

Metodos Numéricos: Tarea 1

Thomas Muñoz , Diego Vilches , Javiera Araya , Ignacio Yanjari.

1. Usando los métodos de bisección, falsa posición, y secante, encuentre la raíz aproximada de las siguientes ecuaciones no lineales en los intervalos indicados:

a)
$$x^3 - 3sen(x) + 1 = 0$$
, sobre [0,2].

Métodos	Secante	Biseccion	Falsa Posicion
Cero Obtenido	-1,5873	0,3558	-1,5873
Iteraciones	6	15	7

b)
$$e^{-t/2}cos(4t) = 0$$
, sobre [0,1].

	Métodos	Secante	Bisection	Falsa Posicion
	Cero Obtenido	1,9635	0,3927	0,3927
ſ	Iteraciones	3	12	4

c)
$$x + 40 - x \cosh(\frac{60}{x}) = 0$$
, sobre [40,60].

Métodos	Secante	Biseccion	Falsa Posicion
Cero Obtenido	50,5399	50,5399	50,5399
Iteraciones	5	15	9

d)
$$e^{0.5x}\cos(0.05\sqrt{200-\frac{x^2}{10}})-1=0$$
, sobre [0,4].

Métodos	Secante	Bisection	Falsa Posicion
Cero Obtenido	50,5481	50,5481	50,5481
Iteraciones	5	13	18

e)
$$f(\theta) = \frac{0.6 \sin \theta}{\sqrt{(\cos(\theta) - 0.6)^2 + \sin(\theta)^2}} - \frac{0.6 \sin \theta}{\sqrt{(\cos(\theta) + 0.6)^2 + \sin(\theta)^2}} = 0, \theta \in [1, 2].$$
 (sol. exacta $\theta^* = \frac{\pi}{2}$)

Métodos	Secante	Biseccion	Falsa Posicion
Cero Obtenido	1,5708	1,5708	1,5708
Iteraciones	3	10	2

Con una tolerancia de 10^{-5} . Haga una comparación de los métodos en cuanto a la cantidad de iteraciones, el error cometido. Cuál de ellos fue más eficiente?

2.

- 3. Considere la ecuación no lineal $f(x) = -x^3 \cos(x) = 0$
 - a) Usando el método de Newton encontrar la raiz próxima al valor $x_0 = -1$, con una precisión de 10^{-5} .

Cero Obtenido	-0.8655
Iteraciones	4

b) Repetir el proceso con el método de Newton modificado, esto es, con la iteración

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}$$

Cero Obtenido	-0.8655
Iteraciones	7

 \ccite{c} Qué método converge más rápido? El método de Newton usual converge más rápido, ya que solo tomó 4 iteraciones

El dinero necesario para pagar la cuota correspondiente a un crédito hipotecario a interés fijo se suele estimar mediante la denominada "ecuación de la anualidad ordinaria":

$$Q = \frac{A}{i}(1 - (1+i)^{-n})$$

donde Q es la cantidad pedida en préstamo, A es la cuota que debe pagar el beneficiario por el préstamo, i es la tasa de interés fijado por la entidad bancaria que concede el préstamo y n es el número de periodos durante los cuales se realizan pagos de la cuota. Una pareja que desea comenzar una vida en común se plantea adquirir una vivienda y para ello saben que necesitan pedir un préstamo de 15000 dólares a pagar semestralmente durante un plazo de 10 años. Sabiendo que para atender este pago pueden destinar una cantidad máxima de 200 dólares mensuales, calcule cual es el tipo máximo de interés al que pueden negociar su préstamo con las entidades bancarias. Hint.- Usar método de Newton, tomando como punto inicial i0 = 0.03. Suponga ahora que desean endeudarse en 15 años en lugar de 10. Cual sería el interés en esta situación?

Considere la función $f(x) = x * cos(x) - e^x + 1$.

1. Considere las siguientes funciones. Realize unas 12 iteraciones de punto fijo, usando como puntos iniciales x0=0.5 y x0=0.5.

$$g1(x) = \frac{e^x + x - 1}{1 + \cos(x)} \tag{1}$$

■ x0=0.5

iteración	Punto
1	0,6118
2	0,8004
3	1,1947
4	2,5579
5	87,3616
6	4,7832e+37
7	inf
8	NaN
9	NaN
10	NaN
11	NaN
12	NaN

Punto
-0.4759
-0.4524
-0.4298
-0.4081
-0.3875
-0.3680
-0.3497
-0.3324
-0.3163
-0.3012
-0.2871
-0.2739

$$g2(x) = \frac{\sqrt{x(e^x - 1)}}{\cos(x)} \tag{2}$$

■ x0=0.5

iteración	Punto
1	0.6080
2	0.7872
3	1.1555
4	2.4964
5	0.0000 + 5.8994i
6	0.1106 - 0.0106i
7	0.1140 - 0.0113i
8	0.1177 - 0.0121i
9	0.1216 - 0.0130i
10	0.1258 - 0.0140i
11	0.1303 - 0.0151i
12	0.1351 - 0.0163i

■ x0=-0.5

iteración	Punto
1	0.4735
2	0.5676
3	0.7171
4	0.9989
5	1.7791
6	0.0000 + 6.5089i
7	0.0037 - 0.0660i
8	0.0026 - 0.0660i
9	0.0015 - 0.0660i
10	0.0004 - 0.0660i
11	0.0007 + 0.0659i
12	0.0004 - 0.0659i

2. Teniendo en cuenta las siguientes funciones de iteración de punto fijo. Realize unas 12 iteraciones de punto fijo, usando como puntos iniciales x0 = 0.5 y x0 = 0.5.

$$g3(x) = x - \frac{f(x)}{f'(x)} \tag{3}$$

■ x0=0.5

iteración	Punto
1	0.2923
2	0.1645
3	0.0891
4	0.0468
5	0.0241
6	0.0122
7	0.0062
8	0.0031
9	0.0015
10	7.7566e-04
11	3.8803e-04
12	1.9407e-04

■ x0=-0.5

Punto
0.9462
0.5755
0.3398
0.1932
0.1057
0.0560
0.0289
0.0147
0.0074
0.0037
0.0019
9.3724e-04

$$g4(x) = x - 2\frac{f(x)}{f'(x)}$$
 (4)

iteración	Punto
1	0.0846
2	0.0041
3	1.1230e-05
4	8.4146e-11
5	8.4146e-11
6	8.4146e-11
7	8.4146e-11
8	8.4146e-11
9	8.4146e-11
10	8.4146e-11
11	8.4146e-11
12	8.4146e-11

■ x0=-0.5

iteración	Punto
1	2.3924
2	0.6344
3	0.1196
4	0.0078
5	3.9737e-05
6	1.0509e-09
7	1.0509e-09
8	1.0509e-09
9	1.0509e-09
10	1.0509e-09
11	1.0509e-09
12	1.0509e-09

$$g5(x) = x - \frac{f(x)f'(x)}{(f'(x))^2 - f(x)f''(x)}$$
(5)

iteración	Punto
1	-0.0551
2	-0.0023
3	-3.5887e-06
4	1.2916e-10
5	1.2916e-10
6	1.2916e-10
7	1.2916e-10
8	1.2916e-10
9	1.2916e-10
10	1.2916e-10
11	1.2916e-10
12	1.2916e-10

■ x0=0.5

iteración	Punto
1	-0.4614
2	-0.3825
3	-0.2366
4	-0.0667
5	-0.0035
6	-8.1704e-06
7	-2.6231e-11
8	-2.6231e-11
9	-2.6231e-11
10	-2.6231e-11
11	-2.6231e-11
12	-2.6231e-11

- 3. Que puede decir sobre el comportamiento de las iteraciones de punto fijo calculadas anteriormente.
 - De la función g1(x), cuando se toma el punto inicial x0=0.5, la iteración por punto fijo diverge, pues, cada vez que se hacen más iteraciones, el punto fijo tendera a infinito.