Espaces Vectoriels Pascal lainé

Espaces vectoriels

Exercice 1.

Soient dans \mathbb{R}^3 les vecteurs $v_1 = (1,1,0)$, $v_2 = (4,1,4)$ et $v_3 = (2,-1,4)$. La famille (v_1, v_2, v_3) est-elle libre ?

Allez à : Correction exercice 1

Exercice 2.

Les familles suivantes sont-elles libres?

- 1. $v_1 = (1,0,1), v_2 = (0,2,2)$ et $v_3 = (3,7,1)$ dans \mathbb{R}^3 .
- 2. $v_1 = (1,0,0), v_2 = (0,1,1)$ et $v_3 = (1,1,1)$ dans \mathbb{R}^3 .
- 3. $v_1 = (1,2,1,2,1), v_2 = (2,1,2,1,2), v_3 = (1,0,1,1,0) \text{ et } v_4 = (0,1,0,0,1) \text{ dans } \mathbb{R}^5.$
- 4. $v_1 = (2,4,3,-1,-2,1), v_2 = (1,1,2,1,3,1) \text{ et } v_3 = (0,-1,0,3,6,2) \text{ dans } \mathbb{R}^6.$
- 5. $v_1 = (2,1,3,-1,-4,-1), v_2 = (-1,1,-2,2,-3,3) \text{ et } v_3 = (1,5,0,4,-1,7) \text{ dans } \mathbb{R}^6.$

Allez à : Correction exercice 2

Exercice 3.

On considère dans \mathbb{R}^n une famille de 4 vecteurs linéairement indépendants (e_1, e_2, e_3, e_4) Les familles suivantes sont-elles libres ?

- 1. $(e_1, 2e_2, e_3)$.
- 2. (e_1, e_3) .
- 3. $(e_1, 2e_1 + e_4, e_4)$.
- 4. $(3e_1 + e_3, e_3, e_2 + e_3)$.
- 5. $(2e_1 + e_2, e_1 3e_2, e_4, e_2 e_1)$.

Allez à : Correction exercice 3

Exercice 4.

Soient dans \mathbb{R}^4 les vecteurs $u_1 = (1,2,3,4)$ et $u_2 = (1,-2,3,-4)$. Peut-on déterminer x et y pour que $(x,1,y,1) \in Vect(u_1,u_2)$? Et pour que $(x,1,1,y) \in Vect(u_1,u_2)$?

Allez à : Correction exercice 4

Exercice 5.

Dans \mathbb{R}^4 on considère l'ensemble E des vecteurs (x_1, x_2, x_3, x_4) vérifiant $x_1 + x_2 + x_3 + x_4 = 0$. L'ensemble E est-il un sous espace vectoriel de \mathbb{R}^4 ? Si oui, en donner une base.

Allez à : Correction exercice 5

Exercice 6.

Dans l'espace \mathbb{R}^4 , on se donne cinq vecteurs : $v_1 = (1,1,1,1)$, $v_2 = (1,2,3,4)$, $v_3 = (3,1,4,2)$, $v_4 = (10,4,13,7)$ et $v_5 = (1,7,8,14)$

Chercher les relations de dépendance linéaires entre ces vecteurs. Si ces vecteurs sont dépendants, en extraire au moins une famille libre engendrant le même sous-espace.

Allez à : Correction exercice 6

Exercice 7.

Dans l'espace \mathbb{R}^4 , on se donne cinq vecteurs : $v_1 = (1,1,1,1)$, $v_2 = (1,2,3,4)$, $v_3 = (3,1,4,2)$, $v_4 = (10,4,13,7)$ et $v_5 = (1,7,8,14)$

À quelle(s) condition(s) un vecteur $b = (b_1, b_2, b_3, b_4)$ appartient-il au sous-espace engendré par les vecteurs v_1, v_2, v_3, v_4 et v_5 ? Définir ce sous-espace par une ou des équations.

Allez à : Correction exercice 7

Exercice 8.

Soit E un espace vectoriel sur \mathbb{R} et v_1 , v_2 , v_3 et v_4 une famille libre d'éléments de E, les familles suivantes sont-elles libres?

1. $(v_1, 2v_2, v_3)$

- 2. (v_1, v_3)
- 3. $(v_1, v_1 + 2, v_4)$
- 4. $(3v_1 + v_3, v_3, v_2 + v_3)$.
- 5. $(2v_1 + v_2, v_1 3v_2, v_4, v_2 v_1)$

Allez à : Correction exercice 8

Exercice 9.

