Deep contextualized word representations

김웅희

- Author
 - Peters, M. E.
 - Neumann, M
 - lyyer, M.
 - · Gardner, M.
 - Clark, C.
 - Lee, K., & Zettlemoyer, L.
- Title of Conference(Journal)
 - NAACL 2018

Introduction

- Existing models like Word2Vec or Glove provides a single context-independent representations
- Rest of models like TagLM, utilizes representations from final layer of the model which essentially leave out information from the lower layers
- Higher-level LSTM states capture context-dependent aspects of word meaning while lower-level states model aspects of syntax

Language Model

• 문장의 확률을 통해 다음의 단어를 예측하는 것이 목표

$$P(W) = P(w_1, w_2, w_3, w_4, w_5, \dots, w_n)$$

• 기본적으론 조건부 확률을 통해 다음에 오는 단어를 구함

$$P(w_5|w_1,w_2,w_3,w_4)$$

$$P(W) = P(w_1, w_2, w_3, w_4, w_5, \dots w_n) = \prod_{i=1}^n P(w_n | w_1, \dots, w_{n-1})$$

• ELMo

tk: 토큰

k : k번째 토큰 j : j번째 레이어

ELMo

• Bidirectional Language Models

$$p(t_1, t_2, \dots t_N) = \sum_{k=1}^N p(t_k | t_1, t_2, \dots, t_{k-1})$$

$$p(t_1,t_2,\ldots,t_N) = \sum_{k=1}^N p(t_k|t_{k+1},t_{k+2},\ldots,t_N)$$

• 두 방향으로부터 나오는 로그 우도의 합을 최대화하도록 학습시킴

$$\sum_{k=1}^{N}(logp(t_{k}|t_{1},\ldots,t_{k-1}; \stackrel{
ightarrow}{ heta_{x}}, \stackrel{
ightarrow}{ heta_{LSTM}}, \stackrel{
ightarrow}{ heta_{s}}) + logp(t_{k}|t_{k+1},\ldots,t_{N}; \stackrel{
ightarrow}{ heta_{x}}, \stackrel{
ightarrow}{ heta_{LSTM}}, \stackrel{
ightarrow}{ heta_{s}}))$$

ELMo

여기서 말하는 태스크는 문서분류, QA, 개체명 인식 등의 임의의 태스크

$$ELMo_{k}^{task} = E(R_{k}; \theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_{j}^{task} h_{k,j}^{LM}$$

j 번째 레이어가 해당 태스크 수행에 얼마나 중요한지 가리키는 스칼라값

• ELMo

Evaluation

TASK	PREVIOUS SOTA		OUR BASELINI	ELMO + E BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

Table 1: Test set comparison of ELMo enhanced neural models with state-of-the-art single model baselines across six benchmark NLP tasks. The performance metric varies across tasks – accuracy for SNLI and SST-5; F_1 for SQuAD, SRL and NER; average F_1 for Coref. Due to the small test sizes for NER and SST-5, we report the mean and standard deviation across five runs with different random seeds. The "increase" column lists both the absolute and relative improvements over our baseline.

Task	Baseline	Last Only	All layers	
Task			λ =1	$\lambda = 0.001$
SQuAD	80.8	84.7	85.0	85.2
SNLI	88.1	89.1	89.3	89.5
SRL	81.6	84.1	84.6	84.8

Table 2: Development set performance for SQuAD, SNLI and SRL comparing using all layers of the biLM (with different choices of regularization strength λ) to just the top layer.

• ELMo의 위치

Task	Input	Input &	Output
Task	Only	Output	Only
SQuAD	85.1	85.6	84.8
SNLI	88.9	89.5	88.7
SRL	84.7	84.3	80.9

Table 3: Development set performance for SQuAD, SNLI and SRL when including ELMo at different locations in the supervised model.

• 기존 워드 임베딩과의 비교

	Source	Nearest Neighbors
GloVe	playing, game, games, played, players, plays, play Play, football, multiplayer	
biLM	Chico Ruiz made a spectacular play on Alusik 's grounder {} Olivia De Havilland signed to do a Broadway play for Garson {}	Kieffer, the only junior in the group, was commended for his ability to hit in the clutch, as well as his all-round excellent play. {} they were actors who had been handed fat roles in a successful play, and had talent enough to fill the roles competently, with nice understatement.

Table 4: Nearest neighbors to "play" using GloVe and the context embeddings from a biLM.

• ELMo에서 representation이 내포하는 것

	Model	\mathbf{F}_1
	WordNet 1st Sense Baseline	65.9
Second Layer가 semantic한 정보를 더	Raganato et al. (2017a)	69.9
잘 알아냄	Iacobacci et al. (2016)	70.1
	CoVe, First Layer	59.4
	CoVe, Second Layer	64.7
	biLM, First layer	67.4
	biLM, Second layer	69.0

Table 5: All-words fine grained WSD F_1 . For CoVe and the biLM, we report scores for both the first and second layer biLSTMs.

First Layer는 syntactic한 정보를 더 내포함				
	Model	Acc.		
	Collobert et al. (2011)	97.3		
	Ma and Hovy (2016)	97.6		
	Ling et al. (2015)	97.8		
	CoVe, First Layer	93.3		
	CoVe, Second Layer	92.8		
	biLM, First Layer	97.3		
	biLM, Second Layer	96.8		

Table 6: Test set POS tagging accuracies for PTB. For CoVe and the biLM, we report scores for both the first and second layer biLSTMs.

Conclusion

- biLMs로부터 높은 성능의 문맥 의존적인 representations를 제안
- 기존의 워드 임베딩에 ELMo 표현을 더해주는 것만으로 높은 성능을 보임
- 모든 BiLM 레이어들을 이용해 정보 손실을 최소화하여 syntactic한 정보와 semantic한 정보를 얻음