

Programação Segura

Apresentação e Fundamentos

Programação Segura

Semana 1: Apresentação e Fundamentos

Prof^a Denise Goya

Denise.goya@ufabc.edu.br – UFABC - CMCC

Programação Segura

Apresentação e Fundamentos

APRESENTAÇÃO DA DISCIPLINA

Programação Segura

Apresentação e Fundamentos

Programação Segura

Motivação para cursar a disciplina:

- Correções de segurança frequentes:
 - Grande ocorrência de falhas descobertas
 - Sistemas cada vez mais complexos
 - Sistemas cheios de remendos (patches)
 - Ruim para o produtor e para o usuário

Programação Segura

Apresentação e Fundamentos

Objetivos da Disciplina

- Despertar a consciência para o desenvolvimento seguro de software
- Conhecer os principais problemas que tornam o software vulnerável
- Conhecer boas práticas de programação segura

Programação Segura

Apresentação e Fundamentos

Ementa

- segurança no processo de desenvolvimento de software;
- vulnerabilidades: descrição, tecnologias (linguagens, SO) envolvidas, prevenção e correção;
- ferramentas para prevenção de vulnerabilidade;
- características relevantes de linguagens de programação;
- prática: busca por vulnerabilidades

Programação Segura

Apresentação e Fundamentos

Bibliografia Básica

 GRAFF, MARK G; VAN WYK, KENNETH R.: "Secure Coding: Principles and Practices" O'Reilly, 2003.

 THOMPSON, H.; CHASE, SCOTT G.: "The Software Vulnerability Guide" Charles River Media, 2005

Programação Segura

Apresentação e Fundamentos

Bibliografia Complementar

- HOWARD, M.; LEBLANC, D.: "Writing Secure Code" Microsoft Press, 2a edição, 2002.
- WEELER, D.: "Secure
 Programming for Linux and Unix
 HOWTO Creating Secure
 Software". Ebook disponível em
 http://www.dwheeler.com/secure-programs/

Programação Segura

Apresentação e Fundamentos

Bibliografia Complementar

- SEBESTA, R.: "Conceitos de Linguagens de Programação" Bookman, 5a edição, 2003.
- TANENBAUM, A. "Sistemas Operacionais Modernos" Prentice Hall, 2a edição, 2007.
- TANENBAUM, A. "Redes de Computadores" Campus, 4a edição, 2003.
- KUROSE, J. "Redes de Computadores e a Internet: uma nova abordagem"
 Addison-Wesley, 2a edição, 2007.
- HARBISON, S.; STEELE JR, G. L. "C: manual de referência" Prentice Hall/Ciência Moderna, 2002.
- ROCHKIND, M. "Advanced UNIX Programming" Addison-Wesley, 2a edição, 2004.
- STEVENS, W. R.; FENNER, B.; RUDOFF, A. M. "Unix Network Programming" Addison-Wesley, 3a edição, 2003.
- STEVENS, W. R.; RAGO, S. "Advanced Programming in the UNIX Environment" Addison-Wesley, 2a edição, 2008.

Programação Segura

Apresentação e Fundamentos

Programação Segura - TPI 2-2-4

2h de aulas teóricas semanais

2h de aulas práticas semanais

4h de estudo individual semanais

Programação Segura

Apresentação e Fundamentos

Onde e Quando

- Terças-feiras: teoria
 - 10:00 às 12:00
 - sala S 301-3

- Quintas-feiras: prática
 - 08:00 às 10:00
 - Lab 407-2

Programação Segura

Apresentação e Fundamentos

Avaliação

Duas provas (escritas)

• P1: 30%

P2: 40%

Um projeto em equipe (análise de código)

Projeto: 30%

Programação Segura

Apresentação e Fundamentos

Cronograma Previsto

- P1: 10/março
- P2: 07/abril
- Apresentações de Projeto: 09/abril e 16/abril
- Mecanismo de Substituição: 14/abril
 - Sem atestado médico no dia da prova não tem direito
 - Conteúdo integral da disciplina
- Mecanismo de Recuperação: 23/abril
 - Tem direito quem obteve D ou F
 - Conceito preliminar conta com peso de 50%

