A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 8EF

Bookmark

Show all steps: (

ON

Problem

If gcd (m, n) = 1, prove that $n^{\phi(m)} + m^{\phi(n)} \equiv 1 \pmod{mn}$.

Step-by-step solution

Step 1 of 3

Consider any two relatively prime numbers m and n, that is, gcd(m, n) = 1. Objective is to prove that

$$n^{\phi(m)} + m^{\phi(n)} \equiv 1 \pmod{mn}.$$

Consider the following result:

If
$$a \equiv 1 \pmod{m}$$
 and $a \equiv 1 \pmod{n}$ where $gcd(m, n) = 1$, then $a \equiv 1 \pmod{mn}$.

Comment

Step 2 of 3

Since gcd(m, n) = 1, so one can apply Euler's theorem and get,

$$m^{\phi(n)} \equiv 1 \pmod{n}$$

Also,
$$n^{\phi(m)} \equiv 0 \pmod{n}$$
.

On adding both the congruences, one get

$$n^{\phi(m)} + m^{\phi(n)} \equiv 1 \pmod{n}$$

Similarly, again by Euler's theorem, $m^{\phi(n)} \equiv 0 \pmod{m}$. Also, $n^{\phi(m)} \equiv 1 \pmod{m}$.

On adding both the congruences, one get

Comment		
	Step 3 of 3	
Hence, if gc	$(m,n)=1$ then $n^{\phi(m)}+m^{\phi(n)}\equiv 1 \pmod{mn}$.	

 $n^{\phi(m)} + m^{\phi(n)} \equiv l \pmod{m}.$