Supplementary Table. Statistical analysis of different spike subpopulations

Comparison of amperometric events (i) the falling phase of which was better fit with single- or double-exponential functions, and (ii) the t_{rise} of which was higher or lower than the cutoff. The falling phase of each spike between 75% of I_{max} and T_{bkg2} was fit with single- and double-exponential functions and the latter was employed if χ^2 (single) / χ^2 (double) was more than two. Of 1011 spikes, 458 (45%) were better fit with double exponentials. The cutoff for t_{rise} was set to 1.5 ms - more than 3*SD higher than the population's mean. Of 1011 spikes, 156 (15%) had t_{rise} longer than the cutoff. Only non-overlapping spikes with $I_{max} > 3$ pA and only PSF with $I_{foot} > 2*SD_1$ were analyzed. The median of each parameter value was calculated from 24 cells; data are presented as mean \pm SD of parameter values between the cells.

	I _{max} [pA]	t _{1/2} [ms]	Q [§] [molecules]	t _{rise} §§ [ms]	Rise slope [pA/ms]	Fall, τ ₁ [ms]	Fall, τ ₂	spikes with PSF	with steady- state PSF #
All spikes	25.7 ± 14.4	4.7 ± 1.8	$560,000\pm 230,000$	0.74 ± 0.21	19.1 ± 12.1	4.1 ± 2.6	10.4 ± 4.2	82 %	45 %
Single exp	9.2 ± 2.4	6.7 ± 2.0	290,000 ± 80,000	0.99 ± 0.31	4.9 ± 1.7	7.4 ± 2.5	-	69 %	30 %
Double exp	67.7 ± 27.5*	$3.2 \pm 1.0*$	1,190,000 ± 520,000*	0.58 ± 0.14 *	$62.0 \pm 33.2*$	1.9 ± 0.6 *	10.4 ± 4.2**	96 %	57 %
$t_{\rm rise} > 1.5 \text{ ms}$	7.3 ± 2.9	11.2 ± 2.8	400,000 ± 240,000	2.32 ± 0.41	1.8 ± 0.9	11.1 ± 3.9 ^{&}	24.8 ± 14.4	58 %	32 %
$t_{\rm rise} < 1.5 \text{ ms}$	31.3 ± 15.8 *	4.1 ± 1.4*	650,000 ± 330,000*	$0.65 \pm 0.12*$	25.8 ± 14.9*	3.5 ± 2.1 *	10.1 ± 4.0 *	87 %	45 %

^{§ -} The number of released catecholamine molecules was calculated from amperometric charge as described in Fig. 3 legend

^{\$\$} - Duration between 25% and 75% of I_{max} excluding the foot

^{# -} Fraction of spikes that displayed PSF with steady-states longer than 2 ms

 $^{^{\&}amp;}$ - Includes both single- and double-exp τ_{1}

^{* -} Significantly different from single-exp or t_{rise} > 1.5 ms with p < 0.05 by Mann-Whitney rank sum test

^{** -} Significantly different from τ_1 of both single- and double-exp with p < 0.05 by Mann-Whitney rank sum test