

فصل چهارم: ساختارهای عمومی مدل در شناسایی - انواع ساختارها و اغتشاش - مدلسازی نویز و اغتشاش - مدلسازی نویز و اغتشاش - مبانی اولیه و معرفی روش - حالت بازگشتی - حالت بازگشتی - کارگاه نرم افزاری - فصل ششم: ملاحظات روش های مبتنی بر - فصل ششم: ملاحظات روش های مبتنی بر - دیر روش ها - دیر روش ها - اصلاحات روش


```
- متن اصلی درس (۵۰ درصد در امتحان پایان ترم)
ارزش گذاری – شبیه سازی (۴۰ درصد در پروژه ها)
- تحقیق (۱۰ درصد در قالب پروژه یا سمینار) جستجوی
مقاله و مدلسازی
ارزش گذاری درس: ۱۲ نمره پایان ترم + تمرین (۳ نمره) + پروژه (۵
نمره) + سمینار ارفاقی (۱ نمره)
مقاله ارسال شده!
```

عر اجع

System Identification, Lennart Ljung, 2nd edition, 1999.

Optimal state estimation, Dan Simon, 2006. Nonlinear System Identification, Oliver Nelles, 2001.

System Identification, Karel J. Keesman, 2011.

شناسایی سیستم (خطی)، مهدی کراری، دانشگاه امیر کبیر، ۱۳۹۰ شناسایی سیستم (غیرخطی)، مهدی کراری، دانشگاه امیر کبیر، ۱۳۹۱

دیدگاه های مختلف در مدلسازی

• جعبه سفید (White box) مدلسازی تحلیلی

مدلی که بر اساس روابط ریاضی مشخص و بر پایه اصول فیزیکی و علوم مشابه بدست می آید.

در این حالت باید تک تک پارامترهای سیستم با روشهای جداگانه ای استخراج شده باشد.

مساله خطاهای محاسباتی و نامعینی ها

Scroll to take a tour

مقدمه ای بر شناسایی سیستم

• جعبه سیاه (Black box) مدلسازی آزمایشی مدلسازی بر اساس صرفا استفاده از داده های ورودی یا خروجی سیستم.

در این روش آزمایش مبنای اصلی استخراج داده ها می باشد.

مساله وجود نویز در خروجی سیستم و ایجاد انحراف معین یا اتفاقی در داده ها پردازش داده ها و عملیات فیلترینگ

مساله ارزیابی مدل (Model validation)

• جعبه خاکستری (Gray box) مدلسازی ترکیبی مدلسازی بر پایه ترکیب نگاه تحلیلی و آزمایشی دانش قبلی Priori knowledge دانش قبلی وش ابتدا ساختار مدل بر اساس تحلیل های ریاضی مشخص می شود سپس پارامترها در فرایند آزمایشی ورودی خروجی بدست خواهند آمد. اکثر روش های شناسایی تدریس شده شامل این نگاه هستند.

	White box	Gray box	Black box
Information sources	First principles insights	Qualitative knowledge Some insights + some data	Experiments data
Features	Good extrapolation Good understanding Scalable		Short development time Little domain expertise req. Can be used for not understood proc.
Drawbacks	Time consuming Detailed domain expertise req. Knowledge restricts accuracy Only for well understood processes		Not reliable extrapolation Not scalable Data restricts accuracy Little understanding
Application areas	Planning, construction, design, rather simple processes		Only for existing process Rather complex proces

شناسایی پارامترها و شناسایی حالت ها

Parameters estimation and state estimation

یکسان بودن مبانی ریاضی هر دو موضوع

متفاوت بودن كاربردها

تخمین پارامترهای روی خط با کاربرد در کنترل کننده های تطبیقی تخمین متغیرهای وضعیت و موضوع مشاهده گرهای حالت، فیلترهای کالمن

Scroll to take a tour

مقدمه ای بر شناسایی سیستم

- ملاحظات شناسایی سیستم ها
- فرکانس نمونه برداری
- نوع متغیرها و اندازه گیری آنها
 - انتخاب ورودی
- سخت افزارهای مورد استفاده
- شناسایی روی خط در حلقه کنترل
 - شناسایی در کاربری تله متری

تقسیم بندی روش های کلی شناسایی

۱ – روش های یکباره: یک بار آزمایش از دستگاه / خاموش کردن دستگاه /

یک بار تحلیل اطلاعات ورودی — خروجی (خارج خط)

۲ – روش های تکراری: یک بار آزمایش از دستگاه / خاموش کردن دستگاه /

چند بار استفاده از اطلاعات و بهبود نتایج (خارج خط)

۳ – روش های بازگشتی: دستگاه در طول آزمایش روشن / استفاده از اطلاعات گام قبل (روی خط)

