Multicore/Multinode hands-on exercises

Nandhana Sakthivel

Exercise 5

Aim

The aim of this exercise is to get an understanding of benchmarking tools like **IMPI Pingpong**, **STREAM** and **nodeperf**. It contains the following exercises: to measure the latency among MPI processes, measuring bandwidth and running a program using nodeperf.

Introduction

Benchmarking is the act of running a computer program, a set of programs, or other operations, in order to assess the relative performance of an object, normally by running a number of standard tests and trials against it.

IMPI Pingpong Benchmark

The Intel MPI Benchmarks perform a set of MPI performance measurements for point-to-point and global communication operations for a range of message sizes. The generated benchmark data fully characterizes:

- Performance of a cluster system, including node performance, network latency, and throughput
- Efficiency of the MPI implementation used

Latency Measure

Ping Pong is a benchmark created by Intel to measuring latency and throughput of a single message sent between two processes. Latency is the time between initiating a request for a byte or a word in memory until it is retrieves by a processor.

Here, the latency is measured for 1000 iterations for 3 different runs for 0 to 2 bytes. The average latency is found to be **0.65** μs

Bytes	Run 1	Run 2	Run 3	Min
0	0.68	0.62	0.65	0.65
1	0.75	0.65	0.67	0.69
2	0.75	0.66	0.67	0.69

Bandwidth Measure

Bandwidth is the maximum rate of data transfer across a given path. To measure bandwidth we will look at the largest messages when bandwidth tends to be flat.

Here, the bandwidth is measured for 1000 iterations for 3 different runs for 1 to 4 bytes. The average bandwidth is found to be 1.43 Mb/s

Bytes	Run 1	Run 2	Run 3	Min
1	1.41	1.39	1.51	1.43
2	2.82	2.82	3.06	2.9
4	5.60	5.64	6.06	5.76

Intranode/Internode Communication Performance

Internode

Here we are estimating the latency between two cores which are on the same socket.

#	. Di		
<pre># Benchmarking # #processes =</pre>			
# #processes -	- Z 		
#bytes	#repetitions	t[usec]	Mbytes/sec
0	1000	0.76	0.00
1	1000	0.76	1.26
2	1000	0.75	2.53
4	1000	0.76	5.01
8	1000	0.75	10.11
16	1000	0.75	20.28
32	1000	0.78	39.00
64	1000	0.80	75.87
128	1000	0.79	153.92
256	1000	0.83	295.40
512	1000	1.05	465.24
1024	1000	1.27	767.11
2048	1000	1.57	1245.27
4096	1000	2.41	1621.86
8192	1000	3.65	2142.82
16384	1000	7.13	2191.73
32768	1000	12.65	2469.68
65536	640	15.48	4036.72
131072	320	27.98	4466.78
262144	160	50.06	4994.11
524288	80	106.34	4701.74
1048576	40	219.07	4564.67
2097152	20	442.25	4522.34
4194304	10	908.65	4402.14

Figure 1: Latency and Bandwidth of Internode

Intranode

Here we are estimating the latency between two cores which are on different sockets.

#			
# Benchmarking	PingPong		
# #processes =			
#			
#bytes	#repetitions	t[usec]	Mbytes/sec
0	1000	11.50	0.00
1	1000	11.94	0.08
2	1000	11.21	0.17
4	1000	11.29	0.34
8	1000	12.19	0.63
16	1000	12.22	1.25
32	1000	11.69	2.61
64	1000	12.11	5.04
128	1000	11.89	10.26
256	1000	11.84	20.62
512	1000	11.38	42.91
1024	1000	11.97	81.61
2048	1000	12.69	153.92
4096	1000	12.70	307.61
8192	1000	14.14	552.53
16384	1000	15.76	991.34
32768	1000	20.19	1548.02
65536	640	1663.98	37.56
131072	320	1653.12	75.61
262144	160	829.78	301.28
524288	80	2524.36	198.07
1048576	40	5912.70	169.13
2097152	20	12700.22	157.48
4194304	10	26546.41	150.68

Figure 2: Latency and Bandwidth of Intranode

Comparison

From the result, we can see that for 4194304 bytes the internode has the latency of 988.65 microseconds and bandwidth of 4.4 Gb/s where as the intranode has the latency of 26546.41 microseconds and bandwidth of

0.15 Gb/s. So, we can see that the communication between cores on the same socket is much better than the cores on different sockets.

Stream Benchmark

The **STREAM** Benchmark is a simple synthetic benchmark program that measures sustainable bandwidth (in MB/s) and the corresponding computation rate for simple vector kernels. Here, we are using **numactl** to bind the threads according to our need. The following graph gives the comparison of memory bind within same socket and different sockets.

Figure 3: Comparison between close and distant memory

From the graph we can see that the bandwidth of the memory accessed on the same socket (26 Gb/s) which is higher than the bandwidth of the memory accessed on different socket (12 Gb/s)

Nodeperf

nodeperf.c is a small program to test the computational node's performance. This is a simple MPI program that runs a highly optimized version of a double precision general matrix multiply (DGEMM) library routine from the MKL. This routine is also the core of the HPL test.

When the program is compiled using Intel Compiler we obtained a performance of 458.219 Gflops which is 102% of the peak performance of Ulysses. When the program is compiled using GNU compiler we obtained a performance of 27.835 Gflops which is 6.2% of the peak performance of Ulysses.

This shows that the Intel compiler provides better performance compared to GNU compiler. Hence, we should opt for the compilers according to our need.