

**PHARMACEUTICAL COMPOSITIONS AND METHODS FOR
MANAGING SKIN CONDITIONS**

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of Application No. 09/878,231,
5 filed June 12, 2001, currently pending, of which is a continuation of Application No.
09/549,202, filed April 13, 2000, now allowed, which is a continuation-in-part of
Application No. 09/330,127, filed June 11, 1999, currently U.S. Patent No. 6,071,541,
which is a continuation-in-part of provisional Application No. 60/094,775, filed July 31,
1998.

10

TECHNICAL FIELD

This application relates to pharmaceutical compositions and methods to
cleanse skin and facilitate the prevention, treatment, and management of skin conditions.

15 BACKGROUND OF THE INVENTION

Human skin is a composite material of the epidermis and the dermis. The
topmost part of the epidermis is the stratum corneum. This layer is the stiffest layer of the
skin, as well as the one most affected by the surrounding environment. Below the stratum
corneum is the internal portion of the epidermis. Below the epidermis, the topmost layer of
20 the dermis is the papillary dermis, which is made of relatively loose connective tissues that
define the micro-relief of the skin. The reticular dermis, disposed beneath the papillary
dermis, is tight, connective tissue that is spatially organized. The reticular dermis is also
associated with coarse wrinkles. At the bottom of the dermis lies the subcutaneous layer.

The principal functions of the skin include protection, excretion, secretion,
25 absorption, thermoregulation, pigmentogenesis, accumulation, sensory perception, and
regulation of immunological processes. These functions are detrimentally affected by, for
example, dryness, yeast, and structural changes in the skin, such as due to aging and
excessive sun exposure.

30 Various pharmaceuticals have been used for the treatment or prevention of
skin conditions, including skin cleansing compositions. Some of these compositions are
discussed below.

Canadian Patent No. 1,174,976 discloses a germ-killing skin medication including two gels to be applied and mixed *in situ*, the first gel having sodium chlorite in an aqueous form and the second gel having lactic acid in an aqueous gel.

Great Britain Application No. 2,076,286 A discloses a dermatological
5 composition of an oil medium dispersed in an aqueous medium that contains hydrogen peroxide, a buffer to maintain the composition below a pH of 7, and a starch gelled *in situ*. The buffer may include lactic, citric, tartaric, maleic, or hydroxysuccinic acids with an acid salt.

Great Britain Application No. 2,189,394 A discloses a concentrate that can
10 be mixed with hydrogen peroxide to become an effective disinfectant for water, foodstuff, animal feeds, equipment, packages, and the like. The concentrate includes an inorganic acid with a pH less than 1.6, a silver compound or colloidal silver, an organic acid stabilizer such as tartaric, lactic, salicylic, or citric acid, and optionally gelatin.

European Patent Application No. 0,191,214 A2 discloses a cosmetic liquid
15 cleanser for treating blemished, scarred, or inflamed skin having boric acid or borax, ammonium hydroxide, a peroxide, and optionally salicylic acid.

European Patent No. 0,250,539 B1 discloses a stabilized aqueous hydrogen peroxide composition having 0.1 to 4 weight percent hydrogen peroxide and 0.5 to 5 weight
20 percent β-crystals of one or more lipids selected from monoglycerides of fatty acids, ascorbic acid, phosphate or lactic acid esters of fatty acids and monoglycerol ethers, said fatty acids and ether chains being saturated and having 12 to 18 carbons.

European Patent No. 0,425,507 B1 discloses compositions for treating abnormal or damaged conditions of the epithelium including skin, which include 0.01 to 12
25 weight percent of an activated protein containing at least 0.5 weight percent cysteine, 0.1 to 15 weight percent of a reducing agent to reduce cystine to cysteine, and 81.0 to 99.889 weight percent water, acids, bases, buffering agents, emulsifying agents, thickeners, solvents, preservatives, coloring agents, and perfuming agents. The reducing agent may be a salt of a thioglycolic acid. In a preferred embodiment, the composition also includes an
30 oxidizing agent, such as hydrogen peroxide.

U.S. Patent No. 3,297,456 discloses cleaning and polishing compositions, particularly for floor waxing, having lactic acid, methanol, hydrogen peroxide, and aqua ammonia in a particular ratio.

U.S. Patent Nos. 4,051,058 and 4,051,059 disclose stable peroxy-containing
5 concentrates useful for the production of microbicidal agents consisting essentially of an aqueous mixture of 0.5 to 20 weight percent peracetic or perpropionic acid or their precursors, 25 to 40 weight percent hydrogen peroxide, and optionally up to 5 weight percent anionic surface-active compounds of the sulfonate and sulfate type. Also disclosed are compositions that further include 0.25 to 10 weight percent organic phosphonic acid
10 capable of sequestering bivalent metal cations and their water-soluble acid salts.

U.S. Patent No. 4,203,765 discloses an aqueous acidic etch-bleach solution of hydrogen peroxide, iron ions, and inorganic anions that form a silver salt, such that in the dissolved state the solution contains citric acid and a polymer of alkylene oxide units for stabilization of the hydrogen peroxide.
15

U.S. Patent No. 4,438,102 discloses compositions containing gelatin, hydrogen peroxide, ammonium hydroxide, thioglycolic acid, and a lower alkanol to promote the growth of dermal and epidermal tissue.

U.S. Patent No. 4,534,945 discloses an aqueous 25 to 35 weight percent
20 solution of hydrogen peroxide stabilized against decomposition with up to 1.4 mg/L tin, which is maintained in solution by particular amounts of phosphate in the form of phosphonic acid and hydroxycarboxylic acid.

U.S. Patent No. 4,557,935 discloses a germicidal composition of hydrophilic lipid crystals of 1-monolaurin, and preferably 1-monomyristin, and hydrogen peroxide,
25 whereby the former stabilize the latter. Optionally, the compositions further contain salicylic acid.

U.S. Patent No. 4,900,721 discloses liquid, aqueous disinfectants based on alcohol and hydrogen peroxide that contain one or more C₂₋₈ alcohols, hydrogen peroxide or a hydrogen peroxide forming compound, one or more carboxylic acids, one or more
30 microbically active nitrogen-containing organic compounds, one or more microbically active phenolic compounds for disinfection of the skin and mucous membrane.

U.S. Patent No. 5,139,788 discloses an antimicrobial surface sanitizing composition having a diluent and antimicrobial agent of an antimicrobially effective amount of alpha-hydroxyacid substituted mono- or di-carboxylic acid and an antimicrobially effective amount of hydrogen peroxide, such that the composition leaves a non-contaminating residue after contact with surfaces to be disinfected.

U.S. Patent No. 5,693,318 discloses phosphate esters for the improvement of water solubility of salicylic acid and peroxide compounds in an aqueous cleanser.

Despite these references, there remains a need for improved pharmaceutical compositions and methods of treating inflammatory skin conditions.

10

SUMMARY OF THE INVENTION

The present invention relates to a topical anti-inflammatory pharmaceutical composition that includes hydrogen peroxide in an amount sufficient to cleanse the skin; a moisturizing agent in an amount sufficient to facilitates hydration of the skin; and an anti-inflamatory agent to in an amount sufficient to reduce inflammation of the skin. The hydrogen peroxide is present in an amount from about 0.01 to 6 weight percent by weight of the composition, the moisturizing agent is present in an amount of about 0.01 to 20 weight percent by weight of the composition, and the anti-inflamatory agent is present in an amount of about 0.02 to 2 weight percent by weight of the composition.

20

The moisturizing agent can be a hydrophobic moisturizing agent such as ceramide, borage oil, tocopherol, tocopherol linoleate, dimethicone, glycerine, or a mixture thereof or a hydrophilic moisturizing agent such as hyaluronic acid, sodium peroxylinecarbolic acid, wheat protein, hair keratin amino acids, or a mixture thereof.

25

The pharmaceutical composition can further include a pharmaceutically acceptable carrier or excipient. The pharmaceutical composition can be a gel, paste, cream, lotion, emulsion, or ointment.

30

The pharmaceutical composition may further include an exfoliant. The exfoliant can be an enzymatic exfoliant or a mono- or -poly-hydroxy acid such as alpha-hydroxy acid, beta-hydroxy acid, or tannic acid. In one embodiment the exfoliant is glycolic acid, lactic acid, citric acid, salicylic acid, or tannic acid.

The pharmaceutical composition may also include an amount of amphoteric surfactant and an amount of citric acid sufficient to inhibit hydrogen peroxide decomposition for at least three months, preferably for 3 months at 40°C. The pharmaceutical composition may also include at least one of a surfactant, a stabilizer, a preservative, an anti-oxidant, or a coloring agent, which together may be present in an amount from about 10.1 to 99.1 weight percent of the composition.

The invention also relates to a method of managing an inflammatory skin condition which comprises topically administering to a patient a therapeutically effective amount of hydrogen peroxide in an amount sufficient to cleanse the skin; a moisturizing agent in an amount sufficient to facilitates hydration of the skin; and an anti-inflammatory agent to in an amount sufficient to reduce inflammation of the skin. The skin condition can be dermatitis, psoriasis, folliculitis, rosacea, acne, impetigo, erysipelas, paronychia, erythrasma, and eczema. The amount of the hydrogen peroxide, moisturizing agent, and anti-inflammatory agent administered is about 1 mg to 20,000 mg per day.

The method can further involve administering one or more second dermatological agents selected from a moisturizer, anti-inflammatory agent, analgesic, or anesthetic by a route other than topical administration. The one or more second dermatological agents can be a moisturizer selected from panthenol, primrose oil, omega-3 fish oils, omega-6 fish oils, linoleic acid, flax seed oil, and mixtures thereof. The one or more second dermatological agents can be an anti-inflammatory agent selected from aspirin, ibuprofen, ketoprofen, naproxen, and mixtures thereof.

The method can also include administering one or more exfoliants in an amount sufficient to exfoliate at least a portion of the skin. The exfoliant can be an enzymatic exfoliant or a mono- or -poly-hydroxy acid. In one embodiment the exfoliant an alpha-hydroxy acid, beta-hydroxy acid, or tannic acid. In another embodiment the exfoliant is glycolic acid, lactic acid, citric acid, salicylic acid, or tannic acid.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is directed to a pharmaceutical composition for the prevention, treatment, and management of inflammatory skin conditions. The management of inflammatory skin conditions can advantageously be accomplished by the administration

of the pharmaceutical compositions of the present invention. Accordingly, methods for administering the compositions for management of an inflammatory skin condition are also encompassed by the invention. The methods are used for the prevention, treatment, or management of one or more inflammatory skin conditions.

