QUESTÕES AULA 1 TEORÍA

Problema 1.1. Faça as seguintes conversões:

- a) Converter 378₍₁₀₎ para hexadecimal e depois binário
- b) Converter 0110₍₂₎ para hexadecimal e decimal
- c) Converter 010110010100001100001111₍₂₎ para hexadecimal
- a) Obtemos a solução em hexadecimal e a seguir em binario:

Verificamos a solução:

b) $0110_{(2)} = 6_{(16)} = 6_{(10)}$

Problema 1.2. Pretende-se converter o número $38_{(10)}$ para outras bases.

- a) Faça a conversão para base 16 diretamente.
- b) Faça a conversão para base 16 através da base 2 (converta primeiro para base 2 e depois para base 16).
- c) Faça a conversão para base 8 (octal) a partir da base 2.

Problema 1.3. Faça a conversão de 010010010110001101010111₍₂₎ para:

- a) Hexadecimal.
- b) Octal.
- c) Quaternário.

Problema 1.4. Faça as seguintes conversões:

- a) $3980_{(10)}$ para BCD e binário.
- b) 98015₍₁₀₎ para BCD.
- c) $10000111000001011001_{BCD}$ para decimal.

Problema 1.5. A seguinte sequência de bits pode representar um número BCD?

 $100011110000110110000001_{BCD} \\$

Não pode ser uma sequencia BCD

Problema 1.6. Quantos bits são necessários para representar os números decimais de 0 a 999 em binário puro e usando o código BCD?

Problema 1.7. Codifique a mensagem R\$72 para código ASCII usando dígitos hexadecimais.

Problema 1.8. Decodifique a seguinte mensagem que está codificada usando o código ASCII:

$01010011010101000100111101010000_{\text{(ASCII)}}$

Problema 1.9. Faça as seguintes conversões:

- a) Converta para base 10 o número 11010101₍₂₎.
- b) Converta 213₍₁₀₎ para código BCD.
- c) Converta 213₍₁₀₎ para base 2.

Problema 1.10 (Prova 2019.1). Represente os valores apresentados a seguir nas formas numéricas indicadas:

a) $10100000111101010110_{(2)}$ em hexadecimal;

O valor apresentado está em formato binário pelo que temos que agrupar os bits de 4 em 4 começando pelo bit menos significativo para a conversão a base dezesseis (hexadecimal):

b) +69₍₁₀₎ em octal;

O valor apresentado está em formato decimal pelo que teremos de converter a binário e logo a base oito (octal) agrupando de três em três começando pelo bit menos significativo:

c) CADE8₍₁₆₎ em quaternário;

O valor está apresentado em formato hexadecimal pelo que termos de

converter a binário (Passo 1) e logo de binário a base quatro (quaternário) agrupando os bits de dois em dois começando pelo bit menos significativo (Passo 2):

d) $+67_{(10)}$ na representação BCD.

O valor está em formato decimal pelo que cada digito passa a formar 4 bits em formato BCD:

$$67_{(10)} \longrightarrow 0110 0111_{(BCD)} \longrightarrow Solução: 01100111_{(BCD)}$$