ZMA11-1

Veškerá tvrzení zdůvodněte!

1. (6 b.) Vyšetřete limity (oboustrannou i jednostranné) funkce f v bodě x_0 :

$$f(x) = \frac{x - \sqrt{2x - 1}}{x^2 - 2x + 1}$$
, $x_0 = 1$.

2. (6 b.) Vypočtěte

$$\int \frac{1}{x(\ln^2 x - 4\ln x + 5)} \, \mathrm{d}x$$

3. (8 b.) Vypočtěte

$$\int_0^1 x \cdot \arctan(x^2) \ dx$$

4. (6 b.) Určete intervaly konvexity a konkavity a body inflexe funkce f na intervalu $(0, 2\pi)$:

$$f(x) = e^x \cdot \sin x.$$

5. (6 b.) Vyšetřete svislé, vodorovné a šikmé asymptoty funkce f. Uveďte vždy, zda asymptoty daného typu existují, a pokud ano, napište jejich rovnice:

$$f(x) = \frac{x-2}{x^2-4} + \sin x.$$

6. (10 b.) Pomocí Laplaceovy transformace řešte soustavu diferenciálních rovnic

$$y'_1 = y_2$$
 $y_1(0+) = 2$
 $y'_2 = y_1 - 2$ $y_2(0+) = -6$.

7. (8 b.) Uveďte, co je to geometrická posloupnost. Pro geometrickou posloupnost $(a_n)_{n=1}^{\infty}$ s $a_1 > 0$ označte s_n součet jejích prvních n členů. Vyšetřete $\lim_{n \to \infty} s_n$ v závislosti na kvocientu posloupnosti.