Scribe: Changjian Xie

Note 3. The Energy Minimization to Deduce The Landau-Lifhiz Equation

Instructor: Jingrun Chen, SooChow University

Consider a non-dimensionalization of the Landau-Lifshitz equation, which will be proved in what follows using energy minimization. The Landau-Lifshitz energy can be written in dimensionless variables by rescaling $\mathbf{M} = M_s \mathbf{m}$, $\mathbf{H}_s = M_s \mathbf{h}_s$, $U = M_s u$, $\mathbf{H}_e = M_s \mathbf{h}_e$, $\mathbf{x} = L \mathbf{x}'$, $F[\mathbf{M}] = (\mu_0 M_s^2 L^3) F[\mathbf{m}]$, where \mathbf{M} is magnetization which has units of A/m and and dimensions $[\mathbf{M}] = [M_s] = AL^{-1}$, mathematically, it is a vector field of constant length M_s (in units of A/m), where \mathbf{H}_s is stray field, U is scalar function.

The Laudau-Lifshitz free energy considered is

$$F[\mathbf{m}] = q \int_{\Omega'} \left(m_2^2 + m_3^2 \right) d\mathbf{x}' + \epsilon \int_{\Omega'} |\nabla \mathbf{m}|^2 d\mathbf{x}' + \frac{1}{2} \int_{\mathbb{R}} |\nabla u|^2 d\mathbf{x}' - \int_{\Omega'} \mathbf{h}_e \cdot \mathbf{m} d\mathbf{x}', \tag{1}$$

where $q = 2K_u/(\mu_0 M_s^2)$ and $\epsilon = 2C_{ex}/(\mu_0 M_s L^2)$ are dimensionless. Note that $\mathbf{m} = \frac{\mathbf{M}}{M_s}$ and $|\mathbf{M}| = M_s$, $\mathbf{m} = (m_1, m_2, m_3)^T$ then one has $|\mathbf{m}| = 1$, we are interested in the problem of minimizing the energy $F[\mathbf{m}]$ over all functions belonging to the admissible calss

$$\mathcal{A} = \{ \mathbf{m} \in H^1(\Omega; \mathbb{R}^3) \mid \frac{\partial \mathbf{m}}{\partial \nu} = \mathbf{0} \text{ on } \partial \Omega, \, |\mathbf{m}| = 1 \text{ a.e.} \}.$$

In the sequel, the variational calculus is adopted to obtain Landau-Lifschitz equation, that is the necessity of energy minimization, i.e., $\frac{\delta F}{\delta \mathbf{m}} = 0$. Assume $\mathbf{v} \in C_c^{\infty}(\Omega')$, then since $|\mathbf{m}| = 1$, we give a turbulent and note that $|\mathbf{m} + t\mathbf{v}| \neq 1$, for each sufficiently small t, we consider first the minimization without constraints using energy methods. At beginning of this process, for all $t \in \mathbb{R}$ and $\mathbf{v} \in C_c^{\infty}(\Omega)$, $I[t] = F[\mathbf{m} + t\mathbf{v}] \geq F[\mathbf{m}]$, it follows $I'[t]|_{t=0} = 0$. We then have

$$\begin{split} I[t] &= F\left[\mathbf{m} + t\mathbf{v}\right] \\ &= q \int_{\Omega'} \left[(m_2 + tv_2)^2 + (m_3 + tv_3)^2 \right] \, d\mathbf{x}' \\ &+ \epsilon \int_{\Omega'} |\nabla (\mathbf{m} + t\mathbf{v})|^2 \, d\mathbf{x}' \\ &+ \frac{1}{2} \int_{\mathbb{R}^3} |\nabla u|^2 \, d\mathbf{x}' \\ &- \int_{\Omega'} \mathbf{h}_e \cdot (\mathbf{m} + t\mathbf{v}) \, d\mathbf{x}'. \end{split}$$

We note that $\mathbf{div}(-\nabla u + \mathbf{m} + t\mathbf{v}) = 0$, for $x \in \mathbb{R}^3$, we take derivative with regard to t, that is, $\mathbf{div}(-\nabla \frac{\partial u}{\partial t} + \mathbf{v}) = 0$, then

$$\int_{\mathbb{R}^3} \nabla (\frac{\partial u}{\partial t}) \cdot \nabla u \, dx = \int_{\Omega} \mathbf{v} \cdot \nabla u \, dx.$$