5 The term "inflammatory skin conditions," as used herein, means conditions present anywhere on the skin that causes inflammation, *i.e.*, reddening, pain, or swelling of the skin and which may be accompanied by a rash, sores, blisters or other skin eruptions. Examples of inflammatory skin conditions include, but are not limited to, dermatitis, including, but not limited to seborrheic dermatitis, nummular dermatitis, contact dermatitis,
10 atopic dermatitis, exfoliative dermatitis, perioral dermatitis, and stasis dermatitis; psoriasis; folliculitis; rosacea; acne; impetigo; erysipelas; paronychia, erythrasma; eczema; and the like.

15 The terms "managing" or "management," as used herein, includes one or more of the prevention, treatment, or modification of a skin condition.

15 The hydrogen peroxide is present in an amount sufficient to cleanse at least a portion of the skin. "Cleanse" as used herein includes the removal of dirt, debris, air pollutants, desquamating cells, and cutaneous secretions of the skin. Preferably, the hydrogen peroxide is present in an amount to cleanse the skin without substantial irritation.

20 The hydrogen peroxide is typically present in an amount from about 0.01 to 6 weight percent, preferably 0.05 to 4 weight percent, and more preferably 0.1 to 1 weight percent of the composition. Without wishing to be bound by theory it is believed that cleansing the skin with hydrogen peroxide improves penetration of the anti-inflammatory into the skin.

25 The pharmaceutical compositions include one or more moisturizing agents.
25 "Moisturizing agent," as used herein, is used to include any agent that facilitates hydration of the skin by inhibiting or preventing loss of water from the skin, absorbs water from the atmosphere and hydrates the skin, or enhances the skin's own ability to absorb water directly from the atmosphere, or a combination thereof. Without wishing to be bound by theory it is believed that the moisturizing agent also improves the skin's ability to absorb the
30 anti-inflammatory agent. Furthermore, moisturizing agents also minimize or prevent the skin from drying and cracking; cracked skin is more susceptible to environmental factors that generate free radicals, which are believed to cause further damage to the skin. Suitable

moisturizing agents include, but are not limited to, hydrophobic agents, and hydrophilic agents, or combinations thereof. Moisturizers, when used, are typically present in an amount from about 0.01 to 20 weight percent, preferably about 0.05 to 10 weight percent, more preferably from about 0.1 to 5 weight percent of the composition.

5 Moisturizing agents that are hydrophobic agents include, but are not limited to, ceramide, borage oil (linoleic acid), tocopherol (Vitamin E), tocopherol linoleate, dimethicone, glycerine, and mixtures thereof. Hydrophobic agents, when present, are believed to moisturize the skin by inhibiting or preventing the loss of water from the skin. The hydrophobic agent, when present, is typically present in an amount from about 0.01 to
10 20 weight percent, preferably from about 0.05 to 15 weight percent, and more preferably from about 0.1 to 5 weight percent of the composition.

15 Moisturizing agents that are hydrophilic agents include, but are not limited to, hyaluronic acid, sodium peroxylinecarbolic acid (sodium PCA), wheat protein (e.g., laurdimonium hydroxypropyl hydrolyzed wheat protein), hair keratin amino acids, and mixtures thereof. Sodium chloride may also be present, particularly when hair keratin amino acids are included as a moisturizer. Hydrophilic agents, when present, are believed to moisturize the skin by absorbing moisture from the atmosphere to hydrate or facilitate hydration of the skin. The hydrophilic agent, when present, is typically present in an amount from about 0.01 to 20 weight
20 percent, preferably from about 0.05 to 15 weight percent, and more preferably from about 0.1 to 5 weight percent of the composition.

Other moisturizing agents that hydrate the skin and are useful in the compositions and methods of the present invention include, but are not limited to, panthenol; primrose oil; GLA 3 and other fish oils that may include, for example, the omega-3 and
25 omega-6 oils and/or linoleic acid; and flax seed oil. Preferably, these moisturizing agents are administered orally.

The compositions and methods for managing inflammatory skin conditions also include one or more anti-inflammatory agents in an amount sufficient to reduce inflammation of the skin. In one embodiment the anti-inflammatory agent is a steroid anti-inflammatory.
30 Suitable steroid anti-inflammatory agents for use in the compositions and methods of the invention include the corticosteroids such as, but not limited to, hydrocortisone, fluocinolone

acetonide, halcinonide, halobetasol propionate, clobetasol propionate, betamethasone dipropionate, betamethasone valerate, and triamcinolone acetonide.

In another embodiment the anti-inflammatory agent is a non-steroidal anti-inflammatory agent. Examples of suitable non-steroidal anti-inflammatory agents for use in the compositions and methods of the invention include, but are not limited to, aspirin, ibuprofen, ketoprofen, and naproxen. These anti-inflammatory agents are preferably administered orally. Other non-steroidal anti-inflammatory agents useful in the compositions of the invention include, but are not limited to aloe vera gel, aloe vera, licorice extract, pilewort, Canadian willow root, and zinc, and allantoin. Allantoin is a preferred non-steroidal anti-inflammatory agent. The anti-inflammatory agents are used in an amount sufficient to inhibit or reduce inflammation, preferably in an amount from about 0.02 to 2 weight percent, preferably from about 0.1 to 1.5 weight percent, and more preferably from about 0.2 to 1 weight percent of the composition. It should be understood, with reference to managing skin conditions, that the anti-inflammatory agents facilitate inhibition or suppression of inflammation anywhere on the skin. *Arnica Montana* (a healing herb) and vitamin K can also be used as the anti-inflammatory. *Arnica Montana* facilitates skin healing and acts as an antiseptic and local anti-inflammatory, and, when used, is typically present in an amount from about 0.1 to 2 weight percent, preferably about 0.2 to 1 weight percent. The Vitamin K inhibits or suppresses inflammation and bruising (*i.e.*, acts as an anti-inflammatory and anti-bruising agent) and, when used, is typically present in an amount from about 0.01 to 1 weight percent, preferably from about 0.1 to 0.5 weight percent.

Without wishing to be bound by theory it is believed that the components of the invention interact in a synergistic manner to provide the desired management of the skin. Together, the hydrogen peroxide, moisturizing agent, and anti-inflammatory agent cleanse the skin, remove substances foreign to the skin, and moisturize the skin to improve penetration of the anti-inflammatory agent to inhibit or reduce inflammation of the skin and generally facilitate management of inflammatory skin conditions. In particular, the compositions of the invention reduce or eliminate the redness, swelling, sores, and blisters typically associated with inflammatory skin conditions. The synergistic effect provides a composition for treating inflammatory skin conditions that is superior to using the anti-inflammatory alone.

In a preferred embodiment, the dermatological agent further includes an exfoliant to help remove dead or dying skin cells and further improve the skin's own ability to absorb moisture directly from the atmosphere in combination with one or more hydrophilic agents to help absorb moisture from the atmosphere and hydrate the skin or in combination with 5 one or more a hydrophobic agents to inhibit or prevent moisture loss by the skin. More preferably, the pharmaceutical composition includes one or more of a hydrophilic agent and one or more of a hydrophobic agent in combination with an exfoliant. It is also believed that the exfoliant also helps the anti-inflammatory component penetrate the skin.

The exfoliant may be an enzymatic exfoliant, or an acidic exfoliant. Any 10 enzymatic exfoliant known to those skilled in the art may be used in the compositions and methods of the invention. Examples of enzymatic exfoliants useful in the compositions and methods of the invention include, but are not limited to, papain, from papaya, and bromalein, from pineapple.

Examples of acidic exfoliants include, but are not limited to a mono- or 15 poly-hydroxy acid, tannic acid, or a mixture thereof, or a pharmaceutically acceptable salt or ester thereof. One of ordinary skill in the art will be readily able to select and prepare suitable mono- or poly-hydroxy acids for use in the composition of the invention, for example, alkyl hydroxycarboxylic acids, aralkyl and aryl hydroxycarboxylic acids, polyhydroxy-carboxylic acids, and hydroxy-polycarboxylic acids. One of ordinary skill in the art would typically select 20 one or more of the following mono- or poly-hydroxy acids: 2-hydroxyacetic acid (glycolic acid); 2-hydroxypropanoic acid (lactic acid); 2-methyl 2-hydroxypropanoic acid; 2-hydroxybutanoic acid; phenyl 2-hydroxyacetic acid; phenyl 2-methyl 2-hydroxyacetic acid; 3-phenyl 2-hydroxyacetic acid; 2,3-dihydroxypropanoic acid; 2,3,4-trihydroxybutanoic acid; 25 2,3,4,5,6-pentahydroxyhexanoic acid; 2-hydroxydodecanoic acid; 2,3,4,5-tetrahydroxypentanoic acid; 2,3,4,5,6,7-hexahydroxyheptanoic acid; diphenyl 2-hydroxyacetic acid; 4-hydroxymandelic acid; 4-chloromandelic acid; 3-hydroxybutanoic acid; 4-hydroxybutanoic acid; 2-hydroxyhexanoic acid; 5-hydroxydodecanoic acid; 12-hydroxydodecanoic acid; 10-hydroxydecanoic acid; 16-hydroxyhexadecanoic acid; 2-hydroxy-30 3-methylbutanoic acid; 2-hydroxy-4-methylpentanoic acid; 3-hydroxy-4-methoxymandelic acid; 4-hydroxy-3-methoxymandelic acid; 2-hydroxy-2-methylbutanoic acid; 3-(2-hydroxyphenyl) lactic acid; 3-(4-hydroxyphenyl) lactic acid; hexahydromandelic acid; 3-

hydroxy-3-methylpentanoic acid; 4-hydroxydecanoic acid; 5-hydroxydecanoic acid; aleuritic acid; 2-hydroxypropanedioic acid; 2-hydroxybutanedioic acid; erythreric acid; threeric acid; arabiranic acid; ribaric acid; xylaric acid; lyxaric acid; glucaric acid; galactaric acid; mannaric acid; gularic acid; allaric acid; altraric acid; idaric acid; talaric acid; 2-hydroxy-2-
5 methylbutanedioic acid; citric acid, isocitric acid, agaric acid, quinic acid, glucoronic acid, glucoronolactone, galactoronic acid, galactoronolactone, uronic acids, uronolactones, ascorbic acid, dihydroascorbic acid, dihydroxytartaric acid, tropic acid, ribonolactone, gluconolactone, galactonolactone, gulonolactone,mannolactone, citramalic acid; pyruvic acid, hydroxypyruvic acid, hydroxypyruvic acid phosphate and esters thereof; methyl pyruvate, ethyl
10 pyruvate, propyl pyruvate, isopropyl pyruvate; phenyl pyruvic acid and esters thereof; methyl phenyl pyruvate, ethyl phenyl pyruvate, propyl phenyl pyruvate; formyl formic acid and esters thereof; methyl formyl formate, ethyl formyl formate, propyl formyl formate; benzoyl formic acid and esters thereof; methyl benzoyl formate, ethyl benzoyl formate and propyl benzoyl formate; 4-hydroxybenzoyl formic acid and esters thereof; 4-hydroxyphenyl pyruvic acid and esters thereof; and 2-hydroxyphenyl pyruvic acid and esters thereof.
15

In one embodiment the poly-hydroxy acidic components is an alpha-hydroxy acid. Preferred alpha-hydroxy acids include citric acid, glycolic acid, lactic acid. In another embodiment the poly-hydroxy acidic exfoliant is a beta-hydroxy acid. A preferred beta-
20 hydroxy acid is salicylic acid.

