Process Water Mixing Description

Dzakwan Afif / Github: Dzakwan Afif PLCS

Description for Hot-Cold Water Mixing Tank Process

1- I&C Design Project Map

To make the documentation easier and more manageable to be made, the document is used the project workflow that had been mentioned in Bela G Liptak: Instrumentation Engineer's Handbook; Process Software and Digital Networks.

2- Define Process Description

Process Purposes : Mixing Hot and Cold Water in Atmospheric Tanks

Process Output : Result of the mixing as the product flow

Process Variable (PV)	PV Value	PV Unit
Cold Water Temperature	20	°C
Cold Water Flowrate	0-100	L/s
Hot Water Temperature	90	°C
Hot Water Flowrate	0-100	L/s
Product Temperature	40-50	°C
Product Flowrate	0-100	L/s
Water Density	997.01	Kg/m ³
Specific Water Heat	4182	J/kg°C
Capacity		

After the process properties is defined, the process variable need to be defined also to see what the process variable that need to be controlled and what variable to be manipulated to achieve the setpoint desired.

The Disturbance variable is optional to be added, so we know what variable that could change our process variable stability

Controlled Variable (CV)	Manipulated Variable (MV)	Disturbance (D)
	(' ' ' /	
Tank Level	Hot Fluid Flowrate	Product Flowrate
		Cold Water Flowrate
Product Temperature	Cold Fluid Flowrate	Hot Water Flowrate

After that, the Process Flow Diagram and P&ID could be made as per process requirement as seen above:

See the P&ID Visio here

//if seen from Github, please refer to the repository itself

If the P&ID is finalized, then need to list all the Instrument, Valve/Actuator, and the Equipment needed in the systems:

Codename	Equipment	Brand / Model	Specification	Serial Number
	Name			
PUMP1-1	Centrifugal	XXXXXXXXXX	Xxxxxxxxx L/s	XXXXXXXXXX
	Pump		Head xxxxx m	
PUMP1-2	Centrifugal	XXXXXXXXXX	Xxxxxxxxx L/s	XXXXXXXXXX
	Pump		Head xxxxx m	
PUMP1-3	Centrifugal	XXXXXXXXXX	Xxxxxxxxx L/s	XXXXXXXXXX
	Pump		Head xxxxx m	

Codename	Instrument Name	Brand / Model	Specification	Serial Number
FE11	Turbine	XXXXXXXXXX	Xxxxxxxxx L/s	XXXXXXXXXX
FT11	Flowmeter			
FE12	Turbine	XXXXXXXXXX	Xxxxxxxxx L/s	XXXXXXXXXX
FT12	Flowmeter			
FE13	Turbine	XXXXXXXXXX	Xxxxxxxxx L/s	XXXXXXXXXX
FT13	Flowmeter			
FIC11	Flow Indicator Controller	PLC/DCS xxxx	xxxxxxxxx	xxxxxxxxxx
FIC12	Flow Indicator Controller	PLC/DCS xxxx	xxxxxxxxx	xxxxxxxxxx
FIC13	Flow Indicator Controller	PLC/DCS xxxx	xxxxxxxxxx	xxxxxxxxxx
LG11	Level Gauge	XXXXXXXXXX	Xxxxxxxxxx m	XXXXXXXXXXX
LT11	Level transmitter	xxxxxxxxxx	Xxxxxxxxx m	xxxxxxxxxx
LSH11	Level Switch High	Xxxxxxxxx	Xxxxxxxxx	Xxxxxxx
LSL11	Level Switch Low	xxxxxxxxx	xxxxxxxxx	xxxxxxx
LIC11	Level Indicator Controller	PLC/DCS xxxx	xxxxxxxxx	xxxxxxxxxx
PSHL11	Pressure Switch High Low	xxxxxxxxxx	xxxxxxxxx	xxxxxxxxxx
PSHL12	Pressure Switch High Low	xxxxxxxxx	xxxxxxxxxx	xxxxxxxxxx
PSHL13	Pressure Switch High Low	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx
TE11	RTD Temp	XXXXXXXXXX	XXXXXXXXXX	xxxxxxxxx
TT11	Transmitter			
TE12	RTD Temp	XXXXXXXXXX	xxxxxxxxx	XXXXXXXXXX
TT12	Transmitter			
TE13	RTD Temp	XXXXXXXXXX	xxxxxxxxx	XXXXXXXXXX
TIT13	Transmitter			
TIC11	Temperature Indicator Transmitter	PLC/DCS xxxx	xxxxxxxxxx	xxxxxxxxxx

Codename	Valve Name	Brand / Model	Specification	Serial Number
FCV11	Diaphragm Control Valve Linier Fail Closed	xxxxxxxxxx	XXXXXXX	xxxxxxxxx
LCV11	Diaphragm	XXXXXXXXXX	XXXXXXXXX	XXXXXXXXXX

	Control Valve Linier Fail Closed			
TCV11	Diaphragm Control Valve Linier Fail Closed	xxxxxxxxxx	XXXXXXXXX	XXXXXXXXXX
SDV11	Solenoid Shutdown Valve	xxxxxxxxxx	XXXXXXXXX	XXXXXXXXX
SDV12	Solenoid Shutdown Valve	xxxxxxxxxx	XXXXXXXXX	XXXXXXXXX
SDV13	Solenoid Shutdown Valve	xxxxxxxxxx	XXXXXXXXX	XXXXXXXXX

//Gate valve for Control Valve Maintenance bypass and all check valve assume not defined.

//All model, specs, and serial number would be updated after further searching and research.

For Temperature inside tanks is following the Black Rules, which the heat transferred is equal to heat received multiplied by the tanks heat absorb efficiency. Assume that tank efficiency is 80%.

3- Process Control Narrative

As seen from P&ID and Process Variable Requirement, the process control would be derivate into 3 main process control

A. Tank Level Control

To maintain the Tanks level always on the optimum level and not over level nor under level, the tank level would be manipulated trough the hot fluid intake into the tanks.

Shown that the block diagram for the Tank Level Control could be accommodate 3 control strategy: Simple Feedback, Cascade Control, and Feedforward Control. User can choose what control strategy that want to be used for their operation later.

B. Product Temperature Control

To maintain the product temperature, agreed that the manipulated variable that need to control to achieve the desired product temperature is to manipulate cold water flowrate

The description is same with the level block diagram, refer above.

C. Product Flowrate Control

The product flowrate is just disturbances variable into other system, so no need any advanced control strategy, feedback only is enough.

4- Basic Process Control System Algorithm

After the Block Diagram is built, the program at PLC would be followed the block diagram before as the main references.

A. Level Indicating Controller (LIC) Function Block and Ladder

To make sure the algorithm work as simple feedback the program needs to follow the attached scheme:

//IMPORTANT: MAKE SURE THE MAIN PROGRAM BLOCK IS USING CYCLIC INTERUPT BLOCK TO MAKE PID FUNCTION WORKS! (Set time interrupt: 0.1 s)

// Set cyclic all FB to 0.3 is OK and set Cyclic for Cpu time to 0.1 s.

