Example Write a function safe-sum such that:

- If l ⇒ a proper list of numbers, then (safe-sum l) ⇒ the sum of the elements of that list.
- If $l \Rightarrow a$ proper list whose elements are <u>not</u> all numbers, then $(safe-sum\ l) \Rightarrow$ the symbol ERR!.

Example Write a function safe-sum such that:

- If l ⇒ a proper list of numbers, then (safe-sum l) ⇒ the sum of the elements of that list.
- If $l \Rightarrow a$ proper list whose elements are <u>not</u> all numbers, then $(safe-sum\ l) \Rightarrow$ the symbol ERR!.

• We didn't eliminate the LET, as its local variable X is used twice in the case where each of (car L) and $X \Rightarrow a$ number.

Example Write a function safe-sum such that:

- If $l \Rightarrow a$ proper list of numbers, then $(safe-sum\ l) \Rightarrow the\ sum\ of\ the\ elements\ of\ that\ list.$
- If $l \Rightarrow a$ proper list whose elements are <u>not</u> all numbers, then $(safe-sum\ l) \Rightarrow$ the symbol ERR!.

- We didn't eliminate the LET, as its local variable X is used twice in the case where each of (car L) and $X \Rightarrow a$ number.
- Eliminating the LET would produce the function on the next slide, or an equivalent function that uses COND instead of nested IFs. Those functions would be <u>extremely inefficient</u> when L is a list of numbers: Their running time grows <u>exponentially</u> with the length of the list.

Eliminating LET from the 1st version of the definition gives:
 (defun safe-sum (L); very inefficient!
 (if (null L)

```
    Eliminating LET from the 1st version of the definition gives:

  (defun safe-sum (L); very inefficient!
    (if (null L)
        (if (not (numberp (car L)))
             'ERR!
             (if (numberp (safe-sum (cdr L)))
                 (+ (car L) (safe-sum (cdr L)))
                  'ERR!)))))
• Consider a call of safe-sum with argument value (0 1 2 ... 49).
```

 Eliminating LET from the 1st version of the definition gives: (defun safe-sum (L); very inefficient! (if (null L) (if (not (numberp (car L))) 'ERR! (if (numberp (safe-sum (cdr L))) (+ (car L) (safe-sum (cdr L))) 'ERR!))))) • Consider a call of safe-sum with argument value (0 1 2 ... 49). • It makes $2=2^1$ recursive calls with argument value (1 2 3 ... 49).

• Consider a call of safe-sum with argument value (0 1 2 ... 49).

'ERR!)))))

- It makes 2=2¹ recursive calls with argument value (1 2 3 ... 49).
- Each of those 2¹ calls makes 2 recursive calls with argument value (2 3 4 ... 49), so there are a total of 2¹×2=2² recursive calls with argument value (2 3 4 ... 49).

• Consider a call of safe-sum with argument value (0 1 2 ... 49).

(+ (car L) (safe-sum (cdr L)))

(if (numberp (safe-sum (cdr L)))

'ERR!)))))

- It makes 2=2¹ recursive calls with argument value (1 2 3 ... 49).
- Each of those 2¹ calls makes 2 recursive calls with argument value (2 3 4 ... 49), so there are a total of 2¹×2=2² recursive calls with argument value (2 3 4 ... 49).
- Each of those 2^2 calls makes 2 recursive calls with argument value (3 4 5 ... 49), so there are a total of $2^2 \times 2 = 2^3$ recursive calls with argument value (3 4 5 ... 49).

•

• Consider a call of safe-sum with argument value (0 1 2 ... 49).

'ERR!)))))

- It makes 2=2¹ recursive calls with argument value (1 2 3 ... 49).
- Each of those 2¹ calls makes 2 recursive calls with argument value (2 3 4 ... 49), so there are a total of 2¹×2=2² recursive calls with argument value (2 3 4 ... 49).
- Each of those 2² calls makes 2 recursive calls with argument value (3 4 5 ... 49), so there are a total of 2²×2=2³ recursive calls with argument value (3 4 5 ... 49).
- For $0 \le d \le 50$, there are 2^d calls with argument value $(d \dots 49)$.

Eliminating LET from the 1st version of the definition gives:
 (defun safe-sum (L); very inefficient!
 (if (null L)

• Consider a call of safe-sum with argument value (0 1 2 ... 49).

• For $0 \le d \le 50$, there are 2^d calls with argument value $(d \dots 49)$.

 Eliminating LET from the 1st version of the definition gives: (defun safe-sum (L); very inefficient! (if (null L) (if (not (numberp (car L))) 'ERR! (if (numberp (safe-sum (cdr L)))

• Consider a call of safe-sum with argument value (0 1 2 ... 49).

'ERR!)))))

(+ (car L) (safe-sum (cdr L)))

• For $0 \le d \le 50$, there are 2^d calls with argument value $(d \dots 49)$.

• Consider a call of safe-sum with argument value (0 1 2 ... 49).

'ERR!)))))

(+ (car L) (safe-sum (cdr L)))

• For $0 \le d \le 50$, there are 2^d calls with argument value $(d \dots 49)$. \therefore the total no. of recursive calls is $2^1 + \dots + 2^{50} = 2^{51} - 2 > 2 \times 10^{15}$.

• Eliminating LET from the 1st version of the definition gives:

```
(defun safe-sum (L); very inefficient!
 (if (null L)
      (if (not (numberp (car L)))
          'ERR!
          (if (numberp (safe-sum (cdr L)))
               (+ (car L) (safe-sum (cdr L)))
               'ERR!)))))
```

- Consider a call of safe-sum with argument value (0 1 2 ... 49).
- For $0 \le d \le 50$, there are 2^d calls with argument value $(d \dots 49)$. \therefore the total no. of recursive calls is $2^1 + ... + 2^{50} = 2^{51} - 2 > 2 \times 10^{15}$.
- General Principle: If a function f can make 2 or more direct recursive calls, then a single call of f might well produce 2^d or more recursive calls of f at recursion depth d.

• Eliminating LET from the 1st version of the definition gives:

```
(defun safe-sum (L); very inefficient!
  (if (null L)
      (if (not (numberp (car L)))
          'ERR!
          (if (numberp (safe-sum (cdr L)))
               (+ (car L) (safe-sum (cdr L)))
               'ERR!)))))
```

- Consider a call of safe-sum with argument value (0 1 2 ... 49).
- For $0 \le d \le 50$, there are 2^d calls with argument value $(d \dots 49)$.
 - \therefore the total no. of recursive calls is $2^1 + ... + 2^{50} = 2^{51} 2 > 2 \times 10^{15}$.
- General Principle: If a function f can make 2 or more direct recursive calls, then a single call of f might well produce 2^d or more recursive calls of f at recursion depth d.
- LET can be used to prevent a function from making 2 or more direct recursive calls with the very same argument values!

- General Principle: If a function f can make 2 or more direct recursive calls, then a single call of f might well produce 2^d or more recursive calls of f at recursion depth d.
- LET can be used to <u>prevent</u> a function from making 2 or more direct recursive calls with the very same argument values!

- General Principle: If a function f can make 2 or more direct recursive calls, then a single call of f might well produce 2^d or more recursive calls of f at recursion depth d.
- LET can be used to <u>prevent</u> a function from making 2 or more direct recursive calls with the very same argument values!

- General Principle: If a function f can make 2 or more direct recursive calls, then a single call of f might well produce 2^d or more recursive calls of f at recursion depth d.
- LET can be used to <u>prevent</u> a function from making 2 or more direct recursive calls with the very same argument values!
- The 1st and 2nd versions of safe-sum use LET in this way.

- General Principle: If a function f can make 2 or more direct recursive calls, then a single call of f might well produce 2^d or more recursive calls of f at recursion depth d.
- LET can be used to <u>prevent</u> a function from making 2 or more direct recursive calls with the very same argument values!
- The 1st and 2nd versions of **safe-sum** use **LET** in this way.

• These versions never make more than one direct recursive call, as a result of which (safe-sum '(0 1 ... 49)) computes its result using just 50 recursive calls rather than quadrillions!

Problems 1-13 can be solved by starting with one of the templates below or a dual of the 2^{nd} template in which the roles of e1 and e2 are switched. (These are just the templates presented earlier!)

Problems 1-13 can be solved by starting with one of the templates below or a dual of the 2nd template in which the roles of e1 and e2 are switched. (These are just the templates presented earlier!) (defun f (e) (if (null e) <u>or</u> (zerop e) value of (f nil) <u>or</u> (f 0) (let ((X (f (cdr e)) <u>or</u> (f (- e 1)))) an expression that ⇒ value of (f e) and that involves X and, possibly, e (defun f (e1 e2) (if (null e1) <u>or</u> (zerop e1) value of (f **nil** e2) <u>or</u> (f 0 e2) (let ((X (f (cdr e1) e2) <u>or</u> (f (- e1 1) e2))) an expression that \Rightarrow value of (f e1 e2) and that involves X and, possibly, e1 and/or e2

Problems 1-13 can be solved by starting with one of the templates above or a dual of the 2^{nd} template in which the roles of e1 and e2 are switched. (These are just the templates presented earlier!)

