```
In [2]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns# To show graphs inside notebook
         %matplotlib inline
         # Set a nice style for graphs
         sns.set(style="whitegrid")
In [3]: #Load dataset
         df = pd.read_csv('titanic.csv')
In [4]: #to show top 5 rows
         df.head()
Out[4]:
                                                                                   Ticket
            PassengerId Survived Pclass
                                              Name
                                                       Sex Age SibSp Parch
                                                                                              Fare
                                             Braund,
                                                                                      A/5
         0
                      1
                                0
                                          Mr. Owen
                                                       male 22.0
                                                                      1
                                                                             0
                                                                                            7.2500
                                                                                    21171
                                              Harris
                                           Cumings,
                                           Mrs. John
                                             Bradley
                      2
                                                     female 38.0
                                1
                                                                      1
                                                                                 PC 17599 71.2833
                                           (Florence
                                              Briggs
                                                Th...
                                          Heikkinen,
                                                                                STON/O2.
         2
                      3
                                1
                                       3
                                              Miss. female 26.0
                                                                      0
                                                                                            7.9250
                                                                                  3101282
                                              Laina
                                            Futrelle,
                                               Mrs.
                                            Jacques
                                1
         3
                      4
                                                     female 35.0
                                                                      1
                                                                             0
                                                                                   113803 53.1000
                                              Heath
                                           (Lily May
                                               Peel)
                                           Allen, Mr.
                                                                                   373450
         4
                      5
                                0
                                                       male 35.0
                                                                      0
                                       3
                                             William
                                                                             0
                                                                                            8.0500
                                              Henry
In [6]: #to know count of columns and rows
         df.shape
Out[6]: (891, 12)
In [7]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

In [8]: #to know overview of data for numerical columns
 df.describe()

Out[8]:		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75 %	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200


```
Out[9]: PassengerId
          Survived
          Pclass
                            0
          Name
                            0
          Sex
                            0
          Age
                          177
          SibSp
                            0
          Parch
                            0
          Ticket
                            0
          Fare
                            0
          Cabin
                          687
          Embarked
                            2
          dtype: int64
In [11]: #fill the missing values
          df['Age'] = df['Age'].fillna(df['Age'].median())
In [12]: |df['Embarked'] = df['Embarked'].fillna(df['Embarked'].mode()[0])
          df.drop('Cabin', axis=1, inplace=True)
In [13]: #know categorical data summary
          print(df['Sex'].value_counts())  # Count males and females
print(df['Pclass'].value_counts())  # Count passengers by class (1, 2, 3)
          print(df['Embarked'].value_counts()) # Count passengers by port (C, Q, S)
          print(df['Survived'].value_counts()) # Count survived vs not survived
        Sex
        male
                   577
        female
                   314
        Name: count, dtype: int64
        Pclass
        3
             491
        1
             216
             184
        Name: count, dtype: int64
        Embarked
        S
             646
        C
             168
              77
        Name: count, dtype: int64
        Survived
             549
        0
        1
             342
        Name: count, dtype: int64
In [14]: #visualize the males and female count
          sns.countplot(x='Sex', data=df)
          plt.title('Number of Passengers by Gender')
          plt.show()
```


Survival Count by Gender


```
In [ ]: ### Observation: Age Distribution of Passengers
```

- The age distribution is slightly **right-skewed**, with more passengers in the yo
- The majority of passengers were between **20 and 40 years old**.
- There are fewer very young children and elderly passengers.
- This distribution helps us understand the overall age composition of the people a

```
In [17]: #survival count by passenger class
sns.countplot(x='Survived', hue='Pclass', data=df)
plt.title('Survival Count by Passenger Class')
plt.xlabel('Survived (0 = No, 1 = Yes)')
plt.show()
```

Survival Count by Passenger Class


```
In []: ### Observation: Correlation Heatmap

- The heatmap shows the strength and direction of relationships between numerical f
- **Pclass** and **Fare** have a moderate negative correlation, meaning higher clas
- **Age** shows weak correlation with other features.
- **Survived** correlates positively with **Fare** and negatively with **Pclass**,

In [37]: sns.histplot(data=df, x='Age', hue='Survived', multiple='stack', kde=True)
plt.title('Age Distribution by Survival Status')
plt.xlabel('Age')
plt.ylabel('Number of Passengers')
plt.show()
```



```
In []: ### Observation: Age Distribution by Survival Status

- The plot shows how age varies between survivors and non-survivors.
- **Younger passengers**, especially children, had higher survival rates.
- Many non-survivors are in the **young adult to middle-aged groups**.
- The kernel density estimate (KDE) lines confirm that survival probability was hig

In [24]: #Plot survival count by Embarked port
sns.countplot(x='Survived', hue='Embarked', data=df)
plt.title('Survival Count by Embarked Port')
plt.xlabel('Survived (0 = No, 1 = Yes)')
plt.show()
```

Survival Count by Embarked Port


```
In [27]: # Plot a boxplot to visualize the distribution of the 'Fare' column
    # This helps identify the spread and any outliers (extremely high or low fares)
    sns.boxplot(x='Fare', data=df)
    plt.title('Fare Distribution')
    plt.show()
```

Fare Distribution


```
In []: ### Observation: Fare Distribution (Boxplot)

- The boxplot shows that the majority of passengers paid fares under **100 units**.
- There are several **outliers** with very high fares, indicating a few passengers
- The distribution is **right-skewed**, meaning most passengers paid lower fares wh
- This could reflect differences in class or cabin quality (e.g., 1st class vs. 3rd

In [32]: sns.countplot(x='Survived', hue='SibSp', data=df)
plt.title('Survival Count by Number of Siblings/Spouses Aboard')
plt.xlabel('Survived (0 = No, 1 = Yes)')
plt.show()
```

Survival Count by Number of Siblings/Spouses Aboard


```
In []: ### Observation: Survival by SibSp
    - Passengers with 1 or 2 siblings/spouses had better survival rates.
    - Having no one or too many family members may reduce survival chances.

In [34]: sns.countplot(x='Survived', hue='Parch', data=df)
    plt.title('Survival Count by Number of Parents/Children Aboard')
    plt.xlabel('Survived (0 = No, 1 = Yes)')
    plt.show()
```

Survival Count by Number of Parents/Children Aboard

In []: ### Observation: Survival by Number of Parents/Children Aboard (Parch)

- Passengers with **1 to 3 parents or children aboard** had a higher chance of surv
- Those traveling **alone (Parch = 0)** had lower survival rates.
- Extremely high values of Parch (like 4, 5, or 6) were rare and mostly did not sur
- This suggests that having a small family group onboard may have positively influe

In []: ##final_Summary

- Females had higher survival rates than males.
- 1st class passengers survived more than 2nd and 3rd class.
- Younger passengers, especially children, had better chances of survival.
- Higher fares were linked to higher survival.
- Smaller family groups had better survival rates.
- Survival varied by port of embarkation.
- Overall, gender, age, class, and fare strongly influenced survival.

This analysis helps understand key factors affecting Titanic survival.