11.6 习题

张志聪

2025年1月3日

11.6.1

证明框架参考了命题 11.5.3 的证明。

如果 I 是一个单点集或者空集,那么结论是平凡的。如果 I 是一个闭区间,那么根据命题 11.6.1 可以得到结论。于是我们假设 I 是形如 (a,b], (a,b) 或 [a,b) 的区间,其中 a < b。

设 M 是 f 的界,所以对所有的 $x \in I$ 均有 $-M \le f(x) \le M$ 。现在设 $0 < \epsilon < (b-a)/2$ 是一个很小的数。当 f 被限制在区间 $[a+\epsilon,b-\epsilon]$ 上时,它就是单调有界的,从而再次利用 11.6.1 可知,它是黎曼可积的。特别地,我们能够找到一个分段常数函数 $h:[a+\epsilon,b-\epsilon]$ 上从上方控制 f,并且有

$$\int_{[a+\epsilon,b-\epsilon]} h \le \int_{[a+\epsilon,b-\epsilon]} f + \epsilon$$

定义 $\tilde{h}: I \to \mathbb{R}$ 为

$$\widetilde{h}(x) = \begin{cases} h(x), x \in [a + \epsilon, b - \epsilon] \\ M, x \in I \setminus [a + \epsilon, b - \epsilon] \end{cases}$$

 \widetilde{h} 显然是 I 上从上方控制 f 的分段常数函数。根据定理 11.2.16 可知,

$$\int_{I} \widetilde{h} = \epsilon M + \int_{[a+\epsilon,b-\epsilon]} h + \epsilon M \le \int_{[a+\epsilon,b-\epsilon]} f + (2M+1)\epsilon$$

特别地

$$\overline{\int}_I f \le \int_{[a+\epsilon,b-\epsilon]} f + (2M+1)\epsilon$$

类似地,有

$$\underbrace{\int_{I} f} \geq \int_{[a+\epsilon,b-\epsilon]} f - (2M+1)\epsilon$$

从而

$$\overline{\int}_{I} f - \int_{I} f \le (4M + 2)\epsilon$$

综上由 ϵ 的任意性且 $\overline{\int}_I f - \underline{\int}_I f$ 与 ϵ 无关可得,f 是黎曼可积的。

11.6.2

(1) 分段单调函数的定义参考定义 11.5.4:

设 I 是有一个有界区间,并设 $f:I\to\mathbb{R}$ 。我们称 f 在 I 上是有界分段单调函数,当且仅当存在一个 I 的划分 P,使得对于所有的 $J\in P$, $f|_J$ 都是 J 上的单调有界函数。

(2) 由 (1) 可知存在一个 I 的划分 P,使得对于所有的 $J \in P$, $f|_J$ 都是 J 上的单调有界函数。于是对任意 $J \in P$,由推论 11.6.3 可知 $f|_J$ 在 J 上是黎曼可积的。剩余部分的证明与习题 11.5.1 类似,这里不做赘述。

11.6.3

注意这里无法假设 N 是正整数。

⇒

因为 $x \ge 0, f(x) \ge 0$,可知 $\int_{[0,N]} f$ 是关于实数 N 的单调递增函数,由定理 5.5.9(最小上界的存在性)可知只要证明其有上界,则最小上界存在且有限。

由推论 11.6.3 可知 $\int_{[0,N]} f$ 在 [0,N] 上是黎曼可积的。

由推论 5.4.12 和命题 4.4.1 可知,对实数 N 存在一个自然数 n 使得 $n \le N < n+1$,现在把 [0,N] 划分成 n+1 个半开区间

$$\{[0,1),[1,2),...,[n-1,n),[n,N]\}$$

由命题 11.3.12 可知

$$\overline{\int}_{[0,N]} f \le \sum_{j=0}^{n} \left(\sup_{x \in [j,j+1)} f(x) \right) + \sup_{x \in [n,N]} f(x)$$

$$\le \sum_{j=0}^{n+1} f(j)$$

以上最后一个等式由 $f:[0,+\infty)\to\mathbb{R}$ 是一个单调递增的函数保证的。 因为对任意的 $x\in[0,+\infty), f(x)\geq 0$,由定理 $11.4.1(\mathbf{d})$ 可知