Scroll to take a tour

مقدمه ای بر شناسایی سیستم

نام لاتين		نام روش	
Classical Methods	CM	روش های کلاسیک	
Ordinary Least Square	OLS	حداقل مربعات معمولی	
Weighted Least square	WLS	حداقل مربعات ورنی	
Generalized Least Square	GLS	حداقل مربعات تعميم يافته	روش های یکباره
Bayes Estimation	BE	تخمين بيز	
Maximum Likelihood	ML	حداكثر احتمال وقوع	

		bu	قدمه ای بر شناسایی سید
نام لاتين		نام روش	
Iterative Generalized Least Square	IGLS	حداقل مربعات تعمیم یافته تکراری	
Iterative Instrumental Variables	IIV	متغیرهای کمکی تکراری	روش های تکراری
Iterative Maximum Likelihood	IML	حداکثر احتمال وقوع تکراری	
Prediction Error Method	PEM	روش پیش بینی خطا	

		ایی سیستم	مقدمه ای بر شناسا
نام لاتين		نام روش	
Recursive Least Square	RLS	حداقل مربعات بازگشتی	
Recursive Eeneralized Least Square	RELS	حداقل مربعات تعميم يافته باز گشتى	
Recursive Instrumental Variables	RIV	متغیرهای کمکی بازگشتی	
Recursive Maximum Likelihood	RML	حداکثر احتمال وقوع بازگشتی	روش های بازگشتی
Extended Matrix Method	EMM	روش ماتريس توسعه يافته	
Stochastic Approximation	SA	تقريب تصادفي	
Orthogonal Projection Algorithm	OPA	تصوير متعامد	

- گسسته سازی معادلات فضای حالت سیستم LTI
 - سیستم های دیجیتال و آنالوگ
 - سیستم های پیوسته و گسسته
 - مزایا و معایب
- مساله تبدیل تابع از فضای ریاضی پیوسته به دنباله و ریاضیات دنباله ها
- موضوع نمونه برداری سیستم های پیوسته مهمترین مساله گسسته سازی
 - مساله معیار نمونه برداری
- Byquist Sampling Theorem قضیه نمونه برداری نایکویست

24

Byquist Sampling Theorem قضيه نمونه برداری نایکویست

بر اساس این قضیه همواره باید فرکانس نمونه برداری ω از دوبرابر بزرگترین فرکانس سیستم مورد بررسی بزرگتر باشد یعنی: (البته در عمل بزرگتر)

$$\omega_s > 2\omega$$

چرا؟

فرض کنید یک تابع سینوسی داریم با T و ϖ و فرض کنید که حالت های مختلف نمونه برداری برای گسسته سازی آن مورد توجه باشد.

الف) حالتی که ts>T

ب) حالتی که T/2<ts<T

ج) حالتی که ts<T/2

25

مقدمه ای بر سیستم های گسسته در صورتی که قاعده نمونه برداری رعایت مساله تداخل یا Aliasing اتفاق می افتد. عوضوع زمان نمونه بردای ارتباط مهمی با گام های حل مساله Step size دارد. فرایند عملی گسسته سازی الطوها عملی الماط طومنوو

 $\mathbf{x}'(t) = A\mathbf{x}(t) + Bu(t)$

 $\mathbf{x}[n+1] = A_d \mathbf{x}[n] + B_d u[n]$

گسسته سازی معادلات فضای حالت LTI می خواهیم معادله فضای حالت روبرو را به شکل زیر گسسته نماییم:

u[n] = u(nT) for $nT \le t < (n+1)T$ $t_0 = nT$ t = (n+1)T لذا معلوم و مجهول ها مشخص هستند. فرضیات:

 $\mathbf{x}(t) = \phi(t - t_0)\mathbf{x}(t_0) + \int_{t_0}^t \phi(t - \tau)Bu(\tau) d\tau$

و از حل تحلیلی داشتیم:

30

$$\mathbf{x}((n+1)T) = \phi(T)\mathbf{x}(nT) + \int_{nT}^{(n+1)T} \phi((n+1)T - \tau)Bu(nT) d\tau$$

$$\mathbf{x}[n+1] = \phi(T)\mathbf{x}[n] + \int_{nT}^{(n+1)T} \phi(nT + T - \tau) d\tau Bu[n]$$

$$\mathbf{x}[n+1] = A_d \mathbf{x}[n] + B_d u[n]$$

$$A_d = \phi(T) = e^{AT}$$

$$B_{d} = \int_{nT}^{(n+1)T} \phi(nT + T - \tau) d\tau B^{\sigma = nT + T - \tau} - \int_{T}^{0} \phi(\sigma) d\sigma B$$
$$= \int_{0}^{T} \phi(\tau) d\tau B$$

مقدمه ای بر سیستم های گسسته

$$A_{d} = e^{AT} = \sum_{m=0}^{\infty} \frac{A^{m} T^{m}}{m!} = I + AT \sum_{m=0}^{\infty} \frac{A^{m} T^{m}}{(m+1)!} = I + AT \Psi$$

$$B_{d} = \int_{0}^{T} \phi(\tau) d\tau B = \int_{0}^{T} \sum_{m=0}^{\infty} \frac{A^{m} \tau^{m}}{m!} d\tau B = \sum_{m=0}^{\infty} \frac{A^{m} T^{m+1}}{(m+1)!} B = \Psi TB$$

$$\Psi = \sum_{m=0}^{\infty} \frac{A^m T^m}{(m+1)!}$$

$$\cong I + \frac{AT}{2} \left\{ I + \frac{AT}{3} \left\{ I + \dots + \frac{AT}{N-1} \left(I + \frac{AT}{N} \right) \right\} \dots \right\}$$

