You are currently looking at **version 1.3** of this notebook. To download notebooks and datafiles, as well as get help on Jupyter notebooks in the Coursera platform, visit the <u>Jupyter Notebook FAQ</u> (https://www.coursera.org/learn/python-machine-learning/resources/bANLa) course resource.

Assignment 1 - Introduction to Machine Learning

For this assignment, you will be using the Breast Cancer Wisconsin (Diagnostic) Database to create a classifier that can help diagnose patients. First, read through the description of the dataset (below).

In [15]:

```
import numpy as np
import pandas as pd
from sklearn.datasets import load_breast_cancer

cancer = load_breast_cancer()

print(cancer.DESCR) # Print the data set description
```

Breast Cancer Wisconsin (Diagnostic) Database

Notes

Data Set Characteristics:

:Number of Instances: 569

:Number of Attributes: 30 numeric, predictive attributes and the class

:Attribute Information:

- radius (mean of distances from center to points on the per imeter)
 - texture (standard deviation of gray-scale values)
 - perimeter
 - area
 - smoothness (local variation in radius lengths)
 - compactness (perimeter^2 / area 1.0)
 - concavity (severity of concave portions of the contour)
 - concave points (number of concave portions of the contour)
 - symmetry
 - fractal dimension ("coastline approximation" 1)

The mean, standard error, and "worst" or largest (mean of the three

largest values) of these features were computed for each image,

resulting in 30 features. For instance, field 3 is Mean Rad ius, field $\!\!\!$

13 is Radius SE, field 23 is Worst Radius.

- class:
 - WDBC-Malignant
 - WDBC-Benign

:Summary Statistics:

	=====	=====
	Min	Max
=======================================	=====	=====
radius (mean):	6.981	28.11
texture (mean):	9.71	39.28
perimeter (mean):	43.79	188.5
area (mean):	143.5	2501.0
<pre>smoothness (mean):</pre>	0.053	0.163
compactness (mean):	0.019	0.345
concavity (mean):	0.0	0.427
concave points (mean):	0.0	0.201
<pre>symmetry (mean):</pre>	0.106	0.304
fractal dimension (mean):	0.05	0.097
radius (standard error):	0.112	2.873
texture (standard error):	0.36	4.885
perimeter (standard error):	0.757	21.98
area (standard error):	6.802	542.2
<pre>smoothness (standard error):</pre>	0.002	0.031
compactness (standard error):	0.002	0.135
<pre>concavity (standard error):</pre>	0.0	0.396
<pre>concave points (standard error):</pre>	0.0	0.053
symmetry (standard error):	0.008	0.079
<pre>fractal dimension (standard error):</pre>	0.001	0.03

```
36.04
                               7.93
radius (worst):
                               12.02 49.54
texture (worst):
perimeter (worst):
                               50.41 251.2
                               185.2 4254.0
area (worst):
smoothness (worst):
                               0.071 0.223
compactness (worst):
                               0.027 1.058
concavity (worst):
                               0.0
                                     1.252
concave points (worst):
                               0.0
                                     0.291
symmetry (worst):
                               0.156 0.664
fractal dimension (worst):
                               0.055 0.208
```

:Missing Attribute Values: None

:Class Distribution: 212 - Malignant, 357 - Benign

:Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Manga sarian

:Donor: Nick Street

:Date: November, 1995

This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datase ts.

https://goo.gl/U2Uwz2

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image.

Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992], a classification method which uses linear programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes.

The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in:
[K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34].

This database is also available through the UW CS ftp server:

ftp ftp.cs.wisc.edu
cd math-prog/cpo-dataset/machine-learn/WDBC/

References

San Jose, CA, 1993.

⁻ W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction

for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on

Electronic Imaging: Science and Technology, volume 1905, pages 861-870,

⁻ O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer d

```
iagnosis and
    prognosis via linear programming. Operations Research, 43(4), p
ages 570-577,
    July-August 1995.
    - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learni
ng techniques
    to diagnose breast cancer from fine-needle aspirates. Cancer Le
tters 77 (1994)
    163-171.
```

The object returned by load_breast_cancer() is a scikit-learn Bunch object, which is similar to a dictionary.

```
In [16]:
```

```
cancer['data']
Out[16]:
array([[ 1.79900000e+01,
                          1.03800000e+01,
                                            1.22800000e+02, ...,
         2.65400000e-01,
                          4.60100000e-01,
                                            1.18900000e-01],
                          1.77700000e+01,
      [ 2.05700000e+01,
                                            1.32900000e+02, ...,
         1.86000000e-01, 2.75000000e-01,
                                            8.90200000e-02],
                                           1.30000000e+02, ...,
      [ 1.96900000e+01, 2.12500000e+01,
                        3.61300000e-01,
         2.43000000e-01,
                                            8.75800000e-021,
      [ 1.66000000e+01,
                          2.80800000e+01,
                                            1.08300000e+02, ...,
         1.41800000e-01, 2.21800000e-01,
                                            7.82000000e-02],
      [ 2.06000000e+01, 2.93300000e+01,
                                            1.40100000e+02, ...,
         2.65000000e-01, 4.08700000e-01,
                                           1.24000000e-01],
      [ 7.76000000e+00, 2.45400000e+01,
                                            4.79200000e+01, ...,
```

7.03900000e-02]])

Question 0 (Example)

How many features does the breast cancer dataset have?