Recall that:

•

Problems 1-13 can be solved by starting with one of the templates above or a dual of the 2^{nd} template in which the roles of e1 and e2 are switched. (These are just the templates presented earlier!)

Recall that:

• If there is no case in which X is used more than once, then <u>eliminate the LET</u>.

Problems 1-13 can be solved by starting with one of the templates above or a dual of the 2^{nd} template in which the roles of e1 and e2 are switched. (These are just the templates presented earlier!)

Recall that:

- If there is no case in which X is used more than once, then <u>eliminate the LET</u>.
- If the LET isn't eliminated, <u>move any case in which X needn't</u>
 <u>be used out of the LET</u>. If the LET <u>is</u> eliminated but <u>there's a</u>
 <u>case where the recursive call's result isn't needed, deal with</u>
 <u>such cases as base cases--i.e., without making a recursive call</u>.

For concreteness, let's assume you are writing a 2-argument function f such that, when e1 ≠ NIL, (f e1 e2) computes its result from (f (cdr e1) e2).

•

For concreteness, let's assume you are writing a 2-argument function **f** such that, when **e1 ⇒ NIL**, **(f e1 e2)** computes its result from **(f (cdr e1) e2)**.

• You can use an analogous approach in other cases.

•

For concreteness, let's assume you are writing a 2-argument function f such that, when e1 ⇒ NIL, (f e1 e2) computes its result from (f (cdr e1) e2).

- You can use an analogous approach in other cases.
- We will assume the definition of f has the following form:

For concreteness, let's assume you are writing a 2-argument function f such that, when e1 ⇒ NIL, (f e1 e2) computes its result from (f (cdr e1) e2).

- You can use an analogous approach in other cases.
- We will assume the definition of f has the following form:

 However, a similar debugging approach can be used if the definition of f does not use LET (e.g., because the LET has been eliminated) or the definition has more than one base case before the LET.

```
For concreteness, let's assume you are writing a 2-argument function f such that, when e1 ⇒ NIL, (f e1 e2) computes its result from (f (cdr e1) e2). 1.
```

2.

For concreteness, let's assume you are writing a 2-argument function **f** such that, when **e1 ⇒ NIL**, **(f e1 e2)** computes its result from **(f (cdr e1) e2)**.

Make sure you know what the base case (f nil e2) should return; test f to check that (f nil e2) always returns the right result: If it doesn't, fix the definition of f so it does!
 2.

For concreteness, let's assume you are writing a 2-argument function f such that, when e1 ⇒ NIL, (f e1 e2) computes its result from (f (cdr e1) e2).

- 1. Make sure you know what the base case (f nil e2) should return; test f to check that (f nil e2) always returns the right result: If it doesn't, fix the definition of f so it does!
- 2. Call **f** with different arguments. If for certain arguments there's an evaluation error or **f** returns an incorrect result, find arguments **e1** and **e2** such that:

(i) (f e1 e2) ≠ the correct result,

but (ii) (f (cdr e1) e2) \Rightarrow the correct result.

```
For concreteness, let's assume you are writing a 2-argument function f such that, when e1 ⇒ NIL, (f e1 e2) computes its result from (f (cdr e1) e2).
```

- 1. Make sure you know what the base case (f nil e2) should return; test f to check that (f nil e2) always returns the right result: If it doesn't, fix the definition of f so it does!
- 2. Call f with different arguments. If for certain arguments there's an evaluation error or f returns an incorrect result, find arguments e1 and e2 such that:

(i) (f e1 e2) \Rightarrow the correct result, but (ii) (f (cdr e1) e2) \Rightarrow the correct result.

(ii) implies (let ((X (f (cdr e1) e2))) gives X the <u>correct</u> value, whereas (i) implies the ... expr

doesn't compute the correct result from X's value!

For concreteness, let's assume you are writing a 2-argument function f such that, when e1 ⇒ NIL, (f e1 e2) computes its result from (f (cdr e1) e2).

- 1. Make sure you know what the base case (f nil e2) should return; test f to check that (f nil e2) always returns the right result: If it doesn't, fix the definition of f so it does!
- 2. Call **f** with different arguments. If for certain arguments there's an evaluation error or **f** returns an incorrect result, find arguments **e1** and **e2** such that:

(i) (f e1 e2) ≠ the correct result,

<u>but</u> (ii) (f (cdr e1) e2) \Rightarrow the correct result.

(ii) implies (let ((X (f (cdr e1) e2))) gives X the <u>correct</u> value, whereas (i) implies the <u>...</u> expr<u>doesn't</u> compute the correct <u>result from X's value!</u>

When you find arguments **e1** and **e2** that satisfy (i) & (ii), fix the $\boxed{\cdots}$ expr so **(f e1 e2)** \Rightarrow the **correct** result.

For concreteness, let's assume you are writing a 2-argument function f such that, when e1 ⇒ NIL, (f e1 e2) computes its result from (f (cdr e1) e2).

- 1. Make sure you know what the base case (f nil e2) should return; test f to check that (f nil e2) always returns the right result: If it doesn't, fix the definition of f so it does!
- 2. Call **f** with different arguments. If for certain arguments there's an evaluation error or **f** returns an incorrect result, find arguments **e1** and **e2** such that:

(i) (f e1 e2) ≠ the correct result,

<u>but</u> (ii) (f (cdr e1) e2) \Rightarrow the correct result.

(ii) implies (let ((X (f (cdr e1) e2))) gives X the <u>correct</u> value, whereas (i) implies the <u>...</u> expr<u>doesn't</u> compute the correct <u>result from X's value!</u>

When you find arguments **e1** and **e2** that satisfy (i) & (ii), fix the $\boxed{\cdots}$ expr so **(f e1 e2)** \Rightarrow the **correct** result.

Repeat step 2 until you think the definition of f is correct.

A Debugging Example Relating to Assignment 4

Problem 7 asks you to write a function PARTITION such that if $l \Rightarrow$ a proper list of real numbers and p is a real number, then (PARTITION l p) returns a list whose CAR is a list of those elements of the list given by l that are \underline{less} than p, and whose CADR is a list of the other elements of the list given by l. So:

Problem 7 asks you to write a function PARTITION such that if $l \Rightarrow a$ proper list of real numbers and p is a real number, then (PARTITION l p) returns a list whose CAR is a list of those elements of the list given by l that are \underline{less} than p, and whose CADR is a list of the other elements of the list given by l. So: (partition () 4) \Rightarrow (NIL NIL) (partition '(2 5 6 3) 5) \Rightarrow ((2 3) (5 6))

```
Problem 7 asks you to write a function PARTITION such that if
l \Rightarrow a proper list of real numbers and p is a real number, then
(PARTITION l p) returns a list whose CAR is a list of those
elements of the list given by l that are less than p, and whose
CADR is a list of the other elements of the list given by l. So:
 (partition () 4) \Rightarrow (NIL NIL) (partition '(2 5 6 3) 5) \Rightarrow ((2 3) (5 6))
Here is an incorrect definition that needs debugging:
(defun partition (L p) ; Incorrect definition!
  (if (null L)
      '(()())
     (let ((X (partition (cdr L) p)))
       (cond ((> (car L) p) (list (car X) (cons (car L) (cadr X))))
             (t (list (cons (car L) (car X)) (cadr X)))))))
```

```
Problem 7 asks you to write a function PARTITION such that if
l \Rightarrow a proper list of real numbers and p is a real number, then
(PARTITION l p) returns a list whose CAR is a list of those
elements of the list given by l that are less than p, and whose
CADR is a list of the other elements of the list given by l. So:
 (partition () 4) \Rightarrow (NIL NIL) (partition '(2 5 6 3) 5) \Rightarrow ((2 3) (5 6))
Here is an incorrect definition that needs debugging:
(defun partition (L p) ; Incorrect definition!
 (if (null L)
     '(()())
     (let ((X (partition (cdr L) p)))
       (cond ((> (car L) p) (list (car X) (cons (car L) (cadr X))))
             (t (list (cons (car L) (car X)) (cadr X)))))))
On testing this function in Clisp, we find:
• (partition () 4) ⇒ (NIL NIL) Correct!
```

```
Problem 7 asks you to write a function PARTITION such that if
l \Rightarrow a proper list of real numbers and p is a real number, then
(PARTITION l p) returns a list whose CAR is a list of those
elements of the list given by l that are less than p, and whose
CADR is a list of the other elements of the list given by l. So:
 (partition () 4) \Rightarrow (NIL NIL) (partition '(2 5 6 3) 5) \Rightarrow ((2 3) (5 6))
Here is an incorrect definition that needs debugging:
(defun partition (L p) ; Incorrect definition!
  (if (null L)
     '(()())
     (let ((X (partition (cdr L) p)))
       (cond ((> (car L) p) (list (car X) (cons (car L) (cadr X))))
             (t (list (cons (car L) (car X)) (cadr X)))))))
On testing this function in Clisp, we find:
• (partition () 4) ⇒ (NIL NIL) Correct!
• (partition '(2 5 6 3) 5) \Rightarrow ((2 5 3) (6)) Wrong: should be
```

```
Problem 7 asks you to write a function PARTITION such that if
l \Rightarrow a proper list of real numbers and p is a real number, then
(PARTITION l p) returns a list whose CAR is a list of those
elements of the list given by l that are less than p, and whose
CADR is a list of the other elements of the list given by l. So:
 (partition () 4) \Rightarrow (NIL NIL) (partition '(2 5 6 3) 5) \Rightarrow ((2 3) (5 6))
Here is an incorrect definition that needs debugging:
(defun partition (L p) ; Incorrect definition!
  (if (null L)
      '(()())
     (let ((X (partition (cdr L) p)))
       (cond ((> (car L) p) (list (car X) (cons (car L) (cadr X))))
             (t (list (cons (car L) (car X)) (cadr X)))))))
On testing this function in Clisp, we find:
• (partition () 4) ⇒ (NIL NIL) Correct!
• (partition '(2 5 6 3) 5) \Rightarrow ((2 5 3) (6)) Wrong: should be—
```

