

(19) 대한민국특허청(KR)(12) 공개특허공보(A)

(51) 국제특허분류(Int. Cl.)

CO3C 3/12 (2006.01) **CO3C 8/04** (2006.01) **CO3C 8/24** (2006.01)

(52) CPC특허분류

CO3C 3/122 (2013.01) **CO3C 8/04** (2013.01)

(21) 출원번호 **10-2016-7005842**

(22) 출원일자(국제) **2014년08월14일** 심사청구일자 **2016년03월04일**

(85) 번역문제출일자 2016년03월04일

(86) 국제출원번호 PCT/JP2014/071421

(87) 국제공개번호 **WO 2015/029792** 국제공개일자 **2015년03월05일**

(30) 우선권주장

JP-P-2013-177580 2013년08월29일 일본(JP) JP-P-2014-159540 2014년08월05일 일본(JP) (11) 공개번호 10-2016-0040680

(43) 공개일자 2016년04월14일

(71) 출원인

샌트랄 글래스 컴퍼니 리미티드

일본국, 야마구치, 우베-시 오아자 오키우베 5253

(72) 발명자

미야자와 마사미치

일본국 미에 마츠사카시 오구치쵸 1510 샌트랄 글 래스 컴퍼니 리미티드 유리연구소 내

하마다 준

일본국 미에 마츠사카시 오구치쵸 1510 샌트랄 글 래스 컴퍼니 리미티드 유리연구소 내

(74) 대리인

서종완

전체 청구항 수 : 총 12 항

(54) 발명의 명칭 **무연 유리 및 봉착 재료**

(57) 요 약

개시되어 있는 것은 유리 성분 중에 V_2O_5 를 5~55 wt%, TeO_2 를 5~75 wt%, RO(MgO, CaO, SrO 및 BaO로 이루어진 군으로부터 선택되는 1종 이상)를 합계로 6~20 wt%, <math>ZnO를 0.1~6 wt% 함유하며, $V_2O_5+TeO_2+RO+ZnO$ 가 70 wt% 이상인 것을 특징으로 하는 무연 유리이다. 이 무연 유리로부터 400℃ 이하에서 봉착(sealing) 가능한 유동성을 갖는 봉착 재료를 얻을 수 있다.

(52) CPC특허분류

CO3C 8/24 (2013.01)

명 세 서

청구범위

청구항 1

유리 성분 중에

V₂O₅를 5~55 wt%,

TeO₂를 5~75 wt%,

RO(MgO, CaO, SrO 및 BaO로 이루어진 군으로부터 선택되는 1종 이상)를 합계로 6~20 wt%,

ZnO를 0.1~6 wt% 함유하며,

V₂O₅+TeO₂+RO+ZnO가 70 wt% 이상인 것을 특징으로 하는 무연 유리.

청구항 2

제1항에 있어서,

상기 무연 유리는 유리 성분 중에 Fe_2O_3 , NiO, Al_2O_3 및 CoO로 이루어진 군으로부터 선택되는 하나 이상을 합계로 0.1~10 wt% 함유하는 것을 특징으로 하는 무연 유리.

청구항 3

제1항 또는 제2항에 있어서,

상기 무연 유리의 연화점이 380℃ 이하인 것을 특징으로 하는 무연 유리.

청구항 4

제1항 내지 제3항 중 어느 한 항에 있어서,

TeO₂를 31~70 wt% 함유하는 것을 특징으로 하는 무연 유리.

청구항 5

제1항 내지 제4항 중 어느 한 항에 있어서,

V₂O₅를 24~48 wt% 함유하는 것을 특징으로 하는 무연 유리.

청구항 6

제1항 내지 제5항 중 어느 한 항에 있어서,

V₂O₅에 대한 TeO₂의 중량비가 0.7~10인 것을 특징으로 하는 무연 유리.

청구항 7

제1항 내지 제6항 중 어느 한 항에 있어서,

RO로서 적어도 BaO를 함유하는 것을 특징으로 하는 무연 유리.

청구항 8

제1항 내지 제7항 중 어느 한 항에 기재된 무연 유리와 무기 필러를 포함하는 봉착 재료(sealing material)로서, 상기 무연 유리와 무기 필러의 체적의 합계에 대해 그 무기 필러를 1~35 vol%의 범위 내에서 함 유하는 것을 특징으로 하는 봉착 재료.

