MATH 135: Introduction to the Theory of Sets

Jad Damaj

Fall 2022

Contents

1 Introduction			3	3	
	1.1	Augus	st 25		3
		119	Rasics	•	ŋ

Chapter 1

Introduction

1.1 August 25

1.1.1 Introduction

Foundations of Mathematics: language, axioms, formal proofs

- We focus on the axioms in set theory
- We use ZFC (Zermelo-Fraenkel + Choice)
- There is only one primitive notion : \in
- Within the ZFC universe, everything is a set

Course Outline:

- Basic axioms
- Operations, relations, functions
- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$
- \bullet carindals
- AC
- ordinals

1.1.2 Basics

Principle of Extensionality: Two sets A, B are the same \leftrightarrow they have the same elements $\forall x (x \in A \leftrightarrow x \in B)$ **Example 1.1.1.** 2, 3, 5 = {5, 2, 4} = {2, 5, 2, 3, 3, 2}

Definition 1.1.2. There is a set with no elements, denoted \varnothing

- $\varnothing \neq \{\varnothing\}$
- $A \subseteq B$: A is a subset of $B \leftrightarrow$ each element of A is in B (use \subsetneq to denote proper subset)

1.1. AUGUST 25

- $\{2\} \subseteq \{2,3,5\}$ but $\{2\} \not\in \{2,3,5\}$
- Power set opertaion: $\mathcal{P}(A) = \{B \mid B \subseteq A\}$

We can define a hierarchy:

$$\begin{array}{l} V_0 = \varnothing, \ V_1 = \mathcal{P}(\varnothing) = \{\varnothing\}, \ V_2 = \mathcal{PP}(\varnothing) = \{\varnothing, \{\varnothing\}\} \\ V_3 = \mathcal{P}(V_2) = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}, \ V_4, \dots \\ V_\omega = \bigcup_{n \in \mathbb{N}} V_n, \ \mathcal{P}(V_\omega), \ \mathcal{PP}(V_\omega), \dots, V_{\omega + \omega}, \dots, V_{\omega + \omega + \dots}, \dots, V_{\omega \times \omega}, \dots, V_{\omega^\omega} \end{array}$$