Нетипизированное λ -исчисление

Юрий Литвинов

10.03.2017г

Лямбда-исчисление

Математическая основа функционального программирования

- Формальная система, основанная на λ-нотации, ещё одна формализация понятия «вычисление», помимо машин Тьюринга (и нормальных алгорифмов Маркова, если кто-то про них помнит)
- Введено Алонзо Чёрчем в 1930-х для исследований в теории вычислимости
- Имеет много разных модификаций, включая «чистое»
 λ -исчисление и разные типизированные λ -исчисления
- ▶ Реализовано в языке LISP, с тех пор прочно вошло в программистский обиход (даже анонимные делегаты в С# называют лямбда-функциями, как вы помните)

Лямбда-нотация

Способ вводить функции, не придумывая для них название каждый раз

$$x \to t[x] \Longrightarrow \lambda x.t[x]$$

Например,

$$\lambda x.x$$

$$\lambda x.x^2$$

Применение функции (или аппликация)

Математически привычно

Но непонятно, о чём идёт речь — о функции f, принимающей аргумент x, или о результате применения f к x. В лямбда-исчислении f(x) обозначается как

f x

При этом принято, что

$$\lambda x.x + y = \lambda x.(x + y), \quad \lambda x.x + y \neq (\lambda x.x) + y$$

Примеры записи:

$$(\lambda x.x^2) 5 = 25$$
$$(\lambda x.\lambda v.x + v) 2 5 = 7$$

Каррирование (Currying)

В λ -исчислении не нужны функции нескольких переменных:

$$\lambda x.\lambda y.x + y \stackrel{\text{def}}{=} \lambda x y.x + y$$

Можно понимать как функцию, которая возвращает функцию:

$$\lambda x.\lambda y.x + y \equiv \lambda x.(\lambda y.x + y)$$

 $\mathbb{R} \to (\mathbb{R} \to \mathbb{R})$

Частичное применение:

$$(\lambda x.\lambda y.x + y)$$
 $5 \equiv \lambda x.(x+5)$

λ -исчисление как формальная система

Внезапно, математика на парах по проге

Всё, что было выше, хорошо, но неформально. Формализуем, чтобы иметь возможность применять математические методы.

Нетипизированное лямбда-исчисление:

- - Не делается различий между данными и функциями, можно применять функцию к функции (вообще говоря, есть только функции, они же являются данными)
- ▶ Процесс вычисления вводится как набор формальных преобразований над λ -термами
 - Операционная семантика

λ -термы

λ -терм — это:

- ▶ Переменная: $v \in V$, где V некоторое множество, называемое множеством переменных
- ▶ Аппликация: если *A* и *B* λ -термы, то *A B* λ -терм.
- ▶ λ -абстракция: если A λ -терм, а v переменная, то $\lambda v.A$ λ -терм
- Других способов получить λ -терм нет

Соглашения об ассоциативности

Чтобы не надо было писать кучу скобок

- ▶ Аппликация левоассоциативна: F X Y = (F X) Y
- ▶ λ -абстракция правоассоциативна: λx $y.M = \lambda x.(\lambda y.M)$
- λ -абстракция распространяется вправо настолько, насколько возможно: $\lambda x.M N = (\lambda x.M N)$

Свободные и связанные переменные

- ▶ λ -абстракция λx . T[x] **связывает** переменную x в терме T[x]
- ► Если значение выражения зависит от значения переменной, то говорят, что переменная **свободно** входит в выражение

Пример:

$$\sum_{m=1}^{n} m = \frac{n(n+1)}{2}$$

Здесь *п* входит свободно, а *m* связана. Имя связанной переменной можно менять:

$$\int_0^x 2y + a \, dy = x^2 + ax \longrightarrow \int_0^x 2z + a \, dz = x^2 + ax$$

но

$$\int_0^x 2a + a \, da \neq x^2 + ax$$

Свободные и связанные переменные, формально

Как обычно, определение рекурсивно по структуре терма:

- FV(x) = x
- $FV(S T) = FV(S) \cup FV(T)$
- $FV(\lambda x.S) = FV(S) \setminus \{x\}$
- \triangleright $BV(x) = \emptyset$
- \blacktriangleright $BV(ST) = BV(S) \cup BV(T)$
- $BV(\lambda x.S) = BV(S) \cup \{x\}$

