

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	A2	(11) International Publication Number: WO 97/25426
C12N 15/12, C07K 14/47, 14/82, 14/15, C12Q 1/68, G01N 33/53, A61K 38/17, 39/00		(43) International Publication Date: 17 July 1997 (17.07.97)
(21) International Application Number: PCT/US97/00485		(81) Designated States: AL, AM, AT, AU, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 10 January 1997 (10.01.97)		
(30) Priority Data: 08/585,392 10 January 1996 (10.01.96) US 08/700,014 20 August 1996 (20.08.96) US		
(71) Applicant: CORIXA CORPORATION [US/US]; Suite 464, 1124 Columbia Street, Seattle, WA 98104 (US).		
(72) Inventors: FRUDAKIS, Tony, N.; Magnolia Station, 3211 West McGraw, P.O. Box 99232, Seattle, WA 98232-0232 (US). SMITH, John, M.; 208 - 116th Place S.E., Everett, WA 98208 (US). REED, Steven, G.; 2843 - 122nd Place N.E., Bellevue, WA 98005 (US).		
(74) Agents: MAKI, David, J. et al.; Seed and Berry L.L.P., 6300 Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-7092 (US).		

(54) Title: COMPOSITIONS AND METHODS FOR THE TREATMENT AND DIAGNOSIS OF BREAST CANCER

GENOMIC CLONE MAP

(57) Abstract

Compositions and methods for the detection and therapy of breast cancer are disclosed. The compounds provided include nucleotide sequences that are preferentially expressed in breast tumor tissue, as well as polypeptides encoded by such nucleotide sequences. Vaccines and pharmaceutical compositions comprising such compounds are also provided and may be used, for example, for the prevention and treatment of breast cancer. The polypeptides may also be used for the production of antibodies, which are useful for diagnosing and monitoring the progression of breast cancer in a patient.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

Description

COMPOSITIONS AND METHODS FOR THE TREATMENT
AND DIAGNOSIS OF BREAST CANCER

5

Technical Field

The present invention relates generally to the detection and therapy of breast cancer. The invention is more specifically related to nucleotide sequences that are preferentially expressed in breast tumor tissue and to polypeptides encoded by such

10 nucleotide sequences. The nucleotide sequences and polypeptides may be used in vaccines and pharmaceutical compositions for the prevention and treatment of breast cancer. The polypeptides may also be used for the production of compounds, such as antibodies, useful for diagnosing and monitoring the progression of breast cancer in a patient.

15

Background of the Invention

Breast cancer is a significant health problem for women in the United States and throughout the world. Although advances have been made in detection and treatment of the disease, breast cancer remains the second leading cause of cancer-related deaths in women, affecting more than 180,000 women in the United States each year. For women in North America, the life-time odds of getting breast cancer are now one in eight.

No vaccine or other universally successful method for the prevention or treatment of breast cancer is currently available. Management of the disease currently 25 relies on a combination of early diagnosis (through routine breast screening procedures) and aggressive treatment, which may include one or more of a variety of treatments such as surgery, radiotherapy, chemotherapy and hormone therapy. The course of treatment for a particular breast cancer is often selected based on a variety of prognostic parameters, including an analysis of specific tumor markers. *See, e.g.,* Porter-Jordan 30 and Lippman, *Breast Cancer* 8:73-100 (1994). However, the use of established markers often leads to a result that is difficult to interpret, and the high mortality

observed in breast cancer patients indicates that improvements are needed in the treatment, diagnosis and prevention of the disease.

Accordingly, there is a need in the art for improved methods for therapy and diagnosis of breast cancer. The present invention fulfills these needs and further
5 provides other related advantages.

Summary of the Invention

Briefly stated, the subject invention provides compositions and methods for the diagnosis and therapy of breast cancer. In one aspect, isolated DNA molecules
10 are provided, comprising (a) a nucleotide sequence preferentially expressed in breast cancer tissue, relative to normal tissue; (b) a variant of such a sequence that contains one or more nucleotide substitutions, deletions, insertions and/or modifications at no more than 20% (preferably no more than 5%) of the nucleotide positions, such that the antigenic and/or immunogenic properties of the polypeptide encoded by the nucleotide
15 sequence are retained; or (c) a nucleotide sequence encoding an epitope of a polypeptide encoded by at least one of the above sequences. In one embodiment, the isolated DNA molecule comprises a human endogenous retroviral sequence recited in SEQ ID NO:1. In other embodiments, the isolated DNA molecule comprises a nucleotide sequence recited in any one of SEQ ID NO:3 - SEQ ID NO:77 or SEQ ID
20 NOS: 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207,
209-214, 216, 218, 219, 221-227.

In related embodiments, the isolated DNA molecule encodes an epitope of a polypeptide, wherein the polypeptide is encoded by a nucleotide sequence that: (a) hybridizes to a sequence recited in any one of SEQ ID NO:1 or SEQ ID NO:3 - SEQ ID
25 NO:77 or SEQ ID NOS: 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-
204, 206, 207, 209-214, 216, 218, 219, 221-227 under stringent conditions; and (b) is at least 80% identical to a sequence recited in any one of SEQ ID NO:1 or SEQ ID NO:3 -
SEQ ID NO:77 or SEQ ID NOS: 142, 143, 146-152, 154-166, 168-176, 178-192, 194-
198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227; and wherein RNA
30 corresponding to said nucleotide sequence is expressed at a greater level in human breast tumor tissue than in normal breast tissue.

- In another embodiment, the present invention provides an isolated DNA molecule encoding an epitope of a polypeptide, the polypeptide being encoded by: (a) a nucleotide sequence transcribed from the sequence of SEQ ID NO: 141; or (b) a variant of said nucleotide sequence that contains one or more nucleotide substitutions, 5 deletions, insertions and/or modifications at no more than 20% of the nucleotide positions, such that the antigenic and/or immunogenic properties of the polypeptide encoded by the nucleotide sequence are retained. Isolated DNA and RNA molecules comprising a nucleotide sequence complementary to a DNA molecule as described above are also provided.
- 10 In related aspects, the present invention provides recombinant expression vectors comprising a DNA molecule as described above and host cells transformed or transfected with such expression vectors.
- 15 In further aspects, polypeptides, comprising an amino acid sequence encoded by a DNA molecule as described above, and monoclonal antibodies that bind to such polypeptides are provided.
- 20 In yet another aspect, methods are provided for determining the presence of breast cancer in a patient. In one embodiment, the method comprises detecting, within a biological sample, a polypeptide as described above. In another embodiment, the method comprises detecting, within a biological sample, an RNA molecule encoding a polypeptide as described above. In yet another embodiment, the method comprises (a) intradermally injecting a patient with a polypeptide as described above; and (b) detecting an immune response on the patient's skin and therefrom detecting the presence of breast cancer in the patient. In further embodiments, the present invention provides methods for determining the presence of breast cancer in a patient as described 25 above wherein the polypeptide is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO.: 78-86, SEQ ID NOS: 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220 and sequences that hybridize thereto under stringent conditions.
- 30 In a related aspect, diagnostic kits useful in the determination of breast cancer are provided. The diagnostic kits generally comprise either one or more monoclonal antibodies as described above, or one or more monoclonal antibodies that

bind to a polypeptide encoded by a nucleotide sequence selected from the group consisting of sequences provided in SEQ ID NOS: 78-86 and SEQ ID NOS: 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and a detection reagent.

Within a related aspect, the diagnostic kit comprises a first polymerase chain reaction primer and a second polymerase chain reaction primer, the first and second primers each comprising at least about 10 contiguous nucleotides of an RNA molecule as described above, or an RNA molecule encoding a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS: 78-86 and SEQ ID NOS: 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220.

10 Within another related aspect, the diagnostic kit comprises at least one oligonucleotide probe, the probe comprising at least about 15 contiguous nucleotides of a DNA molecule as described above, or a DNA molecule selected from the group consisting of SEQ ID NOS: 78-86 and SEQ ID NOS: 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220.

15 In another related aspect, the present invention provides methods for monitoring the progression of breast cancer in a patient. In one embodiment, the method comprises: (a) detecting an amount, in a biological sample, of a polypeptide as described above at a first point in time; (b) repeating step (a) at a subsequent point in time; and (c) comparing the amounts of polypeptide detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient. In another embodiment, the method comprises (a) detecting an amount, within a biological sample, of an RNA molecule encoding a polypeptide as described above at a first point in time; (b) repeating step (a) at a subsequent point in time; and (c) comparing the amounts of RNA molecules detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient. In yet other embodiments, the present invention provides methods for monitoring the progression of breast cancer in a patient as described above wherein the polypeptide is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO.: 78-86, SEQ ID NOS: 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220 and sequences that hybridize thereto under stringent conditions.

In still other aspects, pharmaceutical compositions, which comprise a polypeptide as described above in combination with a physiologically acceptable carrier, and vaccines, which comprise a polypeptide as described above in combination with an immune response enhancer or adjuvant are provided. In yet other aspects, the 5 present invention provides pharmaceutical compositions and vaccines comprising a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO.: 78-86, SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220 and sequences that hybridize thereto under stringent conditions.

10 In related aspects, the present invention provides methods for inhibiting the development of breast cancer in a patient, comprising administering to a patient a pharmaceutical composition or vaccine as described above.

15 These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

Brief Description of the Drawings

Figure 1 shows the differential display PCR products, separated by gel 20 electrophoresis, obtained from cDNA prepared from normal breast tissue (lanes 1 and 2) and from cDNA prepared from breast tumor tissue from the same patient (lanes 3 and 4). The arrow indicates the band corresponding to B18Ag1.

Figure 2 is a northern blot comparing the level of B18Ag1 mRNA in breast tumor tissue (lane 1) with the level in normal breast tissue.

25 Figure 3 shows the level of B18Ag1 mRNA in breast tumor tissue compared to that in various normal and non-breast tumor tissues as determined by RNase protection assays.

Figure 4 is a genomic clone map showing the location of additional retroviral sequences obtained from ends of XbaI restriction digests (provided in SEQ ID 30 NO:3 - SEQ ID NO:10) relative to B18Ag1.

Figures 5A and 5B show the sequencing strategy, genomic organization and predicted open reading frame for the retroviral element containing B18Ag1.

Figure 6 shows the nucleotide sequence of the representative breast tumor-specific cDNA B18Ag1.

5 Figure 7 shows the nucleotide sequence of the representative breast tumor-specific cDNA B17Ag1.

Figure 8 shows the nucleotide sequence of the representative breast tumor-specific cDNA B17Ag2.

10 Figure 9 shows the nucleotide sequence of the representative breast tumor-specific cDNA B13Ag2a.

Figure 10 shows the nucleotide sequence of the representative breast tumor-specific cDNA B13Ag1b.

Figure 11 shows the nucleotide sequence of the representative breast tumor-specific cDNA B13Ag1a.

15 Figure 12 shows the nucleotide sequence of the representative breast tumor-specific cDNA B11Ag1.

Figure 13 shows the nucleotide sequence of the representative breast tumor-specific cDNA B3CA3c.

20 Figure 14 shows the nucleotide sequence of the representative breast tumor-specific cDNA B9CG1.

Figure 15 shows the nucleotide sequence of the representative breast tumor-specific cDNA B9CG3.

Figure 16 shows the nucleotide sequence of the representative breast tumor-specific cDNA B2CA2.

25 Figure 17 shows the nucleotide sequence of the representative breast tumor-specific cDNA B3CA1.

Figure 18 shows the nucleotide sequence of the representative breast tumor-specific cDNA B3CA2.

30 Figure 19 shows the nucleotide sequence of the representative breast tumor-specific cDNA B3CA3.

Figure 20 shows the nucleotide sequence of the representative breast tumor-specific cDNA B4CA1.

Figure 21A depicts RT-PCR analysis of breast tumor genes in breast tumor tissues (lanes 1-8) and normal breast tissues (lanes 9-13) and H₂O (lane 14).

5 Figure 21B depicts RT-PCR analysis of breast tumor genes in prostate tumors (lane 1,2), colon tumors (lane 3), lung tumor (lane 4), normal prostate (lane 5), normal colon (lane 6), normal kidney (lane 7), normal liver (lane 8), normal lung (lane 9), normal ovary (lanes 10, 18), normal pancreases (lanes 11, 12), normal skeletal muscle (lane 13), normal skin (lane 14), normal stomach (lane 15), normal testes (lane 10 16), normal small intestine (lane 17), HBL-100 (lane 19), MCF-12A (lane 20), breast tumors (lanes 21-23), H₂O (lane 24), and colon tumor (lane 25).

Detailed Description of the Invention

As noted above, the present invention is generally directed to 15 compositions and methods for the diagnosis, monitoring and therapy of breast cancer. The compositions described herein include polypeptides, nucleic acid sequences and antibodies. Polypeptides of the present invention generally comprise at least a portion of a protein that is expressed at a greater level in human breast tumor tissue than in normal breast tissue (*i.e.*, the level of RNA encoding the polypeptide is at least 2-fold 20 higher in tumor tissue). Such polypeptides are referred to herein as breast tumor-specific polypeptides, and cDNA molecules encoding such polypeptides are referred to as breast tumor-specific cDNAs. Nucleic acid sequences of the subject invention generally comprise a DNA or RNA sequence that encodes all or a portion of a polypeptide as described above, or that is complementary to such a sequence. 25 Antibodies are generally immune system proteins, or fragments thereof, that are capable of binding to a portion of a polypeptide as described above. Antibodies can be produced by cell culture techniques, including the generation of monoclonal antibodies as described herein, or via transfection of antibody genes into suitable bacterial or mammalian cell hosts, in order to allow for the production of recombinant antibodies.

30 Polypeptides within the scope of this invention include, but are not limited to, polypeptides (and epitopes thereof) encoded by a human endogenous

retroviral sequence, such as the sequence designated B18Ag1 (Figure 5 and SEQ ID NO:1). Also within the scope of the present invention are polypeptides encoded by other sequences within the retroviral genome containing B18Ag1 (SEQ ID NO: 141). Such sequences include, but are not limited to, the sequences recited in SEQ ID NO:3 - 5 SEQ ID NO:10. B18Ag1 has homology to the *gag* p30 gene of the endogenous human retroviral element S71, as described in Werner et al., *Virology* 174:225-238 (1990) and also shows homology to about thirty other retroviral *gag* genes. As discussed in more detail below, the present invention also includes a number of additional breast tumor-specific polypeptides, such as those encoded by the nucleotide sequences recited in 10 SEQ ID NO:11 - SEQ ID NO:77 and SEQ ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227. As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full length proteins containing the sequences recited herein. A polypeptide comprising an epitope of a protein containing a sequence as described herein may consist entirely 15 of the epitope, or may contain additional sequences. The additional sequences may be derived from the native protein or may be heterologous, and such sequences may (but need not) possess immunogenic or antigenic properties.

An "epitope," as used herein is a portion of a polypeptide that is recognized (*i.e.*, specifically bound) by a B-cell and/or T-cell surface antigen receptor. 20 Epitopes may generally be identified using well known techniques, such as those summarized in Paul, *Fundamental Immunology*, 3rd ed., 243-247 (Raven Press, 1993) and references cited therein. Such techniques include screening polypeptides derived from the native polypeptide for the ability to react with antigen-specific antisera and/or T-cell lines or clones. An epitope of a polypeptide is a portion that reacts with such 25 antisera and/or T-cells at a level that is similar to the reactivity of the full length polypeptide (*e.g.*, in an ELISA and/or T-cell reactivity assay). Such screens may generally be performed using methods well known to those of ordinary skill in the art, such as those described in Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988. B-cell and T-cell epitopes may also be predicted via 30 computer analysis. Polypeptides comprising an epitope of a polypeptide that is

preferentially expressed in a tumor tissue (with or without additional amino acid sequence) are within the scope of the present invention.

The compositions and methods of the present invention also encompass variants of the above polypeptides and nucleic acid sequences encoding such 5 polypeptides. A polypeptide "variant," as used herein, is a polypeptide that differs from the native polypeptide in substitutions and/or modifications, such that the antigenic and/or immunogenic properties of the polypeptide are retained. Such variants may generally be identified by modifying one of the above polypeptide sequences and evaluating the reactivity of the modified polypeptide with antisera and/or T-cells as 10 described above. Nucleic acid variants may contain one or more substitutions, deletions, insertions and/or modifications such that the antigenic and/or immunogenic properties of the encoded polypeptide are retained. One preferred variant of the polypeptides described herein is a variant that contains nucleotide substitutions, deletions, insertions and/or modifications at no more than 20% of the nucleotide 15 positions.

Preferably, a variant contains conservative substitutions. A "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the 20 polypeptide to be substantially unchanged. In general, the following groups of amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.

Variants may also (or alternatively) be modified by, for example, the 25 deletion or addition of amino acids that have minimal influence on the immunogenic or antigenic properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other 30 sequence for ease of synthesis, purification or identification of the polypeptide (e.g.,

poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

In general, nucleotide sequences encoding all or a portion of the polypeptides described herein may be prepared using any of several techniques. For 5 example, cDNA molecules encoding such polypeptides may be cloned on the basis of the breast tumor-specific expression of the corresponding mRNAs, using differential display PCR. This technique compares the amplified products from RNA template prepared from normal and breast tumor tissue. cDNA may be prepared by reverse transcription of RNA using a (dT)₁₂AG primer. Following amplification of the cDNA 10 using a random primer, a band corresponding to an amplified product specific to the tumor RNA may be cut out from a silver stained gel and subcloned into a suitable vector (e.g., the T-vector, Novagen, Madison, WI). Nucleotide sequences encoding all or a portion of the breast tumor-specific polypeptides disclosed herein may be amplified from cDNA prepared as described above using the random primers shown in SEQ ID 15 NO.:87-125.

Alternatively, a gene encoding a polypeptide as described herein (or a portion thereof) may be amplified from human genomic DNA, or from breast tumor cDNA, via polymerase chain reaction. For this approach, B18Ag1 sequence-specific primers may be designed based on the sequence provided in SEQ ID NO:1, and may be 20 purchased or synthesized. One suitable primer pair for amplification from breast tumor cDNA is (5'ATG GCT ATT TTC GGG GGC TGA CA) (SEQ ID NO.:126) and (5'CCG GTA TCT CCT CGT GGG TAT T) (SEQ ID NO.:127). An amplified portion of B18Ag1 may then be used to isolate the full length gene from a human genomic 25 DNA library or from a breast tumor cDNA library, using well known techniques, such as those described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY (1989). Other sequences within the retroviral genome of which B18Ag1 is a part may be similarly prepared by screening human genomic libraries using B18Ag1-specific sequences as probes. Nucleotides translated into protein from the retroviral genome shown in SEQ ID NO: 30 141 may then be determined by cloning the corresponding cDNAs, predicting the open reading frames and cloning the appropriate cDNAs into a vector containing a viral

promoter, such as T7. The resulting constructs can be employed in a translation reaction, using techniques known to those of skill in the art, to identify nucleotide sequences which result in expressed protein. Similarly, primers specific for the remaining breast tumor-specific polypeptides described herein may be designed based
5 on the nucleotide sequences provided in SEQ ID NO:11 - SEQ ID NO:86 and SEQ ID NO:142-SEQ ID NO:226.

Recombinant polypeptides encoded by the DNA sequences described above may be readily prepared from the DNA sequences. For example, supernatants from suitable host/vector systems which secrete recombinant protein or polypeptide
10 into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant polypeptide.

In general, any of a variety of expression vectors known to those of
15 ordinary skill in the art may be employed to express recombinant polypeptides of this invention. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a
20 mammalian cell line such as COS or CHO.

Such techniques may also be used to prepare polypeptides comprising epitopes or variants of the native polypeptides. For example, variants of a native polypeptide may generally be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis, and sections of the DNA sequence
25 may be removed to permit preparation of truncated polypeptides. Portions and other variants having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may also be generated by synthetic means, using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield
30 solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, *J. Am. Chem. Soc.* 85:2149-2146 (1963). Equipment

for automated synthesis of polypeptides is commercially available from suppliers such as Applied BioSystems, Inc., Foster City, CA, and may be operated according to the manufacturer's instructions.

In specific embodiments, polypeptides of the present invention
5 encompass amino acid sequences encoded by a DNA molecule having a sequence recited in any one of SEQ ID NO:1 or SEQ ID NO:3 - SEQ ID NO:77 or SEQ ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-
214, 216, 218, 219, 221-227, variants of such polypeptides that are encoded by DNA molecules containing one or more nucleotide substitutions, deletions, insertions and/or
10 modifications at no more than 20% of the nucleotide positions, and epitopes of the above polypeptides. Polypeptides within the scope of the present invention also include polypeptides (and epitopes thereof) encoded by DNA sequences that hybridize to a DNA molecule having a sequence recited in any one of SEQ ID NO:1 or SEQ ID NO:3 - SEQ ID NO:77 or SEQ ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-
15 198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227 under stringent conditions, wherein the DNA sequences are at least 80% identical in overall sequence to a recited sequence and wherein RNA corresponding to the nucleotide sequence is expressed at a greater level in human breast tumor tissue than in normal breast tissue. As used herein, "stringent conditions" refers to prewashing in a solution of 6X SSC, 0.2% SDS;
20 hybridizing at 65°C, 6X SSC, 0.2% SDS overnight; followed by two washes of 30 minutes each in 1X SSC, 0.1% SDS at 65°C and two washes of 30 minutes each in 1 X SSC, 0.1% SDS at 65°C. DNA molecules according to the present invention include molecules that encode any of the above polypeptides.

In another aspect of the present invention, antibodies are provided. Such
25 antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988. In one such technique, an immunogen comprising the polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep or goats). In this step, the polypeptides of this invention
30 may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the

polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific
5 for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

Monoclonal antibodies specific for the antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, *Eur. J. Immunol.* 6:511-519 (1976), and improvements thereto. Briefly, these methods involve
10 the preparation of immortal cell lines capable of producing antibodies having the desired specificity (*i.e.*, reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized
15 animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks,
20 colonies of hybrids are observed. Single colonies are selected and their culture supernatants tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to
25 enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the
30 purification process in, for example, an affinity chromatography step.

Antibodies may be used, for example, in methods for detecting breast cancer in a patient. Such methods involve using an antibody to detect the presence or absence of a breast tumor-specific polypeptide as described herein in a suitable biological sample. As used herein, suitable biological samples include tumor or normal tissue biopsy, mastectomy, blood, lymph node, serum or urine samples, or other tissue, homogenate, or extract thereof obtained from a patient.

There are a variety of assay formats known to those of ordinary skill in the art for using an antibody to detect polypeptide markers in a sample. See, e.g., Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988. For example, the assay may be performed in a Western blot format, wherein a protein preparation from the biological sample is submitted to gel electrophoresis, transferred to a suitable membrane and allowed to react with the antibody. The presence of the antibody on the membrane may then be detected using a suitable detection reagent, as described below.

In another embodiment, the assay involves the use of antibody immobilized on a solid support to bind to the polypeptide and remove it from the remainder of the sample. The bound polypeptide may then be detected using a second antibody or reagent that contains a reporter group. Alternatively, a competitive assay may be utilized, in which a polypeptide is labeled with a reporter group and allowed to bind to the immobilized antibody after incubation of the antibody with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the antibody is indicative of the reactivity of the sample with the immobilized antibody, and as a result, indicative of the concentration of polypeptide in the sample.

The solid support may be any material known to those of ordinary skill in the art to which the antibody may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose filter or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681.

The antibody may be immobilized on the solid support using a variety of techniques known to those in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment

5 (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the antibody, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature,

10 but is typically between about 1 hour and 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of antibody ranging from about 10 ng to about 1 µg, and preferably about 100-200 ng, is sufficient to immobilize an adequate amount of polypeptide.

Covalent attachment of antibody to a solid support may also generally be

15 achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the antibody. For example, the antibody may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see,

20 e.g., Pierce Immunotechnology Catalog and Handbook (1991) at A12-A13).

In certain embodiments, the assay for detection of polypeptide in a sample is a two-antibody sandwich assay. This assay may be performed by first contacting an antibody that has been immobilized on a solid support, commonly the well of a microtiter plate, with the biological sample, such that the polypeptide within

25 the sample are allowed to bind to the immobilized antibody. Unbound sample is then removed from the immobilized polypeptide-antibody complexes and a second antibody (containing a reporter group) capable of binding to a different site on the polypeptide is added. The amount of second antibody that remains bound to the solid support is then determined using a method appropriate for the specific reporter group.

30 More specifically, once the antibody is immobilized on the support as described above, the remaining protein binding sites on the support are typically

blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20TM (Sigma Chemical Co., St. Louis, MO). The immobilized antibody is then incubated with the sample, and polypeptide is allowed to bind to the antibody. The sample may be diluted with a suitable diluent, such as 5 phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (*i.e.*, incubation time) is that period of time that is sufficient to detect the presence of polypeptide within a sample obtained from an individual with breast cancer. Preferably, the contact time is sufficient to achieve a level of binding that is at least 95% of that achieved at equilibrium between bound and unbound polypeptide. Those 10 of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support 15 with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. The second antibody, which contains a reporter group, may then be added to the solid support. Preferred reporter groups include enzymes (such as horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups and biotin. The conjugation of antibody to reporter group may be achieved using standard 20 methods known to those of ordinary skill in the art.

The second antibody is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound polypeptide. An appropriate amount of time may generally be determined by assaying the level of binding that occurs over a period of time. Unbound second antibody is then removed 25 and bound second antibody is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different 30 reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a

specific period of time), followed by spectroscopic or other analysis of the reaction products.

To determine the presence or absence of breast cancer, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value established from non-tumor tissue. In one preferred embodiment, the cut-off value is the average mean signal obtained when the immobilized antibody is incubated with samples from patients without breast cancer. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value may be considered positive for breast cancer. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., *Clinical Epidemiology: A Basic Science for Clinical Medicine*, p. 106-7 (Little Brown and Co., 1985). Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (*i.e.*, sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (*i.e.*, the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for breast cancer.

In a related embodiment, the assay is performed in a flow-through or strip test format, wherein the antibody is immobilized on a membrane, such as nitrocellulose. In the flow-through test, the polypeptide within the sample bind to the immobilized antibody as the sample passes through the membrane. A second, labeled antibody then binds to the antibody-polypeptide complex as a solution containing the second antibody flows through the membrane. The detection of bound second antibody may then be performed as described above. In the strip test format, one end of the membrane to which antibody is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing second antibody

and to the area of immobilized antibody. Concentration of second antibody at the area of immobilized antibody indicates the presence of breast cancer. Typically, the concentration of second antibody at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, 5 the amount of antibody immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of polypeptide that would be sufficient to generate a positive signal in the two-antibody sandwich assay, in the format discussed above. Preferably, the amount of antibody immobilized on the membrane ranges from about 25 ng to about 1 µg, and more preferably from about 10 50 ng to about 1 µg. Such tests can typically be performed with a very small amount of biological sample.

The presence or absence of breast cancer in a patient may also be determined by evaluating the level of mRNA encoding a breast tumor-specific polypeptide as described herein within the biological sample (e.g., a biopsy, 15 mastectomy and/or blood sample from a patient) relative to a predetermined cut-off value. Such an evaluation may be achieved using any of a variety of methods known to those of ordinary skill in the art such as, for example, *in situ* hybridization and amplification by polymerase chain reaction. For example, polymerase chain reaction may be used to amplify sequences from cDNA prepared from RNA that is isolated from 20 one of the above biological samples. Sequence-specific primers for use in such amplification may be designed based on the sequences provided in any one of SEQ ID NO:1 or SEQ ID NO:11 - SEQ ID NO:86 and SEQ ID NO:142-SEQ ID NO:226, and may be purchased or synthesized. In the case of B18Ag1, as noted herein, one suitable primer pair is B18Ag1-2 (5'ATG GCT ATT TTC GGG GGC TGA CA) (SEQ ID 25 NO.:126) and B18Ag1-3 (5'CCG GTA TCT CCT CGT GGG TAT T) (SEQ ID NO.:127). The PCR reaction products may then be separated by gel electrophoresis and visualized according to methods well known to those of ordinary skill in the art. Amplification is typically performed on samples obtained from matched pairs of tissue (tumor and non-tumor tissue from the same individual) or from unmatched pairs of 30 tissue (tumor and non-tumor tissue from different individuals). The amplification reaction is preferably performed on several dilutions of cDNA spanning two orders of

magnitude. A two-fold or greater increase in expression in several dilutions of the tumor sample as compared to the same dilution of the non-tumor sample is considered positive.

Conventional RT-PCR protocols using agarose and ethidium bromide staining while important in defining gene specificity do not lend themselves to diagnostic kit development because of the time and effort required in making them quantitative (i.e., construction of saturation and/or titration curves), and their sample throughput. This problem is overcome by the development of procedures such as real time RT-PCR which allows for assays to be performed in single tubes, and in turn can 10 be modified for use in 96 well plate formats. Instrumentation to perform such methodologies are available from ABI/Perkin Elmer. Alternatively, other high throughput assays using labelled probes (e.g., digoxigenin) in combination with labelled (e.g., enzyme fluorescent, radioactive) antibodies to such probes can also be used in the development of 96 well plate assays.

15 In yet another method for determining the presence or absence of breast cancer in a patient, one or more of the breast tumor-specific polypeptides described may be used in a skin test. As used herein, a "skin test" is any assay performed directly on a patient in which a delayed-type hypersensitivity (DTH) reaction (such as swelling, reddening or dermatitis) is measured following intradermal injection of one or more 20 polypeptides as described above. Such injection may be achieved using any suitable device sufficient to contact the polypeptide or polypeptides with dermal cells of the patient, such as a tuberculin syringe or 1 mL syringe. Preferably, the reaction is measured at least 48 hours after injection, more preferably 48-72 hours.

The DTH reaction is a cell-mediated immune response, which is greater 25 in patients that have been exposed previously to a test antigen (i.e., an immunogenic portion of a polypeptide employed, or a variant thereof). The response may be measured visually, using a ruler. In general, a response that is greater than about 0.5 cm in diameter, preferably greater than about 5.0 cm in diameter, is a positive response, indicative of breast cancer.

30 The breast tumor-specific polypeptides described herein are preferably formulated, for use in a skin test, as pharmaceutical compositions containing at least

one polypeptide and a physiologically acceptable carrier, such as water, saline, alcohol, or a buffer. Such compositions typically contain one or more of the above polypeptides in an amount ranging from about 1 µg to 100 µg, preferably from about 10 µg to 50 µg in a volume of 0.1 mL. Preferably, the carrier employed in such pharmaceutical compositions is a saline solution with appropriate preservatives, such as phenol and/or Tween 80™.

In other aspects of the present invention, the progression and/or response to treatment of a breast cancer may be monitored by performing any of the above assays over a period of time, and evaluating the change in the level of the response (*i.e.*, the amount of polypeptide or mRNA detected or, in the case of a skin test, the extent of the immune response detected). For example, the assays may be performed every month to every other month for a period of 1 to 2 years. In general, breast cancer is progressing in those patients in whom the level of the response increases over time. In contrast, breast cancer is not progressing when the signal detected either remains constant or decreases with time.

In further aspects of the present invention, the compounds described herein may be used for the immunotherapy of breast cancer. In these aspects, the compounds (which may be polypeptides, antibodies or nucleic acid molecules) are preferably incorporated into pharmaceutical compositions or vaccines. Pharmaceutical compositions comprise one or more such compounds and a physiologically acceptable carrier. Vaccines may comprise one or more polypeptides and an immune response enhancer, such as an adjuvant or a liposome (into which the compound is incorporated). Pharmaceutical compositions and vaccines may additionally contain a delivery system, such as biodegradable microspheres which are disclosed, for example, in U.S. Patent Nos. 4,897,268 and 5,075,109. Pharmaceutical compositions and vaccines within the scope of the present invention may also contain other compounds, including one or more separate polypeptides.

Alternatively, a vaccine may contain DNA encoding one or more of the polypeptides as described above, such that the polypeptide is generated *in situ*. In such vaccines, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacteria and

viral expression systems. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as *Bacillus-Calmette-Guerrin*) that expresses an immunogenic portion 5 of the polypeptide on its cell surface. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. The DNA may also be "naked," as 10 described, for example, in Ulmer et al., *Science* 259:1745-1749 (1993), and reviewed by Cohen, *Science* 259:1691-1692 (1993). The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

While any suitable carrier known to those of ordinary skill in the art may 15 be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, 20 cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactate polyglycolate) may also be employed as carriers for the pharmaceutical compositions of this invention.

Any of a variety of adjuvants may be employed in the vaccines of this 25 invention to nonspecifically enhance the immune response. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, *Bordetella pertussis* or *Mycobacterium tuberculosis* derived proteins. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI), Merck Adjuvant 65 (Merck 30 and Company, Inc., Rahway, NJ), alum, biodegradable microspheres, monophosphoryl

lipid A and quil A. Cytokines, such as GM-CSF or interleukin-2, -7, or -12, may also be used as adjuvants.

The above pharmaceutical compositions and vaccines may be used, for example, for the therapy of breast cancer in a patient. As used herein, a "patient" refers 5 to any warm-blooded animal, preferably a human. A patient may or may not be afflicted with breast cancer. Accordingly, the above pharmaceutical compositions and vaccines may be used to prevent the development of breast cancer or to treat a patient afflicted with breast cancer. To prevent the development of breast cancer, a pharmaceutical composition or vaccine comprising one or more polypeptides as 10 described herein may be administered to a patient. Alternatively, naked DNA or plasmid or viral vector encoding the polypeptide may be administered. For treating a patient with breast cancer, the pharmaceutical composition or vaccine may comprise one or more polypeptides, antibodies or nucleotide sequences complementary to DNA encoding a polypeptide as described herein (e.g., antisense RNA or antisense 15 deoxyribonucleotide oligonucleotides).

Routes and frequency of administration, as well as dosage, will vary from individual to individual. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Between 1 20 and 10 doses may be administered for a 52-week period. Preferably, 6 doses are administered, at intervals of 1 month, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of a compound that, when administered as described above, is capable of promoting an anti-tumor immune response. Such response can be 25 monitored by measuring the anti-tumor antibodies in a patient or by vaccine-dependent generation of cytolytic effector cells capable of killing the patient's tumor cells *in vitro*. Such vaccines should also be capable of causing an immune response that leads to an improved clinical outcome (e.g., more frequent remissions, complete or partial or longer disease-free survival) in vaccinated patients as compared to non-vaccinated 30 patients. In general, for pharmaceutical compositions and vaccines comprising one or more polypeptides, the amount of each polypeptide present in a dose ranges from about

100 µg to 5 mg. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.

The following Examples are offered by way of illustration and not by
5 way of limitation.

EXAMPLES

Example 1Preparation of Breast Tumor-Specific cDNAs Using Differential Display RT-PCR

5

This Example illustrates the preparation of cDNA molecules encoding breast tumor-specific polypeptides using a differential display screen.

A. Preparation of B18Ag1 cDNA and Characterization of mRNA Expression

10 Tissue samples were prepared from breast tumor and normal tissue of a patient with breast cancer that was confirmed by pathology after removal from the patient. Normal RNA and tumor RNA was extracted from the samples and mRNA was isolated and converted into cDNA using a (dT)₁₂AG (SEQ ID NO.:130) anchored 3' primer. Differential display PCR was then executed using a randomly chosen primer
15 (CTTCAACCTC) (SEQ ID NO.:103). Amplification conditions were standard buffer containing 1.5 mM MgCl₂, 20 pmol of primer, 500 pmol dNTP, and 1 unit of *Taq* DNA polymerase (Perkin-Elmer, Branchburg, NJ). Forty cycles of amplification were performed using 94°C denaturation for 30 seconds, 42°C annealing for 1 minute, and 72°C extension for 30 seconds. An RNA fingerprint containing 76 amplified products
20 was obtained. Although the RNA fingerprint of breast tumor tissue was over 98% identical to that of the normal breast tissue, a band was repeatedly observed to be specific to the RNA fingerprint pattern of the tumor. This band was cut out of a silver stained gel, subcloned into the T-vector (Novagen, Madison, WI) and sequenced.