청구항 9

제8항에 있어서,

무기 필러가 인산지르코늄 또는 인산텅스텐지르코늄 화합물인 것을 특징으로 하는 봉착 재료.

청구항 10

제1항 내지 제7항 중 어느 한 항에 기재된 무연 유리로 이루어지는 유리 분말과 유기 비히클을 함유하는 것을 특징으로 하는 유리 페이스트.

청구항 11

제10항에 기재된 유리 페이스트를 도포한 후, 연화점을 초과하는 온도에서 소성하여 봉착하는 공정을 갖는 것을 특징으로 하는 전자부품의 제조방법.

청구항 12

제11항에 있어서,

상기 소성 공정에 있어서 소성 온도가 400℃ 이하인 것을 특징으로 하는 전자부품의 제조방법.

발명의 설명

기술분야

[0001] 본 발명은 무연 유리를 사용한 봉착 재료에 관한 것이다.

배경기술

- [0002] 종래부터 전자부품의 접착이나 봉착 재료로서 각종 땜납과 유리가 사용되고 있다. 특히 반도체 팩키지, 수정 진동자, MEMS 등은 부품의 내열성이 400℃ 정도로 낮은 경우가 있기 때문에 금-주석 땜납과 납유리가 사용되고 있다. 이들에 사용되는 재료는 그 용도에 따라 화학 내구성, 기계적 강도, 유동성 등 각종 특성이 요구되는데, 특히 봉착 재료로서 사용하는 경우, 저온에서의 유동성을 중요한 요소로서 들 수 있다.
- [0003] 상기 유동성이 불충분한 경우, 실링 부분으로부터 셀 우려가 있어, 각각의 전자부품에서 요구되는 특성을 얻을 수 없다. 이 때문에 400℃ 이하에서 충분한 유동성을 나타내는 금-주석 땜납과 납유리가 사용되고 있다. 특허문헌 1에서는 수정 진동자를 내장한 압전 진동자의 제조에 금-주석 땜납이 사용되고 있으며, 250℃~500℃에서의실링이 개시되어 있다. 한편으로 금-주석 땜납은 고가이고, 납유리는 인체와 환경에 대한 부하가 큰 Pb0를 다량으로 포함하는 것으로부터 대체 재료가 요구되고 있다.
- [0004] 상기 대체 재료로서, 예를 들면 특허문헌 2에서는 V_2O_5 -TeO₂계 유리가 제안되어 있어 저온 봉착할 수 있는 것이 기재되어 있다. 또한 특허문헌 3에서는 V_2O_5 -TeO₂-WO₃-P₂O₅계 및 V_2O_5 -TeO₂-WO₃-ZnO계 유리가 제안되어 있다. 한편으로 이들 유리는 저연화점을 나타내지만, 봉착 성능에 중요한 요소인 유동성이 부족한 경우가 있다.

선행기술문헌

특허문헌

[0005] (특허문헌 0001) 일본국 특허공개 평11-312948호 공보

(특허문헌 0002) 일본국 특허공개 제2004-250276호 공보

(특허문헌 0003) 일본국 특허공개 제2012-106891호 공보

발명의 내용

해결하려는 과제

[0006] 전술한 바와 같이 400℃ 이하에서 봉착 가능한 봉착 재료가 요구되고 있는데, 금-주석 땜납은 고가이고, 납을 포함하는 유리는 환경에 대한 영향으로부터 최근 사용을 피하는 추세에 있다. 또한 상기의 대체 재료도 제안되

어 있으나, 봉착에 중요한 유동성이 불충분하다는 문제가 있었다.

[0007] 따라서 본 발명은 400℃ 이하에서 봉착 가능한 유동성을 갖는 봉착 재료를 얻는 것을 목적으로 하였다.

과제의 해결 수단

- [0008] 따라서 본 발명은 유리 성분 중에 V_2O_5 를 5~55 wt%, TeO_2 를 5~75 wt%, RO(MgO, CaO, SrO 및 BaO로 이루어진 군으로부터 선택되는 1종 이상)를 합계로 6~20 wt%, ZnO를 0.1~6 wt% 함유하며, $V_2O_5 + TeO_2 + RO + ZnO$ 가 70 wt% 이상인 것을 특징으로 하는 무연 유리(lead-free glass) 이다.
- [0009] 본 발명에 있어서 「무연(lead-free)」이란 유리 성분에 실질적으로 납을 함유하지 않는 것을 가리키는 것으로 하고, 예를 들면 PbO의 함유량이 0.3 wt% 미만인 것을 말한다.
- [0010] 본 발명의 무연 유리는 저온에서 유동성이 양호하여 봉착 재료(sealing material)로서 적합하게 사용하는 것이 가능하다. 또한 본 명세서에 있어서 「저온」이란 400℃ 이하를 가리키는 것으로 한다.
- [0011] 또한 상기 유동성은 후술하는 실시예에 있어서 측정을 행하였다. 본 명세서에 있어서는 시료를 350℃ 또는 380 ℃에서 10분간 가열하고, 상온까지 냉각한 후의 시료의 직경을 계측하여, 그 계측 직경이 가열 전에 비해 10% 이상으로 확대된 것을 유동성이 양호한 것으로 하였다.

발명의 효과

[0012] 본 발명에 의해 400℃ 이하에서 봉착 가능한 유동성을 갖는 봉착 재료를 얻는 것이 가능해졌다.

발명을 실시하기 위한 구체적인 내용

- [0013] 본 발명은 유리 성분 중에 V_2O_5 를 5~55 wt%, TeO_2 를 5~75 wt%, RO(MgO, CaO, SrO 및 BaO로 이루어진 군으로부터 선택되는 1종 이상)를 합계로 6~20 wt%, <math>ZnO를 0.1~6 wt% 함유하며, $V_2O_5 + TeO_2 + RO + ZnO$ 가 70 wt% 이상인 것을 특징으로 하는 무연 유리이다.
- [0014] 유리를 사용하여 봉착하는 경우, 통상은 유리를 분말상으로 하여 유리 분말을 소정의 위치에 도포한 후 가열하여 소성을 행한다. 또한 본 발명의 「무연 유리」는 유리 분말도 소성 후의 상태도 포함하는 것으로 한다.
- [0015] 본 발명의 무연 유리에 대해서 아래에 설명한다.
- [0016] V₂O₅는 유리의 연화점을 낮추는 효과가 있어 유리 중에 5~55 wt%의 범위에서 함유한다. 55 wt%를 초과하면 유리화가 곤란해지고, 유리화되었다 하더라도 실투 경향이 강해지기 때문에 유동하기 어려워진다. 5 wt% 미만에서는 연화점이 상승해 버리기 때문에 본 발명에는 부적합하다. 바람직하게는 하한치를 24 wt% 이상, 보다 바람직하게는 36 wt% 이상으로 해도 된다. 또한 바람직하게는 상한치를 48 wt% 이하로 해도 된다.
- [0017] TeO₂는 유리의 유동성을 높이는 효과가 있어 유리 중에 5~75 wt%의 범위에서 함유한다. 75 wt%를 초과하면 연화점이 상승하기 때문에 본 발명에는 부적합하다. 또한 실투 경향이 강해지고 봉착 성능이 저하된다. 5 wt% 미만에서는 유리화가 곤란하고, 유리화되었다 하더라도 실투 경향이 강해지기 때문에 유동하기 어려워진다. 바람직하게는 하한치를 31 wt% 이상, 보다 바람직하게는 40 wt% 이상으로 해도 된다. 또한 바람직하게는 상한치를 70 wt% 이하, 보다 바람직하게는 59 wt% 이하로 해도 된다.
- [0018] 일반적으로 연화점이 낮은 유리는 안정성이 나빠 소성 시에 결정화를 발생시키기 쉽다. V_2O_5 -TeO₂계 유리의 안정성은 V_2O_5 와 TeO₂의 함유량의 비로 대략 결정되는 경향이 있기 때문에, 본 발명에서는 TeO₂/ V_2O_5 를 0.7~10으로 하는 것이 바람직하다.
- [0019] RO는 유리를 열적으로 안정화하는 효과와 선팽창계수를 조정하는 역할이 있어 유리 중에 합계로 6~20 wt%의 범위에서 함유한다. 6 wt% 미만 또는 20 wt%를 초과하면 다른 성분과의 관계에 따라서는 상기 작용을 나타내지 않는 경우가 있다. 사용하는 RO 성분으로서는 BaO를 사용하는 것이 바람직하다. 또한 2 성분 이상을 복합하여 사용함으로써 선팽창계수를 낮추는 것이 가능하기 때문에 바람직하다. 바람직하게는 하한치를 6 wt% 이상으로 해도 된다. 또한 바람직하게는 상한치를 16.9 wt% 이하로 해도 된다.
- [0020] ZnO는 유리의 연화점을 낮추고 열팽창계수를 낮추는 효과가 있어 유리 중에 0.1~6 wt%의 범위에서 함유한다. 함

