# MAT224 Notes

# Tianyu Du

# January 2018

| т | C   |  |
|---|-----|--|
| 1 | nto |  |

Created: January. 9 2018

Last modified: February 1, 2018

Partial revision (Lec.1 - Lec.8): February 1, 2018

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.



# Contents

| 1        | $\mathbf{Lec}$ | ture1 Jan.9 2018                        | 2 |
|----------|----------------|-----------------------------------------|---|
|          | 1.1            | Vector spaces                           | 2 |
|          | 1.2            | Examples of vector spaces               |   |
|          | 1.3            | Some properties of vector spaces        |   |
| <b>2</b> | Lec            | ture2 Jan.10 2018                       |   |
|          | 2.1            | Some properties of vector spaces-Cont'd |   |
|          | 2.2            | Subspaces                               |   |
|          | 2.3            | Examples of subspaces                   |   |
|          |                | Recall from MAT223                      |   |
| 3        | Lec            | ture3 Jan.16 2018                       | 8 |
|          | 3.1            | Linear Combination                      | 8 |
|          |                | Combination of subspaces                |   |
| 4        | Lec            | ture4 Jan.17 2018                       | 2 |
|          | 4.1            | Cont'd                                  | 2 |
|          |                | Linear Independence                     |   |

| 5  | $\operatorname{Lec}$      | ture5 Jan.23 2018                                                                                                                            | <b>14</b>      |
|----|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|    | 5.1                       | Linear independence, recall definitions                                                                                                      | 14             |
|    |                           | 5.1.1 Alternative definitions of linear independency                                                                                         | 14             |
|    | 5.2                       | Basis                                                                                                                                        | 14             |
|    | 5.3                       | Dimensions                                                                                                                                   | 17             |
|    |                           | 5.3.1 Consequences of fundamental theorem                                                                                                    | 18             |
|    |                           | 5.3.2 Use dimension to prove facts about linearly (in)dependent                                                                              | t              |
|    |                           | sets and subspaces                                                                                                                           | 18             |
| 6  | Lec                       | ture6 Jan.24 2018                                                                                                                            | 19             |
|    | 6.1                       | Basis and Dimension                                                                                                                          | 19             |
| 7  | Lec                       | ture7 Jan.30. 2018                                                                                                                           | 22             |
|    | 7.1                       | Linear Transformations                                                                                                                       | $\frac{1}{22}$ |
|    | 7.2                       | Properties of linear transformations                                                                                                         | 23             |
|    | 7.3                       | Definitions                                                                                                                                  | 25             |
| 8  | Lec                       | ture8 Jan.31 2018                                                                                                                            | 26             |
| 0  | 8.1                       | Linear Transformations                                                                                                                       | 26             |
|    | 8.2                       | Applications of dimension theorem                                                                                                            | 28             |
|    |                           | ••                                                                                                                                           |                |
| 1  | $\mathbf{L}_{\mathbf{c}}$ | ecture1 Jan.9 2018                                                                                                                           |                |
| 1. | 1 V                       | Vector spaces                                                                                                                                |                |
|    |                           | tion A $\underline{\text{real}}^{1}$ vector space is a set $V$ together with two vectors vector addition and scalar multiplication such that | ctor           |
|    | 1. <b>A</b>               | <b>C</b> Additive Closure: $\forall \vec{x}, \vec{y} \in V, \vec{x} + \vec{y} \in V$                                                         |                |
|    | 2. <b>C</b>               | Commutative: $\forall \vec{v}, \vec{y} \in V, \vec{x} + \vec{y} = \vec{y} + \vec{x}$                                                         |                |
|    | 3. <b>A</b>               | A Additive Associative: $\forall \vec{x}, \vec{y}, \vec{z} \in V, (\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$             |                |
|    | 4. <b>Z</b>               | Zero Vector: $\exists \ \vec{0} \in Vs.t. \forall \vec{x} \in V, \vec{x} + \vec{0} = \vec{x}$                                                |                |
|    | 5. <b>A</b>               | I Additive Inverse: $\forall \vec{x} \in V, \exists -\vec{x} \in V s.t.\vec{x} + (-\vec{x}) = \vec{0}$                                       |                |
|    | 6. <b>S</b>               | C Scalar Closure: $\forall \vec{x}, c \in \mathbb{R}, c\vec{x} \in V$                                                                        |                |
|    |                           | <b>PVA</b> Distributive Vector Additions: $\forall \vec{x}, \vec{y} \in V, c \in \mathbb{R}, c(\vec{x} + \vec{y})$ $\vec{x} + c\vec{y}$      | =              |

<sup>&</sup>lt;sup>1</sup>A vector space is real if scalar which defines scalar multiplication is real.

- 8. **DSA** Distributive Scalar Additions:  $\forall \vec{x} \in V, c, d \in \mathbb{R}, (c+d)\vec{x} = c\vec{x} + d\vec{x}$
- 9. **SMA** Scalar Multiplication Associative:  $\forall \vec{x} \in V, c, d \in \mathbb{R}, (cd)\vec{x} = c(d\vec{x})$
- 10. **O** One:  $\forall \vec{x} \in V, 1\vec{x} = \vec{x}$

**Note** For V to be a vector space, need to know or be given operations of vector additions multiplication and check <u>all</u> 10 properties hold.

# 1.2 Examples of vector spaces

**Example 1**  $\mathbb{R}^n$  w.r.t.<sup>2</sup> usual component-wise addition and scalar multiplication.

**Example 2**  $\mathbb{M}_{m \times n}(\mathbb{R})$  set of all  $m \times n$  matrices with real entry. w.r.t. usual entry-wise addition and scalar multiplication.

**Example 3**  $\mathbb{P}_n(\mathbb{R})$  set of polynomials with real coefficients, of degree less or equal to n, w.r.t. usual degree-wise polynomial addition and scalar multiplication.

**Note** If define  $\mathbb{P}_n^{\star}(\mathbb{R})$  as set of all polynomials of degree <u>exactly equal</u> to n w.r.t. normal degree-wise multiplication and addition.

Then it is **NOT** a vector space.

**Explanation**:  $(1+x^n), (1-x^n) \in \mathbb{P}_n^{\star}(\mathbb{R})$  but  $(1+x^n) + (1-x^n) = 2 \notin \mathbb{P}_n^{\star}(\mathbb{R})$ 

**Example 4** Something unusual, define V as

$$V = \{(x_1, x_2) | x_1, x_2 \in \mathbb{R}\}\$$

with vector addition

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1 + 1, x_2 + y_2 + 1)$$

and scalar multiplication

$$c(x_1, x_2) = (cx_1 + c - 1, cx_2 + c - 1)$$

This is a vector space.

<sup>&</sup>lt;sup>2</sup>w.r.t. is the abbreviation of "with respect to".

# 1.3 Some properties of vector spaces

Suppose V is a vector space, then it has the following properties.

**Property 1** The zero vector is unique. *proof.* 

Assume 
$$\vec{0}, \vec{0^{\star}}$$
 are two zero vectors in  $V$  WTS:  $\vec{0} = \vec{0^{\star}}$  Since  $\vec{0}$  is the zero vector, by Z  $\vec{0^{\star}} + \vec{0} = \vec{0^{\star}}$  Similarly,  $\vec{0} + \vec{0^{\star}} = \vec{0}$  Also,  $\vec{0} + \vec{0^{\star}} = \vec{0^{\star}} + \vec{0}$  by commutative vector addition. So,  $\vec{0^{\star}} = \vec{0}$ 

**Property 2**  $\forall \vec{x} \in V$ , the additive inverse  $-\vec{x}$  is unique. *proof.* 

Exercise. (By Cancellation Law)

Property 3  $\forall \vec{x} \in V, 0\vec{x} = \vec{0}.$  proof.

By property of number 0: 
$$0\vec{x} = (0+0)\vec{x}$$
  
By DSA:  $0\vec{x} = 0\vec{x} + 0\vec{x}$   
By AI,  $\exists (-0\vec{x})s.t.$   
 $0\vec{x} + (-0\vec{x}) = 0\vec{x} + 0\vec{x} + (-0\vec{x})$   
By AA  
 $\implies 0\vec{x} = \vec{0}$ 

Property 4 
$$\forall c \in \mathbb{R}, c\vec{0} = \vec{0}$$
 proof. 
$$c\vec{0} = c(\vec{0} + \vec{0}) = c\vec{0} + c\vec{0}$$

#### 2 Lecture Jan. 10 2018

# 2.1 Some properties of vector spaces-Cont'd

**Property 5** For a vector space V,  $\forall \vec{x} \in V$ ,  $(-1)\vec{x} = (-\vec{x})$ . (we could use this property to find the <u>additive inverse</u> with scalar multiplication with (-1))<sup>3</sup>. proof.

$$(-\vec{x}) = (-\vec{x}) + \vec{0}$$
 By property of zero vector 
$$= (-\vec{x}) + 0\vec{x}$$
 By property3 
$$= (-\vec{x}) + (1 + (-1))\vec{x}$$
 By property of zero as real number 
$$= (-\vec{x}) + 1\vec{x} + (-1)\vec{x}$$
 
$$= \vec{0} + (-1)\vec{x}$$
 
$$= (-1)\vec{x}$$

**Property 6** For a vector space V, let  $\vec{x} \in V$  and  $c \in \mathbb{R}$ , then,

$$c\vec{x} = \vec{0} \implies c = 0 \lor \vec{x} = \vec{0}$$

proof.

if 
$$c = 0 \implies True$$
  
else  $c^{-1}c\vec{x} = c^{-1} = \vec{0}$   
 $\implies (c^{-1}c)\vec{x} = \vec{0}$   
 $\implies 1\vec{x} = \vec{0}$   
 $\implies \vec{x} = \vec{0}$   
 $\implies True$ 

#### 2.2 Subspaces

**Loosely** A subspace is a space contained within a vector space.

 $<sup>^3</sup>$ The scalar multiplication here is the one defined in vector space V.

**Definition** Let V be a vector space and  $W \subseteq V$ , W is a **subspace** of V if W is itself a vector space w.r.t. operations of vector addition and scalar multiplication from V.

**Theorem** Let V be a vector space, and  $W \subseteq V$ , W has the <u>same</u><sup>4</sup> operations of vector addition and scalar multiplication as in V. Then, W is a subspace of V <u>iff</u>:

- 1. W is non-empty.  $W \neq \emptyset$ .
- 2. W is closed under addition.  $\forall \vec{x}, \vec{y} \in W, \ \vec{x} + \vec{y} \in W$ .
- 3. W us closed under scalar multiplication.  $\forall \vec{x} \in W, c \in \mathbb{R}, c\vec{x} \in W$ .

# Proof.

Forward:

If W is a subspace

$$\implies \vec{0} \in W$$

$$\implies W \neq \emptyset$$

Also, additive and scalar multiplication closures  $\implies$  (ii), (iii)

# Backward:

Let  $W \neq \emptyset \land (ii) \land (iii)$ 

WTS. 10 axioms in definition of vector space hold

- $(ii) \implies \text{Additive Closure}$
- $(iii) \implies \text{Scalar Multiplication Clousure}$

Because  $W \subseteq V$ , and V is a vector space, so properties hold  $\forall \vec{w} \in W$ .

Additive inverse: by property 5 and scalar multiplication closure,

$$\forall \vec{x} \in W, -\vec{x} = (-1)\vec{x} \in W.$$

Also, existence of additive identity:  $(-\vec{x}) + \vec{x} = \vec{0} \in W$ .

#### 2.3 Examples of subspaces

**Example 1** Let  $V = \mathbb{M}_{n \times n}(\mathbb{R})$ , V is a subspace.

<sup>&</sup>lt;sup>4</sup>Other properties of vector spaces related to vector addition and scalar multiplication are immediately inherited from the parent vector space.

# **Example 2** Define W as

$$W = \{A \in \mathbb{M}_{n \times n}(\mathbb{R}) | A \text{ is } \underline{\text{not}} \text{ symmetric} \}$$

Explanation: Let 
$$A_1=\begin{bmatrix}0&-2\\-1&0\end{bmatrix}$$
 and  $A_2=\begin{bmatrix}0&2\\1&0\end{bmatrix}$   $A_1,A_2\in W$  but

$$A_1 + A_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \notin W.$$

Since there's no additive identity in set W, so W failed to be a vector space, therefore W is not a subspace.

**Example 3** Let  $V = \mathbb{P}_2(\mathbb{R})$ , is W defined as following,

$$W = \{ p(x) \in V | p(1) = 0 \}$$

a subspace of V?

proof.

WTS: (i)

Let 
$$z(x) = 0$$
 or  $z(x) = x^2 - 1, \forall x \in \mathbb{R}$ 

$$\implies W \neq \emptyset$$

WTS: (ii)

Let  $p_1, p_2 \in W$ , which means  $p_1(1) = p_2(1) = 0$ 

$$(p_1 + p_2)(1) = p_1(1) + p_2(1) = 0 + 0 = 0$$

$$\implies p_1 + p_2 \in W$$

 $\implies W$  is closed under addition.

