

FCC TEST REPORT (Part 90 Subpart Z)

REPORT NO.: RF110811E05

MODEL NO.: OX-350I

FCC ID: W9V-OX350I-GP

RECEIVED: Aug. 12, 2011

TESTED: Sep. 13, 2011

ISSUED: Sep. 23, 2011

APPLICANT: Green Packet Berhad, Taiwan

ADDRESS: 6F, NO.21, LANE 583 RUEIGUANG RD, NEIHU

DISTRICT TAIPEI CITY 11492

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.)

Ltd., Taoyuan Branch Hsin Chu Laboratory

LAB ADDRESS: No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen,

Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan

This test report consists of 131 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

Report No.: RF110811E05 1 Report Format Version 3.0.1

TABLE OF CONTENTS

RELE	ASE CONTROL RECORD	4
1	CERTIFICATION	5
2	SUMMARY OF TEST RESULTS	
2.1	MEASUREMENT UNCERTAINTY	
3	GENERAL INFORMATION	
3.1	GENERAL DESCRIPTION OF EUT	
3.2	DESCRIPTION OF TEST MODES	
3.2.1	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	_
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	
3.4	DESCRIPTION OF SUPPORT UNITS	13
3.4.1	CONFIGURATION OF SYSTEM UNDER TEST	
4	TEST TYPES AND RESULTS	_
4.1	OUTPUT POWER AND POWER DENSITY MEASUREMENT	15
4.1.1	LIMITS OF OUTPUT POWER AND POWER DENSITY	15
4.1.2	TEST INSTRUMENTS	15
4.1.3	TEST PROCEDURES	16
4.1.4	TEST SETUP	17
4.1.5	EUT OPERATING CONDITIONS	17
4.1.6	TEST RESULTS	18
4.2	FREQUENCY STABILITY MEASUREMENT	48
4.2.1	LIMITS OF FREQUENCY STABILITY MEASUREMENT	48
4.2.2	TEST INSTRUMENTS	48
4.2.3	TEST PROCEDURE	49
4.2.4	TEST SETUP	49
4.2.5	EUT OPERATING CONDITIONS	49
4.2.6	TEST RESULTS	50
4.3	EMISSION BANDWIDTH MEASUREMENT	51
4.3.1	LIMITS OF EMISSION BANDWIDTH MEASUREMENT	51
4.3.2	TEST INSTRUMENTS	51
4.3.3	TEST PROCEDURE	51
4.3.4	TEST SETUP	51
4.3.5	EUT OPERATING CONDITIONS	51
4.3.6	TEST RESULTS	52
4.4	EMISSION MASKS	64
4.4.1	LIMITS OF EMISSION MASKS	64
4.4.2	TEST INSTRUMENTS	64
4.4.3	TEST SETUP	64
4.4.4	TEST PROCEDURES	65
4.4.5	EUT OPERATING CONDITION	65

4.4.6	TEST RESULTS	66
4.5	CONDUCTED SPURIOUS EMISSIONS	84
4.5.1	LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT.	84
4.5.2	TEST INSTRUMENTS	84
4.5.3	TEST PROCEDURE	85
4.5.4	TEST SETUP	85
4.5.5	EUT OPERATING CONDITIONS	85
4.5.6	TEST RESULTS	86
4.6	RADIATED EMISSION MEASUREMENT (BELOW 1GHz)	113
4.6.1	LIMITS OF RADIATED EMISSION MEASUREMENT	113
4.6.2	TEST INSTRUMENTS	114
4.6.3	TEST PROCEDURES	115
4.6.4	DEVIATION FROM TEST STANDARD	115
4.6.5	TEST SETUP	116
4.6.6	EUT OPERATING CONDITIONS	
4.6.7	TEST RESULTS	
4.7	RADIATED EMISSION MEASUREMENT (ABOVE 1GHz)	120
4.7.1	LIMITS OF RADIATED EMISSION MEASUREMENT	120
4.7.2	TEST INSTRUMENTS	120
4.7.3	TEST PROCEDURES	120
4.7.4	DEVIATION FROM TEST STANDARD	120
4.7.5	TEST SETUP	120
4.7.6	EUT OPERATING CONDITIONS	_
4.7.7	TEST RESULTS	
5	PHOTOGRAPHS OF THE TEST CONFIGURATION	
6	INFORMATION ON THE TESTING LABORATORIES	131

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF110811E05	Original release	Sep. 23, 2011

Report No.: RF110811E05 4 Report Format Version 3.0.1

1 CERTIFICATION

PRODUCT: WiMAX Outdoor CPE

BRAND: Green Packet

MODEL: OX-3501

TEST SAMPLE: ENGINEERING SAMPLE

APPLICANT: Green Packet Berhad, Taiwan

TESTED: Sep. 13, 2011

TEST STANDARDS: FCC Part 90, Subpart Z

The above equipment (Model No.: OX-350I) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch,** and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

(Claire Kuan, Specialist)

(May Chen, Deputy Manager)

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK	
FCC Part 2& Part 90	TEST TIPE AND LIMIT	KLGOLI	REMARK	
2.1046 90.1321	Maximum Peak Output Power Limit: max. 25Watt / 25MHz EIRP.	PASS	Meet the requirement of limit.	
2.1055 90.213	Frequency Stability Stay with the authorized bands of operation	PASS	Meet the requirement of limit.	
2.1049 90.1323	Emission Bandwidth	PASS	Meet the requirement of limit.	
90.210	Emission masks	PASS	Meet the requirement of limit.	
2.1051 90.1323	Conducted Spurious Emissions	PASS	Meet the requirement of limit.	
2.1053 90.1323	Radiated Spurious Emissions	PASS	Meet the requirement of limit.	

