n元关系(n-ary relation)

- 定义: 若集合F中的全部元素都是有序 $n(n \ge 2)$ 元组是则称F为n元关系
- \blacksquare 当n=2时,称F为二元关系,简称为关系
- F是二元关系,若 $\langle x,y \rangle \in F$,可记为xFy或F(x,y),分别称为后缀、中缀和前缀表示,称x和y有关系F.若 $\langle x,y \rangle \notin F$,称x和y没有关系F,记为xFy

例如: 2<15 ⇔ <2,15>∈<⇔<(2,15)

规定空集∅既是n元空关系,也是二元空关系,简 称为空关系

二元关系(binary relation)

例如

 F_1 ={<1,2,3,4>,<物理,化学,生物,数学>}, F_1 是4元关系. F_2 ={<a,b,c>,<大李,小李,老李>}, F_2 是3元关系. R_1 ={<1,2>,< α , β >,<a,b>}, R_1 是2元关系. R_2 ={<1,2>,<3,4>,<白菜,小猫>}, R_2 是2元关系. A={<a,b>,<1,2,3>,a, α ,1},A不是关系.

A到B的二元关系

- 定义 A,B为集合, $A \times B$ 的任意子集称为A到B的二 元关系
- 若R是 $A \times A$ 的子集,称R是A上的二元关系 记作 $R \subseteq A \times A$ 或 $R \in P(A \times B)$

R是集合A上的二元关系⇔R⊆A <math>⇔R∈P(A <math>×A)

■ 计数

设A是中国所有城市的集合,B是中国所有省、直辖市、自治区的集合,如下定义关系R: 如果城市a在省(直辖市、自治区)b中,则 $\langle a,b \rangle \in \mathbb{R}$,或者a和b有关系R.

如<青岛,山东> $\in R$, <贵阳,云南> $\notin R$

例

例: 设 $A = \{a_1, a_2\}, B = \{b\}, \bar{x}A \to B \to B \to B \to A$ 的所有关系

解
$$A \times B = \{ \langle a_1, b \rangle, \langle a_2, b \rangle \}$$

$$P(A \times B) = \{\emptyset, \{\langle a_1,b \rangle\}, \{\langle a_2,b \rangle\}, \{\langle a_1,b \rangle, \langle a_2,b \rangle\}\}$$

所以A到B的二元关系共有4个:

$$R_1=\emptyset, R_2=\{\langle a_1,b\rangle\}, R_3=\{\langle a_2,b\rangle\}, R_4=\{\langle a_1,b\rangle,\langle a_2,b\rangle\}$$

同理B到A的二元关系也有4个:

$$R_5=\emptyset, R_6=\{< b,a_1>\}, R_7=\{< b,a_2>\}, R_8=\{< b,a_1>,< b,a_2>\}$$

例 求 A 上的所有二元关系

例 设 $A=\{a_1,a_2\}$,求A上的所有二元关系

 $\mathbb{R}A \times A = \{\langle a_1, a_1 \rangle, \langle a_1, a_2 \rangle, \langle a_2, a_1 \rangle, \langle a_2, a_2 \rangle\}$

则A上的所有二元关系如下:

$$R_1 = \emptyset$$

$$R_7 = \{ \langle a_1, a_1 \rangle, \langle a_2, a_1 \rangle \}$$

$$R_2 = \{ \langle a_1, a_1 \rangle \}$$

$$R_8 = \{ \langle a_1, a_1 \rangle, \langle a_2, a_2 \rangle \}$$

$$R_3 = \{ \langle a_1, a_2 \rangle \}$$

$$R_9 = \{ \langle a_1, a_2 \rangle, \langle a_2, a_1 \rangle \}$$

$$R_4 = \{ \langle a_2, a_1 \rangle \}$$

$$R_{10} = \{ \langle a_1, a_2 \rangle, \langle a_2, a_2 \rangle \}$$

$$R_5 = \{\langle a_2, a_2 \rangle\}$$

$$R_{11} = \{ \langle a_2, a_1 \rangle, \langle a_2, a_2 \rangle \}$$

$$R_6 = \{ \langle a_1, a_1 \rangle, \langle a_1, a_2 \rangle \}$$
 $R_{12} = \{ \langle a_1, a_1 \rangle, \langle a_1, a_2 \rangle, \langle a_2, a_1 \rangle \}$

