

ÉCOLE NATIONALE DES SCIENCES GÉOGRAPHIQUES

École Nationale des Sciences Géographiques

Galigeo

Rapport de stage

Cycle des Ingénieurs diplômés de l'ENSG 3ème année

Stage de fin d'étude ENSG Estimation, analyse et prédiction de flux piétons BigData et Machine Learning

ÉCOLE NATIONALE DES SCIENCES GÉOGRAPHIQUES

Jules Pierrat

Septembre 2022

oximes Non confidentiel \oximes Confidentiel IGN \oximes Confidentiel Industrie \oximes Jusqu'au ...

ECOLE NATIONALE DES SCIENCES GÉOGRAPHIQUES 6-8 Avenue Blaise Pascal - Cité Descartes - 77420 Champs-sur-Marne Téléphone 01 64 15 31 00 Télécopie 01 64 15 31 07

Jury

Président de jury :

Victor Coindet Professeur de l'ENSG, Responsable du cycle TSI

Commanditaire:

M. Sebastien Connesson, COO de Galigeo

Encadrement de stage :

M. Jean-Michel Gaudin, Responsable du pôle Recherche et Développement à Galigéo

Enseignant référent :

M. Loic Landrieu, Chercheur MATIS / IGN, Professeur de l'ENSG

Rapporteur expert:

qui est rapporteur du mémoire?

Responsable pédagogique du cycle Ingénieur - TSI :

Victor Coindet Professeur de l'ENSG, Responsable du cycle TSI

Gestion du stage :

Delphine Genès, Relation entreprise de l'ENSG

Stage de fin d'étude du 2 mai 2022 au 28 Octobre 2022

Diffusion web:

☐ Intranet Polytechnicum ☐ Intranet ENSG

Situation du document :

Rapport de stage de fin d'études présenté en fin de 3ème année du cycle des Ingénieurs

Nombres de pages : 25 pages dont 4 d'annexes

Système hôte : LATEX

Modifications:

EDITION	REVISION	DATE	PAGES MODIFIEES
1	0	09/2022	Création

Remerciements

Avant toute chose, je tiens à remercier le lecteur pour l'intérêt qu'il porte à mon rapport et j'espère qu'il trouvera ici tout ce pourquoi il est venu. Je veux remercier également les personnes m'ayant permis de réaliser dans les meilleurs conditions ce stage ainsi que celles ayant contribué à l'élaboration de ce rapport.

Tout d'abord, j'adresse mes remerciements à mon professeur, **Mr Loïc Landrieux de l'Ecole Nationale des Sciences Géographiques**, mon maître de stage qui m'a suivi tout au long de ce stage, m'a guidé et éclairé dans mes décisions.

Je tiens à remercier mon maître de stage, Jean-Michel Gaudin, Responsable du pôle recherche et développement à Galigeo pour son suivi et l'intérêt qu'il a porté à mes travaux réalisés pendant le stage. Je remercie également Raimana Teina, Data Scientist chez Galigeo qui m'a guidé dans mes travaux et grâce à qui j'ai énormément progressé et appris durant toute ma période de stage. Mes remerciements vont également à Sébastien Connesson, COO de Galigeo, qui m'a permis de comprendre au mieux l'organisation de l'entreprise, les relations internes, les enjeux et les rapports aux clients.

Je remercie évidement tout le reste de **l'équipe de Galigeo** pour son accueil, la confiance qu'ils m'ont accordée, leurs conseils et leur bienveillance. Je suis très heureux d'avoir pu travailler avec eux et me réjouis de continuer à le faire.

Enfin, après ces trois années fabuleuses je tiens à remercier toutes les personnes qui ont croisé mon chemin à **L'Ecole Nationale des Sciences Géographiques, mes professeurs, mes amis** et toutes les rencontres qui m'ont permis de grandir et de me préparer à cette nouvelle vie après les études.

Enfin, je tiens à remercier toutes les personnes qui m'ont conseillé et relu lors de la rédaction de ce rapport de stage : **ma famille, mon ami Antoine Rainaud** camarade de promotion.

Résumé

Ceci est mon résumé bla bla bla

Mots clés : clés, clés, clés

Résumé

This is my abstract blah blah blah...

