Espaces Vectoriels Normés

Mise à jour du cours du 02/03

Lundi 15 janvier 2018

Soit E un espace vectoriel.

Le but de cette partie est de définir la notion de distance entre deux vecteurs de E.

Ex: $-E = \mathbb{R}$: On peut définir la distance entre deux réels a et a' par d(a, a') = |a - a'|.

$$-E = \mathbb{C}$$
: On peut poser $z, z' \in \mathbb{C}, d(z, z') = |z - z'|$. Si on écrit $z = x + iy$ et $z' = x' + iy'$, alors $d(z, z') = |x - x'| + i(y - y')| = \sqrt{(x - x')^2 + (y - y')^2}$.

$$-E = \mathbb{R}^2$$
: Si $(x, y), (x', y') \in \mathbb{R}^2$, on peut définir $d((x, y), (x', y')) = \sqrt{(x - x')^2 + (y - y')^2}$.

1 Normes et distances sur un espace vectoriel

Définition : Soit E un espace vectoriel sur \mathbb{R} . Une norme sur E est par définition une application

 $N: E \to \mathbb{R}, x \mapsto N(x)$ vérifiant :

- $\forall x \in E, N(x) \ge 0$, et $(N(x) = 0 \iff x = 0)$,
- $\forall x \in E, \forall \lambda \in \mathbb{R}, N(\lambda x) = |\lambda|N(x),$
- (Inégalité triangulaire) $\forall x, y \in E, N(x+y) \leq N(x) + N(y)$.

Propriétés:

- Soient
$$x_1, x_2, x_3 \in E$$
 avec (E, N) un e.v.n. Alors,

$$N(x_1 + x_2 + x_3) = N((x_1 + x_2) + x_3) \le N(x_1 + x_2) + N(x_3) \le N(x_1) + N(x_2) + N(x_3)$$

$$-\operatorname{Si} x_1, ..., x_p \in E, N(x_1, ..., x_p) \leqslant N(x_1) + ... + N(x_p).$$

$$- \text{Si } x, y \in E, |N(x) - N(y)| \leq N(x - y).$$

<u>Démo</u>:

$$N(x) = N((x - y) + y) \le N(x - y) + N(y), N(x) - N(y) \le N(x - y).$$

Aussi
$$N(y) - N(x) \le N(y - x) = N((-1)(x - y)) = |-1|N(x - y) = N(x - y).$$

Finalement,
$$|N(x) - N(y)| = \text{Max}(N(x) - N(y), N(y) - N(x)) \leq N(x - y).$$

Ex:

$$-E = \mathbb{R}$$
: Posons $N(x) = |x|$ (Valeur absolue).

N est une norme sur \mathbb{R} , car $|x| \ge 0$, ($|x| = 0 \iff x = 0$),

$$\forall \lambda \in \mathbb{R}, |\lambda x| = |\lambda||x|, \text{ et } \forall x, y \in E, |x + y| \leq |x| + |y|.$$

 $-E = \mathbb{C}$: Posons N(x) = |x| (Module).

N est une norme sur \mathbb{C} , car $|z| \ge 0$, ($|z| = 0 \iff z = 0$),

$$\forall \lambda \in \mathbb{C}, |\lambda z| = |\lambda||z|, \text{ et } \forall z, z' \in E, |z + z'| \leq |z| + |z'|.$$

- Espaces euclidiens :

Soit E un e.v. Une forme bilinéaire est une application $B: E \times E \to \mathbb{R}$, $(x, y) \mapsto B(x, y)$ telle qu'elle est linéaire en chacune de ses variables.

Un produit scalaire sur un e.v E est une forme bilinéaire symétrique sur E définie positive au sens suivant :

 $\forall x \in E, B(x,x) \geqslant 0$, et $B(x,x) = 0 \iff x = 0$. Un espace euclidien est un e.v muni d'un produit scalaire.

On pose $B(x, y) = \sum_{j=1}^{n} x_j y_j$. B est un produit scalaire sur \mathbb{R}^n avec $(x, y \in \mathbb{R}^n)$.

On pose maintenant : $N(x) = \sqrt{B(x,x)}$. Alors, N est une norme sur E.

Démo :

$$i/$$
 Par définition, $N(x) \ge 0$, et $N(x) = 0 \iff B(x,x) = 0 \iff x = 0$
 $ii/$ Si $\lambda \in \mathbb{R}$, $x \in E$, $N(\lambda x) = \sqrt{B(\lambda x, \lambda x)} = \sqrt{\lambda^2 B(x, x)} = |\lambda| \sqrt{B(x, x)} = |\lambda| N(x)$,
 $iii/$ On va utiliser le lemme : $\forall x, y \in E$, posons $p(\lambda) = B(x + \lambda y, x) + \lambda B(x + \lambda y, y)$. Si on pose $z = x + \lambda y$ fixé, et $u(\omega) = B(z, \omega)$, on a écrit que $(u(x + \lambda y) = u(x) + \lambda u(y))$.
On aura $p(\lambda) = B(x, x) + \lambda B(y, x) + \lambda B(x, y) + \lambda^2 B(y, y)$ donc $p(\lambda) = B(x, x) + 2\lambda B(y, x) + \lambda^2 B(y, y)$ donc $\lambda \mapsto p(\lambda)$ est un polynôme de degré ≤ 2 et $p(\lambda) = B(x + \lambda y, x + \lambda y) \ge 0$.
Or, si un polynôme de degré ≤ 2 ne change pas de signe, son discriminant est ≤ 0 .

$$(2B(x,y))^2 - 4B(x,x)B(y,y) \leqslant 0, \text{ donc } |B(x,y)| \leqslant \sqrt{B(x,x)} \sqrt{B(y,y)}. \text{ On a donc } N(x+y)^2 \\ = B(x+y,x+y) = B(x,x+y) + B(y,x+y) = B(x,x) + B(y,x) + B(x,y) + B(y,y) = \\ B(x,x) + 2B(x,y) + B(y,y) \leqslant N(x)^2 + N(x)N(y) + N(y)^2.$$

On a obtenu
$$N(x+y)^2 \leqslant (N(x)+N(y))^2$$
 soit $N(x+y) \leqslant N(x)+N(y)$

$$-E = \mathbb{R}^n : B(x, y) = \sum x_i y_i$$
. La norme obtenue se note $||...||_2$ et pour $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ est donnée par

$$||\mathbf{x}||_2 \stackrel{def}{=} (\sum_{i=1}^n x_i^2)^{\frac{1}{2}}$$

- Autre exemple de normes : Soient $E,\,E'$ deux e.v et $\varphi:E\to E'$ linéaire injective.

Soit N' une norme sur E'. Pour $x \in E$, posons $N(x) \stackrel{def}{=} N'(\varphi(x))$. Alors N est une norme sur E: $i/N(x) \ge 0$ de plus $N(x) = 0 \Longrightarrow N'(\varphi(x)) = 0 \Longrightarrow \varphi(x) = 0$ (car N' est une norme) $\Longrightarrow x = 0$. (puisque φ est injective).

$$ii/\ N(\lambda x) = N'(\varphi(\lambda x)) = N'(\lambda \varphi(x)) = |\lambda| N'(\varphi(x)) = |\lambda| N(x)$$
$$iii/\ N(x+y) = N'(\varphi(x+y)) = N'(\varphi(x) + \varphi(y)) \leqslant N'(\varphi(x)) + N'(\varphi(y)) = N(x) + N(y)$$

1.1 Normes usuelles de \mathbb{R}^p

Soit $x=\begin{bmatrix}x_1\\\vdots\\x_p\end{bmatrix}\in\mathbb{R}^p$, les normes usuelles de \mathbb{R}^p sont définies par :

$$||x||_1 \stackrel{def}{=} \sum_{j=1}^p |x_j|, \qquad ||x||_2 \stackrel{def}{=} \left(\sum_{j=1}^p x_j^2\right)^{\frac{1}{2}}, \qquad ||x||_\infty \stackrel{def}{=} \max_{j \in \{1, \dots, p\}} [|x_j|].$$

Propriété : $||..||_1$, $||..||_2$, $||..||_{\infty}$, sont des normes de \mathbb{R}^p .

Démo :

- Pour $||..||_2$: voir plus haut.

 $- \text{ Pour } ||..||_1 :$

Soit
$$x \in E$$
, $||x||_1 = \sum_{j=1}^p |x_j| \ge 0$, et $\sum_{j=1}^p |x_j| = 0 \iff \forall j \ x_j = 0 \iff x = 0$.

Soit
$$\lambda \in \mathbb{R}$$
, $||\lambda x||_1 = \sum_{j=1}^p |\lambda x_j| = |\lambda|(\sum_{j=1}^p |x_j|) = |\lambda|||x||_1$.

Soient
$$x, y \in \mathbb{R}^p$$
, $||x + y||_1 = \sum_{j=1}^p |x_j + y_j| \le \sum_{j=1}^p (|x_j| + |y_j|) = \sum_{j=1}^p |x_j| + \sum_{j=1}^p |y_j| = ||x||_1 + ||y||_1 - \text{Pour } ||...||_{\infty}$:

$$||x||_{\infty} = 0 \Longrightarrow \max_{j \in \{1, \dots, p\}} [|x_j|] = 0. \Longrightarrow \forall j \ x_j = 0 \Longleftrightarrow x = 0.$$

Vérifions l'inégalité triangulaire : $|x_j + y_j| \leq |x_j| + |y_j| = ||x_j||_{\infty} + ||y_j||_{\infty}$ donc

$$\max_{j \in \{1, \dots, p\}} [|x_j| + |y_j|] \le ||x_j||_{\infty} + ||y_j||_{\infty}.$$

Propriété: $\forall x \in \mathbb{R}^p, ||x||_{\infty} \leqslant ||x||_2 \leqslant ||x||_1 \leqslant p||x||_{\infty}.$

$$\underline{\text{D\'emo}}: \forall \ j \in \{1, \ ..., \ p\}, \ |x_j| \leqslant \left(\sum_{j=1}^p x_j^2\right)^{\frac{1}{2}} \text{ donc } ||x||_{\infty} = \max_{j \in \{1, \ ..., \ p\}} [|x_j|] \leqslant ||x||_2.$$

Pour montrer que $||x||_2 \leqslant ||x||_1$, il suffit de vérifier que $||x||_2^2 \leqslant ||x||_1^2$

Soit
$$\left(\sum_{j=1}^{p} x_j\right)^2 = \left(\sum_{j=1}^{p} x_j\right) \left(\sum_{j=1}^{p} x_j\right) = \sum_{j=1}^{p} \left(\sum_{i=1}^{p} |x_j| |x_i|\right) = \sum_{j=1}^{p} x_j^2 + \sum_{\substack{j=1 \ i \neq j}}^{p} \sum_{i=1}^{p} |x_j| |x_i|. \text{ Or, } \sum_{\substack{j=1 \ i \neq j}}^{p} \sum_{i \neq j}^{p} |x_j| |x_i| \geqslant 0,$$

donc

$$||x||_2^2 \le ||x||_1^2$$
, enfin $||x||_2 \le ||x||_1$.

$$||x||_1 = \sum_{j=1}^p |x_j| \le \sum_{j=1}^p ||x||_{\infty} = ||x||_{\infty} \sum_{j=1}^p 1 = p||x||_{\infty}$$

Remarque:

Si E est un e.v de dimension finie p, et si $(e_1, ..., e_p)$ est une base de E, alors $\forall x \in E$ s'écrit de

manière unique $x = \sum_{j=1}^{p} x_j e_j$. On peut donc définir des normes N_1, N_2, N_∞ sur E en posant

$$N_{\ell} \stackrel{def}{=} \left\| \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \right\|_{\ell}, \ \ell \in \{1, 2, \infty\}$$

1.2 Norme produit

Soient $(E_1, N_1), (E_2, N_2)$ deux e.v.n. Soit $E_1 \times E_2 = \{x = (x_1, x_2), x_1 \in E_1, x_2 \in E_2\}$.

