ЛАБОРАТОРНАЯ РАБОТА №18 ИССЛЕДОВАНИЕ ОПТИЧЕСКОЙ СИСТЕМЫ

Поляков Даниил, 19.Б23-фз

Цель работы: экспериментально определить фокусные расстояния заданных линз, составить из них оптическую систему и определить её параметры теоретически и экспериментально, сравнить экспериментальные результаты с расчётными.

Оборудование

- Оптическая скамья с рейтерами;
- Источник света;
- Предмет, в качестве которого используется сетка со шкалой;
- Микроскоп;
- Линза №1 (рассеивающая);
- Линза №4 (собирающая).

Схема установки

Расчётные формулы

• Расстояние от задней поверхности линзы до предмета:

$$u=x-q$$

x — положение предмета;

q – положение задней поверхности линзы.

• Расстояние от задней поверхности линзы до изображения:

$$b=r-q$$

r — положение изображения;

q – положение задней поверхности линзы.

• Увеличение тонкой линзы:

$$y = \frac{y'}{y} = 1 - p_3 b$$

$$\frac{1}{y} = \frac{y}{y'} = 1 + p_n u$$

y — коэффициент увеличения;

y — размер предмета;

y' — размер изображения;

b – расстояние от задней поверхности линзы

до изображения;

u — расстояние от задней поверхности линзы

до предмета;

 p_n — передняя оптическая сила линзы;

 p_3 – задняя оптическая сила линзы.

• Усреднённое значение оптической силы линзы:

$$p = \frac{p_n + p_3}{2}$$

 p_{n} – передняя оптическая сила линзы;

 p_3 — задняя оптическая сила линзы.

• Фокусное расстояние линзы:

$$f = \frac{1}{p}$$

p – оптическая сила линзы.

• Толщина системы из двух линз с учётом поправок:

$$L=d-l_a-l_b$$

d – измеренная толщина системы;

 l_a , l_b — поправки «на углубление линзы».

• Матрица оптической системы из двух тонких линз:

$$M\!=\!\!\begin{pmatrix} 1\!-\!p_a L & L \ -\!(p_a\!+\!p_b\!-\!p_a p_b L) & 1\!-\!p_b L \end{pmatrix} \, egin{array}{c} L\,-\,$$
 толщина системы; $p_a,p_b\,-\,$ оптические силы линз.

• Увеличение оптической системы:

$$y = \frac{y'}{y} = A + C_1 b$$

$$\frac{1}{y'} = \frac{y}{y'} = E - C_2 u$$

 γ — коэффициент увеличения;

y — размер предмета;

y' — размер изображения;

b – расстояние от задней поверхности

системы до изображения;

u — расстояние от задней поверхности

системы до предмета;

 A, C_1, C_2, E – параметры системы.

• Увеличение перевёрнутой оптической системы:

$$y = \frac{y'}{y} = A' + C_1'b$$

$$\frac{1}{y'} = \frac{y}{y'} = E' - C_2'u$$

ү – коэффициент увеличения;

y — размер предмета;

y' — размер изображения;

b – расстояние от задней поверхности

системы до изображения;

u – расстояние от задней поверхности

системы до предмета;

A', C_1 ', C_2 ', E' — параметры перевёрнутой

системы.

• Экспериментально полученная матрица оптической системы:

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

$$D = A'$$

$$C = \frac{C_1 + C_2 + C_1' + C_2'}{4}$$

$$B = L = \frac{A + A' - E - E'}{2C}$$

A, B, C_1 , C_2 , D, E — параметры системы; A', C_1 ', C_2 ', E' — параметры перевёрнутой системы;

C — усреднённое значение оптической силы системы;

L – толщина системы.

