Spherical varieties, L-functions, and crystal bases

Jonathan Wang (joint w/ Yiannis Sakellaridis)

MIT

October 30, 2020

Notes available at: http: //jonathanpwang.com/notes/sphL_RT_slides_handout.pdf

Outline

- What is a spherical variety?
- 2 Local geometric duality
- Function-theoretic results
- 4 Geometry
 - $F = \mathbb{F}_q((t)), O = \mathbb{F}_q[t]$
 - $k = \overline{\mathbb{F}}_q$
 - G connected split reductive group $/\mathbb{F}_q$

What is a spherical variety?

Definition

A G-variety $X_{/\mathbb{F}_q}$ is called spherical if X_k is a normal variety with finitely many B_k orbits.

Finiteness condition gives good combinatorics (spherical root datum, rational cones, fans)

Examples:

- Toric varieties G = T
- Symmetric spaces $K \setminus G$
 - Group $X = G' \circlearrowleft G' \times G' = G$

Why are they relevant

Conjecture (Sakellaridis, Sakellaridis-Venkatesh)

Representation theory (harmonic analysis) of functions on an affine spherical variety X, in particular involving the "IC function" of X(O), is related to an L-function

$$L(s,\pi,\rho_X)$$

where $\rho_X: \check{\mathsf{G}}_X \to \mathsf{GL}(V_X)$ is a $\check{\mathsf{G}}_X$ -representation of a possibly different group $\check{\mathsf{G}}_X$

There is a map $\check{G}_X \to \check{G}$, constructed (in most cases) by Gaitsgory–Nadler, Sakellaridis–Venkatesh, Knop–Schalke.

Relation to physics

- $T^*X \to \mathfrak{g}^*$ is a Hamiltonian G-space
- (Gaitto–Witten) Hamiltonian G-space → boundary theory for super Yang–Mills TFT for G
- S-duality for boundary theories predicts:

$$\boxed{G \circlearrowleft T^*X \to \mathfrak{g}^*} \longleftrightarrow \boxed{\check{G} \circlearrowleft M^\vee \to \check{\mathfrak{g}}^*}$$

Prediction (Ben-Zvi-Sakellaridis-Venkatesh)

When X is a spherical variety, there exists $V_X \in \operatorname{\mathsf{Rep}}(\check{\mathsf{G}}_X)$ such that

$$M^{\vee} = V_X \times^{\check{G}_X} \check{G} := (V_X \times \check{G})/\check{G}_X$$

is a Hamiltonian Ğ-space.

	$X \circlearrowleft G$	Ğ _X	V_X
Usual Langlands	$G' \circlearrowleft G' \times G'$	Ğ′	ğ′
Whittaker normal-ization	$(N,\psi)\backslash G$	Ğ	0
Hecke	$\mathbb{G}_m \backslash PGL_2$	$\check{G} = SL_2$	T^* std
Rankin–Selberg, Jacquet–Piatetski- Shapiro–Shalika	$ \frac{H\backslash GL_n\times GL_n}{GL_n\times \mathbb{A}^n} = $	Ğ	T*(std⊗std)
Gan-Gross-Prasad	$SO_{2n} \setminus SO_{2n+1} \times SO_{2n}$	$\check{G} = SO_{2n} \times Sp_{2n}$	std ⊗ std

Local geometric duality

- $k = \overline{\mathbb{F}}_q$
- $X_F(k) = X(k((t)))$ formal loop space of X this is an ind-scheme
- Let X^{\bullet} denote the open G-orbit of X.
- $\bullet \ X_F^{\bullet} = X_F (X X^{\bullet})_F$

We quantize the previous duality:

Conjecture (Ben-Zvi-Sakellaridis-Venkatesh)

There exists a monoidal equivalence

$$D^b_{G_O}(X_F^{ullet}) \cong D^b_{\mathsf{perf}}(\mathbb{V}_X/\check{G}_X)$$

where \mathbb{V}_X is a \mathbb{Z} -graded, super \check{G}_X -representation.

This is a generalization of derived Satake equivalence $(X = G \circlearrowleft G \times G)$

$$D^b_{G_O}(G_F/G_O) \cong D^b_{\mathsf{perf}}(\check{\mathfrak{g}}^*[2]/\check{G})$$

$$\check{G}_X = \check{G}$$

For this talk, assume $\check{G}_X = \check{G}$ (and X has no type N roots). ['N' is for normalizer]

Equivalent to:

(Base change to k)

- X has open B-orbit $X^{\circ} \cong B$
- $X^{\circ}P_{\alpha}/\mathcal{R}(P_{\alpha}) \cong \mathbb{G}_m \backslash PGL_2$ for every simple α , $P_{\alpha} \supset B$

Plancherel formula

By functions-sheaves analogy, previous conjecture can be viewed as geometric realization of Plancherel formula for $L^2(X^{\bullet}(F))$:

$$L^{2}(X^{\bullet}(F))^{G(O)} = \int_{\chi \in \widehat{T}_{X}/W_{X}} \pi_{\chi}^{G(O)} d\chi$$

where \widehat{T}_X is maximal compact in \check{T}_X and π_χ is principal series.

