Département de génie informatique et de génie logiciel

LOG 2810 : Structures discrètes

Règles d'inférences et contrevérités

Aurel RANDOLPH, Ph.D. Chargé de cours

aurel.randolph@polymtl.ca

Modus Ponens

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

$$\frac{P \quad p \to q}{q}$$
 (MP)

p	$p \rightarrow$	$q \mid p \land (p \rightarrow q)$	$(p \land (p \rightarrow q)) \rightarrow q$
V \	/ V	V	V
V F	F	F	V
F١	/ V	F	V
FF	- V	F	V

Modus Tollens

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

$$\begin{array}{ccc}
 & 7q & p \rightarrow q \\
\hline
 & 7p
\end{array}$$

p	q	7 <i>q</i>	$p \rightarrow q$	$7q \wedge (p \rightarrow q)$	Ίр	$(p \land (p \Rightarrow q)) \Rightarrow 7p$
V	V	F	V	F	F	V
V	F	V	F	F	F	V
F	V	F	V	F	V	V
F	F	V	V	V	V	V

Addition

Table de vérité de la disjonction

p	q	p V q
V	V	V
V	F	V
F	V	V
F	F	F

p	q	p V q	$p \rightarrow (p \ V \ q)$
V	V	V	V
V	F	V	V
F	V	V	V
F	F	F	V

Simplification

Table de vérité de la conjonction

p	q	pΛq
V	V	V
V	F	F
F	V	F
F	F	F

$$p \wedge q$$
(Simplification)

$$p \land q$$
_____ (Simplification)
 p

p	q	рΛ q	$(p \land q) \rightarrow p$
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	V

Syllogisme par hypothèse

$$\frac{p \to q \quad q \to r}{p \to r}$$
 (SH)

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$(p \rightarrow q) \wedge (q \rightarrow r)$	$p \rightarrow r$	$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$
V	V	V	V	V	V	V	V
V	V	F	V	F	F	F	V
V	F	V	F	V	F	V	V
V	F	F	F	V	F	F	V
F	V	V	V	V	V	V	V
F	V	F	V	F	F	V	V
F	F	V	V	F	F	V	V
F	F	F	V	V	V	V	V

Syllogisme disjonctif

Table de vérité de la disjonction

p	q	p V q
V	V	V
V	F	V
F	V	V
F	F	F

$$\begin{array}{ccc}
p V q & 7 p \\
\hline
 & q
\end{array}$$

$p \mid q$	p V q	7 p	(p V q) / 1 p	$(p \ V \ q) \land 7p) \rightarrow q$
V V	V	F	F	V
V F	V	F	F	V
F V	V	V	V	V
F F	F	V	F	V

Conjonction

Table de vérité de la Conjonction

p	q	рΛ q
V	V	V
V	F	F
F	V	F
F	F	F

$$\frac{p \quad q}{-----}$$
 (Conjonction)

p	q	pΛq	$(p \land q) \rightarrow (p \land q)$
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	V

Dilemme constructif

$$p \rightarrow q$$
 $r \rightarrow s$ $p \ V \ r$ (DC)
 $q \ V \ s$

Dilemme constructif

				IC CC	<u> </u>	<u>acti</u>				
p	q	r	S	$p \rightarrow q$	$r \rightarrow s$	$(p \rightarrow q) \land (r \rightarrow s)$	pVr	$((p \rightarrow q) \land (r \rightarrow s))$ $\land (p \lor r)$	q V s	
V	V	V	V	V	V	V	V	V	V	V
V	V	V	F	V	F	F	V	F	V	V
V	V	F	V	V	V	V	V	V	V	V
V	V	F	F	V	V	V	V	V	V	V
V	F	V	V	F	V	F	V	F	V	V
V	F	V	F	F	F	F	V	F	F	V
V	F	F	V	F	V	F	V	F	V	V
V	F	F	F	F	V	F	V	F	F	V
F	V	V	V	V	V	V	V	V	V	V
F	V	V	F	V	F	F	V	F	V	V
F	V	F	V	V	V	V	F	F	V	V
F	V	F	F	V	V	V	F	F	V	V
F	F	V	V	V	V	V	V	V	V	V
F	F	V	F	V	F	F	V	F	F	V
F	F	F	V	V	V	V	F	F	V	V
F	F	F	F	V	V	V	F	F	F	V 10

Autres règles

Contrevérité d'affirmer la conclusion

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

$$p \rightarrow q$$
 q
 p

p	q	$p \rightarrow q$	$(p \rightarrow q) \wedge q$	$((p \rightarrow q) \land q)) \rightarrow p$
V	V	V	V	V
V	F	F	F	V
F	V	V	V	F
F	F	V	F	V 12

Contrevérité d'ignorer l'hypothèse

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

$$p \rightarrow q$$
 7 p

	מ	q	$p \rightarrow q$	7 p	$(p \rightarrow q) \land \exists p$	7 q	$((p \rightarrow q) \land 7p)) \rightarrow 7q$
\	V	V	V	F	F	F	V
\	V	F	F	F	F	V	V
	F	V	V	V	V	F	F
	F	F	V	V	V	V	V 13

