Constant Propagation Analysis

Daniel Loscos Barroso dloscos@ucm.es

January 3, 2020

In this paper we look to provide an abstract interpretation framework to perform constant propagation analysis using variable interval analysis as a base.

Out concrete domain will be **Interval** and our abstract domain will be $\mathbb{Z}_{\perp}^{\top}$.

$$\forall i \in \mathbf{Interval} \mid \mid \emptyset \sqsubseteq i \\ \forall i = [i_1, i_2], j = [j_1, j_2] \in \mathbf{Interval} \mid \mid i \sqsubseteq j \iff j_1 \le i_1 \& i_2 \le j_2 \text{ where } \forall i \in \mathbb{Z} | | inf < i < inf.$$

1.

First we define: $\alpha : \mathbf{Interval} \to \mathbb{Z}_{\perp}^{\top}, \ \gamma : \mathbb{Z}_{\perp}^{\top} \to \mathbf{Interval} \ \text{and prove that} \ (\mathbf{Interval}, \alpha, \gamma, \mathbb{Z}_{\perp}^{\top}) \ \text{is a Galois connection.}$

The abstraction function $\alpha : \mathbf{Interval} \to \mathbb{Z}_{\perp}^{\top}$ is defined as follows:

$$\begin{array}{l} \alpha(\emptyset) = \bot. \\ \alpha([k,k]) = k \quad \forall k \in \mathbb{Z}. \\ \alpha(i) = \top \text{ otherwise.} \end{array}$$

The concretization function $\gamma: \mathbb{Z}_{\perp}^{\top} \to \mathbf{Interval}$ is defined as:

$$\begin{split} \gamma(\bot) &= \emptyset. \\ \gamma(k) &= [k,k]. \\ \gamma(\top) &= [-inf,inf] \end{split}$$

To prove that (Interval, $\alpha, \gamma, \mathbb{Z}_{\perp}^{\top}$) is a Galois connection we need to prove the following properties:

A) α is monotonically increasing:

This means that $\forall i \sqsubseteq j \in \mathbf{Interval} \Rightarrow \alpha(i) \sqsubseteq \alpha(j) \in \mathbb{Z}_{\perp}^{\top}$. We distinguish the following cases:

If $i = \emptyset$, then $\emptyset \sqsubseteq j$ and $\alpha(i) = \bot \sqsubseteq \alpha(j) \quad \forall j \in \mathbf{Interval}$.

If i = [k, k], with $k \in \mathbb{Z}$ then $i \subseteq j = [j_1, j_2]$ if j = i or $j_1 < k, k \le j_2$ or $j_1 \le k, k < j_2$:

- $j = i \Rightarrow \alpha(i) = \alpha(j) \Rightarrow \alpha(i) \sqsubseteq \alpha(j)$.
- $j_1 < k, k \le j_2 \Rightarrow j \ne \bot, j_1 \ne j_2 \Rightarrow \alpha(i) = k \sqsubseteq \top = \alpha(j).$
- $j_1 \le k, k < j_2 \Rightarrow j \ne \bot, j_1 \ne j_2 \Rightarrow \alpha(i) = k \sqsubseteq \top = \alpha(j).$

If $i = [i_1, i_2]$ with $i_1 < i_2$ then $i \subseteq j = [j_1, j_2]$ if j = i or $j_1 < i_1, i_2 \le j_2$ or $j_1 \le i_1, i_2 < j_2$:

- $j = i \Rightarrow \alpha(i) = \alpha(j) \Rightarrow \alpha(i) \sqsubseteq \alpha(j)$.
- $j_1 < i_1, i_2 \le j_2 \Rightarrow j \ne \bot, j_1 \ne j_2 \Rightarrow \alpha(i) = \top \sqsubseteq \top = \alpha(j).$
- $j_1 \le k, k < j_2 \Rightarrow j \ne \bot, j_1 \ne j_2 \Rightarrow \alpha(i) = \top \sqsubseteq \top = \alpha(j).$

B) γ is monotonically increasing:

This means that $\forall i \sqsubseteq j \in \mathbb{Z}_{+}^{\top} \Rightarrow \gamma(i) \sqsubseteq \gamma(j) \in \mathbf{Interval}$. We distinguish the following cases:

If $i = \bot$ then $i \sqsubseteq j$ and $\gamma(i) \sqsubseteq \gamma(j) \quad \forall j \in \mathbb{Z}_{\bot}^{\top}$.

