Parameterization

Josiah D. Kunz 08.04.14

Last Time...

 G4Beamline's disagreement likely due to precision error.

• EX:
$$(P_x, P_y, P_z)_{final} =$$

- 0.521128, 0.427832, 249.573
 $\Delta E = 0.392426$

• EX: $(P_x, P_y, P_z)_{final}$ = -0.521127, 0.427831, 249.572 $\Delta E = 0.393347$

• Histogram bin width is 0.00225.

Vavilov Region: $P \in (150, 180)$

- Recall $\beta = C(P) * L$
- $C(P) = [0] * (\frac{[1]}{P^2} + 1)$
- $\chi^2 = 1.29E-6$

Landau Region: $P \in (181,250)$ (Basic)

•
$$C(P) = [0] * (\frac{[1]}{P^2} + 1)$$

•
$$\chi^2 = 1.62E-5$$

Landau Region: $P \in (181,250)$ (Enge)

•
$$C(P) = [0]/(1 + Exp([1] + [2]u + [3]u^2)) + [5]$$

- u = x [4]
- $\chi^2 = 1.37E-5$

C(P) vs Initial Momentum: Enge

Landau Region: $P \in (181,250)$ (Fourier)

• $C(P) = [0]([1]\sin(v) + [2]\sin(2v) + [3]\sin(3v))$

•
$$v = \frac{x - [4]}{[5]}$$

• $\chi^2 = 4.68E-6$

X, PX Coupling

X, PX Coupling

Gaussian mu vs Transverse Momentum

Gaussian sigma vs Transverse Momentum

