TCS-503: Design and Analysis of Algorithms

Graph Algorithms

Maximum Flow

- · Graph Algorithms:
 - Elementary Graphs algorithms: BFS and DFS
 - Minimum Spanning Trees
 - Single-Source Shortest Paths
 - All-Pairs Shortest Paths
 - Maximum Flow and
 - Traveling Salesman Problem

Maximum Flow Problem

We are given a flow network G with source s and sink t, and we wish to find a flow of maximum value.

Maximum Flow Flow Network *G*

A flow network G=(V,E) is a directed graph in which each edge $(u,v) \in E$ has a non-negative capacity $c(u,v) \ge 0$.

Maximum Flow Flow f(u,v)

For each edge (u,v), the flow f(u,v) is a real-valued function $f:V*V \rightarrow R$ that must satisfy 3 conditions:

Capacity constraint:

For all $u, v \in V$, we require $f(u, v) \le c(u, v)$. Skew symmetry:

For all $u, v \in V$, we require f(u, v) = -f(v, u).

Flow conservation:

For all $u \in V - \{s, t\}$, we require $\sum_{v \in V} f(u, v) = 0$

Maximum Flow

$$f(v_2, v_1) = 1, c(v_2, v_1) = 4.$$

 $f(v_1, v_2) = -1, c(v_1, v_2) = 10.$
 $f(v_3, s) + f(v_3, v_1) + f(v_3, v_2) + f(v_3, v_4) + f(v_3, t)$
 $= 0 + (-12) + 4 + (-7) + 15$

Maximum Flow The Value of a Flow |f|

$$|f| = \sum_{v \in V} f(s, v) = \sum_{v \in V} f(v, t)$$

That is the total flow leaving s = the total flow arriving in t.

Maximum Flow

The Value of a Flow |f|

Example

$$|f| = f(s, v_1) + f(s, v_2) + f(s, v_3) + f(s, v_4) + f(s, t)$$

= 11 + 8 + 0 + 0 + 0 = 19
 $|f| = f(s, t) + f(v_1, t) + f(v_2, t) + f(v_3, t) + f(v_4, t)$
= 0 + 0 + 0 + 15 + 4 = 19

Maximum Flow

The Residual Capacity $c_f(u,v)$

The amount of additional flow we can push from u to v before exceeding the capacity c(u, v) is the residual capacity of (u, v), given by

$$c_f(u,v) = c(u,v) - f(u,v)$$

Maximum Flow

The Residual Capacity $c_f(u,v)$

Example

Residual Capacity

For example, if c(u, v) = 16 and f(u, v) = 11, then we can increase f(u, v) by c f(u, v) = 5 units before we exceed the capacity constraint on edge (u, v).

Maximum Flow

The Residual Network

Given a flow network and a flow, the residual network consists of edges that can admit more net flow.

The edges of the residual network are the edges on which the residual capacity is positive.

Maximum Flow

The Residual Network: Example

Maximum Flow Augmenting Path p

Given a flow network G=(V,E) and a flow f, an augmenting path is a simple path from s to t in the residual network G_f .

Bold Edges $(s-v_1-v_2-v_4-v_3-t)$

Maximum Flow Algorithms Ford-Fulkerson Algorithm

```
Alg.: FORD-FULKERSON(G,s,t)
```

- for each edge (u,v)∈E[G] do
- 2. $f[u,v] \leftarrow 0$
- 3. $f[v,u] \leftarrow 0$
- 4. while there exists a path p from s to t in the G_f do
- 5. $c_f(p) \leftarrow min\{c_f(u,v): (u,v) \text{ is in } p\}$
- 6. for each edge (u,v) in p do
- 7. $f[u,v] \leftarrow f[u,v]+c_f(p)$
- 8. $f[v, u] \leftarrow f[u, v]$

Learn DAA: From B K Sharma

Maximum Flow Algorithms

Ford-Fulkerson Algorithm: Example

Maximum Flow Algorithms

Ford-Fulkerson Algorithm: Example

 $c_f(p)$

 $p: s-v_1-v_3-v_2-v_4-t$ (b)

 $c_f(p) \leftarrow \min\{c_f(u,v): (u,v) \text{ is in } p\}$ $c_f(p)=4$

Gf with A.P p

New flow f that results from adding $f_{\rm p}$ to f.

Maximum Flow Algorithms

Ford-Fulkerson Algorithm: Example

Gf with A.P p

$$p: s-v_1-v_2-v_4-v_3-t$$
 (c)

$$c_f(p) \leftarrow \min\{c_f(u,v): (u,v) \text{ is in } p\}$$

$$c_f(p)=7$$

New flow f that results from adding $f_{\rm p}$ to f.

Maximum Flow Algorithms

Ford-Fulkerson Algorithm: Example

Gf with A.P p

p:
$$s-v_2-v_1-v_3-t$$
 (d)
 $\leftarrow \min\{c_f(u,v): (u,v) \text{ is in p}\}$

$$c_{f}(p)=7$$

New flow f that results from adding f_p to f.

