# Visualization

#### R Markdown

Set up ggplot library

```
library(ggplot2)
## Registered S3 methods overwritten by 'ggplot2':
     method
                     from
##
     [.quosures
                     rlang
     c.quosures
                     rlang
     print.quosures rlang
Data<- read.csv("Hill.csv",header=T)</pre>
Data1<- read.csv("Simu.csv",header=T)</pre>
Data2<- read.csv("Tabu.csv",header=T)</pre>
p<-ggplot(Data,aes(Iterations))</pre>
p<-p+geom_line(aes(y=Data$Trent92,colour=Iterations))+ggtitle("Results from Hill Climbing Benchmark of
р
```

### Results from Hill Climbing Benchmark of Toronto (Trent92)



```
v<-ggplot(Data1,aes(Iterations))
v<-v+geom_line(aes(y=Data1$Trent92,colour=Iterations))+ggtitle("Results from Simulated annealing Benchm
v</pre>
```

# Results from Simulated annealing Benchmark of Toronto (Trent92)



c<-ggplot(Data2,aes(Iterations))
c<-c+geom\_line(aes(y=Data2\$Trent92,colour=Iterations))+ggtitle("Results from Tabu search Benchmark of Tc</pre>

### Results from Tabu search Benchmark of Toronto (Trent92)



```
 \begin{tabular}{ll} ##p <-ggplot(Data2, aes(Iterations)) \\ ##p <-p + geom\_line(aes(y = Data2 $test1, colour = Iterations)) + ggtitle("Results from Tabu search Benchmark of Tabu search Benchmark
```

#hill climbing line plot

```
t=Data$Iterations

par(mfcol=c(2,2))
plot(t,Data$Carleton92,type="l", col="blue", lwd=1, xlab="iterations", ylab="Carleton92", main="Hill-Cl
plot(t,Data$Carleton91,type="l", col="blue", lwd=1, xlab="iterations", ylab="Carleton91", main="Hill-Cl
plot(t,Data$EarlHaig83,type="l", col="blue", lwd=1, xlab="iterations", ylab="EarlHaig83", main="Hill-Cl
plot(t,Data$EdHEC92,type="l", col="blue", lwd=1, xlab="iterations", ylab="EdHEC92", main="Hill-Climbing")
```



plot(t,Data\$KingFahd93,type="l", col="blue", lwd=1, xlab="iterations", ylab="KingFahd93", main="Hill-Cl plot(t,Data\$LSE91,type="l", col="blue", lwd=1, xlab="iterations", ylab="LSE91", main="Hill-Climbing LSE plot(t,Data\$Pur93,type="l", col="blue", lwd=1, xlab="iterations", ylab="Pur93", main="Hill-Climbing Pur plot(t,Data\$Rye92,type="l", col="blue", lwd=1, xlab="iterations", ylab="Rye92", main="Hill-Climbing Rye", main="Hill-Climb



plot(t,Data\$St.Andrews83,type="l", col="blue", lwd=1, xlab="iterations", ylab="St.Andrew83", main="Hill plot(t,Data\$Trent92,type="l", col="blue", lwd=1, xlab="iterations", ylab="Trent92", main="Hill-Climbing plot(t,Data\$TorontoAS92,type="l", col="blue", lwd=1, xlab="iterations", ylab="TorontoAS92", main="Hill-plot(t,Data\$TorontoE92,type="l", col="blue", lwd=1, xlab="iterations", ylab="TorontoE92", main="Hill-Climbing plot(t,Data\$TorontoE92,type="l", col="blue", lwd=1, xlab="iterations", ylab="TorontoE92", main="Hill-Climbing plot(t,Data\$TorontoE92", main="Hill-Climbing



plot(t,Data\$YorkMills83,type="1", col="blue", lwd=1, xlab="iterations", ylab="YorkMills83", main="Hill-

