ESSEC I 2018

Dans tous le sujet :

- on désigne par n un entier naturel, au moins égal à 2,
- X est une v.a.r. à valeurs dans un intervalle $]0, \alpha[$, où α est un réel strictement positif. On suppose que X admet une densité f strictement positive et continue sur $]0, \alpha[$, et nulle en dehors de $]0, \alpha[$.
- on note F la fonction de répartition de X.
- X_1, \ldots, X_n est une famille de v.a.r. mutuellement indépendantes et de même loi que X.

On admet que toutes les variables aléatoires considérées sont définies sur le même espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$.

I. Lois des deux plus grands

Les notations et résultats de cette partie seront utilisés dans le reste du sujet.

On définit deux variables aléatoires Y_n et Z_n de la façon suivante.

Pour tout $\omega \in \Omega$:

- $Y_n(\omega) = \max(X_1(\omega), \dots, X_n(\omega))$ est le plus grand des réels $X_1(\omega), \dots, X_n(\omega)$; on remarque que Y_n est définie également lorsque n vaut 1, de sorte que dans la suite du sujet on pourra considérer Y_{n-1} .
- $Z_n(\omega)$ est le « deuxième plus grand » des nombres $X_1(\omega)$, ..., $X_n(\omega)$, autrement dit, une fois que ces n réels sont ordonnés dans l'ordre croissant, Z_n est l'avant-dernière valeur. On note que lorsque la plus grande valeur est présente plusieurs fois, $Z_n(\omega)$ et $Y_n(\omega)$ sont égaux.
- 1. Loi de Y_n .

Soit G_n la fonction de répartition de Y_n .

a) Montrer que pour tout réel $x:G_n(x)=F(x)^n$.

Démonstration.

Soit $x \in \mathbb{R}$.

• Tout d'abord :

$$[Y_n \leqslant x] = [X_1 \leqslant x] \cap \dots \cap [X_n \leqslant x] = \bigcap_{i=1}^n [X_i \leqslant x]$$

• On en déduit :

$$G_{n}(x) = \mathbb{P}([Y_{n} \leq x]) = \mathbb{P}\left(\bigcap_{i=1}^{n} [X_{i} \leq x]\right)$$

$$= \prod_{i=1}^{n} \mathbb{P}([X_{i} \leq x]) \qquad (car X_{1}, \dots, X_{n} sont indépendantes)$$

$$= \prod_{i=1}^{n} F(x) \qquad (car les v.a.r. X_{1}, \dots, X_{n} ont même loi)$$

$$= (F(x))^{n}$$

$$\forall x \in \mathbb{R}, G_n(x) = (F(x))^n$$

b) En déduire que Y_n est une variable aléatoire à densité et exprimer une densité g_n de Y_n en fonction de f, F et n.

Démonstration.

- La fonction F est la fonction de répartition de la v.a.r. X qui est à densité, donc F est :
 - \times continue sur \mathbb{R} ,
 - \times de classe \mathcal{C}^1 sur \mathbb{R} , sauf éventuellement en 0 et α .
- La fonction G_n est donc continue sur $\mathbb R$ car elle est la composée $h \circ F$ où :
 - \times F est :
 - continue sur \mathbb{R} ,
 - telle que $F(\mathbb{R}) \subset [0,1]$ (car F est une fonction de répartition)
 - \times $h: x \mapsto x^n$ est continue sur [0,1].
- De même G_n est de classe \mathcal{C}^1 sur \mathbb{R} sauf éventuellement en 0 et α . Finalement, la fonction G_n est :
 - \times continue sur \mathbb{R} ,
 - \times de classe \mathcal{C}^1 sur \mathbb{R} sauf éventuellement en 0 et α .

Ainsi,
$$Y_n$$
 est une v.a.r. à densité.

- On obtient une densité g_n de Y_n en dérivant la fonction G_n sur les intervalles ouverts.
 - \times Soit $x \in]-\infty,0[$.

$$g_n(x) = G'_n(x) = n f(x) (F(x))^{n-1} = 0$$

En effet, la fonction f est nulle sur $]-\infty,0[$.

 \times Soit $x \in]0, \alpha[$.

$$g_n(x) = G'_n(x) = n f(x) (F(x))^{n-1}$$

 \times Soit $x \in]\alpha, +\infty[$.

$$g_n(x) = G'_n(x) = n f(x) (F(x))^{n-1} = 0$$

En effet, la fonction f est nulle sur $]\alpha, +\infty[$.

× On choisit : $g_n(0) = 0$ et $g_n(\alpha) = 0$.

Une densité de
$$Y_n$$
 est donc $g_n: x \mapsto \begin{cases} n f(x) (F(x))^{n-1} & \text{si } x \in]0, \alpha[\\ 0 & \text{sinon} \end{cases}$

Commentaire

Comme la fonction f est nulle en dehors de $]0,\alpha[,$ on peut généraliser la formule précédente de la façon suivante :

$$\forall x \in \mathbb{R}, \ g_n(x) = n f(x) (F(x))^{n-1}$$

c) Montrer que Y_n admet une espérance.

Démonstration.

- La v.a.r. Y_n admet une espérance si et seulement si l'intégrale impropre $\int_{-\infty}^{+\infty} t g_n(t) dt$ est absolument convergente, ce qui équivaut à démontrer la convergence pour un calcul de moment du type $\int_{-\infty}^{+\infty} t^k g_n(t) dt$.
- La fonction g_n est nulle en dehors de $]0, \alpha[$, donc :

$$\int_{-\infty}^{+\infty} t g_n(t) dt = \int_0^{\alpha} t g_n(t) dt$$

• Soit $t \in]0, \alpha[$.

Comme la fonction F est une fonction de répartition : $0 \le F(t) \le 1$. D'où : $0 \le (F(t))^{n-1} \le 1$. Ainsi :

$$0\leqslant t\leqslant\alpha$$
 donc
$$0\leqslant n\,t\,f(t)\,(F(t))^{n-1}\leqslant n\,\alpha\,f(t)\,(F(t))^{n-1}$$
 d'où
$$0\leqslant n\,t\,f(t)\,(F(t))^{n-1}\leqslant n\,\alpha\,f(t)$$

Finalement:

 $\forall t \in]0, \alpha[, 0 \leqslant t \, g_{n-1}(t) \leqslant n \, \alpha \, f(t)]$

 \times l'intégrale $\int_0^{\alpha} f(t) dt$ converge car la fonction f est une densité de X.

ainsi $0 \le t \, g_{n-1}(t) \le n \, \alpha \, f(t)$

Par critère de comparaison des intégrales généralisées de fonctions continues positives, l'intégrale impropre $\int_0^{\alpha} t g_{n-1}(t) dt$ converge.

Donc la v.a.r. Y_n admet une espérance.

Commentaire

On peut démontrer de la même manière que toute v.a.r. X bornée (à valeurs dans un intervalle a, b par exemple) à densité admet une espérance. Démontrons le.

On note f une densité de X.

- La v.a.r. X admet une espérance si et seulement si l'intégrale impropre $\int_{-\infty}^{+\infty} t f(t) dt$ est absolument convergente.
- La fonction f est nulle en dehors de [a, b] car X est à valeurs dans [a, b], donc :

$$\int_{-\infty}^{+\infty} |t f(t)| dt = \int_{a}^{b} |t f(t)| dt$$

• Soit $t \in [a, b[$.

$$a\leqslant t\leqslant b$$
 donc $a\,f(t)\leqslant t\,f(t)\leqslant b\,f(t)$
$$(car\,f(t)\geqslant 0\ puisque\ f$$
 est une densité)
$$\text{d'où}\quad 0\leqslant |t\,f(t)|\leqslant \max(|a|,|b|)\,f(t)$$

Finalement:

 $\times \ \forall t \in \left]a,b\right[, \, 0 \leqslant \left|t \, f(t)\right| \leqslant \max(\left|a\right|,\left|b\right|) \, f(t)$

× l'intégrale $\int_a^b f(t) dt$ converge car la fonction f est une densité de X.

Par critère de comparaison des intégrales généralisées de fonctions continues positives, l'intégrale impropre $\int_a^b |t\,f(t)|\,dt$ converge, c'est-à-dire que l'intégrale $\int_a^b t\,f(t)\,dt$ converge absolument.

Ainsi, la v.a.r. X admet une espérance.

2. Loi de Z_n .

Soit H_n la fonction de répartition de Z_n .

- a) Soit x un réel.
 - (i) Soit $\omega \in \Omega$, justifier que $Z_n(\omega) \leq x$ si et seulement si dans la liste de n éléments $X_1(\omega), \ldots, X_n(\omega)$, au moins n-1 sont inférieurs ou égaux à x.

Donner une expression de l'événement $[Z_n \leq x]$ en fonction des événements $[X_k \leq x]$ et $[X_k > x]$ avec $k \in \{1, ..., n\}$.

Démonstration.

• Le réel $Z_n(\omega)$ est le deuxième plus grand nombre parmi $X_1(\omega), \ldots, X_n(\omega)$. Donc $Z_n(\omega) \leq x$ si et seulement si tous les éléments $X_1(\omega), \ldots, X_n(\omega)$ sont inférieurs à x, sauf éventuellement un (le plus grand élément parmi $X_1(\omega), \ldots, X_n(\omega)$).

Ainsi, $Z_n(\omega) \leq x$ si et seulement si, dans la liste de n éléments $X_1(\omega), \ldots, X_n(\omega)$, au moins (n-1) sont inférieurs ou égaux à x.

- D'après ce qui précède, si $Z_n(\omega) \leq x$, (n+1) cas se présentent :
 - × soit tous les $X_i(\omega)$ sont inférieurs à x, c'est-à-dire l'événement $\bigcap_{i=1}^n [X_i \leqslant x]$ est réalisé.
 - × soit $X_1(\omega)$ est strictement supérieur à x, et les autres sont inférieurs à x, c'est-à-dire l'événement $[X_1 > x] \cap \left(\bigcap_{i=2}^n [X_i \leqslant x]\right)$ est réalisé.
 - × soit $X_2(\omega)$ est strictement supérieur à x, et les autres sont inférieurs à x, c'est-à-dire l'événement $[X_2 > x] \cap \left(\bigcap_{\substack{i=1\\i\neq 2}}^n [X_i \leqslant x]\right)$ est réalisé.
 - × · · ·
 - × soit $X_n(\omega)$ est strictement supérieur à x, et les autres sont inférieurs à x, c'est-à-dire l'événement $[X_n > x] \cap \left(\bigcap_{i=1}^{n-1} [X_i \leqslant x]\right)$ est réalisé.

On obtient alors:
$$[Z_n \leqslant x] = \left(\bigcap_{i=1}^n [X_i \leqslant x]\right) \cup \left([X_1 > x] \cap \left(\bigcap_{i=2}^n [X_i \leqslant x]\right)\right)$$

$$\cup \left([X_2 > x] \cap \left(\bigcap_{\substack{i=1\\i \neq 2}}^n [X_i \leqslant x]\right)\right)$$

$$\cup \cdots$$

$$\cup \left([X_{n+1} > x] \cap \left(\bigcap_{\substack{i=1\\i \neq 2}}^{n-1} [X_i \leqslant x]\right)\right)$$

$$= \left(\bigcap_{i=1}^n [X_i \leqslant x]\right) \cup \left(\bigcup_{k=1}^n [X_k > x] \cap \left(\bigcap_{\substack{i=1\\i \neq k}}^n [X_i \leqslant x]\right)\right)$$

4

(ii) Établir: $H_n(x) = n(1 - F(x))(F(x))^{n-1} + F(x)^n$.

Démonstration.

• Les événements $\bigcap_{i=1}^{n} [X_i \leqslant x], [X_1 > x] \cap \left(\bigcap_{i=2}^{n} [X_i \leqslant x]\right), \dots, [X_{n+1} > x] \cap \left(\bigcap_{i=1}^{n-1} [X_i \leqslant x]\right)$ sont incompatibles. Donc :

$$\mathbb{P}([Z_n \leqslant x]) = \mathbb{P}\left(\bigcap_{i=1}^n [X_i \leqslant x]\right) + \sum_{k=1}^n \mathbb{P}\left([X_k > x] \cap \left(\bigcap_{\substack{i=1\\i \neq k}}^n [X_i \leqslant x]\right)\right)$$

• Soit $k \in [1, n]$. Comme les v.a.r. X_1, \ldots, X_n sont indépendantes, on obtient :

$$\mathbb{P}\Big([X_k > x] \cap \Big(\bigcap_{\substack{i=1\\i \neq k}}^n [X_i \leqslant x]\Big)\Big)$$

$$= \mathbb{P}([X_k > x]) \times \prod_{\substack{i=1\\i \neq k}}^n \mathbb{P}([X_i \leqslant x])$$

$$= (1 - F(x)) \prod_{\substack{i=1\\i \neq k}}^n F(x) \qquad (car X_1, ..., X_n \text{ ont même fonction de répartition } F)$$

$$= (1 - F(x))(F(x))^{n-1}$$

• De même, par indépendance de X_1, \ldots, X_n :

$$\mathbb{P}\Big(\bigcap_{i=1}^{n} [X_{i} \leqslant x]\Big) = \prod_{i=1}^{n} \mathbb{P}([X_{i} \leqslant x]) = \prod_{i=1}^{n} F(x) = (F(x))^{n}$$

• On en déduit :

$$\mathbb{P}([Z_n \leqslant x]) = (F(x))^n + \sum_{k=1}^n (1 - F(x)) (F(x))^{n-1}$$
$$= (F(x))^n + n (1 - F(x)) (F(x))^{n-1}$$
$$H_n(x) = \mathbb{P}([Z_n \leqslant x]) = n (1 - F(x)) (F(x))^{n-1} + (F(x))^n$$

b) Montrer que Z_n est une variable à densité et qu'une densité de Z_n est donnée par :

$$h_n(x) = n(n-1) f(x) (1 - F(x)) (F(x))^{n-2}$$

Démonstration.

