N. 64	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
الاسم	مسابقه في ماده الخيمياء
• []	مسابقة في مادة الكيمياء
' <u></u>	· ·
اأ، قَم.	·1501 . 5 . 11
الا تم:	المدة ساعتان
.,	

Cette épreuve est constituée de **trois exercices**. Elle comporte quatre pages numérotées de 1 à 4.

L'usage d'une calculatrice non programmable est autorisé

Traiter les trois exercices suivants:

Premier exercice (7 points) Étude cinétique de la réaction de l'acide formique avec le dibrome

L'acide formique (méthanoïque) est un liquide corrosif incolore secrété par les fourmis et d'autres insectes. Il est généralement employé dans les industries de papier et de textiles, dans la fabrication des insecticides

Le but de cet exercice est de reconnaître certaines utilisations d'acide formique dans la synthèse organique et d'étudier la cinétique de sa réaction avec le dibrome liquide.

Donnée :

• Volume molaire gazeux : V_m = 24 L.mol⁻¹.

1- Formation d'un dérivé d'acide méthanoïque

L'acide méthanoïque (HCOOH) réagit avec le pentachlorure de phosphore (PCI₅) pour donner, entre autres, le chlorure d'acyle (G).

- 1.1- Écrire l'équation de cette réaction.
- 1.2- Donner le nom systématique de (G).
- 1.3- Écrire la formule et donner le nom d'un autre réactif qui produit le même composé (G) avec l'acide méthanoïque.

2- Étude préliminaire

En solution aqueuse, l'acide formique réagit lentement avec le dibrome selon l'équation suivante :

La solution aqueuse de dibrome a une couleur rouge brun, alors que la solution d'acide bromhydrique (H⁺+Br⁻) est incolore.

À t = 0, un volume de 50 mL d'une solution de dibrome de concentration molaire C_1 = 0,024 mol.L⁻¹ est mélangé avec 50 mL d'une solution d'acide formique de concentration molaire C_2 = 0,03 mol.L⁻¹.

- 2.1- Déterminer la concentration de chacun des réactifs dans le mélange à t = 0. Préciser si ces réactifs sont dans les proportions stœchiométriques.
- 2.2- Montrer la relation suivante : $[Br_2]_t = 0.012 4.16 \times 10^{-4} \text{xV (CO}_2)_t$; où $[Br_2]_t$ est la concentration molaire de dibrome à un instant t et $V(CO_2)_t$ est le volume de CO_2 formé au même instant t exprimé en mL.

3- Étude cinétique

À différents instants t, on mesure le volume de CO₂ libéré. Les résultats sont donnés dans le tableau suivant :

t (s)	0	50	100	150	200	250	300	350	400
V(CO ₂) (mL)	0	4,56	8,50	11,76	14,50	16,80	18,72	20,40	21,70
[Br ₂] (10 ⁻³ mol.L ⁻¹)		10,1	8,46	7,11		5,01	4,21	3,51	

- 3.1- Copier, sur la feuille de réponses, le tableau ci-dessus et le compléter en utilisant la relation précédente.
- 3.2- Tracer, sur un papier millimétré, la courbe $[Br_2]_t = f(t)$. Prendre les échelles suivantes : 1 cm pour 50 s en abscisses et 1cm pour $1,0x10^{-3}$ mol. L⁻¹ en ordonnées.
- 3.3- Déterminer la vitesse de disparition de Br_2 , à t =150 s. Déduire la vitesse de formation de Br^- à cet instant t.
- 3.4- Déterminer le temps de demi-réaction.
- 3.5- À t = 450 s, le volume de dioxyde de carbone dégagé devient 22,60 mL. Justifier si la solution obtenue est incolore ou non.

Deuxième exercice (6 points) Analyse d'un composé organique

Le but de cet exercice est d'identifier un composé organique (A) et de reconnaître certaines de ses propriétés.

