

Nicht-entzündliche Myopathien

Dr. med. Katja Göhner, Klinik für Rheumatologie, USZ

Nicht entzündliche Myopathien

Lernziele

Am Ende der Vorlesung Teil 1 und 2 sollten Sie Folgendes können:

Entzündliche Myopathien (Myositiden) und einige der Differentialdiagnosen

- Definition und Aetiologie beschreiben
- Anamnese durchführen, typische Symptome benennen
- klinische Untersuchung durchführen, typische Befunde benennen und erkennen
- Abklärungen aufführen und typischen Befunde erklären
- bei einem Patienten anhand von Anamnese, klinischer Untersuchung und weiteren Abklärungsbefunden das Krankheitsbild diagnostizieren und erläutern und Therapieoptionen benennen

Differenzialdiagnose Myopathien

Inflammatorisch	Primäre Myositiden, sekundär bei Kollagenosen, Vaskulitiden, Rheumatoider Arthritis, Sarkoidose
Medikamentös-toxisch	Statine, Antimalarika, Ciclosporin, Colchicin, L-Tryptophan, Omeprazol, Finasterid, Isotretinoin, Alkohol, Drogen, Prednison
Paraneoplastisch	Solide Tumoren, hämatologische Neoplasien, Lambert-Eaton-Syndrom
Infektiös	Viren (Influenza, Coxsackie, Echo, HIV) Bakterien (Staph. aureus, Streptokokken, Clostridien, Borrelien, Treponemen) Parasiten (Toxoplasmose, Trichinellose, Zystizerkose)
Endokrin	Hypo-/Hyperthyreoidismus, Hypercortisolismus, Hyperparathyreoidis-mus, M. Addison, Akromegalie, Vitamin D-Mangel
Elektrolyte	Kalium, Phosphat, Calcium, Magnesium
Überbeanspruchung	(Leistungs-)Sportler
Trauma	Muskelzerrung, Muskelfaserriss, Kompartment-Syndrom
Metabolisch	Glykogen-, Lipid-, Purinstoffwechsel, mitochondriale Zytopathie
Proteinstoffwechsel	Muskeldystrophien
Neuropathogen	Spinale Muskelatrophie, amyotrophe Lateralsklerose, Myasthenia gravis, Guillain-Barré-Syndrom, CIDP

Fall 1 - 25-jähriger Schreiner

Anamnese:

- Schleichender Beginn, retrospektiv vor ca. 3 Jahren
 - Eingeschränkt bei der Arbeit

Klinik:

- Schultergürtelschwäche (asymmetrisch)
 - M. serratus anterior (Scapula alata)
 - M.Biceps, M. pect. major
 - rel. Aussparen des Deltoideus
- Gesichtsmuskulatur
 - Schwäche beim Lidschluss, Pfeifen

Labor: CK 600U/I, Myoglobin,

LDH 3x ULN, GOT, GPT 2x ULN

Was vermuten Sie? Wie weiter?

Entzündliche und nicht-entzündliche Myopathien: Zwei Fälle

25jähriger Schreiner

Seit 3 Jahren

Zunehmende asymmetrische Schwäche Schultergürtel und Gesichtsmuskulatur

CK 600U/I

Keine Antikörper

25jährige Studentin

Seit 8 Wochen

Deutlich zunehmende Muskelschmerzen

Und symmetrische Muskelschwäche

- Probleme den Kopf zu halten
- Vom Stuhl aufzustehen Beckengürtel
- Die Arme Überkopf zu halten -Schultergürtel

Muskelenzym

CK von 8000U/I

Positive Antikörper

Entzündliche und nicht entzündliche Myopathie Anamnese

Nicht entzündliche Myopathie

Muskuläre Symptome

- Oft über Jahre
- Asymmetrische Muskelschwäche proximal und distal
- Augen-/Gesichtsmuskulatur
- Krämpfe, Faszikulationen
- Dysphagie, Dysarthrie, Dysphonie

Myositis

Muskuläre Symptome

- Subakuter Beginn, selten akut
- Symmetrische Muskelschwäche meist proximal
- Schmerzen

Dysphagie, Dysphonie, Dysarthrie

Entzündliche und nicht entzündliche Myopathie Anamnese

Nicht entzündliche Myopathie

Extramuskuläre Symptome

- Kardiopulmonale Symptome
 - Palpitationen, Dyspnoe, trockener Husten
- GI-Symptome
 - Dysphagie, Abdominalschmerzen

