Aula 04 – Funções Trigonométricas

Estudo das funções seno, cosseno, tangente, cotangente, secante e cossecante.

Arcos e ângulos

 α - ângulo central

 α tem a mesma medida do arco de circunferência que ele determina.

A circunferência toda mede 360°.

Grau (°) é um arco unitário cujo comprimento é igual a $\frac{1}{360}$ da circunferência que contém o arco a ser medido. Radiano (rad) é o arco unitário cujo comprimento é igual ao raio da circunferência que contém o arco a ser medido, ou seja, $\frac{1}{2\pi}$ da circunferência.

Relações

$$2\pi \sim 360^{\circ}$$

$$\pi \sim 180^{\circ}$$

$$\frac{\pi}{2}$$
 ~ 90°

$$\begin{array}{ccc}
180^{\circ} & ---\pi \, rad \\
160^{\circ} & ---\pi \, rad
\end{array} \qquad x = \frac{160\pi}{180} = \frac{8\pi}{9} \, rad$$

$$x = \frac{160\pi}{180} = \frac{8\pi}{9}raa$$

$$\frac{5\pi}{6}$$
 rad ~ ?°

$$180^{\circ} - \pi \, rad$$

$$x^{\circ} - \frac{5\pi}{6} \, rad$$

$$x = \frac{180 \cdot \frac{5\pi}{6}}{\pi} = 150^{\circ}$$

$$x = \frac{180 \cdot \frac{5\pi}{6}}{\pi} = 150^{\circ}$$

Ciclo trigonométrico

Ângulos (sentido positivo)

Ângulos (sentido negativo)

Funções trigonométricas

Função seno

$$sen(0) = 0 sen \frac{3\pi}{2} = -1$$

$$sen \frac{\pi}{2} = 1 sen 2\pi = 0$$

$$sen \pi = 0$$

Propriedades do $sen(\alpha)$

- 1) $-1 \le \operatorname{sen} \alpha \le 1$ (função limitada)
- 2) $0 \le \alpha \le \frac{\pi}{2} \Rightarrow \operatorname{sen} \alpha$ crescente.
- 3) $\frac{\pi}{2} \le \alpha \le \frac{3\pi}{2} \Rightarrow \operatorname{sen} \alpha$ decrescente.
- 4) $\frac{3\pi}{2} \le \alpha \le \pi \implies \text{sen } \alpha \text{ crescente.}$
- 5) A Função é periódica
- 6) $D(f) = \mathbb{R}$

Gráfico de sen (α)

Função cosseno

$$\cos(0) = 1 \qquad \cos \frac{3\pi}{2} = 0$$

$$\cos \frac{\pi}{2} = 0$$

$$\cos 2\pi = 1$$

$$\cos \pi = -1$$

Propriedades do $cos(\alpha)$

- 1) $-1 \le \cos \alpha \le 1$ (função limitada)
- 2) $0 \le \alpha \le \pi \Rightarrow \cos \alpha$ decrescente.

3) $\pi \le \alpha \le 2\pi \Rightarrow \cos \alpha$ crescente.

4) A Função é periódica

$$5) D(f) = \mathbb{R}$$

Gráfico de $cos(\alpha)$

Função Tangente

Propriedades da $tg(\alpha)$

- 1) $Im(f) = \mathbb{R}$ (função ilimitada)
- 2) Monótona crescente em todo seu domínio.

3) A Função é periódica.

4)
$$D(f) = \left\{ x \in \mathbb{R} / x \neq \frac{\pi}{2} + k\pi; k \in \mathbb{Z} \right\}$$

Gráfico da tg(α)

Função Cotangente

Propriedades da $cotg(\alpha)$

- 1) $Im(f) = \mathbb{R}$ (função ilimitada)
- 2) Monótona decrescente em todo seu domínio.

3) A Função é periódica.

4)
$$D(f) = \{x \in \mathbb{R} / x \neq k\pi; k \in \mathbb{Z}\}$$

Gráfico de $cotg(\alpha)$

Funções Secante e Cossecante

Funções Secante e Cossecante

$$\sec 0 = 1$$
 $\cos \sec 0 = \mathbb{Z}$

$$\sec\frac{\pi}{2} = \not\exists \qquad \cos\sec\frac{\pi}{2} = 1$$

$$\sec \pi = -1$$
 $\cos \sec \pi = \mathbb{Z}$

$$\sec\frac{3\pi}{2} = \mathbb{Z} \qquad \cos\sec\frac{3\pi}{2} = -1$$

$$\sec 2\pi = 1$$
 $\csc 2\pi = \mathbb{Z}$

Prop. da Secante e Cossecante

1)
$$D(\sec) = \left\{ x \in \mathbb{R} / x \neq \frac{\pi}{2} + k\pi; k \in \mathbb{Z} \right\}$$
 \in $D(\csc) = \left\{ x \in \mathbb{R} / x \neq k\pi; k \in \mathbb{Z} \right\}$

2)
$$\operatorname{Im}(\sec) = \operatorname{Im}(\csc\sec) = \mathbb{R} - (-1,1)$$

3) Ambas são periódicas.

Gráfico da $sec(\alpha)$

Gráfico da cossec(α)

Relações fundamentais (1)

1) $\operatorname{sen}^2 \alpha + \cos^2 \alpha = 1$

Relações fundamentais (2)

Relações fundamentais (3)

Relações fundamentais (4)

Relações fundamentais (5)

Relações fundamentais (6 e 7)

$$\operatorname{sen}^{2}\alpha + \cos^{2}\alpha = 1 \Rightarrow \frac{\operatorname{sen}^{2}\alpha + \cos^{2}\alpha}{\cos^{2}\alpha} = \frac{1}{\cos^{2}\alpha} \Rightarrow \frac{\operatorname{sen}^{2}\alpha}{\cos^{2}\alpha} + \frac{\cos^{2}}{\cos^{2}} = \frac{1}{\cos^{2}\alpha}$$

$$\Rightarrow tg^2 \alpha + 1 = sec^2 \alpha \Rightarrow 6) sec^2 \alpha - tg^2 \alpha = 1$$

$$\operatorname{sen}^{2} \alpha + \cos^{2} \alpha = 1 \Rightarrow \frac{\operatorname{sen}^{2} \alpha + \cos^{2} \alpha}{\operatorname{sen}^{2} \alpha} = \frac{1}{\operatorname{sen}^{2} \alpha} \Rightarrow \frac{\operatorname{sen}^{2} \alpha}{\operatorname{sen}^{2} \alpha} + \frac{\cos^{2}}{\operatorname{sen}^{2}} = \frac{1}{\operatorname{sen}^{2} \alpha}$$

$$\Rightarrow 1 + \cot^2 \alpha = \csc^2 \alpha \Rightarrow 7 \cos^2 \alpha - \cot^2 \alpha = 1$$

Outras relações

8)
$$\operatorname{sen}(a+b) = \operatorname{sen} a \cdot \cos b + \operatorname{sen} b \cdot \cos a$$

9)
$$\operatorname{sen}(a-b) = \operatorname{sen} a \cdot \cos b - \operatorname{sen} b \cdot \cos a$$

10)
$$\cos(a+b) = \cos a \cdot \cos b - \sin b \cdot \sin a$$

11)
$$\cos(a-b) = \cos a \cdot \cos b + \sin b \cdot \sin a$$

12)
$$sen(2a) = 2 \cdot sen a \cdot cos b$$

$$13) \cos(2a) = \cos^2 a - \sin^2 a$$

Trigonometria em triângulos

$$\frac{\operatorname{sen} \alpha}{b} = \frac{1}{a} \Rightarrow \operatorname{sen} \alpha = \frac{b}{a} = \frac{\operatorname{cat. oposto}}{\operatorname{hipotenusa}}$$

$$\frac{\cos \alpha}{c} = \frac{1}{a} \Rightarrow \cos \alpha = \frac{c}{a} = \frac{\text{cat. adjacente}}{\text{hipotenusa}}$$

$$tg \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{b}{a}}{\frac{c}{a}} \Rightarrow tg \alpha = \frac{b}{c} = \frac{\text{cat. oposto}}{\text{cat. adjacente}}$$

sen e cos de 30° e 60°

$$a^{2} = \left(\frac{a}{2}\right)^{2} + h^{2} \Rightarrow h^{2} = a^{2} - \frac{a^{2}}{4} = \frac{3a^{2}}{4}$$
$$\therefore h = \frac{a\sqrt{3}}{2}$$

$$\sin 30^{\circ} = \frac{\frac{a}{2}}{a} = \frac{1}{2}$$

$$\cos 30^{\circ} = \frac{a\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$$

$$\sec 60^{\circ} = \frac{a\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$$

$$\cos 60^{\circ} = \frac{\frac{a}{2}}{a} = \frac{1}{2}$$

sen e cos de 45°

$$a^2 = b^2 + b^2 \implies b = \frac{a}{\sqrt{2}} = \frac{a\sqrt{2}}{2}$$

$$\sin 45^\circ = \frac{a\sqrt{2}}{a} = \frac{\sqrt{2}}{2}$$

$$\cos 45^\circ = \frac{a\sqrt{2}}{a} = \frac{\sqrt{2}}{2}$$

Tabela

Grau	Rad	sen	cos	tg	cotg	sec	cossec
0	0	0	1	0	A	1	A
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2
45	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$
90	$\frac{\pi}{2}$	1	0	A	0	A	1
180	π	0	-1	0	A	-1	A
270	$\frac{3\pi}{2}$	-1	0	A	0	A	-1
360	2π	0	1	0	A	1	A

Exemplo

Determine o valor de x:

a)

b)

$$\sin 30^{\circ} = \frac{x}{50}$$

$$x = 25$$

$$\tan 45^{\circ} = \frac{x}{50}$$

$$x = 50$$

Obrigado!

Esta aula está disponível em

www.mat.ufam.edu.br