例 求A上的所有二元关系(续)

$$R_{13} = \{ \langle a_1, a_1 \rangle, \langle a_1, a_2 \rangle, \langle a_2, a_2 \rangle \}$$
 $R_{14} = \{ \langle a_1, a_1 \rangle, \langle a_2, a_1 \rangle, \langle a_2, a_2 \rangle \}$
 $R_{15} = \{ \langle a_1, a_2 \rangle, \langle a_2, a_1 \rangle, \langle a_2, a_2 \rangle \}$
 $R_{16} = \{ \langle a_1, a_1 \rangle, \langle a_1, a_2 \rangle, \langle a_2, a_1 \rangle, \langle a_2, a_2 \rangle \}.$

特殊关系

- 空关系Ø:
- \bullet A上的恒等关系 I_A :

$$I_A = \{ \langle x, y \rangle | x \in A, y \in A, x = y \} = \{ \langle x, x \rangle | x \in A \}$$

• A上的全域关系 E_A :

$$E_A = A \times A = \{ \langle x, y \rangle \mid x \in A \land y \in A \}$$

设A⊆R,可定义如下关系:

■ A上的整除关系D: $D = \{ \langle x,y \rangle | x \in R, y \in R, x | y = 0 \}$

特殊关系(续)

A上小于等于(less than or equal to)关系≤:

$$\leq_A = \{ \langle x, y \rangle | x \in R, y \in R, x \leq y \}$$

■ A上小于 (less than)关系<_A:

$$<=\{|x\in A \land y\in A \land x< y\}$$

集簇A上的包含关系⊆₄:

$$\subseteq_A = \{ \langle X, Y \rangle | X \in A, Y \in A, X \subseteq Y \}$$

集簇A上的真包含关系⊂_A:

$$\subset_A = \{ \langle X, Y \rangle | X \in A, Y \in A, X \subset Y \}$$

例 求集合A上的特殊关系

■ 例: *A*={1,2,3,4,5,6}, $I_{A} = \{<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>\}$ $E_A = A \times A$ $D_A = \{<1,1>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<2,2>,$ <2,4>,<2,6>,<3,3>,<3,6>,<4,4>,<5,5>,<6,6>}. $\leq =I_{A} \cup \{<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<2,3>,<2,4>,$ <2,5>,<2,6>,<3,4>,<3,5>,<3,6>,<4,5>,<4,6>,<5,6>}

求P(B)上的包含关系⊆_{P(B)}

设 $B=\{a,b\}$,求P(B)上的包含关系⊆P(B)

解

$$P(B) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}\}$$

$$\subseteq_{P(B)} = \{\langle \emptyset, \{a\} \rangle, \langle \emptyset, \{b\} \rangle, \langle \emptyset, \{a,b\} \rangle, \langle \{a\}, \{a,b\} \rangle, \langle \{b\}, \{a,b\} \rangle\} \cup I_{P(B)}$$

关系的表示

- 集合:目前为止都是使用集合形式表示
- 图形:有向线段表示有序对

右图表示的关系是

$$R = \{<0,a>,<1,a>,<0,b>,<2,b>\}$$

■ 表格:×表示对应的行和列有关系R

R	a	b
0	×	X
1	×	
2		×

关系的定义域,值域,域

对任意集合R,可以定义:

■ 定义域(domain):

$$\mathbf{dom} \ \mathbf{R} = \{ \ x \mid \exists y (xRy) \ \}$$

■ 值域(range):

$$\mathbf{ran} \ \mathbf{R} = \{ \ y \mid \exists x (xRy) \ \}$$

■ 域(field):

fld
$$R = \text{dom } R \cup \text{ran } R$$

例 集合 $A=\{1,2,3,4\},A$ 上的关系

$$R=\{<1,1>,<1,2>,<2,1>,<2,4>,求 dom R,ran R, fld R$$

关系的定义域,值域,域的图示

例求dom R/ran R/fld R

例: $R_1 = \{a,b\}, R_2 = \{a,b, \langle c,d \rangle, \langle e,f \rangle\},$ $R_3 = \{<1,2>,<3,4>,<5,6>\}.$ 当a,b不是有序对时, R_1 和 R_2 不是关系. dom $R_1=\emptyset$, ran $R_1=\emptyset$, fld $R_1=\emptyset$ dom $R_2=\{c,e\}$, ran $R_2=\{d,f\}$, fld $R_2=\{c,d,e,f\}$ dom $R_3=\{1,3,5\}$, ran $R_3=\{2,4,6\}$, fld $R_3 = \{1,2,3,4,5,6\}$.

