

การทดลองที่ 9 การศึกษาและปรับแก้อินพุทและ เอาท์พุทต่างๆ

การทดลองในภาคผนวกนี้ จะช่วยอธิบายเนื้อหาในบทที่ 2 ซึ่งเกี่ยวข้องกับอุปกรณ์อินพุท/เอาท์พุทที่หลาก หลายบนเครื่องคอมพิวเตอร์ตั้งโต๊ะ โดยมีวัตถุประสงค์เหล่านี้

- เพื่อให้เข้าใจการปรับแก้อุปกรณ์อินพุทและเอาท์พุทชนิดต่างๆ บนระบบปฏิบัติการ Raspbian
- เพื่อให้เข้าใจความแตกต่างระหว่างอุปกรณ์อินพุทและเอาท์พุทชนิดต่างๆ บนบอร์ด Pi3
- เพื่อให้สามารถอ่านข้อความแสดงรายละเอียดของอุปกรณ์อินพุทและเอาท์พุทชนิดต่างๆ

หลักการและพื้นฐานความเข้าใจจะช่วยแนะแนวทางให้ผู้อ่านสามารถศึกษาค้นคว้า อินพุท/เอาท์พุทอื่นๆ ในชิพและบนบอร์ดได้เพิ่มเติม รวมไปถึงบนโทรศัพท์เคลื่อนที่ แท็บเล็ตคอมพิวเตอร์ และอุปกรณ์ อินเทอร์เน็ตสรรพสิ่ง (Internet of Things)

I.1 จอแสดงผลผ่านพอร์ท HDMI

หน่วยความจำสำหรับจอแสดงผลหรือ GPU (Graphic Processing Unit) ถูกแบ่งพื้นที่ออกจาก หน่วย ความจำ DRAM บนบอร์ด เพื่อใช้งานร่วมกันทำให้ประหยัดต้นทุน แต่มีข้อเสียในด้านประสิทธิภาพจะลด ลงบ้าง เมื่อผู้ใช้งานต้องการภาพที่มี อัตราการเปลี่ยนแปลง (Refresh Rate) หรืออัตราเฟรมเรท (Frame Rate) สูง เช่น ภาพเคลื่อนไหว เกมส์ 3 มิติ

I.1.1 การปรับแก้ขนาดหน่วยความจำของ GPU

ความละเอียดของจอแสดงผลขึ้นตรงกับขนาดของหน่วยความจำของ GPU ผู้อ่านสามารถปรับแก้ขนาด หน่วยความจำของ GPU ดังนี้

menu->Preferences->Raspberry Pi Configuration->Set Resolution->Performance

โดยหน้าต่างที่ปรากฏขึ้นมีลักษณะดังนี้ ผู้ใช้สามารถกำหนดขนาดที่ต้องการโดยขั้นต่ำคือ 64 MB เพื่อ ให้ระบบสามารถแสดงผลได้ หากผู้ใช้กำหนดสูงเกินไป จะทำให้บอร์ดมีหน่วยความจำไม่เพียงพอ

Figure I.1: หน้าต่างกำหนดขนาดหน่วยความจำสำหรับ GPU ที่ 64 เมกะไบท์

I.1.2 การปรับแก้ความละเอียดของจอแสดงผล

เมื่อขนาดหน่วยความจำของ GPU มีเพียงพอ ผู้ใช้สามารถปรับเพิ่มหรือลดความละเอียดของจอแสดงผลได้ โดยกดปุ่มบนเมนูดังนี้

menu->Preferences->Raspberry Pi Configuration->Set Resolution

Figure I.2: หน้าต่าง Raspberry Pi Configuration แท็บ System สำหรับกำหนดความละเอียดหน้าจอแส ดงผล (Resolution)

Figure I.3: หน้าต่าง Set Resolution สำหรับกำหนดความละเอียดหน้าจอที่ต้องการ

กดปุ่ม Set Resolution สำหรับกำหนดความละเอียดหน้าจอที่ต้องการ ในรูปที่ ผู้เขียนต้องการแสดง ผลที่ความละเอียด CEA Mode 31 1920x1080 50Hz 16:9 หลังจากนั้นกดปุ่ม OK หน้าต่าง Reboot needed จะปรากฏขึ้น

