Data Analytics

January 26, 2021

```
In [2]: import numpy as np
        ary1 = np.array([1,2,3])
        print(ary1)
[1 2 3]
In [3]: print(type(ary1))
<class 'numpy.ndarray'>
In [4]: print(ary1.shape)
(3,)
In [5]: ary1[2]
Out[5]: 3
In [7]: ary1[2]=5
        ary1
Out[7]: array([1, 2, 5])
In [9]: ary2 = np.array([[1,2,3],[3,4,5]])
        ary2
Out[9]: array([[1, 2, 3],
               [3, 4, 5]])
In [10]: ary2[1][2]
Out[10]: 5
In [11]: print(ary2.shape)
```

```
(2, 3)
In [12]: ary2[1][-1]
Out[12]: 5
In [13]: ary2[1][-3]
Out[13]: 3
In [14]: arys = np.array(['Chaina', 'India', 'Canada', 'USA'])
         arys
Out[14]: array(['Chaina', 'India', 'Canada', 'USA'], dtype='<U6')</pre>
In [15]: aryR = np.arange(0,20,2)
In [87]: aryR = np.arange(0,30,3)
         aryR
Out[87]: array([0, 3, 6, 9, 12, 15, 18, 21, 24, 27])
In [18]: aryL = np.linspace(0,10,20)
         aryL
Out[18]: array([ 0.
                      , 0.52631579, 1.05263158, 1.57894737, 2.10526316,
                 2.63157895, 3.15789474, 3.68421053, 4.21052632, 4.73684211,
                 5.26315789, 5.78947368, 6.31578947, 6.84210526, 7.36842105,
                7.89473684, 8.42105263, 8.94736842, 9.47368421, 10.
                                                                               ])
In [19]: ary = np.random.rand(10)
        ary
Out[19]: array([0.56750196, 0.60980437, 0.16004783, 0.69149488, 0.29569082,
                0.62240006, 0.21497158, 0.12443889, 0.22541522, 0.47230696])
In [20]: ary = np.random.rand(3,4)
         ary
Out[20]: array([[0.58403665, 0.9600567, 0.97892197, 0.54657973],
                [0.3440654, 0.18368897, 0.3425167, 0.39620669],
                [0.44122453, 0.54291041, 0.69028765, 0.06868475]])
In [21]: print(np.zeros(10))
        print('/n')
        print(np.zeros((2,3)))
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
/n
[[0. 0. 0.]
[0. 0. 0.]]
```

```
In [22]: print(np.ones((10,10,3)))
[[[1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]]
 [[1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]]
 [[1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]]
 [[1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]]
```

[[1. 1. 1.] [1. 1. 1.]

- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]]
- [[1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]]
- [[1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]]
- [[1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]]
- [[1. 1. 1.]
- [1. 1. 1.] [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]
- [1. 1. 1.]

```
[1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]]
 [[1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]]
In [23]: ary = [0,1,2]
         print(np.repeat(ary, 5))
[0 0 0 0 0 1 1 1 1 1 2 2 2 2 2]
In [24]: print(np.tile(ary,5))
[0 1 2 0 1 2 0 1 2 0 1 2 0 1 2]
In [25]: identity_matrix = np.eye(3)
         identity_matrix
Out[25]: array([[1., 0., 0.],
                [0., 1., 0.],
                [0., 0., 1.]])
In [26]: np.diag([1,2,3,4,5])
Out[26]: array([[1, 0, 0, 0, 0],
                [0, 2, 0, 0, 0],
                [0, 0, 3, 0, 0],
                [0, 0, 0, 4, 0],
                [0, 0, 0, 0, 5]])
In [27]: ary = np.random.rand(5,5)
         ary
Out[27]: array([[0.25226077, 0.2579296 , 0.46973991, 0.87427238, 0.44335414],
                [0.18210193, 0.41776999, 0.87948047, 0.36747753, 0.07804553],
                [0.39424446, 0.03643247, 0.83427572, 0.39335018, 0.60132669],
                [0.59417161, 0.0712503, 0.98424964, 0.20258022, 0.33971214],
                [0.6561921 , 0.87046826, 0.86435258, 0.74885978, 0.60192395]])
```

```
In [28]: np.diag(ary)
Out[28]: array([0.25226077, 0.41776999, 0.83427572, 0.20258022, 0.60192395])
In [29]: ary.ndim
Out[29]: 2
In [30]: ary.size
Out[30]: 25
In [31]: ary.shape
Out[31]: (5, 5)
In [32]: np.random.randint(-10,10,5)
Out[32]: array([-1, 1, -5, -2, 6])
In [34]: ary/4
Out[34]: array([[0.06306519, 0.0644824, 0.11743498, 0.2185681, 0.11083854],
                [0.04552548, 0.1044425, 0.21987012, 0.09186938, 0.01951138],
                [0.09856111, 0.00910812, 0.20856893, 0.09833755, 0.15033167],
                [0.1485429, 0.01781257, 0.24606241, 0.05064505, 0.08492804],
                [0.16404802, 0.21761706, 0.21608814, 0.18721495, 0.15048099]])
In [35]: np.exp(ary)
Out[35]: array([[1.28693158, 1.2942477, 1.59957811, 2.39713046, 1.55792396],
                [1.19973648, 1.51857135, 2.40964749, 1.44408735, 1.08117189],
                [1.4832631 , 1.03710426, 2.30314532, 1.48193725, 1.82453779],
                [1.81152968, 1.07384997, 2.67580332, 1.22455831, 1.40454323],
                [1.92743884, 2.3880288 , 2.37346895, 2.11458755, 1.82562784]])
In [36]: ary
Out[36]: array([[0.25226077, 0.2579296, 0.46973991, 0.87427238, 0.44335414],
                [0.18210193, 0.41776999, 0.87948047, 0.36747753, 0.07804553],
                [0.39424446, 0.03643247, 0.83427572, 0.39335018, 0.60132669],
                [0.59417161, 0.0712503, 0.98424964, 0.20258022, 0.33971214],
                [0.6561921 , 0.87046826, 0.86435258, 0.74885978, 0.60192395]])
In [38]: np.log2(ary)
Out[38]: array([[-1.98701225, -1.95495074, -1.09006592, -0.19384527, -1.17346854],
                [-2.45718189, -1.25921923, -0.18527656, -1.44427205, -3.67954015],
                [-1.34283762, -4.77863152, -0.26140383, -1.34611384, -0.7337791]
                [-0.75104841, -3.8109602, -0.02290381, -2.30343481, -1.5576153],
                [-0.60780988, -0.20013641, -0.21030818, -0.41723248, -0.73234687]])
```

```
In [39]: np.sin(ary)
Out[39]: array([[0.24959381, 0.25507919, 0.45265438, 0.7670769 , 0.42897173],
                [0.18109715, 0.40572324, 0.77040776, 0.35926252, 0.07796633],
                [0.38411072, 0.03642441, 0.7408102, 0.38328489, 0.56573694],
                [0.55982254, 0.07119003, 0.83285701, 0.20119745, 0.3332157],
                [0.6101042 , 0.7646308 , 0.76067516, 0.68080403, 0.56622933]])
In [40]: np.sum(ary)
Out[40]: 12.415822346118937
In [43]: np.sum(ary, axis=0)
Out[43]: array([2.07897086, 1.65385061, 4.03209832, 2.5865401 , 2.06436246])
In [44]: np.max(ary)
Out[44]: 0.9842496432443214
In [45]: np.mean(ary)
Out [45]: 0.49663289384475745
In [46]: np.std(ary)
Out[46]: 0.28134296733775815
In [47]: np.var(ary)
Out [47]: 0.07915386527041485
In [49]: ary[1:,2:4]
Out[49]: array([[0.87948047, 0.36747753],
                [0.83427572, 0.39335018],
                [0.98424964, 0.20258022],
                [0.86435258, 0.74885978]])
In [51]: np.sort(ary)
Out[51]: array([[0.25226077, 0.2579296 , 0.44335414, 0.46973991, 0.87427238],
                [0.07804553, 0.18210193, 0.36747753, 0.41776999, 0.87948047],
                [0.03643247, 0.39335018, 0.39424446, 0.60132669, 0.83427572],
                [0.0712503, 0.20258022, 0.33971214, 0.59417161, 0.98424964],
                [0.60192395, 0.6561921, 0.74885978, 0.86435258, 0.87046826]])
In [52]: ary
```

```
Out[52]: array([[0.25226077, 0.2579296 , 0.46973991, 0.87427238, 0.44335414],
                [0.18210193, 0.41776999, 0.87948047, 0.36747753, 0.07804553],
                [0.39424446, 0.03643247, 0.83427572, 0.39335018, 0.60132669],
                [0.59417161, 0.0712503, 0.98424964, 0.20258022, 0.33971214],
                [0.6561921, 0.87046826, 0.86435258, 0.74885978, 0.60192395]])
In [53]: ary.T
Out[53]: array([[0.25226077, 0.18210193, 0.39424446, 0.59417161, 0.6561921],
                [0.2579296, 0.41776999, 0.03643247, 0.0712503, 0.87046826],
                [0.46973991, 0.87948047, 0.83427572, 0.98424964, 0.86435258],
                [0.87427238, 0.36747753, 0.39335018, 0.20258022, 0.74885978],
                [0.44335414, 0.07804553, 0.60132669, 0.33971214, 0.60192395]])
In [54]: ary[:3,:].T
Out[54]: array([[0.25226077, 0.18210193, 0.39424446],
                [0.2579296, 0.41776999, 0.03643247],
                [0.46973991, 0.87948047, 0.83427572],
                [0.87427238, 0.36747753, 0.39335018],
                [0.44335414, 0.07804553, 0.60132669]])
In [55]: ary[:3,:].flatten()
Out[55]: array([0.25226077, 0.2579296, 0.46973991, 0.87427238, 0.44335414,
                0.18210193, 0.41776999, 0.87948047, 0.36747753, 0.07804553,
                0.39424446, 0.03643247, 0.83427572, 0.39335018, 0.60132669])
In [59]: ary = np.array([4,5,6,7,8])
         ary
Out [59]: array([4, 5, 6, 7, 8])
In [61]: ary1 = np.append(ary,5)
         ary
Out[61]: array([4, 5, 6, 7, 8])
In [62]: ary2 = np.insert(ary, 0, [1,2,3])
         ary2
Out[62]: array([1, 2, 3, 4, 5, 6, 7, 8])
In [65]: ary3 = np.delete(ary2, 0)
         ary3
Out[65]: array([2, 3, 4, 5, 6, 7, 8])
In [67]: aryC = ary3.copy()
         aryC
```

```
Out[67]: array([2, 3, 4, 5, 6, 7, 8])
In [76]: ary1 = np.array([[1,2,3],[4,5,6]])
         ary2 = np.array([[4,5,6],[7,8,9]])
         ary3 = np.array([[8,7,6],[1,5,9]])
         ary_cat = np.concatenate((ary1,ary2,ary3),axis=1)
