Cs ₁ (cr)	
$A_r = 132.9054$ Gesium (Gs)	
CRYSTAL	
Cesium (Cs)	

 $S^{\circ}(298.15 \text{ K}) = 85.147 \pm 0.21 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{\rm ful} = 301.55 \pm 0.01 \, \rm K$

Enthalpy of Formation

Zero by definition

Heat Capacity and Entropy

used the higher purity cesium sample. The C, values reported by Dauphines are lower than the adopted ones by about 0.5 to 1.5 per cer the temperatures 55 to 220 K, above 270 K his reported heat capacities are unreasonably high. Therefore the data are not adopted The low temperature heat capacities, 0.19–301.55 K, have been measured by Dauphinee, 'McCollum,' Martin,' Lien,' Filby,' and Mor. The adopted values are derived based on the C, data reported by Filby' and Lien.' Lien measured the heat capacities in the temperature r 0.1874 to 1.20K in the adiabatic demagnetization cryostat and at higher temperatures, 1.2 to 409 K, in the Isquid-helium temperature cryo The Cs sample was obtained from a commercial source of 99.8 per cent purity. Filby determined the C, values in the temperature ra 0.4-1.5 K, 3-26 K and 20-320 K, using commercial samples of 99.9 per cent purity. These two sets of measurements are joined smo at 4 K S'(298.15 K) is derived from the adopted heat capacities, based on S'(0 20 K) = 0.0002 cal·K -1·mol-1. Dauptinee determines heat capacities of Cs(cr) employing a sample badly contaminated with oxygen. In the temperature range of approximately 100 to 200 I anomaly of C, curve somewhat similar to those found for sodium and potassium was reported. This anomaly was not observed by Filby evaluation. McCollum? calculated the Debye θ values from the measured low temperature heat capacities and plotted them, since no nume data were reported these were not used. The low temperature C, values determined by Martin³ and Morgan° are in good agreement wit adopted ones

Fusion Data

Refer to the liquid table for details.

Sublimation Data

Δ_{wb}H°(298.15 K) is calculated as the difference between Δ_fH°(298 15 K) for Cs(g) and Cs(cr).

References

T. M. Dauphines, D. L. Martin and H. Preston-Thomas, Proc. Roy. Soc. (London) A233, 214 (1955); C, (20-320 K).

D. C. McCollum, Jr. and H. B. Silsbee, Phys. Rev. 127, 119 (1962); C, (1.3-12 K).

B. D. Martin, D. A. Zych and C. V. Heer, Phys. Rev. 135, A671 (1964), C, (0.36-1.63 K).

W. H. Lien and N. E. Phillips, Phys. Rev. 133, A1370 (1964); C, (0.19-4.09 K).

J. D. Filby and D. L. Martin, Proc. Roy. Soc. (London) A284, 83 (1965); C, (0.7-320 K).

J. A. Morgan and J. C. Thompson, J. Chem. Phys. 47, 4607 (1967); C, (2.1-4.2 K).

Cesium (Cs)

Cs₁(cr)

$\Delta_l H^0(0 \text{ K}) = 0 \text{ kJ·mol}^{-1}$	Enthalpy R	eference To	mperature	Enthalpy Reference Temperature = Tr = 298.15 K	_	Standard Stal	te Pressure =	Standard State Pressure = $p^* = 0.1$ MPa
$\Delta_{trt} = 0.04 + 0.004 \text{ J} = 0.004 \text{ J} = 0.004 \text{ J} = 0.004 \text{ J} \cdot \text{mol}^{-1}$	7/K	3		S* -[G*-H*(T.)]/T	HH.(T.)	KJ-mol-	₽ €	Б К
	° <u>8</u>	0. 25.812	0. 54.952	INFINITE 110.635	717.7- -5.568		00	. ರರ
	88	27.804 29.201		87.892 85.656	-2.888 -1.468	o o	00	ರರ
Ultum 2 Marein 3 I iam 4 mile 5 3 M 6	298 15	32.195	85 147	85.147	9	o o	o 0	o o
the heat capacities in the temperature range	301.550		85.514	85.149	0.110	O. CRYSTAL	V	
, in the Inquid-helium temperature cryostat.	320		90.550	85.553	1.749	-2.005		-0.049
ed the C, values in the temperature ranges	38	36.77	85.69	87.700	5347	-1.815	0.653	-0.085
sets of incasulcinents are joined smoothly	8 8	37.196	103.480	89.086	7.197	-1274	1.210	-0.126
e range of approximately 100 to 200 K an	88	37.530 37.614	110.295	92.069	10.935	-0.643		41.0- 44.0-
is anomaly was not observed by Filby who	88	37.635	121.111	98.042	18.455	7890	2212	4.6
dopted ones by about 0.5 to 1.5 per cent in h. Therefore the data are not adopted for	88	37.656	129.513	103.527	25.986	1.338 -65.103	6.138	-0.137 -0.321
scities and plotted them, since no numerical d Morgan are in good agreement with the								
(1955); C, (20-320 K).								
	PREVIOUS:						CURRE	CURRENT. June 1968

Cs₁(I)

Cesium (Cs)

PREVIOUS

CURRENT June 1968

 $\Delta_t H^o(298.15 \text{ K}) = [2.087] \text{ kJ·mol}^{-1}$ $\Delta_{tus} H^o(301.55 \text{ K}) = 2.087 \pm 0.004 \text{ kJ·mol}^{-1}$

A_r = 132.9054 Cesium (Cs)

Enthalpy of Formation

 $S^{(298.15 \text{ K})} = [92.069] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Cesium (Cs)

T_{fus} = 301.55 ± 0.01 K

 $\Delta_t H^2(C_S, 1, 298.15 \text{ K})$ is calculated from that of the crystal by adding the enthalpy of fusion and the difference in enthalpy, $H^2(301.55 \text{ K})$ -H°(298.15 K), between the crystal and liquid.

Heat Capacity and Entropy

about 100-300°C. The thermal conductivity measurements of Cs(I) show a change of slope at about 200°C and its electrical resistivity also The entialpies of Cs(1) have been measured by Tepper et al., Achener, and Lemmon et al., using drop calorimetry. Lemmon et al. used a cesuum sample of 99.994 per cent purity and encapsulated in Nb-1Zr alloy. They found that Cs(1) does not behave as a normal liquid from shows scatter in this region. The heat capacities, 301.55-1435.2 K, derived from the reported enthalpies (corrected for vapor condensation) are consistent with the low temperature heat capacity data on Cs(cr) at 298.15 K and are adopted.

Tepper et al. measured the crithalpies in the temperature range 351.1-1238 K. The reported enthalpy values are considerably higher, over 20 per cent, at the lower end of the measured temperature range than the adopted ones. However, the agreement becomes better at the higher temperature end. Achener determined the enthalpies of Cs(l) at the temperatures 340.1–1175.7 K. Using the reported enthalpies, the average heat capacity is derived to be 9.75 kcal-mol⁻¹, which is unreasonably high by comparison with those for the other alkali metals. The above two sets of data are not used for evaluation. The enthalpies of Cs(l), 773–1423 K, were also measured by Shapiro ^{4 and quosed by 3} The derived constant heat capacity, 7.60 cal-mol-1, is in reasonable agreement with the adopted ones.

Heat capacities of Cs(I), 301.55-373.2 K, were reported by Filby, 301.55-320 K, Dauphinee, 310-320 K, and Rengade, 301.7-373.2 K.

S'(298.15 K) is calculated in a manner analogous to that used for the enthalpy of formation. The values obtained are consistent with the adopted ones.

The melting point and enthalpy of melting have been determined by many investigators. The results reported are presented in the table below. The adopted T_{los} and $\Delta_{los}H^a$ are obtained from.³ The two determinations of fraction melted against temperature are in very good agreement with one another and lead to a linear plot of reciprocal fraction melted against temperature thus indicating that the major impurity is solid insoluble. This is confirmed by a graph of excess heat capacity against the reciprocal of (To-T)2, where To is the melting point, which indicates an impurity (mainly oxygen) concentration of 0.06 atomic per cent.

299.52 299.52 301.35 301.60 ± 0.05 301.75 301.75 301.75 301.79 ± 0.17 301.79 ± 0.17 301.79 ± 0.17	A _{tus} H°, kcal·mol ⁻¹ 0.496 M. B 0.500 B. R 1. H 1. H 1. L 1. B. R 0.510 W. C 0.400 1. D 0.400	References M. Eckardt and E. Graefe, Z. Anorg. Chem. 23, 378 (1900) A. Guntz and W. Broniewski, J. Chim. Phys. 7, 474 (1909). J. H. Boer, J. Broos and H. Emmens, Z. Anorg. Chem. 191, 118 (1930). E. Rinck, Compt. Rend. 199, 1217 (1934). L. Losana, Gazz. Chim. Ital. 65, 855 (1935). K. Clusius and J. Langmuir, Phys. Rev. 51, 759 (1937). K. Clusius and H. Stern, Z. Angew. Physik 6, 194 (1954). W. D. Weatherford, Jr., et al., WADD Tech. Rept. 61–96, November 1961. A. W. Lemmon et al. 1. A. Thy and D. 1. Marin. 3
--	---	--

/aporization Data

Δ₁H°(Cs, 1) at T_{rap} is Δ₁₄H*. Due to the presence of diract (Cs₂) in the vapor, the boiling point (1 atm) of Cs(l) is calculated to be 941.3 K at which the vapor mixture contains 0.835 mol of monomer/mol of Cs(l) vaporized, or 9.0 per cent of dimer. The corresponding enthalpy of $_{vs}$ is the temperature at which the Gibbs energy change for the reaction Cs(I) = Cs(g) is zero. The differences between ΔH° (Cs, g) and vaporization is evaluated as 15.26 kcal·mol⁻¹ of vapor mixture.

References

F. Tepper, A. Murchtson, J. Zelenak, and F. Rochlich, Thermophysical Properties of Rubidium and Cesuum, RTD-TDR-63-4018, Part I, MSA Research Corporation, Callery, Pennsylvania, (November 1963).

P. Y. Achener, The Determination of the Latent Heat of Vaporization, Vapor Pressure, Enthalpy, Specific Heat, and Density of Liquid

A. Shapiro and C. J. Meisl, General electric Company, Flight Propulsion laboratory Department Report No. R60FPD358-A. (November Rubidium and Cesium up to 1800 F, AGN-8090, Acrojet-General Nucleonics, (January 1964).

N. W. Lemmon, Jr., H. W. Deem, E. A. Eldridge, E. H. Hall, J. Matolich, Jr., and J. F. Walling, "The Specific Heat, Thermal Conductivity, and Viscosity of Liquid Cesium," BATT-4673-T7, Battelle Memorial Institute, (February 1964).

D. Filby and D. L. Martin, Proc. Roy. Soc. (London) A284, 83 (1965). shap 9, 1960). ⁵J. P

M. Dauphinee, D. L. Martin, and H. Preston-Thomas, Proc. Roy. Soc. (London) A233, 214 (1955). Rengade, Compt. Rend. 156, 1897 (1913); Bull. Soc. Chim. France 15, 130 (1914).

Standard State Pressure = p° = 0.1 MPa -0.193 -0.510 -0.769 -0.985 -1.168 -0,002 -> LIQUID --log Kr ರರರರ ರರರರ 10.733 17.673 24.526 31.300 0.024 0.01 3.699 ರದರದ ದರದರ δĞ -66.105 -65.075 -64.040 -62.998 -61.950 k mol $H^{\bullet}-H^{\bullet}(T_i)$ Δ_iH^{\bullet} 0000 0000 1.667 3.252 4.822 6.384 6.384 6.384 11.287 11.287 11.873 1 Enthalpy Reference Temperature = T, = 298.15 K $S^{*} - [G^{*} - H^{*}(T_{*})]H$ 92.462 93.328 94.441 95.680 98.295 100.905 103.416 105.801 106.897 10.178 12.184 14.082 15.879 J·K 'lmol' 128.270 92.436 101.458 105.158 108.448 114.113 118.887 123.017 126.662 129.926 132.883 135.587 138.081 140.395 142.554 97.225 30.999 30.941 30.932 30.957 31.898 31.518 31.310 31.154 30.999 31.054 31.116 31.188 31.263 31.342 ů ž 1

Refer to the individual tables for details.

301.55 K crystal 301.55 K liquid

2

0 above

Cs1 _(cr,1)	log K.	ರರರ	Ö	O. CUID	o' o	ာ်ငံင	် ဝ	0 0		i	-0.193	-0.769	-0.985 -1.168	-1.323
	₽ _G	ರರರರ	Ö	CRYSTAL <> LIQUID	KANSIIION 0.	ಶರಂ	ံ ဝံ	o' o'	ö	FUGACITY - 1 bar	5.07	17.673	34.526 31.300	37.999
Standard State Pressure	_kJ·mof ⁻¹	ರರರ	ó	0. CRYS <u>I</u>	- o' o	joc	် ဝံ	ಂ ರ		FUG/	67.70-	-65.075	-64.040	-61.950
	H*-H*(T,)	-7.717 -5.568 -2.888 -1.468	o	0.110	3.754	0169	11.578	14.674	20.862	22.348	25.300	30.171	33.286 36.409	39.539
- T, - 29&15 K	nol-1 [G*H*(T,)]/T	INFINITE 110.635 87.892 85.656	85.147	85.148 8.149	86.498 80.149	89.803 80.803 80.803	94.817	100.808	103.482	04.636 0.000	108,380	110.445	112.476	116.195
esium (Cs) Embalpy Reference Temperature = T,	J-K-'mol-'. S*[G	0. 54.952 73.453 79.784		85.514	27.72	105.158	114.113	123.017	126.662	07.8210	117 881	135.587	138.081	142.554
SS) eference T	ีย	0. 25.812 27.804 29.201	32.195	32.50		3130	30.999	30.932	30.957	30.976	31.054	31.116	31.188	31.342
Cesium (Cs)	τK	• 888 8	298.15	301.550	350	38	8	88	006	947.36V	2	02	88	1500

ර රදරුවට රජුවර අපුරවට අදුරවට අපුරවට එවෙන්න් එවෙන්න් එවෙන්න් එවෙන්න්

16.667 20.876 21.298 21.298 21.298 21.208 21.208 21.208 21.208 21.208 21.208 21.208 21.208 21.208 22.208 23

202.269 202.381 202.581 202.501 202.501 202.505 202.505 202.20

ರವರದರ ವರದರದ ವರದರಂ ವರದರದ ವರದರದ ಎರಡದರ ವರದರದ ವರದರದ ವರದರದ

230.671 230.671 231.557 232.447 233.349

214.78 215.294 215.294 215.818 216.339

238.667 239.580 240.494 241.409

43239 24034 24931

234259 235.178 236.104 236.965 237.756

78.019 58.156 53.929 49.532

49.364 41.178 37.198 33.276 25.583 18.061 3.436

71.196 70.178 69.164 68.148

190.136 193.340 196.115 198.564 199.643

200.754 202.735 204.544 206.208 207.750 209.187

7

3.507 4.589

179.679 181.407 184.664 185.395 185.395 186.165 187.333 187.533 191.389 191.389 192.528 193.611 196.516 196.535 197.452 197.452 198.335 199.190 199.190

10.533 11.802 13.002

214.143 215.233 216.280 217.289 218.266 219.217 220.145

221.055 221.950 222.835 223.711 224.582

Cs₁(g)

IDEAL GAS

Cesium (Cs)

Cesium (Cs)

PREVIOUS: June 1968 (1 atm)

Cs₁(g)

CURRENT: December 1983 (1 bar)

Standard State Pressure = p° = 0.1 MPa -6.197 Enthalpy Reference Temperature = T, = 298.15 K $-[G^{\bullet}-H^{\bullet}(T_t)]T$ 17.592 17.592 17.592 17.583 17.583 17.583 17.583 17.583 17.583 17.583 17.583 17.583 0. 152.892 167.300 171.938 $\Delta_t H^{\circ}(298.15 \text{ K}) = 78.0 \pm 1.0 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = 76.5 \pm 1.0 \text{ kJ} \cdot \text{mol}^{-1}$ IP(Cs, g) = $31406.432 \pm 0.010 \text{ cm}^{-1}$ S°(298.15 K) = $175.599 \pm 0.025 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

1178.24 18535.51 31383.05 0.0 Ē v

Electronic Levels and Quantum Weights 31406.432 2,S_{1,2} State 2 5 5 5 6 2 5 5 5 6 6

Enthalpy of Formation

At higher pressures an alternate virial treatment was employed. As stated by CODATA, the selected value is the weighted average of the 3rd law values of $\Delta_{ab}H^*(298.15 \, \mathrm{K})$ from the following: The enthalpy of formation of cestum gas is chosen to be the value recommended by CODATA. This value was obtained from 2nd and 3rd law treatments of vapor pressure data. The reported vapor pressure were corrected for the effects of Cs(g), using $D_0^0 = 38.02$ kJ-mol⁻¹.

Source	Δ _{wb} H°(298.15 K), kJ·mol ⁻¹
Taylor and Langmuir ²	76.71 ± 0.64
Bonilla et al.	76.20 ± 1.28
Achener*	76.66 ± 1.08
Tepper et al 5	78.08 ± 1.05
Bohdansky and Schins	76.10 ± 0.95
Stone et al.7	76.52 ± 1.08
Buck and Pauly	76.77 ± 0.75
Shoil'rain and Belova	76.62 ± 1.06
Volyak et al. 10	76.48 ± 0.77
Novikov and Rosupkin ¹¹	76.57 ± 1.19
Ewing et al. 12	76.44 ± 1.48
Shpil'rain et al. 13	76.50 ± 1.12
Schins et al. 14	76.34 ± 0.90
Shpil'rain and Nikanorov15	76.46 ± 1.21
Behrens et al. 16	77.22 ± 1.15

The 2nd law calculations from the above sources led to values somewhat more positive!

