Math 335 HW6

Rohan Mukherjee

November 14, 2023

1. (a) For the first one, we apply the transformation $u = 1 - x^2$. We therefore see that

$$\int_0^1 \frac{x}{\sqrt{1-x^2}} dx = \frac{1}{2} \lim_{\epsilon \to 0} \int_{\epsilon}^1 \frac{1}{\sqrt{u}} du$$
$$= \lim_{\epsilon \to 0} \sqrt{u} \Big|_0^1 = 1$$

So it converges, with value 1.

(b) For the second one, note that $x^2 + x \ge x$ on [0, 1]. Then we may say that

$$0 \leqslant \frac{1}{\sqrt{x}\sqrt[3]{x^2 + x}} \leqslant \frac{1}{\sqrt{x}\sqrt[3]{x}} = \frac{1}{x^{5/6}}$$

By taking cuberoot (preserves order), inverting both sides (reserves inequality), and multiplying by a positive number $(1/\sqrt{x})$. So we may say that

$$0 \leqslant \int_0^1 \frac{1}{\sqrt{x}\sqrt[3]{x^2 + x}} dx \leqslant \int_0^1 \frac{1}{x^{5/6}} dx = \lim_{\varepsilon \to 0} 6x^{1/6} \Big|_{\varepsilon}^1 = 6$$

(c) First, we apply the transformation $u = x^{-1}$, and get that

$$\int_{1}^{\infty} \tan\left(\frac{1}{x}\right) dx = \int_{0}^{1} \frac{\tan(u)}{u^{2}} du = \int_{0}^{1} \frac{\sin(u)}{\cos(u)u^{2}} du$$

We notice that on [0,1], $\cos(\mathfrak{u}) \leqslant 1$, so we can say that this integral is bigger than

$$\int_0^1 \frac{\sin(\mathfrak{u})}{\mathfrak{u}^2} d\mathfrak{u}$$

So suffices to show that the integrand is larger than $1/2\mathfrak{u}^{-1}$ around 0. Notice that

$$\lim_{u\to 0}\frac{\frac{\sin(u)}{u^2}}{\frac{1}{u}}=\lim_{u\to 0}\frac{\sin(u)}{u}=1$$

1

So we can certainly find a $\delta>0$ so that for every $u\in\mathbb{R}_{>0}$ with $u<\delta$, we have that $|\frac{\sin(u)}{u^2}|\frac{1}{u}-1|<1/2$. Using that $-x\leqslant |x|$, we get that $1-\frac{\sin(u)}{u^2}\frac{1}{u}<1/2$, and rearranging this gives us that $1/2<\frac{\sin(u)}{u^2}$. Multiplying both sides by the positive quantity (we chose u to be positive) u^{-1} , we get that $\frac{\sin(u)}{u^2}>1/2u^{-1}$ for a δ -neighborhood around 0. Now applying **Corollary 4.60**, we see that $\int_0^1 \frac{\sin(u)}{u^2}$ diverges, and finally, we deduce that our original integral, $\int_1^\infty \tan(x^{-1})$ also diverges (it was bigger than this integral).

2. We recognize that

$$\int_{0}^{\infty} x^{-1/5} \sin\left(\frac{1}{x}\right) dx = \int_{0}^{\frac{1}{\pi}} x^{-1/5} \sin\left(\frac{1}{x}\right) dx + \int_{\frac{1}{\pi}}^{\infty} x^{-1/5} \sin\left(\frac{1}{x}\right) dx$$

So, it suffices to show that the latter two integrals converge. For the first one note that $|\sin(\frac{1}{x})| \le 1$, so we can say that

$$\left| \int_0^{\frac{1}{\pi}} x^{-1/5} \sin\left(\frac{1}{x}\right) dx \right| \leqslant \int_0^{\frac{1}{\pi}} x^{-1/5} dx$$

