mml-Analytic Geometry

Norms

The *norms* are the length of the vectors.

A norm on a vector space V is a function:

$$\|\cdot\|:V o\mathbb{R},\ x\mapsto \|x\|$$

And for all $\lambda \in \mathbb{R}$ and $x,y \in V$, there are:

- ullet Absolutely homogeneous: $\|\lambda x\| = |\lambda| \|x\|$
- Positive definite: $\|x\| \geq 0 ext{ and } \|x\| = 0 \iff x = 0$
- Triangle inequality: $\|x+y\| \leq \|x\| + \|y\|$

Manhattan Norm (l_1 norm)

The Manhattan norm is:

$$\|x\|_1 := \sum_{i=0}^n |x_i|$$

Euclidean Norm (l_2 norm)

The Euclidean norm is:

$$\|x\|_2 := \sqrt{\sum_{i=0}^n x_i^2} = \sqrt{x^T x}$$

Inner Products

Dot product

A particular type of inner product, the *scalar product*/*dot product*, which is:

$$x^Ty = \sum_{i=0}^n x_i y_i$$

General Inner Products

Bilinear mapping

A bilinear mapping Ω is a mapping with 2 arguments, and it's linear in each argument.

each argument, i.e., when we look at a vector space V then it holds that for all $x, y, z \in V, \ \lambda, \psi \in \mathbb{R}$ that

$$\Omega(\lambda x + \psi y, z) = \lambda \Omega(x, z) + \psi \Omega(y, z)$$
(3.6)

$$\Omega(\boldsymbol{x}, \lambda \boldsymbol{y} + \psi \boldsymbol{z}) = \lambda \Omega(\boldsymbol{x}, \boldsymbol{y}) + \psi \Omega(\boldsymbol{x}, \boldsymbol{z}). \tag{3.7}$$

Here Ω is linear in 1st argument in 3.6, and 2nd argument in 3.7.

Symmetric and positive definite of bilinear mapping

Definition 3.2. Let V be a vector space and $\Omega: V \times V \to \mathbb{R}$ be a bilinear mapping that takes two vectors and maps them onto a real number. Then

- Ω is called *symmetric* if $\Omega(x, y) = \Omega(y, x)$ for all $x, y \in V$, i.e., the order of the arguments does not matter.
- Ω is called *positive definite* if

$$\forall \boldsymbol{x} \in V \setminus \{\boldsymbol{0}\} : \Omega(\boldsymbol{x}, \boldsymbol{x}) > 0, \quad \Omega(\boldsymbol{0}, \boldsymbol{0}) = 0.$$
 (3.8)

General linear products

Definition 3.3. Let V be a vector space and $\Omega: V \times V \to \mathbb{R}$ be a bilinear mapping that takes two vectors and maps them onto a real number. Then

- A positive definite, symmetric bilinear mapping $\Omega: V \times V \to \mathbb{R}$ is called an *inner product* on V. We typically write $\langle x, y \rangle$ instead of $\Omega(x, y)$.
- The pair $(V, \langle \cdot, \cdot \rangle)$ is called an *inner product space* or (real) *vector space* with inner product. If we use the dot product defined in (3.5), we call $(V, \langle \cdot, \cdot \rangle)$ a *Euclidean vector space*.

Symmetric, Positive Definite Matrices

Consider an n-dimensional vector space V with an inner product $\langle \cdot, \cdot \rangle$ and an ordered basis $B = (b_1, \dots, b_n)$ of V.

Since any vectors $x,y\in V$ can be written as linear combinations of the basis vectors so that $x=\sum_{i=1}^n \varphi_i b_i\in V$ and $y=\sum_{j=1}^n \lambda_j b_j\in V$.