0.00000000e+00, 2.87100000e-01,

This function should return an integer.

```
In [17]:
```

```
# You should write your whole answer within the function provided. The autograde
r will call
# this function and compare the return value against the correct solution value
def answer_zero():
    # This function returns the number of features of the breast cancer dataset,
which is an integer.
    # The assignment question description will tell you the general format the a
utograder is expecting
    return len(cancer['feature_names'])

# You can examine what your function returns by calling it in the cell. If you h
ave questions
# about the assignment formats, check out the discussion forums for any FAQs
answer_zero()
```

Out[17]:

30

Question 1

Scikit-learn works with lists, numpy arrays, scipy-sparse matrices, and pandas DataFrames, so converting the dataset to a DataFrame is not necessary for training this model. Using a DataFrame does however help make many things easier such as munging data, so let's practice creating a classifier with a pandas DataFrame.

Convert the sklearn.dataset cancer to a DataFrame.

This function should return a (569, 31) DataFrame with

```
columns =
```

```
['mean radius', 'mean texture', 'mean perimeter', 'mean area',
    'mean smoothness', 'mean compactness', 'mean concavity',
    'mean concave points', 'mean symmetry', 'mean fractal dimension',
    'radius error', 'texture error', 'perimeter error', 'area error',
    'smoothness error', 'compactness error', 'concavity error',
    'concave points error', 'symmetry error', 'fractal dimension error',
    'worst radius', 'worst texture', 'worst perimeter', 'worst area',
    'worst smoothness', 'worst compactness', 'worst concavity',
    'worst concave points', 'worst symmetry', 'worst fractal dimension',
    'target']

and index =

RangeIndex(start=0, stop=569, step=1)
```

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concav points
0	17.990	10.38	122.80	1001.0	0.11840	0.27760	0.300100	0.14710
1	20.570	17.77	132.90	1326.0	0.08474	0.07864	0.086900	0.07017
2	19.690	21.25	130.00	1203.0	0.10960	0.15990	0.197400	0.12790
3	11.420	20.38	77.58	386.1	0.14250	0.28390	0.241400	0.10520
4	20.290	14.34	135.10	1297.0	0.10030	0.13280	0.198000	0.10430
5	12.450	15.70	82.57	477.1	0.12780	0.17000	0.157800	0.08089
6	18.250	19.98	119.60	1040.0	0.09463	0.10900	0.112700	0.07400
7	13.710	20.83	90.20	577.9	0.11890	0.16450	0.093660	0.05985
8	13.000	21.82	87.50	519.8	0.12730	0.19320	0.185900	0.09353
9	12.460	24.04	83.97	475.9	0.11860	0.23960	0.227300	0.08543
10	16.020	23.24	102.70	797.8	0.08206	0.06669	0.032990	0.03323
11	15.780	17.89	103.60	781.0	0.09710	0.12920	0.099540	0.06606
12	19.170	24.80	132.40	1123.0	0.09740	0.24580	0.206500	0.11180
13	15.850	23.95	103.70	782.7	0.08401	0.10020	0.099380	0.05364
14	13.730	22.61	93.60	578.3	0.11310	0.22930	0.212800	0.08025
15	14.540	27.54	96.73	658.8	0.11390	0.15950	0.163900	0.07364
16	14.680	20.13	94.74	684.5	0.09867	0.07200	0.073950	0.05259
17	16.130	20.68	108.10	798.8	0.11700	0.20220	0.172200	0.10280
18	19.810	22.15	130.00	1260.0	0.09831	0.10270	0.147900	0.09498
19	13.540	14.36	87.46	566.3	0.09779	0.08129	0.066640	0.04781
20	13.080	15.71	85.63	520.0	0.10750	0.12700	0.045680	0.03110
21	9.504	12.44	60.34	273.9	0.10240	0.06492	0.029560	0.02076
22	15.340	14.26	102.50	704.4	0.10730	0.21350	0.207700	0.09756
23	21.160	23.04	137.20	1404.0	0.09428	0.10220	0.109700	0.08632
24	16.650	21.38	110.00	904.6	0.11210	0.14570	0.152500	0.09170
25	17.140	16.40	116.00	912.7	0.11860	0.22760	0.222900	0.14010
26	14.580	21.53	97.41	644.8	0.10540	0.18680	0.142500	0.08783
27	18.610	20.25	122.10	1094.0	0.09440	0.10660	0.149000	0.07731
28	15.300	25.27	102.40	732.4	0.10820	0.16970	0.168300	0.08751
29	17.570	15.05	115.00	955.1	0.09847	0.11570	0.098750	0.07953
539	7.691	25.44	48.34	170.4	0.08668	0.11990	0.092520	0.01364