- D'après la formule obtenue à la question précédente, la fonction H_n est :
 - \times continue sur $\mathbb R$ en tant que composée et somme de fonctions continues sur $\mathbb R$ (car la fonction F l'est),
 - \times de classe \mathcal{C}^1 sur \mathbb{R} sauf éventuellement en 0 et α en tant que composée et somme de fonctions de classe \mathcal{C}^1 sur \mathbb{R} sauf en 0 et α (car la fonction F l'est)

On en déduit que Z_n est une v.a.r. à densité.

• Pour déterminer une densité de Z_n , on dérive la fonction H_n sur des intervalles ouverts.

 \times Soit $x \in]0, \alpha[$.

$$h_n(x) = \underline{n(-f(x))(F(x))^{n-1}} + n(1 - F(x))(n - 1)f(x)(F(x))^{n-2} + \underline{nf(x)(F(x))^{n-1}}$$

= $n(n - 1) f(x) (1 - F(x)) (F(x))^{n-2}$

- × On raisonne de même sur les intervalles $]-\infty,0[$ et $]\alpha,+\infty[$.
- × On choisit $h_n(0) = 0$ et $h_n(\alpha) = 0$.

Comme
$$f(0) = f(\alpha) = 0$$
, on obtient bien :

$$h_n : x \mapsto n(n-1) f(x) (1 - F(x)) (F(x))^{n-2}.$$

3. Simulation informatique.

On suppose que l'on a défini une fonction **Scilab** d'entête function x = simulX(n) qui retourne une simulation d'un échantillon de taille n de la loi de X sous la forme d'un vecteur de longueur n. Compléter la fonction qui suit pour qu'elle retourne le couple $(Y_n(\omega), Z_n(\omega))$ associé à l'échantillon simulé par l'instruction X = simulX(n):

```
function [y, z] = DeuxPlusGrands(n)
        X = simulX(n)
        if ...
           \mathbf{y} = X(1); \mathbf{z} = X(2)
        else
        end
7
        for k = 3:n
           if X(k) > y
              z = \dots; y = \dots
<u>10</u>
           else
<u>11</u>
              if ...
12
                 z = \dots
13
              end
\underline{14}
           end
<u>15</u>
        end
<u>16</u>
     endfunction
17
```

Démonstration.

```
if X(1) > X(2)
3
        y = X(1); z = X(2)
4
        y = X(2); z = X(1)
      end
7
      for k = 3:n
8
        if X(k) > y
9
           z = y; y = X(k)
<u>10</u>
11
           if X(k) > z
12
             z = X(k)
13
           end
14
        end
15
      end
16
```

Détaillons l'obtention de ce programme.

• Comme précisé par l'énoncé, X = simulX(n) est un vecteur de longueur n, contenant n réalisations de la v.a.r. $X: X_1(\omega), \ldots, X_n(\omega)$.

- La variable y doit contenir le plus grand élément parmi $X_1(\omega), \ldots, X_n(\omega)$. Elle sera alors la réalisation $Y_n(\omega)$.
- De même, la variable z doit contenir le second plus grand élément parmi $X_1(\omega), \ldots, X_n(\omega)$. Elle sera alors la réalisation $Z_n(\omega)$.
- L'idée derrière ce script est de parcourir le vecteur X et de mettre à jour les variables y et z au fur et à mesure.
 - \times On commence donc par comparer X(1) et X(2) La plus grande valeur est alors stockée dans y et la seconde dans z. Autrement dit :
 - si X(1) > X(2), alors y = X(1) et z = X(2)

$$\frac{3}{4}$$
 if $X(1) > X(2)$
 $y = X(1)$; $z = X(2)$

- si $X(1) \leq X(2)$, alors y = X(2) et z = X(1)

$$\frac{5}{6} \qquad \text{else} \\
\mathbf{y} = X(2); \mathbf{z} = X(1)$$

- \times On compare ensuite chaque nouvel élément X(k) du vecteur X à y.
 - Si X(k) > y, alors:
 - X(k) est le maximum de X(1), ..., X(k),
 - y est donc le deuxième plus grand élément parmi X(1), ..., X(k) (puisque c'était le maximum de X(1), ..., X(k-1))
 - la variable z prend donc la valeur de y, et la variable y celle de X(k).

On obtient donc:

(La mise à jour de la variable z avant celle de la variable y a permis de ne pas écraser le contenu précédent de y)

- Si X(k) ≤ y, alors:
 - y est toujours le maximum de X(1), ..., X(k). Il est donc inutile de mettre cette variable à jour.
 - on compare alors X(k) et z. Si X(k) > z, alors X(k) est le deuxième plus grand élément parmi X(1), ..., X(k). On met donc à jour la variable z :

Sinon, z reste la deuxième plus grande valeur de X(1), ..., X(k). On ne la met donc pas à jour.

 \times En réitérant ce procédé pour toutes les coordonnées de X, on obtient que (y,z) est bien une réalisation de (Y_n, Z_n) .

Commentaire

- Afin de permettre une bonne compréhension des mécanismes en jeu, on a détaillé la réponse à cette question. Cependant, écrire correctement la fonction **Scilab** démontre la bonne compréhension et permet certainement d'obtenir tous les points alloués.
- On pourrait avoir envie d'écrire :

$$\underbrace{\text{if } X(k) > y}_{10} \\
 y = X(k); z = y$$

Mais attention : en écrivant cela, on effectue les calculs suivants :

$$y = X(k) \longleftrightarrow y \text{ contient } X(k)$$

$$z = y \longleftrightarrow z \text{ contient } y \text{ donc } X(k)$$

$$(et \text{ non la valeur précédente de } y)$$

D'où la mise à jour de z avant celle de y.

4. Premier exemple : loi uniforme.

On suppose dans cette question que X suit la loi uniforme sur $]0, \alpha[$.

a) Donner une densité de Y_n et une densité de Z_n .

Démonstration.

• Si $X \hookrightarrow \mathcal{U}(]0, \alpha[)$, alors :

$$f: x \mapsto \begin{cases} \frac{1}{\alpha} & \text{si } x \in]0, \alpha[\\ 0 & \text{sinon} \end{cases} \quad \text{et} \quad F: x \mapsto \begin{cases} 0 & \text{si } x \in]-\infty, 0]\\ \frac{x}{\alpha} & \text{si } x \in]0, \alpha[\\ 1 & \text{si } x \in [\alpha, +\infty[$$

• D'après la question 1.b), une densité de Y_n est :

$$g_n: x \mapsto \begin{cases} n f(x) (F(x))^{n-1} & \text{si } x \in]0, \alpha[\\ 0 & \text{sinon} \end{cases}$$

Soit $x \in]0, \alpha[$.

$$g_n(x) = n f(x) (F(x))^{n-1} = n \times \frac{1}{\alpha} \times \left(\frac{x}{\alpha}\right)^{n-1} = \frac{n}{\alpha^n} x^{n-1}$$

Finalement:
$$g_n: x \mapsto \begin{cases} \frac{n}{\alpha^n} x^{n-1} & \text{si } x \in]0, \alpha[\\ 0 & \text{sinon} \end{cases}$$
.

• D'après la question 2.b), une densité de Z_n est :

$$h_n: x \mapsto x \mapsto n(n-1) f(x) (1 - F(x)) (F(x))^{n-2}$$

 \times La fonction f est nulle en dehors de $]0, \alpha[$, donc :

$$\forall x \in]-\infty, 0] \cup [\alpha, +\infty[, h_n(x) = 0]$$

× Soit
$$x \in]0, \alpha[$$
.

$$h_n(x) = n(n-1) f(x) (1 - F(x)) (F(x))^{n-2}$$

$$= n(n-1) \times \frac{1}{\alpha} \times \left(1 - \frac{x}{\alpha}\right) \left(\frac{x}{\alpha}\right)^{n-2}$$

$$= \frac{n(n-1)}{\alpha^{n-1}} \times \frac{\alpha - x}{\alpha} x^{n-2}$$

$$= \frac{n(n-1)}{\alpha^n} (\alpha - x) x^{n-2}$$

Finalement:
$$h_n: x \mapsto \begin{cases} \frac{n(n-1)}{\alpha^n} (\alpha - x) x^{n-2} & \text{si } x \in]0, \alpha[\\ 0 & \text{sinon} \end{cases}$$

b) Calculer l'espérance de Y_n et de Z_n .

Démonstration.

• D'après la question 1.c), la v.a.r. Y_n admet une espérance. D'après la question précédente, la fonction g_n est nulle en dehors de $]0, \alpha[$, donc :

$$\mathbb{E}(Y_n) = \int_{-\infty}^{+\infty} t \, g_n(t) \, dt = \int_0^{\alpha} t \, g_n(t) \, dt$$

$$= \int_0^{\alpha} t \, \frac{n}{\alpha^n} t^{n-1} \, dt = \frac{n}{\alpha^n} \int_0^{\alpha} t^n \, dt$$

$$= \frac{n}{\alpha^n} \left[\frac{t^{n+1}}{n+1} \right]_0^{\alpha} = \frac{n}{\alpha^n} \times \frac{\alpha^{n+1}}{n+1}$$

$$= \frac{n}{n+1} \alpha$$

$$\mathbb{E}(Y_n) = \frac{n}{n+1} \alpha$$

- Montrons que la v.a.r. \mathbb{Z}_n admet une espérance.
 - La v.a.r. Z_n admet une espérance si et seulement si l'intégrale impropre $\int_{-\infty}^{+\infty} t h_n(t) dt$ est absolument convergente, ce qui équivaut à démontrer la convergence pour un calcul de moment du type $\int_{-\infty}^{+\infty} t^k h_n(t) dt$.
 - La fonction h_n est nulle en dehors de $]0,\alpha[$, donc :

$$\int_{-\infty}^{+\infty} t h_n(t) dt = \int_0^{\alpha} t h_n(t) dt$$

- Or la fonction $t \mapsto t h_n(t)$ est continue par morceaux sur $[0, \alpha]$ en tant que produit de fonctions continues par morceaux sur $[0, \alpha]$.

On en déduit que l'intégrale $\int_0^{\alpha} t h_n(t) dt$ est bien définie.

Donc la v.a.r. Z_n admet une espérance.

• Calculons $\mathbb{E}(Z_n)$.

$$\mathbb{E}(Z_n) = \int_0^\alpha t \, h_n(t) \, dt = \int_0^\alpha t \, \frac{n(n-1)}{\alpha^n} \left(\alpha - t\right) t^{n-2} \, dt$$

$$= \frac{n(n-1)}{\alpha^n} \int_0^\alpha \left(\alpha - t\right) t^{n-1} \, dt$$

$$= \frac{n(n-1)}{\alpha^n} \left(\alpha \int_0^\alpha t^{n-1} \, dt - \int_0^\alpha t^n \, dt\right)$$

$$= \frac{n(n-1)}{\alpha^n} \left(\alpha \left[\frac{t^n}{n}\right]_0^\alpha - \left[\frac{t^{n+1}}{n+1}\right]_0^\alpha\right)$$

$$= \frac{n(n-1)}{\alpha^n} \left(\alpha \frac{\alpha^n}{n} - \frac{\alpha^{n+1}}{n+1}\right) = \frac{n(n-1)\alpha^{n+1}}{\alpha^n} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= n(n-1)\alpha \frac{n+1}{n+1} = \frac{n-1}{n+1} \alpha$$

$$\mathbb{E}(Z_n) = \frac{n-1}{n+1} \alpha$$

Commentaire

- La continuité par morceaux de la fonction $t \mapsto t h_n(t)$ sur $[0, \alpha]$ suffit à conclure quant à la convergence de l'intégrale impropre $\int_0^{\alpha} t h_n(t) dt$.

Cependant, on peut même démontrer que la fonction $t \mapsto t h_n(t)$ est continue sur le segment $[0, \alpha]$.

- Revenons sur l'hypothèse de continuité par morceaux. Considérons la fonction $u: t \mapsto t g_n(t)$ par exemple.

- Tout d'abord, il faut se rendre compte que la fonction $u: t \mapsto t g_n(t)$ N'EST PAS continue sur $[0, \alpha]$. En fait, elle n'est pas continue en α . Par contre u est continue sur $]-\infty, \alpha[$ et $]\alpha, +\infty[$.
- Pour autant, cela ne signifie pas que l'intégrale $\int_0^\alpha u(t)\ dt$ est impropre. En effet, la fonction $u_{|[0,\alpha[}$ (restriction de u sur l'ensemble $[0,\alpha[)$ admet une limite finie en α (égale à $\alpha \times \frac{n}{\alpha^n} \alpha^{n-1} = n$).

Ainsi, $u_{|[0,\alpha[}$ est prolongeable par continuité en une fonction continue sur $[0,\alpha]$ ce qui justifie que l'intégrale $\int_0^\alpha u(t) \ dt$ est bien définie.

Mais c'est la fonction $u_{|[0,\alpha[}$ qui est prolongée par continuité et en aucun cas u (ce qui n'aurait pas de sens : la fonction u est définie en 0 et en α , il n'y a pas lieu de la prolonger en ces points).

