دانشکده مهندسی برق گروه کنترل

به نام خدا

كنترل بهينه

تمرین سری پنجم (کنترل بهینه سیستمهای زمان پیوسته)

دانشگاه صنعتی خواجه نصیرالدین طوسی

تاریخ تحویل: ۳/۳۱ ۰/

مدرس: دكتر حميد خالوزاده

۱- به سوالات زير از فصل چهارم مرجع (Optimal Control, 3rd Edition, Frank L. Lewis) پاسخ دهيد.

4.1-2, 4.1-3

 $X_{k+1} = A_k X_k + B_k u_k + D_k d_k$

۲- سیستم خطی با ورودی اغتشاش مقابل را در نظر بگیرید:

 $J_{i} = \frac{1}{2} x_{i+N}^{T} H x_{i+N} + \frac{1}{2} \sum_{k=1}^{k=i+N-1} \left(x_{k}^{T} Q_{k} x_{k} + u_{k}^{T} R_{k} u_{k} \right)$

همراه با تابعی معیار:

با در نظر گرفتن زمان اولیه برابر صفر (i=0) و ماتریسهای $Q_k, H_k \in \mathbb{R}^{n imes n}$ به صورت مثبت نیمه معین و

ورید. آورید. $R_k \in \mathbb{R}^{r imes r}$ به صورت مثبت معین، روابط مربوط به کنترل بهینه با حذف اثر اغشتاش را بدست آورید.

راهنمایی: مسئله با استفاده از Sweep Method تبدیل به حل یک معادله ریکاتی و یک معادله کمکی می شود.

۳- معادلات دینامیکی سیستم پاندول معکوسی به شرح زیر میباشد:

 $\begin{cases} (M+m)\ddot{x} + ml\ddot{\theta}\cos\theta - ml\dot{\theta}^2\sin\theta = F \\ ml\ddot{x}\cos\theta + ml^2\ddot{\theta} - mgl\sin\theta = 0 \end{cases}$

مقادیر عددی پارامترها عبارتند از:

M جرم گاری ، ۱ کیلو گرم

m جرم آونگ، ۱ کیلوگرم

ا طول آونگ، ۱ متر

ه شتاب گرانشی، 9/۸ متر بر مجذور ثانیه g

۱-۳ طراحی LQR برای سیستم خطی شده زیر، با این هدف که پاندول در حالت عمودی قرار گیرد.

 $\begin{cases} (M+m)\ddot{x} + ml\ddot{\theta} = F \\ ml\ddot{x} + ml^2\ddot{\theta} - mgl\theta = 0 \end{cases}$

دانشکده مهندسی برق گروه کنترل

به نام خدا

كنترل بهينه

تمرین سری پنجم (کنترل بهینه سیستمهای زمان پیوسته)

دانشگاه صنعتی خواجه نصیرالدین طوسی

مدرس: دكتر حميد خالوزاده

تاریخ تحویل: ۱۴۰۱/۰۳/۳۱

٣-٢- كنترل كننده طراحي شده در بخش ٣-١ را به سيستم غيرخطي اعمال كرده و نتايج را با هم مقايسه نماييد.

۳-۳- یک ردیاب با استفاده از روش LQR طراحی کرده بطوریکه پاندول با فرکانس ۰/۲ هرتز نوسانی باشد.

۳-۳ ردیاب طراحی شده در بخش ۳-۳ را برای همان سیگنال مرجع ردیابی قسمت ۳-۳ نیز بار دیگر شبیهسازی کرده و نتایج را مقایسه کنید.

نكات:

- در شبیه سازی هر مرحله، تابع هزینه مناسب را انتخاب و دلیل انتخاب خود را شرح دهید.
- پاسخهای طراحی خود را که شامل متغیرهای حالت و سیگنال کنترل میباشد رسم کرده و روی تفاوت رفتار آنها بحث نمایید.
 - شرایط اولیه را به طور دلخواه و در نزدیکی مبدا در نظر بگیرید.

گزارش و شبیهسازی سیستم انتخابی

Reference Signal

0.5

0.5

5 10 15 20 25 30 35 40 45

Time (second)

۱- برای سیستم انتخابی خود با توجه به روابط موجود،

Continuous Linear Quadratic Tracker

طراحی کنید که سیگنالهای مرجع پله، سینوسی و

سیگنالی دارای تغییراتی به صورت شکل مقابل را

ردیابی نماید.

دانشکده مهندسی برق گروه کنترل

به نام خدا

كنترل بهينه

تمرین سری پنجم (کنترل بهینه سیستمهای زمان پیوسته)

دانشگاه صنعتی خواجه نصیرالدین طوسی

مدرس: دكتر حميد خالوزاده

تاریخ تحویل: ۱۴۰۱/۰۳/۳۱

خالوزاده

۲- با در نظر گرفتن سیگنالهای مرجع قسمت ۱ شبیه سازی، Discrete Linear Quadratic Tracker طراحی نمایید.

۳- اغتشاشی گسسته به سیستم خود اعمال نمایید و اثر آنرا با توجه به روابط بدست آمده در بخش دوم سوالات تحلیلی حذف نمایید.

- حالتهای سیستم را در دو شرایط حضور و عدم حضور اغتشاش ترسیم نمایید.
- اثر تغییر ماتریسهای وزنی سیستم را مورد بررسی و آزمایش قرار داده و نتایج را گزارش نمایید.

در شبیه سازی سیستم انتخابی، نتیجه گیری و تحلیل شخصی از اهمیت برخورد است

در حل تمرینات موارد زیر را در نظر بگیرید:

- ✓ تمرینها را در زمان مقرر تحویل دهید.
- ✓ فایل $\frac{\text{pdf}}{\text{odcx}}$ و فایل $\frac{\text{docx}}{\text{odcx}}$ گزارش خود را $\frac{\text{m-file}}{\text{odc}}$ های مربوطه را در پوشهای به فرمت $\frac{\text{m-file}}{\text{odc}}$ امگذاری کرده و به صورت $\frac{\text{m-file}}{\text{odc}}$ نامگذاری کرده و به صورت $\frac{\text{m-file}}{\text{odc}}$ نامگذاری نمایید. (تنها یک فایل)

همواره موفق باشید – سربندی moeinsarbandi15@gmail.com