 $\underline{\text{D\'efinition}}: N(x) \stackrel{def}{=} \text{Max}[N_1(x_1), \, N_2(x_2)] \text{ est une norme sur } E, \text{ et est appel\'ee norme produit}.$

1.3 Distance associée à une norme

<u>Définition</u>: Soit (E, N) un e.v.n. la distance d(x, y) entre $x \in E$ et $y \in E$, associée à N est par définition d(x, y) = N(x - y).

Propriété : La distance précédente est une application $d: E \times E \to \mathbb{R}$ vérifiant :

$$i/\forall (x, y) \in E \times E \ d(x, y) \ge 0 \ \text{et} \ (d(x, y) = 0 \Longleftrightarrow x = y)$$

ii/ (symétrie) $\forall x, y \in E, d(x, y) = d(y, x)$

iii (Inégalité triangulaire) $\forall x, y, z \in E, d(x, z) \leq d(x, y) + d(y, z)$

<u>Démo</u>:

$$ii/d(x, y) = N(y - x) = N((-1)(x - y)) = |-1|N(x - y) = N(x - y) = d(y, x)$$

 $iii/d(x, z) = N(x - z) = N((x - y) + (y - z)) \le N(x - y) + N(y - z) = d(x, y) + d(y, z)$

Remarque:

De manière générale, si E est un ensemble, on définit une d distance sur E comme une application vérifiant $d: E \times E \to \mathbb{R}$ vérifiant i/, ii/, iii/.

C'est une notion de distance plus générale de la distance associée à une norme. Si d(x, y) = N(x - y). On peut prendre par exemple pour tout $a \in E$, d(x + a, y + a) = N((x + a) - (y + a)) = N(x - y) = d(x, y). Cette propriété n'est pas toujours vraie pour une distance "normale".

Soit (E, N) un e.v.n. Soit $a \in E$.

Définition:

i/ Soit r>0, la boule ouverte de centre a et de rayon r est par définition $B(a,\ r)=\{x\in E,\ N(x-a)\ <\ r\}=\{x\in E,\ d(x,\ a)\ <\ r\}$

ii/ Soit $r\geqslant 0,$ la boule fermée de centre a et de rayon r est par définition $\overline{B}(a,\ r)=\{x\in E,\ N(x-a)\leqslant r\}=\{x\in E,\ d(x,\ a)\leqslant r\}$

Remarque:

– Soit r > 0, alors $a \in B(a, r) \subset \overline{B}(a, r)$

 $- \overline{B}(a, 0) = \{a\}$

 $-\operatorname{Si} r < r' B(a, r) \subset B(a, r'), \overline{B}(a, r) \subset \overline{B}(a, r')$

Ex:

 $-E = \mathbb{R}, N(x) = |x|. \text{ Soit } a \in \mathbb{R}, \text{ alors } B(a,r) = \{x \in E, |x-a| < r\} = |a-r,a+r|, \xrightarrow{a-r-a-a+r} \overline{B}(a,r) = \{x \in \mathbb{R}, |x-a| \leqslant r\} = [a-r,a+r], \xrightarrow{a-r-a-a+r} \overline{B}(a,r) = \{x \in \mathbb{R}, |x-a| \leqslant r\} = [a-r,a+r], \xrightarrow{a-r-a-a+r} \overline{B}(a,r) = \{x \in \mathbb{R}, |x-a| \leqslant r\} = [a-r,a+r], \xrightarrow{a-r-a-a+r} \overline{B}(a,r) = \{x \in \mathbb{R}, |x-a| \leqslant r\} = [a-r,a+r], \xrightarrow{a-r-a-a+r} \overline{B}(a,r) = \{x \in \mathbb{R}, |x-a| \leqslant r\} = [a-r,a+r], \xrightarrow{a-r-a-a+r} \overline{B}(a,r) = \{x \in \mathbb{R}, |x-a| \leqslant r\} = [a-r,a+r], \xrightarrow{a-r-a-a+r} \overline{B}(a,r) = \{x \in \mathbb{R}, |x-a| \leqslant r\} = [a-r,a+r], \xrightarrow{a-r-a-a+r} \overline{B}(a,r) = \{x \in \mathbb{R}, |x-a| \leqslant r\} = [a-r,a+r], \xrightarrow{a-r-a-a+r} \overline{B}(a,r) = [a-r,a+r], \xrightarrow{a-r-a-r} \overline{B}(a,r) = [a-r,a+r], \xrightarrow{a-r-r} \overline{B}(a,r) = [a-r,a+r],$

Alors $B(a, r) = \{z \in \mathbb{C}, |z - a| < r\}$ c'est le disque <u>ouvert</u> de centre a, et de rayon r:

Alors $\overline{B}(a, r) = \{z \in \mathbb{C}, |z - a| \leq r\}$ c'est le disque <u>fermé</u> de centre a, et de rayon r:

 $-E = \mathbb{R}^p \text{ muni des normes } ||..||_1, ||..||_2, ||..||_{\infty}, \text{ on a vu que } \forall x \in \mathbb{R}^p, ||x||_{\infty} \leqslant ||x||_2 \leqslant ||x||_1 \leqslant p||x||_{\infty}$ Notons $B_{\ell}(a, r) = \{x \in \mathbb{R}^p, ||x - a||_{\ell} \leqslant r\}. \ \ell \in \{1, 2, \infty\}$ Soit r > 0, soit $x \in B_{\ell}(0, \frac{r}{p})$. Alors $||x||_{\infty} < \frac{r}{p}$, donc $||x||_1 \leqslant p||x||_{\infty} < p_{\overline{p}} = r$ or $x \in B_1(0, r)$. On en déduit que $B_{\infty}(0, \frac{r}{p}) \subset B_1(0, r)$ De même $B_1(0, r) \subset B_2(0, r) \subset B_{\infty}(0, r)$.

$$\forall x \in E, B_{\infty}(0, \frac{r}{p}) \subset B_1(0, r) \subset B_2(0, r) \subset B_{\infty}(0, r).$$

Cas de p = 2, r = 1

Alors
$$B_{\infty}(0, 1) = \{x = (x_1, x_2) \in \mathbb{R}^2, ||x||_{\infty} \}$$

= $\{(x_1, x_2) \in \mathbb{R}^2, \text{Max}[|x_1|, |x_2|] < 1 \}$
= $\{(x_1, x_2) \in \mathbb{R}^2, |x_1| < 1 \text{ et } |x_2| < 1 \}$

Alors $B_2(0, 1) = \{x = (x_1, x_2) \in \mathbb{R}^2, ||x||_2\}$ $= \{(x_1, x_2) \in \mathbb{R}^2, \sqrt{x_1^2 + x_2^2} < 1\}$ $= \{(x_1, x_2) \in \mathbb{R}^2, |x_1| < 1 \text{ et } |x_2| < 1\}$ $= \{z = x_1 + ix_2, |z| < 1\}$

Alors $B_{\infty}(0, 1) = \{x = (x_1, x_2) \in \mathbb{R}^2, ||(x_1, x_2)||_1\} = \{(x_1, x_2) \in \mathbb{R}^2, |x_1| + |x_2| < 1\}$

Alors $B_1(0, 1) \cap \{(x_1, x_2), x_1 \leq 0, x_2\} = A$. $B_1(0, 1)$ s'obtient par symétrie par A, par rapport aux axes.

Définition:

On dit que deux normes N_1 et N_2 sont équivalentes ssi $\exists C > 0$, telle que $\forall x \in E, N_1(x) \leqslant CN_2(x)$ et $N_2(x) \leqslant CN_1(x)$.

Remarque:

On définit aussi " N_1 et N_2 sont équivalentes" par :

 $\exists C_1 > 0$, telle que $\forall x \in E, N_2(x) \leqslant C_1N_1(x)$ et, $\exists C_2 > 0$, telle que $\forall x \in E, N_1(x) \leqslant C_2N_2(x)$.

Cette définition est équivalente à la précédente.

Déf 1 \Longrightarrow Déf 2, c'est évident, on prend $C_1 = C_2 = C$. Déf 1 \Longrightarrow Déf 2, en prennant $C = \text{Max}[C_1, C_2]$. $\underline{\text{Ex}} : \text{Sur } \mathbb{R}^p \mid |...|_1, \mid |...|_2, \mid |...|_{\infty}$, sont des normes équivalentes (car $\forall x \in \mathbb{R}^p, \mid |x||_{\infty} \leqslant ||x||_2 \leqslant ||x||_1 \leqslant p||x||_{\infty}$.)

2 Limites et continuité

Définition:

On considère (E, N) un e.v.n. Soit $(u_n)_{n \in \mathbb{N}}$ une suite d'éléments de E. On dit que u_n converge vers ℓ ssi la suite réelle $(N(u_n - \ell))_{n \in \mathbb{N}}$ converge vers 0.

Propriété: Supposons que
$$u_n \xrightarrow[n \to +\infty]{} \ell$$
, $u'_n \xrightarrow[n \to +\infty]{} \ell'$. Alors, $u_n + u'_n \xrightarrow[n \to +\infty]{} \ell + \ell'$.

Démo:

$$N((u_n + u'_n) - (\ell + \ell')) = N((u_n - \ell) + (u'_n - \ell')) \leqslant \underbrace{N(u_n - \ell)}_{\xrightarrow[n \to +\infty]{}} + \underbrace{N(u'_n - \ell')}_{\xrightarrow[n \to +\infty]{}}$$

donc
$$N((u_n + u_n') - (\ell + \ell')) \xrightarrow[n \to +\infty]{} 0$$
. On en déduit que $u_n + u_n' \xrightarrow[n \to +\infty]{} \ell + \ell'$

Remarque:

Si
$$(u_n)_{n\in\mathbb{N}}$$
 une suite de (E, N) converge, la limite est unique : Supposons que $u_n \longrightarrow \ell$, $u_n \longrightarrow \ell'$. Alors, $0 \le N(\ell - \ell') = N((\ell - u_n) + (\ell' - u_n)) \le N(\ell - u_n) + N(\ell' - u_n) \xrightarrow[n \to +\infty]{} 0$

$$\Longrightarrow 0 \leqslant N(\ell-\ell') \leqslant \lim_{n \to +\infty} \sum_{i=1}^n u_i = 0 \text{ d'où } N(\ell-\ell') = 0, \text{ donc } \ell-\ell' = 0.$$

Proposition:

Soient N_1 , N_2 deux normes equivalentes sur un e.v E. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de E, soit $\ell\in E$. Alors $(N_1(u_n-\ell)\longrightarrow 0)\iff (N_2(u_n-\ell)\longrightarrow 0)$. $((i)\iff (ii))$.

<u>Démo</u>:

Montrons que $i/\Longrightarrow ii/$. Comme $N_1,\,N_2$ sont équivalents, $\exists\,C>0$, tel que $\forall\,x\in E,\,N_2(x)\leqslant CN_1(x)$ donc $0\leqslant N_2(u_n-\ell)\leqslant\underbrace{CN_1(u_n-\ell)}_{0}$. Donc $N_2(u_n-\ell)\longrightarrow 0$. De même $ii/\Longrightarrow i/$ en inversant N_1 et N_2 .

Corollaire:

Comme les normes $||...||_1$, $||...||_2$, $||...||_{\infty}$ sont équivalentes :

Une suite de \mathbb{R}^p converge vers $\ell \in \mathbb{R}^p$ pour l'une de ces normes ssi elle converge pour une autre.

Remarque:

Pour montrer qu'une suite $(u_n)_{n\in\mathbb{N}}$ de (E, N) converge vers ℓ , il est équivalent de montrer que la suite $(u_n - \ell)_{n\in\mathbb{N}}$ converge vers 0.

