Teoremi di tipo "Wolff-Denjoy" in più variabili complesse

22 Settembre 2023 (realisticamente)

Università di Pisa Corso di Laurea Magistrale in Matematica

Candidato: Marco Vergamini Relatore: Prof. Marco Abate

Sia \mathbb{D} il disco unitario in \mathbb{C} .

Sia \mathbb{D} il disco unitario in \mathbb{C} .

Teorema (Wolff-Denjoy, 1926)

 $Sia\ f: \mathbb{D} \longrightarrow \mathbb{D}\ una\ funzione\ olomorfa.$

Sia \mathbb{D} il disco unitario in \mathbb{C} .

Teorema (Wolff-Denjoy, 1926)

Sia $f: \mathbb{D} \longrightarrow \mathbb{D}$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

Sia \mathbb{D} il disco unitario in \mathbb{C} .

Teorema (Wolff-Denjoy, 1926)

Sia $f: \mathbb{D} \longrightarrow \mathbb{D}$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

ullet la funzione f ha un punto fisso nel disco;

Sia \mathbb{D} il disco unitario in \mathbb{C} .

Teorema (Wolff-Denjoy, 1926)

Sia $f: \mathbb{D} \longrightarrow \mathbb{D}$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

- la funzione f ha un punto fisso nel disco; oppure,
- esiste un unico punto del bordo del disco tale che la successione delle iterate di f converge, uniformemente sui compatti, a quel punto.

Definizione

La distanza di Poincaré (o iperbolica) ω su $\mathbb D$ è data da

$$\omega(z_1, z_2) = \frac{1}{2} \log \frac{1 + \left| \frac{z_1 - z_2}{1 - \bar{z}_1 z_2} \right|}{1 - \left| \frac{z_1 - z_2}{1 - \bar{z}_1 z_2} \right|}$$

per ogni $z_1, z_2 \in \mathbb{D}$.

Definizione

Sia X una varietà complessa e connessa; la pseudodistanza di Kobayashi su X è data da

$$k_X(z,w) = \inf \left\{ \sum_{j=1}^m \omega(\zeta_{j-1},\zeta_j) \middle| \text{esistono } m \in \mathbb{N}, \text{ punti } \zeta_0,\ldots,\zeta_m \in \mathbb{D} \text{ e} \right.$$

$$\text{funzioni } \varphi_1,\ldots,\varphi_m \in \text{Hol}(\mathbb{D},X) \text{ tali che } \varphi_1(\zeta_0) = z,$$

$$\varphi_m(\zeta_m) = w \text{ e } \varphi_j(\zeta_j) = \varphi_{j+1}(\zeta_j) \text{ per } j = 1,\ldots,m-1 \right\}$$

per $z, w \in X$.

Definizione

Sia X una varietà complessa e connessa; la pseudodistanza di Kobayashi su X è data da

$$k_X(z,w) = \inf \left\{ \sum_{j=1}^m \omega(\zeta_{j-1},\zeta_j) \middle| \text{esistono } m \in \mathbb{N}, \text{ punti } \zeta_0,\dots,\zeta_m \in \mathbb{D} \text{ e} \right.$$
 funzioni $\varphi_1,\dots,\varphi_m \in \operatorname{Hol}(\mathbb{D},X)$ tali che $\varphi_1(\zeta_0) = z$,
$$\varphi_m(\zeta_m) = w \text{ e } \varphi_j(\zeta_j) = \varphi_{j+1}(\zeta_j) \text{ per } j = 1,\dots,m-1 \right\}$$

per $z, w \in X$.

Se k_X è una distanza, diremo che X è Kobayashi-iperbolica; in tal caso, si può dimostrare che k_X induce la topologia di varietà.

Definizione

Sia $\Omega \subseteq \mathbb{C}^n$, $n \geq 2$ un dominio limitato con bordo C^2 , cioè esiste una funzione di definizione $\rho \in C^2(\mathbb{C}^n)$ tale che $\Omega = \{\rho(z) < 0\}$ e d $\rho \neq 0$ in ogni punto di $\partial\Omega$.

Definizione

Sia $\Omega \subseteq \mathbb{C}^n$, $n \geq 2$ un dominio limitato con bordo C^2 , cioè esiste una funzione di definizione $\rho \in C^2(\mathbb{C}^n)$ tale che $\Omega = \{\rho(z) < 0\}$ e d $\rho \neq 0$ in ogni punto di $\partial\Omega$. Dato $p \in \partial\Omega$, lo spazio tangente complesso a $\partial\Omega$ in p è $H_p\partial\Omega = \{Z \in \mathbb{C}^n \mid \langle \bar{\partial}\rho(p), Z \rangle = 0\}$.

Definizione

Sia $\Omega \subseteq \mathbb{C}^n$, $n \geq 2$ un dominio limitato con bordo C^2 , cioè esiste una funzione di definizione $\rho \in C^2(\mathbb{C}^n)$ tale che $\Omega = \{\rho(z) < 0\}$ e d $\rho \neq 0$ in ogni punto di $\partial\Omega$. Dato $\rho \in \partial\Omega$, lo spazio tangente complesso a $\partial\Omega$ in ρ è $H_p\partial\Omega = \{Z \in \mathbb{C}^n \mid \langle \bar{\partial}\rho(p), Z \rangle = 0\}$. Diciamo che Ω è strettamente pseudoconvesso in ρ se la forma di Levi

$$L_{\rho}(p;Z) = \sum_{\nu,\mu=1}^{n} \frac{\partial^{2} \rho}{\partial z_{\nu} \partial \bar{z}_{\mu}}(p) Z_{\nu} \bar{Z}_{\mu}, \quad Z = (Z_{1}, \dots, Z_{n}) \in \mathbb{C}^{n}$$

è definita positiva in $H_p\partial\Omega$.

Definizione

Sia $\Omega \subseteq \mathbb{C}^n$, $n \geq 2$ un dominio limitato con bordo C^2 , cioè esiste una funzione di definizione $\rho \in C^2(\mathbb{C}^n)$ tale che $\Omega = \{\rho(z) < 0\}$ e d $\rho \neq 0$ in ogni punto di $\partial\Omega$. Dato $\rho \in \partial\Omega$, lo spazio tangente complesso a $\partial\Omega$ in ρ è $H_p\partial\Omega = \{Z \in \mathbb{C}^n \mid \langle \bar{\partial}\rho(p), Z \rangle = 0\}$. Diciamo che Ω è strettamente pseudoconvesso in ρ se la forma di Levi

$$L_{\rho}(p;Z) = \sum_{\nu,\mu=1}^{n} \frac{\partial^{2} \rho}{\partial z_{\nu} \partial \bar{z}_{\mu}}(p) Z_{\nu} \bar{Z}_{\mu}, \quad Z = (Z_{1}, \dots, Z_{n}) \in \mathbb{C}^{n}$$

è definita positiva in $H_p\partial\Omega$.

Diciamo che Ω è strettamente pseudoconvesso se è strettamente pseudoconvesso in p per ogni $p \in \partial \Omega$.

Teorema (Abate, 1991)

Siano $\Omega \subseteq \mathbb{C}^n$ un dominio limitato e strettamente pseudoconvesso e $f:\Omega \longrightarrow \Omega$ una funzione olomorfa.

Teorema (Abate, 1991)

Siano $\Omega \subseteq \mathbb{C}^n$ un dominio limitato e strettamente pseudoconvesso e $f:\Omega \longrightarrow \Omega$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

Teorema (Abate, 1991)

Siano $\Omega \subseteq \mathbb{C}^n$ un dominio limitato e strettamente pseudoconvesso e $f:\Omega \longrightarrow \Omega$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

1. le orbite di f sono relativamente compatte in Ω ;

Teorema (Abate, 1991)

Siano $\Omega \subseteq \mathbb{C}^n$ un dominio limitato e strettamente pseudoconvesso e $f:\Omega \longrightarrow \Omega$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

- 1. le orbite di f sono relativamente compatte in Ω ; oppure,
- 2. esiste un unico punto di $\partial\Omega$ tale che le iterate di f convergono tutte, uniformemente sui compatti, a quel punto.

Teorema (Abate, 1991)

Siano $\Omega \subseteq \mathbb{C}^n$ un dominio limitato e strettamente pseudoconvesso e $f:\Omega \longrightarrow \Omega$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

- 1. le orbite di f sono relativamente compatte in Ω ; oppure,
- 2. esiste un unico punto di $\partial\Omega$ tale che le iterate di f convergono tutte, uniformemente sui compatti, a quel punto.

