Problem

A *permutation* on the set {1, . . . , k} is a one-to-one, onto function on this set. When p is a permutation, p^t means the composition of p with itself t times.

$PERM-POWER = \{\langle p, q, t \rangle | p = q^t \text{ where } p \text{ and } q \text{ are permutations}$ on $\{1, \dots, k\}$ and t is a binary integer $\}$.

Show that PERM-POWER? P. (Note that the most obvious algorithm doesn't run within polynomial time. Hint: First try it where t is a power of 2.)

Step-by-step solution

Step 1 of 2

A permutation on the set $\{1, 2, ..., k\}$ is a one-to-one, onto function on this set. If p is a permutation then p' says that the composition of p with itself t times.

The PERM-POWER is defined as follows:

PERM-POWER = $\{ \langle p, q, t \rangle | p = q^t \text{ where } p \text{ and } q \text{ are permutations on } \{1,...,k\}$ and t is a binary integer $\}$

Comment

Step 2 of 2

The binary integer t can be represented as $t = x_0 2^0 + x_1 2^1 + ... + x_n 2^n$ where x_i acquires a value either 0 or 1.

Now, q^t can be written as,

$$q' = q^{x_0 2^0 + x_1 2^1 + \dots + x_n 2^n}$$

= $q^{x_0 2^0} \times q^{x_1 2^1} \times \dots \times q^{x_n 2^n}$

From this, compute q^{2^j} where $j=1,\ 2,\dots,\ \lfloor \log t \rfloor$. By substituting j value, q^{2^j} can be $q^1,\ q^2,\ q^4,\ q^8,\ \cdots$. It is easy to compute the permutation by applying q on q itself. It takes $O(k\log t)$ steps to compute q^{2^j} where each product requires O(k) steps. Finally, the value of q^{2^j} is compared with p which takes additional k steps. Thus, it can be said that $PERM-POWER \in P$.

Comment