

hg of BDP

Deposition Site

FIGURE 3

SPRAY-DRIED NAPROXEN

Volume Distribution by Aérodynamic Diameter

STZ	ATISTICS	PARAMETERS	*UNDER	SIXE	HONDER	SIZE
Hean Size Standard Deviation D(4,3) D(3,2) Hode (Log Scale) Specific Surface Area	: 1.671 : 1.334 : 1.740 : 1.602 : 1.65 : 2.97 sq meter/q	Material : SDI-naproce Density : 1.26 Run Length (sec) : 121.9 PRT Voltage : 1100.0 Sum of channels : 46211 Lower Size Limit : 0.10 - Upper Size Limit : 200.00 Holzie Type : 700um Baseline Offset : 0.10 Hoise Filter : 6.00 Regularization : Low	103 503	1.157 1.675	908	2.432

100 0.0000 86.0 100.00 10.0 0.0000 8.	CO 100 00 1		
74.0 0.0000 63.0 100.00 7.40 0.0000 6.63.0 0.0000 6.0 0.0000 6.0 0.0000 6.0 0.0000 6.0 0.0000 5.0 0.0000 6.0 0.0000 5.0 0.0000 6.0 0	.40 100.00 030 100.00 040 100.00 060 100.00 040 99.885 090 98.180 050 91.771 020 81.956 080 59.359 060 43.923 040 27.166 0.	.00 2.4683 8.08394 .74 0.3050 .63 0.1042 .54 0.0333 .46 0.003 .34 0.0000 .29 0.0000 .22 0.0000 .22 0.0000 .18 0.0000 .18 0.0000	0.85 1.2857 0.74 0.4463 0.53 0.1413 0.54 0.0371 0.46 0.0038 0.40 0.0003 0.34 0.0000 0.29 0.0000 0.25 0.0000 0.25 0.0000 0.22 0.0000 0.25 0.0000 0.16 0.0000 0.16 0.0000

FIGURE 4

Spray Dried Nanoparticulate Naproxen

FIGURE 5

SPRAY-DRIED HAPROXEN

STATE	STICS	PARAMETERS	LUNDER	SIM	\$UIDER	SIZE
Standard Deviation D(4,3) D(3,2) Node (Log Scale)	2.906 1.524 3.142 2.632 3.66 1.81 sq meter/q	Baterial : SDI-naprove Density : 1.26 Run Length (sec) : 108.9 PMF Voltage : 1100.0 Sun of channels : 13520 Lower Size Limit : 0.10 Goor Size Limit : 200.00 Botzle Type : 700um Baseline Offset : 0.10 Hoise Filter : 6.80 Regularization : Low	10\$ 50\$	1.554 3.183	90\$	4.651

UPPER SIZE	‡ IH	LOWER	THOER	UPPER	} IN \	LONE	UNDER	UPPER SIXE	in	LOUIS Size	UNDER	UPPER SILE	III.	LONER Size	UNDER
160 0 140 0	.8000 .0000 .0000	160 140 120 100	100.00 100.00 100.00 100.00	86.0 74.0 63.0 54.0 46.0 40.0 34.0 29.0 22.0 18.0 14.0	00000 00000 00000 00000 00000 00000 0000	74.0 63.0 54.0 46.0 34.0 29.0 25.0 18.0 14.0 12.0	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	10.0 8.60 7.40 6.30 5.40 4.60 4.60 2.90 2.50 2.20 1.60 1.40 1.20	0.0000 0.0000 0.0000 1.1614 9.8645 13.705 15.715 10.821 7.2247 8.6259 3.7744 3.1759 2.4167	8.60 7.40 6.30 5.40 4.60 4.00 2.90 2.50 2.20 1.60 1.40	100.00 100.00 98.839 88.974 75.268 56.994 41.278 30.457 23.232 14.608 10.832 7.2871 4.1112 1.6945	1.00 0.86 0.74 0.63 0.54 0.46 0.40 0.34 0.25 0.22 0.18 0.16 0.14 0.12	1.0101 0.4335 0.1785 0.0548 0.0153 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.86 0.74 0.63 0.54 0.46 0.40 0.19 0.25 0.22 0.18 0.16 0.16 0.12	0.6844 0.2509 0.0723 0.0175 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FIGURE 6

spray dried ta.

ST	TISTICS		PARAME	RUNDER	SIZE	\$UKDER	SIZE	
Mean Size Standard Deviation D(4,3) D(3,2) Hode (Log Scale) Specific Surface Area	: 5.540 : 1.455 : 5.924 : 5.146 : 4.82 : 0.93	sq reter/q	Material Density Run Length (sec) FMT Voltage Sum of channels Lower Size Limit Opper Size Limit Hotzle Type Baseline Offset Hoise Filter Regularization	: 1100.0 : 100494 : 0.10	101 501	3.600 5.516	908	9.082

UPPER SIZE	t IN	LOWE		UPPER SIZE	III	LOWE SIZE	R & UNDER	UPPER SIZE	IN .	LOWE		UPPER SIZE	. IN	LOWER	DADER
180 0.	.0000	160	100.00	86.0 74.0 63.0 54.0 46.0 40.0 34.0 29.0 25.0 22.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	74.0 63.0 54.0 46.0 40.0 34.0 29.0 22.0 18.0 16.0	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	10.0 8.60 7.40 6.30 5.40 4.60 4.00 3.40 2.90 2.50 1.80	7.5026 10.326 13.417 14.999 16.094 13.547 11.255 3.2799 1.3355 0.8131 0.8995 0.3128	8.60 7.40 6.30 5.40 4.60 4.60 2.90 2.50 2.20 1.80	86.677 76.352 62.935 47.935 31.841 18.295 7.0394 3.7595 2.4240 1.6109 0.7114 0.3985	1.00 0.86 0.74 0.63 0.54 0.46 0.40 0.34 0.29 0.25 0.22	0.0237 0.0121 0.0064 0.0021 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000	0.86 0.74 0.63 0.54 0.46 0.40 0.34 0.29 0.25 0.22 0.18 0.16	0.0213 0.0092 0.0028 0.0006 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
140 0.	.0000 .0000 .0000	140 120 100	100.00	14.0	0.0000 0.0000 5.8201	12.0	100.00 100.00 94.180	1.60 1.40 1.20	0.1861 0.1061 0.0613	1.40 1.20 1.00	0.2125 0.1063 0.0450	0.16 0.14 0.12	0.0000	0.14 0.12 0.10	0.000.0 0.000.0 0.000.0

FIGURE 7(A)

Spray-dried nanoparticulate budesonide

FIGURE 7(B)

Micronized budesonide

Title: LIQUID DROPLET AEROSOLS OF NANOPARTICULATE DRUGS

Inventor(s): Bosch et al. Appl. No.: 09/597,738

FIGURE 8

HORIBA LA-910
Laser scattering particle size distribution analyzer

PARTICLE SIZE MEASUREMENT DATA

Material : 5%Dextrose 4-3-98
Source : Reconst, water/3d fill
Freeze-dried Lot Numbe : in water/1 min. sonication

Size(µm)Freq(%;Und(%)		Size(µm)	Freq(%	Und(%)	Size(µm)Freq(%;Und(%)				
1019.5	0.00 100.00	26.11	0.46	99.66	0.669	0.86	46.02		
890.1	0.00 100.00	22.80	. 0.81	99.20	0.584	0.90	45.16		
777.1	0.00 100.00	19.90	1.29	98.39	0.510	1.03	44,26		
678.5	0.00 100.00	17.38	1.88	97.10	0.445	1.68	43.23		
592.4	0.00 100.00	15.17	2.54	95.22	0.389	3,56	41.54		
517.2	0.00 100.00	13.25	3,20	92.66	0.339	6.97	37.98		
451.6	0.00 100.00	11.56	3.76	89.48	0.296	10.10	31.01		
394.2	0.00 100.00	10.10	4.15	85.72	0.259	9.61	20.91		
344.2	0.00 100.00	8.816	4.26	81.57	0.226	6.06	11.30		
300.5	0.00 100.00	7.697	4.06	77.32	0.197	2.99	5.23		
262.4	0.00 100.00	6.720	3.63	73.26	0.172	1.31	2.24		
229.1	0.00 100.00	5.867	3.16	69.63	0.150	0.56	0.93		
200.0	0.00 100.00	5.122	2.76	66.47	0.131	0.26	0.37		
174.6	0.00 100.00	4.472	2,46	63.71	0.115	0.11	0.11		
152.5	0.00 100.00	3.905	2,16	61.25	0.100	0.00	0.00		
133.1	0.00 100.00	3.409	1.89	59.10	0.087	0.00	0.00		
116.2	0.00 100.00	2.976	1.68	57.21	0.076	0.00	0.00		
101.5	0.00 100.00	2.599	1.49	55.52	0.067	0.00	0.00		
88.58	0.00 100.00	2.269	1.24	54.03	0.058	0.00	0.00		
77.34	0.00 100.00	1.981	1.10	52.79	0.051	0.00	0.00		
67.52	0.00 100.00	1.729	0.97	51.69	0.044	0.00	0.00		
58.95	0.00 100.00	1.510	0.90	50.72	0.039	0.00	0.00		
51.47	0.00 100.00	1,318	0.80	49.82	0.034	0.00	0.00		
44.94	0.00 100.00	1.151	0.67	49.02	0.029	0.00	0.00		
39.23	0.00 100.00	1.005	0.86	48.35	0.026	0.00	0.00		
34.25	0.11 100.00	0.877	0.81	47.69	0.022	0.00	0.00		
29.91	0.24 99.89	0.766	0.86	46.88					

Title: LIQUID DROPLET AEROSOLS OF NANOPARTICULATE DRUGS

Inventor(s): Bosch et al. Appl. No.: 09/597,738

FIGURE 9

HORIBA LA-910
Laser scattering particle size distribution analyzer

PARTICLE SIZE MEASUREMENT DATA
Material : reconst. 1%N9585, 5%Man
Source : in water
Lot Numbe : 1min sonication

Size(µm)Freq(%;Und(%)		Size(µm)	Freq(%;Und(%)	Slze(µm)	Freq(%)	Jnd(%)
1019.5	0.00 100.00	26.11	0.00 100.00	0.669	1.75	35.66
890.1	0.00 100.00	22.80	0.00 100.00	0.584	1.65	33.91
777.1	0.00 100.00	19.90	0.11 100.00	0.510	1.87	32.26
678.5	0.00 100.00	17.38	0.27 99.89	0.445	2.22	30.59
592.4	0.00 100.00	15.17	0.57 99.61	0.389	3.60	28,36
517.2	0.00 100.00	13.25	1.04 99.04	0.339	5.49	24.76
451.6	0.00 100.00	11.56	1.66 98.00	0.296	6.54	19.28
394.2	0.00 100.00	10.10	2.35 96.34	0.259	5.59	12.74
344.2	0.00 100.00	8.816	2.98 93.99	0.226	3.52	7.15
300.5	0.00 100.00	7.697	3.38 91.01	0.197	1.87	3.63
262.4	0.00 100.00	6.720	3.53 87.62	0.172	0.93	1.76
229.1	0.00 100.00	5.867	3.52 84.09	0.150	0.46	0.84
200.0	0.00 100.00	5.122	3.51 80.57	0.131	0.25	0.38
174.6	0.00 100.00	4.472	3.55 77.06	0.115	0.13	0.13
152.5	0.00 100.00	3.905	3.56 73.50	0.100	0.00	0.00
133.1	0.00 100.00	3.409	3.53 69.94	0.087	0.00	0.00
116.2	0.00 100.00	2.976	3.54 66.41	0.076	0.00	0.00
101.5	0.00 100.00	2.599	3.51 62.87	0.067	0.00	0.00
88.68	0.00 100.00	2.269	3.33 59.36	0.058	0.00	0.00
77.34	0.00 100.00	1.981	3.27 56.03	0.051	0.00	0.00
67.52	0.00 100.00	1.729	3.10 52.76	0.044	0.00	0.00
58.95	0.00 100.00	1.610	3.00 49.66	0.039	0.00	0.00
51.47	0.00 100.00	1.318	2.70 46.66	0.034	0.00	0.00
44.84	0.00 100.00	1.151	2.24 43.96	0.029	0.00	0.00
39.23	0.00 100.00	1.005	2.02 41.73	0.026	0.00	0.00
34.25	0.00 100.00	0.877	2.09 39.71	0.022	0.00	0.00
29.91	0.00 100.00	0.766	1.95 37.62			

FIGURE 10

Micrograph of Milled TA (3.6%) with Span 85 (0.5%)