

COMPUTAÇÃO EVOLUCIONÁRIA ALGORITMOS GENÉTICOS (1)

Cristiano Leite de Castro

crislcastro@ufmg.br

Departamento de Engenharia Elétrica Universidade Federal de Minas Gerais Belo Horizonte, Brasil

Introdução

- Algoritmo Genético (AG) é um método de busca probabilístico inspirado na Teoria da Evolução de Darwin;
- concebido por John Holland¹ e seus alunos na Universidade de Michigan na década de 1970.
 - objetivo inicial: simular/estudar o comportamento adaptativo dos seres vivos;
 - no entanto, tem sido tipicamente aplicado para resolver problemas de otimização, principalmente com variáveis de decisão discretas (otimização combinatória).
- 1. John H. Holland. Adaptation in Natural and Artificial Systems:

 An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence.

 MIT Press, Cambridge, MA, USA. (1975)

Introdução

• AG original proposto por Holland ficou conhecido como AG simples (SGA) ou canônico;

- Desde então, outros AGs têm sido propostos e se diferenciam em:
 - formas de representação das soluções candidatas;
 - operadores de recombinação e mutação;
 - mecanismos de seleção;
 - etc.

AG Simples (SGA)

• Esquema Geral:

AG Simples (SGA)

• Características:

Forma de Representação	Codificação binária
Operador de Recombinação	crossover de 1-ponto
Operador de Mutação	Bit-Flip com baixa probabilidade
Seleção dos Pais	Proporcional ao Fitness
Seleção dos Sobrevivente	Geracional

Componentes do SGA proposto por Holland et al., 1975

Componentes de um AG

- 1. Representação;
- 2. Operadores de Variação:
 - 1. Recombinação e Mutação;
- Mecanismos de Seleção:
 - 1. Seleção dos Pais
 - 2. Seleção dos Sobreviventes (substituição);
- 4. Modelos de População;

Componentes de um AG

- n. Representação;
- 2. Operadores de Variação:
 - 1. Recombinação e Mutação;
- Mecanismos de Seleção:
 - 1. Seleção dos Pais
 - 2. Seleção dos Sobreviventes (substituição);
- 4. Modelos de População;

Representação

Espaço de Fenótipos

Espaço de Genótipos = $\{0,1\}^L$

Obter a representação mais apropriada para as soluções candidatas do problema é a etapa mais importante no projeto de um AG.

- mais utilizada;
- mais adequada para problemas que envolvem variáveis de decisão booleana;
 - Exemplo: Problema da Mochila 0/1:

Indivíduo = solução candidata

- Solução candidata:

- *string* binária de tamanho n (número de objetos):
 - 1 indica que o objeto foi incluído na mochila;
 - 0 indica que o objeto não foi incluído;

no entanto, pode ser usada para codificar informação não-

binária;

- Exemplo:

$$\max f(x) = x^2 \quad 0 \le x \le 31$$

String	Initial	x Value	Fitness		
no.	population		$f(x) = x^2$		
1	$0\ 1\ 1\ 0\ 1$	13	169		
2	$1\ 1\ 0\ 0\ 0$	24	576		
3	$0\ 1\ 0\ 0\ 0$	8	64		
4	$1\ 0\ 0\ 1\ 1$	19	361		
Sum			1170		
Average			293		
Max			576		

. Mapeamento Real → Binário:

- seja uma variável de decisão real x_i no intervalo $[L_i, U_i]$;
- sua representação correspondente em binário é b_i ;
- l_i = número de bits usado para codificar a variável x_i ;
- intervalo entre dois valores adjacentes: $\Delta_{x_i} = \frac{U_i L_i}{2^{l_i} 1}$
- o valor de x_i que corresponde ao binário b_i é dado por:

$$x_i = L_i + (U_i - L_i) \frac{k_i}{2^{l_{i-1}}}$$
, com $k_i = \sum_{j=1}^{l_i} b_{ij} 2^{l_i - j}$

 $k_i \in [0, 2^{l^i} - 1]$ é o valor decimal que corresponde ao binário b_i .

. Mapeamento Real → Binário:

- Exemplo: $x_i \in [2,5]$ representado por $l_i = 10$ bits.

000000000 maps to 2.0, 1111111111 maps to 5.0

Precision = $(5.0 - 2.0) / 1023 \approx 0.00293$

Decimal equivalente a 0001011011

0001011011 maps to $2.0 + (5.0 - 2.0)(91)/1023 \approx 2.26686$

– um vetor de n variáveis de decisão vai requerer $\sum_{i=1}^{n} n * l_i$ bits no total:

 $l_1 = l_2 = l_3 = 5$, logo o indivíduo possui 15 bits

. Mapeamento Real → Binário:

- Qto maior o valor de l_i (número de bits para representar um valor real), melhor a acurácia da representação;
- Entretanto, isso aumenta o custo computacional do AG.

Principais problemas:

- dificuldade em se alcançar uma precisão arbitrária;
- limites das variáveis de decisão podem ser desconhecidos;
- Hamming Cliffs:
 - uma pequena diferença entre valores no espaço de fenótipos pode significar uma grande diferença entre estes valores no espaço dos genótipos:
 - valores no espaço de fenótipos: 7 e 8 \rightarrow |8-7|=1
 - valores codificados: $7 = 0111 \text{ e } 8 = 1000 \rightarrow \text{dH}^1(8,7) = 4$;
 - Consequência: para um operador de mutação baseado em *bit-flip*, *por exemplo*, a probabilidade de mudança de 7 (0111) para 8 (1000) não é a mesma de 7 (0111) para 6 (0110);
- 1. distância de Hamming (dH) = número de bits diferentes entre 2 strings binárias. Exs: 0001 e 0111 tem dH = 2.

. Código de Gray (Frank Gray, 1953)

- solução alternativa para codificação binária que resolve o problema dos *Hamming Cliffs*;
- se k_1 e k_2 são dois inteiros adjacentes representados no código de Gray por g_1 e g_2 então

$$|k_1 - k_2| = 1 \rightarrow dH(g_1, g_2) = 1$$

para ilustrar, veja o exemplo:

000	001	011	010	110	111	101	100	Gray
000	001	010	011	100	101	110	111	binário
0	1	2	3	4	5	6	7	Valor

. Conversões: Binário ↔ Gray

- seja um cromossomo $\vec{b} = (b_1, b_2, ..., b_{l_i})$ no código binário e seu correspondente $\vec{g} = (g_1, g_2, ..., g_{l_i})$ no código Gray.
- A conversão entre $\vec{b} \leftrightarrow \vec{g}$ pode ser feita com base no operador "ou-exclusivo":

$$0 \otimes 0 = 0$$
; $0 \otimes 1 = 1$; $1 \otimes 0 = 1$; $1 \otimes 1 = 0$.

. Conversões: Binário ↔ Gray

```
function binaryToGray (\vec{b})
  g(1) = b(1);
  for (i = 2; i \leq l_i; i + +)
      g(i) = b(i-1) \otimes b(i);
  return \vec{g};
```

```
function grayToBinary (\vec{q})
  b(1) = g(1);
  for (i = 2; i \leq l_i; i + +)
      b(i) = b(i-1) \otimes g(i);
  return \vec{b};
```

. Conversões: Binário ↔ Gray

- Binário p/ Gray:

$$7_{10} = 00111_2$$
 $l_i = 5$ $\vec{b} = 00111$ \rightarrow $\vec{g} = 00100$

- Gray p/ Binário:

$$\vec{g} = 00111 \rightarrow \vec{b} = 00101$$

Conversão Gray p/ número real:

– Seja $\overrightarrow{g_i}$ = cromossomo em código Gray representando a variável real x_i ;

- Passo 1:
$$\overrightarrow{b_i} = \text{grayToBinary } (\overrightarrow{g_i});$$

- Passo 2:
$$k_i = \sum_{j=1}^{l_i} b_{ij} 2^{l_i - j};$$

- Passo3:
$$x_i = L_i + (U_i - L_i) \frac{k_i}{2^{l_i} - 1}$$

Conversão Gray p/ número real:

- seja o indivíduo: [11001 01101 00010]
$$x_1$$
 x_2 x_3

1) conversão de Gray para real, sendo $x_2 \in [0, 31]$.

$$\overrightarrow{g_2} = 01101 \rightarrow \overrightarrow{b_2} = 01001$$
 $x_2 = 0 + (31/31)[0*2^4 + 1*2^3 + 0*2^2 + 0*2^1 + 1*2^0] = 9$

1) converta de Gray para real, sendo $x_3 \in [-2, 2.5]$.

$$\overrightarrow{g_3} = 00010 \rightarrow \overrightarrow{b_3} = 00011$$
 $x_3 = -2 + (4.5/31)[0*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 1*2^0]$
= -2 + 0.145[3] = -1.565

- comumente usada em problemas de otimização com variáveis contínuas $f: \mathbb{R}^n \to \mathbb{R}$;
- a solução candidata é representada através de um vetor de números reais:

$$\vec{x} = [x_1, x_2, \dots, x_n] \text{com } x_i \in \mathbb{R}$$

- cada gene corresponde diretamente a uma variável de decisão x_i do problema de otimização;
- o número de variáveis *n* determina a dimensão do espaço de busca.

• Exemplo:

$$f(x_1, x_2) = 100(x_1^2 - x_2)^2 + (1 - x_1)^2$$
$$-2048 \le x_1, x_2 \le 2048$$

representação de uma possível solução para o problema:

$$\vec{x} = [-1.235, 0.023]$$

Representação por Permutação

 comumente usada em problemas de otimização combinatória em que é necessário definir a ordem na qual uma sequência de eventos ocorre.

• Exemplos:

- Job Shop Scheduling;
- Traveling Salesman Problem (TSP);
- etc.

Componentes de um AG

- 1. Representação;
- 2. Operadores de Variação:
 - 1. Recombinação e Mutação;
- Mecanismos de Seleção:
 - 1. Seleção dos Pais
 - 2. Seleção dos Sobreviventes (substituição);
- 4. Modelos de População;

 mais importante operador para geração de novos indivíduos no espaço de busca;

- p_C = probabilidade de *crossover*:
 - determina a chance de um par de pais ser submetido à recombinação de seus genes;
 - um número t entre [0,1[é sorteado e comparado a p_C :
 - se $t < p_C$ então 2 filhos são gerados via *crossover* dos pais;
 - caso contrário, 2 filhos são gerados como cópias dos pais.

. Métodos de crossover para codificação binária:

- crossover com 1 ponto de corte;
- crossover com n pontos de corte;
- crossover uniforme;
- crossover por variável.
- etc;

• Crossover com 1 ponto de corte:

- sorteie um número aleatório no intervalo $[1, l_i 1]$;
- estabeleça cortes nos cromossomos pais no ponto sorteado;
- gere os filhos a partir da troca das caudas dos pais;
- tipicamente, p_C ∈ [0.6, 0.9].

• Crossover com n pontos de corte:

- sorteie n números aleatórios no intervalo $[1, l_i 1]$;
- estabeleça cortes nos cromossomos pais nos pontos sorteados;
- gere os filhos a partir de trocas alternadas entre as partes;

• Crossover uniforme:

- atribua "cara" p/ um dos pais e "coroa" para o outro;
- para cada um dos genes do 10 filho: "jogue a moeda" (prob = 0.5);
- faça uma cópia inversa para os genes do 20 filho.

children

Resultado do Sorteio:

 $[H\ T\ H\ H\ T\ H\ T\ H\ H\ H\ T\ H\ T\ T\ H\ H\ T\ T]$

. Crossover por variável:

- atribua um ponto de corte por variável de decisão;
- Exemplo: suponha que o indivíduo tenha 3 variáveis. Considere que os pontos de corte sorteados sejam 2, 2 e 3 para as variáveis respectivamente apresentadas.

. Métodos de crossover para codificação real:

- *crossover* discreto:
 - sejam $\vec{x} e \vec{y}$ dois cromossomos pais selecionados.
 - então, cada gene do filho \vec{z} vem de um dos pais com igual probabilidade, ou seja $z_j = x_j$ ou y_j
 - o crossover discreto não insere novos valores à população.
- crossover aritmético:
 - cada gene do filho \vec{z} é uma combinação convexa dos genes dos pais

$$z_j = \alpha x_j + (1 - \alpha) y_j$$
, $\alpha \in [0, 1]$

. Crossover Aritmético:

- cada gene do filho \vec{z} é uma combinação convexa dos genes dos pais

$$z_j = \alpha x_j + (1 - \alpha) y_j, \quad \alpha \in [0, 1]$$

- o parâmetro α pode ser:
 - constante \rightarrow crossover artimético uniforme;
 - variável → dependente da "idade" da população;
 - escolhido aleatoriamente a cada vez;
- tipos de crossover aritmético:
 - único, simples e total;

. Crossover Aritmético Único:

- Pais: $\vec{x} = \langle x_1, ..., x_n \rangle$ e $\vec{y} = \langle y_1, ..., y_n \rangle$;
- Escolha aleatoriamente um único gene k;

- Filho₁ é:
$$\langle x_1, ..., x_{k-1}, \alpha \cdot y_k + (1-\alpha) \cdot x_k, ..., x_n \rangle$$

- faça a operação inversa para o outro filho.
- Ex: supondo $\alpha = 0.5$

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5 0.9

. Crossover Aritmético Simples:

- Pais: $\vec{x} = \langle x_1, ..., x_n \rangle$ e $\vec{y} = \langle y_1, ..., y_n \rangle$;
- Escolha aleatoriamente um único gene k e, após este ponto combine os genes dos pais;
- Filho₁ é: $\langle x_1, ..., x_k, \alpha \cdot y_{k+1} + (1-\alpha) \cdot x_{k+1}, ..., \alpha \cdot y_n + (1-\alpha) \cdot x_n \rangle$
- faça a operação inversa para o outro filho.
- Ex: supondo $\alpha = 0.5$

. Crossover Aritmético Total:

- mais comumente usado;
- Pais: $\vec{x} = \langle x_1, ..., x_n \rangle$ e $\vec{y} = \langle y_1, ..., y_n \rangle$;
- Filho₁ é: $\vec{z} = \alpha \vec{y} + (1 \alpha)\vec{x}$
- Filho₂ é: $\vec{z} = \alpha \vec{x} + (1 \alpha) \vec{y}$
- Ex: supondo $\alpha^1 = 0.5$

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6

|0.3|0.2|0.3|0.2|0.3|0.2|0.3|0.2|0.3|

0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6

1. p/ $\alpha = 0.5$, os dois filhos serão idênticos !!!

- outro método de crossover para codificação real:
 - Simulated binary crossover (SBX) (Deb and Agrawal, 1995).
 - Ver tutorial sobre *SBX* em:

http://pt.slideshare.net/paskorn/self-adaptive-simulated-binary-crossover-presentation

Mutação

• Mutação para codificação binária:

- *Bit-flip*: altera cada gene $(0 \rightarrow 1; 1 \rightarrow 0)$ com uma probabilidade p_M ;
- tipicamente, $\frac{1}{popSize} \le p_M \le \frac{1}{chromossomeLength}$
- para um cromossomo de tamanho l, na média $l \times p_M$ bits são alterados;

Mutação

• Mutação para codificação real:

- Esquema Geral:

$$\vec{x} = \langle x_1, \dots, x_n \rangle \rightarrow \langle x'_1, \dots, x'_n \rangle, \quad x_i, x'_i \in [L_i, U_i]$$

- Mutação Uniforme:
 - x'_i é amostrado uniformemente de $[L_i, U_i]$;
 - análoga a bit-flipping para codificação binária;
- Mutação não-uniforme;

Mutação

Mutação não-uniforme:

- adiciona a cada gene x_i uma quantidade obtida de uma distribuição:
 - geralmente adota-se $\sim N(0, \sigma)$ onde σ deve ser definido a priori.
 - se o valor resultante x'_i ultrapassa $[L_i, U_i]$ então cortes são necessários para adequação ao domínio da variável;
 - desde que em uma distribuição Gaussina 2/3 das amostras estão entre $[-\sigma, \sigma]$
 - a maior parte das alterações são pequenas;
 - no entanto, existe probabilidade não-nula de se gerar alterações grandes;

- Principais operadores de *crossover* para codificação por Permutação:
 - Partially Mapped Crossover;
 - Edge Crossover;
 - Order Crossover;
 - Cycle Crossover.

- ver Seção 3.5.4 (Capítulo 3) do Livro:
 - A.E. EIBEN, J.E. SMITH, Introduction to Evolutionary Computing (Natural Computing Series), Springer.

Principais operadores de mutação para codificação por Permutação:

- Swap Mutation;
- Insert Mutation;
- Scramble Mutation;
- Inversion Mutation.

- ver Seção 3.4.4 (Capítulo 3) do Livro:
 - A.E. EIBEN, J.E. SMITH, Introduction to Evolutionary Computing (Natural Computing Series), Springer.

Referências

Leitura Recomendada:

- Capítulo 3 do Livro:

A.E. EIBEN, J.E. SMITH, Introduction to Evolutionary Computing
(Natural Computing Series), Springer.