Traccia della dimostrazione: Per un teorema di Balogh e Bonk del 2000, (Ω, k_{Ω}) è uno spazio metrico Gromov-iperbolico.

Teorema (Abate, 1991)

Siano $\Omega \subseteq \mathbb{C}^n$ un dominio limitato e strettamente pseudoconvesso e $f:\Omega \longrightarrow \Omega$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

- 1. le orbite di f sono relativamente compatte in Ω ; oppure,
- 2. esiste un unico punto di $\partial\Omega$ tale che le iterate di f convergono tutte, uniformemente sui compatti, a quel punto.

Traccia della dimostrazione: Per un teorema di Balogh e Bonk del 2000, (Ω, k_{Ω}) è uno spazio metrico Gromov-iperbolico.

Allora soddisfa le ipotesi di un teorema di Karlsson del 2001, per cui le orbite sono limitate (in k_{Ω}) o convergono a un unico punto del bordo.

Teorema (Abate, 1991)

Siano $\Omega \subseteq \mathbb{C}^n$ un dominio limitato e strettamente pseudoconvesso e $f:\Omega \longrightarrow \Omega$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

- 1. le orbite di f sono relativamente compatte in Ω ; oppure,
- 2. esiste un unico punto di $\partial\Omega$ tale che le iterate di f convergono tutte, uniformemente sui compatti, a quel punto.

Traccia della dimostrazione: Per un teorema di Balogh e Bonk del 2000, (Ω, k_{Ω}) è uno spazio metrico Gromov-iperbolico.

Allora soddisfa le ipotesi di un teorema di Karlsson del 2001, per cui le orbite sono limitate (in k_{Ω}) o convergono a un unico punto del bordo. Per avere la convergenza uniforme sui compatti si applica il teorema di Montel.

Definizione.

Sia X una varietà complessa; la pseudometrica di Kobayashi su X è

$$K_X(x; Z) = \inf\{|v| \mid v \in \mathbb{C}, \text{ esiste } f \in \operatorname{Hol}(\mathbb{D}, X)$$

tale che $f(0) = x, d_0 f(v) = Z\}$

per ogni $x \in X$ e $Z \in T_rX$.

Definizione

Sia X una varietà complessa; la $pseudometrica\ di\ Kobayashi\ su\ X$ è

$$K_X(x; Z) = \inf\{|v| \mid v \in \mathbb{C}, \text{ esiste } f \in \operatorname{Hol}(\mathbb{D}, X)$$

tale che $f(0) = x, d_0 f(v) = Z\}$

per ogni $x \in X$ e $Z \in T_x X$.

Se X è connessa, si può dimostrare che k_X è la forma integrata di K_X .

Definizione

Sia X una varietà complessa; la $pseudometrica\ di\ Kobayashi\ su\ X$ è

$$K_X(x; Z) = \inf\{|v| \mid v \in \mathbb{C}, \text{ esiste } f \in \operatorname{Hol}(\mathbb{D}, X)$$

tale che $f(0) = x, d_0 f(v) = Z\}$

per ogni $x \in X$ e $Z \in T_x X$.

Se X è connessa, si può dimostrare che k_X è la forma integrata di K_X . Le funzioni olomorfe sono semicontrazioni sia rispetto a K_X che rispetto a k_X .

Definizione

Sia X una varietà complessa e connessa; fissiamo due costanti $\lambda \geq 1$ e $\kappa \geq 0$. Sia $I \subseteq \mathbb{R}$ un intervallo;

Definizione

Sia X una varietà complessa e connessa; fissiamo due costanti $\lambda \geq 1$ e $\kappa \geq 0$. Sia $I \subseteq \mathbb{R}$ un intervallo; una curva $\sigma: I \longrightarrow X$ è detta una (λ, κ) -simil-geodetica se:

Definizione

Sia X una varietà complessa e connessa; fissiamo due costanti $\lambda \geq 1$ e $\kappa \geq 0$. Sia $I \subseteq \mathbb{R}$ un intervallo; una curva $\sigma: I \longrightarrow X$ è detta una (λ, κ) -simil-geodetica se:

1. per ogni $s, t \in I$ si ha

$$\frac{1}{\lambda}|t-s| - \kappa \le k_X(\sigma(s), \sigma(t)) \le \lambda|t-s| + \kappa;$$

Definizione

Sia X una varietà complessa e connessa; fissiamo due costanti $\lambda \geq 1$ e $\kappa \geq 0$. Sia $I \subseteq \mathbb{R}$ un intervallo; una curva $\sigma: I \longrightarrow X$ è detta una (λ, κ) -simil-geodetica se:

1. per ogni $s, t \in I$ si ha

$$\frac{1}{\lambda}|t-s| - \kappa \le k_X(\sigma(s), \sigma(t)) \le \lambda|t-s| + \kappa;$$

2. σ è assolutamente continua (quindi $\sigma'(t)$ esiste per quasi ogni $t \in I$) e per quasi ogni $t \in I$ si ha

$$K_X(\sigma(t); \sigma'(t)) \le \lambda.$$

Definizione

Sia X una sottovarietà complessa e connessa di una varietà complessa Y, e fissiamo $\lambda \geq 1$ e $\kappa \geq 0.$

Definizione

Sia X una sottovarietà complessa e connessa di una varietà complessa Y, e fissiamo $\lambda \geq 1$ e $\kappa \geq 0$. Diciamo che X è (λ, κ) -visibile se:

Definizione

Sia X una sottovarietà complessa e connessa di una varietà complessa Y, e fissiamo $\lambda \geq 1$ e $\kappa \geq 0$. Diciamo che X è (λ, κ) -visibile se:

1. ogni due punti distinti di X possono essere collegati da una (λ, κ) -simil-geodetica;

Definizione

Sia X una sottovarietà complessa e connessa di una varietà complessa Y, e fissiamo $\lambda \geq 1$ e $\kappa \geq 0$. Diciamo che X è (λ, κ) -visibile se:

- 1. ogni due punti distinti di X possono essere collegati da una (λ, κ) -simil-geodetica;
- 2. per ogni coppia di punti $p, q \in \partial_Y X$ con $p \neq q$, esistono in \overline{X} due intorni V e W, di p e q rispettivamente, con chiusura disgiunta, e un compatto K di X tali che ogni (λ, κ) -simil-geodetica in X che collega un punto di V a un punto di W interseca K.

La condizione di visibilità

Condizione di visibilità: le simil-geodetiche "curvano verso l'interno", rimanendo dentro il compatto K.

Definizione

Una varietà complessa X si dice taut se ogni funzione nella chiusura (rispetto alla topologia compatta-aperta) di $Hol(\mathbb{D}, X)$ in $C^0(\mathbb{D}, X^*)$ è in $Hol(\mathbb{D}, X)$ oppure è la funzione costante ∞ .

Definizione

Una varietà complessa X si dice taut se ogni funzione nella chiusura (rispetto alla topologia compatta-aperta) di $Hol(\mathbb{D}, X)$ in $C^0(\mathbb{D}, X^*)$ è in $Hol(\mathbb{D}, X)$ oppure è la funzione costante ∞ .

Si può dimostrare che ogni varietà taut è Kobayashi-iperbolica.

Teorema (Chandel, Maitra, Sarkar, 2021; Bharali, Zimmer, 2022)

Sia~X~una~sottovarietà~taut~e~relativamente~compatta~di~una~varietà~complessa~Y~.

Teorema (Chandel, Maitra, Sarkar, 2021; Bharali, Zimmer, 2022)

Sia X una sottovarietà taut e relativamente compatta di una varietà complessa Y. Supponiamo che esista un $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile.

 $Sia\ F: X \longrightarrow X \ una\ funzione\ olomorfa.$

Teorema (Chandel, Maitra, Sarkar, 2021; Bharali, Zimmer, 2022)

Sia X una sottovarietà taut e relativamente compatta di una varietà complessa Y. Supponiamo che esista un $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile.

Sia $F: X \longrightarrow X$ una funzione olomorfa. Allora vale esattamente una delle sequenti affermazioni:

Teorema (Chandel, Maitra, Sarkar, 2021; Bharali, Zimmer, 2022)

Sia X una sottovarietà taut e relativamente compatta di una varietà complessa Y. Supponiamo che esista un $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile.

