

SPI インターフェーススタンドアロン CAN コントローラ

特徴

- 1 Mb/s の CAN V2.0B を内蔵:
 - 0-8 バイト長のデータフィールド
 - 標準および拡張のデータ、リモートフレーム
- 受信バッファ,マスクとフィルタ付き:
 - 2個の受信バッファで、優先メッセージ格納
 - 6組の29ビットフィルタ
 - 2組の **29** ビットマスク
- 最初の2データバイトにデータバイトフィルタを 適用 (標準データフレーム対応)
- 3個の送信バッファで、優先、アボート機能付き
- 高速度 SPI™ インターフェース (10 MHz):
 - SPI モードは 0.0 または 1.1
- ワンショットモードによりメッセージ送信を確実 に1回だけとします。
- 設定可能な分周比のクロック入力ピン:
 - 他のデバイスのクロック源として使用可能
- Start-of-Frame (SOF) 信号により SOF信号のモニタが可能:
 - タイムスロットベースのプロトコルか、あるいは早期にバス悪化を検出しバス診断を行うのに使えます。
- 選べるイネーブル付きの割り込み出力ピン
- バッファフル出力ピンは下記のように構成可能:
 - 各受信バッファ対応の割り込み出力
 - 汎用目的の出力
- Request-to-Send (RTS) 入力ピンは個別に構成可能:
 - 各送信バッファ対応の送信要求の制御ピン
 - 汎用目的の入力
- 低消費電力 CMOS テクノロジ:
 - 動作電圧 2.7V ~ 5.5V
 - 動作電流 5 mA (typical)
 - スタンバイ電流 1 μA (typical) (スリープモード)
- 下記の温度範囲をサポート:
 - 工業品 (I): -40°C ~ +85°C
 - 拡張品 (E): -40°C ∼ +125°C

概要

マイクロチップテクノロジ社 MCP2515 は、CAN 仕様,バージョン 2.0B を満足するスタンドアロンのコントロールエリアネットワーク (CAN) コントローラです。そして標準と拡張データおよびリモートフレームの送受信を行うことができます。MCP2515 は、2 個の受信マスクと6 個の受信フィルタを持っていて、不要なメッセージをふるい落すのに使われます。これによりホスト MCU のオーバーヘッド負荷を減らします。MCP2515 は工業標準のシリアル周辺機器インターフェース (SPI) によって、マイコン (MCU) とインターフェースします。

パッケージタイプ

NOTES:

1.0 デバイス概要

MCP2515 はスタンドアロン CAN コントローラで、CAN バスとインターフェースする必要のある応用を簡単にするために開発されました。MCP2515 の簡単な内部ブロック図を図 1-1 に示します。デバイスは3つの主要ブロックで構成されています。:

- CAN モジュールには、CAN プロトコルエンジン、マスク、フィルタ、送信、受信バッファが含まれています。
- 2. 制御ロジックとレジスタは、デバイスの構成と 動作モードを決めるのに使われます。
- 3. SPI プロトコルブロック

このデバイスを使った例題システムの実装を図 1-2 に示します。

1.1 CAN モジュール

CANモジュールは、CANバスでメッセージを送受信するためのすべての機能を処理します。メッセージは、まず最初に適切なメッセージバッファと制御レジスタにロードされることで送信されます。SPIインターフェース経由で制御レジスタビットを制御するか、または送信イネーブルピンを使うことで送信が起動されます。状態やエラーは適切なレジスタを読み出すことでチェックすることが可能になります。CANバス上に検出されたすべてのメッセージは、エラーチェックかとっての受信レジスタのひとつに取り込むかどうかを判定するため、ユーザー定義のフィルタとの照合をします。

1.2 制御ロジック

制御ロジックブロックは、情報と制御を受け渡すために他のブロックとインターフェースすることで、MCP2515のセットアップと動作を制御します。

割り込みピンは、大きなシステム柔軟性を提供します。各受信レジスタには多目的の割り込みピン(専用割り込みピンと同様に)が用意されています。これにより、有効メッセージが受信され、受信バッファのひとつに格納されたことを表します。専用ピンはオプションで使われます。汎用割り込みピンは、(SPIインターフェース経由でアクセスされる)ステータスレジスタと同様に、有効メッセージが受信されたことを決めるために使うことができます。

さらに、3個の送信レジスタのいずれかにロードされたメッセージの即時送信を起動するために3ピンが用意されています。これらのピンは、メッセージ送信を起動するためのオプションとしても使われます。もともとこの起動はSPIインターフェース経由で制御レジスタをアクセスすることも行うことができます。

1.3 SPI プロトコルブロック

デバイスとMCUのインターフェースはSPIインターフェースとなっています。標準のSPIリードライトコマンドに専用SPIコマンドを加えて使うことで、すべてのレジスタの読み書きをすることができます。

図 1-1: ブロック図

#	1-1:	ピンの説明
★	1-1.	ドンリカ泉田田

表 I-I:	ピンの	一説明			
名称	PDIP/SOIC ピン#	TSSOP ピン#	I/O/P タイプ	説明	ピン代替機能
TXCAN	1	1	0	CAN バスへの送信出力ピン	_
RXCAN	2	2	ı	CAN バスからの受信入力ピン	_
CLKOUT	3	3	0	プログラマブル分周付きクロック出力 ピン	Start-of-Frame (SOF) 信号
TX0RTS	4	4	I	送信バッファ TXB0 用 送信要求。 100 kΩ で VDD にプルアップ	汎用のディジタル入力 100 kΩ で VDD にプルアップ
TX1RTS	5	5	I	送信バッファ TXB1 用 送信要求。 100 kΩ で VDD にプルアップ	汎用のディジタル入力 100 kΩ で VDD にプルアップ
TX2RTS	6	7	I	送信バッファ TXB2 用 送信要求。 100 kΩ で VDD にプルアップ	汎用のディジタル入力 100 kΩ で VDD にプルアップ
OSC2	7	8	0	クロック発振出力	_
OSC1	8	9	I	クロック発振入力	外部クロック入力
Vss	9	10	Р	ロシ゛ックと 1/0 ピン用グ ランド リファレンス	_
RX1BF	10	11	0	受信バッファ RXB1 用割り込みピン 汎用ディジタル出力	汎用ディジタル出力
RX0BF	11	12	0	受信バッファ RXB0 用割り込みピン 汎用ディジタル出力	汎用ディジタル出力
ĪNT	12	13	0	割り込み出力ピン	_
SCK	13	14	I	SPITM インターフェース用クロック入力ピン	_
SI	14	16	l	SPI インターフェース用データ入力ピン	_
SO	15	17	0	SPI インターフェース用データ出力ピン	_
CS	16	18	I	SPI インターフェース用チップ選択ピン	_
RESET	17	19	l	負論理デバイスリセット入力	_
VDD	18	20	Р	ロジックと I/O ピン用正電源	_
NC	_	6,15	_	未接続	

注: タイプ区別: I = 入力; 0 = 出力; P = 電源

1.4 送信/受信バッファ/マスク/フィルタ

MCP2515 は3個の送信バッファと2個の受信バッファ、2個の受入れマスク(各受信バッファごとにひとつ)、6個の受入れフィルタを持っています。図 1-3 は、これらのバッファとプロトコルエンジンとの接続構成のブロック図を示しています。

図 1-3: CAN バッファとプロトコルエンジンのブロック図

1.5 CAN プロトコルエンジン

CAN プロトコルエンジンは、図 1-4 に示したいく つかの機能ブロックを結合しています。それぞれ下記 に説明します。

1.5.1 プロトコル有限状態マシン

エンジンの心臓部は、有限状態マシン (FSM) です。FSM は、TX/RX シフトレジスタ、CRC レジスタ、バスライン間のデータの流れを制御するシーケンサです。さらに、FSM は誤り制御ロジック (EML) と、TX/RXシフトレジスタとバッファ間の並列データの流れの制御も行っています。この FSM が、受信、アービトレーション、送信、誤りチェックが CAN プロトコルに従ったプロセスになるようにしています。バスライン上での自動メッセージ再送も FSM によって処理されます。

1.5.2 巡回冗長チェック

巡回冗長チェックレジスタが、制御フィールド後(メッセージが0バイトの場合)とデータフィールド後に送信する巡回チェックコード (CRC)を生成し、さらに受信したメッセージの CRC フィールドのチェックを行うためにも使われます。

1.5.3 誤り制御ロジック

誤り制御ロジック (EML) は、CAN デバイスの誤り 確認を司ります。受信エラーカウンタ (REC) と送信エラーカウンタ (TEC) の2つのカウンタを持っていて、ビット流れ処理部からのコマンドで増減されます。エラーカウンタの値に基づいて、CAN 制御部の状態が、エラーアクティブ、エラーパッシブ、バスオフのいずれかに設定されます。

1.5.4 ビットタイミングロジック

ビットタイミングロジック (BTL) は、バスラインの 入力をモニタしていて、バス関連ビットタイミングを CANプロトコルにしたがって処理します。BTLはStartof-Frame (ハード同期)でリセッシブからドミナントへ のバス遷移に同期させます。さらに CAN 制御部自身 がドミナントビット (再同期)を送信しない場合には、 その後もリセッシブからドミナントバス遷移に同期さ せます。また、BTL は伝播遅延時間や、位相シフトを 補償したり、ビットタイム内のサンプル点を決めるた めに、プログラマブルな時間単位も提供します。BTL のプログラミングは、ボーレートと外付けの物理的な 遅延時間に依存します。

2.0 CAN メッセージフレーム

MCP2515は、CAN 2.0B仕様で定義されている標準データフレーム、拡張データフレーム、リモートフレーム (標準と拡張)をサポートしています。

2.1 標準データフレーム

CAN 標準データフレームは 図 2-1 で表されます。 他のフレームと同じように、フレームは全てのノード のハード同期を取るためにドミナント状態である Start-Of-Frame(SOF) から始まります。

SOF の後に12 ビットからなるアービトレーションフィールドが続きますが、それは11 ビットの識別子とリモート送信要求ビット (RTR) から構成されます。RTR ビットは、データフレーム (RTR ビットドミナント)とリモートフレーム (RTR ビットリセッシブ)とを区別するために用いられます。

アービトレーションフィールドの次は制御フィールドで6 ビットで構成されます。このフィールドの最初のビットは識別子拡張 (IDE) と呼ばれ、これがドミナント状態のとき標準フレームであることを表します。引続くビットは CAN プロトコルの予約ビット 0 (RBO) で、ドミナントビットとして規定されています。制御フィールドの残りの 4 ビットはデータ長コード (DLC) で、メッセージに含まれるデータのバイト数 (0~8 バイト) を規定します。

制御フィールドの後はデータフィールドで、DLC により規定される長さ($0 \sim 8$ バイト)の送信データ バイトを含んでいます。

データフィールドの後に巡回冗長チェック (CRC) フィールドが続き、送信エラーの検出に用いられま す。CRC フィールドは 15 ビットの CRC シーケンス とリセッシブ CRC デリミタビットで構成されます。

最後のフィールドは2ビットのアクノレッジフィールド(ACK)です。ACKスロットビットの間に、送信ノードがリセッシブビットを送信します。エラーの無いフレームを受信したどのノードも、(ノードが特定メッセージを受け付けるように構成されているかどうかに関わらず)ドミナントビットを返信することにより正しいフレームを受信したことを認識できるようにします。リセッシブのアクノレッジデリミタでアクノレッジスロットを終了させ、ドミナントビットにより上書きされないようにします。

2.2 拡張データフレーム

拡張 CAN データフレームでは、図 2-2 に示すように、SOF に 32 ビットで構成されるアービトレーションフィールドが続きます。最初の 11 ビットは 29 ビットの識別子 (Base-ID) の上位 11 ビット (MSB) です。 これらの 11 ビットに続き、リセッシブとして送信される代替リモート要求ビット (SRR) がきます。SRR に続き、フレームが拡張 CAN フレームであるこ

とを示すリセッシブの IDE ビットがきます。こうすると、識別子の最初の 11 ビットの送信後にアービトレーションが未解決の場合、アービトレーションにからんでいるノードの 1 つが標準 CAN フレーム (11 ビット識別子)を送信していると、標準 CAN フレームは、ドミナント IDE ビットであるためアービトレーションを獲得します。また、拡張 CAN フレーム内の SRR ビットは、標準 CAN リモートフレームを送信しているノードによりドミナント RTR が発行できるようにリセッシブでなければなりません。

SRR と IDE ビットに引続き、識別子 (Extended ID) の残りの 18 ビットとドミナントリモート送信要求 ビットが続きます。

共有ネットワーク間で、標準と拡張フレームが送信されることを有効にするために、29 ビットの拡張メッセージ識別子を11 ビット(上位)と18 ビット(下位)セクションに分割する必要があります。この分割により、IDE ビットが標準と拡張の両フレーム内で同じ位置を維持することができます。

アービトレーションフィールドの次は6 ビット制御フィールドです。このフィールドの最初の2 ビットは予約され、ドミナント状態でなければなりません。制御フィールドの残りの4 ビットは DLC で、メッセージに含まれるデータバイト数を規定します。フレームの残りの部分(データフィールド、CRCフィールド、通知フィールド、フレーム終了および中断)は、標準データフレームと同様に構成されます。(第2.1項 "標準データフレーム"参照)

2.3 リモートフレーム

データ送信は、通常データソースノードを使って自主的に動作します(例えば、センサはデータフレームを送出します)。しかし、宛先ノードがソースからデータを要求することができます。この目的のために、宛先ノードは、要求されたデータフレームの識別子と同じ識別子のリモートフレームを送信します。対応するデータソースノードは、このリモート要求の応答としてデータフレームを送信します。

リモートフレームとデータフレームとでは2 つの 違いがあります。(図 2-3 に示す) 第1にRTR ビットがリセッシブ状態であり、第2 にデータフィールドが無いことです。同じ識別子を持ったデータフレームとリモートデータフレームが、同時に送信される場合、識別子に続くドミナントRTR のために、データフレームがアービトレーション権を獲得します。このようにして、リモートフレームを送信したノードは所望のデータを直ぐに受信します。

2.4 エラーフレーム

エラーフレームは、バスエラーを検出したノードによって生成されます。図 2-4 に示すように、エラーフレームは、エラーフラグフィールドとそれに続くエ

ラーデリミタフィールドの2つのフィールドにより 構成されます。エラーフラグフィールドには2つの 形式があります。エラーフラグフィールドの形式は、 エラーを検出しエラーフラグフィールドを生成した ノードのエラー状態に依存します。

2.4.1 アクティブエラー

エラーアクティブノードがバスエラーを検出した場合、そのノードはアクティブエラーフラグを生成して現メッセージの送信に割り込みをかけます。アクティブエラーフラグは、6個の連続するドミナントビットで構成されます。このビットシーケンスは、ビットスタッフルールに敢えて違反します。その他の全てのノードがビットスタッフエラーを認識し、今度は自分自身で、エラーエコーフラグと呼ばれるエラーフレームを生成します。

従って、エラーフラグフィールドは6 から12 の連続するドミナントビット(1 つもしくは2 つのノードにより生成されます)で構成されます。エラーデリミタ(8 ビットのリセッシブビット)によりエラーフレームが完了します。エラーフレーム完了後、バスは通常状態に戻り、割り込みをかけられたノードは中断されたメッセージを再送信します。

注: エラーエコーフラグは、通常エラーフラグを送信しようとした1つか2つのノード(全部ではない)の局所的な障害で発生します。残りのノードは、最初のエラーフラグに対応した応答(エコー)を生成します。

2.4.2 パッシブエラー

エラーパッシブノードがバスエラーを検出した場合、そのノードはエラーパッシブフラグを送信し、エラーデリミタフィールドが続きます。エラーパッシブフラグは6個の連続するリセッシブビットで構成されます。エラーパッシブノードのエラーフレームは、14ビットのリセッシブビットで構成されます。したがって、バスエラーがエラーアクティブノード、または送信ノードで検出されなければ、エラーパッシブフラグがバスを妨害しないため、メッセージは正常に送信継続します。

送信ノードがエラーパッシブフラグを生成した場合は、その結果としてビットスタッフに違反するため、その他のノードがエラーフレームを生成します。エラーフレーム送信後、エラーパッシブノードは、バス通信に再参加しようとする前に、バス上の6個の連続するリセッシブビットを待たねばなりません。

エラーデリミタは8ビットのリセッシブビットで構成されており、バスノードがエラー発生後きれいにバス通信を再開できるようにします。

2.5 オーバーロードフレーム

オーバーロードフレームは、図 2-5 に示すように、 アクティブエラーフレームと同じフォーマットを持ち ます。しかし、オーバーロードフレームは、インター フレーム空間の間にのみ生成できます。このようにし て、オーバーロードフレームは、エラーフレームと区 別されます(エラーフレームは、メッセージの送信の 間に送信されます)。オーバーロードフレームは、 オーバーロードフラグとそれに続くオーバーロードデ リミタの2フィールドで構成されます。オーバー ロードフラグは6ビットのドミナントビットで構成 され、それに続き他のノードで生成されたオーバー ロードフラグが続きます(アクティブエラーフラグ として最大 12 ビットのドミナントビットを与えます)。オーバーロードデリミッタは8 ビットのリセッシ ブビットで構成されます。オーバーロードフレーム は、次の2つの場合にノードで生成されます。