Proposition:

Soit
$$(u_n)_{n\in\mathbb{N}}$$
 une suite de \mathbb{R}^p , $u_n=\begin{bmatrix}x_{1,n}\\\vdots\\x_{p,n}\end{bmatrix}$ où $((x_{j,n})_{n\in\mathbb{N}}$ est une suite de $\mathbb{R}\ \forall\ j\in\{1,\ ...,\ p\}$). Alors

$$(u_n)_{n\in\mathbb{N}}$$
 converge vers $\ell=\begin{bmatrix}\ell_1\\\vdots\\\ell_p\end{bmatrix}\in\mathbb{R}^{\scriptscriptstyle\dagger}$ muni de l'une des normes $||..||_1,\,||..||_2,\,||..||_\infty\Longleftrightarrow$ Les suites $(x_{p,n})_{n\in\mathbb{N}}$ vers $\ell_j,\,\forall\,j\in\{1,\,...,\,p\}$).

Démo:

Par la remarque précédente, on peut supposer $\ell = 0$. On doit montrer $||u_n||_k \xrightarrow[n \to +\infty]{} 0 \iff \forall j \in \{1, ..., p\} \ (x_{j,n})_{n \in \mathbb{N}} \text{ vers } 0 \text{ (où } k = 1, 2 \text{ ou } \infty). \text{ Montrons} \implies \text{Supposons } ||u_n||_{\infty} \xrightarrow[n \to +\infty]{} 0. \text{ Or,}$ $||u_n||_{\infty} = \text{Max}[|x_{1,n}|, |x_{2,n}|, ..., |x_{p,n}|]. \text{ Alors } |x_{j,n}| \leqslant ||u_n||_{\infty} \xrightarrow[n \to +\infty]{} 0. \text{ Donc, } x_{j,n} \xrightarrow[n \to +\infty]{} 0,$

 $\forall j \in \{1, ..., p\}.$ Montrons \longleftarrow , On a: $x_{j,n} \xrightarrow[n \to +\infty]{} 0, \forall j \in \{1, ..., p\}.$

Alors $||u_n||_1 = |x_{1,n}| + |x_{2,n}| + \dots + |x_{p,n}| \xrightarrow[n \to +\infty]{} 0 + 0 + \dots + 0 = 0$. Donc $||u_n||_1 \xrightarrow[n \to +\infty]{} 0$.

2.1 Applications Continues

Définition:

Soient (E, N), (E', N') deux e.v.n. Soient $A \subset E$, $f: A \longrightarrow E'$, $a \in A$. On dit que f est continue en a ssi $\forall \varepsilon > 0$, $\exists \eta > 0$ et $\forall x \in A$, $\underbrace{N(x-a) < \eta}_{x \in B_E(a, \eta)} \Longrightarrow \underbrace{N'(f(x) - f(a)) < \varepsilon}_{f(x) \in B_{E'}(f(a), \varepsilon)}$.

Remarque:

 $\implies \forall \ \varepsilon > 0, \ \exists \ \eta > 0 \ \text{et} \ \forall \ x \in A \cap B_E(a, \ \eta), \ \text{on a} \ f(x) \in B_{E'}(f(a), \ \varepsilon)$

Remarque:

Cela généralise la définition des fonctions continues d'une variable : I intervalle de \mathbb{R} , $a \in I$, f est continue en $a : \forall \varepsilon > 0$, $\exists \eta > 0$ et $\forall x \in I$, $|x - a| < \eta \Longrightarrow |f(x) - f(a)| < \varepsilon$.

Proprosition:

Soit $f: A \longrightarrow E'$ continue en $a \in E$. Alors, pour toute suite $(x_n)_{n \in \mathbb{N}}$ de A convergeant vers a, la suite $f((x_n))_{n \in \mathbb{N}}$ converge vers f(a) dans E'.

Démo:

Soit $\varepsilon > 0$. Comme f est continue en a, $\exists \eta > 0$ tel que $\forall x \in A$, $N(x-a) < \eta \Longrightarrow N'(f(x)-f(a)) < \varepsilon$. Soit (x_n) convergeant vers a, $x_n \in A$. Cela signifie que $N(x_n-a) \xrightarrow[n \to +\infty]{} 0$. Il existe donc n_0 , tel que $\forall n \geqslant n_0$, $N'(f(x)-f(a)) < \varepsilon$. On a prouvé que $\forall \varepsilon > 0$, $\exists n_0$, et $\forall n \geqslant n_0$, $N'(f(x)-f(a)) < \varepsilon$. Donc, $N'(f(x_n)-f(a)) \longrightarrow 0$ si $n \longrightarrow +\infty$ donc $f(x_n) \longrightarrow f(a)$ dans E'.

Théorème :

Soient (E, N), (E', N') deux e.v.n. Soient $A \subset E$, $f: A \longrightarrow E'$, $a \in A$.

f est continue en $a \iff$ Pour toute suite $(x_n)_{n \in \mathbb{N}}$ de A convergeant vers a, la suite $f(x_n)_{n \in \mathbb{N}}$ converge vers f(a).

<u>Démo</u>:

 $i/\longrightarrow ii/$ est la proposition précédente.

On peut montrer $ii/\longrightarrow i/$ par contraposée. On suppose donc : $\exists \ \varepsilon_0 > 0$ et $\forall \ \eta > 0$, $\exists \ x \in A$ avec $N(x-a) < \eta$ et $N'(f(x)-f(a)) \geqslant \varepsilon_0$.

Appliquons cela avec $\eta = \frac{1}{n+1}$ $(n \in \mathbb{N})$. Il existe donc pour tout $n \in \mathbb{N}$, $x_n \in A$ vérifiant $N(x_n - a) < \frac{1}{n+1}$ et $N'(f(x) - f(a)) \ge \varepsilon_0$.

On a donc $N(x_n-a) \xrightarrow[n \to +\infty]{} 0$, donc $(x_n)_{n \in \mathbb{N}}$ est une suite de A convergeant vers a. De plus la suite

 $f(x_n)_{n\in\mathbb{N}}$ ne peut converger vers f(a) (puisque si elle convergeait vers f(a), $0 = \lim_{n \to +\infty} N'(f(x) - f(a)) \ge \varepsilon_0$ > 0 : absurde.) On a montré que i/ (faux) $\Longrightarrow ii$ / (faux)

Application du théorème précédent :

Proposition:

Soient E, E' deux e.v, N, N_1 deux normes équivalentes sur E, et N', N'_1 deux normes équivalentes sur E'. Soient $A \subset E$, $a \in A$, $f: A \longrightarrow E'$. Il y a équivalence entre :

- -i/f est continue en a lorsque E est muni de N, et E' est muni de N'.
- -ii/f est continue en a lorsque E est muni de $N_1,$ et E' est muni de N_1' .

Démo :

Par le théorème précédent, i/ équivaut à :

 $-i'/\forall (x_n)_{n\in\mathbb{N}}$ de A vérifiant $N(x_n-a)\longrightarrow 0$, on $a:N'(f(x)-f(a))\longrightarrow 0$.

De même ii/ équivaut à :

 $-ii'/\forall (x_n)_{n\in\mathbb{N}}$ de A vérifiant $N_1(x_n-a)\longrightarrow 0$, on a : $N_1'(f(x)-f(a))\longrightarrow 0$.

Or, on a vu que si N est équivalente à $N_1: (N(x_n-a) \longrightarrow 0) \iff (N_1(x_n-a) \longrightarrow 0)$. De même, comme N' est équivalente à $N_1', (N'(f(x)-f(a)) \longrightarrow 0) \iff (N_1'(f(x)-f(a)) \longrightarrow 0)$. Donc $i'/\iff ii'/$.

Remarque:

Supposons $E = \mathbb{R}^n$, $E' = \mathbb{R}^p$. On sait que les normes $||...||_1$, $||...||_2$, $||...||_{\infty}$, sont équivalentes. Lorsqu'on étudie la continuité de $f: A \longrightarrow E'$. où $A \subset E$, on peut étudier n'importe laquelle de ces normes.

2.2 Sommes de fonctions continues en un point

Notation:

$$f:A\longrightarrow E',\,g:A\longrightarrow E',\,$$
 on note $f+g:A\longrightarrow E',\,x\mapsto (f+g)(x)=f(x)+g(x).$ Si $\lambda\in\mathbb{R},\,$ on pose $(\lambda\cdot f)(x):=\lambda f(x),\,\forall\,x\in a.$

Proposition:

Si f et g sont continues en $a \in A$ alors f + g et $\lambda f(x)$ sont continues en a.

<u>Démo</u>:

Pour voir que f+g est continue en a, il suffit de montrer que $\forall (x_n)_{n\in\mathbb{N}}$ de A convergeant vers a, $((f+g)(x_n))_{n\in\mathbb{N}}$ converge vers (f+g)(a). Or comme f est continue en a, $f(x_n) \longrightarrow f(a)$ et g est continue en a, $g(x_n) \longrightarrow g(a)$. Donc $f(x_n) + g(x_n) \longrightarrow f(a) + g(a)$.

Proposition:

Soient (E, N), (E', N'), (E'', N'') trois e.v.n. Soient $A \subset E$, $B \subset E'$, $f : A \longrightarrow E'$, $g : B \longrightarrow E''$. Supposons $f(A) \subset B$. On peut donc définir $g \circ f : A \longrightarrow E''$. Soit $a \in A$. On pose b = f(a) $(\in f(A) \subset B)$ Supposons f continue en a et g continue en b. Alors $g \circ f$ continue en $g \circ f$ est continue en a.

Démo:

Il suffit de voir que pour toute quite $(x_n)_{n\in\mathbb{N}}$ de A convergeant vers a $((g\circ f)(x_n))_{n\in\mathbb{N}}$ converge vers $(g\circ f)(a)$. Or comme f est continue en $a, x_n \longrightarrow a \iff a, f(x_n) \longrightarrow b$, et comme g est continue en $b, y_n = f(x_n) \longrightarrow b \iff g(y_n) = (g\circ f)(x_n) \longrightarrow g(b) = (g\circ f)(a)$

Proposition:

Soient (E, N) un e.v.n. $A \subset E, a \in E, f : A \longrightarrow \mathbb{R}^p$. On munit \mathbb{R}^p de l'une des normes $||...||_1, ||...||_2, ||...||_{\infty}$.

Pour
$$x \in A$$
, écrivons $f(x) = \begin{bmatrix} f_1(x) \\ \vdots \\ f_p(x) \end{bmatrix} \in \mathbb{R}^p$ On obtient $f_j : A \longrightarrow \mathbb{R}, j \in \{1, ..., p\}$. Il y a équivalence

entre:

- -i/f est continue en a.
- $-ii/ \forall j \in \{1, ..., p\}, f_j \text{ est continue en } a.$

<u>Démo</u>:

 $-i/\iff (x_n)_{n\in\mathbb{N}}$ de $A\longrightarrow a$, la suite $f((x_n))_{n\in\mathbb{N}}$ converge vers f(a) dans \mathbb{R} .

 $-ii/\iff (x_n)_{n\in\mathbb{N}} \text{ de } A \longrightarrow a, \forall j \in \{1, ..., p\} \text{ la suite } f_j((x_n))_{n\in\mathbb{N}} \longrightarrow f_j(a).$

Or on a vu que
$$\begin{bmatrix} f_1(x_n) \\ \vdots \\ f_p(x_n) \end{bmatrix} \longrightarrow \begin{bmatrix} f_1(a) \\ \vdots \\ f_p(a) \end{bmatrix} \iff \forall \ j \in \{1, \ ..., \ p\} \ f_j((x_n))_{n \in \mathbb{N}} \xrightarrow[n \to +\infty]{} f_j(a).$$

Définition:

On dit que $f: A \longrightarrow E'$ est continue sur $A \iff \forall a, \in A \ f$ est continue est a.