▼ Network 3: Level Control Valve Control Block

Control Valve Process to Control the Tanks Level

▼ Network 4: Subsidiary Function for Level Process

Subsidiary for Level Proses between LCV and Product FCV

▼ Network 6: Safety Block For Level Limit

Set Alarm Limit for LSH and LSL activate when Level at 90% and 10%

▼ Network 8: User Additional Feature

Put additional feature that user can use to easier the system operation

Nam	ne	Data type	Offset	Start value	Retain	Accessible f	Writa	Visible in	Setpoint	Supervision	Comment
41 ▼ :	Static										
40 •	User Setpoint	Int	0.0	30		✓	~	✓	✓		Setpoint Input fro
40 •	PID_Level_Setpoint	Real	2.0	0.0		✓	~	✓			Setpoint into PID
40 •	PID_Level_MV	Real	6.0	0.0		✓	~	✓			Output of PID Lev
40 •	PID_Level_M/Norm	Real	10.0	0.0		✓	~	✓			Output of PID Lev
41 •	PID_Level_MVInt	Int	14.0	0		✓	~	✓			Output of PID Lev
40 •	PID_Level_ManualSlct	Bool	16.0	false		✓	~	\checkmark			Switch for Activat
	PID_Level_InputMnlValue	Real	18.0	0.0		✓	✓	✓			User Input Value
40 •	PID_Level_ErrorAck	Bool	22.0	false		✓	✓	✓			Acknowledged Bu
41 •	PID_Level_PIDReset	Bool	22.1	false		✓	~	✓			Reset Button for F
40 •	PID_Level_ModesIctButton	Bool	22.2	true		✓	~	✓			Activate Mode Se
- I	PID_Level_ModeValue	Int	24.0	3		✓	✓	✓			Select Mode for P
40 •	PID_Level_Alarm_SVHigh	Bool	26.0	false		✓	✓	✓			Alarm from PID Le
40 •	PID_Level_Alarm_SVLow	Bool	26.1	false		✓	✓	✓			Alarm from PID Le
40 •	PID_Level_Alarm_PVhigh	Bool	26.2	false		✓	~	✓			Alarm from PID Le
40 •	PID_Level_Alarm_PVLow	Bool	26.3	false		✓	~	✓			Alarm from PID Le
40 •	PID_Level_ModeStatus	Int	28.0	0		✓	~	✓			Status Mode for F
40 •	PID_Level_ErrorStatus	Bool	30.0	false		✓	~	✓			Error Flag if PID B
40 •	PID_Level_ErrorBit	Real	32.0	0.0	Ē	<u></u>	~				Error Code if PID I
40 •	ControlValve Level Output	Real	36.0	0.0	Ē	✓	~	✓			Output of Level 0
40 •	ControlValve_Level_TravelMax	Bool	40.0	false	ā	$\overline{\square}$		<u>~</u>	Ā		Level Control Val
40 •	ControlValve_Level_TravelMin	Bool	40.1	false	Ē	<u></u>	<u>~</u>		Ē		Level Control Va
- I	Level Process Value	Real	42.0	50.0	Ē	<u></u>			Ē		Output from Leve
40 •	Level Process Reset	Bool	46.0	false	Ä				Ā		Reset The Level 6
40 •	Level_FlowarateAddRsIt	Real	48.0	0.0	ā	<u></u>		<u>~</u>	ā		Additional PV fro.
·	Level Flowrate Input	Real	52.0	0.0		$\overline{\square}$		<u></u>	Ē		Total net flowrate
40 •	CascadeCommand	Bool	56.0	false	ă		M		Ä		Command to act
	FeedforwardCmd	Bool	56.1	false	Ä			<u></u>	Ä		Command to act
- ·	LSH_Active	Bool	56.2	false	ñ			<u></u>	Ä		Alarm : Level Sw
- ·	LSH Warn	Bool	56.3	false	ă			<u> </u>	Ä		Alarm : Warning
- ·	LSL Active	Bool	56.4	false	ă		M		ă		Alarm : Level Sw
- ·	LSL Warn	Bool	56.5	false	Ä		M		Ä		Alarm : Warning
- ·	Trip_Reset	Bool	56.6	false	ñ		M		Ä		Alarm : Trip Com
a •	PB_User	Real	58.0	100.0	ă				Ä		User Input for Pro
a •	PB UserDiv	Real	62.0	0.0	– –	<u> </u>			Ä		User Input for Kp
40 •	Ti User	Real	66.0	104.7556	- ñ				Ä		User Input for Int
40 •	Td User	Real	70.0	0.0	Ä				Ä		User Input for De
a •	SimpleFeedback_Status	Bool	74.0	false	ň				Ä		Simple Feedback

//Make sure to turn off optimization at the DB, so we can fill the offset address for easier addressing at OPC

B. Temperature Indicating Controller (TIC) Function Block and Ladder

▼ Network 3: Temperature Control Valve 13 Control Block

Control Valve Process to Control the Product Temperature

▼ Network 4: Product Temperature Process Control Block

Process for Flowrate as Black Rules Formula

▼ Network 5: Safety Block For Temperature Limit

Set Alarm Limit for TSH and TSL activate when Level at 85 C and 20 C

Put additional feature that user can use to easier the system operation

//Make sure to turn off optimization at the DB, so we can fill the offset address for easier addressing at OPC

C. Flow Indicating Controller 11 (FIC11) Function Block and Ladder

▼ Block title: Flow Indicator Controller 11 (Hot Fluid)

