Inverse equation of state construction from mass-radius-relations of compact stars Bachelor thesis Jan Roeder

Contents

1	Intro	oduction	2
2	Prep	parations	2
	2.1	The Tolman-Oppenheimer-Volkoff equation	2
	2.2	Numerical solution	2

1 Introduction

2 Preparations

2.1 The Tolman-Oppenheimer-Volkoff equation

Before we get to the main topics of this thesis, it is important to set up a basis that our work emerges from.

Firstly, this involves a derivation of the equation used for determining the structure of compact stars; here, we will use the Tolman-Oppenheimer-Volkoff [TOV] equation. We later choose our unit system to be c = G = 1, so that every unit is a power of a length (also, that choice makes numerical evaluation a lot easier).

The derivation is based off assuming the star matter as a perfect/ideal fluid. The system shall further not evolve in time, therefore staying spherically symmetric. In terms of the stress-energy tensor we are left with (c = 1):

$$T_{\mu\nu} = (\epsilon + P) u_{\nu} u_{\mu} - P g_{\mu\nu} \tag{1}$$

Spherical symmetry leads to a certain form of the metric, which then gives us the stress-energy tensor omponents:

$$T_{\mu\nu} = diag(\epsilon e^{\nu(r)}, Pe^{\lambda(r)}, Pr^2, Pr^2 sin^2(\theta))$$
(2)

In conclusion we get the full TOV equation:

$$\frac{dP}{dr} = \frac{(\epsilon + P)(m + 4\pi r^3 P)}{2mr - r^2} \tag{3}$$

Together with a second equation for the mass:

$$\frac{dm}{dr} = 4\pi r^2 \epsilon \tag{4}$$

2.2 Numerical solution

In order to generate an initial mass-radius relation to test our reverse algorithm with, we use a fourth order Runge-Kutta algorithm to solve the TOV equation along with the mass differential equation numerically. By looking at both equations, our ODE system is in the form

$$\dot{y}(t) = f(y(t), t) \tag{5}$$

where $\dot{y}(t)$ is a two component "vector":

$$\dot{y}(t) = \begin{pmatrix} dP/dr \\ dm/dr \end{pmatrix} \tag{6}$$

f(y(t),t) then contains the right hand side of equations 3 and 4. As stated before, to create an initial mass radius relation to check the inverted algorithm with, we use a fourth order Runge-Kutta [RK4] code. The RK4 method works as follows:

$$y(t+\tau) = y(t) + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$
(7)

with k_i :

$$k_1 = f(y(t), t) \cdot \tau$$

$$k_2 = f(y(t) + k_1/2, t + \tau/2) \cdot \tau$$

$$k_3 = f(y(t) + k_2/2, t + \tau/2) \cdot \tau$$

$$k_4 = f(y(t) + k_3, t + \tau) \cdot \tau$$

All k_i are of course also two component "vectors".

Messung der Fadenlänge	l (m)
1	
2	
3	
4	
5	
Mittelwert \bar{l}	
Standardabweichung σ_l	

References

- [1] H. J. Eichler, H.-D. Kronfeldt, J. Sahm, Das Neue Physikalische Grundpraktikum, Springer-Verlag, Berlin-Heidelberg, 2001.
- [2] H. Kuchling, Taschenbuch der Physik, 21. Auflage, Fachbuchverlag Leipzig, 2014.