Automi e Linguaggi (M. Cesati)

Facoltà di Ingegneria, Università degli Studi di Roma Tor Vergata

Compito scritto del 19 gennaio 2022

Esercizio 1 [5] Determinare un automa a stati finiti deterministico (DFA) per il linguaggio contenente la stringa vuota e tutti i numeri in base 5 multipli di 3.

Soluzione: L'automa a stati finiti richiesto può essere costruito considerando che l'unica informazione necessaria da memorizzare è il valore modulo 3 del numero rappresentato dalle cifre lette man mano. In altri termini, se v è il valore del numero rappresentato dalle cifre in base 5 lette fino ad un certo punto, e la successiva cifra letta è $b \in \{0, \dots, 4\}$, allora il nuovo valore rappresentato dalle cifre lette sarà $v' = v \times 5 + b$; tuttavia, è sufficiente memorizzare negli stati dell'automa soltanto il resto della divisione per tre, in quanto v' mod $3 = ((v \text{ mod } 3) \times 5 + b) \text{ mod } 3$. Si ha dunque la seguente tabella:

$v \bmod 3$	b = 0	b = 1	b=2	b = 3	b=4
0	0	1	2	0	1
1	2	0	1	2	0
2	1	2	0	1	2

È ora immediato derivare dalla tabella il seguente DFA:

Si osservi che, come richiesto, l'automa accetta anche la stringa vuota ε .

Esercizio 2 [5] Determinare una espressione regolare per il linguaggio contenente tutti i numeri in base 2 multipli di 3.

Soluzione: L'espressione regolare può essere derivata costruendo un automa a stati finiti che accetta le stringhe del linguaggio. Si osservi che il linguaggio non contiene la stringa vuota, in quanto questa non rappresenta alcun numero. Abbiamo due possibili alternative: (1) derivare l'espressione regolare da un automa che accetta esattamente tutti e soli gli elementi del linguaggio, oppure (2) derivare l'espressione di un automa che accetta anche la stringa vuota, poi modificare tale espressione regolare in modo da escludere ε .

Un automa che accetta i numeri binari multipli di 3 e la stringa vuota deve semplicemente memorizzare i valori modulo 3 del numero man mano letto, assumendo inizialmente che la stringa vuota corrisponda al numero zero. Quindi:

Per escludere la stringa vuota è necessario introdurre uno stato iniziale q_{ε} non accettante:

Convertendo in GNFA e rimuovendo i vari nodi si ottiene:

Quindi l'espressione regolare per i numeri binari multipli di 3 è $[0 \cup 1(01^*0)^*1]^+$. Si osservi che utilizzando il secondo approccio ed eliminando i nodi nello stesso ordine si sarebbe ottenuta l'espressione $[0 \cup 1(01^*0)^*1]^*$, la cui unica differenza consiste nel generare anche la stringa vuota ε .

Esercizio 3 [6] Si consideri il linguaggio $\mathcal{L} = \{x \, y^n \, x \, y \, x^n \, y \mid x, y \in \{0, 1\}, x \neq y, n > 0\}$. \mathcal{L} è un linguaggio libero dal contesto? Giustificare la risposta con una dimostrazione.

Soluzione: Il linguaggio \mathcal{L} è libero dal contesto (CFL). Per dimostrarlo si può, in alternativa, esibire un PDA che riconosca gli elementi di \mathcal{L} oppure esibire una grammatica G tale che $L(G) = \mathcal{L}$.

Consideriamo la seguente grammatica G:

$$S \rightarrow 0A1 \mid 1B0 \quad A \rightarrow 1A0 \mid 1010 \quad B \rightarrow 0B1 \mid 0101.$$

Dimostriamo che $L(G) = \mathcal{L}$, ossia che $\mathcal{L} \subseteq L(G)$ e $L(G) \subseteq \mathcal{L}$.

