

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Slajdy w beamerze – przykłady

Marcin Szpyrka

Wydział EAliE Katedra Automatyki

05.04.2011

- Wprowadzenie
- Sieci Petriego niskiego poziomu
- Solorowane sieci Petriego
- RTCP-sieci motywacje

- Wprowadzenie
- Sieci Petriego niskiego poziomu
- Solorowane sieci Petriego
- RTCP-sieci motywacje
- Oharakterystyka RTCP-sieci
- Nowy model czasu
- Dynamika RTCP-sieci
- Analiza RTCP-sieci

Sieci miejsc i przejść

Sieci miejsc i przejść

Kolorowane sieci Petriego

Kolorowane sieci Petriego

Kolorowane sieci Petriego

Zadania

Odczyt DetekcjaAwarii WłOgrzewania WyłOgrzewania WłKlimatyzacji WyłKlimatyzacji

Zadania

Odczyt
DetekcjaAwarii
WłOgrzewania
WyłOgrzewania
WłKlimatyzacji
WyłKlimatyzacji

Zadania cykliczne

Odczyt

Zadania sporadyczne

DetekcjaAwarii WłOgrzewania WyłOgrzewania WłKlimatyzacji WyłKlimatyzacji

Zadania

Odczyt
DetekcjaAwarii
WłOgrzewania
WyłOgrzewania
WłKlimatyzacji
WyłKlimatyzacji

Zadania cykliczne

Odczyt

Zadania sporadyczne

DetekcjaAwarii WłOgrzewania WyłOgrzewania WłKlimatyzacji WyłKlimatyzacji

Zadania cykliczne

Odczyt

Zadania sporadyczne

DetekcjaAwarii

5/11

★ W RTCP-sieciach wykorzystywana jest funkcja priorytetów określona na zbiorze przejść sieci.

₩ RTCP-sieciach, każdy z łuków ma przypisane dwa wyrażenia: wagę łuku i wyrażenie czasowe. Dowolne wartościowanie wagi łuku musi dawać w wyniku pojedynczy znacznik odpowiedniego typu, zaś wyrażenia czasowego liczbę rzeczywistą nieujemną.

RTCP-sieci

- ★ W RTCP-sieciach wykorzystywana jest funkcja priorytetów określona na zbiorze przejść sieci.
- ₩ WRTCP-sieciach wprowadzono nowy model czasu.

₩ RTCP-sieciach, każdy z łuków ma przypisane dwa wyrażenia: wagę łuku i wyrażenie czasowe. Dowolne wartościowanie wagi łuku musi dawać w wyniku pojedynczy znacznik odpowiedniego typu, zaś wyrażenia czasowego liczbę rzeczywistą nieujemną.

RTCP-sieci

★ W RTCP-sieciach wykorzystywana jest funkcja priorytetów określona na zbiorze przejść sieci.

W RTCP-sieciach niedopuszczalne są łuki wielokrotne, w przeciwieństwie do CP-sieci, które są multigrafami.

CP-sieci vs. RTCP-sieci

M. Szpyrka. (AGH-UST)

- ★ W RTCP-sieciach wprowadzono nowy model czasu.
- ★ W RTCP-sieciach niedopuszczalne są łuki wielokrotne, w przeciwieństwie do CP-sieci, które są multigrafami.

CP-sieci vs. RTCP-sieci

M. Szpyrka. (AGH-UST)

₩ RTCP-sieciach wykorzystywana jest funkcja priorytetów określona na zbiorze przejść sieci.

- ★ W RTCP-sieciach wykorzystywana jest funkcja priorytetów określona na zbiorze przejść sieci.
- ₩ W RTCP-sieciach wprowadzono nowy model czasu.

- ★ W RTCP-sieciach wykorzystywana jest funkcja priorytetów określona na zbiorze przejść sieci.
- ¥ W RTCP-sieciach wprowadzono nowy model czasu.
- ₩ RTCP-sieciach niedopuszczalne są łuki wielokrotne, w przeciwieństwie do CP-sieci, które są multigrafami.

- ★ W RTCP-sieciach wykorzystywana jest funkcja priorytetów określona na zbiorze przejść sieci.
- ¥ W RTCP-sieciach wprowadzono nowy model czasu.
- W RTCP-sieciach niedopuszczalne są łuki wielokrotne, w przeciwieństwie do CP-sieci, które są multigrafami.
- ₩ RTCP-sieciach, każdy z łuków ma przypisane dwa wyrażenia: wagę łuku i wyrażenie czasowe. Dowolne wartościowanie wagi łuku musi dawać w wyniku pojedynczy znacznik odpowiedniego typu, zaś wyrażenia czasowego liczbę rzeczywistą nieujemną.

Znakowaniem sieci $\mathcal N$ nazywamy dowolną funkcję M określoną na zbiorze miejsc sieci taką, że:

$$\forall p \in P \colon M(p) \in 2^{C(p)^*}. \tag{1}$$

Znakowaniem sieci $\mathcal N$ nazywamy dowolną funkcję M określoną na zbiorze miejsc sieci taką, że:

$$\forall p \in P \colon M(p) \in 2^{C(p)^*}. \tag{1}$$

Rozkład pieczątek czasowych

Rozkładem pieczątek czasowych sieci $\mathcal N$ nazywamy dowolną funkcję S określoną na zbiorze miejsc sieci taką, że:

$$\forall p \in P \colon S(p) \in \mathbb{R}. \tag{2}$$

Znakowaniem sieci N nazywamy dowolną funkcję M określoną na zbiorze miejsc sieci taką, że:

$$\forall p \in P \colon M(p) \in 2^{C(p)^*}. \quad (3)$$

Znakowaniem sieci \mathcal{N} nazywamy dowolną funkcję M określoną na zbiorze miejsc sieci taką, że:

$$\forall p \in P \colon M(p) \in 2^{C(p)^*}. \quad (3)$$

Rozkładem pieczątek czasowych sieci \mathcal{N} nazywamy dowolną funkcję S określoną na zbiorze miejsc sieci taką, że:

$$\forall p \in P \colon S(p) \in \mathbb{R}.$$
 (4)

Regulacja dostępu do składowych klasy

```
class Point {
   private:
      int x;
 3
      int y;
 4
      char name;
 5
 6
   public:
 8
      int getX();
      int getY();
 9
      char getName();
10
      void setX(int i);
11
     void setY(int i);
12
      void setName(char c);
13
14
      double distance();
15
```

Point

- x : int - y : int - name : char
- + distance() : double
- + getX() : int + getY() : int
- + getName() : char
- + setX(i : int) : void + setY(i : int) : void
- + setName(c : char) : void

Alvis Language

- ★ Communication Diagrams (AlvisCD)
- ★ Alvis Code Language (AlvisCL)

Alvis Toolkit

- Alvis Editor
- Alvis Translator
- Alvis VM