Microprocessor and Computer Architecture Laboratory UE19CS256

4th Semester, Academic Year 2020-21

Date: 19-02-2021

Name: Atul Anurag | SRN: PES2UG19CS075 | Section: B

Week#4

Program Number: 1

Write an ALP to implement C[k] =a[i]+b[j]

I. ARM Assembly Code (1).

```
₩ Week4_Program1_PES2UG19CS075.s
        a: .word 1,2,3,4,5
       b: .word 1,2,3,4,5
      c: .word 0,0,0,0,0
       ldr r0, =a
       ldr r1, =b
        ldr r2, =c
        mov r6, #5
         ldr r3, [r0]
        add r0, r0, #4
         ldr r4, [r1]
         add r1, r1, #4
          add r5, r3, r4
          str r5, [r2]
          add r2, r2, #4
          sub r6, r6, #1
         cmp r6, #0
         bNE loop
 21
      .end
```

II. Output Screen Shot (One Example of your choice)

a: .word 1, 2, 3, 4, 5		
b: .word 1, 2, 3, 4, 5		
c: .word 0,0,0,0		
After Execution The content of array C is		
2	0000002	
4	0000004	
6	0000006	
8	0000008	
10	000000A	

Program Number: 2

Write an ALP to implement c[k] = a[i] * b[j]

I. ARM Assembly Code (1).

```
.data
       a: .word 1,2,3,4,5
      b: .word 1,2,3,4,5
      c: .word 0,0,0,0,0
       ldr r0, =a
      ldr r1, =b
      ldr r2, =c
      mov r6, #5
       loop:
         ldr r3, [r0]
         add r0, r0, #4
         ldr r4, [r1]
        add r1, r1, #4
         mul r5, r3, r4
         str r5, [r2]
         add r2, r2, #4
         sub r6, r6, #1
         cmp r6, #0
         bNE loop
21
     .end
```


a: .word 1, 2, 3, 4, 5 b: .word 1, 2, 3, 4, 5 c: .word 0,0,0,0,0 After Execution The content of array C is		
1	0000001	
4	0000004	
9	0000009	
16	0000010	
25	0000019	

Program Number: 3

- a. Write an ALP to perform Convolution using MUL instruction (Addition of multiplication of respective numbers of loc A and loc B)
 - I. ARM Assembly Code (1).

a: .word 1, 2, 3, 4, 5 b: .word 1, 2, 3, 4, 5		
R5	(1*1)+(2*2)+(3*3) +(4*4)+(5*5) =55=00000037	

b. Write an ALP to perform Convolution using MLA instruction (Addition of multiplication of respective numbers of loc A and loc B).

c. ARM Assembly Code (1).

```
₩ Week4_Program3b_PES2UG19CS075.s
      .data
        a: .word 1,2,3,4,5
       b: .word 1,2,3,4,5
        ldr r0, =a
       ldr r1, =b
       mov r2, #5
       mov r5, #0
       loop:
          ldr r3, [r0]
          add r0, r0, #4
         ldr r4, [r1]
          add r1, r1, #4
          mla r5, r3, r4, r5
          sub r2, r2, #1
          cmp r2, #0
          bNE loop
 18
      .end
```


a: .word 1, 2, 3, 4, 5 b: .word 1, 2, 3, 4, 5		
R5	(1*1)+(2*2)+(3*3) +(4*4)+(5*5) =55=00000037	

Program Number: 4

Write an ALP to read from a 2D array such that B=a[i] [j]

I. ARM Assembly Code (1).

Before execution	a: .word 1,2,3,4	b: .word 0
	0000001	0000001
After Execution	0000002	0000002
	0000003	0000003
	0000004	0000004

Program Number: 5

Write an ALP to implement C[i][j]=a[i][j]+b[i][j]

ARM Assembly Code (1).

```
a: .word 1,2,3,4
b: .word 1,2,3,4
ldr r0, =a
ldr r1, =b
mov r4, #0
outerloop:
 mov r5, #0
innerloop:
  ldr r6, [r0]
   add r0, r0, #4
   add r2, r2, #4
   cmp r5, r3
   bNE innerloop
  add r4, r4, #1
  cmp r4, r3
  bNE outerloop
```


Before execution	a:.word 1,2,3,4	b:.word 1,2,3,4	c:.word 0
	0000001	0000001	0000002
	0000002	0000002	0000004
After Execution	0000003	0000003	0000006
	0000004	0000004	8000000

Program Number: 6

Write an ALP to implement Sum[i] +=a[i][j]

ARM Assembly Code (1).

```
a: .word 1,2,3,4
      sum: .word 0
      ldr r0, =a
      ldr r1, =sum
      mov r2, #2
      mov r3, #0
      outerloop:
        mov r4, #0
        innerloop:
          ldr r6, [r0]
          add r0, r0, #4
          add r5, r5, r6
          add r4, r4, #1
          cmp r4, r2
          bNE innerloop
         str r5, [r1]
         add r3, r3, #1
        cmp r3, r2
         add<u>NE</u> r1, r1, #4
         bNE outerloop
24
```


Before execution	a:.word 1,2,3,4		
After Execution	Addition result	Sum[0]=3	Sum[1]=7

Disclaimer:

- The programs and output submitted is duly written, verified and executed by me.
 - I have not copied from any of my peers nor from the external resource such as internet.
- If found plagiarized, I will abide with the disciplinary action of the University.

Signature: Atul Anurag

Name: Atul Anurag

SRN: PES2UG19CS075

Section: B

Date: 19-02-2021