分析学 III 参考答案

本答案为参考答案, 如有谬误或有更好的做法, 欢迎同学们指出.

2020 秋-分析学 ||| 助教 吴天

第 1 周作业 (2020 年 9 月 16 日)

1. 找尽可能多的解, 无需证明:
$$u_{tt} = c^2 u_{xx}$$
, $u(0,t) = u(l,t) = 0$, $\forall t > 0$.

$$\mathbf{H} \quad u(x,t) = \sum_{n=1}^{\infty} A_n \sin(\frac{n\pi c}{l}t + \varphi_n) \sin\frac{n\pi}{l}x, A_n, \varphi_n \in \mathbb{R}.$$

2. 找尽可能多的解, 无需证明: $\Delta u = 0, x \in \Omega = \{1 \le x^2 + y^2 \le 2\}.$

解
$$u(r,\theta)=C_0+D_0\log r+\sum_{n=1}^{\infty}(C_nr^n+D_nr^{-n})\sin(n\theta+\varphi_n),\ C_n,D_n,\varphi_n\in\mathbb{R}.$$

3. 若 $f\in R[a,b]$, 求证 $\lim_{n\to\infty}\int_a^bf(x)|\sin nx|\mathrm{d}x.$ (求证的意思是求并证明)
证明 先证明 Riemann 定理: 设 $f\in R[a,b],\ g\in R[0,T)$ 以 T 为周期且有界,则

3. 若
$$f \in R[a,b]$$
, 求证 $\lim_{n \to \infty} \int_a^b f(x) |\sin nx| dx$. (求证的意思是求并证明)

$$\lim_{n\to\infty} \int_a^b f(x)g(nx)\mathrm{d}x = \frac{1}{T} \int_0^T g(x)\mathrm{d}x \int_a^b f(x)\mathrm{d}x.$$

如果正确, 答案显然就是 $\frac{2}{\pi} \int_a^b f(x) dx$. 下证 Riemann 定理:

不妨设
$$\int_0^T g(x) dx = 0$$
, 取 $x_i = a + \frac{j-1}{J}(b-a)$, $j = 1, \dots, J$. 设 $||f||_{L^{\infty}(a,b)}$, $||g||_{L^{\infty}(0,T)} \leqslant M$,

$$\left| \int_{a}^{b} f(x)g(nx) dx \right| \leq \sum_{j=1}^{J} \int_{x_{j-1}}^{x_{j}} M|f(x) - f(x_{j-1})| dx + \sum_{j=1}^{J} \left| \frac{f(x_{j-1})}{n} \int_{nx_{j-1}}^{nx_{j}} g(x) dx \right|$$

$$\leq M \sum_{j=1}^{J} \omega_{j,J}(x_{j} - x_{j-1}) + \frac{1}{n} \sum_{j=1}^{J} M \int_{0}^{T} |g(x)| dx$$

第 2 周作业 (2020 年 9 月 23 日)

1. 假设已知 2π 为周期的连续函数可以用三角多项式一致逼近, 证明 Weierstrass 定理: $f \in C[a,b]$ 可以被多项 式一致逼近.

证明 通过伸缩自变量,不难看初具有正周期的函数都可以由三角多项式一致逼近,而三角多项式是解析函 数,可以使用它的泰勒展开式的部分和作为多项式来一致逼近。注意到 f 总可以通过加一个一次函数调整为 f(a) = f(b) 的情况, 因此, 不妨 f(a) = f(b), 这样, 把 f 以 (b-a) 作为周期延拓即可得证.

2. 设 f 是以 2π 为周期的连续函数, 其 Fourier 系数为 c_n . 证明: $\sum_{n=-\infty}^{\infty} r^{|n|} c_n e^{in\theta}$ 是 $\{(x,y): x^2 + y^2 < 1\}$ 上

证明 注意到 $\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial}{\partial \theta}$,由此可知级数通项都是调和函数. 只需证明级数的通项的二阶导数组

成的级数内闭一致收敛, 以及原函数项级数在某处收敛. 前者使用 Weierstrass 判别法, 后者是显然的.

3. 这个练习是 Tauber 给出的定理, 它是某一个深刻理论的开端. 证明:

(1) 如果
$$\sum_{n=1}^{\infty} c_n$$
 的 Cesàro 和为 σ , $c_n = o(\frac{1}{n})$, 则 $\sum_{n=1}^{\infty} c_n = \sigma$.
(2) 上述结论在将 Cesàro 和换成 Abel 和的情况下依旧成立.

证明 (1) 记
$$s_n = \sum_{i=1}^n c_i$$
, $\sigma_n = \frac{1}{n} \sum_{i=1}^n s_i$. $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$, $\leq n > N$ 时, $|c_n| < \frac{\varepsilon}{n}$, 则 $|s_n - \sigma_n| = \left| \frac{1}{n} \sum_{k=2}^n (k-1)c_k \right| \leq \frac{N(N-1)}{2n} \max_{1 \leq i \leq N} |c_i| + \frac{N-n}{n} \varepsilon$.

令 $n \to \infty$: $\limsup_{n \to \infty} |s_n - \sigma_n| \le \varepsilon$. 再令 $\varepsilon \to 0$, 于是 $\sum_{n \to \infty}^{\infty} c_n = \sigma$.

当
$$1 - \frac{1}{N} < r < 1$$
 时,
$$\left| \sum_{k=1}^{\infty} c_n r^n - \sigma \right| < \varepsilon.$$
 取 $r = 1 - \frac{1}{M}$, $M > N$ 为整数,则
$$\left| \sum_{n=1}^{M} c_n - \sigma \right| \leqslant \left| \sum_{n=1}^{N} c_n (1 - r^n) \right| + \left| \sum_{n=N+1}^{M} c_n (1 - r^n) \right| + \left| \sum_{n=M+1}^{\infty} c_n r^n \right| + \left| \sum_{k=1}^{\infty} c_n r^n - \sigma \right|$$

$$< \sum_{n=1}^{N} |c_n| \left[1 - \left(1 - \frac{1}{M} \right)^n \right] + \sum_{n=N+1}^{M} \frac{n|c_n|}{M} + \sum_{n=M+1}^{\infty} \frac{\varepsilon}{n} \left(1 - \frac{1}{M} \right)^n + \varepsilon$$

$$\leqslant \sum_{n=1}^{N} |c_n| \left[1 - \left(1 - \frac{1}{M} \right)^n \right] + \varepsilon + \varepsilon \int_0^{1 - \frac{1}{M}} \frac{x^M}{1 - x} dx + \varepsilon$$

$$\leqslant \sum_{n=1}^{N} |c_n| \left[1 - \left(1 - \frac{1}{M} \right)^n \right] + \frac{M}{M+1} \left(1 - \frac{1}{M} \right)^{M+1} \varepsilon + 2\varepsilon$$

附注 证明过程可以使用平均值结论来简化: 如果 $\lim_{n\to\infty}a_n=a$, 则 $\lim_{n\to\infty}\frac{1}{n}\sum_{n\to\infty}^na_k=a$.

