Examination Number (B159475)

Decision Analytics BUST10133

Yifei Zhao, UG student, s2002004

Submission Date: 11/18/2020

Word Count: 7798

# Turnco Project

# **Brief Report**

#### Introduction

Markov Decision Process (MDP) is a mathematical method that models the optimal decision process in dynamic problems. As for this Turnco Engineering case, since this engineering machine shop operating in different conditions is subject to deterioration and failure, we need to make decisions concerning each condition as whether to keep operating or not. Therefore, based on the transition probabilities among conditions, due to the different operation profits and possible to return to the excellent condition by preventive maintenance or manufacturer repair, we can solve this Turnco operation case as a MDP problem.

We need to solve the following issues:

- 1. the optimal policy for the operation of the grinding equipment
- 2. how robust the findings are to changes in the problem parameters
- 3. the proportion of time the equipment is operated and the proportion of time it is out of use in the long run

Before solving the issues, we firstly make assumptions and basic explanations on gaining results.

## **Assumption**

Our basic assumption is - Turnco can only be repaired by the manufacturer when it is below the standard required for normal operation. That means, only the result of the inspection is below the required standard, we need to contact the manufacturer to repair. If Turnco is about to operate normally tomorrow, no matter in condition 1 or in condition 5, we will not get it repaired tomorrow.

As for the profit from the operation of Turnco for one day, we find the great differences between Scenario A & Scenario B concerning condition 2, condition 3 & condition 4 (scenario A & B generate the same profits in conditions 1 & 5). Hence, we set the profit generated in such three conditions as a linear combination of Scenarios A & B when modeling the problem. Initially, we set the 'new profits in Scenario C' as 'half of Scenario A + half of Scenario B'. The values can be shown as follows,

| reward condition 1 A | ra_1 | 5000 |
|----------------------|------|------|
| reward condition 2 A | ra_2 | 4200 |
| reward condition 3 A | ra_3 | 3400 |
| reward condition 4 A | ra_4 | 2600 |
| reward condition 5 A | ra_5 | 1800 |
| reward condition 1 B | rb_1 | 5000 |
| reward condition 2 B | rb_2 | 4800 |
| reward condition 3 B | rb_3 | 4200 |
| reward condition 4 B | rb_4 | 3200 |
| reward condition 5 B | rb_5 | 1800 |
| reward condition 1 C | rc_1 | 5000 |
| reward condition 2 C | rc_2 | 4500 |
| reward condition 3 C | rc_3 | 3800 |
| reward condition 4 C | rc_4 | 2900 |
| reward condition 5 C | rc_5 | 1800 |
|                      |      |      |

After gaining the optimal policy, we will change the coefficients of this linear combination in Scenario Summary for Sensitivity Analysis.

Another assumption is - setting the probability of successful preventive maintenance as 0.9. We use the higher value (rather than 0.7, probability of successful manufacturer repair) because we consider that preventive maintenance is much easier to be applied than manufacturer repair. What' more, we use all data from the problem sheet rather than creating values on our own.

The aim is to maximize the expected discounted reward over n steps (n iterations), as we know, the given discount factor is 0.95, we could not directly set the number of steps, but we can restrict the error (the value at the nth iteration should be within 0.01). Detailed explanations of iterations and error-control can be seen in the Appendix.

## **Basic explanations**

Generally, the expected total reward is not suitable as a decision criterion. To achieve optimal policy for Turnco operations, we consider the expected discount reward concerning each initial state to avoid the infinite profit under any other policy. If not, we will not get relatively stable optimal rewards in the long run, and also, it will be difficult and inaccurate to determine the optimal policy. Hence the discount factor is very important, and it is not robust to changes, the reasons and corresponding results will be shown later.

After entering all the parameters, we need to create functions used for further iterations. Hence, it is important to know the middle process - setting states and using proper parameters for each condition of Turnco. As we know, we make decisions depending on the result of the inspection at the end of each day. Based on that, at the start of the next day, we could choose to keep operating (kp), get preventive maintenance (pm) if Turnco is reported in condition 1, condition 2,...... condition 5. Additionally, Turnco will be repaired by the manufacturer (mr) when it is below the required standard.

Hence, we set six states depending on the uncertain actions and reported conditions, and the optimal policy is based on the reward (profit) value for each state initially. Our target is to determine the optimal action to achieve the maximum profit in the long run when we find Turnco is initially at state 1 (condition1), state 2 (condition),..... state f (below the required standard).

The detailed explanations for using parameters and creating formulations on achieving results will be shown in detail in the Appendix. Here, we just give you the general view of that.

## **Optimal Policy**

The following figures illustrate the last few iterations to determine the optimal policy,



Hence, we can gain the optimal policy, since the still actions are 'kp', 'pm', 'pm', 'kp', 'kp', 'mr' respectively. Additionally, we find the values of  $v_j^n-v_j^{n-1}$  are all equal to 0.001, which control the error and indicate the convergence of profit.

Therefore, the final optimal policy under our assumption and initial parameters are as follows:

When Turnco is reported as being in condition 1, keep the operation tomorrow. When Turnco is reported as being in condition 2, give it preventive maintenance tomorrow. When Turnco is reported as being in condition 3, give it preventive maintenance tomorrow. When Turnco is reported as being in condition 4, keep the operation tomorrow. When Turnco is reported as being in condition 5, keep the operation tomorrow.

When Turnco is reported as being below the required standard, contact the manufacturer to repair tomorrow.

Finally, we can see the expected profits in each condition initially. They are 90892.549, 85539.396, 80481.944, 77043.658, 77097.594, 83277.684. Overall, we find our optimal policy seems rational, since if Turnco is in condition 2 or 3, we should apply pm to avoid transiting to worse conditions, and if Turnco is in any worse condition, we had better keep the operations to make it below the required standard quickly to get repaired.

## **Sensitivity Analysis**

The MDP formulation and calculations are immediately updated to reflect the changes in parameter values due to the developments of iterations. That makes the sensitivity analysis quite essential which targets to investigate how robust the optimal policy gained before is to changes in one or more parameters. If we test several parameters one by one, we just need to use Data Table from the What-If Analysis in Excel. Yet a more complex and common situation is that changing several parameters at the same time, and then the Data Table technique is not suitable, we use the Scenario Summary from the What-If Analysis in Excel.

In sensitivity analysis, we will test how robust the changes to findings are. As the optimal policy is based on the maximum of discounted reward over an infinite horizon, it is necessary to consider the changes to discount factors (initial  $\beta=0.95$ ). Besides the 'new profits in Scenario C' in Scenario summary before, we consider the other two important parameters, 'probability of successful preventive maintenance ( we set the initial value as 0.90)' and 'probability of successful manufacturer repair (initial value is 0.70)'.

To start with, consider the three parameters above, probability of successful manufacturer repair (psr), probability of successful preventive maintenance (psm), and discount factor (dff). We can get the following results,

As for psr ranging from 0.95 to 0.50 (step = 0.05), the expected discounted rewards all decrease, and the optimal policy changes when psr is less than or equal to 0.55 - the optimal action for state 4 changes to 'pm'. The error is relatively stable.

As for psm ranging from 0.99 to 0.70 (step = 0.01), the expected discounted rewards all decrease, and the optimal policy changes when psr is less than or equal to 0.74 - the optimal action for state 3 changes to 'kp'. The error is relatively stable.

As for dff ranging from 0.99 to 0.85 (step = 0.01), the expected discounted rewards all decrease (relatively fast because dff directly influence the value and speed of the convergence for expected discounted rewards), and the optimal policy changes when psr is less and equal than 0.90 - both of optimal actions for state 2 and state 3 change to 'kp', and the optimal policy also changes when psr is equal to 0.91 - the optimal action for state 3 changes to 'kp'. Surprisingly, the error dramatically decreases (close to 0 when df < 0.94). That indicates when the discount factor is a little bit smaller, it greatly contributes to the expected discounted rewards and error, to some extent, not robust.

Then we consider changing several parameters simultaneously. It is reasonable for changes to profits in condition 2, 3, and 4 because in the previous assumption we set the coefficients of Scenario A & B as 0.5 & 0.5. Here we change the coefficients of such a linear combination to test how robust the changes to profits are. Here we use Scenario Summary to accomplish our goal. We create 21 scenarios, with coefficients ranging from (1,0), (0.95,0.05),... to (0.05,0.95), (0,1). The results are shown as in the following image,

| Scenario Summary                    |           |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |           |
|-------------------------------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------|
|                                     |           | 0.95A+0.05B | 0.90A+0.108 | 0.85A+0.15B | 0.80A+0.20B | 0.75A+0.25B | 0.70A+0.30B | 0.65A+0.35B | 0.60A+0.40B | 0.55A+0.45B | 0.50A+0.50B | 0.45A+0.55B | 0.40A+0.60B | 0.35A+0.65B | 0.30A+0.70E | 0.25A+0.75E | 0.20A+0.80E | 0.15A+0.858 | 0.10A+0.90E | 0.05A+0.958 |           |
| Changing Cells:                     |           |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |           |
| reward condition 2                  | 4200      | 4230        | 4260        | 4290        | 4320        | 4350        | 4380        | 4410        | 4440        | 4470        | 4500        | 4530        | 4560        | 4590        | 4620        | 4650        | 4680        | 4710        | 4740        | 4770        | 4800      |
| reward condition 3                  | 3400      | 3440        | 3480        | 3520        | 3560        | 3600        | 3640        | 3680        | 3720        | 3760        | 3800        | 3840        | 3880        | 3920        | 3960        | 4000        | 4040        | 4080        | 4120        | 4160        | 4200      |
| reward condition 4                  | 2600      | 2630        | 2660        | 2690        | 2720        | 2750        | 2780        | 2810        | 2840        | 2870        | 2900        | 2930        | 2960        | 2990        | 3020        | 3050        | 3080        | 3110        | 3140        | 3170        | 3200      |
| Result Cells:                       |           |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |           |
| Value when in condition 1 initially | 90714.909 | 90732.673   | 90750.437   | 90768.201   | 90785.965   | 90803.729   | 90821.493   | 90839.257   | 90857.021   | 90874.785   | 90892.549   | 90910.313   | 90928.077   | 90945.841   | 90963.605   | 90981.369   | 90999.133   | 91016.897   | 91034.661   | 91052.425   | 91150.962 |
| Value when in condition 2 initially | 85371.543 | 85388.326   | 85405.108   | 85421.891   | 85438.673   | 85455.456   | 85472.238   | 85489.021   | 85505.803   | 85522.586   | 85539.369   | 85556.151   | 85572.934   | 85589.716   | 85606.499   | 85623.282   | 85640.064   | 85656.847   | 85673.629   | 85690.412   | 85874.919 |
| Value when in condition 3 initially | 80323.391 | 80339.246   | 80355.102   | 80370.957   | 80386.812   | 80402.668   | 80418.523   | 80434.378   | 80450.234   | 80466.089   | 80481.944   | 80497.8     | 80513.655   | 80529.51    | 80545.366   | 80561.221   | 80577.077   | 80592.932   | 80608.787   | 80624.643   | 80912.821 |
| Value when in condition 4 initially | 75870.119 | 75987.473   | 76104.827   | 76222.181   | 76339.535   | 76456.888   | 76574.242   | 76691.596   | 76808.95    | 76926.304   | 77043.658   | 77161.012   | 77278.366   | 77395.72    | 77513.074   | 77630.428   | 77747.782   | 77865.136   | 77982.49    | 78099.844   | 78276.337 |
| Value when in condition 5 initially | 76953.973 | 76968.335   | 76982.697   | 76997.059   | 77011.421   | 77025.783   | 77040.145   | 77054.507   | 77068.869   | 77083.232   | 77097.594   | 77111.956   | 77126.318   | 77140.68    | 77155.042   | 77169.404   | 77183.766   | 77198.128   | 77212.49    | 77226.852   | 77306.519 |
| Value when below standard initially | 83112.467 | 83128.989   | 83145.51    | 83162.032   | 83178.554   | 83195.076   | 83211.597   | 83228.119   | 83244.641   | 83261.163   | 83277.684   | 83294.206   | 83310.728   | 83327.25    | 83343.772   | 83360.293   | 83376.815   | 83393.337   | 83409.859   | 83426.38    | 83518.027 |
| Decision when in condition1         | kp        | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp        |
| Decision when in condition1         | pm        | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | kp        |
| Decision when in condition1         | pm        | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | kp        |
| Decision when in condition1         | kp        | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp        |
| Decision when in condition1         | kp        | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp        |
| Decision when below standard        | mr        | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr        |
| Error                               | 0.0104813 | 0.0104798   | 0.0104781   | 0.0104764   | 0.0104746   | 0.0104719   | 0.0104692   | 0.010466    | 0.0104622   | 0.010458    | 0.0104527   | 0.0104469   | 0.0104402   | 0.0104318   | 0.0104222   | 0.0104108   | 0.0103967   | 0.0103793   | 0.0103563   | 0.0103216   | 0.0103061 |

It is clear that the expected discounted rewards all increase due to increasing profits for each state and the error is kind of still. A much more surprising result is - As we totally apply Scenario B for Turnco operations, the optimal policy change greatly, from previous 'kp', 'pm', 'pm', 'kp', 'kp', 'mr' to 'kp', 'kp', 'kp', 'kp', 'kp', 'mr' respectively. That means Turnco should keep operations at any condition because profits are large enough that preventive maintenance could be ignored.