Due to the bi-linearity of the inner product:

$$\langle x,y
angle = \langle \sum_{i=1}^n arphi_i b_i, \sum_{j=1}^n \lambda_j b_j
angle = \sum_{i=1}^n \sum_{j=1}^n arphi_i \langle b_i, b_j
angle \lambda_j = \hat{x}^T A \hat{y}$$

3

where $A_{ij} := \langle b_i, b_j \rangle$ and \hat{x}, \hat{y} are the coordinates of x and y with respect to the basis B.

- ullet Symmetry: A is symmetric
- Positive Definiteness: $\forall x \in V \setminus \{0\}: x^TAx > 0, \ (3.11)$

Symmetric, Positive Definite Matrix

Definition 3.4 (Symmetric, Positive Definite Matrix). A symmetric matrix $A \in \mathbb{R}^{n \times n}$ that satisfies (3.11) is called *symmetric*, *positive definite*, or just *positive definite*. If only \geqslant holds in (3.11), then A is called *symmetric*, *positive semidefinite*.

If A is symmetric, positive definite, then

$$\langle x,y
angle = \hat{x}^T A \hat{y}$$

defines an inner product with respect to an ordered basis B, where \hat{x} and \hat{y} are the coordinate representations of $x,y\in V$ with respect to B.

Properties

- The null space (kernel) of A consists only of $\mathbf{0}$ because $\mathbf{x}^{\top} A \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$. This implies that $A \mathbf{x} \neq \mathbf{0}$ if $\mathbf{x} \neq \mathbf{0}$.
- The diagonal elements a_{ii} of A are positive because $a_{ii} = e_i^{\top} A e_i > 0$, where e_i is the *i*th vector of the standard basis in \mathbb{R}^n .

Lengths and Distances

Inner products and norms are closely related. Mostly, any inner product can induces a norm.

$$\|x\| := \sqrt{\langle x, x
angle}$$

But not every norm is induced by an inner product, like the Manhattan norm.

Remark

Cauchy-Schwarz Inequality: for an inner product vector space, the induced norm $\|\cdot\|$ satisfies

$$|\langle x,y
angle|\leq \|x\|\|y\|$$

Distance and Metric

Consider an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then

$$d(x,y) := \|x-y\| = \sqrt{\langle x-y, x-y
angle}$$

is called the *distance* between x and y for $x, y \in V$.

The *distance* is called *Euclidean distance* if use doc product as the inner product.

The mapping

$$d: V imes V
ightarrow \mathbb{R} \ (x,y) \mapsto d(x,y)$$

is called a metric.

A metric *d* satisfies the following:

- 1. d is positive definite, i.e., $d(x, y) \ge 0$ for all $x, y \in V$ and $d(x, y) = 0 \iff x = y$.
- 2. d is symmetric, i.e., d(x, y) = d(y, x) for all $x, y \in V$.
- 3. Triangle inequality: $d(x, z) \leq d(x, y) + d(y, z)$ for all $x, y, z \in V$.

Angles and Orthogonality

Angles

Apart from the distance, inner products also capture the geometry of a vector space by defining the angle ω between two vectors. The angle shows how similar two vectors' orientations are.

Use the Cauchy-Schwarz inequality to define angles

$$-1 \leq rac{\langle x,y
angle}{\|x\|\|y\|} \leq 1$$

therefore, there exists a unique $w \in [0,\pi]$ has

$$cos\omega = rac{\langle x,y
angle}{\|x\|\|y\|}$$

Orthogonality

Two vectors x and y are orthogonal if and only if $\langle x,y\rangle=0$ and written as $x\perp y$. If additionally $\|x\|=1=\|y\|$, the vectors are orthonormal.

Vectors that are orthogonal with respect to one inner product do not have to be orthogonal with respect to a different inner product.

0—vector is orthogonal to every vector in the vector space.

Orthogonal Matrix

A square matrix A is an *orthogonal matrix* if and only if its columns are orthonormal so that

$$AA^T = I = A^T A$$

which implies that

$$A^{-1} = A^T$$

the inverse is obtained by simply transposing the matrix.

Transformations by orthogonal matrices are special because the length of a vector x is not changed when transforming it using an orthogonal matrix A.