The term "pharmaceutically acceptable salt" refers to a salt prepared from pharmaceutically acceptable non-toxic acid. Examples of suitable inorganic metallic bases for salts formation with the acid compounds of the invention include, but are not limited to, aluminum, calcium, lithium, magnesium, potassium, sodium, and zinc. Appropriate organic
25 bases may be selected, for example, from N,N-dibenzylethylenediamine, chlorprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine), and procaine.

It should be understood that one or more derivatives of the above acidic component, such as esters or lactones thereof, are also suitably used. One of ordinary skill in the art will also understand that various hydroxy acids described in U.S. Patent Nos. 5,547,988
30 and 5,422,370 are also suitable for use in the compositions and methods of the invention. The acidic component is present in the composition and methods in an amount sufficient to exfoliate, *i.e.*, remove dead or dying skin cells, from at least a portion of the skin. The acidic

component is typically present in an amount from about 0.1 to 12 weight percent, preferably about 1 to 11 weight percent, more preferably from about 4 to 10 weight percent of the composition. For example, the acidic component may be from about 0.1 to 3 weight percent citric acid in combination with up to about 2 weight percent salicylic acid.

5 In another embodiment, the pharmaceutical compositions further comprise a pharmaceutically acceptable antimicrobial agent. Any pharmaceutically acceptable antimicrobial agent available to those of ordinary skill in the art may be used, but preferably at least one of an antibacterial agent, antifungal agent, antiviral agent, or anthelmintic will be used according to the invention. A single broad spectrum antimicrobial agent, *i.e.*, one that is

10 believed to have at least two of antibacterial, antifungal, and antiviral efficacy, include: echinacea, golden seal, benzalkonium chloride, benzethonium chloride, iodine, grape seed extract, pomegranate extract, green tea extract or polyphenols, and the like, or combinations thereof, may be included. Another suitable antimicrobial agent includes the class of anthelmintics, such as metronidazole, to facilitate treatment of, *e.g.*, *tricomonas* infection.

15 Preferred antiviral agents include, but are not limited to, acyclovir, tamvir, penciclovir, and the like, and mixtures thereof. Preferred antibacterial agents include, but are not limited to, triclosan, neomycin, polymyxin, bacitracin, clindamycin, benzoyl peroxide, a tetracycline, a sulfa drug, a penicillin, a quinolone, a cephalosporin, and mixtures thereof. Preferred

20 antifungal agents include, but are not limited to, farnesol, econazole, fluconazole, clotrimazole, ketoconazole, calcium or zinc undecylenate, undecylenic acid, butenafine hydrochloride, ciclopirox olamine, miconazole nitrate, nystatin, sulconazole, terbinafine hydrochloride, and the like, and mixtures thereof. Exemplary tetracyclines include doxycycline and minocycline. An exemplary sulfa drug includes sulfacetamide. An exemplary cephalosporin includes

25 cephalexin (commercially available as KEFLEX). Exemplary quinolones include the floxacins, such as loemfloxacin, ofloxacin, and trovafloxacin. It should be readily understood that any salts, isomers, pro-drugs, metabolites, or other derivatives of these antimicrobial agents may also be included as the antimicrobial agent in accordance with the invention. The antimicrobial agent is typically present in an amount from about 0.01 to 1.5 weight percent, preferably from

30 about 0.1 to 1.2 weight percent, and more preferably from about 0.3 to 1 weight percent of the composition. The antimicrobial agent inhibits the formation, and may further reduce, the presence of microbes that cause redness, inflammation, and irritation of the skin.

In another embodiment, the compositions further include one or more of a vitamin A source including retinyl palmitate or other retinyl esters, retinoic acid, or Retinol. The Retinol facilitates normal skin production, particularly epidermal normalization, and, when used, is typically present in an amount from about 0.01 to 6 weight percent, preferably about 5 0.1 to 5 weight percent.

The compositions of the invention may further include one or more surfactants, stabilizers, preservatives, coloring agents, anti-oxidants, water, buffering agents, emulsifying agents, thickeners, solvents, perfuming agents, and the like. Preferably, the water is deionized water. It should be understood that water includes the remainder of a given composition after 10 other ingredients are determined. Although any pharmaceutically acceptable surfactant, stabilizer, preservative, coloring agent, buffering agents, emulsifying agents, thickeners, solvents, or perfuming agents may be used, certain compounds or mixtures are preferred as discussed below.

Preferred surfactants, including both the foaming and non-foaming type, 15 including, but not limited to, sodium laureth sulfate, sodium laureth-13 carboxylate, disodium laureth sulfosuccinate, disodium cocoamphodiacetate, and the like, and mixtures thereof. More preferably, at least one amphoteric surfactant is included in the composition, such as disodium cocoamphodiacetate. The amphoteric surfactant, in combination with citric acid, inhibits 20 hydrogen peroxide decomposition. The surfactant component may be present in an amount from about 10 to 90 weight percent, preferably about 20 to 80, and more preferably about 30 to 70 weight percent of the composition.

The term "inhibit hydrogen peroxide decomposition," as used herein, means to at least stop the rate of decomposition from increasing, preferably to inhibit the decomposition 25 entirely, and more preferably to substantially inhibit the decomposition altogether. "Substantially inhibit," as used herein, means that less than about 10 weight percent, preferably less than about 3 weight percent, and more preferably less than about 1 weight percent, of the hydrogen peroxide decomposes over a three month period of time.

A preferred stabilizer includes glycol stearate or PEG-150 distearate. The 30 stabilizer, when used, is typically present in an amount from about 0.1 to 5 weight percent of the composition.

Preferred preservatives include tetrasodium ethylene-diamine tetraacetic acid (EDTA), methylparaben, benzophenone-4, methylchloroisothiazolinone, methylisothiazolinone, and the like, and mixtures thereof. Preservatives, when used, are typically present in an amount from about 0.01 to 6 weight percent, preferably about 0.05 to 4 weight percent, and more

5 preferably from about 0.1 to 2 weight percent.

Preferred coloring agents include FD&C Green No. 3, Ext. D&C Violet No. 2, FD&C Yellow No. 5, FD&C Red No. 40, and the like, and mixtures thereof. The coloring agents, when used, are typically present in an amount from about 0.001 to 0.1 weight percent, and preferably from about 0.005 to 0.05 weight percent of the composition.

10 Anti-oxidants of both the enzymatic and non-enzymatic type may be included in the compositions and methods of the invention. For example, superoxide dismutase (SOD), catalase, and glutathione peroxidase are natural enzymatic anti-oxidants used by the body that may be supplemented with the compositions herein. Suitable non-enzymatic anti-oxidants include, but are not limited to, Vitamin E (e.g., tocopherol), Vitamin C (ascorbic acid), carotenoids, Echinacoside and caffeoyl derivatives, oligomeric proanthocyanidins or proanthanols (e.g., grape seed extract), silymarin (e.g., milk thistle extract, *Silybum marianum*), ginkgo biloba, green tea polyphenols, and mixtures thereof. Carotenoids are powerful anti-oxidants, and they include beta-carotene, canthaxanthin, zeaxanthin, lycopene, lutein, crocetin, capsanthin, and the like. Indeed, any pharmaceutically acceptable compounds suitable for administration orally or topically may be used as an anti-oxidant in the compositions. Preferably, the anti-oxidant component includes Vitamin E, Vitamin C, or a carotenoid. The anti-oxidant component, when used, is present in an amount sufficient to inhibit or reduce the effects of free-radicals. The anti-oxidant component may be present in an amount from about

20 0.001 to 1 weight percent, preferably from about 0.01 to 0.5 weight percent of the composition.

25 The pharmaceutical compositions of the invention may also include one or more of a local analgesic or anesthetic, antiyeast agent, antiperspirant, antipsoriatic agents antiaging agents, antiwrinkles agent, sun screen and sun blocking agents, skin lightening agents, depigmenting agents, vitamins, hormones and retinoids. Particularly preferred are

30 compositions further comprising a local analgesic or anesthetic to alleviate the pain and discomfort associated with inflammatory skin diseases. Local anesthetic include, but are not limited to, lidocaine.

The pharmaceutical compositions of the invention may further include one or more of an immuno-enhancer to stimulate the bodies immune system. A suitable immuno-enhancer useful in the compositions of the invention is Aldara (Imiquimod). The immuno-enhancer may be present in an amount from about 0.1 to 10 weight percent, preferably from 5 about 0.5 to 5 weight percent of the composition.

The ranges of the components of the pharmaceutical composition may vary, but the active ingredients should be understood to add to 100 weight percent of the active pharmaceutical composition. The compositions may be prepared in high concentrations for administration to be removed shortly thereafter, as well as in lower concentrations that are safer 10 for products that can remain in contact with the skin for longer times.

The present invention is further directed to a method of preventing, treating, or managing one or more inflammatory skin conditions. The methods of the invention comprise administering to a patient in need thereof a therapeutically effective amount of the compositions 15 of the invention.

15 The term "therapeutically effective amount," as used herein, means that amount of the pharmaceutical composition that provides a therapeutic benefit in the treatment, prevention, or management of one or more skin conditions.