Figure I.4: หน้าต่าง Reboot needed กดปุ่ม Yes เมื่อต้องการรีบูท ณ เวลานั้น

I.2 ระบบเสียง

อุปกรณ์ด้านระบบเสียงที่ติดตั้งมาบนบอร์ด Pi3 จากโรงงาน ผู้ใช้สามารถเพิ่มเติมได้ผ่านพอร์ท USB และ ปรับแต่งระดับเสียงได้เช่นกัน

I.2.1 รายชื่ออุปกรณ์ด้านระบบเสียง

ระบบเสียงในระบบปฏิบัติการ Linux ควบคุมการทำงานของเสียงผ่านระบบ ALSA (Advanced Linux Sound Architecture), ซึ่งจัดเตรียมไดรเวอร์ (Device Driver) สำหรับเสียงให้กับเคอร์เนล และอุปกรณ์ที่ เกี่ยวข้องกับเสียงผ่านพอร์ท USB เช่น ไมโครโฟน, หูฟังพร้อมไมโครโฟน, เว็บแคม เป็นต้น ผู้อ่านสามารถ แสดงรายชื่อไฟล์หรือโฟลเดอร์ที่เกี่ยวข้องกับระบบเสียงดังนี้

\$ ls -l /proc/asound

```
lrwxrwxrwx 1 root root 5 Mar 26 20:59 ALSA -> card0
dr-xr-xr-x 4 root root 0 Mar 26 20:59 card0
-r--r--- 1 root root 0 Mar 26 20:59 cards
-r--r--- 1 root root 0 Mar 26 20:59 devices
-r--r--- 1 root root 0 Mar 26 20:59 modules
-r--r--- 1 root root 0 Mar 26 20:59 pcm
dr-xr-xr-x 2 root root 0 Mar 26 20:59 seq
-r--r--- 1 root root 0 Mar 26 20:59 timers
-r--r--- 1 root root 0 Mar 26 20:59 version
```

ผลลัพธ์คือ รายชื่ออุปกรณ์ที่เกี่ยวข้องกับเสียง โดยเฉพาะ ALSA ซึ่งได้แสดงไปก่อนหน้านี้ ผู้อ่าน จะสังเกตได้ว่าโฟลเดอร์ /proc/asound/pcm จะเชื่อมโยงกับเนื้อหาในหัวข้อที่ 2.4 จะสังเกตเห็นว่ามี โฟลเดอร์ชื่อ card0 อยู่สองตำแหน่งคือ ในแถวแรก และแถวที่มีชื่อ ALSA -> card0 สัญลักษณ์ -> เรียก ว่า Symbolic Link หมายความว่าชื่อ ALSA คือ card0 ผู้อ่านสามารถทดสอบโดยพิมพ์คำสั่งต่อไปนี้

```
$ cat /proc/asound/ALSA
```

\$ cat /proc/asound/card0

จะได้ผลลัพธ์เดียวกัน ผู้ใช้พิมพ์คำสั่งนี้ในโปรแกรม Terminal

\$ cat /proc/asound/cards

โดยคำสั่ง cat ซึ่งได้อธิบายแล้วในการทดลองที่ 4 ภาคผนวก D สามารถอ่านไฟล์และแสดงข้อมูลภายใน ไฟล์ผ่านทางหน้าจอแสดงผล ผลลัพธ์ตัวอย่างอาจแตกต่างกันไปตามฮาร์ดแวร์ที่ใช้งาน ดังนี้

ผลลัพธ์ได้จากบอร์ด Pi3 ที่ใช้ชิพเซ็ตของ BCM2835 และ ไดรเวอร์เดียวกันกับ BCM2837 โดย หมายเลข 0 คือ หมายเลขของระบบเสียงที่ติดตั้งใช้งานเพียงระบบเดียว และตรงกับชื่อ card0

