Databases-Week04

-Tao Nijia, He Yiyang, Liang Ruyi

BASIC TASKS

Task 1.

1. Consider you are creating a simple HR system for a university. Use DDL component of SQL and create a $\frac{1}{2}$

new Database in your chosen DBMS (in class I demonstrated PosgreSQL with pgAdmin 4).

Mycode:

CREATE DATABASE university hr;

My result

2. The database schema of that system are shown below (Faculty and Staff). Use the data types introduced

in the lecture and create the tables for the Staff and Faculty relations. Add constraints to ensure that the

facultyName is not NULL. Using appropriate data types create the tables for both of these relation. Make

sure that you create the PRIMARY and FOREIGN keys:

- a. STAFF (staffId, staffName, staffDOB, staffFaculty)
- b. FACULTY (facultyId, facultyName, NoOfStaff)

```
mycode:
CREATE TABLE Faculty (
    facultyId SERIAL PRIMARY KEY,
    facultyName VARCHAR(100) NOT NULL,
    NoOfStaff INT
);
CREATE TABLE Staff (
    staffId SERIAL PRIMARY KEY,
```

staffName VARCHAR (100) NOT NULL,

staffDOB DATE, staffFaculty INT,

```
FOREIGN KEY (staffFaculty) REFERENCES Faculty(facultyId));
myresult:
```


3. Insert the following data into the tables you have just created. Use Data Manipulation Language (DML)

component of SQL command to populate the tables created. Think about which data has to be populated

first and why

My code:

INSERT INTO Faculty (facultyName, NoOfStaff) VALUES
('Engineering', 70),
('Arts', 50),
('Science', 60);

INSERT INTO Staff (staffName, staffDOB, staffFaculty) VALUES ('Alison Green', '1985-05-10', 1), ('Kieran West', '1978-03-22', 2), ('John Doe', '1982-07-15', 1); SELECT * FROM public.faculty ORDER BY facultyid ASC My result:

facultyid [PK] character varying (10)	facultyname character varying (255)	noofstaff integer
B001	Business	89
C001	Computing	120
E002	Engineering	76
M002	Mathematics	56

- 4. Code appropriate SQL command and find out the following
- a. Obtain all data from the STAFF table
 mycode:

SELECT * FROM Staff;

Myresult:

	staffid [PK] character varying (10)	staffname character varying (255)	staffdob date	stafffaculty character varying (10)
1	AB9872	Mark White	1978-01-01	M002
2	DL2314	Jas Singh	1982-03-14	M002
3	FG3124	Lucy Liu	1997-08-03	E002
4	AF4512	Alison Green	1998-11-23	E002

b. Find the facultyName where the number of staff is less than 75 mycode:

SELECT facultyName FROM Faculty WHERE NoOfStaff < 75;

Myresult:

c. List all staff that were born in then 1980's mycode:

SELECT * FROM Staff WHERE staffDOB BETWEEN '1980-01-01' AND '1989-12-31';

myresult:

	staffid [PK] character varying (10)	staffname character varying (255)	staffdob date	stafffaculty character varying (10)
1	DL2314	Jas Singh	1982-03-14	M002

d. List all columns from the staff table, sort by their name (Z-A). mycode:

SELECT staffId AS "Staff id", staffName AS "Staffname", staffdob AS "Date of Birth", staffFaculty AS "Faculty ID"

FROM Staff
ORDER BY staffName DESC;

myresult:

	Staff ID character varying (10)	Staff Name character varying (255)	Date of Birth date	Faculty ID character varying (10)
1	AB9872	Mark White	1978-01-01	M002
2	FG3124	Lucy Liu	1997-08-03	E002
3	DL2314	Jas Singh	1982-03-14	M002
4	AF4512	Alison Green	1998-11-23	E002

e. Alison Green has moved to a different faculty. She now works in Engineering. Write an

appropriate SQL statement to reflect this

mycode:

UPDATE Staff SET stafffaculty = 'AF4512' WHERE staffname = 'Alison
Green';

Myresult:

	staffid [PK] character varying (10)	staffname character varying (255)	staffdob date	stafffaculty character varying (10)
1	AB9872	Mark White	1978-01-01	M002
2	DL2314	Jas Singh	1982-03-14	M002
3	FG3124	Lucy Liu	1997-08-03	E002
4	AF4512	Alison Green	1998-11-23	E002

f. Kieran West has left the University. Write an appropriate SQL statement to remove his record

from the database

mycode:

DELETE FROM Staff WHERE staffName = 'Kieran West';