Programação Segura

Apresentação e Fundamentos

FUNDAMENTOS: CONCEITOS BÁSICOS

Programação Segura

Apresentação e Fundamentos

O que é Programação Segura

 Aplicação de boas práticas de projeto de software e de desenvolvimento de código seguro

Programação Segura

Apresentação e Fundamentos

O que é Código Seguro

- Código de software que protege a
 - Confidencialidade,
 - Integridade e
 - Disponibilidade
 - da informação do usuário e
 - Integridade e disponibilidade
 - dos recursos de processamento sob controle do administrador ou proprietário

Programação Segura

Apresentação e Fundamentos

Confidencialidade

- Objetivo de manter a confidencialidade do dado:
 - preservar o sigilo de dados secretos (confidenciais)

 apenas pessoas autorizadas (pelo dono do dado) podem ter acesso ao dado (ou ter condições de compreendê-lo)

Programação Segura

Apresentação e Fundamentos

Integridade

- Objetivo de manter a integridade do dado:
 - usuários não autorizados (pelo dono do dado) não podem modificá-lo (adulterar, remover)

qualquer adulteração deve ser detectável

Programação Segura

Apresentação e Fundamentos

Disponibilidade

- Objetivo de manter a disponibilidade do dado:
 - ninguém deve poder perturbar o sistema para deixá-lo inutilizável ou inoperante

impedir a negação do serviço

Programação Segura

Apresentação e Fundamentos

Objetivo adicional: Privacidade

- Objetivo de manter a privacidade do usuário:
 - proteger indivíduos contra o mau uso de informação sobre eles
 - envolve questões legais e éticas
 - que limites há para:
 - Empresas de seguro ou saúde fazerem uso de dados de seus clientes?
 - Governos e Polícia fazerem investigações sobre um cidadão?

Programação Segura

Apresentação e Fundamentos

Software Seguro e Software Confiável

- Software Seguro é um subconjunto de:
 - Qualidade de software e
 - Software confiável

- Nesta disciplina, o software seguro já cumpre os requisitos funcionais
 - preocupação principal nas outras disciplinas

Programação Segura

Apresentação e Fundamentos

Vulnerabilidade de Segurança

- Falha em um produto que pode permitir um atacante obter
 - privilégio de acesso
 - controle do sistema
 - comprometimento do dado
- mesmo que o usuário faça um uso correto do produto

Programação Segura

Apresentação e Fundamentos

Ciclo de Correção de Software

Detecção de vulnerabilidade

Desenvolvimento de uma correção

Publicação de alertas e instalação da correção

Devemos tentar reduzir a quantidade de correções posteriores ao lançamento do produto

Programação Segura

Apresentação e Fundamentos

Processo de Desenvolvimento

 Alternativa ideal: pensar em questões de segurança durante TODO o processo de desenvolvimento de software

Programação Segura

Apresentação e Fundamentos

Processo de Desenvolvimento

Programação Segura

Apresentação e Fundamentos

Falhas de Segurança em Software

 As falhas de segurança estão associadas a erros comuns de programação

 Tais falhas levam a uma situação de vulnerabilidade que, ao ser devidamente explorada, viabilizam ataques aos sistemas

Programação Segura

Apresentação e Fundamentos

Classes de Ataques

- Ataques costumam estar relacionados a:
 - Roubo de senhas
 - Engenharia social
 - Exploração de bugs e back doors
 - Exploração de falha de autenticação
 - Exploração de falha em protocolo
 - Vazamento de informação
 - Ataques exponencial (vírus e worms) e Botnets
 - Negação de Serviço (DoS)
 - Ataques ativos

Programação Segura

Apresentação e Fundamentos

Classes de Erros de Segurança

- Os erros (bugs) mais comuns cometidos por programadores são classificados em
- Katrina Tsipenyuk, Brian Chess, and Gary McGraw. 2005. Seven Pernicious Kingdoms: A Taxonomy of Software Security Errors.
 IEEE Security and Privacy 3, 6 (Nov 2005)

