

SCHOOL OF COMPUTATION, INFORMATION AND TECHNOLOGY — INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor's Thesis in Informatics

Implementing an Efficient Shuffle Operator for Streaming Database Systems

Ladner, Jonas

SCHOOL OF COMPUTATION, INFORMATION AND TECHNOLOGY — **INFORMATICS**

TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor's Thesis in Informatics

Implementing an Efficient Shuffle Operator for Streaming Database Systems

Titel der Abschlussarbeit

Author: Ladner, Jonas Neumann, Thomas Examiner:

Supervisor: Rieger, Maximilian

Submission Date: 17.02.2025

I confirm that this bachelor's thesis is my own work and I have documented all sources and material used.						
Munich, 17.02.2025			Ladner, Jonas			
widilicit, 17.02.2023			Laurier, jorias			

Abstract

Contents

Acknowledgments								
A۱	bstrac	et	v					
1	Intr	Introduction						
	1.1	Motivation	1					
	1.2	Streaming Database Systems	1					
	1.3	Shuffle Operator	1					
	1.4	Problem Statement	1					
2	Rela	ated work	2					
	2.1	Radix Partitioning	2					
	2.2	Software Managed Buffers	2					
3	Imp	lementations	3					
	3.1	Time Complexity Analysis	3					
	3.2	Radix-related Partitioning	3					
		3.2.1 Radix Partitioning	3					
		3.2.2 Hybrid Partitioning	3					
	3.3							
	3.4							
	3.5	Software Managed Buffers	3					
		3.5.1 Lock-based Software Managed Buffers	3					
		3.5.2 Lock-free Software Managed Buffers	3					
	3.6							
		3.6.1 Collaborative Morsel Processing with Software Managed Buffers	3					
		3.6.2 Collaborative Morsel Processing with Processing Units	3					
4	Eval	luation	4					
	4.1	Experimental Setup	4					
		4.1.1 Hardware	4					
	42	Tuple Generation	4					

Contents

	4.3	4.3.1	e Benchmark	. 4			
5 Conclusion							
A l	bbrev	iations	3	6			
Li	st of	Figures	S	7			
List of Tables							

1 Introduction

- 1.1 Motivation
- 1.2 Streaming Database Systems
- 1.3 Shuffle Operator
- 1.4 Problem Statement

2 Related work

- 2.1 Radix Partitioning
- 2.2 Software Managed Buffers

3 Implementations

- 3.1 Time Complexity Analysis
- 3.2 Radix-related Partitioning
- 3.2.1 Radix Partitioning
- 3.2.2 Hybrid Partitioning
- 3.3 Local Pages and Merge-based Partitioning
- 3.4 On-Demand Partitioning
- 3.5 Software Managed Buffers
- 3.5.1 Lock-based Software Managed Buffers
- 3.5.2 Lock-free Software Managed Buffers
- 3.6 Collaborative Morsel Processing
- 3.6.1 Collaborative Morsel Processing with Software Managed Buffers
- 3.6.2 Collaborative Morsel Processing with Processing Units

4 Evaluation

- 4.1 Experimental Setup
- 4.1.1 Hardware
- 4.2 Tuple Generation
- 4.3 Shuffle Benchmark
- 4.3.1 Memory Consumption
- 4.3.2 Performance

5 Conclusion

Abbreviations

List of Figures

List of Tables