

一连架构 成长之路

SACC 第十届中国系统架构师大会

海量实时用户标签存储引擎 Uindex架构与实践

周建平@广东数果

广东数果科技有限公司

专业的智能大数据分析服务公司

实时用户行为分析

分析加速引擎(Tindex)

高峰期:90w/s

每天实时600亿+/60TB

原始数据 + 预聚合

PV < 3s UV < 10s

16台物理主机 (32Core, 128GB, 1TB * 10)

实时用户画像

标签引擎(Uindex)

7干万用户,**上干**维度 **准实时**标签

5台物理主机 (32Core, 128GB, 1TB * 10)

实时日志分析

分析加速引擎(Tindex)

300多台服务器日志 每天实时75亿/10TB+ 日志数据高峰期17万/秒 单条日志可达到数百K 无丢失,无延时。

15台Ucloud云主机 (16Core, 32GB, 1TB*4)

MQ

Tindex

倾向产品PN000005 30~40岁 男 起购金额10-20万 浏览 用户 广东省 深圳 偏好 属性 风险等级R3 身份证件 iphone 平均理财金额1500元 倾向产品PN000005 用户 购买 投资者等级C2 起购金额10-20万 价值 偏好 风险等级R3 半年下了8单 用户 来源 注册到现在有120天 世界杯营销活动 行为 渠道 列表页→详情页(≥2分钟) 广告联盟推广

为什么要建立用户画像

- 查询高价值用户
- > 查询所推商品目标客户
- 重点维护高价值用户
- 提高客户忠诚度
- 提升重复购买率
- 提升客户ARPU值

- 流失会员站外购买偏好分析
- ▶ 站内站外购买偏好对比
- > 流失预警

• 基于实时行为通过算法识别出各级别用户群特征,然后对用户进行360度特征刻画,且打上客户兴趣偏好标签,

通过合适的渠道给潜在目标客户群个性化推荐合适的产品及服务

业务一:资讯App,推送资讯内容

场景人群:最近20分钟~1小时,需要学车人群、需要买车人群等,推送相关内容,最高点击率超过20%。

标题	内容	用户类型	推送的间	目标数	有效数	推送数	接收数	展示数	点击数	点击率
钻石、星耀、王者各个段位	都应该禁什么英雄?	IMEI	2017-10-25 15:54:05	4154	3929	3929	3797	3518	220	6.25%
日本产妇分享医院月子餐	不用担心坐月子了	IMEI	2017-10-25 15:51:57	511	485	485	460	434	30	6.91%
健身入门:	学习使用健身房的器械	IMEI	2017-10-25 15:50:51	466	423	423	411	383	43	11.23%
10月份最严驾考新规很难受?	好消息,未来可能不用考驾驶证了	IMEX	2017-10-25 15:49:11	509	488	488	469	445	103	23.15%
为何说买车要买低配	原来厂商真实的造车成本是这样算的	IMEI	2017-10-25 15:48:50	223	214	214	208	197	34	17.26%
最强王者算什么	有本事你找个玩工者的女朋友	IMEI	2017-10-25 14:30:19	9233	8782	8782	8386	7637	534	6.99%
父母经常和孩子这样对话	会让孩子变成一个情态低的人	IMEI	2017-10-25 14:27:16	1226	1171	1171	1117	993	69	6.95%
20种你不常见的俯卧撑	菜类到大师,你能来几种饮	IMEI	2017-10-25 14:26:36	735	671	671	651	605	44	7.27%
10月份最严驾考新规很难受?	好消息, 未来可能不用考驾驶证了	IMEI	2017-10-25 14:25:45	810	766	766	754	703	147	20.91%
为何说买车要买低配	原来厂商真实的造车成本是这样算的	IMEI	2017-10-25 14:24:39	343	311	311	307	291	60	20.62%

业务二:钱包App

场景人群:最近20分钟~1小时,需要贷款人群等,推送相关内容,点击率超过18%, 无精准策略的对照组点击率为2%。

标题	内容	推送时间	目标数	展示数	点击数	点击率	备注
		2017-10-26 17:38:09	1026	871	145	16.65%	近20分钟
	CONTRACTOR BANKS DATE (BANKS)	2017-10-26 15:38:32	1099	951	159	16.72%	近20分钟
朋友在这成功借到5万 利息比同行低2~3位	利息比同行低2~3倍,可借1年	2017-10-26 11:28:02	3082	2671	482	18.05%	近1个小时
		2017-10-25 17:34:18	50000	27077	582	2.15%	对照数据
		2017-10-25 17:34:18	3200	2736	494	18.06%	近1个小时

