Principle of Computer Game Software

Collision Detection & Physics

Collision Detection

Collision response

Physics

Simple Taxonomy(collision detection)

Problem faced

- tons of objects in game world, O(N²) complexity in detection
- Same problem in visibility processing!

Taxonomy

- Broad phase/narrow phase algorithms
- Single phase methods
- Strategies

Broad phase

- Cull away pairs of objects that cannot possibly collide by
 - Game rules or context
 - 2. Spatial partitioning in world/local space
 - Bounding volumes (spheres, AABBs and OBBs) and bounding volume hierarchies

Narrow Phase

- Accurate collision detection by
- 1. Polyhedron-polyhedron testing
- 2. Separating planes

Strategies

 Exploit spatial/temporal coherence – objects tend to occupy the same region of space from one frame to another

 Pre-calculation – spatial partitioning and bounding volumes involve some degree of pre-calculation e.g. BSP tree

Octree in Collision Detection

- To check for potential colliding pairs, tree is descended and only those regions containing more than one object are examined
- Eliminate testing pairs that distant away

Drawback : octree must be updated each time step

Geometric Algorithms

- Collision detection & response requires geometrical tests
- Primitives tests involved point, triangle, sphere, object ..
- Depends on the abstraction of the programmer & speed requirement

Clipping against a plane

$$Ax + By + Cz + D = 0$$

 For a sphere with center (Cx,Cy,Cz) and radius R,

$$A \cdot Cx + B \cdot Cy + C \cdot Cz + D < -R$$

 Returns true if sphere lies completely in hemispace opposite the plane normal

O..1-2 ...-14:..1-4 - 11 - ...1 1 -

Only 3 multiply,4 add and 1 compare

Same as test for a point against the plane

$$A \cdot Px + B \cdot Py + C \cdot Pz + D < 0$$

 Implement as clipping against viewing frustum for each clipping plane if sphere outside plane return false

end for return true

Point-in-Sphere

Given a point P and a sphere with equation

$$(X - Xc)^{2} + (Y - Yc)^{2} + (Z - Zc)^{2} = R^{2}$$

P is inside sphere iff

$$(Xp - Xc)^2 + (Yp - Yc)^2 + (Zp - Zc)^2 < R^2$$

- Advantages
 - Cheap in operational cost
 - Rotational invariance
- Disadvantage
 - Not suitable for objects not accordance with sphere e.g. rod shape object will generates a lot of false positives

Bounding Box

- Can provide tighter fit
- Generic or Axis Aligned(AABB) faces parallel to X, Y and Z axes

AABB

To generate AABB

From all object points
select minimum & maximum X value
select minimum & maximum Y value
select minimum & maximum Z value

Thus defined by two points only

Axis-Aligned Bounding Box(AABB)

- Support plane aligned with X,Y, & Z plane
- As initial test representing an object for early rejection

```
x - xmax = 0
x + xmin = 0
y - ymax = 0
y + ymin = 0
z - zmax = 0
z + zmin = 0
```


Point in AABB

```
bool inside(point p)
{
  if (p.x>xmax) return false;
  if (p.x<xmin) return false;
  if (p.y>ymax) return false;
  if (p.y<ymin) return false;
  if (p.z>zmax) return false;
  if (p.z<zmin) return false;
  return true;
}</pre>
```


Use of AABB in Doom3

 Low complexity but needs to be updated as object moves e.g. rotational motion!

OBB

Also called principal component analysis
 (PCA) in statistics

Oriented Bounding Box(OBB)

- Compute a tight-fit oriented rectangular box for a set of polygons
- Find the covariance matrix of the vertices

$$Mean = \frac{1}{3n} \sum_{i=1}^{n} \vec{p}_{i} + \vec{q}_{i} + \vec{r}_{i}$$

where **p,q**, & **r** are vertices of the *i*th triangle

n : number of triangles

OBB

3x3 covariance matrix is computed as

$$C_{jk} = \frac{1}{3n} \sum_{i=1}^{n} (p_{ij} - M_j)(p_{ik} - M_k) + (q_{ij} - M_j)(q_{ik} - M_k) + (r_{ij} - M_j)(r_{ik} - M_k)$$
 1 \leq j, k \leq 3

- *i*: triangle index
- j, k: (x,y,z) component of the points
- A symmetric matrix with the eigen vectors yields a basis parallel to the face of the OBB

OBB

- Can build a OBB tree by recursively partitioning this tree into two halves using a plane orthogonal to one of its axes
- Too high computational efforts to put into real time application

Point in Convex Polygon

 Looping through edges and make sure the point always in same hemispace w.r.t. edges

While we haven't done a full cycle compute edge vector compute up vector from edge & normal use edge & up to compute a plane if plane value of point P < 0 return false

return true

CSCI4120 Principle of Computer Game Software

Point in Polygon(Jordan Curve Theorem)

 A point is inside a closed polygon iff number of crossings from a ray emanating from the point in an arbitrary direction and the edges of the polygon is odd

Choose an arbitrary direction e.g.(1,0,0)
Build ray vector, count = 0
for each edge
 test ray-edge
 if crossed
 increase count
return count is odd

Point-in-Convex Object

Similar to polygon test, with change to plane test

sign=sign of point-plane test of the first plane of support of object for each plane of support if sign is different from point-plane test of previous plane return false return true

Point-in-Convex Object

- Efficiently performed on convex hull of the objects
- Cost is O(no. of planes)
- Further optimized by early rejection of pointin-bounding-sphere test
- For concave object, decompose it into set of convex and performing the test

Point-in-Object (3DDDA)

- Processed the mesh into 3D regular grid
- Each grid cell contains those triangles whose barycenter located inside the cell
- Test only those triangles that lie in cell of the point – greatly reduced testing needed
- Further speed up by storing enumerated value (IN, OUT, DON'T KNOW) in each cell
- Drawback : Large memory footprint

Ray-plane Intersection

Given the parametric form of a line as

$$R = org + t * dir$$

dir: direction vector

org: origin

 And the plane AX+BY+CZ+D = 0, the parameter t of where intersection occur is given by

$$t = \frac{-\left(n \circ org + D\right)}{n \circ dir}$$
 n: normal of plane (A,B,C)

Ray-Triangle test

Compute intersection between ray & support plane of triangle
If there is an intersection point, compute if that point is actually inside the triangle

Combine two primitive tests discussed before

Ray-AABB Test

Assuming point outside the object
 Reject back-facing normals from the six plane
 From the 3 planes remaining, compute distance t on ray-plane test

Select the farthest of three distances Test if that point inside the box

- 1. 6 dot product check the first step
- 2. 3 point ray tests
- 3. A few comparisons for the last step

Ray-Sphere Test

Given the same parametric form of ray

$$R = org + \lambda * dir$$
 and a sphere as

$$(X - Xc)^{2} + (Y - Yc)^{2} + (Z - Zc)^{2} = R^{2}$$

rearranging give the form

$$A\lambda^2 + B\lambda + C = 0$$

 The intersection can be 0, 1 or 2 solution only => the solution is well defined

Ray-Convex Hull Test

- Loop through all the planes of the convex hull
- If all tests are negative(two points lie outside the hull), no intersection
- Otherwise compute intersection point between the plane and ray

Ray-General Object

- Ray-Concave object intersection computation is complex
- Use Jordan Curve Theorem
- Since there may have several intersections, need additional information to decide which one to return

Moving Tests

- Need to compute trajectories of objects
- Detect both if collision took place and when it took place
- Sphere-sphere test
- Start with two points moving in space

$$pos_a = pos0_a + v_a t$$
$$pos_b = pos0_b + v_b t$$

Sphere-sphere Test

 Compute the vector difference and take the square of difference vector magnitude

$$pos_a - pos_b = dpos0 + dv \cdot t$$

 $dist = sqrt(A + B \cdot t + C \cdot t^2)$

where

$$A = |dpos|^{2}$$

$$B = 2 * (dpos \circ dv)$$

$$C = |dv|^{2}$$

Sphere-sphere Test

 Assume r1 & r2 radius of the two spheres, collision happens when

$$dist = r1 + r2$$

 Solving the equation & rearranging terms, collision occur if

$$(dpos \circ dv)^2 > (|dpos|^2 - (r1 + r2)^2)|dv|^2$$

Point-BSP Triangle Set Test

- Traversing the BSP tree to locate the node we are in
- The planes we visit on the way form a convex shape around the point
- do point vs. polygon test to check if lying in valid region

Mesh Vs. Mesh Test

- Usually deals with systems involving many different moving objects
- Requires NxN tests => costly computation
- Using sweep and prune detecting bounding box overlap
- Two BB overlap iff intervals overlap in all x-, y-, and z-axes

Mesh Vs. Mesh Test

Construct 3 lists (x-, y- & z-axes) For each object project BB onto x-, y-, & z- axes store projection as in & out in lists Sort list by coordinate Determine overlap by scanning the list Store overlaps in X, Y & Z array If overlap occur in all three directions perform fine collision algorithm

- The player is modeled as an ellipsoid
- The ellipsoid is transformed into a sphere by

$$M = \begin{bmatrix} \frac{1}{x} & 0 & 0 \\ 0 & \frac{1}{y} & 0 \\ 0 & 0 & \frac{1}{z} \end{bmatrix}$$

(x,y,z): radius vector of ellipsoid

CSCI4120 Principle of Computer Game Software

- Subsequent calculation in ellipsoid space i.e. player as a sphere, which simplify calculations
- Swept sphere would have to be used to ensure collision is detected

- If collision did happen, sliding occur along the sliding plane
- Sliding plane may not be same as the colliding polygon

- Sliding plane defined by plane normal & intersection point
- Plane normal simply the vector from intersection point to sphere center

 The new moving velocity is readily obtained by projecting original velocity on the sliding plane

- Gravity effect can be computed by making two calls to the collision detection/response module: 1 for player move, 1 for gravity
- Simply combining the two vectors may result in unable to walk up staircases

Reference

- Original proposal by Paul Nettle, link no longer available
- Refined & elaborated
- http://www.peroxide.dk/papers/collision/collisi on.pdf

Recommended readings

- Chapter 22 of Core techniques & algorithms in Game Programming
- Chapter 15 of 3D Games Real-time
 Rendering & Software Technology

Physics in Game

- Traditional games did not implement physics in-game effects are just animations
- Physics can bring more possibility in terms of game play
- With advance of processing power, physics can more accurately mimic our real world e.g. the fall off of enemy after being hit by a bullet, car racing around tight curve.

First Physics in Game

- Lunar Lander: the first physics inspired game
- Pilot a landing craft to a safe landing, practise physics concept (gravity & thrust)

http://my.ign.com/atari/lunar-lander

Physics

- Concern with kinematics & dynamics of rigid bodies in contrary to our usual representation of a single point mass
 - Kinematics: motion of body without regard to forces that act on the body (body pose)
 - Dynamics: both motion of body and forces that acting on them

Simulating Dynamics

Interested in dynamics most of the time in game

Topics Application

Rigid body (articulated) human

Cloth dynamic human

– fluid dynamic water

explosion

Physics

- Typical procedure for simulating physics effect on computer:
- For next time frame
 - Calculate the resultant forces
 - Solve the force equation to obtain motion
 - Update the states of the system

Start from simple

 Suppose a sphere is free falling and we want to show it in our 3D game world.

F

Representation

 We use (x,y,z) to represent the coordinate of the object, and the displacement at each time frame is

g: gravity

t: time

$$y = \frac{1}{2}gt^2$$

 all calculations must reference the initial time, thus not suitable for the game world (time is infinitely extended and events happening all the time)

Representation

We rewrite it into

$$y' = y + vt$$
 y,y': old,new position of the object

$$v' = v + gt$$
 v,v': old,new velocity of the object

- quantities with ` is the next time frame values of those without `
- acceleration is constant in our case

Euler time integration

- Need additional parameters to represent velocity
- Need careful chosen time frame t for different situations when simulated velocity is high w.r.t. sampling rate for collision detection

Euler time integration

 Actually we are solving the following differential equation for y

$$\frac{d^2y}{dt^2} = g$$

 Basically it can be used to solve all kinds of differential equations

Rigid Body Simulation

- Use connected masses to simulate a rigid body
- Connecting stick can be a spring to simulate deformable object

particle/stick configuration used in Hitman

On notations

 Suppose we compute cross product between vector w and n

$$\omega \times \nu$$

This can be rewritten as

$$\begin{vmatrix} 0 & -\omega_3 & \omega_2 & v_1 \\ \omega_3 & 0 & -\omega_1 & v_2 \\ -\omega_2 & \omega_1 & 0 & v_3 \end{vmatrix} = \widetilde{\omega}v$$

Parameters

- 6 Degree of freedom (DOF): 3 for translation,
 3 for rotation
- Rotation representation is still an open problem
- Typical representation: roll/pitch/yaw(RPY)
 3x3 matrix, axis-angle, quaternion
- Each suffer from their corresponding shortcomings or singularities

Modeling

- Rigid body is modeled as a collection of point masses
- Integrate over the whole body through a number of time steps (Euler integration)

O: origin of the rigid body

r : world space position

A: 3x3 rotation matrix

Lower case: vector

Upper case: matrix

Kinematics

$$b = o + A\overline{r}$$
$$= o + r$$

Differentiating w.r.t time to give velocity

$$\dot{b} = \dot{o} + \dot{A}\bar{r} + A\dot{\bar{r}}$$
 \bar{r} - constant vector \Rightarrow zero $\dot{\bar{r}}$
= $\dot{o} + \dot{\omega} \times r$ ω : angular velocity

Further derivative gives the acceleration

$$\ddot{b} = \ddot{o} + \alpha \times r + \omega \times (\omega \times r)$$

 α : angular acceleration

Centripedal acceleration

Dynamics(translational)

$$F = \sum_{i} m_{i} \dot{v}_{i} = \sum_{i} m_{i} a_{i} = Ma_{CM}$$

F: total force exerted on the body

M: mass of whole body

a_{CM}: acceleration of centre of mass

Dynamics(rotational)

Angular momentum of a point B w.r.t. point A is

$$L_{AB} = r_{AB} \times p_B$$
 p_B: linear momentum

Derivative of angular momentum i.e. torque is given by

$$\dot{L}_{AB} = \tau_{AB} = r_{AB} \times F_{B}$$

Dynamics

The angular momentum is thus

$$L_{CM} = \sum_{i} r_{i} \times m_{i} \dot{r}_{i}$$

$$= \sum_{i} m_{i} r_{i} \times \omega \times r_{i}$$

$$= \sum_{i} -m_{i} r_{i} \times (r_{i} \times \omega)$$

Rewriting cross product into matrix form

$$L_{CM} = \sum_{i} -m\widetilde{r}_{i}\widetilde{r}_{i}\omega = I_{CM}\omega$$
 I_{CM} : Moment of inertia

Rotation Matrix Properties

A 3D rotation matrix A is orthogonal i.e.

$$AA^{t} = I$$

- Where A^t is the transpose of A
- Now suppose we have a rotated vector r'

$$r = Ar$$

We want to find a matrix B such that

$$B`Ar = ABr$$

Similarity Transform

Expanding rhs by I

$$B`Ar = ABIr$$
$$= ABA^{t} Ar$$
$$\Rightarrow B` \equiv ABA^{t}$$

Similarity Transform

- Usage:
- In the rigid body representation

$$r = A\overline{r}$$

- \bar{r} is the object space coordinate w.r.t. object center of mass
- A is object to world space rotation

Similarity Transform(2)

 In calculating the moment of inertia for a rigid body (world space)

$$\overline{I_A} = \sum_i - m\widetilde{r}_{Ai}\widetilde{r}_{Ai}$$

 is the body space moment of inertia, and can be pre-calculated (and its inverse I⁻¹)

$$I_A^{-1} = A \overline{I^{-1}}_A A^t$$

Simulation algorithm

Initialization:

determine body constants: \bar{I}^{-1}_{CM}, M

determine initial conditions: r^0_{CM} , v^0_{CM} , A^0 , L^0_{CM}

compute initial auxiliary

$$I_{CM}^{0^{-1}} = A^0 \bar{I}_{CM}^{-1} A^{0^T}$$

$$\omega^0 = \bar{I}_{CM}^{0^{-1}} L_{CM}^{0}$$

Simulation algorithm

Simulation:

compute individual forces & application points: F_i , r_i compute total forces & torque: $F_T^n = \sum_i F_i$, $\tau_T^n = \sum_i r_i \times F_i$ integrate quantities: $r_{CM}^{n+1} = r_{CM}^n + h v_{CM}^n$

$$v_{CM}^{n+1}=v_{CM}^n+hrac{F_T^n}{M}$$
 h: time step $A^{n+1}=A^n+h\widetilde{\omega}^nA^n$ $L_{CM}^{n+1}=L_{CM}^n+h au_T^n$

Compute auxiliary quantities: $I_{CM}^{n+1^{-1}} = A^{n+1} \bar{I}_{CM}^{-1} A^{n+1^T}$ $\omega^{n+1} = I_{CM}^{n+1^{-1}} L_{CM}^{n+1}$

Further

- Suitable for aircraft modeling
- No contact physics involved i.e. can't rest on ground
- No simultaneous multiple collision point
- No friction during collision & contact
- Need collision detection

Physics SDK

- Abstract the in-game characters into primitives
- Provide attributes update e.g. position, orientation after each game time step
- Examples :
- Havok http://www.havok.com/
- PhysX http://www.geforce.com/hardware/technology/physx
- Bullet http://www.bulletphysics.com

Good and Bad

Advantages

- With physics, artist don't have to script all behavior (e.g. box falling)
- Improved realism
- Player can exercise more control

Drawback

- Lack of artist control
- May conflict with game design

Further

http://chrishecker.com/Rigid_Body_Dynamics#articles

https://www.gamasutra.com/view/feature/131312/cont act_physics.php

http://www.newtondynamics.com/

http://www.havok.com

https://pybullet.org/wordpress/

Recommended readings

- Chapter 14 of 3D Games Real-time Rendering & Software Technology
- Chapter 22 of Core Techniques & Algorithms
- http://www.videotutorialsro ck.com/opengl_tutorial/colli sion_detection/text.php

