Théo Guyard ML-MTP workshop - December 9th, 2024

Optimization methods for ℓ_0 -problems

Sparse optimization

Sparse optimization

Minimize a function with a sparse solution

Sparse optimization

Sparse signal

 $x \in R^n$

n pixels

	Feature 1	Feature 2		Feature n	Target
Sample 1	a _{1,1}	a _{1,2}		$a_{1,n}$	<i>y</i> ₁
Sample 2	a _{2,1}			$a_{2,n}$	
Sample 3	a _{3,1}	$A \in R^{m}$	< n	a _{3,n}	$y \in R^m$
Sample m	$a_{m,1}$			$a_{m,n}$	Ут

	Feature 1	Feature 2		Feature n	Target
Sample 1	a _{1,1}	a _{1,2}		$a_{1,n}$	<i>y</i> ₁
Sample 2	a _{2,1}			$a_{2,n}$	
Sample 3	a _{3,1}	$A \in \mathbb{R}^{m}$	× n	a _{3,n}	$y \in R^m$
Sample m	$a_{m,1}$			$a_{m,n}$	Ут

Features
$$\mathbf{A} \in \mathbf{R}^{m \times n} \longleftrightarrow \mathbf{weights} \ \mathbf{x} \in \mathbf{R}^n \Longrightarrow \mathbf{Target} \ \mathbf{y} = \phi(\mathbf{A}\mathbf{x})$$

	Feature 1	Feature 2		Feature n	Target
Sample 1	$a_{1,1}$	a _{1,2}		$a_{1,n}$	<i>y</i> ₁
Sample 2	a _{2,1}			a _{2,n}	
Sample 3	a _{3,1}	$A \in R^{mx}$	< n	a _{3,n}	$y \in R^m$
Sample m	$a_{m,1}$			$a_{m,n}$	Ут

Features
$$\mathbf{A} \in \mathbf{R}^{m \times n} \longleftrightarrow \mathbf{weights} \ \mathbf{x} \in \mathbf{R}^n$$
 Target $\mathbf{y} = \phi(\mathbf{A}\mathbf{x})$

Model accuracy Loss $\mathcal{L}_{\phi}(\mathbf{A}\mathbf{x},\mathbf{y})$

Model explicability
Use few features

	Feature 1	Feature 2		Feature n	Target
Sample 1	a _{1,1}			$a_{1,n}$	
Sample 2	a _{2,1}			a _{2,n}	
Sample 3	a _{3,1}	$A \in R^{m}$	×n	a _{3,n}	$y \in R^m$
Sample m	$a_{m,1}$	$a_{m,2}$		$a_{m,n}$	Ут

Features
$$\mathbf{A} \in \mathbf{R}^{m \times n} \longleftrightarrow \mathbf{Weights} \ \mathbf{x} \in \mathbf{R}^n$$
 Target $\mathbf{y} = \phi(\mathbf{A}\mathbf{x})$

Network design

Which edges to build to transport products from source to sink nodes?

flow conservation Dx < d

4/11

Sparse optimization

Minimize a function with a sparse solution

Constrained version

 $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x})$ subject to $\|\mathbf{x}\|_0 \le s$

Constrained version

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x})$$

subject to $\|\mathbf{x}\|_0 \le s$

Minimized version

$$\min_{\mathbf{x} \in \mathbf{R}^n} \|\mathbf{x}\|_0$$
 subject to $f(\mathbf{x}) \le \epsilon$

quantify sparsity $\|\mathbf{x}\|_0$

counts non-zeros

Constrained version

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x})$$
 subject to $\|\mathbf{x}\|_0 \le s$

Minimized version

$$\min_{\mathbf{x} \in \mathbf{R}^n} \|\mathbf{x}\|_0$$
 subject to $f(\mathbf{x}) \le \epsilon$

Regularized version

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

NP-hard to solve

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

NP-hard to solve

$\begin{aligned} & \textbf{Problem} \\ & \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x}) \end{aligned}$

NP-hard to solve

Problem $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ NP-hard to solve

Complexity-tractability balance

[Slide, tell what's my point with this talk]

Mixed-Integer Programming

Application

ML, Stats, Signal, Operation Research, ...

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Application

ML, Stats, Signal, Operation Research, ...

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

MIP formulation

Standardized expressions

ML, Stats, Signal, Operation Research, ...

