现代信息检索 Modern Information Retrieval

第3讲 索引压缩 Index compression

提纲

- 1 上一讲回顾
- 2 压缩
- 3 词项统计量
- 4 词典压缩
- 5 倒排记录表压缩

提纲

- 1 上一讲回顾
- 3 压缩
- 3 词项统计量
- 3 词典压缩
- 3 倒排记录表压缩

基于块的排序索引构建算法BSBI

待合并的倒排记录表

Term id	Doc id
1	d1, d3
2	d1, d2, d4
3	d5
4	d1, d2, d3, d5

Term id	Doc id
1	d6, d7
2	d8, d9
5	d10
6	d8

合并后的倒排记录表

	Term id	Doc id
	1	d1, d3, d6, d7
	2	d1, d2, d4, d8, d9
	3	d10
•	4	d8
	5	d5
	6	d1, d2, d3, d5

合并过程基本不占用内存,但是 需要维护一个全局词典

词典: 维护一张词项到整型词项 ID的映射表

待合并的倒排记录表: 只包含整型ID,没有字符串

全局词典

term	term id	term	term id
brutus	1	with	4
caesar	2	julius	5
noble	3	killed	6

内存式单遍扫描索引构建算法SPIMI

- 关键思想 1: 对每个块都产生一个独立的词典 不需要在块之间进行term-termID的映射
- 关键思想2:对倒排记录表不排序,按照他们出现的先后顺序排列
- 基础上述思想可以对每个块生成一个完整的倒排索引
- 这些独立的索引最后合并一个大索引

SPIMI-Invert算法

```
SPIMI-INVERT(token_stream)
     output_file ← NewFile()
     dictionary \leftarrow NewHash()
     while (free memory available)
     do token ← next(token_stream)
  5
        if term(token) ∉ dictionary
           then postings_list ← ADDTODICTIONARY(dictionary, term(token))
  6
 7
8
           else postings_list ← GETPOSTINGSLIST(dictionary,term(token))
        if full(postings_list)
 9
           then postings\_list \leftarrow DoublePostingsList(dictionary, term(token))
         AddToPostingsList(postings_list,docID(token))
10
     sorted\_terms \leftarrow SortTerms(dictionary)
11
     WriteBlockToDisk(sorted\_terms, dictionary, output\_file)
12
13
     return output_file
```

本讲内容

对每个词项t, 保存所有包含t的 文档列表 Brutus 31 45 CAESAR CALPURNIA 31 54 101

词典(dictionary) 倒排记录表(postings)

- 信息检索中进行压缩的动机
- 词项统计量: 词项在整个文档集中如何分布?
- 倒排索引中词典部分如何压缩?
- 倒排索引中倒排记录表部分如何压缩?

提纲

- 1 上一讲回顾
- 2 压缩
- 3 词项统计量
- 4 词典压缩
- 5 倒排记录表压缩

什么是压缩?

- 将长编码串用短编码串来代替

为什么要压缩?(一般意义上而言)

- 减少磁盘空间(节省开销)
- 增加内存存储内容 (加快速度)
- 加快从磁盘到内存的数据传输速度(同样加快速度)
 - [读压缩数据到内存+在内存中解压]比直接读入未压缩数据 要快很多
 - 前提: 解压速度很快
- 本讲我们介绍的解压算法的速度都很快

为什么在IR中需要压缩?

- 占用更少的硬盘空间
 - 更经济, 节省空间
- 将更多数据载入内存
 - 加快处理速度(内存中读写很快)
- 减少从磁盘读入内存的时间
 - 注意: 大型搜索引擎将相当比例的倒排记录表都放入内存
- IR中压缩的两个基本要求
 - (通常是) 无损压缩
 - 随机访问 (Random Access)
- 接下来,将介绍词典压缩和倒排记录表压缩的多种机制
 - 压缩的一个基本问题:对齐。即不同压缩单元之间的 分界标识

有损(Lossy) vs. 无损(Lossless)压缩

- 有损压缩: 丢弃一些信息
- 前面讲到的很多常用的预处理步骤可以看成是有损压缩:
 - 统一小写,去除停用词, Porter词干还原, 去掉数字
- 无损压缩: 所有信息都保留
 - 索引压缩中通常都使用无损压缩

提纲

- 1 上一讲回顾
- 2 压缩
- ③ 词项统计量
- 4 词典压缩
- 5 倒排记录表压缩

词典压缩和倒排记录表压缩

- 词典压缩中词典的大小即词汇表的大小是关键
 - 能否预测词典的大小?
- 倒排记录表压缩中词项的分布情况是关键
 - 能否对词项的分布进行估计?
- 引入词项统计量对上述进行估计,引出两个经验 法则