- Формулы для вычисления погрешностей:
 - Абсолютная погрешность косвенных измерений:

$$\Delta f(x_1, x_2, \dots) = \sqrt{\left(\frac{\partial f}{\partial x_1} \cdot \Delta x_1\right)^2 + \left(\frac{\partial f}{\partial x_2} \cdot \Delta x_2\right)^2 + \dots}$$

$$\circ \Delta f = \left| \frac{\partial f}{\partial p} \cdot \Delta p \right| = \frac{\Delta p}{p^2}$$
 (фокусное расстояние линзы)

$$\circ \quad \Delta L = \sqrt{\left(\frac{\partial L}{\partial d} \cdot \Delta d\right)^2 + \left(\frac{\partial L}{\partial l_a} \cdot \Delta l_a\right)^2 + \left(\frac{\partial L}{\partial l_b} \cdot \Delta l_b\right)^2} = \sqrt{\left(\Delta d\right)^2 + \left(\Delta l_a\right)^2 + \left(\Delta l_b\right)^2}$$

- Погрешности элементов матрицы системы из двух тонких линз:

 - \bullet $\Delta B = \Delta L$

•
$$\Delta C = \sqrt{((p_b L - 1) \cdot \Delta p_a)^2 + ((p_a L - 1) \cdot \Delta p_b)^2 + (p_a p_b \cdot \Delta L)^2}$$

$$\Delta D = \sqrt{\left(L \cdot \Delta p_b\right)^2 + \left(p_b \cdot \Delta L\right)^2}$$

• Погрешности элементов матрицы системы, полученной экспериментально:

$$\Delta C = \frac{1}{4} \sqrt{(\Delta C_1)^2 + (\Delta C_2)^2 + (\Delta C_1')^2 + (\Delta C_2')^2}$$

$$\Delta B = \frac{1}{2|C|} \sqrt{(\Delta A)^2 + (\Delta A')^2 + (\Delta E)^2 + (\Delta E')^2 + \left(\frac{A + A' - E - E'}{C} \Delta C\right)^2}$$

Порядок измерений

- 1. Устанавливаем лампу, предмет и микроскоп на оптический рельс. Проводим юстировку системы.
- 2. Передвигая микроскоп, фокусируем изображение предмета в микроскопе. Снимаем отсчёт x со шкалы рельса, соответствующий одному из концов рейтера, на котором закреплён микроскоп. В дальнейшем эту опорную точку будем называть положением микроскопа, которое в данном случае соответствует положению предмета. Пользуясь шкалой микроскопа, измеряем расстояние y между штрихами изображения сетки. Эту величину будем считать размером предмета.
- 3. Устанавливаем на скамье линзу №4 (собирающую). Фокусируем микроскоп на изображение. Снимаем отсчёт положения микроскопа r, которое в данном случае соответствует положению изображения. Пользуясь шкалой микроскопа, измеряем расстояние y' между штрихами изображения сетки. Эта величина

- соответствует размеру изображения и имеет знак «-», если изображение перевёрнутое.
- 4. Фокусируем микроскоп на заднюю поверхность линзы. Снимаем отсчёт положения микроскопа q, которое в данном случае соответствует положению линзы.
- 5. Передвигаем линзу и для каждого положения повторяем измерения, описанные в пунктах 3 и 4.
- 6. Перейдём к исследованию линзы №1 (рассеивающей). Зафиксируем положение линзы №4. Фокусируем микроскоп на изображение. Снимаем отсчёт положения микроскопа x, которое в данном случае соответствует положению изображения, и размер изображения y. В данном случае это изображение будем считать «мнимым объектом» с целью исследования рассеивающей линзы.
- 7. Разместим линзу N = 1 на скамье между собирающей линзой и текущим положением микроскопа («мнимым объектом»). Для разных положений исследуемой линзы проведём измерения положения изображения r и его размера y', а также положения линзы q.
- 8. Запишем поправки «на углубление линзы» l_1 и l_4 , указанные на линзах. Вставим линзы в трубку и штангенциркулем измерим длину получившейся оптической системы d.
- 9. Перейдём к исследованию оптической системы, составленной из двух рассмотренных линз. Уберём линзы с оптического рельса. Фокусируем изображение предмета в микроскопе. Снимаем отсчёт положения микроскопа x, которое в данном случае соответствует положению предмета. Фиксируем размер предмета y.
- 10.Установим систему из двух линз в трубке между предметом и микроскопом. Проведём юстировку системы. После этого становим систему в крайнее положение рельса, при котором она наиболее близка к предмету, и при этом в микроскопе можно наблюдать изображение.
- 11. Фокусируем микроскоп на изображение. Снимаем отсчёт положения микроскопа r, которое в данном случае соответствует положению изображения. Фиксируем размер предмета y. Для данного положения системы линз фокусируем микроскоп на задней поверхности системы (поверхности ближайшей к микроскопу линзы). Снимаем отсчёт положения микроскопа q, которое в данном случае соответствует положению задней поверхности системы. Всего проведём 10 подобных измерений для различных положений оптической системы, сдвигая её дальше от предмета с примерным шагом в 1 см.
- 12.Поменяем местами линзы в трубке и таким образом развернём исследуемую систему. Для получившейся перевёрнутой системы проведём такую же серию из 10 измерений, как описано в предыдущем пункте.