- ノードが、インターフレーム空間の間にドミナントビットを検出したとき、これは不法な条件です。
 - **例外:**ドミナントビットはIFS の3ビット目に 検出された場合、レシーバはこれを **SOF** とし て解釈します。
- 2. 内部状態により、ノードが、まだ次のメッセージの受信開始ができないとき、次のメッセージの開始を遅らせるために、ノードは最大2つのシーケンシャルなオーバーロードフレームを生成することがあります。

注: 2のケースは、MCP2515 では内部遅延が非常に小さいので起きることはありません。

2.6 インターフレーム空間 (IFS)

インターフレーム空間は先行する(どんな形式の)フレームと、引き続くデータもしくはリモートエラーフレームとを分けます。インターフレーム空間は、少なくとも3ビットのリセッシブビットから構成され、インターミッションと呼ばれます。これは、次のメッセージフレームの開始以前に受信ノードによるメッセージの内部処理を行う時間を与えるために用意されています。インターミッション後、バスラインは、次の送信開始までリセッシブ状態(バスアイドル)を保持します。

NOTES:

3.0 メッセージ送信

3.1 送信バッファ

MCP2515 は3 つの送信バッファを持っています。 バッファごとに14 バイトのSRAMを占有しデバイス メモリマップ内にマッピングされます。

最初のバイトTXBnCTRLは、メッセージバッファに関する制御レジスタです。このレジスタ内の情報によってメッセージを送信するかどうかを決めたり、メッセージ送信状態を表しています。(レジスタ 3-1 参照)

5 バイトが標準および拡張識別子とその他のメッセージアービトレーション情報を保持します。(レジスタ3-3 からレジスタ3-7 参照)

最後の8 バイトは、送信データとして使える8 ビットデータバイトとなります。(レジスタ3-8 参照)

少なくとも TXBnSIDH, TXBnSIDL、TXBnDLC レジスタには設定が必須です。もしメッセージにデータバイトがあるときは、TXBnDm レジスタにも設定が必要です。メッセージが拡張識別子として使われる場合には、TXBnEIDm レジスタも設定が必須で、TXBnSIDL.EXIDE ビットのセットが必須です。

メッセージを送る前に、MCU は CANINTE.TXInE ビットによってメッセージ送信後の割り込みを生成するかどうかを初期設定する必要があります。

注: TXBnCTRL. TXREQ ビット(送信バッファが 送信待ちではないことを表す)は、送信 バッファに書き込む前にクリアしなけれ ばなりません。

3.2 送信優先度

送信優先度は、送信待ちのメッセージを持つ MCP2515 間で優先付けします。この優先順位は、 CAN プロトコルに組み込まれているメッセージアー ビトレーションによる優先度とは独立で必須の関係は ありません。

SOF の送信前に、送信キューにあるすべてのバッファの優先度が比較されます。一番高い優先度を持った送信バッファが最初に送信されます。例えば、送信バッファ 0 が送信バッファ 1 よりも高い優先度を設定されている場合、バッファ 0 が最初に送信されます。2 つのバッファが同じ優先度設定されている場合、一番高いアドレスを持ったバッファが送信されます。例えば、送信バッファ 1 が送信バッファ 0 と同じ優先度設定の場合、バッファ 1 が最初に送信されます。

4 つの送信優先度レベルがあります。特定のメッセージバッファの TXBnCTRL.TXP<1:0> が '11' に設定されている場合、そのバッファが最高の優先度を持ちます。特定のメッセージバッファの TXBnC-TRL.TXP<1:0> が '00' に設定されている場合、そのバッファは最低の優先度を持ちます。

3.3 送信の起動

メッセージ送信を起動するには、送信する各バッファのTXBnCTRL.TXREQビットをセットする必要があります。これは下記によって行うことができます。

- SPI 書き込みコマンドによってレジスタに書く
- SPI RTS コマンドを送る
- 送信する特定の送信バッファの TXnRTS ピンを Low にする。

SPI インターフェース経由で送信を起動する場合には、TXP 優先ビットとして TXREQ ビットも同時に設定することができます。

TXBnCTRL.TXREQ ビットがセットされると、TXBnCTRL.ABTF、TXBnCTRL.MLOA、TXBnCTRL.TXERR ビットは自動的にクリアされます。

注: TXBnCTRL. TXREQ ビットのセットではメッセージ送信は起動されません。それはメッセージバッファが送信レディになったというフラグでしかありません。送信は、デバイスがバスが有効であること検知したとき開始されます。

送信が正常に完了するとTXBnCTRL.TXREQビットがクリアされ、CANINTF.TXnIF ビットがセットされます。これでCANINTE.TXnIE ビットがセットされていれば割り込みを発生します。

メッセージ送信が失敗した場合には、TXBnC-TRL.TXREQ はセットされたままです。これはメッセージがまだ送信待ちであることを示し、下記のいずれかの状態フラグとなります。

- メッセージ送信を開始したときエラー状態に出く わした場合には、TXBnCTRL.TXERR と CAN-INTF.MERRF ビットがセットされ、CAN-INTE.MERRE ビットがセットされていれば、INT ピンに割り込みを発生します。
- メッセージが失われた場合にはTXBnC-TRL.MLOAビットのアービトレーションがセット されます。

注: ワンショットモードがイネーブル (CANCTRL. OSM) のときは、上記条件は、依然存在しますが、TXREQビットはクリアされ、メッセージの2回目の送信はしません。

3.4 ワンショットモード

ワンショットモードでは、メッセージは1回だけしか送信しません。通常は、CAN メッセージがアービトレーションを失うか、エラーフレームによって壊れたときには、メッセージは再送されます。ワンショットモードイネーブルのときは、アービトレーションを失っても、エラーフレームでも、メッセージは1度だけしか送信されません。

ワンショットモードには、TTCAN のような決まったスロットタイムを持っている必要があります。

3.5 TXnRTS ピン

TXnRTS ピンは、下記のように構成することができます。

- 送信要求入力として、任意の送信バッファから メッセージを送信するための別の起動手段を提供 します。
- 標準ディジタル入力

これらのピンの構成と制御は TXRTSCTRL レジスタで行います。(レジスタ3-2参照)

TXRTSCTRLレジスタは、MCP2515 がコンフィギュレーションモードのときだけ変更ができます。(第 10.0 項 "動作モード"参照) 送信要求ピンとして動作するよう構成された場合には、ピンは各送信バッファに対応する TXBRCTRL.TXREQビットにマッピングされます。 TXREQ ビットは TXNRTS ピンの立下りでラッチされます。 TXNRTS ピンは RXNBF ピンに直結するように設計されていて、RXNBF ピンが Lowになったときにメッセージ送信が自動的に行われるようにします。 TXNRTS ピンは 100 kΩ (標準)の内蔵プルアップ抵抗を持っています。

3.6 送信停止

MCU はメッセージバッファに対応した TXBnC-TRL.TXREQ ビットをクリアすることでメッセージ停止を要求することができます。

さらに、すべての送信待ちメッセージを CAN-CTRL.ABAT ビットをセットすることで停止させることができます。このビットは、(通常、TXREQ ビットが参照されてクリアされた後) メッセージ送信を続けている間はリセットされていなければなりません。CANCTRL.ABAT ビットによって停止要求されたときだけセットされます。TXREQ ビットをリセットしてメッセージを停止させると、ABTF ビットをセットする要因にはなりません。

注: 停止要求されたとき、すでに送信中のメッセージはそのまま送信を継続します。メッセージ送信が正常に完了しなかったら(例えばアービトレーションを失ったり、エラーフレームに割り込まれたとき)、停止されます。

レジスタ 3-1: TXB n CTRL : 送信バッファ n 制御レジスタ

(アドレス: 30h, 40h, 50h)

U-0	R-0	R-0	R-0	R/W-0	U-0	R/W-0	R/W-0
_	ABTF	MLOA	TXERR	TXREQ	1	TXP1	TXP0

bit 7 bit 0

bit 7 未実装: 読むと 'o'

bit 6 **ABTF**: メッセージ停止フラグ

1 =メッセージは停止された 0 =メッセージ送信正常完了

bit 5 MLOA: メッセージはアービトレーションビットを失った

1 = 送信中にメッセージがアービトレーションを失った

0 = 送信中メッセージはアービトレーションを失っていない

bit 4 TXERR: 送信エラー検出ビット

1 = メッセージ送信中にバスエラーが発生した

0 = メッセージ送信中にバスエラーが発生しなかった

bit 3 TXREQ: メッセージ送信要求ビット

1=バッファは現在送信待ち中

(MCU はメッセージ送信要求で本ビットをセット、送信完了で自動的にクリア)

0=バッファは現在送信待ち中ではない

(MCU はメッセージを中止するため本ビットをクリアできる)

bit 2 未実装: 読むと 'o'

bit 1-0 **TXP**: 送信バッファ優先順位 <1:0>

11 = 最高メッセージ優先順位

10 = 中高位メッセージ優先順位

11 = 中低位メッセージ優先順位

00 = 最低位メッセージ優先順位

凡例:

R = 読み込み可能 W = 書き込み可能 U = 未実装, 読むと'0'

レジスタ 3-2: TXRTSCTRL : TXnRTS ピン制御と状態レジスタ

(アドレス: 0Dh)

U-0 U-0 R/W-0 R/W-0 R/W-0 R-x R-x R-x B2RTS **B1RTS BORTS** B2RTSM **B1RTSM BORTSM** bit 7

bit 0

bit 7 未実装: 読むと '0'

bit 6 未実装:読むと'0'

B2RTS: TX2RTS ピン状態ビット bit 5

- ディジタル入力モードのとき TX2RTS ピンの状態を読む

- ピンが送信要求モードのとき読むと '0'

bit 4 **B1RTS**: TX1RTX ピン状態ビット

- ディジタル入力モードのときは、TX1RTS ピンの状態を読める

- ピンを送信要求モードで使うときには読むと'o'

bit 3 **BORTS**: TXORTS ピンの状態ビット

- ディジタル入力モードのときは $\overline{\text{TXORTS}}$ ピンの状態を読める

- ピンを送信要求モードで使うときには読むと'o'

bit 2 B2RTSM: TX2RTS ピンモードビット

1 = TXB2 バッファのメッセージ送信要求のピンとして使う。(立下りエッジで)

0 = ディジタル入力

B1RTSM: TX1RTS ピンモードビット bit 1

1 = TXB1 バッファのメッセージ送信要求のピンとして使う。(立下りエッジで)

0= ディジタル入力

bit 0 BORTSM: TXORTS ピンモードビット

1 = TXB0 バッファのメッセージ送信要求のピンとして使う。(立下りエッジで)

0 = ディジタル入力

凡例:

R=読み込み可能 W = 書き込み可能 U=未実装,読むと'0'

レジスタ 3-3: TXBnSIDH : 送信バッファ n 用の標準識別子 上位

(アドレス: 31h, 41h, 51h)

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID10 | SID9 | SID8 | SID7 | SID6 | SID5 | SID4 | SID3 |

bit 7 bit 0

bit 7-0 **SID**: 標準識別子ビット <10:3>

凡例:

R = 読み込み可能 W = 書き込み可能 U = 未実装, 読むと'0'

レジスタ 3-4: TXBnSIDL : 送信バッファ n 用の標準識別子 下位

(アドレス: 32h, 42h, 52h)

 R/W-x
 R/W-x
 R/W-x
 R/W-x
 R/W-x
 R/W-x
 R/W-x
 R/W-x

 SID2
 SID1
 SID0
 —
 EXIDE
 —
 EID17
 EID16

bit 7 bit 0

bit 7-5 **SID**: 標準識別子ビット <2:0>

bit 4 未実装: 読むと'o'

bit 3 **EXIDE**: 拡張識別子イネーブルビット

1 = yyt-ジを拡張識別子として送信する 0 = yyt-ジを標準識別子として送信する

bit 2 未実装: 読むと'o'

bit 1-0 **EID**: 拡張識別子ビット <17:16>

凡例:

R = 読み込み可能 W = 書き込み可能 U = 未実装, 読むと '0'

レジスタ 3-5: TXBnEID8 : 送信バッファ n 用の拡張識別子 上位

(アドレス: 33h, 43h, 53h)

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID15 | EID14 | EID13 | EID12 | EID11 | EID10 | EID9 | EID8 |

bit 7 bit 0

bit 7-0 **EID**: 拡張識別子ビット <15:8>

凡例:

R = 読み込み可能 W = 書き込み可能 U = 未実装, 読むと'0'

レジスタ 3-6: TXBnEIDO : 送信バッファ n 用拡張識別子下位

(アドレス: 34h, 44h, 54h)

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |

bit 7 bit 0

bit 7-0 **EID**: 拡張識別子ビット <7:0>

凡例:

R = 読み込み可能 W = 書き込み可能 U = 未実装, 読むと '0'

レジスタ 3-7: TXBnDLC - 送信バッファn用のデータ長コード

(アドレス: 35h, 45h, 55h)

 R/W-x
 R/W-x
 R/W-x
 R/W-x
 R/W-x
 R/W-x
 R/W-x
 R/W-x

 —
 RTR
 —
 DLC3
 DLC2
 DLC1
 DLC0

bit 7

bit 7 未実装: 読むと'o'

bit 6 RTR: リモート送信要求ビット

1 = メッセージをリモート送信要求として送信する 0 = メッセージをデータフレームとして送信する

bit 5-4 未実装: 読むと'0'

bit 3-0 **DLC**: データ長コード <3:0>

送信されるデータバイト数をセットする (0 \sim 8 bytes)

注: DLCには8以上の値を設定することができますが、送信されるのは8バイトだけです。

凡例:

R = 読み込み可能 W = 書き込み可能 U = 未実装, 読むと '0'

レジスタ 3-8: TXBnDm : 送信バッファ n 用のデータバイト数 m (アドレス・20h 20h 40h 50h 50h)

(アドレス: 36h - 3Dh, 46h - 4Dh, 56h - 5Dh)

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TXBnDm |
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

bit 7 bit 0

bit 7-0 TXBnDm7:TXBnDm0: 送信バッファn用データフィールドバイトm

凡例:

R = 読み込み可能 W = 書き込み可能 U = 未実装, 読むと '0'

NOTES:

4.0 メッセージ受信

4.1 受信メッセージのバッファ

MCP2515 は2つのマルチ受入フィルタつきの完全な受信バッファをもっています。さらに3つめの受信バッファとして働くメッセージアセンブリバッファ(MAB)を別にもっています。(図 4-2 参照)

4.1.1 メッセージアセンブリバッファ

3つの受信バッファのうち、MAB は常にバスからの次のメッセージを受信可能となっています。MAB はすべての受信メッセージを組み立てます。これらのメッセージは、受入フィルタに一致したものだけが RXBnバッファ(レジスタ 4-4から レジスタ 4-9参照)に転送されます。

4.1.2 RXB0 & RXB1

残りの2つの受信バッファは、RXB0とRXB1と呼ばれ、MAB経由でプロトコルエンジンからの完全なメッセージを受信することができます。MPUが1つのバッファを処理している間、もう1つのバッファは受信もしくは前に受信されたデータを保持するために使用されます

注: いったんメッセージが受け入れられると、MAB の内容全体が受信バッファに移動されます。 つまり、識別子(標準か拡張)や受信データ バイト数に関わらず、受信バッファ全体がMAB の内容で上書きされてしまいます。したがって、バッファ内の全レジスタの内容は、何ら かのメッセージを受信したら書き換わると仮定しなければなりません。

4.1.3 受信フラグ/割り込み

メッセージがいずれかの受信バッファに移されると、対応する CANINTF.RXnIF ビットがセットされます。新しいメッセージをバッファに受信するためには、MCU によりこのビットをクリアしなければなりません。このビットは、MCU がメッセージを処理完了するまで、MCP2515 が受信バッファに新たなメッセージをロードするのを確実にロックアウトします。

もし、CANINTE.RXnIE ビットがセットされていると、割り込みが $\overline{\text{INT}}$ ピンに生成され、有効なメッセージが受信されたことを通知します。さらに、対応する $\overline{\text{RXnBF}}$ ピンが受信バッファフルピンとして構成されていれば、ピンは $\overline{\text{Low}}$ にドライブされます。詳細は第 $\overline{\text{4.4}}$ 項 " $\overline{\text{RX0BF}}$ $\overline{\text{E}}$ $\overline{\text{RX1BF}}$ ピン" を参照してください。

4.2 受信優先度

RXB0 は最優先バッファで、1つのマスクと2つのメッセージ受入フィルタを持っています。受信したメッセージには、まずこの RXB0 のマスクとフィルタが適用されます。

RXB1 は低優先度のバッファで、1つのマスクと4つの受入フィルタを持っています。

まず RXBO のマスクとフィルタが適用されたメッセージは、さらに、低い番号の受入フィルタが適用され、より厳しく RXBO に一致するかが試されるので、バッファに対しより優先度が高くなることになります。