Sia $w \in \mathcal{L}$, e dimostriamo per induzione che $w \in L(G)$. I più piccoli elementi di \mathcal{L} si ottengono per n = 1, e dunque sono 010101 e 101010. Entrambi possono essere derivati da S:

$$S \Rightarrow 0 A 1 \Rightarrow 0 1010 1$$
 $S \Rightarrow 1 B 0 \Rightarrow 1 0101 0$

Dunque $\{010101, 101010\} \subseteq L(G)$. Supponiamo ora che l'ipotesi induttiva valga per tutti gli elementi di \mathcal{L} fino al valore n=N, e dimostriamo che essa vale anche per n=N+1. Sia dunque $w \in \mathcal{L}$ della forma $xy^{N+1}xyx^{N+1}y$. Per semplificare la spiegazione, supponiamo anche che x=0 e y=1. Poiché vale l'ipotesi induttiva, $01^N010^N1 \in L(G)$, dunque $S \Rightarrow^* 01^N010^N1$. Ora la prima regola applicata deve essere necessariamente $S \to 0A1$, altrimenti non potrebbe essere possibile generare il primo simbolo 0 della stringa. Poiché inoltre A può generare solo stringhe terminali o stringhe contenenti A, l'ultima regola applicata deve essere stata $A \to 1010$. La sottostringa 1010 occorre in un solo punto, dunque si ha:

$$S \Rightarrow 0 A 1 \Rightarrow^* 0 1^{N-1} A 0^{N-1} 1 \Rightarrow 0 1^{N-1} 1010 0^{N-1} 1$$

Consideriamo ora la derivazione da S identica a questa, ma in cui l'ultima regola applicata è sostituita dalle due regole, in successione, $A \to 1A0$ e $A \to 1010$:

$$S \Rightarrow 0 A 1 \Rightarrow^* 0 1^{N-1} A 0^{N-1} 1 \Rightarrow 0 1^{N-1} 1 A 0 0^{N-1} 1 \Rightarrow 0 1^{N-1} 1 1010 0 0^{N-1} 1$$

Pertanto, $S \Rightarrow^* 01^{N+1}010^{N+1}1$. A causa della simmetria delle regole della grammatica, l'identico ragionamento si applica nel caso in cui x=1 e y=0, utilizzando le regole coinvolgenti il simbolo B. Pertanto resta dimostrato che la stringa $w=xy^{N+1}xyx^{N+1}y\in L(G)$. Per induzione dunque si ha che $\mathcal{L}\subseteq L(G)$.

Dimostriamo ora che ogni stringa terminale generata dalla grammatica è inclusa in \mathcal{L} . Supponiamo che la prima regola applicata da S sia $S \to 0A1$. A causa della forma delle regole per espandere A, qualunque stringa terminale derivata da 0A1 deve essere costituita da un certo numero $N \geq 0$ di applicazioni della regola $A \to 1A0$, seguite al termine dall'applicazione della regola $A \to 1010$. Si ha perciò:

$$S \Rightarrow 0A1 \Rightarrow^* 01^N A 0^N 1 \Rightarrow 01^N 1010 0^N 1$$

Tale stringa terminale appartiene ad \mathcal{L} (ponendo nella definizione del linguaggio x=0, y=1 e n=N+1>0). Per la simmetria della grammatica e della definizione del linguaggio, lo stesso ragionamento si applica quando la prima regola applicata da $S \in S \to 1B0$. Pertanto $L(G) \subseteq \mathcal{L}$.

Concludiamo che $\mathcal{L} = L(G)$, e quindi che \mathcal{L} è CFL.

Esercizio 4 [6] Si consideri la grammatica G con variabile iniziale S:

$$S \rightarrow 0A1 \mid 1B0 \quad A \rightarrow 1A0 \mid 01 \quad B \rightarrow 0B1 \mid 10.$$

La grammatica è deterministica? Giustificare la risposta con una dimostrazione.

Soluzione: Per verificare se la grammatica G è deterministica utilizziamo il DK-test.

Poiché tutti gli stati finali dell'automa DK contengono una sola regola, la grammatica è deterministica.

