AL-Hausarbeit Aufgabe 2

Gruppe: 0395694, 678901, 234567

WiSe 24/25

(i) Äquivalente Formeln

• Eine äquivalente Formel $\psi \in AL_{6,1,5}$ für $(Y \wedge Z)$ ist:

$$r_5\langle Y, Y, Z, Z, Z \rangle$$

Diese Formel ist äquivalent zu $Y \wedge Z$, da sie genau dann 1 ergibt, wenn die Summe der Wahrheitswerte $\equiv 1 \pmod 5$ ist, was nur bei Y = Z = 1 der Fall ist.

• Eine äquivalente Formel in AL für $r_5\langle Y, Z\rangle$ ist:

$$(Y \land \neg Z) \lor (\neg Y \land Z)$$

Diese Formel ist äquivalent zu $r_5\langle Y,Z\rangle$, da sie genau dann 1 ergibt, wenn genau eine der beiden Variablen 1 ist, was der Bedingung $JYK^{\beta}+JZK^{\beta}\equiv 1\pmod{5}$ entspricht.

(ii) Äquivalente Formeln χ_1 und χ_2

• $\chi_1 \in AL_{2,2,4} \setminus AL_{5,0,3}$:

$$r_4\langle X, X\rangle$$

• $\chi_2 \in AL_{5,0,3} \setminus AL_{2,2,4}$:

$$r_3\langle X, X, X, X, X \rangle$$

Diese Formeln sind äquivalent, da beide genau dann 1 ergeben, wenn X = 1 ist:

- Für χ_1 : $r_4\langle X, X \rangle = 1$ gdw. $2 \cdot JXK^{\beta} \equiv 2 \pmod{4}$ gdw. X = 1
- Für χ_2 : $r_3\langle X, X, X, X, X \rangle = 1$ gdw. $5 \cdot JXK^\beta \equiv 0 \pmod{3}$ gdw. X = 1

(iii) Beweis der Nicht-Definierbarkeit in $AL_{2,2,4}$

Wir zeigen, dass die Formel $\phi := (X \wedge Y) \vee (Y \wedge Z) \vee (Z \wedge X)$ keine äquivalente Formel in $AL_{2,2,4}$ hat.

Angenommen, es gäbe eine äquivalente Formel $\psi \in AL_{2,2,4}$. Da in $AL_{2,2,4}$ nur Formeln mit maximal 2 Argumenten und Modulo-4-Operationen erlaubt sind, kann ψ maximal $2^4 = 16$ verschiedene Wahrheitswertekombinationen unterscheiden.

Die Formel ϕ ist jedoch wahr genau dann, wenn mindestens zwei der drei Variablen 1 sind. Dies erfordert die Unterscheidung von mehr als 16 verschiedenen Kombinationen, was in $AL_{2,2,4}$ nicht möglich ist.

(iv) Beweis durch strukturelle Induktion

Wir zeigen durch strukturelle Induktion, dass jede Formel $\phi \in AL$ äquivalent zu einer Formel in $AL_{5,0,3}$ ist.

Induktionsbasis:

- Für Variablen $X \in AL$ ist X bereits in $AL_{5,0,3}$.
- Für Konstanten \top , \bot sind diese direkt durch $r_3\langle X, X, X, X, X \rangle$ bzw. $\neg r_3\langle X, X, X, X, X \rangle$ darstellbar.

Induktionsvoraussetzung: Sei $\phi_1, \phi_2 \in AL$ und seien $\psi_1, \psi_2 \in AL_{5,0,3}$ die entsprechenden äquivalenten Formeln.

Induktionsschritt: Für zusammengesetzte Formeln:

- $\neg \phi_1$ ist äquivalent zu $\neg \psi_1 \in AL_{5,0,3}$
- $\phi_1 \wedge \phi_2$ ist äquivalent zu $r_3 \langle \psi_1, \psi_1, \psi_2, \psi_2, \psi_2 \rangle \in AL_{5,0,3}$
- $\phi_1 \lor \phi_2$ ist äquivalent zu $\neg r_3 \langle \neg \psi_1, \neg \psi_1, \neg \psi_2, \neg \psi_2, \neg \psi_2 \rangle \in AL_{5,0,3}$
- $\phi_1 \to \phi_2$ ist äquivalent zu $\neg \psi_1 \lor \psi_2$, was nach obigem Fall darstellbar ist

Somit ist durch Induktion gezeigt, dass jede Formel in AL äquivalent zu einer Formel in $AL_{5,0,3}$ ist.