(BM-432) - Neuroscience and Neural Networks

Course Outline:

Theory:

1. Introduction to neuroscience

- 1. Nervous system
- 2. Sympathetic
- 3. Parasympathetic and motor nervous system and their functions
- 4. Brain and its functions
- 5. Neurons and glia, structure of a neuronal cell, types of glia.
- 6. Blood brain barriers.

2. Neuronal Circuits

- 1. Neuronal circuit in emotional control
- 2. Neuronal circuit in reward and addiction
- 3. Neuronal regulation of stress

3. Receptors

- 1. Ionotropic and metabotropic receptors
- 2. signal transduction pathways
- 3. G-proteins
- 4. protein phosphorylation
- 5. Signaling to the nucleus
- 6. regulation of gene expression

4. Neurotransmitters

- 1. Excitatory and inhibitory amino acid neurotransmitters
- 2. Functions in the brain
- 3. Pain pathways in brain
- 4. Role of excitatory neurotransmitter in learning and memory
- 5. Diseases associated with the malfunctioning of these neurotransmitters
- 6. Neuronal degeneration

5. Catecholamines

- 1. Functions in the brain
- 2. Diseases associated with the malfunctioning.

6. Neural basis of behavioral plasticity

- 1. Human and animal memory
- 2. Cellular mechanisms of neural plasticity

7. Neuroendocrine and motivational systems

- 1. Endocrine systems
- 2. Feeding behavior
- 3. Stress

8. Diseases of the nervous system

- 1. Addiction
- 2. Depression
- 3. Schizophrenia
- 4. Epilepsy
- 5. Alzheimer
- 6. Parkinson
- 7. Prion
- 8. Motor Neuron Disease

9. Introduction to Artificial Intelligence

- 1. Foundations of AI
- 2. Agents and Environments.
- 10. Structure of Agents.
- 11. Problem Solving Agents.

1. Problem Solving by Searching

- 1. Searching for Solutions.
- 2. Uninformed Search Strategies
- 3. Informed Search Strategies
- 12. Informed (Heuristic) Search Strategies:
- 13. Greedy Best-first Search.
- 14. A* Search.
- 15. Heuristic Functions.

1. Reasoning and Knowledge Representation

- 1. Introduction to Reasoning and Knowledge Representation.
- 2. Propositional Logic.
- 3. First order Logic.
- 4. Reasoning with Uncertainty & Probabilistic Reasoning
- 5. Acting Under Uncertainty.
- 6. Bayes' Rule.

2. Learning

- 1. Decision Trees
- 2. ID3 Algorithm
- 3. Statistical Learning.

List of Practicals:

- 1. To study basics of Artificial Neural Network.
- 2. To study how a self-organizing map neural network can cluster iris flowers into classes topologically, providing insight into he types of flowers and a useful tool for further analysis.
- 3. Classification of wine vintage (using GUI) and crabs (through coding) using pattern recognition and classification network in Matlab.
- 4. Identification and prediction of relationship between independent and dependent variables using regression analysis.
- 5. Implementation of basic logic operations of ANN
- 6. To Work on the Command Line of Matlab to build fuzzy logic based application.
- 7. Study various methods to improve cognitive skills.
- 8. Study different methods to check memory skills
- 9. To understand the working of EEGLAB software for the analysis of EEG signals.
- 10. To study different processing tools available in EEGLAB software for the processing of EEG data.
- 11. To study about importing channels locations for EEG data using EEGLAB software.
- 12. To understand the working of SLORETA software for EEG analysis of the deep cortical structures.

Suggested Teaching Methodology:

- Lecturing
- Written Assignments Report Writing

Suggested Assessment:

Theory (100%)

- Sessional (20%)
- Quiz (12%)
- Assignment (8%)
- Midterm (30%)
- Final Term (50%)

Laboratory (100%)

- Labs
- Open-Ended Labs

Recommended Text and Reference Books:

- 1. Russell S.; Norvig P.; "Artificial intelligence A Modern Approach", Latest Edition, Prentice Hall.
- 2. Luger G.F.; Artificial Intelligence Structures and Strategies for Complex Problem Solving", Latest Edition, Pearson Higher Education.
- 3. Progress in Neuroscience, Readings from Scientific American, John Wiley.
- 4. Philip, G. Srauge, Brain Biochemistry and Brain Disorders, Oxford Press.
- 5. George, J. Siegal, B. W. Agranoff, S. K. fisher, M. D. Uhler, Basic Neurochemistry: Molecular, Cellular and Medical Aspects, Lippincott D. Uhler.
- 6. Darakhshan Haleem, Neurochemistry, Neuropharmacology and Behavior, 2010.
- 7. Mark F. Bear, Barry W. Connors & Michael A. Paradiso, Neuroscience: Exploring the brain, 2006

3