stat4500notes

Yi Wang

2023-09-19

Table of contents

Pr	Pretace					
1		ing up Python Computing Environment	6			
	1.1	on Your own computer	6			
	1.2	Use Google Colab	7			
		1.2.1 How to run a project file from your Google Drive?	7			
2	Chapter 2: Statistical Learning					
	2.1	What is statistical learning?	9			
	2.2	Why estimate f ?	9			
	2.3	How to estimate f	10			
	2.4	How to assess model accuracy	10			
	2.5	Model Selection:	11			
		2.5.1 Trade-off between Model flexibility and Model Interpretability	11			
		2.5.2 Model Selection: the Bias-Variance Trade-off	12			
	2.6	Bayes Classifier	12			
	2.7	Homework (* indicates optional):	13			
	2.8	Code Gist	13			
		2.8.1 OS	13			
		2.8.2 Python:	13			
		2.8.3 Numpy	14			
		2.8.4 Graphics	15			
		2.8.5 Pandas	16			
3	Cha	pter 3: Linear Regression	19			
	3.1	Simple Linear Regression	19			
		3.1.1 Assessing the accuracy of the coefficients	20			
	3.2	Multiple Linear Regression	21			
		3.2.1 Model Assumption	21			
		3.2.2 Assessing existence of linear relationship	22			
		3.2.3 Assess the accuracy of the future prediciton	23			
		3.2.4 Assessing the overall accuracy of the model	23			
	3.3	Model Selection/Variable Selections: balance training errors with model size	24			
	3 4	Handle categorical variables (factor variables)	25			

	3.5	Adding non-linearity
		3.5.1 Modeling interactions (synergy)
		3.5.2 Adding terms of transformed predictors
	3.6	Outliers (Unusual y_i that is far from \hat{y}_i)
	3.7	High leverage points (unusual x_i)
	3.8	Compared to KNN Regression
	3.9	Homework (* indicates optional):
	3.10	Code Gist
		3.10.1 Python
		3.10.2 Numpy
		3.10.3 Pandas
		3.10.4 Graphics
		3.10.5 Using Sns
		3.10.6 Using Sklearn
		3.10.7 Using statsmodels and ISLP
4	Cha	oter 4: Classification 33
	4.1	Linear regression and Classification
	4.2	Logistic Regression
		4.2.1 Binary classification
		4.2.2 with multiple variables
		4.2.3 Multi-class logistic regression (multinomial regression) with more than
		two classes
	4.3	Discriminant Classifier: Approximating Optimal Bayes Classifier
		4.3.1 Why discriminant analysis
	4.4	KNN
	4.5	Poisson Regression
	4.6	Generalized Linear Models (GLM)
	4.7	Assessment of a classifier
	4.8	Homework:
	4.9	Code Gist
		4.9.1 Python
		4.9.2 Numpy
		4.9.3 Pandas
		4.9.4 Graphics
		4.9.5 ISLP and Statsmodels
		4.9.6 sklearn
		4.9.7 Useful code snippet
5	Cha	oter 5: Resampling Methods 45
	5.1	how to estimate test error
	5.2	Code Gist
		5.2.1 Python

Re	eferences		52
6	Summary		51
	5.2.7	Useful code snippet	50
	5.2.6	sklearn	49
	5.2.5	ISLP and statsmodels	47
	5.2.4	Graphics	47
	5.2.3	Pandas	47
	5.2.2	Numpy	47

Preface

This is a Lecture note book written for the course STAT 4500: Machine Learning offered at Auburn University at Montgomery.

This is a book wrtieen by Quarto book.

To learn more about Quarto books visit https://quarto.org/docs/books.

1 Setting up Python Computing Environment

1.1 on Your own computer

- 1. you can either git clone or download a zipped file containing the codes from the site: https://github.com/intro-stat-learning/ISLP_labs/tree/stable. If downloaded a zipped file of the codes, unzipped the file to a folder, for example, named islp. If git clone (preferred, you need to have Git installed on your computer, check this link for how to install Git https://ywanglab.github.io/stat1010/git.html), do git clone https://github.com/intro-stat-learning/ISLP_labs.git
- 2. Download and install the following software:
 - Anaconda: Download anaconda and install using default installation options
 - Visual Studio Code (VSC): Download VSC and install
 - start VSC and install VSC extensions in VSC: Python, Jupyter, intellicode
 - (optional) Quarto for authoring: Download Quarto and install
- 3. Create a virtual environment named islp for Python. Start an anaconda terminal.

```
conda create -n islp python==3.10
conda activate islp
conda install pip ipykernel
pip install -r https://raw.githubusercontent.com/intro-stat-learning/ISLP_labs/v2.1.2/
```

- 4. You are ready to run the codes using VSC or jupyter lab.
 - Activate the venv: conda activate islp
 - Start a Anaconda terminal, navigate to the folder using the command cd path/to/islp, where path/to/islp means the file path to the folder islp, such as \Users\ywang2\islp. Start VSC by typing code . in the anaconda terminal.
 - open/create a .ipynb or .py file.
 - Select the kernel islp
 - Run a code cell by pressing Shift+Enter or click the triangular play button.

- Continue to run other cells.
- After finishing using VSC, close the VSC, and deactivate the virtual environment in a conda terminal: conda deactivate

1.2 Use Google Colab

All you need is a Google account. Sign in your Google account in a browser, and navigate to Google Colab. Google Colab supports both Python and R. Python is the default engine. Change the engine to R in Connect->change runtime type. Then you are all set. Your file will be saved to your Google Drive or you can choose to send it to your GitHub account (recommended).

1.2.1 How to run a project file from your Google Drive?

Many times, when you run a python file in Colab, it needs to access other files, such as data files in a subdirectory. In this case, it would be convenient to have the same file structure in the Google Colab user home directory. To do this, you can use Google Drive to store your project folder, and then mount the Google Drive in Colab.

Let's assume the project folder name, islp/.Here are the steps:

- 1. git clone the project folder (example: git clone https://github.com/intro-stat-learning/ISLP_1 to your local folder. This step is only needed when you want to clone some remote repo from GitHub.
- 2. Upload the folder (ex: islp) to Google Drive.
- 3. Open the file using Colab. In Google Drive, double click on the ipynb file, example, ch06.ipynb (or click on the three dots on the right end, and choose open with, then Google Colaborotary), the file will be opened by Google Colab.
- 4. Mount the Google Drive. In Google Colab, with the specific file (example, ch06.ipynb) being opened, move your cursor to the first code cell, and then click on the folder icon (this should be the fourth icon) on the upper left border in the Colab browser. This will open the file explorer pane. Typically you would see a folder named sample_data shown. On the top of the pane, click on the Google Drive icon to mount the Google Drive. Google Colab will insert the following code below the cursor in your opened ipynb file:

from google.colab import drive
drive.mount('/content/drive')

Run this code cell by pressing SHIFT+ENTER, and follow the prompts to complete the authentication. Wait for ~10 seconds, your Google Drive will be mounted in Colab, and it will be displayed as a folder named drive in the file explorer pane. You might need to click on the Refresh folder icon to see the folder drive.

5. Open a new code cell below the above code cell, and type the code

%cd /content/drive/MyDrive/islp/

This is to change the directory to the project directory on the Google Drive. Run this code cell, and you are ready to run the file ch06.ipynb from the folder islp on your personal Google Drive, just like it's on your local computer.

2 Chapter 2: Statistical Learning

2.1 What is statistical learning?

For the input variable $X \in \mathbb{R}^p$ and response variable $Y \in \mathbb{R}$, assume that

$$Y = f(X) + \epsilon$$
,

where ϵ is a random variable representing **irreducible error**. We assume ϵ is *independent* of X and $E[\epsilon] = 0$. ϵ may include *unmeasured variables* or *unmeasurable variation*.

Statistical learning is to estimate f using various methods. Denote the estimate by \hat{f} .

- regression problem: when Y is a continuous (quantitative) variable. In this case f(x) = E(Y|X=x) is the population regression function, that is, regression finds a conditional expectation of Y.
- classification problem: when Y only takes small number of discrete values, i.e., qualitative (categorical).

Logistic regression is a classification problem, but since it estimates class probability, it may be considered as a regression problem.

- supervised learning: training data $\mathcal{T}r=\{(x_i,y_i):i\in\mathbb{Z}_n\}$: linear regression, logistic regression
- unsupervised learning: when only x_i are available. clustering analysis, PCA
- semi-supervised learning: some data with labels (y_i) , some do not.
- reinforcement learning: learn a state-action policy function for an agent to interacting with an environment to maximize a reward function.

2.2 Why estimate f?

We can use estimated \hat{f} to

• make predictions for a new X,

$$\hat{Y} = \hat{f}(X).$$

The prediction error may be quantified as

$$E[(Y - \hat{Y})^2] = (f(X) - \hat{f})^2 + Var[\epsilon].$$

The first term of the error is *reducible* by trying to improve \hat{f} , where we assume f, \hat{f} and X are fixed.

- make inference, such as
 - Which predictors are associated with the response?
 - what is the relationship between the response and each predictor?
 - is the assumed relationship adequate? (linear or more complicated?)

2.3 How to estimate f

We use obtained observations called **training data** $\{(x_k, y_k) : k \in \mathbb{Z}_n\}$ to train an algorithm to obtain the estimate \hat{f} .

• Parametric methods: first assume there is a function form (shape) with some parameters. For example, a linear regression model with two parameters. Then use the *training data* to **train** or **fit** the model to determine the values of the parameters.

Advantages: simplify the problem of fit an arbitrary function to estimate a set of parameters.

Disadvantages: may not be flexible unless with large number of parameters and/or complex function shapes.

Example: linear regression,

• Non-parametric methods: Do not explicitly assume a function form of f. They seek to estimate f directly using data points, can be quite flexible and accurate.

**Disadvantage: need large number of data points

Example: KNN (but breakdown for higher dimention. Typically only for $p \leq 4$), spline fit

2.4 How to assess model accuracy

For regression problems, the most commonly used measure is the *mean squared error* (MSE), given by

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

For classification problems, typically the following **error rate** (classifications error) is calculated:

$$\frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$$

The accuracy on a training set can be arbitrarily increased by increasing the model flexibility. However, we are in general interested in the error on the test set rather on the training set, the model accuracy should be assessed on a test set.

Flexible models tend to overfit the data, which essentially means they follow the error or *noise* too closely in the training set, therefore cannot be generalized to *unseen cases* (test set).

2.5 Model Selection:

No free lunch theorem

There is no single best method for all data sets, which means some method works better than other methods for a particular dataset. Therefore, one needs to perform model selections. Here are some principles.

2.5.1 Trade-off between Model flexibility and Model Interpretability

More flexible models have higher *degree of freedom* and are less interpretable because it's difficult to interpret the relationship between a predictor and the response.

LASSO is less flexible than linear regression. GAM (generalized additive model) allows some non-linearity. Full non-linear models have higher flexibility, such as bagging, boosting, SVM, etc.

When *inference* is the goal, then there are advantages to using simple and less flexible models for interpretability.

When *prediction* is the main goal, more flexible model may be a choice. But sometimes, we obtain more accurate prediction using a simpler model because the underlying dataset has a simpler structure. Therefore, it is not necessarily true that a more flexible model has a higher prediction accuracy.

Occam's Razor: Among competing hypotheses that perform equally well, the one with the fewest assumptions should be selected.

2.5.2 Model Selection: the Bias-Variance Trade-off

As the model flexibility increases, the training MSE (or error rate for classificiton) will decrease, but the test MSE (error rate) in general will not and will show a characteristic **U-shape**. This is because when evaluated at a test point x_0 , the expected test MSE can be decomposed into

$$E\left[(y_0-\hat{f}(x_0))^2\right] = \mathrm{Var}[\hat{f}(x_0)] + (\mathrm{Bias}(\hat{f}(x_0)))^2 + \mathrm{Var}[\epsilon]$$

where the expectation is over different \hat{f} on a different training set or on a different training step if the training process is stochastic, and

$$\mathrm{Bias}(\hat{f}(x_0)) = E[\hat{f}(x_0)] - f(x_0)$$

To obtain the least test MSE, one must trade off between variance and bias. Less flexible model tendes to have higher bias, and more flexible models tend to have higher variance. An optimal flexibility for the least test MSE varies with different data sets. Non-linear data tends to require higher optimal flexibility.

2.6 Bayes Classifier

It can be shown that Bayes Classifier minimizes the classification test error

Ave
$$(I(y_0 \neq \hat{y}_0))$$
.

A Bayes Classifier assigns a test observation with predictor x_0 to the class for which

$$\Pr(Y = j | X = x_0)$$

is largest. It's error rate is given by

$$1 - E[\max_{j} \Pr(Y = j|X)]$$

where the expectation is over X. The Bayes error is analogous to the irreducible error ϵ .

Bayes Classifier is not attainable as we do not know $\Pr(Y|X)$. We only can estimate $\Pr(Y|X)$. One way to do this is by KNN. KNN estimate the conditional probability simply with a majority vote. The flexibility of KNN increases as 1/K increases with K=1 being the most flexible KNN. The training error is 0 for K=1. A suitable K should be chosen for an appropriate trade off between bias and variance. The KNN classifier will classify the test point x_0 based on the probability calculated from the K nearest points. KNN regression on the other hand will assign the test point K0 the average value of the K1 nearest neighbors.

2.7 Homework (* indicates optional):

Conceptual: 1,2,3,4*,5,6,7
Applied: 8, 9*, 10*

2.8 Code Gist

2.8.1 OS

```
import os
os.chdir(path) # change dir
```

2.8.2 Python:

Concatenation using +

2.8.3 **Numpy**

2.8.3.1 Numpy functions:

```
np.sum(x), np.sqrt(x) (entry wise). x**2 (entry wise power), np.corrcoef(x,y) (find the
correlation coefficient of array x and array y)
np.mean(axis=None): axis could be None (all entries), O(along row), 1(along column)
np.var(x, ddof=0), np.std(x, ddof=0), # Note both np.var and np.std accepts an argument ddof, the divisor is N-ddof.
np.linspace(-np.pi, np.pi, 50) # start, end, number of points 50
np.multiply.outer(row,col) # calculate the product over the mesh with vectors row and
col.
np.zeros(shape or int, dtype) #eg: np.zeros(5,bool)
np.ones(Boston.shape[0])
np.all(x), np.any(x): check if all or any entry of x is true.
np.unique(x): find unique values in x. np.isnan(x): return a boolean array of len(x).
```

2.8.3.2 Array Slicing and indexing

np.isnan(x).mean(): find the percentage of np.nan values in x.

```
np.arange(start, stop, step) # numpy version of range
x[slice(3:6)] # equivalent to x[3:6]
Indexing an array using [row, col] format. If col is missing, then index the entire rows.
len(row) must be equal to len(col). Otherwise use iterative indexing or use np.ix_(x_idx, y_idx) function, or use Boolean indexing, see below.
```

A[1,2]: index entry at row 1 and col 2 (recall Python index start from 0)

```
A[[1,3]] # row 1 and 3. Note the outer [] is considered as the operator, so only row indices A[:,[0,2]] # cols 0 and 2
A[[1,3], [0,2,3]] # entry A[1,0] and A[3,2]
A[1:4:2, 0:3:2] # entries in rows 1 and 3, cols 0 and 2
A[[1,3], [0,2,3]] # syntax error
# instead one can use the following two methods
A[[1,3]][:,[0,2]] # iterative subsetting
A[np.ix_([1,3],[0,2,3])] # use .ix_ function to create an index mesh
A[keep_rows, keep_cols] # keep_rows, keep_cols are boolean arrays of the same length of rows
```

A[np.ix_([1,3],keep_cols)] # np.ix_()can be applied to mixture of integer array and boolean

2.8.3.3 Random numbers and generators

```
np.random.normal(loc=0.0, scale=1.0,size=None) # size can be an integer or a tuple.
#
rng = np.random.default_rng(1303) # set random generator seed
rng.normal(loc=0, scale=5, size=2) #
rng.standard_normal(10) # standard normal distribution of size 10
rng.choice([0, np.nan], p=[0.8,0.2], size=A.shape)
```

2.8.3.4 Numpy array atributes

```
.dtype, .ndim, .shape
```

2.8.3.5 Numpy array methods

```
x.sum(axis=None) (equivalent to np.sum(x)), x.T (transpose),
x.reshape((2,3)) # x.reshape() is a reference to x.
x.min(), x.max()
```

2.8.4 Graphics

2.8.4.1 2-D figure

```
# Using the subplots + ax methods
fig, ax = subplots(nrows=2, ncols=3, figsize=(8, 8))
# explicitly name each axis in the grid
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize=(10,10))

ax[0,1].plot(x, y,marker='o', 'r--', linewidth=3); #line plot. `;` suppresses the text output ax.plot([min(fitted),max(fitted)],[0,0],color = 'k',linestyle = ':', alpha = .3)
ax.scatter(x, y, marker='o'); #scatter plot
ax.scatter(fitted, residuals, edgecolors = 'k', facecolors = 'none')
ax.set_xlabel("this is the x-axis")
ax.set_ylabel("this is the y-axis")
ax.set_title("Plot of X vs Y");
axes[0,1].set_xlim([-1,1]) # set x_lim. similarly `set_ylim()`

fig = ax.figure # get the figure object from an axes object
fig.set_size_inches(12,3) # access the fig object to change fig size (width, height)
fig # re-render the figure
```

fig.savefig("Figure.pdf", dpi=200); #save a figure into pdf. Other formats: .jpg, .png, etc

2.8.4.2 Contour and image

```
fig, ax = subplots(figsize=(8, 8))
x = np.linspace(-np.pi, np.pi, 50)
y = x
f = np.multiply.outer(np.cos(y), 1 / (1 + x**2))
ax.contour(x, y, f, levels=None); # numbre of levels. if None, automatically choose
ax.imshow(f); # heatmap colorcoded by f
```

2.8.5 Pandas

2.8.5.1 loading data

2.8.5.2 Pandas Dataframe attributes and methods

```
Auto.columns # gets the list of column names
Auto.index #return the index (labels) objects
Auto['horsepower'].to_numpy() # convert to numpy array
Auto['horsepower'].sum()

Auto.dropna() # drop the rows containing na values.
df.drop('B', axis=1, inplace=True) # drop a column 'B' inplace.
#equivalent to df.drop(columns=['B'], inplace=True)
df.drop(index=['Ohio', 'Colorado']) #eqivalent to: df.drop(['Ohio', 'Colorado'], axis=0)
auto_df.drop(auto_df.index[10:86]) # drop rows with index[10:86] not including 86

Auto.set_index('name')# rename the index using the column 'name'.

pd.Series(Auto.cylinders, dtype='category') # convert the column `cylinders` to 'category` d'
# the convertison can be done using `astype()` method
Auto.cylinders.astype('category')
Auto.describe() # statistics summary of all columns
```

```
Auto['mpg'].describe() # for selected columns
college.rename({'Unnamed: 0': 'College'}, axis=1): # change column name,
# alternavie way
college_df.rename(columns={college_df.columns[0] : "College"}, inplace=True) #
college['Elite'] = pd.cut(college['Top10perc'], # binning a column
                          [0,0.5,1], #bin edges
                          labels=['No', 'Yes'], # bin labels (names)
                          right=True, # True: right-inclusive (default) for each bin ( ]; Fals
college['Elite'].value_counts() # frequency counts
auto.columns.tolist() # equivalent to auto.columns.format() (rarely used)
2.8.5.3 Selecting rows and columns
Select Rows:
Auto[:3] # the first 3 rows.
Auto[Auto['year'] > 80] # select rows with boolean array
Auto_re.loc[['amc rebel sst', 'ford torino']] #label_based row selection
Auto_re.iloc[[3,4]] #integer-based row seleciton: rows 3 and 4 (index starting from 0)
Select Columns
Auto['horsepower'] # select the column 'horsepower', resulting a pd.Series.
Auto[['horsepower']] #obtain a dataframe of the column 'horsepower'.
Auto_re.iloc[:,[0,2,3]] # intger-based selection
auto_df.select_dtypes(include=['int16','int32']) # select columns by dtype
Select a subset
Auto_re.iloc[[3,4],[0,2,3]] # integer-based
Auto_re.loc['ford galaxie 500', ['mpg', 'origin']] #label-based
Auto_re.loc[Auto_re['year'] > 80, ['weight', 'origin']] # mix bolean indexing with labels
Auto_re.loc[lambda df: (df['year'] > 80) & (df['mpg'] > 30),
            ['weight', 'origin']
           ] # using labmda function with loc[]
```

2.8.5.4 Pandas graphics

fig.savefig('horsepower_mpg.png');

```
Without using subplots to get axes and figure objects

ax = Auto.plot.scatter('horsepower', 'mpg') #scatter plot of 'horsepower' vs 'mpg' from the ax.set_title('Horsepower vs. MPG');

fig = ax.figure
```

plt.gcf().subplots_adjust(bottom=0.05, left=0.1, top=0.95, right=0.95) #in percentage of the ax1.fig.suptitle('College Scatter Matrix', fontsize=35)

Using subplots

```
fig, axes = subplots( ncols=3, figsize=(15, 5))
Auto.plot.scatter('horsepower', 'mpg', ax=axes[1]);
Auto.hist('mpg', ax=ax);
Auto.hist('mpg', color='red', bins=12, ax=ax); # more customized
```

Boxplot using subplots

```
Auto.cylinders = pd.Series(Auto.cylinders, dtype='category') # needs to convert the `cylinders, ax = subplots(figsize=(8, 8))
Auto.boxplot('mpg', by='cylinders', ax=ax);
```

Scatter matrix

#Alternatively with sns.pairplot

Sns Graphic

```
# Scatter matrix
ax1 = sns.pairplot(college_df[college_df.columns[0:11]])
# Boxplot
sns.boxplot(ax=ax, x="Private", y="Outstate", data=college_df)
```

3 Chapter 3: Linear Regression

Linear regression is a simple supervised learning assuming a linear relation between Y and X. When there is only one predictor, it's a **simple linear regression**. When there are more than one predictors, it's called **multiple linear regression**. Note *multivariate regression* refer to the Y variable is a vector.

3.1 Simple Linear Regression

Assumes the population regression line model

$$Y = \beta_0 + \beta_1 X + \epsilon,$$

where, β_0 is the *expected* value of Y when X = 0, and β_1 is the *average* change in Y with a one-unit increase in X. ϵ is a "catch all" error term.

After training using the training data, we can obtain the parameter estimates $\hat{\beta}_0$ and $\hat{\beta}_1$. The we can obtain the prediction for x given by the *least square line*:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

The error at a data point x_i is given by $e_i = y_i - \hat{y}_i$, and the residual sum of squares (RSS) is

$$RSS = e_1^2 + \dots + e_n^2.$$

One can use the least square approach to minimize RSS to obtain

$$\hat{\beta}_1 = \frac{(x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = r_{xy} \frac{\sigma_y}{\sigma_x}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

where, $\bar{y} = \frac{1}{n} \sum_{i=1}^n y_i$ and $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$, and the correlation

$$r_{xy} = \frac{\text{cov}(x,y)}{\sigma_x \sigma_y} = \frac{(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^n (y_i - \bar{y})^2}}.$$
 (3.1)

is the normalized convariance. Note $-1 \le r_{xy} \le 1$. When there is no intercept, that is $\beta_0 = 0$, then

$$\hat{y}_i = x_i \hat{\beta} = \sum_{i=1}^n a_i y_i$$

where,

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$$

That is, the fitted values are linear combinations of the response values when there is no intercept.

3.1.1 Assessing the accuracy of the coefficients

Let $\sigma^2 = \operatorname{Var}(\epsilon)$, that is, σ^2 is the variance of Y, (estimated by $\sigma^2 \approx = \operatorname{RSE} = \operatorname{RSS}/(n-p-1)$.) Assume each observation have *common variance* (homoscedasticity) and are *uncorrelated*, then the standard errors under repeated sampling

$$(SE[\hat{\beta}_1])^2 = \frac{1}{\sigma_x^2} \cdot \frac{\sigma^2}{n}$$

$$(\mathrm{SE}[\hat{\beta}_0])^2 = \left[1 + \frac{\bar{x}^2}{\sigma_x^2}\right] \cdot \frac{\sigma^2}{n}$$

- when x_i are more spread out (with large σ_x^2), then $SE[\hat{\beta}_1]$ is small. This is because there are more leverage (of x values) to estimate the slope.
- when $\bar{x}=0$, then $\text{SE}[\hat{\beta}_0]=\text{SE}[\bar{y}]$. In this case, $\hat{\beta}_0=\bar{y}$.

Standard errors are used to construct CI and perform hypothesis test for the estimated $\hat{\beta}_0$ or $\hat{\beta}_1$. Under the assumption of **Gaussian error**, One can construct the CI of significance level α (e.g., $\alpha = 0.05$) as

$$\hat{\beta}_{i} = [\hat{\beta}_{i} - t_{1-\alpha/2, n-p-1} \cdot \mathrm{SE}[\hat{\beta}_{i}], \hat{\beta}_{i} + t_{1-\alpha/2, n-p-1} \cdot \mathrm{SE}[\hat{\beta}_{i}]]$$

Where j=0,1. Large interval including zero indicates β_j is not statistically significant from 0. When n is sufficient large, $t_{0.975,n-p-1}\approx 2$. With the standard errors of the coefficients, one can also perform **hypothesis test** on the coefficients. For j=0,1,

$$H_0: \beta_j = 0$$

$$H_A: \beta_i \neq 0$$

The t-statistic of degree n-p-1, given by

$$t = \frac{\hat{\beta}_j - 0}{\text{SE}[\hat{\beta}_j]}$$

shows how far away $\hat{\beta}_j$ is away from zero, normalized by its error $SE[\hat{\beta}_j]$. One can then compute the *p*-value corresponding to this *t* and test the hypothesis. Small *p*-value indicates **strong** relationship.

3.2 Multiple Linear Regression

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon.$$

The estimate of the coefficients $\hat{\beta}_j$, $j \in \mathbb{Z}_{p+1}$ are found by using the same least square method to minimize RSS, we interpret β_j as the *expected* (average) effect on Y with one unit increase in X_j , **holding all other predictors fixed**. This interpretation is based on the assumptions that the predictors are uncorrelated, so each predictor can be estimated and tested separately. When there are correlations among predictors, the variance of all coefficients tends to increase, sometimes dramatically, and the previous interpretation becomes hazardous because when X_j changes, everything else changes.

3.2.1 Model Assumption

- linearity: Y is linear in X. The change in Y associated with one unit of change in X_j is constant, regardless of the value of X_j . This can be examined visually by plotting the residual plot (e_i vs. x_i for p=1 or e_i vs \hat{y}_i for multiple regression). If the linear assumption is true, then the residual plot should not exhibit obvious pattern. If there is a nonlinear relationship suggested by by the residual plot, then a simple approach is to include transformed X, such as $\log X$, \sqrt{X} , or X^2 .
- additive: The association between X_j and Y is independent of other predictors.
- Errors ϵ_i are uncorrelated. This means ϵ_i provides no information for ϵ_{i+1} . Otherwise (for example, frequently observed in a time series, where error terms are positively correlated, and tracking is observed in the residuals, i.e., adjacent error terms take similar values), the estimated standard error will tend to be underestimated, hence leading less confidence in the estimated model.
- Homoscedasticity: $Var(\epsilon_i) = \sigma^2$. The error terms have constant variance. If not (heteroscedasticity), one may use transformed Y, such as \sqrt{Y} , or $\log(Y)$ to mitigate this; or use weighted least squares if it's known that for example $\sigma_i^2 = \sigma^2/n_i$.

- Non-colinearity: two variables are colinear if they are highly correlated with each other. Co-linearity causes a great deal of uncertainty in the coefficient estimates, that is, reducing the accuracy of the coefficient estimates, thus cause the standard error of β_j to grow, and hence smaller t-statistic. As a result, we may fail to reject $H_0: \beta_j = 0$. This in turn means the power of Hypothesis test, the probability of correctly detecting a non-zero coefficient is reduced by colinearity. To detect colinearity,
 - use the correlation matrix of predictors. Large value of the matrix in absolute value indicates highly correlated variable pairs. But this approach cannot detect multicolinearity.
 - Use VIF (Variance inflation factor, VIF ≥ 1) to detect multicolinearity. It is possible for colinearity exists between three or more variables even if no pair of variables has a particularly high correlation. This is the *multicolinearity* situation.

VIF is the ratio of the variance of $\hat{\beta}_j$ when fitting the full model divided by the variance of $\hat{\beta}_i$ if fit on its own. It can be calculated by

$$\mathrm{VIF}(\hat{\beta}_j) = \frac{1}{1 - R_{X_i|X_{-i}}^2}$$

Where $R_{X_j|X_{-j}}^2$ is the R^2 from a regression of X_j onto all of the other predictors. A VIF value exceeds 5 or 10 (i.e., $R_{X_j|X_{-j}}^2$ close to 1) indicates colinearity.

To remedy a colinearity problem:

- drop a redundant variable (variables with colinearity should have similar VIF values.)
- Combine the colinear variables into a single predictor, e.g., taking the average of the standardized versions of those variables.

Claims of causality should be avoided for observational data.

3.2.2 Assessing existence of linear relationship

• test Hypothesis (test if there is a linear relationship between the response and predictors)

$$H_0: \beta_1 = \beta_2 = \dots = \beta_p = 0$$

 H_a : at least one β_j is non-zero.

using F-statistic

$$F = \frac{\mathrm{SSB}/\mathrm{df(B)}}{\mathrm{SSW}/\mathrm{df(W)}} = \frac{(\mathrm{TSS} - \mathrm{RSS})/p}{\mathrm{RSS}/(n-p-1)} \sim F_{p,n-p-1}$$

If H_0 is true, $F \approx 1$; if H_a is true, F >> 1. F-statistic adjust with p. Note that one **cannot conclude** if an individual t-statistic is significant, then there is at least one predictor is related to the response, especially when p is large. This is related to multiple testing. The reason is that when p is large, there is α (eg 5%) chance that a predictor will have a small p-value by chance. When p > n, F-statistic cannot be used.

If the goal is to test that a particular subset of q of the coefficients are zero, that is, (for convenience, we put the q variables chosen at the end of the variabale list)

$$H_0: \beta_{p-q+1} = \beta_{p-q+2} = \dots = \beta_p = 0 \tag{3.2}$$

In this case, use

$$F = \frac{(\mathrm{RSS}_0 - \mathrm{RSS})/q}{\mathrm{RSS}/(n-p-1)} \sim F_{q,n-p-1}$$

where, RSS_0 is the residual sum of squares of a second model that uses all variables except those last q variables. When q=1, F-statistic in Equation 3.2 is the square of the t-statistic of that variable. The t-statistic reported in a regression model gives the partial effect of adding that variable, while holding other variables fixed.

3.2.3 Assess the accuracy of the future prediciton

- confidence interval: Indicate how far away $\hat{Y} = \hat{f}(X)$ is from the population average f(X) because the coefficients $\hat{\beta}_j$ are estimated, It quantifies reducible error around the predicted average response $\hat{f}(X)$, does-not include ϵ .
- prediction interval: Indicate how far away $\hat{Y} = \hat{f}(X)$ is from Y. predict an individual response $Y \approx \hat{f}(X) + \epsilon$. Prediction interval is always wider than the confidence interval, because it includes *irreducible error* ϵ .

3.2.4 Assessing the overall accuracy of the model

• RSE. To this end, first define the *lack of fit* measure **Residual Standard Error**

$$\text{RSE} = \sqrt{\frac{1}{n-p-1}} \text{RSS} = \sqrt{\frac{1}{n-p-1} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2} \approx \sigma = \sqrt{\text{Var}(\epsilon)}$$

It is the average amount in \hat{Y} that a response deviates from the true regression line $(\beta_0 + \beta_1 X)$. Note, RSE can increase with more variables if the decrease of RSS does not offset the increase of p. • Approach 2: Using R-squared (fraction of variance in Y explained by X), which is independent of of the scale of Y, and $0 \le R^2 \le 1$:

$$R^2 = \frac{\text{TSS} - \text{RSS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}}$$

where, $TSS = \sum_{i=1}^{n} (y_i - \bar{y})$. When R^2 is near 0 indicates that 1) either the linear model is wrong 2) or th error variance σ^2 is high, or both. R^2 measures the linear relationship between X and Y. If computed on the training set, when adding more variables, the RSS always decrease, hence R^2 will always increase.

For simple linear regression, $R^2=r_{xy}^2$, where the *sample correlation* measures the linear relationship between variables X and Y. See the formula r_{xy} above Equation 3.1. For multiple linear regression, $R^2=(\operatorname{Cor}(Y,\hat{Y}))^2$. The fitted linear model maximizes this correlation among all possible linear models.

3.3 Model Selection/Variable Selections: balance training errors with model size

- All subsets (best subsets) regression: compute the least square fit for all 2^p possible subsets and then choose among them based on certain criterion that balance training error and model size
- Forward selection: Start from the *null model* that only contains β_0 . Then find the best model containing one predictor that minimizing RSS. Denote the variable by β_1 . Then continue to find the best model with the lowest RSS by adding one variable from the remaining predictors, and so on. Continue until some stopping rule is met: e.g., when all remaining variables have a *p*-value greater than some threshold.
- Backward selection: start with all variables in the model. Remove the variable with the largest p-value (least statistically significant). The new (p-1) model is fit, and remove the variable with the largest p-value. Continue until a stopping rule is satisfied, e.g., all remaining variables have p-value less than some threshold.
- Mixed selection: Start with forward selection. Since the *p*-value for variables can become larger as new predictors are added, at any point if the *p*-value of a variable in the model rises above a certain threshold, then remove that variable. Continue to perform these forward and backward steps until all variables in the model have a sufficiently low *p*-value, and all variables outside the model would have a large *p*-value if added to the model.

Backward selection cannot be used if p > n. Forward selection can always be used, but might include variables early that later become redundant. Mixed selection can remedy this problem.

- others (Chapter 6): including Mallow's C_p , AIC (Akaike Information Criterion), BIC, adjusted \mathbb{R}^2 , Cross-validation, test set performance.
- **not valid**: we could look at individual p-values, but when the number of variables p is large, we likely to make a false discoveries.

3.4 Handle categorical variables (factor variables)

For a categorical variable X_i with m levels, create one fewer dummy variables $(x_{ij}, 1 \leq j \leq m-1)$. The level with no dummy variable is called the *baseline*. The coefficient corresponding to a dummy variable is the expected difference in change in Y when compared to the baseline, while holding other predictors fixed.

3.5 Adding non-linearity

3.5.1 Modeling interactions (synergy)

When two variables have interaction, then their product X_iX_j can be added into the regression model, and the product maybe considered as a single variable for inference, for example, compute its SE, t-statistics, p-value, Hypothesis test, etc.

If we include an interaction in a model, then the **Hierarchy principle** should be followed: always include the main effects, even if the *p*-values associated with their coefficients are not significant. This is because without the main effects, the interactions are hard to interpret, as they would also contain the main effect.

3.5.2 Adding terms of transformed predictors

- 1) Polynomial regression: Add a term involving X_i^k for some k > 1.
- 2) other forms: Adding root or logarithm terms of the predictors.

3.6 Outliers (Unusual y_i that is far from \hat{y}_i)

It is typical for an outlier that does not have an unusual predictor value (with low levarage) to have little effect on the least squares fit, but it will increase RSE, hence deteriorate CI, p-value and R^2 , thus affecting interpreting the model.