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concav points
540	11.540	14.44	74.65	402.9	0.09984	0.11200	0.067370	0.02594
541	14.470	24.99	95.81	656.4	0.08837	0.12300	0.100900	0.03890
542	14.740	25.42	94.70	668.6	0.08275	0.07214	0.041050	0.03027
543	13.210	28.06	84.88	538.4	0.08671	0.06877	0.029870	0.03275
544	13.870	20.70	89.77	584.8	0.09578	0.10180	0.036880	0.02369
545	13.620	23.23	87.19	573.2	0.09246	0.06747	0.029740	0.02443
546	10.320	16.35	65.31	324.9	0.09434	0.04994	0.010120	0.00549
547	10.260	16.58	65.85	320.8	0.08877	0.08066	0.043580	0.02438
548	9.683	19.34	61.05	285.7	0.08491	0.05030	0.023370	0.00961
549	10.820	24.21	68.89	361.6	0.08192	0.06602	0.015480	0.00816
550	10.860	21.48	68.51	360.5	0.07431	0.04227	0.000000	0.00000
551	11.130	22.44	71.49	378.4	0.09566	0.08194	0.048240	0.02257
552	12.770	29.43	81.35	507.9	0.08276	0.04234	0.019970	0.01499
553	9.333	21.94	59.01	264.0	0.09240	0.05605	0.039960	0.01282
554	12.880	28.92	82.50	514.3	0.08123	0.05824	0.061950	0.02343
555	10.290	27.61	65.67	321.4	0.09030	0.07658	0.059990	0.02738
556	10.160	19.59	64.73	311.7	0.10030	0.07504	0.005025	0.01116
557	9.423	27.88	59.26	271.3	0.08123	0.04971	0.000000	0.00000
558	14.590	22.68	96.39	657.1	0.08473	0.13300	0.102900	0.03736
559	11.510	23.93	74.52	403.5	0.09261	0.10210	0.111200	0.04105
560	14.050	27.15	91.38	600.4	0.09929	0.11260	0.044620	0.04304
561	11.200	29.37	70.67	386.0	0.07449	0.03558	0.000000	0.00000
562	15.220	30.62	103.40	716.9	0.10480	0.20870	0.255000	0.09429
563	20.920	25.09	143.00	1347.0	0.10990	0.22360	0.317400	0.14740
564	21.560	22.39	142.00	1479.0	0.11100	0.11590	0.243900	0.13890
565	20.130	28.25	131.20	1261.0	0.09780	0.10340	0.144000	0.09791
566	16.600	28.08	108.30	858.1	0.08455	0.10230	0.092510	0.05302
567	20.600	29.33	140.10	1265.0	0.11780	0.27700	0.351400	0.15200
568	7.760	24.54	47.92	181.0	0.05263	0.04362	0.000000	0.00000

What is the class distribution? (i.e. how many instances of malignant (encoded 0) and how many benign (encoded 1)?)

This function should return a Series named target of length 2 with integer values and index = ['malignant', 'benign']

In [24]:

```
def answer_two():
    cancerdf = answer_one()

# Your code here
    malignant = len(cancerdf[cancerdf['target'] == 0])
    benign = len(cancerdf[cancerdf['target'] == 1])

class_dist = pd.Series(data = {'malignant': malignant, 'benign': benign}, in
dex = ['malignant', 'benign'])
    return class_dist# Return your answer

answer_two()
```

```
Out[24]:
malignant 212
benign 357
dtype: int64
```

Question 3

Split the DataFrame into X (the data) and y (the labels).

This function should return a tuple of length 2: (X, y), where

- X, a pandas DataFrame, has shape (569, 30)
- y, a pandas Series, has shape (569,).

```
In [26]:
```

```
def answer_three():
    cancerdf = answer_one()
    # Your code here
    X = cancerdf.drop('target', axis = 1)
    y = cancerdf['target']

    return X, y
#answer_three()
```

