Rules of Infrances

(1) Modus ponen or Rule of detachment Premises p, p > 9 Conclusion 9 re (pr(p-gr))-g tautology

(2) Modus tollens

Bremises ~9, p > 9

Conclusion ~9

re (~q r (p-) q)) -> ~ q tautology

√9 +79 - ~9

(3) Hypothetical Syllogism on Chain rule Bremises p-79, 9-7 or

Conclusion pan

re ((p→q) ~ ((r←p)) toutology

(4) Disjunctive Syllogisms Premuses ~p, p→q

Conclusion 9

 $(\sim \beta \wedge (\beta \leftarrow q) \wedge q \sim)$

Addition

Premise p

Conclusion pra

: b -> (bvg) tautology

Simplication

Premise prg Conclusion p

re þag -> þ tautology

Conjunction Primises p, 9,

Conclusion prq

1.e (b) \(\gamma(g) -> p\g tautology

(8) Resolution

Premises prq, ~pror

Conclusion qvor

1.e (pvq) ~ (~pvor) -> (qvor) tautology

Q: Determine the validity of the following without using truth tables

"Either I will pass the exam or I will not be graduate. If I do not graduate, I will go to USA. I failed. Thus, I will go to USA."

sol: > Let p: I will pass the exam

q: I will graduate

AZU of og Wiru I: r

Premises P.: pV~9 P3: ~9→ n P3: ~p Conclusion Q: in Argument $pv \sim q$, $\sim q \rightarrow r$, $\sim p \vdash r$ Premise 1) pv~q ~2) ~q > ir Prumise Bremise 3) ~þ Simplification of 1) and 3) √4) ~ q Modus ponens of 27 and 4) 5) N Q:→ Let the following statements "It is snowing. If it is worm, then it is not snowing. If it is not worm then I cannot go for swimming?" show that the statement "I cannot go for swimming" is a true statement! sol:- Let p: It is snowing g: It is harm on: I can go for swimming P2: 9->>

B: ~q→~n Conclusion G:~n

1)	þ	Premise	
	q → ~ þ	Prenrise (p-)9	三へタラルタ
3)	$b \rightarrow \sim \ell$	Contra positive 2)	p-79
4)	~9-7~1	Primuse	9,-35
	$b \rightarrow \sim x$	Hypothetical Syllogism of 3) and 4)	b b
()	\sim \mathcal{N}	110dus tollen of 1) and 5)	P-79