

Team 5

Bhilare, Samira Ismail, Anjum

McInerney, Niall

Wang,Lijin

Presentation Summary

Part 1 (Niall)

Part 2 (Lijin)

Part 3 (Samira)

Part 4 (Anjum)

- Introduction
- Data Wrangling
- Visualisation
- Lagging

 Ascertaining relationship between target variable and 3 quality variables

- Predictive Modelling Design Process
- LinearRegression
- LogisticRegression
- Decision Tree

-XG Boost

- Splitting/Training/Predicting
- Accuracy and Confusion matrix
- Conclusions

Introduction

THE PROBLEM

Incorporation of predictive analytics to predict quality of product at several stages of the production process.

- -Predict variable *g4_var_2* using the preceding measurements in the process(optimal=-0.8574?)
- Ascertain the relationship between *g4_var_2* and *g6_var_2*, *g6_var_3* & *g6_var_4*.
- Comment on model implementation.

EDA Visualisation (1)

Histograms of the variables in Groups 1:4

EDA Visualisation (2)

Boxplots of the variables in Groups 1:4

EDA Visualisation (3)

Time Series Data of Groups 1:4

EDA Visualisation (4)

Time Series Data of Variables in Problem 3

^ ^

EDA Visualisation (5)

EDA Visualisation (6)

Time series plot of g2_var_4 and target variable

EDA Lagging

Group 1 -60mins

Group 2 -45mins

Group 3 -30mins

....

-	datetime	g1_var_	1 ‡	g1_var_	2 ‡	g1_var	_3 ‡	g2_var_	1 ‡	g2_va	ar_2 🌼	g2_var	_3 ‡	g2_var_	4 ‡	g3_var_	1 ‡	g3_var_	2 ‡	g3_var_4 *	g3_var_5	5 ÷
1	2021-01-12 16:45:00		NA		NA		NA		NA		NA		NA		NA		NA		NA	NA		NA
2	2021-01-12 17:00:00		NA		NA		NA		NA		NA		NA		NA	,	NA	+	NA	NA.	+	NA
3	2021-01-12 17:15:00		NA		NA		NA		NA		NA		NA		NA	-0.5090	0215	-0.5402	7739	-0.71315316	1.762910	0104
4	2021-01-12 17:30:00		NA		NA		NA	1.231	6531	0.85	598783	-0.0569	86420	-0.831	0345	-0.3786	2768	-0.4187	8562	-0.54296184	1.702068	8663
5	2021-01-12 17:45:00	0.993	1657	0.262	8093	-1.1	13138	1.231	6531	0.85	598783	0.0040	10301	-0.831	0345	-1.0956	8725	-0.9047	5269	-1.39391847	1.762910	0104
6	2021-01-12 18:00:00	0.993	1657	0.219	2224	-1.1	27243	1.084	2359	0.85	598783	-0.1179	83141	-0.831	0345	-0.8349	3832	-0.8440	0681	-1.13863148	1.762910	0104
7	2021-01-12 18:15:00	0.993	1657	0.285	4100	-1.1	27243	1.084	2359	0.91	665895	-0.1179	83141	-0.831	0345	-0.9001	2555	-0.9047	5269	-1.22372715	1.580385	5780
8	2021-01-12 18:30:00	0.993	1657	0.314	4680	-1.1	44874	1.006	5069	0.61	330332	-0.2399	76582	-0.831	0345	-0.3786	2768	-0.3580	3974	-0.54296184	1.641227	7221
9	2021-01-12 18:45:00	0.993	1657	0.227	2940	-1.1	44874	1.116	3997	0.79	531670	-0.2399	76582	-0.831	0345	-0.3134	4044	-0.2972	9386	-0.45786617	1.823751	1545
10	2021-01-12 19:00:00	0.993	1657	0.314	4680	-1.1	23717	1.116	3997	0.85	598783	-0.1179	83141	-0.831	0345	-0.5090	0215	-0.4795	3151	-0.71315316	1.580385	5780
11	2021-01-12 19:15:00	0.993	1657	0.227	2940	-1.1	23717	1.046	7116	0.85	598783	0.0040	10301	-0.831	0345	0.5339	9360	0.6138	9439	0.64837746	1.641227	7221
12	2021-01-12 19:30:00	0.993	1657	0.283	7957	-1.1	23717	1.194	1287	0.91	665895	-0.1179	83141	-0.831	0345	-0.2482	5321	-0.3580	3974	-0.37277051	1.519544	4339

Ascertain the relationship

Correlation

Generalised Linear Models (GLM)

```
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept)
           9.61726
                      1.11674
                             8.612
                                      <2e-16 ***
g6_var_2 -0.50746 0.53146 -0.955
                                       0.340
g6_var_3 0.39745 2.12296 0.187
                                       0.851
g6_var_4
                                       0.921
       -0.03948
                      0.39698
                              -0.099
Signif. codes: 0 '***'
                      0.001 '**' 0.01
                                    '*' 0.05 '.' 0.1 ' '1
```