유량이 6 wt%를 초과하는 경우, 유리의 안정성이 저하되고, 결정화에 의해 연화 시의 유동성이 저하된다. 또한 0.1 wt% 미만이 되는 경우, 상기 효과가 얻어지지 않는다. 바람직하게는 하한치를 1 wt% 이상, 보다 바람직하게 는 2 wt% 이상으로 해도 된다. 또한 바람직하게는 상한치를 5 wt% 이하, 보다 바람직하게는 4 wt% 이하로 해도된다.

- [0021] 상기 V_2O_5 , TeO_2 , BaO 및 ZnO의 4 성분은 필수 성분으로, $V_2O_5 + TeO_2 + RO + ZnO$ 를 70 wt% 이상으로 한다. 바람직하 게는 85 wt% 이상으로 해도 되고, 또한 유동성이 좋고 연화점이 낮은 봉착 재료를 얻기 위해 100 wt%로 해도 된다.
- [0022] 또한 전술한 4개의 필수 성분에 Li₂O, Na₂O, K₂O, Al₂O₃, Fe₂O₃, NiO, CuO, CoO 및 ZrO₂ 등의 임의 성분을 첨가해 도 된다.
- [0023] 상기 중 일반적인 산화물로 나타내는 R₂O(Li₂O, Na₂O, K₂O)는 연화점을 낮추고, 유리에 유동성을 부여하여 선팽 창계수를 조정하는 것으로부터, 상기 성질을 손상시키지 않는 범위에서 적절히 첨가해도 된다.
- [0024] 또한 Al₂O₃, Fe₂O₃, NiO, CuO, CoO 및 ZrO₂ 등은 유리의 실투를 억제하거나 선팽창계수를 조정하는 것으로부터, 상기 성질을 손상시키지 않는 범위에서 적절히 첨가해도 된다. 또한 특히 결정화의 억제에 효과적인 Fe₂O₃, NiO, Al₂O₃ 및 CoO로 이루어진 군으로부터 선택되는 하나 이상을 합계로 0.1~10 wt% 함유하는 것이 바람직하다. 또한 전술한 필수 성분 및 적합한 임의 성분으로부터, V₂O₅+TeO₂+RO+ZnO+R₂O+Fe₂O₃+NiO+Al₂O₃+CoO+ZrO₂를 100 wt%로 해도 된다.
- [0025] 또한 본 발명의 무연 유리는 유리 성분 중에 실질적으로 인산을 함유하지 않는 것이 바람직하다. 인산을 함유하면 내습성이 저하되거나 유동성이 저하될 가능성이 있다. 「실질적으로 인산을 함유하지 않는다」는 것은 P₂O₅의함유량을 1 wt% 미만으로 해도 된다. 또한 바람직하게는 0.3 wt% 미만으로 해도 된다.
