See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/256682859

5D3-5D4 cross-relaxation of Tb3+ in a cubic host lattice

ARTICLE in CHEMICAL PHYSICS LETTERS · APRIL 2011

Impact Factor: 1.9 · DOI: 10.1016/j.cplett.2011.03.002

CITATIONS READS

15 50

5 AUTHORS, INCLUDING:

Chang-Kui Duan

University of Science and Technology of Ch...

SEE PROFILE

Chi-Chiu Ko

City University of Hong Kong

70 PUBLICATIONS 1,723 CITATIONS

SEE PROFILE

Peter Anthony Tanner

The Hong Kong Institute of Education

355 PUBLICATIONS 4,367 CITATIONS

SEE PROFILE

Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

Chemical Physics Letters 506 (2011) 179-182

Contents lists available at ScienceDirect

Chemical Physics Letters

journal homepage: www.elsevier.com/locate/cplett

⁵D₃–⁵D₄ cross-relaxation of Tb³⁺ in a cubic host lattice

Chang-Kui Duan a,1, Chi-Chiu Ko a, Guohua Jia a, Xueyuan Chen b, Peter A. Tanner a,*

ARTICLE INFO

Article history:
Received 20 January 2011
In final form 2 March 2011
Available online 4 March 2011

ABSTRACT

Electronic absorption, excitation and time-resolved emission spectra of Tb^{3+} in the cubic elpasolite host lattice Cs_2NaYF_6 show that the ${}^5D_3-{}^5D_4$ cross-relaxation is due to an electric quadrupole-electric dipole mechanism. The donor Tb^{3+} ion transits from 5D_3 to 5D_4 whilst the acceptor ion transits from 7F_6 to 7F_2 with the emission of an odd-parity phonon.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In lasers and phosphor materials, lanthanide ions (Ln³⁺) are diluted into transparent host lattices with low phonon energy in order to minimize nonradiative processes. For concentrated materials, energy migration between Ln³⁺ may finally populate traps or killer sites, and this is known as concentration quenching of emission [1]. Alternatively, the reduced separation between Ln³⁺ in concentrated materials may serve to promote energy transfer up- or down-conversion between ions when the donor-acceptor energies match and the relevant transition selection rules permit transfer to occur. The down-conversion can serve a useful purpose, such as changing ultraviolet into visible photons. Many documented energy transfer mechanisms involve resonant electric dipole (ED) transitions at the donor and acceptor sites (ED-ED mechanism), with a spectral overlap of donor emission and acceptor absorption [2]. However this mechanism is not possible when Ln³⁺ are situated at centrosymmetric sites, such as in the elpasolite lattice Cs₂NaLnF₆ [3] unless odd-parity vibrations are involved in the nonresonant energy transfer. The general theory of phonon-assisted energy transfer has been developed by Kushida [4] and Holstein et al. [5], and the application to centrosymmetric systems [6] indicated that the participation of odd-parity phonons could play an important role.

We therefore targeted the concentration quenching of terbium (Tb^{3+}) emission from the 5D_3 state in the centrosymmetric elpasolite host as a case-study for the investigation of the quenching mechanism. This system is attractive for study because the detailed $4f^8$ crystal field energy level scheme is available from two-photon excitation studies [3]. Some previous studies have

investigated the concentration quenching of 5D_3 emission in non-centrosymmetric systems. For $CaSc_2O_4:Tb^{3+}$ [7], $CaYAlO_4:Tb^{3+}$ [8] and $LaAlGe_2O_7:Tb^{3+}$ [9], the 5D_3 quenching was attributed to the cross-relaxation:

$$Tb^{3+}(^5D_3) + Tb^{3+}(^7F_6) \to Tb^{3+}(^5D_4) + Tb^{3+}(^7F_I) \tag{1}$$

where J = 0, with critical concentration of 1 at.% for the latter system. The cross-relaxation Eq. (1) was otherwise thought to involve J = 1 for LiYF₄:Tb³⁺ [10] and J = 2 for (Lu,Y)SiO₅:Tb³⁺ [11]. The energy transfer mechanism was deduced to be electric dipole–electric dipole (ED–ED) for Y₃Al₅O₁₂:Tb³⁺ [12], α -GdOF [13] and for LiYF₄:Tb³⁺ above 70 K [10], but electric quadrupole–electric quadrupole (EQ–EQ) at 4.2 K for LiYF₄:Tb³⁺. From a detailed consideration of the crystal field energy levels for the systems CsCdBr₃, CsMgBr₃ and CsMgCl₃ doped with Tb³⁺ at a C_{3v} site [14], it was concluded that the cross-relaxation mechanism involved resonant 'hot' transitions and that phonon-assisted processes were not important. As mentioned above, since dipole–dipole processes are forbidden for Cs₂NaYF₆:Tb³⁺ unless they are phonon-assisted, it was of interest to investigate the ⁵D₃ concentration quenching in this system in view of the above conclusions.

