または前記元素を主成分とする合金材料若しくは化合物材料で形成してもよい。また、リン等の不純物元素をドーピングした多結晶珪素膜に代表される半導体膜を用いてもよい。また、Ag、Pd、Cuからなる合金を用いてもよい。また、第1の導電膜をタンタル(Ta)膜で形成し、第2の導電膜をW膜とする組み合わせ、第1の導電膜をW膜とする組み合わせ、第1の導電膜を変化チタン(TiN)膜で形成し、第2の導電膜をW膜とする組み合わせ、第1の導電膜を変化タンタル(TaN)膜で形成

13

電膜を窒化タンタル(TaN)膜で形成し、第2の導電膜をCu膜とする組み合わせとしてもよい。

【0084】次に、図4(B)に示すようにフォトリソ グラフィー法を用いてレジストからなるマスク310~ 314を形成し、電極及び配線を形成するための第1の エッチング処理を行う。第1のエッチング処理では第1 及び第2のエッチング条件で行う。本実施例では第1の エッチング条件として、ICP(Inductively Coupled Plasma:誘導結合型プラズマ) エッチング法を用い、エ ッチング用ガスにCF4とCl2とO2とを用い、それぞ れのガス流量比を25/25/10 (sccm) とし、 1 Paの圧力でコイル型の電極に 5 0 0 Wの R F (13.56M Hz) 電力を投入してプラズマを生成してエッチングを行 った。ここでは、松下電器産業(株)製のICPを用い たドライエッチング装置 (Model E645-□IC P) を用いた。基板側(試料ステージ) にも150Wの RF (13.56MHz) 電力を投入し、実質的に負の自己バイ アス電圧を印加する。この第1のエッチング条件により W膜をエッチングして第1の導電層の端部をテーパー形 状とする。第1のエッチング条件でのWに対するエッチ ング速度は200.39nm/min、TaNに対する エッチング速度は80.32nm/minであり、Ta Nに対するWの選択比は約2.5である。また、この第 1のエッチング条件によって、Wのテーパー角は、約2 6°となる。

【0085】この後、図4(B)に示すようにレジスト からなるマスク310~314を除去せずに第2のエッ チング条件に変え、エッチング用ガスにCF4とC12と を用い、それぞれのガス流量比を30/30 (scc m)とし、1Paの圧力でコイル型の電極に500WのR F (13.56MHz) 電力を投入してプラズマを生成して約3 0 秒程度のエッチングを行った。基板側(試料ステー ジ) にも20WのRF (13.56MHz) 電力を投入し、実質 的に負の自己バイアス電圧を印加する。 CF4とC12を 混合した第2のエッチング条件ではW膜及びTaN膜と も同程度にエッチングされる。第2のエッチング条件で のWに対するエッチング速度は58.97nm/mi n、TaNに対するエッチング速度は66.43nm/ minである。なお、ゲート絶縁膜上に残渣を残すこと なくエッチングするためには、10~20%程度の割合 でエッチング時間を増加させると良い。

【0086】上記第1のエッチング処理では、レジストからなるマスクの形状を適したものとすることにより、基板側に印加するバイアス電圧の効果により第1の導電層及び第2の導電層の端部がテーパー形状となる。このテーパー部の角度は15~45°とすればよい。こうして、第1のエッチング処理により第1の導電層と第2の導電層から成る第1の形状の導電層315~319(第1の導電層315a~319b)を形成する。320はゲート絶縁膜であ

り、第1の形状の導電層315~319で覆われない領域は20~50m程度エッチングされ薄くなった領域が 形成される。

14

【0087】そして、レジストからなるマスクを除去せ ずに第1のドーピング処理を行い、半導体層にn型を付 与する不純物元素を添加する(図4(B))。ドーピン グ処理はイオンドープ法、若しくはイオン注入法で行え ば良い。イオンドープ法の条件はドーズ量を 1×10^{13} $\sim 5 \times 10^{15}$ atoms/cm²とし、加速電圧を60~100 10 keVとして行う。本実施例ではドーズ量を1.5×1 O ¹⁵atoms/cm²とし、加速電圧を80keVとして行っ た。 n型を付与する不純物元素として15族に属する元 素、典型的にはリン(P)または砒素(As)を用いる が、ここではリン (P) を用いた。この場合、導電層3 15~319がn型を付与する不純物元素に対するマス クとなり、自己整合的に高濃度不純物領域321~32 5が形成される。高濃度不純物領域321~325には $1 \times 10^{20} \sim 1 \times 10^{21}$ atoms/cm³の濃度範囲でn型を 付与する不純物元素を添加する。

【0088】次いで、図4(C)に示すようにレジスト からなるマスクを除去せずに第2のエッチング処理を行 う。ここでは、エッチング用ガスにCF₄とC₁₂とO₂ とを用い、それぞれのガス流量比を20/20/20 (sccm)とし、1Paの圧力でコイル型の電極に50 OWのRF (13.56MHz) 電力を投入してプラズマを生成 してエッチングを行った。基板側(試料ステージ)にも 20WのRF (13.56MHz) 電力を投入し、実質的に負の 自己バイアス電圧を印加する。第2のエッチング処理で のWに対するエッチング速度は124.62nm/mi 30 n、TaNに対するエッチング速度は20.67nm/ minであり、TaNに対するWの選択比は6.05で ある。従って、W膜が選択的にエッチングされる。この 第2のエッチングによりWのテーパー角は70°となっ た。この第2のエッチング処理により第2の導電層33 0 b ~ 3 3 0 b を形成する。一方、第1の導電層 3 1 5 a~319aは、ほとんどエッチングされず、第1の導 電層330a~334aを形成する。

