Tema 1. Análisis de Algoritmos

.:: Ampliación de Programación · Curso 06/07

Tabla de Contenidos

- 1. Introducción
- 2. Eficiencia de Algoritmos
- 3. Complejidad en tiempo y en espacio
- 4. Complejidad en los casos mejor, medio y peor
- 5. Tamaño de un problema. Funciones y órdenes de complejidad.
- 6. Problemas Tratables e Intratables
- 7. Medidas Asintóticas
- 8. Análisis de algoritmos
 - 1. Análisis de las Estructuras de Control
 - 2. Resolución de Recurrencias
 - 3. Ejemplos

Introducción

.:: Ampliación de Programación · Curso 06/07

Método de resolución de un problema

Descripción de pasos discretos, basada en unos fundamentos y resultados teóricos, de forma que la realización de estos pasos, junto a unos datos, lleva a una solución del problema

Semialgoritmo

Descripción precisa de un método, con pasos numerados y bien ordenados que, si existe, da la solución al problema en un número finito de pasos

Algoritmo

Semialgoritmo que es capaz de determinar que un problema no tiene solución en un número finito de pasos

Introducción

.:: Ampliación de Programación · Curso 06/07

Programa

 Algoritmo escrito en formato comprensible para un computador junto con las estructuras de datos que maneja

Ejemplo: a + x = b, $x \in \mathbb{N}$

1.
$$x \leftarrow a$$

3.
$$x \leftarrow x + 1$$

Si a > b nunca termina

⇒ Semialgoritmo

Eficiencia

.:: Ampliación de Programación · Curso 06/07

Mediremos la complejidad de los algoritmos

Complejidad

- Medida de la eficiencia de un algoritmo (en tiempo o espacio)
- Indica cómo es su comportamiento
 - Acotando el comportamiento sabremos cómo es su complejidad

Estrategias para medir la complejidad

- Empírica (mediante el computador)
- Teórica (o analítica): independiente del computador, programador o lenguaje
 - Basado en el principio de invarianza que dice que la diferencia de ejecutar un programa en una máquina u otra será multiplicarlo por una constante
- ☐ Híbrida

.:: Ampliación de Programación · Curso 06/07

Tamaño del problema

- Variable utilizada para las funciones de complejidad
- ☐ Suele depender del número de datos del problema
 - Ejemplo: Ordenar n número ⇒ tamaño n

Función de complejidad

- Mide el tiempo/espacio relativo
- Proporciona el orden de complejidad (comportamiento)
 - Forma en que crece la complejidad
- ☐ Tiene como variable independiente el tamaño del problema
- El comportamiento determina la eficiencia
- No es única para un algoritmo
- □ Las más representativas
 - Mejor caso $\Rightarrow f_m(n)$
 - Peor caso $\Rightarrow f_p(n)$
 - Esperanza matemática $\Rightarrow f_a(n)$

$$f_m(n) < f_a(n) < f_p(n)$$

.:: Ampliación de Programación · Curso 06/07

Funciones y comportamientos más usuales

- □ 1 O(1)
- \Box log n O(log n)
- \Box n O(n)
- \Box n^2 $O(n^2)$
- \Box n³ O(n³)
- **.....**
- \Box 2ⁿ $O(2^n)$
- \square $n \cdot 2^n$ $O(n \cdot 2^n)$

.:: Ampliación de Programación · Curso 06/07

Ejemplo: Ordenación por inserción directa

```
for (i=2: i<=n; i++){
      x = a_i;
      j = i-1;
            a_{j+1} = a_j:
```

j = i-1;
while (xj) {

$$a_{j+1} = a_{j}$$
:
 $T(n) = \sum_{i=2}^{n} \left(1 + 1 + 1 + \left(\sum_{j=j-1}^{x < a_{j}} 2\right) + 1\right)$

