Solutions to Extra Practice Problems for Exam 2

The problems and solutions below are gratefully borrowed, with minor modifications, from practice problems written by Rob Benedetto and Sema Gunturkun.

The following TRUE/FALSE questions provide you very good practice on understanding of the concepts overall.

1. Determine if each of following is **True** or **False**. If it is true, then give a short proof to justify your answer. If it is false, then either explain why clearly or give a precise counter example.

True / False A linear transformation $T: V \to W$ has a matrix $[T]^{\beta}_{\alpha} \in M_{4\times 5}(\mathbb{R})$ then dim V=4 and dim W=5.

FALSE. if the matrix of T is in $M_{4\times 5}(\mathbb{R})$, it means dimension of target, i.e. dim W must be 4 and the domain V must have dimension 5.

True / False Let V, W be finite dimensional vector spaces such that dim V = 4 and dim W = 3. There is an injective (i.e 1-1) linear transformation $T: V \to W$ such that T is not the zero map.

FALSE. There cannot be an injective because by Rank-Nullity Theorem;

$$\operatorname{nullity}(T) + \operatorname{rank}(T) = \underbrace{\dim V}_{4}.$$

Since $\operatorname{Im}(T) \subseteq W$, we get $\operatorname{rank}(T) \leq 3$. Then $\operatorname{nullity}(T) \geq 1$. Thus $\operatorname{Ker}(T) \neq \{\vec{0}\}$.

True / False Let U, V be finite dimensional vector spaces such that dim V = 3 and dim W = 4. There is no surjective (i.e. onto) linear transformation $T: V \to W$ such that T is not the zero map.

TRUE. By Rank-Nullity Theorem; $\operatorname{nullity}(T) + \operatorname{rank}(T) = \underbrace{\dim V}_3$. So $\operatorname{rank}(T) = \dim \operatorname{Im}(T) \leq 3 < \dim W = 4$. Thus, $\operatorname{Im}(T)$ is always a **proper** subspace of W, that is such linear map T is never surjective.

True / False Let $\alpha = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ and $\alpha' = \{\vec{v}_3, \vec{v}_2, \vec{v}_1\}$ be (ordered) bases for V. (Notice they are the same sets but vectors ordered differently.) Then the matrix $[I_V]^{\alpha'}_{\alpha}$ of the identity map $I_V: V \to V$ is the identity matrix $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

FALSE.
$$[I_V]_{\alpha}^{\alpha'} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

True / False | Let A be a 7×5 matrix then the largest possible rank of A is 7.

FALSE. By Rank-Nullity Theorem; $\operatorname{nullity}(A) + \operatorname{rank}(A) = \underbrace{\# \operatorname{of columns of } A}$ (as a linear transformation we can interpret this as $T: \mathbb{R}^5 \to \mathbb{R}^7$ given by $T(\vec{x}) = A\vec{x}$, then we have $\operatorname{nullity}(T) + \operatorname{rank}(T) = \dim \mathbb{R}^5$). Thus, $\operatorname{rank}(A)$ could be at most 5 when $\operatorname{nullity}(A) = 0$.

- **2.** Let $T: P_2(\mathbb{R}) \to \mathbb{R}^2$ be a map defined by T(f) = (f(-2), f'(3)).
 - (a) Prove that T is a linear transformation.
 - (b) Let $\beta = \{1, x, x^2\}$ be the standard basis for $P_2(\mathbb{R})$, and let $\gamma = \{\vec{e_1}, \vec{e_2}\}$ be the standard basis for \mathbb{R}^2 . Compute the matrix $[T]^{\gamma}_{\beta}$.

Answer.

(a) For all $p(x) = a_0 + a_1x + a_2x^2$ and $q(x) = b_0 + b_1x + b_2x^2$ in $P_2(\mathbb{R})$; T(p+q) = ((p+q)(-2), (p+q)'(3)) = (p(-2) + q(-2), p'(3) + q'(3)) = (p(-2), p'(3)) +(q(-2), q'(3)) = T(p) + T(q) (the second equation is using polynomial addition and derivative additive rule.)

