Tarek Allam Jr.

t.allam.jr@gmail.com +44 07725565077

www.tarekallamjr.com

EDUCATION

Ph.D Applied Machine Learning [Astrophysics]

09.2017 - present

UCL, Centre for Doctoral Training in Data Intensive Science

Supervised by: Prof. Jason McEwen (Primary Advisor), Prof. Ofer Lahav, Prof. Denise Gorse

Thesis: Multivariate Time-Series Classification of Astrophysical Transients with Deep Learning

MSc Computer Science (72%)

09.2014 - 09.2016

UCL, Department of Computer Science, Engineering Supervised by: Prof. Jason McEwen, Prof. Denise Gorse

Project: Radio Interferometric Image Reconstruction for the SKA: A Deep Learning Approach

MSci Astrophysics Upper Second Class Honours Masters Degree (2:1)

09.2007 - 07.2011

Royal Holloway, University of London, Department of Physics

Supervised by: Prof. Stuart Boogert

Project: Analytical Methods of Stellar Spectra: Stellar Spectroscopy

SELECTED TECHNICAL EMPLOYMENT & EXPERIENCE

Machine Learning Researcher [TIN Internship]

05.2021 - present

The Alan Turing The Alan Turing Institute, London.

Conduct research into unsupervised probabilistic machine learning and scalable non-parametric inference techniques for sequential latent factor modelling. Work collaboratively to investigate model and data compression techniques for on-device deployment of deep neural networks.

Research Software Engineering Fellow

01.2020 - present

Software Sustainability Institute Software Sustainability Institute (SSI), London

Advocating for software engineering best practises in the research community by providing version control and testing training to academics. My SSI mission is prepare and up-skill academics for working with large scientific research code-bases, that can scale to many contributors.

Graduate Teaching Assistant

09.2020 - 09.2021

UCL, London. University of Jordan, Amman

Assisting with grading and lesson planning for SPCE038: Machine Learning with Big Data. Lead the migration of TensorFlow 1.x to TensorFlow 2.x API. Coordinated infrastructure setup for delivery of course through Jupyter Book

Graduate Teaching Assistant

03.2020 - 06.2020

London Business School, London.

Assisting with grading and support for: E517: Python for Finance, QDE-APP: Applied Python Programming and CA22: Basic Python.

Research Software Engineer [Ph.D Internship]

08.2019 - 03.2020

The Alan Turing Institute, London.

The Alan Turing Institute

Working in collaboration with the National Air Traffic Service (NATS), reinforcement learning (RL) was used to investigate machine learning methods to support air traffic controllers. Development of a RESTFUL API using flask was completed to allow for integration of both open-source and proprietary simulators. This has been followed by development of RL agents using OpenAI gym.

Data Scientist [Ph.D Internship]

01.2018 - 04.2018

Transport for London (TfL), London.

Working in a team of 4 fellow PhD students, we investigated a variety of machine learning methods for train failure predication, that would be robust to highly imbalanced time-series data. With high cost implications for false-positives, we looked at algorithmic trade-offs that optimised accuracy at a low false positive rate. This work was co-supervised by academics at UCL and data scientists at TfL.

Tarek Allam Jr. Page 2

TOOLS PROFICIENCY

Languages In order of most recently used: PYTHON, RUST, C++, SCALA, JAVA

Software Libraries TensorFlow 2.x, Pytorch 1.x, pandas, numpy, matplotlib, Spark 2.3+, plotly, numpyro/jax

CONFERENCES

Statistical Challenges in Modern Astronomy VII, 2021
Poster: "Paying Attention to Astronomical Transients: Photometric Classification with the Time-Series Transformer"

International Biomedical and Astronomical Signal Processing (BASP) Frontiers, 2019
Poster: "Optimising the LSST Observing Strategy for Supernova Light Curve Classification with Machine Learning"

AWARDS

- Software Sustainability Institute Fellowship, 2020: £3,000
- Won Honorarium, LSST Cadence Hackathon, 2018: \$1,500
- STFC Studentship Centre for Doctoral Training in Data Intensive Science, UCL, 2017
- Young Graduate Trainee, Scientific Data Processing, European Space Agency, 2017 (declined)
- 3rd Place in ATOS International IT Challange, 2015
- UCL Graduate Scholarship, MSc Computer Science 2014: £20,000

PUBLICATIONS

- [1] **Allam Jr, Tarek** and J. D. McEwen, "Paying attention to astronomical transients: Photometric classification with the time-series transformer," *arXiv preprint arXiv:2105.06178*, 2021.
- [2] C. S. Alves, H. V. Peiris, M. Lochner, J. D. McEwen, **Allam Jr, Tarek**, and R. Biswas, "Considerations for optimizing photometric classification of supernovae from the rubin observatory," *arXiv* preprint *arXiv*:2107.07531, 2021.
- [3] A. Möller, J. Peloton, E. E. Ishida, C. Arnault, E. Bachelet, T. Blaineau, D. Boutigny, A. Chauhan, E. Gangler, F. Hernandez, *et al.*, "Fink, a new generation of broker for the lsst community," *arXiv* preprint *arXiv*:2009.10185, 2020.
- [4] K. Ponder, R. Hlozek, A. **Allam, T** Bahmanyar, R. Biswas, K. Boone, M. Dai, L. Galbany, E. Ishida, S. Jha, *et al.*, "The photometric lsst astronomical time series classification challenge (plasticc): Final results," *AAS*, pp. 203–15, 2020.
- [5] Allam Jr, Tarek, R. Biswas, R. Hlozek, M. Lochner, J. D. McEwen, H. Peiris, and C. Setzer, "Optimising the lsst observing strategy for supernova light curve classification with machine learning," 2019.
- [6] R. Hlozek, R. Kessler, **Allam, Tarek**, A. Bahmanyar, R. Biswas, M. Dai, L. Galbany, E. Ishida, S. Jha, D. Jones, *et al.*, "The photometric lsst astronomical time series classification challenge (plasticc)," *AAS*, vol. 233, pp. 212–01, 2019.
- [7] A. Malz, R. Hložek, Allam Jr, Tarek, A. Bahmanyar, R. Biswas, M. Dai, L. Galbany, E. Ishida, S. Jha, D. Jones, et al., "The photometric lsst astronomical time-series classification challenge plasticc: Selection of a performance metric for classification probabilities balancing diverse science goals," The Astronomical Journal, vol. 158, no. 5, p. 171, 2019.
- [8] Allam Jr, Tarek, A. Bahmanyar, R. Biswas, M. Dai, L. Galbany, R. Hložek, E. E. Ishida, S. W. Jha, D. O. Jones, R. Kessler, *et al.*, "The photometric lsst astronomical time-series classification challenge (plasticc): Data set," *arXiv preprint arXiv:1810.00001*, 2018.
- [9] M. Lochner, D. M. Scolnic, H. Awan, N. Regnault, P. Gris, R. Mandelbaum, E. Gawiser, H. Almoubayyed, C. N. Setzer, S. Huber, et al., "Optimizing the lsst observing strategy for dark energy science: Desc recommendations for the wide-fast-deep survey," arXiv preprint arXiv:1812.00515, 2018.
- [10] D. M. Scolnic, M. Lochner, P. Gris, N. Regnault, R. Hložek, G. Aldering, Allam Jr, Tarek, H. Awan, R. Biswas, J. Blazek, et al., "Optimizing the lsst observing strategy for dark energy science: Desc recommendations for the deep drilling fields and other special programs," arXiv preprint arXiv:1812.00516, 2018.