ПРОДОЛЬНОЕ ОБТЕКАНИЕ ПЛАСТИНЫ ОДНОРОДНЫМ ПОТОКОМ НЕСЖИМАЕМОЙ ВЯЗКОЙ ЖИДКОСТИ. ЗАДАЧА БЛАЗИУСА

Динамическая задача

Пусть имеется бесконечно длинная тонкая пластина, обтекаемая в продольном направлении однородным потоком несжимаемой жидкости, движущейся с постоянной скоростью U_{∞} .

Г. Блаузиус (1908г.)

Течение будем считать установившимся.

$$u\frac{\partial u}{\partial x} + \upsilon\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + \upsilon\frac{\partial^2 u}{\partial y^2}$$
 (1)

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{2}$$

С граничными условиями:

$$u = v = 0$$
 при $y = 0$
 $u = U_{\infty}$ при $y = \infty$ $(y = \delta)$

Запишем уравнение (1) на верхней границе пограничного слоя:

$$U_{\infty} \frac{dU_{\infty}}{dx} = -\frac{1}{\rho} \frac{dp}{dx} = 0$$
, т.к. $U_{\infty} = const$

(1)
$$\Rightarrow \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = v \frac{\partial^2 u}{\partial y^2}$$

1) Тонкая пластина отождествляется с геометрической плоскостью y=0, т.е. внесение пластинки в поток не искажает геометрию течения.

$$\frac{\partial p}{\partial y} = 0, \implies p = p_{\infty} = const.$$

- 2) Пусть T_{nn} и T_{nom} мало отличаются $\Rightarrow \mu = const, \rho = const.$
- 3) Полубесконечная пластина \Rightarrow в задаче нет характерной длины, следовательно, задача автомодельна и профили скорости u(y) для различных сечений течения (для различных x) подобны.

Выберем для u и y соответствующие масштабы U_{∞} и $\pmb{\delta}$

Воспользуемся автомодельными уравнениями:

Запишем автомодельное уравнение движения:

$$F''' + \frac{A}{2\nu\beta^2} [(\alpha + 1)FF'' - 2\alpha F'^2] = 0$$

$$u = Ax^{\alpha} F'(\varphi), \quad \varphi = Byx^{\beta}$$

$$\upsilon = -\frac{A}{R} x^{\alpha - \beta - 1} [(\alpha - \beta)F + \beta \varphi F']$$
(3)

Используем граничные условия задачи для определения констант автомодельности.

(3)
$$\Rightarrow F''' + \frac{U_{\infty}}{2\nu R^2} FF'' = 0$$
 (4)

Здесь B - произвольная постоянная. Задавая B, мы задаем масштаб для φ .

Выберем
$$B$$
 так, чтобы $\frac{U_{\infty}}{2\nu B^2} = \frac{1}{2} \implies B = \sqrt{\frac{U_{\infty}}{\nu}} \implies \varphi = y\sqrt{\frac{U_{\infty}}{\nu}}x^{\beta}$

$$\alpha - 2\beta = 1, \ \alpha = 0 \implies \beta = -1/2 \implies \varphi = y\sqrt{\frac{U_{\infty}}{vx}}$$

$$(4) \implies F''' + \frac{1}{2}FF'' = 0$$

C граничными условиями: F'(0) = 0, F(0) = 0, $F'(\infty) = 1$

Это обыкновенное дифференциальное уравнение, нелинейное, третьего порядка с тремя граничными условиями.

Решение этого уравнения было получено Г. Блаузиусом.

ОБЛАСТЬ ТЕЧЕНИЯ

Область малых значений φ - область вблизи пластины ($\varphi \sim 0$)

решения для $F(\varphi)$ запишем в виде ряда в окрестности точки $\varphi=0$

$$F = \sum \frac{a_n \varphi_n}{n!}$$

Область больших значений $\varphi \sim \delta$

применяется асимптотическое разложение, и решение запишем в виде асимптотического ряда:

$$F = F_1 + F_2 + \dots$$

где $F_2 << F_1, F_3 << F_2$

Найдя область, в которой справедливы оба решения, Блазиус сомкнул оба решения и определил постоянные.