For all $p(x) \in P_2(\mathbb{R})$, and for all $c \in \mathbb{R}$, T(cp) = ((cp)(-2), (cp)'(3)) = (cp(-2), cp'(3)) = c(p(-2), p'(3)) = cT(p) (similarly, the second equation is using scalar multiple of a polynomial and derivative rule for scalar multiple.)

- (b) We compute $T(1) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \vec{e}_1$, $T(x) = \begin{bmatrix} -2 \\ 1 \end{bmatrix} = -2\vec{e}_1 + \vec{e}_2$, and $T(x^2) = \begin{bmatrix} 4 \\ 6 \end{bmatrix} = 4\vec{e}_1 + 6\vec{e}_2$. So the matrix is $[T]^{\gamma}_{\beta} = \begin{bmatrix} 1 & -2 & 4 \\ 0 & 1 & 6 \end{bmatrix}$.
- **3.** Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation defined by $T(\begin{vmatrix} a \\ b \\ c \end{vmatrix}) = \begin{bmatrix} b \\ 2a+d \\ 3b \end{bmatrix}$.
 - (a) Find a basis for Ker(T) "the Kernel of T.
 - (b) Find a basis for Im(T) "the Image of T.
 - (c) What is the nullity of T?
 - (d) What is the rank of T?
 - (a) (Answer using definition of the Kernel of T) Setting $T(\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}) = \vec{0}$ gives b = 2a + d = 3b = 0, or equivalently, b = 0 and d = -2a, and c can be anything. So

$$\operatorname{Ker}(T) = \{ \begin{bmatrix} a \\ 0 \\ -2a \end{bmatrix} \mid a, c \in \mathbb{R} \} \qquad = \{ a \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \mid a, c \in \mathbb{R} \} = \operatorname{Span}\left(\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ -2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \} \right).$$

Let $\beta = \{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ -2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \}$. Then β is linearly independent, since it has two elements, and they are not scalar multiple of each other. Thus, β is a basis for Ker(T).

[Alternately (Using the matrix of T): T is multiplication by the matrix $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 1 \\ 0 & 3 & 0 & 0 \end{bmatrix}$.

Doing row reduction to solve $A\vec{x} = \vec{0}$ gives $rref(A) = \begin{bmatrix} 1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. Then the solution set

of $A\vec{x} = \vec{0}$ has a basis $\beta' = \{\begin{bmatrix} -1/2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}\}$, which is also a basis for $Ker(T) \subseteq \mathbb{R}^4$. Notice that $Span(\beta) = Span(\beta')$.]

(b) (Answer using definition of the Image of T)

$$\begin{split} \operatorname{Im}(T) &= \{ T(\vec{x}) \mid \vec{x} \in \mathbb{R}^4 \} \} \\ &= \{ \begin{bmatrix} \frac{a}{a} + d \\ \frac{a}{b} \end{bmatrix} : a, b, d \in \mathbb{R} \} \\ &= \{ a \begin{bmatrix} \frac{0}{2} \\ 0 \end{bmatrix} + b \begin{bmatrix} \frac{1}{0} \\ \frac{1}{3} \end{bmatrix} + d \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} : a, b, d \in \mathbb{R} \} = \operatorname{Span}\left(\{ \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{1}{0} \\ \frac{1}{3} \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \} \right) \end{split}$$

Since $\begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, it is redundant and we can remove it from the spanning set. Hence, the set $\gamma = \{\begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}\}$ is linearly independent, since it has two elements, and they are not scalar multiple of each other. Thus, γ is a basis for Im(T).

[Alternately(Using the matrix of T): Again using the matrix A of linear transformation T, the row-reduced form $rref(A) = \begin{bmatrix} 1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ tells us that first and second columns are pivot (therefore, linearly independent). So we take the first and second columns of A; and we get $\gamma' = \{\begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}\}$, which is also a basis for $Im(T) \subseteq \mathbb{R}^3$. Notice that $Span(\gamma) = Span(\gamma')$.]

- (c) $\operatorname{rank}(T) = |\gamma| = 2 = \#$ linearly indep. columns of A, that is, # pivot columns of $\operatorname{rref}(A)$.
- (d) $\operatorname{nullity}(T) = |\beta| = 2 = \# \text{ non-pivot columns of } \operatorname{rref}(A), \text{ that is, } \# \text{ of free var. of } A\vec{x} = \vec{0}.$
- 4. The following maps are both linear. For each, decide whether or not it is an isomorphism. If you see a fast method, feel free to use it, but don't forget to explain your reasoning.

(a)
$$T: \mathbb{R}^2 \to \mathbb{R}^4$$
 by $T(\begin{bmatrix} a \\ b \end{bmatrix}) = \begin{bmatrix} 5a - b \\ 6b \\ 2a - 7b \\ 3a \end{bmatrix}$.

(b)
$$U: P_2(\mathbb{R}) \to P_2(\mathbb{R})$$
 by $U(f) = f(x) - xf'(x) + 2f(3)$.

Answer.

- (a) Since $\dim(\mathbb{R}^2) = 2 \neq 4 = \dim(\mathbb{R}^4)$, there cannot be an isomorphism between the two spaces, so T is not invertible.
- (b) To find $\operatorname{Ker}(U)$ we solve $U(a+bx+cx^2)=0$ then $a+bx+cx^2-(bx+2cx^2)+2(a+3b+9c)=0$, i.e., $(3a+6b+18c)-cx^2=0$. Thus, $\operatorname{Ker}(U)=\{a+bx+cx^2:a+2b+6c=-c=0\}$. Solving these equations gives c=0 and a=-2b. In particular, $x-2\in\operatorname{Ker}(U)$. [And a simple check shows that indeed, U(x-2)=0.] So since $\operatorname{Ker}(U)\neq\{\vec{0}\}$, U is not one-to-one, and hence U is not invertible.

[Alternately: One can construct the 3×3 matrix of U and verify it is not invertible.]

- 7. Let $\alpha = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ (i.e. the standard basis) and $\gamma = \left\{ \begin{bmatrix} 5 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \end{bmatrix} \right\}$ be bases for \mathbb{R}^2 .
 - (a) Find the vector $\vec{x} \in \mathbb{R}^2$ whose coordinate vector with respect to γ is $[\vec{x}]_{\gamma} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$
 - (b) Find the following coordinate vectors with respect to the indicated basis.
 - (i) Find $[\vec{v}]_{\alpha}$ where $\vec{v} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$.
 - (ii) Find $[\vec{v}]_{\gamma}$ where $\vec{v} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$.
 - (iii) Find $[\vec{u}]_{\gamma}$ where $\vec{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
 - (c) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map given by $T(\vec{x}) = A\vec{x}$ where $A = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}$.
 - (i) Compute the matrix $[T]^{\alpha}_{\alpha}$
 - (ii) Compute the matrix $[T]^{\alpha}_{\gamma}$.

Answer.

- (a) If the coordinate vector $[\vec{x}]_{\gamma} = \begin{bmatrix} -1\\2 \end{bmatrix}$, then it means we write $\vec{x} = (-1)$. $\begin{bmatrix} 5\\3 \end{bmatrix} + 2$. $\begin{bmatrix} 4\\2 \end{bmatrix}$ as a linear combination of the vectors of basis γ (with respect to the given order). Thus, $\vec{x} = \begin{bmatrix} 3\\1 \end{bmatrix}$.
- (b) (i) $\alpha = \{\vec{e}_1, \vec{e}_2\}$ is the standard basis for \mathbb{R}^2 , so $\vec{v} = \begin{bmatrix} 5 \\ 3 \end{bmatrix} = 5\vec{e}_1 + 3\vec{e}_2$. Therefore, the coordinate vector $[\vec{v}]_{\alpha}$ is $\begin{bmatrix} 5 \\ 3 \end{bmatrix}$ itself.
 - (ii) Notice that the vector $\vec{v} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$ is the first vector of γ , so $\vec{v} = 1$. $\begin{bmatrix} 5 \\ 3 \end{bmatrix} + 0$. $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$. Thus, $[\vec{v}]_{\gamma} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

(iii) Find
$$[\vec{u}]_{\gamma}$$
 where $\vec{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Write
$$\vec{v} = c_1 \begin{bmatrix} 5 \\ 3 \end{bmatrix} + c_2 \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$
 for (uniquely determined) $c_1, c_2 \in \mathbb{R}$.

(We need to find
$$c_1, c_2$$
 b/c $[\vec{u}]_{\gamma} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.)

Then
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} = c_1 \begin{bmatrix} 5 \\ 3 \end{bmatrix} + c_2 \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$
 gives

$$5c_1 + 4c_2 = 1$$

$$3c_1 + 2c_2 = 1$$

(I skipped the details). Then we get $c_1 = 1$ and $c_2 = -1$. Hence $[\vec{u}]_{\gamma} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

- (c) Recall that $T(\vec{x}) = A\vec{x}$ where $A = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}$.
 - (i) Since α is the standard basis, we actually have $A = [T]^{\alpha}_{\alpha}$ "the standard matrix of T". (Convince yourselves by finding $T(\vec{e}_1)$ and $T(\vec{e}_2)$. I skip the details.)
 - (ii) To find $[T]^{\alpha}_{\gamma}$;

$$T\left(\begin{bmatrix}5\\3\end{bmatrix}\right) = A. \begin{bmatrix}5\\3\end{bmatrix} = \begin{bmatrix}0 & 1\\-1 & 2\end{bmatrix} \begin{bmatrix}5\\3\end{bmatrix} = \begin{bmatrix}3\\1\end{bmatrix} \text{ and } T\left(\begin{bmatrix}4\\2\end{bmatrix}\right) = A. \begin{bmatrix}4\\2\end{bmatrix} = \begin{bmatrix}0 & 1\\-1 & 2\end{bmatrix} \begin{bmatrix}4\\2\end{bmatrix} = \begin{bmatrix}2\\0\end{bmatrix}.$$

Hence, we get

$$[T]^{\alpha}_{\gamma} = \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix}.$$

8. Let V, W be vector spaces, let $T: V \to W$ be a linear map, let $\beta = \{\vec{v}_1, \dots, \vec{v}_n\} \subseteq V$ be a basis for V. Define γ to be $\gamma = \{T(\vec{v}_1), \dots, T(\vec{v}_n)\}$, and suppose that $\operatorname{Span}(\gamma) = W$. Prove that T is onto.

Proof. Let $\vec{w} \in W$. Since $\gamma = T(\beta)$ and $\mathrm{Span}(T(\beta)) = W$ is given, there exist scalars $a_1, \ldots, a_n \in \mathbb{R}$ such that

 $\vec{w} = a_1 T(\vec{v}_1) + \dots + a_n T(\vec{v}_n)$. Thus, $\vec{w} = a_1 T(\vec{v}_1) + \dots + a_n T(\vec{v}_n) = T(a_1 \vec{v}_1 + \dots + a_n \vec{v}_n)$. Hence, \vec{w} is in the image of T, as desired, so $W \subseteq \operatorname{Im}(T)$. Thus, $\operatorname{Im}(T) = W$ (as we already have other side of the inclusion \supseteq .)

- **9.** Let $A = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 4 \\ 3 & 3 & 3 & 6 \end{bmatrix}$. Let $T_A : \mathbb{R}^4 \to \mathbb{R}^3$ be given by $T_A(\vec{x}) = A\vec{x}$.
 - (a) Find bases for the kernel $\operatorname{Ker}(T_A)$ (a.k.a. $\operatorname{Ker}(A)$) and image $\operatorname{Im}(T_A)$ (a.k.a. $\operatorname{Im}(A)$).
 - (b) What are the rank and nullity of A?

Answer.

(a) By Gauss-Jordan elimination, we get

$$A \rightarrow \begin{array}{c} R_2 \\ R_1 \end{array} \begin{bmatrix} 1 & 1 & 2 & 4 \\ 0 & 0 & 1 & 2 \\ 3 & 3 & 3 & 6 \end{bmatrix} \rightarrow \begin{array}{c} \begin{bmatrix} 1 & 1 & 2 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix} \rightarrow \begin{array}{c} R_1 - 2R_2 \\ R_3 - 3R_1 \\ R_3 - R_2 \end{array} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} = rref(A)$$

For Ker(A): The first row of the echelon form says
$$x_1 = -x_2$$
, and the second says $x_3 = -2x_4$,

and
$$x_2 = t$$
, $x_4 = s$ are free. So $\operatorname{Ker}(A) = \left\{ \begin{bmatrix} -t \\ t \\ -2s \\ s \end{bmatrix} : t, s \in \mathbb{R} \right\}$. Thus, $\left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ -2 \\ 1 \end{bmatrix} \right\}$ is a

basis for Ker(A).

