

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/748,290	12/31/2003	Kevin Brown	1875.3920005	8408
26111	7590	12/05/2007	EXAMINER	
STERNE, KESSLER, GOLDSTEIN & FOX P.L.L.C. 1100 NEW YORK AVENUE, N.W. WASHINGTON, DC 20005			RIYAMI, ABDULLA A	
		ART UNIT	PAPER NUMBER	
		2616		
		MAIL DATE	DELIVERY MODE	
		12/05/2007	PAPER	

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No.	Applicant(s)	
	10/748,290	BROWN ET AL.	
	Examiner	Art Unit	
	Abdullah Riyami	2616	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 19 October 2007.
- 2a) This action is **FINAL**. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-17, 19 and 20 is/are pending in the application.
 - 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-17, 19 and 20 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 - a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) <input type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413)
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date. _____
3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08)	5) <input type="checkbox"/> Notice of Informal Patent Application
Paper No(s)/Mail Date _____	6) <input type="checkbox"/> Other: _____

DETAILED ACTION

1. This is in response to an amendment/response filed on 10/19/2007.
2. Claims 5, 8, 13, and 16 have been amended.
3. Claim 18 is cancelled.
4. No claim has been added.
5. Claims 1-17 and 19-20 remain pending in the application.

Claim Rejections - 35 USC § 102

5. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.

6. Claims 1, 3-8, 11-14, 1617, and 19-20 are rejected under 35 U.S.C. 102(e) as being anticipated by Smith et al. (US 6813651 B1).

In claim 1 Smith et al. teaches of a method for transmitting data (see column 2, lines 15-54), comprising:

(a) receiving a first data stream (see column 6, lines 21-30 and figure 5, blocks 102, 202 and 204) from a first physical transmission medium (see 1394 link, column 6, lines 21-24 and figure 5, block 102) using a first communications standard (see 1394 link, column 6, lines 21-24);

(b) appending (see checksum padding, column 6, lines 21-30) to each byte in the first data stream a data type identification (DTID) (see checksum padding unit, column 6, lines 21-30), thereby creating a technology independent data stream (see column 5, lines 40-44) having a first bit rate (see column 5, lines 40-44);
(c) matching (see column 5, lines 40-44) the first bit rate to a second bit rate (see column 5, lines 40-44) that corresponds to a second communications standard (see column 5, lines 31-37); and
(e) transmitting the technology independent data stream (see column 5, lines 40-44) over a second physical transmission medium (see column 5, lines 31-37) using the second communications standard (see column 5, lines 31-37 and figure 5, block 208).

In claims 3 and 4, Smith et al. teaches these limitations, see response to arguments.

In claim 5, Smith et al. teaches of a method for transmitting data (see column 2, lines 15-54), wherein step (e) comprises transmitting the technology independent data stream (see column 5, lines 40-44) over the transmission medium (see column 5, lines 31-37 and figure 5, block 208) using IEEE 802.3 1000BASE-T standards (see column 5, lines 31-37 and figure 5, block 208).

In claim 6, Smith et al. teaches of a method for transmitting data (see column 2, lines 15-54), wherein step (e) comprises transmitting category five unshielded twisted pair (UTP) wiring (see column 2, line 28).

In claim 7, Smith et al. teaches of a method for transmitting data (see column 2, lines 15-54), further comprising:

- (f) receiving (see column 6, lines 27-30) the technology independent data stream (see column 5, lines 40-44) at the second bit rate (see column 6 lines 27-30);
- (g) matching (see column 5, lines 40-44 and column 6, lines 21-24) the second bit rate to the first bit rate (see column 5, lines 40-44 and column 6, lines 21-24 and figure 5, block 212);
- (h) restoring (see column 6, lines 27-30) the first data stream by removing the DTID (see checksum stripping unit, column 6, lines 27-30 and figure 5, block 212) from each byte of the technology independent data stream (see checksum stripping unit, column 6, lines 27-30 and figure 5, block 212); and
- (i) receiving (see column 6, lines 27-30) the first data stream into a third transmission medium (see figure 5, transmission between blocks 212 and 202) using the first communications standard (see figure 5, transmission between blocks 212 and 202).