Key words: key, key, key

Table des matières

Re	emerciements	3
GI	ossaire et sigles utiles	3
Int	troduction	4
1	Galigeo Ensg 1.1 Présentation de l'entreprise	5 5 7 8
2	Le stage Ensg2.1 Généralités2.2 Prédiction de flux piéton2.3 Prédiction de chiffre d'affaire2.4 Autres missions	11 11 11 11 11
3	Bilan Ensg 3.1	13 13
Co	onclusion	14
A	Planning du stage	23
D	Maindres corrés	25

Glossaire et sigles utiles

BI Business Intelligence

CNN Convolutional Neural Network

CEO Chief Executive Officer

COO Chief Operating Officer

CRM Customer Relationship Management

DNN Deep Neural Network

ENSG École Nationale des Sciences Géographiques

LSTM Long Short Term Memory

ML Machine Learning

RetD Recherche et Développement

RNN Recurrent Neural Network

SVM Support Vector Machine

Introduction

Le géomarketing ou Location Business Intelligence en anglais est un pilier du marketing. Il étudie la variation des marchés dans l'espace. Les objectifs sont de modéliser offres et demandes en fonction de données économiques, sociales, culturelles, administratives et démographiques et leurs variations en fonction des géographies.

C'est un domaine essentiel pour les entreprises qui cherche à développer leurs espaces d'action. En effet, c'est une solution qui aide à la prise de décision pour le développement d'un business. Il permet de choisir les sites stratégiques les plus appropriés pour implanter un nouveau commerce. La réalisation de modèle ou de simulation sont des outils essentiels en vue de comparer les atouts et risques d'une future implantation. En étudiant les espaces entourant toutes ses enseignes, une entreprise peut également anticiper la cannibalisation 1 ou la segmentation des portefeuilles 2 en prenant tout les paramètres réunis en un point de l'espace.

Il permet également d'établir des stratégies de marketing rentables et efficaces en établissant des profils de susceptibles consommateurs. En modélisant de manière précise et orienté dans le sens des besoins de l'entreprise ces profils, on obtient alors une idée complète des déplacements et des comportements réels des consommateurs. Les stratégies de prospection et communication sont donc amené à être plus efficace.

La concurrence est également bien étudiée et cela permet de projeter la pérennité de l'entreprise dans le temps en alertant sur l'évolution des réseaux de concurrents.

Le géomarketing est la solution efficace afin d'appréhender parfaitement les territoires impactés par une nouvelle implantation et ainsi suivre son évolution tout au long de sa croissance.

Ces dernières années, les solutions de géomarketing s'appuie de plus en plus sur des modèles de prédictions de plus en plus complexe et précis. La mise à disposition de modèle de flux piéton s'avère très utile pour permettre d'améliorer le géomarketing d'une compagnie. La demande concernant cette mesure est en augmentation et les entreprises vendeuses de solutions de géomarketing cherche à obtenir les meilleurs modèles prédictifs pour répondre au mieux aux besoins de leurs clients.

Les algorithmes de Machine Learning sont des outils puissants pour estimer spatialement les flux piétons utiles aux analyses de géomarketing. Ils nécessitent cependant des quantités de données très importantes pour obtenir les précisions nécessaires.

Mon stage a consisté en partie à la réalisation de ce modèle prédictif. Ce genre de mission est typique au métier de Géo Data Scientist ³ et c'est donc autour de cette mission que je développe mon rapport de stage.

^{1.} A compléter

^{2.} A compléter

^{3.} A completer

1.1 Présentation de l'entreprise

1.1.1 Généralités

Galigéo est une société parisienne spécialisée dans le géomarketing. Créé en 2001, elle propose aux entreprises d'améliorer l'efficacité de tous leurs métiers grâce à ses logiciels combinant expertise cartographique et modélisation prédictive. Grâce à ses logiciels visualisant, analysant et agissant directement sur les bases de données opérationnelles (applications métier, BI, CRM, ...). Galigeo permet aux utilisateurs de se focaliser sur leur métier (retail ¹, distribution, marketing, sécurité, ...).

Historiquement pionnier de la location Intelligence, Galigeo a poursuivi son développement ses dernières années en ajoutant la composante prédictive dans ses suites logiciels, composante basée sur les techniques innovantes de Machine Learning et d'Intelligence Artificielle.

En utilisant son expertise cartographique et de modélisation prédictive, Galigeo poursuit son développement en mettant à disposition de ses clients, des logiciels simples d'usage, à très forte valeur ajoutée métier.