2017-10-25 17:34:18

基于实时用户画像:18.06% 传统无精准策略:2.15%

微观画像 根据ID查询用户信息 用户筛选 单个标签过滤筛选用户 用户圈选 多个组合标签圈选用户 宏观画像 对标签数据的统计分析 关联用户群 基于已圈选用户群进行分析

- 成千上万,数量会不断增加
- 不同的标签更新频率不同,每月,每周、每天、每小时、每十分钟
- 大量空缺的标签导致数据非常稀疏

冷 传统数据库方案

根据业务垂直分割:

用户基本属性						
用户ID	性别	年龄	学历	职业		
001	男	28	本科	程序员		
002	女	35	硕士	产品经理		
003	不详	31	博士	研究员		

用户价值					
用户ID	有车	有房	房估值		
001	否	否	0		
002	是	是	三百万		
003	是	是	五百万		

适用场景:

数据量少,业务场景固定

优点:

方案简单,所有数据库都支持

缺点:

跨表的查询慢 每列建索引,更新慢 无法满足动态增删标签

冷 传统数据库方案

竖表&水平分割:

用户ID	标签名	标签值
001	sex	男
001	age	25
001	has_car	N
002	sex	女
002	age	32
002	has_car	Y

适用场景:

数据量少,支撑标签动态增删

优点:

支持稀疏数据 更新方便

缺点:

查询复杂,尤其是组合查询 数据管理与维护麻烦 无法对用户群进行分析

HBase+ElasticSearch

宽表

ElasticSearch

- ✓ 使用Lucene , 具有高效的查询能力
- ✓ 支持组合查询和条件过滤
- ✓ 提供聚合函数,支持统计分析功能
- ✓ 面向文档,可不断动态增加标签
- x 写入性能差,无法满足实时更新需求
- x 大数据量更新时容易丢失数据
- x OOM和脑裂问题困恼

竖表

Hbase

- 实时读写、随机访问超大规模数据量
- ✓ 根据业务设计RowKey,可动态增加标签
- ✓ 适于存储稀疏的标签数据
- ✓ 良好的系统伸缩性、高容错性
- x 不支持数据类型
- x 按RowKey查询,不能支持条件查询
- x 难以支持群体画像分析和定向
- x 支持的标签数量通常不超过一千个
- x 两者写入性能相差太远,实时写入时数据同步存在很大问题
- x 不同场景使用不同的平台,增加了系统复杂度与维护难度

沙 实时标签存储引擎Uindex

实时更新

能够支持标签数据的列级别实时 更新

高性能

能够支持千万级用户的高效写入 和查询导出

高可用

Uindex中所有的管理节点均有HA

水平扩展

采用无共享的设计和实现,随数 据的增加可以无限制的水平扩展

学 实时标签存储引擎Uindex

Uindex整合了"搜索引擎"对数据的检 索能力,以及列级别数据更新能力,能 够有效地支持实时精准投放需求

大幅提升数据写入和查询性能的同时, 有效支持实时精准投放

多种查询类型

- Select
- groupby
- timeseries

多种条件过滤

- •日期/数字/坐标范围
- 精确/正则/模糊匹配
- •空值/非空/非等匹配

多种聚合

count、sum、min、 max、cardinality等

Get

Scan

十年架构 成长之路

段数据 Segment_1

docId	Id	Name	Score
11	1011	Tom	88
12	1012	Jack 🗼	70
13	1013	Son	90

更新代	Ugen	1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	90	

docId	Name	Score
11	John	75
12		80
13	Smith	11

#### 更新代 Ugen 2

docId	Name	Score
11	Bob	
12	•	90
13		85

#### 读取过程:

- 1 判断是否存在更新
- 2 如果存在
  - 2.1 首选读取最新更新的代
  - 2.2 然后到相应更新代中读取修改后的值
- 3 如果不存在,则读取原始段中的数据

13-nam	ie	11-name
Name		
docId	gei	n/
711	2	
13	1	

Score			
docId	gen		
11	1		
12	2		
13	2		

Scoro

11-name

12-name

12-name

13-name

## 十年架构 成长之路









## **沙** 列级更新



Id	Name	Score
1001	Tom	88
1002	Jack	70
1003	Son	90

Id	Name	Score
1001	Tom	88
U	gen_1	86
1002	Jack	70
1003	Son	90

Id	Name	Score
1001	Tom	88
U	gen_2	92
U	gen_1	86
1002	Jack	70
1003	Son	90

ld	Name	Score
1001	Tom	88
1002	Jack	92
1003	Son	90













## 營 性能优化 - JVM参数



### 堆内存分配少于32g

\$ java -Xms32768m -Xmx32768m -Xmn50m Memory compressedOops: false

32g * 1024 = 32768m

\$ java -Xms32760m -Xmx32760m -Xmn50m Memory compressedOops: true

对象头OBJECT HEADER 对象引用 OBJECT REF 数组头ARRAY HEADER

OBJECT REF + 8;

compressedOops? 4:8

OBJECT HEADER + NUM_BYTES_INT

private static class Entity { public String uid; public String name; LinkedList public Double score; public Integer age;

-Xms & -Xmx	compressed	Result
31g	true	588,555,700
32g	false	385,833,800
48g	false	579,446,830
31g	false	373,734,440



-XX:-UseCompressedOops







# 쓸 性能优化 – JVM参数



新生代堆内存调整到相应大小,避免对象进入老年代-XX:NewSize=12G-XX:MaxNewSize=12G

在数据查询过程中使用DirectByteBuffer Pool,提高性能,避免mirror GC-XX:MaxDirectMemorySize=6G













```
int sum = 0;
for (int i = 0; i < CNT; i++) {
    sum += i;
}</pre>
```



```
for (int i = 0; i < CNT; i+=4) {
    sum0 += i;
    sum1 += i + 1;
    sum2 += i + 2;
    sum3 += i + 3;
}
int sum = sum0 + sum1 + sum2 + sum3;</pre>
```









## **沙**测试结果-数据导入



### 参考指标

按照2小时内导入6000万行数据的参考标准,希望 导入速度达到10000行/秒;

-- 全量 (6000 万行) 数据, 上千个维度

insert into t_userprofile

values (imei, tag1, tag2, tag3, ..., tagN)

5台机器: 32cpu, 128G内存, 1TB * 10

全量写入				
	ElasticSearch	Uindex-a		
机器数	15	5		
数据量	6000万+	6000万+		
维度数	1000+	1000+		
耗时	六七个小时	70分钟		
TPS	2778	14285		











## **沙**测试结果-实时更新



### 参考指标

使用实时流计算标签,实时更新标签,更新 的字段数比较少,看性能能否比全量导入有 明显的提升,目标大于20000行/秒

-- 根据 primary key 对少量字段(标签)更新

insert into t_userprofile (imei, tag)

values ('imei xxxxxxxx', 'value')

on uplicate update set tag = values(tag)

5台机器: 32cpu, 128G内存, 1TB * 10

更新性能				
	更新10维度	更新20维度		
数据量	1000万	1000万		
更新耗时	5分钟	5分钟		
资源消耗	12%cpu , 30G内存	15%cpu , 30G内存		
TPS	3.3万	3.3万		

- 基于实时用户行为对用户打标签
- 使用实时流计算引擎计算并更新用户标签



## 架构 成长之路











参考指标: 目前使用用 ES 导出,导出 1000 万记录大大概 5-10分钟

希望 Uindex 起码要在同级别,甚至更优

1.有些导出场景下,除了输出主键(imei),还需要输出指定的若干个维度

2.输出的维度值可能需要转码,例如"性别"标签需要把0,1转换成男,女

5台机器: 32cpu, 128G内存, 1TB * 10

个数	维度	100万耗时(s)	1000万耗时(s)
1	umid	4.7	45
2	umid、 imei	9.8	69
3	umid、imei、sn	13.6	115
4	umid、imei、sn、uid	14.1	122
6	umid、imei、sn、uid、recharge_7d、wallpaper	15.6	126













## 🧽 测试结果-根据id查询用户



1台机器: 32cpu, 128G内存, 1TB*10

标签数	并发数	请求次数	耗时(毫秒)	QPS
2	20	2万	3012	6640
6	20	2万	3180	6289











## 数果智能

### 5台机器: 32cpu, 128G内存, 1TB*10

说明	Sql语句	耗时
统计记录数	select count(*) from update_test;	84(ms)
统计记录数 (一个过滤条件)	<pre>select count(*) from update_test where startup_themes='start_1';</pre>	280(ms)
分组统计行数并排序	select themes_set_ring, count(*) from update_test group by themes_set_ring order by themes_set_ring;	560(ms)
分组统计行数并排序 (一个过滤条件)	select themes_set_ring, count(*) from update_test where push_sub_apps='sub_8' group by themes_set_ring order by themes_set_ring;	68(ms)













## **沙** 测试结果-用户群关联



5台机器: 32cpu, 128G内存, 1TB*10

说明	Sql语句	耗时
关联200w用户群 统计行数	select count(*) from update_test where umid in umid_200w_lookup;	3842(ms)
关联200w用户群 分组统计行数并排序	select themes_set_ring, count(*) from update_test where umid in umid_200w_lookup group by themes_set_ring order by themes_set_ring;	3715(ms)



查看高价值用户群的风险等级偏好

高价值用户列表可以是通过系统圈选出来或外部导入



## 年架构 成长之路







