CS 432 Machine-to-Machine (M2M) Systems

Smartifiers

Berkin İnan Elif Beril Şaylı Erdem Ege Maraşlı Zafer Tan Çankırı

What is our SmartRoads?

Providing safer roads for the drivers

- Dynamically adjusting the speed limit for that road.
- Traffic density will be detected via computer vision.
- The optimal vehicle speed limit will be determined by measuring the air and road conditions such as temperature, air pressure and humidity of the area.
- The smart traffic signs that are adjusted according to this data will be displayed on the sign for the drivers.

Project Leader & AI Specialist

Number	Name	Price (\$)
1	ESP32-CAM WiFi	15,73
1	BME280 I2C	5,23
2	1x8 Header	0,14
1	1x4 Header	0,045
1	1x6 Header	0,056
1	5x5 Prototyping Board	0,17

Service	Cost	Aggregated
Virtual Machine	\$40/month/instance	\$120
Database	\$15/month/cluster	\$30

Total = \$150

Total = \$21.3

Cost Estimations

Unit Expenses

Product Cost: \$21.3 per edge-node

Electricity Cost: \$0.11 monthly per edge-node

Maintenance Cost: \$5 per edge-node

Cloud Cost: \$150 monthly per server instance

- * We determined that 1 instance of server setup (3VM)
- + 1DB) can handle 500 edge-nodes.
- * We determined that 1 instance of server setup (3VM
- + 1DB) can handle 300 users.
- * Data network usage cost will be added after experimentation steps.
- * In the final iteration, we will use Raspberry Pi for computation. Therefore, electricity cost and product cost will be changed.

Constants

Registered traffic users at Turkey: 23,156,975

* We assume %30 of registered traffic users will use the app (6,947,092.5)

Roads at Turkey: 64,746 km

Edge-nodes per km: 2

* Therefore, we need 129,492 edge-nodes in total.

Advertisement in app: \$5 per install

Tax: %18 KDV for income

Traffic data cost: \$1 per km per day

Business expenses

Initial Expenses

Raw Material: $129,492 \times $21.3 = $2,758,179$

Total Expenses per year

Cloud Cost: $516 \times $150 \times 12 = $77,400 \text{ yearly (to serve edge-nodes)}$

23,157 x \$150 x12 = \$41,682,600 yearly (to serve users)

Total Cloud Cost: \$77,400 + \$41,682,600 = \$42,611,400 yearly

Maintenance Cost: 129,492 x \$5 = \$647,460 yearly

Electricity Cost: $129,492 \times $0.11 = $14,244 \text{ yearly}$

Total Cost: = \$43,273,104

Tax: \$82,000,40 x %18 = 14,760,007,2 yearly

Business gains

Income

* Raw material and installation costs will be paid by the government.

Government (KGM, EGM): 129,492 x \$21.3 = \$2,758,180 (will pay installation cost)

Advertising in app: 6,947,093 x \$5 = \$34,735,460 yearly

Traffic Service Providers: $64,746 \times $1 \times 365 = $23,632,290$ yearly

Advertisement Agencies: 64,746 x \$1 x 365 = \$23,632,290 yearly

Total: \$82,000,040

Revenue per year

\$82,000,040 - \$43,273,104 - \$14,760,007 = \$23,967,929 **%40** of revenue for investor = \$9,587,172 Investor can make profit after **6 years. %60** of revenue for developers = \$14,380,757 will share between group members equally. Therefore, each member takes \$3,595,189 per year.

General Architecture

Counting Cars

Number of cars in the image is 3

YOLO Object Counting API
Real-time object counting API with
YOLO and SORT algorithm

In the final iteration, we will use Raspberry Pi for computation.

Three parts of the Node Device

Microcontroller

Weather Sensor

Vehicle Counter

We started with...

Microcontroller: Atmega328p for the microcontroller with a GPRS Module.

Weather Sensor: BME280 as the weather sensor to collect temperature, air pressure, humidity.

Vehicle Counter: HC-SR04 Ultrasonic Sensor.

and ended on...

Microcontroller: **ESP32-CAM** for the microcontroller.

Weather Sensor: BME280 as the weather sensor to collect temperature, air pressure, humidity.

Vehicle Counter: Onboard camera of ESP32-CAM.

Demo-Ready Node:

- ESP32-CAM
- BME280

^{*} To communicate with BME280, I²C pins are set for SDA and SCL as 14 and 15 accordingly.

Libraries used in Firmware:

- SparkFunBME280
- ArduinoJson
- ArduinoWebSockets
- PubSubClient

Partition scheme of firmware:

- 1.9 MB for program code
- 1.9 MB for OTA updates
- 190 KB SPIFFS memory

Integration & Backend Programmer

Node.js vs Spring Boot?

- Node.js has low-memory utilization
- Node.js is non-blocking because It works asynchronous
- JavaScript Community growing rapidly

Integration & Backend Programmer

MQTT vs HTTP?

- In 3G networks, the throughput of MQTT is 93 times faster than HTTP's^[1]
- MQTT Protocol ensures high delivery guarantees
- MQTT Protocol is easy to use (short specification)
- MQTT Protocol requires less energy

Integration & Backend Programmer

WebSocket

- We choose to use WebSocket for real time video frame transferring
- MQTT and HTTP is not sufficient because of header data repetition
- MQTT is not sufficient for big data transfer

Drivers: Mobile

Traffic Service Providers, KGM, EGM and Advertising Agencies: Web

