

Inspire...Educate...Transform.

Structured Data Processing

R Commands Practised

- Read and Write Data
- Difference between Vector, Matrix and Data Frame
- Sub-setting data
- Merge two data files
- In-built function
 - seq, length, print, sample, mean, sd, is.na, na.rm, str, matrix, colnames, data.frame, which.max, ifelse
- For Loop, Apply
- User defined functions
- Visualizations
 - hist, plot, boxplot
- DPLYR
 - select, filter, arrange, mutate, summarize, group_by

High-level Steps in a Project

- Understanding the problem
- Data Preparation
 - Data Exploration
 - Data Pre-processing
- Model Implementation
- Results Interpretation
- Delivering/Deploying the solution

Currently Focusing

- Data Preparation
 - Data Exploration
 - Data Pre-processing

Why pre-process

 Poor model on good data is likely to be better than great model on poor data

Raw data

- Normally it is available in multiple tables
 - –Merge them
 - -Fill missing values

More on attributes

- Type
 - -Numeric, Categorical and Ordinal

- Actionable
 - -Focus, changeable

Process

- Take a subset from a table if needed
- Typeset the attributes correctly
- Do descriptive statistics and understand the data

Missing values

- Ignore
- Fill with a central statistic
- Take an average of only the nearest neighbors
 - -Mean for numeric
 - Mode for categorical

Data standardization

 Let us say, we are measuring distance between records for some purpose

Employee	Age	Income
1	24	50000
2	25	55000
3	60	51000

This dominates completely

$newValue = rac{Value - mean}{standard\ deviation}$

Bring to same range

$$Value_{new} = \frac{Value - minValue}{maxValue - minValue}$$
 Range is 0 to 1

Min max for 25:
$$\frac{25-24}{60-24}$$

Min-Max is extremely sensitive to the outliers.

Min-max of: (1, 2, 1001) is (0, 0.001,
1)

Numeric to categorical

- Manual
- Equal frequency
 - Number of samples in each bin
- Equal width
 - Interval is same (good for uniform distributions)

Ordered and categorical

- Merging multiple bins
 - Verify the frequencies
 - Convert them to numeric and recode

Ordered to numeric

- If all divisions are important
 - Identify a range
 - -Split it uniformly
 - -1, 2,3,4 gets changed to 0, 0.25, 0.5, 1

Categorical to numeric

- How do we set up categorical variables in distance metrics
 - Create as many dummy variables as there are options
 - -Code as 100, 010,...

