LAPORAN PRAKTIKUM ALGORITMA DAN PEMROGRAMAN LANJUTAN PERTEMUAN KE – 13

Disusun Oleh:

NAMA : TARISA DWI SEPTIA

NIM : 205410126

JURUSAN : TEKNIK INFORMATIKA

JENJANG : S1

Laboratorium Terpadu

Sekolah Tinggi Management Informatika Komputer

AKAKOM

YOGYAKARTA

2021

Sorting

A. Tujuan

 Dapat mengurutkan data dengan metode bubble sort, selection sort dan mengimplementasikannya dalam program.

B. Praktik

1. Program bubble sort.

```
import java.util.Scanner;
public class Praktikl{
   public void bubbleSort(float larik2[]){
       for (int i=0;i<larik2.length;i++) {
            for (int elemen=0;elemen<larik2.length-1;elemen++) {
               if (larik2[elemen]>larik2[elemen+l])
                   tukar(larik2, elemen, elemen+1);
            }
       }
   public void tukar(float larik3[], int satu, int dua){
       float temp;
       temp = larik3[satu];
       larik3[satu] = larik3[dua];
       larik3[dua] = temp;
   public static void main(String args[]) {
       Scanner masuk = new Scanner(System.in);
       Praktikl lrk = new Praktikl();
       float nilai[]= new float[5];
       System.out.println("Masukan 5 buat data nilai");
       for (int i = 0; i < 5; i++) {
           System.out.print( (i + 1) + " : ");
           nilai[i]=masuk.nextFloat();
       System.out.println("Data nilai yang dimasukan");
       for (int i = 0; i < 5; i++)
           System.out.println(nilai[i]);
           System.out.println("Data hasil pengurutan ");
           lrk.bubbleSort(nilai);
       for (int i = 0; i < 5; i++)
           System.out.println(nilai[i]);
```

Output:

```
Masukan 5 buat data nilai
1:45
2:34
3 : 66
4 : 44
5 : 23
Data nilai yang dimasukan
45.0
34.0
66.0
44.0
23.0
Data hasil pengurutan
23.0
34.0
44.0
45.0
66.0
Press any key to continue \dots
```

2. Program Selection sort.

```
import java.util.Scanner;
public class Praktik2{
   public void selectionSort(float larik2[]) {
       for (int i=0;i<larik2.length;i++) {
            int min =i:
            for (int elemen=i+1;elemen<larik2.length;elemen++) {</pre>
                if (larik2[min]>larik2[elemen])
                   min = elemen;
            tukar(larik2, min,i);
   public void tukar(float larik3[], int satu, int dua){
       float temp;
       temp = larik3[satu];
       larik3[satu] = larik3[dua];
       larik3[dua] = temp;
    public static void main(String args[]) {
       Scanner masuk = new Scanner(System.in);
       Praktik2 lrk = new Praktik2();
float nilai[]= new float[5];
       System.out.println("Masukan 5 buat data nilai");
       for (int i = 0; i < 5; i++) {
           System.out.print( (i + 1)+" : ");
           nilai[i]=masuk.nextFloat();
       System.out.println("Data nilai yang dimasukan");
        for (int i = 0; i < 5; i++)
           System.out.println(nilai[i]);
           System.out.println("Data hasil pengurutan ");
           lrk.selectionSort(nilai);
        for (int i = 0; i < 5; i++)
            System.out.println(nilai[i]);
   }
```

Output:

```
Masukan 5 buat data nilai
1 : 56
2 : 45
3:44
4:89
5 : 23
Data nilai yang dimasukan
56.0
45.0
44.0
89.0
23.0
Data hasil pengurutan
23.0
44.0
45.0
56.0
89.0
Press any key to continue . . .
```

C. Latihan

- 1. Kita bisa melakukan sorting dengan menggunakan kelas Collection. Jalankan program berikut, dan jelaskan.
 - a. Sorting ascending

```
// Collections method sort.
import java.util.List;
import java.util.Arrays;
import java.util.Collections;
public class Latihanl {
    public static void main( String[] args ) {
        String[] suits = { "Hearts", "Diamonds", "Clubs", "Spades" };
        List< String > list = Arrays.asList( suits );
        System.out.printf( "Unsorted array elements: %s\n", list );
        Collections.sort( list );
        System.out.printf( "Sorted array elements: %s\n", list );
}
```

Output:

```
Unsorted array elements: [Hearts, Diamonds, Clubs, Spades]
Sorted array elements: [Clubs, Diamonds, Hearts, Spades]
Press any key to continue . . . _
```

b. Sorting descending

```
import java.util.List;
import java.util.Arrays;
import java.util.Collections;
public class Latihan2 {
    public static void main( String[] args ) {
        String[] suits = { "Hearts", "Diamonds", "Clubs", "Spades" };
        List< String > list = Arrays.asList( suits );
        System.out.printf( "Unsorted array elements: %s\n", list );
        Collections.sort( list, Collections.reverseOrder() );
        System.out.printf( "Sorted list elements: %s\n", list );
}
```

Output:

```
Unsorted array elements: [Hearts, Diamonds, Clubs, Spades]
Sorted list elements: [Spades, Hearts, Diamonds, Clubs]
Press any key to continue . . . <u> </u>
```

D. Tugas

- 1. Jelaskan tentang metode sorting Insertion sort, Merge sort dan Quick sort
- Insertion sort : Sebuah algoritma pengurutan yang membandingkan dua elemen data pertama, mengurutkannya, kemudian mengecek elemen data berikutnya satupersatu dan membandingkannya dengan elemen data yang telah diurutkan.
- Merge sort : Algoritma yang berdasarkan dari Strategi divide-and-conquer. Algoritma ini terdiri dari dua bagian utama, yaitu bagian list menjadi sublist-sublist yang lebih kecil dan bagian sort (pengurutan) dan merge (penggabungan) pada sublist-sublist tersebut
- Quick sort : Metode terdapat dalam proses pengurutan data dengan menggunakan prinsip rekursif. Metode ini menggunakan strategi "Pecah Belah" dengan mekanisme

E. Kesimpulan

Setelah melakukan praktik diatas yang sesuai dengan tujuan modul 13 ini dapat disimpulkan bahwa Mahasiswa dapat mengurutkan data dengan metode bubble sort, selection sort dan mengimplementasikannya dalam program.