メッセージが受信されると、RXBnCTRL レジスタの ビット <3:0> が受入れた受入フィルタの番号と、受信 メッセージがリモート送信要求かどうかを示していま す。

4.2.1 ロールオーバー

これに加えて、RXBO が有効なメッセージを含んでいるときに他の有効なメッセージを受信したら、オーバーフローを起こさず、RXB1 の受入基準にかかわらず、新しいメッセージを RXB1 に移すようにRXBOCTRL レジスタを構成することができます。

4.2.2 RXM ビット

RXBnCTRL.RXM ビットは、特殊受信モードをセットします。通常は、これらのビットは 00 にクリアされ、対応する受入フィルタで決定されたすべての有効なメッセージが受信できるようにします。この場合には、標準または拡張メッセージを受け入れるかどうかを決めるのは、受入フィルタレジスタ内のRFXnSIDL.EXIDE ビットで決められます。

RXBnCTRL.RXM ビットが 01 か 10 にセットされると、受信機は、設定に応じて標準か拡張メッセージどちらかしか受信しないようになります。

受入フィルタの RFXnSIDL.EXIDE ビットがセット されていると、RXBnCTRL.RXM のモードと一致せず、 受入フィルタは無効となります。この RXBnC-TRL.RXMビットによる2つのモードは、バスに標準か 拡張メッセージのいずれかしかないシステムで使われ ます。

RXBnCTRL.RXM ビットが 11 にセットされると、受入フィルタの値に関わらず、バッファはすべてのメッセージを受信します。また、メッセージが EOF より前にエラーとなったときには、エラーフレーム前までに MAB に組み立てられた分のメッセージがバッファにロードされます。このモードは CAN システムのデバッグ用で、実システム環境では使われません。

4.3 スタートオブフレーム信号

RXCAN ピンに受信された CAN メッセージの最初で、スタートオブフレーム信号が許可されていれば、SOF ピンに出力されます。

RXCAN ピンはアイドルバスをモニタしていて、リセッシブからドミナントのエッジ変化を見つけるようにします。サンプル点までドミナント状態のままなら、MCP2515 はこれを SOF と解釈し、SOF パルスを生成します。サンプル点までドミナント状態のままでなければ、MCP2515 はこれをバス上のグリッチと解釈し、SOF信号は出力しません。図 4-1にSOF信号とグリッチフィルタについて説明しています。

TTCAN タイプのシステムでは、ワンショットモードとして SOF 信号が使われます。さらに、RXCAN ピンと SOF ピンを一緒にモニタすると、わずかなグリッチも検出することができますので、CAN 通信に影響を与える前に、MCU が早期にバスの物理的問題を検出することができます。

4.4 RXOBF と RX1BF ピン

MCU に多くの異なった条件で割り込み信号が提供できるように、 $\overline{\text{INT}}$ ピンに加えて受信バッファフルピン ($\overline{\text{RXOBF}}$ と $\overline{\text{RX1BF}}$) が、それぞれ $\overline{\text{RXB0}}$ か $\overline{\text{RXB1}}$ に新たなメッセージがロードされたことを表すのに使えます。これらのピンは下記の3つの異なった構成が取れます。(レジスタ 4-1)

- 1. 禁止
- 2. バッファフル割り込み

3. ディジタル出力

4.4.1 禁止

RXBnBF ピンは禁止されると BFPCTRL.BnBFE を クリアし、ハイインピーダンス状態となります。

4.4.2 バッファフルとして構成

RXBnBF ピンはバッファフル割り込みピンか、標準出力ピンとして構成することができます。これらのピンの構成制御と状態は BFPCTRL レジスタでできます。(レジスタ 4-3) (BFPCTRL.BxBFE と BFPC-TRL.BxBFMビットをセットすることで)割り込み動作モードとして設定されると、これらのビットはアクティブ Low となり、各受信バッファの CANINTF.RXnIFビットにマッピングされます。受信バッファに対応するこのビットが High になると、(バッファに新たなメッセージが受信されたことを表す)対応するRXBnBF ピンが Low となります。MCU により CANINTF.RXnIF ビットがクリアされると、対応する割り込みピンが論理 High 状態となり、次のメッセージが受信バッファにロードされるまで継続します。

Preliminary

4.4.3 ディジタル出力として構成

ディジタル出力として使う場合には、関連するバッファの BFPCTRL.BxBFM をクリアし、BFPCTRL.BnBFE ビットをセットします。このモードでは、ピンの状態は、BFPCTRL.BnBFS ビットで制御されます。BnBFS ビットに'1'を書くと、対応するバッファフルピンが High レベルにドライブされ、'0'を書くとしw にドライブされます。このモードでピンを使うときには、バッファフルピンに起きうるグリッチを防止するため、ピンの状態はビット変更の SPI コマンドを使うことでしか変更できません。

表 4-1: RXNBF ピンの構成

BnBFE	BnBFM	BnBFS	ピン状態
0	X	X	禁止、パインピーダンス
1	1	Х	受信バッファ割り込み
1	0	0	ディジタル出力 = 0
1	0	1	ディジタル出力 = 1

図 4-2: 受信バッファブロック図

レジスタ 4-1: RXB0CTRL - 受信バッファ 0 制御

(アドレス: 60h)

U-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R-0	R-0
_	RXM1	RXM0	I	RXRTR	BUKT	BUKT1	FILHIT0

bit 7 bit 0

bit 7 未実装: 読むと '0'

bit 6-5 RXM: 受信バッファ動作モードビット

> 11 = マスク / フィルタがオフで、すべてのメッセージを受信 10 = 拡張識別子でフィルタに一致したメッセージだけ受信 01 = 標準識別子でフィルタに一致したメッセージだけ受信

00 = 標準識別子か拡張識別子を使っていて、フィルタに一致したすべてのメッセージを受信

bit 4 未実装: 読むと '0'

bit 3 RXRTR: リモート送信要求ビットを受信した

> 1 = リモート送信要求を受信した 0 = リモート送信要求は受信していない

bit 2 BUKT: 切替許可ビット

1 = RXB0 がフルなら RXB0 メッセージを RXB1 に切り替えて書き込む

0 = 切替禁止

bit 1 **BUKT1**: 読み取り専用 **BUKT** ビットと同じ (MCP2515 内部で使われる)

bit 0 FILHIT: フィルター致ビット - メッセージ受信がどの受入フィルタかを表す

1 = 受入フィルタ 1 (RXF1)

0 = 受入フィルタ 0 (RXF0)

注: RXBO から RXB1 への切替が起きると、FILHIT ビットは切り替えられたメッセージを受

け入れた側のフィルタを反映する。

凡例:

R = 読み出し可 W = 書き込み可 U=未実装、読むと'o'

-n =POR 後の値 '1'=セット '0' = クリア x = 不定

レジスタ 4-2: RXB1CTRL - 受信バッファ 1 制御

(アドレス: 70h)

U-0	R/W-0	R/W-0	U-0	R-0	R-0	R-0	R-0
_	RXM1	RXM0	-	RXRTR	FILHIT2	FILHIT1	FILHIT0

bit 7

bit 7 未実装: 読むと 'o'

bit 6-5 **RXM**: 受信バッファ動作モードビット

11 = マスク / フィルタをオフ; すべてのメッセージを受信

10 = フィルタと一致する拡張識別子をもつ有効メッセージだけ受信

01 = フィルタと一致する標準識別子をもつメッセージだけ受信

00 = フィルタと一致する標準または拡張識別子をもつすべてのメッセージを受信

bit 4 未実装: 読むと'o'

bit 3 RXRTR: リモート送信要求ビットの受信

1= リモート送信要求を受信した

0 = リモート送信要求は受信していない

bit 2-0 FILHIT: フィルター致ビット - メッセージ受信がどの受入フィルタかを示す

101 = 受入フィルタ 5 (RXF5)

100 = 受入フィルタ 4 (RXF4)

011 = 受入フィルタ 3 (RXF3)

010 = 受入フィルタ 2 (RXF2)

001 = 受入フィルタ 1 (RXF1) (RXB0CTRL 内の BUKT ビットがセットされちるときのみ)

000 = 受入フィルタ 0 (RXF0) (RXB0CTRL内の BUKT ビットがセットされているときのみ)

凡例:

R = 読み出し可 W = 書き込み可

W = 書き込み可 U = 未実装、読むと '0'

レジスタ 4-3: BFPCTRL -RXnBF ピン制御と状態

(アドレス: 0Ch)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	B1BFS	B0BFS	B1BFE	B0BFE	B1BFM	B0BFM

bit 7 bit 0

bit 7 未実装: 読むと '0'

bit 6 未実装:読むと'0'

B1BFS: RX1BF ピン状態ビット (ディジタル出力モードのときのみ) bit 5

- RX1BF が割り込みピンとして構成されているときは読むと 'o'

bit 4 BOBFS: RXOBF ピン状態ビット (ディジタル出力モードのときのみ)

- RX0BF が割り込みピンとして構成されているときは読むと 'o'

bit 3 **B1BFE**: RX1BF ピン機能有効化ビット

1 = ピン機能有効、動作モードは B1BFM により決定する

0 = ピン機能無効、ピンはハイインピーダンス状態となる

bit 2 **B0BFE**: RX0BF ピン機能有効化ビット

1 = ピン機能有効、動作モードは BOBFM により決定される

0 = ピン機能無効、ピンはハイインピーダンス状態となる

B1BFM: RX1BF ピン動作モードビット bit 1

1 = ピンを RXB1 に有効メッセージ受信したときの割り込みピンとする

0 = ディジタル出力モードとする

BOBFM: RXOBF ピン動作モードビット bit 0

1 = ピンを RXB0 に有効メッセージ受信したときの割り込みピンとする

0 = ディジタル出力モードとする

凡例:

R=読み出し可 W = 書き込み可 U=未実装、読むと'o'

'1'=セット -n =POR 後の値 'o' = クリア x = 不定

レジスタ 4-4: RXBnSIDH - 受信バッファ n の標準識別子上位

(アドレス: 61h, 71h)

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3

bit 7-0 SID: 標準識別子ビット <10:3>

これらのビットは、受信メッセージ用の標準識別子の上位8ビットを含む

凡例:

bit 7

R = 読み出し可 W = 書き込み可 U=未実装、読むと 'o'

-n =POR 後の値 '1'=セット '0' = クリア x = 不定 bit 0

レジスタ 4-5: RXBnSIDL - 受信バッファ n の標準識別子 下位

(アドレス: 62h, 72h)

R-x	R-x	R-x	R-x	R-x	U-0	R-x	R-x
SID2	SID1	SID0	SRR	IDE	_	EID17	EID16

bit 7 bit 0

bit 7-5 **SID**: 標準識別子ビット <2:0>

これらのビットは、受信メッセージ用の標準識別子の下位3ビットを含む

bit 4 SRR: 標準フレームのリモート送信要求ビット (IDE ビット = '0' のときだけ有効)

1 = 標準フレームのリモート送信要求を受信した

0 = 標準データフレームを受信した

bit 3 **IDE:** 拡張識別子フラグビット

このビットは、受信メッセージが標準フレームか拡張フレームかを示す

1 = 受信メッセージは拡張フレーム 0 = 受信メッセージは標準フレーム

bit 2 未実装: 読むと 'o'

bit 1-0 **EID**: 拡張識別子ビット <17:16>

これらのビットは、受信メッセージの拡張識別子の上位2ビットを含む

凡例:

R = 読み出し可 W = 書き込み可 U = 未実装、読むと '0'

-n =POR 後の値 '1'=セット '0'=クリア **x** = 不定

レジスタ 4-6: RXBnEID8 - 受信バッファ n の拡張識別子 上位

(アドレス: 63h, 73h)

R-x R-x R-x R-x R-x R-x R-x R-x EID15 EID14 EID13 EID12 EID11 EID10 EID9 EID8 bit 7 bit 0

bit 7-0 **EID**: 拡張識別子ビット <15:8>

これらのビットは受信メッセージの拡張識別子の15から8ビットを保持

凡例:

R = 読み出し可 W = 書き込み可 U = 未実装、読むと '0'

レジスタ 4-7: RXBnEIDO - 受信バッファ n の拡張識別子 下位

(アドレス: 64h, 74h)

| R-x |
|------|------|------|------|------|------|------|------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |

bit 7 bit 0

bit 7-0 **EID**: 拡張識別子ビット <7:0>

これらのビットは受信メッセージの拡張識別子の下位8ビットを含む

凡例:

R = 読み出し可 W = 書き込み可 U = 未実装、読むと '0'

-n =POR 後の値 '1' = セット '0' = クリア **x** = 不定

レジスタ 4-8: RXBnDLC - 受信バッファ n のデータ長コード

(アドレス: 65h, 75h)

U-0	R-x	R-x	R-x	R-x	R-x	R-x	R-x
_	RTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0

bit 7 bit 0

bit 7 未実装: 読むと 'o'

bit 6 RTR: 拡張フレームリモート送信要求ビット

(RXBnSIDL.IDE = '1' のときのみ有効)

1 = 拡張フレームリモート送信要求ビットを受信した

0 = 拡張データフレームを受信した

bit 5 **RB1:** 予約ビット 1

bit 4 **RB0**: 予約ビット 0

bit 3-0 **DLC**: データ長コードビット <3:0>

受信したデータのバイト数を示す

凡例:

R = 読み出し可 W = 書き込み可 U = 未実装、読むと '0'

-n =POR 後の値 '1' = セット '0' = クリア x = 不定

レジスタ 4-9: RXBnDM - 受信バッファ n のデータバイト M

(アドレス: 66h - 6Dh, 76h - 7Dh)

R-x R-x R-x R-x R-x R-x R-x R-x RBnDm0 RBnDm7 RBnDm6 RBnDm5 RBnDm4 RBnDm3 RBnDm2 RBnDm1 bit 7 bit 0

bit 7-0 **RBnDm7:RBnDm0**: 受信バッファ n のデータフィールド m バイト目 受信メッセージのデータは 8 バイトを含む

凡例:

R = 読み出し可 W = 書き込み可 U = 未実装、読むと '0'

4.5 メッセージ受入フィルタとマスク

メッセージ受入フィルタとマスクは、メッセージ組み立てバッファ内のメッセージがどちらかの受信バッファに転送すべきかどうかを決定するために使用されます。(図 4-5 参照)有効なメッセージが MAB に受信されると、メッセージの識別子フィールドがフィルター値と比較されます。一致すると、そのメッセージは対応する受信バッファに転送されます。

4.5.1 データバイトフィルタ

標準データフレーム (11 ビットの識別子)を受信したときは、MCP2515 は自動的にデータフィールドの最初の 16 ビットの拡張識別子部分に対して、通常の16 ビットのマスクとフィルタを適用します。(データバイト 0 と 1 として) 図 4-4 にマスクとフィルタが標準データフレームを拡張データフレームに対しどのように適応されるかを示しています。

データバイトをフィルタリングすることで、最初のデータバイトをフィルタする上位層プロトコル (HLP)(例えば DeviceNet TM) が実装された場合の MCU の負荷を減らします。

4.5.2 フィルター致

フィルタとマスク(レジスタ 4-14からレジスタ 4-17を参照)は、識別子のどのビットにフィルタを適用するかを決定します。表 4-2に示す真理値表は、識別子の各ビットが、どのようにマスクされフィルタと比較されて、受信バッファに格納されるかを示しています。マスクは本来どのビットにフィルタを適用するかを決定します。マスクビットがゼロならそのビットはフィルタビットに関わらず、自動的に受入れます

表 4-2: フィルタ/マスクの真理値表

マスクビット n	フィルタヒ゛ット n	メッセージ識別 子ビット	受入,拒否 n
0	Х	Х	受入
1	0	0	受入
1	0	1	拒否
1	1	0	拒否
1	1	1	受入

注: x = 無関係

受信バッファブロック図 (図 4-2) に示したように、 受入フィルタ RXF0 と RXF1(そしてフィルタマスク RXM0) は、RXB0 に関連します。RXF2, RXF3, RXF4, RXF5 とマスク RXM1 は RXB1 に関連します。

4.5.3 フィルター致ビット

受信メッセージのフィルター致がどれのフィルタかは、対応する RXBnCTRL レジスタの FILHIT ビットで求まります。 RXB0CTRL.FILHIT0 はバッファ 0 に、RXB1CTRL.FILHIT<?:0> はバッファ1 に対応します。

受信バッファ**1 (RXB1)** の 3 ビットの FILHIT ビットは、下記のようにコード化されます。:

- 101 = 受入フィルタ 5 (RXF5)
- 100 = 受入フィルタ 4 (RXF4)
- 011 = 受入フィルタ 3 (RXF3)
- 010 = 受入フィルタ 2 (RXF2)
- 001 = 受入フィルタ 1 (RXF1)
- 000 = 受入フィルタ 0 (RXF0)

注: 000と001は RXBOCTRLの BUKT ビットがセットされて、RXBO のメッセージが RXB1 に転送することが許可されているときだけ発生します。