I.2.2 การควบคุมระดับเสียง

ผู้อ่านสามารถควบคุมระดับความดังของเสียงทั้งด้านอินพุทและเอาท์พุท โดยพิมพ์คำสั่งนี้

\$ alsamixer

หน้าต่างต่อไปนี้จะปรากฏขึ้น ผู้อ่านสามารถกดปุ่มลูกศรขึ้น/ ลง เพื่อเพิ่ม/ลด ระดับความดังได้

Figure I.5: โปรแกรม ALSA Mixer สำหรับควบคุมระดับเสียงบนบอร์ด Pi3

หมายเหตุ ผู้อ่านสามารถติดตั้งอุปกรณ์เสียงผ่านพอร์ท USB และใช้คำสั่งเหล่านี้เพื่อตรวจสอบและ ควบคุมการทำงาน

I.3 พอร์ทเชื่อมต่ออุปกรณ์ USB

I.3.1 รายชื่ออุปกรณ์กับพอร์ท USB

ในการทดลองนี้ ขอผู้อ่านให้ดึงหัวเชื่อมต่อ USB ของเมาส์ที่ใช้อยู่ออก แล้วพิมพ์คำสั่งนี้ในหน้าต่าง Terminal

\$ lsusb

เพื่อแสดงรายชื่ออุปกรณ์ USB ที่เชื่อมต่ออยู่ทั้งหมดในบอร์ด ดังตัวอย่างต่อไปนี้

Bus 001 Device 005: ID 413c:2003 Dell Computer Corp. Keyboard

Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.

SMSC9512/9514 Fast Ethernet Adapter

Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp. SMC9514 Hub

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

ผู้อ่านจะเห็นรายชื่ออุปกรณ์ที่เชื่อมต่อกับพอร์ท USB เรียงลำดับย้อนกลับ จาก Device 005 - Device 001 โดย

- Device 005 คือ คีย์บอร์ดมีหมายเลข ID = 413c:2003 ผลิตโดย บริษัท Dell Computer Corp. ซึ่งคีย์บอร์ดของผู้อ่านจะแตกต่างจากที่ผู้เขียนบ้างก้อไม่ใช่ประเด็นสำคัญ
- Device 003 คือ วงจร Ethernet สำหรับเชื่อมต่อเครือข่ายชนิดสาย มีหมายเลข ID = 0424:ec00 ผลิตโดย บริษัท Standard Microsystems Corp. รุ่น SMSC9512/9514
- Device 002 คือ วงจร USB Hub สำหรับเชื่อมต่อพอร์ท USB เพิ่มเติม มีหมายเลข ID = 0424:9514 ผลิตโดย บริษัท Standard Microsystems Corp. รุ่น SMSC9514
- Device 001 คือ วงจร Root Hub เป็นวงจรภายในชิพ BCM2837 สำหรับเชื่อมต่อพอร์ท USB เพิ่ม เติม มีหมายเลข ID = 1d6b:0002

ผู้อ่านต้องเสียบเมาส์กลับเข้าไปที่พอร์ท USB ใหม่อีกครั้ง แล้วแสดงรายชื่ออุปกรณ์ USB ด้วยคำสั่ง lsusb เช่นเดิม โปรดสังเกตการเปลี่ยนแปลง

Bus 001 Device 005: ID 413c:2003 Dell Computer Corp. Keyboard

Bus 001 Device 006: ID 046d:c077 Logitech, Inc. M105 Optical Mouse

Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.

SMSC9512/9514 Fast Ethernet Adapter

Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp. SMC9514 Hub

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

รายการที่เพิ่มขึ้น คือ

• Device 006 คือ เมาส์มีหมายเลข ID = 046d:c077 ผลิตโดย บริษัท Logitech, Inc. รุ่น M105

ซึ่งลำดับที่ตั้งแต่ Device 003 เป็นต้นไปอาจเปลี่ยนแปลงตามรายการและลำดับที่อุปกรณ์ของผู้อ่าน ทำการเชื่อมต่อกับบอร์ด Pi3 และผู้ผลิตเมาส์ของผู้อ่านจะแตกต่างจากที่ผู้เขียนบ้างก้อไม่ใช่ประเด็นสำคัญ

I.3.2 รายละเอียดการเชื่อมต่ออุปกรณ์กับพอร์ท USB

คำสั่งต่อไป คือ **dmesg** สามารถแสดงรายการทำงาน หรือ Log ของระบบปฏิบัติการว่าตั้งแต่เริ่มเปิด เครื่อง โดยคำว่า **dmesg** ย่อมาจากคำสั่ง "display message or display driver" ซึ่งเคอร์เนลได้บันทึก ไว้ในบัฟเฟอร์ชนิดวงแหวน (Ring Buffer) ซึ่งข้อความตอนต้นจะถูกเขียนทับเมื่อบัฟเฟอร์เต็ม

\$ dmesg

```
[0.000000] Booting Linux on physical CPU 0x0
```

- [0.000000] Linux version 4.14.71-v7+ (dc4@dc4-XPS13-9333)

 (gcc version 4.9.3 (crosstool-NG crosstool-ng-1.22.0-88-g8460611))

 #1145 SMP Fri Sep 21 15:38:35 BST 2018
- [0.000000] CPU: ARMv7 Processor [410fd034] revision 4 (ARMv7), cr=10c5383d
- [0.000000] CPU: div instructions available: patching division code
- [0.000000] CPU: PIPT / VIPT nonaliasing data cache,
 VIPT aliasing instruction cache
- [0.000000] OF: fdt: Machine model: Raspberry Pi 3 Model B Rev 1.2
- [0.000000] Memory policy: Data cache writealloc
- [0.000000] cma: Reserved 8 MiB at 0x3ac00000
- [0.000000] On node 0 totalpages: 242688

. . .

[0.000000] Memory: 940232K/970752K available (7168K kernel code, 576K rwdata, 2076K rodata, 1024K init, 698K bss, 22328K reserved, 8192K cma-reserved)

[0.000000] Virtual kernel memory layout:

Appendix I. การทดลองที่ 9 การศึกษาและปรับแก้อินพุทและเอาท์พุทต่างๆ

.init : 0x80b00000 - 0x80c00000 (1024 kB) .text : 0x80008000 - 0x80800000 (8160 kB)

. . .

ผู้เขียนสามารถอธิบายผลลัพธ์ได้ดังต่อไปนี้ โดยเรียงลำดับตามเหตุการณ์ ซึ่งมีสัญลักษณ์ [xxxx.yyyyyy] แสดงลำดับที่เกิดขึ้นตามเวลา โดย xxxx คือเลขวินาทีตั้งแต่เคอร์เนลเริ่มทำงาน และ yyyyyy คือเศษวินาที ข้อความที่แสดงเป็น 0.000000 เนื่องจากเคอร์เนลอยู่ระหว่างการเริ่มต้น

- เริ่มต้นการบุทระบบปฏิบัติการด้วยซีพียูคอร์หมายเลข 0
- แสดงรายละเอียดหมายเลขเวอร์ชันของลีนุกซ์
- แสดงรายละเอียดของ CPU ซึ่งใช้คำสั่งภาษาแอสเซมบลีเวอร์ชัน 7 (ARMv7)
- แสดงผลการตรวจจับว่าซีพียูรองรับคำสั่ง DIV
- รายงานว่า แคชข้อมูล ทำงานแบบ nonaliasing PIPT (Physically indexed, physically tagged) หรือ VIPT (Virtually indexed, physically tagged) อย่างใดอย่างหนึ่ง และแคชคำสั่ง ทำงาน แบบ aliasing VIPT แคชข้อมูลไม่สามารถแชร์ข้ามโพรเซสได้เนื่องจากทำงานแบบ nonaliasing ใน ขณะที่แคชคำสั่งสามารถแชร์ข้ามโพรเซสได้ เนื่องจากทำงานแบบ aliasing ข้อมูลเพิ่มเติม
- แสดงผลการตรวจจับว่าเป็นบอร์ด Raspberry Pi 3 Model B Rev 1.2
- การทำงานของแคชข้อมูลเป็นชนิด writealloc ย่อมาจาก Write Allocation ซึ่งซีพียูจะเขียนข้อมูล ทั้งในแคชก่อน เมื่อแคชจะต้องถูกย้ายออกจึงค่อยเขียนในหน่วยความจำหลักภายหลัง ข้อมูลเพิ่ม เติม
- cma (Contiguous Memory Allocator) สำหรับขบวนการ DMA เริ่มต้นที่แอดเดรส 0x3ac00000 ขนาด 8 เมกะไบท์

• ...

