Transformers (1)

COMP3361 — Week 4

Lingpeng Kong

Department of Computer Science, The University of Hong Kong

Recurrent Neural Network

Possibly many steps [O(N)] steps before "yesterday" and "seemed" interact.

Vanishing Gradient in RNNs

In general, the longer the path, the smaller the gradient signal.

Bidirectional Recurrent Neural Network

Sequential Computation

Parallel Computing?

GPU loves parallel computing blocks!

.

Parallel Computing?

Convolution Style Models

Convolution Style Models

Considering the full sequence as context

How can we achieve this?

Dot-Product-Softmax Attention

0

Query

Memory (key-value pairs)

Considering the full sequence as context

Attention Mechanism

Memory (key-value pairs)

Attention Mechanism

Self-attention

This is almost transformer — except a few things.

Transformer (almost)

Self-attention in Transformer

Memory (key-value pairs)

Self-attention in Transformer

Positional Embeddings