Therefore, it is natural to consider the changes to preventive maintenance cost (pmc) and manufacturer repair cost (mrc) to deeply seek the relations between profits and costs. We apply Sensitivity Analysis for pmc and mrc, and we can get the results below,

As for pmc ranging from 150 to 1300 (step = 50), according to the optimal decisions, the breakpoint will belong to (1150, 1200) because action for state 3 changes to 'kp' when 'pmc=1200', which means we determine to keep operations when Turnco is found in condition 3. For values of profits, it is obvious that they will go down as pmc increases. To sum up, both profits and errors are stable.

As for mrc ranging from 450 to 1800 (step = 50), according to the optimal decisions, the breakpoint will belong to (1550, 1600) because action for state 4 changes to 'pm' when 'mrc=1600', which means we determine to use preventive maintenance when Turnco is found in condition 4. For values of profits, it is obvious that they will go down as mrc increases. To sum up, both profits and errors are stable.

## **Proportion of time**

As for the proportion of time for normal operations and out of use, we need to consider the proportion of time in each state firstly, and then, combined with the optimal policy we gained before, we add the proportion of state 1, state 4, and state 5 for the proportion of operations time together. Since both preventive maintenance and manufacturer repair needs one day out of use, we add the proportion of time of the remained states together. The calculations for each proportion will be shown in the Appendix.

Overall speaking, we get the following proportions approximately, 0.8815, 0.0392, 0.0098, 0.0353, 0.0091 and 0.0252 for the six states respectively. After additive calculation, we get the proportion of normal operations is 0.9259, and the proportion of out of use is 0.0741, which means under such optimal policy, Turnco will operate for approximately 92.59% of the total time, and the remained time (7.41%) is out of use due to preventive maintenance or manufacturer repair.

From our perspective, this proportion is reasonable and not bad because it is larger than 90%. As the proportion of normal operations of Turnco implies the efficiency of its working to some extent, we hope to increase that to more than 95% without losing profits. If we want to achieve the target, base on Sensitivity Analysis, we could increase psr or psm to save time on out of use (this way will not change the optimal policy but will increase the optimal rewards), or fully apply Scenario B or greater Scenario to increase both proportions and profits without changing the transition matrix.

# **Appendix**

## How to use the data from the description

Based on the general description from the Brief Report, we will use these figures to achieve the optimal policy,

#### Values of profits and costs,

```
Profit in condition 1 under Scenario A : 5000 (A_1)
Profit in condition 2 under Scenario A : 4200 (A_2)
Profit in condition 3 under Scenario A: 3400 (A_3)
Profit in condition 4 under Scenario A : 2600 (A_4)
Profit in condition 5 under Scenario A : 1800 (A_5)
Profit in condition 1 under Scenario B : 5000 (B_1)
Profit in condition 2 under Scenario B: 4800 (B_2)
Profit in condition 3 under Scenario B: 4200 (B_3)
Profit in condition 4 under Scenario B : 3200 (B_4)
Profit in condition 5 under Scenario B: 1800 (B_5)
Profit in condition 1 under applied Scenario C : 5000 (C_1)
Profit in condition 2 under applied Scenario C : 4500 (C_2=0.5A_2+0.5B_2 )
Profit in condition 3 under applied Scenario C : 3800 (C_3=0.5A_3+0.5B_3 )
Profit in condition 4 under applied Scenario C : 2900 (C_4=0.5A_4+0.5B_4 )
Profit in condition 5 under applied Scenario C : 1800 (C_5)
Cost of preventive maintenance: pmc = 300
Cost of manufacturer repair: mrc = 900
```

#### Probabilities of condition transitions (based on Table 1 and Table 2 in problem s)

```
Probability of condition 1 to condition 1 : (P_{1.1} = 0.94)
Probability of condition 1 to condition 2 : (P_{1,2} = 0.03)
Probability of condition 1 to condition 3 : (P_{1,3} = 0.01)
Probability of condition 1 to condition 4 : (P_{1.4} = 0.01)
Probability of condition 1 to condition 5 : (P_{1,5} = 0)
Probability of condition 1 to condition below required standard : (P_{1,f} = 0.01)
Probability of condition 2 to condition 1 : (P_{2,1} = 0)
Probability of condition 2 to condition 2 : (P_{2,2} = 0.90)
Probability of condition 2 to condition 3 : (P_{2,3} = 0.05)
Probability of condition 2 to condition 4 : (P_{2,4}=0.02)
Probability of condition 2 to condition 5 : (P_{2,5} = 0.01)
Probability of condition 2 to condition below required standard : (P_{2,f} = 0.02)
Probability of condition 3 to condition 1 : (P_{3,1} = 0)
Probability of condition 3 to condition 2 : (P_{3,2} = 0)
Probability of condition 3 to condition 3 : (P_{3,3} = 0.85)
Probability of condition 3 to condition 4 : (P_{3,4}=0.07)
Probability of condition 3 to condition 5 : (P_{3.5} = 0.03)
Probability of condition 3 to condition below required standard : (P_{1,f}=0.05)
Probability of condition 4 to condition 1 : (P_{4,1}=0)
Probability of condition 4 to condition 2 : (P_{4,2} = 0)
Probability of condition 4 to condition 3 : (P_{4,3} = 0)
Probability of condition 4 to condition 4 : (P_{4,4} = 0.75)
Probability of condition 4 to condition 5 : (P_{4,5} = 0.09)
Probability of condition 4 to condition below required standard : (P_{4,f}=0.16)
```

```
Probability of condition 5 to condition 1 : (P_{5,1}=0) Probability of condition 5 to condition 2 : (P_{5,2}=0) Probability of condition 5 to condition 3 : (P_{5,3}=0) Probability of condition 5 to condition 4 : (P_{5,4}=0) Probability of condition 5 to condition 5 : (P_{5,5}=0.65) Probability of condition 5 to condition below required standard : (P_{5,f}=0.35) Probability of below required condition to condition 1 : (P_{f,1}=0.70) Probability of below required condition to condition 2 : (P_{f,2}=0) Probability of below required condition to condition 3 : (P_{f,3}=0) Probability of below required condition to condition 4 : (P_{f,4}=0) Probability of below required condition to condition 5 : (P_{f,5}=0) Probability of below required condition to itself : (P_{f,f}=0.30)
```

Hence we can find there are six states,  $S_1$  for condition 1,  $S_2$  for condition 2,  $S_3$  for condition 3,  $S_4$  for condition 4,  $S_5$  for condition 5,  $S_f$  for below-required standard. The reason for  $P_{f,i}$  when i=2,3,4,5 is because  $P_{f,1}$  means Turnco is repaired successfully to condition1, and  $P_{f,f}$  means manufacturer repair fails. Additionally, the discount factor is given as  $\beta=0.95$ .

## Enter the above data on the spreadsheet

To begin with, we enter all the data above. Here, we discard all 0 values and set the probability of successful preventive maintenance as 0.9. and pfr = 1 - psr, pfm = 1 - psm.

The column headed "Label" defines a name to be given to each parameter to make it easier to enter, check, and understand formulae relating to the parameters. Select the columns of "Label" & "Value". In the Defined Names area on the Formulas tab, select Create from Selection to display the Create Names from Selection dialog box. Ensure the "Left column" option is selected and click "OK". Now we can use the replacement cost in a formula, for example, the name "pmc", "mrc", "rc\_1" can be used.

The image below illustrates the results, (in Sheet 1)

| Problem Parameters                      | Label    | Value |
|-----------------------------------------|----------|-------|
| preventive maintenance cost             | pmc      | 300   |
| manufacturer repair cost                | mrc      | 900   |
| reward condition 1 A                    | ra_1     | 5000  |
| reward condition 2 A                    | ra_2     | 4200  |
| reward condition 3 A                    | ra_3     | 3400  |
| reward condition 4 A                    | ra_4     | 2600  |
| reward condition 5 A                    | ra 5     | 1800  |
| reward condition 1 B                    | rb 1     | 5000  |
| reward condition 2 B                    | rb 2     | 4800  |
| reward condition 3 B                    | <br>rb_3 | 4200  |
| reward condition 4 B                    | <br>rb_4 | 3200  |
| reward condition 5 B                    | rb_5     | 1800  |
| reward condition 1 C                    | rc_1     | 5000  |
| reward condition 2 C                    | rc 2     | 4500  |
| reward condition 3 C                    | rc 3     | 3800  |
| reward condition 4 C                    | rc_4     | 2900  |
| reward condition 5 C                    | rc_5     | 1800  |
| Probability of 1 to 1 if operated       | p_11     | 0.94  |
| Probability of 1 to 2 if operated       | p_12     | 0.03  |
| Probability of 1 to 3 if operated       | p_13     | 0.01  |
| Probability of 1 to 4 if operated       | p_14     | 0.01  |
| Probability of 1 to failure if operated | p_1f     | 0.01  |
| Probability of 2 to 2 if operated       | p_22     | 0.9   |
| Probability of 2 to 3 if operated       | p_23     | 0.05  |
| Probability of 2 to 4 if operated       | p_24     | 0.02  |
| Probability of 2 to 5 if operated       | p_25     | 0.01  |
| Probability of 2 to failure if operated | p_2f     | 0.02  |
| Probability of 3 to 3 if operated       | p_33     | 0.85  |
| Probability of 3 to 4 if operated       | p_34     | 0.07  |
| Probability of 3 to 5 if operated       | p_35     | 0.03  |
| Probability of 3 to failure if operated | p_3f     | 0.05  |
| Probability of 4 to 4 if operated       | p_44     | 0.75  |
| Probability of 4 to 5 if operated       | p_45     | 0.09  |
| Probability of 4 to f if operated       | p_4f     | 0.16  |
| Probability of 5 to 5 if operated       | p_55     | 0.65  |
| Probability of 5 to failure if operated | p_5f     | 0.35  |
| Probability of successful repair        | psr      | 0.7   |
| Probability of failed repair            | pfr      | 0.3   |
| Probability of successful maintenance   | psm      | 0.9   |
| Probability of failed maintenance       | pfm      | 0.1   |
| discount factor                         | dff      | 0.95  |

# **Explanation for MDP**

As we know, a finite state, finite action, stationary Markov decision process is characterized by:

State description :  $S = \{1, 2, 3, 4, 5, f\}$ , the set of six possible states.

Action description : for each  $i \in S$ ,  $K_i$  is the set of possible actions (decisions), here we have three decisions, kp (keep operating), pm (preventive maintenance), and mr (manufacturer repair).

Immediate reward : for each  $i\in S$ ,  $k\in K_i$ ,  $r_i^k$  is the reward received when the process is in state  ${\bf i}$  and action k is chosen.

State transitions : for each  $i \in S$  &  $k \in K_i$ ,  $p_{i,j}^k$  is the probability of process making a transition to state  $\mathbf{j}$  when the process is in state  $\mathbf{i}$  and action  $\mathbf{k}$  is chosen.

The optimality equation completes the formulation. The form of the optimality equation depends on the decision criterion and planning horizon chosen. Additionally, our final target is to gain optimal policy. As we know, a policy for a Markov decision process is a rule that prescribes the action to take in each state at each step. In this Turnco case, since we want to get the maximum expected discounted reward, we consider the stationary optimal policy  $\delta$  (there is always a stationary optimal policy with an expected discounted reward).

For example, we can get such an optimal policy like 
$$\delta_1 = kp, \delta_2 = kp, \delta_3 = kp, \delta_4 = pm, \delta_5 = pm, \delta_f = mr.$$

After setting the parameters, The next step is to arrange the data for the MDP formulation in a systematic way so that it can be easily referenced by the formulae that will be entered to perform the calculations required by value iteration. One convenient format is as follows. List all possible combinations of **State i** and **Action k** in the first two columns. This can be done by first listing all possible actions in state 1, then all possible actions in state 2 and so on. List the immediate rewards  $r_i^k$  for each combination of state and action in a further column. List the probabilities of a transition to **State 1**  $(p_{i,1}^k)$  for each combination of state and action in another column; the probabilities of a transition to **State 2** ( $p_{i,2}^k$ ) for each combination of state and action in another column; and so on. Labels are used for the immediate reward and the set of transition probabilities for each combination of state and action. Following a similar approach to the above, the names to be used are listed in a column immediately to the left of the corresponding data. An example of the general format is shown below where the columns labeled "R Label" and "P Label" contain the names to be given to the immediate rewards and the transition probabilities respectively. The last column "check" means we want to confirm that most sum of probabilities is equal to 1, only when choosing action pm in state 1, the value in check is 0 (no need to apply preventive maintenance)

|    | Α | В  | С       | D     | E       | F       | G       | Н       | 1       | J       | K       | L             |
|----|---|----|---------|-------|---------|---------|---------|---------|---------|---------|---------|---------------|
| 1  | i | k  | R_label | r_i,k | P_label | p_i,k,1 | p_i,k,2 | p_i,k,3 | p_i,k,4 | p_i,k,5 | p_i,k,f | check         |
| 2  | 1 | kp | r_1,k   | =rc_1 | p_1,k   | =p_11   | =p_12   | =p_13   | =p_14   |         | =p_1f   | =SUM(F2:K2)   |
| 3  | 1 | pm | r_1,p   | =-pmc | p_1,p   |         |         |         |         |         |         | =SUM(F3:K3)   |
| 4  | 2 | kp | r_2,k   | =rc_2 | p_2,k   |         | =p_22   | =p_23   | =p_24   | =p_25   | =p_2f   | =SUM(F4:K4)   |
| 5  | 2 | pm | r_2,p   | =-pmc | p_2,p   | =psm    | =pfm    |         |         |         |         | =SUM(F5:K5)   |
| 6  | 3 | kp | r_3,k   | =rc_3 | p_3,k   |         |         | =p_33   | =p_34   | =p_35   | =p_3f   | =SUM(F6:K6)   |
| 7  | 3 | pm | r_3,p   | =-pmc | p_3,p   |         | =psm    | =pfm    |         |         |         | =SUM(F7:K7)   |
| 8  | 4 | kp | r_4,k   | =rc_4 | p_4,k   |         |         |         | =p_44   | =p_45   | =p_4f   | =SUM(F8:K8)   |
| 9  | 4 | pm | r_4,p   | =-pmc | p_4,p   |         |         | =psm    | =pfm    |         |         | =SUM(F9:K9)   |
| 10 | 5 | kp | r_5,k   | =rc_5 | p_5,k   |         |         |         |         | =p_55   | =p_5f   | =SUM(F10:K10) |
| 11 | 5 | pm | r_5,p   | =-pmc | p_5,p   |         |         |         | =psm    | =pfm    |         | =SUM(F11:K11) |
| 12 | f | mr | r_f,m   | =-mrc | p_f,m   | =psr    |         |         |         |         | =pfr    | =SUM(F12:K12) |

In the table above (in Sheet 2),

Columns A and B list all possible combinations of state and action by listing all allowable actions in state 1, then all allowable actions in state 2 and so on.

Column C lists the labels to be used for the immediate reward for each combination of state and action.

Column D lists the immediate reward for each combination of state and action.

Column E lists the labels to be used for the transition probabilities for each combination of state and action.

Column F lists the probability of a transition to state 1 for each combination of state and action, Column G lists the probability of a transition to state 2 for each combination of state and action, and so on.

After entering formulas in the table above, which means if any of the data is changed, the problem parameters are immediately updated. In this case, we can get the following values for further iterations,

|    | Α | В  | С       | D     | E       | F       | G       | Н       | 1       | J       | K       | L     |
|----|---|----|---------|-------|---------|---------|---------|---------|---------|---------|---------|-------|
| 1  | i | k  | R_label | r_i,k | P_label | p_i,k,1 | p_i,k,2 | p_i,k,3 | p_i,k,4 | p_i,k,5 | p_i,k,f | check |
| 2  | 1 | kp | r_1,k   | 5000  | p_1,k   | 0.94    | 0.03    | 0.01    | 0.01    |         | 0.01    | 1     |
| 3  | 1 | pm | r_1,p   | -300  | p_1,p   |         |         |         |         |         |         | 0     |
| 4  | 2 | kp | r_2,k   | 4500  | p_2,k   |         | 0.9     | 0.05    | 0.02    | 0.01    | 0.02    | 1     |
| 5  | 2 | pm | r_2,p   | -300  | p_2,p   | 0.9     | 0.1     |         |         |         |         | 1     |
| 6  | 3 | kp | r_3,k   | 3800  | p_3,k   |         |         | 0.85    | 0.07    | 0.03    | 0.05    | 1     |
| 7  | 3 | pm | r_3,p   | -300  | p_3,p   |         | 0.9     | 0.1     |         |         |         | 1     |
| 8  | 4 | kp | r_4,k   | 2900  | p_4,k   |         |         |         | 0.75    | 0.09    | 0.16    | 1     |
| 9  | 4 | pm | r_4,p   | -300  | p_4,p   |         |         | 0.9     | 0.1     |         |         | 1     |
| 10 | 5 | kp | r_5,k   | 1800  | p_5,k   |         |         |         |         | 0.65    | 0.35    | 1     |
| 11 | 5 | pm | r_5,p   | -300  | p_5,p   |         |         |         | 0.9     | 0.1     |         | 1     |
| 12 | f | mr | r_f,m   | -900  | p_f,m   | 0.7     |         |         |         |         | 0.3     | 1     |

A similar approach to before is used to name the data. Select the range C2:D12. In the Defined Names area on the Formulas tab, select Create from Selection to display the Create Names from Selection dialog box. Ensure the "Left column" option is selected and click "OK". Select the range E2:K12. In the Defined Names area on the Formulas tab, select Create from Selection to display the Create Names from Selection dialog box. Ensure the "Left column" option is selected and click "OK". Now the immediate reward when action "kp" is chosen in state 1 can be referred to using the name "r\_1k" and the corresponding transition probabilities can be referred to using the name "p\_1k".

## **Value Iteration Accomplishment**

#### **Formulation**

The problem is to maximize the expected total reward over  $\mathbf{n}$  steps. Let  $v_i^n$  = maximum expected total reward over  $\mathbf{n}$  steps when the process is in state  $\mathbf{i}$  initially. We can get the optimal equation as follows:

$$v_i^n = \max_{k \in K_i} \{r_i^k + \beta \ (p_{i,1}^k v_1^{n-1} + p_{i,2}^k v_2^{n-1} + p_{i,3}^k v_3^{n-1} + p_{i,4}^k v_4^{n-1} + p_{i,5}^k v_5^{n-1} + p_{i,f}^k v_f^{n-1})\}$$

Later on, we set 0 values for  $v^0$  and use optimality equations to find  $v^1, v^2, \dots v^n$ .

In Excel, it is easier to calculate the term in brackets for each decision in separate cells and then perform the MAX operation. Define

$$v_{i,k}^n = r_i^k + \beta \ (p_{i,1}^k v_1^{n-1} + p_{i,2}^k v_2^{n-1} + p_{i,3}^k v_3^{n-1} + p_{i,4}^k v_4^{n-1} + p_{i,5}^k v_5^{n-1} + p_{i,f}^k v_f^{n-1})$$

and we can calculate  $v_i^n$  by  $v_i^n = \max_{k \in K_i} \{v_{i,k}^n\}$ 

To find where we stop the iteration, we use the following criterion to achieve the **Error** after **n** iterations, and apply 'when  $Error \leq 0.01$ , we think the results are accurate enough that we can stop the iteration and determine the optimal policy',

$$E^n = rac{eta}{1-eta} \max_{i \in S} |v_i^n - v_i^{n-1}|$$

Again in Excel, it is easier to calculate the absolute difference for each state in separate cells and then perform the MAX operation.

#### **Calculation (in Sheet 3)**

The calculation for the replacement problem can be tabulated as the following table:

| 4  | A  | В         | С         | D         | E         | F         | G         | н     | - 1   | J     | K     | L     | М     | N         | 0       | P         | Q         | R         | S         | т         | U         | V         | W         | X         | Y        | Z        | AA       | AB       | AC       | AD       | AE        |
|----|----|-----------|-----------|-----------|-----------|-----------|-----------|-------|-------|-------|-------|-------|-------|-----------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|----------|----------|-----------|
| 1  |    |           |           |           |           |           |           |       |       |       |       |       |       |           |         |           |           |           |           |           |           |           |           |           |          |          | [v_n,j-  | v_n-1,j  |          |          |           |
| 2  | n  | v_n,1     | v_n,2     | v_n,3     | v_n,4     | v_n,5     | v_n,f     | d_n,1 | d_n,2 | d_n,3 | d_n,4 | d_n,5 | d_n,f | v_n,1,k   | v_n,1,p | v_n,2,k   | v_n,2,p   | v_n,3,k   | v_n,3,p   | v_n,4,k   | v_n,4,p   | v_n,5,k   | v_n,5,p   | v_n,f,m   | j=1      | j=2      | j=3      | j=4      | j=5      | j=f      | E_n       |
| 3  | 0  | 0         | 0         | 0         | 0         | 0         | 0         |       |       |       |       |       |       |           |         |           |           |           |           |           |           |           |           |           |          |          |          |          |          |          |           |
| 4  | 1  | 5000.000  | 4500.000  | 3800.000  | 2900.000  | 1800.000  | -900.000  | kp    | kp    | kp    | kp    | kp    | mr    | 5000.000  | -300    | 4500.000  | -300.000  | 3800.000  | -300.000  | 2900.000  | -300.000  | 1800.000  | -300.000  | -900.000  | 5000.000 | 4500.000 | 3800.000 | 2900.000 | 1800.000 | 900.000  | 95000.000 |
| 5  | 2  | 9648.350  | 8583.100  | 7069.900  | 4983.350  | 2612.250  | 2168.500  | kp    | kp    | kp    | kp    | kp    | mr    | 9648.350  | -300    | 8583.100  | 4402.500  | 7069.900  | 3908.500  | 4983.350  | 3224.500  | 2612.250  | 2350.500  | 2168.500  | 4648.350 | 4083.100 | 3269.900 | 2083.350 | 812.250  | 3068.500 | 88318.650 |
| 6  | 3  | 13995.702 | 12335.072 | 10017.790 | 7003.596  | 4208.928  | 6134.175  | kp    | kp    | kp    | kp    | pm    | mr    | 13995.702 | -300    | 12335.072 | 8764.734  | 10017.790 | 7710.191  | 7003.596  | 6218.183  | 4134.091  | 4208.928  | 6134.175  | 4347.352 | 3751.972 | 2947.890 | 2020.246 | 1596.678 | 3965.675 | 82599.679 |
| 7  | 4  | 18069.689 | 15811.934 | 12766.432 | 9182.320  | 6438.626  | 10155.381 | kp    | kp    | kp    | kp    | kp    | mr    | 18069.689 | -300    | 15811.934 | 12838.157 | 12766,432 | 11198.177 | 9182.320  | 8930.552  | 6438.626  | 6087.923  | 10155.381 | 4073.987 | 3476.862 | 2748.642 | 2178.724 | 2229.698 | 4021.206 | 77405.759 |
| 8  | 5  | 21891.862 | 19054.193 | 15385.400 | 11536.524 | 9152.516  | 14010.627 | kp    | kp    | kp    | kp    | kp    | mr    | 21891.862 | -300    | 19054.193 | 16651.718 | 15385.400 | 14432.015 | 11536.524 | 11487.620 | 9152.516  | 8162.553  | 14010.627 | 3822.173 | 3242.258 | 2618.968 | 2354.203 | 2713.890 | 3855.245 | 73249.662 |
| 9  | 6  | 25481.336 | 22094,486 | 17917.241 | 14031.929 | 12110.212 | 17651.117 | kp    | kp    | kp    | kp    | kp    | mr    | 25481.336 | -300    | 22094.486 | 20227.690 | 17917.241 | 17452.948 | 14031.929 | 13950.487 | 12110.212 | 10433.217 | 17651.117 | 3589.475 | 3040.293 | 2531.841 | 2495.405 | 2957.696 | 3640.490 | 69169.306 |
| 10 | 7  | 28855.729 | 24958.879 | 20384.864 | 16616.142 | 15147.052 | 21075.657 | kp    | kp    | kp    | kp    | kp    | mr    | 28855.729 | -300    | 24958.879 | 23585.519 | 20384.864 | 20292.923 | 16616.142 | 16352.274 | 15147.052 | 12847.769 | 21075.657 | 3374.393 | 2864.393 | 2467.624 | 2584.213 | 3036.840 | 3424.540 | 65066.263 |
| 11 | 8  | 32031.222 | 27668.164 | 22976.404 | 19237.574 | 18160.961 | 24295.622 | kp    | kp    | pm    | kp    | kp    | mr    | 32031.222 | -300    | 27668.164 | 26742.742 | 22798.536 | 22976.404 | 19237.574 | 18707.592 | 18160.961 | 15345.771 | 24295.622 | 3175.493 | 2709.285 | 2591.540 | 2621.432 | 3013.908 | 3219.965 | 61179.335 |
| 12 | 9  | 35024.265 | 30247.319 | 25539.039 | 21852.468 | 21092.687 | 27325.015 | kp    | kp    | pm    | kp    | kp    | mr    | 35024.265 | -300    | 30247.319 | 29715.170 | 25304.374 | 25539.039 | 21852.468 | 21172.395 | 21092.687 | 17873.417 | 27325.015 | 2993.043 | 2579.155 | 2562.635 | 2614.894 | 2931.727 | 3029.393 | 57558.470 |
| 13 | 10 | 37848.524 | 32709.315 | 27987.667 | 24426.711 | 23910.302 | 30178.766 | kp    | kp    | pm    | kp    | kp    | mr    | 37848.524 | -300    | 32709.315 | 32519.242 | 27775.043 | 27987.667 | 24426.711 | 23611.862 | 23910.302 | 20387.665 | 30178.766 | 2824.259 | 2461.996 | 2448.628 | 2574.242 | 2817.615 | 2853.751 | 54221.264 |
| 14 | 11 | 40515.583 | 35167.873 | 30325.293 | 26935.534 | 26599.051 | 32870.217 | kp    | pm    | pm    | kp    | kp    | mr    | 40515.583 | -300    | 35060.530 | 35167.873 | 30139.352 | 30325.293 | 26935.534 | 25949.992 | 26599.051 | 22856.316 | 32870.217 | 2667.058 | 2458.558 | 2337.626 | 2508.824 | 2688.749 | 2691.451 | 51137.575 |
| 15 | 12 | 43038.945 | 37681.771 | 32649.434 | 29362.060 | 29154.261 | 35410.874 | kp    | pm    | pm    | kp    | kp    | mr    | 43038.945 | -300    | 37397.983 | 37681.771 | 32398.295 | 32649.434 | 29362.060 | 28187.001 | 29154.261 | 25256.792 | 35410.874 | 2523.362 | 2513.898 | 2324.142 | 2426.526 | 2555.210 | 2540.657 | 48548.992 |
| 16 | 13 | 45433.220 | 40078.066 | 35019.611 | 31695.610 | 31576.872 | 37812.997 | kp    | pm    | pm    | kp    | kp    | mr    | 45433.220 | -300    | 39776.414 | 40078.066 | 34629.908 | 35019.611 | 31695.610 | 30404.662 | 31576.872 | 27574.216 | 37812.997 | 2394.276 | 2396.295 | 2370.176 | 2333.550 | 2422.611 | 2402.123 | 46029.605 |
| 17 | 14 | 47707.109 | 42352.820 | 37293.609 | 33930.520 | 33871.540 | 40089.796 | kp    | pm    | pm    | kp    | kp    | mr    | 47707.109 | -300    | 42050.822 | 42352.820 | 36882.152 | 37293.609 | 33930.520 | 32652.850 | 33871.540 | 29799.549 | 40089.796 | 2273.888 | 2274.754 | 2273.999 | 2234.910 | 2294.668 | 2276.799 | 43598.694 |
| 18 | 15 | 49866.986 | 44513.096 | 39454.554 | 36065.161 | 36045.533 | 42250.819 | kp    | pm    | pm    | kp    | kp    | mr    | 49866.986 | -300    | 44211.273 | 44513.096 | 39040.573 | 39454.554 | 36065.161 | 34809.435 | 36045.533 | 31928.391 | 42250.819 | 2159.877 | 2160.276 | 2160.944 | 2134.641 | 2173.993 | 2161.023 | 41305.868 |