An outlier can be identified by computing the

studentized residual =
$$\frac{e_i}{\text{RSE}_i}$$

A studentized residual great than 3 may be considered as an outlier.

3.7 High leverage points (unusual x_i)

High leverage points tend to have sizeable impact on the regression line. To quantify the observation's leverage, one needs to compute the **leverage statistic**

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{j=1}^n (x_j - \bar{x})^2}.$$

 $1/n \le h_i \le 1$ and $Ave(h_i) = (p+1)/n$. A large value of this statistic (for example, great than (p+1)/n) indicates an observation with high leverage.

3.8 Compared to KNN Regression

KNN regression is a non-parametric method that makes prediction at x_0 by taking the average in a K-point neighborhood

$$\hat{f}(x_0) = \frac{1}{K} \sum_{x_i \in \mathcal{N}_{x_0}} y_i$$

A small value of K provides more flexible model with low bias but high variance while a larger value of K provides smoother fit with less variance. An optimal value of K depend on the bias-variance tradeoff. For non-linear data set, KNN may provides better fit than a linear regression model. However, in higher dimension (e.g., $p \ge 4$), even for nonlinear data set, KNN may perform much inferior to linear regression, because of the **curse of dimensionality**, as the K observations that are nearest to x_0 may in fact far away from x_0 .

3.9 Homework (* indicates optional):

• Conceptual: 1-6

• Applied: 8–15. at least one.

3.10 Code Gist

3.10.1 Python

```
dir() # provides a list of objects at the top level name space
dir(A) # display addtributes and methods for the object A
' + '.join(X.columns) # form a string by joining the list of column names by "+"
```

3.10.2 Numpy

```
np.argmax(x) # identify the location of the largest element np.concatenate([x,y],axis=0) # concatenate two arrays x and y.
```

3.10.3 Pandas

```
X = pd.DataFrame(data=X, columns=['a','b'])
pd.DataFrame({'intercept': np.ones(Boston.shape[0]),
                  'lstat': Boston['lstat']}) # make a dataframe using a dictionary
Boston.columns.drop('medv', 'age') # drop the elements 'medv' and 'age' from the list of colu
pd.DataFrame({'vif':vals},
                   index=X.columns[1:]) # form a df by specifying index labels
X.values # Convert dataframe X to numpy array
X.to_numpy() # recommended to replace the above method
DataFrame.corr(numeric_only=True) # correlations between columns
x.sort_values(ascending=False)
pd.to_numeric(auto_df['horsepower'], errors='coerce') # if error, denote it by "NaN".
auto_df.dropna(subset= ['horsepower', 'mpg',], inplace=True) # looking for NaN in the column
auto_df.drop('name', axis=1, inplace=True)
left2.join(right2, how="left") #join two databases by index.
left1.join(right1, on="key") # left-join by left1["key"] and the index of right1.
pd.concat([s1, s4], axis="columns", join="outer")
```

3.10.4 Graphics

```
xlim = ax.get_xlim() # get the x_limit values xlim[0], xlim[1]
ax.axline() # add a line to a plot
ax.axhline(0, c='k', ls='--'); # horizontal line
line, = ax.plot(x,y,label="line 1") # "line 1" is the legend
# alternatively the label can be set by
line.set_label("line 1")
ax.scatter(fitted, residuals, edgecolors = 'k', facecolors = 'none')
ax.plot([min(fitted),max(fitted)],[0,0],color = 'k',linestyle = ':', alpha = .3)
ax.legend(loc="upper left", fontsize=25) # adding legendes
ax.annotate(i,xy=(fitted[i],residuals[i])) # annote at the xy position with i.
plt.style.use('seaborn') # pretty matplotlib plots
plt.rcParams.update({'font.size': 16})
plt.rcParams["figure.figsize"] = (8,7)
plt.rc('font', size=10)
plt.rc('figure', titlesize=13)
plt.rc('axes', labelsize=10)
plt.rc('axes', titlesize=13)
plt.rc('legend', fontsize=8) # adjust legend globally
```

3.10.5 Using Sns

```
sns.set(font_scale=1.25) # set font size 25% larger than default
sns.heatmap(corr, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10})
ax = sns.regplot(x=x, y=y)
```

3.10.6 Using Sklearn

```
from sklearn.linear_model import LinearRegression
## Set the target and predictors
X = auto_df['horsepower']

### To get polynomial features
poly = PolynomialFeatures(interaction_only=True,include_bias = False)
X = poly.fit_transform(X)
```

```
## Reshape the columns in the required dimensions for sklearn
length = X.values.shape[0]
X = X.values.reshape(length, 1) #both X and y needs to be 2-D
y = y.values.reshape(length, 1)
## Initiate the linear regressor and fit it to data using sklearn
regr = LinearRegression()
regr.fit(X, y)
regr.intercept_
regr.coef_
pred_y = regr.predict(X)
3.10.7 Using statsmodels and ISLP
from ISLP import load_data
from ISLP.models import (ModelSpec as MS,
                         summarize,
                         poly)
import statsmodels.api as sm
import statsmodels.formula.api as smf
from statsmodels.stats.outliers_influence \
     import variance_inflation_factor as VIF
from statsmodels.stats.anova import anova_lm
#Training
Boston = load_data("Boston")
#hand-craft the design matrix X
X = pd.DataFrame({'intercept': np.ones(Boston.shape[0]), #design matrix. intercept column
                  'lstat': Boston['lstat']})
#the following is the preferred method to create X
design = MS(['lstat']) # specifying the model variables. Automatically add an intercept, add
design = design.fit(Boston) # do intial computation as specified in the model object design
X = design.transform(Boston) # apply the fitted transformation to the data to create X
#alternatiely,
X = design.fit_transform(Boston) # this combines the .fit() and .transform() two lines
y = Boston['medv']
```

y = auto_df['mpg']

```
model = sm.OLS(y, X) # setup the model
model = smf.ols('mpg ~ horsepower', data=auto_df) # alternatively use smf formula, y~x
smf.ols("y ~ x -1" , data=df).fit() # "-1" not inclding the intercept
results = model.fit() # results is a dictionary:.summary(), .params
results.summary()
results.params # coefficients
results.resid # reisdual array
results.rsquared # R^2
results.pvalues
np.sqrt(results.scale) # RSE
results.fittedvalues # fitted \hat(y)_i at x_i in the traning set
summarize(results) # summzrize() is from ISLP to show the esstial results from model.fit()
# Makding prediciton
new_df = pd.DataFrame({'lstat':[5, 10, 15]}) # new test-set containing data where to make page 1.
newX = design.transform(new_df) # apply the same transform to the test-set
new_predictions = results.get_prediction(newX);
new_predictions.predicted_mean #predicted values
new_predictions.conf_int(alpha=0.05) #for the predicted values
new_predictions.conf_int(obs=True, alpha=0.05) # prediction intervals by setting obs=True
# Including an interaction term
X = MS(['lstat'],
        'age',
        ('lstat', 'age')]).fit_transform(Boston) #interaction term ('lstat', 'age')
# Adding a polynomial term of higher degree
X = MS([poly('lstat', degree=2), 'age']).fit_transform(Boston) # Note poly is from ISLP, # a
# Given a qualitative variable, `ModelSpec()` generates dummy
variables automatically, to avoid collinearity with an intercept, the first column is dropped
# Compare nested models using ANOVA
anova_lm(results1, results3) # result1 is the result of linear model, an result3 is the result
# Identify high leverage x
infl = results.get_influence()
# hat_matrix_diag calculate the leverate statistics
```

np.argmax(infl.hat_matrix_diag) # identify the location of the largest levarage

```
# Calculate VIF
vals = [VIF(X, i)]
        for i in range(1, X.shape[1])] #excluding column 0 because it's all 1's in X.
vif = pd.DataFrame({'vif':vals},
                   index=X.columns[1:])
vif # VIF exceeds 5 or 10 indicates a problematic amount of colinearity
Useful Code Snippets
def abline(ax, b, m, *args, **kwargs):
    "Add a line with slope {\tt m} and intercept b to ax"
    xlim = ax.get_xlim()
    ylim = [m * xlim[0] + b, m * xlim[1] + b]
    ax.plot(xlim, ylim, *args, **kwargs)
# Plot scatter plot with a regression line
ax = Boston.plot.scatter('lstat', 'medv')
abline(ax,
       results.params[0],
       results.params[1],
       'r--',
       linewidth=3)
# Plot residuals vs. fitted values (note, not vs x, therefore works for multiple regression)
ax = subplots(figsize=(8,8))[1]
ax.scatter(results.fittedvalues, results.resid)
ax.set_xlabel('Fitted value')
ax.set_ylabel('Residual')
ax.axhline(0, c='k', ls='--');
# Alternatively
sns.residplot(x=X, y=y, lowess=True, color="g", ax=ax)
# Plot the smoothed residuals~fitted by LOWESS
from statsmodels.nonparametric.smoothers_lowess import lowess
smoothed = lowess(residuals,fitted) # Note the order (y,x)
ax.plot(smoothed[:,0],smoothed[:,1],color = 'r')
# QQ plot for the residuas (obtain studentized residuals for identifying outliers)
import scipy.stats as stats
sorted_student_residuals = pd.Series(smf_model.get_influence().resid_studentized_internal)
```

```
sorted_student_residuals.index = smf_model.resid.index
sorted_student_residuals = sorted_student_residuals.sort_values(ascending = True)
df = pd.DataFrame(sorted_student_residuals)
df.columns = ['sorted_student_residuals']
#stats.probplot() #assess whether a dataset follows a specified distribution
df['theoretical_quantiles'] = stats.probplot(df['sorted_student_residuals'], dist = 'norm', :
x = df['theoretical_quantiles']
y = df['sorted_student_residuals']
ax.scatter(x,y, edgecolor = 'k',facecolor = 'none')
# Plot leverage statistics
infl = results.get_influence()
ax = subplots(figsize=(8,8))[1]
ax.scatter(np.arange(X.shape[0]), infl.hat_matrix_diag)
ax.set_xlabel('Index')
ax.set_ylabel('Leverage')
np.argmax(infl.hat_matrix_diag) # identify the location of the largest levarage
```

4 Chapter 4: Classification

Given a feature vector X and a *qualitative* (categorical) response Y taking finite values in a set \mathcal{C} , the classification task is to build a classifier C(X) that takes an input X and predicts its class $Y = C(X) \in \mathcal{C}$. This is often done by model P(Y = k | X = x) for each $k \in \mathcal{C}$.

4.1 Linear regression and Classification

• For a *binary* classification, one can use linear regression and does a good job. In this case, the linear regression classifier is equivalent to LDA, because

$$P(Y = 1|X = x) = E[Y|X = x]$$

However, linear regression may not represent a probability as it may give a value outside the interval [0, 1].

• When there are more than two classes, linear regression is not appropriate, because any chosen coding of the Y variable imposes an ordering and fixed differences among categories, which may not be implied by the data set. If the coding changes, a dramatic function will be fitted, which is not reasonable. One should turn to multiclass logistic regression or Discriminant Analysis.

4.2 Logistic Regression

Logistic regression is a discriminative learning, because it directly calculates the conditional probability P(Y|X) to make classification.

4.2.1 Binary classification

with a single variable Logistic regression simply convert the linear regression to probability by

$$p(X) = Pr(Y = 1|X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}.$$

Note the *logit* or *log odds* is linear

$$\log\left(\frac{p(X)}{1 - p(X)}\right) = \beta_0 + \beta_1 X.$$

Increasing X by one unit, changes the log odds by β_1 . Equivalently, it multiplied the odds by e^{β_1} . The rate of change of p(X) is no longer a constant, but depends on the current value of X. Positive β_1 implies increasing p(X), and vice vesa.

The parameters are estimated by maximizing the liklihood

$$\ell(\beta_0,\beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i:y_i=0} (1-p(x_i))$$

With the estimated parameters $\hat{\beta}_i$, j = 0, 1, one can calculate the probability

$$p(X) = Pr(Y = 1|X) = \frac{e^{\hat{\beta_0} + \hat{\beta_1}X}}{1 + e^{\hat{\beta_0} + \hat{\beta_1}X}}$$

4.2.2 with multiple variables

In this case, simply let the logit be a linear function of p variables.

Note when there are multiple variables, it's possible to have variables confounding (especially when two variables are correlated): the coefficient of a variable may changes significantly or may change sign, this is because the coefficient represents the rate of change in Y of that variable when holding other variable constants. The coefficient reflects the effect when other variables are hold constant, how the variable affects Y, and this effect may be different than when only this variable is used in the model.

Note

One can include a nonlinear term such as a quadratic term in the logit model, similar to a linear regression that includes a non-linear term.

4.2.3 Multi-class logistic regression (multinomial regression) with more than two classes

in this case, we use the softmax function to model

$$\Pr(Y = k | X) = \frac{e^{\beta_{0k} + \beta_{1k} X_1 + \dots + \beta_{pk} X_p}}{\sum_{\ell=1}^{K} e^{\beta_{0\ell} + \beta_{1\ell} X_1 + \dots + \beta_{p\ell} X_p}} = a_k$$

for each class k. Note $\Sigma_k a_k = 1$ and the cross-entropy loss function is given by $-\log \ell(\beta) = -\Sigma_k \mathbbm{1}_k \log a_k$, where β represents all the parameters.

The log odds between kth and k'th classes equals

$$\log(\frac{\Pr(Y=k|X=x)}{\Pr(Y=k'|X=x)}) = (\beta_{k0} - \beta_{k'0}) + (\beta_{k1} - \beta_{k'1}) + \dots + (\beta_{kp} - \beta_{k'p})$$

4.3 Discriminant Classifier: Approximating Optimal Bayes Classifier

Apply the Bayes Theorem, the model

$$\Pr(Y = k | X = x) = \frac{\Pr(X = x | Y = k) \cdot \Pr(Y = k)}{\Pr(X = x)} = \frac{\pi_k f_k(x)}{\sum_{\ell = 1}^K \pi_\ell f_\ell(x)}$$

where $\pi_k = \Pr(Y=k)$ is the marginal or prior probability for class k, and $f_k(x) = \Pr(X=x|Y=k)$ is the density for X in class k. Note the denominator is a normalizing constant. So when making decisions, effectively we compare $\pi_k f_k(x)$, and assign x to a class k with the largest $\pi_k f_k(x)$.

Discriminant uses the full likelihood P(X,Y) to calculate P(Y|X) to make a classification, so it's known as generative learning.

• when f_k is chosen as a normal distribution with constant variance (σ^2) for p=1 or correlation matrix Σ for p>1, this leads to the LDA. For p=1, the discriminant score is given by

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

when K=2 and $\pi_1=\pi_2=0.5$ m then the decision boundary is given by

$$x = \frac{\mu_1 + \mu_2}{2}.$$

When $p \geq 2$, assume that $X = (X_1, X_2, \cdots, X_p)$ is drawn from a multivariate Gaussian distribution $X \sim N(\mu_k, \Sigma)$, with a class-specific mean vector and a common variance matrix.

$$\delta_k(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k = c_{k0} + c_{k1} x_1 + \dots + c_{kp} x_p.$$

The score function (posterior probability) is linear in x. With $\hat{\delta}_k(x)$ for each k, it can be converted to the class probability by the softmax function

$$\widehat{\Pr}(Y = k | X = x) = \frac{e^{\widehat{\delta}_k(x)}}{\sum_{\ell=1}^K e^{\widehat{\delta}_\ell(x)}}$$

The π_k , μ_k and σ are estimate the following way:

$$\begin{split} \hat{\pi}_k &= \frac{n_k}{n} \\ \hat{\mu}_k &= \frac{1}{n_k} \sum_{i:y_i = k} x_i \\ \hat{\sigma}^2 &= \frac{1}{n-K} \sum_{k=1}^K \sum_{i:y_i = k} (x_i - \hat{\mu}_k)^2 = \sum_{k=1}^K \frac{n_k - 1}{n-K} \hat{\sigma}_k^2 \end{split}$$

where $\hat{\sigma}_k^2 = \frac{1}{n_k-1} \sum_{i:y_i=k} (x_i - \hat{\mu}_k)^2$ is the estimated variance for the k-th class.

Note

One can include a nonlinear term such as a quadratic term in the LDA model, similar to a linear regression that includes a non-linear term.

• when each class chooses a different Σ_k , then it's QDA. It assumes an observation from the k-th class is $X \sim N(\mu_k, \Sigma_k)$. The score function has a quadratic term

$$\delta_k(x) = -\frac{1}{2}(x-\mu_k)^T \Sigma_k^{-1}(x-\mu_k) + \log \pi_k - \frac{1}{2}\log |\Sigma_k|$$

QDA has much more parameters Kp(p+1)/2 to estimate compared to LDA (Kp), hence has higher flexibility and may lead to higher variance. When there are few training examples, LDA tend to perform better and reducing variance is crucial. When there is a large training set, QDA is recommended as variance is not a major concern. LDA is a special case of QDA.

- when the features are modeled independently, i.e., there is no association between the p predictors, $f_k(x) = \prod_{j=1}^p f_{jk}(x_j)$, the method is naive Bayes, and Σ_k are diagonal. Any classifier with a linear decision boundary is a special case of NB. So LDA is a special case of NB. To estimate $f_k j$, one can
 - assume that $X_j|Y=k\sim N(\mu_{jk,\sigma_{jk}^2})$, that is, a class specific covariance but is diagonal. QDA's Σ_k is not diagonal. If we model $f_{kj}(x_j)\sim N(\mu_{kj}+\sigma_j^2)$ (Note σ_j^2 is shared among clases), In this case NB is a special case of LDA that has a diagonal Σ and
 - use a non-parametric estimate such as histogram (or a smooth kernel density estimator) for the observations of the jth Predictor within each class.
 - If X_j is qualitative, then one can simply count the proportion of training observations for the jth predictor corresponding to each class.

- Can applied to mixed feature vectors (qualitative and quantitative). NB does not assume normally distributed predictors.
- Despite strong assumptions, performs well, especially when n is not large enough relative to p, when estimating the joint distribution is difficult. It introduces some biases but reduces variance, leading to a classifier that works quite well as a result of bias-variance trade-off.
- Useful when p is very large.
- NB is a generalized additive model.
- Neigher NB nor QDA is a special case of the other. Because QDA contains interaction term $x_i x_j$, while NB is purely additive, in the sense that a function of x_i is added to a function of x_j . Therefore, QDA potentially is a better fit when the interactions among predictors are important.

4.3.1 Why discriminant analysis

- When the classes are well-separated, the parameter estimation of logistic regression is unstable, while LDA does not suffer from this problem.
- if the data size n is small and the distribution of X is approximately normal in each of the classes, then LDA is more stable than logistic regression. Also used when K > 2.
- when there are more than two classes, LDA provides low-dimensional views of the data hence popular. Specifically, when there are K classes, LDA can be viewed exactly in K-1 dimensional plot. This is because it essentially classifies to the closest centroid, and they span a K-1 dimensional plane.
- For a two-class problem, the logit of p(Y = 1|X = x) by LDA (generative learning) is a linear function in X, the same as a logistic regression (discriminative learning). The difference lies in how the parameters are estimated. But in practice, they are similar.
- LDA assumes the predictors follow a multivariable normal distribution with a shared Σ among classes. So when this assumption holds, we expect LDA performs better; and Logistic regress performs better when this assumption does not hold.

4.4 KNN

KNN is a non-parametric method and does not assume a shape for the decision boundary. KNN assign the class of popularity to X = x in a K-neighborhood.

• KNN dominates LDA and Logistic Regression when the decision boundary is highly non-linear, provided n is large and p is small. As KNN breaks down when p is large.

- KNN requires large n >> p, this is because KNN is non-parametric and tends to reduce bias but increase variance.
- When the decision boundary is non-linear but n is only modest and p is not very small, QDA may outperform KNN. This is because QDA provides a non-linear boundary while taking advantage of a parametric form, which means that if requires smaller size for accurate classification.
- Unlike logistic regression, KNN does not tell which predictors are more important: We don't get a table of coefficients.
- When the decision boundary is linear, LDA or logistic regression may perform better, when the boundary is moderately non-linear, QDA or NB may perform better; For a much more complicated decision boundary, KNN may perform better.

4.5 Poisson Regression

When Y is discrete and non-negative, a linear regression model is not satisfactory, even with the transformation of log(Y), because log does not allow Y = 0.

Poisson Regression: typically used to model counts,

$$\Pr(Y = k) = \frac{e^{-\lambda} \lambda^k}{k!}, \qquad k = 0, 1, 2, \cdots,$$

where, $\lambda = E(Y) = \text{Var}(Y)$. This means that if Y follows a Poissson distribution, the larger the mean of Y, the larger its variance. Posisson regression can handle this when variance changes with mean, but linear regression cannot, because it assumes contant variance.

Assume

$$\log(\lambda(X_1, X_2, \cdots, X_n)) = \beta_0 + \beta_1 X_1 + \cdots + \beta_n X_n$$

Then one can use maximum likelihood

$$\ell(\beta_0, \beta_1, \cdots, \beta_p) = \prod_{i=1}^n \frac{e^{-\lambda(x_i)} \lambda(x_i)^{y_i}}{y_i!}$$

to estimate the parameters.

• Interpretation: An increase in X_j by one unit is associated with a change in $E(Y) = \lambda$ by a factor (percentage) of $\exp(\beta_j)$.

4.6 Generalized Linear Models (GLM)

Perform a regression by modeling Y from a particular member of the *exponential family* (Gaussian, Bernoulli, Poisson, Gamma, negative binomial), and then transform the mean of Y to a linear function.

- Use predictors X_1, \dots, X_p to predict Y. Assume Y conditional on X follow some distribution: For linear regression, assume Y follows a normal distribution; for logistic regression, assume Y follows a Bernoulli (multinomial distribution for multi-class logistic regression) distribution; For poisson distribution, assume Y follows a poisson distribution.
- Each approach models the mean of Y as a function of X using a linking function η to transform E[Y|X] to a linear function.
 - for linear regression

$$E(Y|X) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

$$\eta(\mu) = \mu$$

- for logistic regression

$$E(Y|X) = P(Y = 1|X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

$$\eta(\mu) = \log(\mu/(1-\mu))$$

for Poisson regression

$$E(Y|X) = \lambda(X) = e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}$$

$$\eta(\mu) = \log(\mu)$$
.

- Gamma regression and negative binomial regression.

4.7 Assessment of a classifier

- Confusion matrix
- Overall error rate: equals to

$$\frac{FP + FN}{N + P}$$

• Class-specific performance: One can adjust the decision boundary (posterior probability threshold) to improve class specific performance at the expense of lowered overall performance.

- percentage of TP detected among all positives

sensitivity (recall, power) =
$$TPR = \frac{TP}{TP + FN} = \frac{TP}{P} = 1 - \text{Type II error} = 1 - \beta$$

this is equal to 1 - FNR, where, FNR is The fraction of positive examples that are classified as negatives

$$FNR = \frac{FN}{FN + TP} = \frac{FN}{P}$$

- percentage of TN detected among all negatives

specificity =
$$TNR = \frac{TN}{TN + FP} = \frac{TN}{N}$$

This is equal to 1-FPR, where, False positive rate (FPR): the fraction of negative examples (N) that are classified as positive:

$$FPR = \frac{FP}{FP + TN} = \frac{FP}{N} = \text{Type I error}(\alpha)$$

- ROC (receiver operating characteristic curve): plot true positive rate (TPR=1-Type II error) ~ false positive rate (FPR= 1- specificity=Type I error) as a threshold for the posterior probability of positive class changes from 0 to 1. The point on the ROC curve closest to the point (0,1) corresponds to the best classifier.
- AUC (area under the ROC): Overall performance of a classified summarized over all thresholds. AUC measures the probability a random positive example is ranked higher than a random negative example. A larger AUC indicates a better classifier.
- class-specific prediction performance

$$\text{precision} = \frac{TP}{TP + FP} = \frac{TP}{\text{predicted postives}} = 1 - \text{false discovery proportion}$$

4.8 Homework:

• Conceptual: 1,2,3,4, 5,6,7,8, 9, 10, 12

• Applied: 13, 14*,15*,16*

4.9 Code Gist

4.9.1 Python

4.9.2 Numpy

```
np.where(lda_prob[:,1] >= 0.5, 'Up','Down')
np.argmax(lda_prob, 1) #argmax along axis=1 (col)
np.asarray(feature_std) # convert to np array
np.allclose(M_lm.fittedvalues, M2_lm.fittedvalues)
#check if corresponding elts are equal within rtol=1e-5 and atol=-1e08
```

4.9.3 Pandas

```
Smarket.corr(numeric_only=True)
train = (Smarket.Year < 2005)
Smarket_train = Smarket.loc[train] # equivalent to Smarket[train]
Purchase.value_counts() # frequency table
feature_std.std() #calculate column std
S2.index.str.contains('mnth')
Bike['mnth'].dtype.categories # get the categories of the categorical data
obj2 = obj.reindex(["a", "b", "c", "d", "e"])# rearrange the entries in obj according to the</pre>
```

4.9.4 Graphics

4.9.5 ISLP and Statsmodels

```
from ISLP import confusion_table
from ISLP.models import contrast

# Logistic Regression using sm.GLM() syntax similar to sm.OLS()
design = MS(allvars)
X = design.fit_transform(Smarket)
y = Smarket.Direction == 'Up'
glm = sm.GLM(y,
```

```
Х,
                                 family=sm.families.Binomial())
results = glm.fit()
summarize(results)
results.pvalues
probs = results.predict() #without data set, calculate predictions on the training set.
results.predict(exog=X_test) # on test set
# Prediction on a new dataset
newdata = pd.DataFrame({'Lag1':[1.2, 1.5],
                                                              'Lag2':[1.1, -0.8]});
newX = model.transform(newdata)
results.predict(newX)
confusion_table(labels, Smarket.Direction) #(predicted_labels, true_labels)
np.mean(labels == Smarket.Direction) # calculate the accuracy
hr_encode = contrast('hr', 'sum') #coding scheme for categorical data: the unreported coefficient of the contrast contra
#Poisson Regression
M_pois = sm.GLM(Y, X2, family=sm.families.Poisson()).fit()
#`family=sm.families.Gamma()` fits a Gamma regression
model.
4.9.6 sklearn
from sklearn.discriminant_analysis import \
              (LinearDiscriminantAnalysis as LDA,
               QuadraticDiscriminantAnalysis as QDA)
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
#T.DA
lda = LDA(store_covariance=True) #store the covariance of each class
X_train, X_test = [M.drop(columns=['intercept']) # drop the intercept column
                                                for M in [X_train, X_test]]
```

lda.fit(X_train, L_train) # LDA() model will automatically add a intercept term

lda.means_ # mu_k (n_classes, n_features)

lda.priors_ # prior probability of each class

lda.classes_

```
#Linear discrimnant vectors
lda.scalings_ #Scaling of the features in the space spanned by the class centroids. Only ava
lda_pred = lda.predict(X_test) #predict class labels
lda_prob = lda.predict_proba(X_test) #ndarray of shape (n_samples, n_classes)
#QDA
qda = QDA(store_covariance=True)
qda.fit(X_train, L_train)
qda.covariance_[0] #estimated covariance for the first class
# Naive Bayes
NB = GaussianNB()
NB.fit(X_train, L_train)
NB.class_prior_
NB.theta_ #means for (#classes, #features)
NB.var_ #variances (#classes, #features)
NB.predict_proba(X_test)[:5]
# KNN
knn1 = KNeighborsClassifier(n_neighbors=1)
X_train, X_test = [np.asarray(X) for X in [X_train, X_test]]
knn1.fit(X_train, L_train)
knn1_pred = knn1.predict(X_test)
# When using KNN one should standarize each varaibles
scaler = StandardScaler(with_mean=True,
                        with_std=True,
                        copy=True) # do calculaton on a copy of the dataset
scaler.fit(feature_df)
#train test split
X_std = scaler.transform(feature_df)
(X_train,
X_test,
 y_train,
 y_test) = train_test_split(np.asarray(feature_std),
                            Purchase,
                            test_size=1000,
                            random_state=0)
# Logistic Regression
logit = LogisticRegression(C=1e10, solver='liblinear') #use solver='liblinear'to avoid warni:
```

```
logit.fit(X_train, y_train)
logit_pred = logit.predict_proba(X_test)
```

4.9.7 Useful code snippet

5 Chapter 5: Resampling Methods

Resampling methods are mainly used to estimate the test error but by resampling the training set. Two methods: cross-validation and bootstrap. Theses methods refit a model to samples from the training set, in order to obtain additional information (eg. prediction error on the test set, standard deviation and bias of estimated parameters) about the fitted model. Recall training error in general dramatically underestimate the test error, and in general, training error decreases as the model flexibility increases, but the test error shows a characteristic U-curve due to the bias-variance trade-off of the test error.

5.1 how to estimate test error

- use a large designated test set, but often not available.
- make adjustment to the training error to estimate the test error, e.g., Cp statistic, AIC and BIC.
- validation set approach: estimate the test error by *holding out* a subset of the training set, also called a *validation set*.
 - the estimate of the test error can be highly variable, depending on the random train-validation split.
 - Only a subset of the training set is used to fit the model. This suggests the validation error tends to *overestimate* the test error compared to the model that uses the entire training set.
- K-fold Cross-Validation: randomly divide the data into K equal-sized parts C_1, C_2, \cdots, C_K . For each k, leave out part k, fit the model on the remaining K-1 parts (combined, (K-1)/K of the original training set), and then evaluate the model on the part k. Then repeat this for each k, and weighted average of the errors is computed:

$$CV_{(K)} = \sum_{k=1}^{K} \frac{n_k}{n} MSE_k$$

where ${\rm MSE}_k = \sum_{i \in C_k} (y_i \neq \hat{y}_i)/n_k.$

For classification problem, simply replace MSE_k with the misclassification rate $\text{Err}_k = \sum_{i \in C_k} I(y_i \neq \hat{y}_i)/n_k$.

The estimated standard error of CV_k can be calculated by

$$\hat{\mathrm{SE}}(CV_k) = \sqrt{\frac{1}{K}\sum_{k=1}^K \frac{(\mathrm{Err}_k - \overline{\mathrm{Err}_k})^2}{K-1}}$$

The estimated error tends bias upward because it uses only (K-1)/K of the training set. This bias is minimized with K=n (LOOCV), but LOOCV estimate has high variance due to the high correlation between folds.

• LOOCV: it's a special case of K-fold CV with K = n. For least squares linear or polynomial regression, the LOOCV error can be computed by

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - h_i} \right)^2$$

Where h_i is the leverage statistic of x_i .

- for LOOCV, the estimate from each fold are highly correlated, hence their average can have high variance.
- better choice is K = 5 or K = 10.
- Bootstrap: Primarily used to estimate the standard error, or a CI (called bootstrap percentile) of an estimate . repeatedly sampling the training set with replacement and obtain a bootstrap set of the the same size as the original training set. One can fit a model and estimate a parameter with each bootstrap data set, and then estimate the standard error using the estimated parameters by the bootstrap model, assuming there are B bootstrap data sets:

$$SE_B(\hat{\alpha}) = \sqrt{\frac{1}{B-1}\sum_{r=1}^B(\hat{\alpha}^{*r} - \bar{\hat{\alpha}}^*)^2}$$

- Note sometimes sampling with replacement must take caution, for example, one can't simply sample a time series with replacement because the data are sequential.
- Estimate prediction error: Each bootstrap sample has significant overlap with the original data, in fact, about 2/3 of the original data points appear in each bootstrap sample. If we use the original data set as the validation set, This will cause the bootstrap to seriously underestimate the true prediction error. To fix this, one can only use predictions on those samples that do not occur (by chance) in a bootstrap sample.
- Bootstrap vs. Permutation test: permutation methods sample from an estimated null distribution for the data, and use this to estimate p-values and False Discovery Rates for hypothesis tests.

The bootstrap can be used to test a null hypothesis in simple situation. Eg. If $H_0: \theta = 0$, we can check whether the confidence interval for θ contains zero.

5.2 Code Gist

5.2.1 Python

5.2.2 Numpy

5.2.3 Pandas

np.cov(D[['X','Y']].loc[idx], rowvar=False) #cov compute corr of variables. rowvar-False: co

5.2.4 Graphics

5.2.5 ISLP and statsmodels

```
# Compare polynomial models of different degrees
MSE = np.zeros(3)
for idx, degree in enumerate(range(1, 4)):
    MSE[idx] = evalMSE([poly('horsepower', degree)],
                        'mpg',
                        Auto train,
                        Auto_valid)
MSE
# Estimating the accuracy of a LR model using bootstrap
# Compute the SE of the boostraped values computed by func
def boot_SE(func,
            D,
            n=None,
            B=1000,
            seed=0):
    rng = np.random.default_rng(seed)
    first_, second_ = 0, 0
    n = n \text{ or } D.\text{shape}[0]
    for _ in range(B):
        idx = rng.choice(D.index,
                          n,
                          replace=True)
        value = func(D, idx)
        first_ += value
        second_ += value**2
    return np.sqrt(second_ / B - (first_ / B)**2) #compute var.
def boot_OLS(model_matrix, response, D, idx):
    D_{-} = D.loc[idx]
    Y_ = D_[response]
    X_ = clone(model_matrix).fit_transform(D_) #clone create a deep copy.
    return sm.OLS(Y_, X_).fit().params
quad_model = MS([poly('horsepower', 2, raw=True)]) #raw=True: not normalize the feature
quad_func = partial(boot_OLS,
                     quad_model,
                     'mpg')
boot_SE(quad_func, Auto, B=1000)
```

5.2.6 sklearn

```
from functools import partial
from sklearn.model_selection import \
     (cross_validate,
      KFold,
      ShuffleSplit)
from sklearn.base import clone
from ISLP.models import sklearn_sm #wrapper to feed a sm model to sklearn
#Cross Validation
hp_model = sklearn_sm(sm.OLS,
                      MS(['horsepower']))
X, Y = Auto.drop(columns=['mpg']), Auto['mpg']
cv_results = cross_validate(hp_model,
                            cv=Auto.shape[0]) #cv=K.loocv. Can use cv=KFold()object
cv_err = np.mean(cv_results['test_score']) # test_score: MSE
cv_err
# Use KFold to partition instead of using an integer.
cv_error = np.zeros(5)
cv = KFold(n_splits=10,
           shuffle=True, #shuffle before splitting
           random_state=0) # use same splits for each degree
for i, d in enumerate(range(1,6)):
    X = np.power.outer(H, np.arange(d+1))
    M_CV = cross_validate(M,
                          Υ,
                          cv=cv)
    cv_error[i] = np.mean(M_CV['test_score'])
cv_error
# using ShuffleSplit() method
validation = ShuffleSplit(n_splits=10,
                          test_size=196,
                          random_state=0)
results = cross_validate(hp_model,
                         Auto.drop(['mpg'], axis=1),
                         Auto['mpg'],
```

```
cv=validation)
results['test_score'].mean(), results['test_score'].std()
```

```
#View skleanrn fitting results using model.results_
hp_model.fit(Auto, Auto['mpg']) # hp_model is a sklearn model sk_model.fit(X, Y) for trainning
model_se = summarize(hp_model.results_)['std err'] #summarize is an ISLP function
model_se
```

5.2.7 Useful code snippet

Summary

In summary, this book has no content whatsoever.

References