高雄中學 106 學年度第2 學期 高二第2次期中考數學科 試題卷 (自然組)

命題範圍:高二數學輔教 第13章 矩陣

說明:請作答在答案卷上,須將答案填入正確欄位,否則不予計分。

- 一、多重選:每題至少有一個正確選項。每一題完全答對得8分,只答錯一個選項者得5分,只答錯兩個選 項者得2分,其餘情形不給分。共32分。
 - 1. $a \cdot b \cdot c \cdot x \cdot y \cdot z$ 為實數 , $A = \begin{bmatrix} ax & bx & cx \\ ay & by & cy \\ az & bz & cz \end{bmatrix}$, 則下列選項何者必定與 A 相等 ?

$$(1) \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad (2) \begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} a & b & c \end{bmatrix} \qquad (3) \begin{bmatrix} x & x & x \\ y & y & y \\ z & z & z \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$

- 2. 設 $A \cdot B \cdot C$ 皆為 2 階方陣,I 是 2 階乘法單位方陣,O 是 2 階零方陣,則下列選項何者必定正確?

 - (4) 若 AB = I, 則 $(A + B)(A B) = A^2 B^2$ (5) $(A^T)^{-1} = (A^{-1})^T$
- 3. $A = [a_{ij}]_{3\times3}$, 其中 $a_{ij} = i^2 i \times j$; $B = [b_{ij}]_{3\times3}$,其中 $b_{ij} = i \times j j^2$; $C = [c_{ij}]_{3\times3} = A + B$; $D = [d_{ij}]_{3\times3} = A B$;下列選項何 者正確?
 - $(1) \quad B = A^T$ $(2)A \cdot B \cdot C \cdot D$ 之主對角線上(即i = j處)所有元素皆為 0 (3)B 為對稱矩陣 (4)C 為反對稱矩陣 (5) D 為反對稱矩陣
- 4. 設 $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, 坐標平面上若點 P 經 M 線性變換後得到的點仍為 P,則稱 P 為在 M 作用之下的不動點。下列選項何 者可使得在M作用之下,除了坐標原點O(0,0)之外,仍有其他不動點存在?

(1)
$$M = \begin{bmatrix} \cos 20^{\circ} & \sin 20^{\circ} \\ \sin 20^{\circ} & -\cos 20^{\circ} \end{bmatrix}$$
 (2) $M = \begin{bmatrix} \cos 20^{\circ} & -\sin 20^{\circ} \\ \sin 20^{\circ} & \cos 20^{\circ} \end{bmatrix}$ (3) $M = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$

(4)
$$M = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix}$$
 (5) $M = \begin{bmatrix} 0.2 & 0.3 \\ 0.8 & 0.7 \end{bmatrix}$

二、填充題:每題完全答對才給分,依下列配分表計分。共60分。

答對格數	1	2	3	4	5	6	7	8	9	10	11
總得分	8	15	22	28	34	39	44	49	53	57	60

1.
$$A = \begin{bmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
, $B = \begin{bmatrix} 14 & 18 & 22 \\ 26 & 30 & 34 \end{bmatrix}$,若矩陣 $X \cdot Y$ 满足 $\begin{cases} X + 2Y = 9A \\ 4X - Y = 9B \end{cases}$,則 $Y = \underline{\qquad (A)}$

2. 設
$$A = \begin{bmatrix} 2 & -3 & 1 \\ a & 1 & 5 \\ 1 & 2a & 8 \end{bmatrix}$$
, 若 A 不存在乘法反方陣,則 $a = \underline{\quad (B)}$

3. 已知二階方陣
$$A$$
 滿足 $A^2 = A^5 = \begin{bmatrix} -2 & 1 \\ -3 & 1 \end{bmatrix}$,則 $A = \underline{\quad (C)}$

4.
$$A = \begin{bmatrix} \sqrt{3} & 1 \\ -1 & \sqrt{3} \end{bmatrix}$$
,若 $A^9 = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,則 $b = \underline{\qquad (D)}$

5. 已知矩陣
$$\begin{bmatrix} a & b & 1 & 2 \\ c & d & 3 & 4 \end{bmatrix}$$
經過一系列列運算後可得 $\begin{bmatrix} 1 & 0 & 5 & 3 \\ 0 & 1 & 2 & 1 \end{bmatrix}$,則矩陣 $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ = ___(E)___

6. 小強家附近有A、B、C、D四間早餐店,其中A、B只賣中式早餐,C、D只賣西式早餐,<u>小強</u>每天都從這四間早餐店之中選一間店吃早餐,其原則為:若某一天在某間店吃早餐,則隔天必須從其他三間店之中隨機(每間店被選中的機會均等)抽選一間店吃早餐。已知<u>小強</u>於某一週的星期一在A早餐店吃早餐,則依此推算該週的星期四<u>小強</u>吃西式早餐的機率為 (F)

7. 設
$$A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{100 \times 100} = \begin{bmatrix} 1 & -5 & 11 & -19 & \cdots \\ -3 & 9 & -17 & \cdots \\ 7 & -15 & \cdots \\ -13 & \cdots \\ \vdots \end{bmatrix}$$
 $(a_{i,j}$ 表示第 i 列第 j 行位置的元素),依此規則類推,則 $a_{5,6} = \underline{\quad (G)}$

8. 坐標平面上已知直線
$$L: y = mx$$
 經 $\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ 線性變換後仍為直線 L ,則 $m = \underline{\quad (H)}$

