SMT工厂精确到小时的产能查询分析报告

| 报告概述

分析时间: 2024年1月15日 - 2024年1月21日

数据来源:SMT工厂生产数据库 **分析范围**:20块主板生产记录

时间精度:精确到小时

报告生成时间: 2024年1月22日

◎ 总体产能情况

基础统计

总产量: 20块主板完成数量: 17块

• **缺陷数量**: 3块

• 整体良率: 85.00%

• 平均日产量: 2.86块/天

• 平均小时产量: 0.36块/小时

数据完整性

• 时间跨度: 7天(2024-01-15 至 2024-01-21)

• 产品覆盖: 3种手机主板型号

• **生产线**: 2条SMT生产线

• 时间记录完整性: 100% (所有记录都有完整的start time信息)

◎ 按小时产能分析

小时产能统计表

时间段	总产量	完成数量	缺陷数量	良率	缺陷率	产能分析
08:00	7块	7块	0块	100.00%	0.00%	早班产能最高,质量稳定
09:00	6块	6块	0块	100.00%	0.00%	上午产能稳定,质量优秀
10:00	5块	3块	2块	60.00%	40.00%	产能下降,质量不稳定
11:00	1块	0块	1块	0.00%	100.00%	产能最低,质量最差
14:00	1块	1块	0块	100.00%	0.00%	下午产能稳定,质量良好

小时产能趋势图

产能变化趋势(按小时):

08:00: 【 (7块) - 产能高峰,质量稳定 09:00: 【 (6块) - 产能稳定,质量优秀 10:00: 【 (5块) - 产能下降,质量不稳定 11:00: 【 (1块) - 产能低谷,质量最差 14:00: 【 (1块) - 产能稳定,质量良好

小时产能规律总结

1. **产能高峰时段**: 08:00-09:00 • 总产量: 13块(占65%)

• 良率: 100%

• 特点: 早班效率最高,质量最稳定

2. **产能低谷时段**: 10:00-11:00 • 总产量: 6块(占30%)

• 良率: 50%

• 特点: 产能下降明显,质量不稳定

3. 产能稳定时段: 14:00

• 总产量: 1块(占5%)

• 良率: 100%

• 特点:下午产能稳定,质量良好

丽 按日期产能分析

日产能统计表

日期	总产量	完成数量	缺陷数量	良率	缺陷率	产能分析
2024-01- 15	5块	4块	1块	80.00%	20.00%	第一天, 产能较高但质量不稳定
2024-01- 16	3块	3块	0块	100.00%	0.00%	产能稳定,质量优秀
2024-01- 17	3块	2块	1块	66.67%	33.33%	产能稳定,质量下降
2024-01- 18	2块	2块	0块	100.00%	0.00%	产能较低,质量优秀
2024-01- 19	3块	3块	0块	100.00%	0.00%	产能稳定,质量优秀
2024-01- 20	3块	2块	1块	66.67%	33.33%	产能稳定,质量下降
2024-01- 21	1块	1块	0块	100.00%	0.00%	产能最低,质量优秀

日产能变化趋势

日产能变化趋势:

5块 → 3块 → 3块 → 2块 → 3块 → 1块

关键观察点:

- 1月15日: 产能最高(5块),但质量不稳定 - 1月18日: 产能最低(2块),但质量优秀

- 1月21日: 产能最低(1块),质量优秀

日产能规律总结

1. 产能波动特征:呈现不规则的波动模式

2. 质量与产能关系:产能高的日期质量不一定好,产能低的日期质量反而稳定

3. 周期性特征:每2-3天出现一次质量波动

½ 按生产线产能分析

生产线产能统计表

生产线	总产量	完成数量	缺陷数量	良率	缺陷率	产能占比	产能分析
SMT生产线1	15块	13块	2块	86.67%	13.33%	75%	主要生产线, 产能高, 质量稳定
SMT生产线2	5块	4块	1块	80.00%	20.00%	25%	次要生产线, 产能低, 质量不稳定

生产线产能对比分析

产能对比图:

SMT生产线1: (15块, 75%) SMT生产线2: (5块, 25%)

质量对比:

SMT生产线1: 良率86.67% vs SMT生产线2: 良率80.00%

生产线产能规律总结

1. **产能分布**:生产线1承担75%的产能,是主要生产线2. **质量差异**:生产线1的良率比生产线2高6.67个百分点

3. 效率差异: 生产线1的产能是生产线2的3倍

■ 按产品型号产能分析

产品型号产能统计表

产品型号	总产量	完成数量	缺陷数量	良率	缺陷率	产能占比	产能分析
iPhone 15 Pro主板	9块	8块	1块	88.89%	11.11%	45%	主要产品, 产能最高, 质量最好
小米14主板	6块	5块	1块	83.33%	16.67%	30%	次要产品, 产能中等, 质量中等
Samsung S24主板	5块	4块	1块	80.00%	20.00%	25%	特殊产品, 产能较低, 质量不稳定

产品型号产能对比分析

产能对比图:

iPhone 15 Pro: (9块, 45%) 小米14: (6块, 30%)

Samsung S24: (5块, 25%)

质量对比:

iPhone 15 Pro: 良率88.89% > 小米14: 良率83.33% > Samsung S24: 良率80.00%

产品型号产能规律总结

1. **产能分布**: iPhone 15 Pro是主要产品,占总产能的45%

2. **质量排序**: iPhone 15 Pro > 小米14 > Samsung S24

3. 产能与质量关系:产能高的产品通常质量也更好

🔍 精确到小时的产能查询SQL

1. 基础小时产能统计查询

```
-- 按小时统计产能
SELECT
    strftime('%H:00', start_time) as hour_slot,
    COUNT(*) as total_boards,
    COUNT(CASE WHEN status = 'COMPLETED' THEN 1 END) as completed_boards,
    COUNT(CASE WHEN status = 'DEFECTIVE' THEN 1 END) as defective_boards,
    ROUND(
        (COUNT(CASE WHEN status = 'COMPLETED' THEN 1 END) * 100.0 / COUNT(*)), 2
    ) as yield_rate,
    ROUND(
        (COUNT(CASE WHEN status = 'DEFECTIVE' THEN 1 END) * 100.0 / COUNT(*)), 2
    ) as defect_rate
FROM board_production_records
WHERE start time IS NOT NULL
GROUP BY strftime('%H:00', start_time)
ORDER BY hour slot
```

2. 按日期和小时双重分组产能查询

3. 按生产线和小时产能查询

4. 按产品型号和小时产能查询

5. 时间范围产能查询(精确到小时)

```
-- 指定时间范围的产能查询(精确到小时)

SELECT

strftime('%Y-%m-%d %H:00', start_time) as hour_slot,

COUNT(*) as total_boards,

COUNT(CASE WHEN status = 'COMPLETED' THEN 1 END) as completed_boards,

COUNT(CASE WHEN status = 'DEFECTIVE' THEN 1 END) as defective_boards,

ROUND(

(COUNT(CASE WHEN status = 'COMPLETED' THEN 1 END) * 100.0 / COUNT(*)), 2

) as yield_rate

FROM board_production_records

WHERE start_time IS NOT NULL

AND start_time BETWEEN '2024-01-15 08:00:00' AND '2024-01-21 18:00:00'

GROUP BY strftime('%Y-%m-%d %H:00', start_time)

ORDER BY hour_slot
```

6. 产能趋势分析查询

```
-- 按小时产能趋势分析

SELECT

strftime('%H:00', start_time) as hour_slot,

COUNT(*) as total_boards,

AVG(CASE WHEN status = 'COMPLETED' THEN 1 ELSE 0 END) as avg_completion_rate,

ROUND(

(COUNT(CASE WHEN status = 'COMPLETED' THEN 1 END) * 100.0 / COUNT(*)), 2
) as overall_yield_rate

FROM board_production_records

WHERE start_time IS NOT NULL

GROUP BY strftime('%H:00', start_time)

ORDER BY hour_slot
```

■ 产能效率分析

小时效率分析

时间段	产量	效率等级	质量等级	综合评级	改进建议
08:00	7块	****	****	****	保持现状,作为标杆

时间段	产量	效率等级	质量等级	综合评级	改进建议
09:00	6块	***	****	****	保持现状,质量优秀
10:00	5块	***	**	***	重点改进时段, 增加质量检查
11:00	1块	*	*	*	紧急改进时段, 需要全面优化
14:00	1块	*	****	***	产能提升空间大, 质量稳定

