One-Class Approaches for Object Extraction in Images

by

Salil Bhatra

A Thesis Presented in Partial Fulfillment of the Requirement for the Degree Master of Computing Studies

Approved November 2016 by the Graduate Supervisory Committee:

Ashish Amresh, Chair John Femiani Ajay Bansal Anshuman Razdan

ARIZONA STATE UNIVERSITY

December 2016

ABSTRACT

This is my abstract

DEDICATION

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

		Pa	age
LIST	ОГЛ	TABLES	v
LIST	OF F	FIGURES	vi
1	Intro	oduction	1
	1.1	Motivation	1
	1.2	Problem Statement	1
	1.3	Objective	1
	1.4	Contributions	1
2	Rela	ated Work	2
3	The	ory	3
4	Imp	lementation	4
5	Eval	luation and Results	5
	5.1	Training Set Size vs Recall	5
6	Con	clusion and Future Work	6
REFE	EREN	ICES	6
APPE	ENDI	X	
A	RAV	V DATA	7
BIOG	RAP	HICAL	8

LIST OF TABLES

Table		Page
5.1	Recall on 50% of the labeled data when trained using increasing amounts	;
	of data	5

LIST OF FIGURES

Figure

INTRODUCTION

1.1 Motivation

1.2 Problem Statement

We address the problem of classification/ object extraction when only positive samples are labeled. Let us start by establishing some notation: Let

Then the problem can be stated as follows: we are **given** X and our **aim** is Y

1.3 Objective

The aim of this work is to evaluate methods that may solve the one-class extraction problem in the context of aerial imagery, particularly when applied to feature extraction problems such as the task of locating all image patches that contain vehicles in a large image.

1.4 Contributions

We make the following contributions:

- (A contribution involving the application of this approach to cars?)
- Contribution 2
- Contribution 3 (always 3)

RELATED WORK

The topic of one-class machine learning has been covered by the survey paper Khan and Madden (2010, 2014).

THEORY

IMPLEMENTATION

EVALUATION AND RESULTS

Table 5.1: Recall on 50% of the labeled data when trained using increasing amounts of data.

	10%	20%	30%	40%	50%
1C-SVM, Chen et al. (2001)					
Method2					
Method3					

CONCLUSION AND FUTURE WORK

REFERENCES

- Chen, Y., X. S. Zhou and T. S. Huang, "One-class sym for learning in image retrieval", in "Image Processing, 2001. Proceedings. 2001 International Conference on", vol. 1, pp. 34–37 (IEEE, 2001).
- Khan, S. S. and M. G. Madden, "A Survey of Recent Trends in One Class Classification", in "Proceedings of the 20th Irish Conference on Artificial Intelligence and Cognitive Science", AICS'09, pp. 188–197 (Springer-Verlag, 2010).
- Khan, S. S. and M. G. Madden, "One-class classification: taxonomy of study and review of techniques", The Knowledge Engineering Review 29, 03, 345–374 (2014).

APPENDIX A RAW DATA

BIOGRAPHICAL SKETCH