DATASET COMPARISON

DATASETS:

- LFSD (2014) available
- HFUT-Lytro (2017) NOT available
- **DUTLF** (DUTLF-FS: 2019, DUTLF-V2: 2022) available
- Lytro-Illum (2020) available
- PKU-LF (2023)
 NOT available

TABLE I
SUMMARY OF FOUR EXISTING DATASETS AND THE PROPOSED PKU-LF DATASET

Dataset	Year #Scale Resulution			Ι	Light Field						Annotation					Device	
				Cal.	Raw.	Foc.	Dep.	Sub.	Mic.	Rel.	Spl.	Scr.	Bou.	Obj.	Ins.	Edg.	
LFSD [18]	2014	100	360×360		_/	_/	_										Lytro
HFUT [25]	2017	255	328×328			1	1	/						/			Lytro
DUT-LF [20]	2019	1,462	600×400			/	/				/			/			Lytro Illum
Lytro Illum [22]	2019	640	400×590		/				/					/			Lytro Illum
PKU-LF	2021	-	2022×1404		✓	✓	✓	/	✓	✓	/	/	/	/	/	1	Lytro Illum

Cal.: Calibration data of the camera. Raw.: Raw light fields. Foc.: Focal stacks. Dep.: Depth maps. Sub.: Sub-aperture images. Mic.: Micro-lens images. Rel.: Relative-depth-of-field coordinates. Spl.: Official training/testing set split. Scr.: Scribble annotations. Bou.: Bounding boxes. Obj.: Object-level annotations. Ins.: Instance-level annotations. Edg.: Edge annotations.

LFSD ALL-IN-FOCUS (+ GT, focal stack, results)

DUTLF-FS ALL-IN-FOCUS

(+ GT, focal stack, results)

DUTLF-V2 FOCAL STACK

2014 LFS

• PRC

- → Precision (% saliency pixels correctly assigned)
- → Recall (detected salient region wrt GT)

Figure 6. (a) PRC comparisons on our light field dataset; (b) PRC comparisons using different cues in our approach.

Figure 5. Visual Comparisons of different saliency detection algorithms vs. ours on our light field dataset.

2015 WSC

2015 DILF

- PRC
- **ROC** (based on true & false positives obtained after calculation of PR curve)
- F-measure
- **AUC** (Area under curve)
- **MAE** (measure the average per-pixel difference bt binary GT & saliency map)

Figure 4: Visual comparisons of saliency estimation from different light field properties. (a) all-focus image; (b) depth map; (c) color; (d) color+bg; (e) depth; (f) depth+bg; (g) color+depth; (h) color+depth+background; (i) GT.

Figure 5: Quantitative results of our approach, state-of-the-art 2D approaches and their depth-extended versions. (a) PR curves; (b) ROC curves.

Figure 3: Quantitative measurements of various light field properties on LFSD datasets. (a) PR curves; (b) ROC curves.

Model	F-measure	AUC	MAE
Color	0.5923	0.7089	0.2367
Color+Bg	0.6390	0.7708	0.2157
Depth	0.5587	0.7354	0.2421
Depth+Bg	0.7297	0.8676	0.1708
Color+Depth	0.6422	0.7904	0.2255
Color+Depth+Bg	0.7749	0.8982	0.1605

Table 1: Comparisons of F-measure, ROC and MAE from different light field properties (bold: best; underline: second best).

Model	F-measure	AUC	MAE
CNTX	0.3643	0.6700	0.3574
CNTX_D	0.4123	0.7718	0.3514
CovSal	0.6335	0.8599	0.2417
CovSal_D	0.6373	0.8466	0.2850
Tavakoli	0.5498	0.8078	0.2551
Tavakoli_D	0.5711	0.8276	0.2903
GS	0.5944	0.8443	0.2395
GS_D	0.6217	0.8792	0.2843
GBMR	0.7461	0.8965	0.1822
GBMR_D	0.7536	0.9072	0.2415
SF	0.4678	0.8301	0.2468
SF_D	0.4704	0.8552	0.2903
TD	0.5766	0.7775	0.2623
TD_D	0.5999	0.8490	0.2951
wCtr*	0.6996	0.8991	0.1878
wCtr*_D	0.7382	0.9156	0.2475
DVS	0.2723	0.5354	0.3274
DVS_Bg	0.2851	0.5509	0.2846
ACSD	0.7905	0.9467	0.1830
ACSD_Bg	0.8025	0.8361	0.1668
LFS	0.7500	0.9272	0.2077
Ours	0.8186	0.9641	0.1363

ible 2: Comparisons of F-measure, AUC, and MAE from our proach, state-of-the-art 2D/3D approaches and their light field-tended methods (bold: best; underline: second best).

