Week 8

Mathematics and Computational Methods for Complex Systems, 2023-2024

Mid module feedback

Reminder on course goals

Reminder on course goals

21st century life

How to learn/communicate/use/think with mathematical concepts

Learn maths all of it!

Exam

Take home in December
Give back in January

Preparation?

Practice doing maths, not rote-learning

Dynamical systems

Learning dynamical systems requires experimentation

Play lots with the code!

Goal today

Model a pandemic!

What is a dynamical system

(Intuition)

Something that changes in time in a constrained way (so everything)

What do we want to do with dynamical systems?

We need mathematical models of these systems

How do we model dynamical systems?

Markov process

Markov process

Stochastic differential equation

Partial differential equation

Reaction rate network

In this course

(Ordinary) differential equations

(Difference equations)

ODE

Recap

Suppose I am walking with velocity 4m/s

What is x(t), my position as a function of time?

Recap

Velocity is rate of change of position with respect to time:

$$\frac{\mathrm{d}x}{\mathrm{d}t}(t)$$

Maths problem: need to solve

$$\frac{\mathrm{d}x}{\mathrm{d}t}(t) = 4$$

This is a differential equation

Equations that include differential quantities (i.e. derivatives)

What are we trying to do

Information on differential quantity over all time

$$\frac{\mathrm{d}x}{\mathrm{d}t}(t) = 4$$

"Solution"

Information on quantity itself over all time

$$x(t) = ?$$

Solution terminology

General solution

$$x(t) = 4t + C$$
Constant of integration

Particular solution

$$x(t) = 4t + 15$$

"Integrating the differential equation"

Initial conditions allow us to pick a particular solution

General solution

$$x(t) = 4t + C$$

Particular solution

$$x(t) = 4t + 15$$

Initial conditions

$$x(t^*) = 40$$

(Usually $t^* = 0$)

What it means to solve a Differential Equation

How something changes

Suppose I am walking with velocity 4m/s

What something is at

some time

Initial position is 2m

What something is

over all time

What is my position as a function of t?

What it means to solve a Differential Equation

How something changes

Suppose I am walking with velocity 4m/s

What something is at

some time

Initial position is 2m

What something is

over all time

What is my position as a function of t?

Differential equation

$$\dot{x}(t) = 4$$

"Initial Condition"

$$x(0) = 15$$

Solution:

function of time

$$x(t) = 4t + 15$$

Also called an initial value problem

Classification of variables

$$\dot{x}(t) = 4$$

Variable dependencies

- Denominators in the derivatives

Sketch this differential equation

$$\dot{x}(t) = x(t)$$

$$x(0) = 1$$

Option 0: educated guesswork

Important skill!

$$\dot{x}(t) = x(t)$$

$$x(0) = 1$$

Derivative starts positive, so function is increasing at zero

If function increases then derivative increases

Positive feedback: function accelerates

Option 0: educated guesswork

Important skill!

$$\dot{x}(t) = x(t) \qquad x(0) = 1$$

$$\frac{\mathrm{d}x}{\mathrm{d}(-t)} = -\frac{\mathrm{d}x}{\mathrm{d}(t)} \quad \text{(chain rule)}$$

Derivative starts positive, so function is increasing at zero

If function increases then derivative increases

Positive feedback: function accelerates

Sketch the same differential equation

...with different initial conditions

$$\dot{x}(t) = x(t)$$

$$x(0) = -1$$

Small differences in initial conditions can have a big effect

$$\dot{x}(t) = x(t)$$

$$x(0) = -1$$

Derivative starts negative, so function is decreasing at zero

If function decreases then derivative decreases

Positive feedback: function accelerates

Option 1: analytical solution

Usually impossible

$$\frac{\mathrm{d}x}{\mathrm{d}t} = x(t)$$

$$x(0) = 1$$

$$\Rightarrow \frac{1}{x(t)} dx = 1 dt$$

Constant of integration

$$\Rightarrow \ln(x(t)) = t + C$$

$$\Rightarrow x(t) = x(0)\exp(t)$$
$$(x(0) = \exp(C))$$

Predict $x(t + \delta t)$ from x(t) and $\dot{x}(t)$

Predict $x(t + \delta t)$ from x(t) and $\dot{x}(t)$

(Finite-difference approximation of derivative)

