Математический анализ ИИИ, 2025

Университет ИТМО Лектор: Ершов А.Р.

Содержание

1	Фев	раль
	1.1	Дифференцируемость функции в точке. Дифференциал
	1.2	Производная
	1.3	Приближение функции, полиномы
	1.4	Уравнение касательной
	1.5	Уравнение нормали
	1.6	Правила дифференцирования
	1.7	Следствия
	1.8	Теорема. Производная композиции функций
	1.9	Теорема. Производная обратной функции
	1.10	Параметрические функции
		1.10.1 Локальный максимум и минимум функции
		1.10.2 Точка внутреннего экстремума
	1.11	Французские теоремы
		1.11.1 Теорема Ферма
		1.11.2 Теорема Ролля
		1.11.3 Теорема Лагранжа и следствия
		1.11.4 Теорема Коши
		1.11.5 Теорема
	1.12	Теорема Эйлера

1 Февраль

1.1 Дифференцируемость функции в точке. Дифференциал.

Определение

Пусть
$$f: E \to \mathbb{R}, E \subset \mathbb{R}, x$$
 — предельная точка $E,$ $(x+h) \in E.$

Если

$$f(x+h) - f(x) = A(x) \cdot h + \alpha(x,h),$$
при $h \to 0$,
$$\lim_{h \to 0} \frac{\alpha(x,h)}{h} = 0,$$

то функция f называется $\partial u \phi \phi e p e h u u p y e m o u в точке <math>x$, а число A(x) называется n p o u s e o d h o u функции f в точке x и обозначается f'(x).

Число $A(x) \cdot h$ называется $\partial u \phi \phi$ еренциалом функции f в точке x и обозначается df(x).

Например, для $f(x) = x^2$:

$$f(x+h)-f(x)=(x+h)^2-x^2=x^2+2xh+h^2-x^2=2xh+h^2, \quad h\to 0$$
 откуда следует $A(x)=2x, \quad h^2=h\cdot h=o(h).$

1.2 Производная

Определение

Пусть $f: E \to \mathbb{R}, E \subset \mathbb{R}, a$ — предельная точка E.

Если $\exists \lim_{x\to a} \frac{f(x)-f(a)}{x-a}$, то его называют производной функции в точке a.

N.B. Пусть x - a = h, то при $x \to a$, $h \to 0$:

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a).$$

LM (О связи производной и дифференциала) f дифференцируема в точке $x \iff \exists$ конечная f'(x).

Доказательство. \implies (Если f дифференцируема в точке x, то существует конечная f'(x)):

По определению, если функция f дифференцируема в точке x, то существует линейное приближение приращения функции:

$$f(x+h) - f(x) = A(x) \cdot h + \alpha(x,h),$$

где $\alpha(x,h)$ — бесконечно малая функция, то есть $\lim_{h\to 0} \frac{\alpha(x,h)}{h} = 0$.

Тогда A(x) является производной f в точке x, то есть f'(x) = A(x). Следовательно, f'(x) существует и конечна.

 \longleftarrow (Если существует конечная f'(x), то f дифференцируема в точке x):

Если существует конечная производная f'(x), то по определению производной:

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x).$$

Это означает, что приращение функции можно записать в виде:

$$f(x+h) - f(x) = f'(x) \cdot h + o(h).$$

Следовательно, f дифференцируема в точке x. \square

 $\mathbf{L}\mathbf{M}$ Если f дифференцируема в x_0 , то f непрерывна в x_0 .

Доказательство. По определению, если функция f дифференцируема в точке x_0 , то существует предел:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0).$$

Это означает, что приращение функции можно записать в виде:

$$f(x_0 + h) - f(x_0) = f'(x_0) \cdot h + o(h).$$

Теперь рассмотрим предел $f(x_0 + h)$ при $h \to 0$:

$$\lim_{h \to 0} f(x_0 + h) = \lim_{h \to 0} \left(f(x_0) + f'(x_0) \cdot h + o(h) \right).$$

Поскольку $f'(x_0) \cdot h \to 0$ и $o(h) \to 0$ при $h \to 0$, получаем:

$$\lim_{h \to 0} f(x_0 + h) = f(x_0).$$

Следовательно, f непрерывна в точке x_0 .

N.B. Не работает в обратную сторону.

N.B.
$$tan(\alpha_{\text{касательной}}) = f'(x_0), \quad x_0$$
— точка касания.

1.3 Приближение функции, полиномы

Приближение функции f(x) в точке x_0 в виде

$$f(x) = \sum_{k=0}^{n} c_k (x - x_0)^k + o((x - x_0)^n), \quad x \to x_0,$$

где

$$c_n = \lim_{x \to x_0} \frac{f(x) - \left(c_0 + c_1(x - x_0) + \dots + c_{n-1}(x - x_0)^{n-1}\right)}{(x - x_0)^n}.$$

Является приближением f(x) в полиномиальном виде.

1.4 Уравнение касательной

Касательная к f(x) в точке x_0 определяется уравнением вида

$$k(x) = c_0 + c_1(x - x_0),$$
 что $f(x) - k(x) = o(x - x_0), x o x_0$

Из предыдущего пункта:

$$c_0 = \lim_{x \to x_0} f(x) = f(x_0),$$
 $c_1 = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$
 $k(x) = f(x_0) + f'(x_0) \cdot (x - x_0)$ (Если функция дифференцируема в точке x_0)

1.5 Уравнение нормали

Уравнение нормали функции в точке x_0 задается так:

$$n(x) = f(x_0) - \frac{1}{f'(x_0)} \cdot (x - x_0)$$

1.6 Правила дифференцирования

Теорема

Пусть f и g дифференцируемы в точке x, тогда:

1.
$$(f+g)(x) = f(x) + g(x)$$

$$2. (fg)(x) = f(x) \cdot g(x)$$

Author: Vadim Tiganov

3.
$$\frac{f}{g}(x) = \frac{f(x)}{g(x)}, g \neq 0$$

Дифференцируемы в x.

1.
$$(f+g)' = f' + g'$$

$$2. (f \cdot g)' = f' \cdot g + f \cdot g'$$

$$3. \left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$$

Доказательство. 1. Так как f и g дифференцируемы в точке x,

$$f(x+h) - f(x) = f'(x) \cdot h + o(h), h \to 0$$

$$g(x+h) - g(x) = g'(x) \cdot h + o(h), h \to 0$$

Рассмотрим

$$(f+g)(x+h) - (f+g)(x) =$$
 $f(x+h) - f(x) + g(x+h) - g(x) = f'(x) \cdot h + o(h) +$
 $g'(x) \cdot h + o(h) = h \cdot (\mathbf{f}'(\mathbf{x}) + \mathbf{g}'(\mathbf{x})) + o(h), h \to 0,$
вида $A(x) \cdot h + o(h)$

 \implies дифференцируемо в x.

$$3. \left(\frac{f}{g}\right)(x+h) - \left(\frac{f}{g}\right)(x) = \frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)} = \frac{f(x+h) \cdot g(x) - f(x) \cdot g(x+h)}{g(x+h) \cdot g(x)}$$

$$= \frac{f(x)g(x) + f'(x)g(x)h - f(x)g(x) - f(x)g'(x)h + o(h)}{g(x) \cdot g(x+h)} =$$

$$=rac{(f'(x)g(x)-f(x)g'x)\cdot h}{g(x)\cdot g(x+h)}=rac{A(x)\cdot h+o(h)}{g^2(h)},$$
 так как $h o 0\Longrightarrow$ дифференцируемо в $x.$

$$(f(x+h) - f(x) = f'(x) \cdot h + o(h)) \implies f(x+h) = f(x) + f'(x) \cdot h + o(h)$$

2. Доказывается аналогично частному.

1.7 Следствия

1.
$$(\sum_{k=0}^{n} \alpha_k \cdot f_k(x))' = \sum_{k=0}^{n} \alpha_k \cdot f'_k(x)$$

2.
$$(\prod_{n=1}^k f_n)' = f_1' \cdot f_2 \cdot \dots \cdot f_n + f_1 \cdot f_2' \cdot \dots \cdot f_n + \dots + f_1 \cdot f_2 \cdot \dots \cdot f_n'$$

1.8 Теорема. Производная композиции функций.

$$(gf)'(x) = (g(f(x)))' = g'(f(x)) \cdot f'(x)$$

 $f:X\to Y,X\subset Y,f$ дифференцируема в x $g:Y\to\mathbb{R},Y\subset\mathbb{R},g$ дифференцируема в y=f(x)

Доказательство. $f(x+h)-f(x)=f'(x)\cdot h+o(h), h\to 0$ $g(y+t)-g(y)=g'(y)\cdot t+o(t), t\to 0$

$$(gf)(x+h) - gf(x) = g(f(x+h)) - g(f(x)) =$$

= $g(f(x) + f'(x) \cdot h + o(h)) - g(f(x))$

$$f(x) = y$$

Возьмем за $t: f'(x) \cdot h + o(h)$, тогда

$$g(f(x)+t)-g(f(x))=g(y+t)-g(y)=g'(y)\cdot t+o(t)=$$
 = $g'(f(x))\cdot (f'(x)\cdot h+o(h))+o(f'(x)\cdot h+o(h))=$ = $g'(x)\cdot f'(x)\cdot h+o(h), h\to 0$ Возьмем за $A(x)\cdot h:g'(x)\cdot f'(x)\cdot h$ $\Longrightarrow A(x)\cdot h+o(h)$, дифференцируемо.

1.9 Теорема. Производная обратной функции

$$f$$
 дифференцируема в $x_0, \exists f^{-1}(x)$ $(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}$

Доказательство. ВОЗЬМЕМ
$$y_0 = f(x_0)$$
 $(f^{-1})' = \lim_{h \to 0} \frac{f^{-1}(y_0 + h) - f^{-1}(y_0)}{h} =$ $= \lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} =$ $= \lim_{x \to x_0} \frac{f^{-1}(f(x)) - f^{-1}(f(x_0))}{f(x) - f(x_0)} =$ $= \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} =$ $= \frac{1}{f'(x)}$

Пример нахождения производной

$$(x^n)' = nx^{n-1}$$

Рассмотрим определение производной:

$$\lim_{h\to 0}\frac{(x+h)^n-x^n}{h}.$$

Вынесем x^n :

$$(x+h)^n = x^n \left(1 + \frac{h}{x}\right)^n.$$

Тогда:

$$\lim_{h \to 0} \frac{x^n \left((1 + \frac{h}{x})^n - 1 \right)}{h}.$$

Используем приближенное разложение $(1+u)^n \approx 1 + nu + o(u)$ при малых u:

$$(1+\frac{h}{x})^n - 1 \approx n\frac{h}{x} + o(h).$$

Подставляем:

$$\lim_{h \to 0} \frac{x^n \left(n \frac{h}{x} + o(h) \right)}{h}.$$

Раскрываем множители:

$$\lim_{h \to 0} \frac{nx^{n-1}h + x^n o(h)}{h}.$$

Author: Vadim Tiganov

Разделяем дробь:

$$\lim_{h\to 0} \left(nx^{n-1} + x^n \frac{o(h)}{h} \right).$$

Так как $\frac{o(h)}{h} \to 0$ при $h \to 0,$ остается:

$$nx^{n-1}$$
.

Следовательно, производная:

$$(x^n)' = nx^{n-1}.$$

1.10 Параметрические функции

$$\begin{cases} x(t) = \cos(t) \\ y(t) = \sin(t) \end{cases}$$
$$y'_x = \frac{y'_t}{x'_t} = \frac{\cos(t)}{-\sin(t)} = -\operatorname{ctg}(t)$$

1.10.1 Локальный максимум и минимум функции

Пусть функция:

$$f(x): E \to \mathbb{R}, E \subset \mathbb{R}, x_0 \in E$$

Определим локальный максимум(минимум) функции как:

$$\exists U(x_0) \subset E : \forall x \in U(x_0) :$$

$$1.f(x_0) \ge f(x)$$

$$2.f(x_0) \le f(x)$$

В случаях 1. и 2. соответственно точку x_0 называют локальным максимумом или минимумом.

 $f(x_0)$ — локальный максимум или минимум соответственно.

Точка экстремума — точка локального максимума или минимума. (x_0)

1.10.2 Точка внутреннего экстремума

Точка x_0 будет называться точкой внутреннего экстремума если она является экстремумом, а также:

$$f(x): E \to \mathbb{R}, E \subset \mathbb{R}, x_0 \in E$$

 x_0 - предельная точка E_+ и E_-

$$E_{+} = \{x \in E | x > x_0\}$$

$$E_{-} = \{ x \in E | x < x_0 \}$$

 E_{+}, E_{-} — неформально, множества, где всё либо больше, либо меньше E.

1.11 Французские теоремы

1.11.1 Теорема Ферма

Рассмотрим $f(x): E \to \mathbb{R}, E \subset \mathbb{R}, x_0$ — точка внутреннего экстремума, f(x) дифференцируема в $x_0 \Longrightarrow f'(x_0) = 0$

Доказательство.

$$f(x_0 + h) - f(x_0) = f'(x_0) \cdot h + o(h)$$

1. x_0 — точка локального максимума $\implies f(x_0+h)-f(x_0)\leq 0$

Рассмотрим случаи
$$h \to 0_+, h \to 0_-$$
: $1.h \to 0_+, f'(x_0) = \lim_{h \to 0_+} \frac{f(x_0 + h) - f(x_0)}{h} \le 0$

Author: Vadim Tiganov

$$2.h \to 0_-, f'(x_0) = \lim_{h \to 0_-} \frac{f(x_0 + h) - f(x_0)}{h} \ge 0$$

 $\implies f'(x_0) = 0$

Для локального минимума доказывается аналогично, оставим на усмотрение внимательному читателю. \square

NB

Обратное неверно.

- 1.11.2 Теорема Ролля
- 1.11.3 Теорема Лагранжа и следствия

Теорема

Следствия

- 1.
- 2.
- 1.11.4 Теорема Коши
- 1.11.5 Теорема
- 1.12 Теорема Эйлера

Author: Vadim Tiganov