Topology Course Notes (KSM1C03)

Day 18: 17th October, 2025

countability axioms in metric space -- Lebesgue number lemma

18.1 Countability axioms in metric spaces

Recall, a space is called a G_{δ} -space if every closed set can be written as the intersection of countably many open sets.

Example 18.2: (Lindelöf is not separable)

Consider an uncountable space X, and fix a point $x_0 \in X$. Let \mathcal{T} be the excluded point topology on X: a proper subset $U \subsetneq X$ is open if and only if $x_0 \not\in U$. Then, the only open set containing x_0 is X itself, and hence, X is Lindelöf (in fact, compact). On the other hand, it cannot be separable: for any set $A \subset X$, one can see that $\bar{A} = A \cup \{p\}$. Thus, there cannot be a countable dense subset.

Example 18.3: (Separable is not Lindelöf)

Consider an uncountable space X, and fix a point $x_0 \in X$. Let \mathcal{T} be the particular point topology on X based at x_0 : a nonempty set is open if and only if it contains x_0 . Then, (X,\mathcal{T}) is separable, as the singleton $\{x_0\}$ is dense in X. But (X,\mathcal{T}) is not Lindelöf, as the open cover $\{\{x_0,x\}\mid x\in X\}$ does not have any countable sub-cover.

Theorem 18.4: (Metric space and countability axioms)

Suppose (X,d) is a metric space. Then, X is first countable. Moreover, the following are equivalent.

- a) X is second countable.
- b) X is separable.
- c) X is Lindelöf.

Proof

Given any $x \in X$, consider the open balls $B_n := B_d\left(x, \frac{1}{n}\right)$. It is easy to see that $\{B_n\}$ is a countable basis at x. Thus, X is first countable.

Since any second countable space is separable and Lindelöf, clearly a) \Rightarrow b) and a) \Rightarrow c) holds. Let us assume X is separable. Then, we have a countable subset $A \subset X$ which is dense in X. Consider the collection

$$\mathcal{B} \coloneqq \left\{ B_d \left(a, \frac{1}{n} \right) \mid a \in A, \ n \ge 1 \right\},$$

which is clearly a countable collection. Let us show that \mathcal{B} is a basis for the topology on (X,d). Suppose $x \in X$, and pick some arbitrary open neighborhood $x \in U \subset X$. Then, for some $n \geq 1$, we have

$$x \in B_d\left(x, \frac{1}{2n}\right) \subset B_d\left(x, \frac{1}{n}\right) \subset U.$$

Since A is dense, we have some $a \in A \cap B_d\left(x, \frac{1}{2n}\right)$. Then, for any $y \in B_d\left(a, \frac{1}{2n}\right)$, we have

$$d(x,y) \le d(x,a) + d(a,y) < \frac{1}{2n} + \frac{1}{2n} = \frac{1}{n} \Rightarrow y \in B_d\left(x, \frac{1}{n}\right) \subset U.$$

Thus, $B_d\left(a,\frac{1}{2n}\right)\subset U$. Also, $d(x,a)\leq \frac{1}{2n}$ and so, $x\in B_d\left(a,\frac{1}{2n}\right)$. Thus, \mathcal{B} is a basis, showing b) \Rightarrow a).

Now, suppose X is Lindelöf. For each $n \geq 1$, consider the collection

$$\mathcal{U}_n := \left\{ B_d\left(x, \frac{1}{n}\right) \mid x \in X \right\},$$

which is clearly an open cover of X. Hence, there is a countable subcover $\mathcal{V}_n \subset \mathcal{U}_n$. Consider the collection $\mathcal{V} = \bigcup_{n \geq 1} \mathcal{V}_n$, which is clearly a countable collection of open sets. Let us show that \mathcal{V} is a basis for the topology on (X,d). Fix some $x \in X$, and some open neighborhood $x \in U \subset X$. Then, for some $n \geq 1$ we have $x \in B_d\left(x,\frac{1}{2n}\right) \subset B_d\left(x,\frac{1}{n}\right) \subset U$. Since \mathcal{V}_{2n} is a cover, there is some $a \in X$ such that $B_d\left(a,\frac{1}{2n}\right) \in \mathcal{V}_{2n}$ and $x \in B_d\left(a,\frac{1}{2n}\right)$. Now, for any $y \in B_d\left(a,\frac{1}{2n}\right)$, we have

$$d(x,y) \le d(x,a) + d(a,y) < \frac{1}{2n} + \frac{1}{2n} = \frac{1}{n} \Rightarrow y \in B_d\left(x, \frac{1}{n}\right) \subset U.$$

