ПРОТОКОЛ ОБМЕНА ДАННЫМИ «GPS» МЕЖДУ ПЛАТФОРМОЙ МОНИТОРИНГА И JK-BMS

Техническая документация V1.6b

Аннотация

Протокол общения по UART через порт GPS между платой JK-BMS и терминалом мониторинга.

Вступление

Перевод официальной документации от JiKong на протокол обмена GPS, так он называется в некоторых документах. Обмен происходит через одноименный порт GPS, который представляет собой RS232-TTL(UART) интерфейс с логическими уровнями 3.3В.

1. Содержание

Этот протокол определяет протокол связи GPS, на одноименном порту BMS, между платформой мониторинга и платой защиты BMS, а также формат сообщения, режим передачи, режим связи и т.д.

2. Справочные стандарты

Для связи используется передача TCP в 2G GPRS, CAT 1 в 4G, режим интерфейса SOCKET, последовательный порт RS232-TTL, пользовательский формат содержимого сообщения и скорость передачи данных 115200 бод.

3. Топология сети

Этот протокол представляет собой режим «точка-точка» или режим шины между BMS, GPS, Bluetooth PC-хостом и терминалом.

4. Содержание протокола

4.1. Правила коммуникации

В процессе связи оборудование имеет как активный отчетный кадр, так и пассивный ответный кадр. Подробности см. в формате данных связи.

Интервал между пакетами должен составлять не менее 100 мс, а самый длинный ответный пакет не должен превышать 5 секунд при регулярной трансляции.

Если BMS находится в спящем режиме, отправьте информацию об активации на управляющую сторону. Активируйте BMS, а затем установите связь.

4.2. Формат кадра

Кадр — это базовая единица передачи информации. Он включает заголовок, длину, номер терминала, команду, источник кадра, тип передачи, информационное поле, номер записи, конечный идентификатор и контрольную сумму (таблица 4.1).

Если в единице данных нет обязательного описания, младший байт находится справа, а старший байт — слева. Отправка заключается в отправке сначала старшего байта, а затем младшего байта.

Таблица. 4.1 Формат кадра

Номер	Содержимое кадра	Длина	Примечание
1	Заголовок кадра	2	Заголовок кадра: «NW» (0х4Е57) в кодировке UTF-8
2	Длина кадра	2	Длина кадра в байтах
3	Hомер терминала BMS	4	4-байтовый идентификатор
4	Команда	1	См. описание команд.
5	Источник кадра	1	0x00: BMS, 0x01: Bluetooth, 0x02: GPS, 0x03: PC-хост
6	Тип передачи	1	0x00: чтение данных, 0x01: ответный кадр, 0x02: активная загрузка BMS
7	Информационное поле	N	Регистр и данные
8	Зарезервировано	1	Зарезервирован для шифрования
9	Номер записи	3	Это номер записи запроса/ответа.
10	Завершающий идентификатор	1	0x68
11	Зарезервировано	2	Временно не используется
12	Контрольная сумма	2	Checksum16, (раздел 4.2.9)

4.2.1 Заголовок кадра

2 байта.

0x4e(«N») – первый байт (старший) 0x57(«W») – второй байт (младший

4.2.2 Длина кадра

2 байта.

Все байты данных кадра, за исключением первых двух символов (заголовка кадра), включают контрольную сумму и само поле длины.

4.2.3 Номер терминала BMS

4 байта.

FF FF FF имеет максимальный 8-битный административный резервный номер и младший 24-битный номер терминала. (Старший байт — это значение по умолчанию 0x00, а младшие 3 байта — это одномерный идентификационный номер.)

4.2.4 Команды

Таблица. 4.2 Описание команд

Код команды	Описание команды	Примечание
0x01	Директива активации	Когда BMS переходит в спящий режим, сторона управления должна сначала активировать команду для связи с BMS. После ответа выполните другие действия.
0x02	Запись регистра	Настройка инструкций параметров BMS
0x03	Чтение регистра	Чтение данных регистра BMS
0x05	Директивы для пароля	Чтобы изменить параметр, первая команда должна быть корректной, прежде чем его можно будет изменить.
0x06	Прочитать все регистры	Прочитать всю таблицу регистров

4.2.5 Источника кадра

1 байт.