Théorème:

Soient (E, N), (E', N') deux e.v.n. Soient $u: E \longrightarrow E'$ linéaire. Il y a équivalence entre :

- -i/u est continue sur E
- -ii/u est continue sur 0
- $-iii/ \exists C > 0, \forall x \in E, N'(u(x)) \leq CN(u(x)).$

Démo :

 $i/\Longrightarrow ii/$: évident. $0\in E$

 $ii/\Longrightarrow iii/$: Si u est continue en $0, \forall \varepsilon > 0$ et $\exists \eta > 0$ et $\forall x \in E, N(x-0) < \eta \Longrightarrow N'(u(x)-u(0)) < \varepsilon$

Comme u est linéaire, u(0) = 0 donc $N(x) < \eta \Longrightarrow N'(u(x)) < \varepsilon$ Appliquons cela avec $\varepsilon = 1$.

 $\exists \eta_0 > 0$ tel que $N(x) < \eta_0 \Longrightarrow N'(u(x)) < 1$. Soit $y \in E, y \neq 0$. Posons $x = \frac{y}{N(y)} \cdot \frac{\eta_0}{2}$. Alors $N(x) = \frac{\eta_0}{2}$

 $<\eta_0$ donc soit $N'(\frac{\eta_0}{2N(y)}u(y))<1$ puisque u est linéaire. Donc, $\forall~y\in E\smallsetminus\{0\}~\frac{N'(u(y))}{2N(y)/\eta_0}<1$ d'où

N'(u(y)) < CN(y) avec $C = \frac{2}{n_0}$ Donc iii/ est vraie.

 $iii/\Longrightarrow i/:$ Soit $a\in E$. On veut monter que u est continue en a. $\exists C>0$ et $\forall y\in E, N'(y)< CN(y)$.

Pour $\varepsilon > 0$ donné, posons $\eta = \varepsilon/C$, supposons $N(x - a) < \eta$. Alors,

 $N'(u(x) - u(a)) = N'(u(x - a)) \leqslant CN(x - a) < C\eta = \varepsilon$. Donc u est continue en a.

Proposition:

Munissons \mathbb{R}^p de l'une des normes $||...||_1$, $||...||_2$, $||...||_{\infty}$. Soient (E, N) un e.v.n et $u : \mathbb{R}^p \longrightarrow E$, une application linéaire. Alors u est continue.

Démo:

Notons $(e_1, ..., e_p)$ la base canonique de \mathbb{R}^p , si $x \in \mathbb{R}^p$, $\sum_{j=1}^p x_j e_j$. Alors $u(x) = \sum_{j=1}^p x_j u(e_j)$ car u est linéaire.

Alors $N(u(x)) = N(\sum_{j=1}^{p} x_j u(e_j)) \leqslant \sum_{j=1}^{p} N(x_j u(e_j)) = \sum_{j=1}^{p} |x_j| N(u(e_j))$. Posons $M = \text{Max}[N'(u(e_j))]$. Donc

 $N(u(x)) \leqslant M \sum_{j=1}^{p} |x_j| = M||x||_1$. D'après iii/ de la propriété pécédente, cela implique que u est continue.

2.3 Exemples de fonctions continues

Ex 1:

L'application $E \times E \longrightarrow E$, $(x, y) \mapsto x + y$ est continue.

Ex 2:

L'application $\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$, $(x, y) \mapsto x \cdot y$ est continue.

Ex 3:

L'application $\mathbb{C} \times \mathbb{C} \longrightarrow \mathbb{C}$, $(z, \omega) \mapsto z \cdot \omega$ est continue.

Ex 4:

Soient (E, N) un e.v.n, $A \subset E$, $f : A \longrightarrow \mathbb{R}^*$. Soit $a \in E$, supposons f continue en a. Alors, $x \mapsto \frac{1}{f(x)}$ est continue en a.

Ex 5:

Soit $E = M_p(\mathbb{R})$ l'ensemble des matrices carrées d'ordre p. Si $A = (a_{ij})_{1 \leq i,j \leq p} \in M_p(\mathbb{R})$, posons

 $N(A)=p\max_{1\leqslant i,j\leqslant p}|a_{ij}|.$ N est une norme et on pose N' une norme sur E, telle que \forall A, $B\in M_p(\mathbb{R})$

 $N'((A, B)) = \operatorname{Max}[N(A), N(B)]$. Soit $\Phi: E \times E \longrightarrow E$. $(A, B) \longrightarrow AB$. Φ est une continue dans (E, N').

Ex 6:

Soit (E, N) un e.v.n. L'application $E \longrightarrow \mathbb{R}, x \mapsto N(x)$ est continue.

(Je scannerai leurs démonstrations car trop longues pour certaines.)

2.4Exemples de fonctions non continues

Soit
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $(x, y) \mapsto \frac{xy}{x^2+y^2}$ si $(x, y) \neq 0$, et $f(0, 0) = 0$.

Démo:

Montrons que f n'est pas continue en (0, 0)

. Il suffit de construire une suite $((x_n, y_n))_{n\in\mathbb{N}}$ convergeant vers 0, telle que $f(x_n, y_n)$ ne converge pas vers f(0, 0) = 0. Prenons, $x_n = y_n = \frac{1}{n+1}$ Donc $(x_n, y_n) \mapsto (0, 0)$. Mais

$$f(x_n, y_n) = \frac{\frac{1}{1+n} \cdot \frac{1}{1+n}}{\left(\frac{1}{1+n}\right)^2 + \left(\frac{1}{1+n}\right)^2} = \frac{1}{2}$$
. En particulier $f(x_n, y_n) \nrightarrow 0$. Si on fixe $y = y_0, x \mapsto f(x, y_0)$ est continue

— Si $y_0 \neq 0$: $f(x, y_0) = \frac{xy_0}{x^2 + y_0^2}$ et le dénominateur ne s'annule pas.

 $-\operatorname{Si} y_0 = 0: f(x,0) = 0. \ \forall \ x \in \mathbb{R} \ \operatorname{donc} x \mapsto f(x,0) \ \operatorname{est} \ \operatorname{continue}.$

Donc f est continue séparément par rapport à chaque variable, mais pas comme fonction de deux variables.

Topologie sur un e.v.n 3

3.1Ouverts d'un e.v.n

Définition:

Soit (E, N), un e.v.n. On dit que $U \subset E$ est ouvert $\iff \forall a \in U, \exists r > 0$, tel que $B(a, r) \subset U$.

 $\mathbf{E}\mathbf{x}$:

 $\mathbf{E}\mathbf{x}$:

 $-E=\mathbb{R},\,N(x)=|x|.$ Soit $I=]lpha,\,eta[,\,lpha,\,eta\in\mathbb{R},\,(ext{ou}\ lpha=-\infty,\, ext{ou}\ eta=+\infty).$ Alors I est ouvert. Soit $a\in I$. $\frac{\alpha - a - r - a - a + r - \beta}{1 - 1 - 1}$ On doit trouver r > 0, tel que $B(a, r) =]a - r, b - r[\notin I$. Il suffit de prendre $r < \text{Min } [a - \alpha, b - \beta].$

-[0,1[n'est pas un ouvert. On ne peut pas trouver un r>0, tel que : $B(0,r)\subset[0,1[$.

Notation:

Soit $(A_i)_{i\in I}$ une famille de s.e.v. de E. On note $\bigcup_{i\in I}A_i=\{x\in E,\exists\ i\in I, \text{tel que }x\in A_i\}$.

Proposition : Soit (E, N) un e.v.n.

i/ Soit $(u_i)_{i\in I}$, une famille d'ouverts de E. Alors $\bigcup_{i\in I} u_i$ est un ouvert de E.

ii/ Soient U,V deux ouverts de E. Alors $U\cap V$ est ouvert. Plus généralement, si $U_1,\,U_2,\,...,\,U_n$ sont des ouverts de E alors $U_1 \cap U_2 \cap ... \cap U_n$ est un ouvert de E. (Toute intersection finie d'éléments est un ouvert.)

Démo:

i/ Supposons $\forall i \in I$. U_i est ouvert. Soit $U = \bigcup_{i \in I} U_i$. Soit $a \in U$. $\exists i_0 \in I$, tel que $a \in U_{i_0}$. Comme U_{i_0} est

ouvert $\exists r > 0$, tel que $B(a, r) \subset U_{i_0}$. $U_{i_0} \subset \bigcup_{i \in I} U_i = U$ donc on a trouvé r > 0 avec $B(a, r) \subset U$. Donc Uest ouvert.

ii/ Soient U, V deux ouverts de E. Montrons que $U \cap V$ est ouvert. Soit $a \in U \cap V$. Comme $a \in U$ et que U est ouvert, $\exists r_1 > 0$, avec $B(a, r_1) \subset U$. De même, comme $a \in V$. Posons $r = \min[r_1, r_2] > 0$.

Alors $B(a, r) \subset B(a, r_1) \subset U$ et $B(a, r) \subset B(a, r_2) \subset V \Longrightarrow B(a, r) \subset U \cap V$.

Attention:

L'intersection d'une famille infinie n'est pas ouvert en général.

Ex:

Soient
$$U_n = \left] - \frac{1}{n}, 1\right[n \in \mathbb{N}^* \text{ et } A = \bigcap_{n \in \mathbb{N}}^{+\infty} U_n = \{x \in E; \ \forall n \in \mathbb{N}^*, \ x \in U_n\} = \{x \in E; \ \forall n \in \mathbb{N}^*, -\frac{1}{n} < x < 1\}.$$

Donc A = [0, 1]. Or, on a vu que A n'est pas ouvert.

Notation:

Si X, Y sont des ensembles, et $f: X \longrightarrow Y$, si $Z \subset Y$, on pose $f^{-1}(Z) \stackrel{def}{=} \{x \in E; f(x) \in Z\}$. On note aussi $f^{-1}(Z) = f^*(Z)$.

Proposition:

Soient (E, N), (E', N') deux e.v.n. $f: E \to E'$ continue. Si V est ouvert de E, $f^{-1}(V)$ est un ouvert de E.

Démo:

Posons $U = f^{-1}(V)$. Soit $a \in U$. On doit montrer qu'il existe r > 0, tel que $B(a, r) \subset U$. Notons $b = f(a) \in V$. Comme V est ouvert $\exists \ \varepsilon > 0$, tel que $B(b, \varepsilon) \subset V$. Comme f est continue en $a, \exists \ \eta > 0$ tel que $\forall x \in E, N(x-a) \Longrightarrow N'(f(x)-b) < \varepsilon. \ x \in B_E(a, \eta) \Longrightarrow$ $f(x) \in B_{E'}(b, \varepsilon) \subset V$. Donc $\forall x \in B(a, \eta), f(x) \in V$, donc $B(a, \eta) \subset f^{-1}(V)$. Si on pose $r = \eta$, on aura donc trouvé une boule $B(a, r) \subset f^{-1}(V) = U$. Donc $f^{-1}(V)$ est ouvert.

Application:

Soit $a \in E, r > 0$. Alors la boule ouverte B(a, r) est un ouvert E. Soit $f : E \longrightarrow \mathbb{R}, x \mapsto N(x, a)$. On a vu que f est continue. Or $B(a, r) = \{x \in E, \ f(x) < r\} = f^{-1}(\underbrace{]-\infty; r[)}_{\text{ouvert de}\mathbb{R}} \Longrightarrow f^{-1}(]-\infty; r[)$ est un ouvert.

De même $E \setminus \overline{B}(a, r)$ est un ouvert car $E \setminus \overline{B}(a, r) = \{x \in E, N(x - a) > r\} = \{x \in E, f(x) > r\} = \{x \in E, f(x) > r\}$ $f^{-1}(]-\infty;r[).$

Proposition:

Soient N_1 , N_2 deux normes équivalentes sur un e.v. E. Soit $U \subset E$, U est ouvert pour $N_1 \iff U$ est ouvert

<u>Démo</u>:

 N_1, N_2 équivalents, $\exists C > 0$ avec $\forall x \in E, N_1(x) \leqslant CN_2(x)$ et $N_2(x) \leqslant CN_1(x)$.