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
	30MHz ~ 1000MHz	4 dB
Radiated emissions	1GHz ~ 18GHz	2.49 dB
	18GHz ~ 40GHz	2.70 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	WiMAX Outdoor CPE
MODEL NO.	OX-350I
FCC ID	W9V-OX350I-GP
POWER SUPPLY	DC 48V from PoE
MODULATION TYPE	Up-Link: QPSK-1/2,-3/4, 16QAM-1/2,-3/4 64QAM-1/2,-3/4, -2/3, 5/6 Down-Link:
	QPSK-1/2,-3/4, 16QAM-1/2,-3/4 64QAM-1/2,-3/4, -2/3, 5/6
MODULATION TECHNOLOGY	OFDMA
MULTIPLE ACCESS METHOD	TDMA
OPERATING FREQUENCY	5MHz: 3652.5 ~ 3697.5MHz 7MHz: 3653.5 ~ 3696.5MHz 10MHz: 3655 ~ 3695MHz
CHANNEL BANDWIDTH	5MHz, 7MHz, 10MHz
MAX. EIRP POWER	38.5dBm
ANTENNA TYPE	Please see note
OPERATION TEMPERATURE RANGE	-40 ~ 60°C
DATA CABLE	RJ-45 cable(unshielded, 2.0m)
I/O PORTS	RJ-45 port x1 < POE / Ethernet (10/100Mbps)>
ACCESSORY DEVICES	POE x 1

NOTE:

1. There is one set antenna provided to this EUT, please refer to the following table:

Brand	Model	Gain	Antenna	Connecter	Frequency range	Diversity
Dianu		(dBi)	Type	Type	(MHz to MHz)	Function
Unictron Technologies Corporation	High Gain Patch Array Antenna for WIMAX 3.3~3.8GHz	17.04	Patch Array	MCX	3300~3800	Dual polarization

The antenna is a dual polarization patch antenna, it have two input port for different polarization.

2. The EUT must be supplied with a PoE as following table:

Brand:	MOA TELECOM
Model No.:	MPSE-4803
Input nower:	100-240V, 0.4A, 50-60Hz Power cord(shielded, 1.8m)
iliput power.	Power cord(shielded, 1.8m)
Output power :	48V, 0.32A

- 3. The EUT operates in 3650 ~ 3700MHz Bands and support MIMO technology without beam-forming technology.
- 4. EUT can supports different UL / DL ratio, max transmit ratio is up to 18 (UL): 29 (DL). After pretesting of output power and spurious emission, 18 (UL): 29 (DL) was found to be worst case and was selected for the final test configuration.
- 5. The above EUT information was declared by manufacturer and for more detailed features description please refers to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

Three channels had been tested for each channel bandwidth.

CHANNEL BANDWIDTH: 5MHz				
Low channel (L): 3652.5MHz				
Middle channel (M): 3675MHz				
High channel (H): 3697.5MHz				
CHANNEL BANDWIDTH: 7MHz				
Low channel (L): 3653.5MHz				
Middle channel (M): 3675MHz				
High channel (H): 3696.5MHz				
CHANNEL BANDWIDTH: 10MHz				
Low channel (L): 3655MHz				
Middle channel (M): 3675MHz				
High channel (H): 3695MHz				

3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT CONFIGURE			API	PLICABLE	то			DESCRIPTION
MODE	ОР	FS	EB	EM	CSE	RE<1G	RE ³ 1G	DESCRIPTION
-	V	V	V	V	V	\checkmark	V	-

Where OP: Output power FS: Frequency stability
EB: Emission bandwidth EM: Emission masks

CSE: Conducted spurious emissions RE<1G: Radiated emission below 1GHz

RE31G: Radiated emission above 1GHz NOTE: "-": Means no effect.

OUTPUT POWER MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, coding rate and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

TESTED CHANNEL	MODULATION TECHNOLOGY	CHANNEL BANDWIDTH	MODULATION TYPE	CODING RATE
L, M, H	OFDMA	5MHz	QPSK	1/2
L, M, H	OFDMA	7MHz	QPSK	1/2
L, M, H	OFDMA	10MHz	QPSK	1/2

FREQUENCY STABILITY MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, coding rate, and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

TESTED	MODULATION	CHANNEL	MODULATION
CHANNEL	TECHNOLOGY	BANDWIDTH	TYPE
М	OFDMA	5MHz	Unmodulation

EMISSION BANDWIDTH MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, coding rate, and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

TESTED CHANNEL	MODULATION TECHNOLOGY	CHANNEL BANDWIDTH	MODULATION TYPE	CODING RATE
L, M, H	OFDMA	5MHz	QPSK	1/2
L, M, H	OFDMA	7MHz	QPSK	1/2
L, M, H	OFDMA	10MHz	QPSK	1/2

EMISSION MASKS MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, coding rate, and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

TESTED CHANNEL	MODULATION TECHNOLOGY	CHANNEL BANDWIDTH	MODULATION TYPE	CODING RATE
L, M, H	OFDMA	5MHz	QPSK	1/2
L, M, H	OFDMA	7MHz	QPSK	1/2
L, M, H	OFDMA	10MHz	QPSK	1/2

CONDUCTED SPURIOUS EMISSIONS MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, coding rate, and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

TESTED CHANNEL	MODULATION TECHNOLOGY	CHANNEL BANDWIDTH	MODULATION TYPE	CODING RATE
L, M, H	OFDMA	5MHz	QPSK	1/2
L, M, H	OFDMA	7MHz	QPSK	1/2
L, M, H	OFDMA	10MHz	QPSK	1/2

RADIATED EMISSION MEASUREMENT (BELOW 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, coding rate and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

TESTED CHANNEL	MODULATION TECHNOLOGY	CHANNEL BANDWIDTH	MODULATION TYPE	CODING RATE
Н	OFDMA	5MHz	QPSK	1/2
L	OFDMA	7MHz	QPSK	1/2
L	OFDMA	10MHz	QPSK	1/2

RADIATED EMISSION MEASUREMENT (ABOVE 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, coding rate and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

TESTED CHANNEL	MODULATION TECHNOLOGY	CHANNEL BANDWIDTH	MODULATION TYPE	CODING RATE
L, M, H	OFDMA	5MHz	QPSK	1/2
L, M, H	OFDMA	7MHz	QPSK	1/2
L, M, H	OFDMA	10MHz	QPSK	1/2

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (SYSTEM)	TESTED BY
OP	25deg°C, 60%RH	120Vac, 60Hz	Wen Yu
FS	25deg°C, 60%RH	120Vac, 60Hz	Wen Yu
EB	25deg°C, 60%RH	120Vac, 60Hz	Wen Yu
ЕМ	25deg°C, 60%RH	120Vac, 60Hz	Wen Yu
CSE	25deg°C, 60%RH	120Vac, 60Hz	Wen Yu
RE < 1G	25deg°C, 60%RH	120Vac, 60Hz	Wen Yu
RE ³ 1G	25deg°C, 60%RH	120Vac, 60Hz	Wen Yu

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2
FCC 47 CFR Part 90
965270 D01 Pwr Meas Part 90 Z Equipment v01
ANSI/TIA/EIA-603-C-2004

All test items have been performed and recorded as per the above standards.

