PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-328307

(43)Date of publication of application: 22.12.1997

(51)Int.CI.

CO1B 31/06

B01J 3/06

B01J 23/755

(21)Application number : 08-182650

(71)Applicant : ISHIZUKA KENKYUSHO:KK

TAKUBO HIROSHI

(22)Date of filing:

07.06.1996

(72)Inventor: TAKUBO HIROSHI

(54) PURIFICATION OF IMPURE DIAMOND POWDER

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a purification process for impure diamond which can safely and efficiently remove the contaminants in diamond through the markedly simplified operation compared to the earliar process by using a specific solvent.

SOLUTION: Crude diamond powder contaminated with at least one selected from metals, metal oxides, metal carbides, non-diamond carbon and hexagonal diamond is soaked in a molten salt containing an alkali metal oxide-SO3-H2O system to convert the contaminants to substances soluble in the molten salt (soluble in water) or gaseous or vapor substances at an ambient temperature thereby separating and removing the contaminants from the diamond powder. This soaking treatment can select a high temperature condition of ≥350° C and the temperature limit is 800° C. The molten salt is constituted so that it may contains a mixture of at least one selected from an alkali metal sulfate, particularly potassium sulfate and sodium sulfate with concentrated sulfuric acid or a substance that can generate sulfuric acid under the environment in which the substance is used.

LEGAL STATUS

[Date of request for examination]

21.01.1998

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3103507

[Date of registration]

25.08.2000

[Number of appeal against examiner's decision

of rejection]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-328307

(43)公開日 平成9年(1997)12月22日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ			技術表示箇所
C01B 31/06			C01B 3	1/06]	В
B 0 1 J 3/06			B01J	3/06	Q	
23/75	23/755		C 0 1 D 5/00		M	
C 0 1 D 5/00			B01J 2	3/74	3 2 1 M	
			審查請求	未請求	請求項の数 9	書面(全 4 頁)
(21)出願番号	特顯平8-182650		(71)出願人	000147811		
				株式会社	吐石塚研究所	
(22)出顧日	平成8年(1996)6月7日			神奈川リ	具平塚市大神346	3番地 2
			(71)出願人	5961018	331	
				田窪	宏	
				京都市	東山区五条橋東方	大丁目539番地11
			(72)発明者	田窪	宏	
				京都市列	東山区五条橋東方	大丁目539番地11

(54) 【発明の名称】 不純ダイヤモンド粉末の精製法

(57) 【要約】

【目的】 本発明の目的は、ダイヤモンド粉末に混在する金属、金属酸化物、金属炭化物、非ダイヤモンド炭素等の不純物を、従来法に比べて著しく簡単な操作によって、安全に、かつ効率よく除去する技術を提供することである。

【構成】上記不純物の少なくとも1種が混在する不純ダイヤモンド粉末を、アルカリ金属酸化物-SO3-H2O系を含有する溶融塩に浸渍し、不純物を該溶融塩に溶解性(水溶性)の物質または環境温度にて気体状の物質に転換することにより、不純物をダイヤモンド粉末から分離・除去する。

【特許請求の範囲】

【請求項1】 不純物として金属、金属酸化物、金属炭化物および非ダイヤモンド炭素、六方晶ダイヤモンドから選ばれる少なくとも1種が混在する不純ダイヤモンド粉末を、アルカリ金属酸化物-SO3-H2O系を含有する溶融塩に浸漬し、上記不純物を該溶融塩に溶解性

(水溶性)の物質または環境温度にて気体状の物質に転換することにより、上記不純物をダイヤモンド粉末から分離・除去することを特徴とする、不純ダイヤモンド粉末の精製法。

【請求項2】 上記アルカリ金属酸化物がK2Oおよび /またはNa2Oを含有する、請求項1に記載の不純ダイヤモンド粉末の精製法。

【請求項3】 上記溶融塩が350℃以上の温度に加熱 されている、請求項1に記載の不純ダイヤモンド粉末の 精製法。

【請求項4】 上記溶融塩が800℃以下の温度に加熱されている、請求項1に記載の不純ダイヤモンド粉末の精製法。

【請求項5】 上記ダイヤモンド粉末が、静的加圧法または衝撃圧縮法により合成したダイヤモンドである、請求項1に記載の不純ダイヤモンド粉末の精製法。

【請求項6】 アルカリ金属の硫酸塩と濃硫酸との混合物を加熱・溶融してアルカリ金属酸化物-SO3-H2O系を含有する溶媒を調製し、不純物として金属、金属酸化物、金属炭化物および非ダイヤモンド炭素、六方晶ダイヤモンドから選ばれる少なくとも1種が混在する不純ダイヤモンド粉末をこの溶融塩に浸漬せしめることにより、上記不純物を該溶融塩に溶解性の物質または環境温度にて気体状の物質に転換することにより、上記不純物をダイヤモンド粉末から分離・除去することを特徴とする、不純ダイヤモンド粉末の精製法。

【請求項7】 上記アルカリ金属がナトリウムおよび/ またはカリウムである、請求項6に記載の不純ダイヤモ ンド粉末の精製法。

【請求項8】 アルカリ金属のピロ硫酸塩または過硫酸(ペロキシ硫酸)塩を加熱・溶融してアルカリ金属酸化物一SO3一H2O系を含有する溶媒を調製し、不純物として金属、金属酸化物、金属炭化物および非ダイヤモンド炭素、六方晶ダイヤモンドから選ばれる少なくとも1種が混在する不純ダイヤモンド粉末をこの溶融塩に浸潤し、上記不純物を該溶融塩に溶解性の物質または環境温度にて気体状の物質に転換することにより、上記不純物をダイヤモンド粉末の精製法。

【請求項9】 上記アルカリ金属がナトリウムおよび/ またはカリウムである、請求項8に記載の不純ダイヤモ ンド粉末の精製法。

【発明の詳細な説明】

[0001]

【発明の利用分野】 本発明は、合成工程から回収されたダイヤモンド粉末や採集された天然ダイヤモンド粉末に通常混在する不純物を、効率よく分離除去して工業用または装飾用の高純度ダイヤモンド粉末を得るための、簡単かつ安全な方法に関するものである。

[0002]

【従来技術】合成工程から回収されたばかりのダイヤモンド粉末には通常、反応室材料等として使用された耐火物、通電加熱のための金属材や黒鉛等の破片が混入していることが多く、一方天然ダイヤモンド粉末も、粉砕工程を経ることから、様々な異物が混在している。したがってこれらの混在物の分離除去が必要で、この目的のために、薬品による化学処理が行われている。

【0003】 即ち、ダイヤモンド粉末に混在する上記の各種不純物のうち、金属、金属酸化物は上記のように塩酸、硫酸、硝酸またはこれらの混合酸中での加熱処理により除去される。

【0004】 一方、この方法で除去し難いグラファイト、非晶質カーボン、金属炭化物については、王水、重クロム酸、クロム硫酸、過塩素酸およびその塩等の強力な酸化作用をもつ危険物薬品を用いて、酸化分解させる方法が一般的である。

【0005】 これらの工程は、通常、ドラフトチャンパー内で上記の各種危険な薬品の組み合わせ中に浸漬して加熱処理し、蒸発、乾固、溶解、沈殿、濾過を反復する段階的精製により実施されているが、各段階で使用する薬品の危険性および発生する有毒ガスと廃液に対する作業者の安全管理および環境保全のために、周到な設計に基づく防護設備を必要とし、これには相応の経費を要する。

【0006】 また工程自体の問題として、操作が段階的に行われるため、処理工程中にダイヤモンドが逸出することが多く、この結果、ダイヤモンドの回収率は必ずしも満足できる水準になかった。

[0007]

【発明が解決しようとする課題】 本発明は、従来方法に付随する上記の問題点を考慮し、ダイヤモンド粉末に混在する金属、金属酸化物、金属炭化物、非ダイヤモンド炭素等の不純物を、従来法に比べて著しく簡単な操作によって、安全に、かつ効率よく除去する技術を提供することを目的とする。

【0008】 本発明者は、上記の各種不純物を混在せる不純ダイヤモンド粉末を、アルカリ金属、特にカリウムおよびナトリウムの硫酸塩を主成分とする溶融塩中に浸漬し、350℃から800℃の範囲の温度で処理することにより、これらの不純物が容易に分離除去できることを知見し、本発明方法を完成するに至った。

[0009]

【課題を解決するための手段】 本発明による不純ダイヤモンド粉末の精製法は、不純物として金属、金属酸化

物、金属炭化物および非ダイヤモンド炭素、六方晶ダイヤモンドから選ばれる少なくとも1種が混在する不純ダイヤモンド粉末を、アルカリ金属酸化物-SO3-H2 O系を含有する溶融塩に浸漬し、上記不純物を該溶融塩に溶解性(水溶性)の物質または環境温度にて気体状の物質に転換することにより、上記不純物をダイヤモンド粉末から分離・除去することを特徴とする。

【〇〇1〇】 本発明方法は本質的に、溶媒中に存在する無水硫酸の不純物に対する緩慢な酸化作用および溶解作用を利用する。このために本発明においてはアルカリ金属酸化物-SO3-H2O系を含有する溶融塩を溶媒として利用する。このような溶媒は取り扱いが容易であると共に、高温度において金属および金属酸化物を溶解させると同時に、グラファイト、非晶質カーボン、金属 炭化物を酸化分解させる作用を有する。

