HW Assignment 1 M 385C - Theory of Probability

Lianghao Cao

September 18, 2018

Problem 1.1. Show that:

1. Every σ -algebra is an algebra.

Proof. Pick arbitrary $A, B \in \mathcal{S}$. Assume \mathcal{S} is an σ -algebra, then $A_n \in \mathcal{S} \ \forall n \in \mathbb{N} \Rightarrow \bigcup_n A_n \in \mathcal{S} \ (A7)$. Let $A_1 = A$, $A_2 = B$ and $A_i = B$ for $i \in \{3, 4, 5, ...\}$. Thus, we have $\bigcup_{i=1}^{\infty} A_i = A \cup B \in \mathcal{S} \ (A4)$.

2. Each algebra is a π -system and each σ -algebra is an algebra and a λ -system.

Proof.

- (a) Pick arbitrary $A, B \in \mathcal{S}$. Assume \mathcal{S} is an algebra, then $A^c, B^c \in \mathcal{S}$ (A3) and $A^c \cup B^c \in \mathcal{S}$ (A4). Apply De Morgan's law and A3, we have $(A^c \cup B^c)^c = A \cap B \in \mathcal{S}$.
- (b) σ -algebra is an algebra is already proven above. To prove a σ -algebra is a λ -system, consider the following:
 - i. If S is a σ -algebra and $A \subseteq B \in S$ (A3), we have $A^c \in S$. Notice that $B \setminus A = B \cap A^c \in S$, as proven in (a).

ii. For a increasing sequence $S \ni A_n \nearrow A$, $A = \bigcup_n A_n \in S$ (A7).

3. A family S is a σ -algebra if and only if it contains the empty set, is closed under finite intersections, complements and countable unions of pairwise disjoint sets.

Proof.

(a) " \Rightarrow "

It is proven in 2(a) that S is closed under finite intersections. Everything else are given by definition.

(b) " ⇐ "

We only need to prove that S is closed under countable union of any sets. Consider a countable collection $\{A_n\}_{n\in\mathbb{N}}\in S$. We can construct a collection of pairwise disjoint sets $\{B_n\}_{n\in\mathbb{N}}$ in S with $B_1=A_1$, $B_2=A_2\setminus A_1$, $B_3=A_3\setminus (A_1\cup A_2)$, ..., $B_n=A_n\setminus (A_{n-1}\cup...\cup A_1)$. Notice that $B_n\in S$ $\forall n\in\mathbb{N}$ by invoking De Morgan's law, A3 and A6, similar to the proof in 2(a). Also notice that, with this set up, $\bigcup_n B_n=\bigcup_n A_n$. Since S is closed under countable union of pairwise disjoint set, we have $\bigcup_n A_n\in S$.

4. A λ -system which is a π -system is also a σ -algebra.

Proof. Assume S is a λ -system which is a π -system, i.e., S satisfies A2 $(S \in S)$, A5 $(A, B \in S, A \subseteq B \Rightarrow B \setminus a \in S)$, A6 $(A, B \in S \Rightarrow A \cap B \in S)$ and A8 $(A_n \in S \ \forall n \in \mathbb{N} \ \text{and} \ A_n \nearrow A \Rightarrow A \in S)$. We seek to prove:

- (a) A1: $\emptyset \in S$ For $A, B \in \mathcal{S}, A \subseteq B$, we have $B \setminus A \in \mathcal{S}$ (A5). Apply A6, we have $(B \setminus A) \cap A = \emptyset \in \mathcal{S}$
- (b) A3: $A \in \mathcal{S} \Rightarrow A^c \in \mathcal{S}$ Consider A2 and A5: for any $A \subset S \in \mathcal{S}$, $S \setminus A = A^c \in \mathcal{S}$. Also, notice that $\emptyset = S^c \in \mathcal{S}$.
- (c) A7: $A_n \in \mathcal{S} \ \forall n \in \mathbb{N} \Rightarrow \bigcup_n A_n \in \mathcal{S}$ Similar to the proof in 2(a), we can conclude that $A, B \in \mathcal{S} \Rightarrow A \cup B$ (A4) from A3 and A6 by applying De Morgan's law: $A^c, B^c \in \mathcal{S}$ and $(A^c \cap B^c)^c = A \cup B \in \mathcal{S}$. Now, let $\{A_n\}_{n \in \mathbb{N}}$ be any countable collection in \mathcal{S} . We can create an increasing sequence B_n in S with $B_1 = A_1$, $B_2 = A_1 \cup A_2 \dots$, $B_n = A_1 \cup A_2 \cup \dots \cup A_n$, ... and $B_n \nearrow B \in \mathcal{S}$ (A8). Notice that, with this set up, $\bigcup_n B_n = \bigcup_n A_n \in \mathcal{S}$.