1.
$$\dot{x}(t) \approx \frac{x(t + \delta t) - x(t)}{\delta t}$$

(Rearrange)

2.
$$x(t + \delta t) \approx x(t) + (\delta t)\dot{x}(t)$$
Predict Know Know

Predict $x(t + \delta t)$ from x(t) and $\dot{x}(t)$

Predict Know Know
$$x(0 + \delta t) \approx x(0) + (\delta t)\dot{x}(0)$$
 $\dot{x}(\delta t) = x(\delta t)$

Time

Predict $x(t + \delta t)$ from x(t) and $\dot{x}(t)$

$$x(2\delta t) \approx x(\delta t) + [\delta t]\dot{x}(\delta t)$$
$$\dot{x}(2\delta t) = x(2\delta t)$$

Iterate for $x(t+2\delta t), x(t+3\delta t), \dots$

Time

General form of first order Ordinary Differential Equations (ODE)

$$\dot{x}(t) = f(x(t), t) - \text{Arbitrary function } f$$

$$\dot{x}(0) = x_0$$

Examples

Is first order

$$\dot{x}(t) = [x(t)]^2 + 2tx(t)$$

Isn't first order

$$\ddot{x}(t) = -x(t)$$

Second order (double derivative)

Forward Euler algorithm for numerically solving first-order ODEs

$$\dot{x}(t) = f(x(t), t)$$

$$\dot{x}(0) = x_0$$

Forward Euler algorithm for numerically solving first-order ODEs

$$\dot{x}(t) = f(x(t), t)$$

$$\dot{x}(0) = x_0$$

(Julia code in notebook)

for t in δt*np.arange(1,n):

$$x(t + \delta t) = x(t) + \delta t^* f(x(t))$$

$$= \dot{x}(t)$$

Terminology

Forward Euler is a "numerical ODE solver"

The simplest but not the best!...

Evaluating numerical solvers

Sources of approximation error?

Is $x(\delta t)$ an over or under-estimate in this example?

Evaluating numerical solvers

Numerical approximation was an over-estimate

Derivative increases over interval

Function increases faster than $\dot{x}(0)$ suggests

Diagnostic: $\dot{x}(\delta t) > \dot{x}(0)$

Evaluating numerical solvers

What could decrease approximation error?

What could decrease approximation error?

Clever

Change in a direction that interpolates $\dot{x}(0)$ and $\dot{x}(\delta t)$

Brute force

Decrease δt

Will approximation error compound over time?

$$\dot{x}(t) = x(t)$$

Will approximation error compound over time here?

Possibly! Small differences in true solution increase over time

$$\dot{x}(t) = -x(t)$$

Will approximation error compound over time here?

Less likely for this ODE?

When does approximation error compound over time?

Depends upon ODE, solving algorithm, initial conditions....

Mathematical analysis is hard. Difficult to explain intuition in lecture

Interactive seminar question instead

A good numerical solver should have....

Heuristics for stepsize δt that balance accuracy (small δt) with speed (large δt)

Small approximation error by cleverly interpolating information on $\dot{x}(t)$ over time steps

Warnings in situations where approximation error compounds

Numerical analysis is an entire field of mathematics

Stiff ODE example

Optimal δt changes drastically over time

Too big? Nonsense solution!

Specialised stiff ODE solvers exist

Voltage and calcium concentration in a bursting neuron model

No precise definition for stiffness

Solving first-order ODE in Python/Julia

scipy.integrate.solve_ivp

using OrdinaryDiffEq
solve(o::ODEProblem)

Choice of numerical solvers. Picking the right one is an art!

(Scipy ones are slow, outdated and error-prone)

(Diffeqpy is a Julia port that does better)

Summary thus far

Gained some intuition on how ODEs behave

Gained some intuition on numerical solvers, and when they do badly

Haven't discussed how/why to model real life processes with ODEs!....

Modelling (badly) a discrete stochastic dynamical system

N students. Every day, some of you get COVID...