Таблицы и обработка данных

Коэффициенты графиков прямых зависимостей и их погрешности найдём по методу наименьших квадратов с помощью ПО *MATLAB*.

1. Исследование линзы №4

Положение предмета: $x = 474.50 \pm 0.05$ см.

Размер предмета: $y = 2.00 \pm 0.05$ мм.

Все изображения получились перевёрнутыми.

Таблица 1. Зависимость между параметрами линзы №4

q , см	r, см	у', мм	и, см	b, см	γ
504.80	534.90	-3.85	-30.30	30.10	-1.925
505.70	532.75	-3.28	-31.20	27.05	-1.640
506.70	531.10	-2.85	-32.20	24.40	-1.425
507.75	530.70	-2.45	-33.25	22.95	-1.225
508.80	530.50	-2.23	-34.30	21.70	-1.115
509.80	530.30	-2.00	-35.30	20.50	-1.000
510.80	530.50	-1.85	-36.30	19.70	-0.925
511.80	530.70	-1.70	-37.30	18.90	-0.850
512.75	531.10	-1.55	-38.25	18.35	-0.775
513.80	531.50	-1.45	-39.30	17.70	-0.725
515.80	532.60	-1.30	-41.30	16.80	-0.650

График 1.1. Зависимость коэффициента увеличения от расстояния между задней поверхностью линзы и изображением (экспериментальные точки и аппроксимирующая прямая)

$$A = -0.098 \pm 0.003 \text{ cm}^{-1}$$

Из теоретической зависимости $\gamma(b)$ следует, что $A = -p_3$. Таким образом, находим заднюю оптическую силу линзы:

$$p_3 = 9.8 \pm 0.3 \ \partial nmp$$

 $B = 1.00 \pm 0.07$

График 1.2. Зависимость величины, обратной коэффициенту увеличения, от расстояния между задней поверхностью линзы и предметом (экспериментальные точки и аппроксимирующая прямая)

$$A = 0.094 \pm 0.002 \text{ cm}^{-1}$$

$$B = 2.31 \pm 0.08$$

Из теоретической зависимости $\mathbf{\gamma}^{-1}(\mathbf{u})$ следует, что $A=p_n$. Таким образом, находим переднюю оптическую силу линзы:

$$p_n = 9.4 \pm 0.2 \ \partial nmp$$

В данном случае величина отклонения B отлична от 1, из чего следует, что исследованную линзу нельзя считать тонкой. Передняя и задняя оптические силы совпали в пределах погрешности для исследованной линзы.

Усреднённое значение оптической силы линзы:

$$p = 9.6 \pm 0.2 \, \partial nmp$$

Фокусное расстояние линзы:

$$f = 10.5 \pm 0.2$$
 см

2. Исследование линзы №1

Положение «мнимого предмета»: $x = 530.30 \pm 0.05$ см.

Размер «мнимого предмета» (перевёрнутого): $y = -2.00 \pm 0.05$ мм.

Все изображения получились перевёрнутыми.

Таблица 2. Зависимость между параметрами линзы №1

q , см	r, см	у', мм	и, см	b, см	γ
530.05	530.30	-2.05	0.25	0.25	1.025
529.60	530.50	-2.10	0.70	0.90	1.050
528.60	530.60	-2.22	1.70	2.00	1.110
527.60	530.80	-2.30	2.70	3.20	1.150
526.60	531.15	-2.45	3.70	4.55	1.225
525.60	532.00	-2.70	4.70	6.40	1.350
525.10	532.30	-2.75	5.20	7.20	1.375
524.60	532.70	-2.80	5.70	8.10	1.400
524.15	533.05	-2.90	6.15	8.90	1.450
523.70	533.80	-3.00	6.60	10.10	1.500
522.70	535.25	-3.25	7.60	12.55	1.625
521.60	536.95	-3.50	8.70	15.35	1.750
521.00	538.65	-3.75	9.30	17.65	1.875

График 2.1. Зависимость коэффициента увеличения от расстояния между задней поверхностью линзы и изображением (экспериментальные точки и аппроксимирующая прямая)

$$A = 0.0489 \pm 0.0013 \text{ cm}^{-1}$$

$$B = 1.011 \pm 0.013$$

Из теоретической зависимости $\gamma(b)$ следует, что $A = -p_3$. Таким образом, находим заднюю оптическую силу линзы:

$$p_3 = -4.89 \pm 0.13 \ \partial nmp$$

График 2.2. Зависимость величины, обратной коэффициенту увеличения, от расстояния между задней поверхностью линзы и мнимым предметом (экспериментальные точки и аппроксимирующая прямая)

$$A = -0.049 \pm 0.002 \text{ cm}^{-1}$$
 $B = 0.988 \pm 0.010$

Из теоретической зависимости $\mathbf{\gamma}^{-1}(\mathbf{u})$ следует, что $A=p_n$. Таким образом, находим переднюю оптическую силу линзы:

$$p_n = -4.9 \pm 0.2 \, \partial nmp$$

Для обоих графиков величина отклонения B совпадает с 1, из чего следует, что исследованную линзу можно считать тонкой. Передний и задний фокусы совпали для исследованной линзы.

Оптическая сила линзы по усреднённому значению её фокуса:

$$p = -4.88 \pm 0.11 \ \partial nmp$$

Фокусное расстояние линзы:

$$f = -20.5 \pm 0.5$$
 cm

3. Расчёт оптической системы

Теоретически рассчитаем параметры системы, составленной из двух исследованных линз с учётом их найденных оптических сил:

•
$$p_a = p_4 = 9.6 \pm 0.2 \ \partial nmp$$
;

•
$$p_b = p_1 = -4.88 \pm 0.11 \ \partial nmp$$
.

Поправки на углубление линз:

•
$$l_a = l_4 = 3.3 \pm 0.1$$
 MM;

•
$$l_b = l_1 = 3.8 \pm 0.1$$
 MM.

Измеренная толщина системы: $d = 169.75 \pm 0.05$ мм.

Толщина системы с учётом поправок: $L = 162.65 \pm 0.15$ мм.

Получаем следующую матрицу системы:

$$M = \begin{pmatrix} -0.55 \pm 0.03 & 0.16265 \pm 0.00015 \,\mathrm{M} \\ -12.3 \pm 0.3 \,\partial nmp & 1.79 \pm 0.02 \end{pmatrix}$$

Оптическая сила системы и её фокусное расстояние:

$$p = -12.3 \pm 0.3 \ \partial nmp$$
 $f = -8.2 \pm 0.2 \ cm$

4. Исследование оптической системы

Положение предмета: $x = 484.0 \pm 0.1 \ cm$.

Размер предмета: $y = 2.00 \pm 0.05$ мм.

Все изображения получились перевёрнутыми.

Таблица 3. Зависимость между параметрами оптической системы

q , см	r, см	у', мм	и, см	b, см	γ
523.3	526.5	-1.95	-39.3	3.2	-0.975
524.3	526.7	-1.70	-40.3	2.4	-0.850
525.2	527.0	-1.55	-41.2	1.8	-0.775
526.3	527.5	-1.40	-42.3	1.2	-0.700
527.4	528.1	-1.30	-43.4	0.7	-0.650
528.3	528.7	-1.20	-44.3	0.4	-0.600
529.4	529.4	-1.10	-45.4	0	-0.550
530.4	530.1	-1.05	-46.4	-0.3	-0.525
531.3	530.8	-1.00	-47.3	-0.5	-0.500
532.4	531.7	-0.95	-48.4	-0.7	-0.475

График 3.1. Зависимость коэффициента увеличения от расстояния между задней поверхностью системы и изображением (экспериментальные точки и аппроксимирующая прямая)

