< 4. Dynamic Programming and HJB Equation>
· 목 ² +
· Continuous - Time Dynamic System
・ なり
. धार्रियेन
· 이산화 및 DP 악고객을 객용
· Taylor-series + Hamilton-Jacobi-Bellman equation
· 4 75
· 정21 4.1 + 메시
・ 242 4.2

* Continuous - Time Dynamic System

- · Notation
 - · S(t): State trajectory, S(t) ES
 - · a(t): control trajectory, a(t) EA
 - · t: time, 0 = t = T
- · S(0) = So 및 때, s(t) = f(S(t), a(t)), ft SOI 대체 매분 가입 an 대체 연考

* Continuous - Time Optimal Control

· (4) · t시기이 S(t)를 생산하는 생산하는 당(t)의 일부 a(t)를 객투자이, 1-a(t)를

Storable 3 and 생산이 칼라 가능. Q. 24 이렇게 나를?

- . 따라서 S(t)는 $\frac{dS(t)}{dt} = \gamma \alpha(t) S(t)$ 로 관련 가능하며, Y는 상수.
- · 생산과는 o e a(t) = 1, t e [o, T] 라고 할 때 $\int_{0}^{T} (\mu a(t)) s(t) dt$ 라는 전체/ 상물의 양원 화대화하고 싶어할.

* Continuous time -> Discrete

· t= 长型 叫 科学의 cost-to-go 学生, 알리 비용만 224

$$\tilde{V}_{k}(s_{k}) = \min_{a \in A} \left[h(s_{k}) + \frac{k-1}{s-k} g(s_{i}, a_{s}) \right] \forall k = 0, 1, ..., k-1$$

RS 4254 (K-1) 8 >121 ...

$$V_k(S_k) = k(S(T))$$

$$\tilde{V}_{k}(s) = \min_{\alpha \in A} \left[g(s,\alpha) \delta + \tilde{V}_{k+1}(s+f(s,\alpha)\delta) \right] \quad \forall k=0,1,...,k-1$$

$$\tilde{V}_{K}(s) = h(sCT)$$

* 터밀러 호수 적용 (1차)

$$T_{f}(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^{n} = f(a) + f'(a) (x-a) + \frac{1}{2} f''(a) (x-a)^{2} + \frac{1}{6} f^{(3)}(a) (x-a)^{3}...$$

$$\frac{Q_{1}}{0|40|} \cdot \tilde{V}_{k+1}(s+f(s,a)\delta) = \tilde{V}_{k}(s) + \nabla_{t}\tilde{V}_{k}(s)\cdot\delta + \nabla_{s}\tilde{V}_{k}(s)'f(s,a)\delta + o(\delta)$$

$$\frac{d^{2}}{d^{2}} + \frac{1}{2}\tilde{V}_{k}(s)'f(s,a)\delta + o(\delta)$$

$$\frac{d^{2}}{d^{2}} + \frac{1}{2}\tilde{V}_{k}(s)'f(s,a)\delta + o(\delta)$$

$$\tilde{V}_{\lambda}(s) = \min_{\alpha \in A} \left[g(s, \alpha) + \tilde{V}_{\lambda}(s) + \tilde{V}_$$

* Hamilton - Jacobi - Bellman equation

$$\lim_{k\to\infty,\,\delta\to\,0}\tilde{V}_{k}^{*}(s)=\tilde{V}_{t}^{*}(s)$$

$$D = \min_{a \in A} [g(s, a) + P_t V_t(s) + P_s V_t(s)' f(s, a)], V_7(s) = h(s)$$

* H.	JB-27	2 4.7	2 : Po	ntry	ag in	Mini	mum	Princ	ciple: N	le cessary	L optim	ality	condi	tion	
	· 01*	(t) 7 H	optin	nal	하고	S* ((o) =	اد ۵۶	극어길	! ~4,		Ø.	D/7/2	المام	न्दधः
		ċ * (€	÷) =	f(\$(t)	, a¹	(t)), 0	et=T					•	
	•							•							