Soit U un ouvert pour N_1 .

Montrons que U un ouvert pour N_2 . $\iff \forall \ a \in U, \ \exists \ r_2 > 0, \ B_{N_2}(a, r_2) = \underbrace{N(x-a) < \eta}_{\subseteq U}$

Comment U est ouvert pour N_1 , on sait qu'il existe $r_1 > 0$, $B_{N_1}(a - r_1) = \{x \in E, N_1(x - a) < r_1\} \subset U$. Posons $r_2 = \frac{r_1}{C}$. Soit $x \in B_{N_2}(a, r_2) \subset U$ alors $N_2(x-a) < r_2$ d'où $= N_1(x-a) \leqslant N_2(x-a) \cdot C < C \cdot r_2$ $=r_1$. Donc $B_{N_2}(a, r_2)\subset B_{N_1}(a, r_1)$. Comme $B_{N_1}(a, r_1)\subset U$ on a donc trouvé $r_2>0$ avec $B_{N_2}(a, r_2)\subset U$.

Corollaire:

Soit $E = \mathbb{E}^p$. Alors les ouverts associés aux normes $||...||_1$, $||...||_2$, $||...||_{\infty}$ sont les mêmes.

<u>Ex :</u>

 $P = |a, b| \times |c, d| \subset \mathbb{R}^2$ (muni de l'une des normes $||...||_1, ||...||_2, ||...||_{\infty}$) alors P est ouvert. En effet, un intervalle ouvert de \mathbb{R} , α , β est un ouvert. Soient

$$\pi_1: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \, \pi_2: \mathbb{R} \longrightarrow \mathbb{R}^2,$$

 $(x_1, x_2) \mapsto x_1, \quad (x_1, x_2) \mapsto x_2.$

Alors π_1 , π_2 sont linéaires sur \mathbb{R}^2 . On sait alors qu'elles sont continues.

Donc comme $]a, b[\subset \mathbb{R} \text{ est ouvert}, \pi_1^{-1}(]a, b[) = U_1 \text{ est ouvert. }]c, d[\subset \mathbb{R} \text{ est ouvert}, \pi_2^{-1}(]c, d[) = U_2 \text{ est ouvert. } P = U_1 \cap U_2 \text{ est un ouvert.}$

3.2 Fermés d'un e.v.n.

Définition:

Soit (E, N), un e.v.n. On dit que $F \subset E$ est fermé $\iff E - F$ est ouvert.

Ex:

- $-\emptyset$ est fermé car $E-\emptyset=E$ qui est ouvert
- E est fermé car $E-E=\emptyset$ qui est ouvert.

Donc \emptyset , et E sont à la fois ouverts et fermés.

- $-\overline{B}(a,r) = \{x \in E; N(x-a) \leq r\}$ est fermé car $E-\overline{B}(a,r) = \{x \in E; N(x-a) > r\}$ est ouvert.
- $-\{x \in E; N(x-a) < r\}$ est fermé car $E F = \{x \in E; N(x-a) < r\} = B(a, r)$ est ouvert.

Cas particulier:

 $E = \mathbb{R}$, N(x) = |x|. Alors si a < b $[a, b] = \overline{B}(c, r)$ où $c = \frac{a+b}{2}$, $r = \frac{b-a}{2}$. Donc [a, b] est un fermé.

Un s.e.v d'un e.v.n peut être ni ouvert, ni fermé.

$\underline{\mathbf{E}\mathbf{x}}$:

 $E=\mathbb{R},\ A=[0,1[$ alors A n'est pas ouvert car on ne peut pas trouver $r>0,\]-r,\ r[\subset A.$ Mais A n'est pas non plus fermé. S'il l'était, E-A serait ouvert. $E-A=]-\infty,\ 0[\ \cup\ [1,\ +\infty[$ qui n'est pas ouvert car il n'existe pas r>0 tel que $\overline{B}(1,r)=]1-r,\ 1+r[\ \subset E-A.$

Proposition : Soit (E, N) un e.v.n :

- $-F_1$, F_2 deux fermés de E. Alors $F_1 \cup F_2$ est fermé. Plus généralement, si F_1 , ..., F_n sont des fermés, alors $F_1 \cup ... \cup F_n$ est fermé.
- Soit $(F_i)_{i\in I}$ une famille de fermés de E, alors $\bigcap_{i\in I}F_i=\{x\in E, \forall i\in I, x\in F_i\}$ est un fermé.

Démo:

Soient F_1 , F_2 deux fermés de E. $U_1 = E - F_1$ et $U_2 = E - F_2$ ouverts de E.

Alors $U_1 \cap U_2 = \{x \in E, x \notin F_1 \text{ et } x \notin F_2\} = \{x \in E, x \notin F_1 \cup F_2\}$ = $E - (F_1 \cup F_2)$. $U_1 \cap U_2$ est ouvert donc $F_1 \cup F_2$ est fermé.

Soit $(F_i)_{i\in I}$ des fermés. Posons $U_i=E-F_i$. C'est un ouvert de E. On sait que $\bigcup_{i\in I}U_i$ est un ouvert.

 $\bigcup_{i \in I} U_i = \{x \in E, \exists i \in I, x \in U_i\} = \{x \in E, \forall i \in I \text{ avec } x \notin F_i\}. \text{ Donc } \bigcup_{i \in I} U_i = E - (\bigcap_{i \in I} F_i) \text{ On en d\'eduit que } E - (\bigcap_{i \in I} F_i) \text{ est un ouvert donc } (\bigcap_{i \in I} F_i) \text{ est un ferm\'e.}$

3.3 Caractérisation des fermés par les suites.

Théorème:

Soit (E, N) un e.v.n, $F \subset E$. Il y'a équivalence entre :

- − i/ F est fermé.
- $-ii/\forall (x_n)_{n\in\mathbb{N}}\in F$ convergeant vers $\ell\in E$, on a $\ell\in F$.

Démo:

 $i/\Longrightarrow ii/$. Supposons F fermé. Soit $(x_n)_{n\in\mathbb{N}}\in F$. $x_n\xrightarrow[n\to+\infty]{}\ell$. Supposons que $\ell\notin F$ et montrons la contradiction. Comme F est fermé, E-F est ouvert et par hypothèse $\ell\in E-F$. Il existe donc r>0,

tel que $B(\ell,r) \subset E - F$. Comme $x_n \in F$, $\forall n$ on a $N(x_n - \ell) \geqslant r$. Par hypothèses $x_n \xrightarrow[n \to +\infty]{} \ell$ i.e:

$$N(x_n-\ell) \xrightarrow[n \to +\infty]{} 0$$
. Donc $0 = \lim N(x_n-\ell) \geqslant r > 0$ absurde. Donc $\ell \in F$.

 $ii/\Longrightarrow i/$. Montrons que F est fermé ce qui équivaut à ce que E-F soit ouvert, supposons E-F n'est pas ouvert montre que cela contredit i/.

$$(E - F \text{ ouvert}) \iff (\forall \ \ell \in E - F, \exists \ r > 0 \text{ avec } B(\ell, r) \subset E - F)$$

$$(\forall \ell \in E - F \text{ n'est pas ouvert}) \iff (\exists \ell \in E - F, \forall r > 0, B(\ell, r) \text{ n'est pas inclus dans})$$

$$E - F$$
) \iff $(\exists \ \ell \in E - F, \ \forall \ r > 0, \ B(\ell, r) \cap F \neq \emptyset).$

Appliquons cela avec $\frac{1}{n+1}$ $(n \in \mathbb{N})$, donc $(x_n)_{n \in \mathbb{N}}$, donc $B\left(\ell, \frac{1}{n+1}\right) \cap F \neq 0$ donc il existe

$$x_n \subset F \cap B\left(\ell, \frac{1}{n+1}\right)$$
 donc $x_n \in F$ et $N(x_n - \ell) < \frac{1}{n+1}$. $N(x_n - \ell) \xrightarrow[n \to +\infty]{} 0$, donc $(x_n)_{n \in \mathbb{N}}$ est une suite de

F convergeant vers ℓ et $\ell \notin F$. On a donc obtenu une suite qui contredit l'hypothèse ii/.

$\underline{\mathbf{E}\mathbf{x}}$:

-[a, b] est un fermé. Soit $(x_n)_{n\in\mathbb{N}}\in[a, b]$ convergeant vers $\ell\in\mathbb{R}$. On doit monter qu'en fait $\ell\in[a, b]$. Par hypothèse on a $a\leqslant x_n\leqslant b$. En passant à la limite, on obtient $a\leqslant\ell\leqslant b$. De la même manière, $[a, +\infty[$, $]-\infty$, b] sont des fermés.

- [0, 1] n'est pas fermé. Il suffit des vérifier que ii/ du théorème n'est pas satisfaite, donc qu'il existe $(x_n)_{n\in\mathbb{N}}\in[0,1[$ qui converge vers $\ell\notin[0,1[$.

Prenons $x_n = 1 - \frac{1}{n+1} \in [0, 1[$ et $x_n \longrightarrow 1 \notin [0, 1[$.

3.4 Adhérence d'un ensemble

<u>Définition</u>:

Soit A un s.e.v d'un e.v.n (E, N). On appelle adhérence de A, et on note \overline{A} , l'ensemble $\{\ell \in E, \exists (x_n)_{n \in \mathbb{N}} \in A \text{ avec } x_n \longrightarrow \ell\}$

Remarque:

 $A \subset \overline{A}$ car si $a \in \overline{A}$, on peut écrire $a = \lim x_n$ avec $x_n = a, \forall n \in \mathbb{N}$.

Propositions:

$$i/\ \overline{A}$$
est fermé

$$ii/A$$
 est fermé $\iff A = \overline{A}$

Démo:

i/ semblable à la démonstration du théorème.

$$ii/A = \overline{A} \Longrightarrow A$$
 fermé, découle de i/A .

A fermé $\Longrightarrow A = \overline{A}$ car : On sait qu'on a toujours $A \subset \overline{A}$, il reste à voir que si A est fermé, on a aussi $\overline{A} \subset A$ Or si $\ell \in \overline{A}$, $\exists (x_n)_{n \in \mathbb{N}}$ suite de A avec $x_n \longrightarrow \ell$. Mais si A est fermé on sait que la limite d'une telle suite est dans A donc $\ell \in A$.

<u>Ex :</u>

Soit
$$r > 0$$
, Alors $\underline{\overline{B(0,r)}}_{\text{adhérence de la boule ouverte}} = \underline{\overline{B(0,r)}}_{\text{Boule fermée}}$

Démo :

On sait que $B(0,r) \subset \overline{B}(0,r)$ donc $\overline{B}(0,r) \subset \overline{\overline{B}(0,r)} = \overline{B}(0,r)$ car $\overline{B}(0,r)$ est fermée. Il reste à voir que $\overline{B}(0,r) \subset \overline{B}(0,r)$: Soit ℓ avec $N(\ell) = r$, et soit $(t_n)_{n \in \mathbb{N}}$ suite de $[0,1[t_n \longrightarrow 1.]]$ Alors $x_n = t_n \ell \xrightarrow[n \to +\infty]{} \ell$ et $N(x_n) = t_n N(\ell) = t_n r < r$ donc $x_n \in B(0,r)$ donc $\ell \in B(0,r)$.

\mathbf{D} éfinition :

Soient
$$A \subset E$$
, $a \in \overline{A} \iff$ il existe une suite $(x_n)_{n \in \mathbb{N}}$ de A avec $x_n \xrightarrow[n \to +\infty]{} a$

Proposition:

Soit $A \in E$ il y'a équivalence entre :

$$i/a \in \overline{A}$$

$$ii/\forall r > 0, B(a,r) \cap A \neq \emptyset$$

Démo:

 $i/\Longrightarrow ii/$ Soit $a\in\overline{A}$; il existe $(x_n)_{n\in\mathbb{N}}$ de A avec $x_n\longrightarrow a$. Soit r>0. Comme $N(x_n-a)\xrightarrow[n\to+\infty]{}0$ $\exists n \text{ avec } N(x_n-a)$.