•	radius	mean texture	mean perimeter	mean area	mean smo
othness \	17.990	10.38	122.80	1001.0	
0.11840 1	20.570	17.77	132.90	1326.0	
0.08474					
2 0.10960	19.690	21.25	130.00	1203.0	
3 0.14250	11.420	20.38	77.58	386.1	
4	20.290	14.34	135.10	1297.0	
0.10030 5	12.450	15.70	82.57	477.1	
0.12780 6	18.250	19.98	119.60	1040.0	
0.09463					
7 0.11890	13.710	20.83	90.20	577.9	
8 0.12730	13.000	21.82	87.50	519.8	
9	12.460	24.04	83.97	475.9	
0.11860 10	16.020	23.24	102.70	797.8	
0.08206 11	15.780	17.89	103.60	781.0	
0.09710					
12 0.09740	19.170	24.80	132.40	1123.0	
13 0.08401	15.850	23.95	103.70	782.7	
14	13.730	22.61	93.60	578.3	
0.11310 15	14.540	27.54	96.73	658.8	
0.11390					
16 0.09867	14.680	20.13	94.74	684.5	
17 0.11700	16.130	20.68	108.10	798.8	
18	19.810	22.15	130.00	1260.0	
0.09831 19	13.540	14.36	87.46	566.3	
0.09779 20	13.080	15.71	85.63	520.0	
0.10750					
21 0.10240	9.504	12.44	60.34	273.9	
22 0.10730	15.340	14.26	102.50	704.4	
23	21.160	23.04	137.20	1404.0	
0.09428 24	16.650	21.38	110.00	904.6	
0.11210 25	17.140	16.40	116.00	912.7	
0.11860					
26 0.10540	14.580	21.53	97.41	644.8	
27 0.09440	18.610	20.25	122.10	1094.0	
28	15.300	25.27	102.40	732.4	

. 1				
0.10820 29	17.570	15.05	115.00	955.1
0.09847	17.370	13.03	113.00	933.1
••	• • •	•••	• • •	• • •
539	7.691	25.44	48.34	170.4
0.08668	11 540	1.4.4.4	74.65	400.0
540 0.09984	11.540	14.44	74.65	402.9
541	14.470	24.99	95.81	656.4
0.08837				
542	14.740	25.42	94.70	668.6
0.08275	12 010	22.26	0.4.00	5 20 4
543 0.08671	13.210	28.06	84.88	538.4
544	13.870	20.70	89.77	584.8
0.09578				
545	13.620	23.23	87.19	573.2
0.09246	10 220	16.25	CF 21	224 0
546 0.09434	10.320	16.35	65.31	324.9
547	10.260	16.58	65.85	320.8
0.08877				
548	9.683	19.34	61.05	285.7
0.08491 549	10.820	24.21	68.89	361.6
0.08192	10.620	24.21	00.09	301.0
550	10.860	21.48	68.51	360.5
0.07431				
551	11.130	22.44	71.49	378.4
0.09566 552	12.770	29.43	81.35	507.9
0.08276	12.770	27.43	01.33	307.3
553	9.333	21.94	59.01	264.0
0.09240				
554 0.08123	12.880	28.92	82.50	514.3
555	10.290	27.61	65.67	321.4
0.09030	10.230	27.01	03.07	02111
556	10.160	19.59	64.73	311.7
0.10030	0.400	07.00	5 0.06	0.71
557 0.08123	9.423	27.88	59.26	271.3
558	14.590	22.68	96.39	657.1
0.08473				
559	11.510	23.93	74.52	403.5
0.09261 560	14.050	27 15	91.38	600.4
0.09929	14.030	27.15	91.30	000.4
561	11.200	29.37	70.67	386.0
0.07449				
562	15.220	30.62	103.40	716.9
0.10480 563	20.920	25.09	143.00	1347.0
0.10990	20.520	23.07	113.00	131/•0
564	21.560	22.39	142.00	1479.0
0.11100	00.555		4.4.	4000
565 0.09780	20.130	28.25	131.20	1261.0
566	16.600	28.08	108.30	858.1
0.08455				, , , , -

567 0.11780	20.600	29.33	140.10	1265.0	
568	7.760	24.54	47.92	181.0	
0.05263					
	compactness	mean concavity	mean concav	re points	mean sy
mmetry \ 0	0.27760	0.300100		0.147100	
0.2419	0.07864	0.086900		0.070170	
0.1812	0.15990	0.197400		0.127900	
0.2069	0.28390	0.241400		0.105200	
0.2597	0.13280	0.198000		0.104300	
0.1809 5	0.17000	0.157800		0.080890	
0.2087	0.10900	0.112700		0.074000	
0.1794	0.16450	0.093660		0.059850	
0.2196 8 0.2350	0.19320	0.185900		0.093530	
9	0.23960	0.227300		0.085430	
10 0.1528	0.06669	0.032990		0.033230	
11 0.1842	0.12920	0.099540		0.066060	
12 0.2397	0.24580	0.206500		0.111800	
13 0.1847	0.10020	0.099380		0.053640	
14 0.2069	0.22930	0.212800		0.080250	
15 0.2303	0.15950	0.163900		0.073640	
16 0.1586	0.07200	0.073950		0.052590	
17 0.2164	0.20220	0.172200		0.102800	
18 0.1582	0.10270	0.147900		0.094980	
19 0.1885	0.08129	0.066640		0.047810	
20 0.1967	0.12700	0.045680		0.031100	
21 0.1815	0.06492	0.029560		0.020760	
22 0.2521	0.21350	0.207700		0.097560	
23 0.1769	0.10220	0.109700		0.086320	
24 0.1995	0.14570	0.152500		0.091700	
25 0.3040	0.22760	0.222900		0.140100	
26 0.2252	0.18680	0.142500		0.087830	

