Exercise 5.1

$$\begin{split} U \left| j \right\rangle &= \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i j k/N} \left| k \right\rangle \\ \left\langle j' \right| U^{\dagger} U \left| j \right\rangle &= \frac{1}{N} \sum_{k'=0}^{N-1} \sum_{k=0}^{N-1} e^{-2\pi i j' k'/N} e^{2\pi i j k/N} \delta_{k,k'} = \frac{1}{N} \sum_{k=0}^{N-1} e^{2\pi i (j-j')k/N} = \frac{1}{N} N \delta_{j,j'} = \delta_{j,j'} \end{split}$$
 Therefore, $U^{\dagger} U = I$, hence U is unitary.

Exercise 5.2

$$|00\dots 0\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} |k\rangle = \frac{1}{2^{n/2}} \sum_{x_i \in \{0,1\}} |x_1 x_2 \dots x_n\rangle$$

Exercise 5.3

For each y_k we perform 2^n additions and there are 2^n y_k to calculate, hence in total we require $\Theta(2^{2n})$ operations.

(Cooley-Turkey Algorithm) For each x_k we can separate the sum into odd and even indices, then we require 2^n operations assuming the two separate sums are known. This can be done recursively, splitting each sum into 2 pieces. This leads to the number of operations to be $\Theta(2^n \log 2^n) = \Theta(n2^n)$.

Exercise 5.4

Let $R_k = e^{i\alpha}AXBXC$ with ABC = I. Taking $\alpha = \frac{\pi i}{2^k}$, A = I $B = R_Z(-\frac{\pi i}{2^k})$ and $C = R_Z(\frac{\pi i}{2^k})$ we see that ABC = I and $AXBXC = XR_Z(-\frac{\pi i}{2^k})XR_Z(\frac{\pi i}{2^k}) = XXR_Z(\frac{\pi i}{2^k})R_Z(\frac{\pi i}{2^k}) = R_Z(\frac{2\pi i}{2^k})$. Hence, the circuit will be,

Exercise 5.5

$$FT^{-1} = FT^{\dagger}$$

Exercise 5.6

In the circuit we have $m = \frac{n(n+1)}{2} = \Theta(n^2)$ R_k gates. Using the result of Box 4.1, $E(U,V) \leq m \frac{1}{p(n)} = \Theta(\frac{n^2}{p(n)})$

Exercise 5.7

Let
$$|j\rangle = |j_0 j_2 \dots j_{n-1}\rangle$$
, then the circuit implements the following, $|j\rangle |u\rangle \to |j\rangle ((U^{2^0})^{j_0}(U^{2^1})^{j_1} \dots (U^{2^{n-1}})^{j_{n-1}}) |u\rangle = |j\rangle U^{j_0 2^0 + j_1 2^1 + \dots + j_{n-1} 2^{n-1}} |u\rangle = |j\rangle U^j |u\rangle$

1

Exercise 5.8

With probability $|c_u|^2$ we will be measuring φ_u for the state $|u\rangle$. If t is of the form of 5.35 each $\tilde{\varphi}_u$ is accurate to n bits of φ_u with probability $1 - \epsilon$. Hence, the total probability of measuring φ_u accurate to n bits is $|c_u|^2(1 - \epsilon)$.

Exercise 5.9

For this $U \varphi_0 = 0$ and $\varphi_1 = \frac{1}{2}$, hence the circuit is,

$$|0\rangle$$
 H FT^{\dagger} The state before the measurement is $|0\rangle |u_0\rangle - |1\rangle |u_1\rangle$, $|u\rangle$

hence after the measurement it will collapse into the +1 or -1 eigenbasis. For a first register with a single qubit $FT^{\dagger} = H$, hence this is the same circuit as that in Exercise 4.34.

Exercise 5.10

 $5 = 5 \mod 21$, $5^2 = 4 \mod 21$, $5^3 = 20 \mod 21$, $5^4 = 16 \mod 21$, $5^5 = 17 \mod 21$ and $5^6 = 1 \mod 21$. Hence, the order is 6.