对文档集建模: Reuters RCV1

N	文档数目	800,000
$oldsymbol{L}$	每篇文档的词条数目	200
M	词项数目(= 词类数目)	400,000
	每个词条的字节数 (含空格和标点)	6
	每个词条的字节数 (不含空格和标点)	4.5
	每个词项的字节数	7.5
T	无位置信息索引中的倒排记录数目	100,000,000

预处理的效果

	不同词项			无位置信息倒排记录			词条♡		
	数目	$\Delta\%$	T%	数目	Δ %	T%	数目	$\Delta\%$	T%
未过滤	484 494		2	109 971 179			197 879 290		
无数字	473 723	-2	-2	100 680 242	-8	-8	179 158 204	-9	-9
大小写转换	391 523	-17	-19	96 969 056	-3	-12	179 158 204	-0	-9
30个停用词	391 493	-0	-19	83 390 443	-14	-24	121 857 825	-31	-38
150个停用词	391 373	-0	-19	67 001 847	-30	-39	94 516 599	-47	-52
词干还原	322 383	-17	-33	63 812 300	-4	-42	94 516 599	-0	-52

Δ%: 与上一步相比的变化百分比

T%: 与未过滤相比的变化百分比

第一个问题: 词汇表有多大(即词项数目)?

- 即有多少不同的单词数目?
 - 首先, 能否假设这个数目存在一个上界?
 - 不能: 对于长度为20的单词,有大约 $70^{20}\approx 10^{37}$ 种可能的单词
- 实际上, 词汇表大小会随着文档集的大小增长而增长!
- Heaps定律: $M = kT^b$
 - M 是词汇表大小, T 是文档集的大小(所有词条的个数,即所有文档大小之和)
- 参数k 和b 的一个经典取值是: $30 \le k \le 100$ 及 $b \approx 0.5$.
- Heaps定律在对数空间下是线性的
 - 这也是在对数空间下两者之间最简单的关系
 - 经验规律

Reuters RCV1上的Heaps定律

- 实线:真实分布;虚线:拟合 分布
- 词汇表大小M 是文档集规模7的 一个函数
- 图中通过最小二乘法拟合出的 直线方程为:

$$\log_{10}M = 0.49 * \log_{10}T + 1.64$$

- 于是有:
- $M = 10^{1.64} T^{0.49}$
- $k = 10^{1.64} \approx 44$
- b = 0.49

拟合 vs. 真实

■ 例子: 对于前1,000,020个词条, 根据Heaps定律预计将有 38,323个词项:

 $44 \times 1,000,020^{0.49} \approx 38,323$

- 实际的词项数目为38,365,和预测值非常接近
- 经验上的观察结果表明,一般情况下拟合度还是非常高的

课堂练习

- ①在容许拼写错误或者对拼写错误自动纠错的情况下, Heaps定律的效果如何?
- 2计算词汇表大小 M
 - 观察一个网页集合,你会发现在前10000个词条中有3000 个不同的词项,在前1000000个词条中有30000个不同的 词项
 - 假定某搜索引擎索引了总共20,000,000,000 (2 × 10¹⁰)个
 网页,平均每个网页包含200个词条
 - 那么按照Heaps定律,被索引的文档集的词汇表大小是多少?

课堂练习

存在拼写错误:会增加词项数目 自动纠错:总体词项数目趋于正常 对效果有一定影响,但是除非存在大量拼写错误,否则不会 有显著影响。

3000=k*10000^b; 30000=k*1M^b; 求解得到k=30, b=0.5 代入 M=k*(200*2*10^10)^b

第二个问题: 词项的分布如何? Zipf定律

- Heaps定律告诉我们随着文档集规模的增长词项的增长情况
- 但是我们还需要知道在文档集中有多少高频词项 vs. 低频词项。
- 在自然语言中,有一些极高频词项,有大量极低频的罕见词项

Zipf定律

- Zipf定律: 第i常见的词项的频率cf_i和1/i 成正比
- $\operatorname{cf}_i \propto \frac{1}{i}$
- cf_i 是语料中词项频率(collection frequency): 词项 t_i 在所有文档中出现的次数(不是出现该词项的文档数目df).
- 于是,如果最常见的词项(*the*)出现 cf_1 次,那么第二常见的词项(*of*)出现次数 $cf_2 = \frac{1}{2}cf_1$...
- ... 第三常见的词项 (and) 出现次数为 $cf_3 = \frac{1}{3}cf_1$
- 另一种表示方式: $\operatorname{cf}_i = c^*i^k$ 或 $\log \operatorname{cf}_i = \log c + k \log i \ (k = -1)$
- 幂定律(power law)的一个实例