363

```
Problem 7 asks you to write a function PARTITION such that if
l \Rightarrow a proper list of real numbers and p is a real number, then
(PARTITION l p) returns a list whose CAR is a list of those
elements of the list given by l that are less than p, and whose
CADR is a list of the other elements of the list given by l. So:
 (partition () 4) \Rightarrow (NIL NIL) (partition '(2 5 6 3) 5) \Rightarrow ((2 3) (5 6))
Here is an incorrect definition that needs debugging:
(defun partition (L p) ; Incorrect definition!
  (if (null L)
      '(()())
     (let ((X (partition (cdr L) p)))
        (cond ((> (car L) p) (list (car X) (cons (car L) (cadr X))))
              (t (list (cons (car L) (car X)) (cadr X)))))))
On testing this function in Clisp, we find:
• (partition () 4) ⇒ (NIL NIL) Correct!
• (partition '(2 5 6 3) 5) \Rightarrow ((2 5 3) (6)) Wrong: should be—
• (partition '(5 6 3) 5) \Rightarrow ((5 3) (6)) Wrong: should be
```

```
Problem 7 asks you to write a function PARTITION such that if
l \Rightarrow a proper list of real numbers and p is a real number, then
(PARTITION l p) returns a list whose CAR is a list of those
elements of the list given by l that are less than p, and whose
CADR is a list of the other elements of the list given by l. So:
 (partition () 4) \Rightarrow (NIL NIL) (partition '(2 5 6 3) 5) \Rightarrow ((2 3) (5 6))
Here is an incorrect definition that needs debugging:
(defun partition (L p) ; Incorrect definition!
  (if (null L)
      '(()())
     (let ((X (partition (cdr L) p)))
        (cond ((> (car L) p) (list (car X) (cons (car L) (cadr X))))
              (t (list (cons (car L) (car X)) (cadr X)))))))
On testing this function in Clisp, we find:
• (partition () 4) ⇒ (NIL NIL) Correct!
• (partition '(2 5 6 3) 5) \Rightarrow ((2 5 3) (6)) Wrong: should be—
• (partition '(5 6 3) 5) \Rightarrow ((5 3) (6)) Wrong: should be ((3) (5 6))
```

```
Problem 7 asks you to write a function PARTITION such that if
l \Rightarrow a proper list of real numbers and p is a real number, then
(PARTITION l p) returns a list whose CAR is a list of those
elements of the list given by l that are less than p, and whose
CADR is a list of the other elements of the list given by l. So:
 (partition () 4) \Rightarrow (NIL NIL) (partition '(2 5 6 3) 5) \Rightarrow ((2 3) (5 6))
Here is an incorrect definition that needs debugging:
(defun partition (L p) ; Incorrect definition!
  (if (null L)
      '(()())
      (let ((X (partition (cdr L) p)))
        (cond ((> (car L) p) (list (car X) (cons (car L) (cadr X))))
              (t (list (cons (car L) (car X)) (cadr X)))))))
On testing this function in Clisp, we find:
• (partition () 4) ⇒ (NIL NIL) Correct!
• (partition '(2 5 6 3) 5) \Rightarrow ((2 5 3) (6)) Wrong: should be—
• (partition '(5 6 3) 5) \Rightarrow ((5 3) (6)) Wrong: should be ((3) (5 6))
• (partition '(6 3) 5) \Rightarrow ((3) (6)) Correct!
```

```
Problem 7 asks you to write a function PARTITION such that if
l \Rightarrow a proper list of real numbers and p is a real number, then
(PARTITION l p) returns a list whose CAR is a list of those
elements of the list given by l that are \underline{less} than p, and whose
CADR is a list of the other elements of the list given by l. So:
 (partition () 4) \Rightarrow (NIL NIL) (partition '(2 5 6 3) 5) \Rightarrow ((2 3) (5 6))
Here is an incorrect definition that needs debugging:
(defun partition (L p) ; Incorrect definition!
  (if (null L)
      '(()())
      (let ((X (partition (cdr L) p)))
        (cond ((> (car L) p) (list (car X) (cons (car L) (cadr X))))
              (t (list (cons (car L) (car X)) (cadr X)))))))
On testing this function in Clisp, we find:
```

- (partition '(5 6 3) 5) \Rightarrow ((5 3) (6)) Wrong: should be ((3) (5 6))
- (partition '(6 3) 5) \Rightarrow ((3) (6)) Correct!

```
Problem 7 asks you to write a function PARTITION such that if
l \Rightarrow a proper list of real numbers and p is a real number, then
(PARTITION l p) returns a list whose CAR is a list of those
elements of the list given by l that are \underline{less} than p, and whose
CADR is a list of the other elements of the list given by l. So:
 (partition () 4) \Rightarrow (NIL NIL) (partition '(2 5 6 3) 5) \Rightarrow ((2 3) (5 6))
Here is an incorrect definition that needs debugging:
(defun partition (L p) ; Incorrect definition!
  (if (null L)
      '(()())
      (let ((X (partition (cdr L) p)))
       (cond ((> (car L) p) (list (car X) (cons (car L) (cadr X))))
              (t (list (cons (car L) (car X)) (cadr X)))))))
```

On testing this function in Clisp, we find:

- (partition '(5 6 3) 5) \Rightarrow ((5 3) (6)) Wrong: should be ((3) (5 6))
- (partition '(6 3) 5) \Rightarrow ((3) (6)) Correct!

```
Problem 7 asks you to write a function PARTITION such that if
l \Rightarrow a proper list of real numbers and p is a real number, then
(PARTITION l p) returns a list whose CAR is a list of those
elements of the list given by l that are \underline{less} than p, and whose
CADR is a list of the other elements of the list given by l. So:
 (partition () 4) \Rightarrow (NIL NIL) (partition '(2 5 6 3) 5) \Rightarrow ((2 3) (5 6))
Here is an incorrect definition that needs debugging:
(defun partition (L p) ; Incorrect definition!
  (if (null L)
      '(()())
      (let ((X (partition (cdr L) p)))
       (cond ((> (car L) p) (list (car X) (cons (car L) (cadr X))))
              (t (list (cons (car L) (car X)) (cadr X))))))
On testing this function in Clisp, we find:
• (partition '(5 6 3) 5) \Rightarrow ((5 3) (6)) Wrong: should be ((3) (5 6))
• (partition '(6 3) 5) \Rightarrow ((3) (6)) Correct!
  When L \Rightarrow (5 6 3) and p \Rightarrow 5, we have that X \Rightarrow : We must
```

fix the \cdots expr so it \Rightarrow [instead of ((5 3) (6))].

```
Problem 7 asks you to write a function PARTITION such that if
l \Rightarrow a proper list of real numbers and p is a real number, then
(PARTITION l p) returns a list whose CAR is a list of those
elements of the list given by l that are \underline{less} than p, and whose
CADR is a list of the other elements of the list given by l. So:
 (partition () 4) \Rightarrow (NIL NIL) (partition '(2 5 6 3) 5) \Rightarrow ((2 3) (5 6))
Here is an incorrect definition that needs debugging:
(defun partition (L p) ; Incorrect definition!
  (if (null L)
      '(()())
      (let ((X (partition (cdr L) p)))
        (cond ((> (car L) p) (list (car X) (cons (car L) (cadr X))))
              (t (list (cons (car L) (car X)) (cadr X))))))
On testing this function in Clisp, we find:
• (partition '(5 6 3) 5) \Rightarrow ((5 3) (6)) Wrong: should be ((3) (5 6))
• (partition '(6 3) 5) \Rightarrow ((3) (6)) Correct!
  When L \Rightarrow (5 6 3) and p \Rightarrow 5, we have that X \Rightarrow ((3) (6)): We must
                                              [<u>instead of</u> ((5 3) (6))].
  fix the \cdots expr so it \Rightarrow
```

```
l \Rightarrow a proper list of real numbers and p is a real number, then
(PARTITION l p) returns a list whose CAR is a list of those
elements of the list given by l that are \underline{less} than p, and whose
CADR is a list of the other elements of the list given by l. So:
 (partition () 4) \Rightarrow (NIL NIL) (partition '(2 5 6 3) 5) \Rightarrow ((2 3) (5 6))
Here is an incorrect definition that needs debugging:
(defun partition (L p) ; Incorrect definition!
  (if (null L)
      '(()())
      (let ((X (partition (cdr L) p)))
        (cond ((> (car L) p) (list (car X) (cons (car L) (cadr X))))
              (t (list (cons (car L) (car X)) (cadr X))))))
On testing this function in Clisp, we find:
• (partition '(5 6 3) 5) \Rightarrow ((5 3) (6)) Wrong: should be ((3) (5 6))
• (partition '(6 3) 5) \Rightarrow ((3) (6)) Correct!
  When L \Rightarrow (5 6 3) and p \Rightarrow 5, we have that X \Rightarrow ((3) (6)): We must
```

fix the ____ expr so it \Rightarrow ((3) (5 6)) [instead of ((5 3) (6))].

Problem 7 asks you to write a function PARTITION such that if

On testing this function in Clisp, we find:

- (partition '(5 6 3) 5) \Rightarrow ((5 3) (6)) Wrong: should be ((3) (5 6))
- (partition '(6 3) 5) \Rightarrow ((3) (6)) Correct! When L \Rightarrow (5 6 3) and p \Rightarrow 5, we have that X \Rightarrow ((3) (6)): We must fix the \longrightarrow expr so it \Rightarrow ((3) (5 6)) [instead of ((5 3) (6))].

On testing this function in Clisp, we find:

- (partition '(5 6 3) 5) \Rightarrow ((5 3) (6)) Wrong: should be ((3) (5 6))
- (partition '(6 3) 5) \Rightarrow ((3) (6)) Correct! When L \Rightarrow (5 6 3) and p \Rightarrow 5, we have that X \Rightarrow ((3) (6)): We must fix the \longrightarrow expr so it \Rightarrow ((3) (5 6)) [instead of ((5 3) (6))].

On testing this function in Clisp, we find:

- (partition '(5 6 3) 5) \Rightarrow ((5 3) (6)) Wrong: should be ((3) (5 6))
- (partition '(6 3) 5) \Rightarrow ((3) (6)) Correct! When L \Rightarrow (5 6 3) and p \Rightarrow 5, we have that X \Rightarrow ((3) (6)): We must fix the \longrightarrow expr so it \Rightarrow ((3) (5 6)) [instead of ((5 3) (6))].
- Q. When L \Rightarrow (5 6 3), p \Rightarrow 5, and X \Rightarrow ((3) (6)), why does \longrightarrow the wrong result ((5 3) (6))?

Α.

•

On testing this function in Clisp, we find:

- (partition '(5 6 3) 5) \Rightarrow ((5 3) (6)) Wrong: should be ((3) (5 6))
- (partition '(6 3) 5) \Rightarrow ((3) (6)) Correct! When L \Rightarrow (5 6 3) and p \Rightarrow 5, we have that X \Rightarrow ((3) (6)): We must fix the ____ expr so it \Rightarrow ((3) (5 6)) [instead of ((5 3) (6))].
- Q. When L \Rightarrow (5 6 3), p \Rightarrow 5, and X \Rightarrow ((3) (6)), why does \longrightarrow the wrong result ((5 3) (6))?
- A. Because the (> (car L) p) test of the 1st COND clause \Rightarrow NIL, so the result is given by the t clause, whose consequent form (list (cons (car L) (car X)) (cadr X)) \Rightarrow ((5 3) (6)).

On testing this function in Clisp, we find:

- (partition '(5 6 3) 5) \Rightarrow ((5 3) (6)) Wrong: should be ((3) (5 6))
- (partition '(6 3) 5) \Rightarrow ((3) (6)) Correct! When L \Rightarrow (5 6 3) and p \Rightarrow 5, we have that X \Rightarrow ((3) (6)): We must fix the ____ expr so it \Rightarrow ((3) (5 6)) [instead of ((5 3) (6))].
- Q. When L \Rightarrow (5 6 3), p \Rightarrow 5, and X \Rightarrow ((3) (6)), why does \longrightarrow the wrong result ((5 3) (6))?
- A. Because the (> (car L) p) test of the 1st COND clause \Rightarrow NIL, so the result is given by the t clause, whose consequent form (list (cons (car L) (car X)) (cadr X)) \Rightarrow ((5 3) (6)).
- To get ((3) (5 6)) from L ⇒ (5 6 3), p ⇒ 5, and X ⇒ ((3) (6))
 (list _______) would work.

On testing this function in Clisp, we find:

- (partition '(5 6 3) 5) \Rightarrow ((5 3) (6)) Wrong: should be ((3) (5 6))
- (partition '(6 3) 5) \Rightarrow ((3) (6)) Correct! When L \Rightarrow (5 6 3) and p \Rightarrow 5, we have that X \Rightarrow ((3) (6)): We must fix the ____ expr so it \Rightarrow ((3) (5 6)) [instead of ((5 3) (6))].
- Q. When L \Rightarrow (5 6 3), p \Rightarrow 5, and X \Rightarrow ((3) (6)), why does \longrightarrow the wrong result ((5 3) (6))?
- A. Because the (> (car L) p) test of the 1st COND clause \Rightarrow NIL, so the result is given by the t clause, whose consequent form (list (cons (car L) (car X)) (cadr X)) \Rightarrow ((5 3) (6)).
- To get ((3) (5 6)) from L ⇒ (5 6 3), p ⇒ 5, and X ⇒ ((3) (6))
 (list (car X) (car X)

•

On testing this function in Clisp, we find:

- (partition '(5 6 3) 5) \Rightarrow ((5 3) (6)) Wrong: should be ((3) (5 6))
- (partition '(6 3) 5) \Rightarrow ((3) (6)) Correct! When L \Rightarrow (5 6 3) and p \Rightarrow 5, we have that X \Rightarrow ((3) (6)): We must fix the ____ expr so it \Rightarrow ((3) (5 6)) [instead of ((5 3) (6))].
- Q. When L \Rightarrow (5 6 3), p \Rightarrow 5, and X \Rightarrow ((3) (6)), why does \longrightarrow the wrong result ((5 3) (6))?
- A. Because the (> (car L) p) test of the 1st COND clause \Rightarrow NIL, so the result is given by the t clause, whose consequent form (list (cons (car L) (car X)) (cadr X)) \Rightarrow ((5 3) (6)).
- To get ((3) (5 6)) from L ⇒ (5 6 3), p ⇒ 5, and X ⇒ ((3) (6))
 (list (car X) (cons (car L) (cadr X))) would work.

•

On testing this function in Clisp, we find:

- (partition '(5 6 3) 5) \Rightarrow ((5 3) (6)) Wrong: should be ((3) (5 6))
- (partition '(6 3) 5) \Rightarrow ((3) (6)) Correct! When L \Rightarrow (5 6 3) and p \Rightarrow 5, we have that X \Rightarrow ((3) (6)): We must fix the ____ expr so it \Rightarrow ((3) (5 6)) [instead of ((5 3) (6))].
- Q. When L \Rightarrow (5 6 3), p \Rightarrow 5, and X \Rightarrow ((3) (6)), why does \longrightarrow the wrong result ((5 3) (6))?
- A. Because the (> (car L) p) test of the 1st COND clause \Rightarrow NIL, so the result is given by the t clause, whose consequent form (list (cons (car L) (car X)) (cadr X)) \Rightarrow ((5 3) (6)).
- To get ((3) (5 6)) from L ⇒ (5 6 3), p ⇒ 5, and X ⇒ ((3) (6))
 (list (car X) (cons (car L) (cadr X))) would work.
- This is just the consequent form of the 1st COND clause, so we can make \longrightarrow ((3) (5 6)) by fixing that clause's test.

Further Comments on Testing and Debugging Recursive Functions

•

Further Comments on Testing and Debugging Recursive Functions

• If p is a parameter of a recursive function f that has a smaller value in each recursive call than in the current call, then a single call of f that passes a large value to p will generally produce many recursive calls of f.

381

Further Comments on Testing and Debugging Recursive Functions

- If p is a parameter of a recursive function f that has a smaller value in each recursive call than in the current call, then a single call of f that passes a large value to p will generally produce many recursive calls of f.
- This can be viewed as an advantage of recursion that makes it easier to discover bugs by testing: A single test call of **f** can generate very many other (recursive) calls of **f**.

More Sophisticated Recursion

•

•

• In non-base cases the result is computed using just one recursive call, and it is the same recursive call in all non-base cases.

_

- In non-base cases the result is computed using just one recursive call, and it is the same recursive call in all non-base cases.
- The function has a formal parameter e for which it passes the value of (cdr e) or (- e 1) to the same parameter of the recursive call in non-base cases.

0

- In non-base cases the result is computed using just one recursive call, and it is the same recursive call in all non-base cases.
- The function has a formal parameter e for which it passes the value of (cdr e) or (- e 1) to the same parameter of the recursive call in non-base cases.
 - o e may not be the only parameter, but the value of any other parameter is passed without change to the same parameter of the recursive call in non-base cases.

