1 First- and second-order features

We present in Tables A.1 and A.2 the formal definition of first- and second-order features. The content of such tables adopt the following notation:

- X is a set of N_p pixel in a ROI;
- S(i) is the first order histogram of the ROI using N_g discrete intensity levels, equally spaced from 0 with a defined width of 0.1;
- $s(i) = \frac{S(i)}{N_p}$ is the normalized first order histogram;
- V_{pixel} is the volume of a pixel in mm;
- X_{10} is the 10^{th} percentile of X;
- X_{90} is the 90^{th} percentile of X;
- X_{10-90} is the image array with gray levels in between, or equal to the 10^{th} and 90^{th} percentile of X;
- \overline{X} is the mean value of the image array;
- P(i,j) co-occurrence matrix with a defined distance $(\delta=1)$ and angle $(\theta=0)$;
- $p(i,j) = \frac{P(i,j)}{\sum P(i,j)}$ is the normalized co-occurence matrix;
- $p_x(i) = \sum_{j=1}^{N_g} P(i,j)$ and $p_y(i) = \sum_{i=1}^{N_g} P(i,j)$ are the marginal probabilities per row and per column, respectively;
- μ_x and μ_y are the mean grey level intensities, defined as Joined Average, of p_x and p_y respectively. If P(i,j) is symmetrical $p_x = p_y$;
- σ_x and σ_y are the standard deviations of p_x and p_y respectively;
- $p_{x+y}(k) = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p(i,j)$, where i+j=k, and $k=2,3,..,2N_g$;
- $p_{x-y}(k) = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p(i,j)$, where |i-j| = k, and $k = 0, 1, ..., N_g 1$;
- HX, HY and HXY are the entropy of p_x , p_y and p(i,j), respectively.
- $HXY1 = -\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p(i,j) \cdot \log[p_x(i)p_y(j)]$ is an auxiliary quantity;
- $HXY2 = -\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p_x(i) p_y(j) \cdot \log[p_x(i)p_y(j)]$ is an auxiliary quantity;
- DA is the Difference Average used to obtain the Difference Variance;

Feature	Definition
Energy	
Entropy	$-\sum_{i=1}^{N_g} s(i) \cdot \log[s(i)], \text{ for } s(i) > 0$
Minimum	$\mid min(X)$
Maximum	$\mid max(X)$
Mean	$ \frac{1}{N_p} \sum_{i=1}^{N_p} X(i) $
Median	median grey level intensity
Interquartile Range	$ X_{75} - X_{25} $
Range	max(X) - min(X)
Mean Absolute Deviation	$\frac{1}{N_p} \cdot \sum_{i=1}^{N_p} X(i) - \overline{X} $
Robust Mean Absolute Deviation	$\frac{1}{N_{10-90}} \cdot \sum_{i=1}^{N_{10-90}} X_{10-90}(i) - \overline{X}_{10-90} $
Root Mean Squared	$\sqrt{\left(\frac{1}{N_p} \cdot \sum_{i=1}^{N_p} X(i)^2\right)}$
Skewness	$ = \frac{\frac{1}{N_p} \cdot \sum_{i=1}^{N_p} (X(i) - \overline{X})^3}{(\sqrt{\frac{1}{N_p}} \cdot \sum_{i=1}^{N_p} (X(i) - \overline{X})^2)^3} $
Kurtosis	$ \mid \frac{\frac{1}{N_p} \cdot \sum_{i=1}^{N_p} (X(i) - \overline{X})^4}{(\frac{1}{N_p} \cdot \sum_{i=1}^{N_p} (X(i) - \overline{X})^2)^2}$
Variance	$\frac{1}{N_p} \cdot \sum_{i=1}^{N_p} (X(i) - \overline{X})^2$
Uniformity	

Table A.1: Definition of the first-order statistical measures.

Feature	Definition
Sum Squares	
Sum Entropy	$\sum_{k=2}^{2N_g} p_{x+y}(k) \cdot \log[p_{x+y}(k)], \text{ for } p_{x+y}(k) > 0$
Sum Average	$ \sum_{k=2}^{2N_g} p_{x+y}(k)k $
Maximum Probability	$\mid \max(p(i,j))$
Joint Entropy	$\Big \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p(i,j) \log[p(i,j)]$, for $p(i,j) > 0$
Joint Energy	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (p(i,j))^2$
Joint Average	
Inverse Variance	$ \sum_{k=0}^{N_g-1} \frac{p_{x-y}(k)}{k^2} $
IDN (Inverse Difference Normalized)	
IDM (Inverse Difference Moment)	$ \sum_{k=0}^{N_g-1} \frac{p_{x-y}(k)}{1+k^2} $
ID (Inverse Difference)	
Difference Variance	$\sum_{k=0}^{N_g-1} (k - DA)^2 \cdot p_{x-y}(k)$
Difference Entropy	$\sum_{k=0}^{N_g-1} k \cdot p_{x-y}(k) \log[p_{x-y}(k)]$, for $p_{x-y}(k) > 0$
Difference Average	$ \sum_{k=0}^{N_g-1} k \cdot p_{x-y}(k) $
Correlation	$ \frac{\sum_{i=1}^{Ng} \sum_{j=1}^{Ng} p(i,j) \cdot i \cdot j - \mu_x \mu_y}{\sigma_x(i)\sigma_y(j)} $
Contrast	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (i-j)^2 \cdot p(i,j)$
Cluster Tendency	$ \frac{ \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (i+j-\mu_x-\mu_y)^2 \cdot p(i,j) }{} $
Cluster Shade	
Cluster Prominence	

Table A.2: Definition of the second-order statistical measures.