Math 69: Logic Winter '23

Homework assigned February 13, 2023

Prof. Marcia Groszek Student: Amittai Siavava

Problem 2.

Let T_1 and T_2 be theories (in the same language \mathcal{L}) such that:

- (i) $T_1 \subseteq T_2$.
- (ii) T_1 is complete.
- (iii) T_2 is satisfiable.

Show that $T_1 = T_2$.

 T_1 and T_2 are both theories, meaning if T_1 deduces any wff φ then φ is a member of T_1 and, similarly, if T_2 deduces any wff φ then φ is a member of T_2 . Furthermore, T_1 is complete, meaning that for any wff γ definable in the language \mathcal{L} , either T_1 deduces γ or T_1 deduces $\neg \gamma$. By (1), for every such γ definable in \mathcal{L} , T_1 either contains γ or T_1 contains $\neg \gamma$.

 $T_1 \subseteq T_2$, so for every γ definable in \mathcal{L} , T_2 must also contain either γ or $\neg \gamma$ (whichever is in T_1). Since T_2 is satisfiable, it cannot deduce (hence, cannot contain, since it is a theory) both γ and $\neg \gamma$ for any wff γ . It can also not contain any sentences not true in \mathcal{L} since it is a theory for \mathcal{L} . Therefore, T_2 must only contain the same wffs as those contained in the subset T_1 , so $T_2 = T_1$.

Amittai, S Math 69: Logic

Problem 3.

Establish the following facts;

(a) $\Sigma_1 \subseteq \Sigma_2 \Rightarrow \operatorname{Mod} \Sigma_1 \subseteq \operatorname{Mod} \Sigma_2$.

 $\mathcal{K}_1 \subseteq \mathcal{K}_2 \Rightarrow \operatorname{Th} \mathcal{K}_1 \subseteq \operatorname{Th} \mathcal{K}_2.$

Given $\mathfrak A$ is a model of Σ_2 , then each sentence in Σ_2 is true in $\mathfrak A$. However, since $\Sigma_1 \subseteq \Sigma_2$, then each sentence in Σ_1 is also true in $\mathfrak A$, so $\mathfrak A$ must also be a model for Σ_1 . On the other hand, every model of Σ_1 satisfies a subset of Σ_2 , so there exists some extension that makes it a model of Σ_2 .

Therefore, if Σ_1 is a subset of (or equal to) Σ_2 then every model of Σ_1 is some subset of (or equal to) some model of Σ_2 .

The same argument applies to $\mathcal{K}_1 \subseteq \mathcal{K}_2$: Suppose T_2 is a theory for \mathcal{K}_2 , then T_2 contains every sentence that is true in K_2 . Since $\mathcal{K}_1 \subseteq \mathcal{K}_2$, then T_2 also contains every sentence that is true in K_1 .

On the other hand, every theory for K_1 contains some subset of the sentences that are true in K_2 , so it can be extended to a theory for K_2 . Therefore, every theory for K_1 is a subset of (or equal to) some theory for K_2 .

(b) $\Sigma \subseteq \operatorname{Th} \operatorname{Mod} \Sigma$ and $K \subseteq \operatorname{Mod} \operatorname{Th} K$.

Let $\mathfrak A$ be a model of Σ . Then every sentence in Σ is true in $\mathfrak A$. Since Th $\mathfrak A$ contains every sentence that is true in $\mathfrak A$, then Th $\mathfrak A$ must contain every sentence in Σ , so $\Sigma \subseteq \operatorname{Th} \mathfrak A$. But $\mathfrak A = \operatorname{Mod} \Sigma$, so $\Sigma \subseteq \operatorname{Th} \operatorname{Mod} \Sigma$.

Let Γ be a theory for \mathcal{K} . Then Γ contains every wff that is true in \mathcal{K} . Let \mathfrak{A} be a model for Γ , then every sentence in Γ s true in \mathfrak{A} , so every sentence true in \mathcal{K} is true in \mathfrak{A} . Therefore, $\mathcal{K} \subseteq \operatorname{Mod} \operatorname{Th} \mathcal{K}$.

(c) $\operatorname{Mod} \Sigma = \operatorname{Mod} \operatorname{Th} \operatorname{Mod} \Sigma$ and $\operatorname{Th} \mathcal{K} = \operatorname{Th} \operatorname{Mod} \operatorname{Th} \mathcal{K}$.

Hint: Part (c) follows from (a) and (b).

By (b), $\Sigma \subseteq \text{Th Mod } \Sigma$, so, by (a), Mod $\Sigma \subseteq \text{Mod Th Mod } \Sigma$.

Mod Th Mod Σ is a model for Th Mod Σ , so every sentence true in Mod Th Mod Σ is tautologically implied by (or... deducible from) Th Mod Σ . But Th Mod Σ is a theory, so any such deduction σ from Th Mod Σ must be contained in Th Mod Σ , so it must also be true in Mod Σ . Therefore, any sentence true in Mod Th Mod Σ must also be true in Mod Σ , so Mod Th Mod Σ \subseteq Mod Σ .

Therefore, Mod $\Sigma \subseteq \operatorname{Mod} \operatorname{Th} \operatorname{Mod} \Sigma$ and Mod Th Mod $\Sigma \subseteq \operatorname{Mod} \Sigma$, so Mod $\Sigma = \operatorname{Mod} \operatorname{Th} \operatorname{Mod} \Sigma$.

By (b), $\mathcal{K} \subseteq \text{Mod Th } \mathcal{K}$, so, by (a), Th $\mathcal{K} \subseteq \text{Th Mod Th } \mathcal{K}$.

Th Mod Th \mathcal{K} contains all the wffs true in Mod Th \mathcal{K} . But Mod Th \mathcal{K} is a model for Th \mathcal{K} , meaning sentences true in Mod Th \mathcal{K} are tautologically implied by (or... deducible from) Th \mathcal{K} . But \mathcal{K} is a theory (for \mathcal{K}), meaning any such deduction σ must be in Th \mathcal{K} .

Therefore, Th Mod Th $\mathcal{K} \subseteq \text{Th } \mathcal{K}$ and Th $\mathcal{K} \subseteq \text{Th Mod Th } \mathcal{K}$, meaning Th $\mathcal{K} = \text{Th Mod Th } \mathcal{K}$.

Amittai, S Math 69: Logic

Problem 7.

Consider a language with a two-place predicate symbol <, and let $\mathfrak{N}=(\mathbb{N};<)$ be the structure consisting of the natural numbers with their usual ordering. Show that there is some \mathfrak{A} elementarily equivalent to \mathfrak{N} such that $<^{\mathfrak{A}}$ has a descending chain. That is, there must be a_0,a_1,\ldots such that $\langle a_{i+1},a_i\rangle\in<^{\mathfrak{A}}$ for all i.

Hint: Apply the compactness theorem.

Let $\mathfrak{A} = (\mathbb{N}; <, c)$ be a structure consisting of the natural numbers under their usual ordering, with an additional constant symbol $c \notin \mathbb{N}$. Let

$$\Gamma = \left\{ x < c \mid x \in \mathbb{N} \right\} = \left\{ 0^{\mathfrak{A}} < c, 1^{\mathfrak{A}} < c, 2^{\mathfrak{A}} < c, \ldots \right\}.$$

For any finite subset of some size k, Mapping $x^{\mathfrak{A}} \mapsto x^{\mathfrak{N}}$ for all $x \in \mathbb{N}$, x < k and mapping $c^{\mathfrak{A}} \mapsto k^{\mathfrak{N}}$ gives a model of Γ that contains a descending chain of length k.

Since every such finite subset of $\Gamma \cup \operatorname{Th} \mathfrak{N}$ has a model, then by the compactness theorem $\Gamma \cup \operatorname{Th} \mathfrak{N}$ also has a model. But since the size of \mathbb{N} is infinite, there exists a descending chain in \mathfrak{A} , starting with c, that has infinite length.