Cours de maths synthétique (pour X/ENS CCINP/CENTRALE/MINES)

Contents

1 Algèbre		3	
	1.1	Non assigné pour l'instant	3
	1.2	Caractérisations sur l'inversibilité d'une matrice	8
	1.3	Propriété sur la semblablilité de deux matrices	9
	1.4	Propriété sur la diagonalisation de matrice	9
	1.5	Formules à connaitre	9
	1.6	Propriété sur les dimensions	9
	1.7	Propriété sur la liberté d'une famille	9
	1.8	Propriété sur le rang d'une matrice	10
	1.9	Propriété sur la trace d'une matrice	10
	1.10	Propriété sur l'hyperplan	10
	1.11	Propriété sur l'injectivité, la surjectivité et la bijectivité d'une	
		application	10
	1.12	Propriété sur les valeurs propres, vecteurs propres et les sous	
		espaces propres	10
	1.13	Propriété sur les EV de dimension fini	11
2 Analyse		11	
-	2.1	Propriétés non triées encore	11
3	Pro	babilité	13

1 Algèbre

1.1 Non assigné pour l'instant

- * Soit A et B deux parties de E. Si A est une partie génératrice de E et si $A \subset B$ alors B est une parties génératrice de E (c'est la même chose pour les familles)
- * Une symétrie s est un automorphisme donc $s^{-1} = s$
- * $Mat_B(v \circ u) = Mat_B(v)Mat_B(u)$
- * inégalité triangulaire : $\|a+b\| \leq \|a\| + \|b\|$
- * théorème de pythagore : ||x+y|| = ||x|| + ||y|| ssi x et y sont orthogonaux
- * Toute famille orthogonale de vecteurs non nuls de E est libre, en particulier, toute famille orthonormée de E est libre
- * Théorème de la base orthonormée incomplète : Toute famille orthonormée de E peut être complétée en une base orthonormée de E
- * Théorème de la base incomplète : Toute famille libre fini d'un EV de dimension fini peut être complété en une base de cet EV
- \ast <u>Théorème de la base extraite</u> : Toutes familles génératrice finie d'un EV fini on peut extraire une base de cet EV
- * Toute espace euclidien possède une base orthonormée
- * Formule de Leibniz pour les polynômes : Pour $P,Q \in K[X]$ et $n \in N,$ alors

$$(PQ)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} P^{(k)} Q^{(n-k)}$$

.

* Formule de Taylor pour les polynômes : Pour $P \in K[X]$ et $a \in K$, alors

$$P(X) = \sum_{n \ge 0} \frac{P^{(n)}(a)}{n!} (X - a)^n$$

- * Théorème (division euclidienne des polynômes) : Soient $A, B \in K[X]$ avec B non nul. Il existe un unique couple $(Q, R) \in K[X]$ tel que A = BQ + R et $\deg(R) < \deg(B)$.
- * Propriétés des matrices : Soient $A, B \in GL_n(K)$.
 - 1. Si $AB \in GL_n(K)$, alors $(AB)^{-1} = B^{-1}A^{-1}$.
 - 2. Si $A^T \in GL_n(K)$, alors $(A^T)^{-1} = (A^{-1})^T$.

- * Caractérisation des sous-espaces vectoriels : Une partie F de E est un sous-espace vectoriel de E si et seulement si les trois propriétés suivantes sont vérifiées :
 - 1. $\mathbf{0}_E \in F$;
 - 2. Pour tout $(x,y) \in F^2$, $x + y \in F$;
 - 3. Pour tout $x \in F$ et tout $\lambda \in K$, $\lambda \cdot x \in F$.
- * Relation entre les espaces vectoriels : Si X et Y sont deux familles de vecteurs de E, alors

$$\operatorname{vect}(X) + \operatorname{vect}(Y) = \operatorname{vect}(X \cup Y).$$

- * Sous-espaces en somme directe : Deux sous-espaces F et G sont en somme directe si et seulement si $F \cap G = \{0\}$.
- * Théorème de la base extraite :
- * Théorème de la base incomplète :
- * Tout SEV d'un espace de dimension finie admet un supplémentaire
- * Formule de Grassmann : Soit E un espace vectoriel de dimension finie et F et G deux sous-espaces vectoriels de E. Alors

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G).$$

En particulier, F et G sont en somme directe si et seulement si $\dim(F + G) = \dim(F) + \dim(G)$.