.:: Ampliación de Programación · Curso 06/0

Ejemplo: Ordenación por inserción directa

Caso mejor \Rightarrow O(n)

$$T(n) = \sum_{i=2}^{n} \left(1 + 1 + 1 + \left(\sum_{j=j-1}^{x < a_j} 2 \right) + 1 \right) = \sum_{i=2}^{n} \left(1 + 1 + 1 + 1 \right) = 4(n-1)$$

Caso medio \Rightarrow O(n²)

$$T(n) = a(n-1) + 2\sum_{i=2}^{n} \frac{i}{2} = 4(n-1) + \frac{(n+2)(n-1)}{2}$$

.:: Ampliación de Programación · Curso 06/0

Ejemplo: Ordenación por inserción directa

Caso peor \Rightarrow O(n²)

$$T(n) = \sum_{i=2}^{n} \left(1 + 1 + 1 + \left(\sum_{j=j-1}^{x < a_j} 2 \right) + 1 \right) = 4(n-1) + 2\sum_{i=2}^{n} \left(\sum_{j=j-1}^{x < a} 1 \right) =$$

$$=4(n-1)+2\sum_{i=2}^{n}(i-1)=4(n-1)+2\frac{1+(n-1)}{2}(n-1)=$$

$$= 4(n-1) + n(n-1) = n^2 + 3n - 4$$

Prob. tratable e intratable

.:: Ampliación de Programación · Curso 06/07

Convenio de Edmonds

- □ Problema tratable ⇒ complejidad polimonial
- □ Problema intratable ⇒ complejidad exponencial

Consideraciones

- Los algoritmos con complejidad mayor que n·log n son poco prácticos
- Los algoritmos con complejidad exponencial solo son válidos para problemas de tamaño pequeño

.:: Ampliación de Programación · Curso 06/07

Notaciones simbólicas

 \Box O, Ω , θ , o

Notación O

- Se utiliza para buscar cotas superiores del comportamiento de una función de complejidad
- $\Box f(n) \in O(g(n)) \text{ si } \exists n_0, c > 0 / \forall n > n_0, f(n) \le c \cdot g(n)$
- ☐ El comportamiento de *f* está acotado por *g*
- \Box O(g(n)): conjunto de todas las funciones acotadas superiormente por

.:: Ampliación de Programación · Curso 06/07

Propiedades de la Notación O

- \Box c·O(g(n)) = O(g(n)), donde c es una constante
- \Box $O(g(n)) \cdot O(h(n)) = O(g(n) \cdot h(n))$

.:: Ampliación de Programación · Curso 06/07

Notación Ω

- Se utiliza para acotar inferiormente la función de complejidad en el mejor de los casos
- ☐ El comportamiento de f está acotado inferiormente por g
- \square $\Omega(g(n))$: cjto. de todas las funciones acotadas inferiormente por g

Notación θ

$$f(n) \in \theta(g(n))$$

$$\exists n_0, c_1, c_2 > 0 / \forall n > n_0, c_1 \cdot g(n) < f(n) < c_2 \cdot g(n)$$

$$\square \ \theta(g(n)) = \Omega(g(n)) \cap O((g(n)))$$

.:: Ampliación de Programación · Curso 06/07

Notación o

$$\Box f(n) \in o(g(n)) \text{ para } n \to \infty \quad \frac{f(n)}{g(n)} = 0$$

 \square Se dice que f es asintóticamente equivalente a g

.:: Ampliación de Programación · Curso 06/07

Consideraciones

- Operaciones elementales
 - Las que realiza un computador en tiempo acotado por una constante
 - o Operaciones aritméticas básicas
 - o Asignaciones de tipos predefinidos
 - o Saltos
 - o Comparaciones lógicas
 - Acceso a estructuras indexadas básicas
- ☐ Es posible realizar el estudio de la complejidad sólo en base a un conjunto reducido de sentencias
 - Las que más influyen