Taking derivative with respect to variable t on the both side, we obtain

$$I'[t] = q \int_{\Omega'} 2 \left[(m_2 + tv_2)v_2 + (m_3 + tv_3)v_3 \right] d\mathbf{x}'$$

$$+ \epsilon \int_{\Omega'} 2\nabla (\mathbf{m} + t\mathbf{v}) \cdot \nabla \mathbf{v} d\mathbf{x}'$$

$$+ \int_{\mathbb{R}^3} \nabla u \cdot \mathbf{v} d\mathbf{x}'$$

$$- \int_{\Omega'} \mathbf{h}_e \cdot \mathbf{v} d\mathbf{x}'.$$

We observe that for all $x \in \partial \Omega$, it follows $\frac{\partial \mathbf{m}}{\partial \nu} = \mathbf{0}$, and also note that $\nabla \mathbf{m} \cdot \nabla \mathbf{v} = -\Delta \mathbf{m} \cdot \mathbf{v}$, where $\int_{\Omega'} \Delta \mathbf{m} \cdot \mathbf{v} \, dx$ is easy to calculate due to \mathbf{v} decay into 0 on boundary using integrate by parts. Then,

$$I'[0] = q \int_{\Omega'} 2 \left[m_2 v_2 + m_3 v_3 \right] d\mathbf{x}'$$
$$- \epsilon \int_{\Omega'} 2\Delta \mathbf{m} \cdot \mathbf{v} d\mathbf{x}'$$
$$+ \int_{\mathbb{R}^3} \nabla u \cdot \mathbf{v} d\mathbf{x}'$$
$$- \int_{\Omega'} \mathbf{h}_e \cdot \mathbf{v} d\mathbf{x}'.$$

Thus,

$$\mathbf{h}_{\text{eff}} = 2q(m_2\mathbf{e}_2 + m_3\mathbf{e}_3) - 2\epsilon\Delta\mathbf{m} + \nabla u - \mathbf{h}_e = \mathbf{0}.$$

In the following, we consider the minimization with constraints using energy methods. For simplicity, we introduce a notation as follows

$$\gamma(t) = \frac{\mathbf{m} + t\mathbf{v}}{|\mathbf{m} + t\mathbf{v}|} \in \mathcal{A}.$$

Thus,

$$I[t] = F[\gamma(t)] = F\left[\frac{\mathbf{m} + t\mathbf{v}}{|\mathbf{m} + t\mathbf{v}|}\right].$$

Note, however, that

$$\gamma'(t) = \frac{\mathbf{v}}{|\mathbf{m} + t\mathbf{v}|} - \frac{[(\mathbf{m} + t\mathbf{v}) \cdot \mathbf{v}](\mathbf{m} + t\mathbf{v})}{|\mathbf{m} + t\mathbf{v}|^3},$$

At beginning of this process, for all $t \in \mathbb{R}$ and $\mathbf{v} \in C_c^{\infty}(\Omega)$, $I[t] = F[\gamma(t)] = F\left[\frac{\mathbf{m} + t\mathbf{v}}{|\mathbf{m} + t\mathbf{v}|}\right] \geq F[\mathbf{m}]$, it follows $I'[t]|_{t=0} = 0$. In the following, we note that

$$\nabla \left(\frac{\mathbf{m} + t\mathbf{v}}{|\mathbf{m} + t\mathbf{v}|} \right) = \frac{\nabla \mathbf{m} + t\nabla \mathbf{v}}{|\mathbf{m} + t\mathbf{v}|} - \frac{(\mathbf{m} + t\mathbf{v})[(\mathbf{m} + t\mathbf{v}) \cdot \nabla (\mathbf{m} + t\mathbf{v})]}{|\mathbf{m} + t\mathbf{v}|^3}.$$

We will give a computation in detail, i.e.,

$$\begin{split} I[t] &= F\left[\frac{\mathbf{m} + t\mathbf{v}}{|\mathbf{m} + t\mathbf{v}|}\right] \\ &= q \int_{\Omega'} \left[\left(\frac{m_2 + tv_2}{|\mathbf{m} + t\mathbf{v}|}\right)^2 + \left(\frac{m_3 + tv_3}{|\mathbf{m} + t\mathbf{v}|}\right)^2 \right] d\mathbf{x}' \\ &+ \epsilon \int_{\Omega'} \left| \frac{\nabla \mathbf{m} + t\nabla \mathbf{v}}{|\mathbf{m} + t\mathbf{v}|} - \frac{(\mathbf{m} + t\mathbf{v})[(\mathbf{m} + t\mathbf{v}) \cdot \nabla(\mathbf{m} + t\mathbf{v})]}{|\mathbf{m} + t\mathbf{v}|^3} \right|^2 d\mathbf{x}' \\ &+ \frac{1}{2} \int_{\mathbb{R}^3} |\nabla u|^2 d\mathbf{x}' \\ &- \int_{\Omega'} \mathbf{h}_e \cdot \left(\frac{\mathbf{m} + t\mathbf{v}}{|\mathbf{m} + t\mathbf{v}|}\right) d\mathbf{x}'. \end{split}$$

