			Vinicius	Pavanelli Vi	ianna - NUSP 3155408
		IEEE 754 (b	its)		_
Tamanho	Sinal	expoente	polarização	mantissa	_
32	1	8	127	32	
64	1	11 C: 1	1023	52	_
Formato		Single	Dou		_
$E_{min} \\ E_{max}$		$ \begin{array}{rrr} -126 & -1022 \\ 127 & 1023 \\ \end{array} $		23	Forma interpoladora de Lagrange
menor $N_{\overline{2}}$	≈ 1				$f(x) \approx P_1(x) = a_0(x - x_1) + a_1(x - x_0)$
maior $N_{}$	≈ 3	$1, 2 \times 10^{-38}$ $3, 4 \times 10^{38}$ $\approx 1, 2 \times 10^{-7}$	$\approx 1.8 \times 1.$	10^{308}	$a_0 = \frac{f(x_0)}{x_0 - x_1}; a_1 = \frac{f(x_1)}{x_1 - x_0}$
ϵ Precisão	$\approx 7 \mathrm{di}$	$\approx 1, 2 \times 10$ gitos decimais	≈ 2.2 ≈ 2.2 ≈ 16 digitos	2×10^{-2} s decimais	$f(x) \approx P_2(x) = (x - x_1)(x - x_2) \frac{f(x_0)}{(x_0 - x_1)(x_0 - x_2)}$
$F(\beta, t, m, M) \implies x = s \times \beta^e \qquad e \in [-m, M]$ $\beta^{-1}(1 - \frac{1}{2}\beta - t) \le s \le 1 - \frac{1}{2}\beta - t$					$+(x-x_0)(x-x_2)\frac{f(x_0-x_1)(x_0-x_2)}{(x_1-x_0)(x_1-x_2)}$
	, ,	MMQ			-
f($m \sim a(m)$	$\frac{r}{r(x_i) = \sum_{i=1}^n r(x_i)}$	$f(x_n) = g(x_n)$	12	$+(x-x_0)(x-x_1)\frac{f(x_2)}{(x_2-x_0)(x_2-x_1)}$
J (:					$L_i(x) = \prod_{i=1}^n \frac{x - x_k}{x}, i = 0 \dots n$
$\lceil \langle g_1, g_1 \rangle$	$\langle g_1, g_2 \rangle$	$\frac{g}{g} = \int_{c}^{d} [f(x) - g] \frac{1}{g_1, g_m}$	$ a_1 $	$\lceil \langle g_1, f \rangle \rceil$	$L_i(x) = \prod_{k=0, k \neq i}^n \frac{x - x_k}{x_i - x_k}, i = 0 \dots n$
$\langle g_2, g_1 \rangle$	$\langle g_2, g_2 \rangle$	$\langle g_1, g_m \rangle \cdots \langle g_2, g_m \rangle \cdots \vdots$	$\begin{vmatrix} a_2 \\ \vdots \end{vmatrix} = \begin{vmatrix} a_2 \\ \vdots \end{vmatrix}$	$\langle g_2, f \rangle$	$f(x) \approx P_n(x) = \sum_{k=0}^{n} f(x_k) L_k(x)$
I				:	
$\lfloor \langle g_m, g_1 \rangle$	$\langle g_m, g_2 \rangle$	$\rangle \dots \langle g_m, g_m \rangle$		$\lfloor \langle g_m, f \rangle \rfloor$	Forma interpoladora de Newton
	()	Linearizaçõe			$f(x) \approx P_n(x) = a_1$
		$ \begin{array}{ccc} & bx & \Longrightarrow & \ln(g(x)) \\ & bx & \Longrightarrow & \log(g(x)) \end{array} $			$+ a_2(x - x_0) + a_3(x - x_0)(x - x_1) + \dots$
	$(x) = ax^b$	$\implies \ln(g(x)) =$	$=\ln(a)+b\ln(a)$		$+ a_n(x - x_0)(x - x_1) \dots (x - x_{x-1})$ $a_1 = f(x_0)$
	g(x) =	$=\frac{1}{a+bx} \implies \frac{1}{g(x)}$	$\frac{1}{2} = a + bx$		$a_{2} = \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$ $a_{3} = \frac{\frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{1}} - \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}}{x_{2} - x_{0}}$
	g(x) =	$=\frac{ax}{b+x} \implies \frac{1}{g(x)}$	$= \frac{b}{a} \frac{1}{x} + \frac{1}{a}$		$a_3 = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{\frac{x_2 - x_1}{x_1 - x_0}}$
		Resíduos MN	IQ		Forma Interpoladora de Newton - Diferenças divididas
	r(x)	$f(x_i) = \sum_{i=1}^{n} [f(x_i) - f(x_i)]$	$-g(x_i)]^2$		$\frac{f[x_i] = f(x_i)}{f[x_i] = f(x_i)}$
		$R^{i} = \sum_{i=1}^{i=1} [f(x_i) - \frac{SQ}{SQ}]$	res		$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{f[x_i, x_{i+1}] - f[x_i]}$
		n			$f[x_{i}, x_{i+1}] = \frac{f[x_{i+1}] - f[x_{i}]}{x_{i+1} - x_{i}}$ $f[x_{i}, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i}, x_{i+1}]}{x_{i+2} - x_{i}}$ $f[x_{i}, x_{i+1}, \dots x_{i+k}] = \frac{f[x_{i+1}, \dots x_{i+k}] - f[x_{i}, x_{i+k-1}]}{x_{i+k} - x_{i}}$
$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} f(x_i)$ (ponto médio)					$f[x_i, x_{i+1} \dots x_{i+k}] = \frac{f[x_{i+1} \dots x_{i+k}] - f[x_i, x_{i+k-1}]}{x_{i+k-1}}$
		n^{-}			$f(x) \approx P_n(x) = f[x_0] + f[x_0, x_1](x - x_0)$
$SQ_{tot} = \sum_{i=1} [g(x_i) - \bar{y}]^2$ (erro total)					$+ f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots$
$SQ_{res} = \sum_{i=1}^{n} [f(x_i) - \bar{y}]^2$ (erro residual)					$+ f[x_0, x_1 \dots x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$
	1	i=1			Erro na interpolação
		Serie Fourie	er		$f(x) = P_n(x) + R_n(x)$
$e_{xx}(x)$ -	_ a ₀	$\sum_{n=1}^{N} \left(a_n \cos(\frac{2\pi r}{P}) \right)^{-1}$	$(x)_{+b} \sin^2 2x$	πnx	$R_n(x) = \frac{(x - x)/(x - x)/(x - x)}{(n+1)!} f^{(n+1)}(\xi(x)), x_0 < \xi < x_n$
$s_N(x)$ -	$\frac{1}{2}$	$\sum_{n=1}^{\infty} \binom{a_n \cos(-P)}{p}$	$(-)$ + $o_n \sin(-$	P^{-j}	$ M > 0$ e $\max_{t \in [x_0, x_n]} f > t < M $
$\sum_{i=1}^{N} i^{\frac{2\pi nx}{2\pi nx}}$					$R_{n}(x) = P_{n}(x) + R_{n}(x)$ $R_{n}(x) = \frac{(x-x_{0})(x-x_{1})(x-x_{n})}{(n+1)!} f^{(n+1)}(\xi(x)), x_{0} < \xi < x_{n}$ $M > 0 e \max_{t \in [x_{0}, x_{n}]} f^{(n+1)}(t) < M$ $ R_{n}(x) \le \frac{ x-x_{0} x-x_{1} x-x_{n} }{(n+1)!} M$ $ R_{n}(x) \le \frac{ x-x_{0} x-x_{1} x-x_{n} }{(n+1)!} f[x_{0}, x_{1}x_{n}, x_{n+1}] \iff \exists x_{n+1}$
$=\sum_{n=-N}^{N}c_{n}e^{i\frac{2\pi nx}{P}}$					$ R_n(x) \le \frac{1}{(n+1)!} J[x_0, x_1 \dots x_n, x_{n+1}] \iff \exists x_{n+1}$
	$a_n = \frac{2}{I}$	$\frac{2}{5} \int_{x_0}^{x_0+P} s(x) \cos(x) dx$	$\cos(\frac{2\pi nx}{P})dx$		
$a_n = \frac{2}{P} \int_{x_0}^{x_0+P} s(x) \cos(\frac{2\pi nx}{P}) dx$ $b_n = \frac{2}{P} \int_{x_0}^{x_0+P} s(x) \sin(\frac{2\pi nx}{P}) dx$ $c_n = \frac{1}{P} \int_{x_0}^{x_0+P} s(x) e^{-i\frac{2\pi nx}{P}} dx$					
	1	$\int_{1}^{x_0} x_0 + P$	$F_{-i\frac{2\pi nx}{2\pi nx}}$		
	$c_n =$	$\frac{1}{P} \int_{x_0} s(x) e^{-\frac{1}{2}}$	$e^{-i\frac{T}{P}}dx$		
		<u> </u>			-

Métodos de Integração Numérica

Ponto Central
$$\int_{a}^{b} f(x) dx \approx h \sum_{i+1} Nf\left(\frac{x_{i} + x_{i+1}}{2}\right)$$
 Trapézio
$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} \left[f(x_{0}) + 2\left(f(x_{1}) + \dots + f(x_{N-1})\right) + f(x_{N})\right]$$
 Simpson 1/3
$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} \left[f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + \dots + 2f(x_{2N-2}) + 4f(x_{2N-1}) + f(x_{2N})\right]$$
 Simpson 3/8
$$\int_{a}^{b} f(x) dx \approx \frac{3h}{8} \left[f(x_{0}) + 3f(x_{1}) + 3f(x_{2}) + 2f(x_{3}) + \dots + 2f(x_{3N-3}) + 3f(x_{3N-2}) + 3f(x_{3N-1}) + f(x_{3N})\right]$$

Quadratura de Gauss

Geral	$\int_a^b w(x)f(x)dx \approx \sum_{i=1} nC_i f(x_i) \ (C_i \text{ são os pesos e } x_i \text{ são os pontos tabelados}$
Gauss-Legendre	$w(x) = 1, a = -1, b = 1, \stackrel{i=1}{n} = 2 \implies C_1 = C_2 = 1, x_1 = -0,57735027ex_2 = -0$
	$n=2 \implies \int_{-1}^{1} f(x)dx \approx f(-0.57735027) + f(0.57735027)$
Gauss-Chebyshev	$w(x) = \frac{1}{\sqrt{1-x^2}}, a = -1, b = 1$ $w(x) = e^{-x}, a = 0, b = \infty$
Gauss-Laguerre	$w(x) = e^{-x}, a = 0, b = \infty$
Gauss-Hermite	$w(x) = e^{-x^2}, a = -\infty, b = \infty$

Erro na Integração Numérica

Trapézio	$R_1(f) = -\frac{(b-a)}{12}h^2f''(\xi), \xi \in (x_0, x_1)$
Simpson $1/3$	$R_2(f) = -\frac{(b-\tilde{a})}{180} h^4 f^{(4)}(\xi), \xi \in (x_0, x_{2N})$
Simpson 3/8	$R_3(f) = -\frac{\binom{180}{b-a}}{80} h^4 f^{(4)}(\xi), \xi \in (x_0, x_{3N})$

Lista de Exercícios	Livro Neide
$y_n = \int_0^1 \frac{x^n}{x+a} dx \Longrightarrow \int_0^1 \frac{x^1}{1+a} dx < y_n < \int_0^1 \frac{x^n}{a} dx$ $\frac{1}{(n+1)(1+a)} < y_n < \frac{1}{(n+1)a}$ $x^n = [(x+a)-a)]^n = \sum_{k=0}^\infty (-1)^k \binom{n}{k} (x+a)^{n-k} a^k$	$I_n = e^{-1} \int_0^1 x^n e^x dx \implies I_n < e^{-1} \max_{0 \le x \le 1} (e^x) \int_0^1 x^n dx < \frac{1}{n+1}$ $I_n = e^{-1} \left\{ [x^n e^x]_0^1 - \int_0^1 nx^{n-1} e^x dx \right\}$
$y_n = \int_0^1 \sum_{k=0}^n (-1)^k \binom{n}{k} (x+a)^{n-k-1} a^k dx$	$c_r = \frac{ P'(x) }{P(x)} \qquad c_r \le 1 \implies \text{bem condicionado}$
$\int_0^{g_n} \int_{k=0}^{\infty} (1)^{k} \left(\frac{k}{k} \right)^{(k+k)} dk$	Formulas Gerais
$= \sum_{k=0}^{n} (-1)^k a^k \binom{n}{k} \int_0^1 (x+a)^{n-k-1} dx$	$\binom{n}{k} = \frac{n!}{k!(n-k)!}$ $\sum_{k=0}^{\infty} f^{(n)}(a)$
$= \sum_{k=0}^{n-1} (-1)^k a^k \binom{n}{k} \int_0^1 (x+a)^{n-k-1} dx$	$f(x) \approx \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$ $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$
$+ (-1)^n a^n \binom{n}{n} \int_0^1 (x+a)^{-1} dx$	$\sum_{k=0}^{n-1} ar^k = a\left(\frac{1-r^n}{1-r}\right)$