Column A shows the iteration number, n.

Columns B, C, D, E, F, G show  $v_1^n, v_2^n, v_3^n, v_4^n, v_5^n, v_f^n$  respectively.

Columns from H to M show  $\delta_1^n, \delta_2^n, \delta_3^n, \delta_4^n, \delta_5^n, \delta_f^n$  respectively.

Columns N and O show  $v_{1,kp}^n$  and  $v_{1,pm}^n$  respectively. Columns P and Q show  $v_{2,kp}^n$  and  $v_{2,pm}^n$  respectively.

Columns R and S show  $v^n_{3,kp}$  and  $v^n_{3,pm}$  respectively. Columns T and U show  $v^n_{4,kp}$  and  $v^n_{4,pm}$  respectively.

Columns V and W show  $v^n_{5,kp}$  and  $v^n_{5,pm}$  respectively. Columns X show  $v^n_{f,mr}$  respectively.

Columns from Y to AD shows

$$|v_1^n-v_1^{n-1}|,|v_2^n-v_2^{n-1}|,|v_4^n-v_1^{n-1}|,|v_4^n-v_4^{n-1}|,|v_5^n-v_5^{n-1}|,|v_f^n-v_f^{n-1}| \text{ respectively.}$$
 Column AE shows  $E^n$ .

At iteration 0,  $v_1^0=v_2^0=v_3^0=v_4^0=v_5^0=v_f^0$ , and none of the other entities have any meaning. Enter 0 from cells A3 tp G3 to represent this.

The calculations required for value iteration can be performed in Excel using basic arithmetic operators (+, -, \*, /) and the functions SUMPRODUCT, MAX, IF, and ABS. By carefully entering formulae to perform the calculation at the first iteration, the calculation required for further iterations can be performed using the "fill handle" to copy the formula into subsequent rows. For the calculation required at iteration 1:

The formula =A3+1 is entered in cell A4 to update the iteration number.

The formula =r\_1\_k+dff\*SUMPRODUCT(p\_1\_k, \$B3:\$G3) is entered in N4 to calculate  $v_{1,kr}^n$ .

The formula =r\_1\_p+dff\*SUMPRODUCT(p\_1\_p, \$B3:\$G3) is entered in O4 to calculate  $v_{1,nm}^n$ .

As the column references are absolute, a convenient way to do this might be to copy the formula in cell N4 & O4 to the following cells from P4 & Q4 and so on until V4 & W4 and then update the names referring to different immediate profits and transition probabilities. As for X4, just enter  $'=r_fm + dff*SUMPRODUCT(p_f_m, $B3 : $G3)$ '.

The formula = MAX(N4 : O4) is entered in B4 to calculate  $v_1^n$ .

The formula =IFS(B4=N4,"kp",B4=O4,"pm") is entered in H4 to calculate  $\delta_1^n$ .

The formula = ABS(B4 - B3) us entered in Y4 to calculate  $|v_1^n - v_1^{n-1}|$ .

The calculations for other 5 states are similar to the procedures above.

Finally, the formula =dff\*MAX(Y4:AD4)/(1-dff) is entered in AE4 to calculate  $E^n$ .

After getting results when n = 1, to apply for further iterations,

Select the cells in the range A4 to AE4.

Position the mouse pointer over the bottom right-hand corner of the selection so that the fill handle (a black cross) appears.

Click the left-hand mouse button and drag the mouse down over several rows.

When you release the button the calculation for further iterations will fill in — one iteration for each row.

We have restricted the error to stop iteration as  $E^n \leq 0.01$ , we think 0.01 is sufficiently small compared to thousands of profits. Therefore, we find when n = 311(number of iterations), we think we can stop the iterations and gain final results.

#### Final results and conclusions

We finally get the expected discounted profits and optimal policy based on the previous process.

| Results                             |           |
|-------------------------------------|-----------|
| Number of iterations                | 311       |
| Value when in condition 1 initially | 90892.549 |
| Value when in condition 2 initially | 85539.369 |
| Value when in condition 3 initially | 80481.944 |
| Value when in condition 4 initially | 77043.658 |
| Value when in condition 5 initially | 77097.594 |
| Value when below standard initially | 83277.684 |
| Decision when in condition1         | kp        |
| Decision when in condition1         | pm        |
| Decision when in condition1         | pm        |
| Decision when in condition1         | kp        |
| Decision when in condition1         | kp        |
| Decision when below standard        | mr        |
| Error                               | 0.010     |

However, the table above is just for a single situation. To some extent, we want to find how results will change under different parameter settings. Hence, we use Sensitivity Analysis to test how robust the findings are to changes in the problem parameters.

## **Excerpts from our spreadsheet**

From previous parts, we have shown how the data is organized and used for formulations in spreadsheets (sheet 1 and sheet2). Here, we add more excerpts for sheet 3 to show value iteration calculation in detail. The results are shown in the images below,

### **Functions for optimal rewards**

| 1  | Α      | В             | С             | D             | E             | F             | G         |
|----|--------|---------------|---------------|---------------|---------------|---------------|-----------|
| 2  | n      | v_n,1         | v_n,2         | v_n,3         | v_n,4         | v_n,5         | v_n,f     |
| 3  | 0      | 0             | 0             | 0             | 0             | 0             | 0         |
| 4  | =A3+1  | =MAX(N4:O4)   | =MAX(P4:Q4)   | =MAX(R4:S4)   | =MAX(T4:U4)   | =MAX(V4:W4)   | =MAX(X4)  |
| 5  | =A4+1  | =MAX(N5:O5)   | =MAX(P5:Q5)   | =MAX(R5:S5)   | =MAX(T5:U5)   | =MAX(V5:W5)   | =MAX(X5)  |
| 6  | =A5+1  | =MAX(N6:O6)   | =MAX(P6:Q6)   | =MAX(R6:S6)   | =MAX(T6:U6)   | =MAX(V6:W6)   | =MAX(X6)  |
| 7  | =A6+1  | =MAX(N7:07)   | =MAX(P7:Q7)   | =MAX(R7:S7)   | =MAX(T7:U7)   | =MAX(V7:W7)   | =MAX(X7)  |
| 8  | =A7+1  | =MAX(N8:O8)   | =MAX(P8:Q8)   | =MAX(R8:S8)   | =MAX(T8:U8)   | =MAX(V8:W8)   | =MAX(X8)  |
| 9  | =A8+1  | =MAX(N9:O9)   | =MAX(P9:Q9)   | =MAX(R9:S9)   | =MAX(T9:U9)   | =MAX(V9:W9)   | =MAX(X9)  |
| 10 | =A9+1  | =MAX(N10:O10) | =MAX(P10:Q10) | =MAX(R10:S10) | =MAX(T10:U10) | =MAX(V10:W10) | =MAX(X10) |
| 11 | =A10+1 | =MAX(N11:O11) | =MAX(P11:Q11) | =MAX(R11:S11) | =MAX(T11:U11) | =MAX(V11:W11) | =MAX(X11) |
| 12 | =A11+1 | =MAX(N12:O12) | =MAX(P12:Q12) | =MAX(R12:S12) | =MAX(T12:U12) | =MAX(V12:W12) | =MAX(X12) |
| 13 | =A12+1 | =MAX(N13:O13) | =MAX(P13:Q13) | =MAX(R13:S13) | =MAX(T13:U13) | =MAX(V13:W13) | =MAX(X13) |
| 14 | =A13+1 | =MAX(N14:O14) | =MAX(P14:Q14) | =MAX(R14:S14) | =MAX(T14:U14) | =MAX(V14:W14) | =MAX(X14) |
| 15 | =A14+1 | =MAX(N15:O15) | =MAX(P15:Q15) | =MAX(R15:S15) | =MAX(T15:U15) | =MAX(V15:W15) | =MAX(X15) |
| 16 | =A15+1 | =MAX(N16:O16) | =MAX(P16:Q16) | =MAX(R16:S16) | =MAX(T16:U16) | =MAX(V16:W16) | =MAX(X16) |
| 17 | =A16+1 | =MAX(N17:O17) | =MAX(P17:Q17) | =MAX(R17:S17) | =MAX(T17:U17) | =MAX(V17:W17) | =MAX(X17) |
| 18 | =A17+1 | =MAX(N18:O18) | =MAX(P18:Q18) | =MAX(R18:S18) | =MAX(T18:U18) | =MAX(V18:W18) | =MAX(X18) |
| 19 | =A18+1 | =MAX(N19:O19) | =MAX(P19:Q19) | =MAX(R19:S19) | =MAX(T19:U19) | =MAX(V19:W19) | =MAX(X19) |
| 20 | =A19+1 | =MAX(N20:O20) | =MAX(P20:Q20) | =MAX(R20:S20) | =MAX(T20:U20) | =MAX(V20:W20) | =MAX(X20) |
| 21 | =A20+1 | =MAX(N21:O21) | =MAX(P21:Q21) | =MAX(R21:S21) | =MAX(T21:U21) | =MAX(V21:W21) | =MAX(X21) |
| 22 | =A21+1 | =MAX(N22:O22) | =MAX(P22:Q22) | =MAX(R22:S22) | =MAX(T22:U22) | =MAX(V22:W22) | =MAX(X22) |
| 23 | =A22+1 | =MAX(N23:O23) | =MAX(P23:Q23) | =MAX(R23:S23) | =MAX(T23:U23) | =MAX(V23:W23) | =MAX(X23) |

