Non Deterministic Automata

Linz: Nondeterministic Finite Accepters, page 51

Nondeterministic Finite Accepter (NFA)

Alphabet =
$$\{a\}$$

Nondeterministic Finite Accepter (NFA)

Alphabet =
$$\{a\}$$

Nondeterministic Finite Accepter (NFA)

Alphabet =
$$\{a\}$$

All input is consumed

Input cannot be consumed

An NFA accepts a string:

when there is a computation of the NFA that accepts the string

·All the input is consumed and the automaton is in a final state

Example

aa is accepted by the NFA:

because this computation accepts aa

Rejection example

An NFA rejects a string:

when there is no computation of the NFA that accepts the string

 All the input is consumed and the automaton is in a non final state

The input cannot be consumed

Example

a is rejected by the NFA:

All possible computations lead to rejection

Rejection example

Input cannot be consumed

Input cannot be consumed

aaa is rejected by the NFA:

All possible computations lead to rejection

Language accepted: $L = \{aa\}$

Lambda Transitions

lacksquare

(read head doesn't move)

all input is consumed

String aa is accepted

Rejection Example

(read head doesn't move)

No transition: the automaton hangs

Input cannot be consumed

String aaa is rejected

Language accepted: $L = \{aa\}$

Another NFA Example

Another String

Language accepted

$$L = \{ab, abab, ababab, ...\}$$

= $\{ab\}^+$

Another NFA Example

Language accepted

$$L(M) = {\lambda, 10, 1010, 101010, ...}$$

= ${10}*$

Remarks:

- The λ symbol never appears on the input tape
- ·Extreme automata:

NFAs are interesting because we can express languages easier than DFAs

Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: Set of states, i.e. $\{q_0,q_1,q_2\}$

 Σ : Input applied, i.e. $\{a,b\}$

 δ : Transition function

 q_0 : Initial state

F: Final states

Transition Function δ

$$\delta(q_0,1) = \{q_1\}$$

$$\delta(q_1,0) = \{q_0,q_2\}$$

$$\mathcal{S}(q_0,\lambda) = \{q_0,q_2\}$$

$$\delta(q_2,1) = \emptyset$$

Extended Transition Function δ^*

$$\delta * (q_0, a) = \{q_1\}$$

$$\delta * (q_0, aa) = \{q_4, q_5\}$$

$$\delta * (q_0, ab) = \{q_2, q_3, q_0\}$$

Formally

It holds
$$q_i \in \delta^*(q_i, w)$$

if and only if

there is a walk from q_i to q_j with label w

The Language of an NFA M

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta * (q_0, aa) = \{q_4, q_5\}$$
 $aa \in L(M)$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$a$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\lambda$$

$$\lambda$$

$$\delta * (q_0, ab) = \{q_2, q_3, q_0\}$$
 $ab \in L(M)$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_6$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta * (q_0, abaa) = \{q_4, q_5\}$$
 $aaba \in L(M)$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_6$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta^*(q_0, aba) = \{q_1\} \qquad aba \notin L(M)$$

$$L(M) = \{aa\} \cup \{ab\}^* \cup \{ab\}^+ \{aa\}$$

Formally

The language accepted by NFA M is:

$$L(M) = \{w_1, w_2, w_3, ...\}$$

where
$$\delta^*(q_0, w_m) = \{q_i, q_j, ...\}$$

and there is some $q_k \in F$ (final state)

$$w \in L(M) \qquad \delta * (q_0, w)$$

$$q_i \qquad q_k \in F$$

Equivalence of NFAs and DFAs

Linz: 2.3 Equivalence of Deterministic and Nondeterministic Finite Accepters, page 58

Equivalence of Machines

For DFAs or NFAs:

Machine $\,M_1\,$ is equivalent to machine $\,M_2\,$

if
$$L(M_1) = L(M_2)$$

Example

NFA M_1

Since
$$L(M_1) = L(M_2) = \{10\}$$
*

machines M_1 and M_2 are equivalent

Equivalence of NFAs and DFAs

Question: NFAs = DFAs?

Same power?

Accept the same languages?

Equivalence of NFAs and DFAs

We will prove:

NFAs and DFAs have the same computation power

Step 1

Languages
accepted
by NFAs
Languages
accepted
by DFAs

Proof: Every DFA is trivially an NFA

A language accepted by a DFA is also accepted by an NFA

Step 2

Languages
accepted
by NFAs
Languages
accepted
by DFAs

Proof: Any NFA can be converted to an equivalent DFA

A language accepted by an NFA is also accepted by a DFA

NFA to DFA: Remarks

We are given an NFA M

We want to convert it to an equivalent DFA $\,M'$

With
$$L(M) = L(M')$$

If the NFA has states

$$q_0, q_1, q_2, \dots$$

the DFA has states in the powerset

$$\emptyset, \{q_0\}, \{q_1\}, \{q_1, q_2\}, \{q_3, q_4, q_7\}, \dots$$

Procedure NFA to DFA

1. Initial state of NFA: q_0

Initial state of DFA: $\{q_0\}$

Example

Procedure NFA to DFA

2. For every DFA's state $\{q_i, q_j, ..., q_m\}$

Compute in the NFA

$$\left.\begin{array}{l}
\delta^*(q_i,a), \\
\delta^*(q_j,a), \\
\dots
\end{array}\right\} = \left\{q_i',q_j',\dots,q_m'\right\}$$

Add transition to DFA

$$\delta(\{q_i,q_j,...,q_m\}, a) = \{q_i',q_j',...,q_m'\}$$

Exampe

DFA M'

Procedure NFA to DFA

Repeat Step 2 for all letters in alphabet, until no more transitions can be added.

Example

Procedure NFA to DFA

3. For any DFA state $\{q_i, q_j, ..., q_m\}$

If some q_i is a final state in the NFA

Then,
$$\{q_i, q_j, ..., q_m\}$$
 is a final state in the DFA

Example

Theorem

Take NFA M

Apply procedure to obtain DFA $\,M'$

Then M and M' are equivalent:

$$L(M) = L(M')$$

Finally

We have proven

```
Languages
accepted
by NFAs
Languages
accepted
by DFAs
```

We have proven

```
Languages
accepted
by NFAs
Languages
accepted
by DFAs
```

Regular Languages

We have proven

Regular Languages

Regular Languages

We have proven

Regular Languages

Regular Languages

Thus, NFAs accept the regular languages