Sia $F: X \longrightarrow X$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

• le orbite dei punti di X tramite F sono relativamente compatte in X;

Teorema (Chandel, Maitra, Sarkar, 2021; Bharali, Zimmer, 2022)

Sia X una sottovarietà taut e relativamente compatta di una varietà complessa Y. Supponiamo che esista un $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile.

 $Sia\ F: X \longrightarrow X$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

- le orbite dei punti di X tramite F sono relativamente compatte in X; oppure,
- esiste un unico punto di $\partial_Y X$ tale che la successione delle iterate di F converge, uniformemente sui compatti, a quel punto.

Definizione

Un dominio limitato $\Omega \subseteq \mathbb{C}^n$, con $n \geq 2$, è detto dominio Caltrop se esiste un insieme finito di punti $\{q_1, \ldots, q_N\} \subseteq \partial \Omega$ tale che:

Definizione

Un dominio limitato $\Omega \subseteq \mathbb{C}^n$, con $n \geq 2$, è detto dominio Caltrop se esiste un insieme finito di punti $\{q_1, \ldots, q_N\} \subseteq \partial \Omega$ tale che:

• il sottoinsieme del bordo $\partial\Omega\setminus\{q_1,\ldots,q_N\}$ è C^2 e Ω è strettamente pseudoconvesso in ogni punto di tale insieme;

Definizione

Un dominio limitato $\Omega \subseteq \mathbb{C}^n$, con $n \geq 2$, è detto dominio Caltrop se esiste un insieme finito di punti $\{q_1, \ldots, q_N\} \subseteq \partial \Omega$ tale che:

- il sottoinsieme del bordo $\partial\Omega\setminus\{q_1,\ldots,q_N\}$ è C^2 e Ω è strettamente pseudoconvesso in ogni punto di tale insieme;
- per ogni $j=1,\ldots,N$ esistono un intorno aperto e connesso $V_j\ni q_j$, due costanti $p_j\in (1,3/2)$ e $C_j>1$, una trasformazione unitaria $\mathbb{U}^{(j)}$ e una funzione continua $\psi_j:[0,A_j]\longrightarrow [0,+\infty)$, con $A_j>0$, tali che $\mathbb{U}_j(\Omega\cap V_j)$ è un "solido di rivoluzione":

Definizione

$$\mathbb{U}_{j}(\Omega \cap V_{j}) = \left\{ (z_{1}, \dots, z_{n}) \in \mathbb{C}^{n} \mid \mathfrak{Re}z_{n} \in (0, A_{j}), \right.$$
$$(\mathfrak{Im}z_{n})^{2} + \sum_{j=1}^{n-1} |z_{j}|^{2} < \psi_{j}(\mathfrak{Re}z_{n})^{2} \right\}$$

dove $\mathbb{U}_i(z) = \mathbb{U}^{(j)}(z - q_i)$ per ogni $z \in \mathbb{C}^n$.

Definizione

$$\mathbb{U}_{j}(\Omega \cap V_{j}) = \left\{ (z_{1}, \dots, z_{n}) \in \mathbb{C}^{n} \mid \mathfrak{Re}z_{n} \in (0, A_{j}), \right.$$
$$(\mathfrak{Im}z_{n})^{2} + \sum_{j=1}^{n-1} |z_{j}|^{2} < \psi_{j}(\mathfrak{Re}z_{n})^{2} \right\}$$

dove $\mathbb{U}_i(z) = \mathbb{U}^{(j)}(z - q_i)$ per ogni $z \in \mathbb{C}^n$. Inoltre, ψ_j ha le seguenti proprietà:

Definizione

$$\mathbb{U}_{j}(\Omega \cap V_{j}) = \left\{ (z_{1}, \dots, z_{n}) \in \mathbb{C}^{n} \mid \mathfrak{Re}z_{n} \in (0, A_{j}), \right.$$
$$(\mathfrak{Im}z_{n})^{2} + \sum_{j=1}^{n-1} |z_{j}|^{2} < \psi_{j}(\mathfrak{Re}z_{n})^{2} \right\}$$

dove $\mathbb{U}_i(z) = \mathbb{U}^{(j)}(z - q_i)$ per ogni $z \in \mathbb{C}^n$. Inoltre, ψ_j ha le seguenti proprietà:

• è di classe C^2 su $(0, A_i)$;

Definizione

$$\mathbb{U}_{j}(\Omega \cap V_{j}) = \left\{ (z_{1}, \dots, z_{n}) \in \mathbb{C}^{n} \mid \mathfrak{Re}z_{n} \in (0, A_{j}), \right.$$
$$(\mathfrak{Im}z_{n})^{2} + \sum_{j=1}^{n-1} |z_{j}|^{2} < \psi_{j}(\mathfrak{Re}z_{n})^{2} \right\}$$

dove $\mathbb{U}_j(z) = \mathbb{U}^{(j)}(z-q_j)$ per ogni $z \in \mathbb{C}^n$. Inoltre, ψ_j ha le seguenti proprietà:

- è di classe C^2 su $(0, A_j)$;
- per ogni $x \in [0, A_j]$ si ha $(1/C_j)x^{p_j} \le \psi_j(x) \le C_j x^{p_j}$;

Definizione

$$\mathbb{U}_{j}(\Omega \cap V_{j}) = \left\{ (z_{1}, \dots, z_{n}) \in \mathbb{C}^{n} \mid \mathfrak{Re}z_{n} \in (0, A_{j}), \right.$$
$$(\mathfrak{Im}z_{n})^{2} + \sum_{j=1}^{n-1} |z_{j}|^{2} < \psi_{j}(\mathfrak{Re}z_{n})^{2} \right\}$$

dove $\mathbb{U}_j(z) = \mathbb{U}^{(j)}(z-q_j)$ per ogni $z \in \mathbb{C}^n$. Inoltre, ψ_j ha le seguenti proprietà:

- è di classe C^2 su $(0, A_j)$;
- per ogni $x \in [0, A_j]$ si ha $(1/C_j)x^{p_j} \le \psi_j(x) \le C_j x^{p_j}$;
- \bullet si ha che ψ_j è strettamente crescente e ψ_j' è crescente su $(0,A_j);$

Definizione

$$\mathbb{U}_{j}(\Omega \cap V_{j}) = \left\{ (z_{1}, \dots, z_{n}) \in \mathbb{C}^{n} \mid \mathfrak{Re}z_{n} \in (0, A_{j}), \right.$$
$$(\mathfrak{Im}z_{n})^{2} + \sum_{j=1}^{n-1} |z_{j}|^{2} < \psi_{j}(\mathfrak{Re}z_{n})^{2} \right\}$$

dove $\mathbb{U}_j(z)=\mathbb{U}^{(j)}(z-q_j)$ per ogni $z\in\mathbb{C}^n$. Inoltre, ψ_j ha le seguenti proprietà:

- è di classe C^2 su $(0, A_j)$;
- per ogni $x \in [0, A_j]$ si ha $(1/C_j)x^{p_j} \le \psi_j(x) \le C_j x^{p_j}$;
- si ha che ψ_j è strettamente crescente e ψ_j' è crescente su $(0, A_j)$;
- si ha $\lim_{x \to 0^+} \psi_j(x) \psi_j''(x) = 0.$

Figura: proiezione a $\Im mz=0$ del bordo della punta in \mathbb{C}^2 con coordinate (z,w) corrispondente a $\psi(x)=x^{5/4}$

Siano $A, \beta > 0$ e sia $\psi : [-A, \beta] \longrightarrow [0, +\infty)$ una funzione continua di classe C^2 su $(-A, \beta)$ tale che:

Siano $A, \beta > 0$ e sia $\psi : [-A, \beta] \longrightarrow [0, +\infty)$ una funzione continua di classe C^2 su $(-A, \beta)$ tale che:

1. per ogni $t \in (-A, -B)$ si ha $\psi(t) = (t + A)^p$;

Siano $A, \beta > 0$ e sia $\psi : [-A, \beta] \longrightarrow [0, +\infty)$ una funzione continua di classe C^2 su $(-A, \beta)$ tale che:

- 1. per ogni $t \in (-A, -B)$ si ha $\psi(t) = (t + A)^p$;
- 2. per ogni $t \in (0, \beta)$ si ha $\psi(t) = \sqrt{\beta^2 t^2}$,

Siano $A, \beta > 0$ e sia $\psi : [-A, \beta] \longrightarrow [0, +\infty)$ una funzione continua di classe C^2 su $(-A, \beta)$ tale che:

- 1. per ogni $t \in (-A, -B)$ si ha $\psi(t) = (t + A)^p$;
- 2. per ogni $t\in(0,\beta)$ si ha $\psi(t)=\sqrt{\beta^2-t^2},$

dove $B \in (0, A)$ e $p \in (1, 3/2)$. Il dominio cercato è

$$\Omega:=\{(z,w)\in\mathbb{C}^2\mid |z|^2+|\Im\mathfrak{m} w|^2< C\psi(\Re\mathfrak{e} w)^2, -A<\Re\mathfrak{e} w<\beta\},$$

dove C > 0 è una costante opportunamente scelta.

