

CECS 303: Networks and Network Security

PKI and DNSSEC

Chris Samayoa

Week 15 – 2nd Lecture 4/28/2022

Course Information

- CECS 303
- Networks and Network Security 3.0 units
- Class meeting schedule
- TuTH 5:00PM to 7:15PM
- Lecture Room: VEC 402
- Lab Room: ECS 413
- Class communication
- chris.samayoa@csulb.edu
- Cell: 562-706-2196
- Office hours
- Thursdays 4pm-5pm (VEC-404)
- Other times by appointment only

- PKI
 - Chain of Trust
- DNSSEC
 - Record Types
 - ZSK (Zone-signing Key)
 - KSK (Key-signing Key)
 - Chain of Trust

PKI Chain of Trust

Chain of Trust

- Types of entities
 - Root CA
 - Self-signed certificate -> "trust anchor"
 - Must be trusted for entire process to work
 - Very closely guarded often kept "offline"
 - Expire every 15-20 years
 - Intermediate CA
 - Responsible for issuing certificates
 - To other intermediate CAs
 - To end-entity
 - Provides extra level of security between end-entity servers and root CA
 - End-entity Certificate
 - Does not guarantee that subject is trustworthy
 - Certificates are typically issued for organizations (not directly to employees)
 - Parameters specified within certificate(s)

Typical Trust Model

Digital Certificate Risks

- What happens if private keys are compromised?
 - End-entity
 - Communication to that server can no longer be authenticated
 - Certificate needs to be revoked
 - New certificate needs to be issued
 - Intermediate CA
 - All end-entity certificates issued by the CA must be revoked and reissued
 - New asymmetric keys
 - New certificate must be issued by root CA (or other authority)
 - Root CA
 - All child CA certificates and end-entity certificates issued by those child CAs must be reissued
 - Root CA must be re-established

Certificate Revocation Lists

- Each CA must issue its own certificate revocation lists
 - Part of the standard for X.509 certificates
- Consumers must check CRLs for them to be effective
 - Slows down authentication process
 - Slower for each part of the hierarchy checked
- Were not commonly used before
- Have grown in usage by consumers
 - Due to internet security concerns

Check CRL

Browser Lists - Chrome

Browser Lists - Firefox

TLS

- PKI
 - Chain of Trust
- DNSSEC
 - Record Types
 - ZSK (Zone-signing Key)
 - KSK (Key-signing Key)
 - Chain of Trust

DNSSEC

- Background
 - Security not a primary design consideration for DNS initially
 - No authentication for DNS query responses
 - Source IP of expected DNS server can be spoofed
 - IETF RFC 3757, 4033, 4034, 4035, 4509, 4641, 5155
 - DNS Cache Poisoning
 - If recursive resolver accepts false DNS response, then any devices querying for the data will be sent the incorrect address
- DNS Security Extensions (DNSSEC)
 - Suite of extensions meant to strengthen DNS security
 - Strengthens DNS authentication using digital signatures
 - Based on PKI
 - DNS data itself is signed by owner of data
 - Each DNS zone has public/private key pair
 - Each zone owner signs DNS data within the zone using the private key
 - Public key can be used by any resolver to validate the authenticity of DNS data received
 - Failure to authenticate signature results in discarded data and an error
- Two most important features added
 - Data origin authentication verify that the data received came from the expected zone
 - Data integrity protection resolver can ensure that they data received has not been modified in transit

DNS Cache Poisoning

- PKI
 - Chain of Trust
- DNSSEC
 - Record Types
 - ZSK (Zone-signing Key)
 - KSK (Key-signing Key)
 - Chain of Trust

DNSSEC (cont'd)

- DNSSEC resource record types
 - RRSIG (Resource Record Signature)
 - Contains cryptographic signature for a given record set
 - DNSKFY
 - Holds the zone's public key
 - Used to verify signatures of zone's other records
 - Authoritative name server previously used private key to sign records
 - DS (Delegation Signer)
 - Used to verify delegation of DNS authority for child zones
 - NSEC (Next Secure record)
 - Returns next valid record name to prove that a particular DNS record does not exist
 - NSEC 3 (Next Secure version 3 record)
 - Hashes all record names in a zone (resolved NSEC-walking problem)
 - NSEC3PARAM (NSEC3 Parameter)
 - Specifies which NSEC3 records to include in responses for non-existent names
 - More information: https://simpledns.plus/help/dns-record-types

