date: monday, april 1, 2024

Compass and Straight-Edge Constructions

Next two classes: classical (~2500 years) old problems in math

Straight edge: No markings on this straight edge (so not a ruler).

Give two points, can draw a straight line in between the two points.

Compass: A tool to draw circles. Assume our compass can draw circles of radius 0 to ∞ . The compass is "collapsable" (when you lift the compass, you cannot keep distance)

Basic Constructions:

① Create a line through two points:

2) Create a circle using two points where one point is

2 Create a circle using two points where one point is the center and the other is on the perimeter.

*

3 Intersection of two lines gives us a point

4 Create one or two points by intersecting a line and circle

② Given a line segment A B can create a
② Given a line segment 4 B, can create a square whose sides have length AB.
3 Given a line L and a point P off of L
can create a line L' through P parallel to L.
Given a rectangle with area A, can construct a square
with area A.
⑤ Bisect an angle:
-> /οις
Classical Problems:
1 Trisecting an angle
2 Squaring the circle: given a circle, create a square with
equal area
3 Duplication of the cube: given a cube, construct a cube whose volume is double the original.
whose volume is aduble the driginal.
Answer: NOT POSSIBLE! Need field theory to prove this:
① and ③ proved by Wentzel in 1837.
Answer: NOT POSSIBLE! Need field theory to prove this: ① and ③ proved by Wentzel in 1837. ② follows from Lindemann's 1882 proof that π is
transcendental.
Constructible Numbers
Starting with a unit length a straightedge and a compass
Starting with a unit length, a straightedge, and a compass, what points can you construct?
What Pours and your solution.
0 1

Def^a: A real number α is constructible if we can create a line segment of length |α| in a finite number of steps using only a compass and straight edge.

eg. Every element of Z is constructible.

Assume $\alpha > \beta$.

Theorem: The set F = £all constructible numbers 3 is a subfield of R.

Proof
Given $\alpha, \beta \in F$, need to show that $\alpha \pm \beta \in F$, $\alpha \beta \in F$, and $\alpha \in F$.

Then, α β \leftarrow length $\alpha+\beta$ And

To make $\alpha\beta$, consider the case $\beta>1$ and make a triangle with sides of length 1 and α

 α α β