(1)
$$\lim_{n \to \infty} (s_n - \sigma_n) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=2}^n (k-1)c_k = \lim_{n \to \infty} (n-1)c_n = \lim_{n \to \infty} nc_n = 0.$$

$$(2) \ \forall \varepsilon, N \ \ \, 同解答中一样,取 \ r = 1 - \frac{1}{N}, \ \left| \sum_{n=1}^N c_n - \sum_{n=1}^\infty c_n r^n \right| \leqslant \sum_{n=1}^N |c_n| (1-r^n) + \sum_{n=N+1}^\infty |c_n| r^n, \ \ \, \sharp \, \psi$$

$$\sum_{n=1}^N |c_n| (1-r^n) \leqslant \sum_{n=1}^N n |c_n| (1-r) = \frac{1}{N} \sum_{n=1}^N n |c_n| \to 0 \ \ (N \to \infty),$$

$$\sum_{n=1}^\infty |c_n| r^n \leqslant \sum_{n=N+1}^\infty \frac{\varepsilon}{n} r^n < \frac{\varepsilon}{N} \frac{r^{N+1}}{1-r} = \varepsilon \left(1 - \frac{1}{N}\right)^{N+1} \to \frac{\varepsilon}{e} \ \ (N \to \infty).$$

因此
$$\limsup_{N \to \infty} \left| \sum_{n=1}^{N} c_n - \sigma \right| \leqslant \frac{\varepsilon}{e}$$
, 再令 $\varepsilon \to 0$ 即可.

第 3 周作业 (2020 年 10 月 1 日)

1. 下面是著名的 Poincaré 不等式.

(1) 设 $f \in C(T\mathbb{T})$ 是分段 C^1 的, $\int_0^T f(t) dt = 0$. 证明: $\int_0^T |f(t)|^2 dt \leqslant \frac{T^2}{4\pi^2} \int_0^T |f'(t)|^2 dt$, 当且仅当 $f(t) = A \sin \frac{2\pi t}{T} + B \cos \frac{2\pi t}{T} \ \mbox{ 时取等}. \label{eq:ft}$

(2) 设
$$f$$
 满足 (1) 的条件, $g \in C^1(T\mathbb{T})$. 证明:
$$\left| \int_0^T \overline{f(t)} g(t) \mathrm{d}t \right|^2 \leqslant \frac{T^2}{4\pi^2} \int_0^T |f(t)|^2 \mathrm{d}t \int_0^T |g'(t)|^2 \mathrm{d}t.$$

(3)
$$f \in C^1[a,b]$$
, $f(a) = f(b) = 0$. 证明: $\int_a^b |f(t)|^2 dt \leq \frac{(b-a)^2}{\pi} \int_a^b |f'(t)|^2 dt$, 并说明 $\frac{(b-a)^2}{\pi^2}$ 是最佳的.

证明 (1) 直接考察 f 的 Fourier 系数 $c_n = \frac{1}{T} \int_0^T f(t) \exp\left\{-\frac{2\pi i n t}{T}\right\} dt$, 以及 f' 的 Fourier 系数 $c'_n =$ $-rac{2\pi \mathrm{i} n}{T}c_n$. 代入各自的 Parseval 等式对比即可. 取等条件在于对比的过程中, 唯一放缩出现在

$$\sum_{n=1}^{\infty} n^2 (|c_n|^2 + |c_{-n}|^2) \frac{4\pi^2}{T^2} \geqslant \sum_{n=1}^{\infty} (|c_n|^2 + |c_{-n}|^2) \frac{4\pi^2}{T^2},$$

而这个取等当且仅当只有 c_1 和 c_{-1} 不为 0, 这等价于 $f(t) = A \sin \frac{2\pi t}{T} + B \cos \frac{2\pi t}{T}$.

(2) 取 f 的一个原函数 F, 使得 F 满足所有 (1) 的性质 (主要是 $\int_0^T F(t) dt = 0$). 使用分部积分之后, 利用 Cauchy-Schwarz 不等式, 再对 F 利用 (1) 的结论即可.

(3) 通过平移和伸缩自变量, 不妨 $a=0,\,b=\pi$. 对 f 作奇延拓, 然后再以 2π 为周期延拓为 \widetilde{f} , 则 \widetilde{f} 满足 (1) 在 $T=2\pi$ 下的所有条件, 结论得证. 最佳常数使用 (1) 的取等函数在 B=0 的情况下验证即可.

2. 证明 Dirichlet 积分: $\int_0^\infty \frac{\sin x}{x} = \frac{\pi}{2}.$

证明 注意到 $0 \in \csc \frac{t}{2} - \frac{2}{4}$ 的可去奇点, 由 Riemann-Lebesgue 引理

$$\lim_{N\to+\infty} \int_{-\pi}^{\pi} \left(\csc\frac{t}{2} - \frac{2}{t}\right) \sin\left((N + \frac{1}{2})t\right) dt = 0.$$
 其中
$$\int_{-\pi}^{\pi} \csc\frac{t}{2} \sin\left((N + \frac{1}{2})t\right) dt = \int_{-\pi}^{\pi} \sum_{N=0}^{N} e^{int} dt = 2\pi, \text{ 结合 } \frac{dt}{t} \text{ 是伸缩不变的, 立刻得证.}$$

3. 使用下面的方法再来计算第 2 题的积分. 置 $I(\alpha) = \int_0^\infty e^{-\alpha x} \frac{\sin x}{x} dx$.

(1) 计算 $I'(\alpha)$ 并积分. (2) 计算 $I(\alpha)$, 并取 $\alpha=0$. **证明** 使用 Weierstrass 判别法易知 $\int_0^\infty \mathrm{e}^{-\alpha x} \sin x \mathrm{d}x$ 在 $(0,+\infty)$ 上内闭一致收敛, 这保证了求导和积分的交

换. 直接计算:
$$I'(\alpha) = -\operatorname{Im} \frac{\mathrm{e}^{(\mathrm{i}-\alpha)x}}{(\mathrm{i}-\alpha)}\Big|_0^{+\infty} = -\frac{1}{1+\alpha^2}$$
. 观察到 $|I(\alpha)| \leqslant \int_0^\infty \mathrm{e}^{-\alpha x} \mathrm{d}x = \frac{1}{\alpha} \to 0 \ (\alpha \to +\infty)$, 故
$$I(\alpha) = \int_{-\infty}^{\alpha} I'(a) \mathrm{d}a = \int_{-\infty}^{+\infty} \frac{\mathrm{d}a}{1+a^2} = \frac{\pi}{2} - \arctan a, \ a > 0.$$

使用 Abel 判别法, 可以得到 $I(\alpha)$ 在 $[0,+\infty)$ 上一致收敛, 故 $I(0) = \lim_{\alpha \to 0+} I(\alpha) = \frac{\pi}{2}$

第 5 周作业 (2020 年 10 月 11 日)

- 1. (Tychonoff 著名反例) 若 $g \in C^{\infty}(\mathbb{R})$, 定义 $u(x,t) = \sum_{n=0}^{\infty} g^{(n)}(t) \frac{x^{2n}}{(2n)!}$
 - (1) 形式上地验证 u 满足热方程;

(2) 设
$$a > 0$$
, 考察 $g(t) = \begin{cases} e^{-t^{-a}}, & t > 0, \\ 0, & t \leqslant 0. \end{cases}$ 证明: $\exists \theta \in (0,1)$, 依赖于 a , 使得
$$|g^{(k)}(t)| \leqslant \frac{k!}{(\theta t)^k} e^{-\frac{1}{2}t^{-a}}, \ t > 0.$$

(3) 严格证明 u 是具有零初值的热方

证明 (1)
$$\frac{\partial^2}{\partial x^2}u(x,t) = \sum_{n=1}^{\infty} g^{(n)}(t) \frac{x^{2n-2}}{(2n-2)!} = \sum_{n=0}^{\infty} g^{(n+1)}(t) \frac{x^{2n}}{(2n)!} = \frac{\partial}{\partial t} u(x,t).$$

 $(2) \ \ \ \mathcal{G}^{(n)}(t) = f_n(t) \mathrm{e}^{-t^{-a}}, \ \ \mathcal{M} \ f_{n+1}(t) = f_n'(t) + at^{-(a+1)} f_n(t). \ \$ 容易归纳: $f_0(t) = 1, \ f_n(t) = \sum_{k=1}^n c_{n,k} t^{-(ka+n)}, \ \$

 $\forall n \geqslant 1$, 其中 $c_{n+1,k} = -(ka+n)c_{n,k} + ac_{n,k-1}$, $\forall 1 \leqslant k \leqslant n$, $c_{n+1,n+1} = ac_{n,n}$. 取 $\theta = \frac{1}{3a+1}$, 可以归纳证明: $|c_{n,k}| \leqslant \frac{n!}{2^k k! \theta^n}$. 进而直接代入 $g^{(n)}$ 的表达式即可得到估计.

(3) 利用 (2) 和 Weierstrass 判别法, 检查 $\sum_{n=0}^{\infty} g^{(n)}(t) \frac{x^{2n-2}}{(2n-2)!}$ 对 x 和 t 的内闭一致收敛性, 不要忘记检查初值 是否满足、能否连续到边即可. 能否连续到边的证明还是个开放问题, 大家可以讨论一下.

附注 (2) 也可以通过在复平面上取 t 的一个小圆盘 $B_{\theta}(t)$, 在其圆周上对 $g^{(n)}$ 使用 Cauchy 积分公式, 只需要 取 θ 足够小, 以使得 $a \arcsin \theta < \pi$ 即可, 这只需要 θ 与 a 有关就能做到.

- (1) 验证如果 $f(x) = \widehat{g}(x)$, 则 $\widehat{f}(\xi) = g(\xi)$
- (2) 验证 Poisson 求和公式对于 f 同样成立.

证明 (1) 在分布的意义下, $\widehat{f}(\xi) = \widetilde{g}(\xi) = g(-\xi) = g(\xi)$, 这得益于 $f \in C_0^\infty(\mathbb{R}) \cap L^1(\mathbb{R})$, $g \in C_C^\infty(\mathbb{R})$.

(2) 对于
$$f \in C_0^{\infty}(\mathbb{R}) \cap L^1(\mathbb{R}) \subset \mathcal{S}'(\mathbb{R})$$
, Poisson 求和公式必定成立.

附注 上面的做法违背了验证的原则, 使题目平凡化了. (1) 直接计算即可, 可以使用留数定理计算, 它来自于 Rudin《Real and Complex Analysis》练习 10.12. (2) 只需要证明 $\sum_{n=-\infty}^{\infty} f(n+x)$ 的内闭一致收敛性即可, 通过 Weierstrass 判别法, 这是容易的, 之后考虑该函数项级数的 Fourier 展开就完成了证明. 关于分布理论感兴趣的 同学, 在具有一定实分析和泛函分析基础的情况下, 可以参考 Folland 《Real Analysis》第八章.

3. 使用 Poisson 求和公式证明 \mathbb{S}^1 上的热核 H_t 与 \mathbb{R} 上的热核 \mathcal{H}_t 满足: $H_t(x) = \sum_{t=0}^{+\infty} \mathcal{H}_t(x+n)$.

证明
$$\sum_{n=-\infty}^{+\infty} \mathcal{H}_t(x+n) = \sum_{n=-\infty}^{+\infty} \widehat{\mathcal{H}}_t(n) e^{2\pi i n x} = \sum_{n=-\infty}^{+\infty} e^{-4\pi^2 n^2 t} e^{2\pi i n x} = H_t(x).$$

第 6 周作业 (2020 年 10 月 17 日)

1. 设 E, F 为 Banach 空间, 定义 $E \times F$ 上的范数 $\|(a, b)\| = \max\{\|a\|, \|b\|\}$. 证明: 由这个范数诱导的拓扑就 是乘积拓扑.

乘积拓扑显然由 $\|(a,b)\|_2 := \sqrt{\|a\|^2 + \|b\|^2}$ 诱导, 而 $\|\cdot\|_2$ 范数与所给范数显然等价.

附注 以上当然是从范数的高观点角度来看的. 这道题也可以将两种拓扑的拓扑基直接写出来得到证明

2. 设
$$f(x,y) = \begin{cases} (0,0), & x = 0, \ y > 0, \\ (x^2 \sqrt{y} \cos \frac{1}{x^3}, x^2 \sqrt{y} \sin \frac{1}{x^3}), & x \neq 0, \ y > 0. \end{cases}$$
 证明: $f \in \{(x,y) : y > 0\}$ 上可微. 求 $\det Jf$.

证明 只需验证 x = 0, y > 0 处的可微性. $\forall y > 0, u, v$ 充分小, $|f(u, y + v)| = u^2 \sqrt{y + v} \to 0 \ (u, v \to 0)$. 因此 f 在 (0,y) 处可微, 且 $\det Jf(0,y) = 0$. 直接计算可得

$$\det Jf(x,y) = \begin{vmatrix} 2x\sqrt{y}\cos\frac{1}{x^3} + \frac{3}{x^2}\sqrt{y}\sin\frac{1}{x^3} & \frac{x^2}{2\sqrt{y}}\cos\frac{1}{x^3} \\ 2x\sqrt{y}\sin\frac{1}{x^3} - \frac{3}{x^2}\sqrt{y}\cos\frac{1}{x^3} & \frac{x^2}{2\sqrt{y}}\sin\frac{1}{x^3} \end{vmatrix} = \frac{3}{2}, \ \forall x \neq 0, \ y > 0.$$

3. 回忆 $l^2 = \left\{ x = (x_n)_{n=0}^{\infty} : \|x\| = \left(\sum_{n=0}^{\infty} x_n^2\right)^{\frac{1}{2}} < +\infty \right\}$ 是个 Banach 空间. 设 $\varphi \in C^1(\mathbb{R}), \ \varphi(0) = 0.$ 证明: $\Psi: l^2 \to l^2, \ \Psi(x) = (\varphi(x_n))_n \ \not\equiv C^1 \ \text{in}.$

证明 取 $k = \sup_{\|x\| \le 1} |\varphi'(x)| < +\infty, N \in \mathbb{N}^*$, 使 $\|x_n\| < 1$, 如果 n > N, 使用中值定理:

$$\|\Psi(x)\|^2 \leqslant \sum_{n=1}^{N} (\varphi(x_n))^2 + \sum_{n=N+1}^{\infty} k^2 \|x_n\|^2 < +\infty,$$

故 $\Psi(l^2) \subset l^2$. 验证 $\Psi'(x)(y) = (\varphi'(x)y_n)_n$: 显然 $\Psi' \in L(l^2)$. 由于 $\varphi \in C^1$, 固定 $y, \forall \varepsilon > 0, \exists \delta > 0,$ 当 $\|x-y\|<\delta \text{ 时, } \|\Psi(x)-\Psi(y)-\Psi'(y)(x-y)\|<\varepsilon\|x-y\|, \text{ 因此 } \Psi \text{ 可微, 且微分映射为 } \Psi'.\text{ 显然 } \Psi'\text{ 连续.} \quad \square$

第 7 周作业 (2020 年 10 月 27 日)

- 1. 设 $\Omega \subset \mathbb{R}^2$ 是凸区域, $P,Q \in C^1$ 满足 $\frac{\partial P}{\partial y} \frac{\partial Q}{\partial x} = 0$ (7.1).
 - (1) 证明: 存在函数 u, 使得 $\nabla u = (P, Q)$
 - (2) 什么意义下, u 是唯一的?
 - (3) 证明: 如果 $\Omega = \{(x,y): 0 < x^2 + y^2 < 1\}, P, Q$ 满足 (7.1), (1) 中的结论可能不对.
 - (4) (尝试一下,不做要求) 凸性是必要条件嘛? 是否可以将其减弱?