Maximum Flow Algorithms

Ford-Fulkerson Algorithm: Example

p:
$$s-v_2-v_3-t$$
 (e)

$$c_f(p) \leftarrow \min\{c_f(u,v): (u,v) \text{ is in } p\}$$

$$c_f(p)=4$$

New flow f that results from adding $f_{\rm p}$ to f.

Maximum Flow Algorithms

Ford-Fulkerson Algorithm: Example

The G_f at the last while loop test. (f)

Maximum Flow Algorithms

Ford-Fulkerson Algorithm: Example

Finally we have: | f | = f (s, V) = 23

The ST Min-Cut Problem

What is a ST-cut?

An st-cut (S,T) divides the nodes between source and sink.

Max-Flow Min-Cut Theorem

Cut

A cut (S,T) of flow network G=(V,E) is a partition of V into two disjoint subsets S and T=V-S such that $S\in S$ and $T\in T$.

Max-Flow Min-Cut Theorem

Cut

 $S=\{s\}$ and $T=\{1,2,t\}$

Max-Flow Min-Cut Theorem

Cut

 $S=\{s,1\}$ and $T=\{2,t\}$

Max-Flow Min-Cut Theorem

Cut

Max-Flow Min-Cut Theorem

Cut

$$S=\{t\}$$
 and $T=\{s,1,2\}$

The ST Min-Cut Problem

What is the cost/capacity of a ST-Cut?

Sum of cost of all edges going from S to T

The ST Min-Cut Problem

What is the ST-Min-Cut?

ST-Cut with the minimum cost

2 + 1 + 4 = 7

The ST Min-Cut Problem Min Cut

Min-cut: a "cut" on the graph crossing the fewest number of edges separating the source-set S and the sink-set T.

The edges S->T in this set should have a tail in S and a head in T.

c(S,T): The capacity of the minimum cut is the sum of all the outbound edges in the cut.

The ST Min-Cut Problem

Flow across Cut and Capacity of Cut

$$S=\{s\}$$
 and $T=\{1,2,t\}$

$$f(S,T)=9+6=15$$

$$c(S,T)=10 +6=16$$

The ST Min-Cut Problem

Flow across Cut and Capacity of Cut

$$S=\{s,1\}$$
 and $T=\{2,t\}$

$$f(S,T)=8+1+6=15$$

 $c(S,T)=8+1+6=15$

The ST Min-Cut Problem

Flow across Cut and Capacity of Cut

The ST Min-Cut Problem

The minimum cut of a network is a cut whose capacity c[S,T] is minimum over all cuts of the network.

$$S=\{s,1\}$$
 and $T=\{2,t\}$
 $c(S,T)=8+1+6=15$

How to Compute ST Min-Cut?

Min-Cut / Max-Flow Theorem

In every network, the maximum flow equals the cost/capacity of the ST-Min-Cut

Max-Flow Min-Cut Theorem

The value of a maximum flow is equal to the capacity of a minimum cut.

$$|f| = c (S, T)$$
 for some cut (S,T) of G

Maximum Flow Algorithms

Learn DAA: From B K Sharma

Max-Flow Min-Cut Theorem

f is maximum flow in G.

Equivalent to

A flow is maximum if and only if its residual network contains no augmenting paths.

Equivalent to

The value of a maximum flow is equal to the capacity of a minimum cut.

|f| = c(S, T) for some cut (S,T) of G

Edmonds-Karp Algorithm

Variation of Ford-Fulkerson's algorithm
Chooses an augmenting path p
with the smallest number of edges
Uses BFS to find augmenting paths.

Learn DAA: From B K Sharma

Learn DAA: From B K Sharma

Example

Augmenting path: s, b, e, t

Edmonds-Karp Algorithm

Example

Send 5 units of flow along augmenting path.

Edmonds-Karp Algorithm

Edmonds-Karp Algorithm

Example

Do BFS starting at s of auxiliary graph.

Edmonds-Karp Algorithm

Example

Send 2 units of flow along augmenting path.

Learn DAA: From B K Sharma

Learn DAA: From B K Sharma

Learn DAA: From B K Sharma

Example

Apply BFS: Can not reach t

Edmonds-Karp Algorithm

Learn DAA: From B K Sharma

Edmonds-Karp Algorithm

Edmonds-Karp Algorithm

Min Cut /Max-Flow Theorem:

In any network, the value of a maximum flow is equal to the capacity of a minimum cut.

Edmonds-Karp Algorithm

The running time of Ford-Fulkerson's algorithm is $O(|f^*|(n + m))$ where f^* is a maximum flow, n is number of vertices and m is number of edges

The Running Time of Edmonds- Karp Algorithm is $O(n m^2)$

Edmonds-Karp Algorithm

 Run the Edmonds-Karp algorithm on the following graph:

END