Question 2

- 1. If I'm coming down with a cold and I exercise, then I'll get worse and feel awful.
- 2. If I don't exercise, then I'll suffer exercise deprivation and I'll feel awful.
 - .. If I'm coming down with a cold, then I'll feel awful.
- C = cold
- E = exercise
- W = worse
- A = awful
- D = exercise deprivation

Truth-table Method

С	Ε	W	A	D	$(C\cdotE)\supset (W\cdotA)$	(~E ⊃ (D · A))	(C ⊃ A)
0	0	0	0	0	1	0	1
0	0	0	0	1	1	0	1
0	0	0	1	0	1	0	1
0	0	0	1	1	1	1	1
0	0	1	0	0	1	0	1
0	0	1	0	1	1	0	1
0	0	1	1	0	1	0	1
0	0	1	1	1	1	1	1
0	1	0	0	0	1	1	1
0	1	0	0	1	1	1	1
0	1	0	1	0	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
0	1	1	0	1	1	1	1
0	1	1	1	0	1	1	1
0	1	1	1	1	1	1	1
1	0	0	0	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	0	1	0	1
1	0	0	1	1	1	1	1
1	0	1	0	0	1	0	0

1	0	1	0	1	1	0	0
1	0	1	1	0	1	0	1
1	0	1	1	1	1	1	1
1	1	0	0	0	0	1	0
1	1	0	0	1	0	1	0
1	1	0	1	0	0	1	1
1	1	0	1	1	0	1	1
1	1	1	0	0	0	1	0
1	1	1	0	1	0	1	0
1	1	1	1	0	1	1	1
1	1	1	1	1	1	1	1

Every time the premises are true, the conclusion is also true.

S/I Rules Strictly

- 1. $(C \cdot E) \supset (W \cdot A)$
- 2. $(\sim E \supset (D \cdot A))$
 - ∴ (C ⊃ A)
- 3. assume: \sim (C \supset A)
 - 4. ∴ (C · ~A) (from 3)
 - 5. : C (from 4)
 - 6. ∴ ~A (from 4)
 - 7. assume: (C · E)
 - 8. .: C (from 7)
 - 9. ∴ E (from 7)
 - 10. \therefore (W · A) (from 1 and 7)
 - 11. : W (from 10)
 - 12. : A (from 10)
 - 8. \sim (C · E) (6 contradicts 12)
 - 9. ∴ (~C ∨ ~E) (from 8)
 - 10. ∴ ~E (from 5 and 9)
 - 11. ∴ (D · A) (from 2 and 10)
 - 12. .: D (from 11)
 - 13. : A (from 11)

Resolution proof

- 1. $(C \cdot E) \supset (W \cdot A)$
- ~(C · E) ∨ (W · A)
- (~C∨~E)∨(W·A)
- (~C∨~E∨W) · (~C∨~E∨A)
- Clauses:
 - ∘ (~C ∨ ~E ∨ W)
 - ∘ (~C ∨ ~E ∨ A)
- 2. $(\sim E \supset (D \cdot A))$
- ~(~E) ∨ (D · A)
- (E ∨ D ∨ A)
- Clause:
 - ∘ (E ∨ D ∨ A)
- 3. ~(C ⊃ A)
- ~(~C ∨ A)
- (C ⋅ ~A)
- Clauses:
 - o C
- Resolving C with (~C ∨ ~E ∨ W) gives (~E ∨ W)
- Resolving C with (\sim C \vee \sim E \vee A) gives (\sim E \vee A)
- Resolving ~A with (~E v A) gives ~E
- Resolving \sim E with (E \vee D \vee A) gives (D \vee A)
- Resolving ~A with (D ∨ A) gives D
- Resolving D with (E v D v A) gives (E v A)
- Resolving ~E with (E v A) gives A
- Resolving ~A with A gives empty clause

Question 4

- 1. If President Nixon knew about the massive Watergate cover-up, then he lied to the American people on national television and he should resign.
- 2. If President Nixon didn't know about the massive Watergate cover-up, then he was incompetently ignorant and he should resign.
 - .. Nixon should resign.
- K = knew about the massage Watergate cover-up
- L = lied to the American people on national television
- R = should resign
- I = incompletely ignorant

Truth-tabe method

K	L	R	I	$(K \supset (L \cdot R))$	(~K ⊃ (I · R))	R
0	0	0	0	1	0	0
0	0	0	1	1	0	0
0	0	1	0	1	0	1
0	0	1	1	1	1	1
0	1	0	0	1	0	0
0	1	0	1	1	0	0
0	1	1	0	1	0	1
0	1	1	1	1	1	1
1	0	0	0	0	1	0
1	0	0	1	0	1	0
1	0	1	0	0	1	1
1	0	1	1	0	1	1
1	1	0	0	0	1	0
1	1	0	1	0	1	0
1	1	1	0	1	1	1
1	1	1	1	1	1	1

Every time the premises are true, the conclusion is also true.

