MATH 311

Chapter 6

SECTION 6.1: VECTOR SPACES

Contents

Column Vectors	•				•			•					•	
General Definition														
xamples														
Spaces of Matrices		•	•		•	•		•	•	•	•	•	•	
Spaces of Polynomials				•				•	•	•				•
Weird Example		•		•	•	•		•	•	•	•	•	•	
Non-Example			•		•			•		•	•	•	•	

Created by: Pierre-Olivier Parisé Spring 2024

DEFINITION

Column Vectors

Recall that

$$\mathbb{R}^n = \{ \mathbf{x} : \mathbf{x} \text{ is an } n \times 1 \text{ vector} \}.$$

① For addition:

$$A1.$$
 \vec{z} , $\vec{y} \Rightarrow \vec{z} + \vec{y} \in \mathbb{R}^n$.

$$\overline{A3.}$$
 $(\overline{\chi}' + \overline{\gamma}') + \overline{\chi}' = \overline{\chi}' + (\overline{\gamma}' + \overline{\chi})$ (Assoc.)

A5. For any
$$\vec{z}$$
, there is a \vec{y} $\vec{n}t$.
 $\vec{z} + \vec{y} = \vec{y} + \vec{z} = \vec{o}$ (hue $\vec{y} = -\vec{z}$)

② For scalar multiplication:

$$S1.$$
 \overrightarrow{z} and $a \in \mathbb{R} \Rightarrow a \overrightarrow{z} \in \mathbb{R}^{n}$

S2.
$$a(\vec{x}+\vec{y}) = a\vec{x} + a\vec{y}$$
.

S3.
$$(a+b)\vec{z} = a\vec{z} + b\vec{z}$$

$$S4.$$
 a $(b\overrightarrow{z}) = (ab) \overrightarrow{z}$

Conclusion: IRn is a vector space.

General Definition

Let V be a set of objects called **vectors**. Assume

- 1. **Vector Addition:** Two vectors \mathbf{v} and \mathbf{w} can be added and denote this operation by $\mathbf{v} + \mathbf{w}$.
- 2. Scalar Multiplication: Any vector \mathbf{v} can be multiplied by any number (scalar) a and denote this operation by $a\mathbf{v}$.

The set V is called a **vector space** if

1. Axioms for the vector addition:

A1. Closed: $\mathbf{v}, \mathbf{w} \in V \Rightarrow \mathbf{v} + \mathbf{w} \in V$.

A2. Commutativity: $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$.

A3. Associativity: $\mathbf{v} + (\mathbf{w} + \mathbf{z}) = (\mathbf{v} + \mathbf{w}) + \mathbf{z}$.

A4. Existence of a zero vector: $\mathbf{v} + \mathbf{0} = \mathbf{v} = \mathbf{0} + \mathbf{v}$.

- A5. Existence of a negative: For each \mathbf{v} , there is a \mathbf{w} such that $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v} = \mathbf{0}$.
- 2. Axioms for the scalar multiplication:

 $\boxed{\text{S1.}} \ \mathbf{v} \in V \Rightarrow a\mathbf{v} \in V.$

 $\boxed{S2.} \ a(\mathbf{v} + \mathbf{w}) = a\mathbf{v} + a\mathbf{w}.$

 $\boxed{\text{S3.}} \ (a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}.$

 $\boxed{\text{S4.}} \ a(b\mathbf{v}) = (ab)\mathbf{v}.$

 $\boxed{\text{S5.}} \ 1\mathbf{v} = \mathbf{v}.$

EXAMPLES

Spaces of Matrices

min au fixet

EXAMPLE 1. Let $\mathbf{M_{mn}}$ be the set of all $m \times n$ matrices, that is

 $\mathbf{M_{mn}} := \{ A : A \text{ is an } m \times n \text{ matrix.} \}$

Consider the addition and scalar multiplication for matrices. Show that $\mathbf{M_{mn}}$ is a vector space.