 $ii/\Longrightarrow i/$ appliquons ii/ avec $r=\frac{1}{n+1}$ $n\in\mathbb{N}$. Comme $A\cap B\left(a,\frac{1}{n+1}\right)\neq 0$ \exists $x_n\in A$ avec $N(x_n-a)<\frac{1}{1+n}$ donc $x_n\longrightarrow a$.

3.5 Limite de fonctions

Rappel:

Soient I intervalle de \mathbb{R} , $A \in I$, $f: I - \{a\} \longrightarrow \mathbb{R}$. On dit que f admet $\ell \in \mathbb{R}$, pour limite, lorsque x tend vers $a \Longrightarrow \forall \ \varepsilon > 0, \ \exists \ \eta > 0 \ \text{et} \ \forall \ x \in I - \{a\}, \ |x - a| < \eta \Longrightarrow |f(x) - \ell| < \varepsilon. \iff \forall \ \varepsilon > 0 \ \exists \ \eta > 0 \ \text{et} \ \forall \ x \in (I - \{a\}) \cap |a - \eta, \ a + \eta| \ \text{on a} \ f(x) \in |\ell - \varepsilon, \ \ell + \varepsilon|.$

Définition:

Soient (E, N), (E', N') deux e.v.n. $A \subset E$, $a \in \overline{A}$. Soit $f \longrightarrow E'$. On dit que f admet une limite $\ell \in E'$ lorsque x tend vers a en restant dans A. \iff

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in A, N(x - a) < \eta \Longrightarrow N'(f(x) - \ell) < \varepsilon.$$

$$\iff \forall \ \varepsilon > 0, \ \exists \ \eta > 0, \ \forall \ x \in A \cap B_E(a, \eta), \ \text{on a} \ f(x) \in B_{E'}(\ell, \varepsilon)$$

Remarque:

Si la limite existe, alors elle est unique.

Démo :

Supposons ℓ , $\ell' \in E'$ sont limites de f lorsque $x \longrightarrow a$, $x \in A$.

 $\forall \varepsilon > 0, \exists \eta > 0, \forall x \in A, N(x - a) < \eta \Longrightarrow N'(f(x) - \ell) < \varepsilon.$

$$\forall \varepsilon > 0, \exists \eta' > 0, \forall x \in A, N(x - a) < \eta \Longrightarrow N'(f(x) - \ell') < \varepsilon.$$

Posons $\eta'' = \text{Min } [\eta, \eta'] > 0$. Comme $a \in \overline{A}$, $B(a, \eta'') \cap A \neq \emptyset$. Soit $x A \cap \in B(a, \eta'')$ on aura donc à la fois $N'(f(x) - \ell) < \varepsilon$ et $N'(f(x) - \ell') < \varepsilon$

Alors
$$N'(\ell-\ell')=N'((\ell-f(x))+(f(x)-\ell'))\leqslant N'(\ell-f(x))+N'((f(x)-\ell')<\varepsilon+\varepsilon=2\varepsilon.$$
 On a prouvé que $\forall \ \varepsilon>0,\ 0\leqslant N'(\ell-\ell')<2\varepsilon$ d'où $N'(\ell-\ell')=0.$ On notera $\ell=\lim_{\substack{x\to a\\x\in A}}f(x).$

<u>Ex</u>:

 $E=\mathbb{R},$ Soient I un intervalle de $\mathbb{R},$ $a\in I,$ en posant $A=I-\{a\},$ on retrouve la définition usuelle de la limite. On a $a\in \overline{A}$. A=[a,b] b>a. Alors $\lim_{x\to a}f(x)$ est la limite à droite.

Notation:

Lorsque U est un ouvert, que $a \in U$, et que $A = U - \{a\}$ on écrit $\lim_{x \to a} f(x)$ à la place de $\lim_{\substack{x \to a \\ x \in A}} f(x)$.

Proposition:

Soient $A \subset E$, $a \in \overline{A}$, $f : A \longrightarrow E'$, il y'a équivalence entre :

- $i/\lim_{\substack{x\to a\\x\in A}} f(x)$ existe et vaut $\ell\in E'$
- $ii/\forall (x_n)_{n\in\mathbb{N}}$ de A convergeant vers a, la suite $f(x_n)_{n\in\mathbb{N}}$ converge vers ℓ .

Propriétés:

i/ Si f admet ℓ pour limite lorsque $x \longrightarrow a, x \in A$ alors $\ell \in \overline{f(A)}$.

$$ii/ \text{ Si } g: A \longrightarrow E', \ \ell = \lim_{\substack{x \to a \\ x \in A}} f(x) \text{ et } \ell' = \lim_{\substack{x \to a \\ x \in A}} g(x) \text{ existent, alors } \lim_{\substack{x \to a \\ x \in A}} (f+g)(x) \text{ existe et vaut } \ell + \ell'$$

$$iii/ \text{ Si } f: A \longrightarrow E', \ g: A \longrightarrow \mathbb{R}, \ \text{et si } \lim_{\substack{x \to a \\ x \in A}} f(x) = \ell \in E' \ \text{existe et } \lim_{\substack{x \to a \\ x \in A}} g(x) = \lambda \in \mathbb{R} \ \text{existe, alors}$$

 $\lim_{\substack{x \to a \\ x \in A}} (f(x)g(x)) \text{ existe et vaut } \lambda \ell.$

iv/ Soient E, E', E'' trois e.v.n, $A \subset E, B \subset E', f: A \longrightarrow E', g: B \longrightarrow E''$. Supposons $f(A) \subset B$, que $\ell =$ $\lim f(x)$ existe, on sait alors que $\ell \in \overline{f(A)} \subset \overline{B}$. Supposons $\ell' = \lim_{x \to a} g(y)$ existe. Alors $\lim_{x \to a} (g \circ f(x))$ existe

et vaut ℓ' .

et vaut
$$\ell'$$
.

 v' Soit $f: A \longrightarrow \mathbb{R}^p$, $x \mapsto f(x) = \begin{bmatrix} f_1(x) \\ \vdots \\ f(x_p) \end{bmatrix}$ où $f_j: A \longrightarrow \mathbb{R}$, alors $\lim_{\substack{x \to a \\ x \in A}} f(x) = \ell = \begin{bmatrix} \ell_1 \\ \vdots \\ \ell_p \end{bmatrix}$ existe \iff

 $\forall j \in \{1,...,p\} \lim_{\substack{x \to a \\ x \in A}} f_j(x)$ existe et vaut ℓ_j

Démo:

i/ Soit $(x_n)_{n\in\mathbb{N}}$ suite de $A, x_n \longrightarrow a$, alors $f(x_n) = y_n \longrightarrow \ell$ et $y_n \in f(a)$, donc $\ell \in f(A)$.

 $ii/\operatorname{Si} x_n \longrightarrow a \text{ on a } f(x_n) \longrightarrow \ell, g(x_n) \longrightarrow \ell' \text{ donc } f(x_n) + g(x_n) \longrightarrow \ell + \ell'.$

iv/ Pour toute suite $(x_n)_{n\in\mathbb{N}}$ de $A, x_n \longrightarrow a$, on sait que $y_n = f(x_n) \longrightarrow \ell$. Mais $(y_n)_{n\in\mathbb{N}}$ est une suite de

 $f(a) \subset B$ qui converge vers ℓ , donc $g(y_n) \longrightarrow \ell'$. Donc pour toute suite $(x_n)_{n \in \mathbb{N}}$ de $A, x_n \longrightarrow a$, $g \circ f(x_n) \longrightarrow \ell'$.

Soit $f:A\longrightarrow E',\ a\in A.$ Alors f est continue en $a\Longleftrightarrow \lim_{x\to a}f(x)$ existe et vaut f(a).

Voisinages, Intérieur d'un ensemble 3.6

Soit (E, N) un e.v.n, $a \in E$. On dit que $V \subset E$ est voisinage de a de E. $\iff \exists r > 0$ tel que $B(a, r) \subset B$

 $\underline{\mathbf{E}\mathbf{x}}$:

 $E = \mathbb{R}$. V = [0, 1], ici V est voisinage de 1/2, car $\exists r > 0$ tel que $B\left(\frac{1}{2},r\right)=\left[\frac{1}{2}-r,\frac{1}{2}+r\right]\subset V$. Par contre V n'est pas voisinage de 0 car $\sharp r > 0$ avec $]-r,r[\subset V]$.

 $E = \mathbb{C}$, avec $\forall z \in \mathbb{C}$, N(z) = |z|. Soit A = [0,1] Alors [0,1] n'est pas voisinage de 1/2 dans \mathbb{C} , car $B\left(\frac{1}{2},r\right) = \{z \in \mathbb{C}, |z-\frac{1}{2} < r\}$, or \forall r > 0, $B\left(\frac{1}{2}, r\right)$ non inclus dans A.

Propriétés:

i/ Si V est un voisinage de a et $V \subset W$, alors W est voisinage de a.

ii/ Si V_1 , V_2 sont voisinages de a, alors $V_1 \cap V_2$ est voisinage de a.

Démo:

i/ Soit V un voisinage de $a, \exists r > 0$ avec $B(a,r) \subset V$, comme $V \subset W$, alors $B(a,r) \subset W$. Donc W est un voisinage de a.

ii/ Soit $r = \text{Min}[r_1, r_2] > 0$, alors $B(a, r) \subset V_1 \cap V_2$. Donc $V_1 \cap V_2$ est un voisinage de a.

Proposition:

Il y a équivalence entre :

 $i/U \subset E$ est un ouvert,

 $ii/\forall a \in U, U \text{ est voisinage de } a.$

Démo:

 $i/\Longleftrightarrow \forall \ a\in U, \ \exists \ r>0 \ \text{avec} \ B\left(a,r\right)\subset U \Longleftrightarrow \forall \ a\in U, \ U \ \text{est voisinage de} \ a\Longleftrightarrow ii/.$

Proposition:

On peut remplacer "boules" par "voisinages" dans les définitions de la limite, et de la continuité :

Si
$$\ell = \lim_{\substack{x \to a \\ x \in A}} f(x) \iff (1) : \forall \varepsilon > 0, \exists \eta > 0, \forall x \in A \cap B_E(a, \eta), \text{ on a } f(x) \in B_{E'}(\ell, \varepsilon).$$

Alors (1) \iff (2) : $\forall V$ voisinage de ℓ , $\exists U$ voisinage de A, $\forall x \in A \cap U$, on a $f(x) \in V$.

Démo :

Montrons que $(1) \Longrightarrow (2)$, Soit V un voisinage de ℓ , $\exists \varepsilon > 0$ tel que $B(\ell, \varepsilon) \subset V$. Appliquons (1) avec ε . $\exists \eta > 0$ tel que $\forall x \in A \cap B_E(a, \eta), f(x) \in B_{E'}(\ell, \varepsilon) \subset V$. Posons $U = B_E(a, \eta)$, c'est un voisinage qui vérifie (2).

Montrons que $(2) \Longrightarrow (1)$, soit $\varepsilon > 0$, alors $B(\ell, \varepsilon)$ est un voisinage de ℓ . On peut appliquer (2) à $V = B(\ell, \varepsilon)$. $\exists U$ voisinage de a avec $x \in A \cap U \Longrightarrow f(x) \in V = B(\ell, \varepsilon)$ comme U est voisinage de a, $\exists \eta > 0$ tel que $B(a, \eta) \subset U$. Donc $\forall x \in A \cap B_E(a, \eta)$, on a $f(x) \in B(\ell, \varepsilon)$ donc (1) est vrai.