Accumulated Local Effects (ALE)

Accumulated Dependence profile

Predictive Modelling Techniques

Overview of Predictive Modelling Design Process

Multiple Linear Regression Model: LM

- Multiple linear regression is a linear approach to modelling the relationship between a scalar response ('g4_var_2') and multiple explanatory variables ('g1_var_1', 'g2_var_1', etc).
- Data Partitioning based on 'datetime' variable considering the month wise split

Visualisation for Linear Regression Model: LM

Logistic Regression Model: GLM

- Logistic regression is a statistical model that in its basic form uses a logistic function to model a binary dependent variable
- Classification of the target variable (g4_var_2) into bins for conversion from a continuous numeric to binary categorical variable (Acceptable/Unacceptable) to check its optimality.

Considering Optimal value for target variable = -0.8574

Visualisation plots for Logistic regression model: GLM

Statistics for Logistic Regression model

Statistics when time is NOT considered while data partitioning

Confusion Matrix and Statistics

Reference

Prediction Acceptable Unacceptable
Acceptable 635 182
Unacceptable 328 3497

Accuracy : 0.8901

95% CI: (0.8808, 0.899)

No Information Rate : 0.7925 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.6461

Mcnemar's Test P-Value: 1.356e-10

Sensitivity: 0.6594 Specificity: 0.9505 Pos Pred Value: 0.7772 Neg Pred Value: 0.9142 Prevalence: 0.2075 Detection Rate: 0.1368

Detection Prevalence: 0.1760
Balanced Accuracy: 0.8050

'Positive' Class : Acceptable

Statistics when time is considered while data partitioning

Confusion Matrix and Statistics

Reference

Prediction Acceptable Unacceptable
Acceptable 48 9
Unacceptable 1105 4312

Accuracy : 0.7965

95% CI: (0.7856, 0.8071)

No Information Rate: 0.7894 P-Value [Acc > NIR]: 0.1006

Kappa: 0.0607

Mcnemar's Test P-Value : <2e-16

Sensitivity: 0.041631 Specificity: 0.997917 Pos Pred Value: 0.842105 Neg Pred Value: 0.796013 Prevalence: 0.210632 Detection Rate: 0.008769

Detection Prevalence: 0.010413
Balanced Accuracy: 0.519774

'Positive' Class : Acceptable

Decision Tree

- A decision tree as a predictive model are used to go from observations about an item (represented in the branches) to conclusions about the item's target value (represented in the leaves).
- Using classification tree design for the target variable (g4_var_2) classified into 4 categories based on the optimality of the values

(Average

g2_var_4 plays
 a vital role in
 predicting
 category for
 g4_var_2

 Decision Tree can be used to detect spike in the g4_var_2 value

Decision Tree Model Observations

Confusion Matrix f	or Training	Dataset		Confusion Matrix for Test Dataset							
	ored_train e Improved D 7875 218 589	iscard Goo 102 1032 11	d Quality 557 9 1991		_pred_test be Improved 1951 53 168	Discard 30 264 2	Good Quality 176 1 449				

Model Accuracy for Training and Test Dataset

| "Training Accuracy: 0.88000645994832" | "Testing Accuracy: 0.861021331609567"

Machine Learning model

No Of Itterations


```
[1] "Total Sum of Square 4886.41"
[1] "Sum of Residual Square 240.55"
[1] "Root mean sqaure error 0.1"
```


"Total Sum of Square 1105.79"
"Sum of Residual Square 69.79"
"Root mean square error 0.03"

Accuracy: 0.9277 95% CI: (0.9173, 0.9373)

No Information Rate : 0.6186 P-Value [Acc > NIR] : < 2.2e-16

карра: 0.8451

Mcnemar's Test P-Value: 1.189e-05

Sensitivity: 0.8750 Specificity: 0.9603 Pos Pred Value: 0.9314

Neg Pred Value : 0.9257 Prevalence : 0.3814

Detection Rate : 0.3337 Detection Prevalence : 0.3583 Balanced Accuracy : 0.9176

'Positive' Class: 0

Why XGBoost?

- Parallel Computing
- Regularization
- Enabled Cross Validation(No external packages such as caret and mlr to obtain CV results)
- Tree Pruning
- Missing Values

Model Deployment

The workflow can be broken down into following basic steps:

- 1. Training a machine learning model on a local system.
- 2. Wrapping the inference logic into a flask application.
- 3. Using docker to containerize the flask application.
- 4. Hosting the docker container on an AWS ec2 instance and consuming the web-service.

There are multiple factors to consider when determining how to deploy a machine learning model. These factors include:

- how frequently predictions should be generated
- whether predictions should be generated for a single instance at a time or a batch of instances
- the number of applications that will access the model
- the latency requirements of these applications

Thanks for watching

Team 5
Bhilare,Samira
Ismail,Anjum
McInerney,Niall
Wang,Lijin