数字电子技术

第一章

2

第1章 数学逻辑概令

- 模拟信号->数字信号
- 数制转换
- 二进制代码
- 逻辑变量、基本逻辑运算及函数表示

1.1 数字电路与数字信号

→ 数字量:

例如: 学生人数、性别、年龄、籍贯如某物理量仅能取某一区间内的若干个特定值,则 称该物理量为<mark>数字量</mark>。

将这些数字量加到某系统(电路)的输入端,经过 这个系统(电路)处理,产生某年龄段学生数、 男女生数的统计等,仍然是数字量的信息。

这种具有一定功能,输入输出均为数字量的系统 (电路)就是<mark>数字系统</mark>(电路)。

→ 数字元件:

组成数字电路的基本元件是开关

a、电子管时代

1906年,福雷斯特等发明了电子管;电子管体积大、重量重、耗电大、寿命短。目前在

一些大功率发射装置中使用。

b、晶体管时代

半导体二极管、三极管

8

c、半导体集成电路: SSI-MSI-LSI-VLSI

● 电路设计方法伴随器件变化从传统走向现代

a) 传统的设计方法:

采用自下而上的设计方法;由人工组装,经反复调试、验证、 修改完成。所用的元器件较多,电路可靠性差,设计周期长。

b) 现代的设计方法:

现代EDA技术实现硬件设计软件化。采用从上到下设计方法,电路设计、分析、仿真、修订全通过计算机完成。

10

1.2 模拟信号与数字信号

■模拟信号

----时间和数值均连续变化的电信号,如正弦波、三角波等

→数字信号

---在时间上和数值上均是离散的信号。

•数字电路和模拟电路:工作信号,研究的对象不同, 分析、设计方法以及所用的数学工具也相应不同

12

→ 模拟信号的数字表示

由于数字信号便于存储、分析和传输,通常都将模拟信号转换为数字信号. ""**

→ 数字信号的描述方法

- 1、二值数字逻辑和逻辑电平
- ■二值数字逻辑
- 0、1数码---表示数量时称二进制数
 - ---表示事物状态时称二值逻辑
- ■表示方式
 - a 、在电路中用低、高电平表示0、1两种逻辑状态

逻辑电平与电压值的关系(正逻辑)

电压(V)	二值逻辑	电 平
3.5~5	1	H(高电平)
0~1.5	0	L(低电平)

14

2、数字波形

数字波形-----是信号逻辑电平对时间的图形表示.

(a) 用逻辑电平描述的数字波形 (b) 16位数据的图形表示

2、数字波形

数字波形-----是信号逻辑电平对时间的图形表示.

16

二值信号

(1)数字波形的两种类型: *非归零型 *归零型

(2) 周期性和非周期性

18

几个主要参数:

周期 (T) —— 表示两个相邻脉冲之间的时间间隔脉冲宽度 (t_w) —— 脉冲幅值的50%的两个时间所跨越的时间占空比 q —— 表示脉冲宽度占整个周期的百分比比特率 —— 每秒钟转输数据的位数(bit/s)

上升时间 $t_{\rm r}$ 和下降时间 $t_{\rm f}$ -----从脉冲幅值的10%到90% 上升下降所经历的时间(典型值ns)

比特率

例1.1.1 某通信系统每秒钟传输1544000位(1.544兆位)数据,求每位数据的时间。

解:按题意,每位数据的时间为

$$\left[\frac{1.544 \times 10^6}{\text{s}} \right]^{-1} = 647.67 \times 10^{-9} \,\text{s} = 648 \,\text{ns}$$

20

单选题 1分

② 设置

设周期性数字波形的高电平持续6ms,低电平持续10ms,求占空比*q?*

- A 60%
- B 40%
- 35.5%
- 37.5%

提交

例1.1.2 设周期性数字波形的高电平持续6ms,低电平持续10ms, 求占空比q。

解:因数字波形的脉冲宽度 t_w =6ms,周期T=6ms+10ms=16ms。

$$q = \frac{6\text{ms}}{16\text{ms}} \times 100\% = 37.5\%$$

22

(3)时序图----表明各个数字信号时序关系的多重波形图。

由于各信号的路径不同,这些信号之间不可能严格保持同步关系。 为了保证可靠工作,各信号之间通常允许一定的时差,但这些时差 必须限定在规定范围内,各个信号的时序关系用时序图表达。

1.3 数制转换

- 1、十进制
- 2、二进制
- 3、二-十进制之间的转换
- 4、十六进制和八进制

24

→ 数制

多位数码中的每一位数的构成及低位向高位进位的规则

1. 十进制

十进制采用0, 1, 2, 3, 4, 5, 6, 7, 8, 9十个数码, 其进位的规则是"逢十进一"。

 $4587.29 = 4 \times 10^3 + 5 \times 10^2 + 8 \times 10^{1} + 7 \times 10^{0} + 2 \times 10^{-1} + 9 \times 10^{-2}$

一般表达式:

$$(N)_D = \sum_{i=-\infty}^{\infty} K_i \times 10^i$$

各位的权都是10的幂

任意进制数的一般表达式为: $(N)_r = \sum_{i=-\infty}^{\infty} K_i \times r^i$

2. 二进制

a、二进制数的表示方法

二进制数只有0、1两个数码,进位规律是:"逢二进一".