5. There are π systems which are not algebras.

Proof. Consider a collection of nested open balls in \mathbb{R}^n with radius larger then r: $\mathcal{B} = \{B_R(0)|\mathbb{N} \ni R \ge r\}$. \mathcal{B} is closed with respect to intersection, thus it is a π -algebra. However, $\emptyset \notin \mathcal{B}$ and it is not an algebra.

6. There are algebras which are not σ -algebras.

Proof. Consider $X = \{1, 2, 3, 4, ...\}$, and let $\mathcal{A} = \{A \subseteq X : A \text{ is finite or } A^c \text{ is finite}\}$. \mathcal{A} is a algebra on X. We know that \emptyset is finite, thus $\emptyset \in \mathcal{A}$ (A1). By definition, \mathcal{A} is closed under complements (A3). Let $A, B \in \mathcal{A}$, we have either $A \cup B \in \mathcal{A}$ is finite for finite A and B, or $A \cup B$ is infinite for infinite A or B. Notice that, if A is infinite, then A^c is finite and in \mathcal{A} . Therefore, $(A \cup B)^c = (A^c \cap B^c) \subseteq A^c$ is finite and $(A \cup B) \in \mathcal{A}$.

The same goes for infinite B ,or infinite A and B. (A4). However, \mathcal{A} not a σ -algebra. Consider sets that each contains a single even number: $\{2n\}, n=1,2,...$ All of these sets are in \mathcal{A} . However, $\bigcup_n \{2n\}$ is not in \mathcal{A} , since it is infinite and its complement, the set of all odd numbers, is infinite.

7. There are λ -systems which are not π -systems.

Proof. Consider $X = \{1, 2, 3, 4\}$, a λ -system on this set is

$$\{\emptyset, \{1,3\}, \{1,4\}, \{2,4\}, \{2,3\}, X\}$$

This is not a π -system, because it is not closed under finite intersection, i.e., $\{1\}$, $\{2\}$,... are not in the collection.

Problem 1.2. A partition of a set S is a family \mathcal{P} of non-empty subset of S with the property that each $\omega \in S$ belongs to exactly one $A \in \mathcal{P}$.

1. How many algebras are there on the set $S = \{1, 2, 3\}$?

There are 4:
$$\{\emptyset, S\}$$
, $\{\emptyset, \{1\}, \{2, 3\}, S\}$, $\{\emptyset, \{2\}, \{1, 3\}, S\}, \{\emptyset, \{3\}, \{1, 2\}, S\}$.

2. By constructing a bijection between the two families, show that the number of different algebras in a finite set S is equal to the number of different partitions S.

Proof. Let $\mathcal{P} = \{A_1, A_2, ..., A_k\}$ be a partition of S. Corresponding to this partition, we have an unique σ -algebra generated by \mathcal{P} : $\sigma(\mathcal{P})$, which consists of the empty set, $A_1, A_2, ..., A_k$ and all their countable unions.

Conversely, if we have a σ -algebra $\mathcal{S} = \{B_1, B_2, ..., B_n\}$ on S, then for every x in S, we can find a set $A_x := \bigcap_{x \in B_i \in \mathcal{S}} B_i$. In this way, we have an unique collection of sets

that generates S in which $\bigcup_{x \in S} A_x = S$ and each element in S only appear in one set. Therefore, the collection of $A_x \ \forall x \in S$ is an unique partition of S. Because of this

Therefore, the collection of $A_x \, \forall x \in S$ is an unique partition of S. Because of this bijection, we can conclude that the number of different algebras and the number of different partitions, both defined on a finite set S, is the same.

