

El producto tensorial de conjuntos dendroidales

Roger Brascó Garcés

9 de Febrero de 2022

Departamento de Matemáticas e Informática Universidad de Barcelona

Introducción

- 1. Nociones previas
- 2. Árboles como opéradas coloreadas
- 3. Conjuntos Dendroidales
- 4. Producto Tensorial
- 5. Conjunto de Shuffles
- 6. Conclusiones

Nociones previas

Categorías

Definición

Una categoría $\mathcal C$ consiste en:

$$\mathcal{C} = (\mathrm{Ob}(\mathcal{C}), \mathrm{hom}(\mathcal{C}), \circ, \mathrm{id})$$

Además, esta estructura cumple los siguientes axiomas:

- Asociatividad.
- Unidad.

Funtores

Definición

Sean $\mathcal C$ y $\mathcal D$ dos categorías. Un *funtor* F de $\mathcal C$ en $\mathcal D$, que denotaremos por $F\colon \mathcal C\to \mathcal D$ consiste en:

- Una aplicación $Ob(\mathcal{C}) \to Ob(\mathcal{D})$.
- Para cada par de objetos $A, B \in \mathcal{C}$ una aplicación

$$C(A, B) \longrightarrow D(F(A), F(B)).$$

Además, estas aplicaciones son compatibles con la composición y la unidad.

Opéradas

Definición

Una opérada P consiste en una sucesión de conjuntos $\{P(n)\}_{n\geq 0}$ junto con la siguiente estructura:

- Un elemento unidad $1 \in P(1)$.
- Un producto composición

$$P(n) \times P(k_1) \times \cdots \times P(k_n) \longrightarrow P(k)$$

para cada n y k_1, \ldots, k_n tal que $k = \sum_{i=1}^n k_i$.

• Para cada $\sigma \in \Sigma_n$ una acción por la derecha $\sigma^* : P(n) \to P(n)$.

Además el producto composición es asociativo, equivariante y compatible con la unidad.

Opéradas coloreadas

Definición

Sea C un conjunto. Una opérada C-coloreada P consiste en, para cada (n+1)-tupla de colores (c_1, \ldots, c_n, c) con $n \ge 0$, un conjunto $P(c_1, \ldots, c_n; c)$, junto con la siguiente estructura:

- Un elemento unidad $1_c \in P(c; c)$ para cada $c \in C$.
- Un producto composición con n (n+1)-tuplas de colores $(c_1, \ldots, c_n; c)$.
- Para cada elemento $\sigma \in \Sigma_n$ una acción por la derecha en sus entradas.

Además el producto composición es asociativo, equivariante y compatible con las unidades.

Definición

Sea P una opérada C-coloreada y Q una opérada D-coloreada. Un morfismo de opéradas $f: P \to Q$ consiste en una aplicaciones entre los conjuntos de colores

Árboles como opéradas

coloreadas

Formalismo de árboles

Sea *T* el siguiente árbol:

(2.1)

Árboles como opéradas coloreadas

Definición

Sea T un árbol planar con raíz. Denotaremos la opérada coloreada no-simétrica generada por T como $\Omega_p(T)$.

Categorías Ω_p y Ω

Definición

La categoría de árboles planares con raíz Ω_p es la subcategoría plena de la categoría de opéradas coloreadas no-simétricas cuyos objetos son $\Omega_p(T)$ para cada árbol T.

Definición

La categoría de árboles con raíz Ω es la subcategoría plena de la categoría de opéradas coloreadas cuyos objetos son $\Omega(T)$ para todo árbol T.

Conjuntos Dendroidales

Conjuntos Dendroidales

Definición

La categoría dSets de conjuntos dendroidales es la categoría de prehaces en Ω . Los objetos son funtores $\Omega^{\mathrm{op}} \to \mathrm{Set}$ y los morfismos vienen dados por las transformaciones naturales.

El conjunto X_T lo llamaremos conjunto de déndrices con forma T.

Producto Tensorial

Producto Tensorial de Boardman-Vogt

Producto Tensorial de Conjuntos Dendroidales

Conjunto de Shuffles

Shuffles

Н

Estructura de orden parcial

Н

Generar Shuffles en Python

Conclusiones

Conclusiones

Н

Gracias por vuestra atención