Name: nila ela

Email: 241901074@rajalakshmi.edu.in

Roll no: 241901074 Phone: 9025155667

Branch: REC

Department: I CSE (CS) FB

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 7_COD_Question 1

Attempt : 1
Total Mark : 10
Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Ravi is building a basic hash table to manage student roll numbers for quick lookup. He decides to use Linear Probing to handle collisions.

Implement a hash table using linear probing where:

The hash function is: index = roll_number % table_sizeOn collision, check subsequent indexes (i+1, i+2, ...) until an empty slot is found.

You need to:

Insert a list of n student roll numbers into the hash table. Print the final state of the hash table. If a slot is empty, print -1.

Input Format

The first line of the input contains two integers n and table_size, where n is the

number of roll numbers to be inserted, and table_size is the size of the hash table.

The second line contains n space-separated integers — the roll numbers to insert into the hash table.

Output Format

The output should print a single line with table_size space-separated integers representing the final state of the hash table after all insertions.

If any slot remains unoccupied, it should be represented as -1.

Refer to the sample output for formatting specifications.

Sample Test Case

```
Input: 4 7
50 700 76 85
Output: 700 50 85 -1 -1 -1 76
Answer
#include <stdio.h>
#define MAX 100
// You are using GCC
void initializeTable(int table[], int size) {
  for(int i=0;i<size;i++){
    table[i]=-1;
  }
}
int linearProbe(int table[], int size, int num) {
  int index=num%size;
  while(table[index]!=-1){
    index=(index+1)%size;
  }</pre>
```

```
24,190,1014
        return index;
     void insertIntoHashTable(int table[], int size, int arr[], int n) {
       for(int j=0;j<n;j++){
          int index=linearProbe(table,size,arr[j]);
          table[index]=arr[i];
       }
     }
     void printTable(int table[], int size) {
                                                                                      241901014
       for(int k=0;k<size;k++){
         printf("%d\n",table[k]);
     int main() {
       int n, table_size;
       scanf("%d %d", &n, &table_size);
       int arr[MAX];
       int table[MAX];
                                                         241901014
       for (int i = 0; i < n; i++)
          scanf("%d", &arr[i]);
       initializeTable(table, table_size);
       insertIntoHashTable(table, table_size, arr, n);
       printTable(table, table_size);
        return 0;
     }
     Status: Correct
                                                                              Marks: 10/10
24,190,1014
                                                         241901014
```

Name: nila ela

Email: 241901074@rajalakshmi.edu.in

Roll no: 241901074 Phone: 9025155667

Branch: REC

Department: I CSE (CS) FB

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 7_COD_Question 2

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Priya is developing a simple student management system. She wants to store roll numbers in a hash table using Linear Probing, and later search for specific roll numbers to check if they exist.

Implement a hash table using linear probing with the following operations:

Insert all roll numbers into the hash table. For a list of query roll numbers, print "Value x: Found" or "Value x: Not Found" depending on whether it exists in the table.

Input Format

The first line contains two integers, n and table_size — the number of roll numbers to insert and the size of the hash table.

The second line contains n space-separated integers — the roll numbers to insert.

The third line contains an integer q — the number of queries.

The fourth line contains q space-separated integers — the roll numbers to search for.

Output Format

The output print q lines — for each query value x, print: "Value x: Found" or "Value x: Not Found"

Refer to the sample output for formatting specifications.

Sample Test Case

Input: 5 10

```
21 31 41 51 61
    3
    31 60 51
    Output: Value 31: Found
    Value 60: Not Found
    Value 51: Found
    Answer
   #include <stdio.h>
    #define MAX 100
    void initializeTable(int table[], int size) {
      for (int i = 0; i < size; i++) {
         table[i] = 0:
      }
    }
    int linearProbe(int table[], int size, int num) {
int start_index = index;
```

```
while (table[index] != 0) {
    index = (index + 1) % size;
    if (index == start_index) {
       return -1;
  return index;
void insertIntoHashTable(int table[], int size, int arr[],int n) {
  for(int i=0;i<n;i++){
  int index=linearProbe(table,size,arr[i]);
  if (index != -1) {
    table[index] = arr[i];
}
int searchInHashTable(int table[], int size, int num) {
  int index = num % size;
  int start_index = index;
 while (table[index] != 0) {
    if (table[index] == num)
       return 1;
    index = (index + 1) % size;
    if (index == start_index)
       break:
  }
  return 0;
}
int main() {
  int n, table_size;
  scanf("%d %d", &n, &table_size);
  int arr[MAX], table[MAX];
```

```
24,190,1014
                                                 24,190,1014
for (int i = 0; i < n; i++)
  scanf("%d", &arr[i]);
initializeTable(table, table_size);
insertIntoHashTable(table, table_size, arr, n);
int q, x;
scanf("%d", &q);
for (int i = 0; i < q; i++) {
  scanf("%d", &x);
  if (searchInHashTable(table, table_size, x))
    printf("Value %d: Found\n", x);
                                                                              241901014
  else
    printf("Value %d: Not Found\n", x);
return 0;
```

241901074

Status: Correct

0A190101A

241901074

24,190,1014

Marks: 10/10

24,190,1014

241901014

241901014

24,190,1014

Name: nila ela

Email: 241901074@rajalakshmi.edu.in

Roll no: 241901074 Phone: 9025155667

Branch: REC

Department: I CSE (CS) FB

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 7_COD_Question 3

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

In a messaging application, users maintain a contact list with names and corresponding phone numbers. Develop a program to manage this contact list using a dictionary implemented with hashing.

