Projektbericht

Kundenname

Bilder - Aufma⊠

Statikbericht

Material-Liste der Unterkonstruktion

Elektroplanung

Datenblütter der Komponenten

Bilder - DC-Montage

Abnahme protokoll (DC-Montage)

Bilder - AC-Montage

Netzanmeldung

Kontaktdaten

Weitere Dokumente

Weitere Dokumente

Projektbericht

Kundenname

K2 Base Bericht

Mayk Kophamel

Geplanter 01.09.2023

Installationstermin

Projektadresse Zum Sandkolk 25, 39114 Magdeburg, Deutschland

Kunde Mayk Kophamel

Bearbeiter Autarkiekonzepte Planungsteam

Ausgabedatum & Version 22.08.2023 | K2 Base Version 3.1.91.0

Über uns

K2 Systems. Innovatives Befestigungssystem von einem starken Team.

Seit 2004 entwickeln wir wegweisende und hochfunktionale Montagesystemlösungen für Photovoltaikanlagen auf der ganzen Welt. Unsere Systeme werden in unserer eigenen Produktentwicklungsabteilung konzipiert, in der wir Montagesysteme kontinuierlich optimieren und an den sich ständig ändernden Markt anpassen.

Ein kompetentes und freundliches Team

Wie ein Bergsteigerteam baut K2 Systems auf gegenseitiges Vertrauen. Das gilt sowohl für unseren Kundenservice als auch im Unternehmen selbst, denn wir glauben, dass eine vertrauensvolle Partnerschaft zu erfolgreichen Photovoltaikprojekten führt.

Unsere Mitarbeiter konzentrieren sich voll und ganz auf die Bedürfnisse und Wünsche unserer Kunden. Das gilt für alle Unternehmensbereiche.

10 Standorte und weltweites Vertriebsnetz

In unserem internationalen Team arbeiten alle zusammen, um Kunden kompetent, umfassend und ganz persönlich zu betreuen.

Dies gilt insbesondere für die ständige Weiterbildung unserer Mitarbeiter im Hinblick auf Produktoptimierung, Qualitätssicherung oder bautechnische Neuerungen.

Qualitätsmanagement und Zertifikate

K2 Systems steht für sichere Verbindungen, höchste Qualität und präzis gefertigte, individuelle Komponenten. Unsere Kunden und Geschäftspartner schätzen all diese Faktoren sehr. Drei unabhängige Stellen haben unsere Kompetenzen und Komponenten geprüft, bestätigt und zertifiziert. Nicht nur externe Stellen haben K2 Systems auf den Prüfstand gestellt. Unsere interne Qualitätskontrolle stellt sicher, dass alle unsere Produkte einem ständigen Überprüfungsprozess unterzogen werden.

All diese Maßnahmen sichern den herausragenden Qualitätsstandard, der die Produkte von K2 Systems auszeichnet und den wir durch ein weitgehend exklusives "Made in Germany" bzw. "Made in Europe" sicherstellen.

Produktgarantie

K2 Systems bietet eine 12-jährige Produktgarantie auf alle Produkte in seinem integrierten Sortiment. Die Verwendung hochwertiger Materialien und eine dreistufige Qualitätsprüfung stellen diese Standards sicher.

Kurzgesagt

Als Aufdachspezialist bieten wir weltweit effektive und wirtschaftliche Lösungen für Dächer und unterstützen unsere Kunden aus der Solarbranche professionell, schnell und zuverlässig.

Inhalt

Projektübersicht	4
W Dach	6
Montageplan	8
Ergebnisse	10
Statikbericht	13
S Dach	18
Montageplan	20
Ergebnisse	24
Statikbericht	27
O Dach	32
Montageplan	34
Ergebnisse	38
Statikbericht	41
N Dach	46
Montageplan	48
Ergebnisse	50
Statikbericht	53

Projektübersicht

Projektinformation

Name Mayk Kophamel

Adresse Zum Sandkolk 25, 39114 Magdeburg, Deutschland

Geländehöhe 47,25 m
Geplanter Installationstermin 01.09.2023
Kunde Mayk Kophamel
Ansprechpartner Mayk Kophamel

Bearbeiter Autarkiekonzepte Planungsteam

Lasten

Bemessung DIN EN
Schadensfolgeklasse CC2
Nutzungsdauer 25 Jahre

Geländekategorie III - Vorstädte, Industrie-/Gewerbe-/Waldgebiet

Windlastzone 2
Schneelastzone 2

Bodenschneelast 0,85 kN/m²

Dächer

Dach	System	Modul	Leistung	Stückzahl	Gesamtleistung
W Dach	<u>SingleRail</u>	DAS-DH108NA-425 (Schwarzer Rahmen)	425 Wp	4	1.7 kWp
S Dach	SingleRail	DAS-DH108NA-425 (Schwarzer Rahmen)	425 Wp	8	3.4 kWp
O Dach	<u>SingleRail</u>	DAS-DH108NA-425 (Schwarzer Rahmen)	425 Wp	8	3.4 kWp
N Dach	<u>SingleRail</u>	DAS-DH108NA-425 (Schwarzer Rahmen)	425 Wp	4	1.7 kWp
Summe				24	10,20 kWp

DAS PROJEKT IST VERIFIZIERT.

Das gewählte Montagesystem kann wie geplant gebaut werden. Vielen Dank, dass Sie sich für ein K2 Montagesystem entschieden haben.

Dächer

Projektinformation

Name Mayk Kophamel

Adresse Zum Sandkolk 25, 39114 Magdeburg, Deutschland

Geländehöhe 47,25 m

01.09.2023

Geplanter Installationstermin 0
Kunde N

Mayk Kophamel

Ansprechpartner

Mayk Kophamel

Bearbeiter

Autarkiekonzepte Planungsteam

Dächer | W Dach

Dach	System	Modul	Leistung	Stückzahl	Gesamtleistung
W Dach	<u>SingleRail</u>	DAS-DH108NA-425 (Schwarzer Rahmen)	425 Wp	4	1.7 kWp

Dächer | W Dach | Montageplan

Basisschiene

	ganze	e Schienen	Zuschnitt					
Тур	Gesamtlänge	Anzahl 4,40 m	von Schiene	Länge	Rest			
Α	2,90	4	4,400	2,904	1,486			
В	1,17	2	1,486	1,172	0,304			
С	1,17	2	4,400	1,172	3,218			
D	1,17	2	3,218	1,172	2,036			
Е	1,17	2	2,036	1,172	0,854			

Obere Schiene

ganze Schienen			Zuschnitt					
Тур	Gesamtlänge	Anzahl 4,40 m	von Schiene	Länge	Rest			
Α	2,38	8	4,400	2,388	2,002			
В	1,23	4	2,002	1,234	0,758			
С	1,23	4	4,400	1,234	3,156			
D	1,23	4	3,156	1,234	1,912			

Befestigerabstand

Modul	Bereich	Distance
1	Feldbereich	0,65 m
1	Traufrand	0,65 m

Modulfelder

Modulfeld	Breite[m]	Länge[m]	Breite in Modulen	Länge in Modulen
1	6,92	2,29	4	2

Dächer | W Dach | Modulfeld 1

Dach (1) Modulfeld (1)

Montagesystem

Modul

SingleRail

4(1.7 kWp) x DAS-DH108NA-425 (Schwarzer

Rahmen)

Reihenabstand

1,73 m

Dächer | W Dach | Modulfeld 1 | Modulblöcke

Ergebnisse | W Dach

Dach	System	Modul	Leistung	Stückzahl	Gesamtleistung
W Dach	<u>SingleRail</u>	DAS-DH108NA-425 (Schwarzer Rahmen)	425 Wp	4	1.7 kWp

Modul

Name DAS-DH108NA-425 (Schwarzer Rahmen)

Hersteller DAS Solar (Quzhou) Co., Ltd.