【0011】 本発明の浸漬処理においては上記特定の溶媒を用いることにより、分解・蒸発しやすい王水、濃硫酸、過塩素酸による従来の精製法に比べて大幅に高温の、300℃以上の高温が利用可能である。特に350℃以上の温度で処理することにより、精製に要する時間を大幅に短縮できる。この際、ダイヤモンド自体の黒鉛化を最小限に止めるために、上限温度は800℃とする。

【0012】 上記溶融塩はアルカリ金属の硫酸塩、特に硫酸カリウム(K2SO4)および硫酸ナトリウム(Na2SO4)から選ばれる少なくとも1種と濃硫酸との混合物、またはかかる硫酸塩と使用環境下で硫酸を発生する物質との混合物とを含有するように構成する。後者の物質の例としては、硫酸水素カリウム(KHSO4)、ピロ硫酸カリウム(K2S2O7)、過硫酸カリウム(K2S2O8)、硫酸水素ナトリウム(NaHSO4)、ピロ硫酸ナトリウム(Na2S2O7)、過硫酸ナトリウム(Na2S2O7)、過硫酸ナトリウム(Na2S2O8)を挙げることができる。

【0013】 上記において、K20-S03-H20系溶融塩を構成する場合には、K2S04成分が60モル%以上、H2S04成分が40モル%以下となるように、一方Na2O-S03-H2O系物質においては、Na2SO4成分が65モル%以上、H2SO4成分が35モル%以下となるように調製すれば、過剰の無水硫酸のガスを放出させることなく、300℃以上の溶媒温度で操作が可能となる。

【0014】 なお、精製過程で無水硫酸が消費されるに伴い溶媒の融点が上昇するので、濃硫酸を滴下してこの消費量を補償することにより、溶融塩溶媒の活性を持続させることができる。

【 O O 1 5 】 本発明においては、溶媒物質が溶融状態に保たれることが前提であり、操作温度は溶媒物質の融点以上となるが、特にグラファイトや非晶質カーボン等の微粉末が空気中で燃焼を開始する約350℃を操作温

度の下限とするのが好ましい。また上記溶融塩は約60 0℃以下では非ダイヤモンド炭素に対して選択的に作用 し、ダイヤモンドには実質的に作用しないが、本発明に おいては、ダイヤモンドのグラファイト化および酸化燃 焼が許容できる約800℃までの温度を、操作温度とす る。

[0016]

【発明の効果】 本発明方法においては、金属と金属酸化物との溶解及びグラファイトの酸化分解を同時に行うことが可能であり、このため金属、金属酸化物、グラファイト、非晶質カーボン等、各種のダイヤモンド粉末混在物が、同一容器内で単一の操作により除去できるので、この点において処理工程を簡略化できる。これに比べて、従来の工程では危険な、爆発性を有する薬品を使用していたので、危険回避のために、一般的に金属および金属酸化物の溶解とグラファイトの酸化分解とは別々の工程を要していた。

【0017】 操作は密閉空間内で行うことができ、また有毒物質の放出や排出を伴わないので、周辺環境を汚染しない。即ち

(1) 本発明の方法においても操作中に少量の無水硫酸が発生するが、これは密閉容器上部の低温域にて凝縮し、器壁を伝って容器底部の溶融塩に戻る。このため従来工程におけるような、排出ガス中和や換気のための設備は不要である。

(2) 使用済みの溶媒は、冷却・凝固して回収後、温水に溶かしてダイヤモンドを分離・回収する。残留物はそのまま水分を完全に蒸発させ、固形分をケーキ状にして回収し、再利用するので、廃液を残さない。

【0018】 本発明方法は、350~800℃の温度 範囲で溶融すべく調整されたカリウムまたは/およびナ トリウムの硫酸塩で構成した溶媒が、天然産および合成 ダイヤモンドに混在する不純物を容易に除去できるとの 知見に基づくものである。而して本方法においては、従 来法に比べて精製のためのコストが廉価であり、さらに 作業者の安全および周辺環境の保全に有効である。

【0019】 本発明方法は装飾用ダイヤモンド結晶の品質向上を初め、複合メッキ混入剤として、あるいはCVD法によるダイヤモンド皮膜形成用の種子基体として、また無添加焼結体の製造時に必要な高純度ダイヤモンド粒子の提供を可能にしたものであり、その工業的価値は非常に大きいものと言える。

【 O O 2 O 】 次に本発明をいくつかの実施例によって 説明するが、これらは本発明の実施の態様を詳細に示す 目的で記載するものであり、本発明の範囲を限定するた めのものではない。

[0021]

