Simple and S. C. Cons. 10 2 2 4 5 7 10 12 19 16 19 72 25 50 10 10 2 19 10 12 19 16 19 72 25 50 10 10 10 10 10 10 10 10 10 10 10 10 10 1	- 1	gav		1	, -		1.1												T
Comp. 0 2 4 5 8 10 12 14 16 15 20 25 30 y (6) = (6) 2 10 10 10 16 6 6 6 10 10 10 10 10 10 10 10 10 10 10 10 10							υĦ			+									H
Description Plant	y (te	emp)	- ar	ta//	(/				+									ŀ
Description Plant	+				+				-	+	\perp								L
Description Plant	((h	nin)	0	2	<u> </u>	1	6	8	10	1	2.	14	16	18	20	25	30		L
Description Plant	y ((Co	98°	84	, 1	8"	73°	70°	66	6	3	60°	Sg°	26°	53"	21,	480		
Plother v. Ye'ng not Xex fee u. lay = In C - 2 x = In C + Inex 2 In C + 3 x - 11 = In C + 3 x - 11 In C + 3 x -																			
Plotter vi. Y = log not X = x = c v = log = log C + log =			ч(×) =		. е	λх												
= ln C + 2/x - ln c = ln C + 2/x - l = l)`		Ĭ														Γ
= ln C + 2/x - ln c = ln C + 2/x - l = l		Plat	<u>۔</u>	,		Y =	[,, ,,	.0.	4	X	= x		C.	٠,٠					T
= ln C + 2/x - ln c = ln C + 2/x - l = l		. (0)	ļ,,,	× 1	١.		الواما مر	× =	: ,	1		۱.,	yx.	0.					T
			ING	· ·	IN I		<i>C</i>		. (0	1		(0	10						t
Vi kan prosentione																			t
Vi kan presented A = lor C as B = 2 Da for vi: Ing = Ax + B Altoi en lineaer funksjan.) X 0 2 4 6 8 10 12 14 16 18 20 25 30 Y 105 40 12 12 14 16 18 20 25 30 Y 105 40 12 12 12 12 12 12 13 20 25 30 Y 105 40 12 12 12 12 12 12 12 12 12 12 12 12 12	+			_	161	_ †	_/	· X	. 7	+	+								H
After an linear funksjan.) \times 0 2 4 6 8 10 12 14 16 18 20 25 30 Y 158 410 134 139 125 110 14 16 18 20 25 30 Ut 1 for inclinate backet vi tenksjanen: $Y(x) = -0.02x + 96$ i Geogebra: $p(5), 4.33 = (r_1, r_2)$ 05 9 (85, 126) = (2, 2, 2) $A = \frac{r_1 \cdot r_3}{r_1 \cdot r_2} = \frac{4.33 \cdot 9.26}{5.5 \cdot 6.5} = \frac{0.02}{-3} \approx -0.02$ $B = p_2 - A \cdot p_1 \approx 41.33 \cdot (0.02) \cdot S_1 \cdot S_2 = 9.33 + 0.11 = 9.44$ Altaia $A = A = -0.02$ $P(5) = P_1 \cdot P_2 = P_2 \cdot P_3 \cdot P_4 \cdot P_4 = P_4 \cdot P_5 \cdot P_4 \cdot P_5 = P_4 \cdot P_4 \cdot P_4 = P_4 \cdot P_5 \cdot P_5 \cdot P_5 \cdot P_5 = P_5 \cdot P_5 \cdot P_5 \cdot P_5 \cdot P_5 \cdot P_5 = P_5 \cdot P_5 = P_5 \cdot P_5$	+			_	n	_	λ.	Χ		+									H
Affect on linear funksyon.) $X \circ 2 + 6 \circ 8 \circ 10 \circ 12 \circ 14 \circ 16 \circ 18 \circ 20 \circ 25 \circ 30$ Y too two 134 the 125 of the 120 of 134 of 130	+	1/	1		+		,		1	+				0	\				H
Affect on linear funksyon.) $X \circ 2 + 6 \circ 8 \circ 10 \circ 12 \circ 14 \circ 16 \circ 18 \circ 20 \circ 25 \circ 30$ Y too two 134 the 125 of the 120 of 134 of 130		٧i	Ka	n	pre	sen.	ev-l	i	4 =	100 (_	- (s_	<u> </u>	y				H
Affect on linear funksyon.) $X \circ 2 + 6 \circ 8 \circ 10 \circ 12 \circ 14 \circ 16 \circ 18 \circ 20 \circ 25 \circ 30$ Y too two 134 the 125 of the 120 of 134 of 130		Da	fer	(:		_			+									L
Affect on linear funksyon.) $X \circ 2 + 6 \circ 8 \circ 10 \circ 12 \circ 14 \circ 16 \circ 18 \circ 20 \circ 25 \circ 30$ Y too two 134 the 125 of the 120 of 134 of 130			(0)	_=	A	x -	+ B			4									
) X 0 2 4 6 8 10 12 14 16 18 20 25 30 Y 158 470 9.36 4.20 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9		A/Je		ev		line	e Cen		fui	n Ksj	on								L
Ut if to unalingtone backwith vi touks another: $Y(X) = -0.02x + 9.65$) V: velger 2 punkter from contain vi laset i Geosebra: $p(5.5, 9.33) = (9.992)$ os of $(8.5, 9.26) = (9.992)$ $A = \frac{8.9}{91.91} = \frac{9.33.9.26}{3.5.6.5} = \frac{0.02}{-3} \approx -0.02$ $B = p_2 - A \cdot p_1 = 4.33.9(0.02) \cdot S_1 = 9.33 + 0.11 = 9.494$ Altsia $\lambda = A = -0.02$ os $\ln C = B = 4.49 \longrightarrow C = e^B$ Vi plother disse i $y(6)$: $y(8) = C \cdot e^{\lambda x}$																			
Ut if to unalingtone backwith vi touks another: $Y(X) = -0.02x + 9.65$) V: velger 2 punkter from contain vi laset i Geosebra: $p(5.5, 9.33) = (9.992)$ os of $(8.5, 9.26) = (9.992)$ $A = \frac{8.9}{91.91} = \frac{9.33.9.26}{3.5.6.5} = \frac{0.02}{-3} \approx -0.02$ $B = p_2 - A \cdot p_1 = 4.33.9(0.02) \cdot S_1 = 9.33 + 0.11 = 9.494$ Altsia $\lambda = A = -0.02$ os $\ln C = B = 4.49 \longrightarrow C = e^B$ Vi plother disse i $y(6)$: $y(8) = C \cdot e^{\lambda x}$																			
Ut if to unalingtone backwith vi touks another: $Y(X) = -0.02x + 9.65$) V: velger 2 punkter from contain vi laset i Geosebra: $p(5.5, 9.33) = (9.992)$ os of $(8.5, 9.26) = (9.992)$ $A = \frac{8.9}{91.91} = \frac{9.33.9.26}{3.5.6.5} = \frac{0.02}{-3} \approx -0.02$ $B = p_2 - A \cdot p_1 = 4.33.9(0.02) \cdot S_1 = 9.33 + 0.11 = 9.494$ Altsia $\lambda = A = -0.02$ os $\ln C = B = 4.49 \longrightarrow C = e^B$ Vi plother disse i $y(6)$: $y(8) = C \cdot e^{\lambda x}$	$) \lfloor$	\times	0	2		1	6	8	10	1	2	14	16	18	20	25	30		
Ut if to unalingtone backwith vi touks another: $Y(X) = -0.02x + 9.65$) V: velger 2 punkter from contain vi laset i Geosebra: $p(5.5, 9.33) = (9.992)$ os of $(8.5, 9.26) = (9.992)$ $A = \frac{8.9}{91.91} = \frac{9.33.9.26}{3.5.6.5} = \frac{0.02}{-3} \approx -0.02$ $B = p_2 - A \cdot p_1 = 4.33.9(0.02) \cdot S_1 = 9.33 + 0.11 = 9.494$ Altsia $\lambda = A = -0.02$ os $\ln C = B = 4.49 \longrightarrow C = e^B$ Vi plother disse i $y(6)$: $y(8) = C \cdot e^{\lambda x}$		Y	4,58	4,43	4,	36	1,29	4,25	4,19	i 4,	14	4,09	4,06	4,03	3,97	3,93	3,87		
V(x) = -0.02x + 9.45 $V(x) = -0.02x + 9.45$																			
) V: velser 2 purkter from crafton vi loset i Geosebra: $p(5,5, 4,33) = (p_1, p_2)$ os $q_1(8,5, 4,26) = (q_1, q_2)$ $A = \frac{p_2 + q_1}{p_1 + q_1} = \frac{4,33 - 4,26}{5,5 + 6,5} = \frac{p_2 - 2}{-3} \approx -p_1 02$ $B = p_2 - A \cdot p_1 = 4,33 - (0,02) \cdot S_2 = 4,33 + 0,11 = 4,44$ Altsia $A = A = -0,02$ os $p_1(C) = B = 4,44 \implies C = e^B$ V: plother dissa i $p_1(G) = p_1(G) = p_1(G) = p_1(G)$ $p_1(G) = p_1(G) = p_1(G) = p_1(G)$ $p_1(G) = p$		V(X/	2	- () ()	2 x	. +	4	40	;	v···-v)	gotor.						Ī
i Geosebra: $p(55, 4, 33) = (p_1, p_2)$ $05 q(8, 5, 4, 26) = (n_1, n_2)$ $A = \frac{p_2 - q_1}{p_1 + q_1} = \frac{4j33 - 4j26}{5.5 + 6.5} = \frac{0.02}{-3} \approx -0.02$ $B = p_2 - A \cdot p_1 = 4,33 - (0.02) \cdot 5.5 = 4,33 + 0.11 = 4,44$ $All_{56} \lambda = A = -0.02$ $o_5 [nC = B = 4,44] \longrightarrow C = e^B$ $Vi plother disse i y(6): y(6): y(6) = e^{-q_1q_1} \cdot e^{-0.02} \cdot y(6) = e^{-q_1q_1} \cdot y(6) = e^$			' '/_			1	(s /\		,	. (0									T
i Geosebra: $p(55, 4, 33) = (p_1, p_2)$ $05 q(8, 5, 4, 26) = (n_1, n_2)$ $A = \frac{p_2 - q_1}{p_1 + q_1} = \frac{4j33 - 4j26}{5.5 + 6.5} = \frac{0.02}{-3} \approx -0.02$ $B = p_2 - A \cdot p_1 = 4,33 - (0.02) \cdot 5.5 = 4,33 + 0.11 = 4,44$ $All_{56} \lambda = A = -0.02$ $o_5 [nC = B = 4,44] \longrightarrow C = e^B$ $Vi plother disse i y(6): y(6): y(6) = e^{-q_1q_1} \cdot e^{-0.02} \cdot y(6) = e^{-q_1q_1} \cdot y(6) = e^$	7	1/.		1)		1.1.					ſ.		1.	. +		T
$A = \frac{P_2 + 9_1}{P_1 + 9_1} = \frac{4133 - 4126}{5.5 + 6.5} = \frac{0.07}{-3} \approx -0.02$ $B = P_2 - A \cdot P_1 = \frac{4133 - 4126}{5.5 + 6.5} = \frac{0.07}{-3} \approx -0.02$ $Altsia \lambda = A = -0.02$ $0.5 DC = B = 4144 $		· · ·	V	e 15 1			_	100	((<i>y</i> <	G C	22 \ 22 \	SM	100	٧.	u	126)		t