In claim 8, Smith et al. teaches of a communications reconciliation sub-layer (see figure 5, block 102), comprising:

a transmit data type identification (DTID) circuit (see checksum padding, column 6, lines 21-30 and figure 5, block 204) coupled to an output (see figure 5, block 202) of a first transmission medium (see 1394 link, column 6, lines 21-24 and figure 5, block 102) for appending a DTID to each byte in an original data stream thereby generating a technology independent data stream (see column 5, lines 40-44) at first bit rate (see column 5, lines 40-44) that represents an original data stream (see

figure 5, form block 202 to 204) from the first transmission medium (see 1394 link, column 6, lines 21-24);
a transmit first-in-first-out (FIFO) buffer (see column 6, lines 31-40) coupled to an output of the transmit DTID (see figure 5, blocks 204, 206, 210, and 212) and an input of a second transmission medium (see figure 5, blocks 204, 206, 210, and 212), the transmit FIFO buffer for matching (see column 6, lines 31-40) the first bit rate to a second bit rate (see column 5, lines 40-44 and column 6, lines 21-24) used by the second transmission medium (see column 5, lines 31-37 and figure 5, block 208);
a receive FIFO buffer (see column 6, lines 34-40) coupled to an output (see column 6, lines 34-40) of the second transmission medium, the receive FIFO buffer (see column 6, lines 34-40) for matching (see column 6, lines 34-40) the second bit rate to the first bit rate (see column 5, lines 40-44 and column 6, lines 34-40); and a receive DTID circuit (see figure 5, block 212) coupled to an output of the receive FIFO buffer (see column 6, lines 34-40) for restoring (see checksum stripping unit, column 6, lines 27-30 and figure 5, block 212) the original data stream from the technology independent data stream (see column 5, lines 40-44).

In claim 11, Smith et al. teaches of a communications reconciliation sub-layer (see figure 5, block 102), wherein the first transmission medium (see 1394 link, column 6, lines 21-24 and figure 5, block 102) is an IEEE 1394b data bus (see column 3, line 51 and line 55).

In claim 12, Smith et al. teaches of a communications reconciliation sub-layer (see figure 5, block 102), wherein the original data stream (see column 6, lines 21-30) comprises unencoded, unscrambled 1394b data (see column 6, lines 21-30) from a physical sub-layer of the IEEE 1394b data bus (see column 3, line 51 and line 55).

In claim 13, Smith et al. teaches of a communications reconciliation sub-layer (see figure 5, block 102), wherein the unencoded, unscrambled 1394b data (see column 6, lines 21-30) is tapped from a beta mode function circuit (see checksum padding, column 6, lines 21-30 and figure 5, block 204) of the IEEE 1394b data bus (see column 3, line 51 and line 55).

In claim 14, Smith et al. teaches of a communications reconciliation sub-layer (see figure 5, block 102), wherein the second transmission medium (see column 5, lines 31-37) is an IEEE 802.3 1000BASE-T data bus (see column 5, lines 31-37).

In claim 16, Smith et al. teaches of a communications sub-layer (see figure 5, block 102) for transmitting data formatted according to a first communications standard (see column 6, lines 21-30 and figure 5, blocks 102, 202 and 204) over a physical medium (see column 5, lines 31-37 and figure 5, block 208) designed for data formatted according to a second communications standard (see column 5, lines 31-37 and figure 5, block 208), comprising:
means for receiving a first data stream (see column 6, lines 21-30 and figure 5, blocks 102, 202 and 204) formatted according to the first communication standard

(see column 6, lines 21-30 and figure 5, blocks 102, 202 and 204); means for appending a DTID to each byte in an original data stream thereby creating (see column 5, lines 40-44) a technology independent data stream (see column 5, lines 40-44) from the first data stream (see column 6, lines 21-26), the technology independent data stream having a first bit rate (see column 5, lines 40-44); means for matching the first bit rate to a second bit rate (see column 5, lines 40-44) corresponding to the second communications standard (see column 5, lines 31-37); and means for transmitting the technology independent data stream (see column 5, lines 40-44) over the physical medium (see column 5, lines 31-37) according to the second communications standard (see column 5, lines 31-37).

In claim 17, Smith et al. teaches of a communications sub-layer (see figure 5, block 102) further comprising means for receiving (see column 6, lines 27-30 and figure 5, block 208) the technology independent data stream (see column 5, lines 40-44); means for matching the second bit to the first bit rate (see column 5, lines 40-44 and column 6, lines 21-24 and figure 5, block 212); means for restoring the first data stream (see checksum stripping unit, column 6, lines 27-30 and figure 5, block 212) from the technology independent data stream (see column 5, lines 40-44).

In claim 19, Smith et al. teaches of a communications sub-layer (see figure 5, block 102), wherein the restoring (see checksum stripping unit, column 6, lines 27-30 and figure 5, block 212) means comprises removing (see checksum stripping

unit, column 6, lines 27-30 and figure 5, block 212) the data type identification from each byte of the technology data stream (see column 5, lines 40-44).

In claim 20, Smith et al. teaches of a communications sub-layer (see figure 5, block 102), wherein the matching (see column 6, lines 31-40) means uses a first-in-first-out buffer (see column 6, lines 31-40).

