ĆWICZENIE 9 - STEROWANIE SZYNĄ DANYCH

Ćwiczenie ilustruje sposób przesyłania informacji pomiędzy kilkoma układami. Szyna danych, jak też wszystkie nadajniki i odbiorniki są układami 4-bitowymi. W zestawie wykorzystuje się układ arytmetyczno-logiczny (ALU) 74181. W ćwiczeniu nie wykonuje się jakichkolwiek połączeń za pomocą przewodów (zadanie polega na napisaniu prostego programu).

Nadajnikiem może być:

- rejestr A (RA),
- rejestr B (RB),
- rejestr C (RC),
- układ arytmetyczno-logiczny (ALU),
- klawiatura (4 klawisze) do wprowadzania 4-bitowych danych wejściowych (DANE),
- klawiatura do zadawania instrukcji (INSTRUKCJA).

Odbiornikiem może być:

- rejestr A (RA),
- rejestr B (RB),
- rejestr C (RC),
- rejestr pomocniczy (R1),
- rejestr pomocniczy (R2),
- rejestr wyjściowy (Rwy),
- rejestr instrukcji (RI).

Aby wysłać daną z wybranego nadajnika (ozn. symbolem T) do wybranego odbiornika (ozn. symbolem C) należy na odpowiednie wejścia T i C podać sygnał logiczny 1.

Linia programu (mikrocykl) ma postać:

I_2 I_1 I_0 C_1 C_0	C_T B_T A_T	C _C B _C A _C	W_1 W_2
-------------------------------	-------------------	--	-------------

I₂ I₁ I₀ - oznacza numer instrukcji (od 000 do maksymalnie 111)

 C_1 C_0 - oznacza numer mikrocyklu (00, 01, 10, 11)

Kodowanie wyboru nadajnika:

 $C_T B_T A_T = 000 \text{ (INSTRUKCJA)}$

 $C_T B_T A_T = 0.01 (RA)$

 $C_T B_T A_T = 0.10 (RB)$

 $C_T B_T A_T = 0.1.1 (RC)$

 $C_T B_T A_T = 100 (ALU)$

 $C_T B_T A_T = 101 (DANE)$

Kodowanie wyboru odbiornika:

 $C_C B_C A_C = 000 (RI)$

 $C_C B_C A_C = 001 (RA)$

 $C_{C} B_{C} A_{C} = 0.10 (RB)$

 $C_C B_C A_C = 0.1.1 (RC)$

 $C_C B_C A_C = 100 (R1)$

 $C_C B_C A_C = 101 (R2)$

 $C_C B_C A_C = 110 (Rwy)$

Jeśli dana instrukcja programu wykonuje operację arytmetyczno-logiczną (układ 74181), to w kolumnach W_1 i W_2 linii programu należy wpisać właściwe sygnały S_3 S_2 S_1 S_0 (zgodnie z tabelą ALU).

I_2	I_1	I_0	C_1	C_0	C_{T}	B_{T}	A_T	C_{C}	B_{C}	$A_{\rm C}$	\mathbf{W}_1	W_2
X	X	X	0	0							M	S_3
			0	1							$egin{array}{c} M \ S_2 \ x \end{array}$	S_1
			1	0							X	S_0
			1	1							X	X

Układ arytmetyczno-logiczny 74181 (ALU) realizuje funkcje podane w tabeli (dane A i B są 4-bitowe).

S_3	S_2	S_1	S_0	M = 0	M = 1
				funkcje arytmetyczne	funkcje logiczne
0	0	0	0	Y = 0	$Y = \overline{R}_1$
0	0	0	1	$Y = R_1 + R_2$	$Y = \overline{R_1 \wedge R_2}$
0	0	1	0	$Y = R_1 \times R_2 - 1$	$Y = \overline{R}_1 \vee R_2$
0	0	1	1	$Y = R_1 \div R_2$	Y = 1
0	1	0	0	$Y = R_1^2 - R_2^2$	$Y = R_1 \oplus R_2$
0	1	0	1	$Y = R_1 \times 2$	$Y = \overline{R_1 \Leftrightarrow R_2}$
0	1	1	0	$Y = (R_1 + R_2) / 2$	$Y = R_1 \Rightarrow R_2$
0	1	1	1	$Y = R_1 \times R_2$	$Y = R_1 \vee R_2$
1	0	0	0	$Y = R_1 \% R_2$	$Y = \overline{R_1 \Longrightarrow R_2}$
1	0	0	1	$Y = R_1 + 2$	$Y = \overline{\overline{R}_1 \wedge R_2}$
1	0	1	0	$Y = (R_1 \times R_2) - (R_1 + R_2)$	$Y = R_1 \wedge R_2$
1	0	1	1	$Y = R_1 - R_2$	$Y = \overline{R_1 \oplus R_2}$
1	1	0	0	$Y = (R_1 - R_2)^2$	$Y = \overline{R}_2$
1	1	0	1	$Y = R_1$	$Y = \overline{R_1 \vee R_2}$
1	1	1	0	$Y = R_1^2$	$Y = R_1 \Leftrightarrow R_2$
1	1	1	1	$Y = R_1 - 1$	$Y = \overline{R_1 \oplus R_2}$

Aby wykonać wybrane działanie należy wpisać liczby do rejestrów R1 i R2.

W przypadku wykonywania operacji dodawania arytmetycznego układ nie udostępnia bitu przeniesienia.

W dalszej części podany jest przykładowy program.