مقدمه ای بر سیستم های گسسته
$$\begin{bmatrix} x_1'(t) \\ x_2'(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_s(t)$$

$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \text{ and } u_s(t) = 1 \ \forall \ t \ge 0$$

$$\phi(t) = L^{-1} \{ [sI - A]^{-1} \} = L^{-1} \left\{ \begin{bmatrix} s & -1 \\ 0 & s+1 \end{bmatrix}^{-1} \right\} = \begin{bmatrix} 1 & 1 - e^{-t} \\ 0 & e^{-t} \end{bmatrix}$$

$$A_d = \phi(T) = \begin{bmatrix} 1 & 1 - e^{-T} \\ 0 & e^{-T} \end{bmatrix}$$

$$B_d = \int_0^T \phi(\tau) d\tau B = \int_0^T \begin{bmatrix} 1 & 1 - e^{-\tau} \\ 0 & e^{-\tau} \end{bmatrix} d\tau \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} T - 1 + e^{-T} \\ 1 - e^{-T} \end{bmatrix}$$

$$X(z) = \mathcal{Z}[x(t)] = \mathcal{Z}[x(kT)] = \sum_{k=0}^{\infty} x(kT)z^{-k}$$
 $X(z) = \mathcal{Z}[x(k)] = \sum_{k=0}^{\infty} x(k)z^{-k}$
 $X(z) = x(0) + x(T)z^{-1} + x(2T)z^{-2} + \dots + x(kT)z^{-k} + \dots$
 $X(z) = \mathcal{Z}[1(t)] = \sum_{k=0}^{\infty} 1z^{-k} = \sum_{k=0}^{\infty} z^{-k}$
 $= 1 + z^{-1} + z^{-2} + z^{-3} + \dots = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}$
 $y/u = G(z) = y(t) - y(t-1) = u(t) = y(t) = u(t) + y(t-1)$

Sequence	Transform	ROC	
1. δ[n]	1	All z	
2. u[n]	$\frac{1}{1-z^{-1}}$	z > 1	تبدیل Z
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1	
4. $\delta[n-m]$	z ^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)	
5. $a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a	
$6a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a	
7. $na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a	
$8na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a	
9. $[\cos \omega_0 n]u[n]$	$\frac{1 - [\cos \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1	
10. $[\sin \omega_0 n]u[n]$	$\frac{[\sin \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1	
11. $[r^n \cos \omega_0 n] u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-1}}$	\overline{z} $ z > r$	
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}}$		
13. $\begin{cases} a^n, & 0 \le n \le N-1, \\ 0, & \text{otherwise} \end{cases}$		z > 0	

Laplace Domain	Time Domain (note)	Z Domain (t=kT)	
1	δ(t) unit impulse	1	
$\Gamma(s) = \frac{1}{s}$	γ(t) (note)	<u>z</u> z-1	تبديل Z
$\frac{1}{s^2}$	t	$T\frac{z}{(z-1)^2}$	
$\frac{2}{s^3}$	t²	$T = \frac{z}{(z-1)^{2}}$ $T^{2} = \frac{z(z+1)}{(z-1)^{3}}$	
n! s ⁽ⁿ⁺¹⁾	t ⁿ		
1 s+a	e ^{-at}	$\frac{Z}{Z - e^{-aT}}$	
	$b^k \qquad \left(b = e^{-aT}\right)$	$\frac{z}{z-b}$	
$\frac{1}{(s+a)^2}$	te ^{-at}	$ \frac{z}{z - e^{-aT}} $ $ \frac{z}{z - b} $ $ T \frac{ze^{-aT}}{(z - e^{-aT})^2} $	
$\frac{1}{s(s+a)}$	$\frac{1}{a} \big(1 - e^{-at} \big)$	$\frac{z \left(1-e^{-aT}\right)}{a \left(z-1\right) \left(z-e^{-aT}\right)}$	
$\frac{1}{(s+a)(s+b)}$	$\frac{e^{-at}-e^{-bt}}{\left(b-a\right)}$	$\frac{z \left(e^{-aT}-e^{-bT}\right)}{\left(b-a\right)\left(z-e^{-aT}\right)\left(z-e^{-bT}\right)}$	
$\frac{1}{s(s+a)(s+b)}$	$\frac{1}{ab} \left(1 - \frac{be^{-at} - ae^{-bt}}{(b-a)} \right)$		

Zتبديل

سیستم های گسسته

$$G(s) \rightarrow G(z)$$
 تبدیل z

$$\frac{y(s)}{u(s)} = G(s) = \frac{a_n s^n + a_{n-1} s^{n-1} + \dots + a_0}{b_m s^m + b_{m-1} s^{m-1} + \dots + b_0}$$

$$\frac{y(t)}{u(t)} = \frac{B(z)}{A(z)} = \frac{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_n z^{-n}}{1 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_n z^{-n}}$$

موضوع تولید چند جمله ای های گسسته