【0089】次いで、第20ドーピング処理を行う。ドーピングは第20導電層 $330b\sim334b$ を不純物元 素に対するマスクとして用い、第10導電層におけるテーパー部下方の半導体層に不純物元素が添加されるようにドーピングする。本実施例では、不純物元素としてP(リン)を用い、ドーズ量 1.5×10^{14} 、電流密度 0.5μ A、加速電圧90ke Vにてプラズマドーピングを行った。こうして、第10導電層と重なる低濃度不純物領域 $340\sim344$ を自己整合的に形成する。この低濃度不純物領域 $340\sim344$ へ添加されたリン

(P) の濃度は、 $1 \times 10^{17} \sim 5 \times 10^{18} \text{atoms/cm}^3$ であり、且つ、第1の導電層におけるテーパー部の膜厚に50 従って緩やかな濃度勾配を有している。なお、第1の導

電層のテーパー部と重なる半導体層において、第1の導 電層におけるテーパー部の端部から内側に向かって若 干、不純物濃度が低くなっているものの、ほぼ同程度の 濃度である。また、高濃度不純物領域321~325に も不純物元素が添加され、高濃度不純物領域345~3 49を形成する。

【0090】次いで、図5(B)に示すようにレジスト からなるマスクを除去してからフォトリソグラフィー法 を用いて、第3のエッチング処理を行う。この第3のエ ッチング処理では第1の導電層のテーパー部を部分的に エッチングして、第2の導電層と重なる形状にするため に行われる。ただし、第3のエッチングを行わない領域 には、図5(B)に示すようにレジスト(350、35 1) からなるマスクを形成する。

【0091】第3のエッチング処理におけるエッチング 条件は、エッチングガスとしてC12とSF6とを用い、 それぞれのガス流量比を10/50 (sccm) として 第1及び第2のエッチングと同様にICPエッチング法 を用いて行う。なお、第3のエッチング処理でのTaN に対するエッチング速度は、111.2nm/minであり、 ゲート絶縁膜に対するエッチング速度は、12.8nm/m inである。

【0092】本実施例では、1.3Paの圧力でコイル 型の電極に500WのRF(13.56MHz)電力を投入して プラズマを生成してエッチングを行った。基板側(試料 ステージ) にも10WのRF (13.56MHz) 電力を投入 し、実質的に負の自己バイアス電圧を印加する。以上に より、第1の導電層352a~354aが形成される。

【0093】上記第3のエッチングによって、第1の導 電層352a~354aと重ならない不純物領域(LD D領域) 355~357が形成される。なお、不純物領 域(GOLD領域) 340および342は、第1の導電 層330aおよび332aと重なったままである。

【0094】また、第1の導電層330aと第2の導電 層330bとで形成された電極は、最終的に駆動回路の n チャネル型TFTのゲート電極となり、また、第1の 導電層352aと第2の導電層352bとで形成された 電極は、最終的に駆動回路のpチャネル型TFTのゲー ト電極となる。

【0095】同様に、第1の導電層353aと第2の導 電層353bとで形成された電極は、最終的に画素部の n チャネル型TFTのゲート電極となり、第1の導電層 354aと第2の導電層354bとで形成された電極 は、最終的に画素部のpチャネル型TFTのゲート電極 となる。さらに第1の導電層332aと第2の導電層3 32bとで形成された電極は、最終的に画素部のコンデ ンサ(保持容量)の一方の電極となる。

【0096】このようにして、本実施例は、第1の導電 層352a~354aと重ならない不純物領域(LDD

332aと重なる不純物領域 (GOLD領域) 340お よび342を同時に形成することができ、TFT特性に 応じた作り分けが可能となる。

16

【0097】次にレジストからなるマスク350と35 1を除去した後、ゲート絶縁膜320をエッチング処理 する。ここでのエッチング処理は、エッチングガスにC HF3を用い、反応性イオンエッチング法(RIE法) を用いて行う。本実施例では、チャンバー圧力 6.7P a、RF電力800W、CHF3ガス流量35sccm で第4のエッチング処理を行った。これにより、高濃度 不純物領域345~349の一部は露呈し、絶縁膜36 0~364が形成される。

【0098】次いで、新たにレジストからなるマスク3 65、366を形成して第3のドーピング処理を行う。 この第3のドーピング処理により、pチャネル型TFT の活性層を形成する(図5(C))。第1の導電層35 2a、332aおよび354aを不純物元素に対するマ スクとして用い、p型を付与する不純物元素を添加して 自己整合的に不純物領域を形成する。

【0099】本実施例では、不純物領域370~375 はジボラン(B2H6)を用いたイオンドープ法で形成す る。第1のドーピング処理及び第2のドーピング処理に よって、不純物領域370~375にはそれぞれ異なる 濃度でリンが添加されているが、そのいずれの領域にお いてもp型を付与する不純物元素の濃度が2×10²⁰~ 2×10^{21} atoms/cm³となるようにドーピング処理する ことにより、pチャネル型TFTのソース領域およびド レイン領域として機能するために何ら問題は生じない。

【0100】以上までの工程でそれぞれの半導体層に不 30 純物領域が形成される。なお、本実施例では、ゲート絶 **縁膜をエッチングした後で不純物(ボロン)のドーピン** グを行う方法を示したが、ゲート絶縁膜をエッチングせ ずに不純物のドーピングを行っても良いし、ゲート絶縁 膜をエッチングする前に不純物のドーピングを行っても 良い。

【0101】次いで、レジストからなるマスク365、 366を除去して図6(A)に示すように第1の層間絶 縁膜376を形成する。この第1の層間絶縁膜376と しては、プラズマCVD法またはスパッタ法を用い、厚 さを100~200nmとして珪素を含む絶縁膜で形成 する。本実施例では、プラズマCVD法により膜厚15 0 n mの酸化窒化珪素膜を形成した。勿論、第1の層間 絶縁膜376は酸化窒化珪素膜に限定されるものでな く、他の珪素を含む絶縁膜を単層または積層構造として 用いても良い。

【0102】次いで、それぞれの半導体層に添加された 不純物元素を活性化処理する工程を行う。この活性化工 程はファーネスアニール炉を用いる熱アニール法で行 う。熱アニール法としては、酸素濃度が1ppm以下、 領域) 355~357と、第1の導電層330aおよび 50 好ましくは0.1ppm以下の窒素雰囲気中で400~ 700℃、代表的には500~550℃で行えばよく、本実施例では550℃、4時間の熱処理で活性化処理を行った。なお、熱アニール法の他に、レーザーアニール法、またはラピッドサーマルアニール法(R T A 法)を適用することができる。

【0103】なお、本実施例では、上記活性化処理と同時に、結晶化の際に触媒として使用したニッケルが高濃度のリンを含む不純物領域(345、348、370、372、374)にゲッタリングされ、主にチャネル形成領域となる半導体層中のニッケル濃度が低減される。このようにして作製したチャネル形成領域を有するTFTはオフ電流値が下がり、結晶性が良いことから高い電界効果移動度が得られ、良好な特性を達成することができる。

【0104】また、第1の層間絶縁膜を形成する前に活性化処理を行っても良い。ただし、用いた配線材料が熱に弱い場合には、本実施例のように配線等を保護するため層間絶縁膜(シリコンを主成分とする絶縁膜、例えば窒化珪素膜)を形成した後で活性化処理を行うことが好ましい。

【0105】その他、活性化処理を行った後でドーピング処理を行い、第1の層間絶縁膜を形成させても良い。

【0106】さらに、3~100%の水素を含む雰囲気中で、300~550℃で1~12時間の熱処理を行い、半導体層を水素化する工程を行う。本実施例では水素を約3%の含む窒素雰囲気中で410℃、1時間の熱処理を行った。この工程は層間絶縁膜に含まれる水素により半導体層のダングリングボンドを終端する工程である。水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)を行っても良い。

【0107】また、活性化処理としてレーザーアニール 法を用いる場合には、上記水素化を行った後、エキシマ レーザーやYAGレーザー等のレーザー光を照射するこ とが望ましい。

【0108】次いで、図6(B)に示すように第1の層間絶縁膜376上に有機絶縁物材料から成る第2の層間絶縁膜380を形成する。本実施例では膜厚1.6μmのアクリル樹脂膜を形成した。次いで、各不純物領域345、348、370、372、374に達するコンタクトホールを形成するためのパターニングを行う。

【0109】第2の層間絶縁膜380としては、珪素を含む絶縁材料や有機樹脂からなる膜を用いる。珪素を含む絶縁材料としては、酸化珪素、窒化珪素、酸化窒化珪素を用いることができ、また有機樹脂としては、ポリイミド、ポリアミド、アクリル、BCB (ベンゾシクロブテン)などを用いることができる。

【0110】本実施例では、プラズマCVD法により形成された酸化窒化珪素膜を形成した。なお、酸化窒化珪素膜の膜厚として好ましくは $1\sim5~\mu$ m (さらに好ましくは $2\sim4~\mu$ m) とすればよい。酸化窒化珪素膜は、膜

自身に含まれる水分が少ないためにEL素子の劣化を抑える上で有効である。また、コンタクトホールの形成には、ドライエッチングまたはウエットエッチングを用いることができるが、エッチング時における静電破壊の問題を考えると、ウエットエッチング法を用いるのが望ましい。

18

【0111】さらに、ここでのコンタクトホールの形成において、第1層間絶縁膜376及び第2層間絶縁膜380を同時にエッチングするため、コンタクトホールの10形状を考えると第2層間絶縁膜380を形成する材料は、第1層間絶縁膜376を形成する材料よりもエッチング速度の速いものを用いるのが好ましい。

【0112】そして、各不純物領域345、348、370、372、374とそれぞれ電気的に接続する配線381~388を形成する。そして、膜厚50nmのTi膜と、膜厚50nmの合金膜(AlとTiとの合金膜)との積層膜をパターニングして形成するが、他の導電膜を用いても良い。

【0113】次いで、その上に透明導電膜を80~12 20 0nmの厚さで形成し、パターニングすることによって画 素電極389を形成する(図6(B))。なお、本実施 例では、画素電極として酸化インジウム・スズ(IT O)膜や酸化インジウムに2~20[%]の酸化亜鉛(Z nO)を混合した透明導電膜を用いる。

【0114】また、画素電極389は、ドレイン配線387と接して重ねて形成することによって電流制御用TFTのドレイン領域と電気的な接続が形成される。

【0115】次に、図7に示すように、珪素を含む絶縁膜(本実施例では酸化珪素膜)を500[nm]の厚さに形 の 成し、画素電極389に対応する位置に開口部を形成して、バンクとして機能する第3の層間絶縁膜390を形成する。開口部を形成する際、ウエットエッチング法を用いることで容易にテーパー形状の側壁とすることができる。開口部の側壁が十分になだらかでないと側壁の段差に起因するEL層の劣化が顕著な問題となってしまうため、注意が必要である。

【0116】なお、本実施例においては、第3の層間絶 縁膜390として酸化珪素からなる膜を用いているが、 場合によっては、ポリイミド、ポリアミド、アクリル、 40 BCB (ベンゾシクロブテン)といった有機樹脂膜を用 いることもできる。

【0117】次に、図7に示すようにEL層391を蒸着法により形成する。ここでは、本発明において形成されるEL層391の一例について示す。

【0118】まず、画素電極(陽極) 389上に正孔注 入層として銅フタロシアニン(以下、「Cu-Pc」と 示す)を20nmの膜厚に形成した後、正孔輸送層とし てMTDATAを20nm、 $\alpha-NPDを10nmnm$ 形成し、その後、発光層としてAlq3を50nmの膜 厚に形成し、さらにバッファー層としてLiacacを 2 nmの膜厚に形成したものを用いた。以上により、E L層391が形成される。

