

RNA-Seq Lab: June 2nd 2016

Background: PCA3 gene plays a role in Prostate Cancer detection due to its localized expression in prostate tissues and its over-expression in tumour tissues. This gene's expression profile makes it a useful marker that can complement the most frequently used biomarker for prostate cancer, PSA. There are cancer assays available that tests the presence of PCA3 in urine.

Objectives: In this assignment, we will be using a subset of the GSE22260 dataset, which consists of 30 RNA-seq tumour normal pairs, to assess the prostate cancer specific expression of the PCA3 gene.

Things to keep in mind:

- The libraries are polyA selected.
- The libraries are prepared as paired end.
- The samples are sequenced on Illumina's Genome Analyzer II.
- Each read is 36 bp long
- The average insert size is 150 bp with standard deviation of 38bp.
- We will only look at chromosome 9 in this exercise.
- Dataset is located here: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22260
- 20 tumour and 10 normal samples are available
- For this exercise we will pick 3 matched pairs (C02,C03,C06 for tumour and N02,N03,N06 for normal). We can do more if we have time.

PART 1 -----Obtainning Data and References ------

Goals:

- Obtain the files necessary for data processing
- Familiarize yourself with reference and annotation file format
- Familiarize yourself with sequence FASTQ format

#set your working directory

mkdir -p ~/workspace/rnaseq/integrated_assignment/ export RNA_HOME=~/workspace/rnaseq/integrated_assignment

#copy the necessary reference and annotation files. Note, when initiating an environment variable, we don't need the \$; however, everytime we call the variable, it needs to be preceded by a \$.

#make sure that the environment variable is set correctly

echo \$RNA_HOME cp -r ~/CourseData/RNA_data/integrated_assignment_files/* \$RNA_HOME cd \$RNA_HOME

Q1) How many directories are there under the "refs" directory?

Q2) How many exons does the gene PCA3 have?

Q3) How many cancer/normal samples do you see under the data directory?

NOTE: The fasta files you have copied above contain sequences for chr9 only. I have pre-processed those fasta files to obtain chr9 and also matched read1/read2 sequences for each of the samples. You do not need to redo this; However, I will explain below the process I went through to get them to this point.

- Access the following link: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22260. Scroll down to select the files you want to download.
- -The raw data in GEO is provided as _map.txt. After you download the files, you can run the following command to convert them to FASTA:

cat GSM554076_C02_read1_map.txt | grep chr9 | cut -f1,2 | awk '{print ''>''\$1''\n''\$2}' > GSM554076_C02_read1_map.chr9.fasta

cat GSM554076_C02_read2_map.txt | grep chr9 | cut -f1,2 | awk '{print ">"\$1"\n"\$2}' > GSM554076_C02_read2_map.chr9.fasta

-The second challenge was to match the reads for both read1 and read2, since the two FASTA files have different number of records.

for i in `cat GSM554076_C02_read2_map.chr9.fasta | grep ">"`;do R1=`echo $\{i\}$ | sed 's/0\/2/0\/1/g'`; grep -A1 \$R1 GSM554076_C02_read1_map.chr9.fasta >> carcinoma_C02_read1.fasta;done;

for i in `cat carcinoma_C02._read1.fasta | grep ">"`;do R2=`echo $\{i\}$ | sed 's/01/02/g'`; grep -A1 \$R2 GSM554076_C02_read2_map.chr9.fasta >> carcinoma_C02_read2.fasta;done;

PART 2 ---- Data alignment ----

Goals:

- Familiarize yourself with Tophat/Bowtie alignment options
- Perform alignments
- Obtain alignment summary

Q4) What is the value of --mate-inner-dist? What calculation did you do to get that answer?

- A) Mate inner distance is the approximate distance between the reads. You can get this number by:
- 1) Using **insert size** estimates provided from the library preparation step. --mate-inner-distance= **insert size**-2x(ReadLength)
- 2) If you don't have that information, then you can subset the FASTA file and run a quick alignment. Plot the fragment distribution from this subset and use those numbers for the full alignment
- 3) We were told that the average **insert size** for these samples is 150 bp and the reads are 36bp long. so --mate-inner-distance= 150-2x(36)=78=~80bp
- -remember this from our notes?

PE reads	R1>	<r2< th=""></r2<>
fragment	~~~========	=========~~~
insert	==========	=======================================
inner mate	•••••	

Q5) Considering that the read length in this exercise is 36bp, what should you set the --segment-length to (default is 25bp)?

A) If you keep the default value of 25 bases, Tophat will split each read into 2 segments of 25bp and 11bp lengths. It is preferred to split the read into segments of equal length. Therefore, assigning — segment-length a value of 18 for a 36bp read is recommended. When deciding on a number, try avoiding a split that will result in a very short segment. Short segments might not be uniquely mapped and this can affect your transcript assembly process.

cd \$RNA_HOME/
export RNA_DATA_DIR=\$RNA_HOME/data/
echo \$RNA_DATA_DIR
mkdir -p alignments/tophat/trans_idx
cd alignments/tophat
export TRANS_IDX_DIR=\$RNA_HOME/alignments/tophat/trans_idx/
echo \$TRANS_IDX_DIR

#take a minute and try to figure out what each parameter means and how we go the numbers.

tophat2 -p 8 --mate-inner-dist 80 --mate-std-dev 38 --segment-length 18 --rg-id=normal --rg-sample=normal_N02 -o normal_N02 -G \$RNA_HOME/refs/hg19/genes/genes_chr9.gtf --transcriptome-index \$TRANS_IDX_DIR/ENSG_Genes \$RNA_HOME/refs/hg19/bwt/9/9 \$RNA_DATA_DIR/normal_N02_read1.fasta \$RNA_DATA_DIR/normal_N02_read2.fasta

tophat2 -p 8 --mate-inner-dist 80 --mate-std-dev 38 --segment-length 18 --rg-id=normal --rg-sample=normal_N03 -o normal_N03 -G \$RNA_HOME/refs/hg19/genes/genes_chr9.gtf --transcriptome-index \$TRANS_IDX_DIR/ENSG_Genes \$RNA_HOME/refs/hg19/bwt/9/9 \$RNA_DATA_DIR/normal_N03_read1.fasta \$RNA_DATA_DIR/normal_N03_read2.fasta

tophat2 -p 8 --mate-inner-dist 80 --mate-std-dev 38 --segment-length 18 --rg-id=normal --rg-sample=normal_N06 -o normal_N06 -G \$RNA_HOME/refs/hg19/genes/genes_chr9.gtf --transcriptome-index \$TRANS_IDX_DIR/ENSG_Genes \$RNA_HOME/refs/hg19/bwt/9/9 \$RNA_DATA_DIR/normal_N06_read1.fasta \$RNA_DATA_DIR/normal_N06_read2.fasta

tophat2 -p 8 --mate-inner-dist 80 --mate-std-dev 38 --segment-length 18 --rg-id=carcinoma --rg-sample=carcinoma_C02 -o carcinoma_C02 -G \$RNA_HOME/refs/hg19/genes/genes_chr9.gtf --transcriptome-index \$TRANS_IDX_DIR/ENSG_Genes \$RNA_HOME/refs/hg19/bwt/9/9 \$RNA_DATA_DIR/carcinoma_C02_read1.fasta \$RNA_DATA_DIR/carcinoma_C02_read2.fasta

tophat2 -p 8 --mate-inner-dist 80 --mate-std-dev 38 --segment-length 18 --rg-id=carcinoma --rg-sample=carcinoma_C03 -o carcinoma_C03 -G \$RNA_HOME/refs/hg19/genes/genes_chr9.gtf --transcriptome-index \$TRANS_IDX_DIR/ENSG_Genes \$RNA_HOME/refs/hg19/bwt/9/9 \$RNA_DATA_DIR/carcinoma_C03_read1.fasta \$RNA_DATA_DIR/carcinoma_C03_read2.fasta

tophat2 -p 8 --mate-inner-dist 80 --mate-std-dev 38 --segment-length 18 --rg-id=carcinoma --rg-sample=carcinoma_C06 -o carcinoma_C06 -G \$RNA_HOME/refs/hg19/genes/genes_chr9.gtf --transcriptome-index \$TRANS_IDX_DIR/ENSG_Genes \$RNA_HOME/refs/hg19/bwt/9/9 \$RNA_DATA_DIR/carcinoma_C06_read1.fasta \$RNA_DATA_DIR/carcinoma_C06_read2.fasta

At this point, each one of your samples should have the following files:

```
ubuntu@ip-10-182-231-187:~/workspace/rnaseq/integrated_assignment/alignments/tophat/carcinoma_C02$ tree
    accepted_hits.bam
    align_summary.txt
    deletions.bed
    insertions.bed
     junctions.bed
     logs
       - bam_merge_um.log

    bowtie build.log

        bowtie.left_kept_reads.log
        bowtie.left_kept_reads.m2g_um.log

    bowtie.left_kept_reads.m2g_um_seg1.log
    bowtie.left_kept_reads.m2g_um_seg2.log
    bowtie.right_kept_reads.log

        - bowtie.right_kept_reads.m2g_um.log
         bowtie.right_kept_reads.m2g_um_seg1.log
bowtie.right_kept_reads.m2g_um_seg2.log
         gtf_juncs.log
          juncs_db.log

    long_spanning_reads.segs.log

         m2g_left_kept_reads.err
         m2g_left_kept_reads.out
        - m2g_right_kept_reads.err
- m2g_right_kept_reads.out
         prep_reads.log
         reports.log
        reports.samtools_sort.log0
         run.log
         segment_juncs.log
tophat.log
    prep_reads.info
    unmapped.bam
1 directory, 30 files
```


PART 3 ---- Expression Estimation -----

Goals:

- Familiarize yourself with Cufflinks options
- Run Cufflinks to obtain expression values
- Obtain expression values for the gene PCA3

cd \$RNA_HOME/ mkdir expression cd expression

example (how to run cufflinks for one sample):

cufflinks -p 8 -o normal_N02 --GTF \$RNA_HOME/refs/hg19/genes/genes_chr9.gtf --no-update-check \$RNA_HOME/alignments/tophat/normal_N02/accepted_hits.bam cufflinks -p 8 -o normal_N03 --GTF \$RNA_HOME/refs/hg19/genes/genes_chr9.gtf --no-update-check \$RNA_HOME/alignments/tophat/normal_N03/accepted_hits.bam cufflinks -p 8 -o normal_N06 --GTF \$RNA_HOME/refs/hg19/genes/genes_chr9.gtf --no-update-check \$RNA_HOME/alignments/tophat/normal_N06/accepted_hits.bam

cufflinks -p 8 -o carcinoma_C02 --GTF \$RNA_HOME/refs/hg19/genes/genes_chr9.gtf --no-update-check \$RNA_HOME/alignments/tophat/carcinoma_C02/accepted_hits.bam cufflinks -p 8 -o carcinoma_C03 --GTF \$RNA_HOME/refs/hg19/genes/genes_chr9.gtf --no-update-check \$RNA_HOME/alignments/tophat/carcinoma_C03/accepted_hits.bam cufflinks -p 8 -o carcinoma_C06 --GTF \$RNA_HOME/refs/hg19/genes/genes_chr9.gtf --no-update-check \$RNA_HOME/alignments/tophat/carcinoma_C06/accepted_hits.bam

At this point, you should have the following files in your "expression" directory:

```
ubuntu@ip-10-182-231-187:~/workspace/rnaseq/integrated_assignment/expression$ tree
    carcinoma_C02
        genes.fpkm_tracking
        isoforms.fpkm_tracking
        skipped.qtf

    transcripts.gtf

    carcinoma_C03
        genes.fpkm_tracking
        isoforms.fpkm_tracking
        skipped.gtf
       transcripts.gtf
    carcinoma_C06
        genes.fpkm_tracking
        isoforms.fpkm_tracking
        skipped.gtf

    transcripts.gtf

    normal NO2
        genes.fpkm_tracking
        isoforms.fpkm_tracking
        skipped.gtf
        transcripts.gtf
    normal NO3
        genes.fpkm_tracking
        isoforms.fpkm_tracking
        skipped.gtf
       transcripts.gtf
    normal N06
        genes.fpkm_tracking
        isoforms.fpkm_tracking
        skipped.gtf
       transcripts.gtf
6 directories, 24 files
```

Q6) How do you get the expression of PCA3 across the normal and carcinoma samples?

A) Cufflinks generates two expression files: gene level expression and isoform level expression. To look for the expression value of a specific gene, you can use the command 'grep' followed by the gene name and the path to the expression file

grep PCA3 ./*/genes.fpkm_tracking

PART 4 -- Differential Expression Analysis ---

Goals:

- Perform differential analysis between tumor and normal samples
- Check if PCA3 is differentially expressed

cd \$RNA_HOME/expression

ls -1 */transcripts.gtf > assembly_GTF_list.txt

cuffmerge -p 8 -o merged -g \$RNA_HOME/refs/hg19/genes/genes_chr9.gtf -s \$RNA_HOME/refs/hg19/bwt/9/ assembly_GTF_list.txt

cd \$RNA_HOME/
mkdir de
mkdir de/reference_only
cd \$RNA_HOME/alignments/tophat

#run cuffdiff to perform comparison

cuffdiff -p 8 -L Normal, Carcinoma -o \$RNA_HOME/de/reference_only/ --no-update-check \$RNA_HOME/expression/merged/merged.gtf normal_N02/accepted_hits.bam,normal_N03/accepted_hits.bam,normal_N06/accepted_hits.bam carcinoma_C02/accepted_hits.bam,carcinoma_C03/accepted_hits.bam,carcinoma_C06/accepted_hits.bam

At this point, you should have the following files under your "de" directory:

```
ubuntu@ip-10-182-231-187:~/workspace/rnaseq/integrated_assignment/de$ tree
   reference_only
       bias_params.info
       cds.count_tracking
       cds.diff
       cds_exp.diff
       cds.fpkm_tracking
       cds.read_group_tracking
       gene_exp.diff
       genes.count_tracking
      genes.fpkm_tracking
       genes.read_group_tracking
      - isoform_exp.diff
       isoforms.count_tracking
       isoforms.fpkm_tracking
       isoforms.read_group_tracking
       promoters.diff
       read_groups.info
       run.info
       splicing.diff
       tss_group_exp.diff
       tss_groups.count_tracking
       tss_groups.fpkm_tracking
       tss_groups.read_group_tracking
      var_model.info
 directory, 23 files
```


Q7) any significant genes that are differentially expressed? what about PCA3?

A) Due to the small sample size, the PCA3 signal is not significant at the adjusted p-value level. You can try re-running the above exercise on your own by using all of the samples in the original data set. Does including more samples change the results?

Q8) List the reasons why the differential expression of PCA3 might not have been properly assessed in this analysis? Analysis weeknesses?

- Short read length
- Poor sequencing quality
- Small sample size
- Low #reads