Automatic Control Systems

LOGARITHMC PLOTS (BODE)

alghoniemy@alexu.edu.eg

Reading:

- chapter 8 (Section 8.2)
- chapter 9 (Section 9.5)

Practice problems

- Study table 9.6 on pages 704-711
- Solve problems at the end of chapter 9

Frequency Domain Representations

Logarithmic plots (Bode Plots)

Polar plots (Nyquist Diagrams)

Log Magnitude-Phase (Nichols Charts)

Stability analysis with the logarithmic plots (Bode Plot)

Sketching the logarithmic plots (Bode Plots)

Table 8.3 Asymptotic Curves for Basic Terms of a Transfer Function

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

ω

ω

Sketching the logarithmic plots (Bode Plots)

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

$$L(s) = \frac{2500}{s(s+50)(s+5)} = \frac{2500}{s(s+50)(s+5)}$$

$$L(s) = \frac{10}{s(0.02s+1)(0.2s+1)}$$

20

Phase crossover

$$\omega_p = 15.88 \text{ rad/s}$$

• Gain Margin

$$G.M. = 14.82 \text{ dB}$$

Gain crossover

$$\omega_g = 6.22 \text{ rad/s}$$

• Phase Margin $P.M. = 31.72^{\circ}$

<u>example</u>:

$$G(s) = K/s(s+1)^2$$

S	G(s)
$j\omega \rightarrow 0 +$	∞∠ – 90
$j\omega \longrightarrow \infty +$	0∠ − 270

What is the Gain Margin?

example "with time delay"

$$L(s) = \frac{Ke^{-T_d s}}{s(s+1)(s+2)}$$

$$T_d=0, K=1$$

$$\omega_g = 0.446 \text{ rad/s}$$

$$P.M. = 53.4^{\circ}$$

$$\omega_p \approx 1.5 \text{ rad/s}$$

$$G.M. \approx 16$$
 dB

• $T_d = 1, K = 1$

$$\omega_g = 0.446$$
 rad/s

$$P.M. \approx 40^{\circ}$$

$$\omega_p = 0.66 \text{ rad/s}$$

$$G.M. = 4.5$$
 dB

 ω (rad/sec)

find the critical value of T for stability?

Relationship between the steady state error and the Logarithmic plots

System type

Determination of steady state error

• Type-zero system (N = 0)

The static position error constant K_P

$$K_P = \lim_{j\omega \to 0} G(j\omega) = K$$

Steady state error due to step-input

$$E_{ss} = \frac{1}{1 + K_P}$$

• Type-one system (N = 1)

the static velocity error constant K_v

$$K_{v} = \lim_{s \to 0} s G(s) = K$$

• In order to get *K* from Bode Plot:

dB

• The line with slope $-20 \, dB/decade$ represents K/s.

• The value of $K=K/s@\omega=1$ i.e., the intersection of $\omega=1$ and The extension of K/s as shown in the figure

$$G(s) = \frac{K(T_a s + 1)(T_b s + 1)\cdots(T_m s + 1)}{s (T_1 s + 1)(T_2 s + 1)\cdots(T_p s + 1)}$$

Time domain performance criteria and the frequency domain	

The relation between the <u>closed-loop frequency response</u> and the transient response

The transient performance of a feedback system can be estimated form the **closed-loop** frequency

 $20 \log |T|$, dB

We need to relate $M_r, \omega_r, \& BW$ to the time domain parameters ζ and ω_n

Frequency domain parameters	
M_r	Peak resonance
ω_r	Resonant frequency
$\omega_{\scriptscriptstyle R}$	System BW

closed-loop frequency response

Second-order system

Closed-loop transfer function

$$T(s) = \frac{Y(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$T(\omega) = \frac{1}{1 + (2\zeta/\omega_n)j\omega + (j\omega/\omega_n)^2}$$

The magnitude $M(\omega)$ and phase $\phi(\omega)$ of the <u>closed-loop transfer</u> function

$$M(\omega) = |T(\omega)| = \frac{1}{\sqrt{\left[1 - u^2\right]^2 + \left(2\zeta u\right)^2}}$$

$$\phi(\omega) = \angle T(\omega) = -\tan^{-1} \frac{2\zeta u}{1 - u^2}$$

$$u = \omega/\omega_n$$

BW

ω

• To get the resonant frequency ω_r and the closed-loop peak resonant magnitude $\underline{M_r}$ for the second order system