【0119】なお、EL層391を形成する材料としては、公知の材料を用いることができる。本実施例では正孔注入層、正孔輸送層(Hole transporting layer)、発光層(Emitting layer)および電子輸送層からなる4層構造をEL層391とするが、さらに電子注入層を設けることもできるし、発光層以外のいずれかが欠ける構造も可能である。このように組み合わせは既に様々な例が報告されており、そのいずれの構成を用いても構わない。

【0120】次に蒸着法により陰極(Mg:Ag電極)392および保護電極394を形成する。このときEL層391及び陰極392を形成するに先立って画素電極389に対して熱処理を施し、水分を完全に除去しておくことが望ましい。なお、本実施例ではEL素子の陰極としてMg:Ag電極を用いるが、公知の他の材料を用いても良い。

【0121】また、保護電極394は陰極392の劣化を防ぎ、また陰極の膜抵抗を下げるために設けられ、アルミニウムを主成分とする低抵抗な金属膜が代表的である。勿論、他の材料でも良い。また、この金属膜は、必ずしも設ける必要はなく必要に応じて設ければよい。

【0122】さらに、バリア膜395が形成される。これは、後に設けられる吸収膜に捕捉された酸素又は水分が陰極及び保護電極と直接接触するのを防ぐためである。なお、本実施例では、バリア膜として、Cu-Pcからなる絶縁膜を用いた。

【0123】なお、EL層391の膜厚は10~400 [nm] (典型的には60~150[nm])、陰極392の厚さは80~200[nm] (典型的には100~150[nm]) とすれば良い。

【0124】次に、EL素子393、保護電極394、バリア膜395を覆うように吸収膜396が形成される。吸収膜396としては、吸収性を有する仕事関数の低い金属が望ましく本実施例では、バリウムを用いた。なお、吸収膜396の膜厚は $1\sim3[\mu m]$ (典型的には $1.5\sim2[\mu m]$)とすればよい。

【0125】また、EL素子393は、酸素及び水分に弱いので、EL層391形成から吸収膜396の形成までを連続的に処理するのが望ましい。

【0126】さらに、本実施例では、封止の際に封止基板と基板の間に備えるシール剤の密着性を高めるために吸収膜396上に窒化膜や酸化膜等の絶縁膜からなるパッシベーション膜397を設ける構造とした。しかし、このパッシベーション膜397は、必ずしも設ける必要はなく、必要に応じて設ければよい。

【0127】こうして図7に示すような構造が完成する。本明細書中では、図7に示すような構造まで作製されたものをEL基板とよぶ。

20 【0128】なお、本実施例においては、EL素子39

3の素子構成から下面出射となるためスイッチング用TFT503にnチャネル型TFT、電流制御用TFT504にpチャネル型TFTを用いるという構成を示したが、本実施例は、好ましい一形態にすぎず、これに限られる必要はない。また、400~403は、チャネル領域であり、501はnチャネルTFT、505はコンデンサ、506は駆動回路、

0 【0129】なお、本実施例において用いるTFTの駆動電圧は、1.2~10Vであり、好ましくは、2.5~5.5Vである。

507は画素部である。

【0130】次に、図7に示すEL基板を封止基板で封止してELパネルとして完成させる方法について図8を用いて説明する。

【0131】図8(A)は、EL基板を封止したELパネルの上面図、図8(B)は図8(A)をA-A'で切断した断面図である。点線で示された801はソース側駆動回路、802は画素部、803はゲート側駆動回路 20である。また、804は封止基板、805はシール材であり、シール材805で囲まれた内側は、空間807になっている。

【0132】なお、ソース側駆動回路801及びゲート側駆動回路803に入力される信号を伝送するための配線(図示せず)により、外部入力端子となるFPC(フレキシブルプリントサーキット)809からビデオ信号やクロック信号を受け取る。なお、ここではELパネルにFPCが接続された状態を示しているが、FPCを介してIC(集積回路)が直接実装されたモジュールを本明細書中では、発光装置とよぶ。

【0133】次に、断面構造について図8(B)を用いて説明する。基板810の上方には画素部802、ゲート側駆動回路803が形成されており、画素部802は電流制御用TFT811とそのドレインに電気的に接続された画素電極812を含む複数の画素により形成される。また、ゲート側駆動回路803はnチャネル型TFT813とpチャネル型TFT814とを組み合わせたCMOS回路(図7参照)を用いて形成される。

【0134】画素電極812は陽極として機能する。ま 40 た、画素電極812の両端にバンク815が形成された 後、画素電極812上にEL層816および陰極817 が形成され、EL素子818が形成される。

【0135】なお、陰極817は全画素に共通の配線として機能し、接続配線808を経由してFPC809に電気的に接続されている。

【0136】次にEL素子818を覆うようにバリア膜819及び吸収膜820が連続的に形成される。なお、ここで形成されるバリア膜819は、吸収膜820により吸収された酸素や水分が直接陰極817に接触するのを避けるためである。さらに吸収膜820が酸素や水分

21

を吸収することにより生じる重みでEL素子818に直接圧力が加わるのを防ぐためでもある。よって、バリア 膜819を形成する材料としては、絶縁性の材料が好ま しく、窒化珪素や酸化珪素といった材料が適している。

【0137】また、吸収膜820としては、仕事関数の小さい金属を用いる。これは、仕事関数の小さい金属は酸化され易いためである。さらに、ここで用いる金属は、酸化により生じた酸化物が水分を取り込んで水和物を形成するものを用いる。具体的には、バリウム(Ba)を用いることができる。

【0138】吸収膜820形成後は、パッシベーション 膜821が形成されている。これは、接続配線808上 にシール剤805が直接形成されるのを防ぐためであ る。これによりシール剤805の密着性を高めることが できる。