The sequence of the cDNA, referred to as B18Ag1, is provided in SEQ
25 ID NO:1. A database search of GENBANK and EMBL revealed that the B18Ag1 fragment initially cloned is 77% identical to the endogenous human retroviral element S71, which is a truncated retroviral element homologous to the Simian Sarcoma Virus (SSV). S71 contains an incomplete *gag* gene, a portion of the *pol* gene and an LTR-like structure at the 3' terminus (see Werner et al., *Virology* 174:225-238 (1990)).
30 B18Ag1 is also 64% identical to SSV in the region corresponding to the P30 (*gag*) locus. B18Ag1 contains three separate and incomplete reading frames covering a

region which shares considerable homology to a wide variety of gag proteins of retroviruses which infect mammals. In addition, the homology to S71 is not just within the *gag* gene, but spans several kb of sequence including an LTR.

B18Ag1-specific PCR primers were synthesized using computer analysis guidelines. RT-PCR amplification (94°C, 30 seconds; 60°C → 42°C, 30 seconds; 72°C, 30 seconds for 40 cycles) confirmed that B18Ag1 represents an actual mRNA sequence present at relatively high levels in the patient's breast tumor tissue. The primers used in amplification were B18Ag1-1 (CTG CCT GAG CCA CAA ATG) (SEQ ID NO.:128) and B18Ag1-4 (CCG GAG GAG GAA GCT AGA GGA ATA) (SEQ ID NO.:129) at a 3.5 mM magnesium concentration and a pH of 8.5, and B18Ag1-2 (ATG GCT ATT TTC GGG GCC TGA CA) (SEQ ID NO.:126) and B18Ag1-3 (CCG GTA TCT CCT CGT GGT TATT) (SEQ ID NO.:127) at 2 mM magnesium at pH 9.5. The same experiments showed exceedingly low to nonexistent levels of expression in this patient's normal breast tissue (see Figure 1). RT-PCR experiments were then used to show that B18Ag1 mRNA is present in nine other breast tumor samples (from Brazilian and American patients) but absent in, or at exceedingly low levels in, the normal breast tissue corresponding to each cancer patient. RT-PCR analysis has also shown that the B18Ag1 transcript is not present in various normal tissues (including lymph node, myocardium and liver) and present at relatively low levels in PBMC and lung tissue. The presence of B18Ag1 mRNA in breast tumor samples, and its absence from normal breast tissue, has been confirmed by Northern blot analysis, as shown in Figure 2.

The differential expression of B18Ag1 in breast tumor tissue was also confirmed by RNase protection assays. Figure 3 shows the level of B18Ag1 mRNA in various tissue types as determined in four different RNase protection assays. Lanes 1-12 represent various normal breast tissue samples, lanes 13-25 represent various breast tumor samples; lanes 26-27 represent normal prostate samples; lanes 28-29 represent prostate tumor samples; lanes 30-32 represent colon tumor samples; lane 33 represents normal aorta; lane 34 represents normal small intestine; lane 35 represents normal skin, lane 36 represents normal lymph node; lane 37 represents normal ovary; lane 38 represents normal liver; lane 39 represents normal skeletal muscle; lane 40 represents a

first normal stomach sample, lane 41 represents a second normal stomach sample; lane 42 represents a normal lung; lane 43 represents normal kidney; and lane 44 represents normal pancreas. Interexperimental comparison was facilitated by including a positive control RNA of known B-actin message abundance in each assay and 5 normalizing the results of the different assays with respect to this positive control.

RT-PCR and Southern Blot analysis has shown the B18Ag1 locus to be present in human genomic DNA as a single copy endogenous retroviral element. A genomic clone of approximately 12-18 kb was isolated using the initial B18Ag1 sequence as a probe. Four additional subclones were also isolated by XbaI digestion. 10 Additional retroviral sequences obtained from the ends of the XbaI digests of these clones (located as shown in Figure 4) are shown as SEQ ID NO:3 - SEQ ID NO:10, where SEQ ID NO:3 shows the location of the sequence labeled 10 in Figure 4, SEQ ID NO:4 shows the location of the sequence labeled 11-29, SEQ ID NO:5 shows the location of the sequence labeled 3, SEQ ID NO:6 shows the location of the sequence 15 labeled 6, SEQ ID NO:7 shows the location of the sequence labeled 12, SEQ ID NO:8 shows the location of the sequence labeled 13, SEQ ID NO:9 shows the location of the sequence labeled 14 and SEQ ID NO:10 shows the location of the sequence labeled 11-22.

Subsequent studies demonstrated that the 12-18 kb genomic clone 20 contains a retroviral element of about 7.75 kb, as shown in Figures 5A and 5B. The sequence of this retroviral element is shown in SEQ ID NO: 141. The numbered line at the top of Figure 5A represents the sense strand sequence of the retroviral genomic clone. The box below this line shows the position of selected restriction sites. The arrows depict the different overlapping clones used to sequence the retroviral element. 25 The direction of the arrow shows whether the single-pass subclone sequence corresponded to the sense or anti-sense strand. Figure 5B is a schematic diagram of the retroviral element containing B18Ag1 depicting the organization of viral genes within the element. The open boxes correspond to predicted reading frames, starting with a methionine, found throughout the element. Each of the six likely reading frames is 30 shown, as indicated to the left of the boxes, with frames 1-3 corresponding to those found on the sense strand.

Using the cDNA of SEQ ID NO:1 as a probe, a longer cDNA was obtained (SEQ ID NO:227) which contains minor nucleotide differences (less than 1%) compared to the genomic sequence shown in SEQ ID NO:141.

5 B. Preparation of cDNA Molecules Encoding Other Breast Tumor-Specific Polypeptides

Normal RNA and tumor RNA was prepared and mRNA was isolated and converted into cDNA using a (dT)₁₂AG anchored 3' primer, as described above. Differential display PCR was then executed using the randomly chosen primers SEQ 10 ID NO.: 87-125. Amplification conditions were as noted above, and bands observed to be specific to the RNA fingerprint pattern of the tumor were cut out of a silver stained gel, subcloned into either the T-vector (Novagen, Madison, WI) or the pCRII vector (Invitrogen, San Diego, CA) and sequenced. The sequences are provided in SEQ ID NO:11 - SEQ ID NO:86. Of the 79 sequences isolated, 67 were found to be novel 15 (SEQ ID NO.:11-77) (*see also* Figures 6-20). Subsequent studies identified an additional 84 sequences (SEQ ID NOS:142-226), of which 72 appeared to be novel (SEQ ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227). To the best of the inventors' knowledge none 20 of the previously identified sequences have heretofore been shown to be expressed at a greater level in human breast tumor tissue than in normal breast tissue.

Table I shows the level of representative breast tumor-specific transcripts present in normal breast tissue (columns BNI -BN7), breast tumor samples (columns BTI-BT12) and normal prostate, kidney, liver, lung, skin, small intestine, stomach, myocardium, lymph node, pancreas, skeletal muscle, ovary and aorta, as 25 determined by RT-PCR analysis. A 0-3 grading scale for message abundance is used, with 0 denoting no detectable message and 3 a message level comparable to the control message (glyceraldehyde 3-phosphate dehydrogenase). The lack of data in a given box indicates that the tissue has not been tested for the presence or absence of that specific antigen.

TABLE 1

CLONE	prostate	kidney	liver	lung	skin	sm. intestine	stomach	myocardium	lymph node	pancreas	skel. muscle	ovary	aorta
B2CA1													
B2CA2													
B3CA1													
B3CA3c													
B3CA3		0	0						0	0			
B4CA1													
B9CG1		1	0						0	0			
B9CG3		1	0						0	0			
B11AG1													
B13AG1a	0	0	0						0				
B13AG1b													
B13AG2													
B15AG1		0	3						0	0			
B17AG1			0						0	0			
B18AG1a	0	0	0	1	0	0	0	1			0	0	0
B16AC1-3													
B12CA1													
B12CA2													
B13CA1-36													
B13CA1-37													
B14CA1													
B16CA1													
B16GC2a	3	3	3	3	3	3	3	3	3	3	3	3	3
B22GA2	0	0	0	1	0	0	0	0	0	0	0	0	0
B34GA1	1	1	2	2	1	2	1	2	1	2	1	2	2

Example 2Preparation of B18Ag1 DNA from Human Genomic DNA

This Example illustrates the preparation of B18Ag1 DNA by
5 amplification from human genomic DNA.

B18Ag1 DNA may be prepared from 250 ng human genomic DNA using 20 pmol of B18Ag1 specific primers, 500 pmol dNTPS and 1 unit of *Taq* DNA polymerase (Perkin Elmer, Branchburg, NJ) using the following amplification parameters: 94°C for 30 seconds denaturing, 30 seconds 60°C to 42°C touchdown 10 annealing in 2°C increments every two cycles and 72°C extension for 30 seconds. The last increment (a 42°C annealing temperature) should cycle 25 times. Primers were selected using computer analysis. Primers synthesized were B18Ag1-1, B18Ag1-2, B18Ag1-3, and B18Ag1-4. Primer pairs that may be used are 1+3, 1+4, 2+3, and 2+4.

Following gel electrophoresis, the band corresponding to B18Ag1 DNA
15 may be excised and cloned into a suitable vector.

Example 3Preparation of B18Ag1 DNA from Breast Tumor cDNA

20 This Example illustrates the preparation of B18Ag1 DNA by amplification from human breast tumor cDNA.

First strand cDNA is synthesized from RNA prepared from human breast tumor tissue in a reaction mixture containing 500 ng poly A+ RNA, 200 pmol of the primer (T)₁₂AG (*i.e.*, TTT TTT TTT TTT AG) (SEQ ID NO: 130), 1X first strand 25 reverse transcriptase buffer, 6.7 mM DTT, 500 mmol dNTPs, and 1 unit AMV or MMLV reverse transcriptase (from any supplier, such as Gibco-BRL (Grand Island, NY)) in a final volume of 30 µl. After first strand synthesis, the cDNA is diluted approximately 25 fold and 1 µl is used for amplification as described in Example 2. While some primer pairs can result in a heterogeneous population of transcripts, the 30 primers B18Ag1-2 (5'ATG GCT ATT TTC GGG GGC TGA CA) (SEQ ID NO: 126)

and B18Ag1-3 (5'CCG GTA TCT CCT CGT GGG TAT T) (SEQ ID NO: 127) yield a single 151 bp amplification product.

Example 4

5

Identification of B-cell and T-cell Epitopes of B18Ag1

This Example illustrates the identification of B18Ag1 epitopes.

The B18Ag1 sequence can be screened using a variety of computer algorithms. To determine B-cell epitopes, the sequence can be screened for hydrophobicity and hydrophilicity values using the method of Hopp, *Prog. Clin. Biol. Res.* 172B:367-77 (1985) or, alternatively, Cease et al., *J. Exp. Med.* 164:1779-84 (1986) or Spouge et al., *J. Immunol.* 138:204-12 (1987). Additional Class II MHC (antibody or B-cell) epitopes can be predicted using programs such as AMPHI (e.g., Margalit et al., *J. Immunol.* 138:2213 (1987)) or the methods of Rothbard and Taylor (e.g., *EMBO J.* 7:93 (1988)).

Once peptides (15-20 amino acids long) are identified using these techniques, individual peptides can be synthesized using automated peptide synthesis equipment (available from manufacturers such as Applied Biosystems, Inc., Foster City, CA) and techniques such as Merrifield synthesis. Following synthesis, the peptides can be used to screen sera harvested from either normal or breast cancer patients to determine whether patients with breast cancer possess antibodies reactive with the peptides. Presence of such antibodies in breast cancer patient would confirm the immunogenicity of the specific B-cell epitope in question. The peptides can also be tested for their ability to generate a serologic or humoral immune in animals (mice, rats, rabbits, chimps etc.) following immunization *in vivo*. Generation of a peptide-specific antiserum following such immunization further confirms the immunogenicity of the specific B-cell epitope in question.

To identify T-cell epitopes, the B18Ag1 sequence can be screened using different computer algorithms which are useful in identifying 8-10 amino acid motifs within the B18Ag1 sequence which are capable of binding to HLA Class I MHC molecules. (see, e.g., Rammensee et al., *Immunogenetics* 41:178-228 (1995)).

Following synthesis such peptides can be tested for their ability to bind to class I MHC using standard binding assays (e.g., Sette et al., *J. Immunol.* 153:5586-92 (1994)) and more importantly can be tested for their ability to generate antigen reactive cytotoxic T-cells following *in vitro* stimulation of patient or normal peripheral mononuclear cells 5 using, for example, the methods of Bakker et al., *Cancer Res.* 55:5330-34 (1995); Visseren et al., *J. Immunol.* 154:3991-98 (1995); Kawakami et al., *J. Immunol.* 154:3961-68 (1995); and Kast et al., *J. Immunol.* 152:3904-12 (1994). Successful *in vitro* generation of T-cells capable of killing autologous (bearing the same Class I MHC molecules) tumor cells following *in vitro* peptide stimulation further confirms the 10 immunogenicity of the B18Ag1 antigen. Furthermore, such peptides may be used to generate murine peptide and B18Ag1 reactive cytotoxic T-cells following *in vivo* immunization in mice rendered transgenic for expression of a particular human MHC Class I haplotype (Vitiello et al., *J. Exp. Med.* 173:1007-15 (1991)).

A representative list of predicted B18Ag1 B-cell and T-cell epitopes, 15 broken down according to predicted HLA Class I MHC binding antigen, is shown below:

Predicted Th Motifs (B-cell epitopes) (SEQ ID NOS.: 131-133)

SSGGRTFDDFHRYLLVGI
20 QGAAQKPINLSKXIEVVQGHDE
SPGVFLEHLQEAYRIYTPFDLSA

Predicted HLA A2.1 Motifs (T-cell epitopes) (SEQ ID NOS.: 134-140)

YLLVGIQGA
25 GAAQKPINL
NLSKXIEVV
EVVQGHDES
HLQEAYRIY
NLAFVAQAA
30 FVAQAAPDS

Example 5Characterization of Breast Tumor Genes Discovered by Differential Display PCR

5 The specificity and sensitivity of the breast tumor genes discovered by differential display PCR were determined using RT-PCR. This procedure enabled the rapid evaluation of breast tumor gene mRNA expression semiquantitatively without using large amounts of RNA. Using gene specific primers, mRNA expression levels in a variety of tissues were examined, including 8 breast tumors, 5 normal breasts, 2
10 prostate tumors, 2 colon tumors, 1 lung tumor, and 14 other normal adult human tissues, including normal prostate, colon, kidney, liver, lung, ovary, pancreas, skeletal muscle, skin, stomach and testes.

15 To ensure the semiquantitative nature of the RT-PCR, β-actin was used as internal control for each of the tissues examined. Serial dilutions of the first strand cDNAs were prepared and RT-PCR assays performed using β-actin specific primers. A dilution was then selected that enabled the linear range amplification of β-actin template, and which was sensitive enough to reflect the difference in the initial copy number. Using this condition, the β-actin levels were determined for each reverse transcription reaction from each tissue. DNA contamination was minimized by DNase
20 treatment and by assuring a negative result when using first strand cDNA that was prepared without adding reverse transcriptase.

Using gene specific primers, the mRNA expression levels were determined in a variety of tissues. To date 32 genes have been successfully examined by RT-PCR, three of which exhibit good specificity and sensitivity for breast tumors.
25 Figures 21A and 21B depict the results for these three genes: B15AG-1 (SEQ ID NO:27), B31GA1b (SEQ ID NO:148) and B38GA2a (SEQ ID NO. 157).

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purpose of illustration, various modifications may be made without deviating from the spirit and
30 scope of the invention.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Corixa Corporation

(ii) TITLE OF INVENTION: COMPOSITIONS AND METHODS FOR THE
TREATMENT AND DIAGNOSIS OF BREAST CANCER

(iii) NUMBER OF SEQUENCES: 227

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: SEED and BERRY LLP
- (B) STREET: 6300 Columbia Center, 701 Fifth Avenue
- (C) CITY: Seattle
- (D) STATE: Washington
- (E) COUNTRY: USA
- (F) ZIP: 98104-7092

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0. Version #1.30

(vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE: 10-JAN-1997
- (C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Maki, David J.
- (B) REGISTRATION NUMBER: 31,392
- (C) REFERENCE/DOCKET NUMBER: 210121.419PC

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (206) 622-4900
- (B) TELEFAX: (206) 682-6031

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 363 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..363

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

TTA GAG ACC CAA TTG GGA CCT AAT TGG GAC CCA AAT TTC TCA AGT GGA	48
Leu Glu Thr Gln Leu Gly Pro Asn Trp Asp Pro Asn Phe Ser Ser Gly	
1 5 10 15	
GGG AGA ACT TTT GAC GAT TTC CAC CGG TAT CTC CTC GTG GGT ATT CAG	96
Gly Arg Thr Phe Asp Asp Phe His Arg Tyr Leu Leu Val Gly Ile Gln	
20 25 30	
GGA GCT GCC CAG AAA CCT ATA AAC TTG TCT AAG GCG ATT GAA GTC GTC	144
Gly Ala Ala Gln Lys Pro Ile Asn Leu Ser Lys Ala Ile Glu Val Val	
35 40 45	
CAG GGG CAT GAT GAG TCA CCA GGA GTG TTT TTA GAG CAC CTC CAG GAG	192
Gln Gly His Asp Glu Ser Pro Gly Val Phe Leu Glu His Leu Gln Glu	
50 55 60	

36

GCT TAT CGG ATT TAC ACC CCT TTT GAC CTG GCA GCC CCC GAA AAT AGC	240
Ala Tyr Arg Ile Tyr Thr Pro Phe Asp Leu Ala Ala Pro Glu Asn Ser	
65 70 75 80	
CAT GCT CTT AAT TTG GCA TTT GTG GCT CAG GCA GCC CCA GAT AGT AAA	288
His Ala Leu Asn Leu Ala Phe Val Ala Gln Ala Ala Pro Asp Ser Lys	
85 90 95	
AGG AAA CTC CAA AAA CTA GAG GGA TTT TGC TGG AAT GAA TAC CAG TCA	336
Arg Lys Leu Gln Lys Leu Glu Gly Phe Cys Trp Asn Glu Tyr Gln Ser	
100 105 110	
GCT TTT AGA GAT AGC CTA AAA GGT TTT	363
Ala Phe Arg Asp Ser Leu Lys Gly Phe	
115 120	

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 121 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Leu Glu Thr Gln Leu Gly Pro Asn Trp Asp Pro Asn Phe Ser Ser Gly	
1 5 10 15	
Gly Arg Thr Phe Asp Asp Phe His Arg Tyr Leu Leu Val Gly Ile Gln	
20 25 30	
Gly Ala Ala Gln Lys Pro Ile Asn Leu Ser Lys Ala Ile Glu Val Val	
35 40 45	

Gln Gly His Asp Glu Ser Pro Gly Val Phe Leu Glu His Leu Gln Glu
 50 55 60

Ala Tyr Arg Ile Tyr Thr Pro Phe Asp Leu Ala Ala Pro Glu Asn Ser
 65 70 75 80

His Ala Leu Asn Leu Ala Phe Val Ala Gln Ala Ala Pro Asp Ser Lys
 85 90 95

Arg Lys Leu Gln Lys Leu Glu Gly Phe Cys Trp Asn Glu Tyr Gln Ser
 100 105 110

Ala Phe Arg Asp Ser Leu Lys Gly Phe
 115 120

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1101 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

TCTTAGAAC T TCAACCCCC GAACTCTTGG GAAAACTTA ATCAGTCACC TACAGTCTAC	60
CACCCATT A GGAGGAGCAA AGCTACCTCA GCTCCTCCGG AGCCGTTTA AGATCCCCCA	120
TCTCAAAGC CTAACAGATC AAGCAGCTCT CCGGTGCACA ACCTGCGCCC AGGTAAATGC	180
CAAAAAAGGT CCTAAACCCA GCCCAGGCCA CCGTCTCAA GAAAACTCAC CAGGAGAAAA	240
GTGGGAAATT GACTTACAG AAGTAAAACC ACACCGGGCT GGGTACAAAT ACCTTCTAGT	300

ACTGGTAGAC ACCTTCTCTG GATGGACTGA AGCATTGCT ACCAAAAACG AACTGTCAA	360
TATGGTAGTT AAGTTTTAC TCAATGAAAT CATCCCTCGA CGTGGGCTGC CTGTTGCCAT	420
AGGGTCTGAT AATGGAACGG CCTTCGCCTT GTCTATAGTT TAATCAGTCA GTAAGGC GTT	480
AAACATTCAA TGGAAGCTCC ATTGTGCCTA TCGACCCAGA GCTCTGGCA AGTAGAACGC	540
ATGAACTGCA CCCTAAAAAA ACACCTTAC AAAATTAATC TTAAAAACCG GTGTTAATTG	600
TGTTAGTCTC CTTCCCTTAG CCCTACTTAG AGTTAAGGTG CACCCCTTAC TGGGCTGGGT	660
TCTTACCTT TTGAAATCAT NTTNGGAAG GGGCTGCCTA TCTTNCTTA ACTAAAAAN	720
GCCCATTGG CAAAATTC NCAACTAATT TNTACGTNCC TACGTCTCCC CAACAGGTAN	780
AAAAATCTNC TGCCCTTTTC AAGGAACCATT CCCATCCATT CCTNAACAAA AGGCCTGCCN	840
TTCTTCCCCC AGTTAACTNT TTTTNTTAA AATTCCAAA AAANGAACCN CCTGCTGGAA	900
AAACNCCCCC CTCCAANCCC CGGCCNAAGN GGAAGGTTCC CTTGAATCCC NCCCCNCNA	960
ANGCCCCGGA ACCNTAAAN TNGTCCNGG GGGTNNGGCC TAAAAGNCCN ATTTGGTAAA	1020
CCTANAAATT TTTCTTTTNA TAAAACCAC NNNTNNNTT TTCTAAACA AAACCTNTT	1080
TNTAGNANCN TATTCNCNC C	1101

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1087 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

TCTAGAGCTG CGCCTGGATC CCGCCACAGT GAGGAGACCT GAAGACCAGA GAAAACACAG	60
CAAGTAGGCC CTTAAACTA CTCACCTGTG TTGTCTTCTA ATTATTCTG TTTTATTTG	120
TTTCCATCAT TTTAAGGGGT TAAAATCATC TTGTTAGAC CTCAGCATAT AAAATGACCC	180
ATCTGTAGAC CTCAGGCTCC AACCATAACC CAAGAGTTGT CTGGTTTGT TTAAATTACT	240
GCCAGGTTTC AGCTGCAGAT ATCCCTGGAA GGAATATTCC AGATTCCCTG AGTAGTTCC	300
AGGTTAAAAT CCTATAGGCT TCTTCTGTT TGAGGAAGAG TTCTGTAG AGAAAAACAT	360
GATTTGGAT TTTTAACCTT AATGCTTG TGAAAGCTATA AAAAAAAATT TCTACCCCTA	420
GCTTTAAAGT ACTGTTAGTG AGAAATTAAA ATTCCCTAG GAGGATTAAA CTGCCATTTC	480
AGTTACCCCTA ATTCCAATG TTTGGTGGT TAGAATCTTC TTTAATGTT TTGAAGAAGT	540
GTTTATATT TTCCCATCNA GATAAATTCT CTCNCNCCTT NNTTTNTNT CTNNNTTTT	600
AAAACGGANT CTTGCTCCGT TGTCCANGCT GGGAAATTNN TTTGGCCAA TCTCCGCTNC	660
CTTGCAANAA TNCTGCNTCC CAAAATTACC NCCTTTTCC CACCTCCACC CCNNGGAATT	720
ACCTGGAATT ANAGGCCCCC NCCCCCCCC CGGCTAATTG GTTTTGTGTT TTAGAAAAA	780
ACGGGTTTCC TGTTTAGTT AGGATGGCCC ANNTCTGACC CCNTNATCNT CCCCTCNGC	840
CCTCNAATNT TNNGNNNTANG GCTTACCCCC CCCNGNNGTT TTTCTCCAT TNAAAATTTC	900
TNTGGANTCT TGAATNNCGG GTTTCCCTT TTAAACCNAT TTTTTTTTN NNNCCCCCAN	960

40

TTTNCCCTCC CCCNTNTA ANGGGGTTT CCCAACCGG GTCCNCCCC ANGTCCCCAA	1020
TTTTCTCCC CCCCCCTCTT TTTCTTNC CCCAAAANTC CTATCTTTC CTNNAAATAT	1080
CNANTNT	1087

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1010 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

TCTAGACCAA GAAATGGGAG GATTTAGAG TGACTGATGA TTTCTCTATC ATCTGCAGTT	60
AGTAACATT CTCCACAGTT TATGAAAAA GTAACAAAC CACTGCAGAT GACAAACACT	120
AGGTAACACA CATACTATCT CCCAAATACC TACCCACAAG CTCAACAATT TTAAACTGTT	180
AGGATCACTG GCTCTAATCA CCATGACATG AGGTCACCAC CAAACCATCA AGCGCTAAC	240
AGACAGAATG TTTCACTCC TGATCCACTG TGTGGGAAGA AGCACCGAAC TTACCCACTG	300
GGGGGCCTGC NTCANAANAA AAGCCCATGC CCCCCGGTNT NCCTTNAAC CGAACGAAAT	360
NAACCCACCA TCCCCACANC TCCTCTGTC NTGGGCCCTG CATCTTGTT CCTCNTNTNC	420
TTTNGGGGAN ACNTGGGGAA GGTACCCAT TTCNTTGACC CCNCNANAAA ACCCCNGTGG	480
CCCTTGCCC TGATTNCNT GGGCCTTTC TCTTTCCCT TTTGGTTGT TAAATTCCC	540
AATGTCCCCN GAACCCCTCTC CNTNCTGCC AAAACCTACC TAAATTNCTC NCTANGNNTT	600

TTCTTGGTGT TNCTTTCAA AGGTNACCTT NCCTGTTCAN NCCCNACNAA AATTNTTCC	660
NTATNNNTGGN CCCNAAAAA NNNATCNCC CNAATTGCCC GAATTGGTTN GGTTTTCT	720
NCTGGGGGAA ACCCTTTAAA TTTCCCCCTT GGCCGGCCCC CCTTTTTCC CCCCTTNGA	780
AGGCAGGNCG TTCTTCCCGA ACTTCCAATT NCAACAGCCN TGCCCATTGN TGAAACCCTT	840
TTCTAAAT TAAAAAATAN CCGGTTNNGG NNNGCCTCTT TCCCCTCCNG GNNGGNNGNG	900
AAANTCCTTA CCCNAAAAA GGTGCTTAG CCCCCNGTCC CCACTCCCC NGGAAAATN	960
AACCTTTCN AAAAAGGAA TATAANTTN CCACTCCTTN GTTCTTTCC	1010

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 950 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

TCTAGAGCTC GCGGCCGCGA GCTCTAACAC GACTCACTAT AGGGCGTCGA CTCGATCTCA	60
GCTCACTGCA ATCTCTGCCG CGGGGGTCAT GCGATTCTCC TGCCTCAGCC TTCCAAGTAG	120
CTGGGATTAC AGGCGTGCAA CACCACACCC GGCTAATTT GTATTTTAA TAGAGATGGG	180
GTTTCCCTT GTGGGCCANN ATGGTCTCNA ACCCCTGACC TCNNGTGATC CCCCCNCCN	240
NGANCTCNNA CTGCTGGGGA TNCCGNNNN NNNCCTCCCN NCNCNNNNN NCNCNNTCNN	300

TNNTCCTTNC TCNNNNNNN CNNTCNNTCC NNCTCTCNC CNNNTTTNT CNNCNCCNN	360
CNNNCNCNT NCCCNCNNNT TCNCNTNCNN TNTCCNNCNN NNTCCNNCNNN CNNNCNTNN	420
CCNNTACNTC NTNNNCNNNT CCNTCTNTNN CCTCNCNNNT CNCTNCNCNT TNTCTCCTCN	480
NTNNNNNNCT CCNNNNNTCT CNTCNCNCN TNCCCNNTN NCCNCNCNC NCCTCNCNNC	540
CTNNTTNNN CNNCNCNTCC NTNCCNTCN NNTCCNNNTN CNNCNCNCN NNCNTTTNC	600
CCNCCNNTC CTTNCNCNTN NNNTNTCNNN CNCNTCNNTC NTTNCTCCT NNNTCCNNC	660
TCNNTTCNCC CNNNTCCNCC CCCCNCCTNT CTCTCNCNN NNTNNNTNTN NNNCNTCCNC	720
TNTCNCNTTC NTCNNTNCNT TNCTNTCNC NNCNNTNCNC TNCCNTNTNT CTNNNTCNCN	780
TCNCNTNTCN CCNTCCNTTN CTNTCTCCTN TNTCCTTCCC CTCNCCTNCT CNTTCNCNC	840
CCNNTNTNTN TNNCNCNNNT NCTNNNCNNC CNTCNTTCN TCTCTNCTNN NNNTNNCCTC	900
NNCCNTNCC CTNNNTNCNT NCTNNTACCN TNCTNCTCCN TCTTCCTTCC	950

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1086 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

TCTAGAGCTC GCGGCCGCGA GCTCAATTAA CCCTCACTAA AGGGAGTCGA CTCGATCAGA	60
CTGTTACTGT GTCTATGTAG AAAGAAGTAG ACATAAGAGA TTCCATTTG TTCTGTACTA	120

AGAAAAAATTC TTCTGCCTTG AGATGCTGTT AATCTGTAAC CCTAGCCCCA ACCCTGTGCT	180
CACAGAGACA TGTGCTGTGT TGACTCAAGG TTCAATGGAT TTAGGGCTAT GCTTTGTTAA	240
AAAAGTGCTT GAAGATAATA TGCTTGTAA AAGTCATCAC CATTCTCTAA TCTCAAGTAC	300
CCAGGGACAC AATACACTGC GGAAGGCCGC AGGGACCTCT GTCTAGGAAA GCCAGGTATT	360
GTCCAAGATT TCTCCCCATG TGATAGCCTG AGATATGGCC TCATGGGAAG GGTAAGACCT	420
GACTGTCCCC CAGCCCGACA TCCCCCAGCC CGACATCCCC CAGCCCGACA CCCGAAAAGG	480
GTCTGTGCTG AGGAAGAGTA NTAAAAGAGG AAGGCTCTT GCATTGAAGT AAGAAGAAGG	540
CTCTGTCTCC TGCTCGTCCC TGGGCAATAA AATGTCTTGG TGTTAAACCC GAATGTATGT	600
TCTACTTACT GAGAATAGGA GAAAACATCC TTAGGGCTGG AGGTGAGACA CCCTGGCGGC	660
ATACTGCTCT TTAATGCACG AGATGTTGT NTAATTGCCA TCCACGGCCA NC CCCTTTCC	720
TTAACTTTT ATGANACAAA AACTTTGTTG NCTTTCTG CGAACCTCTC CCCCTATTAN	780
CCTATTGGCC TGCCCATCCC CTCCCCAAAN GGTGAAAANA TGTCNTAAA TNCGAGGGAA	840
TCCAAAACNT TTTCCCGTTG GTCCCCTTTC CAACCCCGTC CCTGGGCCNN TTCCCTCCCC	900
AACNTGTCCC GGNTCCTCN TTCCCNCCCC CTTCCNGAN AAAAAACCCC GTNTGANGGN	960
GCCCCCTCAA ATTATAACCT TTCCNAAACA AANNGGTTCN AAGGTGGTTT GN TTCCGGTG	1020
CGGCTGGCCT TGAGGTCCCC CCTNCACCCC AATTGGAAN CCNGTTTTT TTATTGCCCN	1080
NTCCCC	1086

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1177 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

NCCNTTACA	TGTTGACAAN	NTAAACAAGC	NGCTCAGGCA	GCTGAAAAAA	GCCACTGATA	60
AAGCATCCTG	GAGTATCAGA	GTTCAGCTTT	AGATCAGCCT	CATTGACTT	CCCCTCCAC	120
ATGGTGTTA	AATCCAGCTA	CACTACTTCC	TGACTCAAAC	TCCACTATTG	CTGTTCATGA	180
CTGTCAGGAA	CTGTTGGAAA	CTACTGAAAC	TGGCCGACCT	GATCTTCAA	ATGTGCCCT	240
AGGAAAGGTG	GATGCCACCG	TGTTCACAGA	CAGTACCNCC	TTCCCTGAGA	AGGGACTACG	300
AGGGGCCGGT	GCACTGTTA	CCAAGGAGAC	TNATGTGTTG	TGGGCTCAGG	CTTACCCANC	360
AAACACCTCA	NCNCNNAGG	CTGAATTGAT	CGCCCTCACT	CAGGCTCTCG	GATGGGGTAA	420
GGGATATTAA	CGTTAACACT	GACAGCAGGT	ACGCCTTGC	TACTGTGCAT	GTACGTGGAG	480
CCATCTACCA	GGAGCGTGGG	CTACTCACTC	GGCAGGTGGC	TGTNATCCAC	TGAAANGGA	540
CATCAAAGG	AAAACNNNGC	TGTTGCCCGT	GGTAACCANA	AANCTGATCN	NCAGCTNAA	600
GATGCTGTGT	TGACTTTCAC	TCNCNCCTCT	TAAACTTGCT	GCCCACANTC	TCCTTCCCA	660
ACCAAGATCTG	CCTGACAATC	CCCATACTCA	AAAAAAAAAN	AANACTGGCC	CCGAACCCNA	720
ACCAATAAAA	ACGGGGANGG	TNGGTNGANC	NNCCTGACCC	AAAATAATG	GATCCCCGG	780

GCTGCAGGAA TTCAATT CAN CCTTATCNAT ACCCCCACN NGGNNGGGGG GGCCNGTNCC	840
CATTNCCT NTATTNATT C TTNNCCTT CCCCCGGCCT CTTTTTNA A CTCGTGAAAG	900
GGAAAACCTG NCTTACCAAN TTATCNCTG GACCNTCCCC TTCCNCGGTN GN TTANAAAA	960
AAAAGCCNC ANTCCCN TCC NAAATTGCA CNGAAAGGNA AGGAATTAA CCTTTATTTT	1020
TTNNTCCTT ANTTGTNNN CCCCCTTTA CCCAGGC GAA CNGCCATCNT TTAANAAAAA	1080
AAANAGAANG TTTATTTTC CTTNGAACCA TCCCAATANA AANCACCCGC NGGGGAACGG	1140
GGNGGNAGGC CNCTCACCCCC CTTNTGTNG GN GGN	1177

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1146 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

NCCNNNTNNNT GATGTTGTCT TTTGGCCTC TCTTGATA CTTCCCTCT CTTAGAGGT	60
GAAAAGGGTC AAAAGGAGCT GTTGACAGTC ATCCCAGGTG GGCCAATGTG TCCAGAGTAC	120
AGACTCCATC AGTGAGGTCA AAGCCTGGGG CT T T CAGAG AAGGGAGGAT TATGGGTTT	180
CCAATTATAC AAGTCAGAAG TAGAAAGAAG GGACATAAAC CAGGAAGGGG GTGGAGCACT	240
CATCACCCAG AGGGACTTGT GCCTCTCTCA GTGGTAGTAG AGGGGCTACT TCCTCCCACC	300
ACGGTTGCAA CCAAGAGGCA ATGGGTGATG AGCCTACAGG GGACATANCC GAGGAGACAT	360