Myresult:

	staffid [PK] character varying (10)	staffname character varying (255)	staffdob date	stafffaculty character varying (10)
1	AB9872	Mark White	1978-01-01	M002
2	DL2314	Jas Singh	1982-03-14	M002
3	FG3124	Lucy Liu	1997-08-03	E002
4	AF4512	Alison Green	1998-11-23	E002

Medium tasks(Liang Ruyi)

5. Consider you are creating a small database simulating a friendly bank. Use DDL component of SQL and

create a new Database in your chosen DBMS (in class I demonstrated PosgreSQL with pgAdmin 4). An

overview of the tables (adopted from Oracle) in the database are shown below:

mycode

CREATE DATABASE friendly_bank;

- $6. \ \ \$ The questions below require you to write and execute SQL statements
- a. Write a suitable query to display the result of increasing a value of 28,964 by 18.5%

mycode:

SELECT 28964 * 1.185 AS IncreasedValue;

myresult:

b. List the first and last name of all Employees mycode:

SELECT first_name, last_name FROM employee;

Myresult:

	first_name character varying (50)	last_name character varying (50)
1	Michael	Smith
2	Susan	Barker
3	Robert	Tyler
4	Susan	Hawthorne
5	John	Gooding
6	Helen	Fleming
7	Chris	Tucker
8	Sarah	Parker
9	Jane	Grossman
10	Paula	Roberts
11	Samantha	Jameson
12	John	Blake
13	Cindy	Mason
14	Frank	Portman
15	Theresa	Markham
16	Beth	Fowler
17	Rick	Tulman
18	Thomas	Ziegler

c. The PRODUCTS table lists products currently offered by the bank. There can be three types;

Account, Loan or Insurance. List the types currently offered by the bank. Your results should not

show duplicate records

mycode:

SELECT DISTINCT product_type_cd FROM PRODUCT;
myresult:

	product_type_cd character varying (10)	
1	LOAN	
2	ACCOUNT	

d. List the different types of Loan that are offered mycode:

SELECT name

FROM product

WHERE product_type_cd='LOAN';

myresult:

	name character varying (100)
1	Home Mortgage
2	Auto Loan
3	Business Line of Credit
4	Small Business Loan

e. List all employees whose first name starts with the letter 'S' $\mbox{\sc mycode:}$

SELECT first_name, last_name

From employee

where first_name LIke 'S%';

myresult:

	first_name character varying (50)	last_name character varying (50)
1	Susan	Barker
2	Susan	Hawthorne
3	Sarah	Parker
4	Samantha	Jameson

f. List all employees whose first name starts with the letter 'S' or

'T' and that also works in the mycode:

SELECT * FROM Employee WHERE (first_name LIKE 'S%' OR first_name LIKE
'T%') AND department = 'Operations';

Myresult:

g. Find all employees whose first name is either Susan, Helen or Paula. Your results should show

their employee ID, first name and surname mycode:

SELECT emp_id, first_name, last_name FROM Employee WHERE first_name IN
('Susan', 'Helen', 'Paula');
myresult:

	emp_id [PK] integer	first_name character varying (50)	last_name character varying (50)
1	2	Susan	Barker
2	4	Susan	Hawthorne
3	6	Helen	Fleming
4	10	Paula	Roberts

h. Find all employees with a start date after 1st January 2001 and before 31st December 2002

mycode:

 ${\tt SELECT\ emp_id,first_name,last_name,start_date}$

From employee

where start_date BETWEEN '2001-01-01' AND '2002-12-31'

myresult:

	emp_id [PK] integer	first_name character varying (50)	last_name character varying (50)	start_date date
1	1	Michael	Smith	2001-06-22
2	2	Susan	Barker	2002-09-12
3	3	Robert	Tyler	2002-02-09
4	8	Sarah	Parker	2002-12-02
5	9	Jane	Grossman	2002-05-03
6	10	Paula	Roberts	2002-07-27
7	14	Cindy	Mason	2002-08-09
8	16	Theresa	Markham	2001-03-15
9	17	Beth	Fowler	2002-06-29
10	18	Rick	Tulman	2002-12-12

i. The FED_ID column in the CUSTOMER table can be formatted in two ways (where n is a

number): a. nnn-nn-nnnn b. nn-nnnnnn List all customers that have a fed_id formatted the same

as shown in (a) above

mycode:

SELECT cust_id, fed_id

FROM customer

WHERE fed_id LIKE'____';

myresult:

j. Using the PRODUCTS table, list all product types and their names. The product type should be in

ascending alphabetical order, and the names in descending alphabetical order $\,$

mycode:

