Homework 1

Problem 1

Starting with the spin 1/2 relation $\langle \mathbf{a} \cdot \mathbf{S} \rangle_{\mathbf{n}} = (\hbar/2)(\mathbf{a} \cdot \mathbf{n})$, where \mathbf{a} is an arbitrary reference vector and $\langle \cdots \rangle_{\mathbf{n}}$ denotes the expectation value evaluated for the ensemble specified by the condition $\operatorname{Prob}_{\mathbf{n}}(S_{\mathbf{n}} = \hbar/2) = 1$ [see, e.g., Eq. (1.18a) and (1.20) in the Lecture Notes],

- (a) compute the uncertainty $\Delta_{\mathbf{n}}(\mathbf{a} \cdot \mathbf{S})$.
- (b) show that $\operatorname{Prob}_{\mathbf{n}}(S_{\mathbf{n}'} = \hbar/2) = \frac{1}{2}(1 + \mathbf{n} \cdot \mathbf{n}').$

Solution

(a) Let $\mathbf{a} = a\mathbf{n}_a$, where $a = |\mathbf{a}|$ and $\mathbf{n}_a = \mathbf{a}/a$ is a unit dimensionless vector. Although $S_{\mathbf{n}_a} = \mathbf{n}_a \cdot \mathbf{S}$ takes on two possible values, $S_{\mathbf{n}_a} = \pm \hbar/2$, we have

$$(\mathbf{a} \cdot \mathbf{S})^2 = (aS_{\mathbf{n}_a})^2 = (\hbar a/2)^2$$

for both values of $S_{\mathbf{n}_a}$, hence $\langle (\mathbf{a} \cdot \mathbf{S})^2 \rangle_{\mathbf{n}} = (\hbar a/2)^2$ for all \mathbf{n} . The uncertainty of $\mathbf{a} \cdot \mathbf{S}$ therefore is

$$\Delta_{\mathbf{n}}(\mathbf{a} \cdot \mathbf{S}) = \sqrt{\langle (\mathbf{a} \cdot \mathbf{S})^2 \rangle_{\mathbf{n}} - \langle \mathbf{a} \cdot \mathbf{S} \rangle_{\mathbf{n}}^2} = \frac{\hbar}{2} \sqrt{a^2 - (\mathbf{a} \cdot \mathbf{n})^2} = \frac{\hbar}{2} |\mathbf{a} \times \mathbf{n}|.$$

(b) The probabilities $P_{\pm} \equiv \operatorname{Prob}_{\mathbf{n}}(S_{\mathbf{n}'} = \pm \hbar/2)$ satisfy the equations

$$P_{+} + P_{-} = 1$$
, $\langle S_{\mathbf{n}'} \rangle_{\mathbf{n}} = (\hbar/2)(\mathbf{n} \cdot \mathbf{n}') = (\hbar/2)P_{+} + (-\hbar/2)P_{-} \implies P_{+} - P_{-} = \mathbf{n} \cdot \mathbf{n}'$.

Solving these equations, we obtain $\operatorname{Prob}_{\mathbf{n}}(S_{\mathbf{n}'} = \hbar/2) = P_+ = \frac{1}{2}(1 + \mathbf{n} \cdot \mathbf{n}')$.

Problem 2

Is it possible to prepare a pure ensemble of spin 1/2 particles for which

- (a) $\langle S_{\mathbf{x}} \rangle = \langle S_{\mathbf{y}} \rangle = \langle S_{\mathbf{z}} \rangle = 0$?
- **(b)** $\langle S_{\mathbf{x}} \rangle + \langle S_{\mathbf{y}} \rangle + \langle S_{\mathbf{z}} \rangle = 0$?

(If your answer is yes, provide an example of an ensemble with the claimed property. If your answer is no, explain why not.)

