Теория категорий Категориальная логика

Валерий Исаев

28 апреля 2017 г.

План лекции

Логика и теория типов

Интерпретация логических теорий Логика первого порядка Интерпретация Корректность интерпретации

Логика, теория типов и теория категорий

Logic	Type theory	Category
algebraic	T + x	Cartesian
	$T + \times + \rightarrow$	Cartesian closed
essentially algebraic	$\top + \Sigma + Id$	finitely complete
	$\top + \Sigma + Id + \Pi$	LCC
regular ($=$, \land , \top , \exists)	$\top + \Sigma + Id + \ - \ $	regular
coherent (reg, \perp , \vee)	$reg + 0 + \vee$	coherent
first order (coh, $ ightarrow$, $orall$)	$\cosh + \forall + implications$	Heyting
higher order	$\mid \top + \Sigma + Id + \rightarrow + Prop$	elementary topos

Замечания

- ▶ Пусть T теория типов из второго столбца. Тогда существуют эквивалентности категорий T-**Mod** $\simeq C \simeq L$, где C категория категорий из третьего столбца, а L категория теорий из первого.
- Все теории в первом столбце мультисортные.
- Теории в столбце Logic перечеислены в порядке возрастания числа логчиеских связок в них; каждая последующая строчка включает предыдущую.
- Все теории типов, начиная с третьей строчки, включают аксиому К.
- ▶ LCC это локльно декартово замкнутые категории, то есть такие категории \mathbf{C} , что для любого объекта X категория \mathbf{C}/X декартово замкнута.

Замечания

- ▶ reg и coh это теории, соответствующие строчкам regular и coherent соответственно.
- quotients это фактор-типы, которые являются частным случаем HITs для множеств.
- implications это частный случай типа функций, который определен только для утверждений.
- ightharpoonup
 ig
- ▶ Prop включает пропозициональную экстенсиональность.
- ▶ Последняя строчка включает все предыдущие, даже те, для которых нет записи в первом столбце.

Интерпретации теорий

- ▶ Мы уже видели как проинтерпретировать $\top + \times$ в декартовой категории, а $\top + \times + \to$ в декартово замкнутой категории.
- Мы (почти) увидим как каждую из теорий типов проинтерпретировать в соответствующей категории.
- ▶ Для любой логической теории можно определить понятие модели в Set. Это обычное понятие модели.
- Но можно определить модели теории и в других категориях, если они удовлетворяют определенным условиям.
- Конкретно, для любой теории из первого столбца можно определить категорию моделей в любой категории, удовлетворяющей соответствующему условию из третьего.

Модели теорий

- Например, мы можем определить категории моноидов, групп, колец, и так далее в любой декартовой категории.
- ▶ Так как аксиомы полей используют \bot , ∃ и \lor , то поля можно определить в любой когерентной категории.
- ▶ Если отождествить логическую теорию с соответствующей ей категорией C, то модели C в категории D это просто функторы $C \to D$, которые сохраняют дополнительную структуру из той строчки таблицы, в которой находятся C и D.

План лекции

Логика и теория типов

Интерпретация логических теорий Логика первого порядка Интерпретация Корректность интерпретации

Сигнатуры логики первого порядка

 $\mathit{Curнatypa}\; \Sigma = (\mathcal{S}, \mathcal{F}, \mathcal{P})$ логики первого порядка состоит из:

- ightharpoonup Множества \mathcal{S} , называемого множеством *сортов*.
- ▶ Множества \mathcal{F} , называемого множеством функциональных символов. Каждому функциональному символу $f \in \mathcal{F}$ приписана сигнатура вида $f: s_1 \times \ldots \times s_n \to s$, где $s_1, \ldots s_n, s \in \mathcal{S}$.
- ▶ Множества \mathcal{P} , называемого множеством предикатных символов. Каждому предикатному символу $R \in \mathcal{P}$ приписана сигнатура вида $R: s_1 \times \ldots \times s_n$, где $s_1, \ldots s_n \in \mathcal{S}$.

