Terakreditasi SINTA Peringkat 3

Surat Keputusan Direktur Jenderal Pendidikan Tinggi, Riset, dan Teknologi Nomor 225/E/KPT/2022 masa berlaku mulai Vol.7 No. 1 tahun 2022 s.d Vol. 11 No. 2 tahun 2026

Terbit online pada laman web jurnal: http://publishing-widyagama.ac.id/ejournal-v2/index.php/jointecs

JOINTECS

(Journal of Information Technology and Computer Science)

Vol. 8 No. 2 (2024) 75 - 82

e-ISSN:2541-6448 p-ISSN:2541-3619

Analisis Pemilihan Calon Peserta OSN Menggunakan Metode SAW dan ROC

Dhavis Alvi Chandra^{1*}, Ahmad Bagus Setiawan², Rony Heri Irawan³
Program Studi Teknik Informatika, Fakultas Teknik dan Ilmu Komputer, Universitas Nusantara PGRI Kediri ¹dhavis.alv22@gmail.com, ²ahmadbagus@unpkediri.ac.id, ³spidole.tech@gmail.com

Abstract

The National Science Olympiad (OSN) is a prestigious event for students in Indonesia to hone their skills in science. This research aims to assist teachers in selecting OSN candidates objectively and efficiently. This system implements the Simple Additive Weighting (SAW) method for processing student scores based on the criteria of test scores, average report card scores, attitude scores, experience participating in OSN, and attendance. Meanwhile, Rank Order Centroid (ROC) weighting is used to calculate the relative ranking of OSN candidates based on certain criteria. Sample data of five 10th grade students in the 2023/2024 academic year was used for system testing. The test results show the compatibility between manual and computational calculations in determining students' final grades. The system is able to automatically rank recommendations for OSN candidates, reducing the subjectivity of manual selection. The results of this research are in the form of final scores and rankings as recommendations for teachers in selecting students to represent schools in the National Science Olympiad (OSN) with the highest value of 0.99. The accuracy results obtained in the selection of OSN candidates using the SAW method and ROC weighting resulted in an accuracy value of 99,07%.

Keywords: National Science Olympiad; Selection; Simple Additive Weighting; Rank Order Centroid.

Abstrak

Olimpiade Sains Nasional (OSN) merupakan ajang bergengsi bagi siswa di Indonesia untuk mengasah kemampuan di bidang sains. Penelitian ini bertujuan untuk membantu guru dalam menyeleksi calon peserta OSN secara objektif dan efisien. Sistem ini mengimplementasikan metode *Simple Additive Weighting* (SAW) untuk pemrosesan nilai siswa berdasarkan kriteria nilai tes, rata-rata nilai rapor, nilai sikap, pengalaman mengikuti OSN, dan absensi. Sedangkan, pembobotan *Rank Order Centroid* (ROC) digunakan untuk menghitung peringkat relatif calon peserta OSN berdasarkan kriteria tertentu. Data sampel lima siswa kelas 10 tahun pelajaran 2023/2024 digunakan untuk pengujian sistem. Hasil pengujian menunjukkan kesesuaian antara perhitungan manual dan komputasi dalam penentuan nilai akhir siswa. Sistem ini mampu memberikan peringkat rekomendasi calon peserta OSN secara otomatis, mengurangi subjektivitas seleksi manual. Hasil penelitian ini berupa nilai akhir dan ranking sebagai rekomendasi guru dalam memilih siswa untuk mewakili sekolah dalam ajang Olimpiade Sains Nasional (OSN) dengan nilai tertingi yaitu 0,99. Hasil akurasi yang didapat dalam pemilihan calon peserta OSN menggunakan metode SAW dan pembobotan ROC dihasilkan nilai akurasi sebesar 99,07%.

Kata kunci: Olimpiade Sains Nasional; Seleksi; Simple Additive Weighting; Rank Order Centroid.

Diterima Redaksi : 14-06-2024 | Selesai Revisi : 15-08-2024 | Diterbitkan Online : 29-08-2024

1. Pendahuluan

Olimpiade Sains Nasional (OSN) merupakan ajang kompetisi bagi pelajar tingkat sekolah dasar (SD), Penelitian lain yang berjudul Sistem Pendukung awal di tingkat regional dan provinsi. Kesuksesan meningkatkan akurasi dan objektivitas seleksi [6]. Indonesia sebagai tuan rumah Olimpiade Fisika Internasional (IPhO) di Bali pada tahun 2022 sangat memengaruhi penyelenggaraan OSN [2].

alternatif pada seluruh atribut telah dinormalisasi untuk masing-masing atribut dan proses seleksi peserta OSN [7]. bobot yang diberikan kepada setiap atribut. Untuk memastikan perbandingan yang adil antar atribut, rating dari setiap atribut harus melalui proses normalisasi sehingga menjadi bebas dimensi [3].

strategis untuk menyiapkan generasi muda yang objektif dan berkualitas [8]. kompeten dan berdaya saing tinggi di kancah internasional [4].

ada. Oleh karena itu, metode ini dianggap mampu hasil yang maksimal.

meningkatkan efektivitas dan efisiensi dalam proses seleksi peserta OSN secara signifikan. [5].

