Programming Test: Learning Activation in Neural Network

Name – wajoud H Noorani email – <u>Wajoudnoorani59@gmail.com</u>

This Technical Report is based on three data sets which are classified and analyzed with different activation functions: datasets (iris, mnist, bank notes)

My Dataset:

iris - https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
 mnist - fom keras data set (from keras.datasets import mnist)
 bank-note-

https://raw.githubusercontent.com/jbrownlee/Datasets/master/banknote_authentication.csv

Common Setup for the Datasets:

Since Few steps are common for the initial stage of this algorithm ill explain the common step below

- 1 To upload any dataset we can use Pandas library :
 Eg dataset = pd.read_csv(url , or direct data set name)
- 2 To select the parametrrs for k0, k1 by dividing the data set with respect to its contains

in my code i have paramentrs k0, k1 as x, y

3 – Since we have words or string in our data set we need to convert them into arrays or number to classify it

i have used Labled encoder function to transform the parametres

4- To classify any model we need to splite the data set into tranning , testing . In my code i have used from sklearn , train <u>test-split</u> model with test size as 20 % on any ramdom simple

Iris Dataset

About the dataset, the iris dataset consists of 3 different types of iris plants including the parameters of the plants. We consider 1 parameter which includes all the different parameters of the plans and 2 parameters the names of the plant. To classify the data set I used Rectified Linear unit(Relu) in the input activation function and softmax as the output layer activation function. The Below plot represents the Relu function.

Samplinf of parametes:

#Paramentre k0,k1

X = dataset.iloc[:,0:4].values

Y = dataset.iloc[:,4].values

F1 score -confussion matrix

	precision	recall	f1-score	support
0 1	1.00	1.00	1.00	11 13
2	0.32	1.00	0.48	6
accuracy			0.57	30
macro avg	0.44	0.67	0.49	30
weighted avg	0.43	0.57	0.46	30
[[11 0 0] [0 0 13] [0 0 6]]				

Model Accuracy

Model loss

Bank Note Data set

Sampling parametrs

X = df.values[:, :-1] y = df.values[:, -1]

Learning curve

Model accuracy

Mnist Dataset

This data set consists of an image of a different handwritten number. Which we classified. To classify this dataset I used the sigmoid activation function for input hidden layer and softmax for output activation function with input size (28,28)

		F1 Accuracy:						
		preci	sion	recall	f1-score	support		
	0	0.87	0.93	0.9	90 98	30		
	1	0.92	0.91	0.9	92 113	35		
	2	0.80	0.81	0.8	80 103	32		
	3	0.67	0.83	0.	74 101	LO		
	4	0.46	0.83	0.	59 98	32		
	5	0.71	0.61	0.0	66 89	92		
	6	0.72	0.95	0.8	82 95	58		
	7	0.86	0.88	0.8	87 102	28		
	8	0.80	0.54	0.0	64 97	74		
	9	0.50	0.00	0.0	01 100	9		
accura	асу			0.	73 1000	00		
macro a	avg	0.73	0.73	0.0	69 1000	90		
weighted a	avg	0.73	0.73	0.	70 1000	90		

Model lose:

All the 3 Code are uploaded in github

GitHub Link: https://github.com/wajoud/Monk-AI-Programming-Test-