De 2001 à 2006, Galigeo se consacre aux développements de solutions intelligentes en géodécisionnel pour faire de l'analytique avancée à partir de cartes géographiques. De 2006 à 2011, elle développe sa première solution logiciel, Galigeo Enterprise, qui permet par la suite, grâce à un nouveau pôle Conseil, de proposer des services spécifiques métier et adapté à chaque client autour du géomarketing. A partir de cette date, Galigeo va voir sa croissance augmenter sur le marché international en s'associant à différents partenaires. A partir de 2017 et jusqu'à aujourd'hui, Galigeo a choisi d'ajouter à ses solutions une composante prédictive très demandé sur le marché.

L'entreprise compte aujourd'hui une cinquantaine de clients très divers, grandes enseignes commerciales, services publiques, industries, etc. Galigeo peut fournir des solutions logiciels standards pour permettre à n'importe quelle entreprise de générer des rapports de géomarketing en utilisant des données interne et des données générales fournies par Galigeo. Elle réalise également des projet plus spécifique, propre à des besoins bien déterminés qui permette alors à ces client d'avoir une vraie valeur ajoutée et un géomarketing efficace.

FIGURE 1.1 – Exemple de clients Galigeo

Les bureaux de l'entreprise sont situé au 87 avenue d'Italie dans le treizième arrondissement de Paris.

^{1.} A completer

FIGURE 1.2 - Bureaux de Galigeo, 87 avenue d'Italie, 75013 Paris

1.1.2 Organisation interne

Galigéo est composé actuellement d'une vingtaine d'employés répartit dans 5 pôles : Administratif, Commercial, Marketing, Comptabilité, Consulting et Recherche et Développement.

Le pôle administratif est le pôle qui s'occupe de la gestion du budget, du personnel et des missions à Galigeo.

Le pôle commercial gère les relations clients, il propose des offres à de nouveaux ou ancien client, prospecte et cherche à faire grandir le cercle de clientèle de Galigeo.

Le pôle marketing imagine les produits, met en place les stratégies de pénétration du marché et réalise un catalogue de solutions que Galigeo peut fournir.

Le pôle comptabilité est responsable de la facturation des clients et la gestion interne des frais de personnels, des salaires, du matériel, etc.

Le pôle consulting est dédié à la réponse aux besoins techniques du client, il permet de rester proche du client. Il imagine les solutions retenues et les intègres dans les outils Galigeo mis à disposition pour l'entreprise.

Pour ma part, j'ai rejoint le pôle Recherche et Développement. L'équipe est composée de développeur, de testeurs, de designeur, de data scientist, etc. Elle s'attache à améliorer les produits de Galigeo et à faire du support, de la maintenance et de l'innovation. Lorsqu'un consultant est en charge d'un projet pour un client, il s'appuie sur un ou plusieurs membres de l'équipe R&D pour conseiller ou réaliser les tâches techniques.

J'ai principalement travaillé avec Raimana Teina, Data Sientist chez Galigeo autour du grand projet actuel chez Galigeo « Prédiction de flux piéton » que je détaillerais dans la suite de ce rapport. Cependant j'ai également eu l'occasion de travailler sur des projets clients avec l'équipe consulting.

FIGURE 1.3 – Organigramme de Galigeo

1.2 Les objectifs de Galigeo

1.2.1 Les manques actuels

Aujourd'hui, Galigeo cherche à mettre en avant des modèles prédictifs au service du géomarketing pour ses clients. Une mesure importante en géomarketing est l'estimation de flux piéton à un endroit donné et sur une période donnée. Jusqu'ici, Galigeo utilisait un service tier afin d'obtenir une estimation de flux piéton. Cette solution de transition possède néanmoins de nombreux défauts. Tout d'abord Galigeo n'avait aucune visibilité sur les algorithmes utilisés pour faire cette estimation.

Il était alors difficile d'utiliser les résultats de cette estimation dans l'entraînement de nouveaux modèles de prédiction (estimation de chiffre d'affaires, estimation de parts de marchés, etc.). De plus, les coûts d'une telle solution restent élevés.

Il a donc été décidé de créer un modèle d'estimation de flux piéton propre à Galigeo sur lequel l'entreprise aurait accès à toutes les données d'entrés du modèle. Ainsi elle pourra modéliser d'autre variables essentielles au géomarketing plus facilement et avec une meilleure qualité. En effet, en connaissance des biais de notre modèle, ils seront plus faciles à corriger dans d'autres cas d'utilisation.