Standardized expressions

Modelling framework

 $\begin{array}{c} \mathsf{Python} \to \mathsf{cvxpy} \\ \mathsf{Julia} \to \mathsf{JuMP} \\ \mathsf{C}{++} \to \mathsf{CMPL} \\ \mathsf{Matlab} \to \mathsf{YALMIP} \\ \dots \end{array}$

ML, Stats, Signal, Operation Research, ...

Standardized expressions

Problem solutions

Modelling framework

 $\mathsf{Python} \to \mathsf{cvxpy}$

 $\mathsf{Julia} \to \mathsf{JuMP}$

 $C++ \rightarrow \texttt{CMPL}$

 $\mathsf{Matlab} \to \mathtt{YALMIP}$

...

MIP – Formulation

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

MIP formulation

Use standardized expressions linear, quadratic, conic, ...

MIP - Formulation

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Lifted formulation

$$\begin{cases} \min \ f(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + h(\mathbf{x}) \\ \text{s.t. } x_i = 0 \implies z_i = 0, \ \forall i \\ \mathbf{x} \in \mathbf{R}^n, \ \mathbf{z} \in \{0, 1\}^n \end{cases}$$

MIP formulation

Use standardized expressions linear, quadratic, conic, ...

Lifted ℓ_0 -norm formulation

$$\|\mathbf{x}\|_0 = \mathbf{1}^{\mathrm{T}}\mathbf{z}$$
 with $\mathbf{x} \in \mathbf{R}^n$ and $\mathbf{z} \in \{0, 1\}^n$
if $x_i = 0 \iff z_i = 0$ for all $i \in [1, n]$

MIP - Formulation

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Lifted formulation

$$\begin{cases} \min \ f(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + h(\mathbf{x}) \\ \text{s.t. } x_i = 0 \implies z_i = 0, \ \forall i \\ \mathbf{x} \in \mathbf{R}^n, \ \mathbf{z} \in \{0, 1\}^n \end{cases}$$

MIP formulation

$$\begin{cases} \min \ f(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + h_{\min}(\mathbf{x}, \mathbf{z}) \\ \text{s.t. } \mathbf{x} \in \mathbf{R}^{n}, \ \mathbf{z} \in \{0, 1\}^{n} \end{cases}$$

MIP formulation

Use standardized expressions linear, quadratic, conic, ...

Lifted ℓ_0 -norm formulation

$$\|\mathbf{x}\|_0 = \mathbf{1}^{\mathrm{T}}\mathbf{z}$$
 with $\mathbf{x} \in \mathbf{R}^n$ and $\mathbf{z} \in \{0, 1\}^n$ if $x_i = 0 \iff z_i = 0$ for all $i \in [1, n]$

Logical constraint standardization

h(x)	$h_{\min}(\mathbf{x}, \mathbf{z})$
$Ind(\ \mathbf{x}\ _{\infty} \leq M)$	$Ind(-Mz \le x \le Mz)$
$\beta \ \mathbf{x}\ _2^2$	$\sum_{i=1}^{n} \beta \frac{x_i^2}{z_i}$

MIP - Hands-on with cvxpy

Sparse regression

Find x sparse such that $y \simeq Ax$

Optimization problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $h(\mathbf{x}) = \operatorname{Ind}(-M \le \mathbf{x} \le M)$

... ↓

MIP formulation

$$\left\{ egin{aligned} \min f(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} \ \mathrm{s.t.} & -M \mathbf{z} \leq \mathbf{x} \leq M \mathbf{z} \ \mathbf{x} \in \mathbf{R}^n, \mathbf{z} \in \{0,1\}^n \end{aligned}
ight.$$

\$ pip install cvxpy

```
import cvxpy as cp
from sklearn.datasets import make_regres
# Generate sparse regression data
A, y = make_regression()
# Define variables
n = A.shape[1]
x = cp.Variable(n)
z = cp. Variable(n, boolean=True)
# Define objective and constraints
objective = cp.Minimize(
    cp.sum_squares(A @ x - y) + 10 * cp.
constraints = [-M * z \le x, x \le M * z]
# Solve the problem using Gurobi
problem = cp.Problem(objective, constrai
problem.solve(solver=cp.GUROBI)
                                   10/11
```

MIP – Let's sum up

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pipeline

- 1) Introduce binary variable
- 2) Establish MIP formulation
- 3) Use generic MIP solvers

Pros

- ✓ Rich MIP literature
- ✓ Black-box solvers
- ✓ Convenient for practitioners

Cons

- X Mostly commercial solvers
- X Unable to exploit structure
- **X** Performance issues

Question time!

