<u>Review</u> given vector spaces V, W, U:

$$W \times V = \{(w, v) \mid w \text{ in } W, v \text{ in } V\}$$

a map β : W × V to U is <u>bilinear</u> iff $\beta(w, -)$, $\beta(-, v)$ are linear for all w in W, v in V

 β is called a <u>bilinear pairing</u> when U = F

 $Bil(W, V) = \{bilinear pairings on W \times V\}$

is a vector space: $(a \cdot \beta + \beta')(,) = a\beta(,) + \beta'(,)$

Ex last time: dot products are bilinear they are also symmetric: $w \cdot v = v \cdot w$

Ex let β : F² × F² to F be def by $\beta((a, c), (b, d)) = ad - bc$

is it bilinear? yes [how to check?]

is it symmetric? no

in fact, it is anti-symmetric: $\beta((a, c), (b, d))$

 $= -\beta((b, d), (a, c))$

contrast $(W \times V)^v = Hom(W \times V, F)$ with Bil(W, V)

know: $\dim (W \times V)^{v} = \dim W + \dim V$

goal: dim Bil(W, V) = (dim W)(dim V)
[what other spaces have this dim?]

<u>Df</u> the <u>evaluation map</u> < , > : $V^{v} \times V$ to F is def by <0, $v > = \theta(v)$

[the notation < , > will help avoid confusion soon]

<u>Lem</u> < , > is a bilinear pairing

Pf for fixed θ, want <θ, \rightarrow linear true by definition of θ

for fixed v, want <-, v> linear:

$$< a\theta + \theta', v> = (a\theta + \theta')(v)$$

= $a\theta(v) + \theta'(v)$
= $a<\theta, v> + <\theta', v>$

[idea: can build all other pairings from < , >]

Lem if S : W to V' is linear then β_S : W × V to F def by β S(w, v) = <Sw, v> is bilinear

moreover:

 Φ : Hom(W, V') to Bil(W, V) def by Φ (S) = β _S is linear

Pf β_S(w, -) = <Sw, -> linear by lem as for β_S(-, v) = <S(-), v>: <-, v> is linear by lem, so <S(-), v> is

$$\Phi(a \cdot S + S')(w, v) = \langle (a \cdot S + S')w, v \rangle$$

= $a < Sw, v > + \langle S'w, v \rangle$ in Hom
= $a \Phi(S)(w, v) + \Phi(S')(w, v)$
= $(a \cdot \Phi(S) + \Phi(S'))(w, v)$ in Bil

[something stronger holds:]

<u>Thm</u> Φ is a linear iso Hom(W, V') to Bil(W, V)

Pf we give a two-sided inverse

let Ψ : Bil(W, V) to Hom(W, V') be def as follows:

 $\Psi(\beta)$: W to V' is the linear map def by $\Psi(\beta)(w) = \beta(w, -)$ for all w

$$\begin{split} [\Psi(a \bullet \beta + \beta')(w) &= (a \bullet \beta + \beta')(w, -) \\ &= a\beta(w, -) + \beta'(w, -) \text{ in Bil} \\ &= a \bullet \Psi(\beta)(w) + \Psi(\beta')(w) \\ &= (a \bullet \Psi(\beta) + \Psi(\beta'))(w) \text{ in Hom}] \end{split}$$

$$\begin{split} \Psi(\Phi(S))(w) &= \Phi(S)(w, -) = < Sw, -> = Sw\\ &\text{for all } w\\ &\text{[where last step uses def of < , >]}\\ &\text{so } \Psi(\Phi(S)) = S \end{split}$$

$$\Phi(\Psi(\beta))(w, v) = \langle \Psi(\beta)w, v \rangle = \beta(w, v)$$
 for all w, v so $\Phi(\Psi(\beta)) = \beta \square$

Rem thm works even if V, W are infin. dim'l

 \underline{Cor} if V, W are fin. dim'l, then dim Bil(W, V) = dim Hom(W, V') = (dim W)(dim V)

[now make this concrete:]

<u>Ex</u> fix ordered bases v_1, ..., v_n for V, w_1, ..., w_m for W

for any m × n matrix M: let β_M be def by

 $\beta_M(w, v) = b1 \dots bm \qquad M \dots$

for all v = sum_i a_i v_i and w = sum_j b_j w_j

claim that β_M is a bilinear pairing on W × V in fact: M mapsto β_M is just a basis-dependent version of S mapsto β S

how?

write elts of V, W as cols wrt given bases
col of a_i's?

v wrt (v_i)

matrix M?
linear map T : V to W
row of b_j's?

w^t wrt (w_j^t)

row-col multiplication? < , >

so $\beta_M(w, v) = \langle w^t, Tv \rangle$ [want to find S s.t. the right-hand side is $\langle Sw, v \rangle$]

recall: T : V to W has a dual T' : W' to V' def by

 $T^{v}(\theta) = \theta \circ T$, meaning $< T^{v}(\theta)$, $v > = < \theta$, $Tv > \theta$

let S : W to V' be def by Sw = T'(w^t) then $\beta_M(w, v) = \langle T^v(w^t), v \rangle = \langle Sw, v \rangle$ Rem earlier examples are special cases:

$$M = I_n$$
 yields $v \cdot w$

$$M = 0$$
 1 yields the anti-symmetric ex -1 0

[check the latter explicitly]

(Axler §9D) motivation for tensors:

knowing Bil(W, V) usually differs from $(W \oplus V)^v$, we seek a vector space $W \otimes V$ s.t.

$$Bil(W, V) = (W \otimes V)^{V}$$

<u>Df</u> Axler defines the tensor product of W and V to be

$$W \otimes V = Bil(W^{V}, V^{V})$$

this is often painful in practice [why?] other authors use other defns

for all (w, v) in $W \times V$, let $w \otimes v$ in $W \otimes V$ be the bilinear pairing on $W^v \times V^v$ such that

$$(w \otimes v)(\psi, \theta) = \psi(w)\theta(v)$$

for all (ψ, θ) in W^v × V^v

[next time:]

<u>Lem</u> the map $W \times V$ to $W \otimes V$ that sends (w, v) mapsto $w \otimes v$ is itself bilinear

 $\begin{array}{ll} \underline{Thm} & \text{ for any V, W, U,} \\ & \text{ every } \underline{bilinear} \text{ map } \beta : W \times V \text{ to U} \\ & \text{ takes the form} \end{array}$

$$\beta(\mathsf{w},\,\mathsf{v})=[\beta](\mathsf{w}\,\otimes\,\mathsf{v})$$

for some unique linear map [β] : W \otimes V to U

moreover, this gives a linear iso {bilinear maps W x V to U} = Hom(W ⊗ V, U)

Slogan (w, v) mapsto $w \otimes v$ is the "universal" bilinear map out of $W \times V$