Digital Integrated Circuits Designing Combinational Logic Circuits

Fuyuzhuo

Combinational vs. Sequential Logic

Combinational

Sequential

Output =
$$f(In)$$

Output = f(In, Previous I)n

agenda

- Static CMOS design
- Ratioed logic design-Pseudo NMOS
- Pass transistor design
- Dynamic logic

agenda

- Static CMOS design
- Ratioed logic design
 NMOS
- Pass transistor design
- Dynamic logic

What is the difference between inverter and logic?

Static CMOS logic

- CMOS static characteristic
- CMOS propagate delay
- Large fan-in technology
- Logic effort
- CMOS power analysis

Static CMOS Circuit

- Gate output is connected to either V_{DD} or V_{SS} via a low-resistive path*
- Contrast to the dynamic circuit class, which relies on temporary storage of signal values on the capacitance of high impedance circuit nodes

^{*} except during the switching transients

Standard Cell Layout Methodology

What logic function is this?

OAI21 Logic Graph

Two Stick Layouts of !(C • (A + B))

uninterrupted diffusion strip

Consistent Euler Path

 An uninterrupted diffusion strip is possible only if there exists a Euler path in the logic graph

A B (

 For a single poly strip for every input signal, the Euler paths in the PUN and PDN must be consistent (the same)

OAI22 Logic Graph

OAI22 Layout

Some functions have no consistent Euler path like

$$x = !(a + bc + de) (but x = !(bc + a + de) does!)$$

VTC is Data-Dependent

• The threshold voltage of M_2 is higher than M_1 due to the body effect (γ)

$$V_{Tn1} = V_{Tn0}$$

 $V_{Tn2} = V_{Tn0} + \gamma(\sqrt{|2\phi_F|} + V_{int}) - \sqrt{|2\phi_F|}$

since V_{SB} of M_2 is not zero (when $V_B = 0$) due to the presence of Cint

VTC is Data-Dependent

VTC is Data-Dependent

CMOS Properties

- Full rail-to-rail swing high noise margins
- not dependent upon device sizes ratioless
- Always a path to Vdd or Gnd low output impedance
- zero steady-state input current high input resistance
- No direct path steady state no static power
- Propagation delay function of load capacitance and resistance of transistors

Static CMOS logic

- CMOS static characteristic
- CMOS propagate delay
- Large fan-in technology
- Logic effort
- CMOS power analysis

Delay Definitions

- t_{pdr}: rising propagation delay
 - From input to rising output crossing V_{DD}/2
- t_{pdf}: falling propagation delay
 - From input to falling output crossing V_{DD}/2
- t_{pd}: average propagation delay(max-time)
 - $t_{pd} = (t_{pdr} + t_{pdf})/2$
- **t**_r: rise time
 - From output crossing 0.1 V_{DD} to 0.9 V_{DD}
- t_f: fall time
 - From output crossing 0.9 V_{DD} to 0.1 V_{DD}

Delay Definitions

- t_{cdr}: rising contamination delay
 - Minimum time from input to rising output crossing V_{DD}/2
- t_{cdf}: falling contamination delay
 - Minimum time from input to falling output crossing V_{DD}/2
- t_{cd}: average contamination delay(min-time)
 - Minimum time from input crossing 50% to the output crossing 50%
 - $t_{pd} = (t_{cdr} + t_{cdf})/2$

Simulated Inverter Delay

- Solving differential equations by hand is too hard
- SPICE simulator solves the equations numerically
 - Uses more accurate I-V models too!
- But simulations take time to write

Why we need estimation?

- We have timing analyzer at different levels
 - The architectural/micro-architectual level
 - Logic level
 - Circuit level
 - Layout level
- GIGO(Garbage In Garbage Out)!
- Simulation could only tell how fast..., it could not tell how to modify the circuit

Delay Estimation

- We would like to be able to easily estimate delay
 - Not as accurate as simulation
 - But easier to ask "What if?"
- The step response usually looks like a 1st order RC response with a decaying exponential.
- Use RC delay models to estimate delay
 - C = total capacitance on output node
 - Use effective resistance R
 - So that $t_{pd} = RC$
- Characterize transistors by finding their effective R
 - Depends on average current as gate switches

Input Pattern Effects on Delay

- Delay is dependent on the pattern of inputs
- Low to high transition
 - both inputs go low
 - delay is 0.69 $R_p/2$ C_L
 - one input goes low
 - delay is 0.69 R_p C_L
- High to low transition
 - both inputs go high
 - delay is 0.69 2R_n C_L

Transistor Sizing

Balance between Pullup and Pulldown Network

Sizing has different options

$$OUT = \overline{D + A \cdot (B + C)}$$

Elmore Delay

- ON transistors look like resistors
- Pullup or pulldown network modeled as RC ladder
- Elmore delay of RC ladder

$$\begin{split} t_{pd} &\approx \sum_{\text{nodes } i} R_{i-to-source} C_i \\ &= R_1 C_1 + \left(R_1 + R_2 \right) C_2 + \ldots + \left(R_1 + R_2 + \ldots + R_N \right) C_N \end{split}$$

RC Delay Models

- Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance 2R, capacitance C
- Capacitance proportional to width
- Resistance inversely proportional to width

Example: 3-input NAND

 Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R)

Example: 3-input NAND

 Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R)

Example: 3-input NAND

 Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R)

3-input NAND Caps

 Annotate the 3-input NAND gate with gate and diffusion capacitance.

3-input NAND Caps

 Annotate the 3-input NAND gate with gate and diffusion capacitance.

Example: 2-input NAND

 Estimate worst-case rising and falling delay of 2input NAND driving h identical gates.

Example: 2-input NAND

 Estimate rising and falling propagation delays of a 2-input NAND driving h identical gates.

Example: 2-input NAND

Estimate rising and falling propagation delays of a 2-input NAND driving *h* identical gates.

$$t_{pLH} = ln2((6+4h)CR + 2CR)$$
 $t_{pHL} = ln2((6+4h)CR + 2C\frac{R}{2})$

Contamination Delay

- Best-case (contamination) delay can be substantially less than propagation delay.
- Ex: If both inputs fall simultaneously

$$t_{cHL} = ln2((6+4h)CR)$$
 $t_{cLH} = ln2((6+4h)C\frac{R}{2})$

Digital IC

Slide 37

Practice:

- 1. Sketch a 4-input NAND gate with transistor widths chosen to achieve effective rise and fall resistance equal to a unit inverter.
 - Compute the t_{LH} and t_{HL} propagation delays(in terms of R and C) of the NAND gate driving h identical NAND gates using the ELMORE delay model

Layout Comparison

Which layout is better?

Digital IC Slide 39

Diffusion Capacitance

- assumed contacted diffusion on every s / d.
- Good layout minimizes diffusion area
- Ex: NAND3 layout shares one diffusion contact
 - Reduces output capacitance by 2C
 - Merged uncontacted diffusion might help too

Fan-In Considerations

Propagation delay deteriorates rapidly as a function of fan-in quadratically in the worst case

Worst case of t_{pLH}

 $\tau = 2R/2*(2NC+C_{ext})+2R/2*NC*N=2NRC+RC_{ext}+N^2RC$

t_p as a function of fan-In and fan-out

- Fan-in: quadratic due to increasing resistance and capacitance
- Fan-out: each additional fan-out gate adds two gate capacitances to C_L

$$t_p = a_1 F_1 + a_2 F_1^2 + a_3 F_0$$

Delay Dependence on Input Patterns

Static CMOS logic

- CMOS static characteristic
- CMOS propagate delay
- Large fan-in technology
- Logic effort
- CMOS power analysis

How to choose design techniques for large fan-in

- Larger parasitic capacitor, larger load to the preceding gate
- Load is dominated by fan-out, the design technique makes sense
- Solution
 - Progressive transistor sizing
 - Transistor ordering
 - Alternative logic structures
 - Isolating fan-in from fan-out using buffer insertion

Transistor ordering

delay determined by time to discharge C_L, C₁ and C₂

delay determined by time to discharge C_L

Progressive sizing

- Distributed RC line
 - $M_1 > M_2 > M_3 > \dots$ > M_N
- the closest to the output is the smallest
- Can reduce delay by more than 20%; decreasing gains as technology shrinks

Alternative logic structures

Digital IC

49

Isolating fan-in from fan-out using buffer insertion

