

Side-channel Project

Influence of Pre-treatments on Side-channel Attacks

What is a Side-channel Attack?

- Uses physical measurements to break a cryptosystem.
- Various physical information sources are possible:
- ➤ Power consumption → The most common
- Electromagnetic emissions
- Acoustic signals
- Thermal imaging

The Power Consumption source

- These recordings are referred to as "traces".
- Traces are measurable physical outputs recorded from a cryptographic device during the operation of encrypting or decrypting data.

Fig. 1. Example of AES trace

→ It is hard to differentiate the AES operations.

Exploring Two Fundamental Side Channel Attacks

- Correlation Power Analysis (CPA):
 - → Identifies direct relationships between key guesses and power traces using correlation coefficients.

- Linear Regression Analysis (LRA):
 - → Uses regression to predict key bits from power consumption changes.

Why is Preprocessing Critical in SCAs?

- Noise Reduction
- Improved Attack Performance
- Enhanced Analysis
 - ★ A topic barely addressed in current scholarly discussion!

Generic Attack Flow

- 1 Pre-processing on the observations
- 2 Pre-processing on the predictions for all estimations
- 3 Processing on the predictions and observations
- 4 Return a key candidate

Power Models

Hamming weight

Hamming distance

Implemented Attacks

- CPA with lascar library
- CPA in bare numpy
- CPA in bare numpy in accumulation mode
- LRA in bare numpy

About lascar library

Fast

Black box

Lack of documentation

CPAs in bare numpy

- Slow (at first)
- Separated in 2 parts:
 - Computing the model for all hypothesis with data
 - Correlating the model with the leakages

LRAs in bare numpy

- Slower than CPA
- Separated in parts:
 - Computing the model matrix
 - Quantify the error between the model and the leakages

Experiences

What did we use to achieve those attacks

- Datas
- Metrics
- Pre-treatments

Datas

- First classic traces
 - ➤ 1000 traces
 - Software
 - Software capture to get the traces
 - Hamming weight
- Extended AES HD Dataset
 - > 500 000 traces
 - ➤ Github
 - > Hardware
 - Physical capture
 - Hamming distance

Metrics

Rank evolution

- Tracks the positional change of the correct key among all candidates, evaluated over successive analyses
- > A rapidly decreasing rank indicates an attack increasing accuracy.
- Helps in evaluating the efficiency of attack strategies and preprocessing techniques.
- Software dataset
- Hardware dataset

Pre-treatments 1/3

- LRA
 - > increase of traces overtime
- CPA
 - > traces accumulation

Pre-treatments 2/3

- Raw
 - Raw traces use to compare with pre-treatments
- Square
 - Applies squaring to each trace
- Absolute value
 - Converts all data points in each trace to their absolute values, to focus on the magnitude of fluctuations rather than their direction

Pre-treatments 3/3

Centered

Subtracts the mean of each trace from all its values, effectively centering the trace around zero

Standardized

- Center the traces by subtracting the mean
- reduce them by dividing their gap

Results

Ranks evolution for CPA

Ranks evolution for LRA

What's next?

- Repeat the experiment with random traces
- Look for pre-traitement influence at byte level
- Try more pre-traitements

Thank you!