## **Functions for taking decisions**

| Н                               | I                               | J                               | K                               | L                               | M     |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------|
| d_n,1                           | d_n,2                           | d_n,3                           | d_n,4                           | d_n,5                           | d_n,f |
| =IFS(B4=N4,"kp",B4=O4,"pm")     | =IFS(C4=P4,"kp",C4=Q4,"pm")     | =IFS(D4=R4,"kp",D4=S4,"pm")     | =IFS(E4=T4,"kp",E4=U4,"pm")     | =IFS(F4=V4,"kp",F4=W4,"pm")     | mr    |
| =IFS(B5=N5,"kp",B5=O5,"pm")     | =IFS(C5=P5,"kp",C5=Q5,"pm")     | =IFS(D5=R5,"kp",D5=S5,"pm")     | =IFS(E5=T5,"kp",E5=U5,"pm")     | =IFS(F5=V5,"kp",F5=W5,"pm")     | mr    |
| =IFS(B6=N6,"kp",B6=O6,"pm")     | =IFS(C6=P6,"kp",C6=Q6,"pm")     | =IFS(D6=R6,"kp",D6=S6,"pm")     | =IFS(E6=T6,"kp",E6=U6,"pm")     | =IFS(F6=V6,"kp",F6=W6,"pm")     | mr    |
| =IFS(B7=N7,"kp",B7=O7,"pm")     | =IFS(C7=P7,"kp",C7=Q7,"pm")     | =IFS(D7=R7,"kp",D7=S7,"pm")     | =IFS(E7=T7,"kp",E7=U7,"pm")     | =IFS(F7=V7,"kp",F7=W7,"pm")     | mr    |
| =IFS(B8=N8,"kp",B8=O8,"pm")     | =IFS(C8=P8,"kp",C8=Q8,"pm")     | =IFS(D8=R8,"kp",D8=S8,"pm")     | =IFS(E8=T8,"kp",E8=U8,"pm")     | =IFS(F8=V8,"kp",F8=W8,"pm")     | mr    |
| =IFS(B9=N9,"kp",B9=O9,"pm")     | =IFS(C9=P9,"kp",C9=Q9,"pm")     | =IFS(D9=R9,"kp",D9=S9,"pm")     | =IFS(E9=T9,"kp",E9=U9,"pm")     | =IFS(F9=V9,"kp",F9=W9,"pm")     | mr    |
| =IFS(B10=N10,"kp",B10=O10,"pm") | =IFS(C10=P10,"kp",C10=Q10,"pm") | =IFS(D10=R10,"kp",D10=S10,"pm") | =IFS(E10=T10,"kp",E10=U10,"pm") | =IFS(F10=V10,"kp",F10=W10,"pm") | mr    |
| =IFS(B11=N11,"kp",B11=O11,"pm") | =IFS(C11=P11,"kp",C11=Q11,"pm") | =IFS(D11=R11,"kp",D11=S11,"pm") | =IFS(E11=T11,"kp",E11=U11,"pm") | =IFS(F11=V11,"kp",F11=W11,"pm") | mr    |
| =IFS(B12=N12,"kp",B12=O12,"pm") | =IFS(C12=P12,"kp",C12=Q12,"pm") | =IFS(D12=R12,"kp",D12=S12,"pm") | =IFS(E12=T12,"kp",E12=U12,"pm") | =IFS(F12=V12,"kp",F12=W12,"pm") | mr    |
| =IFS(B13=N13,"kp",B13=O13,"pm") | =IFS(C13=P13,"kp",C13=Q13,"pm") | =IFS(D13=R13,"kp",D13=S13,"pm") | =IFS(E13=T13,"kp",E13=U13,"pm") | =IFS(F13=V13,"kp",F13=W13,"pm") | mr    |
| =IFS(B14=N14,"kp",B14=O14,"pm") | =IFS(C14=P14,"kp",C14=Q14,"pm") | =IFS(D14=R14,"kp",D14=S14,"pm") | =IFS(E14=T14,"kp",E14=U14,"pm") | =IFS(F14=V14,"kp",F14=W14,"pm") | mr    |
| =IFS(B15=N15,"kp",B15=O15,"pm") | =IFS(C15=P15,"kp",C15=Q15,"pm") | =IFS(D15=R15,"kp",D15=S15,"pm") | =IFS(E15=T15,"kp",E15=U15,"pm") | =IFS(F15=V15,"kp",F15=W15,"pm") | mr    |
| =IFS(B16=N16,"kp",B16=O16,"pm") | =IFS(C16=P16,"kp",C16=Q16,"pm") | =IFS(D16=R16,"kp",D16=S16,"pm") | =IFS(E16=T16,"kp",E16=U16,"pm") | =IFS(F16=V16,"kp",F16=W16,"pm") | mr    |
| =IFS(B17=N17,"kp",B17=O17,"pm") | =IFS(C17=P17,"kp",C17=Q17,"pm") | =IFS(D17=R17,"kp",D17=S17,"pm") | =IFS(E17=T17,"kp",E17=U17,"pm") | =IFS(F17=V17,"kp",F17=W17,"pm") | mr    |
| =IFS(B18=N18,"kp",B18=O18,"pm") | =IFS(C18=P18,"kp",C18=Q18,"pm") | =IFS(D18=R18,"kp",D18=S18,"pm") | =IFS(E18=T18,"kp",E18=U18,"pm") | =IFS(F18=V18,"kp",F18=W18,"pm") | mr    |
| =IFS(B19=N19,"kp",B19=O19,"pm") | =IFS(C19=P19,"kp",C19=Q19,"pm") | =IFS(D19=R19,"kp",D19=S19,"pm") | =IFS(E19=T19,"kp",E19=U19,"pm") | =IFS(F19=V19,"kp",F19=W19,"pm") | mr    |
| =IFS(B20=N20,"kp",B20=O20,"pm") | =IFS(C20=P20,"kp",C20=Q20,"pm") | =IFS(D20=R20,"kp",D20=S20,"pm") | =IFS(E20=T20,"kp",E20=U20,"pm") | =IFS(F20=V20,"kp",F20=W20,"pm") | mr    |
| =IFS(B21=N21,"kp",B21=O21,"pm") | =IFS(C21=P21,"kp",C21=Q21,"pm") | =IFS(D21=R21,"kp",D21=S21,"pm") | =IFS(E21=T21,"kp",E21=U21,"pm") | =IFS(F21=V21,"kp",F21=W21,"pm") | mr    |
| =IFS(B22=N22,"kp",B22=O22,"pm") | =IFS(C22=P22,"kp",C22=Q22,"pm") | =IFS(D22=R22,"kp",D22=S22,"pm") | =IFS(E22=T22,"kp",E22=U22,"pm") | =IFS(F22=V22,"kp",F22=W22,"pm") | mr    |
| =IFS(B23=N23,"kp",B23=O23,"pm") | =IFS(C23=P23,"kp",C23=Q23,"pm") | =IFS(D23=R23,"kp",D23=S23,"pm") | =IFS(E23=T23,"kp",E23=U23,"pm") | =IFS(F23=V23,"kp",F23=W23,"pm") | mr    |

#### Functions for profits with each decision



| 4  | T                                        | U                                        | V                                        | W                                        | X                                        |
|----|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| 2  | v_n,4,k                                  | v_n,4,p                                  | v_n,5,k                                  | v_n,5,p                                  | v_n,f,m                                  |
| 3  |                                          |                                          |                                          |                                          |                                          |
| 4  | =r_4_k+dff*SUMPRODUCT(p_4_k,\$B3:\$G3)   | =r_4_p+dff*SUMPRODUCT(p_4_p,\$B3:\$G3)   | =r_5_k+dff*SUMPRODUCT(p_5_k,\$B3:\$G3)   | =r_5_p+dff*SUMPRODUCT(p_5_p,\$B3:\$G3)   | =r_f_m+dff*SUMPRODUCT(p_f_m,\$B3:\$G3)   |
| 5  | =r_4_k+dff*SUMPRODUCT(p_4_k,\$B4:\$G4)   | =r_4_p+dff*SUMPRODUCT(p_4_p,\$B4:\$G4)   | =r_5_k+dff*SUMPRODUCT(p_5_k,\$B4:\$G4)   | =r_5_p+dff*SUMPRODUCT(p_5_p,\$B4:\$G4)   | =r_f_m+dff*SUMPRODUCT(p_f_m,\$B4:\$G4)   |
| 6  | =r_4_k+dff*SUMPRODUCT(p_4_k,\$B5:\$G5)   | =r_4_p+dff*SUMPRODUCT(p_4_p,\$B5:\$G5)   | =r_5_k+dff*SUMPRODUCT(p_5_k,\$B5:\$G5)   | =r_5_p+dff*SUMPRODUCT(p_5_p,\$B5:\$G5)   | =r_f_m+dff*SUMPRODUCT(p_f_m,\$B5:\$G5)   |
| 7  | =r_4_k+dff*SUMPRODUCT(p_4_k,\$B6:\$G6)   | =r_4_p+dff*SUMPRODUCT(p_4_p,\$B6:\$G6)   | =r_5_k+dff*SUMPRODUCT(p_5_k,\$B6:\$G6)   | =r_5_p+dff*SUMPRODUCT(p_5_p,\$B6:\$G6)   | =r_f_m+dff*SUMPRODUCT(p_f_m,\$B6:\$G6)   |
| 8  | =r_4_k+dff*SUMPRODUCT(p_4_k,\$B7:\$G7)   | =r_4_p+dff*SUMPRODUCT(p_4_p,\$B7:\$G7)   | =r_5_k+dff*SUMPRODUCT(p_5_k,\$B7:\$G7)   | =r_5_p+dff*SUMPRODUCT(p_5_p,\$B7:\$G7)   | =r_f_m+dff*SUMPRODUCT(p_f_m,\$B7:\$G7)   |
| 9  | =r_4_k+dff*SUMPRODUCT(p_4_k,\$B8:\$G8)   | =r_4_p+dff*SUMPRODUCT(p_4_p,\$B8:\$G8)   | =r_5_k+dff*SUMPRODUCT(p_5_k,\$B8:\$G8)   | =r_5_p+dff*SUMPRODUCT(p_5_p,\$B8:\$G8)   | =r_f_m+dff*SUMPRODUCT(p_f_m,\$B8:\$G8)   |
| 10 | =r_4_k+dff*SUMPRODUCT(p_4_k,\$B9:\$G9)   | =r_4_p+dff*SUMPRODUCT(p_4_p,\$B9:\$G9)   | =r_5_k+dff*SUMPRODUCT(p_5_k,\$B9:\$G9)   | =r_5_p+dff*SUMPRODUCT(p_5_p,\$B9:\$G9)   | =r_f_m+dff*SUMPRODUCT(p_f_m,\$B9:\$G9)   |
| 11 | =r_4_k+dff*SUMPRODUCT(p_4_k,\$B10:\$G10) | =r_4_p+dff*SUMPRODUCT(p_4_p,\$B10:\$G10) | =r_5_k+dff*SUMPRODUCT(p_5_k,\$B10:\$G10) | =r_5_p+dff*SUMPRODUCT(p_5_p,\$B10:\$G10) | =r_f_m+dff*SUMPRODUCT(p_f_m,\$B10:\$G10) |
| 12 | =r_4_k+dff*SUMPRODUCT(p_4_k,\$B11:\$G11) | =r_4_p+dff*SUMPRODUCT(p_4_p,\$B11:\$G11) | =r_5_k+dff*SUMPRODUCT(p_5_k,\$B11:\$G11) | =r_5_p+dff*SUMPRODUCT(p_5_p,\$B11:\$G11) | =r_f_m+dff*SUMPRODUCT(p_f_m,\$B11:\$G11) |
| 13 | =r_4_k+dff*SUMPRODUCT(p_4_k,\$B12:\$G12) | =r_4_p+dff*SUMPRODUCT(p_4_p,\$B12:\$G12) | =r_5_k+dff*SUMPRODUCT(p_5_k,\$B12:\$G12) | =r_5_p+dff*SUMPRODUCT(p_5_p,\$B12:\$G12) | =r_f_m+dff*SUMPRODUCT(p_f_m,\$B12:\$G12) |
| 14 | =r_4_k+dff*SUMPRODUCT(p_4_k,\$B13:\$G13) | =r_4_p+dff*SUMPRODUCT(p_4_p,\$B13:\$G13) | =r_5_k+dff*SUMPRODUCT(p_5_k,\$B13:\$G13) | =r_5_p+dff*SUMPRODUCT(p_5_p,\$B13:\$G13) | =r_f_m+dff*SUMPRODUCT(p_f_m,\$B13:\$G13) |
| 15 | =r_4_k+dff*SUMPRODUCT(p_4_k,\$B14:\$G14) | =r_4_p+dff*SUMPRODUCT(p_4_p,\$B14:\$G14) | =r_5_k+dff*SUMPRODUCT(p_5_k,\$B14:\$G14) | =r_5_p+dff*SUMPRODUCT(p_5_p,\$B14:\$G14) | =r_f_m+dff*SUMPRODUCT(p_f_m,\$B14:\$G14) |
| 16 | =r_4_k+dff*SUMPRODUCT(p_4_k,\$B15:\$G15) | =r_4_p+dff*SUMPRODUCT(p_4_p,\$B15:\$G15) | =r_5_k+dff*SUMPRODUCT(p_5_k,\$B15:\$G15) | =r_5_p+dff*SUMPRODUCT(p_5_p,\$B15:\$G15) | =r_f_m+dff*SUMPRODUCT(p_f_m,\$B15:\$G15) |
| 17 | =r_4_k+dff*SUMPRODUCT(p_4_k,\$B16:\$G16) | =r_4_p+dff*SUMPRODUCT(p_4_p,\$B16:\$G16) | =r_5_k+dff*SUMPRODUCT(p_5_k,\$B16:\$G16) | =r_5_p+dff*SUMPRODUCT(p_5_p,\$B16:\$G16) | =r_f_m+dff*SUMPRODUCT(p_f_m,\$B16:\$G16) |
| 18 | =r_4_k+dff*SUMPRODUCT(p_4_k,\$B17:\$G17) | =r_4_p+dff*SUMPRODUCT(p_4_p,\$B17:\$G17) | =r_5_k+dff*SUMPRODUCT(p_5_k,\$B17:\$G17) | =r_5_p+dff*SUMPRODUCT(p_5_p,\$B17:\$G17) | =r_f_m+dff*SUMPRODUCT(p_f_m,\$B17:\$G17) |
| 19 | =r_4_k+dff*SUMPRODUCT(p_4_k,\$B18:\$G18) | =r_4_p+dff*SUMPRODUCT(p_4_p,\$B18:\$G18) | =r_5_k+dff*SUMPRODUCT(p_5_k,\$B18:\$G18) | =r_5_p+dff*SUMPRODUCT(p_5_p,\$B18:\$G18) | =r_f_m+dff*SUMPRODUCT(p_f_m,\$B18:\$G18) |
| 20 | =r_4_k+dff*SUMPRODUCT(p_4_k,\$B19:\$G19) | =r_4_p+dff*SUMPRODUCT(p_4_p,\$B19:\$G19) | =r_5_k+dff*SUMPRODUCT(p_5_k,\$B19:\$G19) | =r_5_p+dff*SUMPRODUCT(p_5_p,\$B19:\$G19) | =r_f_m+dff*SUMPRODUCT(p_f_m,\$B19:\$G19) |
| 21 | =r_4_k+dff*SUMPRODUCT(p_4_k,\$B20:\$G20) | =r_4_p+dff*SUMPRODUCT(p_4_p,\$B20:\$G20) | =r_5_k+dff*SUMPRODUCT(p_5_k,\$B20:\$G20) | =r_5_p+dff*SUMPRODUCT(p_5_p,\$B20:\$G20) | =r_f_m+dff*SUMPRODUCT(p_f_m,\$B20:\$G20) |
| 22 | =r_4_k+dff*SUMPRODUCT(p_4_k,\$B21:\$G21) | =r_4_p+dff*SUMPRODUCT(p_4_p,\$B21:\$G21) | =r_5_k+dff*SUMPRODUCT(p_5_k,\$B21:\$G21) | =r_5_p+dff*SUMPRODUCT(p_5_p,\$B21:\$G21) | =r_f_m+dff*SUMPRODUCT(p_f_m,\$B21:\$G21) |
| 23 | =r_4_k+dff*SUMPRODUCT(p_4_k,\$B22:\$G22) | =r_4_p+dff*SUMPRODUCT(p_4_p,\$B22:\$G22) | =r_5_k+dff*SUMPRODUCT(p_5_k,\$B22:\$G22) | =r_5_p+dff*SUMPRODUCT(p_5_p,\$B22:\$G22) | =r_f_m+dff*SUMPRODUCT(p_f_m,\$B22:\$G22) |

| Υ             | Z             | AA            | AB            | AC            | AD            | AE                             |
|---------------|---------------|---------------|---------------|---------------|---------------|--------------------------------|
| j=1           | j=2           | j=3           | j=4           | j=5           | j=f           | E_n                            |
|               |               |               |               |               |               |                                |
| =ABS(B4-B3)   | =ABS(C4-C3)   | =ABS(D4-D3)   | =ABS(E4-E3)   | =ABS(F4-F3)   | =ABS(G4-G3)   | =dff*MAX(\$Y4:\$AD4)/(1-dff)   |
| =ABS(B5-B4)   | =ABS(C5-C4)   | =ABS(D5-D4)   | =ABS(E5-E4)   | =ABS(F5-F4)   | =ABS(G5-G4)   | =dff*MAX(\$Y5:\$AD5)/(1-dff)   |
| =ABS(B6-B5)   | =ABS(C6-C5)   | =ABS(D6-D5)   | =ABS(E6-E5)   | =ABS(F6-F5)   | =ABS(G6-G5)   | =dff*MAX(\$Y6:\$AD6)/(1-dff)   |
| =ABS(B7-B6)   | =ABS(C7-C6)   | =ABS(D7-D6)   | =ABS(E7-E6)   | =ABS(F7-F6)   | =ABS(G7-G6)   | =dff*MAX(\$Y7:\$AD7)/(1-dff)   |
| =ABS(B8-B7)   | =ABS(C8-C7)   | =ABS(D8-D7)   | =ABS(E8-E7)   | =ABS(F8-F7)   | =ABS(G8-G7)   | =dff*MAX(\$Y8:\$AD8)/(1-dff)   |
| =ABS(B9-B8)   | =ABS(C9-C8)   | =ABS(D9-D8)   | =ABS(E9-E8)   | =ABS(F9-F8)   | =ABS(G9-G8)   | =dff*MAX(\$Y9:\$AD9)/(1-dff)   |
| =ABS(B10-B9)  | =ABS(C10-C9)  | =ABS(D10-D9)  | =ABS(E10-E9)  | =ABS(F10-F9)  | =ABS(G10-G9)  | =dff*MAX(\$Y10:\$AD10)/(1-dff) |
| =ABS(B11-B10) | =ABS(C11-C10) | =ABS(D11-D10) | =ABS(E11-E10) | =ABS(F11-F10) | =ABS(G11-G10) | =dff*MAX(\$Y11:\$AD11)/(1-dff) |
| =ABS(B12-B11) | =ABS(C12-C11) | =ABS(D12-D11) | =ABS(E12-E11) | =ABS(F12-F11) | =ABS(G12-G11) | =dff*MAX(\$Y12:\$AD12)/(1-dff) |
| =ABS(B13-B12) | =ABS(C13-C12) | =ABS(D13-D12) | =ABS(E13-E12) | =ABS(F13-F12) | =ABS(G13-G12) | =dff*MAX(\$Y13:\$AD13)/(1-dff) |
| =ABS(B14-B13) | =ABS(C14-C13) | =ABS(D14-D13) | =ABS(E14-E13) | =ABS(F14-F13) | =ABS(G14-G13) | =dff*MAX(\$Y14:\$AD14)/(1-dff) |
| =ABS(B15-B14) | =ABS(C15-C14) | =ABS(D15-D14) | =ABS(E15-E14) | =ABS(F15-F14) | =ABS(G15-G14) | =dff*MAX(\$Y15:\$AD15)/(1-dff) |
| =ABS(B16-B15) | =ABS(C16-C15) | =ABS(D16-D15) | =ABS(E16-E15) | =ABS(F16-F15) | =ABS(G16-G15) | =dff*MAX(\$Y16:\$AD16)/(1-dff) |
| =ABS(B17-B16) | =ABS(C17-C16) | =ABS(D17-D16) | =ABS(E17-E16) | =ABS(F17-F16) | =ABS(G17-G16) | =dff*MAX(\$Y17:\$AD17)/(1-dff) |
| =ABS(B18-B17) | =ABS(C18-C17) | =ABS(D18-D17) | =ABS(E18-E17) | =ABS(F18-F17) | =ABS(G18-G17) | =dff*MAX(\$Y18:\$AD18)/(1-dff) |
| =ABS(B19-B18) | =ABS(C19-C18) | =ABS(D19-D18) | =ABS(E19-E18) | =ABS(F19-F18) | =ABS(G19-G18) | =dff*MAX(\$Y19:\$AD19)/(1-dff) |
| =ABS(B20-B19) | =ABS(C20-C19) | =ABS(D20-D19) | =ABS(E20-E19) | =ABS(F20-F19) | =ABS(G20-G19) | =dff*MAX(\$Y20:\$AD20)/(1-dff) |
| =ABS(B21-B20) | =ABS(C21-C20) | =ABS(D21-D20) | =ABS(E21-E20) | =ABS(F21-F20) | =ABS(G21-G20) | =dff*MAX(\$Y21:\$AD21)/(1-dff) |
| =ABS(B22-B21) | =ABS(C22-C21) | =ABS(D22-D21) | =ABS(E22-E21) | =ABS(F22-F21) | =ABS(G22-G21) | =dff*MAX(\$Y22:\$AD22)/(1-dff) |
| =ABS(B23-B22) | =ABS(C23-C22) | =ABS(D23-D22) | =ABS(E23-E22) | =ABS(F23-F22) | =ABS(G23-G22) | =dff*MAX(\$Y23:\$AD23)/(1-dff) |

#### First 20 iterations results

```
2 n v.n.1 v.n.2 v.n.3 v.n.4 v.n.5 v.n.4 v.n.5 v.n.4 v.n.5 v.n.4 d.n.5 d.n.4 v.n.4 v.n.1 v.n.1 v.n.1 v.n.1 v.n.2 v.n.3 v.n.4 v.n.3 v.n.4 v.n.5 v.n.4 v.n.5 v.n.4 d.n.5 d.n.4 v.n.4 v.n.1 v.n.1 v.n.1 v.n.1 v.n.1 v.n.1 v.n.2 v.n.3 v.n.4 v.
```

#### Last 20 iterations results

```
294 99 9982.528 85539.348 80481.924 77043.688 77079.757 83277.664 kg pm pm kg kg mr 9082.530 -000 85237.564 85539.350 80681.926 77043.640 77097.575 7286.580 83277.664 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0
```

# **Sensitivity Analysis**

Due to the construction of the spreadsheet above, if a parameter value is changed in Sheet1, the MDP formulation and calculations are immediately updated to reflect the change. This makes the spreadsheet very convenient for Sensitivity Analysis which aims to investigate how robust the optimal policy is to changes in one or perhaps more of the problem parameters. This is an important step in the modeling process as one might hesitate to implement a policy that depends critically on precise estimates of the problem parameters.

Excel has functions that make it easy to perform sensitivity analysis by systematically changing a problem parameter or more parameters simultaneously and noting the effect on the optimal policy. The following steps can be used to perform sensitivity analysis on the probability, values, and discount factor of the Turnco operations,

#### Changes of probabilities and discount factor

Firstly, we consider the changes to psr (probability of successful manufacturer repair), psm (probability of successful preventive maintenance), and df (discount factor) one by one.

To say in detail, we set the range of psr as (0.95, 0.5) with 'step=0.05', and the range of psm (0.99, 0.70) with 'step=0.01', and the range of dff (discount factor) with 'step=0.01'. Initially, we enter the first column with the value '0.7', '0.9', '0.95' respectively since they are the initial values used for our model above. Secondly, enter the optimal results for each label on the left-hand side. Enter psr (application below) as the "Row input cell" and click "OK". Finally, get Excel filled the table. We choose all the cells and select Data Table from the What-If Analysis drop down menu in the Data Tools area on the Data tab & select New Rule from the Conditional Formatting drop down menu in the Styles area on the Home tab to accomplish Sensitivity Analysis.

New Rule is the technique to highlight the changes of optimal decisions. We select all the cells with 'decisions' and select New Rule from the Conditional Formatting drop down menu in the Styles area on the Home tab. Select "Use a formula to determine which cells to format" from the "Select a Rule Type" area of the New Formatting Rule dialog. Type the formula =G44< >\$F44 (this entry is for psr application below) in the "Format values where this formula is true" box. Click Format and choose the format (for example, we use the fill color as yellow). Finally, each cell in the range (with 'decisions') is compared to the cell in the corresponding row of initial optimal decisions and if the values differ the chosen format is applied.

(To make visualization better, after applying New Rule, since we know the number of breakpoints of changes to optimal decisions, we just highlight the breakpoints for image below, not fully use New Rule.)

As for psr, we enter psr as the "Row input cell" and click "OK", and from New Rule, we get the image as follows. According to the optimal decisions, the yellow bars show the differences, and the breakpoint will belong to (0.55, 0.6) because d4 changes to 'pm' when 'psr=0.55', which means we determine to use preventive maintenance when Turnco is found in condition 4. For values of profits, it is obvious that they will go down as psr decreases, and an interesting result is that the biggest drop may be at the breakpoint. Overall, they are relatively stable. Additionally, errors are also stable.

| psr   | 0.7       | 0.95     | 0.9      | 0.85     | 0.8      | 0.75     | 0.7      | 0.65     | 0.6      | 0.55     | 0.5      |
|-------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| v1    | 90892.549 | 91473.32 | 91381.14 | 91278.93 | 91164.96 | 91037.07 | 90892.55 | 90727.93 | 90538.7  | 90332.88 | 90184.99 |
| v2    | 85539.369 | 86088.05 | 86000.97 | 85904.4  | 85796.73 | 85675.9  | 85539.37 | 85383.84 | 85205.07 | 85010.62 | 84870.9  |
| v3    | 80481.944 | 81000.31 | 80918.04 | 80826.81 | 80725.08 | 80610.94 | 80481.94 | 80335.01 | 80166.12 | 79982.41 | 79850.41 |
| v4    | 77043.658 | 78971.54 | 78665.55 | 78326.26 | 77947.92 | 77523.39 | 77043.66 | 76497.2  | 75869.06 | 75232    | 75107.29 |
| v5    | 77097.594 | 79226.47 | 78888.57 | 78513.91 | 78096.13 | 77627.34 | 77097.59 | 76494.16 | 75800.54 | 75005.94 | 74145.49 |
| v0    | 83277.684 | 85726.69 | 85337.98 | 84906.98 | 84426.38 | 83887.1  | 83277.68 | 82583.51 | 81785.58 | 80871.49 | 79881.66 |
| d1    | kp        | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       |
| d2    | pm        | pm       | pm       | pm       | pm       | pm       | pm       | pm       | pm       | pm       | pm       |
| d3    | pm        | pm       | pm       | pm       | pm       | pm       | pm       | pm       | pm       | pm       | pm       |
| d4    | kp        | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | pm       | pm       |
| d5    | kp        | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       |
| d0    | mr        | mr       | mr       | mr       | mr       | mr       | mr       | mr       | mr       | mr       | mr       |
| Error | 0.0104527 | 0.010526 | 0.010515 | 0.010503 | 0.010489 | 0.010472 | 0.010453 | 0.01043  | 0.010402 | 0.010373 | 0.010356 |

As for psm, we enter psr as the "Row input cell" and click "OK", and from New Rule, we get the image as follows. According to the optimal decisions, the yellow bars show the differences, and the breakpoint will belong to (0.74, 0.75) because d3 changes to 'kp' when 'psm=0.74', which means we determine to keep operations when Turnco is found in condition 3. For values of profits, it is obvious that they will go down as psm decreases, and an interesting result is that the biggest drop may be at the breakpoint, too. Overall, they are relatively stable. Additionally, errors are also stable.