证明 (1) 固定 $(x_0,y_0)\in\Omega$, 定义 $u(x,y)=\int_{(x_0,y_0)}^{(x,y)}P(\xi,\eta)\mathrm{d}\xi+Q(\xi,\eta)\mathrm{d}\eta$ 即可, 其中积分路径是直线段. 通过 $\xi = x_0 + t(x - x_0), \eta = y_0 + t(y - y_0)$ 将曲线积分化为单积分,直接计算梯度,并使用分部积分即可得证

- (2) 在模掉常值函数的情况下.
- (3) $P(x,y) = -\frac{y}{x^2 + y^2}$, $Q(x,y) = \frac{x}{x^2 + y^2}$.
- (4) 不必要, 可以换为 Ω 是单连通域的条件, 即基本群 $\pi_1(\Omega)$ 平凡.
- 2. 设 $E \subset \mathbb{R}^n$ 是闭集. 下面给出构造 C^2 函数 f, 满足 $E = f^{-1}(0)$ 的方法.

$$\chi$$
 E C R 定闭集. 下面结面构造 C 函数 f , 满走 E = $f^{-1}(0)$ 的方法.
$$(1) \ r > 0, \ \mathbb{E} \ \emptyset \ \varphi_r(x) = \begin{cases} 0, & |x| \geqslant r, \\ (r^2 - |x|^2)^3, & |x| < r. \end{cases}$$
证明: $\varphi_r \in C^2, \ |\varphi_r'(x)| \leqslant 6r^5, \ |\varphi_r''(x)| < 12r^4.$

(2) 设 $\{x_n\}$ 是 \mathbb{R}^n 的稠密子集, $r_n(x) = \mathrm{dist}(x_n, E), \ f(x) = \sum_{n=0}^{\infty} \frac{2^{-n}}{1 + r_n^6} \varphi_{r_n}(x - x_n).$ 证明: $f \in C^2$, 且 $f|_E \equiv 0, f|_{\mathbb{R}^n \setminus E} > 0.$

证明 (1)
$$D_i \varphi_r(x) = \begin{cases} 0, & |x| \geqslant r, \\ -6(r^2 - |x|^2)^2 x_i, & D_{ij} \varphi_r(x) = \begin{cases} 0, & |x| \geqslant r, \\ 24(r^2 - |x|^2) x_i x_j - 6(r^2 - |x|^2)^2 \delta_{ij}, & |x| < r. \end{cases}$$

因此 $|\varphi'_r(x)| \le 6|x|(r^2 - |x|^2)^2 \le \frac{96\sqrt{5}}{125}r^5$. 计算 Hessian 矩阵的特征值:

$$\det(\lambda I_n - \operatorname{Hess} \varphi_r) = (\lambda + 6(r^2 - |x|^2)^2)^{n-1} (\lambda + 6(r^2 - |x|^2)(r^2 - 5|x|^2)),$$

故 $\lambda_{\max} = -6(r^2 - |x|^2)(r^2 - 5|x|^2)$, $\lambda_{\min} = -6(r^2 - |x|^2)^2$. 经过讨论: $|\varphi_r''(x)| \leqslant \max |\lambda(\operatorname{Hess}\varphi_r)| \leqslant 6r^4$.

(2) 利用 (1) 的结论, 结合均值不等式和 Weierstrass 判别法即可.

- 3. 设 $A \subset \mathbb{R}^n$ 为非空紧集. 研究 $d(x) := \operatorname{dist}(x, A)$ 的可微性.
 - (1) 如果 $x \notin A$, 且 $\exists ! y \in A$, 使得 d(x,y) = d(x,A). 证明: d 在 x 处可微. ∇d 是什么?
 - (2) 如果 $x \notin A$, 且存在至少两个 $y \in A$, 满足 d(x,y) = d(x,A). 证明: d 在 x 处不可微
 - (3) 当 $x \in A$ 时, $d(x)^2$ 的可微性如何?

证明 (1) $\nabla d(x) = \frac{x-y}{d(x)}$. 先证明: $\forall \varepsilon > 0$, $\exists \delta > 0$, $\preceq \xi \in B_{\delta}(x)$ 时, 如果 η 满足, $|\xi - \eta| = d(\xi)$, 则 $\eta \in B_{\varepsilon}(y)$.

如若不然, $\exists \varepsilon_0 > 0$, 取 $\lambda = \operatorname{dist}(x, A \setminus B_{\varepsilon_0}(y)) - d(x)$, 由 y 的唯一性知 $\lambda > 0$. $\forall 0 < \delta < \frac{\lambda}{2}$, $\exists \xi \in B_{\delta}(x)$, $\eta \in A \setminus B_{\varepsilon_0}(y)$, 使得 $|\xi - \eta| = d(\xi)$. 因此, $|\xi - \eta| > |x - \eta| - \delta \geqslant d(x) + \lambda - \delta > d(x) + \delta > d(\xi)$, 矛盾!

 $\forall \varepsilon > 0$, 取 $\delta > 0$ 满足上述结论, $\xi \in B_{\delta}(x)$, 则

$$d(\xi)^{2} - d(x)^{2} \leq |\xi - y|^{2} - |x - y|^{2} = |\xi|^{2} - |x|^{2} - 2(\xi - x) \cdot y = 2(x - y) \cdot (\xi - x) + |\xi - x|^{2},$$

$$d(\xi)^{2} - d(x)^{2} \geq |\xi - y|^{2} - |x - y|^{2} - (|\xi - \eta| + |\xi - y|)\varepsilon \geq 2(x - y) \cdot (\xi - x) + |\xi - x|^{2} - 2|\xi - y|\varepsilon.$$

因此,
$$\limsup_{\xi \to x} \left| d(\xi) - d(x) - \frac{x - y}{d(x)} \cdot (\xi - x) \right| \leq \frac{|x - y|}{d(x)} \varepsilon$$
.

(2) 如果 $d(x) = |x - y_1| = |x - y_2|$, 且 d 在 x 处可微. 记 $e_i = \frac{y_i - x}{d(x)}$, 显然 $\frac{\partial d}{\partial e_i}(x) = -1$, i = 1, 2. 取 a(x) be_i $e = \frac{e_1 - e_2}{|e_1 - e_2|}$,则 $\frac{\partial d}{\partial e}(x) = 0$. 设夹角 $\langle e, e_i \rangle = \theta_i$,则 $d(x + he)^2 \leqslant |x + he - y_i|^2 = d(x)^2 + h^2 - 2hd(x)\cos\theta_i$,i = 1, 2. 由 $\frac{\partial d^2}{\partial e}(x) = 0$ 得: $\cos\theta_i = 0$, i = 1, 2, 即 $e = 1, e_2$ 均正交,而它们是共面的单位向量,这迫使 $e_1 = -e_2$,这与 $\frac{\partial d}{\partial e_1}(x) = \frac{\partial d}{\partial e_2}(x) = -1$ 矛盾!

(3) 显而易见, $d(\xi)^2 - d(x)^2 = d(\xi)^2 \leqslant |\xi - x|^2$,故 d^2 可微,且 $(\nabla d^2)(x) = 0$, $x \in A$.

第 8 周作业 (2020 年 11 月 2 日)

- 1. (凸集的分离性) 设 A, B 为 \mathbb{R}^n 的两个不交的闭凸集.
 - (1) 证明: $\exists 0 \neq l \in L(\mathbb{R}^n, \mathbb{R}), c \in \mathbb{R},$ 使得 $l|_A \geqslant c, l|_B \leqslant c$.
 - (2) 证明或者举出反例: (1) 的不等式是严格的.

