WHAT IS CLAIMED IS:

1		1.	A method for sealing a percutaneous tissue track extending to a blood		
2	vessel compris	ing:			
3		establ	ishing a semipermeable barrier at a distal end of the tissue track adjacent		
4	to a blood vess	el acc	ess opening, the semipermeable barrier permitting passage of at least one		
5	blood compone	ent the	rethrough and preventing passage of a chosen hemostatic material		
6	therethrough; a	ınd			
7		flowir	ng the chosen hemostatic material through a laterally collapsible tube		
8	into the tissue track, wherein the at least one blood component passing through the				
9	semipermeable barrier interacts with the chosen hemostatic material to seal effectively the				
10	tissue track while the semipermeable barrier prevents passage of the hemostatic material into				
11	the blood vesse	el lum	en.		
1		2.	The method according to claim 1 wherein the blood-permeable barrier		
2	establishing ste	ep is ca	arried out by deploying the blood-permeable barrier adjacent to an		
3	internal surface of the lumen of the blood vessel.				
1		3.	The method according to claim 1 wherein the establishing step		
2	comprises the step of expanding the blood-permeable barrier from a laterally-collapsed				
3	condition to a laterally-extended condition.				
			,		
1		4.	The method according to claim 1 wherein the establishing step		
2	comprises:				
3		advan	cing the blood-permeable barrier distally through the tissue track in a		
4	collapsed cond				
5	-	deplo	ying the blood-permeable barrier within the lumen of the blood vessel		
6	and against a v	vall of	the blood vessel.		
1		5.	The method according to claim 4 further comprising the steps of:		
2		collap	sing the blood-permeable barrier after the tissue track has been		
3	effectively sealed; and				
4		remov	ving the collapsed blood-permeable barrier.		
1		6.	The method according to claim 1 wherein the introducing step		
2	comprises injecting the chosen hemostatic material through a cannula.				

The method according to claim 6 wherein the injecting step is carried 7. 1 2 out using a cannula having a size of 15 gauge or smaller. 1 8. The method according to claim 1 wherein the introducing step is 2 carried out with a flowable gel hemostatic material. 1 9. The method according to claim 1 wherein the introducing step is carried out with a flowable gel hemostatic material comprising a matrix material and at least 2 3 one clotting agent which interacts with the at least one blood component to enhance clotting. 1 10. The method according to claim 9 wherein the introducing step is 2 carried out with the matrix material comprising at least one protein. 1 11. The method according to claim 9 wherein the introducing step is 2 carried out with the clotting agent comprising at least one of the following proteins: 3 thrombin, fibrin, and fibrinogen. 1 12. The method according to claim 1 wherein the introducing step is 2 carried out with the chosen hemostatic material comprising a first material which swells upon 3 contact with the at least one blood component and a second material which induces clotting 4 of the at least one blood component. 1 13. The method according to claim 1 wherein the introducing step 2 comprises flowing the hemostatic material along a path defined between a barrier carrier tube, to which the semipermeable barrier is mounted, and an elongate inner member, 3 4 mounted within the barrier carrier tube. 14. 1 The method according to claim 1 wherein the establishing step is carried out using a semipermeable membrane which permits blood to flow therethrough. 2 The method according to claim 1 wherein the establishing step is 1 15. 2 carried out using a plurality of laterally expandable arms defining fluid flow, permitting gaps 3 therebetween when laterally expanded.

A method for closing a percutaneous tissue track leading to an access

16.

opening in a blood vessel comprising the following steps:

1 2

3	selecting a barrier assembly comprising a barrier carrier and a semipermeable			
4	barrier at the distal end of the barrier carrier, the barrier configured to permit at least one			
5	blood component to pass therethrough when in a laterally expanded, deployed configuration;			
6	inserting the barrier through a tissue track and through an access opening in a			
7	blood vessel, the barrier being in a laterally retracted, undeployed configuration;			
8	placing the barrier in the laterally expanded, deployed configuration against			
9	the access opening;			
10	filling at least a portion of the tissue track adjacent to the access opening with			
11	a hemostatic flowable material, said flowable material being of a type which does not pass			
12	through the barrier;			
13	maintaining the barrier in position for a chosen time period thereby preventing			
14	the flowable material from passing through the barrier into the blood vessel while permitting			
15	the at least one blood component to flow through the barrier to interact with the hemostatic			
16	flowable material to seal effectively the tissue track;			
17	placing the barrier in the laterally retracted, undeployed condition after said			
18	chosen period of time with the barrier carrier comprising a first barrier carrier tube and			
19	wherein the barrier is defined at least in part by a plurality of laterally-expandable first arms			
20	created by longitudinally-extending first weakened regions in the first barrier carrier tube;			
21	and			
22	removing the barrier from the blood vessel and the tissue track so the flowable			
23	material effectively seals the percutaneous tissue track.			
1	17. A percutaneous tissue track closure assembly comprising:			
2	a barrier assembly comprising:			
3	an elongate barrier carrier having a distal end;			
4	a barrier at the distal end of the barrier carrier, the barrier being placeable in a			
5				
6	laterally retracted, undeployed configuration and a laterally expanded, deployed configuration; and			
7	a user-operated barrier actuator coupled to the barrier to move the barrier			
8	between the undeployed and deployed conditions;			
9	a flowable material assembly comprising:			
10	a source of a hemostatic flowable material;			
TO	a source or a nemostatic nowable material,			

11	a delivery tube comprising a laterally collapsible tube having a tube entrance			
12	and a tube exit at a chosen position along the barrier carrier, the delivery tube coupleable to			
13	the flowable material source; and			
14	a flowable material driver selectively driving flowable material from the			
15	flowable material source through the tube entrance, along the delivery tube and out of the			
16	delivery tube through the tube exit.			
1	18. The assembly according to claim 17 wherein the barrier is a			
2	semipermeable barrier which permits blood or at least one blood component to pass			
3	therethrough but prevents the flowable material from passing therethrough.			
1	19. The assembly according to claim 17 wherein said semipermeable			
2	barrier comprises a porous mesh material.			
1	20. The assembly according to claim 19 wherein said semipermeable			
2	barrier comprises a semipermeable membrane.			
1	21. The assembly according to claim 20 wherein said semipermeable			
2	barrier comprises a plurality of laterally-expandable arms defining fluid-flow-permitting gaps			
3	therebetween when in the deployed configuration.			
1	22. The assembly according to claim 20 wherein said barrier carrier			
2	comprises a barrier carrier tube having longitudinally-extending weakened regions defining			
3	laterally-expandable arms, said arms defining fluid-flow-permitting gaps therebetween when			

in the deployed configuration.