- PKI
 - Chain of Trust
- DNSSEC
 - Record Types
 - ZSK (Zone-signing Key)
 - KSK (Key-signing Key)
 - Chain of Trust

Zone-Signing Keys

- Each zone has a Zone-Signing Key (ZSK) pair
 - Used to sign data in a zone routinely
 - Can be updated with no interaction outside of the zone it serves
 - Private portion signs each RRset
 - Public portion used to verify signature
 - Public key stored in zone operator's DNSKEY record
 - Signed RRset stored as RRSIG records
 - RRset
 - Grouping of same type of resource records within a zone

ZSK (cont'd)

- How is public ZSK used by a DNSSEC resolver?
 - When a record type is requested (e.g. A record), the answer returns along with the appropriate RRSIG
 - Resolver can then request the zone's DNSKEY record (public ZSK) to validate the response received

- PKI
 - Chain of Trust
- DNSSEC
 - Record Types
 - ZSK (Zone-signing Key)
 - KSK (Key-signing Key)
 - Chain of Trust

Key-Signing Keys

- Key-signing Key (KSK) is used to validate the DNSKEY record for the requested zone
 - Only used to sign DNSKEY RRsets
 - This key needs action outside of zone to be updated
 - Used to sign the public ZSK
 - Separate DNSKEY record
 - RRset exists for public ZSK and public KSK
- Validate process for DNSSEC record is as follows:
 - RRset requested
 - Returned with corresponding RRSIG record
 - Request DNSKEY with public ZSK and public KSK
 - Returned with RRSIG for DNSKEY Rrset
 - RRSIG of requested RRset verified with public ZSK
 - RRSIG of DNSKEY RRset verified with public KSK

- PKI
 - Chain of Trust
- DNSSEC
 - Record Types
 - ZSK (Zone-signing Key)
 - KSK (Key-signing Key)
 - Chain of Trust

Delegation Signer (DS) Record 48

- DS record transfers trust from a parent zone to a child zone
 - e.g. ".com" can transfer trust for "cecs303.com" from it's own authoritative DNS servers to one chosen by the zone operator for "cecs303.com"
- KSK use between zones
 - Zone operator hashes DNSKEY record and provides it to the parent zone to be stored as a DS record
 - When parent zone redirects a request to a child zone, it also provides the corresponding DS record
 - Resolver can verify validity of child zone's public KSK by hashing it and comparing it to the parent zone's corresponding DS record
 - Change of KSK in any given zone requires that the parent zone's DS record be updated

DNSSEC Chain of Trust

- Similar to Chain of Trust used for SSL/TLS Certificate Authorities
 - Uses PKI
 - "Trust Anchor" necessary to establish chain of trust
 - > ICANN maintains a trusted root server for DNSSEC
 - Public KSK often used as trusted root server (trust anchor)
 - DNSSEC enabled resolver must have at least one trust anchor's public key installed
 - Similar to trusted root CAs in web browsers
 - Root signed in public and highly auditable manner to produce RRSIG at that level
- DS records are also signed and have a corresponding RRSIG record
 - This allows for a repeatable process to validate signatures until the root is reached

DNSSEC Process Summary

- User requests a URL (e.g. abc.com)
 - Kicks off query to local DNS server
 - IP address returned to browser if cached
 - If not cached locally, then request made to a recursive resolver (e.g. ISP's DNS server)
 - > IP address returned to browser if cached at this level
 - > Otherwise, recursive query launched to find authoritative DNS server for requested domain
- Recursive resolver contacts root DNS server to find top-level domain (TLD) DNS server for requested domain
 - e.g. "abc.com"s TLD would be ".com"
- TLD DNS server redirects to the authoritative name server for the requested domain
 - Authoritative name server for requested domain holds a list of DNS records for it (e.g. <u>www.abc.com</u> A record)
- During each step of this search, a corresponding DNSSEC record is requested by the resolver
 - e.g. for "abc.com" query -> RRSET, RRSIG, and public ZSK are obtained
 - RRSIG is validated using public ZSK
 - ZSK DNSKEY record (public key) is requested and validated using public KSK key (also a DNSKEY record)
 - KSK public key validated by checking parent zone's corresponding DS record for domain
- One DNSSEC validation has concluded, DNS request with the correct IP address is sent to client

DNSSEC Process Summary