         print(ary_cat)
[[1 2 3 4 5 6 8 7 6]
[4 5 6 7 8 9 1 5 9]]
In [77]: catV = np.vstack((ary1, ary2,ary3))
         catV
Out[77]: array([[1, 2, 3],
                [4, 5, 6],
                [4, 5, 6],
                [7, 8, 9],
                [8, 7, 6],
                [1, 5, 9]])
In [78]: catH = np.hstack((ary1, ary2,ary3))
         catH
Out[78]: array([[1, 2, 3, 4, 5, 6, 8, 7, 6],
                [4, 5, 6, 7, 8, 9, 1, 5, 9]])
In [80]: ary = np.array([1,5,3,6,7,4,245,1,7,45,7,56,36])
         np.unique(ary)
Out[80]: array([ 1, 3, 4, 5, 6, 7, 36, 45, 56, 245])
In [85]: #intersection, differntiation, neither
         ary1 = np.array([1,2,3,4])
         ary2 = np.array([2,3,6,4])
         print(np.intersect1d(ary1, ary2))
         print(np.union1d(ary1, ary2))
         print(np.setdiff1d(ary2, ary1))
        print(np.setxor1d(ary1, ary2))
[2 3 4]
[1 2 3 4 6]
[6]
[1 6]
In [4]: import pandas as pd
In [88]: #for pandas
```

```
In [5]: import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        %matplotlib inline
        sns.set(color_codes=True)
In [9]: data = pd.read_csv('/home/user/GODAVARI/coOrdinate1.csv')
        data.head()
Out[9]:
           Unnamed: 0
                      {	t Albedo\_inst}
                                    AvgSurfT_inst
                                                   CanopInt_inst
                                                                 ECanop_tavg \
        0
                    0
                         11.920000
                                       308.211884
                                                             0.0
                                                                          0.00
       1
                         11.890000
                                                             0.0
                                                                          0.00
                    0
                                       307.378479
        2
                    0
                         11.849998
                                                             0.0
                                                                          0.00
                                       307.798584
        3
                    0
                         11.820000
                                                             0.0
                                                                          0.04
                                       308.330750
        4
                    0
                         11.790000
                                                                          0.00
                                       307.115631
                                                             0.0
           ESoil_tavg Evap_tavg LWdown_f_tavg Lwnet_tavg PotEvap_tavg
        0
          18.570000
                        0.000082
                                     340.456329 -167.500580
                                                               741.664856
                                                                           . . .
          18.219999
                        0.000081
                                     335.034790 -166.838684
                                                               769.109375
        1
          16.670000
                        0.000078
                                     332.093597 -170.586090
                                                               739.671814
        3
          15.900000
                                     339.926392 -165.926682
                        0.000076
                                                               739.387756
            16.160000
                        0.000075
                                     331.670410 -165.583313
                                                               794.559509
           SoilMoi40_100cm_inst
                                 SoilTMP0_10cm_inst SoilTMP100_200cm_inst
        0
                     154.382996
                                         297.980682
                                                                 297.915070
        1
                     153.203995
                                         297.227661
                                                                 297.881104
                     152.104996
        2
                                         296.832367
                                                                 297.839264
        3
                     151.041000
                                         297.271484
                                                                 297.801300
                                                                 297.758514
        4
                     149.955002
                                         296.841766
           SoilTMP10_40cm_inst SoilTMP40_100cm_inst Swnet_tavg Tair_f_inst \
        0
                    295.425629
                                          296.595581
                                                      657.469971
                                                                   303.633453
        1
                    295.138550
                                          296.530579
                                                      662.510010
                                                                   302.845917
        2
                    294.825287
                                          296.441772 665.369995
                                                                   302.986023
                    294.642761
        3
                                          296.326202
                                                      658.780029
                                                                   303.447296
        4
                    294.584229
                                          296.230713 667.059998
                                                                   302.692627
            Tveg_tavg Wind_f_inst
                                                          geometry
        0 186.119995
                          1.908393
                                    <map object at 0x7f1b31fc6a90>
        1 183.759995
                          2.500216
                                    <map object at 0x7f1b32105780>
        2 177.369995
                          1.803373 <map object at 0x7f1b321055f8>
                                    <map object at 0x7f1b31ff14a8>
        3 172.919998
                          1.902477
        4 172.009995
                          3.501946 <map object at 0x7f1b32105a58>
        [5 rows x 38 columns]
```

