

MSc in Computer Science

at University of Milan

Formal Methods course held by Momigliano Alberto Davide Adolfo

Created by:

Email: federico.bruzzone@studenti.unimi.itFederico Bruzzone

1 Commutative sum in \mathbb{N}

Lemma 1. $\forall n \in \mathbb{N} \text{ it holds that } n + 0 = n.$

Proof. We can proof this by induction on n.

The base case is n = 0, and we have to show that 0 + 0 = 0. This is trivially true.

The inductive step is to show that $\forall n \in \mathbb{N}$ it holds that n+0=n. We can show that (n+1)+0=n+1 by using the inductive hypothesis.

$$(n+1) + 0 = n + (1+0)$$
 by associativity
= $n+1$ by the inductive hypothesis

Lemma 2. $\forall n, m \in \mathbb{N}$ it holds that n + (m+1) = (n+m) + 1.

Proof. We can proof this by induction on n.

The base case is n=0, and we have to show that $\forall m \in \mathbb{N}$ it holds that 0+(m+1)=(0+m)+1. This is trivially true.

The inductive step is to show that $\forall n \in \mathbb{N}$ it holds that n + (m+1) = (n+m) + 1. We can show that (n+1) + (m+1) = ((n+1) + m) + 1 by using the inductive hypothesis.

$$(n+1) + (m+1) = (n+(m+1)) + 1$$
 by associativity
= $((n+m)+1) + 1$ by the inductive hypothesis
= $((n+1)+m)+1$ by associativity

Theorem 1. $\forall n, m \in \mathbb{N}$ it holds that m + n = n + m.

Proof. We can proof this by induction on n.

The base case is n = 0, and we have to show that $\forall m \in \mathbb{N}$ it holds that m + 0 = 0 + m.

$$m + 0 = m$$
 by Lemma 1

The inductive step is to show that $\forall n \in \mathbb{N}$ it holds that m+n=n+m. We can show that m+(n+1)=(n+1)+m by using the inductive hypothesis.

$$m + (n + 1) = (m + n) + 1$$
 by Lemma 2
= $(n + m) + 1$ by the inductive hypothesis
= $(n + 1) + m$ by Lemma 2