Leistung 425 Wp

Abmessungen 1.722×1.134×30 mm

Gewicht 20,5 kg

Komponenten

Befestiger SingleHook 4S
Basisschienen K2 SingleRail 36
obere Schiene K2 SingleRail 36

Lasten auf Module (Moduldimensionierung)

Bereich	A-TrA [m²]	Nacl	Nachweis Tragsicherheit [Pa]			Nachwe	is Gebra	uchstauglic	:hkeit [Pa]
		Druck ⊥	Druck II	Abheben ⊥	Abheben II	Druck ⊥	Druck II	Abheben ⊥	Abheben II
Feldbereich	1,95	1.387,1	547,9	-1.335,7	43,3	742,9	262,7	-854,8	43,3
Traufrand	1,95	1.401,8	547,9	-1.335,7	43,3	787,2	262,7	-854,8	43,3

Basisschiene - Ergebnis Auslastung

		Tra	Tragfähigkeit		GebT Abstände		Maxir	Maximalwerte	
Nr.	DachBereiche	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Modulfeld		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	Feldbereich	27,0	0,0	84,5	7,1	0,650	1,280	0,510	0,769
1	Traufrand	27,2	70,1	85,3	7,5	0,650	1,280	0,503	0,762

obere Schiene - Ergebnis Auslastung

		Trag	gfähigl	keit	GebT	Abstä	nde	Maxir	malwerte
Nr.	DachBereiche	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Modulfeld		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	Fst D _{max} [m]
1	Feldbereich	51,5	10,8		32,4	1,280		0,520	1,765
1	Traufrand	52,0	17,4		34,3	1,280		0,511	1,740

Ergebnisse | W Dach

Pr **Profil**

 $\begin{array}{ll} \text{Fst} & \textbf{Befestiger} \\ \sigma & \textbf{Spannung} \end{array}$

f Durchbiegung

F Kraft

 CL/L_{max} maximale Länge des Kragarms

 $\label{eq:first_point} \textit{Fst } \mathsf{D}_{\mathsf{max}} \quad \text{maximaler Abstand Befestiger}$

BR Basisschiene
UR Obere Schiene

Usab. Gebrauchstauglichkeit

CL Kragarm

Ergebnisse | W Dach

Notizen

- Die Bemessungsregeln entsprechen dem Eurocode EN 1990 Grundlage der Tragwerksplanung.
- Die Ermittlung der Schneelasten erfolgt nach dem nationalen Anhang DIN EN 1991-1-3/NA Schneelasten.
- Die Ermittlung der Windlasten erfolgt nach dem nationalen Anhang DIN EN 1991-1-4/NA Windlasten.
- Die Nutzungsdauer wurde gemäß "Eurocode EN 1991 Einwirkungen auf Tragwerke, Schneelasten" und "Eurocode EN 1991 Einwirkungen auf Tragwerke, Windlasten" berücksichtigt.
- Die Schadensfolgeklasse wurde gemäß "Eurocode EN 1990 Grundlage der Tragwerksplanung" berücksichtigt.
- Daten und Ergebnisse müssen im Hinblick auf die Gegebenheiten vor Ort verifiziert und von einer fachlich hinreichend qualifizierten Person geprüft werden. Bitte beachten Sie unsere unter http://k2systems.com/de/base-anb abrufbaren Allgemeinen Nutzungsbedingungen (ANB), insbesondere § 2 ("Technische und fachliche Voraussetzungen beim Kunden"), § 7 ("Gewährleistungsbeschränkung") und § 8 ("Haftungsbeschränkung").

Allgemeine Informationen

Name Mayk Kophamel Montagesystem SingleRail

Bearbeiter Autarkiekonzepte Planungsteam

Standortinformationen

Adresse Zum Sandkolk 25, 39114 Magdeburg, Deutschland

Geländehöhe 47,25 m

Informationen zum Dach

Gebäudehöhe 8,10 m Walmdach Dachtyp

22° Dachneigung

In Dach-Unterkonstruktion Befestigungsmethode

Eindeckung Ziegel min. Randabstand 0,30 m Sparrenabstand 0,650 m 80,0 mm Sparrenbreite Nein Randsparren links setzen Sparrenabstand links 185,0 mm Sparrenabstand rechts Nein Sparrenabstand 185,0 mm

Lattenabstand 320,0 mm

Lasten

Bemessung DIN EN CC2 Schadensfolgeklasse Nutzungsdauer 25 Jahre

Geländekategorie III - Vorstädte, Industrie-/Gewerbe-/Waldgebiet

Windlast

Windlastzone

 $q_{p,50} = 0,585 \text{ kN/m}^2$ Geschwindigkeitsdruck

Anpassungsfaktor für = 0,901

Nutzungsdauer

 $q_{p,25} = 0,527 \text{ kN/m}^2$ Geschwindigkeitsdruck

DachBereiche

Bereich	Lasteinflussflaeche [m²]	maxCpe ₁₀	minCpe ₁₀		WindSog [kN/m²]
Feldbereich	10,00	0,293	-1,400	0,155	-0,738
Traufrand	10,00	0,433	-1,400	0,228	-0,738

Schneelast

Schneelastzone	2	
Schneefanggitter	Nein	
Bodenschneelast	\mathbf{S}_{k}	$= 0.850 \text{ kN/m}^2$
Formbeiwert für Schnee	μ_{i}	= 0,800
Faktor für Dachneigung	\mathbf{d}_{i}	= 0,927
Schneelast auf dem Dach	S _{i,50}	$= 0,630 \text{ kN/m}^2$
Anpassungsfaktor für Nutzungsdauer	f_s	= 0,929
Schneelast auf dem Dach	S _{i,25}	$= 0,586 \text{ kN/m}^2$
Außergewöhnliche Schneelast auf dem Boden	S_Ad	= 1,955 kN/m ²
Außergewöhnliche Schneelast auf dem Dach	$\mathbf{S}_{i,Ad}$	= 1,347 kN/m ²

Eigenlast

Gewicht des Moduls	\mathbf{G}_{M}	= 20,5 kg
Gewicht des Montagesystems pro Modul		= 2,5 kg
Modulfläche	$\boldsymbol{A}_{\mathrm{M}}$	= 1,95 m ²
Eigengewicht des Moduls pro m²		= 10,50 kg/m ²
Eigengewicht des Montagesystems pro m²		= 1,28 kg/m ²
Gesamte Eigenlast (ohne Ballast) pro m²		= 0,12 kN/m ²

Lastfallkombinationen

Tragfähigkeit

Teilsicherheitsbeiwert ständig ungünstig (STR)	$\gamma_{G, sup}$	= 1,35
Teilsicherheitsbeiwert ständig günstig (STR)	$\gamma_{\text{G,inf}}$	= 1,00
Teilsicherheitsbeiwert ständig destab. (EQU)	$\gamma_{\text{G,dst}}$	= 1,10
Teilsicherheitsbeiwert ständig stab. (EQU)	$\gamma_{\text{G,stb}}$	= 0,90
Teilsicherheitsbeiwert erster veränderlicher	$\gamma_{\scriptscriptstyle Q}$	= 1,50
Teilsicherheitsbeiwert n veränderliche	$\gamma_{\scriptscriptstyle Q}$	= 1,50
Teilsicherheitsbeiwert außergewöhnlich	γ_{A}	= 1,00
Kombinationsbeiwert für Wind	$\psi_{\text{o,w}}$	= 0,60
Kombinationsbeiwert für Wind (weitere veränderliche Einwirkungen)	$\psi_{\text{1,W}}$	= 0,20
Kombinationsbeiwert für Schnee	$\psi_{\text{o,s}}$	= 0,50
Bedeutungsbeiwert ständig	$\mathbf{K}_{\mathrm{Fl,G}}$	= 1,00
Bedeutungsbeiwert veränderlich	$\mathbf{K}_{Fl,Q}$	= 1,00
Bedeutungsbeiwert außergewöhnlich	$\mathbf{K}_{\mathrm{Fl,A}}$	= 1,00

LFK 01	$E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * S_{i,n}$
LFK 02	$E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * W_{k,Pressure}$
LFK 03	$E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * (W_{k,Pressure} + \psi_{0,S} * S_{i,n})$
LFK 04	$E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * (S_{i,n} + \psi_{0,W} * W_{k,Pressure})$
LFK 05	$E_d = \kappa_{Fl,G} * G_k + \gamma_A * \kappa_{Fl,A} * S_{ad,n} + \kappa_{Fl,Q} * \psi_{1,W} * W_{k,Pressure}$
LFK 06	$E_d = \gamma_{G,inf} * G_k + \gamma_0 * \kappa_{Fl,0} * W_{k,Uolift}$

