- 1. Solve each of the following recurrence relation with | 3. the given initial conditions.
 - (1) $a_n = 2a_{n-1} + a_{n-2} 2a_{n-3}$ for $n \ge 3$, $a_0 = 3$, $a_1 = 6$ $a_2 = 0$
 - (2) $a_n = 7a_{n-2} + 6a_{n-3}$ for $n \ge 2$, $a_0 = 9$, $a_1 = 10$, $a_2 = 32$
 - (3) $a_n = 2a_{n-1} + 5a_{n-2} 6a_{n-3}$ for $n \ge 3$, $a_0 = 7$, $a_1 = -4$ $a_2 = 8$
 - (4) $a_n = 6a_{n-1} 12a_{n-2} + 8a_{n-3}$ for $n \ge 3$, $a_0 = -4$, $a_1 = 4$ $a_2 = 8$
 - (5) $a_n = -3a_{n-1} + a_{n-2} + 3a_{n-3}$ for $n \ge 3$, $a_0 = 5$, $a_1 = -9$ $a_2 = 15$
 - (6) $a_n = -3a_{n-1} + 4a_{n-3}$ for $n \ge 3$, $a_0 = 1$, $a_1 = 2$ $a_2 = -3$
 - (7) $a_n = 9a_{n-1} 27a_{n-2} + 27a_{n-3}$ for $n \ge 3$, $a_0 = 2$, $a_1 = 6$ $a_2 = -18$
- 2. What is the general form of the particular solution to the linear nonhomogeneous recurrence relation

$$a_n = -7a_{n-1} - 12a_{n-2} + F(n)$$

if

- (1) F(n) = 2n + 4
- (2) $F(n) = n^2 1$
- (3) $F(n) = 2^n$
- (4) $F(n) = (-5)^n$
- (5) $F(n) = (-3)^n$
- (6) $F(n) = (2n+4)7^n$

3. Find the particular solution to the linear nonhomogeneous recurrence relation

$$a_n = a_{n-1} + 2a_{n-2} + F(n)$$

if

- (1) F(n) = 7
- (2) F(n) = 2n + 4
- (3) $F(n) = n^2 1$
- (4) $F(n) = 3^n$
- (5) $F(n) = 2^n$
- 4. Find the particular solution to the linear nonhomogeneous recurrence relation

$$a_n = 2a_{n-1} + 8a_{n-2} + F(n)$$

if

- (1) F(n) = 18
- (2) F(n) = 3n 2
- (3) $F(n) = n^2$
- (4) $F(n) = 7^n$
- (5) $F(n) = 4^n$

5. Solve each of the following recurrence relation with the given initial condition(s).

(1)
$$a_n = 2a_{n-1} + 3^n \text{ for } n \ge 2,$$

 $a_1 = 6$

(2)
$$a_n = 2a_{n-1} + 2n^2$$
 for $n \ge 2$,
 $a_1 = 4$

(3)
$$a_n = a_{n-1} + 20a_{n-2} + 16$$
 for $n \ge 2$,
 $a_0 = \frac{1}{5}$, $a_1 = \frac{6}{5}$

(4)
$$a_n = a_{n-1} + 6a_{n-2} - 2n$$
 for $n \ge 2$,
 $a_0 = 3$, $a_1 = 6$

(5)
$$a_n = a_{n-1} + 2a_{n-2} + 3^n \text{ for } n \ge 2,$$

 $a_0 = \frac{1}{4}, \quad a_1 = \frac{7}{4}$

(6)
$$a_n = a_{n-1} + 6a_{n-2} + 5^n$$
 for $n \ge 2$,
 $a_0 = 3$, $a_1 = 6$

(7)
$$a_n = 6a_{n-1} - 9a_{n-2} + 5^n \text{ for } n \ge 2,$$

 $a_0 = 0, \quad a_1 = 2$

6. Word problems:

6th edition:

(1) p. 457 #11 - 21 odd, 29

(2) p. 471 #5 - 9, 47

7th edition:

(1) p. 511 #3 - 13 odd, 19

(2) p. 524 #5 - 9, 47

KEY

1 Solve each of the following recurrence relation with the given initial conditions.

(1)
$$a_n = 2a_{n-1} + a_{n-2} - 2a_{n-3}$$
 for $n \ge 3$,
 $a_0 = 3$, $a_1 = 6$ $a_2 = 0$

Answer:
$$a_n = 6 - 2(-1)^n - 2^n$$
, $n \ge 0$

(2)
$$a_n = 7a_{n-2} + 6a_{n-3}$$
 for $n \ge 2$,
 $a_0 = 9$, $a_1 = 10$, $a_2 = 32$

Answer:
$$a_n = 8(-1)^n - 3(-2)^n + 4 \cdot 3^n$$
, $n \ge 0$

(3)
$$a_n = 2a_{n-1} + 5a_{n-2} - 6a_{n-3}$$
 for $n \ge 3$,
 $a_0 = 7$, $a_1 = -4$ $a_2 = 8$

Answer:
$$a_n = 5 + 3(-2)^n - 3^n$$
, $n \ge 0$

(4)
$$a_n = 6a_{n-1} - 12a_{n-2} + 8a_{n-3}$$
 for $n \ge 3$,
 $a_0 = -4$, $a_1 = 4$ $a_2 = 8$

Answer:
$$a_n = (-3n^2 + 9n - 4)2^n$$
, $n > 0$

(5)
$$a_n = -3a_{n-1} + a_{n-2} + 3a_{n-3}$$
 for $n \ge 3$,
 $a_0 = 5$, $a_1 = -9$ $a_2 = 15$