Heat Capacity and Entropy

J

The thermal functions for the five alkali metal monatomic gases are calculated by the same procedure. Observed and estimated atomic energy levels are included in the partition function calculation, using an ionization potential lowering (IP-kT) technique as the cutoff procedure in the energy level summation.19

59(Na), 79(K), 77(Rb), and 73(Cs). However, not all predicted levels have been observed for each of these principal quantum numbers. The The lowest lying levels for these metals [14904 cm⁻¹ (LJ), 16956 cm⁻¹ (Na), 12985 cm⁻¹ (K), 12578 cm⁻¹ (Cs)] do not contribute to the thermal functions below ~1000 K; there is only a translational contribution below this temperature. Above this approximate temperature, the ionization potentials vary from 43487.29 cm⁻¹ for Li to 31406.1 cm⁻¹ for Cs. In calculating the thermal functions with the inclusion of missing thermal functions become increasingly sensitive to the partition function cutoff procedure used, due to the combined effect of the observation of atomic energy levels of high principal quantum number and a low ionization potential. Energy levels have been observed up to n = 42 (Li), levels up to the high principal quantum numbers just mentioned, the Gibbs energy functions show significant differences (depending on the cutoff procedure) above 3000 K.19

to those recommended by CODATA. They do differ for two reasons, however. First, the entropy differs by 0.1094 J.K.-1-mol-1 because this table uses a reference pressure of 1 bar, whereas the CODATA recommendations are based on 1 atm. Second, the entropies at 298.15 K for The atomic energy levels have been taken from the compilation of Moore. 11.19 Our calculated values for the thermal functions are similar all alkali metal gases differs by ~0.004 J·K-1·mol-1, presumably due to the use of slightly different values for auxiliary data

Continued on page 1003

D. Cox, Chairman, CODATA Task Group on Key Values for Thermodynamics, CODATA Special Report No. 8, (1980).

Phys.	Chem.	Ref.	Data,	Monograph 9

-5.491 -5.171 -4.873 -4.594 -4.333

273.293 267.280 261.202 255.063 248.868

Standard State Pressure = p = 0.1 MPs

log Kr

ş

 Δ_H

 $-[G^{\bullet}-H^{\bullet}(T_{*})]T$

7,8

169.836 169.965 173.169 175.945 178.393 180.583

173.915 175.644 177.313 178.900 180.402

U-mol-1) from Moore. The ionization limit is converted from cm-1 to kJ·mol-1 using the factor, 1 cm-1 = 0.01196266 kJ·mol-1, which is

 $\Delta H^{*}(Cs^*, g, 0|K)$ is calculated from $\Delta H^{*}(Cs, g, 0|K)^{*}$ using the spectroscopic value of IP(Cs) = 31406.432 \pm 0.010 cm⁻¹(375.704 \pm 0.001

Electronic Level and Quantum Weight
State

derived from the 1973 CODATA fundamental constants. Rosenstock et al. and Levin and Lias have summarized additional ionization and

 $\Delta H^{\circ}(Cs^*, g, 298.15 \, K)$ is calculated from $\Delta H^{\circ}(Cs, g, 0 \, K)$ by using IP(Cs) with JANAF¹ enthalpies, $H^{\circ}(0 \, K) - H^{\circ}(298.15 \, K)$, for Cs(g), $Cs^{\circ}(g)$, and e⁻(rcf). $\Delta H^{\circ}(Cs \to Cs^* + e^-, 298.15 \, K)$ differs from a room temperature threshold energy due to inclusion of these enthalpies and to threshold effects discussed by Rosenstock et al. ⁴ A_tH*(298.15 K) should be changed by -6.197 kJ·mol⁻¹ if it is to be used in the ion

convention that excludes the enthalpy of the electron.

Heat Capacity and Entropy

levels have not been observed. Our calculations indicate that any reasonable method of filling in these missing levels and cutting off the other than the ground state; the first excited state is approximately 107392 cm⁻¹ above the ground state. Since inclusion of these excited states has no effect on the thermodynamic functions (to 6000 K), we list only the ground state. The reported uncertainty in \$\infty\$(298.15 K) is due to

uncertainties in the relative ionic mass and the fundamental constants. Extension of these calculations above 6000 K may require consideration

of the excited states and use of different fill and cutoff procedures.

The information on electronic energy levels and quantum weights, given by Moore, is incomplete because many theoretically predicted summation in the partition function? has no effect on the thermodynamic functions to 6000 K. This is a result of the high energy of all levels

-74.295 -62.937 -54.411 -47.772 -42.456

184.373 187.577 190.352 192.801 194.991

181.820 183.159 184.425 185.625 186.764 187.847 188.880 190.888 190.808

196.972 200.444 201.985 201.985 204.760 204.760 206.020 207.208 208.332 209.398

20.786 20.786 20.786 20.786 20.786 20.786 20.786 20.786 20.786

-34.467 -23.747 -21.096 -18.602 -16.714 -15.719 -13.783 -17.719 -17.71

395.908 385.247 374.433 365.486 356.121 376.58 347.656

0.038 1.078 1.078 1.1078 4.196 6.274 8.331 11.2510 11.

398.569 400.647 404.802 404.802 406.876 408.947 411.013 413.070 415.116

210.413 211.379 212.303 213.188 214.037

20.786

302.216 296.601 290.896 285.106 279.237

419.160 421.148 423.106 425.030 426.914 428.751 430.535 432.260 433.920 435.98

437,016

214.852 215.636 216.392 217.122 217.826

20.786 20.786 20.786 20.786

M. Rosenstock, K. Dratl et al., J. Phys. Chem. Ref. Data 6, Supp. 1, 783 pp. (1977).
 R. D. Levin and S. G. Lias, U. S. Nat. Bur. Stand., NSRDS-NBS-71, 634 pp. (1982).
 E. Moore, U. S. Nat. Bur. Stand., NSRDS-NBS-35, Volume III, (1970) [Reprint of NBS Circular 467, Volume III, 1958].

R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973). E. Moore, U. S. Nat. Bur. Stand., NSRDS-NBS-34, 8 pp. (1970). JANAF Thermochemical Tables: Cs(g), 6-30-68, e (ref), 3-31-82.

R. Downey, Jr., The Dow Chemical Company, AFOSR-TR-78-0960, Contract No. F44620-75-1-0048, (1978)

438,439 439,810 441,060 442,209

47.846 49.925 52.004 52.004 56.161 58.239 66.331 66.437 66.534 66.534 66.537 70.7111 70.711 70.711 70.711 70.711 70.711 70.711 70.711 70.711 70.7111 70.711 70.711 70.711 70.711 70.711 70.711 70.711 70.711 70.7111 70.7

-4.088 -3.858 -3.640 -3.435

242.622 236.328 229.988 223.611 217.198

192.578 193.410 194.221 194.221 195.730 196.449 197.820 197.820 199.106 199.106 199.106 200.319 200.359 201.465 201.659 201.659 201.650 201.65

218.508 219.168 219.807 220.428 221.031

-3.058 -2.884 -2.719 -2.562 -2.412

210.755 204.282 197.785 191.267 184.734

443.252 444.198 445.032 446.356

-2270 -2.135 -2.005 -1.881 -1.762 -1.649 -1.541

178.187 171.631 165.067 158.467 151.826

446.826 447.172 447.392 447.777 448.353

221.616 222.186 222.740 223.280 223.806

224,319

20.786 20.786 20.786 20.786 20.786 20.786 20.786 20.786 20.786

226.711 227.158 228.024 228.024

205.045 205.510 205.965 206.410 206.846

207.272 208.101 208.101 208.503 208.503 209.665 210.039 210.406

145.236 138.647 132.061 125.480 118.905

448.368 448.280 447.811 447.438

-1.437 -1.242 -1.242 -1.151 -1.062 -0.895

112,339

CURRENT. December 1983 (1 bar)

Cs‡(g)

Enthalpy Reference Temperature = T, = 298.15 K $\Delta_t H^{\circ}(0 \text{ K}) = 453.72 \pm 2.1 \text{ kJ·mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = [458.402] \text{ kJ·mol}^{-1}$

M_r = 132.90485 Cesium, Ion (Cs⁺)

December 1970 (1 atm

PREVIOUS

Cesium, Ion (Cs⁺)

IDEAL GAS

Cesium, Ion (Cs⁺)

IP(Cs*, g) = 202263 ± 2 cm⁻¹ S*(298.15 K) = 169.836 ± 0.005 J·K⁻¹·mol⁻¹

J. Phys. Chem. Ref. Data, Monograph 9

Enthalpy of Formation

appearance potential data.

-0.650 -0.803 -0.943 -0.943 -1.190 -1.190 -1.402 -1.403 -1.587

0.432 0.158 -0.081 -0.293 -0.481

0.990 0.444 0.065 0.206 0.405 0.664 0.810 0.891 0.931

-1.751 -1.827 -1.899 -1.967 -2.033 -2.036 -2.156 -2.156 -2.170

25,250,000 25,250,000

-2376 -2427 -2476 -2524 -2570

-2616 -2660 -2704 -2746 -2787 -2787 -2787 -2888 -2988 -2986 -2986 -2987 -3005

log Kr

CURRENT: December 1983 (1 bar) Standard State Pressure = p° = 0.1 MPa 163.747 171.883 180.108 188.420 196.824 213.905 221.283 221.131 240.113 240.048 256.048 276.402 285.703 295.096 295.096 313.673 313.673 19.904 26.135 32.490 38.962 45.546 52.236 59.029 65.921 72.910 87.167 94431 101.785 109.226 116.755 124.371 132.074 139.860 147.735 155.697 205.319 Š -190.416 -195.123 -199.618 -204.262 32.514 -68.370 -70.449 -72.528 -74.609 -76.691 -78.777 -80.869 -82.969 -85.080 -89.351 -91.520 -93.719 -95.952 -98.226 -100,546 -107.848 -110.418 -113.067 -115.801 -118.587 -121.495 -124.503 -127.617 -134.151 -137.578 -141.142 148.640 152.578 156.349 159.931 -168.318 -172.662 -177.101 -181.632 209.099 kl-mol-' -144.828 -164.073 $\Delta_i H$ H.-H.(L') 47.845 49.925 52.004 54.082 56.161 56.131 66.331 66.331 66.331 66.331 72.790 72.790 72.790 79.025 81.104 83.183 85.261 87.340 16.667 18.746 22.903 24.982 27.000 29.139 31.217 33.236 35.375 39.532 41.610 43.689 Enthalpy Reference Temperature = T, = 298.15 K $-[G^{\bullet}-H^{\circ}(T_{i})]T$ 173.916 175.644 177.313 178.901 180.402 181.820 185.159 185.625 185.625 185.625 187.848 189.868 190.838 190.838 190.838 190.838 190.838 190.838 190.839 190.731 190.731 190.731 190.731 190.731 190.731 202.552 203.075 203.585 204.083 204.570 205.045 205.510 205.520 206.410 206.846 207.273 207.691 208.101 208.503 209.285 209.666 210.039 210.406 210.766 J-K-'mol-' 196.972 198.780 200.444 201.985 203.419 204.760 206.020 207.208 208.332 209.398 210.413 211.380 212.304 213.188 214.037 214.852 215.636 216.392 217.122 217.122 221.616 222.186 222.740 223.280 223.806 229.260 69.836 184.373 187.577 190.352 192.801 194.991 218.508 219.168 219.808 220.428 221.031 224,319 226.711 227.158 227.596 228.025 228.445 230.800 20.786

IDEAL GAS

Cesium, Ion (Cs_)

ž

 $\Delta_t H^{\circ}(0 \text{ K}) = 32.51 \pm 0.5 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_i H^{\circ}(298.15 \text{ K}) = [24.798] \text{ kJ} \cdot \text{mol}^{-1}$

The enthalpy of formation, at 0 K, for Cs (g) is calculated from the adopted electron affinity, EA(Cs, g) = 0.471630 \pm 0.000025 eV, (45.505 \pm 0.002 kJ·mol⁻¹). This value, recommended by Hotop and Lineberger, was measured by a tunable laser photodetachment threshold technique. Additional discussion on Cs (g) may be obtained in the critical discussions of Hotop and Lineberger, 1.7 Rosenstock *et al.*, ² and Electonic Level and Quantum Weight £, cm-1 0.0 State လို EA(Cs, g) = 0.471630 \pm 0.000025 eV S*(298.15 K) = 169.836 \pm 0.005 J·K⁻¹·mol⁻¹

Enthalpy of Formation

 $\Delta_H^{J'}(Cs^-, g, 298.15 \text{ K})$ is obtained from $\Delta_H^{J'}(Cs, g, 0 \text{ K})$ by using EA(Cs, g) with JANAF* enthalpies, $H^{\prime}(0 \text{ K}) - H^{\prime}(298.15 \text{ K})$, for $Cs^{-}(g)$, and $e^{-}(ref)$. $\Delta_H^{J'}(Cs^- \to Cs + e^-, 298.15 \text{ K})$ differs from a room-temperature threshold energy due to inclusion of these enthalpies and to threshold effects discussed by Rosenstock *et al.*, $^2\Delta_H^{J'}(298.15 \text{ K})$ should be changed by $+6.197 \text{ KJ} \cdot \text{mol}^{-1}$ if it is to be used in the ion convention which excludes the enthalpy of the electron

Heat Capacity and Entropy

The ground state configuration for Cs (g) is given by Hotop and Lineberger, 1 and Rosenstock et al. 2 Lacking any experimental evidence as to the stability of any excited states, we assume that no stable excited states exist.

References

H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 4, 539 (1975).

²H. M. Rosenstock, K. Draxl et al., J. Phys. Chem. Ref. Data 6, Supp. 1, 783 pp (1977).
³H. S. W. Massey, "Negative Ions," 3rd ed., Cambridge University Press, Cambridge, 741 pp. (1976).
⁴Slater, F. H. Read, S. E. Novick, and W. C. Lineberger, Phys. Rev. A II, 201 (1978).

²P. A. Schulz, R. D. Mead, and W. C. Lineberger, Phys. Rev. A, in preparation. ⁵IANAF Thermochemical Tables: Cs(g), 3-31-82; e⁻(ref), 3-31-82.

¹H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data, 14, 731 (1985).

PREVIOUS

M_r = 151.903803 Cesium Fluoride (CsF)

¥ $\Delta_t H^o(298.15 \text{ K}) = Unknown$ $\Delta_t H^o(298.15 \text{ K}) = -554.7 \pm 2 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_{tot} H^o = 21.7 \text{ kJ} \cdot \text{mol}^{-1}$

CRYSTAL

Cesium Fluoride (CSF)

 $S^{(298.15 \text{ K})} = [88.3 \pm 8] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

The enthalpy of solution ($\Delta_{col}H^0$) of CsF(cr) in water at 298.15 K has been carefully determined with an adiabatic calorimeter by Somsen. Based on the reported value, $\Delta_{col}H^0$ (298.15 K) = -8.62 ± 0.04 kcal·mol⁻¹ and $\Delta_{l}H^0$ (298.15 K) = -61.69² and -79.5 kcal·mol⁻¹ for The value, $\Delta_{ea}H^{o}(298.15 \text{ K}) = -8.81 \pm 0.2 \text{ kcal mol}^{-1}$ for CsF(cr), was reported by Parker* which is in agreement with the value measured Cs*(ag, \approx) and F (ag, \approx), respectively, the enthalpy of formation for CsF(ct) is calculated to be -132.57 kcal·mol-1 which is adopted. Heat Capacity and Entropy Enthalpy of Formation

The heat capacities of CsF(cr) are estimated according to the method of Kristov, ³ based on H°076 K)-H°(298.15 K) = 9.4 kcal·mol⁻¹ reported by Dworkin. ⁶ The entropy, S°(298.15 K), is estimated such that the calculated and observed vapor pressures are in good agreement (refer to CsF(g) and Cs2F2(g) tables for details).

Fusion Data

Tra and AraH° are obtained from Bredig⁷ and Dworkin[‡]. Buhalova⁸ reported Tra = 958 K, which is not adopted.

Sublimation Data

Δ_{wb}H*(298.15 K) is calculated as the difference between Δ_tH*(298.15 K) for CsF(g) and CsF(cr)

¹G. Somsen and L. Weeda, Rec. Trav. Chim. 83, 810 (1964).

R. Gum, J. Phys. Chem. 71, 1386 (1967).
 S. Nat. Bur. Stand. Tech. Note 270-3, 264 pp. (1968).
 S. Nat. Bur. Stand. Tech. Note 270-3, 264 pp. (1968).
 A. Kiristov, Izv. Vicsh. Uchebn. Zavedenii, SSR, Khim. i Khim. Tech. No. 5, 751, (1964).
 A. S. Dworkin, personal communication, Oak Ridge National Laboratory, (December 1, 1964).
 M. A. Bronstein and W. T. Smith, Jr., J. Am. Chem. Soc. 77, 1454 (1955).
 A. S. Dworkin and M. A. Bredig, J. Phys. Chem. 64, 269 (1960).
 G. A. Bukhalova and D. V. Sementsova, Russ. J. Inorg. Chem. 10, 1027 (1965).

Standard State Pressure = $p^* = 0.1$ MPa 91.445 67.221 52.700 43.032 36.138 36.138 26.970 23.580 20.655 18.228 16.183 11.623 11.623 10.473 9.455 8.548 --- augus ---> log K -525.195 -514.758 -504.454 -494.295 -474.415 -464.696 -451.425 -434.969 -418.752 -402.764 -386.991 -371.420 -356.039 -310.933 -296.209 Ş - CRYSTAL -554.811 -553.860 -552.758 -551.504 -614.649 -611.958 -609.188 -606.370 -603.525 -600.663 -597.794 -594.928 -592.073 -589.236 $H^{\bullet}-H^{\bullet}(T_{\bullet})$ 0. 0.0096 1384 10831 16.497 16.497 19.314 49 Enthalpy Reference Temperature = T, = 298.15 K S -[G*-H*(T,)]/T 88.282 88.283 90.344 90.344 98.790 100.372 110.382 110.382 111.404 111.127 111.404 111 179.642 184.356 126.286 135.260 143.269 150.541 155.672 157.231 163.438 169.217 174.607 51.965 52.007 53.764 53.764 53.764 50.877 60.877 60.937 60 286.15 286.15 280.15 280.15 280.15 280.25 28

Cesium Fluoride (CsF)

PREVIOUS:

CURRENT: June 1968

Cs,F₁(I)

Cesium Fluoride (CsF)

in the temperature range 298-3000 K.

Heat Capacity and Entropy

between the crystal and liquid. **Enthalpy of Formation**

 $S^{\circ}(298.15 \text{ K}) = [90.099] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{\text{tra}} = 976 \text{ K}$

Cesium Fluoride (CsF)

Refer to the crystal table for details.

Fusion Data

Vaporization Data

mixture at $T_{\rm hs}$ is $\Delta_{\rm vac}H^{\circ}$.

ũ
č
ido
į
Ě
L
E

- 0.1 MPa	log Kr		92.044	91.445	67.221 52.700	43.032	30.976 26.970	<u> </u>	23.608	20.789	16.490 14.816	13,374	11.019	9.182 8.408	7.712	6.512	5.516	5.080 4.678	3.963 3.963 3.64	
State Pressure = p	Φ.		-525.377	-525.195	-514.758 -504.454	-494.295	-484.282 -474.415 -464.696	AL <> LIQUE	-451.962	-437 799 -423.951	-410.391 -397.095	-384 044	-358.610	-333.974	-310.044	-286.744	-264.010	-252.837	-230.847 -220.017 -209.290	
Standard State	Δ'Η.		-554.673	-554,665	-556.266 -555.615	-554.811	-552.758 -552.758 -551.504	Η,	-595.172	-591.805	-584.910 -581.480	-578.062	-571266	-564.531	-557.875	- 551320	-544.895	-541.740	-535.571 -532.566 -529.620	
<u>×</u>	H*-H*(T,)		0	960:0	5.384	16.497	28.321 34.497	39.308	62.800	70.206	85.017 92.423	99.828	114.640	129 451	144.262	159.074	173.885	181.291	196.102 203.508 210.914	
- T, = 298.15 I	-[G*-H'(T,)]/T		88.282	88.283	90.344 94.294	98.790	107.867	115.397	116.920	122.955	133.752 138.622	143.195	151.581	159.121	165.969	172.240	178.023	180.755	188.394 188.394 190.775	
ature 100	. S - [G		88,282	88.604	103,805	126,286	143.269	155.672	179.720	186.778 193.222	199.150 204.638	209.747	219.016	231.052	234.665	241.402	247.577	250.482	255.970 258.569 261.079	
	ಚ		51.965	52.007	53.764 55.564	57.363	59.120 60.877 62.634	63.952	74 057	74.057	74.057	74.057	74.057	74 057	74.057	74.057	74.057	74.057	74.057	
Enthalpy Reference	7/K	٥ <u>8</u>	298.15	8	2 8	88	\$ \$ \$	976.000	1000	1200	96 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 9 8 9	92	200 200 200 200 200 200 200 200 200 200	2100	305	200	790 7100	3300 3300 3000 3000 3000 3000 3000 300	

 $M_{\rm r} = 151.903803$

CRYSTAL-LIQUID

Cesium Fluoride (CsF)

J.