For dot product, we obtain

$$\|\boldsymbol{A}\boldsymbol{x}\|^2 = (\boldsymbol{A}\boldsymbol{x})^{\top}(\boldsymbol{A}\boldsymbol{x}) = \boldsymbol{x}^{\top}\boldsymbol{A}^{\top}\boldsymbol{A}\boldsymbol{x} = \boldsymbol{x}^{\top}\boldsymbol{I}\boldsymbol{x} = \boldsymbol{x}^{\top}\boldsymbol{x} = \|\boldsymbol{x}\|^2$$
.

The angle between any two vectors x, y is also unchanged when transforming both of them using an orthogonal matrix A.

For dot product, we also obtain

$$\cos \omega = \frac{(\boldsymbol{A}\boldsymbol{x})^{\top}(\boldsymbol{A}\boldsymbol{y})}{\|\boldsymbol{A}\boldsymbol{x}\| \|\boldsymbol{A}\boldsymbol{y}\|} = \frac{\boldsymbol{x}^{\top}\boldsymbol{A}^{\top}\boldsymbol{A}\boldsymbol{y}}{\sqrt{\boldsymbol{x}^{\top}\boldsymbol{A}^{\top}\boldsymbol{A}\boldsymbol{x}\boldsymbol{y}^{\top}\boldsymbol{A}^{\top}\boldsymbol{A}\boldsymbol{y}}} = \frac{\boldsymbol{x}^{\top}\boldsymbol{y}}{\|\boldsymbol{x}\| \|\boldsymbol{y}\|}$$

Orthonormal Basis

An orthonormal basis is a special basis when the basis vectors are orthogonal to each other and their length are 1.

Consider an n-dimensional vector space V and a basis $\{b_1,\ldots,b_n\}$ of V. If

$$\langle b_i, b_j \rangle = 0 \text{ for i } \neq j$$
 (1)

$$\langle b_i, b_j \rangle = 1 \tag{2}$$

for all $i, j = 1, \ldots, n$ then the basis is called an *orthonormal basis* (ONB).

If only (1), the basis is called an *orthogonal basis*.

Orthogonal Complement

Consider a D-dimensional vector space V and an M-dimensional subspace $U\subseteq V$. Then its orthogonal complement U^\perp is a (D-M)-dimensional subspace of V and contains all vectors in V that are orthogonal to every vector in U.

And $U\cap U^\perp=\{0\}$ so that any vector $x\in V$ can be decomposed into

$$x = \sum_{m=1}^M \lambda_m b_m + \sum_{j=1}^{D-M} arphi_j b_j^\perp$$

Therefore, the orthogonal complement can also be used to describe a plane in a three-dimensional vector space.

Generally, orthogonal complements can be used to describe hyperplanes in n-dimensional vector and affine spaces.

Inner Product of Functions

The inner product before are about the finite-dimensional vectors. Now consider a vector $x \in \mathbb{R}$ as a function with n function values.

- vectors with an infinite number of entries → countable infinite
- continuous-valued functions → uncountable infinite

An inner product of 2 functions $u:\mathbb{R}\to\mathbb{R}$ and $v:\mathbb{R}\to\mathbb{R}$ can be defined as the definite integral

$$\langle u,v
angle := \int_a^b u(x)v(x)dx.$$

- if the result is 0, the functions u and v are orthogonal
- inner product on functions may diverge

Orthogonal Projections

Projections are important in ML and some other areas. Compressing data in high-dimension to lower dimension space and to minimise the compression loss, we need to find the most informative dimensions in the data.

Projection

Definition 3.10 (Projection). Let V be a vector space and $U \subseteq V$ a subspace of V. A linear mapping $\pi: V \to U$ is called a *projection* if $\pi^2 = \pi \circ \pi = \pi$.

Since linear mappings can be expressed by transformation matrices, the preceding definition applies to a special kind of transformation matrices, the *projection matrices* P_{π} , which exhibit the property that $P_{\pi}^2 = P_{\pi}$.