<u>Donnée</u> : M (H) = 1 g.mol⁻¹ ; M(C) = 12 g.mol⁻¹ ; M(O) = 16 g.mol⁻¹

1- Formule moléculaire et isomérie de (A)

La combustion complète de 3,70 g de (A) donne 6,60 g de dioxyde de carbone et 2,70 g de vapeur d'eau. La densité de vapeur de (A) par rapport au dioxygène est égale à 2,31.

- 1.1- Montrer que la formule moléculaire de (A) est C₃H₆O₂.
- 1.2- Écrire les formules semi-développées des isomères possibles de (A), sachant que ces isomères possèdent des chaînes carbonées saturées et ouvertes.

2- Identification de (A)

La dissolution d'un échantillon de (A) dans l'eau donne une solution de pH égal à 3,1.

- 2.1- Identifier le composé (A).
- 2.2- Indiquer le couple acide/base auquel appartient le composé (A).

3- Certaines réactions de (A)

La déshydratation de 111 g de (A), en présence de (P_2O_5) , produit un composé organique (B) selon une réaction totale.

- 3.1- Écrire, en utilisant les formules semi-développées des composés organiques, l'équation de cette réaction. Donner le nom systématique de (B)
- 3.2- Montrer que la quantité de matière de (B) formée à la fin de la réaction est 0,75 mol.
- 3.3- Dans le but de préparer un ester (E) à odeur fruitée, on mélange la quantité de (B) obtenue ci-dessus avec 2 mol de 2-méthylpropan-1-ol. On obtient 90 g de (E).
 - 3.3.1- Écrire l'équation de cette réaction d'estérification. Donner le nom systématique de l'ester (E).
 - 3.3.2- Cette réaction est réalisée dans un récipient sec. Expliquer pourquoi.
 - 3.3.3- Déterminer le rendement de cette réaction.

Troisième exercice (7 points) Solution tampon

L'objectif de cet exercice est de préparer une solution tampon.

Donnée :

- On dispose du matériel suivant :
 - flacon contenant des cristaux de chlorure d'ammonium NH₄Cl_(S) pur ;
 - balance de précision, verre de montre, spatule, entonnoir, agitateur magnétique ;
 - béchers : 100, 200 et 500 mL ;
 - éprouvettes graduées : 100, 200 et 500 mL ;
 - fioles jaugées : 100, 200 et 500 mL ;
 - pipettes jaugées : 10 et 20 mL.
- L'étude est effectuée à 25 °C.
- $pK_a(NH_4^+/NH_3) = 9.2$; $pK_a(H_3O^+/H_2O) = 0$; $pK_a(H_2O/HO^-) = 14$.
- M(NH₄Cl)= 53,5 g. mol⁻¹.

1- pH d'une solution d'ammoniac

On dispose d'une solution (A) d'ammoniac de concentration $C_1 = 0.10 \text{ mol.L}^{-1}$.

- 1.1- Écrire l'équation de la réaction de l'ammoniac avec l'eau.
- 1.2- Déterminer la constante K_R de cette réaction.
- 1.3- Déterminer le pH de la solution (A).

2- Préparation d'une solution de chlorure d'ammonium

On veut préparer 500 mL d'une solution (B) de chlorure d'ammonium (NH $_4^+$ + Cl $^-$) de concentration C $_2$ = 0,10 mol.L $^{-1}$.

- 2.1- Décrire, brièvement, le mode de préparation de la solution (B) tout en précisant le matériel nécessaire de la liste donnée précédemment.
- 2.2- Écrire l'équation de la réaction de l'ion ammonium (NH ⁺₄) avec l'eau. Prouver si cette réaction est totale ou non.

3- Préparation d'une solution tampon

On mélange 60 mL de la solution (A) et 40 mL de la solution (B). On obtient une solution qu'on note (C).

- 3.1- Placer sur un axe de pK_a les couples acide/base intervenant dans ce mélange. Souligner les espèces majoritaires introduites dans ce mélange.
- 3.2- Écrire l'équation de la réaction prépondérante (la plus avancée).
- 3.3- Déterminer le pH de la solution (C).
- 3.4- On ajoute 1,0x10⁻³ mol de HCl à la solution (C) sans variation notable de volume.
 - 3.4.1- Écrire l'équation de la réaction qui a eu lieu, considérée comme totale.
 - 3.4.2- Déterminer la nouvelle valeur du pH. Conclure.
 - 3.4.3- Donner deux autres caractéristiques de la solution (C).

مادة الكيمياء

مشروع معيار التصحيح

Premier exercice (7 points)

Partie				1 1 01111		rrigé	pome	<u> </u>			Note
1	Formation d'un dérivé d'acide méthanoïque										11010
1.1	L'équation						<u> </u>				0,5
	H – COOI					POCI.	+ HCI				
1.2											0,25
1.3	Le composé (G) est le chlorure de méthanoyle										0.5
1.0	Un autre réactif qui peut produire le même composé (G) a pour formule SOCl ₂ et pour nom le chlorure de thionyle.										0.5
2	Étude prél			Ornord	ire de ti	ilorryic.					
2.1					0.024 >	< 50 -		1			1
	$C_0 = \frac{n_0}{V_{4+4-1}}$. Ainsi: $[Br_2]_0 = \frac{0.024 \times 50}{100} = 0.012 \text{ mol.L}^{-1}$										
	' total	<u> </u>			100						
	et [HCOOI	H]₀ = -	J,U3 X	=	0,015 m	nol.L ⁻¹ .					
			100								
	Cherchons			n	,	•					
	R	UCOC	л =	"(HCC	OOH) _{initi}	$\frac{\text{al}}{\text{al}} = \frac{0.0}{0.0}$	3x50x10	$\frac{1}{1}$ = 1,5	x_{10}^{-3}		
		псос	Л	_	1		1	1,0	7110		
	D		n(Br ₂)initial	$\frac{1}{-} = 1,2x$	₁₀ -3					
	KI	$3r_2 = -$		1	-=1,2X	10 -					
	$R_{HCOOH} \succ R_{Br_2}$. Le dibrome est le réactif limitant, le mélange										
2.2	n'est pas stoechiométrique. À un instant t, nous avons :								1		
	n(Br ₂) restant	-			n(Br ₂) _a	avant réagi	à t				
	Or : n(CO ₂))formé à	t =	$\frac{V}{V}$	$= n(Br_2)$	ayant réa	ıgi à t				
	Or: $n(CO_2)_{\text{formé à t}} = \frac{V(CO_2)_t}{V_m} = n(Br_2)_{\text{ayant réagi à t}}$										
	D'où : $n(Br_2)_{restant \ a \ t} = n(Br_2)_{a \ t = 0} - \frac{V(CO_2)_t}{V}$:										
	m										
	Divisons par le volume de la solution, on obtient :										
	$[Br_2]_t = [Br_2]_{t=0} - \frac{V(CO_2)_t}{V_m \times V} = [Br_2]_{t=0} - \frac{V(CO_2)_{en \ mL}}{24 \times 100}$:										
	$[Br_2]_t = 0.0$	12 – 4	1,16×	<10 ⁻⁴ ×	$V(CO_2)$.						
3	Étude ciné	<u>étique</u>	<u> </u>								
3.1	le tableau :										0,5
J.1	าย เลมเยลน .	1									0,5
	t (s)	0 !	50	100	150	200	250	300	350	400	
	V(CO ₂)		4,56	8,50	11,76	14,50	16,80	18,72	20,40	21.70	
	mĹ										
	[Br ₂] _t 10 ⁻³ mol.L ⁻¹	12	10,1	8,46	7,11	5,97	5,01	4,21	3,51	2.97	
	mol.L ⁻ '										

Deuxième exercice (6 points)

Partie	Corrigé	Note
1	Formule moléculaire et isomérie de (A)	
1.1	Détermination de la formule moléculaire de (A) :	1
	n C = n CO ₂ = $\frac{\text{mCO}_2}{\text{MCO}_2} = \frac{6,60}{44}$ = 0,15 mol et m C = 0,15x12 = 1,8 g.	
	m H = $2\frac{\text{mH}_2\text{O}}{\text{MH}_2\text{O}}$ xMH = $\frac{2.7}{18}$ x2 = 0.3 g et mO= 3.7 -1.8 - 0.3 = 1.6 g.	
	La masse molaire : M (A) = 32 x 2,31 = 74 g mol ⁻¹ . La loi des proportions définies permet d'écrire :	

