

$$\begin{array}{c} G_{8,17} G_{8,2} \Rightarrow & \text{Lp}_1 \neq \text{Lp}_2 \\ \hline KCL @ \text{nvde } X \\ \hline E_1 + \text{Lp}_1 = \text{Lp}_2 + \text{L}_1 + & \text{L}_2 \\ \hline \Rightarrow & \text{L}_1 = & \text{Lr} + & (\text{Lp}_2 - \text{Lp}_1) \\ & \cong & \text{Lr} - & \text{Lp}_1 & (\text{Lp}_1) \\ \hline & = & \text{Lr} - & G_{8,1} & d(\text{VLO} - \text{Vx}) \\ \hline & & \text{displacement current flowing} \\ & & \text{into current source} \end{array}$$

* It is modulated by co

-> if It becomes small enough, M,/M2

may leave saturation => non-linearity

i.e. sharp to edges & large vio make

linearity works (opposite of low-noise

neginirement - we will see this next vans)

Nis = 15, X | > vx

looks like;

Noise in hilbert Mixers?
Ref: H. Darabi & A. Abidi, " Noye in RF-CMRS
miners: A simple Physical Model", IEEE Journal
of Solid-State Circuits, vol.35, No.1, Jan 2000,
pp 15-25
1) Load Nove:
a) Resistive load ? * Von, RL = 8 KT RL {2 resistors}
* no 1/4 noise (neually)
TISHUS:
3RL ZRL * voltage headroom: Vo, (m=VD)-ITRL
miner were * GC XRL
Q 2 I T
b) PMOS loads
CM-feedbaile
VDD
Miner Core
-> Voice = VDD-Vas Miner Core Vrey
→ Vo, cm & VDD - VD, SAT
-> best headroom
-> Cc = Miller campensation cap
* Thermal noise of PMOS

* 1/f noise imparts Direct conversions or low-IF Rx (use large PMOSa)

* Switching pair mismatch > some 1/4 noise remaine @ baseband

Tx mixes: desired rignal = UBB

* (1/f noise + BB rignal) gets up-converted

* up noise does matter > design gm stage

with large area

- 3) Nove from switching pair:

 -> more complicated to analyse
 - -> no nouse contribution when convent is completely switched (like a carcode)

$$S_{r}(t) = S(t) + p(t)$$
 $p(t) = pulse train of height = +1 \text{ or } -1$
 $width \Delta t = \frac{v_n(t)}{S}$
 $rate = 2 W_{co}$
 $ion \Rightarrow pulses of amplitude 2 I_T$
 $average value of output universe over one period:

 $ion = \frac{2}{T} \times 2I_{T} \times \Delta t = \frac{2}{T_{co}} \times 2I_{T} \times \frac{v_n}{S}$
 $= 4 I_T. \frac{v_n}{S \cdot T_{co}}$
 $\begin{cases} T_{co} = \frac{2\pi}{U_{co}} \end{cases}$$

* Lo signal = ±VLO sinWLot > VLO = 2 VLO sin WLot

