MATH5301 Elementary Analysis. Homework 8. Due: 10/29/2021, $11:59~\mathrm{pm}$

First Name: Last Name:

8.1

Show that the norms $\|\cdot\|_1$, $\|\cdot\|_p$, for p>1 and $\|\cdot\|_\infty$ are equivalent.

Let $(S, \|\cdot\|)$ and $(S', \|\cdot\|')$ be two normed spaces. Show that the following norms on $S \times S'$ are equivalent.

(a)
$$||(x,y)||_1 = ||x|| + ||y||'$$

(b)
$$\|(x,y)\|_2 = \sqrt{\|x\|^2 + (\|y\|')^2}$$

(c)
$$\|(x,y)\|_p = (\|x\|^p + (\|y\|')^p)^{1/p}$$

(d)
$$\|(x,y)\|_{\infty} = \max\{\|x\|, \|y\|'\}$$

Let X be a vector space and V be a normed space. The function $f: X \to V$ is called bounded if $\exists M: \forall x \in X \Rightarrow \|f(x)\| < M$. Consider the set $\mathcal{B}(X,V)$ of all bounded functions from X to V.

- (a) Show that $\mathcal{B}(X,V)$ is a vector space.
- (b) Show that the function $\mathcal{B}(X,V) \to \mathbb{R}_+$:

$$||f||_{\infty} := \sup_{x \in X} ||f(x)||$$

defines a norm on $\mathcal{B}(X,V)$.

8.4

Let A be a dense set in a metric space (S, d), Let (V, d_1) be a complete metric space and $f: A \to Y$ be an uniformly continuous function. Show that

- (a) if $\{x_n\}$ is a Cauchy sequence in A then $\{f(x_n)\}$ is a Cauchy sequence in Y.
- (b) There is only one continuous function $g: X \to Y$ such that g(x) = f(x) for all $x \in A$.

Let (L, ||||) be a Banach space. Let L_0 be a closed subspace of L. Define the factor-space L/L_0 as $l_1 := L/L_0 = \{x + y \mid x \in L, y \in L_0\}$. In other words L_1 consists of all subsets of L, obtained from L_0 by shifting all its elements by some element x.

- (a) Show that L_1 is a vector space
- (b) Define the function $\|\cdot\|_{:} L_1 \to \mathbb{R}_+$ as $\|x\|_1 = \inf_{x-y \in L_0} \|y\|_{:}$ Show that this function defines a norm on the space L_1 .
- (c) Show that L_1 is a Banach space.

Let C([-1,1]) be the space of all continuous real-valued functions f(x) with $x \in [-1,1]$. Let $||f||_{\infty} := \sup_{x \in [-1,1]} |f(x)|$. Find the distance from the point $p = x^2021$ to the space P_{2020} of all polynomials of degree less than or equal to 2020.