By the triangle inequality and noting that $x^{-1/5}$ is strictly positive on $(0,\frac{1}{\pi})$. Next note that by comparing areas, we could instead think of this integral as the area under the curve of the inverse function, which is a function of y. $x^{-1/5}$ maps $(0,\frac{1}{\pi})$ bijectively to $(\pi^{1/5},\infty)$, so we may say that our integral is equal to

$$\int_{\pi^{1/5}}^{\infty} \frac{1}{y^5} dy$$

Which clearly converges (p = 5 > 1). For the second integral, we first apply the change of variables $u = x^{-1}$, and get that

$$\int_{\frac{1}{\pi}}^{\infty} x^{-1/5} \sin\left(\frac{1}{x}\right) dx = \int_{0}^{\pi} \frac{\sin(u)}{u^{9/5}} du$$

Using the sharp bound that $|\sin(x)| \le x$ on $[0, \pi]$, we see that

$$\left| \int_0^{\pi} \frac{\sin(\mathfrak{u})}{\mathfrak{u}^{9/5}} d\mathfrak{u} \right| \leqslant \int_0^{\pi} \mathfrak{u}^{-4/5} d\mathfrak{u}$$

By doing the same idea from before, we can say this integral equals

$$\int_{\pi^{-4/5}}^{\infty} \frac{1}{\mathfrak{u}^{5/4}} d\mathfrak{u}$$

Which clearly converges as again p = 5/4 > 1. So the entire integral converges.

3. We showed that the arclength of a curve $\gamma:[a,b]\to\mathbb{R}^n$ is $\int_{\gamma}d\sigma=\int_a^b\|\gamma'\|dt$.

(a) $\gamma'=(-\alpha\sin(t),\alpha\cos(t),b).$ So we see that $\|\gamma'\|=\sqrt{\alpha^2+b^2}.$ Our integral is therefore

$$\int_{0}^{2\pi} \sqrt{a^2 + b^2} dt = 2\pi \sqrt{a^2 + b^2}$$

(b) For the second one, notice that $\|\gamma'(t)\| = \sqrt{(t^2 - 1)^2 + 4t^2} = \sqrt{t^4 - 2t^2 + 1 + 4t^2} = \sqrt{t^4 + 2t^2 + 1} = \sqrt{(t^2 + 1)^2} = t^2 + 1$. Our integral therefore becomes

$$\int_0^2 t^2 + 1 dt = \frac{4}{3} + 2$$

(c) We see that $\gamma'(t) = \sqrt{\frac{1}{t^2} + 4 + 4t^2} = \sqrt{(2t + t^{-1})^2} = 2t + t^{-1}$ As the inside is positive the whole time. Our integral becomes:

$$\int_0^{2\pi} 2t + t^{-1} dt$$

Which sadly doesn't converge! I suppose then the arclength would be infinite.

4. We parameterize the curve using $\gamma(t)=(t,t^2)$ where $-1 \le t \le 1$. We see that $\gamma'(t)=(1,2t)$, so $\|\gamma'(t)\|=\sqrt{1+4t^2}$. The x-coordinate (times the length of gamma) becomes

$$\int_{-1}^{1} \mathbf{t} \sqrt{1 + 4\mathbf{t}^2} \mathbf{dt} = 0$$

Where we have noticed that the integrand is odd. So the x-coordinate center of mass of our curve is 0. Next we find the length.

$$\int_{-1}^{1} \sqrt{1+4t^2} dt$$

Applying the change of variables $2t = \tan(\theta)$, and noting that our function is even, we get the integral to be

$$\int_{0}^{\arctan(2)} \sec^{3}(\theta) d\theta$$

Now I prove the reduction formula for $\sec^n(\theta)$. By integration by parts $(u = \sec^{n-2}(\theta), dv = \sec^2(\theta))$, we may say that

$$\begin{split} \int & \sec^{\mathbf{n}}(\theta) d\theta = \sec^{\mathbf{n}-2}(\theta) \tan(\theta) - (\mathbf{n} - 2) \int \sec^{\mathbf{n}-2}(\theta) \tan^{2}(\theta) d\theta \\ & = \sec^{\mathbf{n}-2}(\theta) \tan(\theta) - (\mathbf{n} - 2) \int \sec^{\mathbf{n}-2}(\theta) + \sec^{\mathbf{n}}(\theta) d\theta \end{split}$$

Adding n-2 copies of our goal integral to both sides, we get that

$$(n-1)\int \sec^{n}(\theta)d\theta = \sec^{n-2}(\theta)\tan(\theta) - (n-2)\int \sec^{n-2}(\theta)d\theta$$

Dividing both sides by n-1 yields the familiar result

$$\int \sec^{\mathfrak{n}}(\theta) = \frac{\sec^{\mathfrak{n}-2}(\theta)\tan(\theta)}{\mathfrak{n}-1} + \frac{\mathfrak{n}-2}{\mathfrak{n}-1} \int \sec^{\mathfrak{n}-2}(\theta) d\theta$$

So now we can find $\int_0^{\arctan(2)} \sec^3(\theta) d\theta.$ We have:

$$\int_0^{\arctan(2)} \sec^3(\theta) d\theta = \left(\frac{1}{2}\sec(\theta)\tan(\theta) + \frac{1}{2}\ln|\sec(\theta) + \tan(\theta)|\right) \bigg|_0^{\arctan(2)}$$

We notice that $\sec(\arctan(2)) = \sqrt{1 + \tan^2(\arctan(2))} = \sqrt{5}$, and clearly $\tan(\arctan(2)) = 2$. So our integral is therefore $\frac{1}{2}(2\sqrt{5} + \ln(\sqrt{5} + 2))$, which was the length of our curve. Finally we must find

$$\int_{-1}^{1} t^2 \sqrt{1 + 4t^2} dt = \frac{2}{4} \int_{0}^{1} 4t^2 \sqrt{1 + 4t^2} dt$$

Once again applying the substitution $2t = \tan(\theta)$, we get that our integral is:

$$\frac{1}{4} \int_0^{\arctan(2)} \tan^2(\theta) \sec^3(\theta) d\theta = \frac{1}{4} \int_0^{\arctan(2)} \sec^3(\theta) + \sec^5(\theta) d\theta$$

Now one may see why I did the reduction formula! Forgetting about the $\frac{1}{4}$, we know that

$$\begin{split} \int_{0}^{\arctan(2)} -\sec^{3}(\theta) + \sec^{5}(\theta) d\theta &= -\int_{0}^{\arctan(2)} \sec^{3}(\theta) d\theta + \frac{1}{4} \sec^{3}(\theta) \tan(\theta) \Big|_{0}^{\arctan(2)} + \frac{3}{4} \int_{0}^{\arctan(2)} \sec^{3}(\theta) d\theta \\ &= -\frac{1}{4} \int_{0}^{\arctan(2)} \sec^{3}(\theta) d\theta + \frac{1}{2} 5^{\frac{3}{2}} \\ &= -\frac{1}{8} \left(2\sqrt{5} + \ln\left(\sqrt{5} + 2\right) \right) + \frac{5^{\frac{3}{2}}}{2} \end{split}$$

Remembering the $\frac{1}{4}$, we see that

$$\int_{-1}^{1} t^2 \sqrt{1 + 4t^2} dt = -\frac{1}{32} \left(2\sqrt{5} + \ln\left(\sqrt{5} + 2\right) \right) + \frac{5^{\frac{3}{2}}}{8}$$

So therefore our final answer, the center of mass of the curve, is

$$\left(0, \frac{-2\sqrt{5} - \ln(\sqrt{5} + 2) + 4 \cdot 5^{3/2}}{32\sqrt{5} + 16\ln(\sqrt{5} + 2)}\right)$$

5. First, we prove a mean value theorem.

Theorem 0.1. (I don't end up using this theorem). Suppose that $f : \mathbb{R}^2 \to \mathbb{R}, \gamma(t) : [0, 1] \to \mathbb{R}^2$ are differentiable everywhere. Then

$$\int_{\gamma} f(x) d\sigma / \text{Length}(\gamma) = f(\gamma(d))$$

for some $d \in [0, 1]$.

Proof. Noting that the line integral preserves inequalities, we may apply the extreme value theorem to f to see that

$$\begin{split} \operatorname{Length}(\gamma) \cdot \min f(\gamma(t)) &= \int_0^1 \min_{t \in [0,1]} f(\gamma(t)) \cdot \| \gamma'(t) \| dt \\ &\leqslant \int_0^1 f(\gamma(t)) \cdot \| \gamma'(t) \| dt \\ &\leqslant \int_0^1 \max_{t \in [0,1]} f(\gamma(t)) \cdot \| \gamma'(t) \| dt \\ &= \max_{t \in [0,1]} f(\gamma(t)) \cdot \operatorname{Length}(\gamma(t)) \end{split}$$

So $\int_0^1 f(\gamma(t)) \cdot \|\gamma'(t)\| dt/\mathrm{Length}(\gamma(t))$ lies between $\min f(\gamma(t))$ and $\max_{t \in [0,1]} f(\gamma(t))$. By the intermediate value theorem, we may say there exists a $d \in [0,1]$ so that $f(\gamma(d)) = \int_0^1 f(\gamma(t)) \cdot \|\gamma'(t)\| dt/\mathrm{Length}(\gamma(t))$.

Theorem 0.2. (Convex hull!) If $\Omega \subseteq \mathbb{R}^2$ is convex, then given any n points $x_1, \ldots, x_n \in \Omega$, and given any positive numbers $\alpha_1, \ldots, \alpha_n$ so that $\sum_i \alpha_i = 1$, $\alpha_1 x_1 + \cdots + \alpha_n x_n \in \Omega$.

Proof. We proceed inductively. Given any two points $x,y \in \Omega$, we see that if we are given positive scalars $\alpha_1, \alpha_2 \in \Omega$, with $\alpha_2 + \alpha_1 = 1$, i.e. $\alpha_2 = 1 - \alpha_1$, we may write $\alpha_1 x + \alpha_2 y = \alpha_1 x + (1 - \alpha_1) y$ which is in our set by the definition of convexity. Now suppose that given any k points $x_1, \ldots, x_k \in \Omega$, and any scalars $\alpha_1, \ldots, \alpha_k \in \mathbb{R}_{\geqslant 0}$ with $\sum_{1}^{k} \alpha_i = 1$, we have that $\sum_{1}^{k} \alpha_i = 0$.

So now given any k+1 points x_1,\ldots,x_{k+1} , and arbitrary scalars $\alpha_1,\ldots,\alpha_{k+1}$ that sum to 1, we see that $1-\alpha_{k+1}=\sum_i^k\alpha_k$ as they sum to 1. Then $\sum_1^{k+1}\alpha_ix_i=\alpha_{k+1}x_{k+1}+(1-\alpha_{k+1})\sum_1^k\frac{\alpha_i}{1-\alpha_{k+1}}x_i$. We see that $\sum_1^k\frac{\alpha_i}{1-\alpha_{k+1}}=1$ as the bottom is the constant equal to $\sum_i^k\alpha_k$ (we may pull this number out of the sum), so by the inductive hypothesis $\sum_1^k\frac{\alpha_i}{1-\alpha_{k+1}}x_i$ is also in Ω . Then by the definition of a convex set, we see that $\sum_1^{k+1}\alpha_ix_i\in\Omega$, which finishes the proof.

This is the proof for center of mass of a convex set, not its boundary: (it felt unfitting to remove, although I haven't checked it's correctness) Now given any $n \in \mathbb{N}$, there exists a partition $P = \{X_1, \dots, X_n\}$ so that $\frac{1}{\operatorname{Vol}(\Omega)} \sum_{i=1}^n x_i \operatorname{Vol}(X_i)$ (where x_i is the bottom left corner of X_i , is within $\frac{1}{n}$ of $\frac{1}{\operatorname{Vol}(\Omega)} \int_{\Omega} x dx$ (vector-valued integral). We see that $\frac{1}{\operatorname{Vol}(\Omega)} \sum_{i=1}^n x_i \operatorname{Vol}(X_i)$ is of the form described in the second lemma, as $\sum \operatorname{Vol}(X_i)/\operatorname{Vol}(\Omega) = 1$, so we see that $\frac{1}{\operatorname{Vol}(\Omega)} \sum_{i=1}^n x_i \operatorname{Vol}(X_i) \in \Omega$. This generates a sequence (y_n) , which converges by our construction, and as each y is in x0, $y_n \in x$ 2 by bolzano-weirstrass. As x2 contains its boundary, we may conclude that x3 by $y_n \in x$ 4 as well, which is by our construction its center-of-mass.

This is where the real proof starts:

We may say that there exists a partition of [0, 1] so that

 $\left|\frac{1}{\operatorname{Length}(\gamma)}\sum_{i=1}^{n}\gamma(t_{k})\cdot\|\gamma(t_{k+1})-\gamma(t_{k})\|-\frac{1}{\operatorname{Length}(\gamma)}\int_{\gamma}x\mathsf{d}\sigma\right|<\frac{1}{n}\text{ by how we defined the line integral (and simply dividing both sides by a constant, also note that these are vector-valued). Let <math display="inline">\epsilon_{n}=\sum_{1}^{n}\|\gamma(t_{k+1})-\gamma(t_{k})\|-\operatorname{Length}(\gamma).$ Once should notice that $\epsilon_{n}\to 0$ in the limit. We see that the point $\sum_{i=1}^{n}\gamma(t_{k})\cdot\frac{\|\gamma(t_{k+1})-\gamma(t_{k})\|}{\operatorname{Length}(\gamma)+\epsilon_{n}}\in\Omega$ by Theorem 0.2. Given any sequence $a_{n}\to a$, and $b_{n}\to 0$, and any scalar $c\neq 0$, I claim that $a_{n}/(c+b_{n})\to a/c$. It is clear that $a_{n}/c\to 0$. Given any $\epsilon>0$, note that $a_{n}/c-a_{n}/(c+b_{n})=a_{n}b_{n}/(c+b_{n}).$ For sufficiently large n, $|b_{n}|<\epsilon$, and $a_{n}<\epsilon+|a|$. So, $a_{n}b_{n}\leqslant(|a|+\epsilon)\epsilon$. We can also make N sufficiently large so that $|b_{n}|<\epsilon$, so $b_{n}>-\epsilon$, and therefore $c+b_{n}>c-\epsilon$. Finally, we see that for sufficiently large n $a_{n}b_{n}/(c+b_{n})<(\epsilon+|a|)\epsilon/(c+\epsilon)$, which is arbitrarily small, completing the mini proof. So we can generate a sequence $(x_{n})=\frac{\|\gamma(t_{k+1})-\gamma(t_{k})\|}{\operatorname{Length}(\gamma)+\epsilon_{n}}$ that also converges to the integral. Note that all $x_{n}\in\Omega$, and as Ω is closed, we may conclude that its limit is also in Ω . Finally, as its limit is indeed going to be the center-of-mass, we have shown that the center in mass lies in Ω .

Note that the line segment $\{(t,0) \mid 0 \le t \le 1\}$ is a convex set, so if Ω didn't contain its boundary, then it wouldn't contain anything at all, which would be an easy disprove. But obviously this problem wouldn't be that easy (this is my reasoning to conclude Ω is closed).