CLAIMS

What is claim is:

2 a first substrate having thereon a first conductive layer and a first alignment layer;

1) A bistable liquid crystal device comprising:

a second substrate having thereon a second conductive layer and a second

4 alignment layer; and

a liquid crystal layer sandwiched between said first and second alignment layers,

said first alignment layer inducing a first pretilt angle θ_I in the range of 20°-65°

between said liquid crystal layer in contact with said first alignment layer, and

said second alignment layer inducing a second pretilt angle θ_2 in the range of 20°-

65° between said liquid crystal layer in contact with said second alignment layer,

said liquid crystal layer being capable of maintaining a stable bend state or a

stable splay state at zero bias voltage and being switchable between said stable

bend state and said stable splay state when a switching energy is applied in

operation to said liquid crystal layer.

1

1

2

3

1

7

8

9

10

11

12

2) The device of claim 1, wherein said liquid crystal layer comprises liquid crystal

having a positive dielectric birefringence when driven by electrical pulses at low

frequency and a negative birefringence when driven by electrical pulses at high

4 frequency.

5

1

- 3) The device of claim 1, wherein at least one of said first and second alignment
- 2 layers comprises a mixture of vertical alignment material and horizontal alignment
- 3 material.

4

1 4) The device of claim 1 further comprising input and output polarizers.

2

- 1 5) The device of claim 4 wherein said input and output polarizers respectively angle
- 2 said alignment direction by $\pm 40^{\circ}$ to $\pm 60^{\circ}$.

1 6) The device of claim 1 wherein said pretilt angles on said pair of substrates are substantially different.

1 7) The device of claim 1 wherein said pair of substrates have substantially parallel alignment directions.

1 8) The device of claim 1 wherein said switching energy is an electrical pulse 2 generated by said first and second conductive layers.

1 9) The device of claim 1 wherein said switching energy is an electrical pulse having low frequency to align said liquid crystal layer to said bend state.

1 10) The device of claim 1 wherein said switching energy is an electrical pulse having 2 high frequency to align said liquid crystal layer to said splay state.

11) The device of claim 1 wherein said switching energy is an electrical pulse providing an electrical field in a predetermined direction between said pair of substrates to switch said liquid crystal layer between said bend state and said splay state.

12) The device of claim 1 wherein one of said conductive layers further includes a patterned electrode to provide an electrical field in a predetermined direction between said pair of substrates to switch said liquid crystal layer between said bend state and said splay state.

1 13) The device of claim 1 wherein one of said conductive layers further includes a
2 patterned electrode, said patterned electrode having an interdigital structure so that
3 controlling the voltages on said interdigital electrode can apply either a vertical or

4	horizontal electric field upon said liquid crystal layer.
5	
1	14) The device of claim 1 wherein said first and second conductive layers are
2	patterned into stripes that are substantially perpendicular in direction to each other
3	to form an overlapping matrix of pixels.
4	
1	15) The device of claim 1 wherein both said first and second conductive layers are
2	transparent.
3	
1	16) The device of claim 1 wherein one of said first and second conductive layer is
2	optically reflecting.
3	
1	17) In a bistable liquid crystal device, said bistable liquid crystal device including a
2	first substrate having thereon a first conductive layer and a first alignment layer, a
3	second substrate having thereon a second conductive layer and a second alignment
4	layer, and a liquid crystal layer sandwiched between said first and second
5	alignment layers, a method for producing a bistable state comprising:
6	inducing a first pretilt angle θ_I in the range of 20°-65° between said liquid crystal
7	layer in contact with said first alignment layer;
8	inducing a second pretilt angle θ_2 in the range of 20°-65° between said liquid
9	crystal layer in contact with said second alignment layer;
10	aligning said liquid crystal layer either in a stable bend state or in a stable splay
11	state at zero bias voltage; and
12	applying a switching energy to said liquid crystal layer to switch said liquid
13	crystal layer between said stable bend state and said stable splay state.
14	
1	18) The method of claim 17 wherein applying said switching energy further comprises
2	generating an electrical pulse by said first and second conductive layers.
3	

1 19) The method of claim 17 wherein applying said switching energy further comprises 2 applying a low frequency electrical pulse to align said liquid crystal layer to said 3 bend state. 4 20) The method of claim 17 wherein applying said switching energy further comprises 1 2 applying a high frequency electrical pulse to align said liquid crystal layer to said 3 splay state. 4 1 21) The method of claim 17 wherein applying said switching energy further comprises 2 generating an electrical field in a predetermined direction between said pair of 3 substrates to switch said liquid crystal layer between said bend state and said splay 4 state. 5 1 22) A bistable liquid crystal device comprising: 2 a first substrate having thereon a first conductive layer and a first alignment layer; 3 a second substrate having thereon a second conductive layer and a second 4 alignment layer; and 5 a liquid crystal layer sandwiched between said first and second alignment layers, 6 said liquid crystal layer having a positive dielectric anisotropy under a low 7 frequency electrical field and a negative dielectric anisotropy under a high 8 frequency electrical field, said first alignment layer inducing a first pretilt angle θ_I 9 in the range of 20°-65° between said liquid crystal layer in contact with said first 10 alignment layer, and said second alignment layer inducing a second pretilt angle θ_2 in the range of 20°-65° between said liquid crystal layer in contact with said 11 12 second alignment layer, said liquid crystal layer 13 being either in a stable bend state or in a stable splay state at zero bias 14 voltage; and 15 being switchable between said stable bend state and said stable splay state

when a switching energy is applied in operation to said liquid crystal layer.

16

17	·
1	23) A bistable liquid crystal device comprising:
2	a first substrate having thereon a first conductive layer and a first alignment layer;
3	a second substrate having thereon a second conductive layer and a second
4	alignment layer; and
5	a liquid crystal layer sandwiched between said first and second alignment layers,
6	said liquid crystal layer having a positive dielectric anisotropy and a cell gap-
7	birefringence product of $0.31\pm0.1\mu\text{m}$, said first alignment layer inducing a first
8	pretilt angle θ_I in the range of 20°-65° between said liquid crystal layer in contact
9	with said first alignment layer, and said second alignment layer inducing a second
10	pretilt angle θ_2 in the range of 20°-65° between said liquid crystal layer in contact
11	with said second alignment layer, said liquid crystal layer
12	being either in a stable bend state or in a stable splay state at zero bias
13	voltage; and
14	being switchable between said stable bend state and said stable splay state
15	when a switching energy is applied in operation to said liquid crystal layer.
16	