## Algebraic Topology

Alec Zabel-Mena

21.09.2022

### Chapter 1

### Categories.

#### 1.1 Categories and Subcategories.

**Definition.** A category  $\mathcal{C}$  is a collection of a class of **objects**, denoted obj  $\mathcal{C}$  a collection of sets of **morphisms**  $\operatorname{Hom}(A,B)$  for each  $A,B \in \operatorname{obj}\mathcal{C}$  and a binary operation  $\circ : \operatorname{Hom}(A,B) \times \operatorname{Hom}(B,C) \to \operatorname{Hom}(A,C)$ , defined by  $(f,g) \to g \circ f$ , called **composition** such that:

- (1) Each Hom (A, B) is pairwise disjoint for all  $A, B \in \text{obj } \mathcal{C}$ .
- (2)  $\circ$  is associative when defined; that is if either  $(g \circ f) \circ h$  or  $g \circ (f \circ h)$  are defined, then  $(g \circ f) \circ h = g \circ (f \circ h)$ , for morphisms f, g, h.
- (3) For each  $A \in \text{obj } \mathcal{C}$ , there exists an **identity** morphism  $1_A \in \text{Hom } (A, A)$  such that for each  $B, C \in \text{obj } \mathcal{C}$ ,  $1_A \circ f = f$  and  $g \circ 1_A = g$  for each morphism  $f \in \text{Hom } (B, A)$  and  $g \in \text{Hom } (A, C)$ .

We denote morphisms by  $f: A \to B$  instead of  $f \in (A, B)$ .

**Definition.** Let  $\mathcal{C}$  be a category and  $f: A \to B$  a morphism in  $\mathcal{C}$ . We call A and B the **domain** and **codomain** of f, respectively, and we call the set  $G_f = \{(a, f(a)) : a \in A\} \subseteq B$  the **graph** of f.

- **Example 1.1.** (1) The category of all sets Set has as onjects the class of all sets. The morphisms in Set are all functions  $f: A \to B$  where A and B are sets. The composition of Set is the usual composition of functions.
  - (2) The category of all topological spaces Top has as objects all topological spaces, and as morphisms all continuous maps  $f: Y \to Y$  from a space X to a space Y. The composition is the usual composition.
  - (3) The category of all groups, Grp has as objects all groups and as morphisms all homomorphisms  $f: G \to H$ , under the usual composition.
  - (4) The category of rings with unit Rng has as objects all rings with unit, along with all ring homomorphisms  $f: R \to K$  to be the morphisms under the usual composition.

**Definition.** We call a category a **subcategory** of a category  $\mathcal{C}$  if obj  $\mathcal{A} \subseteq \text{obj } \mathcal{C}, \text{Hom}_{\mathcal{A}}(A, B) \subseteq \text{Hom}_{\mathcal{C}}(A, B)$  for all  $A, B \in \mathcal{C}$ , and  $\mathcal{A}$  inherits the composition of  $\mathcal{C}$ .

**Example 1.2.** (1) The category of all pairs of topological spaces (X, A) where A is a subspace of X, whose morphisms are pairs of continuous maps  $f = (f_1, f_2)$  such that  $f_1i = jf_2$  where  $i: A \to X$  and  $j: B \to Y$  are inclusions, is a subcategory of Top. We denote this category Top<sup>2</sup>.



- (2) The category of all **pointed spaces**, Top\* is defined with the objects being all pairs  $(X, \{x_0\})$ , where  $x_0 \in X$  with the morphisms of Top<sup>2</sup>. Top\* is a subcategory of Top<sup>2</sup>. We call  $x_0$  the **base point**, and we call the morphisms of Top\* **pointed maps**.
- (2) The category of all Abelian groups, Ab is a subcategory of Grp. Likewise, the category of all commutative rings with unit is a subcategory of Rng.

