Teoría de Autómatas y Lenguajes Formales

Capítulo 1: "Introducción"

Holger Billhardt

holger.billhardt@urjc.es

Introducción

- Teoría de Autómatas y Lenguajes formales es un "repaso" a la informática teórica.
- La informática teórica:
 - se ha desarrollado en base a la confluencia de campos en aparencia muy distintos:
 - Investigación acerca de Fundamentos Matemáticos,
 - Teoría de Máquinas,
 - Lingüística, ...
 - Ciencia multidisciplinar que se apoya en que los mismos fenómenos pueden actuar y servir de fundamento en áreas totalmente desconectadas (aparentemente).

Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas

Universidad Rey Juan Carlos

Introducción

- Pilares de la informática teórica:
 - Autómatas / máquinas secuenciales
 - Lenguajes y gramáticas
 - Máquinas abstractas y algoritmos

Universidad Rey Juan Carlos

Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas

3

Autómatas / Máquinas secuenciales

- Eslabón de la informática teórica que proviene de la Ingeniería Eléctrica.
- 1938 Claude Elwood Shannon: "A symbolic Analysis of relay and switching circuits"
 - Aplicación de la lógica matemática a los circuitos combinatorios y secuenciales.
- Sus ideas desarrollaron la Teoría de los autómatas finitos y máquinas secuenciales
 - Un autómata es un dispositivo abstracto que es capaz de recibir información, cambiar de estado y transmitir información.

Universidad Rey Juan Carlos

Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas

Autómatas / Máquinas secuenciales

- Un autómata puede describir de forma formal el funcionamiento de un sistema
 - Ejemplo: interruptor

Universidad Rey Juan Carlos

Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas

5

Autómatas / Máquinas secuenciales

- Un autómata es un modelo abstracto de una computadora digital
 - Lee símbolos en la entrada
 - Produce símbolos en la salida
 - Tiene una unidad de control que puede estar en uno de sus posibles estados internos
 - Puede cambiar de los estados internos en función de la entrada
 - Puede tener algún tipo de memoria
- Autómatas transductores / generadores / aceptadores

Universidad Rey Juan Carlos

Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas

Lenguajes y Gramáticas

- Segundo eslabón: Lingüística (campo tradicionalmente considerado no científico).
- Años 50 Avram Noam Chomsky
 - □ Teoría de las Gramáticas Transformacionales
 - Base de la Lingüística Matemática
 - Proporcionó una herramienta que no sólo podía aplicarse a los lenguajes naturales, sino que facilitaba el estudio y formalización de los lenguajes de ordenador que aparecían en aquella época.

Universidad Rey Juan Carlos

Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas

7

Lenguajes y Gramáticas

- Cualquier comunicación se realiza mediante cadenas de símbolos que corresponden a un lenguaje.
- Lenguajes son conjuntos de cadenas de símbolos (palabras, oraciones, textos o frases)
- El estudio de los lenguajes se reduce, básicamente, a:
 - Sintaxis: (gramática)
 - define las secuencias de símbolos que forman cadenas válidas de un lenguaje
 - Gramática: Descripción formalizada de las oraciones de un lenguaje.
 Una gramática genera o describe un lenguaje.
 - Semántica:
 - significado de las cadenas que componen un lenguaje

Universidad Rey Juan Carlos

Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas

Lenguajes y Gramáticas

- Ejemplo 1:
 - Semántica:
 - A es un número natural.
 - Diferente sintaxis en diferentes lenguajes:
 - A is a natural number.
 - A : Natural;
 - 0100000100000001

Universidad Rey Juan Carlos

Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas

9

Lenguajes y Gramáticas

- Ejemplo 2:
- Sintaxis:
 - if_statement ::= if condition then sequence_of_statement {elsif condition then sequence_of_statements} [else sequence_of_statements] end if;
- Semántica:
 - Si se cumple <condition> entonces haz lo que viene definido por <sequence_of_statements>. En caso contrario ...
- Cadena del lenguaje:
 - if Line_Too_Short then raise Layout_Error; elsif Line_Full then New_Line; Put(Item); else Put(Item); end if;

Universidad Rey Juan Carlos

Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas

Lenguajes y Gramáticas

- La Teoría de Lenguajes Formales resultó tener una relación inmediata y directa con la Teoría de Máquinas Abstractas.
 - □ Se establecieron correspondencias (isomorfismos) entre ellas.
 - $\ \square$ Se puede describir el funcionamiento de sistemas mediante gramáticas \rightarrow lenguajes de programación
- Chomsky clasificó de las gramáticas en diferentes tipos:
 - Lenguajes del mismo tipo tienen propiedades en común
 - Según el tipo de lenguaje, existen diferentes algoritmos que permiten comprobar la sintaxis de textos.

Universidad Rey Juan Carlos

Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas

1

Lenguajes y Gramáticas

- Relación entre autómatas, lenguajes y gramáticas:
 - Autómatas aceptadores: las entradas válidas corresponden a un lenguaje

Universidad Rey Juan Carlos

Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas

Máquinas abstractas y algoritmos

- La historia de la informática teórica se remonta a la década de los 30.
- 1931 Kurt Gödel: "On formally undecidable Propositions in Principia Mathematica and related systems"
 - Revolución Matemática: "Cualquier teoría matemática ha de ser incompleta. Siempre habrá en ella afirmaciones que no se podrán demostrar ni negar."

Universidad Rey Juan Carlos

Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas

13

Máquinas abstractas y algoritmos

- ¿Cómo se puede formalizar el concepto de realizar un cálculo?
 - 1937 Alan Mathison Turing: "On computable numbers with an application to the Entscheidungsproblem"
 - Definición de la Máquina de Turing como dispositivo matemático abstracto de cálculo que introduce el concepto de "algoritmo".
 - Origen "oficial" de la informática teórica.
 - Precursora abstracta de las máquinas de calcular automáticas.
 - La Máquina de Turing es un modelo abstracto de los ordenadores actuales.
 - Demuestra la existencia de problemas irresolubles, los que ninguna máquina de Turing (y ningún ordenador) puede resolver o calcular. (Teoría de la Computabilidad).

Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas

Universidad Rey Juan Carlos

Desarrollo de la Asignatura

- Conceptos básicos: Lenguajes Formales y Gramáticas
- Lenguajes regulares
- Autómatas Finitos
- Lenguajes Independientes del Contexto
- Autómatas a Pila
- Máquinas de Turing
- Computabilidad

Universidad Rey Juan Carlos

Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas

15

Notaciones que utilizaremos

- Básicamente operaciones sobre conjuntos.
- Conjunto:
- Pertenencia: x ∈ C, el elemento x pertenece al conjunto C
- Inclusión: C ⊆ C', el conjunto C es un subconjunto del C'
- Cardinalidad: |C|, el número de elementos del conjunto C

Universidad Rey Juan Carlos

Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas

Notaciones que utilizaremos

- Unión de conjuntos: C ∪ C', la unión de los conjuntos C y C'
- Intersección: C ∩ C', la intersección de los conjuntos C v C'
- Simplificación: a...z ó a, ...,z ó $x_1,...,x_n$ (todos los elementos entre x_1 y x_n)
- Aplicación entre conjuntos:
 - □ $f: E_1 \times E_2 \times ... \times E_n \rightarrow S_1 \times S_2 \times ... \times S_m$ La función (aplicación) f está definida entre los conjuntos E_i y S_f

Desde el punto de vista computacional, se puede entender que f recibe de entrada a un elemento para cada conjunto E_i y genera una salida para cada conjunto S_i

Más notaciones se introducirán a lo largo del curso.

Universidad Rey Juan Carlos

Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas