Welcome to spSAM's documentation!

spSAM: 10X visium spot Split Align Map

```
import spsam as ss
import matplotlib.pyplot as plt

import warnings
warnings.filterwarnings('ignore')

plt.rcParams['figure.figsize'] = (6, 6)
```

Load Data

Load annual object intergrating 10X Visium data with scRNA-seq reference of cell types through cell2location package.

Score Genes

This reproduces the approach in Seurat (Satija) and has been implemented for Scanpy by Davide Cittar.

Here we use 15 top-ranked hypoxia-associated genes, ['VEGFA', 'SLC2A1', 'PGAM1', 'ENO1', 'LDHA', 'TP11', 'P4HA1', 'MRPS1', 'CDKN3', 'ADM', 'NDRG1', 'TUBB6', 'ALDOA', 'MIF', 'ACOT7'], which are collectively considered to be hypoxia signature (**Buffa signature**) to assess hypoxia statu. Custom gene sets are also supported.

```
In [4]: hypoxia_gene_lt = ['VEGFA', 'SLC2A1', 'PGAM1', 'ENO1', 'LDHA', 'TP11', 'P4HA1', 'MRPS1', 'CDKN3', 'ADM', 'NDRG1', 'TUBB6', 'ALDOA', 'MIF', 'ACOT7'] ss.tl.score_genes(adata, gene_list=hypoxia_gene_lt, ctrl_size=len(hypoxia_gene_lt), score_name='hypoxia_score')

WARNING:root:genes are not in var_names and ignored: ['VEGFA', 'LDHA', 'TP11', 'MRPS1', 'ALDOA'] computing score 'hypoxia_score' finished hypoxia_score, score of gene set (adata.obs). 104 total control genes are used.

Plot hypoxia_score distribution

In [5]: ss.pl.violin(adata, 'hypoxia_score')
```


Show score in visium image

```
In [6]: ss.pl.spatial(adata, img_key='hires', color=['hypoxia_score'])
```


Additionally, you can use ss.pl.plot_3d_score() function to plot hypoxia_score in 3D spatial dimension of 10x visium image

In [7]: ss.pl.plot_3d_score(adata, 'hypoxia_score')

hypoxia_score

Score Lever

```
Divide spot into three parts based on the distribution of the score values.
```

lever1(default): hypoxia_score >= 95% distribution of the score values.

lever2(default): hypoxia_score >= 50% distribution of the score values.

background: hypoxia score < 50% distribution of the score values.

If using other thresholds to divide spot, pass two values through (lever1, lever2) parameter, like ss.pp.score_lever(adata, 'hypoxia_score', lever1=0.8,

lever2=0.6), then background part will set hypoxia score < 80% automatically.

\sim		$\Gamma \cap \Gamma$	١.
()	HT.	1 4	٠.
\sim	uL	-	

	in_tissue	array_row	array_col	sample	n_genes_by_counts	log1p_n_genes_by_counts	total_counts	log1p_total_counts	pct_counts_in_top_5
AAACCGGGTAGGTACC-1	1	42	28	LD	7324	8.899048	25961.0	10.164390	1
AAACCGTTCGTCCAGG-1	1	52	42	LD	7850	8.968396	37458.0	10.531002	1
AAACCTCATGAAGTTG- 1	1	37	19	LD	3961	8.284504	7936.0	8.979291	1
AAACGAGACGGTTGAT-	1	35	79	LD	7348	8.902320	29413.0	10.289227	1
AAACTGCTGGCTCCAA-	1	45	67	LD	7902	8.974998	35196.0	10.468717	1

5 rows × 31 columns

4

Use a color_map directory to plot dividing three parts into visium image.

```
In [10]:
    color_map_dt = {
        'lever1': 'red',
        'lever2': 'orange',
        'background': 'darkblue',
    }
    ss.pl.spatial(adata, img_key='hires', color='score_type', palette=color_map_dt)
```


Split

In this step, we use the DFS algorithm starting from the red spot to expand outward, with the expansion condition being that the adjacent point is either a red spot or a yellow spot, until it cannot extend any further or reaches the edge of the image. After traversal, the red spots will be clustered into clusters. In a cluster, if there is only one cluster of red spots, it is called an 'independent' type; if there are more than two clusters of red spots in a cluster, the cluster will be further divided into smaller units based on the boundaries of each red spot cluster, known as 'adjacent' type. A new column 'class' will be created in the cluster_df.

```
In [11]: cluster_df = ss.pp.find_lever_core(adata, 'hypoxia_score')

In [12]: cluster_df

Out[12]: row col score type cluster_idx class

O 37 19 0.857315 lever1 0 adjacent

1 37 17 1.219024 lever1 0 adjacent
```