Programação Segura

Apresentação e Fundamentos

Classes de Erros de Segurança

- Validação e representação dos dados de entrada
- Abuso de API
- Características de segurança
- Tempo e estado
- Tratamento de exceções
- Qualidade do código
- Encapsulamento
- Ambiente

Programação Segura

Apresentação e Fundamentos

Validação e Representação da Entrada

- Problemas relacionados a essa classe de erros são causados pelo mal tratamento de:
 - metacaracteres
 - alternância de codificações ou de representações numéricas
- Incluem uma variedade de problemas:
 - buffer overflow
 - injeção de SQL
 - ataques de Cross-site scripting

Programação Segura

Apresentação e Fundamentos

Validação da Entrada - subtipos

- buffer overflow
- injeção de comandos
- cross-site scripting
- string de formatação
- manipulação de caminho
- controle de processo
- manipulação de configuração
- formulários validados reusados
- etc

Programação Segura

Apresentação e Fundamentos

Entrada e Buffer Overflow

- transbordo de memória
- escrita em área de memória não prevista pelo programador
- causa corrompimento de dado, mau funcionamento do programa
- pode viabilizar a execução de código produzido e inserido pelo atacante

Programação Segura

Apresentação e Fundamentos

Entrada e Injeção de Comandos

 Execução de comandos a partir de uma fonte ou ambiente não confiável permite a execução de comandos mal intencionados por parte de um atacante

Programação Segura

Apresentação e Fundamentos

Entrada e Cross-Site Scripting

 Envio de dado inválido para um navegador pode fazer com que sejam executados códigos mal intencionados (em geral scripts)

Programação Segura

Apresentação e Fundamentos

Entrada e String de Formatação

 Mal uso de String de formatação pode resultar em buffer overflow

Programação Segura

Apresentação e Fundamentos

Abuso de API

- Um uso inadequado de uma API pode levar a situações de falha e segurança
 - ainda que o programa "funcione"
 - o atacante pode forçar situações que lhe dão alguma vantagem sobre o sistema
- Exemplo:
 - acesso a sistema de arquivos com erro no tamanho do buffer pode levar a buffer overflow

Programação Segura

Apresentação e Fundamentos

Características de Segurança

- Classe de erro relacionada com problemas na implementação de autenticação, controle de acesso, confidencialidade, gerenciamento de privilégios e de funções criptográficas
- Exemplos:
 - uso de gerador de números aleatórios inseguro
 - gestão de senhas
 - violação de privilégio mínimo, etc

Programação Segura

Apresentação e Fundamentos

Tempo e Estado

 Problemas relacionados a software de computação distribuída

Bugs podem levar a inconsistências

Programação Segura

Apresentação e Fundamentos

Erros Relativos a Qualidade do Código

 Classe de problema em geral vinda de más práticas de programação

Exemplos:

- chamar free() duas vezes sobre a mesma memória pode levar a buffer overflow
- comportamento n\u00e3o definido
- variável não inicializada

Programação Segura

Apresentação e Fundamentos

Problemas com Encapsulamento

- Atacantes podem explorar
 - objetos cloneable para criar novas instâncias
 - variáveis non-final públicas para injetar valores a sua escolha
 - etc

Programação Segura

Apresentação e Fundamentos

No Decorrer das Aulas

- Vamos dar mais detalhes de
 - como e porque todas essas classes de problemas existem
 - como evitá-las

Programação Segura

Apresentação e Fundamentos

ESTUDO INDIVIDUAL

Programação Segura

Apresentação e Fundamentos

Leitura Recomendada

- Para ter ideia geral dos tipos de problemas que existem com programação insegura:
- Katrina Tsipenyuk, Brian Chess, and Gary McGraw. 2005. Seven Pernicious Kingdoms: A Taxonomy of Software Security Errors.
 IEEE Security and Privacy 3, 6 (Nov 2005)