Exercise 5.11

As gcd(x, N) = 1, from Euler's formula $x^{\varphi(N)} = 1 \mod N$. $\varphi(N)$ is the number of y such that gcd(y, N) = 1 and y < N, hence $\varphi(N) < N$. Therefore, there always exists a number $r \le N$, such that $x^r = 1 \pmod{N}$.

Exercise 5.12

$$\langle y'|U^{\dagger}U|y\rangle = \langle xy'|xy\rangle = \langle y'|y\rangle \mod N$$

 $0 \le y \le N-1$, hence $\langle y'|y\rangle \mod N = \langle y'|y\rangle = \delta_{y,y'}$. Therefore, $\langle y'|U^{\dagger}U|y\rangle = \delta_{y,y'}$. Hence, U is unitary.

Exercise 5.13

$$\begin{split} &\frac{1}{\sqrt{r}}\sum_{s=0}^{r-1}|u_{s}\rangle = \frac{1}{r}\sum_{s=0}^{r-1}\sum_{k=0}^{r-1}e^{-2\pi isk/r}\,|x^{k}\bmod N\rangle = \frac{1}{r}\sum_{k=0}^{r-1}\sum_{s=0}^{r-1}e^{-2\pi isk/r}\,|x^{k}\bmod N\rangle = \\ &= \frac{1}{r}\sum_{k=0}^{r-1}r\delta_{k0}\,|x^{k}\bmod N\rangle = |1\rangle \\ &\frac{1}{\sqrt{r}}\sum_{s=0}^{r-1}e^{2\pi isk/r}\,|u_{s}\rangle = \frac{1}{r}\sum_{s=0}^{r-1}\sum_{k'=0}^{r-1}e^{2\pi is(k-k')/r}\,|x^{k'}\bmod N\rangle = \frac{1}{r}\sum_{k'=0}^{r-1}r\delta_{k,k'}\,|x^{k'}\bmod N\rangle = |x^{k}\bmod N\rangle \end{split}$$

Exercise 5.14

$$|\psi\rangle = \sum_{j=0}^{2^{t}-1} |j\rangle V^{j} |0\rangle = \sum_{j=0}^{2^{t}-1} |j\rangle |0 + x^{j} \bmod N\rangle = \sum_{j=0}^{2^{t}-1} |j\rangle |x^{j} \bmod N\rangle$$

Writing $x^j \pmod{N} = (x^{jt^{2^{t-1}}} \pmod{N})(x^{jt-1})^{2^{t-2}} \pmod{N} \dots (x^{jt^{2^0}} \pmod{N})$, each modular multiplication requires $O(L^2)$ gates, hence for the total product of t-1 modular multiplications we require $O(L^3)$ gates, and uses the circuit shown in figure 5.2. The addition of k is done after the modular multiplications and requires O(L) gates, hence in total we still require $O(L^3)$ gates.

Exercise 5.15

Let m = [x, y] be the lowest common multiple. Let M be any common multiple. Then we can write M = mq + r. x and y divide both M and m, hence they also divide r, meaning it's a common multiple, but r < m and m is the lowest common multiple, therefore r = 0. Now let $x = (x, y)x_1$ and $y = (x, y)y_1$ with $(x_1, y_1) = 1$. x and y divide $(x, y)x_1y_1$ hence it's a common multiple, therefore we can write $(x, y)x_1y_1 = mq_1$. Therefore, we have $x_1 = \frac{m}{y}q_1$ and $y_1 = \frac{m}{x}q_1$, hence q_1 divides both x_1 and y_1 . However, $(x_1, y_1) = 1$, hence $q_1 = 1$. Hence, $[x, y] = (x, y)x_1y_1 = (x, y)x_1(x, y)y_1/(x, y) = xy/(x, y)$.

We can use Stein's gcd algorithm which requires $O(L^2)$ gates.

Exercise 5.16

$$\int_{x}^{x+1} \frac{1}{y^2} dy = \frac{1}{x(x+1)}$$
Consider $\frac{1}{x(x+1)} - \frac{2}{3x^2} = \frac{x-1}{3x^2(x+1)}$

For $x \ge 2$ this is always greater than 0, hence $\int_{x}^{x+1} \frac{1}{y^2} dy \ge \frac{2}{3x^2}$.

$$\frac{3}{4} = \frac{3}{2} \int_{2}^{\infty} \frac{1}{y^{2}} dy = \frac{3}{2} \sum_{q=2}^{\infty} \int_{q}^{q+1} \frac{1}{y^{2}} dy \ge \sum_{q=2}^{\infty} \frac{1}{q^{2}}$$

Therefore, $1 - \sum_{q} \frac{1}{q^2} \ge 1 - \frac{3}{4} = \frac{1}{4}$, hence equation 5.58 holds.

Exercise 5.17

1) $N = a^b$, taking log of both sides

 $L = b \log a$

If a = 1, then L = 1 and b = 0.

If $a \geq 2$, then $\log a \geq 1$, hence as b is a positive integer, $b \leq L$.

- 2) We want to calculate 2 estimates to $x = \log N/b$, we need O(1) to find $y O(L^2)$ to calculate x for a specific $b \le L$ and O(1) for calculating 2^x and finding the closest 2 integers.
- 3) To calculate

Exercise 5.18

N is not even so step 1 is passed, using the algorithm of the exercise 5.17

Exercise 5.19

The only non composite odd number less than 15 is 9 which is 3^2 , hence as 15 = 3 * 5 it's the smallest composite number that's odd and not a perfect power.

Exercise 5.20

(Correction for the hint, $\sqrt{N/r} \to N/r$)

$$\hat{f}(\ell) = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} e^{-2\pi i \ell x/N} f(x) = \frac{1}{\sqrt{N}} \sum_{m=0}^{n-1} \sum_{x=0}^{r-1} e^{-2\pi i \ell (mr+x)/nr} f(x) = \frac{1}{\sqrt{N}} \sum_{x=0}^{r-1} \sum_{m=0}^{n-1} e^{-2\pi i \ell x/N} f(x) = \frac{1}{\sqrt{N}} \sum_{x=0}^{r-1} n \delta_{\ell, zn} e^{-2\pi i \ell x/N} f(x) = \begin{cases} \sqrt{\frac{n}{r}} \sum_{x=0}^{r-1} e^{-2\pi i \ell x/N} f(x) & \text{for } \ell = zn \text{ where } z \in \mathbb{Z} \\ 0 & \text{otherwise} \end{cases}$$

Equation 5.63 is the fourier transform for a single period of f(x).

Exercise 5.21

$$\begin{split} &1)U_{y}\,|\hat{f}(\ell)\rangle = \frac{1}{\sqrt{r}}\sum_{x=0}^{r-1}e^{-2\pi i\ell x/N}\,|f(x+y)\rangle = e^{2\pi i\ell y/N}\frac{1}{\sqrt{r}}\sum_{x=0}^{r-1}e^{-2\pi i\ell(x+y)/N}\,|f(x+y)\rangle = \\ &e^{2\pi i\ell y/N}\frac{1}{\sqrt{r}}\sum_{x=0}^{r-1}e^{-2\pi i\ell x/N}\,|f(x)\rangle = e^{2\pi i\ell y/N}\,|\hat{f}(\ell)\rangle \\ &2)|f(x_{0})\rangle = \frac{1}{\sqrt{r}}\sum_{\ell=0}^{r-1}e^{2\pi i\ell x_{0}/r}\,|\hat{f}(\ell)\rangle \\ &\frac{1}{\sqrt{2t}}\sum_{x=0}^{2^{t-1}}|x\rangle\,U_{y}\,|f(x_{0})\rangle = \frac{1}{\sqrt{2tr}}\sum_{\ell=0}^{r-1}\sum_{x=0}^{2^{t-1}}e^{2\pi i\ell x_{0}/r}e^{2\pi i\ell y/N}\,|x\rangle\,|\hat{f}(\ell)\rangle \\ &\xrightarrow{FT^{\dagger}}\frac{1}{\sqrt{r}}\sum_{\ell=0}^{r-1}e^{2\pi i\ell y/N}\,|\ell/r\rangle\,|\hat{f}(\ell)\rangle \end{split}$$

Which due to the equal superposition of the $|\hat{f}(\ell)\rangle$ gives the result from phase estimation.

Exercise 5.22

Using the fact that $|f(x_1, x_2)\rangle = |f(0, x_2 + sx_1)\rangle$ from periodicity.

$$|\hat{f}(\ell_1, \ell_2)\rangle = \frac{1}{\sqrt{r}} \sum_{x_1=0}^{r-1} e^{-2\pi i \ell_1 x_1/r} \frac{1}{\sqrt{r}} \sum_{x_2=0}^{r-1} e^{-2\pi i \ell_2 x_2/r} |f(x_1, x_2)\rangle = \frac{1}{r} \sum_{x_1=0}^{r-1} \sum_{x_2=0}^{r-1} e^{-2\pi i (\ell_1 x_1 + \ell_2 x_2)/r} |f(x_1, x_2)\rangle = \frac{1}{r} \sum_{x_1=0}^{r-1} \sum_{x_2=0}^{r-1} e^{-2\pi i (\ell_1 x_1 + \ell_2 x_2)/r} |f(0, x_2 + sx_1)\rangle = \frac{1}{r} \sum_{x_1=0}^{r-1} \sum_{j=sx_1}^{r-1} e^{-2\pi i (\ell_1 x_1 + \ell_2 (j-sx_1))/r} |f(0, j)\rangle = \frac{1}{r} \sum_{x_1=0}^{r-1} e^{-2\pi i sx_1 (\ell_1/s - \ell_2)/r} \sum_{j=sx_1}^{r-1+sx_1} e^{-2\pi i \ell_2 j/r} |f(0, j)\rangle = \sum_{j=0}^{r-1} e^{-2\pi i \ell_2 j/r} |f(0, j)\rangle$$

$$\text{when } \ell_1/s - \ell_2 \in \mathbb{Z}.$$

Exercise 5.23

Should be a + in the exponent.

Using
$$\ell_1 = \ell_2 s + nrs$$

$$\frac{1}{r} \sum_{\ell_1=0}^{r-1} \sum_{\ell_2=0}^{r-1} e^{2\pi i (\ell_1 x_1 + \ell_2 x_2)/r} |\hat{f}(\ell_1, \ell_2)\rangle = \frac{1}{r} \sum_{\ell_1=0}^{r-1} \sum_{\ell_2=0}^{r-1} e^{2\pi i (\ell_1 x_1 + \ell_2 x_2)/r} \sum_{j=0}^{r-1} e^{-2\pi i \ell_2 j/r} |f(0, j)\rangle = \frac{1}{r} \sum_{\ell_1=0}^{r-1} \sum_{\ell_2=0}^{r-1} e^{2\pi i (\ell_1 x_1 + \ell_2 x_2)/r} \sum_{j=0}^{r-1} e^{-2\pi i \ell_2 j/r} |f(0, j)\rangle$$

$$\frac{1}{r} \sum_{\ell_2=0}^{r-1} \sum_{j=0}^{r-1} e^{2\pi i ((\ell_2 s + nrs)x_1 + \ell_2 (x_2 - j))/r} |f(0, j)\rangle = \frac{1}{r} \sum_{\ell_2=0}^{r-1} \sum_{j=0}^{r-1} e^{2\pi i \ell_2 (sx_1 + x_2 - j)/r} |f(0, j)\rangle = \sum_{j=0}^{r-1} \delta_{x_2 + sx_1, j} |f(0, j)\rangle = |f(0, x_2 + sx_1)\rangle = |f(x_1, x_2)\rangle$$