Gebrauchstauglichkeit

Kombinationsbeiwert für Wind	$\psi_{o,}$	= 0,60
	W	
Kombinationsbeiwert für Schnee	$\psi_{\text{o,s}}$	= 0,50
Kombinationsbeiwert für Wind (weitere veränderliche Einwirkungen)	$\psi_{1,W}$	= 0,20

LFK 01	$E_d = G_k + S_{i,n}$
LFK 02	$E_d = G_k + W_{k,Pressure}$
LFK 03	$E_d = G_k + W_{k,Pressure} + \psi_{0,S} * S_{i,n}$
LFK 04	$E_d = G_k + S_{i,n} + \psi_{0,W} * W_{k,Pressur}$
LFK 06	$E_d = G_k + W_{k,Uplift}$

Maximale Belastung der Module (Dimensionierung des Befestigungssystems)

Bereich	A-TrA [m ²]	Nachweis Tragsicherheit [kN/m²]			Nachw	Nachweis Gebrauchstauglichkeit [kN/ m²]				
		Druck ⊥	Druck II	Abheben ⊥	Abheben II	Druck ⊥	Druck II	Abheben ⊥	Abheben II	
Feldbereich	10,00	1,387	0,548	-0,999	0,043	0,743	0,263	-0,631	0,043	
Traufrand	10,00	1,402	0,548	-0,999	0,043	0,787	0,263	-0,631	0,043	

Maximale Einwirkungen pro Befestiger

Bereich	A-TrA [m²]	Nachweis Tragsicherheit [kN]				Nachweis Gebrauchstauglichkeit [kN			
	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Druck ⊥	Druck II	Abheben ⊥	Abheben II	Druck⊥	Druck II	Abheben ⊥	Abheben II
Feldbereich	10,00	1,212	0,479	-0,873	0,038	0,649	0,229	-0,551	0,038
Traufrand	10,00	1,225	0,479	-0,873	0,038	0,688	0,229	-0,551	0,038

Widerstandswerte der Komponenten

Basisschiene

Basisschiene	A	I_{y}	Iz	W_{y}	W_z
	[cm ²]	[cm^4]	[cm^4]	[cm³]	[cm ³]
K2 SingleRail 36	2,850	4,02	6,37	2,14	3,09

Obere Schiene

K2 SingleRail 36	2,850	4,02	6,37	2,14	3,09
	[cm ²]	[cm^4]	[cm^4]	[cm ³]	[cm³]
Obere Schiene	А	l _y	l _z	W_y	W_z

Befestiger

Befestiger	R _{D, Sog, Senkrecht} [kN]	$R_{D,Druck,Senkrecht}$ [kN]	$R_{D,Druck,Parallel}$ [kN]
SingleHook 4S	1,90	1,64	2,03

Basisschiene - Ergebnis Auslastung

		Tra	Tragfähigkeit		GebT	ebT Abstände			Maximalwerte	
Nr.	DachBereiche	Pr	CL	Fst	Pr	Fst	BR	C	CL	Fst
Modulfeld		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	L _{max}	[m]	Fst D _{max} [m]
1	Feldbereich	27,0	0,0	84,5	7,1	0,650	1,280	0,	510	0,769
1	Traufrand	27,2	70,1	85,3	7,5	0,650	1,280	0,5	503	0,762

obere Schiene - Ergebnis Auslastung

		Trag	gfähig	keit	GebT	Abstä	nde	Maxir	nalwerte
Nr.	DachBereiche	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Modulf	eld	σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst D_{max}[m]$
1	Feldbereich	51,5	10,8		32,4	1,280		0,520	1,765
1	Traufrand	52,0	17,4		34,3	1,280		0,511	1,740
Pr	Profil			Fst D _{max}	maximale	r Abstan	d Befest	iger	
Fst	Befestiger BR Basisschiene								
σ	Spannung			UR	Obere Sch	iene			
f	Durchbiegung			Usab.	Gebrauch	stauglich	nkeit		
F	Kraft			CL	Kragarm				
CL/L _{max}	maximale Länge des Kragarms								

Dächer | S Dach

Dach	System	Modul	Leistung	Stückzahl	Gesamtleistung
S Dach	SingleRail	DAS-DH108NA-425 (Schwarzer Rahmen)	425 Wp	8	3.4 kWp

Dächer | S Dach | Montageplan

Basisschiene

	ganze Schienen		Zuschnitt			
Тур	Gesamtlänge	Anzahl 4,40 m	von Schiene	Länge	Rest	
Α	6,600	1	4,400	2,200	2,190	
В	1,400		2,190	1,400	0,780	
С	4,636	1	0,780	0,700	0,070	
D	1,172		4,400	1,172	3,218	
E	1,172		3,218	1,172	2,036	

Obere Schiene

	ganze	e Schienen	Zuschnitt		
Тур	Gesamtlänge	Anzahl 4,40 m	von Schiene	Länge	Rest
Α	2,38	8	4,400	2,388	2,002
В	1,23	4	2,002	1,234	0,758
С	1,23	4	4,400	1,234	3,156
D	1,23	4	3,156	1,234	1,912
E	1,23	4	1,912	1,234	0,668

Befestigerabstand

Modul	Bereich	Distance
1	Feldbereich	0,65 m
1	Traufrand	0,65 m
2	Feldbereich	0,65 m

Modulfelder

Modulfeld	Breite[m]	Länge[m]	Breite in Modulen	Länge in Modulen
1	6,92	1,13	4	1
2	5,19	2,29	3	2

Dächer | S Dach | Modulfeld 1

Dach (2) Modulfeld 1

Montagesystem

Modul

SingleRail

4(1.7 kWp) x DAS-DH108NA-425 (Schwarzer

Rahmen)

Reihenabstand

1,73 m

Dächer | S Dach | Modulfeld 1 | Modulblöcke

Dächer | S Dach | Modulfeld 2

Dach (2) Modulfeld (2)

Montagesystem

Modul

<u>SingleRail</u>

4(1.7 kWp) x DAS-

DH108NA-425 (Schwarzer Rahmen)

1,73 m

Reihenabstand

Dächer | S Dach | Modulfeld 2 | Modulblöcke

Ergebnisse | S Dach

Dach	System	Modul	Leistung	Stückzahl	Gesamtleistung
S Dach	<u>SingleRail</u>	DAS-DH108NA-425 (Schwarzer Rahmen)	425 Wp	8	3.4 kWp

Modul

Name DAS-DH108NA-425 (Schwarzer Rahmen)

Hersteller DAS Solar (Quzhou) Co., Ltd.

Leistung 425 Wp

Abmessungen 1.722×1.134×30 mm

Gewicht 20,5 kg

Komponenten

Befestiger SingleHook 4S
Basisschienen K2 SingleRail 36
obere Schiene K2 SingleRail 36

Lasten auf Module (Moduldimensionierung)

Bereich	A-TrA [m²]	Nac	hweis Tra	agsicherhei	t [Pa]	Nachweis Gebrauchstauglichkei			hkeit [Pa]
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Druck ⊥		Abheben ⊥		Druck ⊥	Druck II	Abheben ⊥	Abheben II
Feldbereich	1,95	1.387,1	547,9	-1.335,7	43,3	742,9	262,7	-854,8	43,3
Traufrand	1,95	1.401,8	547,9	-1.335,7	43,3	787,2	262,7	-854,8	43,3
Feldbereich	1,95	1.387,1	547,9	-1.335,7	43,3	742,9	262,7	-854,8	43,3

Basisschiene - Ergebnis Auslastung

		Tra	ıgfähig	keit	GebT	Abst	ände	Maxir	nalwerte
Nr.	DachBereiche	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Modulfeld		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	Feldbereich	27,0	0,0	84,5	7,1	0,650	1,280	0,510	0,769
1	Traufrand	27,2	0,0	85,3	7,5	0,650	1,280	0,503	0,762
2	Feldbereich	27,0	43,5	84,5	7,1	0,650	1,280	0,510	0,769

Ergebnisse | S Dach

obere Schiene - Ergebnis Auslastung

		Trag	gfähigk	keit	GebT	Abstä	nde	Maxir	nalwerte
Nr.	DachBereiche	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Modulfeld		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst D_{max}[m]$
1	Feldbereich	51,5	8,7		32,4	1,280		0,520	1,765
1	Traufrand	52,0	20,3		34,3	1,280		0,511	1,740
2	Feldbereich	51,5	6,5		32,4	1,280		0,520	1,765

