

MATHEMATICAL SCIENCES INSTITUTE

OTIC EILE COPY

ANNOTATED COMPUTER OUTPUT

87 - 4

ANNOTATED COMPUTER OUTPUT FOR SPLIT PLOT DESIGN: GENSTAT ANOVA

hy

W.T. FEDERER, Z.D. FENG, AND N.J. MILES-MCDERMOTT

August 1987

DISTRIBUTION STATEMENT A

Approved for public released Distribution Unlimited

29+ Caldwell Hall

lthaca, New York 14853-2602

(607) 255-8005

E

MASTER COPY

ADA187/20
FOR REPRODUCTION PURPOSES

			REPORT DOCUM	MENTATION	PAGE			
	ECURITY CLASS		***	16. RESTRICTIVE MARKINGS				
2a. SECURITY	classified CLASSIFICATIO	1 PN AUTHORITY		3 DISTRIBUTION/AVAILABILITY OF REPORT				
2b. DECLASSI	ICATION / DOV	VNGRADING SCHEDL	JLÉ	<u> </u>	d for public		,	
4 0000000000	IC ORCANIZAT	CON BEDORE AUGAR	70(6)		ution unlim			·
4. PERFORMIN	IG ORGANIZAT	TION REPORT NUMBE	:K(S)	5. MONITORING	ORGANIZATION R			,
62 NAME OF	6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL				RO 2330			
Od. NAIVIE OF	PERFORIVING	ORGANIZATION	6b OFFICE SYMBOL (If applicable)	7a. NAME OF MI	ONLICKING ORGA	ANIZA II	IUN	
}		ences Inst.	<u> </u>		Army Researc		fice	
6c. ADDRESS	(City, State, and	d ZIP Code)			ry, State, and ZIP	Code)		
	dwell Hall New York	l; Cornell Uni 14853	iversity		Box 12211 ch Triangle	Park	, NC 2	7709-2211
8a. NAME OF ORGANIZA	FUNDING / SPO	NSORING	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	T INSTRUMENT ID	ENTIF	CATION NU	MBER
1		rch Office	(ii applicable)	DA	919629-85	-c - <i>c</i>	00/8	
8c. ADDRESS (City, State, and	d ZIP Code)			FUNDING NUMBER	RS		
	ox 12211			PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO		WORK UNIT ACCESSION NO
<u></u>		e Park, NC 2	7709-2211 			<u> </u>		
11 TITLE (inc.	lude Security C	lassification)						
ANNOTAT	ED COMPUTE	ER OUTPUT FOR	SPLIT PLOT DESIG	GN: GENSTAT	ANOVA			
12 PERSONAL) Feno and	N.U. Nancy Miles-	-McDermott				
13a. TYPE OF		13b. TIME C		14. DATE OF REPO	ORT (Year Month	Day)	15 PAGE	COUNT
	Technical	L FROM	то	August 10	, 1987		19 pa	
	NTARY NOTA	The view,	opinions and/or	findings co	ntained in	this	report	are these
of the a			t be construed a designated by c					
17 FIELD	GROUP	· · · · · · · · · · · · · · · · · · ·	18. SÜBJECT TERMS (C	Continue on revers	e if necessary and	d ident	ify by bloci	k number)
7,610	GROOP	SUB-GROUP	illustrate;	randomized d	esign; spli	t plo	et; whol	e plots;
			covariance				 	·
19. ABSTRACT	(Continue on	reverse if necessary	and identify by block n	number)				
analyse the cov. whole p Compute two pro one pro	s are firs ariate is lots and t r packages cedural ca cedural ca	st conducted of performed. The covariate is may only given alls to obtain all.	nderstanding of on a data set with the third example is constant for we portions of the a portion of the constant of the const	thout the co has a diff all split p he analysis he correct r	variate. Therent experions within correctly. esults. GE	hen a iment a wl Some	in analy design nole plo packag requir	sis with for the t. es require
1		HILITY OF ABSTRACT	RPT DTIC USERS		CURITY CLASSIFIC	ATION		
1	F RESPONSIBLE		" LI DIE OSEKS		(include Area Code	e) 22c	OFFICE SY	MBOL
1				1				

ANNOTATED COMPUTER OUPUT FOR SPLIT PLOT DESIGN: GENSTAT ANOVA by

W.T. Federer, Z.D. Feng, and N.J. Miles-McDermott

Mathematical Sciences Institute, Cornell University, Ithaca, NY

ABSTRACT

PROGRAM SOCIONAL SOCIONAL PROGRAM SECUCIONI

In order to provide an understanding of covariance analyses for split plot designs, analyses are first conducted on a data set without the covariate. Then an analysis with the covariate is performed. The third example has a different experiment design for the whole plots and the covariate is constant for all split plots within a whole plot. Computer packages may only give portions of the analysis correctly. Some packages require two procedural calls to obtain a portion of the correct results. GENSTAT requires only one procedural call.

INTRODUCTION

This is part of a continuing project that produces annotated computer output for the analysis of balanced split plot experiments with covariates. The complete project will involve processing three examples on SAS/GLM, BMDP/2V, SPSS-X/MANOVA, GENSTAT/ANOVA, and SYSTAT/MGLH. Only univariate results are considered. We show here the results from GENSTAT ANOVA.

For Example 1, the data are artificial and were constructed for ease of computation; the experiment design for the whole plots is a randomized complete block and the split plot treatments are randomly allocated to the split plot experimental units within each whole plot. Example 2 is the same as Example 1 except that a

A-1

DTIC

covariate varies from split plot to split plot. The data for Example 3 come from an experiment wherein the whole plot treatments were laid out in a completely randomized design and the split plot treatments were randomly allotted to the split plot experimental units within each whole plot. The value of the covariate varies from whole plot to whole plot but is constant for all split plots within a whole plot treatment.

We present the elementary computational steps. Simple hypothetical data are used for the first two examples so that it is easy to provide all detailed computations to illustrate how each number is obtained. Some readers may wish to skip the detailed computations. The third example comes from Winer (1971). The detailed computations are given in his book (p. 803).

Data SP-1

Split plot data with whole plots arranged in randomized complete block design (hypothetical data)

		-		Whole	plot tre	eatment	<u> </u>	-		
		W1					W2			
	split	plot	trea	tment		split	: plot	trea	tment	
Block	s ₁	s ₂	s ₃	s ₄	Total	s	s ₂	s ₃	S ₄	Total
1	3	4	7	6	20	3	2	1	14	20
2	6	10	1	11	28	8	8	2	18	36
3	6	10	44	4	24	10	8	9	_ 13_	40
Total	15	24	12	21	72	21	18	12	45	96

Total and Means

	Blocks (8 observations)			W(whole 12 obser			S(split plot) (6 observations)		
	Total	Mean		Total	Mean		Total	Mean	
1	40	5	Wl	72	6	s	36	6	
2	64	8	W2	96	8	s_2^-	42	7	
3	64	8				s ₃	24	4	
Grai	nd Total	168				S ₄	66	11	
Grai	nd Mean	7				<u> </u>			

Model:
$$Y_{ijk} = \mu + \rho_j + \tau_i + \delta_{ij} + \alpha_k + (\alpha \tau)_{ik} + \epsilon_{ijk}$$
 $\mu = \text{mean}$
 $\tau_i = \text{effect of whole plot i}$
 $\rho_j = \text{effect of block j}$
 $\alpha_k = \text{effect of split plot k}$
 $\delta_{ij} = \text{error (a)}$
 $\epsilon_{ijk} = \text{error (b)}$
 $\epsilon_{ijk} = \text{error (b)}$
 $\epsilon_{ijk} = \text{error (b)}$

Analysis of Variance

Source	(*)	df	SS
B (Blocks)	$= R(\rho \mu, \tau, \alpha, \alpha \tau)$	2	48
W (whole plot treatments)	$= R(\tau \mu, \rho, \alpha, \alpha\tau)$	1	24
BxW (error (a))	$= R(\delta \mu, \rho, \tau, \alpha, \alpha \tau)$	2	16
S (split plot treatments)	$= R(\alpha \mu, \rho, \tau, \alpha \tau)$	3	156
SxW (interaction of S and W)	$= R(\alpha \tau \mu, \alpha, \tau, \rho)$	3	84
(**) S×B:W (error (b))	$= R(\in [\mu, \alpha, \tau, \alpha\tau, \rho)$	12	112
Total (Corrected for mean)	$= R(\rho, \tau, \delta, \alpha, \alpha\tau, \epsilon \mu)$	23	440
Mean	$= R(\mu)$	1	1176
Total (Uncorrected for mean)	$= R(\mu, \rho, \tau, \delta, \alpha, \alpha\tau, \epsilon)$	24	1616

(*)Notation follows that of Searle(1971); since the design is balanced, $R(\rho | \mu, \tau, \alpha, \alpha \tau) = R(\rho | \mu)$, etc. The simpler notation is used later. (**) S×B:W means S×B within W.

Calculations of sums of squares:

$$N = 2 \cdot 3 \cdot 4 = 24$$
 , $\overline{Y} = 7$

COSCIENCE CONTRACTOR OF CONTRA

$$R(\mu,\rho,\tau,\delta,\alpha,\alpha\tau,\epsilon) = \sum_{i=1}^{2} \sum_{j=1}^{3} \sum_{k=1}^{4} Y_{ijk}^{2} = (3^{2} + 6^{2} + 6^{2} + \cdots + 18^{2} + 13^{2}) \approx 1616$$

$$R(\mu) = N\bar{Y}^2 = 24 \cdot (7)^2 = 1176$$

$$R(\rho, \tau, \delta, \alpha, \alpha \tau, \epsilon | \mu) = 1616 - 1176 = 440$$

$$R(\rho | \mu) = R(\mu, \rho) - R(\mu) = \frac{(40^2 + 64^2 + 64^2)}{8} - 1176 = 1224 - 1176 = 48$$

$$R(\tau | \mu) = R(\mu, \tau) - R(\mu) = \frac{(72^2 + 96^2)}{12} - 1176 = 1200 - 1176 = 24$$

$$R(\delta | \mu, \rho, \tau) = R(\delta, \mu, \rho, \tau) - R(\mu, \rho) - R(\tau, \mu) + R(\mu)$$

$$= \frac{(20^2 + 28^2 + 24^2 + 20^2 + 36^2 + 40^2)}{4} - 1224 - 1200 + 1176$$

$$= 1264 - 1224 - 1200 + 1176 = 16$$

$$R(\alpha | \mu) = R(\alpha, \mu) - R(\mu) = \frac{(36^2 + 42^2 + 24^2 + 66^2)}{6} - 1176 = 1332 - 1176 = 156$$

$$R(\alpha \tau | \mu, \alpha, \tau) = R(\alpha \tau, \mu, \alpha, \tau) - R(\mu, \alpha) - R(\mu, \tau) + R(\mu)$$

$$= \frac{(15^2 + 24^2 + 12^2 + 21^2 + 21^2 + 18^2 + 12^2 + 45^2)}{3} - 1332 - 1200 + 1176$$

$$= 1440 - 1332 - 1200 + 1176 = 84$$

$$R(\epsilon | \mu, \rho, \delta, \alpha, \tau, \alpha \tau) = R(\epsilon, \mu, \alpha, \rho, \delta, \tau, \alpha \tau) - R(\mu, \rho, \tau, \delta) - R(\mu, \alpha, \tau, \alpha \tau) + R(\tau, \mu)$$

$$= 1616 - 1264 - 1440 + 1200 = 112$$

Data SP-2

Data SP-2: Data SP-3 with the following covariate Z which varies with split plot

Covariate (Z)

Ì		whole plot					- 			
	. s ₁	s ₂	S ₃	s ₄	Total	s ₁	s ₂	S ₃	S ₄	Total
В	1	2	1	2	6	2	0	2	4	8
B ₂	2	2	0	4	8	4	1	3	4	12
B ₃	3	5	2	0	10	3	2	4	7	16
Total	6	9	3	6	24	9	3	9	15	36

Totals and Means

	blocks (8 observations)			<pre>W (whole plot) (12 observations)</pre>			S (split plot) (6 observations)		
	Total	Mean	·	Total	Mean		Total	Mean	
1	14	14/8	1	24	2.0	1	15	2.5	
2	20	20/8	2	36	3.0	2	12	2.0	
3	26	26/8				3	12	2.0	
Gra	nd	,				4	21	3.5	
Tot	al 60	2.5					· 		

and besteered assesses sections sections besteer assessed from

ACC COCCOCCO PERSONACIO DE SERVICIO DE PROPERSONA DE PROPE

Model:
$$Y_{ijk} = \mu + \rho_j + \tau_i + \delta_{ij} + \alpha_k + (\alpha \tau)_{ik} + \beta_1 (\bar{z}_{ij} - \bar{z}_{...}) + \beta_2 (z_{ijk} - \bar{z}_{ij}) + \epsilon_{ijk}$$
 $\rho_j = \text{effect of jth block} \qquad \tau_i = \text{effect of ith whole plot}$
 $\alpha_k = \text{effect of kth split plot} \qquad \beta_1 = \text{whole plot regression slope}$
 $\beta_2 = \text{split plot regression slope} \qquad \delta_{ij} = \text{error a} \qquad \epsilon_{ijk} = \text{error b}$

Table of sum of squares and products

Source	df	YY	YZ	<u> </u>
В	2	48	18	9
W	1	24	12	6
B×W (error a)	2	16	4	1
S	3	156	33	9
S×W	3	84	33	21
S×B:W (error b)	12	112	17	20
Mean	11	1176	420	150
Total	24	1616	<u>5</u> 37	216

YY column is the same as in SP-1, ZZ column is computed in the same fashion. Thus, only computations for YZ column are illustrated.

$$Total_{YZ} = \sum_{i=1}^{2} \sum_{j=1}^{3} \sum_{k=1}^{4} Y_{ijk} \cdot Z_{ijk}$$

$$= 3(1) + 6(2) + \cdots + 14(4) + 18(4) + 13(7) = 537$$

$$Mean_{YZ} = N\overline{Y} \cdot ... \overline{Z} \cdot ... = \frac{168 \cdot 60}{24} = 420$$

$$B_{YZ} = \frac{\sum_{j=1}^{3} \sum_{i=1}^{2} \sum_{k=1}^{4} Y_{ijk}}{\sum_{i=1}^{2} \sum_{k=1}^{4} \sum_{k=1}^{2} \sum_{ijk}} -420 = \frac{40(14) + 64(20) + 64(26)}{8} - 420$$

$$= 438 - 420 = 18$$

$$W_{YZ} = \frac{\sum_{j=1}^{2} \sum_{j=1}^{3} \sum_{k=1}^{4} Y_{ijk}}{\sum_{j=1}^{3} \sum_{k=1}^{4} \sum_{j=1}^{2} \sum_{k=1}^{4} \sum_{k=1}^{4} \sum_{j=1}^{4} \sum_{k=1}^{4} \sum_{k=1}^{4$$

$$B \times W_{YZ} = \frac{\sum_{i=1}^{2} \sum_{j=1}^{3} (\sum_{k=1}^{4} Y_{ijk}) (\sum_{k=1}^{4} Z_{ijk})}{4} - 438 - 432 + 420$$

$$= 454 - 438 - 432 + 420 = 4$$

$$S_{YZ}: \sum_{k=1}^{4} \frac{(\sum_{j=1}^{2} \sum_{j=1}^{3} Y_{ijk}) (\sum_{j=1}^{3} \sum_{j=1}^{2} Z_{ijk})}{2(3)} - 420 = 453 - 420 = 33$$

$$S \times W_{YZ}: \frac{\sum_{j=1}^{2} \sum_{k=1}^{4} (\sum_{j=1}^{3} Y_{ijk}) (\sum_{j=1}^{3} Z_{ijk})}{3} - 453 - 432 + 420$$

$$= 498 - 453 - 432 + 420 = 33$$

$$S \times B: W_{YZ}: \frac{\sum_{j=1}^{2} \sum_{k=1}^{4} (\sum_{j=1}^{3} Y_{ijk}) (\sum_{j=1}^{3} Z_{ijk})}{3} - 454 - 498 + 432$$

$$= 537 - 454 - 498 + 432 = 17$$

TORSON CONTROLLES OF CONTROL OF STREET OF THE STREET OF TH

Analysis of Variance and Covariance

Source		df	<u> </u>
B (block)	$= R(\rho \mu, \tau)$	2	48
W (whole plot treatment)	$= R(\tau \mu, \rho, \beta_1)$	1	3.4286
Regression (a)	$= R(\beta_1 \mu, \rho, \tau)$	1	16.0
B×W (error (a))	$= R(\delta \mu, \rho, \tau, \beta_1)$	1	0.0
S (split plot treatment)	$= R(\alpha \mu, \rho, \tau, \alpha \tau, \beta_2)$	3	84.243
$S \times W$ (interaction of S and W)	$= R(\alpha\tau \mu, \rho, \tau, \alpha, \beta_2)$	3	37.474
Regression (b)	$= R(\beta_2 \mu, \rho, \tau, \alpha, \alpha \tau)$	1	14.450
S×B: W (error (b))	= $R(\epsilon \mu, \rho, \alpha, \tau, \alpha \tau, \beta_2)$	11	97.550

$$\hat{\beta}_{1} = B \times W_{YZ} / B \times W_{ZZ} = 4/1 = 4$$

$$\hat{\beta}_{2} = S \times B : W_{YZ} / S \times B : W_{ZZ} = 17/20 = 0.85$$

The SS's adjusted by regression on Z are illustrated below:

 $R(\rho|\mu)$ = 48, remains same since it is not of interest to adjust for Z on the blocks.

$$R(\tau, \delta | \mu, \rho, \beta_1) = (W_{YY}^+ B \times W_{YY}^-) - \frac{(W_{YZ}^+ B \times W_{YZ}^-)^2}{W_{ZZ}^+ B \times W_{ZZ}^-}$$

$$= (24 + 16) - \frac{(12 + 4)^2}{6 + 1} = 40 - \frac{256}{7} = 3.4286$$

$$R(\delta | \mu, \rho, \tau, \beta_1) = B \times W_{YY} - \frac{(B \times W_{YZ})^2}{B \times W_{ZZ}} = 16 - \frac{4^2}{1} = 0$$

$$R(\tau | \mu, \rho, \beta_1) = R(\tau, \delta | \mu, \rho, \beta_1) - R(\delta | \mu, \rho, \tau, \beta_1)$$
$$= 40 - \frac{256}{7} - 0 = 3.4286$$

$$R(\beta_1 | \mu, \tau, \rho) = \frac{(B \times W_{YZ})^2}{B \times W_{ZZ}} = \frac{4^2}{1} = 16$$

$$R(\alpha, \epsilon | \mu, \rho, \tau, \alpha \tau, \beta_2) = (S_{YY} + S \times B : W_{YY}) - \frac{(S_{YZ} + S \times B : W_{YZ})^2}{S_{ZZ} + S \times B : W_{ZZ}}$$

$$= (156 + 112) - \frac{(33+17)^2}{9+20}$$

$$= 268 - 86.207 = 181.793$$

$$R(\alpha\tau, \epsilon | \mu, \rho, \alpha, \tau, \beta_2) = (S \times W_{YY} + S \times B : W_{YY}) - \frac{(S \times W_{YZ} + S \times B : W_{YZ})^2}{S \times W_{ZZ} + S \times B : W_{ZZ}}$$

$$= 84 + 112 - \frac{(33+17)^2}{21+20} = 196 - 60.976 = 135.024$$

Note: $R(\alpha, \epsilon | \mu, \beta_2)$ and $R(\alpha \tau, \epsilon | \mu, \alpha, \tau, \beta_2)$ are intermediate steps for later use.

$$R(\beta_2 | \mu, \rho, \alpha, \tau, \alpha\tau) = \frac{(S \times B : W_{YZ})^2}{S \times B : W_{ZZ}} = \frac{17^2}{20} = 14.450$$

$$R(\epsilon | \mu, \rho, \alpha, \tau, \alpha \tau, \beta_2) = S \times B : W_{YY} - \frac{(S \times B : W_{YZ})^2}{S \times B : W_{7Z}} = 112 - \frac{17^2}{20} = 112 - 14.45 = 97.55$$

$$R(\alpha | \mu, \rho, \tau, \alpha \tau, \beta_2) = R(\alpha, \epsilon | \mu, \rho, \tau, \alpha \tau, \beta_2) - SS \text{ error } b = 181.793 - 97.55$$

= 84.243

$$R(\alpha \tau | \mu, \rho, \alpha, \tau, \beta_2) = R(\alpha \tau, \epsilon | \mu, \rho, \alpha, \tau, \beta_2) - R(\epsilon | \mu, \rho, \alpha, \tau, \alpha \tau, \beta_2)$$

$$= 135.024 - 97.55 = 37.474$$

Data SP-3

Split plot data with plots arranged in a completely randomized design and a covariate Z that is constant within the whole plot. (Winer, 1971, p. 803)

		Split	plots		
whole plot	Subject	B ₁	B ₂	z	Total
		Y	Y		Y
A ₁					
_	1	10	8	3	18
	2	15	12	5	27
	3	20	14	8	34
	4	12	6	2	18
A ₂					
	5	15	10	1	25
	6	25	20	8	45
	7	20	15	10	35
	8	15	10	2	25
	Total	132	95	39	227
	Mean	16.5	11.9	4.88	

Model:
$$y_{ijk} = \mu + \tau_i + \delta_{ij} + \alpha_k + (\tau \alpha)_{ik} + \beta_1(Z_{ij} - \overline{Z}_{..}) + \epsilon_{ijk}$$
 $\tau_i = A$ effect (whole plot) $\delta_{ij} = \text{error (a)}$ $\epsilon_{ijk} = \text{error (b)}$
 $\alpha_k = B$ effect (split plot) $\beta_1 = \text{whole plot regression slope}$

Analysis of variance and covariance

THE PROPERTY AND PROPERTY OF THE PROPERTY PROPER

TORREST COLUMN SONSON OF

Source		df	SS
A (whole plot)	$= R(\tau \mu, \beta_1)$	1	44.492
Regression	$= R(\beta_1 \mu, \tau)$	1	166.577
Error (a)	$= R(\delta \mu, \tau, \beta_1)$	5	61.298
B (split plot)	$= R(\alpha \mu, \tau, \alpha \tau)$	1	85.563
A×B (interaction)	$= R(\tau \alpha \mu, \tau, \alpha)$	1	0.563
Error (b)	$= R(\epsilon \mu, \tau, \alpha, \tau \alpha)$	66	6.375

Table of SS and products

Symbol	y ²	ZY	z ²
W	68.06	12.38	2.25
E(a)	227.88	163.00	159.50
S	85.563	0	0
WS	0.563	0	0
E(b)	6.375	0	0

$$\hat{\beta}_1 = \frac{163.00}{159.50} = 1.02$$

Since the computations are illustrated in Winer (1971, p. 803-5) we have omitted them here.

References

Federer. W.T. (1955), <u>Experimental Design</u>, <u>Theory and Application</u>. The Macmillan Co., New York, Chapter 16.

Federer, W.T., and Henderson, H.V. (1979), Covariance Analysis of Designed Experiments X Statistical Packages: An Update, <u>Proc.</u>, <u>Comp. Sci. and Stat.: 12th Ann. Sym. on the Interface</u>.

<u>GENSTAT A General Statistical Program Release 4.04</u> (1983), Rothamsted Experimental Station.

Searle, S.R., (1971), Linear Models, Wiley, N.Y., 532pp.

Searle, S.R., Hudson, G.F.S., and Federer, W.T. (1985), Annotated Computer Output for Covariance-Text, BU-780-M, Biometrics Unit Mimeo Ser., Cornell University, Ithasa, NY.

Winer, B.J., (1971), <u>Statistical Principles in Experimental Design</u>, McGraw-Hill Book Company, New York: 907pp.

SP-1 and SP-2: Control Language

```
Control Language is typed in upper case and comments are in the time
              ⇒ file name
'REFE' SPLIT
              ⇒ number of observations
'UNITS' $ 24
'FACTOR' BLOCKS $3
                              define levels of each factor
      : PLOTS $2
      : SUBPLOTS $4
'READ/FORM=P, PRIN=D' BLOCKS, PLOTS, SUBPLOTS, X, Y ⇒ Input variable
'RUN'
1 1 1 1 3
1 1 2 2 4
1 1 3 1 7
1 1 4
      2 6
1 2 1 2 3
1 2 2 0 2
1 2 3 2 1
1 2 4 4 14
2 1 1 2 6
2 1 2 2 10
2 1 3 0 1
2 1 4 4 11
2 2 1 4 8
2
 2 2 1 8
2 2 3 3 2
2 2 4 4 18
3 1 1 3 6
3 1 2 5 10
3 1 3 2 4
3 1 4 0 4
3 2 1 3 10
3 2 2 2 8
3 2 3 4 9
3 2 4
        13
       ⇒ tell GENSTAT that data flow ends
'BLOCKS' BLOCKS/PLOTS/SUBPLOTS ⇒ define error terms (strata) of a
                                    factorial model
'TREATMENTS' PLOTS*SUBPLOTS \implies treatment terms of a factorial model
'COVARIATES' X ⇒ covariate
'ANOVA' Y
          ⇒ invokes analysis of variance on Y variable
'RUN'
'STOP'
```

POSSILIANDES SOCIOLOS DE SOCIOLOS DE SOCIONARIOS DE SOCIENARIOS DE SOCIONARIOS DE

SP-3: Control Language

```
'REFE' SPLIT3
'UNITS' $ 16
'FACTOR' PLOT $2
       : SUBPLOT $2
      : SUBJECT $8
'READ/FORM=P, PRIN=D' SUBJECT, PLOT, SUBPLOT, Y, Z
'RUN'
1 1 1 10 3
1 1 2 8 3
2 1 1 15 5
2 1 2 12 5
3 1 1 20 8
3 1 2 14 8
4 1 1 12 2
4 1 2 6 2
5 2 1 15 1
5 2 2 10 1
6 2 1 25 8
6 2 2 20 8
7 2 1 20 10
7 2 2 15 10
8 2 1 15 2
8 2 2 10 2
'EOD'
'BLOCKS' PLOT/SUBJECT/SUBPLOT
'TREATMENT' PLOT*SUBPLOT
'COVARIATES' Z
'ANOVA' Y
'RUN'
'STOP'
```

OK, SLIST SPLIT3.OGEN

The second control of the second seco

SP-1: Split plots with whole plots arranged in RCB design
SP-2: Split plots with whole plots arranged in RCB with a
covariate with split plot

Analysis of variance table on covariate Z

**** ANALYSIS OF VARIANCE ****

TOTAL NUMBER OF OBSERVATIONS

VARIATE: Z					
SOURCE OF VARIATION	DF	ss	SS%	MS	VR
BLOCKS STRATUM	2	9.000	13.64	4.500	
BLOCKS.PLOTS STRATUM					
PLOTS	1	6.000	9.09	6.000	12.000
RESIDUAL	2	1.000	1.52	0.500	
TOTAL	3	7.000	10.61	2.333	
BLOCKS.PLOTS.SUBPLOTS	STRATUM				
SUBPLOTS	3	9.000	13.64	3.000	1.800
PLOTS.SUBPLOTS	3	21.000	31.82	7.000	4.200
RESIDUAL	12	20.000	30.30	1.667	
TOTAL	18	50.000	75.76	2.778	
GRAND TOTAL	23	66.000	100.00		
GRAND MEAN	2.50)			

24

12

ANOVA for Y variable without covariate Z

**** ANALYSIS OF VARIANCE ****

VARIATE:	Y
----------	---

TO SECRETARIO DE SERVICIO DE LA CONTRACTARIO DE CONTRACTOR DE CONTRACTOR

SOURCE OF VARIATION	DF	SS MS	SS% VR
BLOCKS STRATUM	2 R(ρ μ,τ,α,ατ)	48.000 24.000	(F-statistics) 10.91
BLOCKS.PLOTS STRATUM			
PLOTS	1 R(τ μ,ρ,α,ατ)	24.000	5.45
		24.000	$3.000 = \frac{24.00}{8.00}$
RESIDUAL	2 R(δ μ,ρ,τ,α,ατ)	16.000	3.64
		8.000	
TOTAL	3	40.000	9.09
		13.333	
BLOCKS.PLOTS.SUBPLOTS	STRATUM		
SUBPLOTS	3 R(α μ,ρ,τ,ατ,δ)	156.000	35.45
		52.000	5.571
PLOTS.SUBPLOTS	3 R(ατ μ,α,τ,ρ,δ)	84.000	19.09
		28.000	3.000
RESIDUAL	12 R(€ μ,α,τ,ατ,ρ,δ	5)112.000	25.45
		9.333	
TOTAL	18	352.000	80.00
		19.556	
GRAND TOTAL	23	440.000	100.00
GRAND MEAN	7.00		

TOTAL NUMBER OF OBSERVATIONS 24

***** ANALYSIS OF VARIANCE ***** (ADJUSTED FOR COVARIATE)

STOP COORSES CORRESS CORRESSOR PRINCIPLES PRINCIPLES CONTRACTOR PROGRESS PRINCIPLES CONTRACTOR PROGRESS PRINCIPLES CONTRACTOR PRINCIPLES PRINCIPLES PRINCIPLES PRINCIPLES PRINCI

ĸ	
ž	
-	
_	
≺	
J	
¥	
_	
L	
_	
_	
٠.	
_	
n	
5	
᠆,	
~	
-	

VARIATE: Y

<pre>COV EF = covariance efficiency factor c)</pre>	2.000	0.143	0.870 0.741 1.052	unity) atment .143;
VR © (F-statistic)	3.000		3.166 1.409 1.629	r close to rective to the control of
I)	36.000 12.000 21.000	3.429 16.000 0.000 6.476	28.081 12.491 14.450 8.868 12.084	low value of COV EF (usually close to unity) indicates high correlation between treatment and covariate c.g. COV EF for plots is .143; indicating correlation between
%SS	8.18 2.73 10.91	0.78 3.64 0.00	19.15 8.52 3.28 22.17 53.12	alue of WV ates high ed ovariate e.p
SS	36.000 12.000 48.000	3.429 16.000 0.000 19.429	84.243 37.474 14.450 97.550 233.717	
DF	1 (*) pooled {36.000 1 (12.000 2 R(p µ,τ) 48.000	1 $R(\tau \mu, \rho, \beta_1)$ 1 $R(\beta_1 \mu, \rho, \tau)$ 1 $R(\delta \mu, \rho, \tau, \beta_1)$ 3	3 R(α μ.ρ.τ.ατ.β ₂) 3 R(ατ μ.ρ.τ.α.β ₂) 1 R(β ₂ μ.ρ.τ.α.ατ) 11 R(¢ μ.ρ.α.τ.α.ατ) 18	23 301.146 68.44 7.00 24 NOTE:
SOURCE OF VARIATION	BLOCKS STRATUM COVARIATE RESIDUAL TOTAL	BLOCKS. PLOTS STRATUM PLOTS COVARIATE RESIDUAL TOTAL	BLOCKS. PLOTS. SUBPLOTS STRATUM SUBPLOTS F.OTS. SUBPLOTS COVARIATE RESIDUAL TOTAL	GRAND TOTAL GRAND MEAN T.00 TOTAL NUMBER OF OBSERVATIONS (*) Block is just a nuisance factor; hence only

 $\bar{z}_2 = 3$

 $\tilde{\mathbf{W}}_1$ and $\tilde{Z}_1(\tilde{\mathbf{W}}_1=6,\ \tilde{\mathbf{W}}_2=8,\ \tilde{Z}_1=2,$

 $R(\rho|\mu,\tau)=48$ is used in Analysis of variance

**** COVARIANCE REGRESSIONS *****

COVARIATE (Z)

COEFFICIENT

SE

BLOCKS STRATUM

Z (
$$\beta_0$$
 is not of interest) $\hat{\beta}_0 = 2.0$ 1.15
$$= \frac{B_{YZ}}{B_{ZZ}} = \frac{18}{9}$$

BLOCKS.PLOTS STRATUM

$$\hat{\beta}_1 = 4 \qquad 0$$

BLOCKS.PLOTS.SUBPLOTS STRATUM

CONTRACTOR PROGRESSION SEPTEMBER OF SEPTEMBER SECTIONS OF SECTIONS

$$\hat{\beta}_2 = 0.85$$
 0.666

***** TABLES OF MEANS **** (ADJUSTED FOR COVARIATE)

VARIATE: Y

GRAND MEAN 7.00

PLOTS 1 2
8.00
$$6.00 = \bar{Y}_{2..} - \hat{\beta}_{1}(\bar{Z}_{2..} - \bar{Z}_{...}) = 8-4.0(3-2.5)=6$$

SUBPLOTS 1 2 3 4

6.00 7.43 4.43
$$10.15 = \overline{Y}_{...4} - \hat{\beta}_2(\overline{Z}_{...4} - \overline{Z}_{...})$$

$$= 11 - 0.85(\frac{21}{6} - \frac{60}{24})$$

$$= 11 - .85 = 10.15$$

SUBPLOTS 1 2 3 4 PLOTS 1 7.00 9.15 6.85 9.00 2 5.00 5.70 2.00
$$11.30 = \overline{Y}_{2 \cdot 4} - \hat{\beta}_{1}(\overline{Z}_{2 \cdot \cdot} - \overline{Z}_{\cdot \cdot})$$
 $-\hat{\beta}_{2}(\overline{Z}_{2 \cdot 4} - \overline{Z}_{2 \cdot \cdot}) = 15-4(3-2.5) - .85(\frac{15}{3}-3) = 11.30$

**** STANDARD ERRORS OF DIFFERENCES OF MEANS *****

TABLE	PLOTS	SUBPLOTS	PLOTS SUBPLOTS
REP	12	6	3
SED	0.000	1.844	2.718

***** STRATUM STANDARD ERRORS AND COEFFICIENTS OF VARIATION ****

STRATUM	DF	SE	CV%
BLOCKS	1	1.225	17.5
BLOCKS.PLOTS	1	0.000	0.0
BLOCKS.PLOTS.SUBPLOTS	11	2.978	42.5

2.978 =
$$\frac{\text{unadjusted standard error}}{\sqrt{\text{COV EF of Residual}}}$$

= $\frac{\sqrt{9.333}}{\sqrt{1.053}}$

NOTE:

S.E
$$(\hat{\bar{Y}}_{i..} - \hat{\bar{Y}}_{i..}) = \left\{ \frac{2E_a}{r(s)} \left(1 + \frac{W_{zz}/(w-1)}{B \times W_{zz}} \right) \right\}^{1/2}$$

$$= 0.0$$
S.E $(\hat{\bar{Y}}_{..k} - \hat{\bar{Y}}_{..k}) = \left\{ \frac{2E_b}{r(w)} \left(1 + \frac{S_{zz}/(s-1)}{S \times B : W_{zz}} \right) \right\}^{1/2}$

$$= \left\{ \frac{2(97.55)}{3(2)(11)} \left(1 + \frac{9/(4-1)}{20} \right) \right\}^{1/2} = 1.844$$
S.E $(\hat{\bar{Y}}_{i.k} - \hat{\bar{Y}}_{i.k}) = \left\{ \frac{2E_b}{r} \left(1 + \frac{(S_{zz} + S \times W_{zz})/w(s-1)}{S \times B : W_{zz}} \right) \right\}^{1/2}$

$$= \left\{ \frac{2(97.55)}{3(11)} \left(1 + \frac{(9+21)/(2)(3)}{20} \right) \right\}^{1/2} = 2.718$$

where
$$W = no.$$
 of whole plot = 2 $E_a = 0$ S = no. of split plot = 4 $E_a = 0$ $E_b = 0$ $E_b = 0$

