

Determination of the
Temperature Coefficient, and
Coefficient of Resistivity
Of Copper, Iron and Aluminum

W. J. Sanders
H. M. Wheeler

1907

620.1
Sa 5

ARMOUR
INST. OF TECH. LIB.
CHICAGO.

**Illinois Institute
of Technology
Libraries**

AT 87

Sanders, W. J.

Determination of the
temperature coefficient,

DETERMINATION OF THE TEMPERATURE
COEFFICIENT, AND COEFFICIENT OF RESISTIVITY
OF COPPER, IRON AND ALUMINUM

A THESIS

PRESENTED BY

W. J. SANDERS

H. M. WHEELER

TO THE

PRESIDENT AND FACULTY

OF

ARMOUR INSTITUTE OF TECHNOLOGY

FOR THE DEGREE OF

BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

HAVING COMPLETED THE PRESCRIBED COURSE OF STUDY IN

ELECTRICAL ENGINEERING

ILLINOIS INSTITUTE OF TECHNOLOGY
PAUL V GALVIN LIBRARY
35 WEST 33RD STREET
CHICAGO, IL 60616

*Simeon Dr. 300
S. A. Teller and
Vernon H. R. Ward
James D. Laddison
L. C. Morris
Dean of Cultural Studies*

Table of Contents.

	Page
Method	1 - 8
Scheme	9
Data, Experimental	10 - 21
Data, Results	22
Photographs of Apparatus	23 - 25
Curves, Resistance-Temperature	26 - 37
Curves, Mil-Foot Resistance	38 - 46
Curves, Mass & Volume Resistivity	47 - 57

1

DETERMINATION OF TEMPERATURE COEFFICIENT AND COEFFICIENT OF RESISTIVITY OF COPPER, IRON, AND ALUMINUM.

The object of the following experiments was to find the mean temperature coefficient, α , between the temperatures of 0° and 100° Centigrade, in the formula

$$R_t = R_0(1 + \alpha t)$$

in which R_0 is the resistance of a conductor at 0° C. and R_t at t° C.; also the mil-foot resistance, and the volume and mass resistivity of various samples of copper, iron and aluminum.

The temperature coefficient, α , is defined to be the increase in resistance of a conductor per degree per ohm resistance at 0° C. The mil-foot resistance of a conductor is the resistance of a conductor one foot long and one circular mil in cross sectional area. The volume resistivity of any material is defined to be the resistance of a cube of the material one centimeter on a side. The usual manner of stating this resistivity is in micromhos per centimeter cube at 0° C. To determine the volume resistivity of a sample of a metal or alloy, it is desirable to possess it in the form of a carefully drawn wire of uniform circular cross section.

determining
Owing to the difficulty of λ the diameter of very fine wires, it is found more desirable and convenient to determine and define the resistivity of metals and alloys by the resistance in ohms per meter gramme at 0° C., that is to say, by stating the ohmic resistance at 0° C. of a wire of circular cross section having a length of one meter and weighing one gramme.

This is known as the mass resistivity.

The samples tested were copper, steel and aluminium wires as follows:

Sample 1. #10 B.&S. gauge, annealed copper wire obtained from John A. Roebling's Sons Co.

Sample 2. #14 B.& S. gauge annealed copper wire.

Sample 4. #14 B.& S gauge annealed copper wire.

Sample 5. #14 B.& S. gauge annealed copper wire.

Sample 6. #14 B.& S. gauge annealed copper wire.

Sample 7. # 8 B.& S. gauge annealed copper wire, obtained from the Okanite Co.

Sample 10. # 9 B.& S. gauge annealed copper wire, obtained from the American Steel & Wire Co.

Sample 8. # 8 B.W.G. steel wire, American Steel & Wire Co's Extra B.B.

Sample 7. Roebling's #8 B.B.

Sample 9. Roebling's #8 Extra B.B.

The three samples of steel were obtained through the courtesy of the Ristine Co.

Samples I and II of annealed Aluminium about #10 B.W.C. from the American Aluminium Co.

The resistances at various temperatures ranging from 0° to 100° C. were measured by means of the Thompson double bridge.

A scheme of the bridge and the connections for the determination of the resistances is shown on an accompanying blue print.

The principle of the bridge method is that of balancing the drop across the unknown resistance against the drop across a

3.

known resistance, so that all the resistances of lead wires are eliminated. The wire to be tested was cut into samples twenty-two inches in length and a sample was placed in the box containing the oil bath for heating and fastened and held straight by means of the clamps, AA, (see photograph) which are connected to the series posts of the box. The wire was then connected in series with the known resistance, a Hartmann and Braun .001 ohm standard manganin resistance, and also in series with an ammeter, a carbon rheostat, a storage cell and a switch as shown in the scheme. The rheostat was adjusted so that a current of 15 amperes flowed through the series circuit. The heating box is so arranged that the knife edges, exactly 50 centimeters apart, rest upon the wire to be tested, between the series posts, so that the drop across 50 centimeters of the wire is balanced against the drop across the standard resistance. These knives, BB , in the photograph, are connected by large copper leads to the pressure binding posts on the top of the box. These posts were connected to the posts marked, xx , on the bridge and also the pressure posts on the standard resistance were connected to the posts marked, NN , on the bridge. The galvanometer was also connected as shown in the scheme. The galvanometer used was a Leeds and Northrop, suspended coil type, mounted in a wall case on springs so that the jarring of the building would have a minimum effect in deflecting the coil. The deflection was read by means of a telescope and scale so as to obtain a maximum accuracy in the adjustment of the resistances

6

BB

4.

on the bridge for a balance, the coil showing no deflection at this point.

To obtain temperatures above that of the room, the oil bath surrounding the wire was heated by an electric heating coil. Readings of resistance were taken about every five degree increments in temperature up to 100° C., the oil being constantly stirred both by hand and electric motor. At each temperature where the resistance was measured the heat was partly shut off, only enough being left on to keep the temperature constant, the amount of heating current left on being adjusted through a lamp rack. After the temperature had remained constant for a short time, the dials on the bridge were adjusted, the two 100 plugs, as shown in the photograph being out, until the galvanometer showed no deflection; the temperatures and resistances were then read simultaneously and recorded.

The temperatures below that of the room were obtained by running cold brine through a coil of tin piping in the oil bath. The arrangement for running the brine through the coil from a tank is shown in a photograph of the apparatus. On account of the high congealing point of the oil used for the high temperatures, kerosene was substituted for the low temperatures. In this way the temperature of the bath was reduced to 0° C., readings of resistance being taken as before.

The temperatures were read by means of two accurate thermometers, reading from 0° to 100° C., and graduated to tenths of a degree, placed in the oil through the top of the heating

box. The mean temperature of the wire for each reading was taken as the average between the two thermometer readings.

This mean temperature was corrected for the mercury in the stem projecting above the oil in the box by means of the formula

$$T = t - .00014\% n (t' - t) \quad (\text{Smithsonian Tables})$$

in which T is the corrected temperature, t, the observed temperature, and t', the mean temperature of glass stem and mercury column; this temperature was assumed to be a little above room temperature; n is the length of the mercury column in the stem in scale degrees, this length being figured from the fifteen degree point, the mercury being subjected to the heat of the oil up to the fifteen degree mark. This correction amounts to about nine tenths of a degree at 100° C.

According to the certificate for the Hartmann and Braun standard resistance as tested by the Bureau of Standards, ~~its~~ its resistance at 20.4° C. is .00000946 international ohms. This value was used throughout as the resistance of the standard coil. If N is the reading on the dials of the bridge for a balance, then R, the resistance of fifty centimeters of the wire, is given by the equation

$$\frac{R}{.00000946} = \frac{N}{100} \quad \text{or} \quad R = N \times \frac{.00000946}{100}$$

when the two $\frac{100}{1}$ plugs are out.

Curves were plotted as shown on sheets 1 to 12 with temperature as abscissae and resistances as ordinates. From these curves, which were found to be straight lines, the average temperature coefficient was obtained. The mean temperature coefficient was taken as the average coefficient figured from each of the points which fell on the curves.

