第十三讲

脑与认知科学

脑与认知加工: 脑机接口及应用

授课人: 祁婷 副研究员

北京邮电大学 | 脑认知与智能医学系

脑与认知科学

本章关键知识点

- 1、脑机接口的分类与组成
- 2、常见的EEG-BCI范式

- A 脑机接口概述
- B 脑机接口组成与分类
- C 脑机接口范式: BCI-EEG范式
- D 其他BCI

脑与认知科学

人类智能活动的本质: 信息处理过程

认知科学:从感觉的输入到复杂问题的求解,从人类个体到人类社会的智能活动,以及人类智能和机器智能的本质。

人脑是如何进行信息处理

机器是如何进行信息处理

"脑"与"机" 在信息处理中的共同语言

脑与认知科学

脑机接口 (Brain Machine Interface)

诞生于20世纪70年代,初衷是实现意念控制。UCLA的Jacques Vidal教授开展了相关研究,并首先使用了Brain Computer Interface一词。

TOWARD DIRECT BRAIN-COMPUTER COMMUNICATION 175

脑-计算机接口的图形轮廓和电极间关联图 (1975)

Direct communication pathway between a brain and an external device

脑机接口 (Brain Machine/Computer Interface)

"脑控"与"控脑"

利用大脑的观测和刺激反馈手段,绕 开人的肢体动作、喉部发音等肌肉系统,建立从**人脑到外部设备的直接信 息通道**

通过观测大脑判读大脑意图,通 过外部设备实现其目的

人机融合,使外部设备和人 脑形成一个有机整体 以物理、心理、药物等手段**调控大脑 认知状态**,甚至实现**外部向大脑直接**信息信息传递

直接对皮层进行电刺激或使用药物,大脑增强认知或减弱认知的效果

使用大脑语言,直接向脑的不同功能系统输入信息

脑机接口 (Brain Machine/Computer Interface)

"脑控"与"控脑"

- A 脑机接口概述
- B 脑机接口组成与分类
- C 脑机接口范式: BCI-EEG范式
- D 其他BCI

完整的BCI系统,包括三部分:

- 基于生物反馈的脑状态调制 脑
- 基于机器学习的脑神经代谢时空模式分类 接口
- 将神经信号时空模式映射为外部控制命令或完成信息编码 机

脑: 提供生物信号输入

机:不仅单纯指独立的外部机械设备,还包括完成人类指令的计算机本身。

- 辅助表达机构
- 行动拓展机构
- 认知增强系统

机:不仅单纯指独立的外部机械设备,还包括完成人类指令的计算机本身。

- 辅助表达机构
 - 虚拟键盘
 - 选择与移动光标
 - 语音辅助

虚拟键盘与语音辅助

P300与虚拟键盘

语音辅助

脑与认知科学

Publication Videos - BrainGate

机:不仅单纯指独立的外部机械设备,还包括完成人类指令的计算机本身。

- 行动拓展机构
 - 人工骨骼
 - 脑控轮椅
 - 机械臂与机械手

人工骨骼与具身智能的机械手

2016 Nature 苏黎世联邦理工 猴子与人工骨骼

BCI Award 2024

机:不仅单纯指独立的外部机械设备,还包括完成人类指令的计算机本身。

- 认知增强系统
 - 信息判读与情报侦查
 - 虚拟现实、增强现实
 - 情绪控制

- 脑信号处理与模式识别
- 脑机通信方式与控制策略
- 平台建设异步方式
 - 傅播凌箫璐设
 - 軟激的编建设式
 - 刺激的呈现方式

接口:信号传输、特征提取、模式识别与控制命令等信息处理

时频域算法: 傅里叶变换、小波分析、自适

应回归等

空域算法: 主成分分析、独立成分分析、

型相关分析等

常见的模式识别算法:线性判别分析、支持

向量机额、神经网络等

脑与认知科学

根据对脑皮层的损伤程度分类:

- 有损 (invasive) BCI: 植入电极的有损方法,如微电极 (ME),多电极阵列 (MEA),皮层脑电 (ECOG)
- 无损 (noninvasive) BCI: 如EEG、MEG, fMRI等

侵入方式越甚,信号信噪比越高,时空分辨率越高,损伤也越严重。

脑机接口的分类与组成

• 主动式

- 反应式
- 被动式

Non-invasive

主动式:

- 输出的控制信号反映大脑的随意性活动,不依赖于外部事件
- 用户主动产生特定的脑电信号以控制设备
- 如运动想象

主动式BCI

反应式:

