1.3.2 Pumping Лема

L е контекстно-свободен

С думи:

Достатъчно дългите думи в един контекстно-свободен език остават в него с итериране на една или две нетривиални поддуми "'pumping"'.

Доказателство на Pumping лемата

Нека $G=(V,\Sigma,P,S)$ е гарматика в нормална форма на Чомски за $L-\{\varepsilon\}$.

Нека $k = |V|, n = 2^k,$

 $z \in L \ \mathrm{c} \ |z| = m \ge n$ произволна.

Да разгледаме синтактично дърво за z.

Макс. степен ≤ 2 , има $\geq n = 2^k$ листа

 $ightarrow \exists$ път P с дължина |P| > k.

- $\rightarrow \geq k+1$ променливи в P.
- $\rightarrow \exists$ променлива $A \in P$:

A се появява ≥ 2 пъти ($|vx| \geq 1$).

Второто появяване отдолу нагоре е на разстоян $\mathbb{Z}_e \leq k$.

ightarrow корен на поддърво за поддумата vwx с дължина $\leq n$

Конструкция на итерациите:

Лема: Едно двоично дърво (възлите със степен 0 или 2) с $\geq 2^k$ листа съдържа път P с дължина $\geq k$.

Д-во: Индукция по k.

Случай k = 0: 1 листо, дължина на път 0.

Случай $k \rightsquigarrow k+1$:

 $\geq 2^{k+1}$ листа. Коренът w има степен 2.

Поне едно поддърво има $\geq 2^k$ листа

и съдържа път P с дължина $\geq k$.

Така wP има дължина $\geq k+1$.

Следствие: Ако в едно двоично дърво (възлите състепен 0 или 2) всеки път е с дължина $\leq k$, то има $\leq 2^k$ листа.

$$L = \{a^m b^m c^m : m \ge 1\}$$
 не е контекстно-свободен

Допускаме, че L е контекстно-свободен.

Нека n е числото от Pumping лемата.

Да разгледаме $z = a^n b^n c^n$ и представянето

z = uvwxy от Pumping лемата като

 $|vwx| \le n$, $|vx| \ge 1$, $uv^0wx^0y = uwy \in L$.

vx не може да съдържа a-тата, b-тата u c-тата.

 \rightarrow балансът на a-тата, b-тата и c-тата в uwy е нарушен.

 $\rightarrow uwy \not\in L$

Противоречие.

Следствие: тип $2 \neq$ тип 1

$$L = \left\{ ww : w \in \{a,b\}^* \right\}$$
 не е контекстно-свободен

Допускаме, че L е контекстно-свободен.

Нека n е числото от Pumping лемата.

Да разгледаме $z = a^n b^n a^n b^n$ и декомпозицията

z = uvwxy от Pumping лемата с $|vwx| \le n$, $|vx| \ge 1$,

z':= $uwy \in L$.

Случай $vx = a^k b^j$ е в лявата половина:

$$\longrightarrow z' = a^{n-k}b^{n-j}a^nb^n.$$

Противоречие.

Случай ух лежи в дясната половина: (аналогично)

Случай vx лежи в средата: $vx = b^k a^j$

$$\longrightarrow z' = a^n b^{n-k} a^{n-j} b^n.$$

Противоречие.

Правила за д-во с Pumping Лемата

- 1. Нека n е числото от Pumping лемата.
- 2. Да разгледаме z=??? $(|z| \ge n)$ и представянето z=uvwxy от Pumping лемата с $|vwx| \le n, |vx| \ge 1$
 - \square Всяка дума $z \in |z| \ge n$. "Изобретателната" част !
 - □ Изборът на думата д-вото да е просто
 - \square Тъй като $|vwx| \le n$ съдържа блокове с дължина n имаме следните случаи
- 3. Случаи за всички възможни декомпозиции z=uvwxy. За всеки случай: Намираме $i\geq 0$, такова че $uv^iwx^iy\not\in L(G)$.

Типични стойности: i = 0, i = 2.

Предизвикателство: Броят на случаите по-малък.