0x00 - BMS

0x01 - Bluetooth

0x02 - GPS

0х03 - РС-хост (главный компьютер)

4.2.6 Тип передачи

1 байт.

0x00 – запрос к BMS

0x01 -ответ от BMS

0x02 – активная загрузка BMS

Если сначала будут запущены Bluetooth, GPS или PC-хост от BMS ответ будет равен 0x01.

4.2.7 Информационное поле

N – байт.

Поле регистра и данных этого регистра, если эти данные есть. Зависит от регистра и действий над ним.

4.2.8 Номер записи

3 байта.

Это номер записи запроса/ответа.

4.2.9 Завершающий идентификатор

1 байт.

0x68

4.2.10 Контрольная сумма

Контрольная сумма определяется как сумма всех данных от начала и до конца.

4.2.11 Формат данных общения

Пример:

Запрос на чтение данных GPS (всех)

Номер	Содержимое кадра	Длина	Примечание
1	Заголовок кадра	2	Заголовок кадра: «NW» (0х4Е57), в кодировке UTF-8
2	Длина кадра	2	Длина кадра в байтах
3	Hомер терминала BMS	4	4-байтовый идентификатор
4	Команда	1	См. описание команд
5	Источник кадра	1	0x01 – Bluetooth 0x02 – GPS 0x03 – PC- хост
6	Тип передачи	1	0х00 - чтение данных
7	Регистр	1	Регистр данных (таблица 5.1), или прочитать все регистры (0x00)
8	Зарезервировано	1	
9	Номер записи	3	Номер записи запроса.
10	Завершающий идентификатор	1	0x68
11	Зарезервировано	1	
12	Контрольная сумма	3	Checksum16, (раздел 4.2.9)

Ответ от BMS

Номер	Содержимое кадра	Длина	Примечание
1	Заголовок кадра	2	Заголовок кадра: «NW» (0х4Е57), в кодировке UTF-8
2	Длина кадра	2	Длина кадра в байтах
3	Hомер терминала BMS	4	4-байтовый идентификатор
4	Команда	1	См. описание команд.
5	Источник кадра	1	0x00 - BMS
6	Тип передачи	1	0x01 - ответный кадр от BMS
7	Регистр + Данные	1+N	Регистр и данные этого регистра
8	Зарезервировано	1	
9	Номер записи	3	Номер записи ответа
10	Завершающий идентификатор	1	0x68
11	Зарезервировано	1	
12	Контрольная сумма	3	Checksum16, (раздел 4.2.9)

Пример:Запрос на запись данных GPS (одиночных)

Номер	Содержимое кадра	Длина	Примечание
1	Заголовок кадра	2	Заголовок кадра: «NW» (0х4Е57), в кодировке UTF-8
2	Длина кадра	2	Длина кадра в байтах
3	Hомер терминала BMS	4	4-байтовый идентификатор
4	Команда	1	См. описание команд
5	Источник кадра	1	0x01 – Bluetooth 0x02 – GPS 0x03 – PC-хост
6	Тип передачи	1	0x02 - запись данных в BMS
7	Регистр + Данные	1+N	Регистр и сами данные
8	Зарезервировано		
9	Номер записи	3	Номер записи ответа
10	Завершающий идентификатор	1	0x68
11	Зарезервировано		
12	Контрольная сумма	3	Checksum16, (раздел 4.2.9)

Ответ от BMS

Номер	Содержимое кадра	Длина	Примечание
1	Заголовок кадра	2	Заголовок кадра: «NW» (0х4Е57), в кодировке UTF-8
2	Длина кадра	2	Длина кадра в байтах
3	Hомер терминала BMS	4	4-байтовый идентификатор
4	Команда	1	См. описание команд
5	Источник кадра	1	0x01 – Bluetooth 0x02 – GPS
			0х03 – РС- хост
6	Тип передачи	1	0x01 - ответный кадр от BMS
7	Регистр	1	Регистр записанных данных (таблица 5.1);
	Зарезервировано	1	
8	Номер записи	3	Номер записи ответа
9	Завершающий идентификатор	1	0x68
	Зарезервировано	1	
10	Контрольная сумма	3	Checksum16, (раздел 4.2.9)

Примечание по коду подписи: (идентификационный код фоновых данных 0х00 при чтении всех данных)

4.2.12 Формат расширенного ответа

I	Начальный блок	Блок напряжений	Блок регистров	Конечный блок
	11 байт	2+3*N байт	221 байт	9 байт