【0139】なお、シール剤805によりガラスからなる封止基板804が貼り合わされている。なお、シール剤805としては紫外線硬化樹脂や熱硬化性樹脂を用いるのが好ましい。また、必要に応じて封止基板804と E L 素子818との間隔を確保するために樹脂膜からなるスペーサを設けても良い。シール剤805の内側の空間807には窒素や希ガス等の不活性ガスが充填されている。また、シール剤805はできるだけ水分や酸素を透過しない材料であることが望ましい。

【0140】以上のような構造でEL素子を空間807に封入することにより、EL素子を外部から完全に遮断することができ、外部から侵入する水分や酸素によるEL素子の劣化を防ぐことができる。従って、信頼性の高い発光装置を得ることができる。

【0141】なお、本実施例の構成は、実施例1のいずれの構成とも自由に組み合わせて実施することが可能である。

【0142】〔実施例3〕本実施例では本発明をパッシブマトリクス型(単純マトリクス型)の発光装置に用いた場合について説明する。説明には図9を用いる。図9において、1001はガラスからなる基板、1002は透光性の導電膜からなる陽極である。本実施例では、陽極1002として酸化インジウムと酸化亜鉛との化合物をスパッタリング法により形成する。なお、図9では図示されていないが、複数本の陽極1002が紙面と平行な方向へストライプ状に配列されている。さらに陽極1002の間を埋めるようにバンク1003を形成する。

【0143】また、ストライプ状に配列された陰極10 06を紙面に垂直な方向に形成される。

【0144】次に、EL材料からなるEL層1004a $\sim 1004c$ を実施例1で示した蒸着法により形成する。なお、1004aは赤色に発光するEL層、1004cは青色に発光するEL層である。用いる有機EL材料は実施例1と同様のものを用いれば良い。これらのEL層はバンク100

3が形成する溝に沿って形成されるため、紙面に垂直な 方向にストライプ状に形成される。

【0145】本実施例を実施することにより、基板上に赤、緑、青の三色の画素をストライプ状に形成する。なお、画素の色は、必ずしも三色である必要はなく、一色または、二色であってもよい。また、色は、赤、緑、青に限られることはなく、黄色、オレンジ、グレーといった発色することが可能な他の色を用いてもよい。

【0146】EL層を形成する方法としては、まず、赤 10 色に発光するEL層のみをメタルマスクを用いて形成 し、次にメタルマスクをずらして隣の画素列に移動させ た後、緑色に発光するEL層を形成させる。さらに、メ タルマスクを隣の画素列に移動させた後、背色に発光す るEL層を形成させて、赤、緑、青からなるストライプ 状のEL層を形成する。

【0147】なお、同じ色の発光層は一列ずつ形成しても良いし、同時に形成しても良い。

【0148】また、このとき、同じ色のライン状に隣り合う画素の相互の距離(D)は、EL層の膜厚(t)の 5倍以上(好ましくは10倍以上)とすることが望ましい。これは、D<5 t では画素間でクロストークの問題が発生しうるからである。なお、距離(D)が離れすぎても高精細な画像が得られなくなるので、5 t < D < 5 0 t (好ましくは10 t < D < 35 t)とすることが好ましい。

【0149】また、バンクを紙面に対して水平方向にストライプ状に形成し、赤色に発光するEL層、緑色に発光するEL層及び青色に発光するEL層をそれぞれ同じ水平方向に形成しても良い。

70 【0150】この場合も同じ色のライン状に隣り合う画素の相互の距離(D)は、EL層の膜厚(t)の5倍以上(好ましくは10倍以上)、さらに好ましくは5t
D<50t(好ましくは10t<D<35t)とすると良い。</p>

【0151】以上のようにメタルマスクを用いて、EL 層を形成することで成膜位置の制御が可能となる。

【0152】その後、図9では図示されていないが、複数本の陰極及び保護電極が紙面に垂直な方向が長手方向となり、且つ、陽極1002と直交するようにストライ が状に配列される。なお、本実施例では、陰極1005は、MgAgからなり、保護電極1006はアルミニウム合金膜からなり、それぞれ蒸着法により形成する。また、図示されていないが保護電極1006は所定の電圧が加わるように、後にFPCが取り付けられる部分まで配線が引き出されている。

【0153】以上のようにして基板1001上にEL素子を形成する。なお、本実施例では下側の電極が透光性の陽極となっているため、EL層 $1004a\sim1004$ cで発生した光は下面(基板1001)に放射される。しかしながら、EL素子の構造を反対にし、下側の電極を

10

遮光性の陰極とすることもできる。その場合、EL層1004a~1004cで発生した光は上面(基板1001とは反対側)に放射されることになる。

23

【0154】保護電極1006を形成した後で、絶縁材料からなるバリア膜1307を形成する。ここでは、窒化珪素、酸化珪素、炭素(具体的にはDLC膜)といった無機材料を用いると良く、プラズマCVD法、スパッタリング法または蒸着法により形成することができるが、本実施例では、窒化珪素膜を蒸着法により形成する。なお、このときバリア膜1007の膜厚は、10nm~100nmが好ましい。

【0155】次に、吸収性の材料からなる吸収膜100 8を蒸着法により形成する。なお、ここで用いる吸収膜 としては、バリウムなどの仕事関数が小さく、酸化され やすい材料を用いると良い。

【0156】次に、吸収膜1008上に絶縁材料からなるパッシベーション膜1009を形成させる。なお、EL素子は、酸素や水分等に弱いのでEL層の形成からパッシベーションの形成までは、連続的に行うのが望ましい。

【0157】最後にFPC1013を取り付けてパッシブ型の発光装置が完成する。

【0158】なお、本実施例の構成は、実施例1~実施例2のいずれの構成とも自由に組み合わせて実施することが可能である。

【0159】 [実施例4] 本実施例では、EL素子の封 止構造を形成させた後、さらに外部からの酸素や水分等 の侵入を防ぐための方法について説明する。

【0160】図10(A)には、封止構造を有するELパネルに金属膜を蒸着させる成膜室1109内の断面図を簡単にしめす。なお、成膜室1109は、不活性ガスが充填された、大気圧状態になっている。

