1. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-\bar{x} $
100	-1.5	1.5
102	0.5	0.5
103	1.5	1.5
101	-0.5	0.5
$\sum x = 406$ $\bar{x} = 101.5$		$\sum x - \bar{x} = 4$

We are ready for the formula.

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{4}{4}$$

2. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
163	-1	1
165	1	1
164	0	0
165	1	1
163	-1	1
======	======	=======
$\sum x = 820$ $\bar{x} = 164$		$\sum (x - \bar{x})^2 = 4$

We are ready for the formula.

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{4}{5 - 1}}$$
$$= \sqrt{1}$$
$$= \boxed{1}$$