NOTE: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	NOTEBOOK	DELL	DD40I	CN-OHC416-7016	PIW63250051661
Į ,	COMPUTER	DELL	PP19L	6-5CA-0448	0

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	10m UTP cable

NOTE: All power cords of the above support units are non shielded (1.8m).

3.4.1 CONFIGURATION OF SYSTEM UNDER TEST

4 TEST TYPES AND RESULTS

4.1 OUTPUT POWER AND POWER DENSITY MEASUREMENT

4.1.1 LIMITS OF OUTPUT POWER AND POWER DENSITY

PER FCC PART 90.1321

BASE AND FIXED STATIONS

Base and fixed stations are limited to 25 Watts/25 MHz equivalent isotropical radiated power (EIRP). In any event, the peak EIRP power density shall not exceed 1 Watt in any one-megahertz slice of spectrum.

MOBILE AND PORTABLE STATIONS

Mobile and portable stations are limited to 1 Watt/25 MHz EIRP. In any event, the peak EIRP density shall not exceed 40 milliWatts in any one-megahertz slice of spectrum.

4.1.2 TEST INSTRUMENTS

Test date: Sep. 13, 2011

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
AGILENT SPECTRUM ANALYZER	E4446A	MY46180622	Apr. 25, 2011	Apr. 24, 2012
SUHNER RF cable	SUCOFLEX 102	36442/2	Jan. 27, 2011	Jan. 26, 2012
JFW 10dB attenuation	50HF-010-SMA	NA	NA	NA

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.1.3 TEST PROCEDURES

OUTPUT POWER

- 1. Connect the EUT transmitter output to the spectrum analyzer via coaxial cable while ensuring proper impedance matching.
- 2. Tune the analyzer to the nominal center frequency of the emission bandwidth (EBW).
- 3. Set the span to twice the nominal EBW (span = $2 \times EBW$).
- 4. Set the resolution bandwidth (RBW) to approximately 1% of EBW.
- 5. Set the video bandwidth (VBW) to≥ 3 x RBW.
- 6. Select the average power (RMS) display detector.
- 7. Set the number of measurement points to \geq 1001.
- 8. Use auto-coupled sweep time.
- 9. Perform measurement over an interval of time when the transmission is continuous and at its maximum power level.
- 10. Utilize trace averaging over 100 traces in the power averaging mode.
- 11. Use the Band/Channel Power function to determine the integrated power over the full EBW.
- 12. Record the band power level.
- 13. Adjust the recorded level by applying appropriate correction factors for the measurement set-up.
- 14. Determine the EIRP by adding the effective antenna gain to the adjusted power level.

POWER DENSITY

- 1. Connect the transmitter to the spectrum analyzer via coaxial cable while ensuring proper impedance matching.
- 2. Tune the analyzer to the nominal center frequency of the emission bandwidth (EBW).
- 3. Set the span to twice the nominal EBW (span = $2 \times EBW$).
- 4. Set the resolution bandwidth (RBW) to 1 MHz.
- 5. Set the video bandwidth (VBW) to 3MHz.
- 6. Select the average power (RMS) display detector.
- 7. Set the number of measurement points to \geq 1001.
- 8. Use auto-coupled sweep time.
- 9. Perform the measurement over an interval of time when the transmission is continuous and at its maximum power level.
- 10. Utilize trace averaging over 100 traces in the power averaging mode.
- 11. Find the maximum trace amplitude (peak search) and record.
- 12. Adjust the recorded level by applying appropriate correction factors for the measurement set-up.
- 13. Determine the EIRP by adding the effective antenna gain to the adjusted power level.

4.1.4 TEST SETUP

4.1.5 EUT OPERATING CONDITIONS

- a. Placed the EUT on the testing table.
- b. Prepared one notebook system outside of testing area to act as a communication partners.
- c. The communication partner connected with EUT via a RJ45 UTP cable and run a test program (MTK RFCALTOOL Release v1.6.5) to enable EUT under transmission condition continuously at specific channel frequency.

4.1.6 TEST RESULTS

CHANNEL BANDWIDTH: 5MHz

OTIV WHITE I	CHANNEL BANDWIDTH. SMITZ					
CONDUCTED POWER						
CHANNEL	FREQUENCY (dBm) (MHz)		TOTAL POWER	TOTAL POWER		
	(IVITIZ)	CHAIN 0	CHAIN 1	(mW)	(dBm)	
Low	3652.5	15.0	15.1	64.0	18.1	
Middle	3675	15.1	15.0	64.0	18.1	
High	3697.5	15.0	15.3	65.5	18.2	

EIRP POWER							
CHANNEL	FREQUENCY	EIRP (dBm)		ANTENNA	TOTAL POWER	TOTAL	Limit
CHANNEL	(MHz)	CHAIN 0	CHAIN 1	GAIN (dBi)	(mW)	POWER (dBm)	(dBm)
Low	3652.5	32.0	32.1	17.0	3206.7	35.1	37
Middle	3675	32.1	32.0	17.0	3206.7	35.1	37
High	3697.5	32.0	32.3	17.0	3283.1	35.2	37

NOTE:

- 1. EIRP = Conducted power + Antenna Gain
- 2. Chain 0: RF output port 0, Chain 1: RF output port 1.