	74 12x 1y 16 z 0 u 0 (x)	
	$\frac{74}{3,70} = \frac{12x}{1,8} = \frac{1y}{0,3} = \frac{16z}{1,6}$ $C_xH_yO_z(A)$	
	On tire :	
	$x = 3$; $y = 6$; $z = 2$ et la formule de (A) est : $C_3H_6O_2$.	
1.2	Les formules semi-développées des isomères possibles sont :	0,75
	CH_3-CH_2-C-OH ; $H-C-O-CH_2-CH_3$ et $CH_3-C-O-CH_3$	
2		
2.1	Identification de (A)	0,5
2.1	Le pH = 3,1 < 7, signifie que le composé (A) réagit avec l'eau en	0,3
	donnant un milieu nettement acide, il est donc l'acide propanoïque de formule CH ₃ – CH ₂ – COOH.	
	de formale of 13 – of 12 – ooor 1.	
2.2	Le couple est : CH ₃ CH ₂ COOH/CH ₃ CH ₂ COO ⁻ .	0,25
3	Certaines réactions de (A)	
3.1	L'équation de déshydratation de (A) est :	0,75
	P_2O_5	
	$2 \text{ CH}_3 - \text{CH}_2 - \text{C} - \text{OH} \xrightarrow{P_2O_5} \text{CH}_3 - \text{CH}_2 - \text{C} - \text{O} - \text{C} - \text{CH}_2 - \text{CH}_3 + \text{H}_2O$	
	Le composé (B) est l'anhydride propanoïque.	
3.2	D'après les coefficients stœchiométriques de l'équation, on a :	0,5
	n(acide)réagissant m(A) 111	ŕ
	$n(\text{anhydride})\text{formé} = \frac{n(\text{acide})\text{réagissant}}{2} = \frac{m(A)}{2\text{xM}(A)} = \frac{111}{2\text{x74}} = 0,75 \text{ mol.}$	
3.3.1	L'équation de la réaction est :	1
0.0.1	CH ₃ – CH ₂ – C – O – C – CH ₂ – CH ₃ + CH ₃ – CH – CH ₂ OH \rightarrow	•
	Ö Ö CH ₃	
	$CH_3 - CH_2 - C - O - CH_2 - CH - CH_3 + CH_3 - CH_2 - C - OH$	
	Le nom : propanoate de 2-méthylpropyle	
3.3.2	Cette réaction est réalisée dans des récipients secs car l'anhydride	0,5
	réagit violement avec l'eau pour donner l'acide correspondant.	
	·	
3.3.3	Le nombre de moles de l'ester formé théoriquement est égal au	0,75
	nombre de moles de l'anhydride = 0,75 mol.	
	Le nombre de moles de l'ester obtenu expérimentalement est :	
	n exp. = $\frac{m(E)}{M(E)} = \frac{90}{7x12 + 14 + 32} = 0,692 \text{ mol.}$	
	M(E) 7x12+14+32	
	Le rendement est : R = $\frac{\text{nexp}}{100000000000000000000000000000000000$	
	Le rendement est : R = $\frac{\text{nexp}}{\text{nth\'eorique}} = \frac{0,692}{0,75} = 0,92.$	
	• •	

Troisième exercice (7 points)

Troisiente exercice (7 points)					
Partie	Corrigé	Note			
1	pH d'une solution d'ammoniac				
1.1	L'équation de la réaction de l'ammoniac avec l'eau est :	0,5			
	$NH_3 + H_2O \Rightarrow HO^- + NH_4^+$				
1.2	La constante K_R : $K_R = \frac{[HO^-] [NH_4^+]}{[NH_3]} \cdot \frac{[H_3O^+]}{[H_3O^+]} = \frac{10^{-14}}{10^{-9,2}} = 10^{-4,8}$ $K_R = 1,58 \times 10^{-5}.$	0,5			

