S6-ESE-AI

MODELS

JEROEN VEEN HUGO ARENDS

WORKFLOW

AGENDA

- Classification
- K nearest neighbors (KNN)
- Support vector machine (SVM)
- Decision tree
- Ensemble learning
- Model design

BINARY CLASSIFICATION

• Sample falls in either of 2 classes

Source: Basler, Artificial Intelligence in Image Processing

Source: Mathworks, Applying Supervised Learning

MULTI-CLASS CLASSIFICATION

• Sample falls in either of 3 or more classes

CLASSIFICATION PERFORMANCE

Confusion matrix

K NEAREST NEIGHBORS (KNN)

- Instance-based classification
- The simplest classifier
- Categorizes objects based on the classes of their nearest neighbors
- No training required
- Intuitive
- Benchmark

Source: Mathworks, Applying Supervised Learning

"Tell me who your neighbors are, and I'll tell you who you are"

LINEAR SEPARATION

- Model-based classification
- Finding the linear decision boundary that separates all data points of one class from those of the other class.

Source: Mathworks, Applying Supervised Learning

SUPPORT VECTOR MACHINE (SVM)

- Binary classifier
- Simple and easy to interpret

DECISION TREE

- Predict responses to data by following the decisions in the tree from the down to a leaf node.
- Easy to interpret
- White box model
- Fast to fit
- Minimize memory usage

Source: Mathworks, Applying Supervised Learning

MAKING PREDICTIONS

Source: Géron, ISBN: 9781492032632

DECISION TREE BOUNDARIES

white box models

Source: Géron, ISBN: 9781492032632

DISADVANTAGES OF DECISION TREES

- Trees become biased if some classes dominate
 - -> balance dataset before fitting
- Trees are prone to overfitting
 - -> use feature selection, pruning, set max depth, set min samples per leaf
- Trees can be unstable
 - -> use ensemble learning, or random forest
- Trees cannot learn all problems
 - -> sometimes other models perform better or more efficient

GENERALIZATION, UNDERFITTING AND OVERFITTING

TIPS

- Visualize your tree as you are training.
- Follow the decision path of samples of interest.
- Use max_depth to control the size of the tree to prevent overfitting.
- Use min_samples_split or min_samples_leaf to ensure that multiple samples inform every decision in the tree.
- Optionally apply exhaustive or randomized hyperparameter search
- Optionally apply post pruning based on cost complexity

SPLITTING DATA

Slice data into three subsets: Training, validation and test data

- Make sure that your subsets meet the following conditions:
 - Large enough to yield statistically meaningful results.
 - Representative of the data set as a whole.
 - E.g. don't pick a test set with different characteristics than the training set.

TRAINING, VALIDATION, TESTING

Never train on test data!

ENSEMBLE LEARNING

- Wisdom of the crowd
- Group of predictors
- Random forest

• Several "weaker" decision trees are combined into a "stronger" ensemble

HARD VOTING CLASSIFIER

Majority-vote can be strong given sufficient diversity

BAGGING PREDICTORS

• Trees are trained independently on bootstrapped data

BOOSTING

 Sequentially adding predictors to an ensemble, each one correcting its predecessor

Source: Géron, ISBN: 9781492032632

Input Process Output

./data/preprocessed/features/_ <label_1>.csv

./data/preprocessed/features/

./model_building/build_dtc.py

./data/model/dtc_model.txt

./data/model/dtc_model.gz

./data/model/dtc_train_bunch.csv

./data/model/dtc_test_bunch.csv

./data/model/*.png

HAN_UNIVERSITY
OF APPLIED SCIENCES

./data/model/dtc_train_bunch.csv

```
label,timestamp1,timestamp2,x_out_fir_rescale_variance,y_out_fir_rescale_variance,z_out_fir_rescale_variance
left_right,,,0.08061651885509491,0.0011965184239670634,2.7622331799648236e-06
up_down,,,0.0010762271704152226,0.08740243315696716,8.584440365666524e-06
up_down,,,0.0014844088582322001,0.06616755574941635,7.747937161184382e-06
up_down,,,0.0265665240585804,0.059358175843954086,0.03963468596339226
stationary,,,6.266510155228389e-08,1.3307550261743017e-07,1.228962958066404e-07
stationary,,,9.401501444017413e-08,1.4411538984404615e-07,1.432363490039279e-07
up_down,,,0.002021343447268009,0.07682900130748749,6.288621989369858e-06
stationary,,,0.025755632668733597,1.0166539254896634e-07,0.025553688406944275
stationary,,,7.35720533384665e-08,8.371668513973418e-08,8.276586527244945e-08
left_right,,,0.10078003257513046,0.0047892015427351,4.227960744174197e-06
up_down,,,0.0024098153226077557,0.0726759135723114,7.771175660309382e-06
```


./data/model/dtc_test_bunch.csv

```
label,timestamp1,timestamp2,x_out_fir_rescale_variance,y_out_fir_rescale_variance,z_out_fir_rescale_variance stationary,,,1.1347064798883366e-07,1.2575644348089554e-07,1.2267376803265506e-07 left_right,,,0.08403727412223816,0.0015222649089992046,2.3235679691424593e-06 up_down,,,0.0018794061616063118,0.07356412708759308,5.5476843954238575e-06 stationary,,,4.993831126398618e-08,7.614894315111087e-08,1.7571814225902926e-07 stationary,,,5.802025526691068e-08,5.29892894007844e-08,1.366340285358092e-07
```


Dump of the Python object containing the trained Decision Tree Classifier model

./data/model/dtc_model.txt

Decision tree plot

./data/model/dtc_model.txt

Training report:

	support	f1-score	recall	precision	
Training report	7	1.00	1.00	1.00	left_right
riaining report	8	1.00	1.00	1.00	stationary
	7	1.00	1.00	1.00	up_down
	22	1.00			accuracy
	22	1.00	1.00	1.00	macro avg
	22	1.00	1.00	1.00	weighted avg

Training accuracy scores (cross-validated over 5 splits): 1.0 0.8 1.0 1.0 1.0 Average training accuracy: 0.9600 +/- 0.0800

OF APPLIED SCIENCES

./data/model/dtc_model.txt

Test repor	ť	•
------------	---	---

	precision	recall	f1-score	support	
	pi ccision	I CCUII	11 30010	suppor c	
left_right	1.00	1.00	1.00	3	Test rep
stationary	1.00	1.00	1.00	2	τε δι τερ
up_down	1.00	1.00	1.00	3	
			1 00	9	
accuracy			1.00	8	
macro avg	1.00	1.00	1.00	8	
weighted avg	1.00	1.00	1.00	8	

Test accuracy score: 1.0000

./data/model/dtc_model.txt

Confusion matrix

tree
confusion_matrix
decision_surfaces