2. Experimental

Crystals of $Cs_2NaY_{1-x}Tb_x$ F_6 (x = 0.1 and 0.01) were purchased from Dr. N.M. Khaidukov, who synthesized them by a hydrothermal method. Electronic absorption and emission spectra were recorded at Fuzhou using an Edinburgh Instruments spectrometer.

Time-resolved emission spectra at room temperature were recorded at CityU using the spectral mode on an Edinburgh Instruments LP920-KS instrument equipped with an ICCD detector. The excitation source for the time-resolved emission measurement was the third harmonic output (355 nm; 6–8 ns fwhm pulse width) of a Spectra-Physics Quanta-Ray Q-switched LAB-150 pulsed Nd-YAG laser (10 Hz).

^a Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong S.A.R., PR China

^b Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China

^{*} Corresponding author. Fax: +852 3442 0506.

E-mail addresses: duanck73@hotmal.com (C.-K. Duan), bhtan@cityu.edu.hk (P.A. Tanner).

¹ Present address: College of Physics and Mathematics, Chongqing University of Post and Telecommunications, Chongqing 400 065, China.

3. Results and discussion

The electronic ground state of Tb³⁺ is the ⁷F₆ multiplet. This ion occupies only one type of site of O_h point group symmetry in Cs₂NaYF₆ and the distortion from cubic symmetry is not spectroscopically evident in Cs₂NaY_{0.9}Tb_{0.1}F₆ at the investigated temperatures. The room temperature absorption spectrum, Figure 1(a), contrasts the absorption intensity exhibited by intraconfigurational 4f⁸-4f⁸ and interconfigurational 4f⁸-4f⁷5d transitions of Tb³⁺ in Cs₂NaY_{0.9}Tb_{0.1}F₆. The latter transitions are identified as spin-forbidden (4f⁷5d HS: high spin) and spin-allowed (4f⁷5d LS: low spin) in the figure, whilst the intraconfigurational ${}^{7}F_{6}-{}^{5}D_{4}$ transition is only visible in the expanded scale spectrum, Figure 1(c). The 10 K excitation spectrum monitoring emission from ⁵D₄, Figure 1(b) exhibits a marked sharpening of features. The ⁵D₄ term, marked in Figure 1(c), splits into $A_{1g} + T_{1g} + E_g + T_{2g} (O_h)$ crystal field levels, and has the lowest level (A_{1g}) located at 20 672 cm⁻¹. Since the energy gap below ⁵D₄ is 14 442 cm⁻¹ [3], i.e. spanned by 31 phonons, it is intensely luminescent. By contrast, the smallest gap below the next highest multiplet, 5D_3 , is $(^5D_3\ A_{2g}-^5D_4\ T_{2g})\ 5545\ cm^{-1}$ (spanned by 12 phonons) [3]. From the rule of thumb that a suitably-populated multiplet term will luminesce if the gap below it is spanned by more than four phonons, luminescence is also expected from 5D_3 . However, since the Tb ${}^{3+}{}^7F_J$ (J=6-0) multiplets extend up to 6230 cm $^{-1}$, the possibility exists that 5D_3 can be quenched by cross-relaxation energy transfer to a ${\rm Tb^{3+}}$ neighbour.

Under 355 nm excitation of Tb^{3+} in Cs_2NaTbF_6 , the vibronic sideband of 5G_5 is populated. Rapid (<1 ns) nonradiative decay then occurs to the luminescent 5D_3 multiplet. Using this excitation wavelength, the luminescence spectra of $Cs_2NaYF_6:Tb^{3+}$ (10 at.% and 1 at.%) between 410 nm and 640 nm are shown in Figure 2. Some of the terminal multiplets are marked in the figure. It can be seen that at 10 K, the intensity ratio for emissions from 5D_3 to those from 5D_4 of the 1 at.% Tb^{3+} sample is much larger than that for the 10 at.% sample. This shows a much faster decay of 5D_3 in the 10 at.% sample due to cross relaxation. It is also evident that the lowest energy transitions from 5D_3 form a spectral overlap with the absorption bands of 5D_4 .