Ladder and Block Program to control flowrate of Hot Fluid (Tank Input)

▼ Network 1: User Setpoint

User input their Setpoint for flowrate in L/s converted into Real Number for PID Setpoint (0-100)

▼ Network 2: Hot Fluid Flow PID Compact Block

PID Algorithm for Controlling the Flowrate of the Hot Fluid

Network 3: Hot Fluid Process Control Block Process for Flowrate as First Order System %DB14 %DB12.DBX60.6 "LSim_Hot Fluid Flow_DB" "General_Hot Fluid Flow_DB". Pump11_ %DB12.DBX60.2 "General_Hot Fluid Flow_DB". SDV11_Active %FB3 Running "LSim_Hot Fluid Flowrate" ENC 4 F ΕN FALSE calcParam status maxReached 14.51823 minReached %DB4.DBD36 "General_Tank Level_DB". 14.51587 Control Valve %DB1 2.DBD48 Level_Output "General_Hot input Fluid Flow_DB". "Flow11_ Process Value" 10.C tm Lag1 output 1.0 gain 0.3 cycle 100.0 100.0 maxOut 0.0 minOut %DB1 2.DBX60.0 "General_Hot Fluid Flow_DB". "Flow11 Process Reset* reset Network 4: Flowrate Process Conversion Control Block

Convert Process Flowrate from 0-100 % into 0-10 L/s

▼ Network 5: Pump Operational Control Block

Block for Controlling On/Off of the Pump and It's Safety Operation

▼ Network 6: Alarm Management Block

Control Block for Managing the Alarm Occured in the System

▼ Network 7: User Additional Feature

Put additional feature that user can use to easier the system operation

	eneral_Hot Fluid Flow_DB	Data type	Offset	Start value	Retain	Accessible f	Write	Visible in	Setnoint	Supervision	Comment		
1 40	▼ Static	Data type	Oliset	Start value	Netalli	Accessible I	vviita	VISIBLE III	Setpoint	Supervision	Comment		
	 User_Setpoint 	Real	0.0	2.5		✓		~	~		Setpoint Input from User		
	 User_Setpoint_Norm 	Real	4.0	0.0	Ä		✓		Ä		Setpoint Input from User Normalized		
	PID_Flow11_Setpoint	Real	8.0	0.0	Ä		✓		Ä		Setpoint into PID Hot Fluid Flowrate		
	PID_Flow11_MV	Real	12.0	0.0	Ä		✓		Ä		Output of PIDHot Fluid Flowrate (Manipulating.		
	PID_Flow11_M/Norm	Real	16.0	0.0	Ä	<u> </u>	A		- i		Output of PID Hot Fluid Flowrate (Manipulatin		
	PID_Flow11_MVInt	Int	20.0	0	Ä		✓		Ä		Output of PID Hot Fluid Flowrate (Manipulatin.		
	PID_Flow11_ManualSlct		22.0	false	Ä				- i		Switch for Activate Manual Mode		
	PID_Flow11_InputMnl		24.0	0.0	ă	<u> </u>			- i		User Input Value for Manual MV		
10 🕣		Bool	28.0	false	ă	<u> </u>			Ä		Acknowledged Button for Operator		
11 40		Bool	28.1	false	ă	<u> </u>			Ä		Reset Button for PID Compact		
12 🕣			28.2	true	Ä	<u> </u>			Ä		Activate Mode Selection for PID Operation		
13 🕣			30.0	3	Ä				Ä		Select Mode for PID Operation from 1-4		
14 🕣			32.0	false	Ä	<u> </u>	<u></u>		Ä		Alarm from PID Hot Fluid Flowrate if Setpoint i.		
15 🕣			32.1	false	Ä	<u> </u>	<u></u>		Ä		Alarm from PID Hot Fluid Flowrate if Setpoint i.		
16 🐠			32.2	false	Ä	<u> </u>	<u>~</u>		Ä		Alarm from PID Hot Fluid Flowrate if Process V.		
17 🕣			32.3	false	Ä	<u> </u>	~		ä		Alarm from PID Hot Fluid Flowrate if Process V.		
18 🕣			34.0	0	Ä	<u> </u>			Ä		Status Mode for PID Operation		
19 🕣			36.0	false	Ä	<u>~</u>	<u>~</u>		ä		Error Flag if PID Block is Occured		
20 🕣		Real	38.0	0.0	Ä	<u>~</u>	✓		Ä		Error Code if PID Block is Occured		
			42.0	0.0	Ä	<u>~</u>	✓		ä		Output of Hot Fluid Flowrate Control Valve		
21 🕣	_		46.0	false	ä	<u>~</u>	✓		ä				
22 🕣	_							<u>~</u>	ä		Product Hot Fluid Flowrate Control Valve Trav		
23 🕣	_		46.1	false		☑		✓			Product Hot Fluid Flowrate Control Valve Trav		
24 🕣	_	Real	48.0	0.0		<u>~</u>	✓				Output from Hot Fluid Flowrate Process		
25 🕣	_		52.0	0.0			✓				Output from Hot Fluid Flowrate Process Norm.		
26 🕣	_		56.0	0.0			✓				Output Status from Hot Fluid Flowrate		
27 🕣	_		60.0	false		<u>~</u>	∠				Reset The Hot Fluid Flowrate Process		
28 🕣		Bool	60.1	true		<u>~</u>	∠				Command to activate Hot Fluid Control Loop .		
29 🕣	_	Bool	60.2	false		<u>~</u>	<u>~</u>				Alarm : SDV11_Activate		
30 🕣		Bool	60.3	false		☑	$\overline{\mathbf{Q}}$	\blacksquare			Turn Off the Pump1-1 as Alarm Activate		
31 🕣		Bool	60.4	false		\blacksquare	$\overline{\mathbf{v}}$	\blacksquare			Turn off the Pump1-1		
32 🕣		Bool	60.5	false		\blacksquare	$\overline{\mathbf{Q}}$	\blacksquare			Turn On the Pump1-1		
33 🕣		Bool	60.6	true		$\overline{\mathbf{A}}$	$\overline{}$	$\overline{\mathbf{Z}}$			Pump1-1 Running Status		
34 🕣		Bool	60.7	false		✓	<u>~</u>	$\overline{\mathbf{W}}$			Pump1-1 Trip Status		
35 🕣		Bool	61.0	false		✓	~	$\overline{\mathbf{A}}$			Pump1-1 Trip Reset Command		
36 🕣	PSL11_Active	Bool	61.1	false		✓	~	~			Alarm : PSL Activate		
37 🕣	_	Bool	61.2	false		✓	~	$\overline{}$			Alarm : PSH Activate		
38 🕣	PSH11_Reset	Bool	61.3	false		✓	\checkmark	~			Reset Command of PSH11		
39 🕣	PB_User	Real	62.0	100.0		✓	~	~			User Input for Proportional Band		
40 🕣	PB_UserDiv	Real	66.0	0.0		✓	~	✓			User Input for Kp (Gain)		
41 🕣	I ■ Ti_User	Real	70.0	20.0		✓	~	✓			User Input for Integral Time		
12 4	Td User	Deal	74.0	0.0							User Input for Derivative Time		

//Make sure to turn off optimization at the DB, so we can fill the offset address for easier addressing at OPC

D. Flow Indicating Controller 12 (FIC12) Function Block and Ladder

▼ Network 1: User Setpoint

User input their Setpoint for flowrate in L/s converted into Real Number for PID Setpoint (0-100)

