SIEMENS

GaAs-IR-Lumineszenzdiode GaAs Infrared Emitter

LD 271, LD 271 H LD 271 L, LD 271 HL

Maße in mm, wenn nicht anders angegeben/Dimensions in mm, unless otherwise specified.

Wesentliche Merkmale

- λ GaAs-IR-LED, hergestellt im Schmelzepitaxieverfahren
- λ Hohe Zuverlässigkeit
- λ Hohe Impulsbelastbarkeit
- λ Lange Anschlüsse
- λ Gruppiert lieferbar
- λ Gehäusegleich mit SFH 300, SFH 203

Anwendungen

- λ IR-Fernsteuerung von Fernseh- und Rundfunkgeräten, Videorecordern, Lichtdimmern
- λ Gerätefernsteuerungen
- λ Lichtschranken für Gleich- und Wechsellichtbetrieb

Features

- λ GaAs infrared emitting diode, fabricated in a liquid phase epitaxy process
- λ High reliability
- λ High pulse handling capability
- λ long leads
- λ Available in groups
- λ Same package as SFH 300, SFH 203

Applications

- λ IR remote control of hi-fi and TV-sets, video tape recorders, dimmers
- λ Remote control of various equipment
- λ Photointerrupters

SIEMENS

Typ Type	Bestellnummer Ordering Code	Gehäuse Package
LD 271	Q62703-Q148	5-mm-LED-Gehäuse (T 1 ³ / ₄), graugetöntes Epoxy-
LD 271 L	Q62703-Q833	Gießharz, Lötspieße im 2.54-mm-Raster (1/10")
LD271 H	Q62703-Q256	5 mm LED package (T 1 3 / ₄), grey colored epoxy resin lens, solder tabs lead spacing 2.54 mm (1 / ₁₀ ")
LD271 HL	Q62703-Q838	

Grenzwerte Maximum Ratings

Bezeichnung Description	Symbol Symbol	Wert Value	Einheit Unit	
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{ m op};T_{ m stg}$	- 55 + 100	°C	
Sperrschichttemperatur Junction temperature	T_{j}	100	°C	
Sperrspannung Reverse voltage	V_{R}	5	V	
Durchlaßstrom Forward current	I_{F}	130	mA	
Stoßstrom, $t_p = 10 \mu\text{s}$, $D = 0$ Surge current	I_{FSM}	3.5	А	
Verlustleistung Power dissipation	$P_{ m tot}$	220	mW	
Wärmewiderstand Thermal resistance	R_{thJA}	330	K/W	

SIEMENS

Kennwerte ($T_A = 25$ °C) Characteristics

Bezeichnung Description	Symbol Symbol	Wert Value	Einheit Unit	
Wellenlänge der Strahlung Wavelength at peak emission $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms	λ_{peak}	950	nm	
Spektrale Bandbreite bei 50 % von $I_{\rm max}$ Spectral bandwidth at 50 % of $I_{\rm max}$ $I_{\rm F}$ = 100 mA	Δλ	55	nm	
Abstrahlwinkel Half angle	φ	± 25	Grad deg.	
Aktive Chipfläche Active chip area	A	0.25	mm ²	
Abmessungen der aktive Chipfläche Dimensions of the active chip area	$L \times B$ $L \times W$	0.5 × 0.5	mm	
Abstand Chipoberfläche bis Linsenscheitel Distance chip front to lens top	Н	4.0 4.6	mm	
Schaltzeiten, $\rm I_e$ von 10 % auf 90 % und von 90 % auf 10 %, bei $I_{\rm F}$ = 100 mA, $R_{\rm L}$ = 50 Ω Switching times, $\rm I_e$ from 10 % to 90 % and from 90 % to 10 %, $I_{\rm F}$ = 100 mA, $R_{\rm L}$ = 50 Ω	$t_{\rm r},t_{\rm f}$	1	μs	
Kapazität, $V_{\rm R}$ = 0 V, f = 1 MHz Capacitance	Co	40	pF	
Durchlaßspannung Forward voltage $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms $I_{\rm F}$ = 1 A, $t_{\rm p}$ = 100 $\mu {\rm s}$	V_{F} V_{F}	1.30 (≤ 1.5) 1.90 (≤ 2.5)	V	
Sperrstrom, $V_R = 5 \text{ V}$ Reverse current	I_{R}	0.01 (≤ 1)	μΑ	
Gesamtstrahlungsfluß Total radiant flux $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms	Φ_{e}	18	mW	
Temperaturkoeffizient von $I_{\rm e}$ bzw. $\Phi_{\rm e}$, $I_{\rm F}$ = 100 mA Temperature coefficient of $I_{\rm e}$ or $\Phi_{\rm e}$, $I_{\rm F}$ = 100 mA	TC ₁	- 0.55	%/K	
Temperaturkoeffizient von $V_{\rm F}$, $I_{\rm F}$ = 100 mA Temperature coefficient of $V_{\rm F}$, $I_{\rm F}$ = 100 mA	TC_{V}	- 1.5	mV/K	
Temperaturkoeffizient von λ , $I_{\rm F}$ = 100 mA Temperature coefficient of λ , $I_{\rm F}$ = 100 mA	TC_{λ}	0.3	nm/K	

Gruppierung der Strahlstärke I_e in Achsrichtung gemessen bei einem Raumwinkel $\Omega=0.01$ sr Grouping of radiant intensity I_e in axial direction at a solid angle of $\Omega=0.01$ sr

Bezeichnung Description	Symbol Symbol		Wert Value	
		LD 271 LD 271 L	LD 271 H LD 271 HL	
Strahlstärke Radiant intensity				
$I_{\rm F} = 100$ mA, $t_{\rm p} = 20$ ms $I_{\rm F} = 1$ A, $t_{\rm p} = 100$ $\mu{\rm s}$	I_{e} $I_{e \; typ.}$	15 (≥ 10) 120	> 16	mW/sr mW/sr

Relative spectral emission $I_{rel} = f(\lambda)$

Radiant intensity $\frac{I_e}{I_e 100 \text{ mA}} = f(I_F)$

Max. permissible forward current $I_F = f(T_A)$

Forward current

 $I_{\rm F} = f(V_{\rm F})$, single pulse, $t_{\rm p} = 20~\mu {\rm s}$

Permissible pulse handling capability

 $I_F = f(\tau), T_C = 25 \,^{\circ}\text{C},$ duty cycle D = parameter

Radiation characteristics $I_{rel} = f(\phi)$