GGGATGACCC TAAGGGAGTA GGCTGGTTT AAGGCGGTGG GACTGGTGA GGGAAACTCT	420
CCTCTTCTTC AGAGAGAACG AGTACAGGGC GAGCTGAACC GGCTGAAGGT CGAGGCAGAA	480
ACACGGTCTG GCTCAGGAAG ACCTTGAAG TAAAATTATG AATGGTGCAT GAATGGAGCC	540
ATGGAAGGGG TGCTCCTGAC CAAACTCAGC CATTGATCAA TGTAGGGAA ACTGATCAGG	600
GAAGCCGGGA ATTCATTAA CAACCCGCCA CACAGCTGA ACATTGTGAG GTTCAGTGAC	660
CCTTCAAGGG GCCACTCCAC TCCAACTTG GCCATTCTAC TTTCNAAAT TTCCAAAAC	720
TCCCTTTTA AGGCCGAATC CNTANTCCCT NAAAAACNAA AAAAATCTG CNCCTATTCT	780
GGAAAAGGCC CANCCCTTAC CAGGCTGGAA GAAATTTNC CTTTTTTTT TTTTGAAGG	840
CNTTTNTAA ATTGAACCTN AATTNCNNN CCCAAAAAA AACCCNCCNG GGGGGCGGAT	900
TTCCAAAAAC NAATTCCCTT ACCAAAAAAC AAAAACCCNC CCTTNTTCCC TTCCNCCCTN	960
TTCTTTTAAT TAGGGAGAGA TNAAGCCCC CAATTCCNG GNCTNGATNN GTTCCCCCCC	1020
CCCCCATTTC CCNAACCTT TTCCANCNA GGAANCCNCC CTTTTTTNG GTCNGATTNA	1080
NCAACCTTCC AAACCATTTC TCCNNAAAAA NTTGNTNGG NGGGAAAAN ACCTNNNTTT	1140
ATAGAN	1146

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 545 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CTTCATTGGG TACGGGCCCG CTCGAGGTG ACGGTATCGA TAGCTTGAT ATCGAATTCC	60
TGCAGCCCCGG GGGATCCACT AGTTCTAGAG TCAGGAAGAA CCACCAACCT TCCTGATT	120
TATTGGCTCT GAGTTCTGAG GCCAGTTTC TTCTTCTGTT GAGTATGCGG GATTGTCAGG	180
CAGATCTGGC TGTGGAAAGG AGACTGTGGG CAGCAAGTTT AGAGGCGTGA CTGAAAGTCA	240
CACTGCATCT TGAGCTGCTG AATCAGCTT CTGGTTACCA CGGGCAACAG CCGTGTTTC	300
CTTTTGATGT CCTTACAGT GGATTACAGC CACCTGCTGA GGTGAGTAGC CCACGCTCCT	360
GGTAGATGGC TCCACGTACA TGCACAGTAG CAAAGGCGTA CCTGCTGTCA GTGTTAACGT	420
TAATATCCTT ACCCCATCGG AGAGCCTGAG TGAGGGCGAT CAATTCAAGCC CTTTGTC	480
GAGGTGTTG CTGGTTAACG CCTGAACCCA CAACACATCT GTCTCCATGG TAACAGCTGC	540
ACCGG	545

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 196 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

TCTCCTAGGC TGGGCACAGT GGCTCATACC TGTAATCCTG ACCGTTTCAG AGGCTCAGGT	60
---	----

GGGGGGATCG CTTGAGCCCA AGATTTCAAG ACTAGTCTGG GTAACATAGT GAGACCCAT	120
CTCTACGAAA AAATAAAAAA ATGAGCCTGG TGTAGTGGCA CACACCAGCT GAGGAGGGAG	180
AATCGAGCCT AGGAGA	196

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 388 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

TCTCCTAGGC TTGGGGGCTC TGACTAGAAA TTCAAGGAAC CTGGGATTCA AGTCCAAC	60
TGACACCAAC TTACACTGTG GNCTCCAATA AACTGCTTCT TTCCATTCC CTCTCTATT	120
AATAAAATAA GGAAAACGAT GTCTGTAT AGCCAAGTCAGNTATCCTAA AAGGAGATAC	180
TAAGTGACAT TAAATATCAG AATGTAAAC CTGGAACCA GGTCCCAGC CTGGGATTAA	240
ACTGACAGCA AGAAGACTGA ACAGTACTAC TGTGAAAGC CCGAAGNGGC AATATGTTCA	300
CTCTACCGTT GAAGGATGGC TGGGAGAATG AATGCTCTGT CCCCCAGTCC CAAGCTCA	360
TACTATACCT CCTTTATAGC CTAGGAGA	388

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 337 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

TAGTAGTTGC CTATAATCAT GTTTCTCATT ATTTCACAT TTTATTAACC AATTCTGTT	60
TACCCCTGAAA AATATGAGGG AAATATATGA AACAGGGAGG CAATGTTCA GATAATTGATC	120
ACAAGATATG ATTTCTACAT CAGATGCTCT TTCCCTTCCT GTTTATTCC TTTTATTTC	180
GGTTGTGGGG TCGAATGTAA TAGCTTGTT TCAAGAGAGA GTTTGGCAG TTTCTGTAGC	240
TTCTGACACT GCTCATGTCT CCAGGCATCT ATTTGCACTT TAGGAGGTGT CGTGGGAGAC	300
TGAGAGGTCT ATTTTTCCA TATTTGGGCA ACTACTA	337

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 571 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

TAGTAGTTGC CATAACAGTGC CTTTCCATT ATTAAACCCC CACCTGAACG GCATAAACTG	60
AGTGTTCAGC TGGTGTGTTT TACTGAAAC AATAAGGAGA CTTGCTCTT CATTAAACC	120
AAAATCATAT TTCATATTTT ACGCTCGAGG GTTTTACCG GTTCCCTTTT ACACCTCTA	180

50

AAACAGTTT TAAGTCGTT GGAACAAGAT ATTTTTCTT TCCTGGCAGC TTTAACATT	240
ATAGCAAATT TGTGCTGGG GGACTGCTGG TCACTGTTTC TCACAGTTGC AAATCAAGGC	300
ATTTGCAACC AAGAAAAAAA AATTTTTTG TTTTATTGA AACTGGACCG GATAAACGGT	360
GTTTGGAGCG GCTGCTGTAT ATAGTTTAA ATGGTTTATT GCACCTCCTT AAGTTGCACT	420
TATGTGGGGG GGGGNNTTG NATAGAAAGT NTTTANTCAC ANAGTCACAG GGACTTTNT	480
CTTTGGNNA CTGAGCTAAA AAGGGCTGNT TTTCGGGTGG GGGCAGATGA AGGCTCACAG	540
GAGGCCTTTC TCTTAGAGGG GGGAACTNCT A	571

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 548 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

TATATATTAA ATAACCTAAA TATATTTGA TCACCCACTG GGGTGATAAG ACAATAGATA	60
TAAAAGTATT TCCAAAAAGC ATAAAACCAA AGTATCATAC CAAACCAAAT TCATACTGCT	120
TCCCCCACCC GCACTGAAAC TTCACCTTCT AACTGTCTAC CTAACCAAAT TCTACCCCTTC	180
AAGTCTTGG TGCGTGCTCA CTACTCTTT TTTTTTTT TTTNTTTGG AGATGGAGTC	240
TGGCTGTGCA GCCCAGGGT GGAGTACAAT GGCACAACT CAGCTCACTG NAACCTCCGC	300
CTCCCAGGTT CATGAGATTC TCCTGNTTCA GCCTTCCCAG TAGCTGGAC TACAGGTGTG	360

CATCACCATG CCTGGNTAAT CTTTTTNGT TTTNGGGTAG AGATGGGGT TTTACATGTT	420
GGCCAGGNTG GTNTCGAACT CCTGACCTCA AGTGATCCAC CCACCTCAGG CTCCCAAAGT	480
GCTAGGATTA CAGACATGAG CCACTGNGCC CAGNCCTGGT GCATGCTCAC TTCTCTAGGC	540
AACTACTA	548

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 638 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

TTCCGTTATG CACATGCAGA ATATTCTATC GGTACTTCAG CTATTACTCA TTTTGATGGC	60
GCAATCCGAG CCTATCCTCA AGATGAGTAT TTAGAAAGAA TTGATTTAGC GATAGACCAA	120
GCTGGTAAGC ACTCTGACTA CACGAAATTG TTCAGATGTG ATGGATTAT GACAGTTGAT	180
CTTTGGAAGA GATTATTAAG TGATTATTT AAAGGGAATC CATTAATTCC AGAATATCTT	240
GGTTTAGCTC AAGATGATAT AGAAATAGAA CAGAAAGAGA CTACAAATGA AGATGTATCA	300
CCAACTGATA TTGAAGAGCC TATAGTAGAA AATGAATTAG CTGCATTAT TAGCCTTACA	360
CATAGCGATT TTCCTGATGA ATCTTATATT CAGCCATCGA CATAGCATTA CCTGATGGC	420
AACCTTACGA ATAATAGAAA CTGGGTGCGG GGCTATTGAT GAATTCATCC NCAGTAAATT	480

TGGATATNAC AAAATATAAC TCGATTGCAT TTGGATGATG GAATACTAAA TCTGGCAAA 540

GTAACTTGG AGCTACTAGT AACCTCTCTT TTTGAGATGC AAAATTTCT TTTAGGGTTT 600

CTTATTCTCT ACTTTACGGA TATTGGAGCA TAACGGGA 638

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 286 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

ACTGATGGAT GTCGCCGAG GCGAGGGGCC TTATCTGATG CTCGGCTGCC TGTCGTGAT 60

GTGCGCGGCG ATTGGGCTGT TTATCTAAA CACCGCCACG GCGGTGCTGA TGGCGCTAT 120

TGCCTTAGCG GCGGCGAAGT CAATGGCGT CTCACCCAT CCTTTGCCA TGGTGGTGGC 180

GATGGCGGCT TCGGCGGCGT TTATGACCCC GGTCTCCTCG CCGGTTAACCA CCCTGGTGCT 240

TGGCCCTGGC AAGTACTCAT TTAGCGATT TGTCAAATA GGCGTG 286

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 262 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

TCGGTCATAG CAGCCCCTTC TTCTCAATT CATCTGTAC TACCCCTGGTG TAGTATCTCA	60
TAGCCTTACA TTTTTATAGC CTCCCTCCCTG GTCTGTCTT TGATTTCT GCCTGTAATC	120
CATATCACAC ATAACGTCAA GTAAACATT CTAAAGTGTG GTTATGCTCA TGTCACTCCT	180
GTGNCAAGAA ATAGTTCCA TTACCGTCTT AATAAAATTG GGATTTGTTG TTNCTATTN	240
TCACTCTTCA CCTATGACCG AA	262

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 261 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

TCGGTCATAG CAAAGCCAGT GGTTTGAGCT CTCTACTGTG TAAACTCCTA AACCAAGGCC	60
ATTTATGATA AATGGTGGCA GGATTTTAT TATAAACATG TACCCATGCA AATTCCTAT	120
AACTCTGAGA TATATTCTTC TACATTTAAA CAATAAAAT AATCTATTAA TAAAAGCCTA	180
ATTTGCGTAG TTAGGTAAGA GTGTTTAATG AGAGGGTATA AGGTATAAAT CACCAGTCAA	240
CGTTTCTCTG CCTATGACCG A	261

(2) INFORMATION FOR SEQ ID NO:20:

(1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 294 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

TACAACGAGG CGACGTCGGT AAAATCGGAC ATGAAGCCAC CGCTGGTCTT TTCTGCCGAG	60
CGATAGGCGC CGGCCAGCCA GCGGAACGGT TGCCCGGATG GCGAAGCGAG CCGGAGTTCT	120
TCGGACTGAG TATGAATCTT GTTGTGAAAA TACTGCCGC CTTCGTTGA CGACGTCGCG	180
TCGAAATCTT CGANCTCCTT ACGATCGAAG TCTTCGTGGG CGACGATCGC GGTCAGTTCC	240
GCCCCACCGA AATCATGGTT GAGCCGGATG CTGNCCCCGA AGNCCTCGTT TGTN	294

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 208 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

TTGGTAAAGG GCATGGACGC AGACGCCCTGA CGTTGGCTG AAAATCTTC ATTGATTG	60
ATCAATGAAT AGGAAAATTC CCAAAGAGGG AATGTCCTGT TGCTGCCAG TTTTTNTGTT	120
GTTCTCATGG ANAAGGCAAN GAGCTTTCA GACTATTGGN ATTNTCGTTC GGTCTTCTGC	180
CAACTAGTCG NCTTGCNANG ATCTTCAT	208

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 287 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

NCCNTTGAGC TGAGTGATTG AGATNTGTAAG TGGTTGTAAG GGTGATTCAAG GCGGATTAGG	60
GTGGCCGGTC ACCCGGCAGT GGGTCTCCCG ACAGGCCAGC AGGATTTGGG GCAGGGTACGG	120
NGTGCGCATC GCTCGACTAT ATGCTATGGC AGGCGAGCCG TGGAAGGNGG ATCAGGTCAC	180
GGCGCTGGAG CTTTCCACGG TCCATGNATT GNGATGGCTG TTCTAGGCGG CTGTTGCCAA	240
GCGTGATGGT ACGCTGGCTG GAGCATTGAT TTCTGGTGCCT AAGGTGG	287

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 204 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

TTGGGTAAAG GGAGCAAGGA GAAGGCATGG AGAGGGCTCAN GCTGGTCCTG GCCTACGACT	60
GGGCCAAGCT GTGCCGGGG ATGGTGGAGA ACTGAAGCGG GACCTCCTCG AGGTCCCTCG	120

NCGTTACTTC NCCGTCCAGG AGGAGGGTCT TTCCGTGGTC TNGGAGGAGC GGGGGGAGAA 180

GATNCTCCTC ATGGTCNACA TCCC 204

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 264 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

TGGATTGGTC AGGAGCGGGT AGAGTGGCAC CATTGAGGGG ATATTCAAAA ATATTATTTT 60

GTCCTAAATG ATAGTTGCTG AGTTTTCTT TGACCCATGA GTTATATTGG AGTTTATTTT 120

TTAACTTTCC AATCGCATGG ACATGTTAGA CTTATTTCT GTTAATGATT NCTATTTTA 180

TTAAATTGGA TTTGAGAAAT TGGTTNTTAT TATATCAATT TTTGGTATTT GTTGAGTTG 240

ACATTATAGC TTAGTATGTG ACCA 264

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 376 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

TTACAACGAG GGGAAACTCC GTCTCTACAA AAATTAACCA ATTAGCCAGG TGTGGTGGTG	60
TGCACCCGCA ATCCCAGCTA CTTGGGAGGT TGAGACACAA GANTCACCTA NATGTGGGAG	120
GTCAAGGTTG CATGAGTCAT GATTGTGCCA CTGCACTCCA GCCTGGGTGA CAGACCGAGA	180
CCCTGCCTCA ANAGANAANG AATAGGAAGT TCAGAAATCN TGGNTGTGGN GCCCAGCAAT	240
CTGCATCTAT NCAACCCCTG CAGGCAANG TGATGCAGCC TANGTTCAAG AGCTGCTGTT	300
TCTGGAGGCA GCAGTTNGGG CTTCCATCCA GTATCACGGC CACACTCGCA CNAGCCATCT	360
GTCCTCCGTN TGTNAC	376

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 372 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

TTACAACGAG GGGAAACTCC GTCTCTACAA AAATTAACCA ATTAGCCAGG TGTGGTGGTG	60
TGCACCTGTA ATCCCAGCTA CTTGGCGGC TGAGACACAA GAACCACCTA AATGTGGGAG	120
GGTCAAGGTT GCATGAGTCAT TGATCGCGCC ACTGCACTCCA AGCCTGGGTG ACAGACTGAG	180
ACCCCTGCCTC AAAAGAAAAA GAATAGGAAG TTCAGAAACC CTGGGTGTGG NGCCCAGCAA	240
TCTGCATTAA ACAATCCCT GCAGGCAATG CTGATGCAGC CTAAGTTCAA GAGCTGCTGT	300

TCTGGAGGCA GNAGTAAGGG CTTCCATCCA GCATCACGGN CAACACTGCA AAAGCACCTG 360

TCCTCGTTGG TA 372

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 477 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

TTCTGTCCAC ATCTACAAGT TTTATTATT TTGTGGGTT TCAGGGTGAC TAAGTTTTC 60

CCTACATTGA AAAGAGAAAGT TGCTAAAAGG TGCACAGGAA ATCATTTTT TAAGTGAATA 120

TGATAATATG GGTCCGTGCT TAATACAAC T GAGACATATT TGTTCTCTGT TTTTTAGAG 180

TCACCTCTTA AAGTCCAATC CCACAATGGT GAAAAAAAAG TAGAAAGTAT TTGTTCTACC 240

TTAAGGAGA CTGCAGGGAT TCTCCTGAA AACGGAGTAT GGAATCAATC TTAAATAAAT 300

ATGAAATTGG TTGGTCTTCT GGGATAAGAA ATTCCAACT CAGTGTGCTG AAATTCACCT 360

GACTTTTTT GGGAAAAAAT AGTCGAAAT GTCAATTGG TCCATAAAAT ACATGTTACT 420

ATTAAGAT ATTTAAAGAC AAATTCTTTC AGAGCTCTAA GATTGGTGTG GACAGAA 477

(2) INFORMATION FOR SEQ ID NO:28:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 438 base pairs
- (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

TCTNCAACCT CTTGANTGTC AAAAACCTTN TAGGCTATCT CTAAAAGCTG ACTGGTATT	60
ATTCCAGCAA AATCCCTCTA GTTTTGGAG TTTCCCTTTA CTATCTGGGG CTGCCTGAGC	120
CACAAATGCC AAATTAAGAG CATGGCTATT TTCGGGGGCT GACAGGTCAA AAGGGGTGTA	180
AATCCGATAA GCCTCCTGGA GGTGCTCTAA AACACTCCT GGTGACTCAT CATGCCCTG	240
GACGACTTCA ATCGNCTTAG ACAAGTTTAT AGGTTCTGG GCAGCTCCCT GAATACCCAC	300
GAGGAGATAAC CGGTGAAAT CGTCAAAAGT TCTCCCTCCA CTTGAGAAAT TTGGGTCCCA	360
ATTAGGTCCC AATTGGGTCT CTAATCACTA TTCCCTCTAGC TTCCCTCTCC GGNCTATTGG	420
TTGATGTGAG GTTGAAGA	438

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 620 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

AAGAGGGTAC CAGCCCCAAG CCTTGACAAC TTCCATAGGG TGTCAGCCT GTGGGTGCAC	60
AGAAGTCAAA AATTGAGTTT TGGGATCCTC AGCCTAGATT TCAGAGGATA TAAAGAAACA	120

CCTAACACCT AGATATTCAAG ACAAAAGTTT ACTACAGGGA TGAAGCTTC ACGGAAAACC	180
TCTACTAGGA AAGTACAGAA GAGAAATGTG GGTTGGAGC CCCCAAACAG AATCCCTCT	240
AGAACACTGC CTAATGAAAC TGTGAGAAGA TGGCCACTGT CATCCAGACA CCAGAATGAT	300
AGACCCACCA AAAACTTATG CCATATTGCC TATAAACCT ACAGACACTC AATGCCAGCC	360
CCATGAAAAA AAAACTGAGA AGAAGACTGT NCCCTACAAT GCCACCGGAG CAGAACTGCC	420
CCAGGCCATG GAAGCACAGC TCTTATATCA ATGTGACCTG GATGTTGAGA CATGGAATCC	480
NANGAAATCN TTTTAANACT TCCACGGTN AATGACTGCC CTATTANATT CNGAACTTAN	540
ATCCNGGCCT GTGACCTCTT TGCTTGGCC ATTCCCCCTT TTTGGAATGG CTNTTTTTT	600
CCCATGCCTG TNCCCTCTTA	620

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 100 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

TTACAACGAG GGGGTCAATG TCATAATGT CACAATAAA CAATCTTTC .TTTTTTTTT	60
TTTTTTTTT TTTTTTTTT TTTTTTTTT TTTTTTTTT	100

(2) INFORMATION FOR SEQ ID NO:31:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 762 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

TAGTCTATGC GCCGGACAGA GCAGAATTAA ATTGGAAGTT GCCCTCCGGA CTTTCTACCC	60
ACACTCTTCC TGAAAAGAGA AAGAAAAGAG GCAGGAAAGA GGTAGGATT TCATTTCAA	120
GAGTCAGCTA ATAGGAGAG CAGAGTTAG ACAGCAGTAG GCACCCCATG ATACAAACCA	180
TGGACAAAGT CCCTGTTAG TAACTGCCAG ACATGATCCT GCTCAGGTT TGAAATCTCT	240
CTGCCATAA AAGATGGAGA GCAGGAGTGC CATCCACATC AACACGTGTC CAAGAAAAGAG	300
TCTCAGGGAG ACAAGGGTAT CAAAAAACAA GATTCTTAAT GGGAGGAAA TCAAACCAAA	360
AAATTAGATT TTTCTCTACA TATATATAAT ATACAGATAT TTAACACATT ATTCCAGAGG	420
TGGCTCCAGT CCTGGGGCT TGAGAGATGG TGAAACTTT TGTTCCACAT TAACTCTGC	480
TCTCAAATTC TGAAGTATAT CAGAATGGGA CAGGCAATGT TTTGCTCCAC ACTGGGGCAC	540
AGACCCAAAT GGTTCTGTGC CGGAAGAAGA GAAGCCCGAA AGACATGAAG GATGCTTAAG	600
GGGGGTTGGG AAAGCCAAT TGGTANTATC TTTCTCTCT GCCTGTGTT CNGAAGTCTC	660
CNCTGAAGGA ATTCTAAAAA CCCTTGTA GGAAATGCC CTTTACCATG ACAANTGGTC	720
CCATTGCTTT TAGGGNGATG GAAACACCAA GGGTTTGAT CC	762

(2) INFORMATION FOR SEQ ID NO:32:

(1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 276 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

TAGTCTATGC GTGTATTAAC CTCCCCCCC TCAGTAACAA CCAAAGAGGC AGGAGCTGTT	60
ATTACCAACC CCATTTACA GATCCATCAA TAATGACAGA GAAGTGAAGT GACTTGCGCA	120
CACAACCACT AAATTGGCAG AGTCAGATT GAATCCATGG AGTCTGGTCT GCACTTCAA	180
TCACCGAATA CCCTTCTAA GAAACGTGTG CTGAATGAGT GCATGGATAA ATCAGTGTCT	240
ACTAACATC TTTGCCTAGA TATCCGCAT AGACTA	276

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 477 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

TAGTAGTTGC CAAATATTG AAAATTACC CAGAAGTGAT TGAAAACTTT TTGGAAACAA	60
AAACAAATAA AGCCAAAAGG TAAAATAAAA ATATCTTGC ACTCTCGTTA TTACCTATCC	120
ATAACTTTT CACCGTAAGC TCTCCTGCTT GTTAGTGTAG TGTGGTTATA TTAAACTTTT	180

TAGTTATIAT TTTTATTCA CTTTCCACT AGAAAGTCAT TATTGATTAA GCACACATGT	240
TGATCTCATT TCATTTTTC TTTTATAGG CAAAATTGA TGCTATGCAA CAAAAACT	300
CAAGCCCATT ATCTTTTTC CCCCCGAAAT CTGAAAATTG CAGGGGACAG AGGGAAGTTA	360
TCCCATTAAGA AAATTGTAAGA TATGTTCACT TTATGTTAA AAATGCACAA AACATAAGAA	420
AATTGTGTTT ACTTGAGCTG CTGATTGAA GCAGTTTAT CTCAGGGCA ACTACTA	477

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 631 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

TAGTAGTTGC CAATTCAAGAT GATCAGAAAT GCTGCTTCC TCAGCATTGT CTTGTTAAC	60
CGCATGCCAT TTGGAACCTT GGCACTGAGA AGCCAAAAGG AAGAGGTGAA TGACATATAT	120
ATATATATAT ATTCAATGAA AGTAAAATGT ATATGCTCAT ATACTTCTA GTTATCAGAA	180
TGAGTTAACG TTTATGCCAT TGGGCTGCTG CATATTTAA TCAGAAGATA AAAGAAAATC	240
TGGGCATTT TAGAATGTGA TACATGTTT TTTAAAACAG TTAAATATTA TTTCGATATT	300
TGTCTAAGAA CCGGAATGTT CTTAAAATTT ACTAAAACAG TATTGTTGA GGAAGAGAAA	360
ACTGTACTGT TTGCCATTAT TACAGTCGTA CAAGTGCATG TCAAGTCACC CACTCTCTCA	420

GGCATCAGTA TCCACCTCAT AGCTTACAC ATTTGACGG GGAATATTGC AGCATCCTCA	480
GGCCTGACAT CTGGGAAAGG CTCAGATCCA CCTACTGCTC CTTGCTCGTT GATTTGTTT	540
AAAATATTGT GCCTGGTGTC ACTTTAACG CACAGCCCTG CCTAAAAGCC AGCAGAGAAC	600
AGAACCCGCA CCATTCTATA GGCAACTACT A	631

(2) INFORMATION FOR SEQ ID NO:35:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 578 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

TAGTAGTTGC CATCCCATAI TACAGAAGGC TCTGTATAAC TGACTTATTG GGAAGTGATC	60
TGTTTCTCT CCAAACCCAT TTATCGTAAT TTCACCAGTC TTGGATCAAT CTTGGTTCC	120
ACTGATACCA TGAAACCTAC TTGGAGCAGA CATTGCACAG TTTCTGTGG TAAAAACTAA	180
AGGTTTATTT GCTAAGCTGT CATCTTATGC TTAGTATTT TTTTTACAG TGGGAATTG	240
CTGAGATTAC ATTTGTTAT TCATTAGATA CTTTGGATA ACTTGACACT GTCTTCTTT	300
TTTCGCTTT AATTGCTATC ATCATGCTT TGAAACAAGA ACACATTAGT CCTCAAGTAT	360
TACATAAGCT TGCTTGTTAC GCCTGGTGGT TTAAAGGACT ATCTTGGCC TCAGGTTCAC	420
AAGAATGGGC AAAGTGTTC CTTATGTTCT GTAGTTCTCA ATAAAAGATT GCCAGGGGCC	480
GGGTACTGTG GCTCGCACTG TAATCCCAGC ACTTTGGAA GCTGAGGCTG GCGGATCATG	540

TTAGGGCAGG TGTCGAAAC CAGCCTGGGC AACTACTA 578

(2) INFORMATION FOR SEQ ID NO:36:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 583 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

TAGTAGTTGC CTGTAATCCC AGCAACTCAG GAGGCTGGGG CAGGAGAACATC AGTTGAACCT	60
GGGAGGCAGA AGTTGTAATT AGCAAAGATC GCACCATTGC ACTTCAGCCT GGGCAACAAG	120
AGTGAGATT CATCTCAAAA ACAAAAAAAA GAAAAAGAAA AGAAAAGGAA AAAACGTATA	180
AACCCAGCCA AAACAAAATG ATCATTCTT TAATAAGCAA GACTAATTAA ATGTGTTAT	240
TTAATCAAAG CAGTTGAATC TTCTGAGTTA TTGGTAAAAA TACCCATGTA GTTAATTAG	300
GGTTCTTACT TGGGTGAACG TTTGATGTT ACAGGTTATA AAATGGTTAA CAAGGAAAT	360
GATGCATAAA GAATCTTATA AACTACTAAA AATAAATAAA ATATAAATGG ATAGGTGCTA	420
TGGATGGAGT TTTTGTGTAATTTAAATCT TGAAGTCATT TTGGATGCTC ATTGGTTGTC	480
TGGTAATTTC CATTAGGAAA AGGTTATGAT ATGGGGAAAC TGTTCTGGA AATTGCGGAA	540
TGTTTCTCAT CTGAAAATG CTAGTATCTC AGGGCAACTA CTA	583

(2) INFORMATION FOR SEQ ID NO:37:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 716 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

GATCTACTAG TCATNTGGAT TCTATCCATG GCAGCTAACGC CTTTCTGAAT GGATTCTACT	60
GCTTTCTTGT TCTTTAATCC AGACCCTTAT ATATGTTTAT GTTCACAGGC AGGGCAATGT	120
TTAGTGAAAA CAATTCTAAA TTTTTTATT TGCACTTCA TGCTAATTTC CGTCACACTC	180
CAGCAGGCTT CCTGGGAGAA TAAGGAGAAA TACAGCTAAA GACATTGTCC CTGCTTACTT	240
ACAGCCTAAT GGTATGCAA ACCACTTCAA TAAAGTAACA GGAAAAGTAC TAACCAGGTA	300
GAATGGACCA AAACTGATAT AGAAAAATCA GAGGAAGAGA GGACACAAATA TTTACTGAGT	360
CCTAGAATGT ACAAGGCTTT TTAATTACAT ATTTATGTA AGGCCTGCAA AAAACAGGTG	420
AGTAATCAAC ATTTGTCCA TTTACATAA AAGGAAACTG AAGCTTAAAT TGAATAATT	480
AATGCATAGA TTTTATAGTT AGACCATGTT CAGGTCCCTA TGTTACTT ACTAGCTGTA	540
TGAATATGAG AAAATAATT TGTTATTTTC TTGGCATCAG TATTTTCATC TGCAAAATAA	600
AGCTAAAGTT ATTTAGCAA CAGTCAGCAT AGTGCCTGAT ACATAGTAGG TGCTCCAAAC	660
ATGATTACNC TANTATNNGG TATTAAAAA ATCCAATATA GGCNTGGATA AAACCG	716

(2) INFORMATION FOR SEQ ID NO:38:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 688 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

TTCTGTCCAC ATATCATCCC ACTTTAATTG TTAATCAGCA AAACTTCAA TGAAAAATCA	60
TCCATTTAA CCAGGATCAC ACCAGGAAAC TGAAGGTGTA TTTTTTTTA CCTTAAAAAA	120
AAAAAAAAAA ACCAACACAA CCAAAACAGA TTAACAGCAA AGAGTTCTAA AAAATTTACA	180
TTTCTCTTAC AACTGTCATT CAGAGAACAA TAGTTCTAA GTCTGTTAAA TCTTGGCATT	240
AACAGAGAAA CTTGATGAAN AGTTGTACTT GGAATATTGT GGATTTTTT TTTTGTCTAA	300
TCTCCCCCTA TTGTTTGCC AACAGTAATT TAAGTTGTG TGGAACATCC CCGTAGTTGA	360
AGTGTAAACA ATGTATAGGA AGGAATATAT GATAAGATGA TGCATCACAT ATGCATTACA	420
TGTAGGGACC TTCACAACTT CATGCACTCA GAAAACATGC TTGAAGAGGA GGAGAGGACG	480
GCCCAGGGTC ACCATCCAGG TGCCTTGAGG ACAGAGAATG CAGAAGTGGC ACTGTTGAAA	540
TTTAGAAGAC CATGTGTGAA TGGTTTCAGG CCTGGGATGT TTGCCACCAA GAAGTGCCTC	600
CGAGAAATTCTT CTTCCATT TGGAATACAG GGTGGCTTGA TGGGTACGGT GGGTGACCCA	660
ACGAAGAAAA TGAAATTCTG CCCTTCC	688

(2) INFORMATION FOR SEQ ID NO:39:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 585 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

TAGTAGTTGC CGCNNACCTA AAANTGGAA AGCATGATGT CTAGGAAACA TANTAAAATA	60
GGGTATGCCT ATGTGCTACA GAGAGATGTT AGCATTAAA GTGCATANTT TTATGTATT	120
TGACAAATGC ATATNCCTCT ATAATCCACA ACTGATTACG AAGCTATTAC AATTAAAAAG	180
TTTGGCCGGG CGTGGTGGC GGTGGCTGAC GCCTGTAATC CCAGCACTT GGGAGGCCGA	240
GGCACGCGGA TCACGAGGTC GGGAGTTCAA GACCACCTG GCTAACACGG TGAAAGTCCA	300
TCTCTACTAA AAATACGAAA AAATTACCCC GGCGTGGTGG CGGGCGCCTG TAGTCCCAGC	360
TACTCCGGAG GCTGAGGCAG GAGAATGGCG TGAACCCAGG ACACGGAGCT TGCAGTGTGC	420
CAACATCACG TCACTGCCCT CCAGCCTGGG GGACAGGAAC AAGANTCCCG TCCTCANAAA	480
AGAAAAATAC TACTNATANT TTCNACTTTA TTTAANTTA CACAGAACTN CCTCTTGGTA	540
CCCCCTTACC ATTCACTCA CCCACCTCCT ATAGGGCACN NCTAA	585

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 475 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

TCTGTCCACA CCAATCTTAG AAGCTCTGAA AAGAATTGT CTTAAATAT CTTTAATAG	60
TAACATGTAT TTTATGGACC AAATTGACAT TTTCGACTGT TTTTCCAAA AAAGTCAGGT	120
GAATTCAGC ACAC TGAGTT GGGATTCT TATCCCAGAA GACCAACCAA TTTCATATT	180
ATTTAAGATT GATTCCATAC TCCGTTTCA AGGAGAACCC CTGCAGTCTC CTTAAAGGTA	240
GAACAAATAC TTCCTATTT TTTTCACCA TTGTGGGATT GGACTTAAG AGGTGACTCT	300
AAAAAAACAG AGAACAAATA TGTCTCAGTT GTATTAAGCA CGGACCCATA TTATCATATT	360
CACTTAAAAA AATGATTCC TGTGCACCTT TTGGCAACTT CTCTTTCAA TGTAGGGAAA	420
AACTTAGTCA CCCTGAAAAC CCACAAAATA AATAAAACTT GTAGATGTGG ACAGA	475

(2) INFORMATION FOR SEQ ID NO:41:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 423 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

TAAGAGGGTA CATCGGGTAA GAACGTAGGC ACATCTAGAG CTTAGAGAAG TCTGGGGTAG	60
GAAAAAAATC TAAGTATTAA TAAGGGTATA GGTAACATT AAAAGTAGGG CTAGCTGACA	120
TTATTTAGAA AGAACACATA CGGAGAGATA AGGGCAAAGG ACTAAGACCA GAGAACACT	180
AATATTTAGT GATCACTTCC ATTCTGGTA AAAATAGTAA CTTTAAGTT AGCTTCAAGG	240

AAGATTTTG GCCATGATTA GTTGTCAAAA GTTAGTTCTC TTGGGTTTAT ATTACTAATT	300
TTGTTTAAG ATCCTGTTA GTGCTTAAT AAAGTCATGT TATATCAAAC GCTCTAAAC	360
ATTGTAGCAT GTTAAATGTC ACAATATACT TACCATTGT TGTATATGGC TGTACCCCTCT	420
CTA	423

(2) INFORMATION FOR SEQ ID NO:42:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 527 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

TCTCCTAGGC TAATGTGTGT GTTCTGTA AAGAAAAAG TTAAAAATT TAAAAATAGA	60
AAAAAGCTTA TAGAATAAGA ATATGAAGAA AGAAAATATT TTTGTACATT TGCACAATGA	120
GTTTATGTT TAAGCTAAGT GTTATTACAA AAGAGCCAAA AAGGTTTAA AAATTAAAAC	180
GTTTGTAAAG TTACAGTACC CTTATGTTAA TTTATAATTG AAGAAAGAAA AACTTTTTT	240
TATAAATGTA GTGTAGCCTA AGCATACTG ATTTATAAAG TCTGGCAGTG TTCAATAATG	300
TCCTAGGCCT TCACATTAC ACCTGACTC ACCCAGAGCA ACTTCCAGTC CTGTAAGCTC	360
CATTCTGTGGT AAGTGCCCTA TACAGGTGCA CCATTATTT TACAGTATTT TTACTGTACC	420
TTCTCTATGT TTCCATATGT TTCGATATAC AAATACCACT GGTTACTATN GCCCNACAGG	480

TAATTCCAG1 AACACGGCCT GTATACGTCT GGTANCCCTA GNGAAGA 527

(2) INFORMATION FOR SEQ ID NO:43:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 331 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

TCTTCAACCT CGTAGGACAA CTCTCATATG CCTGGGCACT ATTTTAGGT TACTACCTTG 60
GCTGCCCTTC TTTAAGAAAA AAAAAAGAAC AAAAAAGAAC TTTCCACAA GTTCTCTTC 120
CTCTAGTTGG AAAATTAGAG AAATCATGTT TTTAATTTG TGTTATTTCA GATCACAAAT 180
TCAAACACTT GTAAACATTA AGCTTCTGTT CAATCCCTG GGAAGAGGAT TCATTCTGAT 240
ATTTACGGTT CAAAAGAAGT TGTAATATTG TGCTTGGAAC ACAGAGAACC AGTTATTAAC 300
TTCCTACTAC TATTATATAA TAAATAATAA C 331

(2) INFORMATION FOR SEQ ID NO:44:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 592 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

GGCTTAGTAG TTGCCAGGCA AAATARC GTT GATTCTCCTC AGGAGCCACC CCCAACACCC	60
CTGTTTGCTT CTAGACCTAT ACCTAGACTA AAGTCCCAGC AGACCCCTAG AGGTGAGGTT	120
CAGAGTGACC CTTGAGGAGA TGTGCTACAC TAGAAAAGAA CTGCTTGAGT TTTCTAATT	180
ATATAAGCAG AAATCTGGAG AAGAGTCATA GGAATGGATA TTAAGGGTGT GAGATAATGG	240
CGGAAGGAAT ATAGAGTTGG ATCAGGCTGG ACTTATTGAT TTGAACCCAC TAAGTAGAGA	300
TTCTGCTTT GATGTTGCAG CTCAGGGAGT TAAAAAAAGGT TTTAATGGTT CTAATAGTTT	360
ATTTGCTTG TTAGCTGAAA TATGGATAAA AGATGGCCA CTGTGAGCAA GCTGGAAATG	420
CCTGATCTCT CTCAGTTAA TGTAGAGGAA GGGATCCAAA AGTTAGGGA GANTTGGATG	480
CTGGRAKTGG ATTGGTCACT TTGRGACCTA CCCWTCCCAG CTGGGAGGGT CCAGAAGATA	540
CACCCTTGAC CAACGCTTG CGAAATGGAT TTGTGATGGC GGCAACTACT AA	592

(2) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 567 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

GGCTTAGTAG TTGCCATTGC GAGTGCTTGC TCAACGAGCG TTGAACATGG CGGATTGTCT	60
AGATTCAACG GATTGAGTT TTACCAGCAA AGCGAACCAA GCGCGGCCA GAGAATTATG	120
GGTTGGTTGG CTTGAAAAG ATGGAAATCC TGTAGGCCTA GTCAGAAAAG CCTTCTTGCA	180

GAACAGTTGG TTCTCGGGCG AACGCTCATC AAGATGCCA TTGGAAAGGC TAGCGTGTAT	240
TTGGGAGAGC CTGATAGCGT GTCTTCTGAT GATGTTGTG CTTGGACAGT GACAAAAGAT	300
ATGCAAAGCA AGTCCGAACT AGACGTCAAG CTTCGTGAGC AAATTATTGT AGACTCCTAC	360
TTATACTGTG AGGAATGATA GCCAAGGGTG GGGACTTTAA GACTAAGGTG GTTGTACTT	420
GCGCCGATGA TCCCAGGCAG AAAGAMCTGA TCGCTAGTTT TATACGGGCA ACTACTAACG	480
CGAATTCCAG CACACTGGCG GCCGTTACTA ATTGGATCCG ANCTCGGTAC CAGCTTGATG	540
CATASCTGA GTTWTCTATA NTGTCNC	567

(2) INFORMATION FOR SEQ ID NO:46:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 908 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

GAGCGAAAGA CCGAGGGCAG NGNNNTANGNG CGANGAAGCG GAGAGGGCCA AAAAGCAACC	60
GCTTCCCCG GGGGGTGCAG ATTCAATTAG GCAGGTGGAG GACAGGTTTC CCGATGGAAG	120
GCGGCAGGGG CGCAAGCAAT TAATGTGAGT AGGCCATTCA TTAGCACCCG GGCTTAACAT	180
TTAAGCTTCG GGTTGGTATG TGTTGGGAAT TGTGAGCGGA TAACAATTTC ACACAGGAAA	240
CAGCTATGAC CATGATTACG CCAAGCTATT TAGGTGACAT TATAGAATAA CTCAAGTTAT	300

GCATCAAGCT TGGTACCGAG TTGGATCCA CTAGAACGG CGGCCAGTGT GTGGAATTG	360
GCTTAGTAGT TGCCGACCAC GGAGTGCTAC CTAGGCTAGA ATACCTGAGY TCCTCCCTAG	420
CCTCACTCAC ATTAAATTGT ATCTTTCTA CATTAGATGT CCTCAGCGCC TTATTTCTGC	480
TGGACWATCG ATAAATTAAT CCTGATAGGA TGATAGCAGC AGATTAATTA CTGAGAGTAT	540
GTAAATGTGT CATCCCTCCT ATATAACGTA TTTGCATTT AATGGAGCAA TTCTGGAGAT	600
AATCCCTGAA GGCAAAGGAA TGAATCTGA GGGTGAGAAA GCCAGAATCA GTGTCCAGCT	660
GCAGTTGTGG GAGAAGGTGA TATTATGTAT GTCTCAGAAG TGACACCATA TGGGCAACTA	720
CTAAGCCGA ATTCCAGCAC ACTGGCGGC GTTACTAATG GATCCGAGCT CGGTACCAAG	780
CTTGATGCAT AGCTTGAGTA TCTATAGTGT CACTAAATAG CCTGGCGTTA TCATGGTCAT	840
AGCTGTTCC TGTGTGAAAT TGTTATCCGC TCCCAATTCC CCCCACCATA CGAGCCGGAA	900
CATAAAGT	908

(2) INFORMATION FOR SEQ ID NO:47:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 480 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

TGCCAACAAAG GAAAGTTTA AATTCCCT TGAGGATTCT TGGTGATCAT CAAATTAGT	60
GGTTTTAAG GTTGTGTTCT GTCAAATAAC TCTAACTTA AGCCAAACAG TATATGGAAG	120

CACAGATAKA ATATTACACA GATAAAAGAG GAGTTGATCT AAAGTARAGA TAGTTGGGG	180
CTTTAATTTC TGGAACCTAG GTCTCCCCAT CTTCTTCTGT GCTGAGGAAC TTCTTGGAAAG	240
CGGGGATTCT AAAGTTCTT GGAAGACAGT TTGAAAACCA CCATGTTGTT CTCAGTACCT	300
TTATTTTAA AAAGTAGGTG AACATTTGA GAGAGAAAAG GGCTTGGTTG AGATGAAGTC	360
CCCCCCCCC CTTTTTTTT TTTTAGCTGA AATAGATACC CTATGTTNAA RGAARGGATT	420
ATTATTTACC ATGCCAYTAR SCACATGCTC TTTGATGGGC NYCTCCSTAC CCTCCTTAAG	480

(2) INFORMATION FOR SEQ ID NO:48:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 591 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

AAGAGGGTAC CGAGTGGAAAT TTCCGCTTCA CTAGTCTGGT GTGGCTAGTC GGTTTCGTGG	60
TGGCCAACAT TACGAACTTC CAACTCAACC GTTCTTGGAC GTTCAAGCGG GAGTACCGGC	120
GAGGATGGTG GCGTGAATTTC TGGCCTTCTT TTGCGGTGGG ATCGGTAGCC GCCATCATCG	180
GTATGTTAT CAAGATCTTC TTTACTAACCC CGACCTCTCC GATTTACCTG CCCGAGCCGT	240
GGTTTAACGA GGGGAGGGGG ATCCAGTCAC GCGAGTACTG GTCCCAGATC TTCGCCATCG	300
TCGTGACAAT GCCTATCAAC TTCGTGTCATAAAGTTGTG GACCTTCCGA ACGGTGAAGC	360

ACTCCGAAAA CGTCCGGTGG CTGCTGTGCG GTGACTCCA AAATCTTGAT AACACAAGG	420
TAACCGAATC GCGCTAAGGA ACCCCGGCAT CTCGGGTACT CTGCATATGC GTACCCCTTA	480
AGCCGAATTG CAGCACACTG GCGGCCGTTA CTAATTGGAT CCGAACTCCG TAACCAAGCC	540
TGATGCGTAA CTTGAGTTAT TCTATAGTGT CCCTAAAATA ACCTGGCGTT A	591

(2) INFORMATION FOR SEQ ID NO:49:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 454 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

AAGAGGGTAC CTGCCTTGAA ATTTAAATGT CTAAGGAAAR TGGGAGATGA TTAAGAGTTG	60
GTGTGGCYTA GTCACACCAA AATGTATTAA TTACATCCTG CTCCTTTCTA GTTGACAGGA	120
AAGAAAGCTG CTGTGGGGAA AGGAGGGATA AATACTGAAG GGATTTACTA AACAAATGTC	180
CATCACAGAG TTTTCCTTTT TTTTTTTTG AGACAGAGTC TTGCTCTGTC ACCCAGGCTG	240
GAATGAAGWG GTATGATCTC AGTTGAATGC AACCTCTACC TCCTAGGTTC AAGCGATTCT	300
CATGCCTCAG CCTCCTGAGC AGCTGGACT ATAGGCGCAT GCTACCATGC CAGGCTAATT	360
TTTATATTTT TATTAGAGAC GGGGTGTTGC CATGTTGGCC AGGCAGGTCT CGAACTCCTG	420
GGCCTCAGAT GATCTGCCCT ACCGTACCCCT CTTA	454

(2) INFORMATION FOR SEQ ID NO:50:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 463 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

AAGAGGGTAC CAAAAAAAAG AAAAAGGAAA AAAAGAAAAA CAACTTGTAT AAGGCTTTCT	60
GCTGCATACA GCTTTTTTT TTTAAATAAA TGGTGCAAC AAATGTTTT GCATTCACAC	120
CAATTGCTGG TTTGAAATC GTACTCTTCA AAGGTATTG TGCGAGATCAA TCCAATAGTG	180
ATGCCCGTA GGTTTGTGG ACTGCCACG TTGTCTACCT TCTCATGTAG GAGCCATTGA	240
GAGACTGTTT GGACATGCCT GTGTTCATGT AGCCGTGATG TCCGGGGGCC GTGTACATCA	300
TGTTACCGTG GGGTGGGTC TGCATTGGCT GCTGGCATA TGGCTGGTG CCCATCATGC	360
CCATCTGCAT CTGCATAGGG TATTGGGCG TTTGATCCAT ATAGCCATGA TTGCTGTGGT	420
AGCCACTGTT CATCATTGGC TGGGACATGC TGTTACCCTC TTA	463

(2) INFORMATION FOR SEQ ID NO:51:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 399 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

CTTCAACCTC CCAAAGTGCT GGGATTACAG GACTGAGCCA CCACGCTCAG CCTAACGCCTC	60
TTTTCACTA CCCTCTAACGC GATCTACCAC AGTGATGAGG GGCTAAAGAG CAGTGAATT	120
TGATTACAAT AATGGAACCT AGATTATTATA ATTAACAATT TTTCCTTAGC ATGTTGGTTC	180
CATAATTATT AAGAGTATGG ACTTACTTAG AAATGAGCTT TCATTTAAG AATTCATCT	240
TTGACCTTCT CTATTAGTCT GAGCAGTATG ACACATACG TATTTTATT AACTAACCTA	300
CCTTGAGCTA TTACTTTTA AAAGGCTATA TACATGAATG TGTATTGTCA ACTGTAAAGC	360
CCACAGTAT TTAATTATAT CATGATGTCT TTGAGGTTG	399

(2) INFORMATION FOR SEQ ID NO:52:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 392 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

CTTCAACCTC AATCAACCTT GGTAATTGAT AAAATCATCA CTTAACTTTC TGATATAATG	60
GCAATAATTA TCTGAGAAAA AAAAGTGGTG AAAGATTAAA CTGCATTTC TCTCAGAAC	120
TTGAAGGATA TTTGAATAAT TCAAAAGCGG AATCAGTAGT ATCAGCCGAA GAAACTCACT	180
TAGCTAGAAC GTTGGACCCA TGGATCTAAG TCCCTGCCCT TCCACTAACC AGCTGATTGG	240
TTTGTGTAA ACCTCCTACA CGCTTGGGCT TGGTCGCCTC ATTGTCAA GTAAAGGCTG	300

AAATAGGAAG ATAATGAACC GTGTCTTTT GGTCTCTTT CCATCCATTA CTCTGATTT 360

ACAAAGAGGC CTGTATTCCC CTGGTGAGGT TG 392

(2) INFORMATION FOR SEQ ID NO:53:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 179 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

TTCGGGTGAT GCCTCCTCAG GCTACAGTGA AGACTGGATT ACAGAAAGGT GCCAGCGAGA 60

TTTCAGATTCTGTAAACCT CTAAGAAAA GGAGTCGCGC CTCAACTGAT GTAGAAATGA 120

CTAGTTCAGC ATACNGAGAC ACNTCTGACT CCGATTCTAG AGGACTGAGT GACCTGCAN 179

(2) INFORMATION FOR SEQ ID NO:54:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 112 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

TTCGGGTGAT GCCTCCTCAG GCTACATCAT NATAGAAGCA AAGTAGAANA ATCNNGTTG 60

TGCATTTCC CACANACAAA ATTCAAATGA NTGGAAGAAA TTGGGANAGT AT 112

(2) INFORMATION FOR SEQ ID NO:55:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 225 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

TGAGCTTCCG CTTCTGACAA CTCAATAGAT AATCAAAGGA CAACTTAAC AGGGATTCAC	60
AAAGGAGTAT ATCCAAATGC CAATAAACAT ATAAAAAGGA ATTCAAGCTTC ATCATCATCA	120
GAAGWATGCA ATTAAAACC ATAATGAGAA ACCACTATGT CCCACTAGAA TAGATAAAAT	180
CTTAAAAGAC TGGTAAAACC AAGTGTTGGT AAGGCAAGAG GAGCA	225

(2) INFORMATION FOR SEQ ID NO:56:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 175 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

GCTCCTCTTG CCTTACCAAC ACATTCTCAA AAACCTGTTA GAGTCCTAAG CATTCTCTG	60
TTAGTATTGG GATTTACCC CTGTCCTATA AAGATGTTAT GTACCAAAAA TGAAGTGGAG	120
GGCCATACCC TGAGGGAGGG GAGGGATCTC TAGTGTGTC AGAAGCGGAA GCTCA	175

(2) INFORMATION FOR SEQ ID NO:57:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 223 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

AGCCATTAC CACCATGGA TGAATGGATT TTGTAATTCT AGCTGTTGTA TTTTGTGAAT	60
TTGTTAATTG TGTTGTTTT CTGTGAAACA CATACTTGG ATATGGGAGG TAAAGGAGTG	120
TCCCAGTTGC TCCTGGTCAC TCCCTTATA GCCATTACTG TCTTGTCTCT TGTAACTCAG	180
GTAGGTTTT GGTCTCTCTT GCTCCACTGC AAAAAAAA AAA	223

(2) INFORMATION FOR SEQ ID NO:58:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 211 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

GTTCGAAGGT GAACGTGTAG GTAGCGGATC TCACAACGG GGAACTGTCA AAGACGAATT	60
AACTGACTTG GATCAATCAA ATGTGACTGA GGAAACACCT GAAGGTGAAG AACATCATCC	120
AGTGGCAGAC ACTGAAAATA AGGAGAATGA AGTTGAAGAG GTAAAAGAGG AGGGTCCAAA	180

AGAGATGACI TTGGATGGGT GGTAAATGGC T 211

(2) INFORMATION FOR SEQ ID NO:59:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 208 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

GCTCCTCTTG CCTTACCAAC TTTGCACCCA TCATCAACCA TGTGGCCAGG TTTGCAGCCC 60

AGGCTGCACA TCAGGGACT GCCTCGCAAT ACTTCATGCT GTTGCTGCTG ACTGATGGTG 120

CTGTGACGGA TGTGGAAGCC ACACGTGAGG CTGTGGTGCG TGCCCTGAAC CTGCCCATGT 180

CAGTGATCAT TATGGGTGGT AAATGGCT 208

(2) INFORMATION FOR SEQ ID NO:60:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 171 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

AGCCATTAC CACCCATACT AAATTCTAGT TCAAACCTCCA ACTTCTTCCA TAAAACATCT 60

AACCACTGAC ACCAGTTGGC AATAGCTTCT TCCTTCTTA ACCTCTTAGA GTATTTATGG 120

TCAATGCCAC ACATTTCTGC AACTGAATAA AGTTGGTAAG GCAAGAGGAG C 171

(2) INFORMATION FOR SEQ ID NO:61:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 134 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

CGGGTGTATGC CTCCCTCAGGC TTTGGGTGTGT CCACACTNACT CACTGGCCTC TTCTCCAGCA 60

ACTGGTGAAAN ATGTTCCTCAN GAAAANCNCC ACACGCNGCT CAGGGTGGGG TGGAANCAT 120

CANAATCATC NGGC 134

(2) INFORMATION FOR SEQ ID NO:62:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 145 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:62:

AGAGGGTACA TATGCAACAG TATATAAAGG AAGAAGTGCA CTGAGAGGAA CTTCATCAAG 60

GCCATTAAAT CAATAAGTGA TAGAGTCAAG GCTCAACCCA GGTGTGACGG ATTCCAGGGC 120

CCAAGCTCT TACTGGTACC CTCTT 145

(2) INFORMATION FOR SEQ ID NO:63:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 297 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

TGCACTGAGA GGAATTCAA GGGTTATGC CAAAGAACAA ACCAGTCCTC TGCAGCCTAA	60
CTCATTGTT TTTGGGCTGC GAAGCCATGT AGAGGGCGAT CAGGCAGTAG ATGGTCCCTC	120
CCACAGTCAG CGCCATGGTG GTCCGGTAAA GCATTTGGTC AGGCAGGCCT CGTTTCAGGT	180
AGACGGGCAC ACATCAGCTT TCTGGAAAAA CTTTGTTAGC TCTGGAGCTT TGTTTTCCC	240
AGCATAATCA TACACTGTGG AATCGGAGGT CAGTTTAGTT GGTAAGGCAA GAGGAGC	297

(2) INFORMATION FOR SEQ ID NO:64:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 300 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

GCACTGAGAG GAACTTCAA TACTATGTTG AATAGGAGTG GTGAGAGAGG GCATCCTTGT	60
CTTGTGCCGG TTTTCAAAGG GAATGCTTCC AGCTTTGCC CATTCACTAT AATATTAAG	120

AATGTTTAC CATTCTGT CTTGCCTGTT TTTCTGTGTT TTTGTTGGTC TCTTCATTCT 180
CCATTTTAG GCCTTACAT GTTAGGAATA TATTCTTT AATGATACTT CACCTTGTT 240
ATCTTTGTG AGACTCTACT CATACTGTGA TAAGCACTGG GTTGGTAAGG CAAGAGGAGC 300

(2) INFORMATION FOR SEQ ID NO:65:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 203 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

GCTCCTCTTG CCTTACCAAC TCACCCAGTA TGTCAGCAAT TTTATCRGCT TTACCTACGA 60
AACAGCCTGT ATCCAAACAC TTAACACACT CACCTGAAAA GTTCAGGCAA CAATGCCCT 120
CTCATGGGTC TCTCTGCTCC AGTTCTGAAC CTTTCTTT TCCTAGAACAA TGCATTTARG 180
TCGATAGAAG TTCCTCTCAG TGC 203

(2) INFORMATION FOR SEQ ID NO:66:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 344 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

TACGGGGACC CCTGCATTGA GAAAGCGAGA CTCACTCTGA AGCTGAAATG CTGTTGCCCT	60
TGCAGTGCTG GTAGCAGGAG TTCTGTGCTT TGTGGCTAA GGCTCCTGGA TGACCCCTGA	120
CATGGAGAAG GCAGAGTTGT GTGCCCTTC TCATGGCCTC GTCAAGGCAT CATGGACTGC	180
CACACACAAA ATGCCGTTT TATTAACGAC ATGAAATTGA AGGAGAGAAC ACAATTCACT	240
GATGTGGCTC GTAACCATGG ATATGGTCAC ATACAGAGGT GTGATTATGT AAAGGTTAAT	300
TCCACCCACC TCATGTGAA ACTAGCCTCA ATGCAGGGGT CCCA	344

(2) INFORMATION FOR SEQ ID NO:67:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 157 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

GCACTGAGAG GAACTTCGTA GGGAGGTTGA ACTGGCTGCT GAGGAGGGGG AACAACAGGG	60
TAACCAGACT GATGCCATT GGATGGATAA TATGGTGGTT GAGGAGGGAC ACTACTTATA	120
GCAGAGGGTT GTGTATAGCC TGAGGAGGCA TCACCCG	157

(2) INFORMATION FOR SEQ ID NO:68:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 137 base pairs
- (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

GCAC TGAGAG GAACTTCTAG AAAGTGAAG TCTAGACATA AAATAAAATA AAAATTAAA	60
ACTCAGGAGA GACAGCCCAG CACGGTGGCT CACGCCGTGA ATCCCAGAAC TTTGGGAGCC	120
TGAGGAGGCA TCACCCG	137

(2) INFORMATION FOR SEQ ID NO:69:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 137 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

CGGGTGATGC CTCTCAGGC TGTATTTGA AGACTATCGA CTGGACTTCT TATCAACTGA	60
AGAATCCGTT AAAAATACCA GTTGTATTAT TTCTACCTGT CAAAATCCAT TTCAAATGTT	120
GAAAGTTCTC TCAGTGC	137

(2) INFORMATION FOR SEQ ID NO:70:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 220 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

AGCATGTTGA GCCCAGACAC GCAATCTGAA TGAGTGTGCA CCTCAAGTAA ATGTCTACAC	60
GCTGCCCTGGT CTGACATGGC ACACCATCNC GTGGAGGGCA CASCTCTGCT CNGCCTACWA	120
CGAGGGCANT CTCATWGACA GGTTCCACCC ACCAAACTGC AAGAGGCTCA NNAAGTACTR	180
CCAGGGTMYA SGGACMASGG TGGGAYTYCA YCACWCATCT	220

(2) INFORMATION FOR SEQ ID NO:71:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 353 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

CGTTAGGGTC TCTATCCACT GCTAAACCAT ACACCTGGT AAACAGGGAC CATTAAACAT	60
TCCCANCTAA ATATGCCAAG TGACTTCACA TGTTTATCTT AAAGATGTCC AAAACGCAAC	120
TGATTTCTC CCCTAACCT GTGATGGTGG GATGATTAAN CCTGAGTGGT CTACAGCAAG	180
TTAAGTGCAA GGTGCTAAAT GAANGTGACC TGAGATACTG CATCTACAAG GCAGTACCTC	240
TCAACNCAGG GCAACTTIGC TTCTCANAGG GCATTTAGCA GTGCTGAAG TAATTCTGT	300
ATTACAACTC ACGGGGCGGG GGGTGAATAT CTANTGGANA GNAGACCCTA ACG	353

(2) INFORMATION FOR SEQ ID NO:72:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 343 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

GCAC TGAG AG GAACTT CCAA TACYATKATC AGAGTGAACA RGCA RCCYAC AGAACAGGAG	60
AAAATGTTYG CAATCTCTCC ATCTGACAAA AGGCTAATAT CCAGAWTCTA AWAGGAAC TT	120
AAACAAATT ATGAGAAAAG AACARACAAC CTCAWCAAAA AGTGGGTGAA GGAWATGCTS	180
AAARGAAGAC ATYTATTCA G CAGTAAC A YATGAAAAAA AGGCTCATSA TCACTGAWCA	240
TTAGAGAAAT GCAAATCAA ACCACAATGA GATACCCTCT YAYRCCAGTT AGAAYGGTGA	300
TCAT TAAAR STCAGGAAAC AACAGATGCT GGACAAGGTG TCA	343

(2) INFORMATION FOR SEQ ID NO:73:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 321 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

GCAC TGAG AG GAACTCAGA GAGAGAGAGA GAGTCCACC CTGTACTTGG GGAGAGAAC	60
AGAAGGTGAG AAAGTCTTG GTTCTGAAGC AGCTTCTAAG ATCTTTCAT TTGCTTCATT	120

TCAAAGTTCC CATGCTGCCA AAGTGCATC CTTGGGGTA CTGTTTCTG AGCTCCAGTG 180
ATAACTCATT TATACAAGGG AGATACCCAG AAAAAAAGTG AGCAAATCTT AAAAAGGTGG 240
CTTGAGTTCA GCCTTAAATA CCATCTGAA ATGACACAGA GAAAGAANGA TGTTGGGTGG 300
GAGTGGATAG AGACCCTAAC G 321

(2) INFORMATION FOR SEQ ID NO:74:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 321 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

GCACTGAGAG GAACTTCAGA GAGAGAGAGA GAGTCCACC CTGTACTTGG GGAGAGAAC 60
AGAAGGTGAG AAAGTCTTG GTTCTGAAGC AGCTTCTAAG ATCTTTCAT TTGCTTCATT 120
TCAAAGTTCC CATGCTGCCA AAGTGCATC CTTGGGGTA CTGTTTCTG AGCTCCAGTG 180
ATAACTCATT TATACAAGGG AGATACCCAG AAAAAAAGTG AGCAAATCTT AAAAAGGTGG 240
CTTGAGTTCA GYCTTAAATA CCATCTGAA ATGAMACAGA GAAAGAAGGA TGTTGGGTGG 300
GAGTGGATAG AGACCCTAAC G 321

(2) INFORMATION FOR SEQ ID NO:75:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 317 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

GCAGTGAGAG GAACTTCCAC ATGCACTGAG AAATGCATGT TCACAAGGAC TGAAGTCTGG	60
AACTCAGTTT CTCAGTTCCA ATCCTGATTG AGGTGTTAAC CAGCTACACA ACCTTAAGCA	120
AGTCAGATAA CCTTAGCTTC CTCTATGCA AAATGAGAAT GAAAAGTACT CATCGCTGAA	180
TGTTTTGAG GATTAGAAAA ACATCTGGCA TGCACTGAA ATTCAATTAG TATTCAATT	240
CATTCTTCTA AATTAAACAA ATAGGATTT TAGTGGTGGAA ACTTCAGACA CCAGAAATGG	300
GAGTGGATAG AGACCCT	317

(2) INFORMATION FOR SEQ ID NO:76:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 244 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

CGTTAGGGTC TCTATCCACT CCCACTACTG ATCAAACCTCT ATTATTTAA TTATTTTAT	60
CATACTTTAA GTTCTGGGAT ACACGTGCAG CATGCCAGG TTTGTTGCAT AGGTATACAC	120
TTGCCATGGT GGTTGCTGC ACCCATCAGT CCATCATCTA CATTAGGTAT TTCTCCTAAT	180

92

GCTATCCCTC CCCTAGCCCC TTACACCCCC AACAGGCTCT AGTGTGTGAA GTTCCTCTCA	240
GTGC	244

(2) INFORMATION FOR SEQ ID NO:77:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 254 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

CGTTAGGGTC TCTATCCACT GAAATCTGAA GCACAGGAGG AAGAGAAGCA GTYCTAGTGAA	60
GATGGCAAGT TCWTTTACCA CACTCTTAA CATTYYGTTT AGTTTAACC TTTATTTATG	120
GATAATAAAG GTAAATATTA ATAATGATT ATTAAAGGC ATTCCRAAT TTGCATAATT	180
CTCCTTTGG AGATAACCCTT TTATCTCCAG TGCAAGTCTG GATCAAAGTG ATASAMAGAA	240
GTTCCTCTCA GTGC	254

(2) INFORMATION FOR SEQ ID NO:78:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 355 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

TTCGATACAG GCAAACATGA ACTGCAGGAG GGTGGTGACG ATCATGATGT TGCCGATGGT	60
CCGGATGGNC ACGAAGACGC ACTGGANCAC GTGCTTACGT CCTTTGCTC TGTTGATGGC	120
CCTGAGGGGA CGCAGGACCC TTATGACCT CAGAACCTTC ACAACGGGAG ATGGCACTGG	180
ATTGANTCCC ANTGACACCA GAGACACCCC AACCAACCAGN ATATCANTAT ATTGATGTAG	240
TTCCCTGTAGA NGGCCCCCTT GTGGAGGAAA GCTCCATNAG TTGGTCATCT TCAACAGGAT	300
CTCAACAGTT TCCGATGGCT GTGATGGCA TAGTCATANT TAACCNTGTN TCGAA	355

(2) INFORMATION FOR SEQ ID NO:79:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 406 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

1AAGAGGGTA CCAGCAGAAA GGTTAGTATC ATCAGATAGC ATCTTATACT AGTAATATGC	60
CTGCTATTTG AAGTGTAAATT GAGAAGGAAA ATTTAGCGT GCTCACTGAC CTGCCTGTAG	120
CCCCAGTGAC AGCTAGGATG TGCATTCTCC AGCCATCAAG AGACTGAGTC AAGTTGTTCC	180
TTAAGTCAGA ACAGCAGACT CAGCTCTGAC ATTCTGATTC GAATGACACT GTTCAGGAAT	240
CGGAATCCTG TCGATTAGAC TGGACAGCTT GTGGCAAGTG AATTGCTG TAACAAGCCA	300
GATTTTTAA AATTATATT GTAAATAATG TGTGTGTG TGTGTGTATA TATATATATA	360
TGTACAGTTA TCTAAGTTAA TTTAAAAGTT GTTGGTACC CTCTTA	406

(2) INFORMATION FOR SEQ ID NO:80:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 327 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

TTTTTTTTT TTTACTCGGC TCAGTCTAAT CCTTTTGTA GTCACTCATA GGCCAGACTT	60
AGGGCTAGGA TGATGATTAA TAAGAGGGAT GACATAACTA TTAGTGGCAG GTTAGTTGTT	120
TGTAGGGCTC ATGGTAGGGG TAAAAGGAGG GCAATTCTA GATCAAATAA TAAGAAGGTA	180
ATAGCTACTA AGAAGAATT TATGGAGAAA GGGACGCCGG CGGGGGATAT AGGGTCGAAG	240
CCGCACTCGT AAGGGGTGGA TTTTCTATG TAGCCGTTGA GTTGTGGTAG TCAAAATGTA	300
ATAATTATTA GTAGTAAGCC TAGGAGA	327

(2) INFORMATION FOR SEQ ID NO:81:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 318 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

TAGTCTATGC GGTTGATTG GCAATCCATT ATTGCTGGA TTTGTCATG TGTTTGCCA	60
---	----

ATTGCATTCA TAATTTATA TGCATTATG CTTGTATCTC CTAAGTCATG GTATATAATC	120
CATGCTTTT ATGTTTGTC TGACATAAAC TCTTATCAGA GCCCTTGCA CACAGGGATT	180
CAATAAATAT TAACACAGTC TACATTATT TGGTGAATAT TGCATATCTG CTGTACTGAA	240
AGCACATTAA GTAACAAAGG CAAGTGAGAA GAATGAAAAG CACTACTCAC AACAGTTATC	300
ATGATTGGCG ATAGACTA	318

(2) INFORMATION FOR SEQ ID NO:82:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 338 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

TCTTCAACCT CTACTCCCAC TAATAGCTTT TTGATGACTT CTAGCAAGCC TCGCTAACCT	60
CGCCTTACCC CCCACTATTAA ACCTACTGGG AGAACTCTCT GTGCTAGTAA CCACGTTCTC	120
CTGATCAAAT ATCACTCTCC TACTTACAGG ACTCAACATA CTAGTCACAG CCCTATACTC	180
CCTCTACATA TTTACCACAA ACAATGGGG CTCACTCACC CACCACATTA ACAACATAAA	240
ACCCCTCATTC ACACGAGAAA ACACCCCTCAT GTTCATACAC CTATCCCCA TTCTCCTCCT	300
ATCCCTCAAC CCCGACATCA TTACCGGGTT TTCCCTCT	338

(2) INFORMATION FOR SEQ ID NO:83:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 111 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

AGCCATTAC CACCATCCA CAAAAAAA AAAAAAAAG AAAATATCA AGGAATAAAA	60
ATAGACTTG AACAAAAGG AACATTGCT GGCCTGAGGA GGCAATCACCC G	111

(2) INFORMATION FOR SEQ ID NO:84:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 224 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

TCGGGTGATG CCTCCTCAGG CCAAGAACAT AAAGCTTCAG ACCCCTAACCA CATTCCAAA	60
AAGGAAGAAA GGAGAAAAAA GGGCATCATC CCCGTTCCGA AGGGTCAGGG AGGAGGAAAT	120
TGAGGTGGAT TCACGAGTTG CGGACAACCTC CTTGATGCC AAGCGAGGTG CAGCCGGAGA	180
CTGGGGAGAG CGAGCCAATC AGGTTTGAA GTTCCTCTCA GTGC	224

(2) INFORMATION FOR SEQ ID NO:85:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 348 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

GCAC TGAG AGAG GAACTT CGTT GGAA ACGG GT TTTT CATG TAAG GCTAGA CAGA AGA ATT	60
CTCAG TAACT TCCTTG GTTT GTATT CACTAC ASA GTTGAACG AT CCTTAC ACA	120
GAGC AGACTT GTAAC ACTCT TWTT GTGG AA TTTG CAAG TG GAGATTCAG SCGCTTGAA	180
GTSAAAGGTA GAAA AGGAAA TATCTT CCA TAAAAA CTAG ACAGA ATGAT TCTCAG AAC	240
TCCTTG GTGA TGTGTG CGTT CAACTCACAG AGTTAACCT TTCWTT CAT AGAAGC AGTT	300
AGGAAACACT CTGTTG TAA AGTCTG CAAG TGGATAGAGA CCCTAACG	348

(2) INFORMATION FOR SEQ ID NO:86:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 293 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

GCAC TGAG AGAG GAACTT CYTT GTGWTG TKTG YATT CAACTC ACAGAG TTGA ASSWT SMTT	60
ACABAG WKCA GGCTT KCAA A CACTTTT GTMGAATY TG CAAG WGGAKA TTSR RCCRC	120
TTTG WGGY CW WYSK TMGA AW MGGR WATATC TTCW YATM RA AMCT AGAC AG AAKS ATT CTC	180

AKAAWSTYYY YTGTGAWGWS TGCRTTCAAC TCACAGAGKT KAACMWTYCT KYTSATRGAG 240

CAGTTWKGAA ACTCTMTTC TTTGGATTCT GCAAGTGGAT AGAGACCCTA ACG 293

(2) INFORMATION FOR SEQ ID NO:87:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

CTCCTAGGCT 10

(2) INFORMATION FOR SEQ ID NO:88:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

AGTAGTTGCC 10

(2) INFORMATION FOR SEQ ID NO:89:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 11 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

99

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:

TTCCGTTATG C

11

(2) INFORMATION FOR SEQ ID NO:90:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

TGGTAAAGGG

10

(2) INFORMATION FOR SEQ ID NO:91:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

TCGGTCATAG

10

(2) INFORMATION FOR SEQ ID NO:92:

(i) SEQUENCE CHARACTERISTICS:

100

- (A) LENGTH: 10 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

TACAACGAGG

10

(2) INFORMATION FOR SEQ ID NO:93:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

TGGATTGGTC

10

(2) INFORMATION FOR SEQ ID NO:94:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

CTTTCTACCC

10

101

(2) INFORMATION FOR SEQ ID NO:95:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

TTTGGCTCC

10

(2) INFORMATION FOR SEQ ID NO:96:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

GGAACCAATC

10

(2) INFORMATION FOR SEQ ID NO:97:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

102

TCGATACAGG

10

(2) INFORMATION FOR SEQ ID NO:98:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

GGTACTAAGG

10

(2) INFORMATION FOR SEQ ID NO:99:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

AGTCTATGCG

10

(2) INFORMATION FOR SEQ ID NO:100:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

103

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:

CTATCCATGG

10

(2) INFORMATION FOR SEQ ID NO:101:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

TCTGTCCACA

10

(2) INFORMATION FOR SEQ ID NO:102:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

AAGAGGGTAC

10

(2) INFORMATION FOR SEQ ID NO:103:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10 base pairs

104

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:

CTTCAACCTC

10

(2) INFORMATION FOR SEQ ID NO:104:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:

GCTCCTCTTG CCTTACCAAC

20

(2) INFORMATION FOR SEQ ID NO:105:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:

GTAAGTCGAG CAGTGTGATG

20

(2) INFORMATION FOR SEQ ID NO:106:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:

GTAAGTCGAG CAGTCTGATG

20

(2) INFORMATION FOR SEQ ID NO:107:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

GACTTAGTGG AAAGAATGTA

20

(2) INFORMATION FOR SEQ ID NO:108:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:

106

GTAATTCCGC CAACCGTAGT

20

(2) INFORMATION FOR SEQ ID NO:109:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:

ATGGTTGATC GATA GTGGAA

20

(2) INFORMATION FOR SEQ ID NO:110:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:

ACGGGGACCC CTGCATTGAG

20

(2) INFORMATION FOR SEQ ID NO:111:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

TATTCTAGAC CATTGCTAC

20

(2) INFORMATION FOR SEQ ID NO:112:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:

ACATAACCAC TTTAGCGTTC

20

(2) INFORMATION FOR SEQ ID NO:113:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:

CGGGTGATGC CTCCTCAGGC

20

(2) INFORMATION FOR SEQ ID NO:114:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid

108

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:

AGCATGTTGA GCCCAGACAC

20

(2) INFORMATION FOR SEQ ID NO:115:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

GACACCTTGT CCAGCATCTG

20

(2) INFORMATION FOR SEQ ID NO:116:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:

TACGCTGCAA CACTGTGGAG

20

(2) INFORMATION FOR SEQ ID NO:117:

109

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:

CGTTAGGGTC TCTATCCACT

20

(2) INFORMATION FOR SEQ ID NO:118:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:

AGACTGACTC ATGTCCCCTA

20

(2) INFORMATION FOR SEQ ID NO:119:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:

TCATCGCTCG GTGACTCAAG

20

110

(2) INFORMATION FOR SEQ ID NO:120:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:

CAAGATTCCA TAGGCTGACC

20

(2) INFORMATION FOR SEQ ID NO:121:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:

ACGTACTGGT CTTGAAGGTC

20

(2) INFORMATION FOR SEQ ID NO:122:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:

GACGCTTGGC CACTTGACAC

20

(2) INFORMATION FOR SEQ ID NO:123:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:

GTATCGACGT AGTGGTCTCC

20

(2) INFORMATION FOR SEQ ID NO:124:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:

TAGTGACATT ACGACGCTGG

20

(2) INFORMATION FOR SEQ ID NO:125:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

CGGGTGATGC CTCCTCAGGC

20

(2) INFORMATION FOR SEQ ID NO:126:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:

ATGGCTATT TCGGGGGCTG ACA

23

(2) INFORMATION FOR SEQ ID NO:127:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:

CCGGTATCTC CTCGTGGGTA TT

22

(2) INFORMATION FOR SEQ ID NO:128:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:

CTGCCTGAGC CACAAATG

18

(2) INFORMATION FOR SEQ ID NO:129:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:

CCGGAGGAGG AAGCTAGAGG AATA

24

(2) INFORMATION FOR SEQ ID NO:130:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 14 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:

TTTTTTTTT TTAG

14

(2) INFORMATION FOR SEQ ID NO:131:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:

Ser Ser Gly Gly Arg Thr Phe Asp Asp Phe His Arg Tyr Leu Leu Val

1 5 10 15

Gly Ile

(2) INFORMATION FOR SEQ ID NO:132:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:

Gln Gln Ala Ala Gln Lys Pro Ile Asn Leu Ser Lys Xaa Ile Glu Val

1 5 10 15

Val Gln Gly His Asp Glu

20

(2) INFORMATION FOR SEQ ID NO:133:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:

Ser Pro Gly Val Phe Leu Glu His Leu Gln Glu Ala Tyr Arg Ile Tyr
1 5 10 15

Thr Pro Phe Asp Leu Ser Ala
20

(2) INFORMATION FOR SEQ ID NO:134:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:

Tyr Leu Leu Val Gly Ile Gln Gly Ala
1 5

(2) INFORMATION FOR SEQ ID NO:135:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

Gly Ala Ala Gln Lys Pro Ile Asn Leu
1 5

(2) INFORMATION FOR SEQ ID NO:136:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:

Asn Leu Ser Lys Xaa Ile Glu Val Val
1 5

(2) INFORMATION FOR SEQ ID NO:137:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:

Glu Val Val Gln Gly His Asp Glu Ser
1 5

(2) INFORMATION FOR SEQ ID NO:138:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:

His Leu Gln Glu Ala Tyr Arg Ile Tyr
1 5

(2) INFORMATION FOR SEQ ID NO:139:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:

Asn Leu Ala Phe Val Ala Gln Ala Ala
1 5

(2) INFORMATION FOR SEQ ID NO:140:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:

Phe Val Ala Gln Ala Ala Pro Asp Ser
1 5

(2) INFORMATION FOR SEQ ID NO:141:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9388 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:

GCTCGCGGCC GCGAGCTCAA TTAACCCCTCA CAAAGGGAG TCGACTCGAT CAGACTGTTA	60
CTGTGTCTAT GTAGAAAGAA GTAGACATAA GAGATTCCAT TTTGTTCTGT ACTAAGAAAA	120
ATTCTTCTGC CTTGAGATGC TGTTAATCTG TAACCCTAGC CCCAACCTG TGCTCACAGA	180
GACATGTGCT GTGTTGACTC AAGGTTCAAT GGATTTAGGG CTATGCTTG TTAAAAAAGT	240
GCTTGAAGAT AATATGCTTG TTAAAAGTCA TCACCATTCCT CTAATCTCAA GTACCCAGGG	300
ACACAATACA CTGCGGAAGG CCGCAGGGAC CTCTGTCTAG GAAAGCCAGG TATTGTCAA	360
GATTTCCTCC CATGTGATAG CCTGAGATAT GGCCTCATGG GAAGGGTAAG ACCTGACTGT	420
CCCCCAGCCC GACATCCCC AGCCGACAT CCCCCAGCCC GACACCCGAA AAGGGTCTGT	480
GCTGAGGAGG ATTAGTAAAA GAGGAAGGCC TCTTGCACT TGAGGTAAGA GGAAGGCATC	540
TGTCTCCTGC TCGTCCCTGG GCAATAGAAT GTCTTGGTGT AAAACCCGAT TGTATGTTCT	600

ACTTACTGAG ATAGGAGAAA ACATCCTAG GGCTGGAGGT GAGACACGCT GGCAGCAATA 660
CTGCTCTTA ATGCACCGAG ATGTTGTAT AAGTGCACAT CAAGGCACAG CACCTTCCT 720
TAAACTTATT TATGACACAG AGACCTTTGT TCACGTTTC CTGCTGACCC TCTCCCCACT 780
ATTACCTAT TGGCCTGCCA CATCCCCCTC TCCGAGATGG TAGAGATAAT GATCAATAAA 840
TACTGAGGGA ACTCAGAGAC CAGTGTCCCT GTAGGTCTC CGTGTGCTGA GCGCCGGTCC 900
CTTGGGCTCA CTTTCTTTC TCTATACTTT GTCTCTGTGT CTCTTCTTT TCTCAGTCTC 960
TCGTTCCACC TGACGAGAAA TACCCACAGG TGTGGAGGGG CAGGCCACCC CTTCAATAAT 1020
TTACTAGCCT GTTCGCTGAC AACAAAGACTG GTGGTGCAGA AGGTTGGTC TTGGTGTCA 1080
CCGGGTGGCA GGCATGGGCC AGGTGGGAGG GTCTCCAGCG CCTGGTGCAA ATCTCCAAGA 1140
AAGTGCAGGA AACAGCACCA AGGGTGATTG TAAATTTGA TTTGGCGCGG CAGGTAGCCA 1200
TTCCAGCGCA AAAATGCGCA GGAAAGCTTT TGCTGTGCTT GTAGGCAGGT AGGCCCAAG 1260
CACTTCTTAT TGGCTAATGT GGAGGGAACC TGCACATCCA TTGGCTGAAA TCTCCGTCTA 1320
TTTGAGGCTG ACTGAGCGCG TTCTTCTT CTGTGTTGCC TGAAACGGA CTGTCTGCCT 1380
AGAACATCT GATCACGTT CCCATTGGCC GCCGTTCCG GAAGCCCGCC CTCCCATTTTC 1440
CGGAAGCCTG GCGCAAGGTT GGTCTGCAGG TGGCCTCCAG GTGCAAAGTG GGAAGTGTGA 1500
GTCCTCAGTC TTGGGCTATT CGGCCACGTG CCTGCCGGAC ATGGGACGCT GGAGGGTCAG 1560
CAGCGTGGAG TCCTGGCCTT TTGGTCCAC GGGTGGAAA TTGGCCATTG CCACGGCGGG 1620
AACTGGGACT CAGGCTGCC CCCGGCCGTT TCTCATCCGT CCACCGGACT CGTGGCGCT 1680

120

CGCAC1GGCG CTGATGTAGT TTCCCTGACCT CTGACCCGTA TTGTCTCCAG ATTAAAGGTA 1740
AAAACGGGGC TTTTCAGCC CACTCGGGTA AAACGCCTT TGATTCTAG GCAGGTGTT 1800
TGTTGCACGC CTGGGAGGGA GTGACCCGCA GGTTGAGGTT TATTAATAATA CATTCCCTGGT 1860
TTATGTTATG TTTATAATAA AGCACCCCAA CCTTTACAAA ATCTCACTTT TTGCCAGTTG 1920
TATTATTTAG TGGACTGTCT CTGATAAGGA CAGCCAGTTA AAATGGAATT TTGTTGTTGC 1980
TAATTAAACC AATTTTAGT TTTGGTGTGTT GTCCTAATAG CAACAACCTTC TCAGGCTTA 2040
TAAAACCATA TTTCTGGGG GAAATTCTG TGTAAGGCAC AGCGAGTTAG TTTGGAATTG 2100
TTTTAAAGGA AGTAAGTTCC TGTTTGAT ATCTTAGTAG TGTAATGCC AACCTGGTT 2160
TTACTAACCC TGTTTTAGA CTCTCCCTT CCTTAAATCA CCTAGCCTTG TTTCCACCTG 2220
AATTGACTCT CCCTTAGCTA AGAGGCCAG ATGGACTCCA TCTTGGCTCT TTCACTGGCA 2280
GCCCTTCCT CAAGGACTTA ACTTGTGCAA GCTGACTCCC AGCACATCCA AGAATGCAAT 2340
TAACTGTTAA GATACTGTGG CAAGCTATAT CCGCAGTTCC GAGGAATTCA TCCGATTGAT 2400
TATGCCCAAAGCCCCGGT CTATCACCTT GTAATAATCT TAAAGCCCC GCACCTGGAA 2460
CTATTAACCTT TCCTGTAACC ATTTATCCTT TTAACTTTT TGCTTACTTT ATTTCTGTAA 2520
AATTGTTTA ACTAGACCTC CCCTCCCTT TCTAAACCAA AGTATAAAAG AAGATCTAGC 2580
CCCTTCTTCA GAGCGGAGAG AATTTGAGC ATTAGCCATC TCTTGGCGGC CAGCTAAATA 2640
AATGGACTTT TAATTTGTCT CAAAGTGTGG CGTTTCTCT AACTCGCTCA GGTACGACAT 2700
TTGGAGGCC CAGCGAGAAA CGTCACCGGG AGAACGTCA CCGGGCGAGA GCCGGGGCCCG 2760

CTGTGTGCTC CCCCCGAAGG ACAGCCAGCT TGTAGGGGGG AGTGCCACCT GAAAAAAA 2820
TTTCCAGGTC CCCAAAGGGT GACCGTCTTC CGGAGGACAG CGGATCGACT ACCATGCGGG 2880
TGCCCACCAA AATTCCACCT CTGAGTCCTC AACTGCTGAC CCCGGGGTCA GGTAGGTAG 2940
ATTTGACTTT GGTTCTGGCA GAGGGAAGCG ACCCTGATGA GGGTGTCCCT CTTTGACTC 3000
TGCCCATTTC TCTAGGATGC TAGAGGGTAG AGCCCTGGTT TTCTGTTAGA CGCCTCTGTG 3060
TCTCTGTCTG GGAGGGAAGT GGCCCTGACA GGGGCCATCC CTTGAGTCAG TCCACATCCC 3120
AGGATGCTGG GGGACTGAGT CCTGGTTCT GGCAGACTGG TCTCTCTC TCTTTTTC 3180
TATCTCTAAT CTTTCCTTGT TCAGGTTCT TGGAGAACCT CTGGAAAGA AAAAAGAAA 3240
ACTGTTATAA ACTCTGTGTG AATGGTGAAT GAATGGGGGA GGACAAGGGC TTGCGCTTGT 3300
CCTCCAGTT GTAGCTCAC GGCAGAAAGCT ACGGAGTTCA AGTGGGCCCT CACCTGCGGT 3360
TCCGTGGCGA CCTCATAAGG CTTAAGGCAG CATCCGGCAT AGCTCGATCC GAGCCGGGG 3420
TTTATACCGG CCTGTCAATG CTAAGAGGAG CCCAAGTCCC CTAAGGGGGA GCGGCCAGGC 3480
GGGCATCTGA CTGATCCCCT CACGGGACCC CCTCCCTTG TTTGTCTAA AAAAAGAAA 3540
GAAGAAAATG TCATAACTGT TTACATGCC TAGGGTCAAC TGTTGTTTT ATGTTTATTG 3600
TTCTGTTCGG TGTCTATTGT CTTGTTAGT GGTTGTCAAG GTTTGCATG TCAGGACGTC 3660
GATATTGCC AAGACGTCTG GGTAAGAACT TCTGCAAGGT CCTTAGTGCT GATTTTTGT 3720
CACAGGAGGT TAAATTCCTC ATCAATCATT TAGGCTGGCC ACCACAGTCC TGTCTTTCT 3780
GCCAGAAGCA AGTCAGGTGT TGTTACGGGA ATGAGTGTAA AAAAACATTG GCCTGATTGG 3840

GATTCTGGC ACCATGATGG TTGTATTTAG ATTGTACATAC CCCACATCCA GGTTGATTGG 3900
ACCTCCTCTA AACTAAACTG GTGGTGGTT CAAAACAGCC ACCCTGCAGA TTTCCTTGCT 3960
CACCTTTG GTCATTCTGT AACTTTCT GTGCCCTAA ATAGCACACT GTGTAGGGAA 4020
ACCTACCCCTC GTACTGCTTT ACTTCGTTA GATTCTTACT CTGTTCTCT GTGGCTACTC 4080
TCCCATCTTA AAAACGATCC AAGTGGCCT TTTCCCTCTC CCTGCCCT ACCCCACACA 4140
TCTCGTTTC CAGTGCAGCA GCAAGTCAG CGTCTCCAGG ACTTGGCTCT GCTCTCACTC 4200
CTTGAACCT TAAAAGAAAA AGCTGGTTT GAGCTATTG CCTTGAGTC ATGGAGACAC 4260
AAAAGGTATT TAGGGTACAG ATCTAGAAGA AGAGAGAGAA CACCTAGATC CAACTGACCC 4320
AGGAGATCTC GGGCTGGCCT CTAGTCTCC TCCCTCAATC TAAAGCTAC AGTGATGTGG 4380
CAAGTGGTAT TTAGCTGTTG TGGTTTTCT GCTCTTCTG GTCATGTTGA TTCTGTTCTT 4440
TCGATACTCC AGCCCCCAG GGAGTGAGTT TCTCTGTCTG TGCTGGTTT GATATCTATG 4500
TTCAAATCTT ATTAAATTGC CTTAAAAAAA AAAAAAAA GGGAAACACT TCCTCCAGC 4560
CTTGTAAAGGG TTGGAGCCCT CTCCAGTATA TGCTGCAGAA TTTTCTCTC GGTTCTCAG 4620
AGGATTATGG AGTCCGCCTT AAAAAAGCA AGCTCTGGAC ACTCTGCAA GTAGAATGGC 4680
CAAAGTTGG AGTGAGTGG CCCCTGAGA GGTCACTGAA CCTCACAATT GTTCAAGCTG 4740
TGTGGGGGT TGTTACTGAA ACTCCCGGCC TCCCTGATCA GTTCCCTAC ATTGATCAAT 4800
GGCTGAGTTT GGTCAGGAGC ACCCCTTCCA TGGCTCCACT CATGCACCAT TCATAATTT 4860
ACCTCCAAGG TCCTCCTGAG CCAGACCGTG TTTTCGCCTC GACCCTCAGC CGGTTCAAGCT 4920

CGCCCTGTAC TGCCTCTCTC TGAAGAAGAG GAGAGTCTCC CTCACCCAGT CCCACCGCCT 4980
TAAAACCAGC CTACTCCCTT AGGGTCATCC CATGTCCTCG CGGCTATGTC CCCTGTAGGC 5040
TCATCACCCA TTGCCTCTTG GTTGCAACCG TGGTGGGAGG AAGTAGCCCC TCTACTACCA 5100
CTGAGAGAGG CACAAGTCCC TCTGGGTGAT GAGTGCTCCA CCCCCCTCCT GGTTTATGTC 5160
CCTTCTTCT ACTTCTGACT TGTATAATTG GAAAACCCAT AATCCTCCCT TCTCTGAAA 5220
GCCCCAGGCT TTGACCTCAC TGATGGAGTC TGTACTCTGG ACACATTGGC CCACCTGGGA 5280
TGACTGTCAA CAGCTCCTT TGACCCCTTT CACCTCTGAA GAGAGGGAAA GTATCCAAAG 5340
AGAGGCCAAA AAGTACAACC TCACATCAAC CAATAGGCCG GAGGAGGAAG CTAGAGGAAT 5400
AGTGATTAGA GACCAATTG GGACCTAATT GGGACCCAAA TTTCTCAAGT GGAGGGAGAA 5460
CTTTGACGA TTTCCACCGG TATCTCCTCG TGGGTATTCA GGGAGCTGCT CAGAACCTA 5520
TAAACTTGTC TAAGGCGACT GAAGTCGTCC AGGGGCATGA TGAGTCACCA GGAGTGTTT 5580
TAGAGCACCT CCAGGAGGCT TATCGGATTT ACACCCCTT TGACCTGGCA GCCCCCCGAAA 5640
ATAGCCATGC TCTTAATTG GCATTGTGG CTCAGGCAGC CCCAGATAGT AAAAGGAAAC 5700
TCCAAAAACT AGAGGGATT TGCTGGAATG AATACCAGTC AGCTTTAGA GATAGCCTAA 5760
AAGGTTTTG ACAGTCAAGA GGTTGAAAAA CAAAAACAAG CAGCTCAGGC AGCTGAAAAA 5820
AGCCACTGAT AAAGCATCCT GGAGTATCAG AGTTTACTGT TAGATCAGCC TCATTTGACT 5880
TCCCTCCCA CATGGTGTCTT AAATCCAGCT ACACACTTC CTGACTCAA CTCCACTATT 5940
CCTGTTCATG ACTGTCAGGA ACTGTTGGAA ACTACTGAAA CTGGCCGACC TGATCTCAA 6000

AATGTGCCCG TAGGAAAGGT GGATGCCACC GTGTTCACAG ACAGTAGCAG CTTCCCTCGAG 6060
AAGGGACTAC GAAAGGCCGG TGCAGCTGTT ACCATGGAGA CAGATGTGTT GTGGGCTCAG 6120
GCTTTACCAAG CAAACACCTC AGCACAAAAG GCTGAATTGA TCGCCCTCAC TCAGGCTCTC 6180
CGATGGGGTA AGGATATTAA CGTTAACACT GACAGCAGGT ACGCCTTGTC TACTGTGCAT 6240
GTACGTGGAG CCATCTACCA GGAGCGTGGG CTACTCACCT CAGCAGGTGG CTGTAATCCA 6300
CTGTAAAGGA CATCAAAGG AAAACACGGC TGTTGCCCGT GGTAACCAGA AAGCTGATTG 6360
AGCAGCTCAA GATGCAGTGT GACTTCAGT CACGCCCTCA AACTGCTGC CCACAGTCTC 6420
CTTTCCACAG CCAGATCTGC CTGACAATCC CGCATACTCA ACAGAAGAAG AAAACTGGCC 6480
TCAGAACTCA GAGCCAATAA AAATCAGGAA GGTTGGTGGA TTCTTCTGA CTCTAGAAC 6540
TTCATACCCC GAACTCTTGG GAAAACTTTA ATCAGTCACC TACAGTCTAC CACCCATTAA 6600
GGAGGAGCAA AGCTACCTCA GCTCCTCCGG AGCCGTTTA AGATCCCCCA TCTTCAAAGC 6660
CTAACAGATC AAGCAGCTCT CCGGTGCACA ACCTGCGCCC AGGTAAATGC CAAAAAAGGT 6720
CCTAAACCCA GCCCAGGCCA CCGTCTCCAA GAAAACTCAC CAGGAGAAAA GTGGGAAATT 6780
GACTTTACAG AAGTAAAACC ACACCGGGCT GGGTACAAAT ACCTCTAGT ACTGGTAGAC 6840
ACCTTCTCTG GATGGACTGA AGCATTGCT ACCAAAAACG AACTGTCAA TATGGTAGTT 6900
AAGTTTTAC TCAATGAAAT CATCCCTCGA CGTGGGCTGC CTGTTGCCAT AGGGTCTGAT 6960
AATGGACCGG CCTTCGCCTT GTCTATAGTT TAGTCAGTCA GTAAGGCGTT AACACATTCAA 7020
TGGAAAGCTCC ATTGTGCCTA TCGACCCAG AGCTCTGGC AAGTAGAACG CATGAACTGC 7080

125

ACCCCTAAAAA AACTCTTAC AAAATTAATC TTAGAAACCG GTGAAATTG TGTAAGTCTC 7140
CTTCCTTTAG CCCTACTTAG AGTAAGGTGC ACCCCTACT GGGCTGGT CTTACCTTT 7200
GAAATCATGT ATGGGAGGGC GCTGCCATTC TTGCTAAGC TAAGAGATGC CCAATTGGCA 7260
AAAATATCAC AACTAATTT ATTACAGTAC CTACAGTCTC CCCAACAGGT ACAAGATATC 7320
ATCCTGCCAC TTGTTCGAGG AACCCATCCC AATCCAATTCTGAACAGAC AGGGCCCTGC 7380
CATTCAATTCC CGCCAGGTGA CCTGTTGTT GTAAAAAGT TCCAGAGAGA AGGACTCCCT 7440
CCTGCTTGGA AGAGACCTCA CACCGTCATC ACGATGCCAA CGGCTCTGAA GGTGGATGGC 7500
ATTCCTGCGT GGATTCACTCA CTCCCCATC AAAAGGCCA ACGGAGGCCA ACTAGAAACA 7560
TGGGTCCCCA GGGCTGGTC AGGCCCTTA AACTGCACC TAAGTTGGT GAAGCCATTA 7620
GATTAATTCT TTTCTTAAT TTTGAAAC AATGCATAGC TTCTGTCAA CTTATGTATC 7680
TTAAGACTCA ATATAACCCC CTTGTTATAA CTGAGGAATC AATGATTGATTA 7740
ACACAAGTGG GGAATGTAGT GTCCAACCTG GTTTTACTA ACCCTGTTT TAGACTCTCC 7800
CTTCCTTTA ATCACTCAGC CTTGTTCCA CCTGAATTGA CTCTCCCTTA GCTAAGAGCG 7860
CCAGATGGAC TCCATCTTGG CTCTTCACT GGCAGCCGCT TCCTCAAGGA CTTAACTTGT 7920
GCAAGCTGAC TCCCAGCACA TCCAAGAATG CAATTAACGT ATAAGACT GTGGCAAGCT 7980
ATATCCGCAG TTCCCAAGGAA TTCGTCCAAT TGATTACACC CAAAAGCCCC GCGTCTATCA 8040
CCTTGTAAATA ATCTTAAAGC CCCTGCACCT GGAACATTAA ACGTTCTGT AACCATTTAT 8100
CCTTTAACT TTTTGCCCTA CTTTATTTCT GTAAAATTGT TTTAACTAGA CCCCCCTCT 8160

CCTTCCTAAA CCAAAGTATA AAAGCAAATC TAGCCCTTC TTCAGGCCGA GAGAATTTCG 8220
AGCGTTAGCC GTCTCTGGC CACCAGCTAA ATAAACGGAT TCTTCATGTG TCTCAAAGTG 8280
TGGCGTTTC TCTAACTCGC TCAGGTACGA CCGTGGTAGT ATTTTCCCCA ACGTCTTATT 8340
TTTAGGGCAC GTATGTAGAG TAACTTTAT GAAAGAAACC AGTTAAGGAG GTTTGGGAT 8400
TTCCTTATC AACTGTAATA CTGGTTTGA TTATTTATTT ATTATTTAT TTTTTTGAG 8460
AAGGAGTTTC ACTCTTGTG CCCAGGCTGG AGTGCAATGG TGCGATCTG GCTCACTGCA 8520
ACTTCCGCCT CCCAGGTTCA AGCGATTCTC CTGCCTCAGC CTCGAGAGTA GCTGGGATTA 8580
TAGGCATGCG CCACACACCC CAGCTAATT TGTTTTTA GTAAAGATGG GGTTTCTTCA 8640
TGTTGGTCAA GCTGGCTGG AACTCCCCGC CTCGGGTGAT CTGCCGCCT CGGCCTCCGA 8700
AAGTGCTGGG ATTACAGGTG TGATCCACCA CACCCAGCCG ATTTATATGT ATATAATCA 8760
CATT CCTCTA ACCAAAATGT AGTGTTCCT TCCATCTGA ATATAGGCTG TAGACCCGT 8820
GGGTATGGGA CATTGTTAAC AGTGAGACCA CAGCAGTTT TATGTCATCT GACAGCATCT 8880
CCAATAGCC TTCATGGTTG TCACTGCTTC CCAAGACAAT TCCAATAAC ACTTCCCAGT 8940
GATGACTTGC TACTTGCTAT TGTTACTTAA TGTGTTAAGG TGGCTGTTAC AGACACTATT 9000
AGTATGTCAG GAATTACACC AAAATTTAGT GGCTCAAACA ATCATTAT TATGTATGTG 9060
GATTCTCATG GTCAGGTCAG GATTCAGAC AGGGCACAAG GGTAGCCAC TTGTCTCTGT 9120
CTATGATGTC TGGCCTCAGC ACAGGAGACT CAACAGCTGG GGTCTGGGAC CATTGGAGG 9180
CTTGTCCCT CACATCTGAT ACCTGGCTTG GGATGTTGGA AGAGGGGGTG AGCTGAGACT 9240

127

GAGTGCCTAT ATGTAGTGTT TCCATATGGC CTTGACTTCC TTACAGCCTG GCAGCCTCAG 9300

GGTAGTCAGA ATTCTTAGGA GGCACAGGGC TCCAGGGCAG ATGCTGAGGG GTCTTTATG 9360

AGGTAGCACA GCAAATCCAC CCAGGATC 9388

(2) INFORMATION FOR SEQ ID NO:142:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 419 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:

TGTAAGTCGA GCAGTGTGAT GGAAGGAATG GTCTTGAG AGAGCATATC CATCTCCTCC 60

TCACTGCCTC CTAATGTCAT GAGGTACACT GAGCAGAATT AAACAGGGTA GTCTTAACCA 120

CACTATTTT AGCTACCTTG TCAAGCTAAT GGTTAAAGAA CACTTTGGT TTACACTTGT 180

TGGGTCTAG AAGTTGCTT CCGCCATCAC GCAATAAGTT TGTGTGTAAT CAGAAGGAGT 240

TACCTTATGG TTTCAGTGTGTC ATTCTTAGT TAACTTGGGA GCTGTGTAAT TTAGGCTTG 300

CGTATTATTT CACTTCTGTT CTCCACTTAT GAAGTGATTG TGTGTTCGCG TGTGTGTGCG 360

TGCGCATGTG CTTCCGGCAG TTAACATAAG CAAATACCCA ACATCACACT GCTCGACTT 419

(2) INFORMATION FOR SEQ ID NO:143:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 402 base pairs
- (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:

TGTAAGTCGA GCAGTGTGAT GTCCACTGCA GTGTGTTGCT GGGAACAGTT AATGAGCAAA	60
TTGTATACAA TGGCTAGTAC ATTGACCGGG ATTTGTTGAA GCTGGTGAGT GTTATGACTT	120
AGCCTGTTAG ACTAGTCTAT GCACATGGCT CTGGTCAACT ACCGCTCTCT CATTCTCCA	180
GATAAATCCC CCATGCTTA TATTCTCTTC CAAACATACT ATCCTCATCA CCACATAGTT	240
CCTTGTTAA TGCTTTGTC TAGACTTCC CTTTCTGTT TTCTTATTCA AACCTATATC	300
TCTTGATA GATTGAAAT TCAAATGCC TCAGGGTGCA GGCAGTTCAT GTAAGGGAGG	360
GAGGCTAGCC AGTGAGATCT GCATCACACT GCTCGACTTA CA	402

(2) INFORMATION FOR SEQ ID NO:144:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 224 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:

TCGGGTGATG CCTCCTCAGG CCAAGAAGAT AAAGCTTCAG ACCCCTAACCA CATTCTAAA	60
AAGGAAGAAA GGAGAAAAAA GGGCATCATC CCCGTTCCGA AGGGTCAGGG AGGAGGAAAT	120
TGAGGTGGAT TCACGAGTTG CGGACAACTC CTTGATGCC AAGCGAGGTG CAGCCGGAGA	180

CTGGGGAGAG CGAGCCAATC AGGTTTGAA GTTCCTCTCA GTGC 224

(2) INFORMATION FOR SEQ ID NO:145:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 111 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:

AGCCATTAC CACCCATCCA CAAAAAAA AAAAAAAAG AAAATATCA AGGAATAAA 60

ATAGACTTG AACAAAAGG AACATTGCT GGCCTGAGGA GGCATCACCC G 111

(2) INFORMATION FOR SEQ ID NO:146:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 585 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:

TAGCATGTTG AGCCCAGACA CTTGTAGAGA GAGGAGGACA GTTAGAAGAA GAAGAAAAGT 60

TTTTAAATGC TGAAAGTTAC TATAAGAAAG CTTGGCTTT GGATGAGACT TTTAAAGATG 120

CAGAGGATGC TTTGCAGAAA CTTCATAAAT ATATGCAGGT GATTCCCTAT TTCCCTCTAG 180

AAATTTAGTG ATATTTGAAA TAATGCCAA ACTTAATTT CTCTGAGGA AACTATTCT 240

ACATTACTTA AGTAAGGCAT TATGAAAAGT TTCTTTTAG GTATAGTTT TCCTAATTGG 300
GTTTGACATT GCTTCATAGT GCCTCTGTT TTGTCCATAA TCGAAAGTAA AGATAGCTGT 360
GAGAAAACTA TTACCTAAAT TTGGTATGTT GTTTGAGAA ATGTCCTTAT AGGGAGCTCA 420
CCTGGTGGTT TTTAAATTAT TGTTGCTACT ATAATTGAGC TAATTATAAA AACCTTTG 480
AGACATATTT TAAATTGTCT TTTCTGTAA TACTGATGAT GATGTTTCT CATGCATTT 540
CTTCTGAATT GGGACCATTG CTGCTGTGTC TGGGCTCACA TGCTA 585

(2) INFORMATION FOR SEQ ID NO:147:

(1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 579 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:

TAGCATGTTG AGCCCAGACA CTGGGCAGCG GGGGTGGCCA CGGCAGCTCC TGCCGAGCCC 60
AAGCGTGTGTT GTCTGTGAAG GACCCTGACG TCACCTGCCA GGCTAGGGAG GGGTCAATGT 120
GGAGTGAATG TTCACCGACT TTCCGCAGGAG TGTGCAGAAG CCAGGTGCAA CTTGGTTGC 180
TTGTGTTCAT CACCCCTCAA GATATGCACA CTGCTTCCA AATAAAGCAT CAACTGTCAT 240
CTCCAGATGG GGAAGACTTT TTCTCCAACC AGCAGGCAGG TCCCCATCCA CTCAGACACC 300
AGCACGTCCA CCTTCTCGGG CAGCACCAAG TCCTCCACCT TCTGCTGGTA CACGGTGATG 360

ATGTCAGCAA AGCCGTTCTG CANGACCAGC TGCCCCGTGT GCTGTGCCAT CTCACTGGCC	420
TCCACCGCGT ACACCGCTCT AGGCCGCGCA TANTGTGCAC AGAANAAATG ATGATCCAGT	480
CCCACAGCCC ACGTCCAAGA NGACTTTATC CGTCAGGGAT TCTTTATTCT GCAGGATGAC	540
CTGTGGTATT AATTGTTCGT GTCTGGGCTC AACATGCTA	579

(2) INFORMATION FOR SEQ ID NO:148:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 249 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:

TGACACCTTG TCCAGCATCT GCAAGCCAGG AAGAGAGTCC TCACCAAGAT CCCCCACCCCG	60
TTGGCACCAAG GATCTTGGAC TTCCAATCTC CAGAACTGTG AGAAATAAGT ATTTGTCGCT	120
AAATAAAATCT TTGTGGTTTC AGATATTTAG CTATAGCAGA TCAGGCTGAC TAAGAGAAC	180
CCCATAAGAG TTACATACTC ATTAATCTCC GTCTCTATCC CCAGGTCTCA GATGCTGGAC	240
AAGGTGTCA	249

(2) INFORMATION FOR SEQ ID NO:149:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 255 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:

TGACACCTTG TCCAGCATCT GCTATTTGT GACTTTAA TAATAGCCAT TCTGACTGGT	60
GTGAGATGGT AACTCATTGT GGGTTGGTC TGCAATTCTC TAATGATCAG TGATATTAAG	120
CTTTTTAA ATATGCTTGT TGACCACATG TATATCATCT TTTGAGAAGT GTCTGTTCAT	180
ATCCTTGCC CACTTTAA TTTTTTATC TTGAAATT GTTAATTTC CTTACAGATG	240
CTGGACAAGG TGTCA	255

(2) INFORMATION FOR SEQ ID NO:150:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 318 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:

TTACGCTGCA ACAGTGGA GGCAAGCTG GGATCACTTC TTCATTCTAA CTGGAGAGGA	60
GGGAAGTTCA AGTCCAGCAG AGGGTGGGTG GGTAGACAGT GGCACTCAGA AATGTCAGCT	120
GGACCCCTGT CCCCGCATAG GCAGGACAGC AAGGCTGTGG CTCTCCAGGG CCAGCTGAAG	180
AACAGGACAC TGTCTCCGCT GCCACAAAGC GTCAGAGACT CCCATTTG AAGCACGGCC	240
TTCTTGGTCT TCCTGCACCT CCCTGTTCTG TTAGAGACCT GGTTATAGAC AAGGCTTCTC	300
CACAGTGTG CAGCGTAA	318

(2) INFORMATION FOR SEQ ID NO:151:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 323 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:

TNACGCNGCN ACNNNTGAGA GANGGNAAGG CNTTCCCCAC ATTNCCTT CATNANAGAA	60
TTATTCNACC AAGNNTGACC NATGCCNTT ATGACTTACA TGCNNACTNC NTAATCTGTN	120
TCNNGCCTTA AAAGCNNNTC CACTACATGC NTCANCAGT TNTGTGTNAC NTCACTNAACT	180
GTCNGNAATA GGGGNCATA ACTACAGAAA TGCANTTCAT ACTGCTTCCA NTGCCATCNG	240
CGTGTGGCCT TNCCACTCTCT TCTTNTATTCAAGTAGCAT CTCTGGANTG CTTCCCCACT	300
CTCCACATTG TTGCAGCNAT AAT	323

(2) INFORMATION FOR SEQ ID NO:152:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 311 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:

TCAAGATTCC ATAGGCTGAC CAGTCCAAGG AGAGTTGAAA TCATGAAGGA GAGTCTATCT	60
---	----

GGAGAGAGCT GTAGTTTGA GGGTTGCAAA GACTTAGGAT GGAGTTGGTG GGTGTGGTTA	120
GTCTCTAAGG TTGATTTGT TCATAAATT CATGCCCTGA ATGCCCTGCT TGCCTCACCC	180
TGGTCCAAGC CTTAGTGAAC ACCTAAAAGT CTCTGTCTTC TTGCTCTCCA AACTTCTCCT	240
GAGGATTCC TCAGATTGTC TACATTAGA TCGAAGCCAG TTGGCAAAAGA AGATGCAGTC	300
CAGAGGGTCA G	311

(2) INFORMATION FOR SEQ ID NO:153:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 332 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:

CAAGATTCCA TAGGCTGACC AGGAGGCTAT TCAAGATCTC TGGCAGTTGA GGAAGTCTCT	60
TTAAGAAAAT AGTTAAACA ATTTGTTAAA ATTTTCTGT CTTACTTCAT TTCTGTAGCA	120
GTTGATATCT GGCTGTCTT TTTATAATGC AGAGTGGAA CTTCCCTAC CATGTTGAT	180
AAATGTTGTC CAGGCTCCAT TGCCAATAAT GTGTTGTCCA AAATGCCTGT TTAGTTTTA	240
AAGACGGAAC TCCACCCCTT GCTTGGTCTT AAGTATGTAT GGAATGTTAT GATAGGACAT	300
AGTAGTAGCG GTGGTCAGCC TATGGAATCT TG	332

(2) INFORMATION FOR SEQ ID NO:154:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 345 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:

TCAAGATTCC ATAGGCTGAC CTGGACAGAG ATCTCCTGGG TCTGGCCAG GACAGCAGGC	60
TCAAGCTAG TGGAGAACGT TTCCATGACC CTCAGATTCC CCCAACCTT GGATTGGGTG	120
ACATTGCATC TCCTCAGAGA GGGAGGAGAT GTANGTCTGG GCTTCCACAG GGACCTGGTA	180
TTTTAGGATC AGGGTACCGC TGGCCTGAGG CTTGGATCAT TCANAGCCTG GGGGTGGAAT	240
GGCTGGCAGC CTGTGGCCCC ATTGAAATAG GCTCTGGGCC ACTCCCTCTG TTCCTANTTG	300
AACTTGGGTA AGGAACAGGA ATGTGGTCAN CCTATGGAAT CTTGA	345

(2) INFORMATION FOR SEQ ID NO:155:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 295 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE OESCIPTION: SEQ ID NO:155:

GACCGCTTGGC CACTTGACAC ATAAACAGT TTTGCATAAT CACTANCATG TATTCTAGT	60
T TGCTGTCTG CTGTGATGCC CTGCCCTGAT TCTCTGGCGT TAATGATGGC AAGCATAATC	120

AAACGCTGTT CTGTTAATTCAAGTTATAACTGGCATTGA TTAAAGCATT ATCTTCACA	180
ACTAAACTGT TCTTCATANA ACAGCCCATA TTATTATCAA ATTAAGAGAC AATGTATTCC	240
AATATCCTTT ANGGCCAATA TATTTNATGT CCCTTAATTAGAGCTACTG TCCGT	295

(2) INFORMATION FOR SEQ ID NO:156:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 406 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:

GACGCTTGGC CACTTGACAC TGCAGTGGGA AAACCAGCAT GAGCCGCTGC CCCCAAGGAA	60
CCTCGAACCC CAGGCAGAGG ACCAGCCATC CCAGCCTGCA GGTAAGTGT GTCACCTGTC	120
AGGTGGGCTT GGGGTGAGTG GGTGGGGAA GTGTGTGTG AAAGGGGTG TNAATGTNTA	180
TGCGTGTGAG CATGAGTGAT GGCTAGTGTG ACTGCATGTC AGGGAGTGTG AACAAAGCGTG	240
CGGGGGTGTG TGTGCAAGTG CGTATGCATA TGAGAATATG TGTCTGTGGA TGAGTCATT	300
TGAAAGTCTG TGTGTGTGCG TGTGGTCATG ANGTAANTT ANTGACTGCG CAGGATGTGT	360
GAGTGTGCAT GGAACACTCA NTGTGTGTGT CAAGTGGCCN ANCCTC	406

(2) INFORMATION FOR SEQ ID NO:157:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 208 base pairs
- (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:

TGACGCTTGG CCACTTGACA CACTAAAGGG TGTTACTCAT CACTTCTTC TCTCCTCGGT	60
GGCATGTGAG TGCATCTATT CACTGGCAC TCATTTGTTT GGCA GTGACT GTAANCCANA	120
TCTGATGCAT ACACCAGCTT GTAAATTGAA TAAATGTCTC TAATACTATG TGCTCACAAT	180
ANGGTANGGG TGAGGGAGAAG GGGAGAGA	208

(2) INFORMATION FOR SEQ ID NO:158:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 547 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:158:

CTTCAACCTC CTTCAACCTC CTTCAACCTC CTGGATTCAA ACAATCATCC CACCTCAGAC	60
TCCTTAGTAG CTGAGACTAC AGACTCACGC CACTACATCT GGCTAAATT TTGTAGAGAT	120
AGGGTTTCAT CATGTTGCC C TGGCTGGTCT CAAACTCCTG ACCTCAAGCA ATGTGCCAC	180
CTCAGCCTCC CAAAGTGCTG GGATTACAGG CATAAGCCAC CATGCCAGT CCATNTTAA	240
TCTTTCTAC CACATTCTTA CCACACTTTC TTTTATGTTT AGATACATAA ATGCTTACCA	300
TTATGATACA ATTGCCACA GTATTAAGAC AGTAACATGC TGCACAGGTT TGTAGCCTAG	360

GAACAGTAGG CAATACCACA TAGCTTAGGT GTGTGGTAGA CTATACCATC TAGGTTTGTG	420
TAAGTTACAC TTTATGCTGT TTACACAATG ACAAAACCAT CTAATGATGC ATTTCTCAGA	480
ATGTATCCTT GTCAGTAAGC TATGATGTAC AGGAAACACT GCCCAAGGAC ACAGATATTG	540
TACCTGT	547

(2) INFORMATION FOR SEQ ID NO:159:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 203 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:159:

GCTCCTCTTG CCTTACCAAC TCACCCAGTA TGTCAGCAAT TTTATCRGCT TTACCTACGA	60
AACAGCCTGT ATCCAAACAC TTAACACACT CACCTGAAAA GTTCAGGCAA CAATCGCCTT	120
CTCATGGGTC TCTCTGCTCC AGTTCTGAAC CTTTCTCTTT TCCTAGAACAA TGCATTTARG	180
TCGATAGAACAG TTCCCTCTCAG TGC	203

(2) INFORMATION FOR SEQ ID NO:160:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 402 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:160:

TGTAAGTCGA GCAGTGTGAT GGGTGGAAACA GGGTTGTAAG CAGTAATTGC AAACTGTATT	60
TAAACAAATAA TAATAATATT TAGCATTAT AGAGCACTTT ATATCTCAA AGTACTTGCA	120
AACATTAYCT AATTAAATAC CCTCTCTGAT TATAATCTGG ATACAAATGC ACTTAAACTC	180
AGGACAGGGT CATGAGARAA GTATGCATT GAAAGTTGGT GCTAGCTATG CTTAAAAAC	240
CTATACAATG ATGGGRAAGT TAGAGTTCAAG ATTCTGTTGG ACTGTTTG TGCAATTCAAG	300
TTCAGCCTGA TGGCAGAATT AGATCATATC TGCACTCGAT GACTYTGCTT GATAACTTAT	360
CACTGAAATC TGAGTGTGAT TCATCACACT GCTCGACTTA CA	402

(2) INFORMATION FOR SEQ ID NO:161:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 193 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:161:

AGCATGTTGA GCCCAGACAC TGACCAGGAG AAAAACCAAC CAATAGAAAC ACGCCCAGAC	60
ACTGACCAGG AGAAAAACCA ACCAATAAAA ACAGGCCGG ACATAAGACA ATAATAAAA	120
TTAGCGGACA AGGACATGAA AACAGCTATT GTAAGAGCCG ATATAGTGGT GTGTGTCTGG	180
GCTCAACATG CTA	193

(2) INFORMATION FOR SEQ ID NO:162:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 147 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:

TGTTGAGCCC AGACACTGAC CAGGAGAAAA ACCAACCAAT AAAAACAGGC CGGGACATAA	60
GACAAATAAT AAAATTAGCG GACAAGGACA TGAAAACAGC TATTGTAAGA GCGGATATAG	120
TGGTGTGTGT CTGGGCTCAA CATGCTA	147

(2) INFORMATION FOR SEQ ID NO:163:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 294 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:

TAGCATGTTG AGCCCAGACA CAAATCTTC CTTAAGCAAT AAATCATTTC TGCATATGTT	60
TTTAAACCA CAGCTAAGCC ATGATTATTC AAAAGGACTA TTGTATTGGG TATTTTGATT	120
TGGGTTCTTA TCTCCCTCAC ATTATCTTCA TTTCTATCAT TGACCTCTTA TCCCAGAGAC	180
TCTCAAACCTT TTATGTTATA CAAATCACAT TCTGTCTCAA AAAATATCTC ACCCACTTCT	240

CTTCTGTTTC TCGGTGTGTA TGTGTGTG TGTTGTCTG GGCTAACAT GCTA 294

(2) INFORMATION FOR SEQ ID NO:164:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 412 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:164:

CGGGATTGGC TTTGAGCTGC AGATGCTGCC TGTGACCGCA CCCGGCGTGG AACAGAAAGC 60

CACCTGGCTG CAAGTGCGCC AGAGCCGCC CGACTACGTG CTGCTGTGGG GCTGGGGCGT 120

GATGAACTCC ACCGCCCTGA AGGAAGCCCA GGCCACCGGA TACCCCCGCG ACAAGATGTA 180

CGGCGTGTGG TGGGCCGGTG CGGAGCCCGA TGTGCGTGAC GTGGGCGAAG GCGCCAAGGG 240

CTACAACGCG CTGGCTCTGA ACGGCTACGG CACGCAGTCC AAGGTGATCC ANGACATCCT 300

GAAACACGTG CACGACAAGG GCCAGGGCAC GGGGCCAAA GACGAAGTGG GCTCGGTGCT 360

GTACACCCGC GGC GTGATCA TCCAGATGCT GGACAAGGTG TCAATCACTA AT 412

(2) INFORMATION FOR SEQ ID NO:165:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 361 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:

TTGACACCTT GTCCAGCATC TGCATCTGAT GAGAGCCTCA GATGGCTACC ACTAATGGCA	60
GAAGGCAAAG GAGAACAGGC ATTGTATGGC AAGAAAGGAA GAAAGAGAGA GGGGAGAAAG	120
GTGCTAGGTT CTTTCAACA ACCAGTTCTT GATGGAAC TG AGAGTAAGAG CTCAAGGCCA	180
GGTGTTGTA CTCCAACCAG TAATCCCAAC ATTTAGGAG GCTGAGGCAG GCAGATGTCT	240
TGACCCATG AGTTTGAC CAGCCTGAAC AACATCATGA GACTCCATCT CTACAATAAT	300
TACAAAATT AATCAGGCAT TGTGGTATGC CCTGTAGTCC CAGATGCTGG ACAAGGTGTC	360
A	361

(2) INFORMATION FOR SEQ ID NO:166:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 427 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:166:

TWGACTGACT CATGTCCCCT ACACCCAAC ATCTTCTCCA GGTGGCCAGG CATGATAGAA	60
TCTGATCCTG ACTTAGGGGA ATATTTCTT TTTACTTCCC ATCTTGATTC CCTGCCGGTG	120
AGTTTCCTGG TTCAGGGTAA GAAAGGAGCT CAGGCCAAAG TAATGAACAA ATCCATCCTC	180
ACAGACGTAC AGAATAAGAG AACWTGGACW TAGCCAGCAG AACMCAAKTG AAAMCAGAAC	240
MCTTAMCTAG GATRACAAMC MCRRARATAR KTGCYCMCMC WTATAATAGA AACCAAACCTT	300

GTATCTAATT AAATATTTAT CCACYGTCAG GGCATTAGTG GTTTGATAA ATACGTTT	360
GCTAGGATTCTGAGGTTAG AATGGAARAA CAATTGCAMC GAGGGTAGGG GACATGAGTC	420
AKTCTAA	427

(2) INFORMATION FOR SEQ ID NO:167:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 500 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:167:

AACGTCGCAT GCTCCGGCC GCCATGGCCG CGGGATAGAC TGACTCATGT CCCCTAAGAT	60
AGAGGGAGACA CCTGCTAGGT GTAAGGAGAA GATGGTTAGG TCTACGGAGG CTCCAGGGTG	120
GGAGTAGTTC CCTGCTAAGG GAGGGTAGAC TGTTAACCT GTTCTGCTC CGGCCTCCAC	180
TATAGCAGAT GCGAGCAGGA GTAGGAGAGA GGGAGGTAAG AGTCAGAACG TTATGTTGTT	240
TATGCCGGGA AACGCCRTAT CGGGGGCAGC CRAGTTATTA GGGGACANTR TAGWYARTCW	300
AGNTAGCATC CAAAGCGNGG GAGTTNTCCC ATATGGTTGG ACCTGCAGGC GGCGCATT	360
GTTGATTAGCA TGTGAGCCCC AGACACGCAT AGCAACAAGG ACCTAAACTC AGATCCTGTG	420
CTGATTACTT AACATGAATT ATTGTATTAA TTTAACAACT TTGAGTTATG AGGCATATTA	480

TTAGGTCCAT ATTACCTGGA

500

(2) INFORMATION FOR SEQ ID NO:168:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 358 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:168:

TTCATCGCTC GGTGACTCAA GCCTGTAATC CCAGAACTTT GGGAGGCCGA GGGGAGCAGA	60
TCACCTGAGG TTGGGAGTTT GAGACCAGCC TGGCCAACAT GGTGACAACC CGTCTCTGCT	120
AAAAATACAA AAATTAGCCA AGCATGGTGG CATGCACTTG TAATCCCAGC TACTCGGGAG	180
GCTGAGGCAG GAGAACACT TGAGGCCAGG AGGCAGAGGT TGCAGTGAGG CAGAGGTTGA	240
GATCATGCCA CTGCACTCCA GCCTGGCAA CAGAGTAAGA CTCCATCTCA AAAAAAAAAA	300
AAAAAAAAGAA TGATCAGAGC CACAAATACA GAAAACCTTG AGTCACCGAG CGATGAAA	358

(2) INFORMATION FOR SEQ ID NO:169:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1265 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:169:

TTCTGTCCAC ACCAATCTTA GAGCTCTGAA AGAATTGTC TTTAAATATC TTTTAATAGT 60
AACATGTATT TTATGGACCA AATTGACATT TTCGACTATT TTTCCCAA AAAAGTCAGG 120
TGAATTCAG CACACTGAGT TGGGAATTTC TTATCCAGA AGWCGGCACG AGCAATTCA 180
TATTTATTA AGATTGATTC CATACTCCGT TTTCAAGGAG AATCCCTGCA GTCTCCTAA 240
AGGTAGAAC AATACTTTCT ATTTTTTTT CACCATTGTG GGATTGGACT TTAAGAGGTG 300
ACTCTAAAAA AACAGAGAAC AAATATGTCT CAGTTGTATT AAGCACGGAC CCATATTATC 360
ATATTCACTT AAAAAAATGA TTTCCTGTGC ACCTTTGGC AACTTCTCTT TTCAATGTAG 420
GGAAAAACTT AGTCACCCCTG AAAACCCACA AAATAAATAA AACTTGTAGA TGTGGGCAGA 480
ARGTTGGGG GTGGACATTG TATGTGTTA AATTAAACCC TGTATCACTG AGAAGCTGTT 540
GTATGGGTCA GAGAAAATGA ATGCTTAGAA GCTGTTACA TCTTCAAGAG CAGAAGCAA 600
CCACATGTCT CAGCTATATT ATTATTTATT TTTTATGCAT AAAGTGAATC ATTCTTCTG 660
TATTAATTTC CAAAGGGTTT TACCCCTCAT TTAAATGCTT TGAAAAACAG TGCATTGACA 720
ATGGGTTGAT ATTTTCTTT AAAAGAAAAA TATAATTATG AAAGCCAAGA TAATCTGAAG 780
CCTGTTTAT TTAAAACCTT TTTATGTTCT GTGGGTTGATG TTGTTTGTGTT GTTGTCT 840
ATTTGTTGG TTTTTACTT TGTTTTGT TTTGTTTGTT TTTGGTTDG CATACTACAT 900
GCAGTTCTT TAACCAATGT CTGTTGGCT AATGTAATTA AAGTTGTTAA TTTATATGAG 960
TGCATTTCAA CTATGTCAAT GGTTCTAA TATTTATTGT GTAGAAGTAC TGGTAATTTC 1020
TTTATTTACA ATATGTTAA AGAGATAACA GTTGATATG TTTTCATGTG TTTATAGCAG 1080

AAGTTATTTA TTTCTATGGC ATTCCAGCGG ATATTTGGT GTTGCGAGG CATGCAGTCA 1140
ATATTTGTA CAGTTAGTGG ACAGTATTCA GCAACGCCTG ATAGCTTCTT TGGCCTTATG 1200
TTAAATAAAA AGACCTGTTT GGGATGTAAA AAAAAAAA AAAAAAAA AAAAAAAA 1260
AAAAAA 1265

(2) INFORMATION FOR SEQ ID NO:170:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 383 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:170:

TGTAAGTCGA GCAGTGTGAT GACGATATT TCCTTATTAA TGTGGTAATT GAACAAATGA 60
TCTGTGATAC TGATCCTGAG CTAGGAGGCG CTGTTCAGTT AATGGGACTT CTTCGTACTC 120
TAATTGATCC AGAGAACATG CTGGCTACAA CTAATAAAC CGAAAAAAGT GAATTCTAA 180
ATTTTTCTA CAACCATTGT ATGCATGTT TCACAGCACCC ACTTTGACC AATACTTCAG 240
AAGACAAATG TGAAAAGGAT AATATAGTTG GATCAAACAA AAACAAACACA ATTTGTCCCG 300
ATAATTATCA AACAGCACAG CTACTTGCCT TAATTTAGA GTTACTCACA TTTGTGTGG 360
AACATCACAC TGCTCGACTT ACA 383

(2) INFORMATION FOR SEQ ID NO:171:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 383 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:171:

TGGGCACCTT CAATATCGCA AGTTAAAAT AATGTTGAGT TTATTATACT TTTGACCTGT	60
TTAGCTAAC AGGGTGAAGG CATGAAAGA ATGTGGACTT CTGAGGAATT TTCTTTAAA	120
AAGAACATAA TGAAGTAACA TTTTAATTAC TCAAGGACTA CTTTGGTTG AAGTTTATAA	180
TCTAGATACC TCTACTTTT GTTTTGCTG TTCGACAGTT CACAAAGACC TTCAGCAATT	240
TACAGGGTAA AATCGTTGAA GTAGTGGAGG TGAAACTGAA ATTAAAATT ATTCTGTAAA	300
TACTATAGGG AAAGAGGCTG AGCTTAGAAT CTTTGGTTG TTCATGTGTT CTGTGCTCTT	360
ATCATCACAC TGCTCGACTT ACA	383

(2) INFORMATION FOR SEQ ID NO:172:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 699 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:172:

TCGGGTGATG CCTCCTCAGG CTTGTCGTTA GTGTACACAG AGCTGCTCAT GAAGCGACAG	60
---	----

CGGCTGCCCT TGGCACTTCA GAACCTCTTC CTCTACACTT TTGGTGCCT TCTGAATCTA	120
GGTCTGCATG CTGGCGCGG CTCTGGCCCA GGCCTCCTGG AAAGTTCTC AGGATGGGCA	180
GCACTCGTGG TGCTGAGCCA GGCACTAAAT GGACTGCTCA TGTCTGCTGT CATGGAGCAT	240
GGCAGCAGCA TCACACGCCT CTTTGTGGTG TCCTGCTCGC TGGTGGTCAA CGCCGTGCTC	300
TCAGCAGTCC TGCTACGGCT GCAGCTCACA GCCGCCTCTC TCCTGGCAC ATTGCTCATT	360
GGCCTGGCCA TGCCTGTGA CTATGGCAGC CGCTAGTCCC TGACAACCTTC CACCTGATT	420
CCGGACCCTG TAGATTGGGC GCCACCAACCA GATCCCCCTC CCAGGCCTTC CTCCCTCTCC	480
CATCAGCGGC CCTGTAACAA GTGCCTGTG AGAAAAGCTG GAGAAGTGAG GGCAGCCAGG	540
TTATTCTCTG GAGGTTGGTG GATGAAGGGG TACCCCTAGG AGATGTGAAG TGTGGTTTG	600
GTAAAGGAAA TGCTTACCAT CCCCCACCCC CAACCAAGTT NTTCCAGACT AAAGAATTAA	660
GGTAACATCA ATACCTAGGC CTGAGGAGGC ATCACCCGA	699

(2) INFORMATION FOR SEQ ID NO:173:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 701 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:173:

TCGGGTGATG CCTCCTCAGG CCAGATCAA CTTGGGGTTG AAAACTGTGC AAAGAAATCA	60
ATGTCGGAGA AAGAATTTG CAAAAGAAAA ATGCCTAAC AGTACTAATT TAATAGGTCA	120

CATTAGCA GT GGAAGAAGAA ATGTTGATAT TTTATGTCAG CTATTTATA ATCACCA GAG	180
TGCTTAGCTT CATGTAAGCC ATCTCGTATT CATTAGAAAT AAGAACAA TTATTCGT CG	240
GAAAGAAC TT TTCATTAT AGCATCTTAA TTGCTCAGGA TTTAAATT TGATAAAGAA	300
AGCTCCACTT TTGGCAGGAG TAGGGGCAG GGAGAGAGGA GGCTCCATCC ACAAGGACAG	360
AGACACCAGG GCCAGTAGGG TAGCTGGTGG CTGGATCA GT CACAACGGAC TGACTTATGC	420
CATGAGAAGA AACAACCTCC AAATCTCA GT TGCTTAATAC AACACAAGCT CATTCTTG C	480
TCACGTTACA TGT CCTATGT AGATCAACAG CAGGTGACTC AGGGACCCAG GCTCCATCTC	540
CATATGAGCT TCCATAGTCA CCAGGACACG GGCTCTGAAA GTGTCCTCCA TGCAGGGACA	600
CATGCCCTT CCTTCATTG GGCA GAGCAA GTC ACTTATG GCCAGAAGTC AC ACTGCAGG	660
GCAGTGCCAT CCTGCTGTAT GCCTGAGGAG GCATCACCCG A	701

(2) INFORMATION FOR SEQ ID NO:174:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 700 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:174:

TCGGGTGATG CCTCCTCANG CCCCTAAATC AGAGTCCAGG GTCAGAGCCA CAGGAGACAG	60
GGAAAGACAT AGATTTAAC CGGCCCCCTT CAGGAGATTG TGAGGCTCAG TTCACTTGT	120

150

TGCAGTTGA ACAGAGGCAG CAAGGCTAGT GGTTAGGGC ACGGTCTCTA AAGCTGACT	180
GCCTGGATCT GCCTCCCAGC TCTGCCAGGA ACCAGCTGCG TGGCCTTGAG CTGCTGACAC	240
GCAGAAAGCC CCCTGTGGAC CCAGTCTCCT CGTCTGTAAG ATGAGGACAG GACTCTAGGA	300
ACCCTTCCC TTGGTTTGGC CTCACTTTCA CAGGCTCCA TCTTGAACTC TATCTACTCT	360
TTTCCTGAAA CCTTGAAAAA GAAAAAAAGTG CTAGCCTGGG CAACATGGCA AAACCCGTGTC	420
TCTACAAAAA ATACAAAAAT TAGTTGGGTG TGGTGGCATG TGCTGTAGT CCCAGCCACT	480
TGGGAGGTGC TGAGGTGGGA GGATCACTTG AGCCCGGGAG GTGGAGGTTG CAGTGAGCCA	540
AGATCATGCC ACTGCACCTCC AGCCTGAGTA ATAGAGTAAG ACTCTGTCTC AAAAACAAACA	600
ACAACAACAG TGAGTGTGCC TCTGTTCCG GGTTGGATGG GGCACCACAT TTATGCATCT	660
CTCAGATTG GACGCTGCAG CCTGAGGAGG CATCACCCGA	700

(2) INFORMATION FOR SEQ ID NO:175:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 484 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:175:

TATAGGGCGA ATTGGGCCCG AGTTGCATGN TCCCGGCCGC CATGGCCGCG GGATTGGGT	60
GATGCCTCCT CAGGCTTGTC TGCCACAAGC TACTTCTCTG AGCTCAGAAA GTGCCCTTG	120
ATGAGGGAAA ATGTCCTACT GCACTGCGAA TTTCTCAGTT CCATTTTACCCAGTCCT	180

CCTTCTAAC CAGTTAATAA ATTCAATTCCA CAAGTATTAA CTGATTACCT GCTTGTGCCA	240
GGGACTATTTC CAGGCTGAA GAAGGTGGGA GGGGAGGGCG AACCTGAGG AGCCACCTGA	300
GCCAGCTTTA TATTCAACC ATGGCTGGCC CATCTGAGAG CATCTCCCCA CTCTGCCAA	360
CCTATCGGGG CATAGCCCAG GGATGCCCG AGGCAGGCCA GTTAGATGC GTCCCTTG	420
CTTGTCACTG ATGACATACA CCTTAGCTGC TTAGCTGGTG CTGGCCTGAG GAGGCATCAC	480
CCGA	484

(2) INFORMATION FOR SEQ ID NO:176:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 432 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:176:

TCGGGTGATG CCTCCTCAGG GCTCAAGGGA TGAGAAGTGA CTTCTTCTG GAGGGACCGT	60
TCATGCCACC CAGGATGAAA ATGGATAGGG ACCCACTTGG AGGACTTGCT GATATGTTG	120
GACAAATGCC AGGTAGCGGA ATTGGTACTG GTCCAGGAGT TATCCAGGAT AGATTTCAC	180
CCACCATGGG ACGTCATCGT TCAAATCAAC TCTTCAATGG CCATGGGGGA CACATCATGC	240
CTCCACACA ATCGCAGTTT GGAGAGATGG GAGGCAAGTT TATGAAAAGC CAGGGGCTAA	300
GCCAGCTCTA CCATAACCAG AGTCAGGGAC TCTTATCCCA GCTGCAAGGA CAGTCGAAGG	360

152

ATATGCCACC TCGGTTTCT AAGAAAGGAC AGCTTAATGC AGATGAGATT AGCCTGAGGA 420

GGCATCACCC GA 432

(2) INFORMATION FOR SEQ ID NO:177:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 788 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:177:

TAGCATGTTG AGCCCAGACA CAGTAGCATT TGTGCCAATT TCTGGTTGGA ATGGTGACAA 60

CATGCTGGAG CCAAGTGCTA ACATGCCATT GTTCAAGGGA TGAAAGTCA CCCGTAAGGA 120

TGGCAATGCC AGTGGAACCA CGCTGCTTGA GGCTCTGGAC TGCATCCTAC CACCAACTCG 180

CCCAAUTGAC AAGCCCTTGC GCCTGCCTCT CCAGGATGTC TACAAAATTG GTGGTATTGG 240

TACTGTTCTT GTTGGCCGAG TGGAGACTGG TGTTCTAAA CCCGGTATGG TGGTCACCTT 300

TGCTCCAGTC AACGTTACAA CGGAAGTAAA ATCTGTCGAATGCACCATG AAGCTTGAG 360

TGAAGCTCTT CCTGGGGACA ATGTGGGCTT CAATGTCAAG AATGTGTCG TCAAGGATGT 420

TCGTCTGGC AACGTTGCTG GTGACAGCAA AAATGACCCA CCAATGGAAG CAGCTGGCTT 480

CACTGCTCAG GTGATTATCC TGAACCATCC AGGCCAATA AGTGCCGGCT ATGCCCTGT 540

ATTGGATTGC CACACGGCTC ACATTGCATG CAAGTTGCT GAGCTGAAGG AAAAGATTGA 600

TCGCCGTTCTT GGAAAAAGC TGGAAGATGG CCCTAAATTC TTGAAGTCTG GTGATGCTGC 660

CATTGTTGAT ATGGTTCTG GCAAGCCAT GTGTGTTGAG AGCTTCTAG ACTATCCACC	720
TTTGGGTCGC TTTGCTGTT GTGATATGAG ACAGACAGTT GCGGTGGGTG TCTGGGCTCA	780
ACATGCTA	788

(2) INFORMATION FOR SEQ ID NO:178:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 786 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:

TAGCATGTTG AGCCCAGACA CCTGTGTTTC TGGGAGCTCT GGCAGTGGCG GATTCAAGG	60
CACTTGGGCT GCACTTGAA TGACACACTT GGCTTTATTA GATTCACTAG TTTTAAAAAA	120
ATTGTTGTTG TTTCCTTTTC ATTAAAGGTT TAATCAGACA GATCAGACAG CATAATTTG	180
TATTTAATGA CAGAACGTT GGTACATTTC TTCATGAATG AGCTTGCATT CTGAAGCAAG	240
AGCCTACAAA AGGCACTTGT TATAAATGAA AGTTCTGGCT CTAGAGGCCA GTACTCTGGA	300
GTTTCAGAGC AGCCAGTGAT TGTTCCAGTC AGTGATGCCT AGTTATATAG AGGAGGAGTA	360
CACTGTGCAC TCTTCTAGGT GTAAGGGTAT GCAACTTTGG ATCTTAAAT TCTGTACACA	420
TACACACTT ATATATATGT ATGTATGTAT GAAAACATGA AATTAGTTG TCAAATATGT	480
GTGTGTTAG TATTTAGCT TAGTGCACT ATTTCCACAT TATTTATCAA ATTGATCTAA	540

GACACTTCT TGTTGACACC TTGAATATTA ATGTTCAAGG GTGCAATGTG TATTCCCTTA	600
GATTGTTAAA GCTTAATTAC TATGATTGT AGTAAATTAA CTTTAAAAT GTATTTGAGC	660
CCTTCTGTAG TGTCGTAGGG CTCTTACAGG GTGGGAAAGA TTTAATTTT CCAGTTGCTA	720
ATTGAACAGT ATGGCCTCAT TATATATTTT GATTATAAGG AGTTTGTC TGGGCTAAC	780
ATGCTA	786

(2) INFORMATION FOR SEQ ID NO:179:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 796 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:179:

TAGCATGTTG AGCCCAGACA CTGGTTACAA GACCAGACCT GCTTCCTCCA TATGTAACAA	60
GCTTTAAAAA AGCCAGTCAA CCTTTTAAT ACTTGGCAA CCTTCTTCA CAGGCAAAGA	120
ACACCCCCAT CGGCCCTTG TTTGGAGTGC AGAGTTGGC TTTGGTTCTT TGCCTTGCT	180
GGAGTATACT TCTAATTCCCT GTTGTCTGC ACAAGCTGAA TACCGAGCTA CCCACCGCCA	240
CCCAGGCCAG GTTCCACTC ATTATTACT TTATGTTCT GTTCCATTGC TGGTCCACAG	300
AAATAAGTTT TCCTTGGAG GAATGTGATT ATACCCCTT AATTCCCTCC TTTGCTTTT	360
TTTAATATC ATTGGTATGT GTTGGCCCA GAGGAAACTG AAATTCACCA TCATCTTGAC	420
TGGCAATCCC ATTACCATGC TTTTTTAAA AAACGTAATT TTTCTGCCT TACATTGGCA	480

GAGTAGCCCT TCCTGGCTAC TGGCTTAATG TAGTCACTCA GTTTCTAGGT GGCATTAGGC	540
ATGAGACCTG AAGCACAGAC TGTCTTACCA CAAAAGGTGA CAAGATCTCA AACCTTAGCC	600
AAAGGGCTAT GTCAGGTTTC AATGCTATCT GCTTCTGTTG CTGCTCACTG TTCTGGATT	660
TGTCCCTCTT CATCCCTAGC ACCAGAATT CCCAGTCTCC CTCCCTACCT TCCCCTGTT	720
TAATTCTAAT CTATCAGCAA AATAACTTTT CAAATGTTT AACCGGTATC TCCATGTGTC	780
TGGGCTAAC ATGCTA	796

(2) INFORMATION FOR SEQ ID NO:180:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 488 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:180:

GGATGTGCTG CAAGGCGATT AAGTTGGTA ACGCCAGGGT TTTCCCAGTC ACGACGTTGT	60
AAAACGACGG CCAGTGAAATT GTAATACGAC TCACTATAGG GCGAATTGGG CCCGACGTCG	120
CATGCTCCCG GCCGCCATGG CGCGGGATA GCATGTTGAG CCCAGACACC TGCAAGTCAT	180
TTGGAGAGAT TTTTCACGTT ACCAGCTTGA TGGTCTTTT CAGGAGGAGA GACACTGAGC	240
ACTCCAAGG TGAGGTTGAA GATTTCTCT AGATAGCCGG ATAAGAAGAC TAGGAGGGAT	300
GCCTAGAAAA TGATTAGCAT GCAAATTCT ACCTGCCATT TCAGAACTGT GTGTCAGCCC	360

ACATTCAGCT GCTTCTTGTG AACTGAAAAG AGAGAGGTAT TGAGACTTTT CTGATGGCCG	420
CTCTAACATT GTAACACAGT AATCTGTGTG TGTGTGGGTG TGTGTGTGTG TCTGGGCTCA	480
ACATGCTA	488

(2) INFORMATION FOR SEQ ID NO:181:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 317 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:181:

TAGCATGTTG AGCCCAGACA CGGCGACGGT ACCTGATGAG TGGGGTGTG GCACCTGTGA	60
AAAGGAGGAA CGTCATCCCC CATGATATTG GGGACCCAGA TGATGAACCA TGGCTCCGCG	120
TCAATGCATA TTTAATCCAT GATACTGCTG ATTGGAAGGA CCTGAACCTG AAGTTTGTGC	180
TGCAGGTTTA TCGGGACTAT TACCTCACGG GTGATCAAAA CTTCCTGAAG GACATGTGGC	240
CTGTGTGTCT AGTAAGGGAT GCACATGCAG TGGCCAGTGT GCCAGGGTA TGGTTGGTGT	300
CTGGGCTCAA CATGCTA	317

(2) INFORMATION FOR SEQ ID NO:182:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 507 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:182:

TAGCATGTTG AGCCCAGACA CTGGCTGTTA GCCAAATCCT CTCTCAGCTG CTCCCTGTGG	60
TTTGGTGA CAGGATTACA GAGGCATCCT GTTCAGGGA ACAAAAGAT TTTAGCTGCC	120
AGCAGAGAGC ACCACATACA TTAGAACGGT AAGGACTGCC ACCTCCTCA AGAACAGGAG	180
TGAGGGTGGT GGTGAATGGG AATGGAAGCC TGCATTCCCT GATGCATTT TGCTCTCTCA	240
AATCCTGTCT TAGTCTTAGG AAAGGAAGTA AAGTTCAAG GACGGTTCCG AACTGCTTT	300
TGTGCTGGG CTCACATGC TATCCCGCGG CCATGGCGGC CGGGAGCATG CGACGTCGGG	360
CCCAATTGCG CCTATAGTGA GTCGTATTAC AATTCACTGG CCGTCGTTT ACAACGTCGT	420
GAATGGAAA ACCCTGGCGT TACCCAACCTT AATGCCTTG CAGCACATCC CCCTTCCCA	480
GCTGGCGTAA TANGAAAAG GCGCGCA	507

(2) INFORMATION FOR SEQ ID NO:183:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 227 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:183:

GATTTACGCT GCAACACTGT GGAGGTAGCC CTGGAGCAAG GCAGGCATGG ATGCTTCTGC	60
AATCCCCAAA TGGAGCCTGG TATTCAGCC AGGAATCTGA GCAGAGCCCC CTCTAATTGT	120

AGCAATGATA AGTTATTCTC TTTGTTCTTC AACCTTCAA TAGCCTTGAG CTTCCAGGGG 180

AGTGTGTTA ATCATTACAG CCTGGTCTCC ACAGTGTGC AGCGTAA 227

(2) INFORMATION FOR SEQ ID NO:184:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 225 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:184:

TTACGCTGCA ACACGTGGA GCAGATTAAC ATCAGACTTT TCTATCAAAC TGACTGGGGT 60

TACTAAAAAG ACAACAAATC AATGGCTTCA AAAGTCTAAG GAATAATTTC GATAATTCAA 120

CTTTATAAAA CCTGACAAAA CTATCAATCA AGCATAAAGA CAGATGAAGA ACATTTCCAG 180

ATTTGGCCA ATCAGATATT TTACCTCCAC AGTGTGCA CGTAA 225

(2) INFORMATION FOR SEQ ID NO:185:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 597 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:185:

GGCCCGACGT CGCATGCTCC CGGCCGCCAT GGCCGCGGGGA TTCGTTAGGG TCTCTATCCA 60

CTGGGACCCA TAGGCTAGTC AGAGTATTAA GAGTTGAGTT CCTTTCTGCT TCCCAGAATT	120
TGAAAGAAAA GGAGTGAGGT GATAGAGCTG AGAGATCAGA TTTGCCTCTG AAGCCTGTT	180
AAGATGTATG TGCTCAGACC CCACCACTGG GGCGTGTGGG TGAGGTCTG GGCATCTATT	240
TGAATGAATT GCTGAAGGGG AGCACTATGC CAAGGAAGGG GAACCCATCC TGGCACTGGC	300
ACAGGGGTCA CCTTATCCAG TGCTCAGTGC TTCTTGCTG CTACCTGGTT TTCTCTCATA	360
TGTGAGGGGC AGGTAAGAAC AAGTGCCCCRG TGTGTGCGA GTTTAGAAC ATCTACCAAGT	420
AAGTGGGGAA GTTCACAAA GCAGCAGCTT TGTTTGTGT ATTTCACCT TCAGTTAGAA	480
GAGGAAGGCT GTGAGATGAA TGTTAGTTGA GTGGAAAAGA CGGGTAAGCT TAGTGGATAG	540
AGACCTAAC GAATCACTAG TGCGGCCGCC TTGCAGGTG ACCATATGGG AGAGCTC	597

(2) INFORMATION FOR SEQ ID NO:186:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 597 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:

GGCCCGAAGT TGCATGTTCC CGGCCGCCAT GGCGCGGGA TTCGTTAGGG TCTCTATCCA	60
CTACCTAAA AATCCAAAC ATATAACTGA ACTCCTACA CCCAATTGGA CCAATCCATC	120
ACCCCAGAGG CCTACAGATC CTCCCTTGAT ACATAAGAAC ATTTCCCAA ACTACCTAAC	180

160

TATATCATT TGCAAGATT GTTTACCAA ATTTGATGG CCTTCTGAG CTTGTCAGTG	240
TGAACCACTA TTACGAACGA TCGGATATTAA ACTGCCCTC ACCGTCCAGG TGTAGCTGGC	300
AACATCAAGT GCAGTAATA TTCATTAAGT TTTCACCTAC TAAGGTGCTT AAACACCCTA	360
GGGTGCCATG TCGTAGCAG ATCTTTGAT TTGTTTTAT TTCCCATAG GGTCCGTTC	420
AAGGTCAATC ATACATGTAG TGTGAGCAGC TAGTCACTAT CGCATGACTT GGAGGGTGT	480
AATAGAGGCC TCCTTGCTG TAAAGAACT CTTGTCCAG CCTGTCAAAG TGGATAGAGA	540
CCCTAACGAA TCACTAGTGC GGCGCCTGC AGTCGACCA TATGGGAGAG CTCCAA	597

(2) INFORMATION FOR SEQ ID NO:187:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 324 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:187:

TCGTTAGGGT CTCTATCCAC TTGCAGGTA AATCCAATCC TGTGTATATC TTATAGTCTT	60
CCATATGTAG TGTTCAAGA GACTGCAGTT CCAGAAAGAC TAGCCGAGCC CATCCATGTC	120
TTCCACTTAA CCCTGCTTG GGTTACACAT CTTAACTTT CTGTTCAAGT TTCTCTGTGT	180
AGTTTATAGC ATGAGTATTG GGAWAATGCC CTGAAACCTG ACATGAGATC TGGGAAACAC	240
AAACTTACTC AATAAGAATT TCTCCCATAT TTTTATGATG GAAAAATTTC ACATGCACAG	300
AGGAGTGGAT AGAGACCCTA ACGA	324

(2) INFORMATION FOR SEQ ID NO:188:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 178 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:188:

GGCGGGGGAT TCGGGGTGAT ACCTCCTCAT GCCAAAATAC AACGTNTAAT TTCAACAATT	60
GCCTTCCAAT TTACGCATT TCAATTGCT CTCCCCATT GTTGAGTCAC AACAAACACC	120
ATTGCCAGA AACATGTATT ACCTAACATG CACATACTCT TAAAACTACT CATCCCTT	178

(2) INFORMATION FOR SEQ ID NO:189:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 367 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:189:

TGACACCTTG TCCAGCATCT GACACAGTCT TGGCTTTGG AAAATATTGG ATAAATGAAA	60
ATGAATTCTT CTAGCAAGTG GTATAAGCTG AGAATATACG TATCACATAT CCTCATTCTA	120
AGACACATTC AGTGTCCCTG AAATTAGAAT AGGACTTACA ATAAGTGTGT TCACTTCTC	180
AATAGCTGTT ATTCAATTGA TGGTAGGCCT TAAAAGTCAA AGAAATGAGA GGGCATGTGA	240

AAAAAAGCTC AACATCACTG ATCATTAGAA AACTTCCATT CAAACCCCCA ATGAGATAACC	300
ATCTCATACC AGTCAGAATG GCTATTATTA AAAAGTCAAA AAATAACAGA TGCTGGACAA	360
GGTGTCA	367

(2) INFORMATION FOR SEQ ID NO:190:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 369 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:190:

GACACCTTGT CCAGCATCTG ACAACGCTAA CAGCCTGAGG AGATCTTAT TTATTTATTT	60
AGTTTTACT CTGGCTAGGC AGATGGTGGC TAAAACATTC ATTTACCCAT TTATTCATT	120
AATTGTTCTT GCAAGGCCTA TGGATAGAGT ATTGTCCAGC ACTGCTCTGG AAGCTAGGAG	180
CATGGGGATG AACAAAGATAG GCTACATCCT GTTCCCACAG AACTTCCACT TTAGTCTGGG	240
AAACAGATGA TATATACAAA TATATAATG AATTCAAGTA GTTTAAGTA CGAAAAGAAT	300
AAGAAAGCAG AGTCATGATT TANAATGCTG GAAACAGGGG CTATTGCTTG AGATATTGAA	360
GGTGCCCAA	369

(2) INFORMATION FOR SEQ ID NO:191:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 369 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:191:

TGACACCTTG TCCAGCATCT GCACAGGGAA AAGAAACTAT TATCAGAGTG AACAGGCAAC	60
CTACAGAACATG GGAGAAAATT TTTGCAATCT ATCCATCTGA CAAAGGGCTA ATATCCAGAA	120
TCTACAAAGA ACTTATAACAA ATTACAAGA AACAAACAAA CAAACAACTC CTCAAAAGT	180
GGGTGAAGGA TGTGAACAGA CACTTCTCAA AAGAAGACAT TTATGGGCC AACAAACATA	240
TGAAAAAAAG CTCATCATCA CTGGTCACTA GATAATGCA AATCAAACACC ACAATGAGAT	300
ACCATCTCAT TCCAGTTAGA ATGGCAATCA TTAAAAAGTC AGGAAACAAC AGATGCTGGA	360
CAAGGTGTC	369

(2) INFORMATION FOR SEQ ID NO:192:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 449 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:

TGACCGTTGG CCACATTGACA CTTCATCTT GCACAGAAAA ACTTCTTAC AGATTTAATT	60
CAAGACTGGT CTAGTGACAG TCCTCCAGAC ATTTTTCAT TTGTTCCATA TACGTGGAAT	120

TTTAAAATCA TGTTTCATCA GTTGAAATG ATTTGGGCTG CTAATCAACA CAATTGGATC	180
GACTGTTCTA CTAACAAACA GGAAAATGTG TATCTGGCAG CCTGTGGAGA AACACTAAAC	240
ATTGATTTT CTTGCCTTT TACGGACTTT GTTCCAGCTA CATGTAATAC CAAGTTCTCT	300
TTAAGAGGAG AAGATGTTGA TCTTCATTTG TTTCTACCAG ACTGCCACCC TAGTAAATAT	360
TCTTTATTAA TGCTGGTAAA AAATTGCCAT CCAAATAAGA TGATTCATGA TACTGGTATT	420
CCTGCTGAGT GTCAAGTGGC CAAGCGTCA	449

(2) INFORMATION FOR SEQ ID NO:193:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 372 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:193:

TGACGCTTGG CCAC TTGACA CCAGGGATGT AKCAGTTGAA TATAATCCTG CAATTGTACA	60
TATTGGCAAT TTCCCATAA ACATTCTAGA AAGAGACAAC CAGGATTGCT AGGCCATAAA	120
AGCTGCAATA ATA ACTG GGT AATTG CAGTA ATC ATT CAG GCCA ATTCAA TCCAGTTGG	180
CTCAGAGGTG CCTTTGGCTG AGAGAAGAGG TGAGATATAA TGTGTTTCT TGCAACTTCT	240
TGGAAGAATA ACTCCACAAT AGTCTGAGGA CTAGATACAA ACCTATTGC CAT TAAAGCA	300
CCAGAGTCTG TTAATTCCAG TACTGATAAG TGTTGGAGAT TAGACTCCAG TGTGTCAAGT	360
GGCCAAGCGT CA	372

(2) INFORMATION FOR SEQ ID NO:194:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 309 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:194:

TGACGCTTGG CCACTTGACA CTTATGTAGA ATCCATCGTG GGCTGATGCA AGCCCTTAT	60
TTAGGCTTAG TGTTGTGGC ACCTTCAATA TCACACTAGA GACAAACGCC ACAAGATCTG	120
CAGAAACATT CAGTTCTGAN CACTCGAATG GCAGGATAAC TTTTTGTGTT GTAATCCTTC	180
ACATATACAA AAACAAACTC TGCANTCTCA CGTTACAAAA AAACGTACTG CTGTAAAATA	240
TTAAGAAGGG GTAAAGGATA CCATCTATAA CAAAGTAAC TACAACTAGT GTCAAGTGGC	300
CAAGCGTCA	309

(2) INFORMATION FOR SEQ ID NO:195:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 312 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:195:

TGACGCTTGG CCACTTGACA CCCAATCTCG CACTTCATCC TCCCAGCACC TGATGAAGTA	60
---	----

GGACTGCAAC TATCCCCACT TCCCAGATGA GGGGACCAAN GTACACATTA GGACCCGGAT	120
GGGAGCACAG ATTTGTCCGA TCCCAGACTC CAAGCACTCA GCGTCACTCC AGGACAGCGG	180
CTTCAGATA AGGTACACAAA CATGAATGGC TCCGACAAACC GGAGTCAGTC CGTGCTGAGT	240
TAAGGCAATG GTGACACCGA TGACAGTGTN ACCTGTAATG GTTCATCGTA AGTGTCAAGT	300
GGCCAAGCGT CA	312

(2) INFORMATION FOR SEQ ID NO:196:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 288 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:196:

TGTATCGACG TAGTGGTCTC CTCAGCCATG CAGAACTGTG ACTCAATTAA ACCTCTTCC	60
TTTATGAATT ACCCAATCTC GGGTAGTGTG TTTATAGTAG TGTGAGAATG GACTAATACA	120
AGTACATTTT ACTTAGTAAT AATAATAAAC AAATATATTA CATTGGTG TATTTACTAC	180
ACCATATTTT TTATTGTTAT TGTAGTGTAC ACCTTCTACT TATTAAAAGA AATAGGCCG	240
AGGCAGGGCAG ATCACGAGGT CAGGAGATGG AGACCACTAC GTCGATAC	288

(2) INFORMATION FOR SEQ ID NO:197:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 289 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:197:

TTGGGCACCT TCAATATCAT GACAGGTGAT GTGATAACCA AGAAGGCTAC TAAGTGATTA	60
ATGGGTGGGT AATGTATACA GAGTAGGTAC ACTGGACAGA GGGGTAATT C ATAGCCAAGG	120
CAGGAGAACG AGAATGGCAA AACATTCAT CACACTACTC AGGATAGCAT GCAGTTAAA	180
ACCTATAAGT AGTTTATTTT TGGAATTTTC CACTTAATAT TTTCAGACTG CAGGTAAC TA	240
AACTGTGGAA CACAAGAAC A TAGATAAGGG GAGACCACTA CGTCGATAC	289

(2) INFORMATION FOR SEQ ID NO:198:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 288 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:198:

GTATCGACGT AGTGGTCTCC CAAGCAGTGG GAAGAAAAGG TGAACCAATT AAAATGTATC	60
AGATACCCCA AAGAAAGGCG CTTGAGTAA GATTCCAAGT GGGTCACAAT CTCAGATCTT	120
AAAATTCAAGG CTGTCAAAGA GATTTGCTAT GAGGTTGCTC TCAATGACTT CAGGCACAGT	180
CGGCAGGAGA TTGAAGCCCT GGCCATTGTC AAGATGAAGG AGCTTGTGC CATGTATGGC	240

AAGAAAGACC CCAATGAGCG GGACTCCTGG AGACCACTAC GTCGATAC 288

(2) INFORMATION FOR SEQ ID NO:199:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1027 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:199:

GCTTTTGGG AAAAACNCAA NTGGGGGAAA GGGGGNTNN TNGCAAGGGG ATAAAGGGGG 60
AANCCCAGGG TTTCCCCATT CAGGGAGGTG TAAAAAGNCG GCCAGGGGAT TGTAANAGGA 120
TTCAATAATA GGGGAATGG GCCCNGAAGT TGCAAGGTTG CNGCCGCCA TGNCCGCGGG 180
ATTTAGTGAC ATTACGACGS TGTTAATAAA GTGGGSCCAA WAAATATTG TGATGTGATT 240
TTTSGACCAG TGAACCCATT GWACAGGACC TCATTTCTY TGAGATGRTA GCCATAATCA 300
GATAAAAGRT TAGAAGTYTT TCTGCACGTT AACAGCATCA TTAAATGGAG TGGCATCACC 360
AATTTCACCC TTTGTTAGCC GATACCTTCC CCTTGAAGGC ATTCAATTAA GTGACCAATC 420
GTCATACGAG AGGGGATGGC ATGGGGATTG ATGATGATAT CAGGGGTGAT ACCTTCACAG 480
GTGAAAGGCA TATCCTCTTG TCTATACTGA ATACCACAAG TACCCCTTTG ACCATGTCGA 540
CTAGCAAATT TGTCTCCAAT CTGTGTWATC CCTAACAGAG CGTACCCCTTA TTTTACAAAA 600
TTTATATCCT TCCTGATTGA GAGTTACCAT AACCTGATCC ACAATGCCCG TCTCGCTWGT 660
TCTGAGAAAA GTGCTACAGT CTCTCTTGGT ATAGCGTCTA TTGGTGCTCT CCAATTCACTC 720

TTCATTTTC AGGCAAGGTG AACTGTTTG CCTATAATAA CMTCATCTCC TGATACMCGA	780
AACCCCKGGA RCTATCAAAC CATCATCATC CAGCGTTCKT WATGTYMCTA AATCCCTATT	840
GCGGCCGCCT GCAGGTCAAC ATATNGGAAA ACCCCCCACC CCTTNGGAGC NTACCTTGAA	900
TTTCCATAT GTCCCNAAA TTANCTNGNC TTANCCTGGC CNTAACCTNT TCCGGTTAA	960
ATTGTTCCG CCCCNNTCC CCNCCTNNNA ACCGGAAACC TTAATTTNAA ACCNGGGTT	1020
CCTATCC	1027

(2) INFORMATION FOR SEQ ID NO:200:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 207 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:200:

AGTGACATTA CGACGCTGGC CATCTTGAAT CCTAGGGCAT GAAGTTGCC CAAAGTTAG	60
CACTTGGTTA AGCCTGATCC CTCTGGTTA TCACAAAGAA TAGGATGGGA TAAAGAAAGT	120
GGACACTTAA ATAAGCTATA AATTATATGG TCCTTGTCTA GCAGGAGACA ACTGCACAGG	180
TATACTACCA GCGTCGTAAT GTCACTA	207

(2) INFORMATION FOR SEQ ID NO:201:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 209 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:201:

TGGGCACCTT CAATATCTAT TAAAAGCACA AATACTGAAG AACACACCAA GACTATCAAT	60
GAGGTTACAT CTGGAGTCCT CGATATATCA GGAAAAAATG AAGTGAACAT TCACAGAGTT	120
TTACTTCTTT GGGAACTCAA ATGCTAGAAA AGAAAAGGGT GCCCTCTTTC TCTGGCTTCC	180
TGGTCCTATC CAGCGTCGTA ATGTCACTA	209

(2) INFORMATION FOR SEQ ID NO:202:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 349 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:202:

NTACGCTGCA ACAGTGGA GCCACTGGTT TTTATTCCCG GCAGGTTATC CAGCAAACAG	60
TCACTGAACA CACCGAAGAC CGTGGTATGG TAACCGTTCA CAGTAATCGT TCCAGTCGTC	120
TGCGGGACCC CGACGAGCGT CACTGGGTAC AGACCAGATT CAGCCGAAG AGAAAGCGCC	180
GCAGGGAGAG ACTCGAACTC CACTCCGCTG GTGAGCAGCC CCATGTTTC AACTCGAAGT	240
TCAAACGGCA TTGGGTTATA TACCATCAGC TGAACTTCAC ACACATCTCC TTGAACCCAC	300

TGGAAATCTA TTTTCTTGTT CCGCTCTTCT CCACAGTGTT GCAGCGTAA 349

(2) INFORMATION FOR SEQ ID NO:203:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 241 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:203:

TGCTCCTCTT GCCTTACCAA CCCAAAGCCC ACTGTGAAAT ATGAAGTGAA TGACAAAATT 60

CAGTTTCAA CGCAATATAG TATAGTTTAT CTGATTCTTT TGATCTCCAG GACACTTTAA 120

ACAAGTGCTA CCACCACACC CAACCTAGGG ATTAGGATT CTCCACAGAC CAGAAATTAT 180

TTCTCCTTG AGTTTCAGGC TCCTCTGGGA CTCCCTGTTCA TCAATGGGTG GTAAATGGCT 240

A 241

(2) INFORMATION FOR SEQ ID NO:204:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 248 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:204:

TAGCCATTAA CCACCCATCT GCAAACCSWG ACMWWCARGR CYWGWAACKYA GGCAGTTGA 60

AGTACTGGTA ATGCTCTGAT CATGTTAGTT ACATAAGTGT GGTCAGTTA CAAAATTCA	120
CAGAACTAAA TACTCAATGC TATGTGTTCA TGTCTGTGTT TATGTGTGTG TAATGTTCA	180
ATTAAGTTT TTAAAAAAA AGAGATGATT TCCAAATAAG AAAGCCGTGT TGGTAAGGCA	240
AGAGGAGC	248

(2) INFORMATION FOR SEQ ID NO:205:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 505 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:205:

TACGCTGCAA CACTGTGGAG CCATTCTAC AGGTCCTAA TTAAGGAACA AGTGATTATG	60
CTACCTTGC ACGGTTAGGG TACCGCGGCC GTTAAACATG TGTCACTGGG CAGGCGGTGC	120
CTCTAATACT GGTGATGCTA GAGGTGATGT TTTGGTAAA CAGGCGGGGT AAGATTTGCC	180
GAGTCCTTT TACTTTTTT AACCTTTCT TATGAGCATG CCTGTGTTGG GTTGACAGTG	240
GGGGTAATAA TGACTTGTG GTTGATTGTA GATATTGGC TGTTAATTGT CAGTTCACTG	300
TTTAATCTG ACGCAGGCTT ATGCGGAGGA GAATGTTTC ATGTTACTTA TACTAACATT	360
AGTTCTCTA TAGGGTGATA GATTGGCCA ATTGGGTGTG AGGAGTCAG TTATATGTT	420
GGGATTTTT AGGTAGTGGG TGTGANCTT GAACGCTTC TTAATTGGTG GCTGCTTTA	480
RGCCTACTAT GGGTGGTAAA TGGCT	505

(2) INFORMATION FOR SEQ ID NO:206:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 179 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:206:

TAGACTGACT CATGTCCCT ACCAAAGCCC ATGTAAGGAG CTGAGTTCTT AAAGACTGAA	60
GACAGACTAT TCTCTGGAGA AAAATAAAAT GGAAATTGTA CTTAAAAAAA AAAAAAAATC	120
GGCCGGGCAT GGTAGCACAC ACCTGTAATC CCAGCTACTA GGGGACATGA GTCAGTCTA	179

(2) INFORMATION FOR SEQ ID NO:207:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 176 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:207:

AGACTGACTC ATGTCCCTA CCCCACCTTC TGCTGTGCTG CCGTGTTCCT AACAGGTAC	60
AGACTGGTAC TGGTCAGTGG CCTGGGGGTT GGGGACCTCT ATTATATGGG ATACAAATT	120
AGGAGTTGGA ATTGACACGA TTTAGTGACT GATGGGATAT GGGTGGTAAA TGGCTA	176

(2) INFORMATION FOR SEQ ID NO:208:

(1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 196 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:208:

AGACTGACTC ATGTCCCTA TTTAACAGGG TCTCTAGTGC TGTGAAAAAA AAAAATGCTG	60
AACATTGCAT ATAACCTATA TTGTAAGAAA TACTGTACAA TGACTTTATT GCATCTGGGT	120
AGCTGTAAGG CATGAAGGAT GCCAAGAAGT TTAAGGAATA TGGGTGGTAA ATGGCTAGGG	180
GACATGAGTC AGTCTA	196

(2) INFORMATION FOR SEQ ID NO:209:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 345 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:209:

GACCGTTGGC CACTTGACAC CTTTTATTTT TTAAGGATTTC TTAAGTCATT TANGTNACTT	60
TGTAAGTTT TCCTGTGCC CCATAAGAAT GATAGCTTA AAAATTATGC TGGGTAGCA	120
AAGAAGATAC TTCTAGCTT AGAATGTGTA GGTATAGCCA GGATTCTTGT GAGGAGGGT	180
GATTTAGAGC AAATTCTTA TTCTCCTTGC CTCATCTGTA ACATGGGGAT AATAATAGAA	240

CTGGCTTGAC AAGGTTGGAA TTAGTATTAC ATGGTAAATA CATGTAAAAT GTTTAGAATG 300

GTGCCAAGTA TCTAGGAAGT ACTTGGGCAT GGGTGGTAAA TGGCT 345

(2) INFORMATION FOR SEQ ID NO:210:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 178 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:210:

GACGCTTGGC CACTTGACAC TAGAGTAGGG TTTGGCCAAC TTTTCTATA AAGGACCAGA 60

GAGTAAATAT TTCAGGCTT GTGGGTTGTG CAGTCTCTCT TGCAACTACT CAGCTCTGCC 120

ATTGTAGCAT AGAAATCAGC CATAGACAGG ACAGAAATGA ATGGGTGGTA AATGGCTA 178

(2) INFORMATION FOR SEQ ID NO:211:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 454 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:211:

TGGGCACCTT CAATATCTAT CCAGCGCATC TAAATTCGCT TTTTCTTGA TTAAAAATT 60

CACCACTTGC TGTTTTGCT CATGTATACC AAGTAGCAGT GGTGTGAGGC CATGCTTGT 120

TTTGATTG ATATCAGCAC CGTATAAGAG CAGTGCTTG GCCATTAATT TATCTTCATT	180
GTAGACAGCA TAGTGTAGAG TGGTATCTCC ATACTCATCT GGAATATTTG GATCAGTGCC	240
ATGTTCCAGC AACATTAACG CACATTCACT TTCTGGCAT TGTACGGCCT TTGTCAGAGC	300
TGTCCTCTTT TTGTTGTCAA GGACATTAAG TTGACATCGT CTGTCAGCA CGAGTTTAC	360
TACTTCTGAA TTCCCATTGG CAGAGGCCAG ATGTAGAGCA GTCTCTTTT GCTTGTCCCT	420
CTTGTTCACA TCAGTGTCCC TGAGCATAAC GGAA	454

(2) INFORMATION FOR SEQ ID NO:212:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 337 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:212:

TCCGTTATGC CACCCAGAAA ACCTACTGGA GTTACTTATT AACATCAAGG CTGGAACCTA	60
TTTGCCTCAG TCCTATCTGA TTCATGAGCA CATGGTTATT ACTGATCGCA TTGAAAACAT	120
TGATCACCTG GGTTCTTTA TTTATCGACT GTGTATGAC AAGGAAACTT ACAAACTGCA	180
ACGCAGAGAA ACTATTAAG GTATTCAGAA ACGTGAAGCC AGCAATTGTT TCGCAATTG	240
GCATTTGAA AACAAATTG CCGTGGAAC TTTAATTGT TCTTGAACAG TCAAGAAAAA	300
CATTATTGAG GAAAATTAAT ATCACAGCAT AACGGAA	337

(2) INFORMATION FOR SEQ ID NO:213:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 715 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:213:

TCGGGTGATG CCTCCTCAGG CATCTTCCAT CCATCTCTTC AAGATTAGCT GTCCCAAATG	60
TTTTCCCTC TCTTCTTAC TGATAAATTG GGACTCCTTC TTGACACTGA TGACAGCTT	120
AGTATCCTTC TTGTCACCTT GCAGACTTTA AACATAAAA TACTCATTGG TTTAAAAGG	180
AAAAAAAGTAT ACATTAGCAC TATTAAGCTT GGCCTTGAAA CATTTCAT CTTTATTAA	240
ATGTCGGTTA GCTGAACAGA ATTCAATTAA CAATGCAGAG TGAGAAAAGA AGGGAGCTAT	300
ATGCATTGA GAATGCAAGC ATTGTCAAAT AAACATTAA AATGCTTCT TAAAGTGAGC	360
ACATACAGAA ATACATTAAG ATATTAGAAA GTGTTTGCG TTGTGTACTA CTAATTAGGG	420
AAGCACCTTG TATAGTTCCCT CTTCTAAAAT TGAAGTAGAT TTTAAAACC CATGTAATT	480
AATTGAGCTC TCAGTCAGA TTTAGGAGA ATTTAACAG GGATTTGGTT TTGTCTAAAT	540
TTTGTCAATT TNTTGTATAA ATCTGTATAA TTTATAAAT GTCAAACGT ATTGTGCG	600
TTTCATGCT GCTATGAAAG AAATACCCAN GACAGGGTTA TTTATAAANG GAAAGANGTT	660
AATTGACTC CCAGTTACA GGCCTGAGGA NGNATCNCCC GAAATCCTTA TTGCG	715

(2) INFORMATION FOR SEQ ID NO:214:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 345 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:214:

GGTAANGNGC ATACNTCGGT GCTCCGCCG CCGGAGTCGG GGGATTGGG TGATGCCTCC	60
TCAGGGCCAC TTGGGCCTGC TTTTCCAAA TGGCAGCTCC TCTGGACATG CCATTCCTC	120
TCCCACCTGC CTGATTCTTC ATATGTTGGG TGTCCTGTT TTTCTGGTGC TATTCCTGA	180
CTGCTGTTCA GCTGCCACTG TCCTGCAAAG CCTGCCTTT TAAATGCCTC ACCATTCTT	240
CATTTGTTTC TTAAATATGG GAAGTGAAAG TGCCACCTGA GGCCGGGCAC AGTGGCTCAC	300
GCCTGTAATC CCAGCACTT GGGAGCCTGA GGAGGCATCA CCCGA	345

(2) INFORMATION FOR SEQ ID NO:215:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 429 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:215:

GGTGATGCCT CCTCAGGCGA AGCTCAGGGA GGACAGAAC CTCCCGTGG A GCAGAAGGGC	60
AAAAGCTCGC TTGATCTTGA TTTTCAGTAC GAATACAGAC CGTGAAAGCG GGGCCTCACG	120

ATCCTTCTGA CCTTTGGGT TTTAAGCAGG AGGTGTCAGA AAAGTTACCA CAGGGATAAC	180
TGGCTTGTGG CGGCCAACGCG TTCAAGCGA CGTCGCTTT TGATCCTCG ATGTCGGCTC	240
TTCCTATCAT TGTGAAGCAG AATTACCAA GCGTTGGATT GTTCACCCAC TAATAGGGAA	300
CGTGAGCTGG GTTTAGACCG TCGTGAGACA GGTTAGTTT ACCCTACTGA TGATGTGKG	360
TTGCCATGGT AATCCTGCTC AGTACGAGAG GAACCGCAGG TTCASACATT TGGTGTATGT	420
GCTTGCCTT	429

(2) INFORMATION FOR SEQ ID NO:216:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 593 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:216:

TGACACCTAT GTCCNGCATC TGTTCACAGT TTCCACAAAT AGCCAGCCTT TGGCACCTC	60
TCTGTCCCTGA GGTATACAAG TATATCAGGA GGTGTATACC TTCTCTTCTC TTCCCCACCA	120
AAGAGAACAT GCAGGCTCTG GAAGCTGTCT TAGGAGCCTT TGGGCTCAGA ATTCAGAGT	180
CTTGGGTACC TTGGATGTGG TCTGGAAGGA GAAACATTGG CTCTGGATAA GGAGTACAGC	240
CGGAGGAGGG TCACAGAGCC CTCAGCTCAA GCCCCTGTGC CTTAGTCTAA AAGCAGCTT	300
GGATGAGGAA GCAGGTTAAG TAACATACGT AAGCGTACAC AGGTAGAAAG TGCTGGAGT	360

180

CAGAATTGCA CAGTGTGTAG GAGTAGTACC TCAATCAATG AGGGCAAATC AACTGAAAGA	420
AGAAGACCNA TTAATGAATT GCTTANGGGG AAGGATCAAG GCTATCATGG AGATCTTCT	480
AGGAAGATTAA TTGTTTANAA TTATGAAAGG ANTAGGGCAG GGACAGGGCC AGAAGTANAA	540
GANAACATTG CCTATANCCC TTGTCTTGCA CCCAGATGCT GGACAAGGTG TCA	593

(2) INFORMATION FOR SEQ ID NO:217:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 335 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:217:

TGACACCTTG TCCAGCATCT GACGTGAAGA TGAGCAGCTC AGAGGAGGTG TCCTGGATT	60
CCTGGTTCTG TGGGCTCCGT GGCAATGAAT TCTTCTGTGA AGTGGATGAA GACTACATCC	120
AGGACAAATT TAATCTTACT GGACTCAATG AGCAGGTCCC TCACTATCGA CAAGCTCTAG	180
ACATGATCTT GGACCTGGAG CCTGATGAAG AACTGGAAGA CAACCCCAAC CAGAGTGACC	240
TGATTGAGCA GGCAGCCGAG ATGCTTATG GATTGATCCA CGCCCGCTAC ATCCTTACCA	300
ACCGTGGCAT CGCCCCAGATG CTGGACAAGG TGTCA	335

(2) INFORMATION FOR SEQ ID NO:218:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 248 base pairs
- (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:218:

TACGTACTGG TCTTGAAGGT CTTAGGTAGA GAAAAAAATGT GAATATTAA TCAAAGACTA	60
TGTATGAAAT GGGACTGTAA GTACAGAGGG AAGGGTGGCC CTTATGCCA GAAGTTGGTA	120
GATGCGTCCC CGTCATGAAA TGTTGTGTCA CTGCCCGACA TTTGCCGAAT TACTGAAATT	180
CCGTAGAATT AGTGCAAATT CTAACGTTGT TCATCTAAGA TTATGGTTCC ATGTTTCTAG	240
TACTTTA	248

(2) INFORMATION FOR SEQ ID NO:219:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 530 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:219:

TGACGCTTGG CCACTTGACA CAAGTAGGGG ATAAGGACAA AGACCCATNA GGTGGCCTGT	60
CAGCCTTTG TTACTGTTGC TTCCCTGTCA CCACGGCCCC CTCTGTAGGG GTGTGCTGTG	120
CTCTGTGGAC ATTGGTGCAT TTTCACACAT ACCATTCTCT TTCTGCTTCA CAGCAGTCCT	180
GAGGCAGGAG CACACAGGAC TACCTTGTC GATGANGATA ATGATGTCTG GCCAACTCAC	240
CCCCAACCT TCTCACTAGT TATANGAAGA GCCANGCTA NAACCTTCTA TCCTGNCCCC	300

TTCGCCCTATG ACCTCATCCC TGTCCATGC CCTATTCTGA TTTCTGGTGA ACTTTGGAGC	360
AGCCTGGTTT NTCCCTCTCA CTCCAGCCTC TCTCCATAACC ATGGTANGGG GGTGCTGTT	420
CACNCAAANG GTCAGGTGTG TCTGGGAAT CCTNANANCT GCCNGGAGTT TCCNANGCAT	480
TCTTAAAAAC CTTCTTGCT AATCANATNG TGTCCAGTGG CCAACCNTCN	530

(2) INFORMATION FOR SEQ ID NO:220:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 531 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:220:

TGACGCTTGG CCACTTGACA CTAAATAGCA TCTTCTAAAG GCCTGATTCA GAGTTGTGGA	60
AAATTCTCCC AGTGTCAAGG ATTGTCAAGGA ACAGGGCTGC TCCTGTGCTC ACTTTACCTG	120
CTGTGTTTCT GCTGGAAAAG GAGGGAAAGAG GAATGGCTGA TTTTACCTA ATGTCTCCA	180
GTTTTTCATA TTCTTCTTGG ATCCTCTTCT CTGACAAC TGTTCTTGT GTCTTCTTCT	240
TCTTGCTCAG AGAGCAGGTC TCTTTAAAAC TGAGAAGGGA GAATGAGCAA ATGATTAAG	300
AAAACACACT TCTGAGGCC AGAGATCAA TATTAGGTAAT ACTAAACC GCTTGCTGC	360
TGTGGTCACT TTTCTCTCT TTCACATGCT CTATCCCTCT ATCCCCCACC TATTCAATAG	420
GCTTTATCT GCCAAGTTAT CGGGCCTCTC ATCACCTTC TCCCCTAGCC TACTGGGGGA	480

TATCCATCTG GGTCTGTCTC TGGTGTATTG GTGTCAAGTG GCCAAGCGTC A 531

(2) INFORMATION FOR SEQ ID NO:221:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 530 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:221:

