

Estruturas Lineares

Parte A

1.	Complete a sentença: Em uma estrutura linear, os elementos formam uma					
2.	Marque as estruturas abaixo que são estruturas lineares.					
	\Box array					
	□ árvore binária de busca					
	□ fila					
	\square grafo					
	\Box heap					
	□ lista					
	□ pilha					
	□ vetor					
3.	Marque as bibliotecas de C++ abaixo que implementam estruturas lineares.					
	□ bitset					
	□ deque					
	\square map					
	□ queue					
	□ set					
	□ stack					
	□ vector					
4.	Preencha os espaços com uma das opções sugeridas. Um tipo de dado abstrato é definido pela su					
	(implementação/interface). Cada tipo de dado abstrato tem (uma única implementação/várias implementações possíveis) e (uma única interface/várias					
	interfaces possíveis).					
5.	Defina:					
	(a) uma lista encadeada					
	(b) uma lista duplamente encadeada					
	(b) uma lista auto-organizável					
	(c) uma skip list					
6.	Em uma estrutura FIFO,					
	$\hfill\Box$ O primeiro elemento a entrar é o primeiro a sair					
	$\hfill\Box$ O primeiro elemento a entrar é o último a sair					
	$\hfill\Box$ O último elemento a entrar é o primeiro a sair					
	$\hfill\Box$ O último elemento a entrar é o último a sair					
7.	Em uma estrutura LIFO,					
	$\hfill\Box$ O primeiro elemento a entrar é o primeiro a sair					
	$\hfill\Box$ O primeiro elemento a entrar é o último a sair					
	□ O último elemento a entrar é o primeiro a sair					

- $\hfill\Box$ O último elemento a entrar é o último a sair
- 8. Complete o quadro abaixo assinalando, em cada coluna, as operações "eficientes" da estrutura.

Característica	array	vetor	lista	pilha	fila
Acesso aleatório aos elementos					
Inserção					
Inserção no início					
Inserção no fim	x				
Remoção					
Remoção no início					
Remoção no fim		x			
Busca					

Parte B

- 9. Dê uma definição precisa de estrutura linear.
- 10. Usando a definição acima, quais das estruturas listadas a seguir seriam consideradas estruturas lineares?
 - \Box arrays
 - □ filas
 - □ listas circulares
 - □ listas com prioridades
 - □ pilhas
 - \square skip lists
- 11. Implemente, em C++, uma lista circular.
- 12. Escreva uma algoritmo, em pseudocódigo, que implemente a inserção de um elemento em uma lista duplamente encadeada.
- 13. Quais são as vantagens e as desvantagens de se substituir uma lista duplamente encadeada por uma lista simplemente encadeada?
- 14. O algoritmo abaixo implementa uma pilha em Python. Reimplemente o mesmo código em C++.

```
class Stack:
       def __init__(self):
            self.elems = []
       def push(self, x):
            self.elems.append(x)
       def pop(self):
9
            return self.elems.pop()
10
11
       def = str_{-}(self):
12
            xs = [str(x) \text{ for } x \text{ in self.elems}[::-1]]
return '(' + ' '.join(xs) + ')'
13
14
       def empty(self):
16
            return len(self.elems) = 0
17
18
19
   if __name__ == '__main__':
20
21
       s = Stack()
22
       print 'Nova pilha = {}, vazia? {}'.format(s, s.empty())
23
24
       s.push(1)
25
       s.push(2)
26
27
       s.push(3)
       print 'Apos insercoes =', s
28
29
       print 'topo = {}'.format(s.pop())
30
      print 'nova pilha = {}, vazia? {}'.format(s, s.empty())
31
```

 ${\bf 15.} \ {\rm O} \ {\rm pseudoc\'odigo} \ {\rm abaixo} \ {\rm implementa} \ {\rm a} \ {\rm remo\~c\~ao} \ {\rm de} \ {\rm um} \ {\rm elemento} \ {\rm em} \ {\rm uma} \ {\rm lista} \ {\rm encadeada}. \ {\rm Implemente} \ {\rm o}$ algoritmo em sua linguagem de preferência.

Algoritmo 1 Remoção de elemento de lista encadeada

14.

 $_{17.}$ end if

 $_{20.}$ delete p

22. return

 $_{15.}$ if $\,q \neq null\,$ then $\texttt{q.next} \leftarrow \texttt{p.next}$

 $_{19.} \text{ L.head} \leftarrow \text{p.next}$

Entrada: Uma lista encadeada L e a posição do elemento n a ser removido Saída: A lista remanescente, após a remoção do n-ésimo elemento 1. if L.size \geq n then return 3. end if $_{5.} \ p \leftarrow \texttt{L.head}$ $_{6.}\ q\leftarrow null$ $_{7.}~\mathbf{i} \leftarrow 1$ $_{9.}$ while i < n do 10. $\mathtt{q} \leftarrow \mathtt{p}$ $\texttt{p} \leftarrow \texttt{p.next}$ $\mathtt{i} \leftarrow \mathtt{i} + 1$ 13. end while