Siano $A, \beta > 0$ e sia $\psi : [-A, \beta] \longrightarrow [0, +\infty)$ una funzione continua di classe C^2 su $(-A, \beta)$ tale che:

- 1. per ogni $t \in (-A, -B)$ si ha $\psi(t) = (t + A)^p$;
- 2. per ogni $t \in (0, \beta)$ si ha $\psi(t) = \sqrt{\beta^2 t^2}$,

dove $B \in (0, A)$ e $p \in (1, 3/2)$. Il dominio cercato è

$$\Omega:=\{(z,w)\in\mathbb{C}^2\mid |z|^2+|\Im\mathfrak{m} w|^2< C\psi(\Re\mathfrak{e} w)^2, -A<\Re\mathfrak{e} w<\beta\},$$

dove C>0 è una costante opportunamente scelta.

Le verifiche necessarie seguono da come è definita ψ ;

Siano $A, \beta > 0$ e sia $\psi : [-A, \beta] \longrightarrow [0, +\infty)$ una funzione continua di classe C^2 su $(-A, \beta)$ tale che:

- 1. per ogni $t \in (-A, -B)$ si ha $\psi(t) = (t + A)^p$;
- 2. per ogni $t\in(0,\beta)$ si ha $\psi(t)=\sqrt{\beta^2-t^2},$

dove $B \in (0, A)$ e $p \in (1, 3/2)$. Il dominio cercato è

$$\Omega:=\{(z,w)\in\mathbb{C}^2\mid |z|^2+|\Im\mathfrak{m} w|^2< C\psi(\Re\mathfrak{e} w)^2, -A<\Re\mathfrak{e} w<\beta\},$$

dove C > 0 è una costante opportunamente scelta. Le verifiche necessarie seguono da come è definita ψ ; per la pseudoconvessità, la funzione di definizione è

$$\rho(z, w) := |z|^2 + |\Im \mathfrak{m} w|^2 - C\psi (\Re \mathfrak{e} w)^2.$$

Sia Ω un dominio limitato di \mathbb{C}^n . Poniamo

$$M_{\Omega}(r) := \sup \left\{ \frac{1}{K_{\Omega}(x; v)} \mid x \in \Omega, \delta_{\Omega}(x) \le r, ||v|| = 1 \right\},\,$$

dove δ_{Ω} indica la distanza euclidea da $\partial\Omega$.

Sia Ω un dominio limitato di \mathbb{C}^n . Poniamo

$$M_{\Omega}(r) := \sup \left\{ \frac{1}{K_{\Omega}(x; v)} \mid x \in \Omega, \delta_{\Omega}(x) \le r, ||v|| = 1 \right\},\,$$

dove δ_{Ω} indica la distanza euclidea da $\partial\Omega$.

Teorema (Bharali, Maitra, 2021)

Sia Ω un dominio limitato di \mathbb{C}^n .

Sia Ω un dominio limitato di \mathbb{C}^n . Poniamo

$$M_{\Omega}(r) := \sup \left\{ \frac{1}{K_{\Omega}(x; v)} \mid x \in \Omega, \delta_{\Omega}(x) \le r, ||v|| = 1 \right\},\,$$

dove δ_{Ω} indica la distanza euclidea da $\partial\Omega$.

Teorema (Bharali, Maitra, 2021)

Sia Ω un dominio limitato di \mathbb{C}^n . Supponiamo che esistano uno $z_0 \in \Omega$ e una funzione C^1 strettamente crescente $f:(0,+\infty)\longrightarrow \mathbb{R}$, con $f(t) \longrightarrow +\infty \ per \ t \longrightarrow +\infty, \ tali \ che$:

Sia Ω un dominio limitato di \mathbb{C}^n . Poniamo

$$M_{\Omega}(r) := \sup \left\{ \frac{1}{K_{\Omega}(x; v)} \mid x \in \Omega, \delta_{\Omega}(x) \le r, ||v|| = 1 \right\},\,$$

dove δ_{Ω} indica la distanza euclidea da $\partial\Omega$.

Teorema (Bharali, Maitra, 2021)

Sia Ω un dominio limitato di \mathbb{C}^n . Supponiamo che esistano uno $z_0 \in \Omega$ e una funzione C^1 strettamente crescente $f:(0,+\infty)\longrightarrow \mathbb{R}$, con $f(t) \longrightarrow +\infty \ per \ t \longrightarrow +\infty, \ tali \ che$:

1. $si\ ha\ k_{\Omega}(z_0,z) \leq f(1/\delta_{\Omega}(z))\ per\ ogni\ z \in \Omega;$

Sia Ω un dominio limitato di \mathbb{C}^n . Poniamo

$$M_{\Omega}(r) := \sup \left\{ \frac{1}{K_{\Omega}(x; v)} \mid x \in \Omega, \delta_{\Omega}(x) \le r, ||v|| = 1 \right\},\,$$

dove δ_{Ω} indica la distanza euclidea da $\partial\Omega$.

Teorema (Bharali, Maitra, 2021)

Sia Ω un dominio limitato di \mathbb{C}^n . Supponiamo che esistano uno $z_0 \in \Omega$ e una funzione C^1 strettamente crescente $f:(0,+\infty)\longrightarrow \mathbb{R}$, con $f(t) \longrightarrow +\infty \ per \ t \longrightarrow +\infty, \ tali \ che$:

- 1. $si\ ha\ k_{\Omega}(z_0,z) \leq f(1/\delta_{\Omega}(z))\ per\ ogni\ z \in \Omega;$
- 2. $si\ ha\ M_{\Omega}(r) \longrightarrow 0\ per\ r \longrightarrow 0$;

Sia Ω un dominio limitato di \mathbb{C}^n . Poniamo

$$M_{\Omega}(r) := \sup \left\{ \frac{1}{K_{\Omega}(x;v)} \mid x \in \Omega, \delta_{\Omega}(x) \le r, ||v|| = 1 \right\},$$

dove δ_{Ω} indica la distanza euclidea da $\partial\Omega$.

Teorema (Bharali, Maitra, 2021)

Sia Ω un dominio limitato di \mathbb{C}^n . Supponiamo che esistano uno $z_0 \in \Omega$ e una funzione C^1 strettamente crescente $f:(0,+\infty)\longrightarrow \mathbb{R}$, con $f(t) \longrightarrow +\infty \ per \ t \longrightarrow +\infty, \ tali \ che$:

- 1. $si\ ha\ k_{\Omega}(z_0,z) \leq f(1/\delta_{\Omega}(z))\ per\ ogni\ z \in \Omega;$
- 2. $si\ ha\ M_{\Omega}(r) \longrightarrow 0\ per\ r \longrightarrow 0;$
- 3. esiste $r_0 > 0$ tale che $\int_0^{r_0} \frac{M_{\Omega}(r)}{r^2} f'\left(\frac{1}{r}\right) dr < +\infty$.

I domini Caltrops sono $(\lambda, \overline{\kappa})$ -visibili

Sia Ω un dominio limitato di \mathbb{C}^n . Poniamo

$$M_{\Omega}(r) := \sup \left\{ \frac{1}{K_{\Omega}(x; v)} \mid x \in \Omega, \delta_{\Omega}(x) \le r, ||v|| = 1 \right\},\,$$

dove δ_{Ω} indica la distanza euclidea da $\partial\Omega$.

Teorema (Bharali, Maitra, 2021)

Sia Ω un dominio limitato di \mathbb{C}^n . Supponiamo che esistano uno $z_0 \in \Omega$ e una funzione C^1 strettamente crescente $f:(0,+\infty)\longrightarrow \mathbb{R}$, con $f(t) \longrightarrow +\infty \ per \ t \longrightarrow +\infty, \ tali \ che$:

- 1. $si\ ha\ k_{\Omega}(z_0,z) \leq f(1/\delta_{\Omega}(z))\ per\ ogni\ z \in \Omega;$
- 2. $si\ ha\ M_{\Omega}(r) \longrightarrow 0\ per\ r \longrightarrow 0$;
- 3. esiste $r_0 > 0$ tale che $\int_0^{r_0} \frac{M_{\Omega}(r)}{r^2} f'\left(\frac{1}{r}\right) dr < +\infty$.

