

Class objectives

By the end of today's class you will understand:

Stationary vs Non-stationary data

Augmented Dickey-Fuller Test

Autoregressive Moving Average Model (ARMA)

AutoRegressive Integrated Moving Average (ARIMA)

Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

Stationarity

In a stationary process, the mean and variance are constant across time.

Non-stationary

A time series with an upward or downward trend is **not stationary**.

Stationarity

Understanding stationarity is important in selecting a time series model.

There are strategies to transform a non-stationary time series into a stationary one.

Instructor Demonstration Stationarity

Activity: Stationarize It

In this activity, you will stationarize a non-stationary time series. The dataset is a time series of Amazon stock prices from years 2009 through 2011.

Suggested Time: 15min

Auto-Regressive Moving Average (ARMA) model

ARMA is a tool to understand and predict future values for time-series data.

Uses historical data correlations to predicted future values

Uses historical unexpected events (aka, shocks/errors) to predict future values

Uses two models: Auto-Regressive and Moving Average

Auto-Regressive Model

Average

Value at a

period

certain time

(lag 1) residuals/errors to the regression line)

Alpha coefficient

(the slope of the

regression line)

Value at

previous

time period

11

Epsilon is a shock

term or considered

white noise (the

Auto-Regressive (AR) Models

01

Past values are used to predict future values.

02

Therefore assumes some degree of autocorrelation.

An AR model may have one significant lag, or it may have multiple.

Second-order AR model

$$y_{t} = \mu + a_1 y_{t-1} + a_2 y_{t-2} + \epsilon_{t}$$

AR Model Summary

An AR model predicts future values based on:

01

Past values at a specified lag.

02

The number of significant lags.

Moving Average Model

Epsilon is a shock term

at previous time period

period

Past errors (plus current error) are used to predict future values.

ARMA Model

Combines features of AR and MA models. AR+MA = ARMA

Past values and errors are used to predict future values.

Instructor Demonstration ARMA

Activity: Yields

Create an ARMA model using the data provided.

ARIMA Model

$$\Delta y_{t} = \mu + \alpha_{1} \Delta y_{t-1} + \alpha_{2} \Delta y_{t-2} + \epsilon_{t}$$

Combines features of AR and MA models.

Past values and errors are used to predict future values.

ARIMA creates differences (Δy) of the data as part of the process.

AIC & BIC

Akaike Information Criterion, Bayesian Information Criterion.

Assess how well a model fits the data (goodness of fit), and complexity.

Higher-order models are penalized for complexity.

Lower scores are better.

Instructor Demonstration ARIMA

Activity: An ARIMA and a Leg

In this activity, you will use an ARIMA model to forecast oil futures prices.

Why is Volatility Important to Understand?

Higher volatility = More Risk

Diversified Portfolio

By understanding volatility of individual assets (stocks, bonds, etc), a more diversified portfolio can be constructed

Derivatives

Some assets are particularly sensitive to volatility, e.g. derivatives.

ARMA

Auto-Regressive component:

Future values predicted based on **past values**.

Moving Average component:

Future values predicted based on past errors.

Like ARMA, GARCH also has auto-regressive and moving average components.

Heteroskedasticity

Volatile Periods in the US Stock Market

Volatility and returns tend to cluster.

GARCH is a model designed to take specific advantage of that.

Instructor Demonstration GARCH

Class objectives

By the end of today's class you will understand:

Stationary vs Non-stationary data

Augmented Dickey-Fuller Test

Autoregressive Moving Average Model (ARMA)

AutoRegressive Integrated Moving Average (ARIMA)

Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

