Chapitre 19 - Matrices et applications linéaires

1 Matrices d'une application linéaire

1.1 Matrice d'une famille de vecteurs

Définition 1.1. Soit E un \mathbb{K} -espace vectoriel de dimension n et $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base de E.

Soit $x \in E$, on appelle matrice de x dans la base \mathcal{B} , la matrice colonne notée $M_{\mathcal{B}}(x)$ dont les coefficients sont les coordonnées de x dans la base \mathcal{B} :

Si
$$x=a_1e_1+a_2e_2+\cdots+a_ne_n$$
, alors $\operatorname{M}_{\mathcal{B}}(x)=\left(egin{array}{c} a_1 \ dots \ a_n \end{array}\right).$

La matrice dans la base $\mathcal B$ d'une famille de vecteurs (x_1,x_2,\ldots,x_p) de E notée $M_B(x_1,x_2,\ldots,x_p)$ est la matrice dont la j-ième colonne pour $j\in [\![1,p]\!]$ est constituée des n coordonnées de x_j dans la base $\mathcal B$.

$$\text{Si pour } j \in \llbracket 1,p \rrbracket, \quad x_j = \sum\limits_{i=1}^n a_{ij} e_i \text{ alors} \qquad \mathbb{M}_B(x_1,x_2,\ldots,x_p) = (a_{i,j})_{i \in \llbracket 1,n \rrbracket, j \in \llbracket 1,p \rrbracket} = \left(\begin{array}{cccc} a_{11} & \ldots & a_{1j} & \ldots & a_{1p} \\ \vdots & \ldots & \vdots & \ldots & \vdots \\ a_{n1} & \ldots & a_{nj} & \ldots & a_{np} \end{array}\right)$$

1.2 Matrice d'une application linéaire

Définition 1.2. Soit E et F deux espaces vectoriels de dimension finie et $\mathcal{B}_1 = (e_1, e_2, \dots, e_p)$ une base de E, $\mathcal{B}_2 = (f_1, f_2, \dots, f_q)$ une base de F. Soit $u \in \mathcal{L}(E, F)$ une application linéaire de E dans F.

On appelle matrice de l'application linéaire u dans les bases \mathcal{B}_1 et \mathcal{B}_2 , la matrice, notée $M_{\mathcal{B}_1,\mathcal{B}_2}(u)$, de la famille de vecteurs $(u(\mathcal{B}_1))$ dans la base \mathcal{B}_2 :

$$\mathrm{M}_{\mathcal{B}_1,\mathcal{B}_2}(u)=\mathrm{M}_{\mathcal{B}_2}(u(\mathcal{B}_1))=\mathrm{M}_{\mathcal{B}_2}(u(e_1),u(e_2),\ldots,u(e_p))$$

On a $M_{\mathcal{B}_1,\mathcal{B}_2}(u) \in \mathcal{M}_{q,p}(\mathbb{K})$.

1.3 Matrice d'un endomorphisme

Définition 1.3. Soit E un espace vectoriel de dimension finie et $\mathcal{B} = (e_1, e_2, \dots, e_p)$ une base de E. Soit $v \in \mathcal{L}(E)$ un endomorphisme de E.

On appelle matrice de l'endomorphisme v dans la base \mathcal{B} , la matrice, notée $M_{\mathcal{B}}(v)$, de l'application linéaire v dans le couple de bases \mathcal{B} et \mathcal{B}

$$M_{\mathcal{B}}(v) = M_{\mathcal{B},\mathcal{B}}(v) = M_{\mathcal{B}}(v(e_1), v(e_2), \dots, v(e_p))$$

1.4 Matrice d'une combinaison linéaire d'applications linéaires

Proposition 1.1. Soit E un espace vectoriel de dimension finie de base \mathcal{B} . soit $x,y\in E$ et $\alpha\in\mathbb{K}$, on a

$$M_{\mathcal{B}}(\alpha x + y) = \alpha M_{\mathcal{B}}(x) + M_{\mathcal{B}}(y)$$

Proposition 1.2. Soit E, F deux espaces vectoriels de dimension finie.

Soit \mathcal{B}_1 une base de E et \mathcal{B}_2 une base de F.

Soit
$$u, v \in \mathcal{L}(E, F)$$
 et $\alpha \in \mathbb{K}$.

$$\mathrm{M}_{\mathcal{B}_1,\mathcal{B}_2}(\alpha u + v) = \alpha \, \mathrm{M}_{\mathcal{B}_1\mathcal{B}_2}(u) + \mathrm{M}_{\mathcal{B}_1\mathcal{B}_2}(v).$$

2 Matrices et applications linéaires

2.1 Calcul des coordonnées de l'image

Proposition 2.1. Soit E et F deux espaces vectoriels de dimension p et q, \mathcal{B}_1 une base de E et \mathcal{B}_2 une base de F. Soit $u \in \mathcal{L}(E,F)$ de matrice A dans les bases \mathcal{B}_1 et \mathcal{B}_2 : $A = M_{\mathcal{B}_1,\mathcal{B}_2}(u)$.

 $Si \ x \in E$ a pour matrice X dans \mathcal{B}_1 et y = u(x) a pour matrice Y dans \mathcal{B}_2 , alors on a

$$Y = AX$$
 soit $M_{\mathcal{B}_2}(u(x)) = M_{\mathcal{B}_1\mathcal{B}_2}(u) \cdot M_{\mathcal{B}_1}(x)$.

2.2 Matrice de la composée de deux applications linéaires

Théorème 2.2. Soit n, p, q des entiers non nuls. Soit E, F, G des espaces vectoriels de dimensions respectives n, p et q et ayant pour bases respectives \mathcal{B}_1 \mathcal{B}_2 et \mathcal{B}_3 .

 $Soit \ u \in \mathcal{L}(E,F) \ \ de \ matrice \ A \ \ dans \ les \ \ bases \ \mathcal{B}_1 \ \ et \ \mathcal{B}_2 \ \ et \ v \in \mathcal{L}(F,G) \ \ de \ matrice \ B \ \ dans \ \ les \ \ bases \ \mathcal{B}_2 \ \ et \ \mathcal{B}_3.$

Alors BA est la matrice de $v \circ u$ dans les bases \mathcal{B}_1 et \mathcal{B}_3 :

$$M_{\mathcal{B}_1\mathcal{B}_3}(v \circ u) = M_{\mathcal{B}_2\mathcal{B}_3}(v). M_{\mathcal{B}_1\mathcal{B}_2}(u).$$

2.3 Matrices inversibles et isomorphismes

Théorème 2.3. Soit E et F deux espaces vectoriels de bases \mathcal{B}_1 et \mathcal{B}_2 . Soit $f \in \mathcal{L}(E, F)$.

f est un isomorphisme si et seulement si la matrice de f dans les bases \mathcal{B}_1 et \mathcal{B}_2 est carrée et inversible. Dans ce cas, la matrice de l'application réciproque f^{-1} est la matrice inverse de la matrice de l'application f:

$$M_{\mathcal{B}_2\mathcal{B}_1}(f^{-1}) = (M_{\mathcal{B}_1\mathcal{B}_2}(f))^{-1}$$

3 Changements de bases

3.1 Matrices de passage

Définition 3.1. Soit E un espace de dimension n, $\mathcal{B} = (e_1, e_2, \dots, e_n)$ et $\mathcal{B}' = (e'_1, e'_2, \dots, e'_n)$ deux bases de E. On appelle matrice de passage de \mathcal{B} à \mathcal{B}' notée $P_{B \to B'}$ la matrice de la famille \mathcal{B}' dans la base \mathcal{B} : $P_{B \to B'} = M_{\mathcal{B}}(\mathcal{B}')$

Lemme 3.1. La matrice de passage de \mathcal{B} à \mathcal{B}' est $P_{B\to B'}=\mathrm{M}_{\mathcal{B}'\mathcal{B}}(id_E)$.

Théorème 3.2. Une matrice de passage est inversible et $P_{B'\to B} = (P_{B\to B'})^{-1}$.

Lemme 3.3. Soit \mathcal{B} une base de E de dimension n et x_1, x_2, \ldots, x_n une famille de vecteurs de E. (x_1, x_2, \ldots, x_n) est une base de E si et seulement si $M_{\mathcal{B}}(x_1, x_2, \ldots, x_n)$ est inversible.

3.2 Effet d'un changement de base sur la matrice d'un vecteur

Théorème 3.4. Soit E un espace de dimension finie, \mathcal{B} et \mathcal{B}' deux bases et P la matrice de passage de \mathcal{B} à \mathcal{B}' .

 $Si \ x \in E$, on note $X = \mathrm{M}_{\mathcal{B}}(x)$ et $X' = \mathrm{M}_{\mathcal{B}'}(x)$, alors, on a la relation X = PX'

qui donne les coordonnées dans l'ancienne base en fonction des coordonnées dans la nouvelle base.

$$\mathrm{M}_{\mathcal{B}}(x) = \mathrm{M}_{\mathcal{B}'\mathcal{B}}(id_E).~\mathrm{M}_{\mathcal{B}'}(x)$$

3.3 Effet d'un changement de base sur la matrice d'une application linéaire

Théorème 3.5. Soit E un espace de dimension finie et deux bases \mathcal{B}_1 et \mathcal{B}'_1 .

Soit F un espace vectoriel de dimension finie et deux bases \mathcal{B}_2 et \mathcal{B}'_2 .

Soit P la matrice de passage de \mathcal{B}_1 à \mathcal{B}'_1 . Soit Q la matrice de passage de \mathcal{B}_2 à \mathcal{B}'_2 .

Soit $u \in \mathcal{L}(E,F)$ de matrice A dans les bases \mathcal{B}_1 et \mathcal{B}_2 et de matrice A' dans les bases \mathcal{B}_1' à \mathcal{B}_2' .

$$On \ a \qquad \qquad A' = Q^{-1}AP \qquad \qquad soit \qquad \mathop{\mathrm{M}}_{\mathcal{B}_1'\mathcal{B}_2'}(u) = \mathop{\mathrm{M}}_{\mathcal{B}_2\mathcal{B}_2'}(id_F). \ \mathop{\mathrm{M}}_{\mathcal{B}_1\mathcal{B}_2}(u). \ \mathop{\mathrm{M}}_{\mathcal{B}_1'\mathcal{B}_1}(id_E)$$

3.4 Effet d'un changement de base sur la matrice d'un endomorphisme

Théorème 3.6. Soit E un espace de dimension finie, B et B' deux bases et P la matrice de passage de B à B'. Soit u un endomorphisme de E de matrice A dans la base B et de matrice A' dans la base B'.

On a
$$A' = P^{-1}AP$$
. soit $M_{\mathcal{B}'}(u) = M_{\mathcal{B}\mathcal{B}'}(id_E)$. $M_{\mathcal{B}}(u)$. $M_{\mathcal{B}'\mathcal{B}}(id_E)$

4 Rang d'une matrice

4.1 Application linéaire canoniquement associée à une matrice

Définition 4.1. Soit A matrice de $\mathcal{M}_{np}(\mathbb{K})$. On appelle application linéaire canoniquement associée à A, l'unique application linéaire de \mathbb{K}^p dans \mathbb{K}^n dont la matrice dans les bases canoniques de \mathbb{K}^p et \mathbb{K}^n est A.

4.2 Image et noyau d'une matrice

Définition 4.2. Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ une matrice. On appelle noyau et image de A notés $\operatorname{Ker} A$ et $\operatorname{Im} A$ les noyaux et images de l'application linéaire canoniquement associée à A.

Proposition 4.1. Le noyau d'une matrice A est l'ensemble des solutions du système AX = 0.

L'image d'une matrice A est l'ensemble des seconds membres B pour lesquels le système AX = B a au moins une solution.

4.3 Rang d'une matrice

Théorème 4.2. Le rang d'une matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$ qui est le nombre de pivots de sa matrice échelonnée réduite par lignes est égal au rang de l'application linéaire associée à A.

 $On \ a \qquad \operatorname{rg} A = \dim \operatorname{Im} A.$

Corollaire 4.3. Le rang d'une matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$ est égal au rang des vecteurs colonnes de A dans \mathbb{K}^n .

Corollaire 4.4. Étant donnée une base \mathcal{B} d'un espace vectoriel E, le rang d'une famille de vecteurs (x_1, x_2, \dots, x_p) de E est égal au rang de la matrice des vecteurs dans la base \mathcal{B} : $\operatorname{rg}(x_1, x_2, \dots, x_n) = \operatorname{rg} \operatorname{M}_{\mathcal{B}}(x_1, x_2, \dots, x_n)$

Corollaire 4.5. Le rang d'une application linéaire u de E dans F est le rang de la matrice de u dans n'importe quelles bases de E et F.

4.4 Rang et matrice inversible

Théorème 4.6. Une matrice carrée est inversible si et seulement si elle est de rang maximal si et seulement si ses vecteurs colonnes forment une base de \mathbb{K}^n

Théorème 4.7. Si $A \in \mathcal{M}_n(\mathbb{K})$, $B \in \mathcal{M}_p(\mathbb{K})$ sont des matrices inversibles et si $M \in \mathcal{M}_{n,p}(\mathbb{K})$ est une matrice, alors $\operatorname{rg}(AM) = \operatorname{rg}(M) = \operatorname{rg}(MB)$: on ne change pas le rang quand on multiplie par une matrice inversible.

Théorème 4.8. Deux matrices équivalentes par lignes ont le même rang.

4.5 Rang de la transposée

Proposition 4.9. Le rang d'une matrice est égal : au rang de ses vecteurs colonnes et au rang de ses vecteurs lignes et au rang de sa transposée.

Théorème 4.10. Deux matrices équivalentes par colonnes ont le même rang.

5 Exemples de transformations vectorielles du plan euclidien

5.1 Rotations vectorielles

Définition 5.1. Dans le plan euclidien, on appelle rotation vectorielle d'angle $\theta \in \mathbb{R}$, l'application r_{θ} telle que pour tout vecteur \vec{u} on ait $(\vec{u}, r_{\theta}(\vec{u})) = \theta$ $[2\pi]$ et $||\vec{u}|| = ||r_{\theta}(\vec{u})||$.

Proposition 5.1. Si f est un endomorphisme d'un espace vectoriel euclidien, alors f conserve le produit scalaire si et seulement si f conserve la norme.

Alors f est un automorphisme. On dit que f est un automorphisme orthogonal.

5.2 Matrice d'une rotation dans une BOND

Théorème 5.2. La matrice de r_{θ} dans une BOND est $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

5.3 Composée de deux rotations

Proposition 5.3. La composée des rotations r_{θ} et r_{φ} donne la rotation $r_{\theta+\varphi}$

$$r_{ heta} \circ r_{arphi} = r_{arphi} \circ r_{ heta} = r_{ heta + arphi}$$

Corollaire 5.4. *Matriciellement*, $R_{\theta} \times R_{\varphi} = R_{\varphi} \times R_{\theta} = R_{\theta+\varphi}$

Théorème 5.5. Une rotation r_{θ} est un automorphisme du plan et $r_{\theta}^{-1} = r_{-\theta}$.

5.4 Symétrie orthogonale vectorielle

Proposition 5.6. Soit \vec{v} un vecteur non nul du plan euclidien. L'ensemble des vecteurs orthogonaux à \vec{v} est un sous-espace vectoriel du plan noté \vec{v}^{\perp} .

De plus, Vect \vec{v} et \vec{v}^{\perp} sont supplémentaires dans le plan.

Définition 5.2. Soit \vec{v} un vecteur non nul du plan euclidien. On appelle symétrie vectorielle orthogonale par rapport à \vec{v} , la symétrie par rapport à Vect \vec{v} parallèlement à \vec{v}^{\perp} .

C'est à dire que $s_{\vec{v}}$ est définie par $s_{\vec{v}}=\vec{u}_1-\vec{u}_2$ où $\vec{u}_1\in \mathrm{Vect}\, \vec{v}$ et $\vec{u}_2\in \vec{v}^\perp$ avec $\vec{v}=\vec{u}_1+\vec{u}_2$.

Théorème 5.7. Pour $\vec{v} \neq 0$, l'application $s_{\vec{v}}$ est un automorphisme du plan vectoriel. $s_{\vec{v}}$ conserve le produit scalaire, la norme, change l'orientation des angles et vérifie $s_{\vec{v}} \circ s_{\vec{v}} = id_P$.

5.5 Matrice d'une symétrie orthogonale dans une BOND

Théorème 5.8. Soit P le plan euclidien muni d'une BOND (\vec{i}, \vec{j}) .

 $Si\ ec{v}\ fait\ un\ angle\ (ec{i},ec{v})=arphi\ avec\ le\ vecteur\ ec{i},\ alors\ s_{ec{v}}\ a\ pour\ matrice\ S_{2arphi}=\left(egin{array}{c} \cos2arphi & \sin2arphi \\ \sin2arphi & -\cos2arphi \end{array}
ight).$

5.6 Composée de deux symétries orthogonales

Théorème 5.9. Soit \vec{v}_1 et \vec{v}_2 deux vecteurs non nuls du plan vectoriel.

La composée de deux symétries orthogonales $s_{\vec{v}_1}$ et $s_{\vec{v}_2}$ est une rotation d'angle $\theta=2(\vec{v}_1,\vec{v}_2)$ $[2\pi]$.

6 Exemples de transformations vectorielles de l'espace euclidien

6.1 Rotation vectorielle de l'espace

Définition 6.1. Soit \vec{n} un vecteur normé de l'espace euclidien $\mathbb{R}^3 : ||\vec{n}|| = 1$ et $\theta \in \mathbb{R}$.

Tout vecteur \vec{u} se décompose de manière unique en $\vec{u} = \vec{u}_1 + \vec{u}_2$ avec $\vec{u}_1 \in \text{Vect}\,\vec{n}$ et $\vec{u}_2 \perp \vec{n}$.

On appelle rotation vectorielle d'axe dirigé par \vec{n} et d'angle θ , l'application $r_{\theta,\vec{n}}$ définie par

$$r_{\theta,\vec{n}}(\vec{u}) = \vec{u}_1 + \cos\theta \vec{u}_2 + \sin\theta \vec{n} \wedge \vec{u}_2.$$

Proposition 6.1. Une rotation vectorielle est linéaire, bijective, conserve la norme, le produit scalaire et les angles.

6.2 Matrice d'une rotation dans une BOND adaptée

Théorème 6.2. Soit \vec{n} un vecteur normé, $\vec{i} \perp \vec{n}$ avec $||\vec{i}|| = 1$, un vecteur normé orthogonal à \vec{n} . Alors $(\vec{n}, \vec{i}, \vec{n} \wedge \vec{i})$ est une BOND de l'espace.

Soit $\theta \in \mathbb{R}$. La matrice de la rotation d'angle θ autour de \vec{n} , dans la base $(\vec{n}, \vec{i}, \vec{n} \wedge \vec{i})$, est $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$.

6.3 Réflexion

Définition 6.2. On appelle réflexion par rapport au plan P, la symétrie par rapport au plan P parallèlement à la droite vectorielle D orthogonale à P.

C'est à dire l'application s_P telle que pour un vecteur \vec{x} qui se décompose en $\vec{x} = \vec{y} + \vec{z}$ avec $\vec{y} \in P$ et $\vec{z} \perp P$, on a $s_P(\vec{x}) = \vec{y} - \vec{z}$.

6.4 Matrice d'une réflexion dans une BOND adaptée

Théorème 6.3. Soit P un plan vectoriel et (\vec{u}_1,\vec{u}_2) une base de P. On note \vec{n} un vecteur normé normal à P: $\vec{n} = \frac{1}{||\vec{u}_1 \wedge \vec{u}_2||} \cdot \vec{u}_1 \wedge \vec{u}_2.$

$$Soit \ \vec{v_1} = \frac{1}{||\vec{u_1}||} \cdot \vec{u_1}, \ la \ famille \ (\vec{n}, \vec{v_1}, \vec{n} \wedge \vec{v_1}) \ est \ une \ BOND \ de \ l'espace \ et \ la \\ matrice \ de \ s_P \ dans \ cette \ base \ est$$

$$S = \left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right).$$