Allora $\Omega \ \dot{e} \ (\lambda, \kappa)$ -visibile per ogni $\lambda \geq 1 \ e \ \kappa > 0$.

Proposizione

I domini Caltrops sono (λ, κ) -visibili per ogni $\lambda \geq 1$ e $\kappa > 0$.

Proposizione

I domini Caltrops sono (λ, κ) -visibili per ogni $\lambda \geq 1$ e $\kappa > 0$.

Idea della dimostrazione: si usa il teorema di Bharali e Maitra. Per vedere che un dominio Caltrop Ω ne soddisfa le ipotesi:

Proposizione

I domini Caltrops sono (λ, κ) -visibili per ogni $\lambda \geq 1$ e $\kappa > 0$.

Idea della dimostrazione: si usa il teorema di Bharali e Maitra. Per vedere che un dominio Caltrop Ω ne soddisfa le ipotesi: si calcola k_D per un certo dominio planare D usato come modello;

Proposizione

I domini Caltrops sono (λ, κ) -visibili per ogni $\lambda \geq 1$ e $\kappa > 0$.

Idea della dimostrazione: si usa il teorema di Bharali e Maitra. Per vedere che un dominio Caltrop Ω ne soddisfa le ipotesi: si calcola k_D per un certo dominio planare D usato come modello; dopodiché si immergono copie di D in Ω in maniera affine, di modo che ogni punto di Ω sufficientemente vicino al bordo sia contenuto in una di queste copie;

Proposizione

I domini Caltrops sono (λ, κ) -visibili per ogni $\lambda \geq 1$ e $\kappa > 0$.

Idea della dimostrazione: si usa il teorema di Bharali e Maitra. Per vedere che un dominio Caltrop Ω ne soddisfa le ipotesi: si calcola k_D per un certo dominio planare D usato come modello; dopodiché si immergono copie di D in Ω in maniera affine, di modo che ogni punto di Ω sufficientemente vicino al bordo sia contenuto in una di queste copie; a questo punto, si usa il fatto che le funzioni olomorfe sono contrazioni per k_X per stimare la distanza di Kobayashi su Ω .

Lemma

Ogni varietà X Kobayashi-iperbolica e k_X -completa è taut.

Lemma

Ogni varietà X Kobayashi-iperbolica e k_X -completa è taut.

Lemma

Sia $\Omega \subseteq \mathbb{C}^n$ un dominio limitato tale che esiste uno $z_0 \in \Omega$ tale che per ogni $\xi \in \partial \Omega$ si ha $\lim_{w \longrightarrow \xi} k_{\Omega}(z_0, w) = +\infty$; allora (Ω, k_{Ω}) è completo.

Lemma

Ogni varietà X Kobayashi-iperbolica e kx-completa è taut.

$_{ m Lemma}$

Sia $\Omega \subseteq \mathbb{C}^n$ un dominio limitato tale che esiste uno $z_0 \in \Omega$ tale che per ogni $\xi \in \partial \Omega$ si ha $\lim_{w \to \xi} k_{\Omega}(z_0, w) = +\infty$; allora (Ω, k_{Ω}) è completo.

Proposizione

I domini Caltrops sono taut.

Lemma

Ogni varietà X Kobayashi-iperbolica e k_X -completa è taut.

Lemma

Sia $\Omega \subseteq \mathbb{C}^n$ un dominio limitato tale che esiste uno $z_0 \in \Omega$ tale che per ogni $\xi \in \partial \Omega$ si ha $\lim_{w \longrightarrow \xi} k_{\Omega}(z_0, w) = +\infty$; allora (Ω, k_{Ω}) è completo.

Proposizione

I domini Caltrops sono taut.

Idea della dimostrazione: Si usano i Lemmi. Si distinguono due casi.

Lemma

Ogni varietà X Kobayashi-iperbolica e k_X -completa è taut.

Lemma

Sia $\Omega \subseteq \mathbb{C}^n$ un dominio limitato tale che esiste uno $z_0 \in \Omega$ tale che per ogni $\xi \in \partial \Omega$ si ha $\lim_{w \longrightarrow \xi} k_{\Omega}(z_0, w) = +\infty$; allora (Ω, k_{Ω}) è completo.

Proposizione

I domini Caltrops sono taut.

Idea della dimostrazione: Si usano i Lemmi. Si distinguono due casi.

 $\xi \in \partial \Omega \setminus \{q_1, \dots, q_N\}$: si usa la pseudoconvessità;

Lemma

Ogni varietà X Kobayashi-iperbolica e kx-completa è taut.

$_{ m Lemma}$

Sia $\Omega \subset \mathbb{C}^n$ un dominio limitato tale che esiste uno $z_0 \in \Omega$ tale che per ogni $\xi \in \partial \Omega$ si ha $\lim_{w \to \xi} k_{\Omega}(z_0, w) = +\infty$; allora (Ω, k_{Ω}) è completo.

Proposizione

I domini Caltrops sono taut.

Idea della dimostrazione: Si usano i Lemmi. Si distinguono due casi.

 $\xi \in \partial \Omega \setminus \{q_1, \dots, q_N\}$: si usa la pseudoconvessità;

 $\xi = q_i$ per $j = 1, \dots, N$: si usa la forma di Ω vicino a q_i .

Strada per la dimostrazione del teorema di tipo "Wolff-Denjoy"

1. dall'ipotesi che la varietà sia taut, per un teorema di Abate segue che se le orbite non sono relativamente compatte allora la successione delle iterate è compattamente divergente;

Strada per la dimostrazione del teorema di tipo "Wolff-Denjoy"

- 1. dall'ipotesi che la varietà sia taut, per un teorema di Abate segue che se le orbite non sono relativamente compatte allora la successione delle iterate è compattamente divergente;
- 2. dalle ipotesi di visibilità e di relativa compattezza segue, a meno di sottosuccessioni, la convergenza uniforme sui compatti a una costante nel bordo della varietà;

Strada per la dimostrazione del teorema di tipo "Wolff-Denjoy"

- 1. dall'ipotesi che la varietà sia taut, per un teorema di Abate segue che se le orbite non sono relativamente compatte allora la successione delle iterate è compattamente divergente;
- 2. dalle ipotesi di visibilità e di relativa compattezza segue, a meno di sottosuccessioni, la convergenza uniforme sui compatti a una costante nel bordo della varietà;
- 3. sempre per la condizione di visibilità, tale limite è lo stesso per ogni sottosuccessione, dunque dev'essere il limite di tutta la successione.

Teorema (Abate, 1991)

Sia X una varietà taut e consideriamo $f \in \text{Hol}(X, X)$. Le seguenti affermazioni sono equivalenti:

Teorema (Abate, 1991)

Sia X una varietà taut e consideriamo $f \in \text{Hol}(X, X)$. Le seguenti affermazioni sono equivalenti:

1. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f non è compattamente divergente;

Teorema (Abate, 1991)

Sia X una varietà taut e consideriamo $f \in \text{Hol}(X, X)$. Le seguenti affermazioni sono equivalenti:

- 1. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f non è compattamente divergente;
- 2. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f non contiene alcuna sottosuccessione compattamente divergente;

Teorema (Abate, 1991)

Sia X una varietà taut e consideriamo $f \in \text{Hol}(X,X)$. Le seguenti affermazioni sono equivalenti:

- 1. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f non è compattamente divergente;
- 2. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f non contiene alcuna sottosuccessione compattamente divergente;
- 3. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f è relativamente compatta in $\operatorname{Hol}(X,X)$;

Teorema (Abate, 1991)

Sia X una varietà taut e consideriamo $f \in \text{Hol}(X,X)$. Le seguenti affermazioni sono equivalenti:

- 1. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f non è compattamente divergente;
- 2. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f non contiene alcuna sottosuccessione compattamente divergente;
- 3. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f è relativamente compatta in $\operatorname{Hol}(X,X)$;
- 4. l'orbita di z è relativamente compatta in X per ogni $z \in X$;

Teorema (Abate, 1991)

Sia X una varietà taut e consideriamo $f \in \text{Hol}(X, X)$. Le seguenti affermazioni sono equivalenti:

- 1. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f non è compattamente divergente;
- 2. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f non contiene alcuna sottosuccessione compattamente divergente;
- 3. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f è relativamente compatta in $\operatorname{Hol}(X,X)$;
- 4. l'orbita di z è relativamente compatta in X per ogni $z \in X$;
- 5. esiste $z_0 \in X$ la cui orbita è relativamente compatta in X.

