Taller práctico abierto: Adquisición de señales neuronales

Adquisición de señales neuronales y Amplificador Operacional

Realizado con el apoyo del Fondo Metropolitano de la Cultura, las Artes y las Ciencias

Fondo Metropolitano de la Cultura, las Artes y las Ciencias

¿Qué queremos medir?

Técnica	Señal	Electrodos	Amplitud
ECG	Corazón: depolarización/repolariza ción del tejido cardíaco	Electrodos de superficie	Rango de mV
EMG	Músculo esquelético: conjunto de potenciales de acción de las unidades motoras	Electrodos de superficie	Rango de mV
EEG	Cerebro: suma de la actividad neuronal	Electrodos de superficie	50μV
LFP	Cerebro: suma de la actividad neuronal localizada	Electrodos intracraneales	100 - 1000 μV
Potenciales de acción (spike)	Cerebro: potenciales de acción en neuronas únicas	Electrodos intracraneales: tetrodos, eletrodos de alambre, silicon probes.	100 - 1000 μV

Buzaki et al,2012

¿Cómo medimos estas señales?

El sistema de adquisición debe poder:

- 1. Detectar una diferencia de potencial eléctrico.
- 2. Amplificar la pequeña señal detectada.
- 3. Filtrar las frecuencias que no son de interés
- 4. Digitalizar la señal para su visualización, almacenamiento y procesamiento

Sistemas de registros experimentales

El setup experimental – simplificación

Circuito equivalente del electrodo

$$Vin = Vec * \frac{Zc}{Zc + Ze}$$

Fuentes de ruido en los registros

Causas de ruido

- Capacitivos
 - -Acoplamiento capacitivo con el paciente/animal
 - -Acoplamiento capacitivo con los conductores
- Inductivo: bucles en los cables
- Originado por la interfaz electrodo/electrolito
- Cargas electroestáticas
- Interferencias internas en el equipo de medida: Fuente de alimentación

Fuentes de ruido en los registros Soluciones

Acoplamiento Capacitivo

Acoplamiento Inductivo

Electrodo de referencia

$$Vs = Ad * (Vni - Vi) = Ad * Vd$$

Características del Op-Amp ideal

- Impedancia de entrada (Zi) infinita
- Impedancia de salida (Zo) nula
- Ganancia en lazo abierto (Ad) infinita

Retroalimentación negativa

$$Vs = Ad * Vd$$

$$Vd = Ve - \beta * Vs$$

Reemplazando y operando

$$Vs = Ad * (Ve - \beta * Vs)$$
$$Vs = Ad * Ve - Ad * \beta * Vs$$

$$Vs + Ad * \beta * Vs = Ad * Ve$$

 $Vs(1 + Ad * \beta) = Ad * Ve$

$$\frac{Vs}{Ve} = \frac{Ad}{(1 + Ad * \beta)}$$

Pero Ad>>1
$$\longrightarrow \frac{Vs}{Ve} = \frac{Ad}{(Ad * \beta)}$$

$$A = \frac{Vs}{Ve} = \frac{1}{\beta}$$
 Ganancia retroalimentada

La ganancia del Op-Amp va a depender de la fracción de la tensión de salida con la que lo retroalimente

Buffer – seguidor de tensión

Puedo medir señales muy débiles. No se consume corriente de la fuente que genera la señal.

No Inversor

$$Vs = Ve * \frac{R1 + R2}{R1}$$

$$A = 1 + \frac{R2}{R1}$$

Puedo medir señales muy débiles.

No se consume corriente de la fuente que genera la señal.

Ganancia ≥ 1

Inversor

La salida es invertida La impedancia de entrada no es tan grande

Diferencial

$$Vs = (Vref - Ve) * \frac{R2}{R1}$$

$$A = \frac{R2}{R1}$$

La salida es la <u>diferencia de las entradas</u> por una ganancia La impedancia de entrada no es tan grande

¿y el ruido?

$$Vs = -(Ve + Vr) * \frac{R2}{R1}$$

$$Vs = [(Vref + Vr) - (Ve + Vr)] * \frac{R2}{R1}$$
$$Vs = (Vref - Ve)] * \frac{R2}{R1}$$