Myositis

Extramuskuläre Symptome

- Allgemeinsymptome
 - Fatigue, Gewichtsverlust,
 Nachtschweiss B-Symptome
- Kardiopulmonale Symptome
 - Palpitationen, Dyspnoe, trockener Husten
- GI-Symptome
 - Dysphagie,
 Abdominalschmerzen
- Kollagenosentypische Symptome
 - Haut, Gelenke, Gefässe

Klinische Untersuchung

Muskulatur

- Inspektion
 - Atrophie, Hypertrophie
 - Umfangmessung, Vergleich mit älteren Photos, Kleidergrösse
 - Augen-/Gesichtsmuskulatur
 - Asymmetrie

Neurologische Untersuchung

- Tonusänderung
- Faszikulationen
- abgeschwächte, gesteigerte Reflexe
- Motorische Schwäche, Sensibilitätsstörung

Kardiopulmonale Untersuchung

Haut

Zwei Fälle

25jähriger Schreiner

Seit 3 Jahren

Zunehmende Schwäche Schultergürtel und Gesichtsmuskulatur

Nichts zusätzlich

CK 600U/I

Keine Antikörper

25jährige Studentin

Seit 8 Wochen

Symmetrische Muskelschwäche, CK 8000U/I

UND

Hautausschlag

Einblutungen

Rasselgeräusche und Entfaltungsknistern

^{Bil}Viele Zusätzliche Symptome^{nikatlas}

Kraftgrade nach BMRC BMRC (British Medical research Concil)

- 0/5: Plegie keine Bewegung möglich
- 1/5: sichtbare +/- tastbare Kontraktion ohne Bewegung
- 2/5: Bewegung unter <u>Ausschaltung</u> der Schwerkraft möglich
- 3/5: Bewegung gegen die Schwerkraft knapp möglich
- 4/5: Bewegung gegen leichten Widerstand
- 5/5: Normale Kraft

Laborabklärungen Kreatinkinase

CK Erhöhungen – Verdacht auf Muskelerkrankung oder

«Laborente»

- Referenzwerte (Körpergrösse/-gewicht/-oberfläche, Geschlecht, Eth
- Makro-CK (an Immunglobulin gebundene CK)
- Idiopathische HyperCKämie

Physiologisch

Körperliche Anstrengung, Berufstätigkeit, Sport

latrogen

i.m.-Injektionen, OP, EMG, Muskelbiopsie

Anamnese – Klinische Untersuchung - Labor

Anamnese

- seit 3 Jahren langsam progredient
- ohne B-Symptomatik
- ohne Haut Gelenke Lunge Herz

Klinische Untersuchung

- asymmetrische Schwäche im Schultergürtel
- Gesichtsmuskelschwäche

Laboranalyse

- leichte CK erhöhung
- keine Antikörper

Fall 1 - 25-jähriger Schreiner

EMG

unspezifische myopatische Veränderungen

Muskelbiopsie

 endomysial gelegene entzündliche Infiltrate und MHC 1 Aufregulation, De-/Regenerierende Fasern, Variabilität i.d. Fasergrösse und Kernzentralisierung

CAVE: Histologe - Risiko der Verwechslung mit einer Myositis

Molekulargenetische Testung

Deletion D4Z4 auf Chromosom 4

(in 95% spezifische Verkürzung der Repeat Sequenzen D4Z4 - Führt zu einer defekten Proteinproduktion – Apoptose induzierend)

Fazio-skapulo-humerale Dystrophie (FSHD)

Defekt im Muskelprotein

Muskeldystrophien

Muskuläre Dysfunktion aufgrund **genetischer Proteindefekte**Historisch eingeteilt in klinische Manifestationsformen

3.häufigste:

Fazioscapulo-humerale Dystrophie

2. LD

dritthäufigste Muskeldystrophie mit 1:20 000

autosomal dominant – 50% Spontanmutationen

(Bild Lancet 2002)

Muskeldystrophie – Fazio-scapulohumerale Dystrophie (FSHD)

Wichtig

3.häufigste Muskeldystrophie, 1:20 000, in jedem LA

Definition: Fortschreitende Muskelschwäche Gesichts-/ Schulter- und Extremitätenmuskulatur

Diagnosestellung: molekulargenetische Testung

Pathogenese: Deletion D4Z4 Chromosom 4 - Proteindefekt –

Skelettmuskeldestruktion

Klinik: Muskelschwäche

Gesichtsmuskulatur - Pfeiffen, Scapula alata, Handgelenksextensions- Schwäche, später Abdominalmuskulatur und distale Beinmuskulatur.

