Short Notes Test Document

Your Name

2025-02-03

1 Introduction

This document tests all the custom features of the **Short Notes** template.

1.1 Cross-referencing

We define a special vector below:

Definition 1.1 (Vectors of Zeros and Ones). A vector of zeros, denoted 0, is a vector where all components are zero. Similarly, a vector of ones, denoted 1, is a vector where all components are one.

As we saw in Definition 1.1 these special vectors have important properties.

1.2 Theorems and Proofs

Theorem 1.1 (Vector Addition). Let **0** be the zero vector. Then, for any vector **v**:

 $\mathbf{0} + \mathbf{v} = \mathbf{v}$.

1.2.1 Proof

Proof:

By the definition of $\langle \$ adding it to any vector does not change the vector:

 $\mathbf{0} + \mathbf{v} = \mathbf{v}$.

As shown in Theorem 1.1 the zero vector behaves as expected.

1.3 Example Applications

Example 1.2 (Vector Computation Example). Consider the vector $\mathbf{v}=(3,4)$. Then,

0 + v = (3, 4).

1.4 Important Notes and Warnings

🌟 Important

Key Concept

Understanding the role of the zero vector is fundamental in linear algebra.

Marning

Common Mistakes

Be careful to distinguish between scalar zero $\boldsymbol{0}$ and the zero vector $\boldsymbol{0}.$

1.5 Code Examples

We can compute with vectors in R:

```
v <- c(3, 4)
z <- c(0, 0)
v + z # Should return (3,4)
```

[1] 3 4

Inline calculation: The result of 2+2 is 4.

1.6 Conclusion

This document successfully tests:

- Theorem-like environments
- Cross-referencing
- Custom boxes (warnings, examples, important notes)
- Code execution
- Mathematical notation