Esempio

La palla unitaria in \mathbb{C}^2 meno l'origine è Kobayashi-iperbolica e (λ, κ) -visibile per ogni $\lambda \geq 1$ e $\kappa \geq 0$, ma non è taut.

Esempio

La palla unitaria in \mathbb{C}^2 meno l'origine è Kobayashi-iperbolica e (λ, κ) -visibile per ogni $\lambda \geq 1$ e $\kappa \geq 0$, ma non è taut. La funzione $f(z, w) = (z/2, e^{i\theta}w)$ è un controesempio al teorema di Abate.

Esempio

La palla unitaria in \mathbb{C}^2 meno l'origine è Kobayashi-iperbolica e (λ, κ) -visibile per ogni $\lambda \geq 1$ e $\kappa \geq 0$, ma non è taut. La funzione $f(z, w) = (z/2, e^{i\theta}w)$ è un controesempio al teorema di Abate. Dunque, è anche un controesempio al teorema di tipo "Wolff-Denjoy".

Lemma 1

Sia~X~una~sottovarietà~complessa,~connessa~e~relativamente~compatta~di~una~varietà~complessa~Y~.

Lemma 1

Sia X una sottovarietà complessa, connessa e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1,\kappa_0)$ -visibile.

Lemma 1

Sia X una sottovarietà complessa, connessa e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Siano Z una varietà Kobayashi-iperbolica e $\{f_n\}_{n\in\mathbb{N}}\subseteq \operatorname{Hol}(Z,X)$ una successione compattamente divergente.

Lemma 1

Sia X una sottovarietà complessa, connessa e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Siano Z una varietà Kobayashi-iperbolica e $\{f_n\}_{n\in\mathbb{N}}\subseteq \operatorname{Hol}(Z,X)$ una successione compattamente divergente. Allora esistono $\xi\in\partial_YX$ e una sottosuccessione $\{f_{n_j}\}_{j\in\mathbb{N}}$ tali che $f_{n_j}(z)\longrightarrow \xi$ per ogni $z\in Z$.

Lemma 1

Sia X una sottovarietà complessa, connessa e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Siano Z una varietà Kobayashi-iperbolica e $\{f_n\}_{n\in\mathbb{N}}\subseteq \operatorname{Hol}(Z,X)$ una successione compattamente divergente. Allora esistono $\xi\in\partial_YX$ e una sottosuccessione $\{f_{n_j}\}_{j\in\mathbb{N}}$ tali che $f_{n_j}(z)\longrightarrow \xi$ per ogni $z\in Z$.

Traccia della dimostrazione: per assurdo, troviamo (a meno di sottosuccessioni) $z_0, z_1 \in Z$ con $k_Z(z_0, z_1) < \kappa_0/2$ e $f_n(z_0) \longrightarrow \xi_0, f_n(z_1) \longrightarrow \xi_1$, dove $\xi_0, \xi_1 \in \partial_Y X$ e $\xi_0 \neq \xi_1$.

Lemma 1

Sia X una sottovarietà complessa, connessa e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Siano Z una varietà Kobayashi-iperbolica e $\{f_n\}_{n\in\mathbb{N}}\subseteq \operatorname{Hol}(Z,X)$ una successione compattamente divergente. Allora esistono $\xi\in\partial_YX$ e una sottosuccessione $\{f_{n_j}\}_{j\in\mathbb{N}}$ tali che $f_{n_j}(z)\longrightarrow \xi$ per ogni $z\in Z$.

Traccia della dimostrazione: per assurdo, troviamo (a meno di sottosuccessioni) $z_0, z_1 \in Z$ con $k_Z(z_0, z_1) < \kappa_0/2$ e $f_n(z_0) \longrightarrow \xi_0, f_n(z_1) \longrightarrow \xi_1$, dove $\xi_0, \xi_1 \in \partial_Y X$ e $\xi_0 \neq \xi_1$. Le varietà Kobayashi-iperboliche sono connesse da $(1, \kappa)$ -simil-geodetiche per $\kappa > 0$, quindi prendiamone una $\sigma: [0, T] \longrightarrow Z$ per $\kappa = \kappa_0/2$ con $\sigma(0) = z_0, \sigma(T) = z_1$.

Lemma 1

Sia X una sottovarietà complessa, connessa e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Siano Z una varietà Kobayashi-iperbolica e $\{f_n\}_{n\in\mathbb{N}}\subseteq \operatorname{Hol}(Z,X)$ una successione compattamente divergente. Allora esistono $\xi\in\partial_YX$ e una sottosuccessione $\{f_{n_j}\}_{j\in\mathbb{N}}$ tali che $f_{n_j}(z)\longrightarrow \xi$ per ogni $z\in Z$.

Traccia della dimostrazione: Si verifica che le curve $f_n \circ \sigma$ sono $(1, \kappa_0)$ -simil-geodetiche.

Lemma 1

Sia X una sottovarietà complessa, connessa e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Siano Z una varietà Kobayashi-iperbolica e $\{f_n\}_{n\in\mathbb{N}}\subseteq \operatorname{Hol}(Z,X)$ una successione compattamente divergente. Allora esistono $\xi\in\partial_YX$ e una sottosuccessione $\{f_{n_j}\}_{j\in\mathbb{N}}$ tali che $f_{n_j}(z)\longrightarrow \xi$ per ogni $z\in Z$.

Traccia della dimostrazione: Si verifica che le curve $f_n \circ \sigma$ sono $(1, \kappa_0)$ -simil-geodetiche. Per visibilità, esiste un compatto K tale che

$$\varnothing \neq K \cap f_n(\sigma([0,T]))$$

per ogni n, ma $\sigma([0,T])$ è compatto e $\{f_n\}_{n\in\mathbb{N}}$ è compattamente divergente, contraddizione.

Lemma 2

Sia~X~una~sottovarietà~Kobayashi-iperbolica~e~relativamente~compatta~di~una~varietà~complessa~Y~.

Lemma 2

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Lemma 2

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente. Allora esiste $\xi \in \partial_Y X$ tale che per ogni funzione $\mu : \mathbb{N} \longrightarrow \mathbb{N}$ strettamente crescente per cui esiste $y_0 \in X$ tale che

$$\lim_{j \longrightarrow +\infty} k_X \left(F^{\mu(j)}(y_0), y_0 \right) = +\infty$$

Lemma 2

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente. Allora esiste $\xi \in \partial_Y X$ tale che per ogni funzione $\mu : \mathbb{N} \longrightarrow \mathbb{N}$ strettamente crescente per cui esiste $y_0 \in X$ tale che

$$\lim_{j \to +\infty} k_X \left(F^{\mu(j)}(y_0), y_0 \right) = +\infty$$

si ha

$$\lim_{j \to +\infty} F^{\mu(j)}(z) = \xi$$

per ogni $z \in X$.

Idea della dimostrazione: si costruisce $\nu: \mathbb{N} \longrightarrow \mathbb{N}$ strettamente crescente tale che:

Idea della dimostrazione: si costruisce $\nu: \mathbb{N} \longrightarrow \mathbb{N}$ strettamente crescente tale che:

• si ha $k_X(F^{\nu(j)}(x_0), x_0) \ge k_X(F^k(x_0), x_0)$ per ogni $j \in \mathbb{N}$ e per ogni $k \le \nu(j)$;

Idea della dimostrazione: si costruisce $\nu: \mathbb{N} \longrightarrow \mathbb{N}$ strettamente crescente tale che:

- si ha $k_X(F^{\nu(j)}(x_0), x_0) \ge k_X(F^k(x_0), x_0)$ per ogni $j \in \mathbb{N}$ e per ogni $k \le \nu(j)$;
- si ha $\lim_{j \to +\infty} k_X (F^{\nu(j)}(x_0), x_0) = +\infty;$

Idea della dimostrazione: si costruisce $\nu: \mathbb{N} \longrightarrow \mathbb{N}$ strettamente crescente tale che:

- si ha $k_X(F^{\nu(j)}(x_0), x_0) \ge k_X(F^k(x_0), x_0)$ per ogni $j \in \mathbb{N}$ e per ogni $k \le \nu(j)$;
- si ha $\lim_{j \to +\infty} k_X(F^{\nu(j)}(x_0), x_0) = +\infty;$
- la successione $\{F^{\nu(j)}(x_0)\}_{j\in\mathbb{N}}$ converge a un certo $\xi\in\partial_YX$.