sekolah menengah pertama (SMP), dan sekolah Keputusan Seleksi O2SN Cabang Pencak Silat menengah atas (SMA) di Indonesia dalam bidang sains. Menggunakan Metode SAW yang dilakukan oleh Fajar Acara ini diadakan sekali setahun oleh pemerintah Septian dkk., mengungkapkan dalam penelitiannya Republik Indonesia dan berfungsi sebagai ajang bahwa metode SAW dapat membuat keputusan yang bergengsi untuk mempersiapkan putra-putri terbaik lebih objektif dalam proses pemilihan siswa. Hasil dari bangsa untuk berkompetisi di tingkat internasional, penelitian tersebut adalah sebuah aplikasi yang dapat Selain itu. OSN meniadi tolak ukur keberhasilan suatu mengidentifikasi siswa-siswa yang memiliki potensi sekolah dalam bidang sains [1]. OSN memberikan untuk berpartisipasi dalam kompetisi berdasarkan penghargaan kepada mereka yang unggul dalam bidang sembilan kriteria. Dalam uji coba tersebut, aplikasi ini studi tertentu. Peserta OSN telah melalui proses seleksi menunjukkan bahwa metode SAW efektif dalam

Penelitan dengan judul Penerapan Metode WP dan ROC dalam Pemilihan Siswa Peserta Olimpiade Sains Nasional oleh Dwika Asrani dkk., mengkaji metode WP Metode Simple Additive Weighting (SAW), juga dikenal dan ROC dalam sistem pendukung keputusan untuk sebagai metode penjumlahan terbobot, merupakan pemilihan peserta OSN. Penelitian ini mengungkapkan teknik pengambilan keputusan yang mendasarkan bahwa penggunaan metode WP dan ROC dapat perhitungannya pada penjumlahan terbobot dari rating merekomendasikan calon peserta yang akan mengikuti yang OSN secara efisien karena tidak perlu menyeleksi satu dipertimbangkan. Prinsip utama dari metode SAW per satu serta dalam penelitiannya, rangking tertinggi adalah menghitung skor total untuk setiap alternatif mendapat nilai 0,261. Hasil penelitian menunjukkan dengan menjumlahkan hasil perkalian antara rating yang efektivitas dan efisiensi metode WP dan ROC dalam

Penelitian lainnya yang berjudul Pemilihan Peserta Olimpiade Sains Nasional Menggunakan Metode Multifactor Evaluation Process yang dilakukan oleh Siti Nurhayati dkk. Peneletian tersebut mengatasi masalah Menurut penelitian Erozeki Sialagan, Rahmat Widia pemilihan peserta Olimpiade Sains Nasional (OSN) di Sembiring, dan Suhada (2019), siswa yang lulus seleksi SD Hikmah 1 Yapis Jayapura yang sebelumnya di tingkat kabupaten dan provinsi akan dipilih untuk dilakukan secara manual dan subyektif oleh guru, berkompetisi di Olimpiade Sains Nasional (OSN). memakan waktu lama, dan hanya berdasarkan nilai rata-Program ini diadakan oleh Kementerian Pendidikan rata rapor IPA dan Matematika. Metode yang digunakan Nasional untuk meningkatkan kualitas sumber daya adalah Multifactor Evaluation Process (MFEP), yang memajukan pengetahuan, memperkaya mempertimbangkan berbagai kriteria dengan bobot kemampuan kreatif, dan mendorong siswa mencapai tertentu untuk menentukan alternatif terbaik. Hasil prestasi puncak dalam suasana kompetisi yang positif. penelitian menunjukkan bahwa metode MFEP efektif Dengan demikian, OSN berfungsi sebagai sarana dalam menghasilkan sistem pendukung keputusan yang

Berdasarkan masalah yang telah diuraikan serta merujuk pada berbagai penelitian terkait, penulis memutuskan Penelitian M Fizarudin dan R. Moh. Herdian Bhakti, untuk melaksanakan penelitian dengan menerapkan 2019 menemukan bahwa metode SAW lebih unggul metode Simple Additive Weighting (SAW) dan daripada algoritma yang lain dalam menyeleksi calon pembobotan Rank Order Centroid (ROC) dalam sistem peserta OSN. Hal ini disebabkan karena metode SAW pemilihan calon peserta OSN. Sistem ini akan menggunakan bobot preferensi dan nilai kriteria yang menggunakan sampel data lima siswa kelas 10 semester telah ditentukan untuk menghasilkan penilaian yang ganjil tahun pelajaran 2023/2024. Penelitian ini akurat, kemudian menggunakan proses pemeringkatan bertujuan untuk membantu guru dalam menyeleksi calon untuk memilih opsi terbaik dari beberapa pilihan yang peserta OSN secara objektif dan efisien agar bisa meraih

2. Metode Penelitian

Terdapat beberapa tahapan dalam pembuatan sistem pendukung keputusan untuk pemilihan calon peserta Sains Nasional Olimpiade (OSN). Flowchart direpresentasikan sebagai diagram dengan koneksi berurutan yang ditandai oleh panah, di mana setiap simbol memiliki arti tertentu. Sistem pendukung keputusan ini menggunakan metode ROC untuk menghitung bobot dari berbagai kriteria dalam proses pengambilan keputusan, sementara metode SAW digunakan untuk melakukan perangkingan setiap alternatif yang tersedia [9]. Flowchart merupakan representasi simbolik dari suatu prosedur untuk menyelesaikan masalah. Penggunaan flowchart memudahkan pengguna dalam melakukan pengecekan terhadap bagian-bagian dalam analisis masalah [10]. Alur *flowchart* dapat dilihat pada Gambar 1.

