Delta Method

FW8051 Statistics for Ecologists

Department of Fisheries, Wildlife and Conservation Biology

In the GLS section, we learned how to calculate $var(\hat{\beta}_0 + X_i\hat{\beta}_1)$ using matrix multiplication

And, more generally: $var(X\beta)$ for design matrix X:

$$\begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \hat{\beta}_1 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} \sigma_{\beta_0}^2 & \sigma_{\beta_0, \hat{\beta}_1}^2 \\ \sigma_{\beta_0, \beta_1}^2 & \sigma_{\beta_1}^2 \end{bmatrix}$$

• σ_X^2 , σ_Y^2 = variance of $\hat{\beta}_0$, $\hat{\beta}_1$ • $\sigma_{\hat{\beta}_0,\hat{\beta}_1}^2$ = covariance of $\hat{\beta}_0$ and $\hat{\beta}_1$

Recall: $var(X\beta) = X\Sigma X^T$

Learning Objectives

Understand how we can use the delta method to calculate SEs for functions of parameters

See also:

Approximating Variance of Demographic Parameters Using the Delta Method: A Reference for Avian Biologists ©

Larkin A. Powell Author Notes

The Condor, Volume 109, Issue 4, 1 November 2007, Pages 949-954, https://doi.org/10.1093/condor/109.4.949

What if we are interested in non-linear functions of parameters?

$$Length_i = L_{\infty}(1 - \exp(-kAge_i))$$

Options:

- Bootstrap
- Delta method
- Baysian inference

$$Length_i = L_{\infty}(1 - exp(-kAge_i))$$

Want to calculate a confidence interval for the length at a particular age, Age_i:

$$var(\hat{L}_{\infty}(1 - \exp(-\hat{k}Age_i))) = f(\hat{L}_{\infty}, \hat{k})$$

If we estimate $\theta = (L_{\infty}, k)$ using Maximum likelihood, and our sample size is large, we know:

$$\hat{\theta} \sim MVN(\theta, I^{-1}(\theta))$$
 with:

•
$$I(\theta) = \left[\frac{\partial^2 log L(\theta)}{\partial \theta^2}\right]$$
 is the Hessian matrix

Implementation

In R:

- use the detavar function in the emdbook package to calculate the derivatives and variance (see FemalesvonB.R)
- or, calculate the derivatives yourself (or using https://www.symbolab.com/solver/derivative-calculator), then roll your own with % + % for matrix multiplication.

$$f(\theta) = L_{\infty}(1 - \exp(-kAge_i))$$

$$f'(\theta) = (1 - \exp(-kAge_i), L_{\infty}Age_i \exp(-kAge_i))$$

Delta Method

Let:

- $f(L_{\infty}, k) = L_{\infty}(1 \exp(-kAge_i))$
- $f'(L_{\infty}, k) = (\frac{\partial f}{\partial L_{\infty}}, \frac{\partial f}{\partial k})$
- ullet Σ be the asympototic variance/covariance matrix of (L_∞,k) given by the inverse of the Hessian matrix

Delta Method (derived using a Taylor's series approximation of *f*):

$$\textit{var}(\hat{L}_{\infty}(1-\exp(-\hat{k}Age_{l})))\approx f'(\hat{L}_{\infty},\hat{k})\Sigma f'(\hat{L}_{\infty},\hat{k})^{T}|_{L_{\infty}=\hat{L}_{\infty},k=\hat{k}}$$
 More generally:

$$var(f(\theta)) \approx f'(\theta) \Sigma f'(\theta)^T|_{\theta = \hat{\theta}}$$

Derivatives