Galigeo souhaite également renforcer son équipe big data afin de mettre en valeurs de grosse quantité de données brutes inexploitable en l'état. En recrutant de nouveaux data scientist, elle libèrera du temps à ses consultant et déchargera les équipes spécialisées dans la data actuellement en place.

Après un entretien au printemps 2022 chez Galigeo et cette explication des manques et objectifs de l'entreprise à court termes, j'ai fait part de mon envie à réaliser un stage au sein de l'équipe R&D. Ils ont retenu ma candidature et j'ai donc commencé mon stage de fin d'étude le 02 Mai 2022.

1.2.2 Les objectifs du stage

Durant ce stage j'avais donc comme première objectif de découvrir le géomarketing dans son ensemble. J'ai dû analyser et comprendre les cas d'usages métiers et me plonger dans le fonctionnement d'une équipe de développement logiciel.

J'avais également pour mission de concevoir et spécifier des solutions d'acquisition, de cleaning et de traitement des données. Comprendre le fonctionnement des produits Galigeo m'a permis de collecter et stocker la donnée de manière optimale afin de faciliter l'implémentation dans des bases de données.

J'avais également pour mission de développer des chaînes de collecte de la donnée en m'appuyant sur des méthodes de data engineering ². Pour pouvoir par la suite utiliser au mieux la donnée dans des processus d'analyse et de traitement.

Pour la partie traitement de la donnée brute, mes objectifs étaient de développer des algorithmes et des traitements de la data grâce à des méthodes statistiques et de machine learning. Mon objectif était de transformer de la donnée brute inexploitable en une donnée pertinente pour le géomarketing des clients Galigeo.

Mon objectif était également de m'intégrer aux équipes de Galigeo afin de mieux comprendre les objectifs de l'entreprise à long termes et les directions à prendre.

1.2.3 Les objectifs à plus long termes

Galigeo cherche aujourd'hui à implémenter de plus en plus de modèles prédictifs dans ses solutions. Pour cela, elle veut s'appuyer sur la big data et la data science qui permettent d'obtenir des résultats de qualité et qui intéresse aujourd'hui le marché du géodécisionnel.

Galigeo cherche donc à développer son équipe R&D spécialisé dans la data afin de créer de nouveaux modèles compétitifs vis-à-vis des solutions concurrentes existantes et ainsi attirer de nouveaux clients et apporter des nouveautés aux plus anciens.

Aujourd'hui ces modèles prédictifs permettent d'évaluer une variable à un endroit spécifique (foot-fall³, chiffre d'affaires, cannibalisation, ...). On peut alors comparer plusieurs localisations et déterminer laquelle est la plus intéressante pour une entreprise.

Il sera alors intéressant de s'intéresser à des modèles de recherche qui permettent de trouver directement la meilleure localisation pour une variable donné.

1.3 Organisation du stage

1.3.1 Planning

Le planning complet de mon stage est disonible en annexe A. Il est détaillé sur la pèriode Mai - Septembre 2022. La rédaction de ce rapport a eu lieu avant la définitions des tâches d'octobre.

1.3.2 Mes missions

Ma mission principale à Galigeo était de réaliser des modèles prédictifs de variables utiles au géomarketing. L'estimation du flux piéton en une adresse a été ma principale mission. Cependant j'ai également passé quelques temps sur la modélisation de chiffre d'affaires pour une marque de produit culturels et électroniques française. J'ai dû également modéliser la cannibalisation qu'entraînerait l'ouverture d'une enseigne proche d'une autre sur le territoire français.

Ces deux missions mettaient en pratique mes compétences en Machine Learning acquises à l'ENSG. Je reviendrais sur ma mission sur le flux piéton dans la partie 2.1 de ce rapport. Pour la partie modélisation de chiffres d'affaires et d'estimation de cannibalisation, j'y reviendrais dans la partie 2.2.

J'ai également réalisé d'autres plus petites missions pour Galigeo. J'ai eu la chance de travaillé quelques jours sur un projet d'analyse de données et sur un projet de data engineering pour une compagnie internationale. Je détaillerai rapidement ces deux derniers projet dans la partie 2.3 de mon rapport.