| Property | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 198

As for dff, we enter psr as the "Row input cell" and click "OK", and from New Rule we get the image as follows. According to the optimal decisions, the yellow bars show the differences. Compared with the sensitivity analysis above for probabilities, that for discount factor is quite special. Firstly, it has two breakpoints. The 1st one belongs to (0.91, 0.92), and the 2nd one belongs to (0.9, 0.91). The optimal actions of d3 changes to 'kp' when 'psm=0.91', and that of d2 also changes to 'kp' when 'psm=0.9)'. That means we determine to keep operations when Turnco is found in condition 2 & 3. For values of profits and error, it is surprising that they all go down dramatically as psr decreases gradually. Therefore, discount factor is not robust at all.

| dff   | 0.95      | 0.99     | 0.98     | 0.97     | 0.96     | 0.95     | 0.94     | 0.93     | 0.92     | 0.91     | 0.9      | 0.89     | 0.88     | 0.87     | 0.86     | 0.85     | 0.84     | 0.83     | 0.82     | 0.81     | 0.8      |
|-------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| d1    | kp        | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       |
| d2    | pm        | pm       | pm       | pm       | pm       | pm       | pm       | pm       | pm       | pm       | kp       |
| d3    | pm        | pm       | pm       | pm       | pm       | pm       | pm       | pm       | pm       | kp       |
| d4    | kp        | pm       | kp       |
| d5    | kp        | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       | kp       |
| d0    | mr        | mr       | mr       | mr       | mr       | mr       | mr       | mr       | mr       | mr       | mr       | mr       | mr       | mr       | mr       | mr       | mr       | mr       | mr       | mr       | mr       |
| Error | 0.010     | 19684.26 | 417.3409 | 11.42734 | 0.340433 | 0.010453 | 0.000323 | 9.88E-06 | 2.98E-07 | 8.83E-09 | 2.62E-10 | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| v1    | 90892.549 | 430711.4 | 225208   | 150776.5 | 113358   | 90892.55 | 75909.18 | 65201.85 | 57167.36 | 50944.05 | 46022.64 | 42017.02 | 38666.89 | 35822.12 | 33375.37 | 31247.8  | 29380.19 | 27727.18 | 26253.45 | 24931.06 | 23737.62 |
| v2    | 85539.369 | 425379.6 | 219872.6 | 145434.7 | 108010.3 | 85539.37 | 70550.96 | 59838.97 | 51800.19 | 45570.05 | 40840.56 | 37153.19 | 34091.25 | 31508.29 | 29300.08 | 27390.46 | 25722.53 | 24252.92 | 22948.05 | 21781.47 | 20732.13 |
| v3    | 80481.944 | 420107   | 214655.5 | 140270.4 | 102899.2 | 80481.94 | 65547.58 | 54889.99 | 46905.9  | 41045.23 | 36599.41 | 33014.34 | 30057.3  | 27580.32 | 25477.99 | 23673.29 | 22108.66 | 20740.26 | 19534.17 | 18463.72 | 17507.68 |
| v4    | 77043.658 | 414892.9 | 209688.7 | 135848.2 | 98985.53 | 77043.66 | 62554.11 | 52313.1  | 44719.5  | 38901.24 | 34336.48 | 30658.22 | 27624.52 | 25085.35 | 22933.49 | 21090.34 | 19496.93 | 18108.22 | 16889.2  | 15812.25 | 14855.33 |
| v5    | 77097.594 | 415655.3 | 210491.5 | 136376.7 | 99265.31 | 77097.59 | 62402.96 | 51975.69 | 44212.92 | 38244.08 | 33549.07 | 29754.91 | 26614.53 | 23977.36 | 21735.65 | 19810.28 | 18141.8  | 16684.69 | 15403.48 | 14270.14 | 13262.22 |
| v0    | 83277.684 | 423024.4 | 217541.5 | 143126.8 | 105725.5 | 83277.68 | 68312.31 | 57623.31 | 49607.43 | 43399.4  | 38485.29 | 34483.77 | 31139.68 | 28302.67 | 25865.19 | 23748.24 | 21892.45 | 20252.32 | 18792.42 | 17484.69 | 16306.66 |

## **Scenario summary for profits**

Then we consider the changes to profits. We use Excel's Scenario Manager from the What-If Analysis drop down menu in the Data Tools area on the Data tab to improve the accuracy of sensitivity analysis. We create 21 different scenarios based on 21 different (a, 1-a) coordinates. The expression is similar to previous tables but here we find the changing cells take up three whole rows rather than only one.

According to the optimal decisions, the yellow bars show the differences, and the breakpoint will belong to ((0.05, 0.95), (0, 1)) because both d2 and d3 change to 'kp' when fully apply Scenario B, which means we determine to keep operations when Turnco is found in any other condition until it is found below the required standard. For values of profits, it is obvious that they will go up as tends to Scenario B, and an interesting result is that the biggest drop may be at the breakpoint, too. Overall, they are relatively stable. Additionally, errors are also stable. To some extent, we can claim the profits of Scenario are robust because the results only differ at the last time.

| Scenario Summary                    |           |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |           |
|-------------------------------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------|
|                                     |           | 0.95A+0.05E | 0.90A+0.10E | 0.85A+0.15B | 0.80A+0.20B | 0.75A+0.25B | 0.70A+0.30B | 0.65A+0.35B | 0.60A+0.40B | 0.55A+0.45B | 0.50A+0.50B | 0.45A+0.55B | 0.40A+0.60B | 0.35A+0.65B | 0.30A+0.70B | 0.25A+0.75B | 0.20A+0.80B | 0.15A+0.85B | 0.10A+0.90B | 0.05A+0.95B |           |
| Changing Cells:                     |           |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |           |
| reward condition 2                  | 4200      | 4230        | 4260        | 4290        | 4320        | 4350        | 4380        | 4410        | 4440        | 4470        | 4500        | 4530        | 4560        | 4590        | 4620        | 4650        | 4680        | 4710        | 4740        | 4770        | 4800      |
| reward condition 3                  | 3400      | 3440        | 3480        | 3520        | 3560        | 3600        | 3640        | 3680        | 3720        | 3760        | 3800        | 3840        | 3880        | 3920        | 3960        | 4000        | 4040        | 4080        | 4120        | 4160        | 4200      |
| reward condition 4                  | 2600      | 2630        | 2660        | 2690        | 2720        | 2750        | 2780        | 2810        | 2840        | 2870        | 2900        | 2930        | 2960        | 2990        | 3020        | 3050        | 3080        | 3110        | 3140        | 3170        | 3200      |
| Result Cells:                       |           |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |           |
| Value when in condition 1 initially | 90714.909 | 90732.673   | 90750.437   | 90768.201   | 90785.965   | 90803.729   | 90821.493   | 90839.257   | 90857.021   | 90874.785   | 90892.549   | 90910.313   | 90928.077   | 90945.841   | 90963.605   | 90981.369   | 90999.133   | 91016.897   | 91034.661   | 91052.425   | 91150.962 |
| Value when in condition 2 initially | 85371.543 | 85388.326   | 85405.108   | 85421.891   | 85438.673   | 85455.456   | 85472.238   | 85489.021   | 85505.803   | 85522.586   | 85539.369   | 85556.151   | 85572.934   | 85589.716   | 85606.499   | 85623.282   | 85640.064   | 85656.847   | 85673.629   | 85690.412   | 85874.919 |
| Value when in condition 3 initially | 80323.391 | 80339.246   | 80355.102   | 80370.957   | 80386.812   | 80402.668   | 80418.523   | 80434.378   | 80450.234   | 80466.089   | 80481.944   | 80497.8     | 80513.655   | 80529.51    | 80545.366   | 80561.221   | 80577.077   | 80592.932   | 80608.787   | 80624.643   | 80912.821 |
| Value when in condition 4 initially | 75870.119 | 75987.473   | 76104.827   | 76222.181   | 76339.535   | 76456.888   | 76574.242   | 76691.596   | 76808.95    | 76926.304   | 77043.658   | 77161.012   | 77278.366   | 77395.72    | 77513.074   | 77630.428   | 77747.782   | 77865.136   | 77982.49    | 78099.844   | 78276.337 |
| Value when in condition 5 initially | 76953.973 | 76968.335   | 76982.697   | 76997.059   | 77011.421   | 77025.783   | 77040.145   | 77054.507   | 77068.869   | 77083.232   | 77097.594   | 77111.956   | 77126.318   | 77140.68    | 77155.042   | 77169.404   | 77183.766   | 77198.128   | 77212.49    | 77226.852   | 77306.519 |
| Value when below standard initially | 83112.467 | 83128.989   | 83145.51    | 83162.032   | 83178.554   | 83195.076   | 83211.597   | 83228.119   | 83244.641   | 83261.163   | 83277.684   | 83294.206   | 83310.728   | 83327.25    | 83343.772   | 83360.293   | 83376.815   | 83393.337   | 83409.859   | 83426.38    | 83518.027 |
| Decision when in condition1         | kp        | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp        |
| Decision when in condition1         | pm        | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | kp        |
| Decision when in condition1         | pm        | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | pm          | kp        |
| Decision when in condition1         | kp        | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp        |
| Decision when in condition1         | kp        | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp          | kp        |
| Decision when below standard        | mr        | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr          | mr        |
| Error                               | 0.0104813 | 0.0104798   | 0.0104781   | 0.0104764   | 0.0104746   | 0.0104719   | 0.0104692   | 0.010466    | 0.0104622   | 0.010458    | 0.0104527   | 0.0104469   | 0.0104402   | 0.0104318   | 0.0104222   | 0.0104108   | 0.0103967   | 0.0103793   | 0.0103563   | 0.0103216   | 0.0103061 |

The steps for achieving Scenario Summary above:

- 1. Select Data, What-If Analysis, Scenario Manager.
- 2.Click the Add... button in the Scenario Manager dialog.
- 3. Type a name for the scenario using the current values.
- 4. Specify the input cells (reward in condition 2, 3, and 4) by clicking the first cell and Ctrl+clicking the other input cells. Click OK.
- 5.Check and specify the input cells (reward in condition 2, 3, and 4). Excel will show you the current input values. (maybe not for desired scenario)
- 6. Verify the values for the original scenario. Click Add. You will go back to the Add Scenario dialog.

- 7.Enter a new scenario name and description. Click OK. You will go to the Scenario Values dialog. 8.Repeat steps 4 to 6 for each additional scenario.
- 9.Create 20 new scenarios using steps above.
- 10. When we are done entering scenarios, click OK instead of Add in the Scenario Values dialog.
- 11.In the Scenario Manager dialog, choose any scenario and click Show to show that scenario in the worksheet.
- 12.To see a comparison of all 21 different scenarios, click Summary.
- 13.In the Scenario Summary dialog, specify the output cells to include in the report.
- 14. Specify output cells. A new worksheet is inserted as the image above. Such summary report compares the scenarios.

#### Changes to maintenance and repair cost

After considering profits, it is quite natural to test how robust changes to costs are. To say in detail, we set the range of pmc as (150, 1300) with 'step=50', and the range of mrc (450, 1800) with 'step=50'. Initially, we enter the first column with the value '300' and '900' respectively since they are the initial values used for our model above. Secondly, enter the optimal results for each label on the left hand side. Finally, get Excel filled the table. We choose all the cells and select Data Table from the What-If Analysis drop down menu in the Data Tools area on the Data tab & select New Rule from the Conditional Formatting drop down menu in the Styles area on the Home tab to accomplish Sensitivity Analysis.

As for pmc, we enter pmc as the "Row input cell" and click "OK", and from New Rule we get the image as follows. According to the optimal decisions, the yellow bars show the differences, and the breakpoint will belong to (1150, 1200) because d3 changes to 'kp' when 'pmc=1200', which means we determine to keep operations when Turnco is found in condition 3. For values of profits, it is obvious that they will go down as pmc increases. Overall, they are relatively stable. Additionally, errors are also stable.