- พื้นที่การจัดวางหน่วยความจำเสมือนของเคอร์เนล (Virtual kernel memory layout) ผู้เขียนได้ ทำการจัดเรียงใหม่ตามหมายเลขแอดเดรสที่ตำแหน่งมาก ไล่ลงมาจนถึงหมายเลขน้อย เพื่อให้ผู้อ่าน มองเห็นภาพและเข้าใจง่ายขึ้น โดยแบ่งเป็นพื้นที่สำคัญๆ ตามลำดับดังนี้
 - จัดเก็บเว็คเตอร์สำหรับการขัดจังหวะ (Interrupt Vector) ขนาด 4 กิโลไบท์ จากหมายเลข 0xffff_0000 ถึง 0xffff_1000
 - พื้นที่สำหรับจองหน่วยความจำเสมือน (vmalloc) ขนาด 1088 เมกะไบท์ จากหมายเลข 0xbb80 0000 ถึง 0xff80 0000
 - bss เซ็กเมนท์ (.bss) ขนาด 699 กิโลไบท์ จากหมายเลข 0x80c9_7f10 ถึง 0x80d4_68b0
 - ดาตาเซ็กเมนท์ (.data) ขนาด 577 กิโลไบท์ จากหมายเลข 0x80c0_0000 ถึง 0x80c9_017c

- init เซ็กเมนท์ (.init) ขนาด 1024 กิโลไบท์ จากหมายเลข 0x80b0 8000 ถึง 0x80c0 0000
- เท็กซ์เซ็กเมนท์ (.text) ขนาด 8160 กิโลไบท์ จากหมายเลข 0x8000_8000 ถึง 0x8080_0000

ในตัวอย่างนี้ ระบบสามารถตรวจจับอุปกรณ์ USB และติดตั้งไดรเวอร์ได้อย่างถูกต้องปราศจาก ข้อผิด พลาด คำสั่งนี้จะแสดงรายละเอียดคร่าวๆ ของอุปกรณ์แต่ละตัวประมาณ 6-8 บรรทัด ผู้อ่านสามารถล้าง บัฟเฟอร์โดยใช้คำสั่ง ต่อไปนี้

\$ sudo dmesg -C

โดย -C คือ Clear เป็นคำสั่งเพิ่มเติมให้ dmesg ล้างข้อความในบัฟเฟอร์ออก โปรดสังเกต ตัว C ใหญ่ หลัง จากนั้น ผู้อ่านทดสอบโดยการถอดเมาส์ออก แล้วเสียบกลับเข้าไปใหม่ ผู้อ่านสามารถแสดงข้อความที่เพิ่ม เข้ามาในบัฟเฟอร์ได้อีก โดยเรียกคำสั่ง dmesg อีกรอบ โดยข้อความเหล่านี้ เกิดจากผู้เขียนถอดและเสียบ เมาส์กลับเข้าไปใหม่อีกรอบ

- [526.313715] usb 1-1.2: USB disconnect, device number 6
- [527.653054] usb 1-1.2: new low-speed USB device number 7 using dwc_otg
- [527.788253] usb 1-1.2: New USB device found, idVendor=046d, idProduct=c077
- [527.788268] usb 1-1.2: New USB device strings: Mfr=1, Product=2, SerialNumber=0
- [527.788277] usb 1-1.2: Product: USB Optical Mouse
- [527.788285] usb 1-1.2: Manufacturer: Logitech
- [527.793119] input: Logitech USB Optical Mouse as /devices/platform/soc/ 3f980000.usb/usb1/1-1/1-1.2/1-1.2:1.0/0003:046D:C077.0004/ input/input3
- [527.793804] hid-generic 0003:046D:C077.0004: input,hidraw0: USB HID v1.11