In the following parts, assume the dot product $\langle x,y\rangle=x^Ty$ as the inner product.

Projection onto 1-d subspaces

Assume a line through the origin with a basis vector $b \in \mathbb{R}^n$. This line is a one-dimensional subspace $U \in \mathbb{R}^n$ spanned by b.

When project $x \in \mathbb{R}^n$ onto U, the vector(projection) $\pi_U(x)$ is closest to x.

Properties of the projection

- The projection $\pi_U(x)$ is closest to x, which means the distance $\|x-\pi_u(x)\|$ is minimal.
 - $\circ \ \pi_U(x) x$ is orthogonal to U
 - $\circ \ \left\langle \pi_{U}(x)-x,b
 ight
 angle =0$
- The projection $\pi_U(x)$ of x onto U must be an element of U and a multiple of the basis vector b that spans U.
 - \circ hence, $\pi_U(x) = \lambda b$.

(a) Projection of $x \in \mathbb{R}^2$ onto a subspace U with basis vector \boldsymbol{b} .

(b) Projection of a two-dimensional vector x with ||x|| = 1 onto a one-dimensional subspace spanned by b.

Find coordinate λ

The orthogonality condition,

$$\langle x - \pi_U(x), b
angle = 0 \overset{\pi_U(x) = \lambda b}{\Longleftrightarrow} \langle x - \lambda b, b
angle = 0$$

since the bi-linearity of inner product

$$\langle x,b
angle -\lambda \langle b,b
angle =0 \iff \lambda = rac{\langle x,b
angle}{b,b} = rac{\langle b,x
angle}{\|b\|^2}$$

choose $\langle \cdot, \cdot \rangle$ to be the dot product

$$\lambda = \frac{b^Tx}{b^Tb} = \frac{b^Tx}{\|b\|^2}$$

If $\|b\|=1$, the coordinate λ of the projection is b^Tx .

For general inner product, $\lambda = \langle x,b
angle$ if $\|b\| = 1$.

Find the projection point $\pi_U(x) \in U$

since $\pi_U(x) = \lambda b$, with the result above

$$\pi_U(x) = \lambda b = rac{\langle x, b
angle}{\|b\|^2} b = rac{b^T x}{\|b\|^2} b$$

Also the length of $\pi_U(x)$ is

$$\|\pi_U(x)\|=\|\lambda b\|=|\lambda|\|b\|$$

If use the dot product as an inner product

$$\|\pi_U(x)\| = rac{b^Tx}{\|b\|^2}\|b\| = |cos\omega|\|x\|\|b\|rac{\|b\|}{\|b\|^2} = |cos\omega|\|x\|$$

w is the angle between x and b.

If $\|x\|=1$, then x lies on the unit circle, shown as (b) on the figure above.

Find the projection matrix P_π

Since projection is a linear mapping, there's a projection matrix P_π and $\pi_U(x)=P_\pi x$, with the dot product

$$\pi_U(x) = \lambda b = b\lambda = brac{b^Tx}{\|b\|^2} = rac{bb^T}{\|b\|^2}x$$

therefore,

$$P_{\pi}=rac{bb^T}{\|b\|^2}$$

 bb^T is a symmetric matrix and $\|b\|^2 = \langle b,b
angle$ is a scalar.

Projection onto general subspaces

Assume (b_1, \ldots, b_n) is an ordered basis of U, any projection $\pi_U(x)$ onto U is an element of U. Therefore, they can be represented as linear combinations of the basis vectors of U, $\pi_U(x) = \sum_{i=1}^m \lambda_i b_i$.

