

# Impact Location Prediction using Neural Networks

Group 4

Group: 4

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula





#### **Team Introduction**

- Renuka Misal: CNN Data Map, ANN Data Processing
- Soji Jacob: Numerical Data Preprocessing, CNN Data Map & Image Map
- Rushikesh Shende: ANN & KNN Architectures, PPT
- Soham Bhute: Data Extraction, PPT
- Pratik Tatipamula: Experimental Data Processing



#### **Motivation and Aim**

#### Motivation

- Bad weather conditions during an air flight (E.g. Hailstorms)
  can cause extensive damage to aircraft structure and
  compromise it's structural integrity
- Predicting the sudden impact of hailstorms is a major problem in the aviation industry



- Aim of the experiment is to predict the impact location and/or its characteristics in a controlled experimental setup.
- The output of the neural network should predict the location of impact of the ball







Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula





## **Data Pre Processing**



Group: 4

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula





# **Model Comparison**

| Models<br>Metric     | S Class dissurfaction (8 – 22, waveful = distance)  10  10  10  10  10  10  10  10  10  1 | ANN       | CNN  WOULDING THE PERIOD CHARGES IN THE SERVE SHEET SH |
|----------------------|-------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R2 Score             | 0.9846                                                                                    | 0.8238    | 0.9976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MSE                  | 0.0098                                                                                    | 0.019     | 0.00082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Complexity           | Low                                                                                       | Medium    | High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Trainable Parameters | -                                                                                         | 2,184,958 | 97,714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Group: 4

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula





# **K-Nearest Neighbor Regression**



| Hyperparameters    |   |  |
|--------------------|---|--|
| Nearest Neighbours | 4 |  |

| Results  |        |  |
|----------|--------|--|
| R2 Score | 0.9846 |  |

| Coordinate Predictions |        |        |
|------------------------|--------|--------|
| 1                      | 240    | 247.5  |
| 2                      | 206.25 | 261.25 |
| 3                      | 250    | 255    |
| 4                      | 236.25 | 277.5  |
| 5                      | 271.25 | 257.5  |
| 9                      | 310    | 257.5  |
| 13                     | 272.5  | 280    |
| 24                     | 250    | 245    |
| 25                     | 233.75 | 222.5  |
| 26                     | 271.25 | 287.5  |
| 35                     | 212.5  | 246.25 |
| 36                     | 250    | 260    |
| 42                     | 298.75 | 240    |
| 61                     | 215    | 242.5  |
| 62                     | 240    | 247.5  |
| 64                     | 275    | 295    |
| 69                     | 260    | 250    |
| 85                     | 225    | 302.5  |

Group: 4

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula





# **Artificial Neural Network (MLP) – Architecture**



Group: 4

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula





## **Artificial Neural Network (MLP) – Results & Predictions**

| Hyperparameters       |        |  |
|-----------------------|--------|--|
| Initial Learning Rate | 0.0015 |  |
| Decay Steps           | 100    |  |
| Decay Rate            | 0.9    |  |
| L2 Regularizer        | 0.01   |  |
| Activation Function   | tanh   |  |
| Optimizer             | Adam   |  |
| Loss Metric           | MSE    |  |
| Batch Size            | 32     |  |
| Train Test Split      | 0.2    |  |
| K-Folds               | 8      |  |

| Results             |        |  |
|---------------------|--------|--|
| Cross-validated MSE | 0.0636 |  |
| Holdout Set MSE     | 0.019  |  |
| R2 Score            | 0.8238 |  |

- Processor: Intel i5 10<sup>th</sup> Gen @ 1.00GHz, 8GB DDR4 RAM
- Total Training Time = 152.03s
- Average Training Time per K-Fold = 19s

| Coordinate Predictions |        |        |
|------------------------|--------|--------|
| 1                      | 214.81 | 249.76 |
| 2                      | 255.53 | 246.77 |
| 3                      | 314.93 | 264.39 |
| 4                      | 283.64 | 277.05 |
| 5                      | 268.92 | 272.29 |
| 9                      | 271.68 | 241.84 |
| 13                     | 278.32 | 292.54 |
| 24                     | 283.19 | 241.07 |
| 25                     | 240.4  | 212.21 |
| 26                     | 240.64 | 281.95 |
| 35                     | 234.79 | 243.44 |
| 36                     | 231.2  | 264.25 |
| 42                     | 270.39 | 251.2  |
| 61                     | 237.47 | 220.75 |
| 62                     | 242.64 | 248.27 |
| 64                     | 238.55 | 290.91 |
| 69                     | 249.58 | 270.28 |
| 85                     | 273.51 | 286.14 |