S/I Rules Strictly

1. $(K \supset (L \cdot R))$

- 2. $(\sim K \supset (I \cdot R)) : R$
- 3. assume: ~R
 - 4. \therefore ~(L · R) (from 1 and 3)
 - 5. ∴ ~K (from 1 and 4)
 - 6. \therefore (I · R) (from 2 and 5)
 - 7. ∴ I (from 6)
 - 8. .: R (from 6)
- 4. .: R (3 contradicts 8)

Resolution proof

- 1. $(K \supset (L \cdot R))$
- (~K ∨ (L ⋅ R))
- ((~K ∨ L) · (~K ∨ R))
- Clauses:
 - ∘ (~K ∨ L)
 - ∘ (~K∨R)
- 2. $(\sim K \supset (I \cdot R))$
- (K ∨ (I · R))
- $((K \lor I) \cdot (K \lor R))$
- Clauses:
 - ∘ (K ∨ I)
 - ∘ (K ∨ R)
- 3. ∼R
- Clause:
 - ∘ ~R
- Resolving ~R with (~K \vee R) gives ~K
- Resolving ~K with (K v I) gives I
- Resolving ~K with (K ∨ R) gives R
- Resolving R with ~R gives empty clause

QUESTION /

- 1. If Michigan either won or tied, then Michigan is going to the Rose Bowl and Gensler is happy.
 - .. If Gensler isn't happy, then Michigan didn't tie.
- W = Michigan won
- T = Michigan tied
- R = Michigan is going to the Rose Bowl
- H = Gensler is happy

Truth-table method

W	Т	R	Н	$((W v T) \supset (R \cdot H))$	(~H ⊃ ~T)
0	0	0	0	1	1
0	0	0	1	1	1
0	0	1	0	1	1
0	0	1	1	1	1
0	1	0	0	0	0
0	1	0	1	0	1
0	1	1	0	0	0
0	1	1	1	1	1
1	0	0	0	0	1
1	0	0	1	0	1
1	0	1	0	0	1
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	1	0	1
1	1	1	0	0	0
1	1	1	1	1	1

Every time the premises are true, the conclusion is also true.

S/I Rules Strictly

- ((W ∨ T) ⊃ (R · H))
 ∴ (~H ⊃ ~T)
- 2. Assume: \sim (\sim H $\supset \sim$ T)

```
3. ∴ (~H · T) (from 2)
```

6.
$$\therefore$$
 (W \vee T) (from 1 and 5)

7.
$$\therefore$$
 (R · H) (from 1 and 6)

3.
$$\therefore$$
 (~H \supset ~T) (4 contradicts 9)

Resolution proof

1.
$$((W \lor T) \supset (R \cdot H))$$

•
$$((\sim W \cdot \sim T) \vee (R \cdot H))$$

•
$$((\sim W \lor R) \cdot (\sim W \lor H) \cdot (\sim T \lor R) \cdot (\sim T \lor H))$$

• Clauses:

• Clauses:

• Resolving T with (
$$\sim$$
T \vee R) gives R

• Resolving H with (
$$\sim$$
T \vee H) gives \sim T

Connectives

Given the standard set of connectives is adequate, prove that {~, V} is also adequate

- $(P \cdot Q) = \sim (\sim P \vee \sim Q)$
- $(P \supset Q) = (\sim P \lor Q)$
- $(P = Q) = ((P \supset Q) \cdot (Q \supset P)) = ((\sim P \lor Q) \cdot (\sim Q \lor P)) = \sim ((\sim P \lor Q) \lor (\sim Q \lor P))$

Prove that {V} alone is not adequate for propositional logic

- Assume that {\v} is adequate. Then we must be able to express all the expresions above only using {\v}
- { ~ } flips the truth value of a statement. Since {v} is a monotonic operator, you can't flip a
 truth value. For example, it's impossible to show that P = 0 without { ~ }. Therefore {v} can't
 be used in place of {~}.
- For $(P \cdot Q) = (\neg P \lor \neg Q)$, we can't write this with just $\{\lor\}$ for the same reason as above.
- I could write the same thing for all the expressions above. Therefore, {v} alone is not adequate for propositional logic.