Find coordinates $\lambda_1,\ldots,\lambda_m$

$$\pi_U(x) = \sum_{i=1}^m \lambda_i b_i = B \lambda, \ B = [b_1, \dots, b_m], \quad \lambda = [\lambda_1, \dots, \lambda_m]$$

since orthogonal

$$\langle b_i, x - \pi_U(x)
angle = b_i^T(x - \pi_U(x)) = 0$$

also can be written as

$$b_i^T(x - B\lambda) = 0$$

therefore,

$$egin{bmatrix} egin{bmatrix} oldsymbol{b}_1^{ op} \ dots \ oldsymbol{b}_m^{ op} \end{bmatrix} egin{bmatrix} x - B \lambda \end{bmatrix} = 0 \iff B^{ op}(x - B \lambda) = 0 \ \iff B^{ op}B \lambda = B^{ op}x \,. \end{split}$$

since the basis is linearly independent, B^TB is regular and can be inverted,

$$\lambda = (B^T B)^{-1} B^T x$$

 $(B^TB)^{-1}B^T$ is also the *pseudo-inverse* of B.

Find the projection $\pi_U(x)$

$$\pi_U(x) = B\lambda = B(B^TB)^{-1}B^Tx$$

Find the projection matrix P_{π}

$$P_\pi x = \pi_U(x), \ P_\pi = B(B^TB)^{-1}B^T$$

- The projection $\pi_U(x)$ is still vector in \mathbb{R}^n although they lie in an m-dimensional subspace Projections can help find *approximate solution* to the linear equation that can't be solved exactly by finding the vector in the subspace spanned by columns of A that's closest to b,
- ullet compute the orthogonal projection of b onto the subspace spanned by the columns of A. the solution is called *least-squares solution*.

Gram-Schmidt Orthogonalisation

Gram-Schmidt is a method that transform any basis (b_1, \ldots, b_m) of an n-dimensional vector space V into an orthogonal/orthonormal basis (u_1, \ldots, u_m) .

Definition

 $\operatorname{span}[\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n]$. The *Gram-Schmidt orthogonalization* method iteratively constructs an orthogonal basis $(\boldsymbol{u}_1,\ldots,|\boldsymbol{u}_n)$ from any basis $(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n)$ of V as follows:

$$\boldsymbol{u}_1 := \boldsymbol{b}_1 \tag{3.67}$$

$$u_k := b_k - \pi_{\text{span}[u_1, ..., u_{k-1}]}(b_k), \quad k = 2, ..., n.$$
 (3.68)

Example

Example 3.12 (Gram-Schmidt Orthogonalization)

(a) Original non-orthogonal (b) First new basis vector (c) Orthogonal basis vectors u_1 basis vectors b_1, b_2 . $u_1 = b_1$ and projection of b_2 and $u_2 = b_2 - \pi_{\mathrm{span}[u_1]}(b_2)$. onto the subspace spanned by u_1 .

Consider a basis $(\boldsymbol{b}_1, \boldsymbol{b}_2)$ of \mathbb{R}^2 , where

$$\boldsymbol{b}_1 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \quad \boldsymbol{b}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix};$$
 (3.69)

see also Figure 3.2(a). Using the Gram-Schmidt method, we construct an orthogonal basis (u_1, u_2) of \mathbb{R}^2 as follows (assuming the dot product as the inner product):

$$\boldsymbol{u}_1 := \boldsymbol{b}_1 = \begin{bmatrix} 2 \\ 0 \end{bmatrix} , \tag{3.70}$$

$$\boldsymbol{u}_{2} := \boldsymbol{b}_{2} - \pi_{\text{span}[\boldsymbol{u}_{1}]}(\boldsymbol{b}_{2}) \stackrel{(3.45)}{=} \boldsymbol{b}_{2} - \frac{\boldsymbol{u}_{1}\boldsymbol{u}_{1}^{\top}}{\|\boldsymbol{u}_{1}\|^{2}} \boldsymbol{b}_{2} = \begin{bmatrix} 1\\1 \end{bmatrix} - \begin{bmatrix} 1 & 0\\0 & 0 \end{bmatrix} \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 0\\1 \end{bmatrix}.$$
(3.71)