Design Document: Twitter Sentiment Classification Project

Overview

The Twitter Sentiment Classification Project is a machine learning-based application designed to classify tweets into sentiment categories: Negative, Neutral, Positive, and Irrelevant. Using a pre trained Logistic Regression model with a TF-IDF feature extractor, the project achieves an accuracy of 80% on the validation dataset.

The project involves the following components:

- 1. Data preprocessing to clean and standardize the tweets.
- 2. Feature extraction to convert text data into numerical representations using TF-IDF.
- 3. A Logistic Regression model for sentiment classification.
- 4. An interactive interface to classify new user-provided sentences.

Purpose

The purpose of this project is to:

- Develop a pipeline for sentiment analysis of text data.
- Provide a practical example of machine learning applications in natural language processing (NLP).
- Build an interactive tool that allows users to input sentences and obtain sentiment predictions in real-time.

System Architecture

Input

The input consists of a CSV file containing tweet data with the following columns:

- TweetID: A unique identifier for each tweet.
- Entity: The entity associated with the tweet (optional).
- Sentiment: The sentiment label for each tweet (e.g., Negative, Neutral, Positive, Irrelevant).
- Message: The text content of the tweet.

Output

The output is a predicted sentiment for user-provided text or sentences from the dataset.

Key Components

1. Data Preprocessing:

- o Noise removal (e.g., URLs, mentions, hashtags, and special characters).
- Conversion of text to lowercase for consistency.
- o Removal of stopwords (common words like "the" and "is" that don't contribute to sentiment analysis).
- Lemmatization to reduce words to their base forms.

2. Feature Extraction:

- Text data is converted into numerical vectors using TF-IDF (Term Frequency-Inverse Document Frequency).
- o This process captures the importance of terms relative to their frequency in the dataset.

3. Model Training:

- A Logistic Regression model is trained using the TF-IDF features and sentiment labels.
- The model learns to associate specific words or patterns with sentiment categories.

4. Interactive Interface:

- o Users can input sentences through an interactive interface.
- The system preprocesses the input, converts it to a numerical vector, and predicts its sentiment using the trained model.

Key Functions

Preprocessing

The preprocessing pipeline standardizes tweets by removing irrelevant content, normalizing case, and reducing word variations. This step ensures the data is clean and ready for feature extraction.

TF-IDF Feature Extraction

TF-IDF transforms cleaned tweets into numerical representations that capture the importance of terms relative to the dataset. This step ensures the model focuses on meaningful patterns in the text.

Logistic Regression Model

The Logistic Regression model is trained on the TF-IDF features to classify tweets into one of the four sentiment categories. It uses learned weights for each term to predict the probability of each sentiment.

Interactive Interface

The interface allows users to input sentences and receive sentiment predictions in real time. It preprocesses the input text, applies TF-IDF transformation, and uses the Logistic Regression model to generate predictions.