Voting rules at the Eurovision Song Contest (ESC)

Lennart Beekhuis

Supervisors: Arthur Boixel, Ulle Endriss

UvA

17 December 2019

Table of Contents

Overview of the ESC

Research questions

Progress

Remaining questions

Basic rules of the ESC

- Each *country* sends in a contestant which performs a song
- Afterwards, each country votes for other countries' performances
- ► Votes are aggregated using a *voting rule*
- Country with the most points wins

Research Questions

Voting Rules

- ▶ A total of 7 different *voting rules* have been used
- ► The rules belong to different *families*
- Is there a *unified framework* in which all rules can fit?

Research Questions

Voting Rules

- ▶ A total of 7 different *voting rules* have been used
- ► The rules belong to different *families*
- Is there a *unified framework* in which all rules can fit?

Research Questions

- ▶ To what extent can a *rule influence* the result?
- ▶ It is possible to design a rule which makes country X win in year Y?
- Are countries colluding with each other?

Extracting rankings and applying rules

▶ The first goal is to extract a ranking from the data

Figure: From point distribution to ranking

Extracting rankings and applying rules (2)

- ► How can we apply a rule F on the rankings extracted from year Y?
- Some problems arise:
 - Some rules aren't directly applicable on extracted rankings
 - ► Some other rules aren't applicable at all on extracted rankings
- ► A *model* was created to make possibilities clear and to simplify work on the other questions

A unified perspective

Country v in C votes by submitting a ranking \succ_v in $\mathcal{L}(C)$ and a scoring vector $w_v = (w_v^1, \dots, w_v^n)$ in \mathcal{W} . A voting rule $F_{\mathcal{W}}$ is used to select an outcome, a set of winning countries:

$$F_{\mathcal{W}}: (\mathcal{L}(C) \times \mathcal{W})^n \to 2^C \setminus \{\emptyset\}$$

The rule F_{W} will compute the *score* of each country according to the submitted ballots. Countries with the highest final score win.

$$\forall c \in C, \ score(c) = \sum_{\substack{v \in C \\ v \neq c}} w_v^{rank(c)}$$

Automating the computation of results

- Python code was written to:
 - Extract rankings from data
 - Apply a given rule on a set of rankings
 - Implement tie breaking systems

Influence of the voting rule on the outcome

- ▶ Out of the 142 times another rule has been applied on an ESC, only 21 contests ended up with a different result.
- ► If an outcome of an ESC changes when using one different rule, it most likely also changes when using another different rule.
- Hypothesis: outcome in these ESCs was very close

Figure: Outcomes for different ESC rules

Remaining questions

- ▶ It is possible to design a rule which makes country X win in year Y?
 - This problem can be represented by a set of inequalities
 - First solve theoretically
 - Afterwards, use algorithms to solve for all ESCs
- Are countries colluding with each other?
 - Come up with a well defined notion of collusion
 - Design an algorithm to <u>automate collusion detection</u>