STAT 341 - Worksheet 2/06/2019

Your Name (scribe	ne):	
Partner Name(s):		

- 1. Let $X_1, X_2, ..., X_n$ be a random sample of size n from the pdf $f_X(x;\alpha) = \frac{\alpha}{x^{\alpha+1}}, x \ge 1, \alpha > 1.$
 - a. Find a sufficient statistic for α .

b. Find the MLE of α .

c. Is the MLE sufficient for α ? Why or why not?

2.	Suppose we have <i>n</i> M&M's packages, each comprised of 18 individual M&M's. Assume that each package is a random sample of all M&M's made. We want to estimate <i>p</i> , the proportion of green M&M's for all packages of M&M's. a. What is the pdf for the number of green M&M's in one bag? Identify which components of the pdf are fixed and which are random.
	b. Find a sufficient statistic for p .
	c. Find the method of moments estimator of $\ p$.
	d. Find the MLE of p .

e.	Find the mean square error of the MLE.
f.	Is the MLE efficient? If not, what is its efficiency relative to the Cramer-Rao lower bound?

3. Find the method of moments estimators for each parameter of the gamma distribution, $f_{Y}(y;r,\lambda) = \frac{\lambda^{r}}{\Gamma(r)}y^{r-1}e^{-\lambda}, y \geq 0. \quad \text{Recall} \quad E(Y) = r/\lambda, Var(Y) = r/\lambda^{2}.$

4. Let $Y_1, Y_2, ..., Y_n$ be a random sample of size n from the pdf $f_Y(y; \theta) = \frac{1}{\theta} e^{-y/\theta}, y \ge 0$. Consider the estimators $\widehat{\theta}_1 = \overline{Y}, \widehat{\theta}_2 = Y_1$ and $\widehat{\theta}_3 = nY_{min}$. Calculate the variances of these estimators and then calculate the relative efficiencies of $\widehat{\theta}_1$ to $\widehat{\theta}_2$ and $\widehat{\theta}_1$ to $\widehat{\theta}_3$.