SP-3: Split plots with whole plot arranged in CRD with a covariate constant within whole plot

**** ANALYSIS OF VARIANCE **** ANOVA on Covariate Z

VARIATE: Z

SOURCE OF VARIATION	DF		SS	SS%		MS	VR
PLOT.SUBJECT STRATUM							
PLOT	1	2.250E	0	1.39	2.250E	0	0.085
RESIDUAL	6	1.595E	2	98.61	2.658E	1	
TOTAL	7	1.618E	2	100.00	2.311E	1	
PLOT.SUBJECT.SUBPLOT	STRATU	JM					
SUBPLOT	1	0.000E	0	0.00	0.000E	0	
PLOT.SUBPLOT	1	0.000E	0	0.00	0.000E	0	
RESIDUAL	6	0.000E	0	0.00	0.000E	0	
TOTAL	8	0.000E	0	0.00	0.000E	0	
GRAND TOTAL	15	1.618E	2	100.00			
GRAND MEAN	4	1.88					
TOTAL NUMBER OF OBSER	RVATIO	1S	16				

Notice that SS in plot.subject.subplot stratum are all zeroes since Z is constant within whole plot.

ANOVA on Y without covariate Z

TOTAL NUMBER OF OBSERVATIONS

**** ANALYSIS OF VARIANCE ****

VARIATE: Y

SOURCE OF VARIATION	DF	SS	SS%	MS	VR
PLOT.SUBJECT STRATUM					
PLOT	1	68.063	17.52	68.063	1.792
RESIDUAL	6	227.875	58.66	37.979	
TOTAL	7	295.938	76.19	42.277	
PLOT.SUBJECT.SUBPLOT	STRATU	1			
SUBPLOT	1	85.563	22.03	85.563	80.529
PLOT.SUBPLOT	1	0.563	0.14	0.563	0.529
RESIDUAL	6	6.375	1.64	1.063	
TOTAL	8	92.500	23.81	11.563	
GRAND TOTAL	15	388.438	100.00		
GRAND MEAN	14	19			

16

Covariance Analysis

SECOND TRANSPORT OF THE PROPERTY OF THE PROPER

инин ANALYSIS OF VARIANCE кинчи (ADJUSTED FOR COVARIATE)

VARIATE: Y

SAFRCE OF VARIATION	DF		SS	258	MS	Υ.	COV EF
PLOT SUBJECT STRATUM	1 R(1 R(r \mu.\b, 1)	44.402	11.45	44.402	3.629	0.986
COVARIATE	1 R(ห(<i>เ</i> _{น [ม.} า)	106.577	42.88	166.577	13.587	
RISTONAL	5 R(5 κ(δ [μ.τ.β ₁)	61.298	15.78	12.260		3.008
TOTAL.	7	•	272.367	70.12	38.910		
PLOT. SUBJECT. SUBPLOT STRATUM SUBPLOT	1 8(n [11.7.ar)	85,563	22.03	85.563	80.529	1.000
PLOT SURPLOT	````` 	1 R(ra µ.r.a)	0.563	0.14	6.563	0.529	1.000
RFS 11 WAL	ر ۲(6 R(C (µ, T, a, ra)	6,375	1.64	1.063		1.000
TOTAL	os os			23.51	11.563		
GRAND TOTAL	15		364,867	93.93			
GRAND MFAN TOTAL NUMBER OF ORSERVATIONS	14. 19 16	19 16					

**** COVARIANCE RECRESSIONS ****

COVARIATE COEFFICIENT SE FI OF SUBJECT STRATUM $\hat{\boldsymbol{\beta}}_1 = 1.02 - 0.277$

**** TABLES OF MEANS *****
(ADJUSTED FOR COVARIATE)

VARIATE: Y

8222 BACKBAR COLLEGE BASKSSE COCCOMMINICACCAS

GRAND MEAN 14.19

PLOT 1 2

12.51 15.87 = \bar{Y}_{2} $\hat{\beta}_{1}(\bar{Z}_{2} - \bar{Z}_{..}) = 16.25 - 1.02(5.25 - 4.88)$

SUBPLOT 1 2 16.50 11.88 same as unadjusted mean

SUBPLOT 1 2 PLOT

> 1 14.63 10.38 2 18.37 13.37 = $\bar{Y}_{2 \cdot 2} - \hat{\beta}_{1} (\bar{Z}_{2} - \bar{Z}_{\cdot \cdot}) = 13.75 - 1.02 (5.25 - 4.88)$

= 13.37

**** STANDARD ERRORS OF DIFFERENCES OF MEANS ****

TABLE PLOT SUBPLOT PLOT SUBPLOT

REP 8 8 4
SED 1.763 0.515 1.829
EXCEPT WHEN COMPARING MEANS WITH SAME LEVEL(S) OF:
PLOT 0.731

***** STRATUM STANDARD ERRORS AND COEFFICIENTS OF VARIATION ****

STRATUM DF SE CV%

PLOT.SUBJECT 5 2.476 17.5

PLOT.SUBJECT.SUBPLOT 6 1.031 = $\frac{\sqrt{1.063}}{\sqrt{1.000}}$ 7.3

[residual MS of unadjusted | 1/2 | COV EF of adjusted residual |

END DATE FILMED JAN 1988