Chapter 4: Continuous Random Variables Probability Density Functions

Kevin Lutz PhD Candidate of Statistics Monday, September 19, 2022

Department of Mathematical Sciences The University of Texas at Dallas

Table of Contents

1 Calculus Review

2 Continuous vs Discrete

3 Continuous RV: Properties

FTC Part 1

Fundamental Theorem of Calculus, Part 1

If f is a continuous function on [a,b], then the integral function ${\cal F}$ given by

$$F(x) = \int_{a}^{x} f(t) dt$$

is continuous on [a,b] and differentiable on (a,b). Further,

$$F'(x) = \frac{d}{dx} \int_{a}^{x} f(t) dt$$
$$F'(x) = f(x)$$

In other words, F is the antiderivative of f.

FTC Part 2

Fundamental Theorem of Calculus, Part 2

If f is a continuous function on [a, b], then

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a)$$

where F is the antiderivative of f.

■ This computes the area under f(x)

Example 1: Compute the integrals.

(a)
$$\int_{1}^{3} 6x^2 + 1 \ dx$$

(b)
$$\int_{-1}^{0} e^{-3x} dx$$

Derivative Notation

- y as a function of x
 - **I** Function notation: y = f(x)
 - Derivative notation: y' = f'(x) or $\frac{dy}{dx} = f'(x)$
- $\blacksquare x$ as a function of y
 - **I** Function notation: x = f(y)
 - Derivative notation: x' = f'(y) or $\frac{dx}{dy} = f'(y)$

Table of Contents

1 Calculus Review

2 Continuous vs Discrete

3 Continuous RV: Properties

Comparison

Discrete	Continuous
Countable/finite	Measurable/infinite
Defined on the set $\mathbb N$	Defined on an interval in $\mathbb R$
Plot: points (mass)	Plot: continuous curve (density)
Milipropoud 1 2 3 4 5 6	Pewaliy 1

$$P(2 \le X \le 5) = P(2) + P(3) + P(4) + P(5)$$

How do I sum the probabilities on a continuous interval?

 \implies Use an integral!

Probability and Density for a Continuous RV

- f(x) is a probability density function (p.d.f.).
- The calculated area under f(x) measures probability.
- Density ≠ probability

For this example,

$$P(2 \le X \le 5) = \int_{2}^{5} f(x) \ dx$$

Table of Contents

1 Calculus Review

2 Continuous vs Discrete

3 Continuous RV: Properties

Property #1: Continuous RV

Definition: Density

The probability density function or p.d.f. is the derivative of the cumulative distribution function (c.d.f.), f(x) = F'(x) and $f(x) \geq 0 \quad \forall x \in \mathbb{R}.$

- The y or f(x) values are densities, not probabilities.
- Example:
 - (a) Let $f_X(x) = 3x^2$ defined on $0 \le X \le 1$ be the pdf of X. Calculate $f_X(1)$.

Example (continued)

(b) We can write the pdf as a piecewise function defined on $(-\infty,\infty)$:

(c) Plot $f_X(x)$

Property #2: Continuous RV

Total Probability

The sum of the probabilities of a continuous r.v. \boldsymbol{X} is one and is equivalent to

$$\int_{-\infty}^{\infty} f_X(x) \ dx = 1$$

where $f_X(x)$ is the p.d.f. of X.

(d) Show that $f_X(x) = 3x^2$ on [0,1] is a valid p.d.f.

Property #3: Continuous RV

Calculating Probability

The integral of the density function f(x) from a to b calculates the probability that X is between a and b, which is written as

$$P(a \le X \le b) = \int_{a}^{b} f(x) \ dx = F(b) - F(a)$$

where F is the antiderivative and cdf of f.

(e) Given $f_X(x) = 3x^2$ on [0, 1], calculate $P(1/2 \le X \le 1)$.

Property #4: Continuous RV

Probability at a Single Point

The probability that X = a is given by P(X = a) where

$$P(a \le X \le a) = \int_{a}^{a} f(x) \ dx = F(a) - F(a) = 0$$

and so $P(X = x) = 0 \ \forall x \in \mathbb{R}$.

(f) Given $f_X(x) = 3x^2$ on [0, 1], calculate P(X = 1/2).

Property #5: Continuous RV

Cumulative Distribution Function (cdf)

The cumulative distribution function, $F_x(x)$, of the continuous r.v. X calculates $P(X \leq x) = P(X < x)$ (by Property 4) and is computed as

$$F_X(x) = \int_{-\infty}^x f(t) \ dt$$

(g) Find the cdf of $f(x) = 3x^2$ defined on [0,1].

Expected Value and Variance

Definition: Mean of a Continuous RV

The expected value $(E(X) \text{ or } \mu)$ of a continuous random variable is given by

$$\mu = \int x \cdot f(x) \ dx$$

Definition: Variance of a Continuous RV

The variance of a continuous r.v. is given by

$$\sigma^2 = E(X^2) - [E(X)]^2$$

where $E(X^2) = \int x^2 \cdot f(x) \ dx$.