Gambar 1. Flowchart Alur Metode

Pada Gambar 1 dijelaskan bahwa pengguna melakukan login. Pengguna memasukkan data alternatif dan melakukan pembobotan pada setiap kriteria dengan matrik keputusan. Langkah terkahir, pengguna menghitung nilai preferensi (V) pada setiap alternatif dari nilai prefrensi untuk calon peserta OSN.

2.1. Pengumpulan Data

Tahap pengumpulan data mencakup pengumpulan informasi yang diperlukang untuk penelitian ini. Data yang dikumpulkan meliputi informasi tentang kriteria calon peserta OSN, seperti nilai tes, rata-rata nilai rapor, nilai sikap, pengalaman dalam mengikuti OSN sebelumnya, dan data kehadiran siswa serta data

alternatif yang isinya berupa nama-nama calon peserta OSN. Teknik pengumpulan data meliputi survei, wawancara dengan pihak terkait, serta observasi langsung di lapangan. Pengumpulan data dilakukan di salah satu sekolah di Kecamatan Pare dengan melaksanakan wawancara terhadap pihak-pihak terkait mengenai kriteria yang relevan untuk perankingan calon peserta OSN.

2.1.1. Kriteria

Kriteria yang digunakan untuk pemilihan calon peserta OSN beriumlah 5 kriteria, vakni nilai tes, rata-rata nilai rapor, nilai sikap, pengalaman mengikuti OSN, dan absensi. Penentuan calon peserta dilakukan dengan mempertimbangkan keseluruhan kriteria tersebut secara komprehensif untuk memastikan seleksi yang adil dan objektif. Data kriteria dan keterangan atribut dapat dilihat pada Tabel 1.

Tabel 1. Data Kriteria Calon Peserta OSN		
Kode	Kriteria	Atribut
C1	Nilai Tes	Benefit
C2	Rata-rata Nilai Rapor	Benefit
C3	Nilai Sikap	Benefit
C4	Pengalaman Mengikuti OSN	Benefit
C5	Absensi	Cost

2.1.2. Alternatif

Alternatif yang digunakan untuk menentukan calon nama peserta OSN di salah satu sekolah di Kecamatan Pare sebanyak lima siswa. Data alternatif disajikan pada Tabel 2. Tabel tersebut menampilkan alternatif yang digunakan untuk menilai siswa yang layak untuk mewakili sekolah dalam ajang lomba Olimpiade Sains Nasional.

Tabel 2. Data Alternatif		
Kode	Alternatif	
A1	Siswa A	
A2	Siswa B	
A3	Siswa C	
A4	Siswa D	
A5	Siswa E	

2.2. Rank Order Centroid (ROC)

jumlah bobot (W) harus 1. Selanjutnya, pengguna Rank Order Centroid (ROC) adalah proses untuk membuat matriks keputusan, setelah selesai membuat mendapatkan nilai atribut berdasarkan tingkat prioritas matriks keputusan dilanjut melakukan normalisasi pada dari setiap kriteria dengan memberikan nilai bobot berdasarkan urutan dan tingkat prioritas. Untuk menentukan prioritas, nilai tertinggi dari formula adalah yang nanti sistem akan menampilkan hasil perangkingan nilai prioritas tertinggi dibandingkan dengan nilai lainnya [11]. ROC dapat dirumuskan sebagai berikut

$$C_1 > C_2 > C_3 > ... > C_m$$
 (1)

$$W_1 > W_2 > W_3 > ... > W_n$$
 (2)

$$W_m = \frac{1}{m} \sum_{i=1}^{m} (\frac{1}{i})$$
 (3)

(JOINTECS) Journal of Information Technology and Computer Science Vol. 8 No. 2 (2024) 75 – 82

dibandingkan kriteria 3 (C₃), selanjutnya dilakukan [17]. langkah yang sama hingga prioritas kriteria yang terendah sehingga setelah di proses akan menghasilkan $X = \frac{A}{R}$ rumus 2. Langkah berikutnya, untuk mendapatkan nilai bobot (W), maka digunakan rumus 3 dan hasil total dari Dapat dijelaskan pada rumus 7, X adalah metode SPK. total bobot (W) bernilai satu. Rumus 3 dapat dijelaskan Sedangkan A merupakan penjumlahan nilai akhir dari bahwa W_m merupakan bobot kriteria, m merupakan semua alternatif, dan B merupakan banyaknya data jumlah kriteria, sedangkan i merupakan kriteria. alternatif yang digunakan. Selanjutnya dilakukan tingkat Selanjutnya melakukan perhitungan metode SAW kesesuaian untuk menentukan persentase dengan dengan menentukan kriteria yang akan dijadikan acuan menggunakan rumus 8. dalam pengambil keputusan alternatif (A_i) .