Примеры:

$$S = (\lambda x y.x)(\lambda x.z x) \Rightarrow FV(S) = z, BV(S) = \{x, y\}$$

Подстановка

T[x:=S] - подстановка в терме T терма S вместо всех свободных вхождений переменной x (например, x[x:=T]=T). Проблема:

$$(\lambda y.x + y)[x := y] = \lambda y.y + y$$

Решения:

- Запретить свободным переменным иметь одинаковые имена и называться так же, как связанные (соглашение Барендрегта)
- ▶ Переименовывать связанные переменные «на лету» перед выполнением подстановки

Подстановка, формально

- $\triangleright x[x := T] = T$
- \triangleright y[x := T] = y
- $lacksquare (S_1 \ S_2)[x := T] = S_1[x := T] \ S_2[x := T]$
- $(\lambda x.S)[x := z] = \lambda x.S$
- ▶ $(\lambda y.S)[x:=T] = \lambda y.(S[x:=T])$, если $y \notin FV(T)$ или $x \notin FV(S)$
- ▶ $(\lambda y.S)[x := T] = \lambda z.(S[y := z][x := T])$, иначе (z при этом выбирается так, что $z \notin FV(S) \cup FV(T)$

Зачем мы это делали

Можно ввести отношение **равенства** над термами, имеющее физический смысл «термы означают одно и то же» и отношение **редукции**, означающее «термы имеют одинаковое **значение**», что нужно для определения **вычисления** (хотя заметьте, что пока в формальной системе даже понятия «значение» нет). Делать это мы будем, определив аксиомы и правила вывода над термами, через **преобразования** термов.

Преобразования

- lpha-преобразование : $\lambda x.S o_lpha \lambda y.S[x:=y]$ при условии, что $y \notin FV(S)$. Даёт возможность переименовывать связанные переменные.
- β -преобразование : $(\lambda x.S)T \to_{\beta} S[x:=T]$. Определяет процесс вычисления.
- η -преобразование : $\lambda x. T x \to_{\eta} T$, если $x \notin FV(T)$. Обеспечивает **экстенсиональность** две функции экстенсионально эквивалентны, если на всех одинаковых входных данных дают одинаковый результат:

$$\forall x F x = G x$$

Аксиомы равенства λ -термов

$$S o_{lpha} T$$
 или $S o_{eta} T$ или $S o_{\eta} T$ $S = T$ $T = T$ $S = T$ $T = S$ $S = T \wedge T = U$ $S = U$ $S = T$ $S \cup T \cup U$ $S = T$ $U \cap S \cap T \cup U$ $S \cap T \cup S \cap T \cup S \cap T \cup S \cap T$ $S \cap T \cap S \cap T \cup S \cap T$ $S \cap T \cap S \cap T \cap S \cap T$ $S \cap T \cap S$ $S \cap T$ $S \cap T$

Вычисление, что мы хотим

Очевидно, что равенство — это отношение эквивалентности. Оно «не даёт терять информацию», потому что всегда можно вернуться к исходному терму. А мы хотим вычислять значение терма, то есть всё-таки терять информацию о синтаксисе терма, сохраняя его «смысл». Так что уберём симметричность, получив отношение β -редукции, которое уже не эквивалентность и позволяет делать с термом что-то осмысленное.

Аксиомы β -редукции

$$S o_{lpha} T$$
 или $S o_{eta} T$ или $S o_{\eta} T$ $S o_{\eta} T$

Пример

Редукция не всегда уменьшает размер терма

$$(\lambda x.x \times x) (\lambda x.x \times x) \rightarrow_{\beta}$$
$$(\lambda x.x \times x) (\lambda x.x \times x) (\lambda x.x \times x) \rightarrow_{\beta}$$
$$(\lambda x.x \times x) (\lambda x.x \times x) (\lambda x.x \times x) \rightarrow_{\beta} \dots$$

так что

$$(\lambda x.y) ((\lambda x.x \times x) (\lambda x.x \times x)) \to_{\beta}$$
$$(\lambda x.y) ((\lambda x.x \times x) (\lambda x.x \times x) (\lambda x.x \times x)) \to_{\beta}$$
$$(\lambda x.y) ((\lambda x.x \times x) (\lambda x.x \times x) (\lambda x.x \times x) (\lambda x.x \times x)) \to_{\beta} \dots$$

HO

$$(\lambda x.y) ((\lambda x.x x x) (\lambda x.x x x)) \rightarrow_{\beta} y$$

Редексы

Reducible expressions

Редэксом называется пара термов, в которой можно выполнить подстановку, или выражение вида

$$(\lambda x.S)T$$

По правилу β -редукции

$$(\lambda x.S)T \rightarrow_{\beta} S[x := T]$$

Например,

$$(\lambda f.\lambda x.f x x) + \rightarrow_{\beta} \lambda x. + x x$$

Терм без редэксов называется термом в **нормальной форме** (он вычислен, его нельзя дальше упростить)

Стратегии редукции

При выполнении редукции можно выбрать, какой редэкс заменять, это и есть стратегия редукции.

