

Machine Learning and Data Mining WS21/22

"9 Neural Networks"

Dr. Zeyd Boukhers @ZBoukhers

Institute for Web Science and Technologies University of Koblenz-Landau

January 5, 2022

From previous lecture

- Linear regression
 - Least squares function
 - Optimization
- Linear classification
 - Perceptron classifier
 - Support Vector Machine (SVM)
 - Optimization

Agenda

- From Perceptron classifier to Multi-Layer Perceptron
 - XOR problem
 - Activation function
 - Two-Layer Perceptron
 - Gradient Decent
 - Backpropagation

Perceptron classifier

• Perceptron: the aim is to learn a hyperplane $g(x) = w_0 + w^T x$ that separates the classes.

•
$$g(x) = w_0 + w_1 x_1 + w_2 x_2$$

- The Exclusive OR (XOR) Boolean function is a typical example of such a problem.
- Given the values of the input binary data $x = [x_1, x_2]^T$, the output of the function is either 0 or 1, corresponding to the classes ω_1 and ω_2 , respectively.

x_1	x_2	XOR	Class
0	0	0	$\omega_1(B)$
0	1	1	$\omega_2(A)$
1	0	1	$\omega_2(A)$
1	1	0	$\omega_1(B)$

- Now the classes can be separated with the two lines: $g_1(x) = g_2(x) = 0$
 - A is to the right (+) of $g_1(x)$ and to the left (-) of $g_2(x)$
 - *B* is to the right of both lines.
 - or to the left of both lines.

The problem has been attacked In two successive phases.

- In the first phase, the position of x is computed w.r.t each line.
- In the second phase, the results of the previous phase are combined to find the position of x w.r.t both lines.
 - outside or inside the shaded area.

•
$$y_u = f(g_u(\mathbf{x})), u = 1,2$$

• f(.) is the activation function.

$$f(x) = \begin{cases} 1 & \text{if } g(x) \ge 0 \\ 0 & \text{if } g(x) < 0 \end{cases}$$

Phase 1			Ph	ase 2	
x_1	x_2	y_1	y_2	XOR	Class
0	0	0	0	0	$\omega_1(B)$
0	1	1	0	1	$\omega_2(A)$
1	0	1	0	1	$\omega_2(A)$
1	1	1	1	0	$\omega_1(B)$

- In the first phase, the input vector x is mapped to a new one $y = [y_1, y_2]$.
- In the second phase, the decision is made based on the transformed data.

$$y = [0,0] → ω1$$

•
$$y = [1,1] \rightarrow \omega_1$$

$$y = [1,0] → ω2$$

Phase 1			Phase 2		
x_1	x_2	y_1	y_2	XOR	Class
0	0	0	0	0	$\omega_1(B)$
0	1	1	0	1	$\omega_2(A)$
1	0	1	0	1	$\omega_2(A)$
1	1	1	1	0	$\omega_1(B)$

Source: Theodoridis, S., & Koutroumbas, K. "Pattern recognition." Fourth Edition, 9781597492720, 2008

What happens?

- The first phase transforms (by mapping x to y) the nonlinearly separable problem to a linearly separable one.
- This multilayer architecture is a generalization of the perceptron.

>two-layer perceptron.

Phase 1			Phase 2		
x_1	x_2	y_1	y_2	XOR	Class
0	0	0	0	0	$\omega 1(B)$
0	1	1	0	1	$\omega 0(A)$
1	0	1	0	1	$\omega 0(A)$
1	1	1	1	0	$\omega 1(B)$

Activation function

- Why is it important?
 - Without it, the Multi-Layer Perceptron (MLP) is just a composition of successive linear functions.
 - >A linear function.
- ✓ A non linear function (activation function) that introduces non-linearity into the model.

"If the activation functions of all the hidden units in a network are taken to be linear, then for any such network we can always find an equivalent network without hidden units." [9] (Bishop 2006)

Two-layer perceptron

- It is also called "two-layer feedforward neural network".
- The number of nodes in the input layer = l.

•
$$g_1(\mathbf{x}) = x_1 + x_2 - \frac{1}{2} = 0$$

•
$$g_2(\mathbf{x}) = x_1 + x_2 - \frac{3}{2} = 0$$

•
$$g(y) = y_1 - y_2 - \frac{1}{2} = 0$$

• $g(\mathbf{y}, \widetilde{\mathbf{w}}) = f(g_1(\mathbf{x}, \widetilde{\mathbf{w}}_1)) + f(g_2(\mathbf{x}, \widetilde{\mathbf{w}}_2))$

Two-layer perceptron

- $g(\mathbf{y}; \widetilde{\mathbf{w}}) = f(g_1(\mathbf{x}; \widetilde{\mathbf{w}}_1)) + f(g_2(\mathbf{x}; \widetilde{\mathbf{w}}_2))$
 - Where $\widetilde{\boldsymbol{w}}_{j} = [\boldsymbol{w}_{j}^{T}, b_{j}], \forall j$
 - Let $X = [x_1, x_2, ..., x_l]$

•
$$g_1(X; \widetilde{\mathbf{w}}_1) = \mathbf{w}_1^T X + b = [1,1]^T \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} - \frac{1}{2} = [0 & 1 & 1 & 2] - \frac{1}{2} = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{3}{2} \end{bmatrix}$$

• $f(g_1(x, \widetilde{w}_1)) = [0 \ 1 \ 1 \ 1]$

Compute $f(g_2(\mathbf{x}, \widetilde{\mathbf{w}}_2))$ Compute $f(g(\mathbf{y}, \widetilde{\mathbf{w}}))$

• Let $\widetilde{\pmb{W}} = [\widetilde{\pmb{w}}_1, \widetilde{\pmb{w}}_2]$

$$f(g(y)) = f(\widetilde{\mathbf{w}}^T f(\widetilde{\mathbf{W}}^T \mathbf{x}))$$

Multi-layer perceptron

- The architecture of two-layer perceptron can be generalized
 - to *l*-dimensional input vectors and
 - to more than two neurons in the hidden layer and
 - to more than one neuron in the output layer
 - to more than two layers

Learning

- In other words, how to find the weights?
 - Linear regression → Linear programming (linear optimization)
 - SVM → Quadratic programming
 - Perceptron → Iterative optimization (Non-linear function)
 - Gradient descent.
 - MLP ?
 - Gradient descent
 - Stochastic gradient descent

Maximum likelihood estimation

- Given *N* training samples, let:
 - θ be the set of parameters (to be found)
 - $p(\hat{y}_i|x_i;\theta)$ be the likelihood of the true label of x_i

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \prod_{i=1}^{n} p(\widehat{y}_i | \boldsymbol{x}_i; \boldsymbol{\theta})$$

$$= \sum_{i=1}^{N} \log(p(\widehat{y}_i | \boldsymbol{x}_i; \boldsymbol{\theta}))$$

Maximum likelihood estimation

- Maximizing the log likelihood of a categorical distribution (classification) corresponds to minimising the cross-entropy between the approximated distribution and the true distribution.
 - $H(\widehat{\mathbf{y}}, \mathbf{y}) = -\sum_{i} y_{i} \log(\widehat{y}_{i})$
 - $\blacksquare H(\widehat{y}, y) \neq H(y, \widehat{y})$
- Maximising the log of a continuous distribution (regression) corresponds to minimising the mean squared error between the approximated mean and true mean.

Gradient descent

- Goal: finding θ that minimizes $J(\theta)$
- How: Iterative process

•
$$\boldsymbol{\theta}_{new} = \boldsymbol{\theta}_{old} + \Delta \boldsymbol{\theta}$$

•
$$\Delta \boldsymbol{\theta} = -\rho \frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}_{old}}$$

- θ_{new} is chosen in the direction that decreases $J(\theta)$
- ρ is the learning rate
 - High $\rho \rightarrow \text{big step}$
 - Low $\rho \rightarrow$ small step
- Convergence: when the gradient = 0

How to build MLP?

- Given the architecture below, where all neurones employ the same activation function (sigmoid)
- We assume that N training samples (x_i, \hat{y}_i) , i = 1, ..., N are available.

- Since the output is no longer scalar, it will be $\mathbf{y} = \begin{bmatrix} y_1, y_2, \dots, y_{\lfloor k3 \rfloor} \end{bmatrix}^T$
 - The label will be $\hat{y} = [\hat{y}_1 = 1, \hat{y}_2 = 0, ..., \hat{y}_{|k3|} = 0]^T$
- The goal is to minimize the cost function $J = \sum_{i=1}^N \varepsilon(\mathbf{y}_i, \widehat{\boldsymbol{y}}_i)$
 - For all training samples.
 - Let $\varepsilon(.,.)$ be the MSE: $\varepsilon(\mathbf{y}_i,\widehat{\mathbf{y}}_i) = \sum_{j=1}^{k3} (\mathbf{y}_{i,j} \widehat{\mathbf{y}}_{i,j})^2$

- Let's consider one sample, one neurone per layer:
 - $\varepsilon(y_{i,1}, \hat{y}_{i,1})$ depends on $y_{i,1}$ (or $r_{3,1}$)
 - Let get rid of *i*
 - $y_1 = r_{3,1} = f(g(r_{2,1})) = \sigma(g(r_{2,1})) = \sigma(r_{2,1}w_{3,1} + b_{3,1})$
 - For simplicity, w_0 is substituted with b
 - $f(g(r_{2,1}))$ depends on $g(r_{2,1})$
 - $g(r_{2.1})$ depends on:
 - *r*_{2,1}
 - $\widetilde{w}_{3,1}$ (including the bias)
 - This means the weights of the first neuron in the third layer.