^{2.} A compléter

^{3.} A compléter

1.3.3 Relations internes et client

Dans le pôle R&D, le travail est organisé autour de la méthode Agile ⁴. Un sprint ⁵ dure environ 2 semaines et nous faisons un point tous les jours à 15h30 pour communiquer sur notre avancement et les difficultés rencontrés afin de pouvoir répondre rapidement aux besoins de chacun.

Je peux télétravailler 2 jours par semaine et cela fonctionne très bien car la plupart des réunions en présentiel sont également retransmises en visio-conférence. Galigeo utilise la suite Office 365 Professionnel ce qui permet d'organiser facilement le travail et les interactions.

J'ai également travaillé sur des projets où j'échangeais uniquement avec le pôle consulting. Dans ce cas-là, nous avions des réunions quotidiennes également avec le consultant en question et une réunion hebdomadaire avec le client.

^{4.} A compléter

^{5.} A compléter

- 2.1 Généralités
- 2.2 Prédiction de flux piéton
- 2.3 Prédiction de chiffre d'affaire
- 2.4 Autres missions

3.1 ...

Conclusion

Il est l'heure de conclure : bonne nuit!

Bibliographie

- [1] Balhorn R et AL. "Frequency Stabilization of Internal-Mirror Helium-Neon Lasers". In: *Applied Optics* (1972), p. 742-744.
- [2] Niebauer T.M. et Al. "A new génération of absolute gravimeters". In: Metrologia 32 (1995), p. 159-180.
- [3] Niebauer T.M. et AL. "Frequency stability measurements on polarization-stabilized He-Ne lasers". In: *Applied Optics* (1988), p.1285-1289.
- [4] Jacques Beilin. "Compensation combinées d'observations gravimétriques absolues et relatives MCGRAVI". Projet de fin d'étude. ENSG, 2005.
- [5] Helmut Moritz Bernhard Hofmann-Wellenhof. *Physical Geodesy*. T. XVII. 2nd, corr. ed., Springer, 2006, p. 403.
- [6] Pilot laboratory BIPM. 7th International comparison of absolute gravimeters, ICAG-2005, Technical protocol. Rapp. tech. BIPM, 2005.
- [7] BRGM. Site web du BRGM SIG Mines France. BRGM. Nov. 2009. URL: http://sigminesfrance.brgm.fr/geophy_gravi.asp.
- [8] Michel Capderou. Satellites: orbites et missions. Springer, 2002, p. 511. ISBN: 9782287597725.
- [9] Frédéric Chambat. "Voir la planète avec la pesanteur". In : *Dossiers Pour la Science* 67 (2010), p. 72-73.
- [10] Michel DIAMENT. "Mesure du champ de pesanteur terrestre". In : *Techniques de l'ingénieur* R 1814 (2005).
- [11] Bernard Ducarme. MT80 Theoretical tides computation. Observatoire Royal de Belgique.
- [12] Françoise Duquenne et al. *GPS* : localisation et navigation par satellites. Hermès science publications, 2005, p. 330. ISBN: 9782746210905.
- [13] Henri Duquenne. "Altitude, nivellement, systèmes de référence altimétrique". In : *Cours aux étudiants PPMD*. ENSG, 2005.
- [14] Germinal GABALDA et Sylvain BONVALOT. *CG3TOOL*, *Programme interactif de traitement de données gravimétriques Scintrex CG3/3M*. IRD. Juin 2000.
- [15] Germinal GABALDA, Sylvain BONVALOT et Roger HIPKIN. "CG3TOOL: an interactive computer program to process Scintrex CG3/3M gravity data for high resolution applications". In: Computer & Geosciences 29 (2003), p. 155-171.
- [16] Scott Gleason et Demoz Gebre-Egziabher. *GNSS Applications and Methods*. Artech House, août 2009, p. 528. ISBN: 9781596933293.
- [17] GPSW. IS-GPS-200 rev e, Navstar GPS Space Segment/Navigation User Interfaces. Rapp. tech. El Segundo, California: Global Positioning System Wing (Gpsw) Systems Engineering & Integration, 2010.
- [18] Mohinder S. Grewal et al. *Global positioning systems, inertial navigation, and integration.* Wiley-Interscience, jan. 2007, p. 553. ISBN: 9780470041901.