Подробное рассмотрение в разделе 6

5. Регистры данных BMS

Таблица. 5.1 Описание идентификаторов

R/W	ID	Название	Длина	Примечание
R	0x79	Напряжение одной ячейки (Cells Voltage)	3*N	Первый байт — это номер ячейки, за которым следует значение напряжения в мВ (разрешение 0.001В), при считывании всех данных после 0х79 следует 1 байт длины блока данных, а затем набор из трех байтов представляет напряжение ячейки. Пример:(0x140EF9) — напряжение на 0x14=20-й ячейке 0x0EF9=3833*0.001=3.833В
R	0x80	Температура MOSFET (MOS Temp)	2	Более 100 процентов температур в диапазоне 0–140 (от -40 до 100°С) являются отрицательными, например, 101 соответствует минус 1 градусу (100 эталон) Пример:0x001B=27°С
R	0x81	Температура датчика 1 (Battery T1)	2	0-140 (-40 до 100°С), часть, превышающая 100, является отрицательной температурой, как указано выше (100 эталон) Пример:0x001E=30°С
R	0x82	Температура датчика 2 (Battery T2)	2	0-140 (-40 до 100°С), часть, превышающая 100, является отрицательной температурой, как указано выше (100 эталон) Пример:0x001E=30°С
R	0x83	Общее напряжение батареи	2	Общее напряжение на батарее в мВ (разрешение 0.01В). <u>Пример:</u> 0x0DAC=3500*0.01=35.00В

R	0x84	Ток батареи	2	Потребляемый ток батареи в мА, значение беззнаковое (разрешение 0.01A) 10000(10000-11000)*0,01=-10,00A (разряд) (10000–9500)*0,01=5,00 A (зарядка) Примечание. По 0хС0=0х01 переопределяет данные тока По 0х84, единица измерения — 10 мА, старший бит — 0 означает разрядку, 1 означает зарядку Если разряд 20A, передаваемые данные 2000 (0х07D0) Если зарядка 20A, передаваемые данные 34768 (0х87D0)
R	0x85	Уровень заряда батареи (Remain Battery)	1	Уровень заряда батареи SOC 0 - 100% Пример: 0x47=71%
R	0x86	Количество датчиков NTC	1	Количество выносных датчиков температуры – 2, 4 Пример: 0x02=2 датчика
R	0x87	Количество циклов батареи (Cycle Count)	2	Количество полных циклов зарядаразряда батареи. Пример: 0xCE=206 циклов
	0x88			
R	0x89	Общая, циклическая емкость батареи (Cycle Capacity)	4	Отданная емкость за весь период работы, значение в Ач (разрешение 1Ач) Пример: 0x00000296=662Ач
R	0x8A	Общее количество ячеек батареи	2	Количество ячеек, рядов, которые включены последовательно в батарее. Пример: 0x0014=20 ячеек, рядов
R	0x8B	Предупреждающие и аварийные сообщения	2 (маска)	Предупреждения батареи и BMS в битовом виде. В нормальном состоянии значение 0х0000, все биты равны 0. Побитовая расшифровка в таблице 5.2
R	0x8C	Информация о состоянии BMS	2 (маска)	Информация о состоянии BMS в битовом виде. Побитовая расшифровка в таблице 5.3

	0x8D			
RW	0x8E	Общая защита от перенапряжения	2	Максимально допустимое напряжение на батарее в мВ (разрешение 0.01В, диапазон значений 1000 – 15000)
				Пример: 0x20D0=8400*0.01=84.00В
RW	0x8F	Общая защита от пониженного напряжения	2	Минимально допустимое напряжение на батарее в мВ (разрешение 0.01В, диапазон значений 1000 – 15000) Пример: 0x15E0=5600*0.01=56.00В
RW	0x90	Защита от перенапряжения ячейки	2	1000 – 4500мВ
RW	0x91	Напряжение восстановления перенапряжения ячейки	2	1000 — 4500мВ
RW	0x92	Задержка защиты от перенапряжения ячейки	2	1 – 60 сек
RW	0x93	Напряжение защиты от пониженного напряжения ячейки	2	1000 – 4500мВ
RW	0x94	Напряжение восстановления пониженного напряжения ячейки	2	1000 — 4500мВ
RW	0x95	Задержка защиты от пониженного напряжения ячейки	2	1 – 60 сек
RW	0x96	Значение защиты от разницы напряжений ячеек	2	0 – 1000мВ
RW	0x97	Значение защиты от сверхтока разряда	2	1 – 1000A
RW	0x98	Задержка перегрузки по току разрядки	2	1 – 60 сек
RW	0x99	Значение защиты от сверхтока зарядки	2	1 – 1000A
RW	0x9A	Задержка перегрузки по току зарядки	2	1 – 60 сек
RW	0x9B	Начальное напряжение балансировки	2	2000 — 4500мВ
RW	0x9C	Разница напряжений для включения балансировки	2	10 – 1000мВ

