习题 3.18 已知下列各2输入门的输入波形A及B,如图所示,试画出各逻辑门的输出波形 (不考虑器件传输延迟)。

(4) 非门(3S, A为使能信号, 低电平有效)。

(4)

3.23 试设计一个1位全减器, X_i、Y_i为本位的被减数和减数, B_i为由低位来的借位输入; D_i和B_{i+1}为本位之差和向高位的借位。列出真值表, 写出逻辑方程, 用与非门实现之, 并用该全减器构成4位行波借位减法器(框图表示)。

解: 1位全减器框图

X_{i}	Yi	B_{i}	B_{i+1}	D _i
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

逻辑表达式

$$B_{i+1} = \overline{X}_i Y_i + \overline{X}_i B_i + Y_i B_i = \overline{\overline{X}_i Y_i} \cdot \overline{\overline{X}_i B_i} \cdot \overline{Y_i B_i}$$

$$D_{i} = \overline{X}_{i} \overline{Y}_{i} B_{i} + \overline{X}_{i} Y_{i} \overline{B}_{i} + X_{i} \overline{Y}_{i} \overline{B}_{i} + X_{i} Y_{i} B_{i} = \overline{\overline{X}_{i} \overline{Y}_{i} B_{i}} \cdot \overline{\overline{X}_{i} Y_{i} \overline{B}_{i}} \cdot \overline{X_{i} \overline{Y}_{i} \overline{B}_{i}} \cdot \overline{X_{i} \overline{Y}_{i}} \cdot \overline{X_{i} \overline{Y}_{i}}$$

用与非门实现的全减器逻辑图

现把1位全减器框图改画成

则4位行波借位减法器为

3.30 试用74283(4位二进制加法器)再辅以适当门电路构成 4×2 乘法器 $A \times B$,其中 $A = a_3 a_2 a_1 a_0$, $B = b_1 b_0$ 。

解: 运算式

逻辑电路图

3.35 设用7485(4位并行比较器)构成16位无符号数的比较器。

解: 逻辑电路图

3.37 试用7485再辅以适当门电路构成字符分选电路。当输入为字符A、B、C、D、E、F、G的7位ASCII码(ASCII码请参见教材P30表1-2-4)时,分选电路输出Z=0,反之,Z=1。

解: 查教材P19表1.5 知, A~G的ASCII码

逻辑电路图

B_7B	$_{6}B_{5}$	B_4	B_3B_2	$_2B_1$	为

字母	\mathbf{B}_{7}	$^{7}\mathrm{B}_{6}$	B_5	B_4	B_3	B_2	B_1
A	1	0	0	0	0	0	1
В	1	0	0	0	0	1	0
C	1	0	0	0	0	1	1
D	1	0	0	0	1	0	0
E	1	0	0	0	1	0	1
F	1	0	0	0	1	1	0
G	1	0	0	0	1	1	1

3.47 试构成一个字符识别电路,它可以识别A、B、C、D、E、F、G7个字符的ASCII码,并指出为何字符。

解:

显然高4位相同,可将此用于 译码器的使能控制,低3位连 接到译码器的数据端进行译 码输出。

逻辑电路图

字母	B	$^{7}\mathrm{B}_{6}$	B_5	$\overline{\mathrm{B_4}}$	B_3	B_2	B_1
A	1	0	0	0	0	0	1
В	1	0	0	0	0	1	0
C	1	0	0	0	0	1	1
D	1	0	0	0	1	0	0
Е	1	0	0	0	1	0	1
F	1	0	0	0	1	1	0
G	1	0	0	0	1	1	1

习题3.48 某计算机的各外部设备地址译码电路如图所示,图中的U1、U2是受管理的两个设备,地址输入为A₁₁~A₀,U₁、U₂的地址码为多少?

解: 地址变量12位. 作用于译码器地址和使能端,译码器输出0用于 选通受管理的设备。

0000

 $\overline{\mathrm{U_1}}$: $A_{11} \sim A_0 = 0000111111001 = (0F9)_{\mathrm{H}}$

 $\overline{\mathrm{U}_{2}:\ \mathrm{A}_{11}} \sim \overline{\mathrm{A}_{0}} = 0000111111101 = (0\mathrm{FD})_{\mathrm{H}}$

译码器的应用 (3) 用变量译码器构成数据分配器

A_2	A_1	A_0	功能
0	0	0	$D \rightarrow D_0$
0	0	1	$D \rightarrow D_1$
0	1	0	$D \rightarrow D_2$
0	1	1	$D \rightarrow D_3$
1	0	0	$D \rightarrow D_4$
1	0	1	$D \rightarrow D_5$
1	1	0	$D \rightarrow D_6$
1	1	1	$D \rightarrow D_7$

小概念: 在数字系统中, 当A=1时, B=1; A=0时, B=0, 即认为A=B。

显示译码器

功能表

D_3	D_2	D_1	D_0	а	ь	с	d	е	f	g	数码
0	0	0	0	1	1	1	1	1	1	0	0
0	0	0	1	0	1	1	0	0	0	0	1
0	0	1	0	1	1	0	1	1	0	1	2
0	0	1	1	1	1	1	1	0	0	1	3
0	1	0	0	0	1	1	0	0	1	1	4
0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	1	0	1	1	1	1	1	6
0	1	1	1	1	1	1	0	0	0	0	7
1	0	0	0	1	1	1	1	1	1	1	8
1	0	0	1	1	1	1	1	0	1	1	9

数据选择器

典型的数据选择器

4选1数据选择器

8选1数据选择器 ____(74151)

双4选1数据选择器 (74253)

功能表

8选1数据选择器(74151)

	输	人		输	出
ST	A_2	A_1	A_0	Y	\overline{w}
1	×	×	×	0	1
0	0	0	0	D_0	\overline{D}_0
0	0	0	1	D_1	\overline{D}_1
0	0	1	0	D_2	\overline{D}_2
0	0	1	1	D_3	\overline{D}_3
0	1	0	0	D_4	\overline{D}_4
0	1	0	1	D_5	\overline{D}_5
0	1	1	0	D_6	\overline{D}_6
0	1	1	1	D_7	\overline{D}_7

$$Y = \overline{A}_{2} \overline{A}_{1} \overline{A}_{0} D_{0} + \overline{A}_{2} \overline{A}_{1} A_{0} D_{1} + \overline{A}_{2} A_{1} \overline{A}_{0} D_{2} + \overline{A}_{2} A_{1} A_{0} D_{3}$$

$$+ A_{2} \overline{A}_{1} \overline{A}_{0} D_{4} + A_{2} \overline{A}_{1} A_{0} D_{5} + A_{2} A_{1} \overline{A}_{0} D_{6} + A_{2} A_{1} A_{0} D_{7}$$

$$= m_0 D_0 + m_1 D_1 + D_2 + m_3 D_3 + m_4 D_4 + m_5 D_5 + m_6 D_6 + m_7 D_7 = \sum_{i=0}^{7} m_i D_i$$

双4选1数据选择器(74253)

数据选择器的扩展

MUX实现组合函数

$$Y(A_2, A_1, A_0) = \sum_{i=0}^{7} m_i D_i$$

若令 $D_i=a_i$ 同时有 $A_2=x_2$, $A_1=x_1$, $A_0=x_0$

 $F(x_2,x_1,x_0)$ 可用 $Y(A_2,A_1,A_0)$ 表示

例1 试用8选1MUX实现

$$F(U,V,W) = \overline{U}VW + U\overline{V}W + UV\overline{W} + UVW$$

解: $F(U,V,W)=\Sigma m(3,5,6,7)$

$$= m_0 \cdot 0 + m_1 \cdot 0 + m_2 \cdot 0 + m_3 \cdot 1$$

 $+ m_4 \cdot 0 + m_5 \cdot 1 + m_6 \cdot 1 + m_7 \cdot 1$

从而令

$$D_0 = D_1 = D_2 = D_4 = 0$$
 $D_3 = D_5 = D_6 = D_7 = 1$

例2 试用4选1MUX实现

$$F(U,V,W) = \overline{U}VW + U\overline{V}W + UV\overline{W} + UVW$$

 $\begin{array}{c}
A_0 \\
A_1 \\
D_0 \\
D_1 \\
D_2 \\
D_3
\end{array}$ $\begin{array}{c}
MUX \\
0 \\
0 \\
3 \\
2 \\
3 \\
Y$

解:

$$F(U,V,W) = \overline{U}\overline{V} \times 0 + \overline{U}V \times W + U\overline{V} \times W + UV \times (\overline{W} + W)$$
$$= m_0 \times 0 + m_1 \times W + m_2 \times W + m_3 \times 1$$

MUX实现组合函数

例3 试用8选1MUX实现函数

 $X = t_4 t_3 t_2 + t_4 t_3 t_1 t_0$

$t_2 t_1 t_2 t_1 t_3$	t _o 000	001	011	010	110	111	101	100	
00	0	0	0	0	0	0	0	0	
01	0	0	0	0	0	0	0	0	
11	O	0	1.	0	. 1	1	1	1	
10	0	0	0	0	0	0	0	0	

降 2 维