1 Polecenia

Załóżmy, że autko "dorobiło się" możliwości patrzenia. Ma więc teraz całkiem sporo możliwości poruszania się. Pora to wykorzystać. Wykonaj jedno z poniższych zadań (niektóre są łatwiejsze, inne - ciekawsze). Budując algorytm realizujący któreś z nich, polegaj na dostępnych systemach: zliczaniu obrotów kół i radarze sonicznym. Jak zwykle, pisz w pseudokodzie z sensownie opisanymi metodami tak, żeby było wiadomo, co która robi.

1.0.1

Zaimplementuj mechanizm płynnego omijania przeszkody. Autko, napotkawszy na swojej drodze przeszkodę (np. plecak), powinno spróbować ją ominąć bez zatrzymania się, tj. nie wykonując operacji "stop-skręć w miejscu-jedź". Po ominięciu przeszkody pojazd powinien kontynuować jazdę w mniej więcej tym samym kierunku, jak przed rozpoczęciem omijania. Wskazówka: pomyśl, jak osoba niewidoma omijałaby przeszkodę korzystając z laski. Możesz w ten sposób wykorzystać obracający się na serwomotorze sonar jako "próbnik".

1.0.2

Przypomnij sobie, jak wygląda korytarz w sali 317. "Wyprowadź" autko na samodzielny spacer: "ustaw" je przed wyjściem z sali 317.2 w kierunku korytarza. Auto powinno po wyjechaniu z sali skręcić w lewo i jechać w kierunku serwerowni. Po dotarciu do końca korytarza auto powinno skręcając w prawo podjechać do ściany z oknami i ponownie skręcić w prawo. Następnie powinno jechać tak długo, aby móc skręcić i wrócić do sali 317.2. Po przejechaniu progu powinno się zatrzymać. (UWAGA! Autko nie powinno pojechać za daleko w kierunku wyjścia z na klatkę schodową!)

1.0.3

Zaprojektuj model sprężyny, wykorzystując prawo Hooke'a. Model działania możesz obejrzeć tutaj. Auto jest masą. Zamiast rozciągnięcia/ściśnięcia sprężyny użyj odległości autka od przeszkody. Sprężyna jest "twarda" - nie oscyluje.

Działanie, którego na razie nie sprawdzisz (ale pewnie kiedyś się uda) powinno być takie: autko ma podjechać do ruchomej przeszkody i powoli się przed nią zatrzymać w odległości ok 100 cm (moment zerowej energii). Zbliżając się,

ma kontrolować względny ruch przeszkody i odpowiednio przyspieszać (gonić ją) jeśli przeszkoda się oddala, lub zwalniać (zawracać!), jeśli się przybliża. Po zatrzymaniu się przed przeszkodą, ma utrzymywać od niej stałą odległość tak, aby zawsze znajdować się w punkcie "minimum energii".

2 Rozwiązanie

```
void z2{
  %Deklaracja zmiennych
  distance=0;
  wheelCounter=0;
  turnLeftDegrees(90);
  %zliczanie obrotow
  attachPCINT(digitalPinTOPCINT(INTINPUTO),increment,RISING);
  goForward();
  %dopoki droga jest czysta to jedz
  while(lookDegrees(0)>1){
     continueWay();
  %sciana, skret + zapisz dystans
  stop();
  distance = wheelCounter;
  turnRight();
  goForward();
  while(lookDegrees(0)>1){
     continueWay();
  }
  %okna, skret + reset counter
  stop();
  wheelCounter=0;
  turnRight();
  goForward();
  while(distance<wheelCounter){</pre>
     continueWay();
  }
  stop();
  turnRight();
  goForward();
```

```
%witryna drzwi, zatrzymaj sie w progu
while(lookRightDegrees(90)<70){
    continueWay();
}
stop();
void increment() {
    if(digitalRead(INTINPUTO))
    wheelCounter++;
    }
}</pre>
```