Metódy v bioinformatike Zarovnávanie sekvencií

Jana Černíková

FMFI UK

10/10/2024

Problém: Lokálne zarovnávanie (local alignment)

Vstup: dve sekvencie

Problém: Lokálne zarovnávanie (local alignment)

ggcccttggagttgactgtcctgctgctccttgagg ccattctcagagagaggaagtggcctcattttaatc cgcttcccacagccttgtcctttccagacccatggg agagggagggctgagggtgtgggctgagcccaccca agtcacgcgtcactctgcaggtccctctccccaag gccgtggccttgggagcccgtggatcccagtgagtg acgcctccacccccgccctactcgggcagtttaac ccttgttgttcacttgcagacatcgtgaacacggcc cggcccgacgagaaggccataatgacctatgtgtcc agcttctaccatgccttttcaggagcgcagaaggta $\verb|ccgagcaggccaggccctcctcgccgccacc| \\$ gcgcaatgccgccgctgcctctcgcctcccgtgctc acctcatttctcttgcagacggcagtggcctctctc caactggaagccaccccagctccct...

tgatgccgaggatgtgttcgtcgagcatccggacga gaagtccatcacctacgtggtcacctactatcacta ctttagcaaactcaagcaggagacggtgcagggcat aagcgtatcggtaaggtggtcggcattgccatggag aacgacaaaatggtccacgactacgagaacttcaca agcgatctgctcaagtggatcgaaacgaccatccag ${\tt tcgctgggcgagcgggagttcgaaaactcgctggcc}$ ggcgtccaagggcagttggcccagttctccaactac cgcaccatcgagaagccgcccaagtttgtggaaaag ggcaacctcgaggtgctccttttcaccctgcagtcc aagatgcgggccaacaaccagaagccctacacacc aaagagggcaagatgatttcggacatcaacaaggcc tgggagcgtctggagaaggccgagcacgaacgcgaa ttggccctgcgcgaggagctcatccg...

Výstup: podobné úseky (zarovnania, alignments).

CCCGACGAGAAGGCCATAATGACCTATGTGTCCAGCTTCTACCATGCCTTT CCGGACGAGAAGTCCAT---CACCTACGTGGTCACCTACTATCACTACTTT

Vlož pomlčky (medzery, gaps) tak, aby rovnaké bázy boli pod sebou. Dobré zarovnanie má veľa zarovnaných rovnakých báz, málo medzier.

Na čo sú dobré zarovnania?

- Orientácia v obrovských databázach.
 Genbank WGS má vyše 22 TB sekvencií.
 Napr. z ktorého genómu (a odkiaľ) pochádza daná sekvencia?
- Prekryvy čítaní pri skladaní genómov, mapovanie čítaní
- Určovanie funkcie (napr. proteínu).
 Podobné sekvencie často majú rovnakú/podobnú funkciu.
- Štúdium evolúcie.

Hľadáme homológy: sekvencie, ktoré sa vyvinuli z tej istej sekvencie v spoločnom predkovi.

V ideálnom prípade medzery zodpovedajú inzerciám a deléciám, zarovnané bázy zachovaným bázam a substitúciám.

Zarovnávanie sekvencií ako optimalizačný problém

- Cieľ: nájdi páry homologických sekvencií (tých, čo pochádzajú z rovnakého spoločného predka)
- Modelovacia fáza: vytvor skórovaciu schému, ktorá
 - skutočným homologickým párom dáva vysoké skóre
 - falošne pozitívnym párom dáva nízke skóre
- Optimalizačná fáza:

pre dané dve vstupné sekvencie, nájdi zarovnanie s najlepším skóre (Optimalizačná fáza je téma dnešnej prednášky.)

Formulácia problému

Skórovanie zarovnania: napr. zhoda +1, nezhoda -1, medzera -1.

22 zhôd, 6 nezhôd, 3 medzery → skóre 13. V praxi zložitejšie skórovanie.

Problém 1: globálne zarovnanie (global alignment)

Vstup: sekvencie $X = x_1 x_2 \dots x_n$ a $Y = y_1 y_2 \dots y_m$.

Výstup: zarovnanie X a Y s najvyšším skóre.

Problém 2: lokálne zarovnanie (local alignment)

Vstup: sekvencie $X = x_1 x_2 \dots x_n$ a $Y = y_1 y_2 \dots y_m$.

Výstup: zarovnania podreťazcov $x_i \dots x_j$ a $y_k \dots y_\ell$ s najvyšším skóre.

10/10/2024

Dynamické programovanie pre globálne zarovnanie (Needleman, Wunsch 1970)

Podproblém: A[i,j]: najvyššie skóre globálneho zarovnania reťazcov $x_1x_2...x_i$ a $y_1y_2...y_j$.

Jeden z reťazcov dĺžky 0: druhý reťazec je zarovnaný s medzerou. A[0,j] = -j, A[i,0] = -i.