- [0026] 통상 유리 분말을 사용한 봉착을 행할 때는 유리의 연화점 이상, 보다 바람직하게는 연화점+20℃ 이상의 온도에서 봉착을 행한다. 전술한 바와 같이 본 발명은 400℃ 이하에서의 봉착을 가능하게 하는 것을 목적으로 하고있는 것으로부터, 연화점이 380℃ 이하인 것이 바람직하다. 또한 보다 바람직하게는 350℃ 이하로 해도 된다. 상기 연화점이 380℃를 초과하면 저온에서의 봉착이 곤란해지기 쉽다. 또한 하한치는 특별히 한정되는 것은 아니나, 예를 들면 250℃ 이상으로 해도 된다.
- [0027] 본 발명의 무연 유리는 30℃~250℃에 있어서의 선팽창계수가 100~180×10⁻⁷/K인 것이 바람직하다. 연화점이 높을 수록 선팽창계수는 높아지는 경향이 있기 때문에 100×10⁻⁷/K 미만이면 연화점이 400℃를 초과하는 경우가 있고, 또한 180×10⁻⁷/K를 초과하면 용도에 따라서는 선팽창계수가 지나치게 높아지는 경우가 있다.
- [0028] 또한 본 발명의 무연 유리에 무기 필러를 함유시킴으로써, 낮은 연화점을 유지하면서 상기 선팽창계수를 낮추는 것이 가능해진다. 즉, 본 발명의 적합한 실시형태 중 하나는 상기 무연 유리와 무기 필러를 포함하는 봉착 재료로서, 상기 무연 유리와 무기 필러의 체적의 합계에 대해 그 무기 필러를 1~35 vol%의 범위 내에서 함유하는 봉착 재료이다.
- [0029] 무기 필러를 사용함으로써 그 무기 필러를 함유하는 봉착 재료의 30℃~250℃에 있어서의 선팽창계수를 50~160× 10^{-7} /K로 하는 것이 가능하다. 무기 필러의 함유량이 1 vol% 미만인 경우는 선팽창계수를 저하시키는 효과가 불충분해지고, 또한 무기 필러의 함유량이 35 vol%를 초과하는 경우는 봉착 재료로서의 유동성이 저하되어 봉착이 불충분해지기 쉬워진다. 또한 선팽창계수를 보다 낮은 50~90×10⁻⁷/K로 하기 위해 무기 필러의 함유량을 보다 바람직하게는 10~35 vol%로 해도 된다.
- [0030] 본 발명에 사용하는 무기 필러로서는 인산지르코늄 화합물((ZrO)₂P₂O₇, NaZr₂(PO₄)₃, KZr₂(PO₄)₃, Ca_{0.5}Zr₂(PO₄)₃, NbZr(PO₄)₃, Zr₂(WO₄)(PO₄)₂), 지르코늄 화합물(ZrSiO₄, ZrW₂O₈), 코디어라이트, β-유크립타이트, SiO₂ 등을 이용할 수 있다. 특히 선팽창계수의 저하와 유동성 향상 양쪽을 목적으로 하는 경우에는, 무기 필러를 인산지르코늄 화합물 또는 지르코늄 화합물로 하는 것이 바람직하다.
- [0031] 본 발명의 적합한 실시형태 중 하나는 전술한 무연 유리로 이루어지는 유리 분말과 유기 비히클을 함유하는 유리 페이스트이다. 본 발명의 유리 페이스트는 상기 유리 분말과 유기 비히클을 혼련하여 페이스트화한 후, 소정

