2021년 고양시 태권도 동작 데이터 데이터 톤 참고자료

2021.11.08

1. 인공지능 모델 개발 개요

- ❖ 인공지능 모델 개발 목표
 - 태권도 영상 데이터(입력) ▶ 태권도 동작인식(출력 : 동작명) 모델 개발
 - 태권도 동작인식, 자세추정 모델을 통하여 최종적으로 승급승단, 코칭서비스 등의 개발에 활용

2. 태권도 데이터 구성

❖ 태권도 데이터 구성

- 파일형식: json
- ◉ P-001-004-B005-M-A2010-S-20210819-05-08-S01 시작점 라벨링 데이터
- 测P-001-004-B005-M-A2010-S-20210819-05-08-M01 중간점 라벨링 데이터
- 测 P-001-004-B005-M-A2010-S-20210819-05-08-E01 종료점 라벨링 데이터
- 학습데이터
 - : [29개 관절 위치 x, y, 좌표값, 보이는 관절 여부 표시]
 - = (x, y, visible값 (1 또는 -1)
 - ※ visible값: 1은 보이는 관절, -1은 보이지 않는 관절

※ 본 대회에서는 Keypoint 정보는 제공하지 않습니다.

3. 태권도 학습데이터 파일명 규칙

❖ 태권도 학습데이터 파일명 규칙

4. 학습데이터 파일내용 [예시]

5. 데이터 저장구조

6. 데이터 저장구조 예시

7. 2021년 태권도 데이터톤 진행용 데이터

동작명	사용되는 품새	데이터수량 / 비율			
		Training set	Test set	Validation set	합계
기본준비	태극1장 1품-18품	777 / 77%	111 / 11%	111 / 11%	999
앞서고 지르기	태극1장 3품-5품 태극1장 8품-10품	777 / 77%	111 / 11%	111 / 11%	999
뒷굽이하고 손날바깥막기	태극3장 8품-10품 태극5장 10품-12품 태극8장 21품-23품	777 / 77%	111 / 11%	111 / 11%	999
앞차고 앞서고 아래막고 지르기	태극3장 20품-21품	777 / 77%	111 / 11%	111 / 11%	999
뒷굽이하고 바깥막기	태극4장 9품-11품	777 / 77%	111 / 11%	111 / 11%	999
옆서고 메주먹내려치기	태극5장 3품-5품	777 / 77%	111 / 11%	111 / 11%	999
앞굽이하고 바탕손안막고 지르기	태극6장 19품-20품	777 / 77%	111 / 11%	111 / 11%	999
앞차고 앞굽이하고 지르기	태극6장 8품-10품 태극4장 7품	777 / 77%	111 / 11%	111 / 11%	999
앞차고 뒷굽이하고 바깥막기	태극6장 3품-5품-14품-16품	777 / 77%	111 / 11%	111 / 11%	999
앞굽이하고 당겨지르기	태극8장 7품-9품	777 / 77%	111 / 11%	111 / 11%	999

8. 베이스라인 시스템

• Environment

- Docker Image: nvcr.io/nvidia/pytorch:20.03-py3
- PIP
 - Tqdm
 - Pandas
 - pillow

Data Loader

주어진 학습 또는 테스트 데이터를 불러오기 위해 Pytorch의 DataLoader 클래스를 상속 받는 클래스를 만들어 한번에 데이터를 불러옴.

• 시작, 중간, 끝부분에 해당되는 이미지를 불러와 (9,W,H) 형태로 병합

```
def __getitem__(self, idx):
img_origin_path = list(self.img_labels.keys())[idx]
img_path_S1 = os.path.join(self.img_dir, img_origin_path) + '-S01.jpg'
img_path_M1 = os.path.join(self.img_dir, img_origin_path) + '-M01.jpg'
img_path_E1 = os.path.join(self.img_dir, img_origin_path) + '-E01.jpg'
image_id = img_path_S1.split('-')[0].split('/')[-1]
image_S1 = Image.open(img_path_S1)
image_M1 = Image.open(img_path_M1)
image_E1 = Image.open(img_path_E1)
label = self.img_labels[img_origin_path]
if self.transform:
    image_S1 = self.transform(image_S1)
    image_M1 = self.transform(image_M1)
    image_E1 = self.transform(image_E1)
    image = torch.cat((image_S1, image_M1, image_E1))
if self.target_transform:
    label = self.target_transform(label)
label = int(label)
return image_id, image, label
```

10. 모델예제

- Directory Structure
- Train images
- -- labels
- Test images
- -- labels

11. 평가지표

- Accuracy
 - 전체 데이터 중 정확하게 예측한 데이터의 비율

$$\frac{True\ Positives + True\ Negatives}{True\ Positives + True\ Negatives + False\ Positives + FalseNegatives}$$

예측 클래스 (Predicted Class) Negative(0) Positive(1) FP TN Negative(0) (True Negative) (False Positive) 실제 클래스 (Actual Class) FN TP Positive(1) (False Negative) (True Positive)