SOLUTION.

Hmn is a vector space with addition and scalar multiplication as defined in Chapter 2.

Spaces of Polynomials

EXAMPLE 2. Consider the space $\mathbf{P_3}$ of all polynomials of degree at most 3, that is

$$\mathbf{P} := \{a_3 x^3 + a_2 x^2 + a_1 x + a_0 : a_i \in \mathbb{R}\}.$$

Define 0. p(x)=q(x) iff p,q have same coef.

1. Addition: for two polynomials $p(x) = a_3x^3 + a_2x^2 + a_1x + a_0$ and $q(x) = b_3x^3 + b_2x^2 + b_1x + b_0$, define p + q as the polynomial

$$(p+q)(x) = p(x) + q(x)$$

= $(a_3 + b_3)x^3 + (a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0).$

2. Scalar multiplication: for a polynomial $p(x) = a_3x^3 + a_2x^2 + a_1x + a_0$, define ap as the polynomial

$$(ap)(x) = ap(x) = (aa_3)x^3 + (aa_2)x^2 + (aa_1)x + (aa_0).$$

Show that $\mathbf{P_3}$, with this addition and scalar multiplication, is a vector space.

SOLUTION.

1) Addition:

Al p+q has degree 3 by definition. So, p+q $\in P_3$.

$$\frac{A2}{(p+q)(x)} = (a_3+b_3)x^3 + (a_2+b_2)x^2 + (a_1+b_1)x^2 + (a_0+b_0)$$

$$= a_3x^3 + b_3x^3 + a_7x^2 + b_7x^2 + a_1x + b_1x + a_0 + b_0$$

$$(q+p)(x) = (b_3+a_3)x^3 + (b_7+a_7)x^7 + (b_1+a_1)x^2 + (b_0+a_0)$$

$$= b_3x^3 + a_3x^3 + b_7x^2 + a_7x^2 + b_1x + a_7x^2 + b_1x + a_1x^2 + a$$

numbers, so IR number commute

=>
$$(p+q)(x) = (q+p)(x)$$
.

$$= ((a_3 + b_3) + (c_3) x^3 + ((a_2 + b_2) + (c_2) x^2 + ((a_0 + b_0) + c_0) x^3 + ((a_0 + b_0) + c_0)$$

$$= (a_3 + (b_3 + c_3)) x^3 + (a_2 + (b_2 + c_2)) x^2 + (a_1 + (b_1 + c_1)) x + (a_0 + (b_0 + c_0))$$

$$= p + (q+r) .$$

$$\Rightarrow (p+0) = (a_3+0)x^3 + (a_2+0)>z^2 + (a_1+0)x + (a_0+0)$$

A5. Define
$$q(x) = (-a_3)x^3 + (-a_7)x^7 + (-a_1)x$$

$$\Rightarrow p+q = (a_3-a_3)x^3+(a_2-a_2)x^2+(a_1-a_1)x$$

$$+(a_0-a_0)$$

$$= 0x^{3} + 0x^{2} + 0x + 0 = 0$$

Scalar Hultiplication. 53-55 are renified also.

51. 13y dufinition, ap is a polynomial of degree at most 3.

Sz.
$$a(p+q) \stackrel{?}{=} ap + aq$$

$$a(p+q) = a((a_3+b_3)x^3+(a_2+b_2)x^2+(a_1+b_1)x$$

+ (a_0+b_0))

=
$$\alpha(a_3+b_3)x^3 + \alpha(a_2+b_2)x^2 + \alpha(a_1+b_1)x$$

+ $\alpha(a_0+b_0)$

$$= a(a_3)x^3 + aa_7x^2 + aa_1x + aa_0 = ap+aq$$

$$+ ab_3x^3 + ab_2x^2 + ab_1x + ab_0$$

Note:

- ① The space of polynomial of degree at most n is denoted by $\mathbf{P_n}$ and is a vector space using the addition and scalar multiplication introduced above.
- 2 The space of all polynomial of any degree is denoted by **P** and it is a vector space using the addition and scalar multiplication introduced above.

