Vector fields, Curl and Divergence

Department of Mathematics IIT Guwahati

Definition: A vector field in \mathbb{R}^n is a function $F: \mathbb{R}^n \to \mathbb{R}^n$ that assigns to each $\mathbf{x} \in \mathbb{R}^n$ a vector $F(\mathbf{x})$. A vector field in \mathbb{R}^n with domain $U \subset \mathbb{R}^n$ is called a vector field on U.

Definition: A vector field in \mathbb{R}^n is a function $F: \mathbb{R}^n \to \mathbb{R}^n$ that assigns to each $\mathbf{x} \in \mathbb{R}^n$ a vector $F(\mathbf{x})$. A vector field in \mathbb{R}^n with domain $U \subset \mathbb{R}^n$ is called a vector field on U.

Geometrically, a vector field F on U is interpreted as attaching a vector to each point of U. Thus, there is a subtle difference between a vector field in \mathbb{R}^n and a function from \mathbb{R}^n to \mathbb{R}^n .

Definition: A vector field in \mathbb{R}^n is a function $F: \mathbb{R}^n \to \mathbb{R}^n$ that assigns to each $\mathbf{x} \in \mathbb{R}^n$ a vector $F(\mathbf{x})$. A vector field in \mathbb{R}^n with domain $U \subset \mathbb{R}^n$ is called a vector field on U.

Geometrically, a vector field F on U is interpreted as attaching a vector to each point of U. Thus, there is a subtle difference between a vector field in \mathbb{R}^n and a function from \mathbb{R}^n to \mathbb{R}^n .

When a function $F: \mathbb{R}^n \to \mathbb{R}^n$ is viewed as a vector field, for each \mathbf{x} the vector $F(\mathbf{x})$ is identified with the vector that starts at the point \mathbf{x} and points to $F(\mathbf{x})$, i.e., $F(\mathbf{x})$ is identified with the vector that is obtained by translating $F(\mathbf{x})$ to the point \mathbf{x} .

Definition: A vector field in \mathbb{R}^n is a function $F: \mathbb{R}^n \to \mathbb{R}^n$ that assigns to each $\mathbf{x} \in \mathbb{R}^n$ a vector $F(\mathbf{x})$. A vector field in \mathbb{R}^n with domain $U \subset \mathbb{R}^n$ is called a vector field on U.

Geometrically, a vector field F on U is interpreted as attaching a vector to each point of U. Thus, there is a subtle difference between a vector field in \mathbb{R}^n and a function from \mathbb{R}^n to \mathbb{R}^n .

When a function $F: \mathbb{R}^n \to \mathbb{R}^n$ is viewed as a vector field, for each \mathbf{x} the vector $F(\mathbf{x})$ is identified with the vector that starts at the point \mathbf{x} and points to $F(\mathbf{x})$, i.e., $F(\mathbf{x})$ is identified with the vector that is obtained by translating $F(\mathbf{x})$ to the point \mathbf{x} .

Thus every vector field on $U \subset \mathbb{R}^n$ is uniquely determined by a function from $U \to \mathbb{R}^n$.

Examples of vector fields

 The gravitational force field describes the force of attraction of the earth on a mass m and is given by

$$\mathbf{F} = -\frac{mMG}{r^3}\mathbf{r},$$

where $\mathbf{r} := (x, y, z)$ and $r := ||\mathbf{r}||$. The vector field F points to the centre of the earth.

Examples of vector fields

 The gravitational force field describes the force of attraction of the earth on a mass m and is given by

$$\mathbf{F} = -\frac{mMG}{r^3}\mathbf{r},$$

where $\mathbf{r} := (x, y, z)$ and $r := ||\mathbf{r}||$. The vector field F points to the centre of the earth.

• The vector field $F: \mathbb{R}^2 \to \mathbb{R}^2$ given by F(x,y) := (-y,x) is a rotational vector field in \mathbb{R}^2 which rotates a vector in the anti-clockwise direction by an angle $\pi/2$.

Examples of vector fields

 The gravitational force field describes the force of attraction of the earth on a mass m and is given by

$$\mathbf{F} = -\frac{mMG}{r^3}\mathbf{r},$$

where $\mathbf{r} := (x, y, z)$ and $r := ||\mathbf{r}||$. The vector field F points to the centre of the earth.

- The vector field $F: \mathbb{R}^2 \to \mathbb{R}^2$ given by F(x,y) := (-y,x) is a rotational vector field in \mathbb{R}^2 which rotates a vector in the anti-clockwise direction by an angle $\pi/2$.
- Let $\mathbf{x}:[0,1]\to\mathbb{R}^n$ be C^1 and $\Gamma:=\mathbf{x}([0,1])$. Then $F:\Gamma\subset\mathbb{R}^n\to\mathbb{R}^n$ given by $F(\mathbf{x}(t))=\mathbf{x}'(t)$ is a tangent vector field on Γ .

Figure: Examples of vector fields

Figure: Vector field representing Hurricane Katrina

A function $f: U \subset \mathbb{R}^n \to \mathbb{R}$ is called a scalar field on U as it assigns a number to each point in U.

A function $f: U \subset \mathbb{R}^n \to \mathbb{R}$ is called a scalar field on U as it assigns a number to each point in U.

The temperature of a metal rod that is heated at one end and cooled on another is described by a scalar field T(x, y, z). The flow of heat is described by a vector field. The energy or heat flux vector field is given by $\mathbf{J} := -\kappa \nabla T$, where $\kappa > 0$.

A function $f: U \subset \mathbb{R}^n \to \mathbb{R}$ is called a scalar field on U as it assigns a number to each point in U.

The temperature of a metal rod that is heated at one end and cooled on another is described by a scalar field T(x, y, z). The flow of heat is described by a vector field. The energy or heat flux vector field is given by $\mathbf{J} := -\kappa \nabla T$, where $\kappa > 0$.

• Let F be a vector field in \mathbb{R}^n . Then $F := (f_1, \ldots, f_n)$ for some scalar fields f_1, \ldots, f_n on \mathbb{R}^n . We say that F is a C^k vector field if f_1, \ldots, f_n are C^k functions.

A function $f: U \subset \mathbb{R}^n \to \mathbb{R}$ is called a scalar field on U as it assigns a number to each point in U.

The temperature of a metal rod that is heated at one end and cooled on another is described by a scalar field T(x, y, z). The flow of heat is described by a vector field. The energy or heat flux vector field is given by $\mathbf{J} := -\kappa \nabla T$, where $\kappa > 0$.

• Let F be a vector field in \mathbb{R}^n . Then $F := (f_1, \ldots, f_n)$ for some scalar fields f_1, \ldots, f_n on \mathbb{R}^n . We say that F is a C^k vector field if f_1, \ldots, f_n are C^k functions.

All vector fields are assumed to be C^1 unless otherwise noted.

Gradient vector fields

If $f: \mathbb{R}^n \to \mathbb{R}$ is a C^1 scalar field then $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ is a vector field in \mathbb{R}^n .

Gradient vector fields

If $f: \mathbb{R}^n \to \mathbb{R}$ is a C^1 scalar field then $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ is a vector field in \mathbb{R}^n .

A vector field F in Rⁿ is said to be a gradient vector field or a conservative vector field if there is a scalar field f: Rⁿ → R such that F = ∇f. In such a case, f is called a scalar potential of the vector field F.

Obviously not every vector field is a gradient vector field.

Gradient vector fields

If $f: \mathbb{R}^n \to \mathbb{R}$ is a C^1 scalar field then $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ is a vector field in \mathbb{R}^n .

A vector field F in Rⁿ is said to be a gradient vector field or a conservative vector field if there is a scalar field f: Rⁿ → R such that F = ∇f. In such a case, f is called a scalar potential of the vector field F.

Obviously not every vector field is a gradient vector field.

Example: The vector field F(x, y) := (y, -x) is not a gradient vector field. Indeed, if $F = \nabla f$ then $f_x = y$ and $f_y = -x$.

Consequently, $f_{xy} = 1$ and $f_{yx} = -1$. Hence F is NOT a C^1 vector field, which is a contradiction.

Definition: Let F be a vector field in \mathbb{R}^n . Then a C^1 curve $\mathbf{x}:[a,b]\to\mathbb{R}^n$ is said to be an integral curve for the vector field F if $F(\mathbf{x}(t))=\mathbf{x}'(t)$ for $t\in[a,b]$.

Definition: Let F be a vector field in \mathbb{R}^n . Then a C^1 curve $\mathbf{x}:[a,b]\to\mathbb{R}^n$ is said to be an integral curve for the vector field F if $F(\mathbf{x}(t))=\mathbf{x}'(t)$ for $t\in[a,b]$.

Obviously, F is a tangent (velocity) vector field on the integral curve. Thus integral curves provide a geometric picture of a vector field.

Definition: Let F be a vector field in \mathbb{R}^n . Then a C^1 curve $\mathbf{x}:[a,b]\to\mathbb{R}^n$ is said to be an integral curve for the vector field F if $F(\mathbf{x}(t))=\mathbf{x}'(t)$ for $t\in[a,b]$.

Obviously, *F* is a tangent (velocity) vector field on the integral curve. Thus integral curves provide a geometric picture of a vector field.

Integral curves are also called flow lines or streamlines.

Definition: Let F be a vector field in \mathbb{R}^n . Then a C^1 curve $\mathbf{x}:[a,b]\to\mathbb{R}^n$ is said to be an integral curve for the vector field F if $F(\mathbf{x}(t))=\mathbf{x}'(t)$ for $t\in[a,b]$.

Obviously, F is a tangent (velocity) vector field on the integral curve. Thus integral curves provide a geometric picture of a vector field.

Integral curves are also called flow lines or streamlines.

An integral curve may be viewed as a solution of a system of ODE. Indeed, for n = 3 and F = (P, Q, R), we have

$$x'(t) = P(x(t), y(t), z(t)),$$

 $y'(t) = Q(x(t), y(t), z(t)),$
 $z'(t) = R(x(t), y(t), z(t)).$

Example

Find integral curves for the vector field F(x, y) = (-y, x).

Example

Find integral curves for the vector field F(x, y) = (-y, x).

Note that $\mathbf{r}(t) = (\cos t, \sin t)$ is an integral curve for F. The other integral curves are also circles and are of the form

$$\gamma(t) := (r\cos(t-t_0), r\sin(t-t_0)).$$

This follows from the system of ODE x' = -y and y' = x which gives x'' + x = 0.

Definition: Let $F = (f_1, \ldots, f_n)$ be a vector field in \mathbb{R}^n . Then the divergence of F is a scalar field on \mathbb{R}^n given by

$$\operatorname{div} F = \partial_1 f_1 + \dots + \partial_n f_n = \frac{\partial f_1}{\partial x_1} + \dots + \frac{\partial f_n}{\partial x_n}.$$

Definition: Let $F = (f_1, ..., f_n)$ be a vector field in \mathbb{R}^n . Then the divergence of F is a scalar field on \mathbb{R}^n given by

$$\operatorname{div} F = \partial_1 f_1 + \dots + \partial_n f_n = \frac{\partial f_1}{\partial x_1} + \dots + \frac{\partial f_n}{\partial x_n}.$$

Define the del operator

$$\nabla := (\partial_1, \ldots, \partial_n) = (\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n}) = \mathbf{e}_1 \frac{\partial}{\partial x_1} + \cdots + \mathbf{e}_n \frac{\partial}{\partial x_n}.$$

Definition: Let $F = (f_1, \ldots, f_n)$ be a vector field in \mathbb{R}^n . Then the divergence of F is a scalar field on \mathbb{R}^n given by

$$\operatorname{div} F = \partial_1 f_1 + \dots + \partial_n f_n = \frac{\partial f_1}{\partial x_1} + \dots + \frac{\partial f_n}{\partial x_n}.$$

Define the del operator

$$\nabla := (\partial_1, \ldots, \partial_n) = (\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n}) = \mathbf{e}_1 \frac{\partial}{\partial x_1} + \cdots + \mathbf{e}_n \frac{\partial}{\partial x_n}.$$

Then applying ∇ to a scalar field $f: \mathbb{R}^n \to \mathbb{R}$ we obtain the gradient vector field

$$\nabla f = (\partial_1 f, \dots, \partial_n f).$$

Taking dot product of ∇ with a vector field $F = (f_1, \dots, f_n)$ we obtain the divergence

$$\nabla \bullet F = \partial_1 f_1 + \cdots + \partial_n f_n = \operatorname{div} F.$$

Taking dot product of ∇ with a vector field $F = (f_1, \dots, f_n)$ we obtain the divergence

$$\nabla \bullet F = \partial_1 f_1 + \cdots + \partial_n f_n = \operatorname{div} F.$$

Physical interpretation: If F represents velocity field of a gas (or fluid) then $\operatorname{div} F$ represents the rate of expansion per unit volume under the flow of the gas (or fluid).

Taking dot product of ∇ with a vector field $F = (f_1, \dots, f_n)$ we obtain the divergence

$$\nabla \bullet F = \partial_1 f_1 + \cdots + \partial_n f_n = \operatorname{div} F.$$

Physical interpretation: If F represents velocity field of a gas (or fluid) then $\operatorname{div} F$ represents the rate of expansion per unit volume under the flow of the gas (or fluid).

The divergence of $F = (x^2y, z, xyz)$ is given by

$$\operatorname{div} F = 2xy + 0 + xy = 3xy.$$

Examples

• The streamlines of the vector field F(x, y) := (x, y) are straight lines directed away from the origin.

Examples

• The streamlines of the vector field F(x, y) := (x, y) are straight lines directed away from the origin.

For fluid flow, this means the fluid is expanding as it moves out from the origin, so $\operatorname{div} F$ should be positive. Indeed, we have

$$div F = 2 > 0$$
.

Examples

• The streamlines of the vector field F(x, y) := (x, y) are straight lines directed away from the origin.

For fluid flow, this means the fluid is expanding as it moves out from the origin, so $\operatorname{div} F$ should be positive. Indeed, we have

$$div F = 2 > 0$$
.

• Next, consider the vector field F(x, y) := (x, -y). Then

$$\operatorname{div} F = 0$$

so that neither expansion nor compression takes place.

•
$$\mathbf{u} \perp (\mathbf{u} \times \mathbf{v})$$
 and $\mathbf{v} \perp (\mathbf{u} \times \mathbf{v})$.

- $\mathbf{u} \perp (\mathbf{u} \times \mathbf{v})$ and $\mathbf{v} \perp (\mathbf{u} \times \mathbf{v})$.
- $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$, where $0 \le \theta \le \pi$ is the angle between \mathbf{u} and \mathbf{v} .

- $\mathbf{u} \perp (\mathbf{u} \times \mathbf{v})$ and $\mathbf{v} \perp (\mathbf{u} \times \mathbf{v})$.
- $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$, where $0 \le \theta \le \pi$ is the angle between \mathbf{u} and \mathbf{v} .
- $det([\mathbf{u}, \mathbf{v}, \mathbf{u} \times \mathbf{v}]) \ge 0$, where $[\mathbf{u}, \mathbf{v}, \mathbf{u} \times \mathbf{v}]$ is the matrix whose columns are \mathbf{u}, \mathbf{v} and $\mathbf{u} \times \mathbf{v}$.

Cross product in \mathbb{R}^3

It is customary to denote the standard basis in $\ensuremath{\mathbb{R}}^3$ by

$$\mathbf{i} := (1,0,0), \ \mathbf{j} := (0,1,0) \ \text{and} \ \mathbf{k} := (0,0,1).$$

Cross product in \mathbb{R}^3

It is customary to denote the standard basis in $\ensuremath{\mathbb{R}}^3$ by

$$\mathbf{i} := (1,0,0), \ \mathbf{j} := (0,1,0) \ \text{and} \ \mathbf{k} := (0,0,1).$$

If
$$\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$$
 and $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$ then
$$\mathbf{u} \times \mathbf{v} = (u_2 v_3 - v_2 u_3) \mathbf{i} + (v_1 u_3 - u_1 v_3) \mathbf{j} + (u_1 v_2 - v_2 u_1) \mathbf{k}$$

$$= \det \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

the last equality is only symbolic.

Curl of vector fields in \mathbb{R}^3

The curl of a vector field $F = (f_1, f_2, f_3)$ in \mathbb{R}^3 is a vector field in \mathbb{R}^3 and is given by

$$\operatorname{curl} F = \nabla \times F = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_1 & \partial_2 & \partial_3 \\ f_1 & f_2 & f_3 \end{array} \right| = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_1 & f_2 & f_3 \end{array} \right|.$$

Curl of vector fields in \mathbb{R}^3

The curl of a vector field $F = (f_1, f_2, f_3)$ in \mathbb{R}^3 is a vector field in \mathbb{R}^3 and is given by

$$\operatorname{curl} F = \nabla \times F = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_1 & \partial_2 & \partial_3 \\ f_1 & f_2 & f_3 \end{array} \right| = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_1 & f_2 & f_3 \end{array} \right|.$$

Thus curl of F is obtained by taking cross product of the del operator $\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$ with $F = f_1\mathbf{i} + f_2\mathbf{j} + f_3\mathbf{k}$.

Curl of vector fields in \mathbb{R}^3

The curl of a vector field $F = (f_1, f_2, f_3)$ in \mathbb{R}^3 is a vector field in \mathbb{R}^3 and is given by

$$\operatorname{curl} F = \nabla \times F = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_1 & \partial_2 & \partial_3 \\ f_1 & f_2 & f_3 \end{array} \right| = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_1 & f_2 & f_3 \end{array} \right|.$$

Thus curl of F is obtained by taking cross product of the del operator $\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$ with $F = f_1\mathbf{i} + f_2\mathbf{j} + f_3\mathbf{k}$.

Curl of a vector field represents rotational motion when, for example, the vector field represents flow of a fluid.

A vector field F in \mathbb{R}^3 is called irrotational if $\operatorname{curl} F = 0$. This means, in the case of a fluid flow, that the flow is free from rotational motion, i.e, no whirlpool.

A vector field F in \mathbb{R}^3 is called irrotational if $\operatorname{curl} F = 0$. This means, in the case of a fluid flow, that the flow is free from rotational motion, i.e, no whirlpool.

Fact: If f be a C^2 scalar field in \mathbb{R}^3 . Then ∇f is an irrotational vector field, i.e., $\operatorname{curl}(\nabla f) = 0$.

A vector field F in \mathbb{R}^3 is called irrotational if $\operatorname{curl} F = 0$. This means, in the case of a fluid flow, that the flow is free from rotational motion, i.e, no whirlpool.

Fact: If f be a C^2 scalar field in \mathbb{R}^3 . Then ∇f is an irrotational vector field, i.e., $\operatorname{curl}(\nabla f) = 0$.

Proof: We have
$$\operatorname{curl}(\nabla f) = \nabla \times \nabla f = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_x & f_y & f_z \end{vmatrix} = 0$$

because of the equality of mixed partial derivatives.

A vector field F in \mathbb{R}^3 is called irrotational if $\operatorname{curl} F = 0$. This means, in the case of a fluid flow, that the flow is free from rotational motion, i.e, no whirlpool.

Fact: If f be a C^2 scalar field in \mathbb{R}^3 . Then ∇f is an irrotational vector field, i.e., $\operatorname{curl}(\nabla f) = 0$.

Proof: We have
$$\operatorname{curl}(\nabla f) = \nabla \times \nabla f = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_x & f_y & f_z \end{vmatrix} = 0$$

because of the equality of mixed partial derivatives.

Observation: If $\operatorname{curl} F \neq 0$ then F is not a conservative (gradient) vector field.

Examples

• Let
$$F(x, y, z) := (xy, -\sin z, 1)$$
. Then $\operatorname{curl} F = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xy & -\sin z & 1 \end{vmatrix} = (\cos z, 0, -x).$

Examples

• Let
$$F(x, y, z) := (xy, -\sin z, 1)$$
. Then $\operatorname{curl} F = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xy & -\sin z & 1 \end{vmatrix} = (\cos z, 0, -x).$

• Let F(x, y, z) := (y, -x, 0). Then curl F = (0, 0, -2) and so F is not a conservative vector field.

Examples

• Let $F(x, y, z) := (xy, -\sin z, 1)$. Then $\operatorname{curl} F = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xy & -\sin z & 1 \end{vmatrix} = (\cos z, 0, -x).$

- Let F(x, y, z) := (y, -x, 0). Then $\operatorname{curl} F = (0, 0, -2)$ and so F is not a conservative vector field.
- Let $F(x, y, z) := (y\mathbf{i} x\mathbf{j})/(x^2 + y^2)$. Then $\mathrm{curl} F = 0$ and hence F is irrotational. However, F is NOT a conservative vector field, that is, $F \neq \nabla f$ for some scalar potential f.

Scalar curl

Let F = (P, Q) be a vector field in \mathbb{R}^2 . Then identifying \mathbb{R}^2 with the x-y plane in \mathbb{R}^3 , F can be identified with the vector field $F = P\mathbf{i} + Q\mathbf{j}$ in \mathbb{R}^3 . Then we have

$$\operatorname{curl} F = (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})\mathbf{k}.$$

Scalar curl

Let F = (P, Q) be a vector field in \mathbb{R}^2 . Then identifying \mathbb{R}^2 with the x-y plane in \mathbb{R}^3 , F can be identified with the vector field $F = P\mathbf{i} + Q\mathbf{j}$ in \mathbb{R}^3 . Then we have

$$\operatorname{curl} F = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathbf{k}.$$

The scalar field $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$ is called the scalar curl of the vector field F = (P, Q).

Scalar curl

Let F = (P, Q) be a vector field in \mathbb{R}^2 . Then identifying \mathbb{R}^2 with the x-y plane in \mathbb{R}^3 , F can be identified with the vector field $F = P\mathbf{i} + Q\mathbf{j}$ in \mathbb{R}^3 . Then we have

$$\operatorname{curl} F = (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) \mathbf{k}.$$

The scalar field $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$ is called the scalar curl of the vector field F = (P, Q).

The scalar curl of $F(x, y) := (-y^2, x)$ is given by

$$\partial_x(x) - \partial_y(-y^2) = 1 + 2y.$$

Divergence of curl

Fact: Let F be a C^2 vector field in \mathbb{R}^3 . Then

$$\operatorname{div}(\operatorname{curl} F) = \nabla \bullet \nabla \times F = 0.$$

Divergence of curl

Fact: Let F be a C^2 vector field in \mathbb{R}^3 . Then

$$\operatorname{div}(\operatorname{curl} F) = \nabla \bullet \nabla \times F = 0.$$

Proof: Since

$$\operatorname{curl} F = (\partial_y f_3 - \partial_z f_2) \mathbf{i} + (\partial_x f_3 - \partial_z f_1) \mathbf{j} + (\partial_x f_2 - \partial_y f_1) \mathbf{k},$$

 $\operatorname{div}(\operatorname{curl} F) = 0$ because the mixed partial derivatives are equal.

Divergence of curl

Fact: Let F be a C^2 vector field in \mathbb{R}^3 . Then

$$\operatorname{div}(\operatorname{curl} F) = \nabla \bullet \nabla \times F = 0.$$

Proof: Since

$$\operatorname{curl} F = (\partial_y f_3 - \partial_z f_2) \mathbf{i} + (\partial_x f_3 - \partial_z f_1) \mathbf{j} + (\partial_x f_2 - \partial_y f_1) \mathbf{k},$$

 $\operatorname{div}(\operatorname{curl} F) = 0$ because the mixed partial derivatives are equal.

A vector field F in \mathbb{R}^3 is said to have vector potential if there exists a vector field G in \mathbb{R}^3 such that F = curl G.

Observation: If F has a vector potential then $\operatorname{div}(F) = 0$.

Laplace operator

Example: If F(x, y, z) := (x, y, z) then $\operatorname{div} F = 3 \neq 0$ so F does not have a vector potential.

Laplace operator

Example: If F(x, y, z) := (x, y, z) then $\operatorname{div} F = 3 \neq 0$ so F does not have a vector potential.

Laplace operator ∇^2 : Let f be a C^2 scalar field in \mathbb{R}^n . Then

$$\nabla^2 f := \nabla \bullet \nabla f = \operatorname{div}(\nabla f) = \partial_1^2 f + \dots + \partial_n^2 f$$

defines the Laplace operator ∇^2 on f.

Laplace operator

Example: If F(x, y, z) := (x, y, z) then $\operatorname{div} F = 3 \neq 0$ so F does not have a vector potential.

Laplace operator ∇^2 : Let f be a C^2 scalar field in \mathbb{R}^n . Then

$$\nabla^2 f := \nabla \bullet \nabla f = \operatorname{div}(\nabla f) = \partial_1^2 f + \dots + \partial_n^2 f$$

defines the Laplace operator ∇^2 on f.

For a C^2 function $u:\mathbb{R}^3 \to \mathbb{R}$ the partial differential equation

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

is called Laplace equation.

Let F be a C^2 vector field in \mathbb{R}^3 and $u: \mathbb{R}^3 \to \mathbb{R}$ be a C^2 scalar field. Then

Let F be a C^2 vector field in \mathbb{R}^3 and $u: \mathbb{R}^3 \to \mathbb{R}$ be a C^2 scalar field. Then

• $\operatorname{div} F = \nabla \bullet F$ and $\operatorname{curl} F = \nabla \times F$,

Let F be a C^2 vector field in \mathbb{R}^3 and $u: \mathbb{R}^3 \to \mathbb{R}$ be a C^2 scalar field. Then

- $\operatorname{div} F = \nabla \bullet F$ and $\operatorname{curl} F = \nabla \times F$,
- $\operatorname{div}(\nabla u) = \nabla^2 u$ and $\operatorname{curl}(\nabla u) = \nabla \times \nabla u = 0$,

Let F be a C^2 vector field in \mathbb{R}^3 and $u: \mathbb{R}^3 \to \mathbb{R}$ be a C^2 scalar field. Then

- $\operatorname{div} F = \nabla \bullet F$ and $\operatorname{curl} F = \nabla \times F$,
- $\operatorname{div}(\nabla u) = \nabla^2 u$ and $\operatorname{curl}(\nabla u) = \nabla \times \nabla u = 0$,
- $\operatorname{div}(\operatorname{curl} F) = \nabla \bullet \nabla \times F = 0.$

*** End ***

