Homework 2

ELEN 21/COEN 21

Instructor: Maria Kyrarini

Lecture 3

- 1. (a) Write the unsimplified Boolean expression for the truth table.
 - (b) Draw a 4-Variable Karnaugh map.
 - (c) Write the simplified Boolean expression based on the Karnaugh map.

Truth Table

	Inputs Out					
A	В	С	D	Y		
0	0	0	0	1		
0	0	0	1	0		
0	0	1	0	1		
0	0	1	1	0		
0	1	0	0	0		
0	1	0	1	0		
0	1	1	0	1		
0	1	1	1	0		
1	0	0	0	1		
1	0	0	1	0		
1	0	1	0	1		
1	0	1	1	0		
1	1	0	0	1		
1	1	0	1	0		
1	1	1	0	1		
1	1	1	1	0		

2. Using the truth table of the 7 segment display provide a set of solutions for a, b, c, d, e, f, g (Lecture 3 - slides 14-15)

(a) Logic circuit and 7-segment display

	x_3	x_2	x_1	x_0	а	b	c	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
9	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
Ч	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
8	0	1	1	0	1	0	1	1	1	1	1
٦	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
(b) Truth table											

3. Deliver minimal SoP and PoS expressions for the following K-map

$CD \setminus AB$							
	1	1	1	1			
	1	0	0	1			
	1	0	0	0			
	1	1	0	0			

4. Implement the Boolean function $Z=\Sigma m(1,3,4,5,7)$ using 4:1 multiplexer.

Lecture 4

- 5. Write Verilog code to implement the function $f(x_1, x_2, x_3) = \sum m(1, 2, 3, 4, 5, 6)$ using structural code. Ensure that the resulting circuit is as simple as possible.
- 6. Write Verilog code to implement the function $f(x_1, x_2, x_3) = \sum m(0, 1, 3, 4, 5, 6)$ using behavioral code. Ensure that the resulting circuit is as simple as possible.
- 7. Write Verilog code (structural code) to implement the circuit a.
- 8. Write Verilog code (structural code) to implement the circuit b.

(a) Sum-of-products realization

(b) Product-of-sums realization