Термы логики первого порядка

Для каждого сорта $s \in \mathcal{S}$ выбирается счетное множество переменных V_s . Теперь мы можем определить множество $Term_{\Sigma}(V)_s$ термов сорта s индуктивным образом:

- ▶ Если $x \in V_s$, то $x \in \mathit{Term}_{\Sigma}(V)_s$.
- ▶ Если $a_i \in \mathit{Term}_{\Sigma}(V)_{s_i}$ и $(f: s_1 \times \ldots \times s_n \to s) \in \mathcal{F}$, то $f(a_1, \ldots a_n) \in \mathit{Term}_{\Sigma}(V)_s$.

Конструкцию термов можно доопределить до функтора $Term_{\Sigma}: \mathbf{Set}^{\mathcal{S}} \to \mathbf{Set}^{\mathcal{S}}$. Более того, на этом функторе существует естественная структура монады. Упражнение: определите эту структуру.

Формулы логики первого порядка

Пусть, как и раньше, $V \in \mathbf{Set}^{\mathcal{S}}$. Теперь мы определим множество $Form_{\Sigma}(V)$ формул индуктивным образом:

- ▶ Если $a_i \in Term_{\Sigma}(V)_{s_i}$ и $(R: s_1 \times \ldots \times s_n) \in \mathcal{P}$, то $R(a_1, \ldots a_n) \in Form_{\Sigma}(V)$. Формулы такого вида называются *атомарными*.
- ▶ \bot , \top ∈ Form $_{\Sigma}(V)$.
- ▶ Если $\varphi \in Form_{\Sigma}(V)$, то $\neg \varphi \in Form_{\Sigma}(V)$.
- ▶ Если $\varphi, \psi \in Form_{\Sigma}(V)$, то $\varphi \land \psi, \varphi \lor \psi, \varphi \to \psi \in Form_{\Sigma}(V)$.
- ▶ Если $\varphi \in Form_{\Sigma}(V \cup \{x : s\})$, то $\forall (x : s)\varphi, \exists (x : s)\varphi \in Form_{\Sigma}(V)$.

Теории логики первого порядка

- ▶ Теория логики первого порядка состоит из сигнатуры Σ и множества аксиом вида $\varphi \longmapsto \psi$.
- Когда мы рассматриваем логики, более слабые, чем первого порядка, то мы можем ограничить формулы и/или секвенции, которые можно использовать.
- ▶ О секвенции $\varphi \longmapsto \psi$ можно думать как о формуле $\forall x_1 \dots x_n \ (\varphi \to \psi)$.
- Если в логике есть импликация, то секвенции можно заменить одной формулой.
- ▶ Если в логике еще есть квантор всеобщности, то можно считать, что эта формула замкнута.
- ► Таким образом, теории в логике первого порядка обычно определяют как множество замкнутых формул.

00000000

Интерпретация сигнатуры

Пусть C – декартова категория. Тогда интерпретация сигнатуры $(S, \mathcal{F}, \mathcal{P})$ в C состоит из следующих данных:

- ▶ Функция $\llbracket \rrbracket : \mathcal{S} \to \mathit{Ob}(\mathbf{C})$.
- ▶ Функция $[\![-]\!]$, сопоставляющая каждому $(\sigma: s_1 \times \ldots \times s_n \to s) \in \mathcal{F}$ морфизм $[\![\sigma]\!]: [\![s_1]\!] \times \ldots \times [\![s_n]\!] \to [\![s]\!].$
- lackbox Функция $[\![-]\!]$, сопоставляющая каждому $(R:s_1 imes\ldots imes s_n)\in\mathcal{P}$ мономорфизм $[\![R]\!]:d_R o [\![s_1]\!] imes\ldots imes [\![s_n]\!].$