Probability of infection per student on a given day: $\sim \mathrm{Bern}(\lambda)$ (e.g. $\lambda = 0.1$)

 S_i : number of healthy students on day i

Expected value of healthy students on a given day is easy to calculate

$$S_0 = N$$

$$\mathbb{E}[S_1] = (1 - \lambda)N$$

$$\mathbb{E}[S_2] = (1 - \lambda)^2 N$$

$$\vdots$$

$$\mathbb{E}[S_k] = (1 - \lambda)^k N$$

...but the variance is hard! Depends on previous days

If you can't calculate, simulate!

$$N=10$$
, repeats = 4

N=100, repeats = 4

More students means less variance. Why?

What's wrong with our model?

Doesn't model many factors like recovery, changing immunity, etc.

- We'll get there!

Hard to analyse mathematically due to stochasticity

Infections don't actually occur on the stroke of midnight!

We're going to approximate our model

Discrete time

t = 1 day, 2 days, ...

Measure number of healthy people

Hard to analyse

Infections are stochastic

Continuous time ODE

Measure all timepoints

Measure expected number of healthy people

Easier to analyse

Only reasonable when stochasticity is low

This is called a mean field approximation

It's how many ODE models are derived

Less valid (high stochasticity N=10)

Valid (low stochasticity, N=100)

Why are we only counting each day?

Infections can happen at any time. Why not measure twice a day?

Current

$$S_{t+1} - S_t \sim -B(S_t, 1 - \lambda)$$

Measure twice a day

$$S_{t+\frac{1}{2}} - S_t \sim -B\left(S_t, \frac{1-\lambda}{2}\right)$$

Why are we only counting each day?

Infections can happen at any time. Why not measure at a timestep δt ?

Current

$$S_{t+1} - S_t \sim -B(S_t, 1 - \lambda)$$

Measure twice a day

$$S_{t+\frac{1}{2}} - S_t \sim -B\left(S_t, \frac{1-\lambda}{2}\right)$$

Measure every δt

$$S_{t+\delta t} - S_t \sim -B\left(S_t, \delta t(1-\lambda)\right)$$

Hidden assumption

Expected number of infections is linear in time, for small time steps < 1 day

Clearly not true on longer timescales:

Questions for audience:

What's the source of the nonlinearity?

Why is short-timescale linearity reasonable?

Mean field equation for infection rate

Expected value of binomial:

$$\mathbb{E}[S_{t+\delta t} - S_t] = -S_t \delta t (1 - \lambda)$$

Rearranging and removing expectations for clarity:

$$\frac{S_{t+\delta t} - S_t}{\delta t} = -pS_t \qquad p = (1 - \lambda)$$

Limit as $\delta t \rightarrow 0$

$$\dot{S}(t) = -pS(t)$$

What have we done?

Rewritten what we expect a stochastic process to do as an ODE

$$N = 10$$

$$\dot{S}(t) = -pS(t)$$

$$N = 100$$

Analytical solution is easy in this case

$$\dot{S}(t) = -pS(t)$$

$$S(0) = N$$

$$S(t) = N \exp(-pt)$$

Solve for yourself. Use previous analytical solution to help

Interpreting our (bad) model

$$\dot{S}(t) = -pS(t)$$

$$S(0) = N$$

What are the units of p?

(Units on each side of equation should be equal)

Interpreting our (bad) model

$$\frac{\mathrm{d}S}{\mathrm{d}t}(t) = -pS(t)$$

$$\frac{\text{Number}}{\text{time}} = \text{Units of p} \times \text{Number}$$

Units of
$$p$$
 are $\frac{1}{\text{time}}$

p is a rate (the intrinsic infection rate)

What's wrong with our model?

Doesn't model many factors like recovery, changing immunity, etc.

Hard to analyse mathematically due to stochasticity

- Sorted!

Infections don't occur on the stroke of midnight!

- Sorted!