Pr	Profil	$\text{Fst } D_{\text{max}}$	maximaler Abstand Befestiger
Fst	Befestiger	BR	Basisschiene
σ	Spannung	UR	Obere Schiene
f	Durchbiegung	Usab.	Gebrauchstauglichkeit
F	Kraft	CL	Kragarm
CL/L_{max}	maximale Länge des Kragarms		

Ergebnisse | S Dach

Notizen

- Die Bemessungsregeln entsprechen dem Eurocode EN 1990 Grundlage der Tragwerksplanung.
- Die Ermittlung der Schneelasten erfolgt nach dem nationalen Anhang DIN EN 1991-1-3/NA Schneelasten.
- Die Ermittlung der Windlasten erfolgt nach dem nationalen Anhang DIN EN 1991-1-4/NA Windlasten.
- Die Nutzungsdauer wurde gemäß "Eurocode EN 1991 Einwirkungen auf Tragwerke, Schneelasten" und "Eurocode EN 1991 Einwirkungen auf Tragwerke, Windlasten" berücksichtigt.
- Die Schadensfolgeklasse wurde gemäß "Eurocode EN 1990 Grundlage der Tragwerksplanung" berücksichtigt.
- Daten und Ergebnisse müssen im Hinblick auf die Gegebenheiten vor Ort verifiziert und von einer fachlich hinreichend qualifizierten Person geprüft werden. Bitte beachten Sie unsere unter http://k2systems.com/de/base-anb abrufbaren Allgemeinen Nutzungsbedingungen (ANB), insbesondere § 2 ("Technische und fachliche Voraussetzungen beim Kunden"), § 7 ("Gewährleistungsbeschränkung") und § 8 ("Haftungsbeschränkung").

Allgemeine Informationen

Name Mayk Kophamel
Montagesystem SingleRail

Bearbeiter Autarkiekonzepte Planungsteam

Standortinformationen

Adresse Zum Sandkolk 25, 39114 Magdeburg, Deutschland

Geländehöhe 47,25 m

Informationen zum Dach

Gebäudehöhe 8,10 m Dachtyp Walmdach

Dachneigung 22°

Befestigungsmethode In Dach-Unterkonstruktion

Eindeckung Ziegel min. Randabstand 0,29 m Sparrenabstand 0,650 m 80,0 mm Sparrenbreite Nein Randsparren links setzen Sparrenabstand links 300,0 mm Sparrenabstand rechts Nein Sparrenabstand 300,0 mm

Lattenabstand 320,0 mm

Lasten

Bemessung DIN EN
Schadensfolgeklasse CC2
Nutzungsdauer 25 Jahre

Geländekategorie III - Vorstädte, Industrie-/Gewerbe-/Waldgebiet

Windlast

Windlastzone

Geschwindigkeitsdruck $q_{p,50} = 0,585 \text{ kN/m}^2$

Anpassungsfaktor für $f_w = 0,901$

Nutzungsdauer

Geschwindigkeitsdruck $q_{p,25} = 0,527 \text{ kN/m}^2$

DachBereiche

Bereich	Lasteinflussflaeche [m²]	maxCpe ₁₀	minCpe ₁₀		WindSog [kN/m²]
Feldbereich	10,00	0,293	-1,400	0,155	-0,738
Traufrand	10,00	0,433	-1,400	0,228	-0,738
Feldbereich	10,00	0,293	-1,400	0,155	-0,738

Schneelast

Schneelastzone	2	
Schneefanggitter	Nein	
Bodenschneelast	$\mathbf{S}_{\mathbf{k}}$	$= 0.850 \text{ kN/m}^2$
Formbeiwert für Schnee	μ_{i}	= 0,800
Faktor für Dachneigung	\mathbf{d}_{i}	= 0,927
Schneelast auf dem Dach	S _{i,50}	$= 0,630 \text{ kN/m}^2$
Anpassungsfaktor für Nutzungsdauer	f_s	= 0,929
Schneelast auf dem Dach	S _{i,25}	$= 0,586 \text{ kN/m}^2$
Außergewöhnliche Schneelast auf dem Boden	\mathbf{S}_{Ad}	= 1,955 kN/m ²
Außergewöhnliche Schneelast auf dem Dach	S _{i,Ad}	= 1,347 kN/m ²

Eigenlast

Gewicht des Moduls	\mathbf{G}_{M}	= 20,5 kg
Gewicht des Montagesystems pro Modul		= 2,5 kg
Modulfläche	\mathbf{A}_{M}	= 1,95 m ²
Eigengewicht des Moduls pro m²		= 10,50 kg/m ²
Eigengewicht des Montagesystems pro m²		= 1,28 kg/m ²
Gesamte Eigenlast (ohne Ballast) pro m ²		= 0,12 kN/m ²

Lastfallkombinationen

Tragfähigkeit

Teilsicherheitsbeiwert ständig ungünstig (STR)	$\gamma_{\text{G,sup}}$	= 1,35
Teilsicherheitsbeiwert ständig günstig (STR)	$\gamma_{\text{G,inf}}$	= 1,00
Teilsicherheitsbeiwert ständig destab. (EQU)	$\gamma_{\text{G,dst}}$	= 1,10
Teilsicherheitsbeiwert ständig stab. (EQU)	$\gamma_{\text{G,stb}}$	= 0,90
Teilsicherheitsbeiwert erster veränderlicher	$\gamma_{\scriptscriptstyle Q}$	= 1,50
Teilsicherheitsbeiwert n veränderliche	$\gamma_{\scriptscriptstyle Q}$	= 1,50
Teilsicherheitsbeiwert außergewöhnlich	γ_{A}	= 1,00
Kombinationsbeiwert für Wind	$\psi_{\text{o,w}}$	= 0,60
Kombinationsbeiwert für Wind (weitere veränderliche Einwirkungen)	$\psi_{\text{1,W}}$	= 0,20
Kombinationsbeiwert für Schnee	$\psi_{\text{o,s}}$	= 0,50
Bedeutungsbeiwert ständig	$\mathbf{K}_{\mathrm{Fl,G}}$	= 1,00
Bedeutungsbeiwert veränderlich	$\mathbf{K}_{\mathrm{Fl,Q}}$	= 1,00
Bedeutungsbeiwert außergewöhnlich	$\mathbf{K}_{\mathrm{Fl,A}}$	= 1,00

LFK 01	$E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * S_{i,n}$
LFK 02	$E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * W_{k,Pressure}$
LFK 03	$E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * (W_{k,Pressure} + \psi_{0,S} * S_{i,n})$
LFK 04	$E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * (S_{i,n} + \psi_{0,W} * W_{k,Pressure})$
LFK 05	$E_d = \kappa_{Fl,G} * G_k + \gamma_A * \kappa_{Fl,A} * S_{ad,n} + \kappa_{Fl,Q} * \psi_{1,W} * W_{k,Pressure}$
LFK 06	$E_d = \gamma_{G,inf} * G_k + \gamma_0 * \kappa_{Fl,0} * W_{k,Uolift}$

Gebrauchstauglichkeit

Kombinationsbeiwert für Wind	$\psi_{\text{o,}}$	= 0,60
Kombinationsbeiwert für Schnee	$\psi_{0,s}$	= 0,50
Kombinationsbeiwert für Wind (weitere veränderliche Einwirkungen)	ψ _{1,w}	= 0,20

LFK 01	$E_d = G_k + S_{i,n}$
LFK 02	$E_d = G_k + W_{k,Pressure}$
LFK 03	$E_d = G_k + W_{k,Pressure} + \psi_{0,S} * S_{i,n}$
LFK 04	$E_d = G_k + S_{i,n} + \psi_{0,W} * W_{k,Pressure}$
LFK 06	$E_d = G_k + W_{k,Uplift}$

Maximale Belastung der Module (Dimensionierung des Befestigungssystems)

Bereich	A-TrA [m ²]	Nachv	Nachweis Tragsicherheit [kN/m²]			Nachweis Gebrauchstauglichkeit [kN/m²]			
		Druck ⊥	Druck II	Abheben ⊥	Abheben II	Druck ⊥	Druck II	Abheben ⊥	Abheben II
Feldbereich	10,00	1,387	0,548	-0,999	0,043	0,743	0,263	-0,631	0,043
Traufrand	10,00	1,402	0,548	-0,999	0,043	0,787	0,263	-0,631	0,043
Feldbereich	10,00	1,387	0,548	-0,999	0,043	0,743	0,263	-0,631	0,043

