Assignment: Probability and Numerical Methods

Subject Code: MATH2202 Module-I

1. Use **Bisection** Method to solve the following equations:

(a) $f(x) = x + \log_e x - 2 = 0$, correct 3 significant figures.

[Ans: 1.56]

(b) $f(x) = xe^x - 1 = 0$, correct upto 2 decimal places.

[Ans: 0.57]

2. Use **Regula-Falsi** Method to solve the following equations:

(a) $f(x) = 2x - \log_{10} x - 7 = 0$ correct upto 3 decimal places.

[Ans: 3.789]

(b) $f(x) = \sin x + \cos x - 1 = 0$, correct upto 4 significant figures.

[Ans: 1.571]

3. Use **Newton-Rapshson** Method to solve the following equations:

(a) $f(x) = x + \log_e x - 2 = 0$, correct upto 4 significant figures.

[Ans: 1.557]

- (b) Evaluate $\sqrt[5]{3}$ correct upto 5 significant figures.
- 4. Solve the following system of linear equations by **Gauss Elimination** method:

$$x + 4y - z = 5$$

$$2x - y + 3z = 4$$

(a)
$$x + y - 6z = -12$$

(b)
$$x + z = 2$$

$$3x - y - z = 4$$

$$2y + z = 3$$

5. Solve the following system of linear equations by **Gauss-Seidel** Method:

$$2x + 10y + z = 13$$

$$x = 0.99$$

(a)
$$10x + y + z = 12$$
 correct upto 2 decimal places.

$$x = 0.99$$

$$Ans: y = 0.99$$

$$z = 1.00$$

$$2x + 2y + 10z = 14$$

$$z = 1.00$$

$$x + 4y + 2z = 17$$

(b)
$$x + 2y + 4z = 16$$
 correct upto 3 decimal places.

$$\begin{bmatrix} x = 1.091 \\ Ans: y = 2.818 \\ z = 2.318 \end{bmatrix}$$

$$6x - y + 4z = 13$$

$$z = 2.318$$

6. Solve the following system of linear equations by LU-Factorization Method:

$$3x - y + 2z = 1$$

$$3x + 4y + 2z = 15$$

(a)
$$2x + 4y - z = 3$$

(b)
$$5x + 2y + z = 18$$

$$7x + y + z = 3$$

$$2x + 3y + 2z = 10$$

[Ans:
$$x=1/4$$
, $y=3/4$, $z=1/2$]

[Ans:
$$x=3$$
, $y=2$, $z=-1$]

7. Find the missing term from the table

х	0	1	2	3	4
Υ	1	3	9		81

8. Find missing terms from the following table

Х	0	1	2	3	4	5
y=f(x)	7		13	22		52

[Ans. f(1)=8, f(4)=35]

9. Find tan 0.12, tan 0.26 and tan 0.35, tan 0.5 from the following table

х	0.10	0.15	0.20	0.25	0.30
y=tan x	0.1003	0.1511	0.2027	0.2553	0.3093

[Ans.
$$\tan 0.12 = 0.1205$$
, $\tan 0.26 = 0.2662$, $\tan 0.35 =$

0.365300, tan 0.5 = 0.5543]

11. Write down the interpolating polynomial expression using the following data and hence find f(0.5)

х	-1	0	1	2
y=f(x)	1	1	1	-3

[Ans.
$$-\frac{1}{3}(2x^3 - 2x - 3)$$
]

12. Find the **Lagrange interpolating** polynomial of degree 2 approximating the function $y = \ln x$ defined by the tabular values. Hence find $\ln 2.7$.

X	2	2.5	3.0
$y = \ln x$	0.69315	0.91629	1.09861

[Ans.
$$f(x) = -0.08164x^2 + 0.81366x - 0.60761$$
, $\ln 2.7 = 0.9941164$]

13. Evaluate $\int_0^1 \sqrt{1-x^2} dx$ using **Trapezoidal and Simpson's 1/3 rule** for n=6.

[Ans. 0.765496, 0.777532]

14. Find from the table, the area under the curve & the x-axis from x=7.47 to x=7.52

Х	7.47	7.48	7.49	7.50	7.51	7.52
f(x)	1.93	1.95	1.98	2.01	2.03	2.06

[Ans. 0.0996]

15. Evaluate $\int_1^5 \, log_{10} \, x \, \, dx$ taking n=8 by using suitable numerical method.

[Ans. 1.750505025]

17. Use **Euler's method** to compute y(0.2) & take h = 0.05, $\frac{dy}{dx} = x^2 + 4y$, y(0) = 1.

[Ans.
$$y(0.5) = 1.82524$$
, $y(0.1) = 1.0933$, $y(0.15) = 1.7286$, $y(0.2) = 2.0754$]

18. Find y(0.2), y(0.5) by Modified Euler's method for $\frac{dy}{dx} = \log_{10}(x+y)$, y(0) = 1, take h = 0.2.

[Ans.
$$y(0.2) = 1.0082$$
, $y(0.5) = 1.0490$]

19. Use **RK method** to find y(0.5) and y(1) for $\frac{dy}{dx} = \frac{1}{x+y}$, y(0) = 1 by taking h=0.5.

[Ans. y(0.5)=1.357, y(1)=1.584]