Temporal Neighborhood Discovery using Markov Models

Sandipan Dey, Vandana Janeja, Aryya Gangopadhyay

Schematic Diagram

Initial Markov Modeling

- > Normalize the Temporal Dataset
- > Equal Frequency Binning to get initial equidepth bins
- > Obtain Temporal Summarization
- Compute Transition Probability Matrix using different distance measures

Distance Measures

Distance	$d(B_i, B_j)$
KL	$\frac{1}{2} \left(2 \log_e \left(\frac{\sigma_j}{\sigma_i} \right) + \frac{(\mu_i - \mu_j)^2}{\sigma_j^2} + \frac{\sigma_i^2}{\sigma_j^2} - 1 \right)$
Divergence	$\frac{1}{2}\left((\mu_i - \mu_j)^2\left(\frac{1}{\sigma_i^2} + \frac{1}{\sigma_j^2}\right) + \frac{\sigma_i^2}{\sigma_j^2} + \frac{\sigma_j^2}{\sigma_i^2} - 2\right)$
Mahalanobis	$2 \cdot \frac{(\mu_i - \mu_j)^2}{\sigma_i^2 + \sigma_j^2}$
Bhattacharyya	$\frac{1}{4} \cdot \frac{(\mu_i - \mu_j)^2}{\sigma_i^2 + \sigma_j^2} + \frac{1}{2} log_e \left(\frac{\sigma_i^2 + \sigma_j^2}{2\sigma_i \sigma_j} \right)$
Hellinger	$\sqrt{\frac{1}{2} - \sqrt{\frac{\sigma_i \sigma_j}{2(\sigma_i^2 + \sigma_j^2)}} e^{-\frac{1}{2} \frac{(\mu_i - \mu_j)^2}{\sigma_i^2 + \sigma_j^2}}$

AN HONORS UNIVERSITY

SMerg

- Find the adjacent bins with maximum similarity
- > Iteratively merge the maximum similar adjacent bins
- > Stop merging if similarity less than a threshold

StMerg

- Compute Markov Stationary Distribution from the Transition Matrix
- ➤ Use DFT as High Pass Filter to find Split points
- > Merge all bins in between successive spilt points

Accuracy Measures

$$Precision = \frac{number of bins correctly merged}{total number of bins actually merged}$$

Recall =
$$\frac{\text{number of bins correctly merged}}{\text{total number of bins expected to be merged}}$$

Results

Results

US-50-East

UMBC
AN HONORS
UNIVERSITY
IN MARYLAND

www.umbc.edu

I-395

UMBC
AN HONORS
UNIVERSITY
IN MARYLAND

www.umbc.edu

Approximation

UMBC AN HONORS UNIVERSITY

IN MARYLAND

www.umbc.edu

Questions