- * Injectivité d'une application linéaire : Une application linéaire $f \in \mathcal{L}(E,F)$ est injective si et seulement si $\ker(f) = \{0\}$.
- * Caractérisation des projections : Un endomorphisme $p \in \mathcal{L}(E)$ est une projection si et seulement si $p \circ p = p$. L'application p est alors la projection sur Im(p) parallèlement à ker(p).
- * Relation entre une famille génératrice et l'image d'une application linéaire : Si $(x_i)_{i\in I}$ est une famille génératrice de E, alors $\mathrm{Im}(f) = \mathrm{vect}\{f(x_i) \mid i\in I\}$.
- * Caractérisation des symétries : Un endomorphisme $s \in \mathcal{L}(E)$ est une symétrie si et seulement si $s \circ s = \mathrm{Id}_E$. L'application s est alors la symétrie par rapport à $\ker(s \mathrm{Id}_E)$ parallèlement à $\ker(s + \mathrm{Id}_E)$.
- * Théorème : Soit $(e_i)_{i\in I}$ une base de E et soit $(f_i)_{i\in I}$ une famille de vecteurs de F. Alors il existe un unique $u \in \mathcal{L}(E,F)$ tel que $u(e_i) = f_i$ pour tout $i \in I$. De plus, les propriétés suivantes sont équivalentes :
 - 1. u est injective si et seulement si $(f_i)_{i\in I}$ est une famille libre de F.

- 2. u est surjective si et seulement si $(f_i)_{i\in I}$ est une famille génératrice de F.
- 3. u est bijective si et seulement si $(f_i)_{i\in I}$ est une base de F.
- * **Proposition :** Soit $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$ de rang fini. Alors $v \circ u$ est de rang fini avec

$$rg(v \circ u) \leq min(rg(u), rg(v)).$$

De plus, si u est un isomorphisme, $\operatorname{rg}(v \circ u) = \operatorname{rg}(v)$; si v est un isomorphisme, $\operatorname{rg}(v \circ u) = \operatorname{rg}(u)$.

- * **Proposition :** Supposons que E et F sont de dimension finie avec $\dim(E) = \dim(F)$. Soit $u \in \mathcal{L}(E, F)$. Alors les assertions suivantes sont équivalentes :
 - 1. u est injective.
 - 2. u est surjective.
 - 3. u est bijective.
- * **Proposition :** Si E et F sont de dimension finie, alors les deux affirmations suivantes sont équivalentes :
 - 1. Il existe un isomorphisme $u \in \mathcal{L}(E, F)$.
 - 2. $\dim(E) = \dim(F)$.
- \ast Deux formes linéaires non nulles ont même noyau si et seulement si elles sont proportionnelles
- * Relation Matricielle : Soient $u \in \mathcal{L}(E,F)$ et $v \in \mathcal{L}(F,G)$, alors la composée $v \circ u$ correspond au produit de matrices :

$$Mat(B, D)(v \circ u) = Mat(C, D)(v) \cdot Mat(B, C)(u)$$

- * Formule de Changement de Base pour les Applications Linéaires : Soit $u \in \mathcal{L}(E,F)$, B et B' deux bases de E, C et C' deux bases de F. Alors, en notant $A = \operatorname{Mat}(B,C)(u)$, $B = \operatorname{Mat}(B',C')(u)$, $P = P_{B\to B'}$, $Q = P_{C\to C'}$, on a $B = Q^{-1}AP$. En particulier, si u est un endomorphisme, si $A = \operatorname{Mat}(B,B)(u)$, $B = \operatorname{Mat}(B',B')(u)$, $P = P_{B\to B'}$, alors $B = P^{-1}AP$.
- * Soit (x_1, \ldots, x_p) une famille orthogonale. Alors

$$\left\| \sum_{k=1}^{p} x_k \right\|^2 = \sum_{k=1}^{p} \|x_k\|^2.$$

* Si (e_1, \ldots, e_p) est une base orthonormée de F, alors

$$P_F(x) = \sum_{i=1}^p \langle x, e_i \rangle e_i.$$

* Théorème (distance à un sous-espace de dimension finie): Pour tout $x \in E$ et tout $f \in F$, on a