As for mrc, we enter mrc as the "Row input cell" and click "OK", and from New Rule we get the image as follows. According to the optimal decisions, the yellow bars show the differences, and the breakpoint will belong to (1550, 1600) because d4 changes to 'pm' when 'mrc=1600', which means we determine to use preventive maintenance when Turnco is found in condition 4. For values of profits, it is obvious that they will go down as mrc increases. Overall, they are relatively stable. Additionally, errors are also stable.

| mrc          | 900         | 450            | 500             | 550              | 600            | 650            | 700              | 750      | 800             | 850              | 900            | 950            | 1000           | 1050          | 1100             | 1150           |
|--------------|-------------|----------------|-----------------|------------------|----------------|----------------|------------------|----------|-----------------|------------------|----------------|----------------|----------------|---------------|------------------|----------------|
| v1           | 90892.549   | 91084.0        | 91158.5         | 91174.46         | 91161.16       | 91133.24       | 91098            | 91059.1  | 91018.3         | 90976.74         | 90934.64       | 90892.32       | 90849.88       | 90807.3       | 9 90764.86       | 90722.32       |
| v2           | 85539.369   | 85720.28       | 85790.6         | 3 85805.71       | 85793.14       | 85766.76       | 85733.47         | 85696.7  | 2 85658.2       | 5 85618.91       | 85579.14       | 85539.15       | 85499.06       | 85458.9       | 1 85418.74       | 85378.55       |
| v3           | 80481.944   | 80652.80       | 80719.3         | 2 80733.57       | 80721.7        | 80696.77       | 80665.32         | 80630.6  | 80594.2         | 80557.09         | 80519.52       | 80481.74       | 80443.86       | 80405.9       | 3 80367.98       | 80330.03       |
| v4           | 77043.658   | 77679.3        | 1 77926.5       | 77979.47         | 77935.33       | 77842.63       | 77725.66         | 77596.5  | 4 77461.3       | 5 77323.13       | 77183.4        | 77042.9        | 76902.02       | 76760.9       | 6 76619.8        | 76478.59       |
| v5           | 77097.594   |                |                 |                  | 78082.23       | 77979.86       | 77850.69         | 77708.1  |                 |                  | 77251.9        | 77096.76       | 76941.19       | 76785.4       |                  |                |
| v0 83277.684 |             | 84085.15 84399 |                 |                  | 84410.38       | 84292.63       | 4292.63 84144.03 |          | 1 83808.2       |                  | 83455.19       | 83276.72       | 83097.77       | 82918.5       |                  |                |
|              | d1 kp       |                | kp              | kp               | kp             | kp kp          |                  | kp       | kp              | kp               | kp             | kp             | kp             | kp            | kp               | kp             |
|              | d2 pm       |                | pm pm           |                  | pm             | pm pm          |                  | pm       | pm              | pm               | pm             | pm             | pm             | pm            | pm               | pm             |
|              | d3 pm       |                | pm pm           |                  | pm             |                | pm pm            |          | pm              | pm               | pm             | pm             | pm             | pm            | pm               | pm             |
| d4           | kp          | kp             | kp              | kp<br>kp         | kp             | kp             | kp               | kp<br>kp | kp              | kp               | kp             | kp             | kp             | kp            | kp               | kp             |
|              |             |                | kp kp           |                  | kp             |                | kp kp            |          | kp              | kp               | kp             | kp             | kp             | kp            | kp               | kp             |
| d0<br>Error  | mr<br>0.010 | mr<br>0.01047  | mr<br>5 0.01048 | mr<br>5 0.010487 | mr<br>0.010485 | mr<br>0.010482 | mr<br>0.010478   | mr       | mr<br>3 0.01046 | mr<br>8 0.010463 | mr<br>0.010458 | mr<br>0.010453 | mr<br>0.010447 | mr<br>0.01044 | mr<br>2 0.010436 | mr<br>0.010433 |
| 1150         | 120         |                | 1250            | 1300             | 1350           | 1400           |                  |          | 1500            | 1550             | 1600           | 1650           |                | 0.01044       | 1750             | 1800           |
|              |             | -              |                 |                  |                |                |                  |          |                 |                  |                |                |                |               |                  |                |
| 90722.3      |             |                |                 | 90594.68         | 90552.13       |                |                  |          |                 | 90381.92         | 90344.59       |                |                |               |                  | 90247.52       |
| 85378.5      | 5 85338     | 8.35 85        | 298.15          | 85257.95         | 85217.75       | 85177.         | 55 8513          | 7.35 8   | 5097.15         | 85056.95         | 85021.68       | 84998.         | 76 8497        | 75.83         | 34952.9          | 84929.97       |
| 80330.0      | 1 80292     | .03 80         | 254.06          | 80216.08         | 80178.1        | 80140.:        | 12 8010          | 2.14 8   | 0064.16         | 80026.18         | 79992.86       | 79971          | .2 7994        | 19.54 7       | 9927.88          | 79906.22       |
| 76478.5      | 9 76337     | .36 76         | 196.12          | 76054.87         | 75913.61       | 75772.         | 36 7563          | 1.11 7   | 5489.85         | 75348.6          | 75241.87       | 75221.         | 41 7520        | 0.95 7        | 5180.48          | 75160.02       |
| 76473.6      | 2 76317     | .66 76         | 161.69          | 76005.72         | 75849.74       | 75693.         | 76 7553          | 7.78     | 5381.8          | 75225.82         | 75074.06       | 74932.         | 86 7479        | 1.67 7        | 4650.47          | 74509.27       |
| 82559.8      | 8 82380     | .47 82         | 2201.05         | 82021.62         | 81842.18       | 81662.         | 75 8148          | 3.31 8   | 1303.88         | 81124.44         | 80949.86       | 80787.         | 43 800         | 525 8         | 0462.57          | 80300.14       |
| kp           | kp          |                | kp              | kp               | kp             | kp             | k                | 0        | kp              | kp               | kp             | kp             | k              | р             | kp               | kp             |
| pm           | pm          | 1              | pm              | pm               | pm             | pm             | pr               | n        | pm              | pm               | pm pm          |                | р              | m             | pm               | pm             |
| pm           | pm          | 1              | pm              | pm               | pm             | pm             | pr               | n        | pm              | pm               | pm             | pm             | р              | m             | pm               | pm             |
| kp           | kp          |                | kp              | kp               | kp             | kp             | k                | o        | kp              | kp               | pm             | pm             | р              | m             | pm               | pm             |
| kp           | kp          |                | kp              | kp               | kp             | kp             | k                | o        | kp              | kp               | kp             | kp             | k              | р             | kp               | kp             |
| mr           | mr          | -              | mr              | mr               | mr             | mr             | m                | r        | mr              | mr               | mr             | mr             | n              | nr            | mr               | mr             |
| 0.01043      | 1 0.010     | 425 0.         | 010419          | 0.010414         | 0.010408       | 0.0104         | 0.010            | 396 0    | .010391         | 0.010385         | 0.01038        | 0.0103         | 79 0.01        | 0377 0        | .010375          | 0.010373       |

Hence, we have completed Sensitivity Analysis based on the meanings of parameters in order.

## **Proportions of time Calculation**

Firstly, we are interested in the probability that the process is in a particular state after some time (after some steps). We define  $\pi_i^n$  to be the probability that the process is in state **i** after **n** transitions. Conditioning on the previous state, we can get,

$$\pi_i^n = \pi_1^{n-1} p_{1,i} + \pi_2^{n-1} p_{2,i} + \ldots + \pi_f^{n-1} p_{f,i} \ and \ get \ \pi^n = \pi^{n-1} P$$

Here  $\pi^n=(\pi_1^n,\pi_2^n,\pi_3^n,\pi_4^n,\pi_5^n,\pi_f^n)$  is the probability distribution of the state of the process after  ${\bf n}$  steps. P is the transition matrix.

In this MDP problem, Turnco operates in a long-run process. We can calculate the proportion of time with respect to each state by equilibrium distribution  $\pi$ . In the long-run distribution, since an aperiodic and ergodic Markov chain has a unique equilibrium distribution,  $\pi$ , such that, for any probability distribution of initial state,  $\pi^n$  tends to  $\pi$  as  $\mathbf{n}$  tends to infinity.

As we know, the above  $\pi$  fits the equation  $\pi=\pi P$ . Additionally,  $\pi=(\pi_1,\pi_2,\pi_3,\pi_4,\pi_5,\pi_f)$ ,  $\pi_i$  is the long-run proportion of time the process spends in state i. For such an aperiodic, ergodic Markov chain, the equilibrium probabilities are the unique solutions to the following linear equations:

$$\begin{split} \pi_1 &= \pi_1 P_{1,1} + \pi_2 P_{2,1} + \pi_3 P_{3,1} + \pi_4 P_{4,1} + \pi_5 P_{5,1} + \pi_f P_{f,1} \\ \pi_2 &= \pi_1 P_{1,2} + \pi_2 P_{2,2} + \pi_3 P_{3,2} + \pi_4 P_{4,2} + \pi_5 P_{5,2} + \pi_f P_{f,2} \\ \pi_3 &= \pi_1 P_{1,3} + \pi_2 P_{2,3} + \pi_3 P_{3,3} + \pi_4 P_{4,3} + \pi_5 P_{5,3} + \pi_f P_{f,3} \\ \pi_4 &= \pi_1 P_{1,4} + \pi_2 P_{2,4} + \pi_3 P_{3,4} + \pi_4 P_{4,4} + \pi_5 P_{5,4} + \pi_f P_{f,4} \\ \pi_5 &= \pi_1 P_{1,5} + \pi_2 P_{2,5} + \pi_3 P_{3,5} + \pi_4 P_{4,5} + \pi_5 P_{5,5} + \pi_f P_{f,5} \\ \pi_f &= \pi_1 P_{1,f} + \pi_2 P_{2,f} + \pi_3 P_{3,f} + \pi_4 P_{4,f} + \pi_5 P_{5,f} + \pi_f P_{f,f} \\ &= \pi_1 + \pi_2 + \pi_3 + \pi_4 + \pi_5 + \pi_f \end{split}$$

Therefore, we just need the transition probabilities  $p_{i,j}$ , which is also the entry  $P_{i,j}$  of the transition matrix P, to achieve the proportions of time. We can find these  $p_{i,j}$  are not the same as 'Probabilities of transitions' at the very first of the Appendix, since it also depends on the actions we take at each state. To explain in detail, under our determining optimal policy, Turnco may not naturally transit from state 2 to state 3 with the probability 0.05 by normal operations because we decide to apply preventive maintenance for Turnco in condition 2, so the  $p_{2,3}$  here is

0 indeed. Just consider the probabilities for other  $p_{i,j}$  and we can get the transition matrix p has the expression below,

$$\begin{pmatrix} 0.94 & 0.03 & 0.01 & 0.01 & 0 & 0.01 \\ 0.90 & 0.10 & 0 & 0 & 0 & 0 \\ 0 & 0.90 & 0.10 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.75 & 0.09 & 0.16 \\ 0 & 0 & 0 & 0 & 0.65 & 0.35 \\ 0.70 & 0 & 0 & 0 & 0 & 0.30 \end{pmatrix}$$

By applying the matrix above for the linear equations, we can get the final results for  $\pi$ , that is,

$$\pi = (0.8815, 0.0392, 0.0098, 0.0353, 0.0091, 0.0252)$$

Hence, we can get  $\pi_i$  for each **State** i,

$$\pi_1 = 0.8815, \pi_2 = 0.0392, \pi_3 = 0.0098, \pi_4 = 0.0353, \pi_5 = 0.0091, \pi_f = 0.0252$$

Based on optimal actions we determined, we add the proportion of state 1, state 4, and state 5 for the proportion of operations time together. As both preventive maintenance and manufacturer repair need one day out of use, we add the proportion of time of the remained states together.

Hence we can get the proportion of normal operations is 0.9259 ( $\pi_1 + \pi_4 + \pi_5$ ), and the proportion of out of use is 0.0741 (( $\pi_2 + \pi_3 + \pi_f$ ), which means under such optimal policy, Turnco will operate for approximately 92.59% of the total time, and the remained time (7.41%) is out of use due to preventive maintenance or manufacturer repair.

## Part B

The main strengths can be considered in three aspects.

The first one is setting the initial model reasonably. To start with, we set parameters rigorously. We do not just take Scenario A or Scenario B into account, but create a new Scenario C with the combination of A & B (Half and Half), and also, set the probability of successful preventive maintenance as 0.9, higher than that of the successful manufacturer repair (0.7) since preventive maintenance is much easier to be applied than manufacturer repair. What's more, we use all the figures from the problem sheet to indicate the validity of the further process.

The second is doing a useful sensitivity analysis. To say in detail, it is clear that we consider most of the changes in parameters that may influence the original results, which means we try to change values of probability or discount factor, and also several profits. We use not only data table tool, but also accurate scenario method tool to test how robust the changes in Scenario are, not just for single profit in any condition.

The third one is for decision criterion, it is based on the strong convergence of expected reward and small error. Considering our optimal policy, we control the error as less than 0.01 for stopping iterations, and also, our  $|v_j^n-v_j^{n-1}|$  are all equal to 0.001, which proves the validity of decision criterion. What's more, our optimal policy seems reasonable as explained in the Appendix.

The main weaknesses can be considered in two aspects.

The first one is the basic assumptions for decisions. As you as see, we consider the two-decision model - Turnco can only be repaired by manufacturer when it is below the standard required for normal operation, but not apply a more complex three-decision model - Turnco can take the optimal action from three actions in any condition (Turnco can be repaired by the manufacturer at any state). However, in fact, we have several reasons for choosing the present model; we think the frequent repair is relatively complex that it is kind of rare in real-life (preventive maintenance is more common to be frequently applied, but not the ability to apply manufacturer repair at every state). Yet we also have applied the three-decision model and find that has approximately more 1500 pounds in each condition than the two-decision model under the same parameter settings. Therefore, we admit that our assumption is less profitable.

The second one is for sensitivity analysis. Although we have done useful analysis above, we think we can do more, because we have not considered more combinations of parameters with simultaneous changes in scenario summary. For example, we do not change both the profits and probabilities in the meantime, which indicates the incompleteness of sensitivity analysis. Nevertheless, we also have reasons for that; we can not list all combinations of parameters changing in reality, which means we have to give up for some not strongly-related combinations in scenario summary.