

Linear System Of Equations Part 1

Calcoli di Processo dell' Ingegneria Chimica

DEPARTMENT
OF CHEMISTRY MATERIALS
AND CHEMICAL
ENGINEERING

Timoteo Dinelli

9th of October 2025

Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta", Politecnico di Milano.

email: timoteo.dinelli@polimi.it

Motivation: Why Linear Systems?

Consider a chemical process with multiple unit operations. Mass balance equations for each component form a system of equations:

Where x_1, x_2, x_3 represent flow rates. Such systems appear everywhere in engineering: heat transfer, electrical circuits, structural analysis, and process optimization.

How do we solve these efficiently and accurately?

Linear System Of Equations

A system of linear equations consists of several linear equations that must all be satisfied simultaneously. A solution is a vector whose elements, when substituted for the unknowns, satisfy all equations.

From the classical representation to the matrix form:

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2 \\ \vdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n \end{cases}$$

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$Ax = b$$

Why Not Just Invert the Matrix?

The "obvious" solution would be:

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

This approach is impractical! Here's why:

- ▶ Computational cost: Computing A^{-1} requires $\sim O(n^3)$ operations, same as solving the system directly
- ► Numerical instability: Direct inversion amplifies rounding errors, especially for ill-conditioned matrices
- \blacktriangleright Memory: Storing the full inverse matrix requires n^2 memory locations
- ightharpoonup Singularity: If det(A) = 0, the inverse doesn't exist

The Goal: Triangular Systems

Consider this simple 3×3 upper triangular system:

$$\begin{cases} 3x + 89y + 66z = 87 \\ 65y + 9z = 7 \\ 46z = 3 \end{cases}$$

$$\begin{bmatrix} 3 & 89 & 66 \\ 0 & 65 & 9 \\ 0 & 0 & 46 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 87 \\ 7 \\ 3 \end{bmatrix}$$

This is easy to solve by back-substitution:

$$z = \frac{3}{46} \approx 0.065$$

$$y = \frac{7 - 9z}{65} \approx 0.098$$

$$x = \frac{87 - 89y - 66z}{3} \approx 26.09$$

Cost: Only $O(n^2)$ operations! Our goal: Transform any system into triangular form.

Gauss Elimination: General Algorithm

Given Ax = b, form the augmented matrix $A^* = [A \mid b]$

$$\mathbf{A}^* = [\mathbf{A} \mid \mathbf{b}] = \begin{bmatrix} a_{1,1}^{(0)} & \dots & a_{1,n}^{(0)} & b_1^{(0)} \\ \vdots & \ddots & \vdots & \vdots \\ a_{n,1}^{(0)} & \dots & a_{n,n}^{(0)} & b_n^{(0)} \end{bmatrix}$$

Superscript (k) indicates the state after k elimination steps. After n-1 elimination steps, we obtain:

$$\mathbf{A}^* = \begin{bmatrix} a_{1,1}^{(0)} & \dots & a_{1,n}^{(0)} & b_1^{(0)} \\ 0 & a_{2,2}^{(1)} & \dots & a_{2,n}^{(n)} & b_2^{(n)} \\ \vdots & \dots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & a_{n,n}^{(n-1)} & b_n^{(n-1)} \end{bmatrix}$$

At step k: eliminate column k below the diagonal using multipliers formula

$$m_{i,k} = \frac{a_{i,k}^{(k-1)}}{a_{k,k}^{(k-1)}}$$

Why Triangular Matrices?

Key insight: Triangular systems are trivial to solve!

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n-1} & a_{1,n} \\ 0 & a_{2,2} & \dots & a_{2,n-1} & a_{2,n} \\ 0 & 0 & \dots & a_{3,n-1} & a_{3,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & a_{n,n} \end{bmatrix} \mathbf{x} = \mathbf{b}^*$$

Back-substitution algorithm:

$$x_n = \frac{b_n^*}{a_{n,n}}$$
 $x_i = \frac{1}{a_{i,i}} \left(b_i^* - \sum_{j=i+1}^n a_{i,j} x_j \right)$ for $i = n-1, n-2, \dots, 1$

LU Factorization: The Idea

Instead of modifying A repeatedly, decompose it once:

$$A = LU$$

where L is lower triangular (with 1's on diagonal) and U is upper triangular.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \qquad \mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix} \qquad \mathbf{U} = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

Connection to Gauss elimination: The multipliers $m_{i,k}$ from Gauss elimination become the entries $\ell_{i,k}$ of L. Matrix U is the final upper triangular form.

Solving with LU Decomposition

Original problem: $Ax = b \rightarrow Substitute A = LU \rightarrow Equation LUx = b$

Two-step solution process:

Step 1: Forward substitution - Solve Ly = b for y

$$y_i = b_i - \sum_{j=1}^{i-1} \ell_{i,j} y_j$$
 for $i = 1, 2, ..., n$

Step 2: Back-substitution - Solve Ux = y for x

$$x_i = \frac{1}{u_{i,i}} \left(y_i - \sum_{j=i+1}^n u_{i,j} x_j \right)$$
 for $i = n, n-1, \dots, 1$

Each step costs $O(n^2)$ operations. The decomposition costs $O(n^3)$ but is done only once!

Computational Complexity Comparison

Method	Operations	Comment
Direct inversion (A ⁻¹)	$\sim \frac{2n^3}{3}$	Numerically unstable
Gauss elimination	$\sim \frac{n^3}{3}$	Good for single b
LU decomposition	$\sim \frac{n^3}{3}$	Reusable for multiple b
Forward/back substitution	$\sim n^2$	Using existing L , U

Why Use LU Decomposition?

- ▶ Multiple right-hand sides: Once A = LU is computed, solving for different b vectors costs only $O(n^2)$ each (useful in optimization, time-stepping schemes, Newton methods)
- ► Transpose systems: Can solve $A^T x = c$ using $A^T = U^T L^T$ without new factorization
- ▶ Matrix properties: Easy to compute $det(A) = \prod_{i=1}^{n} u_{ii}$ and check invertibility
- ► Efficient updates: Special techniques can update L and U when A is slightly modified (rank-1 updates, Sherman-Morrison formula)
- ► MATLAB note: The built-in [L,U,P] = lu(A) function includes pivoting (permutation matrix P) for numerical stability. Always check documentation for output format!

When Methods Can Fail

Singular matrices: If det(A) = 0, the system has either:

- ► No solution (inconsistent)
- Infinitely many solutions (underdetermined)

Numerical issues during elimination:

- ▶ Zero pivot: If $a_{k,k}^{(k-1)} = 0$, division by zero occurs
- ► Small pivot: If $a_{k,k}^{(k-1)} \approx 0$, amplifies rounding errors

Solution: Partial pivoting

- ▶ At each step, swap rows to bring the largest element to the pivot position
- ► Improves numerical stability significantly
- ► MATLAB's lu(A) and linsolve(A, b) use pivoting by default

Exercise 1: Triangular System Solver

Implement a function that solves upper triangular systems using back-substitution.

Function signature:

Function: x = solve_upper_triangular(U, b)

Input: $n \times n$ upper triangular matrix **U**, vector **b** of size $n \times 1$

Output: Solution vector \mathbf{x} of size $n \times 1$

Algorithm hints:

Start from the last equation: $x_n = b_n/U_{n,n}$

Use a **for** loop with index **i** from **n-1** down to **1**

For each x_i : subtract contributions from already-computed x_i (where i > i)

Formula:
$$x_i = (b_i - \sum_{i=i+1}^n U_{i,i} \cdot x_i)/U_{i,i}$$

Test:
$$\begin{bmatrix} 2 & 3 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 8 \\ 12 \end{bmatrix}$$

Answer: $x_1 = 1.5$, $x_2 = 3$

Exercise 2: Gauss Elimination

Transform matrix A into upper triangular form using Gauss elimination.

Function signature:

Function: [U, b_new] = gauss_eliminate(A, b)

Input: $n \times n$ matrix **A**, vector **b** of size $n \times 1$

Output: Upper triangular matrix U, modified vector b_new

Note: This version does not include pivoting. Assumes all pivot elements are non-zero.

Exercise 3: Complete Linear Solver

Combine your functions into a complete solver and compare with MATLAB.

Function signature:

- Function: x = my_linear_solver(A, b)
- · Should call: gauss_eliminate then solve_upper_triangular

Test systems:

$$\begin{bmatrix} 1 & 2 & -1 & 2 \\ 1 & 0 & 2 & 1 \\ 2 & 1 & 0 & -2 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 1 \\ 2 \end{bmatrix} \qquad \begin{bmatrix} 1 & 45 & 0 & -1 \\ 1 & 0 & 0 & -3 \\ 1 & 1 & 1 & 0 \\ 1 & -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} = \begin{bmatrix} 6 \\ 12 \\ -6 \\ 12 \end{bmatrix}$$

Verification: Compare your results with MATLAB's built-in:

 $x_{matlab} = A \setminus b (recommended), x_{matlab} = linsolve(A, b)$

Exercise 4: LU Decomposition

Implement LU decomposition and integrate it into your solver.

Function signature:

```
· Function: [L, U] = my_lu_decompose(A)
```

- Input: $n \times n$ matrix A
- · Output: Lower triangular L (with 1's on diagonal), upper triangular U

Algorithm hints:

- · Initialize: L = eye(n), U = A
- For each column k from 1 to n-1:
 - For each row i from k+1 to n:
 - Store multiplier in L: L(i,k) = U(i,k) / U(k,k)
 - Eliminate in U: U(i,:) = U(i,:) L(i,k) * U(k,:)
- · Create the solver assembling the decomposition and the solution routines.

Expected Solutions

Use these to verify your implementations are correct!

Test System 1:

$$\begin{cases} x + 2y - z + 2t = 3 \\ x + 2z + t = 1 \\ 2x + y - 2t = 1 \\ -z + t = 2 \end{cases}$$

Solution: x = -1, y = 3, z = -4, t = -2

Test System 2:

$$\begin{cases} x + 45y - t = 6 \\ x - 3t = 12 \\ x + y + z = -6 \\ x - y + z + t = 12 \end{cases}$$

Solution: x = 9, y = -1, z = -14, t = -1

Coding Best Practices

Tips for your implementation:

- ▶ Error checking: Verify matrix dimensions match before operations
- ➤ Zero pivots: Add a check: if abs(U(k,k)) < eps, error('Zero pivot'); end
- ► Vectorization: In MATLAB, U(i,:) = U(i,:) m*U(k,:) is more efficient than element-wise loops
- **Testing:** Create simple 2×2 test cases first, then scale up
- ▶ **Residual check:** Compute ||Ax b|| to verify accuracy
- ► Comparison: Always compare with A\b for validation

Coding Best Practices

Common mistakes to avoid:

- ► Not initializing output vectors (use x = zeros(n,1))
- ▶ Loop indices in wrong direction for back-substitution
- ► Forgetting to update both A and b during elimination

Thank you for your attention!