### Hill-Climbing YorkMills83



#### #simulate annealing line plot

```
t=Data1$Iterations
par(mfcol=c(2,2))
plot(t,Data1$Carleton92,type="l", col="blue", lwd=1, xlab="iterations", ylab="Carleton92", main="simular plot(t,Data1$Carleton91,type="l", col="blue", lwd=1, xlab="iterations", ylab="Carleton91", main="simular plot(t,Data1$EarlHaig83,type="l", col="blue", lwd=1, xlab="iterations", ylab="EarlHaig83", main="simular plot(t,Data1$EdHEC92,type="l", col="blue", lwd=1, xlab="iterations", ylab="EdHEC92", main="simulated and plot(t,Data1$EdHEC92", main="simulated and plot(t,Data1$EdHEC
```

### simulated annealing Carleton92

### simulated annealing EarlHaig83





### simulated annealing Carleton91

#### simulated annealing EdHEC92





plot(t,Data1\$KingFahd93,type="l", col="blue", lwd=1, xlab="iterations", ylab="KingFahd93", main="simula plot(t,Data1\$LSE91,type="l", col="blue", lwd=1, xlab="iterations", ylab="LSE91", main="simulated anneal plot(t,Data1\$Pur93,type="l", col="blue", lwd=1, xlab="iterations", ylab="Pur93", main="simulated anneal plot(t,Data1\$Rye92,type="l", col="blue", lwd=1, xlab="iterations", ylab="Rye92", main="simulated anneal plot(t,Data1\$Rye92,type="l", col="blue", lwd=1, xlab="l", l

### simulated annealing KingFahd93

### simulated annealing Pur93





#### simulated annealing LSE91

#### simulated annealing Rye92





plot(t,Data1\$St.Andrews83,type="l", col="blue", lwd=1, xlab="iterations", ylab="St.Andrew83", main="simplot(t,Data1\$Trent92,type="l", col="blue", lwd=1, xlab="iterations", ylab="Trent92", main="simulated and plot(t,Data1\$TorontoAS92,type="l", col="blue", lwd=1, xlab="iterations", ylab="TorontoAS92", main="simulated total t



plot(t,Data1\$YorkMills83,type="1", col="blue", lwd=1, xlab="iterations", ylab="YorkMills83", main="simu

### simulated annealing YorkMills83



```
#Tabu search
```

```
t=Data2$Iterations
par(mfcol=c(2,2))
plot(t,Data2$Carleton92,type="l", col="blue", lwd=1, xlab="iterations", ylab="Carleton92", main="tabu s
plot(t,Data2$Carleton91,type="l", col="blue", lwd=1, xlab="iterations", ylab="Carleton91", main="tabu s
plot(t,Data2$EarlHaig83,type="l", col="blue", lwd=1, xlab="iterations", ylab="EarlHaig83", main="tabu s
plot(t,Data2$EdHEC92,type="l", col="blue", lwd=1, xlab="iterations", ylab="EdHEC92", main="tabu search")
```



plot(t,Data2\$KingFahd93,type="l", col="blue", lwd=1, xlab="iterations", ylab="KingFahd93", main="tabu s plot(t,Data2\$LSE91,type="l", col="blue", lwd=1, xlab="iterations", ylab="LSE91", main="tabu search LSE9 plot(t,Data2\$Rye92,type="l", col="blue", lwd=1, xlab="iterations", ylab="Rye92", main="tabu search Rye9 plot(t,Data2\$St.Andrews83,type="l", col="blue", lwd=1, xlab="iterations", ylab="St.Andrew83", main="tabu search Rye9 plot(t,Data2\$St.Andrews83,type="l", col="blue", lwd=1, xlab="iterations", ylab="St.Andrew83", main="tabu search Rye9 plot(t,Data2\$St.Andrew83,type="l", col="blue", lwd=1, xlab="iterations", ylab="st.Andrew83", main="tabu search Rye9 plot(t,Data2\$St.Andrew83", main="tabu search Rye9 plot(t,Data2\$St.Andrew



plot(t,Data2\$Trent9,type="l", col="blue", lwd=1, xlab="iterations", ylab="Trent92", main="tabu search Tplot(t,Data2\$TorontoAS92,type="l", col="blue", lwd=1, xlab="iterations", ylab="TorontoAS92", main="tabu plot(t,Data2\$TorontoE92,type="l", col="blue", lwd=1, xlab="iterations", ylab="TorontoE92", main="tabu splot(t,Data2\$YorkMills83,type="l", col="blue", lwd=1, xlab="iterations", ylab="YorkMills83", main="tabu



