Devoir à la maison n° 5

À rendre le 13 octobre

I. Racines 5-èmes et calculs de tangentes

On définit le polynôme $P(X) = \frac{1}{2i} ((X+i)^5 - (X-i)^5).$

- 1) Donner la définition et les expressions des racines 5èmes de l'unité.
- 2) Soit $z \in \mathbb{C}$ une racine de P, i.e. P(z) = 0. Que peut-on dire de $Z = \frac{z+i}{z-i}$?
- 3) Exprimer z en fonction de Z.
- 4) Déterminer les racines du polynôme P.
- 5) Vérifier que ces racines sont toutes réelles.
- 6) Vérifier que le polynôme P peut s'écrire sous la forme $P(X) = aX^4 + bX^2 + c$ avec a, b et c des réels que l'on calculera. Déterminer alors une autre écriture des racines de P.
- 7) Déduire des résultats précédents les valeurs exactes de $\tan \frac{\pi}{5}$ et $\tan \frac{2\pi}{5}$.

II. Complexes et géométrie

- 1) Soient A, B et C trois points du plan, d'affixes a, b et c.
 - (i) Exprimer l'angle $(\overrightarrow{AB}, \overrightarrow{AC})$ comme l'argument d'un certain nombre complexe.
 - (ii) En déduire un critère utilisant des complexes pour que les points A, B et C soient alignés, et un critère utilisant des complexes pour que (AB) soit orthogonale à (AC).
 - (iii) Exprimer en utilisant des complexes que AB = AC.
- 2) Montrer que la médiatrice du segment [AB] a pour équation complexe :

$$(b-a)\overline{z} + \overline{(b-a)}z = |b|^2 - |a|^2.$$

- 3) Dans le plan complexe rapporté au repère orthonormal $(O; \overrightarrow{e_1}, \overrightarrow{e_2})$, on définit une transformation géométrique qui, à tout point M d'affixe z ($z \neq 2i$), associe le point M' d'affixe z' donnée par $z' = \frac{z-3+i}{2i-z}$.
 - (i) Quel est l'ensemble des points M tels que M' soit sur l'axe réel ?
 - (ii) Quel est l'ensemble des points M tels que $\arg(z') = \frac{3\pi}{2}$ modulo 2π ?
 - (iii) Quel est l'ensemble des points M tels que |z'| = 2?
 - (iv) Représenter graphiquement (sur un même schéma) ces trois ensembles.

— FIN —