CONDUCTED POWER DENSITY						
CHANNEL FREQUENCY (MHz)		CONDUCTED POWER DENSITY (dBm)		DENSITY	TOTAL POWER DENSITY	
	(,	CHAIN 0	CHAIN 1	(mW)	(dBm)	
Low	3652.5	9.8	9.7	18.882	12.8	
Middle	3675	9.9	9.7	19.105	12.8	
High	3697.5	9.9	9.3	18.284	12.6	

EIRP POWER DENSITY							
CHANNEL	FREQUENCY (MHz)	EIRP POWER DENSITY (dBm)		TOTAL POWER	TOTAL POWER	Limit	
		CHAIN 0	CHAIN 1	DENSITY (mW)	DENSITY (dBm)	(dBm)	
Low	3652.5	26.8	26.7	946.4	29.8	30	
Middle	3675	26.9	26.7	957.5	29.8	30	
High	3697.5	26.9	26.3	916.4	29.6	30	

NOTE:

- 1.EIRP density = Conducted power density + Antenna Gain
- 2. Chain 0: RF output port 0, Chain 1: RF output port 1.

OUTPUT POWER

CHAIN 0

LOW CHANNEL

CHAIN 1 LOW CHANNEL

POWER DENSITY

CHAIN 0

LOW CHANNEL

CHAIN 1 LOW CHANNEL

CHANNEL BANDWIDTH: 7MHz

CONDUCTED POWER							
CHANNEL	FREQUENCY (MHz)		ED POWER Bm)	TOTAL POWER	TOTAL POWER (dBm)		
	(1411 12)	CHAIN 0	CHAIN 1	(mW)			
Low	3653.5	16.7	16.5	91.4	19.6		
Middle	3675	16.5	16.5	89.3	19.5		
High	3696.5	16.6	16.5	90.4	19.6		

EIRP POWER								
CHANNEL	FREQUENCY (MHz)	EIRP (dBm)		ANTENNA	TOTAL POWER	TOTAL POWER	Limit	
		CHAIN 0	CHAIN 1	GAIN (dBi)	(mW)	(dBm)	(dBm)	
Low	3653.5	33.7	33.5	17.0	4583.0	36.6	38.5	
Middle	3675	33.5	33.5	17.0	4477.4	36.5	38.5	
High	3696.5	33.6	33.5	17.0	4529.6	36.6	38.5	

NOTE:

- 1. EIRP = Conducted power + Antenna Gain
- 2. Chain 0: RF output port 0, Chain 1: RF output port 1.

CONDUCTED POWER DENSITY							
CHANNEL	FREQUENCY (MHz)	CONDUCTED POWER DENSITY (dBm)		TOTAL POWER DENSITY	TOTAL POWER DENSITY		
	,	CHAIN 0	CHAIN 1	(mW)	(dBm)		
Low	3653.5	9.9	9.8	19.322	12.9		
Middle	3675	9.5	10.0	18.913	12.8		
High	3696.5	10.0	9.7	19.333	12.9		

EIRP POWER DENSITY							
CHANNEL	FREQUENCY (MHz)	EIRP POWER DENSITY (dBm)		TOTAL POWER	TOTAL POWER	Limit	
		CHAIN 0	CHAIN 1	DENSITY (mW)	DENSITY (dBm)	(dBm)	
Low	3653.5	26.9	26.8	968.4	29.9	30	
Middle	3675	26.5	27.0	947.9	29.8	30	
High	3696.5	27.0	26.7	968.9	29.9	30	

NOTE:

- 1. EIRP density = Conducted power density + Antenna Gain
- 2. Chain 0: RF output port 0 , Chain 1: RF output port 1.

OUTPUT POWER

CHAIN 0

LOW CHANNEL

CHAIN 1 LOW CHANNEL

POWER DENSITY

CHAIN 0

LOW CHANNEL

CHAIN 1 LOW CHANNEL

CHANNEL BANDWIDTH: 10MHz

CONDUCTED POWER							
CHANNEL	FREQUENCY (MHz)	CONDUCTED POWER (dBm)		TOTAL POWER	TOTAL POWER		
	(IVIFIZ)	CHAIN 0	CHAIN 1	(mW)	(dBm)		
Low	3655	18.5	18.5	141.6	21.5		
Middle	3675	18.4	18.6	141.6	21.5		
High	3695	18.2	18.2	132.1	21.2		

	EIRP POWER									
CHANNEL	FREQUENCY	EIRP (dBm)		ANTENNA	TOTAL POWER	TOTAL POWER	Limit			
CHANNEL	(MHz)	CHAIN 0	CHAIN 1	GAIN (dBi)	(mW)	(dBm)	(dBm)			
Low	3655	35.5	35.5	17.0	7096.3	38.5	40			
Middle	3675	35.4	35.6	17.0	7098.2	38.5	40			
High	3695	35.2	35.2	17.0	6622.6	38.2	40			

NOTE:

- 1. EIRP = Conducted power + Antenna Gain
- 2. Chain 0: RF output port 0, Chain 1: RF output port 1.

CONDUCTED POWER DENSITY								
CHANNEL FREQUEN (MHz)		CONDUCTED POWER DENSITY (dBm)		DENSITY	TOTAL POWER DENSITY			
	,	CHAIN 0	CHAIN 1	(mW)	(dBm)			
Low	3655	9.6	9.8	18.670	12.7			
Middle	3675	9.6	9.7	18.453	12.7			
High	3695	9.9	9.5	18.685	12.7			

EIRP POWER DENSITY								
CHANNEL	FREQUENCY	EIRP POWER DENSITY (dBm)		TOTAL POWER	TOTAL POWER	Limit		
OHAMILL	(MHz)	CHAIN 0	CHAIN 1	DENSITY (mW)	DENSITY (dBm)	(dBm)		
Low	3655	26.6	26.8	935.7	29.7	30		
Middle	3675	26.6	26.7	924.8	29.7	30		
High	3695	26.9	26.5	936.5	29.7	30		

NOTE:

- 1. EIRP density = Conducted power density + Antenna Gain
- 2. Chain 0: RF output port 0 , Chain 1: RF output port 1.

OUTPUT POWER

CHAIN 0

LOW CHANNEL

CHAIN 1 LOW CHANNEL

POWER DENSITY

CHAIN 0

LOW CHANNEL

CHAIN 1 LOW CHANNEL

4.2 FREQUENCY STABILITY MEASUREMENT

4.2.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT

According to the FCC part 2.1055 shall be tested the frequency stability. The rule is defined that" The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block." The test extreme voltage is according to the 2.1055(d)(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment and the extreme temperature rule is comply with specification of EUT -30° C $\sim 50^{\circ}$ C.

4.2.2 TEST INSTRUMENTS

Test date: Sep. 13, 2011

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
AGILENT SPECTRUM ANALYZER	E4446A	MY46180622	Apr. 25, 2011	Apr. 24, 2012
SUHNER RF cable	SUCOFLEX 102	36442/2	Jan. 27, 2011	Jan. 26, 2012
JFW 10dB attenuation	50HF-010-SMA	N/A	NA	NA
OVEN	MHU-225AU	911033	Dec. 17, 2010	Dec. 16, 2011
Electronics AC Power Source	6502	1140503	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

4.2.3 TEST PROCEDURE

- a. Power must be removed when changing from one temperature to another or one voltage to another voltage. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the AC input power. The various Volts from the minimum 102 Volts to 138 Volts. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the ± 0.5 °C during the measurement testing.
- d. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

4.2.4 TEST SETUP

4.2.5 EUT OPERATING CONDITIONS

The EUT connected to the notebook. Use software to control the EUT channel and transmit a single tone.

4.2.6 TEST RESULTS

AFC FREQUENCY ERROR VS. VOLTAGE									
VOLTAGE	/OLTAGE 0Minute		2Minutes		5Minutes		10Minutes		
(Volts)	FREQUENCY (MHz)	PPM (%)							
138	3674.9963	-1.007	3674.9961	-1.061	3674.9971	-0.789	3674.9951	-1.333	
120	3674.9954	-1.252	3674.9963	-1.007	3674.9966	-0.925	3674.9956	-1.197	
102	3674.9952	-1.306	3674.9968	-0.871	3674.9965	-0.952	3674.9951	-1.333	

	AFC FREQUENCY ERROR VS. TEMP									
TEMP	0Min	utes	2Minutes		5Minutes		10Minutes			
(℃)	FREQUENCY (MHz)	PPM (%)	FREQUENCY (MHz)	PPM (%)	FREQUENCY (MHz)	PPM (%)	FREQUENCY (MHz)	PPM (%)		
50	3675.0058	1.578	3675.003	0.816	3675.0046	1.252	3675.0022	0.599		
40	3675.0004	0.109	3675.0023	0.626	3675.0009	0.245	3674.999	-0.272		
30	3674.9927	-1.986	3674.993	-1.905	3674.9948	-1.415	3674.9914	-2.340		
20	3674.9954	-1.252	3674.9963	-1.007	3674.9966	-0.925	3674.9956	-1.197		
10	3674.9924	-2.068	3674.9956	-1.197	3674.9929	-1.932	3674.9955	-1.224		
0	3674.9995	-0.136	3674.9984	-0.435	3674.9956	-1.197	3674.9972	-0.762		
-10	3675.005	1.361	3675.0085	2.313	3675.0065	1.769	3675.0086	2.340		
-20	3675.012	3.265	3675.0126	3.429	3675.016	4.354	3675.015	4.082		
-30	3674.9944	-1.524	3674.9908	-2.503	3674.987	-3.537	3674.9859	-3.837		

4.3 EMISSION BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF EMISSION BANDWIDTH MEASUREMENT

According to FCC 90.1323 specified that emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power.

4.3.2 TEST INSTRUMENTS

Test date: Sep. 13, 2011

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Agilent Spectrum Analyzer	E4446A	MY46180622	Apr. 25, 2011	Apr. 24, 2012
HUBER+SUHNER	SUCOFLEX104	222689/4	May 17, 2011	May 16, 2012
JFW 10dB attenuation	50HF-010-SMA	N/A	NA	NA

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.3.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW = 51kHz (5MHz bandwidth), 75kHz (7MHz bandwidth), 100kHz (10MHz bandwidth), VBW = 150kHz (5MHz bandwidth), 240kHz (7MHz bandwidth), 300kHz (10MHz bandwidth). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

4.3.4 TEST SETUP

Same as 4.1.4

4.3.5 EUT OPERATING CONDITIONS

Same as 4.1.5

4.3.6 TEST RESULTS

CHANNEL BANDWIDTH: 5MHz

CHANNEL	-26dBc BANDWIDTH (MHz)			
CHANNEL	CHAIN 0	CHAIN 1		
Low	4.96	4.86		
Middle	4.96	4.96		
High	4.96	4.84		

CHAIN 0 LOW CHANNEL

MIDDLE CHANNEL

CHAIN 1 LOW CHANNEL

CHANNEL BANDWIDTH: 7MHz

CHANNEL	-26dBc BANDWIDTH (MHz)			
CHANNEL	CHAIN 0	CHAIN 1		
Low	6.92	6.86		
Middle	6.85	6.94		
High	6.88	6.87		

CHAIN 0 LOW CHANNEL

MIDDLE CHANNEL

CHAIN 1 LOW CHANNEL

CHANNEL BANDWIDTH: 10MHz

CHANNEL	-26dBc BANDWIDTH (MHz)			
CHANNEL	CHAIN 0	CHAIN 1		
Low	9.66	9.80		
Middle	9.85	9.65		
High	9.56	9.72		

CHAIN 0 LOW CHANNEL

MIDDLE CHANNEL

CHAIN 1 LOW CHANNEL

4.4 EMISSION MASKS

4.4.1 LIMITS OF EMISSION MASKS

For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

- (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10log (P) dB.

4.4.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
AGILENT SPECTRUM ANALYZER	E4446A	MY46180622	Apr. 25, 2011	Apr. 24, 2012
SUHNER RF cable	SUCOFLEX 102	36442/2	Jan. 27, 2011	Jan. 26, 2012
JFW 10dB attenuation	50HF-010-SMA	N/A	NA	NA

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.4.3 TEST SETUP

Same as 4.1.4

4.4.4 TEST PROCEDURES

- a. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW = 51kHz (5MHz bandwidth), 75kHz (7MHz bandwidth), 100kHz (10MHz bandwidth), VBW = 150kHz (5MHz bandwidth), 240kHz (7MHz bandwidth), 300kHz (10MHz bandwidth).
- b. Set EUT to transmit signal at un-modulation mode to get reference level, R_L.
- c. According R_L and Channel bandwidth to define Emission Mask range.
- d. Set EUT to transmit signal at modulation mode to check signal can comply with Emission Mask or not.

