5.1	Areas and Distances
	- the area of the region S that lies under the graph of the continuous function f
	is the limit of the sum of the areas of approximating rectangles
	$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \left[f(x_1) \Delta x + f(x_2) \Delta x + \cdots + f(x_n) \Delta x \right]$
	it can be proved that the limit above always exists as long as f is continuous. It can also
	be shown that we get the same value if we use left endpoints
	$ \overset{\mathcal{A}}{\underset{i=1}{\sum}} \stackrel{n}{\underset{i=1}{\sum}} = \frac{n(n+1)(2n+1)}{6} $
5,2	The Definite Integral
	Definite Integral:
	- if f is a function defined for $a \le x \le b$, we divide the interval $[a,b]$ into n subintervals of
	equal width $\Delta x = \frac{b-a}{n}$. We let $X_0 (=a)$, $x_1, \dots, x_n (=b)$ be the endpoints of these
	subintervals and we let X_1^*, \dots, X_n^* be any sample points in these subintervals, so X_i^* lies
	in the i^{th} subinterval $[X_{i-1}, X_i]$. Then the definite integral of f from a to b is
	$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(X_{i}^{*}) \Delta x$
	Riemann Sum
y = f(x)	if f takes on both positive and negative values, then the Riemann Sum is the sum of the
FIGURE 3 ∑ f(xf) Δx is an approximation	areas of the rectangles that lie above the x-axis and the negatives of the areas of the
to the net sees.	rectangles that lie below the X-0Xis
FIGURE 4	== the areas of the blue rectangles minus the areas of the gold rectangles
	Theorem:
	- if f is continuous on [a,b], or if f has only a finite number of jump discontinuities,
	then f is integrable on [a,b]; that is, the definite integral $\int_a^b f(x) dx$ exists.
	- if f is integrable on [a, b], then $\int_a^b f(x) dx = \int_{-\infty}^{\infty} \int_{i=1}^{n} f(x_i) dx$, where $dx = \frac{b-a}{n}$, $x_i = a + i \Delta x$
	$ \stackrel{\Lambda}{\Rightarrow} \stackrel{1}{\stackrel{i=1}{=}} \stackrel{i}{=} \frac{n(n+1)}{2} $
	$\sum_{j=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$ $\sum_{j=1}^{n} i^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$
	$\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2} \right]^2$

	- We often choose the sample point Xi* to be the right endpoint of the ith subinterval because
	it is convenient for computing the limit. But if the purpose is to find an approximation
	to an integral, it is usually better to choose Xi* to be the midpoint of the interval.
	Midpoint Rule:
	$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} f(\bar{x}_{i}) \Delta X = \Delta X \left[f(\bar{x}_{i}) + f(\bar{x}_{i}) + \dots + f(\bar{x}_{n}) \right], \Delta X = \frac{b-a}{n}, \overline{X}_{i} = \frac{1}{2} \left(X_{i-1} + X_{i} \right)$
	Properties of the Definite Integral
	$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$
	$\int_{a}^{a} f(x) dx = 0$
	Properties of the Integral 1. $\int_a^b c dx = c(b-a)$, where c is any constant
	2. $\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$ 3. $\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx, \text{ where } c \text{ is any constant}$
	4. $\int_{a}^{b} [f(x) - g(x)] dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$
	5.
	Comparison Properties of the Integral
	6. If $f(x) \ge 0$ for $a \le x \le b$, then $\int_a^b f(x) dx \ge 0$. 7. If $f(x) \ge g(x)$ for $a \le x \le b$, then $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.
	7. If $f(x) = g(x)$ for $a \le x \le b$, then $\int_a^b f(x) dx = \int_a^b g(x) dx.$ 8. If $m \le f(x) \le M$ for $a \le x \le b$, then
	$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$
	FIGURE 16
5,3	The Fundamental Theorem of Calculus
	Part 1
	- if f is continuous on [a,b], then the function g defined by $g(x) = \int_{\alpha}^{x} f(t) dt$ is continuous on
	[a,b] and differentiable on (a,b) , and $g'(x) = f(x)$
	Part 2
	- if f is continuous on [a,b], then $\int_a^b f(x) dx = F(b) - F(a)$, where F is any antiderivative of f, $F' = f$.

