July 30, 2015

Due date: Monday, August 17, 2015

Assignment "Propositional Logic"

Marking scheme: Full marks for a formulation that correctly answers the question and clearly shows the steps to obtain the solution.

Solutions to be submitted electronically by email to Peter.Baumgartner@nicta.com.au, or on paper to a lecturer of this course. Neatly hand-written solutions are of course acceptable.

Question 1 (Truth tables, 6 pts). Consider the following formulas:

(a)
$$P \lor Q \to \neg P \land Q$$

(b)
$$(P \to Q) \to (\neg Q \to \neg P)$$

- (1) Evaluate (a) and (b) under the interpretation $I = \{P \mapsto \mathsf{true}, \ Q \mapsto \mathsf{false}\}.$
- (2) Compute the truth tables for (a) and (b). Are (a) and (b) satisfiable? valid?

Solution.

(1-a) Let $F = P \vee Q \rightarrow \neg P \wedge Q$. It holds I(F) = false as per the following table:

(1-b) Let
$$F = (P \to Q) \to (\neg Q \to \neg P)$$
. It holds $I(F) = \text{true}$ as per the following table:

(2-a)

P	Q	$\neg P$	$P \vee Q$	$\neg P \land Q$	F
0	0	1	0	0	1
0	1	1	1	1	1
1	0	0	1	0	0
1	1	0	1	0	0

The formula (a) is satisfiable and not valid.

(2-b)

P	Q	$\neg P$	$\neg Q$	$P \to Q$	$\neg Q \to \neg P$	F
0	0	1	1	1	1	1
0	1	1	0	1	1	1
1	0	0	1	0	0	1
1	1	0	0	1	1	1

The formula (b) is satisfiable and valid.

Question 2 (Structural induction, 10 pts). Define recursively a function trans on formulas as follows, where A is a propositional variable and F_1 and F_2 are formulas:

$$\begin{aligned} \operatorname{trans}(\top) &= \top & \operatorname{trans}(\bot) &= \bot \\ \operatorname{trans}(A) &= \neg A & \operatorname{trans}(F_1 \vee F_2) &= \operatorname{trans}(F_1) \vee \operatorname{trans}(F_2) \\ \operatorname{trans}(\neg F_1) &= \neg \operatorname{trans}(F_1) & \operatorname{trans}(F_1 \to F_2) &= \operatorname{trans}(F_1) \to \operatorname{trans}(F_2) \\ \operatorname{trans}(F_1 \wedge F_2) &= \operatorname{trans}(F_1) \wedge \operatorname{trans}(F_2) & \operatorname{trans}(F_1 \leftrightarrow F_2) &= \operatorname{trans}(F_1) \leftrightarrow \operatorname{trans}(F_2) \end{aligned}$$

- (1) Compute trans $(P \lor Q \to \neg P \land Q)$.
- (2) Let I be an interpretation and I' be the interpretation such that

$$I'[A] = \text{true if } I[A] = \text{false, and } I'[A] = \text{false if } I[A] = \text{true.}$$

Let F be any formula. Prove that $I \models F$ if and only if $I' \models \mathsf{trans}(F)$.

Solution.

(1) We have

$$\begin{split} \operatorname{trans}(P \vee Q \to \neg P \wedge Q) &= \operatorname{trans}(P \vee Q) \to \operatorname{trans}(\neg P \wedge Q) \\ &= \operatorname{trans}(P) \vee \operatorname{trans}(Q) \to \operatorname{trans}(\neg P) \wedge \operatorname{trans}(Q) \\ &= \neg P \vee \neg Q \to \neg \neg P \wedge \neg Q \end{split}$$

(2) **Induction start.** If $F = \bot$ or $F = \top$ the result follows trivially. If F = A for some propositional variable A we have

$$I \models A \text{ iff } I' \models \neg A$$
 (by definition of I')
iff $I' \models \mathsf{trans}(A)$ (by definition of trans)

Induction step. Let F_1 and F_2 be formulas. In all cases below, assume as the induction hypothesis

$$I \models F_1 \text{ iff } I' \models \mathsf{trans}(F_1) \text{ and } I \models F_2 \text{ iff } I' \models \mathsf{trans}(F_2)$$
 (I.H.)

We carry out a case analysis on the shape of F.

If $F = \neg F_1$ then

$$I \models \neg F_1 \text{ iff } I \not\models F_1$$
 (by definition of \neg)

iff $I' \not\models \mathsf{trans}(F_1)$ (by I.H.)

iff $I' \models \neg \mathsf{trans}(F_1)$ (by definition of \neg)

iff $I' \models \mathsf{trans}(\neg F_1)$ (by definition of trans)

iff $I' \models F$

If $F = F_1 \wedge F_2$ then

$$I \models F_1 \land F_2 \text{ iff } I \models F_1 \text{ and } I \models F_2$$
 (by definition of \land)

iff $I' \models \mathsf{trans}(F_1) \text{ and } I' \models \mathsf{trans}(F_2)$ (by I.H.)

iff $I' \models \mathsf{trans}(F_1) \land \mathsf{trans}(F_2)$ (by definition of \land)

iff $I' \models \mathsf{trans}(F_1 \land F_2)$ (by definition of trans)

iff $I' \models F$

The proof for all other cases is similar and is omitted.

Question 3 (Tableau calculus, 10 pts). Consider again the following formulas:

(a)
$$P \lor Q \to \neg P \land Q$$

(b)
$$(P \to Q) \to (\neg Q \to \neg P)$$

For each of these formulas use the Tableau method to prove their validity or invalidity.

Solution.

(a) Let's assume that $P \vee Q \to \neg P \wedge Q$ is not valid.

1.
$$I \not\models P \lor Q \to \neg P \land Q$$
 (assumption)

2.
$$I \models P \lor Q$$
 (by 1 and \rightarrow)

3.
$$I \not\models \neg P \land Q$$
 (by 1 and \rightarrow)

We have two cases:

4a.
$$I \models P$$
 (by 2 and \vee) 4b. $I \models Q$ (by 2 and \vee)

We have two cases below 4a:

5a.
$$I \not\models \neg P$$
 (by 3 and \land) 5b. $I \not\models Q$ (by 3 and \land) 6a. $I \models P$ (by 5a and \neg)

We have (the same) two cases below 4b:

7a.
$$I \not\models \neg P$$
 (by 3 and \land) 7b. $I \not\models Q$ (by 3 and \land) 8a. $I \models P$ (by 5a and \neg) 8b. \bot (by 4b and 7b)

There is a non-contradictory branch. Hence the formula (a) is not valid.

(a) Let's assume that $(P \to Q) \to (\neg Q \to \neg P)$ is not valid.

1.
$$I \not\models (P \to Q) \to (\neg Q \to \neg P)$$
 (assumption)

2.
$$I \models P \rightarrow Q$$
 (by 1 and \rightarrow)

3.
$$I \not\models \neg Q \to \neg P$$
 (by 1 and \to)

4.
$$I \models \neg Q$$
 (by 3 and \rightarrow)

5.
$$I \not\models \neg P$$
 (by 3 and \rightarrow)

6.
$$I \models P$$
 (by 5 and \neg)

7.
$$I \not\models Q$$
 (by 4 and \neg)

We have two cases:

8a.
$$I \not\models P$$
 (by 2 and \rightarrow) 8b. $I \models Q$ (by 4 and \rightarrow)
9a. $I \models \bot$ (by 6 and 8a) 9b. \bot (by 7 and 8b)

All branches are contradictory. Hence the formula (b) is valid.

Question 4 (Normal form, 4pts). Compute the NNF and the CNF of $\neg (P \land \neg (Q \lor \neg R))$.

Solution. NNF:

$$\neg (P \land \neg (Q \lor \neg R))$$
 (given)
$$\neg P \lor \neg \neg (Q \lor \neg R)$$
 (De Morgan law)
$$\neg P \lor (Q \lor \neg R)$$
 (remove double negation)

The CNF is $\neg P \lor Q \lor \neg R$.

Question 5 (Semantic trees and DPLL, 12pts). Consider the clause set

$$N = \{P \lor Q, \ \neg P \lor Q, \ \neg Q \lor R \lor P, \ \neg R, \ \neg P \lor R\} \ .$$

- (1) Compute a closed semantic tree for N.
- (2) Compute simplify $(N, \neg R)$.
- (3) Is there a clause $C \in N$ such that $N \setminus \{C\}$ is unsatisfiable? If so, which one?

Solution. (1) Let the clauses in N be numbered as follows:

$$P \vee Q$$
 (1)

$$\neg P \lor Q$$
 (2)

$$\neg Q \lor R \lor P \tag{3}$$

$$\neg R$$
 (4)

$$\neg P \lor R$$
 (5)

Closed semantic tree for N:

(2)

1. Remove all clauses from N that contain $\neg R$:

$$N' = \{ P \lor Q, \neg P \lor Q, \neg Q \lor R \lor P, \neg P \lor R \}$$

2. Delete R from all remaining clauses N':

$$N'' = \{ P \lor Q, \ \neg P \lor Q, \ \neg Q \lor P, \ \neg P \}$$

That is, $simplify(N, \neg R) = N''$

(3) Yes, $N \setminus \{\neg P \lor Q\}$ is unsatisfiable. This is demonstrated by the following closed semantic tree for $N \setminus \{\neg P \lor Q\}$:

Question 6 (Resolution calculus, 8 pts). Consider the clause set

$$N = \{P \lor Q \lor Q, \neg P \lor Q, \neg Q \lor R \lor P, \neg R \lor \neg R, \neg P \lor R\}$$

Find a resolution refutation of N.

Solution.

1.	$P \lor Q \lor Q$	(given)
2.	$\neg P \lor Q$	(given)
3.	$\neg Q \vee R \vee P$	(given)
4.	$\neg R \vee \neg R$	(given)
5.	$\neg P \lor R$	(given)
6.	$P \vee Q$	(Fact. 1)
7.	$Q \vee Q$	(Res. 6 into 2)
8.	Q	(Fact. 7)
9.	$R \vee P$	(Res. 8 into 3)
10.	$R \vee R$	(Res. $9 into 5$)
11.	R	(Fact. 10)
12.	$\neg R$	(Res. 11 into 4)
13.		(Res. 11 into 12)