Университет ИТМО

Факультет программной инженерии и компьютерной техники

Системы искусственного интеллекта Лабораторная работа №2 Вариант 3

Выполнил:

Ким Даниил Кванхенович

Группа:

P33302

Преподаватель:

Королёва Юлия Александровна

2022

5 семестр

Задание:

Исследование алгоритмов решения задач методом поиска. Описание предметной области. Имеется транспортная сеть, связывающая города СНГ. Сеть представлена в виде таблицы связей между городами. Связи являются двусторонними, т. е. допускают движение в обоих направлениях. Необходимо проложить маршрут из одной заданной точки в другую.

<u>Этап 1</u> Неинформированный поиск. На этом этапе известна только топология связей между городами. Выполнить:

- 1. Поиск в ширину
- 2. Поиск в глубину
- 3. Поиск с ограничением глубины
- 4. Поиск с итеративным углублением
- 5. Двунаправленный поиск

Отобразить движение по дереву на его графе с указанием сложности каждого вида поиска. Сделать выводы.

<u>Этап 2</u> Информированный поиск. Воспользовавшись информацией о протяженности связей от текущего узла, выполнить:

- 1. Жадный поиск по первому наилучшему соответствию
- 2. Поиск методом минимизации суммарной оценки A* (использую информацию о расстоянии до цели по прямой от каждого узла)

Отобразить на графе выбранный маршрут и сравнить его сложность с неинформированным поиском. Сделать выводы.

Выполнение:

Репозиторий с кодом: github.com/KIMdaniiell/AISystems-Lab-2

Входные параметры:

- Данные о связях между городами:
 - .../input.txt
- Данные о расстоянии по прямой городов до Ярославля:
 - .../input2.txt

Результат работы алгоритмов:

1. Поиск в глубину:

Самара - Уфа - Казань - Москва — Нижний Новгород - Витебск - Брест - Вильнюс - Даугавпилс - Вильнюс - Калининград — Санкт-Петербург - Рига - Каунас - Рига - Таллинн - Рига — Санкт-Петербург - Мурманск - Минск - Ярославль

2. Поиск в ширину:

Самара - Уфа - Казань - Москва - Минск - Ярославль

Длинна получившегося пути = 3431

3. Поиск с ограничением глубины:

Самара - Уфа - Казань - Москва — Нижний Новгород - Витебск — Нижний Новгород - Москва - Минск - Мурманск - Минск - Ярославль

4. Поиск с итеративным углублением:

Самара - Уфа - Казань - Москва — Нижний Новгород - Витебск — Нижний Новгород - Москва - Минск - Мурманск - Минск - Ярославль

Длинна получившегося пути = 10551

5. Двунаправленный поиск:

Самара - Уфа - Казань - Москва - Минск - Ярославль

6. Жадный поиск:

Самара - Уфа - Казань - Москва — Нижний Новгород - Витебск - Орел - Донецк - Житомир - Киев - Харьков - Симферополь - Харьков - Киев - Вильнюс - Даугавпилс - Вильнюс - Каунас - Рига — Санкт-Петербург - Калининград - Брест - Калининград — Санкт-Петербург - Мурманск - Минск - Ярославль

7. Поиск методом минимизации А*:

Самара - Уфа - Казань - Москва — Нижний Новгород - Витебск - Орел - Донецк - Житомир - Киев - Вильнюс - Каунас - Рига — Санкт-Петербург - Мурманск - Минск - Ярославль

Длинна получившегося пути = 11682

Вывод:

В данной лабораторной работе я познакомился с методами поиска. Я изучил и реализовал такие неинформированные алгоритмы поиска как поиск в глубину, поиск в ширину, поиск с ограничением глубины, поиск с итеративным углублением и двунаправленный поиск. Так же я изучил такие алгоритмы информированного поиска как жадный поиск по первому наилучшему соответствию и поиск методом минимизации суммарной оценки A^* .