Systems of ODEs

Single state represented as number (e.g. number of healthy students) $\dot{x}(t) = f(x(t), t)$

ODEs useful for analysing dynamic interactions between quantities

SI Model

Mean dynamics of healthy students (from before)

$$\dot{S}(t) = -pS(t)$$

$$S(0) = N$$

Dynamics of infected students?

$$\dot{I}(t) = ???$$
 $I(0) = 0$

SI Model

Total students doesn't change (no deaths)

$$\forall t: S(t) + I(t) = N$$

Differentiating in time:

$$\dot{S}(t) + \dot{I}(t) = 0$$

$$\Rightarrow \dot{I}(t) = -\dot{S}(t)$$

SI Model

New model:

$$\begin{bmatrix} \dot{S}(t) \\ \dot{I}(t) \end{bmatrix} = \begin{bmatrix} -p & 0 \\ p & 0 \end{bmatrix} \begin{bmatrix} S(t) \\ I(t) \end{bmatrix}$$

$$\dot{x}(t) = Ax(t)$$

$$\begin{bmatrix} S(0) \\ I(0) \end{bmatrix} = \begin{bmatrix} N \\ 0 \end{bmatrix}$$

$$x(0) = \begin{bmatrix} S(0) \\ I(0) \end{bmatrix}$$

...still a linear first-order ODE!

Overall rate of infection should depend on number of susceptibles and number of infected

But how?

Increase proportion of infected individuals by factor of k

Increase infection rate by factor of k

Increase proportion of infected individuals by factor of k

Increase infection rate by factor of k

$$\dot{S}(t) \propto -p \frac{I(t)}{N}$$

Increase susceptible individuals by factor of k

Increase infection rate by factor of k

$$\dot{S}(t) \propto -\frac{pS(t)I(t)}{N}$$

Note

Could have $\tilde{p} = \frac{p}{N}$, but nice to have population-independent measure of infectivity

Improved SI Model

$$\dot{S}(t) = -p \frac{S(t)I(t)}{N}$$

$$\dot{I}(t) = p \frac{S(t)I(t)}{N}$$

$$\begin{bmatrix} S(0) \\ I(0) \end{bmatrix} = \begin{bmatrix} N \\ 0 \end{bmatrix}$$

Now it's nonlinear:(

Every infectious person eventually recovers (no deaths)

Same type of stochastic process as infection

Same mean field approximation

The standard SIR model

$$\dot{S}(t) = -p \frac{S(t)I(t)}{N}$$

$$\dot{I}(t) = p \frac{S(t)I(t)}{N} - \gamma I(t)$$

$$\dot{R}(t) = \gamma I(t)$$

p: infection rate γ : recovery rate

$$\dot{S}(t) + \dot{I}(t) + \dot{R}(t)?$$

The standard SIR model

$$\dot{S}(t) = -p \frac{S(t)I(t)}{N}$$

$$\dot{I}(t) = p \frac{S(t)I(t)}{N} - \gamma I(t)$$

$$\dot{R}(t) = \gamma I(t)$$

$$x(t) = \begin{bmatrix} S \\ I \\ R \end{bmatrix} \qquad \dot{x}(t) = f(x(t), t)$$

p: infection rate γ : recovery rate

Plotting the SIR model

$$\dot{S}(t) = -p \frac{S(t)I(t)}{N}$$

$$\dot{I}(t) = p \frac{S(t)I(t)}{N} - \gamma I(t)$$

$$\dot{R}(t) = \gamma I(t)$$

Experienced modeller can intuit shape of graph from equations, without simulating

Analysis

Dynamics depend upon parameters

What combination of parameters could avoid a pandemic?

Need expected infections to always be decreasing

$$\dot{S}(t) = -\frac{p}{N} S(t) I(t)$$

$$\dot{I}(t) = \frac{p}{N} S(t) I(t) - \gamma I(t)$$

$$\dot{R}(t) = \gamma I(t)$$

Analysis

Dynamics depend upon parameters

$$\dot{S}(t) = -\frac{p}{N}S(t)I(t)$$

$$\dot{I}(t) = \frac{p}{N}S(t)I(t) - \gamma I(t)$$

$$\dot{R}(t) = \gamma I(t)$$

What combination of parameters could avoid a pandemic?