 Mouse [Logitech USB Optical Mouse] on usb-3f980000.usb-1.2/
 input0

ผู้อ่านจะเห็นว่า อุปกรณ์ USB หมายเลข 6 ขาดการเชื่อมต่อ หลังจากนั้นเวลาผ่านไปประมาณ 1.3 วินาที และเชื่อมต่อใหม่เป็นอุปกรณ์หมายเลข 7 โดยระบบเก็บรายละเอียดทั้งหมดและพบว่า เมาส์ USB นี้ มีหมายเลข idVendor=046d หมายถึง บริษัท Logitech, Inc. และ idProduct=c077 ซึ่งตรงกับเมาส์ที่ ได้จากคำสั่ง Isusb

ในการเชื่อมต่อพอร์ท USB หากระบบแจ้งชื่ออุปกรณ์โดยไม่มีข้อความผิดพลาด แต่อุปกรณ์นั้นยัง ไม่สามารถทำงานได้ แสดงว่าอุปกรณ์ขาดซอฟต์แวร์ทำหน้าที่เป็นดีไวซ์ไดรเวอร์ ขอให้ผู้อ่านค้นหาจาก หมายเลขประจำตัวของผู้ผลิต (idVendor) หากผู้ผลิตมิได้เปิดเผยซอฟต์แวร์ ผู้อ่านจำเป็นต้องดาวน์โหลด หรือคอมไพล์เองจากนักพัฒนารายอื่นแทน

I.4 พอร์ทเชื่อมต่อเครือข่าย WiFi และ Ethernet

I.4.1 รายชื่ออุปกรณ์เครือข่าย

ผู้อ่านสามารถตรวจสอบรายชื่ออุปกรณ์สำหรับเชื่อมต่อเครือข่ายได้จากคำสั่ง ifconfig ทางโปรแกรม Terminal ตัวอย่างผลลัพธ์เป็นดังนี้

\$ ifconfig

```
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.1.33 netmask 255.255.255.0 broadcast 192.168.1.255
inet6 fe80::440b:2da7:638f:9061 prefixlen 64 scopeid 0x20<link>
ether b8:27:eb:18:77:2d txqueuelen 1000 (Ethernet)

RX packets 283 bytes 58857 (57.4 KiB)

RX errors 0 dropped 2 overruns 0 frame 0

TX packets 45 bytes 6515 (6.3 KiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

```
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)

RX packets 0 bytes 0 (0.0 B)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 0 bytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

```
wlan0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
    ether b8:27:eb:4d:22:78    txqueuelen 1000 (Ethernet)
    RX packets 0    bytes 0 (0.0 B)
    RX errors 0    dropped 0    overruns 0    frame 0
    TX packets 0    bytes 0 (0.0 B)
    TX errors 0    dropped 0    overruns 0    carrier 0    collisions 0
```

โปรดสังเกตคำเริ่มต้นในแต่ละรายการ ดังนี้

- eth0 ซึ่งหมายถึงอุปกรณ์เชื่อมต่อเครือข่ายสาย
- lo0 ซึ่งหมายถึงอุปกรณ์ Loopback สำหรับทดสอบการเชื่อมต่อขาสัญญาณ Tx ย้อนกลับมาที่ขา Rx และ

• wlan0 ซึ่งหมายถึงอุปกรณ์เชื่อมต่อเครือข่าย WiFi

I.4.2 การเปิดปิดอุปกรณ์เครือข่าย

ผู้อ่านสามารถใช้คำสั่ง ifconfig สำหรับเปิด หรือ ปิด อุปกรณ์ wlan0 ดังนี้

```
$ sudo ifconfig wlan0 down
$ ifconfig
$ sudo ifconfig wlan0 up
$ ifconfig
```