In [10]: data.dtypes

```
Out[10]: Unnamed: 0
                                     int64
         Albedo inst
                                   float64
         AvgSurfT_inst
                                   float64
         CanopInt_inst
                                   float64
         ECanop_tavg
                                   float64
         ESoil_tavg
                                   float64
         Evap_tavg
                                   float64
         LWdown_f_tavg
                                   float64
         Lwnet_tavg
                                   float64
         PotEvap_tavg
                                   float64
         Psurf_f_inst
                                   float64
         Qair_f_inst
                                   float64
                                   float64
         Qg_tavg
                                   float64
         Qh_tavg
         Qle_tavg
                                   float64
         Qs_acc
                                   float64
         Qsb_acc
                                   float64
         Qsm_acc
                                     int64
         Rainf_f_tavg
                                   float64
         Rainf_tavg
                                   float64
         RootMoist_inst
                                   float64
         SWE_inst
                                     int64
         SWdown_f_tavg
                                   float64
         SnowDepth_inst
                                     int64
         Snowf_tavg
                                     int64
                                   float64
         SoilMoiO_10cm_inst
         SoilMoi100_200cm_inst
                                   float64
                                   float64
         SoilMoi10_40cm_inst
         SoilMoi40_100cm_inst
                                   float64
         SoilTMPO_10cm_inst
                                   float64
         SoilTMP100 200cm inst
                                   float64
         SoilTMP10_40cm_inst
                                   float64
         SoilTMP40_100cm_inst
                                   float64
         Swnet_tavg
                                   float64
         Tair_f_inst
                                   float64
         Tveg_tavg
                                   float64
         Wind_f_inst
                                   float64
                                    object
         geometry
         dtype: object
In [11]: data.columns
Out[11]: Index(['Unnamed: 0', 'Albedo_inst', 'AvgSurfT_inst', 'CanopInt_inst',
                'ECanop_tavg', 'ESoil_tavg', 'Evap_tavg', 'LWdown_f_tavg', 'Lwnet_tavg',
                'PotEvap_tavg', 'Psurf_f_inst', 'Qair_f_inst', 'Qg_tavg', 'Qh_tavg',
                'Qle_tavg', 'Qs_acc', 'Qsb_acc', 'Qsm_acc', 'Rainf_f_tavg',
                'Rainf_tavg', 'RootMoist_inst', 'SWE_inst', 'SWdown_f_tavg',
                'SnowDepth_inst', 'Snowf_tavg', 'SoilMoi0_10cm_inst',
```

```
'SoilMoi100_200cm_inst', 'SoilMoi10_40cm_inst', 'SoilMoi40_100cm_inst', 'SoilTMP0_10cm_inst', 'SoilTMP100_200cm_inst', 'SoilTMP10_40cm_inst', 'SoilTMP40_100cm_inst', 'Swnet_tavg', 'Tair_f_inst', 'Tveg_tavg', 'Wind_f_inst', 'geometry'], dtype='object')
```

