1.2 Unsigned binary numbers

Counting in binary

Humans have ten fingers so humans use a base ten number system. Ex: 452 means $4 \times 10^2 + 5 \times 10^1 + 2 \times 10^0$. Digital system valued signals (high, low) so digital systems use a base two number system. Ex: 1101 means $1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$. A ten is called a **decimal** number (from Latin "decem" meaning ten), while a number in base two is called a **binary** number (from Latin "decem" meaning two together).

Base ten has ten symbols for a digit: 0, 1, ..., 9. When counting up and reaching 9, the digit resets to 0 and a 1 carries to the 008, 009, 010, 011, or 098, 099, 100, 101. Base two has only two symbols for a digit: 0 and 1. So counting up results in frequency, 000, 001, 010, 011, 100, 101, 110, 111. Each digit in a binary number is called a *bit*, short for "binary digit".

PARTICIPATION ACTIVITY	1.7.1. Counting up in decimal and in binary		
Start	2x speed		
-	0	0	
*	1	1	
* *	2	10	Reset, carry
* * *	3	11	
* * * *	4	100	Reset, carry and reset, carry
* * * *	5	101	
* * * * *	6	110	Reset, carry
* * * * * *	7	111	
* * * * * * *	8	1000	Reset, carry and reset, carry and reset, carr
* * * * * * * *	9	1001	

Note: This section only covers unsigned binary numbers. An **unsigned binary** number can only represent non-negative valu bit binary number being 0000 (0), 0001 (1), 0010 (2), ..., 1111 (15). In contrast, a signed binary number uses the leftmost bit whether a number is positive or negative.

PARTICIPATION ACTIVITY	1.2.2: Counting up in binary.		
Type the next higher 3-digit binary number.			
1) 000	_		
Check	Show answer		
2) 001			
Check	Show answer		

Converting from binary to decimal

Software and hardware developers benefit from being able to quickly convert between binary and decimal numbers. Given a binary number, each digit's weight is summed to form a decimal number. Ex: $1101 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 8$

PARTICI ACTIVIT	IPATION TY	1.2.4: Converting from binary to decimal.	
		pinary to decimal. Use the fewest decimal digits possible. Recall that four-bit ights are 8, 4, 2, and 1.	
1) 000	01		•
	Check	Show answer	
2) 00	10		•
	Check	Show answer	
3) 01	11		•
	Check	Show answer	
4) 100	01		•
	Check	Show answer	
5) 11	11		•
	Check	Show answer	

Converting from decimal to binary

Given a decimal number, starting from the leftmost binary digit (greater than the decimal number), a 1 is placed in each dig resulting binary number doesn't exceed the decimal number.

	TICIPATION	1.2.5: Converting from decimal to four-bit binary.	_		
Тур	Type a four-bit answer: 0101, not 101. Four-bit binary digit weights: 8, 4, 2, 1.				
1) :	3		•		
	Check	Show answer			
2)	4		-		
	Check	Show answer			
3)	5		•		
	Check	Show answer			
4)	13		•		
	Check	Show answer			
		PARTICIPATION			

ACTIVIT	1.2.6: Binary-to-dec	imal c	onverter.	_
	Edit either	box		
	Binary		Decimal	
		ightharpoons		

Adding binary numbers

For decimal numbers, adding by hand starts at the right and adds each digit, possibly carrying a 1 to the digit on the left. At numbers is identical.

CHALLENGE ACTIVITY

1.2.2: Binary addition.

Overflow

Overflow occurs when the result of a binary operation is too large to fit in allowed number of bits. Ex: For four-bit numbers, 10000, which is too large for four bits. When adding two unsigned numbers, if the leftmost bit generates a carry bit, overflo

PARTICIPATION ACTIVITY

1.2.9: Overflow for unsigned numbers.

Indicate which operations yield overflow for four-bit binary numbers.

1) 0001 + 0010

O Overflow

O No overflow	
2) 0111 + 0111	_
O Overflow	
O No overflow	
3) 1000 + 0111	_
Overflow Overflow	
O No overflow	
4) 1000 + 1000	_
O Overflow	
O No overflow	
5) 1100 + 0111	_
O Overflow	
O No overflow	
6) 1111 + 1111	_
O Overflow	
O No overflow	
7) In base 10, for 2 digit numbers: 50 + 70	•
O Overflow	
O No overflow	

Provide feedback on this section