Resultados prácticos

.:: Ampliación de Programación · Curso 06/07

Suma de potencias

$$\square \sum_{i=1}^n i^k = O(n^{k+1})$$

$$\Box \sum_{i=1}^n c^i = O(c^n)$$

Suma de logaritmos

Suma de fracciones

$$\square \sum_{i=1}^{n} \frac{1}{i} = O(\log n)$$

$$\Box \sum_{i=1}^{n} \frac{1}{c^{i}} = O(1)$$

.:: Ampliación de Programación · Curso 06/07

Procedimiento de análisis

Desde el interior hacia el exterior

Sentencias simples

Consumen un tiempo constate

Bucles for

- ☐ for (i=1; i<=n; i++) P(i); contel tiempo necesario para calcular P(i)
- Caso sencillo
 - o t es una constante \Rightarrow O(n·t)
- Caso complejo
 - o t es función de i
 - o Tiempo de cálculo de operación en la iteración $k \le c \cdot k$
 - o Tiempo del algoritmo $\leq \sum_{k=1}^{n} c \cdot k = c \sum_{k=1}^{n} k \in O(n^2)$

.:: Ampliación de Programación · Curso 06/07

Bucles for

```
for (i=1; i<=n; i++)
  for (j=1; i<=n; j++)
    a[i][j]=0;  O(1)</pre>
O(n)
```

```
for (i=1; i<=n; i++)
  for (j=i+1; j<=n; j++)
    a[i][j]=0;</pre>
```

.:: Ampliación de Programación · Curso 06/07

Bucles while

A priori no se sabe el número de iteraciones, depende de una
condición

- ☐ i=0; while(i<n && [i]!=elemento) i++;
- Aproximación
 - en el peor de los casos se recorrerá n veces por lo que O(n)
- Técnica estándar
 - Buscar una función de las variables implicadas cuyo valor se decremente en cada iteración
- ☐ Técnica alternativa
 - Tratarlo como un algoritmo recursivo

If-then-else

- Se analiza (calcula) el peor caso de las dos alternativas posibles
- \Box O(max(f(n),g(n))

.:: Ampliación de Programación · Curso 06/07

Bucles while

```
i = 1;
j = n;
while (i < j) {
    k = (i+j) / 2;
    if (x < T[k]) j = k-1;
    else if (x == t[k]) {
        i=k;
        j=k;
    } else i=k+1;
}</pre>
```

- Buscando una función
 - Número de elementos a tratar en las sucesivas iteraciones:
 - n, n/2, n/4, n/8, ... hasta 1
 - En la vuelta / se tratan n/2¹ elementos
 - En la vuelta *n* (última) $n/2^l=1 \rightarrow n=2^l \rightarrow l=\log_2 n$

.:: Ampliación de Programación · Curso 06/07

Bloques

Se toma el máximo de los órdenes, teniendo en cuenta la regla de la suma

Funciones

- Depende del lugar en el que se realice la llamada
- Llamada a una función en una sentencia simple
 - **a=f(3)** con $f(i) \in O(n)$, entonces O(n)
- ☐ Llamada a una función en una instrucción de tipo for
 - Depende de donde se coloque (asignación inicial, condición, incremento)
 - Asignación inicial ⇒ se suma el orden de la función al del bucle
 - Condición o incremento ⇒ Se suma su orden en el orden del cuerpo del bucle
- □ Recursivas ⇒ Resolución de recurrencias

Ejemplo

.:: Ampliación de Programación · Curso 06/07

```
for (i=0; i<n; i++) {
                               /*[1]*/
  minimo=i;
                               /*[2]*/
  for(j=i+1; j<n; j++)
                               /*[3]*/
       if(A[j]<A[minimo])</pre>
                               /*[4]*/
           minimo=j;
                               /*[5]*/
  temporal=A[minimo];
                               /*[6]*/
  A[minimo]=A[i];
                               /*[7]*/
  A[i]=temporal;
                               /*[8]*/
```

