MACHINE LEARNING: REDES NEURAIS

 \triangle

01

INTRODUÇÃO

- É uma técnica supervisionada
 - Uma das áreas mais promissoras de Machine Learning
- Consegue atuar em diferente contextos
 - Visão Computacional, Diagnósticos Médicos, Reconhecimento de voz
- O poder que a Deep Learning trás consigo resulta em:
 - Discussões complexas sobre: ética, direito, filosofia, etc.
 - Processamentos computacionais intensivos
 - Inovações ainda não mensuradas pela sociedade (modelos poderosos)

Apesar da técnica ter surgido na década de 40, somente na atualidade, foi possível utilizar grandes quantidades de dados e ter uma capacidade computacional de processamento que pudessem tornar a técnica uma estratégia poderosa.

- Muito esforço (e progresso!) tem sido obtido ao entender e melhorar algoritmos de aprendizagem, mas o desafio em IA permanece
 - Temos algoritmos capazes de entender cenas e descrevê-las em linguagem natural?
 - Temos algoritmos capazes de inferir conceitos semânticos suficientes a ponto de interagir com humanos?
 - Temos algoritmos que conseguem melhorar a resolução de exames de baixa qualidade?
 - Temos algoritmos capazes de traduzir mensagens a partir de comandos de voz?

Caso 1:

Compreensão do Comportamento de Cliente

Objetivo:

Entender o comportamento do usuário e sua propensão para consumir determinados produtos ou serviços.

Técnica

- Geralmente usam Redes Neurais Recorrentes;
- Dados históricos;
- Ebay, Amazon, etc.

Caso 2:

Reconhecimento de Faces

Objetivo:

Identificar, detectar e rastrear pessoas de interesse, veículos estacionados, falta de bagagem e muito mais usando CCTVs ou outras câmeras high-end.

Técnica

- Geralmente usam Redes Neurais Convolucionais;
- VPU (Visual Processing Unit) >> GPU >> CPU;
- Aeroportos, China, São João de CG, etc.

Caso 3:

Classificação Automática de Doenças Oculares

Objetivo:

Simplificar os processos que conduzem à detecção de doenças oculares.

Técnica

- Geralmente usam Redes Neurais Convolucionais;
- Dados históricos;
- [◎] GPU;
 - Perto de desenvolverem assistentes virtuais.

Caso 3:

Carros Autômatos

Objetivo:

Criar um sistema que entenda conexões entre vários conjuntos de dados.

Técnica

- Computador Neural Diferenciável também existe no Go;
- Existe também em computadores de bordo de alguns carros;
- Google.

REDE NEURAL ARTIFICIAL

REDES NEURAIS ARTIFICIAIS

- A unidade fundamental de uma rede neural artificial é um nó (ou neurônio matemático)
- O termo vem da palavra Neurônio, entenderemos essa analogia em breve.
 - Aprendizagem por experiência;
 - Neurônio Artificial
- As conexões entre esses neurônios matemáticos também foram inspiradas em cérebros biológicos, especialmente na forma como essas conexões se desenvolvem ao longo do tempo com "treinamento".

NEURÔNIO BIOLÓGICO

- O neurônio é a unidade básica do cérebro humano, sendo uma célula especializada na transmissão de informações
- Acredita-se que a capacidade de processamento de informações no cérebro vem de redes de neurônios.

NEURÔNIO MATEMÁTICO

A partir da estrutura e funcionamento do neurônio biológico, pesquisadores tentaram simular este sistema em computador.

NEURÔNIO MATEMÁTICO

"Dispara" quando uma combinação linear de suas entradas excede algum limiar.

0

NEURÔNIO

Qualquer estímulo visual será visto pelo rapaz da foto?