Weird Example

EXAMPLE 3. Consider the set of all 2×1 vectors \mathbb{R}^2 . Define the addition and scalar multiplication:

1.
$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 + 1 \end{bmatrix}$$
.

2.
$$a\mathbf{x} = a \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} ax_1 \\ ax_2 + a - 1 \end{bmatrix}$$
.

Show that \mathbb{R}^2 , with these operations, is a vector space.

SOLUTION.

A1. Since
$$\begin{bmatrix} 2(1491) \\ 2(249241) \end{bmatrix}$$
 is a 2×1 vector, $2\times 4\times 4 \times 4 \times 4 \times 4 = 1$

$$AZ$$
. $\overrightarrow{Z}+\overrightarrow{y}=\begin{bmatrix} x_1+y_1\\ x_2+y_2+1 \end{bmatrix}$

A2.
$$\overrightarrow{x}+\overrightarrow{y} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 + 1 \end{bmatrix}$$
 Same commutativity $\overrightarrow{y}+\overrightarrow{x} = \begin{bmatrix} y_1 + x_1 \\ y_2 + x_2 + 1 \end{bmatrix}$ of 11 numbers.

$$A3.(\overline{z}+\overline{y})+\overline{z}=\begin{bmatrix} x_1+y_1\\ x_2+y_2+1 \end{bmatrix}+\begin{bmatrix} z_1\\ z_2 \end{bmatrix}$$

$$= \begin{bmatrix} x_{1} + y_{1} + z_{1} \\ x_{2} + y_{2} + 1 + z_{2} + 1 \end{bmatrix}$$

$$= \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} + \begin{bmatrix} y_{1} + z_{1} \\ y_{2} + z_{2} + 1 \end{bmatrix}$$

$$= \begin{bmatrix} x_{1} + y_{1} + z_{1} \\ x_{2} + y_{2} + z_{2} + 1 \end{bmatrix}$$

$$= \begin{bmatrix} x_{1} + y_{1} + z_{1} \\ x_{2} + y_{2} + z_{2} + 1 + 1 \end{bmatrix}$$

$$= \begin{cases} \chi_1 + y_1 \\ \chi_2 + y_2 + 1 \end{cases} = \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} \iff \begin{cases} \chi_1 + y_1 = \chi_1 \\ \chi_2 + y_2 + 1 = \chi_2 \end{cases}$$

$$\Rightarrow \int y_1 = 0$$

$$y_2 = -1$$

$$\frac{45}{2} \cdot \overrightarrow{x} + \overrightarrow{y} = \overrightarrow{0} \iff \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 + 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

Hence,
$$\vec{y} = \begin{bmatrix} -\alpha_1 \\ -2 - \alpha_2 \end{bmatrix} = -\vec{\kappa}$$
.

SI. añ is a 2×1 vector from the definition.

SZ.
$$a(z)+y) = a\left(\begin{bmatrix} x_1+y_1\\ x_2+y_2+1\end{bmatrix}\right)$$

$$= \begin{bmatrix} a(x_1+y_1) \\ a(x_2+y_2+1) + a-1 \end{bmatrix}$$

$$= \left[\begin{array}{c} \alpha x_1 + \alpha y_1 \\ \alpha x_2 + \alpha y_2 + 2\alpha - 1 \end{array}\right]$$

$$a\vec{x} + a\vec{y} = \begin{bmatrix} ax_1 \\ ax_2 + a - 1 \end{bmatrix} + \begin{bmatrix} ay_1 \\ ay_2 + a - 1 \end{bmatrix}$$

$$= \left[\begin{array}{c} \alpha x_1 + \alpha y_1 \\ \alpha z_2 + \alpha - 1 + \alpha y_2 + \alpha - 1 + 1 \end{array} \right]$$

$$= \left[\begin{array}{c} \alpha x_1 + \alpha y_1 \\ \alpha x_2 + \alpha y_2 + \partial \alpha - 1 \end{array} \right]$$