2.3. Simple Additive Weighting (SAW)

berguna dalam pengambilan keputusan. SAW Penggunaan rumus tersebut membantu evaluasi kinerja yang dapat dibandingkan dengan semua penilaian metode dalam memberikan hasil yang akurat. lainnya. Prosedur SAW mencakup normalisasi matriks keputusan untuk memungkinkan perbandingan yang 3. Hasil dan Pembahasan sebanding antar alternatif evaluasi [14]. Berikut langkah perhitungan metode SAW:

$$\begin{bmatrix} X_{11} & X_{12} & \cdots & X_{1n} \\ X_{12} & X_{22} & \cdots & X_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ X_{m1} & X_{m2} & \cdots & X_{mn} \end{bmatrix}$$
(4)

$$R_{ij} = \begin{cases} \frac{X_{ij}}{Max (X_{ij})} \xrightarrow{\substack{\text{Jika j adalah atribut keuntungan (benefit)} \\ \text{Max } (X_{ij})}} \\ \frac{Min (X_{ij})}{X_{i:}} \xrightarrow{\substack{\text{biaya (cost)} \\ \text{biaya (cost)}}} \end{cases}$$
 (5)

Langkah pertama, membuat matriks menggunakan rumus 4. Selanjutnya menghitung matriks normalisasi menggunakan rumus 5 [15]. Langkah setelah perhitungan menjadi terakhir. matriks ternormalisasi berupa (R), kemudian dilakukan perhitungan nilai preferensi (V_i) menggunakan rumus 6.

$$V_i = \sum_{j=1}^n W_j R_{ij} \tag{6}$$

Dapat dijelaskan pada rumus 6, V_i merupakan rangking terpilih sebagai alternatif terbaik.

2.4. Pengujian Akurasi

akurasi mencerminkan kemampuan sistem dalam

Rumus 1 dapat dijelaskan bahwa kriteria 1 (C₁) membuat keputusan [16]. Perhitungan akurasi dilakukan merupakan prioritas tertinggi dibandingkan kriteria 2 dengan memasukkan semua informasi hasil dan bagi (C2), begitu juga (C2) merupakan prioritas tertinggi dengan jumlah data alternatif menggunakan rumus 7

$$X = \frac{A}{B} \tag{7}$$

$$T_{ki} = 100 - \frac{xi}{100\%} \tag{8}$$

Simple Additive Weighting (SAW) adalah teknik Di mana T_{ki} adalah tingkat akurasi dalam persentase, perhitungan yang akurat untuk menentukan jumlah sedangkan xi merupakan kesalahan dalam persentase. tertimbang dengan menilai kinerja setiap opsi terhadap Dengan demikian, tingkat akurasi berbanding terbalik semua atribut [13]. Metode ini menemukan bobot total dengan nilai kesalahan, semakin besar kesalahan, setiap pilihan melalui penjumlahan terbobot, yang semakin rendah tingkat akurasi yang diperoleh. memerlukan normalisasi matriks keputusan (X) ke skala metode untuk menentukan efektivitas dan efisiensi

Pada bagian ini membahas tentang dua metode utama dalam analisis yaitu metode Rank Order Centroid (ROC) yang digunakan untuk pembobotan kriteria dan metode Simple Additive Weighting (SAW) yang digunakan untuk melakukan perangkingan alternatif, serta satu metode untuk perhitungan akurasi yang digunakan untuk menguji akurasi metode yang digunakan. Metode ROC memungkinkan penentuan bobot yang proporsional untuk setiap kriteria, sedangkan metode SAW memberikan peringkat relatif terhadap alternatif berdasarkan bobot kriteria yang telah ditetapkan [18]. Selain itu, metode pengujian akurasi digunakan untuk mengevaluasi keakuratan keandalan model yang dibangun. Kombinasi dari ketiga metode ini menawarkan pendekatan yang komprehensif dalam pengambilan keputusan dan evaluasi hasil penelitian, sehingga memastikan hasil yang akurat dalam analisis data yang dilakukan [9].

3.1. Penentuan Acuan Nilai Bobot Kriteria

Pada sub bab ini, pembahasan akan difokuskan pada penilaian bobot pada setiap kriteria menggunakan metode ROC. Adapun penentuan bobot kriteria ada 4 dari setiap alternatif. W_j merupakan bobot preferensi, tahapan yang harus dilalui, yakni tahap pertama sedangkan R_{ii} nilai rating kinerja ternormalisasi. Nilai menentukan acuan nilai bobot yang tersaji pada Tabel 3. V_i terbesar menunjukkan bahwa alternatif A_i yang Tahap kedua, penentuan bobot kriteria kriteria nilai tes, rata-rata nilai rapor, dan nilai sikap. Tahap ketiga, menentukan bobot kriteria pengalaman mengikuti lomba OSN yang sebelumnya pernah diikuti oleh calon peserta Dalam uji penelitian yang akan dilakukan adalah OSN. Tahap terakhir, menentukan bobot kriteria absensi menggunakan pengujian akurasi. Hasil dari pengujian yang dimana siswa yang jarang masuk akan mendapat

(JOINTECS) Journal of Information Technology and Computer Science Vol. 8 No. 2 (2024) 75 – 82

bobot untuk menentukan nilai pada setiap atribut.

Tabel 3. Acuan Nilai Bobot			
Nilai	Keterangan		
1	Kurang		
2	Cukup		
3	Baik		
4	Sangat Baik		

Nilai kriteria diberikan bobot berdasarkan skala dari 1 (kurang) hingga 4 (sangat baik). Konversi nilai untuk kriteria nilai tes, rata-rata nilai rapor, dan nilai sikap 3.1.3. Kriteria Absensi adalah 0-59 mendapat nilai 1, 60-75 nilai 2, 76-85 nilai 3, dan 86-100 nilai 4. Pengalaman mengikuti OSN dikonversi sebagai berikut juara 1 mendapat nilai 4, ranking 5 besar nilai 3, pernah mengikuti nilai 2, dan belum pernah mengikuti nilai 1. Absensi dikonversi sebagai 0 absen mendapat nilai $4, \le 2$ absen nilai $3, \le 5$ absen nilai 2, dan \geq 5 absen nilai 1.

3.1.1. Kriteria Nilai Tes, Rata-rata Nilai Rapor, Nilai Sikap

Tabel 4 menampilkan nilai pada kriteria nilai test (C_1) , rata-rata nilai rapor (C₂), nilai sikap (C₃). Kriteria C₁ digunakan untuk menilai siswa melalui tes seleksi melalui sekolah. Sedangkan, Kriteria C2 digunakan Pada Tabel 6 dapat disajikan acuan nilai untuk sub digunakan untuk menilai sikap siswa.

Tabel 4. Kriteria C ₁ , C ₂ , C ₃		
C_1, C_2, C_3	Nilai	
0 - 59	1	
60 - 75	2	
76 - 85	3	
86 - 100	4	

Tabel 4 merupakan nilai kriteria yang digunakan dalam penilaian pada setiap alternatif. Pada kriteria nilai tes (C₁), rata-rata nilai rapor (C₂), dan nilai sikap (C₃) terdapat acuan nilai yaitu 0 sampai 59 mendapat nilai 1, 60 sampai 75 mendapat nilai 2, 76 sampai 85 mendapat nilai 3, 86 sampai 100 mendapat nilai 4. Sistem penilaian ini dirancang untuk memberikan evaluasi yang objektif.

3.1.2. Kriteria Pengalaman Mengikuti OSN

Tabel 5 dibawah menunjukkan konversi kriteria pengalaman mengikuti OSN sehubungan dengan acuan penetapan nilai bobot. Setiap tingkat pengalaman diberikan nilai spesifik yang mencerminkan tingkat pencapaian peserta. Calon peserta OSN yang sudah berpengalaman mengikuti OSN akan berpeluang besar mengikuti ajang lomba ini pada event berikutnya.

Tabel 5. Pengalaman Mengikuti OSN		
Pengalaman Mengikuti OSN (C4)	Nilai	
Juara 1	4	
Ranking 5 Besar	3	
Pernah Mengikuti	2	
Belum Pernah Mengikuti	1	

poin lebih sedikit. Pada Tabel 3 ditampilkan acuan nilai Pada Tabel 5 disajikan acuan nilai untuk setiap sub kriteria dalam kriteria Pengalaman Mengikuti OSN. Alternatif atau calon peserta yang pernah meraih juara 1 akan mendapatkan nilai 4, peringkat 5 akan mendapatkan nilai 3, pernah mengikuti OSN akan mendapatkan nilai 2, dan yang belum pernah mengikuti akan mendapatkan nilai 1. Penetapan nilai bobot ini bertujuan untuk memberikan apresiasi yang lebih tinggi kepada peserta yang telah mencapai prestasi terbaik dalam OSN.

Tabel 6 dibawah menunjukkan hasil konversi kriteria absensi sesuai dengan acuan nilai bobot. Kriteria ini digunakan untuk menilai tingkat kehadiran individu berdasarkan jumlah hari absensi yang tercatat. Nilai bobot yang lebih tinggi mencerminkan tingkat kehadiran yang lebih baik.

Tabel 6. Kriteria Absensi		
Absensi (C4)	Nilai	
0	4	
≤ 2	3	
< 5	2	
≥ 5	1	

untuk menilai siswa melalui rata-rata nilai rapor selama kriteria absensi. Di mana siswa yang tidak pernah absen pembelajaran satu semester di sekolah dan Kriteria C₃ akan mendapat nilai 4, sedangkan yang pernah absen ≤ 2 akan mendapat nilai 3, disusul yang pernah absen <5 dan ≥ 5 akan mendapat nilai 2 dan 1. Penilaian ini bertujuan untuk memberikan penilaian yang objektif dan konsisten terhadap kehadiran individu.

3.2. Perhitungan Bobot dengan Metode ROC

Tahapan ini berfokus menentukan bobot untuk setiap kriteria, penulis menggunakan metode Rank Order Centroid (ROC) [19]. Bobot kriteria dihitung menggunakan rumus 3. Hasil perhitungan bobot kriteria dapat dilihat pada Tabel 7. Bobot-bobot tersebut terdiri dari W_1 hingga W_5 , dengan total keseluruhan bobot sebesar 1.

Tabel 7 Hasil Perhitunga Robot

Tauci /. Hasii i	Tabel 7. Hash Tellitungh Booot		
Kriteria (C)	Bobot (W)	Nilai	
Nilai Tes	W_1	0,457	
Rata-rata Nilai Rapor	W_2	0,257	
Nilai Sikap	W_3	0,157	
Pengalaman Mengikuti OSN	W_4	0,09	
Absensi	W_5	0,04	
	Jumlah	1	

Tabel 7 merupakan hasil perhitungan nilai bobot untuk berbagai kriteria. Kriteria nilai tes sebagai atribut dengan bobot tertinggi sebesar 0,457dan kriteria absensi dengan bobot terendah sebesar 0,04. Penentuan bobot ini mencerminkan prioritas dalam evaluasi keseluruhan, di mana nilai tes dianggap sebagai indikator paling signifikan, sementara absensi memiliki dampak paling kecil dalam proses seleksi.

3.3. Perhitungan Metode SAW

Kriteria vang digunakan meliputi nilai tes, rata-rata nilai rapor, nilai sikap, pengalaman mengikuti OSN, dan absensi. Alternatif yang dipertimbangkan adalah calon peserta OSN dari salah satu sekolah yang ada di Kecamatan Pare. Berikut adalah tahapan dari perhitungan untuk melakukan perangkingan metode SAW:

Tabel 8. Matriks Keputusan					
Kode	C1	C2	C3	C4	C5
A1	4	3	3	1	3
A2	4	3	3	1	4
A3	4	4	3	2	4
A4	4	4	3	1	4
A5	4	4	3	3	4

Pada Tabel 8 berisikan matriks keputusan yang berasal dari penilaian dari setiap alternatif yang mengacu pada tercapai apabila rekomendasi yang dihasilkan oleh acuan nilai bobot dengan menggunakan rumus 4. Setelah sistem sejalan dengan hasil yang diperoleh melalui membuat matriks keputusan akan dilanjut dengan proses pemilihan manual. Pengujian akurasi dilakukan dengan perhitungan matriks ternormalisasi menggunakan rumus 5. Atribut benefit jika nilai semakin proses pengujian akurasi dihasilkan nilai 0.93. besar maka poin atau nilai akan semakin tinggi, sedangkan cost jika nilai semakin sedikit maka poin atau dengan rumus 8. Hasil akhir akurasi yang di dapat nilai akan semakin tinggi. Hasil matriks ternormalisasi akan disajikan pada Tabel 9.

Tabel 9. Matriks Normalisasi					
Kode	C1	C2	C3	C4	C5
A1	1,00	0,75	1,00	0,33	1,00
A2	1,00	0,75	1,00	0,33	0,75
A3	1,00	1,00	1,00	0,67	0,75
A4	1,00	1,00	1,00	0,33	0,75
A5	1,00	1,00	1,00	1,00	0,75

Tabel 9 menunjukkan matriks normalisasi yang mengilustrasikan keseimbangan bobot antar kriteria. Matriks ini memastikan bahwa semua kriteria (C₁, C₂, C₃, C₄, dan C₅) memiliki bobot yang seimbang atau normal. Dengan demikian, analisis yang dilakukan akan lebih objektif dan akurat dalam mengevaluasi setiap alternatif berdasarkan kriteria yang telah ditentukan.

Setelah nilai matriks keputusan yang ternormalisasi sudah terbuat, maka akan dilanjut dengan proses perhitungan nilai preferensi (V_i) dan perankingan alternatif. Perhitungan nilai prefrensi berdasarkan data matrik yang sudah dinormalisasikan untuk setiap alternatif. Berdasarkan dari proses perhitungan nilai preferensi dengan menggunakan rumus 6, maka hasil nilai preferensi dan perangkingan nama alternatif dapat disajikan pada Tabel 10.

Tabel 10 Penilaian Preferenci

1 aoct 10. 1 chinaran 1 fereiensi				
No	Alternatif	Hasil Preferensi	Ranking	
1	Siswa E	0,99	1	
2	Siswa C	0,96	2	
3	Siswa D	0,93	3	
4	Siswa A	0,88	4	
5	Siswa B	0,87	5	
	Jumlah	4,63		

Pada Tabel 10 disajikan hasil prefrensi dan ranking alternatif. Ada 5 data alternatif (A_i) dengan perolehan nilai tertinggi yaitu Siswa E dengan nilai 0,99 dan nilai terendah yaitu Siswa B dengan skor 0,87 serta jumlah nilai preferensi adalah 4,63. Nilai preferensi tersebut mencerminkan tingkat kesesuaian masing-masing siswa berdasarkan kriteria yang telah ditetapkan. Dengan demikian, analisis ini memberikan gambaran yang jelas mengenai urutan prioritas siswa berdasarkan skor _ preferensi yang diperoleh.

3.4. Pengujian Akurasi

Dalam pengujian ini, metode akurasi digunakan untuk mengukur tingkat keakuratan metode SAW dalam melakukan perangkingan alternatif [17]. Proses pengujian akurasi dilakukan dengan perhitungan menggunakan rumus 7. Keakuratan metode dianggap dengan perhitungan menggunakan rumus 7. Setelah dilakukan Selanjutnya dilakukan nilai akurasi menjadi persentase setelah dilakukan persentase adalah 99,07%.

> Tabel 11 merupakan hasil perbandingan antara penelitian sebelumnya dan hasil kontribusi dalam penelitian ini. Tabel tersebut menyajikan perbandingan antara temuan yang dicapai dalam penelitian sebelumnya dengan hasil yang diajukan oleh penulis. Pembaca dapat memahami analisis yang disajikan pada Tabel perbandingan untuk mengetahui perbedaan dan kesamaan penulis dengan penelitian sebelumnya [9].

