aa

Aa 제목	<u></u> 1 열	를 2열	≡ 3열	를 4열
Untitled				
<u>기능 번</u> 호	기능 이름	작동 방식	구현 세부사항	특이사항
1	이미지 분석	사용자의 카메라 이미지에서 천체 를 탐지하고 분 류.	- ResNet 모델을 활용하여 이미지 분류 OpenCV로 전처리(밝기, 크기조정) 분석 결과에 라벨 및 경계 상자 표시.	분류 기준은 천체의 밝 기와 위치로 제한함. 인 공위성도 포함.
<u>2</u>	천체 식별	패턴과 밝기 분 포를 분석해 천 체의 위치 및 종 류를 식별.	- Scikit-Image 로 밝기 히스토그램을 계산 DB와 매칭하여 천체 식별 사용자 위치와 시간 기반 보정.	사용자 위치에 대하여 보정할 때 휴대폰의 각 도를 포함함.(4번 항목 으로 이어짐.)
<u>3</u>	정보 제공	탐지된 천체에 대한 간단한 정 보를 UI에 표시 하며, 클릭 시 상 세 정보 제공.	- NASA api 혹은 astropy를 활용하여 천체 데이터 가져오기 팝업 카드형태로 위치, 이름, 거리 등의 정보 표시 사용자 화면에 최적화.	이용 가능한 정보 매체 >> astropy, NASA api, stellarium api.
<u>4</u>	위치 기반 최적화	GPS와 자이로스 코프 데이터를 활용하여 사용자 의 위치 및 방향 기반 최적화.	- Stellarium api를 활용하여 사용자의 위치에서 보이는 천체 계산 카메라 각도 데이터와 연동 두 데이터를 활용하여 위치 정확도 보정.	
<u>5</u>	광공해 지도 및 추 천 관 측지	사용자의 위치와 광공해 데이터를 분석하여 관측하 기 좋은 장소를 추천.	- Light Pollution Maps API 사용 - OpenWeatherMap API 혹은 기상청 API를 활용하여 날씨 및 대기 상태 확 인 Google Maps API로 길찾기 지 원.	- 해당 지역의 습도나 구름 양에 따른 분류도 필요함.
<u>6</u>	관측 일정 및 이	주요 천문 이벤 트(유성우, 월식 등)에 대하여 푸 시 알림 제공.	- 한국 천문 연구원에서 제공하는 천문 이벤트 데이터셋 활용.	

id I

Aa 제목	<u></u> 1 열	≡ 2열	를 3열	를 4열
	벤트 알림			
7	가상 관측 모드	사용자 선택 시 간과 위치의 가 상 하늘을 시뮬 레이션으로 보여 줌.	- Stellarium api를 통하여 천체 데이 터를 가져옴 WebGL / Three.js를 통해 가상 하늘 렌더링 사용자가 위 치(위도, 경도)와 시간을 변경 가능.	
<u>8</u>	관측 기록 관리 및 공 유	사용자가 관찰한 천체와 이미지를 기록하고 공유할 수 있음.	- Firebase Firestore로 데이터 저장. 혹은 사용자의 기기에 직접 저장 이 미지와 메모 업로드 지원 관측 기록 을 소셜 미디어와 앱 커뮤니티에 공유.	프로그램 내에서 저장할 경우 캘린더 형태로 날 짜별로 데이터에 접근하 도록 만드는 것이 유용 할 것으로 보임.
<u>9</u>	천체 촬영 도우미	스마트폰 카메라 설정을 자동으로 최적화하여 천체 촬영 지원.	- Camera2 API로 셔터 속도, 노출도, ISO 자동 조정 OpenCV로 후처리. (노이즈, 밝기, 흔들림 보정)	
<u>10</u>	별자리 이야기 및 신 화 제 공	관찰한 별자리와 관련된 신화, 전 설, 과학 등 가벼 운 이야기를 다 양한 형태로 제 공.(이미지와 글)	- DB와 연동하여 별자리 신화 제공 텍스트, 이미지를 활용하여 정보 제공. - UI 간단히 표시	
11	관측 업적	사용자의 수준에 따라 도전 과제 를 제공하며, 그 에 따른 보상을 제공함.	- 난이도 기반 알고리즘으로 맞춤 도전 과제 생성 포인트 시스템 및 가상 뱃 지 제공 진행 상황을 기록하고 공유.	관측 난이도는 관측 지역의 날씨, 관측 대상의 크기나 밝기 에 따라 분류함.
<u>12</u>	실시간 사용자 커뮤니 티	같은 취미를 공 유하는 사용자들 간의 소통을 제 공.	- Firebase Realtime Database로 채팅 기능 구현 커뮤니티 내 관측 경 험 공유.	인증된 전문가는 트위터 의 인증마크 같은 표시 기능 추가.

aa 2