(h) Calculate the mean and variance of $f(x) = 3x^2$ on [0,1].

Summary/Comparisons

Property	Discrete	Continuous
1. Definition	f(x) = P(X = x) pmf	f(x) = F'(x) pdf
2. Total Probability	$\sum_{i=1}^{n} P(X_i) = 1$	$\int_{-\infty}^{\infty} f(x) \ dx = 1$
3. Cumulative Probability	$P(X \le x) = \sum_{a \le x} P(a)$	$P(X < x) = \int_{-\infty}^{x} f(x) \ dx$
4. Computing Probability	$P(x \in A) = \sum_{x \in A} P(x)$	$P(x \in A) = \int_{A} f(x) \ dx$
5. Expected Value	$\mu = \sum_{x} x \cdot P(x)$	$\mu = \int x \cdot f(x) \ dx$
6. Variance	$\sigma^{2} = E(X^{2}) - [E(X)]^{2}$ $= \sum_{x} x^{2} \cdot P(x) - \mu^{2}$	$\sigma^{2} = E(X^{2}) - [E(X)]^{2}$ $= \int_{x} x^{2} \cdot f(x) dx - \mu^{2}$

Suppose the pdf of a continuous r.v. X is defined as:

$$f(x) = \begin{cases} 0 & x \le -1\\ x+1 & -1 < x \le 0\\ -x+1 & 0 < x \le 1\\ 0 & x \ge 1 \end{cases}$$

(a) Plot f(x)

$$f(x) = \begin{cases} 0 & x \le -1 \\ x+1 & -1 < x \le 0 \\ -x+1 & 0 < x \le 1 \\ 0 & x \ge 1 \end{cases}$$

(b) Show that f(x) is a valid pdf.

$$f(x) = \begin{cases} 0 & x \le -1 \\ x+1 & -1 < x \le 0 \\ -x+1 & 0 < x \le 1 \\ 0 & x \ge 1 \end{cases}$$

(c) Calculate the mean and variance of X.

$$f(x) = \begin{cases} 0 & x \le -1 \\ x+1 & -1 < x \le 0 \\ -x+1 & 0 < x \le 1 \\ 0 & x \ge 1 \end{cases}$$

(d) Compute $P(-1/2 < X \le 1/2)$.

$$f(x) = \begin{cases} 0 & x \le -1 \\ x+1 & -1 < x \le 0 \\ -x+1 & 0 < x \le 1 \\ 0 & x \ge 1 \end{cases}$$

(e) Determine the cdf of X.

The Uniform Distribution

- Uniform: all outcomes are equally likely
- Defined on an interval $[a,b] \implies X \sim \mathsf{Uniform}(a,b)$

 $f_x(x) = \begin{cases} \frac{1}{b-a} & a \le X \le b\\ 0 & elsewhere \end{cases}$

$$F_X(x) = \begin{cases} \frac{x-a}{b-a} & a \le X \le b\\ 0 & elsewhere \end{cases}$$

Summary: Uniform Distribution

If $X \sim \mathsf{Uniform}(a, b)$, then:

Term	Notation	Formula
Density	$f_X(x)$	$\frac{1}{b-a}$
pdf	JX(x)	$\overline{b-a}$
Cumulative Density	$F_X(x) = P(X < x)$	$\frac{x-a}{b-a}$
cdf		
Mean	μ	$\frac{a+b}{2}$
		(1 ~)2
Variance	σ^2	$\frac{(b-a)^2}{12}$

Given that $X \sim \mathsf{Uniform}(0,1)$, find the following:

(a) Determine and sketch the pdf and cdf.

Given that $X \sim \mathsf{Uniform}(0,1)$, find the following:

(b) Calculate the mean and variance of X.

Given that $X \sim \mathsf{Uniform}(0,1)$, find the following:

(c) Calculate P(X < 3/4).

Given that $X \sim \mathsf{Uniform}(0,1)$, find the following:

(d) Calculate P(1/4 < X < 3/4).

Transformations of Random Variables I

Suppose X has pdf $f_X(x)$ and cdf $F_X(x)$. Find the pdf of Y in terms of f_X if Y = aX + b for a > 0.

$$\implies F_Y(y) = P(Y \le y)$$

$$= P(aX + b \le y)$$

$$= P\left(X \le \frac{y - b}{a}\right)$$

$$= F_X\left(\frac{y - b}{a}\right)$$

$$\implies \frac{d}{dy}F_Y(y) = \frac{d}{dy}F_X\left(\frac{y - b}{a}\right)$$

Transformations of Random Variables II

Recall that F' = f:

$$f_Y(y) = F_X'\left(\frac{y-b}{a}\right) \cdot \frac{d}{dy}\left(\frac{y-b}{a}\right)$$
$$f_Y(y) = \frac{1}{a} \cdot f_X\left(\frac{y-b}{a}\right)$$

In general,

$$\left| f_Y(y) = f_X(g(y)) \cdot \left| \frac{dx}{dy} \right| \right|$$

Suppose $X \sim \mathsf{Uniform}(0,1)$ and $y = e^x$. Determine the pdf of Y.