CS 4801: Assignment 2

Adam Camilli (aocamilli@wpi.edu)

Friday $16^{\rm th}$ November, 2018

1. **DES**

Input:

bit #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
bit	1	1	0	0	1	0	0	0	1	0	1	0	0	1	1	0	1	0	1	1	0	0	1	1	0	0	0	0	1	1	1	1

Round Key:

					1																																											
bit	# 1	 2	3	4	5	6	7	8	9	1	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34 3	35 3	6 3	7 38	3 39	40	41	42	43	44	45	46 4	17 4	18
hit	1	2	0	0	1	0	1	1	10		1	0	0	0	0	0	0	0	1	0	1	1	0	1	1	0	0	1	0	1	1	1	0	0	1	1	1 0	1	1	1	1	0	0	0	1	0	1	1

Permutation table

			F)			
16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

DES Expansion Table

		E	=		
32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

(a) Extend the input to 48 bits using DES expansion function

Using expansion table, we populate a new 48-bit string:

1 (32)	1 (1)	1 (2)	0 (3)	0 (4)	1 (5)
0 (4)	1 (5)	0 (6)	0 (7)	0 (8)	1 (9)
0 (8)	1 (9)	0 (10)	1 (11)	0 (12)	1 (13)
0 (12)	0 (13)	1 (14)	1 (15)	0 (16)	1 (17)
0 (16)	1 (17)	0 (18)	1 (19)	1 (20)	0 (21)
1 (20)	0 (21)	0 (22)	1 (23)	1 (24)	0 (25)
1 (24)	0 (25)	0 (26)	0 (27)	0 (28)	1 (29)
0 (28)	1 (29)	1 (30)	1 (31)	1 (32)	1 (1)

This extends input to

(b) Add (XOR) the given round key to the expanded input bits.

 \oplus

(c) Using 8 DES S-boxes, find the 32-bit output of substitution step. DES S-boxes are presented in the DES paper, appendix 1 (pages 17-18).

Note S-rows and columns start at zero.

Box	Input	Row	Col	Sub
S_1	011011	01 (R2)	1101 (C14)	5 (0101)
S_2	100101	11 (R4)	0010 (C3)	8 (1000)
S_3	010100	00 (R1)	1010 (C11)	6 (0110)
S_4	010110	00 (R1)	1011 (C12)	12 (1100)
S_5	011101	01 (R2)	1110 (C15)	3 (0011)
S_6	000001	01 (R2)	0000 (C1)	0 (0000)
S_7	111111	11 (R4)	1111 (C16)	13 (1101)
S_8	010100	00 (R1)	1010 (C11)	6 (0110)

This reduces output to

01011000011011000011000011010110

(d) Permute the S-box output using the given permutation table.

0(16)	0 (7)	1 (20)	0 (21)	0(29)	0 (12)	1 (28)	0 (17)
0 (1)	0 (15)	0 (23)	1 (26)	1 (5)	0 (18)	1 (31)	1 (10)
1 (2)	0 (8)	0 (24)	1 (14)	0 (32)	0 (27)	0 (3)	0 (9)
1 (19)	1 (13)	1 (30)	0 (6)	0 (22)	1 (11)	1 (4)	1 (25)
	00	01000100	0011011	10010000)1110011	1	

2. **AES**

128-bit input

bit#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
bit	1	1	0	0	0	0	0	1	0	0	0	1	1	0	0	1	1	1	0	0	1	1	0	0	0	0	0	1	0	0	0	0
bit#	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
bit	0	1	0	1	0	1	1	0	0	1	0	1	0	0	0	0	0	0	0	0	1	0	1	0	0	1	0	1	1	1	0	0
bit#	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96
bit	0	0	1	1	1	1	0	1	0	0	0	0	0	1	1	0	1	0	1	1	0	1	1	1	0	0	1	1	1	0	0	0
bit#	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128
bit	1	0	1	0	0	1	1	1	0	0	1	1	0	1	0	0	1	0	1	0	1	0	1	0	0	0	0	0	1	1	1	0

AES S-box Table

	1								7	7							
		0	1	2	3	4	5	6	7	8	9	a	ь	С	d	e	f
	0	63	7c	77	7ъ	f2	6Ъ	6f	с5	30	01	67	2Ъ	fe	d7	ab	76
	1	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
	2	ь7	fd	93	26	36	3f	f7	CC	34	a5	e5	f1	71	d8	31	15
	3	04	с7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	Ъ2	75
	4	09	83	2c	1a	1b	6e	5a	a0	52	3Ъ	d6	Ъ3	29	e3	2f	84
	5	53	d1	00	ed	20	fc	b1	5Ъ	6a	сь	be	39	4a	4c	58	cf
	6	d 0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a8
x	7	51	a3	40	8f	92	9d	38	f5	bc	ъ6	da	21	10	ff	f3	d2
1^	8	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	Ъ8	14	de	5e	0Ъ	ф
	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
	Ъ	e7	с8	37	6d	8d	d 5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	С	ba	78	25	2e	1c	a6	Ъ4	с6	e8	dd	74	1f	4b	bd	8Ъ	8a
	d	70	3e	Ъ5	66	48	03	f6	0e	61	35	57	ъ9	86	c1	1d	9e
	e	e1	f8	98	11	69	d9	8e	94	9Ъ	1e	87	e9	ce	55	28	df
	f	8c	a1	89	0d	bf	e6	42	68	41	99	2d	0f	Ъ0	54	bb	16

(a) Write the given input to Hexadecimal form.

```
11000001\ 00011001\dots00001110_2 = \\ 0C\ 11\ 9C\ C1\ 01\ 59\ 42\ 97\ 3D\ 06\ B7\ 32\ 29\ CD\ 2A\ 8E_{16}
```

(b) Write the input in a state diagram (4 by 4 matrix)

$$\begin{bmatrix} 0C & 01 & 3D & 29 \\ 11 & 59 & 06 & CD \\ 9C & 42 & B7 & 2A \\ C1 & 97 & 32 & 8E \end{bmatrix}$$

(c) Use AES S-box to substitute the given input.

$$\begin{bmatrix} 0C & 01 & 3D & 29 \\ 11 & 59 & 06 & CD \\ 9C & 42 & B7 & 2A \\ C1 & 97 & 32 & 8E \end{bmatrix} = \begin{bmatrix} S'_{0,C} & S'_{0,1} & S'_{3,D} & S'_{2,9} \\ S'_{1,1} & S'_{5,9} & S'_{0,6} & S'_{C,D} \\ S'_{9,C} & S'_{4,2} & S'_{B,7} & S'_{2,A} \\ S'_{C,1} & S'_{9,7} & S'_{3,2} & S'_{8,E} \end{bmatrix}$$
$$= \begin{bmatrix} FE & 7C & 27 & A5 \\ 82 & CB & 6F & BD \\ DE & 83 & A9 & E5 \\ BA & 88 & 23 & 19 \end{bmatrix}$$

- 3. -
 - (a) Find 17^{-1} mod 43 using Extended Euclidean Algorithm

During each step s_i , recursively calculate

$$p_i = p_{i-2} - p_{i-1}q_{i-2} \bmod n$$

 q_i is equal to the coefficient on the left side (bolded). Repeat until remainder is 0 and iterate right side (p calcuation) one more time.

$$gcd(17, 43) = 1$$

$$\therefore \exists \text{ integers } (p, n) \mid 17p = 43n + 1$$

$$s_0: 43 = \mathbf{2}(17) + 9$$
 $p_0 = 0 \text{ (given)}$
 $s_1: 17 = \mathbf{1}(9) + 8$ $p_1 = 1 \text{ (given)}$
 $s_2: 9 = \mathbf{1}(8) + 1$ $p_2 = p_0 - p_1(q_0) \mod 43$
 $= 0 - 1(2) \mod 43 = 41$
 $s_3: 8 = \mathbf{8}(1) + 0$ $p_3 = p_1 - p_2(q_1) \mod 43$
 $= 1 - 41(1) \mod 43 = 3$
 $p_4 = p_2 - p_3(q_2) \mod 43$
 $= 41 - 3(1) \mod 43 = \mathbf{38}$

Modular inverse is 38

(b) Find the inverse of $Q(x) = x^2 + 1$ in $GF(2^3)$ with $P(x) = x^3 + x^2 + 1$ using Extended Euclidean Algorithm.

We want to find the inverse of Q(x) in the field $\frac{GF(2^3)}{P(x)}$, which is the same as finding a polynomial F(x) such that

$$QF \equiv 1 \pmod{P}$$

or equivalently

$$QF + PG = 1, G(x) \in \frac{GF(2^3)}{P(x)}$$

Using the extended Euclidean algorithm, we can back-substitute from a greatest common divisor calculation (if and only if the result is 1):

$$x^{3} + x^{2} + 1 = (x+1)(x^{2}+1) - x$$

 $x^{2} + 1 = (-x)(-x) + 1$

$$1 = (x^{2} + 1) - (-x)(-x)$$

$$= (x^{2} + 1) - (-x)((x^{3} + x^{2} + 1) - (x + 1)(x^{2} + 1))$$

$$= Q - (-x)(F - (x + 1)(Q))$$

$$= Q - (x)(x + 1)(Q) - (-x)P$$

$$= (1 - (x)(x + 1))Q + (x)P$$

$$= (-x^{2} - x + 1)Q + (x)P$$

$$= (x^{4} - x^{4} + x^{3} - x^{3} + x^{2} - x^{2} + x - x + 1) = 1$$

This is verified by the final equation as well as the fact that the coefficient of P(x) $G = x \in \frac{GF(2^3)}{P(x)}$.

The inverse of Q(x) is therefore $-x^2 - x + 1$.

(c) Multiply
$$x^2 + 1$$
 by $x^2 + x + 1$ in $GF(2^3)$ with $P(x) = x^3 + x^2 + 1$

Given that the multiplication is performed in a Galois field of form (2^n) , this can be performed by binary multiplication of the coefficients:

$$(1)x^2 + (0)x^1 + (1)x^0 \to 101$$

$$(1)x^2 + (1)x^1 + (1)x^0 \to 111$$

$$101 \cdot 111 = 101 + 101 \cdot 10 + 10101 \cdot 10 \cdot 10$$

= $101 + 1010 + 10101$
= **11011**

The result is

$$1x^4 + 1x^3 + 0x^2 + 1x^1 + 1x^0$$