- In non-base cases the result is computed using just one recursive call, and it is the same recursive call in all non-base cases.
- The function has a formal parameter e for which it passes the value of (cdr e) or (- e 1) to the same parameter of the recursive call in non-base cases.
 - o e may not be the only parameter, but the value of any other parameter is passed without change to the same parameter of the recursive call in non-base cases.

All 13 problems in section 2 of <u>Lisp Assignment 4</u> can be solved using recursive functions of this simple kind, but when doing <u>Lisp Assignment 5</u> you must be prepared to write recursive functions that work differently!

- In non-base cases the result is computed using just one recursive call, and it is the same recursive call in all non-base cases.
- The function has a formal parameter e for which it passes the value of (cdr e) or (- e 1) to the same parameter of the recursive call in non-base cases.
 - o e may not be the only parameter, but the value of any other parameter is passed without change to the same parameter of the recursive call in non-base cases.

All 13 problems in section 2 of <u>Lisp Assignment 4</u> can be solved using recursive functions of this simple kind, but when doing <u>Lisp Assignment 5</u> you must be prepared to write recursive functions that work differently!

When a function makes a recursive call, there will often be a formal parameter e of the function for which the value passed to the same parameter of the recursive call is <u>smaller in size</u> than the value of e.

- In non-base cases the result is computed using just one recursive call, and it is the same recursive call in all non-base cases.
- The function has a formal parameter e for which it passes the value of (cdr e) or (- e 1) to the same parameter of the recursive call in non-base cases.
 - o e may not be the only parameter, but the value of any other parameter is passed without change to the same parameter of the recursive call in non-base cases.

All 13 problems in section 2 of <u>Lisp Assignment 4</u> can be solved using recursive functions of this simple kind, but when doing <u>Lisp Assignment 5</u> you must be prepared to write recursive functions that work differently!

When a function makes a recursive call, there will often be a formal parameter e of the function for which the value passed to the same parameter of the recursive call is <u>smaller in size</u> than the value of e.

(cdr e) and (- e 1) may be used to produce the value of smaller size. Other expressions that can be used to do that include:

(cdr e) and (- e 1) may be used to produce the value of smaller size. Other expressions that can be used to do that include:

(cdr e) and (- e 1) may be used to produce the value of smaller size. Other expressions that can be used to do that include:

•

(cdr e) and (- e 1) may be used to produce the value of smaller size. Other expressions that can be used to do that include:

- (cddr e) if $e \Rightarrow$ a nonempty list.
- lacktriangle
- •

(cdr e) and (- e 1) may be used to produce the value of smaller size. Other expressions that can be used to do that include:

- (cddr e) if $e \Rightarrow$ a nonempty list.
- (-e 2) if $e \Rightarrow$ an integer ≥ 2 .

•

(cdr e) and (- e 1) may be used to produce the value of smaller size. Other expressions that can be used to do that include:

- (cddr e) if $e \Rightarrow a$ nonempty list.
- (-e 2) if $e \Rightarrow$ an integer ≥ 2 .
- (floor e 2) if e ⇒ an integer other than 0 or -1.
 (floor e 2) =

•

(cdr e) and (- e 1) may be used to produce the value of smaller size. Other expressions that can be used to do that include:

- (cddr e) if $e \Rightarrow a$ nonempty list.
- (-e 2) if $e \Rightarrow$ an integer ≥ 2 .
- (floor e 2) if e ⇒ an integer other than 0 or -1.
 (floor e 2) = [e/2] = e >> 1 in Java if e ⇒ an integer
 = e/2 in Java if e ⇒ a non-negative integer.

(cdr e) and (- e 1) may be used to produce the value of smaller size. Other expressions that can be used to do that include:

- (cddr e) if $e \Rightarrow a$ nonempty list.
- (-e 2) if $e \Rightarrow$ an integer ≥ 2 .
- (floor e 2) if e ⇒ an integer other than 0 or -1.
 (floor e 2) = [e/2] = e >> 1 in Java if e ⇒ an integer.

•

(cdr e) and (- e 1) may be used to produce the value of smaller size. Other expressions that can be used to do that include:

- (cddr e) if $e \Rightarrow a$ nonempty list.
- (-e 2) if $e \Rightarrow$ an integer ≥ 2 .
- (floor e 2) if e ⇒ an integer other than 0 or -1.
 (floor e 2) = [e/2] = e >> 1 in Java if e ⇒ an integer.
 (/ e 2) if e ⇒ an even integer other than 0.

(cdr e) and (- e 1) may be used to produce the value of smaller size. Other expressions that can be used to do that include:

- (cddr e) if $e \Rightarrow a$ nonempty list.
- (-e 2) if $e \Rightarrow$ an integer ≥ 2 .
- (floor e 2) if e ⇒ an integer other than 0 or -1.
 (floor e 2) = [e/2] = e >> 1 in Java if e ⇒ an integer.
 (/ e 2) if e ⇒ an even integer other than 0.
- (cdr L1) if e ⇒ a nonempty list;
 here L1 ⇒ a list, obtained by <u>transforming</u> the
 list given by e in some way, whose
 length is ≤ the length of that list.

C

(cdr e) and (- e 1) may be used to produce the value of smaller size. Other expressions that can be used to do that include:

- (cddr e) if $e \Rightarrow a$ nonempty list.
- (-e 2) if $e \Rightarrow$ an integer ≥ 2 .
- (floor e 2) if e ⇒ an integer other than 0 or -1.
 (floor e 2) = [e/2] = e >> 1 in Java if e ⇒ an integer.
 (/ e 2) if e ⇒ an even integer other than 0.
- (cdr L1) if e ⇒ a nonempty list;
 here L1 ⇒ a list, obtained by <u>transforming</u> the
 list given by e in some way, whose
 length is ≤ the length of that list.
 - For Assignment 5, your function SSORT should use this kind of expression to produce the argument value for its recursive call.

Recall from Assignment 4: If L \Rightarrow a list then (SPLIT-LIST L) returns a list of two lists, in which the 1st list consists of the 1st, 3rd, 5th, ... elements of the list given by L, and the 2nd list consists of the 2nd, 4th, 6th, ... elements of the list given by L. For example: (SPLIT-LIST ()) => (NIL NIL) (SPLIT-LIST '(B)) => ((B) NIL) (SPLIT-LIST '(A B C D 1 2 3 4 5)) => ((A C 1 3 5) (B D 2 4))

```
Recall from Assignment 4: If L ⇒ a list then (SPLIT-LIST L) returns a list of two lists, in which the 1<sup>st</sup> list consists of the 1<sup>st</sup>, 3<sup>rd</sup>, 5<sup>th</sup>, ... elements of the list given by L, and the 2<sup>nd</sup> list consists of the 2<sup>nd</sup>, 4<sup>th</sup>, 6<sup>th</sup>, ... elements of the list given by L. For example: (SPLIT-LIST ()) => (NIL NIL) (SPLIT-LIST '(B)) => ((B) NIL) (SPLIT-LIST '(A B C D 1 2 3 4 5)) => ((A C 1 3 5) (B D 2 4)) (defun split-list (L) (if (null L) '(()()) (let ((X (split-list (cddr L)))) and expression that ⇒ value of (split-list L) and that involves X and, possibly, L.
```

Recall from Assignment 4: If $L \Rightarrow a$ list then (SPLIT-LIST L) returns a list of two lists, in which the 1st list consists of the 1st, 3rd, 5th, ... elements of the list given by L, and the 2nd list consists of the 2nd, 4th, 6th, ... elements of the list given by L. For example: $(SPLIT-LIST ()) \Rightarrow (NIL NIL) (SPLIT-LIST '(B)) \Rightarrow ((B) NIL)$ (SPLIT-LIST '(A B C D 1 2 3 4 5)) => ((A C 1 3 5) (B D 2 4))(defun split-list (L) (if (null L) '(()()) (let ((X (split-list (cddr L)))) an expression that ⇒ value of (split-list L) and that involves X and, possibly, L.

• To write the ____ expression, let's first consider a possible value of L, the resulting value of X, and what ___ 's value should be for that value of L:

Recall from Assignment 4: If L \Rightarrow a list then (SPLIT-LIST L) returns a list of two lists, in which the 1st list consists of the 1st, 3rd, 5th, ... elements of the list given by L, and the 2nd list consists of the 2nd, 4th, 6th, ... elements of the list given by L. For example: (SPLIT-LIST ()) => (NIL NIL) (SPLIT-LIST '(B)) => ((B) NIL) (SPLIT-LIST '(A B C D 1 2 3 4 5)) => ((A C 1 3 5) (B D 2 4)) (defun split-list (L) (if (null L) '(())) (let ((X (split-list (cddr L)))) an expression that \Rightarrow value of (split-list L) and that involves X and, possibly, L.

