

INTRODUCTION DATA INTELLIGENCE & DATA SCIENCE

MODULE 2 – MACHINE LEARNING

Informatique – orientation IA – 1DA/IA

PLAN

- Introduction & définitions
- Méthodes supervisées
- Méthodes non supervisées

INTELLIGENCE ARTIFICIELLE

"L'Intelligence Artificielle est l'ensemble des théories et des techniques développant des programmes informatiques complexes- capables de simuler certains traits de l'intelligence humaine (raisonnement, apprentissage, ...)"

Le petit Robert

- Pas de définition universelle
- « Intelligence » en anglais signifie plus renseignements qu'intelligence
- Encore loin d'imiter l'intelligence
- Technologies spécifiques

INTELLIGENCE ARTIFICIELLE - APPLICATIONS

• Voiture autonome : GPS , analyse d'images, détection d'obstacles, ...

INTELLIGENCE ARTIFICIELLE - APPLICATIONS

Utilisation courante et potentielle

APPRENTISSAGE AUTOMATIQUE – MACHINE LEARNING

L'apprentissage automatique consiste à « donner à une machine la capacité d'apprendre sans la programmer de façon explicite »

Arthur Samuel (pionnier de l'IA)

- « apprendre à apprendre » à l'ordinateur
- Pas de programmation explicite
- Ajustements successifs

APPRENTISSAGE AUTOMATIQUE – EXEMPLE

Contexte

Vous travaillez pour une entreprise alimentaire renommée qui produit une gamme de céréales pour petitsdéjeuners.

Vous voudriez proposer un nouveau produit de très haute qualité nutritionnelle. Vous souhaitez donc savoir quels facteurs influencent (expliquent) ce taux nutritionnel.

Pour ce faire, vous avez récemment mené des analyses nutritionnelles approfondies sur plusieurs produits de la gamme afin de mieux comprendre leur composition. Les données recueillies comprennent la quantité de sucre (en grammes par portion), la quantité de fibres et beaucoup d'autres paramètres ainsi que le taux nutritionnel global.

Dans un premier temps, votre supérieur vous a demandé d'explorer la relation entre un des paramètres à disposition : le sucre et la qualité nutritionnelle des céréales. Il souhaite modéliser le lien existe entre ce paramètre et la qualité nutritionnelle des produits.

APPRENTISSAGE AUTOMATIQUE – EXEMPLE

Etape 1 : Les données (le « dataset »)

Features / variables

	name	mfr	type	calories	protein	fat	sodium	fiber	carbo	sugars	potass	vitamins	shelf	weight	cups	rating
0	100%_Bran	N	С	70	4	1	130	10.0	5.0	6	280	25	3	1.0	0.33	68.402973
1	100%_Natural_Bran	Q	С	120	3	5	15	2.0	8.0	8	135	0	3	1.0	1.00	33.983679
2	All-Bran	K	С	70	4	1	260	9.0	7.0	5	320	25	3	1.0	0.33	59.425505
3	All-Bran_with_Extra_Fiber	K	С	50	4	0	140	14.0	8.0	0	330	25	3	1.0	0.50	93.704912
4	Almond_Delight	R	С	110	2	2	200	1.0	14.0	8	-1	25	3	1.0	0.75	34.384843

72	Triples	G	С	110	2	1	250	0.0	21.0	3	60	25	3	1.0	0.75	39.106174
73	Trix	G	С	110	1	1	140	0.0	13.0	12	25	25	2	1.0	1.00	27.753301
74	Wheat_Chex	R	С	100	3	1	230	3.0	17.0	3	115	25	1	1.0	0.67	49.787445
75	Wheaties	G	С	100	3	1	200	3.0	17.0	3	110	25	1	1.0	1.00	51.592193
76	Wheaties_Honey_Gold	G	С	110	2	1	200	1.0	16.0	8	60	25	1	1.0	0.75	36.187559

céréales.xlsx

APPRENTISSAGE AUTOMATIQUE – EXEMPLE

- Etape 2 : « features engineering »
 - Etape de préparation des données
 - Choix de variables
- → Ici, choix porté sur le paramètre « sugar »

Nuage de points sugar - rating Source : ... - data ...

APPRENTISSAGE AUTOMATIQUE – EXEMPLE

- Etape 3 : Choix de l'algorithme
 - Dépend du problème à résoudre, du type et du volume de données;
 - Recherche de la valeur optimale → réduction du coût ;
 - Qu'est ce qu'un algorithme ?

Ensemble de règles opératoires dont l'application permet de résoudre un problème énoncé au moyen d'un nombre fini d'opérations. Un algorithme peut être traduit, grâce à un langage de programmation, en un programme exécutable par un ordinateur.

Dans notre exemple :

Choix de l'algorithme : **Régression linéaire simple** (y = ax+b)

APPRENTISSAGE AUTOMATIQUE – EXEMPLE

Etape 4 : Entrainement et itérations

Premier essai

Intermédiaire

Après convergence

$$\Rightarrow$$
 y = -2,45x + 59,3

APPRENTISSAGE AUTOMATIQUE – EXEMPLE

Etape 5 : Evaluation du modèle

Mesure de

performance

APPRENTISSAGE AUTOMATIQUE – EXEMPLE

- Etape 6 : Utilisation du modèle
 - Quid de la qualité nutritionnelle d'une céréale si on augmente la quantité de sucre de 1gr ?
 - Quelle sera la valeur de la qualité nutritionnelle d'une céréale si on y incorpore 5gr de sucre ?
 - Quid du lien entre le sucre et qualité nutritionnelle ?

RÉSUMÉ

- **Une observation**: correspond à une ligne du dataset. Chaque observation représente un enregistrement spécifique dans le dataset. Dans l'exemple ci-dessus, chaque ligne du dataset contient les caractéristiques d'une céréale.
- Un dataset (ou jeu de données) : regroupe un ensemble de données cohérentes qui peuvent se présenter sous différents formats. Il est composé d'observations.
- Train set : sous-ensemble des observations sur lequel l'algorithme entraine le modèle.
- **Test set :** sous-ensemble des observations sur lequel le modèle sera évalué. Il doit contenir des observations qui n'ont pas été utilisées pour l'entrainement.
- Target ou cible : est la variable dont on veut que le modèle trouve la valeur
- Indicateur de performance : est une mesure utilisée pour évaluer la qualité d'un modèle d'apprentissage automatique. Cette mesure dépend de l'algorithme utilisé ainsi que du contexte.
- **Modèle :** ce qui est donné pour servir de référence. Dans l'exemple ci-dessus, y = -2..4*x + 59.3

LE MACHINE LEARNING

Apprentissage supervisé

Apprentissage non supervisé

Apprentissage par renforcement

MÉTHODES SUPERVISÉES

TYPES D'ALGORITHMES

RÉGRESSION

LA RÉGRESSION LINÉAIRE SIMPLE

Simplifions le modèle : y = ax ;

$$J(a) = \frac{1}{2m} * \sum_{i=1}^{m} (y_i - ax_i)^2$$
 où m est le nombre d'observations.

LA RÉGRESSION LINÉAIRE SIMPLE – LE GRADIENT DESCENT

• Evaluation du modèle : RMSE =
$$\sqrt{\frac{1}{n}} * (y_i - 2.45 * x_i)^2$$

LA RÉGRESSION LINÉAIRE MULTIPLE

- Fonction de la régression linéaire multiple : $y = a_0 + a_1 x_1 + \cdots + a_n x_n$
 - Avec
 - y: la cible
 - ai : les coefficients recherchés
 - xi : les variables explicatives (les features)

Les variables xi doivent être standardisées!

LA RÉGRESSION POLYNOMIALE

- Fonction de la régression polynomiale : $y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$
 - Avec
 - y: la cible
 - ai : les coefficients recherchés
 - x : la variable explicative

La variable x doit être standardisée!

LA CLASSIFICATION

LA CLASSIFICATION - KNN

- KNN: K Nearest Neighbors
- Distance calculée par :

$$dist((x_1, y_1), (x_2, y_2)) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Indicateur de performance :

$$accuracy = \frac{nbre\ bien\ class\'es}{nbre\ total} * 100$$

ARBRE DE DÉCISION (DECISION TREE)

ARBRE DE DÉCISION (DECISION TREE)

Loves Popcorn	Loves Soda	Age	Loves Cool As Ice
Yes	Yes	7	No
Yes	No	12	No
No	Yes	18	Yes
No	Yes	35	Yes
Yes	Yes	38	Yes
Yes	No	50	No
No	No	83	No

ARBRE DE DÉCISION (DECISION TREE)

Loves Popcorn	Loves Soda	Age	Loves Cool As Ice
Yes	Yes	7	No
Yes	No	12	No
No	Yes	18	Yes
No	Yes	35	Yes
Yes	Yes	38	Yes
Yes	No	50	No
No	No	83	No

ARBRE DE DÉCISION (DECISION TREE)

Comment quantifier la différence entre « aimer les pop corns » et « aimer les sodas »?