关系的逆 / 合成(复合)

定义 对任意集合F,G,

逆(inverse) F-1:

$$F^{-1} = \{ \langle x, y \rangle \mid yFx \}$$

■ 合成(复合)(composite) FoG:

$$F \circ G = \{ \langle x, y \rangle \mid \exists z (xGz \land zFy) \}$$

关于合成

■ 顺序合成(右合成):

$$F \circ G = \{ \langle x,y \rangle \mid \exists z (xFz \land zGy) \}$$

■ 逆序合成(左合成):

$$F \circ G = \{ \langle x,y \rangle \mid \exists z (xGz \land zFy) \}$$

例求 F的逆和F°G

集合 $A=\{1,2,3\},B=\{1,2,3,4\},C=\{0,1,2\},F$ 是从A到B上的关系,G是从B到C上的关系,

求 F^{-1} , $G^{\circ}F$, $F^{\circ}G$

Tip: $1.F^{-1}$ 是B到A的关系, $G^{\circ}F$ 是A到C的关系,但 $F^{\circ}G$ 不是B到B的关系

2. 在定义中不规定F和G一定是关系,但 F^{-1} 和 $F^{\circ}G$ 一定是关系

限制,象

定义 对任意集合F,A,

■ 限制(restriction):F在A上的限制

$$F \land A = \{ \langle x, y \rangle \mid xFy \land x \in A \}$$

■ **象(image):**A在F下的像

$$F[A] = ran(F \upharpoonright A) = \{ y \mid \exists x (x \in A \land xRy) \}$$

例如:
$$R_1 = \{\langle a,b \rangle, \langle b,d \rangle, \langle c,c \rangle, \langle c,d \rangle\},$$

 $R_2 = \{\langle a,c \rangle, \langle b,d \rangle, \langle d,b \rangle, \langle d,d \rangle\}, A = \{a,c \rangle\}$

求
$$R_1 \land A, R_1[A], R_2 \land A, R_2[A]$$

单根,单值

定义 对任意集合F,

- 单根(single rooted): 不存在多对一,F是单根的⇔ $\forall y (y \in \text{ran } F \rightarrow \exists ! x (x \in \text{dom } F \land x F y))$ $\Leftrightarrow (\forall y \in \text{ran } F)(\exists ! x \in \text{dom } F)(x F y)$
- 单值(single valued): 不存在一对多,F是单值的 \Leftrightarrow $\forall x (x \in \text{dom } F \to \exists ! y (y \in \text{ran } F \land x F y))$ $\Leftrightarrow (\forall x \in \text{dom } F)(\exists ! y \in \text{ran } F)(x F y)$

例如: $R_1 = \{\langle a,b \rangle, \langle b,d \rangle, \langle c,c \rangle, \langle c,e \rangle\}$ 是单根的,不是单值的 $R_2 = \{\langle a,c \rangle, \langle b,d \rangle, \langle c,b \rangle, \langle d,d \rangle\}$,不是单根的,是单值的

例1

例 设
$$A=\{a,b,c,d\}, B=\{a,b,\langle c,d\rangle\},$$

$$R = \{ \langle a,b \rangle, \langle c,d \rangle \},$$

$$F=\{ \langle a,b \rangle, \langle a,\{a\} \rangle, \langle \{a\},\{a,\{a\}\} \rangle \},$$

$$G=\{ < b,e>,< d,c> \}.$$

- 求: $(1) A^{-1}, B^{-1}, R^{-1}$.
 - (2) $B \circ R^{-1}$, $G \circ B$, $G \circ R$, $R \circ G$.
 - (3) $F \uparrow \{a\}, F \uparrow \{\{a\}\}, F \uparrow \{a,\{a\}\}, F^{-1} \uparrow \{\{a\}\}\}.$
 - (4) $F[\{a\}], F[\{a,\{a\}\}], F^{-1}[\{a\}], F^{-1}[\{\{a\}\}].$

例1的解(续1)

已知:
$$A = \{a,b,c,d\}, B = \{a,b,\},$$
 $R = \{ < a,b>, < c,d> \},$
求: (1) A^{-1}, B^{-1}, R^{-1} .
解: (1) $A^{-1} = \emptyset$,
 $B^{-1} = \{ < d,c> \},$
 $R^{-1} = \{ < b,a>, \}.$

例1的解(续2)

已知:
$$B=\{a,b,\langle c,d\rangle\}, R=\{\langle a,b\rangle,\langle c,d\rangle\},$$

 $G=\{\langle b,e\rangle,\langle d,c\rangle\}.$

求: (2) $B^{\circ}R^{-1}$, $G^{\circ}B$, $G^{\circ}R$, $R^{\circ}G$.

解: (2)
$$B^{\circ}R^{-1} = \{ \langle d,d \rangle \}$$

 $G^{\circ}B = \{ \langle c,c \rangle \}$
 $G^{\circ}R = \{ \langle a,e \rangle, \langle c,c \rangle \}$
 $R^{\circ}G = \{ \langle d,d \rangle \}$

例1的解(续3)

```
已知: F=\{\langle a,b\rangle,\langle a,\{a\}\rangle,\langle\{a\},\{a,\{a\}\}\rangle\rangle\},
求: (3) F \uparrow \{a\}, F \uparrow \{\{a\}\}, F \uparrow \{a,\{a\}\}, F^{-1} \uparrow \{\{a\}\}\}.
解: (3) F^{-1} = \{ \langle b, a \rangle, \langle \{a\}, a \rangle, \langle \{a, \{a\}\}\}, \{a\} \rangle \}
                 F \uparrow \{a\} = \{ \langle a,b \rangle, \langle a,\{a\} \rangle \}
                F \uparrow \{\{a\}\} = \{ <\{a\}, \{a, \{a\}\} > \}
                F \uparrow \{a, \{a\}\} = F
                F^{-1} \uparrow \{\{a\}\} = \{ \langle \{a\}, a \rangle \}
```

关系运算的举例(解(4))

```
已知: F=\{\langle a,b\rangle,\langle a,\{a\}\rangle,\langle\{a\},\{a,\{a\}\}\rangle\rangle\},
求: (4) F[\{a\}], F[\{a,\{a\}\}], F^{-1}[\{a\}], F^{-1}[\{\{a\}\}].
解: (4) F[\{a\}] = \{b, \{a\}\}
             F[\{a,\{a\}\}] = \{b,\{a\},\{a,\{a\}\}\}\}
             F^{-1} = \{ \langle b, a \rangle, \langle \{a\}, a \rangle, \langle \{a, \{a\}\}\}, \{a\} \rangle \}
             F^{-1}[\{a\}] = \emptyset
             F^{-1}[\{\{a\}\}] = \{a\}
```

例2

例2 设
$$R = \{ \langle x,y \rangle \mid x,y \in Z \land y = |x| \},$$

 $A = \{ 0, 1, 2 \}, B = \{ 0, -1, -2 \}$

- 求: (1) $R[A \cap B]$ 和 $R[A] \cap R[B]$;
 - (2) R[A]-R[B] 和R[A-B].

解: (1)
$$R[A \cap B] = R[\{0\}] = \{0\}$$

 $R[A] \cap R[B] = \{0,1,2\} \cap \{0,1,2\} = \{0,1,2\}$

(2)
$$R[A]-R[B]=\{0,1,2\}-\{0,1,2\}=\emptyset$$

 $R[A-B]=R[\{1,2\}]=\{1,2\}$

在无括号时,关系的运算优先级如下

- 求逆运算优先于其它
- 求域、合成、限制、像运算优先于并、交、相对 补、绝对补、对称差等集合运算

定理3

定理3: 设F,G是任意集合,则

- (1) $dom(F \cup G) = dom F \cup dom G$
- (2) $ran(F \cup G) = ran F \cup ran G$
- $(3) \operatorname{dom}(F \cap G) \subseteq \operatorname{dom} F \cap \operatorname{dom} G$
- $(4) \operatorname{ran}(F \cap G) \subseteq \operatorname{ran} F \cap \operatorname{ran} G$
- (5) $dom F dom G \subseteq dom(F G)$
- (6) $\operatorname{ran} F\operatorname{-ran} G \subseteq \operatorname{ran}(F\operatorname{-}G)$

我们只给出(1)(4)(5)的证明

定理3--(1)的证明

(1) $dom(F \cup G) = dom F \cup dom G$

证明: (1) ∀x,

 $x \in \text{dom}(F \cup G) \Leftrightarrow \exists y (x(F \cup G)y)$

 $\Leftrightarrow \exists y(xFy \lor xGy)$

 $\Leftrightarrow \exists y(xFy) \lor \exists y(xGy)$

 $\Leftrightarrow x \in \text{dom} F \lor x \in \text{dom} G$

 $\Leftrightarrow x \in \text{dom} F \cup \text{dom} G$

 $\therefore \operatorname{dom}(F \cup G) = \operatorname{dom} F \cup \operatorname{dom} G.$

定理3-- (4)的证明

 $(4) \operatorname{ran}(F \cap G) \subseteq \operatorname{ran}F \cap \operatorname{ran}G$

证明: (4) ∀y,

 $y \in \operatorname{ran}(F \cap G) \Leftrightarrow \exists x (x(F \cap G)y)$

 $\Leftrightarrow \exists x(xFy \land xGy)$

 $\Rightarrow \exists x(xFy) \land \exists x(xGy)$

 $\Leftrightarrow y \in \operatorname{ran} F \wedge y \in \operatorname{ran} G$

 $\Leftrightarrow y \in \operatorname{ran} F \cap \operatorname{ran} G$

 $\therefore \operatorname{ran}(F \cap G) \subseteq \operatorname{ran}F \cap \operatorname{ran}G.$

