WHAT IS CLAIMED IS:

l	1. A mixer circuit comprising:		
2	a gain stage coupled to receive a first signal on a first input and a		
3	modulated bias current on a common node, and in accordance therewith, produce an		
4	output signal, the gain stage having a first current;		
5	a current shunt circuit coupled between the common node and a reference		
6	voltage, the current shunt circuit having a second current, wherein the first current and the		
7	second current are coupled to the common node; and		
8	a bias circuit to generate the modulated bias current, the bias circuit having		
9	an input coupled to receive a second signal, and in accordance therewith, generate the		
10	modulated bias current, and an output coupled to the common node to provide the		
11	modulated bias current to the gain stage.		
1	2. The mixer circuit of claim 1 wherein the second current controls		
2	the gain of the gain stage and bias circuit.		
	and Same of the Same and the control of the control		
1	3. The mixer circuit of claim 1 wherein the current shunt circuit		
2	comprises a MOS transistor coupled between the common node and the reference		
3	voltage.		
1	4. The mixer circuit of claim 3 wherein the reference voltage is a		
2	supply voltage.		
1	5. The mixer circuit of claim 3 wherein current shunt circuit further		
2	comprises a resistor coupled in series between the common node and the MOS transistor.		
1	6. The mixer circuit of claim 1 wherein the second signal is an RF		
2	signal and the first signal is a differential signal.		
1	7. The mixer circuit of claim 6 wherein the frequency of the		
2	differential signal is an integer fraction of the frequency of the RF signal.		
1	8. The mixer circuit of claim 7 wherein the integer fraction is one-		
2	third		

2

transistors are NMOS transistors.

1	The mixer circuit of claim 6 wherein the differential signal is			
2	approximately a square wave.			
1	10. The mixer circuit of claim 6 wherein the differential signal is			
2	generated by a local oscillator, and wherein the output of the local oscillator is amplified			
3	to generate a differential signal that approximates a square wave.			
1	11. The mixer circuit of claim 1 wherein the bias circuit comprises a			
2	first transistor having a control input and a first and second output, wherein the control			
3	input is coupled to receive an RF signal, the first output is coupled to a second reference			
4	voltage, and the second output is coupled to the common node.			
1	The mixer circuit of claim 11 wherein the first transistor is an			
2	NMOS transistor.			
1	13. The mixer circuit of claim 11 wherein the bias circuit further			
2	comprises a capacitor having a first terminal coupled to the gate of the first transistor and			
3	a second terminal coupled to receive the RF input signal.			
1	14. The mixer circuit of claim 1 wherein the gain stage is a differentia			
2	stage and the first signal is a differential signal.			
1	15. The mixer circuit of claim 14 wherein the differential stage			
2	comprises:			
3	a first transistor having a control input and first and second outputs, the			
4	control input coupled to receive a first component of the differential signal;			
5	a second transistor having a control input and first and second outputs, the			
6	control input coupled to receive a second component of the differential signal; and			
7	a load coupled to the first output of the first transistor and to the first			
8	output of the second transistor,			
9	wherein the second output of the first transistor and the second output of			
0	the second transistor are coupled together and to the common node.			
1	16. The mixer circuit of claim 15 wherein the first and second			

2

1	17. The mixer circuit of claim 15 wherein the load comprises a first		
2	resistor coupled between the first output of the first transistor and a supply voltage and a		
3	second resistor coupled between the first output of the second transistor and the supply		
4	voltage.		
1	18. The mixer circuit of claim 1 wherein the reference voltage is a		
2	supply voltage.		
2	supply voltage.		
1	19. A receiver circuit comprising:		
2	an input amplifier coupled to receive an input radio frequency (RF) signal;		
3	and		
4	a mixer circuit having a first input coupled to an output of the input		
5	amplifier and a second input coupled to receive a differential oscillating signal, the mixer		
6	circuit comprising:		
7	a gain stage configured to receive a first signal and a modulated		
8	bias current, and in accordance therewith, produce an output signal, the gain stage		
9	generating a first current and receiving the modulated bias current on a common		
10	node;		
11	a current shunt circuit coupled between the common node and a		
12	reference voltage, the current shunt circuit configured to generate a second		
13	current, wherein the first current and the second current are coupled to the		
14	common node; and		
15	a bias circuit to generate the modulated bias current, the bias circui		
16	having an input configured to receive a second signal, and in accordance		
17	therewith, generate the modulated bias current, and an output coupled to the		
18	common node to provide the modulated bias current to the gain stage.		
1	20. The receiver of claim 19 further comprising a low pass filter		
2	coupled to the output of the mixer.		
1	21. The receiver of claim 20 further comprising a automatic gain		
2	control block coupled to the output of the low pass filter.		
1	22. The receiver of claim 19 further comprising a voltage controlled		
1	22. The receiver of claim 13 further comprising a voltage controlled		

oscillator coupled to the differential input mixer circuit.

1	23.	A transceiver comprising a receiver circuit of claim 19 coupled to a	
2	transmitter circuit.		
1	24.	An electronic system comprising a transceiver of claim 23 coupled	
2	to an interface bus,	the electronic system being capable of wireless data communications	
3	with another electro	nic system via the transceiver.	
1	25.	The electronic system of claim 24 wherein the electronic system is	
2	a personal computer	т.	
1	26.	The electronic system of claim 25 wherein the personal computer	
2	further comprises a central processing unit (CPU), a memory, and I/O devices coupled to		
3	the interface bus.		
1	27.	A method of mixing signals in a mixer circuit comprising:	
2	gene	rating a first current in a differential stage;	
3	gene	rating a second current in a shunt circuit;	
4	coup	ling the first current and the second current through a common node	
5	to generate a bias current in a bias circuit;		
6	recei	ving an RF signal in the bias circuit;	
7	recei	ving a second signal in the differential stage; and	
8	gene	rating a mixer output in accordance with the RF signal and the second	
9	signal.		
1	28.	The method of claim 27 further comprising modulating the bias	
2	current in accordance with the RF signal.		
1	29.	The method of claim 27 further comprising coupling the modulated	
2	bias current into the	differential stage through the common node.	
1	30 .	The method of claim 27 wherein the frequency of the second signal	
2	is an integer fraction	of the frequency of the RF signal.	
1	31.	The method of claim 30 wherein the integer fraction is one-third.	
1	32.	The method of claim 27 wherein the mixer output is proportional to	
2	the product of the first signal and the second signal.		

1	33.	A method of mixing signals in a mixer comprising:	
2	biasing a gain stage of the mixer using a first current having a first		
3	magnitude at a first frequency of operation; and		
4	biasing the gain stage of the mixer using a second current having a secon		
5	magnitude at a second frequency of operation.		
1	34.	The method of claim 33 wherein the first current is less than the	
2	second current, and wherein the first frequency is lower than the second frequency.		
1	35.	The method of claim 33 further comprising shunting a portion of	
2	the first current to a reference voltage.		
1	36.	The method of claim 35 wherein a first portion of the first current	
2	is shunted to the reference voltage at low frequencies, and s second portion, less than the		
3	first portion, is shunted to the reference voltage at high frequencies.		
1	37.	The method of claim 36 wherein the second portion is substantially	
2	zero.		
1	38.	The method of claim 36 wherein the second portion is shunted	
2	through an inductor.		