CLAIMS

What is claimed is:

1	1. A lateral double-diffused metal oxide semiconductor (LDMOS) device comprising:
2	a gate region;
3	a body region under the gate region; and
4	an enhanced drift region under the gate region, whereby the enhanced drift
5	region purposely overlaps the body region.
1	2. The LDMOS device of claim 1 wherein the enhanced drift region purposely
2 .	overlaps the lateral tail of the body region.
1	3. The LDMOS device of claim 1 which includes a drain region within the enhanced
2	drift region.
1	4. The LDMOS device of claim 3 wherein the gate region includes:
2	a gate; and
3	a gate oxide, the gate oxide includes a field oxide region, the field oxide for
4	reducing the region Miller capacitance and increasing the breakdown voltage between the gate
5	and the drain region of the LDMOS device.
l	5. A lateral double-diffused metal oxide semiconductor (LDMOS) device comprising:
2	a gate region, the gate region including a gate and gate oxide;

3	a body region under the gate region;
4	an enhanced drift region under the gate region whereby the enhanced drift region
5	purposely overlaps the body region; and
6	a drain region within the enhanced drift region.
1	6. The LDMOS device of claim 5 wherein the gate oxide includes a field oxide region
1	7. The LDMOS device of claim 5 wherein the enhanced drift region purposely
2	overlaps the lateral tail of the body region.
1 2	8. A method for providing a lower Ron* product LDMOS device comprising the steps of:
3	(a) providing a gate region on a substrate;
4	(b) providing a body region on the substrate underneath the gate region; and
5	(c) providing an enhanced drift region under the gate region wherein an enhanced drift
6	region purposely overlaps the body region.
1	9. The method of claim 8 wherein the gate region is of such a length that the enhanced
2	drift purposely overlaps the body region when the enhanced drift region is implanted in the
3	substrate.
1	10. The method of claim 8 wherein the body region is provided by implanting Boron
2	ions into the substrate

- 11. The method of claim 10 wherein the enhanced drift region is provided by implanting phosphorous ions that are self-aligned with the gate region into the substrate.
- 12. The method of claim 10 which further includes the step of (d) providing a field oxide region.
- 13. The method of claim 12 wherein the enhanced drift region is not self-aligned with the gate region.
- 14. The method of claim 12 wherein the enhanced drift region is provided before the field oxide region is provided.