# Marketing And Sales Data Linear Regression

August 5, 2023

# 1 Marketing And Sales Data Linear Regression

# 1.1 Step 1: Imports

```
[1]: # Import relevant libraries and packages.
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.formula.api import ols
```

#### 1.1.1 Load the dataset

```
[2]: data = pd.read_csv('marketing_and_sales_data.csv')

# Display the first five rows.
data.head()
```

```
[2]:
         TV
                 Radio Social_Media
                                          Sales
    0 16.0
              6.566231
                           2.907983
                                      54.732757
    1 13.0
              9.237765
                           2.409567
                                      46.677897
    2 41.0 15.886446
                           2.913410 150.177829
    3 83.0 30.020028
                           6.922304 298.246340
    4 15.0
             8.437408
                           1.405998
                                      56.594181
```

## 1.2 Step 2: Data exploration

```
[3]: # Display the shape of the data.

data.shape
```

[3]: (4572, 4)

## 1.2.1 Explore the independent variables

```
[4]: # Generate descriptive statistics about independent variables.

data[["TV", "Radio", "Social_Media"]].describe()
```

```
[4]:
                                Radio Social_Media
           4562.000000
                                        4566.000000
     count
                         4568.000000
    mean
              54.066857
                           18.160356
                                           3.323956
     std
              26.125054
                            9.676958
                                           2.212670
    min
              10.000000
                            0.000684
                                           0.000031
    25%
              32.000000
                           10.525957
                                           1.527849
     50%
              53.000000
                           17.859513
                                           3.055565
    75%
              77.000000
                           25.649730
                                           4.807558
             100.000000
                           48.871161
                                          13.981662
    max
```

#### 1.2.2 Explore the dependent variable

```
[5]: # Calculate the total number of missing values in the sales column.
data["Sales"].isna().sum()
```

[5]: 6

#### 1.2.3 Remove the missing data

```
[6]: # Subset the data to include rows where Sales is present.
data.dropna(subset=["Sales"], axis=0, inplace=True)
```

#### 1.2.4 Visualize the sales distribution

```
[7]: # Create a histogram of the Sales.
fig=sns.histplot(data["Sales"])

# Add a title
fig.set_xlabel("Sales in millions")
fig.set_ylabel("Number of Sales")
plt.show()
```



# 1.3 Step 3: Model building

```
[8]: # Create a pairplot of the data.
sns.pairplot(data)
```

[8]: <seaborn.axisgrid.PairGrid at 0x7f1bba294c50>



# 1.3.1 Build and fit the model

```
[9]: # Define the OLS formula.
  ols_formula="Sales ~ TV"

# Create an OLS model.
  OLS=ols(data=data, formula=ols_formula)

# Fit the model.
  model=OLS.fit()

# Save the results summary.
```

```
model_result=model.summary()

# Display the model results.
model_result
```

# [9]: <class 'statsmodels.iolib.summary.Summary'>

## OLS Regression Results

| Dep. Variable:    | Sales            | R-squared:          | 0.999     |
|-------------------|------------------|---------------------|-----------|
| Model:            | OLS              | Adj. R-squared:     | 0.999     |
| Method:           | Least Squares    | F-statistic:        | 4.527e+06 |
| Date:             | Sat, 05 Aug 2023 | Prob (F-statistic): | 0.00      |
| Time:             | 14:58:58         | Log-Likelihood:     | -11393.   |
| No. Observations: | 4556             | AIC:                | 2.279e+04 |
| Df Residuals:     | 4554             | BIC:                | 2.280e+04 |
| Df Model:         | 1                |                     |           |
| a · m             |                  |                     |           |

Covariance Type: nonrobust

| =======                               | coef              | std err        | ========<br>t          | P> t                                             | [0.025          | 0.975]                          |
|---------------------------------------|-------------------|----------------|------------------------|--------------------------------------------------|-----------------|---------------------------------|
| Intercept<br>TV                       | -0.1263<br>3.5614 | 0.101<br>0.002 | -1.257<br>2127.776     | 0.209<br>0.000                                   | -0.323<br>3.558 | 0.071<br>3.565                  |
| Omnibus: Prob(Omnibus Skew: Kurtosis: | 3):               | 0              | .975 Jaro<br>.001 Prob | oin-Watson:<br>que-Bera (JB)<br>o(JB):<br>1. No. | :               | 2.002<br>0.030<br>0.985<br>138. |

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

#### 11 11 11

## 1.3.2 Check model assumptions

To justify using simple linear regression, we should check that the four linear regression assumptions are not violated.

These assumptions are: - Linearity requires a linear relationship between the independent and dependent variables. - Independent Observations states that each observation in the dataset is independent. - Normality states that the errors are normally distributed. - Homoscedasticity is that the residuals have a constant variance for all values of independent variables.

