(Vanous forms of Cauchy)

1

Recall: If $Y \cdot [a,b] \rightarrow \mathbb{C}$ is sufficiently make and f is continuous on Y, then

$$\int_{Y} f(z) dz = \int_{\infty}^{b} f(x(t)) \chi'(t) dt$$

So, if x(t) = x(t) + iy(t) [x & y are if functions] x'(t) = x'(t) + iy'(t)

(1) "FUNDAMENTAL THM"

If $\Omega \in C$ is open and $\Gamma \cdot [a,b] \rightarrow \Omega$ is a curve and $f: \Omega \to C$ admit a frisher

\ ma'

∃ F Ω → C s. E F'=f

Also, if I is dosed loop, then

[Note the conditions on SZ and 8]

Thm:

Theorem

Let C be a simple closed contour and let f be a holomorphic function defined on an open set containing C as well as its interior. Then $\int_C f(z)dz = 0$.

Y is simple if Y is 1-1 on [a,b)Y is closed if Y(a) = Y(b)

Theorem

(More general form of Cauchy's theorem) Let Ω be a <u>simply</u> connected domain in \mathbb{C} . Let f(z) be a holomorphic function

Simply connected domain

(More general form of Cauchy's theorem) Let Ω be a simply connected domain in \mathbb{C} . Let f(z) be a holomorphic function defined on Ω . Let C be a simple closed contour in Ω . Then $\int_C f(z)dz = 0$

Simply connected domain

If $Y \in \Omega$ the Int(Y) $\in \Omega$

Theorem (Cauchy Integral Formula)

Let f be holomorphic everywhere on an open set Ω . Let γ a simple closed curve in Ω (oriented positively). If z_0 is interior to γ , then,

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)dz}{z - z_0}.$$

on ented positively >

Tutorial 3:-

Show that Cauchy Riemann equation take the form:
$$u_r = \frac{1}{r} v_\theta \text{ and } v_r = -\frac{1}{r} u_\theta$$

$$v_r = \frac{1}{r} v_\theta \text{ and } v_r = -\frac{1}{r} v_\theta$$

in polar coordinates.

linates.
$$e^{i\phi}f'(re^{i\phi}) = e^{i\phi}f'(z_{0})$$

$$f(r,0) = f(re^{i\phi}) = u(r,0) + iv(r,\omega)$$

lim f(z) - f(zo) should exist for different ability at zo

$$\int'(z_0) = \lim_{r \to r_0} \left\{ \frac{u(r, 0_0) - u(r_0, 0_0)}{e^{i0_0}(r - r_0)} + i \frac{v(r, 0_0) - v(r_0, 0_0)}{e^{i0_0}(r - r_0)} \right\}$$

$$= e^{-100} \left(U_r (r_0, 0_0) + 2 V_r (r_0, 0_0) \right)$$

2.
$$f(x = y_0)$$
 and $0 \rightarrow 0_0$

$$f'(z_0) = l_m \left\{ \frac{u(r_0,0) - u(r_0,0_0)(0-\theta_0)}{(0-\theta_0)} \frac{1}{2} \frac{v(r_0,0_0)}{(-1)} \right\}$$

$$= \frac{1}{r_0} \lim_{\Omega \to 0_0} \left(\frac{U_0(Q_0, r_0)}{ie^{i\Omega}} + \frac{iV_0(r_0, Q_0)}{2e^{i\Omega}} \right) e$$

$$= \frac{-1}{r_0 e^{i\Omega}} \left(U_0(r_0, Q_0) + 2 V_0(r_0, Q_0) \right)$$

$$= \left(\frac{V_0(r_0, Q_0)}{r_0} - 2 U_0(r_0, Q_0) \right) e^{-iQ_0}$$

$$Z_{0} = Y_{0} \neq 10,$$

$$V_{1} = -U_{0}/Y,$$

$$Z = Y_{0} \neq 10,$$

$$Z = Y_{0} \neq 10,$$

2. Prove Cauchy's theorem assuming Cauchy integral formula.

$$CIF' \qquad f(z_0) = \frac{1}{2\pi i} \int_{\mathcal{E}} \frac{f(z_0) dz}{z - z_0}$$

Cauchy's Thm.
$$\int_{\Gamma} f(z) = 0$$
 (NOTE: Condus on Domain)

f is holo. on an open set containing a simple contour Υ and its interior (oriented positively) g is holomorphic on the same open set

$$g(z_0) = \frac{1}{2\pi i} \int \frac{g(z) dz}{z-z_0} = \frac{1}{2\pi i} \int_{Y} \frac{f(z)(z-z_0-1) dz}{(z-z_0)}$$

$$\int (20) + g(20) = \int (20) + \int (20) (-1) = 0$$

$$= \int \int \int (20) + \int (20) (20-20-1) d_2$$

$$= \int (20) + \int (20) (20-20-1) d_2$$

Q.)

3. Let γ be the boundary of the triangle $\{0 < y < 1 - x; \ 0 \le x \le 1\}$ taken with the anticlockwise orientation. Evaluate:

a) $\int_{\gamma} Re(z)dz$ b) $\int_{\gamma} z^2dz$

= (-(+1)(/2)

If she (2)
$$dz = \int - dz = 0$$

In (2) $dz = \int - dz = 0$

In (1) I chosed simple hoop holomorphic for $f(z) = z^2$

And domain is simply connected

$$f(z) = z^2$$

And domain is simply connected

$$f(z) = z^2 - 1$$

Note: (If natural is specified Assume $f(z) = 1$ for $z = 1$ for

3rd Tutorial Page 5

8. Expand $\frac{1+z}{1+2z^2}$ into a power series around 0. Find the radius of convergence.

Consider
$$\frac{1}{1+2z^2} = 1-(2z^2)+(2z^2)^2-(2z^2)^3...$$

(05.)

5. Show that if γ is a simple closed curve traced counter clockwise, the integral $\int_{\gamma} \bar{z} dz$ equals $2i Area(\gamma)$. Evaluate $\int_{\gamma} \bar{z}^m dz$ over a circle γ centered at the origin.

$$Y(t) = \chi(t) + 2y(t) \qquad \text{for } |\text{Real value}$$

$$Y'(t) = \chi'(1) + 2y'(t) \qquad \text{fix } \chi(t), y(t)$$

$$\int_{a}^{b} z \, dz = \int_{a}^{b} T(t) Y'(t) \, dt$$

$$= \int_{a}^{b} (\chi(t) - 2y(t)) (\chi'(t) + 2y'(t)) \, dt$$

$$= \int_{a}^{b} \chi(t) - 2y(t) (\chi'(t) + 2y'(t)) \, dt$$

$$= \int_{a}^{b} \chi(t) - 2y(t) (\chi'(t) + 2y'(t)) \, dt$$

$$= \int_{a}^{b} \chi(t) - 2y(t) (\chi'(t) + 2y'(t)) \, dt$$

$$= \int_{a}^{b} \chi(t) - 2y(t) (\chi'(t) + 2y'(t)) \, dt$$

$$= \int_{a}^{b} \chi(t) - 2y(t) (\chi'(t) + 2y'(t)) \, dt$$

$$= \int_{a}^{b} \chi(t) - 2y(t) (\chi'(t) + 2y'(t)) \, dt$$

$$= \int_{a}^{b} \chi(t) - 2y(t) (\chi'(t) + 2y'(t)) \, dt$$

$$= \int_{a}^{b} \chi(t) - 2y(t) (\chi'(t) + 2y'(t)) \, dt$$

Green's:
$$\int_{M} Mdx + Ndy = \int_{2m} \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} d\ln y$$

$$= \left(0 - 0 \right) d(xy) + \frac{1}{2} \int_{-1}^{1} \left(1 - (-1) \right) d(xy)$$

$$= 0 + \frac{1}{2} (2) \int_{-1}^{2} 1 d(xy)$$

$$= 2i \text{ Area } \left(\text{Int}(r) \right)$$

$$= 2i \text{ Area } \left(\text{Int}(r) \right)$$

$$= \sum_{m} \left(\text{radium of original problem} \right)$$

$$\int_{7}^{2m} dz \text{ let } r(t) = r(\cos t + i \sin t) = re^{it} \\ r(t) = r(\sin t + i \cos t)$$

$$= ir(t)$$

$$= ir(t)$$

$$So, \int_{8}^{2m} dz = \int_{8}^{2\pi} \left(\frac{r(t)}{r(t)} \right)^{m-1} \left| r(t) \right|^{2} dt$$

$$= \frac{1}{2} x^{2} \int_{8}^{2\pi} \left(\frac{r(t)}{r(t)} \right)^{m-1} dt$$

$$= \frac{1}{2} x^{2} \int_{8}^{2\pi} r^{m-1} \left[\cos(m+1)t - i \sin(m+1)t \right] dt$$

$$= \frac{1}{2} x^{2} \int_{8}^{2\pi} r^{m-1} \left[\cos(m+1)t - i \sin(m+1)t \right] dt$$

$$= \frac{1}{2} x^{2} \int_{8}^{2\pi} r^{m-1} \left[\cos(m+1)t - i \sin(m+1)t \right] dt$$

$$= \frac{1}{2} x^{2} \int_{8}^{2\pi} r^{m-1} \left[\cos(m+1)t - i \sin(m+1)t \right] dt$$

$$= \frac{1}{2} x^{2} \int_{8}^{2\pi} r^{m-1} \left[\cos(m+1)t - i \sin(m+1)t \right] dt$$

$$= \frac{1}{2} x^{2} \int_{8}^{2\pi} r^{m-1} \left[\cos(m+1)t - i \sin(m+1)t \right] dt$$

$$= \frac{1}{2} x^{2} \int_{8}^{2\pi} r^{m-1} \left[\sin(m+1)t - i \sin(m+1)t \right] dt$$

$$= \frac{1}{2} x^{2} \int_{8}^{2\pi} r^{m-1} \left[\sin(m+1)t - i \sin(m+1)t \right] dt$$

$$= \frac{1}{2} x^{2} \int_{8}^{2\pi} r^{m-1} \left[\sin(m+1)t - i \sin(m+1)t \right] dt$$

$$= \frac{1}{2} x^{2} \int_{8}^{2\pi} r^{m-1} \left[\sin(m+1)t - i \sin(m+1)t \right] dt$$

$$= \frac{1}{2} x^{2} \int_{8}^{2\pi} r^{m-1} \left[\sin(m+1)t - i \sin(m+1)t \right] dt$$

$$= \frac{1}{2} x^{2} \int_{8}^{2\pi} r^{m-1} \left[\sin(m+1)t - i \sin(m+1)t \right] dt$$

$$= \frac{1}{2} x^{2} \int_{8}^{2\pi} r^{m-1} \left[\sin(m+1)t - i \sin(m+1)t \right] dt$$

$$= \frac{1}{2} x^{2} \int_{8}^{2\pi} r^{m-1} \left[\sin(m+1)t - i \sin(m+1)t \right] dt$$

$$= \frac{1}{2} x^{2} \int_{8}^{2\pi} r^{m-1} \left[\sin(m+1)t - i \sin(m+1)t \right] dt$$

$$= \frac{1}{2} x^{2} \int_{8}^{2\pi} r^{m-1} \left[\sin(m+1)t - i \sin(m+1)t \right] dt$$

$$= \frac{1}{2} x^{2} \int_{8}^{2\pi} r^{m-1} \left[\sin(m+1)t - i \sin(m+1)t \right] dt$$

$$= \frac{1}{2} x^{2} \int_{8}^{2\pi} r^{m-1} \left[\sin(m+1)t - i \sin(m+1)t \right] dt$$

$$= \frac{1}{2} x^{2} \int_{8}^{2\pi} r^{m-1} \left[\cos(m+1)t - i \sin(m+1)t \right] dt$$

$$= \frac{1}{2} x^{2} \int_{8}^{2\pi} r^{m-1} \left[\cos(m+1)t - i \sin(m+1)t \right] dt$$