개소에 도포하고 이를 소성시킴으로써 목적하는 부재를 봉착한다. 또한 상기 유리 페이스트 중에 전술한 무기 필러를 혼합해도 된다.

- [0032] 상기 유리 페이스트의 전체 질량에 대해 고형분(유리 분말+무기 필러)을 20~80 wt% 함유하는 것이 바람직하다. 80 wt%를 초과하면 유리 페이스트의 점도가 지나치게 높아져 도포가 곤란해진다. 또한 20 wt% 미만에서는 유리 성분이 지나치게 적어져 기밀 밀봉이 곤란해진다.
- [0033] 상기 유기 비히클은 유기 용제와 유기 바인더로 이루어지는 것으로, 유리 페이스트를 가열, 소성시킨 후에 연소, 분해 및 휘발에 의해 소실시키는 것이다.
- [0034] 상기 유기 바인더란 유리 분말 및 무기 필러를 유리 페이스트 중에 분산·유지시키는 것으로, 당해 유리 페이스트가 소성될 때의 가열에 의해 페이스트 내로부터 제거되는 것이다. 또한 유기 용제는 상기 유기 바인더와 마찬 가지로 가열 시에 유리 페이스트로부터 제거할 수 있으면 특별히 한정되는 것은 아니다.
- [0035] 또한 본 발명의 적합한 실시형태 중 하나는 상기 유리 페이스트를 도포한 후, 연화점을 초과하는 온도에서 소성 하여 봉착하는 공정을 갖는 것을 특징으로 하는 전자부품의 제조방법이다. 상기 전자부품이란, 예를 들면 반도 체 팩키지, 수정 진동자, MEMS 등을 들 수 있고, 400℃ 이하에서 봉착이 가능한 것으로부터 적합하게 이용할 수 있다.
- [0036] 또한 본 발명은 저온에서의 봉착에 적합하게 이용 가능한 것으로부터, 상기 소성 공정에 있어서 소성 온도를 400℃ 이하로 해도 된다. 또한 본 발명은 소성 온도가 400℃를 초과해도 당연히 이용 가능하다.
- [0037] 실시예
- [0038] 아래에 실시예 및 비교예를 들어 본 발명을 구체적으로 설명한다.
- [0039] 1: 유리 분말의 제작
- [0040] 원료 산화물로서 V₂O₅ 분말, TeO₂ 분말, BaO 분말, CaO 분말, MgO 분말, ZnO 분말, P₂O₅액(오르토인산), Fe₂O₃ 분말, NiO 분말, CoO 분말, Al₂O₃ 분말을 표 1의 No.1~No.14에 기재된 비율(wt%)이 되도록 혼합한 것(전량 50 g)을 백금 도가니에 수용하고, 전기로 내에서 약 1,100℃에서 30분간 용융하였다. 얻어진 용융물을 카본 상에 캐스팅하고, 유발로 분쇄함으로써 유리 분말을 얻었다. 또한 상기 캐스팅 시에 결정이나 미용융물이 발생하지 않았는지 확인하여, 문제 없이 유리화된 것은 ○, 그렇지 않은 것은 ×로 표 1, 2에 기재하였다.
- [0041] 얻어진 유리 분말에 대해서 연화점, 선팽창계수 및 유동성을 각각 조사하였다. 그 결과도 함께 표 1, 2에 나타 낸다. 또한 각 항목의 측정방법은 다음과 같다.
- [0042] <선팽창계수>
- [0043] 열기계 분석장치(리가쿠사 제조 TMA8310)에 의해 선팽창계수를 측정하였다. 이 측정은 유리 분말을 용융하고 이를 20 ㎜×5 ㎜∅(높이×직경)의 원기둥으로 성형하여, 윗면과 바닥면이 평행하게 성형된 것을 측정 시료로서 사용해 30~250℃까지 5℃/분으로 승온시켜 선팽창계수 α를 구하였다. 또한 표준 샘플에는 석영 유리를 사용하였다.
- [0044] <연화점>
- [0045] 시차열 분석장치(리가쿠사 제조 TG8120)에 의해 연화점을 측정하였다. 유발로 분쇄한 유리 분말을 10℃/분으로 숭온하여 얻어지는 DTA 곡선의 제2 변곡점을 연화점으로 하였다.
- [0046] <유동성>
- [0047] 얻어진 유리 분말에 대해서 핸드 프레스기를 사용하여 높이 10 mm×직경 10 mm∅의 원기둥 형상으로 프레스 성형하고, 350℃에서 10분간 가열하였다. 가열 후 상온까지 냉각하고, 냉각 후의 시료의 직경을 계측하였다. 계측 직경이 가열 전에 비해 20% 이상으로 확대된 경우(계측 직경 12 mm 이상)를 ◎, 10% 이상, 20% 미만까지 확대된 경우(계측 직경 11 mm 이상, 12 mm 미만)를 ○, 10% 미만까지 확대된 경우(11 mm 미만)를 △로 하여 유동성을 평가하였다. 또한 일부의 유리 분말에 대해서는 380℃에서 10분간 가열하고, 그 유동성에 대해서도 동일하게 평가하였다.

丑 1

wt%	실시예									
	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10
V ₂ O ₅	13	34. 7	42. 7	43	40	42. 5	44. 6	39. 5	39. 5	39. 5
TeO ₂	67	44. 9	44. 9	38	42	44. 6	46. 8	41. 4	41. 4	41. 4
Ba0	17	15. 4	9. 0	18	17	8. 9		16. 6	16. 6	16. 6
Mg0			9			2. 4				
Ca0		· ·					6. 9			
Zn0	3	5	1. 6	1	1	1. 6	1. 7	1. 5	1. 5	1. 5
Li ₂ 0			1. 8							
Fe ₂ O ₃						,		1		
NiO							100 300000		1	
Co0									e e	1
유리화	0	0	0	0	0	0	0	0	0	0
연화점 ℃	363	320	300	318	326	330	333	334	337	333
선팽창계수	160	140	175	145	155	137	133	146	142	149
×10 ⁻⁷ /K										
유동성	_	0	0	0	0	0	0	0	0 '	0
350℃										
유동성	0		-		_	0	0	0	0	0
380℃										

[0048]

