神经网络

汪小圈

2025 - 03 - 24

内容安排

- 神经网络基础
 - 浅层神经网络 (Shallow Neural Networks)
 - 深层神经网络 (Deep Neural Networks)
 - 损失函数 (Loss Functions)
 - 模型拟合 (Model Fitting)
 - 梯度下降与优化 (Gradients & Optimization)
 - 参数初始化 (Initialization)
 - 性能评估 (Performance)
 - 正则化方法 (Regularization)
- 深度学习简介
 - 深度学习基本概念
 - 常见深度学习架构

回顾:集成学习的核心思想

- 集成学习是一种将多个弱学习器 (Weak Learner) 组合成一个强学习器 (Strong Learner) 的技术
- 核心思想: "三个臭皮匠,顶个诸葛亮"
 - 组合多个弱学习器的预测结果,获得更全面、更鲁棒的预测能力
- 降低误差的方式:
 - 降低方差:通过并行训练多个基学习器,对结果平均或投票(如 Bagging)
 - 降低偏差:通过串行训练基学习器,每个学习器纠正前一个的错误(如 Boosting)
 - 提高鲁棒性: 对异常值和噪声数据具有更强的抵抗力

回顾: 集成学习主要方法

- Bagging (Bootstrap Aggregating)
 - 并行集成,通过自助采样创建多个训练数据集
 - 典型代表: 随机森林
- Boosting (提升法)
 - 串行集成,每个新的基学习器都试图纠正前一个的错误
 - 典型代表: AdaBoost、GBDT
- Stacking (堆叠法)
 - 层次集成,使用另一个学习器组合基学习器的输出
 - 在各种机器学习竞赛中广泛应用

|神经网络简介 (Neural Network)

- 神经网络是一种模拟生物神经系统的计算模型
- 基本结构:
 - 由大量相互连接的神经元组成
 - 能学习复杂的非线性关系
 - 具有强大的模式识别能力
- 历史发展:
 - 1943 年: McCulloch 和 Pitts 提出第一个神经元模型
 - 1958 年: Rosenblatt 提出感知机
 - 1986 年: 反向传播算法提出
 - 2006 年: 深度学习兴起
 - 2012 年: AlexNet 赢得 ImageNet 挑战赛,标志深度学习的突破

神经元图示

Non-linearity!

浅层神经网络 - 感知机模型

- **感知机 (Perceptron)** 是最基本的神经元模型
- 单个神经元组成:
 - 输入 (x,x,...,x): 特征向量
 - 权重 (w, w, ..., w): 特征重要性
 - 偏置 (b): 调整激活阈值
 - 加权求和: $z = \sum_{i=1}^n w_i x_i + b$
 - 激活函数: $a = \sigma(z)$
 - 输出: $\hat{y} = a$

浅层神经网络 - 单层感知机局限性

- 线性可分性限制:
 - 单层感知机只能解决线性可分问题
 - 无法解决 XOR 等非线性问题
- 解决方案:
 - 引入多层结构
 - 使用非线性激活函数

浅层神经网络 - 激活函数

- 激活函数引入非线性,是神经网络强大表达能力的关键
- 常用激活函数:
 - Sigmoid: $\sigma(z) = \frac{1}{1+e^{-z}}$
 - 输出范围 (0,1), 适合二分类
 - 缺点: 存在梯度消失问题
 - Tanh: $tanh(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$
 - 输出范围 (-1,1), 零中心化
 - 仍存在梯度消失问题
 - ReLU: ReLU(z) = $\max(0, z)$
 - 计算简单,缓解梯度消失
 - 可能出现"神经元死亡"问题