We have analyzed the decay kinetics of emission from 5D_3 and 5D_4 at room temperature for the $Cs_2NaY_{0.9}Tb_{0.1}F_6$ sample. Figure 3 shows some emission snapshots at various times following the 355 nm laser pulse. Again, the population of 5D_4 from 5D_3 is evident and the 5D_3 emission has disappeared at 15 ms. The decay curves were measured for 5D_3 emission (at 381 nm and 439 nm) and 5D_4 emission (at 553 nm and 489 nm) and the results are shown in Figure 4. The decay from 5D_4 is monoexponential with a long lifetime typical of Ln^{3+} in elpasolite hosts: 13.6 ± 0.2 ms.

Figure 1. Room temperature absorption spectrum (curve (a) and enlarged curve (c)) and 10 K excitation spectrum by monitoring 540 nm emission for Cs_2NaYF_6 : Tb^{3+} of 10 at.% Tb^{3+} . The absorption curve shows not only f-d transitions, but also the 7F_6 - 5D_4 f-f transition.

Figure 2. 10 K emission spectra of $Cs_2NaY_{1-x}Tb_xF_6$: Tb^{3+} with x = 0.01 (curve (a)) and x = 0.1 (curve (b), with an enlargement in curve (c)).

Figure 3. Snapshots of the room temperature emission spectra of $Cs_2NaY_{0.9}Tb_{0.1}F_6$ at time t after 355 nm pulsed excitation.

The decay of ${}^5\mathrm{D}_3$ is clearly non-monoexponential. It can be fitted (R^2 = 0.995) by biexponential decay with the lifetimes of 0.059 ms and 1.176 ms, but no physical meaning can be attached to this. Instead, we prefer to employ a cross-relaxation model where back-transfer is not possible due to the large donor–acceptor energy difference. Then, the luminescence decay of ${}^5\mathrm{D}_3$ is due to two contributions: (i) the cross-relaxation process, which is characterized by a temporal parameter, τ_{CR} ; (ii) the one-site radiative and nonradiative decay, which is characterized by the parameter, $\tau_{\mathrm{one-site}}$. The decay curves can then be written in the form of a modified lnokuti–Hirayama equation [15] as:

$$I(t) = I_0 \exp(-(t/\tau_{\rm CR})^{3/s} - t/\tau_{\rm one -site})$$
 (2)

where I_0 is the intensity at t=0 and s is a parameter to describe distance dependence of the cross-relaxation. It is observed from the fitting that the decay of ${}^5\mathrm{D}_3$ is well-simulated by s=7.5, $\tau_{\mathrm{CR}}=0.3$ ms, and $\tau_{\mathrm{one-site}}=7.5$ ms. In order not to obtain excessive data-points, the early parts of the decay in Figures. 4(a,b) were

Figure 4. Decay curves for (a) 381 nm emission, (b) 439 nm emission, and (c) 553 nm and 489 nm emissions of Tb³⁺ under 355 nm pulsed excitation. The expressions for the calculated curves and the fitted lifetimes are given in the plot.

well-sampled, but the sampling interval was set to be longer for the later part of the decay. Thus, the $\tau_{\text{one-site}}$ value, which is determined by the tail of Figure 4(a,b), is not accurate, but the fitted value is consistent for both emission wavelengths. The values 6, 8, or 10 of the parameter s can be taken to indicate the mechanism ED–ED, EQ–ED, or EQ–EQ of the process. In the present case, the EQ–ED mechanism is indicated.

The detailed crystal field level analysis of the cross-relaxation pathway from 5D_3 for Cs_2NaYF_6 : Tb^{3+} indicates that since the maximum and minimum energy differences between 5D_3 and 5D_4 are $5822~cm^{-1}$ and $5545~cm^{-1}$, the value of J in Eq. (1) must be 2. Furthermore, since the cross-relaxation is efficient at 10 K, it is most likely that the 5D_3 donor level is the lowest level, A_{2g}

Figure 5. Cross-relaxation mechanism for the quenching of 5D_3 emission in Cs_2NaTbF_6 . Note the scale break in energy.

26 383 cm⁻¹. Then, considering the ⁵D₄ and ⁷F₂ crystal field level schemes [3], the transfer must be nonresonant. Following the EQ-ED mechanism, it is only feasible that the EQ transition $\Delta S = 0$; $|\Delta L| \le 2$; $|\Delta J| \le 2$ takes place between 5D_3 and 5D_4 since ⁷F₆–⁷F₂ is EQ forbidden. Furthermore, point group selection rules restrict the possible transitions to 5D_3 A_{2g} (26 383)– 5D_4 E_g (20 740) or $^5D_4\ T_{1g}$ (20 711), where the energies are $cm^{-1}.$ These deductions are firm, whereas some tentative conclusions can be made concerning the ${}^{7}F_{6}$ – ${}^{7}F_{2}$ part of the process. This ED transfer step must involve an odd-parity phonon, which is most likely a moiety optical mode. From the analysis of the ⁷F₂ energy levels, the most likely vibration is the ν_6 τ_{2u} mode, which is observed at \sim 122, 133 cm $^{-1}$ in the vibronic sideband, with a FWHM ${\sim}30\,\text{cm}^{-1}.$ A candidate for the electric dipole vibronic transition is then deduced to be 7F_6 A_{1g} (0) \rightarrow 7F_2 T_{2g} (5522) + ν_6 (122,133), where the energies (in cm⁻¹) are in parentheses. The cross-relaxation mechanism is depicted in Figure 5.