【実施例1】 衝撃圧縮法により合成された、多量の不 純物を含む黒色の不純ダイヤモンド粉末:5gを、K2 SO4:25g、濃硫酸:6mlと共に、容量250m Iのパイレックスガラス製三角フラスコに入れて撹拌・混合し、350℃付近まで徐々に加熱し、K2O-SO3-H2O系の溶媒を調製して、ダイヤモンド粉末に混在する不純物と反応させた。不純物のうち、グラファイト、非晶質カーボンは融液中のSO3により酸化され、細かい気泡を発生しながら分解した。加熱中に溶融塩から逸出した少量のSO3は、フラスコ内面上部の低温域において水蒸気と反応して濃硫酸となり、ガラス壁面を伝って融液中に還流した。

【0022】 500~580℃の温度範囲で不純物が 急速に分解するのが観察され、処理操作開始から約20 分で原料の黒色は完全に消滅した。

【0023】 冷却後回収した凝固溶融塩はNiイオン特有の淡緑色を呈した。これに約200mlの温水を加えて溶かし、遠心分離器で白色の沈殿物を分離した。沈殿物はサファイヤ基板を用いた擦痕法による硬度試験、HF-H2SO4混酸への溶解試験、および粉末X線回折の結果、微小ダイヤモンド粒子であることを確認した。

【0024】 残液はそのまま蒸発乾固し、少量の H_2 SO_4 を加えて次回の精製処理に再利用した。なお、本 実施例において用いた $K_2O_3-H_2O$ 系溶媒の融点は 当初 340 $^{\circ}$ 、終了時は 370 $^{\circ}$ であり、精製ダイヤモンドの収率は 44 %であった。

[0025]

【実施例2】 固体圧媒体を用い、Ni触媒の存在下でグラファイトを6GP、1400℃の超高圧高温条件に供して調製されたダイヤモンド結晶を、混在する反応室材料等の破片と共に250mlのパイレックスガラス製三角フラスコに入れ、NaHSO4:50g、Na2SO4:10gを含む溶媒中で震とうさせながら加熱した。350℃付近から620℃まで約1時間かけて徐々に加熱した結果、残存グラファイトは完全に酸化分解され、Ni触媒は硫酸塩となって溶融塩中に溶解した。溶融塩は自然放冷した後、温水に溶かし、濾過してダイヤモンドを回収した。

[0026]

【実施例3】 ブリリアントカットされた $0.5カラットのダイヤモンドにNa_2SO_4:2g、K_2SO_4:3g、 濃硫酸 1 m I を加え、<math>20m$ I 容量の磁性るつぼに入れた。全体を350でまで約15分かけて徐々に昇温した後、400~4500の温度範囲に3分間保持した。次に約10分間かけて溶媒を室温まで冷却した後、

温水に溶かしてダイヤモンドを回収した。

【0027】 処理されたダイヤモンド粒子は、処理前に比べて、光沢と透明度が向上していることが肉眼で明瞭に認められた。光学顕微鏡観察によると、カット面上の微細な擦り傷、割れ目、および粗研磨されたガードル部に介在していた各種の不純物(研磨剤、金属、油脂等)が完全に除去され、さらに表面付近の内包物の一部まで除去されていた。

【0028】 上記の処理ではダイヤモンド本体は溶融 塩に侵されなかった。しかし同様の処理を750~80 0℃の温度範囲で行なった場合、透明度はさらに向上す るものの、カット面が僅かながら腐食され、約0.02 %の重量減少が見られた。

[0029]

【比較例1】 上記実施例1の被処理物0.01gと強酸化剤であるKClO3:0.01gとを、水を加えて練り固め、磁製蒸発皿に入れて温度を徐々に上げながら不純物を分解させようとしたところ、200℃付近で爆発した。

[0030]

【比較例2】 実施例1の被処理物約0.5 gを三角フラスコに入れ、これに35%HCI、61%HNO3、95%H2SO4の3:1:5 (体積比)の混合溶液を20mI加え、ドラフトチェンバー内で300 $^{\circ}$ C付近まで加熱した。溶液はNO2ガスおよびSO3ガスを盛んに発生した後、約1時間で枯渇した。回収された被処理物は黒色のままであり、グラファイトの酸化分解が不十分であることが明瞭に認められた。

[0031]

【比較例3】 実施例2において、K2O-SO3-H2O系の溶融塩の代わりに(NH4)2SO4-H2SO4系溶媒を用いて同様の処理を行なった。(NH4)2SO4が4OO℃付近から盛んに発泡しながら分解し、この結果内容物がフラスコ外に溢れ出したため、目的とする成果は得られなかった。

[0032]

【比較例4】 実施例3において、K2O-SO3-H2O系の溶融塩の代わりに95%H2SO4を用い、白煙を発生させながら、3OO℃付近で2O分間、不純ダイヤモンド粉末を処理した。ダイヤモンドの透明度は若干向上したが、粗面研磨されたガードル部分の微小な凹みの奥に、淡褐色の残留物の存在が、光学顕微鏡により観察された。