Reuters RCV1上Zipf定律的体现

拟合度不是非常高,但是 最重要的是如下关键性发 现:高频词项很少,低频 罕见词项很多

提纲

- 1 上一讲回顾
- 2 压缩
- 3 词项统计量
- 4 词典压缩
- 5 倒排记录表压缩

词典压缩

- 一般而言,相对于倒排记录表,词典所占空间较小
- 但是我们想将词典放入内存
- 另外,满足一些特定领域特定应用的需要,如手机、机 载计算机上的应用或要求快速启动等需求
- 因此, 压缩词典相当重要

回顾: 定长数组方式下的词典存储

- 每个词项需要20+4+4=28个字节
 - 对于RCV1, ~400,000 terms; 28 bytes/term = 11.2 MB.
- 词项查找: 典型的二叉树搜索

定长方式的不足

- 大量存储空间被浪费
 - 即使是长度为1的词项,我们也分配20个字节
- 不能处理长度大于20字节的词项,如 HYDROCHLOROFLUOROCARBONS 和 SUPERCALIFRAGILISTICEXPIALIDOCIOUS
- 而英语中每个词项的平均长度为8个字符
- 能否对每个词项平均只使用8个字节来存储?

将整部词典看成单一字符串(Dictionary as a string)

单一字符串方式下的空间消耗

- 每个词项的词项频率需要4个字节
- 每个词项指向倒排记录表的指针需要4个字节
- 每个词项平均需要8个字节
- 指向字符串的指针需要3个字节 (8*400000个位置需要 log₂ (8 * 400000) < 24 位来表示)
- 空间消耗: 400,000 × (4 +4 +3 + 8) = 7.6MB (而定长数 组方式需要11.2MB)

单一字符串方式下按块存储

按块存储下的空间消耗

- 如果不按块存储,则每4个词项指针将占据空间4 × 3=12B
- 现在按块存储,假设块大小k=4,此时每4个词项只需要保留1个词项指针,但是同时需要增加4个字节来表示每个词项的长度,此时每4个词项需要3+4=7B
- 因此,每4个词项将节省12-7=5B
- 于是,整个词典空间将节省400,000/4*5B=0.5MB
- 最终的词典空间将从7.6MB压缩至7.1MB

不采用块存储方式下的词项查找

典型的二叉查找

采用块存储方式下的词项查找: 稍慢

因此块不能太大, 否则影响搜索效率

前端编码(Front coding)

- 每个块当中(k=4),会有公共前缀...
- 8 <u>automat</u>a 8 <u>automat</u>e 9 <u>automat</u>ic 10 automation
- \blacksquare
- ...可以采用前端编码方式继续压缩
- 上面前端编码中,第一个数字8表示第一个词项长度,后面的数字1、2、3分别表示(除公共前缀外)词项剩余部分长度。星号与菱形是特殊分隔符

Reuters RCV1词典压缩情况总表

数据结构	压缩后的空间大小(单位: MB)		
词典,定长数组	11.2		
词典,长字符串+词项指针	7.6		
词典,按块存储, <i>k</i> =4	7.1		
词典,按块存储+前端编码	5.9		

课堂练习

- 哪些前缀应该用于前端编码?需要在哪些方面有所权衡?
 - 输入: 词项列表, 即词汇表
 - 输出: 用于前端编码的前缀列表

提纲

- 1 上一讲回顾
- 2 压缩
- ③ 词项统计量
- 4 词典压缩
- 5 倒排记录表压缩

倒排记录表压缩

- 倒排记录表空间远大于词典, 至少10倍以上
- 压缩关键:对每条倒排记录进行压缩
- 目前每条倒排记录表中存放的是docID.
- 对于Reuters RCV1(800,000篇文档), 当每个docID可以采用4字节(即32位)整数来表示
- 当然,我们也可以采用 $\log_2 800,000 \approx 19.6 < 20$ 位来表示每个docID.
- 我们的压缩目标是: 压缩后每个docID用到的位数远小于20比特

倒排记录的两个极端情况

- 类似 arachnocentric 这样的词仅在百万分之一的 文档中出现,我们使用 $\log_2 1M \approx 20$ bits 进行存储
- 而类似 the 这样的高频词几乎在所有文档中出现, 因此使用 20 bits/posting \approx 2MB 存储的代价昂贵.
 - 这种情况更适合使用 0/1 位向量(bitmap vector) (≈100K)

