MA 523: Homework 5

Carlos Salinas

October 4, 2016

CARLOS SALINAS PROBLEM 5.1

Problem 5.1

Prove that Laplace's equation $\Delta u=0$ is rotation invariant; that is, if O is an orthogonal $n\times n$ matrix and we define $v(x):=u(Ox),\ x\in\mathbb{R}^n$, then $\Delta v=0$.

SOLUTION.

MA 523: Homework 5 –1 of 3–

CARLOS SALINAS PROBLEM 5.2

Problem 5.2

Let n=2 and U be the halfplane $\{x_2>0\}$. Prove that

$$\sup_{U} u = \sup_{\partial U} u$$

for $u \in C^2(U) \cap C(\bar{U})$ which are harmonic in U under the additional assumption that u is bounded from above in \bar{U} . (The additional assumption is needed to exclude examples like $u=x_2$.) [Hint: Take for $\varepsilon > 0$ the harmonic function

$$u(x_1, x_2) + \varepsilon \ln \sqrt{x_1^2 + (x_2 + 1)^2}.$$

Apply the maximum principle to a region $\{x_1^2 + (x_2 + 1)^2 < a_2, x_2 > 0\}$ with large a. Let $\varepsilon \to 0$.]

Solution.

CARLOS SALINAS PROBLEM 5.3

Problem 5.3

Let $U \subset \mathbb{R}^n$ be an open set. We say $v \in C^2(U)$ is subharmonic if

$$-\Delta v \le 0$$
 in U .

(a) Let $\varphi \colon \mathbb{R}^m \to \mathbb{R}$ be smooth and convex. Assume u^1, \dots, u^m are harmonic in U and

$$v := \varphi(u_1, \dots, u_m).$$

Prove v is sub harmonic.

[Hint: Convexity for a smooth function $\varphi(z)$ is equivalent to $\sum_{j,k=1}^{m} \varphi_{z_j,z_k}(z)\xi_j\xi_j \geq 0$ for any $\xi \in \mathbb{R}^m$.]

(b) Prove $v := |Du|^2$ is subharmonic, whenever u is harmonic. (Assume that harmonic functions are C^{∞} .)

SOLUTION.