The program allows users to add contacts, delete contacts, and check if a specific contact exists. Additionally, it provides an option to print the contact list in the order of insertion.

Input Format

The first line consists of an integer n, representing the number of contact pairs to be inserted.

Each of the next n lines consists of two strings separated by a space: the name of the contact (key) and the corresponding phone number (value).

The last line contains a string k, representing the contact to be checked or removed.

Output Format

If the given contact exists in the dictionary:

- 1. The first line prints "The given key is removed!" after removing it.
- 2. The next n 1 lines print the updated contact list in the format: "Key: X; Value: Y" where X represents the contact's name and Y represents the phone number.

If the given contact does not exist in the dictionary:

- 1. The first line prints "The given key is not found!"
- 2. The next n lines print the original contact list in the format: "Key: X; Value: Y" where X represents the contact's name and Y represents the phone number.

Refer to the sample outputs for the formatting specifications.

Sample Test Case

Input: 3 Alice 1234567890 Bob 9876543210 Charlie 4567890123 Bob

> Output: The given key is removed! Key: Alice; Value: 1234567890 Key: Charlie; Value: 4567890123

Answer

// You are using GCC #include <stdio.h> #include <stdlib.h> #include <string.h>

#define TABLE_SIZE 101

```
241901014
char phonor
    typedef struct Node {
      char phone[16];
      struct Node* next;
      struct Node* orderNext;
    } Node:
    Node* orderHead = NULL;
    Node* orderTail = NULL;
    Node* hashTable[TABLE_SIZE];
    int hashFunction(const char* str) {
    int hash = 0;
      for (int i = 0; str[i]; i++) {
        hash = (hash * 31 + str[i]) % TABLE_SIZE;
      return hash;
    }
    void insertContact(const char* name, const char* phone) {
      int index = hashFunction(name);
      Node* newNode = (Node*)malloc(sizeof(Node));
      strcpy(newNode->name, name);
      strcpy(newNode->phone, phone);
      newNode->next = hashTable[index];
      newNode->orderNext = NULL:
      hashTable[index] = newNode;
      if (!orderHead) {
        orderHead = orderTail = newNode;
      } else {
        orderTail->orderNext = newNode;
        orderTail = newNode;
                                                                           241901014
                                                  241901014
```

```
Node* searchContact(const char* name, Node** prev) {
     int index = hashFunction(name);
      Node* curr = hashTable[index];
      *prev = NULL;
      while (curr) {
        if (strcmp(curr->name, name) == 0) {
          return curr;
        *prev = curr;
        curr = curr->next;
      return NULL;
                                                                              241901014
int removeContact(const char* name) {
      int index = hashFunction(name);
      Node* prev = NULL;
      Node* curr = searchContact(name, &prev);
      if (!curr) return 0;
      if (prev) {
        prev->next = curr->next;
      } else {
        hashTable[index] = curr->next;
    Node* prevOrder = NULL;
      Node* currentOrder = orderHead;
      while (currentOrder) {
        if (strcmp(currentOrder->name, name) == 0) {
          if (prevOrder) {
             prevOrder->orderNext = currentOrder->orderNext;
          } else {
             orderHead = currentOrder->orderNext;
          if (orderTail == currentOrder) {
            orderTail = prevOrder;
                                                                              241901014
          free(curr);
          return 1;
```

```
prevOrder = currentOrder;
         currentOrder = currentOrder->orderNext;
      return 0;
    void displayContacts() {
      Node* curr = orderHead;
      while (curr) {
         printf("Key: %s; Value: %s\n", curr->name, curr->phone);
         curr = curr->orderNext;
      }
                          241901074
    int main() {
      int n;
      scanf("%d", &n);
      getchar();
      char name[11], phone[16];
      for (int i = 0; i < n; i++) {
         scanf("%s %s", name, phone);
         insertContact(name, phone);
      }
scanf("%s", checkKey);
      if (removeContact(checkKey)) {
         printf("The given key is removed!\n");
         displayContacts();
      } else {
         printf("The given key is not found!\n");
         displayContacts();
      }
      return 0;
Status : Correct
                                                                        Marks : 10/10
```

Name: nila ela

Email: 241901074@rajalakshmi.edu.in

Roll no: 241901074 Phone: 9025155667

Branch: REC

Department: I CSE (CS) FB

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 7_COD_Question 4

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Develop a program using hashing to manage a fruit contest where each fruit is assigned a unique name and a corresponding score. The program should allow the organizer to input the number of fruits and their names with scores.