Všeobecný prípad, i > 0, j > 0:

- ullet ak $x_i=y_j$ sú zarovnané A[i,j]=A[i-1,j-1]+1
- ullet ak $x_i
 eq y_j$ sú zarovnané A[i,j] = A[i-1,j-1]-1
- ak x_i je zarovnané s medzerou A[i,j] = A[i-1,j] 1
- ullet ak y_j je zarovnané s medzerou A[i,j]=A[i,j-1]-1

Dynamické programovanie pre globálne zarovnanie

Podproblém: A[i,j]: najvyššie skóre globálneho zarovnania reťazcov $x_1x_2...x_i$ a $y_1y_2...y_j$.

Všeobecný prípad, i > 0, j > 0:

- ak $x_i = y_i$ sú zarovnané A[i,j] = A[i-1,j-1] + 1
- ullet ak $x_i
 eq y_j$ sú zarovnané A[i,j] = A[i-1,j-1]-1
- ak x_i je zarovnané s medzerou A[i,j] = A[i-1,j] 1
- ullet ak y_j je zarovnané s medzerou A[i,j]=A[i,j-1]-1

Rekurencia:

$$A[i,j] = \max \left\{ egin{array}{l} A[i-1,j-1] + s(x_i,y_j), \ A[i-1,j] - 1, \ A[i,j-1] - 1 \end{array}
ight.$$

 $\mathsf{kde}\ s(x,y) = 1\ \mathsf{ak}\ x = y\quad s(x,y) = -1\ \mathsf{ak}\ x \neq y$

Príklad globálneho zarovnania

CATGTCGTA vs CAGTCCTAGA

$$A[i,j] = \max \left\{ egin{array}{l} A[i-1,j-1] + s(x_i,y_j), \ A[i-1,j] - 1, \ A[i,j-1] - 1 \end{array}
ight.$$

Príklad globálneho zarovnania

CATGTCGTA vs CAGTCCTAGA

$$A[i,j] = \max \left\{ egin{array}{l} A[i-1,j-1] + s(x_i,y_j), \ A[i-1,j] - 1, \ A[i,j-1] - 1 \end{array}
ight.$$

◆ロト ◆個 ト ◆ 重 ト ◆ 重 ・ 夕 Q ○

Ako získať zarovnanie?

CA-GTCCTAGA CATGTCGT--A

Časová zložitosť celého algoritmu O(nm)

Dynamické programovanie pre lokálne zarovnanie (Smith, Waterman 1981)

Podproblém: A[i,j]: najvyššie skóre lokálneho zarovnania reťazcov $x_1x_2...x_i$ a $y_1y_2...y_j$, ktoré obsahuje bázy x_i a y_j , alebo je prázdne.

Jeden z reťazcov dĺžky 0: prázdne zarovnanie A[0,j] = A[i,0] = 0

Všeobecný prípad, i > 0, j > 0:

- ullet ak x_i a y_j sú zarovnané $A[i,j] = A[i-1,j-1] + s(x_i,y_j)$
- ullet ak x_i je zarovnané s medzerou A[i,j] = A[i-1,j]-1
- ak y_i je zarovnané s medzerou A[i,j] = A[i,j-1] 1
- ullet ak x_i a y_j nie sú časťou zarovnania s kladným skóre A[i,j]=0

Dynamické programovanie pre lokálne zarovnanie (Smith, Waterman 1981)

Podproblém: A[i,j]: najvyššie skóre lokálneho zarovnania reťazcov $x_1x_2...x_i$ a $y_1y_2...y_j$, ktoré obsahuje bázy x_i a y_j , alebo je prázdne.

Všeobecný prípad, i > 0, j > 0:

- ullet ak x_i a y_j sú zarovnané $A[i,j] = A[i-1,j-1] + s(x_i,y_j)$
- ullet ak x_i je zarovnané s medzerou A[i,j] = A[i-1,j]-1
- ullet ak y_j je zarovnané s medzerou A[i,j]=A[i,j-1]-1
- ullet ak x_i a y_j nie sú časťou zarovnania s kladným skóre A[i,j]=0

Rekurencia:

$$A[i,j] = \max \left\{ egin{array}{l} 0, \ A[i-1,j-1] + s(x_i,y_j), \ A[i-1,j] - 1, \ A[i,j-1] - 1 \end{array}
ight.$$

Príklad lokálneho zarovnania

CATGTCGTA CA-GTCCTA

Časová zložitosť celého algoritmu O(nm)

Zložitejšie skórovanie

Problémy +1, -1 skórovania:

- Je skutočne jedna nezhoda alebo medzera až taká zlá v porovnaní s jednou zhodou?
- Čo urobíme pre zarovnávanie proteínov?
 (20 prvková abeceda ≈ 200 parametrov)

Úloha skórovacej schémy:

- Chceme vedieť rozlíšiť lepšie zarovnania od horších zarovnaní:
 - Ktoré usporiadania pomlčiek dávajú väčší zmysel
- Chceme vedieť, či dané zarovnanie má biologický význam:
 - lde o homológy, alebo sú zarovnané len náhodou?