4.4.5 EUT OPERATING CONDITION

Same as 4.1.5

4.4.6 TEST RESULTS

CHANNEL BANDWIDTH: 5MHz

CHAIN 0 LOW CHANNEL

CHAIN 1 LOW CHANNEL

CHANNEL BANDWIDTH: 7MHz

CHAIN 0

MIDDLE CHANNEL

HIGH CHANNEL

CHAIN 1 LOW CHANNEL

MIDDLE CHANNEL

HIGH CHANNEL

CHANNEL BANDWIDTH: 10MHz

CHAIN 0

MIDDLE CHANNEL

HIGH CHANNEL

CHAIN 1 LOW CHANNEL

MIDDLE CHANNEL

HIGH CHANNEL

4.5 CONDUCTED SPURIOUS EMISSIONS

4.5.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

According to FCC 90.1323 specified that the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in Watts, by at least 43 + 10 log (P) dB. The limit of emission equal to -13dBm Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or less, but at least one percent of the emission bandwidth of the fundamental emission of the transmitter, provided the measured energy is integrated over a 1 MHz bandwidth

4.5.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
AGILENT SPECTRUM ANALYZER	E4446A	MY46180622	Apr. 25, 2011	Apr. 24, 2012
SUHNER RF cable	SUCOFLEX 102	36442/2	Jan. 27, 2011	Jan. 26, 2012
JFW 10dB attenuation	50HF-010-SMA	N/A	NA	NA

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.5.3 TEST PROCEDURE

- a. All measurements were done at 3 channels: low, middle and high operational frequency range.
- b. When the spectrum scanned from 30MHz to 4.5GHz, it shall be connected to the 10dB pad attenuated the carried frequency. The spectrum set RB = 1MHz, VB = 3MHz.
- c. When the spectrum scanned from 4.5GHz to 40GHz, it shall be connected to the high pass filter attenuated the carried frequency. The spectrum set RB = 1MHz, VB = 3MHz.

4.5.4 TEST SETUP

4.5.5 EUT OPERATING CONDITIONS

Same as 4.1.5

4.5.6 TEST RESULTS

CHANNEL BANDWIDTH: 5MHz

LOW CHANNEL: 30MHz ~ 1GHz:

20GHz ~ 37GHz:

MIDDLE CHANNEL: 30MHz ~ 1GHz:

20GHz ~ 37GHz:

HIGH CHANNEL: 30MHz ~ 1GHz:

20GHz ~ 37GHz:

CHANNEL BANDWIDTH: 7MHz

LOW CHANNEL: 30MHz ~ 1GHz:

20GHz ~ 37GHz:

MIDDLE CHANNEL: 30MHz ~ 1GHz:

20GHz ~ 37GHz:

HIGH CHANNEL: 30MHz ~ 1GHz:

20GHz ~ 37GHz:

CHANNEL BANDWIDTH: 10MHz

LOW CHANNEL: 30MHz ~ 1GHz:

20GHz ~ 37GHz:

MIDDLE CHANNEL: 30MHz ~ 1GHz:

20GHz ~ 37GHz:

HIGH CHANNEL: 30MHz ~ 1GHz:

1GHz ~ 5GHz:

5GHz ~ 10GHz:

10GHz ~ 20GHz:

20GHz ~ 37GHz:

4.6 RADIATED EMISSION MEASUREMENT (BELOW 1GHz)

4.6.1 LIMITS OF RADIATED EMISSION MEASUREMENT

According to FCC 90.1323 specified that the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in Watts, by at least 43 + 10 log (P) dB. The limit of emission equal to –13dBm Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or less, but at least one percent of the emission bandwidth of the fundamental emission of the transmitter, provided the measured energy is integrated over a 1 MHz bandwidth.

Report No.: RF110811E05 113 Report Format Version 3.0.1

4.6.2 TEST INSTRUMENTS

Test date: Sep. 13, 2011

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
ROHDE & SCHWARZ Spectrum Analyzer	FSP40	100036	Dec. 08, 2010	Dec. 07, 2011
Agilent PSA Spectrum Analyzer	E4446A	MY48250113	Nov. 30 , 2010	Nov. 29 , 2011
HP Pre_Amplifier	8449B	300801923	Nov. 01, 2010	Oct. 31, 2011
ROHDE & SCHWARZ Test Receiver	ESCS30	847124/029	Sep. 02, 2011	Sep. 01, 2012
SCHWARZBECK TRILOG Broadband Antenna	VULB 9168	138	Apr. 14, 2011	Apr. 13, 2012
Schwarzbeck Horn_Antenna	BBHA9120	D124	Dec. 17, 2010	Dec. 16, 2011
Schwarzbeck Horn_Antenna	BBHA 9170	BBHA9170153	Jan. 17, 2011	Jan. 16, 2012
R&S Loop Antenna	HFH2-Z2	100070	Feb. 3, 2010	Feb. 2, 2012
RF Switches	EMH-011	1001	Sep. 25, 2010	Sep. 24, 2011
RF CABLE (Chaintek)	Sucoflex 106	RF106-102	Jan. 27, 2011	Jan. 26, 2012
RF Cable	8DFB	STCCAB-30M- 1GHz	Sep. 25, 2010	Sep. 24, 2011
Software	ADT_Radiated_ V7.6.15.9.2	NA	NA	NA
CT Antenna Tower & Turn Table	NA	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- traceable to NML/ROC and NIST/USA.
 The horn antenna, preamplifier (model: 8449B) and Spectrum Analyzer (model: FSP40) are used only for the measurement of emission frequency above 1GHz if tested.
 The test was performed in Open Site No. C.
 The FCC Site Registration No. is 656396.
 The VCCI Site Registration No. is R-1626.
 The CANADA Site Registration No. is IC 7450G-3.

4.6.3 TEST PROCEDURES

- a. Substitution method is used for EIRP measurement. The EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G

EIRP = Output power level of S.G - TX cable loss + Antenna gain of Substitution antenna

NOTE: The resolution bandwidth of spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation

4.6.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.6.6 EUT OPERATING CONDITIONS

Same as 4.1.5.

