1.Download the dataset 2.Load the dataset

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import seaborn as sns

import warnings

data=pd.read_csv("Churn_Modelling.csv",encoding='ISO-8859-1')
data.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Ва
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	838
2	3	15619304	Onio	502	France	Female	42	8	1590
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125!
4									•

Saved successfully!

	RowNumber	CustomerId	CreditScore	Age	Tenure	Bala
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090
4						•

data.dtypes

RowNumber	int64
CustomerId	int64
Surname	object
CreditScore	int64
Geography	object
Gender	object
Age	int64

Tenure	int64
Balance	float64
NumOfProducts	int64
HasCrCard	int64
IsActiveMember	int64
EstimatedSalary	float64
Exited	int64

dtype: object

3.Perform Below Visualizations Univariate Analysis ,Bi - Variate Analysis,Multi - Variate Analysis **

sns.histplot(data["Gender"],color='darkorange')

<matplotlib.axes._subplots.AxesSubplot at 0x7f3f675c9c50>

sns.countplot(data['Gender'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f3f6752bf50>

sns.barplot(x='Geography',y='Age',data=data)

<matplotlib.axes._subplots.AxesSubplot at 0x7f3f66ff5310>

sns.pointplot(x='Geography',y='Age',data=data,color='darkorange')

<matplotlib.axes._subplots.AxesSubplot at 0x7f3f66f68810>

sns.pairplot(data)

4. Perform descriptive statistics on the dataset

data.describe().T

		count	mean	std	min	25%		
	RowNumber	10000.0	5.000500e+03	2886.895680	1.00	2500.75	5.00050	
5.Handle the Missing values.								
	Cieuilocuie	10000.0	U.JUJZOOETUZ	⊎ 0.003∠⊎⊎	აას.სს	J04.UU	0.02000	
data.	isnull().sum().	sum()						
	0							
	Balance	10000.0	7.648589e+04	62397.405202	0.00	0.00	9.71985	
There	e is no missing va	alues in th	is dataset					
	110-0	40000 0	7 055000- 04	0 455040	0.00	0.00	4 00000	
	<pre>missing_values=data.isnull().sum() missing_values[missing_values>0]/len(data)*100</pre>							
	Series([], dtype: float64)							
	⊏xitea	ιυυυυ.υ	∠.∪ <i>31</i> ∪∪∪ e- ∪ I	U.4UZ109	υ.υυ	υ.υυ	บ.บบบบบ	

6. Find the outliers and replace the outliers

sns.boxplot(data['Age'],data=data)

7. Check for Categorical columns and perform encoding.

```
print(data['Gender'].unique())
print(data['Age'].unique())

['Female' 'Male']
  [42 41 39 43 44 50 29 27 31 24 34 25 35 45 58 32 38 46 36 33 40 51 61 49 37 19 66 56 26 21 55 75 22 30 28 65 48 52 57 73 47 54 72 20 67 79 62 53 80 59 68 23 60 70 63 64 18 82 69 74 71 76 77 88 85 84 78 81 92 83]
```

```
data['Gender'].value_counts()
data['Age'].value_counts()
           478
     37
           477
     38
     35
           474
     36
           456
     34
           447
     92
              2
     82
              1
     88
              1
     85
              1
     83
              1
     Name: Age, Length: 70, dtype: int64
```

one_hot_encoded_data = pd.get_dummies(data, columns = ['Age', 'Gender'])
print(one_hot_encoded_data)

