Números complejos

Tema 1

b)
$$\frac{2}{3+i}$$

1.- a) (2-i).(1+3i) b)
$$\frac{2}{3+i}$$
 c) i^5 d) i^{-9} e) $\frac{-5}{(1-i)(2-i)(3-i)}$

2.- Dados z ₁= -3+4i y z ₂ =5-2i, calcular:

a)
$$z_{1.}z_{2}$$

b)
$$\frac{z_2}{z_1}$$

c)
$$4z_1$$
-3 $(z_{1+}z_2)^2$

Calcular

3.-
$$[(2+i)(2-i)]^2$$
 4.- $(\frac{1}{2} - \frac{\sqrt{3}}{2})^3$

$$4.-\left(\frac{1}{2}-\frac{\sqrt{3}}{2}\right)^{\frac{3}{2}}$$

$$5.-\frac{(2-i)^2}{(3-i)^2}$$

6.-
$$\frac{(3-i)(2+i)}{3+i}$$

7.- Calcular
$$\left| \frac{(2+i\sqrt{5})(1+i\sqrt{3})^3}{\sqrt{5}+i\sqrt{3}} \right|$$

Expresar en forma cartesiana, trigonométrica y polar:

9.-
$$\frac{1}{2}$$
- $\frac{\sqrt{3}}{2}i$ 10.- $\sqrt{3}$ - i

10.-
$$\sqrt{3}$$
 –

12.-
$$1-\sqrt{3}i$$
 13.- -2-2i

Calcular y expresar en forma binómica y trigonométrica:

14.-
$$e^{i\pi}$$

$$15.-e^{\frac{i\pi}{4}}$$

15.
$$-e^{\frac{i\pi}{4}}$$
 16. $-e^{\frac{-i\pi}{4}}$

Hallar, sin efectuar las operaciones indicadas, el módulo y el argumento de los siguientes números complejos,

$$17.-\frac{1+\sqrt{3}i}{1-\sqrt{3}i}$$

18.-
$$i^{431}(3-3i)$$

19.- Calcular el valor de x para que z= $\frac{3-2xi}{4+3i}$

- a) sea un número real
- b) sea un número imaginario puro
- 20.- Hallar x para que el módulo de $\frac{x+i}{2+i}$ sea $\sqrt{2}$

21.- Calcular
$$\left(-2+2\sqrt{3}\ i\right)^6$$

22.- Calcular
$$(1+i)^{25}$$

Calcular

23.-
$$\left(\frac{-2}{1+\sqrt{3}i}\right)^{60}$$
 24.- $\frac{\sqrt{2}i}{-2-2i}$ 25.- $\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{30}$

- 26.- Calcular las raíces sextas de la unidad
- 27.- Calcular las raíces cúbicas de -1

Resolver las siguientes ecuaciones algebraicas:

28.-
$$x^4$$
+16=0

29.-
$$x^4$$
+ x^3 -x-1=0

30.-
$$x^6$$
+1=0