Reinforcement Learning Winter 24/25 University of Tübingen

Prof. Dr. Georg Martius

Muhteshember

Karahan Sarıtaş Kıvanç Tezören Oğuz Ata Çal

Reinforcement Learning Winter 24/25

SAC

$$\mathcal{H}(\pi(\cdot \mid s_t)) = \mathbb{E}_{a \sim \pi(\cdot \mid s_t)}[-\log(P(\pi(a \mid s_t)))]$$

Optimal policy: Reward + entropy terms

$$\pi^* = \arg\max_{\pi} \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t \left(R(s_t, a_t, s_{t+1}) + \alpha \mathcal{H}(\pi(\cdot|s_t)) \right) \right]$$

2) Prioritized Experience Replay

Instead of uniform sampling, sample based on priority, calculated using TD error:

$$\delta = r + (1 - \mathrm{done}) \cdot \gamma \cdot (\min(Q_{\theta_1}(s', a'), Q_{\theta_2}(s', a')) - \alpha \log \pi(a'|s')) - Q_{\theta_i}(s, a)$$

1) Automatic Temperature Tuning

$$\alpha_t^* = \arg\min_{\alpha_t} \mathbb{E}_{\mathbf{a}_t \sim \pi_t^*} \left[-\alpha_t \log \pi_t^* (\mathbf{a}_t | \mathbf{s}_t; \alpha_t) - \alpha_t \mathcal{H}_0 \right]$$

Log trick to ensure non-negativity

$$\log \alpha_t^* = \arg \min_{\log \alpha_t} \mathbb{E}_{\mathbf{a}_t \sim \pi_t^*} \left[-e^{\log \alpha_t} (\log \pi_t^* (\mathbf{a}_t | \mathbf{s}_t) + \mathcal{H}_0) \right]$$

4) Pink Noise

Temporally correlated noise (colored noise) with β = 1.0

Soft Actor-Critic - Hyperparameter Selection

EBERHARD KARLS

Soft Actor-Critic - Hyperparameter Selection

UNIVERSITÄT TÜBINGEN

Parameter	Value
Number of hidden layers	2
Width of each hidden layer	256
Non-linearity	ReLU
Discount factor (γ)	0.99
Target update rate (τ)	0.005
Target update interval	1
Optimizer	Adam
Number of updates	Same as episode length K
Learning rate (η)	10^{-3}
Entropy coefficient (α)	Auto-tuned
Policy noise	0.2
Noise clip	0.5
Policy frequency	2
Batch size	256
Exploration noise exponent (β)	1.0 (Pink Noise)
Exploration noise deviation (σ)	0.1
Replay buffer size	10^{6}

Automatic entropy tuning is preferred.
PER is not used.
Pink noise is used as the exploration noise.
Discount factor is set to 0.99
Learning rate is set to 1e-3.

Soft Actor-Critic - Training

Reinforcement Learning Winter 24/25

1) Mirrored states and actions

2) Augmented reward

$$r_{
m aug} = 0.5 \cdot {
m reward_closeness_to_puck} \ + 2.0 \cdot {
m reward_touch_puck} \ + 1.0 \cdot {
m reward_puck_direction} \ + r_{
m w/l}.$$

- 3) Train against strong opponent
- 4) Self-play using POB with D-UCB

Opponents with worse performance or limited exposure receive more training attention

• Clipped Double Q-Learning (Twin critics): uses two critics to reduce overestimation bias.

$$y = r_t + \gamma \min_{i=1,2} Q_{\phi_{\text{targ},i}}(s_{t+1}, \tilde{a}_{t+1})$$

• **Delayed Policy Updates**: Actor updates happen less frequently to stabilize critic learning.

$$\tilde{a}_{t+1} = \pi_{\theta_{\text{targ}}}(s_{t+1}) + \epsilon, \quad \epsilon \sim \text{clip}(\mathcal{N}(0, \sigma), -c, c)$$

 Policy Smoothing: Adds noise to target actions to avoid exploiting Q-value spikes.

TD3 - Extensions

Reinforcement Learning Winter 24/25

• **Pink Noise**: Replaces standard Gaussian noise for smoother, more correlated exploration.

Random Network Distillation (RND): Adds an intrinsic reward for visiting novel states.

• Layer Normalization: Normalizes activations to stabilize training and improve convergence.

TD3 - Experiments

Introduced Q Function estimation with a deep neural network

$$L_i(\theta_i) = \mathbb{E}_{s,a,r,s'} \left[\left(y_i^{DQN} - Q(s, a; \theta_i) \right) \right]$$
$$y_i^{DQN} = r + \gamma \cdot \max_{\alpha'} Q(s', a'; \theta^-)$$

• θ^- are the target network parameters

- max uses the same value for action selection and evaluation
- Leads to overestimation
- Double DQN decouples selection and evaluation in training objective

$$y_i^{\text{DQN}} = r + \gamma \cdot \max_{\alpha'} Q(s', a'; \theta^-)$$

$$\downarrow \qquad \qquad \downarrow$$

$$y_i^{\text{DDQN}} = r + \gamma \cdot Q(s', \arg\max_{a'} Q(s', a'; \theta_i); \theta^-)$$

Splits Q estimator into Advantage and State-Value function estimators

Figure 1. A popular single stream Q-network (top) and the dueling Q-network (bottom). The dueling network has two streams to separately estimate (scalar) state-value and the advantages for each action; the green output module implements equation (9) to combine them. Both networks output Q-values for each action.

$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + \left(A(s, a; \theta, \alpha) - \frac{1}{|\mathcal{A}|} \sum_{a'} A(s, a'; \theta, \alpha)\right)$$

(Wang et al., 2016)

Performance of DQN Additions

Performance of DQN Additions

Reinforcement Learning Winter 24/25

Win Rate Against Strong Basic Opponent

- Double Dueling DQN (vs. SB Opp., Default Act. Spc.)
- Double Dueling DQN (vs SB Opp., Custom Act. Spc.)

Final Comparison