定理3--(5)的证明

(5) $\operatorname{dom} F\operatorname{-dom} G\subseteq \operatorname{dom}(F\operatorname{-}G)$

证明: (5) ∀x,

 $x \in \text{dom} F - \text{dom} G \Leftrightarrow x \in \text{dom} F \land x \notin \text{dom} G$

- $\Leftrightarrow \exists y(xFy) \land \neg \exists z(xGz)$
- $\Leftrightarrow \exists y(xFy) \land \forall z \neg (xGz)$
- $\Leftrightarrow \exists y \forall z ((xFy) \land \langle x,z \rangle \notin G)$
- $\Rightarrow \exists y(xFy) \land \langle x,y \rangle \notin G$
- $\Leftrightarrow \exists y (x(F-G)y) \Leftrightarrow x \in \text{dom}(F-G)$
- · dam E dam C C dam (E C)

定理4

定理4: 设F是任意集合,则

- (1) $dom F^{-1} = ran F$;
- (2) $ran F^{-1} = dom F$;
- (3) $(F^{-1})^{-1} \subseteq F$, 当F是关系时, 等号成立.

定理4(1)的证明

(1) $dom F^{-1} = ran F$;

证明: (1) ∀x,

 $x \in \text{dom} F^{-1}$

 $\Leftrightarrow \exists y (x F^{-1} y)$

 $\Leftrightarrow \exists y(yFx)$

 $\Leftrightarrow x \in ran F$

 \therefore dom $F^{-1} = \text{ran}F$.

(2)可类似证明.

定理4 (3)的证明

 $(3)(F^{-1})^{-1} \subseteq F$, 当F是关系时, 等号成立.

证明: 设F是关系,则 $\forall < x,y>$,

$$\langle x,y\rangle \in (F^{-1})^{-1} \Leftrightarrow yF^{-1}x \Leftrightarrow xFy.$$

这时
$$(F^{-1})^{-1} = F$$
.

当
$$F$$
不是关系时, $(F^{-1})^{-1}$ ⊂ F ,

例如,设 $F=\{\langle a,b\rangle,a\}$,则

$$F^{-1}=\{\langle b,a\rangle\}, (F^{-1})^{-1}=\{\langle a,b\rangle\}\subset F$$

$$\therefore (F^{-1})^{-1} \subseteq F$$

定理5

定理5: 设 R_1 , R_2 , R_3 为集合,则 $(R_1$ ° R_2)° $R_3 = R_1$ ° $(R_2$ ° R_3)

证明: ∀<*x*,*y*>,

 $\langle x,y \rangle \in (R_1 \circ R_2) \circ R_3$

 $\Leftrightarrow \exists z (xR_3z \wedge z(R_1^{\circ}R_2)y)$

 $\Leftrightarrow \exists z (xR_3z \land \exists t (zR_2t \land tR_1y))$

 $\Leftrightarrow \exists z \exists t (xR_3z \land (zR_2t \land tR_1y))$

 $\Leftrightarrow \exists t \exists z (xR_3z \wedge zR_2t \wedge tR_1y)$

定理5(续)

$$\Leftrightarrow \exists t (\exists z (xR_3z \land zR_2t) \land tR_1y)$$

$$\Leftrightarrow \exists t (x(R_2 \circ R_3)t \land tR_1 y)$$

$$\Leftrightarrow xR_{1\circ}(R_{2\circ}R_3)y$$

$$\Leftrightarrow \langle x,y \rangle \in R_{10}(R_{20}R_3)$$

$$: (R_{1} \circ R_2) \circ R_3 = R_{1} \circ (R_2 \circ R_3).$$

说明: 合成运算具有结合律.

$$x \qquad R_3 \qquad z \qquad R_2 \qquad t \qquad R_1 \qquad y$$

定理6: 设 R_1,R_2,R_3 是集合,则

$$(1) R_1^{\circ}(R_2 \cup R_3) = (R_1^{\circ}R_2) \cup (R_1^{\circ}R_3)$$

(2)
$$(R_1 \cup R_2)^{\circ} R_3 = (R_1^{\circ} R_3) \cup (R_2^{\circ} R_3)$$

$$(3) R_1^{\circ}(R_2 \cap R_3) \subseteq (R_1^{\circ}R_2) \cap (R_1^{\circ}R_3)$$

$$(4) (R_1 \cap R_2)^{\circ} R_3 \subseteq (R_1^{\circ} R_3) \cap (R_2^{\circ} R_3)$$

请自行证明(2)(4)

定理6 (1)的证明

- $(1) R_1^{\circ}(R_2 \cup R_3) = (R_1^{\circ}R_2) \cup (R_1^{\circ}R_3)$
- 证明: ∀<*x*,*y*>,
- $\langle x,y \rangle \in R_1 \circ (R_2 \cup R_3)$

$$\Leftrightarrow \exists z((xR_2z \lor xR_3z) \land zR_1y)$$
 (并的定义)

$$\Leftrightarrow \exists z((x R_2 z \land z R_1 y) \lor (x R_3 z \land z R_1 y))$$
 (\land 対∨分配律)

 R_2

 R_1

 $R_3^{\circ} R_1$

$$\Leftrightarrow \exists z(x R_2 z \land z R_1 y) \lor \exists z(x R_3 z \land z R_1 y)$$
 (ヨ対 \lor 分配)

$$\Leftrightarrow x(R_1 \circ R_2)y \lor x(R_1 \circ R_3)y$$
 (合成的定义)

$$\Leftrightarrow x((R_1 \circ R_2) \cup (R_1 \circ R_3))y$$
 (并的定义)

$$\Leftrightarrow \in (R_1 \circ R_2) \cup (R_1 \circ R_3)$$

定理6 (3)的证明

 $(3) R_1^{\circ}(R_2 \cap R_3) \subseteq (R_1^{\circ}R_2) \cap (R_1^{\circ}R_3)$

$$\langle x,y \rangle \in R_1^{\circ}(R_2 \cap R_3)$$

$$\Leftrightarrow \exists z (\langle x,z \rangle \in R_2 \cap R_3 \land \langle z,y \rangle \in R_1)$$

$$\Leftrightarrow \exists z((\langle x,z\rangle \in R_2 \land \langle x,z\rangle \in R_3) \land \langle z,y\rangle \in R_1)$$

$$\Leftrightarrow \exists z((\langle x,z\rangle \in R_2 \land \langle z,y\rangle \in R_1) \land (\langle x,z\rangle \in R_3 \land \langle z,y\rangle \in R_1)))$$

$$\Rightarrow \exists z(\langle x,z\rangle \in R_2 \land \langle z,y\rangle \in R_1)) \land \exists z(\langle x,z\rangle \in R_3 \land \langle z,y\rangle \in R_1))$$

$$\Leftrightarrow \in R_1^{\circ}R_2 \land \in R_1^{\circ}R_3$$

$$\Leftrightarrow \in R_1\circ R_2\cap R_1\circ R_3$$

定理6 (3)的讨论

 $(3) R_1^{\circ}(R_2 \cap R_3) \subseteq (R_1^{\circ}R_2) \cap (R_1^{\circ}R_3)$

反例:说明=不成立:

定理7: 设F,G为二集合,则(F°G)-1 = G-1°F-1.

定理7的证明

求证
$$(F^{\circ}G)^{-1} = G^{-1}{}^{\circ}F^{-1}$$

$$< x,y> \in (F^{\circ}G)^{-1}$$

$$\Leftrightarrow \in (F^{\circ}G)$$

$$\Leftrightarrow \exists z (\langle y, z \rangle \in G \land \langle z, x \rangle \in F)$$

$$\Leftrightarrow \exists z(\langle z,y\rangle \in G^{-1} \land \langle x,z\rangle \in F^{-1})$$

$$\Leftrightarrow \exists z((xF^{-1}z \land zG^{-1}y)$$

$$\Leftrightarrow \langle x,y \rangle \in G^{-1} \circ F^{-1}$$

定理8: 设R,S,A,B,A为集合,A均,则

- $(1) R \upharpoonright (A \cup B) = (R \upharpoonright A) \cup (R \upharpoonright B);$
- (2) $R \upharpoonright \cup \mathcal{A} = \cup \{ R \upharpoonright A \mid A \in \mathcal{A} \};$
- (3) $R \upharpoonright (A \cap B) = (R \upharpoonright A) \cap (R \upharpoonright B);$
- $(4) R \upharpoonright \cap \mathcal{A} = \cap \{ R \upharpoonright A \mid A \in \mathcal{A} \};$
- (5) $(R \circ S) \upharpoonright A = R \circ (S \upharpoonright A)$.
- 请同学自行学习!

定理8 (2)的证明

 $(2) R \upharpoonright \cup \mathcal{A} = \cup \{ R \upharpoonright A \mid A \in \mathcal{A} \};$

证明: ∀<*x*,*y*>,

 $x(R \mid U A)y \Leftrightarrow xRy \land x \in U A (限制的定义)$

 $\Leftrightarrow xRy \land \exists A(A \in A \land x \in A)$ (广**义并**的定**义**)

 $\Leftrightarrow \exists A(xRy \land x \in A \land A \in A) (\exists 量 词 作 用 域 的 扩 张)$

 $\Leftrightarrow \exists A(x(R \upharpoonright A)y \land A \in \mathcal{A})$ (限制的定义)

 $\Leftrightarrow x(\cup \{R \mid A \mid A \in A\})y. (广义并的定义)$

 $\therefore R \upharpoonright \cup \mathcal{A} = \cup \{ R \upharpoonright A \mid A \in \mathcal{A} \}$

定理8 (4)的证明

 $(4) R \upharpoonright \cap \mathcal{A} = \cap \{ R \upharpoonright A \mid A \in \mathcal{A} \};$

证明:∀<*x*,*y*>,

 $x(R \cap A)y \Leftrightarrow xRy \land x \in \cap A$

 $\Leftrightarrow xRy \land \forall A(A \in \mathcal{A} \rightarrow x \in A)$

 $\Leftrightarrow \forall A(xRy \land (\neg A \in A \lor x \in A))$

 $\Leftrightarrow \forall A((xRy \land \neg A \in \mathcal{A}) \lor (xRy \land x \in A)$

 $\Leftrightarrow \forall A(\neg(\langle x,y\rangle \notin \mathbb{R} \vee A \in \mathcal{A}) \vee \langle x,y\rangle R \upharpoonright A)$

 $\Leftrightarrow \forall A((\neg A \in \mathcal{A}) \lor \langle x,y \rangle R \upharpoonright A)$

 $\Leftrightarrow \forall A(A \in \mathcal{A} \rightarrow \langle x,y \rangle R \upharpoonright A)$

 $\Leftrightarrow <x,y> \in (\cap \{R \uparrow A \mid A \in A\})$

 $\therefore R \uparrow \cap \mathcal{A} = \bigcap \{ R \uparrow A \mid A \in \mathcal{A} \}$

定理8 (5)的证明

(5)
$$(R \circ S) \uparrow A = R \circ (S \uparrow A)$$
.

证明: $\forall \langle x,y \rangle$, $x((R \circ S) \uparrow A)y$

 $\Leftrightarrow x(R \circ S)y \land x \in A \Leftrightarrow \exists z(xSz \land zRy) \land x \in A$

 $\Leftrightarrow \exists z(xSz \land zRy \land x \in A)$

 $\Leftrightarrow \exists z((xSz \land x \in A) \land zRy)$

 $\Leftrightarrow \exists z (x(S \uparrow A)z \land zRy) \Leftrightarrow x(R \circ (S \uparrow A))y.$

 $\therefore (R \circ S) \uparrow A = R \circ (S \uparrow A). \#$

定理9: 设R,S,A,B,A,为集合,A0,则

- $(1) R[A \cup B] = R[A] \cup R[B];$
- $(2) R[\cup A] = \cup \{ R[A] \mid A \in A \};$
- $(3) R[A \cap B] \subseteq R[A] \cap R[B];$
- $(4) R[\cap A] \subseteq \cap \{ R[A] \mid A \in A\};$
- $(5) R[A]-R[B] \subseteq R[A-B];$
- (6) $(R \circ S)[A] = R[S[A]].$

本定理请同学们自行学习!

定理9 (2)的证明

(2) $R[\cup A] = \cup \{ R[A] \mid A \in A \};$

证明: $\forall y, y \in R[\cup A] \Leftrightarrow \exists x(xRy \land x \in \cup A)$

- $\Leftrightarrow \exists x (xRy \land \exists A (A \in \mathcal{A} \land x \in A)$
- $\Leftrightarrow \exists A (A \in \mathcal{A} \land \exists x (xRy \land x \in A))$
- $\Leftrightarrow \exists A(A \in \mathcal{A} \land y \in R[A])$
- $\Leftrightarrow y \in \cup \{ R[A] \mid A \in \mathcal{A} \}.$
- $\therefore R \uparrow \cup A = \cup \{ R \uparrow A \mid A \in \mathcal{A} \}.$

-

定理9 (4)的证明

- $(4) R[\cap A] \subseteq \cap \{ R[A] \mid A \in A\};$
- 证明: $\forall y, y \in R[\cap A] \Leftrightarrow \exists x(xRy \land x \in \cap A)$
- $\Leftrightarrow \exists x(xRy \land \forall A(A \in \mathcal{A} \rightarrow x \in A))$
- $\Leftrightarrow \exists x \forall A (xRy \land (A \in \mathcal{A} \rightarrow x \in A))$
- $\Rightarrow \forall A \exists x (xRy \land (A \in \mathcal{A} \rightarrow x \in A)) (*)$
- $\Rightarrow \forall A \exists x (A \in \mathcal{A} \rightarrow (xRy \land x \in A)) \ (**)$
- $\Leftrightarrow \forall A(A \in \mathcal{A} \to \exists x(xRy \land x \in A)) \Leftrightarrow \forall A(A \in \mathcal{A} \to y \in R[A])$
- $\Leftrightarrow y \in \cap \{ R[A] \mid A \in \mathcal{A} \}.$
- $\therefore \mathbf{R}[\cap \mathcal{A}] \subseteq \cap \{ \mathbf{R}[A] \mid A \in \mathcal{A} \}.$

定理9 (4)的证明续

- (*) $\exists x \forall A(xRy \land (A \in \mathcal{A} \rightarrow x \in A))$
 - $\Rightarrow \forall A \exists x (xRy \land (A \in \mathcal{A} \rightarrow x \in A))$
- (**) $\forall A \exists x (xRy \land (A \in \mathcal{A} \rightarrow x \in A))$
 - $\Rightarrow \forall A \exists x (A \in \mathcal{A} \rightarrow (xRy \land x \in A))$

容易证明:

- (*) $\exists x \forall y B(x,y) \Rightarrow \forall y \exists x B(x,y)$
- $(**) p \land (q \rightarrow r) \Rightarrow q \rightarrow (p \land r)$

定理9 (5)的证明

 $(5) R[A]-R[B] \subseteq R[A-B];$

证明: $\forall y, y \in R[A] - R[B] \Leftrightarrow y \in R[A] \land \neg y \in R[B]$

- $\Leftrightarrow \exists x(xRy \land x \in A) \land \neg \exists x(xRy \land x \in B)$
- $\Leftrightarrow \exists x(xRy \land x \in A) \land \forall x(\neg xRy \lor \neg x \in B)$
- $\Leftrightarrow \exists x(xRy \land x \in A) \land \forall x(xRy \rightarrow \neg x \in B)$
- $\Rightarrow \exists x(xRy \land x \in A \land \neg x \in B)$
- $\Leftrightarrow \exists x(xRy \land x \in A B) \Leftrightarrow y \in R[A B].$
- $\therefore R[A]-R[B] \subseteq R[A-B].$

定理9 (5)的证明 续

 $\exists x(xRy \land x \in A) \land \forall x(xRy \rightarrow \neg x \in B)$

 $\Rightarrow \exists x(xRy \land x \in A \land \neg x \in B)$

前提: $\exists x(xRy \land x \in A), \forall x(xRy \rightarrow \neg x \in B)$

结论: $\exists x(xRy \land x \in A \land \neg x \in B)$

证明: (1) $\exists x(xRy \land x \in A)$,前提引入

- (2) $cRy \land c \in A$, (1)EI
- (3) $\forall x(xRy \rightarrow \neg x \in B)$, 前提引入
- (4) $cRy \rightarrow \neg c \in B$, (3)UI
- (5) cRy, (2)化简
- (6) ¬c∈B, (4)(5)假言推理
- $(7) cRy \land c \in A \land \neg c \in B, (2)(6)$ 合取
- (8) $\exists x(xRy \land x \in A \land \neg x \in B)$ (7) EG. #

定理9 (6)的证明

- (6) $(R^{\circ}S)[A] = R[S[A]].$
- 证明: $\forall y, y \in (R^{\circ}S)[A]$
- $\Leftrightarrow \exists x (x(R^{\circ}S)y \land x \in A)$
- $\Leftrightarrow \exists x (\exists z (xSz \land zRy) \land x \in A)$
- $\Leftrightarrow \exists z (zRy \land \exists x (xSz \land x \in A))$
- $\Leftrightarrow \exists z (zRy \land z \in S[A]) \Leftrightarrow y \in R[S[A]].$
- $\therefore (R^{\circ}S)[A] = R[S[A]]. \#$

定理9的讨论

讨论: 当R为单根关系时, (3)(4)(5)中等号成立.

- $(3) R[A \cap B] \subseteq R[A] \cap R[B];$
- $(4) R[\cap A] \subseteq \cap \{ R[A] \mid A \in A\};$
- $(5) R[A]-R[B] \subseteq R[A-B];$

总结

■ 1. 有序对与卡氏积:

$$\langle a,b \rangle$$
, $A \times B$

■ 2. 二元关系:

$$R\subseteq A\times B, R\subseteq A\times A; \emptyset, I_A, E_A; xRy$$

■ 3. 二元关系的基本运算及其性质:

dom(R), ran(R), fld(R);

 $R \uparrow A, R[A]; R^{-1}, R^{\circ}S$

■ 作业: 习题二 9,11