For Im(A), the first and third columns of the row-reduced echelon form are the pivot columns, so choosing the corresponding columns of A, we have $\left\{ \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix} \right\}$ is a basis for Im(A).

- (b) Counting elements of bases from part (a), the rank is 2, and the nullity is 2.
- **10.** Let $A \in M_{3\times 3}(\mathbb{R})$ be a 3×3 matrix such that the equation $A\vec{x} = \begin{bmatrix} 3 \\ -7 \\ 0 \end{bmatrix}$ has exactly one solution.

Prove that for any $\vec{b} \in \mathbb{R}^3$, the system $A\vec{x} = \vec{b}$ is consistent and has exactly one solution.

Proof. Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by $T(\vec{x}) = A\vec{x}$. If $A\vec{x} = \begin{bmatrix} 5 \\ -7 \\ 0 \end{bmatrix}$ has

exactly one solution \vec{w} , then it means that the inverse image $T^{-1}(\{\begin{bmatrix} 5 \\ -7 \end{bmatrix}\}) = \{\vec{w}\}.$ On the other hand, we know that

$$T^{-1}(\{\begin{bmatrix} 5\\-7\\0\end{bmatrix}\}) = \{\vec{w} + \vec{v}_h \mid \vec{v}_h \in \operatorname{Ker}(T)\} = \{\vec{w} + \vec{v}_h \mid \vec{v}_h \text{ is a solution for homogeneous } A\vec{x} = \vec{0}\}.$$

Thus, $Ker(T) = \{\vec{0}\}\$, that is, nullity(A) = 0 (i.e. T is injective) and then $rank(A) = 3 = \dim \mathbb{R}^3$ (i.e. T is surjective). Therefore, T is an isomorphism. Then for any $\vec{b} \in \mathbb{R}^3$, there exist unique $\vec{y} \in \mathbb{R}^3$ such that $T(\vec{y}) = A\vec{y} = \vec{b}$. **QED**

11. Decide whether each of the following statements is True or False. A always denotes an $m \times n$ matrix, \vec{b} a vector in \mathbb{R}^m or \mathbb{R}^n , and \vec{x} a (variable) vector in \mathbb{R}^n . (Hint: For the below statements related to system of equations, you may think about the problems in terms of the linear transformation given as the multiplication by A)

For any $\vec{b} \in \text{Im}(A)$, the equation $A\vec{x} = \vec{b}$ has AT LEAST ONE solution. True /

TRUE

For any $\vec{b} \in \text{Ker}(A)$, the equation $A\vec{x} = \vec{b}$ has AT LEAST ONE solution. True / False

FALSE

If $Im(A) = {\vec{0}}$, then the equation $A\vec{x} = \vec{0}$ has AT MOST ONE solution. True / False **FALSE**

If $Ker(A) = {\vec{0}}$, then the equation $A\vec{x} = \vec{0}$ has AT MOST ONE solution. True / False TRUE

If $\operatorname{rank}(A) = m$, then for ANY $\vec{b} \in \mathbb{R}^m$, the equation $A\vec{x} = \vec{b}$ has AT LEAST ONE solution. True / False TRUE

True / False | If rank(A) = n, then the equation $A\vec{x} = \vec{0}$ has AT MOST ONE solution.

TRUE

12. Let
$$\alpha = \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\}$$
. be a basis for \mathbb{R}^3 .

- (a) Let \vec{v} be the vector with α -coordinates $[\vec{v}]_{\alpha} = \begin{bmatrix} -1\\1\\2 \end{bmatrix}$. Find the standard coordinates for \vec{v} (i.e. the coordinate vector of \vec{v} w.r.t. the standard basis.)
- (b) Let $\vec{w} = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$. Compute $[\vec{w}]_{\alpha}$.

Answer.

(a) Write
$$\alpha = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$$
. Then $\vec{v} = -\vec{v}_1 + \vec{v}_2 + 2\vec{v}_3 = \begin{bmatrix} -1 + 1 + 2 \\ 1 + 1 - 2 \\ 0 + 0 + 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix}$.

(b) We are solving $\begin{bmatrix} 1 & 1 & 1 & | & -1 \\ -1 & 1 & -1 & | & 1 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}$ to find the coefficients x_1, x_2, x_3 in $\vec{w} = x_1 \vec{v}_1 + x_2 \vec{v}_2 + x_3 \vec{v}_3$

where $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ will be the α -coordinate vector of \vec{w} . A quick Gauss-Jordan elimination (I skip the

details of row-reduction here) gives $[\vec{w}]_{\alpha} = \begin{bmatrix} -3\\0\\2 \end{bmatrix}$.

13. Is it possible for a linear map $T: V \to W$ such that $\dim V = 3 \dim W = 5$ and $\operatorname{rank}(T) = 4$? If so, write down an example of such a linear map and demonstrate that it has rank 4. If not, explain why such a linear map cannot exist.

Answer. NO. By Rank-Nullity theorem, we know that rank $T + \text{nullity } T = \dim V = 3$. So rank T = 03 - nullity T so the rank can be at most 3 (maximum rank occur when the nullity nullity T = 0).Thus, the rank cannot be 4.

14. Recall that $\beta = \{E_{11}, E_{12}, E_{21}, E_{22}\}$ is a (standard) basis for $M_{2\times 2}(\mathbb{R})$, where

$$E_{11} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \quad E_{12} = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \quad E_{21} = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right], \quad E_{22} = \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right].$$

Let $C = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$. Let $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ be the linear map defined by T(A) = CA, for any

(a) Find the matrix representing T with respect to the basis β . (That is, compute $[T]^{\beta}_{\beta}$.)

- (b) Find a basis for Ker(T).
- (c) Find a basis for Im(T).

Answer.

(a) Computation shows $T(E_{11}) = CE_{11} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} = E_{11} + E_{21}$. So the first column of $[T]_{\beta}^{\beta}$ is the coordinate vector of $T(E_{11})$ with respect to β ; $[T(E_{11})]_{\beta} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$. Similarly computing the other columns $[T(E_{12})]_{\beta}$, $[T(E_{21})]_{\beta}$, $[T(E_{22})]_{\beta}$ (in the given order of β), we get

$$[T]_{\beta}^{\beta} = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}.$$

(b) Row-reducing $A = [T]^{\beta}_{\beta}$ we get $rref(A) = rref([T]^{\beta}_{\beta}) = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. A basis for the solution

set of $A\vec{x} = \vec{0}$ is $\left\{ \begin{bmatrix} -2\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\-2\\0\\1 \end{bmatrix} \right\}$. Thus, a basis elements of Ker(T) is $\{B_1, B_2\}$ where

$$B_1 = (-2)E_{11} + 0E_{12} + 1E_{21} + 0E_{22} = \begin{bmatrix} -2 & 0\\ 1 & 0 \end{bmatrix}$$
, and

$$B_2 = 0E_{11} + (-2)E_{12} + 0E_{21} + 1E_{22} = \begin{bmatrix} 0 & -2 \\ 0 & 1 \end{bmatrix}.$$

(c) We determine that the first and the second columns are pivot columns of A (as those are the pivot columns of the rref(A)). Then a basis for $Im(T) = \{D_1, D_2\}$ where the coordinate vectors are $[D_1]_{\beta} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, which is the first column of A, and $[D_2]_{\beta} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, which is the second column of A. Therefore,

$$D_1 = 1E_{11} + 0E_{12} + 1E_{21} + 0E_{22} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$
, and

$$D_2 = 0E_{11} + 1E_{12} + 0E_{21} + 1E_{22} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}.$$

[Alternate solution for parts (b) and (d) via definitions of kernel and image. One can describe the basis for Kernel and Image by finding a spanning set for each using the transformation $T(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+2c & b+2d \\ a+2c & b+2d \end{bmatrix} \text{ as in Problem } \# 2. \]$

(d) (i) Let $\gamma = \{M_1, M_2, M_3, M_4\}$ (It must have 4 elements in it as the space $M_{2\times 2}$ is 4 dimensional). Then we know that the *j*-th column of the change of basis matrix $[I]_{\gamma}^{\beta} = [M_j]_{\beta}$, that is, the coordinate vector of M_j with respect to the standard basis β .

Therefore, we get

$$\gamma = \{\underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{M_1}, \underbrace{\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}}_{M_2}, \underbrace{\begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}}_{M_3}, \underbrace{\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}}_{M_4}\}$$

(ii) $[I]^{\gamma}_{\beta} = ([I]^{\beta}_{\gamma})^{-1}$. (I skip the details here). Then

$$[\mathbf{I}]_{\beta}^{\gamma} = \begin{bmatrix} 1 & -1 & -1 & 0 \\ -1/2 & 1 & 1 & 1/2 \\ 1/2 & 0 & 0 & -1/2 \\ -1/2 & 0 & 1 & 1/2 \end{bmatrix}$$

(iii) $[T]_{\gamma}^{\beta} = \underbrace{[I]_{\beta}^{\beta}}_{\beta} [T]_{\beta}^{\beta} [I]_{\gamma}^{\beta} = [T]_{\beta}^{\beta} [I]_{\gamma}^{\beta}.$

Therefore,

$$[T]_{\gamma}^{\beta} = \begin{bmatrix} 1 & 1 & 3 & 2 \\ 2 & 3 & -2 & -1 \\ 1 & 1 & 3 & 2 \\ 2 & 3 & -2 & -1 \end{bmatrix}.$$

For practice, verify that the columns of $[T]^{\beta}_{\gamma}$ are, indeed. the β -coordinate vectors of the images of $M_i \in \gamma$, $[T(M_i)]_{\beta}$, for each i = 1, 2, 3, 4

(iv) $[T]_{\gamma}^{\gamma} = [I]_{\beta}^{\gamma} \underbrace{[T]_{\beta}^{\beta}[I]_{\gamma}^{\beta}}_{[T]_{\gamma}^{\gamma} \text{ by (iii)}}$ (which can be also observed as $[T]_{\gamma}^{\gamma} = Q^{-1}[T]_{\beta}^{\beta}Q$ where $Q = [I]_{\gamma}^{\beta}$.)

Then we get

$$[T]_{\gamma}^{\gamma} = \begin{bmatrix} -2 & -3 & 2 & 1\\ 7/2 & 5 & -3/2 & -1/2\\ -1/2 & -1 & 5/2 & 3/2\\ 3/2 & 2 & 1/2 & 1/2 \end{bmatrix}$$

15. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation such that

$$T(\begin{bmatrix} 2\\1 \end{bmatrix}) = \begin{bmatrix} 4\\2\\-3 \end{bmatrix}$$
 and $T(\begin{bmatrix} 2\\2 \end{bmatrix}) = \begin{bmatrix} 5\\0\\0 \end{bmatrix}$

Compute $T(\begin{bmatrix} 6 \\ -1 \end{bmatrix})$.

Answer. (Notice that T is given on a basis for \mathbb{R}^2 .) We first need to write $\begin{bmatrix} 6 \\ -1 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$. That is, solve $x \begin{bmatrix} 2 \\ 1 \end{bmatrix} + y \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ -1 \end{bmatrix}$, which gives the system $\begin{bmatrix} 2 & 2 & 6 \\ 1 & 2 & -1 \end{bmatrix}$.

Row reduction (detailed omitted here) leads to $\begin{bmatrix} 1 & 0 & 7 \\ 0 & 1 & -4 \end{bmatrix}$, i.e., x = 7, y = -4.

[A quick check shows
$$7 \begin{bmatrix} 2 \\ 1 \end{bmatrix} - 4 \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ -1 \end{bmatrix}$$
.] Thus, by linearity of T we get $T(\begin{bmatrix} 6 \\ -1 \end{bmatrix}) = T(7 \begin{bmatrix} 2 \\ 1 \end{bmatrix} - 4 \begin{bmatrix} 2 \\ 2 \end{bmatrix}) = 7T(2,1) - 4T(2,2) = 7 \begin{bmatrix} 4 \\ 2 \\ -3 \end{bmatrix} - 4 \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 8 \\ 14 \\ -21 \end{bmatrix}$.