证明 (1) 取 $C := \{x - y : x \in A, y \in B\}$, 显然 C 是凸集, $0 \notin C$, $\forall r > 0$, $B_r(0) \setminus \{0\} \not\subseteq C$. 因此, 取 $\{x_n\}\subseteq C^c$, 使得 $\lim_{n\to\infty}x_n=0$. 取唯一的 $y_n\in\overline{C}$, 使得 $|x_n-y_n|=\mathrm{dist}(x_n,C)$, 不妨设 $\lim_{n\to\infty}rac{y_n-x_n}{|y_n-x_n|}=\alpha$. 定 义 $l(x)=\langle \alpha,x \rangle$,则 $l(y)=\lim_{\substack{n \to \infty \\ i \neq 0}} \langle \frac{y_n-x_n}{|y_n-x_n|},y-x_n \rangle \geqslant 0$. 取 $c=\inf_{x\in A} l(x)$,则 l 和 c 满足要求.

(2) 反例:
$$A = \{(x,y): y \geqslant \frac{1}{x}, x > 0\}, B = \{(x,0): x \in \mathbb{R}\}, l(x,y) = y, c = 0.$$

2. (1) 若
$$e^z - xyz = 0$$
, 计算 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$.

(2) 若
$$F(x,y,z) = 0$$
, 证明: $\frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial x} = -1$.

(3) 设
$$x + y = u + v$$
, $\frac{x}{y} = \frac{\sin u}{\sin v}$, 计算 $\begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}$.

$${\bf F\!\!\!\!\! F} \quad (1) \ \frac{\partial z}{\partial x} = \frac{z}{x(z-1)}, \ \frac{\partial z}{\partial y} = \frac{z}{y(z-1)}.$$

(2)
$$\frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial x} = (-\frac{F_y}{F_x})(-\frac{F_z}{F_y})(-\frac{F_z}{F_z}) = -1.$$

$$(2) \ \frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial x} = (-\frac{F_y}{F_x})(-\frac{F_z}{F_y})(-\frac{F_x}{F_z}) = -1.$$

$$(3) \ \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\sin u}{\sin u + \sin v} + \frac{(u+v)\sin v\cos u}{(\sin u + \sin v)^2} & \frac{\sin u}{\sin u + \sin v} - \frac{(u+v)\sin u\cos v}{(\sin u + \sin v)^2} \\ \frac{\sin v}{\sin u + \sin v} - \frac{(u+v)\sin v\cos u}{(\sin u + \sin v)^2} & \frac{\sin v}{\sin u + \sin v} + \frac{(u+v)\sin u\cos v}{(\sin u + \sin v)^2} \end{pmatrix}$$

$$3. \ \ \mathcal{U} \ \Omega \subset \mathbb{R}^n \ \mathbb{R} + \mathbb{R}, \ f: \Omega \to \mathbb{R}^n \ \mathbb{R} \subset \Gamma \ \text{ft}.$$

- 3. 设 $\Omega \subset \mathbb{R}^n$ 是开集, $f:\Omega \to \mathbb{R}^n$ 是 C^1 的
 - (1) 若 $\det Df(x) \neq 0$, $\forall x \in \Omega$, 证明: f 将任意开集 G 映为开集.
 - (2) 若在 (1) 的基础上, 再加上 f 是单射的条件, 证明: f 是 C^1 同胚.

证明 (1) $\forall x \in G$, 由 $\det Df(x) \neq 0$ 知: $\exists \delta > 0$, 使得 $B_{\delta}(x) \in G$ 且 $f: B_{\delta}(x) \to f(B_{\delta}(x))$ 是同胚, 因而 $f(B_{\delta}(x)) \subset f(G)$ 是 f(x) 的开邻域, 故 f(G) 是开集.

(2) 显然 $f:\Omega\to f(\Omega)$ 是同胚, 结合 C^1 版本的逆映射定理: $Df^{-1}=(Df)^{-1}$. 由于 $\det Df\neq 0$, 故 Df^{-1} 连 续, 因而 $f: \Omega \to f(\Omega)$ 是 C^1 同胚.

第 9 周作业 (2020 年 11 月 9 日)

1. 求正交变换群 $O_n \subset M_n(\mathbb{R})$ 在 A 点处的切空间.

正交矩阵如果确定了最后一列的 n-1 个元素, 将会直接决定最后一个元素为有限种可能. 通过正交性 和规范性,倒数第二列只需确定 n-2 个元素即可. 以此类推,可知 $\dim O_n = \sum_{i=1}^{n-1} k = \frac{n(n-1)}{2}$. 综上所述, $T_AO_n = \mathbb{R}^{\frac{n(n-1)}{2}}, \forall A \in O_n$. 当然, 这在同构意义下没有问题, 如果我们希望继续深入探究:

记作 $\gamma: (-\varepsilon, \varepsilon) \to O_n$ 为 C^1 曲线, 满足 $\gamma(0) = A, \gamma'(0) = X \in T_A O_n$. 另一方面, 在 $\gamma(t)\gamma(t)^T = I_n$ 两侧 对 t 求导: $\gamma'(t)\gamma(t)^T + \gamma(t)\gamma'(t)^T = 0$. 令 t = 0: $XA^T + AX^T = 0$, 因此 $X = A\mathfrak{S}_n$, 其中 \mathfrak{S}_n 是 n 阶斜对称 矩阵全体, 进而 $T_AO_n \subset A\mathfrak{S}_n$. 由于 $\dim \mathfrak{S}_n = \frac{n(n-1)}{2}$, 故 $T_AO_n = A\mathfrak{S}_n$.

附注 事实上, \mathfrak{S}_n 是李群 O_n 的李代数. 感兴趣的同学可以参考微分流形的教材中关于李群的部分.

- 2. 设 $c=(c_0,\cdots,c_{n-1})\in\mathbb{R}^n$, 定义 $P_c(x)=x^n+\sum_{k=0}^{n-1}c_kx^k$. 设对于某个 $c,\ P_c$ 具有单根 $a,\ \mathbb{D}$ $P_c(a)=0,$ $(P_c)'(a) \neq 0.$
- (1) 证明: 存在 c 的邻域, 使得其中的每个 c', 都满足 $P_{c'}$ 在 a 附近存在唯一单根. 更进一步地, 这个根是 c' 的光滑函数.
 - (2) 举例说明 $(P_c)'(a) \neq 0$ 对于 (1) 的成立是必要的.

证明 (1) 考察 $\varphi: \mathbb{R}^n \times \mathbb{R}, \ \varphi(x,y) = P_x(y), \ \frac{\partial \varphi}{\partial y}(c,a) = (P_c)'(a) \neq 0.$ 由于 $\varphi \in C^\infty(\mathbb{R}^n \times \mathbb{R}), \$ 利用 C^∞ -隐函 数定理, 存在 c 的邻域 $U, f \in C^{\infty}(U)$, 使得 $f(c) = a, P_x(f(x)) = 0, \forall x \in U$.

- (2) $c = 0 \in \mathbb{R}^2$, $P_c(x) = x^2$ 具有根 a = 0, 但是 $P_{(\varepsilon^2,0)}(x) = x^2 + \varepsilon^2$ 无根.
- 3. 设 $f: \mathbb{R}^n \to \mathbb{R}^n$ 是 C^1 的, $\exists a>0$, 使得 $\forall x,y \in \mathbb{R}^n$, 有 $|f(x)-f(y)|\geqslant a|x-y|$. 证明: $f: \mathbb{R}^n \to \mathbb{R}^n$ 是 C^1 同胚.

证明 所给条件易知 f 是单射, 且任意点处任意方向导数都不为 0, 故 $\det Jf \not\equiv 0$, 进而 f 是开映射. 结合 f 是 单射可知 f 是同胚. 而又由 $\det Jf \neq 0$ 可知, f 是 C^1 同胚.

