

deng@tsinghua.edu.cn

Geometric Primitives

❖ Construct Vor(S) for S a set of geometric primitives
 of different dimensions and shapes:
 points, segments, rays, lines, arcs,
 solid volumes (e.g. polygons, disks), ...

strongly intersecting sites

<u>Higher-Order Voronoi Diagrams</u>

- ❖ Let S be a set of n sites in the plane
- \clubsuit For an integer k, $1 \le k < n$,

the kth-order VD of S is a partition of the plane

into (connected) cells s. t.

any point within a fixed cell has the same k closest sites

- // The 1st-order Voronoi diagram is the normal Voronoi diagram
- ❖ The maximum complexity of the kth-order VD of n sites in the plane

is
$$\Theta(k*(n-k))$$

<u>Higher-Order Voronoi Diagrams</u>

- ❖ The currently best algorithm for constructing 2-D kth-order VD is [Be97]
- ❖[de Berg et al]

The kth-order VD of n sites in the plane can be constructed

```
in O(n\log^3 n + k(n-k)) time
```

❖ M. de Berg et. al.

Computational Geometry: Algorithms and Applications
Springer-Verlag, Germany, 1997

❖ What is the lower bound

for constructing k^{th} -order VD (in the plane or \mathcal{E}^d)?

// TTBOMK, remains open ...

Furthest Point Voronoi Diagrams (FPVD)

- ❖ The (n-1) -order VD is also called
 - the | furthest point Voronoi diagram |
- ❖ A site of S has a non-empty cell in FPVD

iff

it lies on CH(S)

❖ The FPVD of a set of n points can be computed

in | ⊘(nlogn) | time

The FPVD of 12 points consists of 5 cells, each for an EP

Minimum Enclosing Circle

- ❖ One of the applications of FPVD is to construct the MEC
- ❖ [MEC] // also known as the 1-circle problem
 Find the minimum circle s.t. no point of S lies exterior to the circle
- ❖ [Bhattacharya & Toussaint, 1985]

 The MEC of a set of n points in \mathcal{E}^2 can be constructed in $\boxed{O(\text{nlogn})}$ time
- *Note that the brute-force MEC algorithm runs in $o(n^4)$ time
- ❖ On the other hand, however,

 Seidel presented an optimal and easy-to-implement MEC algorithm
- ❖ [Seidel, 1990]

The MEC of a set of n points in \mathcal{E}^2 can be constructed in $|\mathcal{O}(n)|$ time!

Minimum Enclosing Circle

```
❖ Algorithm ConstructMECbyFPVD()
                                                    //Bhattacharya & Toussaint
     Compute CH(P), the convex hull of the P: CH(P)
                                                                     //0(nlogn)
     Compute \underline{\text{diam}(CH(P))}, the \underline{\text{diameter}} of CH(P)
                                                                          //O(n)
     If diam(CH(P)) defines the MEC then exit with the MEC
                                                                          //O(n)
     Compute FPVD(P), the FPVD of the point set
                                                                     //O(nlogn)
     For every vertex in FPVD(P)
                                                                          //O(n)
        check the spanning circle, and
        exit with the smallest such circle found
```

Skeleton & Medial Axis

- ❖ A disc (or ball) B is said

 to be maximal in a set A if
 - $B \subseteq A$ and
 - another disc D contains B only if D ⊈ A
- ❖ The skeleton of a shape A is the set
 - of centers of all maximal discs in A,
 or equivalently,
 - of centers of the discs that touch the ∂A in two or more points

Medial Axis Algorithms

❖ [1982, D. T. Lee]

The medial axis of an n-gon can be constructed in $o(n\log n)$ time

❖ [1989, A. Aggarwal et al]

The medial axis of a convex polygon can be constructed in linear time

❖ [1992, 0. Devillers]

A randomized algorithm constructs the medial axis of an n-gon

in $O(n\log^*n)$ time

❖ [1995, F. Chin et al]

The medical axis of an n-gon can be constructed in o(n) time

VD of Subsets

```
❖[B. Chazelle, 2002]
Splitting a Delaunay triangulation in linear time,
Algorithmica, 34(1): 39-46
```

- ❖ Given VD(P) of P a planar set of n points,
 for any subset S of P, VD(S) can be computed
 in expected linear time
- ❖ Given S and T two planar point sets,
 if VD(S + T) is known, then

both VD(S) and VD(T) can be computed

in expected linear time