

Universidade Federal Rural de Pernambuco (UFRPE)

- Unidade Acadêmica de Garanhuns-

Matrizes

Introdução a Linguagem C Parte VI

Prof. Priscilla Kelly Machado Vieira

Apresentação do Capítulo

- Introdução
- Vetores Bidimensionais
- Passagem de Matrizes para Funções
- Matriz Representada por um Vetor Simples
- Matriz Representada por um Vetor de Ponteiros
- Exercícios

Introdução

- Vetores: Conjunto unidimensional de dados
- Bidimensional, multidimensional
- Matrizes

float mat[3][4];

	Coluna 0	Coluna 1	Coluna 2	Coluna 3
Linha 0	a[0][0]	a[0][1]	a[0][2]	a[0][3]
Linha 1	a[1][0]	a[1][1]	a[1][2]	a[1][3]
Linha 2	a[2][0]	a[2][1]	a[2][2]	a[2][3]

Matriz Estática

```
float mat[3][4] = \{\{5,0,8,9\},\\{4,6,8,2\},\\{2,4,7,8\}\};
```

mat[l][c];

	Coluna 0	Coluna 1	Coluna 2	Coluna 3
Linha 0	5	0	8	9
Linha 1	4	6	8	2
Linha 2	2	4	7	8

Passagem de Matriz para Funções

```
void f (..., int (*mat)[3], ...);
void f (..., int mat [ ][3], ...);
```

Matrizes Dinâmicas

- Sempre que possível usar estática
- C só permite alocar dinamicamente conjuntos unidimensionais
- Criar abstrações conceituais com vetores para representar conjuntos bidimensionais
 - Matriz representada por um vetor simples
 - Matriz representada por um vetor de ponteiros

Matriz Representada por um Vetor Simples

- As primeiras posições do vetor para armazenar os elementos da primeira linha, seguidos dos elementos da segunda linha, e assim por diante.
- Estratégia de acesso

a	b	С	d
e	f	g	h
i	j	k	l

$$k=1*4+2=6$$

float *mat
mat = (float*) malloc
(m*n*sizeof(float));

Matriz Representada por um Vetor de Ponteiros

- Cada linha da matriz é representada por um vetor independente
- Cada elemento armazena o endereço do primeiro elemento da linhas
 - Representada por um vetor de vetores, ou vetor de ponteiros

Matriz Representada por um Vetor de Ponteiros

mat [i][j];

```
int i;
float **mat;//matriz representada por um vetor de ponteiros
mat = (float**) malloc (m*sizeof(float*));
for (i=0; i<m, i++)
  mat [i] = (float*) malloc (n*sizeof(float));</pre>
```

Matriz Representada por um Vetor de Ponteiros


```
int i;
for (i=0; i<m, i++)
  free (mat[i]);
free (mat);</pre>
```

Lab 07

- Implemente as duas versões vistas para alocação dinâmica de uma matriz e determine a subtração dos elementos de duas matrizes
 - Utilize funções
 - A ordem da matriz deve ser passada pelo usuário, tal como seus elementos