Claim Rejections - 35 USC § 103

6. This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).

7. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

8. The factual inquiries set forth in *Graham v. John Deere Co.*, 383 U.S. 1, 148 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under 35 U.S.C. 103(a) are summarized as follows:

1. Determining the scope and contents of the prior art.
2. Ascertaining the differences between the prior art and the claims at issue.
3. Resolving the level of ordinary skill in the pertinent art.
4. Considering objective evidence present in the application indicating obviousness or nonobviousness.

Claims 2 and 10 are rejected under 35 U.S.C. 103(a) as being unpatentable over Smith et al. (US 6813651 B1) in view of Cheung (US 2004/0039866).

In claim 2 Smith et al. teaches of a method for transmitting data (see column 2, lines 15-54), wherein step (c) comprises:

(i) receiving at a first first-in-first-out (FIFO) buffer (see column 6, lines 31-40) the technology independent data stream (see column 5, lines 40-44) at the first bit rate (see column 5, lines 40-44);

Smith et al. does not expressly disclose steps (ii) when the first FIFO buffer is full, transmitting the technology independent data stream at the second bit rate according to step (e); and (iii) when the FIFO buffer is empty, stopping the transmitting, thereby allowing the FIFO buffer to refill with the technology independent data stream.

Cheung et al. discloses a FIFO buffer (see figure 3, block 308 and figure 5, blocks 504 and 508) that can be configured to transmit when full (see paragraph 49, lines 1-10) and receive/refill when empty (see paragraph 49, lines 1-10).

Smith et al. and Cheung are analogous art because they are from the same fields of endeavor of using a buffer to facilitate the throughput of data between components.

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to use Cheung 's FIFO buffer that transmits/receives when full or empty in Smith's et al. interface device.

The motivation to combine would have been to facilitate and match the throughput of transmission data rates between devices and other components. In claim 10, Smith et al. teaches of a communications reconciliation sub-layer (see figure 5, block 102), comprising:

a transmit FIFO buffer for matching (see column 6, lines 31-40), but does not expressly disclose that the transmit FIFO buffer is coupled to a pointer for indicating a status of the transmit FIFO buffer.

Cheung et al. discloses a FIFO buffer (see paragraph 49, lines 1-10,figure 3, block 308 and figure 5, blocks 504 and 508) that is coupled to a pointer (see paragraph 45, line 5-10) for indicating a status (see paragraph 45, line 5-10) of the transmit FIFO buffer.

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to use Cheung 's FIFO buffer that transmits/receives when full or empty in Smith's et al. interface device.

The motivation to combine would have been to facilitate and match the throughput of transmission data rates between devices and other components.

7. Claims 9 and 15 are rejected under 35 U.S.C. 103(a) as being unpatentable over Smith et al. (US 6813651 B1).

In claim 9, Smith et al. teaches of a communications reconciliation sub-layer (see figure 5, block 102), comprising:

a transmit FIFO buffer for matching (see column 6, lines 31-40), but does not expressly disclose that the transmit FIFO buffer is 120 bits deep.

Official notice is taken that having a FIFO buffer that is 120 bits deep is well known in the art.

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to use a 120 bits deep, FIFO buffer that transmits/receives in Smith's et al. interface device.

The motivation to combine would have been to facilitate and match the throughput of transmission data rates between devices and other components.

In claim 15, Smith et al. teaches of a communications reconciliation sub-layer (see figure 5, block 102), but does not expressly disclose that the first transmission medium is a universal serial bus.

Official notice is taken that the first transmission medium could be a universal serial bus is well known in the art.

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to use a universal serial bus in Smith's et al. interface device.

The motivation to combine would have been to facilitate and match the throughput of transmission data rates between devices and other components.

Response to Arguments

Applicant's arguments filed on 10/19/2007 have been fully considered but they are not persuasive. In the remarks of 10/19/2007, Applicants respectfully traverse this rejection.

Smith does not teach or suggest each and every feature of original independent claim 1 and amended independent claims 8 and 16. The traversal is based on the ground that Smith does not describe or suggest appending a data type identifier to each byte in the data stream during the padding process. This argument is not found to be persuasive. Smith discloses preamble which is interpreted as data type identification for different classes of speed (see table 1). Smith does describe appending a data type identifier during the padding process.

For the reason above, the rejection is maintained.

Conclusion

6. **THIS ACTION IS MADE FINAL.** Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the

shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Abdullah Riyami whose telephone number is (571) 270-3119. The examiner can normally be reached on Monday through Thursday 8am-5pm EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Firmin Backer can be reached on (571)272-6703. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

FIRMIN BACKER
SUPERVISORY PATENT EXAMINER

Application/Control Number:
10/748,290
Art Unit: 2616

Page 14

AR