- To write the ____ expression, let's first consider a possible value of L, the resulting value of X, and what ___ 's value should be for that value of L:
- Let L ⇒ (A B C D 1 2 3 4 5), so (cddr L) ⇒ (C D 1 2 3 4 5).
 Then X ⇒
 and should ⇒

Recall from Assignment 4: If L ⇒ a list then (SPLIT-LIST L) returns a list of two lists, in which the 1st list consists of the 1st, 3rd, 5th, ... elements of the list given by L, and the 2nd list consists of the 2nd, 4th, 6th, ... elements of the list given by L. For example: (SPLIT-LIST ()) => (NIL NIL) (SPLIT-LIST '(B)) => ((B) NIL) (SPLIT-LIST '(A B C D 1 2 3 4 5)) => ((A C 1 3 5) (B D 2 4)) (defun split-list (L) (if (null L) '(()()) (let ((X (split-list (cddr L)))) an expression that ⇒ value of (split-list L) and that involves X and, possibly, L.

- To write the ____ expression, let's first consider a possible value of L, the resulting value of X, and what ___ 's value should be for that value of L:
- Let $L \Rightarrow$ (A B C D 1 2 3 4 5), so (cddr L) \Rightarrow (C D 1 2 3 4 5). Then $X \Rightarrow$ ((C 1 3 5) (D 2 4)) and should \Rightarrow .

Recall from Assignment 4: If L \Rightarrow a list then (SPLIT-LIST L) returns a list of two lists, in which the 1st list consists of the 1st, 3rd, 5th, ... elements of the list given by L, and the 2nd list consists of the 2nd, 4th, 6th, ... elements of the list given by L. For example: (SPLIT-LIST()) => (NIL NIL) (SPLIT-LIST'(B)) => ((B) NIL) (SPLIT-LIST'(A B C D 1 2 3 4 5)) => ((A C 1 3 5) (B D 2 4)) (defun split-list (L) (if (null L) '(())) (let ((X (split-list (cddr L)))) an expression that \Rightarrow value of (split-list L) and that involves X and, possibly, L.

- To write the ____ expression, let's first consider a possible value of L, the resulting value of X, and what ___ 's value should be for that value of L:
- Let L \Rightarrow (A B C D 1 2 3 4 5), so (cddr L) \Rightarrow (C D 1 2 3 4 5). Then X \Rightarrow ((C 1 3 5) (D 2 4)) and should \Rightarrow ((A C 1 3 5) (B D 2 4)).

Recall from Assignment 4: If L ⇒ a list then (SPLIT-LIST L) returns a list of two lists, in which the 1st list consists of the 1st, 3rd, 5th, ... elements of the list given by L, and the 2nd list consists of the 2nd, 4th, 6th, ... elements of the list given by L. For example: (SPLIT-LIST ()) => (NIL NIL) (SPLIT-LIST '(B)) => ((B) NIL) (SPLIT-LIST '(A B C D 1 2 3 4 5)) => ((A C 1 3 5) (B D 2 4)) (defun split-list (L) (if (null L) '(()()) (let ((X (split-list (cddr L)))) and expression that ⇒ value of (split-list L) and that involves X and, possibly, L.

```
• Let L \Rightarrow (A B C D 1 2 3 4 5), so (cddr L) \Rightarrow (C D 1 2 3 4 5). Then X \Rightarrow ((C 1 3 5) (D 2 4)) and should \Rightarrow ((A C 1 3 5) (B D 2 4)).
```

```
Recall from Assignment 4: If L \Rightarrow a list then (SPLIT-LIST L) returns a list of two
lists, in which the 1<sup>st</sup> list consists of the 1<sup>st</sup>, 3<sup>rd</sup>, 5<sup>th</sup>, ... elements of the list given by
L, and the 2<sup>nd</sup> list consists of the 2<sup>nd</sup>, 4<sup>th</sup>, 6<sup>th</sup>, ... elements of the list given by L.
For example: (SPLIT-LIST ()) \Rightarrow (NIL NIL) (SPLIT-LIST '(B)) \Rightarrow ((B) NIL)
                (SPLIT-LIST '(A B C D 1 2 3 4 5)) => ((A C 1 3 5) (B D 2 4))
(defun split-list (L)
   (if (null L)
         '(()())
         (let ((X (split-list (cddr L))))
            an expression that ⇒ value of (split-list L)
             and that involves X and, possibly, L.
• Let L \Rightarrow (A B C D 1 2 3 4 5), so (cddr L) \Rightarrow (C D 1 2 3 4 5).
  Then X \Rightarrow ((C 1 3 5) (D 2 4))
  and \boxed{ } should \Rightarrow ((A C 1 3 5) (B D 2 4)).
```

Recall from Assignment 4: If $L \Rightarrow a$ list then (SPLIT-LIST L) returns a list of two lists, in which the 1st list consists of the 1st, 3rd, 5th, ... elements of the list given by L, and the 2nd list consists of the 2nd, 4th, 6th, ... elements of the list given by L. For example: $(SPLIT-LIST ()) \Rightarrow (NIL NIL) (SPLIT-LIST '(B)) \Rightarrow ((B) NIL)$ (SPLIT-LIST '(A B C D 1 2 3 4 5)) => ((A C 1 3 5) (B D 2 4))(defun split-list (L) (if (null L) '(()()) (let ((X (split-list (cddr L)))) an expression that ⇒ value of (split-list L) and that involves X and, possibly, L. • Let L \Rightarrow (A B C D 1 2 3 4 5), so (cddr L) \Rightarrow (C D 1 2 3 4 5). Then $X \Rightarrow ((C 1 3 5) (D 2 4))$ and $\boxed{ }$ should \Rightarrow ((A C 1 3 5) (B D 2 4)).

• Q. What is a good ____ expression in this case?

Recall from Assignment 4: If $L \Rightarrow a$ list then (SPLIT-LIST L) returns a list of two lists, in which the 1st list consists of the 1st, 3rd, 5th, ... elements of the list given by L, and the 2nd list consists of the 2nd, 4th, 6th, ... elements of the list given by L. For example: $(SPLIT-LIST ()) \Rightarrow (NIL NIL) (SPLIT-LIST '(B)) \Rightarrow ((B) NIL)$ (SPLIT-LIST '(A B C D 1 2 3 4 5)) => ((A C 1 3 5) (B D 2 4))(defun split-list (L) (if (null L) '(()()) (let ((X (split-list (cddr L)))) an expression that ⇒ value of (split-list L) and that involves X and, possibly, L. • Let L \Rightarrow (A B C D 1 2 3 4 5), so (cddr L) \Rightarrow (C D 1 2 3 4 5). Then $X \Rightarrow ((C 1 3 5) (D 2 4))$ and $\boxed{ }$ should \Rightarrow ((A C 1 3 5) (B D 2 4)). • Q. What is a good ____ expression in this case? A. (list (cons (car L) (car X)) (cons (cadr L) (cadr X))) • Q.