Dans \mathbb{R}^4 , comparer les sous-espaces F et G suivants :

$$F = Vect((1,0,1,1), (-1,-2,3,-1), (-5,-3,1,5))$$

$$G = Vect((-1,-1,1,-1), (4,1,2,4))$$

Allez à : Correction exercice 9

Exercice 10.

On suppose que $v_1, v_2,...,v_n$ sont des vecteurs indépendants de \mathbb{R}^n .

- 1. Les vecteurs $v_1 v_2$, $v_2 v_3$, $v_3 v_4$,..., $v_{n-1} v_n$, $v_n v_1$ sont-ils linéairement indépendants ?
- 2. Les vecteurs $v_1 + v_2$, $v_2 + v_3$, $v_3 + v_4$,..., $v_{n-1} + v_n$, $v_n + v_1$ sont-ils linéairement indépendants?
- 3. Les vecteurs v_1 , $v_1 + v_2$, $v_1 + v_2 + v_3$, $v_1 + v_2 + v_3 + v_4$,..., $v_1 + v_2 + \cdots + v_{n-1} + v_n$, $v_n + v_1$ sontils linéairement indépendants?

Allez à : Correction exercice 10

Exercice 11.

Soient a = (2,3,-1), b = (1,-1,-2), c = (3,7,0) et d = (5,0,-7).

Soient E = Vect(a, b) et F = Vect(c, d) les sous-espaces vectoriels de \mathbb{R}^3 . Montrer que E = F

Allez à : Correction exercice 11

Exercice 12.

Peut-on déterminer des réels x, y pour que le vecteur v = (-2, x, y, 3) appartienne au sous-espace-vectoriel engendré par le système (u_1, u_2) , où $u_1 = (1, -1, 1, 2)$ et $u_2 = (-1, 2, 3, 1)$

Allez à : Correction exercice 12

Exercice 13.

Soient $u_1 = (0,1,-2,1)$, $u_2 = (1,0,2,-1)$, $u_3 = (3,2,2,-1)$, $u_4 = (0,0,1,0)$ et $u_5 = (0,0,0,1)$ des vecteurs de \mathbb{R}^4 . Les propositions suivantes sont-elles vraies ou fausses? Justifier votre réponse.

- 1. $Vect(u_1, u_2, u_3) = Vect((1,1,0,0), (-1,1,-4,2))$
- 2. $(1,1,0,0) \in Vect(u_1,u_2) \cap Vect(u_2,u_3,u_4)$.
- 3. $\dim(Vect(u_1, u_2) \cap Vect(u_2, u_3, u_4)) = 1$.
- 4. $Vect(u_1, u_2) + Vect(u_2, u_3, u_4) = \mathbb{R}^4$.
- 5. $Vect(u_4, u_5)$ est un sous-espace vectoriel de supplémentaire $Vect(u_1, u_2, u_3)$ dans \mathbb{R}^4 .

Allez à : Correction exercice 13

Exercice 14.

On considère les vecteurs $v_1 = (1,0,0,1)$, $v_2 = (0,0,1,0)$, $v_3 = (0,1,0,0)$, $v_4 = (0,0,0,1)$ et $v_5 = (0,1,0,1)$ dans \mathbb{R}^4 .

- 1. $Vect(v_1, v_2)$ et $Vect(v_3)$ sont-ils supplémentaires dans \mathbb{R}^4 ?
- 2. Même question pour $Vect(v_1, v_3, v_4)$ et $Vect(v_2, v_5)$.
- 3. Même question pour $Vect(v_1, v_2)$ et $Vect(v_3, v_4, v_5)$

Allez à : Correction exercice 14

Exercice 15.

- 1. Est-ce que le sous-ensemble $E = \{(x, y) \in \mathbb{R}^2, y = 2x\}$ de \mathbb{R}^2 , muni des lois habituelles de l'espace vectoriel \mathbb{R}^2 , est un \mathbb{R} -espace vectoriel ?
- 2. Est-ce que le sous-ensemble $F = \{(x, y, z) \in \mathbb{R}^3, y^2 = 2x, z = 0\}$ de \mathbb{R}^3 , muni des lois habituelles de l'espace vectoriel \mathbb{R}^3 est un sous-espace vectoriel de \mathbb{R}^3 ?

Allez à : Correction exercice 15

Exercice 16.

Soient
$$u_1 = (1, -1, 2), u_2 = (1, 1, -1)$$
 et $u_3 = (-1, -5, -7)$

Soit
$$E = Vect(u_1, u_2, u_3)$$

Soit
$$F = \{(x, y, z) \in \mathbb{R}^3, x + y + z = 0\}$$

- 1. Donner une base de E.
- 2. Montrer que F est un sous-espace vectoriel de \mathbb{R}^3 .
- 3. Donner une base de F.
- 4. Donner une base de $E \cap F$.