Idea della dimostrazione: si costruisce $\nu: \mathbb{N} \longrightarrow \mathbb{N}$ strettamente crescente tale che:

- si ha $k_X(F^{\nu(j)}(x_0), x_0) \ge k_X(F^k(x_0), x_0)$ per ogni $j \in \mathbb{N}$ e per ogni $k \le \nu(j)$;
- si ha $\lim_{j \to +\infty} k_X(F^{\nu(j)}(x_0), x_0) = +\infty;$
- la successione $\{F^{\nu(j)}(x_0)\}_{j\in\mathbb{N}}$ converge a un certo $\xi\in\partial_YX$.

Si scelgono $\tau, \tau' : \mathbb{N} \longrightarrow \mathbb{N}$ strettamente crescenti tali che $F^{(\mu \circ \tau)(j)}(z) \longrightarrow \xi' \in \partial_Y X$ e $\nu \circ \tau' \ge \mu \circ \tau$.

Idea della dimostrazione: si costruisce $\nu: \mathbb{N} \longrightarrow \mathbb{N}$ strettamente crescente tale che:

- si ha $k_X(F^{\nu(j)}(x_0), x_0) \ge k_X(F^k(x_0), x_0)$ per ogni $j \in \mathbb{N}$ e per ogni $k \le \nu(j)$;
- si ha $\lim_{j \to +\infty} k_X(F^{\nu(j)}(x_0), x_0) = +\infty;$
- la successione $\{F^{\nu(j)}(x_0)\}_{j\in\mathbb{N}}$ converge a un certo $\xi\in\partial_YX$.

Si scelgono $\tau, \tau' : \mathbb{N} \longrightarrow \mathbb{N}$ strettamente crescenti tali che $F^{(\mu \circ \tau)(j)}(z) \longrightarrow \xi' \in \partial_Y X$ e $\nu \circ \tau' \ge \mu \circ \tau$. Si applica il seguente fatto.

Idea della dimostrazione: siano $\{m_j\}_{j\in\mathbb{N}}$ e $\{m'_j\}_{j\in\mathbb{N}}$ due successioni strettamente crescenti di numeri naturali e $z_0, z'_0 \in X$ tali che:

1. per ogni $j \in \mathbb{N}$ si ha $m_j \geq m'_j$;

- 1. per ogni $j \in \mathbb{N}$ si ha $m_j \geq m'_j$;
- 2. per ogni $j \in \mathbb{N}$ e $k \leq m_j$ si ha $k_X(F^{m_j}(z_0), z_0) \geq k_X(F^k(z_0), z_0)$;

- 1. per ogni $j \in \mathbb{N}$ si ha $m_j \geq m'_j$;
- 2. per ogni $j \in \mathbb{N}$ e $k \leq m_j$ si ha $k_X(F^{m_j}(z_0), z_0) \geq k_X(F^k(z_0), z_0)$;
- 3. si ha $\lim_{j \to +\infty} k_X(F^{m_j}(z_0), z_0) = \lim_{j \to +\infty} k_X(F^{m'_j}(z'_0), z_0) = +\infty;$

- 1. per ogni $j \in \mathbb{N}$ si ha $m_j \geq m'_j$;
- 2. per ogni $j \in \mathbb{N}$ e $k \leq m_j$ si ha $k_X(F^{m_j}(z_0), z_0) \geq k_X(F^k(z_0), z_0)$;
- 3. si ha $\lim_{j \longrightarrow +\infty} k_X(F^{m_j}(z_0), z_0) = \lim_{j \longrightarrow +\infty} k_X(F^{m'_j}(z'_0), z_0) = +\infty;$
- 4. le successioni $\{F^{m_j}(z_0)\}_{j\in\mathbb{N}}$ e $\{F^{m'_j}(z'_0)\}_{j\in\mathbb{N}}$ convergono, rispettivamente, a ζ e ζ' in $\partial_Y X$;

- 1. per ogni $j \in \mathbb{N}$ si ha $m_j \geq m'_j$;
- 2. per ogni $j \in \mathbb{N}$ e $k \leq m_j$ si ha $k_X(F^{m_j}(z_0), z_0) \geq k_X(F^k(z_0), z_0)$;
- 3. si ha $\lim_{j \longrightarrow +\infty} k_X(F^{m_j}(z_0), z_0) = \lim_{j \longrightarrow +\infty} k_X(F^{m'_j}(z'_0), z_0) = +\infty;$
- 4. le successioni $\{F^{m_j}(z_0)\}_{j\in\mathbb{N}}$ e $\{F^{m'_j}(z'_0)\}_{j\in\mathbb{N}}$ convergono, rispettivamente, a ζ e ζ' in $\partial_Y X$; allora $\zeta = \zeta'$.

Lemma 3

Sia~X~una~sottovarietà~Kobayashi-iperbolica~e~relativamente~compatta~di~una~varietà~complessa~Y~.

Lemma 3

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Lemma 3

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Supponiamo che esistano un compatto $K \subseteq X$, una funzione strettamente crescente $\mu : \mathbb{N} \longrightarrow \mathbb{N}$ e $\xi \in \partial_Y X$ tali che la successione $\{F^{\mu(j)}\}_{j\in\mathbb{N}}$ converge alla costante ξ uniformemente su K.

Lemma 3

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Supponiamo che esistano un compatto $K \subseteq X$, una funzione strettamente crescente $\mu: \mathbb{N} \longrightarrow \mathbb{N}$ e $\xi \in \partial_Y X$ tali che la successione $\{F^{\mu(j)}\}_{j\in\mathbb{N}}$ converge alla costante ξ uniformemente su K. Allora la successione $\{F^{\mu(j)}\}_{j\in\mathbb{N}}$ converge alla costante ξ uniformemente sui compatti.

Lemma 3

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Supponiamo che esistano un compatto $K \subseteq X$, una funzione strettamente crescente $\mu : \mathbb{N} \longrightarrow \mathbb{N}$ e $\xi \in \partial_Y X$ tali che la successione $\{F^{\mu(j)}\}_{j\in\mathbb{N}}$ converge alla costante ξ uniformemente su K. Allora la successione $\{F^{\mu(j)}\}_{j\in\mathbb{N}}$ converge alla costante ξ uniformemente sui compatti.

Idea della dimostrazione: è un semplice assurdo. Si usano il Lemma 1, la compattezza e il seguente fatto:

Lemma 3

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Supponiamo che esistano un compatto $K \subseteq X$, una funzione strettamente crescente $\mu : \mathbb{N} \longrightarrow \mathbb{N}$ e $\xi \in \partial_Y X$ tali che la successione $\{F^{\mu(j)}\}_{j\in\mathbb{N}}$ converge alla costante ξ uniformemente su K. Allora la successione $\{F^{\mu(j)}\}_{j\in\mathbb{N}}$ converge alla costante ξ uniformemente sui compatti.

Idea della dimostrazione: è un semplice assurdo. Si usano il Lemma 1, la compattezza e il seguente fatto:

due successioni che convergono a due punti distinti del bordo non possono avere distanza di Kobayashi tendente a 0.

Lemma 4

Sia~X~una~sottovarietà~Kobayashi-iperbolica~e~relativamente~compatta~di~una~varietà~complessa~Y~.

Lemma 4

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Lemma 4

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Per ogni funzione strettamente crescente $\mu: \mathbb{N} \longrightarrow \mathbb{N}$ esistono $\xi \in \partial_Y X$ e una sottosuccessione $\{j_n\}_{n\in\mathbb{N}} \subseteq \mathbb{N}$ tali che la successione $\{F^{\mu(j_n)}\}_{n\in\mathbb{N}}$ converge alla costante ξ uniformemente sui compatti.

Lemma 4

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Per ogni funzione strettamente crescente $\mu: \mathbb{N} \longrightarrow \mathbb{N}$ esistono $\xi \in \partial_Y X$ e una sottosuccessione $\{j_n\}_{n\in\mathbb{N}} \subseteq \mathbb{N}$ tali che la successione $\{F^{\mu(j_n)}\}_{n\in\mathbb{N}}$ converge alla costante ξ uniformemente sui compatti.