Численное решение он представил в виде таблиц $F(\varphi)$, $F'(\varphi)$, $F''(\varphi)$

φ	F	F'	F"
0	0	0	0,33206
0,2	0,00664	0,06641	0,33199
0,4	0,02656	0,13277	0,33147
0,8	0,10611	0,26471	0,32739
1,0	0,16557	0,32979	0,32301
2,0	0,65003	0,62977	0,26675
4,0	2,30576	0,95552	0,06424
5,0	3,28329	0,99155	0,01591
6,0	4,27964	0,99898	0,00240
7,0	5,27926	0,99992	0,00022
8,8	7,07923	1,00	0,00

Полученные результаты

Изменение продольной составляющей скорости:
$$\frac{u}{U_{m}} = F'(\varphi)$$

$$\frac{u}{U_{\infty}} = F'(\varphi)$$

Распределение поперечной составляющей скорости υ :

$$\upsilon = -\frac{A}{B}x^{\alpha-\beta-1}[(\alpha-\beta)F + \beta\varphi F'] = \frac{1}{2}U_{\infty}\frac{1}{\sqrt{Re_{x}}}(\varphi F' - F)$$

или в безразмерном виде:
$$\frac{v\sqrt{Re_x}}{U_\infty} = \frac{1}{2}(\varphi F' - F)$$

Из таблицы при $\varphi = \infty$, m.e. npu $\varphi = 8.8$, F = 7.07923, F' = 1

$$\Rightarrow \overline{\upsilon} = \frac{\upsilon}{U_{\infty}} \sqrt{Re_x} = 0.865$$

Найдем напряжение трения на поверхности пластины:

$$\tau_{w} = \mu \frac{\partial u}{\partial y}\Big|_{y=0} = \mu \frac{\partial u}{\partial \varphi} \frac{\partial \varphi}{\partial y}\Big|_{0} = \begin{vmatrix} u = U_{\infty} F'(\varphi) \\ \varphi = y \sqrt{\frac{U_{\infty}}{vx}} \end{vmatrix} = \mu U_{\infty} F''(0) \sqrt{\frac{U_{\infty}}{vx}} = \frac{1}{2} \left[\frac{1}{2} \frac{\partial u}{\partial y} \right]_{0} = \frac{1}{2} \frac{\partial u}{\partial y} \Big|_{0} = \frac{1$$

$$= \left| \ \emph{F}''(0) = 0,332 \ ($$
из таблицы $) \ \right| = \mu U_{\infty} \sqrt{\frac{U_{\infty}}{vx}} \cdot 0.332$

$$\tau_{w} = \mu U_{\infty} \sqrt{\frac{U_{\infty}}{vx}} \cdot 0.332$$

Найдем местный коэффициент сопротивления трения C_f :

$$ilde{N}_f = rac{ au_w}{rac{1}{2}
ho U_\infty^2} = rac{0.664}{\sqrt{Re_\chi}}$$
, где $ext{Re}_x = \sqrt{rac{x U_\infty}{v}}$

Эксперимент: И.Никурадзе, М.Ганзен

Найдем полную силу сопротивления трения пластинки

Пусть длина пластины L, ширина b.

Общее сопротивление пластины:
$$W = 2b \int_{0}^{L} \tau_{w} dx = 0.664b \int_{0}^{L} \mu U_{\infty} \sqrt{\frac{U_{\infty}}{vx}} dx = 0.664\mu U_{\infty} b \sqrt{\frac{U_{\infty}}{v}} \int_{0}^{L} \frac{dx}{\sqrt{x}} dx$$

$$=0.664b\rho U_{\infty}\sqrt{U_{\infty}\nu}\cdot2\sqrt{L}=1.328b\rho U_{\infty}\sqrt{U_{\infty}L}\nu$$

Коэффициент полного сопротивления пластины:

$$\tilde{N}_{f} = \frac{W}{\frac{1}{2}\rho U_{\infty}^{2}S} = |S = 2bL| = \frac{1.328b\rho U_{\infty}\sqrt{U_{\infty}vL}}{zb\rho U_{\infty}^{2}} = \frac{1.328}{\sqrt{Re_{L}}}$$

$$\tilde{N}_f = \frac{1.328}{\sqrt{Re_L}}$$

- закон Блазиуса для сопротивления продольно обтекаемой пластины

Этот закон справедлив для ламинарного течения, т.е. для чисел $Re_L < 5.10^5 \div 10^6$.