คำสั่ง \$ sudo ifconfig wlan0 down สำหรับสั่งปิดอุปกรณ์ ส่วนคำสั่งต่อมาใช้ทดสอบว่าอุปกรณ์ wlan0 ยังมีอยู่ในรายการหรือไม่ คำสั่ง \$ sudo ifconfig wlan0 up สำหรับสั่งเปิดอุปกรณ์ ส่วนคำสั่ง สุดท้ายใช้ทดสอบว่าอุปกรณ์ wlan0 เปิดทำงานหรือยัง

ผู้อ่านสามารถเปิดปิดอุปกรณ์อื่นๆ โดยการพิมพ์ชื่อแทนที่ชื่ออุปกรณ์ wlan0 ได้ตามต้องการ เช่น

```
$ sudo ifconfig eth0 down
$ sudo ifconfig eth0 up
```

นอกเหนือจากการเปิดปิดอุปกรณ์เครือข่าย ผู้อ่านสามารถตรวจสอบรายชื่อเครือข่าย WiFi ที่บอร์ด เคยเชื่อมต่อสำเร็จได้จากไฟล์ wpa_supplicant.conf ซึ่งจะบันทึกรายละเอียดต่างๆ ของการเชื่อมต่อ นั้นๆ รวมถึงพาสเวิร์ด (password) โดยพิมพ์คำสั่งต่อไปนี้ใน Terminal

```
$ cat /etc/wpa_supplicant/wpa_supplicant.conf
```

นี่เป็นตัวอย่างผลลัพธ์ที่ได้ โดย

```
network={
ssid="CE_ParaLab24"
psk="*******"
key_mgmt=WPA-PSK
}
```

- ssid หมายถึงชื่อเครือข่าย WiFi ซึ่งในตัวอย่าง คือ CE ParaLab24
- psk ย่อมาจาก Public Shared Key โดยผู้เขียนได้ใส่ตัวอักษรอื่นแทนเพื่อความปลอดภัย
- key_mgmt คือ วิธีการเข้ารหัสและจัดการคีย์ หรือพาสเวิร์ด ซึ่งในตัวอย่าง คือ WPA-PSK ขึ้นกับผู้ ดูแล (Adminstrator) ได้ติดตั้ง (Configure) อุปกรณ์ WiFi นั้น

I.4.3 การตรวจสอบการเชื่อมต่อกับเครือข่ายเบื้องต้น

เมื่อผู้อ่านเปิดและทำการเชื่อมต่อสำเร็จ แล้วจึงสามารถตรวจสอบการเชื่อมต่อในระดับชั้นเครือข่าย โดยใช้ คำสั่ง ping ใน Terminal ดังนี้

\$ ping <ip add or host name>

การตรวจสอบการเชื่อมต่อเบื้องต้น คือ การ ping ไปหาเราเตอร์ฝั่งต้นทางที่บอร์ดเชื่อมต่อ ผู้อ่าน สามารถสืบค้นหมายเลขไอพีของเราเตอร์ที่ต้นทาง โดยสังเกตที่ inet ของ eth0 หรือ wlan0 ว่าเริ่มต้นด้วย หมายเลข 192.168.x.y ซึ่งเราเตอร์ต้นทางมักจะมีหมายเลข 192.168.x.1 หรือ 192.168.x.254

นี่เป็นตัวอย่างผลลัพธ์ที่ได้ของคำสั่ง ping 192.168.1.1

```
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
```