Group: 4

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula





#### **Convolution Neural Network – Architecture**



| Hyperparameters       |          |                     |              |
|-----------------------|----------|---------------------|--------------|
| Initial Learning Rate | 0.001    | Number of Batches   | 100          |
| Train-Val-Test Split  | 70-20-10 | Activation          | tanh         |
| Decay Steps           | 1000     | Conv Filter Size    | (5,1)        |
| Decay Rate            | 0.7      | Conv Stride         | (2,1)        |
| Epochs                | 50       | Pool Filter Size    | (5,1)        |
| Regularizer, Dropout  | Iterated | Pool Stride         | (2,1)        |
| Optimizer             | Adam     | Initializer         | GlorotNormal |
| Loss Metric           | MSE      | No. of Conv Filters | (32, 64, 64) |

Group: 4

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula





#### **Convolution Neural Network – Results**



- Processor: Intel i5 10th Gen @ 1.00GHz, 8GB DDR4 RAM
- Total Training Time = 35.0733 s

| Results                                         |            |                                      |           |
|-------------------------------------------------|------------|--------------------------------------|-----------|
| Validation MSE                                  | 0.00082    | RMSE on Experimental Validation Data | 1.9959 mm |
| Training MSE                                    | 0.00022    | RMSE on Test Data                    | 2.0927 mm |
| Max Deviation in Coordinates for whole data set | 10.1696 mm | RMSE on Whole Data                   | 1.4789 mm |
| Max Deviation in Coordinates for test data set  | 8.754 mm   | R2 Score on Test Data                | 0.9976    |

Group: 4

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula





## **Convolution Neural Network – Comparison**

#### Effect of including Experimental Validation Data in Training

|                                       | When Included in<br>Training | When excluded from Training |
|---------------------------------------|------------------------------|-----------------------------|
| RMSE on Experimental Validation Data  | 1.9959 mm                    | 10.552 mm                   |
| R2 Score Experimental Validation Data | 0.9982                       | 0.8207                      |

- Since the given Numerical Data is close to ideal conditions, the model would fail to predict accurately the Experimental Data
- Inclusion of Experimental Data makes the model more robust.
- To increase the number of Experimental Datasets for training, augmentation for the given Experimental Validation Dataset was also done.

Group: 4

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula





## **Convolution Neural Network – Comparison**

#### **Coordinate Predictions on Cut and Uncut Numerical Data**

| Coordii | Coordinate Predictions on Cut Numerical Data |          |  |
|---------|----------------------------------------------|----------|--|
| 1       | 243.8124                                     | 242.9785 |  |
| 2       | 233.8909                                     | 239.9393 |  |
| 3       | 256.2994                                     | 254.5943 |  |
| 4       | 249.7443                                     | 259.3821 |  |
| 5       | 248.8161                                     | 255.3065 |  |
| 9       | 271.0378                                     | 229.4757 |  |
| 13      | 294.1216                                     | 286.6793 |  |
| 24      | 252.4848                                     | 241.9401 |  |
| 25      | 220.4420                                     | 201.5592 |  |
| 26      | 250.4021                                     | 313.7439 |  |
| 35      | 228.7617                                     | 229.2879 |  |
| 36      | 245.9761                                     | 262.0672 |  |
| 42      | 267.9358                                     | 232.1219 |  |
| 61      | 203.3516                                     | 221.8577 |  |
| 62      | 241.2504                                     | 250.5545 |  |
| 64      | 261.8284                                     | 291.8987 |  |
| 69      | 262.4064                                     | 253.5770 |  |
| 85      | 229.6025                                     | 296.3911 |  |

| Coordinat | Coordinate Predictions on Uncut Numerical Data |          |  |
|-----------|------------------------------------------------|----------|--|
| 1         | 233.1345                                       | 250.6272 |  |
| 2         | 232.9496                                       | 233.5038 |  |
| 3         | 256.1684                                       | 254.3674 |  |
| 4         | 250.7997                                       | 257.0374 |  |
| 5         | 241.5154                                       | 246.6749 |  |
| 9         | 268.6111                                       | 236.7853 |  |
| 13        | 293.191                                        | 284.1542 |  |
| 24        | 251.5374                                       | 243.3652 |  |
| 25        | 224.0412                                       | 209.7135 |  |
| 26        | 252.7176                                       | 307.7839 |  |
| 35        | 226.5766                                       | 232.1158 |  |
| 36        | 244.1192                                       | 257.5513 |  |
| 42        | 266.9145                                       | 238.9055 |  |
| 61        | 210.6283                                       | 223.6966 |  |
| 62        | 240.5161                                       | 249.8425 |  |
| 64        | 269.0522                                       | 291.9933 |  |
| 69        | 262.6551                                       | 254.3559 |  |
| 85        | 230.5353                                       | 291.1704 |  |

 Other result metrics as mentioned on slide 9 are of the same order for both these cases, hence our network is robust in the sense that it would not require cutting of Numerical Data

Group: 4

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula





## **Convolution Neural Network – Image Map Trials**

- Idea of the image map:
  - Generate a 3D grayscale surface from the 4 sensor data (done in MATLAB)
  - Capture and save the top view image of the surface
  - Importing these images for input to CNN in Python











 Generating an image map, and training and optimization of CNN is computationally expensive and time consuming!



Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula





#### **Future Prospects**

- Using advanced architectures implementing Ensemble Learning Methods to predict the impact coordinates
- Impact detection and energy evaluation to classify the severity of impact. The combination of energy at the sensor locations along with the non-linear energy damping relationship can be given as an input to another network for predicting the impact energy



Image maps could be suitable for complex network of piezoelectric sensors

Group: 4

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula





#### **Discussion and Conclusion**

- Applying Regularizer and Dropout to simple network architectures results in underfitting & unreasonable output values. The 70-20-10 (Train-Validate-Test) split of the data helps identify under/over-fitting
- Choice of weight initializer (E.g.: Glorot, He, Random, Lecun) has an important impact on the output.
- Activation Functions (tanh, ReLU, LeakyReLU, eLU, SELU, GELU) change the output considerably
  - ReLU was faced a problem called "Dying ReLU", in which several neurons did not respond anymore resulting in a partially passive ntwork. LeakyReLU performs better than ReLU
  - Regardless, tanh is used here since it performed better than LeakyReLU across several iterations
- Accuracy metric for regression problem has no physical interpretation, hence should not be used to evaluate the model
- Hyperparameter tuning plays an important role for achieving less deviation in output values. Accessibility
  to a powerful compute cluster (RWTH CLAIX 18) helps in Iterating over various combinations of
  hyperparameters across different models
- Progressing from the simplest (linear regression) to complex architecture streamlined our architecture design process







#### References

- 1. Prof. Dr. -Ing. Bernd Markert; Dr. Franz Bamer; Dr. sc. ETH, Dipl.-Ing. Georg Kocur; Denny Thaler (M.Sc.), Computational Intelligence in Engineering Lecture Notes, IAM, RWTH Aachen University
- 2. Prof. Dr. Bastian Leibe, Machine Learning Lecture Notes, Visual Computing Institute, RWTH Aachen University
- 3. Iuliana T.; Hailing Fu.; Sharif Khodaei Z., A Convolutional Neural Network for Impact Detection and Characterization of Complex Composite Structures, Sensors 2019, 19, 4933; doi:10.3390/s19224933
- 4. RWTH Compute Cluster. Retrieved from https://help.itc.rwth-aachen.de/en/service/rhr4fjjutttf/
- TensorFlow. Retrieved from <a href="https://www.tensorflow.org/">https://www.tensorflow.org/</a>
- 6. Keras. Retrieved from <a href="https://keras.io/">https://keras.io/</a>



Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula





# **Any Questions?**



Group: 4

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula





## **Thank You**



Group: 4

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula



