

PG-TO220FP

V_{DS} @ T_{jmax}

 $R_{\rm DS(on)}$

 $I_{\rm D}$

PG-TO262

Cool MOS™ Power Transistor

Feature

- New revolutionary high voltage technology
- Ultra low gate charge
- Periodic avalanche rated
- Extreme dv/dt rated
- High peak current capability
- Improved transconductance
- PG-TO-220-3-31;-3-111: Fully isolated package (2500 VAC; 1 minute)
- Pb-free lead plating; RoHS compliant
- Qualified according to JEDEC⁰⁾ for target applications

Туре	Package	Ordering Code	Marking		
SPP11N60C3	PG-TO220	Q67040-S4395	11N60C3		
SPI11N60C3	PG-TO262	Q67042-S4403	11N60C3		
SPA11N60C3	PG-TO220FP	Q67040-S4408	11N60C3		
SPA11N60C3E8185	PG-TO220		11N60C3		

Source pin 3

650

0.38

11

PG-TO220

٧

Ω

Α

Maximum Ratings

Parameter	Symbol	Va	Unit	
		SPP_I	SPA	
Continuous drain current	I _D			Α
<i>T</i> _C = 25 °C		11	11 ¹⁾	
T _C = 100 °C		7	71)	
Pulsed drain current, t_p limited by T_{jmax}	I _{D puls}	33	33	Α
Avalanche energy, single pulse	E _{AS}	340	340	mJ
I _D =5.5A, V _{DD} =50V				
Avalanche energy, repetitive t_{AR} limited by T_{jmax}^{2}	E _{AR}	0.6	0.6	
I _D =11A, V _{DD} =50V				
Avalanche current, repetitive t_{AR} limited by T_{jmax}	I _{AR}	11	11	Α
Gate source voltage static	V_{GS}	±20	±20	V
Gate source voltage AC (f >1Hz)	V _{GS}	±30	±30	
Power dissipation, $T_C = 25^{\circ}C$	P _{tot}	125	33	W
Operating and storage temperature	$T_{\rm i}$, $T_{\rm stq}$	-55	.+150	°C
Reverse diode dv/dt ⁷⁾	dv/dt	1	5	V/ns

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain Source voltage slope	d <i>v</i> /d <i>t</i>	50	V/ns
$V_{\rm DS}$ = 480 V, $I_{\rm D}$ = 11 A, $T_{\rm j}$ = 125 °C			

Thermal Characteristics

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Thermal resistance, junction - case	R_{thJC}	-	-	1	K/W
Thermal resistance, junction - case, FullPAK	R _{thJC FP}	-	-	3.8	
Thermal resistance, junction - ambient, leaded	R_{thJA}	-	-	62	
Thermal resistance, junction - ambient, FullPAK	R _{thJA_FP}	-	-	80	
SMD version, device on PCB:	R_{thJA}				
@ min. footprint		-	-	62	
@ 6 cm ² cooling area ³⁾		-	35	-	
Soldering temperature, wavesoldering	T_{sold}	-	-	260	°C
1.6 mm (0.063 in.) from case for 10s ⁴⁾					

Electrical Characteristics, at T_j =25°C unless otherwise specified

Parameter	Symbol Conditions Values			Unit		
			min.	typ.	max.	
Drain-source breakdown voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =0.25mA	600	•	-	V
Drain-Source avalanche	$V_{(BR)DS}$	V _{GS} =0V, I _D =11A	-	700	-	
breakdown voltage	, ,					
Gate threshold voltage	V _{GS(th)}	I_{D} =500 μ A, V_{GS} = V_{DS}	2.1	3	3.9	
Zero gate voltage drain current	I _{DSS}	V _{DS} =600V, V _{GS} =0V,				μA
		<i>T</i> _j =25°C	-	0.1	1	
		<i>T</i> _j =150°C	-	-	100	
Gate-source leakage current	I_{GSS}	V _{GS} =30V, V _{DS} =0V	-	-	100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10V, I _D =7A				Ω
	, ,	<i>T</i> _j =25°C	-	0.34	0.38	
		<i>T</i> _j =150°C	-	0.92	-	
Gate input resistance	R _G	f=1MHz, open drain	-	0.86	-	

Electrical Characteristics

Parameter	Symbol	Conditions		Values		Unit
			min.	typ.	max.	
Transconductance	g _{fs}	$V_{\rm DS} \ge 2*I_{\rm D}*R_{\rm DS(on)max}$, $I_{\rm D} = 7A$	ı	8.3	-	S
Input capacitance	C _{iss}	$V_{\rm GS}$ =0V, $V_{\rm DS}$ =25V,	-	1200	-	pF
Output capacitance	Coss	f=1MHz	-	390	-	
Reverse transfer capacitance	C _{rss}		-	30	-	
Effective output capacitance,5)	C _{o(er)}	V _{GS} =0V,	-	45	-	
energy related	, ,	V _{DS} =0V to 480V				
Effective output capacitance,6)	C _{o(tr)}		-	85	-	
time related						
Turn-on delay time	t _{d(on)}	V _{DD} =380V, V _{GS} =0/10V,	-	10	-	ns
Rise time	t _r	I _D =11A,	-	5	-	
Turn-off delay time	t _{d(off)}	R_{G} =6.8 Ω	-	44	70	
Fall time	t _f		-	5	9	

Gate Charge Characteristics

Gate to source charge	Q _{gs}	V _{DD} =480V, I _D =11A	-	5.5	-	nC
Gate to drain charge	Q _{gd}		-	22	-	
Gate charge total	Q_{g}	V _{DD} =480V, I _D =11A,	-	45	60	
		V _{GS} =0 to 10V				
Gate plateau voltage	V _(plateau)	V _{DD} =480V, I _D =11A	-	5.5	-	V

Identical low-side and high-side switch.

⁰J-STD20 and JESD22

¹Limited only by maximum temperature

²Repetitve avalanche causes additional power losses that can be calculated as $P_{AV} = E_{AR} * f$.

 $^{^3}$ Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 μ m thick) copper area for drain connection. PCB is vertical without blown air.

⁴Soldering temperature for TO-263: 220°C, reflow

 $^{^5}C_{
m o(er)}$ is a fixed capacitance that gives the same stored energy as $C_{
m oss}$ while $V_{
m DS}$ is rising from 0 to 80% $V_{
m DSS}$.

 $^{^6}C_{\text{O(tr)}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

⁷ISD<=ID, di/dt<=400A/us, VDClink=400V, Vpeak<VBR, DSS, Tj<Tj,max.

Electrical Characteristics

Parameter	er Symbol Conditions Values		Values	Uni		
			min.	typ.	max.	
Inverse diode continuous	IS	T _C =25°C	-	-	11	Α
forward current						
Inverse diode direct current,	I _{SM}		-	-	33	
pulsed						
Inverse diode forward voltage	V _{SD}	V _{GS} =0V, I _F =I _S	-	1	1.2	V
Reverse recovery time	t _{rr}	V_{R} =480V, I_{F} = I_{S} ,	-	400	600	ns
Reverse recovery charge	Q _{rr}	d <i>i</i> _F /d <i>t</i> =100A/μs	-	6	-	μC
Peak reverse recovery current	/ _{rrm}		-	41	-	Α
Peak rate of fall of reverse	di _{rr} /dt	<i>T</i> _j =25°C	-	1200	-	A/µs
recovery current						

Typical Transient Thermal Characteristics

Symbol	Va	lue	Unit	Symbol	Va	lue	Unit
	SPP_I	SPA			SPP_I	SPA	
R _{th1}	0.015	0.15	K/W	C _{th1}	0.0001878	0.0001878	Ws/K
R _{th2}	0.03	0.03		C _{th2}	0.0007106	0.0007106	
R _{th3}	0.056	0.056		C _{th3}	0.000988	0.000988	
R _{th4}	0.197	0.194		C _{th4}	0.002791	0.002791	
R_{th5}	0.216	0.413		C _{th5}	0.007285	0.007401	
R _{th6}	0.083	2.522		C _{th6}	0.063	0.412	

1 Power dissipation

$$P_{\text{tot}} = f(T_{\text{C}})$$

2 Power dissipation FullPAK

$$P_{\text{tot}} = f(T_{\text{C}})$$

3 Safe operating area

$$I_{D} = f(V_{DS})$$

parameter : D = 0 , $T_C = 25^{\circ}C$

4 Safe operating area FullPAK

$$I_{D} = f(V_{DS})$$

parameter: D = 0, $T_C = 25$ °C

5 Transient thermal impedance

$$Z_{\text{thJC}} = f(t_{\text{p}})$$

parameter: $D = t_D/T$

6 Transient thermal impedance FullPAK

$$Z_{\text{thJC}} = f(t_{\text{p}})$$

parameter: $D = t_0/t$

7 Typ. output characteristic

 $I_D = f(V_{DS}); T_i = 25$ °C

parameter: t_p = 10 μ s, V_{GS}

8 Typ. output characteristic

 $I_{D} = f(V_{DS}); T_{j} = 150^{\circ}C$

parameter: t_p = 10 μ s, V_{GS}

9 Typ. drain-source on resistance

 $R_{DS(on)} = f(I_D)$

parameter: T_j =150°C, V_{GS}

11 Typ. transfer characteristics

 $I_{\rm D}$ = f ($V_{\rm GS}$); $V_{\rm DS}$ \geq 2 x $I_{\rm D}$ x $R_{\rm DS(on)max}$ parameter: $t_{\rm D}$ = 10 μ s

10 Drain-source on-state resistance

 $R_{\mathsf{DS}(\mathsf{on})} = f(T_{\mathsf{j}})$

parameter : I_D = 7 A, V_{GS} = 10 V

12 Typ. gate charge

 $V_{GS} = f (Q_{Gate})$

parameter: I_D = 11 A pulsed

13 Forward characteristics of body diode

 $I_{\mathsf{F}} = f(\mathsf{V}_{\mathsf{SD}})$

parameter: T_j , $t_p = 10 \mu s$

15 Typ. switching time

 $t = f(R_G)$, inductive load, T_j =125°C par.: V_{DS} =380V, V_{GS} =0/+13V, I_D =11 A

14 Typ. switching time

 $t = f(I_D)$, inductive load, T_j =125°C par.: V_{DS} =380V, V_{GS} =0/+13V, R_G =6.8 Ω

16 Typ. drain current slope

 $di/dt = f(R_G)$, inductive load, $T_j = 125$ °C par.: $V_{DS}=380$ V, $V_{GS}=0/+13$ V, $I_D=11$ A

17 Typ. drain source voltage slope

 $dv/dt = f(R_G)$, inductive load, $T_j = 125$ °C par.: $V_{DS} = 380$ V, $V_{GS} = 0/+13$ V, $I_D = 11$ A

18 Typ. switching losses

 $E = f(I_D)$, inductive load, T_j =125°C par.: V_{DS} =380V, V_{GS} =0/+13V, R_G =6.8 Ω

19 Typ. switching losses

 $E = f(R_G)$, inductive load, T_j =125°C par.: V_{DS} =380V, V_{GS} =0/+13V, I_D =11A

20 Avalanche SOA

 $I_{AR} = f(t_{AR})$

par.: $T_j \le 150 \, ^{\circ}\text{C}$

21 Avalanche energy

$$E_{AS} = f(T_i)$$

par.: $I_D = 5.5 \text{ A}, V_{DD} = 50 \text{ V}$

22 Drain-source breakdown voltage

 $V_{(BR)DSS} = f(T_j)$

23 Avalanche power losses

$$P_{AR} = f(f)$$

parameter: EAR=0.6mJ

24 Typ. capacitances

$$C = f(V_{DS})$$

parameter: V_{GS}=0V, f=1 MHz

25 Typ. $C_{\rm OSS}$ stored energy

$$E_{oss} = f(V_{DS})$$

Definition of diodes switching characteristics

Outline PG-TO220 FullPAK

NOTES:

ALL DIMENSIONS REFER TO JEDEC STANDARD TO-281 AND DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS

GATE BURRS ARE LESS THAN 0.5 mm

DIMENSIONS	MILLIMETERS				
DIMENSIONS	MIN.	MAX.			
Α	4.50	4.90			
A1	2.34	2.85			
A2	2.42	2.86			
b	0.65	0.90			
b1	0.95	1.38			
b2	0.95	1.51			
b3	0.65	1.38			
b4	0.65	1.51			
С	0.40	0.63			
D	15.67	16.15			
D1	8.97	9.83			
E	10.00	10.65			
е	2.	54			
Н	28.70	29.75			
L	12.78	13.75			
L1	2.83	3.45			
øΡ	3.00	3.30			
Q	3.15	3.50			

DOCUMENT NO.
Z8B00003319
REVISION
07
SCALE 5:1
0 1 2 3 4 5mm
EUROPEAN PROJECTION
ISSUE DATE 27.01.2017

PG-TO-262-3-1 (I²-PAK)

DIM	MILLIM	ETERS	INCHES		
DINI	MIN	MAX	MIN	MAX	
Α	4.300	4.500	0.169	0.177	
A1	2.150	2.650	0.085	0.104	
b	0.650	0.850	0.026	0.033	
b1	0.635	1.400	0.025	0.055	
С	0.400	0.600	0.016	0.024	
c1	1.170	1.370	0.046	0.054	
D	9.050	9.450	0.356	0.372	
D1	6.900	7.650	0.272	0.301	
E	9.800	10.200	0.386	0.402	
E1	7.250	8.600	0.285	0.339	
e	2.5	40	0.1	100	
e1	5.0	80	0.2	200	
N	3	3		3	
L	13.000	14.000	0.512	0.551	
L1	4.350	4.750	0.171	0.187	
L2	0.700	1.300	0.028	0.051	

PG-TO-220-3-1, PG-TO-220-3-21

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
Α	4.30	4.57	0.169	0.180
A1	1.17	1.40	0.046	0.055
A2	2.15	2.72	0.085	0.107
b	0.65	0.86	0.026	0.034
b1	0.95	1.40	0.037	0.055
b2	0.95	1.15	0.037	0.045
b3	0.65	1.15	0.026	0.045
С	0.33	0.60	0.013	0.024
D	14.81	15.95	0.583	0.628
D1	8.51	9.45	0.335	0.372
D2	12.19	13.10	0.480	0.516
E	9.70	10.36	0.382	0.408
E1	6.50	8.60	0.256	0.339
e	2.54		0.100	
e1	5.08		0.200	
N	3		3	
H1	5.90	6.90	0.232	0.272
L	13.00	14.00	0.512	0.551
L1	-	4.80	-	0.189
øΡ	3.60	3.89	0.142	0.153
Q	2.60	3.00	0.102	0.118

600V CoolMOS™ C3

SPx11N60C3

Revision History

SPx11N60C3

Revision: 2018-02-09, Rev. 2.3

Previous Revision

Revision	Date	Subjects (major changes since last revision)	
3.3	2018-02-09	Outline FullPAK update	

Trademarks of Infineon Technologies AG

AURIX™, C166™, CanPAK™, CIPOS™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, Infineon™, ISOFACE™, IsoPACK™, i-Wafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.

Trademarks updated August 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2018 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.