2D Matrix
Print row wise/col wise sum
Principal Diagonals
Row to Column Zero

1D arrays: list of elements

2D matrix: 2D array which has a rectangular grid of nos. - dement

Store elements arranged in row and cob

1. int mat CNJCMJ (< + <)

data name of rome cole

2. int[][] mat = ncw int CN][M] (Java)

3. mat=CCOJ#M for _ in range (W)] (LbAthow)

(4,C)

int mat [4][3]

cell Total de= mat [7] [C] 4x3 =12 ele رد۱۱

int mat CNJ cmj

		16						,	tons cod
< %	C C			ده	ls,				
		0	•	2	3	M-1		Total	Ue
C	>	0,0			6,0	0,19-1	STOP IN		= N×M
	1				١,3		Right		
	L	2,0	2,1	2,2	2,3	 3'W-	4		
√ 5-					3.3				
	I				•				
	ı L		,		(
N -	- \	M-,			N3',	M-1,	- >0 11	~ \c2	
	4			4		ļ———Ţ	1964	1¢	
G	0	Ffor		.41					

mat CNJ[M]

* Iterate in a row

1. Row no. is fixed

2. Col no. -> EO M-12 M-scols

* Itcoate in a col

1. Col no. is fixed

2. Row no. → [0 N-1] N-170WS

Traverse each col, while traversing take some of elements present in that

for ((=0; (<M; (++) < l'iterate on con column; get sum 0= muz 1715 for (8 = 0; x < N; 8 + 7) < som = som + mat cx3 (c) bajus (enw) TC: O(NXM) SC:OU)

3. Viven a 2D square matrix mat CNJCN],
brint diagonals print diagonals

2 diagonals in square

O Poincipul Dia and

Top Left -> Bottom Right

019:159 0,0-01,1-32,12 OIP: 3 5 7

Top Right > Bottom Left

T(:0(N) S(:0(1)

print (mot (i) 2613

[> CO N-13

of I conclitions is sufficient

(ROL)

Print all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.

| Content all anti diagonals of a non-square matrix.
| Content all anti diagonals of a non-square matrix.
| Content all anti diagonals of a non-square matrix.
| Content all anti diagonals of a non-square matrix.
| Content all anti diagonals of a non-square matrix.
| C

O Every all in om

D Every cell in Last col is starting bt.

mat CN][M]

CUF = W + M -1

// point all diagonals starting at on row

int vow=0

for (col = 0; col < m; col ++) <

print Anti Diagonal (row, col, mat)

7

// point all diagonals starting at last cal

cal = m-1

for (xow =); xow < n; xow ++) <

print Anti Diagonal (xow, cal, mat)

TC:O(N×M)

SC: O(1)

10:33

5, 0 1 2 3 4 Acisciss = 0

5, 0 1 2 3 4 Acisciss

make entire

in row > 0

in col > 0

or | 2 3 4 Acisciss

make entire

o - dons

x0 0 x0 x0 8 x0 10 12 13 x0 15 2

int M= mat. size()

sous

int M= mat(0). size()

cols

O Irexak in all rows, make dements of now as -1, if any de in that you is 0. @ Repeat process for cols 3 Finally traverse matrix, make all -1 into 0. void row To Cal Zero (int mat ENJEMJ) < for (x = 0; x < N; 8++) < book flag = F for (c=0; c<M; c++) {

| if cmarex3cc3 ==0) flag=1 19(Ha)==7) < for (c=0; c<M; c++)< if [wax (x)[c]]=0)

for (C=0; C<M; C++) < book flag = F for (x=0; x < 10; x + +) {
| if cmak(x)(c) ==0) flag=1 3(Ha)== 7) < for (x=0; x < N., x++) < if (max (x) [c] = 0) for (x = 0; x < N; x++)

 $f_{ox}(x = 0; x < n); x < t)$ $f_{ox}(x = 0; x < n); x < t)$ $f_{ox}(x = 0; x < n); x < t)$ $f_{ox}(x = 0; x < n); x < t)$

LC:0(0W)

SC:O(1)