The **closed-loop peak magnitude M_r** indicates the **relative stability** of the system

to get the bandwidth of the <u>second order system</u>

$$M(\omega) = 0.707$$

$$BW = \omega_n \left[(1 - 2\zeta^2) + \sqrt{4\zeta^4 - 4\zeta^2 + 2} \right]^{1/2}$$

$$BW \cong \omega_n[-1.19\zeta + 1.85],$$
 $0.3 \le \zeta \le 0.8$

1.6
1.5
1.4
1.3
1.2
 ω_B
1.1
Linear approximation
 $\omega_B \approx -1.19\zeta + 1.85$
0.9
0.8
0.7
0.6
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

$$BW \cong \omega_n[-1.19\xi + 1.85],$$

 $0.3 \le \xi \le 0.8$

• for fixed ξ : as ω_n gets larger, BWincreases and the system responds faster

• for fixed ω_n : as ξ gets larger, BWdecreases and the system Responds slower

The relation between the phase margin and the damping ratio of a second order system

$$\phi_{pm} = 180^{\circ} - 90^{\circ} - \tan^{-1} \frac{\omega_{c}}{2\zeta\omega_{n}}$$

$$= 90^{\circ} - \tan^{-1} \left(\frac{1}{2\zeta} [(4\zeta^{4} + 1)^{1/2} - 2\zeta^{2}]^{1/2}\right)$$

$$= \tan^{-1} \frac{2}{[(4 + 1/\zeta^{4})^{1/2} - 2]^{1/2}}$$

$$\xi \cong 0.01 \phi_{pm}$$
 for $\xi \leq 0.707$

$$G(j\omega) = \frac{1}{j\omega(j\omega+1)(0.2j\omega+1)} \frac{1}{j\omega} \int_{-10}^{\infty} \frac{1}{j\omega(j\omega+1)(0.2j\omega+1)} \frac{1}{j\omega(j\omega+1)} \frac{1}{j\omega($$

Frequency (rad/s)

ϕ_{pm}	43°
$\xi\cong 0.01\phi_{pm}$	0.43 < 0.707
P. O.	25%

- for higher-order systems, analytical solution is tedious
- We need **graphical methods** for determining M_r , ω_r , & BW

$$T(j\omega) = \frac{G_c(j\omega)G(j\omega)}{1 + G_c(j\omega)G(j\omega)}$$
$$T(j\omega) = M(\omega)e^{j\phi(\omega)}$$

- $M(\omega)$: is the **magnitude** of the **closed-loop** transfer function
- $\phi(\omega)$: is the **phase** of the **closed-loop** transfer function

Circles of <u>constant magnitude</u> of a closed-loop system (*M*-circles)

The **closed-loop** transfer function

$$T(j\omega) = \frac{G_c(j\omega)G(j\omega)}{1 + G_c(j\omega)G(j\omega)}$$

$$T(j\omega) = M(\omega)e^{j\phi(\omega)}$$

The coordinates of $G_cG(j\omega)$ are u & v in the **Nyquist plane**

$$G_c(j\omega)G(j\omega) = u + jv$$

The magnitude of the closed-loop transfer function

$$M(\omega) = \left| \frac{G_c(j\omega)G(j\omega)}{1 + G_c(j\omega)G(j\omega)} \right| = \left| \frac{u + jv}{1 + u + jv} \right| = \frac{\left(u^2 + v^2\right)^{1/2}}{\left[\left(1 + u^2\right) + v^2\right]^{1/2}}$$

Squaring Equation (9.66) and rearranging, we obtain

$$(1 - M^2)u^2 + (1 - M^2)v^2 - 2M^2u = M^2. (9.67)$$

Dividing Equation (9.67) by $1 - M^2$ and adding the term $[M^2/(1 - M^2)]^2$ to both sides, we have

$$u^{2} + v^{2} - \frac{2M^{2}u}{1 - M^{2}} + \left(\frac{M^{2}}{1 - M^{2}}\right)^{2} = \left(\frac{M^{2}}{1 - M^{2}}\right) + \left(\frac{M^{2}}{1 - M^{2}}\right)^{2}.$$
 (9.68)

