『MINI AIFFELTHON 보고서』

팀명		우리 쏘카 타		
	명칭	카셰어링에서의 데이터 기반 수요예측		
제안 프로젝트	소개	경기도 지역의 쏘카 사용자 연령 중 20,30 대의 연령층과 행복주택주거지를 데이터 기반 수요예측 모델링 전개 방향은 신규수요지를 예측 할 수 있는 모델 구축을 목표로 하며, 1) 각종 논문 및 카셰어링 비즈니스 분석을 통한 수요예측에 필요한 Feature 를 도출하고 2) 도출된 Feature 기반 학습에 필요한 내,외부 Data 를 수집한다 3) 기존 Data 와 수집 Data 를 Classification 하여(K-means 등) 수요지에 대한 탐색 및 예측 가능한 모델을 만들어본다 4) 탐색된 수요지에 대해 수요예측모델을 적용하여(딥러닝 모델등) 신규 쏘카존 설치와 기존 쏘카존의 조정과 변경을 실시한다. 시간대 및 차종, 요일 예측치등 제공가능한 예측치를 생성하여 카셰어링 비즈니스를 제안한다		

1.수행 및 분석

- 1] Feature 도출 및 Data 확보
 - 1) 논문 및 카셰어링 비즈니스 분석을 통한 수요지 예측에 필요한 Feature 도출
 - 미래형 공동주택의 청년계층 카셰어링 이용수요 분석 (토지주택연구원 국토도시연구실)
 - 서울시의 카셰어링 이용도에 대한 지역적 요인특성분석 (한국철도학회논문집)
 - 군집화에 의한 예측모델 성능 고도화 방법(경영정보관련학회)
 - Feature 선정

		양의상관	음의상관	양의상관	양의상관
의존지역	자가용 업무중심지역	역세권지역	종합개발지역	버스편이지역	녹색교통 편이지역
	Commercial centric	Station sphere,		Bus centric,	Green mode
Num of parking lot	957	-152	65	83	-3
Registered private car	-918	-189	-110	207	139
Registered car	-907	-170	-110	230	-181
Tax revenue	899	-359	25	-12	-73
Num of employees	811	530	72	57	-16
Num of financial compar	771	565	119	157	-4
Diffusion ratio of house	502	83	485	182	377
Density of employees	128	-876	6	-103	272
Density of company	209	-859	78	-156	261
Num of company	335	858	207	257	-50
Ratio of employ (employs	350	824	207	298	-37
Num of railway station ar	85	44	847	342	9
Num of bus station	126	216	818	219	-138
Street ratio -	-380	66	-716	-268	-298
Num of entrance of station		13	632	-48	-422
Deg of public developme	92	156	46	-861	-118
Deg of complex develop	3	371	250	850	104
Deg of commercial devel	87	440	408	650	-31
Interval of bus	-53	-134	26	11	924
Num of long distance roo	-40	-239	-24	19	878
Num of business vehicles	325	-11	-114	475	-531
Accessibility of pedestrian	205	-50	-205	172	153
Accessibility of bicycle -	-145	-6	264	113	176
Interval of subway -	-138	-11	196	-44	-127

2) Feature 에 적절한 내,외부 Data 확보

- 참고 Site
 - . 공공데이터포털(https://www.data.go.kr/)
 - . 국가통계포털(https://kosis.kr/)
 - . 지표누리(https://www.index.go.kr/)
 - . 경기통계(https://stat.gg.go.kr/)
- 수집 Data
 - . 인구현황 : 관련문서 19 종
 - . 소득현황 : 관련문서 14종
 - . 대학교현황 : 관련문서 5종
 - . 아파트현황 : 관련문서 2 종
 - . 대중교통(지하철,버스): 관련문서 5종
 - . 쏘카존 현황 : 관련문서 1 종
 - . 토지용도 : 1 종
- 2] 미니 아이펠톤 수행 결과 : 1 차 수요지 선정 및 모델링
 - 문제정의: 경기도 42 개 지역(시, 군, 구)에 대한 군집화 수행
 - 데이터 수집 (6 개 feature)
 - . 쏘카존 수, 토지용도, 인구, 대학교 수, 아파트 수, 지하철역 수
 - 모델링
 - . 사용모델 : k 평균 군집화 (k-means clustering)
 - . 수행절차
 - . 군집개수(K)를 달리하여 k 평균 군집화를 진행
 - . 실루엣 계수가 가장 높은 K 값을 선정
 - . 수행결과
 - . K=2 또는 K=3 으로 선정
 - . 42 개 지역에 대한 군집화 작업 완료

3] 시스템 구성 및 아키텍처

- 시스템 구성도

<Figure>군집화-수요 예측 모델 구조

- 개발 Kit

2.결과 및 계획

1] 변경 계획안

Task		목표기간	세부내용	
팀빌딩	- 팀빌딩 및 계획서 제출 · 제출 : 2022.12.26 18:00	2022.12.26 ~ 2022.12.26	- 팀장 및 역할, 운영 정립	
Mini Aiffelthon	- 운영관리체계 정립	2022.12.27 ~ 2022.12.27	 개발관리체계 정립 프로그램 운영 체계 Naming Rule 정립 운영체 소통관리(on,offline) 	
	- 미니 프로젝트	2022.12.27 ~ 2023.01.02		
	· Data 선정 및 EDA	2022.12.28 ~ 2023.12.30	- 데이터 확보 및 관리체계 수립 - Data 분석 및 관계도 작성	
	· 모델 학습 및 선정	2022.12.28 ~ 2023.12.30	- 2 ~3 모델 학습 . Hyper parameter 검토	
	· 프로젝트 계획서 수정 : 제 <u>출 : 2023.01.03 18:00</u>	2022.12.27 ~ 2023.01.03	- 프로젝트 계획서 작성 . 진도관리 체계 포함	
Aiffelthon	- 카셰어링비지니스 분석	2022.01.02 ~ 2023.01.04	- 카셰어링 Flow 검토	
	- Feature 검토 및 재구성	2022.01.02 ~ 2023.01.06	- Feature 정리표	
	- Data 확보 및 전처리	2022.01.04 ~ 2023.01.13	- Data 분석 및 관계도 재검토 . 산출물 : Data set 구성	
	- 모델 검토 및 모델링 . Clustering 모델 . 수요예측 모델	2022.01.09 ~ 2023.01.20	- 모델 학습 : 이해도 향상 - 실 Data 로 모델링 . hyper parameter 선정	
	- 모델 평가 및 재구성 . Clustering 모델 . 수요예측 모델	2022.01.16 ~ 2023.01.31	- Optimizer , 손실함수	
	- 프로젝트 완료 보고서	2023.01.23 ~ 2023.02.03	- 프로젝트 완료 보고서 - 소스코드	
	- 개발프로그램 취합 및 정리	2023.01.30 ~ 2023.02.03		
	- 발표 자료 최종 검토 · 제출 : 2023.02.07 18:00	2023.02.06 ~ 2023.02.07		

- 21 발생문제 및 개선 사항
 - 1) 수요지 예측 Feature 적합성 검토가 필요
 - 논문 및 비즈니스 분석을 통해 선정된 Feature 가 적절한지 분석 및 검토가 필요
 - . 군집화모델을 통한 수요지 Grouping : 기존과 Data 수집된 지역의 비교 분석
 - . 멘토를 통한 자문을 구함
 - 2) 선정된 Feature 에 대한 Data 확보
 - 외부 Data 의 소스 및 부족한 경우가 발생
 - . 1 월 첫째주까지 Data 확보를 마치도록 하고, 부족한 Data 는 대체 Feature 를 선정하거나 Data 생성모델로 극복 예정
 - 3) 배포까지 구성하는 것에 대한 고민
 - 새로운 수요지에 대한 Feature 구성 및 외부 Data 의 확보의 어려움으로 우선 신규 수요지 선정 및 선정된 지역의 수요 예측 모델의 완성을 목표로 함.