		RowNumb	er Cust	omerId	Surnam	e Cred	ditScore	Geogra	phy	Tenure	\	
	0		1 15	634602	Hargrav	e	619	Frai	nce	2		
	1		2 15	647311	Hil	1	608	Spa	ain	1		
	2		3 15	619304	Oni	0	502	Frai	nce	8		
	3		4 15	701354	Bon	i	699	Frai	nce	1		
	4		5 15	737888	Mitchel	1	850	Spa	ain	2		
					•••	•	• • •			• • •		
Save	ed succ	essfully!		X	Obijiak		771	Frai		5 10		
		-			ohnston		516		France			
	9997			584532	Li		709	Frai		7		
	9998			682355	Sabbatin		772	Germa		3		
	9999	100	000 15	628319	Walke	r	792	Frai	nce	4		
		_	_									
		Balan		fProduct			[sActiveN		• • •	8	\	
	0		00		1	1		1	• • •			
	1	83807.			1	0		1	• • •			
	2	159660.			3	1		0	• • •			
	3		00		2	0		0	• • •	0		
	4	125510.	82		1	1		1	• • •	0		
	• • •		• •	• •	•	• • •		• • •	• • •	• • •		
	9995		00		2	1		0	• • •			
	9996	57369.			1	1		1	• • •			
	9997		00		1	0		1	• • •			
	9998	75075.			2	1		0		_		
	9999	130142.	79		1	1		0	• • •	0		
											_	
		Age_81	Age_82	Age_83	Age_84	Age_85				Gender_Fe		\
	0	0	0	0	0		9 (0		1	
	1	0	0	0	0		9 6		0		1	
	2	0	0	0	0		9 (0		1	
	3	0	0	0	0		9 (0		1	
	4	0	0	0	0	(9 6)	0		1	
		• • • •	• • • •	• • • •	• • • •	• • •			• •		• • •	
	9995	0	0	0	0	(0		0	
	9996	0	0	0	0		9 (0		0	
	9997	0	0	0	0		9 (0		1	
	9998	0	0	0	0	(9 ()	0		0	

	Gender_Male	
0	0	
1	0	
2	0	
3	0	
4	0	
	• • •	
9995	1	
9996	1	
9997	0	
9998	1	
9999	0	

[10000 rows x 84 columns]

8. Split the data into dependent and independent variables.

```
from sklearn.datasets import load_iris

from sklearn import preprocessing
data = load_iris()

X_data = data.data
target = data.target

Saved successfully! 
print( independent variable )
print(target)
```

```
Dependent variable
[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
 [4.7 3.2 1.3 0.2]
 [4.6 3.1 1.5 0.2]
 [5. 3.6 1.4 0.2]
 [5.4 3.9 1.7 0.4]
 [4.6 3.4 1.4 0.3]
 [5. 3.4 1.5 0.2]
 [4.4 2.9 1.4 0.2]
 [4.9 3.1 1.5 0.1]
 [5.4 3.7 1.5 0.2]
 [4.8 3.4 1.6 0.2]
 [4.8 3. 1.4 0.1]
 [4.3 3. 1.1 0.1]
 [5.8 4. 1.2 0.2]
 [5.7 4.4 1.5 0.4]
 [5.4 3.9 1.3 0.4]
 [5.1 3.5 1.4 0.3]
 [5.7 3.8 1.7 0.3]
 [5.1 3.8 1.5 0.3]
 [5.4 3.4 1.7 0.2]
 [5.1 3.7 1.5 0.4]
 [4.6 3.6 1. 0.2]
 [5.1 3.3 1.7 0.5]
 [4.8 3.4 1.9 0.2]
```

```
[5.
    3. 1.6 0.2]
[5.
    3.4 1.6 0.4]
[5.2 3.5 1.5 0.2]
[5.2 3.4 1.4 0.2]
[4.7 3.2 1.6 0.2]
[4.8 3.1 1.6 0.2]
[5.4 3.4 1.5 0.4]
[5.2 4.1 1.5 0.1]
[5.5 4.2 1.4 0.2]
[4.9 3.1 1.5 0.2]
[5.
    3.2 1.2 0.2]
[5.5 3.5 1.3 0.2]
[4.9 3.6 1.4 0.1]
[4.4 3. 1.3 0.2]
[5.1 3.4 1.5 0.2]
[5. 3.5 1.3 0.3]
[4.5 2.3 1.3 0.3]
[4.4 3.2 1.3 0.2]
ſ5.
    3.5 1.6 0.6]
[5.1 3.8 1.9 0.4]
[4.8 3. 1.4 0.3]
[5.1 3.8 1.6 0.2]
[4.6 3.2 1.4 0.2]
[5.3 3.7 1.5 0.2]
[5. 3.3 1.4 0.2]
[7. 3.2 4.7 1.4]
[6.4 3.2 4.5 1.5]
[6.9 3.1 4.9 1.5]
```

Saved successfully!