Интерпретация термов

Пусть ${\bf C}$ — декартова категория и $[\![-]\!]$ — некоторая интерпретация сигнатуры $(\mathcal{S},\mathcal{F},\mathcal{P})$. Если t — терм этой сигнатуры сорта s со свободными переменными в $\{x_1:s_1,\ldots x_n:s_n\}$, то мы можем определить его интерпретацию $[\![t]\!]:[\![s_1]\!]\times\ldots\times[\![s_n]\!]\to[\![s]\!]$ следующим образом:

- $\qquad \qquad \llbracket \sigma(t_1,\ldots t_n)\rrbracket = \llbracket \sigma\rrbracket \circ \langle \llbracket t_1 \rrbracket,\ldots \llbracket t_n \rrbracket \rangle.$

Модели алгебраических теорий

- ightharpoonup Пусть \mathcal{A} алгебраическая теория, то есть множество аксиом вида $t_1=t_2$.
- ightharpoonup Тогда модель этой теории в декартовой категории $m {f C}$ это интерпретация сигнатуры теории, такая что для любой аксиомы $t_1=t_2$ верно $[\![t_1]\!]=[\![t_2]\!].$

Интерпретация формул в **Set**

- ▶ Прежде чем описать интерпретацию формул в произвольной конечно полной категории, вспомним как она описывается в Set.
- В Set формулы интерпретируются как подмножества.
- ▶ Пусть $\llbracket \rrbracket$ сопоставляет каждому $(R: s_1 \times \ldots \times s_n) \in \mathcal{S}$ подмножество множества $\llbracket s_1 \rrbracket \times \ldots \times \llbracket s_n \rrbracket$.
- ▶ Пусть $V = x_1 : s_1, \dots x_k : s_k$ упорядоченное множество переменных. Тогда функция интерпретации $\llbracket \rrbracket$ сопостовляет каждой формуле из $Form_{\Sigma}(V)$ подмножество множества $\llbracket s_1 \rrbracket \times \dots \times \llbracket s_k \rrbracket$.

Интерпретация

Интерпретация формул в **Set**

- ▶ [T] всё множество.
- ▶ $\llbracket \neg \varphi \rrbracket$ дополнение подмножества $\llbracket \varphi \rrbracket$.
- $\blacktriangleright \llbracket \varphi \wedge \psi \rrbracket = \llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket.$
- $\blacktriangleright \llbracket \varphi \lor \psi \rrbracket = \llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket.$
- Упражнение: опишите интерпретацию импликации, кванторов и равенства.

Истинность формул в Set

- ▶ Интерпретация замкнутой формулы это подмножество одноэлементного множества.
- Следовательно, либо одноэлементное множество, либо пустое.
- В первом случае говорят, что эта формула истинна в этой интерпретации, во втором, что она ложна.

Интерпретация формул в конечно полной категории

- ▶ Пусть C конечно полная категория.
- ▶ Тогда формулы со свободными переменными в V интерпретируются как подобъекты $\llbracket V \rrbracket$.
- ▶ Если $[\![t_1]\!], [\![t_2]\!]: [\![s_1]\!] \times \ldots \times [\![s_n]\!] \to [\![s]\!],$ то формула $t_1 = t_2$ интерпретируется как уравнитель $[\![t_1]\!]$ и $[\![t_2]\!].$
- lacktriangle Формула $arphi=R(t_1,\dots t_k)$ интерпретируется как пулбэк $[\![R]\!]$:

$$d_{\varphi} \xrightarrow{\qquad} d_{R}$$

$$\downarrow \qquad \qquad \qquad \downarrow \\ \llbracket V \rrbracket \xrightarrow{\langle \llbracket t_{1} \rrbracket, \dots, \llbracket t_{k} \rrbracket \rangle} \llbracket s_{1} \rrbracket \times \dots \times \llbracket s_{k} \rrbracket$$

Истинность секвенций

- ▶ Мы будем говорить, что секвенция $\varphi \longmapsto \psi$ истина в некоторой интерпретации $[\![-]\!]$, если подобъект $[\![\varphi]\!]$ является подобъектом $[\![\psi]\!]$.
- ▶ Модель некоторой теории логики первого порядка это интерпретация, такая что все аксиомы в ней истины.

Интерпретация

Интерпретация ⊤ и ∧

- Т интерпретируется как максимальный объект.
- ▶ Наибольший подобъект объекта X это id_X .
- lacktriangledown $\varphi \wedge \psi$ интерпретируется как пересечение подобъектов $[\![\varphi]\!]$ и $[\![\psi]\!].$

Корректность Т

- Разумеется мы хотим, чтобы интерпретация уважала правила вывода.
- Правило вывода для Т:

$$\varphi \longmapsto \top$$

• Чтобы доказать, что эта аксиома всегда корректна, нужно проверить, что для любой подобъект $d_{\varphi} \hookrightarrow V$ является подобъектом $[\![\top]\!] = id_V : V \hookrightarrow V$, что очевидно.

Корректность Л

Правила вывода для

$$\frac{\varphi \longmapsto \psi \qquad \varphi \longmapsto \chi}{\varphi \longmapsto \psi \land \chi} \\
\underline{\varphi \longmapsto \psi \land \chi} \qquad \underline{\varphi \longmapsto \psi \land \chi} \\
\underline{\varphi \longmapsto \psi} \qquad \underline{\varphi \longmapsto \chi}$$

▶ Эти правила уважаются, так как по определению пулбэков стрелка $[\![\varphi]\!] \to [\![\psi]\!] \cap [\![\chi]\!]$ существует тогда и только тогда, когда существуют стрелки $[\![\varphi]\!] \to [\![\psi]\!]$ и $[\![\varphi]\!] \to [\![\chi]\!]$.

Интерпретация ∃

- ▶ Теории, в которых формулы состоят только из равенств, конъюнкций, \top и \exists называются *регулярными*.
- Мы не можем проинтерпретировать ∃ в произвольной конечно полной категории.
- Категории, где можно это сделать, называются регулярными.
- Формальное определение будет дано ниже.

Интерпретация ∃ в **Set**

- ▶ Пусть $\llbracket \varphi(x, x_1, \dots x_n) \rrbracket : d_{\varphi} \hookrightarrow \llbracket s \rrbracket \times \llbracket s_1 \rrbracket \times \dots \times \llbracket s_n \rrbracket.$
- ▶ Как проинтерпретировать $\exists (x:s)(\varphi(x,x_1\ldots x_n))?$
- ▶ Если рассмотреть $\pi_{1,...n} \circ \llbracket \varphi \rrbracket : d_{\varphi} \to \llbracket s_1 \rrbracket \times \ldots \times \llbracket s_n \rrbracket$, то это почти дает нам интерпретацию $\exists (x:s)(\varphi(x,x_1,\ldots x_n))$, так как прообраз некоторого элемента $(a_1,\ldots a_n)$ населен тогда и только тогда, когда существует $a \in \llbracket s \rrbracket$, такой что $(a,a_1,\ldots a_n) \in \llbracket \varphi \rrbracket$.
- ▶ Единственная проблема заключается в том, что $\pi_{1,...n} \circ \llbracket \varphi \rrbracket$ не является мономорфизмом.
- ▶ Мы можем решить эту проблему, определив интерпретацию $\exists (x:s)(\varphi(x,x_1,\ldots x_n))$ как образ $\pi_{1,\ldots n} \circ \llbracket \varphi \rrbracket$.

Образ морфизма

- Мы можем обобщить понятие образа функции на произвольную категорию.
- ▶ *Образ* морфизма $f: A \to B$ это наименьший мономорфизм $imf \hookrightarrow B$, через который f факторизуется.
- ▶ Другими словами, существует стрелка $A \to im f$, такая что для любых стрелок $g: A \to C$ и $h: C \hookrightarrow B$ если $h \circ g = f$, то im f является подобъектом C:

Интерпретация существования

- В произвольной категории образ может не существовать, но он уникален, если существует.
- Если предположить, что в категории существуют образы, то можно попробовать проинтерпретировать существование так же как и в Set.
- ▶ Если $\llbracket \varphi(x, x_1, \dots x_n) \rrbracket : d_{\varphi} \hookrightarrow \llbracket s \rrbracket \times \llbracket s_1 \rrbracket \times \dots \times \llbracket s_n \rrbracket$, то мы определяем $\llbracket \exists (x:s) \varphi \rrbracket$ как образ $\pi_{1,\dots n} \circ \llbracket \varphi \rrbracket$.

Интерпретация подстановки

- Так как правила вывода для существования используют подстановку, нам нужно знать как она интерпретируется, чтобы проверить эти правила.
- ▶ Утверждене: если φ формула со свободными переменными в $\{x_1:s_1,\dots x_n:s_n\}$ и $t_1,\dots t_n$ термы сортов $s_1,\dots s_n$, то $\llbracket \varphi[x_1:=t_1,\dots x_n:=t_n] \rrbracket$ является пулбэком d_{φ} :

$$d_{\varphi[x_1:=t_1,...x_n:=t_n]} \xrightarrow{} d_{\varphi}$$

$$\llbracket \varphi[x_1:=t_1,...x_n:=t_n] \rrbracket \bigvee_{q \in [t_1,...t_n]} \bigvee_{q \in [t_1,...t_n]} \Vert \varphi \Vert$$

$$V \xrightarrow{\langle t_1,...t_n \rangle} \llbracket s_1 \rrbracket \times ... \times \llbracket s_n \rrbracket$$

Интерпретация подстановки

- lacktriangle Доказывать это утверждение мы будем индукцией по arphi.
- Для ⊤ это очевидно, так как пулбэк тождественного морфизма − тождественный морфизм.
- ▶ Проверим для равенства. Пусть $[\![t]\!], [\![t']\!] : [\![s_1]\!] \times \ldots \times [\![s_n]\!] \to [\![s']\!]$ и $[\![t_i]\!] : V \to [\![s_i]\!]$. Тогда нужно показать, что морфизм $E \to V$ в диаргамме ниже является уровнителем $[\![t]\!] \circ \langle [\![t_1]\!], \ldots [\![t_n]\!] \rangle$ и $[\![t']\!] \circ \langle [\![t_1]\!], \ldots [\![t_n]\!] \rangle$, что легко сделать, используя универсальное свойство пулбэков.

$$E \xrightarrow{\longrightarrow} d_{t=t'}$$

$$\downarrow V \xrightarrow{\left\langle \llbracket t_1 \rrbracket, \dots \llbracket t_n \rrbracket \right\rangle} F \llbracket s_1 \rrbracket \times \dots \times \llbracket s_n \rrbracket \xrightarrow{\left[\llbracket t \rrbracket \right]} F \llbracket s' \rrbracket$$

Интерпретация подстановки в \exists

- Даже если в категории существуют образы всех морфизмов, они могут не коммутировать с пулбэками.
- Категория называется регулярной, если у всех морфизмов существуют образы, и они стабильны относительно пулбэков.
- Таким образом, в любой регулярной категории подстановка действительно интерпретируется как пулбэк.

Корректность интерпретации \exists

Правила вывода для ∃:

$$\frac{\exists (x:s)\varphi \longmapsto \psi}{\varphi \longmapsto \psi} \qquad \frac{\varphi \longmapsto \psi}{\exists (x:s)\varphi \longmapsto \psi}$$

- Обратите внимание, что ψ определен в контексте $x_1, \ldots x_n$, но используется также и в контексте $x_1, \ldots x_n, x$. По лемме об интерпретации подстановки ψ во втором контексте интерпретируется как пулбэк.
- Используя этот факт, легко показать, что данные правила корректны.