RXBOCTRL には 2つの BUKT ビットと FILHIT<0>ビットが含まれています。

BUKT ビットのコード化は RXB1CTRL.FILHIT と同じ3ビットで行われ、RXF0 と RXF1 フィルタの一致が、RXB0 か RXB1 に転送された後かを区別します。

- 111 = 受入フィルタ 1 (RXB1)
- 110 = 受入フィルタ 0 (RXB1)
- 001 = 受入フィルタ 1 (RXB0)
- 000 = 受入フィルタ 0 (RXB0)

BUKT がクリアされているときは、6 個のフィルタに対応する6通りのコードとなります。BUKT がセットされているときは、6 個のフィルタに対応する6 個のコードに加えて RXB1 に転送後の RXF0 と RXF1 という2 通りのコードが追加されます。

4.5.4 複数フィルター致

1個以上の受入フィルタで一致したときは、FILHIT ビットが一致した中の最小の番号のフィルタのバイナリ値にコード化されます。例えば、RXF2 フィルタとRXF4 フィルタで一致したとすると、FILHIT ビットには、RXF2 の値がロードされます。つまり受入フィルタはもともと下位番号が高い優先順位をもつように順位づけされていることになります。メッセージはフィルタ番号順のフィルタと比較されることになります。これはまた、メッセージがただひとつのバッファにしか受信されないことを保証します。つまり RXB0 はRXB1 より高い優先順位を持っていることになります。

4.5.5 マスクとフィルタの構成

マスクとフィルタレジスタは、MCP2515がコンフィギュレーションモードのときだけ変更が可能です。(第10.0項 "動作モード"を参照)

レジスタ 4-10: RXFnSIDH - フィルタ n の標準識別子 上位

(アドレス: 00h, 04h, 08h, 10h, 14h, 18h)

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID10 | SID9 | SID8 | SID7 | SID6 | SID5 | SID4 | SID3 |

bit 7 bit 0

bit 7-0 SID: 標準識別子フィルタビット <10:3>

> これらのビットには受信メッセージの標準識別子部分のビット <10:3> に適用するフィルタ ビットを保持しています。

凡例:

R = 読み出し可 W = 書き込み可 U = 未実装、読むと '0'

-n =POR 後の値 '1'=セット '0' = クリア x = 不定

RXFnSIDL - フィルタ n の標準識別子 下位 レジスタ 4-11:

(アドレス: 01h, 05h, 09h, 11h, 15h, 19h)

R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	1	EXIDE	1	EID17	EID16

bit 7 bit 0

bit 7-5 SID: 標準識別子フィルタビット <2:0>

> これらのビットには受信メッセージの標準識別子部分のビット <2:0> に適用するフィルタ ビットを保持しています。

bit 4 未実装: 読むと'0'

EXIDE: 拡張識別子有効化ビット bit 3

> 1=フィルタは拡張フレームにだけ適用される 0= フィルタは標準フレームにだけ適用される

bit 2 未実装: 読むと '0'

bit 1-0 EID: 拡張識別子ビット <17:16>

> これらのビットには受信メッセージの拡張識別子部分のビット <17:16> に適用するフィルタ ビットを保持しています。

凡例:

R=読み出し可 W = 書き込み可 U=未実装、読むと'o'

-n =POR 後の値 'o' = クリア '1'=セット x = 不定 レジスタ 4-12: RXFnEID8 - フィルタ n の拡張識別子 上位

(アドレス: 02h, 06h, 0Ah, 12h, 16h, 1Ah)

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID15 | EID14 | EID13 | EID12 | EID11 | EID10 | EID9 | EID8 |

bit 7 bit 0

bit 7-0 **EID**: 拡張識別子ビット <15:8>

これらのビットには受信メッセージの拡張識別子部分のビット **<15:8>** に適用するフィルタビットを保持しています。

凡例:

R = 読み出し可 W = 書き込み可 U = 未実装、読むと '0'

-n =POR 後の値 '1' = セット '0' = クリア **x** = 不定

レジスタ 4-13: RXFnEIDO - フィルタ n の拡張識別子 下位

(アドレス: 03h, 07h, 0Bh, 13h, 17h, 1Bh)

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |

bit 7 bit 0

bit 7-0 **EID**: 拡張識別子ビット <7:0>

これらのビットには受信メッセージの拡張識別子部分のビット **<7:0>** に適用するフィルタビットを保持しています。

凡例:

R = 読み出し可 W = 書き込み可 U = 未実装、読むと '0'

-n = POR 後の値 '1' = セット '0' = クリア x = 不定

レジスタ 4-14: RXMnSIDH - マスク n の標準識別子 上位

(アドレス: 20h, 24h)

R	/W-0	R/W-0						
S	ID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3

bit 7 bit 0

bit 7-0 **SID**: 標準識別子マスクビット <10:3>

これらのビットには受信メッセージの標準識別子部分のビット<10:3>に適用するマスクビットを保持しています。

凡例:

R = 読み出し可 W = 書き込み可 U = 未実装、読むと '0'

-n =POR 後の値 '1'=セット '0' = クリア **x** = 不定

レジスタ 4-15: RXMnSIDL - マスク n の標準識別子 下位

(アドレス: 21h, 25h)

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
SID2	SID1	SID0	_	_	-	EID17	EID16

bit 7

bit 7-5 **SID**: 標準識別子マスクビット <2:0>

これらのビットには受信メッセージの標準識別子部分のビット <2:0> に適用するマスクビットを保持しています。

bit 4-2 未実装: 読むと'o'

bit 1-0 **EID**: 拡張識別子マスクビット <17:16>

これらのビットには受信メッセージの拡張識別子部分のビット <17:16> に適用するマスクビットを保持しています。

凡例:

R = 読み出し可 W = 書き込み可 U = 未実装、読むと '0'

-n =POR 後の値 '1'=セット '0'=クリア **x** = 不定

レジスタ 4-16: RXMnEID8 - マスク n の拡張識別子 上位

(アドレス: 22h, 26h)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 EID15 EID14 EID13 EID12 EID11 EID10 EID9 EID8

bit 7 bit 0

bit 7-0 **EID**: 拡張識別子マスクビット <15:8>

これらのビットには受信メッセージの拡張識別子部分のビット **<15:8>** に適用するマスクビットを保持しています。

凡例:

R = 読み出し可 W = 書き込み可 U = 未実装、読むと '0'

レジスタ 4-17: RXMnEIDO - マスク n 拡張識別子 下位

(ADDRESS: 23h, 27h)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 EID7 EID6 EID5 EID4 EID3 EID2 EID1 EID0

bit 7 bit 0

bit 7-0 **EID**: 拡張識別子マスクビット <7:0>

これらのビットには受信メッセージの拡張識別子部分のビット <7:0> に適用するマスクビットを保持しています。

凡例:

R = 読み出し可 W = 書き込み可 U = 未実装、読むと '0'

-n =POR 後の値 '1' = セット '0' = クリア **x** = 不定

5.0 ビットタイミング

ある CAN バス上のすべてのノードは同じ公称ビットレートを持つ必要があります。CAN プロトコルは、データストリーム中でクロックがエンコードできない非ゼロ復帰(NRZ)コーディングを使用します。従って、受信クロックは受信側ノードにより回復され、送信クロックに同期させる必要があります。

発振器と送信時間はノード毎に変動するので、受信側はある種の位相ロックループ (PLL) を持ち、データ送信エッジと同期を取って受信クロックを同期化、保持する必要があります。データは NRZ コードなので、エッジが少なくとも6 ビット回数発生するごとに、デジタルフェーズロックループ (DPLL) の同期を保持することを確実にするためにビットスタッフィングを含める必要があります。

MCP2515 のビットタイミングには、到着データに同期を取る構成のDPLLが実装されていて、送信データが提供する公称タイミングと同じになるようになっています。DPLLは各ビットタイムを、時間単位(TQ)と呼ばれる最小の周期からなる複数のセグメントに分割します。

ビットタイミングフレームの中で実行されるバスタイミング機能(自己の発振器への同期とか、ネットワーク遅延補償とか、サンプル点の設定など)は、プログラマブルな DPLL のビットタイミングロジックによる定義されます。

5.1 CAN のビットタイム

CAN バス上のすべてのデバイスが同じビットレートでなければなりません。しかし、すべてのデバイスが同じマスタ発振クロック周波数から供給される必要はありません。個々のデバイスごとのクロック周波数の差異のため、ボーレート用分周器の設定と各セグメントの時間単位の数を調整することでビットレートを合わせなければなりません。

CAN のビットタイムは、重複しないセグメントで作られます。この各セグメントは、本データシートの後で解説される時間単位 (TQ) と呼ばれる積算単位から作られます。公称ビットレート (NBR) は、CAN の仕様で、再同期のない理想的な送信器によって1秒間に送信されるビット数として定義されています。これは下記式で表されます。:

式 5-1:

$$NBR = f_{bit} = \frac{1}{t_{bit}}$$

公称ビットタイム

公称ビットタイム (NBT) (t_{bit}) は、重複のないセグメントから作られます。(図 5-1) したがって NBT は、下記セグメントの集合となります。:

$$t_{bit} = t_{SyncSeg} + t_{PropSeg} + t_{PSI} + t_{PS2}$$

NBT に関連してサンプル点があります。同期ジャンプ幅 (SJW) と情報処理時間 (IPT) は後で説明します。

同期セグメント

同期セグメント (SyncSeg) は、NBT の最初のセグメントで、バス上のノードの同期を取るために使われます。ビットエッジが SyncSeg 内で現れることが期待されます。このセグメントは1TQ で固定です。

伝播セグメント

伝播セグメント (PropSeg) は、ネットワーク内の物理遅延時間を補正するためにあります。これらの伝播遅延は、対応するバスドライバの遅延を含めたバスライン上の合計信号伝播時間の 2 倍として定義されます。PropSeg は $1\sim8$ TQ の間でプログラマブルです。

フェーズセグメント 1 (PS1) とフェーズセグメント 2 (PS2)

2つのフェーズセグメント PS1 と PS2 は、バス上のエッジ位相誤差を補正するために使われます。 PS1 は 再同期によって伸ばす (または PS2 を縮める)ことができます。 PS1 は $1\sim8$ TQ の範囲でプログラマブルで、 PS2 は、 $2\sim8$ TQ でプログラマブルです。

サンプル点

サンプル点は、ビットタイム内でロジックレベルが 読み込まれ解釈される位置です。サンプル点は、PS1 の終わりに置かれます。この規則の例外は、サンプル モードがビット当り3回のサンプリングと構成されている場合です。この場合には、ビットはやはりPS1の 終わりでサンプルリングされますが、さらに追加の2 回のサンプリングがPS1の終わりから1.5TQ周期後 に行われます。そしてビット値は多数決で決定されます。

情報処理時間

情報処理時間 (IPT) は、サンプルしたビットのビットレベルを決めるのに必要な時間です。IPT はサンプル点で開始され、TQ で計測され、マイクロチップのCANモジュールでは2TQで固定です。また、PS2がサ

ンプル点で開始され、ビットタイムの最後のセグメントまでとなるので、PS2 の最小値は、IPT より短くなってはなりません。

したがって:

$$PS2_{min} = IPT = 2TQ$$

同期ジャンプ幅

同期ジャンプ幅 (SJW) により、送信メッセージとの同期を保つため、1~4TQ単位(設定可能)でビットクロックを調整します。同期についてのさらなる詳細は本データシートで後述します。

時間単位

ビットタイムを作るセグメントのそれぞれは、時間単位 (TQ) と呼ばれる積算単位で作られています。各時間単位の長さは発振器周期 (t_{OSC}) に基づいています。基本の TQ は、発振器周期の 2 倍です。図 5-2 に T_{OSC} と TQ から導かれるビット周期を示しています。 TQ の長さは、TQの 1 クロック周期 (t_{BRPCLK}) に等しくなっていて、ボーレート分周器 (t_{BRPCLK}) と呼ばれる分周器によりプログラマブルとなっています。これは下記式で表されます。:

式 5-2:

$$TQ = 2 \cdot BRP \cdot T_{OSC} = \frac{2 \cdot BRP}{F_{OSC}}$$

ここで:BRP は レジスタ 5-1 に示された構成と 同じとします。

5.2 同期化

バス上の各ノードの発振周波数間の位相ずれを補正するために、CAN コントローラーは入力信号の適切な信号エッジに同期させる必要があります。同期化はDPLL機能が実装されていることにより可能なプロセスです。

送信データ内のエッジが検出されると、ロジックは 期待される時間(SyncSeg)のエッジの位置との比較 をします。それから回路は PS1 と PS2 の値を必要で あれば調整します。同期を取るために使用される 2 つの機構があります。:

- 1. ハード同期
- 2. 再同期

5.2.1 ハード同期

ハード同期は、BUS IDLE 状態中にリセッシブからドミナントのエッジがあるとき、これはメッセージの開始を示しますが、このときだけ行われます。ハード同期の後、ビットタイムカウンタは、SyncSeg とともに再スタートされます。

ハード同期は、再スタートビットタイムの同期化セグメント内にエッジがあるようにします。 同期化のルールにより、ハード同期が取られた場合、そのビットタイム内では、再同期は行われません。

5.2.2 再同期

再同期の結果、PS1 が伸びたり、もしくは PS2 が縮んだりするかもしれません。フェーズバッファセグメントを伸び縮みさせる量は、再同期ジャンプ幅ビット (SJW) が上限として与えられます。

SJW の値は PS1 に追加されるかもしくは PS2 から差し引かれます。(図 5-3 参照) SJW の値は DPLLのループフィルタとして現れます。SJW は 1 TQ から 4 TQ の間でプログラマブルです。

5.2.2.1 位相誤差

NRZビットコーディング方式では、メッセージ中にはクロックがエンコードされません。クロック情報はリセッシブからドルマントへの遷移だけから引き出せます。連続するビットが同じ値を持つのは固定数のみという性質(ビットスタッフィング)により、フレーム期間中に確実にビットストリームに再同期化させます。

エッジのフェーズエラーは、SyncSeg に対する エッジの位置により与えられ、時間単位で計測されま す。フェーズエラーは、以下のように TQ の大きさ で定義されます。:

- e=0 エッジが同期セグメント以内にある場合
- e>0 がサンプル点より前にある場合 (TQが PS1 に加算される)
- e < 0 エッジが、前ビットのサンプル点より後に ある場合 (TQ が PS2 から減算される)

5.2.2.2 フェーズエラーなし (e = 0)

フェーズエラーが SJW としてプログラムされた値 以下の場合、再同期の効果はハード同期の効果と同じ です。

5.2.2.3 正のフェーズエラー (e > 0)

フェーズエラーが SJW より大きい場合および フェーズエラーが正の場合、PS1 は、SJW と同じ量 だけ長くなります

5.2.2.4 負のフェーズエラー (e < 0)

フェーズエラーが再同期ジャンプ幅より大きい場合 およびフェーズエラーが負の場合、PS2 は、SJW と 同じ量だけ短くなります。

5.2.3 同期化の規則

- **1.** リセッシブからドルマントへのエッジだけが同期に使われる。
- 2. 1ビットタイム中には1回だけの同期化しかできない。
- 3. エッジが同期化に使われるのは、前回のサンプル点で検出された値(前回のバス読み込み値)が、エッジ直後のバスの値と異なっているときだけです。
- 4. 送信ノードは、正のフェーズエラーのとき (e > 0) は、再同期化はしません。
- 5. フェーズエラーの絶対値が SJW より大きいと きは、適当なフェーズセグメントで SJW と同 じ大きさになるように調整します。

5.3 タイムセグメントのプログラミング

タイムセグメントのプログラミングには、以下のようにいくつかの要求事項があります。:

- PropSeg + PS1 >= PS2
- PropSeg + PS1 >= TDELAY
- PS2 > SJW

例えば、CAN ボーレートが 125 kHz で FOSC = 20 MHz としたいとすると:

TOSC = 50 ns なので BRP<5:0> = 04h を選択すれば TQ = 500 ns です。125 kHzを得るためにはビットタイムは16 TQ としなければなりません。

通常、ビットのサンプリングは、システムパラメータによりますが、ビットタイムの約 60-70% のところで行われます。また、通常 TDELAY は $1 \sim 2$ TQ です。

SyncSeg = 1 TQ で PropSeg = 2 TQ です。これで PS1 = 7 TQ と設定すれば、遷移から 10 TQ 後にサンプ ル点が来ます。ここは PS2 から 6 TQ 離れています。

PS2 が 6 では、規則にしたがって、SJW の最大値は 4 TQ となります。しかし、大きな SJW は通常異なるノードのクロックがセラミック発振子などの不正確で不安定な時しか必要としません。そこで SJW は通常 1 とすれば十分です。

5.4 発振器の許容度

ビットタイミング要求から、セラミック発振子は送信レートが大雑把に 125 kbit/sec までの用途のときに許容されます。CAN プロトコルのフルバス速度範囲では、水晶発振器が必要です。最大のノードとノード間の発振ずれは 1.7% が許容範囲です。

5.5 ビットタイミング設定レジスタ

コンフィギュレーションレジスタ (CNF1, CNF2, CNF3) が CAN バスインターフェースのビットタイミングを制御します。これらのレジスタは MCP2515 がコンフィギュレーションモードのときだけ変更が可能です。(第10.0項 "動作モード"を参照)

5.5.1 CNF1

BRP<5:0> ビットは、ボーレート分周器の制御をします。これらのビットにより OSC1 の入力周波数の相対値で、TQの最小値を 2 Tosc (BRP<5:0) = 'b000000' のとき) として TQ の長さを設定します。 SJW<1:0>ビットは TQ の数によって SJW を選択します。.

