

Project Report CSE 231

## Digital Logic Design Section 11 Workstation-08

Using combinational circuit print: **SASJ-G08** in 7 segment display

## Spring 2020 North South University Submitted To: Tanjila Farah(TnF)

| SL. | NAME:                     | Student ID: |
|-----|---------------------------|-------------|
| 1.  | S M Gazzali Arafat Nishan | 1831513642  |
| 2.  | Rofiqul Alam Shehab       | 1831185042  |
| 3.  | Sudipta Bhatta            | 1731194042  |



$$=\Sigma(0,1,2,5,6,7)$$

$$b = ABC + ABC + ABC + ABC = \Sigma(1,3,6,7)$$
  
 $c = ABC + ABC +$ 

$$d = ABC + ABC + ABC + ABC + ABC + ABC$$

$$= \sum (0,2,3,5,6,7)$$

$$= \sum (0,2,3,5,6,7)$$

$$e = \sum_{i=1}^{n} (0,2,3,3,0,1)$$

$$= \sum_{i=1}^{n} (1,3,5,6,7)$$

$$= \sum_{i=1}^{n} (1,3,5,6,7)$$

2 = ABC+ABC+ABC+ABC+ABC K-map for

 $= \sum (0,1,2,4,7)$ 



F=AB+BC+AC+AB+BC



F=A'C+AB



F=C+B+AB+A'C'



F=B+AC+A'C'





Hi simplification Bon 200

He Generalized POS Function:

$$A = ABC' + ABC = (A'+B+e)(A+B'+C') = OTT(3,9)$$
 $b = ABC' + ABC' + ABC' + ABC' + ABC = (A+B+e)(A+B'+C)$ 
 $(A'+B+c)(A'+B+C')$ 
 $= (TT(0,2,4,5)$ 

C = AB'C' = A'+B+C = TT (4)

k-map for a=f

x-map sorz b





K-map for c

K-map For d



|    | Bic | Bic   | BC     | BC   |    |
|----|-----|-------|--------|------|----|
| A' | 1   | 0     | 1 3    | 1    | 2  |
| A  | 0   | 1     | 1 7    |      | 6  |
|    | F   | = (A- | + B+C) | A+B+ | c) |







Fig: Greneralized sop Cincuit Diagram Using
Basic gates.





Fig: Simplified SOP Cincuit Diagram you're NAND gates.



Fig: Cheveralized pos cincuit diagram ying togic gotes.



Figo Simplified por unewit Diagram wring basic gates

Fig: Simplified POS using only NOR dates A B C (A+B+C) (n'+B+c) (A+B+() 100 ) (1/10 rc) | 2d (A+B'+(\*)' (A+B+L) (A'+B+C')



Fg. Greneralized SOF Cincuit Diagram uping Decader and OR gate.



Fig: Generalized SOP Multiplexer



Fig. Circuit Diagram For Generalized SOP Equation



Fig. Circuit Diagram for Simplified SOP Using Basic Gates



Fig. Circuit Diagram of SOP using only NAND Gates



Fig. Circuit Diagram of Generalized POS



Fig.Circuit Diagram for Simplified POS Using Basic Gates





Fig. Generalized SOP Using Decoder and OR Gates

