27	0.10660	0.149000	0.077310
0.1697 28	0.16970	0.168300	0.087510
0.1926	0.10970	0.100300	0.007510
29	0.11570	0.098750	0.079530
0.1739			
••	•••	•••	• • •
539	0.11990	0.092520	0.013640
0.2037	0 11200	0.067270	0.025040
540 0.1818	0.11200	0.067370	0.025940
541	0.12300	0.100900	0.038900
0.1872	0.05014	0.041050	0 000050
542 0.1840	0.07214	0.041050	0.030270
543	0.06877	0.029870	0.032750
0.1628			
544 0.1620	0.10180	0.036880	0.023690
545	0.06747	0.029740	0.024430
0.1664			
546 0.1885	0.04994	0.010120	0.005495
547	0.08066	0.043580	0.024380
0.1669			
548 0.1580	0.05030	0.023370	0.009615
549	0.06602	0.015480	0.008160
0.1976			
550 0.1661	0.04227	0.000000	0.000000
551	0.08194	0.048240	0.022570
0.2030			
552 0.1539	0.04234	0.019970	0.014990
553	0.05605	0.039960	0.012820
0.1692			
554 0.1566	0.05824	0.061950	0.023430
555	0.07658	0.059990	0.027380
0.1593	0.05504	0.005005	0 011160
556 0.1791	0.07504	0.005025	0.011160
557	0.04971	0.000000	0.000000
0.1742	0 12200	0 102000	0 027260
558 0.1454	0.13300	0.102900	0.037360
559	0.10210	0.111200	0.041050
0.1388	0 11260	0.044600	0 042040
560 0.1537	0.11260	0.044620	0.043040
561	0.03558	0.000000	0.000000
0.1060	0 20070	0.255000	0 004200
562 0.2128	0.20870	0.255000	0.094290
563	0.22360	0.317400	0.147400
0.2149 564	0 11500	0 243000	0 120000
0.1726	0.11590	0.243900	0.138900
565	0.10340	0.144000	0.097910

0.1752			
566	0.10230	0.092510	0.053020
0.1590			
567	0.27700	0.351400	0.152000
0.2397			
568	0.04362	0.000000	0.000000
0.1587			
mean	fractal dimension		worst radius
\	Tracear armenoron	•••	worde raarab
0	0.07871	• • •	25.380
1	0.05667	• • •	24.990
2	0.05999	• • •	23.570
3	0.09744	• • •	14.910
4	0.05883	•••	22.540
5	0.07613	• • •	15.470
6	0.05742	• • •	22.880
7	0.07451	• • •	17.060
8	0.07389	• • •	15.490
9	0.08243	• • •	15.090
10	0.05697	• • •	19.190
11 12	0.06082 0.07800	•••	20.420 20.960
13	0.05338	• • •	16.840
14	0.07682	• • •	15.030
15	0.07077	•••	17.460
16	0.05922	•••	19.070
17	0.07356	• • •	20.960
18	0.05395		27.320
19	0.05766	• • •	15.110
20	0.06811	•••	14.500
21	0.06905	•••	10.230
22	0.07032	•••	18.070
23	0.05278	•••	29.170
24	0.06330	• • •	26.460
25	0.07413	• • •	22.250
26	0.06924	• • •	17.620
27	0.05699	• • •	21.310
28	0.06540	• • •	20.270
29	0.06149	• • •	20.010
		• • •	
539	0.07751	• • •	8.678
540	0.06782	• • •	12.260
541 542	0.06341 0.05680	•••	16.220 16.510
543	0.05781	• • •	14.370
544	0.06688	•••	15.050
545	0.05801	• • •	15.350
546	0.06201		11.250
547	0.06714	•••	10.830
548	0.06235	•••	10.930
549	0.06328	• • •	13.030
550	0.05948	•••	11.660
551	0.06552	• • •	12.020
552	0.05637	•••	13.870
553	0.06576	•••	9.845
554	0.05708	• • •	13.890
555	0.06127	• • •	10.840
556	0.06331	• • •	10.650
557	0.06059	•••	10.490
558	0.06147	• • •	15.480