【0161】図10(A)において、1101は基板であり、基板上にEL素子1102が形成され、吸収膜1104がEL素子1102を覆うように形成されている。又、EL素子1102からの接続配線1103及び吸収膜上には、パッシベーション膜1105が形成され、これらは、封止基板1108とシール剤1106により封止されている。なお、パッシベーション膜1105と封止基板1108によって封止された領域を空間1107という。また、ここまで形成された状態を本明細書中では、ELパネルと呼ぶ。

【0162】ELパネルは、成膜室1109のゲート1 110から出し入れを行う。そして、基板上にEL素子 が形成されている側を下側にして、マスク1118を介 して補助台1111上に備える。

【0163】又、成膜室1109内の蒸着源1112には、金属膜を形成する低融点の金属が備えられている。これは、封止の際に用いたシール剤1106に対して成膜時の熱によるダメージを考慮しているためである。な

24 お、具体的には、アルミニウムやマグネシウムといった 材料が望ましい。

【0164】そして、大気圧下において、蒸着を行う。なお、蒸着の際には、マスク1118を設けて、パッシベーション膜1105で覆われている接続配線1103や、必要以上の範囲に金属膜を成膜することがないようにする。また、蒸着位置を調節するために蒸着源1112の位置を移動させたり、ELパネルの位置や角度を変えたりしても良い。

【0165】なお、図10(B)に示すように、本実施例によりELパネルのシール剤による封止部を金属膜1116で覆うように形成することができる。また、1113は陽極、1114はEL層、1115は陰極、1117は絶縁体である。また、本実施例においては、大気圧下で金属膜を形成することができるので、成膜後にELパネルを大気中に取り出した際に封止構造内の圧力変化に伴う問題を防ぐことができる。

【0166】なお、本実施例の構成は、実施例1~実施例3のいずれの構成とも自由に組み合わせて実施するこ 20 とが可能である。

【0167】 [実施例5] 本実施例では、上記各実施例においてEL層形成から封止構造を形成するまでの成膜及び封止処理等を行う際に使用する成膜装置の例を示す。

【0168】本発明の薄膜形成装置について図13を用いて説明する。図13において、1401は基板の搬入または搬出を行うロード室であり、ロードロック室とも呼ばれる。ここに基板をセットしたキャリア1402が配置される。なお、ロード室1401は基板搬入用と基30 板搬出用と区別されていても良い。本実施例においては、基板上にEL素子の陽極まで形成させた状態の基板をセットしておく。

【0169】また、1403は基板1404を搬送する機構(以下、搬送機構(A)という)1405を含む搬送室(A)である。基板のハンドリングを行うロボットアームなどは搬送機構(A)1405の一種である。

【0170】そして、搬送室(A)1403にはゲートを介して複数の成膜室及び処理室等と連結されており、各成膜室、搬送室及び処理室は、ゲートによって、それぞれ完全に遮断されるため、それぞれ気密された密閉空間を得られるようになっている。なお、搬送室(A)1403に直接連結された処理室には、すべて排気ポンプ(図示せず)が備えられている。

【0171】なお、排気ポンプとしては、油回転ポンプ、メカニカルブースターポンプ、ターボ分子ポンプもしくはクライオポンプを用いることが可能であるが、水分の除去に効果的なクライオポンプが好ましい。

これは、封止の際に用いたシール剤 1 1 0 6 に対して成 【 0 1 7 2】はじめに、1 4 0 7 に示す成膜室 (A) に 膜時の熱によるダメージを考慮しているためである。な *50* ついて説明する。成膜室 (A) 1 4 0 7 は、搬送室 (A) 1403とゲート1406bにより連結されており、蒸着法により成膜を行う成膜室である。なお、蒸着法としては、抵抗加熱による方法(RE法:Resistivity Evaporation法)と電子ビームによる方法(EB法:ElectronBeam法)を用いることができるが、本実施例では、RE法により蒸着を行う場合について説明する。

【0173】なお、この成膜室(A)1407で成膜されるのは、EL層を形成する正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層である。

【0174】成膜室(A)中に備えられている試料ボートに予め成膜に用いるEL材料を備えておき、この試料ボートに電圧を印加することにより生じる熱により蒸着がなされる。なお、EL材料は水分に極めて弱いため、EL層成膜中は、成膜室(A)1407の圧力を常に真空状態に保持しておく必要がある。成膜室(A)1407への基板の出し入れ以外は、通常、ゲート1406bを用いて搬送室(A)1405と完全に遮断して、成膜室内の真空状態を制御すると良い。なお、この時の成膜圧力は、 $1\times10^{-6}\sim1\times10^{-5}$ Torrにしておく必要がある。

【0175】また、成膜室(A)1407には、EL材料の成膜の様子を装置の外側から観察する手段として、成膜室の側面にそれぞれ窓が取り付けられていてもよい。これにより、正常に成膜が行われていることを確認することができるからである。又、成膜室(A)1407は、EL材料が備えられた複数の試料ボート(図示せず)が設けられており、EL層を形成する複数の層を形成することができるようになっている。なお、具体的には、1~8種類設けるのが好ましい。

【0176】また、スピンコート法を用いてEL層の成膜を行う場合には、スピンコーターを備えた成膜室

(B) 1410でEL材料を含むEL溶液を基板上に塗 布することでEL材料を含む膜を形成する。なお、本実 施例では、高分子系のEL材料を成膜する際に成膜室

(B) 1410で成膜を行う。しかし、場合によっては、低分子系のEL材料を溶媒に溶解させて成膜する場合に、成膜室(B) 1410において成膜を行っても良い。

【0177】なお、スピンコーターを備えた成膜室

(B) 1410は、ゲート1406gを介して搬送室

(B) 1414と接続されている。なお、成膜室(B) 1410において成膜処理された基板は、搬送室(B) 1414によりゲート1406hを介して焼成室1411に搬送され、焼成される。