Plusieurs méthodes

- Giny Impurity
- Enthropy and information gain

ARBRE DE DÉCISION (DECISION TREE)

Gini Impurity for a Leaf = 1 - (the probability of "Yes")2 - (the probability of "No")2

=
$$1 - (\frac{1}{1+3})^2 - (\frac{3}{1+3})^2$$

= 0.375 And when we do the math, we get **0.375**.

ARBRE DE DÉCISION (DECISION TREE)

Gini Impurity for a Leaf = 1 - (the probability of "Yes")² - (the probability of "No")²

$$=1-(\frac{2}{2+1})^2-(\frac{1}{2+1})^2$$

And when we do the math we get **0.444**.

ARBRE DE DÉCISION (DECISION TREE)

Total Gini Impurity = weighted average of Gini Impurities for th

$$=\left(\frac{4}{4+3}\right)0.375+\left(\frac{3}{4+3}\right)0.444$$

Likewise, the Gini Impurity for Loves Soda is 0.214.

Gini Impurity for Loves Soda = 0.214

Loves Popcorn	Loves Soda	Age	Loves Cool As Ice
Yes	Yes	7	No
Yes	No	12	No
No	Yes	18	Yes
No	Yes	35	Yes
Yes	Yes	38	Yes
Yes	No	50	No
No	No	83	No

RANDOM FOREST

MÉTHODES NON SUPERVISÉES

CLUSTERING – SEGMENTATION

CLUSTERING – APPLICATIONS

Segmentation de la clientèle

- Déceler des individus similaires
- Segmentation de documents

CLUSTERING – K MEANS

méthode Elbow

Fonction coût : $V = \sum_{j} \sum_{x_i \to c_j} D(c_j, x_i)^2$

- c_j : Le centre du cluster (le centroïd)
- ullet x_i : la ième observation dans le cluster ayant pour centroïd c_i
- ullet $D(c_j,x_i)$: La distance (euclidienne ou autre) entre le centre du cluster et le point x_i

CLUSTERING – K MEANS – PRINCIPE

	Tirage au hasard des centres C ₁ etC ₂
	Constitution des classes I_1^0 et I_2^0
$\begin{bmatrix} C_1^1 & & & & \\ C_2^1 & & & & \\ \end{bmatrix}_{l_1^1}$	Nouveaux centres C_1^1 et C_2^1 et nouvelles classes I_1^1 et I_2^1
$\begin{bmatrix} l_1^2 \\ . & C_1^2 \\ \vdots \\ . & C_2^2 \\ . & C_2^2 \\ . & C_2^2 \end{bmatrix}_{l_2^2}$	Nouveaux centres C1 etC2 et nouvelles classes I1 etI2

RÉDUCTION DES DIMENSIONS - EXEMPLE

	Math	Physique	Franc	Anglais
Jean	6	6	5	5,5
Alain	8	8	8	8
Annie	6	7	11	9,5
Monique	14,5	14,5	15,5	15
Didier	14	14	12	12,5
André	11	10	5,5	7
Pierre	5,5	7	14	11,5
Brice	13	12,5	8,5	9,5
Evelyne	9	9,5	12,5	12

Communalities

	Initial	Extraction
Math	1,000	,999
Physique	1,000	,999
Franc	1,000	,999
Anglais	1,000	,998

Extraction Method: Principal Component Analysis.

Component Matrix^a

	Component		
	1	2	
Math	,811	-,584	
Physique	,902	-,430	
Franc	,753	,657	
Anglais	,915	,401	

Extraction Method: Principal Component Analysis.

 a. 2 components extracted.

Total Variance Explained

		Initial Eigenvalu	ues	Extraction Sums of Squared Loadings			
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
1	2,876	71,892	71,892	2,876	71,892	71,892	
2	1,120	27,992	99,884	1,120	27,992	99,884	
3	,004	,089	99,974				
4	,001	,026	100,000				

Extraction Method: Principal Component Analysis.

RÉDUCTION DES DIMENSIONS - EXEMPLE

	Math	Physique	Franc	Anglais
Jean	6	6	5	5,5
Alain	8	8	8	8
Annie	6	7	11	9,5
Monique	14,5	14,5	15,5	15
Didier	14	14	12	12,5
André	11	10	5,5	7
Pierre	5,5	7	14	11,5
Brice	13	12,5	8,5	9,5
Evelyne	9	9,5	12,5	12

APPRENTISSAGE PAR RENFORCEMENT

