Cálculo 1

Lista de Exercícios – Semana 14

Temas abordados: Integração por partes; Volumes

Seções do livro: 8.1; 6.1; 6.2

1) Use integração por partes para calcular as integrais abaixo.

(a)
$$\int x \cos\left(\frac{x}{2}\right) dx$$
 (b) $\int x^2 \ln(2x) dx$ (c) $\int xe^{3x} dx$

(b)
$$\int x^2 \ln(2x) dx$$

(c)
$$\int xe^{3x} dx$$

(d)
$$\int \ln(5x) dx$$

(e)
$$\int x^3 e^{-x} dx$$

(d)
$$\int \ln(5x) dx$$
 (e) $\int x^3 e^{-x} dx$ (f) $\int 4x \sec^2(2x) dx$ (g) $\int e^{2x} \sin(x) dx$ (h) $\int x^2 \cos(x) dx$ (i) $\int \arccos(x) dx$

(g)
$$\int e^{2x} \operatorname{sen}(x) \mathrm{d}x$$

(h)
$$\int x^2 \cos(x) dx$$

(i)
$$\int \arccos(x) dx$$

2) Calcule as integrais abaixo usando, antes da integração por partes, uma substituição apropriada.

(a)
$$\int x^7 \cos(x^4) dx$$
 (b) $\int e^{\sqrt{x}} dx$ (c) $\int x^3 e^{x^2} dx$

(b)
$$\int e^{\sqrt{x}} dx$$

(c)
$$\int x^3 e^{x^2} dx$$

3) Para uma função contínua $f:[a,b]\to\mathbb{R}$ o volume do sólido de revolução obtido pela rotação do seu gráfico em torno do eixo $\mathcal{O}x$ é dado por $V=\int_a^b \pi f(x)^2 dx$. Calcule esse volume no caso das funções indicadas abaixo.

(a)
$$f(x) = r$$
, para $x \in [0, h]$, onde $h, r > 0$

(b)
$$f(x) = \frac{r}{h}x$$
, para $x \in [0, h]$, onde $h, r > 0$.

(c)
$$f(x) = \sqrt{r^2 - x^2}$$
, para $x \in [-r, r]$, onde $r > 0$.

(d)
$$f(x) = x\sqrt{\operatorname{sen} x}$$
, para $x \in [0, \pi]$

(e)
$$f(x) = \sqrt{\arctan x}$$
, para $x \in [0, 1]$

4) Faça o gráfico das funções dos três primeiros itens acima e responda qual o sólido gerado pela rotação indicada. Em seguida, confronte a resposta que você obteve acima com a fórmula para o volume desse sólido, que você provavelmente já conhecia.

5) Seja $a \geq 0, f: [a,b] \rightarrow [0,+\infty)$ uma função contínua e \mathcal{R} a região compreendida entre o gráfico de f e o eixo $\mathcal{O}x$. Quando giramos a região \mathcal{R} em torno do eixo $\mathcal{O}y$, obtemos um sólido de revolução cujo volume é dado por $V = \int_a^b 2\pi x f(x) dx$. Calcule esse volume no caso das funções indicadas abaixo.

(a)
$$f(x) = \sqrt{1+x^2}$$
, para $x \in [0,1]$

(b)
$$f(x) = \ln(x)$$
, para $x \in [1, e]$

(c)
$$f(x) = \arctan x$$
, para $x \in [0, 1]$

6) Após identificar a técnica apropriada, determine o valor das integrais abaixo.

(a)
$$\int xe^{x^2} dx$$

(a)
$$\int xe^{x^2} dx$$
 (b) $\int \arctan(x) dx$ (c) $\int \operatorname{sen}(\ln x) dx$

(c)
$$\int \operatorname{sen}(\ln x) dx$$

(d)
$$\int x \ln(x) dx$$

(d)
$$\int x \ln(x) dx$$
 (e) $\int \frac{\cos(1/x)}{x^2} dx$ (f) $\int \frac{x}{1+x^4} dx$

(f)
$$\int \frac{x}{1+x^4} dx$$

(g)
$$\int e^{-\sqrt{x}} dx$$

(g)
$$\int e^{-\sqrt{x}} dx$$
 (h) $\int x \operatorname{sen}(2x) dx$

RESPOSTAS

1) Em todos os itens abaixo $K \in \mathbb{R}$ é uma constante de integração.

(a)
$$2x \operatorname{sen}\left(\frac{x}{2}\right) + 4 \cos\left(\frac{x}{2}\right) + K$$

(b)
$$\frac{1}{3}x^3 \ln(2x) - \frac{1}{9}x^3 + K$$

(c)
$$\frac{1}{3}xe^{3x} - \frac{1}{9}e^{3x} + K$$

(d)
$$x \ln(5x) - x + K$$

(e)
$$-e^{-x}(x^3+3x^2+6x+6)+K$$

(f)
$$2x \tan(2x) + \ln(\cos(2x)) + K$$

(g)
$$-\frac{1}{5}e^{2x}\cos(x) + \frac{2}{5}e^{2x}\sin(x) + K$$

(h)
$$x^2 \operatorname{sen}(x) - 2 \operatorname{sen}(x) + 2x \cos(x) + K$$

(i)
$$x \arccos(x) - \sqrt{1 - x^2} + K$$

2) Em todos os itens abaixo $K \in \mathbb{R}$ é uma constante de integração.

(a)
$$\frac{1}{4}\cos(x^4) + \frac{1}{4}x^4\sin(x^4) + K$$

(b)
$$2e^{\sqrt{x}}(\sqrt{x}-1)+K$$

(c)
$$\frac{e^{x^2}}{2}(x^2-1)+K$$

3) (a)
$$\pi r^2 h$$

(b)
$$\frac{1}{3}\pi r^2 h$$

(c)
$$\frac{4}{3}\pi r^3$$

(d)
$$\pi^3 - 4\pi$$

(e)
$$\frac{\pi^2}{4} - \frac{1}{2}\pi \ln(2)$$

4) Os sólidos são, respectivamente: cilindro circular reto de altura h e raio da base r; cone circular reto de altura h e raio da base r; esfera de raio r.

5) (a)
$$\frac{4}{3}\sqrt{2}\pi - \frac{2}{3}\pi$$

(b)
$$\frac{\pi}{2}(e^2+1)$$

(c)
$$\frac{1}{2}\pi^2 - \pi$$

6) Em todos os itens abaixo $K \in \mathbb{R}$ é uma constante de integração.

(a)
$$\frac{1}{2}e^{x^2} + K$$

(b)
$$x \arctan(x) - \frac{1}{2} \ln(1+x^2) + K$$

(c)
$$\frac{x}{2} \left(\operatorname{sen}(\ln(x)) - \cos(\ln(x)) \right) + K$$

(d)
$$\frac{x^2}{2}\ln(x) - \frac{x^2}{4} + K$$

(e)
$$-\operatorname{sen}(\frac{1}{x}) + K$$

(f)
$$\frac{1}{2}\arctan(x^2) + K$$

(g)
$$-2\sqrt{x}e^{-\sqrt{x}} - 2e^{-\sqrt{x}} + K$$

(h)
$$\frac{1}{4}$$
sen $(2x) - \frac{1}{2}x\cos(2x) + K$