Rearranging, we obtain

$$\left(u - \frac{M^2}{1 - M^2}\right)^2 + v^2 = \left(\frac{M}{1 - M^2}\right)^2,\tag{9.69}$$

which is the equation of a circle on the (u, v)-plane with the center at

$$u=\frac{M^2}{1-M^2}, \quad v=0.$$

• The **radius** of the *M* circle

$$r = \left| \frac{M}{1 - M^2} \right|$$

- circles to the left of u=-0.5 has M>1
- circles to the right of u=-0.5 has M<1

Circles of constant magnitude of a closed-loop system (*M*-circles)

center:

$$C = (M^2/(1-M^2), 0)$$

radius:

$$r = |M/(1 - M^2)|$$

Determining the M value of the M-circle

The value M of the M-circle that passes through the point $(\alpha, 0)$ is

Proof:

 $\alpha = center + radius$

$$\alpha = \frac{M^2}{1 - M^2} + \frac{M}{1 - M^2}$$

$$=\frac{M(M+1)}{(1-M)(1+M)}$$

$$\alpha = \frac{M}{1 - M} \qquad \Rightarrow \boxed{M = \frac{\alpha}{1 + \alpha}}$$

Nyquist plot and the constant *M*-circles

- The peak resonance M_r is found by locating the **smallest circle** that is tangent to $G(j\omega)$ plot
- The **resonant frequency** ω_r is found at the point of tangency
- The **bandwidth** of the closed-loop system is found at the intersect of the $G(j\omega)$ curve and the circle M=0.707

Determining the closed loop gain from Nyquist plot

Circles of <u>constant phase</u> of a closed-loop system (*N*-circles)

The angle relation

$$\phi = \underline{/T(j\omega)} = \underline{/(u+jv)/(1+u+jv)}$$

$$= \tan^{-1}\left(\frac{v}{u}\right) - \tan^{-1}\left(\frac{v}{1+u}\right). \tag{9.70}$$

Taking the tangent of both sides and rearranging, we have

$$u^2 + v^2 + u - \frac{v}{N} = 0, (9.71)$$

where $N = \tan \phi$. Adding the term $1/4[1 + 1/N^2]$ to both sides of the equation and simplifying, we obtain

$$\left(u + \frac{1}{2}\right)^2 + \left(v - \frac{1}{2N}\right)^2 = \frac{1}{4}\left(1 + \frac{1}{N^2}\right),\tag{9.72}$$

• equation of a circle with the center $\,(-1/2\,,1/(2N))\,$

Circles of constant phase of a closed-loop system (*N*-circles)

center:

$$C = (-1/2, 1/2N)$$

radius:

$$r = \frac{1}{2} \left(1 + \frac{1}{N^2} \right)^{0.5}$$

example

closed-loop response

10

-50 -60 0

Magnitude (dB)

Phase (deg)

-135

-180 -10⁻¹

$$G(s) = \frac{10}{s^2 + 2s + 2}$$

from Nyquist plot:

The **closed-loop** peak frequency response

$$M_r \cong 4dB @ \omega_r = 3.22 \ rad/sec$$

10°

10¹

Frequency (rad/s)

Closed-loop frequency response

$$\frac{G(s)}{1+G(s)} = \frac{10}{s^2 + 2s + 12}$$

• <u>example</u>

$$G(s) = \frac{9(s^2 + 0.2s + 1)}{s(s^2 + 1.2s + 9)}$$

- The system is stable
- $G.M = \infty$

The system behaves as a first order system

S	G(s)
$j\omega \longrightarrow 0 +$	∞∠ – 90
$j\omega \to \infty +$	0∠ − 90

b=9*[1 0.2 1]; a=[1 1.2 9 0]; sys=tf(b, a); nyquist(sys)

Closed-loop frequency response and the Nyquist plot

Closed-loop frequency response

$$\frac{G(s)}{1+G(s)} = \frac{9(s^2+0.2s+1)}{s^3+10.2s+10.8s+9}$$

bc=9*[1 0.2 1]; ac=[1 10.2 10.8 9]; sysc=tf(bc,ac); bode(sysc)

• Closed-loop Peak frequency response $M_r = 0 dB @ \omega \rightarrow 0$

Open-loop frequency response

- The system is of type 1 (can you see it?)
- Can you determine the frequency location of the poles and zeros?
- What is the **damping factor** at K = 0, $K = \infty$? (check from root locus)

- The system is always stable \implies $G.M = \infty$
- Can you determine the **velocity** of each pole?