Dimostrazione: Fissiamo $z_0 \in X$.

Lemma 4

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Per ogni funzione strettamente crescente $\mu: \mathbb{N} \longrightarrow \mathbb{N}$ esistono $\xi \in \partial_Y X$ e una sottosuccessione $\{j_n\}_{n\in\mathbb{N}} \subseteq \mathbb{N}$ tali che la successione $\{F^{\mu(j_n)}\}_{n\in\mathbb{N}}$ converge alla costante ξ uniformemente sui compatti.

Dimostrazione: Fissiamo $z_0 \in X$. Per la compattezza di \overline{X} e la divergenza dai compatti di $\{F^n\}_{n\in\mathbb{N}}$, esistono $\xi\in\partial_YX$ e una sottosuccessione $\{j_n\}_{n\in\mathbb{N}}\subseteq\mathbb{N}$ tali che $F^{\mu(j_n)}(z_0)\longrightarrow\xi$.

Lemma 4

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Per ogni funzione strettamente crescente $\mu: \mathbb{N} \longrightarrow \mathbb{N}$ esistono $\xi \in \partial_Y X$ e una sottosuccessione $\{j_n\}_{n\in\mathbb{N}} \subseteq \mathbb{N}$ tali che la successione $\{F^{\mu(j_n)}\}_{n\in\mathbb{N}}$ converge alla costante ξ uniformemente sui compatti.

Dimostrazione: Fissiamo $z_0 \in X$. Per la compattezza di \overline{X} e la divergenza dai compatti di $\{F^n\}_{n\in\mathbb{N}}$, esistono $\xi \in \partial_Y X$ e una sottosuccessione $\{j_n\}_{n\in\mathbb{N}} \subseteq \mathbb{N}$ tali che $F^{\mu(j_n)}(z_0) \longrightarrow \xi$. Allora la successione $\{F^{\mu(j_n)}\}_{n\in\mathbb{N}}$ converge alla costante ξ uniformemente sul compatto $\{z_0\}$.

Lemma 4

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Per ogni funzione strettamente crescente $\mu: \mathbb{N} \longrightarrow \mathbb{N}$ esistono $\xi \in \partial_Y X$ e una sottosuccessione $\{j_n\}_{n\in\mathbb{N}} \subseteq \mathbb{N}$ tali che la successione $\{F^{\mu(j_n)}\}_{n\in\mathbb{N}}$ converge alla costante ξ uniformemente sui compatti.

Dimostrazione: Fissiamo $z_0 \in X$. Per la compattezza di \overline{X} e la divergenza dai compatti di $\{F^n\}_{n\in\mathbb{N}}$, esistono $\xi\in\partial_YX$ e una sottosuccessione $\{j_n\}_{n\in\mathbb{N}}\subseteq\mathbb{N}$ tali che $F^{\mu(j_n)}(z_0)\longrightarrow \xi$. Allora la successione $\{F^{\mu(j_n)}\}_{n\in\mathbb{N}}$ converge alla costante ξ uniformemente sul compatto $\{z_0\}$. Si conclude applicando il Lemma 3.

Teorema,

Sia~X~una~sottovarietà~Kobayashi-iperbolica~e~relativamente~compatta~di~una~varietà~complessa~Y~.

Teorema

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Teorema

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Allora l'insieme delle funzioni limite di F è costituito da un'unica costante.

Teorema

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Allora l'insieme delle funzioni limite di F è costituito da un'unica costante.

Idea della dimostrazione: Siano per assurdo ξ, η due costanti che siano anche funzioni limite di F.

Teorema

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Allora l'insieme delle funzioni limite di F è costituito da un'unica costante.

Idea della dimostrazione: Siano per assurdo ξ, η due costanti che siano anche funzioni limite di F.

Caso 1: esiste (e quindi per ogni) $o \in X$ tale che

$$\lim_{\nu \to +\infty} \sup k_X (F^{\nu}(o), o) = +\infty.$$

Teorema

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \text{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Allora l'insieme delle funzioni limite di F è costituito da un'unica costante.

Idea della dimostrazione: Siano per assurdo ξ, η due costanti che siano anche funzioni limite di F.

Caso 1: esiste (e quindi per ogni) $o \in X$ tale che

$$\lim_{\nu \longrightarrow +\infty} \sup k_X (F^{\nu}(o), o) = +\infty.$$

Si usano i Lemmi precedenti, in particolare si usa più volte il Lemma 2, per ottenere una contraddizione.

Teorema

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Allora l'insieme delle funzioni limite di F è costituito da un'unica costante.

 $Idea\ della\ dimostrazione:$ caso 2: esiste (e quindi per ogni) $o\in X$ tale che

$$\lim_{\nu \to +\infty} \sup k_X \big(F^{\nu}(o), o \big) < +\infty.$$

Teorema

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Allora l'insieme delle funzioni limite di F è costituito da un'unica costante.

 $Idea\ della\ dimostrazione:$ caso 2: esiste (e quindi per ogni) $o\in X$ tale che

$$\lim_{\nu \to +\infty} \sup k_X \big(F^{\nu}(o), o \big) < +\infty.$$

Poniamo

$$G(x_1, x_2) := \lim_{\delta \to 0} \inf \left\{ k_X \left(F^m(x_1), x_2 \right) \mid m \in \mathbb{N}, d_Y \left(F^m(x_1), \xi \right) < \delta \right\}$$

Teorema

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Allora l'insieme delle funzioni limite di F è costituito da un'unica costante.

 $Idea\ della\ dimostrazione:$ caso 2: esiste (e quindi per ogni) $o\in X$ tale che

$$\lim_{\nu \to +\infty} \sup k_X \big(F^{\nu}(o), o \big) < +\infty.$$

Poniamo

$$G(x_1, x_2) := \lim_{\delta \longrightarrow 0} \inf \left\{ k_X \left(F^m(x_1), x_2 \right) \mid m \in \mathbb{N}, d_Y \left(F^m(x_1), \xi \right) < \delta \right\}$$

e, detto K il compatto dato dalla visibilità per ξ e η ,

Teorema

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Allora l'insieme delle funzioni limite di F è costituito da un'unica costante.

Idea della dimostrazione: $\varepsilon := \liminf_{z \longrightarrow \eta} \inf_{y \in K} k_X(z, y) > 0.$

Teorema

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Allora l'insieme delle funzioni limite di F è costituito da un'unica costante.

Idea della dimostrazione: $\varepsilon := \liminf_{z \longrightarrow \eta} \inf_{y \in K} k_X(z, y) > 0.$

Prendiamo $q_1, q_2 \in K$ tali che

$$G(q_1, q_2) < \inf_{x_1, x_2 \in K} G(x_1, x_2) + \varepsilon.$$

Teorema

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Allora l'insieme delle funzioni limite di F è costituito da un'unica costante.

Idea della dimostrazione: $\varepsilon := \liminf_{z \longrightarrow \eta} \inf_{y \in K} k_X(z, y) > 0.$

Prendiamo $q_1, q_2 \in K$ tali che

$$G(q_1, q_2) < \inf_{x_1, x_2 \in K} G(x_1, x_2) + \varepsilon.$$

Usando la visibilità e alcuni dei Lemmi precedenti, troviamo $x^* \in K$ tale che $G(q_1, q_2) \ge G(q_1, x^*) + \varepsilon$, contraddizione.

Fine

Grazie per l'attenzione!

Bibliografia principale

- M. Abate: Iteration theory, compactly divergent sequences and commuting holomorphic maps. Ann. Scuola Norm. Sup. Pisa Cl. Sci. Serie IV, 18 (1991), no. 2, 167–191
- G. Bharali, A. Maitra: A weak notion of visibility, a family of examples, and Wolff-Denjoy theorems. *Ann. Sc. Norm. Super. Pisa Cl. Sci. Serie V*, **22** (2021), no. 1, 195–240
- G. Bharali, A. Zimmer: Goldilocks domains, a weak notion of visibility, and applications. *Adv. Math.*, **310** (2017), 377–425
- G. Bharali, A. Zimmer: Unbounded visibility domains, the end compactification, and applications. Preprint, arXiv:2206.13869v1 (2022)
- V. S. Chandel, A. Maitra, A. D. Sarkar: Notions of Visibility with respect to the Kobayashi distance: Comparison and Applications. Preprint, arXiv:2111.00549v1 (2021)