Allez à : Correction exercice 16

Exercice 17.

Soient
$$u_1 = (1,1,1), u_2 = (2,-2,-1)$$
 et $u_3 = (1,1,-1)$

Soient
$$E = \{(x, y, z) \in \mathbb{R}^3, y + z = 0\}$$
 et $F = Vect(u_1, u_2)$

- 1. Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 . Déterminer une base de E.
- 2. La famille (u_1, u_2, u_3) est-elle libre? Est-ce que $u_3 \in F$?
- 3. Est-ce que $u_3 \in E$?
- 4. Donner une base de $E \cap F$.
- 5. Soit $u_4 = (-1,7,5)$, est-ce que $u_4 \in E$? est-ce que $u_4 \in F$?

Allez à : Correction exercice 17

Exercice 18.

Soit
$$E = \{(x, y, z) \in \mathbb{R}^3, x + y + z = 0\}$$

Soient
$$a = (1, -2, 3)$$
 et $b = (2, 1, -1)$ deux vecteurs. On pose $F = Vect(a, b)$

- 1. Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 .
- 2. Déterminer $E \cap F$.
- 3. A-t-on $E \oplus F$?

Allez à : Correction exercice 18

Exercice 19.

Soient
$$E = \{(x, y, z) \in \mathbb{R}^3 | x + y - 2z = 0 \text{ et } 2x - y - z = 0\} \text{ et } F = \{(x, y, z) \in \mathbb{R}^3 | x + y - z = 0\}$$
 deux sous-ensembles de \mathbb{R}^3 .

On admettra que F est un sous-espace vectoriel de \mathbb{R}^3 .

Soient
$$a = (1,1,1), b = (1,0,1)$$
 et $c = (0,1,1)$

- 1. Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 .
- 2. Déterminer une famille génératrice de *E* et montrer que cette famille est une base.
- 3. Montrer que $\{b, c\}$ est une base de F.
- 4. Montrer que $\{a, b, c\}$ est une famille libre de \mathbb{R}^3 .
- 5. A-t-on $E \oplus F = \mathbb{R}^3$.
- 6. Soit u = (x, y, z), exprimer u dans la base $\{a, b, c\}$.

Allez à : Correction exercice 19

Exercice 20.

Soient
$$E = \{(x, y, z) \in \mathbb{R} | 2x + y - z = 0 \text{ et } x + 2y + z = 0\} \text{ et } F = \{(x, y, z) \in \mathbb{R}^3 | 2x - 3y + z = 0\} \text{ deux sous-ensembles de } \mathbb{R}^3.$$

On admettra que F est un sous-espace vectoriel de \mathbb{R}^3 .

Soient
$$a = (1, -1, 1), b = (-2, -1, 1)$$
 et $c = (-1, 0, 2)$

- 1°) Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 .
- 2°) Déterminer une famille génératrice de E et montrer que cette famille est une base.
- 3°) Montrer que $\{b, c\}$ est une base de F.

- 4°) Montrer que $\{a, b, c\}$ est une famille libre de \mathbb{R}^3 .
- 5°) A-t-on $E \oplus F = \mathbb{R}^3$.
- 6°) Soit u = (x, y, z), exprimer u dans la base $\{a, b, c\}$.

Allez à : Correction exercice 20

Exercice 21.

Soient $E = \{(x, y, z) \in \mathbb{R}^3 | x + y - z = 0 \text{ et } x - y - z = 0\} \text{ et } F = \{(x, y, z) \in \mathbb{R}^3 | x + y - 2z = 0\}$ deux sous-ensembles de \mathbb{R}^3 .

On admettra que F est un sous-espace vectoriel de \mathbb{R}^3 .

Soient a = (1,0,1), b = (1,1,1) et c = (0,2,1)

- 1. Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 .
- 2. Déterminer une famille génératrice de *E* et montrer que cette famille est une base.
- 3. Montrer que $\{b, c\}$ est une base de F.
- 4. Montrer que $\{a, b, c\}$ est une famille libre de \mathbb{R}^3 .
- 5. A-t-on $E \oplus F = \mathbb{R}^3$.
- 6. Soit u = (x, y, z), exprimer u dans la base $\{a, b, c\}$.

Allez à : Correction exercice 21

Exercice 22.