Then, we note that

$$\int_{\mathbb{R}^3} \nabla (\frac{\partial u}{\partial t}) \cdot \nabla u \, dx = \int_{\Omega} \gamma'(t) \cdot \nabla u \, dx.$$

Consequently,

$$\begin{split} I'[t] &= \int_{\Omega'} \gamma'(t) \cdot \nabla u \, d\mathbf{x}' - \int_{\Omega'} \mathbf{h}_e \cdot \gamma'(t) \, d\mathbf{x}' \\ &+ 2q \int_{\Omega'} \left(\frac{m_2 + tv_2}{|\mathbf{m} + t\mathbf{v}|} \right) \left(\frac{v_2}{|\mathbf{m} + t\mathbf{v}|} - (m_2 + tv_2) \frac{[(\mathbf{m} + t\mathbf{v}) \cdot \mathbf{v}]}{|\mathbf{m} + t\mathbf{v}|^3} \right) \, d\mathbf{x}' \\ &+ 2q \int_{\Omega'} \left(\frac{m_3 + tv_3}{|\mathbf{m} + t\mathbf{v}|} \right) \left(\frac{v_3}{|\mathbf{m} + t\mathbf{v}|} - (m_3 + tv_3) \frac{[(\mathbf{m} + t\mathbf{v}) \cdot \mathbf{v}]}{|\mathbf{m} + t\mathbf{v}|^3} \right) \, d\mathbf{x}' \\ &+ 2\epsilon \int_{\Omega'} \left[\frac{\nabla \mathbf{m} + t\nabla \mathbf{v}}{|\mathbf{m} + t\mathbf{v}|} - \frac{(\mathbf{m} + t\mathbf{v})[(\mathbf{m} + t\mathbf{v}) \cdot \nabla(\mathbf{m} + t\mathbf{v})]}{|\mathbf{m} + t\mathbf{v}|^3} \right] \\ &\cdot \left\{ \frac{\nabla \mathbf{v}}{|\mathbf{m} + t\mathbf{v}|} - \frac{[(\mathbf{m} + t\mathbf{v}) \cdot \mathbf{v}](\nabla \mathbf{m} + t\nabla \mathbf{v})}{|\mathbf{m} + t\mathbf{v}|^3} \right. \\ &- \left(\frac{\mathbf{v}((\mathbf{m} + t\mathbf{v}) \cdot \nabla(\mathbf{m} + t\mathbf{v}))}{|\mathbf{m} + t\mathbf{v}|^3} + \frac{(\mathbf{m} + t\mathbf{v})(\mathbf{v} \cdot \nabla(\mathbf{m} + t\mathbf{v}) + (\mathbf{m} + t\mathbf{v}) \cdot \nabla \mathbf{v})}{|\mathbf{m} + t\mathbf{v}|^3} \\ &- 3(\mathbf{m} + t\mathbf{v})((\mathbf{m} + t\mathbf{v}) \cdot \nabla(\mathbf{m} + t\mathbf{v})) \cdot \frac{[(\mathbf{m} + t\mathbf{v}) \cdot \mathbf{v}]}{|\mathbf{m} + t\mathbf{v}|^5} \right) \right\} d\mathbf{x}'. \end{split}$$

