# Implementacja sztucznej konwolucyjnej sieci neuronowej od zera

MATEUSZ KRAWCZYK

Promotor: Marcin Kowalik

27.01.2025

# SPIS TREŚCI

- Cel pracy
- CNN i jej operacje
- Ekstrakcja cech
- Klasyfikacja
- Tanh- nieliniowa funkcja aktywacji
- Implementacja CNN od zera
- Biblioteki (Keras)
- Podsumowanie
- Porównanie wyników

#### CEL PRACY

#### Motywacja

CNN odgrywają coraz ważniejszą rolę w wielu dziedzinach, takich jak:

- rozpoznawanie obrazów
- analiza danych medycznych
- autonomiczne pojazdy

#### Cel pracy

- implementacja CNN from scratch
- szczegółowe omówienie architektury CNN oraz kluczowych operacji
- zrozumienie mechanizmów
   działania poszczególnych warstw
   oraz algorytmu propagacji
   wstecznej
- porównanie z istniejącymi rozwiązaniami

#### Dlaczego to ważne?

- rosnące zapotrzebowanie na tworzenie bardziej zoptymalizowanych i zrozumiałych modeli Al
- Ważne jest, aby modele te były zrozumiałe dla twórców i umożliwiały kontrolę nad poszczególnymi etapami uczenia





#### CNN I JEJ OPERACJE

#### Konwolucyjne sieci neuronowe (CNN):

- szczególnie skuteczne w zadaniach związanych z przetwarzaniem obrazów.
- potrafią automatycznie uczyć się hierarchii cech, od prostych (np. krawędzi) do złożonych (np. kształtów obiektów)

#### Konwolucja:

Operacja matematyczna, która tworzy **mapę cech** poprzez przesuwanie filtru po obrazie wejściowym. Filtr ten mnoży swoje wagi z wartościami pikseli w danym obszarze obrazu, tworząc pojedynczy punkt na mapie cech



# EKSTRAKCJA CECH (FEATURE EXTRACTION)



Input

Na początku sieć otrzymuje obraz, który jest reprezentowany jako macierz pikseli.

# EKSTRAKCJA CECH (FEATURE EXTRACTION)



#### Convolution

Następnie na obraz nakładany jest filtr (jądro), który przesuwa się po obrazie, wykonując operację konwolucji. To pozwala wydobyć cechy, takie jak krawędzie, kolory czy tekstury.

# EKSTRAKCJA CECH (FEATURE EXTRACTION)



#### **Pooling**

Po konwolucji następuje warstwa pooling (average pooling), która zmniejsza rozmiar mapy cech, zachowując najważniejsze informacje. To redukuje liczbę parametrów i obliczeń, a także pomaga w zwiększeniu odporności na zakłócenia.

# KLASYFIKACJA



**Fully Connected** 

Po ekstrakcji cech, uzyskane dane są spłaszczane i przesyłane do warstwy w pełni połączonej (fully connected), która łączy wszystkie neurony. Ta warstwa uczy się, jak łączyć cechy w celu klasyfikacji.

#### KLASYFIKACJA



#### **Output**

Na końcu znajduje się warstwa wyjściowa (output), która generuje prawdopodobieństwa dla różnych klas, wskazując, do której kategorii należy analizowany obraz.

#### CNN I JEJ OPERACJE

# Pooling (AVERAGE POOLING):

AveragePooling redukuje rozmiar map cech poprzez obliczenie średniej wartości w oknie. Pomaga w uogólnieniu cech i zmniejszeniu czułości drobne zakłócenia danych wejściowych. Sprawdza się szczególnie w danych o jednorodnym tle, takich jak MNIST

# Average Pooling

| 2  | 3  | 1  | 4  |       |
|----|----|----|----|-------|
| 5  | 6  | 7  | 8  | <br>4 |
| 9  | 10 | 11 | 12 | 11.5  |
| 13 | 14 | 15 | 16 |       |

Take average of all values in the window

#### TANH - NIELINIOWA FUNKCJA AKTYWACJI

#### Dlaczego używa się funkcji aktywacji?

- Tanh pozwala przenieść wartości na przedział od -1 do 1.
- Dzięki tej właściwości lepiej sprawdza się w modelach, gdzie istotne są zarówno dodatnie, jak i ujemne wartości aktywacji.
- Tanh znajduje zastosowanie w sieciach o mniejszej liczbie warstw ukrytych, gdzie stabilność propagacji gradientu jest wystarczająca dla skutecznego uczenia



#### IMPLEMENTACJA CNN OD ZERA

#### Opis implementacji od podstaw

- W mojej pracy stworzyłem konwolucyjną sieć neuronową od podstaw, implementując kluczowe operacje: konwolucję i pooling, a także funkcje aktywacji.
- Wykorzystałem bibliotekę NumPy, co pozwoliło na efektywne operacje na tablicach bez użycia złożonych pętli.