0	37 37	19	0.857315			
1	27			lever1	0	adjacent
	31	17	1.219024	lever1	0	adjacent
2	37	15	0.697438	lever2	0	adjacent
3	36	16	0.661241	lever2	0	adjacent
4	36	18	0.774277	lever1	0	adjacent
•••				•••		
272	59	65	0.535874	lever2	6	independent
273	61	65	0.540075	lever2	6	independent
274	60	60	0.602142	lever2	6	independent
275	61	59	0.533772	lever2	6	independent
276	29	29	0.781194	lever1	7	independent

277 rows × 6 columns

Plot 'adjacent' type spot cluster, 8 means show top8 clusters.

ss.pl.plot_lever_core(cluster_df, 'adjacent', 8, col_wrap=4, fig_height=350): In order to display the points more clearly, you can use col_wrap(default: int=4) fig_height(default: int=350) to adjust the layout.

```
In [26]: ss.pl.plot_lever_core(cluster_df, 'adjacent', 8)
```

adjacent type scatter, total 19 cluster

Plot 'independent' type spot cluster

```
In [14]: ss.pl.plot_lever_core(cluster_df, 'independent')
```


Align

Aligning with the red spots as reference points, merge all clustered units partitioned based on their distances to the red spots into one cluster.

```
In [15]: ss.pp.cycle_spot_count(cluster_df)
```

Next, show spot number in every cycle through ss.pl.plot_cycle_bar(), cycles containing less than 10 spots were filtered.

```
In [16]: ss.pl.plot_cycle_bar(cluster_df)
```

Spot number in every cycle of independent, adjacent type, total 6 cycles

Cycle 0 means core red cluster(lever1), it contains 55 spots.

Cycle 1 means yellow spot(lever2) that have a distance of 1 unit from cycle 0.

Cycle 2 means yellow spot(lever2) that have a distance of 2 units from cycle 0.

•••

Cycle 5 means yellow spot(lever2) that have a distance of 5 units from cycle 0.

Out[17]:		row	col	score	type	cluster_idx	class	cycle
	0	37	19	0.857315	lever1	0	adjacent	0.0
	1	37	17	1.219024	lever1	0	adjacent	0.0
	2	37	15	0.697438	lever2	0	adjacent	1.0
	3	36	16	0.661241	lever2	0	adjacent	1.0
	4	36	18	0.774277	lever1	0	adjacent	0.0
	•••							
	272	59	65	0.535874	lever2	6	independent	3.0
	273	61	65	0.540075	lever2	6	independent	1.0
	274	60	60	0.602142	lever2	6	independent	3.0
	275	61	59	0.533772	lever2	6	independent	4.0
	276	29	29	0.781194	lever1	7	independent	0.0

277 rows × 7 columns

Map

Map the expression levels of specified cell types to the corresponding cycles.

```
In [18]: cell_type_lt = ['B cells', 'B-cell lineage', 'Cycling cells', 'DC', 'ILC', 'Macrophages', 'Monocytes', 'Plasma cells', 'T cells', 'pDC']
```

The ss.pp.get_cell_abundance() function requires three input parameters: adata, cluster, and cell_type_lt, where the cell_type_lt cell type list can be customized but must be included in the adata.obs object.

```
In [19]: ss.pp.get_cell_abundance(adata, cluster_df, cell_type_lt)
```

Visualization of different cell abundance in different cycles.

```
In [20]: ss.pl.plot_cycle_abundance(cluster_df, cell_type_lt)
```

Cell Abundance In Each Cycle

From the above bar graph, it can be observed that the expression levels of various immune cells increase with the number of cycles from 0 to 4, and slightly decrease at the 5th cycle. However, there are significant differences in expression levels among different cell types. For better comparison, the ss.pp.minmax_scaler() function can be used to map the expression levels of different cells to the range of 0-1.

```
In [21]: cluster_scale_df = ss.pp.minmax_scaler(cluster_df, cell_type_lt)
In [22]: ss.pl.plot_cycle_abundance(cluster_scale_df, cell_type_lt)
```

Cell Abundance In Each Cycle

To represent cell abundance using a line graph, the ss.pl.plot_line_abundance() function can be used.

In [23]: ss.pl.plot_line_abundance(cluster_scale_df, cell_type_lt)

To view the expression level of a specific cell type, the ss.pl.plot_cell_abundance() function can be used

In [24]: ss.pl.plot_cell_abundance(cluster_scale_df, 'B cells')

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