Note, however, that

$$\gamma'(0) = \mathbf{v} - (\mathbf{m} \cdot \mathbf{v})\mathbf{m}.$$

Then,

$$0 = I'[0] = \int_{\Omega'} [\mathbf{v} - (\mathbf{m} \cdot \mathbf{v})\mathbf{m}] \cdot \nabla u \, d\mathbf{x}' - \int_{\Omega'} \mathbf{h}_e \cdot [\mathbf{v} - (\mathbf{m} \cdot \mathbf{v})\mathbf{m}] \, d\mathbf{x}'$$

$$+ 2q \int_{\Omega'} m_2 \left(v_2 - m_2(\mathbf{m} \cdot \mathbf{v}) \right) \, d\mathbf{x}' + 2q \int_{\Omega'} m_3 \left(v_3 - m_3(\mathbf{m} \cdot \mathbf{v}) \right) \, d\mathbf{x}'$$

$$+ 2\epsilon \int_{\Omega'} [\nabla \mathbf{m} - \mathbf{m}(\mathbf{m} \cdot \nabla \mathbf{m})] \cdot \left\{ \nabla \mathbf{v} - (\mathbf{m} \cdot \mathbf{v}) \nabla \mathbf{m} - \left(\mathbf{v}(\mathbf{m} \cdot \nabla \mathbf{m}) + \mathbf{m}(\mathbf{v} \cdot \nabla \mathbf{m} + \mathbf{m} \cdot \nabla \mathbf{v}) - 3\mathbf{m}(\mathbf{m} \cdot \nabla \mathbf{m})(\mathbf{m} \cdot \mathbf{v}) \right) \right\} d\mathbf{x}'.$$

Notice that

$$\int_{\Omega'} \nabla \mathbf{m} \cdot \nabla \mathbf{v} \, d\mathbf{x}' = \int_{\Omega'} \sum_{ij} \frac{\partial m_i}{\partial x_j} \frac{\partial v_i}{\partial x_j} \, d\mathbf{x}' = \sum_{ij} \int_{\Omega'} \frac{\partial m_i}{\partial x_j} \frac{\partial v_i}{\partial x_j} \, d\mathbf{x}'.$$

Integrating by part, we obtain

$$\int_{\Omega'} \nabla \mathbf{m} \cdot \nabla \mathbf{v} \, d\mathbf{x}' = -\int_{\Omega'} \sum_{ij} \frac{\partial^2 m_i}{\partial x_j^2} \cdot v_i \, d\mathbf{x}' = -\int_{\Omega'} \Delta \mathbf{m} \cdot \mathbf{v} \, d\mathbf{x}'$$

we also note that

$$\mathbf{m} \cdot \nabla \mathbf{m} = \sum_{ij} m_j \cdot \frac{\partial m_i}{\partial x_j},$$

and

$$\nabla \mathbf{m} \cdot \mathbf{m} = \sum_{ij} \frac{\partial m_i}{\partial x_j} \cdot m_i,$$

then,

$$\begin{split} &2\epsilon \int_{\Omega'} \left[\nabla \mathbf{m} - \mathbf{m} (\mathbf{m} \cdot \nabla \mathbf{m}) \right] \cdot \left\{ \nabla \mathbf{v} - (\mathbf{m} \cdot \mathbf{v}) \nabla \mathbf{m} - \left(\mathbf{v} (\mathbf{m} \cdot \nabla \mathbf{m}) \right. \right. \\ &+ \left. \mathbf{m} (\mathbf{v} \cdot \nabla \mathbf{m} + \mathbf{m} \cdot \nabla \mathbf{v}) - 3 \mathbf{m} (\mathbf{m} \cdot \nabla \mathbf{m}) (\mathbf{m} \cdot \mathbf{v}) \right) \right\} d\mathbf{x}' \\ &= 2\epsilon \int_{\Omega'} - \sum_{ij} \frac{\partial^2 m_i}{\partial x_j^2} v_i - \left(\sum_{ij} \frac{\partial^2 m_i}{\partial x_j^2} v_i \right) \left(\sum_{ij} \frac{\partial^2 m_i}{\partial x_j^2} m_i \right) - \left(\sum_{ij} \frac{\partial m_i}{\partial x_j} m_i \right) - \left(\sum_{ij} m_j \frac{\partial m_i}{\partial x_j} \right) \left(\sum_{ij} \frac{\partial m_i}{\partial x_j} m_i \right) \\ &+ 3 \left(\sum_{ij} m_i v_i \right) \left(\sum_{ij} m_j \frac{\partial m_i}{\partial x_j} \right) \left(\sum_{ij} \frac{\partial m_i}{\partial x_j} m_i \right) - \left(\sum_{ij} m_j \frac{\partial m_i}{\partial x_j} \right) \left(\sum_{ij} m_j \frac{\partial m_i}{\partial x_j} \right) \\ &- \left(\sum_{ij} m_j \frac{\partial m_i}{\partial x_j} \right) \left(\sum_{ij} \frac{\partial^2 m_i}{\partial x_j^2} v_i \right) \left(\sum_{ij} m_j \frac{\partial m_i}{\partial x_j} \right) + \left(\sum_{ij} m_j \frac{\partial m_i}{\partial x_j} \right) \left(\sum_{ij} m_j \frac{\partial m_i}{\partial x_j} \right) \\ &+ \left(\sum_{ij} m_j \frac{\partial m_i}{\partial x_j} \right) \left(\sum_{ij} v_j \frac{\partial m_i}{\partial x_j} \right) + \left(\sum_{ij} m_j \frac{\partial m_i}{\partial x_j} \right) \left(\sum_{ij} m_j \frac{\partial v_i}{\partial x_j} \right) \\ &- 3 \left(\sum_{i} m_i v_i \right) \left(\sum_{ij} m_j \frac{\partial m_i}{\partial x_j} \right) \left(\sum_{ij} m_j \frac{\partial m_i}{\partial x_j} \right) d\mathbf{x}' \\ &= 2\epsilon \int_{\Omega'} - \sum_{ij} \frac{\partial^2 m_i}{\partial x_j^2} v_i + \left(- \sum_{ij} \frac{\partial^2 m_i}{\partial x_j^2} m_i \right) \left(\sum_{i} m_i v_i \right) d\mathbf{x}' \\ &= 2\epsilon \int_{\Omega'} - \Delta \mathbf{m} \cdot \mathbf{v} + \left(\Delta \mathbf{m} \cdot \mathbf{m} \right) (\mathbf{m} \cdot \mathbf{v}) d\mathbf{x}'. \end{split}$$