Proposition:

Soit $A \in E$. Alors $(a \in \overline{A}) \iff (\forall V \text{ voisinage de } a, V \cap A \neq \emptyset)$.

<u>Démo</u>:

Soit $a \in \overline{A}$. Soit V voisinage de a. $\exists r > 0$ tel que $B(a,r) \subset V$. Comme $a \in \overline{A}$, on a $B(a,r) \subset A \neq \emptyset$, donc $V \cap A \neq \emptyset$. \rightleftharpoons Comme B(a,r) est voisinage de a, $A \cap B_E(a,\eta) \neq \emptyset$, $\forall x > 0$, donc $a \in \overline{A}$.

Corollaire:

Soit $A \subset E$, notons $(F_i)_{i \in I}$ la famille de tous les fermés vérifiant $A \subset F_i$. Alors $\overline{A} = \bigcap_{i \in I} F_i$.

Démo:

Puisque $A \subset F_i$, on a $\overline{A} \subset \overline{F_i} = F_i$ (car F_i est fermé). On a donc $\overline{A} \subset \bigcap_{i \in I} F_i$.

Montrons que $\bigcap_{i\in I} F_i \subset \overline{A}$ ou encore $E - \overline{A} \subset E - (F_i)_{i\in I}$. Soit $a \in E - \overline{A}$, $a \notin \overline{A}$ donc $\exists r > 0$ tel que

 $\cap A = \emptyset$. Soit G = E - B(a, r), alors G est un fermé et $A \subset G$. Donc G est un élément de la famille F_i , $\exists i_0 \in I$ avec $G = F_{i_0}$. De plus $a \notin G$ donc $E - G = E - F_{i_0} \subset E - \bigcap_{i \in I} F_i$.

3.7 Intérieur d'un ensemble

Définition:

Soient (E, N) un e.v.n, $A \subset E$, on dit que a est dans l'intérieur de $A \iff \exists \ r > 0$ tel que $B(a, r) \subset A$. On note Å l'ensemble des points intérieurs de A.

$\underline{\mathbf{E}\mathbf{x}}$:

 $E=\mathbb{R},\ A=[0,1[\ \text{Alors}\ \mathring{\mathbf{A}}=]0,1[\ \text{puisque si}\ x\in]0,1[,\ \exists\ r>0\ \text{tel que}\]x-r,\ x+r[\ \subset A.$

Par contre 0 n'est pas intérieur à A.

 $E = \mathbb{R}^2$, muni de l'une des normes $||...||_1$, $||...||_2$, $||...||_{\infty}$, $A = [0,1[\times \{0\}]]$. Alors $A = \emptyset$.

 $\forall M = (a, 0) \in A \text{ avec } 0 \leq a < 1, \forall r > 0, B(M, r) = \{(x, y) \in \mathbb{R}^2, x^2 + y^2 < r^2\} \text{ non inclus } A.$

Remarque:

La définition équivaut à $a \in \mathring{A} \iff \exists V$ voisinage de a avec $V \subset A$.

Propriétés:

$$i/A \subset B \Longrightarrow \mathring{A} \subset \mathring{B}.$$

$$ii/E - Å = \overline{E - A}.$$

Démo:

 $ii/x \in E - \mathring{A} \iff x \notin \mathring{A} \iff V$ voisinage de x, V n'est pas inclus de $A \iff V$ voisinage de $x, V \iff V$ voisinage de $X \iff V$ voisinag $V \cap (E - A) \neq \emptyset \iff x \in \overline{E - A}$.

Corollaire:

 $i/\text{ Å ouvert et }(A \text{ est ouvert}) \iff (A = \text{ Å})$

ii/ Soit $(U_i)_{i\in I}$ la famille de tous les ouverts inclus dans A. Alors $A = \bigcup U_i$.

Démo:

i/S oit $a \in A$: $\exists r > 0$ tel que $B(a,r) \subset A$. Si $b \in B(a,r-||a-b||) \subset B(a,r) \subset A$, donc $b \in A$.

Donc on aura trouvé r>0 tel que $B(a,r)\subset \mathring{A}$. Donc \mathring{A} est ouvert. Si $A=\mathring{A}$, alors A est ouvert.

Réciproquement, si A est ouvert et $a \in A$, $\exists V$ voisinage de a avec $V \subset A$, donc $a \in A$. Donc A = A.

ii/ Comme $U_i\subset A$ donc $V=\bigcup_{i\in I}U_i\subset A$. Or, V est ouvert, donc $V=\mathring{\mathbf{V}},$ comme $V\subset A\Longrightarrow\mathring{\mathbf{V}}\subset\mathring{\mathbf{A}}$ on a

donc $V \subset A$.

Réciproquement, si $a \in A$, $\exists r > 0$ tel que $B(a,r) \subset A$. Donc B(a,r) est un ouvert inclus dans A, $\exists i_0 \in I$ tel que $B\left(a,r\right)=U_{i_{0}}$. Donc $a\in B\left(a,r\right)\subset\bigcup_{i\in I}U_{i}=V$. Donc Å $\subset V$.

Compacité 4

Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'un e.v.n E. Une suite extraite (ou sous-suite) de $(x_n)_{n\in\mathbb{N}}$ est une suite de la forme $(x_{n_k})_{k\in\mathbb{N}}$ où $k\mapsto n_k, \mathbb{N} \longrightarrow \mathbb{N}$, est strictement croissante.

Ex:

$$n_k = 2k, (x_{n_k})_{k \in \mathbb{N}} = (x_{2k})_{k \in \mathbb{N}}.$$

Remarque:

 $k \mapsto n_k, \mathbb{N} \longrightarrow \mathbb{N}$, strictement croissante $\iff \forall k, n_{k+1} > n_k \iff n_{k+1} \geqslant n_k + 1$. (car $n_k \in \mathbb{N}, \forall k$). En particulier $n_{k+1} \geqslant n_k + 1 \geqslant n_{k-1} + 2 \geqslant \dots \geqslant \underbrace{n_0 + (k+1)}_{\to +\infty \text{ si } k \to +\infty}$. Donc $n_k \longrightarrow +\infty \text{ si } k \longrightarrow +\infty$.

$$\rightarrow +\infty \text{ si } k \rightarrow +\infty$$

<u>Définition</u>:

Soient (E, N) un e.v.n, $A \subset E$. On dit que A est compact $\iff \forall (x_n)_{n \in \mathbb{N}} \text{ de } A, \exists \text{ une sous-suite } (x_{n_k})_{k \in \mathbb{N}}$ qui converge vers une limite $\ell \in A$. (*)

Définition équivalente :

A est compact $\iff \forall (x_n)_{n\in\mathbb{N}} \text{ de } A, \exists \ell \in A, \forall \varepsilon > 0, \forall n \in \mathbb{N}, \exists q \geqslant n \text{ avec } N(x_q - \ell) < \varepsilon \text{ (**)}$

Remarque:

(**) ne signfie pas que $(x_n)_{n\in\mathbb{N}}$ converge vers ℓ , car $x_n \longrightarrow \ell \iff \forall \ \varepsilon > 0, \ \exists \ n\in\mathbb{N}, \ \forall \ q\geqslant n, \ N(x_q-\ell) < \varepsilon$

Démo:

Montrons que $(*) \Longrightarrow (**)$. Supposons qu'il existe $(x_{n_k})_{k \in \mathbb{N}}$ sous-suite, $x_{n_k} \longrightarrow \ell \in A$. Donc $\forall \varepsilon > 0, \exists k_0$ et $\forall k \geq k_0, N(x_{n_k} - \ell) < \varepsilon$ (1). Comme $n_k \longrightarrow +\infty, \forall n \in \mathbb{N}, \exists k_1 \text{ et } \forall k \geq k_1, n_k \geq n$ (2).

Posons $k_2 = \text{Max}[k_2, k_1]$. Alors si on pose $q = n_{k_2}$, on a $q \ge n$ d'après (2) et $N(x_q - \ell) < \varepsilon$ d'après (1). On a donc vérifié (**).

Montrons que (**) \Longrightarrow (*). Réécrivons (**) en prenant $\varepsilon = \frac{1}{k+1}$ $(k \in \mathbb{N}) \exists \ell \in A, \forall k \in \mathbb{N}, \forall n \in \mathbb{N}$

 $\exists q = q(k,n) \geqslant n \text{ avec } N(x_q - \ell) < \frac{1}{k+1} \ (***).$ On veut construire $\mathbb{N} \longrightarrow \mathbb{N}, k \longrightarrow n_k$ strictement croissante avec $N(x_{n_k} - \ell) \xrightarrow[k \to +\infty]{} 0$. On pose $n_0 = q(0,0)$. Donc $N(x_{n_0-\ell}) < q$ d'après (***).

Supposons construits $n_0 < n_1 < ... < n_{k-1}$. Appliquons (***) à l'ordre k et en prenant $n = n_{k-1} + 1$.

On trouve un $q = q(k, n_{k-1} + 1) > n_{k-1} + 1 > n_{k-1}$ tel que $N(x_q - \ell) < \frac{1}{k+1}$. On définit $n_k = q(k, n_{k-1} + 1)$.

Alors $n_k > n_{k-1}$ et $N(x_{n_k} - \ell) < \frac{1}{n+1} \xrightarrow[k \to +\infty]{} 0$. On a donc construit $(x_{n_k})_{k \in \mathbb{N}}$ sous-suite de $(x_n)_{n \in \mathbb{N}}$

avec
$$x_{n_k} \xrightarrow[k \to +\infty]{} \ell \in A$$
.

$\underline{\mathbf{E}\mathbf{x}}$:

Soit (E, N) un e.v.n. Soit $A = \{a_1, ..., a_N\}$ un s.e.v de E. Alors A est compact.

Démo:

D'après (**), on doit vérifier $\exists \ \ell \in A, \ \forall \ \varepsilon > 0, \ \forall \ n \in \mathbb{N}, \ \exists \ q \geqslant n \ \text{avec} \ N(x_q - \ell) < \varepsilon.$ Supposons cette propriété fausse. Alors $\forall \ \ell \in A, \ \exists \ \varepsilon > 0, \ \exists \ n \in \mathbb{N}, \ \forall \ q \geqslant n, \ N(x_q - \ell) \geqslant \varepsilon.$ Comme $A = \{a_1, ..., a_N\}$, en appliquant à $\ell = a_j, \ j \in \{1, ..., N\}$, on trouve donc $\varepsilon_j, \ n_j \in \mathbb{N}$ tels que $\forall \ q \geqslant n_j, \ N(x_q - a_j) \geqslant \varepsilon_j.$ Posons $\varepsilon_0 = \text{Min}[\varepsilon_1, \dots, \varepsilon_N] > 0, \ n_0 = \text{Max}[n_1, \dots, n_N] \ n \in \mathbb{N}.$ Alors si $q \geqslant n_0$, on a $q \geqslant n_j$ donc $N(x_q - a_j) \geqslant \varepsilon_j \geqslant \varepsilon_0.$ $\forall \ j \in \{1, ..., N\}.$ Donc si on fixe $q \geqslant n_0$, on a trouvé un élément $x_q \in A$, tel que $N(x_q - a) > 0, \ \forall \ a \in A.$ Absurde puisqu'on pourrait prendre $a = x_j.$ On a trouvé ε_0 tel que $x_q \notin B(a_j, \varepsilon_0) \ \forall \ j$ alors que $x_q \in A = \{a_1, ..., a_N\}.$

Propriétés des ensembles compacts :

Définition:

Un sous-ensemble A d'un e.v.N est dit borné $\iff \exists r > 0$ tel que $A \subset B(0,r)$.

Proposition:

Soit (E, N) un e.v.n, $A \subset E$, A est compact si A est fermé et borné.

Démo:

Soit A compact, montrons que A est fermé. On doit avoir pour toute suite $(x_n)_{n\in\mathbb{N}}$ de A, convergeant vers une limite $\ell\in E$, on a en fait $\ell\in A$. Comme A est compact, on sait qu'il existe une sous-suite $(x_{n_k})_{k\in\mathbb{N}}$, qui converge $\ell'\in A$. Mais si $x_n\longrightarrow \ell$ et si $(x_{n_k})_{k\in\mathbb{N}}$ est une sous-suite de $(x_n)_{n\in\mathbb{N}}$, on doit avoir $x_{n_k}\longrightarrow \ell$. Par unicité de la limite de $(x_{n_k})_{k\in\mathbb{N}}$, on doit avoir $\ell=\ell'$. Comme $\ell'\in A$, on a $\ell\in A$. Donc A est fermé. Montrons que A est borné. S'il ne l'est pas, $\forall n\in\mathbb{N}$, A n'est pas inclus B(0,r), donc $\exists x_n\in A$ avec $x_n\notin B(0,r)$ i.e avec $N(x_n)\geqslant n$. Donc $N(x_n)\xrightarrow[n\to+\infty]{}+\infty$. Comme A est compact, il existe $(x_{n_k})_{k\in\mathbb{N}}$ sous-suite convergeant vers $\ell\in A$. Comme $x\mapsto N(x)$ est continue, $N(x_{n_k})\longrightarrow N(\ell)$. Mais $N(x_{n_k})\longrightarrow +\infty$, d'où $N(\ell)=+\infty$: Absurde.

Exemples d'ensembles non compacts :

Soit $E = \mathbb{R}$, $A = [0, +\infty[$ est non borné , donc A n'est pas compact . A = [0, 1[n'est pas fermé , donc A n'est pas compact .

Proposition:

Soit A un sous-ensemble compact d'un e.v.n (E, N). Soit B un sous-ensemble fermé de $E, B \subset A$. Alors B est compact.

Démo:

Soit $(x_n)_{n\in\mathbb{N}}$ une suite de B. Comme $B\subset A$ c'est une suite de A, et comme A est compact $\exists (x_{n_k})_{k\in\mathbb{N}}$ sous-suite convergeant vers $\ell\in A$. Comme B est fermé , on sait que si une suite $(x_{n_k})_{k\in\mathbb{N}}$ de B converge, sa limite est dans B. Donc $\ell\in B$. Donc toute suite de B a une sous-suite convergeant vers une limite $\ell\in B$. Donc B est compact.

Proposition:

Soient (E, N), (E', N') deux e.v.n, soient $A \subset E$, $A' \subset E'$, supposons A, A' compacts. Alors $A \times A'$ est compact.

Démo :

Soit $z_n = (x_n, y_n)$ suite de $A \times A'$, alors $(x_n)_{n \in \mathbb{N}}$ est une suite de A qui est compact. Il existe $(x_{n_k})_{k \in \mathbb{N}}$ sous-suite, $x_{n_k} \longrightarrow \ell \in A$. Considérons $z_{n_k} = (x_{n_k}, y_{n_k})$. Alors $(x_{n_k})_{k \in \mathbb{N}}$ est sous-suite de $(z_n)_{n \in \mathbb{N}}$ et $x_{n_k} \longrightarrow \ell \in A$. Considérons $(y_{n_k})_{k \in \mathbb{N}}$, c'est une suite A', qui est compact. Il existe une sous-suite $(y_{n_k})_{j \in \mathbb{N}}$ de $(y_{n_k})_{k \in \mathbb{N}}$, avec $y_{n_{k_j}} \xrightarrow[j \to +\infty]{} \ell' \in A'$. Soit $z_{n_{k_j}} = (x_{n_{k_j}}, y_{n_{k_j}})$. Alors $(z_{n_{k_j}})_{j \in \mathbb{N}}$ est sous-suite

de $(z_n)_{n\in\mathbb{N}}$. On a $y_{n_{k_i}} \longrightarrow \ell'$ et $x_{n_{k_i}} \longrightarrow \ell$ (puisque $(x_{n_k})_{k\in\mathbb{N}}$ convergeait vers ℓ).

On a donc trouvé $(z_{n_{k_i}})_{j\in\mathbb{N}}$ sous-suite de $(z_n)_{n\in\mathbb{N}}$.

Proposition:

Soient (E, N), (E', N') es.vs.ns, $A \subset E$, A compact, $f: A \longrightarrow E'$ continue. Alors f(A) est compact.

Proposition:

Soit A compact de l'e.v.n (E, N) et $f: A \longrightarrow \mathbb{R}$ continue. Alors f est bornée et atteint ses bornes, i.e $\exists a,b \in A$ tels que $\forall x \in A, f(a) \leqslant f(b)$.

Démo:

D'après la prop. précédente, f(A) est compact, donc fermé et borné. Comme f(A) est borné, $\exists R > 0$ avec $f(A) \subset [-R, R]$. Posons $M = \sup_{x \in A} f(x) = \sup_$

Comme f(A) est fermé, on sait que $M \in f(A)$, $m \in f(A)$. Donc il existe $a \in A$, $b \in A$ avec f(a) = m et f(b) = M.

Rappel:

Si $a, b \in \mathbb{R}$, a < b, si $(x_n)_{n \in \mathbb{N}}$ est une suite de [a, b], il existe une sous-suite $(x_{n_k})_{k \in \mathbb{N}}$ convergente vers $\ell \in [a, b]$ (Théorème de Bolzano-Weierstrass sur \mathbb{R}).

Théorème de Bolzano-Weierstrass :

Soit E un e.v.n. de <u>dimension finie</u>. Soient $A \subset E$. Il y a équivalence entre :

- -i/A est compact
- -ii/A est est fermé et borné

Remarques:

- On a vu que $i/\Longrightarrow ii/$ est toujours vrai (sans avoir à supposer E de dimension finie).
- $-ii/\Longrightarrow i/$ est faux si E n'est pas de dimension finie. Si $E=\mathbb{R}$, si A est fermé borné, $\exists \ a < b$ tel que $A\subset [a,b]$. Or d'après le rappel [a,b] est compact, donc A qui est fermé dans le compact [a,b] est compact.

On a donc $ii/\Longrightarrow i/$ si $E=\mathbb{R}$.

Proposition:

Soit $E = \mathbb{R}^n$ muni de la norme $||...||_{\infty}$. Soit $A \subset E$, fermé borné, alors A est compact.

<u>Démo</u>:

Comme A est borné, $\exists R > 0$ tel que $A \subset \overline{B}(0,R)$ (pour la norme $||...||_{\infty}$) = $\{x \in \mathbb{R}^n, ||x||_{\infty} \leqslant R\}$ =

$$\left\{x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \ \operatorname{Max}|x_j| \leqslant R \right\} = [-R, R]^n. \text{ On sait d\'ejà que } [-R, R] \text{ est un compact de } \mathbb{R}, \text{ on a vu que le } \mathbb{R}$$

produit de deux compacts est compact. Donc $[-R,R]^2$, $[-R,R]^3$, ..., $[-R,R]^n$ sont compacts.

Donc A est un fermé inclus dans le compact $[-R, R]^n$, donc A est compact.

Equivalence des normes sur un e.v.n :

Théorème :

Soit E un e.v.n de dimension finie. Soient N, N' deux normes sur E. Alors N et N' sont équivalentes.

Démo :

Soient E un e.v.n de dimension finie, N, N' normes sur E. Soit (e_1, \ldots, e_n) une base de E et soit

$$\varphi: \mathbb{R}^n \longrightarrow E, x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \mapsto \varphi(x) = \sum_{j=1}^n x_j e_j.$$
 Alors φ est linéaire, bijective.

Pour $x \in \mathbb{R}^n$ posons

 $N_1 = N(\varphi(x)), N_1' = N'(\varphi(x)),$ alors N_1 et N_1' sont des normes sur \mathbb{R}^n . D'après le cas pour $E = \mathbb{R}^n$, elles

sont équivalentes, $\exists C > 0$ tel que $\forall x \in \mathbb{R}^n$, $C^{-1}N_1'(x) \leqslant N_1(x) \leqslant CN_1'(x)$. Donc $\forall y \in E$, $C^{-1}N'(y) \leqslant N(y) \leqslant CN'(y)$, donc N et N' sont équivalentes.

Corollaire:

Soit E un e.v.n de dimension finie. Alors les ouverts, fermés, voisinages, les compacts de E associés à une norme sur E sont indépendants du choix de cette norme. Même chose pour les limites, la continuité des fonctions définies sur $A \subset E$, à valeurs dans un e.v.n $(F, ||...||_F)$.

Fin de la démo du théorème de Bolzano-Weierstrass :

On veut que si E est un e.v.n de dimension finie, si $A \subset E$ est fermé et borné, alors A est compact. On a déjà

traité le cas $E = \mathbb{R}^n$ muni de la norme $||...||_{\infty}$. Soit (E, N) e.v.n de dimension finie. Soit (e_1, \ldots, e_n)

une base de
$$E$$
 et soit $\varphi : \mathbb{R}^n \longrightarrow E$ définie par $\varphi(x) = \sum_{j=1}^n x_j e_j$ si $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$. On sait que φ est

linéaire, bijective. Posons pour $x \in \mathbb{R}^n$, $N_1(x) = N(\varphi(x))$, c'est une norme de \mathbb{R}^n . Par le théorème précédent, N_1 est équivalente à $||...||_{\infty}$. $\exists C > 0$ tel que $\forall x \in \mathbb{R}^n$, $C^{-1}||x||_{\infty} \leqslant N_1(x) \leqslant C||x||_{\infty}$. On a $N(\varphi(x)) = N_1(x) \leqslant C||x||_{\infty}$ donc $\varphi(\mathbb{R}^n, ||...||_{\infty}) \longrightarrow (E, N)$ est continue.

Soit $A \subset E$, A fermé et borné. Soit $A' = \varphi^{-1}(A) \subset \mathbb{R}^n$. Comme φ est continue et A fermé, $\varphi^{-1}(A)$ est fermé. Comme A est borné, $\exists R > 0$ avec $N(y) \leq R$, $\forall y \in A$. Alors si $x \in A'$,

 $||x||_{\infty} \leqslant CN_1(x) = CN(\varphi(x)) \leqslant CR$. Donc A' est borné dans $(\mathbb{R}^n, ||...||_{\infty})$. On a déjà vu que cela entraı̂ne que A' est compact. Or $\varphi: A' \longrightarrow E$ est continue, donc $\varphi(A') = A$ est compact dans E.

Proposition:

Soient (E, N), (E', N') deux e.v.n. Supposons E de dimension finie. Soit $u: E \longrightarrow E'$ linéaire. Alors u est continue.

<u>Démo</u>:

On l'a déjà vu pour $v: (\mathbb{R}^n, ||...||_{\infty}) \longrightarrow E'$ linéaire. Si E est de dimension finie n, soit (e_1, \ldots, e_n) une base de E. Soit $\varphi: \mathbb{R}^n \longrightarrow E, \varphi: x \longrightarrow \sum_{j=1}^n x_j e_j$ bijection linéaire. On a vu que φ est continue de $(\mathbb{R}^n, ||...||_{\infty})$

dans (E, N). Soit $v = u \circ \varphi$. Alors v est linéaire de $(\mathbb{R}^n, ||...||_{\infty})$ dans (E', N'). On sait que v est continue. Or, $u = v \circ \varphi^{-1}$, donc il suffit de voir que φ^{-1} est continue. Or si $y \in E, ||\varphi^{-1}(y)||_{\infty}$ est une norme sur E, espace de dimension finie, donc équivalente à $N : \exists C > 0$ tel que

: $\forall y \in E, C^{-1}N(y) \leq ||\varphi^{-1}(y)||_{\infty} \leq CN(y)$. Cette dernière inégalité montre que φ^{-1} est continue.