Refer to the individual tables for details.

0 to 976 K crystal above 976 K liquid

CURRENT June 1968 (1 bar)

M_r = 151.903803 Cesium Fluoride (CsF)

IDEAL GAS

Cesium Fluoride (CsF)

 $\Delta_t H^0(0 \text{ K}) = -354.0 \pm 2 \text{ kJ} \cdot \text{mol}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -356.5 \pm 2 \text{ kJ·mo}$

σ=1 r_e=2.345 Å Electronic Level and Quantum Weight
State €, cm⁻¹ 8, a. = 0.001105 cm⁻¹ ω_x = 1.23 cm⁻¹ 0 $\omega_e = 353 \pm 4 \text{ cm}^{-1}$ B. = 0.18437 cm⁻¹ Ň $S^{\circ}(298.15 \text{ K}) = 243.21 \pm 0.04 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

The vapor pressures of CsF(cr) and CsF(I) were measured by the manometric method by Wartenberg, Russ, and Cantor, the torsion-fib effusion method by Pugh* and the Knudsen effusion method by Scheer. Based on the reported total pressures, the corresponding part pressures of CSF(g) and Cs₂F4(g) were evaluated using the adjusted enthalpies of vaporization and Gibbs energy functions such that ti calculated and observed total pressues are in reasonable agreement, and the derived enthalpy changes by the 2nd and 3rd law methods a consistent. The results obtained are presented in the table below. The value of $\Delta_t H^0(CsF, g, 298.15 \text{ K})$ is adopted as $-82.5 \pm 0.5 \text{ kcal} \cdot \text{mol}$

eV (126.8 kcal mol⁻¹) by Herzberg* and Gaydon, respectively. Based on the above two D_0^2 and $\Delta_1 H^0(0K) = 18.68$ and 18.36 for Cs(g) and The dissociation energy (D3) of CsF(g) has been reported using the spectroscopic convergence limit as 5.65 eV (130.3 kcal·mol-¹) and 5 F(g), we obtain the corresponding value for Δ_H"(CSF, g, 298.15 K) as -93.86 and -90.39 kcal·mol⁻¹, which are not adopted.

			Δ,H°(298.15 K), kcal·mol-1	kcal·mol ⁻¹	Drift	$\Delta_t H^*$ (298 15 K),
Source	Reaction*	Method	2nd law	3rd law	cal·K-1 mol-1	kcal·mol ⁻¹
_	B	Manometion	45.39 ± 0 15	44.98	-0.28 ± 0.10	-85.00
7	8	Manometion	44.78 ± 1.70	44.94	011 ± 1.18	-85.04
~	8	Manometion	44.83	44.89	0.05 ± 0.04	-85.09
•	٧	Torsion fibre	48.52 ± 0.03	47 57	-1.18 ± 0.04	-85 00
•	∢	Kundsen	48.43 ± 0.27	46.61	-2.35 ± 0.35	-85.96

Reactions: (A) CsF(cr) - CsF(g)

(B) CsF(I) = CsF(g)

Heat Capacity and Entropy

microwave spectra of CsF(g) at temperatures of about 700°C. Based on the $J=1 \to 2$ transition, the molecular constants are derived. The vibrational frequency (ω,) has been reported, from different kinds of spectra, in the range 270-385 cm⁻¹ by many investigators, e. The ground state configuration was reported by Herzberg. The molecular constants are obtained from Honig et al., 7 who observed t radiofrequency, infrared, ultraviolet, mucrowave, etc. The value of ω_e adopted was reported by Baikov and Vasilevsku[®] who also review the we values obtained by the earlier investigators.

References

14 von Wartenberg and H. Schulz, Z. Elektrochem. 27, 568 (1921), 1391-1524 K, 6 points. Two data points at 1228 and 1319 K are adopted for evaluation due to the inconsistency with the other data

S. Cantor and F. Blankenshup, Vapor Pressure of the Alkali Fluorides, Oak Ridge National Laboratory. Oak Ridge, Tennessee, (Septemb ²O Ruff, G. Schmidt and S. Mugdan, Z. anorg. allgem. Chem. 123, 83 (1922), 1306-1538 K, 7 points.

1958), 1009-1380 K, 7 points calculated using the given vapor pressure equation.

A. C. P. Pugh and R. F. Barrow, Trans. Faraday Soc. 54, 671 (1958), 753-856 K, 6 points.

M. D. Scheer and J. Fine, J. Chem. Phys. 36, 1647 (1962), 677-878 K, 32 points Evaluation based on the reported data points. G Herzberg, Spectra of Diatomic Molecules, D. Van Nostrand Co., Inc., New York, (1950).

A. Honig, M. Mandel, M. L. Stitch and C. H. Townes, Phys. Rev. 96, 629 (1954).
 U. I. Baikov and K. P. Vasilevskii, Opt. Spectrosc. 22, 198 (1967).
 G. Gaydon, "Dissociation Energies and Spectra of Diatomic Molecules," Chapman and Hall Ltd., London, 261 pp. (1953).

 Enthalpy Re	eference Te	mperature	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ I·K ⁻¹ mol ⁻¹		Standard Staf k I-mol ⁻¹	Standard State Pressure = $p^* = 0.1 \text{ MPa}$ k1-mol ⁻¹	o* = 0.1 MPa
rÆ	೮	[C	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\circ}(T_{*})$	Δ _t H°	$\Delta_i G^{\bullet}$	log K,
0 8	0.	0.	INFINITE	-9.640	-353.988	-353.988	INFINITE
888	34.207	229.206 236.954	246.449 243.800	-0.703 -3.449	-355.543 -355.543 -355.977	-367.628 -370.600	96.015 77.433
298.15	35.838	243.213	243.213	ó	-356.477	-373.373	65 413
85	35.857	243.435	243.214	0.066	-356.499	-373.478	65.028
8	36.611	253.866	244631	3694	-359.761	-378.277	49.398
2 8	36.842	258 192 262.083	245.902 247.329	5531 7371	-360.328 -360.892	-380.558	39.988
8	37.276	268.857	250.369	11.093	-362.020	-387.046	33.695
88	37.594	279.628	255.452	18.583	-364.301	-391.12/	25 794
88	37 707 37.805	284.063	259.232	22.348	-365 457 -433 753	-398.819	23 147 20 829
82	37 891	291.648	264.459	29 909	-433.906	-395.257	18 769
200	38 046	297.991	269.143	37.503	-434.228	-388.203	15.598
24 20 20 20	38.117 38.185	300.813 303 445	271.305 273.361	41.311 45 126	-434.396 -434.569	-384 656 -381.098	14,352 13,271
0091	38.251	305.912	275.319	48.948	-434.747	-377.527	12.325
88	38.379	310.424	278.974	56.611	-435.128	-370.352	10.747
2000 2000 2000	38.441 38.502	312.501	280.684 282.325	60.452 64.299	-435,334 -435,554	-366.748 -363.132	10 083 9 484
2100	38.563	316.355	283.901	68 152	-435 789	-359.505	8 942
2300	38 683	319 868	286.878	75 877	-436.321	-352.216	7 999
2400 2500	38 742 38.801	321.516 323.098	288.287 289 648	79 748 83.625	-436.625 -436.958	-348.553	7.286
2600	38.860	324.621	290.964	87.508	-437.327	-341 187 -337.481	6.855
2800	38.977	327.505	293 473	95.292	-438.185	-333.760	6.226
3000	39 093 39 093	330 199	295.832	103 099	-438.b83 -439.239	-326.266 -326.266	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3100	39.151	331.481	296.962	107 011	-439.852	-322.490	5 434
3300	39.268	333 933	299.129	114 853	-441.242	-314.878	4.984
3400 3500	39.324 39.381	335 106 336,246	300 170 301 184	118 783	-442.052 -442.941	-311037	4 778 4 584
3600	39.439	337.357	302 174	126.659	-443 913	-303.278	4.400
3800	39.553	339.492	304.082	134.558	-446.096	-295.409	4 061
3900 4000	39.611 39.668	340.520 341.524	305.003 305.904	138.516	-447.312 -448.644	-291.430 -287.416	3.903 3.753
4100	39.725	342.504	306.785	146 450	-450.075 -451.608	-283.368	3.610
85	39.839	344,399	308.490	154.406	-453.246	-275.161	3343
\$ 8 8	39 953	346213	310.127	162.385	-455.932	-266.904	308
4600 4700	40.010	347.952	310.921	166.384	-457.709 -459.567	-262.684 -258.424	2.983 2.872
88	40.124	348.796	312 464	174.397	-461.503	-254 124	2.765
88	40.238	350.437	313.950	182.433	-465.598	-245 401	2.564
5100 5200	40.295	351,234	315.384	186.460 190 492	-467 748 -469.428	-240.975 -236.585	2.468 2.377
530 540 540 540 540 540 540 540 540 540 54	40.408 40.465	352 786 353.542	316.082	194530 198 <i>5</i> 74	-471.629	-232.086 -227.589	2.287
2200	40.522	354.285	317.445	202.623	-475 702	-223 038	2.118
2500 2000 2000	40.579	355 016	318.109	206.678	-477 979	-218.423 -243.768	2.037
2800	40.692	356 442	319.406	214.805	-482.610	-209 072	1.883
888	40 806 806	357.138	320.040	222.955	-484.953 -487.308	-204.335	1.737

Cesium Fluoride (CSF)

PREVIOUS: June 1968 (1 atm)

Cs,H,O,(cr)

CURRENT: June 1971

PREVIOUS.

Cesium Hydroxide (CsOH)	
M _r =149.91274 Cesit	
CRYSTAL(α-β-γ)	
Cesium Hydroxide (CsOH)	

 $\Delta_i H^{\circ}(298.15 \text{ K}) = -416.73 \pm 0.8 \text{ kJ·m}$ $\Delta_e H^{\circ}(0 \text{ K}) = \text{Unkn}$ $S^{\circ}(298.15 \text{ K}) = [98.7 \pm 4.2] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $(\alpha - \beta) = 410 \pm 1 \text{ K}$ $f_{m2}(B-\gamma) = 493 \pm 1 \text{ K}$

 $\Delta_{ur1}H^{\circ} = 1.30 \pm 0.13 \text{ kJ} \cdot \text{mc}$ $\Delta_{ur2}H^{\circ} = 6.07 \pm 0.63 \text{ kJ} \cdot \text{mc}$ $\Delta_{tur}H^{\circ} = 4.56 \pm 0.42 \text{ kJ} \cdot \text{mc}$

The enthalpy of formation of CSOH(cr) is obtained from the enthalpy of hydrolysis of metallic cesium, the enthalpy of solution of Enthalpy of Formation Fiz. = 588 ± 1 K

(n = 3000) kcal·mol⁻¹, respectively. From these values $\Delta_t H^0$ (CsOH· \propto H₂0, 298.15 K) = -114.82 \pm 0.20 and -116.661 \pm 0.020 kcal·m are calculated based on $\Delta_t H^0$ (H₂O, 1, 298.15 K) = -68.315 kcal·mol^{-1.6} Beketov¹ and de Forcrand² determined the enthalpy of solution of crystalline CsOH in water. Parker¹ analyzed these data and sele Discordant values for the enthalpy of hydrolysis of metallic cesium have been reported by Vorob'yev et al. and Gunn. For the reac $Cs(cr) + (n+1) H_2O(1) = CsOH \cdot n H_2O + 0.5 H_2(g)$, they reported enthalpies of hydrolysis of -46.5 ± 0.20 (n = 1030) and $-48.346 \pm$ $\Delta_{m}H^{\circ}(CsOH, cr) = -17.1 \pm 0.2 \text{ kcal-mol}^{-1}$. This value is adopted here.

In both investigations the possibility of hydroxide and oxide contamination of the metal samples was reduced by repeated distillation the metal under vacuum, and spectroscopic analysis of each sample indicated low concentrations of the lighter alkali metals. Vorob yev et determined the amount of reaction by both weighing the metal sample and titrating the final hydroxide solution. Gunn⁴ determined the amx analysis of the cesium, and the flame- photometric analyses of the final hydroxide solutions. However, the presence of lighter alkali me of reaction by both weighing the sample and recovering the hydrogen formed in the hydrolysis. The systematically high hydrogen yi (0.05-0.16%) obtained by Gunn⁵ suggest the presence of lighter alkali metals in higher concentrations than indicated by the spectrosc at these concentrations should not introduce any serious error in the enthalpy of hydrolysis, since their heats are quite similar to ces The major difference between the two measurements lies in the instrumentation used to investigate the reaction. Vorob'yev et al.

et al. 4 are questionable. On the other hand, Gunn [5] carried out the hydrolysis reaction in a closed bomb calorimeter, agitation being effect by rocking the assembly through an angle of approximately 150°. Where comparisons are possible, all indications are that the results quite reliable. Therefore, we adopt $\Delta_t H^9$ (CsOH. \approx H₂O, 298.15 K) = -116.661 ± 0.020 kcal·mol⁻¹ from the work of Gunn. Combining a bernetically sealed static calorimeter which was not stirred. In the absence of proper agitation, temperature gradients and chem result with the enthalpy of solution of CsOH(cr) given above, we derive $\Delta_i H^{*}(CsOH, cr, 298.15\,K) = -99.6 \pm 0.2 \, kcal·m$ inhomogeneties are likely to arise in the final state. Without any indication of the performance of this calorimeter, the results of Vorob $(-416.73 \pm 0.8 \text{ kJ} \cdot \text{mol}^{-1})$

Heat Capacity and Entropy

Heat capacities for CsOH(cr) over the entire temperature range 298-1000 K are estimated by comparison with similar data for the o alkali metal hydroxides and halides. Likewise, S'(298.15 K) is estimated to be 23.6 cal·K⁻¹·mol⁻¹ (98.7 J·K⁻¹·mol⁻¹) for CsOH(cr comparison with similar data for the alkali metal halides and lighter hydroxides.9

Transition and Fusion Data

The temperatures and enthalpies of the polymorphic transitions and melting of CsOH(cr) are from the work of Reshetnikov and Ba skaya. 10 These data were determined thermographically with $\Delta_{ta}H$ = 1.575 kcal-mol⁻¹ for NaOH(cr) as a standard.

 $\Delta_{ab}H^{*}(298.15 \,\mathrm{K})$ for the monomer and dimer are calculated from the adopted enthalpies of formation of the crystal and the respec

gaseous species.

References

Sublimation Data

^IN. Beketov, Bull. Acad. Imp. Sci. (St. Petersbourg), 34, 171 (1892).

¹R. de Forcrand, Compt. Rend., 142, 1252 (1906).
¹V. B. Parker, NSRDS-NBS 2, 66 pp. (1965).
¹V. B. Parker, NSRDS-NBS 2, 66 pp. (1965).
²A. F. Vorob yev. N. A. Bragin, and S. M. Skuratov, Vestn. Mosk. Univ., Ser. II, Khim., 20, 3 (1965).
³S. R. Gum, J. Phys. Chem., 71, 3186 (1967).
⁴U. S. Nat. Bur. Stand. Tech. Note 270-2, 264 pp. (1968).
⁵S. R. Gum, J. Phys. Chem., 69, 2902 (1965).
⁵S. R. Gum and L. G. Green, J. Amer. Chem. Soc., 80, 4782 (1958).
⁵JANAF Thermochemical Tables: refer to all alkali metal pddoxidos and halides crystal tables.
⁵JANAF Thermochemical Tables: refer to all alkali metal pddoxidos and halides crystal tables.

¹⁰N. A. Reshetnikov and E. V. Baranskaya, Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol., 10, 496 (1967).

nown 1-1-10	Enthalpy Re	eference To	emperature	Enthalpy Reference Temperature = T, = 298.15 K		Standard Sta	Standard State Pressure = p = 0.1 MPa	- 0.1 MPa
lou I	τÆ	เ	S - [G	-[G*-H*(T,)]T	H*-H*(T,)	P.H.∇	Φ.	log K,
lou lol-i	0 00 00 0 00 00							
	298.15	67.872	98.742	98.742	Ö	-416.726	-370,716	64.948
f the	88	67.990	99.163 119.617	98.744 101.489	0.126 7.251	-416.714	-370.431	64.498 46.287
ected	410,000	75.228	121.461	101.954	7.998 9.295	ALPHA TR		- 1
ction	493,000	82.174	139.114	107.010	15.827	BETA	> GAMMA TRANSITION	
0.20	88		152,600	107.640	22.480	-408.701	-339.169	35.433
Iou	288,000	83.680	166.166	115.411	29.844	GAMMA	IA <> LIQUID	QI
Jo Co	88	83.680	167.856	116.443	30.848	-406.484	-325.471	28.335
tal.	888	83.680	191.929	132.450	41.584	-402.179	-299.121	19531
nount	88	83.680	210.602	146.282	64.320	-465.187	-270.138	14 111
relas								
ropic retals								
sium.								
nsed								
mical								
o'yev								
ts are								
g this								
-lou								
other								
t) by								
वाया-								
ctive								

hydroxide in water, and appropriate auxiliary data.

Cs,H,O,(I)

Cesium Hydroxide (CsOH)

Cesium Hydroxide (CsOH)

LIQUID

 $\Delta_t H^{\circ}(298.15 \text{ K}) = [-405.970] \text{ kJ·mol}^{-1}$ $\Delta_{tur} H^{\circ} = 4.56 \pm 0.4 \text{ kJ·mol}^{-1}$

 $\Delta_1 H^0(C_2OH, 1, 298.15 \text{ K})$ is calculated from that of the crystal by adding $\Delta_1 \omega_1 H^0$ and the difference enthalpy, $H^0(SB8 \text{ K}) - H^0(298.15 \text{ K})$. $S^{\circ}(298.15 \text{ K}) = [118.513] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{ta} = 588 \pm 1 \text{ K}$ Heat Capacity and Entropy between the crystal and liquid.

Enthalpy of Formation

Fusion Data

Refer to the crystal table for details

Vaporization Data

 $\frac{1}{2}$ is calculated as the temperature at which $\Delta_i G^{\alpha}$ for the vaporization process is zero. The difference in the enthalpy of formation of CsOH(t) and CsOH(g) at the boiling point is the heat of vaporization.