Then,

$$0 = I'[0] = \int_{\Omega'} [\mathbf{v} - (\mathbf{m} \cdot \mathbf{v})\mathbf{m}] \cdot \nabla u \, d\mathbf{x}' - \int_{\Omega'} \mathbf{h}_e \cdot [\mathbf{v} - (\mathbf{m} \cdot \mathbf{v})\mathbf{m}] \, d\mathbf{x}'$$
$$+ 2q \int_{\Omega'} m_2 \left(v_2 - m_2(\mathbf{m} \cdot \mathbf{v}) \right) \, d\mathbf{x}' + 2q \int_{\Omega'} m_3 \left(v_3 - m_3(\mathbf{m} \cdot \mathbf{v}) \right) \, d\mathbf{x}'$$
$$+ 2\epsilon \int_{\Omega'} -\Delta \mathbf{m} \cdot \mathbf{v} + (\Delta \mathbf{m} \cdot \mathbf{m})(\mathbf{m} \cdot \mathbf{v}) \, d\mathbf{x}',$$

that is,

$$\int_{\Omega'} \tilde{\mathbf{h}_{\text{eff}}} \cdot \mathbf{v} = 0.$$

The above identity is valid for each function $\mathbf{v} \in C_c^{\infty}(\Omega')$. We then derive

$$\begin{split} \tilde{\mathbf{h}_{\text{eff}}} &= \nabla u - (\mathbf{m} \cdot \nabla u) \mathbf{m} - \mathbf{h}_e + (\mathbf{h}_e \cdot \mathbf{m}) \mathbf{m} + 2q [(m_2 \mathbf{e}_2 + m_3 \mathbf{e}_3) - (m_2^2 + m_3^2) \mathbf{m}] \\ &+ 2\epsilon \bigg[-\Delta \mathbf{m} + (\Delta \mathbf{m} \cdot \mathbf{m}) \mathbf{m} \bigg]. \end{split}$$

Note that

$$\mathbf{h}_{\text{eff}} = 2q(m_2\mathbf{e}_2 + m_3\mathbf{e}_3) - 2\epsilon\Delta\mathbf{m} + \nabla u - \mathbf{h}_e,$$

and

$$(\mathbf{h}_{\text{eff}} \cdot \mathbf{m})\mathbf{m} = 2q[(m_2\mathbf{e}_2 + m_3\mathbf{e}_3) \cdot \mathbf{m}]\mathbf{m} - 2\epsilon(\Delta \mathbf{m} \cdot \mathbf{m})\mathbf{m} + (\nabla u \cdot \mathbf{m})\mathbf{m} - (\mathbf{h}_e \cdot \mathbf{m})\mathbf{m},$$
 we can compute for simplicity and then get

$$\tilde{\mathbf{h}}_{\mathrm{eff}} = \mathbf{h}_{\mathrm{eff}} - (\mathbf{h}_{\mathrm{eff}}, \mathbf{m})\mathbf{m}.$$