- La notion de continuité par morceaux décrit complètement cette situation :
 - × u est continue sur les intervalles ouverts] $-\infty$, α [et] α , $+\infty$ [. (ici, elle n'est pas continue en α)
 - \times u admet une limite finie à gauche en ces deux points.
 - $\times~u$ admet une limite finie à droite en ces deux points.

(la limite à gauche est éventuellement différente de la limite à droite) Ainsi, u est **continue par morceaux** sur $[0, \alpha]$.

5. Deuxième exemple : loi puissance.

Deuxième exemple : loi puissance. On suppose dans cette question que la densité f est donnée par : $f(x) = \begin{cases} \lambda \frac{x^{\lambda-1}}{\alpha^{\lambda}} & \text{si } x \in]0, \alpha[0, x] \\ 0 & \text{sinon} \end{cases}$

où λ est une constante strictement positive.

On dit que X suit la loi puissance de paramètres α et λ .

a) (i) Vérifier que f est bien une densité de probabilité.

Démonstration.

- La fonction f est continue :
 - \times sur $]-\infty,0[$ et sur $]\alpha,+\infty[$ en tant que fonction constante,
 - \times sur $]0,\alpha[$ en tant que fonction élévation à la puissance $\lambda-1$ (multipliée par un scalaire).

Donc f est continue sur \mathbb{R} sauf éventuellement en 0 et en α .

• Soit $x \in]-\infty,0] \cup [\alpha,+\infty[$. Alors : f(x)=0, donc $f(x) \ge 0$. Soit $x \in [0, \alpha[$. D'après l'énoncé : $\alpha > 0$ et $\lambda > 0$.

De plus : x > 0. D'où : $f(x) = \lambda \frac{x^{\lambda - 1}}{\alpha^{\lambda}} > 0$.

On en déduit :
$$\forall x \in \mathbb{R}, f(x) \ge 0$$
.

- Montrons que l'intégrale $\int_{-\infty}^{+\infty} f(t) dt$ converge.
 - \times La fonction f est nulle en dehors de $]0, \alpha[$, donc :

$$\int_{-\infty}^{+\infty} f(t) dt = \int_{0}^{\alpha} f(t) dt$$

- \times De plus, la fonction f est continue par morceaux sur $[0, \alpha]$, donc l'intégrale $\int_{\alpha}^{\alpha} f(t) dt$ est bien définie. D'où l'intégrale $\int_{-\infty}^{+\infty} f(t) dt$ converge.
- Calculons $\int_{-\infty}^{+\infty} f(t) dt$.

$$\int_{-\infty}^{+\infty} f(t) dt = \int_{0}^{\alpha} f(t) dt = \int_{0}^{\alpha} \lambda \frac{t^{\lambda-1}}{\alpha^{\lambda}} dt = \frac{\lambda}{\alpha^{\lambda}} \int_{0}^{\alpha} t^{\lambda-1} dt$$
$$= \frac{\lambda}{\alpha^{\lambda}} \left[\frac{t^{\lambda}}{\lambda} \right]_{0}^{\alpha} = \frac{\lambda}{\alpha^{\lambda}} \frac{\alpha^{\lambda}}{\lambda} = 1$$

On a bien :
$$\int_{-\infty}^{+\infty} f(t) dt = 1.$$

On en déduit que la fonction f est une densité de probabilité.

(ii) Déterminer la fonction de répartition F de X.

Démonstration.

Soit $x \in \mathbb{R}$. Trois cas se présentent.

• Si $x \in]-\infty, 0]$.

$$F(x) = \int_{-\infty}^{x} f(t) dt = 0$$

• Si $x \in]0, \alpha[$.

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{0}^{x} f(t) dt = \frac{\lambda}{\alpha^{\lambda}} \int_{0}^{x} t^{\lambda - 1} dt = \frac{\lambda}{\alpha^{\lambda}} \left[\frac{t^{\lambda}}{\lambda} \right]_{0}^{x} = \frac{\mathbf{X}}{\alpha^{\lambda}} \frac{x^{\lambda}}{\mathbf{X}} = \frac{x^{\lambda}}{\alpha^{\lambda}}$$

• Si $x \in [\alpha, +\infty[$.

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{0}^{\alpha} f(t) dt = 1$$

Finalement :
$$F: x \mapsto \begin{cases} 0 & \text{si } x \in]-\infty, 0] \\ \frac{x^{\lambda}}{\alpha^{\lambda}} & \text{si } x \in]0, \alpha[\\ 1 & \text{si } x \in [\alpha, +\infty[$$

(iii) Calculer l'espérance de X.

Démonstration.

- La v.a.r. X admet une espérance si et seulement si l'intégrale impropre $\int_{-\infty}^{+\infty} t f(t) dt$ est absolument convergente, ce qui équivaut à démontrer la convergence pour un calcul de moment du type $\int_{-\infty}^{+\infty} t^n f(t) dt$.
- La fonction $t \mapsto t f(t)$ est nulle en dehors de $]0, \alpha[$, donc :

$$\int_{-\infty}^{+\infty} t f(t) dt = \int_{0}^{\alpha} t f(t) dt$$

• De plus, la fonction $t \mapsto t f(t)$ est continue par morceaux sur $[0, \alpha]$ en tant que produit de fonctions continues par morceaux sur $[0, \alpha]$. Donc l'intégrale $\int_0^{\alpha} t f(t) dt$ est bien définie.

Donc la v.a.r. X admet une espérance.

• Calculons $\mathbb{E}(X)$.

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} t f(t) dt = \int_{0}^{\alpha} t f(t) dt$$

$$= \int_{0}^{\alpha} t \lambda \frac{t^{\lambda - 1}}{\lambda} dt = \frac{\lambda}{\alpha^{\lambda}} \int_{0}^{\alpha} t^{\lambda} dt$$

$$= \frac{\lambda}{\alpha^{\lambda}} \left[\frac{t^{\lambda + 1}}{\lambda + 1} \right]_{0}^{\alpha} = \frac{\lambda}{\alpha^{\lambda}} \frac{\alpha^{\lambda + 1}}{\lambda + 1}$$

$$= \frac{\lambda}{\lambda + 1} \alpha$$

$$\mathbb{E}(X) = \frac{\lambda}{\lambda + 1} \alpha$$

b) (i) Montrer que Y_n suit une loi puissance de paramètres à préciser en fonction de n, λ et α .

 $D\'{e}monstration.$

• D'après la question 1.b), la fonction de répartition de Y_n est : $G_n : x \mapsto (F(x))^n$.

× Soit
$$x \in]-\infty, 0]$$
. D'après la question $\mathbf{5.a}(\mathbf{ii}): F(x) = 0$.
Donc : $G_n(x) = 0^n = 0$.

 \times Soit $x \in]0, \alpha[$.

$$G_n(x) = (F(x))^n = \left(\frac{x^{\lambda}}{\alpha^{\lambda}}\right)^n$$
 (d'après la question **5.a**)(i))
$$= \frac{x^{n\lambda}}{\alpha^{n\lambda}}$$

× Soit $x \in [\alpha, +\infty[$. D'après la question $\mathbf{5.a})(\mathbf{ii}) : F(x) = 1$.

Donc : $G_n(x) = 1^n = 1$.

Finalement :
$$G_n : x \mapsto \begin{cases} 0 & \text{si } x \in]-\infty, 0] \\ \frac{x^{n\lambda}}{\alpha^{n\lambda}} & \text{si } x \in]0, \alpha[\\ 1 & \text{si } x \in [\alpha, +\infty[$$

• On reconnaît la fonction de répartition de la loi puissance de paramètres $n\lambda$ et α . Or la fonction de répartition caractérise la loi.

Donc Y_n suit la loi puissance de paramètres $n\lambda$ et α .

(ii) En déduire l'espérance de Y_n .

Démonstration.

Comme Y_n suit une loi puissance, on utilise la question 5.a)(iii) avec $\lambda' = n\lambda$ et $\alpha' = \alpha$.

On en déduit que
$$Y_n$$
 admet une espérance et $\mathbb{E}(Y_n) = \frac{\lambda'}{\lambda'+1} \alpha' = \frac{n\lambda}{n\lambda+1} \alpha$.

c) Calculer l'espérance de Z_n .

Démonstration.

• D'après la question 2.b), une densité de Z_n est :

$$h_n: x \mapsto n(n-1) f(x) (1-F(x)) (F(x))^{n-2}$$

• Comme la fonction f est nulle en dehors de $]0, \alpha[$:

$$\forall x \in]-\infty, 0] \cup [\alpha, +\infty[, h_n(x) = 0]$$

• Soit $x \in [0, \alpha[$.

$$h_n(x) = n(n-1) f(x) (1 - F(x)) (F(x))^{n-2}$$

$$= n(n-1) \lambda \frac{x^{\lambda-1}}{\alpha^{\lambda}} \left(1 - \frac{x^{\lambda}}{\alpha^{\lambda}}\right) \left(\frac{x^{\lambda}}{\alpha^{\lambda}}\right)^{n-2}$$

$$= n(n-1) \lambda \frac{x^{\lambda-1}}{\alpha^{\lambda}} \frac{\alpha^{\lambda} - x^{\lambda}}{\alpha^{\lambda}} \frac{x^{\lambda(n-2)}}{(\alpha^{\lambda})^{n-2}}$$

$$= n(n-1) \lambda \left(\alpha^{\lambda} - x^{\lambda}\right) \frac{x^{\lambda(n-1)-1}}{(\alpha^{\lambda})^n}$$

$$= n(n-1) \lambda \left(\frac{x^{\lambda(n-1)-1}}{(\alpha^{\lambda})^{n-1}} - \frac{x^{\lambda n-1}}{(\alpha^{\lambda})^n}\right)$$
Finalement : $h_n : x \mapsto \begin{cases} n(n-1) \lambda \left(\frac{x^{\lambda(n-1)-1}}{\alpha^{\lambda(n-1)}} - \frac{x^{\lambda n-1}}{\alpha^{\lambda n}}\right) & \text{si } x \in]0, \alpha[\\ 0 & \text{sinon} \end{cases}$

• Avec le même raisonnement qu'en question 4.b), la v.a.r. Z_n admet une espérance car la fonction $t \mapsto t h_n(t)$ est continue par morceaux sur $[0, \alpha]$. Comme cette fonction est nulle en dehors de $]0, \alpha[$:

$$\mathbb{E}(Z_n) = \int_{-\infty}^{+\infty} t h_n(t) dt = \int_0^{\alpha} t h_n(t) dt$$

• Calculons d'abord l'intégrale $\int_0^{\alpha} t \frac{t^{\lambda n-1}}{\alpha^{\lambda n}} dt$.

$$\int_0^\alpha t \, \frac{t^{\lambda n - 1}}{\alpha^{\lambda n}} \, dt \; = \; \frac{1}{\alpha^{\lambda n}} \, \int_0^\alpha t^{\lambda n} \, dt \; = \; \frac{1}{\alpha^{\lambda n}} \left[\; \frac{t^{\lambda n + 1}}{\lambda n + 1} \; \right]_0^\alpha \; = \; \frac{1}{\alpha^{\lambda n}} \, \frac{\alpha^{\lambda n + 1}}{\lambda n + 1} \; = \; \frac{\alpha}{\lambda n + 1}$$

De même : $\int_0^\alpha t \frac{t^{\lambda(n-1)-1}}{\alpha^{\lambda(n-1)}} dt = \frac{\alpha}{\lambda(n-1)+1}.$

• On en déduit alors :

$$\mathbb{E}(Z_n) = \int_0^\alpha t \, h_n(t) \, dt = \int_0^\alpha t \, n(n-1)\lambda \left(\frac{t^{\lambda(n-1)-1}}{\alpha^{\lambda(n-1)}} - \frac{t^{\lambda n-1}}{\alpha^{\lambda n}}\right) \, dt$$

$$= n(n-1)\lambda \left(\int_0^\alpha t \, \frac{t^{\lambda(n-1)-1}}{\alpha^{\lambda(n-1)}} \, dt - \int_0^\alpha t \, \frac{t^{\lambda n-1}}{\alpha^{\lambda n}} \, dt\right) \qquad (par \, linéarité \, de \, l'intégration)$$

$$= n(n-1)\lambda \left(\frac{\alpha}{\lambda(n-1)+1} - \frac{\alpha}{\lambda n+1}\right)$$

$$= n(n-1)\lambda \alpha \frac{\lambda n + \mathbf{1} - (\lambda(n-1) + \mathbf{1})}{(\lambda(n-1)+1)(\lambda n+1)}$$

$$= \frac{n(n-1)\alpha \lambda^2}{(\lambda(n-1)+1)(\lambda n+1)}$$

$$\mathbb{E}(Z_n) = \frac{n(n-1)\alpha \lambda^2}{(\lambda(n-1)+1)(\lambda n+1)}$$

Commentaire

Dans les questions 4.b), 5.a)(iii) et 5.c), on utilise la continuité par morceaux des fonctions en présence pour conclure quant à la convergence des intégrales concernées. On aurait pu également utiliser le critère de comparaison des intégrales généralisées de fonctions continues positives (comme détaillé en question 1.c)).

II. Un problème d'optimisation

On reprend la notation de la partie précédente : G_{n-1} est la fonction de répartition de Y_{n-1} , qui est le maximum de X_1, \ldots, X_{n-1} .

On répond dans cette partie au problème d'optimisation suivant : trouver une fonction σ définie sur $]0,\alpha[$ vérifiant les trois propriétés :

- σ est une bijection de $]0, \alpha[$ dans un intervalle $]0, \beta[$, avec β un réel strictement positif.
- σ est de classe \mathcal{C}^1 sur $]0,\alpha[$ et σ' est à valeurs strictement positives sur $]0,\alpha[$.
- on définit, pour tout $x \in]0, \alpha[$ et tout $y \in]0, \beta[$,

$$\gamma(x,y) = (x-y) G_{n-1}(\sigma^{-1}(y))$$

Alors pour tout $x \in [0, \alpha[, \gamma(x, y)]]$ atteint son maximum lorsque $y = \sigma(x)$.