$$||x - f|| \ge ||x - P_F(x)||$$

avec égalité si et seulement si $f = P_F(x)$. En particulier,

$$d(x, F) = ||x - P_F(x)|| = \sqrt{||x||^2 - ||P_F(x)||^2}.$$

* Théorème: On suppose que E est de dimension finie. Soit H un hyperplan de E et u un vecteur normal à H. Alors, pour tout $x \in E$, on a

$$P_H(x) = x - \frac{\langle x, u \rangle}{\|u\|^2} u.$$

En particulier,

$$d(x,H) = \frac{|\langle x, u \rangle|}{\|u\|}.$$

 $\ast\,$ Deux sous-espaces F et G sont en somme directe si et seulement si

$$F \cap G = \{0\}.$$

* Si F_1, \ldots, F_r sont des sous-espaces de dimension finie de E, alors

$$\dim\left(\sum_{i=1}^r F_i\right) \le \sum_{i=1}^r \dim(F_i)$$

avec égalité si et seulement si la somme est directe.

- * Si u et v commutent, alors Im(u) et $\ker(u)$ sont stables par v.
- * Si $\lambda_1, \ldots, \lambda_p$ sont des valeurs propres distinctes de u, alors les sous-espaces propres associés $E_{\lambda_1}, \ldots, E_{\lambda_p}$ sont en somme directe.
- * Deux matrices semblables ont le même polynôme caractéristique
- $\ast\,$ Le polynôme caractéristique de A est un polynôme unitaire qui s'écrit

$$\chi_A(X) = X^n - \text{tr}(A)X^{n-1} + \dots + (-1)^n \det(A).$$

* Les racines du polynôme caractéristique de A (resp. u) sont exactement les valeurs propres de A (resp. u).

* Pour tout $\lambda \in \mathrm{Sp}(u)$, on a

$$\dim(E_{\lambda}) \leq \operatorname{mult}(\lambda).$$

- * Soit $u \in \mathcal{L}(E)$. Les assertions suivantes sont équivalentes :
 - 1. u est diagonalisable.
 - 2. La somme des sous-espaces propres de u est égale à E.
 - 3. $\sum_{\lambda \in \operatorname{Sp}(u)} \dim(E_{\lambda}) = \dim(E)$.
- * Un opérateur $u \in \mathcal{L}(E)$ est diagonalisable si et seulement si le polynôme caractéristique χ_u est scindé et si, pour toute valeur propre λ , on a

$$\dim(E_{\lambda}) = \operatorname{mult}(\lambda).$$

- st Un endomorphisme de E admettant n valeurs propres distinctes est diagonalisable.
- * Une matrice $A \in M_n(K)$ est diagonalisable si et seulement si A est semblable à une matrice diagonale.
- * Soit $u \in \mathcal{L}(E)$. Les assertions suivantes sont équivalentes :
 - 1. u est nilpotent.
 - 2. Le polynôme caractéristique $\chi_u(X) = X^n$.
 - 3. Il existe une base de E dans laquelle la matrice de u est triangulaire supérieure avec des zéros sur la diagonale.
- * Une matrice $A \in M_n(K)$ est nilpotente si et seulement si A est semblable à une matrice triangulaire supérieure avec des zéros sur la diagonale.
- st Un projecteur de E est autoadjoint si et seulement si c'est un projecteur orthogonal.
- * Théorème spectral: Soit $u \in \mathcal{L}(E)$. Les propriétés suivantes sont équivalentes :
 - 1. u est autoadjoint.
 - 2. E est la somme directe orthogonale des sous-espaces propres de u.
 - 3. Il existe une base orthonormale de E constituée de vecteurs propres pour u.
- * Corollaire du théorème spectral: Soit $M \in M_n(\mathbb{R})$. Alors M est symétrique si et seulement s'il existe une matrice orthogonale P et une matrice diagonale D telle que $M = PDP^T$.
- * Proposition: Soit $u \in \mathcal{S}(E)$. On a les équivalences suivantes :