5.5.2 CNF2

PRSEG<2:0> ビットは伝播セグメントの長さを (TQ単位で)設定します。PHSEG1<2:0>ビットはPS1 の長さを (TQ 単位で) 設定します。

SAM ビットは、RXCAN ピンを何回サンプリングするかを制御します。このビットを'1'にするとバスを3回サンプリングします。: サンプル点の前に TQ/2 ごとに2回、そして公称サンプル点(ここは PS1 の終わり)で1回サンプリングします。バスの値は、サンプリングの多数決で決定されます。SAM ビットを'0'に設定すると、RXCAN ピンはサンプル点で1回だけのサンプリングとなります。

BTLMODE ビットは PS2 の長さを決めます。この ビットが '1' に設定されると、PS2 の長さは CNF3 の PHSEG2<2:0> ビットで決定されます。(第 5.5.3 項 "CNF3"を参照) BTLMODE ビットが '0' に設定され ると、PS2 の長さは PS1 や情報処理時間 (MCP2515 では、これは 2 TQ に固定となっています。) のそれよ り長くなります。

5.5.3 CNF3

CNF2.BTLMODE ビットが '1' に設定されると、PHSEG2<2:0>ビットでPS2の長さを(TQ単位で)設定します。BTLMODE ビットが '0' に設定されるとPHSEG2<2:0> ビットは何の影響も与えません。

レジスタ 5-1: CNF1 - コンフィギュレーション1 (アドレス: 2Ah)

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 |

bit 7

bit 7-6 **SJW**: 再同期ジャンプ幅長ビット <1:0>

11 = 長さ = $4 \times TQ$ 10 = 長さ = $3 \times TQ$ 01 = 長さ = $2 \times TQ$ 00 = 長さ = $1 \times TQ$

bit 5-0 **BRP**: ボーレート分周器ビット <5:0>

 $TQ = 2 \times (BRP + 1)/FOSC$

凡例:

R = 読み出し可 W = 書き込み可 U = 未実装、読むと '0'

-n =POR 後の値 '1' = セット '0' = クリア **x** = 不定

レジスタ 5-2: CNF2 - コンフィギュレーション 1 (アドレス: 29h)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PHSEG12 PHSEG11 PHSEG10 **BTLMODE** SAM PRSEG2 PRSEG1 PRSEG0 bit 7 bit 0

bit 7 BTLMODE: PS2 ビットタイム長ビット

1 = PS2 の長さは CNF3 の PHSEG22:PHSEG20 ビットで決定される

0 = PS2 の長さは PS1 および IPT (2 TQ) より大きくする

bit 6 SAM: サンプル点コンフィギュレーションビット

1= バスラインはサンプル点で3回サンプリングされる0= バスラインはサンプル点で1回だけサンプリングされる

bit 5-3 **PHSEG1**: PS1 長さビット <2:0>

(PHSEG1 + 1) x TQ

bit 2-0 **PRSEG**: 伝播セグメント長さビット <2:0>

(PRSEG + 1) x TQ

凡例:

R = 読み出し可 W = 書き込み可 U = 未実装、読むと '0'

-n =POR 後の値 '1' = セット '0' = クリア **x** = 不定

レジスタ 5-3: CNF3 - コンフィギュレーション1 (アドレス: 28h)

 R/W-0
 R/W-0
 U-0
 U-0
 U-0
 R/W-0
 R/W-0
 R/W-0

 SOF
 WAKFIL
 —
 —
 PHSEG22
 PHSEG21
 PHSEG20

bit 7 bit 0

bit 7 **SOF**: スタートオブフレーム信号ビット

CANCTRL.CLKEN = 1 のとき:

1 = CLKOUT ピンは SOF 信号として有効化される

0 = CLKOUT ピンはクロック出力機能として有効化される

CANCTRL.CLKEN = 0 のとき、ビットは無影響

bit 6 WAKFIL: ウェイクアップフィルタビット

1 = ウェイクアップフィルタ有効 0 = ウェイクアップフィルタ無効

bit 5-3 未実装: 読むと '0'

bit 2-0 **PHSEG2**: PS2 長さビット <2:0>

(PHSEG2 + 1) x TQ

Note: PS2 の設定最小値は 2 TQ

凡例:

R = 読み出し可 W = 書き込み可 U = 未実装、読むと '0'

-n = POR 後の値 '1' = セット '0' = クリア x = 不定

NOTES:

6.0 エラー検出

CAN プロトコルは洗練されたエラー検出メカニズムを提供しています。下記のようなエラーが検出できます。

6.1 CRC エラー

巡回冗長チェック (CRC) により、送信器は、フレームの開始からデータフィールドの終わりまでのビットシーケンスに対して特別なチェックビットを計算します。この CRC シーケンスは、CRC フィールドで送信されます。受信ノードでも、同じ式を用いてCRC シーケンスを計算し、受信シーケンスとの比較を行います。不一致が検出されると、CRC エラーが発生しエラーフレームが生成されます。メッセージは再送されます。

6.2 アクノレッジエラー

メッセージのアクノレッジフィールドでは、送信器がアクノレッジスロット(受信器がリセッシブビットを送っているはず)がドミナントでないかをチェックします。もしドミナントであれば、どのノードもフレームを正常に受信していないことになります。アクノレッジエラーが起きると、エラーフレームが生成され、メッセージが再送されます。

6.3 形式エラー

ノードが4セグメント内(エンドオブフレーム、フレーム間の空き、アクノレッジデリミタ、CRC デリミタを含む)にドミナントビットを1つでも検出すると、形式エラー発生となり、エラーフレームが生成されます。メッセージは再送されます。

6.4 ビットエラー

送信器が送信したビットレベルと反対のレベル(つまり、ドミナントビット送信したときリセッシブを検出、あるいはリセッシブを送信したときドミナントを検出した)を検出するとビットエラー発生となります。 例外:アービトレーションフィールドのアクノレッジスロットの間に、送信器がリセッシブを送信してドミナントを検出したときは、ビットエラーにはなりません。なぜなら正常なアービトレーションが行われているからです。

6.5 スタッフエラー

フレームの開始から CRC デリミッタ間で、同じ極性を持つ6つの連続するビットが検出された場合、ビットスタッフィングルールに違反することになります。ビットスタッフィングエラーが発生しエラーフレームが生成されます。メッセージは再送されます。

6.6 エラー状態

検出されたエラーはエラーフレームのよってすべてのノードに通知されます。エラーのメッセージの送信はアボートされ、フレームはできるだけ早期に再送されます。さらに、各 CAN ノードは内部エラーカウンタの値により3つの状態のいずれかとなります。:

- 1. エラーアクティブ
- 2. エラーパッシブ
- 3. バスオフ(送信器のみ)

エラーアクティブ状態は通常の状態で、ノードが メッセージとアクティブエラーフレーム(ドミナント ビットにより構成されます)を何ら制約無しに送信で きます。

エラーパッシブ状態では、メッセージとパッシブエラーフレーム(リセッシブビットにより構成されます)が送信されることがあります。

バスオフ状態では、ステーションは一時的にバス通信に参加できなくなります。この状態の間はメッセージは受信も送信もできません。送信側だけがバスオフとなります。

6.7 エラーモードとエラーカウンタ

MCP2515には2つのエラーカウンタがあります: すなわちリセッシブエラーカウンタ (REC) (レジスタ 6-2 参照) と送信エラーカウンタ (TEC) (レジスタ 6-1 参照) です。両カウンタの値は、MCU から読み出し可能です。これらのカウンタは CAN バス仕様にしたがって増減されます。

MCP2515 は両方のカウンタ値が 128 というエラー パッシブ限界より小さければエラーアクティブとなり ます。

エラーカウンタの少なくとも片方が 128 以上となる とエラーパッシブとなります。

TEC がバスオフ限界の 255 を超えるとバスオフとなります。この状態でもデバイスはバスオフ回復メッセージは受信します。バスオフ回復シーケンスは 11 個の連続リセッシブビットが 128 回で構成されます。(図 6-1 参照)

注: MCP2515 は、バスオフになった後、バスが 128 x 11 ビット時間だけアイドルとなる と MCU による介入無しにエラーアクティブに復帰します。そうしたくないときは、エラー割り込み処理でこれを処理しませ

MCP2515 の現状のエラー状態は EFLG レジスタによって MCU が読み出せます。(レジスタ 6-3 参照).

さらにエラー状態警告フラグビット (EFLG:EWARN) があり、エラーカウンタの1つでもエラー警告限界の96以上になるとセットされます。 EWARN は、両カウンタがエラー警告限界以下になるとリセットされます。

レジスタ 6-1: TEC - 送信エラーカウンタ

(アドレス: 1Ch)

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
TEC7	TEC6	TEC5	TEC4	TEC3	TEC2	TEC1	TEC0
bit 7							bit 0

bit 7-0 TEC: 送信エラーカウントビット <7:0>

凡例:

R = 読み出し可 W = 書き込み可 U=未実装、読むと'o'

-n =POR 後の値 '1' = セット 'o' = クリア x = 不定

レジスタ 6-2: REC - 受信エラーカウンタ

(アドレス: 1Dh)

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
REC7	REC6	REC5	REC4	REC3	REC2	REC1	REC0
bit 7							bit 0

bit 7-0 REC: 受信エラーカウントビット <7:0>

凡例:

R = 読み出し可 W = 書き込み可 U=未実装、読むと'o'

'1'=セット 'o' = クリア -n =POR 後の値 x = 不定 レジスタ 6-3: EFLG - エラーフラグ

(アドレス: 2Dh)

R-0 R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 RX10VR RX00VR **TXBO TXEP RXEP TXWAR RXWAR EWARN**

bit 7 bit 0

bit 7 RX1OVR: 受信バッファ 1 オーバーフローフラグビット

- RXB1 かつ CANINTF.RX1IF = 1 のとき有効なメッセージが受信されるとセットされる

- MCU からリセットする

bit 6 **RX00VR**: 受信バッファ 0 オーバーフローフラグビット

- RXBO かつ CANINTF.RXOIF = 1 のとき有効なメッセージが受信されるとセットされる

- MCU からリセットする

bit 5 TXBO: バスオフエラーフラグビット

- TEC が 255 になるとセットされる

- バス回復シーケンスの正常受信後にリセット

bit 4 TXEP: 送信エラー - パッシブエラーフラグビット

- TEC が 128 以上になるとセットされる

- TEC が 128 より小さくなるとリセットされる

bit 3 RXEP: 受信エラー - パッシブフラグビット

- REC が 128 以上となるとセットされる

- REC が 128 より小さくなるとリセットされる

bit 2 TXWAR: 送信エラー警告フラグビット

- TEC が 96 以上となるとセットされる

- TEC が 96 より小さくなるとリセットされる

bit 1 RXWAR: 受信エラー警告フラグビット

- REC が 96 以上になるとセットされる

- REC が 96 より小さくなるとリセットされる

bit 0 **EWARN**: エラー警告フラグビット

- TEC または REC が 96 以上となるとセットされる (TXWAR または RXWAR = 1)

- REC と TEC 両方が 96 より小さくなるとリセットされる

凡例:

R = 読み出し可 W = 書き込み可 U = 未実装、読むと '0'

-n =POR 後の値 '1' = セット '0' = クリア **x** = 不定

NOTES:

7.0 割り込み

MCP2515 は8個の割り込み要因を持っています。 CANINTE レジスタが個々の割り込み要因の割り込み フラグビットとなっています。割り込みが発生すると、 INT ピンが MCP2515 により Lowにドライブされ、MCU により割り込みがクリアされるまで保持します。割り 込みは対応する条件がある限りクリアすることはでき ません。

CANINTFレジスタのフラグビットのクリアには、通常の書き込み動作よりビット変更コマンドを使うことをお勧めします。これは書き込みコマンド中に意図しないフラグの変更が起きて誤った割り込みが発生するのを防止するためです。

CANINTF フラグは読み書きができ、MCU がこれらのビットをセットしてしまうと、CANINTE ビットがセットされていると割り込みが発生することに注意が必要です。

7.1 割り込みコードビット

割り込み待ちの要因はレジスタ 10-2 に示した CANSTAT.ICOD (割り込みコード)ビットで示されます。複数割り込みイベントが起きた場合には、MCU により割り込みがリセットされるまで INT ピンが Low のままとなります。CANSTAT.ICOD ビットは、現在割り込み待ち中の最も高い優先度の割り込みのコードを反映します。割り込みは内部で ICOD 値の小さいものが高い優先度に優先順位づけされています。最も高い優先度の割り込みがクリアされると、(もしあれば)割り込み待ち中の割り込みの中で次に優先度の高い割り込みのコードが ICOD ビットに反映されます。(表 7-1参照) 割り込み要因の中で対応する CANINTE許可ビットがセットされているものだけが ICOD ビットに反映されます。

表 7-1: ICOD<2:0>デコード

ICOD<2:0>	ブール代数表記
000	ERR•WAK•TX0•TX1•TX2•RX0•RX1
001	ERR
010	ERR•WAK
011	ERR•WAK•TX0
100	ERR•WAK•TX0•TX1
101	ERR•WAK•TX0•TX1•TX2
110	ERR•WAK•TX0•TX1•TX2•RX0
111	ERR•WAK•TX0•TX1•TX2•RX0•RX1

注: ERR は CANINTE, ERRIE に対応

7.2 送信割り込み

送信割り込みが許可 (CANINTE.TXnIE = 1) されていると、対応するバッファが空で新メッセージがロードできる状態になると $\overline{\text{INT}}$ ピンに割り込みを発生します。 CANINTF.TXnIF ビットがセットされて割り込み要因を示します。割り込みは $\overline{\text{TXnIF}}$ ビットをクリアすることでクリアされます。

7.3 受信割り込み

受信割り込みが許可(CANINTE.RXnIE = 1)されていると、メッセージが正常に受信され、対応する受信バッファにロードされると \overline{INT} ピンに割り込みを発生します。この割り込みは \overline{EOF} フィールド受信後直ぐ発生します。 CANINTF.RXnIF ビットがセットされて割り込み要因を示します。割り込みは \overline{EOF} アナることでクリアされます。

7.4 メッセージエラー割り込み

メッセージの送受信中にエラーが発生すると、メッセージエラーフラグ (CANINTF.MERRF) がセットされ、CANINTE.MERRE がセットされていれば、割り込みが $\overline{\text{INT}}$ ピンに生成されます。これはリスンオンリーモードで使われたときには、ボーレート決定のために使われます。

7.5 バスアクティビティウェイクアップ 割り込み

MCP2515 がスリープモードでバスアクティビティ割り込みが許可 (CANINTE.WAKIE = 1) されているときは、CAN バスでアクテビティが検出されると CANINTF.WAKIF ビットがセットされ、INT ピンに割り込みが生成されます。この割り込みはMCP2515をスリープモードから抜け出させます。割り込みは WAKIF ビットをクリアするとリセットされます。

注: MCP2515 はウェイクアップしてリスンオンリーモードになります。

7.6 エラー割り込み

エラー割り込みが許可 (CANINTE.ERRIE = 1) されていると、オーバーフローが起きたときか送受信器のエラー状態が変わったときに $\overline{\text{INT}}$ ピンに割り込みを生成します。エラーフラグレジスタ (EFLG) が下記の状態のひとつを表します。

7.6.1 受信オーバーフロー

MAB が有効なメッセージ (メッセージが受入フィルタに合致した)を組み立てたとき、対応するフィルタの受信バッファが新たなメッセージをロードできないと、オーバーフロー状態が発生します。対応する EFLG.RXnOVR ビットがセットされてオーバーフローを表します。このビットは MCU からクリアしなければなりません。

7.6.2 受信警告

REC が MCU 警告限界の 96 に達したとき。

7.6.3 送信警告

TEC が MCU 警告限界の 96 に達した。

7.6.4 受信エラーパッシブ

REC がエラーパッシブ限界 **127** を超えてデバイス がエラーパッシブ状態になった。

7.6.5 送信エラーパッシブ

TEC がエラーパッシブ限界の**127** を超えてデバイス がエラーパッシブ状態になった。 7.6.6 バスオフ

TEC が 255 を超えるとデバイスはバスオフ状態となり切り離されます。

7.7 割り込みアクノレッジ

割り込みは CANINTF レジスタの1つ以上の状態フラグに直接関連します。フラグが1つでもセットされると割り込み待ち中となります。いったん割り込みフラグがデバイスでセットされると、割り込み要因がなくなって MCU がフラグをリセットするまで継続します。

レジスタ 7-1: CANINTE - 割り込み許可

(アドレス: 2Bh)