浅层神经网络 - 多层感知机

- 多层感知机 (MLP) 是浅层神经网络的典型代表
- 基本结构:
 - 输入层:接收原始特征
 - **隐藏层**: 通常 1-2 层, 提取特征
 - 输出层: 产生预测结果
- 前向传播: 信息从输入层流向输出层
 - $\bullet \ \mathbf{z}^{[1]} = \mathbf{W}^{[1]}\mathbf{x} + \mathbf{b}^{[1]}$
 - $\mathbf{a}^{[1]} = \sigma(\mathbf{z}^{[1]})$
 - $\mathbf{z}^{[2]} = \mathbf{W}^{[2]} \hat{\mathbf{a}}^{[1]} + \mathbf{b}^{[2]}$
 - $\bullet \ \mathbf{a}^{[2]} = \sigma(\mathbf{z}^{[2]})$

多层感知机结构

深层神经网络 - 基本概念

- 深层神经网络包含多个隐藏层 (通常 >2 层)
- 深度学习优势:
 - 层次化特征学习: 低层学习简单特征, 高层学习复杂特征
 - 表达能力增强: 可以拟合更复杂的函数
 - 参数效率: 相比宽而浅的网络,参数利用更高效
- 挑战:
 - 训练困难(梯度消失/爆炸)
 - 需要大量数据
 - 计算资源需求高
 - 过拟合风险增加

深层神经网络 - 表达能力

• 通用近似定理:

- 具有单个隐藏层的前馈神经网络可以近似任何连续函数
- 深度网络比宽度网络更高效地表示某些函数

• 深度的优势:

- 参数数量随层数线性增长,而表达能力可指数增长
- 能够学习更抽象的特征表示
- 可以模拟复杂的决策过程

3. 损失函数 - 回归问题

- 回归问题常用损失函数:
 - 均方误差 (MSE): $L = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
 - 最常用的回归损失函数
 - 惩罚大误差, 对异常值敏感
 - 平均绝对误差 (MAE): $L = \frac{1}{n} \sum_{i=1}^{n} |y_i \hat{y}_i|$
 - 对异常值更鲁棒
 - 梯度恒定,可能不利于学习
 - **Huber 损失**: 结合 MSE 和 MAE 优点

$$\bullet \ L_{\delta} = \begin{cases} \frac{1}{2}(y-\hat{y})^2 & \text{for } |y-\hat{y}| \leq \delta \\ \delta(|y-\hat{y}|-\frac{\delta}{2}) & \text{otherwise} \end{cases}$$

- 对小误差使用 MSE, 大误差使用 MAE
- 同时获得平滑梯度和鲁棒性

3. 损失函数 - 分类问题

- 分类问题常用损失函数:
 - 二元交叉熵: $L = -[y\log(\hat{y}) + (1-y)\log(1-\hat{y})]$
 - 用于二分类问题
 - 搭配 Sigmoid 激活函数
 - 多类交叉熵: $L = -\sum_{c=1}^C y_c \log(\hat{y}_c)$
 - 用于多分类问题
 - 搭配 Softmax 激活函数
 - Softmax 函数: Softmax $(z_i) = rac{e^{z_i}}{\sum_{i=1}^C e^{z_i}}$
 - 将输出转换为概率分布
 - 所有输出和为 1

梯度下降与优化 - 基本原理

- 梯度下降是训练神经网络的基础优化算法
 - 核心思想:沿着损失函数的负梯度方向更新参数
 - 参数更新公式: $\theta = \theta \alpha \nabla_{\theta} J(\theta)$
 - 学习率α 控制更新步长
- 梯度下降变体:
 - 批量梯度下降 (BGD): 使用所有样本计算梯度
 - 随机梯度下降 (SGD): 每次使用单个样本
 - 小批量梯度下降 (Mini-batch GD): 使用小批量样本

梯度下降与优化 - 反向传播

- 反向传播是高效计算梯度的算法
- 算法步骤:
 - 前向传播: 计算每层的激活值和输出
 - ② 计算输出层误差: $\delta^{[L]} = \nabla_{a^{[L]}} J \odot \sigma'(z^{[L]})$
 - ③ 反向传播误差: $\delta^{[l]}=(W^{[l+1]})^T\delta^{[l+1]}\odot\sigma'(z^{[l]})$
 - ① 计算梯度: $\nabla_{W^{[l]}} J = \delta^{[l]} (a^{[l-1]})^T$
 - **⑤** 更新参数: $W^{[l]} = W^{[l]} \alpha \nabla_{W^{[l]}} J$