4. Conclusions

Optical spectroscopic properties of Tb^{3+} ion at the O_h site in the cubic host Cs₂NaYF₆ have been studied at both room temperature and 10 K. The room temperature absorption spectrum shows spinallowed and spin-forbidden 4f-5d transitions, and at the lower energy side, weak 4f-4f transitions. The 4f-5d absorption peaks are prominent in the 10 K excitation spectrum monitoring the 540 nm ⁵D₄ emission of Tb³⁺ for Cs₂NaY_{0.9}Tb_{0.1}F₆ samples. Timeresolved spectroscopy at room temperature clearly shows the decreasing intensity variation of ⁵D₃, compared with the ⁵D₄ emission, with increasing time delay. The ⁵D₃ emission, when monitored at 381 nm or 439 nm, exhibits non-exponential decay curves, whereas the decay of ⁵D₄ is monoexponential and the decay lifetime is longer. Numerical simulations indicate that the non-exponential decay of ⁵D₃ is due to a cross relaxation of the EQ-ED type, where the donor Tb³⁺ ion relaxes from ⁵D₄ to ⁵D₃ in an EQ allowed transition, and at the same time the acceptor Tb³⁺ ion is promoted from 7F_6 to 7F_2 together with the emission of an odd-parity phonon. It is noticed that the 7F6 to 7F2 transition of the acceptor is not EQ allowed unless J-mixing is considered.

Acknowledgements

The flash photolysis system was supported by the Special Equipment Grant from the University Grants Committee of Hong Kong (SEG_CityU02). This research was funded by the Hong Kong

C.-K. Duan et al./Chemical Physics Letters 506 (2011) 179-182

182

University Grants Commission General Research Fund Grant CityU 102 609. X.C. acknowledges the support from the Hundreds of Talents Program of the Chinese Academy of Sciences, the NSFC (No. 10 974 200), and Fujian Provincial Science Fund for Distinguished Young Scholars (No. 2009J06030).

References

- [1] R.C. Powell, G. Blasse, Struct. Bonding 42 (1980) 43.

- T. Kushida, J. Phys. Soc. Jpn. 34 (1973) 1318.
 A.J. Berry, I.D. Morrison, R.G. Denning, Mol. Phys. 93 (1998) 1.
 N. Yamada, S. Shionoya, T. Kushida, J. Phys. Soc. Jpn. 32 (1972) 1577.
 T. Holstein, S.K. Lyo, R. Orbach, in: W.M. Yen, P.M. Selzer (Eds.), Topics in Applied Physics Volume 49, Springer, Verlag, Berlin, 1981, pp. 39-82. Chapter 2.
- [6] S. Xia, P.A. Tanner, Phys. Rev. B 66 (2002) 214305.[7] Z. Hao, J. Zhang, X. Zhang, S. Lu, X. Wang, J. Electrochem. Soc. 156 (2009)
- [8] G.C. Kim, T.W. Kim, S.-I. Mho, S.G. Kim, H.L. Park, J. Korean Phys. Soc. 34 (1999)
- [9] Y.-C. Li, Y.-H. Chang, Y.-F. Lin, Y.-S. Chang, Y.-J. Lin, Electrochem. Solid St. Lett. 9 (2006) H74. [10] G.K. Liu, J. Lumin. 60 & 61 (1994) 860.
- [11] P.C. Ricci, M. Salis, R. Corpino, C.M. Carbonaro, E. Fortin, A. Anedda, J. Phys.: Condens. Matter 22 (2010) 345503.
- [12] D.J. Robbins, B. Cockayne, B. Lent, J.L. Glasper, Solid St. Commun. 20 (1976) 673.
- [13] P.A.M. Berdowski, M.J.J. Lammers, G. Blasse, Chem. Phys. Lett. 113 (1985) 387. [14] T.A. Lawrence, K.A. Murra, P.S. May, J. Phys. Chem. B 107 (2003) 4002.
- [15] M. Inokuti, F. Hirayama, J. Chem. Phys. 43 (1965) 1978.