对论课 2—行列式,矩阵 **代数与几何讨论课(一)(行列式、矩阵部分)**

一、下列命题是否正确

- (1) 若 A,B 都是n阶方阵,则 $(A+B)^2 = A^2 + 2AB + B^2$.
- (2) 若矩阵 A,B,C 满足 AB = AC,则B = C.
- (3) 若矩阵 A 满足 $A^2 = I$,则 $A = \pm I$.
- (4) 若 n 阶方阵 A 的行列式|A|=0,则A=0.
- (5) 若可逆阵 A 经初等行变换可以化为方阵 B,则 $A^{-1} = B^{-1}$.
- (6) 若n阶方阵 A,B,C 满足 ABC=I,则

$$BCA = I$$
, $A^{-1}C^{-1}B^{-1} = I$, $C^{T}B^{T}A^{T} = I$

- (7) 若 A 为n阶方阵, k为任意常数,则|kA|=k|A|.
- (8) 若 A 可逆,且 |A+AB|=0,则|B+I|=0.
- (9) 若矩阵 A 满足 $A^2 = A$, $|A I| \neq 0$, 则 A = 0.
- (10) 对方阵进行初等行变换,不改变该方阵的行列式.

二、填空、选择

- (1) 已知 $A \in M_A$, |A| = 4, 且 $A^2 + A + 2I = 0$, 则 |A + I| =_______
- (2) 设A为n阶对称矩阵,设B为n阶反对称矩阵,则 是反对称矩阵.

 - (A) AB BA (B) AB + BA
- $(C) (AB)^2 (D) BAI$
- (3) $\forall A, B, C \in M_n \perp ABC = I$, $\bigcup B^{-1} = \underline{\hspace{1cm}}$.
- (4) 对方阵A施行初等变换得到B,若 $|A| \neq 0$,则______.
 - (A) 必有|B| = |A|, (B) 必有 $|B| \neq |A|$

 - (C) 必有 $|B| \neq 0$, (D) |B| = 0或 $|B| \neq 0$ 依赖于所作的初等变换
- (5) 设n阶矩阵A与B相抵,则必有____.
 - (A) 当 $|A| \ge 0$ 时, $|B| \ge 0$.

- (B) 当|A|=0时,|B|=0.
- (C) B 可由 A 经过一系列初等行变换得到. (D) 存在可逆阵 P , 使得 B = PA.
- **(6)** $A \in M_n$, $AA^T = I \perp |A| < 0$, $|M| |A + I| = _____.$

(7) 设
$$M_{ij}$$
和 A_{ij} 分别是 n 阶行列式 $\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}$ 中元素 a_{ij} 的余子式和代数余子式,且

$$\begin{vmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{n1} & \cdots & A_{nn} \end{vmatrix} = a \;, \quad \text{III} \begin{vmatrix} M_{11} & \cdots & M_{1n} \\ \vdots & \ddots & \vdots \\ M_{n1} & \cdots & M_{nn} \end{vmatrix} = \underline{\qquad} .$$

(8) 设 α_1 , α_2 和 α_3 均为3维列向量或3行1列的矩阵,记矩阵 $A=[\alpha_1,\alpha_2,\alpha_3]$,

$$B = [\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + 4\alpha_3, \alpha_1 + 3\alpha_2 + 9\alpha_3]$$
.如果 $|A| = 1$,那么 $|B| =$ ____.

(9) 设n阶可逆矩阵A中每行元素之和均为常数a,则 A^{-1} 的每行元素之和均为____

(10) 设
$$A$$
 是 n 阶方阵,满足 $A^m = I$ 其中 m 是正整数,又 $B = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{pmatrix}$

其中 A_{ii} 是|A|中元素 a_{ii} 的代数余子式,则 B^{m} =_____.

三、已知n阶矩阵 A 满足方程: $A^2+3A-4I=0$ 其中 I 为n阶单位矩阵。

1. 求
$$(A+3I)^{-1}$$

2. 求
$$(A+5I)^{-1}$$

3. 问当m满足什么条件时,(A+mI)必可逆。

四、已知列矩阵
$$C = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$
 , 行矩阵 $D = \begin{pmatrix} 2, & 0, & 1 \end{pmatrix}$

- 1、 试计算 A = CD 及 B = DC;
- 2、 求 A^{100} , 通过此题的计算你能归纳出什么样的结论?

五、设
$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$
 $J = \begin{pmatrix} 0 & 1 & & & \\ & \ddots & \ddots & & \\ & & 0 & 1 \\ & & & 0 \end{pmatrix}$ 都是 n 阶方阵,

试计算 $AJ, JA, J^2, J^3, \dots, J^n, J^{n+1}$ 。

六、设 A^* 是 n 阶可逆矩阵 A 的伴随矩阵 $(n \ge 2)$ 。

求: 1、(A*)⁻¹

- $2 \cdot (A^{-1})^*$
- 3, $(kA)^*, (k \neq 0)$ 4, $(A^*)^*$