【0178】そして、焼成処理を終えた基板は、搬送室(B)とゲート1406fを介して連結されている圧力調整室1408に搬送される。基板が圧力調整室1408に搬送された後でゲート1406fが閉じ、圧力調整

室1408内は減圧状態になる。

【0179】圧力調整室1408内が、一定の減圧状態

以下になったところで、ゲート1406dが開き搬送機構(A)1405により基板が取り出される。

【0180】EL層が形成されたところで搬送室(A) 1403とゲート1406cで連結された成膜室(C) 1412に基板が搬送される。成膜室(C)は、蒸着法 により成膜を行う成膜室である。なお、本実施例では、 EL層を成膜する成膜室(A)1407と同様にRE法 による蒸着を行う。そして、成膜室(C)1412にお いて、EL層上に形成するバリア膜、吸収膜及びパッシ 10 ベーション膜といった絶縁性の膜が蒸着法により形成さ れる。

【0181】又、成膜室(C)1412においても複数の試料ボート(図示せず)が設けられている。具体的には、バリア膜及びパッシベーション膜を形成する材料である、窒化珪素や酸化珪素といった絶縁材料や吸収膜を形成するバリウムといった成膜材料が備えられている。【0182】パッシベーション膜まで形成させたところで、搬送室(A)1403とゲート1406eを介して連結される封止室1413に基板が搬送される。なお、20 封止室1413では、最終的にEL素子を密閉空間に封入するための処理が行われる。具体的には基板上に形成されたEL素子を封止基板とシール剤で封入するといっ

【0183】封止基板としては、ガラス、セラミックス、金属などの材料を用いることができ、またシール剤としては、熱硬化性樹脂や紫外線硬化樹脂等を用いることができる。

た処理を行う。

【0184】なお、封止室1413には、熱処理や紫外 線照射処理を行う機能が備えられている。

30 【0185】そして、封止室1413において、封止処理が行われた基板は、搬送機構(A)1405によりゲート1406aを介して再びロード室1401に戻る。

【0186】なお、本実施例の構成は、実施例1~実施例4のいずれの構成とも自由に組み合わせて実施することが可能である。

【0187】〔実施例6〕本発明を実施して形成された 発光装置を内蔵することにより様々な電気器具を作製することができる。本発明の電気器具としては、ビデオカメラ、デジタルカメラ、ゴーグル型ディスプレイ(ヘッ40 ドマウントディスプレイ)、ナビゲーションシステム、音響機器、ノート型パーソナルコンピュータ、ゲーム機器、携帯機器(モバイルコンピュータ、携帯電話、携帯型ゲーム機または電子書籍)、記録媒体を備えた画像再生装置などが挙げられる。それら電気器具の具体例を図14、図15に示す。

【0188】図14(A)はELディスプレイであり、 (全2001、支持台2002、表示部2003を含む。本発明の発光装置をその表示部2003に用いることにより作製される。表示部2003にEL素子を有した発光装置を用いる場合、EL素子が自発光型であるた めバックライトが必要なく薄い表示部とすることができる。

【0189】図14(B)はビデオカメラであり、本体2101、表示部2102、音声入力部2103、操作スイッチ2104、バッテリー2105、受像部2106を含む。本発明の発光装置をその表示部2102に用いることにより作製される。

【0190】図14 (C) はデジタルカメラであり、本体2201、表示部2202、接眼部2203、操作スイッチ2204を含む。本発明の発光装置をその表示部2202に用いることにより作製される。

【0191】図14(D)は記録媒体を備えた画像再生装置(具体的にはDVD再生装置)であり、本体2301、記録媒体(CD、LDまたはDVD等)2302、操作スイッチ2303、表示部(a)2304、表示部(b)2305を含む。表示部(a)2305は主として画像情報を表示し、表示部(b)は主として文字情報を表示するが、本発明の発光装置をこれら表示部

(a)、(b)に用いることにより作製される。なお、 記録媒体を備えた画像再生装置には、CD再生装置、ゲ ーム機器なども含まれうる。

【0192】図14(E)は携帯型(モバイル)コンピュータであり、本体2401、表示部2402、受像部2403、操作スイッチ2404、メモリスロット2405を含む。本発明の発光装置をその表示部2402に用いることにより作製される。この携帯型コンピュータはフラッシュメモリや不揮発性メモリを集積化した記録媒体に情報を記録したり、それを再生したりすることができる。

【0193】図14(F)はパーソナルコンピュータであり、本体2501、筐体2502、表示部2503、キーボード2504を含む。本発明の発光装置をその表示部2503に用いることにより作製される。

【0194】また、上記電気器具はインターネットやCATV(ケーブルテレビ)などの電子通信回線を通じて配信された情報を表示することが多くなり、特に動画情報を表示する機会が増してきている。表示部にEL素子を有した発光装置を用いることにより、EL素子の応答速度が非常に高いため遅れのない動画表示が可能となる。

【0195】また、発光装置は発光している部分が電力を消費するため、発光部分が極力少なくなるように情報を表示することが望ましい。従って、携帯情報端末、特に携帯電話や音響機器のような文字情報を主とする表示部に発光装置を用いる場合には、非発光部分を背景として文字情報を発光部分で形成するように駆動することが望ましい。

【0196】図15(A)は携帯電話であり、本体2601、音声出力部2602、音声入力部2603、表示部2604、操作スイッチ2605、アンテナ2606

を含む。本発明の発光装置をその表示部2604に用いることにより作製される。なお、表示部2604は非発 光部の背景に発光部において文字を表示することで携帯 電話の消費電力を抑えることができる。

