

ZXMP4A16K 40V P-channel enhancement mode MOSFET

Summary

 $V_{(BR)DSS}$ = -40V; $R_{DS(ON)}$ = 0.060 Ω I_{D} = -9.9A

Description

This new generation of trench MOSFETs from Zetex utilizes a unique structure that combines the benefits of low on-resistance with fast switching speed. This makes them ideal for high efficiency, low voltage, power management applications.

Features

- · Low on-resistance
- · Fast switching speed
- · Low threshold
- · Low gate drive
- · DPAK package

Applications

- DC DC converters
- · Audio output stages
- · Relay and solenoid driving
- Motor control

Ordering information

Device	Reel size (inches)	Tape width	Quantity per reel
ZXMP4A16KTC	13	16mm	2500 units

Pinout - Top view

Device marking

© Zetex Semiconductors plc 2006

ZXMP 4A16

Absolute maximum rating

Parameter	Symbol	Limit	Unit	
Drain-source voltage	V _{DSS}	-40	V	
Gate-source voltage	V _{GS}	±20	V	
Continuous drain current				
V _{GS} = -10V; T _A =25°C ^(b)		-9.9	Α	
V _{GS} = -10V; T _A =70°C ^(b)	I _D	-8.0	Α	
V_{GS} = -10V; T_A =25°C ^(a)		-6.6	Α	
Pulsed drain current (c)	I _{DM}	-35	Α	
Continuous source current (body diode) (b)	I _S	-10.1	Α	
Pulsed source current (body diode) (c)	I _{SM}	-35	Α	
Power dissipation at T _A =25°C ^(a)	P _D	4.2	W	
Linear derating factor		33.6	mW/°C	
Power dissipation at T _A =25°C ^(b)	P _D	9.5	W	
Linear derating factor		76	mW/°C	
Power dissipation at T _A =25°C ^(d) Linear derating factor	P _D	2.15 17.2	W mW/°C	
Operating and storage temperature range	T _j :T _{stg}	-55 to +150	°C	
Thermal resistance				
Parameter	Symbol	Value	Unit	
Junction to ambient ^(a)	$R_{\Theta JA}$	30	°C/W	
Junction to ambient ^(b)	$R_{\Theta JA}$	13.2	°C/W	
Junction to ambient ^(d)	$R_{\Theta JA}$	58	°C/W	

NOTES:

⁽a) For a device surface mounted on 50mm x 50mm x 1.6mm FR4 PCB with high coverage of single sided 2oz copper, in still air conditions.

⁽b) For a device surface mounted on FR4 PCB measured at t $\leq\!10$ sec.

⁽c) Repetitive rating 50mm x 50mm x 1.6mm FR4 PCB, D=0.02 pulse width=300 \(\mu \)s - pulse width limited by maximum junction temperature.

⁽d) For a device surface mounted on 25mm x 25mm x 1.6mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions.

Characteristics

Electrical characteristics (at $T_A = 25$ °C unless otherwise stated)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Static							
Drain-source breakdown voltage	V _{(BR)DSS}	-40			V	I _D =-250μA, V _{GS} =0V	
Zero gate voltage drain current	I _{DSS}			-1	μΑ	V _{DS} =-40V, V _{GS} =0V	
Gate-body leakage	I _{GSS}			100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$	
Gate-source threshold voltage	V _{GS(th)}	-1.0			V	I_D =-250 μ A, V_{DS} = V_{GS}	
Static drain-source on-state	R _{DS(on)}			0.060	Ω	V _{GS} =-10V, I _D =-3.8A	
resistance (*)				0.100	Ω	V_{GS} =-4.5V, I_{D} =-2.9A	
Forward transconductance (*)(‡)	9 _{fs}		7.4		S	V _{DS} =-15V,I _D =-3.8A	
Dynamic (‡)						•	
Input capacitance	C _{iss}		965		pF		
Output capacitance	C _{oss}		180		pF	V_{DS} =-20V, V_{GS} =0V, ==1MHz	
Reverse transfer capacitance	C _{rss}		158		pF		
Switching (†) (‡)						•	
Turn-on delay time	t _{d(on)}		4.0		ns		
Rise time	t _r		6.0		ns	V _{DD} =-20V, I _D =-1A	
Turn-off delay time	t _{d(off)}		36.8		ns	$R_G=6.0\Omega, V_{GS}=-10V$	
Fall time	t _f		17.1		ns		
Gate charge	Q_g		16.5		nC	V_{DS} =-20V, V_{GS} =-5V, I_{D} =-3.8A	
Total gate charge	Qg		29.6		nC		
Gate-source charge	Q _{gs}		2.8		nC	V _{DS} =-20V,V _{GS} =-10V, I _D =-3.8A	
Gate-drain charge	Q_{gd}		8.1		nC	- 1D3.0A	
Source-drain diode							
Diode forward voltage (*)	V _{SD}		-0.89	-1.2	V	T _J =25°C, I _S =-3.8A, V _{GS} =0V	
Reverse recovery time (‡)	t _{rr}		29.8		ns	T _J =25°C, I _F =-3.8A,	
Reverse recovery charge (‡)	Q _{rr}		37.2		nC	di/dt= 100A/μs	

NOTES:

^(*) Measured under pulsed conditions. Width \leq 300µs. Duty cycle \leq 2%.

^(†) Switching characteristics are independent of operating junction temperature.

^(‡) For design aid only, not subject to production testing.

Typical characteristics

Typical characteristics

Capacitance v Drain-Source Voltage

Current regulator

12V 0.2µF 50k Same as D.U.T

V_{DS}

V_D

Basic gate charge waveform

Gate charge test circuit

Switching time waveforms

Switching time test circuit

ZXMP4A16K

Intentionally left blank

ZXMP4A16K

Package details - DPAK

Package dimensions

Dim.	Inc	hes	Millin	Millimeters Dim. Inches Millime		Inches		neters	
	Min.	Max.	Min.	Max.		Min.	Max.	Min.	Max.
Α	0.086	0.094	2.18	2.39	е	0.090 BSC		2.29 BSC	
A1	=	0.005	-	0.127	Н	0.370	0.410	9.40	10.41
b	0.020	0.035	0.508	0.89	L	0.055	0.070	1.40	1.78
b2	0.030	0.045	0.762	1.14	L1	0.108	REF	2.74	REF
b3	0.205	0.215	5.21	5.46	L2	0.020	BSC	0.508	BSC
С	0.018	0.024	0.457	0.61	L3	0.035	0.065	0.89	1.65
c2	0.018	0.023	0.457	0.584	L4	0.025	0.040	0.635	1.016
D	0.213	0.245	5.41	6.22	L5	0.045	0.060	1.14	1.52
D1	0.205	-	5.21	-	Ө1°	0°	10°	0°	10°
Е	0.250	0.265	6.35	6.73	θ°	0°	15°	0°	15°
E1	0.170	-	4.32	-	_	-	-	-	-

Note: Controlling dimensions are in inches. Approximate dimensions are provided in millimeters

Europe	Americas	Asia Pacific	Corporate Headquarters
Zetex GmbH	Zetex Inc	Zetex (Asia Ltd)	Zetex Semiconductors plc
Streitfeldstraße 19	700 Veterans Memorial Highway	3701-04 Metroplaza Tower 1	Zetex Technology Park, Chadderton
D-81673 München	Hauppauge, NY 11788	Hing Fong Road, Kwai Fong	Oldham, OL9 9LL
Germany	USA	Hong Kong	United Kingdom
Telefon: (49) 89 45 49 49 0	Telephone: (1) 631 360 2222	Telephone: (852) 26100 611	Telephone: (44) 161 622 4444
Fax: (49) 89 45 49 49 49	Fax: (1) 631 360 8222	Fax: (852) 24250 494	Fax: (44) 161 622 4446
europe.sales@zetex.com	usa.sales@zetex.com	asia.sales@zetex.com	hq@zetex.com

For international sales offices visit ${\bf www.zetex.com/offices}$

Zetex products are distributed worldwide. For details, see www.zetex.com/salesnetwork

This publication is issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contact or be regarded as a representation relating to the products or services concerned. The company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.