• By the chain rule:

$$\frac{\partial \varepsilon(y_1, \hat{y}_1)}{\partial w_{3,1}} = \frac{\partial \varepsilon(y_1, \hat{y}_1)}{\partial f(g(r_{2,1}))} \frac{\partial f(g(r_{2,1}))}{\partial g(r_{2,1})} \frac{\partial g(r_{2,1})}{\partial w_{3,1}}$$

$$\bullet \frac{\partial f(g(r_{2,1}))}{\partial g(r_{2,1})} = \sigma' \left(g(r_{2,1}) \right)$$

$$\bullet \frac{\partial g(r_{2,1})}{\partial w_{3,1}} = r_{2,1}$$

Remember:

ember:
$$\Delta w_{3,1} = -\rho \left. \frac{\partial \varepsilon(y_1, \hat{y}_1)}{\partial w_{3,1}} \right|_{w_{3,1} = w_{3,1}_{old}}$$

• In the subsequent iteration:

$$w_{3,1}(new) = w_{3,1}(old) - \rho \ 2(y_1 - \hat{y}_1)\sigma'\left(g(r_{2,1})\right)r_{2,1}$$

• For *N* samples:

$$w_{3,1}(new) = w_{3,1}(old) - \rho \sum_{i=1}^{N} 2(y_{i,1} - \hat{y}_{i,1}) \sigma'(g(r_{2,1})) r_{2,1}$$

We can do the same thing for b

• Since we don't have only one sample but *N* samples:

$$\frac{\partial \varepsilon(y_{i=1:N,1}, \hat{y}_{i=1:N,1})}{\partial w_{3,1}} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \varepsilon(y_{i,1}, \hat{y}_{i,1})}{\partial w_{3,1}}$$

- $\varepsilon(y_1, \hat{y}_1)$ is also sensitive to $r_{2,1}$:

 - $\bullet \frac{\partial g(r_{2,1})}{\partial r_{2,1}} = w_{3,1}$

Backpropagation

- But the cost function is also sensitive to previous layers:
 - $\varepsilon(y_1, \hat{y}_1)$ depends on y_1 (or $r_{3,1}$)
 - $y_1 = r_{3,1} = f(g(r_{2,1})) = \sigma(g(r_{2,1})) = \sigma(r_{2,1}w_{3,1} + b_{3,1})$
 - $f(g(r_{2,1}))$ depends on $g(r_{2,1})$
 - $g(r_{2,1})$ depends on $r_{2,1}$ and $\widetilde{\boldsymbol{w}}_{3,1}$
 - $r_{2.1} = f(g(r_{1.1}))$
 - $f(g(r_{1,1}))$ depends on $g(r_{1,1})$
 - $g(r_{1,1})$ depends on $r_{1,1}$ and $\widetilde{\boldsymbol{w}}_{2,1}$

- We have two neurones in k2:
 - $y_1 = r_{3,1} = f(g(r_{2,1}, r_{2,2})) = \sigma(\sum_{j=1}^{2} (r_{2,j} w_{3,j}) + b_3)$
 - We generalize this for any number of neurones:
 - $r_{k,u} = \sigma \left(\sum_{j=1}^{|k-1|} (r_{k-1,j} w_{k,j}) + b_{k,u} \right)$

$$\begin{array}{l} \bullet \ \nabla \varepsilon \left(y_{i=1:N,1}, \hat{y}_{i=1:N,1} \right)_{\widetilde{W}} = \\ \left[\frac{\partial \varepsilon \left(y_{i=1:N,1}, \hat{y}_{1:N,1} \right)}{\partial w_{1,1}}, \frac{\partial \varepsilon \left(y_{1:N,1}, \hat{y}_{1:N,1} \right)}{\partial b_{1,1}}, \dots, \frac{\partial \varepsilon \left(y_{1:N,1}, \hat{y}_{1:N,1} \right)}{\partial w_{3,1}}, \frac{\partial \varepsilon \left(y_{1:N,1}, \hat{y}_{1:N,1} \right)}{\partial b_{3,1}} \right]^{T} \end{array}$$

Summary

- From Perceptron classifier to Multi-Layer Perceptron
 - XOR problem
 - Activation function
 - Two-Layer Perceptron
- Learning (Optimization)
 - Gradient Decent
 - Backpropagation

Thank you!

Zeyd Boukhers

E-mail: Boukhers@uni-koblenz.de

Phone: +49 (0) 261 287-2765

Web: Zeyd.Boukhers.com

University of Koblenz-Landau Universitätsstr. 1 56070 Koblenz