#### 1.3.3 Model assumption: Linearity

```
[10]: # Create a scatterplot comparing X and Sales (Y).
    fig=sns.scatterplot(x=data["TV"], y=data["Sales"])
    fig.set_xlabel("TV promotion in millions")
    fig.set_ylabel("Sales in millions")
    plt.show()
```



#### 1.3.4 Model assumption: Independence

As each marketing promotion (i.e., row) is independent from one another, the independence assumption is not violated.

# 1.3.5 Model assumption: Normality

```
[11]: # Calculate the residuals.
residuals= model.resid

# Create a 1x2 plot figures.
fig, axes = plt.subplots(1,2, figsize=(8,4))

# Create a histogram with the residuals.
sns.histplot(residuals, ax=axes[0])
```

```
# Set the x label of the residual plot.
axes[0].set_xlabel("Residuals")

# Set the title of the residual plot.
axes[0].set_title("The distribution of residuals")

# Create a Q-Q plot of the residuals.
sm.qqplot(model.resid, line="s", ax=axes[1])

# Set the title of the Q-Q plot.
axes[1].set_title("QQ Plot for Residuals")

# Use tight_layout() function to add space between plots.
plt.tight_layout()

# Show the plot.
plt.show()
```



#### 1.3.6 Model assumption: Homoscedasticity

```
[12]: # Create a scatterplot with the fitted values from the model and the residuals.
fitted_values=model.predict(data["TV"])
fig=sns.scatterplot(x=fitted_values, y=residuals)

# Set the x-axis label.
fig.set_xlabel("Fitted Values")
```

```
# Set the y-axis label.
fig.set_ylabel("Residuals")

# Set the title.
fig.set_title("Fitted Values v. Residuals")

# Add a line at y = 0 to visualize the variance of residuals above and below 0.
fig.axhline(0)

# Show the plot.
plt.show()
```



# 1.4 Step 4: Results and evaluation

# 1.4.1 Display the OLS regression results

```
[13]: # Display the model_results defined previously.
model_result
```

[13]: <class 'statsmodels.iolib.summary.Summary'>

#### OLS Regression Results

| ======================================= | =========   |                  |           |               |        | ========  |
|-----------------------------------------|-------------|------------------|-----------|---------------|--------|-----------|
| Dep. Variable:                          | Ş           | Sales R-squared: |           |               | 0.999  |           |
| Model:                                  |             | OLS              | Adj.      | R-squared:    |        | 0.999     |
| Method:                                 | Least Squ   | ıares            | F-sta     | tistic:       |        | 4.527e+06 |
| Date:                                   | Sat, 05 Aug | 2023             | Prob      | (F-statistic) |        | 0.00      |
| Time:                                   | 14:5        | 58:58            | Log-I     | ikelihood:    |        | -11393.   |
| No. Observations:                       |             | 4556             | AIC:      |               |        | 2.279e+04 |
| Df Residuals:                           |             | 4554             | BIC:      |               |        | 2.280e+04 |
| Df Model:                               |             | 1                |           |               |        |           |
| Covariance Type:                        | nonro       | bust             |           |               |        |           |
|                                         |             |                  | ======    |               |        |           |
| со                                      | ef std err  |                  | t         | P> t          | [0.025 | 0.975]    |
| Intercept -0.12                         | 63 0.101    | <br>-1           | <br>1.257 | 0.209         | -0.323 | 0.071     |
| TV 3.56                                 | 14 0.002    | 2127             | 7.776     | 0.000         | 3.558  | 3.565     |
| Omnibus:                                | <br>)       | <br>).051        | <br>Durbi | n-Watson:     |        | 2.002     |
| Prob(Omnibus):                          | (           | 0.975            | Jarqu     | ue-Bera (JB): |        | 0.030     |
| Skew:                                   | (           | 0.001            | Prob(     | JB):          |        | 0.985     |
| Kurtosis:                               | 3           | 3.012            | Cond.     | No.           |        | 138.      |

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

#### 11 11 11

#### 1.5 Conclusions

- Sales are evenly distributed between 25 and 350 million.
- TV has the strongest positive linear relationship with sales compared to radio and social media.
- The model has a high R-squared value of 0.999, indicating that 99.9% of the variation in sales can be explained by the TV promotional budget.
- The p-value for the TV coefficient is 0.0000, and the 95% confidence interval is [3.558, 3.565], indicating high confidence in the impact of TV on sales.
- The coefficients for Intercept and TV are -0.1263 and 3.5614, respectively, meaning an increase of one million dollars in the TV promotional budget leads to an estimated increase of 3.5614 million dollars in sales.
- Increasing the TV promotional budget should be prioritized to boost sales.