Toxic Comment Classification

Choenden Kyirong, Jasleen Kaur, Jing Wen ckyirong@sfu.ca, jka185@sfu.ca, jwa268@sfu.ca

TASK AND MOTIVATION

BACKGROUND

In this day and age, the usage of online human interactions has tremendously increased. Unfortunately, with this increase, online discussion forums have seen a rise in issues of online harassment. Moderators of online forums are not able to control and identify every such negative situation that arises.

GOAL: Increase accuracy to identify toxic comments in order to improve online conversations by correctly labeling different texts according to their toxicity levels.

• Labels used: toxic, severe_toxic, obscene, threat, insult and identity hate.

DATASET

- Based on and used datasets provided by Kaggle's "Toxic Comment Classification Challenge" to help identify and classify toxic online comments.
- Training dataset with 159,572 sentences
- Testing dataset with 63,978 sentences
- Pre-trained GloVe vectors from Twitter with 27 billion tokens with 100 and 200 dimensions

PROPOSED METHODS

- Baseline
 - SVM model (Khieu and Narwal, 1993)
- Data Pre-processing was done for all methods attempted by tokenizing and padding representation
- LSTM with 100D embeddings

 $Embeddings \rightarrow LSTM \rightarrow h1 \rightarrow sigmoid$

• GRU with 200D embeddings

 $Embeddings \rightarrow GRU \rightarrow dropout \rightarrow h1 \rightarrow sigmoid$

• Enhanced LSTM with 200D embeddings

 $Embeddings \rightarrow dropout \rightarrow LSTM \rightarrow dropout \rightarrow ReLU(h1) \rightarrow dropout \rightarrow h2 \rightarrow sigmoid$

DATA PRE-PROCESSING

- 1. Delete samples of test data that include -1 in labels
- 2. Clean up strings
 - "I am 47" \rightarrow "I am ##"
 - "Aren't" \rightarrow "Are not"
 - "Hello World!" \rightarrow "hello world!"
- 3. Term Frequency Map
 - "Hello hello world world the"
 - {"hello": 1, "world": 2, "the": 3}
- 4. Tokenization and Padding of Max Sentence Length (100)
 - "Hello Hello World world the" \rightarrow [0 0 ... 0 1 1 1 2 2 3]

MODEL ARCHITECTURE

Epochs = 2, Batch Size = 75, Optimizer = Adam, lr = .001, LSTM Hidden = 512, h1 = 512, h2 = 256, Dropout = 0.5

EXAMPLE OUTPUT

Comparing two different sentences for each of the six possible types of comment toxicity:

[toxic, severe toxic, obscene, threat, insult, identity hate]

Sentence	Probability for Each Label	Binary
		Labels
"I hate you. You are stupid"	[.9 .35 .5 .1 .24 .33]	$[1 \ 0 \ 1 \ 0 \ 0 \ 0]$
"I love you. You are amazing"	[.01 .001 .01 .01 .01]	$[0 \ 0 \ 0 \ 0 \ 0]$

EVALUATION AND ANALYSIS

MODELS STATISTICS:

Method	Accuracy	Correctly Identified Toxic Sentences
LSTM	0.90118	6
GRU	0.84335	1883
Enhanced LSTM	0.8869	2129

LOSS GRAPH FOR ENHANCED LSTM MODEL:

- Baseline SVM model had accuracy of 0.833 (Khieu and Narwal, 1993)
- LSTM model had highest accuracy, but had lowest number of correctly identified toxic sentences
- GRU model had lowest accuracy, but drastically outperformed LSTM in correctly identifying toxic sentences
- Enhanced LSTM had higher accuracy than GRU and had highest number of correctly identified toxic sentences
- Accuracy = $\frac{\# \text{ of correct}}{\# \text{ of sentences}}$

FUTURE WORK

- Implementation of Naive Bayes-SVM(NBSVM)
- NBSVM performs well on snippets and longer documents, for sentiment, topic and subjectivity classification[5]

REFERENCES

- [1] Chu, T., Jue, K., Wang, M.L. (2017). Comment Abuse Classification with Deep Learning.
- 2] Khieu, K., Narwal, N. (2017). "Detecting and Classifying Toxic Comments".
- Pennington, Jeffrey et al. "Glove: Global Vectors for Word Representation." EMNLP (2014).
- 1] "Toxic Comment Classification Challenge." Kaggle, Kaggle, 2017, www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge.
- Wang, Sida Manning, Christoper. (2012). Baselines and Bigrams: Simple, Good Sentiment and Topic Classification. 90-94.
- [6] Zheng, Heng. "PyTorch Starter." Kaggle, Kaggle, 14 Dec. 2018, www.kaggle.com/hengzheng/pytorch-starter.