Solution

(a) NO! Any pure ensemble of spin 1/2 particles is uniquely specified by the unit dimensionless vector (the Bloch vector) \mathbf{n} such that $\operatorname{Prob}(S_{\mathbf{n}} = \hbar/2) = 1$. The expectation value of $\mathbf{a} \cdot \mathbf{S}$ for this ensemble is given by $\langle \mathbf{a} \cdot \mathbf{S} \rangle_{\mathbf{n}} = (\hbar/2)(\mathbf{a} \cdot \mathbf{n})$. Replacing \mathbf{a} here with the unit vectors \mathbf{x}, \mathbf{y} , and \mathbf{z} forming the Cartesian basis, we obtain the exact "sum rule"

$$\langle S_{\mathbf{x}} \rangle_{\mathbf{n}}^2 + \langle S_{\mathbf{y}} \rangle_{\mathbf{n}}^2 + \langle S_{\mathbf{z}} \rangle_{\mathbf{n}}^2 = (\hbar/2)^2.$$

This rule would be violated if $\langle S_{\mathbf{x}} \rangle_{\mathbf{n}}$, $\langle S_{\mathbf{y}} \rangle_{\mathbf{n}}$, and $\langle S_{\mathbf{z}} \rangle_{\mathbf{n}}$ were allowed to vanish simultaneously.

(b) YES! Indeed,

$$\langle S_{\mathbf{x}} \rangle_{\mathbf{n}} + \langle S_{\mathbf{y}} \rangle_{\mathbf{n}} + \langle S_{\mathbf{z}} \rangle_{\mathbf{n}} = \langle (\mathbf{x} + \mathbf{y} + \mathbf{z}) \cdot \mathbf{S} \rangle_{\mathbf{n}} = (\hbar/2)(\mathbf{x} + \mathbf{y} + \mathbf{z}) \cdot \mathbf{n},$$

vanishes for any pure ensemble specified by the Bloch vector \mathbf{n} perpendicular to $\mathbf{x} + \mathbf{y} + \mathbf{z}$, such as $\mathbf{n} = \mathbf{x} - \mathbf{y}$.

Problem 3

A filtered beam of spin 1/2 particles with $S_{\mathbf{n}_0} = \hbar/2$ is sent through N consecutive Stern-Gerlach filters oriented in the directions of the unit vectors $\mathbf{n}_1, \mathbf{n}_2, \dots, \mathbf{n}_N = -\mathbf{n}_0$ such that the angle between \mathbf{n}_i and \mathbf{n}_{i+1} is π/N .

Let $\mathcal{P}(N)$ be the probability that particles in the initial beam successfully pass all N filters.

- (a) Evaluate $\mathcal{P}(N)$ for N=2 and N=3.
- (b) Find $\mathcal{P}(\infty) = \lim_{N \to \infty} \mathcal{P}(N)$ and evaluate the leading term in the expansion of $\mathcal{P}(\infty) \mathcal{P}(N)$ in $1/N \ll 1$. Suggestion: expand $\ln \mathcal{P}(N)$ to the lowest non-vanishing order in 1/N.

Solution

The probability P_i that that particles entering ith filter will pass is given by

$$P_i = \text{Prob}_{\mathbf{n}_{i-1}}(S_{\mathbf{n}_i} = \hbar/2) = \frac{1}{2} (1 + \mathbf{n}_{i-1} \cdot \mathbf{n}_i) = \frac{1}{2} [1 + \cos(\pi/N)] = [\cos(\pi/2N)]^2$$

for all i. The probability $\mathcal{P}(N)$ we are interested in is the product of all p_i , i.e.,

$$\mathcal{P}(N) = \prod_{i=1}^{i=N} p_i = [\cos(\pi/2N)]^{2N}.$$

(a) Using $\cos(\pi/4) = 1/\sqrt{2}$ and $\cos(\pi/6) = \sqrt{3}/2$, we obtain

$$\mathcal{P}(2) = (1/\sqrt{2})^4 = \frac{1}{4}, \qquad \mathcal{P}(3) = (\sqrt{3}/2)^6 = \frac{27}{64}.$$

Notice that $\mathcal{P}(N)$ increases with N.

(b) Taking into account that $\cos \alpha = 1 - \alpha^2/2 + \dots$ and $\ln(1+\beta) = \beta + \dots$ for small α and β , we obtain

$$\ln \mathcal{P}(N) = 2N \ln \left[\cos(\pi/2N)\right] = 2N \ln \left(1 - \frac{\pi^2}{8N^2} + \dots\right) = -\frac{\pi^2}{4N} + \dots,$$

where the ellipsis (\cdots) stands for the higher-order in $1/N \ll 1$ contributions. This gives

$$\mathcal{P}(N \gg 1) = e^{\ln P_N} = 1 - \frac{\pi^2}{4N} + \dots \implies \mathcal{P}(\infty) = 1, \quad \mathcal{P}(\infty) - \mathcal{P}(N) = \frac{\pi^2}{4N} + \dots$$

This result shows that multiple consecutive measurements can *nudge* the state vector into its orthogonal. This observation is the essence of the so-called *quantum Zeno effect*.

Problem 4

Measurements on spin 1/2 particles in a pure quantum state specified by the Bloch vector \mathbf{n} have found

$$\langle S_{\mathbf{n}_1} \rangle_{\mathbf{n}} = \langle S_{\mathbf{n}_2} \rangle_{\mathbf{n}} = \frac{\hbar \alpha}{2}, \quad |\alpha| \leq 1,$$

where the unit vectors $\mathbf{n}_{1,2}$ satisfy $\mathbf{n}_1 \cdot \mathbf{n}_2 = \alpha^2$. Express the Bloch vector \mathbf{n} via \mathbf{n}_1 , \mathbf{n}_2 , and α . Make sure that the expression you found has correct $\alpha \to 0$ and $\alpha \to 1$ limits.

Suggestion: write \mathbf{n} as a linear combination of the three mutually orthogonal vectors $\mathbf{n}_1 + \mathbf{n}_2$, $\mathbf{n}_1 - \mathbf{n}_2$, and $\mathbf{n}_1 \times \mathbf{n}_2$.

Solution

Since $\langle S_{\mathbf{n}_{1,2}} \rangle_{\mathbf{n}} = (\hbar/2)(\mathbf{n}_{1,2} \cdot \mathbf{n})$, the measurement results translate to the relations

$$\mathbf{n}_1 \cdot \mathbf{n} = \mathbf{n}_2 \cdot \mathbf{n} = \alpha.$$

This gives $(\mathbf{n}_1 - \mathbf{n}_2) \cdot \mathbf{n} = 0$, hence the Bloch vector \mathbf{n} is a linear combination of vectors $\mathbf{n}_1 + \mathbf{n}_2$ and $\mathbf{n}_1 \times \mathbf{n}_2$,

$$\mathbf{n} = A(\mathbf{n}_1 + \mathbf{n}_2) + B(\mathbf{n}_1 \times \mathbf{n}_2).$$

Multiplying both sides of this equation by either \mathbf{n}_1 or \mathbf{n}_2 and using $\mathbf{n}_{1,2} \cdot \mathbf{n} = \alpha$ and $\mathbf{n}_1 \cdot \mathbf{n}_2 = \alpha^2$, we obtain

$$\mathbf{n}_1 \cdot \mathbf{n} = A(1 + \mathbf{n}_1 \cdot \mathbf{n}_2) \implies \alpha = A(1 + \alpha^2) \implies A = \frac{\alpha}{1 + \alpha^2}.$$

The remaining coefficient B can now be found from the normalization condition $|\mathbf{n}| = 1$. We have

$$1 = |\mathbf{n}|^2 = A^2 |\mathbf{n}_1 + \mathbf{n}_2|^2 + B^2 |\mathbf{n}_1 \times \mathbf{n}_2|^2 = 2A^2 (1 + \mathbf{n}_1 \cdot \mathbf{n}_2) + B^2 [1 - (\mathbf{n}_1 \cdot \mathbf{n}_2)^2] = \frac{2\alpha^2}{1 + \alpha^2} + B^2 (1 - \alpha^4),$$

so that

$$B^2 = \frac{1}{1 - \alpha^4} \left[1 - \frac{2\alpha^2}{1 + \alpha^2} \right] = \frac{1}{(1 + \alpha^2)^2} \implies B = \pm \frac{1}{1 + \alpha^2}.$$

Thus, the Bloch vector takes on two possible values,

$$\mathbf{n} = \frac{1}{1 + \alpha^2} \left[\alpha(\mathbf{n}_1 + \mathbf{n}_2) \pm (\mathbf{n}_1 \times \mathbf{n}_2) \right].$$

In the limit $\alpha \to 0$ (i.e., for $\mathbf{n}_1 \perp \mathbf{n}_2$ and $\mathbf{n}_{1,2} \perp \mathbf{n}$) this expression simplifies to $\mathbf{n} = \pm \mathbf{n}_1 \times \mathbf{n}_2$, whereas in the limit $\alpha \to 1$ it reduces to $\mathbf{n} = \mathbf{n}_1 = \mathbf{n}_2$. Both limits are obviously correct.