Maximale Einwirkungen pro Befestiger

Bereich	Nac	Nachweis Tragsicherheit [kN]				Nachweis Gebrauchstauglichkeit [kN]			
	A-TrA [m ²]	Druck ⊥	Druck II	Abheben ⊥	Abheben II	Druck⊥	Druck II	Abheben ⊥	Abheben II
Feldbereich	10,00	1,212	0,479	-0,873	0,038	0,649	0,229	-0,551	0,038
Traufrand	10,00	1,225	0,479	-0,873	0,038	0,688	0,229	-0,551	0,038
Feldbereich	10,00	1,212	0,479	-0,873	0,038	0,649	0,229	-0,551	0,038

Widerstandswerte der Komponenten

Basisschiene

Basisschiene	A [cm²]	l _y [cm^4]	l _z [cm^4]	W _y [cm³]	W_z [cm 3]
K2 SingleRail 36	2,850	4,02	6,37	2,14	3,09

Obere Schiene

K2 SingleRail 36	2,850	4,02	6,37	2,14	3,09
	[cm ²]	[cm^4]	[cm^4]	[cm³]	[cm³]
Obere Schiene	А	l _y	l _z	W_y	W_z

Befestiger

Befestiger	R _{D, Sog, Senkrecht} [kN]	R _{D,Druck,Senkrecht} [kN]	R _{D,Druck,Parallel} [kN]
SingleHook 4S	1,90	1,64	2,03

Basisschiene - Ergebnis Auslastung

		Tra	ıgfähig	keit	GebT	Abst	ände	Maxir	nalwerte
Nr.	DachBereiche	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Modulfeld		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	Feldbereich	27,0	0,0	84,5	7,1	0,650	1,280	0,510	0,769
1	Traufrand	27,2	0,0	85,3	7,5	0,650	1,280	0,503	0,762
2	Feldbereich	27,0	43,5	84,5	7,1	0,650	1,280	0,510	0,769

obere Schiene - Ergebnis Auslastung

		Trag	gfähigk	keit	GebT	Abstä	nde	Maxir	nalwerte
Nr.	DachBereiche	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Modulfeld		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	Feldbereich	51,5	8,7		32,4	1,280		0,520	1,765
1	Traufrand	52,0	20,3		34,3	1,280		0,511	1,740
2	Feldbereich	51,5	6,5		32,4	1,280		0,520	1,765

Pr	Profil	$Fst\;D_{max}$	maximaler Abstand Befestiger
Fst	Befestiger	BR	Basisschiene
σ	Spannung	UR	Obere Schiene
f	Durchbiegung	Usab.	Gebrauchstauglichkeit
F	Kraft	CL	Kragarm
CL /I	maximale I änge des Kragarms		

Dächer | O Dach

Dach	System	Modul	Leistung	Stückzahl	Gesamtleistung
O Dach	<u>SingleRail</u>	DAS-DH108NA-425 (Schwarzer Rahmen)	425 Wp	8	3.4 kWp

Dächer | O Dach | Montageplan

Basisschiene

	ganze S	Schienen	Zuschnitt			
Тур	Gesamtlänge	Anzahl 4,40 m	von Schiene	Länge	Rest	
Α	6,600	1	4,400	2,200	2,190	
В	1,400		2,190	1,400	0,780	
С	4,636	1	0,780	0,700	0,070	
D	1,172		4,400	1,172	3,218	
Е	1,172		3,218	1,172	2,036	

Obere Schiene

	ganze	ganze Schienen		Zuschnitt			
Тур	Gesamtlänge	Anzahl 4,40 m	von Schiene	Länge	Rest		
Α	2,38	8	4,400	2,388	2,002		
В	1,23	4	2,002	1,234	0,758		
С	1,23	4	4,400	1,234	3,156		
D	1,23	4	3,156	1,234	1,912		
Е	1,23	4	1,912	1,234	0,668		

Befestigerabstand

Modul	Bereich	Distance
1	Feldbereich	0,65 m
1	Traufrand	0,65 m
2	Feldbereich	0,65 m

Modulfelder

Modulfeld	Breite[m]	Länge[m]	Breite in Modulen	Länge in Modulen
1	6,92	1,13	4	1
2	5,19	2,29	3	2

Dächer | O Dach | Modulfeld 1

Dach (3) Modulfeld 1

Montagesystem

Modul

SingleRail

4(1.7 kWp) x DAS-DH108NA-425 (Schwarzer

Rahmen)

Reihenabstand

Dächer | O Dach | Modulfeld 1 | Modulblöcke

Dächer | O Dach | Modulfeld 2

Dach 3 Modulfeld 2

Montagesystem

Modul

SingleRail 4(1.7 kWp) x DAS-

DH108NA-425 (Schwarzer

Rahmen)

1,73 m

Reihenabstand

Dächer | O Dach | Modulfeld 2 | Modulblöcke

Ergebnisse | O Dach

Dach	System	Modul	Leistung	Stückzahl	Gesamtleistung
O Dach	<u>SingleRail</u>	DAS-DH108NA-425 (Schwarzer Rahmen)	425 Wp	8	3.4 kWp

Modul

Name DAS-DH108NA-425 (Schwarzer Rahmen)

Hersteller DAS Solar (Quzhou) Co., Ltd.

Leistung 425 Wp

Abmessungen 1.722×1.134×30 mm

Gewicht 20,5 kg

Komponenten

Befestiger SingleHook 4S
Basisschienen K2 SingleRail 36
obere Schiene K2 SingleRail 36

Lasten auf Module (Moduldimensionierung)

Bereich	A-TrA [m²]	Nac	hweis Tra	agsicherhei	t [Pa]	Nachwe	is Gebra	uchstauglic	hkeit [Pa]
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Druck ⊥		Abheben ⊥		Druck ⊥	Druck II	Abheben ⊥	Abheben II
Feldbereich	1,95	1.387,1	547,9	-1.335,7	43,3	742,9	262,7	-854,8	43,3
Traufrand	1,95	1.401,8	547,9	-1.335,7	43,3	787,2	262,7	-854,8	43,3
Feldbereich	1,95	1.387,1	547,9	-1.335,7	43,3	742,9	262,7	-854,8	43,3

Basisschiene - Ergebnis Auslastung

		Tra	ıgfähig	keit	GebT	Abst	ände	Maxir	nalwerte
Nr.	DachBereiche	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Modulfeld		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	Feldbereich	27,0	0,0	84,5	7,1	0,650	1,280	0,510	0,769
1	Traufrand	27,2	0,0	85,3	7,5	0,650	1,280	0,503	0,762
2	Feldbereich	27,0	43,5	84,5	7,1	0,650	1,280	0,510	0,769

Ergebnisse | O Dach

obere Schiene - Ergebnis Auslastung

		Trag	gfähigk	keit	GebT	Abstä	nde	Maxir	nalwerte
Nr.	DachBereiche	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Modulfeld		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst D_{max}[m]$
1	Feldbereich	51,5	8,7		32,4	1,280		0,520	1,765
1	Traufrand	52,0	20,3		34,3	1,280		0,511	1,740
2	Feldbereich	51,5	6,5		32,4	1,280		0,520	1,765

 $\label{eq:first_power_power} \textit{Fst } D_{\text{max}} \quad \text{maximaler Abstand Befestiger}$ Pr Profil Fst Befestiger BR Basisschiene UR Obere Schiene Spannung f Durchbiegung Usab. Gebrauchstauglichkeit F Kraft CL Kragarm CL/L_{max} maximale Länge des Kragarms

Ergebnisse | O Dach

Notizen

- Die Bemessungsregeln entsprechen dem Eurocode EN 1990 Grundlage der Tragwerksplanung.
- Die Ermittlung der Schneelasten erfolgt nach dem nationalen Anhang DIN EN 1991-1-3/NA Schneelasten.
- Die Ermittlung der Windlasten erfolgt nach dem nationalen Anhang DIN EN 1991-1-4/NA Windlasten.
- Die Nutzungsdauer wurde gemäß "Eurocode EN 1991 Einwirkungen auf Tragwerke, Schneelasten" und "Eurocode EN 1991 Einwirkungen auf Tragwerke, Windlasten" berücksichtigt.
- Die Schadensfolgeklasse wurde gemäß "Eurocode EN 1990 Grundlage der Tragwerksplanung" berücksichtigt.
- Daten und Ergebnisse müssen im Hinblick auf die Gegebenheiten vor Ort verifiziert und von einer fachlich hinreichend qualifizierten Person geprüft werden. Bitte beachten Sie unsere unter http://k2systems.com/de/base-anb abrufbaren Allgemeinen Nutzungsbedingungen (ANB), insbesondere § 2 ("Technische und fachliche Voraussetzungen beim Kunden"), § 7 ("Gewährleistungsbeschränkung") und § 8 ("Haftungsbeschränkung").