аппликативная стратегия— заменяем самый левый редэкс, не содержащий в себе других редэксов (самое маленькое подвыражение)

нормальная стратегия— заменяем самый левый самый внешний редэкс

Аппликативная стратегия соответствует передаче параметра по значению (сначала вычисляем параметр, потом передаём его в функцию), нормальная стратегия соответствует передаче параметра по имени (или ленивому вычислению), когда мы откладываем вычисление параметра до последнего, в надежде, что он нам не понадобится.

Какая стратегия лучше

Теорема (Карри о нормализации)

Если у терма есть нормальная форма, то последовательное сокращение самого левого внешнего редекса приводит к ней.

Теорема (Чёрча-Россера)

Если терм М β -редукцией редуцируется к термам N и K, то существует терм L такой, что к нему редуцируются и N, и K.

То есть нормальная форма не всегда есть (см. пример про $(\lambda x.x\,x\,x)$ $(\lambda x.x\,x\,x)$), но если она есть, её можно получить нормальной стратегией, причём нормальная форма единственная.

Комбинаторы

Комбинатор формально — это λ -терм без свободных переменных. Неформально — функция, которая позволяет комбинировать функции, без упоминания данных. Известные комбинаторы:

> $I \equiv \lambda x.x$ — тождественная функция $\omega \equiv \lambda s.s.s.$ — комбинатор самоприменимости $\Omega \equiv \omega \omega \equiv (\lambda s.s \, s)(\lambda s.s \, s)$ — расходящийся комбинатор $K \equiv \lambda x y.x$ — канцеллятор (первый элемент пары) $K_* \equiv \lambda x \, y.y$ — второй элемент пары $S \equiv \lambda x y z . x z (y z)$ — коннектор $B \equiv \lambda f q x.f(q x)$ — композиция

Комбинаторы, примеры

$$II \equiv (\lambda x.x)(\lambda x.x) \rightarrow_{\beta} \lambda x.x \equiv I$$

$$KI \equiv (\lambda x.\lambda y.x)(\lambda x.x) \rightarrow_{\beta}$$

$$\rightarrow_{\beta} \lambda y.(\lambda x.x) \rightarrow_{\alpha} \lambda x.\lambda y.y \equiv K_{*}$$

Комбинатор неподвижной точки

Теорема (О неподвижной точке)

Для любого λ -терма F существует неподвижная точка:

$$\forall F \exists X : FX = X$$

Теорема (О комбинаторе неподвижной точки)

Существует комбинатор неподвижной точки

$$Y = \lambda f.(\lambda x. f(x x))(\lambda x. f(x x))$$

такой, что

$$\forall F \ F(YF) = YF$$

Доказательство.

$$YF \equiv (\lambda x.F(x x))(\lambda x.F(x x)) = F((\lambda x.F(x x))(\lambda x.F(x x)) = F(YF)$$

Зачем это надо

Рекурсия. Проблема λ -исчисления в том, что у функций нет имён, поэтому они не могут вызывать сами себя, вообще. Например,

$$factorial = \lambda n.if(isZero n) \ 1 \ (mult \ n \ (factorial \ (pred \ n)))$$

Но так писать нельзя, factorial в правой части. Перепишем, применив η -преобразование:

$$\textit{factorial} = (\lambda \textit{f.} \lambda \textit{n.if} \, (\textit{isZero} \, \textit{n}) \, 1 \, (\textit{mult} \, \textit{n} \, (\textit{f} \, (\textit{pred} \, \textit{n})))) \textit{factorial}$$

Внезапно,

$$factorial = Y(\lambda f. \lambda n. if (isZero n) 1 (mult n (f (pred n))))$$

(ну, F(YX) = YX, тут *factorial* выступает в роли неподвижной точки, а F — штуки в скобках).

Пример

$$factorial 3 = (YF) 3$$

$$= F(YF) 3$$

$$= if (isZero 3) 1 (mult 3 ((YF) (pred 3)))$$

$$= mult 3 ((YF) 2)$$

$$= mult 3 (F(YF) 2)$$

$$= mult 3 (mult 2 ((YF) 1))$$

$$= mult 3 (mult 2 (mult 1 ((YF) 0)))$$

$$= mult 3 (mult 2 (mult 1 1))$$

$$= 6$$

(очень рекомендую курс "Системы типизации лямбда-исчисления" Дениса Москвина на https://www.lektorium.tv, примеры взяты оттуда)

Булевые выражения

Пока что на λ -исчислении факториал не написать, нет чисел и if-ов. Начнём с булевых выражений:

$$TRUE \equiv \lambda x. \lambda y. x$$

$$FALSE \equiv \lambda x. \lambda y. y$$

Ну и оператор **IF**:

$$IF \equiv \lambda b. \lambda t. \lambda f. b t f$$

— обратите внимание, булевые константы вводились так, чтобы *IF* получился таким простым

Булевые операторы

Ввести булевые операторы очень просто через *IF*:

 $AND \equiv \lambda a b.IF a b FALSE$

 $OR \equiv \lambda a b . IF a TRUE b$

 $NOT \equiv \lambda b. IF b FALSE TRUE$

Какова нормальная форма терма *NOT*?

Ответ

$$NOT = \lambda b.IF b FALSE TRUE$$

$$= \lambda b.((\lambda b'.\lambda t.\lambda f.b' t f) b (\lambda x.\lambda y.y) (\lambda x.\lambda y.x))$$

$$\rightarrow_{\beta} \lambda b.((\lambda t.\lambda f.b t f) (\lambda x.\lambda y.y) (\lambda x.\lambda y.x))$$

$$\rightarrow_{\beta} \lambda b.((\lambda f.b (\lambda x.\lambda y.y) f) (\lambda x.\lambda y.x))$$

$$\rightarrow_{\beta} \lambda b.(b (\lambda x.\lambda y.y) (\lambda x.\lambda y.x))$$

A если b может быть только TRUE и FALSE, всё проще:

$$NOT = \lambda b t f.b f t$$

Легко убедиться подстановкой TRUE и FALSE в обе формулы

Нумералы Чёрча

Теория чисел может быть введена через λ -исчисление. Числа вводятся так (нумералы Чёрча):

$$0 \equiv \lambda s \, z.z$$
$$1 \equiv \lambda s \, z.s \, z$$
$$2 \equiv \lambda s \, z.s \, (s \, z)$$
$$3 \equiv \lambda s \, z.s \, (s \, (s \, z))$$
$$4 \equiv \lambda s \, z.s \, (s \, (s \, (s \, z)))$$

Арифметические операции

$$S \equiv \lambda n. \lambda f. \lambda x. f((n f) x)$$

то есть

$$Sn = (\lambda n f x. f (n f x)) n$$

 $\rightarrow_{\beta} \lambda f x. f (n f x)$
 $= n + 1$

Сложение:

$$ADD \equiv \lambda m \, n.\lambda f \, x.(m \, f) \, ((n \, f) \, x))$$

или

$$ADD \equiv \lambda m \, n.(m \, S) \, n$$

Умножение и степень

$$MUL \equiv \lambda m \, n.m \, (ADD \, n) \, 0$$

$$EXP \equiv \lambda m \, n.m \, (MUL \, n) \, 1$$

Пары

Конструктор пары:

$$PAIR \equiv \lambda x y f.f x y$$

идея такая же, как у булевых констант и *IF-*а — обернуть значения в аппликацию функции. Конкретная пара:

PAIR
$$ab = \lambda f.f ab$$

Проекции:

$$FST \equiv \lambda p.p \ TRUE$$

$$SND \equiv \lambda p.p FALSE$$

Почему

Потому что мы так определили TRUE и FALSE:

$$FST(PAIR \ a \ b) = PAIR \ a \ b \ TRUE$$

$$\equiv (\lambda x \ y \ f.f \ x \ y) \ a \ b \ TRUE$$

$$= TRUE \ a \ b$$

$$= (\lambda x.\lambda y.x) \ a \ b$$

$$= a$$

$$SND(PAIR \ a \ b) = PAIR \ a \ b \ FALSE$$

$$\equiv (\lambda x \ y \ f.f \ x \ y) \ a \ b \ FALSE$$

$$= FALSE \ a \ b$$

$$= (\lambda x. \lambda y. y) \ a \ b$$

$$= b$$