- 由外界刺激引发大脑活动,反应式BCI再根据大脑做出的 反映产生输出
- 如P300注意范式,视觉诱发电位 (VEP)

反应式BCI

被动式:

- 不以控制为目的,在人机交互过程中计算机提供大脑的 稳定性状态,从而利于计算机及时做出调整,实现人性 化的交互
- 如检测用户的注意力状态、情绪变化等

被动式BCI

- A 脑机接口概述
- B 脑机接口组成与分类
- C 脑机接口范式: BCI-EEG范式
- D 其他BCI

基于EEG的BCI研究

无损脑机接口

- I. 不会对被试产生伤害,且EEG具有便携性
- II. 相对于侵入性的BCI等,可以采集更大区域的皮层信号,全

脑信息采集成本低

III. 但受限于空间分辨率

用于BCI的EEG电信号

(一) 诱发电位 (ERPs, event-related potentials) 和稳态诱发电位 (SSEP, steady-state evoked potentials): 是大脑在接受到刺激时产生的脑电信号,刺激可以是声音刺激,图像刺激,视频刺激,电刺激等,如稳态视觉诱发电位。

P300 speller的提出

1988年,Farwell 和 Donchin首次提出P300 speller的概念。

- 呈现包含36个符号的6x6矩阵
- 行列随机闪烁
- 注意力集中在特定符号上
- · 所需符号闪烁时,出现P300响应

P300 speller-认知神经原理视觉Oddball范式

Oddball范式刺激类型:

- 标准刺激(standard stimuli:大概率刺激,O)
- 偏差刺激(deviant stimuli:小概率刺激,X)

P300 speller-认知神经原理视觉Oddball范式

Oddball范式刺激类型:

- 标准刺激(standard stimuli:大概率刺激,O)
- 偏差刺激 (deviant stimuli: 小概率刺激, X)
- · 小概率刺激诱发的更大的P300刺激, Pz处最大, 广泛分布于后顶叶

P300 speller示例

- (a) 6x6 P300矩阵显示界面
- (b) 矩阵中36个符号在电极Pz处的平均波形

目标字母:最大的P300响应

非目标符号: P300响应较小

脑与认知科学

P300的特点与关键问题

A. 提高分类准确率

· 刺激间时间间隔 (ISI) 和矩阵大小对分类精准度的影响

Sellers, 2006

- 3x3矩阵和较快ISI取得较高的分类精度™
- 6x6矩阵条件比3x3矩阵条件下的P300响应振幅更大
- 矩阵大小和 ISI 是为个人用户优化BCI时需考虑的重要变量

P300的特点与关键问题

B. 通道数对分类准确率的影响

- 19个并不会比6个更优
- 采用传统的与P300响应有关的电极位置 (Pz, Fz, Cz) 以外的电极位置 能提供有价值的信息

P300的识别算法

目标:判断P300存在与否?

• 2分类问题

• 常用的方法: 皮尔森相关系数; Fisher线性分类器; LDA

SSVEP BCI的提出

稳态视觉诱发电位: SSVEP, steady-state visual evoked potential

SSVEP BCI: 1996年,提出,将SSVEP作为控制信号,设计了一个单目标(频率13.25Hz)在线控制系统。

SSVEP BCI的基本原理

- 当视网膜接收到 3.5Hz 至 75Hz 的视觉刺激,大脑会产生和视觉刺激相同频率或倍数频率的电活动
- V1中产生
- 可用于视觉注意和工作记忆等认知评估

SSVEP BCI的特点与算法

SSVEP-BCI的常用频率范围主要分为 低频 (<15HZ)

- 在15Hz相应最大
- 具有谐波响应特点:在目标刺激频率的基频(13HZ)、二倍谐频, 直到六倍频都可以观察到有效的 SSVEP响应

与P300相比,目标可以同时显著呈现而不 要按照顺序呈现,不存在P300的静息时间。

SSVEP BCI的特点与算法

• SSVEP 识别常用的算法:典型相关分析 (CCA)

- ▶ 测试样本 "X" 和正余弦信号 "Y,"
- CCA通过寻找权重向量 W_x 和 W_{Yf},
 使得x=X^TW_x 和 y=Y^T W_{Yf} 之间的相关
 性最大:

$$\max_{W_X,W_{Y_i}} \rho(x,y) = \frac{E[W_X^TXY_f^TW_{Y_f}]}{\sqrt{E[W_X^TXX^TW_X]E[W_{Y_i}^TY_fY_f^TW_{Y_f}]}}$$