RW	0x9D	Переключатель активного балансира	1	0 — выкл., 1 — вкл.
RW	0x9E	Значение температурной защиты MOSFET	2	0 – 100°C
RW	0x9F	Значение температурной защиты в батарейном отсеке	2	0 – 100°C
RW	0xA0	Значение температуры восстановления в батарейном отсеке	2	40 – 100°C
RW	0xA1	Разница температур батареи	2	40 – 100°C
RW	0xA2	Значение защиты от разницы температур батареи	2	5 – 20°C
RW	0xA3	Значение защиты от высоких температур при зарядке	2	0 – 100°C
RW	0xA4	Значение защиты от высоких температур при разрядке	2	0 – 100°C
RW	0xA5	Значение защиты зарядки от низкой температуры	2	-45 – 25°C (значение со знаком) Пример: 0x0005=5°C
RW	0xA6	Значение защиты восстановления заряда от низких температур	2	-45 – 25°C (значение со знаком) Пример: 0x000A=10°C
RW	0xA7	Значение защиты разрядки от низкой температуры	2	-45 – 25°C (значение со знаком) Пример: 0xFFEC=-20°C
RW	0xA8	Значение защиты восстановления разряда от низких температур	2	-45 – 25°C (значение со знаком) Пример: 0xFFF6=-10°C
RW	0xA9	Настройки количества ячеек батареи (Cell Count)	1	3 – 32 Пример: 0x14=20 ячеек/рядов
RW	0xAA	Настройки емкости батареи (Battery Capacity)	4	Установка емкости использованной батареи в Ач (
RW	0xAB	Управление MOSFET- ключами зарядки (Charge)	1	0 – выключен, 1 – включен Пример:0x01 – включен; 0x00 - выключен
RW	0xAC	Управление MOSFET- ключами разрядки (Discharge)	1	0 – выключен, 1 – включен Пример:0x01 – включен; 0x00 - выключен

RW	0xAD	Калибровка тока	2	Калибровка датчика тока в мА (разрешение 100мА, диапазон 100 – 20000мА)
RW	0xAE	Адрес защитной платы BMS	1	Настройка адреса платы BMS для работы по протоколам RS485 и CAN
				По умолчанию 1(0x01)
RW	0xAF	Тип батареи	1	0 - LFP(LiFePO4), 1 - NCM(LiNiCoMnO2), 2 - LTO(Li4Ti5O12)
RW	0xB0	Инициализация времени ожидания спящего режима	2	Устанавливается в секундах. Вторичные данные, для справки.
RW	0xB1	Значение сигнала тревоги при низкой емкости	2	0 – 80%
RW	0xB2	Смена пароля параметров	10	Смена пароля для изменения и сохранения параметров.
				По умолчанию пароль 123456 (0x3132 3334 3536 0000 0000) в кодировке UTF-8
RW	0xB3	Персональный	1	0 – выключен, 1 – включен
		переключатель зарядного устройства		Пример:0x01 – включен; 0x00 - выключен
RW	0xB4	Идентификационный код	8	Код устройства в кодировке UTF-8.
		устройства	(текст)	Пример: 0x3630 3330 3030 3031 (60300001)
				60 - номинальное напряжение: определяется в соответствии с уровнем напряжения, например, 60 — это серия 60В, 48 — это серия 48В;
				3 - система материалов, в соответствии с системным определением материала батареи: 1 - LFP(LiFePO4),
				2 - NCM(LiNiCoMnO2),
				3 - LTO(Li4Ti5O12);
				00001 - серийный номер производства: в соответствии с группой п модели, произведенной производителем в текущем месяце, номер - п (например, группа 1
				модели, n - 00001))