Need expected infections to always be decreasing

$$\dot{I}(0) < 0 \qquad \Rightarrow \frac{p}{N} N - \gamma < 0$$
$$\Rightarrow \frac{p}{\gamma} < 1$$

The basic reproduction number

$$R_0 = \frac{p}{\gamma}$$

 $R_0 < 1$: a single infected person in the population will infect less than one person, on average

Question for the audience

$$R_0 = \frac{p}{\gamma}$$

How would you model vaccination? Social distancing?

Can you comment on herd immunity in the context of this model?

Herd immunity

$$R_0 = \frac{p}{\gamma}$$

How would you model vaccination? Social distancing?

Can you comment on herd immunity in the context of this model?

Could add extra state for the vaccinated. Or just decrease p

Vaccination/distancing need only decrease infectivity until $R_0 < 1$.

Fixed points of the SIR model

$$\dot{S}(t) = -p \frac{S(t)I(t)}{N}$$

$$\dot{I}(t) = \left(p \frac{S(t)}{N} - \gamma\right)I(t)$$

$$\dot{R}(t) = \gamma I(t)$$

p: infection rate γ : recovery rate

For what values of S, I, R are there no dynamics?

Steady state analysis of SIR model

$$\dot{S}(t) = -p \frac{S(t)I(t)}{N}$$

$$\dot{I}(t) = \left(p \frac{S(t)}{N} - \gamma\right)I(t)$$

$$\dot{R}(t) = \gamma I(t)$$

Fixed point: I(t) = 0. S(t), R(t) can be anything!

But not all fixed points are created equal!...

Deviation from a fixed point

add a single infection...

Unstable: infections increase away from the fixed point. Pandemic!

Stable: infections decrease back to the fixed point

Fixed points for general ODE

$$\dot{x}(t) = f(x(t), t)$$

$$\dot{x}(0) = x_0$$

Fixed points:

$$\{x^*: f(x^*, t) = 0\}$$

Definition of stability?

Can we infer from equations without simulating?

Fixed points for scalar ODE

Small fixed point deviations with different effects:

$$\dot{x}(t) = x(t)$$

$$\dot{x}(t) = -x(t)$$

Fixed points for scalar ODE

$$\dot{x}(t) = x(t)$$

Perturbation travels away from fixed point

$$\dot{x}(t) = -x(t)$$

Perturbation travels back into fixed point

Fixed points for scalar ODE $\dot{x}(t) = f(x(t))$

$$\dot{x}(t) = x(t)$$

$$\frac{\partial f}{\partial x} = 1 > 0$$

$$\dot{x}(t) = -x(t)$$

$$\frac{\partial f}{\partial x} = -1 < 0$$

Fixed points for scalar ODE $\dot{x}(t) = f(x(t))$

$$\dot{x}(t) = x(t)$$

$$\frac{\partial f}{\partial x} = 1 > 0$$

$$\dot{x}(t) = -x(t)$$

$$\frac{\partial f}{\partial x} = -1 < 0$$

Mathematical intuition

$$\dot{x}(t) = f(x(t), t)$$

Fixed point:

$$f(x*(t)) = 0$$

Small perturbation from fixed point:

$$x(t) = x^* + \delta x(t)$$

Taylor expansion of derivative:

(Finite difference approximation)

$$\dot{x}^* + \dot{\delta x}(t) \approx f(x^*) + \delta x(t) \frac{\partial f}{\partial x}(x^*)$$

Mathematical intuition

$$\dot{\delta x}(t) \approx \delta x(t) \frac{\partial f}{\partial x}(x^*)$$

$$\frac{\partial f}{\partial x} = 1 > 0:$$

Perturbation grows (instability)

$$\frac{\partial f}{\partial x} = -1 < 0$$
:

Perturbation shrinks (stability)

Try for yourself

$$\dot{x}(t) = \sin(x(t)) - x(t)$$

$$\dot{x}(t) = x(t) - \sin(x(t))$$

Fixed point at zero: For which of these ODEs is it stable/unstable?

Why was I so interested in the SIR model?

Most important skill in differential equation modelling is not maths

Practice at:

Making / justifying / criticising assumptions

Turning assumptions into equations

Turning equations into (qualified) insight

Further improvements?

Reinfection, superspreader events, spatial modelling, ...

Play with seminar code at home!