JANAF Thermochemical Tables: refer to all alkali metal hydroxide Inquid tables

Cs,H,O,(cr,I)

(CSOH)
Hydroxide
Cesium
$M_r = 149.91274$

Ω
5
g
7
7
ф
ڣ
크
È
Š
Œ
J

_
a
=
•
_
>
1
ш.
7-
2.
•
_
_ı
-
٠.
1
()
~
_
~
<u></u>
ក
Ö
ပ်
ວັ

Cesium

0.1 MPa	log K.		64.948	64.498 46.287	ŀ		35 433		28.343	19.633	14.264	12.080	8 748	7.451	5.361	4.509	3.085	
Standard State Pressure = p° = 0.1 MPa k1·mol ⁻¹	A.G. log			-370.431	ALPHA <> BETA_TRANSITION	<> GAMMA —		GAMMA <> LIQUID TRANSITION			-288.636 -273.084			- 199.696 - 181.874		-146.744	-123.411 -112.217 -05.153	TATION TO
Standard State F	Δ,Η*			-416.714 -	ALPHA TRA	BETA <-	-408.701	GAMM TRA	-401.949		-396.187 -461.488			-450 499 -447.847			-437,633	
	$H^{\bullet}-H^{\bullet}(T_{\epsilon})$			0.126 7.251	7.998 9.295	15.827	22.480	29.844 34.404	35,383					100 654			141.448	
Enthalpy Reference Temperature = T, = 298.15 K	-[G*-H*(T,)]/T		98.742	98.744 101.489	101.954 101 954	107.010 107.010	107.640	115.411	116.598	134.415	142.140	155.771	167.503	172.804	182.487	186.934	195.169	
emperature =	S° -[G		98.742	99.163 119.617	121.461 124.625	139.114	152.600	166.166 173.922	175.570	199.041	217.247	225.023	238.653	244.699 250.328	255.594	260.540	269 615	
ference T	ដ		67.872	67.990 74.392	75.228	82.174 83.680	83.680	83.680 81.588	81.588	81.588	81.588	81.588	81.588	81.588 81.588	81.588	81,588	81.588	
Enthalpy Re	Ϋ́	°88°	298.15	88	410,000	493.000 493.000	80	588.000 588.000	88	28	88	85	00:1	8 <u>8</u> 8	0091	92	200	

Refer to the individual tables for details.

0 to 410 K crystal, alpha 410 to 493 K crystal, beta 493 to 588 K crystal, gamma above 588 K liquid

CURRENT June 1971 (1 bar)

PREVIOUS: June 1971 (1 atm)

$\Delta_H^{\circ}(298.15 \text{ K}) = -259.4 \pm 12.6 \text{ kJ} \cdot \text{m}$	$K) = 254.78 \pm 0.42 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$
$\Delta_{p}H^{0}(0 \text{ K}) = -254.9 \pm 12.6 \text{ kJ} \cdot \pi$	

IDEAL GAS

Cesium Hydroxide (CsOH)

5°(298.15

4.78 ± 0.42 J·K ⁻¹ ·mol ⁻¹ Vibrational Frequencies and Degeneracies U. cm ⁻¹ 335.6 (1) Ground State Quantum Weight: 1 Point Group: C _s Bond Distances: C _s -0 = 2.391 ± 0.002 Å: O-H = [0.96 ± 0.01] Å Bond Angle: C _s -O-H = 180° Rotational Constant: B ₀ = 0.184795 cm ⁻¹

Enthalpy of Formation

gen-nitrogen flame and eliminated the ionization problem by working at a lower temperature (1570 K) 3rd law analysis of their equilib data gives $\Delta H^*(298.15 \text{ K}) = 28.9 \text{ kcal·mol}^{-1} \text{ which results in } \Delta H^*(CsOH, g. 298.15 \text{ K}) = -62.7 \pm 2.0 \text{ kcal·mol}^{-1} \text{ corresponding to } D$ OH) = 89.6 kcal·mol⁻¹. Smith and Sugden 4 had earlier reported a $D_0^2 = 91 \pm 1$ kcal·mol⁻¹ from flame studies. Electron impact studies³⁶ spectroscopy in a hydrogen-oxygen-nitrogen flame. These workers pointed out that interference from ionization of the metal had introc corresponding bond dissociation energy of 91 kcal-mol-1. Cotion and Jenkins3 investigated the same equilibrium in a fuel-rich hydrogen-Jensen and Padley' determined an equilibrium constant for the reaction Cs(g) + H₂O(g) = CsOH(g) + H(g) at 2475 K by atomic absor also led to values for the bond dissociation energy of CsOH(g). Thus method resulted in values of 82 ± 3^3 and 86 ± 3 kcal-mol⁻¹ s uncertainty in their equilibrium data. Using all JANAF functions, 3rd law analysis of the equilibrium constant $\Delta_{\mu}^{*}(298.15 \text{ K}) = 27.4 \text{ kcal·mol}^{-1}$. This leads to an enthalpy of formation, $\Delta_{\mu}^{*}(CSOH, g_{s}, 298.15 \text{ K}) = -64.2 \pm 3.0 \text{ kcal·mol}^{-1}$,

D&CsOH) = 89.0 ± 3.0 kcal-mol⁻¹ which results in the difference D&Cs-OH)-D&K-OH) = 3.6 kcal-mol⁻¹. This adopted bond dissoci dissociation energy established from their data, i.e. NaOH < KOH < RbOH < CsOH < LiOH, is that predicted by comparison with si the fluorides to $0.4 \,\mathrm{kca}_1 \cdot \mathrm{mol}^{-1}$ for the chlorides more than the difference in D_0^0 for the cesium and potassium compounds. Assuming this trend in D_0^0 is prevalent in the hydroxides as well, then $D_0^0(Cs-OH)-D$ (K-OH) must be less than 3.9 kcal-mol⁻¹(see NaOH(g) table). We. Cotton and Jenkins3 also reported bond dissociation energies for LiOH(g), KOH(g), and NaOH(g) which are in good agreement data on the stabilities of the alkalt metal halides. However, trends within the bond dissociation energies for the halides suggest that the D₀ = 89.6 kcal-mol⁻¹ for CsOH may be slightly high. The difference in D° for potassium and sodium compounds is from 0.1 kcal-mol JANAF enthalpy of formation data? for these hydroxides. Furthermore, the position of the hydroxides in the order of increasing energy corresponds to $\Delta_i H^{\circ}(CsOH, g, 298 15 \text{ K}) = -62.0 \pm 3.0 \text{ kcal-mol}^{-1}$

Heat Capacity and Entropy

The microwave spectra of gaseous CsOH have been studied in a high temperature spectrometer by Kuczkowski et al. 9 and Lide et The spectroscopic data were more consistent with patterns expected from a linear molecule, although a "quasilinear" structure could n completely eliminated. Acquista et al. 11 observed the infrared spectra of CsOH and CsOD in an argon matrix at Inquid hydrogen temperal The isotope shift of the bending mode, v_2 , was quite large (80 cm⁻¹), and the ratio of v_2 for CsOH and CsOD was in excellent agreement the value calculated for a linear molecule and a harmonic oscillator. The infrared results when used in combination with the microwave indicate a linear equilibrium configuration for CsOH. We adopt this configuration along with the bond distances and angles determine Lide et al. 10 from their microwave data.

The Cs-O stretching mode, v₁, and the bending frequency, v₂, are from the matrix isolation studies of Acquista et al. ¹¹ The OH stretc frequency, v₂, is an estimate from the recent work of Jensen. ¹²

References

¹D. E. Jensen and P. J. Padley, Trans. Faraday Soc., 62, 2132 (1966).

³IANAF Thermochemical Tables: Cs(g), 6-30-68, H₂O(g), 3-31-61, H(g), 9-30-65.
²D. H. Cotton and D. R. Jenkins, Trans. Faraday Soc., 65, 1537 (1969).
⁴H. Smith and T. M. Sugden, Proc. Roy. Soc. A, 219, 204 (1953).

⁵A. M. Emel'yanov, A. V. Gusarov, L. N. Gorokhov, and N. A Sadovnikova, Teor. Eksp. Khim., 3, 226 (1967). ^fL. N. Gorokhov, A. V. Gusarov, and I. G. Panchenkov, Russ. J. Phys. Chem. (English Transl.), 44, 150 (1970).

⁴Ref. 2; See recent review of the fluorides by J. Chao, Thermochimica Acta, 1, 71 (1970).
⁹R. L. Kuczkowski, D. R. Lide, Jr., and L. C. Krisher, J. Chem. Phys., 44, 3131 (1966).
¹⁰D. R. Lide, Jr., and R. L. Kuczkowski, J. Chem. Phys., 46, 4768 (1967). Ref. 2, LiOH(g), 3-31-66; NaOH(g) and KOH(g), 12-31-70.

¹N. Acquista, S. Abramowitz, and D. R. Lide, J. Chem. Phys., 49, 780 (1968).
²D. E. Jensen, J. Phys. Chem., 74, 207 (1970).

mol-1	Enthalpy R	eference Te	imperature I-K-1mol-1	Enthalpy Reference Temperature = T, = 298.15 K		Standard State Pressure = $p^* = 0.1 \text{ MPa}$ k1·mol ⁻¹	e Pressure = 1	, = 0.1 MPa	
	7/K	్ట	S -[G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{i})$	Δ,Η*	Δ,G•	log Kr	
	200 ° 2	0. 34.721 45.601 48.173	0. 207.752 235.675 246.150	INFINITE 295.765 259.221 255.588	-11.834 -8.801 -4.709 -2.360	-254.950 -257.018 -258.408 -258.906	-254.950 -258.596 -259.563 -259.793	INFINITE 135.077 67.791 54.281	
	298.15	49.723		254.778	0	-259.408	-259.920	45.537	
	35 35 36	49.771 50.813	255.085 262.841	254.779 255.389	0.092 2.608	-259.430 -262.071	-259.923 -259.625	45.257 38.747	
	\$ \$ \$	51.525 52.035 52.420	269.676 275.775 272.185	256.756 258.536 260.540	5.168 7.758 10.369	-262.572 -263.041 -263.493	-259.241 -258.797 -258.300	33.853 30.040 26.984	
	88	52.991	290.889	264.820	15.641	-264.372	-257.179	22.389	
	388	53.915	306.261	273.345	26.333	-266.112	-254.519	16.618	
	88	54.877	318.394	281.183	37.211	-334.977	-247.721	12.940	
	1200	55.371 55.857	323.648 328.487	284.809 288.249	42.723	-334.817 -334.648	-239.003	11.349	
rption	1 400 200 200 200	56.325 56.769 57.184	332.976	291.519 294.632 297.600	53.894 59.549 65.247	-334,470 -334,285 -334,094	-221.611 -212.936 -204.775	8.904 7.945 7.114	
gives	009	57.568	344,801	300.435	70.985	-333.902	-195.627	6.387	
and a	2 2 2 2 3 3 3 3	57 922 58.246	348,302 351,622	303.149	76 759 82 568	-333.711 -333.527	-186.991 -178.366	5.746 5.176	
brium	2000 2000 2000	58.543 58 813	354.779 357.789	308.248 310.651	88.408 94.276	-333.355	-169.750 -161.143	4.667	
ည် -	2100	59.060	360.664	312.964	100.170	-333.066	-152.544	3.794	
have	888	29.783 29.483	363 417	315 196	112.026	-332.961	-143.950	3.074	
t with	2400 2500	59.677 59.848	368.593 371.033	319 433 321 448	117.985	-332.864 -332.883	-126.773 -118.186	2.759 2.469	
bond	2600 2700	60.005	373.383	323.401 325.294	129.954	-332.958 -333.094	-109.597 -101.003	2.202 1.954	
value	2800 2900	60.279 60.400	377.840 379.958	327.132 328.917	141 983	-333.298	-92.404 -83.796	1 724	
to.	3000	60.511	382.007	330.653	154 063	-333 938	-75.177	1309	
adopt	3200	60.708 60.708 788	383.993 385.919 387.788	332,342 333,986 335,588	160 119 166 185 172 260	-334.388 -334.934 -335.542	-66.544 -57.896 -49.232	0.945 0.779	
marion	3400	60 876 60 951	389.604	337.150	178.344	-336.282	-40.545 -31.835	0.623	
	3600	61.021	393 088	340.162	190.534	-338.100 -339.175	-23.099	0.335	
tal 10	3800	61.146	396.391	343 035	202.751	-340.373 -341.685	3.286	0076	
atures.	4100	61.23	401.043	347.112	221.120	-343.145	21.051	-0.159	
it with	4300	61.350	403.965	348 413	227.252	-346.468	29.994	-0.373	
e data	4400	61 434	405.377	350.938	239.531	-350.045	47.975 56.979	-0.570	
, in	4600	61.508	408.110	353.365	251.825	-353.680	66.081	-0.750	
Silling	680	61.573	410.729	355 701	264.134	-358.225	84 428	-0.919	
	2000	61.632	413.244	357.953	276.454	-363.196	102.973	-1.076	
	\$100 \$200	61 659 61.684	414.464	359.049 360.126	282.619 288.786	-365.831 -368 027	112,322	-1.150 -1.222	
	2400 2800 2800 2800	61.708 61.731 61.753	416.837 417 991 419 124	361.185 362.226 363.251	294 956 301.128 307.302	-370 775 -373.323 -376.033	131,089 140,541 150 058	-1.292 -1.359 -1.425	
	\$600 \$700	61.773	420237	364.258	313.478	-378.946	159 650 169 294	-1.489	
	2800	61.811	423.462	366.226	325.836	-384.939 -388.007	178 991	-1.612 -1.671	
	3	01.040	474701	508.134	707.800	-391.110	740061	07/ 1_	

Cs,H,O;(g)

M, = 149.91219 Cesium Hydroxide, Ion (CsOH*)

τ.
(CsOH
ide, lor
Hydrox
Cesium

£	
CsO	
on (
-	

IDEAL GAS	
Ion (CsOH")	

Δ _t H°(0 K) = Δ _t H°(298.15
-
$S^{\circ}(298.15 \text{ K}) = [268.7 \pm 8.4] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

lom-1->		A.A.
	Electronic Levels and Quantum Weights State 6. cm ⁻¹ 8,	
	$^{2}\Pi$ 0 4 $^{2}\Sigma$ * [32000] 2	1
	Vibrational Frequencies and Degeneracies	
	[300](1) [275](2) [3600](1)	
Point Group: [Ca.] Bond Distances: Cs Bond Angle: Cs-C Rotational Constan	Point Group: [C] Bond Distances: Cs-O = [2.40] Å; O-H = [1.03] Å Bond Angle: Cs-O-H = [180] Å Rotational Constant: B_0 = [0.182583] cm ⁻¹	6

Enthalpy of Formation

The appearance potential of CsOH* has been determined by Emel'yanov et al.¹ as 7.21 \pm 0.14 eV and by Gorokhov et al.² as 7.40 \pm 0.15 eV. These values correspond to $\Delta_t H^0(0 \, K) = 166.3 \pm 3.0$ kcal·mol⁻¹ and 170.7 \pm 5 kcal·mol⁻¹, respectively, for the proces e¯ + CsOH(g) \rightarrow CsOH*(g) + 2ē. Since there may be excess energy involved, we prefer the lower value. Combining this result with JANA auxiliary data,³ we derive $\Delta_t H^0(\text{CsOH}^*$, g, 0 K) = 105 \pm 10 kcal·mol⁻¹ (439.32 \pm 41.8 kJ·mol⁻¹).

Heat Capacity and Entropy

The correlation dagram of Walsh* for HAB molecules predicts that CsOH* (7 valence electrons) should be linear with the unpaired electron in a pi orbital. Therefore, we estimate the ground state of CsOH* to be III. CsOH* is isoelectronic with OH* and SH. A first excited state to that in CsOH by the loss of the bonding electron from the neutral species. The vibrational frequencies are estimated from those for CsOH with somewhat lower values due to the weaker bonding. The Cs-O and O-H bond distances are increased slightly over those for CsOH is estimated at 32000 cm⁻¹ to be ²∑ by analogy with these isoelectronic molecules. The bonding in CsOH* is assumed to be weakened relativ

¹A. M. Emel'yanov, A. V. Gusarov, L. N. Gorokhov, and N. A. Sadovnikova, Teor. Eksp. Khim. 3, 226 (1967).
²L. N. Gorokhov, A. V. Gusarov, and I. G. Panchenkov, Russ. J. Phys. Chem. 44, 150 (1970).
³IANAF Thermochemical Tables: CsOH(g), 6–30–71, OH(g), 12–31–70; SH(g), 6–30–67. ⁴A. D. Walsh, J. Chem. Soc. 1953, 2288.

= 439.32 ± 41.8 kJ·mol ⁻¹	Enthalpy 1	Reference T	emperature	Enthalpy Reference Temperature = T, = 29&15 K		Standard Stat	Standard State Pressure = p = 0.1 MPa	0.1 MPa
S K) = [441.379] kJ·mol ⁻¹	τÆ	រូ	ا۔ اسا۔ ۲۰ اص	nol-' -[G*-H*(T.)]/T	H*-H*T.)	LJ·mol ⁻¹	30	, S
	0	. ರ	o	INFINITE	-12.154	439.320	ì	
	888	36.400 46.942 171	220.076 249.166	310.754 273.215 260.510	-9.068 -4.810			
	298.15	50.492		268.686	0.	441.379	430.466	-75.416
	88	50.532 51.403	268.998 276.858	268.686 269.305	0.093 2.643	441.398	430.398	-74.939
	\$ \$;	51.993 52.414	283.762 289.912	270.690 272.490	5.229 7.840	440.394	427.255 425.577	-55.794
	8 8	52.733	295.451	274.514	10.469	441.590	423.833	-44.278
	888	53.628	313.345	283.188	15.767 21.110	442.816	420.167	-36.579 -31.064
	888	2.43 2.43 2.43 2.43	326.925	291.458	31.920	445.268 446.489	408.046	-26.917 -23.682
	8	55.452	337.953	298.939	42.915	382.829	409.983	-21.281
	881	\$6.392	342.798	302.395 305.678	48.484 54.100	385.084 387.348	412.352	-17.949
	8 8 8 8	56.827 57.236	351.488 355.423	308.802 311.780	59.761 65.465	389.618 391.892	416.538	-15.541 -14.569
	921	57.616 57.966	359.130 362.633	314.625	71.207 76.987	394.169 396.442	420.073	-13.714
s 7.40	2002	28.287 28.287 28.287 28.287	365.956	319.956 322.461	82.800 88.643	398.709 400.964	424.329	-12.276 -11.666
cuvely, for the process ing this result with JANAF	2100	59.092	375.004	327.189	100.412	405.417	426.561	-10.610
	2300 2400	59.518 59.703	380.399	331.584	112.274	409.755	428.373	-9.729
	2500	59.873	385.377	335.691	124215	413.926	429.814	-8.980
with the unpaired electron	2200	60.027 60.169	387.728 389.996	337.648 339.545	130.210	415.932	430.930	-8.647
1 3 H. A first excited state ed to be weakened relative	580 580 580 580	60,300	392.187 394.305	341.386 343.174	142.243	419.754	431.379	-8.047
tated from those for CsOH	300	60.529	396.355	344.913	154,327	423.274	432.084	-7.523
htly over those for CsOH.	320	27.00	400,268	348.252	166.453	426.439	432.351	-7.285
	3400	60.892	403.955	351.421	178.615	429.251	432.732	-6.650
•	3600	61.036	407.439	354.437	190.808	431.593	433.000	-6.283
	380 380 380	61.101 61.161	409.113	355.892	20102	432.598	433.024	-6.113
	3900 4000	61.218	412.332	358.705 360.065	209.147	434.249	432.998	-5.799
	4200 4200	61.322	415.397	361,396	221.401	435.356	432,904	-5.515
	65 60 60 60 60	61.414 61.456	418.319	363.976	233.675	435.922	432.769	-5257
	500	61.496	421.113	366.454	245.966	436.840	432.513	-5.020
	84 86 8	61.572	423.789	368.837	258.273	436.818	432.322	-4.910
	2009 2000 2000	61.641	426.356	377.133 372.250	270.594	436.084 435.630	432.148 437.077	4.607
	2100	61.706	428.824	373.347	282.929	435.078	432.006	-4.425
	388	61.767	431.199	375.486	295.276	434300	431.874	-438 -426
	2808	61.826	433.488	377.554	307.636	433.839	431.738	-4.176 4.100
	2800 2700 000	61.854 61.882	434.602	378.563 379.555	313.820 320.007	432.388	431.661	-4.026
	8888	61.910 61.937 61.965	436.773 437.832 438.873	380.533 381.495 382.442	326.196 332.389 338.584	430.570 429.591 428.572	431.667 431.693 431.737	-3.888 -3.822 -3.759
	PREVIOUS: December 1971 (1 atm)	December 1	971 (1 atm)			CURR	CURRENT. December 1971 (1 bar)	r 1971 (1 bar)
						į		

IDEAL GAS

Cesium Oxide (CsO)

Δ _t H°(0 K	Δ _t H°(298.15 K	

ights 8,	[4]	σ = 1 r. = [2.40] Å
Slectronic Levels and Quantum Weights state 6, cm ⁻¹ 8,	0	$\omega_c x_c = [1.0] \text{ cm}^{-1}$ $\alpha_c = [0.001] \text{ cm}^{-1}$
Electronic L State	[11]	$\omega_c = [280] \text{ cm}^{-1}$ $B_c = [0.198] \text{ cm}^{-1}$

Enthalpy of Formation

 $Cs^{\prime}(g) + O^{-}(g) = CsO(g)$ which leads to $\Delta_f H^{\circ}(CsO_{\circ}, g, 298.15 \text{ K}) = 12.0 \text{ kcal·mol}^{-1}$. The $\Delta_f H^{\circ}(298.15 \text{ K})$ values of the above spectes are tak Margrave¹ suggested that the $\Delta_t H^o$ value for MO(g) from the gaseous ions can be taken as the mean of the corresponding $\Delta_t H^o$ values the alkali fluoride and chloride with a maximum uncertainty of 10 kcal·mol⁻¹. Adopting $\Delta_t H^o$ (298.15 K) = -131.1 and -109.6 kcal·mol The enthatyy of formation is estimated from three calculated values. The methods of estimation are described as follows. Brewer for the reaction Cs*(g) + F-(g) = CsF(g) and Cs*(g) + Cl-(g) = CsCl(g), respectively, we obtain A,H*(298.15 K) = -120.4 kral-mol-1 from the respective JANAF Thermochemical Tables.

Based on the assumption that $D_0^{*}(S_2-O) = 1/2$ $[D_0^{*}(S_2) + D_0^{*}(O_2)]$, we derive $D_0^{*}(S_2-O, g, 298.15 \text{ K}) = 65.2 \text{ kcal·mol}^{-1} a \Delta_t H^{*}(298.15 \text{ K}) = 12.7 \text{ kcal·mol}^{-1}$ for $G_2O(g)$.

The enthalpy of formation for CsO(g) is tentatively selected as 15 ± 10 kcal·mol⁻¹.

Heat Capacity and Entropy

The ground state configuration is assumed to be the same as that of the isoelectronic molecule OH(g). ω_ε is estimated from those of LiO (CsF(g), and CsCl(g). The bond distance is taken from that in CsOH(g) reported by Lide and Kuczkowski. ² ω_{εε} is estimated by comparis with those of the other alkali oxides. The values of B_e and α_e are calculated from r_e , ω_e and $\omega_e x_e$ by the method suggested by Herzbe

Brewer and J. L. Margrave, J. Phys. Chem. 59, 421 (1955).
 B. Lide, Jr. and R. L. Kuczkowski, J. Chem. Phys. 46, 4768 (1967).
 Herzberg, "Spectra of Diatomic Molecules," D. Van Nostrand Co., Inc., New York, (1950).

(K) = [64.9 ± 41.8] kJ·mol ⁻¹	Enthalpy R	eferrence To	emperature	Enthalpy Reference Temperature = T, = 298.15	×	Standard State	Standard State Pressure = p° = 0.1 MPa	0.1 MPa
10) = (0.15 = 41.0) M. III0I	TK	ູ່)]- &	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_i)$	Α.Π. Δ.Η.	δ,δ	log K,
	° 00 0	0. 31.670 35.247	0. 217.938 241.201	287,000 258,847	-9.879 -6.906 -3.529	64.939 64.311 63.552	64.939 56.678 49.351	- 29.606 - 12.889
	250 250 24	36.016		256.140	-1.746	63.187	45.843	-9.578
	300	36.495	255.768	255.543	0.067	62.741	42.414	-7.385
	8 8	36.816 37.044	261.419 266.351	255.988 256.982	3.748	60.141 59.656	39.402 36.473	-5.880
	2 8	37.216 37.351	270.724 274.653	258.270 259.715	5.604 7.469	59.183 58.715	33.604 30.786	-3 901 -3.216
	96	37.555	281.482	262.791	11.214	57.775	25.289	-2.202
noed as follows. Brewer and present and present the for	88	37.835	292.326	268.882	18.755	55.830	14.751	6.963
131.1 and -109.6 kcal·mol ⁻¹	88	37.945 38.046	296.789 300.793	271.740 274.448	25.54 26.344	54 <i>8</i> 22 -13.336	9.676 8.414	-0.440
i K) = -120.4 kcal·mol ⁻¹ for	001	38.139	304.423	277.011	30.153	-13.360	10.590	-0.503
of the above species are taken	388	38.313	310.809	281.733	37.799	-13.439	14 951	0.00
15 K) = 65.2 kcal·mol-1 and	1200	38.478	316.303	285.984	45.478	-13.491	19.327	-0.673
10 kcal·mol ⁻¹ and Δ _l H°(CsO,	<u>88</u>	38.558	318.789	287.958 289.841	49.330 53.190	-13.618 -13.696	23.719	-0.703 -0.729
	888	38.716 38.794	325.435	291.641 293.365 295.019	57.057 60.933 64.816	-13.786 -13.891 -14.015	28.131 30.346	-0.752 -0.773 -0.793
	330	38.948	329.325	296.607	68.707	-14.162	32.568	0810
timated from those of LiO(e)	230	39.100	332.875	299.609	76.512	-14545	37.035	-0.841
x, is estimated by comparison	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	39.176 39.252	334.541 336.142	301.030 302.403	80.426 84.347	-14.791	39.283 41.541	-0.855
thod suggested by Herzberg.3	2600	39.328	337.683	303.730	88.276	-15.419	43.813	0.880
	2800	39.478	340.603	306.261	96.157 96.157	-15.514	48.400	-0.903
	3000 3000	39.554 39.629	341.989 343.331	307.469 308.642	100.108	-16.796 -17.395	50.718 53.056	-0.914 -0.924
	3100	39.704	344.632	309.782	108.034	-18.847	55.416	-0.934
	330	39.854	347.119	311.971	115.990	19961-	60.203	-0.953
	380	40.003	349.468	314.047	123.976	-21.648	65.100	-0.972
	3600	40.078	350.596	315.046	127.980	-22.797	67.595	1860-
	3808	40.227	352.767	316.975	136.010	-25.402	72.684	-0.999
	\$ \$	40.376	354834	318.817	144.070	-28.461	75.287	-1.008
	4100	40.451	355.832	319.707	148.112	-30.181	80.601	-1.027
	65	40.600	357.762	321.433	156.217	-33.992	86.095	-1.046
	\$\$ \$8	40.749	359.612	323.089	164.352	-37.403	91.671	-1.064
	950	40.823	360.508	323.893	168.430	-39.572	94.562	-1074
	4 4	40.972	362.249	325.455	176.610	-44210	100.493	-1.094
	\$ \$ 8	41.047	363.094 363.924	326.214 326.960	180.711	-46 <i>6</i> 72 -49 <i>2</i> 25	103.533	1.104 -1.114
	2008	41.195	364.739	327.693	188.935	-51.864	109.767	-1.124
	2300	41344	366.327	329.121	193.038	-56.779	116.121	-1.14
	\$50 \$50	41.418	367.100 367.861	329.817	201.327 205.473	-59.295 -61.961	119.366	-1.155 -1.165
	\$600 \$700	41.567 1.641	368.609 369.346	331.176	209.626	-64.820 -67.725	126.059 129 493	-1.176 -1.187
	2800 2800 2800	41.716	370.070 370.784	332.492 333.135	217.954	270.07- 273.655	132.979 136.515	-1.198 -1.209
	009	41.864	371.487	333.768	226.312	-76.668	140.103	-1.220
	PREVIOUS: December 1968 (1 atm)	December	1968 (1 atm)			CURR	ENT: Decemb	CURRENT: December 1968 (1 bar)

Cs₂(g)

CURRENT December 1983 (1 bar)

esium (Cs ₂)
M. = 265.8108 Ce
IDEAL GAS

Cesium (Cs₂)

	5°7798 15 K) = 284 675 + 0.084 1.K ⁻¹ .mal ⁻¹	111 = (A U) 754 501 (V) 31 860/21 A
--	---	--

	•	28	298.15	8
		٠٩٠	4.646	4.345
		10°.D, 10".B, r., A	1.2608	1
İ		10°.D	3.73	[8.5833]
		ېر. _{*0} 0	-8.2448	1
	n cm-1	10°.a	2.215	6.6503
	its for Cs, i	10 ² ·B	1.1743	1.2360
	ecopic Constants for Cs2 in cm-1	10' wez	-3.2912 ^b	ı
	Spectrosco	10 ⁵ -w _e y _e	-9.0404	ı
		10 ² -wet	8.191	4.202
		ω°	45.0194	29.664
		$T_{\mathbf{c}}$	0	15949*
		State	X'X	C,II

(a) The dissociation energy, D₀, for the C'II, state is 18228 cm⁻¹ (b) $-5.8173 \times 10^{-9} (v + 1/2)^4 - 4.5832 \times 10^{-12} (v + 1/2)^3$ for ' Σ_s^* (c) $+5.8751 \times 10^{-10} (v + 1/2)^3 - 3.0391 \times 10^{-12} (v + 1/2)^4 + 1.8161 \times 10^{-14} (v + 1/2)^5$ for ' Σ_s^* (d) $+9.2704 \times 10^{-13} (v + 1/2)^2 - 9.7917 \times 10^{-13} (v + 1/2)^3$ for ' Σ_s^*

Enthalpy of Formation

(e) As determined from B.

Using the adopted value of the ground state dissociation energy for $C_{S_1}(g)$, $D_0^0 = 43.389 \text{ M·mol}^{-1}$, and the recommended $\Delta_1 H^0(C_S, g, 0.0K) = 111.77 \text{ M·mol}^{-1}$. This value is in essential agreement with the NBS recommended value of 111.7 M·mol^{-1} . Correcting the adopted $\Delta_1 H^0(0.0K) = 11.029 \text{ M·mol}^{-1}$ for $C_{S_1}(g)$ and the NBS value of $H^0(298.15 \text{ K}) - H^0(0.0K) = 7.711 \text{ M·mol}^{-1}$ for $C_S(c)$ 6, we obtain $\Delta_1 H^0(C_S, g, 298.15 \text{ K}) = 107.38 \text{ M·mol}^{-1}$.

Heat Capacity and Entropy

at $T_e = 16720$ cm⁻¹⁴ These states have not been characterized satisfactorily to date. To include the excited states in the thermodynamic calculation in an approximate manner, we proceeded as with the Na₂(g) species as follows.² The C'II_a state was included using the spectroscopic data reported by Raab. To account for the ²II_a, B'II_a and ²C_a states, the rotational levels of the C'II_a state were weighted × 13 Note that the 35, state is weakly bound and was neglected. Due to the minimal number of vibrational and rotational levels used by to generate Dunham coefficients for the CII, state, we artificially truncated the G(v) expression after the wex term and the B(v) expression after the ca The heat capacity and entropy were calculated using a direct summation technique similar to the Lix(g) calculation using ground state data from Raab et al., as recommended by Stwalley. Spectroscopic data for the C'II, state of Cs₂(g) at $T_c = 15949$ cm⁻¹ come from the work of Raab et. al. The other low lying states of Cs₂(g) are the 3 II, state at $T_c = 7850$ cm⁻¹; the B¹II, state at 13044 cm⁻¹; and the 2 2 state term. For the same reason, we used Herzberg's method (see Li₂ table) to estimate D_e = 8.5833 × 10⁻⁹ cm⁻¹rather than use the value of 1. to account for the sixfold degeneracy of the 'II, state, the threefold degeneracy of each of the 'II, states and the singly degeneraci S2; state.

however, in a more realistic high temperature heat capacity. The rotational levels of the ground state were weighted in accordance with the nuclear spin of the atom (I = 7/2): even J weight = .5833, odd J weight = .4167. The adopted value of \$°(298.15 K) is larger than the NBS adopted value 6 by 0.74 J·K⁻¹·mol⁻¹ but is in exact agreement with that adopted by Gurvich, et al.* mates the 12, contribution to the thermodynamic functions. The contribution of the excited states to the free energy function is negligible at temperatures below 2000 K and only contribute ca. 0.25 J·K-1 mol-1 at 6000 K. This method of treating the excited states does result, As with the Na χ (g) calculation, the above method certainly underestimates the ${}^3\Pi_a$ and ${}^3\Pi_a$ contributions but at the same time overesti-

References

¹M. Raab, H. Werckenmeier, and W. Demtroder, Chem. Phys. Lett. 88, 377 (1982).
 ²W. C. Stwalley, Director. Iowa Laser Facility and Professor of Chemistry and Physics, University of Iowa, personal communication, (1982).
 ³R. P. Benedict, D. L. Drummond and L. A. Schlie, J. Chem. Phys. 66, 4600 (1977).
 ⁴M. Raab, G. Honing, W. Demtroder, and C. R. Vidal, J. Chem. Phys. 76, 4370 (1982).
 ⁵K. P. Huber and G. Herzberg, "Constants of Diatomic Molecules," Van Nostrand Reinhold Co., New York, (1981).
 ⁶D. Wagman, et al., J. Phys. Chem. Ref. Data 11, Supp. 2 (1982).

JANAF Thermochemical Tables: Li₂(g), 12-31-82; Na₂(g), 12-31-82.

¹L. V. Gurvich, et al., Thermodynamic Properties of Individual Substances, Vol. IV, 3rd ed., Nauka, Moscow, (1982)

Standard State Pressure = $p^* = 0.1$ MPa -3836 -3.873 -3909 -3946 -3.982 -51.008 -22.171 -12.719 -8.277 -5.678 -3.987 -2.808 -1.946 -1.294 -1.175 -1.407 -1.504 -1.775 -1.925 -2.058 -2.285 -2.285 -2.475 -2.475 -2638 -2712 -2712 -2846 -2846 -2968 -3027 -3027 -3178 -3178 -3136 -3407 -3.449 -3.531 -3.571 -3.611 -3.611 -3.64 -3.764 -3.764 -4.051 -4.087 -4.121 -4.155 -12,835 log Kr 111.770 97.651 73.263 73.263 73.263 73.653 74.553 74.553 74.550 75.5000 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.5000 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.5000 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.5000 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.5000 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.5000 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.5000 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.5000 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.5000 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.5000 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.5000 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.5000 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.5000 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.5000 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.5000 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.5000 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.5000 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.500 75.50 29.631 36.859 44.177 51.587 59.091 66.690 74.381 82.165 90.040 98.006 106 061 114.206 122.438 130.759 139.168 147.665 156.251 173.693 182.550 191.501 200.545 218.919 227.654 227.654 227.658 226.630 226.630 226.630 226.630 237.636 317.028 317.028 317.330 317.33 392.238 403.319 414.651 426.015 437.521 -103.947 -107.751 -111.741 -115.898 -120.289 -124.883 -129.686 -134.700 -139.340 -143.560 -148.862 -154.330 -159.960 -165.745 -171.679 -50.408 -51.554 -52.815 -54.177 -55.628 -57.161 -58.771 -60.454 -62.209 -64.038 -65.942 -67.927 -69.997 -72.156 -74.414 -76.776 -79.250 -81.844 -84.568 -87.431 -90.442 -93.529 -96.831 -100.301 K-mol-1 Δ,!! $H^{\bullet}-H^{\circ}(T_{\epsilon})$ 44.156 46.807 49.396 51.936 54.432 59.328 61.741 64.138 80.932 83.390 88.383 90.935 93.516 96.791 101.487 107.003 112.685 111.265 111.265 111.265 68.908 71.292 73.682 76.082 121.514 124.535 127.593 130.687 133.815 Enthalpy Reference Temperature = T, = 29&15 K $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_{\bullet})]T$ 334.816 335.644 336.445 337.222 337.975 339.419 340.112 340.787 292.249 298.563 298.563 301.481 304.206 306.743 309.100 311.292 313.333 315.238 317.021 318.692 320.263 321.744 323.143 324.468 325.726 326.922 328.062 329.150 330 192 331.190 332.149 333.071 342,090 342,720 343,336 343,939 344,530 347.857 348.380 348.894 349.401 349.900 344.618 346.225 347.706 349.079 350.359 351.561 352.693 353.765 354.786 355.760 356.695 357.594 358.464 359.306 360.125 360.923 361.703 362.468 363.218 363.956 364.683 365.401 366.109 366.810 366.810 368.868 369.542 370.209 370.870 284.675 304.645 333.633 336.366 338.777 340.927 342.862 368.189 373.458 84.912 26.836 26.183 25.631 25.166 24.781 23.826 23.861 23.944 24.073 24.245 24.456 24.704 24.986 25.297 25.634 30.022 30.400 30.763 24.468 24.221 24.037 23.912 23.842 25.994 26.371 26.764 27.168 27.579 28.410 28.824 29.232 29.632 32.089 30.734 29.537 28.497 27.602 27.994 ئ 7,8 1.77 ± 0.26 kJ mol⁻¹ 7.37 ± 0.30 kJ·mol⁻¹

Cesium (Cs₂)

PREVIOUS June 1968 (1 atm)

June 1968 (1 bar)

CURRENT

7
Ų
č
3
a
Ť
Ĕ
3
ũ
7
Ę
Ķ

une 1968 (1 atm)

PREVIOUS:

E STORY AL BOX ATTORNOT A	L								
98.15 K) = [352.3 ± 8.4] J·K ⁻¹ ·mol ⁻¹		ri abiaiaia	_J·K ⁻¹ mol ⁻¹ .	calcidity reference temperature = 1, = 295.15 ft. Trible!		Standard State	Standard State Pressure = $p^* = 0.1$ MP2 k1·mol ⁻¹	- 0.1 MP2	
	7,8	ប	S° -[G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_i)$	ı	₽'C	log Kr	
Vibrational Frequencies and Degeneracies	° <u>8</u>	0.	0.	INFINITE 420.380	-19.273 -14.804	-885.119 -887.854	-885.119 -887.060	INFINITE 463.353	
n, cm	88	76.312 78.605		359.539 353.628	-3.818	-889.036	-885.736	231.330	
[200](1) [120](1)	298.15	79.888		352,319	ď	-890 104	-883.913	154.858	
[230](1) [230](1)	888	80.750	365,200	352.320	0.148 4.166	-890.134 -895.093	-883.875 -882.098	153.896	
Ground State Quantum Weight; [1] $\sigma = [4]$		81 675 81 950	385.619 394.239	358.301 361.471	2218 12293 16384	-895,841 -896,575 -897,305	-878.190 -878.190 -876.108	101.938	
Bond Distance: (3-F = [2.35] A Bond Angles: F-(3-F = [85]*, Cs-F-(S = [95]*	88	82.310 82.529	409.215	368.218		-898.778	-871,730	75.891	
	888	82.672 82.771 82.843	432.952	381.574	49.374	-901.815 -903.386	-862.260 -857.222	56.300	
n alpy of Formation ridence from the velocity distribution in molecular beams ¹ has shown that alkalı halide vapors contain significant amounts of polymenc	1200	82.894 82.934	459.318	399.370 404.671		-1038.838 -1038.450	-825.164 -805.756	39.184 35.074	
cs. Using the same method Eisenstadt' determined the molecular composition of CsF vapor in the temperature range 838–919 K. Based e reported equilibrium constants for the reaction (CsF) _A (g) = 2CsF(g), we evaluate the enthalpy change, Δμ²(298.15 K), by the 2nd and	8 8 8 8 8 8	82.965 82.989 83.009	473.172 479.321 485.048	409.688 414.445 418.963	82.529 90.826 99.126	- 1038,084 - 1037,738 - 1037,413	-786.380 -767.032 -747.707	31.597 28.618 26.037	
aw nemots to be 40.53 \pm 1.73 and 42.34 \pm 0.26 kcai-mol ', respectively. Employing $\Delta_t H'(298.15 \text{ K}) = 42.34$ and $\Delta_t H'(CsF, g, [5 \text{ K})] = -85.2 kcal\cdot mol^{-1}$, we obtained $\Delta_t H'(298.15 \text{ K}) = -212.74$ kcal·mol '(-890.10 \pm 8.4 kJ·mol ') for $Cs_3 F_2(g)$, which is adopted.	0001	83.026	490.405	423.263		-1037.113	-728.403	23 780	
C C C C C C C C C C C C C C C C C C C	2089 2089 2089 2089	83.060 83.068	504.676 508.937	431.277 435.023 438.613		- 1036.393 - 1036.381 - 1036.208	-670.589 -670.589 -651.341	20.019 18.436 17.011	
The Capta inforcture is assumed to tave a monitor configuration of symmetry D_n as $C_2(L)$. The Ca-F bond distance is taken as the same at information with those of the other dimeric alkali halides. ³⁴ at in Capta is a comparison with those of the other dimeric alkali halides. ³⁴ and dimerical halides. ³⁴ and	228	83.075 83.081	\$12,990 \$16,855 \$70 \$48	442.059 445.372 448.561		-1036.078 -1035.999	-632.101	15 723	
principal moments of menta are: $I_A = 13.5040 \times 10^{-1}$, $I_B = 132.5032 \times 10^{-1}$, and $I_C = 148.4071 \times 10^{-2}$ g·cm ² .	2400 2400 2500	83.091 83.096	524,084 527,477	451.634 454.601		- 1035.976 - 1036.017 - 1036.129	-593.634 -574.401 -555.165	12.502	
rences Miller and P. Kusch, J. Chem. Phys. 25, 860 (1956), ibid. 27, 981 (1957).	2600	83.099	530.736	457.467		-1036,322	-535.923	10.767	
Eisenstadt, G. M. Rothberg and P. Kusch, J. Chem. Phys. 29, 797 (1958). erkowitz, J. Chem. Phys. 29, 1386 (1958).	7,500 7,500 7,000 7,000	83.105 83.108 83.110	536.894 539.811 542.628	462.923 465.524 468.048	207.120 215 430 223.741	-1036,985 -1037,475 -1038,085	-497 408 -478.130 -458.832	9.279 8.612 7.989	
erkowitz, J. Chem. Phys. 32, 1519 (1960).	3200	83.112	545.353 547.992	470.498		-1038.826	-439.512	7.406	
	3400 3400 3500	83.116 83.118 83.119	550.550 553.031 555.440	475.193 477.446 479.641	248.675 256 987 265 299	-1040.665 -1041.833 -1043.170	-400.795 -381.388 -361.944	5.859 440 440	
	3600	83.121	557.782	481.779		-1044.683	-342,460	4.969	
	3800	83.123	562.276 564.435 566.540	485.898	298.548	-1048.223	-303.358	3.800	
	916	83.126	568.592	491.721		-1055.027	-244.309	3.113	
	4300 4300 4400	83.128 83.128	572.551 574.463	495.389 495.389 497.165	331.798 340.111	-1057.732 -1060.656 -1063.216	-224.503 -204.630 -184.754	2.792 2.486 2.193	
	4500	83.129	576.331	498.903		-1065,362	-164.881	1.914	
	00 00 00 00 00 00 00 00 00 00 00 00 00	83.130 83.131	579.946 581.696	S02.275 S03.912	365.050	-1072.010	-124.717 -104.524	1386	
	2 4900 2 6000	83.131 83.132	583.410 585.089	505.517 507.092		-1079.330	-84.256 -63.909	0.898 0.668	
	2200	83.132 83.133	588.736	508.637		-1087.264 -1090.375	-43.483 -23.131	0.445	
	\$500 \$200	83.134 24.134	591.487 593.013	513.109 514.548	423.242	-1098.256 -1102.246	17.989 38.650	-0.174 -0.367	
	\$600 \$700 \$000	83.134	594.511 595.982 507.478	515.963		-1106.596	59.433 80.293	-0.736	
	2860	83.135 83.135	598.849 600.246	520.068 521.393	456.4% 464.809 473.123	-1115.485 -1120.003 -1124.554	122.249 123.249 143.342	-0.912 -1.082 -1.248	
	,								١

Cs₂F₂(g)

M_r = 303.807606 Cesium Fluoride ((CsF)₂)

IDEAL GAS

Cesium Fluoride ((CsF)₂)

Enthalpy of Formation

species. Using the same method Eisenstadt² determined the molecular composition of CsF vapor in the temperature range 838–919 K. Based on the reported equilibrium constants for the reaction (CsF)₂(g) = 2CsF(g), we evaluate the entialpy change, Δ_1H^2 (298.15 K), by the 2nd and 3rd law methods to be 40.53 ± 1.75 and 42.34 ± 0.26 kcal·mol⁻¹, respectively. Employing Δ_1H^2 (298.15 K) = 42.34 and Δ_1H^2 (CsF, g, 298.15 K) = -85.2 kcal·mol⁻¹, we obtained Δ_1H^2 (298.15 K) = -212.74 kcal·mol⁻¹(-890.10 ± 8.4 kl·mol⁻¹) for Cs₂F₂(g), which is adopted Evidence from the velocity distribution in molecular beams! has shown that alkalı halide vapors contain significant amounts of polymeric

Heat Capacity and Entropy

The Cs,F, molecule is assumed to have a rhombic configuration of symmetry D_m as Cs,Cl, The Cs-F bond distance is taken as the same as that in CsF(g). The bond angles and vibrational frequencies are estimated by companson with those of the other dimeric alkali halides, ^{3,4} The principal moments of mertia are: $I_A = 15.9040 \times 10^{-39}$, $I_B = 132.5032 \times 10^{-39}$, and $I_C = 148.4071 \times 10^{-39}$ g·cm².

C. Miller and P. Kusch, J. Chem. Phys. 25, 860 (1956), ibid. 27, 981 (1957). References

18. C. Miller and P. Kusch, J. Chem. Phys. 25, 860 (1956), ibid. 27, 981 (1957)

24. Eisenstadt, G. M. Rothberg and P. Kusch, J. Chem. Phys. 29, 797 (1958).

3. Berkowitz, J. Chem. Phys. 29, 1386 (1958).

4. Berkowitz, J. Chem. Phys. 32, 1519 (1960).

Cs2H2O2(g)

ydroxide ((CSOH)₂)

dard State Pressure = $p^* = 0.1$ MPa

MEINITE 349.994 171.877 136.092 112.915

644507

-619.141 -610.370

592.425

-555.402 -536.491 -509.983

-476.643

-443.352 -410.113 -376.929 -343.801

-310.729 -277.713 -244.749 -211.837 -178.972

94937 94

115.293

-830.523 -830.525 830.698 343.831 376.576 409.363 442.193 475.078

-834.402 -835.795 -837.430 -839.288

-843.856

-146.152 -113.373 -80.632 -47.924 -15.244

834.921

-832.573 -831.937

Cesium Hydroxide ((CsOH)₂)

June 1971 (1 atm)

PREVIOUS

CURRENT: June 1971 (1 bar)

-8.613 -8.785 -8.953 -9.114 -9.271

-890.804 -895.425

574.952 577.019 579.055 581.061 583.037

131.539 131.589 131.682 131.682

878,205

588.020 541.025 574.097 607.173 607.173 740.238 773.730 807.307 840.972 840.972 840.972 942.217

7
<u>~</u>
포
Ç
'n
2
$\overline{}$
Φ
ס
$\overline{\mathbf{x}}$
Ô
÷
۲
Ť`
Ε
=
2
ăí

M _r = 299.82548 Cesium Hv
IDEAL GAS
Cesium Hydroxide ((CsOH) ₂)

Vibrational Frequencies and Degeneracies v, cm ⁻¹ v,	$S^{0.098}(3.8) = 360.7 + 12.6 \cdot 1.8^{-1}$.			$\Delta_t H^{\circ}(0 \text{ K}) = -674.7 \pm 41.8 \text{ kJ·mol}^{-1}$	Enthalpy R	eference Te	mperature =	Enthalpy Reference Temperature = T, = 298.15 K		Standard Sta
Frequencies and Degeneracies 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)			$\Delta_{\rm p}H^{*}(298.15~{\rm K}) = -687.8 \pm 41.8~{\rm kJ \cdot mol^{-1}}$	į		J·K-'mol-'			
1		Vibrational Frequencie	s and Degeneracies		¥.	ij	ر ار	-H'(T,)]/T	$H^{\bullet}-H^{\circ}(T_{i})$	3
100 62.412 280.202 439.683 -1.002 -		r, cm-,			٥	ö	.0	INFINITE	-19.417	
1) [1250](1) 200 76.645 388.129 1) [1250](1) 220 79.500 346.425 388.129 1) [1250](1) 300 346.425 322.095 28.15 82.807 36.0748 360.748 1) [1250](1) 300 82.919 361.260 360.748 1) [3700](1) 400 88.598 385.947 364.074 1) [3700](1) α=2 600 99.017 424.04 378.029 Weight: 1 α=2 700 102.779 439.597 387.735 800 102.779 439.597 387.735 800 102.779 439.597 393.335 1=[500]°. C5-O-H=[110]° 407.817 1100 112.757 488.18 44.7177					8	62.412	280,202	429.685	-14948	
(1) [1250](1) [1		(2001(1)	(12501(1)		8	76.646	328.962	368.129	-7.833	
1120 (1)		(1)(1)	(1)(0)(1)		250	79.900	346.426	362.095	-3.917	
1 (1250](1) 350.249 350.749 350.749 350.259 350.749 370.749 3		(1)(0)(1)	(1)(0)(1)		298.15	82.807	360.748	360.748	Ö	
1) [17-20](1) 400 88-5963 3813-471 361.770 400 88-5963 3813-471 361.770 400 88-5963 3813-471 361.770 400 88-5963 3813-471 361.770 400 88-5963 3813-471 361.770 400 88-5963 3813-471 361.770 400 88-5963 3813-471 361.770 400 88-5963 3813-471 361.770 400 88-5963 3813-471 361.770 400 88-5963 3813-471 361.770 400 88-5963 3813-471 361.770 400 88-5963 3813-471 361.770 400.771 401.770 400.771 401.770 400.771 401.770 400.771 401.770 400.771 401.771 401.770 400.771 401		(1)[017]	(1)(0)(1)		30	82.919	361.260	360.749	0.153	
(1) [3700](1) 400 88.868 38.35.97 364.074 (2) [3700](1) 6 -2 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2		(1)(071)	(1)[0571]		350	85.963	374.271	361.770	4.375	
(1) [3700](1) (20.2) (1) (20.2) (1) (20.2) ([220](1)	[3700](1)		9	88.968	385.947	364.074	8.749	
Weight: I		(230)(1)	(137001/1)		\$	91.824	396.592	367.104	13.270	
Weight: 1		(2)	(1)[22.2]		8	94.461	406.406	370.550	17.928	
**Regilt. 1	2) Painway			•	8	99.017	424.045	378.029	27.609	
= [2.63] Å; O-H = [0.96] Å	or DinoiD			02	8	102,729	439.597	385.735	37.703	
= [2.63] Å; O-H = [0.96] Å	Point Gra	oup: Ca			8	105.812	453.521	393.353	48.134	
= [90]: Cs-O-H=[110] 477.877 407.875	Bond Dist	tances: CO. 17 631 A	O_H = 10 %1 &		8	108,443	466.140	400.751	58.850	
1100 112.767 488.338 414.712	Bond Ang	olor: Cr. O Cr roots.			<u>0</u>	110.738	477.687	407.875	69.812	
		المراء حصرت المراب			8	112.767	488 338	414712	80 080	

Enthalpy of Formation

analysis of their free energy data for this pair leads to a difference in the enthalpies of dimerization of 4.9 kcal·mol⁻¹ at 298.15 K for CsOH and KOH. Based upon the adopted value for KOH(g), $\Delta_f H'$ (dimerization, 298.15 K) = -45.3 ± 3.0 kcal·mol^{-1,2} we derive Δ_H (dimerization, 298.15 K) = -40.4 ± 4.0 kcal·mol⁻¹ for 2 C3OH(g) = Cs_AOH)_A(g). Combining this result with the enthalpy of formation for the gaseous monomer, that for the dimer is Δ_H (Cs_AOH)_A, g, 298.15 K) = -164.4 ± 10.0 kcal·mol⁻¹ (-687.8 ± 41.8 kJ·mol⁻¹). spectrometer and reported the presence of appreciable concentrations of dimer in the temperature range 650-700 K. By applying the method of relative equilibrium constants, these workers calculated the difference in the free energies of dimerization for KOH-CsOH. A 3rd law Schoonmaker and Porter analyzed the vapors in equilibrium with liquid CsOH and mixed KOH-CsOH condensed phases with a mass

Heat Capacity and Entropy

Buchler et al. 4 investigated the geometries of several molecules containing cesium by the deflection of molecular beams in an inhomogeneous electric field. Their results for Cs₂(OH)₂(g) indicated that the molecule was nonpolar which implies a planar configuration for at least the Cs103 part of the molecule. Several structural models proposed for the dimers of the alkali metal hydroxides each incorporate this planar hydrogens. Schoonmaker and Porter' adopted the same alkali-oxygen configuration but did not allow for hydrogen bonding between the oxygens and hydrogens. Berkowitz et al. 6 relied on the apparent similarity of the alkali halides and hydroxides in forming dimenc species to propose a structural model for Lix(OH)x(g). This model consisted of a trans-configuration with hydrogens above and below the plane of a rhombus formed by the lithium and oxygen atoms, the Li-O-Li bond angle being 100°. We adopt a structure for Cs₄(OH)₂(g) which is similar to the model of Berkowitz et al. for Lix(OH)/(g) but with the Cs-O-Cs bond angle equal to 90°. The cessum and oxygen atoms form a square planar configuration. The Cs-O-H bond angle is assumed equal to 110°. The Cs-O bond distance is estimated as being 10% longer than that configuration for the alkali and oxygen atoms. Bauer et al. 3 calculated entropies of dimenzation for NaOH(g) and KOH(g) with a dimer model consisting of a square planar configuration for the alkali and oxygen atoms with two hydrogen bonded bridges between the oxygens and in CsOH(g). The O-H bond distance is estimated to be the same as in H₂O(g). The principal moments of mertia are: I_A = [20.4212] × 10⁻⁷ $I_B = [152.8696] \times 10^{-39}$, and $I_C = [172.8610] \times 10^{-39} \text{ g-cm}^2$

Acquista et al. 7 observed the infrared spectra of matrix isolated CsOH and reported bands in the region 300-200 cm -1 whose relative intensities decreased with increasing temperature. Since the dimer to monomer ratio decreases with increasing temperature, these bands appeared to arise from polymeric species of CsOH, but no definite assignments could be made. Similar results have been reported for RbOH and NaOH from infrared studies of these molecules trapped in inert matrices. Berkowitz et al. estimated vibrational frequencies for Li₂(OH)₂(g) by comparison with those for dimeric Li₂F₂(g). The frequencies for Li₂F₂(g) had been estimated earlier by Berkowitz⁹ using an ionic model and normal coordinate analysis. It has now been established expenimentally that these estimated frequencies for Li3Fx(g) are too adopt the six estimated frequencies for CsF4g) (Refer to CsF4g) table for details) and apply them directly to Cs4(OH)4g). The remaining ow (Refer to LigFx(g) table for details). Until definite assignments for the dimer hydroxides can be made from infrared studies, we tentatively O-H stretching and bending frequencies are estimates from the work of Berkowitz et al. 6

³A. Buchler, J. L. Stauffer, and W. Klemperer, J. Chem. Phys. 46, 605 (1967). ⁴S. H. Bauer, R. H. Diner, and R. F. Porter, J. Chem. Phys. 29, 991 (1958). ¹JANAF Thermochemical Tables: KOH(g), 12-31-71; CsOH(g), 6-30-71. C. Schoonmaker and R. F. Porter, J. Chem. Phys. 31, 830 (1959).

Berkowitz, D. J. Meschi, and W. A. Chupka, J. Chem. Phys. 33, 533 (1960).

ໍ່ດ

263.457 276.168 288.916 301.698 314.510 327,350 340,216 353,106 366,017 378,949 391.900 417.853 430.853 443.867 456.894 490.786 494.628 498.365 502.000 505.541 469.753 474.227 478.560 482.759 486.832 508.991 512.355 515.637 518.841 521.971 525.029 528.020 530.945 533.808 536.611 539.357 542.048 544.686 547.273 549.811 552.302 554.747 557.149 559.508 561.826 564.105 566.346 568.550 570.718 572.852 581.991 592.116 601.549 606.034 610.378 626.493 674.099 676.748 633.891 640.906 644.283 647.578 653.937 662.948 665.823 650.795 124,364 124,980 125,539 126,045 126,504 126.923 127.304 127.653 127.972 128.265 128.534 128.782 129.010 129.221 129.417 129.558 129.767 129.923 130.069 130.205 130,333 130,452 130,563 130,667 130,766 130.858 130.945 131.026 131.104 131.176 131245 131310 131372 131,310 131,372 131,431 131,486

⁶N. Acquista, S. Abramowitz, and D. R. Lide, J. Chem. Phys. 49, 780 (1968) Acquista and S. Abramowitz, J. Chem. Phys. 51, 2911 (1969). ¹J. Berkowitz, J. Chem. Phys. 32, 1519 (1960).

CURRENT. December 1968 (1 bar)

_
(Cs ₂ O)
Oxide
Cesium
1.8102
= 28

Š	
7	
:	
,	
=	
3	
-	
ņ	
ñ	
)	
ų	
Š	
=	
0	
:	
0	
Ū	
1	
Ė	
Ε	
•	

IDEAL GAS

 $\Delta_t H^{\circ}(0 \text{ K}) = -86.2 \pm 41.8 \text{ kJ} \cdot \text{mol}^{-1}$

 $\Delta_t H^{\circ}(298.15 \text{ K}) = -92.0 \pm 41.8 \text{ kJ·mol}^{-1}$

 $S^{(298.15 \text{ K})} = [-318.1 \pm 8.4] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Cesium Oxide (Cs₂O)

Vibrational Frequencies and Degeneracies u, cm⁻¹

Ground State Quantum Weight: [1] Bond Distance: Cs-O-[2.4] Å Bond Angle: Cs-O-Cs-[105]*

[290](1) [130](1) [300](1)

G=2

Product of the Moments of Inertia: $I_AI_BI_C = [1.415602 \times 10^{-112}]$ g³·cm⁶

Enthalpy of Formation

The appearance potentials of CsOH and Cs₂O ions were investigated by Emel yanov *et al.*, using the electron-impact method with a mass spectrometer fitted with a heated ion source and a Pt effusion chamber. The enthalpy of atomization of Cs₂O was derived as 1.17 ± 10 kcal·mol⁻¹, Based on this value we calculate the enthalpy of formation $\Delta_1H^0(288.15 \text{ K})$ of Cs₂O to be -2.2 ± 10 kcal·mol⁻¹ ($-9.2.0 \pm 41.8$ KJ·mol⁻¹), employing $\Delta_1H^0(0.15) = 18.68$ and 58.99 kcal·mol⁻¹ for Cs₂O at O(g), respectively. Brewer and Mastick² calculated theoretically the stability of gaseous alkali oxides according to ionic models and gave the enhalpies of formation from gaseous atoms for Cs₂O(g) as -24 kcal·mol⁻¹. The $\Delta_1H^0(298.15 \text{ K})$ value is evaluated to be 72.2 kcal·mol⁻¹ which is not adopted.

Heat Capacity and Entropy

The molecular structure of $C_2O(g)$ has been determined to be nonlinear by Buchler *et al.*, ³ using electric-deflection method. The Cs-O bond distance is assumed to be the same as that in CsOH(g) reported by Lide and Kuczkowski. ⁴ The bond angle is estimated by comparison with that in the H₂O molecule. Three vibrational frequencies are estimated from those for H₂O(g). The principal moments of inertia are: $I_A = 5.3492 \times 10^{-39}$, $I_B = 160.0237 \times 10^{-39}$, and $I_C = 165.3730 \times 10^{-39}$ g·cm².

M. Emel'yanov, A. V. Gusarov, L. N. Gorokhov, and N. A. Sadovnikova, Teor. Eksp. Khim. 3, 226 (1967).
 Brewer and D. F. Maxick, J. Amer. Chem. Soc. 73, 2045 (1951).
 Buchler and J. L. Stauffer and W. Klemperer, J. Chem. Phys. 46, 605 (1967).
 R. Lide, Jr. and R. L. Kuczkowski, J. Chem. Phys. 46, 4768 (1967).

<u> </u>	Enthalpy Reference Temperature	eference To	emperature	- T, - 298.15	×	Standard State Pressure	te Pressure = p*	o* = 0.1 MPa
	<i>1.</i> K	ដូ	S - [G	-[G*-H*(T,)]/T	H*-H*(T,)	A.H.	A.G.	log Kr
	08	0.		INFINITE 365.083	-13.937	-86211	-86.211 -94.875	INFINITE 49 557
	22 22 22 23 20 23 20 20 20 20 20 20 20 20 20 20 20 20 20	52.568 54.345	296.481 308.420	323.084	-5320	-90.159 -91.051	-100.726 -103.265	26.307 21.576
_	298.15	55.388		318,088	Ö	-92,048	-105,530	18,488
	888	\$5.420 \$6.109	318.431	318.089	0.102	-92.092 -97.430	-105.614	18.389
	328	56.902 57.141	341237	322.244 322.244 324.449	8.547 11.398	-98.529 -99.591 -100.634	- 108.410 - 109.581 - 110.635	12.720
	8	57.457	357.694	329.145	17.130	-102.696	-112.441	9.789
	88	57.651 57.778	366.567 374.274	333.873 338.452	22.886 28.658	-104.760 -106.844	-113.903	8.500 7.513
	88	57.866 57.929	381.085 387.185	342.818 346.955	34.440 40.230	-108.953 -245.346	-115.968 -109.235	6.731 5.706
	1200	57.976	392.708	350.867	46.026	-245.463 -245.596	-95.618 -81.990	1.541
_	000	58.040	402.399	358.070	57.628	-245.744	-68.350	2,746
	<u>8</u>	58.080	410.708	364.548	69.240	-246,085	-41.035	1.429
> 4	<u>8</u> 5	58.094 58.106	414.457	367.551 370.415	75.049	-246.283 -246.502	-27.359 -13 669	0.893
-	008	58.117	421.300	373 151	86.670	-246.748 -247 m8	0.034	-0.001
	200	58.133	427.424	378.277	98.295	-247.348	27.485	-0.718
	2200	58.139	430.261	380.686	104.108	-247.718	41.235	-1.026
	2300	58.149	435.550	385.230	115.737	-248.644	68.795	-1.562
	2500	58.157 58.157	440.399	389.452	121,552	-249.891 -249.891	87.009 96.448	-1.798
	22 22 20 20 20 20 20 20 20 20 20 20 20 2	58.160 58.163	442.680 444.875	391.456 393.394	133.184	-250.663 -251.552	110,317	-2216
	2800 2800	58.166 58.168	446.991 449.032	395.271 397.089	144.816 150.633	-252.568 -253.725	138.153	-2.740
	3000	28.170	451.004	398.854	156.450	-255.036	166.144	-2.893
	3200	58.17	454.758	402.232	162.267	-256.514 -258.173	194.321	-3.036
	388	28.17 27.17 27.17 27.17 27.17	458.285	405.426	179.720	-261.964	222.707	-3.421
	3600	58.180	461.611	408.456	191.355	-266.644	251.348	-3.64
	3700	58.181	463.205	409.915	197.173	-269295	265.770	-3.752
	3900 4000	58.183 58.184	466.268 467.741	412.727	208.810	-275.273	294.842	-3.949
	4200	58.185	469.177	415.410	220.446	-282.280 -286.165	324.251	-4.131
	4300	58.186 58.187	471.949	417.976	232.084	-290,309	354.027 368.994	-4301
	989	58.187	474.594	420,434	243.721	-297.570	383.986	-4.457
	864 865 865	58.188 58.188	477.124	421.625 422.793	255.358	-302,141 -306,923 -311,010	414.479	4.606
	\$ \$	58.189	479.549	425.060	266.996	-317.094	445.388	-4.748
	2100	58.190	481.877	427.243	278.634	-328.019	476.728	-4.883
	2300	58.191	483.007	429,347	290,772	-332.678	508.329	-5.010
	\$400 \$500	58.191 58.192	485.203 486.271	430,371	296.092 301.911	-343.754 -349.391	524.274 540.353	-5.071 -5.132
	\$600 \$700	58.192	487.319	432,368	307.730	-355,420	556.585	-5.192
	2800	58.193 58.193	489.361	434.298	319.368	-367.764	589.373 605.928	-5.308 -5.364
	0009	58.193	491.334	436,166	331,007	-380.415	622.592	-5.420
_								

PREVIOUS: December 1968 (1 atm)

Cs204S1(cr)

M, = 361.8684 Cesium Sulfate, I (Cs2SO4)

CURRENT: June 1979

ð
Cs ₂ S
e, 1 (
ulfate
S E
esiu

CRYSTAL(I)

S°(298.15 K) = [264.834] J·K⁻¹·mol⁻¹ fus(I→I) = 1278 ± 5 K T(II→D = 940 ± 5 K

Enthalpy of Formation

untalpy or romination $\Delta_H^{*}(Cs_2SO_4, cr, II, 298.15 \, K)$ by adding the enthalpy of transition (II \rightarrow I) and difference in enthaply, H°(940)-H°(298.15 K), between the II and I crystalline forms.

Heat Capacity and Enthalpy

High-temperature enhalpnes of the I-phase of Cs₂SO₄ have been determined by Denielou *et al.*, (960–1260 K)² and by Polischcuk *et a* (950.7–1254.5 K). We have adopted hear capacities based upon the enhalpnes of Denielou *et al.*, We have extrapolated the heat capacities moothly to 298.15 K below the II → I transition and extended C₂ above the melting point to 1500 K.

S'(298 15 K) is calculated in a manner similar to that used for the enthalpy of formation.

ransition Data

modification has been referred to as the a-phase in contrast to our use of a to refer to the low-temperature phase for the other members The high-temperature hexagonal modification of cesium sulfate is denoted Cs₃SO₄, cr, I, an accordance with the usual nomenclature. The the alkali metal sulfates.1

Fusion Data

The adopted melting point, $T_{tus} = 1278 \pm 5 \,\mathrm{K}$, was determined from the work of Denielou et al., (1274 $\pm 3 \,\mathrm{K}$). Polishchuk et a (1281 K), ³ Rassonskaya and Semendyaeva, (1283 K), ⁴ and from the compilation of Stern and Werse (1277 K). ³ The enthalpy of fusio $\Delta_{tus}H^o = 8.530 \pm 0.2$ kcal·mol⁻¹, is calculated from the difference between the smoothed relative enthalpy of the liquid and the adopte enthalpy value for the I form at T_{tus} .

References

JANAF Thermochemical Tables: Cs₂SO₄(cr, II), 6-30-79, Na₂SO₄(cr, V), K₃SO₄(cr, a), 6-30-78.
 ²L. Denielou, Y Fournier, J. P. Petitet, and C. Tequi, C. R. Acad Sci., Davis 270, 1854 (1970).
 ³A. F. Polishchuk, T. A. Tishura, and A. N. Buderina, Ukr Khim, Zh. 40, 120 (1974).
 ⁴S. Rassonskaya and M. K. Sernendyaeva, Russ. J. Inorg. Chem. 15, 27 (1970).
 ⁵K. H. Stern and E. L. Weiee, NSRDS-NBS 7, (1966).

∆ _t H°(298 15 K) ≈ [-1410.152] kJ mol ⁻¹	Enthalpy R.	eference T	emperature .	Enthalpy Reference Temperature = T, = 298.15 K	 	Standard Sta	Standard State Pressure = p = 0.1 MPa	, - 0.1 MPa
$\Delta_{\rm tr}H^{\circ}(II \to I) = 4.310 \pm 0.8 \text{ kJ} \cdot \text{mol}^{-1}$			J·K"mol"			K-loul-1		
$\Delta_{fur}H^{o}(I \rightarrow I) = 35.690 \pm 0.8 \text{ kJ} \cdot \text{mol}^{-1}$	7.K	೮	ی -[C,	S -{G'-H'(T,)}/T	$H^{\bullet}-H^{\circ}(T_i)$) A _r H°	Φ.	log Kr
the enthalpy of transition (II \rightarrow I) and the	2000							
	298.15	108 700	264.834	264.834	о.	-1410.152	-1306.452	228.885
1 (060-1260 K) ² and by Dolieshank as al	888	108.784 112.131 120.081	265.506 297.150 322.947	264.836 269.129 277.379	0.201 11.209 22.784	-1410.221 -1420.312 -1425.046	-1305 809 -1268.991 -1230 612	227.361 165.713 128.561
We have extrapolated the heat capacities	86	132.256	345 866	286.911	35.373	-1428.574	-1191.370	103.718
500 K	888	163.218	388 154	307.003	64 92 I	- 1431 148	-1111.747	72.590
	940.000	_	416 177	321.189	89.288	0000001	>11	14170
	0001	194.179	427.901	327.241	100.660	-1613.897	-1017.731	53,161
ordance with the usual nomenclature. This	1200	209.660 225 141	447.135 466.041	337.269 347.214	120.852	-1606 752 -1598.155	-958.448 -899.880	45.513
יייליישייי לייייר וכן על כוונין וורוויטיוז טו	1278.000		480.596	354.911	160.625	->1	> LIQUID	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	8.4.8 8.4.8	240.622 256.103 271.583	484.675 503.073 521.270	357.073 366.846 376.535	190.718	- 1588.093 - 1576.563	-842.089 -785.127 -729.041	33.836 29.293 25.387
u et al., (1274 ± 3 K),2 Polishchuk et al.			!		?			
Werse (1277 K).5 The enthalpy of fusion, ve enthalpy of the liquid and the adopted								
ş								
-78.								

PREVIOUS

CURRENT June 1979

PREVIOUS:

CRYSTAL(II)
(*OS
Cs2SO
= 6
Ifate
Su
E
Ces

Cs204S1(cr)

M_r = 361.8684 Cesium Sulfate, II (Cs₂SO₄)

$\Delta_0 H^{\circ}(0 \text{ K}) = -1433.16 \pm 0.8 \text{ kJ} \cdot \text{mol}^{-1}$ Enthalpy Reference Temperature = T, = 298.15 K	$\Delta_0 H^{-}(298.15 \text{ K}) = -1442.64 \pm 0.8 \text{ kJ} \cdot \text{mol}^{-1}$	· H···································
	$(298.15 \text{ K}) = 211.88 \pm 0.21 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$	$(\alpha \rightarrow \beta) = 940 + 5 K$

Enthalpy of Formation

 $(4.11 \pm 0.80 \text{ kcal·mol}^{-1})^2$ We adopt the mean of these values $4.05 \pm 0.1 \text{ kcal·mol}^{-1}$ When this result is combined with enthalpi formation of the infinitely dilute ions from CODATA. We obtain $\Delta_t H^2(C_5_2O_4 \approx H_2O_4)$ 298.15 K) = $-340.746 \pm 0.12 \text{ kcal·mol}^{-1}$ The enthalpy of solution at infinite dilution of Cs,SO, has been measured by Kuznetsova et al., (3.980 kcal.mol⁻¹), and by Borob ev $\Delta_i H^{\circ}(Cs_2SO_4, cr, 298.15 \text{ K}) = -344.80 \pm 0.2 \text{ kcal·mol}$

Heat Capacity and Entropy

 $S^{o}(12 \text{ K}) = 0.309 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ as estimated by Paukov et al. 4 They also estimated $H^{o}(12 \text{ K}) - H^{o}(0 \text{ K}) = 2.83 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ which lea $H^{\circ}(298.15 \text{ K})-H^{\circ}(0 \text{ K}) = 6.628 \pm 0.006 \text{ kcal-mol}^{-1}$. These values of $S^{\circ}(12 \text{ K})$ and $H^{\circ}(12 \text{ K})-H^{\circ}(0 \text{ K})$ are almost identical to estif obtained using a Debye T^3 -law extrapolation. We have smoothed the experimental data of Paukov et al. by fitting to orthogonal polynom High temperature heat capacities of Cs,SO₄ have been measured by Shmidt³ by adiabatic calonmetry over the range 297.5-774 Enthalpy measurements by drop calorimetry were carried out by Denielou et al., (400–910 K)⁶ and by Polishchuk et al., (803.3–933.4 K). have joined the low temperature C," data of Paukov" to the high temperature C," data of Shmidt" and then merged this into C," values de '-mol-' is base The low temperature heat capacities of Cs₂SO₄ were measured by Paukov et al. * by adiabatic calorimetry over the region 12.82-308. The curve of C_p -T was graphically extrapolated to 0 K. Our adopted value of $S^{\circ}(298.15 \text{ K}) = 50.64 \pm 0.05 \text{ cal} \cdot \text{K}$ from the measurements of Denielou et al. above 700 K. We have extrapolated the data smoothly to 1200 K.

Transition Data

C₅₂SO₄(cr, II) is the low-temperature form of cesium sulfate (often denoted as C₅₂SO₄, β). The crystals are orthohombic, space g D_{ab}^{ab} -Pmcn. The transformation to the high-temperature I-phase (hexagonal, C₅₂SO₄, II) occurs at 940 ± 5 K. ²⁻⁷ The enthalpy of trans is determined by taking the difference between the adopted enthalpy curves of II- and I-C₅₂SO₄ extended to 940 K.

References

 F. Kuznetsova, G. A. Lovetskaya, V. M. Presnyakova, and B. O. Stepin, Russ. J. Phys. Chem. 48, 2141 (1974).
 F. Borob'ev, N. A. Ibragim, and S. M. Skuratov, Russ. J. Inorg. Chem. 11, 13 (1966).
 JCSU-CODATA Task Group on Key Values for Thermodynamics, J. Chem. Thermodyn 10, 903 (1978). ¹. E. Paukov, L. M. Khriplovich, and A. M. Korotkikh, Russ. J. Phys. Chem. 42, 661 (1968)

⁵N. E. Shmidt, Russ. J. Phys. Chem. 12, 929 (1967).

Denielou, Y. Foumier, J. P. Petitet and C. Tequi, C. R. Acad. Sci., Parrs, 270, 1854 (1970).
 F. Polishchuk, T. A. Tishura, and A. N. Buderina, Ukr. Khim Zh., 40, 120 (1974).
 C. N. R. Rao and B. Prakash, NSRDS-NBS 56, (1975).

-lom	Enthalpy R	eference To	emperature	Enthalpy Reference Temperature = T, = 298.15 K	×	Standard Sta	Standard State Pressure = p° = 0.1 MPa	p° = 0.1 MPa
mol-1	TK	ប	ا- ي 2 - ارك	-[G*-If'(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{\tau})$	Kind (A _i G•	log K
et al	0 00 0	0. 89.287 114.767	0 91.922 162 172	INFINITE 317.566 223.551	-27 732 -22.564 -12.276	-1433.163 -1438.791 -1441.778	-1433 163 -1401.080 -1362 260	131.849 131.849
ies of	298.15	135.143	211.878	211.878	0	-1442,643	-1323.155	231.811
- and	88	135,478	212 715	211.880	0250	-1442.663	-1322.413	230.253
	\$ 8	164.557	289.120	228.298	30.411	-1449.910	-1238.562	129.392
	98	176.816	320.158	241.069	47.453	-1448.986	-1196.356	104.152
.72 K.	8	212 464	375.547	267.877	86.136	-1442,424	-1112.937	72.667
ed on	000	178.691	401.504	281.293	108.190	-1489.626	- 1071.010	62.160
ads to	1000		476.458	294 570	131 888	-1615 161	- 11 <>1	151 65
mials.	1100	261.835	450 612	307.663	157.244	-1602.852	-958.373	45.509
40 K								2000
. We								
מואבת								
group								

(Cs ^z SO ^t)
Sulfate
Cesium

M _r = 361.8684	Cesium Sulfate (Cs ₂ SO ₄)	ulfate (Cs ₂ SO ₄)					Cs ₂ O ₄ S ₁ (I)
$\Delta_H^{\circ}(298.15 \text{ K}) = [-1400.139] \text{ kJ·mol}^{-1}$	Enthalpy F	leference T	emperature	Enthalpy Reference Temperature = T, = 298.15 K	×	Standard St	Standard State Pressure = p* = 0.1 MPa	p* = 0.1 MPa
INII N 0:0 - 000:00 - (1 (- 1) 1 min	7.K	ដ	S - [G	-[C*-H*(T,)]T	H*-H°(T,)	1	A.G.	log Kr
$\Delta_{los}H^{\circ}$ and the difference in enthalpy,	088							
	298.15	135.143	246.449	246.449	0.	-1400.139	-1290.958	226.171
We adopt enthalpies based on the work of	388	151.293	288.488 323.692	251.962 251.962 262.869	30411	-1400.139 -1406.897 -1407.406	-1252.112 -1252.112 -1213.344	163.509
bove an assumed glass transition at 780 K. 8 15 K) is calculated in a manner analogous	902	176.816	354.729	275.640 288.988	47.453	-1406.482 -1404.117	-1174.595	102.258 84.778
	800.008		431.400	302.434	85 952	-1400.103	- 1098.078 > LIOI	769.17 CIU
	000'088	206.690	431 400	313.174	104.039	-1447.139	TRANSITION 139 - 1059.609	61.498
	8 2 2	206.690	457.822 477.521	328.980	149.511	-1575.703	-1009.458	52.729 45.264
	1278,000		508.522	362.746	186.301		-897.638 > LIQUID	39,013
	00 4 5 00 6 5	206.690 206.690	512.050 527.367	365.243	211.518	-1553.113	-842.697 -788.326	33.860
	091	206.690	554.967	396.932	252.856	-1531.249	-681.116	22.23
	888	206.69	579.311	415.870	294 193	-1517.048	-575 706	16.707
	2002	206.690	601 088	433.322	335.531	-1503.179	-523.600	12324
	2200	206.690 206.690	611.173	441.553 449.484	356.200 376.869	-1496.384	-420.460 -369.382	10.458 8.770
	7,730 7,700 7,700	2688 2688 2688 2688 2688 2688 2688 2688	629.975	457.133	397.538	-1483.114	-318.607	7.236 5.835
	2000	206.690	647.210	471.639	438.876	-1470.335	-217.891	4,553
	2700	206.690	663.117	485.260	480.214	-1458.128	-118.174	2286
	2300	206.690	677.886	498 041	521.552	-1446.581	-19.341	0348
	}						81:67	
	PREVIOUS						CURR	CURRENT: June 1979

Enthalpy of Formation $\Delta_H^{*}(Cs_5O_4$, cr, I, 298.15 K) by adding $\Delta_{los}H^{\circ}$ and the difference in enthaly $H^{\circ}(1278) - H^{\circ}(298.15 \text{ K})$, between the I crystal and liquid. S°(298.15 K) = [246.449] J·K⁻¹·mol⁻¹ $T_{fes}(I \to I) = 1278 \pm 5 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

LIQUID(I)

Cesium Sulfate (Cs₂SO₄)

Enthalpies for Cs,SO₄(l) have been measured by Denielou et al.² and by Polishchuk et al.³ We adopt enthalpies based on the work Denielou et al.² This leads to a constant heat capacity of 49.4 cal·K⁻¹-mol⁻¹ at temperatures above an assumed glass transition at 780 Below the glass transition, the heat capacity is taken as that of the low temperature II phase. S°(298 15 K) is calculated in a manner analoge to that used for the enthalpy of formation. Heat Capacity and Entropy

Refer to the I-crystal table for details. Fusion Data

¹ANAF Thermochemical Tables: C_{5-S}O₄(cr, I), 6-30-79.
²L. Denielou, Y. Fournier, J-P. Petitet, and C. Tequi, C. R. Acad. Sci. Paris 270, 1854 (1970).
³A. F. Polishchuk, T. A. Tishura, and A. N. Budarina, Ufc. Khim. Zh. 40, 120 (1974).

Refer to the individual tables for details.

to 940 K crystal, II to 1278 K crystal, I 127 K liquid

Cs ₂ O ₄ S ₁ (cr,l)	- p - 0.1 MPa	log Kr	131.849 355.786	231,811	230,253 167,254 129,392	104.152	72.667		53.161	39.171		33.860 29.413	22.236	19,302	14.395	10.458	82.5	4553	3,373	0.348	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CURRENT: June 1979
Cs ₂ O	e Pressure = p*	₽6.	-1433.163 E -1401.080 -1362.260		-1322.413 -1280.787 -1238.562	-1196.356	-1112.937 -1071.010	TRANSTITON	-1017.731	-899.880	<> LIQUID _ TRANSITION _	-842.697 -788.326 -734.470	-681.116	-628.202 -575.706	-523.600	-420.460	-318.607	-217.891	-167.915 -118.174	-68.654 - 19.341		CURREN
	Standard State Pressure	-H.A	-1433.163 -1438.791 -1441.328	-1442.643	-1442.663 -1449.401 -1449.910	-1448.986	-1442.424 -1442.424 -1489.626			-1598.155	_	-1553.113 -1545.751 -1538.463	-1531.249	-1524.110 -1517.048	-1510.069	-1496.384	-1483.114	-1470.335	-1464.154 -1458.128	-1452.266 -1446.581		
	~	H*-H*(T,)	-27.732 -22.564 -12.276		0.250 14.610 30.411		86.136 108.190	•			,	23,353			357,367		440.042			543.387 564.056		
	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ 1.K ⁻¹ mol ⁻¹	-[G*-H*(T,)]/T	INFINITE 317,566 223,551	211.878	211.880 217.391 228.298	241.069	267.877 281.293	286.624 286.624	294.750	320.138	329.488 329.488	332.548	370.367	381.598 392.257	402 399	421.313	438.653	454.657	462.220 469.517	476.567		
(*05250	emperature =	S -[G	91.922		212.715 253.916 289.120	320.158	375.547 401.504	411.592	427.901	466.041	480.596 508.522	\$12.050 \$27.367	554.967	567.497 579.311	590.486 601.088	611.173	629.975	647.210	655.316	670.633 677.886		
ulfate ((ference T	្រ	0. 89.287 114.767	135.143	135.478 151.293 164.557	176.816	212.464	235.337	194.179			206.690 206.690	206.690	206.690 206.690	206.690	206.690	206.690	206.690	206.690 206.690	206.690		
M,=361.8684 Ceslum Sulfate (Cs ₂ SO ₄)	Enthalpy Re	7.K	°88	298.15	8 8 8	88	388	940.000	0001	1200	1278 000 1278.000	888	99	8 8 8 8	200 2000 2000	2100	2300	2200	2500 2700 2700	2800 2800 2800 2800 2800	}	PREVIOUS:
161.8684						-																
M,=3																						

-161 479 -117.616 -73.788 -29.990 13.789

-1301.402 -1300.530 -1299.827 -1299.305

582.851 587.857 592.713 597.427 602.008

156.650 156.745 156.830 156.907 156.907

-1302.429

265.528 281.133 296.754 312.390 328.038 343.698 359.368 375.047 390.734

-4.010 -4.520 -5.004 -5.463 -5.900

500.713 516.442 532.176 547.912 563 652

101.309 145.057 188.818 232.588 276.377 276.377 320.188 364.032 407.908

-1298.976 -1298.854 -1298.867 -1299 157 -1309 444 -1301.433 -1304.154 -1305.936

606 461 610 795 615.015 619.127 623.135 627.046 630.864 634.592 638 236 641.798

157 039 157 096 157.148 157.195 157.239 157.239 157.349 157.340 157.340

422.129 437.836 453.548 469.265 484.987

681 653 693 81 702.513 702.513 702.513 702.635 702.635 703.635

-6.317 -6.714 -7.093 -7.455 -7.801

495.797 539.819 583.901 627.979 672.046

-1307.990 -1310.322 -1312.933 -1315.241 -1317.195

579.394 595.139 610.887 626 636 642.388

648.283 648.693 652.031 655.302 658.506

157 437 157 462 157.485 157.507 157.528

-8.134 -8.453 -8.760 -9.055 -9.339

716.285 760.595 804.977 849.438 893.977

-1320.299 -1323.637 -1327.203 -1330.990 -1334.990

658.142 673.897 689 655 705 414 721.174

667 749 670.715 673.626

804.721 808.110 811.427 814 676 817.860

157.547 157.565 157.582 157.597 157.512

676.485 679.293 682.052 684.765 687.432

820.982 824.043 827.046

157.626 157.639 157.652 157.654 157.655

661.647

-9.613 -9.876

10.131 10.376 10.614

- 1342.534 - 1346.987 - 1351.053 - 1355.457

736.936 752.699 768 464 784.230 799 996

-1339.196

10.844

938.598 983.146 1072.680 1117.556 11162.565 1207.659 1252.843 1298.111

690.055 692.635 695.174

157.685 157.695 157.705 157.714

39.360 39.360 39.360 22.868 22.868 22.868 10.173 11.121 11

-381,574 -337,425 -293,350 -249,339 -205,384

-1309.485 -1307.857 -1306.326 -1304.904 -1303.600

555.213 561.127 566.835 572.350 577.685

-828.868 -783.516 -738.333 -693.305 -648.421 -603.670 -559.041 -514.527 -470.116 -425.801

1318.680 1316.734 1314.832 1312.983 1311.197

187.853 203.328 218.838 234.377 249.942

522 011 529 195 536.089 542 710 549.080

151 034 152.072 153.563 154.08 154.08 155.25 155.25 155.26 155.28 156.28 156.28 156.28

-1326.703 -1324.680 -1322.662 -1320.659

515.577 55.4777 55.2075 56.706 58.209 607.488 618.844 629.458 649.840 649.660 649.660 649.660 649.660 649.660 649.660

1328.717

86.165 71.998 61.356 53.004 45.674

-989.749 -964.852 -939.695 -913.263 -874.403

5.898 11.309 11.309 18.187 24.688 38.216 66.686 66.686 81.374 96.263 111.303 111.303 121.449 172.419

430.184 440.861 451.420 461.659 471.497 480.909 489.898 498.480 506.676 514.512

138 194 142.552 145 680 147.979 149.708

-1138.147

184 688 156 644 135.568 119.131 105.959

-1061 100 -1060.719 -1049.595 -1038.146 -1026.309 -1014.265

-1122.634 -1128 448 -1132.027 -1133.849 -1135.557

415 119 419.854

407 166 424.706 440 751 455.535 469.231

110.346 117.228 123.053 127.929 131.990

185 900

-1114*5*22 -1118.992 -1120 869

492.557 416.040 408.254

308 845 365 960 387 780 406 484

93.381 102.369 110.070

406.484

-1109 287

H°-H'(T,)

 $-[G^{\bullet}-H^{\bullet}(T_{*})]T$

-K-'moi-

-1122.567

Standard State Pressure = $p^* = 0.1$ MPa

CURRENT June 1979 (1 bar)

Cesium Sulfate (Cs₂SO₄)

PREVIOUS: June 1979 (1 atm)

Enthalpy Reference Temperature = T, = 298.15 K -1109 3 ± 17.0 kJ·mol⁻¹ $1122.6 \pm 17.0 \text{ kJ} \cdot \text{mol}^{-1}$ $S^{(298.15 \text{ K})} = 406.5 \pm 2 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

IDEAL GAS

Cesium Sulfate (Cs₂SO₄)

$\Delta_t H^{\circ}(0 \text{ K}) = -$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -$	
), H¹∇	nd Degeneracies
	al Frequencies, Symmetries, and Degeneracies
	=

Vibrational Frequencies, Symmetries, and Degeneracies	cies, Symmetries	, and Degeneracies
u, cm	u, cm	u, cm
A ₁ [970](1)	B ₁ [460](1)	E 1100 (2)
[510](1)	B ₂ 1125 (1)	607 (2)
(1)[06]	628 (1)	160 (2)
	190 (1)	[40](2)
Ground State Quantum Weight: 1	H: -	σ-4
Point Group: D ₂₄	•	
Bond Distances: S-0 = 149 \pm 002 A, Ca-0 = 260 \pm 007 A	±002 A, Ca	$0 = 260 \pm 0.07 \text{ A}$

Enthalpy of Formation

Product of the Moments of Inertia. $I_A I_B I_C = 3.287254 \times 10^{-111} \text{ g}^3 \text{ cm}^6$

Bond Angles: O-S-O = 109.47°, O-Ca-O = 55 ± 5°

previous studies²³ but the data show a substantial drift. The mass spectrometric study of Ficalora et al. 1 yields vapor pressures which are much lower than results of the other three studies. The adopted value of the enthalpy of formation, $\Delta_t H^0(Cs_2O_4, g, 298.15 \, K) = -268.3 \pm 4.0$ keal mol-1, is based on JANAF analyses of the vaporization data given below. The calculated 3rd law AH"(298 15 K) may have an Vaporization experiments on Cs₂SO₄ have been carned out by Ficalora et al., Cubicciotti, Gorokhov and Efimova, and Jaganathan and Wyatt.* Cubicciotti² carried out Langmuir sublimation experiments which showed that Cs,SO4(cr, I) vaporizes congruently and the predominant vapor species is Cs₂SO₄(g) The Knudsen effusion experiments of Cubicciotti² are in excellent agreement with the mass spectrometric and effusion data of Gorokhov and Efimova.³ The Knudsen weight loss results of Jagannathan and Wyatt⁴ are in good agreement with the uncertainty of 4 kcal-mol⁻¹ since the JANAF Gibbs energy functions are partially based on the estimated molecular constants of Cs₃SO₄(g)

			Data	SS.	Δ,H°(298 15 K), kcal mol ⁻¹), kcal mol-1	Δ ₁ H°(298 15 K)
Source	Method	<i>T/</i> K	Points	cal·K-' mol-'	2nd law	3rd law	kcal·mol ~1
-	mass spec.	950-1200	graph	-6.2 ± 20	75 65 ± 2.0	80.28 ± 2.0	-264.52 ± 4.0
7	Knudsen effusion	1092.6-1260.6	15	5 14 ± 0.5	82.57 ± 0.5	76.54 ± 0.6	-268.26 ± 2.0
7	Knudsen effusion	1148.8-1261.6	7	3.80 ± 0.9	81.05 ± 1.0	76.48 ± 0.4	-268.32 ± 2.0
m	mass spec.	1063-1278	cdu	1.48	78.2 ± 0.5	76.48 ± 0.5	-268.32 ± 2.0
•	Knudsen effusion	1102-1269	uba	12.84	92.28	76.95 ± 1.8	-267.85 ± 4.0

Reaction Cs₂SO₄(cr) = Cs₂SO₄(g)

Heat Capacity and Entropy

large amplitudes of vibration, I(CsS) = 0.15 Å, I(CsO) = 0.34 Å³ The average structure is of D₂₄ symmetry and can be pictured as having a central sulfur atom surrounded at the corners of a tetrahedron by four oxygen atoms with bridging cestum atoms between two pairs of oxygen atoms. The planar CsO₃S rings are mutually perpendicular. The principal moments of mertia are: $I_A = 15.7294 \times 10^{-39}$ and $I_B = I_C = 457.1516 \times 10^{-39}$ g·cm². The structure of cesium sulfate is based on the high temperature electron diffraction studies of Ugarov et al. 3 and of Spiridonov and Lutoshkin. These studies show a fairly rigid tetrahedral sulfate anion core but with highly mobile cesium atoms as evidenced by the very

Belyaeva et al. investigated the infrared absorption spectra (400–1500 cm⁻¹) of cesium sulfate molecules stabilized in matrices of Ne, Ar, Xe, and H₂ at 4.2 K. The bands listed above at 607, 628, 1100, and 1125 cm⁻¹ are from this work. In a later work, Belyæva et al. * reported the low frequency (30-1500 cm⁻¹) infrared spectra of K₂SO₄, Rb₂SO₄, and Cs₂SO₄ molecules isolated in matrices of Ar, Kr, and Xe. The bands listed above at 160 and 140 cm⁻¹ are from this work. The band estimated at 40 cm⁻¹ is based on our upward adjustment of the calculation of Belyaeva et al. *9 The band estimated at 970 cm⁻¹ is based on the Raman work of Atkins and Gingerich¹⁰ on the similar molecules K₂SO, and Na₂SO₄. The remaining fundamental frequencies are estimated by analogy with the other alkali metal sulfates."

¹P. J Ficalora, O. M. Uy, D. W. Meunow and J. L. Margrave, J. Amer. Ceram. Soc. 51, 574 (1968)

²D. Cubicciotti, High Temp. Sci. 3, 349 (1971).

O. V. Dorofeeva, and V. S. Yungman, Paper ANL-77-21, Conference on High Temperature Sciences Related to Open-cycle, Coal-fired L. N. Gorokhov and A. G. Efimova, Institute for High Temperatures, Annual Report 1975, "Nauka," 1976, as referenced in L. V. Gurich, MHD Systems, Argonne National Laboratory, (1977)

Continued on page 1003

Cesium

Continued from page 981

B. Taylor and I. Langmuir, Phys. Rev. 51, 753 (1937).
 C. F. Bonilla, D. L. Sawhney and M. M. Makansi, Trans. Am. Soc. Met. Metals, 55, 877 (1962).
 Y. Achener, U. S. AEC Rept. AGN-8090, (1964).
 F. Tepper, A. Murchison, et al., Air Force Materials Lab Rept. RTD-TDR-63-4018, Part 1, (1963).
 Bohdansky and H. E. J. Schins, J. Appl.Phys. 36, 3683 (1965).
 P. Stone, C. P. Ewring, et al. J. Chem. Eng. Data 11, 315 (1966).
 Buck and H. Pauly, Z. physik. Chem. (Frankfur) 44, 345 (1965).
 E. Sphil'rain and A. M. Belova, Tepfoffz. Vys. Temp. 5, 477 (1967).
 D. Volyak, Yu. K. Vonogradov, and v. M. Anisimov, Teploffz. Vys. Temp. 6, 521 (1968).
 I. I. Novikov and V. V. Roshchupkin, Tr. Vses. Nauch-Tekh. Konf. Temodin.. Sekts. Teploffz, Svoistva Veshch., 87, (1969).
 C. T. Ewing, J. R. Spann, et al., J. Chem. Eng. Data 15, 508 (1970).
 E. Shpil'rain, E. E. Toskii and Yu. V. Karmyshin, Trudy Mosk. Energ. Inst., No. 75, 62 (1970).
 E. Shpil'rain and E. V. Nikanorov, Teploffz. Svoistva Gasdov Mater. Vses. Teploffz. Konf. Svoistva veshchestvo Vyz. Temp. (1968). Mos. "Nauka," 171, 1970, Teploffz, Vys. Temp. 10, 297 (1972).

(1978).

¹⁸C. E. Moore, U. S. Nat. Bur. Smad. NRSDS-NBS 35, (1971).

¹⁸C. E. Moore, U. S. Nat. Bur. Stand. NRSDS-NBS 35, Vol. III, 1971. [Reprint of NBS Circular 497, vol. III, 1958]. ¹⁸R. G. Behrens, N. O. Woodrow and S. Aronson, J. Chem. Thermodynamics 9, 1035 (1977), ¹J. R. Downey, Jr. The Dow Chemical Compnay, Rept. AFORS-TR-78-0960, Contract No. F44620-1-0048-,

Continuation of discussions of selected Cs species

Continued from page 1002

⁴G. V. Jagannathan and P. A. H. Wyatt, J. Chem. Research (S) 293 (1970).
⁵V. V. Ugarov Y. S. Ezhov and N. G. Rambidi, J. Molec. Struct. 25, 357 (1975).
⁶V. P. Spiridonov and B. I. Lutoshkin, Vest. Mosk. Univ. Khim. 11, 509 (1970).
⁷A. A. Belyaeva, M. I. Dvorkin, and L. D. Shcherba, Optics and Spectroscopy 31, 309 (1971).
⁸A. A. Belyaeva, M. I. Dvorkin, and L. D. Shcherba, Optics and Spectroscopy 38, 120 (1975); correction in Optics and Spectroscopy 43, 114 (1977).
⁹A. A. Belyaeva, M. I. Dvorkin, and L. D. Shcherba, Optics and Spectroscopy 38, 170 (1975).
¹⁰R. M. Atkins and K. A. Gingerich, Chem. Phys. Lett. 53, 347 (1978).
¹¹JANAF Thermochemical Tables: Li₂SO₄(g), 12-31-78; K₂SO₄(g), Na₂SO₄(g), 6-30-78.