Ejemplo

.:: Ampliación de Programación · Curso 06/07

Escuela Superior de Informática ::: Universidad de Castilla-La Mancha

T1 · Trp 23

.:: Ampliación de Programación · Curso 06/07

Funciones recursivas

int fact(int n) { if (n<=1) return (1); else return (n*fact(n-1)); }</pre>

Valores iniciales

$$T(0)=1, T(1)=1$$

Resolución: método de expansión de la recurrencia

.:: Ampliación de Programación · Curso 06/07

$$T(n) = \begin{cases} c & \text{si n} \leq 1 \\ d+T(n-1) & \text{en otro caso} \end{cases}$$

Valores iniciales

T(0)=1, T(1)=1

Resolución: método de expansión de la recurrencia

$$T(n)=1+T(n-1)=1+[1+T(n-2)]=2+T(n-2)_{si n>2}=3+T(n-3)_{si n>3}=$$

= i + T(n-i) si n>i

Por ejemplo, para i=(n-1):

$$T(n) = (n-1)+T[n-(n-1)] = (n-1)+T(1) = (n-1)+1= n$$

$$T(n) \in O(n)$$

Ecuaciones recurrentes

.:: Ampliación de Programación · Curso 06/07

Métodos de resolución

- Expansión de la recurrencia
- Inducción matemática
- Ecuaciones características
 - Ecuaciones lineales homogéneas
 - Raíces simples
 - Raíces múltiples
 - Ecuaciones lineales no homogéneas
 - Ecuaciones no lineales

.:: Ampliación de Programación · Curso 06/07

Expansión de la recurrencia

- Obtención de una formula general a partir de varios valores
- □ Se aplica cuando hay un solo término en t, aunque esté multiplicado o sumado por una constante
- Ejemplo: función para cálculo del factorial

Inducción matemática

- □ Se parte de la propuesta de un determinado orden
- □ Hay que demostrar que efectivamente la propuesta es correcta

.:: Ampliación de Programación · Curso 06/07

Ecuaciones características

.:: Ampliación de Programación · Curso 06/07

Ecuaciones Lineales Homogéneas

- \Box Consideramos: T(n) = t_n
- Forma de la ecuación

$$a_0 t_n + a_1 t_{n-1} + \dots + a_k t_{n-k} = 0$$

 \Box Suposición: $\mathbf{t_n} = \mathbf{X^n}$ (polinomio característico), con lo que

$$a_0 x^n + a_1 x^{n-1} + \dots + a_k x^{n-k} = 0$$

- □ Soluciones
 - Trivial \rightarrow 0
 - Sacando factor común $\mathbf{X}^{\mathbf{n-k}}$: $a_0 x^k + a_1 x^{k-1} + ... + a_k = 0$
 - o Raíces simples
 - o Raíces múltiples

.:: Ampliación de Programación · Curso 06/07

Ecuaciones Lineales Homogéneas

$$r_1, r_2, \ldots, r_k$$

$$t_n = \sum_{i=1}^{\kappa} c_i r_i^n$$

Raíces simples $r_1, r_2, ..., r_k \qquad t_n = \sum_{i=1}^k c_i r_i^n$ Ejemplo $T(n) \left\{ \begin{array}{l} 3T(n-1) + 4T(n-2), n \geq 2 \\ n, n = 0, 1 \end{array} \right.$

$$t_n = 3t_{n-1} + 4t_{n-2}$$

$$t_n - 3t_{n-1} - 4t_{n-2} = 0$$

$$t_n = x^n$$
 $x^n - 3x^{n-1} - 4x^{n-2} = 0$ Ecuación característic $(x^2 - 3x - 4)x^{n-2} = 0$ \Rightarrow $x^2 - 3x - 4 = 0$

$$(x^2 - 3x - 4)x^{n-2} = 0 = 0$$

Ecuación característica

$$x^2 - 3x - 4 = 0$$

.:: Ampliación de Programación · Curso 06/07

Ecuaciones Lineales Homogéneas

Ejemplo (continuación)

$$x^2 - 3x - 4 = 0$$

 $x^2 - 3x - 4 = 0$ Raíces: $r_1 = -1, r_2 = 4$

$$t_n = \sum_{i=1}^k c_i r_i^n = c_1 (-1)^n + c_2 4^n$$

Condiciones iniciales: $t_0=0$, $t_1=1$

$$\begin{cases}
 0 = c_1 + c_2 \\
 1 = -c_1 + 4c_2
 \end{cases}
 \qquad
 c_1 = -\frac{1}{5}
 \qquad
 c_2 = \frac{1}{5}$$

$$t_n = \sum_{i=1}^k c_i r_i^n = c_1 (-1)^n + c_2 4^n = \frac{1}{5} (4^n - (-1)^n) \in O(4^n)$$