In particular, we have a spectral decomposition

$$||IC_{X(O)}||^2 = \int_{\widehat{T}_X/W_X} ||IC_{X(O)}||_{\chi}^2 d\chi$$

and conjecture predicts that

$$||IC_{X(O)}||_{\chi}^{2} = \frac{L(s_{0}, \pi_{\chi}, V_{X})}{L(1, \pi_{\chi}, \check{\mathfrak{g}}_{X})}$$

up to known constant and zeta factors.

Theorem (Sakellaridis-Venkatesh á la Bernstein)

There exists a G(F)-equivariant map

$$\mathsf{Asymp}: C^{\infty}(X^{\bullet}(F)) \to C^{\infty}(X_0^{\bullet}(F))$$

where X_0^{\bullet} "looks like" $N^- \setminus G$, such that

$$\|\Phi\|_{\chi}^2 = \|\mathsf{Asymp}(\Phi)\|_{\chi}^2.$$

So function-theoretically, the problem amounts to computing Asymp($IC_{X(O)}$).

Theorem (Sakellaridis-W)

Assume that the open B-orbit $X^{\circ} = B$.

Then, Asymp is realized via the functions-sheaves dictionary as a nearby cycles functor on finite type models of $X_F^{\bullet} \rightsquigarrow (X_0^{\bullet})_F$.

In this situation, $X_0^{ullet} = N^- \backslash G$ so

$$\mathsf{Asymp}(\mathit{IC}_{X(O)}) \in \mathit{C}^{\infty}(\mathit{N}^{-}(F) \backslash \mathit{G}(F) / \mathit{G}(O)) = \mathsf{Fn}(\check{\Lambda}).$$

Conjecture 1 (Sakellaridis-Venkatesh)

Assume X affine spherical, $\check{G}_X = \check{G}$ and X has no type N roots.

• There exists $M^{\vee} = V_X$ a symplectic \check{G} -representation with Hamiltonian structure, and $\mathbb{V}_X = V_X^{odd}[1]$.

There exists a \check{T} polarization $V_X = V_X^+ \oplus (V_X^+)^*$ such that

$$\mathsf{Asymp}(\mathit{IC}_{X(O)}) = \frac{\prod_{\check{\alpha} \in \check{\Phi}_G^+} (1 - q^{-1} e^{\check{\alpha}})}{\prod_{\check{\lambda} \in \mathsf{wt}(V_X^+)} (1 - q^{-\frac{1}{2}} e^{\check{\lambda}})} \in \mathsf{Fn}(\check{\Lambda})$$

where $e^{\check{\lambda}}$ is the indicator function of $\check{\lambda}$, $e^{\check{\lambda}}e^{\check{\mu}}=e^{\check{\lambda}+\check{\mu}}$

Mellin transform (= spectral decomposition) gives

$$(\mathsf{Asymp}(\mathit{IC}_{X(O)})_{\chi} = \frac{L(\frac{1}{2},\chi,V_X^+)}{L(1,\chi,\check{\mathfrak{n}})}, \text{ this is "half" of } \frac{L(\frac{1}{2},\chi,V_X)}{L(1,\chi,\check{\mathfrak{g}}/\check{\mathfrak{t}})}$$

Theorem (Sakellaridis-W)

Assume X affine spherical, $\check{G}_X = \check{G}$ and X has no type N roots. Then the Mellin transform

$$(\mathsf{Asymp}(\mathsf{IC}_{X(O)}))_\chi = \frac{L(\frac{1}{2},\chi,V_X^+)}{L(1,\chi,\check{\mathfrak{n}})}$$

for some $V_X^+ \in \text{Rep}(\check{T})$ such that:

- $V_X' := V_X^+ \oplus (V_X^+)^*$ has action of $(\mathsf{SL}_2)_\alpha$ for every simple root α
- ② Assuming V_X' satisfies Serre relations (so it is a \check{G} -representation), we determine its highest weights with multiplicities (in terms of X)
 - (2) gives recipe for conjectural (ρ_X, V_X) in terms of X
 - If V_X is minuscule, then $V_X = V_X'$.
- We show H reductive implies minuscule assumption.

Previous work

Asymp($IC_{X(O)}$) was previously considered by:

- Sakellaridis ('08, '13):
 - $X = H \setminus G$ and H is reductive (iff $H \setminus G$ is affine), no assumption on \check{G}_X
 - doesn't consider $X \supseteq H \backslash G$
- Braverman-Finkelberg-Gaitsgory-Mirković [BFGM] '02:

•
$$X = \overline{N^- \setminus G}$$
, $\check{G}_X = \check{T}$, $V_X = \check{\mathfrak{n}}$

- S. Schieder '16:
 - X = G' group case, $G = G' \times G'$, $V_X = \check{\mathfrak{g}}'$
- Bouthier-Ngô-Sakellaridis [BNS] '16:
 - $X \supset G'$ is L-monoid, $G = G' \times G'$, $\check{G}_X = \check{G}'$, $V_X = \check{\mathfrak{g}}' \oplus T^*V^{\check{\lambda}}$
- J. Campbell '17:
 - $X = (N, \psi) \backslash G$ Whittaker