第 10 周作业 (2020 年 11 月 16 日)

1. 设 $L \in \mathbb{R}^m$ 的子流形, $U \in \mathbb{R}^n$ 上的开集, $f \in C^1(U,\mathbb{R}^m)$. 如果 $\forall a \in U$ 满足 $f(a) \in L$, 就有 $T_{f(a)}L \oplus f'(a)(\mathbb{R}^n) = \mathbb{R}^m$, 证明: $f^{-1}(L) \notin U$ 的子流形. 是多少维的呢?

证明 记 $l = \dim L$. $\forall a \in f^{-1}(L)$, 存在 W 为 f(a) 的开邻域,使得 $\varphi: W \to \mathbb{R}^{m-l}$, $\varphi(f(a)) = 0$, $\operatorname{rank} \varphi'(f(a)) = m - l$, $\varphi^{-1}(\{0\}) = W \cap L$, 则 $\operatorname{ker} \varphi'(f(a)) = T_{f(a)}L$. 置 $\psi = \varphi \circ f$, $V = f^{-1}(W)$, 则 $\psi(a) = 0$, $\psi^{-1}(\{0\}) = V \cap f^{-1}(L)$, 且 $\psi'(a)(\mathbb{R}^n) = \varphi'(f(a)) \circ f'(a)(\mathbb{R}^n) = \varphi'(f(a))(\mathbb{R}^m)$, 其中第二个等号由条件 $T_{f(a)}L \oplus f'(a)(\mathbb{R}^n) = \mathbb{R}^m$ 保证,故 $\operatorname{rank} \psi'(a) = m - l$. 因此 $f^{-1}(L)$ 是 U 的 $n - m + \dim L$ 维子流形. □ 2. 设 L 和 K 是 \mathbb{R}^m 的两个子流形,使得 $\forall x \in L \cap K$,有 $T_xL + T_xK = \mathbb{R}^m$. 证明: $L \cap K$ 是子流形.是多少维的呢?

证明 设 dim L = l, dim K = k. 由子流形的定义,存在 U 为 x 的开邻域, $f: U \to \mathbb{R}^{m-l}$,rank f'(x) = m - l, $f^{-1}(0) = L \cap U$; $g: U \to \mathbb{R}^{m-k}$,rank g'(x) = m - k, $g^{-1}(0) = K \cap U$,f(x) = g(x) = 0.定义

$$\phi: K \cap L \cap U \to \mathbb{R}^{m-l} \times \mathbb{R}^{m-k}, \ \phi(y) = (f(y), g(y))^T.$$

则 $\phi^{-1}(0) = K \cap L \cap U$. 取 $\{e_1, \dots, e_{m-l}\}$ 为 $f'(x)(\mathbb{R}^m)$ 的一组基,由题意, $\ker f'(x) + \ker g'(x) = \mathbb{R}^m$,因此 取 $\{e_{m-l+1}, \dots, e_{2m-l-k}\}$ 为 $g'(x)(\mathbb{R}^m)$ 的一组基,继续扩张: $\{e_1, \dots, e_m\}$ 为 \mathbb{R}^m 的一组基,则通过这组基能 够看出 $\operatorname{rank} \phi'(x) = 2m - k - l$,因此 $L \cap K$ 是 $\dim L + \dim K - m$ 维子流形.

3. 使用最优化理论证明不等式: $\frac{1}{n} \sum_{i=1}^{n} x_i \geqslant \sqrt[n]{\prod_{i=1}^{n} x_i, x_i > 0}$.

证明 研究 $\frac{1}{n}\sum_{i=1}^{n}x_{i}$ 在 $\prod_{i=1}^{n}x_{i}=\beta$ 限制下的极值. 取 $L(x_{1},\cdots,x_{n},\lambda)=\frac{1}{n}\sum_{i=1}^{n}x_{i}+\lambda(\prod_{i=1}^{n}x_{i}-\beta),$

$$\frac{\partial L}{\partial x_k} = \frac{1}{n} + \lambda \prod_{i \neq k} x_i = 0, \ \frac{\partial L}{\partial \lambda} = \prod_{i=1}^n x_i - \beta = 0,$$

因此 $x_i = \sqrt[q]{\beta}$, $\forall 1 \le i \le n$, 此时, $f(x_1, \dots, x_n) = \sqrt[q]{\beta}$ 只能为最小值, 因为在无穷远处, f 为 $+\infty$. 4. 置 $\Omega := \{(x, y, z) : x, y, z \ge 0; \ x + y + z \le 1\}$, 求 $f(x, y, z) = xy - z^2 + 2x^2 + x + y$ 在 Ω 上的最小值.

解 $\nabla f(x,y,z) = (y+4x+1,x+1,-2z) = 0$,有: $(x,y,z) = (-1,3,0) \notin \Omega$,故最小值在边界取得.

 $f(0,y,z) = -z^2 + y \ge -1$, 在 (0,0,1) 处取等; $f(x,0,z) = 2x^2 + x - z^2 \ge -1$ 在 (0,0,1) 处取等; $f(x,y,0) = xy + 2x^2 + x + y \ge 0$. 重点考察:

$$g(x,y) := f(x,y,1-x-y) = x^2 - xy - y^2 + 3x + 3y - 1, \ x,y \geqslant 0; \ x+y \leqslant 1.$$

第 11 周作业 (2020 年 11 月 24 日)

1. 设 M 是 n 维流形. 证明: ∂M 是流形.

证明 $\forall x \in \partial M$, 存在 x 的开邻域 U, 以及微分同胚 $\varphi: U \to V \subset \mathbb{R}^n$, 使得 $\varphi(U \cap \partial M) = V \cap \partial \mathbb{R}^n_+$, 因此 $\widetilde{\varphi}: U \cap \partial M \to \widetilde{V} = \{(v_1, \cdots, v_{n-1}): (v_1, \cdots, v_n) \in V\}$ 为微分同胚, 因此 ∂M 是 n-1 维子流形. \square 2. 3. 记 $B = B_1(0)$, $B_+ = \{x \in B: x_n > 0\}$. 设 $f \in C^1(\overline{B_+})$, 证明: $\exists g \in C^1(B)$, 使得 $g|_B \equiv f$.

证明
$$g(x) = \begin{cases} f(x), & x \in B_+ \\ -3f(x_1, \cdots, x_{n-1}, -x_n) + 4f(x_1, \cdots, x_{n-1}, -\frac{x_n}{2}), & x \in \mathring{B}_- \end{cases}$$
 即注 一维的证明可以使用更简单的方法,只需考察 $f^{(i)}(0) = 0, \ 0 \leqslant i \leqslant k$ 的情况做奇延拓即可,并且能够顺

附注 一维的证明可以使用更简单的方法, 只需考察 $f^{(i)}(0) = 0$, $0 \le i \le k$ 的情况做奇延拓即可, 并且能够顺利证明 C^k 延拓的情况. 至于为何只需考察 $f^{(i)}(0) = 0$ 的详细证明, 留作练习. 而在高维情形下, 也可以仿照本题证明中的方法进行 C^k 延拓, 但是可能需要 k+1 项进行构造, 具体构造方式也请大家思考.

- 4. 设 $M \in \mathbb{R}^n$ 上的 k 维带边流形, $x \in \partial M$. 设 x 附近具有两个局部坐标卡 U_1, U_2 , 满足 $h_1: U_i \to V_i$ 是微分同胚, $h_i(U_i \cap M) = V_i \cap \{x_k \ge 0, x_i = 0, k+1 \le j \le n\}$, 其中 V_i 是 0 的开邻域, i = 1, 2. 记 $U = U_1 \cap U_2$.
 - (1) 证明: $h_2 \circ h_1^{-1} : h_1(U \cap M) \to h_2(U \cap M)$ 是同胚.
 - (2^*) 证明: $h_2 \circ h_1^{-1} \in C^1(\overline{h_1(U \cap M)})$.