Answer:
$$a_n = -\frac{3}{4} + \frac{9}{2}(-1)^n + \frac{5}{4}(-3)^n, \quad n \ge 0$$

(6)
$$a_n = -3a_{n-1} + 4a_{n-3}$$
 for $n \ge 3$,
 $a_0 = 1$, $a_1 = 2$ $a_2 = -3$

Answer:
$$a_n = n(-2)^{n-1} + 1, \quad n \ge 0$$

(7)
$$a_n = 9a_{n-1} - 27a_{n-2} + 27a_{n-3}$$
 for $n \ge 3$,
 $a_0 = 2$, $a_1 = 6$ $a_2 = -18$

Answer:
$$a_n = (2 + 4n - 3n^2) \cdot 3^n, \quad n \ge 0$$

What is the general form of the particular solution to the linear nonhomogeneous recurrence relation

$$a_n = -7a_{n-1} - 12a_{n-2} + F(n)$$

if

 $(1) \quad F(n) = 2n + 4$

Answer: $a_n^{(p)} = an + b$

(2) $F(n) = n^2 - 1$

Answer: $a_n^{(p)} = an^2 + bn + c$

(3) $F(n) = 2^n$

Answer: $a_n^{(p)} = a \cdot 2^n$

(4) $F(n) = (-5)^n$

Answer: $a_n^{(p)} = a \cdot (-5)^n$

(5) $F(n) = (-3)^n$

Answer: $a_n^{(p)} = an \cdot (-3)^n$

(6) $F(n) = (2n+4)7^n$

Answer: $a_n^{(p)} = (an + b) \cdot 7^n$

3 Find the particular solution to the linear nonhomogeneous recurrence relation

$$a_n = a_{n-1} + 2a_{n-2} + F(n)$$

if

(1) F(n) = 7

Answer: $a_n^{(p)} = -\frac{7}{2}$

(2) F(n) = 2n + 4

Answer: $a_n^{(p)} = -n - \frac{9}{2}$

(3) $F(n) = n^2 - 1$

Answer: $a_n^{(p)} = -\frac{1}{2}n^2 - \frac{5}{2}n - \frac{7}{2}$

(4) $F(n) = 3^n$

Answer: $a_n^{(p)} = \frac{1}{4} \cdot 3^{n+2}$

 $(5) \quad F(n) = 2^n$

Answer: $a_n^{(p)} = \frac{1}{3} n \cdot 2^{n+1}$

Find the particular solution to the linear nonhomogeneous recurrence relation

$$a_n = 2a_{n-1} + 8a_{n-2} + F(n)$$

if

(1) F(n) = 18

Answer: $a_n^{(p)} = -2$

(2) F(n) = 3n - 2

Answer: $a_n^{(p)} = -\frac{1}{3}n - \frac{4}{9}$

(3) $F(n) = n^2$

Answer: $a_n^{(p)} = \frac{13}{45}n^2 - \frac{4}{5}n - \frac{206}{405}$

(4) $F(n) = 7^n$

Answer: $a_n^{(p)} = \frac{1}{27} \cdot 7^{n+2}$

(5) $F(n) = 4^n$

Answer: $a_n^{(p)} = \frac{2}{3} n \cdot 4^n$

5 Solve each of the following recurrence relation with the given initial condition(s).

(1)
$$a_n = 2a_{n-1} + 3^n$$
 for $n \ge 2$,
 $a_1 = 6$

Answer:

$$a_n = -\frac{3}{2} \cdot 2^n + 3^{n+1}, \quad n \ge 1$$

Or

$$a_n = -3 \cdot 2^{n-1} + 3^{n+1}, \quad n \ge 1$$

(2)
$$a_n = 2a_{n-1} + 2n^2$$
 for $n \ge 2$,
 $a_1 = 4$

Answer:

$$a_n = 13 \cdot 2^n - 2n^2 - 8n - 12$$
 $n > 1$

(3)
$$a_n = a_{n-1} + 20a_{n-2} + 16$$
 for $n \ge 2$,
 $a_0 = \frac{1}{5}$, $a_1 = \frac{6}{5}$

Answer:

$$a_n = \frac{2}{3} \cdot 5^n + \frac{1}{3} (-4)^n - \frac{4}{5}, \quad n \ge 0$$

(4)
$$a_n = a_{n-1} + 6a_{n-2} - 2n$$
 for $n \ge 2$,
 $a_0 = 3$, $a_1 = 6$

Answer:

$$a_n = \frac{19}{10} \cdot 3^n + \frac{17}{45} (-2)^n + \frac{13}{n} + \frac{13}{18}, \quad n \ge 0$$

(5)
$$a_n = a_{n-1} + 2a_{n-2} + 3^n \text{ for } n \ge 2,$$

 $a_0 = \frac{1}{4}, \quad a_1 = \frac{7}{4}$

Answer:

$$a_n = -\frac{7}{3} \cdot 2^n + \frac{1}{3} (-1)^n + \frac{9}{4} \cdot 3^n, \quad n \ge 0$$

(6)
$$a_n = a_{n-1} + 6a_{n-2} + 5^n \text{ for } n \ge 2,$$

 $a_0 = 3, \quad a_1 = 6$

Answer:

$$a_n = -\frac{1}{10} \cdot 3^n + \frac{46}{35} (-2)^n + \frac{25}{14} \cdot 5^n, \quad n \ge 0$$

(7)
$$a_n = 6a_{n-1} - 9a_{n-2} + 5^n \text{ for } n \ge 2,$$

 $a_0 = 0, \quad a_1 = 2$

Answer:

$$a_n = \left(-\frac{25}{4} - \frac{7}{2}n\right) \cdot 3^n + \frac{1}{4} \cdot 5^{n+2}, \quad n \ge 0$$