Peneliti	Metode	Hasil
[17]	TOPSIS-SAW- WP	Alternatif 1 mendapat nilai tertinggi di semua metode dengan nilai 0,707 (TOPSIS), 0,705 (SAW), 0,231 (WP). Akurasi metode TOPSIS dan SAW mendapat persentase yang sama yaitu 99,994%, sedangkan metode WP 99,998%.
[18]	SAW-ROC	Alternatif 1 mendapat nilai tertinggi sebesar 0,892. Penelitian ini mendapat nilai MAD sebesar 0,666667 dan MAPE sebesar 27.78%.
[20]	FMADM-SAW	Alternatif 3 dan 10 mendapat nilai tertinggi sebesar 31,5 serta akurasi metode FMADM sebesar 94,24% dan akurasi metode SAW sebesar 95,44%.
Penulis	SAW-ROC	Alternatif 5 mendapat nilai tertinggi sebesar 0,99. Penelitian ini mendapat akurasi metode SAW sebesar 99,07%.

Perbandingan antara penelitian terdahulu dan temuan yang diusulkan oleh penulis disajikan dalam Tabel 11. Analisis ini mengindikasikan bahwa penerapan metode pembobotan ROC serta perangkingan SAW memiliki

(JOINTECS) Journal of Information Technology and Computer Science Vol. 8 No. 2 (2024) 75 – 82

[6]

[7]

[11]

dampak signifikan terhadap pemilihan calon peserta secara objektif dan transparan. Dengan demikian, penggunaan kedua metode ini dapat meningkatkan akurasi dan keadilan dalam proses seleksi.

4. Kesimpulan

Kesimpulan dari hasil evaluasi dari implementasi penerapan metode SAW dengan pembobotan ROC untuk pemilihan calon peserta Olimpiade Sains Nasional (OSN). Hasil implementasi menunjukkan efektif dan hasil yang objektif, dibuktikan dengan pengujian akurasi dengan nilai sebesar 99,07%. Metode SAW dan ROC digunakan untuk menentukan prioritas kriteria secara objektif serta merangking alternatif berdasarkan kriteria yang telah ditetapkan sebelumnya. Hasil perhitungan menunjukkan bahwa sistem ini mampu memberikan peringkat yang akurat dalam pemilihan calon peserta Olimpiade Sains Nasional (OSN).

analisis yang dilakukan Hasil secara manual menunjukkan kesesuaian dengan hasil yang dihasilkan oleh sistem komputasi dalam menentukan nilai akhir. [8] Berdasarkan kesesuaian hasil perhitungan tersebut, dapat disimpulkan bahwa sistem pendukung keputusan yang mengadopsi metode Simple Additive Weighting (SAW) dan Rank Order Centroid (ROC) telah memenuhi ekspektasi dalam proses seleksi pemilihan calon peserta Olimpiade Sains Nasional (OSN). Hal ini [9] menunjukkan bahwa sistem yang digunakan mampu memberikan penilaian yang konsisten dan dapat diandalkan.

Penelitian ini mengembangkan sistem seleksi calon peserta OSN untuk membantu guru mengidentifikasi peserta didik terbaik, dengan tujuan meraih hasil optimal. Hasil akhir yang menunjukkan bahwa sistem ini berhasil dibangun dan diterapkan secara efektif, mampu mengolah data dan menyusun peringkat seleksi secara otomatis, serta mengurangi subjektivitas. Diharapkan pada penelitian selanjutnya agar menambahkan teknik pengumpulan data yang lebih lengkap dan menggunakan metode lain yang memiliki akurasi yang lebih baik.

Daftar Pustaka

- D. H. Marisda and Riskawati, "Peningkatan [1] Kompetensi Guru IPA Sekolah Dasar Melalui Pembinaan Olimpiade Sains Nasional (OSN)," [12] JCES (Journal Character Educ. Soc., vol. 3, no. 2, pp. 4–7, 2020.
- [2] A. Rachmat et al., "Pendampingan Persiapan Olimpiade Sains Nasional Komputer (OSNK) bagi Siswa SMA 7 Yogyakarta," Pros. Semin. Nas. Pengabdi. Kpd. Masy., vol. 2, no. October, pp. 112-116, 2017.
- [3] M. I. Panjaitan, "Simple Additive Weighting (SAW) Method in Determining Beneficiaries of Foundation Benefits," Login J. Teknol. Komput., vol. 13, no. 1, pp. 19-25, 2019.
- E. Sialagan, R. W. Sembiring, and S. Suhada, [14] [4] (JOINTECS) Journal of Information Technology and Computer Science Vol. 8 No. 2 (2024) 75 – 82

