1 Electroweak Unification

1.1 The electroweak interaction

Summary of fields and interactions:

Field	Current	Coupling	Charge
$W^{+,\mu}$	$j_{\mu}^{+} = \bar{u}\gamma_{\mu}\frac{1}{2}(1-\gamma_{5}^{5})u$	$g/\sqrt{2}$	$2I_3$
$W^{-,\mu}$	$j_{\mu}^{-} = \bar{u}\gamma_{\mu}\frac{1}{2}(1-\gamma^{5})u$	$g/\sqrt{2}$	$2I_3$
$W^{0,\mu}$	$j_{\mu}^{0} = \bar{u}\gamma_{\mu}\frac{1}{2}(1-\gamma^{5})u$ $j_{\mu}^{Y} = \bar{u}\gamma_{\mu}u$	g	I_3
B^{μ}	$j_{\mu}^{I} = \bar{u}\gamma_{\mu}u$	g'/2	Y
A^{μ}	$j_{\mu}^{EM} = \bar{u}\gamma_{\mu}u$	e	Q
Z^{μ}	$\{j_{\mu}^{NC}\}$	$\{g_z\}$	{}

Quantities in {curly braces} are to be found by the theory.

$$Q = I_3 + \frac{1}{2}Y\tag{1}$$

The full current is given by $J_{\mu}=\mathrm{charge}\times j_{\mu}$ and the field is then

$$F^{\mu} = \frac{1}{g^2 - M^2} \tilde{g} J^{\mu} \tag{2}$$

where \tilde{g} is the appropriate coupling constant.

In the GSW basis, the full electroweak interaction is

$$\frac{g}{\sqrt{2}}J_{\mu}^{+}W^{+,\mu} + \frac{g}{\sqrt{2}}J_{\mu}^{-}W^{-,\mu} + gJ_{\mu}^{0}W^{0,\mu} + \frac{g'}{2}J_{\mu}^{Y}B^{\mu}$$
 (3)

with neutral current

$$gJ_{\mu}^{0}W^{0,\mu} + \frac{g'}{2}J_{\mu}^{Y}B^{\mu} \tag{4}$$

1.2 Change of basis

The observed and GSW fields are related through the Weinberg angle, θ_W ,

$$\begin{pmatrix} A^{\mu} \\ Z^{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_W & \sin \theta_W \\ -\sin \theta_W & \cos \theta_W \end{pmatrix} \begin{pmatrix} B^{\mu} \\ W^{0,\mu} \end{pmatrix}$$
 (5)

In this basis, the electroweak neutral current becomes

$$gJ_{\mu}^{0}(\sin\theta_{W}A^{\mu} + \cos\theta_{W}Z^{\mu}) + \frac{g'}{2}J_{\mu}^{Y}(\cos\theta_{W}A^{\mu} - \sin\theta_{W}Z^{\mu})$$
 (6)

$$= \left(g \sin \theta_W J_{\mu}^0 + \frac{g'}{2} \cos \theta_W J_{\mu}^Y \right) A^{\mu} + \left(g \cos \theta_W J_{\mu}^0 - \frac{g'}{2} \sin \theta_W J_{\mu}^Y \right) Z^{\mu}$$
 (7)

1.3 The electromagnetic interaction

The electromagnetic part of the electroweak interaction is associated with the photon (A^{μ}) field:

$$eJ_{\mu}^{EM} \equiv g\sin\theta_W J_{\mu}^0 + \frac{g'}{2}\cos\theta_W J_{\mu}^Y \tag{8}$$

Using $J_{\mu}^{EM} = J_{\mu}^{0} + \frac{1}{2}J_{\mu}^{Y}$ from (1),

$$eJ_{\mu}^{0} + \frac{e}{2}J_{\mu}^{Y} \equiv g\sin\theta_{W}J_{\mu}^{0} + \frac{g'}{2}\cos\theta_{W}J_{\mu}^{Y}$$
 (9)

Giving the unification condition:

$$e = g\sin\theta_W = g'\cos\theta_W \tag{10}$$

1.4 The weak neutral current

Now consider the part of the electroweak interaction associated with the Z^{μ} field:

$$g_Z J_{\mu}^Z = g \cos \theta_W J_{\mu}^0 - \frac{g'}{2} \sin \theta_W J_{\mu}^Y$$
 (11)

Use $g' = g \frac{\sin \theta_W}{\cos \theta_W}$ from the unification condition,

$$g_z J_\mu^Z = \frac{g}{\cos \theta_W} \left[\cos^2 \theta_W J_\mu^0 - \sin^2 \theta_W \frac{J_\mu^Y}{2} \right]$$
 (12)

Then $J_{\mu}^{Y} = 2(J_{\mu}^{EM} - J_{\mu}^{0})$ from (1),

$$g_z J_\mu^Z = \frac{g}{\cos \theta_W} \left[\cos^2 \theta_W J_\mu^0 - \sin^2 \theta_W \left(J_\mu^{EM} - J_\mu^0 \right) \right]$$
 (13)

$$= \frac{g}{\cos \theta_W} \left[J_\mu^0 - \sin^2 \theta_W J_\mu^{EM} \right] \tag{14}$$

Now expand out the currents as

$$J_{\mu}^{0} = \bar{u}\gamma_{\mu}\frac{1}{2}(1-\gamma^{5})I_{3}u \tag{15}$$

$$J_{\mu}^{EM} = \bar{u}\gamma_{\mu}Qu \tag{16}$$

$$g_{z}J_{\mu}^{Z} = \frac{g}{\cos\theta_{W}}\bar{u}\gamma_{\mu} \left[\frac{1}{2}(1-\gamma^{5})I_{3} - \sin^{2}\theta_{W}Q\right]u$$

$$= \frac{g}{\cos\theta_{W}}\bar{u}\gamma_{\mu} \left[\frac{1}{2}(1-\gamma^{5})I_{3} - \sin^{2}\theta_{W}\left\{\frac{1}{2}\left(1+\gamma^{5}\right) + \frac{1}{2}\left(1-\gamma^{5}\right)\right\}Q\right]u$$
(18)

$$= \frac{g}{\cos \theta_W} \bar{u} \gamma_\mu \left[\frac{1}{2} (1 - \gamma^5) (I_3 - Q \sin^2 \theta_W) - \frac{1}{2} (1 + \gamma^5) Q \sin^2 \theta_W \right] u \quad (19)$$

From this, the right- and left-handed couplings can be deduced:

$$g_L = I_3 - Q\sin^2\theta_W \tag{20}$$

$$g_R = -Q\sin^2\theta_W \tag{21}$$

1.5 Z boson mass

The degeneracy on the mass of the Z boson is lifted by electroweak symmetry breaking. From the form of the weak neutral current (19), the vertex factor is $g/\cos\theta_W$.

Considering the return to Fermi theory in the low-energy limit, for the process $\nu_{\rm e}e \rightarrow \nu_{\rm e}e$, we get $G_F/\sqrt{2} = g^2/(8M_Z^2 \cos_W^{\theta})$.

For a charged-current weak interaction, we get $G_F/\sqrt{@} = g^2/(8M_W^2)$.

Therefore, comparing these,

$$M_W = M_Z \cos \theta_W \tag{22}$$

1.6 Vector and axial couplings

Above, the couplings of the weak neutral field Z_{μ} to right- and left-handed fermions was deduced. Alternatively, we can find its coupling to the vector (γ_{μ}) and axial $(\gamma_u \gamma^5)$ parts:

$$g_z J_\mu^Z = \frac{g}{\cos \theta_W} \bar{u} \gamma_\mu \left[\frac{1}{2} (1 - \gamma^5) I_3 - \sin^2 \theta_W Q \right] u \tag{23}$$

$$= \frac{g}{\cos \theta_W} \bar{u} \gamma_\mu \left[\left(\frac{1}{2} I_3 - Q \sin^2 \theta_W \right) - \frac{1}{2} I_3 \gamma^5 \right] u \tag{24}$$

$$\equiv \frac{g}{\cos \theta_W} \bar{u} \gamma_\mu \left[\frac{c_V}{2} - \frac{c_A}{2} \gamma^5 \right] u \tag{25}$$

Therefore, we can identify the vector and axial coupling constants:

$$c_V = I_3 - 2Q \sin \theta_W$$

$$c_A = I_3$$
(26)

$$c_A = I_3 \tag{27}$$