效率等级说明

★★★★: 优秀(产能高,质量好)★★★: 良好(产能较高,质量好)

• 🚖 🚖 : 中等(产能中等,质量中等)

• 🚖 🏫: 较差(产能较低,质量差)

• 🐈: 很差(产能低,质量差)

⑥ 产能规律总结

主要规律

1. 时间规律

- 08:00-09:00是产能高峰时段,质量最稳定
- 10:00-11:00是产能低谷时段,质量最不稳定
- 下午时段产能稳定但产量较低

2. 生产线规律

- 生产线1承担75%的产能,效率和质量都较高
- 生产线2承担25%的产能,效率和质量都较低

3. 产品规律

- iPhone 15 Pro产能最高(45%),质量最好
- Samsung S24产能最低(25%),质量最不稳定

关键发现

1. 产能与质量关系:产能高的时段通常质量也更好

- 2. 时间效率差异: 早班效率明显高于其他时段
- 3. 生产线差异: 主要生产线在产能和质量上都优于次要生产线
- 4. 产品差异:成熟产品在产能和质量上都优于新产品

产能优化建议

短期优化措施(1-2周)

1. 重点时段优化

- 在10:00-11:00时段增加人员配置
- 加强此时段的设备维护和工艺控制
- 安排经验丰富的操作人员在此时段工作

2. 生产线平衡

- 将部分订单从生产线2转移到生产线1
- 对生产线2进行设备检查和维护
- 优化生产线2的工艺参数设置

3. 产品优化

- 重点优化Samsung S24的生产工艺
- 加强Samsung S24的质量检测
- 建立Samsung S24的专项改进计划

中期优化措施(1-2月)

1. 产能提升

- 优化生产计划,增加早班产能
- 实施精益生产,减少浪费
- 建立产能预警系统

2. 质量改进

- 建立质量改进闭环管理
- 实施预防性维护计划
- 加强操作人员技能培训

3. 效率提升

- 优化工艺流程,减少生产时间
- 实施标准化操作,提高一致性
- 建立效率监控和激励机制

长期优化措施(3-6月)

1. 系统集成

- 与MES系统集成,实现实时产能监控
- 建立产能数据分析平台
- 实施智能制造产能管理系统

2. 持续改进

- 建立产能改进长效机制
- 实施六西格玛改进项目
- 建立产能标杆管理体系

₩ 产能监控指标

关键绩效指标(KPI)

1. 产能指标

- 小时产能(块/小时)
- 日产能(块/天)
- 产能利用率(%)

2. 质量指标

- 良率(%)
- 缺陷率(%)
- 返工率(%)

3. 效率指标

- 设备利用率(%)
- 人员效率(%)
- 工艺效率 (%)

监控频率建议

• 实时监控: 小时产能、质量状况

• 日监控: 日产能、日良率、日缺陷率

• 周监控: 周产能趋势、质量趋势、效率分析

• 月监控: 月度产能报告、质量改进效果、效率提升情况

▶ 报告说明

数据来源

• 数据库: SMT工厂生产数据库(SQLite)

• 表名: board_production_records (单板生产记录表)

• 关联表: product models (产品型号表)、production lines (生产线表)

分析方法

• 统计分析: 使用SQL聚合函数进行产能统计

• 趋势分析: 观察产能的时间变化趋势

• 对比分析: 对比不同生产线、产品型号的产能

• 效率分析: 分析产能与质量的关系

局限性说明

1. 数据量有限:仅20条生产记录,样本量相对较小

2. 时间跨度短: 仅7天数据,长期趋势分析有限

3. 影响因素复杂:实际生产中的产能影响因素可能更加复杂

4. 季节性因素: 未考虑季节性对产能的影响

后续建议

1. 扩大数据收集范围: 收集更多时间跨度的生产数据

2. 完善产能指标: 建立更全面的产能评估体系

3. 深入原因分析:结合现场情况深入分析产能影响因素

4. 建立预警机制:基于分析结果建立产能预警系统

报告生成时间: 2024年1月22日

分析人员: AI助手 **数据版本**: v1.0

下次更新建议:每周更新一次,持续跟踪产能改进效果