3. Does there exist an algebra with 754 elements?

No, there is no algebra with 754 elements. The number of elements must be 2^k , k = 1, 2, ..., n, where n is the number of elements on the set.

Problem 1.3. Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence in $\overline{\mathbb{R}}$. We define

$$\liminf_{n} x_n = \sup_{n} \inf_{k \ge n} x_k \text{ and } \limsup_{n} x_n = \inf_{n} \sup_{k \ge n} x_k$$

where inf and sup are extended to subset of $\bar{\mathbb{R}}$. Prove the following:

1. $a \in \mathbb{R}$ satisfies $a \ge \limsup_n x_n$ if and only if for any $\epsilon \in (0, \infty)$ there exits $n_{\epsilon} \in \mathbb{N}$ such that $x_n \le a + \epsilon$ for $n \ge n_{\epsilon}$. For $a = -\infty$, $a + \epsilon$ should be interpreted as $-1/\epsilon$.

Proof.

(a) " \Rightarrow "

Let $y_n = \sup_{k \ge n} x_k \, \forall n \in \mathbb{N}$. Notice that it is a decreasing sequence, so $y = \lim_{n \to \infty} y_n = \limsup_{n \to \infty} x_n$ and $a \ge y$.

i. $a=-\infty$

If $a = -\infty$, then $y = a = -\infty$. By definition of limit to $-\infty$, we have:

$$\lim_{n \to \infty} y_n = -\infty \iff \forall c \in \mathbb{R} \ \exists n_c \in \mathbb{N} : \ n \ge n_c \Rightarrow y_n \le c$$

Since $y_n \ge x_n$, we have $x_n \le c$. Let $c = -1/\epsilon \in (-\infty, 0)$ and $n_c = n_\epsilon$ to complete the proof.

ii. $a > -\infty$

Using definition of limit and $y_n \geq y \ \forall n \in \mathbb{N}$, we have:

$$\lim_{n \to \infty} y_n = y \iff \forall \epsilon > 0 \ \exists n_{\epsilon} \in \mathbb{N} : \ n \ge n_{\epsilon} \Rightarrow y_n - y < \epsilon$$

Therefore, $x_n \leq y_n < y + \epsilon \leq a + \epsilon$.

- (b) "⇐"
 - i. $a = -\infty$ Let $y_n = \sup_{k \ge n} x_k$. Given any $\epsilon > 0$, $y_n \le -1/\epsilon \ \forall n \ge n_{\epsilon}$. Let $c = -1/\epsilon \in (-\infty, 0)$ and $n_c = n_{\epsilon}$, by definition of limit to $-\infty$, $\lim_{n \to \infty} y_n = -\infty$. Therefore, $a = y = \limsup x_n$.
 - ii. $a > -\infty$

Define y_n the same as in i. We have $y_n \leq a + \epsilon \ \forall \epsilon \in (0, \infty)$, since y_n is a decreasing sequence, it approaches its limit from above. Therefore, $\forall \epsilon > 0 \ \exists n_{\epsilon} \in \mathbb{N} : n \geq n_{\epsilon} \Rightarrow |y_n - a| = y_n - a < \epsilon$. By definition of limit, $\lim_{n \to \infty} y_n = \limsup_n x_n = a$.

2. $\liminf_{n} x_n \leq \limsup_{n} x_n$.

Proof. By the definition of inf and sup, we have: $a_n := \inf_{k \ge n} x_k \le \sup_{k \ge n} x_k =: b_n$. Notice that a_n is an increasing sequence and b_n is a decreasing sequence, since the inf and sup are taken on a shrinking set. Therefore, $\sup_n a_n = \lim_{n \to \infty} a_n$ and $\lim_{n \to \infty} b_n = \inf_n b_n$. Since $a_n \le b_n \ \forall n \in \mathbb{N}$, we have $\sup_n a_n \le \inf_n b_n$.

3. Let A be the set of accumulation (cluster) points of $\{x_n\}_{n\in\mathbb{N}}$ in $\overline{\mathbb{R}}$, i.e.,

$$A = \{\lim_{k} x_{n_k} : x_{n_k} \text{ is a convergent (in } \overline{\mathbb{R}}) \text{ subsequence of } \{x_n\}_{n \in \mathbb{N}} \}$$

Show that

$$\{\liminf_{n} x_n, \limsup_{n} x_n\} \subseteq A \subseteq [\liminf_{n} x_n, \limsup_{n} x_n]$$

Give an example in which both inclusions above are strict.

Proof.

- (a) $\{ \liminf_{n} x_n, \limsup_{n} x_n \} \subseteq A$
 - i. $\liminf_n x_n = \infty$ or $\limsup_{n \to \infty} x_n = -\infty$: Let $y_n = \sup_{k \ge n} x_n$ and $\lim_{n \to \infty} y_n = \limsup_n x_n = -\infty$. For $\epsilon_1 = -1$, there exists n_1 s.t. $n \ge n_1 \Rightarrow y_n < \epsilon$. By definition of sup, we can find $x_{n_1} < \epsilon_1$. Repeat this process to find x_{n_i} with $\epsilon_i = -i \forall i \in \mathbb{N}$, then $\lim_{k \to \infty} x_{n_k} = -\infty$. Therefore, $\limsup_{n \to \infty} x_n = -\infty \in A$.

The same construction can be made for $\liminf_{n} x_n = \infty$. Let $\epsilon_i = i$, there exists n_i s.t. $n \geq n_i \Rightarrow y > \epsilon_i \Rightarrow \exists x_{n_i} : x_{n_i} > \epsilon_i$. Therefore, we have subsequence converges to infinity and $\liminf_{n} x_n = \infty \in A$.

ii. $\liminf_n x_n \neq \infty$ or $\limsup_{n \to \infty} x_n \neq -\infty$: Let $y_n = \sup_{k \geq n} x_n$ and $\lim_{n \to \infty} y_n = \limsup_n x_n = y$. For $\epsilon_1 = 1/2$, there exists n_1 s.t. $n \geq n_1 \Rightarrow y_{n_1} - y < \epsilon_1$. By definition of sup, we can find $x_{n_1} < y + \epsilon_1$. Repeat this process to find x_{n_i} with $\epsilon_i = (\frac{1}{2})^i$, then $\lim_{k \to \infty} x_{n_k} = y$. Therefore, $\limsup_{k \to \infty} x_n = y \in A$.

Similar construction can be made for $\liminf_{n} x_n$. For $\epsilon_i = (\frac{1}{2})^i$, there exists n_i s.t. $n \ge n_i \Rightarrow y - \inf_{k \ge n_i} x_k < \epsilon_i \Rightarrow \exists x_{n_i} : x_{n_i} > y - \epsilon_i$. Again, $\lim_{k \to \infty} x_{n_k} = y$. Therefore, $\liminf_{n} x_n \in A$.

(b) $A \subseteq [\liminf_{n} x_n, \limsup_{n} x_n]$

If $\liminf_n x_n = \infty$ or $\liminf_n x_n = -\infty$ then they must be the upper/lower bound. Consider when they are finite:

We can first show that $\sup A = \limsup_n x_n$. Again, we define y_n and y as before. Assume $\exists a \in A : a > y = \limsup_n x_n$, then $\forall \epsilon > 0 \ \exists n_{\epsilon} \in \mathbb{N} : n \geq n_{\epsilon} \Rightarrow x_n < y_n < y + \epsilon$. We can choose ϵ s.t. $y < y + \epsilon < a - \epsilon < a$. Notice that there are only finite subsequence (for $n < n_{\epsilon}$) of $\{x_n\}_{n \in \mathbb{N}}$ contained in ϵ neighbourhood of a, which implies that a is not a cluster point. Therefore, by contradiction, $a <= \limsup_{n \in \mathbb{N}} x_n \ \forall a \in A$ and $\sup_n A = \limsup_n x_n$.

Similar proof can be done to show that $\inf A = \liminf_n x_n$. Assume $\exists b \in A : b < y = \liminf_n x_n$ and choose ϵ s.t. $b > b + \epsilon > y - \epsilon > y$. By the same logic, we can conclude again that $b \notin A$. Therefore, $\inf A = \liminf_n x_n$.

Example:

Consider the sequence $\{x_n\}_{n\in\mathbb{N}} = \{1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, ...\}$ This sequence has $A = \mathbb{N}$, with $\liminf_n x_n = 1$ and $\limsup_n x_n = \infty$.