NEURÔNIO MATEMÁTICO

Funções de Ativação

公

REDES NEURAIS ARTIFICIAIS

RNA são modelos computacionais com propriedades particulares:

- Adaptar regras
- Generalizar
- Agrupas ou organizar dados
- Aprender novas regras

REDES NEURAIS ARTIFICIAIS SIMPLES

0

POR QUE AS REDES NEURAIS FICARAM TÃO ISOLADAS DAS **OUTRAS TÉCNICAS DE MACHINE LEARNING?**

REDES NEURAIS ARTIFICIAIS

- Quando uma Rede Neural Artificial precisa realizar um aprendizado profundo estas se enquadram na categoria de Deep Learning.
 - Para isso, ela precisa ter mais de uma camada de neurônios.
 - Tendo o cérebro humano como inspiração.
- Aprender características automaticamente em múltiplos níveis de abstração permite ao sistema mapear funções complexas sem depender de características intermediárias inteligíveis aos humanos.
 - Essa habilidade é necessária porque o tamanho dos dados tende a crescer.

REDES NEURAIS ARTIFICIAIS

REDES NEURAIS ARTIFICIAIS - CAMADAS

As camadas são classificadas em três grupos (usualmente):

- Camada de Entrada: onde os padrões são apresentados à rede:
- Camadas Intermediárias ou Escondidas: onde é feita a maior parte do processamento, por meio das conexões ponderadas; podem ser consideradas como extratoras de características;
- Camada de Saída: onde o resultado final é concluído e apresentado.

REDES NEURAIS ARTIFICIAIS - CAMADAS

As RNA são melhor aplicadas a problemas nos quais os dados de entrada e os dados de saída são bem definidos, ou pelo menos simples, mas o processo que relaciona a entrada com a saída é extremamente complexo.

0

A RNA deve aprender as seguintes associações:

- Homero → Literatura
- Beethoven → Música
- Rubens → Pintura

 \triangle

Representações binária dos valores

- Homero [1,-1,1,-1,1] = b(1)
- Literatura [1, -1, 1, -1] = a(1)
- Beethoven [1,1,1,-1,-1] = b(2)
- Música [1,1,-1,-1] = a(2)
- Rubens [1,1,-1,-1,1] = b(3)
- Pintura [1,-1,-1,1] = a(3)

- Variáveis: m = 1,..,3; j=1,..,5; i=1,..,4
- Usar como função de transferência: sign
- Calcular W alguns exemplos:

$$w_{1,1} = a_1^{1}.b_1^{1} + a_1^{2}.b_1^{2} + a_1^{3}.b_1^{3}$$

 $w_{1,1} = 1.1 + 1.1 + 1.1 = 3$

$$w_{1,2} = a_1^{1}.b_2^{1} + a_1^{2}.b_2^{2} + a_1^{3}.b_2^{3}$$

 $w_{1,2} = 1.-1 + 1.1 + 1.1 = 1$

0

03 ARQUITETURAS DE **REDES NEURAIS ARTIFICIAIS**

TIPOS DE REDES NEURAIS ARTIFICIAIS

Diversas arquiteturas para diferentes tipos de problemas:

- Redes convulucionais → Problemas de visão computacional;
- Redes recorrentes → Problemas de processamento de linguagem natural

Nem todas redes neurais artificiais são Deep Learning!

 O que caracteriza modelos de aprendizagem profunda, como o nome sugere, são redes neurais artificias com muitas camadas ocultas (ou intermediárias).

0

PERCEPTRON

- Ele pode ser visto como o tipo mais simples de rede neural feedforward: um classificador linear;
- Destinado a classificações binárias;
- Não se enquadra como Deep Learning;

MULTILAYER PERCEPTRON

- A Perceptron Multicamadas (MLP) é uma rede neural semelhante à Perceptron, mas com mais de uma camada de neurônios em alimentação direta (feedfoward).
- A MLP é composta por camadas de neurônios ligadas entre si por sinapses com pesos.
- O aprendizado nesse tipo de rede é geralmente feito por meio do algoritmo de retropropagação do erro (<u>Backpropagation</u>), mas existem outros algoritmos para este fim.
- Cada camada da rede tem uma função específica.
 - A camada de saída recebe os estímulos da camada intermediária e constrói a resposta.

