«Московский государственный университет геодезии и картографии»

ФАКУЛЬТЕТ ДИСТАНЦИОННЫХ ФОРМ ОБУЧЕНИЯ ЗАОЧНОЕ ОТДЕЛЕНИЕ

КОНТРОЛЬНАЯ РАБОТА № 4
По курсу «Прикладная геодезия»

студента заочного отделения ФДФО

специальности Прикладная Геодезия

Чекина Олега Владимировича

Шифр 60П-156 Вариант № 11

Домашний адрес (индекс), мобильный телефон:

107023, г. Москва, ул. 9-я Рота, д.2, корп.1.

Оглавление

Контрольная работа №4	
Исходные данные	
Схема участка транспортного тоннеля	
Решение	
Описание трассы.	
1. Вычисление координат пикетов, расположенных на прямых участках разбивочной оси	
2. Вычисление координат начал переходных кривых	
Расчёт точности геодезических измерений	
Список литературы	

Контрольная работа №4

Аналитический расчёт трассы тоннеля и предвычисление точности геодезических измерений.

Исходные данные

Схема участка транспортного тоннеля

Рис.1 Схема участка транспортного тоннеля.

Решение

Описание трассы.

- 1. Вычисление координат пикетов, расположенных на прямых участках разбивочной оси.
- а) Вычисление значений основных элементов кривой дуги

$$T=R\cdot tg\frac{\theta}{2}=800\cdot an11^{\circ}08'12,05''=157,486$$
м $K=rac{R\cdot \theta''}{
ho''}=rac{800\cdot 80184,1''}{206265''}=310,995$ м $\mathcal{J}=2\cdot T-K=314,971-310,995=3,976$ м

Рис.2 Вычисление значений основных элементов кривой дуги.

б) Вычисление пикетажных значений основных точек трассы тоннеля

$\Pi K_{T.A}$	=	0		
+AB	=	23	+	16.134
-T	=	1	+	57.485
ΠK_{HKK}	=	21	+	58.648
+K	=	3	+	10.994
ΠK_{KKK}	=	24	+	69.643
+BC	=	15	+	4.314
-T	=	1	+	57.485
ПКт.с	=	38	+	16.471

в) Вычисление координат пикетов, расположенных на прямых участках разбивочной оси (табл.3)

Таблица 3 - Вычисление координат элементов трассы тоннеля

	Проектные данные													Вычесленн	ые значения							
	Гор	оизонтал	I	Длинг	ы сторон		Диј	рекци	онные	углы				K	оординаты, м							
Название пунктов	Обоз- начения		Знач	ения		Обоз- начения	Значения,	Обоз- начения		Значе	ения		cosα	sinα	Обоз- начения	Приращения		Значения				
		β"	0	-	"				α"	0	'	"				ΔΧ	ΔΥ	X	Y			
т.А (пк 0)															т.А (пк 0)			2316,933	1614,121			
						s_1	2158,648	$\alpha_{\text{A-HKK}}$	249851	69	24	11	0,352	0,936		759,395	2020,664					
НКК (ПК21+58.648)	β_1	648000	180	0	0										НКК (ПК21+58.648)			3076,328	3634,785			
						s_2	157,486	$\alpha_{HKK\text{-}B}$	249851	69	24	11	0,352	0,936		55,402	147,419					
т.В	β_2	728184	202	16	24,1										т.В			3131,730	3782,204			
						s_3	157,486	$\alpha_{\text{B-KKK}}$	330035	91	40	35,1	-0,029	1,000		-4,607	157,419					
ККК (ПК24+69.643)	β_3	648000	180	0	0										ККК (ПК24+69.643)			3127,123	3939,622			
						s_4	1346,828	α _{KKK-C}	330035	91	40	35,1	-0,029	1,000		-39,401	1346,252					
т.С (ПК38+16.471)															т.С (ПК38+16.471)			3087,721	5285,874			
															Σ	770,788	3671,753	770,788	3671,753			
						_		_									контроль				281319,85	
															$tg\alpha_{AC} =$	$[\Delta Y] / [\Delta X] =$	3671,753/770,788 =	4,763633	78°8'39,8"	78	8	39,80
															AC=	$[\Delta X] / \cos \alpha =$	3751,784	$[\Delta Y] / \sin \alpha =$	3751,784		31468,85	
															$\gamma_1 =$	78°8'39,8"	-69°24'11" =	8°44'2	28,8"	8	44	28,80
															$\gamma_2 =$	91°40'35,1"	-78°8'39,8" =	13°31'	55,3"		48715,25	
															AC=	AB cosγ ₁ +	BC $\cos \gamma_2 =$	3751,	,784	13	31	55,30

2. Вычисление координат начал переходных кривых.

а) Вычисление значений t_1 b t_2

$$t_1 = \frac{L}{2} + \frac{L^5}{60 \cdot C^2} = 20.000 + \frac{40.000^5}{60 \cdot 32000^2} = 20.002 \text{M}$$

$$t_2 = \frac{L}{2} - \frac{L^5}{24 \cdot C^2} = 20.000 - \frac{40.000^5}{24 \cdot 32000^2} = 19.996 \text{M}$$

б) Вычисление пикетных значений начал и концов переходных кривых

Первая переходная кривая

$$\Pi K_{H\Pi K1} = \Pi K_{HKK} - t_1;$$
 $\Pi K_{K\Pi K1} = \Pi K_{H\Pi K1} + L;$

Вторая переходная кривая

$$\Pi K_{H\Pi K2} = \Pi K_{KKK} + t_1;$$
 $\Pi K_{K\Pi K2} = \Pi K_{H\Pi K2} - L;$

ΠK_{HKK}	=	21	+	58.648	ΠK_{KKK}	=	24	+	69.643
$-t_1$	=		+	20.002	$+ t_1$	=		+	20.002
ПКнпкі	=	21	+	38.646	ПКнпк2	=	24	+	89.645
+L	=		+	40.000	-L	=		+	40.000
ПКкпк1	=	21	+	78.646	ПКкпк2	=	24	+	49.645

в) Вычисление координат НПК1 и НПК2 (таблица 4)

Таблица 4 - Вычисление координат НПК1 и НПК2

									цатъп			1.7							
			Про	ектны	е дан	ные									Вычесленные	значения			
	Гор	оизонтал	ьные	углы		Длин	ы сторон		Диј	рекцио	онные	углы				Ко	оординаты, м		
Название пунктов	Обоз- начения		Знач	ения		Обоз- начения	Значения,	Обоз- начения		Значе	ния		cosa	sinα	Обоз- начения	Приращения	Значения		
		β"	0	•	"				α"	o	-	"				ΔX	ΔΥ	X	Y
т.А (пк 0)															т.А (пк 0)			2316,933	1614,121
						s_1	2138,646	$\alpha_{A\text{-H}\Pi K1}$	249851	69	24	11	0,352	0,936		752,358	2001,940		
НПК ₁ (ПК21+38.646)	β_1	648000	180	0	0										НПК ₁ (ПК21+38.646)			3069,291	3616,061
						s_2	20,002	$\alpha_{H\Pi K1\text{-}HKK}$	249851	69	24	11	0,352	0,936		7,037	18,723		
НКК (ПК21+58.648)															НКК (ПК21+58.648)			3076,328	3634,785
т.С (ПК38+16.471)															т.С (ПК38+16.471)			3087,721	5285,874
						s_1	1326,826	$\alpha_{\text{C-H\Pi K2}}$	978035	271	40	35,1	0,029	-0,9996		38,816	-1326,258		
НПК ₂ (ПК24+89.645)	β_1	648000	180	0	0										НПК ₂ (ПК24+89.645)			3126,537	3959,616
						s_2	20,002	$\alpha_{H\Pi K2\text{-}KKK}$	978035	271	40	35,1	0,029	-0,9996		0,585	-19,993		
ККК (ПК24+69.643)															ККК (ПК24+69.643)			3127,123	3939,622

г) Вычисление координат концов переходных кривых.

На оси пути и оси тоннеля через угол поворота φ переходной кривой и радиусы $R_n = R - P$ оси пути и $R_m = (p+q)$ оси тоннеля (таблица 5).

$$\varphi = \frac{L^2}{2 \cdot R} \cdot \rho'' = \frac{40.000}{2 \cdot 800.000} \cdot 206265 = 1^{\circ}25'56.6''$$

Смещение оси пути относительно разбивочной оси в конце переходной кривой равно

$$P = \frac{L^2}{24 \cdot R} = \frac{40.000^2}{24 \cdot 800.000} = 0.083 \text{M}$$

Радиус оси пути $R_n = 800.000 - 0.083 = 799.917$ м

Смещение оси тоннеля относительно оси пути равно

$$q = h \frac{d}{a} = \frac{0.105 \cdot 1.850}{1.524} = 0.127 \text{M},$$

где

d – высота центра тяжести вагона над головками рельса;

а – расстояние между осями рельсов.

Радиус оси тоннеля $R_m = 800.000 - 0.210 = 799.789$ м

Таблица 5 - Вычисление концов переходных кривых (КПК1 и КПК2) Первая переходная кривая

		Γ	Іроек	тныс	е даннь	ые								Вычи	исленные значения								
	Го	ризонтальн	іые уг	ЛЫ		Длинь	і сторон		Дирекі	ционн	ые у	ТЛЫ				Коорд	инаты, м						
Название пунктов	Обоз- начения	3н	ачені	ия		Обоз- начения	Значения,	Обоз- начения	Зна	чения	I		cosα	sinα	Обоз- начения	Приращения		Значения					
		β"	0	'	"				α"	o	•					ΔX	ΔΥ	X	Y				
НПК ₁ (ПК21+38.646)															НПК ₁ (ПК21+38.646)			3069,291	3616,061				
						s_1	20,002	$\alpha_{H\Pi K1\text{-}HKK}$	249851	69	24	11	0,352	0,936		7,037	18,723						
НКК (ПК21+58.648)	β_1	972000	270	0	0										HKK (ΠK21+58.648)			3076,328	3634,785				
						R	800,000	α_{HKK -Ц $K}$	573851	159	24	11	-0,936	0,352		-748,863	281,433						
ЦК	β_2	5156,6	1	25	56,6										ЦК			2327,465	3916,218				
						R_n	799,917	$\alpha_{\text{ЦK-K\PiK1\Pi}}$	1227007,6	340	50	7,6	0,945	-0,328		755,585	-262,599						
$K\Pi K_{1\Pi}$															$K\Pi K_{1\Pi}$			3083,050	3653,619				
						$R_{\rm m}$	799,789	$\alpha_{\text{ЦK-K\PiK1T}}$	1227007,6	340	50	7,6	0,945	-0,328		755,464	-262,557						
КПК _{1Т}															$K\Pi K_{1T}$			3082,929	3653,661				
						Контр	оль вычис	лений коор	динат КПК1	l чер	ез аб	сцис	су и орд	инату (х* и у*)								
т.А - НПК $_1$	β_1	648000	180	0	0										т.А - НП K_1			3069,291	3616,061				
						X*	39,998	$\alpha_{H\Pi K1\text{-}E1}$	249851	69	24	11	0,352	0,936		14,071	37,441						
т.Е ₁	β_2	972000	270	0	0										т.Е ₁			3083,362	3653,502				
						Y*	0,333	$\alpha_{E1\text{-}K\Pi K1\Pi}$	573851	159	24	11	-0,936	0,352		-0,312	0,117						
КПК $_{1\Pi}$	β_2	653156,6	181	25	56,6										КПК _{1П}			3083,050	3653,620				
						q	0,127	$\alpha_{E1\text{-}K\Pi K1T}$	579007,6	160	50	7,6	-0,945	0,328		-0,120	0,042						
$K\Pi K_{1T}$															$K\Pi K_{1T}$			3082,930	3653,661				

$$x^* = L - \frac{L^5}{40 \cdot C^2} = 40.000 - 0.0025 = 39.998$$
M
$$y^* = \frac{L^3}{6 \cdot C} = \frac{40.000^3}{6 \cdot 32000} = 0.333$$
M

Δy $\Delta K\Pi K_{1\Pi}$ 0,000 0,000 $\Delta K\Pi K_{1T}$ 0,001 0,000

Условие: $\varepsilon \le 0.002$ — Выполняется.

Вторая переходная кривая

		Π	Іроек	тные	е данн	ые								Вычисле	нные значения					
	Го	оризонтальн	іые уі	глы		Длинг	ы сторон		Диј	рекцио	эннг	іе угл	ы			Координаты, м				
Название пунктов	Обоз- начения	3н	ачені	ия		Обоз- начения	Значения,	Обоз- начения	Зна	I		cosα	sinα	Обоз- начения	Приращения		Значения			
		β"	o	'	"				α"	o	'	"				ΔΧ	ΔΥ	X	Y	
НПК ₂ ПК24+89.645)															НПК ₂ (ПК24+89.645)			3126,537	3959,6	
						s_1	20,002	$\alpha_{H\Pi K2\text{-}KKK}$	978035,1	271	40	35,1	0,029	-1,000		0,585	-19,993			
KKK TK24+69.643)	β_1	324000	90	0	0										ККК (ПК24+69.643)			3127,123	3939,62	
						R	800,000	$\alpha_{KKK-LLK}$	654035,1	181	40	35,1	-1,000	-0,029		-799,658	-23,404			
ЦК	β_2	1290843,4	358	34	3,4										ЦК			2327,465	3916,2	
						R_n	799,917	$\alpha_{\text{ЦK-K\PiK2\Pi}}$	878,5	0	14	38,5	0,99999	0,00426		799,910	3,407			
$K\Pi K_{2\Pi}$															$K\Pi K_{2\Pi}$			3127,375	3919,62	
						$R_{\rm m}$	799,789	$\alpha_{\text{ЦK-K\PiK2T}}$	878,5	0	14	38,5	0,99999	0,00426		799,782	3,406			
$K\Pi K_{2T}$															$K\Pi K_{2T}$			3127,247	3919,62	
						Ко	нтроль выч	нислений к	оординат КІ	ПК2 ч	epe	абсц	иссу и ор	динату (х*	и у*)					
т.С - НП K_2	β_1	648000	180	0	0										т.С - НП K_2			3126,537	3959,6	
						X*	39,998	$\alpha_{H\Pi K2\text{-}E2}$	978035,1	271	40	35,1	0,029	-1,000		1,170	-39,981			
т.Е2	β_2	324000	90	0	0										т.Е2			3127,708	3919,63	
						Y*	0,333	$\alpha_{E2\text{-}K\Pi K2\Pi}$	654035,1	181	40	35,1	-1,000	-0,029		-0,333	-0,010			
КПК $_{2\Pi}$	β_2	642843,4	178	34	3,4										$K\Pi K_{2\Pi}$			3127,375	3919,62	
						q	0,127	$\alpha_{\text{E2-K}\Pi\text{K2T}}$	648878,5	180	14	38,5	-1,000	-0,004		-0,127	-0,001			
$K\Pi K_{2T}$															$K\Pi K_{2T}$			3127,248	3919,62	
$x^* = L - \frac{L^5}{40}$	$\frac{1}{C^2} = 40.0$	00.0 - 0.00)25 =	= 39	.998 _N	1											$\Delta K\Pi K_{2\Pi}$	Δx 0,000	Δy 0,000	

$$x^* = L - \frac{L^5}{40 \cdot C^2} = 40.000 - 0.0025 = 39.998$$
M

$$y^* = \frac{L^3}{6 \cdot C} = \frac{40.000^3}{6 \cdot 32000} = 0.333$$
 m

 $\Delta K\Pi K_{2T}$ 0,001 0,000

Условие: ε ≤ 0.002 — Выполняется.

Расчёт точности геодезических измерений

- 1) Определим длину односторонней проходки от портала т.А (ПК0) до места сбойки и от шахты 514 до сбойки. Проектом предусмотрено, что сбойка будет произведена по середине участка перегонного тоннеля. Смещение шахты 514 на величину 30.4м от линии AB в расчёт не принимаем.
 - Расстояние от т.А(ПКО) до шахты 514 составляет: HKK + 88.20 = 2246м (см. рис.1);
 - Длина односторонней проходки 2246 * 0.5 = 1123м.
 - 2) На сбойку в осях встречных тоннелей окажут влияние следующие основные факторы:
 - m₁ средняя квадратическая ошибка геодезического обоснования на поверхности;
 - m₂ средняя квадратическая ошибка ориентирования через шахту 514;
- m_3 средняя квадратическая ошибка ориентирования (ориентирования через т.А) в расчёт не принимается, так как проходка тоннеля в точке A осуществляется через портал;
 - m₄ и m₅ средние квадратические ошибки ходов подземной полигонометрии.

Для тоннелей длиной от 1 до 1,5км величину влияния перечисленных факторов можно считать одинаковой. Для более длинных тоннелей принцип равного влияния отдельных источников ошибок становиться неприемлемым, в этом случае величинам m следует придать соответствующие коэффициенты, при этом коэффициент при m_1 надо принять менее единицы, а при m_2 и m_3 — более единицы (стр. 260 [1]).

Воспользуемся значениями коэффициентов, приведённых в примере на странице 261 [1]:

Величину m₁ равной 0,7m Величину m₂ равной 2,5m Величину m₄ равной m Величину m₅ равной m

Тогда, по формуле (IX.2) [1]:

$$\tau_1 = \sqrt{(0.7 \cdot m)^2 + (2.5 \cdot m)^2 + m^2 + m^2}$$

или

$$\tau_1 = m \cdot \sqrt{8,74}$$

гле

 au_1 — ощибка планового геодезического обоснования;

Откуда $m=0.34 \cdot \tau_1$. Принимая $\tau_1=50$ мм, получим m=17мм.

Откуда следует, что взаимное положение пунктов геодезического обоснования на поверхности, с которых ведётся ориентирование и передача координат, должно быть определено со средней квадратической ошибкой $m_1 = 0.7m = 11.9$ мм.

3) Найдём среднюю квадратическую ошибку ориентирования через шахту 514.

По формуле:

$$m_2=\frac{m_0\cdot l_1}{\rho^{\prime\prime}},$$

где m_0 — ошибка ориентирования первой стороны подземного полигонометрического хода; l_1 — длина этого хода от ствола до сбойки

$$m_2 = 2.5m = 42.5$$

Тогда

$$m_0 = \frac{m_2 \cdot \rho''}{l_1} = \frac{42.5 \cdot 206265''}{1123 \cdot 10^3} = 7.8''$$

При строительстве тоннелей ориентирование выполняют не менее трёх раз и берут средний результат, тогда допустимая ошибка однократного ориентирования может быть в среднем принята

$$m_0 = 7.8 \cdot \sqrt{3} = 13.5$$
"

4) Найдём среднюю квадратическую ошибку угловых измерений в подземной полигонометрии.

Принимая длину средней стороны основной полигонометрии S=100м, тогда n=11, $m_4=m_5=m_u=17$ мм, по формуле поперечного сдвига неуравненного полигонометрического хода найдём

$$m_u = \frac{m_\beta}{\rho''} \cdot l_1 \sqrt{\frac{n+1.5}{3}}$$

Откуда

$$m_{\beta} = \frac{m_u \cdot \rho''}{l_1 \sqrt{\frac{n+1.5}{3}}} = \frac{17 \cdot 206265''}{1100 \cdot 10^3 \sqrt{\frac{11+1.5}{3}}} = 1,6''$$

Такую точность измерений могут обеспечить современные электронные тахеометры с ошибкой измерения углов 0,5", а при их отсутствии у производителя работ следует запроектировать главную полигонометрию со средней стороной 300м, n=3. Тогда

$$m_{\beta} = \frac{m_u \cdot \rho''}{l_1 \sqrt{\frac{n+1.5}{3}}} = \frac{17 \cdot 206265''}{1100 \cdot 10^3 \sqrt{\frac{3+1.5}{3}}} = 2.6''$$

т.е. главная полигонометрия при $m_{\beta} = 2.5''$ обеспечит необходимую точность сбойки.

Так как на участке кривой стороны будут короче, следует предусмотреть специальные способы уменьшения влияния на угловые измерения центрировки и редукции.

Так в конструкции знака можно предусмотреть устройства для принудительного механического центрирования марки, тахеометра или теодолита.

Наиболее точное центрировочное устройство представляет собой плиту с калиброванной втулкой. В этом случае измерительный прибор (теодолит, электронный тахеометр, сканер или створный прибор) в своём основании на подставке должен иметь калиброванный шар для посадки во втулку [2].

Для уменьшения влияния ошибок центрирования рекомендуется через один-два приёма заново центрировать теодолит, изменяя при этом установку центрира на 180°. Расхождения между значениями направлений, измеренных при различных центрировках, не допускается более 12" [3].

Для уменьшения влияния ошибки центрирования в подземных выработках так же иногда применяют косвенный способ примыкания к отвесам [3].

Для уменьшения влияния на угловые измерения центрировки и редукции в измеренные значения так же вводятся поправки, для вычисления поправок при измерениях на пунктах необходимо измерять линейные элементы центрировки и редукции [4].

- 5) Рассмотрим теперь участок от шахты 514 до шахты 515.
 - Общая длина участка:

$$88.20 + K + BC - T + 41.00 = 1787.023$$
 M

- Длина односторонней проходки 1787 * 0.5 = 893м
- 6) На сбойку в осях встречных тоннелей помимо СКО перечисленных в п.2 окажет влияние m_3 средняя квадратическая ошибка ориентирования через шахту 515.

В этом случае формула (ІХ.2)[1] принимает вид:

$$\tau_1 = \sqrt{(0.7 \cdot m)^2 + (2.5 \cdot m)^2 + (2.5 \cdot m)^2 + m^2 + m^2}$$

или

$$\tau_1 = m \cdot \sqrt{15}$$

Откуда $m=0.26 \cdot \tau_1$. Принимая $\tau_1=50$ мм, получим m=13мм.

Необходимо учитывать, что при сооружении прямолинейных тоннелей продольная несбойка не имеет серьёзного значения, поэтому при расчётах точности геодезических измерений, входящих в состав геодезического обоснования, величину поперечной несбойки m_u можно принимать равной m.

При расчёте точности для криволинейных тоннелей величина

$$m = \sqrt{m_u^2 + m_t^2}.$$

Применив принцип равного влияния получим

$$m_u = m_t = \frac{m}{\sqrt{2}} = \frac{13}{\sqrt{2}} = 9.2$$
mm

Следовательно, влияние ошибок геодезического обоснования на несбойку можно допустить

$$m_1 = 0.7 \cdot m_{ut} = 6.5 \text{MM}$$

7) Найдём среднюю квадратическую ошибку ориентирования, при условии, что m2 = m3 = 2.5 * m = 23, получим:

$$m_0 = \frac{m_2 \cdot \rho''}{l_1} = \frac{23 \cdot 206265''}{893 \cdot 10^3} = 9,2''$$

При строительстве тоннелей ориентирование выполняют не менее трёх раз и берут средний результат, тогда допустимая ошибка однократного ориентирования может быть в среднем принята

$$m_0 = 7.5 \cdot \sqrt{3} = 13.0$$
"

8) Найдём среднюю квадратическую ошибку угловых измерений в подземной полигонометрии.

Принимая длину средней стороны основной полигонометрии S=100м, тогда n=8, $m_4=m_5=m_u=9.2$ мм, по формуле поперечного сдвига неуравненного полигонометрического хода найдём

$$m_u = \frac{m_\beta}{\rho''} \cdot l_1 \sqrt{\frac{n+1.5}{3}}$$

Откуда

$$m_{\beta} = \frac{m_u \cdot \rho''}{l_1 \sqrt{\frac{n+1.5}{3}}} = \frac{9.2 \cdot 206265''}{893 \cdot 10^3 \sqrt{\frac{8+1.5}{3}}} = 1,2''$$

Поскольку такую точность сложно обеспечить в условиях подземного полигонометрического хода, а длины сторон хода, из-за наличия криволинейного участка, увеличить не представляется возможным, на рассматриваемом участке необходимо предусмотреть дополнительную шахту и выполнить ориентирование по способу двух шахт. Подробно ориентирование подземных выработок методом двух шахт рассмотрим в контрольной №5.

Список литературы

- 1. Н.Н. Лебедев «Курс инженерной геодезии» М. Недра 1974;
- 2. Авакян В.В. «Лекции по прикладной геодезии» Часть 3;
- 3. Г.П. Левчук, В.Е. Новак, Н.Н. Лебедев «Прикладная геодезия. Геодезические работы при изысканиях и строительстве инженерных сооружений» 1983;
- 4. Авакян В.В. «Лекции по прикладной геодезии» Часть 2;