- $-u \in \mathcal{S}_{+}(E) \iff \operatorname{Sp}(u) \subset \mathbb{R}_{+}.$
- $-u \in \mathcal{S}_{++}(E) \iff \operatorname{Sp}(u) \subset \mathbb{R}_{*}^{+}.$
- * Soit $u \in \mathcal{L}(E)$. Les assertions suivantes sont équivalentes :
 - 1. u est une isométrie vectorielle.
 - 2. u conserve le produit scalaire : $\forall (x,y) \in E^2$, $\langle u(x), u(y) \rangle = \langle x, y \rangle$.
 - 3. u est inversible et $u^{-1} = u^*$.
 - 4. L'image d'une base orthonormée de E par u est une base orthonormée.
 - 5. La matrice de u dans une base orthonormée est une matrice orthogonale

Soit $A \in M_2(\mathbb{R})$. Alors:

 $-A \in SO_2(\mathbb{R})$ si et seulement s'il existe $\theta \in \mathbb{R}$ tel que

$$A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

 $-A \in O_2(\mathbb{R}) \setminus SO_2(\mathbb{R})$ si et seulement s'il existe $\theta \in \mathbb{R}$ tel que

$$A = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}.$$

* Soit E un espace euclidien orienté de dimension 3 et $u \in SO(E)$. Il existe une base orthonormée directe B de E telle que

$$\operatorname{Mat}_{B}(u) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

En particulier, il existe une droite D et un plan P orthogonal à D tel que $u|_D = \operatorname{Id}_D$ et $u|_P$ est une rotation d'angle θ . On dit alors que u est la rotation d'axe D et d'angle θ .

1.2 Caractérisations sur l'inversibilité d'une matrice

 $A \in M_{n,p}(K)$ (par défaut) est inversible SI ET SEULEMENT SI :

- * A est de determinant non nul
- * 0 n'est pas valeur propre de A
- $* Ker(A) = \{0\}$
- * Il existe un polynôme annulateur de A dont 0 n'est pas racine
- * ses coefficients diagonaux sont tous non nuls dans le cas d'une matrice triangulaire (et son inverse est elle aussi triangulaire supérieure)

- $* rg(A) = n \text{ si } A \in M_n(K)$
- * $\forall X \in K^n \ AX = 0 \rightarrow X = 0 \text{ si } A \in M_n(K)$
- * $\exists B \in M_n(K), AB = I_n$, alors $A \in M_n(K)$ et B sont inversibles et inverse l'une de l'autre

1.3 Propriété sur la semblablilité de deux matrices

A et B sont semblables SI ET SEULEMENT SI :

- * det(A) = det(B)
- * tr(A) = tr(B)
- * rg(A) = rg(B)

1.4 Propriété sur la diagonalisation de matrice

- \ast Si le polynôme caractéristique de u est scindé à racines simples, alors u est diagonalisable
- * A est diagonalisable si et seulement si elle est symétrique réelle

1.5 Formules à connaitre

* Formule du binôme pour les matrices : Si $A, B \in M_n(K)$ sont telles que AB = BA, alors

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k B^{n-k}$$

.

1.6 Propriété sur les dimensions

- $* dim(E \times F) = dim(E) + dim(F)$
- $* dim(E \oplus F) = dim(E) + dim(F)$
- * $dim(F+G) = dim(F) + dim(G) dim(F \cap G)$
- $* dimL(E, F) = dim(E) \times dim(F)$
- * Théorème du rang : $\dim(E) = rg(u) + \dim(Ker \ u)$
- * $\dim(\operatorname{Ker} A) + \operatorname{rg}(A) = \operatorname{p} \operatorname{avec} A \in M_{n,p}(K)$

1.7 Propriété sur la liberté d'une famille

- * Toutes sous-famille d'une famille finie liée est liée
- * Une famille finie de polynômes non nuls de degrés 2 à 2 distincts est libre
- * Toutes sous-famille d'une famille finie libre est libre
- * Toutes famille de vecteurs propres associées à des valeurs propres deux à deux distinctes est libre
- *(x,y) liée signifie que x et y sont colinéaires.

1.8 Propriété sur le rang d'une matrice

- * la trace d'un projecteur est égal à son rang
- * Une matrice et sa transposée ont même rang
- * Une matrice est de rang r ssi elle est équivalente à la matrice J_r
- * Deux matrices de même taille sont équivalentes ssi elles ont même rang
- * une sous matrice de A a un rang inférieur à A

1.9 Propriété sur la trace d'une matrice

- $* \operatorname{tr}(AB) = \operatorname{tr}(BA)$
- $* tr(v \circ u) = tr(u \circ v)$

1.10 Propriété sur l'hyperplan

- * H hyperplan de $E \leftrightarrow dim(H) = dim(E) 1$
- * Soit H un SEV de E. Alors H est un hyperplan de E s
si il existe une droite vectorielle D telle que $E=H\oplus D$

1.11 Propriété sur l'injectivité, la surjectivité et la bijectivité d'une application

- * Une application $u \in L(E, F)$ est injective ssi $Ker(u) = \{0\}$
- * Soit E et F deux EV de même dimensions finie. On a que $u \in L(E, F)$ on a : u surjective \Leftrightarrow u injective \Leftrightarrow u bijective

1.12 Propriété sur les valeurs propres, vecteurs propres et les sous espaces propres

- * Un scalaire $\lambda \in K$ est une valeur propre de A ssi il est racine du polynôme caractéristique de A
- $\ast\,$ Si deux endomorphismes commutent, les sous espaces propres de l'un sont stable par l'autre
- * Si A est une matrice triangulaire, alors l'ensemble de ses valeurs propres est sa diagonale
- * Deux matrices semblambles ont le même spectre et les sous-espaces propres associés sont de même dimension
- * on a pour tout $\lambda \in Sp(u)$: $1 \leq dim(E_{\lambda}(u) \leq m(\lambda))$
- * Théorème de Cayley-Hamilton : Le polynôme caractéristique de u annule $\overline{\mathbf{u}}$
- * Si $(\lambda_i)_{i\in I}$ est une famille finie de valeurs propres de u deux à deux distinctes, alors les sous espaces propres associées $E_{\lambda_i}(u)$, pour $i\in I$, sont en somme directe.

1.13 Propriété sur les EV de dimension fini

2 Analyse

2.1 Propriétés non triées encore

- * $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$
- * Somme des termes d'une suite arithmétique : Soit $(u_k)_{k\in N}$ une suite arithmétique. Alors pour $(p,n)\in N^2$ tel que $p\leq n,$: $\sum_{k=p}^n u_k=(n-p+1)\frac{u_p+u_n}{2}$
- * Pour $n \in N$: $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$
- * Somme des termes d'une suite géométrique : Soit $(u_n)_{n\in N}$ une suite géométrique de raison $a \neq 1$. Alors $\forall (p,n) \in N^2$ tel que $p \leq n$: $\sum_{n=p}^n u_k = \frac{u_p u_{n+1}}{1-a}$
- * Relation de Pascal : $\forall (n,p) \in N * \times Z : \binom{n}{p} = \binom{n-1}{p} + \binom{n-1}{p-1}$
- * Symétrie du coefficient binomial : $\forall (n,p) \in N \times Z : \binom{n}{p} = \binom{n}{n-p}$
- * Formule du binôme de Newton : soit $(a,b)\in R^2$ et $n\in N$: $(a+b)^n=\sum_{p=0}^n n\binom{n}{p}a^pb^{n-p}$
- * Toute partie non vide et majorée (resp. minorée) de R possède une borne supérieure (resp. inférieure)

- * Caractérisation de la borne supérieure : Soit A une partie de R et $a \in R$. Alors on a $a = \operatorname{Sup}(A)$ \underline{si} , et seulement \underline{si} : $\forall x \in A, x \leq a$ et $\forall b < a, \exists x \in A, b < x$
- * Théorème des suites adjacentes : Si deux suites sont adjacentes, alors elles convergent vers une limite commune
- * <u>Théorème de Bolzano Weierstrass</u> : Toute suite bornée possède au moins une sous-suite convergente
- * Une partei A de R est dense dans R, si, et seulement si, pour tout réel x, on peut trouver une suite d'éléments de A qui convergent vers x
- * L'ensemble des suites bornées est stable par somme et par produit
- * Toute suite convergente est bornée
- * Fonction k-lipschitzienne : Soit $f: I \to R$ une fonction et $k \in R^+$. Alors f est k-lipschitzienne si et seulement si pour tout $x, y \in I$, on a : $|f(x) f(y)| \le k|x y|$.
- * Formule d'intégration par parties : $\forall u, v \in C^1(\mathcal{I}), \quad \int u \, dv = uv \int v \, du$
- * Formule de Taylor avec reste intégrale : $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \int_a^x \frac{f^{(n+1)}(t)}{(n)!} (x-t)^n dt$
- * inégalité de Taylor Lagrange :
- * Limite en un point : Soit $f: I \to R$ une fonction, a un point de I ou une extrémité de I, et $\ell \in R$. On dit que f admet pour limite ℓ en a si pour tout $\epsilon > 0$, il existe $\eta > 0$ tel que pour tout $x \in I$ avec $|x a| < \eta$, on a $|f(x) \ell| < \epsilon$.
- * Limite en $+\infty$: Soit $f: I \to R$ une fonction, a une extrémité de I. On dit que f admet pour limite $+\infty$ en a si pour tout M > 0, il existe $\eta > 0$ tel que pour tout $x \in I$ avec $|x a| < \eta$, on a f(x) > M.
- * Limite en $+\infty$: Soit $f:[a,+\infty[\to R \text{ et } \ell \in R.$ On dit que f admet pour limite ℓ en $+\infty$ si pour tout $\epsilon>0$, il existe A>0 tel que pour tout $x\in[a,+\infty[$ avec $x\geq A,$ on a $|f(x)-\ell|<\epsilon.$
- * Limite en $+\infty$: Soit $f:[a,+\infty[\to R]$. On dit que f admet pour limite $+\infty$ en $+\infty$ si pour tout M>0, il existe A>0 tel que pour tout $x\in[a,+\infty[$ avec $x\geq A,$ on a f(x)>M.
- * Théorème (caractérisation séquentielle de la limite): Une fonction f admet pour limite ℓ en a si et seulement si, pour toute suite (x_n) qui converge vers a, la suite $(f(x_n))$ converge vers ℓ .
- * Si une fonction est dérivable en un point, alors elle est continue en ce point

- * Théorème de Rolle : Soit $f:[a,b] \to R$ une fonction continue sur [a,b], dérivable sur (a,b) et telle que f(a)=f(b). Alors il existe c appartenant à (a,b) tel que f'(c)=0.
- * Théorème des accroissements finis : Soit $f:[a,b] \to R$ une fonction continue sur [a,b] et dérivable sur (a,b). Alors il existe c appartenant à (a,b) tel que

$$f(b) - f(a) = f'(c)(b - a)$$

.

* Inégalité des accroissements finis : Soit $f:[a,b] \to R$ une fonction continue sur [a,b] et dérivable sur (a,b). Supposons qu'il existe M>0 tel que, pour tout $t \in]a,b[,|f'(t)| \leq M$. Alors :

$$|f(b) - f(a)| \le M|b - a|$$

.

* Formule de Leibniz : Soient f et g deux fonctions n fois dérivables sur I. Alors fg est n fois dérivable sur I et

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)} g^{(k)}$$

.

* **Définition de la convexité :** Une fonction f est dite convexe si, pour tous $x, y \in I$ et tout $\lambda \in [0, 1]$, on a

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

.

* Théorème (inégalité des pentes) : Soit $f: I \to R$. Les assertions suivantes sont équivalentes : 1. f est convexe sur I. 2. Pour tout $a \in I$, la fonction $x \mapsto f(x) - f(a)(x-a)$ est croissante sur $I \setminus \{a\}$. 3. Pour tous $a, b, c \in I$ avec a < b < c, on a

$$f(b) - f(a)\frac{b-a}{b-c} \le f(c) - f(a)\frac{c-a}{b-c} \le f(c) - f(b)\frac{c-b}{b-c}.$$

* Théorème (inégalité de Jensen): Une fonction f est convexe si et seulement si, pour tout $n \geq 2$, pour tous $x_1, \ldots, x_n \in I$ et pour tous les réels $\lambda_1, \ldots, \lambda_n$ de [0,1] tels que $\sum_{i=1}^n \lambda_i = 1$, alors

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \le \sum_{i=1}^{n} \lambda_i f(x_i)$$

3 Probabilité

Soient E et F deux ensembles finis. Alors

- Si $E \subseteq F$, on a card $(E) \le \operatorname{card}(F)$, avec égalité si et seulement si E = F.
- $\operatorname{card}(E \times F) = \operatorname{card}(E) \times \operatorname{card}(F)$.
- $\operatorname{card}(E \cup F) = \operatorname{card}(E) + \operatorname{card}(F) \operatorname{card}(E \cap F)$.
- Le cardinal des applications de E dans F vaut $(\operatorname{card} F)^{\operatorname{card}(E)}$.
- $\operatorname{card}(\mathcal{P}(E)) = 2^{\operatorname{card}(E)}$.
- $P(\emptyset) = 0;$
- Pour tout $A \in \mathcal{P}(\Omega)$, $P(\overline{A}) = 1 P(A)$;
- Pour tous $A, B \in \mathcal{P}(\Omega), A \subset B \Rightarrow P(A) \leq P(B)$;
- Pour tous $A, B \in \mathcal{P}(\Omega), P(A \cup B) = P(A) + P(B) P(A \cap B);$
- Pour toute famille A_1, \ldots, A_p d'événements deux à deux incompatibles, $P(A_1 \cup \cdots \cup A_p) = P(A_1) + \cdots + P(A_p)$;
- Pour tout système complet d'événements $A_1, \ldots, A_p, P(A_1 \cup \cdots \cup A_p) = 1$.
- Si A_1, \ldots, A_n sont des événements mutuellement indépendants, et si pour chaque $i \in \{1, \ldots, n\}$, on pose $B_i = A_i$ ou $B_i = \overline{A_i}$, alors les événements B_1, \ldots, B_n sont mutuellement indépendants.
- **Proposition :** Si B est un événement tel que P(B) > 0, alors P_B est une probabilité sur Ω .
- Formule des probabilités composées : Soit A_1, \ldots, A_m des événements tels que $P(A_1 \cap \cdots \cap A_{m-1}) \neq 0$. Alors :

$$P(A_1 \cap \dots \cap A_m) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \dots P(A_m|A_1 \cap \dots \cap A_{m-1})$$

.

• Formule des probabilités totales : Soit A_1, \ldots, A_n un système complet d'événements, tous de probabilité non nulle. Soit B un événement. Alors .

$$P(B) = \sum_{i=1}^{n} P(A_i)P(B|A_i)$$

.

• Formule de Bayes pour deux événements : Si A et B sont deux événements de probabilité non nulle, alors

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- **Proposition :** Si B est un événement tel que P(B) > 0, alors P_B est une probabilité sur Ω .
- Formule des probabilités composées : Soit A_1, \ldots, A_m des événements tels que $P(A_1 \cap \cdots \cap A_{m-1}) \neq 0$. Alors :

$$P(A_1 \cap \dots \cap A_m) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \dots P(A_m|A_1 \cap \dots \cap A_{m-1})$$

.

• Formule des probabilités totales : Soit A_1,\ldots,A_n un système complet d'événements, tous de probabilité non nulle. Soit B un événement. Alors .

$$P(B) = \sum_{i=1}^{n} P(A_i)P(B|A_i)$$

.

- Si X et Y sont indépendantes, alors E(XY) = E(X)E(Y).
- $V(X) = E(X^2) E(X)^2$;
- $V(aX + b) = a^2V(X)$.

Propriétés des probabilités :

- 1. $P(\emptyset) = 0;$
- 2. Pour tout $A \in \mathcal{P}(\Omega)$, $P(\overline{A}) = 1 P(A)$;
- 3. Pour tous $A, B \in \mathcal{P}(\Omega), A \subseteq B \implies P(A) \leq P(B)$;
- 4. Pour tous $A, B \in \mathcal{P}(\Omega), P(A \cup B) = P(A) + P(B) P(A \cap B)$;
- 5. Pour toute famille A_1, \ldots, A_p d'événements deux à deux incompatibles, $P(A_1 \cup \cdots \cup A_p) = P(A_1) + \cdots + P(A_p)$;
- 6. Pour tout système complet d'événements $A_1,\dots,A_p,\ P(A_1\cup\dots\cup A_p)=1.$
- 7. **Inégalité de Bienaymé-Tchebychev :** Soit X une variable aléatoire réelle et soit $\epsilon > 0$. Alors

$$P(|X - E(X)| \ge \epsilon) \le \frac{V(X)}{\epsilon^2}$$

.

8. Inégalité de Markov : Soit X une variable aléatoire réelle et soit t>0. Alors

$$P(|X| \ge t) \le \frac{|E(X)|}{t}$$