If $i \in \mathbb{Z}_+^{\top} = k \in \mathbb{Z}$ then $i \sqsubseteq j \in \mathbb{Z}_+^{\top}$ if i = j or $j = \top$:

- $j = i \Rightarrow \gamma(i) = \gamma(j) \Rightarrow \gamma(i) = [k, k] \sqsubseteq [k, k] = \gamma(j)$.
- $j = \top \Rightarrow \gamma(j) = [-inf, inf] \Rightarrow \gamma(i) = [k, k] \sqsubseteq [-inf, inf] = \gamma(j)$.

If $i \in \mathbb{Z}_{+}^{\top} = \top$ then $i \subseteq j \in \mathbb{Z}_{+}^{\top} \Rightarrow j = \top \Rightarrow \gamma(i) = [-inf, inf] \subseteq [-inf, inf] = \gamma(j)$.

C) $\gamma \circ \alpha \supseteq id$:

We want to prove that $x \sqsubseteq \gamma(\alpha(x)) \quad \forall x \in \mathbf{Interval}$.

If
$$x = \emptyset \Rightarrow \gamma(\alpha(x)) = \gamma(\bot) = \emptyset \supseteq \emptyset$$
.
If $x = [k, k], k \in \mathbb{Z} \Rightarrow \gamma(\alpha(x)) = \gamma(k) = [k, k] \supseteq [k, k]$.
Otherwise $\gamma(\alpha(x)) = \gamma(\top) = [-inf, inf] \supseteq i \quad \forall i \in \mathbf{Interval} \text{ (including } x, \text{ of course)}.$

D) $\alpha \circ \gamma \sqsubseteq id$:

We want to prove that $\alpha(\gamma(x)) \sqsubseteq x \quad \forall x \in \mathbb{Z}_{\perp}^{\top}$.

If
$$x = \bot \Rightarrow \alpha(\gamma(x)) = \alpha(\emptyset) = \bot \sqsubseteq \bot$$
.
If $x = k \Rightarrow \alpha(\gamma(x)) = \alpha([k, k]) = k \sqsubseteq k$.
If $x = \top \Rightarrow \alpha(\gamma(x)) = \alpha([-inf, inf]) = \top \sqsubseteq \top$.

Since all the properties are satisfied, we have proven that (**Interval**, α , γ , $\mathbb{Z}_{\perp}^{\top}$) is indeed a Galois connection.

2.

Let $\mathbf{State}^{\#} = \mathbf{Var} \to \mathbf{Interval}$ and $\mathbf{State}^{\#\#} = \mathbf{Var} \to \mathbb{Z}_{\perp}^{\top}$. then we can extend the previous Galois connection to $\mathbf{State}^{\#}$ and $\mathbf{State}^{\#\#}$ with the following functions:

$$\alpha' : \mathbf{State}^{\#} \to \mathbf{State}^{\#\#}$$

 $\alpha'(s) = s[v_1 \to \alpha(I_1), ...v_i \to \alpha(I_i)...] \quad \forall v_k \in \mathbf{Var} \text{ defined in } s \in \mathbf{State}^{\#} \text{ as } v_k \to I_k.$

$$\gamma': \mathbf{State}^{\#\#} \to \mathbf{State}^{\#}$$

 $\gamma'(s) = s[v_1 \to \gamma(Z_1), ... v_i \to \gamma(Z_i)...] \quad \forall v_k \in \mathbf{Var} \text{ defined in } s \in \mathbf{State}^{\#\#} \text{ as } v_k \to Z_k.$

3.