SELECT product_type_cd, name

FROM product

ORDER BY product type cd ASC, name DESC;

	product_type_cd character varying (10)	name character varying (100)
1	ACCOUNT	Savings Account
2	ACCOUNT	Money Market Account
3	ACCOUNT	Checking Account
4	ACCOUNT	Certificate of Deposit
5	LOAN	Small Business Loan
6	LOAN	Home Mortgage
7	LOAN	Business Line of Credit
8	LOAN	Auto Loan

k. List all employees whose position is a 'Teller'. Sort them based on their start date, displaying the longest employed person first mycode:

SELECT first_name, last_name, start_date
FROM employee

Where title='TELLER'

ORDER BY start_date;
myresult:

	first_name character varying (50)	last_name character varying (50)	start_date date
1	Thomas	Ziegler	2000-10-23
2	Jane	Grossman	2002-05-03
3	Beth	Fowler	2002-06-29
4	Cindy	Mason	2002-08-09
5	Sarah	Parker	2002-12-02
6	Rick	Tulman	2002-12-12
7	Samantha	Jameson	2003-01-08
8	Frank	Portman	2003-04-01
9	Chris	Tucker	2004-09-15

1. Select the account ID, product code, available and pending balances from the ACCOUNTS table

for $cust_ID=1$. Write a statement to increase all balances in this customers account by 2%.

Display the updated data, listing the fields as before mycode:

SELECT account_id, product_cd, avail_balance, pending_balance FROM account

WHERE cust id = 1;

UPDATE account

SET avail balance = avail balance * 1.02,

pending_balance = pending_balance * 1.02

WHERE cust id = 1;

SELECT account id, product cd, avail balance, pending balance

FROM account

WHERE cust id = 1;

myresult:

m. There has been an error and all transactions that were made on the 30th July 2003 need to be

removed. Write a suitable statement to remove the relevant records from the

ACCOUNT_TRANSACTIONS table. How many records were affected?

Mycode:

DELETE FROM acc_transaction

WHERE txn date = '2003-07-30';

SELECT COUNT (*)

FROM acc transaction

WHERE $txn_date = '2003-07-30'$;

Myresult:

n. List the account number, customer number and available balance for all accounts with an

available balance bigger than £10,000. Display the records in decreasing balance order

mycode:

SELECT account_id, cust_id, avail_balance

FROM account

WHERE avail balance > 10000

ORDER BY avail balance DESC;

myresult:

	account_id [PK] integer	cust_id integer	avail_balance numeric (10,2)
1	23	13	50000.00
2	22	12	38552.05
3	20	10	23575.12

o. List all city's based in the state of "NH". The results should not contain multiple rows and should

be sorted alphabetically

mycode:

SELECT DISTINCT city FROM branch WHERE state='NH' ORDER BY city; myresult:

	city character varying (100)
1	Salem

p. The customer Susan Tingley has notified the bank of a name change. Her surname is now

'Brown'. Identify which table and column need updating and write the appropriate statement to $\,$

amend the data

mycode:

SELECT * FROM public.individual ORDER BY cust_id ASC;

myresult:

	cust_id [PK] integer	birth_date date	first_name character varying (50)	last_name character varying (50)
1	1	1972-04-22	James	Hadley
2	2	1968-08-15	Susan	Brown
3	3	1958-02-06	Frank	Tucker
4	4	1966-12-22	John	Hayward
5	5	1971-08-25	Charles	Frasier
6	6	1962-09-14	John	Spencer
7	7	1947-03-19	Margaret	Young
8	8	1977-07-01	Louis	Blake
9	9	1968-06-16	Richard	Farley

q. List all customers that were born before 1965 , $\ensuremath{\mathsf{mycode}}$:

SELECT cust_id, first_name, last_name

FROM individual

WHERE birth_date<'1965-01-01';

myresult:

	cust_id [PK] integer	first_name character varying (50)	last_name character varying (50)
1	3	Frank	Tucker
2	6	John	Spencer
3	7	Margaret	Young

 ${\bf r}.$ Thomas Ziegler left his job at the bank on 1st November 2019. Write an appropriate statement to

amend his Employee record

mycode:

SELECT * FROM public.employee ORDER BY emp_id ASC;

myresult:

s. List all customers with a product code of 'SAV'. Sort them by decreasing available balance $\,$

mycode:

SELECT account_id, cust_id, avail_balance

FROM account

WHERE product cd='SAV'

ORDER BY avail_balance DESC;

myresult:

	account_id [PK] integer	cust_id integer	avail_balance numeric (10,2)
1	9	4	767.77
2	2	1	500.00
3	16	8	387.99
4	5	2	200.00