证明 (1) 是显然的, 只证明 (2). 由于 $h_2 \circ h_1^{-1} \in C^1(h_1(U \cap M))$, 并且 $(h_2 \circ h_1^{-1})'$ 能够连续到边, 由第 2、3 题的结论, 知可以延拓到边.

第 13 周作业 (2020 年 12 月 9 日)

- 1. 设 X 是拓扑空间, 定义 $(x,t) \sim (y,s)$ 在 $X \times [0,1]$ 中等价, 如果 t=s=0, 或 (x,t)=(y,s). 商空间叫做 X 上的锥, 记作 CX.
 - (1) 证明: 如果 X 是 Hausdorff 空间, 那么 CX 也是.
 - (2) 证明: 如果 $X = \mathbb{S}^1$ 是圆周, 则 CX 是圆盘 \mathbb{D}^2 .

证明 (1) 只需检查 (x,0) 与 (y,s) 的分离性: $(x,0) \in X \times [0,\frac{s}{2}), (y,s) \in X \times (\frac{s}{2},\frac{3s}{2})$. 其余情况,由 X 和 [0,1] 的 Hausdorff 性可知是平凡的.

2. 度量空间 X 是紧的, 当且仅当 $\forall f \in C(X)$, f 有界.

证明 紧致空间的连续像是紧的,因此必要性显然. 如果 X 非紧,则 X 不是列紧的,故 $\exists A = \{x_n : n \in \mathbb{N}\}$ 为闭集,定义 $f(x_n) = n$,并由 Tietze 扩张定理,它可以延拓为 X 上的无界连续函数,充分性得证.

3. 设 X 为紧致度量空间, $f: X \to X$ 连续, $d(f(x), f(y)) \ge d(x, y)$, $\forall x, y \in X$. 证明: $f: X \to X$ 是等距同构. **证明** 单射显然, $d(x, y) \ge d(f^{-1}(x), f^{-1}(y))$ 知 f^{-1} 连续, 故 $f: X \to f(X)$ 为同胚.

由 X 列紧: $\{f^n(a)\}_{n=1}^{\infty}$ 必然存在极限点,设 $\{f^{k_n}(a)\}_{n=1}^{\infty}$ 为 Cauchy 列,则 $\lim_{m,n\to\infty}d(f^{k_m}(a),f^{k_n}(a))=0$,结合 $d(a,f^{k_m-k_n}(a)) \leq d(f^{k_m}(a),f^{k_n}(a))$,知 a 是 $\{f^n(a)\}_{n=1}^{\infty}$ 的一个极限点.

由 f 是同胚, f(X) 是闭集. 而 $\forall a \in X$, 由刚刚的讨论知 a 是 f(X) 的聚点, 故 $a \in f(X)$, 进而 f(X) = X. 定义 $X \times X$ 上的度量 $\widetilde{d}((x,y),(x',y')) = \max(d(x,x'),d(y,y')), g: X \times X \to X \times X, g(x,y) = (f(x),f(y))$. 直接验证可知, g 满足与 f 相同的性质: $\widetilde{d}(g(x,y),g(x',y')) \geqslant \widetilde{d}((x,y),(x',y'))$, 故 (a,b) 是 $\{g^n(a,b)\}_{n=1}^\infty$ 的极限点. $\forall \varepsilon > 0$, $\exists n \in \mathbb{N}^*$, 使得 $\widetilde{d}((a,b),(f^n(a),f^n(b))) < \varepsilon$, 进而

$$d(f(a), f(b)) \le d(f^n(a), f^n(b)) \le d(f^n(a), a) + d(a, b) + d(b, f^n(b)) < d(a, b) + 2\varepsilon,$$

令
$$\varepsilon \to 0$$
: $d(f(a), f(b)) = d(a, b), f : X \to X$ 是等距同构.

第 14 周作业 (2020 年 12 月 16 日)

1. 设 $\Sigma \subset \mathbb{R}^3$ 为可定向光滑曲面, $\vec{v} = (P, Q, R) \in T\Sigma$, $A \in GL_3(\mathbb{R})$, Σ' 为 Σ 在 A 下的像, Σ' 的向也取为 Σ 定向在 A 下的像. 尝试定义 $\vec{v}' = (P', Q', R') \in T\Sigma'$, 使得

$$\iint_{\Sigma} P dy dz + Q dz dx + R dx dy = \iint_{\Sigma'} P' dy dz + Q' dz dx + R' dx dy.$$

证明 $egin{pmatrix} P' \\ Q' \\ R' \end{pmatrix} = rac{A}{\det A} egin{pmatrix} P \\ Q \\ R \end{pmatrix} \circ A^{-1}.$ 由单位分解的性质以及 A 是线性变换可知,不妨考虑只有一个坐标卡的情

 \mathcal{L} , 取曲面 Σ 的一个参数表示 (s,t) 代入, 直接验证答案即可.

2. 设 Σ 为锥面 $z = \sqrt{x^2 + y^2}$ 在柱面 $x^2 + y^2 \leq 1$ 内的部分, $\{f_i\}_{i=1}^{\infty} \subset C^{\infty}(\{(x,y): x^2 + y^2 \leq 1\})$, 满足 $f_i(x,y) \Rightarrow f(x,y) = \sqrt{x^2 + y^2}$. 定义 f_i 的图像 $\Sigma_i := \{(x,y,z) : z = f_i(x,y)\}$, 曲面定向取为上法向. 证明:

$$\lim_{i \to \infty} \iint_{\Sigma_i} P dy dz + Q dz dx + R dx dy = \iint_{\Sigma} P dy dz + Q dz dx + R dx dy$$

 $\lim_{i\to\infty}\iint_{\Sigma_i}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y=\iint_{\Sigma}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y.$ **证明** 取 $\Sigma_i'=\{(x,y,z):x^2+y^2=1,\;(z-f_i(x,y))(z-f(x,y))\leqslant 0\},$ 定向取为外法向. $V_i=\{(x,y,z):x^2+y^2=1,\;(z-f_i(x,y))(z-f(x,y))\leqslant 0\}$ $x^2 + y^2 \le 1$, $(z - f_i(x, y))(z - f(x, y)) \le 0$, III

$$\left(\iint_{\Sigma_i} - \iint_{\Sigma} + \iint_{\Sigma_i'}\right) P \mathrm{d}y \mathrm{d}z + Q \mathrm{d}z \mathrm{d}x + R \mathrm{d}x \mathrm{d}y = \iiint_{V_i} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) \mathrm{d}x \mathrm{d}y \mathrm{d}z.$$

利用一致收敛, $||f_i - f||_{\infty} < \varepsilon$, $\forall i > N$, 进而 $\mathcal{H}^2(\Sigma_i) < 2\pi\varepsilon$, $|V_i| < \pi\varepsilon$, 结论得证.

第 15、16 周作业 (2020 年 12 月 29 日)

- 1. 对于 (1)(2)(3) 请给出例子, 并证明 (4):
 - (1) $f \notin C[0,1]$ 不连续,但是存在 F 使得 $f(x) = F'(x), \forall x \in [0,1]$.
 - (2) $f \notin C[0,1]$, 且 f 的图像是闭的.
 - (3) $f \notin C[0,1]$, 且 f 的图像是连通的.
- $(4) \forall \alpha \in (0,1]$, 存在 f 为 [0,1] 上的单调连续函数, 但 f 不是 α 阶 Lipschitz 的. 证明: 如果 f 是 α 阶 Lipschitz 的, $\alpha > 1$, 那么 f 为常

证明 (1)
$$f(x) = \begin{cases} \sin\frac{1}{x} + 2x\cos\frac{1}{x}, & x \in (0,1], \\ 0, & x = 0. \end{cases}$$

(2)
$$f(x) = \begin{cases} \frac{1}{x}, & x \in (0, 1], \\ 0, & x = 0. \end{cases}$$

(3)
$$f(x) = \begin{cases} 0, & x = 0. \\ \sin \frac{1}{x}, & x \in (0, 1], \\ 0, & x = 0. \end{cases}$$

$$(4) \ f(x) = x^{\frac{\alpha}{2}}. \ \text{如果} \ \alpha > 1, \ \forall x \in (0,1), \ |h| \ 充分小, \ \left|\frac{f(x+h) - f(x)}{h}\right| \leqslant [f]_{\alpha} |h|^{\alpha - 1} \to 0 \ (h \to 0).$$

2. 设 $f_k:[a,b]\to\mathbb{R}$ 非负可积, $\{f_k\}$ 逐点收敛于 f. 证明: 如果 $\liminf_{k\to\infty}\int_a^b f_k<\infty$, 那么 f 可积, 且 $\int_{a}^{b} f \leqslant \liminf_{k \to \infty} \int_{a}^{b} f_{k}.$

证明 设 $g_k = \inf_{n \geqslant k} f_n$,由于可积函数列 $\{\inf_{k \leqslant n \leqslant M} f_n\}_{M=k}^{\infty}$ 单调递减地趋于 g_k ,由单调收敛定理可知 g_k 可积, $\forall k \in \mathbb{N}^*$.再注意到 $\{g_k\}_{k=1}^{\infty}$ 单调递增地逐点趋于 f.注意到 $\int_a^b g_k \leqslant \inf_{n \geqslant k} \int_a^b f_n$,在两侧令 $k \to \infty$,并利用单调收敛定理,有: $\int_a^b f = \lim_{k \to \infty} \int_a^b g_k \leqslant \liminf_{k \to \infty} \int_a^b f_k$.

(2) 使用上述定义, 证明: 如果 f 在 [0,2] 上可积, 那么在 [0,1] 上也可积.

证明 (1) $\forall \varepsilon > 0$, 存在 γ 为 gauge, 对于任何 γ -fine 的 \mathcal{D} 和 \mathcal{D}' , $|S(f,\mathcal{D}) - S(f,\mathcal{D}')| < \varepsilon$.

 $(2) \ \forall \varepsilon > 0, \ \text{存在} \ [0,2] \ \text{上的 gauge} \ \gamma, \ \text{使得对于任何} \ \gamma\text{-fine} \ \text{的} \ \mathscr{D} \ \text{和} \ \mathscr{D}', \ |S(f,\mathscr{D}) - S(f,\mathscr{D}')| < \varepsilon. \ \text{定义}$ $\gamma'(t) = \begin{cases} (0,1), & t \in (0,1), \\ (0,2), & t = 1, \\ (1,2), & t \in (1,2), \end{cases}$

[0,1] 上 γ_1 -fine 的分割, \mathscr{D} 是 [1,2] 上 γ_2 -fine 的分割,则 $\mathscr{D}_1 \cup \mathscr{D}$ 和 $\mathscr{D}_2 \cup \mathscr{D}$ 是 [0,2] 上 γ -fine 的分割,因此 $|S(f,\mathscr{D}_1) - S(f,\mathscr{D}_2)| = |S(f,\mathscr{D}_1 \cup \mathscr{D}) - S(f,\mathscr{D}_2 \cup \mathscr{D})| < \varepsilon.$

第 17 周作业 (2021 年 1 月 7 日)

1. 证明: $\mathbb{C}P^1$ 是流形, 且微分同胚于 \mathbb{S}^2 .

证明 设 $U_1 = \{[(1,z)] : z \in \mathbb{C}\}, U_2 = \{[z,1] : z \in \mathbb{C}\}, \varphi_j : U_j \to \mathbb{R}^2, j = 1, 2,$ 定义为 $\varphi_1([1,z]) = (\operatorname{Re} z, \operatorname{Im} z),$ $\varphi_2([z,1]) = (\operatorname{Re} z, \operatorname{Im} z),$ 因此 $\varphi_1 \circ \varphi_2^{-1}(x,y) = \varphi_2 \circ \varphi_1^{-1}(x,y) = (\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}), \ \forall (x,y) \neq (0,0),$ 进而 $\{(U_1, \varphi_1), (U_2, \varphi_2)\}$ 为 $\mathbb{C}P^1$ 的一组坐标卡, $\mathbb{C}P^1$ 是光滑流形.定义 $f([1,z]) = (\frac{2\operatorname{Re} z}{|z|^2 + 1}, \frac{2\operatorname{Im} z}{|z|^2 + 1}, \frac{|z|^2 - 1}{|z|^2 + 1}),$ f([0,1]) = (0,0,1), 容易验证 $f: \mathbb{C}P^1 \to \mathbb{S}^2$ 是微分同胚.(本质是球极投影)

2. 在 $F: \mathbb{S}^3 \to \mathbb{S}^2$, $F(z,w) = (z\overline{w} + w\overline{z}, iw\overline{z} - iz\overline{w}, z\overline{z} - w\overline{w})$ 的帮助下, 证明: $\mathbb{S}^3/\mathbb{S}^1$ 是微分流形, 且商映射 $\pi: \mathbb{S}^3 \to \mathbb{S}^3/\mathbb{S}^1$ 是光滑映射.

证明 注意到 $F(e^{i\theta}(z,w)) = F(z,w), \ \theta \in \mathbb{R}, \ \text{可以考察} \ \widetilde{F}: \mathbb{S}^3/\mathbb{S}^1 \to \mathbb{S}^2.$ 通过 $F(z_1,w_1) = F(z_2,w_2)$ 可知: $z_1\overline{w}_1 = z_2\overline{w}_2$ 且 $|z_1|^2 - |w_1|^2 = |z_2|^2 - |w_2|^2$, 进而 $\exists \theta \in \mathbb{R}, \ \text{使得} \ (z_2,w_2) = e^{i\theta}(z_1,w_1), \ \text{因此} \ \widetilde{F} \ \text{是单射}.$

考虑 $F(z,w)=(a,b,c)\in\mathbb{S}^2,$ 有 $|z|^2=\frac{1+c}{2},$ $|w|^2=\frac{1-c}{2},$ $2z\overline{w}=a+\mathrm{i}b.$ 通过最后一个等式可知: z,w 的辐角之差为定值,结合前两个等式, \widetilde{F} 是满射,进而是双射.由交换图表,只需用坐标卡检查 \widetilde{F} 是微分同胚即可:

- 3. 设 $M \subset \mathbb{R}^3$ 是 Mobius 带.
 - (1) 四维流形 $M \times M$ 可定向吗? 为什么?
 - (2) 如果 M 在 \mathbb{R}^3 中变厚, 变成三维流形 \widetilde{M} , \widetilde{M} 可定向吗? 为什么?

证明 (1) 不可定向. 先在 M 上取一条不保持定向的闭路 γ , 固定另一个 M 上一点 p, 取 $\widetilde{\gamma}(t)=(\gamma(t),p)$, 则 $\widetilde{\gamma}$ 是 $M\times M$ 上不保持定向的闭路.

(2) 可定向. $id: \widetilde{M} \to \mathbb{R}^3$ 是全局坐标卡, 继承了 \mathbb{R}^3 的可定向性.