559		0.06570	• • •	12.480
560		0.06171	• • •	15.300
561		0.05502	• • •	11.920
562		0.07152		17.520
563		0.06879		24.290
564		0.05623	• • •	25.450
565		0.05533	• • •	23.690
			• • •	
566		0.05648	• • •	18.980
567		0.07016	• • •	25.740
568		0.05884	• • •	9.456
	worst texture	worst perimeter	worst area	worst smoothness
\				
0	17.33	184.60	2019.0	0.16220
1	23.41	158.80	1956.0	0.12380
2	25.53	152.50	1709.0	0.14440
3	26.50	98.87	567.7	0.20980
4	16.67	152.20	1575.0	0.13740
5	23.75	103.40	741.6	0.17910
6	27.66	153.20	1606.0	0.14420
7	28.14	110.60	897.0	0.16540
8	30.73	106.20	739.3	0.17030
9	40.68	97.65	711.4	0.17030
		123.80		
10	33.88		1150.0	0.11810
11	27.28	136.50	1299.0	0.13960
12	29.94	151.70	1332.0	0.10370
13	27.66	112.00	876.5	0.11310
14	32.01	108.80	697.7	0.16510
15	37.13	124.10	943.2	0.16780
16	30.88	123.40	1138.0	0.14640
17	31.48	136.80	1315.0	0.17890
18	30.88	186.80	2398.0	0.15120
19	19.26	99.70	711.2	0.14400
20	20.49	96.09	630.5	0.13120
21	15.66	65.13	314.9	0.13240
22	19.08	125.10	980.9	0.13900
23	35.59	188.00	2615.0	0.14010
24	31.56	177.00	2215.0	0.18050
25	21.40	152.40	1461.0	0.15450
26	33.21	122.40	896.9	0.15250
27	27.26	139.90	1403.0	0.13380
28	36.71	149.30	1269.0	0.16410
29	19.52	134.90	1227.0	0.12550
• •	• • •	• • •	• • •	• • •
539	31.89	54.49	223.6	0.15960
540	19.68	78.78	457.8	0.13450
541	31.73	113.50	808.9	0.13400
542	32.29	107.40	826.4	0.10600
543	37.17	92.48	629.6	0.10720
544	24.75	99.17	688.6	0.12640
545	29.09	97.58	729.8	0.12160
546	21.77	71.12	384.9	0.12850
547	22.04	71.08	357.4	0.14610
548	25.59	69.10	364.2	0.11990
549	31.45	83.90	505.6	0.12040
550 EE1	24.77	74.08	412.3	0.10010
551	28.26	77.80	436.6	0.10870
552	36.00	88.10	594.7	0.12340
553	25.05	62.86	295.8	0.11030
554	35.74	88.84	595.7	0.12270
555	34.91	69.57	357.6	0.13840

556	22.88	67.88	347.3	0.12650
557	34.24	66.50	330.6	0.10730
558	27.27	105.90	733.5	0.10260
559	37.16	82.28	474.2	0.12980
560	33.17	100.20	706.7	0.12410
561	38.30	75.19	439.6	0.09267
562	42.79	128.70	915.0	0.14170
563	29.41	179.10	1819.0	0.14070
564	26.40	166.10	2027.0	0.14100
565	38.25	155.00	1731.0	0.11660
566	34.12	126.70	1124.0	0.11390
567	39.42	184.60	1821.0	0.16500
568	30.37	59.16	268.6	0.08996
worst	compactness	worst concavity	worst cor	ncave points wors
t symmetry	\	-		-
0	0.66560	0.71190		0.26540
0.4601	0.00500	00,1130		0.20310
1	0.18660	0.24160		0.18600
0.2750	0.10000	0.24100		0.18000
	0.42450	0.45040		0 24200
2	0.42450	0.45040		0.24300
0.3613				
3	0.86630	0.68690		0.25750
0.6638				
4	0.20500	0.40000		0.16250
0.2364				
5	0.52490	0.53550		0.17410
0.3985				
6	0.25760	0.37840		0.19320
0.3063				
7	0.36820	0.26780		0.15560
0.3196				
8	0.54010	0.53900		0.20600
0.4378	0.01010	0.00000		0.20000
9	1.05800	1.10500		0.22100
0.4366	1.03000	1.10300		0.22100
10	0.15510	0.14590		0.09975
	0.13310	0.14390		0.09973
0.2948	0 56000	0.30650		0 10100
11	0.56090	0.39650		0.18100
0.3792		0.06000		0 15650
12	0.39030	0.36390		0.17670
0.3176				
13	0.19240	0.23220		0.11190
0.2809				
14	0.77250	0.69430		0.22080
0.3596				
15	0.65770	0.70260		0.17120
0.4218				
16	0.18710	0.29140		0.16090
0.3029				
17	0.42330	0.47840		0.20730
0.3706				
18	0.31500	0.53720		0.23880
0.2768		2,00,20		
19	0.17730	0.23900		0.12880
0.2977	0.1//30	0.23900		0.12000
20	0.27760	0.18900		0.07283
0.3184	0.2//00	0.10300		0.0/203
	0 11400	0 00067		0 06227
21	0.11480	0.08867		0.06227
0.2450	0 50540	0 (2050		0 22020
22	0.59540	0.63050		0.23930