#### Kluczowe elementy

- Konwolucja
- Pooling (AVERAGEPOOL)
- Funkcje aktywacji- Tanh
- Optymalizacja (ograniczanie operacji for na rzecz NumPy)

```
# ===== FORWARD =====
self.Conv1.forward(M, 0, 1)
self.T[0].forward(self.Conv1.output)
self.AP1.forward(self.T[0].output, 2, 2)
self.Conv2.forward(self.AP1.output, 0, 1)
self.T[1].forward(self.Conv2.output)
self.AP2.forward(self.T[1].output, 2, 2)
self.Conv3.forward(self.AP2.output, 2, 3)
self.T[2].forward(self.Conv3.output)
self.F.forward(self.T[2].output)
x = self.F.output
self.dense1.forward(x)
self.T[3].forward(self.dense1.output)
self.dense2.forward(self.T[3].output)
loss = loss_activation.forward(self.dense2.output, C)
predictions = np.argmax(loss activation.output, axis=1)
if C.ndim == 2:
    C = np.argmax(C, axis=1)
accuracy = np.mean(predictions == C)
# ===== BACKWARD =====
loss activation.backward(loss activation.output, C)
self.dense2.backward(loss activation.dinputs)
self.T[3].backward(self.dense2.dinputs)
self.dense1.backward(self.T[3].dinputs)
self.F.backward(self.dense1.dinputs)
self.T[2].backward(self.F.dinputs)
self.Conv3.backward(self.T[2].dinputs)
self.AP2.backward(self.Conv3.dinputs)
self.T[1].backward(self.AP2.dinputs)
self.Conv2.backward(self.T[1].dinputs)
self.AP1.backward(self.Conv2.dinputs)
self.T[0].backward(self.AP1.dinputs)
self.Conv1.backward(self.T[0].dinputs)
```

#### IMPLEMENTACJA CNN OD ZERA

#### **Backpropagation**

Algorytm ten pozwala na obliczenie gradientów funkcji błędu względem wag i biasów, co umożliwia ich aktualizację w celu zmniejszenia błędu.

#### Kluczowe elementy:

- Propagacja gradientów (od warstwy wyjsciowej w tył)
- Obliczanie gradientów (funkcji aktywacji i straty, dzięki czemu dostosowałem wagi)
- Dostosowanie wag i biasów
- Wykorzystanie bibliotek (NumPy- operacje na tablicach)

## MYLENET - WYKRES DOKŁADNOŚCI ORAZ FUNKCJI STRATY



## KERAS - WYKRES DOKŁADNOŚCI ORAZ FUNKCJI STRATY



Proces optymalizacji w Keras przebiega regularnie i dynamicznie, a wartości straty zmniejszają się równomiernie, co wynika z lepszego zarządzania współczynnikiem uczenia i efektywniejszego obliczania operacji macierzowych, efektywniejszego użycia pamięci

#### MYLENET - PRZYKŁADOWE PREDYKCJE SIECI



Pomyłki w obszarze cyfr o różnych kształtach, takich jak 6 czy 4. Niektóre z tych błędów wynikają ze specyfiki pisma ręcznego: w zbiorze MNIST cyfry bywają "zamazane" albo zapisane w nietypowy sposób

#### KERAS - PRZYKŁADOWE PREDYKCJE SIECI



Zdarzają się wciąż wpadki przy trudno czytelnych przykładach, ale sieć Keras wydaje się bardziej odporna na kształty cyfr mylonych przez MyLeNet.

## MYLENET - MACIERZ BŁĘDU

Dobrze rozpoznaje cyfry 0, 1 i 7, co widać po wysokich wartościach po przekątnej.

Największe trudności model ma z cyframi 5, 4 i 8, które częściej są błędnie klasyfikowane.

Błędy między cyframi często wynikają z podobieństw w ich kształtach.



#### KERAS - MACIERZ BŁĘDU

Model najlepiej rozpoznaje cyfry 1, 2 i 3.
Największe trudności sprawia cyfra 5.
Cyfra 7 również sprawia pewne problemy,
zwłaszcza w przypadku mylenia jej z cyfrą 2 (69
przypadków). To częstszy problem w Keras niż w
MyLeNet, gdzie takich błędów było tylko 37.



## PORÓWNANIE WYNIKÓW SIECI MYLENET I KERAS

| Parametr      | MyLeNet    | Keras    |
|---------------|------------|----------|
| Test Accuracy | 0.906      | 0.945    |
| Test Loss     | 0.369      | 0.190    |
| Czas treningu | 168.84 sec | 6.14 sec |

#### Trening przy:

- epochs = 10
- batch\_size = 128
- iteracje/ steps\_per\_epoch = 10

Różnice w końcowych wynikach mogą wynikać z bardziej udoskonalonego algorytmu optymalizacyjnego w Keras, który skuteczniej zarządza gradientami oraz stabilnością aktualizacji.

# BIBLIOTEKI (KERAS)

#### Ręczna implementacja

- Wymagała <u>szczegółowej</u> implementacji kluczowych operacji.
- Pozwoliła na głębsze zrozumienie działania poszczególnych komponentów sieci neuronowej.
- Była **czasochłonna** i wymagała wielu testów i poprawek.

#### Keras

- Dostęp do zaawansowanych funkcji
- Optymalizacja obliczeń
- Łatwość implementacji

#### PODSUMOWANIE

#### Wnioski

- MyLeNet osiągnął dokładność 90,6%, co jest dobrym wynikiem przy implementacji od podstaw.
- Sieć oparta na Keras osiągnęła 94,5%, co wynika z zaawansowanej optymalizacji w bibliotekach
- Ręczna implementacja pozwoliła na dogłębne zrozumienie mechanizmów działania CNN.

#### Propozycje usprawnień

- **Batch Normalization** (Przyspiesza uczenie poprzez stabilizację wartości gradientów.)
- **Dropout** (Wymusza, aby sieć nauczyła się bardziej uniwersalnych cech, zamiast polegać na kilku wybranych neuronach)
- Przeniesienie na GPU z użyciem np. CuPy

# Dziękuję za uwagę!

MATEUSZ KRAWCZYK