Commentaire

L'énoncé de cette partie II comporte une confusion entre les objets « réel » et « fonction ». En effet, le sujet énonce « $\gamma(x,y)$ atteint son maximum lorsque ... ». Il fallait comprendre « $y\mapsto \gamma(x,y)$ atteint son maximum lorsque ... ».

6. Analyse.

On suppose dans un premier temps qu'une telle fonction σ vérifiant ces trois propriétés existe.

a) Montrer que σ^{-1} est dérivable sur $]0,\beta[$ et exprimer sa dérivée $(\sigma^{-1})'$ en fonction de σ' et σ^{-1} .

 $D\acute{e}monstration$. La fonction σ :

- \times réalise une bijection de $]0, \alpha[$ sur $]0, \beta[$,
- \times est dérivable sur $]0, \alpha[$ (car de classe \mathcal{C}^1 sur $]0, \alpha[$)
- \times est telle que : $\forall x \in [0, \alpha[, \sigma'(x) \neq 0.$

Alors
$$\sigma^{-1}$$
 est dérivable sur $]0,\beta[$ et $(\sigma^{-1})'=\frac{1}{\sigma'\circ\sigma^{-1}}.$

Commentaire

• On peut retrouver la formule de $(\sigma^{-1})'$ via l'égalité $\sigma \circ \sigma^{-1} = id$. En effet, en dérivant formellement cette égalité, on obtient :

$$(\sigma' \circ \sigma^{-1}) \times (\sigma^{-1})' = 1$$

• La formule $(\sigma^{-1})' = \frac{1}{\sigma' \circ \sigma^{-1}}$ permet également de conclure que la fonction σ^{-1} est de classe \mathcal{C}^1 sur $]0, \beta[$, car $(\sigma^{-1})'$ est continue sur $]0, \beta[$ en tant qu'inverse d'une fonction continue sur $]0, \beta[$, ne s'annulant pas sur cet intervalle.

15

b) Calculer la dérivée partielle $\partial_2(\gamma)(x,y)$.

Démonstration.

La fonction γ est de classe \mathcal{C}^1 sur $]0, \alpha[\times]0, \beta[$. En effet :

- la fonction $(x,y) \mapsto x y$ est de classe \mathcal{C}^1 sur $[0,\alpha] \times [0,\beta]$ en tant que fonction polynomiale.
- la fonction $(x,y) \mapsto G_{n-1}(\sigma^{-1}(y))$ est de classe \mathcal{C}^1 sur $]0,\alpha[\times]0,\beta[$, car elle est la composée $G_{n-1}\circ\sigma^{-1}\circ\varphi$ où :
 - $\times \varphi : (x,y) \mapsto y \text{ est } :$
 - de classe C^1 sur $]0, \alpha[\times]0, \beta[$ en tant que fonction polynomiale,
 - telle que $\varphi(]0, \alpha[\times]0, \beta[) \subset]0, \beta[$
 - $\times \sigma^{-1}$ est:
 - de classe C^1 sur $]0, \beta[$,
 - telle que $\sigma^{-1}(]0,\beta[)\subset]0,\alpha[.$
 - \times G_{n-1} est de classe \mathcal{C}^1 sur $]0, \alpha[$ d'après la question 1.b).

La fonction γ est de classe \mathcal{C}^1 sur $]0, \alpha[\times]0, \beta[$ en tant que produit de fonctions de classe \mathcal{C}^1 sur $]0, \alpha[\times]0, \beta[$.

Soit $(x, y) \in]0, \alpha[\times]0, \beta[$.

$$\partial_2(\gamma)(x,y) = -G_{n-1}(\sigma^{-1}(y)) + (x-y)(\sigma^{-1})'(y) g_{n-1}(\sigma^{-1}(y))$$
$$= -G_{n-1}(\sigma^{-1}(y)) + \frac{x-y}{\sigma'(\sigma^{-1}(y))} g_{n-1}(\sigma^{-1}(y))$$

$$\forall (x,y) \in]0, \alpha[\times]0, \beta[, \partial_2(\gamma)(x,y) = -G_{n-1}(\sigma^{-1}(y)) + \frac{x-y}{\sigma'(\sigma^{-1}(y))} g_{n-1}(\sigma^{-1}(y))$$

Commentaire

On a détaillé ici la démonstration du caractère \mathcal{C}^1 de la fonction γ . Autant de précision n'était sans doute pas attendu.

c) Montrer que pour tout $x \in]0, \alpha[$, on a $\partial_2(\gamma)(x, \sigma(x)) = 0$. En déduire que pour tout $x \in]0, \alpha[$:

$$\sigma'(x) G_{n-1}(x) + \sigma(x) g_{n-1}(x) = x g_{n-1}(x)$$

Démonstration.

Soit x ∈]0, α[.
D'après l'énoncé, la fonction ψ : y → γ(x, y) atteint son maximum en σ(x).
Or, si σ(x) est un maximum de ψ, alors : ψ'(σ(x)) = 0.
Autrement dit, par définition de ψ :

$$0 = \psi'(\sigma(x)) = \partial_2(\gamma)(x, \sigma(x))$$

$$\forall x \in]0, \alpha[, \partial_2(\gamma)(x, \sigma(x)) = 0$$

• Soit $x \in [0, \alpha[$. D'après la question précédente :

$$0 = \partial_{2}(\gamma)(x, \sigma(x))$$

$$= -G_{n-1}(\sigma^{-1}(\sigma(x))) + \frac{x - \sigma(x)}{\sigma'(\sigma^{-1}(\sigma(x)))} g_{n-1}(\sigma^{-1}(\sigma(x)))$$

$$= -G_{n-1}(x) + \frac{x - \sigma(x)}{\sigma'(x)} g_{n-1}(x)$$

En multipliant cette égalité par $\sigma'(x)$:

$$0 = -\sigma'(x) G_{n-1}(x) + (x - \sigma(x)) g_{n-1}(x)$$

D'où : $\forall x \in]0, \alpha[, \sigma'(x) G_{n-1}(x) + \sigma(x) g_{n-1}(x) = x g_{n-1}(x).$

d) Montrer alors, pour tout $x \in]0, \alpha[$:

$$\sigma(x) = \frac{1}{G_{n-1}(x)} \int_0^x t g_{n-1}(t) dt$$
 (*)

Démonstration.

Soit $x \in [0, \alpha[$.

• Soit $t \in [0, x]$. D'après la question précédente :

$$t g_{n-1}(t) = \sigma'(t) G_{n-1}(t) + \sigma(t) g_{n-1}(t) = (\sigma \times G_{n-1})'(t)$$

En effet, on reconnaît ici la formule de dérivation d'un produit :

$$(u \times v)' = u' \times v + u \times v'$$

appliquée à $u = \sigma$ et $v = G_{n-1}$.

On souhaite intégrer cette égalité entre 0 et x.

- On sait déjà que la fonction G_{n-1} est continue sur \mathbb{R} , donc sur [0,x] (car la v.a.r. Y_{n-1} est une variable aléatoire à densité d'après la question 1.b).
- Il reste à montrer que la fonction σ est continue par morceaux sur [0, x]. On sait déjà que la fonction σ est continue sur]0, x], car $x \in]0, \alpha[$. Montrons donc que σ admet une limite à droite en 0 finie.
 - × La fonction σ est strictement croissante sur $]0, \alpha[$, car : $\forall x \in]0, \alpha[$, $\sigma'(x) > 0$ (d'après l'énoncé).
 - \times De plus, d'après l'énoncé : $\sigma([0,\alpha[)]) = [0,\beta[$. Donc, la fonction σ est bornée sur $[0,\alpha[$.

Par théorème de la limite monotone, la fonction σ admet une limite à droite en 0 finie.

On en déduit que la fonction σ est continue par morceaux sur [0, x].

Commentaire

La croissance seule de la fonction σ sur $]0, \alpha[$ permet de conclure que σ admet une limite à gauche et à droite en tout point de $]0, \alpha[$.

Soit $a \in [0, x]$.

$$\int_{a}^{x} t g_{n-1}(t) dt = (\sigma \times G_{n-1})(x) - (\sigma \times G_{n-1})(a) = \sigma(x) \times G_{n-1}(x) - \sigma(a) \times G_{n-1}(a)$$

Or:

× d'après ce qui précède, la limite $\lim_{a\to 0} \sigma(a)$ est finie.

 \times de plus, comme la fonction G_{n-1} est continue en 0 :

$$\lim_{a \to 0} G_{n-1}(a) = G_{n-1}(0) = \int_{-\infty}^{0} g_{n-1}(t) dt = 0$$

(car la fonction g_{n-1} est nulle en dehors de $]0, \alpha[)$

On en déduit : $\lim_{a\to 0} \sigma(a) G_{n-1}(a) = 0$. Ainsi :

$$\int_0^x t g_{n-1}(t) dt = \sigma(x) G_{n-1}(x)$$

• De plus : $G_{n-1}(x) = \int_{-\infty}^{x} g_{n-1}(t) dt = \int_{0}^{x} g_{n-1}(t) dt$. Or : $\forall t \in]0, \alpha[, g_{n-1}(t) > 0$. Donc : $G_{n-1}(x) > 0$.

D'où :
$$\forall x \in]0, \alpha[, \sigma(x) = \frac{1}{G_{n-1}(x)} \int_0^x t g_{n-1}(t) dt.$$

e) À l'aide d'une intégration par parties, montrer que pour tout $x \in [0, \alpha[$, on a également :

$$\sigma(x) = x - \int_0^x \frac{G_{n-1}(t)}{G_{n-1}(x)} dt$$
 (**)

Démonstration.

Soit $x \in [0, \alpha[$. D'après la question précédente :

$$\sigma(x) = \frac{1}{G_{n-1}(x)} \int_0^x t g_{n-1}(t) dt$$

Soit $a \in [0, x]$. On procède par intégration par parties (IPP).

$$u(t) = t$$
 $u'(t) = 1$
 $v'(t) = g_{n-1}(t)$ $v(t) = G_{n-1}(t)$

Cette IPP est valide car les fonctions u et v sont C^1 sur [a, x]. On obtient alors :

$$\frac{1}{G_{n-1}(x)} \int_{a}^{x} t g_{n-1}(t) dt = \frac{1}{G_{n-1}(x)} \left(\left[t G_{n-1}(t) \right]_{a}^{x} - \int_{a}^{x} G_{n-1}(t) dt \right) \\
= \frac{1}{G_{n-1}(x)} \left(x G_{n-1}(x) - a G_{n-1}(a) - \int_{a}^{x} G_{n-1}(t) dt \right)$$

Or, comme : $\forall a \in \mathbb{R}, \ 0 \leqslant G_{n-1}(a) \leqslant 1$, alors $\lim_{a \to 0} a G_{n-1}(a) = 0$. Donc :

$$\sigma(x) = \frac{1}{G_{n-1}(x)} \left(x G_{n-1}(x) - \int_0^x G_{n-1}(t) dt \right)$$

$$= x - \frac{1}{G_{n-1}(x)} \int_0^x G_{n-1}(t) dt$$

$$= x - \int_0^x \frac{G_{n-1}(t)}{G_{n-1}(x)} dt$$

$$\forall x \in]0, \alpha[, \sigma(x) = x - \int_0^x \frac{G_{n-1}(t)}{G_{n-1}(x)} dt$$

7. Synthèse.

On suppose à présent que σ est la fonction définie par l'égalité (*) ou (**).

a) Montrer que pour tout $x \in [0, \alpha], 0 < \sigma(x) < x$.

Démonstration.

Soit $x \in [0, \alpha[$.

- Montrons : $\sigma(x) > 0$. On utilise pour cela l'expression (*).
 - On a déjà démontré en question 6.d): $G_{n-1}(x) > 0$.
 - De plus : $\forall t \in [0, x], t g_{n-1}(t) > 0.$

Donc :
$$\int_0^x t g_{n-1}(t) dt > 0$$
.

Finalement :
$$\sigma(x) > 0$$
.

- Montrons : $\sigma(x) < x$. On utilise pour cela l'expression (**).
 - Tout d'abord, soit $t \in]0,x]: G_{n-1}(t) > 0$. Donc : $\frac{G_{n-1}(t)}{G_{n-1}(x)} > 0$.

D'où :
$$\int_0^x \frac{G_{n-1}(t)}{G_{n-1}(x)} dt > 0.$$

- On en déduit :

$$x - \int_0^x \frac{G_{n-1}(t)}{G_{n-1}(x)} dt < x - 0 = x$$

$$Ainsi: \sigma(x) < x$$

b) Montrer que σ est de classe \mathcal{C}^1 sur $]0, \alpha[$ et que pour tout $x \in]0, \alpha[$, $\sigma'(x)$ est du signe de $x - \sigma(x)$. En déduire que σ' est strictement positive sur $]0, \alpha[$.

Démonstration.

