Matemáticas I. Curso 2022-23

TERCERA CONVOCATORIA	Grado en Ing.	Química	Industrial	20-10-2022
----------------------	---------------	---------	------------	------------

Apellidos:	
Nombre: Grun	

PRIMERA PARTE

PROBLEMA 1

Considérese el sistema de ecuaciones lineales:

$$\begin{cases} x_1 - x_2 + (4a^2 + 1)x_3 &= b \\ x_2 + (3-a)x_3 &= 0 \\ 2x_1 - x_2 + (7-a)x_3 &= -2 \\ -x_1 + (a-5)x_3 &= 1 \end{cases}$$

- i) [3 ptos] Utilizando el método de Gauss y el teorema de Rouché-Frobenius, discuta la compatibilidad del sistema de ecuaciones lineales en función de los parámetros $a, b \in \mathbb{R}$.
- ii) [2 ptos] Determine, en función del parámetro $a \in \mathbb{R}$, la dimensión y una base de los subespacios vectoriales N(A) y R(A), donde A es la matriz de coeficientes del sistema de ecuaciones lineales anterior.
- iii) [1,5 ptos] Calcule unas ecuaciones implícitas del subespacio vectorial R(A) para a=0.

PROBLEMA 2

A) [2 ptos] Sea la matriz

$$S = \begin{pmatrix} 1 & 0 \\ -2 & 1 \\ 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Indique, justificando la respuesta, si las siguientes afirmaciones son ciertas o falsas:

- a) El espacio nulo de la matriz S es un subespacio vectorial de \mathbb{R}^4 de dimensión 2.
- b) Cualquier vector $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ que pertenezca al espacio columna de la matriz S, debe verificar que $2x_1 + x_2 + x_4 = 0$.
- B) [1,5 ptos] Calcule la inversa de la matriz

$$B = \left(\begin{array}{ccc} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 1 & 2 & 1 \end{array}\right)$$

usando el método de Gauss-Jordan.

Matemáticas I. Curso 2022-23

TERCERA CONVOCATORIA	Grado en Ing.	Química Industrial	20-10-2022
Apellidos:			
Nombre:		Grupo:	

SEGUNDA PARTE A

PROBLEMA 3

- A) [3 ptos] Sea el subespacio vectorial $W = L(\{(1, -1, 0, 1), (1, 1, 1, 0), (0, 1, -1, 1)\}).$
 - a) Obtenga una base de W^{\perp} .
 - b) Calcule la proyección ortogonal del vector u = (1, 1, 1, 1) sobre W.
 - c) ¿Pertenece el vector v = (-1, -1, 0, 0) al subespacio W?
- B) [2 ptos] Ajuste, en el sentido de los mínimos cuadrados, los puntos (-1,3), (-2,4), (1,1) y (2,2) a la parábola de ecuación $y=ax^2+b$.

[▶] Todas las respuestas deberán estar debidamente razonadas.

Matemáticas I. Curso 2022-23

SEGUNDA PARTE B

PROBLEMA 4

Sea la matriz:

$$M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 3 & 0 & t \end{bmatrix} , t \in \mathbb{R}$$

Responda razonadamente a las siguientes cuestiones:

- a) [1,5 ptos] Determine los valores del parámetro t para los que la matriz M es diagonalizable.
- b) [1,5 ptos] Para t=2, obtenga, si es posible, una matriz de paso P y una matriz diagonal D tales que se cumpla la relación $M=PDP^{-1}$.
- c) [1 pto] ¿Existen valores del parámetro t para los que el vector v=(1,0,1) es un autovector de M?
- d) [1 pto] ¿Existen valores del parámetro t que permitan encontrar una matriz ortogonal Q, de forma que Q^TMQ sea diagonal?

Matemáticas I. Curso 2022-23

TERCERA CONVOCATORIA	Grado en Ing.	Química Industrial	20-10-2022
Apellidos:			
Nombre:		Grupo:	

TERCERA PARTE

PROBLEMA 5

Sea la ecuación

$$i^{33}z = 4\sqrt{3}i + 4$$
, con $z \in \mathbb{C}$

- a) [1,5 ptos] Calcule z^6 y expréselo en forma exponencial.
- b) [2,5 ptos] Halle las raíces cúbicas de z. Represéntelas y expréselas en forma trigonométrica.

PROBLEMA 6

- A) [3 ptos] Sea la función $f_1(x) = \sqrt{3+x}$. Obtenga su polinomio de Taylor de grado 3 centrado en el punto c=1 y calcule una cota del error que se obtendría al utilizar este polinomio para aproximar el valor $\sqrt{5}$.
- B) [3 ptos] Demuestre que las funciones $f_2(x) = e^{-x}$ y $f_3(x) = 5 4x^3$ se cortan en un único punto en el intervalo [1, 2]. ¿Es cierto que, partiendo del valor inicial $x_1 = 1$, el método de Newton produce una sucesión convergente a dicha solución? Calcule x_2 para esa estimación inicial.