Thus, $x \in B_d\left(x, \frac{1}{2n}\right) \subset U$. This shows that \mathcal{V} is a basis, proving c) \Rightarrow a).

Proposition 18.5: (Compact in metric space)

A compact subset of a metric space is closed and bounded.

Proof

Let (X,d) be a metric space, and $C\subset X$ is a compact subset. Since metric spaces are T_2 , clearly any compact subset is closed. For any $x_0\in C$ fixed, consider the open covering $C\subset \bigcup_{n\geq 1}B_d(x_0,n)$. This admits a finite subcover, say, $C\subset \bigcup_{i=1}^kB_d(x_0,n_i)$. Taking $n_0:=\max_{1\leq i\leq k}n_i$, we have $C\subset B_d(x_0,n_0)$. Thus, C is bounded.

Example 18.6: (Closed bounded set in metric space)

In an infinite space X, consider the metric

$$d(x,y) := \begin{cases} 0, & x = y, \\ 1, & x \neq y. \end{cases}$$

The induced topology is discrete, and hence, X is not compact. But clearly X is closed in itself, and bounded as $X \subset B_d(x_0, 2)$.

Lemma 18.7: (Lebesgue number lemma)

Suppose (X,d) is a compact metric space, $f:X\to Y$ is a continuous map. Let $\mathcal{V}=\{V_\alpha\}$ be an open cover of f(X). Then, there exists a $\delta>0$ (called the *Lebesgue number of the covering*) such that for any set $A\subset X$, we have

$$\operatorname{Diam}(A) \coloneqq \sup_{x,y \in A} d(x,y) < \delta \Rightarrow f(A) \subset V_{\alpha} \text{for some } \alpha.$$

Proof

For each $x\in X$, clearly, $f(x)\in V_{\alpha_x}$ for some α_x . By continuity of f, we have some $\delta_x>0$ such that the ball $x\in B_d(x,\delta_x)\subset f^{-1}(V_{\alpha_x})$. Now, $X=\bigcup_{x\in X}B_d\left(x,\frac{\delta_x}{2}\right)$ has a finite subcover, say, $X=\bigcup_{i=1}^nB_d\left(x_i,\frac{\delta_{x_i}}{2}\right)$. Set

$$\delta \coloneqq \min_{1 \le i \le n} \frac{\delta_{x_i}}{4}.$$

We claim that δ is a Lebesgue number for the covering. Let $A \subset X$ be a set with $\mathrm{Diam}(A) < \delta$. For some $a \in A$, there exists $1 \le i_0 \le n$, such that $a \in B_d\left(x_{i_0}, \frac{\delta_{x_{i_0}}}{2}\right)$. Now, for any $b \in A$, we have $d(a,b) \le \mathrm{Diam}(A) < \delta$. Then,

$$d(x_{i_0}, b) \le d(x_{i_0}, a) + d(a, b) < \frac{\delta_{x_{i_0}}}{2} + \delta \le \frac{\delta_{x_{i_0}}}{2} + \frac{\delta_{x_{i_0}}}{4} = \frac{3\delta_{x_{i_0}}}{4} < \delta_{x_{i_0}}.$$

Thus,
$$A \subset B_d(x_{i_0}, \delta_{x_{i_0}}) \Rightarrow f(A) \subset f\left(B_d\left(x_{i_0}, \delta_{x_{i_0}}\right)\right) \subset V_{\alpha_{x_{i_0}}}.$$

3