

YDLIDAR G4

数据手册

文档编码: 01.13.000007

目录

产品概述	2
产品特性	2
应用场景	2
安装及尺寸	2
规格参数	3
性能参数	3
电气参数	3
接口定义	4
数据通信	4
电机控制	5
光学特性	5
极坐标系定义	5
其他参数	6
开发及支持	6
修计	-

产品概述

YDLIDAR G4 激光雷达是深圳玩智商科技有限公司(EAI)研发的一款 360 度二维测距产品(以下简称: G4)。本产品基于三角测距原理,并配以相关光学、电学、算法设计,实现高频高精度的距离测量,在测距的同时,机械结构 360 度旋转,不断获取角度信息,从而实现了 360 度扫描测距,输出扫描环境的点云数据。

产品特性

- ▶ 360 度全方位扫描测距
- ▶ 测距误差小,测距稳定性好,精度高
- ▶ 测距范围广,不低于 16m
- ▶ 抗环境光干扰能力强
- ▶ 工业级无刷电机驱动,性能稳定
- ▶ 激光功率满足 Class I 级别的激光器安全标准
- ▶ 360 度全方位扫描, 5-12Hz 自适应扫描频率
- ▶ 光磁融合技术实现无线通信、无线供电
- ▶ 高速测距,测距频率可达 9000hz

应用场景

- ▶ 机器人导航及避障
- ▶ 机器人 ROS 教学、研究
- ▶ 区域安防
- ▶ 环境扫描及 3D 重建
- ▶ 家用服务机器人/扫地机器人的导航及避障

安装及尺寸

图 1 YDLIDAR G4 安装尺寸

图 2 YDLIDAR G4 机械尺寸

规格参数

性能参数

表 1 YDLIDAR G4 性能参数

项目	最小值	典型值	最大值	单位	备注
测距频率	4000	9000	9000	Hz	每秒测距 9000 次
扫描频率	5	7	12	Hz	软件调速
	0.10	-	16	m	测距频率=4KHz时
测距范围	0.22	-	16	m	测距频率=8KHz时
	0.26	-	16	m	测距频率=9KHz时
扫描角度	-	0~360	-	Deg	-
	_	< 0.5	_	mm	测距范围<2m
	-	<实际距离的1%	_	111111	测距范围>2m
角度分辨率	0.26	0.28	0.30	Deg	扫描频率 为 7Hz 时

电气参数

表 2 YDLIDAR G4 电气参数

项目	最小值	典型值	最大值	单位	备注
供电电压	4.8	5.0	5.2	V	过高会损坏设备 过低影响性能甚至无

					法测距
电压波纹	0	50	100	mV	高波纹影响性能甚至 无法测距
启动电流	450	500	550	mA	设备启动时需要较高 电流
休眠电流	-	<50	-	mA	系统休眠, 电机不转
工作电流	400	450	480	mA	系统工作, 电机旋转

接口定义

G4 对外提供了两个接口, USB Type-C 和 PH2.0-5P 母座接口, 使用时, 两者选其一。

USB Type-C: 数据通信和系统供电。

PH2.0-5P: 系统供电、数据通信。

图 3 YDLIDAR G4 物理接口

表 3 YDLIDAR G4 接口定义说明

管脚	类型	描述	默认值	范围	备注
VCC	供电	供电电压正极	5V	4.8V~5.2V	-
Tx	输入	系统串口输入	-	-	数据流:外设→雷达
Rx	输出	系统串口输出	-	-	数据流: 雷达→外设
GND	供电	供电电压负极	0V	0V	-
NC	预留	预留管脚	-	-	-

数据通信

G4 采用 3.3V 电平的串口(UART)进行通信,用户可通过产品上的物理接口,连接外部系统和本产品,并按照系统的通信协议进行通讯来实时获取扫描的点云数据、设备信息、设备状态,并可设置设备工作模式等。其通信参数如下表:

表 4	YDLIDA	R G4	由1	丁规格
10 T		TU /L	T -	→ // /// 10

项目	最小值	典型值	最大值	单位	备注
波特率	-	230400	-	bps	8位数据位,1位停 止位,无校验
信号高电平	1.8	3.3	3.4	V	信号电压>1.8V 时, 为高电平
信号低电平	0	0	0.5	V	信号电压<0.5V 时, 为低电平

电机控制

G4 自带电机调速功能的电机驱动器,且提供了命令接口取代了硬件接口来进行电机控制。具体请参见本产品的开发文档。

光学特性

G4采用的红外点状脉冲式激光器,满足FDA Class I 激光安全标准。在系统工作时,激光器和光学镜头来完成激光信号的发射和接收,以此实现高频测距。为确保系统测距的性能,请确保 G4的激光器和光学镜头保持洁净。激光器光学参数如下:

项目 最小值 典型值 最大值 单位 备注 激光器波长 775 795 红外波段 785 nm 激光器功率 3 5 峰值功率 mW FDA 📤 Class I

表 5 YDLIDAR G4 激光器光学参数

极坐标系定义

为了方便二次开发, G4 内部定义了极坐标系。系统极坐标以 G4 的旋转核心的中心为极点, 规定角度顺时针为正, 零位角位于 G4 PH2.0-5P 接口线 的出线口方向, 如图所示:

图 4 YDLIDAR G4 极坐标系定义

其他参数

表 6 YDLIDAR G4 其他参数

项目	最小值	典型值	最大值	单位	备注
工作温度	0	20	40	$^{\circ}\!$	长期工作在高温环境 下,会降低寿命
光照环境	0	550	2000	Lux	仅作参考
重量	-	214	-	g	裸机重量

开发及支持

G4提供了丰富的硬件和软件接口,可以实现对系统的电机使能控制、转速控制,测距单元的使能控制和输出控制。在此基础上,用户可以实现对 G4的功耗控制和扫描控制。同时,还开放了产品的 3D模型,并为用户提供了 windows 下的图形调试客户端、以及相应的 SDK 开发包和 Ros 开发包,用户可从官方网站下载 http://eaibot.com/。

为了方便用户开发,还提供了 G4 的开发手册、SDK 开发手册和 Ros 使用手册,请一并于<u>官</u> 网下载。

修订

日期	版本	修订内容
2017-12-6	1.0	初撰