梯度下降与优化 - 高级优化算法

• 动量法 (Momentum):

- 累积过去梯度,加速收敛
- $\bullet \ v_t = \gamma v_{t-1} + \alpha \nabla_\theta J(\theta)$
- $\bullet \ \theta = \theta v_t$

• AdaGrad:

- 自适应学习率,为不同参数调整更新速度
- 对频繁更新的参数减小步长

• RMSProp:

- 解决 AdaGrad 学习率递减问题
- 使用移动平均累积梯度平方

• Adam:

- 结合动量和自适应学习率
- 当前最流行的优化算法之一
- 自动调整每个参数的学习率

参数初始化 - 重要性与挑战

- 参数初始化对神经网络训练至关重要:
 - 影响收敛速度和稳定性
 - 影响最终模型性能
 - 可能导致梯度消失/爆炸
- 不当初始化的问题:
 - 零初始化: 导致隐藏单元对称性, 无法学习不同特征
 - 过大初始值: 导致梯度爆炸
 - 过小初始值:导致梯度消失

参数初始化 - 常用方法

- 常见初始化策略:
 - 随机初始化: $W \sim \mathcal{U}(-\epsilon, \epsilon)$
 - 打破对称性
 - ullet 需要谨慎选择 ϵ
 - Xavier/Glorot 初始化: $W \sim \mathcal{N}(0, \sqrt{2/(n_{in} + n_{out})})$
 - 适用于 tanh、sigmoid 激活函数
 - 保持方差在前向传播和反向传播中稳定
 - He 初始化: $W \sim \mathcal{N}(0, \sqrt{2/n_{in}})$
 - 适用于 ReLU 激活函数
 - 为深层 ReLU 网络设计
- 偏置初始化:
 - 通常初始化为 0 或小常数
 - 某些情况下可设为正值(如 ReLU 激活函数)

正则化方法 - Dropout

• Dropout:

- 训练时随机"关闭"一部分神经元
- 每个神经元以概率 p 被保留
- 测试时不关闭神经元, 但权重需缩放

• 原理:

- 防止神经元共适应
- 近似集成多个不同网络
- 迫使网络学习更鲁棒的特征

|正则化方法 - 其他技术

- 早停 (Early Stopping):
 - 监控验证集性能
 - 在验证误差开始上升时停止训练
- 数据增强 (Data Augmentation):
 - 通过变换已有数据创建新样本
 - 常用于图像(旋转、缩放、翻转)
 - 增加训练数据多样性
- 批量归一化 (Batch Normalization):
 - 标准化每层的输入分布
 - 加速训练收敛
 - 允许使用更高学习率
 - 具有轻微正则化效果

深度学习基本概念

- 深度学习是机器学习的一个分支,使用多层神经网络学习数据表示
- 核心特点:
 - 自动特征提取
 - 端到端学习
 - 需要大量数据
 - 需要强大计算资源
 - 可处理非结构化数据
- 常见深度学习架构:
 - 卷积神经网络 (CNN): 处理图像和网格数据
 - 循环神经网络 (RNN/LSTM/GRU): 处理序列数据
 - Transformer: 处理序列数据,基于自注意力机制

深度学习应用与前沿

- 计算机视觉:
 - 图像分类、目标检测、图像分割
 - 人脸识别、姿态估计
- 自然语言处理:
 - 机器翻译、情感分析
 - 问答系统、文本生成
 - 大型语言模型 (LLM)
- 生成模型:
 - GAN(生成对抗网络)
 - 扩散模型 (Diffusion Models)
 - 文本到图像转换
- 自监督学习:
 - 无需大量标注数据
 - 从数据本身学习有用表示