

What is Dynamic Programming

- Dynamic programming (DP) is a general technique
 - Powerful algorithmic design technique using recursion and memorization
 - A class of seemingly exponential-time problems may have a polynomial-time solution via DP
 - Particularly for optimization (min/max) problems (e.g., shortest paths)
 - "Programming" is not related to particular programming language
- Dynamic programming does not always guarantee efficiency
 - DP ≈ "controlled brute force"
- When designed properly, dynamic programming can be efficient
 - Memorization stores the results of expensive calls in the cache
 - DP ≈ recursion + memorization

Goals of This Lecture

- Apply dynamic programming to solve the following problems
 - Fibonacci numbers
 - Shortest paths
 - Minimum edit distance
 - Tetris
- See how efficiency of dynamic programming in each of these problems
 - From polynomial-time to exponential-time solutions

Fibonacci Numbers

- Fibonacci numbers = (1, 1, 2, 3, 5, 8, 13, 21, 34, ...)
- Fibonacci numbers are often observed in nature
 - Shell, plant
- They also give elegant patterns
 - Architecture, art
- Recurrence equation of Fibonacci numbers:
 - $F_n = F_{n-1} + F_{n-2}$
 - $F_2 = F_1 = 1$

Fibonacci Numbers

• Recurrence equation of Fibonacci numbers:

- $F_n = F_{n-1} + F_{n-2}$
- $F_2 = F_1 = 1$
- Running time of direct computation:

•
$$T(n) = T(n-1) + T(n-2) + O(1)$$

 $\geq 2 T(n-2) + O(1) \geq O(2^{n/2})$

- There are redundant computations
 - Can be improved by memorization in dynamic programming
 - Then running time is T(n) = O(n) because of only n non-memorized calls

```
Fib[n]

// By direct computation

If n \le 2 Then

Return f \leftarrow 1

Else

Return f \leftarrow \text{Fib}[n-1] + \text{Fib}[n-2]
```

```
Fib[n]
// By dynamic programming
If memo[n] ≠ null Then
    Return memo[n] // memorized call
Else If n ≤ 2 Then
    f ← 1
Else // non-memorized call
    f ← Fib[n-1] + Fib[n-2]
    memo[n] ← f
    Return f
```

Shortest Paths

- Given a directed graph (V, E)
 - Each directed edge (u, v) has a weight w(u, v)
 - Let $\delta(s, v)$ be the total weight of the shortest path from node s to node v in E
- Shortest paths are useful for many applications
 - Telematic navigation
 - Communication networks
 - Logistic and transportation
 - Planning and scheduling
- Shortest path is the first dynamic programming problem by Bellman

Shortest Paths

- Shortest path can be found iteratively from neighbours
 - Let SP(u, v) be the shortest path from u to v
 - Then SP(s, v) is the lowest-cost path concatenating edge (s, u) and SP(u, v)
 - SP(s, v) can be found based on its total weight that satisfies

$$\delta(s, v) = \min\{w(s, u) + \delta(u, v) \mid (s, u) \in E\}$$

- Find shortest paths by memorized DP
 - $\delta_0(s, v) \leftarrow \infty$ for $s \neq v$ (base case)
 - $\delta_k(s, v) \leftarrow \min\{w(s, u) + \delta_{k-1}(u, v) \mid (s, u) \in E\}$


```
ShortestPath[V, E, v]

// Shortest path by dynamic program

\delta_{\theta}(v, v) \leftarrow \theta // Initialization

\delta_{\theta}(s, v) \leftarrow \infty for all s \neq v

// memorized DP in multiple iterations

For k = 1 to |V|

\delta_{k}(s, v) \leftarrow \min\{w(s, u) + \delta_{k-1}(u, v) | (s, u) \in E\}
for all s \neq v

// Return all shortest paths \{SP(s, v)\}

Return \{SP(s, v) | \delta_{k}(s, v) = w(u, v) + \delta_{k}(u, v), s \in V\}
```


Shortest Paths: Example

k	$\delta_k(v, v)$	$\delta_k(x, v)$	$\delta_k(y, v)$	$\delta_k(z, v)$	$\delta_k(u, v)$
0	0	∞	∞	∞	∞
1	0	8	16	∞	20
2	0	8	16 (15)	14	20 (18)
3	0	8	15 (19)	14	18 (24)
4	0	8	15	14	18 (17)
5	0	8	15	14	17

(new path)