#### 1.2 Commutative Diagrams and Congruences.

**Definition.** A diagram in a category is a directed graph with its vertex set a subset of objects, and whose edge set are morphisms between those objects. We call a diagram **commutative** if for any pair of objects, every pair of morphisms between those objects are equal. That is if A, A' and B, B' are pairs of objects with pairs of morphisms  $f: A \to B$ ,  $f: A \to A'$  and  $f': A' \to B'$ ,  $g': B \to B'$  we have that  $g \circ f' = f \circ g'$ 



**Definition.** A congruence on a category  $\mathcal{C}$  is an equivalence relation  $\sim$  on morphisms in  $\mathcal{C}$  such that:

- (1) If  $f \in \text{Hom}(A, B)$ , and  $f \sim f'$ , then  $f' \in \text{Hom}(A, B)$ .
- (2) If  $f \sim g$  and  $f' \sim g'$ , then  $g \circ f \sim g' \circ f'$ .

1.3. FUNCTORS. 5



Figure 1.1: An equivalence relation between morphisms.

**Theorem 1.2.1.** Let C be a category with congruence  $\sim$ . Define  $C/\sim$  as follows:

- (1)  $\operatorname{obj}^{\mathcal{C}}/_{\sim} = \operatorname{obj} \mathcal{C}$ .
- (2)  $\operatorname{Hom}_{\mathcal{C}_{A}}(A, B) = \{ [f] : f \in \operatorname{Hom}_{\mathcal{C}}(A, B) \}.$
- $(3) [g] \circ [f] = [g \circ f]$

Then  $\mathcal{C}_{\sim}$  is a category.

*Proof.* We have by equivalence that obj  $\mathcal{C}_{\sim}$  is a class. Moreover, since  $\sim$  partitions  $\mathcal{C}$ , it partions all of the Hom (A, B) for each A, B. So each Hom (A, B) is a set, moreover, they are pariwise disjoint by definition of  $\sim$ . Now, notice that by hypothesis, composition in  $\mathcal{C}_{\sim}$  is well defined, so  $[1_A] \circ [f] = [1_A \circ f] = [f]$  and  $[g] \circ [1_A] = [g \circ 1_A] = [g]$ . This makes  $\mathcal{C}_{\sim}$  a category.

*Remark.* On can think of the category  $\mathcal{C}_{\sim}$  as taking all morphisms with they same domain and codomain, and collapsing them into a single morphism.

**Definition.** Let  $\mathcal{C}$  be a catogory and  $\sim$  a congruence of  $\mathcal{C}$ . We call the category  $\mathcal{C}/\sim$  induced by  $\sim$  the **quotient category**.

#### 1.3 Functors.

**Definition.** Let  $\mathcal{A}$  and  $\mathcal{C}$  be categories. We deine a **covariant functor** to be a map  $F: \mathcal{A} \to \mathcal{C}$  such that:

- (1)  $A \in \text{obj } \mathcal{A} \text{ implies } F(A) \in \text{obj } \mathcal{C}.$
- (2) If  $f: A \to B$  is a morphism in  $\mathcal{A}$ , then  $F(f): F(A) \to F(B)$  is a morphism in  $\mathcal{C}$ .



Figure 1.2: Morphisms in a category with the same domain and codomain get collapsed onto a single morphism in the correspinding quotient category.



Figure 1.3: A covariant functor taking a diagram in on category to a diagram in the other.

- (3) For all morphisms f and g in  $\mathcal{A}$ , for which  $g \circ f$  is defined, we have that  $F(g \circ f) = F(g) \circ F(f)$ , and  $F(1_A) = 1_{F(A)}$ .
- **Example 1.3.** (1) We define the **forgetful functor** the map  $F: \mathcal{C} \to \operatorname{Set}$  that takes all objects in  $\mathcal{C}$  to their underlying sets, and morphisms in  $\mathcal{C}$  to themselves considered as functions under the usual composition. For example the forgetful functor  $F: \operatorname{Top} \to \operatorname{Set}$  takes topological spaces X to their underlying sets, and continuous maps to themselves, considered just as functions.
  - (2) The **identity functor** is the functor  $I: \mathcal{C} \to \mathcal{C}$  that takes objects and morphisms in  $\mathcal{C}$  to themselves.
  - (3) Let M be a topological space. Define  $F_M$ : Top  $\to$  Top by  $F_M$ :  $X \to X \times M$ , and for each continuous map  $f: X \to Y$ ,  $F(f): X \times M \to Y \times M$  is defined by  $(x,m) \to (f(x),m)$ . Then  $F_M$  is a functor.
  - (4) Let  $A \in \text{obj } \mathcal{C}$  and take the map  $\text{Hom } (A, *) : \mathcal{C} \to \text{Set}$  that takes  $A \to \text{Hom } (A, B)$  and for each morphism  $f : B \to B'$ ,  $\text{Hom } (A, f) : \text{Hom } (A, B) \to \text{Hom } (A, B')$  is given by  $g \to f \circ g$ . With call this functor the **covariant Hom functor**, and denote it  $f_*$ .

**Definition.** Let  $\mathcal{A}$  and  $\mathcal{C}$  be categories. We deine a **contravariant functor** to be a map  $G: \mathcal{A} \to \mathcal{C}$  such that:

(1)  $A \in \text{obj } \mathcal{A} \text{ implies } G(A) \in \text{obj } \mathcal{C}.$ 

1.3. FUNCTORS.

- (2) If  $f: A \to B$  is a morphism in  $\mathcal{A}$ , then  $G(f): G(B) \to G(A)$  is a morphism in  $\mathcal{C}$ .
- (3) For all morphisms f and g in  $\mathcal{A}$ , for which  $g \circ f$  is defined, we have that  $G(g \circ f) = G(f) \circ G(g)$ , and  $G(1_A) = 1_{G(A)}$ .



Figure 1.4: A contravariant functor taking a diagram in on category to a diagram in the other.

- **Example 1.4.** (1) Let F be a field, and Vec the category of all finite dimensional vector spaces over F, whose morphisms are linear transformations. Define the map  $T : \text{Vec} \to \text{Vec}$  by taking  $T : V \to V^{\perp}$ , and  $T : f \to f^{T}$ . That is T takes vector spaces to their dual spaces, and linear transformation to their transpose. T is a contravariant functor called the **dual space functor**.
  - (2) Define  $\operatorname{Hom}(*,B):\mathcal{C}\to\mathcal{C}$  by taking  $\operatorname{Hom}(*,B):A\to\operatorname{Hom}(A,B)$  and for each morphism  $g:A\to A'$  in  $\mathcal{C}$ ,  $\operatorname{Hom}(f,B):\operatorname{Hom}(A',B)\to\operatorname{Hom}(A,B)$  is defined by taking  $h\to h\circ g$ . This is analogous to the covariant Hom functor, and we call it the **contravariant Hom functor.**

**Definition.** We call a morphism  $f: A \to B$  an **equivalence** if there exists a morphism  $g: B \to A$  such that  $f \circ g = 1_B$  and  $g \circ f = 1_A$ 

**Theorem 1.3.1.** Let  $\mathcal{A}$  and  $\mathcal{C}$  be categories, and  $F: \mathcal{A} \to \mathcal{C}$  be a functor. If f is an equivalence in  $\mathcal{A}$ , then F(f) is an equivalence in  $\mathcal{C}$ .

*Proof.* Suppose that F is a covariant functor. Notice that if  $f: A \to B$  is an equivalence, then there is a  $g: B \to A$  with  $f \circ g = 1_B$  and  $g \circ f = 1_A$ . Then  $F(f \circ g) = F(f) \circ F(g) = F(1_B) = 1_{F(B)}$ , and  $F(g \circ f) = F(g) \circ F(f) = F(1_A) = 1_{F(A)}$ .

Likewise, if F is contravariant, notice that  $F(f): B \to A$  and  $F(g): A \to B$ . Then  $F(f \circ g) = F(g) \circ F(f) = 1_{F(A)}$ , and  $F(g \circ f) = F(f) \circ F(g) = 1_{F(B)}$ . In eithe case, we find that F(f) is an equivalence in C.

## Chapter 2

Homotopy, Convexity, and Connectedness.

### 2.1 Homotopy

# Bibliography

- [1] J. Munkres, Topology. New York, NY: Pearson, 2018.
- [2] J. Rotman, An Introduction to Algebraic Topology. New York, NY: Springer-Verlag, 1988.