The magnitude of a prophylactic or therapeutic dose of the composition in the 20 acute or chronic management of inflammatory skin conditions will vary with the severity of the condition to be treated. The dose, and perhaps the dose frequency, will also vary according to the age, body weight, and response of the individual patient. In general, a preferred topical daily dose range, in single or divided doses, for the conditions described herein should be from about 1 mg to 20,000 mg, more preferably about 2,000 mg to 16,000 mg, and most preferably 25 about 6,000 mg to 10,000 mg of the active components (*i.e.*, excluding excipients and carriers).

Those of ordinary skill in the art will also understand that topical effectiveness of pharmaceuticals requires percutaneous absorption and bioavailability to the target site. Thus, the compositions and methods of the invention require penetration through the stratum corneum into the epidermal layers, as well as sufficient distribution to the sites targeted for 30 pharmacologic action. Without wishing to be bound by theory it is believed that the presences of the hydrogen peroxide and the moisturizing agent facilitate penetration of the anti-inflammatory through the stratum corneum into the epidermal layers.

It is further recommended that children, patients aged over 65 years, and those with impaired renal or hepatic function initially receive low doses, and that they then be titrated based on individual response(s) or blood level(s). It may be necessary to use dosages outside these ranges in some cases, as will be apparent to those of ordinary skill in the art. Further, it
5 is noted that the clinician or treating physician will know how and when to interrupt, adjust, or terminate therapy in conjunction with individual patient response.

The pharmaceutical compositions used in the methods of the present invention include the active ingredients described above, and may also contain pharmaceutically acceptable carriers, excipients and the like, and optionally, other therapeutic ingredients.

10 Suitable dosage forms for topical administration include, but are not limited to, dispersions, lotions; creams; gels; pastes; powders; aerosol sprays; syrups or ointments on sponges or cotton applicators; and solutions or suspensions in an aqueous liquid, non-aqueous liquid, oil-in-water emulsion, or water-in-oil liquid emulsion. Because of its ease of administration, a cream, lotion, or ointment represents the most advantageous topical dosage
15 unit form, in which case liquid pharmaceutical carriers may be employed in the composition. These creams, lotions, or ointments, may be prepared as rinse-off or leave-on products, as well as two stage treatment products for use with other skin cleansing or managing compositions. In a preferred embodiment, the compositions are administered as a rinse-off product in a higher
20 concentration form, such as a gel, and then a leave-on product in a lower concentration to avoid irritation of the skin. Each of these forms is well understood by those of ordinary skill in the art, such that dosages may be easily prepared to incorporate the pharmaceutical composition of the invention.

25 The compositions of the invention may be prepared by any of the methods of pharmacy, but all methods include the step of bringing into association the carrier(s) with the active ingredient, which constitutes one or more necessary ingredients. In general, the compositions are prepared by uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired presentation.

30 Desirably, each unit dose, e.g., gel, cream, or ointment, contains from about 1 mg to 2,000 mg of the active ingredients, preferably about 200 mg to 1,600 mg, and more preferably about 600 mg to 1,000 mg of the composition.

The methods of the invention may further comprise administering one or more additional dermatological agents by a route of administration other than topically. Any suitable route of administration may be employed for providing the patient with an effective dosage of the additional component including, but not limited to, oral, intraoral, rectal, parenteral, topical, 5 epicutaneous, transdermal, subcutaneous, intramuscular, intranasal, sublingual, buccal, intradural, intraocular, intrarespiratory, or nasal inhalation and like forms of administration. Preferably, the additional component is administered orally.

Preferably, the additional component is a moisturizer or anti-inflammatory agents. Preferred moisturizers for oral administration include, but are not limited to, panthenol; 10 primrose oil; GLA 3 and other fish oils that may include, for example, the omega-3 and omega-6 oils and/or linoleic acid; and flax seed oil. Preferred anti-inflammatory agents for oral administration include, but are not limited to, aspirin, ibuprofen, ketoprofen, and naproxen. In another embodiment the additional component is an analgesic or anesthetic.

15

EXAMPLES

The invention is further defined by reference to the following examples describing in detail the preparation of the compound and the compositions used in the methods of the present invention, as well as their utility. The examples are representative, and they 20 should not be construed to limit the scope of the invention.

Example 1: Skin Cleanser Formulation

A pharmaceutical composition according to the invention may be prepared for cleansing skin as set forth below:

25

	Ingredient	Trade Name/Supplier	% by Weight
Part A	Deionized Water	N/A	49.2
	Trisodium Ethylene-Diamine-Tetraacetic Acid (EDTA)	HAMP-ENE Na ₃ T/Akzo Nobel	0.2
30	Sodium Laureth-13 Carboxylate	SURFINE WLL/Finetex	10
	Disodium Laureth Sulfosuccinate	MACKANATE EL/McIntyre Group	17

	Disodium Cocoamphodiacetate	MONATERIC CDX-38/Mona	11
	PEG-150 Pentaerythrityl Tetrastearate	CROTHIX/Croda	1.5
	PEG-150 Distearate	KESSCO PEG 6000 DS/Stepan	.7
5	Methylparaben	N/A	0.2
	Part B Salicylic Acid	Salicylic Acid, powder, USP/Spectrum	1.6
	Citric Acid	N/A	1.5
	Triclosan	IRGASAN DP300/Ciba	0.3
10	Part C PPG-26-Buteth-26, PEG-40 Hydrogenated Castor Oil	SOLUBILISANT LR1/Les Colorant Wackherr SA	2
	Fragrance (Parfum)	Fragrance - BELL #J7393/Bell Flavors and Fragrances	0.3
	Menthol	Menthol Crystals, USP	0.1
15	Part D Butylene Glycol, Deionized water, Black Cohosh (<i>Cimicifuga Racemosa</i>) Extract	ACTIPHYTE OF BLACK SNAKEROOT BG50/Active Organics	0.1
	Butylene Glycol, Deionized water, Camellia Oleifera Extract	ACTIPHYTE OF JAPANESE GREEN TEA BG50/Active Organics	0.1
	Sodium Peroxylsuccinic Acid (PCA)	AJIDEW-50/Ajinomoto	0.2
20	Cocamidopropyl PG-Dimonium Chloride Phosphate	PHOSPHOLIPID PTC/Mona	1
	Part E Hydrogen Peroxide	Hydrogen Peroxide, 35% solution, technical	<u>3</u>
		—	100%

HAMP-ENE Na₃T is commercially available from Akzo Nobel Inc. of Dobbs Ferry, NY; SURFINE WLL is commercially available from Finetex, Inc. of Elmwood Park, NJ; MACKANATE EL is 25 commercially available from McIntyre Group of University Park, IL; MONATERIC CDX-38 and PHOSPHOLIPID PTC are commercially available from Mona Industries Inc. of Patterson, NJ; CROTHIX is commercially available from Croda Inc. of Parsippany, NJ; KESSCO PEG 600 DS is commercially available from Stepan Co. of Northfield, IL; IRGASAN DP300 is commercially available from Ciba Specialty Chemicals Corp. of Albemarle, NC; SOLUBILISANT LR1 is commercially available from Les Colorant Wackherr SA of St. Ouen L'Aumone, France; BELL #J7393 is commercially available from Bell Flavors and Fragrances of Northbrook, IL; ACTIPHYTE OF BLACK SNAKEROOT BG50 and ACTIPHYTE OF JAPANESE GREEN TEA BG50 are commercially 30 available from Active Organics of Dallas, TX; and AJIDEW -50 is commercially available from Ajinomoto USA Inc. of Teaneck, NJ.

Deionized water was metered into the processing tank and mixing subsequently begun. The water was heated to 75°C and the remainder of Part A was added and mixed until uniform. The mixture was cooled to 60°C and the Part B ingredients were added and mixed until uniform. The mixture was then cooled to 50°C. In a separate vessel, Part C
5 was premixed until uniform and then added to the mixture of Parts A and B. Parts A, B, and C were mixed until uniform and cooled to 40°C. The Part D ingredients were added and mixed until uniform, then cooled to 30°C. Part E was added and mixed until uniform, resulting in a colorless, clear, slightly viscous fluid having a pH at 25°C of between 4 to 4.5 and a viscosity between 3,000 to 4,000 cps (RVT: #4 @ 10 rpm @ 25°C).

10

Example 2: Advanced Acne Prone Skin Formulation

A pharmaceutical composition according to the invention may be prepared for treating skin prone to acne as set forth below:

15

	Ingredient	Trade Name/Supplier	% by Weight
Part A	Deionized Water	N/A	46.7
	Hydroxyethylcellulose	CELLOSIZE QP52,000H/Amerchol	1
Part B	Tetrasodium Ethylene-Diamine-Tetraacetic Acid (EDTA)	HAMP-ENE 220/Akzo Nobel	0.1
	Butylene Glycol	1,3-butylene glycol/Ashland	5
	Aloe Barbadensis Gel	Aloe Vera Freeze Dried Powder 200:1/Aloe	0.1
	Methyl Gluceth-10	GLUCAM E-10/Amerchol	3
25	Witch Hazel (<i>Hamamelis Virginiana</i>) Distillate	Witch Hazel Distillate, 14%	3
	Zinc Acetate	Zinc Acetate, crystals, USP/FCC	0.5
	Orange (<i>Citrus Aurantium Dulcis</i>) Extract	NATURAL ORANGE EXTRACT #71689/ Flavurence	0.3
30	Methylparaben		

	Dipotassium Glycyrrhizate	N/A	0.3
	Lecithin, Tocopherol and	OXYSONES/Barnett	0.3
	Magnesium Ascorbyl Phosphate		
	Palmitoyl	GLYCOSPHERE PCO/Kobo	0.2
5	Hydroxypropyltrimonium		
	Amylopectin/Glycerin		
	Crosspolymer, Lecithin, Grape		
	(<i>Vitis Vinifera</i>) Seed Extract		
	Palmitoyl	GLYCOSPHERE GT/Kobo	0.5
10	Hydroxypropyltrimonium		
	Amylopectin/Glycerin		
	Crosspolymer, Lecithin,		
	<i>Camellia Sinensis</i> Extract		
	<i>Epilobium Angustifolium</i>	Canadian Willowherb Whole	0.5
15	Extract	Extract (5% in water)/Fytokem	
	Butylene Glycol and Water and	ACTIPHYTE OF ARNICA	0.5
	<i>Arnica Montana</i> Extract	BG50/Active Organics	
	Part C Alcohol (denatured)	SD Alcohol 40-B, Anhydrous/	20
20	Salicylic Acid	Salicylic Acid, powder, USP/FCC/Spectrum	1
	Triclosan	IRGASAN DP300/Ciba	0.4
	Part D PPG-5-Ceteth-20	PROCETYL AWS/Croda	1
	PEG-40 Hydrogenated Castor Oil	CREMOPHOR RH-40/BASF	0.6
25	Retinol and Polysorbate 20	RETINOL 50C/BASF	0.1
	Phytonadione	N/A	0.1
	Linoleic Acid	EMERSOL 315/Henkel	0.3
	Part E Glycolic Acid	GLYPURE=70% Glycolic Acid/DuPont	9
30	Part F Deionized water	N/A	2
	Sodium Hydroxide	Sodium Hydroxide, pellets, USP/NF	2

Part G	Hydrogen Peroxide	Hydrogen Peroxide, 35% solution, technical	<u>1.5</u>
			100%

CELLOSIZE QP52,000H and GLUCAM E-10 are commercially available from Amerchol Corp. of Edison, NJ; HAMP-ENE 220 is commercially available from Akzo Nobel Inc. of Dobbs Ferry, NY; 5 Aloe Vera Freeze Dried Powder 200:1 is commercially available from Aloe Corp. of TX; OXYSOMES is commercially available from Barnet Products Corporation of Englewood Cliffs, NJ; Canadian Willowherb Whole Extract (5% in water) is commercially available from Fytokem, Inc. of Saskatoon, SK CANADA; GLYCOSPHERE PCO and GLYCOSPHERE GT are commercially available from Kobo Products Inc. of South Plainfield, NJ; ACTIPHYTE OF ARNICA BG50 is commercially available from Active Organics of Dallas, TX; PROCETYL AWS is commercially available from Croda Inc. of Parsippany, NJ; CREMOPHOR RH-40 and RETINOL 50C are commercially available from BASF Corporation of Budd Lake, NJ; GLYPURE=70% Glycolic Acid is commercially available 10 from DuPont of Wilmington, DE; EMERSOL 315 is commercially available from Henkel Corp. of Hoboken, NJ.

Deionized water was metered into the processing tank and mixing subsequently begun. CELLOSIZE QP52,000H was sprinkled in, heated to 70°C, and mixed 15 until clear and uniform. The mixture was cooled to 40°C. Part B ingredients were added in the order above, with sufficient mixing after each ingredient was added. The mixture was cooled to 25°C and premixed Part C ingredients were added and mixed until uniform. In a separate tank, Part D was heated to 40°C until the solids were dissolved and then added to the batch of Parts A, B, and C. The mixture was mixed until uniform, then Part E was added and 20 mixed until uniform. Premixed Part F was slowly added in increments as needed to obtain the desired pH of 3.3 to 3.8 at 25°C, then Part G was added and mixed until completely uniform. This resulted in a straw-colored, clear to slightly hazy, slightly viscous liquid having a pH @ 25°C of 3.3 to 3.8 and a viscosity between 400 to 800 cps (RVT-#2 @ 10 rpm @ 25°C).

25 Example 3: Skin Perfecting Lotion

A pharmaceutical composition according to the invention may be prepared for treating skin as set forth below:

	Ingredient	Trade Name/Supplier	% by weight
30	Part A Water (Aqua)	Deionized water	60.6
	Carbomer	CARBOPOL ULTREZ 10/ B.F. Goodrich	0.3

	Sclerotium Gum	AMIGEL/Tri-K	0.6	
	Glycerin	Glycerin 99.5%/Ashland	6.0	
	Butylene Glycol	1,3-butylene glycol/Ashland	6.0	
5	Allantoin	Allantoin/ISP	0.6	
	Panthenol	DEXPANTHENOL/Roche	0.6	
	Tetrasodium EDTA	HAMP-ENE 220/Akzo	0.2	
	Methylparaben	Methylparaben/Ueno	0.3	
	Sodium PCA	AJIDEW-50/Ajinomoto	0.5	
10	Part B	Dicapryl Maleate	BERNEL ESTER DCM/Bernel	6.0
	Squalene	PHYTOLANE/Barnet	0.8	
	Sorbitan Stearate	ARLACEL 60/ICI	1.5	
	Stearic Acid	EMERSOL 132/Henkel	1.3	
	Dimethicone	DOW CORNING 200, 350 cs./Dow Corning	0.8	
15		C12-C15 Alkyl Benzoate	FINSOLV TN/Finetex	3.0
		Cetearyl Alcohol and Ceteareth	HEXOTOL D/Heterene	0.6
		Propylparaben	Propylparaben/Ueno	0.2
20	Part C	Water (Aqua)	Deionized water	0.3
		Triethanolamine	Triethanolamine 99%/Ashland	0.3
	Part D	Orange (<i>Citrus Aurantium Dulcis</i>) Extract	NATURAL ORANGE EXTRACT #71689/Flavurence	0.3
		Diazolidinyl Urea	GERMALL II/ISP	0.3
25		Glycolipids and Hyaluronic Acid	PHYTO/CER HA/Tri-K	0.3
		Palmitoyl	GLYCOSPHERES PCO/Kobo	0.3
		Hydroxypropyltrimonium		
		Amylopectin/Glycerin		
		Crosspolymer and Lecithin and		
		grape (<i>Vitis Vinifera</i>) Seed		
30		Extract		

	Palmitoyl	GLYCOSPHERES GT/Kobo	0.3
	Hydroxypropyltrimonium		
	Amylopectin/Glycerin		
	Crosspolymer and Lecithin and		
5	<i>Camellia Sinensis</i> Extract		
	Propylene Glycol	Propylene Glycol/Ashland	0.6
	Algae Extract	HAWAIIAN SEAPLANT EXTRACT-J/Tri-K	0.2
	Lecithin and Tocopherol and	OXYSONMES/Barnet	0.6
10	Magnesium Ascorbyl Phosphate		
	Butylene Glycol and Honey	ACTIPLEX 1072/Active Organics	1.1
	Extract (Mel) and Meadowsweet (<i>Spiraea Ulmaria</i>) Extract		
	Talc and C9-C13 Fluoroalcohol	PF-5 TALC JA-46R/Kobo	0.8
15	and Phosphoric Acid		
	Hydrolyzed Soy Flour	RAFFERMINE/R.I.T.A.	0.3
	Oat (<i>Avena Sativa</i>) Protein	REDUCTINE/R.I.T.A.	0.3
	Phytonadione	Phytonadione/Roche	0.01
	Retinol and Polysorbate 20	RETINOL 50C/BASF	0.1
20	<i>Epilobium Angustifolium</i> Extract	Canadian Willowherb Whole Extract (5% in water)/Fytokem	0.5
	<i>Arnica Montana</i> Extract	ACTIPHYTE OF ARNICA BG50/Active Organics	0.5
25	Part E Hydrogen Peroxide	Hydrogen Peroxide, 35% solution, technical	3
			100.0

CARPOL ULTREZ 10 is commercially available from B.F. Goodrich Co. of Richfield, OH; AMIGEL, PHYTO/CER and HAWAIIAN SEA PLANT EXTRACT are available from Tri-K-Chemical of Fairview, MT; Allantoin and GERMALL II are available from ISP Chemicals Inc. of Calvert City, KY; DEXPANTHENOL and Phytonadione are available from Roche Holdings, Inc. of Wilmington, DE; Methylparaben and Propylparaben are commercially available from Ueno Fine Chemicals Inc. of New York, NY AJIDEW N-50 is commercially available from Ajinomoto USA Inc. of Teaneck, NJ; BERNEL ESTER is commercially available from Bernel Chemical Co. of Englewood, NJ; PHYTOLANE is commercially available from Barnet Products Corporation of Englewood Cliffs, NJ; ARLACEL 60 is commercially available from ICI Americas Inc. of Wilmington, DE; EMERSOL 132

is commercially available from Henkel Corp. of Hoboken, NJ; DOW CORNING 200, 350 cs. is commercially available from Dow Corning Corp. of Auburn, MI; FINSOLV TN is commercially available from Finetex Inc. of Elmwood Park, NJ; HETOXOL D is commercially available from Heterene Chemical Co. of Paterson, NJ; NATURAL ORANGE EXTRACT #71689 is commercially available from Flavurence Corp. of Annandale, NJ; ACTIPLEX 1072 is commercially available from Active Organics Inc. of Lewisville, TX; PF-5 TALC JA-46R is commercially available from Kobo Products Inc. of South Plainfield, NJ; RAFFERMINE and REDUCTINE are commercially available from RITA Chemical Corp of East Northport, NY.

The Skin Perfecting Lotion was prepared by metering deionized water into a processing tank and mixing at high speed. CARBOPOL ULTREZ 10 was sprinkled in. When the CARBOPOL ULTREZ 10 was completely dispersed, AMIGEL was added and the mixture mixed until smooth and uniform. The mixture was heated to 80°C, the remaining Part A ingredients were added, and then mixed until uniform. In a separate tank, the Part B ingredients were combined and heated to 80°C until all the solids were completely dissolved. Part B was added to Part A and the resulting batch was mixed until uniform. Premixed Part C was added and the batch mixed until homogeneous. The batch was cooled to 40°C and the Part D ingredients were added and mixing continued until the temperature of the mixture was 35°C. The resulting Skin Perfecting Lotion was a light beige, opaque, viscous lotion having a pH at 25°C of 6.2 to 7.2 and a viscosity of 14,000 to 24,000 cps. (RVT: #5 @10 rpm @ 25°C).

Example 4: Acne Management Formula

A pharmaceutical composition according to the invention may be prepared for managing acne as set forth below:

	Ingredients	Trade Name/Supplier—	% by weight
Part A	Water (Aqua)	Deionized Water	55.3
25	Sclerotium Gum	AMIGEL/Alban Muller	0.4
	Disodium EDTA	HAM-ENE NA ₂ /Akzo	0.3
	Allantoin	Allantoin/ISP	0.2
	Methylparaben	Methylparaben/Ueno	0.3
30	Zinc Oxide	66 ZINC OXIDE	0.3
		U.S.P./Whitaker, Clark & Daniels	
Part B	Water (Aqua)	Deionized Water	10

	Hydrolyzed Oat Flour and Oat Betaglucan	RITAVENA 5/R.I.T.A.	2.8
5	Dicaprylyl maleate	BERNEL ESTER DCM/Bernel	3
	Glyceryl Stearate and PEG- 100 Stearate	ARLACEL 165/ICI	3
	Cetearyl Alcohol and Ceteareth-20	HEXOTOL D/Heterene	3
10	Propylparaben	Propylparaben/Ueno	0.1
	Part D Salicylic Acid	Salicylic Acid, powder, U.S.P.- N.F./Spectrum	1.3
	Sulfur	Sulfur, precipitated, U.S.P.- N.F./Spectrum	6.5
15	Part E Water (Aqua)	Deionized Water	3
	Sodium Hydroxide	Sodium Hydroxide, pellets, U.S.P.-N.F./Spectrum	0.1
	Glycolic Acid	GLYPURE 70% GLYCOLIC ACID/DuPont	6.5
20	Part F Orange (<i>Citrus Aurantium Dulcis</i>) Extract	ORANGE EXTRACT PRODUCT #61522/Sunkist	1.1
	Diazolidinyl Urea	GERMALL II/ISP	0.4
	Dipotassium Glycyrrhizate	Dipotassium Glycyrrhizinate/Int'l <u>Sourcing</u>	0.3
25	Lecithin and Tocopherol and Magnesium Ascorbyl Phosphate	OXYZOMES/Barnett	0.3
	Palmitoyl	GLYCOSPHERES PCO/Kobo	0.3
	Hydroxypropyltrimonium Amylopectin/Glycerin		
30	Crosspolymer and Lecithin and Grape (<i>Vitis Vinifera</i>) Seed Extract		

Part G	Hydrogen Peroxide	Hydrogen Peroxide, 35% solution, technical	1.5
			100.0

5 AMIGEL is commercially available from Alban Muller International of Vincennes, France; HAM-ENE
NA₂ is commercially available from Akzo Chemicals Inc. of Deer Park, TX; 66 ZINC OXIDE U.S.P.
is commercially available from Whitaker, Clark & Daniels of South Plainfield, NJ; Salicylic Acid,
powder, U.S.P.-N.F., Sulfur, precipitated, U.S.P.-N.F. and Sodium Hydroxide, pellets, U.S.P.-N.F. are
commercially available from Spectrum Mfg. Corp of New Brunswick, NJ; ORANGE EXTRACT
PRODUCT #61522 is commercially available from Sunkist Growers, Inc. of Van Nuys, CA;
Dipotassium Glycyrrhizinate is commercially available from International Sourcing Inc. of Upper
Saddle River, NJ.

10 The Acne Management Formula was prepared by metering deionized
water into a processing tank and mixing at high speed. AMIGEL was sprinkled in. When the
AMIGEL was completely dispersed, the mixture was heated to 85°C and the remaining Part
A ingredients were added and the mixture mixed well after each addition. In a separate tank,
Part B was heated to 100°C, mixed until smooth, cooled to 80°C and added to the batch. The
15 resulting batch was mixed well. In another tank, the Part C ingredients were heated to 75°C.
When all the solids dissolved, Part C was added to the batch, the batch was mixed until smooth
and uniform, and the batch cooled to 50°C. Part D ingredients were added to the batch, the
batch was homogenized for 5 to 10 minutes until the batch was smooth and uniform, and the
batch was cooled to 40°C. The deionized water of part E was premixed with the sodium
20 hydroxide pellets and the resulting solution was mixed well until all solids were dissolved.
While mixing the solution, glycolic acid was slowly added in increments and the solution was
mixed until homogeneous. The solution was added to the batch and the Part F ingredients were
added to the batch. The batch was mixed and cooled to 35°C. The Acne Management Formula
25 was a light yellow, opaque smooth lotion having a pH at 25°C of 3.8 to 4.8 and a viscosity of
10,000 to 20,000 cps. (RVT: #5 @10 rpm @ 25°C).

Example 5: Clarifying Skin Cleanser

A pharmaceutical composition according to the invention may be
30 prepared for managing acne as set forth below:

Ingredients	Trade Name/Supplier	% by weight
Part A Water (Aqua)	Deionized Water	48.5

	Sodium Lauroyl Oat Amino Acid	PROTEOL O.A.T./Seppic	2
5	Decyl Glucoside	ORAMIX NS-10/Seppic	3
	Cocamidopropyl Betaine	AMPHOSOL CA/Stephan	12.5
	Disodium Laureth Sulfosuccinate	MACKANATE EL/McIntyre	24
10	PEG-120 Methyl Glucose Dioleate	GLUCAMATE DOE-120/Amerchol	3.5
	Methylparaben	Methylparaben/Ueno	0.2
15	PEG-150 Pentaerythrityl Tetraesteareate	CROTHIX/Croda	0.25
	Part B Salicylic Acid	Salicylic Acid, powder, USP/Spectrum	2
	Tetrasodium EDTA	HAMP-ENE-100/Akzo	0.3
20	Triclosan	IRGASAN D300/Ciba Specialty Chemicals	0.2
	Part C PPG-26-Buteth-26 and PEG 40Hydrogenated castor Oil	SOLUBILISANT LRI/ Whittaker, Clark & Daniels	2
25	Fragrance	Fragrance-BELL #J7393/ Bell	0.3
	Menthol	Menthol Crystals, USP/ Spectrum	0.1
	Part D Butylene Glycol and water (aqua) and Black Cohosh (Cimicifuga Racemosa) Extract	ACTIPHYTE OF BLACK SNAKEROOT BG50/Active Organics	0.2
	Butylene Glycol and water (aqua) and Camellia Oleifera Extract	ACTIPHYTE OF JAPANESE GREEN TEA BG50/Active Organics	0.2
	Sodium PCA	AJIDEW N-50/Ajinomoto	0.4
30	Imidazolidinyl Urea	GERMALL 115/ISP	035
			100.0

PROTEAL O.A.T. is commercially available from Seppic Inc. of Fairfield, NJ ; AMPHOSOL CA is commercially available from Stephan Co. Inc. of Fort Lauderdale, FL ; GLUCAMATE DOE-120 is

commercially available from Amerchol Corp. of Edison, NJ; HAMP-ENE-100 is commercially available from Akzo Nobel Inc. of Dobbs Ferry, NY; SOLUBILISANT LRI is commercially available from Whitaker, Clark & Daniels of South Plainfield, NJ; GERMALL 115 is commercially available from ISP Chemicals Inc. of Calvert City, KY.

5 The Clarifying Skin Cleanser was prepared by metering deionized water into a processing tank, mixing, and heating to 75°C. The part A ingredients were added and mixed until all the solids dissolved. The resulting mixture was cooled to 60°C. In a separate vessel the Part B ingredients were combined. The Part B ingredients were then added to Part A and the resulting batch was mixed until uniform. The resulting mixture was cooled to 50°C. In a
10 separate vessel the Part C ingredients were mixed until uniform. The part C ingredients were added to the batch and the resulting batch was mixed until uniform. The batch was cooled to 40°C and the part D ingredients were added and mixing continued until uniform followed by cooling to 30°C. The Clarifying Skin Cleanser Formula was a pale yellow, slightly viscous liquid having a pH at 25°C of 4.5 to 5.5 and a viscosity of 5,000 to 9,000 cps. (RVT: # @10
15 rpm @ 25°C).

Example 6: Antimicrobial Effectiveness of the Invention - Advanced Acne Prone Skin
Formulation

20 Culture Preparation
20 *Escherichia coli* (ATCC # 8739), *Staphylococcus pureus* (ATCC # 6533), *Pseudomonas aeruginosa* (ATCC # 9027) were each propagated in Trypticase Soy Broth (TSB) at 35°C for 24 hrs. *Candida albicans* (ATCC # 10231), and *Aspergillus niger* (ATCC # 16404) were propagated in Yeast and Mold Broth (YM) at 24°C for 72 h. One loop of each bacteria culture was streaked onto Trypticase Soy Agar (TSA) and the yeast and mold onto
25 Sabouraud Dextrose Agar (SDA). The bacterial and yeast cultures were incubated for 24 h at 35°C and 48 h at 24°C, respectively. The mold culture was incubated for 5 days at 24°C. Following appropriate incubation, the surface growth of the organisms were washed with sterile Saline TS. Additional saline was added to reduce the microbial count. Each respective cell suspension was further diluted with sterile saline TS to an appropriate concentration.

30

Product Inoculation

Five 20-g portions of the Advanced Acne Prone Skin Formula of Example 2 was aseptically placed into sterile bottles. Each bottle was independently inoculated with 0.1 mL of the inoculum suspension.

5

Target Inoculation Concentration

A final concentration of 10^5 and 10^6 cfu/g of product was obtained. This spike suspension was assayed for each respective organism to determine the initial microbial load in the product. All enumeration analyses were performed by preparing serial 10-fold dilutions in Butterfield's Phosphate Buffered Diluent (BPBD), and then plated using the pour plate technique on respective media.

10

Test Intervals

15

An enumeration of the target organisms were performed on each inoculum. Immediately after inoculation (less than 1 minute), each product was assayed to determine the density of viable target organisms according to the pour plate technique. Each sample was tested again after 2 and 4 minutes. A 1-g portion was removed and mixed with 9.9 mL of BPBD. Serial dilutions were prepared as appropriate. Test samples containing bacterial cultures were plated with TSA and incubated for 48 h at 35°C. Samples containing yeast and mold were plated with SDA and incubated for 5 days at 24°C.

20

Results

The following results were obtained for each of the five organisms.

25

Test Organism: *Candida albicans* (ATOC # 10231)

Theoretical Inoculum Level: 400,000 cfu/g

30

Testing Schedule (Time: minutes)	Recovery Levels (cfu/g)
0 (less than 1)	<10
2	<10
4	<10

5 Test Organism: *Aspergillus niger* (ATCC # 16404)

Theoretical Inoculum Level: 160,000 cfu/g

Testing Schedule (Time: minutes)		Recovery Levels (cfu/g)
		Advanced Acne Prone Skin Formula
0 (less than 1)		<10
2		<10
4		<10

Test Organism: *Escherichia coli* (ATCC # 8739)

Theoretical Inoculum Level: 1,000,000 cfu/g

Testing Schedule (Time: minutes)		Recovery Levels (cfu/g)
		Advanced Acne Prone Skin Formula
0 (less than 1)		<10
2		<10
4		<10

20 Test Organism: *Staphylococcus aureus* (ATCC # 6538)

Theoretical Inoculum Level: 700,000

Testing Schedule (Time: minutes)		Recovery Levels (cfu/g)
		Advanced Acne Prone Skin Formula
0 (less than 1)		<10
2		<10
4		<10

Test Organism: *Pseudomonas aeruginosa* (ATCC # 9027)

Theoretical Inoculum Level: 260,000

Testing Schedule (Time: minutes)		Recovery Levels (cfu/g)
		Advanced Acne Prone Skin Formula
0 (less than 1)		<10

0 (less than 1)	<10
2	<10
4	<10

5

Discussion and Conclusion

The Advanced Acne Prone Skin Formulation prepared according to the present invention exhibited excellent antimicrobial properties. In less than one minute there was greater than a 99.99% reduction in levels of *Candida albicans*, *Escherichia coli*, *Staphylococcus aureus*, *Pseudomonas aeruginosa*, and *Aspergillus niger*.

