实验十四 直流电桥测量电阻 实验报告

钱思天 1600011388 No.8 2017年12月12日

1 实验数据与处理

1.1 平衡电桥测量结果

表 1: 不同 R_x 不同 R_1/R_2 (均 E=4.0V & $R_h=0\Omega$) 测量结果

		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					
测量值 各待测项 $R_x \& \frac{R_1}{R_2}$		$R_0(\Omega)$	$R_0'(\Omega)$	$\Delta n(R)$	$R_x(\Omega)$	$\Delta R_0(\Omega)$	S
R_{x1}	500/500	47.9	47.8	4.0	47.9	0.1	1.9×10^3
R_{x2}	50/500	3600	3575	4.0	360.0	25	5.8×10^{2}
	500/500	360.0	361.0	4.0	360.0	1.0	1.4×10^3
	500/500(交换)	360.0	361.0	4.0	360.0	1.0	1.4×10^3
R_{x3}	500/500	4059	4005	4.0	4059.0	54	3.0×10^2

表 2: R_{x2} 不同测量条件测量结果

测量值 各待测项						
	$R_0(\Omega)$	$R_0'(\Omega)$	$\Delta n(R)$	$R_x(\Omega)$	$\Delta R_0(\Omega)$	S
各测量条件						
$E = 4.0V \& R_h = 0\Omega \&$	360.0	361.0	4.0	360.0	1.0	1.4×10^{3}
$R_1/R_2 = 500/500$	300.0	301.0	4.0	300.0	1.0	1.4 × 10
$E = 2.0V \& R_h = 0\Omega \&$	360.0	362.0	4.0	360.0	2.0	7.2×10^{2}
$R_1/R_2 = 500/500$	000.0	002.0	1.0	000.0	2.0	1.2 / 10
$E = 4.0V \& R_h = 0\Omega \&$	3600	3650	4.0	360.0	50.0	2.9×10^{2}
$R_1/R_2 = 500/5000$	3000	3000	4.0	300.0	30.0	2.5 × 10
$E = 4.0V \& R_h = 3.0k\Omega \&$	360	340	5.5	360.0	10.0	2.0×10^{2}
$R_1/R_2 = 500/500$	500	940	5.5	300.0	10.0	2.0 \ 10

关于灵敏度 S 的计算,利用公式

$$S = \frac{\Delta n}{\Delta R_x/R_x} = \frac{\Delta n}{\Delta R_0/R_0}$$

可计算出各 S 的实测值,已附于数据表内。

至于 S 的理论值,根据公式

$$S = \frac{S_G E}{R_1 + R_2 + R_3 + R_4 + (R_g + R_h)(2 + \frac{R_1}{R_x} + \frac{R_0}{R_2})}$$

将 $S_G^{-1}=1.3 imes 10^{-6} (A/格)$ 及 $R_g=47\Omega$ 代入,得下表:

表 3: 不同 R_x 不同 R_1/R_2 (均 E=4.0V & $R_h=0\Omega$)S 理论值计算结果

R_x	R_{x1}		R_{x3}		
R_1/R_2	500/500	50/500	500/500	500/500(交换)	500/500
S	1.8×10^{3}	6.2×10^{2}	1.6×10^3	1.6×10^3	3.2×10^{2}

下计算交换桥臂法测得的 R_{x2} 及其不确定度 σ_{x2} : 利用公式

$$R = \sqrt{R_{01} \cdot R_{02}}$$

$$\sigma = \sqrt{\left(\frac{\partial R}{\partial R_{01}}\right)^2 \sigma_{R_{01}}^2 + \left(\frac{\partial R}{\partial R_{02}}\right)^2 \sigma_{R_{02}}^2 + (\delta R)^2}$$

$$\left(\frac{\partial R}{\partial R_{01}}\right)^2 \sigma_{R_{01}}^2 = \frac{R_{02}}{4R_{01}} \cdot \left(\frac{0.1\% \times R_{01}}{\sqrt{3}}\right)^2 = 0.011$$

$$\left(\frac{\partial R}{\partial R_{02}}\right)^2 \sigma_{R_{02}}^2 = \frac{R_{01}}{4R_{02}} \cdot \left(\frac{0.1\% \times R_{02}}{\sqrt{3}}\right)^2 = 0.011$$

$$\left(\delta R_x\right)^2 = \left(\frac{0.2R_x}{S}\right)^2 = 0.0026$$

得

$$R_{x2} = \sqrt{R_{01} \cdot R_{02}} = 360.0(\Omega)$$

$$\sigma_{x2} = \sqrt{(\frac{\partial R}{\partial R_{01}})^2 \sigma_{R_{01}}^2 + (\frac{\partial R}{\partial R_{02}})^2 \sigma_{R_{02}}^2 + (\delta R)^2} = 0.2(\Omega)$$

$$R_{x2} \pm \sigma_{x2} = (360.0 \pm 0.2)\Omega$$

1.2 其余电阻测量不确定度

其余电阻均未采用交换桥臂法。因此,其不确定度公式如下:

$$\sigma = \sqrt{(\delta R)^2 + (\frac{\partial R}{\partial R_1})^2 \sigma_{R_1}^2 + (\frac{\partial R}{\partial R_2})^2 \sigma_{R_2}^2 + (\frac{\partial R}{\partial R_0})^2 \sigma_{R_0}^2}$$

又:

$$\begin{split} (\delta R)^2 &= (\frac{0.2R}{S})^2 \\ &(\frac{\partial R}{\partial R_1})^2 \sigma_{R_1}^2 = (\frac{R_0}{R_2})^2 \frac{(0.1\%R_1)^2}{3} \\ &(\frac{\partial R}{\partial R_0})^2 \sigma_{R_0}^2 = (\frac{R_1}{R_2})^2 \frac{(0.1\%R_0)^2}{3} \\ &(\frac{\partial R}{\partial R_2})^2 \sigma_{R_2}^2 = (\frac{R_1R_0}{R_2^2})^2 \frac{(0.1\%R_2)^2}{3} \end{split}$$