FFT 示例测试说明

(版本号: V1.0)

深圳市紫光同创电子有限公司 版权所有 侵权必究

文档版本修订记录

版本号	发布日期	修订记录
V1.0	2018/3/5	初始版本

www.pangomicro.com FFT 示例测试说明(V1.0)

名词术语解释

Abbreviations 缩略语	Full Spelling 英文全拼	Chinese Explanation 中文解释

www.pangomicro.com FFT 示例测试说明(V1.0)

目录

—,	文	〔档内容说明	. 1
二、	系	《统环境	. 2
(-	一)	硬件	. 2
(_	二)	软件	. 2
(=	三)	工程目录	.3
三、	I		. 4
(-	一)	FFT 单元设计	.4
(_	二)	FFT 逻辑框图	.4
(=	三)	性能说明	.5
四、	仿	7真说明	. 6
无、	汳	测试说明	. 7

图目录

图	1 PGL2KF01_A0 开发板硬件框图	2
图	2 FFT 示例工程的目录结构	3
图	3 FFT 单元逻辑框图	4
图	4 工程资源使用情况	5
图	5 示例工作正常时的波形	7
	表目录	
		_
*	1 测试用信号说明	-7

www.pangomicro.com FFT 示例测试说明(V1.0)

一、文档内容说明

本文档主要介绍了基于 PGL2KF01_A0 开发板的 FFT 示例测试情况,包括系统环境介绍,工程说明以及测试说明。

www.pangomicro.com 1/7 FFT 示例测试说明(V1.0)

二、系统环境

(一) 硬件

本工程需要 PGL2KF01_A0 开发板,主要使用了 PGL22 芯片,50MHz 晶振,按键和 LED 等。

图 1 PGL2KF01_A0 开发板硬件框图

(二) 软件

本工程使用的软件版本为 PDS 2018.2B-patch1, 仿真工具为 ModelSim。

www.pangomicro.com 2/7 FFT 示例测试说明(V1.0)

(三)工程目录

图 2 FFT 示例工程的目录结构

工程目录结构描述

- fft_test_top.v: FFT 示例工程的顶层文件, 存放在..\pgr_PGL22G_AMP_FFT\src;
- bench: testbench 目录 存放仿真用到的 tb 文件;
- docs: 文档目录 存放说明文档;
- ip: ip 目录 存放 pll, rom 和 ram 的 rtl 文件;
- pnr: 综合布局布线工程 存放工程文件,约束文件及位流文件;
- simulation: 功能仿真目录 存放运行功能仿真所需的脚本文件;
- src: 源文件目录存放 FFT 示例的 verilog 代码文件。

三、工程说明

(一) FFT 单元设计

FFT 单元设计选择串行突发传输式设计 FFT 电路。串行突发传输式,采用 1 个蝶形运算单元实现 FFT 电路,每次只能实现 1 次蝶形运算,共需要 $^{(N/2)*\log_2^N}$ 次蝶形运算完成一次 FFT 运算。这种设计电路硬件资源开销最小,但电路的吞吐量低也最低。

- ▶ 输入输出兼容 AXI4-stream 接口
- ▶ 可以配置为正向 FFT 变换
- ▶ 数据精度(数据位宽)为16-bit
- ▶ 相位精度为 16-bit
- ▶ 变换长度为 1024
- ➤ 采用时域抽样 (DIT) 的基 2FFT 算法
- ▶ 输入/输出为自然顺序

(二) FFT 逻辑框图

图 3 FFT 单元逻辑框图

- 1) ctrl 电路, 实现 FFT 模块的配置与时序控制;
- 2) RAM Data0 与 RAM Data1,存储输入数据与运算值中间值:
- 3) ROM phase,存储相位因子值;
- 4) butterfly 电路,实现蝶形运算;
- 5) switch 电路,实现对 2 路数据进行位置交换;
- 6) truncate 电路,实现截位于取整处理。

(三) 性能说明

FPGA 外部输入时钟 50MHz, 经过 pll 倍频输出 100MHz 时钟作为工程的系统时钟。工程调用了 6 个 FFT 单元, APM 使用 80%, CLM 使用 75%, DRM 使用 88%。详细资源使用情况如下所示:

	Device Utilizati	on Summary	
Logic Utilization	Used	Available	Utilization(%)
Use of ADC	0	1	0
Use of APM	24	30	80
Use of APMMUX	0	30	0
Use of BKCL	2	6	33
Use of CKEB	0	100	0
Use of CKEBMUX	0	6	0
Use of CLMA	2460	3274	75
FF	5008	19644	25
LUT	5161	13096	39
LUT-FF pairs	2691	13096	21
Use of CLMS	817	1110	74
FF	1593	6660	24
LUT	1560	4440	35
LUT-FF pairs	875	4440	20
Distributed RAM	0	1110	0
Use of CRYSTAL	0	6	0
Use of DLLMUX	0	6	0
Use of DQSLMUX	0	18	0
Use of DRM	42	48	88
Use of FLSIF	0	1	0
Use of FUSECODE	0	1	0
Use of G2RCKMUX	0	12	0
Use of HARDON1	0	2745	0
Use of HMEMC	0	2	0
Use of HMEMCMUX_DLL	0	2	0
Use of HMEMCMUX_DQS	0	10	0
Use of HMEMCMUX_IOL	0	60	0
Use of HMEMCMUX_SRB	0	60	0
Use of IO	5	186	3

图 4 工程资源使用情况

四、仿真说明

仿真工具为 ModelSim。

首先打开路径..\pgr_PGL22G_AMP_FFT\simulation,双击 script.bat 即可运行功能仿真。

注意: sim.tcl 文件的第 4 行需要改成本机安装的 PDS 目录路径。如本机的 PDS 安装在 D:/Pango,则将第 4 行中的 E:/Pango/改为 D:/Pango。

五、测试说明

工程中,使用 rom 存放用 matlab 预先算好的结果,然后与 FFT 单元计算的结果进行对比,以 led 作为错误标识,以 out_vld 作为校验指示信号。主要信号如下表所示:

表 1 测试用信号说明

信号名	输入/输出	位宽	说明
全局信号			
clk	I	1	输入参考时钟
rstn	I	1	输入复位信号,低有效,SW3
校验信号			
led	О	1	校验错误信号,高有效,led5
pll_lock	О	1	pll lock 信号,高有效,led2
out_vld	О	1	校验指示信号,高低电平变化,led1

通过 JTAG 线缆连接 PC 与板卡,扫描器件,下载位流;

配置 FPGA 成功后,可见 led2 常亮, led1 闪烁, led5 灭,则说明示例工作正常。复位键按下, led1 和 led5 灭, led2 亮。

通过 debug core 抓取波形如下所示:

图 5 示例工作正常时的波形

上图中,led_i 表示每个 FFT 单元各自的校验结果,都是 0,结果正确;data_rom 是 matlab 预先计算的结果,m_axi_data0 是 FFT 单元计算出来的结果,两相对比,结果正确。