- On utilise l'expression (*).
 - La fonction $x \mapsto \frac{1}{G_{n-1}(x)}$ est de classe \mathcal{C}^1 sur $]0, \alpha[$ en tant qu'inverse de la fonction G_{n-1} de classe \mathcal{C}^1 sur $]0, \alpha[$ (d'après la question 1.b)), qui ne s'annule pas sur cet intervalle. En effet : $\forall x \in]0, \alpha[$, $G_{n-1}(x) > 0$.
 - La fonction $t \mapsto t \, g_{n-1}(t)$ est continue sur $]0, \alpha[$. Donc la fonction $x \mapsto \int_0^x t \, g_{n-1}(t) \, dt$ est de classe \mathcal{C}^1 sur $]0, \alpha[$ en tant que primitive de $t \mapsto t \, g_{n-1}(t)$.

Ainsi, la fonction σ est de classe \mathcal{C}^1 sur $]0, \alpha[$ en tant que produit de fonctions de classe \mathcal{C}^1 sur $]0, \alpha[$.

• Soit $x \in [0, \alpha[$.

$$\sigma'(x) = \frac{x g_{n-1}(x) G_{n-1}(x) - g_{n-1}(x) \int_0^x t g_{n-1}(t) dt}{(G_{n-1}(x))^2}$$

$$= \frac{g_{n-1}(x) G_{n-1}(x)}{(G_{n-1}(x))^2} \left(x - \frac{1}{G_{n-1}(x)} \int_0^x t g_{n-1}(t) dt\right)$$

$$= \frac{g_{n-1}(x)}{G_{n-1}(x)} (x - \sigma(x))$$

Or: $g_{n-1}(x) > 0$ et $G_{n-1}(x) > 0$.

Donc $\sigma'(x)$ est du signe de $(x - \sigma(x))$.

• D'après la question 7.a) : $x - \sigma(x) > 0$. Donc : $\sigma'(x) > 0$.

Ainsi, la fonction σ est strictement croissante sur $]0, \alpha[$.

c) Montrer que σ réalise une bijection de $]0, \alpha[$ dans $]0, \beta[$, avec $\beta = \mathbb{E}(Y_{n-1})$.

Démonstration.

La fonction σ est :

× continue sur $]0, \alpha[$ (car elle est de classe \mathcal{C}^1 sur $]0, \alpha[$),

× strictement croissante sur $]0, \alpha[$.

Ainsi, σ réalise une bijection de $]0, \alpha[$ sur $\sigma(]0, \alpha[)$.

$$\sigma(]0,\alpha[) = \lim_{x\to 0} \sigma(x), \lim_{x\to \alpha} \sigma(x)[$$

- Déterminons $\lim_{x\to 0} \sigma(x)$.

D'après la question 7.a): $\forall x \in [0, \alpha[, 0 < \sigma(x) < x]$.

 $\mathrm{Or}: \lim_{x \to 0} \, x = 0.$

Donc, par théorème d'encadrement : $\lim_{x\to 0} \sigma(x) = 0$.

- Déterminons $\lim_{x \to \alpha} \sigma(x)$.

Tout d'abord :

$$G_{n-1}(\alpha) = \int_{-\infty}^{\alpha} g_{n-1}(t) dt$$

$$= \int_{-\infty}^{+\infty} g_{n-1}(t) dt \qquad \begin{array}{l} (car \ g_{n-1} \ est \ nulle \ en \\ dehors \ de \]0, \alpha[) \end{array}$$

$$= 1 \qquad (car \ g_{n-1} \ est \ une \ densit\'e)$$

Ainsi:

$$\lim_{x \to \alpha} \sigma(x) = \frac{1}{1} \int_0^{\alpha} t g_{n-1}(t) dt$$

$$= \int_{-\infty}^{+\infty} t g_{n-1}(t) dt \qquad \begin{array}{l} (car g_{n-1} \ est \ nulle \ en \\ dehors \ de \]0, \alpha[) \end{array}$$

$$= \mathbb{E}(Y_{n-1})$$

On en déduit que la fonction σ réalise une bijection de $]0, \alpha[$ dans $]0, \beta[$ avec $\beta = \mathbb{E}(Y_{n-1})$.

d) On fixe un réel $x \in [0, \alpha[$. Soit $y \in [0, \beta[$, on pose $z = \sigma^{-1}(y)$.

(i) Établir :

$$\gamma(x,y) = (x-z) G_{n-1}(z) + \int_0^z G_{n-1}(t) dt$$

Démonstration.

• Tout d'abord :

$$\gamma(x,y) = (x-y) G_{n-1}(\sigma^{-1}(y)) = (x-\sigma(z)) G_{n-1}(\sigma^{-1}(\sigma(z))) = (x-\sigma(z)) G_{n-1}(z)$$

• Or, d'après l'expression (**) :
$$\sigma(z) = z - \int_0^z \frac{G_{n-1}(t)}{G_{n-1}(z)} dt$$
.

• Donc :

(ii) En déduire :
$$\gamma(x, \sigma(x)) - \gamma(x, y) = (z - x) G_{n-1}(z) - \int_x^z G_{n-1}(t) dt$$
.

 $D\'{e}monstration.$

• Tout d'abord :

$$\gamma(x,\sigma(x)) = (x - \sigma(x)) G_{n-1}(\sigma^{-1}(\sigma(x))) = (x - \sigma(x)) G_{n-1}(x)$$

$$Or : \sigma(x) = x - \int_0^x \frac{G_{n-1}(t)}{G_{n-1}(x)} dt. D'où :$$

$$\gamma(x,\sigma(x)) = x G_{n-1}(x) - \left(x - \int_0^x \frac{G_{n-1}(t)}{G_{n-1}(x)} dt\right) G_{n-1}(x)$$

$$= x G_{n-1}(x) - x G_{n-1}(x) + G_{n-1}(x) \int_0^x \frac{G_{n-1}(t)}{G_{n-1}(x)} dt$$

$$= \int_0^x G_{n-1}(t) dt$$

• On en déduit :

$$\gamma(x,\sigma(x)) - \gamma(x,y) = \int_0^x G_{n-1}(t) dt - \left((x-z) G_{n-1}(z) + \int_0^z G_{n-1}(t) dt \right)
= (z-x) G_{n-1}(z) + \int_z^x G_{n-1}(t) dt
= (z-x) G_{n-1}(z) - \int_z^z G_{n-1}(t) dt$$

$$\gamma(x,\sigma(x)) - \gamma(x,y) = (z-x) G_{n-1}(z) - \int_x^z G_{n-1}(t) dt$$

(iii) Déterminer le signe de $\gamma(x,\sigma(x)) - \gamma(x,y)$ et conclure que $\gamma(x,y)$ est maximal lorsque $y = \sigma(x)$.

Démonstration.

D'après la question précédente :

$$\gamma(x,\sigma(x)) - \gamma(x,y) = (z-x) G_{n-1}(z) - \int_x^z G_{n-1}(t) dt$$

Deux cas se présentent.

• Si $z \geqslant x$.

La fonction G_{n-1} est croissante car c'est une fonction de répartition. Donc :

$$\forall t \in [x, z], \ G_{n-1}(t) \leqslant G_{n-1}(z)$$

Par croissance de l'intégration (les bornes sont dans l'ordre croissant) :

$$\int_{x}^{z} G_{n-1}(t) dt \leqslant \int_{x}^{z} G_{n-1}(z) dt$$
Or:
$$\int_{x}^{z} G_{n-1}(z) dt = G_{n-1}(z) \int_{x}^{z} dt = G_{n-1}(z) [t]_{x}^{z} = (z-x) G_{n-1}(z).$$
Donc:
$$\int_{x}^{z} G_{n-1}(t) dt \leqslant (z-x) G_{n-1}(z)$$

On en déduit :

$$(z-x) G_{n-1}(z) - \int_{x}^{z} G_{n-1}(t) dt \ge 0$$

Ainsi, d'après l'expression trouvée à la question précédente :

$$\gamma(x, \sigma(x)) - \gamma(x, y) \geqslant 0$$

• Si $z \leq x$. Par croissance de la fonction G_{n-1} sur $]0, \alpha[$:

$$\forall t \in [z, x], \ G_{n-1}(t) \geqslant G_{n-1}(z)$$

Par croissance de l'intégration (les bornes sont dans l'ordre croissant) :

$$\int_{z}^{x} G_{n-1}(t) dt \geqslant \int_{z}^{x} G_{n-1}(z) dt$$

$$\text{Or}: \int_{z}^{x} G_{n-1}(z) dt = G_{n-1}(z) \int_{z}^{x} dt = G_{n-1}(z) \left[t \right]_{z}^{x} = (x-z) G_{n-1}(z).$$

$$\text{Donc}:$$

$$\int_{z}^{x} G_{n-1}(t) dt \geqslant -(z-x) G_{n-1}(z)$$

$$\text{D'où}: \int_{x}^{z} G_{n-1}(t) dt \leqslant (z-x) G_{n-1}(z). \text{ On en déduit}:$$

$$(z-x) G_{n-1}(z) - \int_{x}^{z} G_{n-1}(t) dt \ge 0$$

Ainsi, d'après l'expression trouvée à la question précédente :

$$\gamma(x, \sigma(x)) - \gamma(x, y) \geqslant 0$$

Finalement:
$$\forall (x,y) \in [0, \alpha[\times]0, \beta[, \gamma(x, \sigma(x)) - \gamma(x,y) \ge 0.$$

Soient $x \in [0, \alpha]$ et $y \in [0, \beta]$. D'après l'inégalité précédente :

$$\gamma(x, \sigma(x)) \geqslant \gamma(x, y)$$

C'est-à-dire, avec la même notation qu'en question $\boldsymbol{6.c}$) $(\psi: y \mapsto \gamma(x,y)):$

$$\psi(\sigma(x)) \geqslant \psi(y)$$

Ceci est vrai pour tout $y \in [0, \beta[$, donc la fonction ψ est maximale en $\sigma(x)$.

Autrement dit, la fonction
$$y \mapsto \gamma(x, y)$$
 est maximale en $\sigma(x)$.

- 8. Estimation de $\sigma(x)$. Soit $x \in [0, \alpha[$.
 - a) On considère la fonction φ_x définie sur \mathbb{R}_+ par : $\varphi_x(t) = \begin{cases} t & \text{si } t \leq x \\ 0 & \text{sinon} \end{cases}$

En utilisant la relation (*), montrer que $\sigma(x) = \frac{\mathbb{E}(\varphi_x(Y_{n-1}))}{\mathbb{P}([Y_{n-1} \leq x])}$

Démonstration.

• La fonction g_{n-1} est nulle en dehors de $]0, \alpha[$. Donc, d'après le théorème de transfert, la v.a.r. $\varphi_x(Y_{n-1})$ admet une espérance si et seulement si l'intégrale $\int_0^{\alpha} \varphi_x(t)g_{n-1}(t) dt$ est absolument convergente.

Les fonctions φ_x et g_{n-1} étant à valeurs positives sur $]0, \alpha[$, cela revient à démontrer qu'elle est convergente.

• De plus, la fonction φ_x est nulle sur $]x, +\infty[$, donc :

$$\int_{0}^{\alpha} \varphi_{x}(t) g_{n-1}(t) dt = \int_{0}^{x} \varphi_{x}(t) g_{n-1}(t) dt$$

• Par définition de φ_x :

$$\forall t \in [0, x], \ \varphi_x(t) \ g_{n-1}(t) = t \ g_{n-1}(t)$$

Or l'intégrale impropre $\int_0^x t g_{n-1}(t) dt$ est bien définie car Y_{n-1} admet une espérance.

On en déduit que la v.a.r. $\varphi_x(Y_{n-1})$ admet une espérance et : $\mathbb{E}(\varphi_x(Y_{n-1})) = \int_0^x t \, g_{n-1}(t) \, dt.$

- De plus, par définition de $G_{n-1}: G_{n-1}(x) = \mathbb{P}([Y_{n-1} \leq x])$.
- On en déduit, d'après l'expression (*) :

$$\frac{\mathbb{E}(\varphi_x(Y_{n-1}))}{\mathbb{P}([Y_{n-1} \leqslant x])} = \frac{1}{G_{n-1}(x)} \mathbb{E}(\varphi_x(Y_{n-1})) = \frac{1}{G_{n-1}(x)} \int_0^x t g_{n-1}(t) dt = \sigma(x)$$

$$\sigma(x) = \frac{\mathbb{E}(\varphi_x(Y_{n-1}))}{\mathbb{P}([Y_{n-1} \leqslant x])}$$

b) En déduire une fonction Scilab function s = sigma(x,n) qui retourne une valeur approchée de $\sigma(x)$ obtenue comme quotient d'une estimation de $\mathbb{E}(\varphi_x(Y_{n-1}))$ et de $\mathbb{P}([Y_{n-1} \leq x])$. On utilisera la fonction simulX pour simuler des échantillons de la loi de X, et on rappelle que si v est un vecteur, $\max(v)$ est égal au plus grand élément de v.

Démonstration.

• On commence par écrire une fonction qui retourne une réalisation de la v.a.r. Y_n .

```
function y = simulY(n)
X = simulX(n)
y = max(X)
endfunction
```

La première commande X = simulX(n) permet de créer un vecteur X contenant la réalisation d'un n-échantillon de même loi que X.

On sait de plus : $Y_n = \max(X_1, \dots, X_n)$. D'où la commande : $y = \max(X)$.

• On code ensuite la fonction φ_x .

```
function v = phi(t,x)
function v = t
functi
```

• On finit par la fonction permettant d'obtenir une valeur approchée de $\sigma(x)$.

```
function s = sigma(x,n)
      N = 10000
      V = zeros(1,N)
      W = zeros(1,N)
      for k = 1:N
         z = simulY(n)
         V(k) = phi(z, x)
         if z \le x then
           W(k) = 1
         else
10
           W(k) = 0
<u>11</u>
         end
\underline{12}
      end
13
      esp = mean(V)
14
      prob = mean(W)
<u>15</u>
      s = esp/prob
    endfunction
17
```

Détaillons ce programme.

