Simulación Interactiva de Viscosidad - Python

Nombre del estudiante: Julian David Carrero Ariza, 20201005199

Institución: Universidad Distrital Francisco José de Caldas Fecha: January 28, 2025

Introducción

El presente documento describe una simulación interactiva de viscosidad desarrollada en Python utilizando la librería tkinter para la interfaz gráfica. El modelo físico se basa en las siguientes ecuaciones:

- Fuerza de viscosidad: $F_v = -k_v \cdot V$,
- Aceleración: $a = \frac{F_v}{m}$,
- Velocidad final: $v_f = v + a \cdot t$,
- Desplazamiento: $\Delta pos = v \cdot t + \frac{1}{2} \cdot a \cdot t^2$.

La simulación permite al usuario definir las condiciones iniciales y observar paso a paso cómo se actualizan las posiciones y velocidades.

Código Python

El siguiente es el código completo de la simulación:

```
import tkinter as tk
  def calcular_aceleracion(f, m):
      """Calcula la aceleracion dada la fuerza y la masa."""
4
      return [f[0] / m, f[1] / m]
5
6
  def un_paso(v, f, t, m):
      Realiza un paso de simulacion para calcular el cambio en
9
         posicion y velocidad.
10
      a = calcular_aceleracion(f, m) # Calcular aceleracion
11
      v_f = [v[0] + a[0] * t, v[1] + a[1] * t] # Calcular
12
         velocidad final
```

```
delta_pos = [v[0] * t + 0.5 * a[0] * t**2, v[1] * t + 0.5 * a
13
          [1] * t**2]
       v_f = [0 \text{ if } abs(vel) < 1e-5 \text{ else } vel \text{ for } vel \text{ in } v_f] #
14
          Ajustar pequenas velocidades
       return delta_pos, v_f
15
16
   def acumula_pasos(pos_i, v_i, k_v, pasos, t, m, output_widget):
17
18
       Simula varios pasos acumulando desplazamiento y actualizando
19
          posiciones.
       11 11 11
20
       pos = pos_i
21
       v = v_i
       for i in range(pasos):
23
           f_visc = [-k_v * v[0], -k_v * v[1]] # Calcular fuerza de
24
                viscosidad
           delta_pos, v = un_paso(v, f_visc, t, m) # Realizar un
25
           pos = [pos[0] + delta_pos[0], pos[1] + delta_pos[1]]
26
              Actualizar posicion
           output_widget.insert(tk.END, f"Pasou{i+1}: _Posicionu=u{
27
               pos\}, \cup Velocidad\cup=\cup{v}\n")
           output_widget.yview(tk.END) # Scroll automatico
28
29
  # Crear ventana principal
   window = tk.Tk()
   window.title("Simulacion ... de ... Viscosidad")
32
33
  # Entradas para parametros
34
  tk.Label(window, text="Posicionuinicialu(x,uy):").grid(row=0,
35
      column=0, sticky="w")
  pos_input = tk.Entry(window)
  pos_input.insert(0, "0, □0")
37
  pos_input.grid(row=0, column=1)
38
39
   tk.Label(window, text="Velocidad_inicial_(vx, vy):").grid(row=1,
40
      column=0, sticky="w")
   vel_input = tk.Entry(window)
41
   vel_input.insert(0, "10, 5")
42
   vel_input.grid(row=1, column=1)
43
44
  tk.Label(window, text="Constante_de_viscosidad_(k_v):").grid(row
45
      =2, column=0, sticky="w")
  kv_input = tk.Entry(window)
46
  kv_input.insert(0, "0.5")
47
  kv_input.grid(row=2, column=1)
48
49
  tk.Label(window, text="Masa_{\sqcup}(m):").grid(row=3, column=0, sticky="
50
      w")
  m_input = tk.Entry(window)
m_input.insert(0, "1")
```

```
m_input.grid(row=3, column=1)
  tk.Label(window, text="Tiempouporupasou(t):").grid(row=4, column
55
     =0, sticky="w")
  t_input = tk.Entry(window)
56
  t_input.insert(0, "1")
57
  t_input.grid(row=4, column=1)
58
  tk.Label(window, text="Numeroudeupasos:").grid(row=5, column=0,
60
      sticky="w")
  steps_input = tk.Entry(window)
61
  steps_input.insert(0, "10")
62
  steps_input.grid(row=5, column=1)
63
  # Area de salida
65
  tk.Label(window, text="Resultadosudeulausimulacion:").grid(row=6,
66
       column=0, sticky="w")
  output = tk.Text(window, height=10, width=50)
67
  output.grid(row=7, column=0, columnspan=2, pady=10)
68
  # Boton para iniciar simulacion
70
  def iniciar_simulacion():
71
       output.delete(1.0, tk.END) # Limpiar resultados previos
72
       pos_i = list(map(float, pos_input.get().split(",")))
73
       v_i = list(map(float, vel_input.get().split(",")))
74
       k_v = float(kv_input.get())
75
       m = float(m_input.get())
76
       t = float(t_input.get())
77
       pasos = int(steps_input.get())
78
       acumula_pasos(pos_i, v_i, k_v, pasos, t, m, output)
79
  start_button = tk.Button(window, text="Iniciar_|Simulacion",
81
      command=iniciar_simulacion)
  start_button.grid(row=8, column=0, columnspan=2)
82
83
  # Ejecutar ventana
84
  window.mainloop()
```

Listing 1: Simulación Interactiva de Viscosidad en Python

Descripción del Código

Este programa utiliza una interfaz gráfica para solicitar los parámetros iniciales de la simulación y presenta los resultados en un cuadro de texto. El modelo matemático incluye la fuerza de viscosidad proporcional a la velocidad, y las posiciones y velocidades se calculan iterativamente.