Intro to Logistic Regression DAT 280

Dr. Alex Marsella

2024-03-13

Introduction

- ▶ Logistic Regression is a statistical technique used for binary (1 or 0) outcome variables.
- ▶ It predicts the probability of occurrence of an event by fitting data to what's called a "logit" function.
- Ideal for situations where the outcome is binary (e.g., yes/no, true/false).

Why Logistic Regression?

- ▶ **Binary Outcomes**: Suited for models with an outcome (Y) that takes on only two values.
- ▶ **Probabilities**: Provides us probabilities that Y takes on one value as opposed to the other, given some change in X.
- Interpretability: Easy to understand and explain the results once we do a little mathematical conversion to the coefficients.

The Logistic Function

- Logistic regression uses the logistic function to model probabilities.
- ► The function maps any real-valued number into a value between 0 and 1.
- ► Formula: $P(Y = 1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + ... \beta_k X_k)}}$
 - Note that the left-hand side of the formula is the **probability** that Y equals 1.
 - That is what we will be measuring and modelling as a function of some X variables.
- Logistic regression doesn't give us direct estimates of Y, it gives us probabilities of Y = 1, given some values of X.

Data where Y is binary

- Imagine a scenario where the outcome you are studying takes on one of two values.
 - "Will you vote in the next election?"
 - ► "Are you above the age of 65?"
 - "Do you smoke cigarettes?"
 - ► All questions with a Yes or No answer.
- ▶ We, (or the computer automatically), treat this variable as taking on a value of 1 or 0.
 - Usually, "Yes" is 1 and "No" is 0.

Data where Y is binary

Linear Regression just won't do.

► Look what happens when we try to fit a line to this kind of data.

Look how bad these residuals are.

Logistic Regression

▶ Instead, we can use logistic regression.

Example: Titanic Survival Prediction

- **Dataset**: Passenger data from the Titanic.
- ▶ **Objective**: Predict a passenger's likelihood of survival.
 - ► Survival either occurred or didn't! Our outcome variable is binary, 1 for "Survived" and 0 for "did not survive".
- **Features**: Class, sex, age, etc.

Data Exploration

6

1

3

4 ## 5

6

library(titanic) data(titanic_train) head(titanic_train)

```
##
     PassengerId Survived Pclass
## 1
## 2
## 3
                3
## 4
                5
## 5
```

6

3

3

3

2 Cumings, Mrs. John Bradley (Florence Briggs Thayer) for

Futrelle, Mrs. Jacques Heath (Lily May Peel) fe

Name

Braund, Mr. Owen Harris

Allen, Mr. William Henry

Heikkinen, Miss. Laina fo

Moran, Mr. James

0

Fitting a Logistic Regression Model

- ▶ We use command glm() instead of lm() and set an option of family = "binomial".
 - ► In statistics, a "binomial" is a variable that takes on one of two values. A *BI**NARY variable!

The model output.

##

##

##

► We don't interpret these the same way, though! This is not linear regression!

```
linear regression!
summary(model)
```

```
## Call:
## glm(formula = Survived ~ Pclass + Sex + Age, family = """
## data = titanic_train)
##
## Coefficients:
```

(Intercept) 5.056006 0.502128 10.069 < 2e-16 ***

Pclass -1.288545 0.139259 -9.253 < 2e-16 ***

Sexmale -2.522131 0.207283 -12.168 < 2e-16 ***

Age -0.036929 0.007628 -4.841 1.29e-06 ***

Estimate Std. Error z value Pr(>|z|)

---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.3

STOP! Don't try to interpret these numbers like you do with linear regression!

Positive vs. Negative Coefficients

- **Positive Coefficient** ($\beta > 0$): Indicates that as the predictor increases, the probability of the outcome occurring increases.
- Negative Coefficient (β < 0): Indicates that as the predictor increases, the probability of the outcome occurring decreases.

Understanding the Coefficients more deeply.

▶ Log Odds: The raw coefficients displayed represent the change in the log odds of the outcome for a one-unit increase in the predictor, holding all other predictors constant.

We convert the Log Odds to

- ▶ **Odds Ratio**: Exponentiating a coefficient (e^{β}) gives us the odds ratio (OR), a more intuitive measure of the predictor's effect.
 - An odds ratio measures "how many times as likely" something is.
 - ► For example, OR = 1.7 means increasing X by 1 is associated with Y = 1 being 1.7 times as likely than if X were not increased by 1.
 - ► \textcolor{red}{Or, even easier, increasing X by 1 makes it Y=1 70% more likely to occur.}

Odds Ratio (OR)

- ▶ **OR** > **1**: A one-unit increase in the predictor is associated with an increase in the odds of the outcome.
- ▶ **OR** < **1**: A one-unit increase in the predictor is associated with a decrease in the odds of the outcome.
- ➤ OR = 1: The predictor has no effect on the odds of the outcome.

Example Interpretation

Imagine a logistic regression model where the coefficient for age $(\beta_{\rm age})$ is 0.05. The odds ratio is $e^{0.05}\approx 1.05$.

➤ This means for each additional year of age, the odds of the outcome (e.g., having a certain disease) increase by 5%, assuming all other factors are held constant.

Going back to Titanic

- ► "Sexmale" had a coefficient of -2.52.
 - ightharpoonup "Sexmale" = 1 for males and 0 for females.
 - First takeaway: What does the sign on the coefficient mean?
- ▶ We need to "exponentiate" to turn it into an Odds Ratio.
 - $e^{\beta} = e^{-2.52} = 0.08$
 - Notice that a negative coefficient will always return a value less than 1 since $e^0 = 1$.
- Odds Ratio = 0.08
 - What does this mean?
 - Recall: An odds ratio measures "how many times as likely" something is or, the odds ratio minus 1 and converted to percent tells you "how much more likely something is".

Exercise: More interpreting

- ▶ Please convert the other two variables in our model to Odds Ratios and write down an interpretation.
- Work with the people around you, you will need a calculator (you can use R as a calculator!)
 - In R code, e^x is exp(x).
- I will be around to help if you get stuck.