4.6.7 TEST RESULTS

MODE	Low channel	FREQUENCY RANGE	Below 1000MHz
INPUT POWER	1120\/ac_60Hz	ENVIRONMENTAL CONDITIONS	25deg°C, 60%RH
TESTED BY	M//An YII	CHANNEL BANDWIDTH	5MHz

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3m						
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)	
1	73.31	15.81	-13	-74.29	-3.72	-78.01	
2	194.45	9.43	-13	-85.59	3.74	-81.85	
3	202.86	19.97	-13	-75.51	4.31	-71.21	
4	255.92	21.44	-13	-73.29	3.94	-69.35	
5	450	11.97	-13	-86.29	2.81	-83.48	
6	699.25	27.9	-13	-68.42	1.62	-66.80	
	AN ⁻	TENNA POLAR	ITY & TEST DI	STANCE: VER	TICAL AT 3m		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)	
1	37.5	31.98	-13	-42.00	-13.07	-55.07	
2	204.75	20.83	-13	-74.65	4.28	-70.37	
3	368.17	24.59	-13	-73.27	3.50	-69.77	
4	400.83	22.29	-13	-75.56	3.32	-72.24	
5	699.25	37.18	-13	-59.14	1.62	-57.52	
6	875.67	34.83	-13	-61.92	0.76	-61.16	

MODE	Low channel	FREQUENCY RANGE	Below 1000MHz
INPUT POWER	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	25deg°C, 60%RH
TESTED BY	Wen Yu	CHANNEL BANDWIDTH	7MHz

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3m						
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)
1	73.54	16.45	-13	-73.79	-3.65	-77.44
2	194.45	9.76	-13	-85.26	3.74	-81.52
3	202.86	20.54	-13	-74.94	4.31	-70.64
4	255.92	21.11	-13	-73.62	3.94	-69.68
5	450	11.57	-13	-86.69	2.81	-83.88
6	699.25	27.1	-13	-69.22	1.62	-67.60
	AN'	TENNA POLAR	ITY & TEST DI	STANCE: VERT	FICAL AT 3m	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)
1	37.5	31.6	-13	40.00	-13.07	-55.45
		01.0	-13	-42.38	-13.07	-55.45
2	204.5	22.02	-13	-42.38 -73.46	4.28	-69.17
3	204.5 368.45			12.00		
_		22.02	-13	-73.46	4.28	-69.17
3	368.45	22.02 23.88	-13 -13	-73.46 -73.98	4.28	-69.17 -70.48

MODE	Low channel	FREQUENCY RANGE	Below 1000MHz
INPUT POWER	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	25deg°C, 60%RH
TESTED BY	Wen Yu	CHANNEL BANDWIDTH	10MHz

	ANTI	ENNA POLARIT	TY & TEST DIS	TANCE: HORIZ	ONTAL AT 3m		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)	
1	73.28	16.45	-13	-70.48	-4.34	-74.82	
2	194.55	9.49	-13	-85.54	3.75	-81.79	
3	202.86	20.87	-13	-74.61	4.31	-70.31	
4	256.34	20.79	-13	-73.93	3.94	-69.98	
5	449.57	11.57	-13	-86.68	2.81	-83.87	
6	699.25	27.36	-13	-68.96	1.62	-67.34	
	AN [*]	TENNA POLAR	ITY & TEST DI	STANCE: VER	ΓICAL AT 3m		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)	
1	37.43	31.27	-13	-42.68	-13.09	-55.77	
2	205.16	20.83	-13	-74.65	4.27	-70.37	
3	368.17	25.14	-13	-72.72	3.50	-69.22	
4	399.77	22.29	-13	-75.55	3.34	-72.22	
5	699.25	36.43	-13	-59.89	1.62	-58.27	
6	875.67	34.83	-13	-61.92	0.76	-61.16	

4.7 RADIATED EMISSION MEASUREMENT (ABOVE 1GHz)

4.7.1 LIMITS OF RADIATED EMISSION MEASUREMENT

According to FCC 90.1323 specified that the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in Watts, by at least 43 + 10 log (P) dB. The limit of emission equal to –13dBm Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or less, but at least one percent of the emission bandwidth of the fundamental emission of the transmitter, provided the measured energy is integrated over a 1 MHz bandwidth.

4.7.2 TEST INSTRUMENTS

Same as 4.6.2.

4.7.3 TEST PROCEDURES

Same as 4.6.3.

4.7.4 DEVIATION FROM TEST STANDARD

No deviation

4.7.5 TEST SETUP

Same as 4.6.5.

4.7.6 EUT OPERATING CONDITIONS

Same as 4.1.5

4.7.7 TEST RESULTS

MODE	Low channel	FREQUENCY RANGE	Above 1000MHz
INPUT POWER	1120\/ac_60Hz	ENVIRONMENTAL CONDITIONS	25deg°C, 60%RH
TESTED BY	M/An YII	CHANNEL BANDWIDTH	5MHz

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3m						
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)	
1	7305	72.8	-13	-29.63	4.68	-24.95	
2	10957.5	78.8	-13	-22.80	3.13	-19.67	
3	14610	73.9	-13	-24.05	3.13	-20.92	
	AN [*]	TENNA POLAR	ITY & TEST DI	STANCE: VERT	TICAL AT 3m		
NO.		EMISSION		0.0.004/50	CORRECTION	DOWED WALLE	
	FREQ. (MHz)	LEVEL (dBuV/m)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)	
1	7305		LIMIT (dBm)				
		(dBuV/m)	. ,	VALUE (dBm)	FACTOR (dB)	(dBm)	

MODE	Middle channel	FREQUENCY RANGE	Above 1000MHz
INPUT POWER	1120\/ac 60Hz	ENVIRONMENTAL CONDITIONS	25deg°C, 60%RH
TESTED BY	M/An Yu	CHANNEL BANDWIDTH	5MHz

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3m						
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)	
1	7350	76.5	-13	-25.93	4.68	-21.25	
2	11025	81.1	-13	-20.45	3.13	-17.32	
3	14700	74.5	-13	-23.31	3.26	-20.05	
	AN ⁻	TENNA POLAR	ITY & TEST DI	STANCE: VER	TICAL AT 3m		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)	
1	7350	75.4	-13	-27.03	4.68	-22.35	
2	11025	76.1	-13	-25.45	3.13	-22.32	
3	14700	75.8	-13	-22.01	3.26	-18.75	

MODE	High channel	FREQUENCY RANGE	Above 1000MHz
INPUT POWER	1170\/ac 60Hz	ENVIRONMENTAL CONDITIONS	25deg°C, 60%RH
TESTED BY	I\Men VII	CHANNEL BANDWIDTH	5MHz

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3m							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)		
1	7395	75.8	-13	-26.63	4.68	-21.95		
2	11092.5	80.7	-13	-20.83	3.22	-17.61		
3	14790	74.6	-13	-23.07	3.39	-19.68		
	AN [*]	TENNA POLAR	ITY & TEST DI	STANCE: VERT	TICAL AT 3m			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)		
NO.	FREQ. (MHz) 7395	LEVEL	LIMIT (dBm)					
		LEVEL (dBuV/m)	, ,	VALUE (dBm)	FACTOR (dB)	(dBm)		

MODE	Low channel	FREQUENCY RANGE	Above 1000MHz
INPUT POWER	1120\/ac 60Hz	ENVIRONMENTAL CONDITIONS	25deg°C, 60%RH
TESTED BY	I\Men VII	CHANNEL BANDWIDTH	7MHz

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3m						
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)	
1	7307	72.7	-13	-29.73	4.68	-25.05	
2	10960.5	78.7	-13	-22.90	3.13	-19.77	
3	14614	74.9	-13	-23.04	3.14	-19.91	
	AN ⁻	TENNA POLAR	ITY & TEST DI	STANCE: VERT	TICAL AT 3m		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)	
1	7307	73.5	-13	-28.93	4.68	-24.25	
2	10960.5	76.9	-13	-24.70	3.13	-21.57	
3							

MODE	Middle channel	FREQUENCY RANGE	Above 1000MHz
INPUT POWER	1120\/ac 60Hz	ENVIRONMENTAL CONDITIONS	25deg°C, 60%RH
TESTED BY	M/An Yu	CHANNEL BANDWIDTH	7MHz

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3m						
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)	
1	7350	74.3	-13	-28.13	4.68	-23.45	
2	11025	79.5	-13	-22.05	3.13	-18.92	
3	14700	76.4	-13	-21.41	3.26	-18.15	
	AN ⁻	TENNA POLAR	ITY & TEST DI	STANCE: VER	TICAL AT 3m		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)	
1	7350	74.5	-13	-27.93	4.68	-23.25	
2	11025	75.4	-13	-26.15	3.13	-23.02	
3	14700	70.8	-13	-27.01	3.26	-23.75	

MODE	High channel	FREQUENCY RANGE	Above 1000MHz
INPUT POWER	1170\/ac 60Hz	ENVIRONMENTAL CONDITIONS	25deg°C, 60%RH
TESTED BY	I\Men VII	CHANNEL BANDWIDTH	7MHz

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3m							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)		
1	7393	72.5	-13	-29.93	4.68	-25.25		
2	11089.5	72.1	-13	-29.43	3.22	-26.22		
3	14786	72.6	-13	-25.08	3.39	-21.69		
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3m							
				• 17 ti 10 = 1	,			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)		
NO .	FREQ. (MHz) 7393	EMISSION LEVEL	LIMIT (dBm)	S.G POWER	CORRECTION			
		EMISSION LEVEL (dBuV/m)	. ,	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	(dBm)		

MODE	Low channel	FREQUENCY RANGE	Above 1000MHz
INPUT POWER	120\/ac 60Hz	ENVIRONMENTAL CONDITIONS	25deg°C, 60%RH
TESTED BY	\//en Yu	CHANNEL BANDWIDTH	10MHz

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3m						
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)	
1	7310	70.7	-13	-31.73	4.68	-27.05	
2	10965	71.8	-13	-29.79	3.12	-26.67	
3	14620	65.2	-13	-32.74	3.14	-29.59	
	AN ⁻	TENNA POLAR	ITY & TEST DI	STANCE: VER	TICAL AT 3m		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)	
1	7310	69.7	-13	-32.73	4.68	-28.05	
2	10965	72	-13	-29.59	3.12	-26.47	

MODE	Middle channel	FREQUENCY RANGE	Above 1000MHz
INPUT POWER	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	25deg°C, 60%RH
TESTED BY	Wen Yu	CHANNEL BANDWIDTH	10MHz

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3m						
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)	
1	7350	71.2	-13	-31.23	4.68	-26.55	
2	11025	71.4	-13	-30.15	3.13	-27.02	
3	14700	65.8	-13	-32.01	3.26	-28.75	
	AN ⁻	TENNA POLAR	ITY & TEST DI	STANCE: VER	ΓICAL AT 3m		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)	
1	7350	70.1	-13	-32.33	4.68	-27.65	
2	11025	72.9	-13	-28.65	3.13	-25.52	
3	14700	72.7	-13	-25.11	3.26	-21.85	

MODE	High channel	FREQUENCY RANGE	Above 1000MHz
INPUT POWER	1170\/ac 60Hz	ENVIRONMENTAL CONDITIONS	25deg°C, 60%RH
TESTED BY	I\Men VII	CHANNEL BANDWIDTH	10MHz

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3m							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)	
1	7390	72.5	-13	-29.93	4.68	-25.25	
2	11085	71.8	-13	-29.73	3.21	-26.52	
3	14780	71.3	-13	-26.39	3.38	-23.01	
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3m							
	AN	I ENNA POLAK	III & IESI DI	STANCE: VER	IICAL AI 3m		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)	
NO .		EMISSION LEVEL		S.G POWER	CORRECTION		
	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	(dBm)	

	A D T
5 PHOTOGRAPHS OF THE TEST CONFIGURATION	
Please refer to the attached file (Test Setup Photo).	

Report No.: RF110811E05 130 Report Format Version 3.0.1

6 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5.phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Hsin Chu EMC/RF Lab:

Tel: 886-2-26052180 Tel: 886-3-5935343 Fax: 886-2-26052943 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050

Email: service.adt@tw.bureauveritas.com

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

---END---