Lecture 18: CMOS amplifiers (5)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

Review of previous lecture

Some selected lecture contents

Source degeneration (1/2)

A resistor placed in series with the source terminal

Source degeneration (2/2)

- Now we have to find the source voltage.
 - (Saturation current of the MOSFET) = (Current flowing through R_S)
 - After a simple manipulation, we can find

$$V_S = V_G + V_1 - V_{TH} - \sqrt{V_1^2 + 2(V_G - V_{TH})V_1}$$

Here,

$$V_1 = \frac{1}{\mu_n C_{ox} \frac{W}{L} R_s}$$

Effect of R_S (1/2)

- Reduction of the gate-source voltage
 - Therefore, also reduction of the gain.
- For a while, neglect the channel-length modulation.

Effect of R_S (2/2)

After a simple manipulation,

$$A_v = -\frac{g_m R_D}{1 + g_m R_S}$$

Example 17.20

CS with degeneration

$$A_{v} = -\frac{R_{D}}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}}$$

Output impedance of CS (1/2)

- Still neglecting the channel-length modulation
 - No current!

Output impedance of CS (2/2)

- Now considering the channel-length modulation
 - Output resistance is $r_0 + (g_m r_0 + 1)R_S$.

Examples 17.23 and 17.24

- Compute the output resistance.
 - What is the difference?

