Posterior Pituitary gland hormones

Dr. Dulani Kottahachchi

Consultant Endocrinologist

Department of Physiology

Learning outcomes

Hormones secreted by the posterior pituitary

Synthesis amd secretion of ADH amd Oxytocin

Actions of ADH amd Oxytocin

Diabetes Insipidus

Hormones released by posterior pituitary

Oxytocin

Vasopressin

Both are neural hormones

Synthesized as larger precursor molecules

Synthesis of hormones

 In the cell bodies of the magnocellular neurons in the supraoptic and paraventricular nuclei of Hypothalamus

 Transported down the axons to the nerve endings in posterior lobe.

 When there's electrical activity at the nerve ending hormones are released by Ca dependant exocytosis

Figure 5.5 Neural components of the pituitary gland of humans.

Actions of oxytocin

- Contraction of smooth muscles of the uterus → enhance labor.
- Contraction of mammary gland myoepithelial cells of the alveoli & the ducts → Ejection of milk
- 3.Act on non pregnant uterus to facilitate sperm transport
- 4. In men → ejaculation (contraction of vas deferens propelling sperms towards urethra)

Remember: Oxytocin is concerned with releasing or ejection of milk, while prolactin is concerned with synthesis & production of milk.

milk-ejection reflex

- Baby uses rooting, sucking and swallowing reflexes to locate nipple and feed
- Tactile receptors in nipple activated
- Hypothalamus sends efferent impulses to anterior and posterior pituitary
- 4. Anterior pituitary
 Prolactin secretion stimulates
 milk secretion by cuboidal cells
 in the acini of the breast
- 5. Posterior pituitary
 Oxytocin secretion results in
 contraction of myoepithelial
 cells in the alveoli, forcing milk
 into larger ducts the so-called
 'let-down' reflex

Physiology of breast-feeding

Control of oxytocin release

- 1. Stimulation of nipple (suckling reflex) → ↑ oxytocin.
- 2. Visual or auditory stimuli from the baby $\rightarrow \uparrow$ oxytocin secretion.
- 3. Distension of uterus & stretching of cervix during delivery $\rightarrow \uparrow$ oxytocin release.
- 4. During coitus → oxytocin secretion.
- Psychological & emotional factors, e.g. Fear, anxiety & pain → ↓ oxytocin.
- 6. Alcohol → ↓ oxytocin secretion.
- 7. Hormones: a. progesterone → ↓ uterine sensitivity to oxytocin.
 b. estrogen → ↑ uterine sensitivity to oxytocin.

Antidiuretic Hormone (ADH)

• Is a peptide hormone

 The primary function of ADH in the body is to regulate extracellular fluid volume

- The hormone acts at two basic sites:
 - AVP acts on renal collecting ducts via V₂ receptors to increase water permeability (cAMP-dependent mechanism), which leads to decreased urine formation.

A secondary function of ADH is vasoconstriction.

 ADH binds to V₁ receptors on vascular smooth muscle to cause vasoconstriction

Mechanism of action and regulation of ADH

Hypovolemia

- During hemorrhage and dehydration, results in a decrease in atrial pressure.
- Specialized stretch receptors within the atrial walls and large veins entering the atria decrease their firing rate when there is a fall in atrial pressure.
- Afferent nerve fibers from these receptors synapse within the <u>nucleus</u> <u>tractus solitarius</u> of the medulla, which sends fibers to the hypothalamus.
- Atrial receptor firing normally inhibits the release of AVP by the posterior pituitary.
- With hypovolemia or decreased central venous pressure, the decreased firing of atrial stretch receptors leads to an increase in AVP release.

Hypotension

 Decreases arterial <u>baroreceptor firing</u>, leads to enhanced sympathetic activity that increases AVP release.

 Hypothalamic osmoreceptors sense extracellular osmolarity and stimulate AVP release when osmolarity rises, as occurs with dehydration.

 Angiotensin II receptors located in a region of the hypothalamus regulate AVP release – an increase in angiotensin II simulates AVP release.

Diabetes Insipidus

• DI is a disorder resulting from deficiency of anti-diuretic hormone (ADH) or its action and is characterized by the passage of copious amounts of dilute urine.

• It must be differentiated from other polyuric states such as primary polydipsia & osmotic duiresis.

 Central DI is due to failure of the pituitary gland to secrete adequate ADH.

Types of DI

Central DI

Nephrogenic DI

Causes of central DI

Idiopathic (30% Of Cases)

Suprasellar lesions (30% Of cases)

Infections (ENCEPHALITIS, TB, etc)

Non infectious granuloma

Trauma

Water Deprivation Test (1)

- Investigation of Diabetes Insipidus (DI)
- Principle: Deprive patient of fluids to allow serum osmo to rise and see whether urine concentrates (i.e., urine osmo increases).
- Protocol:
 - Patient usually fasted overnight. May or may not be allowed fluids overnight.
 - Serum and urine osmo measurements performed approx every hour (and patient's weight and urine volume recorded)

Water Deprivation Test: Interpretation

Condition	Urine osmolality After fluid deprivation	After administration of vasopressin
Normal	>800	>800
Central DI (a defect in ADH production)	< 300 mosmol/kg	>800 mosmol/kg
Nephrogenic DI (a defect in the kidneys' response to ADH)	< 300 mosmol/kg	< 300 mosmol/kg

Summary

Oxytocin and Vasopressin are neurohormones

Synthesized in hypothlamus and secreted from posterior pituitary

 Oxytocin mainly involved in uterine contraction during labour and mlk ejection

ADH is involved in water retension