Digital Image Processing (CSE/ECE 478) Lecture-2: Digital Imaging Fundamentals

Ravi Kiran

Rajvi Shah

Center for Visual Information Technology (CVIT), IIIT Hyderabad

- Revised grading policy ...
- Assessment
 - 2 mid semester exams (10x2% = 20%) + 1 Final Exam (20%)
 - Assignments ($5 \times 6\% = 30\%$) + 1 Final project (30%)
 - Last Assignment due: Oct 18 (2 weeks after MID-2)

- Project
 - Proposal due : Oct 8 (a week before MID-2)
 - Final presentation + submission due:
 - Nov 23 (4 days after final DIP exam)
 - Nov 29 (10 days after final DIP exam)
 - Inform choice of date before final exam
 - These dates may move slightly +/- 2 days

- Lecture-1 slides up on moodle
- Teaching Assistants
 - Abhijeet (<u>abhijeet@research.iiit.ac.in</u>)
 - Anil Kumar (<u>anil.kumar@research.iiit.ac.in</u>)
 - Ashwin (ashwin.pathak@students.iiit.ac.in)
 - Siddhartha (<u>siddhartha.gairola@research.iiit.ac.in</u>)

- Lecture-1 slides up on moodle
- Teaching Assistants
 - Abhijeet (<u>abhijeet@research.iiit.ac.in</u>)
 - Anil Kumar (anil.kumar@research.iiit.ac.in)
 - Ashwin (<u>ashwin.pathak@students.iiit.ac.in</u>)
 - Siddhartha (<u>siddhartha.gairola@research.iiit.ac.in</u>)
- Tutorial hours: 3.30p 4.30p, Saturdays, H-203

Today's Lecture

Digital Image Acquisition

How images are acquired

Image Sampling and Quantization

How images end up in digital form

Fundamental Steps in Image Processing

EM spectrum

EM radiation

- Energy travelling as a wave
- Produced by oscillating charge or energy source

EM spectrum

- EM radiation
 - Energy travelling as a wave
 - Produced by oscillating charge or energy source
- Visible light
 - Band of EM radiation sensed by human eye

Light as a particle stream

- Energy carried by light
 - Not wave-like
 - Discrete (Quantized) particles = Photons

Light as a particle stream

- Energy carried by light
 - Not wave-like
 - Discrete (Quantized) particles = Photons

Photo-electric effect

Cross-section of typical smartphone camera

Photo-electric effect in cameras

CMOS photo-electric sensor

Light → Color

CMOS sensitive to "light", not "color"

Relatively more green filters. Why?

Human color receptor relative sensitivity

https://petapixel.com/2016/03/30/people-can-see-100-times-colors/

How do we get color now ?

Demosaicing

Clashigh

Image Acquisition: Summary

Demosaicing

Today's Lecture

- Digital Image Acquisition
- Image Sampling and Quantization
- Fundamental Steps in Image Processing

Signal

"Function that conveys information about the behavior or attributes of some phenomenon" (wikipedia)

Analog vs. Digital signal (1-D)

Image courtesy: wikipedia

Analog vs. Digital signal (2-D signal)

Image as a 3D surface

Image acquisition process

Cross-section of typical smartphone camera

Physical Characteristics Active image area size 24.6 (H) x 13.8 (V) mm 4206 (H) x 2340 (V) Total number photosites Number photosites for active image 3840 (H) x 2160 (V) Color filter array (with microlens) **RGB Bayer** Size of photosite (microns) 6.4 (H) x 6.4 µm Pixel pitch 6.4 µm 3.3v / 1.8v Power supply Power consumption 950mW

Resolution (of the sensor)

24.6 mm

Digital Camera Sensor Sizes

Sensor Size Comparison

Same sensor size, but # of sensor pixels/mm varies

Small number of CCD pixels

Large number of CCD pixels

Sampling

 $256 \times 256 \qquad \qquad 32 \times 32 \qquad \qquad 16 \times 16$

Image acquisition process

Image acquisition process

1 bit per pixel

8 bit per pixel

24 bit per pixel

Color Images

8 bits per pixel

8 bits per pixel

8 bits per pixel

Summary

Sampling

 256×256

 32×32

 16×16

4 bits per pixel

2 bits per pixel

1 bit per pixel

Additional Notes on Sampling and Quantization

Temporal sampling → exposure time

- Hardware (# of voltage levels, # of bits)
- Software (raw → JPEG)

Today's Lecture

- Digital Image Acquisition
- Image Sampling and Quantization
- Fundamental Steps in Image Processing

What we saw today

Digital Image Acquisition

Sampling and Quantization

Fundamental Steps in Image Processing

Coming up ...

- Intensity Transformations
- Histograms and Histogram Processing
- NOTE: No class on Monday (Bonalu)

