计算物理A作业12

吕遨 PB19030789

1.作业题目

推导正方形格子点阵上键逾渗的重整化群变换表达式p'=R(p),求临界点 p_c 和临界指数v,与正确值相比较。

2.结果推导

2.1 重整化群方法

重整化的基本思想就是对体系的长度尺度连续不断地做变换,将体系元胞尺度由a变换成ba(ba应小于体系的相关长度 ξ),相继标度变换的结果产生出一个流向图,空间流向场趋向于若干特殊的不动点,这些点在标度变换下保持不变。

2.2 正方形格子的重整化

对于二维的正方形格子, $b=N^{1/d}=2$ 。

重整化群变化的基本思路是:

对于键逾渗, 重整化之后各个格点导通的条件如下图所示

则

$$p' = R(p)$$

= $p^5 + p^4(1-p)^2 + 4p^4(1-p) + 2p^3(1-p)^2 + 2p^3(1-p)^2 + 4p^3(1-p)^2 + 2p^2(1-p)^3$
= $p^5 + 5p^4(1-p) + 8p^3(1-p)^2 + 2p^2(1-p)^3$

临界点 p_c 满足

$$p_c = p_c^5 + 5p_c^4(1-p_c) + 8p_c^3(1-p_c)^2 + 2p_c^2(1-p_c)^3$$

解得

$$p_c = 0, p_c = 1, p_c = 0.5, p_c = -0.618034, p_c = 1.61803$$

其中只有 $p_c=0.5$ 是符合实际的非平凡解。这正是正方形格子键逾渗的临界点,其数值与下表里的模拟值完全一致。

表 $1.6.1.3-1$ 各种点阵下座逾渗与键逾渗的逾渗阈值 p_c								
维数	点阵	座逾渗 p_c	键逾渗 p_c	配位数				
2	三角形	0.500000	0.34729	6				
2	正方形	0.592746	0.50000	4				
2	Kagome	0.6527	0.45	4				
2	蜂房形	0.6962	0.65271	3				
3	面心立方	0.198	0.119	12				
3	体心立方	0.246	0.1803	8				
3	简立方	0.3116	0.2488	6				
3	金刚石	0.428	0.388	4				
3	无规密堆积	0.27(实验值)						
4	简立方	0.197	0.160	8				
5	简立方	0.141	0.118	10				
6	简立方	0.107	0.094	12				

2.3 临界指数v

关联长度的变换 $\xi'=\xi/b$,由于在 $p\sim p_c$ 处, $\xi(p)\propto |p-p_c|^{-v}$,故有

$$|p'-p^*|^{-v}=b^{-1}|p-p^*|^{-v}$$

将 $p^*=R(p^*)$ 在 p^* 附近作Taylor展开,取一阶近似有

$$p'-p^*=R(p)-R(p^*)pprox \lambda(p-p^*)$$

其中
$$\lambda = rac{\mathrm{d}R(p)}{\mathrm{d}p}|_{p=p_c}$$

则

$$|p'-p^*|^{-arphi}=\lambda^{-arphi}|p-p^*|$$

所以

$$b = \lambda^v$$
$$v = \frac{\ln b}{\ln \lambda}$$

在本题中
$$\lambda = rac{\mathrm{d}R(p)}{\mathrm{d}p}|_{p=p_c} = 1.625$$

故
$$v = \frac{\ln 2}{\ln 1.625} = 1.428$$

计算结果与准确值 4/3 很接近。

模型	物理量	函数	临界指数	d = 2	d = 3	<i>d</i> ≥ 6
逾渗模型	逾渗概率	$P_{\infty}(p) \sim (p - p_c)^{\beta}$	β	5/36	0.4	1
	集团平均大小	$S(p) \sim p - p_c ^{-\gamma}$	γ	43/18	1.8	1
		$\left \xi(p)\sim\left p-p_{c}\right ^{-\nu}\right $	υ	4/3	0.9	1/2
	电导率	$\sigma(p) \sim (p - p_c)^t$	t	1.1	1.65	3

3.总结

本题用二维正方形格子的键逾渗模型就准确地算出了临界点的数值,说明这一模型是比较特殊的。

临界指数v的计算值与理论值也很接近,误差应该与所取元胞的边界效应有关。当b增大时计算精度应该可以提高。