Allgemeine Informationen

Name Mayk Kophamel
Montagesystem SingleRail

Bearbeiter Autarkiekonzepte Planungsteam

Standortinformationen

Adresse Zum Sandkolk 25, 39114 Magdeburg, Deutschland

Geländehöhe 47,25 m

Informationen zum Dach

Gebäudehöhe 8,10 m Dachtyp Walmdach

Dachneigung 22°

Befestigungsmethode In Dach-Unterkonstruktion

Eindeckung Ziegel
min. Randabstand 0,29 m
Sparrenabstand 0,650 m
Sparrenbreite 80,0 mm
Randsparren links setzen Nein
Sparrenabstand links 300,0 mm
Sparrenabstand rechts Nein

Sparrenabstand 300,0 mm
Lattenabstand 320,0 mm

Lasten

Bemessung DIN EN
Schadensfolgeklasse CC2
Nutzungsdauer 25 Jahre

Geländekategorie III - Vorstädte, Industrie-/Gewerbe-/Waldgebiet

Windlast

Windlastzone 2

Geschwindigkeitsdruck $q_{p,50} = 0,585 \text{ kN/m}^2$

Anpassungsfaktor für $f_w = 0,901$

Nutzungsdauer

Geschwindigkeitsdruck $q_{p,25} = 0,527 \text{ kN/m}^2$

DachBereiche

Bereich	Lasteinflussflaeche [m²]	maxCpe ₁₀	minCpe ₁₀	Winddruck [kN/m²]	WindSog [kN/m²]
Feldbereich	10,00	0,293	-1,400	0,155	-0,738
Traufrand	10,00	0,433	-1,400	0,228	-0,738
Feldbereich	10,00	0,293	-1,400	0,155	-0,738

Schneelast

Schneelastzone	2	
Schneefanggitter	Nein	
Bodenschneelast	$\mathbf{S}_{\mathbf{k}}$	$= 0.850 \text{ kN/m}^2$
Formbeiwert für Schnee	μ_{i}	= 0,800
Faktor für Dachneigung	\mathbf{d}_{i}	= 0,927
Schneelast auf dem Dach	S _{i,50}	$= 0,630 \text{ kN/m}^2$
Anpassungsfaktor für Nutzungsdauer	f_s	= 0,929
Schneelast auf dem Dach	S _{i,25}	$= 0,586 \text{ kN/m}^2$
Außergewöhnliche Schneelast auf dem Boden	\mathbf{S}_{Ad}	= 1,955 kN/m ²
Außergewöhnliche Schneelast auf dem Dach	S _{i,Ad}	= 1,347 kN/m ²

Eigenlast

Gewicht des Moduls	\mathbf{G}_{M}	= 20,5 kg
Gewicht des Montagesystems pro Modul		= 2,5 kg
Modulfläche	\mathbf{A}_{M}	= 1,95 m ²
Eigengewicht des Moduls pro m²		= 10,50 kg/m ²
Eigengewicht des Montagesystems pro m²		= 1,28 kg/m ²
Gesamte Eigenlast (ohne Ballast) pro m²		= 0,12 kN/m ²

Lastfallkombinationen

Tragfähigkeit

Teilsicherheitsbeiwert ständig ungünstig (STR)	$\gamma_{\text{G,sup}}$	= 1,35
Teilsicherheitsbeiwert ständig günstig (STR)	$\gamma_{\text{G,inf}}$	= 1,00
Teilsicherheitsbeiwert ständig destab. (EQU)	$\gamma_{\text{G,dst}}$	= 1,10
Teilsicherheitsbeiwert ständig stab. (EQU)	$\gamma_{\text{G,stb}}$	= 0,90
Teilsicherheitsbeiwert erster veränderlicher	$\gamma_{\scriptscriptstyle Q}$	= 1,50
Teilsicherheitsbeiwert n veränderliche	$\gamma_{\scriptscriptstyle Q}$	= 1,50
Teilsicherheitsbeiwert außergewöhnlich	γ_{A}	= 1,00
Kombinationsbeiwert für Wind	$\psi_{\text{o,w}}$	= 0,60
Kombinationsbeiwert für Wind (weitere veränderliche Einwirkungen)	$\psi_{\text{1,W}}$	= 0,20
Kombinationsbeiwert für Schnee	$\psi_{\text{o,s}}$	= 0,50
Bedeutungsbeiwert ständig	$\mathbf{K}_{\mathrm{Fl,G}}$	= 1,00
Bedeutungsbeiwert veränderlich	$\mathbf{K}_{\mathrm{Fl,Q}}$	= 1,00
Bedeutungsbeiwert außergewöhnlich	$\mathbf{K}_{\mathrm{Fl,A}}$	= 1,00

LFK 01	$E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * S_{i,n}$
LFK 02	$E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * W_{k,Pressure}$
LFK 03	$E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * (W_{k,Pressure} + \psi_{0,S} * S_{i,n})$
LFK 04	$E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * (S_{i,n} + \psi_{0,W} * W_{k,Pressure})$
LFK 05	$E_d = \kappa_{Fl,G} * G_k + \gamma_A * \kappa_{Fl,A} * S_{ad,n} + \kappa_{Fl,Q} * \psi_{1,W} * W_{k,Pressure}$
LFK 06	$E_d = \gamma_{G,inf} * G_k + \gamma_0 * \kappa_{Fl,0} * W_{k,Uolift}$

Gebrauchstauglichkeit

Kombinationsbeiwert für Wind	$\psi_{o,}$	= 0,60
	W	
Kombinationsbeiwert für Schnee	$\psi_{\text{o,s}}$	= 0,50
Kombinationsbeiwert für Wind (weitere veränderliche Einwirkungen)	$\psi_{1,W}$	= 0,20

LFK 01	$E_d = G_k + S_{i,n}$
LFK 02	$E_d = G_k + W_{k,Pressure}$
LFK 03	$E_d = G_k + W_{k,Pressure} + \psi_{0,S} * S_{i,n}$
LFK 04	$E_d = G_k + S_{i,n} + \psi_{0,W} * W_{k,Pressure}$
LFK 06	$E_d = G_k + W_{k,Uplift}$

Maximale Belastung der Module (Dimensionierung des Befestigungssystems)

Bereich	A-TrA [m ²]	Nachweis Tragsicherheit [kN/m²]			[kN/m²]	Nachw	eis Gebrau	ıchstauglich m²]	keit [kN/
		Druck ⊥	Druck II	Abheben ⊥	Abheben II	Druck ⊥	Druck II	Abheben ⊥	Abheben II
Feldbereich	10,00	1,387	0,548	-0,999	0,043	0,743	0,263	-0,631	0,043
Traufrand	10,00	1,402	0,548	-0,999	0,043	0,787	0,263	-0,631	0,043
Feldbereich	10,00	1,387	0,548	-0,999	0,043	0,743	0,263	-0,631	0,043

Maximale Einwirkungen pro Befestiger

Bereich	A-TrA [m ²]	Nac	hweis Tr	agsicherhe	it [kN]	Nachwe	Nachweis Gebrauchstauglichkeit [kN]			
	, , , , , , , , , , , , ,	Druck ⊥	Druck II	Abheben ⊥	Abheben II	Druck⊥	Druck II	Abheben ⊥	Abheben II	
Feldbereich	10,00	1,212	0,479	-0,873	0,038	0,649	0,229	-0,551	0,038	
Traufrand	10,00	1,225	0,479	-0,873	0,038	0,688	0,229	-0,551	0,038	
Feldbereich	10,00	1,212	0,479	-0,873	0,038	0,649	0,229	-0,551	0,038	

