

Lab 1: Variational Autoencoders and Generative Adversarial Networks

Course: Generative AI for computer vision

Level: M2 (Master's 2)
Duration: 4 hours

Objective

In this lab, you will:

- 1. Implement a **Variational Autoencoder (VAE)** to learn how to reconstruct images by sampling from a latent space.
- 2. Understand how the components of a VAE can be adapted to conceptualize and implement a **Generative Adversarial Network (GAN)**.
- 3. Compare the roles of VAEs and GANs in generative modeling.
- 4. Reflect on the strengths and weaknesses of each approach.

Background

Variational Autoencoders (VAEs)

A **VAE** is a generative model that reconstructs input data by encoding it into a latent space and then decoding it back. The latent space is a compressed representation that captures the most important features of the input.

The key elements of a VAE:

- Encoder: Compresses input data into a latent distribution (mean and variance).
- Latent Space: The encoded representation space.
- **Reparameterization Trick:** Allows gradients to flow through the stochastic latent space.
- **Decoder:** Reconstructs the input from the latent space.

Generative Adversarial Networks (GANs)

A **GAN** is a generative model consisting of two components:

- **Generator:** Produces fake data from random noise (latent space).
- **Discriminator:** Distinguishes between real and fake data.

GANs are trained using an adversarial process where the generator tries to fool the discriminator, and the discriminator tries to detect fake data.

Reversing VAEs into GANs

In a conceptual sense:

- A VAE decoder can be seen as a GAN generator.
- The **GAN discriminator** replaces the **VAE encoder** by determining the quality of generated samples instead of encoding input data.

Part 1: Implementing a Variational Autoencoder (VAE)

Instructions

- 1. **Download the MNIST dataset** of handwritten digits. (as help code provided below for this first session)
- 2. Implement the following components in TensorFlow/Keras:
 - o **Encoder:** Compresses images into a latent space of dimension latent dim.
 - Reparameterization Trick: Samples latent variables from a Gaussian distribution.
 - Decoder: Reconstructs images from the latent space.
- 3. Define the **VAE loss function**:
 - Reconstruction Loss (binary cross-entropy).
 - o KL Divergence Loss (regularizes the latent space).
- 4. Train the VAE and visualize the reconstructed images.

Questions

- 1. Why do we use the reparameterization trick in VAEs?
- 2. How does the **KL divergence loss** affect the latent space?
- 3. How does changing the latent space dimension (latent_dim) impact the reconstruction quality?

Part 2: From VAE to GAN

- 1. Conceptual Discussion:
 - o Explain how the VAE decoder can be used as a GAN generator.
 - o Discuss the differences between the VAE encoder and the GAN discriminator.
- 2. **Implement a GAN** using the VAE decoder as the generator (with no training step).

Deliverables

- 1. **Code Implementation** of the VAE and GAN.
- 2. Answers to the Questions.
- 3. Visualizations of reconstructed (VAE) and generated (GAN) images.

For pedagogic purpose, the code is sequential here, it should be of form : function definitions and archtitecture in different files. import tensorflow as tf from tensorflow.keras import layers, Model import numpy as np import matplotlib.pyplot as plt # Load MNIST dataset (x_train, _), (x_test, _) = tf.keras.datasets.mnist.load_data() x train = x train.astype("float32") / 255.0 $x_{test} = x_{test.astype}("float32") / 255.0$ x train = np.expand dims(x train, -1) x test = np.expand dims(x test, -1) latent dim = 2 # Latent space dimension # Encoder class Encoder(Model): def init (self, latent dim): super(Encoder, self).__init__() self.flatten = layers.Flatten() self.dense1 = layers.Dense(256, activation="relu") self.mean = layers.Dense(latent dim) self.log var = layers.Dense(latent dim) def call(self, x): x = self.flatten(x)x = self.dense1(x)mean = self.mean(x)log var = self.log var(x)return mean, log var # Reparameterization trick def sample z(mean, log var): epsilon = tf.random.normal(shape=tf.shape(mean)) return mean + tf.exp(0.5 * log_var) * epsilon # Decoder class Decoder(Model): def init (self): super(Decoder, self). init () self.dense1 = layers.Dense(256, activation="relu") self.dense2 = layers.Dense(28 * 28, activation="sigmoid") self.reshape = layers.Reshape((28, 28, 1))


```
def call(self, z):
    z = self.dense1(z)
    z = self.dense2(z)
    return self.reshape(z)
# VAE
class VAE(Model):
  def init (self, encoder, decoder):
    super(VAE, self). init ()
    self.encoder = encoder
    self.decoder = decoder
  def call(self, x):
    mean, log var = self.encoder(x)
    z = sample z(mean, log var)
    reconstruction = self.decoder(z)
    return reconstruction, mean, log var
encoder = Encoder(latent dim)
decoder = Decoder()
vae = VAE(encoder, decoder)
# Loss Function
def vae loss(x, reconstruction, mean, log var):
  reconstruction loss = tf.reduce mean(
    tf.keras.losses.binary crossentropy(x, reconstruction)
  reconstruction loss *= 28 * 28
  kl divergence = -0.5 * tf.reduce sum(1 + log var - tf.square(mean) - tf.exp(log var))
  return reconstruction loss + kl divergence
# Optimizer
optimizer = tf.keras.optimizers.Adam()
# Training Loop
@tf.function
def train step(x):
  with tf.GradientTape() as tape:
    reconstruction, mean, log var = vae(x)
    loss = vae loss(x, reconstruction, mean, log var)
  gradients = tape.gradient(loss, vae.trainable variables)
  optimizer.apply_gradients(zip(gradients, vae.trainable_variables))
  return loss
# Training
```


epochs = 20
batch_size = 128
train_dataset =
tf.data.Dataset.from_tensor_slices(x_train).shuffle(60000).batch(batch_size)
for epoch in range(epochs):
for step, x_batch in enumerate(train_dataset):
loss = train_step(x_batch)
print(f"Epoch {epoch + 1}, Loss: {loss.numpy()}")