$A = \frac{P_2 + 9_1}{P_1 + 9_1} = \frac{4133 - 4126}{5.5 + 6.5} = \frac{0.07}{-3} \approx -0.02$ $B = P_2 - A \cdot P_1 = \frac{4133 - 4126}{5.5 + 6.5} = \frac{0.07}{-3} \approx -0.02$ $Altsia \lambda = A = -0.02$ $0.5 DC = B = 4144 $			ع عاد	se c	ra			Ρ	(0)	<i>y</i> /	-1, i	2 0) 1 C \	> (PI/	02) \				t
$B = \rho_2 - A \cdot \rho_1 = 4.33 - (0.02) \cdot S_1 S_2 = 4.33 + 0.11 = 4.44$ $Altsia \lambda = A = -0.02$ $05 ln C = B = 4.44 -2 C = e^{B}$ $V: $							5	9	(0,	5/	1,,	26 J	- (71/	12)				t
$B = \rho_2 - A \cdot \rho_1 = 4.33 - (0.02) \cdot S_1 S_2 = 4.33 + 0.11 = 4.44$ $Altsia \lambda = A = -0.02$ $05 ln C = B = 4.44 -2 C = e^{B}$ $V: $		Λ	Pz	92		4	,33 -	4,21	ĵ _	0,	07	0-	_ 1	n 2					H
Altsia $\lambda = A = -0.02$ os [nC = B = 4,44 -> C = e ^B Vi plotter disse i y(\omega): y(x) = C \cdot e^{\dagger} x = e^{4,44} \cdot e^{-0.02} x = e^{4,44 \cdot 0.002}		H:	PI	£1	-		5,5-	-8,5	_	-,	3	`~`	¬ν,	02					H
Altsia $\lambda = A = -0.02$ os [nC = B = 4.44 -> C = e ^B Vi plotter dissa i y\omega: $y(x) = C \cdot e^{\lambda x}$ $= e^{4.44} \cdot e^{-0.02x}$ $= e^{4.44 \cdot 0.02x}$		D	_		Λ			<i>(</i>	2 2	-		۱۵	<i></i>	_ (100			Lucc	H
V: plotter disse i y(w): $y(x) = C \cdot e^{hx}$ $= e^{u_1 u_1} \cdot e^{-o_0 v_1}$ $= e^{u_1 u_2 \cdot o_0 v_1}$	+	17	- 1	2	A	· P	į	٦,	55	7(-(J,Ø.	7).	5,5	- '	1,33	+0,	, =		H
V: ρ'_{0} the dissa i $y(\omega)$: $y(x) = C \cdot e^{\lambda x}$ $= e^{-i_{1}4i_{1} \cdot o_{0}i_{1}}$ $= e^{-i_{1}4i_{2} \cdot o_{0}i_{2}}$		Λ,	ı		+			٨		+	C								H
V: plotter disse i y(w): $y(x) = C \cdot e^{hx}$ $= e^{u_1 u_1} \cdot e^{-o_0 v_1}$ $= e^{u_1 u_2 \cdot o_0 v_1}$		H	56			λ	=	A	=		U, C	12		/	7	D			+
V: plotter disse i y(w): $y(x) = C \cdot e^{hx}$ $= e^{u_1 u_1} \cdot e^{-o_0 v_1}$ $= e^{u_1 u_2 \cdot o_0 v_1}$				05		nC	; 	B	=	4,	49		<i>—</i> >	(=	eb			H
Vi plotter disse i y (6): y(x) = C c n x = e 444 e 0,02x = e 444 opin Her har vi sammenhensen mellon C og n.																			L
y(x) = C. e^{3x} = e^{4,44}. e^{-0,02x} = e^{4,44-0,02x} Her har vi sammenhengen mellon C og).		V_{i}	-p	lo H	٠,	4	isse		j	y (x));								L
= e 444. e 0,0ex = e 4,44. o 0,0ex = e 4,44. o 0,0ex He ha v: sammen housen mellon C og).			y(x) =	<u>-</u>	ڪ [۾] :	<			1									_
Her har vi sammen hennen mellon C og).				= 6	4,4	· e	~0,0z	×		\perp									L
He har vi samentenges mellon C og).				= 6	4,44	- 0,02 ×				\perp									L
		Her	ha	V		saw	nen,	hense	:n	mi	. 110	M	C	09	7.				
