Problem 1

Total: 40 points (10 points each)

Draw the state diagram of DFAs recognizing the following languages. Note: $\Sigma = \{0, 1\}$

- 1. $A = \{w \mid \text{length of } w, |w|, \text{is an even prime number greater than } 2\}$
- 2. $B = \{0, 101\}$
- 3. $C = \{w \mid w \text{ contains an even number of 0's and an odd number of 1's}\}$
- 4. $D = \{w \mid \text{ every third position of } w \text{ is } 1\}$

Solution:

1. There are no even primes greater than 2. $A = \emptyset$

2.

3.

4. Note that any string with a length of 2 or less does not have a third position and thus vacuously satisfies the membership requirement of D.

Problem 2

Total: 20 points

Example of set difference: $A = \{0, 01\}$, and $B = \{0, 11\}$. Then, $A - B = \{01\}$.

Prove that regular languages are closed under the set difference operation. That is, if A and B are regular languages, then A - B is also a regular language.

Hint: One can prove the statement above by either (1) contradiction or (2) construction. For the proof, you may make use of the theorems that regular languages are closed under *union*, *intersection*, and *complement*.

Solution 1 - Proof by contradiction

First, we know that $A - B = A \cap B^C$. And because B is regular, then $\Sigma^* - B = B^C$ is also regular via the closure of regular languages under the *complement* operation.

Assumption: We assume that $A \cap B^C$ is not regular.

Because regular languages are closed under intersection, therefore, the assumption implies at least A or B^C must not be a regular language. However, this contradicts the known facts that both A and B^C are regular. Therefore, $A \cap B^C$ is regular. \square

Solution 2 - Proof by construction

Similar to the proof in the **footnote** of page 46 in the textbook.