Therapie: Symptomatisch

Metabolische Myopathien

Defekte im muskulären Stoffwechsel

Glykogenstoffwechsel

- Kurze, hochintensive Belastung m. maximalem Kraftaufwand
- Second wind-Phänomen

v. a. anaerobe Belastung

Mitochondriale Zytopathie

 Ausdauersport mit leichter Intensität

Lipidstoffwechsel

- Ausdauersport mit leichter bis mittlerer Intensität
- Fasten
- Infekte
- Kälte

Metabolische Myopathien

Ein 20jähriger Patient

über Jahre

- zunehmend Mühe beim Treppensteigen
- manchmal Muskelkrämpfe
- und Anstrengungsdyspnoe

25jährige Studentin

Seit 8 Wochen

Deutlich zunehmende Muskelschmerzen

Und symmetrische Muskelschwäche proximal

- Vom Stuhl aufzustehen/Treppen steigen Beckengürtel
- Die Arme Überkopf zu halten -Schultergürtel

Labor: CK ca. 800U/I

CK von 8000U/I

Positive Antikörper

Glykogenspeicherkrankheiten

Enzymdefekte in der Kohlenhydratverbrennung der Muskeln - Energieversorgung fehlt

Wichtig

Glykogenspeicherkrankheiten (GSD)

Laktattest

- Venöse Blutentnahme vor und nach Muskelkontraktion.
- Ammoniak- und Laktat-messung im Blut
- Kontraktion aktiviert anaerobe Glykogenolyse
 - Ammoniak und Laktatanstieg
- bleibt bei GSD der Laktatanstieg aus

(Bild Schüller Nervenarzt 2013, Hamstrings verfettet)

Glykogenspeicherkrankheiten

MRI: oft selektives Muster von Atrophie und Verfettung

Muskelbiopsie:

- Vakuolen in denen Glykogen abgelagert ist
- PAS (periodic acid Schiff: Reagons zur Antlatung) positives Glykogenmaterial (Glykogen wird angelact)

(Bild Schüller Norvenact 2013, Hamsbings verleibetVorgerd)

Glykogenspeicherkrankheiten

GSD II – M. Pompe

- Trockenbluttest möglich
 - ❖ Trockenbluttest: Restaktivität des Enzyms saure alpha Glucosidase bestimmend die direkte Bestätigung mittels molekulargenetischer Untersuchung aus derselben Probe möglich.
- * Enzymersatztherapie (Infusion 20mg alpha Glucosidase/kg KG alle 2 Wo)

Glykogenspeicherkrankheiten (GSD)

GSD II - M. Pompe – late onset in der 2. LD

Definition: Speicherkrankheit, autosomal rezessiv, 1:40 000

Pathogenese: Gendefekt – Mangel/Fehlen des Enzyms Alpha-Glucosidase – Umwandlung von Glykogen zu Glucose blockiert

Klinik: langsam progrediente Paresen proximal und axial plus Zwerchfellschwäche mit resp. Insuffizienz

Diagnostik: Trockenbluttest

Therapie: Enzymersatztherapie vorhanden

Metabolische Myopathien - Lipidmyopathien

29jährige Juristin

- Seit ca. 6 Monaten neu Ausdauersport
- nach Ausdauer-Training über Tage heftige Muskelschmerzen, Muskelschwäche, brauner Urin
- Dazwischen im Alltag völlig normal funktionsfähig

Klinik:

- Muskulatur und Kraft unauffällig
- Reflexstatus normal

25jährige Studentin

Seit 8 Wochen

Deutlich zunehmende Muskelschmerzen

Und symmetrische Muskelschwäche proximal

- Vom Stuhl aufzustehen/Treppen steigen -Beckengürtel
- Die Arme Überkopf zu halten -Schultergürtel

Labor:

 CK im Intervall normal, nach Belastung bis 10000U/l CK von 8000U/I

Positive Antikörper

Rhabdomyolyse

Eine Rhabdomyolyse ist ein ausgeprägter Zerfall von Skelettmuskulatur mit Freisetzung von Muskelzellbestandteilen in die Zirkulation.

Ursachen beispielsweise ein Muskeltrauma, Langstreckenlauf, Schübe o.g. Erkrankungen

Diagnose: Trias von

Muskelschmerzen,

massiv erh
 öhter Kreatinkinase (10-25000 U/I, u.U. 100 000) und

rötlich brauner Urin aufgrund von Nachweis Myoglobin

Risiko: Nierenversagen

Therapie: Trigger sistieren, Flüssigkeitsgaben, Überwachung Elektrolyte, Niere

Störung Fettstoffwechsel – Schlüsselenergiequelle für Ausdauerbelastung

Der Transport langkettiger Fettsäuren in die Mitchondrien und damit ihr Abbau ist nicht mehr/vermindert möglich durch Defekte Transportenzyme

defektes Carnitin-Carrier System

Diagnostik:

Labor: CK, Acylcarnitin im Blut

Molekulargenetik:

Carnitin-Palmitoyl-Transferase CPT II Mangel (am häufigsten vorkommender Defekt –Erstmanifestation im Erwachsenenalter möglich)

die langkettigen Acylcarnitine akkumulieren – und sind im Labor messbar

LipidmyopathienCarnitin-Palmitoyl-Transferase CPT II Mangel

Auslöser:

- Ausdauerbelastung beim Sport,
- Hungerzustände, Fieber Infekte
- Medikamente (z.B. Valproat, Diazepam, Ibuprofen)
- Nach Auslöser transiente Klinik:
 - über Tage heftige Muskelschmerzen, Muskelschwäche +/brauner Urin
 - Im Intervall ohne Auslöser in der Regel symptomfrei

Diagnostik:

Muskelbiopsie:

intrazytoplasmatische Ansammlung von Lipidtropfen vorwiegend in Typ I Muskelfasern (Ölrot/Sudanschwarzfärbung)

Permanent beim primären Carnitinmangel, beim CPT II Mangel u.U. nur vorübergehend

(Bild ex Vorgard 2013)

Therapie:

CPT II Mangel

- Lebensstilanpassung
- Kohlenhydrathaltige fettarme Ernährung mit häufigeren kleineren Mahlzeiten bei Belastungen

L-Carnitin bei primärem Carnitinmangel

(Bild ex Vorgard 2013)

Prüfung

Definition: Myopathie durch Störungen im Fettsäuremetabolismus, autosomal rezessiv, Prävalenz offen

Pathogenese: Störung im Carnitin-Zyklus, Transportenzymdefekt langkettiger Fettsäuren

Klinik und Labor:

- Myalgien +/- Schwäche, Krämpfe und Kreatinkinaseanstieg nach Ausdauerbelastung/Hungerzustand/Fieber
- Im Intervall symptomfrei

Diagnose:

Molekulargenetik: CPT II Mangel

Therapie:

 Anpassung Lebensstil, kohlenhydrathaltige fettarme Ernährung mit häufigeren kleineren Mahlzeiten

Metabolische Myopathien

Mitochondriale Myopathien

Defekte der mitochondrialen Atmungskette

Mitochondrien - Schlüsselrolle - Energieproduktion

greift die verschiedensten Gewebe an daher - Multisystembeteiligung hohe phänotypische Variabilität

(Bild Vorgard 2013)

Myopathien - Differentialdiagnosen - Myositiden

- Muskeldystrophie Proteinstoffwechselstörung
- M. Pompe Glykogenabbaustörung
- CPT-II Mangel Lipidabbaustörung
- Mitochondriopathie

Differentialdiagnostisch zu Muskelbeschwerden und Myositis zu bedenken

25jährige Patientin

- subaktuer Beginn symmetrische Muskelschwäche proximal betont Mit Hautveränderungen und Lungenparenchymveränderungen CK 6000U/I und Antikörper positiv
- Dermatomyositis Teil 2 der Vorlesung
- Immunmodulatorische Therapie erst Kortikosteroide, dann Basistherapie

Hypothyreose

- Bis zu 79% einer symptomatischen Hypothyreose haben muskuloskeletale Beschwerden
- Bei 38% objektivierbare proximal betonte Parese
- Rhabdomyolysen kommen vor
- CK kann normal aber auch deutlich erh
 öht sein.

Deutsche Leitlinien für Diagnostik und Therapie Neurologie Myalgien 2020

Steroidmyopathie

Steroidlangzeiteinnahme in höheren Dosen bei beispielsweise einer

Polymyositis – Dermatomyositis

Risiko einer

Steroidmyopathie als Komplikation der Therapie zusätzlich zur Myositis

Oft schwierig in der Differentialdiagnose

Steroidmyopathie

Pathogenese:

Katabole enzymvermittelte Destruktion von Muskelproteinen und direkte Apoptoseinduktion von Muskelzellen sowie antianabole Effekte auf Synthese von Muskelproteinen/-zellen

Klinik:

Proximale Muskelschwäche – M. quadriceps femoris – oft prominenter Muskelschwund, sichtbare Atrophien

Endokrine Myopathien Steroidmyopathie

Labor: normale Kreatinkinase

EMG: normal oder myopathisches Muster

Biopsie: Kaliberschwankungen der Fasern mit Faseratrophie Typ-II-

Fasern

MRI: Muskelverfettung/Atrophie

Therapie: Nach Absetzen und entsprechendem Training kann der Muskel sich erholen.

*

Steroidmyopathie

Steroidlangzeiteinnahme höherer Dosen – Steroidmyopathie DD bei Auftreten unter Therapie einer Polymyositis

Pathogenese: Destruktion und Hemmung Synthese Muskelproteine

Klinik: Proximale Muskelschwäche – M. quadriceps femoris – oft prominenter Muskelschwund, sichtbare Atrophien

Labor: normale Kreatinkinase

EMG: normal oder myopathisches Muster

Biopsie: Kaliberschwankungen der Fasern mit Faseratrophie Typ-II-

Fasern

MRI: Muskelverfettung/Atrophie

Therapie: Absetzen der Steroide

32-jährige Frau

Anamnese

- Aus dem Sudan
- Seit 5 J. in der Schweiz
- Zunehmend invalidisierende belastungsabhängige Myalgien
 - der proximalen Extremitätenmuskulatur und der lumbalen Muskulatur

Befunde

- Muskulatur symmetrisch, nicht atroph
- Kraft Schultergürtel-/Glutealmuskulatur M4
- Labor
 - Bland: BB, Na, K, Ca, Kreatinin, CK, GOT, GPT, AP, TSH, BZ, CRP

32-jährige Frau

25-Hydroxy-Vitamin D 4 μg/l (therapeutischer Bereich 35-60 μg/l)

Bei chronischem Mangelzustand:

- Knochenschmerzen, Muskelschwäche
- Risiko der Osteomalazie

Differenzialdiagnose Myopathien

	Inflammatorisch	Primäre Myositiden, sekundär bei Kollagenosen, Vaskulitiden, Rheumatoider Arthritis, Sarkoidose
	Medikamentös-toxisch	Statine, Antimalarika, Ciclosporin, Colchicin, L-Tryptophan, Omeprazol, Finasterid, Isotretinoin, Alkohol, Drogen, Prednison
	Paraneoplastisch	Solide Tumoren, hämatologische Neoplasien, Lambert-Eaton-Syndrom
	Infektiös	Viren (Influenza, Coxsackie, Echo, HIV) Bakterien (Staph. aureus, Streptokokken, Clostridien, Borrelien, Treponemen) Parasiten (Toxoplasmose, Trichinellose, Zystizerkose)
>	Endokrin	Hypo-/Hyperthyreoidismus, Hypercortisolismus, Hyperparathyreoidismus, M. Addison, Akromegalie, Vitamin D-Mangel
	Elektrolyte	Kalium, Phosphat, Calcium, Magnesium
	Überbeanspruchung	(Leistungs-)Sportler
	Trauma	Muskelzerrung, Muskelfaserriss, Kompartment-Syndrom
	Metabolisch	Glykogen-, Lipid-, Purinstoffwechsel, mitochondriale Zytopathie
>	Proteinstoffwechsel	Muskeldystrophien
	Neuropathogen	Spinale Muskelatrophie, amyotrophe Lateralsklerose, Myasthenia gravis, Guillain-Barré-Syndrom, CIDP

Literatur/Bilder

- Metabolische und mitochondriale Myopathien. M. Vorgerd & M. Deschauer Zeitschrift für Rheumatologie Vol 72, p.242-254 (2013)
- Myositis H. Chinoy unc R. G. Cooper Oxford University Press 2018
- Schüller, Nervenarzt Diagnose und Therapie des Late-Onset Morbus Pompe. 84:1467-1472

