Multigrid Solver for Helmholtz/Poission Equation using PETSc

Yu-Hsuan Shih yhs264

PETSc - Portable, Extensible Toolkit for Scientific Computation

Time dependent Stokes Equation

$$u_t(x,t) + \nabla p(x,t) = \mu \nabla^2 u(x,t) + f(x,t)$$

$$\nabla \cdot u(x,t) = 0$$

Temporal Discretization Crank-Nicholson for Diffusion + Midpoint Rule for pressure and source

$$\frac{u^{n+1} - u^n}{\Delta t} + \nabla p^{n+\frac{1}{2}} = \mu \nabla^2 \left(\frac{u^{n+1} + u^n}{2}\right) + f^{n+\frac{1}{2}}$$
$$\nabla \cdot u^{n+1} = 0$$

=> Linear System to Solve KSP Matrix A Solver Preconditioner P

$$\begin{bmatrix} I - \frac{\mu\Delta t}{2}L^x & 0 & \Delta tG^x \\ 0 & I - \frac{\mu\Delta t}{2}L^y & \Delta tG^y \\ \Delta tD^x & \Delta tD^y & 0 \end{bmatrix} \begin{bmatrix} u^{n+1} \\ v^{n+1} \\ p^{n+\frac{1}{2}} \end{bmatrix} = \begin{bmatrix} \left(I + \frac{\mu\Delta t}{2}L^x\right)u^n + \Delta tf_u^{n+\frac{1}{2}} \\ \left(I + \frac{\mu\Delta t}{2}L^y\right)v^n + \Delta tf_v^{n+\frac{1}{2}} \end{bmatrix}$$

Step 1: Solve an analog of equation for an intermediate quantity (u^*,v^*)

$$\left[\left(I - \frac{\mu \Delta t}{2} L^x \right) u^* = \left(I + \frac{\mu \Delta t}{2} L^x \right) u^n + \Delta t f_u \right]$$

$$\left(I - \frac{\mu \Delta t}{2} L^y \right) v^* = \left(I + \frac{\mu \Delta t}{2} L^y \right) v^n + \Delta t f_v$$

Step 2: Project (u^*,v^*) onto the space of divergence-free fields (u^{n+1},v^{n+1})

$$-DG\phi = -L^{c}\phi = -\frac{1}{\Delta t}Du^{*}$$
$$\mathbf{u}^{n+1} = \mathbf{u}^{*} - \Delta tG\phi$$

Step 3: Correct the pressure term

$$p^{n+\frac{1}{2}} = \left(I - \frac{\mu \Delta t}{2} L^c\right) \phi$$

 $\mathbf{LG} = \mathbf{G}L^c$

Multigrid (V-cycle)

Cell-Centered

Cell-Faced

PCMGSetInterpolation

Restriction (Fine to Coarse)

Prolongation (Coarse to Fine)

Code Implementation

KSP (Stokes Equation)

$$\begin{bmatrix} I - \frac{\mu \Delta t}{2} L^x & 0 & \Delta t G^x \\ 0 & I - \frac{\mu \Delta t}{2} L^y & \Delta t G^y \\ \Delta t D^x & \Delta t D^y & 0 \end{bmatrix} \begin{bmatrix} u^{n+1} \\ v^{n+1} \\ p^{n+\frac{1}{2}} \end{bmatrix} = \begin{bmatrix} \left(I + \frac{\mu \Delta t}{2} L^x \right) u^n + \Delta t f_u^{n+\frac{1}{2}} \\ \left(I + \frac{\mu \Delta t}{2} L^y \right) v^n + \Delta t f_v^{n+\frac{1}{2}} \end{bmatrix}$$

PCShell (Projection Method)

KSP (Helmholtz Equation)

$$\left(I - \frac{\mu \Delta t}{2} L^x\right) u^* = \left(I + \frac{\mu \Delta t}{2} L^x\right) u^n + \Delta t f_u$$

PC (MultiGrid)

KSP (Poission Equation)
$$-DG\phi = -L^c\phi = -\frac{1}{\Delta t}Du^*$$

PC (MultiGrid)

Code Validation

Manufactured Solution

$$u(x,t) = 1 - 2\cos(2\pi(x-t))\sin(2\pi(y-t))$$

$$v(x,t) = 1 + 2\sin(2\pi(x-t))\cos(2\pi(y-t))$$

$$p(x,t) = -(\cos(4\pi(x-t)) + \cos(4\pi(y-t)))$$

Using GMRES + Projection Method PC

Order of Convergence, T=0.5 10^{-1} Particle 2 10^{-2} 10^{-3} Order of Convergence, T=0.5Particle 3 10^{-2} 10^{-4} 10^{-3} 10^{-2} 10^{-1}

Projection Method as a direct solver

MultiGrid Convergence

||Residual after 1 V-Cycle||₂ $\leq \rho$ ||Original Residual||₂ ρ independent of grid spacing $h = \frac{1}{N}$

Multigrid Method for Poission Equation

Smoother - Weighted Jacobi 2 smoothing sweeps/level

N	64		128		256	
#V-cycle	Residual	rho	Residual	rho	Residual	rho
0	1.28E+00		1.74E+00		2.14E+00	
1	1.81E-01	0.14	2.64E-01	0.15	3.48E-01	0.16
2	5.25E-02	0.29	7.89E-02	0.30	1.08E-01	0.31
3	1.1E-02	0.21	1.87E-02	0.24	2.84E-02	0.26
4	3.08E-03	0.28	5.55E-03	0.30	9.09E-03	0.32
5	7.98E-04	0.26	1.59E-03	0.29	2.88E-03	0.32
6	2.35E-04	0.30	4.90E-04	0.31	9.59E-04	0.33
7	6.99E-05	0.30	1.51E-04	0.31	3.20E-04	0.33
8	2.19E-05	0.31	4.80E-05	0.32	1.08E-04	0.34
9	6.98E-06	0.32	1.53E-05	0.32	3.68E-05	0.34
10	2.28E-06	0.33	4.99E-06	0.33	1.26E-05	0.34
11	7.49E-07	0.33	1.64E-06	0.33	4.31E-06	0.34
12	2.49E-07	0.33	5.49E-07	0.33	1.48E-06	0.34
13	8.29E-08	0.33	1.86E-07	0.34	5.13E-07	0.35
14	2.77E-08	0.34	6.37E-08	0.34	1.78E-07	0.35

MultiGrid - Effect of number of smoothing sweeps

-poission_mg_levels_ksp_max_it

More sweeps => Better smooth effect => More reduction on Residual More works Per V-Cycle

Effect of accuracy of the preconditioner

Number of GMRES iterations + Number of V-cyles in MultiGrid Solver pprox Total amount of work

Thanks!

Have a good winter vacation:)