[6.3 3.3 4.7 1.6]

9. Scale the independent variable

standard = preprocessing.scale(target) print(standard)

```
[-1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487
 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487
 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487
 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487
 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487
 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487
 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487
 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487
 -1.22474487 -1.22474487
                                       0.
                                                    0.
                                                                0.
 0.
              0.
                          0.
                                       0.
                                                    0.
                                                                0.
                                       0.
 0.
                                                                0.
              0.
                          0.
                                                    0.
 0.
              0.
                           0.
                                                                0.
  0.
              0.
                                                    0.
                                                                0.
                           0.
                                       0.
  0.
              0.
                          0.
                                       0.
                                                    0.
                                                                0.
  0.
              0.
                           0.
                                       0.
                                                    0.
                                                                0.
 0.
                          0.
                                       0.
                                                    0.
              0.
                           0.
                                       0.
                                                    1.22474487
                                                                1.22474487
  1.22474487
              1.22474487
                          1.22474487
                                       1.22474487
                                                    1.22474487
                                                                1.22474487
              1,22474487
                          1.22474487
                                                    1.22474487
  1.22474487
                                       1.22474487
                                                                1,22474487
  1.22474487
              1.22474487
                          1.22474487
                                       1.22474487
                                                    1.22474487
                                                                1.22474487
```

```
1.224744871.224744871.224744871.224744871.224744871.224744871.224744871.224744871.224744871.224744871.224744871.224744871.224744871.224744871.224744871.224744871.224744871.224744871.224744871.224744871.224744871.224744871.224744871.224744871.224744871.224744871.224744871.224744871.22474487
```

10. Split the data into training and testing

```
import pandas as pd
from sklearn.linear model import LinearRegression
from sklearn.model_selection import train_test_split
df = pd.read_csv('Churn_Modelling.csv')
X = df.iloc[:, :-1]
y = df.iloc[:, -1]
X_train, X_test, y_train, y_test = train_test_split(
   X, y, test_size=0.05, random_state=0)
print(X_train, X_test, y_train, y_test)
    __ ._
              -- . .
                                                          ...
                                   . . .
    . . .
               . . .
                                                                   . . .
                                Ritchie
    8938
              8939
                    15722409
                                                 693
                                                                   Male
                                                         Spain
                                                                         47
    9291
              9292 15679804 Esquivel
                                                 636
                                                         France
                                                                   Male
                                                                         36
              492 15699005
    491
                                 Martin
                                                 710
                                                        France Female
    2021
               2022
                      15795519
                                 Vasiliev
                                                  716
                                                        Germany Female
                                                                         18
               4300
    4299
                      15711991 Chiawuotu
                                                  615
                                                         France
                                                                   Male
                                                                         30
          Tanuna Palanca NumOfProducts HasCrCard IsActiveMember \
                                        1
                                                  1
                                                                  1
Saved successfully!
                                        1
                                                  1
                                                                  0
              8 95386.82
                                        1
                                                  1
                                                                  1
    2398
    5906
               4 112079.58
                                        1
                                                  0
                                                                  0
                                        2
                                                  1
    2343
              5 163034.82
                                                                  1
                                      . . .
                                                 . . .
              8 107604.66
    8938
                                        1
                                                  1
                                                                  1
    9291
              5 117559.05
                                       2
                                                  1
                                                                  1
              2 156067.05
                                       1
    491
                                                  1
                                                                  1
    2021
              3 128743.80
                                       1
                                                  0
                                       2
    4299
              8
                      0.00
                                                  0
          EstimatedSalary
    9394
              192852.67
    898
                128702.10
    2398
                 75732.25
    5906
                89368.59
    2343
                135662.17
    . . .
    8938
                80149.27
    9291
                111573.30
    491
                 9983.88
    2021
                197322.13
    4299
                  3183.15
    [500 rows x 13 columns] 799
    1069
    8410
            0
    9436
            0
    5099
            1
```

```
4859
        0
3264
        0
9845
        0
2732
        1
Name: Exited, Length: 9500, dtype: int64 9394
898
2398
        0
5906
        0
2343
        0
8938
        0
9291
        0
491
        0
2021
        0
4299
Name: Exited, Length: 500, dtype: int64
```

Saved successfully!

Colab paid products - Cancel contracts here

✓ 0s completed at 7:04 PM

×