Esercizio 5 [8] Siano A e B linguaggi Turing-riconoscibili (ricorsivamente enumerabili). Dimostrare che sia $A\#B=\{x\#y\mid x\in A,\,y\in B\}$ (ove # è un simbolo non incluso in A o B) che $AB=\{xy\mid x\in A,\,y\in B\}$ sono Turing-riconoscibili.

Soluzione: Poiché sia A che B sono ricorsivamente enumerabili, esistono due TM M_A e M_B che riconoscono le stringhe di A e B, rispettivamente. È possibile costruire due diverse TM, basate su M_A e M_B , la prima deterministica per riconoscere se una stringa è in A#B e la seconda nondeterministica per riconoscere se una stringa in ingresso è in AB (si osservi che il nondeterminismo, utilizzato per semplicità per "indovinare" una suddivisione della stringa in ingresso in due sottostringhe x e y, non costituisce un problema, perché per ogni TM non deterministica esiste una TM deterministica equivalente).

Per sottolineare come i due linguaggi A#B e AB siano affini, svolgiamo l'esercizio utilizzando una tecnica di dimostrazione alternativa. Poiché sia A che B sono ricorsivamente enumerabili, esistono due TM E_A e E_B che stampano in uscita tutte e sole le stringhe dei linguaggi A e B, rispettivamente. Consideriamo dunque la seguente TM E [ovvero E'] che enumera gli elementi di A#B [ovvero gli elementi di AB]:

```
E[E'] = "On any input:
```

- 1. Ignore the input
- 2. for k = 1 to ∞ :
 - 3. Emulate the TM E_A for k steps
 - 4. For any string x printed by E_A :
 - 5. Emulate the TM E_B for k steps
 - 6. For any string y printed by E_B :
 - 7. Print the string x # y [the string xy]"

Si osservi che gli enumeratori in linea di principio non terminano mai, quindi non è corretto inserire nell'algoritmo una emulazione senza limiti sul numero di passi. In questo caso tipicamente l'enumeratore stamperebbe soltanto le stringhe $\overline{x} # y$ [ovvero $\overline{x} y$], ove $y \in B$ ma \overline{x} è la prima stringa stampata da E_A .

È immediato verificare che ogni stringa stampata dall'enumeratore fa parte del linguaggio, in quanto composta da sottostringhe stampate da E_A e E_B . D'altra parte, supponiamo che $w \in A\#B$ [ovvero $w \in AB$]. Dunque w contiene due sottostringhe $x \in A$ e $y \in B$. L'enumeratore E_A stamperà certamente x dopo k_A di passi, mentre l'enumeratore E_B stamperà y dopo y dopo y passi. Perciò la stringa y verrà stampata dall'emulatore y nella iterazione corrispondente a y maximizatore y dopo y nella iterazione corrispondente a y maximizatore y nella iterazione corrispondente a y nella iterazione corrispondente enumerabili.

Esercizio 6 [10] Il problema DOMINATING SET è il seguente: dato un grafo non diretto G = (V, E), ed un numero intero k, determinare se esiste un sottoinsieme di nodi $V' \subseteq V$ di cardinalità k tale che ogni nodo del grafo o appartiene a V' oppure è adiacente ad un nodo in V' (o entrambe le cose). Dimostrare che DOMINATING SET è NP-completo.

Soluzione: Per prima cosa dimostriamo che DOMINATING SET (DS) appartiene a NP. Il problema è polinomialmente verificabile perché ogni istanza che fa parte del linguaggio ha come certificato il sottoinsieme di nodi del grafo che costituisce il dominating set: è certamente di dimensione non superiore al numero di nodi del grafo, e verificare che ogni nodo del grafo fa parte od è adiacente al sottoinsieme può essere facilmente realizzato da un algoritmo che esegue in tempo polinomiale nella dimensione dell'istanza del problema:

M= "On input $\langle G = (V, E), k, V' \rangle$, where G is a graph, $V' \subseteq V$:

- 1. if |V'| > k: reject
- 2. for each node v in V:
 - 3. if $v \in V'$ then continue with next node in step 1
 - 4. for each edge $e \in E$:
 - 5. if e links v to a node in V', continue with next node in step 1
 - 6. Reject, because node v is not dominated by V'
- 7. Accept, because all nodes in V are dominated by V'"

Il numero totale di passi eseguiti dall'algoritmo è $O(n m n) = O(n^4)$, ove n = |V(G)| e $m = |E(G)| = O(n^2)$.