28

【0197】図15(B)も携帯電話であるが、図15(A)とは異なり、二つ折りのタイプである。本体2611、音声出力部2612、音声入力部2613、表示部a2614、表示部b2615、アンテナ2616を含む。なお、このタイプの携帯電話には、操作スイッチが付いていないが、表示部a又は、表示部bのうちの一方の表示部に図15(C)、(D)、(E)で示すような文字情報を表示をさせてその機能をもたせている。また、もう一方の表示部には、主として画像情報を表示することになる。なお、本発明の発光装置をその表示部a2614又は、表示部b2615に用いることにより作製される。

【0198】図15(A)及び(B)に示した携帯電話の場合、表示部に用いた発光装置にCMOS回路でセンサ(CMOSセンサ)を内蔵させ、指紋もしくは手相を20 読みとることで使用者を認証する認証システム用端末として用いることもできる。また、外部の明るさ(照度)を読みとり、設定されたコントラストで情報表示が可能となるように発光させることもできる。

【0199】さらに、図15(A)においては、操作スイッチ2605を使用している時に輝度を下げ、操作スイッチの使用が終わったら輝度を上げることで低消費電力化することができる。また、着信した時に表示部2604の輝度を上げ、通話中は輝度を下げることによっても低消費電力化することができる。また、継続的に使用している場合に、リセットしない限り時間制御で表示がオフになるような機能を持たせることで低消費電力化を図ることもできる。なお、これらはマニュアル制御であっても良い。

【0200】図15(F)は音響再生装置、具体的には 車載用オーディオであり、本体2621、表示部262 2、操作スイッチ2623、2624を含む。本発明の 発光装置をその表示部2622に用いることにより作製 される。また、本実施例では車載用オーディオを示す が、携帯型や家庭用の音響再生装置に用いても良い。な 40 お、表示部2622は非発光部の背景に発光部において 白色の文字を表示することで消費電力を抑えられる。こ れは携帯型の音響再生装置において特に有効である。

【0201】また、本実施例で示した携帯型電気器具において、消費電力を低減するための方法として、外部の明るさを感知するセンサ部を設け、暗い場所で使用する際には、表示部の輝度を落とすなどの機能を付加するといった方法が挙げられる。

【0202】以上の様に、本発明の適用範囲は極めて広 く、あらゆる分野の電気器具に用いることが可能であ 50 る。また、本実施例の電気器具は実施例1~実施例5に

示したいずれの構成を適用しても良い。

[0203]

【発明の効果】本発明では封止された空間内部のEL素 子上に酸素や水分等の物質に対して吸収性のある金属を 膜として備えることから、空間内に吸収機能を持たせる ことがこれまで以上に容易になり、また、EL素子形成 後に連続的に吸収膜を形成させることができるため空間 内に酸素や水分を侵入させることなく封止構造を作製す ることができる点に特徴がある。

【図面の簡単な説明】

【図1】 本発明を説明する図。

【図2】 本発明におけるEL素子の素子構造を説明 する図。

【図3】 本発明を実施したことによる効果を示す 図。

[図4] 画素TFT及び駆動回路のTFTの作製工 程を示す図。

30 【図5】 画素TFT及び駆動回路のTFTの作製工 程を示す図。

画素TFT及び駆動回路のTFTの作製工 【図6】 程を示す図。

【図7】 画素TFT及び駆動回路のTFTの作製工 程を示す図。

発光装置の上面図及び封止構造を示す図。 【図8】

パッシブマトリクス型発光装置断面構造を 【図9】 示す図。

10 【図10】 発光装置の封止の様子を説明する図。

【図11】 EL層の劣化の様子を示す写真。

【図12】 EL層の劣化の様子を示す写真。

本発明の発光装置の形成に用いる成膜装置 【図13】 図。

[図2]

【図14】 電気器具の具体例を示す図。

[図15] 電気器具の具体例を示す図。

【図16】 従来例を説明する図。

【図1】

【図3】

【図4】

【図5】

【図6】

376:第1の項間絶縁費 180:第2の層間絶縁費 381~388配線 389:首席電径

'【図7】

第3の層間差距線。 EL層。回素電極。 パリ7臓、吸湿膜、パッシペーション線形成

390:第3の層間絶縁膜 391:EL層 192:陰橋 393:EL素子 194:保護電器 395:パリ7膜 495:弘温黛 397:パッンパーション疾

【図9】

1001基板、1002階種、1003パンパ、1004sEU層、1004bEL層、1004CEL層、1005階種、1006保護電極、1007パリ7賞、 1008級収費、1009パッパーラン賞、1010空間、1011対止基板、1012元制、1013FPC

[図8]

【図10】 【図13】 (A) 成譲宣(8)1410 **維送機構(8) 1409** 11104 -1 ゲート 1405g 成**順宣(C)**1412 ゲート14051 1109成奠宣 压力調整型1408 1112蒸着源 ゲート 1406b (B) 1103接稅配線 ゲート 成類皇(公1407 對止室1413

1104吸収膜

【図11】

(A)

(B)

(C)

【図12】

(A)

(8)

(C)

[図14]

【図15】

【図16】

フロントページの続き

(51) Int. C1. ⁷ H O 5 B 33/14

識別記号

FI

H O 5 B 33/14

33/22

テーマコード(参考)

A Z

33/22

F ターム(参考) 3K007 AB04 AB13 AB18 BA06 BB01

BB05 BB07 CB01 DA01 DB03

EA01 EB00 FA02

5C094 AA31 AA38 AA43 AA48 BA03

BA12 BA27 CA19 CA24 DA07

DA09 DA12 DA13 DB01 DB02

DB04 EA04 EA05 EA10 EB02

FA01 FA02 FB01 FB02 FB12

FB14 FB15 FB20 GB10