Soient E = Vect(a, b, c, d) un sous-espace vectoriel de \mathbb{R}^3

$$a = (2, -1, -1);$$
 $b = (-1, 2, 3);$ $c = (1, 4, 7);$ $d = (1, 1, 2)$

- 1. Est-ce que (a, b, c, d) est une base de \mathbb{R}^3 ?
- 2. Montrer que (a, b) est une base de E.
- 3. Déterminer une ou plusieurs équations caractérisant *E*.
- 4. Compléter une base de E en une base de \mathbb{R}^3 .

Allez à : Correction exercice 22

Exercice 23.

Soient
$$E = \{(x, y, z, t) \in \mathbb{R}^4, x + y + z - t = 0 \text{ et } x - 2y + 2z + t = 0 \text{ et } x - y + z = 0\}$$

On admettra que *E* est un espace vectoriel.

Et
$$F = \{(x, y, z, t) \in \mathbb{R}^4, 2x + 6y + 7z - t = 0\}$$

Soient
$$a = (2,1,-1,2), b = (1,1,-1,1), c = (-1,-2,3,7)$$
 et $d = (4,4,-5,-3)$ quatre vecteurs de \mathbb{R}^4 .

Première partie

- 1. Déterminer une base de *E* et en déduire la dimension de *E*.
- 2. Compléter cette base en une base de \mathbb{R}^4 .

Deuxième partie

- 3. Montrer que F est un sous-espace vectoriel de \mathbb{R}^4 .
- 4. Déterminer une base de *F*.
- 5. A-t-on $E \oplus F = \mathbb{R}^4$?

Troisième partie

- 6. Montrer que F = Vect(b, c, d).
- 7. Soit $u = (x, y, z, t) \in F$, exprimer u comme une combinaison linéaire de b, c et d.

Allez à : Correction exercice 23

Exercice 24.

Soit
$$E = \{(x, y, z, t) \in \mathbb{R}^4, x + y + z + t = 0, x + 2y - z + t = 0, -x - y + 2z + 2t = 0\}$$
 et $F = \{(x, y, z, t) \in \mathbb{R}^4, x + 3y + 4t = 0\}$

- 1. Donner une base de ces deux sous-espaces vectoriels de \mathbb{R}^4 .
- 2. A-t-on $E \oplus F = \mathbb{R}^4$?

3. Soit $a = (1,3,0,4) \in \mathbb{R}^4$ et on pose G = Vect(a), a-t-on $G \oplus F = \mathbb{R}^4$?

Allez à : Correction exercice 24

Exercice 25.

Soit
$$E = \{(x_1, x_2, x_3) \in \mathbb{R}^3, x_1 + 2x_2 - 3x_3 = 0\}$$

Soit $a = (1, 2, -3)$, et $F = Vect(a)$

- 1. Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 , et déterminer une base de cet espace-vectoriel.
- 2. A-t-on $E \oplus F = \mathbb{R}^3$? On justifiera la réponse.

Allez à : Correction exercice 25

Exercice 26.

Soit
$$E = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4, x_1 + x_3 = 0 \text{ et } x_2 + x_4 = 0\}$$

Soient $u_1 = (1,1,1,1), u_2 = (1,-1,1,-1) \text{ et } u_3 = (1,0,1,0)$
Soit $F = Vect(u_1, u_2, u_3)$

On admettra que *E* est un espace vectoriel.

- 1. Donner une base de *E* et en déduire sa dimension.
- 2. Déterminer une base de F.
- 3. Donner une (ou plusieurs) équation(s) qui caractérise(nt) F.
- 4. Donner une famille génératrice de E + F.
- 5. Montrer que : $E \oplus F = \mathbb{R}^4$.

Allez à : Correction exercice 26

Exercice 27.

Soient
$$a = (1,1,1,1)$$
 et $b = (1,-1,1,-1)$ deux vecteurs de \mathbb{R}^4 . Soit $E = Vect(a,b)$. Soient

$$F_1 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4, x_1 + x_2 + x_3 + x_4 = 0 \text{ et } 2x_1 + x_2 = 0\}$$

$$F_2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4, x_2 + x_4 = 0 \text{ et } x_1 + x_3 = 0\}$$

On admettra que E, F_1 et F_2 sont trois sous-espaces vectoriels de \mathbb{R}^4 .

- 1. Déterminer une base (c, d) de F_1 .
- 2. Déterminer une base (e, f) de F_2
- 3. A-t-on $F_1 \oplus F_2 = \mathbb{R}^4$?
- 4. Montrer que (a, b, c, d) est une base de \mathbb{R}^4 .
- 5. A-t-on $E \oplus F_1 = \mathbb{R}^4$?

Allez à : Correction exercice 27

Exercice 28.