Ecuaciones Lineales Homogéneas

Raíces múltiples
$$t_n = c_i r_i^n + c_{i+1} r_{i+1}^n + ... + n^m r^n$$

- □ Ejemplo

$$T(n) \begin{cases} 5T(n-1) - 8T(n-2) + 4T(n-3), n \ge 3 \\ n, n = 0, 1, 2 \end{cases}$$

$$t_n - 5t_{n-1} + 8t_{n-2} - 4t_{n-3} = 0$$

Ecuación característica
$$x^3 - 5x^2 + 8x - 4 = 0$$

.:: Ampliación de Programación · Curso 06/07

Ecuaciones Lineales Homogéneas

Ejemplo (continuación)

$$t_n = c_1 1^n + c_2 2^2 + c_3 n 2^n$$

$$\begin{array}{c} c_1 = -2 \\ \hline \\ c_2 = 2 \\ \hline \\ c_3 = -\frac{1}{2} \end{array}$$

$$t_n = -2 + 2 \cdot 2^n - \frac{1}{2}n2^n = 2^{n+1} - n2^{n-1} - 2 \in O(2^{n+1})$$

.:: Ampliación de Programación · Curso 06/07

Ecuaciones Lineales No Homogéneas

- ☐ Combinación lineal que no es igual a 0
 - $a_0 t_n + a_1 t_{n-1} + \dots + a_k t_{n-k} = b^n p(n)$
 - b es una constante
 - p(n) es un polinomio de grado d
- □ Solución: reducir al caso homogéneo
 - Aplicación del polinomio característico (t_n = Xⁿ)

$$(a_0x^k + a_1x^{k-1} + \dots + a_k)(x-b)^{d+1} = 0$$

Ecuaciones Lineales No Homogéneas

$$t_n - 2t_{n-1} = 1 \begin{cases} b = 1 \\ p(n) = 1 \\ d = 0 \end{cases}$$

$$\frac{(x-2)(x-1)=0}{r_2=1} \begin{cases} r_1 = 2 \\ r_2 = 1 \end{cases}$$

Ecuación característica
$$\begin{cases} r_1 = 2 \\ r_2 = 1 \end{cases}$$

$$t_n = \sum_{i=1}^k c_i r_i^n = c_1 1^n + c_2 2^n$$

$$t_0 = 0 \Rightarrow c_1 + c_2 = 0$$

$$t_1 = 1 \Rightarrow c_1 + 2c_2 = 1$$

$$c_2 = 1$$

$$t_0 = 0 \Rightarrow c_1 + c_2 - 0$$

$$t_1 = 1 \Rightarrow c_1 + 2c_2 = 1$$

$$\begin{vmatrix} c_1 = -1 \\ c_2 = 1 \end{vmatrix}$$

$$t_n = 2^n - 1 \in O(2^n)$$

Ecuaciones Lineales No Homogéneas

$$T(n) \begin{cases} 2T(n-1) + n, n \ge 1 \\ n, n = 0 \end{cases}$$

$$(x-2)(x-1)^{2} = 0$$

$$\begin{cases} r_{1} = 2 \\ r_{2} = 1, doble \end{cases}$$

$$t_{n} = c_{1} 2^{n} + c_{2} 1^{n} c_{3} n \cdot 1^{n}$$

$$t_{1} = 1 \Rightarrow 2c_{1} + c_{2} + c_{3} = 1$$

$$t_{2} = 4 \Rightarrow 4c_{1} + c_{2} + 2c_{3} = 4$$

$$c_{1} = 2$$

$$c_{2} = -2$$

$$c_{3} = -1$$

$$\begin{vmatrix} c_1 = 2 \\ c_2 = -2 \\ c_3 = -1 \end{vmatrix}$$

$$t_n = 2 \cdot 2^n + (-2) - n = 2^{n+1} - n - 2 \in O(2^{n+1})$$

Ecuaciones Lineales No Homogéneas

Ejemplo

$$T(n) \begin{cases} 2T(n-1) + n + 2^{n}, n \ge 1 \\ 0, n = 0 \end{cases}$$

$$T(n) \begin{cases} 2T(n-1) + n + 2^n, n \ge 1 \\ 0, n = 0 \end{cases} t_n - 2t_{n-1} = n + 2^n \begin{cases} b_1 = 1, p_1(n) = n \\ b_2 = 2^n, p_2(n) = 1 \end{cases}$$

$$\begin{cases} (x-2)(x-1)^{2}(x-2) = 0 \\ r_{2} = 1, doble \end{cases}$$

$$\begin{cases} r_1 = 2, doble \\ r_2 = 1, doble \end{cases}$$

$$t_n = c_1 2^n + c_2 n \cdot 2^n + c_3 1^n + c_4 n \cdot 1^n$$

.:: Ampliación de Programación · Curso 06/07

Ecuaciones Lineales No Homogéneas

☐ Ejemplo (continuación)

$$t_0 = 0 \Rightarrow c_1 + c_3 = 0$$

$$t_1 = 3 \Rightarrow 2c_1 + 2c_2 + c_3 + c_4 = 3$$

$$t_2 = 12 \Rightarrow 4c_1 + 8c_2 + 2c_3 + 2c_4 = 12$$

$$t_2 = 35 \Rightarrow 8c_1 + 24c_2 + 2c_3 + 3c_4 = 35$$

$$\begin{vmatrix} c_1 - 2 \\ c_2 = 1 \\ c_3 = -2 \\ c_4 = -1 \end{vmatrix}$$

$$t_n = 2^{n+1} + n \cdot 2^n - 2 - n = n \cdot 2^n + 2^{n+1} - n - 2 \in (n \cdot 2^n)$$

.:: Ampliación de Programación · Curso 06/07

Ecuaciones No Lineales

- Procedimiento
 - Buscar un cambio de variable que permita obtener de nuevo una función de 'n' para T
 - Resolver en la nueva variables
 - Deshacer el cambio

.:: Ampliación de Programación · Curso 06/07

Ecuaciones No Lineales

□ Ejemplo

$$T(n) = 4T(\frac{n}{2}) + n$$
 $T(1) = 1$ $T(2) = 6$

Cambio de variable

$$n = 2^{m}; \quad m = \log_{2} n$$

$$T(2^{m}) = 4T(2^{m-1}) + 2^{m} \qquad T(2^{m}) = t_{m}$$

$$t_{m} = 4t_{m-1} + 2^{m} \Longrightarrow (x - 4) = 2^{m} \Longrightarrow (x - 4)(x - 2) = 0$$

$$t_{m} = c_{1}4^{m} + c_{2}2^{m}$$

 Las constantes se pueden calcular antes o después de deshacer el cambio, pero siempre hay que tener claro si son valores de m o de n

.:: Ampliación de Programación · Curso 06/07

Ecuaciones No Lineales

- ☐ Ejemplo (continuación)
 - Valores iniciales

$$n\begin{cases} t_1 = 1 \\ t_2 = 6 \end{cases} \qquad m\begin{cases} t_1 = 1 \\ t_2 = 6 \end{cases}$$

Deshacemos el cambio

$$4^{m} = 2^{2^{m}} = 2^{m^{2}} = n^{2} \implies t_{n} = c_{1}n^{2} + c_{2}n$$

$$\begin{cases}
c_{1} + c_{2} = 1 \\
4c_{1} + 2c_{2} = 6
\end{cases} \Rightarrow \begin{cases}
c_{1} = 2 \\
c_{2} = -1
\end{cases} T(n) = 2n^{2} - n \in O(n^{2})$$

.:: Ampliación de Programación · Curso 06/07

Ecuaciones No Lineales

□ Ejemplo

$$T(n) = 2T(\sqrt{b}) + \log_2 n$$

Cambio de variable

$$n = 2^{2^{m}} \implies T(2^{2^{m}}) = 2T(2^{2^{m-1}}) + \log_2 2^{2^{m}}$$
 $T(2^{2^{m}}) = t_m \implies t_m = 2t_{m-1} + 2^{m}$
 $(x-2)^2 = 0 \implies r = 2; \text{ doble}$
 $t_m = c_1 2^m + c_2 m \cdot 2^m$

.:: Ampliación de Programación · Curso 06/07

Ecuaciones No Lineales

☐ Ejemplo (continuación)

$$t_m = c_1 2^m + c_2 m \cdot 2^m$$

• Deshacemos el cambio $n = 2^{2^m}$

$$t_n = c_1 \log_2 n + c_2 \log_2 (\log_2 n) \cdot \log_2 n$$

$$t_n \in O(\log_2(\log_2 n) \cdot \log_2 n)$$

.:: Ampliación de Programación · Curso 06/07

Ecuaciones No Lineales

□ Ejemplo

$$T(n) = T(\frac{n}{2})T^{2}(\frac{n}{4})$$
 $T(1) = 2$ $T(2) = 4$

Cambio de variable

$$n = 2^{m} \implies T(2^{m}) = T(2^{m-1}) \cdot T^{2}(2^{m-2})$$

$$T(2^{m}) = t_{m} \implies t_{m} = t_{m-1} \cdot t^{2}_{m-2}$$

 En estos casos conviene realizar un cambio de rango. Para esto tomamos logaritmos

$$\log_2 t_{m} = \log_2 t_{m-1} + 2 \cdot \log_2 t_{m-2}$$

Ya hemos alcanzado una expresión lineal en m

.:: Ampliación de Programación · Curso 06/07

Ecuaciones No Lineales

☐ Ejemplo (continuación)

$$\log_2 t_m = \log_2 t_{m-1} + 2\log_2 t_{m-2}$$

• Consideramos $V_m = \log_2 t_m$

$$V_m = V_{m-1} + 2 \cdot V_{m-2} \implies (x^2 - x - 2) = 0$$

$$(x-2)(x+1) = 0 \implies V_m = c_1 2^m + c_2 (-1)^m$$

- Deshacemos el cambio teniendo en cuenta que $a^{\log b} = b^{\log a}$ $\log_2 t_m = c_1 2^m + c_2 (-1)^m \implies t_m = 2^{c_1 2^m + c_2 (-1)^m}$
- Deshacemos el cambio $n = 2^{m}$

$$t_n = 2^{c_1 n + c_2 (-1)^{\log_2 n}} \implies T(n) = 2^{c_1 n + c_2 (-1)^{\log_2 n}}$$

.:: Ampliación de Programación · Curso 06/07

Ecuaciones No Lineales

☐ Ejemplo (continuación)

$$T(n) = 2^{c_1 n + c_2(-1)^{\log_2 n}}$$

$$T(1) = 2 \Rightarrow \begin{cases} 2 = 2^{c_1 + c_2} \\ 4 = 2^{2c_1 + c_2} \end{cases} \Rightarrow \begin{cases} \log_2 = (c_1 + c_2) \log_2 2 \\ \log_2 4 = (2c_1 + c_2) \log_2 2 \end{cases}$$

$$\Rightarrow \begin{cases} 1 = c_1 + c_2 \\ 2 = 2c_1 + c_2 \end{cases} \Rightarrow \begin{cases} c_1 = 1 \\ c_2 = 0 \end{cases} \Rightarrow \mathbf{T}(\mathbf{n}) = 2^{\mathbf{n}} \in O(2^n)$$