0.4667 23	0.26000	0.31550	0.20090
0.2822	0.2000	0.31330	0.20000
24	0.35780	0.46950	0.20950
0.3613	0 20400	0 20520	0 25500
25 0.4066	0.39490	0.38530	0.25500
26	0.66430	0.55390	0.27010
0.4264			
27 0.2341	0.21170	0.34460	0.14900
28	0.61100	0.63350	0.20240
0.4027			
29 0.2756	0.28120	0.24890	0.14560
••	• • •	•••	
•••			
539	0.30640	0.33930	0.05000
0.2790 540	0.21180	0.17970	0.06918
0.2329	0.21100	0.17570	0.00010
541	0.42020	0.40400	0.12050
0.3187 542	0 12760	0.16110	0 10050
0.2722	0.13760	0.10110	0.10950
543	0.13810	0.10620	0.07958
0.2473	0 00070	0 10770	0.06045
544 0.2249	0.20370	0.13770	0.06845
545	0.15170	0.10490	0.07174
0.2642			
546 0.2681	0.08842	0.04384	0.02381
547	0.22460	0.17830	0.08333
0.2691			
548	0.09546	0.09350	0.03846
0.2552 549	0.16330	0.06194	0.03264
0.3059			
550	0.07348	0.00000	0.00000
0.2458 551	0.17820	0.15640	0.06413
0.3169			
552	0.10640	0.08653	0.06498
0.2407 553	0.08298	0.07993	0.02564
0.2435	0.00290		0.02301
554	0.16200	0.24390	0.06493
0.2372 555	0.17100	0.20000	0.09127
0.2226	0.17100	0.20000	0.09127
556	0.12000	0.01005	0.02232
0.2262	0 07150	0.00000	0 00000
557 0.2475	0.07158	0.00000	0.00000
558	0.31710	0.36620	0.11050
0.2258	0.25170	0. 36300	0 00650
559 0.2112	0.25170	0.36300	0.09653
560	0.22640	0.13260	0.10480
0.2250			

561	0.05494	0.00000	0.00000
0.1566 562	0.79170	1.17000	0.23560
0.4089 563	0.41860	0.65990	0.25420
0.2929	0.41000	0.03330	0.23420
564 0.2060	0.21130	0.41070	0.22160
565	0.19220	0.32150	0.16280
0.2572 566	0.30940	0.34030	0.14180
0.2218	0.06010	0.02070	0.06500
567 0.4087	0.86810	0.93870	0.26500
568 0.2871	0.06444	0.00000	0.00000

0.287	L		
	worst	fractal	dimension
0			0.11890
1			0.08902
2			0.08758
3			0.17300
4			0.07678
5			0.12440
6			0.08368
7			0.11510
8			0.10720
9			0.20750
10			0.08452
11			0.10480
12			0.10230
13			0.06287
14			0.14310
15			0.13410
16			0.08216

0.11420

0.07615

0.07259

0.08183

0.07773

0.09946

0.07526

0.09564

0.10590

0.12750

0.07421

0.09876

0.07919

0.10660

0.08134

0.10230

0.06956

0.06443

0.08492

0.06953

0.07399

0.09479

0.07920

0.07626 0.06592

17

18

19

20

21

22

23

24

25

26

27

28

29

539

540

541

542

543

544

545

546

547

548

549

550

```
551
                         0.08032
552
                         0.06484
553
                         0.07393
554
                         0.07242
555
                         0.08283
556
                         0.06742
557
                         0.06969
558
                         0.08004
559
                         0.08732
                         0.08321
560
561
                         0.05905
562
                         0.14090
563
                         0.09873
564
                         0.07115
565
                         0.06637
                         0.07820
566
567
                         0.12400
568
                         0.07039
[569 rows x 30 columns], 0
                                       0
        0
1
2
        0
3
        0
4
        0
5
        0
6
        0
7
        0
8
        0
        0
9
10
        0
        0
11
12
        0
13
        0
14
        0
15
        0
        0
16
17
        0
18
        0
19
        1
20
        1
21
        1
        0
22
23
        0
24
        0
        0
25
26
        0
27
        0
28
        0
29
        0
       . .
539
        1
540
        1
541
        1
542
        1
543
        1
544
        1
545
        1
546
        1
547
        1
        1
548
549
        1
```

```
550
        1
551
        1
552
        1
553
        1
554
        1
555
        1
556
        1
557
        1
558
        1
559
        1
560
        1
561
        1
562
563
        0
564
        0
565
        0
566
        0
567
        0
568
        1
Name: target, dtype: int64)
```

Using train_test_split, split X and Y into training and test sets (X_train, Y_test, Y_train, and Y_test).

Set the random number generator state to 0 using random_state=0 to make sure your results match the autograder!