The mil-foot resistance for each sample was found at 0° C. and at one or two other temperatures at which the resistance fell on the resistance-temperature curve. From these points straight line curves were drawn which show the relation of mil-foot resistance to temperature. In the same way straight line curves were drawn which show the relation of the mass and volume resistivity to temperature. The mil-foot temperature-resistance curves are shown on sheets 12 to 22 and those for the mass and volume resistivity on sheets 27 to 32.

The mass resistivity in ohms per meter gramme at 0° C. was found from the formula

$$\rho' = \frac{10^4 M R}{l}$$

in which ρ' = mass resistivity, M = mass resistivity of fifty centimeters of sample in grammes, R = resistance of sample in ohms at 0° C. and l = the length of the wire in centimeters.

The volume resistivity in micromhos per cubic centimeter at 0° C. was found from the formula

$$\rho = \frac{\rho' \times 10^2}{d}$$

where ρ is the volume resistivity at 0° C. and d is the density.

The density, d, of each sample was found by weighing it in and out of distilled water by means of an accurate chemical balance.

The diameters of the samples were found by means of micrometer calipers. Measurements were taken at several points along the wire, twice at each point, one reading being taken when the micrometer caliper was at right angles to the position when the first reading was taken. The diameter was

then taken as the average of all the readings.

In order to find out whether the samples of copper were hard drawn or annealed tests were made to find the tensile strength.

Data were secured as to the chemical composition and purity of all the copper samples except sample 1 as follows:

Sample	% Copper	% Tin
3	99.49	.3
4	99.	.47
5	99.18	.29
6	99.1	.52
0	98.41	.31
10	99.64	.28

In the above samples the tin appeared only as a coating which would not affect the value of the temperature coefficient or resistivity, the per cent being so small. Sample 1 had no such tin coating.

The average temperature coefficient for all the ^{copper} samples is .004221, ~~and~~ the maximum ^{value being} .004288 and the minimum, .004122. Any slight difference in the purity or treatment of copper will affect its temperature coefficient. The value for the temperature coefficient adopted in the A.I.E.E. Standardization Rules is .0042; the German rules adopt .004, while on the other hand the British Engineering Standards Committee use .00412. The value of the coefficient, .004221, corresponds very nearly to that of the A.I.E.E. Standardization Rules.

The variation of the temperature coefficient for the steel

wire is probably due to the different chemical composition and treatment of the samples; however no data as to their purity were obtainable.

The average value of the temperature coefficient, .004455, for aluminium seems to be rather high compared to the value .00435 obtained by Dewar and Fleming for annealed aluminium. Since the purer the metal the greater the temperature coefficient, this would indicate that the sample tested was fairly pure, probably about 99.75% or 99.8% pure. It is also the case that the purer the metal the less the resistivity. It has been determined that the volume resistivity at 0° C. in micrehms per cubic centimeter for annealed aluminium, 99.66% pure is 2.4322. Since the value obtained here, i.e. 2.421, is lower, this would seem to verify the above estimate as to the ~~purity~~ of the sample of aluminium tested.

9.

Scheme of Connections of Thermometer

Double Bridge.

Scheme of Connections for Test.

Sample I Aluminium wire.

#10 B.W.G.

Temperature °C	Resistance of 50 cm	Temperature °C	Resistance of 50 cm
0.0	.001551	51.51	.001627
5.4	.0015455	56.15	.001650
10.5	.0015555	62.22	.0016865
17.85	.0014955	66.19	.0017205
20.95	.001445	70.82	.0017775
26.21	.0014655	76.47	.001766
50.85	.0015050	80.36	.0017905
40.77	.001560	86.00	.001825
46.26	.0015925	91.82	.001856
		96.64	.001883
		101.55	.0019255

Diameter .13808"

Sample 11. Aluminium wire.

"10 F.W.C.

Temperature C°	Resistance cf 50 cm
0.0	.0015125
5.6	.001542
10.7	.0015525
14.7	.0014925
20.55	.001475
25.71	.001482
30.22	.0014925
35.09	.0015515
41.71	.001582
45.44	.0015825
50.40	.0016165

Diameter .13808 inches.

Sample 1 Annealed Copper wire.

"12 ft. " Gauge.

Temperature °C	Resistance of 50 cm	Temperature °C	Resistance of 50 cm
0.0	.001507	50.14	.001640
17.04	.001608	54.54	.001687
19.	.001652	55.16	.001697
22.07	.001647	57.54	.001710
51.27	.001651	66.74	.001755
55.06	.001661	50.16	.001765
74.10	.001655	54.54	.001732
85.00	.001670	55.17	.001781
89.71	.001690	51.51	.001808
90.00	.001711	55.57	.001805
74.13	.001678	56.58	.001809
59.06	.001727	52.57	.001811
45.71	.001710	57.54	.001752
43.51	.001717	50.55	.001766

Diameter .12175 inches.

Sample F - Annealed Copper wire.

"14 P. G." Cycles.

Temperature °C	Resistance of 50 cm	Temperature °C	Resistance of 50 cm
0.0	.006095	46.50	.004716
9.81	.004979	46.70	.004879
18.4	.0049475	50.35	.004950
20.74	.004950	54.70	.005005
20.975	.004747	59.55	.005110
23.24	.004755	65.55	.005205
70.107	.004410	69.60	.005290
74.41	.004514	73.55	.005430
80.00	.004595	760.85	.005620

Diameter .067105 inches

Sample 4 Annealed Copper wire.

" B&C gauge.

Temperature °C	Resistance of 50 cm	Temperature °C	Resistance of 50 cm
0.0	.001780	55.64	.001660
0.15	.001790	60.05	.001670
20.05	.004090	64.50	.004100
25.75	.004120	70.75	.004130
30.05	.004150	76.00	.004160
35.00	.004175	80.05	.004185
40.10	.004400	86.04	.005150
45.60	.004584	90.50	.005204
55.75	.004650	96.00	.005260
		100.00	.005304

Diameter .00547 mm. 46

Sample 5 Annealed Copper Wire.

714 B & S Gauge.

Temperature C°	Resistance of 50 cm	Temperature C°	Resistance of 50 cm
0.0	.004080	50.43	.005008
10.0	.0041055	60.80	.005026
18.60	.0041200	65.15	.005106
20.00	.0041266	70.55	.005141
20.85	.0041290	75.50	.005184
26.40	.0041377	80.84	.005135
30.70	.0041510	85.10	.005200
37.14	.0041657	91.60	.005260
40.00	.0041740	96.00	.005270
45.16	.0041805	100.01	.005245
50.75	.0041865		

Diameter .06221 inches.

Sample 6 Annealed Copper wire.

"14 AWG" Gauge.

Temperature C°	Resistance of 50 cm	Temperature C°	Resistance of 50 cm
0.0	.004225	45.71	.0041965
5.61	.0042005	50.55	.0041954
8.29	.0042055	53.52	.0041965
9.5	.0042051	59.71	.0041960
10.17	.0042055	65.31	.0041963
11.61	.0042021	70.51	.0041966
12.99	.0042017	76.54	.0041965
21.06	.0042070	91.18	.0041965
25.54	.0042014	95.95	.0041960
29.15	.0042014	102.06	.0041963
32.74	.0042002	109.57	.0041960
40.55	.0042000		

Diameter .06544 inches

Sample 2 Annealed Copper wire.

⁴C R & G Gauge.

Temperature C°	Resistance of 50 cm	Temperature C°	Resistance of 50 cm
0.0	.000975	56.61	.001211
10.17	.001014	61.74	.001250
17.55	.001046	65.87	.001244
23.65	.001070	71.10	.001266
27.73	.001091	76.54	.0012905
30.60	.001104	71.67	.0012719
35.55	.001124	80.17	.0012750
40.75	.001143	80.32	.0012750
45.07	.001165	85.75	.0012750
50.0	.001185	100.75	.0012757

Diameter .10726 inches.

Sample 10 - annealed Copper wire.

"0 B & G. Gauss.

Temperature °C	Resistance of 50 cm	Temperature °C	Resistance of 50 cm
0.0	.0015165	51.07	.0014115
4.65	.0015205	51.0	.0014111
9.50	.001565	55.04	.001520
13.25	.0015205	60.80	.0015115
17.65	.001505	65.72	.0015305
19.15	.0015205	68.10	.0015115
20.16	.0015205	73.10	.0015105
25.1	.0015205	83.55	.0016575
29.00	.0015205	88.07	.0016605
35.07	.0015205	93.55	.0016575
40.54	.001487	98.55	.0016115
47.00	.001464	100.05	.0016225

Diameter .11716 inches.

Sample S American Steel & Wire Co's Extra B.B. Steel Wire,
"C" B. & C.

Temperature °C	Resistance of 50 cm.	Temperature °C	Resistance of 50 cm.
0.0	.0027456	72.68	.004546
5.005	.00275675	62.51	.0041882
10.05	.0027671	57.51	.0040766
20.05	.0027892	51.01	.004042
29.00	.0029008	73.61	.0040875
30.06	.0029057	52.53	.005081
36.56	.0029155	46.44	.005326
40.32	.0029164	31.13	.005306
46.32	.0029155	25.00	.005415
52.42	.00291430	102.0	.005501

Diameter .1675 inches.

Sample 7 - Fliebling's B.P. Steel wire.

"C F. .G.

Temperature °C	Resistance of 50 cm	Temperature °C	Resistance of 50 cm
00.0	.004186	60.48	.005751
10.45	.004691	68.32	.005263
10.54	.004700	70.56	.005277
26.18	.005066	81.50	.006108
39.61	.005157	95.37	.006096
76.01	.005287	91.71	.006494
41.51	.005574	96.72	.006555
46.35	.005491	101.75	.006365
51.00	.005574	98.10	.006050
76.88	.005630		

Diameter: .1657 inches.

Sample 8 Roebling's Extra E.P. Steel Wire.

"P. E. .G.

Temperature C°	Resistance of 50 °c	Terperature C°	Resistance of 50 cm
0.0	.004624	60.5°	.005874
12.5°	.004927	66.5°	.005977
19.5°	.005008	70.0°	.0060275
27.56	.0050015	76.0°	.006100
30.57	.005078	81.01	.006110
36.52	.005287	86.4°	.006421
41.32	.005471	91.51	.006527
46.71	.005581	101.0°	.006779
50.80	.005650	106.71	.006646
55.85	.005756		

Diameter .1657 inches.

Heating Box.

View of Cover of Heating Box showing
Knife Contacts.

Arrangement of Apparatus.

*View showing Dials and Ratio
Plugs of Thomson Double Bridge.*

Arrangement of Apparatus.

$M_1 = \frac{M}{2}$

$M_2 = \frac{M}{2}$

$M_3 = \frac{M}{2}$

$M_4 = \frac{M}{2}$

$M_5 = \frac{M}{2}$

$M_6 = \frac{M}{2}$

$M_7 = \frac{M}{2}$

$M_8 = \frac{M}{2}$

$M_9 = \frac{M}{2}$

$M_{10} = \frac{M}{2}$

$M_{11} = \frac{M}{2}$

$M_{12} = \frac{M}{2}$

$M_{13} = \frac{M}{2}$

$M_{14} = \frac{M}{2}$

$M_{15} = \frac{M}{2}$

$M_{16} = \frac{M}{2}$

$M_{17} = \frac{M}{2}$

$M_{18} = \frac{M}{2}$

$M_{19} = \frac{M}{2}$

$M_{20} = \frac{M}{2}$

$M_{21} = \frac{M}{2}$

$M_{22} = \frac{M}{2}$

$M_{23} = \frac{M}{2}$

$M_{24} = \frac{M}{2}$

$M_{25} = \frac{M}{2}$

$M_{26} = \frac{M}{2}$

$M_{27} = \frac{M}{2}$

$M_{28} = \frac{M}{2}$

$M_{29} = \frac{M}{2}$

$M_{30} = \frac{M}{2}$

$M_{31} = \frac{M}{2}$

$M_{32} = \frac{M}{2}$

$M_{33} = \frac{M}{2}$

$M_{34} = \frac{M}{2}$

$M_{35} = \frac{M}{2}$

$M_{36} = \frac{M}{2}$

$M_{37} = \frac{M}{2}$

$M_{38} = \frac{M}{2}$

$M_{39} = \frac{M}{2}$

$M_{40} = \frac{M}{2}$

$M_{41} = \frac{M}{2}$

$M_{42} = \frac{M}{2}$

$M_{43} = \frac{M}{2}$

$M_{44} = \frac{M}{2}$

$M_{45} = \frac{M}{2}$

$M_{46} = \frac{M}{2}$

$M_{47} = \frac{M}{2}$

$M_{48} = \frac{M}{2}$

$M_{49} = \frac{M}{2}$

$M_{50} = \frac{M}{2}$

$M_{51} = \frac{M}{2}$

$M_{52} = \frac{M}{2}$

$M_{53} = \frac{M}{2}$

$M_{54} = \frac{M}{2}$

$M_{55} = \frac{M}{2}$

$M_{56} = \frac{M}{2}$

$M_{57} = \frac{M}{2}$

$M_{58} = \frac{M}{2}$

$M_{59} = \frac{M}{2}$

$M_{60} = \frac{M}{2}$

$M_{61} = \frac{M}{2}$

$M_{62} = \frac{M}{2}$

$M_{63} = \frac{M}{2}$

$M_{64} = \frac{M}{2}$

$M_{65} = \frac{M}{2}$

$M_{66} = \frac{M}{2}$

$M_{67} = \frac{M}{2}$

$M_{68} = \frac{M}{2}$

$M_{69} = \frac{M}{2}$

$M_{70} = \frac{M}{2}$

$M_{71} = \frac{M}{2}$

$M_{72} = \frac{M}{2}$

$M_{73} = \frac{M}{2}$

$M_{74} = \frac{M}{2}$

$M_{75} = \frac{M}{2}$

$M_{76} = \frac{M}{2}$

$M_{77} = \frac{M}{2}$

$M_{78} = \frac{M}{2}$

$M_{79} = \frac{M}{2}$

$M_{80} = \frac{M}{2}$

$M_{81} = \frac{M}{2}$

$M_{82} = \frac{M}{2}$

$M_{83} = \frac{M}{2}$

$M_{84} = \frac{M}{2}$

$M_{85} = \frac{M}{2}$

$M_{86} = \frac{M}{2}$

$M_{87} = \frac{M}{2}$

$M_{88} = \frac{M}{2}$

$M_{89} = \frac{M}{2}$

$M_{90} = \frac{M}{2}$

$M_{91} = \frac{M}{2}$

$M_{92} = \frac{M}{2}$

$M_{93} = \frac{M}{2}$

$M_{94} = \frac{M}{2}$

$M_{95} = \frac{M}{2}$

$M_{96} = \frac{M}{2}$

$M_{97} = \frac{M}{2}$

$M_{98} = \frac{M}{2}$

$M_{99} = \frac{M}{2}$

$M_{100} = \frac{M}{2}$

polymerization of 1,3-phenylene terephthalic anhydride (PTA) has been studied by solution polymerization at 100°C. in benzene. The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

The polymerization was found to proceed via a chain transfer mechanism involving the formation of a cyclic intermediate.

○

故其子曰：「吾父之子，其名也。」

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

0057

0056

300

$$\begin{aligned} & \text{Left side: } \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial^2 u}{\partial x^2}, \\ & \text{Right side: } -\frac{\partial}{\partial x} \left(\frac{\partial v}{\partial x} \right) = -\frac{\partial^2 v}{\partial x^2}. \end{aligned}$$

2

3.

4.

5.

51

