Лабораторная работа №1

Цель работы

Изучить принципы построения диалоговых консольных приложений, применив на практике знания синтаксических конструкций языка С, ознакомиться с возможностью использования арифметических выражений, вычисления тригонометрических функций.

Описание работы

Диалоговые консольные приложения – консольные программы, работа с которыми ведётся в формате «запрос от пользователя – ответ». В качестве запроса может выступать ввод команды, либо выбор пункта меню, выведенного программой в консоль. После получения запроса программа может потребовать ввода необходимых для выполнения запрошенной операции данных. После получения необходимой информации программа осуществляет соответствующее действие, выводит результат работы в консоль и ожидает следующего запроса.

В процессе выполнения работы необходимо продумать логику работы пользователя с программой: предусмотреть сценарии действий пользователя и набор состояний программы. Примерами таких состояний могут служить ожидание программой ввода аргумента для вычисления значения, ожидание нажатия клавиши, завершающей работу программы.

Задание

Написать программу, которая по введённому значению аргумента вычисляет значение функции(-й).

<u>Вариант выбирать в соответствии с собственным порядковым номером в списке</u> группы. В случае нехватки вариантов считать, что нумерация циклическая.

Комментарии к реализации

При запуске программа отображает пункты меню, позволяющие перейти к выполнению вычислений, либо завершить работу программы. Выбор пункта меню осуществляется путём ввода его порядкового номера.

После того, как пользователь перешёл к выполнению вычислений, введя номер соответствующего пункта меню, необходимо вывести на экран выражение (или выражения), значение которого требуется вычислить, и предложить пользователю ввести аргумент. После выполнения вычислений программа должна вновь отобразить главное меню.

В случае ввода некорректных значений следует предложить пользователю либо повторить попытку, либо завершить работу программы.

Варианты

Вариант 1

$$z_1 = 2\sin^2\left(3\pi - 2\alpha\right)\cos^2\left(5\pi + 2\alpha\right)$$

$$z_2 = \frac{1}{4} - \frac{1}{4} \sin\left(\frac{5}{2}\pi - 8\alpha\right)$$

Вариант 2

$$z_1 = \cos \alpha + \sin \alpha + \cos 3\alpha + \sin 3\alpha$$

$$z_2 = 2\sqrt{2}\cos\alpha \cdot \sin\left(\frac{\pi}{4} + 2\alpha\right)$$

Вариант 3

$$z_1 = \frac{\sin 2\alpha + \sin 5\alpha - \sin 3\alpha}{\cos \alpha + 1 - 2\sin^2 2\alpha} \qquad z_2 = 2\sin \alpha$$

Вариант 4

$$z_1 = \frac{\sin 2\alpha + \sin 5\alpha - \sin 3\alpha}{\cos \alpha - \cos 3\alpha + \cos 5\alpha} \qquad z_2 = \text{tg}3\alpha$$

Вариант 5

$$z_1 = 1 - \frac{1}{4}\sin^2 2\alpha + \cos 2\alpha$$
 $z_2 = \cos^2 \alpha + \cos^4 \alpha$

Вариант 6

$$z_1 = \cos \alpha + \cos 2\alpha + \cos 6\alpha + \cos 7\alpha$$

$$z_2 = 4\cos\frac{\alpha}{2} \cdot \cos\frac{5}{2}\alpha \cdot \cos 4\alpha$$

Вариант 7

$$z_1 = \cos^2\left(\frac{3}{8}\pi - \frac{\alpha}{4}\right) - \cos^2\left(\frac{11}{8}\pi + \frac{\alpha}{4}\right)$$
 $z_2 = \frac{\sqrt{2}}{2}\sin\frac{\alpha}{2}$

Вариант 8

$$z_1 = \cos^4 x + \sin^2 y + \frac{1}{4}\sin^2 2x - 1$$

$$z_2 = \sin(y+x) \cdot \sin(y-x)$$

Вариант 9

$$z_1 = (\cos \alpha - \cos \beta)^2 - (\sin \alpha - \sin \beta)^2$$

$$z_2 = -4\sin^2\frac{\alpha - \beta}{2} \cdot \cos(\alpha + \beta)$$

Вариант 10

$$z_1 = \frac{\sin\left(\frac{\pi}{2} + 3\alpha\right)}{1 - \sin\left(3\alpha - \pi\right)} \qquad z_2 = \cot\left(\frac{5}{4}\pi + \frac{3}{2}\alpha\right)$$

Вариант 11

$$z_1 = \frac{1 - 2\sin^2\alpha}{1 + \sin 2\alpha} \qquad z_2 = \frac{1 - tg\alpha}{1 + tg\alpha}$$

Вариант 12

$$z_1 = \frac{\sin 4\alpha}{1 + \cos 4\alpha} \cdot \frac{\cos 2\alpha}{1 + \cos 2\alpha}$$
 $z_2 = \operatorname{ctg}\left(\frac{3}{2}\pi - \alpha\right)$

Вариант 13

$$z_1 = \frac{\sin \alpha + \cos(2\beta - \alpha)}{\cos \alpha - \sin(2\beta - \alpha)} \qquad z_2 = \frac{1 + \sin 2\beta}{\cos 2\beta}$$

Вариант 14

$$z_1 = \frac{\cos \alpha + \sin \alpha}{\cos \alpha - \sin \alpha}$$
 $z_2 = \operatorname{tg} 2\alpha + \sec 2\alpha$

Вариант 15

$$z_1 = \frac{\sqrt{2b + 2\sqrt{b^2 - 4}}}{\sqrt{b^2 - 4} + b + 2} \qquad z_2 = \frac{1}{\sqrt{b + 2}}$$

Вариант 16

$$z_1 = \frac{x^2 + 2x - 3 + (x+1)\sqrt{x^2 - 9}}{x^2 - 2x - 3 + (x-1)\sqrt{x^2 - 9}} \quad z_2 = \sqrt{\frac{x+3}{x-3}}$$

Вариант 17

$$z_1 = \frac{\sqrt{(3m+2)^2 - 24m}}{3\sqrt{m} - \frac{2}{\sqrt{m}}} \qquad z_2 = -\sqrt{m}$$

Вариант 18

$$z_1 = \left(\frac{a+2}{\sqrt{2a}} - \frac{a}{\sqrt{2a}+2} + \frac{2}{a-\sqrt{2a}}\right) \cdot \frac{\sqrt{a}-\sqrt{2}}{a+2}$$

$$z_2 = \frac{1}{\sqrt{a} + \sqrt{2}}$$

Вариант 19

$$z_1 = \left(\frac{1+a+a^2}{2a+a^2} + 2 - \frac{1-a+a^2}{2a-a^2}\right)^{-1} \left(5 - 2a^2\right)$$

$$z_2 = \frac{4 - a^2}{2}$$

Вариант 20

$$z_1 = \frac{(m-1)\sqrt{m} - (n-1)\sqrt{n}}{\sqrt{m^3 n} + nm + m^2 - m}$$
 $z_2 = \frac{\sqrt{m} - \sqrt{n}}{m}$