

Hill Climbing

Exercise 1: Graph Coloring

- Problem: assign a color from {1,2,3} to each node such that no two adjacent nodes have the same color
- Define
 - State space
 - Neighborhood
 - Objective function
- Perform Hill-climbing search from an initial state where all nodes have color 1

Minimum Makespan Scheduling

- Given m machines
- and n jobs with processing time p₁, ..., p_n
- assign jobs to machines such that overall processing time (makespan) is minimized

Exercise 2: Makespan Problem

Define

- State space
- Neighborhood
- Objective function

For makespan problem with

- 3 machines
- 10 jobs

Facility Location Problem

- Given m locations l_i where facility can be opened for cost c_i
- and n cities c_i with connection cost c_{ij} to facility location l_i
- Decide where to open facilities and assign every city to one open facility such that overall cost (opening + connecting) is minimized

с3

70

85

25

c4

80

95

20

Exercise 3: Facility Location Problem

Define

- State space
- Neighborhood
- Objective function

For facility location problem with

- 3 facility locations
- 6 cities

Simulated Annealing

Exercise: Local Optima Revisited

- As we observed before, given state is locally optimal with value -1
- Compute ΔE for the neighbors obtained by
 - moving queen 2 to row 1 (State (8,1,7,4,2,5,1,6))
 - moving queen 4 to row 8 (State (8,3,7,8,2,5,1,6))
- Compute the probability of performing these moves for T=10 and T=1

Local Beam Search

Exercise: 4-Queens Problem

Consider the two states above with the given number of attacks for their neighbors.

- Give two possible next states when performing parallel Hillclimbing (2 runs in parallel).
- Give two possible next states when performing Local Beam Search (k=2).

Genetic Algorithms

Exercise: Graph Coloring

- Problem: assign a color from {1,2,3} to each node such that no two adjacent nodes have the same color
- Define
 - Genes
 - Chromosomes
 - Fitness (value) of individuals
 - Mutation operation
- Illustrate reproduction and mutation by means of a small example

Set Cover Problem

- Set Cover Problem: given set of n elements $U = \{e_1, ..., e_n\}$ and subsets $S_1,...,S_m$ of U, find a minimal number of subsets that contain all elements from U (a minimal set cover of U)
- For example, U can be a shopping list and subsets correspond to shops that offer the desired items
 - U = {1, 2, 3, 4, 5}
 - $S_1 = \{1, 2, 5\}, S_2 = \{1,4\}, S_3 = \{3, 5\}, S_4 = \{1, 2\}, S_5 = \{3,4\}$
 - S₂, S₃ and S₄ contain all elements from U (S₂, S₃ and S₄ form a set cover of size 3)
 - S₁ and S₅ do also contain all elements (S₁, and S₅ form a set cover of size 2)
 - Hence, the set cover consisting of S₂, S₃ and S₄ is not minimal

Exercise: Set Cover Problem

Set Cover Problem: given set of n elements U = {e₁, ..., e_n} and m subsets S₁,...,S_m of U, find a minimal number of subsets that contain all elements from U

- Define
 - Genes
 - Chromosomes
 - Fitness (value) of individuals
 - Mutation operation
- Illustrate reproduction by means of a small example