

大数据协同中的隐私 与可靠性保护

目录 CONTENT

01 数据协同中的安全问题

03 TEE 上的分布式 计算

02 可信执行环境 (TEE) 简介 04 区块链协调的数据协同

数据协同中的安全问题

数据安全与实用性的两难

- □ 数据不能明文跨域互通
 - 数据成为资产、生产资料
 - 个人信息保护法、GDPR
- □ 单一平台无法获得全面的数据
 - 特征缺失
 - 样本偏差
- □ 密码学算法性能开销较大
- □ 计算逻辑正确性难以保障
 - 分布式计算、外包计算

可信执行环境 (TEE) 简介

可信执行环境 (TEE) 的安全特性

- □ 数据隐私
- □ 数据、计算逻辑、结果完整性
- □ 性能

TEE 硬件

- Intel SGX
 - 配套基础设施完善:远程证明(IAS、DCAP)、开发者接入
 - 产品普及
- ARM TrustZone
 - 过强的信任假设:需要信任固件预置的 TrustedOS
 - 缺乏远程证明等基础设施(华为鲲鹏服务器上搭载了华为自研远程证明机制)
- □ RISC-V Keystone/Sanctum、蓬莱
 - 暂未有成熟服务器推出
 - 设计类似SGX
- AMD SEV
 - 专注于虚拟机隔离场景
 - 远程证明存在安全漏洞,且不具备逻辑完整性的保护 [BWS,CCS'19]
 - 寄存器、IO存在数据泄露的漏洞 [HB2017,SIGPLAN Notices 2017][LZL+,Security'19]
 - 资源调度仍然依赖Hypervisor

TEE 的接入方式对比

- TEE SDK
 - 应用级别接入,对业务有侵入式改造
 - 攻击面最小
- libOS
 - 基础设施级别接入,业务少量感知
- □ 虚拟化:WebAssembly、Docker、VM
 - 基础设施级别接入,业务可无感知

TEE 上的分布式计算

多节点协同

- □ 一般步骤
 - 节点间两两互验远程证明
 - 每两个节点间通信密钥不同
- □缺点
 - 交互复杂度为 $O(n^2)$
 - 需要维护其他节点信息

多节点协同

□ 节点间密钥管理

- 1. 数据拥有者通过远程证明验证Key Server,向Key Server注册一对加密公私钥对。
- 2. 数据拥有者向Worker提供签名授权使用数据。
- 3. Worker向Guard展示签名,并请求对应解密私钥。
- 4. 若Guard本地没有对应私钥,则向Key Server查询。
- 5. Guard发送解密私钥给Worker。
- 6. Worker在运行中,可使用查询到的解密私钥解密来自对应数据拥有者的入参数据。
 - Key Server集中管理密钥和授权
 - Key Guard为同一个物理节点或CVM上的Worker提供密钥查询和授权的常驻服务
 - Worker为执行业务逻辑的协同计算节点
 - 以上3个组件均运行在TEE可信域内

TEE 上的 分布式计算

- □ 适配TEE硬件
 - Spark、TensorFlow等计算框架 适配
- □ 计算节点间密钥同步
 - Key Server验证节点远程证明
 - Key Server-Guard密钥管理
 - 使用者授权密钥使用
- □ 计算集群对接密文数据库

性能对比

□ 区块链隐私交易场景

• 全同态加密: 性能较低

• 零知识证明、同态加密: 支持场景有限

· 其他MPC:性能、泛用性有提升空间

□ 隐私求交集 (PSI) 场景

• 密码学算法:性能、泛用性有提升空间

	合约执行时间	链下辅助执行时间
全同态加密	6 ms	无
Bulletproofs 零知识证明	2.48 ms	19.87 ms
Paillier 同态加密	0.7 ms	无
SGX隐私合约	0.34 ms	无

隐私交易性能对比

		TEE	BlindRSA		ОТ	
		ICC	512 RSA	1024 RSA	512 RSA	512 RSA+SM4
20 executor * 4G	1亿 X 1亿	8min26s	26min21s	112min34s	15min44s	
40 executor * 4G		5min26s	17min21s	75min8s	10min35s	15min59s
20 executor * 4G	10{Z X 10{Z	40min			153min	
40 executor * 4G		25min	127min	552min	83min	

PSI性能对比 128MB内存旧机型 单TEE节点

区块链协调的数据协同

数据协同中的监控与协调

- □ 数据用途
 - 存证计算逻辑 (模型)
 - 存证数据提供方
- □ 数据用量
 - 存证数据哈希或签名
 - TEE统计数据量
- □ 任务状态及结果
 - TEE更新任务状态、结果上链
 - TEE的输出均由TEE签名认证

腾讯云数链通

- □ 政务
 - □ 各部门、各地区数据共享
- □ 金融
 - □ 征信、风控等

非常感谢您的观看

Tencent | DataFun.