$$\int_{[0,N]} f \ge 0$$

综上,对任意 N > 0 都有

$$0 \le \int_{[0,N]} f \le \overline{\int}_{[0,N]} f \le \sum_{j=0}^{n+1} f(j)$$

即

$$0 \le \int_{[0,N]} f \le \sum_{j=0}^{n+1} f(j)$$

不妨设 $\sum_{n=0}^{\infty} f(n)$ 收敛于 L,于是对任意 N 都有

$$0 \le \int_{[0,N]} f \le L$$

 $\int_{[0,N]} f$ 是有界的,于是命题成立。

• =

反证法,假设 $\sum\limits_{n=0}^{\infty}$ 是发散的。那么,对任意实数 M 都存在正整数 N 使得

$$\sum_{n=0}^{N} > M$$

现在把 [0,N] 划分成 N+1 个半开区间

$$\{[0,1),[1,2),...,[n-1,n),[n,N),\{N\}\}$$

由命题 11.3.12 可知

$$\underline{\int_{[0,N]}} f \ge \sum_{j=0}^{N} \left(\inf_{x \in [j,j+1)} f(x) \right)$$

$$\ge \sum_{j=1}^{N} f(j) = M - f(0)$$

因为 M 是任取的,而 f(0) 是固定值,于是可得 $\int_{[0,N]} f$ 是无限的,这 与题设矛盾。

11.6.4

(1) 函数 $f:[0,+\infty)\to\mathbb{R}$ 为

$$f(x) = \begin{cases} x, x \in \mathbb{N} \\ 0, x \notin \mathbb{N} \end{cases}$$

此时 $\sup_{N>0} \int_{[0,N]} f = 0$,而 $\sum_{n=0}^{\infty} f(n)$ 是发散的。 (2) 反过来定义刚才的函数

$$f(x) = \begin{cases} 0, x \in \mathbb{N} \\ x, x \notin \mathbb{N} \end{cases}$$

11.6.5

由引理 5.6.9(d) 可知, x > 0 时, $\frac{1}{x^q}$ 是非负且递减的, 由命题 5.4.12 可 知,存在正整数 N' 使得 $q \leq N'$ 。

由命题 11.6.4(积分判别法)可知,只需证明 $\sup_{N>1} \int_{[1,N]} \frac{1}{x^q}$ 是有界的即 可证明该命题。

类似于习题 11.6.3 的证明,对任意 N > 1,由推论 5.4.12 和命题 4.4.1 可知,对实数 N 存在一个自然数 n 使得 $n \le N < n+1$,现在把 [1, N] 划 分成 n+1 个半开区间

$$\{[1,2),[2,3),...,[n-1,n),[n,N]\}$$

由命题 11.3.12 可知

$$\overline{\int}_{[1,N]} f \leq \sum_{j=1}^{n} \left(\sup_{x \in [j,j+1)} f(x) \right) + \sup_{x \in [n,N]} f(x)$$

$$\leq \sum_{j=1}^{n+1} f(j)$$

$$\leq \sum_{j=1}^{n+1} \frac{1}{j^{N'}}$$

以上第二个等式由 $f:[1,+\infty)\to\mathbb{R}$ 是一个单调递增的函数保证的。 由推论 11.6.3 可知 $\int_{[1,N]}f$ 在 [1,N] 上是黎曼可积的。于是

$$\underline{\int}_{[1,N]} f = \overline{\int}_{[1,N]} f$$

因为 f 是非负的,所以

$$\int_{[1,N]} f \ge 0$$

于是

$$0 \le \int_{[1,N]} f \le \sum_{i=1}^{n+1} \frac{1}{j^{N'}} \le \sum_{i=1}^{\infty} \frac{1}{j^{N'}}$$

由推论 7.3.7 可知 $\sum\limits_{j=1}^{\infty}\frac{1}{j^{N'}}$ 是收敛的,综上,对任意 N>1 都有 $\int_{[1,N]}f$ 是有界的,由定理 5.5.9(最小上界的存在性)可知 $\sup\limits_{N>1}\int_{[1,N]}f$ 是有限的,利用命题 11.6.4(积分判别法)可知级数 $\sum\limits_{n=1}^{\infty}f(n)$ 是收敛的。

(2)
$$p \le 1$$

由引理 5.6.6(e) 可知,f 是关于 p 的增函数。由命题 5.4.12(有理数对实数的界定)可知,存在正有理数 q 使得 $q \leq p$,由推论 7.3.7 可知 $\sum\limits_{j=1}^{\infty} \frac{1}{j^q}$ 是发散的,又对任意 $n \in \mathbb{N}$ 都有 $\frac{1}{n^p} \geq \frac{1}{n^q}$,所以级数 $\sum\limits_{n=1}^{\infty} f(n)$ 也是发散的。