Consideriamo ora una riduzione polinomiale da Vertex Cover (VC) a DS. Sia (G = (V, E), k) una istanza di VC. Costruiamo un nuovo grafo G' = (V', E') in questo modo: $V' = V \cup V_E$ è costituito dai nodi di G e da un nodo v_e per ciascun arco $e \in E$; in totale quindi |V'| = n + m = |V| + |E|. $E' = E \cup E_V$ è costituito dagli archi di G e, per ciascun nodo $v_e \in V_E$, da due archi (v_e, v) e (v_e, w) ove e = (v, w); in totale quindi |E'| = 3m = 3 |E|. Possiamo dimostrare che $(G, k) \in VC$ se e solo se $(G', k + s) \in DS$, ove s è il numero di nodi $S \subseteq V$ "isolati" (senza archi incidenti).

Supponiamo che $(G, k) \in VC$; dunque esiste $U \subseteq V$ tale che |U| = k ed ogni arco di G è incidente ad almeno un nodo di U. Consideriamo il sottoinsieme di nodi $U' = U \cup S$ in G' (esiste perché tutti i nodi di G sono anche nodi di G'), e dimostriamo che è un dominating set di dimensione k + s. Infatti, sia $x \in V(G') = V \cup V_E$: se $x \in V$, allora o $x \in S$, e dunque $x \in U'$, oppure esiste un arco $e \in E$ incidente su x. Poiché U è un ricoprimento degli archi in G, esiste un nodo $y \in U$ tale che e = (x, y); pertanto, il nodo x è dominato dal nodo $y \in U'$. Se invece $x \in V_E$, allora $x = v_e$ per un certo arco $e \in E$: dunque, U deve contenere un nodo y che ricopre e; allora, per costruzione di E_V , $(y, v_e) \in E_V$, e quindi x è dominato da $y \in U'$.

Per la direzione opposta, supponiamo che $(G', k + s) \in DS$, e quindi esiste un sottoinsieme U', con |U'| = k + s, che domina ogni nodo di G'. Risulta evidente che $S \subseteq U'$, perché l'unico

modo per dominare nodi isolati è inserirli nel sottoinsieme dominante. Un'altra osservazione è che se U' contiene un qualunque nodo $v_e \in V_E$, è possibile sostituire in U' il nodo v_e con uno qualunque dei due nodi v, w tali che e = (v, w). Infatti per costruzione di G' il nodo v_e può dominare solo se stesso, v e v; ma v (o equivalentemente v) domina almeno se stesso, v e v, quindi sostituendo v con v si ottiene un dominating set di dimensione pari od inferiore a quella di v che domina almeno lo stesso insieme di nodi di v. Consideriamo dunque il dominating set v in cui ogni nodo v è stato sostituito da un nodo in v come appena descritto, e sia v de v in sottoinsieme v ha cardinalità v e v in sottoinsieme di nodi di v e deve essere dominato degli archi in v in v in v in cui ogni nodo v e deve essere dominato da qualche nodo in v in v e v e v e v e v in contrambi appartengono al sottoinsieme dominante v. Naturalmente v in v e v e v oppure entrambi, appartengono ad v e Pertanto, l'arco v risulta ricoperto da un elemento di v e v e v e v in cui osservazione v e v e v oppure entrambi, appartengono ad v e

Abbiamo dunque dimostrato che la trasformazione da (G, k) a (G', k + s) è una riduzione tra problemi. È inoltre evidente che tale trasformazione può essere costruita in tempo polinomiale. Pertanto, $VC \leq_m DS$, e quindi DS è NP-hard in quanto VC è NP-completo. Ciò conclude la dimostrazione di NP-completezza di DS.