 $\# Boxplots \ car \ f.92$ 

par(mfcol=c(1,2))
boxplot(Data\$Car.f.92,Data1\$Car.f.92,Data2\$Car.f.92,names = c("Tabu","Simulated","Hill"),main="Result a
boxplot(Data\$Carleton92,Data1\$Carleton92,Data2\$Carleton92,names = c("Tabu","Simulated","Hill"),main="Be

# Result after 10 runs Carleton92

# **Best Run Carleton92**





 $\# Boxplots \ car \ f.91$ 

par(mfcol=c(1,2))
boxplot(Data\$Car.s.91,Data1\$Car.s.91,Data2\$Car.s.91,names = c("Tabu","Simulated","Hill"),main="Result a
boxplot(Data\$Carleton91,Data1\$Carleton91,Data2\$Carleton91,names = c("Tabu","Simulated","Hill"),main="Be

# **Result after 10 runs Carleton91**

# **Best Run Carleton91**





#Boxplots Ear-f-83

par(mfcol=c(1,2))
boxplot(Data2\$Ear.f.83 ,Data1\$Ear.f.83,Data\$Ear.f.83 ,names = c("Tabu","Simulated","Hill"),main="Result
boxplot(Data2\$EarlHaig83,Data1\$EarlHaig83,Data\$EarlHaig83,names = c("Tabu","Simulated","Hill"),main="Be

# Result after 10 runs EarlHaig83

# **Best Run EarlHaig83**





# Boxplots Hec-s-92

par(mfcol=c(1,2))
boxplot(Data2\$Hec.s.92 ,Data1\$Hec.s.92,Data\$Hec.s.92 ,names = c("Tabu","Simulated","Hill"),main="Resul
boxplot(Data2\$EdHEC92,Data1\$EdHEC92,Data\$EdHEC92,names = c("Tabu","Simulated","Hill"),main="Best Run Ed

# **Result after 10 runs EdHEC92**

# **Best Run EdHEC92**





#Boxplots Kfu-s-93

par(mfcol=c(1,2))
boxplot(Data1\$Kfu.s.93 ,Data2\$Kfu.s.93,Data\$Kfu.s.93 ,names = c("Tabu", "Simulated", "Hill"),main="Resul
boxplot(Data1\$KingFahd93,Data2\$KingFahd93,Data\$KingFahd93,names = c("Tabu", "Simulated", "Hill"),main="Be

# Result after 10 runs KingFahd93

# Best Run KingFahd93





#Boxplots Lse-f-91

par(mfcol=c(1,2))
boxplot(Data2\$Lse.f.91 ,Data1\$Lse.f.91 ,Data\$Lse.f.91 ,names = c("Tabu", "Simulated", "Hill"),main="Res
boxplot(Data2\$LSE91,Data1\$LSE91,Data\$LSE91,names = c("Tabu", "Simulated", "Hill"),main="Best Run LSE91",c

# Result after 10 runs LSE91

# **Best Run LSE91**





#Boxplots Pur-s-93 NOT SO GOOD

par(mfcol=c(1,2))
boxplot(Data2\$Pur.s.93 ,Data1\$Pur.s.93 ,Data\$Pur.s.93 ,names = c("Tabu", "Simulated", "Hill"),main="Res
boxplot(Data2\$Pur93,Data1\$Pur93,Data\$Pur93,names = c("Tabu", "Simulated", "Hill"),main="Best Run Pur93",c

# Result after 10 runs Pur93

# **Best Run Pur93**





#Boxplots Rye-s-93

par(mfcol=c(1,2))
boxplot(Data1\$Rye.s.93 ,Data\$Rye.s.93 ,Data2\$Rye.s.93 ,names = c("Tabu", "Simulated", "Hill"),main="Res
boxplot(Data1\$Rye92,Data\$Rye92,Data2\$Rye92,names = c("Tabu", "Simulated", "Hill"),main="Best Run Rye92",c

# Result after 10 runs Rye92

# **Best Run Rye92**





#Boxplots Sta-f-83

par(mfcol=c(1,2))
boxplot(Data2\$Sta.f.83 ,Data1\$Sta.f.83 ,Data\$Sta.f.83 ,names = c("Tabu", "Simulated", "Hill"),main="Resu
boxplot(Data2\$St.Andrews83,Data1\$St.Andrews83,Data\$St.Andrews83,names = c("Tabu", "Simulated", "Hill"),ma

# Result after 10 runs St.Andrews&

# **Best Run St.Andrews83**





#Boxplots Tre-s-92

par(mfcol=c(1,2))
boxplot(Data2\$Tre.s.92 ,Data1\$Tre.s.92 ,Data\$Tre.s.92 ,names = c("Tabu", "Simulated", "Hill"),main="Resu
boxplot(Data2\$Trent92,Data1\$Trent92,Data\$Trent92,names = c("Tabu", "Simulated", "Hill"),main="Best Run Tr

# **Result after 10 runs Trent92**

# **Best Run Trent92**





 $\# Boxplots\ Uta\text{-s-}92$ 

par(mfcol=c(1,2))
boxplot(Data2\$Uta.s.92 ,Data\$Uta.s.92 ,Data1\$Uta.s.92 ,names = c("Tabu", "Simulated", "Hill"),main="Resu
boxplot(Data2\$TorontoAS92,Data\$TorontoAS92,Data1\$TorontoAS92,names = c("Tabu", "Simulated", "Hill"),main=

# Result after 10 runs TorontoAS9

# **Best Run TorontoAS92**





#Boxplots Ute-s-92

par(mfcol=c(1,2))
boxplot(Data2\$Ute.s.92 ,Data\$Ute.s.92 ,Data1\$Ute.s.92 ,names = c("Tabu", "Simulated", "Hill"),main="Resu
boxplot(Data2\$TorontoE92,Data\$TorontoE92,Data1\$TorontoE92,names = c("Tabu", "Simulated", "Hill"),main="Be

# Result after 10 runs TorontoE92

# **Best Run TorontoE92**





#Boxplots yor-f-83

par(mfcol=c(1,2))
boxplot(Data2\$yor.f.83 ,Data1\$yor.f.83 ,Data\$yor.f.83 ,names = c("Tabu", "Simulated", "Hill"),main="Resu
boxplot(Data2\$YorkMills83,Data1\$YorkMills83,Data\$YorkMills83,names = c("Tabu", "Simulated", "Hill"),main=

# Result after 10 runs YorkMills83

# Best Run YorkMills83





#### # DATASET OF YORKMILLS83

x<-Data\$Iterations
y0<- Data\$YorkMills83
y1<-Data1\$YorkMills83
y2<-Data2\$YorkMills83</pre>

ggplot(data.frame(x,y0,y1,y2),aes(x=x,y=y2))+geom\_line(color="yellow")+geom\_line(y=y1,color="blue")+geom\_

# Results comparison for yorkmills83



### ##DATASET OF EDHEC92

```
x<-Data$Iterations
y0<- Data$EdHEC92
y1<-Data1$EdHEC92
y2<-Data2$EdHEC92
ggplot(data.frame(x,y0,y1,y2),aes(x=x,y=y2))+geom_line(color="yellow")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=
```





```
\#\# \mathrm{DATASET} OF lse91
```

```
x<-Data$Iterations
y0<- Data$LSE91
y1<-Data1$LSE91
y2<-Data2$LSE91
ggplot(data.frame(x,y0,y1,y2),aes(x=x,y=y2))+geom_line(color="yellow")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="blue")+geom_line(y=y1,color="b
```



