Matching – 1 point each question

1.
$$r = 4\cos(3\theta)$$

2.
$$r = 4 + 2\cos(\theta)$$

3.
$$r = 3\csc(\theta)$$

4.
$$r = 4\sin(3\theta)$$

5.
$$r = \theta/2$$

6.
$$r = 4\sin(\theta) + 4\cos(\theta)$$

7.
$$r = 1 - 3\sin(\theta)$$

8.
$$r^2 = 4\sin^2(\theta)$$

9.
$$r = 3 + 2\sin(\theta)$$

10.
$$r = 3 - 2\sin(\theta)$$

11.
$$r = 1 + 3\cos(\theta)$$

12.
$$r = 3\sec(\theta)$$

Short Answer -2 pts each

Work	must	be	shown	for	credit.

1. Convert the polar coordinate to rectangular coordinates: $(-2, 2\pi/3)$	

2. Convert the polar coordinate to rectangular coordinates:
$$(4,-\pi/2)$$

3. Convert the rectangular coordinate to polar coordinates:
$$(15,5\sqrt{3})$$

4. Convert the rectangular coordinate to polar coordinates:
$$(-12, -12)$$

5.	Convert	the	rectangular	equation	to	polar:	$x^2 + y^2$! =	16

6. Convert the rectangular equation to polar:
$$2xy = 1$$

7. Convert the polar equation to rectangular:
$$\theta=2\pi/3$$

8. Convert the polar equation to rectangular:
$$r = \frac{2}{1 + \sin \theta}$$

								_	
9.	Find	the	intersection	points	of r	$= 3\cos\theta$	and r	$=\sqrt{3}$	$\sin \theta$

9. _____

Free Response Section

Calculator Active

At time t, a particle moving in the xy-plane is at position (x(t), y(t)), where x(t) and y(t) are not explicitly given. For $t \ge 0$, $\frac{dx}{dt} = 4t + 1$ and $\frac{dy}{dt} = \sin(t^2)$. At time t = 0, x(0) = 0 and y(0) = -4.

1. Find the speed of the particle at time t=3

2. Find the acceleration vector of the particle at time t=3.

3. Find the slope of the line tangent to the path of the particle at time t=3.

4. Find the position of the particle at time t = 3.

5. Find the total distance traveled by the particle over the time interval $0 \le t \le 3$.