Same

$$\frac{S3.}{(a+b)} \stackrel{?}{z} = \begin{bmatrix} (a+b)x_1 \\ (a+b)x_2 + a+b-1 \end{bmatrix}$$

$$= \begin{bmatrix} ax_1 + bx_1 \\ ax_2 + bx_2 + a+b-1 \end{bmatrix}$$

$$= \begin{bmatrix} ax_1 \\ ax_1 + a-1 \end{bmatrix} + \begin{bmatrix} bx_1 \\ bx_2 + b-1 \end{bmatrix}$$

$$= \begin{bmatrix} ax_1 + bx_1 \\ ax_2 + a-1 + bx_2 + b-1 + 1 \end{bmatrix}$$

$$= \begin{bmatrix} ax_1 + bx_1 \\ ax_2 + a-1 + bx_2 + b-1 + 1 \end{bmatrix}$$

$$= \begin{bmatrix} ax_1 + bx_1 \\ ax_2 + bx_1 \end{bmatrix} = \begin{bmatrix} abx_1 \\ abx_2 + b-1 \end{bmatrix}$$

$$= \begin{bmatrix} abx_1 \\ abx_2 + ab-1 \end{bmatrix}$$

$$= \begin{bmatrix} abx_1 \\ abx_2 + ab-1 \end{bmatrix}$$

$$= \begin{bmatrix} abx_1 \\ abx_2 + ab-1 \end{bmatrix}$$

$$= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \stackrel{?}{x_2} \stackrel{?}{x_2}$$

Non-Example

EXAMPLE 4. Consider the set of all 2×1 vectors \mathbb{R}^2 . Define the addition and scalar multiplication:

1.
$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 + 1 \end{bmatrix}$$
.

2.
$$a\mathbf{x} = a \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} ax_1 \\ ax_2 - 1 \end{bmatrix}$$
.

1. $\mathbf{x} + \mathbf{y}$ $[x_2]$ $[y_2]$ $[x_2 + y_2]$ 2. $a\mathbf{x} = a \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} ax_1 \\ ax_2 - 1 \end{bmatrix}$.

Show that $\mathbf{x} = \mathbf{x} = \mathbf$

Show that \mathbb{R}^2 , with these operations, is not a vector space

SOLUTION.

1 Addition.

Same addition as in Example 3.

Al-As are satisfied.

(2) Scalar multiplication

We have
$$1\vec{x} = \begin{bmatrix} x_1 \\ \lambda z_{-1} \end{bmatrix} \neq \begin{bmatrix} x_1 \\ \lambda z_{2} \end{bmatrix} = \vec{z}$$

$$\vec{z} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow \vec{1} \vec{z} = \begin{bmatrix} 1 \\ 1 - 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \neq \vec{z}$$
!

Ss is not satisfied! Not a vector space.

PROPERTIES

Consider a general vector space V.

① Cancellation: If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, then

$$\mathbf{v} + \mathbf{u} = \mathbf{v} + \mathbf{w} \Longrightarrow \mathbf{u} = \mathbf{w}.$$

2 Multiplying by scalar 0:

$$0$$
v = **0**.

3 Multiplying by the zero vector:

$$a{\bf 0}={\bf 0}.$$

$$\overrightarrow{av} = \overrightarrow{o}$$

4 If , then a = 0 or $\mathbf{v} = \mathbf{0}$.

EXAMPLE 5. Simplify the following expression:

$$3(2(\mathbf{u}-2\mathbf{v}-\mathbf{w})+3(\mathbf{w}-\mathbf{v})-7(\mathbf{u}-3\mathbf{v}-\mathbf{w}).$$