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| MERRE | WAKIE | ERRIE | TX2IE | TX1IE | TX0IE | RX1IE | RX0IE |
| bit 7 | | | | | | | bit 0 |

bit 7 MERRE: メッセージエラー割り込み許可ビット

1 = メッセージ送受信中にエラー発生で割り込む

0 = 禁止

bit 6 WAKIE: ウェイクアップ割り込み許可ビット

1 = CAN バスアクティビティで割り込む

0 = 禁止

bit 5 ERRIE: エラー割り込み許可ビット (EFLG レジスタの複数要因)

1 = EFLG エラー状態が変化したとき割り込む

0 = 禁止

bit 4 TX2IE: 送信バッファ 2 空割り込み許可ビット

1 = TXB2 が空になると割り込む

0 = 禁止

bit 3 TX1IE: 送信バッファ **1** 空割り込み許可ビット

1 = TXB1 が空になると割り込む

0 = 禁止

bit 2 TX0IE: 送信バッファ 0 空割り込み許可ビット

1 = TXB0 が空になると割り込む

0 = 禁止

bit 1 RX1IE: 受信バッファ 1 フル割り込み許可ビット

1 = RXB1 にメッセージが受信されると割り込む

0 = 禁止

bit 0 RX0IE: 受信バッファ 0 フル割り込み許可ビット

1 = RXB0 にメッセージが受信されると割り込む

0 = 禁止

凡例:

R = 読み出し可 W = 書き込み可 U = 未実装、読むと '0'

-n =POR 後の値 '1' = セット '0' = クリア **x** = 不定

レジスタ 7-2: CANINTF - 割り込みフラグ

(アドレス: 2Ch)

<u> </u>	l l	i i	1	1	i i		
MERRF	WAKIF	ERRIF	TX2IF	TX1IF	TX0IF	RX1IF	RX0IF
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 7

bit 7 MERRF: メッセージエラー割り込みフラグビット

1 = 割り込み待ち中(割り込み条件リセットには MCU からクリアが必要)

0 = 割り込み待ちなし

bit 6 WAKIF: ウェイクアップ割り込みフラグビット

1 = 割り込み待ち中(割り込み条件リセットには MCU からクリアが必要)

0= 割り込み待ちなし

bit 5 ERRIF: エラー割り込みフラグビット (EFLG レジスタの複数要因)

1 = 割り込み待ち中(割り込み条件リセットには MCU からクリアが必要)

0= 割り込み待ちなし

bit 4 TX2IF: 送信バッファ 2 空割り込みフラグビット

1 = 割り込み待ち中(割り込み条件リセットには MCU からクリアが必要))

0 = 割り込み待ちなし

bit 3 TX1IF: 送信バッファ 1 空割り込みフラグビット

1 = 割り込み待ち中(割り込み条件リセットには MCU からクリアが必要)

0= 割り込み待ちなし

bit 2 TX0IF: 送信バッファ 0 空割り込みフラグビット

1 = 割り込み待ち中(割り込み条件リセットには MCU からクリアが必要)

ο= 割り込み待ちなし

bit 1 RX1IF: 受信バッファ 1 フル割り込みフラグビット

1 = 割り込み待ち中(割り込み条件リセットには MCU からクリアが必要)

0= 割り込み待ちなし

bit 0 RXOIF: 受信バッファ 0 フル割り込みフラグビット

1 = 割り込み待ち中(割り込み条件リセットには MCU からクリアが必要)

0= 割り込み待ちなし

凡例:

R = 読み出し可 W = 書き込み可 U = 未実装、読むと '0'

-n = POR 後の値 '1' = セット '0' = クリア x =不定

NOTES:

8.0 発振器

MCP2515 は水晶かセラミック発振子を OSC1 と OSC2 ピンに接続することで動作するように設計されています。MCP2515 発振器は並列カットの水晶を使うことで設計されています。直列カットの水晶を使うと水晶製造仕様からはずれた周波数で発振することがありえます。標準的な発振回路を図 8-1 に示します。MCP2515 は、図 8-2 と 図 8-3 に示したように、外部クロック源をOSC1 ピンに接続してドライブすることもできます。

8.1 発振スタートアップタイマ

MCP2515 は発振スタートアップタイマ (OST) でリセット状態を保持します。これにより発振が安定してから内部状態マシンの動作を開始します。電源オンまたはスリープモードからのウェイクアップ後の最初の128 OSC1 クロックサイクルの間は、OST がリセット状態を保持します。これにより OST が終了するまで、SPI プロトコルも動作できないことに注意してください。

8.2 クロック出力ピン

CLKOUT ピンは、システム中の他のデバイスへのメインクロックやクロック入力として使えるようシステム設計者に提供されています。CLKOUT は内部に分周器を持っていて、 F_{OSC} を 1, 2, 4,8 で分周できます。CLKOUT 機能の許可と分周器の選択は、CANCNTRLレジスタで行います。(レジスタ 10-1 参照)

注: CLKOUT の最高周波数は25 MHz として規定 されています。(表 13-5 参照)

CLKOUT ピンはシステムリセットでアクティブになり、デフォルトでは最も遅い速度(8分周)となりMCUのクロックとして使えるようになっています。

スリープモードが要求されたときは、MCP2515 はスリープモードに入る前に、16 個の追加クロックを CLKOUT ピンに出力します。CLKOUT 機能が禁止 (CANCNTRL.CLKEN = '0') されると、CLKOUT ピンはハイインピーダンス状態となります。

CLKOUT機能は、CLKOUTピン機能が許可、禁止されたとき、および分周器が変更されたときには、thCLKOUTとtiCLKOUTのタイミングを保つように設計されています。

図 8-1: 水晶/セラミック発振子による場合

注 1: 直列抵抗 (Rs) は AT ストリップカット水晶のとき必要。

2: 負帰還抵抗 (RF) の標準値は $2\sim 10$ M Ω の範囲

図 8-2: 外部クロック源の場合

注 1: グランドとの抵抗はシステムノイズを減らしますがシステム電流が増えます。

2: デューティサイクル制限は守らなければなりません。(表 12-2 参照)

表 8-1: セラミック発振子の場合のコンデン サの選択

使用できる容量の標準値:						
モード	周波数 OSC1 OSC2					
HS	8.0 MHz	27 pF	27 pF			
	16.0 MHz	22 pF	22 pF			

容量値は設計ガイド用のみ:

これらの容量は下記発振子で基本的なスタートアップと動作をテストしたもの。これらの値は最適化はされていません。

異なる容量値が許容できる発振動作のために必要とされるかも知れません。ユーザーの使用方法で期待する VDD と温度範囲全体で発振性能をテストすることを推奨します。

さらなる追加情報は下記表 8-2 の注を参照

使用発振子:	
4.0 MHz	
8.0 MHz	
16.0 MHz	

表 8-2: 水晶発振子の場合のコンデンサ の選択

Osc タイプ	水晶	テストした標準容量値			
(1)(4)	周波数 (2)	C1	C2		
HS	4 MHz	27 pF	27 pF		
	8 MHz	22 pF	22 pF		
	20 MHz	15 pF	15 pF		

容量値は設計ガイド用のみ:

これらの容量は下記水晶で基本的なスタートアップ と動作をテストしたもの。これらの値は最適化はさ れていません。

異なる容量値が許容できる発振動作のために必要と されるかも知れません。ユーザーの使用方法で期待 する VDD と温度範囲全体で発振性能をテストするこ とを推奨します。

さらなる追加情報につては本表の注を参照

使用水晶 ⁽³⁾ :
4.0 MHz
8.0 MHz
20.0 MHz

- 注 1: 容量を大きくすると発振の安定度は向上 しますが、スタートアップ時間も増えま す。
 - 2: いずれの発振子/水晶でも個々の特性を 持っていますので、ユーザーは外付けの 部品の最適値については発振子/水晶の メーカに相談すべきです。
 - **3:** Rs は低負荷ドライブ仕様の水晶の過負荷を避けるために必要とされます。
 - 4: 使用方法で期待される VDD と温度の全範 囲で発振性能の確認を常にしてください。

9.0 リセット

MCP2515 は2つのリセットを識別します。:

- 1. $N-\dot{r}$ $D=\frac{1}{2}$ $D=\frac{$
- 2. SPI リセット SPI コマンドでリセット

両方のリセットとも機能は同じです。重要なことは、電源オン後に2つのリセットのいずれかを実行して、ロジックとレジスタを確実にデフォルト状態にすることです。ハードウェアリセットなら RESET ピンに RCを付けることで自動的にできるようになります。(図 9-1 参照) この値は、電気的仕様で示されている(tRL)とおり、VDD が動作電圧になってから、デバイスが最小2 μ sの間リセットが保持されるようにしなければなりません。

図 9-1: RESET ピンの構成例

- 注 1: ダイオード D は VDD 電源オフのときコンデンサの放電を早くする役割です。
 - **2:** R1=1 k Ω ~ 10 k Ω は、静電気放電 (ESD) や電気的過負荷 (EOS) で RESET ピンがブレークダウンしたときに、外付けコンデンサから RESET に流れ込む電流を制限します。

© 2005 Microchip Technology Inc. Preliminary DS21801D-page 55

NOTES:

10.0 動作モード

MCP2515 は5つの動作モードを持っています。これらのモードとは下記となります。:

- 1. コンフィギュレーションモード
- 2. 通常モード
- 3. スリープモード
- 4. リスンオンリーモード
- 5. ループバックモード

動作モードは CANCTRL. REQOP ビット (レジスタ 10-1 参照)によって選択されます。

モードを変更すると、送信中のメッセージが完了するまでモードの実際の変更は行われません。要求されたモードはCANSTAT.OPMODEビット(レジスタ10-2参照)を読むことで参照できます。

10.1 コンフィギュレーションモード

MCP2515 は動作前に初期化されなければなりません。これは唯一デバイスがコンフィギュレーションモードにあるときだけできます。コンフィギュレーションモードは、電源オンかリセットでは自動的に選択され、CANTRL.REQOPビットを'100'にすることで、どんなモードからも入ることができます。コンフィギュレーションモードに入ると、すべてのエラーカウンタがクリアされます。コンフィギュレーションモードは下記のレジスタが設定できる唯一のモードです。:

- CNF1, CNF2, CNF3
- TXRTSCTRI
- フィルタレジスタ
- マスクレジスタ

10.2 スリープモード

MCP2515 は内部スリープモードを持っていて、デバイスの電流消費を最小にするのに使います。SPI インターフェースは、MCP2515がスリープモードになっても読み出しがアクティブのままで、すべてのレジスタにアクセスできます。

スリープモードにするには、CANCTRL レジスタのモード要求ビット(REQOP<2:0>)を設定します。CANSTAT.OPMODE ビットは動作モードを表しています。このビットは MCP2515 にスリープコマンドを送った後で読み出します。このビットがスリープモードに入ったことを表すまで、MCP2515 がアクティブでまだスリープモードに入っていないことになります。

内部スリープモードのときは、ウェイクアップ割り 込みは(許可されていれば)アクティブのままです。 これにより MCU もスリープモードにでき、MCP2515 のバスのアクティビティ検出をウェイクアップに使う ことができます スリープモードのときは、MCP2515 は内部発振を停止します。MCP2515 はバスアクティビティが起きたとき、または MCU が SPI インターフェース経由でCANINTF.WAKIF ビットをセットしてウェイクアップ要求を生成したときウェイクアップもます。(CANINTE.WAKIE ビットは、ウェイクアップ割り込みを起こすためにはセットしなければなりません。)

TXCAN ピンは、MCP2515 がスリープモード中でも、リセッシブ状態を維持します。

10.2.1 ウェイクアップ機能

デバイスはスリープ中は、アクティビティのためにRXCAN ピンをモニタしています。CANINTE.WAKIE ビットがセットされると、デバイスはウェイクアップして割り込みを発生します。内部発振器はスリープ中はシャットダウンしていますので、発振器が発振開始してデバイス自身がメッセージを受信可能になるまでにはちょっと時間がかかります。この発振スタートアップタイマー(OST)は128 Tosc として定義されています。

デバイスがスリープモードからウェイクアップするときのメッセージは、デバイスがウェイクアップ中のメッセージと同様に無視します。デバイスはウェイクアップするとリスンオンリーモードとなります。MCP2515 がバス上で通信ができるようにするためには、MCU が通常モードに設定しなければなりません。

デバイスは内部スリープ中の間、RXCAN 入力ピンにローパスフィルタ機能を適用するようプログラムできます。この特性は、デバイスが CAN バスライン上の短時間のグリッチでウェイクアップしてしまうのを防ぐために使うことができます。CNF3.WAKFIL ビットがフィルタの許可禁止を行います。

10.3 リスンオンリーモード

リスンオンリーモードは、RXBnCTRL.RXM<1:0>ビットを設定することで、MCP2515 がすべてのメッセージ(エラーメッセージも含めて)を受信する手段を提供します。このモードは、バスモニタ用途や、ホットプラグ状況でボーレート検出するときに使えます。

自動ボーレート検出は、通信する相手が2つのノードだけのとき必要となります。ボーレートは有効なメッセージが受信できるまで異なる値でテストすることで実験的に決定されます。

リスンオンリーモードは、無言のモードです。つまりこのモードの間は何のメッセージも(エラーフラグやアクノレッジ信号を含めて)送信しません。フィルタやマスクは、特別なメッセージだけを受信バッファに格納することを許可するためや、マスクをすべてゼロにしてどんな識別子のメッセージでも通すように使えます。エラーカウンタはリセットされ、この状態では使われません。リスンオンリーモードは CANCTRLレジスタのモード要求ビットを設定することでアクティブにできます。

10.4 ループバックモード

ループバックモードは、CANバスに実際にメッセージ送信を行わずに、内部で送信バッファから受信バッファにメッセージ転送するようにします。このモードはシステム開発やテストに使うことができます。

このモードでは、ACK ビットは無視され、デバイスが自分自身から来る入力メッセージを他のノードから来たかのように扱えます。ループバックモードは、無言のモードです。つまりこのモードの間は何のメッセージも(エラーフラグやアクノレッジ信号を含めて)送信しません。TXCAN ピンはリセッシブ状態となります。

フィルタやマスクは、特別なメッセージだけを受信 バッファに格納することを許可することができます。 マスクをすべてゼロにしてどんな識別子のメッセージ でも通すように使えます。ループバックモードは CANCTRL レジスタのモード要求ビットを設定するこ とでアクティブにできます。

10.5 通常モード

通常モードは、MCP2515の標準の動作モードです。 このモードでは、デバイスは積極的に全バスメッセー ジをモニタし、アクノレッジビットやエラーフレーム などを生成します。これは、MCP2515がメッセージ を CAN バスに送信できる唯一のモードです。

レジスタ 10-1: CANCTRL - CAN 制御レジスタ

(アドレス: XFh)

R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1
REQOP2	REQOP1	REQOP0	ABAT	OSM	CLKEN	CLKPRE1	CLKPRE0
bit 7	-	•		•	•	•	bit 0

bit 7-5 **REQOP:** 動作モード要求ビット <2:0>

000 = 通常動作モードに設定

001 = スリープモードに設定

010 = ループバックモードに設定

011 = リスンオンリーモードに設定

100 = コンフィギュレーションモードに設定

REQOP ビットの他の値は不正で使われません。

注: 電源オン時は REQOP = b'111'

bit 4 ABAT: すべての送信の停止ビット

1= すべての送信バッファの送信停止要求

0 = 全送信停止の終了要求

bit 3 OSM: ワンショットモードビット

1= 許可、メッセージは1回だけ送信される

0 = 禁止、メッセージは要求のつど送信される

bit 2 **CLKEN:** CLKOUT ピン有効化ビット

1 = CLKOUT ピン有効

o = CLKOUTピン無効(ピンはハイインピーダンス状態となる)

bit 1-0 CLKPRE: CLKOUT ピン分周設定ビット <1:0>

00 = FCLKOUT = システムクロック /1

01 = FCLKOUT = システムクロック /2

11 = FCLKOUT = \mathcal{V} > \mathcal{V} > \mathcal{V} | \mathcal{V}

凡例:

R = 読み出し可 W = 書き込み可 U = 未実装、読むと '0'

-n =POR 後の値 '1' = セット '0' = クリア **x** = 不定

レジスタ 10-2: CANSTAT - CAN 状態レジスタ

(アドレス: XEh)

 R-1
 R-0
 R-0
 U-0
 R-0
 R-0
 R-0
 U-0

 OPMOD2
 OPMOD1
 OPMOD0
 —
 ICOD2
 ICOD1
 ICOD0
 —

bit 7 bit 0

bit 7-5 **OPMOD**: 動作モードビット <2:0>

000 = デバイスは通常動作モード中001 = デバイスはスリープモード中010 = デバイスはループバックモード中

011 = デバイスはリスンオンリーモード中

100 = デバイスはコンフィギュレーションモード中

bit 4 未実装: 読むと'o'

bit 3-1 **ICOD**: 割り込みフラグコードビット <2:0>

000 = 割り込みなし 001 = エラー割り込み

010 = ウェイクアップ割り込み

011 = TXB0 割り込み 100 = TXB1 割り込み 101 = TXB2 割り込み 110 = RXB0 割り込み

110 = RXBU 割り込み 111 = RXB1 割り込み

bit 0 未実装: 読むと'o'

