

Instituto Tecnológico de Costa Rica Ingeniería en Computación

Análisis de algoritmos I Semestre 2015

Profesor: Mauricio Rojas Fernández

Estudiante Melissa Molina Corrales

Carné 2013006074

Ejercicio 1.

O 3n2 e O(n2) Es verdodera	
$3n^{2} \leq C \cdot n^{2}$ $3 \cdot 2^{2} \leq C \cdot 2^{2}$ $12 \leq C \cdot 4$ $12 \leq 5 \cdot 4$ $12 \leq 20$	$n = 2$ $n = 3n^2 = 5n^2$ $1 = 3 = 5$ $2 = 6 = 20$ $3 = 27 = 45$ $4 = 48 = 80$ $5 = 75 = 125$ $6 = 108 = 180$ existen constantes C_1 , n_0 C C C $f(n)$ paral todo
tales que T(n)	S C.fin) para todo

Ejercicio 2.

2 3n ² E 1 Cn ² Es verdader	2)	10 6 A	
Justificación			
C= 2 no=1	n	= 3	
3n ² 7/ C·n ² 3·3 ² 7/ C·3 ² 27 7/ C·9 27 7/ 18	5 6 7 8	75 108 147 192	2n ² 8 18 32 50 72 98 128
Se comple ya que C1, no tales que Vn 7, no	exister T(n)	conste	ontes (n)

Ejercicio 3.

3 $n^3 \in O(n^2)$ Es Falsa
$C=4$ $n_0=1$ $n=2$
$n^3 \le C \cdot n^2$ Se comple $n^3 + 4n^2$
2 5 C.2
8 ≤ 16 No se comple
$n^3 \le C \cdot n^2$ $5^3 \le C \cdot 5^2$ $= Fs \text{ falsa poique } no \forall n \land no$
125 \(\) C.25 - Es falsa porque no \(\frac{1}{20} \) \(\) se comple que \(\) T(n) \(\) CF(n) \\ 125 \(\) 4.25 \\ 125 \(\) 100 - Sólo para algonos \(n \), no \(\) se comple.
Se comple.

Ejercicio 4.

⊕ n³ ∈ 12 (n² Es verdadera)	200	
Justificación			
$C=5$ $n=5$ $n^3 >, C \cdot n^2$ $6^3 >, C \cdot 6^2$ $216 >, C \cdot 36$ $216 >, 5 \cdot 36$ $216 >, 180$ Se comple ya que C_1 , no tales que todo C_1 , no C_1	1 2 3 4 5 6 7 existen	1 8 27 64 125 216 343	125 180 245
Para todo n>,5	→ no	=5	S C S)

Ejercicio 5.

5 $n^2 \in O(n^3)$ Es verdadera Justificación $C = 3$ $n_0 = 1$ $n^2 \leq C \cdot n^3$ $4^2 \leq C \cdot 4^3$ $16 \leq C \cdot 6^4$ $16 \leq 3 \cdot 6^4$ $16 \leq 192$ Se comple ya que existitales que tron \leq - Para todo $n > 1$ -	n 1 2 3 4 5 6 7 8 en Co.f(14 9 16 25 36 49 64 nstantes	192 375 698 1029 1536 C1, no >0
Fara todo n7,1 -	n	0 = 1	

Ejercicio 6.

Tustificación	3)	
$C=2$ $n_0=1$ n^2 >, $C.n^3$ 3^2 >, $C.3^3$ 9 >, $C.279$ >, 5 4	n = 3 $n = 3$ n	2n ³ 2 16 5 4 128 256 432 686 1024
-Es falsa ya que c, no tales que	no existen (control), c.f	(n)