

Art of Problem Solving 2008 Romanian Masters In Mathematics

Romanian Masters In Mathematics 2008

_	February 9th
1	Let ABC be an equilateral triangle and P in its interior. The distances from P to the triangle's sides are denoted by a^2, b^2, c^2 respectively, where $a, b, c > 0$. Find the locus of the points P for which a, b, c can be the sides of a non-degenerate triangle.
2	Prove that every bijective function $f: \mathbb{Z} \to \mathbb{Z}$ can be written in the way $f = u + v$ where $u, v: \mathbb{Z} \to \mathbb{Z}$ are bijective functions.
3	Let $a > 1$ be a positive integer. Prove that every non-zero positive integer N has a multiple in the sequence $(a_n)_{n \ge 1}$, $a_n = \left\lfloor \frac{a^n}{n} \right\rfloor$.
4	Consider a square of sidelength n and $(n+1)^2$ interior points. Prove that we can choose 3 of these points so that they determine a triangle (eventually degenerated) of area at most $\frac{1}{2}$.

www.artofproblemsolving.com/community/c3607

Contributors: freemind, Fedor Petrov