四一以丸叶子

用于BCI的EEG电信号

(二) 内源节律信号

脑电波EEG是一些自发的、有节律性的神经电活动,其频率 变动范围在每秒1-30次之间的,常可划分为四个波段:

- δ (1 3Hz)
- θ (4 7Hz)
- α (8 13Hz)
- β (14 30Hz)
- γ (30~80Hz)

用于BCI的EEG电信号

EEG rhythms	Frequency range (Hz)	Mental condition	Location and amplitude Frontal cortex, 20–200 μV	
Delta	0–4	Deep sleep, unconscious		
Theta	4-8	Deep relaxation, meditation	Parietal and temporal lobes, 100-150 μV	
Low alpha	8-10	Wakeful relaxation	Occipital lobe and parietal lobe, 20-100 µV	
High alpha	10-12	Self-awareness		
Low beta	12-18	Active thinking and decision making	Frontal lobe, 5–20 μV	
High beta	18-30	Engagement in mental activity		
Low gamma	30-50	Cognitive processing, self-control	Different sensory and non-sensory cortical	
High gamma	50-70 Cognitive tasks: memory, reading and speaking		networks, lower than 2 µV	

基于运动想象(MI, motor imagine)的BCI

MI是以感觉运动节律(Sensorimotor Rhythm, SMR)信号作为输入的BCI。SMR信号包括α、β节律,但主要是α节律。

mu 节律:感觉运动mu节律(8~12HZ),出现在运动感觉皮层,与人体躯体运动有着密切的关系

	频率(相似)	区域不同
α波	8~13Hz	枕叶
mu节律	8~13Hz	额叶的运动皮层

MI BCI的提出

- 1991年, Wolpaw将运动想象(MI)产生的脑电特征是作为BCI的输入,设计了MI BCI系统
- 首次应用使对光标的控制

运动想象BCI的神经科学基础

- 大脑不同的区域对应不同的心理活动
- 大脑的运动皮层则控制人 体不同部位的运动情况

运动想象BCI的神经科学基础

运动执行过程中,大脑运动皮层有大量神经元激活。研究表明,运动想象和运动执行有相似的大脑神经元活动。实际运动和想象运动的感觉运动节律模式存在的相似性。

运动想象BCI的信号处理与算法

信号采集 → 预处理 → 特征提取 → 分类识别 → 控制命令

→ 反馈

基于运动想象(MI)的BCI

- 1) 两条基准线: 矢状线; 冠状线
- 2) 左侧为奇数,右侧为偶数,数字越大越远离中心
- 3) 从前至后分别为额极区(FP)、额区(F)、中央区(C)、
- 顶区 (P)、枕区 (O);外侧为颞区 (T)

基于运动想象(MI)的BCI

原理: 大脑节律信号的增强和减弱与运动的准备、执行或者单纯的MI有关。运动想象的过程中, 大脑皮层会产生两种变化明显的节律信号, 对侧脑电节律能量会明显降低, 而同侧运动感觉的脑电节律能量增大。

自主运动与感觉运动皮层节律信号的关系:

- 右手指弯曲运动;
- C3-左侧区域先出现ERD

基于运动想象(MI)的BCI

- 想象左手运动:右侧C4通道在两个节律信号能量降低,左侧C3通道在两种节律信号能量增加
- 想象右手运动:左侧C3通道在两个节律信号能量降低,右侧C4通道在两种节律信号能量增加
- 对侧运动感觉区的脑电节律能量减少,而同侧运动感觉区的脑电节律能量增大,也就是ERD,ERS,是MI BCI的控制输入

运动想象BCI的应用: 康复

脑卒中康复现状:

- 基于神经康复理论:物理、作业法、功能电刺激、机器人
- 基于脑功能重建理论: 经颅磁刺激、电刺激、镜像等等

运动想象BCI的优缺点

优点:

• 无需外部刺激,完全依赖用户的意图进行控制

• 适用范围广泛,涵盖康复、辅助设备控制和娱乐等领域

提供了运动功能障碍患者的一种新的康复和控制途径

缺点:

• 需要较长时间的用户训练以获得稳定的控制信号

• 信号处理和分类技术复杂,容易受到噪声和伪影的影响

• 需要高效的计算资源以实现实时性和高精度

被动式BCI: 情绪BCI

一种无创脑机接口和被动式脑机接口。

情感脑机接口 (affective brain-computer interface, aBCI)

是一种对人的情绪进行识别或调控的脑机接口系统。

应用场景:

临床:情绪障碍评估和干预

(抑郁症、焦虑症等)