- [19] Jérôme Verdun HENRI DUQUENNE. "Le champ de pesanteur : notions fondamentales et méthodes modernes de détermination". In : *Cours aux étudiants PPMD*. ENSG, 2006.
- [20] Bernhard HOFMANN-WELLENHOF, Herbert LICHTENEGGER et Elmar WASLE. GNSS Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more. 1^{re} éd. Springer, déc. 2007. ISBN: 3211730125.
- [21] Bernhard HOFMANN-WELLENHOF et Helmut MORITZ. *Physical Geodesy.* 1^{re} éd. Springer, sept. 2005. ISBN: 3211235841.
- [22] J. IDHE, J. MAKKINEN et M. SACHER. "Conventions for the Definition and Realisation of a European Vertical Reference System (EVRS) EVRS conventions 2007". In: 2008.
- [23] Len Jacobson. GNSS markets and applications. Artech House, juin 2007, p. 240. ISBN: 9781596930421.
- [24] KLOBUCHAR. "A first order worldwide ionospheric time-delay algorithm". In: *Ionospherics Physics Laboratory, Air Force Cambridge Research Laboratories* (1975). Hanscom AFB, Massachussets Klobuchar John A.
- [25] François L'ECU. "Calcul du quasi-geoïde QGF16 et de la grille de conversion altimétrique RAF16, état d'avancement et perspectives". In : XYZ (2017).
- [26] I.M. Longman. "Formulas for Computing the Tidal Accelerations Due to the Moon and the Sun". In: *Journal of Geophysics Research* 64 (1959), p. 2351-2355.
- [27] J. Hinderer M. AMALVICT N. Debeglia. "The Absolute Gravity Measurements Performed By Sakuma In France, Revisited 20 Years Later". In: *Gravity and Geoid* 3rd meeting of the IGGC (2002), p. 76-83.
- [28] Ahmed EL-RABBANY. *Introduction to GPS : the Global Positioning System*. Artech House, 2002, p. 202. ISBN: 9781580531832.
- [29] M. Sacher et al. "EVRF2007 as Realization of the European Vertical Reference System". In: Symposium oh the IAG sub-commision for Europe (EUREF) in Brussels, June 18-21 2008. 2008.
- [30] Nel Samama. *Global positioning : technologies and performance*. Wiley-Interscience, 2008, p. 440. ISBN: 9780471793762.
- [31] Wilfred Schofield et Mark Breach. *Engineering surveying*. Butterworth-Heinemann, avr. 2007, p. 637. ISBN: 9780750669498.
- [32] Scintrex. User's guide: CG-3/3M Gravity Meter. Scintrex Ltd. 1995.
- [33] Gunter Seeber. Satellite Geodesy. 2 Revised. Walter de Gruyter, sept. 2003. ISBN: 3110175495.
- [34] Victor G. SZEBEHELY et Hans MARK. *Adventures in celestial mechanics*. Wiley-VCH, 1998, p. 328. ISBN: 9780471133179.
- [35] Wolfgang TORGE. *Geodesy*. 3rd ed., De Gruyter, 2001, p. 416.
- [36] Wolfgang TORGE. Gravimetry. Walter de Gruyter, déc. 1989, p. 488. ISBN: 9783110107029.
- [37] James Bao-yen Tsui. Fundamentals of global positioning system receivers: a software approach. John Wiley et Sons, 2005, p. 373. ISBN: 9780471706472.
- [38] P. Wessel et W.H.F. Smith. "Free software helps map and display data". In: *EOS Trans. Amer. Geophys. U.* 72 (1991), p. 445-446.
- [39] P. WESSEL et W.H.F. SMITH. *The Generic Mapping Tools Technical Reference and Cookbook*. SOEST-NOAA. 2010.
- [40] Derek Van WESTRUM. A10 absolute portable gravimeter. Micro-g Solutions, Inc., 2005.
- [41] Guochang Xu. *GPS*: theory, algorithms, and applications. Springer, 2007, p. 354. ISBN: 9783540727149.

[42] Guochang $\mathrm{Xu}.$ Orbits. Springer, 2008, p. 236. $\mathrm{ISBN}:9783540785217.$

Table des figures

1.1	Exemple de clients Galigeo	į
1.2	Bureaux de Galigeo, 87 avenue d'Italie, 75013 Paris	(
1.3	Organigramme de Galigeo	7
A.1	Planning du stage	22

Liste des tableaux

Annexes

Α	lanning du stage	24
В	loindres carrés	25

Planning du stage Gannt

Planning du stage

FIGURE A.1 - Planning du stage

Moindres carrés

Contenu de l'annexe sur MC...