Steps for Dynamic Programming

- 0. Original problem
 - e.g., find SP(s, v) or compute $\delta(s$, v)
- 1. Define subproblems
 - e.g., $\delta(u, v)$ where u is a neighbour of s
- 2. Guess (part of solution)
 - e.g., $w(s, u) + \delta(u, v)$
- 3. Relate subproblem solutions
 - e.g., $\delta(s, v) = \min\{w(s, u) + \delta(u, v) \mid (s, u) \in E\}$
- 4. Recurse + memorize
 - Build DP table bottom-up check subproblems acyclic/topological order
 - e.g., $\delta_k(s, v) \leftarrow \min\{w(s, u) + \delta_{k-1}(u, v) \mid (u, v) \in E\}$

Edit Distance

- Used for DNA comparison, plagiarism detection, etc.
- Given two strings x and y, what is the cheapest possible sequence of character edits to transform x into y?
 - Character edits:
 - Insert a new character c into x
 - Delete a character c from x
 - Replace a character c in x by c': $c \rightarrow c'$
- Cost of edit depends only on characters c, c'
 - For example in DNA, common mutation C → G has low cost
- Edit distance is the total cost of a sequence of edits

Edit Distance: Example:

- Edit distance = Total cost of edits
 - No cost for the same character in both strings
- If insertion and deletion cost 0.5 and replacement costs 1, the minimum edit distance equivalent to finding the longest common subsequence
 - Subsequence is sequential but not necessarily contiguous
 - Example
 - HIEROGLYPHOLOGYvs. MICHAELANGELO
 - The longest common subsequence is HELLO
 - Edit distance
 - = insertion cost (1.5) + deletion cost (2.5) + replace cost (5) = 9

Edit Distance: Dynamic Programming

- Finding the minimum edit distance is equivalent to finding shortest path
- Construct a directed graph
 - From start (leftmost top)
 - To finish (rightmost bottom)
 - Deletion cost
 - = horizontal edge cost
 - Insertion cost
 - = vertical edge cost
 - Replacement cost
 - = diagonal edge cost (zero cost for same character)

Edit Distance: Dynamic Programming

- More general problems for multiple strings/sequences
 - Suffix/prefix/substring subproblems
 - Multiply state spaces
 - Still polynomial for a constant number of strings
- Given strings x and y, let x[i] and y[j] be the i-th and j-th characters of x and y, respectively
- Guess whether, to turn x into y, following one of the 3 choices:
 - Deleting x[i] incurs a cost Cost_{del}(x[i])
 - Inserting y[j] incurs a cost Cost_{ins}(y[j])
 - Replacing x[i] by y[j] incurs a cost $Cost_{rep}(x[i],y[j])$
 - $Cost_{rep}(x[i],y[j]) = 0$, when x[i] = y[j]

Edit Distance

- c(i, j) is min cost from (i, j) to (|x|, |y|)
- Recurrence: c(i, j) = minimum of:
 - $Cost_{del}(x[i]) + c(i+1, j)$ if i < |x|,
 - $Cost_{ins}(y[j]) + c(i, j+1) \text{ if } j < |y|,$
 - $Cost_{rep}(x[i],y[j]) + c(i+1, j+1)$ if i < |x| and j < |y|
- Set c(|x|,|y|) = 0
- Directed graph of the table:
 - Top to bottom OR right to left
 - Linear space of states of table size
 - Total running time = $O(|x| \cdot |y|)$

Tetris

- There is an empty board of small width w
- Given a sequence of *n* Tetris pieces
- For the t-th piece, decide its move m_t
 - Orientation O_t (rotate by 90°, 180°, 270°)
 - X-coordinate x_t (in $\{1,..., w\}$)
- Then must drop piece till it hits something
- Full rows do not clear
- Goal:
 - To survive, namely, stay within height h

Tetris

Tetris

1. Subproblem: Survive in each column *i*:

- The column occupancy heights $\mathbf{h}^t = (\mathbf{h}_1^t, \mathbf{h}_2^t, \dots, \mathbf{h}_w^t)$ at time t
- Define Height[t] to be the min height by adding the t-th piece

2. Recurrence:

- At time *t*, the *t*-th piece is dropped
- Height[t] = min(Height[t-1] + cost of a valid move m_t of the t-th piece in \mathbf{h}^t)
- The number of moves of the t-th piece = $O(4^w)$

3. Construct a directed graph

- Connect each valid move m_t of the t-th piece to every valid move m_{t-1} of the (t-1)-th piece
- The cost of each move is the additional height incurred by the t-th piece

- Dynamic programming (DP) is a general technique
 - memorization stores the results of expensive calls in the cache
 - DP ≈ recursion + memorization
- Problems:
 - Fibonacci numbers
 - Shortest paths
 - Edit distance
 - Tetris

Visualizations

- https://www.cs.usfca.edu/~galles/visualization/DPFib.html
- https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html
- https://www.cs.usfca.edu/~galles/visualization/DPLCS.html