Оценка обобщающей ошибки

Hold-out, k-fold, OOB — lean demo

Уртемеев С.А.

5030102/20101

Цель и контекст

Что измеряем

Обобщающая ошибка— качество модели на новых данных из того же распределения, которых она не видела при обучении.

Почему это не видно напрямую

Истинный риск (ожидание потерь на всей популяции) недоступен: у нас только конечная выборка. Тренировочная ошибка обычно занижена из-за подгонки — по ней нельзя судить о будущем качестве.

Как оцениваем

Используем протоколы, имитирующие появление новых данных: hold-out, k-fold, OOB. Они дают не одно число, а оценку со средним и разбросом при соблюдении правил: без утечек, единый Pipeline, стратификация (для классификации), фиксированные сиды.

Протокол без утечек

- **Разделение данных** на обучающую и оценочную части выполняется *до* любых операций.
- Классификация: используется **стратифицированное разбиение**; при зависимостях (пациенты, сессии) **групповое разбиение**.
- Все операции, параметры которых настраиваются по данным (масштабирование, отбор признаков, калибровка и пр.), обучаются только на обучающей части; затем неизменным контуром применяются к оценочной части.
- Фиксируем источники случайности (перестановки, инициализации) для воспроизводимости.
- Сравниваем модели в **одинаковом протоколе**: один и тот же способ разбиения и одни и те же метрики.

Протокол без утечек — схема

Воспроизводимость: фиксируем источники случайности (перестановки, инициализации).

k-fold: повторяем процесс k раз и усредняем; hold-out: один сплит; ООВ: оценка по out-of-bag предсказаниям.

Hold-out (Train/Test)

- Идея: одна разделённая выборка (например, 80/20).
- Плюсы: просто и быстро.
- Минусы: высокая дисперсия оценки на малых данных.
- Опция: повторные сплиты (repeated hold-out) или доверительные интервалы через бутстрап (bootstrap-CI).

Hold-out: один сплит Train/Test

Отделяем независимую оценочную часть и считаем метрики только на ней

k-fold кросс-валидация

- Идея: усреднение по k разбиениям (k = 5/10).
- Для классификации стратифицированный разбиение (сохраняем доли классов).
- Стабильнее оценки (меньше дисперсия), но дороже по времени.
- При тюнинге гиперпараметров **nested CV**: внешняя петля для оценки, внутренняя для подбора.

k-fold: Делим выборку на k равных блоков						
Блоки (1k)						
Итерация 1						
Итерация 2						

На каждой итерации: 1 блок - валидация, остальные - обучение; Затем усредняем метрики по всем k

OOB (out-of-bag)

- Для бэггинг-моделей (случайный лес, bagging): обучаем базовые модели на бутстрап-выборках.
- Для каждого объекта формируем ООВ-предсказание, усредняя только те базовые модели, где объект не обучался.
- По ООВ-предсказаниям считаем метрики на практике близко к k-fold без явного разбиения.
- Ограничения: требуется бутстрап; неприменимо к одиночным моделям без повторной выборки; при тюнинге по обучающей части ООВ может быть слегка оптимистичен.

OOB (out-of-bag) - схема

OOB (out-of-bag) для бэггинга: bootstrap = true обязателен

Для каждого объекта і агрегируем предсказания только тех базовых моделей где і не обучался. Доля деревьев, где объект OOB $\approx 37\%$.

Сравнение схем (матрица выбора)

Бюджет времени Объем данных	Низкий	Средний	Высокий
Малые	k-fold (5), стратифицирован ный	k-fold (5−10), ↓ дисперсия	nested CV при тюнинге; иначе k- fold (10)»
Средние	Hold-out (80/20) или repeated hold- out	k-fold (5) или ООВ для бэггинга	k-fold (10) или nested CV при тюнинге
Большие	Hold-out (90/10 Большие или 95/5); ООВ для бэггинга		Subsample + k-fold (5) или ООВ (дёшево) _{miro}

Метрики для классификации — по назначению

- **ROC-AUC** качество ранжирования без порога; обычно стабилен при дисбалансе.
- PR-AUC фокус на позитивном классе; выбирать при редких позитивных событиях.
- F1 одно число при фиксированном пороге; балансирует precision/recall.
- Accuracy просто, но обманчиво при дисбалансе; годится при близких долях классов и равной цене ошибок.
- LogLoss качество вероятностей (калибровка); штрафует «слишком уверенные» ошибки.

Метрики — дисбаланс и корректный отчёт

- Дисбаланс: **стратифицированные** разбиения; метрики **PR-AUC**, **ROC-AUC**, **balanced accuracy**.
- Фиксируем positive class и порог для F1/Accuracy до оценки (или подбираем в внутренней петле).
- Многокласс: обязательно указывать усреднение (macro/micro/weighted).
- Отчитываем среднее и разброс/СІ по фолдам/повторам, а не одно число.

Пример: задача бинарной классификации

- Объём: 569 наблюдений, 30 числовых признаков.
- Классы: 212 / 357 (умеренный дисбаланс) используем стратифицированные разбиения.
- · Что сравниваем: Hold-out, k-fold (5), ООВ.
- Метрики: **ROC-AUC**, **F1**, **Accuracy** (для F1/Accuracy фиксирован порог и positive class).

Результаты сравнения схем

Схема	Accuracy	F1	ROC-AUC
Hold-out	0.947	0.958	0.994
k-fold (5)	0.953 ± 0.015	0.962 ± 0.011	0.989 ± 0.009
ООВ	0.961	0.969	0.990

Значения — средние (для k-fold: среднее \pm стандартное отклонение). Все оценки получены на независимых от обучения предсказаниях.

Выводы

ROC-AUC: коробка — распределение по фолдам, пунктир — Hold-out, точечный — OOB.

- k-fold даёт более стабильную оценку (меньше разброс).
- ООВ близок к k-fold без явного CV.
- Hold-out быстрый ориентир; число может чуть «шуметь».
- Делаем выводы по среднему и разбросу, а не по единичному числу.