Widerstandswerte der Komponenten

Basisschiene

Basisschiene	А	I_y	Iz	W_y	W_z
	[cm ²]	[cm^4]	[cm^4]	[cm³]	[cm ³]
K2 SingleRail 36	2,850	4,02	6,37	2,14	3,09

Obere Schiene

K2 SingleRail 36	2,850	4,02	6,37	2,14	3,09
	[cm ²]	[cm^4]	[cm^4]	[cm³]	[cm³]
Obere Schiene	А	l _y	l _z	W_y	W_z

Befestiger

Befestiger	R _{D, Sog, Senkrecht} [kN]	R _{D,Druck,Senkrecht} [kN]	R _{D,Druck,Parallel} [kN]
SingleHook 4S	1,90	1,64	2,03

Basisschiene - Ergebnis Auslastung

		Tra	ıgfähig	keit	GebT	Abst	ände	Maxir	nalwerte
Nr.	DachBereiche	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Modulfeld		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst D_{max}[m]$
1	Feldbereich	27,0	0,0	84,5	7,1	0,650	1,280	0,510	0,769
1	Traufrand	27,2	0,0	85,3	7,5	0,650	1,280	0,503	0,762
2	Feldbereich	27,0	43,5	84,5	7,1	0,650	1,280	0,510	0,769

obere Schiene - Ergebnis Auslastung

		Trag	gfähigk	keit	GebT	Abstä	.nde	Maxir	nalwerte
Nr.	DachBereiche	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Modulfeld		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst D_{max}[m]$
1	Feldbereich	51,5	8,7		32,4	1,280		0,520	1,765
1	Traufrand	52,0	20,3		34,3	1,280		0,511	1,740
2	Feldbereich	51,5	6,5		32,4	1,280		0,520	1,765

Pr	Profil	$\text{Fst } D_{\text{max}}$	maximaler Abstand Befestiger
Fst	Befestiger	BR	Basisschiene
σ	Spannung	UR	Obere Schiene
f	Durchbiegung	Usab.	Gebrauchstauglichkeit
F	Kraft	CL	Kragarm
$\mathrm{CL/L}_{\mathrm{max}}$	maximale Länge des Kragarms		

Dächer | N Dach

Dach	System	Modul	Leistung	Stückzahl	Gesamtleistung
N Dach	<u>SingleRail</u>	DAS-DH108NA-425 (Schwarzer Rahmen)	425 Wp	4	1.7 kWp

Dächer | N Dach | Montageplan

Basisschiene

	ganze	Schienen		Zuschnitt	
Тур	Gesamtlänge	Anzahl 4,40 m	von Schiene	Länge	Rest
Α	1,400)	4,400	1,400	2,990
В	1,400)	2,990	1,400	1,580
С	1,172	2	1,580	1,172	0,398
D	1,172	2	4,400	1,172	3,218
Е	4,636	5 1	1 3,218	0,700	2,508

Obere Schiene

	ganz	e Schienen	2,002 1,234 0,758			
Тур	Gesamtlänge	Anzahl 4,40 m	von Schiene	Länge	Rest	
Α	2,38	8	4,400	2,388	2,002	
В	1,23	4	2,002	1,234	0,758	
С	1,23	4	4,400	1,234	3,156	
D	1,23	4	3,156	1,234	1,912	

Befestigerabstand

1	Foldboroich	0.65 m	
Modul	Bereich	Distance	

Modulfelder

Modulfeld	Breite[m]	Länge[m]	Breite in Modulen	Länge in Modulen
1	5,19	2,29	3	2

Dächer | N Dach | Modulfeld 1

Dach (4) Modulfeld (1)

Montagesystem

Modul

SingleRail

4(1.7 kWp) x DAS-DH108NA-425 (Schwarzer

Rahmen)

1,73 m

Reihenabstand

Dächer | N Dach | Modulfeld 1 | Modulblöcke

Ergebnisse | N Dach

Dach	System	Modul	Leistung	Stückzahl	Gesamtleistung
N Dach	<u>SingleRail</u>	DAS-DH108NA-425 (Schwarzer Rahmen)	425 Wp	4	1.7 kWp

Modul

Name DAS-DH108NA-425 (Schwarzer Rahmen)

Hersteller DAS Solar (Quzhou) Co., Ltd.

Leistung 425 Wp

Abmessungen 1.722×1.134×30 mm

Gewicht 20,5 kg

Komponenten

Befestiger SingleHook 4S
Basisschienen K2 SingleRail 36
obere Schiene K2 SingleRail 36

Lasten auf Module (Moduldimensionierung)

Bereich	A-TrA [m²]	Nac	Nachweis Tragsicherheit [Pa]			Nachw	eis Gebra	uchstauglic	hkeit [Pa]
	7, 117, [111] -	Druck ⊥	Druck II	Abheben ⊥	Abheben II	Druck ⊥	Druck II	Abheben ⊥	Abheben II
Feldbereich	1,95	1.387,1	547,9	-1.335,7	43,3	742,9	262,7	-854,8	43,3

Basisschiene - Ergebnis Auslastung

		Tra	gfähig	jkeit	GebT	Abst	ände	Maxir	malwerte
Nr.	DachBereiche	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Modulfeld		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	Feldbereich	27,0	0,0	84,5	7,1	0,650	1,280	0,510	0,769

obere Schiene - Ergebnis Auslastung

		Trag	gfähig	keit	GebT	Abstä	nde	Maxir	malwerte
Nr.	DachBereiche	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Modulfeld		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	Feldbereich	51,5	6,5		32,4	1,280		0,520	1,765

 ${\sf Pr} \qquad \qquad {\sf Fst} \; {\sf D}_{\sf max} \;\; {\sf maximaler} \; {\sf Abstand} \; {\sf Befestiger} \;$

Fst Befestiger BR Basisschiene σ Spannung UR Obere Schiene

f Durchbiegung Usab. Gebrauchstauglichkeit

Ergebnisse | N Dach

F Kraft CL Kragarm

 CL/L_{max} maximale Länge des Kragarms

Ergebnisse | N Dach

Notizen

- Die Bemessungsregeln entsprechen dem Eurocode EN 1990 Grundlage der Tragwerksplanung.
- Die Ermittlung der Schneelasten erfolgt nach dem nationalen Anhang DIN EN 1991-1-3/NA Schneelasten.
- Die Ermittlung der Windlasten erfolgt nach dem nationalen Anhang DIN EN 1991-1-4/NA Windlasten.
- Die Nutzungsdauer wurde gemäß "Eurocode EN 1991 Einwirkungen auf Tragwerke, Schneelasten" und "Eurocode EN 1991 Einwirkungen auf Tragwerke, Windlasten" berücksichtigt.
- Die Schadensfolgeklasse wurde gemäß "Eurocode EN 1990 Grundlage der Tragwerksplanung" berücksichtigt.
- Daten und Ergebnisse müssen im Hinblick auf die Gegebenheiten vor Ort verifiziert und von einer fachlich hinreichend qualifizierten Person geprüft werden. Bitte beachten Sie unsere unter http://k2systems.com/de/base-anb abrufbaren Allgemeinen Nutzungsbedingungen (ANB), insbesondere § 2 ("Technische und fachliche Voraussetzungen beim Kunden"), § 7 ("Gewährleistungsbeschränkung") und § 8 ("Haftungsbeschränkung").