Then, it should enable them to check if a specific fruit, identified by its name, is part of the contest. If the fruit is registered, the program should display its score; otherwise, it should indicate that it is not included in the contest.

Input Format

The first line consists of an integer N, representing the number of fruits in the contest.

The following N lines contain a string K and an integer V, separated by a space, representing the name and score of each fruit in the contest.

The last line consists of a string T, representing the name of the fruit to search for.

Output Format

If T exists in the dictionary, print "Key "T" exists in the dictionary.".

If T does not exist in the dictionary, print "Key "T" does not exist in the dictionary.".

Refer to the sample outputs for the formatting specifications.

Sample Test Case

```
Input: 2
banana 2
apple 1
Banana
```

Output: Key "Banana" does not exist in the dictionary.

Answer

```
int keyExists(KeyValuePair* dictionary, int size, const char* key)
{
   for (int i = 0; i < size; i++)
{
      if (strcmp(dictionary[i].key, key) == 0)
{
        return 1;
}
}
return 0;
}</pre>
```

Status: Correct Marks: 10/10

04100101

Name: nila ela

Email: 241901074@rajalakshmi.edu.in

Roll no: 241901074 Phone: 9025155667

Branch: REC

Department: I CSE (CS) FB

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 7_MCQ_Updated

Attempt : 1 Total Mark : 20 Marks Obtained : 0

Section 1: MCQ

1. What is the output of the mid-square method for a key k = 123 if the hash table size is 10 and you extract the middle two digits of k * k?

Answer

Status: Skipped Marks: 0/1

2. Which of the following best describes linear probing in hashing?

Answer

-

Status: - Marks: 0/1

. ^	0010	leted slot in linear probin	ng typically contain?	1901074			
200	Answer	2 ^A .	24,	JA.			
	- Status : -			Marks : 0/1			
	4. What is the initial position for a key k in a linear probing hash table?						
	Answer						
· ·	- Status : -	A190101A	A790107A	Marks : 0/1			
7,	5. Which folding method divides the key into equal parts, reverses some of them, and then adds all parts?						
	Answer						
	-						
	Status: -			Marks : 0/1			
24		nethod of hashing, the ha	ash function is typica				
24	6. In the division mas:	nethod of hashing, the ha	ash function is typica				
247	6. In the division mas: Answer - Status: -	lowing values of 'm' is re	24,100,101	Marks: 0/1			

Answer - Status: -	24190
- Status · -	
Status	Marks : 0/1
9. What is the worst-case time complexity for inserting an element hash table with linear probing?	ent in a
Answer	
- 101 ^A - 201 ^A - 20101 ^A - 20101 ^A - 20101 ^A - 20101 ^A	Marks : 0/1
10. What is the primary disadvantage of linear probing?	*
Answer	
Status: -	Marks : 0/1
11. Which situation causes clustering in linear probing?	27071
Answer	24700
Status: -	Marks : 0/1
12. What would be the result of folding 123456 into three parts a summing: (12 + 34 + 56)?	and
Answer Status: - 241901014 241901014	

	13. Which of these l distribution with sma	nashing methods may ro II keys?	esult in more uniform	1 190101 ^A	
200	Answer	24.	200	200	
	-				
	Status: -			Marks : 0/1	
	14. In division meth	od, if key = 125 and m =	13, what is the hash	index?	
	Answer				
	-101 th	2101A	0101h	1 2 a 101 A	
24	Status : -	24700	24790	Marks : 0/1	
V	15. Which of the following statements is TRUE regarding the folding method?				
	Answer				
	-				
	Status : -			Marks : 0/1	
	16. In the folding mo		1,00	14	
24.	16. In the folding mo	-	ary reason for reversi	14	
24	16. In the folding mealternate parts before Answer -	e addition?	1,00	ng 2 ^{A,19} 010 ⁷ ^A	
2.4	16. In the folding me alternate parts before	e addition?	1,00	14	
24	16. In the folding mealternate parts before Answer - Status: - 17. Which C statem probing?	e addition? ent is correct for finding	the next index in line	ng Angono ^{TA} Marks: 0/1 ear	
24.	16. In the folding mealternate parts before Answer - Status: - 17. Which C statem probing?	e addition?	24700	ng 2 ^{h190101^h Marks : 0/1}	

24	Status: - 18. In linear probir checked?	ng, if a collision occurs at	index i, what is the	Marks : 0/1 next index
	Answer			
	- Status : -			Marks : 0/1
241		ou calculate the mid-squact two middle digits and		
	Status : -			Marks : 0/1
	20. Which data str	ructure is primarily used i	n linear probing?	
	Answer			
24	Status: -	241901014	241901014	Marks : 0/1