We can define an abstract interpreter $\llbracket e \rrbracket^{\#\#} : \mathbf{State}^{\#\#} \to \mathbb{Z}_{\perp}^{\top}$ that determines whether the result of an arithmetic expression must be constant at runtime: if $\llbracket e \rrbracket^{\#\#} = k \in \mathbb{Z}$ then, we can conclude that the expression is constant. If $\llbracket e \rrbracket^{\#\#} = \bot$ or \top , then we cannot conclude that the expression is constant.

Since our variable interval analysis used additional operations, we will include those as well in our abstract interpreter:

```
\begin{split} & \llbracket n \rrbracket^{\#\#} = \lambda \sigma.n. \\ & \llbracket var \rrbracket^{\#\#} = \lambda \sigma.\sigma(var) \\ & \llbracket -e \rrbracket^{\#\#} = \lambda \sigma.(\ominus_1(\llbracket e \rrbracket^{\#\#}\sigma)) \\ & \llbracket e_1 + e_2 \rrbracket^{\#\#} = \lambda \sigma.((\llbracket e_1 \rrbracket^{\#\#}\sigma) \oplus (\llbracket e_2 \rrbracket^{\#\#}\sigma)) \\ & \llbracket e_1 - e_2 \rrbracket^{\#\#} = \lambda \sigma.((\llbracket e_1 \rrbracket^{\#\#}\sigma) \ominus (\llbracket e_2 \rrbracket^{\#\#}\sigma)) \\ & \llbracket e_1 * e_2 \rrbracket^{\#\#} = \lambda \sigma.((\llbracket e_1 \rrbracket^{\#\#}\sigma) \otimes (\llbracket e_2 \rrbracket^{\#\#}\sigma)) \\ & \llbracket e_1 / e_2 \rrbracket^{\#\#} = \lambda \sigma.((\llbracket e_1 \rrbracket^{\#\#}\sigma) \otimes (\llbracket e_2 \rrbracket^{\#\#}\sigma)) \end{split}
```

Were the functions $\ominus_1, \oplus, \ominus, \otimes$ and \oslash are defined as follows:

```
\ominus_1 \bot = \bot
\ominus_1 \top = \top
\Theta_1 x = -x \quad \forall x \in \mathbb{Z}
\oplus and \otimes are commutative
\bot \oplus x = \bot \quad \forall x \in \mathbb{Z}_{\bot}^{\top}
\top \oplus x = \top \quad \forall x \in \mathbb{Z}^{\dagger}
x \oplus y = (x+y) \quad \forall x, y \in \mathbb{Z}
\bot \ominus x = \bot \quad \forall x \in \mathbb{Z}_{\bot}^{\top}
x \ominus \bot = \bot \quad \forall x \in \mathbb{Z}_{\bot}^{\dagger}
\top \ominus x = \top \quad \forall x \in \mathbb{Z}^{\dagger}
x\ominus\top=\top\quad\forall x\in\mathbb{Z}^\top
x \ominus y = (x - y) \quad \forall x, y \in \mathbb{Z}
\bot \otimes x = \bot \quad \forall x \in \mathbb{Z}_{\bot}^{\top}
0 \otimes x = 0 \quad \forall x \in \mathbb{Z}^{\top}
\top \otimes x = \top \quad \forall x \in \mathbb{Z}^{\top} \setminus \{0\}
x \otimes y = (x * y) \quad \forall x, y \in \mathbb{Z}
\begin{array}{ll} \bot \oslash x = \bot & \forall x \in \mathbb{Z}_{\bot}^{\top} \\ x \oslash \bot = \bot & \forall x \in \mathbb{Z}_{\bot}^{\top} \\ 0 \oslash x = 0 & \forall x \in \mathbb{Z}_{\bot}^{\top} \end{array}
x \oslash 0 = \top \quad \forall x \in \mathbb{Z}_+^\top \setminus \{0\}
\top \oslash x = \top \quad \forall x \in \mathbb{Z}^{\top} \setminus \{0\}
x \oslash \top = \top \quad \forall x \in \mathbb{Z}^\top \setminus \{0\}
x \oslash y = (x/y) \quad \forall x, y \in \mathbb{Z} \setminus \{0\}
0 \oslash 0 is not defined
```

4.