人机交互优化

情绪模型

情绪: 是人各种感觉、思想和行为综合的心理和生理状态, 是对外界刺激所产生的心理反应,以及附带的生理反应。

情绪至少由以下三种成份组成的:

- 有意识的心理体验过程
- 身体的变化作为情绪的表达形式
- 涉及对外界事物的评价

情绪BCI的原理

情感脑机接口 (affective brain-computer interface, aBCI) 是一种对人的情绪进行识别和(或)调控的脑机接口系统。

• 情绪识别模块

• 解码情绪信号:通过特征提取、模式识别等算法,识别情绪状态

• 情绪控制模块

• 通过神经调控技术,影响神经系统的活动模式,调节情绪

情绪BCI基本原理—情绪识别模块

情绪识别过程

情绪BCI的应用现状

情绪BCI的dataset

Table 10 Details of available dataset

References	Dataset	No of subjects	No. of chan- nels	Stimulus	Emotion states
Koelstra et al. (2012)	DEAP	32	32	Music videos	Valence, arousal, dominance, liking
Savran et al. (2006)	eNTERFACE'06	5	54	Images from IAPS	Calm, positive exciting, negative exciting
Duan et al. (2013)	SEED	15	62	Film clips	Positive, negative, neutral
Zheng et al. (2019)	SEED-IV	15	62	Film clips	Happy, sad, neutral, fear
Soleymani et al. (2012)	MANHOB-HCI tagging	27	32	Video clips	Valence and arousal rated with the self- assessment manikin
Alakus et al. (2020)	GAMEEMO	28	14	Computer games	Arousal-valence
Cattan et al. (2018)	EEG Alpha Waves dataset	20	16	Resting-state eyes open/closed experi- ment	Relaxation
Katsigiannis and Ramzan (2018)	DREAMER	25	14	Film clips	Rating 1-5 to valence, arousal, and domi- nance
Li et al. (2019)	RCLS	14	64	Native Chinese affective video system	Happy, sad, and neutral
Song et al. (2019)	MPED	23	62	Video clips	Joy, funny, anger, fear, disgust, sad and neutrality
Lan et al. (2020)	SAFE	6	5	Selected sounds from IADS	Pleasant, happy, frightened and angry
Miranda-Correa et al. (2021)	AMIGOS	40	14	Short and long videos	Arousal, valence, dominance, liking, familiarity and basic emotions
);			月凶-	5认知科字

情绪BCI的基本原理:情绪识别与调控技术困难

- 情绪脑机制:分布式网络,职能尚未明确定义
- 基于动物的情绪模型困难
- 神经科学对情绪产生的神经机理和神经回路了解甚少
- 情绪机理不明,调控策略的精准 性和特异性尚需进一步提高
- 临床个体性差异大,个体化调控 策略优于存在难点

- A 脑机接口概述
- B 脑机接口分类与组成
- C 脑机接口范式: BCI-EEG范式
- D 其他BCI

协同BCI

协同BCI (collaborative BCI, cBCI):

- 多人-多机的协同式脑机接口。
- 通过整合来自多个用户的信息来提高整体 BCI 性能

协同BCI的软硬件要求

- 多个脑电图记录系统需要独立并同时工作
- 需要接收和同步针对常见环境事件的多主体数据
- 多主体数据记录和数据处理程序必须(接近)实时执行

集中式范式

分布式范式

协同BCI的软硬件要求

集中式范式问题:

- 数据传输负载大、计算成本高
- 实用性受参与的硬件软件鲁棒性低的影响

分布式范式的问题:

• 子系统硬件的成本

集中式范式

分布式范式

混合式BCI (The hybrid BCI)

混合脑机接口 (BCI) 由两个BCI或至少一个BCI和另一个系统组成。

- 2010年,Gert Pfurtscheller 提出了混合范式BCI系统的概念
- 通过融合多种大脑特征信号编码用户的控制指令
- 扩大BCI系统的信源通道

混合式BCI (The hybrid BCI)

Gert Pfurtscheller et al., 2010

思考题

- 1、请解释脑机接口(BCI)的基本工作原理,并比较侵入式、半侵入式和非侵入式BCI的优缺点。
- 2、什么是运动想象?它如何用于BCI系统实现对外部设备的控制?
- 3、目前BCI技术面临哪些技术瓶颈?限制其大规模应用的主要因素是什么?

期末安排

期末作业安排

• 教学云平台发布期末作业,截止日期为12.26,过期按照未交处理。

后续课程安排:

https://docs.qq.com/sheet/DTGh1RVRVSG5idWdS?tab=BB08J2