Allgemeine Informationen

Name Mayk Kophamel
Montagesystem SingleRail

Bearbeiter Autarkiekonzepte Planungsteam

Standortinformationen

Adresse Zum Sandkolk 25, 39114 Magdeburg, Deutschland

Geländehöhe 47,25 m

Informationen zum Dach

Gebäudehöhe 8,10 m Dachtyp Walmdach

Dachneigung 22°

Befestigungsmethode In Dach-Unterkonstruktion

Eindeckung Ziegel
min. Randabstand 0,29 m
Sparrenabstand 0,650 m
Sparrenbreite 80,0 mm
Randsparren links setzen Nein
Sparrenabstand links 300,0 mm
Sparrenabstand rechts Nein

Sparrenabstand 300,0 mm
Lattenabstand 320,0 mm

Lasten

Bemessung DIN EN
Schadensfolgeklasse CC2
Nutzungsdauer 25 Jahre

Geländekategorie III - Vorstädte, Industrie-/Gewerbe-/Waldgebiet

Windlast

Windlastzone 2

Geschwindigkeitsdruck $q_{p,50} = 0,585 \text{ kN/m}^2$

Anpassungsfaktor für $f_w = 0,901$

Nutzungsdauer

Geschwindigkeitsdruck $q_{p,25} = 0,527 \text{ kN/m}^2$

DachBereiche

Bereich	Lasteinflussflaeche [m²]	maxCpe ₁₀	minCpe ₁₀		WindSog [kN/m²]
Feldbereich	10,00	0,293	-1,400	0,155	-0,738

Schneelast

Schneelastzone	2	
Schneefanggitter	Nein	
Bodenschneelast	$\mathbf{S}_{\mathbf{k}}$	= 0,850 kN/m ²
Formbeiwert für Schnee	$\boldsymbol{\mu}_{i}$	= 0,800
Faktor für Dachneigung	\mathbf{d}_{i}	= 0,927
Schneelast auf dem Dach	S _{i,50}	= 0,630 kN/m ²
Anpassungsfaktor für Nutzungsdauer	f_{s}	= 0,929
Schneelast auf dem Dach	S _{i,25}	= 0,586 kN/m ²
Außergewöhnliche Schneelast auf dem Boden	\mathbf{S}_{Ad}	= 1,955 kN/m ²
Außergewöhnliche Schneelast auf dem Dach	S _{i,Ad}	= 1,347 kN/m ²

Eigenlast

Gewicht des Moduls Gewicht des Montagesystems pro Modul	G_{M}	= 20,5 kg = 2,5 kg
Modulfläche	\mathbf{A}_{M}	= 1,95 m ²
Eigengewicht des Moduls pro m²		= 10,50 kg/m ²
Eigengewicht des Montagesystems pro m²		= 1,28 kg/m ²
Gesamte Eigenlast (ohne Ballast) pro m ²		= 0,12 kN/m ²

Lastfallkombinationen

Tragfähigkeit

Tailaicharhaitahaiyyart etändia yaqiinetia (CTD)	.,	- 1 7E
Teilsicherheitsbeiwert ständig ungünstig (STR)	$\gamma_{G, sup}$	= 1,35
Teilsicherheitsbeiwert ständig günstig (STR)	$\gamma_{\text{G,inf}}$	= 1,00
Teilsicherheitsbeiwert ständig destab. (EQU)	$\gamma_{\text{G,dst}}$	= 1,10
Teilsicherheitsbeiwert ständig stab. (EQU)	$\gamma_{\text{G,stb}}$	= 0,90
Teilsicherheitsbeiwert erster veränderlicher	$\gamma_{\scriptscriptstyle Q}$	= 1,50
Teilsicherheitsbeiwert n veränderliche	$\gamma_{\scriptscriptstyle Q}$	= 1,50
Teilsicherheitsbeiwert außergewöhnlich	γ_{A}	= 1,00
Kombinationsbeiwert für Wind	$\psi_{\text{o,w}}$	= 0,60
Kombinationsbeiwert für Wind (weitere veränderliche Einwirkungen)	$\psi_{\text{1,W}}$	= 0,20
Kombinationsbeiwert für Schnee	$\psi_{\text{o,s}}$	= 0,50
Bedeutungsbeiwert ständig	$\mathbf{K}_{Fl,G}$	= 1,00
Bedeutungsbeiwert veränderlich	$\mathbf{K}_{\mathrm{Fl,Q}}$	= 1,00
Bedeutungsbeiwert außergewöhnlich	$\mathbf{K}_{\mathrm{Fl,A}}$	= 1,00

LFK 01	$E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,O} * S_{i,n}$
LFK 02	$E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * W_{k,Pressure}$
LFK 03	$E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * (W_{k,Pressure} + \psi_{0,S} * S_{i,n})$
LFK 04	$E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * (S_{i,n} + \psi_{0,W} * W_{k,Pressure})$
LFK 05	$E_d = \kappa_{Fl,G} * G_k + \gamma_A * \kappa_{Fl,A} * S_{ad,n} + \kappa_{Fl,Q} * \psi_{1,W} * W_{k,Pressure}$
LFK 06	$E_d = \gamma_{G,inf} * G_k + \gamma_0 * \kappa_{FLO} * W_{k,Uplift}$

Gebrauchstauglichkeit

Kombinationsbeiwert für Wind	$\psi_{\text{o,}}$	= 0,60
	W	
Kombinationsbeiwert für Schnee	$\psi_{\text{o,s}}$	= 0,50
Kombinationsbeiwert für Wind (weitere veränderliche Einwirkungen)	$\psi_{1,W}$	= 0,20

LFK 01	$E_d = G_k + S_{i,n}$
LFK 02	$E_d = G_k + W_{k,Pressure}$
LFK 03	$E_d = G_k + W_{k,Pressure} + \psi_{0,S} * S_{i,n}$
LFK 04	$E_d = G_k + S_{i,n} + \psi_{0,W} * W_{k,Pressure}$
LFK 06	$E_d = G_k + W_{k \text{ Holift}}$

Maximale Belastung der Module (Dimensionierung des Befestigungssystems)

Bereich	A-TrA [m ²]	Nachweis Tragsicherheit [kN/m²]				Nachweis Gebrauchstauglichkeit [kN/m²]			
		Druck ⊥	Druck II	Abheben ⊥	Abheben II	Druck 1	Druck II	Abheben ⊥	Abheben II
Feldbereich	10,00	1,387	0,548	-0,999	0,043	0,743	0,263	-0,631	0,043

Maximale Einwirkungen pro Befestiger

Bereich	A-TrA [m²]	Nachweis Tragsicherheit [kN] Nachweis Gebrauchst					.uchstauglic	chkeit [kN]	
		Druck ⊥	Druck II	Abheben ⊥	Abheben II	Druck	⊥ Druck II	Abheben ⊥	Abheben II
Feldbereich	10,00	1,212	0,479	-0,873	0,038	0,64	9 0,229	-0,551	0,038

Widerstandswerte der Komponenten

Basisschiene

Basisschiene	A [cm²]	l _y [cm^4]	l _z [cm^4]	W _y [cm³]	W_z [cm 3]
K2 SingleRail 36	2,850	4,02	6,37	2,14	3,09

Obere Schiene

K2 SingleRail 36	2,850	4,02	[cm^4] 6,37	[cm³] 2,14	[cm ³]
Obere Schiene	Α	l _y	_z	W_y	W_z

Befestiger

Befestiger	$R_{D, Sog, Senkrecht}$ [kN]	$R_{D,Druck,Senkrecht}$ [kN]	$R_{D,Druck,Parallel}$ [kN]
SingleHook 4S	1,90	1,64	2,03

Basisschiene - Ergebnis Auslastung

		Tragfähigkeit		GebT	GebT Abstände		Maximalwerte		
Nr.	DachBereiche	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Modulfeld		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	Feldbereich	27,0	0,0	84,5	7,1	0,650	1,280	0,510	0,769

obere Schiene - Ergebnis Auslastung

		Tragfähigkeit		GebT	Abstände		<u>Maximalwerte</u>		
Nr.	DachBereiche	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Modulfeld		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	Feldbereich	51,5	6,5		32,4	1,280		0,520	1,765

Pr	Profil	$Fst\;D_{max}$	maximaler Abstand Befestiger
Fst	Befestiger	BR	Basisschiene
σ	Spannung	UR	Obere Schiene
f	Durchbiegung	Usab.	Gebrauchstauglichkeit

F Kraft CL Kragarm

 CL/L_{max} maximale Länge des Kragarms

Vielen Dank, dass Sie sich für ein K2 Montagesystem entschieden haben.

Die Systeme von K2 Systems sind schnell und einfach zu installieren. Wir hoffen, dass diese Anleitung hilfreich war. Bitte kontaktieren Sie uns, wenn Sie Fragen oder Verbesserungsvorschläge haben.

Unsere Kontaktdaten:

k2-systems.com/en/contact

Service Hotline: +49 (0)7159 42059-0

Es gelten unsere Allgemeinen Geschäftsbedingungen. Weitere Informationen finden Sie unter <u>k2-systems.com</u>

K2 Systems GmbH

Industriestraße 18
71272 Renningen
Germany
+49 (0)7159 42059-0
+49 (0)7159 42059-177
info@k2-systems.com
www.k2-systems.com