关键思想: 存储docID间隔而不是docID本身

- 每个倒排记录表中的docID是从低到高排序
 - 例子: COMPUTER: 283154, 283159, 283202, . . .
- 存储间隔能够降低开销: 283159-283154=5, 283202-283154=43
- 于是可以顺序存储间隔(第一个不是间隔): COMPUTER: 283154, 5, 43, . . .
- 高频词项的间隔较小
- 因此,可以对这些间隔采用小于20比特的存储方式

对间隔编码

	编码对象			倒排记录表	Ē.,	1000	
the	文档ID	1	283 042	283 043	283 044	283 045	5853
	文档ID间距			1	1	1	77.57
computer	文档ID	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	283 047	283 154	283 159	283 202	8884
	文档ID间距			107	5	43	3229
arachnocentric	文档ID	252 000	500 100				
	文档ID间距	252 000 248 100					

变长编码

- 目标:
 - 对于 ARACHNOCENTRIC 及其他罕见词项, 对每个间隔仍然使用20比特 (bit位)
 - 对于THE及其他高频词项,每个间隔仅仅使用很少的比特位 来编码
- 为了实现上述目标,需要设计一个变长编码(variable length encoding)
- 可变长编码对于小间隔采用短编码而对于长间隔采用 长编码

可变字节(VB)码

- 被很多商用/研究系统所采用
- 变长编码及对齐敏感性(指匹配时按字节对齐还是按照位对齐)的简单且不错的混合产物
- 设定一个专用位 (高位) c作为延续位(continuation bit)
- 如果间隔表示少于7比特,那么c 置 1,将间隔编入一个字节的后7位中
- 否则:将高7位放入当前字节中,并将c 置 0,剩下的位数采用同样的方法进行处理,最后一个字节的c置1(表示结束)
 - 从高到低编码

VB 编码的例子

文档ID	824	829	215 406
间距		5	214 577
VB编码	0000011010111000	10000101	000011010000110010110001

VB 编码算法

延续位置1

```
VBENCODENUMBER(n)
                                    VBENCODE(numbers)
                                       bytestream \leftarrow \langle \rangle
1 bytes \leftarrow \langle \rangle
2 while true
                                       for each n \in numbers
                                    3
                                       do bytes \leftarrow VBENCODENUMBER(n)
   do Prepend(bytes, n mod 128)
      if n < 128
                                           bytestream \leftarrow Extend(bytestream, bytes)
4
5
      then Break
                                       return bytestream
   n \leftarrow n \text{ div } 128
   bytes[Length(bytes)] += 128
   return bytes
 130 mod 128 = 2 --> bytes 数组
 130 div 128 = 1, prepend 到 bytes数组
 于是循环结束有 bytes=[1,2]
```

算法最后一步,是在bytes[length(bytes)]上加128,即

VB编码的解码算法

```
VBDecode(bytestream)
     numbers \leftarrow \langle \rangle
    n \leftarrow 0
    for i \leftarrow 1 to Length(bytestream)
     do if bytestream[i] < 128
 5
            then n \leftarrow 128 \times n + bytestream[i]
 6
            else n \leftarrow 128 \times n + (bytestream[i] - 128)
                   Append(numbers, n)
8
                   n \leftarrow 0
 9
     return numbers
```

当延续位为1, bytestream[i]>128, 因此 if bytestream[i]<128 判断的是数字之间界线(即对齐)

其它编码

- 除字节外,还可以采用不同的对齐单位:比如32位 (word)、16位及4位(nibble)等等
- 如果有很多很小的间隔,那么采用可变字节码会浪费 很多空间,而此时采用4位为单位将会节省空间
- 最近一些工作采用了32位的方式 参考讲义末尾的参 考材料

Y编码

- 另外一种变长编码是基于位的编码
- 首先,在介绍∑编码之前先介绍一元码(unary code)
- 一元码:
 - 将 *n* 表示成 *n* 个1和最后一个0
 - 比如: 3的一元码是 1110

■ 70的一元码是:

49

Y编码

- 将G (Gap, 间隔) 表示成长度(length)和偏移(offset)两部分
- 偏移对应G的二进制编码,只不过将首部的1去掉
- 例如 13 → 1101 → 101 = 偏移
- 长度部分给出的是偏移的位数
- 比如G=13 (偏移为 101), 长度部分位数为 3
- 长度部分采用一元编码: 1110.
- 于是G的 ∑编码就是将长度部分和偏移部分两者联接起来 得到的结果。

Y编码的例子

数字	一元编码	长 度	偏 移	γ 编 码
0	0			
1	10	0		0
2	110	10	0	10,0
3	1110	10	1	10,1
4	11110	110	00	110,00
9	1111111110	1110	001	1110,001
13		1110	101	1110,101
24		11110	1000	11110,1000
511		111111110	11111111	111111110,11111111
1025		11111111110	000000001	11111111110 ,0000000001