Geometry

- ullet Base change to $k=\overline{\mathbb{F}}_q$ (or $k=\mathbb{C}$)
- $X_O(k) = X(k[t])$
- Problem: X_O is an infinite type scheme
- Bouthier–Ngô–Sakellaridis: IC function still makes sense by Grinberg–Kazhdan theorem use finite type schemes to model X_O

Zastava space

Drinfeld's proof of Grinberg–Kazhdan theorem gives an explicit finite type model for X_O :

Definition

Let $C = \mathbb{A}^1$ the affine line. Define

$$\mathfrak{Y} = \mathsf{Maps}_{\mathsf{gen}}(C, X/B \supset X^{\circ}/B)$$

Following Finkelberg–Mirković, we call this the **Zastava space** of X.

Fact: y is an infinite disjoint union of finite type schemes.

$$\begin{array}{c}
y \\
\downarrow^{\pi} \\
\mathcal{A} \\
&\cap
\end{array}$$

 $\{\check{\Lambda}$ -valued divisors on $C\}$

Define the **central fiber** $\mathbb{Y}^{\hat{\lambda}} = \pi^{-1}(\check{\lambda} \cdot v)$ for a single point $v \in C(k)$.

$$\begin{array}{ccccc} \mathcal{Y} \longleftarrow & \mathbb{Y}^{\check{\lambda}} \\ \downarrow & & \downarrow \\ \mathcal{A} \longleftarrow & \check{\lambda} \cdot v \end{array}$$

Graded factorization property

The fiber $\pi^{-1}(\check{\lambda}_1v_1+\check{\lambda}_2v_2)$ for distinct v_1,v_2 is isomorphic to $\mathbb{Y}^{\check{\lambda}_1}\times\mathbb{Y}^{\check{\lambda}_2}$.

Upshot

By Braden's contraction principle, computation of Asymp / nearby cycles amounts to computing $\pi_! IC_!$.

Semi-small map

Can compactify π to proper map $\bar{\pi}: \overline{\mathcal{Y}} \to \mathcal{A}.$

Theorem (Sakellaridis-W)

Under previous assumptions, $\bar{\pi}: \overline{\mathcal{Y}} \to \mathcal{A}$ is stratified semi-small. In particular, $\bar{\pi}_! \mathsf{IC}_{\overline{\mathcal{Y}}}$ is perverse.

If $\overline{\mathcal{Y}}$ is smooth, then semi-smallness amounts to the inequality

$$\dim\overline{\mathbb{Y}}^{\check{\lambda}}\leq \mathrm{crit}(\check{\lambda})$$

 $Decomposition \ theorem \ + \ factorization \ property \ imply$

Euler product

$$tr(\mathsf{Fr},(ar{\pi}_!\mathsf{IC}_{\overline{y}})|_{?\cdot v}^*) = rac{1}{\prod_{reve{\lambda}\in\mathfrak{B}^+}(1-q^{-rac{1}{2}}e^{reve{\lambda}})}$$

 $\mathfrak{B}^+=\mathsf{irred}.$ components of $\overline{\mathbb{Y}}^{\check{\lambda}}$ of $\mathsf{dim}=\mathsf{crit}(\check{\lambda})$ as $\check{\lambda}$ varies

- ullet $\mathfrak{B}^+=$ irred. components of $\overline{\mathbb{Y}}^{\check{\lambda}}$ of dim = crit $(\check{\lambda})$ as $\check{\lambda}$ varies
- Define V_X^+ to have basis \mathfrak{B}^+
- ullet Formally set $\mathfrak{B}=\mathfrak{B}^+\sqcup (\mathfrak{B}^+)^*$, so $(\mathfrak{B}^+)^*$ is a basis of $(V_X^+)^*$

Theorem (Sakellaridis-W)

 $\mathfrak B$ has the structure of a (Kashiwara) crystal, i.e., graph with weighted vertices and edges \leftrightarrow raising/lowering operators $\tilde{\mathbf e}_{\alpha}, \tilde{\mathbf f}_{\alpha}$

Crystal basis is the (Lusztig) canonical basis at q=0 of a f.d. $U_q(\check{\mathfrak{g}})$ -module.

f.d. \check{G} -representation \leadsto crystal basis $\in \{\text{crystals}\}$

Conjecture 1

 ${\mathfrak B}$ is the crystal basis for a finite dimensional $\check{\mathsf G}$ -representation V_X .

- ullet Conjecture 1 implies $V_X'=V_X$ is a \check{G} -representation $(\mathfrak{B}\leftrightarrow V_X')$.
- Conjecture 1 resembles geometric constructions of crystal bases by Braverman–Gaitsgory using Mirković–Vilonen cycles
- ullet $\mathbb{Y}^{\check{\lambda}},\overline{\mathbb{Y}}^{\check{\lambda}}\subset\mathsf{Gr}_{G}$
- $\bullet \ \mathbb{Y}^{\check{\lambda},0} = H_F G_O \cap N_F t^{\check{\lambda}} G_O \subset \mathsf{Gr}_G$