Adversarial Attack on NN

Adversarial samples

Crafted by adding carefully selected **perturbations** δX to **legitimate inputs** X

• Goals:

- Confidence reduction : reduce the output confidence classification
- Misclassification: alter the output classification to any other class
- Targeted misclassification: alter the output classification to a target class
- Source/Target misclassification: force the output classification of a specific input to be a specific target class

Constraints:

- The perturbation δ_X must be small enough to pass human test.
- E.g., the number of features perturbed is no larger than 14.29% for MNIST (about 112 pixels) $\frac{1}{2}$.
- Attacks at TEST time: attack does not change the DNN model

Adversarial capabilities:

Network architecture:

- o Layers, activation functions, weights, bias.
- This gives attacker the ability to simulate the network.

• Training data:

- The adversary is able to collect a *surrogate* dataset, sampled from the same distribution as the original training dataset.
- This gives the attacker the ability to use the surrogate dataset to train a common DNN architecture to approximate the legitimate DNN model

• Oracle:

- The adversary can obtain output classifications from supplied inputs.
- This gives the attacker the ability to perform *differential attack* by observing the relationship between changes in inputs and outputs.
- The adversary can be limited by the number of absolute or rate-limited input/output trails they may perform.

Adversarial sample crafting algorithm

Formal definition: Given a legitimate sample X, classified as F(X) = Y by the network, the adversary wants to craft an *adversarial sample* X^* very similar to X, but misclassified as $F(X^*) = Y^* \neq Y$

$$argmin_{\delta_X} ||\delta_X|| s.t. F(X + \delta_X) = Y^*$$

Two-step process:

- **Direction Sensitivity Estimation**: evaluate the sensitivity of class change to each input feature
 - \circ Fast sign gradient method²: compare the gradients of the cost function with respect to the inputs
 - Forward derivative method¹
- **Perturbation Selection**: use the sensitivity information to select a perturbation δ_X among the input dimensions
 - Perturb all input dimensions by a small quantity ²
 - Perturb a limited number of input dimensions by a large quantity 1

Fig. 3: Adversarial crafting framework: Existing algorithms for adversarial sample crafting [7], [9] are a succession of two steps: (1) direction sensitivity estimation and (2) perturbation selection. Step (1) evaluates the sensitivity of model F at the input point corresponding to sample X. Step (2) uses this knowledge to select a perturbation affecting sample X's classification. If the resulting sample $X + \delta X$ is misclassified by model F in the adversarial target class (here 4) instead of the original class (here 1), an adversarial sample X^* has been found. If not, the steps can be repeated on updated input $X \leftarrow X + \delta X$.

^{1.} Papernot, Nicolas, et al. "The limitations of deep learning in adversarial settings." Security and Privacy (EuroS&P), 2016 IEEE European Symposium on. IEEE, 2016

^{2.} Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014).