丑 2

wt%	пла						
	No. 11	No. 12	No. 13	No. 14			
V ₂ O ₅	72	66	43. 2	55. 9			
TeO ₂	10	3	29. 8	39. 9			
Ba0	16	20	18	2. 7			
Zn0	2	5	7	1. 5			
A1203		4					
P ₂ O ₅		2					
Li ₂ 0			2				
유리화	×	×	0	0			
연화점 ℃		_	309	289			
선팽창계수	_	_	129	140			
×10 ⁻⁷ /K							
유동성	_		Δ	Δ			
350℃							
유동성	_	_	_	_			
380℃							

[0049]

- [0050] 상기에서 얻어진 유리 분말은 No.1~No.10은 모두 유동성이 양호하고, 연화점이 380℃ 미만이 되는 것으로, 봉착 재료로서 사용하기에 유용한 것이었다. 한편으로 No.11, 12는 유리 제작 시에 있어서 카본 상에 캐스팅한 단계에서 결정화되었기 때문에 그 후의 평가는 행하지 않았다. 또한 No.13, 14는 연화점이 낮지만 유동성이 양호하다고는 할 수 없고, 필러를 혼합하면 추가적으로 유동성의 저하가 예상되는 것으로부터 본 발명의 목적에는 부적합한 것이 되었다.
- [0051] 2 : 봉착 재료의 제작
- [0052] 상기에서 얻어진 유리 분말(No.2, 5, 6, 8)을 사용하여 표 3에 기재한 봉착 재료 a~f를 조제하고, 봉착 재료의 선팽창계수, 유동성을 측정하였다. 선팽창계수의 측정은 표 3의 함유량이 되도록 무기 필러와 유리 분말을 혼합한 후에 유리 분말을 용융하고, 전술한 유리 분말의 측정 시와 동일하게 열기계 분석장치로 20 ㎜×5 ㎜∅의 원기둥으로 성형한 것을 측정 시료로서 사용해 30~250℃까지 5℃/분으로 승온시켜 선팽창계수 α를 구하였다. 또한 표준 샘플에는 석영 유리를 사용하였다.
- [0053] 또한 유동성의 측정은 표 3의 함유량이 되도록 무기 필러와 유리 분말을 혼합하고, 핸드 프레스기를 사용하여 20 mm ∅의 원기둥 형상으로 프레스 성형한 후 380℃에서 10분간 가열하였다. 가열 후 상온까지 냉각하고, 냉각후의 시료의 직경을 계측하였다. 계측 직경이 가열 전의 사이즈에 대해 90% 이상인 경우(계측 직경 18 mm 이상)를 ○, 90% 미만인 경우(18 mm 미만)를 △로 하여 유동성을 평가하였다.

3

봉착 재료	유리	무기 필러	필러 함유량	선팽창계수	유동성
	분말 No.		vol%	×10 ⁻⁷ /K	
a	2	인산지르코늄	24	73	0
b	5	인산지르코늄	32	70	0
С	6	인산지르코늄	22	77	0
d	8	인산지르코늄	24	76	0
е	2	인산텅스텐지르코늄	22	80	0
f	2	β- 유크립타이트	15	104	0

[0054]

[0055]

인산지르코늄 또는 인산텅스텐지르코늄의 무기 필러를 사용한 a~e는 모두 선팽창계수가 $80\times10^{-7}/K$ 이하이고 양호한 유동성을 갖는 봉착 재료였다. 또한 유리 분말의 선팽창계수가 $150\times10^{-7}/K$ 이상인 No.5의 유리 분말을 사용한 b나 RO 성분으로서 MgO를 함유하는 No.6의 유리 분말을 사용한 c, Fe $_2$ O $_3$ 를 함유하는 No.8의 유리 분말을 사용한 d에 있어서 모두 선팽창계수가 $80\times10^{-7}/K$ 이하이고 양호한 유동성을 갖는 봉착 재료가 되는 것을 알 수 있었다. 또한 β -유크립타이트를 사용한 f는 무기 필러에 의해 선팽창계수가 내려갔으나, 인산지르코늄이나 인산텅스텐지르코늄을 사용한 경우와 비교하면 선팽창계수의 값이 높아졌다. 따라서 선팽창계수가 $80\times10^{-7}/K$ 이하인 봉착 재료의 경우는 인산지르코늄 또는 인산텅스텐지르코늄을 사용하는 것이 바람직하다.