In [13]: data.describe(include='all')

Out[13]:		Unnamed: 0	Albedo_inst	AvgSurfT_inst	CanopInt_inst	ECanop_tavg	\	
	count	5843.0	5843.000000	5843.000000	5843.000000			
	unique	NaN	NaN	NaN	NaN	NaN		
	top	NaN	NaN	NaN	NaN	NaN		
	freq	NaN	NaN	NaN	NaN	NaN		
	mean	0.0	13.528428	312.764254	0.038741	18.791595		
	std	0.0	1.597749	8.716488	0.116089	48.560459		
	min	0.0	11.500000	294.225433	0.000000	0.000000		
	25%	0.0	12.320000	306.353516	0.000000	0.000000		
	50%	0.0	13.240000	309.525757	0.000000	0.000000		
	75%	0.0	14.150000	319.607880	0.001000	6.510000		
	max	0.0	17.000000	334.416504	0.500000	409.750000		
		ESoil_tavg	Evap_tavg	LWdown_f_tavg	Lwnet_tavg	PotEvap_tavg	\	
	count	5843.000000	5843.000000	5843.000000	5843.000000	5843.000000		
	unique	NaN	NaN	NaN	NaN	NaN		
	top	NaN	NaN	NaN	NaN	NaN		
	freq	NaN	NaN	NaN	NaN	NaN		
	mean	66.761790	0.000077	412.222789	-127.603282	698.790264		
	std	63.233389	0.000062	38.467980	62.357138	231.067941		
	min	0.700000	0.000001	308.770874	-297.765778	25.336960		
	25%	12.155000	0.000019	381.936813	-176.656120	572.310974		
	50%	43.570000	0.000065	417.293640	-131.319382	716.754517		
	75%	111.680000	0.000126	441.833862	-72.739315	864.101135		
	max	323.299988	0.000252	518.161743	5.090859	1233.212646		
count		SoilMoi40_100cm_inst		SoilTMPO_10cm	SoilTMPO_10cm_inst SoilTM		P100_200cm_inst \	
			5843.000000	5843.0	00000	5843.00000	0	
	unique		NaN	Ī	NaN	Na	.N	
	top		NaN	Ī	NaN	Na	.N	
	freq		NaN	Ī	NaN	Na	.N	
	mean		166.106882	306.	142527	301.50773	2	
	std		56.060541	. 8.0	080839	3.10057	3	
	min		104.426003	3 293.	527222	296.31732	2	
	25%		117.391998		149872	298.83660		
	50%		137.955002	302.8	315735	301.32458	5	
	75%		223.673500	312.0	016769	303.84877	0	
	max		269.950989	325.	580750	308.31329	3	