Figure 7: Visual comparisons of our approach and 2D/3D extended methods. (a) all-focus image; (b) depth map; (c) CNTX_D; (d) Cov-Sal_D; (e) Tavakoli_D; (f) GS_D; (g) GBMR_D; (h)SF_D; (i) TD_D; (j) wCtr*_D; (k) DVS_Bg; (l) ACSD_Bg; (m) LFS; (n) Ours; (o) GT.

Figure 8: Quantitative results of our approach, LFS, state-of-theart 3D approaches and their focusness-extended versions. (a) PR curves; (b) ROC curves.

2017 MULTI-CUE

Developed HFUT-Lytro dataset (not available)

Fig. 5. The PR curves obtained by different methods on the HFUT-Lytro (left) and LFSD (right) datasets.

- PRC
- AP
- F-measure
- MAE

Table II. The Precision, Recall, F-measure, AP, and MAE Obtaine
by Different Methods on the HFUT-Lytro and LFSD Datasets
(Bold: Best; Underline: Second Best)

Dataset	Metric	Ours	DILF[73]	WSC[29]	LFS[30]
	Precision	0.5928	0.5186	0.5254	0.4753
	Recall	0.6726	0.7147	0.6673	0.5354
HFUT-Lytro	F-measure	0.6095	0.5537	0.5525	0.4880
	AP	0.6354	0.6221	0.4743	0.4718
	MAE	0.1388	0.1578	0.1454	0.2214
	Precision	0.8542	0.8271	0.8076	0.8115
	Recall	0.7397	0.7916	0.6783	0.6083
LFSD	F-measure	0.8247	0.8186	0.7735	0.7534
	AP	0.8625	0.8787	0.6832	0.8161
	MAE	0.1503	0.1363	0.1453	0.2072

Fig. 4. Saliency detection results of different methods on the LFSD dataset. From top to bottom: all-in-focus images, ground-truth maps, and saliency maps obtained by our approach, WSC [29], DILF [73], and LFS [30].

w/ and w/o SLIC (for segmentation)

Fig. 12. Precision, recall, F-measure, and qualitative comparisons of saliency maps with and without SLIC. (A) Qualitative comparison of saliency maps. From left to right: all-focus images, ground truth, w/o SLIC, and w/ SLIC (N = 400); (B) and (C) Quantitative results on the HFUT-Lytro and LFSD datasets w.r.t. different numbers of pixels within each superpixel. 0 indicates regular grid sampling.

Table III. Computational Time of Our Approach and the State-of-the-art Methods for Processing One Image

Methods	Our approach	DILF [73]	WSC [29]	LFS [30]
Runtime (seconds)	4.2	0.9	8.5	8.1

w/ and w/o refinement (to optimize the saliency graph)

Fig. 10. PR-curve and qualitative comparisons of saliency maps with and without refinement. (A) Qualitative comparison of saliency maps. From left to right: all-focus images, ground truth, w/o refinement, w/ R1, and w/ R2; (B) HFUT-Lytro dataset; (C) LFSD dataset

Fig. 11. Performance comparison of different multi-cue integration methods on the HFUT-Lytro and LFSD datasets. Here, we illustrate the PR curves and F-measures.

Contribution of individual cues

Fig. 7. Quantitative and qualitative comparisons of saliency maps from our framework with individual light-field cues and their refinements on the LFSD dataset. (A) PR curves of individual saliency maps (dashed line) and their refinements (solid line); (B)–(E) quantitative results of individual saliency maps (left) and their refinements (right) for each metric; (F) all-in-focus images and the corresponding ground-truth saliency maps; (G)–(J) color-, depth-, focusing flow-, and position-driven saliency maps and their refined versions with the structure cue.

Fig. 8. Quantitative and qualitative comparisons of saliency maps from our framework with individual light-field cues and their refinements on the HFUT-Lytro dataset. (A) PR curves of individual saliency maps (dashed line) and their refinements (solid line); (B)—(E) quantitative results of individual saliency maps (left) and their refinements (right) for each metric; (F) all-in-focus images and the corresponding ground-truth saliency maps; (G)—(K) color-, depth-, focusing flow-, viewing flow-, and position-driven saliency maps and their refined versions with the structure cue.

2018 - PDNet

Method	NJU2000	0-TE [15]	NLPR-	TE [14]	LFSI	[21]	RGBD1	35 [13]	SSD10	00 [22]
Method	F_{β}	MAE	F_{β}	MAE	F_{β}	MAE	F_{β}	MAE	F_{β}	MAE
PDNet	0.8503	0.0689	0.8478	0.0491	0.8219	0.0752	0.8805	0.0384	0.8152	0.0812
CTMF17 [5]	-	-	-	-	0.8025	0.0912	0.8102	0.0653	0.7925	0.0912
DF17 [17]	-	-	-	-	0.8109	0.0815	0.8059	0.6871	0.7858	0.0846
TPF17 [22]	0.7213	0.1488	0.7190	0.0852	0.7925	0.1058	0.7395	0.0891	0.7541	0.1217
SE16 [16]	0.6946	0.1687	0.7101	0.0904	0.7568	0.1156	0.5807	0.1253	0.6666	0.1648
ACSD15 [15]	0.6747	0.1939	0.6019	0.1624	0.7865	0.1425	0.6851	0.1518	0.6382	0.2010
NLPR14[14]	0.6165	0.1669	0.5957	0.1087	0.7356	0.1547	0.4912	0.1165	0.6415	0.1784
DES14 [13]	0.6202	0.4465	0.5915	0.3207	0.7254	0.2168	0.5410	0.3079	0.5797	0.3132
BSCA15 [8]	0.6290	0.2148	0.5925	0.1754	0.7126	0.1894	0.5826	0.1851	0.5755	0.2386
LIP15 [10]	0.5692	0.2059	0.5890	0.1252	0.7176	0.1880	0.5452	0.1406	0.5935	0.1960
HS16 [9]	0.6090	0.2516	0.6003	0.1909	0.7248	0.1751	0.5361	0.1849	0.5716	0.2582

(c) PR curve on LFSD

2019 -single view

- S-measure
- **E-measure** (pixel-level matching & img-level statistics)
- F-measure
- MAE

Developed **DUTLF-FS** dataset

Figure 6: Visual comparsion of saliency maps on the proposed dataset.

RSF- = without rich saliency feature extraction technique MAVM- = average the warped multi-view saliency maps

Model	S-measure	F-measure	E-measure	MAE
RSF ⁻	0.801	0.731	0.849	0.097
MVAM ⁻	0.803	0.730	0.845	0.094
Ours	0.806	0.749	0.861	0.088

Table 2: Ablation analysis on the proposed dataset.

Model	Input	S-measure	F-measure	E-measure	MAE
DSR	2D	0.640	0.574	0.767	0.173
BSCA	2D	0.673	0.605	0.777	0.198
MST	2D	0.637	0.548	0.738	0.179
ACSD	3D	0.675	0.637	0.792	0.188
RGBD	3D	0.535	0.567	0.732	0.179
LFS	4D	0.538	0.423	0.717	0.242
UCF	2D	0.788	0.709	0.814	0.136
UCF+	2D	0.792	0.715	0.821	0.131
Amulet	2D	0.801	0.734	0.839	0.104
DSS	2D	0.740	0.709	0.228	0.112
DSS+	2D	0.731	0.674	0.795	0.141
R ³ Net	2D	0.793	0.749	0.851	0.089
PDNet	3D	0.761	0.692	0.827	0.126
AFNet	3D	0.731	0.687	0.822	0.109
Ours	2D	0.806	0.749	0.861	0.088

Table 1: Quantitative comparison of S-measure, F-measure, E-measure, and MAE scores. The retrained models are denoted as "XX+". (bold: best; underline: second best).

2019 - dl4lfsd

Datasets		MST	BSCA	DCL	DHS	DSS	Amulet	UCF	PAGRN	PiCANet	R ³ Net	DFRGBD	RGBD	ACSD	DILF	LFS	WSC	Ours
	maxF	0.704	0.795	0.780	0.856	0.768	0.863	0.865	0.840	0.867	0.876	0.841	0.841	0.780	0.849	0.779	0.786	0.863
LFSD	MAE	0.209	0.205	0.161	0.115	0.178	0.093	0.143	0.132	0.111	0.098	0.180	0.197	0.218	0.153	0.239	0.168	0.093
LISD	S-m	0.646	0.725	0.742	0.803	0.678	0.801	0.808	0.766	0.822	0.811	0.732	0.650	0.681	0.801	0.655	0.700	0.826
	E-m	0.720	0.766	0.784	0.844	0.865	0.847	0.844	0.791	0.847	0.852	0.737	0.650	0.675	0.845	0.625	0.770	0.877
	maxF	0.545	0.642	0.716	0.816	0.735	0.782	0.789	0.849	0.851	0.761	0.722	0.570	0.262	-	0.439	-	0.868
Ours	MAE	0.210	0.215	0.156	0.095	0.132	0.070	0.153	0.084	0.089	0.114	0.163	0.202	0.337	-	0.259	-	0.070
Ours	S-m	0.594	0.66	0.710	0.803	0.714	0.777	0.770	0.810	0.838	0.733	0.687	0.5	0.357	-	0.517	-	0.852
	E-m	0.717	0.742	0.781	0.865	0.784	0.843	0.828	0.841	0.872	0.808	0.684	0.432	0.545	-	0.545	-	0.905

Table 2. Quantitative comparison of maximum F-measure, MAE, S-measure, E-measure scores on two datasets. The color in red and blue represent the best and second scores.

2020

Fig. 13. Comparison on three datasets in terms of PR curve. (a) The proposed Lytro Illum dataset. (b) The HFUT-Lytro dataset. (c) The LFSD dataset.

Developed LYTRO ILLUM dataset

TABLE VII QUANTITATIVE RESULTS ON THE LFSD DATASET. BOLD: BEST, UNDERLINED: SECOND BEST

	Method	F-measure	WF-measure	MAE	AP
2014	LFS [1]	0.7525	0.5319	0.2072	0.8161
2015	WSC [20]	0.7729	0.7371	0.1453	0.6832
2015	DILF [19]	0.8173	0.6695	0.1363	0.8787
2017	Multi-cue [2]	0.8249	0.7155	0.1503	0.8625
	Ours	0.8105	0.7378	0.1164	0.8561

QUANTITATIVE RESULTS ON THE PROPOSED LYTRO ILLUM DATASET. BOLD: BEST, UNDERLINED: SECOND BEST

Method	F-measure	WF-measure	MAE	AP
LFS [1]	0.6107	0.3596	0.1697	0.6193
WSC [20]	0.6451	0.5945	0.1093	0.5958
DILF [19]	0.6395	0.4844	0.1389	0.6921
Multi-cue [2]	0.6648	0.5420	0.1197	0.6593
Ours	0.8116	0.7540	0.0551	0.9124

HFUT-**LFSD**

LFS

DILF

WSC Multi-cue

2020

Fig. 14. Visual comparison of our best MAC block variant (Ours) and state-of-the-art methods on three datasets. (a) Central viewing/all-focus images. (b) Ground truth maps. (c) Ours. (d) LFS [36]. (e) DILF [19]. (f) WSC [20]. (g) Multi-cue [2]. The first five samples are taken from the proposed Lytro Illum

QUANTITATIVE RESULTS ON THE HFUT-LYTRO DATASET. BOLD: BEST, UNDERLINED: SECOND BEST

Lytro-Illum

Lytro

Method	F-measure	WF-measure	MAE	AP
LFS [1]	0.4868	0.3023	0.2215	0.4718
WSC [20]	0.5552	0.5080	0.1454	0.4743
DILF [19]	0.5543	0.4468	0.1579	0.6221
Multi-cue [2]	0.6135	0.5146	0.1388	0.6354
Ours	0.6721	0.6087	0.1029	0.7390

2022

Fig. 6. PR curves of the proposed method and other representative state-of-the-art methods on three light field saliency datasets.

TABLE II

QUANTITATIVE COMPARISONS OF CROSS ENTROPY
ON THREE LIGHT FIELD DATASETS, BOLD: BEST

Туре	Methods	DUTLF-V2	LYTRO ILLUM	HFUT-LFSD
4D	DLFS	.082	.132	.142
4D	Ours	.062	.106	.104
	DLGLRG	.079	-	.154
4D	LFNet	.066	-	.098
40	ERNet	.079	-	.136
	MoLF	.083	-	.112
	DCFNet	.098	.110	.235
	HAINet	.066	.152	.167
	S2MA	.077	.111	.108
3D	A2dele	.086	.136	.215
	SSF	.065	.124	.143
	BBSNet	.074	.111	.183
	DMRA	.067	.124	.105
	MSFNet	.116	.144	.280
	PurNet	.072	.119	.143
	MINet	.076	.117	.130
	GCPANet	.110	.109	.238
2D	F ³ Net	.101	.109	.169
	EGNet	.076	.116	.117
	CPD	.072	.112	.183
	PoolNet	.077	.182	.114
	R ³ Net	.179	.185	.466

TABLE I

QUANTITATIVE COMPARISONS OF E-MEASURE, S-MEASURE, WEIGHTED F-MEASURE, F-MEASURE AND MAE SCORES ON THREE LIGHT FIELD DATASETS. BOLD: BEST, UNDERLINE: SECOND BEST (* REPRESENTS CONVENTIONAL METHODS, - MEANS NO AVAILABLE RESULTS)

Туре	Methods	Years	DUTLF-V2						LYT	RO ILL		HFUT-LFSD					
-7/6-	1-10-111-0-05		$E_s \uparrow$	$S_{\alpha} \uparrow$	$F^w_\beta\uparrow$	$F_{\beta}\uparrow$	MAE↓	$E_s \uparrow$	$S_{\alpha} \uparrow$	$F^w_\beta\uparrow$	$F_{\beta}\uparrow$	MAE↓	$E_s \uparrow$	$S_{\alpha} \uparrow$	$F^w_\beta\uparrow$	$F_{\beta}\uparrow$	MAE↓
4D 4D	DLFS Ours ∆gains	-	.868 .931 ↑. <i>063</i>	.810 . 882 ↑. <i>072</i>	.676 .818 ↑.142	.739 .852 ↑. <i>113</i>	.080 .041 †. <i>039</i>	.876 .936 ↑.060	.830 .906 ↑. <i>076</i>	.712 .858 ↑.146	.774 .884 †. <i>110</i>	.072 .038 ↑.034	.799 .848 †. <i>04</i> 9	.759 .789 †. <i>030</i>	.611 .672 †. <i>061</i>	.650 <u>.724</u> ↑.074	.097 .061 ↑. <i>036</i>
4D	DLGLRG LFNet ERNet MoLF DILF* LFS*	ICCV'21 TIP'20 AAAI'20 NIPS'19 IJCAI'15 CVPR'14	.908 .915 .924 .915 .733	.861 .873 .852 <u>.877</u> .648	.780 .799 .792 .803 .388	.816 .819 .852 .821 .504	.046 .047 .050 .047 .187	.785	.731	.500	.608	.149	.843 .852 .858 .851 .736 .686	.765 . 807 .778 .795 .695 .579	.634 .693 .687 .684 .458 .264	.709 .718 . 753 .722 .555 .430	.071 .062 .069 .068 .131 .205
3D	DCFNet HAINet S2MA A2dele SSF BBSNet DMRA	CVPR'21 TIP'21 CVPR'20 CVPR'20 CVPR'20 ECCV'20 ICCV'19	.878 .886 .844 .888 .917 .893 .897	.821 .845 .803 .836 .869 .851	.732 .760 .679 .771 <u>.804</u> .754	.772 .794 .729 .807 <u>.831</u> .794	.065 .060 .087 .048 <u>.043</u> .059	.908 .911 .883 .898 .903 .902 .903	.879 .882 .868 .854 .874 .874	.823 .818 .776 .800 .810 .802 .781	.845 .848 .802 .834 .836 .834	.046 .049 .061 .050 .049 .050	.822 .792 .770 .833 .835 .806	.779 .755 .729 .782 .781 .759	.670 .628 .573 .688 .673 .612	.703 .672 .616 .715 .714 .675 .705	.077 .097 .112 .069 .068 .086
2D	MSFNet PurNet MINet GCPANet F ³ Net EGNet CPD PoolNet R ³ Net	ACMMM'21 TIP'21 CVPR'20 AAAI'20 AAAI'20 ICCV'19 CVPR'19 CVPR'19 IJCAI'18	.888 .886 .870 .869 .878 .855 .886 .876	.848 .849 .828 .838 .841 .821 .836 .832 .767	.784 .771 .736 .743 .756 .710 .753 .732 .665	.815 .802 .781 .782 .803 .746 .794 .774	.050 .059 .065 .071 .063 .078 .062 .069	.906 .918 .890 .888 .901 .902 .895 .889	.882 .897 .864 .874 .876 .884 .874 .867	.835 .846 .795 .800 .812 .820 .802 .785 .807	.857 .862 .825 .826 .843 .843 .831 .820 .837	.049 .046 .057 .057 .052 .052 .052 .059	.809 .825 .800 .788 .810 .794 .811 .803	.776 .798 .777 .772 .776 .772 .766 .777 .726	.684 .703 .670 .663 .673 .634 .652 .652	.712 .721 .704 .683 .707 .672 .691 .685	.083 .084 .090 .108 .094 .094 .097 .092

2023

IABLE II
BENCHMARKING RESULTS OF REPRESENTATIVE 2D, 3D, AND 4D MODELS ON FOUR EXISTING AND OUR PROPOSED DATASETS

_		Т	raditio	nal							Dec	p Learn	ing-base	d						
	Metric	LFS‡	WSC‡	DILF‡			BBS [†]		SSF [†]	UCNet [†]	D3Net [†]	S2MA [†]	cmMS [†]		ATSA'	MINet*		Ours ₁	Our.	Ours
		[18]	[55]	[56]	[21]	[23]	[17]	[5]	[71]	[1]	[15]	[72]	[73]	[74]	[16]	[13]	[14]	Ours ₁	Ours ₂	Ours
	S_{α} \uparrow	.681	.702	.811	.831	.835	.864	.862	.859	.858	.825	.837	.850	.846	.858	.815	.830	.859	.864	.871
~	$F_{eta}^{\max} \uparrow$.744	.743	.811	.834	.850	.858	.867	.868	.859	.812	.835	.858	.837	.866	.790	.811	.868	.871	.877
[8]	$F_{\beta}^{\text{adp}} \uparrow$.513	.722	.719	.809	.836	.842	.848	.862	.848	.797	.806	.850	.818	.856	.781	.800	.853	.864	.868
LFSD		.735	.743	.795	.819	.839	.840	.827	.862	.838	.788	.803	.857	.818	.852	.810	.816	.860	.866	.872
Ξ	$E_{\phi}^{\max} \uparrow$ $E^{\text{mean}} \uparrow$.809	.789	.861	.888	.888	.900	.902	.901	.898	.863	.873	.896	.880	.902	.840	.850	.905	.907	.909
	62	.567	.753	.764		.883			.890	.893	.850	.855	.881	.869						
	$E_{\phi}^{\mathrm{adp}} \uparrow$.773	.788	.846	.886	.887 .082	.889	.882	.896	.890	.853	.863	.890	.872	.897	.864 .096	.869	.906	.905	.910
	$S_{\alpha} \uparrow$.565	.150	.672	.742	.082	.751	.789	.725	.748	.749	.729	.723	.763	.772	.769	.775	.067	.065	.834
	$F_{\beta}^{\max} \uparrow$.427	.508	.601	.662	.722	.676	.727	.647	.677	.671	.650	.626	.690	.729	.692	.701	.784	.779	.810
[25]	Finean 1	.323	.493	.513	.639	.709	.654	.707	.639	.672	.651	.623	.617	.669	.706	.683	.682	.771	.770	.805
E	$F_{\beta}^{\text{adp}} \uparrow$.427	.485	.530	.627	.706	.654	.677	.636	.675	.647	.588	.636	.653	.689	.691	.687	.769	.767	.804
HFUT	$E_{\phi}^{\max} \uparrow$.637	.695	.748	.812	.841	.801	.844	.778	.804	.797	.777	.784	.801	.833	.804	.812	.868	.841	.884
Ξ.	$E_{\perp}^{\text{mean}} \wedge$.524	.684	.657	.790	.832	.765	.825	.763	.793	.773	.756	.746	.788	.819	.787	.794	.864	.836	.879
	$E_{\phi}^{\text{adp}} \uparrow$.666	.680	.693	.785	.831	.804	.811	.781	.810	.789	.744	.779	.789	.810	.816	.822	.865	.838	.880
	Й↓	.221	.154	.150	.094	.082	.089	.075	.100	.090	.091	.112	.097	.095	.084	.088	.094	.067	.072	.057
	$F_{o}^{\max} \wedge$.500	.007	,034	.007	.099	.005	.077	.079	.031	.022	.707	.004	.022	.901	.070	.001	.911	.915	.920
20]	$F_{\beta}^{\text{mean}} \uparrow$.533	.621	.585	.903	.908	.852	.878 .846	.887	.816	.797 .776	.754	.803	.801	.915	.855 .845	.866 .849	.928	.929 .911	.941
ഥ	$F_{\rho}^{\text{adapt}} \uparrow$																			
DUT-LF [20]	$E_{\Delta}^{\max} \wedge$.525	.619 .789	.597 .757	.843	.885	.848	.835	.885	.803 .876	.784	.735	.819 .879	.778 .864	.898	.862 .895	.865 .904	.906	.912	.929 .965
20	Emean ↑	.511	.762	.635	.939	.949	.879	.923	.923	.870	.841	.817	.817	.848	.937	.886	.894	.954	.958	.961
	Fadapt A	.742	.789	.784	.923	.943	.908	.910	.918	.878	.869	.842	.870	.867	.938	.915	.922	.956	.961	.964
	_фм.	227	.149	.165	.051	.039	.066	.058	.050	.081	.083	.102	.079	.091	.041	.060	.061	.033	.030	.027
	$S_{\alpha} \uparrow$.619	.708	.751	.834	.843	.876	.881	.822	.852	.860	.856	.872	.856	.882	.862	.874	.878	.884	.890
22]	$F_{\beta}^{\max} \uparrow$.545	.663	.688	.820	.827	.848	.868	.787	.827	.836	.832	.849	.835	.875	.829	.845	.868	.873	.888
8	$F_{\beta}^{\text{mean}} \uparrow$.385	.646	.599	.766	.800	.830	.840	.776	.817	.809	.795	.832	.806	.848	.812	.823	.850	.856	.877
Lytro Illum [22]	$F_{\beta}^{\text{adapt}} \uparrow$.547	.640	.666	.747	.796	.830	.826	.780	.821	.801	.788	.833	.809	.842	.818	.825	.846	.855	.878
6	E_{ϕ}^{\max} \uparrow	.721	.804	.827	.908	.911	.909	.926	.877	.899	.905	.903	.907	.901	.929	.888	.898	.928	.928	.936
Ţ	$E_{\phi}^{\mathrm{mean}} \uparrow$.546	.792	.721	.882	.900	.896	.914	.865	.893	.889	.882	.897	.887	.919	.881	.887	.916	.922	.932
	$E_{\phi}^{\text{adapt}} \uparrow$.771	.798	.817	.876	.900	.911	.914	.885	.905	.901	.886	.912	.894	.917	.900	.908	.917	.925	.936
	\mathcal{M}_{\downarrow}	.197	.115	.127	.065	.056	.047	.044	.066	.053	.055	.060	.045	.056	.042	.051	.050	.045	.043	.037
	$S_{\alpha} \uparrow F_{\alpha}^{\max} \uparrow$.579	.641	.618	.809 .776	.826 .781	.847 .802	.854 .811	.841 .798	.792 .736	.802 .742	.765 .683	.846 .797	.822 .775	.860	.841 .787	.852 .804	.862	.876	.887 .878
II.	E-mean 🛧	.325	.519	.507	.716	.761	.775	.785	.786	.730	.717	.660	.782	.753	.814	.776	.785	.820	.854	.870
H	Eadapt A	.435	.505	.498	.683	.754	.761	.778	.787	.737	.715	.651	.777	.744	.800	.784	.784	.809	.852	.870
PKI	Emax 🛧	.685	.750	.745	.883	.883	.882	.889	.884	.852	.858	.811	.880	.873	.909	.870	.876	.918	.919	.930
_	$E_{\perp}^{\text{mean}} \uparrow$.546	.730	.731	.850	.870	.864	.878	.876	.842	.828	.791	.869	.858	.898	.858	.862	.909	.914	.927
	- φ L-adapt ∧	.693	.722	.727	.832	.867	.876	.880	.889	.864	.855	.808	.881	.861	.891	.885	.888	.909	.917	.930
	$^{E_{\phi}}\mathcal{M}$.214	.132	.143	.066	.059	.056	.049	.052	.070	.067	.100	.052	.065	.045	.050	.055	.047	.042	.035
_				D COD	.000	1007		(1+2) (C+2)	1002	10.0			7 - T	.000		.050	.000	70-17	.0.12	7000

Note that the 2D. 3D, and 4D SOD models are marked with "*", "+", and "‡", respectively. "†" "/" | " indicates that larger/smaller is better. The ton-performance