1.2		0.5
1.3	$K_R = \frac{[HO^-]^2}{[NH_3]} = \frac{x^2}{0.1 - x} = 1,58 \times 10^{-5}$. On tire :	0,5
	$[HO^{-}] = 1,26x10^{-3} \text{ mol } L^{-1},$	
	$[H_3O^+] = 7,9 \times 10^{-12} \text{ mol } L^{-1} \text{ et pH} = 11,1.$	
2	Préparation d'une solution de chlorure d'ammonium	
2.1	Pour préparer 500 mL de la solution (B) on a besoin d'une	1
	masse m = $0.1 \times 500 \times 10^{-3} \times 53.5 = 2.675 \text{ g}.$	_
	À l'aide de la balance de précision, la spatule et le verre de	
	montre, on pèse 2,675 d de NH₄Cl (s).	
	À l'aide de l'entonnoir, on introduit ce solide dans une fiole jaugée	
	de 500 mL, partiellement remplie d'eau distillée.	
	On agite pour faire dissoudre le solide, on complète avec l'eau	
	distillée jusqu'au trait de jauge, on ferme la fiole et on la renverse plusieurs fois pour homogénéiser.	
2.2	L'équation de la réaction de l'ion ammonium avec l'eau est :	1
	$NH_4^+ + H_2O \Rightarrow H_3O^+ + NH_3$	
	$K_R = \frac{[H_3O^+]x[NH_3]}{[NH_4^+]} = K_a(NH_4^+/NH_3) = 10^{-9.2} < 10^4$. La réaction est	
	[NH ₄]	
	non totale.	
3	Préparation d'une solution tampon	0.5
3.1	Placement des espèces sur un axe de pK _a	0,5
	HO [−] 14 🛊 <u>H₂O</u>	
	NHL 0.2	
	$\underline{NH_3}$ 9,2 $\underline{\qquad}$ $\underline{NH_4^+}$	
	$\underline{\mathrm{H}_2\mathrm{O}} 0 \blacksquare \mathrm{H}_3\mathrm{O}^+$	
	-	
3.2	La réaction prépondérante a lieu entre l'acide introduit le plus fort	0, 5
	(NH ₄) et la base introduite la plus forte (NH ₃). L'équation de cette	
	réaction est : $NH_4^+ + NH_3 = NH_4^+ + NH_3$.	
3.3	L'équation précédente montre que les quantités initiales de NH 4	0,75
	et NH ₃ ne varient pas. D'où :	
	·	
	pH =pK _a + log $\frac{[NH_3]}{[NH_4^+]}$ = pK _a + log $\frac{\frac{C_1xV_A}{V}}{\frac{C_2xV_B}{V}}$ = 9,2 + log $\frac{0.1x60}{0.1x40}$ = 9,38	
	$[NH_4^+]$	
	V	

3.4.1	L'équation de la réaction est :	0,5
	$NH_3 + H_3O^+ \rightarrow H_2O + NH_4^+$.	
3.4.2	$n(NH_3)_{apport\acute{e}} = 0.1x60x10^{-3} = 6x10^{-3} mol.$ $n(H_3O^+)_{apport\acute{e}} = 10^{-3} mol.$ C'est le réactif limitant.	0,75
	$n(H_3O^+)_{apporté} = 10^{-3}$ mol. C'est le réactif limitant.	
	Après réaction il reste 5.10 ⁻³ mol de NH ₃ et il y aura dans le milieu	
	$(4x10^{-3}+10^{-3})$ mol de NH ₄ ⁺ = 5.10 ⁻³ mol de NH ₄ ⁺	
	$5x10^{-3}$	
	pH = 9,2 + log $\frac{\overline{V}}{\frac{5x10^{-3}}{V}}$ = 9,2. La variation de pH est trop faible en	
	ajoutant HCl (acide fort) à (C). Donc (C) est une solution tampon.	
3.4.3	Les deux autres caractéristiques sont :	0,5
	* La variation de pH d'une solution tampon est faible si on ajoute une	
	quantité modérée d'une base ;	
	* La variation de pH d'une solution tampon est faible par dilution.	