Recall from Assignment 4: If $L \Rightarrow a$ list then (SPLIT-LIST L) returns a list of two lists, in which the 1st list consists of the 1st, 3rd, 5th, ... elements of the list given by L, and the 2nd list consists of the 2nd, 4th, 6th, ... elements of the list given by L. For example: $(SPLIT-LIST ()) \Rightarrow (NIL NIL) (SPLIT-LIST '(B)) \Rightarrow ((B) NIL)$ (SPLIT-LIST '(A B C D 1 2 3 4 5)) => ((A C 1 3 5) (B D 2 4))(defun split-list (L) (if (null L) '(()()) (let ((X (split-list (cddr L)))) an expression that ⇒ value of (split-list L) and that involves X and, possibly, L. • Let L \Rightarrow (A B C D 1 2 3 4 5), so (cddr L) \Rightarrow (C D 1 2 3 4 5). Then $X \Rightarrow ((C 1 3 5) (D 2 4))$ and $\boxed{ }$ should \Rightarrow ((A C 1 3 5) (B D 2 4)). • Q. What is a good ____ expression in this case? A. (list (cons (car L) (car X)) (cons (cadr L) (cadr X))) • Q. For what non-null values of L is this **not** a good ...

```
(SPLIT-LIST '(A B C D 1 2 3 4 5)) => ((A C 1 3 5) (B D 2 4))
(defun split-list (L)
  (if (null L)
       '(()())
       (let ((X (split-list (cddr L))))
         an expression that \Rightarrow value of (split-list L)
          and that involves X and, possibly, L.
• Let L \Rightarrow (A B C D 1 2 3 4 5), so (cddr L) \Rightarrow (C D 1 2 3 4 5).
 Then X \Rightarrow ((C 1 3 5) (D 2 4))
  and \boxed{ } should \Rightarrow ((A C 1 3 5) (B D 2 4)).
• Q. What is a good ____ expression in this case?
 A. (list (cons (car L) (car X)) (cons (cadr L) (cadr X)))
• Q. For what non-null values of L is this not a good ...
```

```
Example of the Use of (cddr L) as a Recursive Call Argument
We want: (SPLIT-LIST '(A B C D 1 2 3 4 5)) => ((A C 1 3 5) (B D 2 4))
(defun split-list (L)
  (if (null L)
       '(()())
       (let ((X (split-list (cddr L))))
         an expression that ⇒ value of (split-list L)
         and that involves X and, possibly, L.
• Let L \Rightarrow (A B C D 1 2 3 4 5), so (cddr L) \Rightarrow (C D 1 2 3 4 5).
 Then X \Rightarrow ((C 1 3 5) (D 2 4))
 and \square should \Rightarrow ((A C 1 3 5) (B D 2 4)).
• Q. What is a good ____ expression in this case?
 A. (list (cons (car L) (car X)) (cons (cadr L) (cadr X)))
• Q. For what non-null values of L is this <u>not</u> a good ...
 Α.
```

```
Example of the Use of (cddr L) as a Recursive Call Argument
We want: (SPLIT-LIST'(A B C D 1 2 3 4 5)) => ((A C 1 3 5) (B D 2 4))
(defun split-list (L)
  (if (null L)
       '(()())
       (let ((X (split-list (cddr L))))
         an expression that ⇒ value of (split-list L)
         and that involves X and, possibly, L.
• Let L \Rightarrow (A B C D 1 2 3 4 5), so (cddr L) \Rightarrow (C D 1 2 3 4 5).
 Then X \Rightarrow ((C 1 3 5) (D 2 4))
 and \boxed{ } should \Rightarrow ((A C 1 3 5) (B D 2 4)).
• Q. What is a good ____ expression in this case?
 A. (list (cons (car L) (car X)) (cons (cadr L) (cadr X)))
• Q. For what non-null values of L is this not a good ... ?
 A. It's not good if L \Rightarrow a list of length 1--e.g., L \Rightarrow (B):
```

```
Example of the Use of (cddr L) as a Recursive Call Argument
We want: (SPLIT-LIST'(A B C D 1 2 3 4 5)) => ((A C 1 3 5) (B D 2 4))
(defun split-list (L)
  (if (null L)
       '(()())
       (let ((X (split-list (cddr L))))
          an expression that ⇒ value of (split-list L)
          and that involves X and, possibly, L.
• Let L \Rightarrow (A B C D 1 2 3 4 5), so (cddr L) \Rightarrow (C D 1 2 3 4 5).
 Then X \Rightarrow ((C 1 3 5) (D 2 4))
  and \boxed{ } should \Rightarrow ((A C 1 3 5) (B D 2 4)).
• Q. What is a good ____ expression in this case?
 A. (list (cons (car L) (car X)) (cons (cadr L) (cadr X)))
• Q. For what non-null values of L is this <u>not</u> a good ... ?
 A. It's not good if L \Rightarrow a list of length 1--e.g., L \Rightarrow (B):
     If L \Rightarrow (B), we want (split-list L) \Rightarrow ((B) NIL) but
                                         (cons (cadr L) (cadr X)))
      (list
      \Rightarrow a list whose 2<sup>nd</sup> element is a CONS!
```

```
Example of the Use of (cddr L) as a Recursive Call Argument
We want: (SPLIT-LIST'(A B C D 1 2 3 4 5)) => ((A C 1 3 5) (B D 2 4))
(defun split-list (L)
  (if (null L)
       '(()())
       (let ((X (split-list (cddr L))))
         an expression that ⇒ value of (split-list L)
         and that involves X and, possibly, L.
• Let L \Rightarrow (A B C D 1 2 3 4 5), so (cddr L) \Rightarrow (C D 1 2 3 4 5).
 Then X \Rightarrow ((C 1 3 5) (D 2 4))
 and \boxed{ } should \Rightarrow ((A C 1 3 5) (B D 2 4)).
• Q. What is a good ____ expression in this case?
 A. (list (cons (car L) (car X)) (cons (cadr L) (cadr X)))
• Q. For what non-null values of L is this not a good ... ?
 A. It's not good if L \Rightarrow a list of length 1--e.g., L \Rightarrow (B).
```

```
Example of the Use of (cddr L) as a Recursive Call Argument
We want: (SPLIT-LIST'(A B C D 1 2 3 4 5)) => ((A C 1 3 5) (B D 2 4))
(defun split-list (L)
  (if (null L)
      '(()())
       (let ((X (split-list (cddr L))))
         an expression that ⇒ value of (split-list L)
         and that involves X and, possibly, L.
• Let L \Rightarrow (A B C D 1 2 3 4 5), so (cddr L) \Rightarrow (C D 1 2 3 4 5).
 Then X \Rightarrow ((C 1 3 5) (D 2 4))
 and \boxed{ } should \Rightarrow ((A C 1 3 5) (B D 2 4)).
• Q. What is a good ____ expression in this case?
 A. (list (cons (car L) (car X)) (cons (cadr L) (cadr X)))
• Q. For what non-null values of L is this not a good ... ?
 A. It's not good if L \Rightarrow a list of length 1--e.g., L \Rightarrow (B).
• Q. What is a good ____ expression in that case?
     Recall: The expression must \Rightarrow ((B) NIL).
 Α.
```

```
Example of the Use of (cddr L) as a Recursive Call Argument
We want: (SPLIT-LIST '(A B C D 1 2 3 4 5)) => ((A C 1 3 5) (B D 2 4))
(defun split-list (L)
  (if (null L)
      '(()())
       (let ((X (split-list (cddr L))))
         an expression that ⇒ value of (split-list L)
         and that involves X and, possibly, L.
• Let L \Rightarrow (A B C D 1 2 3 4 5), so (cddr L) \Rightarrow (C D 1 2 3 4 5).
 Then X \Rightarrow ((C 1 3 5) (D 2 4))
 and \boxed{ } should \Rightarrow ((A C 1 3 5) (B D 2 4)).
• Q. What is a good ____ expression in this case?
 A. (list (cons (car L) (car X)) (cons (cadr L) (cadr X)))
• Q. For what non-null values of L is this not a good ... ?
 A. It's not good if L \Rightarrow a list of length 1--e.g., L \Rightarrow (B).
• Q. What is a good ____ expression in that case?
     Recall: The expression must \Rightarrow ((B) NIL).
 A. (list L ())
```

```
(defun split-list (L)
  (if (null L)
      '(()())
       (let ((X (split-list (cddr L))))
         an expression that ⇒ value of (split-list L)
         and that involves X and, possibly, L.
• Let L \Rightarrow (A B C D 1 2 3 4 5), so (cddr L) \Rightarrow (C D 1 2 3 4 5).
 Then X \Rightarrow ((C 1 3 5) (D 2 4))
 and \boxed{ } should \Rightarrow ((A C 1 3 5) (B D 2 4)).
• Q. What is a good ____ expression in this case?
 A. (list (cons (car L) (car X)) (cons (cadr L) (cadr X)))
• Q. For what non-null values of L is this not a good ... ?
 A. It's not good if L \Rightarrow a list of length 1--e.g., L \Rightarrow (B).
• Q. What is a good ____ expression in that case?
 A. (list L ())
```

```
Example of the Use of (cddr L) as a Recursive Call Argument
(defun split-list (L)
  (if (null L)
       '(()())
       (let ((X (split-list (cddr L))))
          an expression that ⇒ value of (split-list L) and that involves X and, possibly, L.
• Let L \Rightarrow (A B C D 1 2 3 4 5), so (cddr L) \Rightarrow (C D 1 2 3 4 5).
 Then X \Rightarrow ((C 1 3 5) (D 2 4))
  and \boxed{ } should \Rightarrow ((A C 1 3 5) (B D 2 4)).
• Q. What is a good ____ expression in this case?
 A. (list (cons (car L) (car X)) (cons (cadr L) (cadr X)))
• Q. For what non-null values of L is this not a good ... ?
 A. It's <u>not</u> good if L \Rightarrow a list of length 1--e.g., L \Rightarrow (B).
• Q. What is a good ——— expression in that case?
 A. (list L ())
```

```
Example of the Use of (cddr L) as a Recursive Call Argument
(defun split-list (L)
  (if (null L)
       '(()())
       (let ((X (split-list (cddr L))))
          an expression that ⇒ value of (split-list L) and that involves X and, possibly, L.
• Let L \Rightarrow (A B C D 1 2 3 4 5), so (cddr L) \Rightarrow (C D 1 2 3 4 5).
 Then X \Rightarrow ((C 1 3 5) (D 2 4))
  and \boxed{ } should \Rightarrow ((A C 1 3 5) (B D 2 4)).
• Q. What is a good ____ expression in this case?
 A. (list (cons (car L) (car X)) (cons (cadr L) (cadr X)))
• Q. For what non-null values of L is this not a good ... ?
 A. It's <u>not</u> good if L \Rightarrow a list of length 1--e.g., L \Rightarrow (B).
• Q. What is a good ——— expression in that case?
 A. (list L ())
                 (cond ((null (cdr L)) (list L ()))
                        (t (list (cons (car L) (car X))
be written:
                                   (cons (cadr L) (cadr X)))))
```

```
Example of the Use of (cddr L) as a Recursive Call Argument
(defun split-list (L)
  (if (null L)
        '(()())
        (let ((X (split-list (cddr L)))))
```

```
So ... can be written: (cond ((null (cdr L)) (list L ())) (t (list (cons (car L) (car X))) (cons (cadr L) (cadr X)))))
```

 As X is used twice in the t case, we must <u>not</u> eliminate the LET: The function would be very inefficient if it called (split-list (cddr L)) twice!

- As X is used twice in the t case, we must <u>not</u> eliminate the LET: The function would be very inefficient if it called (split-list (cddr L)) twice!
- As X is <u>not</u> used in the (null (cdr L)) case, it's good to move that case out of the LET.