MULTILAYER PERCEPTRON

0

- As Redes Neurais Convolucionais (ConvNets ou CNNs) são redes neurais artificiais profundas.
- Podem ser usadas para classificar imagens, agrupá-las por similaridade (busca de fotos) e realizar reconhecimento de objetos dentro de cenas.
- São algoritmos que podem identificar rostos, indivíduos, sinais de rua, cenouras, gatos e muitos outros aspectos dos dados visuais.
 - CNNs também podem ser aplicadas a arquivos de áudio quando estes são representados visualmente como um espectrograma.

- As redes convolucionais percebem imagens como volumes; isto é, objetos tridimensionais, em vez de estruturas planas a serem medidas apenas por largura e altura.
- Isso porque as imagens de cores digitais têm uma codificação vermelho-verde-azul (RGB - Red-Green-Blue), misturando essas três cores para produzir o espectro de cores que os seres humanos percebem.
- Uma rede convolucional recebe imagens como três estratos separados de cores empilhados um em cima do outro.
- Assim, uma rede convolucional recebe uma imagem como uma caixa retangular cuja largura e altura são medidas pelo número de pixels ao longo dessas dimensões e cuja profundidade é de três camadas profundas, uma para cada letra em RGB. Essas camadas de profundidade são referidas como canais.

- As redes recorrentes são um poderoso conjunto de algoritmos de redes neurais artificiais úteis para o processamento de dados sequenciais, como som, dados de séries temporais ou linguagem natural.
- As redes recorrentes diferem das redes feed forward porque incluem um loop de feedback, pelo qual a saída do passo n-1 é alimentada de volta à rede para afetar o resultado do passo n, e assim por diante para cada etapa subsequente.
 - o Por exemplo, se uma rede é exposta a uma palavra letra por letra, e é solicitado a adivinhar cada letra a seguir, a primeira letra de uma palavra ajudará a determinar o que uma rede recorrente pensa que a segunda letra pode ser.

- Após o treinamento, a rede *feed forward* produz um modelo estático dos dados e esse modelo pode então aceitar novos exemplos e classificá-los ou agrupá-los com precisão.
- Em contraste, as redes recorrentes produzem modelos dinâmicos – ou seja, modelos que mudam ao longo do tempo - de formas que produzem classificações precisas dependentes do contexto dos exemplos que estão expostos.

0

- Um modelo recorrente inclui o estado oculto que determinou a classificação anterior em uma série.
- Em cada etapa subsequente, esse estado oculto é combinado com os dados de entrada do novo passo para produzir
 - o um novo estado oculto e, em seguida,
 - uma nova classificação. (Cada estado oculto é reciclado para produzir seu sucessor modificado.)
- Diferentes lembranças de curto prazo devem ser re-contadas em momentos diferentes, a fim de atribuir o significado certo à entrada atual.

LONG SHORT-TERM MEMORY (LSTM)

- Uma variação da rede recorrente com as chamadas unidades de Long Short-Term Memory, como uma solução para o problema do vanishing gradient, problema comum em redes neurais recorrentes.
- As redes LSTMs ajudam a preservar o erro que pode ser copiado por tempo e camadas.
- Ao manter um erro mais constante, eles permitem que as redes recorrentes continuem aprendendo durante vários passos de tempo (mais de 1000), abrindo assim um canal para vincular causas e efeitos remotamente.

LONG SHORT-TERM MEMORY (LSTM)

- Os LSTMs contêm informações fora do fluxo normal da rede recorrente em uma célula fechada.
- As informações podem ser armazenadas, escritas ou lidas a partir de uma célula, como dados na memória de um computador.
- A célula toma decisões sobre o que armazenar, e quando permitir leituras, gravações e exclusões, por meio de portões abertos e fechados.
 - Esses portões atuam sobre os sinais que recebem e, de forma semelhante aos nós da rede neural, eles bloqueiam ou transmitem informações com base em sua força e importação, que eles filtram com seus próprios conjuntos de pesos.
 - Esses pesos, como os pesos que modulam a entrada e estados ocultos, são ajustados através do processo de aprendizagem das redes recorrentes.

LONG SHORT-TERM MEMORY (LSTM)

0

LARGE LANGUAGE MODEL (LLM)

- São modelos de IA que revolucionaram a forma como as máquinas interagem com a linguagem humana.
 - Sua capacidade de gerar textos coerentes e complexos, traduzir idiomas e responder a perguntas de maneira informativa é notável.
- Diferente das RNAs tradicionais, as LLMs são treinadas com um volume gigantesco de dados textuais, o que lhes permite aprender nuances da linguagem e padrões complexos.

LARGE LANGUAGE MODEL (LLM)

Arquitetura Transformer

- Mecanismo de Atenção: O coração do Transformer. Ele avalia a importância de cada palavra em relação a todas as outras, permitindo que o modelo compreenda o contexto e as relações entre os termos.
- 2. Codificador e Decodificador: O codificador processa a entrada, enquanto o decodificador gera a saída, ambos compostos por múltiplas camadas com subcamadas de Feedforward e Mecanismos de Atenção.
- 3. **Embedding de Posição:** Adiciona informações sobre a ordem das palavras, já que o processamento é paralelo e a ordem original se perderia.

LARGE LANGUAGE MODEL (LLM)

Arquitetura Transformer

FRAMEWORKS DE DEEP LEARNING

Framework	Descrição
TensorFlow	Biblioteca de computação usando grafos de fluxo de dados para aprendizagem de máquina escalável.
Caffe	Framework open-source veloz para Deep Learning.
Keras	Biblioteca Deep Learning para Python com suporte para Convnets e Redes Neurais Recorrentes. Funciona com Theano e TensorFlow.
Microsoft CNTK	Microsoft Computational Network Toolkit (CNTK).
Torch	Biblioteca de Deep Learning
Theano	Biblioteca Python que permite definir, otimizar e avaliar expressões matemáticas envolvendo arrays multidimensionais de forma eficiente.
Lasagne	Biblioteca leve para construir e treinar redes neurais com Theano.
DeepLearning4J	Deep Learning para Java, Scala & Clojure no Hadoop e Spark.
MXNet	Biblioteca da Deep Learning, projeto da Apache Foundation e patrocinado pela Amazon.

 \triangle

04

EXEMPLO E PRÁTICA

EXEMPLO - AMAZON REVIEWS

Contexto: O PromptCloud extraiu 400 mil avaliações de celulares desbloqueados vendidos na Amazon.com para entender informações postadas sobre as críticas, classificações, preço e seus relacionamentos.

Objetivo: prever a classificação da revisão usando modelos básicos e profundos

Fonte: Kaggle

Biblioteca utilizadas: Sklearn, tensorflow, keras

MLP COM SKLEARN

```
import matplotlib.pyplot as plt
from sklearn.neural_network import MLPClassifier
#Importação e Pré-processamento da base de dados
#Criação do Modelo
mlp = MLPClassifier (
    hidden_layer_sizes=(50,), max_iter=10, alpha=1e-4,
    solver='sqd', verbose=10, random_state=1, learning_rate_init=.1)
mlp.fit(X_train, y_train) #Treinamento
print("Test set score: %f" % mlp.score(X_test, y_test)) #Teste - validação
```

0

MLP COM KERAS

```
from keras.models import Sequential
from keras.layers import Dense, Dropout
#Importação e Pré-processamento da base de dados
#Criação do Modelo
model = Sequential()
model.add(Dense(64, input_dim=20, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='rmsprop',metrics=['accuracy'])
model.fit(x_train, y_train, epochs=20,batch_size=128) #Treinamento
score = model.evaluate(x_test, y_test, batch_size=128) #Teste
```

 \triangle

0

www.mrafaelbatista.dev

MACHINE LEARNING: REDES NEURAIS

 \triangle

