Relational Algebra

- ▶ The relational algebra is a procedural language
- ▶ The relational algebra consists of six basic operators
 - ightharpoonup select: σ
 - ightharpoonup project: π
 - ▶ union: ∪
 - ▶ set difference: —
 - ► Cartesian product: ×
 - rename: ρ
- ► The operators take one or two relations as inputs and produce a new relation as a result.
- ▶ This property makes the algebra **closed** (i.e., all objects in the relational algebra are relations).

Select Operation

- ▶ Notation: $\sigma_p(r)$
- p is called the selection predicate
- ▶ **Definition**: $t \in \sigma_p(r) \Leftrightarrow t \in r \land p(t)$
- ightharpoonup p is a condition in propositional calculus consisting of **terms** connected by : \land (and), \lor (or), \neg (not)
- ▶ Example: $\sigma_{BranchName='Perryridge'}(account)$
- ▶ Example: $\sigma_{A=B \land D>5}(r)$

r

Α	В	С	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

$$\sigma_{A=B\wedge D>5}(r)$$

$\sigma_{A=B\wedge D>5}(r)$					
Α	В	С	D		
α	α	1	7		
β	β	23	10		

Project Operation

- ▶ Notation: $\pi_{A_1,...,A_k}(r)$
- ► The result is defined as the relation of *k* columns obtained by deleting the columns that are not listed
- ▶ **Definition**: $t \in \pi_{A_1,...,A_k}(r) \Leftrightarrow \exists x (x \in r \land t = x[A_1,...,A_k])$
- ► There are no duplicate rows in the result since relations are sets
- ▶ Example: $\pi_{AccNr,Balance}(account)$
- ightharpoonup Example: $\pi_{A,C}(r)$

r		
Α	В	С
α	10	1
α	20	1
β	30	1
β	40	2

$\pi_{A,C}(r)$				
Α	С			
α	1			
β	1			
β	2			

Union Operation

- ▶ **Notation**: $r \cup s$
- ▶ **Definition**: $t \in (r \cup s) \Leftrightarrow t \in r \lor t \in s$
- For $r \cup s$ to be valid r and s must have the same schema (i.e., attributes).
- ▶ Example: $\pi_{CustName}(depositor) \cup \pi_{CustName}(borrower)$
- ▶ Example: $r \cup s$

r						
Λ	В]	S			/
	Ь		Α	В		
α	1			<u> </u>]]	'
	_		α	2		(
α	2		$ $ $_{\mathcal{Q}}$	3		
B	1			3		/
						Ι,
						1 /

	$r \cup$	5
	Α	В
3	α	1
2	α	2
3	β	1
	β	3

Set Difference Operation

- ▶ Notation: r s
- ▶ **Definition**: $t \in (r s) \Leftrightarrow t \in r \land t \notin s$
- ▶ Set differences must be taken between (union) compatible relations.
 - r and s must have the same arity
 - ▶ attribute domains of *r* and *s* must be compatible
- ▶ Example: r s

1	
Α	В
α	1
α	2
β	1

В
2
3

r-s		
Α	В	
α	1	
β	1	

Cartesian Product Operation

- ▶ Notation: $r \times s$
- ▶ **Definition**: $t \in (r \times s) \Leftrightarrow x \in r \land y \in s \land t = x \circ y$
- \blacktriangleright We assume that the attribute names of r and s are disjoint. If the attribute names are not disjoint, then renaming must be used.
- ▶ Example: $r \times s$

		S		
r		С	D	E
Α	В	α	10	а
α	1	β	10	а
β	2	β	20	b
		γ	10	b

$r \times$	S			
Α	В	С	D	Е
α	1	α	10	а
α	1	β	10	а
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	а
β	2	β	10	а
β	2	β	20	b
β	2	γ	10	b

Rename Operation

- ▶ Allows us to name the results of relational algebra expressions by setting relation and attribute names.
- ▶ The rename operator is also used if there are name clashes.
- ► Various flavors:
 - $\rho_r(E)$ changes the relation name to r.
 - $\rho_{r(A_1,...,A_n)}(E)$ changes the relation name to r and the attribute names to $A_1,...,A_k$.
 - $\rho_{(A_1,...,A_n)}(E)$ changes attribute names to $A_1,...,A_k$.
- ▶ Example: $\rho_{s(X,Y,U,V)}(r)$

r			
Α	В	С	D
α	α	1	7
β	β	23	10

5			
X	Y	U	V
α	α	1	7
β	β	23	10

Natural Join

▶ Notation: $r \bowtie s$

- \blacktriangleright Let r and s be relations on schemas R and S, respectively.
- ▶ Attributes that occur in r and s must be identical.
- ightharpoonup r
 ightharpoonup s is a relation on a schema that includes all attributes from schema S that do not occur in schema R.
- ► Example:
 - ightharpoonup r
 ightharpoonup s with R(A, B, C, D) and S(E, B, D)
 - \blacktriangleright Schema of result is (A, B, C, D, E)
 - ▶ Equivalent to: $\pi_{A,B,C,D,E}(\sigma_{B=Y \land D=Z}(r \times \rho_{(E,Y,Z)}(s))$

r			
Α	В	С	D
α	1	α	a
β	2	γ	a
γ	4	β	b
α	1	γ	a
δ	2	β	b

S		
В	D	E
1	а	α
3	а	β
1	а	
1 2 3	b	$\left egin{array}{c} \gamma \ \delta \end{array} \right $
3	b	ϵ

$r \bowtie s$					
Α	В	С	D	Е	
α	1	α	а	α	
α	1	α	а	$\mid \gamma \mid$	
α	1	γ	а	α	
α	1	γ	а	$\mid \gamma \mid$	
δ	2	β	b	δ	