- "Sistem Pendukung Keputusan Pemilihan Siswa Peserta Olimpiade Pada Jeniang Sekolah Dasar di Kecamatan Gunung Maligas Dengan AHP," Menggunakan **BRAHMANA** Penerapan Kecerdasan Buatan, vol. 1, no. 1, pp. 55-63, 2019, doi: 10.30645/brahmana.v1i1.8.
- M. H. M. Fizarudin and Bhakti, "Sistem Pendukung Keputusan Penyeleksian Calon Peserta Olimpiade Menggunakan Metode SAW(Studi Kasus: SMAN 1 Beber Kabupaten Cirebon)," J. Ilm. Intech Inf. Technol. J. UMUS. vol. 1, pp. 1–10, 2019.
- F. Septian, A. Syaripudin, and D. A. Punkastyo, "Sistem Pendukung Keputusan Seleksi O2SN Cabang Pencak Silat Menggunakan Metode SAW," J. Fasilkom, vol. 13, no. 3, pp. 578–585, 2023, doi: 10.37859/jf.v13i3.6239.
 - D. Asrani, D. M. Telaumbanua, A. C. Maulana, and R. T. Aldisa, "Penerapan Metode WP dan ROC dalam Pemilihan Siswa Peserta Olimpiade Sains," vol. 1, no. 2, pp. 53-58, 2024.
 - S. Nurhayati, J. Jusmawati, and R. Yunus, "Pemilihan Peserta Olimpiade Sains Nasional Menggunakan Metode Multifactor Evaluation Process," J. Sains Komput. dan Teknol. Inf., vol. 2, 64–69, no. pp. 2021, 10.33084/jsakti.v3i2.2291.
 - N. Djiha, "Sistem Pendukung Keputusan Penerimaan Bantuan Non Tunai Menggunakan Metode Analytical Hierarchy Process (AHP) Dan Weighted Product (WP)," vol. 7, no. 1, pp. 9-12, 2023.
 - K. G. Tileng, A. S. Paramita, R. Tanamal, and Y. S. Soekamto, "Workshop Pengenalan Sistem Informasi dan Implementasi SOP Pada Siswa-Siswi SMA Rajawali Makassar," Abdiformatika J. Pengabdi. Masy. Inform., vol. 1, no. 1, pp. 34-2021. 10.25008/abdiformatika.v1i1.131.
 - A. I. Lubis, P. Sihombing, and E. B. Nababan, "Comparison SAW and MOORA Methods with Attribute Weighting Using Rank Order Centroid in Decision Making," Mecn. 2020 - Int. Conf. Mech. Electron. Comput. Ind. Technol., pp. 127-131, 2020, 10.1109/MECnIT48290.2020.9166640.
 - S. Damanik, J. Supriadi, and S. Lase, "Sistem Pendukung Keputusan Pemilihan Produk Unggulan Daerah Menggunakan Metode ROC dan WASPAS," Sensasi, pp. 604-608, 2019, [Online]. Available: http://prosiding.seminarid.com/index.php/sensasi/issue/archivePage%7
- [13] S. Fillaili, K. Anwar, and A. Prasetyo, "Sistem Pendukung Keputusan Penilaian Kinerja Guru Menggunakan Metode Analitycal Hierarchy Proces," J. Teknol. Inf., vol. 11, no. 2, pp. 79-83, 2020, doi: 10.36382/jti-tki.v11i2.501.
 - A. Irawan, S. Ipnuwati, A. Tardiansyah, and A.

- Maseleno, "The Best Public Health Center Selection Decision Support System Using Simple Additive Weighting (SAW) and [18] Weighted Product (WP) Methods," *J. Artif. Intell. Mach. Learn. Neural Netw.*, no. 21, pp. 9–26, 2022, doi: 10.55529/jaimlnn21.9.26.
- [15] D. Anggraini and H. T. Sihotang, "Decision Support System For Choosing The Best Class [19] Guardian With Simple Additive Weighting Method," *J. Mantik*, vol. 3, no. January, pp. 1–9, 2019.
- [16] M. V. Mycharoka, N. Hidayat, and T. Afirianto, "Rekomendasi Pembuatan Roda Berbahan Dasar Polyurethane Menggunakan Simple Additive Weighting (SAW) Studi Kasus Pada CV. Sumber Rejeki Teknik," J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 8, pp. 8316–8324, 2019.
- [17] Kanim, Tukiyat, and Murni Handayani, "Analisis Perbandingan Metode Technique for Order Preference by Similarity to Ideal Solution, Simple Additive Weighting dan Weighted Product dalam Sistem Pendukung Keputusan Pemilihan Guru Terbaik," JSiI (Jurnal Sist.

- *Informasi*), vol. 10, no. 1, pp. 33–40, 2023, doi: 10.30656/jsii.v10i1.6134.
- A. B. S. Ibnu Al Ikrom, Rony Heri Irawan, "Analisis Efisiensi Penjadwalan Teknisi Pemasangan Layanan Internet Menggunakan Metode SAW dan ROC," vol. 7, no. 1, pp. 31–40, 2024.
- M. Al Farosa, P. Kasih, and R. H. Irawan, "Pemodelan Algoritma ROC Dalam Pembobotan Kriteria Seleksi Penerima Bantuan Sosial Pendidikan Menggunakan Algoritma CPI," *Pros. SEMNAS INOTEK (Seminar Nas. Inov. Teknol.*, p. 333, 2022, [Online]. Available: https://proceeding.unpkediri.ac.id/index.php/inotek/article/view/2538%0Ahttps://proceeding.unpkediri.ac.id/index.php/inotek/article/download/2538/1577
- [20] B. Satria and L. Tambunan, "Sistem Pendukung Keputusan Penerima Bantuan Rumah Layak Huni Menggunakan FMADM dan SAW," *JOINTECS (Journal Inf. Technol. Comput. Sci.*, vol. 5, no. 3, p. 167, 2020, doi: 10.31328/jointecs.v5i3.1361.