Beweistechniken

Inhaltsverzeichnis I

- Beweistechniken
 - Einführung
 - Direkter Beweis
 - Beweis durch Kontradiktion
 - Indirekter Beweis
 - Vollständige Induktion

Einführung

3 / 12

Mathematische Beweise

Eine mathematische Aussage oder Satz besteht in der Regel aus einer Voraussetzung p und einer Folgerung/Behauptung q und hat die Form $p \Rightarrow q$ oder $p \Leftrightarrow q$ (wobei p und q wiederum mathematische Aussagen sein können).

Ein mathematischer Beweis besteht darin nachzuweisen, dass der zu einem mathematischen Satz gehörige logische Ausdruck eine Tautologie ist (= Aussage, die immer wahr ist).

Beispiel mathematischer Satz:

Wenn eine natürliche Zahl n durch 6 teilbar ist, dann ist sie auch durch 3 teilbar.

Direkter Beweis

Direkter Beweis

Man nimmt an, dass die Voraussetzung p wahr ist und versucht, durch Aneinanderreihung von korrekten Implikationen auf "q ist wahr" zu schließen

Aussagenlogische Tautologie:

$$((p \Rightarrow r) \land (r \Rightarrow q)) \Rightarrow (p \Rightarrow q)$$

Beispiel direkter Beweis:

 $p \Rightarrow r$: Wenn eine Zahl n durch 6 teilbar ist, dann gibt es eine natürliche Zahl k mit $n = 6 \cdot k$

 $r \Rightarrow q$: Die Zahl 6 ist darstellbar als das Produkt $6 = 2 \cdot 3$

Daher gilt $n = 2 \cdot 3 \cdot k$, und n ist durch drei teilbar.

Beweis durch Kontradiktion

Beweis durch Kontradiktion

Man nimmt an, dass die Folgerung q falsch ist und versucht daraus zu schließen, dass dann die Voraussetzung p falsch sein muss. Es handelt sich also um einen direkten Beweis für die Implikation von negierter Voraussetzung $\neg p$ aus der negierten Folgerung $\neg q$.

Aussagenlogische Tautologie:

$$(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$$

Beispiel Beweis durch Kontradiktion:

Wir nehmen an, dass n nicht durch 3 teilbar ist: $n \neq 3 \cdot k \quad \forall k \in \mathbb{N}$ Das gilt also auch für alle geraden k = 2j, $j \in \mathbb{N}$.

Daher ist $n \neq 3 \cdot (2 \cdot j) \quad \forall j \in \mathbb{N}$.

Daher $n \neq 6 \cdot j$ $\forall j \in \mathbb{N}$, n ist also nicht durch 6 teilbar.

Indirekter Beweis

9 / 12

Indirekter Beweis / Beweis durch Widerspruch

Es wird angenommen, dass die Voraussetzung p wahr und die Folgerung q falsch ist. Daraus wird versucht, einen logischen Widerspruch herbeizuführen. Somit wird der einzige Fall, in dem $p \Rightarrow q$ falsch ist, ausgeschlossen.

Aussagenlogische Tautologie:

$$(p \Rightarrow q) \Leftrightarrow (p \land \neg q \Rightarrow \mathit{false})$$

Beispiel indirekter Beweis:

Wir nehmen an, dass *n* durch 6 teilbar ist, aber nicht durch 3:

$$\exists k_0 \in \mathbb{N} : n = 6 \cdot k_0, \quad \forall j \in \mathbb{N} : n \neq 3 \cdot j$$

$$\Rightarrow n = 2 \cdot 3 \cdot k_0$$
 und $n = 3j_0$ mit $j_0 := 2k_0 \in \mathbb{N} \to \text{Widerspruch!}$

Vollständige Induktion

W. Gansterer, K. Schindlerova 2. Oktober 2019 MG1, WISE 2019 11 / 12

Vollständige Induktion

... kommt etwas später ...

W. Gansterer, K. Schindlerova