Povedali sme si:

- Globálne a lokálne zarovania
- Needlemanov-Wunschov a Smithov-Watermanov algoritmus

Pokračovanie prednášky

https://youtu.be/OGkhkRiqbl4?feature=shared&t=2227

- Skórovanie zarovnaní pomocou porovnávania modelov
- Proteínové BLOSUM matice
- Afínne skórovanie medzier

Metódy v bioinformatike CB #3 Zarovnávanie sekvencií

Jana Černíková

FMFI UK

10/10/2024

Globálne zarovnanie

Uvažujme skórovanie zhoda +3, nezhoda -1, medzera -2 Reťazce TAACGG a CACACT

$$A[i,j] = \max \begin{cases} A[i-1,j-1] + s(x_i, y_j), \\ A[i-1,j] - 2, \\ A[i,j-1] - 2 \end{cases}$$

$$s(x_i, y_j) = 3 \text{ ak } x_i = y_j,$$

$$s(x_i, y_j) = -1 \text{ ak } x_i \neq y_j$$

$$A[i,0] = -2i$$
$$A[0,j] = -2j$$

Globálne zarovnanie

		С	Α	С	Α	C	Т
	0	-2	-4	-6	-8	-10	-12
Т	-2						
Α	-4						
Α	-6						
С	-8						
G	-10						
G	-12						

Globálne zrovnanie

C A C A C 0 0 -2 -4 -6 -8 -10 1 T -2 -1 -3 -5 -7 -9 2 A -4 -3 2 0 -2 -4	6	5	4	3	2	1	0		
0 0 -2 -4 -6 -8 -10 1 T -2 -1 -3 -5 -7 -9 2 A -4 -3 2 0 -2 -4	Т	С	Α	С	Α	С			
1 T -2 -1 -3 -5 -7 -9 2 A -4 -3 2 0 -2 -4	-12	-10	-8	-6	-4	-2	0		0
2 A -4 -3 2 0 -2 -4	-7	-9	-7	-5	-3	-1	-2	Т	1
	-6	-4	-2	0	2	-3	-4	Α	2
3 A -6 -5 0 1 3 1	-1	1	3	1	0	-5	-6	Α	3
4 C -8 -3 -2 3 1 6	4	6	1	3	-2	-3	-8	С	4
5 G -10 -5 -4 1 2 4	5	4	2	1	-4	-5	-10	G	5
6 G -12 -7 -6 -1 0 2	3	2	0	-1	-6	-7	-12	G	6

CACACT-

TA-ACGG

alebo

CACAC-T

TA-ACGG

Lokálne zarovnanie

Uvažujme skórovanie zhoda +3, nezhoda -1, medzera -2 Reťazce TAACGG a CACACT

$$A[i,j] = \max \left\{ egin{array}{l} 0, \ A[i-1,j-1] + s(x_i,y_j), \ A[i-1,j] - 2, \ A[i,j-1] - 2 \end{array}
ight.$$

$$s(x_i, y_j) = 3$$
 ak $x_i = y_j$,
 $s(x_i, y_j) = -1$ ak $x_i \neq y_j$

$$A[i,0] = 0,$$

$$A[0,j] = 0$$

Lokálne zarovnanie

		С	Α	С	Α	С	Т
	0	0	0	0	0	0	0
Т	0						
Α	0						
Α	0						
С	0						
G	0						
G	0						

Lokálne zarovnanie

		0	1	2	3	4	5	6
			С	Α	С	Α	С	Т
0		0	0	0	0	0	0	0
1	T	0	0	0	0	0	0	3
2	Α	0	0	3	1	3	1	1
3	Α	0	0	3	2	4	2	0
4	С	0	3	1	6	4	7	5
5	G	0	1	2	4	5	5	6
6	G	0	0	0	2	3	4	4

 ACAC

A-AC

Mitochondriálny genóm človeka vs. ryba Danio rerio

A: Homo_sapiens/Homo_sapiens.NGBI36.52.dna_rm.chromosome.MT.Fererse alignment

B: Danio_rerio/Danio_rerio.ZFISH7.52.dna_rm.chromosome.MT.TaForward alignment

Mitochondriálny genóm človeka vs. Drosophila melanogaster

- A: Homo_sapiens/Homo_sapiens.NOBI36.52.dna_rm.chromosome.MT.Peyerse alignment
- B: Drosophila_melanogaster/Drosophila_melanogaster.BDGP5.4.5573732_Alignment

Mitochondriálny genóm človeka vs. to isté

A: Homo_sapiens/Homo_sapiens.NOBI36.52.dna_rm.chromosome.MT.Regerse alignment B: Homo_sapiens/Homo_sapiens.NCBI36.52.dna_rm.chromosome.MT.Regrand alignment

Drosophila mRNA Oaz zinc finger vs. genomický usek (časť chr2R)

Drosophila proteín Escargot zinc finger vs. to isté

Zhluk génov PRAME v človeku vs. to isté

