Admitere * Universitatea Politehnica din București 2000 Disciplina: Algebră și Elemente de Analiză Matematică

- 1. Să se determine suma S a soluțiilor ecuației $x^3 4x^2 = 5x$.
 - a) S = 0; b) S = 6; c) S = 4; d) $S = \sqrt{2}$; e) S = 5; f) S = 2.
- 2. Să se calculeze $L = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{k+1}{10^k}$.
 - a) $L = \infty$; b) $L = \frac{10}{9}$; c) $L = \frac{10}{81}$; d) $L = \frac{1000}{9}$; e) $L = \frac{100}{81}$; f) $L = \frac{9}{10}$.
- 3. Să se determine $m \in \mathbb{R}$ dacă ecuația $m(x+1) = e^{|x|}$ are exact două soluții reale și distincte.
 - a) $m \in (1, \infty)$; b) $m \in (-\infty, -e^2) \cup (1, \infty)$; c) $m \in (-\infty, -e^2] \cup [1, \infty)$;
 - d) $m \in (-\infty, -e^2) \cup (0, 1)$; e) nu există m;
 - f) nici una dintre celelalte afirmații nu este adevărată.
- 4. Să se calculeze $\lim_{x\to 2} \frac{x^3-8}{r^2-4}$.
 - a) -4; b) 2; c) 3; d) ∞ ; e) 0; f) 1.
- 5. Să se calculeze $\ell = \lim_{n \to \infty} \int_0^2 \frac{|x-n|}{x+n} dx$.
 - a) $\ell=2$; b) $\ell=\infty$; c) $\ell=1$; d) limita nu există; e) $\ell=0$; f) $\ell=-3$.
- 6. Fie matricea $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$. Să se calculeze $B = \frac{1}{2} (A^2 + A)$.
 - a) $\binom{25}{58}$; b) $\binom{35}{58}$; c) $\binom{85}{52}$; d) $\binom{38}{55}$; e) $\binom{00}{00}$; f) $B = \frac{1}{2}A$.
- 7. Să se determine n natural dacă $C_n^4 = \frac{5}{6}n(n-3)$.
 - a) n = 3; b) n = 5; c) n = 4; d) n = 6; e) n = 12; f) nu există n.
- 8. Să se determine două numere reale strict pozitive x și y astfel încât

$$x + y = xy = x^2 - y^2.$$

- a) $x = \frac{3+\sqrt{5}}{2}$, $y = \frac{1+\sqrt{5}}{2}$; b) $x = \frac{3-\sqrt{5}}{2}$, $y = \frac{1+\sqrt{5}}{2}$; c) x = 0, y = 0; d) $x = \frac{3+\sqrt{5}}{2}$, $y = \frac{\sqrt{5}-1}{2}$; e) x = 1, y = 0; f) $x = \frac{1}{2}$, y = -1.
- 9. Câte numere complexe distincte z verifică relația $z \cdot \bar{z} = 1$?
 - a) 3; b) două; c) nici unul; d) 1; e) 4; f) o infinitate.
- 10. Să se determine $m \in \mathbb{R}$ dacă inecuația $e^{2x} + me^x + m 1 > 0$ este verificată pentru orice x real.
 - a) nu există m; b) $m \in (1, \infty)$; c) m = 1; d) $m \in (-\infty, 1]$; e) $m \in [-1, 1]$; f) $m \in [1, \infty)$.
- 11. Să se determine câtul împărțirii polinomului $f = X^3 + X^2 + 2X 3$ la $g = X^2 + 2X 3$.
 - a) X + 1; b) X 1; c) X + 2; d) X^2 ; e) X + 3; f) X + 4.
- 12. Să se calculeze f'(1) pentru funcția $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{x-1}{x^2 + 1}$.
 - a) 2; b) 0; c) 1; d) $\frac{3}{2}$; e) $\frac{1}{2}$; f) -3.
- 13. Să se calculeze $E = 0.02 \cdot \frac{314}{3.14} \cdot \sqrt{\frac{9}{4}}$.
 - a) E = 30; b) $E = \pi$; c) E = 3; d) $E = \sqrt{3}$; e) E = 1; f) E = 300.
- 14. Să se rezolve ecuația $\sqrt{x^2 + 1} 1 = 0$.
 - a) $x_{1,2} = \pm \sqrt{2}$; b) $x_{1,2} = \pm 1$; c) x = 2; d) $x_1 = 0$, $x_2 = \sqrt{2}$; e) x = 0; f) $x_{1,2} = \pm i$.

- 15. Să se calculeze suma primilor 20 de termeni ai unei progresii aritmetice (a_n) , $n \ge 1$, știind că $a_6 + a_9 + a_{12} + a_{15} = 20$.
 - a) 100; b) 50; c) nu se poate calcula; d) 0; e) 20; f) 2000.
- 16. Se consideră mulțimea $M = \{x^2 + x + 1 \mid x \in \mathbb{R}\}$. Atunci

a)
$$M = (\frac{3}{4}, \infty)$$
; b) $M = [\frac{3}{4}, \infty)$; c) $M = (-\infty, \frac{3}{4})$; d) $M = [-\frac{3}{4}, \frac{3}{4}]$; e) $M = \mathbb{R}$; f) $M = \emptyset$.

17. Să se determine elementul neutru pentru legea de compoziție

$$x \circ y = xy + 3x + 3y + 6$$

definită pe mulțimea \mathbb{R} .

- a) -2; b) 1; c) 0; d) 3; e) nu există; f) -4.
- 18. Să se calculeze aria mulțimii

$$M = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 0 \le x \le 1, \ 0 \le y \le xe^{x+1} \}.$$

a) $\ln 2$; b) e^2 ; c) 2e; d) e+1; e) e; f) $2\ln 2$.