课堂练习

- 计算130的可变字节码
- 计算130的Y编码

130二进制表示: 10000010

偏移: 0000010 长度部分: 11111110

最终编码: 111111110 0000010

VB编码: 00000001 10000010

Y编码的长度

- 偏移部分是 log₂ G 比特位
- 长度部分需要 log₂ G + 1 比特位
- 因此,全部编码需要 2log₂ G + 1比特位
- Y 编码的长度均是奇数
- Y编码在最优编码长度的2倍左右
 - 假定间隔G的出现频率正比于log₂ G—实际中并非如此)
 - (assuming the frequency of a gap G is proportional to log₂
 G not really true)

Y编码的性质

- Υ编码是前缀无关的,也就是说一个合法的Υ编码不会 是任何一个其他的合法Υ编码的前缀,也保证了解码的 唯一性。
- 编码在最优编码的2或3倍之内
 - 上述结果并不依赖于间隔的分布!
- 因此, Υ 编码适用于任何分布,也就说 Υ 编码是通用性 (universal)编码
- ∑编码是无参数编码,不需要通过拟合得到参数

Y编码的对齐问题

- 机器通常有字边界 8, 16, 32 位
- 按照位进行压缩或其他处理可能会较慢
- 可变字节码通常按字边界对齐,因此可能效率更高
- 除去效率高之外,可变字节码虽然额外增加了一点点开销,但是在概念上也要简单很多
- 因此在商用系统中VB编码更常见

Reuters RCV1索引压缩总表

数据结构	压缩后的空间大小(单位: MB)
词典, <mark>定长数组</mark>	11.2
词典,长字符串+词项指针	7.6
词典,按块存储,k=4	7.1
词典,按块存储+前端编码	5.9
文档集(文本、XMIL标签等)	3 600.0
文档集(文本)	960.0
词项关联矩阵	40 000.0
倒排记录表,未压缩(32位字)	400.0
倒排记录表,未压缩(20位)	250.0
倒排记录表,可变字 <mark>节码</mark>	116.0
倒排记录表, y 编码	101.0

Group Variable Integer code(组变长整数编码)

- Google 在2000年左右使用的算法
 - Jeff Dean, keynote at WSDM 2009 and presentations at CS276
- 按块存储。每块大小为5-17个字节,存放4个整数编码
- 每块首字节: 4个2位的二进制长度

$$L_1 L_2 L_3 L_4$$
, $L_j \in \{1,2,3,4\}$

- 接下来, 使用 L1+L2+L3+L4 bytes (between 4–16) 存放4个 整数
 - 每个整数占用 8/16/24/32 位,取决于整数的实际大小.可存储的最大间隔约为~4 billion
- 据称比VB编码快两倍
 - 间隔解码更简单 这是因为没有位masking,无延续位
 - 首字节可使用查找表(lookup table)或switch解码

Simple-9 [Anh & Moffat, 2004]

怎样在32位中存放多个数字,How can we store several numbers in 32 bits with a format selector?

Simple9 Encoding Scheme [Anh & Moffat, 2004]

- 编码块: 4字节(32位), 通常一个word的占用空间
- "最显著点"(most significant nibble, 即前4位) 概括了剩余28位的结构:
 - 0:1个28位数字
 - 1:2个 14位 数字
 - 2:3个9位数字(1个空位)
 - 3:4个7位数字
 - 4:5个5位数字(3个空位)
 - 5:7个4位数字
 - 6:9个3位数字(1个空位)
 - 7:14个2位数字
 - 8:28个1位数字

剩余28位存储若干个数字,每个数字占用相同的位数

每块4字节,前4位标识块内结构,

最大可存储2^28

- Simple16 是Simple9的改进:多出了 5 个非平均结构配置
- 解码效率高
- 可扩展性强 例如可以扩展到64位编码

Layout n numbers of b bits each
(4 bits) n * b < 28

总结

- 现在我们可以构建一个空间上非常节省的支持高效布尔 检索的索引
- 大小仅为文档集中文本量的10-15%
- 然而, 这里我们没有考虑词项的出现位置和频率信息
- 因此,实际当中并不能达到如此高的压缩比

参考资料

- 《信息检索导论》第5章
- http://ifnlp.org/ir
 - 有关字对齐二元编码的原文Anh and Moffat (2005); 及 Anh and Moffat (2006a)
 - 有关可变字节码的原文Scholer, Williams, Yiannis and Zobel (2002)
 - 更多的有关压缩 (包括位置和频率信息的压缩)的细节参考 Zobel and Moffat (2006)