Implementação do Método Simplex

Bruno Sesso 8536002 Gustavo Estrela de Matos 8536051

11 de Junho de 2015

1 Introdução

1.1 Apresentação do problema

Os problemas de Programação Linear (PL) são casos específicos de otimização combinatória em que a função objetivo e as restrições são ambos lineares. Portanto a função objetivo é da forma c^Tx e as restrições são da forma $a_i^Tx \geq b_i$ ou $a_i^Tx \leq b_i$, com $c, x, a_i \in \mathbb{R}^n$ e $b_i \in \mathbb{R}$.

Multiplicando por -1 todas as restrições da forma $a_i^T x \ge b_i$, podemos escrever qualquer PL como:

$$\begin{array}{ll} \text{minimizar} & c^Tx \\ \text{sujeito a} & Ax \leq b, \\ & A \in R^{m \times n} \text{ e } b \in \mathbb{R}^m. \end{array}$$

Também é possível mostrar que qualquer PL pode ser escrito na forma:

minimizar
$$c^T x$$

sujeito a $Ax = b$,
 $x > 0$ [1].

Se for escrito dessa maneira, dizemos que o problema está no formato padrão. Adotaremos esse formato durante todo o trabalho.

Se vale que $Ax^1=b$ e $x^1\geq 0$ dizemos que x^1 é um ponto viável. O conjunto $P=\{x|Ax=b,x\geq 0\}$ de todos os pontos viáveis é chamado conjunto viável.

Uma solução ótima do problema é um ponto $x^1 \in P$ que minimiza 1 a função objetivo c. Se x^1 existe, dizemos que o custo ótimo é c^Tx . Se x^1 não existe, ou não existem pontos viáveis ($P = \emptyset$), ou podemos diminuir o custo o quanto quisermos e dizemos que o custo ótimo é $-\infty$.

1.2 Objetivos do trabalho

Neste trabalho, temos o objetivo de desenvolver, na linguagem Octave, o algoritmo simplex para resolver problemas de Programação Linear.

¹Se o interesse for maximizar c^Tx , podemos simplismente conseguir um problema equivalente em que o objetivo seja minimizar $-c^Tx$.

2 Conceitos fundamentais

Antes de introduzirmos o funcionamento do nosso algoritmo, precisamos definir alguns conceitos que são fundamentais para garantir sua corretude.

Seja o nosso problema de Programação Linear o seguinte:

$$\begin{array}{ll} \text{minimizar} & c^Tx \\ \text{sujeito a} & Ax = b \\ & x \geq 0 \\ & \text{com} & c, x \in \mathbb{R}^n, \, A \in \mathbb{R}^{m \times n} \text{ e } b \in \mathbb{R}^m. \end{array}$$

Além disso, vamos usar a notação a_i para a i-ésima linha de A e A_i para a i-ésima coluna de A.

2.1 Restrições e degenerecência

Uma restrição $a_i^Tx \geq b_i$ (ou $a_i^Tx \leq b_i$), com $a_i \in \mathbb{R}^n$ e $b_i \in \mathbb{R}$, é uma restrição ativa em um ponto $x^1 \in \mathbb{R}^n$ se $a_i^Tx^1 = b_i$. Uma restrição de igualdade é sempre ativa. Um conjunto de restrições será dito LI se os vetores a_i correspondentes forem LI.

Diremos que x^1 uma solução viavel básica é *degenerada* se existem mais de n restrições ativas LI nesse ponto. Como as m restrições de igualdade são sempre cumpridas, temos que as soluções básicas degeneradas possuem mais do que n-m componentes nulas, enquanto que as não degeneradas possuem exatamente n-m.

2.2 Soluções Viáveis Básicas

Dizemos que um ponto $x \in \mathbb{R}^n$ do conjunto viável P é uma solução viável básica, se existem n restrições ativas em x que são LI. Note que para problemas no formato padrão, existem sempre m restrições ativas LI vindas de Ax = b, e as outras n - m vem, necessariamente de $x \ge 0$. Portanto, uma solução viável básica possui ao menos n - m componentes nulas.

Se x^1 é uma solução básica não degenerada e seja B(1),...,B(m) os índices das componentes não nulas de x. A matriz $B = \begin{bmatrix} A_{B(1)},...,A_{B(m)} \end{bmatrix}$ é chamada *matriz básica* associada a x^1 .