▼ Network 2: Coldt Fluid Flow PID Compact Block

PID Algorithm for Controlling the Flowrate of the Cold Fluid

▼ Network 4: Flowrate Process Conversion Control Block

Convert Process Flowrate from 0-100 % into 0-10 L/s

Network 5: Pump Operational Control Block Block for Controlling On/Off of the Pump and It's Safety Operation %DB15.DBX60.3 %DB15.DBX60.7 %DB15.DBX60.6 "General_Cold Fluid Flow_DB". Pump12_ TripStatus "General_Cold Fluid Flow_DB". Pump12_ CmdOffTrip %DB15.DBX60.4 %DB15.DBX60.5 "General_Cold "General_Cold Fluid Flow_DB". Pump12_CmdOff Fluid Flow_DB". Pump12_ "General_Cold Fluid Flow_DB". Running Pump12_CmdOn () %DB15.DBX60.6 "General_Cold Fluid Flow_DB". Pump12_ Running %DB15.DBX61.0 %DB15.DBX60.3 %DB15.DBX60.7 "General_Cold Fluid Flow_DB". Pump12_ TripReset "General_Cold Fluid Flow_DB". Pump12_ CmdOffTrip "General_Cold Fluid Flow_DB". Pump12_ TripStatus %DB15.DBX60.7 "General_Cold Fluid Flow_DB". Pump12_ TripStatus ╣ ├----%DB15.DBX60.6 "General_Cold %DB15.DBX61.1 Fluid Flow_DB". Pump12_ "General_Cold Fluid Flow DB" PSL12_Active Running

▼ Network 6: Alarm Management Block

Control Block for Managing the Alarm Occured in the System

//Make sure to turn off optimization at the DB, so we can fill the offset address for easier addressing at OPC

E. Flow Indicating Controller 13 (FIC13) Function Block and Ladder

▼ Block title: Flow Indicator Controller 13 (Product)

Ladder and Block Program to control flowrate of Product (Tank Output)

▼ Network 1: User Setpoint

User input their Setpoint for flowrate in L/s converted into Real Number for PID Setpoint (0-100)

▼ Network 2: Product Flow PID Compact Block

PID Algorithm for Controlling the Flowrate of the Product

▼ Network 3: Flow Control Valve 13 Control Block

Control Valve Process to Control the Product Flowrate

▼ Network 4: Product Flow 13 Process Control Block

Process for Flowrate as First Order System

▼ Network 5: Flowrate Process Conversion Control Block

Convert Process Flowrate from 0-100 % into 0-10 L/s

▼ Network 6: Pump Operational Control Block

Block for Controlling On/Off of the Pump and It's Safety Operation

Control Block for Managing the Alarm Occured in the System

//Make sure to turn off optimization at the DB, so we can fill the offset address for easier addressing at OPC

//PID Block need to be commissioned first in their Commissioning menu, before it can work.

//Make sure you already import / open the LSIM Library from Siemens. I'll try to attached it in this project. Otherwise, you can download it from Siemens Website for free

//Alarm Management Block is optional if you want to develop it or not

5- Operation & Control Narative

After doing the soft commissioning of the system, the System will always be booting the Process Value from 0. So, it will cause the Level Low Alarm Trip early and system can't boot.

That's why we turn off the Feedback system at start, and using Flow Control system both at Input and Output Instead.

- 1. When Controller Start, monitor the Tank Level minimum until 10%
- 2. After that, Turn Off the Flow Loop Command both at Level Control and Temperature Control.
- 3. So the system with condition:

Hot Fluid Flowrate : 2,5 L/s
Cold Fluid Flowrate : 1,7 L/s
Product Flowrate : 2 L/s

We already input the PID Parameter in Soft Commissioning, but if you have better parameter, please do it by yourself ©

Also, if you want to change the Process Value, please to change to cascade for more robust control after the control bump is finished.

Also, feedforward mode only can be activated if cascade control is active, because the control bump is very high when feedforward is active.

6- Safety Control Narrative

Safety Automation need to be considered after the basic control system scheme already established. The safety hazard in this system need to be defined first:

Equipment	Potential Hazard	Action Taken
Product Temperature	High Temperature	Maximize Cold Water
		Flow
		Minimize Hot Water Flow
	Low Temperature	Minimize Cold Water
		Flow
		Maximize Hot Water

		Flow
Atmospheric Tank	Overspill	Turn Off Cold Water Flow
		Turn Off Hot Water Flow
		Maximize Product
		Flowrate
	Under level	Maximize Hot Water
		Flow
		Turn Off Product Water
		Flow
Pipeline	High Pressure	Turn Off flowrate in
		pipeline
		Turn Off Pump

After Hazard analysis is defined, then the logic block diagram is needed to make a simple algorithm how the safety system works.

After the logic diagram had been made, it clearly shows what equipment and

device that need to be operated. The details can be tabulated in the SAFE Chart to be more precise.

Link to SAFE Chart

// For Github, refer to the repository itself

We try to just shutdown all the whole plant system if any of the safety system is turned on. The safety system scale is defined:

Hazard Status	Hazard Range	Delay Activation
Level High Trip	>= 95%	10 sec
Level High Warning	80-95%	-
Level Low Trip	<5 %	10 sec
Level Low Warning	5-20 %	-
Temp High Trip	> 85°C	10 sec
Temp High Warning	70-85 °C	-
Temp Low Trip	<= 20 °C	10 sec
Temp Low Warning	20-30 °C	-

Also, PSH Alarm would be occurred if the pump is on but the control valve in OFF Position for 10 sec.

For information, the device used for safety is already following the recommendation practice from API RP14 C Safety system for offshore production, 6 ed.

7- Server Configuration

Server used is using KepserverEX 6. For using it, you need to configure the Project at Connectivity tabs as shown:

Then, you need to configure the device in the project tab as shown:

Choose your controller driver (in here I use Siemens TCP/IP Ethernet) and input your Server PC IP Address. Then input the Tag one by one:

// Open Help in KepserverEX for detailing syntax + make sure offset in DB is OK.

Also make sure you already installed the Wonderware Intouch in the Server PC also, so the KepserverEX can recognized and automatically installed the Suitelink Protocol.

Rename the application name in the property editor window as you wish (default: server_runtime).

If you import the OPC Tags from me, the password is: DzakwanafifPLCS

//Complete with Alarm DB Log, DB Logger, and OPC UA After Siemens HMI Finished

After that, how to make your PLC Simulator virtual IP can be used as physical IP Address? you need to use NettoPLCSim. This item can make the virtual PLC IP Address to became the server PC IP Address (Open the software with Run with Administrator)

Input your PLC Name, choose your Network IP (Server PC IP Address), then your PLC IP Address, then choose your CPU Rack Number (I use 0/1 since I use S7-1500 CPU). After that click Start Server.

Communication between Server and Cloud is using Node-red as low programming tools developed by IBM, so it's open source and the library is always updated by billion of another user. The pre-requisite is:

- 1. Install Node-JS at your server PC
- 2. Install Node-red
- 3.Install Kep-server Library module

For communicating between OPC Server and Cloud we use OPC UA as Protocol. Check OPC UA Configuration to check your OPC UA host address provided by the server.

After that, download and use UA Expert (Free software) so you know every node address of every tag name we define at the server.

Then, develop the node red. It's flow-based programming so it's script less and easy to use. Input the Inject node, KepserverEX node, UI Node, and MQTT Publish/Subscribe Node. Input the NodeID at Inject node and OPC UA Server ID at KepserverEX node.

//I also provide MQTT publish node so another IoT or another Cloud Platform could subs the Data trough MQTT Protocol.

Finally, develop the UI and open the node-red UI for seeing the dashboard after you deploy the flow. If success, you can monitor using your smartphone also as long connected into the same network as the server.

8- HMI Client Configuration

To make sure the OPC Server - HMI can communicate we need to established the Access Names if HMI. Input as below:

Node Name : IP Address of Server PC

Application name : Application name inputted at OPC Server

Topic Name : ChannelName_DeviceName

Choose suitelink protocol since it's already built to made comms between OPC and Wonderware InTouch directly.

//Make sure you install wonderware intouch also at server pc to make sure the Suitelink installed also at Server PC

In this HMI, we input some alarm management system and Historian to see and log any critical event or alarm that occurred to make sure the troubleshooting easier as the alarm logged sequentially.

Then, operator need to input security logon to have the access into alarm reset

or management, control parameter changement, and diagnostic window.

Username : Supervisor Pass : Supervisor

Pustaka:

- 1- ANSI / ISA-5.1-1984 (R1992) Instrumentation Symbols and Identification
- 2- ANSI / ISA-5.5-1985 Graphics Symbols for Process Display
- 3- API MPMS Chapter-5 Metering
- 4- API RP554 1995 Process Instrumentation and Control
- 5- API RP14 C Safety system for offshore production, 6 ed
- 6- Bela G Liptak : Instrumentation Engineer's Handbook; Process Software and Digital Networks Vol 3-2
- 7- Lesson in Industrial Instrumentation, R Kuphaldt