																			Ī
										\dagger									T
	-									+									H

aa	gav	e 1.	2)																							
PP	gur		- /y(×) = (C·×	r																				
a)	Y=[าน	mot	- >	X = 1.	nχ																				
	Y(x)	= 6	y = [in C	· (n	χſ																				
			=	u(+ v	· lnx																				
	A = 1	_		Y (x	() = v	11g=	A.1.	nx +	В																	
	B = 1	n C		`																						
6))	((Inx	0 (0,69	1,38	1,79	2,08	2,30	2,48	2,64	2,77	2,89	3,00	3,22	3,4											
	Y	(no	4,58	4,43	4,36	4,29	4,25	4,19	4,14	4,09	4,06	4,03	3,17	3,93	3,87											
		/ 	- (x b	ou kt	ini	best	conn	er v	: fu	n kojo	nen:															
		Y((x) = -	· 0,2	×	+ 4,6	52																			
\	\ \ \	1																								
c)	Vί	ve Ise	- to	. ρυ	in kter	- P	os g	:																		
	p =	(P1/1	ρ <u>,</u>) =(1,4,	41)																					
	g =	(4,,4	2) = (2,4,	.25)																					
		P	·, - q,	4.91	1-421	σ,	,20																			_
	A = 1	- = p	1-91	1-	2	= _		-0,	20																	
	0 1	<i>c</i>	Λ				(.		.,					R	4	<i>C</i> I										_
	B = In	(= p2	9.H	, =	4,4	-	1-0,2	10)-1	= 4	,61	-,	7 (_ =	e	= e "	0,										_
	_ (~ r	C	4,61	0,	.2																				_
	y = (- X	= e	. ′	X '																					
	ſ	-					()				1	ı	tr 1													
			oringsp																							
	Samme	nhence	, mell	om	0'e	to	0/	sп	tas	vi l	Nα	tegh	.t													
				- 0	4,44		C -2	4,6	J																	
			C, =	- e -0	n 7		2	-6	9																	
			()	9	0 6		r	-01	_																	
nn	gav	1	3)																							
44	у ч • ((2) ()	2.	4	6	8	10	12	14	16	18	20	25	30												
	10 (Ca	98	840	78°	73°	70°	66°	63°	60°	Sg°	26°	53°	Si°	480												
	x (m; y (C° y=C·e ^x	× 84,7	8 81,45	78,26	75,19	72,24	69,41	66,69	64,07	61,86	59,15	56,83	51,42	46,53												
	y= C·x'	r Ø	87,42	76,37	70,34	66,32	63,31	61,30	59,29	S ² ,28	S6,27	S5,23	53,26	51,25												
	J																									
	V; s	°C 6	1 6	C C -	a V	mo Je	llene	PC	0.e	nske	ı)ı	0.6814.00	dic	V;	Chi	otes	at									
	9et	es V	ranske	lic	ia .	sì	hille	(en	Sown	0/	- 540/	b	1,13.	ci da	. (PCCP	γ.	<5 <i>A</i> /								
	like 1	ora	smm.	J.	2019	sor	اغد	clis.	Mc	del.	1	er i	ner	กด	nak+:	9 ;	de	∤ø	retr							
	melia	ceni	60	wad	ا ا	2 (GC	Ma	/ V	(Ona	ikt:r	, o		- S:	ste.) {[:	vela	s ò	51							
	1	Malal	65	20	sstr	best	` .	:dov	N	node		;	kKe	hai		160	;	X=	0							
	at.	1000		-												,_,		- (_							
	os e	- C	onerel	! и	hly	UY	osak	4:4	j	<i>ι</i> τδι/	Itate	ne.														