Soient
$$E = \{(x, y, z, t) \in \mathbb{R}^4, x - y + z - t = 0\}, F = \{(x, y, z, t) \in \mathbb{R}^4, x + y + z + t = 0\} \text{ et } H = \{(x, y, z, t) \in \mathbb{R}^4, y = 2x, z = 3x, t = 4x\}$$

- 1. Montrer que E, F et H sont des sous-espaces vectoriels de \mathbb{R}^4 , donner une base de chacun de ces sous-espaces vectoriels.
- 2. Déterminer E + F.
- 3. Montrer que $E \oplus H = \mathbb{R}^4$

Allez à : Correction exercice 28

Exercice 29.

Soient
$$u_1 = (2,1,1)$$
, $u_2 = (1,2,-1)$, $u_3 = (1,1,0)$ et $u_4 = (1,-1,-2)$ quatre vecteurs de \mathbb{R}^3 .

Déterminer une sous famille de (u_1, u_2, u_3, u_4) libre qui engendre $E = Vect(u_1, u_2, u_3, u_4)$, en déduire la dimension de E.

Allez à : Correction exercice 29

Exercice 30.

Soit
$$E = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 | x_1 - x_2 = 0 \text{ et } x_3 - x_4 = 0\}$$

On admettra que E est un sous-espace vectoriel de \mathbb{R}^4 .

- 1. Déterminer une base de E.
- 2. Compléter cette base de E en une base de \mathbb{R}^4 .

Allez à : Correction exercice 30

Exercice 31.

Soient
$$a = (2, -1, 1, 2)$$
, $b = (2, -1, 6, 1)$ et $c = (6, -3, 8, 5)$ trois vecteurs de \mathbb{R}^4 .

Soient
$$E = \{(x, y, z, t) \in \mathbb{R}^4, -7x + z + 5t = 0 \text{ et } x + y = 0\} \text{ et } F = Vect(a, b, c)$$

- 1. Montrer que E et F sont des sous-espaces vectoriels de \mathbb{R}^4 .
- 2. Donner une base de E et une base de F.
- 3. A-t-on $E \oplus F = \mathbb{R}^4$?

Allez à : Correction exercice 31

Exercice 32.

Soit $\mathcal{M}_3(\mathbb{R})$ l'espace vectoriel des matrices à coefficients dans \mathbb{R} à 3 lignes et 3 colonnes.

Soit $S_3(\mathbb{R})$ l'ensemble des matrices symétriques de $\mathcal{M}_3(\mathbb{R})$. C'est-à-dire les matrices qui vérifient ${}^tA=A$.

- 1. Montrer que $S_3(\mathbb{R})$ est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
- 2. Déterminer dim $(S_3(\mathbb{R}))$.

Allez à : Correction exercice 32

Exercice 33.

Soient
$$P_0 = \frac{1}{2}(X-1)(X-2)$$
, $P_1 = -X(X-2)$ et $P_2 = \frac{1}{2}X(X-1)$ trois polynômes de $\mathbb{R}_2[X]$.

- 1. Montrer que (P_0, P_1, P_2) est une base de $\mathbb{R}_2[X]$.
- 2. Soit $P = aX^2 + bX + c \in \mathbb{R}_2[X]$, exprimer P dans la base (P_0, P_1, P_2) .
- 3. Soit $Q = \alpha P_0 + \beta P_1 + \gamma P_2 \in \mathbb{R}_2[X]$, exprimer Q dans la base $(1, X, X^2)$.
- 4. Pour tout A, B et C réels montrer qu'il existe un unique polynôme de $R \in \mathbb{R}_2[X]$, tel que : R(0) = A, R(1) = B et R(2) = C.

Allez à : Correction exercice 33

Exercice 34.

Soient
$$P_1 = X^3 + X^2 + X + 1$$
, $P_2 = X^3 + 2X^2 + 3X + 4$, $P_3 = 3X^3 + X^2 + 4X + 2$ et $P_4 = 10X^3 + 4X^2 + 13X + 7$ quatre polynômes de $\mathbb{R}_3[X]$

- 1. La famille (P_1, P_2, P_3, P_4) est-elle libre?
- 2. Donner une base de $Vect(P_1, P_2, P_3, P_4)$

Allez à : Correction exercice 34

Exercice 35.

Soit
$$E = \{ P \in \mathbb{R}_2[X], P(1) = 0 \}$$

- 1. Montrer que *E* est un sous-espace vectoriel de $\mathbb{R}_2[X]$.
- 2. Donner une base de *E* et en déduire sa dimension.

Allez à : Correction exercice 35