ATTGACGCTT GGCCACTTGA CACCCGCCTG CCTGCAATAC TGGGGCAAGG GCCTTCACTG 60
CTTTCCTGCC ACCAGCTGCC ACTGCACACA GAGATCAGAA ATGCTACCAA CCAAGACTGT 120
TGGTCCTCAG CCTCTCTGAG GAGAAAGAGC AGAACGCTGG AAGTCAGAAG AGAACGCTAGA 180
TCGGCTACGG CCTTGGCAGC CAGCTTCCCC ACCTGTGGCA ATAAAGTCGT GCATGGCTTA 240
ACAATGGGGG CACCTCCTGA GAAACACATT GTTAGGCAAT TCGGCGTGTG TTCATCAGAG 300
CATATTTACA CAAACCTCGA TAGTGCAGCC TACTATCCAC TATTGCTCCT ACGCTGCAA 360
CCTGAACAGC ATGGGACTGT ACTGAATACT GGAAGCAGCT GGTGATGGTA CTTATTTGTG 420
TATCTAAACA CAGAGAAGGT ACAGTAAGAA TATGGTATCA TAAACTTACA GGGACCGCCA 480
TCCTATATGC AGTCTGTTGT GACCAAAATG TGTCAAGTGG CCAAGCGTCA 530

(2) INFORMATION FOR SEQ ID NO:222:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 578 base pairs
- (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:222:

TGTATCGACG TAGTGGTCTC CGGGCTACTA GGCGGTTGTG TGCTGGTAGT ACCTGGTTCA	60
CTGAAAGGCG CATCTCCCTC CCCGCCTCGC CCTGAAGCAG GGGGAGGACT TCGCCCAGCC	120
AAGGCAGTTG TATGAGTTT AGCTGCGGCA CTTCGAGACC TCTGAGCCA CCTCCTTCAG	180
GAGCCTTCCC CGATTAAGGA AGCCAGGGTA AGGATTCCCTT CCTCCCCAG ACACCACGAA	240
CAAACCACCA CCCCCCTAT TCTGGCAGGCC CATATACATC AGAACGAAAC AAAATAACA	300
AATAAACNAA AACCAAAAAA AAAAGAGAAG GGGAAATGTA TATGTCTGTC CATCCTGTTG	360
CTTAGCCTG TCAGCTCTA NAGGGCAGGG ACCGTGTCTT CGAATGGTC TGTGCAGCGC	420
CGACTGCGGG AAGTATCGGA GGAGGAAGCA GAGTCAGCAG AAGTTGAACG GTGGGCCCCGG	480
CGGCTCTTGG GGGCTGGTGT TGTACTTCGA GACCGCTTTC GCTTTTGTC TTAGATTAC	540
GTTTGCTCTT TGGAGTGGGA NACCACTACN TCNATACA	578

(2) INFORMATION FOR SEQ ID NO:223:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 578 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:223:

TGTATCGACG TAGTGGTCTC CTCTTGCAAA GGACTGGCTG GTGAATGGTT TCCCTGAATT	60
---	----

ATGGACTTAC CCTAACATA TCTTATCATC ATTACCA GTT GCAAATATT AGAATGTGTT	120
GTCACTGTTT CATTGATTG CTAGAAGGTT AGTCTTAGAT ATGTTACTTT AACCTGTATG	180
CTGTAGTGCT TTGAATGCAT TTTTGTTTG CATTGGTT TGCCCAACCT GTCAATTATA	240
GCTGCTTAGG TCTGGACTGT CCTGGATAAA GCTGTTAAA TATTCAACAG TCCAGCCATC	300
TTACAAGCTA ATTAAGCTAA CTAAATGCTT CCTTGTTTG CCAGACTTGT TATGTCAATC	360
CTCAATTCT GGGTCATTT TGGGTGCCCT AAATCTTAGG GTGTGACTTT CTTAGCATCC	420
TGTAACATCC ATTCCCAAGC AAGCACAAC TCACTAATA CTTCCAGAA GTTCATTGCT	480
GAAGCCTTTC CTTCACCCAG CGGAGCAACT TGATTTCTA CAACTCCCT CATCAGAGCC	540
ACAAGAGTAT GGGATATGGA GACCACTACG TCGATACA	578

(2) INFORMATION FOR SEQ ID NO:224:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 345 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID ND:224:

TGTATCGACG TANTGGTCTC CCAAGGTGCT GGGATTGCAG GCATGAGCCA CCACTCCAG	60
GTTGGATCTTT TTCTTTATAC TTACTTCATT AGGTTCTGT TATTCAAGAA GTGTAGTGGT	120
AAAAGTCTTT TCAATCTACA TGGTTAAATA ATGATAGCCT GGGAAATAAA TAGAAATTT	180
TTCTTCATC TTTAGGTTGA ATAAAGAAC AGAAAAATAA GAACATACTG AAAATAATCT	240

AAGTTCCAAC CATAGAAGAA CTGCAGAAGA AATGAAGAAA GTGATGATGA TTTAGATTTT 300

GATATTGATT TAGAAGACAC AGGAGGAGAC CACTACGTG ATACA 345

(2) INFORMATION FOR SEQ ID NO:225:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 347 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:225:

TGTATCGACG TAGTGGTCTC CAAACTGAGG TATGTGTGCC ACTAGCACAC AAAGCCTTCC 60

AACAGGGACG CAGGCACAGG CAGTTAAAG GGAATCTGTT TCTAAATTAA TTCCACCTT 120

CTCTAAGTAT TCTTCCTAA AACTGATCAA GGTGTGAAGC CTGTGCTCTT TCCCAACTCC 180

CCTTGACAA CAGCCTTCAA CTAACACAAG AAAAGGCATG TCTGACACTC TTCTGAGTC 240

TGACTCTGAT ACGTTGTTCT GATGTCTAAA GAGCTCCAGA ACACCAAAGG GACAATTAG 300

AATGCTGGTG TATAACAGAC TCCAATGGAG ACCACTACGT CGATACA 347

(2) INFORMATION FOR SEQ ID NO:226:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 281 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:226:

AGGNGNGGA NTGTATCGAC GTAGTGGTCT CCCAACAGTC TGTCAATTAG TCTGCAGGTG	60
TCAGTGTTT GGACAATGAG GCACCATTGT CACTTATTGA CTCCCTCAGCT CTAAATGCTG	120
AAATTAATC TTGTATGAC AAGTCTGGAA TTCCTGATGA GGTTTACAA AGTATTTGG	180
ATCAAATCT CAACAAATCA GAAAGCCAGA AAGAGGATCC TTTCAATATT GCAGAACAC	240
GAGTGGATT ACACACCTCA GGAGACCACT ACGTCGATAC A	281

(2) INFORMATION FOR SEQ ID NO:227:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3646 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:227:

GGGAAACACT TCCTCCCAGC CTTGTAAGGG TTGGAGCCCT CTCCAGTATA TGCTGCAGAA	60
TTTTCTCTC GGTTTCTCAG AGGATTATGG AGTCCGCCTT AAAAAGGCA AGCTCTGGAC	120
ACTCTGAAA GTAGAATGGC CAAAGTTGG AGTTGAGTGG CCCCTGAAAG GGTCACTGAA	180
CCTCACAAATT GTTCAAGCTG TGTGGCGGGT TGTTACTGAA ACTCCCGGCC TCCCTGATCA	240
GTTCCTCTAC ATTGATCAAT GGCTGAGTTT GGTCAGGAGC ACCCCTTCCG TGGCTCCACT	300
CATGCACCAT TCATAATTTT ACCTCCAAGG TCCTCCTGAG CCAGACCGTG TTTTCGCCTC	360
GACCCTCAGC CGGTTGGCT CGCCCTGTAC TGCCTCTCTC TGAAGAAGAG GAGAGTCTCC	420
CTCACCCAGT CCCACCGCCT TAAAACCAGC CTACTCCCTT AGGGTCATCC CATGTCTCCT	480

CGGCTATGTC CCCTGTAGGC TCATCACCCA TTGCCTCTG GTTCAACCG TGGTGGGAGG	540
AAGTAGCCCC TCTACTACCA CTGAGAGAGG CACAAGTCCC TCTGGGTAT GAGTGCTCCA	600
CCCCCTTCCT GGTTATGTC CCTCTTTCT ACTTCTGACT TGTATAATTG GAAAACCCAT	660
AATCCTCCCT TCTCTGAAA GCCCAGGCT TTGACCTCAC TGATGGAGTC TGTACTCTGG	720
ACACATTGGC CCACCTGGGA TGACTGTCAA CAGCTCCTT TGACCCCTT CACCTCTGAA	780
GAGAGGGAAA GTATCAAAG AGAGGCCAAA AAGTACAACC TCACATCAAC CAATAGGCCG	840
GAGGAGGAAG CTAGAGGAAT AGTGATTAGA GACCCAATTG GGACCTAATT GGGACCCAAA	900
TTTCTCAAGT GGAGGGAGAA CTTTGACGA TTTCCACCGG TATCTCCTCG TGGTATTCA	960
GGGAGCTGCT CAGAACCTA TAAACTGTC TAAGGCGACT GAAGTCGTCC AGGGCATGA	1020
TGAGTCACCA GGAGTGTCTT TAGAGCACCT CCAGGAGGCT TATCAGATT ACACCCCTT	1080
TGACCTGGCA GCCCCCGAAA ATAGCCATGC TCTTAATTG GCATTGTGG CTCAGGCAGC	1140
CCCAGATAGT AAAAGGAAAC TCCAAAAACT AGAGGGATT TGCTGGAATG AATACCAGTC	1200
AGCTTTAGA GATAGCCTAA AAGGTTTTG ACAGTCAAGA GGTTGAAAAA CAAAAACAAG	1260
CAGCTCAGGC AGCTGAAAAA AGCCACTGAT AAAGCATCCT GGAGTATCAG AGTTTACTGT	1320
TAGATCAGCC TCATTGACT TCCCCTCCCA CATGGTGTCTT AAATCCAGCT ACACACTTC	1380
CTGACTCAA CTCCACTATT CCTGTTCATG ACTGTCAGGA ACTGTTGGAA ACTACTGAAA	1440
CTGGCCGACC TGATCTCAA AATGTGCCCG TAGGAAAGGT GGATGCCACC ATGTTCACAG	1500
ACAGTAGCAG CTTCCTCGAG AAGGGACTAC GAAAGGCCGG TGCAGCTGTT ACCATGGAGA	1560

CAGATGTGTT GTGGGCTCAG GCTTACCAAG CAAACACCTC AGCACAAAAG GCTGAATTGA 1620
TCGCCCTCAC TCAGGCTCTC CGATGGGTA AGGATATTAA CGTTAACACT GACAGCAGGT 1680
ACGCCTTGC TACTGTGCAT GTACGTGGAG CCATCTACCA GGAGCGTGGG CTACTCACCT 1740
CAGCAGGTGG CTGTAATCCA CTGAAAGGA CATCAAAGG AAAACACGGC TGTTGCCGT 1800
GGTACCCAGA AAGCTGATTC AGCAGCTCAA GATGCACTGT GACTTCAGT CACGCCCTA 1860
AACTTGCTGC CCACAGTCTC CTTCCACAG CCAGATCTGC CTGACAATCC CGCATACTCA 1920
ACAGAAGAAG AAAACTGGCC TCAGAACTCA GAGCCAATAA AAATCAGGAA GGTTGGTGG 1980
TTCTTCTGA CTCTAGAACAT TTCATACCCC GAACTCTGG GAAAACCTTA ATCAGTCACC 2040
TACAGTCTAC CACCCATTAA GGAGGAGCAA AGCTACCTCA GCTCCTCCGG AGCCGTTTA 2100
AGATCCCCCA TCTTCAAAGC CTAACAGATC AAGCAGCTCT CCGGTGCACA ACCTGCGCCC 2160
AGGTAAATGC CAAAAAAGGT CCTAAACCCA GCCCAGGCCA CCGTCTCCAA GAAAACTCAC 2220
CAGGAGAAAA GTGGGAAATT GACTTACAG AAGTAAAACC ACACCGGGCT GGGTACAAAT 2280
ACCTTCTAGT ACTGGTAGAC ACCTTCTCTG GATGGACTGA AGCATTGCT ACCAAAACG 2340
AAACTGTCAA TATGGTAGTT AAGTTTTAC TCAATGAAAT CATCCCTGA CATGGCTGC 2400
CTGTTGCCA TAGGGTCTGA TAATGGACCG GCCTTCGCCT TGTCTATAGT TTAGTCAGTC 2460
AGTAAGGCGT TAAACATTCA ATGGAAGCTC CATTGTGCCT ATCGACCCCA GAGCTCTGGG 2520
CAAGTAGAAC GCATGAACTG CACCTAAAA AACACTCTTA CAAAATTAAT CTTAGAAACC 2580
GGTGTAATT GTGTAAGTCT CCTTCCTTA GCCCTACTTA GAGTAAGGTG CACCCCTTAC 2640

TGGGCTGGGT TCTTACCTTT TGAAATCATG TATGGGAGGG TGCTGCCTAT CTTGCCTAAG 2700
CTAAGAGATG CCCAATTGGC AAAAATATCA CAAACTAATT TATTACAGTA CCTACAGTCT 2760
CCCCAACAGG TACAAGATAT CATCCTGCCA CTTGTCGAG GAACCCATCC CAATCCAATT 2820
CCTGAACAGA CAGGGCCCTG CCATTCAATT CCGCCAGGTG ACCTGTTGTT TGTAAAAAG 2880
TTCCAGAGAG AAGGACTCCC TCCTGCTTGG AAGAGACCTC ACACCGTCAT CACGATGCCA 2940
ACGGCTCTGA AGGTGGATGG CATTCCCTGCG TGGATTCATC ACTCCCGAT CAAAAAGGCC 3000
AACAGAGCCC AACTAGAAC ATGGGTCCCC AGGGCTGGGT CAGGCCCTT AAAACTGCAC 3060
CTAAGTTGGG TGAAGCCATT AGATTAATTTC TTTTCTTAA TTTTGAAAAA CAATGCATAG 3120
CTTCTGTCAA ACTTATGTAT CTTAAGACTC AATATAACCC CCTTGTATA ACTGAGGAAT 3180
CAATGATTG ATTCCCCAA AACACAAAGT GGGGAATGTA GTGTCCAACC TGGTTTTAC 3240
TAACCTGTT TTTAGACTCT CCCTTCCCTT TAATCACTCA GCTTGTTCAC ACCTGAATTG 3300
ACTCTCCCTT AGCTAAGAGC GCCAGATGGA CTCCATCTG GCTCTTCAC TGGCAGCCGC 3360
TTCCTCAAGG ACTTAACCTG TGCAAGCTGA CTCCCAGCAC ATCCAAGAAT GCAATTAAC 3420
GATAAGATAC TGTGGCAAGC TATATCCGCA GTTCCCAGGA ATTGTCCAA TTGATCACAG 3480
CCCCCTCTACC CTTCAAGAAC CACCAACCTG ATCAGTCAGC AGCCATCAGC ACCGAGGCAA 3540
GGCCCTCCAC CAGCAAAAG ATTCTGACTC ACTGAAGACT TGGATGATCA TTAGTATTT 3600
TAGCAGTAAA GTTTTTTTT CTTTTCTTT CTTTTTTCT CGTGCC 3646

Claims

1. An isolated DNA molecule, comprising:

(a) a nucleotide sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 - SEQ ID NO:77 and SEQ ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227;

(b) a variant of said nucleotide sequence that contains one or more nucleotide substitutions, deletions, insertions and/or modifications at no more than 20% of the nucleotide positions, such that the antigenic and/or immunogenic properties of the polypeptide encoded by the nucleotide sequence are retained; or

(c) a nucleotide sequence encoding an epitope of a polypeptide encoded by at least one sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 - SEQ ID NO:77 and SEQ ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227.

2. An isolated DNA molecule encoding an epitope of a polypeptide, wherein said polypeptide is encoded by a nucleotide sequence that:

(a) hybridizes to a sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 - SEQ ID NO:77 and SEQ ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227 under stringent conditions; and

(b) is at least 80% identical to a sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 - SEQ ID NO:77 and SEQ ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227;

and wherein RNA corresponding to said nucleotide sequence is expressed at a greater level in human breast tumor tissue than in normal breast tissue.

3. An isolated DNA molecule encoding an epitope of a polypeptide, wherein said polypeptide is encoded by:

(a) a nucleotide sequence transcribed from the sequence of SEQ ID NO: 141; or

(b) a variant of said nucleotide sequence that contains one or more nucleotide substitutions, deletions, insertions and/or modifications at no more than 20% of the nucleotide positions, such that the antigenic and/or immunogenic properties of the polypeptide encoded by the nucleotide sequence are retained.

4. An isolated DNA or RNA molecule comprising a nucleotide sequence complementary to a DNA molecule according to any one of claims 1-3.

5. A recombinant expression vector comprising a DNA molecule according to any one of claims 1-3.

6. A host cell transformed or transfected with an expression vector according to claim 5.

7. A polypeptide comprising an amino acid sequence encoded by a DNA molecule according to any one of claims 1-3.

8. A polypeptide according to claim 7 wherein said polypeptide comprises an epitope of an amino acid sequence encoded by at least one nucleotide sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 - SEQ ID NO:77 and SEQ ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227.

9. A monoclonal antibody that binds to a polypeptide according to claim 7.

10. A method for determining the presence of breast cancer in a patient comprising detecting, within a biological sample, at least one polypeptide according to claim 7, and therefrom determining the presence of breast cancer in the patient.

11. A method for determining the presence of breast cancer in a patient comprising detecting within a biological sample, at least one polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and sequences that hybridize thereto under stringent conditions.

12. The method of claims 10 or 11 wherein the biological sample is a portion of a breast tumor.

13. The method of claim 10 wherein the step of detecting comprises contacting the biological sample with a monoclonal antibody according to claim 9.

14. The method of claim 11 wherein the step of detecting comprises contacting the biological sample with a monoclonal antibody that binds to a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and sequences that hybridize thereto under stringent conditions.

15. A method for determining the presence of breast cancer in a patient comprising detecting, within a biological sample, an RNA molecule encoding at least one polypeptide according to claim 7, and therefrom determining the presence of breast cancer in the patient.

16. A method for determining the presence of breast cancer in a patient comprising detecting, within a biological sample, at least one RNA molecule encoding a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID

NO: 78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and sequences that hybridize thereto under stringent conditions; and therefrom determining the presence of breast cancer in the patient.

17. The method of claims 15 or 16 wherein the biological sample is a portion of a breast tumor.

18. The method of claim 15 wherein the step of detecting comprises:

(a) preparing cDNA from RNA molecules within the biological sample; and

(b) specifically amplifying cDNA molecules that are capable of encoding at least a portion of a polypeptide according to claim 7, and therefrom determining the presence of breast cancer in the patient.

19. The method of claim 16 wherein the step of detecting comprises:

(a) preparing cDNA from RNA molecules within the biological sample; and

(b) specifically amplifying cDNA molecules that are capable of encoding at least a portion of a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and sequences that hybridize thereto under stringent conditions; and therefrom determining the presence of breast cancer in the patient.

20. A polypeptide according to claim 7 for use within a method for detecting the presence of breast cancer in a patient.

21. A polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and sequences that hybridize thereto under stringent conditions, for use within a method for detecting the presence of breast cancer in a patient.

22. A method for monitoring the progression of breast cancer in a patient, comprising:

- (a) detecting an amount, in a biological sample, of at least one polypeptide according to claim 7 at a first point in time;
- (b) repeating step (a) at a subsequent point in time; and
- (c) comparing the amounts of polypeptide detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient.

23. A method for monitoring the progression of breast cancer in a patient, comprising:

- (a) detecting in a biological sample an amount of at least one polypeptide at a first point in time, the polypeptide being encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and sequences that hybridize thereto under stringent conditions;
- (b) repeating step (a) at a subsequent point in time; and
- (c) comparing the amounts of polypeptide detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient.

24. The method of claims 22 or 23 wherein the biological sample is a portion of a breast tumor.

25. The method of claim 22 wherein the step of detecting comprises contacting a portion of the biological sample with a monoclonal antibody according to claim 9.

26. The method of claim 23 wherein the step of detecting comprises contacting the biological sample with a monoclonal antibody that binds to a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86

and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and sequences that hybridize thereto under stringent conditions.

27. The method of either of claims 20 or 22 wherein said polypeptide comprises an epitope of an amino acid sequence encoded by at least one nucleotide sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 - SEQ ID NO:77 and SEQ ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227.

28. A method for monitoring the progression of breast cancer in a patient, comprising:

- (a) detecting an amount, within a biological sample, of at least one RNA molecule encoding a polypeptide according to claim 7 at a first point in time;
- (b) repeating step (a) at a subsequent point in time; and
- (c) comparing the amounts of RNA molecules detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient.

29. The method of claim 28 wherein the step of detecting comprises:

- (a) preparing cDNA from RNA molecules within the biological sample; and
- (b) specifically amplifying cDNA molecules that are capable of encoding at least a portion of a polypeptide according to claim 7.

30. A method for monitoring the progression of breast cancer in a patient, comprising:

- (a) detecting an amount, within a biological sample, of at least one RNA molecule at a first point in time, the RNA molecule encoding a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and sequences that hybridize thereto under stringent conditions;

- (b) repeating step (a) at a subsequent point in time; and
- (c) comparing the amounts of RNA molecules detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient.

31. A pharmaceutical composition, comprising a polypeptide according to claim 7 and a physiologically acceptable carrier.

32. A pharmaceutical composition for inhibiting the development of breast cancer, comprising a polypeptide and a physiologically acceptable carrier, the polypeptide being encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and sequences that hybridize thereto under stringent conditions.

33. A vaccine, comprising a polypeptide according to claim 7 and an immune response enhancer.

34. A vaccine, comprising a DNA molecule according to any one of claims 1-3.

35. A vaccine, comprising a recombinant expression vector comprising a DNA molecule according to any one of claims 1-3.

36. A vaccine for inhibiting the development of breast cancer, comprising a polypeptide and an immune response enhancer, the polypeptide being encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and sequences that hybridize thereto under stringent conditions.

37. A diagnostic kit comprising:

- (a) one or more monoclonal antibodies according to claim 9; and

(b) a detection reagent.

38. A diagnostic kit comprising:

(a) one or more monoclonal antibodies that bind to a polypeptide encoded by a nucleotide sequence selected from the group consisting of sequences provided in SEQ ID 78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220; and

(b) a detection reagent.

39. The kit of any one of claims 37 or 38 wherein the monoclonal antibody(s) are immobilized on a solid support.

40. A diagnostic kit comprising a first polymerase chain reaction primer and a second polymerase chain reaction primer, the first and second primers each comprising at least about 10 contiguous nucleotides of an RNA molecule according to claim 4.

41. A diagnostic kit comprising a first polymerase chain reaction primer and a second polymerase chain reaction primer, the first and second primers each comprising at least about 10 contiguous nucleotides of an RNA molecule encoding a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220.

42. A diagnostic kit comprising at least one oligonucleotide probe, the oligonucleotide probe containing at least about 15 contiguous nucleotides of a DNA molecule according to claim 4.

43. A diagnostic kit comprising at least one oligonucleotide probe, the oligonucleotide probe comprising at least about 15 contiguous nucleotides of a DNA sequence selected from the group consisting of SEQ ID NOS:78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220.

FIG. 1

Breast Tumor mRNA
Normal Mammary Tissue mRNA

FIG. 2

HERV-18-pg MESSAGE LEVELS

FIG. 3

FIG. 4

FIGS. 5A & 5B

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B18Ag1

TTA GAG ACC CAA TTG GGA CCT AAT TGG GAC CCA AAT TTC TCA AGT GGA	48
Leu Glu Thr Gln Leu Gly Pro Asn Trp Asp Pro Asn Phe Ser Ser Gly	
1 5 10 15	
GGG AGA ACT TTT GAC GAT TTC CAC CGG TAT CTC CTC GTG GGT ATT CAG	96
Gly Arg Thr Phe Asp Asp Phe His Arg Tyr Leu Leu Val Gly Ile Gln	
20 25 30	
GGA GCT GCC CAG AAA CCT ATA AAC TTG TCT AAG GCG ATT GAA GTC GTC	144
Gly Ala Ala Gln Lys Pro Ile Asn Leu Ser Lys Ala Ile Glu Val Val	
35 40 45	
CAG GGG CAT GAT GAG TCA CCA GGA GTG TTT TTA GAG CAC CTC CAG GAG	192
Gln Gly His Asp Glu Ser Pro Gly Val Phe Leu Glu His Leu Gln Glu	
50 55 60	
GCT TAT CGG ATT TAC ACC CCT TTT GAC CTG GCA GCC CCC GAA AAT AGC	240
Ala Tyr Arg Ile Tyr Thr Pro Phe Asp Leu Ala Ala Pro Glu Asn Ser	
65 70 75 80	
CAT GCT CTT AAT TTG GCA TTT GTG GCT CAG GCA GCC CCA GAT AGT AAA	288
His Ala Leu Asn Leu Ala Phe Val Ala Gln Ala Ala Pro Asp Ser Lys	
85 90 95	
AGG AAA CTC CAA AAA CTA GAG GGA TTT TGC TGG AAT GAA TAC CAG TCA	336
Arg Lys Leu Gln Lys Leu Glu Gly Phe Cys Trp Asn Glu Tyr Gln Ser	
100 105 110	
GCT TTT AGA GAT AGC CTA AAA GGT TTT	363
Ala Phe Arg Asp Ser Leu Lys Gly Phe	
115 120	

FIG. 6

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B17Ag1

GGGCACAGTG GCTCATACCT GTAATCCTGA CCGTTTCAGA GGCTCAGGTG GGGGGATCGC	60
TTGAGGCCAA GATTTCAAGA CTAGTCTGGG TAACATAGTG AGACCCTATC TCTACGAAAA	120
AATAAAAAAA TGAGCCTGGT GTAGTGGCAC ACACCAGCTG AGGAGGGAGA ATCG	174

FIG. 7

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B17Ag2

TGGGGGCTCT GACTAGAAAT TCAAGGAACC TGGGATTCAA GTCCAACGT GACACCACT	60
TACACTGTGG NCTCCAATAA ACTGCTTCTT TCCTATTCCC TCTCTATTAA ATAAAATAAG	120
GAAAACGATG TCTGTGTATA GCCAAGTCAG NTATCCTAAA AGGAGATACT AAGTGACATT	180
AAATATCAGA ATGTAAAACC TGGGAACCAAG GTTCCCAGCC TGGGATTAAA CTGACAGCAA	240
GAAGACTGAA CAGTACTACT GTGAAAAGCC CGAAGNGGCA ATATGTTCAC TCTACCGTTG	300
AAGGATGGCT GGGAGAATGA ATGCTCTGTC CCCCAGTCCC AAGCTCACTT ACTATAACCTC	360
CTTTAT	366

FIG. 8

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B13Ag2a

TATAATCATG TTTCTCATT A TTTCACATT TTATTACCAA TTTCTGTAA CCCTGAAAAA	60
TATGAGGGAA ATATATGAAA CAGGGAGGCA ATGTTAGAT AATTGATCAC AAGATATGAT	120
TTCTACATCA GATGCTGTT CCTTCCCTGT TTATTCCTT TTTATTCGG TTGTGGGTT	180
GAATGTAATA GCTTTGTTTC AAGAGAGAGT TTTGGCAGTT TCTGTAGCTT CTGACACTGC	240
TCATGTCTCC AGGCATCTAT TTGCACTTA GGAGGTGTG TGAGGAGACTG AGAGGTCTAT	300
TTTTTCCATA TTTG	314

FIG. 9

**NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B13Ag1b**

ATACAGTCGG TTTCCATTAA TTTAACCCCC ACCTGAACGG CATAAACTGA GTGTCAGCT	60
GGTGTTTTT ACTGTAAACA ATAAGGAGAC TTTGCTCTTC ATTTAAACCA AAATCATATT	120
TCATATTTTA CGCTCGAGGG TTTTACCGG TTCCCTTTTA CACTCCTTAA AACAGTTTT	180
AACTCGTTG GAACAAGATA TTTTTCTTT CCTGGCAGCT TTTAACATTA TAGCAAATT	240
GTGTCTGGGG GACTGCTGGT CACTGTTCT CACAGTTGCA AATCAAGGCA TTTGCAACCA	300
AGAAAAAAA ATTTTTTGT TTTATTGAA ACTGGACCGG ATAAACGGTG TTTGGAGCGG	360
CTGCTGTATA TAGTTTAAA TGGTTTATTG CACCTCCTTA AGTTGCACCTT ATGT	414

FIG. 10

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B13Ag1a

TATATATTAA ATAACCTAAA TATATTTGA TCACCCACTG GGGTGATAAG ACAATAGATA	60
TAAAAGTATT TCCAAAAAGC ATAAAACCAA AGTATCATAC CAAACCAAAT TCATACTGCT	120
TCCCCCACCC GCACTGAAAC TTCACCTTCT AACTGTCTAC CTAACCAAAT TCTACCCTTC	180
AAGTCTTGG TCGGTGCTCA CTACTCTTTT TTTTTTTTTT TTTNTTTGG AGATGGAGTC	240
TGGCTGTGCA GCCCAGGGGT GGAGTACAAT GGCACAACCT CAGCTCACTG NAACCTCCGC	300
CTCCCAGGTT CATGAGATT TCCTGNTTCA GCCTTCCCAG TAGCTGGGAC TACAGGTGTG	360
CATCACCATG CCTGGNTAAT CTTTTTNGT TTTNGGGTAG AGATGGGGGT TTTACATGTT	420
GGCCAGGNTG GTNTCGAACT CCTGACCTCA AGTGATCCAC CCACCTCAGG CTCCCAAAGT	480
GCTAGGATTA CAGACATGAG CC	502

FIG. 11

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B11Ag1

ACATGCAGAA TATTCTATCG GTACTTCAGC TATTACTCAT TTTGATGGCG CAATCCGAGC	60
CTATCCTCAA GATGAGTATT TAGAAAGAAC TGATTTAGCG ATAGACCAAG CTGGTAAGCA	120
CTCTGACTAC ACGAAATTGT TCAGATGTGA TGGATTTATG ACAGTTGATC TTTGGAAGAG	180
ATTATTAAGT GATTATTTTA AAGGGAATCC ATTAATTCCA GAATATCTTG GTTAGCTCA	240
AGATGATATA GAAATAGAAC AGAAAGAGAC TACAAATGAA GATGTATCAC CAACTGATAT	300
TGAAGAGCCT ATAGTAGAAA ATGAATTAGC TGCATTTATT AGCCTTACAC ATAGCGATTT	360
T CCTGATGAA TCTTATATTG AGCCATCGAC ATAGCATTAC CTGATGGGCA ACCCTTACGA	420
ATAATAGAAA CTGGGTGCGG GGCTATTGAT GAATTCAATCC NCAGTAAATT TGGATATNAC	480
AAAATATAAC TCGATTGCAT	500

FIG. 12

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B3CA3c

ACTGATGGAT GTCGCCGGAG GCGAGGGGCC TTATCTGATG CTCGGCTGCC TGTTCGTGAT	60
GTGCGCGGCG ATTGGGCTGT TTATCTAAA CACCGCCACG GCGGTGCTGA TGGCGCCTAT	120
TGCCTTAGCG GCGGCGAAGT CAATGGGCGT CTCACCCAT CCTTTGCCA TGGTGGTGGC	180
GATGGCGGCT TCGGCGGCGT TTATGACCCC GGTCTCCTCG CCGGTTAACCA CCCTGGTGCT	240
TGGCCCTGGC AAGTACTCAT TTAGCGATT TGTAAAATA GGCGTG	286

FIG. 13

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B9CG1

CAGCCCCCTTC TTCTCAATTT CATCTGTAC TACCCTGGTG TAGTATCTCA TAGCCTTACA	60
TTTTTATAGC CTCCCTCCCTG GTCTGTCTTT TGATTTTCCT GCCTGTAATC CATATCACAC	120
ATAACTGCAA GTAAACATTT CTAAAGTGTG GTTATGCTCA TGTCACTCCT GTGCCAAGAA	180
ATAGTTCCA TTACCGTCTT AATAAAATTG GGATTTGTTG TTTCTATTN TCACTCTTCA	240
C	241

FIG. 14

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B9CG3

CAAAGCCAGT GGTTTGAGCT CTCTACTGTG TAAACTCCTA AACCAAGGCC ATTTATGATA	60
AATGGTGGCA GGATTTTAT TATAAACATG TACCCATGCA AATTCCTAT AACTCTGAGA	120
TATATTCTTC TACATTTAAA CAATAAAAAT AATCTATTT TAAAAGCCTA ATTTGCGTAG	180
TTAGGTAAGA GTGTTTAATG AGAGGGTATA AGGTATAAAT CACCAAGTCAA CGTTTCTCTG	240
C	241

FIG. 15

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B2CA2

CGACGTCGGT AAAATCGGAC ATGAAGCCAC CGCTGGTCTT TTCTGTCCGAG CGATAGGCGC	60
CGGCCAGCCA GCGGAACGGT TGCCCCGGATG GCGAAGCGAG CCGGAGTTCT TCGGACTGAG	120
TATGAATCTT GTTGTGAAAA TACTCGCCGC CTTCGTTCGA CGACGTCGCG TCGAAATCTT	180
CGAAACTCCTT ACGATCGAAG TCTTCGTGGG CGACGATCGC GGTCAGTTCC GCCCCACCGA	240
AATCATGGTT GAGCCGGATG CTGCCCCCGA AGCCCT	276

FIG. 16

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B3CA1

CCCAGGTCAA CCAGGCTGCA ACACGCAGGT CCTTGGATTG GGCACGAAGC AGCGCTTCGC	60
TGTTTCCAG GATTTCAAC CAGTCGGTCT GGCGTTCTC ATGGAGCGAG AGCGCCTTGC	120
CCAGCTCATT TTCCAGCGCC TCGTATTGCG TGAAAAAACG CACATCCTCA CCCGCAAAGA	180
CATCCTTGA AATCGGCTGT TCCGCGAGTT CCAGATANTG CGAGGAGAGC TTGCTCGAAT	240
AGGTCATCCT AACCCCTCAA TGACACCAT GTGCCAAT GAATATCTTA ACAATTCAAC	300
TAGTTGGCAT AANAACCGAA CGAAAATCCC AATAGTCTGA AGAGCTCTTT TG	352

FIG. 17

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B3CA2

CTGCATGTCC ACGGCCTGGA TTTACGGGTG GTCGGCGTTC ACCCCTGGCA GCTGGCGCTC	60
TTCCCGACCA GGCCCAGCAG GATGTGTGGG GCAAGGATAA CGGCGTGCAG ATCGCCTCGA	120
CCTATATGCC TACTGGCAAG GCCGAGCCCG TGGAAGGCGG ATTCAAGGTT ANCAGGTGCT	180
GGAGCTTTTC CACCGGCTCC ATGCATTGTG ACTGGCTGTT TCTAGGCGGT CTGTTGCCA	240
AGCGTGATGG TACGTCTGGC CTGGAGCATG TGACTTCTG	280

FIG. 18

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B3CA3

AGCAAGGAGA AGGCCAAGGA GAGGCTCAAG CTGGTCCTGG CCTACGACTG GGCCAAGCTG	60
TGGCCGGGGA TGGTGGAGAA CCTGAAGCGG GACCTCCTCG AGGTCCCTCCG CCGCTACTTC	120
TCCGTCCAGG AGGAGGGTCT TTCCGTGGTC TTGGAGGAGC GGGGGGAGAA GATNCTCCTC	180
ATGGTCNACA TCCCCCTCAN GTGATGGTCC TGANGNGNCC CNTCCTCCTT GNCTACGATT	240
TCGGNCTGGT GGCCCTNTTT CT	262

FIG. 19

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B4CA1

AGGAGCGGGT AGAGTGGCAC CATTGAGGGG ATATTCAAAA ATATTATTTT GTCCTAAATG	60
ATAGTTGCTG AGTTTTCTT TGACCCATGA GTTATATTGG AGTTTATTTT TTAACCTTCC	120
AATCGCATGG ACATGTTAGA CTTATTTCT GTTAATGATT NCTATTTTA TTAAATTGGA	180
TTTGAGAAAT TGGTTNTTAT TATATCAATT TTTGGTATT GTTGAGTTG ACATTATAGC	240
TTAGTATGT	249

FIG. 20

A.**B.****FIGS. 21A - B**