RW	0xB5	Дата производства	4 (текст)	Дата в кодировке UTF-8 Формат: две последние цифры года + месяц Пример: 0x3233 3035=2304 2023 год 04 месяц производства.
RW	0xB6	Время работы системы	4	На заводе установлено в 0. Единица измерения минута (разрешение 1мин.)
R	0xB7	Номер версии программного обеспечения	15 (текст)	Номер версии в кодировке UTF-8. Пример: 0x31 312E 5857 5F53 3131 2E32 3631 5F5F= «11.XW_S11.261»
RW	0xB8	Калибровка тока	1	1 – начать калибровку 0 – отключить калибровку
RW	0xB9	Фактическая емкость батареи	4	Фактическая, посчитанная емкость батареи, значение в Ач (разрешение 1Ач)
RW	0xBA	Заводской идентификатор	24 (текст)	Кодировка UTF-8. Пример заводского идентификатора см. в таблице 5.4.
W	0xBB	Перезагрузка системы	1	Перезагрузка системы, код 0х01
W	0xBC	Восстановление заводских настроек	1	Восстановление заводских настроек, код 0x01
W	0xBD	Удаленное обновление регистра	1	Код для запуска 0х01 (дождитесь ответа регистра при публикации файла)
W	0xBE	Базовое низкое напряжение выключения порта GPS	2	Значение напряжения, при котором отключится порт GPS, значение в мВ (разрешение 1мВ)
W	0xBF	Значения напряжения восстановления включения порта GPS	2	Значение напряжения, при котором включится порт GPS, значение в мВ (разрешение 1мВ)
R	0xC0	Номер версии протокола	1	Значение по умолчанию: 0x00. 0x01: переопределены данные тока для ID 0x84 с разрешением 10 MA, старший бит равен 0 для разрядки и 1 для зарядки Если разряд 20A, передаваемые данные 2000 (0x07D0) Если зарядка 20A, передаваемые данные 34768 (0x87D0)

[Примечание]

- 1. Во всех полях 0х79 ~ 0хb9 следует указать R или RW, для старой версии, которая была отправлена, обновите ее, насколько это возможно. Если обновление неудобно, свяжитесь с нашей технической поддержкой по телефону 13755639263/13480924112
- 2. 0xBA регистр идентификатора производителя, это поле в основном используется для коммутационных шкафов, если есть необходимость в коммутационных шкафах, это поле необходимо добавить. Расшифровка в таблице 5.4.

5.1. (0х8В) Предупреждающие и аварийные сообщения

Таблица. 5.2 Расширенное описание регистра 0x8B

Бит	Название	Состояние
0	Низкая емкость батареи *	0 – нормально, 1 – предупреждение
1	Перегрев MOSFET	0 – нормально, 1 – тревога
2	Перенапряжение при зарядке	0 – нормально, 1 – тревога
3	Пониженное напряжение разряда	0 – нормально, 1 – тревога
4	Перегрев батареи	0 – нормально, 1 – тревога
5	Перегрузка по току зарядки	0 – нормально, 1 – тревога
6	Перегрузка по току разрядки	0 – нормально, 1 – тревога
7	Разница напряжений на ячейках/рядах	0 – нормально, 1 – тревога
8	Перегрев батарейного отсека	0 – нормально, 1 – тревога
9	Низкая температура батареи	0 – нормально, 1 – тревога
10	Перенапряжения ячейки/ряда	0 – нормально, 1 – тревога
11	Пониженное напряжение ячейки/ряда	0 – нормально, 1 – тревога
12	309_ А защита	0 – нормально, 1 – тревога
13	309_ В защита	0 – нормально, 1 – тревога
14	Зарезервировано	
15	Зарезервировано	

^{*} Только предупреждение

Примеры:

0x0002=b00000000 000000<mark>1</mark>0 – перегрев MOSFET. 0x0018=b00000000 000<mark>11</mark>000 – перегрев батареи, перегрузка по току заряда.