- As X is used twice in the t case, we must <u>not</u> eliminate the LET: The function would be very inefficient if it called (split-list (cddr L)) twice!
- As X is <u>not</u> used in the (null (cdr L)) case, it's good to move that case out of the LET.
- After that case is moved out of the LET, it can be combined with the (null L) base case, because (list L ()) is a good value to return in both cases.

- As X is <u>not</u> used in the (null (cdr L)) case, it's good to move that case out of the LET.
- After that case is moved out of the LET, it can be combined with the (null L) base case, because (list L ()) is a good value to return in both cases.

- As X is <u>not</u> used in the (null (cdr L)) case, it's good to move that case out of the LET.
- After that case is moved out of the LET, it can be combined with the (null L) base case, because (list L ()) is a good value to return in both cases.

Final version:

- As X is <u>not</u> used in the (null (cdr L)) case, it's good to move that case out of the LET.
- After that case is moved out of the LET, it can be combined with the (null L) base case, because (list L ()) is a good value to return in both cases.

```
Final version: (defun split-list (L)

Note that calling (if (null (cdr L))
  (split-list (cddr L)) (list L ())
  instead of (let ((X (split-list (cddr L))))
  (split-list (cdr L)) (list (cons (car L) (car X))
  reduces the depth (cons (cadr L) (cadr X))))))

of recursion.
```

Example of the Use of (floor n 2) as a Recursive Call Argument e (i.e., the base of natural logs) is one of the best known constants. How can we calculate e very accurately?

$$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)\left(1+\frac{1}{n}\right)^n = \left(1+\frac{1}{n}\right)^{n+1}$$

graph of e and $(1+1/x)^{x}$ and $(1+1/x)^{x}$ from 1 to 1000

Input interpretation:

Plot:

$$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)\left(1+\frac{1}{n}\right)^n = \left(1+\frac{1}{n}\right)^{n+1}$$

$$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)\left(1+\frac{1}{n}\right)^n = \left(1+\frac{1}{n}\right)^{n+1}$$

$$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)\left(1+\frac{1}{n}\right)^n = \left(1+\frac{1}{n}\right)^{n+1}$$

Q. How can we write a recursive function power such that $(power\ z\ n)\Rightarrow z^n\ if\ z\Rightarrow a\ number\ \&\ n\Rightarrow an\ integer\ge 0$ that can be used to compute $(1+10^{-25})^{10^{25}}$?

(power z n) \Rightarrow zⁿ if z \Rightarrow a number & n \Rightarrow an integer \geq 0

that can be used to compute $(1 + 10^{-25})^{10^{25}}$?

- Q. How can we write a recursive function power such that $(power\ z\ n) \Rightarrow z^n\ if\ z \Rightarrow a\ number\ \&\ n \Rightarrow an\ integer \ge 0$ that can be used to compute $(1+10^{-25})^{10^{25}}$?
- We <u>cannot</u> use a definition based on $z^n = z * z^{n-1}$ such as

```
Example of the Use of (floor n 2) as a Recursive Call Argument
e (i.e., the base of natural logs) is one of the best known
constants. How can we calculate e very accurately? To be
concrete, let's say we want to find a number y such that:
   It can be shown using calculus that (\clubsuit) holds when y is
Q. How can we write a recursive function power such that
      (power z n) \Rightarrow z<sup>n</sup> if z \Rightarrow a number & n \Rightarrow an integer \geq 0
   that can be used to compute (1 + 10^{-25})^{10^{25}}?
• We <u>cannot</u> use a definition based on z^n = z * z^{n-1} such as
         (defun power (z n) ; far too inefficient!
           (cond ((= n 0) 1)
                 (t (* z (power z (- n 1)))))
```

because

- Q. How can we write a recursive function power such that $(power\ z\ n)\Rightarrow z^n\ if\ z\Rightarrow a\ number\ \&\ n\Rightarrow an\ integer\ge 0$ that can be used to compute $(1+10^{-25})^{10^{25}}$?
- We <u>cannot</u> use a definition based on zⁿ = z*zⁿ⁻¹ such as (defun power (z n) ; <u>far</u> too inefficient! (cond ((= n 0) 1) (t (* z (power z (- n 1))))))

because when we pass 10²⁵ to n this function would need a recursion depth of 10²⁵, which would *require an impossibly large amount of memory*; and it'd also *take an impossibly long time* to execute 10²⁵ calls of power!

- Q. How can we write a recursive function power such that $(power\ z\ n) \Rightarrow z^n\ if\ z \Rightarrow a\ number\ \&\ n \Rightarrow an\ integer \ge 0$ that can be used to compute $(1+10^{-25})^{10^{25}}$?
- A solution is given by the function below, which is based on: $z^n = (z^{\lfloor n/2 \rfloor})^2$ if n is <u>even</u>; $z^n = z^*(z^{\lfloor n/2 \rfloor})^2$ if n is <u>odd</u>. **Examples:** $z^{12} = (z^6)^2$ and $z^{11} = z^*(z^5)^2$.

```
Example of the Use of (floor n 2) as a Recursive Call Argument
e (i.e., the base of natural logs) is one of the best known
constants. How can we calculate e very accurately? To be
concrete, let's say we want to find a number y such that:
   It can be shown using calculus that (\clubsuit) holds when y is
Q. How can we write a recursive function power such that
      (power z n) \Rightarrow z<sup>n</sup> if z \Rightarrow a number & n \Rightarrow an integer \geq 0
   that can be used to compute (1 + 10^{-25})^{10^{25}}?
• A solution is given by the function below, which is based on:
    z^n = (z^{\lfloor n/2 \rfloor})^2 if n is even; z^n = z^*(z^{\lfloor n/2 \rfloor})^2 if n is odd.
  Examples: z^{12} = (z^6)^2 and z^{11} = z^*(z^5)^2.
    (defun power (z n)
      (cond ((zerop n) 1)
            (t (let ((X (power z (floor n 2))))
                 (cond ((evenp n) (* X X))
                       (t (* z X X)))))))
```

Example of the Use of (floor n 2) as a Recursive Call Argument

A solution is given by the function below:

```
Example of the Use of (floor n 2) as a Recursive Call Argument
We want to find a number y such that:
  It can be shown using calculus that (\clubsuit) holds when y is
Q. How can we write a recursive function power such that
     (power z n) \Rightarrow z<sup>n</sup> if z \Rightarrow a number & n \Rightarrow an integer \geq 0
   that can be used to compute (1 + 10^{-25})^{10^{25}}?

    A solution is given by the function below:

   (defun power (z n)
     (cond ((zerop n) 1)
           (t (let ((X (power z (floor n 2))))
                (cond ((evenp n) (* X X))
                     (t (* z X X))))))
```

```
Example of the Use of (floor n 2) as a Recursive Call Argument
We want to find a number y such that:
   It can be shown using calculus that (\clubsuit) holds when y is
Q. How can we write a recursive function power such that
      (power z n) \Rightarrow z<sup>n</sup> if z \Rightarrow a number & n \Rightarrow an integer \geq 0
   that can be used to compute (1 + 10^{-25})^{10^{25}}?

    A solution is given by the function below:

   (defun power (z n)
     (cond ((zerop n) 1)
           (t (let ((X (power z (floor n 2))))
                (cond ((evenp n) (* X X))
                      (t (* z X X)))))))

    We get (floor n 2) by chopping off the rightmost bit of n.
```

Example of the Use of (floor n 2) as a Recursive Call Argument We want to find a number y such that:

- Q. How can we write a recursive function power such that $(power\ z\ n) \Rightarrow z^n\ if\ z \Rightarrow a\ number\ \&\ n \Rightarrow an\ integer \ge 0$ that can be used to compute $(1+10^{-25})^{10^{25}}$?
- A solution is given by the function below:

- We get (floor n 2) by chopping off the rightmost bit of n.
- As 2^{83} < 10^{25} < 2^{84} , the binary representation of 10^{25} has 84 bits: So a call of power with 10^{25} as the value of n makes a total of just 84 recursive calls!

Copyright (c) Bruno Haible, Marcus Daniels 1994-1997 Copyright (c) Bruno Haible, Pierpaolo Bernardi, Sam Steingold 1998 Copyright (c) Bruno Haible, Sam Steingold 1999-2000 Specifies that Clisp's Copyright (c) Sam Steingold, Bruno Haible 2001-2010 IONG-FLOAT numbers are Type :h and hit Enter for context help. to have ≥ 256 binary [1]> (load "power.lsp")
;; Loading file power.lsp ... digits of precision. ;; Loaded file power.lsp 1.0L0 means the long-float with value 1.0; this line [2]> (setf (long-float-digits) 256) 256 sets a to the long-float [3]> (setf a (+ 1.0L0 (/ 1 (power 10 25)))) with value $1 + 10^{-25}$. 1.00000000000000000000000001[4]> (power a (power 10 25)) 2.71828182845904523536028733543857107480498532568559840479840654470561981531027L0 [5]> [This and earlier digits are the same as the corresponding digits of e. 67