例如:
$$1+1=10=1\times 2^1+0\times 2^0$$

各位的权都是2的幂。

26

b、二进制的优点

- (1) 易于电路表达---0、1两个值,可以用管子的导 通或截止, 灯泡的亮或灭、继电器触点的闭合或断开来表示。
- (2) 二进制数字装置所用元件少, 电路简单、可靠。
- (3) 基本运算规则简单,运算操作方便。

28

d、二进制数据的传输

(1) 二进制数据的串行传输

(2) 二进制数据的并行传输

将一组二进制数据所有位同时传送。 传送速率快,但数据线较多,而且发送和接收设备较复杂。

30

3 二-十进制之间的转换

1)、十进制数转换成二进制数: {整数部分小数部分

a. 整数的转换:

"辗转相除"法:将十进制数连续不断地除以2,直至商为零,所得余数由低位到高位排列,即为所求二进制数

例1.2.2 将十进制数(37) 对转换为二进制数。

解:根据上述原理,可将(37)。按如下的步骤转换为二进制数

$$2 | 37 | \dots + b_0 |$$
 $2 | 18 | \dots + b_0 |$
 $2 | 9 | \dots + b_1 |$
 $2 | 9 | \dots + b_2 |$
 $2 | 4 | \dots + b_2 |$
 $2 | 2 | \dots + b_3 |$
 $2 | 2 | \dots + b_5 |$

由上得 (37)_D=(10 0101)_B

当十进制数较大时,有什么方法使转换过程简化?

32

例1.2.3 将(133) 页转换为二进制数

解:由于27为128,而133-128=5=22+20,

所以对应二进制数b7=1, b2=1, b0=1, 其余各系数均为0, 所以得

(133)D=(1000 0101)B

b. 小数的转换:

对于二进制的小数部分可写成

$$(N)_{\mathbf{D}} = b_{-1} \times 2^{-1} + b_{-2} \times 2^{-2} + \dots + b_{-(\mathbf{n}-1)} \times 2^{-(\mathbf{n}-1)} + b_{-n} \times 2^{-n}$$

将上式两边分别乘以2,得

$$2 \times (N)_{\mathbf{D}} = b_{-1} \times 2^{0} + b_{-2} \times 2^{-1} + \dots + b_{-(\mathbf{n}-1)} \times 2^{-(\mathbf{n}-2)} + b_{-n} \times 2^{-(\mathbf{n}-2)}$$

由此可见,将十进制小数乘以2,所得乘积的整数即为 b_{-1}

不难推知,将十进制小数每次除去上次所得积中的整数再乘以2, 直到满足误差要求进行"四舍五入"为止,就可完成由十进制小数 转换成二进制小数。

34

0.1%=0.001 > 1/1024=0.00098

例 将十进制小数(0.39),转换成二进制数,要求精度达到0.1%

解 由于精度要求达到0.1%, 需要精确到二进制小数10位, 即1/210=1/1024。

$$0.39 \times 2 = 0.78$$
 $b_{.1} = 0$ $0.48 \times 2 = 0.96$ $b_{.6} = 0$ $0.78 \times 2 = 1.56$ $b_{.2} = 1$ $0.96 \times 2 = 1.92$ $b_{.7} = 1$ $0.56 \times 2 = 1.12$ $b_{.3} = 1$ $0.92 \times 2 = 1.84$ $b_{.8} = 1$ $0.12 \times 2 = 0.24$ $b_{.4} = 0$ $0.84 \times 2 = 1.68$ $b_{.9} = 1$ $0.24 \times 2 = 0.48$ $b_{.5} = 0$ $0.68 \times 2 = 1.36$ $b_{.10} = 1$

所以
$$(0.39)_D = (0.0110\ 0011\ 11)_B$$
 P18四舍 五入情况?

4十六进制和八进制

a. 十六进制

十六进制数中只有0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A、B、C、D、E、F 十六个数码,进位规律是"逢十六进一"。各位的权均为16的幂。

一般表达式:
$$(N)_H = \sum_{i=-m}^{n-1} a_i \times 16^{-i}$$

各位的权都是16的幂。

例如
$$(\mathbf{A6.C})_{\mathbf{H}} = 10 \times 16^{1} + 6 \times 16^{0} + 12 \times 16^{-1}$$

36

b、二一十六进制之间的转换

二进制转换成十六进制:

因为16进制的基数 $16=2^4$,所以,可将四位二进制数表示一位16进制数,即 $0000\sim1111$ 表示 0-F。

例
$$(1111000 \ 1010111)_{B} = (78.AE)_{H}$$

十六进制转换成二进制:

将每位16进制数展开成四位二进制数,排列顺序不变即可。

c. 八进制

八进制数中只有0, 1, 2, 3, 4, 5, 6, 7八个数码, 进位规律是"逢八进一"。各位的权都是8的幂。

八进制就是以8为基数的计数体制。

一般表达式
$$(N)_8 = \sum_{i=-m}^{n-1} a_i \times 8^i$$

38

d、二-八进制之间的转换

- •因为八进制的基数 $8=2^3$,所以,可将三位二进制数表示一位 八进制数,即 $000\sim111$ 表示 $0\sim7$
- •转换时,由小数点开始,整数部分自右向左,小数部分自左 向右,三位一组,不够三位的添零补齐,则每三位二进制数 表示一位八进制数。

例
$$(10110.011)_B = (26.3)_o$$

将每位八进制数展开成三位二进制数,排列顺序不变即可。

e. 十六进制的优点:

- 1、与二进制之间的转换容易;
- 2、计数容量较其它进制都大。假如同样采用四位数码,
- 二进制最多可计至(1111)_B =(15)_D;

八进制可计至 $(7777)_0 = (2800)_D$;

十进制可计至 (9999)_D;

十六进制可计至 $(FFFF)_H = (65535)_D$, 即64K。其容量最大。 3、书写简洁。

40

1.4 二进制代码

- 1.4.1 二-十进制码
- 1.4.2 格雷码
- 1.4.3 ASCII码

1.4 二进制代码

码制:编制代码所要遵循的规则

二进制代码的位数(n),与需要编码的事件(或信息)的个数(N)之间应满足以下关系:

 $N \leq 2^n$

1. 二—十进制码 (数值编码)

(BCD码---- Binary Code Decimal)

用4位二进制数来表示一位十进制数中的 0 - 9 十个数码。

从4 位二进制数16种代码中,选择10种来表示0 – 9个数码的方案有很多种。每种方案产生一种BCD码。

1.4.1二-十进制码 有权码 无权码 (1) 几种常凡的BCD代码					
BCD码十 进制数码	8421码	2421 码	5421 码	余3码	余3循 环码
0	0000	0000	0000	0011	0010
1	0001	0001	0001	0100	0110
2	0010	0010	0010	0101	0111
3	0011	0011	0011	0110	0101
4	0100	0100	0100	0111	0100
5	0101	1011	1000	1000	1100
6	0110	1100	1001	1001	1101
7	0111	1101	1010	1010	1111
8	1000	1110/	1011	1011	1110
9	1001	11/	1100	1100	1010
自补码 自补码 两个相邻代码之间仅 有1位取值不同					

(2) 求BCD代码表示的十进制数

对于有权BCD码,可以根据位权展开求得所代表的十进制数。 例如:

$$[0111]_{8421BCD} = 0 \times 8^{+}1 \times 4^{+}1 \times 2^{+}1 \times 1 = (7)_{D}$$

$$\begin{bmatrix} 1101 \end{bmatrix}_{2421BCD} = 1 \times 2 + 1 \times 4 + 0 \times 2 + 1 \times 1 = (7)_{D}$$

44

(3) 用BCD代码表示十进制数

对于一个多位的十进制数,需要有与十进制位数相同的几组BCD 代码来表示。例如:

思考: BCD码与二进制数的区别?

8位二进制数能够表示的十进制数:

255

8位8421BCD码最大可表示的十进制数:

99

46

1.4.2 格雷码

- 格雷码是一种无权码。
- •编码特点是:任何两个相邻代码之间仅有一位不同。
- 该特点常用于模拟量的转换。当模拟量发生 微小变化,格雷码仅仅改变一位,这与其它码 同时改变2位或更多的情况相比,更加可靠,且 容易检错。

二进制码	格雷码		
$\mathbf{b_3b_2b_1b_0}$	$G_3G_2G_1G_0$		
0000	0000		
0001	0001		
0010	0011		
0011	0010		
0100	0110		
0101	0111		
0110	0101		
0111	0100		
1000	1100		
1001	1101		
1010	1111		
1011	1110		
1100	1010		
1101	1011		
1110	1001		
1111	1000		

1.4.3 ASCII 码(字符编码)

- ASCII码即美国标准信息交换码。
- •它共有128个代码,可以表示大、小写英文字母、十进制数、标点符号、运算符号、控制符号等,普遍用于计算机的键盘指令输入和数据等。

48

多选题 1分

② 设置

$$(52.25)_{D} = ()_{B} = ()_{O} = ()_{H}$$

= $()_{8421BCD}$

- (11 0100.01)_B (64.2)_O
- (11 0010.10)_B (62.4)_O
- (34.4)_H (0101 0010 . 0010 0101)_{8421BCD}
- (43.3)_H (101 0010 . 0010 0101)_{8421BCD}

提交

• 例题

$$(52.25)_{D} = ()_{B} = ()_{O} = ()_{H}$$

= $()_{8421BCD}$

110100.01B (64.2)O 34.4H (0101 0010 . 0010 0101)8421BCD

50

第一章

- 第一部分
- 课后参考习题:
- 1.1.2 1.1.4
- 1.2.4
- 1.4.1 1.4.2
- 1.5.2 1.5.3
- 1.6
- 第二部分作业
- 习题集