True 8 False Statement at beginning of class: $\sum_{N=E}^{\infty} \left(\frac{2}{n} + \frac{6}{ne_1} \right) = \sum_{N=E}^{\infty} \frac{2}{N} + \sum_{N=S}^{\infty} \frac{6}{N+1}$ TRUE OR (FALSE) because linearity properties of series only apply if each series converges BUT here, $\sum_{n=1}^{\infty} diverges [harmonic series]$ Note: $\sum_{n=5}^{\infty} \frac{6}{n+1}$ also a harmonic sevies because $\sum_{N=5}^{60} \frac{6}{N+1} = \sum_{k=6}^{60} \frac{6}{k}$ K=n+1 Why is it true that

Why is it true that
$$\frac{2}{N-1}\left(\frac{3}{N^2} + \frac{6}{N^2+1}\right) = 2\frac{2}{N-1}\frac{1}{N^2} + 6\frac{2}{N^2+1}$$
Because now,
$$\frac{2}{N-1}\frac{1}{N^2} \text{ and } \frac{2}{N-1}\frac{1}{N^2+1}$$
both conveys

Z $\frac{1}{N^2}$ converges by p-test $\frac{1}{N^2+1}$ converges by Comparison fest $\frac{1}{N^2+1}$ p-test

spectrum $\frac{1}{N^2+1} \leq \frac{1}{N^2}$ $\frac{1}{N^2}$ converges by Comparison fest $\frac{1}{N^2}$ p-test

spectrum $\frac{1}{N^2+1} \leq \frac{1}{N^2}$ $\frac{1}{N^2}$ converges

so does $\frac{1}{N^2+1}$ $\frac{1}{N^2}$