Se o conjunto P tem uma solução viável básica, então ou o custo ótimo é $-\inf$ ou existe $x^1 \in P$ solução viável básica que é ótimo, ou seja, o custo de qualquer ponto do conjunto viável é maior ou igual do que o custo de x^1 . Portanto, na solução de um PL com ao menos uma solução viável básica, podemos limitar a esses elementos a nossa busca por um ponto de custo ótimo [1].

2.3 Direções básicas

Se x^1 é um solução viável básica de P, com índices básicos B(1),...,B(m). Dizemos que $d \in \mathbb{R}^n$, tal que $d_j = 1$, Ad = 0 $(A(x + \theta d) = b)$ e $d_i = 0$ para todo $i \notin \{B(1),...,B(m)\}$, é a j-ésima direção básica partindo de x^1 . Seja $d_B = \begin{bmatrix} d_{B(1)},...,d_{B(m)} \end{bmatrix}$, como $A(x + \theta d) = b$, temos que $d_B = -B^{-1}A_j$. Usaremos $u = -d_B = B^{-1}A_j$ por facilidade de notação, durante o trabalho.

A figura 2.3 dá um exemplo de direções básicas, di e dj a partir de uma solução viável básica x^1 . Note que o poliedro pode ou não limitar um θ tal que o ponto $y = x^1 + \theta * d$ (d direção básica) seja viável, e como veremos em 2.5 isso pode implicar em custo $-\infty$ se nessa direção o custo diminui.

2.4 Custos reduzidos

Seja x^1 uma solução viável básica, B a matriz básica associada e $c_B = [c_{B(1)}, ..., c_{B(m)}]$. Definimos, para cada $j \in \{1, ..., n\}$ o custo reduzido:

$$\overline{c}_i = c_i - c_B^T B^{-1} A_i.$$

Seja x^1 uma solução viável básica e \overline{c} o vetor de custos reduzidos correspondente. Sabemos que se $\overline{c} \geq 0$, então x^1 é ótimo. Além disso, se x^1 for ótimo e não degenerado, então $\overline{c} \geq 0$ [1]. Portanto, se estivermos em uma solução viável básica e $\overline{c} \geq 0$, então estamos em um ponto ótimo.

Note que ao escolhermos uma direção viável básica, o custo de um ponto $y=x^1+\theta d_j$ é $c^T(x^1+\theta d_j)$

2.5 Soluções Viáveis Básicas adjacentes

Seja x^1 uma solução viável básica com índices básicos B(1),...,B(m). Uma solução viável básica é *adjacente* a x^1 se compartilha m-1 índices com x^1 . Para achar uma solução viável básica adjacente, vamos usar as direções básicas, pois elas forçam o crescimento de uma variável j nãobásica, mantendo Ax=b e $x\geq 0$. Veremos que para um $\theta\geq 0$, o ponto $x^1+\theta d_j$ é solução viável básica adjacente a x^1 , com d_j como foi definido em 2.4.

Vamos tomar $\theta = \min_{i=1,\dots,m|u_i>0} \{x_{B(i)}/u_i\}$ e ver que $x^2 = x^1 + \theta d_j$ é de fato uma solução viável básica adjacente a x^1 . Caso todas as componentes de u_i sejam menores ou igual a zero e o custo reduzido na direção j menor do que zero teremos que o problema tem custo ótimo $-\infty$, como será explicado a seguir.

Se θ definido acima não existe, temos que todas as componentes de u_i são menores ou igual a zero ($d \geq 0$), logo qualquer ponto $x^2 = x^1 + \theta d$ é viável com $\theta \geq 0$, pois a restrição $Ax^2 = b$ é verificada (por construção), e $x_j^2 = x_j^1 + \theta \geq x_j^1 \geq 0$, e para i básico $x_j^2 = x_j^1 + \theta d_j \geq x_j^1 \geq 0$. Se ainda tivermos que o custo diminui nessa direção, poderemos diminuir o custo o quanto quisermos e a solução do problema será $-\infty$.

Se $\theta \in \mathbb{R}$, como $d_i = 0 \ \forall i \in \{B(1),...,B(m)\}, i \neq j$, temos que para essas mesmas componentes x^2 é nulo. Logo, temos n-1 restrições ativas LI em x^2 . Suponha que para $l \in \{1,..,m\}$ vale que $\theta = x_{B(l)}/u_l$, então $x_{B(l)}^2 = x_{B(l)}^1 + (-x_B^1(l)/d_{B(l)})*d_{B(l)} = 0$ (diremos que B(l) sai da base), logo existem n restrições ativas LI em x^2 . Além disso, por construção, vale que Ax = b e $x \geq 0$ para variáveis não básicas e para $x_B(l)$. Para B(k) básico diferente de B(l), temos que $x_B^2(k) \geq x_{B(k)}^1 + (-x_B^1(k)/d_{B(k)})*d_{B(k)} = 0$. Portanto x^2 é solução viável básica adjacente a x^1 e, como a base de x^2 é $\{B(1),...,B(l-1),j,B(l+1),...,B(m)\}$, x^2 é adjacente a x^1 .

3 O algoritmo

3.1 Ideia do algoritmo

A ultima seção apresenta ideias essenciais para a construção da fase 2 do algoritmo simplex. Dentre elas, as mais importantes são: podemos reduzir nosso espaço de busca as soluções viaveis básicas; se $\overline{c} \geq 0$ e estamos em uma solução viável básica, então esse ponto é ótimo.

Portanto, utilizamos uma dinâmica que percorre as soluções viáveis básicas, com auxilio das direções básicas, sempre diminuindo a função custo, até que não seja mais possível sair de um ponto sem aumentar ou manter o custo, ou até encontrar uma direção que podemos diminuir o custo sem limitações.

3.2 Algoritmo

```
function simplex(A, b, c, m, n, x)
     calcula indices basicos (Ib) e não básicos (In)
     B \leftarrow A_{Ib(i)}, i = 1, ..., m
     invB \leftarrow B^{-1}
     imin \leftarrow 0
    if \nexists j t.q. \overline{c_j} < 0 then
          \overline{c_i} \leftarrow 0
     else
          \overline{c_j} \leftarrow c_j - c_B^T B^{-1} A_j, algum j \in In t.q. \overline{c_j} < 0
          u \leftarrow invB * A_i
     end if
     while \overline{c_i} < 0 do
          if u_l < 0, l = 1, ..., m then
               return -1, d(u, j)
          end if
          \theta \leftarrow \min_{u_l > =0} \{ \frac{x_{Ib(l)}}{u_l} \}, l = 1, ..., m
          x \leftarrow x + \theta * d(u, j)
                                                                                            ⊳ Atualiza In
          x_{Ib(l)} sai da base
                                                                                            ⊳ Atualiza Ib
          x_i entra na base
          Atualiza invB
          \overline{c_i} \leftarrow c_i - c_B^T B^{-1} A_i, algum j \in In t.q. \overline{c_i} < 0
```

 $u \leftarrow invB*A_j$ end while return 0, x end function

4 Condições do problema

Durante a elaboração do algoritmo foram consideradas duas condições: existe ao menos uma solução viável básica e qualquer solução viável básica é não degenerada. Essas condições foram importantes para implementações de detalhes do código e sem elas o algoritmo não será correto.

A existência de ao menos uma solução viável básica implica, como discutido na subseção 2.2, que ou o custo ótimo é $-\infty$ ou existe uma solução viável básica com custo ótimo. Isso nos permite limitar nosso espaço de busca às soluções viáveis básicas, somente.

A condição de que todas as soluções viáveis básicas são não-degeneradas tem outras aplicações. Com essa condição, é possível determinar a base da solução inicial dada. Além disso, ela garante que em todo passo em que calculamos um novo θ , o mesmo será maior do que zero, póis a não degenerecência implica que $x_B(i)>0$, evitando o problema de passar uma interação do algoritmo sem sair do ponto anterior, o que pode criar um ciclo sem fim no algoritmo. Além disso, houve uma condição não citada no enunciado que é importante para a solução do problema: o posto completo da matriz A. Se posto(A)=k < n precisaríamos construir uma matriz A^1 com posto completo, para garantir sabemos escolher k colunas LI de A^1 que formam bases para soluções viáveis básicas.

Referências

[1] Dimitris Bertsimas, John N. Tsitsiklis. Introduction to Linear Optimization. 1997.