

Prof. Guilherme Fróes Silva

Exemplo - Modelo 2

Nesta aula iremos construir mais um modelo a partir da Apostila "Curso Básico de Simulação com o ProModel", disponível no site do Professor.

Este modelo aborda as seguintes aplicações: acompanhamento de defeitos, calculo de WIP (work in progress), contagem de peças produzidas, adição de postos de trabalho e inspeções.

Usaremos os comandos INC (increment) e DEC (decrement) e variáveis globais. Utilizaremos os gráficos de fundo para incluir contadores das variáveis na animação, veremos a utilização de probabilidades na caixa de diálogo de Roteamento e inicialização de novos blocos (Start New Block).

Nota sobre a versão do *ProModel* 1

Atualmente temos o ProModel 2014 (9.1) instalado nos laboratórios de Engenharia da Escola Politécnica. Para utilizar o ProModel nas suas máquinas pessoais, façam o download do ProModel RT Silver (link disponível no site do Professor), cuja versão é a 8.6, veja Figura 1.

Figura 1: Versão do *ProModel RT Silver* disponível em Simulação.net

Sobre ProModel

¹https://guilhermepucrs.github.io/laboratorioSim

Assim, o que ocorre é que arquivos os da versão 2014 não podem ser abertos no RT Silver a não ser que sejam salvos de forma compatível, conforme Figura 2.

Salvar com ↑ 🔜 > Este ... > Área de Trabalho > マ ♂ Pesquisar Área de Trabalho - Pública Este Computado 🧾 Área de Trabalh Downloads Imagens Músicas Objetos 3D Vídeos OS (C:) __ DATA (D:) Nome: Modelo2.mod Tipo: Modelos (*.mod) ∧ Ocultar pastas

Figura 2: Caixa de diálogo "Salvar Como" do ProModel RT Silver.

2 Modelo 2

Este modelo foi retirado/adaptado da apostila "Curso Básico de Simulação com o *ProModel*" da Belge Consultoria. O Modelo 2 trata do mesmo processo que o Modelo 1 tratava. Como identificamos o Tratamento Térmico (trat_termico) como sendo o gargalo do processo, iremos duplicar este local para corrigir este problema. Também inspecionaremos as peças, das quais 25% serão rejeitadas, e utilizaremos variáveis para obtermos mais informações sobre o processo. Monitoraremos a quantidade de Estoque em Processo (WIP), de peças rejeitadas e de peças produzidas.

2.1 Descrição

No Modelo 2, a matéria-prima (mat_prima) entra no sistema no local Pallet de Entrada (pallet_entrada) e então vai para a serra. Da serra, 5 peças vão para o torno, fresa e, antes de seguirem, deverão passar pelo processo de Inspeção (inspecao). O processo de inspeção utiliza um bloco de roteamento com duas linhas, cada uma com uma probabilidade de ocorrência, conforme Tabela 1.

Tabela 1: Bloco de Processamento do Inspecionador.

Processamento							
Entidade	Local	Operação	Saída	Destino	Regra	Lógica de Movimento	
Peça	freza	2 MIN	Peça	inspecao	FIRST 1	0.1 MIN	
Peça	inspecao	1 MIN	Peça	trat_termico	$0.75\ 1$	0.1 MIN	
			Rejeitada	EXIT	0.25	0 MIN	

Somente após inspeção irão para o Tratamento Térmico (trat_termico) ou, se rejeitadas, irão para a saída (EXIT). O Tratamento Térmico combina lotes de 10 peças e, então, manda o lote para o pallet_saida e um produto acabado (combinação de 5 lotes) sai do pallet_saida para a saída do modelo (EXIT).

Para o acompanhamento do processo, utilizaremos as variáveis descritas na Tabela 2. A variável WIP pode ser incrementada quando as peças são efetivamente criadas após a serra e decrementada assim que as peças (acabadas ou não) saírem do sistema. A variável pecas_acabadas só é incrementada quando as peças acabadas saem do sistema e a variável pecas_rejeitadas tem comportamento análogo, ou seja, é incrementada quando as peças rejeitadas saem do sistema.

Tabela 2: Variáveis utilizadas no Modelo 2.

Nome	Tipo
WIP	Inteiro
pecas_rejeitadas	Inteiro
pecas_completadas	Inteiro

A descrição detalhada do Modelo 2 está nas páginas 66 e 67 da Apostila.

2.2 Tarefas

Implemente o modelo no ProModel, simule o sistema por 10 horas (tempo de simulação) e analise os resultados da simulação.

Perguntas

- 1. Onde estão os gargalos do sistema? Por quê? Justifique com base nos gráficos gerados pela simulação.
- 2. Que mudanças você propõe para melhorar o desempenho do sistema?

- 3. Altere o modelo para refletir suas mudanças, simule novamente, discuta os resultados com base nos gráficos gerados pela simulação.
- 4. Qual foi o efeito causado pela adição de mais uma unidade de tratamento térmico e o impacto da probabilidade das peças serem rejeitadas?

Referências

[1] BELGE CONSULTORIA. "Curso Básico de Simulação com o ProModel".