凡例:

R = 読み出し可 W = 書き込み可 U = 未実装、読むと '0'

-n =POR 後の値 '1'=セット '0' = クリア **x** = 不定

NOTES:

11.0 レジスタマップ

MCP2515のレジスタマップを表 11-1に示します。各レジスタのアドレス位置は列(高位4ビット)と行(下位ビット)の値で決まります。レジスタはシーケンシャルなデータ読み書きに最適化した配置となっ

ています。ある特定の制御や状態レジスタは SPI ビット変更コマンドでビットごとに変更ができます。このコマンドが許可されているレジスタを影付きで表 11-1 に示します。MCP2515 の制御レジスタのサマリを表 11-2 に示します。

表 11-1: CAN 制御レジスタマップ

低位	高位アドレスビット							
アドレス ビット	0000 xxxx	0001 xxxx	0010 xxxx	0011 xxxx	0100 xxxx	0101 xxxx	0110 xxxx	0111 xxxx
0000	RXF0SIDH	RXF3SIDH	RXM0SIDH	TXB0CTRL	TXB1CTRL	TXB2CTRL	RXB0CTRL	RXB1CTRL
0001	RXF0SIDL	RXF3SIDL	RXM0SIDL	TXB0SIDH	TXB1SIDH	TXB2SIDH	RXB0SIDH	RXB1SIDH
0010	RXF0EID8	RXF3EID8	RXM0EID8	TXB0SIDL	TXB1SIDL	TXB2SIDL	RXB0SIDL	RXB1SIDL
0011	RXF0EID0	RXF3EID0	RXM0EID0	TXB0EID8	TXB1EID8	TXB2EID8	RXB0EID8	RXB1EID8
0100	RXF1SIDH	RXF4SIDH	RXM1SIDH	TXB0EID0	TXB1EID0	TXB2EID0	RXB0EID0	RXB1EID0
0101	RXF1SIDL	RXF4SIDL	RXM1SIDL	TXB0DLC	TXB1DLC	TXB2DLC	RXB0DLC	RXB1DLC
0110	RXF1EID8	RXF4EID8	RXM1EID8	TXB0D0	TXB1D0	TXB2D0	RXB0D0	RXB1D0
0111	RXF1EID0	RXF4EID0	RXM1EID0	TXB0D1	TXB1D1	TXB2D1	RXB0D1	RXB1D1
1000	RXF2SIDH	RXF5SIDH	CNF3	TXB0D2	TXB1D2	TXB2D2	RXB0D2	RXB1D2
1001	RXF2SIDL	RXF5SIDL	CNF2	TXB0D3	TXB1D3	TXB2D3	RXB0D3	RXB1D3
1010	RXF2EID8	RXF5EID8	CNF1	TXB0D4	TXB1D4	TXB2D4	RXB0D4	RXB1D4
1011	RXF2EID0	RXF5EID0	CANINTE	TXB0D5	TXB1D5	TXB2D5	RXB0D5	RXB1D5
1100	BFPCTRL	TEC	CANINTF	TXB0D6	TXB1D6	TXB2D6	RXB0D6	RXB1D6
1101	TXRTSCTRL	REC	EFLG	TXB0D7	TXB1D7	TXB2D7	RXB0D7	RXB1D7
1110	CANSTAT							
1111	CANCTRL							

注: 影付きレジスタの番地は、ユーザーがビット変更コマンドで、個々のビットを扱うことができることを示しています。

表 11-2: 制御レジスタのサマリ

表 11-2. 前脚レンヘクのサマリ										
レジスタ 名称	アドレス (Hex)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR/RST Value
BFPCTRL	0C	_	_	B1BFS	B0BFS	B1BFE	B0BFE	B1BFM	B0BFM	00 0000
TXRTSCTRL	0D	_	_	B2RTS	B1RTS	B0RTS	B2RTSM	B1RTSM	B0RTSM	xx x000
CANSTAT	хE	OPMOD2	OPMOD1	OPMOD0	_	ICOD2	ICOD1	ICOD0	_	100- 000-
CANCTRL	xF	REQOP2	REQOP1	REQOP0	ABAT	OSM	CLKEN	CLKPRE1	CLKPRE0	1110 0111
TEC	1C			Tra	nsmit Error	Counter (TI	EC)			0000 0000
REC	1D			Re	ceive Error	Counter (RE	EC)			0000 0000
CNF3	28	SOF	WAKFIL	_	_	_	PHSEG22	PHSEG21	PHSEG20	00000
CNF2	29	BTLMODE	SAM	PHSEG12	PHSEG11	PHSEG10	PRSEG2	PRSEG1	PRSEG0	0000 0000
CNF1	2A	SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	0000 0000
CANINTE	2B	MERRE	WAKIE	ERRIE	TX2IE	TX1IE	TX0IE	RX1IE	RX0IE	0000 0000
CANINTF	2C	MERRF	WAKIF	ERRIF	TX2IF	TX1IF	TX0IF	RX1IF	RX0IF	0000 0000
EFLG	2D	RX10VR	RX00VR	TXBO	TXEP	RXEP	TXWAR	RXWAR	EWARN	0000 0000
TXB0CTRL	30	_	ABTF	MLOA	TXERR	TXREQ	_	TXP1	TXP0	-000 0-00
TXB1CTRL	40	_	ABTF	MLOA	TXERR	TXREQ	_	TXP1	TXP0	-000 0-00
TXB2CTRL	50	_	ABTF	MLOA	TXERR	TXREQ	_	TXP1	TXP0	-000 0-00
RXB0CTRL	60	_	RXM1	RXM0	_	RXRTR	BUKT	BUKT	FILHIT0	-00- 0000
RXB1CTRL	70	_	RSM1	RXM0	_	RXRTR	FILHIT2	FILHIT1	FILHIT0	-00- 0000

NOTES:

12.0 SPI インターフェース

12.1 概要

MCP2515 は多くのマイクロコントローラで使えるシリアル周辺インターフェース (SPI) ポートと直接インターフェースするように設計されていて、モード 0,0 とモード 1,1 をサポートしています。コマンドとデータが SCK の立上りエッジでクロッキングされて、デバイスに SI ピン経由で送られます。MCP2515 からの出力データは SCK の立下りで (SO ライン上に)出力されます。 $\overline{\text{CS}}$ ピンはすべての動作中で Low に保持されていなければなりません。表 12-1 は全動作での命令バイトを示しています。モード 0,0 とモード 1,1 の両方の動作での入出力タイミングの詳細については図 12-10 と図 12-11 を参照してください。

注: TMCP2515 は CS が Low になった直後のバイトは命令 / コマンドバイトとみなします。これはつまり、別のコマンドを起動するごと、CS をいったん High にしてから Low にしなければならないということです。

12.2 リセット命令

リセット命令は MCP2515 の内部レジスタを再初期 化し、コンフィギュレーションモードにするのに使う ことができま<u>す。このコマンドは SPI インターフェー</u> スを介して、RESET ピンと同じ機能を提供します。

リセット命令は、1バイト命令で \overline{CS} を Low にすることでデバイスを選択し、命令バイトを送ったら \overline{CS} を立ち上げます。リセットコマンド(または \overline{RESET} ピンを Low にする)は、電源オン時の初期化シーケンスの一部として必ず実行するようお勧めします。

12.3 読み込み命令

読み込み命令は $\overline{\text{CS}}$ ピンを Low にすることから始まります。次に、読み込み命令と 8 ビットのアドレス (A7 から A0) が続けて MCP2515 に送られます。その次に、選択されたアドレスのレジスタに格納されていたデータが SO ピンにシフト出力されます。

内部アドレスポインタは、各1バイトシフト出力される都度、自動的に次のアドレスに増し分されます。したがって、次の連続するレジスタアドレスはクロックパルスを送るだけで読み込むことが可能です。この方法を使えば、連続するレジスタ位置ならいくつでもシーケンシャルに読み込むことができます。読み込み動作は、 \overline{CS} ピンを立ち上げることで終了します。(図 12-2)

12.4 RX バッファ読み込み命令

RX バッファ読み込み命令 (図 12-3) は、受信バッファを読み込むためのすばやいアドレス指定方法を提供します。この命令は1バイトのアドレスバイトにより SPI のオーバーヘッドを減らします。実際のコマンドバイトはアドレスポインタ指定のため4つの値をとります。一度コマンドバイトが送られると、コントローラは読み込み命令と同じアドレス位置のデータをクロックアウトします。(またシーケンシャル読み込

みも可能です)この命令は、コマンドの最後で \overline{CS} が立ち上がったとき、関連する受信フラグ (CAN-INTF.RXnIF)を自動的にクリアすることで、SPIのオーバーヘッドをずっと少なくしてくれます。

12.5 書き込み命令

書き込み命令は $\overline{\text{CS}}$ ピンを Low にすることで始まります。次に書き込み命令にアドレスと最低1バイトのデータが続けてMCP2515に送られます。

でS を Low にしている限り、データバイトとクロックを続ければシーケンシャルにレジスタに書き込むことができます。実際のデータのレジスタへの書き込みは、DO ビットのときの SCK ラインの立上りエッジで実行されます。でS ラインが8ビットロードされるより前に High になると、そのデータバイトの書き込みは中止され、そのコマンドの直前のデータまでが書き込まれます。バイト書き込みシーケンスの詳細説明は図 12-4のタイミング図を参照してください。

12.6 TX バッファへのロード命令

TX バッファロード命令 (図 12-5) は、通常の書き込みコマンドに必要な8ビットのアドレスが要りません。8 ビット命令が、送信バッファに高速で書き込めるようアドレスポインタに6個のアドレスのうちの1つをセットします。このポインタが3つの送信バッファのどれかの ID かデータアドレスを指し示します。

12.7 送信要求 (RTS) 命令

RTS コマンドは、1つ以上の送信バッファのメッセージの送信を起動するために使うコマンドです。

 $\overline{\text{CS}}$ を Low にすることで MCP2515 を選択します。次に RTS コマンドバイトを送ります。図 12-6 に示したように、このコマンドの最後の 3 ビットがどの送信バッファを送信許可するかを示しています。

このコマンドは対応するバッファの TxBnC-TRL.TXREQ ビットをセットします。最後の3ビットの内、どれかあるいはすべてが1つのコマンドでセットできます。RTS コマンドが nnn = 000 で送られるとそのコマンドは無視されます。

12.8 状態読み込み命令

状態読み込み命令は、メッセージ送受信の状態ビットとして使われているどれかに1命令でアクセスできるようにします。

 $\overline{\text{CS}}$ を Low にして MCP2515 を選択し、次に図 12-8 に示される状態読み込みコマンドバイトを MCP2515 に送ります。一度コマンドバイトが送信されると、MCP2515 は状態を含む 8 ビットのデータを返送します。

最初の8ビット送<u>信</u>に続いて追加クロックが送られれば、MCP2515 は CS ピンが Low に保持されクロックが SCK に供給される限り、状態ビットを出力し続けます。 このコマンドで返送される各状態ビットは、標準の読み込みコマンドを使っても、適切にレジスタアドレスを指定すれば、読み込めます

12.9 RX 状態命令

RX 状態命令 (ê) 12-9) は、どのフィルタがメッセージとメッセージタイプ(標準、拡張、リモート)に一致したかを直ぐ決定するときに使います。コマンドバイトが送られると、コントローラは状態データを含む8ビットのデータを返送します。8ビット転送後、さらにクロックが送られると、CSピンがLowに保持され、クロックが供給される限り、コントローラは同じ状態ビットを出力し続けます。

12.10 ビット変更命令

ビット変更命令は特定の状態や制御レジスタの個々のビットをセットしたりクリアしたりする手段を提供します。このコマンドは、すべてのレジスタに有効ということではありません。どのレジスタをこのコマンドで使うことができるかは、第 11.0 項 "レジスタマップ"のを参照してください。

注: ビット変更命令をビット変更命令が使えないレジスタに実行するとマスクを FFh にしてしまいます。これはビット変更ではなくバイト書き込みを使えばできます。

○S を Low にして MCP2515 を選択してから、ビット変更コマンドバイトを MCP2515 に送ります。コマンドに続いてレジスタのアドレスとマスクバイト、最後にデータバイトが送られます。

マスクバイトはレジスタのどのビットを変更するかを決めます。マスクバイトの'1'はレジスタの対応ビットの変更ができ、'0'はできません。

データバイトはレジスタ内の変更ビットをどの値にするかを決めます。データバイトの '1' はそのビットをセットし、'0' はクリアします。ただしマスクビットの対応ビットが '1' にセットされている場合だけです。(図 12-7 参照)

図 12-1: ビット変更

表 12-1: SPI 命令セット

命令名称	命令フォーマット	説明
リセット	1100 0000	内部レジスタをデフォルト値にリセットしコンフィギュレーションモードにする
読み込み	0000 0011	選択アドレスから順にレジスタのデータを読み込む
RX バッファ読み込 み	1001 Onm0	受信バッファからデータを読み込むとき、'n,m' で指定した4個のうちの1個のアドレスポインタを使うことで通常の読み出しコマンドよりオーバーヘッドを減らす。注:対応するRXフラグビット (CANINTF.RXnIF)を CS を High にするときクリアする。
書き込み	0000 0010	選択アドレスから順にレジスタにデータを書き込む
TX バッファ書き込 み	0100 0abc	送信バッファに書き込むとき、'a,b,c' で指定した6個の内の1つのアドレスポインタを使うことで通常の書き込みコマンドよりオーバーヘッドを減らす。
RTS (メッセージ 送信要求)	1000 Onnn	コントローラにいずれかの送信バッファのメッセージ送信シーケンスを開始するよう指示する
状態読み込み	1010 0000	送受信機能のいくつかの状態ビットを読み込む高速ポーリングコ マンド
RX 状態読み込み	1011 0000	受信メッセージのフィルター致とメッセージタイプ (標準、拡張、リモート) を読み込むための高速ポーリングコマンド
ビット変更	0000 0101	ユーザーが特定のレジスタの指定ビットをセットクリアできるようにする。注:全部のレジスタがこのコマンドでビット変更できるわけではない。ビット変更できないレジスタに本コマンドを実行すると、マスクが FFh となる。適用できるレジスタリストについては第11.0項 "レジスタマップ"のレジスタマップを参照

13.0 電気的特性

13.1 絶対最大定格・

VDD	7.0\
全入出力ピン Vss に対して	0.6V ~ VDD +1.0\
保存温度	65°C ~ +150°C
動作時周囲温度	65°C ~ +125°C
リードはんだ温度 (10 秒)	+300°C

†注意:上記の「最大定格」を超えるストレスを加えると、デバイスに恒久的な損傷を与えることがあります。この規定はストレス定格のみを規定するものであり、この仕様の動作条件に記載する規定値以上でのデバイス動作を定めたものではありません。長時間デバイスを最大定格状態にすると、デバイスの信頼性に影響を与えることがあります。

表 13-1: DC 特性

DC 特性			工業用 (I): 拡張品 (E):		-40°C ∼ -40°C ∼	
パラメータ . No .	記号	特性	Min	Max	単位	条件
	VDD	電源電圧	2.7	5.5	V	
	VRET	レジスタ保持電圧	2.4	_	V	
		High レベル入力電圧				
	VIH	RXCAN	2	VDD + 1	V	
		SCK, $\overline{\text{CS}}$, SI, $\overline{\text{TXnRTS}} \ \texttt{L}^{\circ} \mathcal{V}$	0.7 VDD	VDD + 1	V	
		OSC1	0.85 VDD	VDD	V	
		RESET	0.85 VDD	VDD	V	
		Low レベル入力電圧				
	VIL	RXCAN, TXnRTS ピン	-0.3	.15 VDD	V	
		SCK, CS, SI	-0.3	0.4	V	
		OSC1	Vss	.3 Vdd	V	
		RESET	Vss	.15 VDD	V	
		Low レベル出力電圧				
	Vol	TXCAN	_	0.6	V	IOL = +6.0 mA, VDD = 4.5V
		RXnBF ピン	_	0.6	V	IOL = +8.5 mA, VDD = 4.5V
		SO, CLKOUT	_	0.6	V	IOL = +2.1 mA, VDD = 4.5V
		ĪNT	_	0.6	V	IOL = +1.6 mA, VDD = 4.5V
		High レベル出力電圧			V	
	Vон	TXCAN, RXnBF ピン	VDD - 0.7	_	V	IOH = -3.0 mA, VDD = 4.5V
		SO, CLKOUT	VDD - 0.5	_	V	$IOH = -400 \mu A, VDD = 4.5V$
		ĪNT	VDD - 0.7	_	V	IOH = -1.0 mA, VDD = 4.5V
		入力リーク電流				
	lu	全 I/O、OSC1 と TXnRTS ピンを除く	-1	+1	μA	$\overline{\text{CS}} = \overline{\text{RESET}} = \text{VDD},$ $\overline{\text{VIN}} = \overline{\text{VSS}} \sim \overline{\text{VDD}}$
		OSC1 ピン	-5	+5	μA	
	CINT	内部容量 (全入力と出力)	_	7	pF	TAMB = 25°C, f _C = 1.0 MHz, VDD = 0V (注 1)
	IDD	動作電流	_	10	mA	VDD = 5.5V, FOSC = 25 MHz, FCLK = 1 MHz, SO = オープ ソ
	IDDS	スタンバイ電流 (スリープモード)	_	5	μA	CS, TXnRTS = VDD, 入力は VDD か Vss に接続, -40°C ∼ +85°C
			_	8	μA	CS, TXnRTS = VDD, 入力は VDD か Vss に接続, -40°C ~ +125°C

注 1: このパラメータは周期的なサンプル値で100%はテストされていない。

表 13-2: 発振器タイミング特性

発振器タイ	発振器タイミング特性 ^(注)		工業用 (I): 拡張品 (E):			
パ ラメータ No.	記号	特性	Min	Max	単位	条件
	Fosc	クロック入力周波数	1	40 25	MHz MHz	$4.5V \sim 5.5V$ $2.7V \sim 5.5V$
	Tosc	クロック入力周期	25 40	1000 1000	ns ns	$4.5V \sim 5.5V$ $2.7V \sim 5.5V$
	TDUTY	デューティサイクル (拡張クロック入力)	0.45	0.55	_	Tosh/(Tosh + TosL)

注: このパラメータは周期的なサンプル値で100%はテストされていない。

表 13-3: CAN インターフェース AC 特性

CANイン	CAN インターフェース AC 特性		工業用 (I): 拡張品 (E):		-40°C ~ - -40°C ~ -	
パ ラメータ No.	記号	特性	Min	Max	単位	条件
	TwF	ウェイクアップノイズフィルタ	100	_	ns	

表 13-4: リセット AC 特性

リセット AC 特性		工業用 (I): 拡張品 (E):		-40°C ∼ -40°C ∼		
パラメータ No.	記号	特性	Min	Max	単位	条件
	trl	RESET ピン Low 時間	2		μs	

表 13-5: CLKOUT ピン AC 特性

CLKOUT ピン AC/DC 特性			工業用 (I): 拡張品 (E):			
パ ラメータ No.	記号	特性	Min	Max	単位	条件
	t _h CLKOUT	CLKOUT ピン High 時間	15	_	ns	Tosc = 40 ns (注 1)
	t _I CLKOUT	CLKOUT ピン Low 時間	15	_	ns	Tosc = 40 ns (注 1)
	t _r CLKOUT	CLKOUT ピン立上り時間	_	5	ns	0.3 VDD ~ 0.7 VDD で測定 (注 1)
	t _f CLKOUT	CLKOUT ピン立下り時間	_	5	ns	0.7 VDD ~ 0.3 VDD で測定 (注 1)
	t _d CLKOUT	CLOCKOUT 伝播遅延	_	100	ns	注 1
15	t _h sof	Start-Of-Frame の High 時間	_	2 Tosc	ns	注 1
16	t _d SOF	Start-Of-Frame の伝播遅延	_	2 Tosc + 0.5 Tq	ns	CAN ビットサンプル点から測定 デ バイスは受信器 CNF1.BRP<5:0> = 0 (注 2)

- **ic** 1: デバイス周波数限界の全 CLKOUT モード機能と出力周波数でテスト済み。ただし CLKOUT 分周は 1/1. このパラメータは周期的なサンプル値で 100% はテストされていない。
 - 2: 設計ガイド用のみ、未テスト

図 13-1: START-OF-FRAME ピン AC 特性

表 13-6: SPI インターフェース AC 特性

SPI™ インターフェース AC 特性				+85°C VDD = $2.7V \sim 5.5V$ +125°C VDD = $4.5V \sim 5.5V$		
パラメータ No.	記号	特性	Min	Max	単位	条件
	FCLK	クロック周波数	_	10	MHz	
1	Tcss	CS セットアップ時間	50	_	ns	
2	Тсѕн	CS 保持時間	50	_	ns	
3	TCSD	CS 禁止時間	50	_	ns	
4	Tsu	データセットアップ時間	10	_	ns	
5	THD	データ保持時間	10	_	ns	
6	TR	CLK 立上り時間	_	2	μs	注 1
7	TF	CLK 立下り時間	_	2	μs	注 1
8	Тні	Clock High 時間	45	_	ns	
9	TLO	Clock Low 時間	45	_	ns ns	
10	TCLD	Clock 遅延時間	50	_	ns	
11	TCLE	Clock 許可時間	50	_	ns	
12	Tv	Clock Low からの出力遷移時間	_	45	ns	
13	Тно	出力保持時間	0	_	ns	
14	Tois	出力禁止時間	_	100	ns	

注 1: このパラメータは100%はテストされていない

14.0 パッケージ情報

14.1 パッケージマーキング情報

18-Lead PDIP (300 mil)

18-Lead SOIC (300 mil)

20-Lead TSSOP (4.4 mm)

例:

例:

例:

凡例: XX...X カスタマ仕様情報

Y 年コード (カレンダ年の下位 1 桁目) YY 年コード (カレンダ年の下位 2 桁目)

WW 週コード (1月1日を週 '01' とする)

NNN 英数字のトレース用コード

(e3) 錫メッキ (Sn) に関する鉛フリー JEDEC 区別コード

本パッケージは鉛フリーです。鉛フリー JEDEC 区別 (e3)

はパッケージの外観から見えるようにしています。

注: マイクロチップのパーツ番号全体が1行で入らないときは、次の行にはみ出ます。このためカスタマ仕様情報用の文字数が制限されます。

18-Lead Plastic Dual In-line (P) - 300 mil (PDIP)

	単位		インチ*		777	ミリメータ	
寸法阻	界	MIN	NOM	MAX	MIN	NOM	MAX
ピン数	n		18			18	
ピッチ	р		.100			2.54	
頂部から実装面	Α	.140	.155	.170	3.56	3.94	4.32
モールドパッケージ厚	A2	.115	.130	.145	2.92	3.30	3.68
底面から実装面	A1	.015			0.38		
肩間幅	E	.300	.313	.325	7.62	7.94	8.26
モールドパッケージ幅	E1	.240	.250	.260	6.10	6.35	6.60
全長	D	.890	.898	.905	22.61	22.80	22.99
先端から実装面	L	.125	.130	.135	3.18	3.30	3.43
リード厚	С	.008	.012	.015	0.20	0.29	0.38
リード上部幅	B1	.045	.058	.070	1.14	1.46	1.78
リード下部幅	В	.014	.018	.022	0.36	0.46	0.56
全間隔	eB	.310	.370	.430	7.87	9.40	10.92
モールド抜き角頂部	α	5	10	15	5	10	15
モールド抜き角底部	β	5	10	15	5	10	15

^{*} 制御パラメータ § 有意特性

注: DとE1の寸法はモールドのはみ出しや突出部を含みません。モールドのはみ出しや突出部は側面から.010" (0.254mm) 以上はありません。 JEDEC 準拠:MS-001 Drawing No. C04-007

18-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

	単位		インチ*			ミリメータ	
寸法限引	界	MIN	NOM	MAX	MIN	NOM	MAX
ピン数	n		18			18	
ピッチ	р		.050			1.27	
全高	Α	.093	.099	.104	2.36	2.50	2.64
モールドパッケージ厚	A2	.088	.091	.094	2.24	2.31	2.39
スタンドオフ §	A1	.004	.008	.012	0.10	0.20	0.30
全幅	Е	.394	.407	.420	10.01	10.34	10.67
モールドパッケージ幅	E1	.291	.295	.299	7.39	7.49	7.59
全長	D	.446	.454	.462	11.33	11.53	11.73
面取り長	h	.010	.020	.029	0.25	0.50	0.74
足長	L	.016	.033	.050	0.41	0.84	1.27
足角	ф	0	4	8	0	4	8
リード厚	С	.009	.011	.012	0.23	0.27	0.30
リード幅	В	.014	.017	.020	0.36	0.42	0.51
モールド抜き角頂部	α	0	12	15	0	12	15
モールド抜き角底部	β	0	12	15	0	12	15

^{*}制御パラメータ § 有意特性

は: DとE1の寸法はモールドのはみ出しや突出部を含みません。モールドのはみ出しや突出部は側面から.010" (0.254mm) 以上はありません。 JEDEC 準拠: MS-013 Drawing No. C04-051

20-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)

	単位		インチ		77	ミリメータ*	
寸法限界		MIN	NOM	MAX	MIN	NOM	MAX
ピン数	n		20			20	
ピッチ	р		.026			0.65	
全高	Α			.043			1.10
モールドパッケージ厚	A2	.033	.035	.037	0.85	0.90	0.95
スタンドオフ §	A1	.002	.004	.006	0.05	0.10	0.15
全幅	Е	.246	.251	.256	6.25	6.38	6.50
モールドパッケージ幅	E1	.169	.173	.177	4.30	4.40	4.50
モールドパッケージ長	D	.252	.256	.260	6.40	6.50	6.60
足長	L	.020	.024	.028	0.50	0.60	0.70
足角	ф	0	4	8	0	4	8
リード厚	С	.004	.006	.008	0.09	0.15	0.20
リード幅	В	.007	.010	.012	0.19	0.25	0.30
モールド抜き角頂部	α	0	5	10	0	5	10
モールド抜き角底部	β	0	5	10	0	5	10

^{*}制御パラメータ § 有意特性

注:
D と E1 の寸法はモールドのはみ出しや突出部を含みません。モールドのはみ出しや突出部は側面から
.005" (0.127mm) 以上はありません。
JEDEC 準拠: MO-153
Drawing No. C04-088

付録 A: 改版履歴

レビジョン D (2005 年 4 月)

下記リスト部修正:

- 1. 第8.0章、表8-1と表8-2追加、表下に注を追加
- 2. 第11.0項,表 11-1. コラム見出しのアドレス変更
- **3.** 第 **14.0** 項パッケージ情報に Pb フリーデバイス マーキング反映
- 4. 付録レビジョン A 改版履歴追加: 重要度順に並び替え

レビジョン C (2004年11月)

下記リスト部修正:

- 1. 新たに第9.0章追加
- 2. 第 12 章 , 見出し 12.1: 注を追加 見出し 12.6: 段落内の冗長さ変更
- 3. レビジョン A 追加: 改版履歴

レビジョン B (2003 年 9 月)

下記リスト部修正:

- 前段ページまとめ: スタンバイ電流 (標準)(ス リープモード)を 10 μA から 1 μA に変更
- 第8.2項 CLKOUT ピン: 注を追加 CLKOUT の最高周波数につて
- 3. 第 12.0 章, 表 12-1:
 - 電源電圧最小値変更 2.7V に
 - 内部容量: 条件 VDD を 0V に変更
 - スタンバイ電流 (スリープモード): 仕様を分離 -40°C ~ +85°C と -40°C ~ +125°C に

レビジョン A (2003年5月)

• 初版発行

NOTES:

製品識別システム

注文や資料請求、または価格や納期などの照会は工場もしくは後述のセールスオフィスへお問い合わせください。.

PART NO.	- <u>X</u> /XX	Examples:
デバイス		a) MCP2515-E/P: 拡張温度品, 18LD PDIP パッケージ
		b) MCP2515-I/P: 工業温度品, 18LD PDIP パッケージ
デバイス	MCP2515: CAN Controller w/ SPI™ Interface MCP2515T: CAN Controller w/SPI Interface	c) MCP2515-E/SO: 拡張温度品 , 18LD SOIC パッケージ
	(テープでリール)	d) MCP2515-I/SO: I 工業温度品, 18LD SOIC パッケージ
温度範囲	I = -40°C ~ +85°C (工業用) E = -40°C ~ +125°C (拡張品)	e) MCP2515T-I/SO: テープでリール, 工業温度品, 18LD SOIC パッケージ
パッケージ	P = Plastic DIP (300 mil Body), 18-Lead	f) MCP2515-I/ST: 工業温度品, 20LD TSSOP パッケージ
	SO = Plastic SOIC (300 mil Body), 18-Lead ST = TSSOP, (4.4 mm Body), 20-Lead	g) MCP2515T-I/ST: T テープでリール , 工業温度品 , 20LD TSSOP パッケージ

NOTES:

マイクロチップデバイスのコード保護機能に関する以下の点に留意ください。

- マイクロチップの製品は各製品独自のマイクロチップデーターシートにある仕様を満たしています。
- 各製品ファミリーは、通常の状態で所定の方法で利用いただければ市場にある類似製品の中で最も安全なファミリーの一つとマイクロチップは信じております。
- 不正かつ非合法な方法を使ったコード保護機能の侵害があります。弊社の理解ではこうした手法は、マイクロチップデーターシートにある動作仕様書以外の方法でマイクロチップ製品を使用することになります。こうした手法を使用した人は、ほとんどの場合、知的財産権の侵害となります。
- マイクロチップはコードの統合性に関心をお持ちの顧客とは協働させていただきます。
- マイクロチップまたは他のセミコンダクターメーカーがコードの安全性を保証したものではありません。コード保護は製品保護が「破られない」ということを保証するものではありません。

コード保護は常に進化します。マイクロチップは、当社製品のコード保護機能を継続的に改善することをお約束いたします。マクロチップのコード保護機能を破ることは、デジタル・ミレニアム著作権法に違反します。こうした行為によるソフトウェアーや著作権に関わる作品への不正アクセスがあった場合、同法に基づき賠償請求する権利があります。

本書の日本語版はユーザーの使用のために提供されます。 Microchip Technology Inc. とその子会社、関連会社、すべての取締役、役員、職員、代理人は翻訳の間違いにより起こるいかなる責も負わないものとします。間違いが疑われる個所については、Microchip Technology Inc. 発行のオリジナル文書を参照いただくようお奨めします。

本書に書かれているデバイスアプリケーション等に関する内容は、参考情報に過ぎません。ご利用のアプリケーションが仕様を満たしているかどうかについては、お客様の責任において確認をお願いします。これらの情報の正確さ、またはこれの情報の使用に関し、マイクロチップテクノロジーインクはいかなる表明と保証を行うものではなく、また、一切の責任を負うものではありません。マイクロチップの明示的な書面による承認なしに、生命維持装置あるいは生命安全用途にマイクロチップの製品を使用することはすべて購入者のリスクとし、また購入者はこれによって起きたあらゆる損害、クレーム、訴訟、費用に関して、マイクロチップは擁護され、免責され、損害をうけないことに同意するものとします。知的財産権に基づくライセンスを暗示的に与えたものではありません。

商標

マイクロチップの名称とロゴ、マイクロチップのロゴ、Accuron、dsPIC、KEELOQ、microID、MPLAB、PIC、PICmicro、PICSTART、PRO MATE、PowerSmart、rfPIC、SmartShunt は米国及び他の国々のにおいて、マイクロチップテクノロジーインク の登録商標です。

AmpLab、FilterLab、Migratable Memory、MXDEV、MXLAB、PICMASTER、SEEVAL、SmartSensor、The Embedded Control Solutions Company は、米国においてマイクロチップテクノロジーインク の登録商標です。

Analog-for-the-Digital Age、Application Maestro、dsPICDEM、dsPICDEM.net、dsPICworks、ECAN、ECONOMONITOR、FanSense、FlexROM、fuzzyLAB、In-Circuit Serial Programming、ICSP、ICEPIC、Linear Active Thermistor、MPASM、MPLIB、MPLINK、MPSIM、PICkit、PICDEM、PICDEM.net、PICLAB、PICtail、PowerCal、PowerInfo、PowerMate、PowerTool、rfLAB、rfPICDEM、Select Mode、Smart Serial、SmartTel、Total Endurance、UNI/O、WiperLock、及び Zena は、米国及び他の国々のにおいて、マイクロチップテクノロジーインク の登録商標とです。

SQTP は米国においてマイクロチップテクノロジーインクのサービスマークです。

本書に記載された上記以外の商標は、それぞれの会社の財産です。

著作権。© 2005 年マイクロチップテクノロジーインク、米国で印刷。無断複写・転載を禁じます。

舞生紙を使用。

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

マイクロチップは、10S/TS-16949 を受けました。本社、アリゾナ 州チャンドラーとテンベとカリフォルニア州マウンテンビューにあ るデザイン及びウエハー施設に対する 2003 年 10 月品質システム認 証です。弊社の品質システムプロセスと手続きは、PICmicro® 8-bit MCUs、KEELOO® コードホッピングデバイス、シリアル EEPROMs、 マイクロベリフェラル、非揮発性メモリーとアナログ製品を対象と しています。更に、開発システムの設計及び製造に関するマイクロ チップの品質システムは、2000 年にISO9001 の認証を受けていま す。.

全世界の販売及びサービス拠点

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago

Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

San Jose

Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8676-6200 Fax: 86-28-8676-6599

China - Fuzhou

Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355

Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829

Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde

Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7250 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi

Tel: 91-11-5160-8631 Fax: 91-11-5160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Gumi

Tel: 82-54-473-4301 Fax: 82-54-473-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang

Tel: 60-4-646-8870 Fax: 60-4-646-5086

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung

Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869

Fax: 44-118-921-5820

03/01/05