64 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=2.03 ms

64 bytes from 192.168.1.1: icmp_seq=2 ttl=64 time=1.98 ms

64 bytes from 192.168.1.1: icmp_seq=3 ttl=64 time=25.3 ms

64 bytes from 192.168.1.1: icmp_seq=4 ttl=64 time=38.2 ms

64 bytes from 192.168.1.1: icmp_seq=5 ttl=64 time=53.3 ms

64 bytes from 192.168.1.1: icmp_seq=6 ttl=64 time=37.6 ms

64 bytes from 192.168.1.1: icmp_seq=7 ttl=64 time=18.9 ms

64 bytes from 192.168.1.1: icmp_seq=8 ttl=64 time=17.4 ms

64 bytes from 192.168.1.1: icmp_seq=9 ttl=64 time=6.99 ms

โดย 192.168.1.1 คือหมายเลขไอพีแอดเดรสของอุปกรณ์ที่คำสั่งจะส่งแพ็กเก็ต ICMP (Internet Control Message Protocol) ความยาว 64 ไบท์ไป แล้วรออุปกรณ์หมายเลขนี้ตอบกลับมายังบอร์ด Pi3 โดย จับเวลาตั้งแต่ส่งไปและรอตอบกลับมา ของแพ็กเก็ตลำดับที่ 1 (icmp_seq=1) เป็นระยะเวลา 2.03 มิลลิ วินาที ส่วน ttl=64 ย่อมาจากคำว่า time to live หมายถึง เลขจำนวนเต็มที่ผู้ส่งกำหนดค่าอายุของแพ็ค เก็ต ที่สามารถเดินทางผ่านเครือข่าย หากตั้งไว้น้อยจะทำให้แพ็คเก็ตข้อมูลนี้อายุสั้นและอาจเดินทางไปไม่ ถึงปลายทางเนื่องจากหมดอายุก่อน โดย ttl=64 เป็นค่าปกติ

ผู้อ่านจะสังเกตเห็นว่า ระยะเวลามีค่าตั้งแต่ 1.98-53.3 มิลลิวินาที ขึ้นอยู่กับคุณภาพ ของสาย Ethernet หรือความแรงของสัญญาณ WiFi คุณภาพดีจะทำให้ระยะเวลาสั้นกว่า หลังจากตรวจสอบว่าบอร์ด สามารถเชื่อมต่อกับเราเตอร์ต้นทางได้ตามตัวอย่างก่อนหน้า ผู้อ่านสามารถใช้ตรวจสอบการเชื่อมต่อได้ ว่า เราเตอร์ต้นทางสามารถเชื่อมต่อกับเครือข่ายอินเตอร์เน็ทได้สำเร็จหรือไม่ โดย Host name คือ ชื่อ เซิร์ฟเวอร์ปลายทางที่จดทะเบียนโดเมนเนม (Domain Name) เรียบร้อยแล้ว เช่น ping www.google.com

I.5 กิจกรรมท้ายการทดลอง

- 1. จงค้นหาว่าความละเอียดของการแสดงผลผ่านพอร์ท HDMI ในหัวข้อที่ 1.1.2 เก็บบันทึกลงในไฟล์ ชื่ออะไร config.txt
- 2. ใช้คำสั่ง ifconfig ปิดอุปกรณ์ loo แล้วใช้คำสั่ง ping 127.0.0.1 ว่ามีการตอบสนองกลับมาหรือไม่ เปิดอุปกรณ์ loo แล้ว ping อีกรอบ จงอธิบายว่า 127.0.0.1 คือ อะไร คือ IP ของ localhost
- 3. ใช้คำสั่ง ping เพื่อทดสอบเราเตอร์ที่อยู่ตันทางของผู้อ่าน เช่น ping 192.168.x.1 หรือ 192.168.x.
 254 โดย x มีค่าเท่ากับ 0, 1, 2, ... จนกว่าจะมีการตอบสนองกลับมา 1, 2 มีการตอบสนอง
- 4. ใช้คำสั่ง ping เพื่อตรวจสอบการเชื่อมต่อไปยัง www.google.com

```
pi@raspberrypi:~ $ ping www.google.com
PING www.google.com (172.217.166.132) 56(84) bytes of data.
64 bytes from kul09s13-in-f4.1e100.net (172.217.166.132): icmp_seq=1 ttl=47 time
=30.8 ms
64 bytes from kul09s13-in-f4.1e100.net (172.217.166.132): icmp_seq=2 ttl=47 time
=34.4 ms
64 bytes from kul09s13-in-f4.1e100.net (172.217.166.132): icmp_seq=3 ttl=47 time
=51.4 ms
```

เชื่อมต่อได้ปกติ