Коэффициент наклона прямой и её отклонение являются параметрами системы:

$$C_1 = -0.126 \pm 0.005 \text{ cm}^{-1}$$

$$A = -0.557 \pm 0.008$$

График 3.2. Зависимость величины, обратной коэффициенту увеличения, от расстояния между задней поверхностью системы и предметом (экспериментальные точки и аппроксимирующая прямая)

Коэффициент наклона прямой и её отклонение являются параметрами системы:

$$-C_2 = 0.119 \pm 0.006 \text{ cm}^{-1}$$

 $C_2 = -0.119 \pm 0.006 \text{ cm}^{-1}$

$$E = 3.6 \pm 0.2$$

Далее приведены результаты измерений с перевёрнутой оптической системой.

Таблица 4. Зависимость между параметрами перевёрнутой оптической системы

q , см	r, см	у', мм	и, см	b, см	γ
534.1	526.6	-1.85	-50.1	-7.5	-0.925
535.7	527.0	-1.55	-51.7	-8.7	-0.775
536.8	527.5	-1.40	-52.8	-9.3	-0.700
537.6	528.1	-1.30	-53.6	-9.5	-0.650
538.7	528.7	-1.20	-54.7	-10.0	-0.600
539.7	529.4	-1.10	-55.7	-10.3	-0.550
540.7	530.1	-1.05	-56.7	-10.6	-0.525
541.7	530.9	-1.00	-57.7	-10.8	-0.500
542.7	531.6	-0.95	-58.7	-11.1	-0.475
543.8	532.4	-0.90	-59.8	-11.4	-0.450

График 4.1. Зависимость коэффициента увеличения от расстояния между задней поверхностью перевёрнутой системы и изображением (экспериментальные точки и аппроксимирующая прямая)

Коэффициент наклона прямой и её отклонение являются параметрами системы:

$$C_1$$
' = $-0.125 \pm 0.008 \text{ cm}^{-1}$

$$A' = D = -1.86 \pm 0.08$$

График 4.2. Зависимость величины, обратной коэффициенту увеличения, от расстояния между задней поверхностью перевёрнутой системы и предметом (экспериментальные точки и аппроксимирующая прямая)

Коэффициент наклона прямой и её отклонение являются параметрами системы:

$$-C_2' = 0.118 \pm 0.006 \text{ cm}^{-1}$$
 $E' = 4.8 \pm 0.3$ $C_2' = -0.118 \pm 0.006 \text{ cm}^{-1}$

Рассчитаем среднее значение C и параметр B и получаем следующую матрицу системы:

$$M = \begin{pmatrix} -0.557 \pm 0.008 & 0.44 \pm 0.02 \,\mathrm{M} \\ -12.2 \pm 0.3 \,\partial nmp & -1.86 \pm 0.08 \end{pmatrix}$$

Оптическая сила системы и её фокусное расстояние:

$$p = -12.2 \pm 0.3 \ \partial nmp$$
 $f = -8.2 \pm 0.2 \ cm$

Выводы

В результате работы были получены:

- фокусное расстояние линзы Nº4: $f_4 = 10.5 \pm 0.2$ см;
- фокусное расстояние линзы No1: $f_1 = -20.5 \pm 0.5$ см;
- матрица исследованной оптической системы:

$$M = \begin{pmatrix} -0.557 \pm 0.008 & 0.44 \pm 0.02 \,\mathrm{M} \\ -12.2 \pm 0.3 \,\partial nmp & -1.86 \pm 0.08 \end{pmatrix}$$

• рассчитанная матрица оптической системы:

$$M = \begin{pmatrix} -0.55 \pm 0.03 & 0.16265 \pm 0.00015 \,\mathrm{M} \\ -12.3 \pm 0.3 \,\partial nmp & 1.79 \pm 0.02 \end{pmatrix}$$

Элементы A и C экспериментально полученной и рассчитанной матриц совпали в пределах погрешностей, а вот элемент B сильно отличается, т. е. толщина системы отличается от измеренной толщины трубки с линзами. Возможно, стоило учесть толщину линз, но вряд ли такое большое отклонение образовалось по этой причине. Элемент D совпадает по модулю, но отличается знаком.

В работе мы убедились, что оптическую систему с параксиальными лучами можно удобно описать с помощью матрицы преобразования лучей.