5.2. (0х8С) Информация о состоянии ВМЅ

Таблица. 5.3 Расширенное описание регистра 0x8C

Бит	Название	Состояние
0	Состояние зарядных MOSFET	0 – выключен, 1 – включен
1	Состояние разрядных MOSFET	0 – выключен, 1 – включен
2	Состояние внутреннего балансира	0 – выключен, 1 – включен
3	Состояние батареи	0 – отключена, 1 – подключена
4-15	Зарезервировано	

Пример:

0x000B=b00000000 0000<mark>101</mark>1 – зарядные MOSFET вкл., разрядные MOSFET вкл., балансир откл., батарея подключена.

5.3. (0хВА) Заводской идентификатор

Расшифровка заводского идентификатора. Текстовая строка в формате UTF-8.

Таблица. 5.4 Пример: ВТ 3 072 020 12 0000 20 05 21 001

Значение	Описание	Известные значения
ВТ	Название продукта	ВТ для батареи
3	Тип батареи	1 - LFP(LiFePO4), 2 - NCM(LiNiCoMnO2), 3 - LTO(Li4Ti5O12);
072	Значение напряжения	048 (48B), 060(60B), 072(72B).
020	Значение емкости	020 (20Ач)
04	Срок службы	04 (400 циклов), 12 (1200 циклов)
0000	Заводской код	
20	Год производства	20 (2020), 21 (2021)
05	Месяц производства	01-12
21	Дата производства	01-31
001	Серийный номер производства	

6. Разбор протокола на примере

Отправка запроса всех данных:

4E 57 00 13 00 00 00 00 06 03 00 00 00 00 00 08 00 00 01 29

0x4E57 – заголовок кадра: «NW» в кодировке UTF-8.

0x0013 – длина кадра (19 байт), без заголовка.

0х0000 0000 – номер терминала.

0x06 – командное слово (прочитать все данные).

0х03 – источник кадра (РС-хост).

0x00 – тип передачи (кадр запроса).

0x00 – идентификатор данных (прочитать все данные).

0х0000 0000 – номер записи (0-я запись), старший байт не используется.

0x68 – завершающий идентификатор.

0х0000 – зарезервировано и не используется.

0x0000 0129 – контрольная сумма Checksum16, старшие два байта не используются.

Полученный ответ:

4E 57 01 3B 00 00 00 00 06 00 01 79 48 01 0E F9 02 0E F8 03 0F 01 04 0F 03 05 0F 02 06 0F 05 07 0F 02 08 0F 05 09 0E FB 0A 0E C8 0B 0E CB 0C 0E 9A 0D 0E C5 0E 0E C6 0F 0E CB 10 0E C1 11 0E CD 12 0E CB 13 0E BC 14 0E C2 15 0E 9A 16 0E C5 17 0E C6 18 0E CB 80 00 1B 81 00 1E 82 00 1E 83 1D BC 84 27 10 85 47 86 02 87 00 CE 89 00 00 02 96 8A 00 14 8B 00 00 8C 00 0B 8E 20 D0 8F 15 E0 90 10 68 91 10 36 92 00 04 93 0A F0 94 0B 54 95 00 04 96 01 2C 97 00 28 98 00 04 99 00 14 9A 00 04 9B 10 36 9C 00 64 9D 00 9E 00 64 9F 00 50 A0 00 50 A1 00 46 A2 00 14 A3 00 64 A4 00 64 A5 FF EC A6 FF F6 A7 FF EC A8 FF F6 A9 14 AA 00 00 00 02 8 AB 00 AC 00 AD 03 E8 AE 01 AF 01 B0 00 0A B1 14 B2 31 32 33 34 35 36 00 00 00 00 B3 01 B4 36 30 33 30 30 30 30 31 B5 32 30 30 34 B6 00 00 00 01 B7 31 31 2E 58 57 5F 53 31 31 2E 32 36 31 5F 5F B8 00 B9 00 00 00 69 BA 49 6E 70 75 74 20 55 73 65 72 64 61 4A 4B 5F 42 44 36 41 32 30 53 31 30 C0 01 00 00 00 00 68 00 00 59 9A

Начальный информационный блок:

4E 57 01 3B 00 00 00 00 <mark>06</mark> 00 01 – (длина 11 байт)

0x4E57 – заголовок кадра: «NW» в кодировке UTF-8.

0х013В – длина кадра (315 байт), без заголовка.

0х0000 0000 - номер терминала.

0x06 – командное слово (прочитать все данные).

0x00 – источник кадра (BMS).

0х01 – тип передачи (кадр ответа).

Блок данных напряжений на ячейках:

<mark>0х79</mark> адрес:

79 48 01 0E F9 02 0E F8 03 0F 01 04 0F 03 05 0F 02 06 0F 05 07 0F 02 08 0F 05 09 0E FB 0A 0E C8 0B 0E CB 0C 0E 9A 0D 0E C5 0E 0E C6 0F 0E CB 10 0E C1 11 0E CD 12 0E F9 13 0E F9 14 0E C2 15 0E 9A 16 0E C5 17 0E C6 18 0E CB – (длина 74 байта)

48: длина блока данных 72 байта (24 ячейки по 3 байта на ячейку).

12: порядковый номер ячейки в НЕХ формате (18 в десятичном выражении).

ОЕ F9: напряжение на ячейке в НЕХ формате (3833 мВ в десятичном выражении).

Длина блока равна 74 байта (1 байт идентификатор + 1 байт длины блока данных + 72 байта длина непосредственно данных). Длина этого блока плавающая и зависит от количества используемых ячеек. Рассчитывается по формуле:

$$L = N * 3 + 2$$

Где:

L – длина блока в байтах;

N – количество ячеек

Блок данных параметров и настроек:

80 00 1B 81 00 1E 82 00 1E 83 1D BC 84 27 10 85 47 86 02 87 00 CE 89 00 00 02 96 8A 00 14 8B 00 00 8C 00 0B 8E 20 D0 8F 15 E0 90 10 68 91 10 36 92 00 04 93 0A F0 94 0B 54 95 00 04 96 01 2C 97 00 28 98 00 04 99 00 14 9A 00 04 9B 10 36 9C 00 64 9D 00 9E 00 64 9F 00 50 A0 00 50 A1 00 46 A2 00 14 A3 00 64 A4 00 64 A5 FF EC A6 FF F6 A7 FF EC A8 FF F6 A9 14 AA 00 00 00 28 AB 00 AC 00 AD 03 E8 AE 01 AF 01 B0 00 0A B1 14 B2 31 32 33 34 35 36 00 00 00 00 B3 01 B4 36 30 33 30 30 30 30 31 B5 32 30 30 34 B6 00 00 00 01 B7 31 31 2E 58 57 5F 53 31 31 2E 32 36 31 5F 5F B8 00 B9 00 00 00 69 BA 49 6E 70 75 74 20 55 73 65 72 64 61 4A 4B 5F 42 44 36 41 32 30 53 31 30 CO 01 — (длина 221 байт)

Расшифровка идентификаторов и их значений указана в Таблице 5.1

Конечный информационный блок:

00 00 00 00 68 00 00 59 9А – (длина 9 байт)

0х0000 0000 – номер записи (0-я запись), старший байт не используется.

0x68 – завершающий идентификатор.

0х0000 – зарезервировано и не используется.

0x599A – контрольная сумма Checksum16, старшие два байта не используются.

7. Метод расчета Checksum16 на языке С

Исходный код функции для расчета контрольной суммы Checksum16 на языке С. Этот метод расчета указан в разделе 4.2.10. Контрольные суммы для протокола ModBus (RS485, CAN) плат JK-BMS рассчитываются стандартными методами

- 1. Контрольная сумма представляет собой сумму данных всех байт кадра.
- 2. При необходимости меняем байты контрольной суммы местами.
- 3. Окончательное содержимое регистра CRC: код CRC16.

```
uint16_t checksum16<MB.UUID>(uint8_t *data, uint16_t length)
{
    uint16_t count = 0;
    uint16_t res_ checksum = 0;
    uint8_t dt;

//
    while(count < length)
    {
        dt = (uint8_t)(data[count]);
        res_ checksum = (uint16_t)(dt) + res_ checksum;
        count++;
        }

// res_ checksum = (res_ checksum <<8) | (res_ checksum >>8);
        return (res_ checksum);
}
```

8. Порты BMS JK_B1A8S10PHC

BMS JK B1A8S10PHC:

1 - NTC_1, 2 - NTC_2, 3 - Дисплей, Кнопка, 4 - Balancer

5 - Внешний Buzzer, 6 - GPS (UART), 7 - CAN/RS485, 8 - Параллельный интерфейс

BMS JK_B1A8S10PHC

9. Внешний вид

JK-B2A8S20P

JK-B1A8S20P

JK-B1A8S10P

