Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Отчет по лабораторной работе №2 «Синтез помехоустойчивого кода» по дисциплине «Информатика»

Вариант №70

Выполнила: Богданова Мария Михайловна, группа Р3118 Преподаватель: Рыбаков Степан Дмитриевич

г. Санкт-Петербург 2022г.

Содержание

1	Схема декодирования классического кода Хэмминга (7;4)	3
2	1 задача	4
3	Схема декодирования классического кода Хэмминга (15;11)	6
4	2 задача	7
5	3 задача	7
3	4 доп. задача	7
7	Вывод	8
3	Список литературы	9

1 Схема декодирования классического кода Хэмминга (7;4)

2 1 задача

1. (52) 1011011

Биты четности:

$$1.(1+1+0+1) \% 2 = 1$$

$$2.(0+1+1+1)\%2=1$$

$$4.(1+0+1+1)\%2=1$$

7 бит передан с ошибкой

1010 - исходное переданное сообщение.

Ход решения:

	1	2	3	4	5	6	7	
2 ^x	<i>r</i> ₁	r ₂	i ₁	<i>r</i> ₃	i ₂	i ₃	i ₄	S
1	Χ		Χ		Χ		X	S ₁
2		Х	Х			Х	X	S ₂
4				X	Х	Х	x	S ₃

2. (89) 0101110

Биты четности:

$$1.(0+0+1+0)\%2=1$$

$$2.(1 + 0 + 1 + 0) \% 2 = 0$$

$$4.(1+1+1+0)\%2=1$$

5 бит передан с ошибкой

0010 - исходное переданное сообщение.

Ход решения:

	1	2	3	4	5	6	7	
2 ^x	<i>r</i> ₁	r_2	i ₁	<i>r</i> ₃	i ₂	i ₃	i ₄	S
1	Х		Х		Х		Х	S ₁
2		Х	Х			Х	Х	S ₂
4				Х	X	Х	Х	S ₃

3. (14) 1111000

Биты четности:

$$1.(1+1+0+0) \% 2 = 0$$

$$2.(1 + 1 + 0 + 0) \% 2 = 0$$

$$4.(1+0+0+0)\%2=1$$

4 бит передан с ошибкой

1000 - исходное переданное сообщение.

Ход решения:

	1	2	3	4	5	6	7	
2 ^x	r ₁	r ₂	i ₁	r ₃	i ₂	i ₃	i ₄	S
1	Х		Х		Х		Х	s ₁
2		Х	Х			Х	Х	S ₂
4				X	Х	Х	Х	S ₃

4. (11) 1011000

Биты четности:

$$1.(1+1+0+0)\%2=0$$

$$2.(0 + 1 + 0 + 0) \% 2 = 1$$

$$4.(1+0+0+0)\% 2=1$$

6 бит передан с ошибкой.

1010 - исходное переданное сообщение.

Ход решения:

	1	2	3	4	5	6	7	
2 ^x	<i>r</i> ₁	r ₂	i ₁	<i>r</i> ₃	i ₂	<i>i</i> ₃	i ₄	S
1	Х		Χ		X		Х	s ₁
2		Х	Х			X	Х	S ₂
4				Х	Х	X	Х	s ₃

3 Схема декодирования классического кода Хэмминга (15;11)

4 2 задача

1.
$$(0+1+0+1+1+0+0+1) \% 2 = 0$$

2.
$$(1+1+0+1+0+0+0+1) \% 2 = 0$$

4.
$$(0+0+0+1+0+0+0+1) \% 2 = 0$$

8.
$$(0+1+0+0+0+0+0+1) \% 2 = 0$$

10011000001 - исходное переданное сообщение.

Ход решения:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
2 ^x	<i>r</i> ₁	r ₂	i,	<i>r</i> ₃	i ₂	i ₃	i ₄	$r_{_4}$	i ₅	i ₆	i ₇	i ₈	i ₉	i ₁₀	i ₁₁	S
1	Х		Х		Х		Х		Х		Х		Х		Х	S ₁
2		Х	Х			Х	Х			Х	Х			Х	Х	S ₂
4				Х	Х	Х	Х					Х	Х	Х	Х	S ₃
8								X	Х	X	Х	Х	Х	Х	Х	S ₄

Переданное coosщение: 01100010100001

51= (0+1+0+1+1+0+0+1)%2=0

52= (1+1+0+1+0+0+0+1)72=0

53= (0+0+0+1+0+0+0+1)72=0

54= (0+1+0+0+0+0+0+1)22=0

Owasku Hem. Deko gapobathoe coosyetue: 10011000001

5 3 задача

 2^m - m - 1 = 744

m = 9,52... (ближе к 10)

 ${
m m}=10$ - кол-во проверочных бит

 2^{10} - 1=1023 - общее кол-во бит $(2^m$ -1)

 2^{10} - 10 - 1= 1013 - кол-во информационных битов (2^m - m - 1)

коэфф. избыточность - 1013/1023 = 0,99022483

6 4 доп. задача

PS C:\Users\fergee\Desktop\инфа> C:\Users\fergee\AppData\Local\Programs\Python\Python310\python.exe .\dop_zadanielab2.py 1011011 Ошибка в символе номер 7 Переданное сообщение:

7 Вывод

В ходе выполнения данной лабораторной работы я узнала про помехоустойчивые коды, научилась декодировать классический код Хэмминга, а также вычислять минимальное число проверочных разрядов и коэффициент избыточности.

8 Список литературы

- 1. "Помехоустойчивое кодирование. Классификация помехоустойчивых кодов". Studfile [Электронный ресурс] Режим доступа: https://studfile.net/(Дата обращения: 10.10.22)
- 2. "Помехоустойчивое кодирование. Часть 1: код Хэмминга". Habr [Электронный ресурс] Режим доступа: https://habr.com/ru (Дата обращения: 10.10.22)
- 3. "Избыточное кодирование, код Хэмминга". Вики-конспекты ИТМО [Электронный ресурс] Режим доступа: https://neerc.ifmo.ru/wiki/ (Дата обращения: 10.10.22)