Finally, we show that the interpreter is correct by proving that $\alpha(\llbracket e \rrbracket^\#(\gamma'(s))) \sqsubseteq \llbracket e \rrbracket^{\#\#}(s) \quad \forall s \in \mathbf{State}^{\#\#}$.

Constants

If $e = n \Rightarrow \llbracket n \rrbracket^{\#\#} = \lambda \sigma. n$ and $\llbracket n \rrbracket^{\#} = \lambda \sigma. [n, n] \Rightarrow \alpha(\llbracket n \rrbracket^{\#}(\gamma'(s))) = \alpha([n, n]) = n = \llbracket n \rrbracket^{\#\#}(s)$ independently of $s \in \mathbf{State}^{\#\#}$.

Variables

If $e = var \Rightarrow \llbracket var \rrbracket^{\#\#} = \lambda \sigma. \sigma(var)$ and $\llbracket var \rrbracket^{\#} = \lambda \sigma. \sigma(var)$. Now we distinguish three possible cases regarding $s \in \mathbf{State}^{\#\#}$:

- $s(var) = \bot$: $\Rightarrow \alpha([var]^{\#}(\gamma'(s))) = \alpha(\emptyset) = \bot = [var]^{\#\#}(s)$.
- $s(var) = z \in \mathbb{Z}$: $\Rightarrow \alpha([var]^{\#}(\gamma'(s))) = \alpha([z, z]) = z = [var]^{\#\#}(s)$.
- $s(var) = \top : \Rightarrow \alpha([var]^{\#}(\gamma'(s))) = \alpha([-inf, inf]) = \top = [var]^{\#\#}(s).$

Induction Hypothesis

These are the base cases for the proof by structural induction on the rest of expressions. Our induction hypothesis will be that $\alpha(\llbracket e \rrbracket^\#(\gamma'(s))) \sqsubseteq \llbracket e \rrbracket^{\#\#}(s) \quad \forall s \in \mathbf{State}^{\#\#}$. which has the following implications:

- $\bullet \ \llbracket e \rrbracket^{\#\#}(s) = \bot \Rightarrow \alpha(\llbracket e \rrbracket^{\#}(\gamma'(s))) = \bot \Rightarrow \llbracket e \rrbracket^{\#}(\gamma'(s)) = \emptyset.$
- $\llbracket e \rrbracket^{\#\#}(s) = z \in \mathbb{Z} \Rightarrow \alpha(\llbracket e \rrbracket^{\#}(\gamma'(s))) = \bot \text{ or } z \Rightarrow \llbracket e \rrbracket^{\#}(\gamma'(s)) = \emptyset \text{ or } [z, z].$
- $\llbracket e \rrbracket^{\#\#}(s) = \top \Rightarrow \alpha(\llbracket e \rrbracket^{\#}(\gamma'(s))) = \text{anything } \in \mathbb{Z}_{\perp}^{\top} \Rightarrow \llbracket e \rrbracket^{\#}(\gamma'(s)) = \text{anything } \in \mathbf{Interval}.$

Negation

If $e = -e_1 \Rightarrow \llbracket -e_1 \rrbracket^{\#\#} = \lambda \sigma. (\ominus_1 (\llbracket e_1 \rrbracket^{\#\#} \sigma))$ and $\llbracket -e_1 \rrbracket^{\#} = \lambda \sigma. (-1 (\llbracket e_2 \rrbracket^{\#\#} \sigma))$ where:

- \bullet $-1\emptyset = \emptyset$
- $-1[i_1, i_2] = [-i_2, -i_1]$ (of course we have that -(-inf) = inf)

We now distinguish cases regarding the values of $[e_1]^{\#\#}(s)$:

If $[e_1]^{\#\#}(s) = \bot$ then $[e]^{\#\#}(s) = \bot$ and by the IH $[e_1]^{\#}(\gamma'(s)) = \emptyset \Rightarrow \alpha([e]^{\#}(\gamma'(s))) = \alpha(\emptyset) = \bot = [e]^{\#\#}(s)$.

If $[e_1]^{\#\#}(s) = \top$, then $[e]^{\#\#}(s) = \top$ which is the topmost element of the lattice, so the property holds.

Finally if $\llbracket e_1 \rrbracket^{\#\#}(s) = a \in \mathbb{Z}$ then $\llbracket e \rrbracket^{\#\#}(s) = -a$ and by the IH $\llbracket e_1 \rrbracket^{\#}(\gamma'(s)) = \emptyset$ or [a, a]. Therefore $\llbracket e \rrbracket^{\#}(\gamma'(s)) = \emptyset$ or $[-a, -a] \Rightarrow \alpha(\llbracket e \rrbracket^{\#}(\gamma'(s))) = \bot$ or -a both of which are $\sqsubseteq -a$.

Addition

If $e = e_1 + e_2 \Rightarrow \llbracket e_1 + e_2 \rrbracket^{\#\#} = \lambda \sigma.((\llbracket e_1 \rrbracket^{\#\#}\sigma) \oplus (\llbracket e_2 \rrbracket^{\#\#}\sigma))$ and $\llbracket e_1 + e_2 \rrbracket^{\#} = \lambda \sigma.((\llbracket e_1 \rrbracket^{\#\#}\sigma) +_2(\llbracket e_2 \rrbracket^{\#\#}\sigma))$ where:

- $+_2$, $+_-$ and $+_+$ are commutative
- $\emptyset +_2 i = \emptyset$ $\forall i \in \mathbf{Interval}$
- $[i_1, i_2] +_2 [j_1, j_2] = [i_1 +_- j_1, i_2 +_+ j_2]$

- $-inf +_{-} k = -inf \quad \forall k \in \mathbb{Z}_{-inf}^{inf}$
- $inf +_{-} k = inf \quad \forall k \in \mathbb{Z}^{inf}$
- $a +_{-} b = a + b \quad \forall a, b \in \mathbb{Z}$
- $inf +_{+} k = inf \quad \forall k \in \mathbb{Z}_{-inf}^{inf}$
- $-inf +_{+} k = -inf \quad \forall k \in \mathbb{Z}_{-inf}$
- $a +_+ b = a + b \quad \forall a, b \in \mathbb{Z}$

We now distinguish cases regarding the values of $[e_1]^{\#\#}(s)$ and $[e_2]^{\#\#}(s)$:

If $[e_1]^{\#\#}(s)$ or $[e_2]^{\#\#}(s) = \bot$ then $[e]^{\#\#}(s) = \bot$ and by the IH $[e_1]^{\#}(\gamma'(s))$ or $[e_2]^{\#}(\gamma'(s)) = \emptyset \Rightarrow \alpha([e]^{\#}(\gamma'(s))) = \alpha(\emptyset) = \bot = [e]^{\#\#}(s)$.

If $\llbracket e_1 \rrbracket^{\#\#}(s) \neq \bot$, $\llbracket e_2 \rrbracket^{\#\#}(s) \neq \bot$ and one of them is equal to \top , then $\llbracket e \rrbracket^{\#\#}(s) = \top$ which is the topmost element of the lattice, so the property holds.

Finally if $\llbracket e_1 \rrbracket^{\#\#}(s) = a$, $\llbracket e_2 \rrbracket^{\#\#}(s) = b$, $a, b \in \mathbb{Z}$ then $\llbracket e \rrbracket^{\#\#}(s) = a + b$ and by the IH $\llbracket e_1 \rrbracket^{\#}(\gamma'(s)) = \emptyset$ or [a, a] and $\llbracket e_2 \rrbracket^{\#}(\gamma'(s)) = \emptyset$ or [b, b]. Therefore $\llbracket e \rrbracket^{\#}(\gamma'(s)) = \emptyset$ or $[a + b, a + b] \Rightarrow \alpha(\llbracket e \rrbracket^{\#}(\gamma'(s))) = \bot$ or a + b both of which are $\sqsubseteq a + b$.

Subtraction

If $e = e_1 - e_2 \Rightarrow \llbracket e_1 - e_2 \rrbracket^{\#\#} = \lambda \sigma.((\llbracket e_1 \rrbracket^{\#\#}\sigma) \ominus (\llbracket e_2 \rrbracket^{\#\#}\sigma))$ and $\llbracket e_1 - e_2 \rrbracket^{\#} = \lambda \sigma.((\llbracket e_1 \rrbracket^{\#\#}\sigma) - 2(\llbracket e_2 \rrbracket^{\#\#}\sigma))$ where:

- $\emptyset -_2 i = i -_2 \emptyset = \emptyset$ $\forall i \in \mathbf{Interval}$
- $[i_1, i_2] -_2 [j_1, j_2] = [i_1 -_- j_2, i_2 -_+ j_1]$
- $-inf -_{-}k = -inf \quad \forall k \in \mathbb{Z}_{-inf}^{inf}$
- $k inf = -inf \quad \forall k \in \mathbb{Z}^{inf}$
- $inf -_{-} z = inf \quad \forall z \in \mathbb{Z}$
- $z -inf = inf \quad \forall z \in \mathbb{Z}$
- $\bullet \ a -_- b = a b \quad \forall a, b \in \mathbb{Z}$
- $inf_{-+} k = inf \quad \forall k \in \mathbb{Z}_{-inf}^{inf}$
- $k -_{\perp} inf = inf \quad \forall k \in \mathbb{Z}^{inf}$
- $-inf -_+ z = -inf \quad \forall z \in \mathbb{Z}$
- $z \inf f = -inf \quad \forall z \in \mathbb{Z}$
- $a -_+ b = a b \quad \forall a, b \in \mathbb{Z}$

We now distinguish cases regarding the values of $[e_1]^{\#\#}(s)$ and $[e_2]^{\#\#}(s)$:

If $[e_1]^{\#\#}(s)$ or $[e_2]^{\#\#}(s) = \bot$ then $[e]^{\#\#}(s) = \bot$ and by the IH $[e_1]^{\#}(\gamma'(s))$ or $[e_2]^{\#}(\gamma'(s)) = \emptyset \Rightarrow \alpha([e]^{\#}(\gamma'(s))) = \alpha(\emptyset) = \bot = [e]^{\#\#}(s)$.

If $\llbracket e_1 \rrbracket^{\#\#}(s) \neq \bot$, $\llbracket e_2 \rrbracket^{\#\#}(s) \neq \bot$ and one of them is equal to \top , then $\llbracket e \rrbracket^{\#\#}(s) = \top$ which is the topmost element of the lattice, so the property holds.

Finally if $\llbracket e_1 \rrbracket^{\#\#}(s) = a$, $\llbracket e_2 \rrbracket^{\#\#}(s) = b$, $a, b \in \mathbb{Z}$ then $\llbracket e \rrbracket^{\#\#}(s) = a - b$ and by the IH $\llbracket e_1 \rrbracket^{\#}(\gamma'(s)) = \emptyset$ or [a, a] and $\llbracket e_2 \rrbracket^{\#}(\gamma'(s)) = \emptyset$ or [b, b]. Therefore $\llbracket e \rrbracket^{\#}(\gamma'(s)) = \emptyset$ or $[a - b, a - b] \Rightarrow \alpha(\llbracket e \rrbracket^{\#}(\gamma'(s))) = \bot$ or a - b both of which are $\sqsubseteq a - b$.

Multiplication

If $e = e_1 * e_2 \Rightarrow \llbracket e_1 * e_2 \rrbracket^{\#\#} = \lambda \sigma.((\llbracket e_1 \rrbracket^{\#\#}\sigma) \otimes (\llbracket e_2 \rrbracket^{\#\#}\sigma))$ and $\llbracket e_1 * e_2 \rrbracket^{\#} = \lambda \sigma.((\llbracket e_1 \rrbracket^{\#\#}\sigma) *_2 (\llbracket e_2 \rrbracket^{\#\#}\sigma))$ where:

- $*_2$ is commutative
- $\emptyset *_2 i = \emptyset \quad \forall i \in \mathbf{Interval}$
- $[i_1, i_2] *_2 [j_1, j_2] = [min(M), max(M)]$ where $M = \{i_1 *_{j_1}, i_1 *_{j_2}, i_2 *_{j_1}, i_2 *_{j_2}\}$
- inf * inf = inf
- -inf * inf = -inf
- -inf * -inf = inf
- $0 * k = 0 \quad \forall k \in \mathbb{Z}_{-inf}^{inf}$
- $inf * k = inf \quad \forall k \in \mathbb{Z}, k > 0$
- $inf * k = -inf \quad \forall k \in \mathbb{Z}, k < 0$
- $-inf * k = -inf \quad \forall k \in \mathbb{Z}, k > 0$
- $-inf * k = inf \quad \forall k \in \mathbb{Z}, k < 0$
- $a * b = a * b \quad \forall a, b \in \mathbb{Z}$ (as expected).

We now distinguish cases regarding the values of $[e_1]^{\#\#}(s)$ and $[e_2]^{\#\#}(s)$:

If
$$[e_1]^{\#\#}(s)$$
 or $[e_2]^{\#\#}(s) = \bot$ then $[e]^{\#\#}(s) = \bot$ and by the IH $[e_1]^{\#}(\gamma'(s))$ or $[e_2]^{\#}(\gamma'(s)) = \emptyset \Rightarrow \alpha([e]^{\#}(\gamma'(s))) = \alpha(\emptyset) = \bot = [e]^{\#\#}(s)$.

If $\llbracket e_1 \rrbracket^{\#\#}(s) \neq \bot$, $\llbracket e_2 \rrbracket^{\#\#}(s) \neq \bot$ and one of them is equal to 0, then $\llbracket e \rrbracket^{\#\#}(s) = 0$ and by the IH either $\llbracket e_1 \rrbracket^{\#}(\gamma'(s)) = \emptyset$ or $\llbracket e_1 \rrbracket^{\#}(\gamma'(s)) = \emptyset$ or $\llbracket e_2 \rrbracket^{\#}(\gamma'(s)) = \emptyset$ or $\llbracket e_1 \rrbracket^{\#}(\gamma'($

If $[e_1]^{\#\#}(s) \neq \bot$ or 0, $[e_2]^{\#\#}(s) \neq \bot$ or 0 and one of them is equal to \top , then $[e]^{\#\#}(s) = \top$ which is the topmost element of the lattice, so the property holds.

Finally if $\llbracket e_1 \rrbracket^{\#\#}(s) = a$, $\llbracket e_2 \rrbracket^{\#\#}(s) = b$, $a, b \in \mathbb{Z} \setminus \{0\}$ then $\llbracket e \rrbracket^{\#\#}(s) = a * b$ and by the IH $\llbracket e_1 \rrbracket^{\#}(\gamma'(s)) = \emptyset$ or [a, a] and $\llbracket e_2 \rrbracket^{\#}(\gamma'(s)) = \emptyset$ or [b, b]. Therefore $\llbracket e \rrbracket^{\#}(\gamma'(s)) = \emptyset$ or $[a * b, a * b] \Rightarrow \alpha(\llbracket e \rrbracket^{\#}(\gamma'(s))) = \bot$ or a * b both of which are $\sqsubseteq a * b$.

Division

If $e = e_1/e_2 \Rightarrow [e_1/e_2]^{\#\#} = \lambda \sigma.(([e_1]]^{\#\#}\sigma) \oslash ([e_2]]^{\#\#}\sigma))$ and $[e_1/e_2]^{\#} = \lambda \sigma.(([e_1]]^{\#\#}\sigma)/2([e_2]]^{\#\#}\sigma))$ where:

- $\emptyset/_2 i = \emptyset \quad \forall i \in \mathbf{Interval}$
- $i/_2\emptyset = \emptyset \quad \forall i \in \mathbf{Interval}$
- If $j_1 * j_2 \le 0 \Rightarrow [i_1, i_2]/[j_1, j_2] = [-inf, inf]$
- If $j_1 * j_2 > 0 \Rightarrow [i_1, i_2]/2[j_1, j_2] = [min(M), max(M)]$ where $M = \{i_1/j_1, i_1/j_2, i_2/j_1, i_2/j_2\}$
- inf/inf = inf
- inf/-inf = -inf
- -inf/inf = -inf

- -inf/-inf=inf
- $0/k = 0 \quad \forall k \in \mathbb{Z}_{-inf}^{inf} \setminus \{0\}$
- $inf/k = inf \quad \forall k \in \mathbb{Z}, k \ge 0$
- $inf/k = -inf \quad \forall k \in \mathbb{Z}, k < 0$
- $-inf/k = -inf \quad \forall k \in \mathbb{Z}, k \ge 0$
- $-inf/k = inf \quad \forall k \in \mathbb{Z}, k < 0$
- $z/0 = -inf \quad \forall z \in \mathbb{Z}_{-inf}, z < 0$
- $z/0 = inf \quad \forall k \in \mathbb{Z}^{inf}, z > 0$
- $a/b = a * /b \quad \forall a, b \in \mathbb{Z} \setminus \{0\}$ (as expected).
- The function / is not defined for 0/0, however we define it for infinity values in the way that is most conservative for the analysis

We now distinguish cases regarding the values of $[e_1]^{\#\#}(s)$ and $[e_2]^{\#\#}(s)$:

If $[e_1]^{\#\#}(s)$ or $[e_2]^{\#\#}(s) = \bot$ then $[e]^{\#\#}(s) = \bot$ and by the IH $[e_1]^{\#}(\gamma'(s))$ or $[e_2]^{\#}(\gamma'(s)) = \emptyset \Rightarrow \alpha([e]^{\#}(\gamma'(s))) = \alpha(\emptyset) = \bot = [e]^{\#\#}(s)$.

If $[e_1]^{\#\#}(s) = [e_2]^{\#\#}(s) = 0$, then $[e]^{\#\#}(s)$ is not defined.

If $\llbracket e_1 \rrbracket^{\#\#}(s) \neq \bot$ or 0, $\llbracket e_2 \rrbracket^{\#\#}(s) = 0$, then $\llbracket e \rrbracket^{\#\#}(s) = \top$ which is the topmost element of the lattice, so the property holds.

If $\llbracket e_1 \rrbracket^{\#\#}(s) = 0$, $\llbracket e_2 \rrbracket^{\#\#}(s) \neq \bot$ or 0 then $\llbracket e \rrbracket^{\#\#}(s) = 0$ and by the IH either $\llbracket e_1 \rrbracket^{\#}(\gamma'(s)) = \emptyset$ or [0,0]. Therefore $\llbracket e \rrbracket^{\#}(\gamma'(s)) = \emptyset$ or $[0,0] \Rightarrow \alpha(\llbracket e \rrbracket^{\#}(\gamma'(s))) = \bot$ or 0 both of which are $\sqsubseteq 0$.

If $[e_1]^{\#\#}(s) \neq \bot$ or 0, $[e_2]^{\#\#}(s) \neq \bot$ or 0 and one of them is equal to \top , then $[e]^{\#\#}(s) = \top$ which is the topmost element of the lattice, so the property holds.

Finally if $\llbracket e_1 \rrbracket^{\#\#}(s) = a$, $\llbracket e_2 \rrbracket^{\#\#}(s) = b$, $a, b \in \mathbb{Z} \setminus \{0\}$ then $\llbracket e \rrbracket^{\#\#}(s) = a/b$ and by the IH $\llbracket e_1 \rrbracket^{\#}(\gamma'(s)) = \emptyset$ or [a, a] and $\llbracket e_2 \rrbracket^{\#}(\gamma'(s)) = \emptyset$ or [b, b]. Therefore $\llbracket e \rrbracket^{\#}(\gamma'(s)) = \emptyset$ or $[a/b, a/b] \Rightarrow \alpha(\llbracket e \rrbracket^{\#}(\gamma'(s))) = \bot$ or a/b both of which are $\sqsubseteq a/b$.

Conclusion

With this last case we have proven that the interpreter is correct by proving that every numerical expression satisfies $\alpha(\llbracket e \rrbracket^\#(\gamma'(s))) \sqsubseteq \llbracket e \rrbracket^{\#\#}(s) \quad \forall s \in \mathbf{State}^{\#\#}$.