10

Example 7: Antimicrobial Effectiveness of Another Formulation of the Invention - Clarifying Skin Cleanser

15

Culture Preparation

Escherichia coli (ATCC # 8739), *Staphylococcus pureus* (ATCC # 6533), and *Pseudomonas aeruginosa* (ATCC # 9027) were propagated in Trypticase Soy Broth (TSB) at 35°C for 24 h. *Candida albicans* (ATCC # 10231) and *Aspergillus niger* (ATCC # 16404) were propagated in Yeast and Mold Broth (YM) at 24°C for 72 h. One loop of each bacteria culture was streaked onto Trypticase Soy Agar (TSA) and the yeast and mold onto Sabouraud Dextrose Agar (SDA). The bacterial and yeast cultures were incubated for 24 h at 35°C and 48 h at 24°C, respectively. The mold culture was incubated for 5 days at 24°C. Following appropriate incubation, the surface growth of the organisms were washed with sterile Saline TS. Additional saline was added to reduce the microbial count. Each respective cell suspension was further diluted with sterile saline TS to an appropriate concentration.

20

25

Product Inoculation

Five 20-g portions of the Clarifying Skin Cleanser of Example 1 was aseptically placed into sterile bottles. Each bottle was independently inoculated with 0.1 mL of the inoculum suspension.

30

Target Inoculation Concentration

A final concentration of 10^5 and 10^6 cfu/g of product was obtained. This spike suspension was assayed for each respective organism to determine the initial microbial load in the product. All enumeration analyses were performed by preparing serial 10-fold dilution's in Butterfield's Phosphate Buffered Diluent (BPBD), and then plated using the pour plate technique on respective media.

Test Intervals

An enumeration of the target organisms were performed on each inoculum. Immediately after inoculation (less than 1 minute), each product was assayed to determine the density of viable target organisms according to the pour plate technique. Each sample was tested again after 2 and 4 minutes. A 1-g portion was removed and mixed with 9.9 mL of BPBD. Serial dilutions were prepared as appropriate. Test samples containing bacterial cultures were plated with TSA and incubated for 48 h at 35°C. Samples containing yeast and mold were plated with SDA and incubated for 5 days at 24°C.

15

Results

The following results were obtained for each of the five organisms.

Test Organism: *Candida albicans* (ATOC # 10231)

Theoretical Inoculum Level: 400,000 cfu/g

20

Testing Schedule (Time: minutes)	Recovery Levels (cfu/g)	
	Clarifying Skin Cleanser	
0 (less than 1)		25,000
2		20,000
4		14,000

Test Organism: *Aspergillus niger* (ATCC # 16404)

Theoretical Inoculum Level: 160,000 cfu/g

30

Testing Schedule (Time: minutes)	Recovery Levels (cfu/g)	
	Clarifying Skin Cleanser	
0 (less than 1)		1,400

2	1,200
4	1,000

Test Organism: *Escherichia coli* (ATCC # 8739)

Theoretical Inoculum Level: 1,000,000 cfu/g

5	Testing Schedule (Time: minutes)	Recovery Levels (cfu/g)	
		Clarifying Skin Cleanser	
	0 (less than 1)	<10	
	2	<10	
10	4	<10	

Test Organism: *Staphylococcus aureus* (ATCC # 6538)

Theoretical Inoculum Level: 700,000

15	Testing Schedule (Time: minutes)	Recovery Levels (cfu/g)	
		Clarifying Skin Cleanser	
	0 (less than 1)	<10	
	2	<10	
	4	<10	

20 Test Organism: *Pseudomonas aeruginosa* (ATCC # 9027)

Theoretical Inoculum Level: 260,000

25	Testing Schedule (Time: minutes)	Recovery Levels (cfu/g)	
		Clarifying Skin Cleanser	
	0 (less than 1)	<10	
	2	<10	
	4	<10	

Discussion and Conclusion

The Clarifying Skin Cleanser exhibited excellent antimicrobial properties. In less than one minute there was a >99.99% reduction in levels of *Escherichia coli*, *Staphylococcus aureus*, and *Pseudomonas aeruginosa*. In less than one minute, levels of *Aspergillus niger* and *Candida albicans* were reduced by 99.1% and 94.0%, respectively.

Example 8: Irritation Test Using the Invention

Irritation potential following epidermal contact by compositions prepared according to the invention was examined. Fifty-three subjects ranging from 18 to 77 were evaluated. The patients were administered 0.2 mL, or an amount sufficient to cover the upper back between the scapulae, of a 10 percent dilution of the formulation used in Example 2. The administration occurred by applying the composition to a 1" x 3/4" absorbent pad portion of an adhesive dressing, which was secured to the treatment site on each patient. The test material remained in contact for a total of 48 hours, and the test sites were evaluated at that time and at 72 hours (24 hours later) for changes using a 6-point scale ranging from no visible skin reaction up to severe erythema, possible edema, vesiculation, bullae and/or ulceration. One test subject did not complete the study. Observations indicated negative irritation throughout the test interval, i.e. no visible skin reaction on a single patient.

15

Example 9: Hydrogen Peroxide Stability Test

The formulations prepared according to Examples 1 of the invention having hydrogen peroxide, citric acid, salicylic acid, an antibacterial agent, and an amphoteric surfactant were heated to between 40°C to 45°C for three months in an oven test. The oxygen content of the formula which was assayed after the stability test, showed no more than 3 weight percent loss of the original hydrogen peroxide content. Such high stability provides an improved composition having a long shelf-life without substantial loss of efficacy.

25 Examples 10 - 12: Acne Treatment Regimen

An acne treatment regimen comprising Clarifying Cleanser, Advanced Acne Prone Skin Formula, Skin Perfecting Lotion and Acne Management Formula (Examples 1, 2, 3, and 4, respectively) was administered to 15 subjects. Subjects were evaluated after 2 weeks and 4 weeks use of the treatment regimen. Subjects were evaluated for total facial lesions, skin hydration and overall appearance of acne.

Testing of the Treatment Regimen

The acne treatment regimen comprising a ADVANCED ACNE PRONE SKIN FORMULA, SKIN PERFECTING LOTION, ACNE MANAGEMENT FORMULA, and CLARIFYING SKIN CLEANSER, prepared according to Examples 2, 3, 4, and 5, respectively, was administered to 15 subjects who exhibited a Grade 2-4 acne condition according to the 5 grading scale provided below:

0: Facial skin need not be perfectly clear. A few scattered comedones or papules may be present, but these should be visible only on close examination.

10 2: About one fourth of facial area is involved, with small papules and large or small comedones. A few pustules or large prominent papules may be present.

15 4: About half of facial area is involved, with small papules and large or small comedones. A few pustules or large prominent papules are usually present. (If lesions are large, subject may have Grade 4 severity, although less than half of facial area is involved).

6: About three-fourths of facial area is involved, with papules and/or large open comedones. (Lesser facial area of involvement is permissible if inflammatory lesions are large) numerous pustules are usually present, some of which may be large.

20 8: Practically all of facial area is involved, with lesions. Large prominent pustules are usually visible. Lesions are usually highly inflammatory. Other types of acne (such as conglobata, including sinus and cystic types).

On the first day of the study all subjects were acclimated to ambient temperature and relative humidity for fifteen minutes. After the equilibration period, a trained 25 technician examined each subject's face and recorded the number of inflammatory and non-inflammatory lesions in each of six sections of the face. The lesions of the six sections were totaled to obtain a global assessment score for each subject. Clinical photographs were taken in various poses for each subject and three Corneometer measurements were taken.

Subjects were provided with the treatment regimen and were given the 30 following instructions for the treatment regimen:

CLARIFYING CLEANSER: Apply twice per day (once in the morning and once in the evening). Pour a small amount into hand or wash cloth. Apply to dampened face and neck. Massage gently into full lather. Rinse

thoroughly with warm water and pat dry. Follow with ACNE PRONE SKIN FORMULA.

5 ACNE PRONE SKIN FORMULA: Apply after cleansing twice per daily (once in the morning and once in the evening). Apply a small amount to face and neck or areas affected with acne. Follow with SKIN PERFECTING LOTION.

SKIN PERFECTING LOTION: Use twice per day after cleansing and treating skin. Apply a small amount to face and neck.

10 ACNE MANAGEMENT FORMULA: Use twice a day after using CLARIFYING CLEANSER, ACNE PRONE SKIN FORMULA, and SKIN PERFECTING LOTION. Apply a small amount to affected area to spot treat.

Subjects were required to maintain a daily diary indicating date, time of use and comments. Subjects were permitted to use their customary make-up products during the study. However, subjects were instructed not to introduce any new cosmetic or facial treatment products during 15 the study. Following the two week test material use period subjects were evaluated for an interim count of total facial lesions, Corneometer readings and clinical photographs. After four weeks of test material use subjects returned with their diaries for a final lesion count, Corneometer readings and clinical photographs. Standard paired t-tests were used to determine statistically significant differences between baseline and two (2) and four (4) week total facial 20 lesion counts and Corneometer readings. Statistical significance exists for all p-values less than or equal to 0.05 at the 95% confidence level. Improvement scores for the appearance of acne in clinical photographs were analyzed using Z-tests.

A total of fourteen subjects finished the study. One subject was disqualified immediately for lack of compliance with the Inclusion Criteria of the protocol. A 25 review of the daily diaries indicated that four (4) subjects reported redness, burning, stinging and/or "irritation" during the study period. One (1) of the subjects reported the onset of redness and burning on day five (5) of the study immediately after product application and lasting for fifteen (15) to twenty (20) minutes. The subject was instructed to discontinue test material use on day ten (10) of the study. On day fourteen (14) the subject was examined by a doctor and 30 no evidence of skin irritation was observed. The subject was instructed to begin use of the treatment material at this time. The subject reported no evidence of irritation until day twenty four (24) of the study and completed study participation. No evidence of irritation was

observed at the final visit. The subjects reaction was diagnosed as dermatitis. The remaining subjects reported symptoms following one (1) to two (2) uses of the test material and completed study participation without further complaints.

5 Example 10: Total Lesion Count Following Treatment Regimen

The acne present on the skin of each subject was evaluated by visual examination using the grading scale described herein. The number of lesions on the face were counted at each visit. The number of open and closed comedones, as well as papules and pustules, were recorded. A global assessment score, the total of all lesions, was recorded for 10 each visit. Reductions in the global assessment score are indicative of a reduced incidence and/or severity of acne lesions. The data for total lesion count is provided below.

Total Lesion Count				
	Baseline	2 Weeks	4 Weeks	
15	Mean	44.4	33.4	27.6
	Mean Percent Difference from Baseline	-26%	-40%	
	σ	30%	22%	

20 The regimen showed a statistically significant decrease of twenty-six percent (26%) in the number of lesions observed after using the treatment regimen for two (2) weeks and a statistically significant decrease of forty (40%) after using the treatment regimen for four (4) weeks compared to baseline ($p=0.02$ and $p=1.07 \text{ E-}05$, respectively).

25 Example 11: Photographic Evaluation Following Treatment Regimen

Photographs of subjects were taken at designated visits using the Canfield Clinical System of imaging equipment. This particular system permits comparison of photographs to be made with the confidence that the only factors which may have changed are those resulting from treatment. This is achieved by precisely and reproducibly positioning 30 the head of the subject and carefully controlling the lighting, film type and processing. Photographs were visually assessed and evaluated by a trained technician before and after use of the test material. The following scoring scale was used for visual assessment of the skin:

1 = no improvement
 2 = slight improvement
 3 = mild improvement
 4 = moderate improvement
5 = extreme improvement

Improvement scores for the appearance of acne in clinical photographs were analyzed using Z-tests. For the two (2) and four (4) week scores, the number of subjects exhibiting improvements scoring a two (2), three (3), four (4) or five (5) was compared to the number of subjects exhibiting no improvement, scored as a one (1). The improvement assessment of the overall appearance of acne, rated from clinical photographs, is provided below.

Photographic Evaluation						
	Score:	1	2	3	4	5
Week 2	Number of Subjects Assigned each Score	5	5	2	2	0
	Percentage	35.7%	64.3%			
	Z-Score	-1.12				
Week 4	Number of Subjects Assigned each Score	4	4	5	1	0
	Percentage	28.6%	71.4%			
	Z-Score	-1.77				

The number of subjects exhibiting improvement from baseline in the overall appearance of acne at two (2) weeks was greater than subjects with no improvement. The Z-score obtained at two (2) weeks corresponds to improved skin appearance having a statistical significance at a 74% confidence level. In the four (4) week photograph the number of subjects exhibiting improvement from baseline in the overall appearance of acne was greater than subjects with no improvement. The Z-score obtained at four (4) weeks corresponds to improved skin appearance having statistical significance at a 92% confidence level.

30

Example 12: Moisturization via Corneometer Following Treatment Regimen

Changes in skin hydration were measured with a CORNEOMETER which is a commercially available instrument (CM-820, Courage and Khazaka Germany) designed to measure changes in the capacitance of the skin resulting from small changes in the degree of hydration. The CORNEOMETER expresses the capacitance of the skin in arbitrary unit of skin hydration (H). The instrument is capable of measuring the moisture of the stratum corneum to a depth of 0.1 mm and is used to measure the effects of cosmetic preparations on the moisture content of the skin. Tests using the CORNEOMETER were conducted by taking 5 measurements, one at the right and left cheek and one at the center of the skin, for each subject. The three measurements were then averaged for each subject. The data for skin 10 hydration (H) is provided below.

Skin Hydration (H)			
	Baseline	2 Weeks	4 Weeks
Mean	70.8	51.6	49.5
Mean Percent Difference from Baseline		-26%	-29%
σ		14%	12%

The regimen showed a statistically significant decrease in Skin 15 Hydration, H, of twenty-six percent (26%) after using the treatment regimen for two (2) weeks 20 and a statistically significant decrease of twenty-nine (29%) after using the treatment regimen four (4) weeks compared to baseline ($p=2.27 \times 10^{-5}$ and $p=5.38 \times 10^{-6}$, respectively). A loss in skin hydration is typically observed following treatment with anti-acne products.

Example 13: Skin Cleanser of Invention with Antifungal and Antibacterial Agents
25 A pharmaceutical composition according to the invention may be prepared for cleansing skin as set forth below:

	Ingredient	Trade Name/Supplier	% by Weight
30 Part A	Deionized Water	N/A	50
	Trisodium Ethylene-Diamine-Tetraacetic Acid (EDTA)	HAMP-ENE Na ₃ T/Akzo Nobel	0.2

	Sodium Laureth-13 Carboxylate	SURFINE WLL/Finetex	10
5	Disodium Laureth Sulfosuccinate	MACKANATE EL/McIntyre Group	17
	Disodium Cocoamphodiacetate	MONATERIC CDX-38/Mona	11
	PEG-150 Pentaerythrityl Tetrastearate	CROTHIX/Croda	1.5
	PEG-150 Distearate	KESSCO PEG 6000 DS/Stepan	0.7
	Methylparaben	N/A	0.2
10	Part B Clotrimazole	N/A	0.8
	Citric Acid	N/A	1.5
	Triclosan	IRGASAN DP300/Ciba	0.3
15	Part C PPG-26-Buteth-26, PEG-40 Hydrogenated Castor Oil	SOLUBILISANT LR1/Les Colorant Wackherr SA	2
	Fragrance (Parfum)	Fragrance - BELL #J7393/Bell Flavors and Fragrances	0.3
20	Menthol	Menthol Crystals, USP	0.1
	Part D Butylene Glycol, Deionized water, Black Cohosh (<i>Cimicifuga Racemosa</i>) Extract	ACTIPHYTE OF BLACK SNAKEROOT BG50/Active Organics	0.1
	Butylene Glycol, Deionized water, Camellia Oleifera Extract	ACTIPHYTE OF JAPANESE GREEN TEA BG50/Active Organics	0.1
	Sodium Peroxylinecarbolic Acid (PCA)	AJIDEW-50/Ajinomoto	0.2
	Cocamidopropyl PG-Dimonium Chloride Phosphate	PHOSPHOLIPID PTC/Mona	1
25	Part E Hydrogen Peroxide	Hydrogen Peroxide, 35% solution, technical	<u>3</u> 100%

Deionized water was metered into the processing tank and mixing subsequently began. The water was heated to 75 °C and the remainder of Part A was added and mixed until uniform. The mixture was cooled to 60 °C and the Part B ingredients were added and mixed until uniform. The mixture was then cooled to 50 °C. In a separate vessel, Part C was premixed until uniform and then added to the mixture of Parts A and B. Parts A, B, and

C were mixed until uniform and cooled to 40°C. The Part D ingredients were added and mixed until uniform, then cooled to 30°C. Part E was added and mixed until uniform, resulting in a colorless, clear, slightly viscous fluid having a pH at 25°C of between 4 to 6 and a viscosity between 3,000 to 4,000 cps (RVT: #4 @ 10 rpm @ 25°C).

5

Example 14: Skin Cleanser of Invention with Antifungal and Antibacterial Agents

A pharmaceutical composition according to the invention may be prepared for cleansing skin as set forth below:

	Ingredient	Trade Name/Supplier	% by Weight
10	Part A Deionized Water	N/A	50
	Trisodium Ethylene-Diamine-Tetraacetic Acid (EDTA)	HAMP-ENE Na ₃ T/Akzo Nobel	0.2
	Sodium Laureth-13 Carboxylate	SURFINE WLL/Finetex	10
	Disodium Laureth Sulfosuccinate	MACKANATE EL/McIntyre Group	17
	Disodium Cocoamphodiacetate	MONATERIC CDX-38/Mona	11
15	PEG-150 Pentaerythrityl Tetraesteareate	CROTHIX/Croda	1.5
	PEG-150 Distearate	KESSCO PEG 6000 DS/Stepan	.7
	Methylparaben	N/A	0.2
	Part B Ciclopirox Olamine	N/A	0.8
20	Citric Acid	N/A	—
	Triclosan	IRGASAN DP300/Ciba	0.3
	Part C PPG-26-Buteth-26, PEG-40 Hydrogenated Castor Oil	SOLUBILISANT LR1/Les Colorant Wackherr SA	2
	Fragrance (Parfum)	Fragrance - BELL #J7393/Bell Flavors and Fragrances	0.3
25	Menthol	Menthol Crystals, USP	0.1
	Part D Butylene Glycol, Deionized water, Black Cohosh (<i>Cimicifuga Racemosa</i>) Extract	ACTIPHYTE OF BLACK SNAKEROOT BG50/Active Organics	0.1
	Butylene Glycol, Deionized water, Camellia Oleifera Extract	ACTIPHYTE OF JAPANESE GREEN TEA BG50/Active Organics	0.1

	Sodium Peroxylinecarbolic Acid (PCA)	AJIDEW-50/Ajinomoto	0.2
	Cocamidopropyl PG-Dimonium Chloride Phosphate	PHOSPHOLIPID PTC/Mona	1
5	Part E Hydrogen Peroxide	Hydrogen Peroxide, 35% solution, technical	<u>3</u>
			100%

Deionized water was metered into the processing tank and mixing subsequently begun. The water was heated to 75 °C and the remainder of Part A was added and mixed until uniform. The mixture was cooled to 60°C and the Part B ingredients were added and mixed until uniform. The mixture was then cooled to 50°C. In a separate vessel, Part C was premixed until uniform and then added to the mixture of Parts A and B. Parts A, B, and C were mixed until uniform and cooled to 40°C. The Part D ingredients were added and mixed until uniform, then cooled to 30°C. Part E was added and mixed until uniform, resulting in a colorless, clear, slightly viscous fluid having a pH at 25°C of between 4 to 6 and a viscosity between 3,000 to 4,000 cps (RVT: #4 @ 10 rpm @ 25°C).

Various modifications of the invention in addition to those shown and described herein will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. The foregoing disclosure includes all the information deemed essential to enable those skilled in the art to practice the claimed invention.

25

30