SoilTMP10_40cm_inst SoilTMP40_100cm_inst Swnet_tavg Tair_f_inst \

count	5843.000000	5843.000000	5843.000000	5843.000000	
unique	NaN	NaN	NaN	NaN	
top	NaN	NaN	NaN	NaN	
freq	NaN	NaN	NaN	NaN	
mean	301.763629	301.737592	607.622805	307.432248	
std	4.918302	4.052518	157.954647	5.756286	
min	292.833801	294.751099	13.850000	292.790863	
25%	297.948441	298.414230	542.605011	303.316788	
50%	301.063080	301.309723	639.859985	306.000793	
75%	304.532776	304.418961	719.619995	311.177841	
max	314.112000	311.308136	909.049988	323.115479	
	Tveg_tavg Wind_f_inst	geometry			
count	5843.000000 5843.000000 5843				
11ni a11 a	NoN NoN	E0/12			

unique NaNNaN 5843 <map object at 0x7f1b31f9c3c8> top NaN NaN freq NaNNaN 1 107.845247 2.127956 NaN mean 114.331925 0.958956 std NaN 0.000000 0.007467 NaN min 25% 10.980000 1.413756 NaN 50% 57.799999 2.101675 NaN 75% 189.979996 2.714424 NaN 412.649994 7.410892 NaN max

[11 rows x 38 columns]

In [14]: data.hist(figsize=(20,30))

```
Out[14]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a7e290b8>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a79e3550>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a7986d68>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a79b4710>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a795a780>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a797edd8>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a792d470>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a78d3c88>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a78d3cc0>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a78a4f60>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a7850908>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a787e2b0>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a7821c18>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a77cf5c0>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a77f3f28>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a77a08d0>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a774f278>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a7774be0>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a7721588>,
```

```
<matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a76c7ef0>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a76f4898>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a76a1240>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a7647ba8>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a7675550>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a761aeb8>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a75c9860>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a75f7208>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a759ab70>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a7549518>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a756de80>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a751c828>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a74cb1d0>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a74eeb38>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a749d4e0>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a74c2e48>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a746e7f0>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a741e198>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a7442b00>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a73f14a8>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a7396e10>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a73c27b8>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7fd6a7371160>]],
dtype=object)
```


In [15]: sns.boxplot(x="SnowDepth_inst", y="Evap_tavg", data = data)

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd6a60f0f28>

In []: sns.pairplot(data)

Out[]: <seaborn.axisgrid.PairGrid at 0x7fd6a5fd47b8>

In []: