

Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

2023.10.12

Contribution & Motivation

- ① Epipolar Spatio-Temporal Transformer: 传播时间相干性以执行多个帧的联合深度估计,使估计的深度图在时间上更加相干。(直接把MVSNet那一套搬到视频会有伪影。)
- ②实现成本正则化的混合网络,它由两个专家网络组成,分别学习 3D 局部匹配信息和 2D 全局上下文信息。

第一个解决了:粗分辨率下的误差难以恢复,容易遗漏快速移动的小物体,多级级联训练通常需要多次训练迭代(通常超过 **100** 万次)

相比之下,我们的更新算子只有 2.7M 个参数,在 inference 过程中可以执行 100 多次而不会出现divergence。

_

Approach: Overview of network

Approach: Hybrid (3D matching + 2D context) cost volume generation DIG

- 1. feature extractor: Spatial Pyramid Pooling
- 2. raw matching volume: source--- warp --->refernce, 2C(concatenate)*D(depth)*H*W*N(2)
- 3. MatchNet: 3 * 3d conv -> view average pool -> N * 3d conv -> C*D*H*W
- 4. ContextNet: 3 images--- Resnet-50 ----> C'(==D)*H*W --(+reg)-> (C+1)*D*H*W
- 5. Hybird Cost Volume: 每一个都包含matching 和 context

我们观察到全局上下文信息本质上是2D信息? 然后这里的每个

.

Approach: Epipolar Spatio-Temporal transformer

1. Consistency Constraint: 对于世界空间中的 3D 点,其对应的体积 Ct-1、Ct、Ct+1 的体素应保持相似的嵌入向量。Cwarp t-1、Cwarp t+1 和 Ct 应在重叠区域的体素中包含相似的特征。

2. EST Transformer: 每次把其中一个当成Query, Ct -> Query, Ct-1 & Ct+1 -> Volume

(Query, Volume) -- two identical conv ---> (K, V)

 $xi \in R1 \times 1 \times D \times H \times W$ 衡量查询与第 i 个内存卷的扭曲密钥的相似度,N 是内存卷的数量,

内积。

w, $r \in D \times H \times W$ are two learned weight volumes which measure the reliability of the retrieved values

Q*K*V

self-attition的变体少做了一个correlation,把Vq通过后Fusion的形式融入

我们将混合成本量、转换成本量和两阶

段 RefineNet 的四种类型的深度图表示为 Ds,s=0,1,2,3。i是指target image。
$$loss=\frac{1}{N}\sum_{s=0}^{3}\sum_{i=1}^{N}\lambda^{s-3}\left\|\mathbf{D}_{s}^{i}-\hat{\mathbf{D}}_{s}^{i}\right\|_{1}$$

我们从存储过去N帧的键和值对的存储空间中检索相关值

混合成本量

权重为什么是1.95 1.56 1.25 1?

ESTM就是用前两帧,

Experiment

Dongo	Method			ScanNet					7scenes	}	
Range	Memou	Abs Rel	Abs	Sq Rel	RMSE	$\sigma < 1.25$	Abs Rel	Abs	Sq Rel	RMSE	$\sigma < 1.25$
	MVDepth [32]	0.1167	0.2301	0.0596	0.3236	84.53	0.2213	0.4055	0.2401	0.5154	67.33
	MVDepth-FT	0.1116	0.2087	0.0763	0.3143	88.04	0.1905	0.3304	0.1319	0.4260	71.93
	DPS [17]	0.1200	0.2104	0.0688	0.3139	86.40	0.1963	0.3471	0.1970	0.4625	72.51
	DPS-FT	0.0986	0.1998	0.0459	0.2840	88.80	0.1675	0.2970	0.1071	0.3905	76.03
10m	NAS [20]	0.0941	0.1928	0.0417	0.2703	90.09	0.1631	0.2885	0.1023	0.3791	77.12
	CNM [23]	0.1102	0.2129	0.0513	0.3032	86.88	0.1602	0.2751	0.0819	0.3602	76.81
	DELTAS [30]	0.0915	0.1710	0.0327	0.2390	91.47	0.1548	0.2671	0.0889	0.3541	79.66
	Ours-EST(concat)	0.0818	0.1536	0.0301	0.2234	92.99	0.1458	0.2554	0.0745	0.3436	79.82
	Ours-EST(adaptive)	0.0812	0.1505	0.0298	0.2199	93.13	0.1465	0.2528	0.0729	0.3382	80.36
	Neuralrgbd [21]	0.1013	0.1657	0.0502	0.2500	91.60	0.2334	0.4060	0.2163	0.5358	68.03
5m	Ours-EST(concat)	0.0811	0.1469	0.0279	0.2066	93.19	0.1458	0.2554	0.0745	0.3435	79.82
	Ours-EST(adaptive)	0.0805	0.1438	0.0275	0.2029	93.33	0.1465	0.2528	0.0729	0.3382	80.36

Table 3. Memory and computation complexity analysis.

Model	Params	MACs	Memory	Time
DPS [17]	4.2M	442.7G	1595M	337ms
NAS [20]	18.0M	527.7M	1689G	212ms
Neuralrgbd [21]	5.3M	616.6G	2027M	195ms
DELTAS [30]	124.6M	98.6G	2395M	495ms
Ours-ESTM	36.2M	176.9G	1799M	71ms

时间一致性:估计深度图的平均绝对误差的标准差进行评估,然后给了张定性的图片。

Ablation

		lation											
Cont.	Trans.	Inference type Independent	Abs Sq Rel 0.3333 0.0994	RMSE 0.4897	$\sigma < 1.25$ 80.89	Memory		Abs Rel	Abs	Sq Rel	RMSE	$\sigma < 1.25$	
X	1	Joint	0.3429 0.1291	0.4927	81.36	1		0.1530	0.2632	0.783	0.3494	79.07	
X	1	ESTM	0.3319 0.1073	0.4822	81.43	2	9	0.1465	0.2528	0.0729	0.3382	80.36	
1	X	Independent	0.3220 0.0897	0.4657	82.82			0.1460	0.2520	0.0727	0.3376	80.44	
1	V	Joint	0.3133 0.0883	0.4556	83.52	4		0.1461	0.2521	0.0728	0.3377	80.44	
✓.	√	ESTM	0.3137 0.0884	0.4554	83.43			0.1701	0.2321	0.0726	0.5511	00.44	
_	epth / eval_l	nybrid_seq.sh 🖒						val_hybrid.sh	- ///			_	
Co	1 pytho		eq_len 5summary_freq 10	ndepths 64 \			1 2	python eval_hybri loadckpt ./chec	kpoint/model_0000	n 5summary_freq			
	3dat	dckpt ./checkpoint/model apath /userhome/35/xxlon	g/dataset/scannet_test \				<pre>3datapath /userhome/35/xxlong/dataset/scannet_test/ \ 4evalpath ~/workplace/EST/output/hybrid_EST_V4_ndepths64 \</pre>						
			tput/hybrid_EST_V4_ndepths64 it/test_split.txtIF_EST_tr		\		5	testlist ./data	/scannet_split/te	est_split.txt \			
	6dep	th_min 0.1depth_max 10	0save_init_prob Falses	ave_refined_pro	ob False			depth_min 0.1	-depth_max 10. \ Falsesave_refi	ned_prob False \			
✓ R	esNet-1		asave_init_prob Falses Independer		253 0.32	213 0.0873	7 8	depth_min 0.1 - save_init_prob	-depth_max 10. \ Falsesave_refi annet	3.31	95.91	98.49	
	500, 5190A	8 ×		nt 0.1	3366 35094 4509		7 8 9	depth_min 0.1 - save_init_prob eval_dataset so	-depth_max 10. \ Falsesave_refiannet	* 1 tt 4	95.91 95.58	98.49 98.25	
✓ R	esNet-18	8 × × ×	Independer	nt 0.1	253 0.32	180 0.0933	0.4623	depth_min 0.1save_init_probeval_dataset so 0.175	-depth_max 10. \ Falsesave_refi annet 59 8 88	3.31			
✓ R	esNet-18	8 X 8 X 8 X	Independer Joint	ot 0.1 0.1 0.1	253 0.32 269 0.31	180 0.0933 160 0.0897	0.4623 0.4605	depth_min 0.1save_init_probeval_dataset so 0.175	-depth_max 10. \ Falsesave_refi annet 59 8 58 8 56 8	3.31	95.58	98.25	
✓ R	esNet-18 esNet-18 esNet-18	8	Independer Joint ESTM	0.1 0.1 0.1 at 0.1	253 0.32 269 0.31 262 0.31	180 0.0933 160 0.0897 220 0.0897	0.4623 0.4605 0.4580	O.175 0.175 0.175	-depth_max 10. \ Falsesave_refi annet	3.31 3.61 3.63	95.58 95.68	98.25 98.31	

这是因为如果估计的深度不够准确,联合估计将在多个深度图上传播错误的信息。但ESTM受到的影响较小,因为随着更多帧的顺序处理,错误可以逐渐减轻。总体而言,混合正则化网络和 EST 变压器的结合可以提高最佳性能。

当ContextNet采用ResNet-18作为主干时,ESTM深度比Joint深度要好一些。当ContextNet采用ResNet-50作为主干时,联合深度稍微优于ESTM深度。这可以提供额外的证据,表明当估计的深度不够准确时,ESTM 推理操作由于其统一的长期时间相干性而比联合估计表现更好。

Tying: 默认情况下,我们会在更新运算符的所有实例中绑定权重。在这里,我们测试了我们方法的一个版本,即每个更新运算符学习一组单独的权重。当权重绑定时,准确率更高,参数数量也明显减少。