- La fonction sigma a pour but de produire une approximation :
 - \times d'une part de $\mathbb{E}(\varphi_x(Y_{n-1})),$
 - \times d'autre part de $\mathbb{P}([Y_{n-1} \leqslant x])$.

pour en déduire une valeur approchée de $\sigma(x) = \frac{\mathbb{E}(\varphi_x(Y_{n-1}))}{\mathbb{P}([Y_{n-1} \leq x])}$.

- Pour obtenir une valeur approchée de $\mathbb{E}(\varphi_x(Y_{n-1}))$, l'idée est :
 - × de simuler un grand nombre de fois (N=10000 est ce grand nombre) la v.a.r. $\varphi_x(Y_{n-1})$. Formellement, on souhaite obtenir un N-uplet (v_1, \ldots, v_N) qui correspond à l'observation d'un N-échantillon (V_1, \ldots, V_N) de la v.a.r. $V = \varphi_x(Y_{n-1})$. (cela signifie que les v.a.r. V_1, \ldots, V_N sont indépendantes et sont de même loi que la v.a.r. $V = \varphi_x(Y_{n-1})$)
 - \times d'effectuer la moyenne de ces N observations.

Cette idée est justifiée par la loi faible des grands nombres (LfGN) qui affirme :

$$\frac{1}{N} \sum_{i=1}^{N} v_i \simeq \mathbb{E}(V) = \mathbb{E}(\varphi_x(Y_{n-1}))$$

• Dans le programme, les valeurs (v_1, \ldots, v_N) sont obtenues par des appels successifs (à l'aide d'une structure itérative, ici une boucle for) aux fonctions simuly et phi, et stockées les unes après les autres dans le vecteur V.

Une fois cette boucle terminée, l'approximation formulée par la LfGN est obtenue en effectuant la moyenne de ces observations :

$$_{14}$$
 esp = mean(V)

- Pour obtenir une valeur approchée de $\mathbb{P}([Y_{n-1} \leq x])$, l'idée est :
 - × de simuler un grand nombre de fois (toujours N fois) la v.a.r. Y_{n-1} . Formellement, on souhaite obtenir un N-uplet (z_1, \ldots, z_N) qui correspond à l'observation d'un N-échantillon (Z_1, \ldots, Z_N) de la v.a.r. Y_{n-1} .
 - \times de compter le nombre de réalisations inférieures ou égales à x dans cette observation.

Cette idée est toujours guidée par la LfGN qui affirme :

$$\frac{\text{nombre de } z_i \text{ inférieurs à } x}{\text{taille } (N) \text{ de l'observation}} \ \simeq \ \mathbb{P}([Y_{n-1} \leqslant x])$$

- Dans le programme, on stocke, à l'aide d'une structure itérative (la même boucle for que précédemment), dans chaque coordonnée d'un vecteur W :
 - \times la valeur 1 si z_i est inférieur à x,
 - \times la valeur 0 si z_i est strictement supérieur à x.

Une fois cette boucle terminée, l'approximation formulée par la LfGN est obtenue en effectuant la moyenne des coordonnées de W :

$$15$$
 prob = mean(W)

- A ce stade, le programme fournit :
 - \times une valeur approchée de $\mathbb{E}(\varphi_x(Y_{n-1}))$ stockée dans esp,
 - \times une valeur approchée de $\mathbb{P}([Y_{n-1} \leq x])$ stockée dans prob.

Enfin, pour approcher le réel $\sigma(x)$, on effectue le quotient de ces deux approximations :

$$_{16}$$
 s = esp/prob

Commentaire

- Un tel niveau d'explication n'est pas attendu aux concours : l'écriture du programme démontre la compréhension de toutes les commandes en question.
 - On décrit ici de manière précise les instructions afin d'aider le lecteur un peu moins habile en Scilab.
- L'énoncé suggérait d'écrire une seule fonction, ce qui est tout à fait faisable en définissant simuly et phi à l'intérieur de la fonction sigma.
 - Cependant, l'utilisation de sous-fonctions favorise la clarté d'un programme en le structurant. On privilégiera donc, lorsque c'est possible, l'écriture d'un programme à l'aide de sous-fonctions.
- On pouvait également utiliser la commande find pour obtenir une valeur approchée de $\mathbb{P}([Y_{n-1} \leqslant x])$:

```
function s = sigma(x,n)
     N = 10000
     Z = zeros(1,N)
     V = zeros(1,N)
     for k = 1:N
       Z(k) = simulY(n)
       V(k) = phi(Z(k), x)
7
     end
     esp = mean(V)
     indices = find(Z \le x)
     prob = length(indices)/N
     s = esp/prob
12
   endfunction
```

Dans le programme, le vecteur Z contient N réalisations de la v.a.r. Y_{n-1} . La commande (Z \leq x) fournit un vecteur de taille N de $i^{\text{ème}}$ coordonnée :

- \times le booléen « vrai » si la $i^{\text{ème}}$ coordonnée de Z est inférieure à x,
- × le booléen « faux » sinon.

La commande find(Z <= x) permet alors d'obtenir le vecteur des indices pour lesquels le booléen est « vrai ».

Ainsi, length(indices) renvoie la longueur du vecteur indices, c'est-à-dire le nombre de booléens « vrai » dans le vecteur (Z <= x). Autrement dit, length(indices) renvoie le nombre de réalisations de Y_{n-1} inférieures à x parmi les N observations.

Par loi faible des grands nombres : $\frac{\text{nombre de } z_i \text{ inférieurs à } x}{\text{taille } (N) \text{ de l'observation}} \simeq \mathbb{P}([Y_{n-1} \leqslant x]).$

Donc la variable prob est bien une valeur approchée de $\mathbb{P}([Y_{n-1} \leq x])$.

9. Exemples.

Donner une expression de $\sigma(x)$ pour tout $x \in [0, \alpha]$ dans les cas suivants :

a) X suit la loi uniforme sur $]0, \alpha[$.

Démonstration.

• D'après la question 4.a) :

$$g_n: x \mapsto \begin{cases} \frac{n}{\alpha^n} x^{n-1} & \text{si } x \in]0, \alpha[\\ 0 & \text{sinon} \end{cases} \quad \text{et} \quad G_n: x \mapsto \begin{cases} 0 & \text{si } x \in]-\infty, 0] \\ \left(\frac{x}{\alpha}\right)^n & \text{si } x \in]0, \alpha[\\ 1 & \text{si } x \in [\alpha, +\infty[$$

• Soit $x \in]0, \alpha[$. Avec le même raisonnement qu'en question 8.a), d'après le théorème de transfert :

$$\mathbb{E}(\varphi_x(Y_{n-1})) = \int_0^x t \, g_{n-1}(t) \, dt = \int_0^x t \, \frac{n-1}{\alpha^{n-1}} t^{n-2} \, dt$$

$$= \frac{n-1}{\alpha^{n-1}} \int_0^x t^{n-1} \, dt = \frac{n-1}{\alpha^{n-1}} \left[\frac{t^n}{n} \right]_0^x$$

$$= \frac{n-1}{\alpha^{n-1}} \frac{x^n}{n} = \frac{(n-1)x^n}{n \, \alpha^{n-1}}$$

• On en déduit :

$$\sigma(x) = \frac{\mathbb{E}(\varphi_x(Y_{n-1}))}{G_{n-1}(x)} = \frac{\frac{(n-1)x^{\frac{1}{n}}}{n x^{\frac{1}{n}}}}{\frac{x^{\frac{1}{n}}}{n}} = \frac{n-1}{n}x$$

$$\forall x \in]0, \alpha[, \sigma(x) = \frac{n-1}{n}x$$

b) X suit la loi puissance de paramètres α et λ . Votre résultat est-il en accord avec la courbe ci-dessous obtenue sous cette hypothèse, en utilisant la fonction sigma de la question précédente lorsque $n=6, \lambda=0,2$ et $\alpha=50$? Justifier votre réponse.

Démonstration.

• D'après la question 5.b)(i):

$$g_n: x \mapsto \left\{ \begin{array}{ll} \frac{n \lambda x^{n\lambda - 1}}{\alpha^{n\lambda}} & \text{si } x \in]0, \alpha[\\ 0 & \text{sinon} \end{array} \right. \quad \text{et} \quad G_n: x \mapsto \left\{ \begin{array}{ll} 0 & \text{si } x \in]-\infty, 0] \\ \frac{x^{n\lambda}}{\alpha^{n\lambda}} & \text{si } x \in]0, \alpha[\\ 1 & \text{si } x \in [\alpha, +\infty[$$

• Soit $x \in]0, \alpha[$. D'après le théorème de transfert :

$$\mathbb{E}(\varphi_{x}(Y_{n-1})) = \int_{0}^{x} t \, g_{n-1}(t) \, dt = \int_{0}^{x} t \, \frac{(n-1)\lambda}{\alpha^{(n-1)\lambda}} \, t^{(n-1)\lambda-1} \, dt$$

$$= \frac{(n-1)\lambda}{\alpha^{(n-1)\lambda}} \int_{0}^{x} t^{(n-1)\lambda} \, dt = \frac{(n-1)\lambda}{\alpha^{(n-1)\lambda}} \left[\frac{t^{(n-1)\lambda+1}}{(n-1)\lambda+1} \right]_{0}^{x}$$

$$= \frac{(n-1)\lambda}{\alpha^{(n-1)\lambda}} \frac{x^{(n-1)\lambda+1}}{(n-1)\lambda+1}$$

• On en déduit :

$$\sigma(x) = \frac{\mathbb{E}(\varphi_x(Y_{n-1}))}{G_{n-1}(x)} = \frac{\frac{(n-1)\lambda x^{(n-1)\lambda+1}}{((n-1)\lambda+1)\alpha^{(n-1)\lambda}}}{\frac{x^{(n-1)\lambda}}{\alpha^{(n-1)\lambda}}} = \frac{(n-1)\lambda}{(n-1)\lambda+1} x$$

$$\forall x \in]0, \alpha[, \sigma(x) = \frac{(n-1)\lambda}{(n-1)\lambda+1} x$$

• On a ainsi prouvé que la fonction σ est linéaire (de la forme $x \mapsto a x$).

Sa courbe représentative est donc une droite passant par l'origine, ce qui est en accord avec la courbe fournie par l'énoncé.

Commentaire

En remplaçant n, λ et α par les valeurs données par l'énoncé, on obtient :

$$\forall x \in]0, \alpha[, \ \sigma(x) = \frac{(6-1)0, 2}{(6-1)0, 2+1} x = \frac{1}{2} x$$

Ce qui donne la courbe représentative suivante :

III. Modélisation d'enchères

Un bien est mis en vente aux enchères et n acheteurs A_1, \ldots, A_n sont intéressés. Chaque acheteur A_k attribue une valeur x_k à ce bien, appelée valeur privée, qui n'est pas connue des autres acheteurs. Afin de se procurer ce bien, A_k propose ensuite, de façon secrète, une mise (on dit aussi une offre) y_k . Toutes les mises sont alors révélées simultanément et l'acheteur qui remporte le bien est celui qui a proposé la plus grande mise. En cas d'égalité, le gagnant est tiré au sort parmi ceux qui ont la mise la plus importante.

Le prix à payer par le gagnant au vendeur dépend du type d'enchère organisé. On étudie ici deux formats d'enchères :

- l'enchère au premier prix, ou enchère hollandaise : l'acheteur gagnant paye la mise qu'il a lui-même proposée. Ce type d'enchère correspond aux enchères dynamiques « descendantes » : la vente commence avec un prix très élevé et baisse progressivement. Le premier qui accepte le prix remporte le bien.
- l'enchère au second prix, ou enchère anglaise : l'acheteur gagnant paye le prix correspondant à la deuxième meilleure mise.

Ce type d'enchère est presque équivalent aux enchères dynamiques « montantes » bien connues : le prix monte progressivement jusqu'à ce qu'il ne reste plus qu'un seul acheteur : celui qui est prêt à mettre le plus haut prix, et qui paye (à peu de chose près) le prix de la deuxième offre après la sienne.

Pour chaque acheteur A_k , on appelle résultat net ou simplement résultat de l'enchère, et on note r_k , le bénéfice ou le perte résultant de l'opération. Pour l'acheteur qui a remporté l'enchère, le résultat est la différence entre la valeur privée et le prix payé. Pour les autres acheteurs, le résultat est considéré comme nul.

À titre d'exemple, considérons quatre acheteurs, dont les mises en euros sont $y_1 = 50$, $y_2 = 100$, $y_3 = 80$ et $y_4 = 40$, alors l'acheteur A_2 gagne l'enchère. Si sa valeur privée x_2 vaut 90 euros, il paye 100 euros au vendeur pour un résultat de $r_2 = -10$ euros s'il s'agit d'une enchère au premier prix, et 80 euros pour un résultat de $r_2 = 10$ euros si c'est une enchère au second prix.

On s'intéresse au problème suivant : à partir de l'information dont dispose l'acheteur k, notamment à partir de sa valeur privée x_k , comment doit-il choisir sa mise y_k afin d'optimiser son résultat net ? On appelle stratégie de l'acheteur k une fonction σ_k telle que $y_k = \sigma_k(x_k)$.

III.1. Enchère au premier prix

On suppose que chaque acheteur A_k a une valeur privée $x_k = X_k(\omega)$ qui est une réalisation de la variable aléatoire X_k .

Soit σ la fonction définie à la partie II.

Le problème étant symétrique, on se met par exemple à la place de l'acheteur n, et on suppose que les n-1 premiers acheteurs appliquent la stratégie σ , c'est-à-dire : pour tout $k \in \{1, \ldots, n-1\}$, l'acheteur k mise $\sigma(X_k)$.

L'acheteur n a une valeur privée x_n et choisit une mise y_n .

On note E_n l'événement « l'acheteur A_n remporte l'enchère ».

10. En remarquant que $\mathbb{P}([Y_{n-1} = \sigma^{-1}(y_n)]) = 0$, montrer que $\mathbb{P}(E_n) = \mathbb{P}([Y_{n-1} < \sigma^{-1}(y_n)])$. On note R_n la variable aléatoire donnant le résultat net de l'enchère pour l'acheteur A_n . Justifier que $R_n = (x_n - y_n) \mathbb{1}_{E_n}$ et en déduire que le résultat espéré de l'acheteur A_n en fonction de sa valeur privée $x_n \in [0, \alpha[$ et de l'offre $y_n \in [0, \beta[$ est donné par :

$$\mathbb{E}(R_n) = (x_n - y_n) G_{n-1}(\sigma^{-1}(y_n))$$

Démonstration.

• L'événement E_n est réalisé si et seulement si l'acheteur A_n remporte l'enchère, c'est-à-dire si sa mise $y_n = \sigma(x_n)$ est :

 \times ou bien strictement supérieure aux mises des n-1 autres acheteurs : $\sigma(x_1), \ldots, \sigma(x_n)$. Cet événement s'écrit :

$$\bigcap_{k=1}^{n-1} \left[\sigma(X_k) < y_n \right] = \left[\max \left(\sigma(X_1), \dots, \sigma(X_{n-1}) \right) < y_n \right]$$

Commentaire

On utilise généralement cette égalité d'événements pour une lecture de droite à gauche. Plus précisément, en notant $M_n = \max(X_1, \dots, X_n)$, alors, pour tout $x \in \mathbb{R}$:

$$[M_n \leqslant x] = [\max(X_1, \dots, X_n) \leqslant x] = \bigcap_{i=1}^n [X_i \leqslant x]$$

 \times ou bien égale à une ou plusieurs mises (la plus haute) des n-1 autres acheteurs, puis est tirée au sort parmi celles-ci.

Cet événement s'écrit :

$$\left[\max\left(\sigma(X_1),\ldots,\sigma(X_n)\right)=y_n\right]\cap E_n$$

Finalement:

$$E_n = [\max(\sigma(X_1), \dots, \sigma(X_n)) \leqslant y_n] \cap E_n$$

• D'après la question 7.b), la fonction σ est strictement croissante sur $]0, \alpha[$, donc :

$$\max(\sigma(x_1), \dots, \sigma(x_{n-1})) = \sigma(\max(x_1, \dots, x_{n-1}))$$

En effet:

× d'une part, par définition de $\max(x_1, \ldots, x_{n-1})$:

$$\forall i \in [1, n-1], \ x_i \leq \max(x_1, \dots, x_{n-1})$$

Donc, par croissance de σ sur $]0,\alpha[$:

$$\forall i \in [1, n-1], \ \sigma(x_i) \leqslant \sigma(\max(x_1, \dots, x_{n-1}))$$

Ceci est valable pour tout $i \in [1, n-1]$, donc :

$$\max (\sigma(x_1), \ldots, \sigma(x_n)) \leq \sigma(\max(x_1, \ldots, x_n))$$

 \times d'autre part, par définition de max $(\sigma(x_1),\ldots,\sigma(x_{n-1}))$:

$$\forall i \in [1, n-1], \ \sigma(x_i) \leq \max(\sigma(x_1), \dots, \sigma(x_{n-1}))$$

Donc, en particulier:

$$\sigma(\max(x_1,\ldots,x_{n-1})) \leqslant \max(\sigma(x_1),\ldots,\sigma(x_{n-1}))$$

Finalement, on a bien : $\sigma(\max(x_1,\ldots,x_n)) = \max(\sigma(x_1),\ldots,\sigma(x_n))$.

• On en déduit :

$$E_{n} = \left[\max \left(\sigma(X_{1}), \dots, \sigma(X_{n-1}) \right) \leqslant y_{n} \right] \cap E_{n}$$

$$= \left[\sigma\left(\max(X_{1}, \dots, X_{n-1}) \right) \leqslant y_{n} \right] \cap E_{n}$$

$$= \left[\sigma(Y_{n-1}) \leqslant y_{n} \right] \cap E_{n}$$

$$= \left[Y_{n-1} \leqslant \sigma^{-1}(y_{n}) \right] \cap E_{n}$$

$$= \left[Y_{n-1} \leqslant \sigma^{-1}(y_{n}) \right] \cup \left(\left[Y_{n-1} = \sigma^{-1}(y_{n}) \right] \cap E_{n} \right)$$

$$= \left[Y_{n-1} \leqslant \sigma^{-1}(y_{n}) \right] \cup \left(\left[Y_{n-1} = \sigma^{-1}(y_{n}) \right] \cap E_{n} \right)$$

• Par incompatibilité de ces deux événements :

$$\mathbb{P}(E_n) = \mathbb{P}(\lceil Y_{n-1} < \sigma^{-1}(y_n) \rceil) + \mathbb{P}(\lceil Y_{n-1} = \sigma^{-1}(y_n) \rceil \cap E_n)$$

De plus, d'après la question 1.b), la v.a.r. Y_{n-1} est une variable aléatoire à densité, donc :

$$\forall a \in \mathbb{R}, \ \mathbb{P}([Y_{n-1} = a]) = 0$$

En particulier : $\mathbb{P}([Y_{n-1} = \sigma^{-1}(y_n)]) = 0.$

Or $[Y_{n-1} = \sigma^{-1}(y_n)] \cap E_n \subset [Y_{n-1} = \sigma^{-1}(y_n)]$. Donc :

$$0 \leqslant \mathbb{P}(\left[Y_{n-1} = \sigma^{-1}(y_n)\right] \cap E_n) \leqslant \mathbb{P}(\left[Y_{n-1} = \sigma^{-1}(y_n)\right]) = 0$$

Ainsi : $\mathbb{P}([Y_{n-1} = \sigma^{-1}(y_n)] \cap E_n) = 0.$

On en déduit :
$$\mathbb{P}(E_n) = \mathbb{P}([Y_{n-1} < \sigma^{-1}(y_n)]).$$

- D'après l'énoncé :
 - \times si l'acheteur A_n remporte l'enchère, alors le résultat r_n de l'enchère est la différence entre la valeur privée x_n et le prix payé y_n (car c'est une enchère au premier prix).

Donc, si l'acheteur A_n remporte l'enchère : $r_n = x_n - y_n$.

- \times si l'acheteur A_n ne remporte pas l'enchère, le résultat r_n est nul : $r_n=0$.
- La variable aléatoire $\mathbbm{1}_{E_n}$ est définie par :

$$\mathbb{1}_{E_n} : \omega \mapsto \left\{ \begin{array}{ll} 1 & \text{si } \omega \in E_n \\ 0 & \text{sinon} \end{array} \right.$$

Soit $\omega \in \Omega$. Deux cas se présentent :

 \times si $\underline{\omega} \in \underline{E}_n$, c'est-à-dire si E_n est réalisé, alors on a montré précédemment : $R_n(\omega) = x_n - y_n$. De plus, par définition de $\mathbb{1}_{E_n} : \mathbb{1}_{E_n}(\omega) = 1$. Donc :

$$(x_n - y_n) \mathbb{1}_{E_n}(\omega) = x_n - y_n = R_n(\omega)$$

 \times si $\omega \in \overline{E_n}$, c'est-à-dire si $\overline{E_n}$ est réalisé (l'acheteur A_n ne remporte pas l'enchère), alors on a montré : $R_n(\omega) = 0$.

De plus, par définition de $\mathbb{1}_{E_n} : \mathbb{1}_{E_n}(\omega) = 0$ (car $\omega \notin E_n$). Donc :

$$(x_n - y_n) \mathbb{1}_{E_n}(\omega) = 0 = R_n(\omega)$$

Finalement: $\forall \omega \in \Omega, \ R_n(\omega) = (x_n - y_n) \mathbb{1}_{E_n}(\omega).$

D'où :
$$R_n = (x_n - y_n) \, \mathbb{1}_{E_n}$$
.

- La v.a.r. $\mathbb{1}_{E_n}$ admet une espérance car c'est une v.a.r. finie. En effet : $\mathbb{1}_{E_n}(\Omega) = \{0,1\}$. Donc la v.a.r. R_n admet une espérance en tant que multiple de $\mathbb{1}_{E_n}$.
- Par définition de l'espérance :

$$\mathbb{E}(\mathbb{1}_{E_n}) = \underline{0} \times \mathbb{P}([\mathbb{1}_{E_n} = 0]) + 1 \times \mathbb{P}([\mathbb{1}_{E_n} = 1])$$
$$= \mathbb{P}([\mathbb{1}_{E_n} = 1])$$

Soit $\omega \in \Omega$.

$$\omega \in [\mathbb{1}_{E_n} = 1] \Leftrightarrow \mathbb{1}_{E_n}(\omega) = 1 \Leftrightarrow \omega \in E_n$$

Donc : $[1_{E_n} = 1] = E_n$. Ainsi :

$$\mathbb{E}(\mathbb{1}_{E_n}) = \mathbb{P}([\mathbb{1}_{E_n} = 1]) = \mathbb{P}(E_n)$$

• On en déduit :

$$\mathbb{E}(R_n) = \mathbb{E}((x_n - y_n) \mathbb{1}_{E_n})$$

$$= (x_n - y_n) \mathbb{E}(\mathbb{1}_{E_n}) \qquad (par \, linéarité \, de \, l'espérance)$$

$$= (x_n - y_n) \mathbb{P}(E_n)$$

$$= (x_n - y_n) \mathbb{P}([Y_{n-1} < \sigma^{-1}(y_n)])$$

$$= (x_n - y_n) G_{n-1}(\sigma^{-1}(y_n)) \qquad (car \, G_{n-1} \, est \, la \, fonction \, de \, répartition \, de \, Y_{n-1})$$

$$\mathbb{E}(R_n) = (x_n - y_n) G_{n-1}(\sigma^{-1}(y_n))$$

Commentaire

Les variables aléatoires indicatrices ne font pas partie du programme d'ECE. Donnons néanmoins certaines de leurs propriétés.

Soit A un événement. On note $\mathbb{1}_A$ la v.a.r. telle que :

$$\mathbb{1}_A: \omega \mapsto \left\{ \begin{array}{ll} 1 & \text{si } \omega \in A \\ 0 & \text{sinon} \end{array} \right.$$

- Loi de $\mathbb{1}_A$.
 - × Par définition de $\mathbb{1}_A$, cette v.a.r. ne prend comme valeur que 0 et 1. Donc $\mathbb{1}_A(\Omega) = \{0, 1\}$.
 - \times Soit $\omega \in \Omega$.

$$\omega \in [\mathbb{1}_A = 1] \Leftrightarrow \mathbb{1}_A(\omega) = 1 \Leftrightarrow \omega \in A$$

D'où :
$$[\mathbb{1}_A = 1] = A$$
. Ainsi : $\mathbb{P}([\mathbb{1}_A = 1]) = \mathbb{P}(A)$.

On en déduit : $\mathbb{1}_A \hookrightarrow \mathcal{B}(\mathbb{P}(A))$.

• En particulier :

$$\mathbb{E}(\mathbb{1}_A) = \mathbb{P}(A)$$
 et $\mathbb{V}(\mathbb{1}_A) = \mathbb{P}(A)(1 - \mathbb{P}(A))$

- On peut aussi garder en tête les deux propriétés suivantes. Soient A et B deux événements.
 - $\times \mathbb{1}_{A \cap B} = \mathbb{1}_A \times \mathbb{1}_B$
 - $\times 1_{A \cup B} = 1_A + 1_B 1_{A \cap B}$
- 11. En déduire que pour optimiser son espérance de résultat, l'acheteur A_n a intérêt à appliquer lui aussi la stratégie σ .

Il s'agit de ce que l'on appelle un équilibre de Nash en théorie des jeux : si tous les acheteurs appliquent cette stratégie d'équilibre σ , alors aucun n'a intérêt à changer de stratégie.

Démonstration.

• Pour optimiser l'espérance du résultat de A_n , il faut maximiser la fonction $y_n \mapsto \mathbb{E}(R_n)$, c'est-à-dire la fonction :

$$y \mapsto (x - y) G_{n-1}(\sigma^{-1}(y)) = \gamma(x, y)$$

• Or, d'après la question 7.b)(iii), la fonction $y \mapsto \gamma(x, y)$ est maximale en $\sigma(x)$. Donc, pour maximiser $\mathbb{E}(R_n)$, l'acheteur A_n doit choisir $y_n = \sigma(x_n)$.

Pour optimiser son espérance de résultat, l'acheteur A_n doit donc appliquer la stratégie σ .

III.2. Enchère au second prix

On se met à nouveau à la place de l'acheteur n. Soit $m = \max(y_1, \dots, y_{n-1})$ la meilleure offre faite par les acheteurs A_1, \dots, A_{n-1} (que A_n ne connaît pas).

12. a) Si on suppose que $m \ge x_n$, montrer que quelle que soit la mise y_n , le résultat net r_n pour A_n est négatif ou nul. Que vaut r_n pour le choix $y_n = x_n$?

Démonstration.

- L'acheteur A_n remporte l'enchère si et seulement si sa mise est supérieure à celle des autres acheteurs, c'est-à-dire : $y_n > m$ ou, $y_n = m$ et il est tiré au sort. Quatre cas se présentent donc :
 - $\times \underline{\text{si}}\underline{y_n} \geq \underline{m}$, alors l'acheteur A_n remporte l'enchère. Donc r_n est la différence entre la valeur privée x_n et le prix payé m (car c'est une enchère au second prix).

Donc, si A_n remporte l'enchère : $r_n = x_n - m$.

Or on suppose : $m \ge x_n$. Donc $r_n \le 0$.

- \times si $y_n = m$ et A_n est tiré au sort, alors l'acheteur A_n remporte l'enchère. Donc on a toujours : $r_n \leq 0$.
- \times si $y_n=m$ et A_n n'est pas tiré au sort, alors il ne remporte pas l'enchère. Donc $r_n=0.$
- \times si $y_n < m$, alors l'acheteur A_n ne remporte pas l'enchère. Donc $r_n = 0$.

Finalement, quelle que soit la mise y_n , on obtient : $r_n \leq 0$.

- Si $y_n = x_n$, quatre cas se présentent :
 - $\times \operatorname{si} y_n > m$:

$$r_n = x_n - m = y_n - m \geqslant 0$$

Or, d'après précédemment : $r_n \leq 0$. Donc : $r_n = 0$.

- \times si $y_n = m$ et A_n est tiré au sort, on obtient de même : $r_n = 0$.
- \times si $y_n = m$ et A_n n'est pas tiré au sort, alors : $r_n = 0$.
- \times si $y_n < m$, alors : $r_n = 0$.

Finalement, si
$$y_n = x_n$$
, alors $r_n = 0$.

b) Si on suppose que $m < x_n$, quel est le résultat pour A_n dans les cas $y_n < m$ et $y_n \ge m$?

Démonstration.

Dans cette question, on suppose : $m < x_n$. Deux cas se présentent :

- \times si $y_n \le m$, alors l'acheteur A_n ne remporte pas l'enchère. Donc : $r_n = 0$.
- \times si $y_n \geqslant m$, alors l'acheteur A_n remporte l'enchère.

Donc: $r_n = x_n - m$.

Si
$$m < x_n$$
, alors : $r_n = \begin{cases} 0 & \text{si } y_n < m \\ x_n - m & \text{si } y_n \geqslant m \end{cases}$.

Commentaire

Dans ce cas $(m < x_n)$, si l'acheteur A_n remporte l'enchère, alors son résultat $r_n = x_n - m$ est strictement positif.

c) En déduire que la meilleure stratégie pour A_n consiste à prendre $y_n = x_n$.

Démonstration.

Deux cas se présentent :

• $\sin m \geqslant x_n$.

D'après la question 12.a): $r_n \leq 0$.

De plus, si $y_n = x_n$, alors $r_n = 0$.

Ainsi, la meilleure stratégie pour l'acheteur A_n est de choisir $y_n = x_n$.

- $\sin m < x_n$
 - D'après la question 12.b) : $r_n = \begin{cases} 0 & \text{si } y_n < m \\ x_n m & \text{si } y_n \geqslant m \end{cases}$

Or $x_n - m > 0$. Donc, si $y_n \ge m$, alors $r_n > 0$.

- Ainsi, la meilleure stratégie pour l'acheteur A_n est donc de choisir une mise y_n telle que $y_n \geqslant m$.

Dans ce cas, quelle que soit la mise y_n , $r_n = x_n - m$.

- Or : $x_n > m$. Donc, en choisissant $y_n = x_n$, on est dans le cas $y_n \ge m$. Ainsi : $r_n = x_n - m > 0$.

On en déduit qu'une stratégie optimale pour A_n est de choisir $y_n = x_n$.

Finalement, dans tous les cas, une stratégie optimale pour A_n est de choisir $y_n = x_n$.

Par symétrie, chaque acheteur a également intérêt à miser le montant de sa valeur privée. On parle de *stratégie dominante* : chaque acheteur a une stratégie optimale indépendamment du comportement des autres acheteurs.

III.3. Équivalence des revenus

On se met maintenant à la place du vendeur.

Les valeurs privées des acheteurs sont données par les variables aléatoires X_1, \ldots, X_n .

13. Enchère au premier prix.

On suppose que le vendeur organise une enchère au premier prix, et que les acheteurs adoptent la stratégie d'équilibre σ donnée à la partie III-1.

On note B_n la variable aléatoire donnant le *bénéfice*, ou *revenu*, du vendeur. Il s'agit du montant que paye l'acheteur qui a remporté l'enchère.

a) Justifier que $B_n = \sigma(Y_n)$.

Démonstration.

- L'acheteur ayant la mise maximale remporte l'enchère et paye donc $\max(y_1, \ldots, y_n)$ (car c'est une enchère au premier prix).
- Or, chaque acheteur adopte la stratégie σ . Donc : $\forall i \in [1, n], y_i = \sigma(x_i)$. L'acheteur gagnant paye donc $\max(\sigma(x_1), \ldots, \sigma(x_n))$.
- De plus, par croissance de σ sur $]0,\alpha[$:

$$\max (\sigma(x_1), \dots, \sigma(x_n)) = \sigma(\max(x_1, \dots, x_n))$$

(la démonstration de cette égalité est détaillée en question 10.)

• On en déduit que l'acheteur gagnant paye $\sigma(\max(x_1,\ldots,x_n))$.

Ainsi :
$$B_n = \sigma(\max(X_1, \dots, X_n)) = \sigma(Y_n).$$

b) En déduire :

$$\mathbb{E}(B_n) = n \int_0^{\alpha} \sigma(x) G_{n-1}(x) f(x) dx = n \int_0^{\alpha} \left(\int_0^x t g_{n-1}(t) dt \right) f(x) dx$$

Démonstration.

• La fonction g_n est nulle en dehors de $]0, \alpha[$. Donc, d'après le théorème de transfert, la v.a.r. $B_n = \sigma(Y_n)$ admet une espérance si et seulement si l'intégrale $\int_0^{\alpha} \sigma(x) g_n(x) dx$ est absolument convergente.

Les fonctions σ et g_n étant à valeurs positives sur $]0,\alpha[$, cela revient à démontrer que cette intégrale est convergente.

• La fonction $x \mapsto \sigma(x) g_n(x)$ est continue par morceaux sur $[0, \alpha]$ (d'après la question $\boldsymbol{6.d}$)), donc l'intégrale $\int_0^{\alpha} \sigma(x) g_n(x) dx$ est bien définie.

Ainsi, la v.a.r.
$$B_n = \sigma(Y_n)$$
 admet une espérance.

• Soit $x \in]0, \alpha[$.

$$\sigma(x) g_n(x) = n \sigma(x) f(x) (F(x))^{n-1}$$
 (d'après la question 1.b))
= $n \sigma(x) f(x) G_{n-1}(x)$ (d'après la question 1.a))

Donc:
$$\mathbb{E}(B_n) = \mathbb{E}(\sigma(Y_n)) = \int_0^\alpha \sigma(x) g_n(x) dx = n \int_0^\alpha \sigma(x) f(x) G_{n-1}(x) dx.$$

• D'après l'expression (*) en question 6.d) :

$$\forall x \in]0, \alpha[, \ \sigma(x) = \frac{1}{G_{n-1}(x)} \int_0^x \ t \, g_{n-1}(t) \ dt$$

D'où :
$$\forall x \in]0, \alpha[, \sigma(x) G_{n-1}(x) = \int_0^x t g_{n-1}(t) dt.$$

Ainsi :
$$\int_{0}^{\alpha} \sigma(x) G_{n-1}(x) f(x) dx = \int_{0}^{\alpha} \left(\int_{0}^{x} t g_{n-1}(t) dt \right) f(x) dx$$
.
$$\mathbb{E}(B_{n}) = n \int_{0}^{\alpha} \sigma(x) G_{n-1}(x) f(x) dx = n \int_{0}^{\alpha} \left(\int_{0}^{x} t g_{n-1}(t) dt \right) f(x) dx$$

c) Montrer, à l'aide d'une intégration par parties :

$$\mathbb{E}(B_n) = n \int_0^\alpha x (1 - F(x)) g_{n-1}(x) dx$$

Démonstration.

• D'après la question précédente :

$$\mathbb{E}(B_n) = n \int_0^{\alpha} \left(\int_0^x t g_{n-1}(t) dt \right) f(x) dx$$

• Soit $(a,b) \in]0, \alpha[^2$ tels que $a \leq b$. On procède par intégration par parties (IPP).

Cette IPP est valide car les fonctions u et v sont de classe C^1 sur [a, b].

On obtient alors:

$$\int_{a}^{b} \left(\int_{0}^{x} t g_{n-1}(t) dt \right) f(x) dx$$

$$= \left[-\left(\int_{0}^{x} t g_{n-1}(t) dt \right) (1 - F(x)) \right]_{a}^{b} + \int_{a}^{b} x g_{n-1}(x) (1 - F(x)) dx$$

Or:

$$\left[-\left(\int_0^x t g_{n-1}(t) dt \right) (1 - F(x)) \right]_a^b$$

$$= -\left(\int_0^b t g_{n-1}(t) dt \right) (1 - F(b)) + \left(\int_0^a t g_{n-1}(t) dt \right) (1 - F(a))$$

De plus, comme la densité f est nulle en dehors de $]0, \alpha[$:

× d'une part
$$\lim_{a\to 0} F(a) = F(0) = \int_{-\infty}^{0} f(t) dt = 0$$
,

$$\times$$
 d'autre part $\lim_{b\to\alpha} F(b) = F(\alpha) = \int_{-\infty}^{\alpha} f(t) dt = \int_{0}^{\alpha} f(t) dt = 1$

Enfin:

$$\lim_{a \to 0} \int_0^a t \, g_{n-1}(t) \, dt = 0 \qquad \text{et} \qquad \lim_{b \to \alpha} \int_0^b t \, g_{n-1}(t) \, dt = \int_0^\alpha t \, g_{n-1}(t) \, dt = \mathbb{E}(Y_{n-1})$$

• Ainsi:

$$\int_0^\alpha \left(\int_0^x t g_{n-1}(t) dt \right) f(x) dx = -\underline{\mathbb{E}(Y_{n-1}) \times (1-1)} + 0 \times (1-0) + \int_0^\alpha x (1-F(x)) g_{n-1}(x) dx$$
On en déduit : $\underline{\mathbb{E}(B_n)} = n \int_0^\alpha x (1-F(x)) g_{n-1}(x) dx$.

Commentaire

- On remarque le choix non usuel d'une primitive de $v': x \mapsto f(x)$. On choisit ici $v: x \mapsto -(1 - F(x))$ plutôt que $v: x \mapsto F(x)$ afin d'obtenir plus rapidement le résultat voulu. Néanmoins les calculs ne sont pas rendus plus complexes par le choix de $v: t \mapsto F(t)$.
- Le programme officiel stipule que « les techniques de calculs (**intégration par parties**, changement de variables) seront pratiquées sur des intégrales sur un segment ». C'est pourquoi on se place ici sur le segment [a,b] pour effectuer l'IPP (et non sur $[0,\alpha[)$).

14. Enchère au second prix.

On suppose que le vendeur organise une enchère au second prix, et que les acheteurs adoptent la stratégie dominante de la partie III-2 : chacun mise autant que sa valeur privée.

On note B'_n la variable aléatoire donnant le revenu du vendeur dans cette enchère. Justifier que $\mathbb{E}(B'_n) = \mathbb{E}(Z_n)$.

Démonstration.

• L'acheteur ayant la mise maximale emporte l'enchère. Dans une enchère au second prix, il paye la deuxième mise la plus élevée parmi y_1, \ldots, y_n .

• Or, avec la stratégie de la question 12.c): $\forall i \in [1, n], y_i = x_i$.

Donc l'acheteur gagnant paye la deuxième plus grande valeur parmi x_1, \ldots, x_n .

Ainsi :
$$B'_n = Z_n$$
.

• La v.a.r. Z_n admet une espérance par critère de comparaison des intégrales généralisées de fonctions continues positives (même démonstration qu'en question 1.c)).

Ainsi, la v.a.r.
$$B'_n$$
 admet une espérance et : $\mathbb{E}(B'_n) = \mathbb{E}(Z_n)$.

15. Établir : $\mathbb{E}(B_n) = \mathbb{E}(B'_n)$.

Démonstration.

• D'après la question 2.b) :

$$\mathbb{E}(Z_n) = \int_0^\alpha x \, h_n(x) \, dx = \int_0^\alpha x \, n(n-1) \, f(x) \, (1 - F(x)) \, (F(x))^{n-2} \, dx$$
$$= n \int_0^\alpha x \, (1 - F(x)) \, (n-1) \, f(x) \, (F(x))^{n-2} \, dx$$

• D'autre part, d'après la question 1.b) :

$$\forall x \in [0, \alpha], \ g_{n-1}(x) = (n-1) f(x) (F(x))^{n-2}$$

D'où:

$$\mathbb{E}(Z_n) = n \int_0^\alpha x (1 - F(x)) g_{n-1}(x) dx = \mathbb{E}(B_n)$$

$$Ainsi : \mathbb{E}(B'_n) = \mathbb{E}(Z_n) = \mathbb{E}(B_n).$$

Ainsi, le revenu moyen pour le vendeur est le même pour les enchères au premier ou au second prix lorsque les acheteurs adoptent tous la stratégie optimale. Plus généralement, on peut montrer que ce revenu moyen est encore le même dans une très grande classe de formats d'enchères, ce résultat portant le nom de principe d'équivalence du revenu.