Fault Modeling

- Introduction
- Fault Models
- Fault Detection
- Fault Coverage
- Conclusion

Fault Detection

- A test pattern detects a fault if
 - output of faulty circuit ≠ output of good circuit

f = ab + cdtest pattern (a,b,c,d) = (0,0,1,1) detects e stuck-at-0 fault

```
notation 1/0:
good value=1; faulty value =0
```

Activation & Propagation

- A fault is detected if two conditions are satisfied
 - (1) Fault activation:
 - different value at fault site (opposite to faulty value)
 - (2) Fault effect propagation: (aka. error propagation)
 - Propagate fault effect to any primary output
 - * Signal x is sensitized if output changes when x changes
 - * A path of sensitized signals is called sensitized path

Fault activation: c=d=1

Fault Effect Propagation: a=b=0

e is sensitized to output e-f is sensitized path

Detection Requires (1) Activation & (2) Propagation

Fault Classes

- Untestable faults* = faults that cannot be detected by any test pattern
- Testable faults = faults that cannot be proven untestable
 - Detected faults
 - Undetected faults
 - Oscillatory faults (see fault simulation)
 - Potentially detected faults (see fault simulation)
 - . . .

^{*} untestable faults is aka. undetectable faults but very confusing so not used in lecture

Untestable Faults

- Definition
 - Faults that cannot be detected by any test pattern (proven)
 - Aka redundant faults
- Proving untestable fault is NP-complete
 - same as satisfiability (SAT)
- Examples of untestable faults
 - 1. Redundant circuitry
 - * A₂ stuck-at zero fault is untestable

- 2. Unused output or tied input
 - * C₄ is not used
 - SA0,SA1 untestable
 - * C₀ is tied to zero
 - SA0 untestable

Untestable Faults (2)

- 3. Hazard control circuitry
 - AB' + BC + AC = AB'+BC
 - AC SA0 is untestable
 - Used for hazard prevention B

- 4. Error control circuitry
 - A and A+ always produce same output
 - ECC output SA0 is untestable
- 5. ATPG constraints
 - e.g. set PI=1

Undetected Faults

- Definition
 - Faults that are not detected by the given test set
- Due to ATPG runtime limitation
 - Cannot prove it untestable
 - Cannot find test pattern, either

- NOTE: do not confuse untestable faults with undetected faults
 - Former: no test pattern exists (proven)
 - Latter: no test pattern so far (may exist but not sure)

Untestable Faults ≠ Undetected Faults

Quiz

Q1: Apply two patterns {000, 001}. Which fault (s) are undetected?

A:

Q2: Now consider all patterns. Which fault(s) are untestable?

A:

Input			Output						
A	В	C	good	E/0	F/0	L/0	E/1	F/1	L/1
0	0	0	0	0	0	0	1	1	0
0	0	1	1	0	0	1	1	1	1
0	1	0	1	0	0	1	1	1	1
0	1	1	1	0	0	1	1	1	1
1	0	0	0	0	0	0	0	1	0
1	0	1	0	0	0	1	0	0	0
1	1	0	0	0	0	1	0	0	0
1	1	1	0	0	0	1	0	0	0

Consider only six faults on *EFL*

Fault Modeling

- Introduction
- Fault Models
- Fault Detection
- Fault Coverage
- Conclusions

More Metrics

• Fault coverage (FC): measure quality of test set

Test coverage: measure quality of test set (testable faults only)

ATPG effectiveness: measure quality of ATPG algorithm

$$\frac{number\ of\ \textit{detected} + \textit{untestable}\ \textit{faults}}{number\ of\ \textit{total}\ \textit{faults}} \times 100\%$$

Quiz

Item	Number
Total Faults	1,234
Detected faults	1,000
Untestable faults	230
Undetected faults	4
Fault Coverage	
Test Coverage	
ATPG effectiveness	

Revisit: $DL = 1-Y^{(1-FC)}$

- In practice, does 100% FC mean 0 DPM?
 - NO! Fault coverage does NOT represent defect coverage

Fault Coverage

Defect Coverage =?

Defect → Faults

Sometimes, one defect can be modeled by more than one fault

- Example:
 - unwanted wire between b and ground
 - * b stuck-at zero SSF
 - * f stuck-at zero SSF
 - * b slow-to-rise transition fault
 - Gate delay fault in G
 - *

Defect → Faults (2)

Sometimes, one defect cannot be well modeled by any fault

- Examples:
 - Slow process cannot be well modeled by SSF
 - (maybe path delay fault)
 - Reliability defects cannot be well modeled by SSF
 - Fault masking
 - **•** ...

Experimental Results

- 0.7μm CMOS, Murphy experiment, Stanford Univ. [McCluskey 00]
 - Total population 5.5K chips tested
 - 116 defective chips
 - Only 1/3 of defects behaves like SSF
 - * 2~6 chips escaped 100% SSF test sets
- N-detect SSF test patterns
 - Detect each SSF at least N times by different patterns
 - No chip escaped N=3
 - Why? Accidental detection of unmolded defects

100% FC ≠ 0 DPM
Diversified Test Patterns Are Good

Fault Modeling

- Introduction
- Fault Models
- Fault Detection
- Fault Coverage
- Conclusion

Concluding Remarks

- Fault model is very important for test automation
 - Automatic test pattern generation
 - Quantify quality of test patterns
- Although many fault models, only a few used in practice
 - Single stuck-at faults is applied for sure
 - Transition delay faults may be applied
 - Other fault models adopted according to product needs
- NOTICE! Fault model can be deceiving
 - Fault models do not always match behavior of defects
 - Only 1/3 of defects behaves like SSF
 - 100% fault coverage DOES NOT guarantee zero DPM

Isn't 99.9% Good Enough?

- Look at the consequences of "almost, but not quite" perfect.
- If 99.9% is good enough then:
 - 2 million documents will be lost by IRS this year
 - 12 babies will be given to the wrong parents today
 - 2 plane landings daily at LAX airport will be unsafe
 - 18K pieces of mail will be mishandled in the next hour
 - **•** ---

Because There are Many Faults Small \(\Delta \) in FC Makes Large Difference

References

- [Barzilai 83] Z. Barzilai and B. K. Rosen, "Comparison of AC Self-Testing Procedures," IEEE Int'l Test Conf., pp.89-94, 1983.
- [Breuer 74] M.A Breuer, "The Effects of Races, Delays and Delay Faults on Test Generation," IEEE Trans. on Computers, pp.1078-1092, 1974.
- [Friedman 74] Friedman, Arthur D. "Diagnosis of short-circuit faults in combinational circuits." IEEE Transactions on Computers 100.7 (1974): 746-752.
- [Galey 61] Galey, J. M., R. E. Norby, and J. P. Roth. "Techniques for the diagnosis of switching circuit failures."
 Proceedings of the 2nd Annual Symposium on Switching Circuit Theory and Logical Design (SWCT 1961). IEEE Computer Society, 1961.
- [Hapke 09] F. Hapke, et al. "Defect-oriented cell-aware ATPG and fault simulation for industrial cell libraries and designs." IEEE Int'l Test Conference, 2009.
- [Hapke 14] F. Hapke, et al. "Cell-aware Test" IEEE Trans. on CAD, 2014.
- [Levendel 86] Y. Levendel and P.R. Menon, "Transition Faults in Combinational Circuits: Input Transition Test Generation and Fault Simulation," Int'l Symp. in Fault-tolerant Computing Systems, 1986.
- [Li 01] JCM Li, CW Tseng, EJ McCluskey, "Testing for resistive opens and stuck opens," Int'l Test Conf. 2001.
- [Li 02] JCM Li, "Test and Diagnosis for Open Defects in digital CMOS IC," PhD Thesis, Stanford Univ. 2002.
- [Millman 88] S.D. Millman, McCluskey, "Detecting bridging faults with stuck-at test sets," ITC 1988.
- [Millman 89] S.D. Millman, McCluskey, "Detecting stuck-open faults with stuck-at test sets," ITC 1989.
- [Hughes 86] J Hughes and EJ McCluskey, "Multiple stuck-at fault coverage of single stuck-at fault test sets," Int'l Test Conf., 1986.
- [McCluskey 00] EJ McCluskey and CW Tseng, "Stuck-fault tests vs. actual defects," Int'l Test Conf., 2000.
- [Smith 85] G.L. Smith, "Model for Delay Faults," IEEE Int'l Test Conf., pp.342-349, 1985.
- [Wadsack 78] RL Wadsack, "Fault modeling and logic simulation of CMOS and MOS integrated circuits" Bell System Technology, 1978.
- [Williams 73] MJY Williams and JB Angell, "Enhancing testability of large-scale integrated circuits via test points and additional logic." IEEE Transactions on Computers 100.1 (1973): 46-60.
- [Woodhall 87] BW Woodhall, BD Newman, AG Sammuli, "Empirical results on undetected CMOS stuck-open failures" ______Int'l Test Conf., 1987.