9.
$$x \cdot y \cdot z \cdot p$$
 皆為實數, $A = \begin{bmatrix} x & y \\ z & 2018 \end{bmatrix}$,已知 $A = PBP^{-1}$,其中 $P = \begin{bmatrix} 1 & 673 \\ 3 & p \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$,若 $A^{107} + A^{2018} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,則 $d = \underline{\qquad (I)}$

10. 設 L_1 : $y = (\tan 67^\circ)x$, L_2 : $y = (\tan 37^\circ)x$,點 $P(5,\sqrt{3})$ 對 L_1 的對稱點為 Q, Q 對 L_2 的對稱點為 R,求點 R 的坐標為 (J)

11.
$$A = \begin{bmatrix} \frac{4}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{4}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{4}{3} \end{bmatrix}$$
, 設 $A^n = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$, 其中 n 為正整數,則 $a = \underline{\quad (K)}$ (以 n 表示)

三、計算證明題:請完整寫出推證過程,若過程不完整則部份給分。共8分。

1. 有一個矩陣
$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$
,經由以下列運算之後(每一步皆為一次基本列運算),可化為 $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$:

【第 1 步】:將 A 的第一列與第二列對調得 A_1 ;【第 2 步】:將 A_1 的第三列加上"第一列的 3 倍"成為新的第三列而得 A_2 ;【第 3 步】:將 A_3 的第一列加上"第二列的(-2)倍"成為新的第一列而得 A_3 ;【第 4 步】:將 A_3 的第三列除以(-2)得到 I。

試問:(1)方程組
$$\begin{cases} a_1x + b_1y + c_1z = 1 \\ a_2x + b_2y + c_2z = 3 \\ a_3x + b_3y + c_3z = 5 \end{cases}$$
的解 $(x, y, z) = ?$ (4分) (2) 原矩陣
$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} = ?$$
 (4分)

喜一	白	然組數學]	Page	4
		∴ 次日本X 子 ■	age	┰

To:____ 師,請指正。

高雄中學 106 學年度第 2 學期 高二第 2 次期中考數學科 答案卷 (自然組) << 參考解答>> 一、多重選:每題至少有一個正確選項。每一題完全答對得8分,只答錯一個選項者得5分,只答錯兩個選項者得2分,其餘情形不給分。共32分。

1. 234 2. 43 5. 24 4. 133	1.	234		45		24	4.	135
---	----	-----	--	----	--	----	----	-----

二、填充題:每題完全答對才給分,依下列配分表計分。共60分。

答對格數	1	2	3	4	5	6	7	8	9	10	11
總得分	8	15	22	28	34	39	44	49	53	57	60

(A)	$\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$	(B)	0 或 -2	(C)	$\begin{bmatrix} 1 & -1 \\ 3 & -2 \end{bmatrix}$	(D)	-512
(E)	$\begin{bmatrix} 3 & -7 \\ 5 & -11 \end{bmatrix}$	(F)	$\frac{14}{27}$	(G)	-101	(H)	3
(I)	2019	(J)	$(4,-2\sqrt{3})$	(K)	$\frac{2^n+2}{3}$		

三、計算證明題:請完整寫出計算證明過程,若過程不完整則部份給分。共8分。

$$\begin{bmatrix} 1. & (1) & (1,1,-7) & (2) & \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ -3 & -6 & -2 \end{bmatrix} \\ [\& -1] & \begin{bmatrix} a_1 & b_1 & c_1 & 1 \\ a_2 & b_2 & c_2 & 3 \\ a_3 & b_3 & c_3 & 5 \end{bmatrix} \underbrace{\begin{bmatrix} 11 \\ a_3 & b_1 & c_1 \\ a_3 & b_3 & c_3 \end{bmatrix}}_{a & b_1 & c_1 \\ a_1 & b_1 & c_1 \\ a_2 + a_2 & 3b_2 + b_3 & 3c_2 + c_3 \\ -2 & -2 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, & & & & & & & & & & & & & & \\ \# A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ -3 & -6 & -2 \end{bmatrix} & & & & & & & & & & \\ \# A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} & & & & & & & & & \\ \# A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix} & & & & & & & & \\ \# A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix} & & & & & & & & \\ \# A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix} & & & & & & & \\ \# A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ -3 & -6 & -2 \end{bmatrix} & & & & & & & \\ \# A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ -3 & -6 & -2 \end{bmatrix} & & & & & & & \\ \# A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ -3 & -6 & -2 \end{bmatrix} & & & & & & & \\ \# A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ -3 & -6 & -2 \end{bmatrix} & & & & & & & \\ \# A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ -3 & -6 & -2 \end{bmatrix} & & & & & & & \\ \# A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ -3 & -6 & -2 \end{bmatrix} & & & & & & & \\ \# A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ -3 & -6 & -2 \end{bmatrix} & & & & & & \\ \# A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ -3 & -6 & -2 \end{bmatrix} & & & & & & \\ \# A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ -3 & -6 & -2 \end{bmatrix} & & & & & \\ \# A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ -3 & -6 & -2 \end{bmatrix} & & & & & \\ \# A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ -3 & -6 & -2 \end{bmatrix} & & & & \\ \# A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ -3 & -6 & -2 \end{bmatrix} & & & & \\ \# A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ -3 & -6 & -2 \end{bmatrix} & & & & \\ \# A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ -3 & -6 & -2 \end{bmatrix} & & & & \\ \# A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ -3 & -6 & -2 \end{bmatrix} & & & & \\ \# A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ -3 & -6 & -2 \end{bmatrix} & & & \\ \# A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ -3 & -6 & -2 \end{bmatrix} & & & \\ \# A = \begin{bmatrix} 0$$