Если $Re_L > 10^6$, то течение турбулентное

Толщина пограничного

$$\frac{\text{слоя}}{y = \delta}$$
то $u = 0.99 U_{\infty}$ или $F'(\varphi) = u/U_{\infty} = 0.99$

Из таблицы 1
$$\Rightarrow$$
 $F'(\varphi) = 0.9955$ при $\varphi = 5,0$ \Rightarrow при $y = \delta, \varphi = 5,0$

$$\varphi = y\sqrt{\frac{U_{\infty}}{vx}} \Rightarrow \delta\sqrt{\frac{U_{\infty}}{vx}} = 5 \Rightarrow \delta = 5\sqrt{\frac{vx}{U_{\infty}}}$$

$$\Rightarrow \qquad \delta \sim \frac{1}{U_{\infty}}$$

$$\delta \sim \sqrt{\nu}$$

$$\overline{\delta} = \frac{\delta}{x} = \frac{5}{\sqrt{Re_x}}$$

Толщина вытеснения δ^*

 δ^* - это расстояние, на которое отодвигаются от поверхности пластины линии тока внешнего течения вследствие уменьшения скорости в пограничном слое.

Вследствие влияния трения уменьшается скорость течения ⇒ количество жидкости, протекающее в единицу времени (секундный расход жидкости) уменьшается на величину:

$$\int_{0}^{\infty} (\rho U_{\infty} - \rho u) dy$$

С другой стороны, уменьшение количества жидкости, протекающей в потенциальном потоке равно:

$$ho U_{\infty} \delta^*$$

 δ^* - толщина вытеснения

$$\rho U_{\infty} \delta^* = \rho \int_0^{\infty} (U_{\infty} - u) dy$$

 $U_{\infty} = const$, $\rho = const$

$$U_{\infty} \int_{0}^{\infty} (1 - \frac{u}{U_{\infty}}) dy = U_{\infty} \delta^{*} \quad \Rightarrow \quad \delta^{*} = \int_{0}^{\infty} (1 - \frac{u}{U_{\infty}}) dy$$

$$\frac{u}{U_{\infty}} = F'(\varphi); \quad \varphi = y\sqrt{\frac{U_{\infty}}{vx}} \quad \Rightarrow \quad dy = \sqrt{\frac{vx}{U_{\infty}}}d\varphi$$

$$\delta^* = \int_0^\infty (1 - F') \sqrt{\frac{vx}{U_\infty}} d\varphi = \sqrt{\frac{vx}{U_\infty}} \int_0^\infty (1 - F') d\varphi = \frac{5}{3} \sqrt{\frac{vx}{U_\infty}}$$

$$\Rightarrow \left| \delta^* = \frac{1}{3} \delta \right|$$

Толщина потери импульса δ^{**}

- \triangleright поток импульса в пограничном слое = ρuu
- \succ потоком импульса во внешнем течении = $ho oldsymbol{u}oldsymbol{U}_{\infty}$

Вследствие трения поток импульса в пограничном слое уменьшается по сравнению с потоком импульса во внешнем течении на величину:

$$\int_{0}^{\infty} \left(\rho u U_{\infty} - \rho u^{2}\right) dy = \rho U_{\infty}^{2} \int_{0}^{\infty} \left(\frac{u}{U_{\infty}} - \frac{u^{2}}{U_{\infty}^{2}}\right) dy$$

С другой стороны, это уменьшение потока импульса равно $ho oldsymbol{U}_{\infty}^{\ \ 2} \delta^{\! **}$

$$\Rightarrow$$
 $\delta^{**} = \int\limits_0^\infty \frac{u}{U_\infty} (1 - \frac{u}{U_\infty}) dy$ - толщина потери импульса $\delta^{**} = \int\limits_0^\infty F' (1 - F') \sqrt{\frac{vx}{U}} d\varphi = \frac{1}{7} \delta \quad \Rightarrow \quad \frac{\delta^*}{\delta^{**}} \sim \sqrt{x}$

И.Никурадзе (1942 г.)

Опыты по проверке теории по исследованию пограничного слоя на пластине

- 1. На течение в пограничном слое сильно влияет профиль передней кромки пластины и слабый градиент давления внешнего течения (если он имеется)
- 2. Измерения распределения скорости в пограничном слое подтвердили автомодельность течения, т.е. подобие профилей скорости для различных сечений течения
- 3. Измеренные экспериментальные точки хорошо ложатся на теоретический профиль скорости по Блазиусу
- 4. До определенного значения числа Re (5.10⁵÷10⁶) течение остается ламинарнь и результаты эксперимента совпадают с теоретическими. Толщина пограничного слоя остается постоянной и примерно совпадает со значением:

$$\delta = 5.0 \sqrt{\frac{vx}{U_{\infty}}}$$

При больших числах Re течение становится турбулентным и толщина пограничного слоя резко возрастает при увеличении текущей длины пластины. Причем это увеличение происходит быстрее, чем в ламинарном пограничном слое.

