

Теория вероятности и математическая статистика

Непрерывные случайные величины. Функция распределения и плотность распределения вероятностей. Равномерное и нормальное распределение. Центральная предельная теорема

На этом уроке мы изучим:

- 1. Непрерывная случайная величина
- 2. Функция распределения вероятностей и плотность распределения вероятностей
- 3. Равномерное распределение
- 4. Нормальное распределение
- 5. Центральная предельная теорема

СЛУЧАЙНАЯ ВЕЛИЧИНА

ДИСКРЕТНАЯ

значения счетны

НЕПРЕРЫВНАЯ

лежит в неком интервале

 $X_1 = 3,02 \text{ cm}$

 $\mathbf{x}_2 = 3{,}01 \text{ cm}$

 $X_3 = 3,00 \text{ cm}$

Мы можем быть точными, на сколько нам позволяет точность прибора Функция распределения вероятностей - это такая функция *F(x)*, которая для каждого значения *x* показывает, какова вероятность того, что случайная величина меньше *x*.

Плотность распределения вероятностей - это функция f(x),

которая равна производной функции распределения

вероятностей:

$$f(x) = F'(x)$$

Нормальное распределение

(распределение Гаусса)

Нормальное распределение - это распределение вероятностей непрерывной случайной величины **X**, плотность вероятности которой подчиняется формуле:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}},$$

где
$$a = M(X), \ \sigma^2 = D(X).$$

Нормальное распределение

Примеры нормально распределенных величин: рост и вес людей, скорость движения молекул в газах и жидкостях, показатели IQ и т.д.

График плотности нормального распределения имеет колоколообразную форму:

Симметричен относительно оси у

Область под дугой = 1

Показывает пропорцию (вероятность) СВ меньше некого -3σ -2σ -1σ $\overline{\chi}$ $+1\sigma$ $+2\sigma$ $+3\sigma$ значения

Правило трех сигм

На отрезке от -σ до +σ расположено около 68% наблюдений,

и от −3 от до +3 от −3 от наблюдений:

СТАНДАРТНОЕ НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ

Пример: Найти $P(X \le -2, 42)$

Таблица накопленного нормального распределения $N\left(Z\right)$ при Z<0

Z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761	0,4721	0,4681	0,4641
-0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	0,4364	0,4325	0,4286	0,4247
-0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859
-0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,3520	0,3483
-0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,3121
-0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,2776
-0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451
-0,7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266	0,2236	0,2206	0,2177	0,2148
-0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
-0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,1611
-1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
-1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	0,1210	0,1190	0,1170
-1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,0985
-1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0869	0,0853	0,0838	0,0823
-1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0721	0,0708	0,0694	0,0681
-1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
-1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0465	0,0455
-1,7	0,0446	0,0436	0,0427	0.0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,0367
-1,8	0,0359	0,0351	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294
-1,9	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256	0,0250	0,0244	0,0239	0,0233
-2,0	0,0228	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0,0192	0,0188	0,0183
-2,1	0,0179	0,0174	0,0170	0,0166	0,0162	0,0158	0,0154	0,0150	0,0146	0,0143
-2,2	0,0139	0,0136	0,0132	0,0129	0,0125	0,0122	0,0119	0,0116	0,0113	0,0110
-2,3	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,0084
-2,4	0,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,0064
-2,5	0,0062	0,0060	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	0,0049	0,0048

GeekBrains

Ответ: 0.78 % значений СВ меньше 2,42

Найти P(X > -2, 42)

Ответ: 99,22%

Таблица накопленного нормального распределения $N\left(Z\right)$ при Z<0

Z	0,00	0,01	0,02			0.00	0,01	0,02	0,03	0,04	In ne	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080			0,00	0,01	0,02	0,03	0,04	0,05	0,00	0,07	0,00	0,03
0,1	0,5398	0,5438	0.5478		0.0	0.5000	0.4000	0.4000	0.4000	0.4040	0.4904	0.4764	0.4704	0.4604	0.4644
0,2	0.5793	0,5832	0,5871		0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761	0,4721	0,4681	0,4641
0,3	0,6179	0,6217	0,6255		-0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	0,4364	0,4325	0,4286	0,4247
0,4	0,6554	0,6591	0,6628		-0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859
0,5	0,6915	0,6950	0,6985		-0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,3520	0,3483
0,6	0,7257	0,7291	0.7324		-0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,3121
0,7	0.7580	0,7611	0,7642		-0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,2776
0,8	0,7881	0,7910	0.7939		-0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451
0,9	0,8159	0,8186	0,8212		-0,7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266	0,2236	0,2206	0,2177	0,2148
1,0	0.8413	0.8438	0.8461		-0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
1,1	0.8643	0.8665	0.8686		-0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,1611
1,2	0.8849	0.8869	0.8888		-1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
1.3	0.9032	0.9049	0.9066		-1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	0,1210	0,1190	0,1170
			$\overline{}$		-1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,0985
					-1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0869	0,0853	0,0838	0,0823
		/	\		-1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0721	0,0708	0,0694	0,0681
		/			-1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
		/	\		-1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0465	0,0455
		/	\		-1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,0367
		/	'	l.	-1,8	0,0359	0,0351	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294
		/		\	-1,9	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256	0,0250	0,0244	0,0239	0,0233
	/	/ 			-2,0	0,0228	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0,0192	0,0188	0,0183
	/				-2,1	0,0179	0,0174	0,0170	0,0166	0,0162	0,0158	0,0154	0,0150	0,0146	0,0143
					-2,2	0,0139	0,0136	0,0132	0,0129	0,0125	0,0122	0,0119	0,0116	0,0113	0,0110
	/				-2,3	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,0084
					-2,4	0,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,0064
					-2,5	0,0062	0,0060	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	0,0049	0,0048

GeekBrains

Диаметр гаек следует нормальному распределению с mu= 5 мм, дисперсией 0.36 мм2. Найти пропорцию гаек с размером менее 3,78 мм

+1

ТЕОРЕМА : если
$$X \sim N(\mu, \sigma^2)$$
 , тогда $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$

<u>Центральная предельная теорема</u>

Пусть генеральная совокупность имеет <u>любое</u> распределение с средним арифметическим *µ* и дисперсией _с , тогда

Метод, который будет основываться на среднем арифметическом выборки, будет надежным, даже если первоначальное распределение не будет абсолютно нормальным

Распределение случайной величины Х

Распределение среднего арифметического выборки случайной величины X

Нормальное распределение

Одним из свойств нормального распределения является то, что значения среднего, медианы и моды совпадают.

РАВНОМЕРНОЕ РАСПРЕДЕЛЕНИЕ

Непрерывная случайная величина равномерно распределена на отрезке *ab*, если плотность распределения вероятностей ее равна нулю за пределами отрезка и равна постоянной величине внутри него

$$f(x) = \begin{cases} 0, \text{ если } x \le a; \\ \frac{1}{b-a}, \text{ если } a < x \le b; \\ 0, \text{ если } x > b. \end{cases}$$

Равномерное распределение

График плотности равномерного распределения:

Равномерное распределение

График плотности равномерного распределения:

Вероятность Р попадания величины х в интервал между а и в равна площади под графиком функции плотности вероятности f(x)

Посадка на самолет задерживается на 30 минут Найти вероятность ,что посадка начнется между 20 и 30 минутами

Равномерное распределение

График функции равномерного распределения:

$$F(x) = \begin{cases} 0, x \le a \\ \frac{x-a}{b-a}, a \le x \le b, \\ 1, x > b \end{cases}$$

Проверь себя!

ТЕОРЕМА : если Х
$$\sim$$
N(μ , σ^2), тогда Z= $\frac{X-\mu}{?}$ \sim N(0, 1)

Взята выборка размером n=10 из нормально распределенной совокупности с дисперсией 25 и средним арифметическим mu =2

Тогда среднее арифметическое выборки

$$\overline{X}_n \longrightarrow N(?,?)$$

Центральная предельная теорема

Центральные предельные теоремы — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы, имеет распределение, близкое к нормальному.

Итоги

- 1. Непрерывная случайная величина
- 2. Функция распределения вероятностей и плотность распределения вероятностей
- 3. Равномерное распределение
- 4. Нормальное распределение
- 5. Центральная предельная теорема