This function should return a tuple of length 4: (X_train, X_test, y_train, y_test), where

```
X_train has shape (426, 30)
X_test has shape (143, 30)
y_train has shape (426,)
y_test has shape (143,)
```

In [35]:

(143,)

```
from sklearn.model_selection import train_test_split

def answer_four():
    X, y = answer_three()

# Your code here
    X_train, X_test, y_train, y_test = train_test_split(X,y, random_state = 0) #
from 01-03:k-NN classification lecture
    return X_train, X_test, y_train, y_test
#result = answer_four()
#for i in range (4):
    #print(result[i].shape)

(426, 30)
(143, 30)
(426,)
```

Using KNeighborsClassifier, fit a k-nearest neighbors (knn) classifier with X_train, y_train and using one nearest neighbor (n neighbors = 1).

This function should return a sklearn.neighbors.classification.KNeighborsClassifier.

```
In [61]:
```

```
from sklearn.neighbors import KNeighborsClassifier

def answer_five():
    X_train, X_test, y_train, y_test = answer_four()

# Your code here
knn = KNeighborsClassifier(n_neighbors = 1)
return knn.fit(X_train, y_train)# Return your answer
#answer_five()
```

Question 6

Using your knn classifier, predict the class label using the mean value for each feature.

Hint: You can use cancerdf.mean()[:-1].values.reshape(1, -1) which gets the mean value for each feature, ignores the target column, and reshapes the data from 1 dimension to 2 (necessary for the precict method of KNeighborsClassifier).

This function should return a numpy array either array([0.]) or array([1.])

```
In [41]:
```

```
def answer_six():
    cancerdf = answer_one()
    means = cancerdf.mean()[:-1].values.reshape(1, -1)

# Your code here
    knn = answer_five()
    return knn.predict(means) # Return your answer
#answer_six()
Out[41]:
```

Question 7

array([1])

Using your knn classifier, predict the class labels for the test set X_test.

This function should return a numpy array with shape (143,) and values either 0.0 or 1.0.

```
In [60]:
```

```
def answer_seven():
    X_train, X_test, y_train, y_test = answer_four()
    knn = answer_five()

# Your code here
    result = [int(knn.predict(x.values.reshape(1,30))) for idx, x in X_test.iter
rows()]
    return np.array(result) # Return your answer
#answer_seven()
Out[60]:
```

Find the score (mean accuracy) of your knn classifier using X test and y test.

This function should return a float between 0 and 1

```
In [43]:
```

```
def answer_eight():
    X_train, X_test, y_train, y_test = answer_four()
    knn = answer_five()

# Your code here
    return knn.score(X_test, y_test) # Return your answer
answer_eight()
```

```
Out[43]:
0.91608391608391604
```

Optional plot

Try using the plotting function below to visualize the differet predicition scores between training and test sets, as well as malignant and benign cells.

```
def accuracy plot():
    import matplotlib.pyplot as plt
    %matplotlib notebook
    X train, X test, y train, y test = answer four()
    # Find the training and testing accuracies by target value (i.e. malignant,
 benign)
    mal train X = X train[y train==0]
    mal train y = y train[y train==0]
    ben train X = X train[y train==1]
    ben_train_y = y_train[y_train==1]
    mal test X = X test[y test==0]
    mal_test_y = y_test[y_test==0]
    ben test X = X test[y test==1]
    ben_test_y = y_test[y_test==1]
    knn = answer five()
    scores = [knn.score(mal train X, mal train y), knn.score(ben train X, ben tr
ain y),
              knn.score(mal_test_X, mal_test_y), knn.score(ben_test_X, ben_test_
у)]
    plt.figure()
    # Plot the scores as a bar chart
    bars = plt.bar(np.arange(4), scores, color=['#4c72b0','#4c72b0','#55a868','#
55a868'1)
    # directly label the score onto the bars
    for bar in bars:
        height = bar.get height()
        plt.gca().text(bar.get_x() + bar.get_width()/2, height*.90, '{0:.{1}f}'.
format(height, 2),
                     ha='center', color='w', fontsize=11)
    # remove all the ticks (both axes), and tick labels on the Y axis
    plt.tick params(top='off', bottom='off', left='off', right='off', labelleft=
'off', labelbottom='on')
    # remove the frame of the chart
    for spine in plt.gca().spines.values():
        spine.set visible(False)
    plt.xticks([0,1,2,3], ['Malignant\nTraining', 'Benign\nTraining', 'Malignant
\nTest', 'Benign\nTest'], alpha=0.8);
   plt.title('Training and Test Accuracies for Malignant and Benign Cells', alp
ha=0.8)
```

Uncomment the plotting function to see the visualization.

Comment out the plotting function when submitting your notebook for grading.

accuracy_plot()

Training and Test Accuracies for Malignant and Benign Cells

In []: