Deterministic Interleaver Design for Turbo Codes

Bohulu Kwame Ackah, 1631133

Information Transmission Labroratory

February 6, 2018

1. Turbo Codes: Brief Introduction

- AWGN channel capacity approacing code
- Parallel concatenation of 2 convolutional codes via an interleaver
- Good performance depends on interleaver

2. Interleavers

- Divided into 2 groups
 - Random Interleavers
 - Advantage: Good performance for large frame sizes
 - Disadvantage: storage of interleaver tables required.
 - Deterministic Interleavers
 - Advantage : Interleaving done via algorithm
 - Disadvantage: For large frame sizes, interleaver better than random not yet found.

3. Purpose of Research

- Purpose of Research
 - Deterministic interleaver that outperforms linear interleaver for large frame sizes
 - multi-shift interleaver is proposed
- Why Linear Interleaver?
 - Better than random interleaver for short frame sizes.
 - Easy to design

4. Turbo Encoder

- N is interleaver size, M is No. of memory elements
- x is information bits with length N-M
- $oldsymbol{ iny}$ $oldsymbol{p}^{(1)}$ is upper parity checkbits, $oldsymbol{p}^{(2)}$ is lower parity checkbits
 - both have length N

5. Turbo Decoder

- y^s is systematic bits
- $y^{p(1)}$ is upper parity check bits, $y^{p(2)}$ is lower parity check bits
- ullet $L(u_i)$ is Log-Likelihood Ratio, L^e_{12}, L^e_{21} is extrinsic information

6. RSC Encoders

- ullet cycle length (au) of RSC encoders
 - length of the cycle with input [1,0,0,0,0,...]

Example

- \bullet $\left[\frac{1+D^2}{1+D+D^2}\right]$ (5/7) RSC Encoder
- output : [1,|1,1,0|,|1,1,0|,|1,1,0|...]
- ullet cycle : [1,1,0] , au=3

7. RSC Encoders and $a\tau$ -separated weight 2 errors

- weight 2 information sequences
 - "1" bit pair seperated by $a\tau-1$ "0" bits
- effective free distance d_{eff}
 - minimum codeword weight due to weight 2 input

Example

$$N = 16$$
, input= $[1, 0, 0, 1,, 0]$

10000...

1110110110110

0001110110110

11110000000000000

8. *t*-seperated weight 2 error in Turbo Codes

• $t = a\tau \mapsto s = b\tau$, low-weight turbo codewords.

9. Turbo Codes and Linear Interleavers

• Index mapping function with depth *D*

$$\Pi_{\mathfrak{L}_N}(i) = Di \mod N, \quad \gcd(D, N) = 1 \tag{1}$$

- $t = a\tau \mapsto s = b\tau$
 - Solution: $\underset{1 \le D < N | gcd(D,N)=1}{\operatorname{arg max}} \left\{ \min\{a+b \mod N\} \right\}$

10. $a\tau$ weight 2 error : Interleaver Search

Linear Interleaver Search Results

D	13	121	17	23	21
а	19	17	15	11	12
b	9	9	1	3	4
d _{eff}	30	30	15	26	15
N _{free}	1	1	2	1	2

BER Approximation

$$P_b pprox rac{1}{2} \sum_{w_c} Y_{w_c} \operatorname{erfc} \left(\sqrt{w_c rac{R_c E_b}{N_o}}
ight)$$
 (2)

where

$$Y_{w_c} \triangleq \sum_{w_x \perp w_y = w_z} \frac{w_x}{N} A_{w_x, w_p}$$

11. $a\tau$ - seperated weight 2 error :BER Approximation vs

12. τ -seperated weight 4 errors

Dominate BER performance [2]

- $\bullet \ \tau = Dv \mod N, \ v = i_2 i_1$
 - Weight 4 input :- $(1+X^{\scriptscriptstyle V})(1+X^{\scriptscriptstyle T})$

^[2] Oscar Y. Takeshita, Member, IEEE, and Daniel J. Costello , "New Deterministic Interleaver Designs for Turbo Codes", IEEE Trans. Inform. Theory, vol. 46,pp. 1988-2006, Nov. 2000

12. au weight 4 errors

Example

- N = 32, $\tau = 3$, D = 5, v = 7
- input : $(1+X^3)(1+X^7)$, output : $(1+X^3)(1+X^{15})$
- codeword weight : 20, multiplicity ≈ N
- same result for different D and N

13. τ weight 4 error : BER Approximation vs Simulation

14. Sequential representation of Linear Interleaver

- Algorithm for linear interleaving
 - 1. $p_0 = 0$
 - 2. $p_i = (p_{i-1} + D) \mod N$
- element positions shifted by constant D

15. Multi-Shift Interleaver

- For $N = 2^r$, $r \in \{1, 2, ...\}$ set $\Delta s = 2^q$, $q \in \{2, 3, ..., r 1\}$
- cycle set $\mathbb{D} = \{d_0, d_1, ..., d_{V-1}\}, \ \ V = N/\Delta s$
 - $d_0 = D$, $d_i = d_{i-1} + \Delta s$
- Algorithm for proposed interleaver (multi-shift interleaver)
 - 1. $p_0 = 0$
 - 2. $p_i = p_{i-1} + d_{((i-1) \mod V)} \mod N$, d_0 is an odd integer
 - Shift value of D for each position shift

16. Multi-Shift Interleaver: Search for Good Interleaver

- procedure for choosing good interleavers
 - choose d_0 from $(\sqrt{N}, N/2)$
 - calculate hamming weight for $\Delta s \in 2^q$
 - best $\Delta s = \text{largest } d_{eff}$
 - repeat for d_0 within range
 - best parameter, $(d_0, \Delta s)$ with largest d_{eff} , least value of Δs and multiplicity

17.MSI Search Results : 5/7 component encoder. N = 256

d_0	17	31	47
d_{eff}	38	38	38
Δs	64	128	64
$N_{free,eff}$	207	208	209

• best parameter ($d_0 = 17, \Delta s = 64$)

17. Simulation Results for Table

17. Results for 5/7 Component Code. N = 1024

17. Results for 7/5 Component Code. N = 1024

17. Results for 5/7 Component Code. N = 16384

18. Conclusion and Future Works

Conclusion

 The multi-shift interleaver outperforms the linear interleaver for both medium and long frame sizes.

Future Research

- Comparison with other interleavers
- Theoretical BER bound for Interleaver