6.6

Inverse Trigonometric Functions

You can see from Figure 1 that the sine function $y = \sin x$ is not one-to-one (use the Horizontal Line Test).

Figure 1

But the function $f(x) = \sin x$, $-\pi/2 \le x \le \pi/2$ is one-to-one (see Figure 2). The inverse function of this restricted sine function f exists and is denoted by \sin^{-1} or arcsin. It is called the **inverse sine function** or the **arcsine function**.

$$y = \sin x$$
, $-\frac{\pi}{2} \leqslant \chi \leqslant \frac{\pi}{2}$

Figure 2

Since the definition of an inverse function says that

$$f^{-1}(x) = y \iff f(y) = x$$

we have

$$\sin^{-1} x = y \iff \sin y = x \text{ and } -\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

Thus, if $-1 \le x \le 1$, $\sin^{-1} x$ is the number between $-\pi/2$ and $\pi/2$ whose sine is x.

Evaluate (a) $\sin^{-1}\left(\frac{1}{2}\right)$ and (b) $\tan(\arcsin\frac{1}{3})$.

 $\frac{1}{2}$

The cancellation equations for inverse functions become, in this case,

$$\sin^{-1}(\sin x) = x$$
 for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$

 $\sin(\sin^{-1}x) = x$ for $-1 \le x \le 1$

Evaluate

- a) $\sin^{-1} (\sin \frac{5\pi}{6})$
- b) $\sin^{-1} (\sin \frac{\pi}{3})$
- c) $\sin(\sin^{-1} 2)$

The inverse sine function, \sin^{-1} , has domain [-1, 1] and range [$-\pi/2$, $\pi/2$], and its graph, shown in Figure 4, is obtained from that of the restricted sine function (Figure 2) by reflection about the line y = x.

$$y = \sin^{-1} x = \arcsin x$$

Figure 4

Derivative of $\sin^{-1} x$

Theorem. The function $f(x) = \sin^{-1} x$ is differentiable on (-1,1) and its derivative is given by

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}} \qquad -1 < x < 1$$

If $f(x) = \sin^{-1}(x^2 - 1)$, find (a) the domain of f, (b) f'(x), and (c) the domain of f'.

The **inverse cosine function** is handled similarly. The restricted cosine function $f(x) = \cos x$, $0 \le x \le \pi$ is one-to-one (see Figure 6) and so it has an inverse function denoted by \cos^{-1} or arccos.

$$\cos^{-1} x = y \iff \cos y = x \text{ and } 0 \le y \le \pi$$

$$y = \cos x$$
, $0 \le x \le \pi$
Figure 6

The cancellation equations are

$$\cos^{-1}(\cos x) = x \quad \text{for } 0 \le x \le \pi$$
$$\cos(\cos^{-1}x) = x \quad \text{for } -1 \le x \le 1$$

The inverse cosine function, \cos^{-1} , has domain [-1, 1] and range $[0, \pi]$ and is a continuous function whose graph is shown in Figure 7.

Its derivative is given by

$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}} \qquad -1 < x < 1$$

The tangent function can be made one-to-one by restricting it to the interval $(-\pi/2, \pi/2)$.

Thus the **inverse tangent function** is defined as the inverse of the function $f(x) = \tan x$, $-\pi/2 < x < \pi/2$.

It is denoted by tan⁻¹ or arctan. (See Figure 8.)

$$\tan^{-1} x = y \iff \tan y = x \text{ and } -\frac{\pi}{2} < y < \frac{\pi}{2}$$

$$y = \tan x, -\frac{\pi}{2} < x < \frac{\pi}{2}$$
Figure 8

Simplify the expression $\cos(\tan^{-1}x)$.

The inverse tangent function, $\tan^{-1}x = \arctan$, has domain \mathbb{R} and range $(-\pi/2, \pi/2)$. Its graph is shown in Figure 10.

$$y = \tan^{-1} x = \arctan x$$

Figure 10

We know that

$$\lim_{x \to (\pi/2)^-} \tan x = \infty \quad \text{and} \quad \lim_{x \to -(\pi/2)^+} \tan x = -\infty$$

and so the lines $x = \pm \pi/2$ are vertical asymptotes of the graph of tan.

Since the graph of tan^{-1} is obtained by reflecting the graph of the restricted tangent function about the line y = x, it follows that the lines $y = \pi/2$ and $y = -\pi/2$ are horizontal asymptotes of the graph of tan^{-1} .

This fact is expressed by the following limits:

$$\lim_{x \to \infty} \tan^{-1} x = \frac{\pi}{2} \qquad \lim_{x \to -\infty} \tan^{-1} x = -\frac{\pi}{2}$$

Evaluate
$$\lim_{x\to 2^+} \arctan\left(\frac{1}{x-2}\right)$$
.

The derivative of $tan^{-1}x$

Theorem. The function $f(x) = \tan^{-1} x$ is differentaiable on $(-\infty, \infty)$ and

$$\frac{d}{dx}\left(\tan^{-1}x\right) = \frac{1}{1+x^2}$$

The remaining inverse trigonometric functions are not used as frequently and are summarized here.

10
$$y = \csc^{-1}x \ (|x| \ge 1) \iff \csc y = x \text{ and } y \in (0, \pi/2] \cup (\pi, 3\pi/2]$$

$$y = \sec^{-1}x \ (|x| \ge 1) \iff \sec y = x \text{ and } y \in [0, \pi/2) \cup [\pi, 3\pi/2]$$

$$y = \cot^{-1}x \ (x \in \mathbb{R}) \iff \cot y = x \text{ and } y \in (0, \pi)$$

For example, in case of the secant function:

FIGURE 11

$$y = \sec x$$

We collect in Table 11 the differentiation formulas for all of the inverse trigonometric functions.

11 Table of Derivatives of Inverse Trigonometric Functions

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx}(\csc^{-1}x) = -\frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1 + x^2} \qquad \frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1 + x^2}$$

Differentiate (a)
$$y = \frac{1}{\sin^{-1}x}$$
 and (b) $f(x) = x \arctan \sqrt{x}$.

Integrals od Inverse Trigonometric Functions

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1}x + C$$

$$\int \frac{1}{x^2 + 1} dx = \tan^{-1}x + C$$

Find

$$\int_0^{1/4} \frac{1}{\sqrt{1 - 4x^2}} \, dx.$$

Integrals of Inverse Trigonometric Functions

Example 8. Show that

$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$$

Find
$$\int \frac{x}{x^4 + 9} dx$$
.