WTS: (iii) Let 
$$p \in W$$
 and  $c \in \mathbb{R}$ 

$$\implies p(1) = 0$$

Since 
$$(c * p)(x) = c * p(x)$$
, we have  $(c * p)(1) = c * p(1) = c * 0 = 0$ 

$$\implies cp \in W.$$

So W is a subspace of V.

#### 2.4 Recall from MAT223

Let  $A \in \mathbb{M}_{m \times n}(\mathbb{R})$ , then Nul(A) is a subspace of  $\mathbb{R}^n$  and Col(A) is a subspace of  $\mathbb{R}^m$ .

#### 3 Lecture Jan. 16 2018

#### 3.1 Linear Combination

**Definition** Let V be a vector space,  $\vec{v_1}, \ldots, \vec{v_n} \in V$ ,  $a_1, \ldots, a_n \in \mathbb{R}$  the expression

$$c_1\vec{v_1} + \cdots + c_n\vec{v_n}$$

is called a linear combination of  $\vec{v_1}, \ldots, \vec{v_n}$ .

**Theorem** Let V be a vector space, W is a subspace of V,  $\forall \vec{w_1}, \dots \vec{w_k} \in W, c_1, \dots, c_k \in \mathbb{R}$ , we have

$$c_1\vec{w_1} + \dots + c_k\vec{w_k} \in W$$

Subspaces are <u>closed under linear combinations</u>, since subspaces are closed under scalar multiplication and vector addition.

**Theorem** Let V be a vector space, let  $\vec{v_1}, \ldots, \vec{v_k} \in V$  then the set of all linear combination of  $\vec{v_1}, \ldots, \vec{v_k}$ 

$$W = \{ \sum_{i=1}^{k} c_i \vec{v_i} | c_i \in \mathbb{R} \forall i \}$$

is a subspace of V. *proof.* 

Consider 
$$\vec{0} \in W$$
  
So,  $W \neq \emptyset$ 

Let  $c \in \mathbb{R}$ , Let  $\vec{x} \in W \land \vec{y} \in W$ 

By definition of span, we have,

$$\vec{x} = \sum_{i=1}^k a_i \vec{v_i}, \quad \vec{y} = \sum_{i=1}^k b_i \vec{v_i}$$

Consider,  $\vec{x} + c\vec{y}$ 

$$\vec{x} + c\vec{y} = \sum_{i=1}^{k} a_i \vec{v_i} + c \sum_{i=1}^{k} b_i \vec{v_i} = \sum_{i=1}^{k} (a_i + cb_i) \vec{v_i} \in W$$

**Definition** Let V be a vector space,  $\vec{v_1}, \ldots, \vec{v_k} \in V$ , **span** of the set of vectors  $\{\vec{v_i}\}_{i=1}^k$  is defined as the collection of all possible linear combinations of  $\{\vec{v_i}\}_{i=1}^k$ . By pervious theorem, span is a subspace.

#### 3.2 Combination of subspaces

**Definition** Let  $W_1, W_2$  be two sets, then the **union** of  $W_1, W_2$  is defined as:

$$W_1 \cup W_2 = \{ \vec{w} \mid \vec{w} \in W_1 \lor \vec{w} \in W_2 \}$$

the **intersection** of  $W_1, W_2$  is defined as:

$$W_1 \cap W_2 = \{ \vec{w} \mid \vec{w} \in W_1 \land \vec{w} \in W_2 \}$$

Now consider  $W_1, W_2$  to be two subspaces of vector space V, then we have,

- 1.  $W_1 \cup W_2$  is **not** a subspace.
- 2.  $W_1 \cap W_2$  is a subspace.

proof.

Falsify the statement by providing counter-example:

Consider.

$$W_{1} = \{(x_{1}, x_{2}) \mid x_{1} \in \mathbb{R}, x_{2} = 0\}$$

$$W_{2} = \{(x_{1}, x_{2}) \mid x_{2} \in \mathbb{R}, x_{1} = 0\}$$

$$\binom{0}{1} \in W_{1} \cup W_{2} \quad \binom{1}{0} \in W_{1} \cup W_{2}$$

$$\text{But}, \quad \binom{0}{1} + \binom{1}{0} = \binom{1}{1} \notin W_{1} \cup W_{2}$$

9

proof.

Because 
$$W_1$$
 and  $W_2$  are both subspaces, so  $\vec{0} \in W_1 \cap W_2 \implies W_1 \cap W_2 \neq \emptyset$   
Let  $\vec{x}, \vec{y} \in W_1 \cap W_2, c \in \mathbb{R}$   
Consider,  $\vec{x} + c\vec{y}$   
Sine  $W_1, W_2$  are subspaces,  
 $\vec{x} + c\vec{y} \in W_1 \wedge \vec{x} + c\vec{y} \in W_2$   
 $\implies \vec{x} + c\vec{y} \in W_1 \cap W_2$   
So,  $W_1 \cap W_2$  is a subspace.

**Definition** Let  $W_1, W_2$  be subspaces of vector space V, define the **sum** of two subspaces as:

$$W_1 + W_2 = \{ \vec{x} + \vec{y} \mid \vec{x} \in W_1 \land \vec{y} \in W_2 \}$$

**Note** Let  $\vec{x} = \vec{0} \in W_1$ ,  $\forall \vec{y} \in W_2$ ,  $\vec{y} \in W_1 + W_2$  so that,  $W_2 \subseteq W_1 + W_2$ . Similarly, let  $\vec{y} = 0 \in W_2$ ,  $\forall \vec{x} \in W_1$ ,  $\vec{x} \in W_1 + W_2$ . so that,  $W_1 \subseteq W_1 + W_2$ . So we have  $\forall \vec{v} \in W_1 \cap W_2$ ,  $\vec{v} \in W_1 + W_2$ . So that,

$$W_1 \cap W_2 \subseteq W_1 + W_2$$

Note  $W_1 + W_2$  is a subspace of V. proof.

Let 
$$\vec{x_1}, \vec{x_2} \in W_1, \vec{y_1}, \vec{y_2} \in W_2$$
  
By properties of subspaces,  
 $\forall c \in \mathbb{R}, \vec{x_1} + c\vec{x_1} \in W_1 \land \vec{y_2} + c\vec{y_2} \in W_2$   
Consider,  $\vec{x_1} + \vec{y_1} \in W_1 + W_2, \vec{x_2} + \vec{y_2} \in W_1 + W_2$   
 $(\vec{x_1} + \vec{y_1}) + c(\vec{x_2} + \vec{y_2})$   
 $= (\vec{x_1} + c\vec{x_2}) + (\vec{y_1} + c\vec{y_2}) \in W_1 + W_2$ 

**Definition(Unique Representation)** Let  $W_1, W_2$  be subspaces of vector space V, say V is **direct sum** of  $W_1$  and  $W_2$ , written as  $V = W_1 \bigoplus W_2$ , if every  $\vec{x} \in V$  can be written <u>uniquely</u> as  $\vec{x} = \vec{w_1} + \vec{w_2}$  where  $\vec{w_1} \in W_1$  and  $\vec{w_2} \in W_2$ .

**Equivalently** Let  $W_1$  and  $W_2$  be subspaces of V,  $V = W_1 \bigoplus W_2 \iff V = W_1 + W_2 \wedge W_1 \cap W_2 = \{\vec{0}\}.$ 

# 4 Lecture 4 Jan. 17 2018

#### 4.1 Cont'd

Cont'd Proof of Theorem proof.

(Forward direction) Suppose 
$$V = W_1 \bigoplus W_2$$

WTS.  $V = W_1 + W_2 \wedge W_1 \cap W_2 = \{\vec{0}\}$ 

Let  $V = W_1 \bigoplus W_2$ 
 $\Rightarrow \forall \vec{x} \in V$ , can be written uniquely as  $\vec{x} = \vec{w_1} + \vec{w_2}, \ \vec{w_1} \in W_1, \ \vec{w_2} \in W_2$ 
 $\Rightarrow V = W_1 + W_2$  by definition of  $sum$ .

Let  $\vec{x} \in W_1 \cap W_2$ 

Decomposition, let  $\vec{z} \in W_1, \vec{0} \in W_2$ 
 $\vec{z} = \vec{z} + \vec{0}, \ \vec{z} \in W_1, \vec{0} \in W_2$ 
 $\vec{z} = \vec{0} + \vec{z}, \ \vec{0} \in W_1, \vec{z} \in W_2$ 

Since decomposition is unique,  $\vec{z} = \vec{0}$ 

So,  $W_1 \cap W_2 = \{\vec{0}\}$ 

(Backward direction) Suppose  $V = W_1 + W_2 \wedge W_1 \cap W_2 = \{\vec{0}\}$ 

WTS.  $V = W_1 \bigoplus W_2$ 

Assume  $\vec{x} = \vec{w_1} + \vec{w_2}, \ \vec{w_1} \in W_1, \vec{w_2} \in W_2$ 
 $\vec{x} = \vec{w_1}' + \vec{w_2}', \ \vec{w_1}' \in W_1, \vec{w_2}' \in W_2$ 
 $\Rightarrow \vec{w_1} + \vec{w_2} = \vec{w_1}' + \vec{w_2}'$ 
 $\Rightarrow \vec{w_1} - \vec{w_1}' = \vec{w_2}' - \vec{w_2}$ 

Where, by definition of subspace,  $\vec{w_1} - \vec{w_1}' \in W_1 \wedge \vec{w_2}' - \vec{w_2} \in W_2$ 

So,  $\vec{w_1} - \vec{w_1}' = \vec{w_2}' - \vec{w_2} \in W_1 \cap W_2$ 

Since  $W_1 \cap W_2 = \{\vec{0}\}$ 
 $\Rightarrow \vec{w_1} = \vec{w_1}' \wedge \vec{w_2} = \vec{w_2}'$ 

So the decomposition is unique.

# 4.2 Linear Independence

Theorem (Redundancy theorem) Let V be a vector space,  $\{\vec{x_1}, \dots \vec{x_n}\}$ , let  $\vec{x} \in \{\vec{x_1}, \dots \vec{x_n}\}$ , then

$$span\{\vec{x_1}, \dots \vec{x_n}, \vec{x}\} = span\{\vec{x_1}, \dots \vec{x_n}\}$$

we say  $\vec{x}$  is the **redundant** vector that contributes nothing to the span. proof.

$$\det \vec{x} \in span\{\vec{x}, \dots, \vec{x_n}\}$$

$$\vec{x} = \sum_{i=1}^{n} c_i \vec{x_i} \text{ for } c_i \in \mathbb{R} \ \forall i$$
So, 
$$span\{\vec{x_1}, \dots, \vec{x_n}, \vec{x}\} = \{\sum_{i=1}^{n} a_i \vec{x_i} + z \vec{x} \mid a_i, z \in \mathbb{R} \forall i\}$$

$$= \{\sum_{i=1}^{n} a_i \vec{x_i} + z \sum_{i=1}^{n} c_i \vec{x_i} \mid a_i, c_i \in \mathbb{R} \forall i\}$$

$$= \{\sum_{i=1}^{n} (a_i + z c_i) \vec{x_i} \mid a_i, c_i \in \mathbb{R} \forall i\}$$

$$\text{Let } d_i = a_i + z c_i \in \mathbb{R}$$

$$= \{\sum_{i=1}^{n} d_i \vec{x_i} \mid d_i \in \mathbb{R} \forall i\}$$

$$= span\{\vec{x_1}, \dots, \vec{x_n}\}$$

**Definition** Let V be a vector space, let  $\{\vec{x_1}, \dots, \vec{x_n}\} \in V$ , we say  $\{v_i\}_{i=1}^n$  is **linearly independent** if the only set of scalars  $\{c_1, \dots, c_n\}$  that satisfies,

$$\sum_{i=1}^{n} c_i \vec{x_i} = 0$$

is  $\{0, \dots, 0\}$ .

**Definition** In contrast, we say a set of vector, with size n, is **linearly** dependent if

$$\exists \vec{c} \neq \vec{0} \in \mathbb{R}^n, \ s.t. \ \sum_{i=1}^n c_i \vec{v_i} = 0$$

**Theorem** Let V be a vector space,  $\{\vec{v_i}\}_{i=1}^n \in V$  is linearly dependent if and only if,

$$\exists \vec{x} \in \{\vec{v_i}\}_{i=1}^n \ s.t. \ \vec{x_j} \in span\{\{\vec{v_i}\}_{i=1}^n \setminus \{\vec{x}\}\}\$$

**Theorem** Let V be a vector space,  $\{\vec{v_i}\}_{i=1}^n \in V$  is linearly independent if and only if,

$$\forall \vec{x} \in \{\vec{v_i}\}_{i=1}^n, \ \vec{x_i} \notin span\{\{\vec{v_i}\}_{i=1}^n \setminus \{\vec{x}\}\}\$$

#### 5 Lecture Jan. 23 2018

#### 5.1 Linear independence, recall definitions

Acknowledgement: special thanks to Frank Zhao.

**Definition** Let  $\{\vec{x_1}, \dots \vec{x_k}\}$  is **linearly independent** if only scalars  $c_1 \dots c_k$  s.t.

$$\sum_{i=1}^{k} c_1 \vec{x_k} = 0(\star)$$

are 
$$c_1 = \dots = c_k = 0$$

linearly dependent means at least one  $c_i \neq 0$ ,  $(\star)$  still holds.

#### 5.1.1 Alternative definitions of linear independency

**Definition(Alternative.1)**  $\{\vec{x_1} \dots \vec{x_k}\}$  is linearly independent iff none of them can be written as a linear combination of the remaining k-1 vectors.<sup>5</sup>

**Definition(Alternative.2)**  $\{\vec{x_1} \dots \vec{x_k}\}$  is **linearly dependent** iff at least one of them can be written as a linear combination of the remaining k-1 vectors. <sup>6</sup>

#### 5.2 Basis

**Definition** Let V be a vector space, a non-empty<sup>7</sup> set S of vectors from V is a **basis** for V if

1. 
$$V = span\{S\}$$

<sup>&</sup>lt;sup>5</sup>See theorem from the pervious lecture.

 $<sup>^6\</sup>mathrm{See}$  theorem from the pervious lecture.

<sup>&</sup>lt;sup>7</sup>Specially, for an empty set, we define  $span\{\emptyset\} = \{\vec{0}\}$ 

# 2. S is linearly independent.

Theorem (characterization of basis) A non-empty subset  $S = \{\vec{x_i}\}_{i=1}^n$  of vector space V is basis for V iff every  $\vec{x} \in V$  can be written <u>uniquely</u> as linear combination for vectors in S.

proof.

#### **Forwards**

Suppose S is a basis for V

So every  $\vec{x} \in V$  can be written as a linear combination of vectors in S

To prove the uniqueness, assume two expressions of  $\vec{x} \in V$ 

$$\vec{x} = \begin{cases} c_1 \vec{x_1} + \dots + c_k \vec{x_k} \\ b_1 \vec{x_1} + \dots + d_k \vec{x_k} \end{cases}$$

Consider

$$c_1\vec{x_1} + \dots + c_k\vec{x_k} - (b_1\vec{x_1} + \dots + d_k\vec{x_k}) = \vec{0}$$

$$\iff \sum_{i=1}^{k} (c_i - b_i) \vec{x_1} = \vec{0}$$

Since vectors in basis S are linear independent,

$$c_i = b_i \forall i \in \mathbb{Z} \cap [1, k]$$

So the representation is unique.

#### **Backwards**

Suppose every  $\vec{x} \in V$  can be written uniquely as linear combination of vectors in S.

WTS:  $V = span\{S\} \land S$  is linearly independent

By the assumption, spanning set is shown.

All we need to show is linear independence.

Consider,

$$\sum_{i=1}^{n} c_i \vec{x}_i = \vec{0}$$

Also, we know

$$\sum_{i=1}^{n} 0\vec{x_i} = \vec{0}$$

By the uniqueness of representation

We have identical expression 
$$\sum_{i=1}^{n} c_i \vec{x}_i = \sum_{i=1}^{n} 0 \vec{x}_i$$

$$\therefore c_i = 0 \ \forall i \in \mathbb{Z} \cap [1, n]$$

#### Example

$$V = \{(x_1, x_2) \mid x_1, x_2 \in \mathbb{R}\}$$
$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1 + 1, x_2 + y_2 + 1)$$
$$c(x_1, x_2) = (cx_1 + c - 1, cx_2 + c - 1)$$

Show that  $\{(1,0),(6,3)\}$  is a basis of V.

By theorem,  $\{(1,0),(6,3)\}$  is basis if every  $(a,b) \in V$  can be written uniquely as linear combination of  $\{(1,0),(6,3)\}$ .

 $\exists$  unique scalars  $c_1, c_2 \in \mathbb{R}$  s.t.  $c_1(1,0) + c_2(6,3) = (a,b)$ 

proof.

By definition of scalar multiplication and vector addition in this space,

Consider
$$(a, b) = c_1(1, 0) + c_2(6, 3) = (2c_1 - 1, c_1 - 1) + (7c_2 - 1, 4c_2 - 1)$$
  
=  $(2c_1 + 7c_2 - 1, c_1 + 4c_2 - 1)$ 

Consider the coefficients of variables

$$\begin{cases} 2c_1 + 7c_2 - 1 = a \\ c_1 + 4c_2 - 1 = b \end{cases}$$

WTS, the above system of linear equations has unique solution for all a, b

The system has a unique solution  $\forall a, b \in \mathbb{R}$ 

Since the coefficient matrix has rank 2

$$rank(\begin{pmatrix} 2 & 7 \\ 1 & 4 \end{pmatrix}) = 2$$

Since obviously the columns are linearly independent.

#### 5.3 Dimensions

**Definition** For a vector space V, the **dimension** of V is the minimum number of vectors required to span V.

**Fundamental Theorem** if V vector space is spanned by m vectors, then any set of more than m vectors from V must be <u>linearly dependent</u>.

Fundamental Theorem (Alternative) If V is vector space spanned by m vectors, then any <u>linearly independent</u> set in V must contain less or equal to m vectors.

#### 5.3.1 Consequences of fundamental theorem

**Theorem** if  $S = \{\vec{v}_i\}_{i=1}^k$  and  $T = \{\vec{w}_i\}_{i=1}^l$  are two bases of vector space V then l = k. Bases have the same size.

proof.

Since S spans V and T is linearly independent

$$\therefore l \leq k$$

(flip) Since T spans V and S is linearly independent

**Definition** So we can define the **dimension** of V, as dim(V) as the number vectors in <u>any</u> basis for V. For special case  $V = \{\vec{0}\}$ , dim(V) = 0.

# Example

- $dim(\mathbb{R}^n) = n$
- $dim(\mathbb{P}_n(\mathbb{R})) = n+1$
- $dim(\mathbb{M}_{m \times n}(\mathbb{R})) = m \times n$

# 5.3.2 Use dimension to prove facts about linearly (in)dependent sets and subspaces

**Theorem** If V is a vector space, dim(V) = n,  $S = \{\vec{x_k}\}_{i=1}^k$  is subset of V, if k > n then S is <u>linearly dependent</u>.

Note  $k \leq n \Rightarrow S$  is linear dependent.

**Theorem** If W is subspace of vector space V, then

- 1.  $dim(W) \leq dim(V)$
- 2.  $dim(W) = dim(V) \iff W = V$

proof.

(1) Suppose 
$$dim(V) = n, dim(W) = k$$
  
WTS,  $k \le n$ 

Any basis for W is a linearly independent set of k vectors from V.

Since V is spanned by n vectors, since dim(V) = n

By fundamental theorem,  $k \leq n$ 

$$\iff dim(W) \le dim(V)$$

(2) By contradiction, assume dim(V) = dim(W) = n but  $V \neq W$ Then  $\exists \vec{x} \in V \land \vec{x} \notin W$ 

Take S as a basis of W, then  $\vec{x} \notin span\{S\}$ 

Then  $S \cup \vec{x}$  is linearly independent

 $\implies S \cup \{\vec{x}\}\$ is linearly independent in V containing n+1 vectors

This contradicts the assumption by fundamental theorem since dim(V) = n so it could not contain more than n linearly independent vectors

# 6 Lecture Jan. 24 2018

#### 6.1 Basis and Dimension

**Theorem** Let V be a vector space, S is a spanning set of V, and I is a linearly independent subset of V, s.t.  $I \subseteq S$ , then  $\exists$  basis B for V s.t.  $I \subseteq B \subseteq S$ .

#### Explaining

- 1. Any spanning set for V cab be **reduced** to basis for V by removing the linearly dependent(redundant) vector in the spanning set, using <u>redundancy theorem</u> to get a linearly independent spanning set.
- 2. Linear independent set can be **enlarged** to a basis for V.

proof.

omitted.

19

**Corollary** Let V be a vector space and dim(V) = n, any set of n linearly independent vectors from V is a basis for V.

proof. If n linearly independent vectors did not span V, then could be enlarged to a basis of V by pervious theorem, but then have a basis containing more than n vectors from V, which is impossible by the fundamental theorem since we given the dim(V) = n, proven by contradiction.

**Example** Let  $V = P_2(\mathbb{R})$ ,  $p_1(x) = 2 - 5x$ ,  $p_2(x) = 2 - 5x + 4x^2$ , find  $p_3 \in P_2(\mathbb{R})$  s.t.  $\{p_1(x), p_2(x), p_3(x)\}$  is basis for  $P_2(\mathbb{R})$ 

**Note** Since  $dim(P_2(\mathbb{R})) = 3$  so any 3 linearly independent vectors from  $P_2(\mathbb{R})$  will be a basis for  $P_2(\mathbb{R})$ .

**Solutions** e.g. constant function  $p_3(x) = 1$ , since  $1 \notin span\{p_1(x), p_2(x)\}$ , so  $\{p_1(x), p_2(x), p_3(x)\}$  is a basis of  $P_2(\mathbb{R})$ . e.g.  $p_3(x) = x$ , since  $x \notin span\{p_1(x), p_2(x)\}$ 

**Theorem** Let U and W be subspaces of vector space V, then we have

$$dim(U+W) = dim(U) + dim(W) - dim(U \cap W)$$

proof.

Let 
$$\{\vec{v_i}\}_1^k$$
 be basis for  $U \cap W$   
 $\implies dim(U \cap W) = k$ 

Since  $\{\vec{v_i}\}_1^k$  is basis for  $U \cap W$  then it's a linearly independent subset of U So it could be enlarged to basis for  $U, \{\vec{v_1}, \dots, \vec{v_k}, \vec{y_1}, \dots, \vec{y_r}\}$ 

So 
$$dim(U) = k + r$$

We also could enlarge a basis for W  $\{\vec{v_1}, \dots, \vec{v_k}, \vec{z_1}, \dots, \vec{z_s}\}$ 

$$\implies dim(V) = k + s$$

WTS.  $\{\vec{v_1}, \ldots, \vec{v_k}, \ldots, \vec{y_1}, \ldots, \vec{y_r}, \vec{z_1}, \ldots, \vec{z_s}\}$  is a basis for U + W

(If we could show this) 
$$dim(U+W) = k+r+s = (k+r)+(k+s)-k$$
  
=  $dim(U)+dim(W)-dim(U\cap W)$ 

Obviously, the above set spans U + W

WTS.  $\{\vec{v_1}, \dots, \vec{v_k}, \dots, \vec{y_1}, \dots, \vec{y_r}, \vec{z_1}, \dots, \vec{z_s}\}$  is linearly independent

Consider  $a_1 \vec{v_1} + \dots + a_k \vec{v_k} + b_1 \vec{y_1} + \dots + b_r \vec{y_r} + c_1 \vec{z_1} + \dots + c_s \vec{z_s} = \vec{0} (\star)$ 

From 
$$(\star) \implies \sum (c_i \vec{z_i}) = -\sum (a_i \vec{v_i}) - \sum b_i \vec{y_i}$$
  
 $\implies \sum (c_i \vec{z_i}) \in U \land \sum (c_i \vec{z_i}) \in W$   
 $\iff \sum (c_i \vec{z_i}) \in U \cap W$ 

Since  $\{\vec{v_i}\}$  is a basis for  $U \cap W$ 

$$\Longrightarrow \sum (c_i \vec{z_i}) = \sum (d_i \vec{v_i})$$

$$\iff \sum (c_i \vec{z_i}) - \sum (d_i \vec{v_i}) = \vec{0} \in W$$

 $\implies c_i = d_i = 0 \text{ since } \{\vec{z_i}, \vec{v_i}\} \text{ is a basis}$ Rewrite  $(\star)$ 

$$\sum (a_i \vec{v_i}) + \sum b_i \vec{y_i} = 0 \in U$$

 $\implies a_i = b_i = 0 \text{ since } \{\vec{v_i}, \vec{y_i}\} \text{ is a basis for } U$ 

Corollary For direct sum, since the intersection is  $\{\vec{0}\}$ 

$$dim(U \bigoplus W) = dim(U) + dim(W)$$

**Example** Let U,W are subspaces of  $\mathbb{R}^3$  such shat dim(U)=dim(W)=2, why is  $U\cap W\neq \{\vec{0}\}$ 

**Solutions** Geometrically, U and W are planes through origin then the intersection would be a line through  $\operatorname{origin}(U \neq W)$  or a plane through  $\operatorname{origin}(U = W)$ , so shown.

**Question** V is a vector space, dim(V) = n,  $U \neq W$  are subspaces of V but dim(U) = dim(V) = (n-1), proof:

- $1. \ V = U + W$
- 2.  $dim(U \cap W) = (n-z)$

#### 7 Lecture 7 Jan. 30, 2018

#### 7.1 Linear Transformations

**Definition** Let V,W be vector spaces, a function  $T:V\to W$  is a **linear transformation**<sup>8</sup> if

1. 
$$T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y}) \ \forall \vec{x}, \vec{y} \in V^9$$

2. 
$$T(c\vec{x}) = cT(\vec{x}) \ \forall \vec{x} \in V, \ c \in \mathbb{R}^{10}$$

Linear transformation preserves <u>vector additions and saclar multiplications</u> on vector spaces.

**Theorem(Alternative definition)** Transformation  $T: V \to W$  is linear if and only if

$$T(c\vec{x} + d\vec{y}) = cT(\vec{x}) + dT(\vec{y}), \ \forall \vec{x}, \vec{y} \in V, c, d \in \mathbb{R}$$

Linear transformations preserves <u>linear combinations</u>.

**Example** (form 223) Rotation through angle  $\theta$  about the origin in  $\mathbb{R}^2$ .

<sup>&</sup>lt;sup>8</sup>In some textbooks, this is annotated as **linear mapping**.

 $<sup>^{9}</sup>$ Notice that the vector additions on the left and right sides of the equation are defined in different vector spaces, in V and W respectively.

 $<sup>^{10}</sup>$ Notice that the scalar multiplication on the left and right sides of the equation are defined in different vector spaces, in V and W respectively.

**Example** (from 223) <u>Matrix transformation</u>, let  $A \in M_{m \times n}(\mathbb{R})$ , transformation  $T : \mathbb{R}^n \to \mathbb{R}^m$  defined as

$$T(\vec{x}) = A\vec{x}$$

is linear.

**Example** Derivative  $T: P_n(\mathbb{R}) \to P_{n-1}(\mathbb{R})$  defined by

$$T(\vec{p}(x)) = \vec{p}'(x)$$

**Example** Matrix transpose  $T: M_{m \times n}(\mathbb{R}) \to M_{n \times m}(\mathbb{R})$  defined by

$$T(A) = A^T$$

# 7.2 Properties of linear transformations

**Property(i)** Linear transformation  $T: V \to W$  are <u>uniquely</u> defined by their values on <u>any</u> basis for V.

proof.

Let
$$\{\vec{v_1}, \dots, \vec{v_k}\}$$
 be any basis for  $V$ 

Every vector  $\vec{x} \in V$  can be uniquely written as some linear combination of the  $\{\vec{v}_i\}_{i=1}^k$ 

$$\vec{x} = \sum_{i=1}^{k} c_i \vec{v_i}, \ c_i \in \mathbb{R}, \text{ and } c_i \text{ are uniquely determined } \forall \vec{x} \in V$$

$$\implies T(\vec{x}) = T(\sum_{i=1}^{k} c_i \vec{v_i})$$

 $= \sum_{i=1}^{k} c_i T(\vec{v_i}) \text{ since the transformation } T \text{ is linear.}$ 

Since  $c_i$ s are uniquely determined by  $\{\vec{v_i}\}_{i=1}^k$ 

so the value of  $T(\vec{x})$  is uniquely determined by its value on basis vectors  $\{\vec{v_i}\}_{i=1}^k$ .

**Property(ii)** Let  $T: V \to W$  be a linear transformation, let A be a subspace of vector space V, then the **image** T(A) defined as

$$T(A) = \{ T(\vec{x}) \mid \vec{x} \in A \}$$

called the image of A under linear transformation T is a subspace of W. Linear transformation maps subspaces of V to subspaces of W.

proof.

Since A is a subspace so it's non-empty, therefore  $\exists T(\vec{x}), \ \vec{x} \in A$ 

So 
$$T(A) \neq \emptyset$$

Let 
$$\vec{w_1}, \vec{w_2} \in T(A)$$

$$\implies \vec{w_1} = T(\vec{x_1}), \vec{w_2} = T(\vec{x_2}), \vec{x_1}, \vec{x_2} \in A$$

$$\implies \vec{w_1} + \vec{w_2} = T(\vec{x_1}) + T(\vec{x_2}) = T(\vec{x_1} + \vec{x_2})$$
 since T is linear.

Since  $\vec{x_1} + \vec{x_2} \in A$  by the definition of subspaces.

$$\implies \vec{w_1} + \vec{w_2} \in T(A)$$

So T(A) is closed under vector addition.

Let 
$$\vec{w} \in T(A)$$

$$\implies \vec{w} = T(\vec{x}), \vec{x} \in A$$

Let 
$$c \in \mathbb{R}$$

Consider 
$$c\vec{w} = cT(\vec{x}) = T(c\vec{x})$$

Since 
$$c\vec{x} \in A$$

So 
$$c\vec{w} \in T(A)$$

So T(A) is closed under scalar multiplication.

**Property(derived from the definition)** For all linear transformation  $T: V \to W$ , we have <sup>11</sup>

$$T(\vec{0}) = \vec{0}$$

**Property(iii)** Let transformation  $T: V \to W$  be linear, let B be a subspace of W, then its **pre-image** defined as

$$T^{-1}(B) = \{ \vec{x} \in V \mid T(x) \in B \}$$

is a subspace of V. <sup>12</sup>

<sup>&</sup>lt;sup>11</sup>In the equation, clearly, the zero vector on the left side of the equation is in space V and the zero vector on the right side is in space W.

 $<sup>^{12}</sup>$ The pre-image and inverse share the same notation, but in this case, transformation T is not necessarily invertible.

proof.

Let 
$$\vec{w_1}, \vec{w_2} \in T^{-1}(B)$$

$$\implies T(\vec{w_1}), T(\vec{w_2}) \in B$$

$$\implies aT(\vec{w_1}) + b(\vec{w_2}) \in B, \ \forall a, b \in \mathbb{R} \text{ since } B \text{ is a subspace.}$$

$$\implies T(a\vec{w_1} + b\vec{w_2}) \in B$$

$$\implies a\vec{w_1} + b\vec{w_2} \in T^{-1}(B)$$

So  $T^{-1}(B)$  is closed under both vector addition and scalar multiplication, So  $T^{-1}(B)$  is a subspace.

#### 7.3 Definitions

Let  $T: V \to W$  to be a linear transformation,

**Definition** the **Image** of transformation T is defined as

$$Im(T) = T(V) = \{T(\vec{x}) \mid \vec{x} \in V\}$$

**Definition** the **Rank** of transformation T is defined as

$$Rank(T) = dim(Im(T))$$

**Definition** the **Kernel** of transformation T is defined as

$$Ker(T) = T^{-1}(\{\vec{0}\}) = \{\vec{x} \in V \mid T(\vec{x}) = \vec{0}\}\$$

**Definition** the **Nullity** of transformation T is defined as

$$Nullity(T) = dim(ker(T))$$

**Example**  $T: P_3(\mathbb{R}) \to P_3(\mathbb{R})$  is <u>linear</u> defined by

$$T(\vec{p}(x)) = \vec{p}(2x+1) - 8\vec{p}(x)$$

find Ker(T).

**Theorem** Let  $T: V \to W$  be a linear transformation, let  $\{\vec{v_1}, \dots, \vec{v_k}\}$  be the spanning set of  $V^{13}$ , then  $\{T(\vec{v_1}), \dots, T(\vec{v_k})\}$  spans Im(T)

proof.

Let 
$$\vec{w} \in Im(T)$$

Since 
$$V = span\{\vec{v_1}, \dots, \vec{v_k}\}$$

For any  $\vec{x} \in V$  can be written as

$$\vec{x} = \sum_{i=1}^{k} c_i \vec{v_i}, \ c_i \in \mathbb{R}$$

$$\implies \vec{w} = T(\vec{x}) = T(\sum_{i=1}^{k} c_i \vec{v_i})$$

$$= \sum_{i=1}^{k} c_i T(\vec{v_i})$$

as a linear combination of  $\{T(\vec{v_1}), \ldots, T(\vec{v_k})\}$ 

So 
$$Im(T) = span\{T(\vec{v_1}), \dots, T(\vec{v_k})\}$$

#### 8 Lecture 8 Jan. 31 2018

#### 8.1 Linear Transformations

**Example**  $T: P_3(\mathbb{R}) \to P_3(\mathbb{R})$ 

$$T(p(x)) = p(2x+1) - 8p(x)$$

Find the image of T.

We know  $B = \{1, x, x^2, x^3\}$  is the standard basis for  $P_3(\mathbb{R})$ , consider the set P(B)

$$P(B) = \{-7, 1 - 6x, 1 + 4x - 4x^2, 1 + 6x + 12x^2\}$$

spans Im(T). Notice the first three vectors in the set is linearly independent, the last vector is clearly dependent to the pervious three.<sup>14</sup>. So by the redundancy theorem we could remove the last vector. There we have

$$Im(T) = span\{-7, 1 - 6x, 1 + 4x - 4x^2\}$$

<sup>&</sup>lt;sup>13</sup>The set is only the spanning set of V, it's not necessarily to be a basis of V.

<sup>&</sup>lt;sup>14</sup>Notice that the first three vectors is a basis of  $P_2(\mathbb{R})$ .

as basis.

In this example, the dimension of Ker(T) is 1 and the dimension of Im(T) is 3, and dimension of  $P_3(\mathbb{R})$  is 4. We have,  $dim(P_3(\mathbb{R})) = Nullity(T) + Rank(T)$ 

**Theorem(Dimension Theorem)** Let  $T: V \to W$  be a linear transformation,

$$dim(V) = Nullity(T) + Rank(T)$$

Proof.

Say 
$$dim(V) = n$$

Let  $\{\vec{v_1}, \dots, \vec{v_k}\}$  be a basis for Ker(T)

Since Ker(T) is a subspace of V, the set  $\{\vec{v_i}\}_1^k$  is a subset of V,

It can be extended to a basis  $\{\vec{v_i}\}_1^k \cup \{\vec{v_i}\}_{k+1}^n$  for V.

Claim: 
$$\{T(\vec{v_{k+1}}), \dots, T(\vec{v_n})\}\$$
 is basis for  $Im(T)$ 

If the claim is true, this prove the theorem since

$$dim(Ker(T)) + dim(Im(T)) = k + n - k = n = dim(V)$$

$$T(\vec{v_i}) = \vec{0}, \ \forall i \in \mathbb{Z}_1^k$$

and by the definition of kernel of linear transformation,

$$\therefore \{T(\vec{v_i})\}_{k+1}^n \text{ spans } Im(T)$$

Show if 
$$\sum_{i=k+1}^{n} c_i T(\vec{v_i}) = \vec{0} \implies c_i = 0$$

$$\implies T(\sum_{i=k+1}^{n} c_i \vec{v_i}) = \vec{0}$$

$$\implies \sum_{i=k+1}^n c_i \vec{v_i} \in Ker(T)$$

$$\implies \sum_{i=k+1}^{n} c_i \vec{v_i} = \sum_{i=1}^{k} c_i \vec{v_i}$$

$$\implies c_1 \vec{v_1} + \dots + c_k \vec{v_k} - c_{k+1} \vec{v_{k+1}} - \dots - c_n \vec{v_n} = \vec{0}$$

Since  $\{\vec{v_i}\}_i^n$  is a basis for V.

$$\implies c_i = 0 \ \forall i$$

# 8.2 Applications of dimension theorem

**Definition** A linear transformation  $T: V \to W$  is called **injective**(one-to-one) if and only if

$$T(\vec{v_1}) = T(\vec{v_2}) \implies \vec{v_1} = \vec{v_2}$$

**Definition** A linear transformation  $T: V \to W$  is called **surjective**(onto) if and only if

$$Im(T) = W$$

Every vector in W has a pre-image in V.

**Definition** A linear transformation  $T: V \to W$  is called **bijective** if it's both injective and surjective.

**Theorem** Let transformation  $T: V \to W$  is linear, T is injective if and only if dim(Ker(T)) = 0.

Proof.

#### Exercise

**Theorem** T is surjective if and only if dim(Im(T)) = dim(W).

**Example**  $T: P_2(\mathbb{R}) \to \mathbb{R}^2$  defined by

$$T(p(x)) = \begin{pmatrix} p(1) \\ p(2) \end{pmatrix}$$

is T injective? surjective?

Not injective but surjective.

Solution

$$Ker(T) = span\{(x-1)(x-2)\}$$

So T has nullity of 1 and since  $dim(P_2(\mathbb{R})) = 3$ , by the <u>dimension theorem</u> we have Rank(T) = 2 and since Im(T) is a subspace of  $\mathbb{R}^2$  which has dimension of 2, we could conclude that  $Im(T) = \mathbb{R}^2$ .