Plan:

- Introduktion
 - Hvad er grådige algoritmer?
 - Opvarmning: Eksempel med veksling af mønter
- Aktivitetsudvælgelse (Activity selection)
- Datakompression og Huffmann-koder

Mikkel Abrahamsen

Problem: Givet beløb x, find minimum antal mønter hvis sum er x.

Find a_5, a_2, a_1 så $5a_5 + 2a_2 + a_1 = x$ og minimér $a_5 + a_2 + a_1$.

Grådig algoritme: Brug største mønt som er højst \boldsymbol{x} og fortsæt på samme måde med restbeløbet.

$$4 = 2 + 2$$

 $18 = 5 + 5 + 5 + 2 + 1$

Optimal delstruktur:

Optimal delstruktur:

Optimal delstruktur:

Greedy choice property: For ethvert beløb x vælger algoritmen en mønt som er med i en optimal løsning.

Optimal delstruktur:

Greedy choice property: For ethvert beløb x vælger algoritmen en mønt som er med i en optimal løsning.

Optimal delstruktur + greedy choice property \Rightarrow algoritmen finder en optimal løsning for alle beløb x

Optimal delstruktur + greedy choice property \Rightarrow algoritmen finder en optimal løsning for alle beløb x

Induktionsbevis over optimalt antal mønter m:

Basistilfælde: m = 0. Så x = 0. Trivielt.

Induktionshypotese (IH): Algoritmen virker hvis m mønter er nok.

Induktionsskridt: Lad x være beløb hvor optimal løsning bruger m+1 mønter.

Optimal delstruktur:

Greedy choice property: For ethvert beløb x vælger algoritmen en mønt som er med i en optimal løsning.

Optimal delstruktur + greedy choice property \Rightarrow algoritmen finder en optimal løsning for alle beløb x

Induktionsbevis over optimalt antal mønter m:

Basistilfælde: m = 0. Så x = 0. Trivielt.

Induktionshypotese (IH): Algoritmen virker hvis m mønter er nok.

Induktionsskridt: Lad x være beløb hvor optimal løsning bruger m+1 mønter.

Algoritmen

Optimal delstruktur:

Greedy choice property: For ethvert beløb x vælger algoritmen en mønt som er med i en optimal løsning.

Optimal løsning

Optimal delstruktur + greedy choice property \Rightarrow algoritmen finder en optimal løsning for alle beløb x

Induktionsbevis over optimalt antal mønter m:

Basistilfælde: m=0. Så x=0. Trivielt.

Induktionshypotese (IH): Algoritmen virker hvis m mønter er nok.

Induktionsskridt: Lad x være beløb hvor optimal løsning bruger m+1 mønter.

Algoritmen

Optimal løsning

Greedy choice property \Rightarrow (

Greedy choice property: For ethvert beløb x vælger algoritmen en mønt som er med i en optimal løsning.

Optimal delstruktur + greedy choice property \Rightarrow algoritmen finder en optimal løsning for alle beløb x

Induktionsbevis over optimalt antal mønter m:

Basistilfælde: m = 0. Så x = 0. Trivielt.

Induktionshypotese (IH): Algoritmen virker hvis m mønter er nok.

Induktionsskridt: Lad x være beløb hvor optimal løsning bruger m+1 mønter.

Algoritmen

Optimal løsning

Greedy choice property \Rightarrow y

Optimal delstruktur:

Opt. for x

Greedy choice property: For ethvert beløb x vælger algoritmen en mønt som er med i en optimal løsning.

Optimal delstruktur + greedy choice property \Rightarrow algoritmen finder en optimal løsning for alle beløb x

Induktionsbevis over optimalt antal mønter m:

Basistilfælde: m = 0. Så x = 0. Trivielt.

Induktionshypotese (IH): Algoritmen virker hvis m mønter er nok.

Induktionsskridt: Lad x være beløb hvor optimal løsning bruger m+1 mønter.

Optimal delstruktur:

Greedy choice property: For ethvert beløb x vælger algoritmen en mønt som er med i en optimal løsning.

Algoritmen

Optimal løsning

 $\mathsf{IH} \Rightarrow \mathsf{alg.}$ bruger m mønter på x-y og altså m+1 på x

Greedy choice property \Rightarrow

Optimal delstruktur $\Rightarrow m$ mønter er opt. for x-y

Greedy choice property

Beløb x.

Grådig algoritme Optimal løsning

Tilfælde 1: x = 1.

 $\widehat{1}$

 \bigcirc

Tilfælde 2: $2 \le x \le 4$. ① \odot

 \bigcirc

Tilfælde 3: $x \ge 5$.

 $(5) \cdots$

5 \odot eller 2 2 \odot eller

 $2 + 1 \odot$ eller $2 + 1 \odot$ eller

Optimal delstruktur + greedy choice property \Rightarrow algoritmen finder en optimal løsning for alle beløb x

Problem uden greedy choice property

x = 6: Grådig algoritme

Optimal løsning

Problem uden optimal delstruktur

Problem: Givet beløb x, find minimum antal mønter hvis sum er x, med højst én 5'er.

Find a_5,a_2,a_1 så $5a_5+2a_2+a_1=x$ og $a_5\leq 1$ og minimér $a_5+a_2+a_1$.

Eksempel: x = 11

Optimal løsning

Problem uden optimal delstruktur

Problem: Givet beløb x, find minimum antal mønter hvis sum er x, med højst én 5'er.

Find a_5,a_2,a_1 så $5a_5+2a_2+a_1=x$ og $a_5\leq 1$ og minimér $a_5+a_2+a_1.$

Eksempel: x = 11

Optimal løsning

Ikke optimal løsning til beløb x=6.

Problem uden optimal delstruktur

Problem: Givet beløb x, find minimum antal mønter hvis sum er x, med højst én 5'er.

Find a_5,a_2,a_1 så $5a_5+2a_2+a_1=x$ og $a_5\leq 1$ og minimér $a_5+a_2+a_1.$

Eksempel: x = 11

Optimal løsning

Ikke optimal løsning til beløb x=6.

Greedy choice property uden optimal delstruktur \Rightarrow algoritmen finder ugyldige løsninger.

Aktivitetsudvælgelse (Activity selection)

Aktivitetsudvælgelse (Activity selection)

Problem: Find maksimum antal ikke-overlappende aktiviteter.

Antag $f_1 \leq f_2 \leq \cdots \leq f_n$.

Optimal delstruktur

Optimal delstruktur

Dynamisk programmering:

Prøv alle n muligheder for a_k .

Løs S_k rekursivt.

Brug memoisering.

Resultat: n delproblemer S_k . Hvert tager O(n) tid. I alt $O(n^2)$ tid.

 a_3 kan udskiftes med a_1

 a_5 kan udskiftes med a_4

 a_3 kan udskiftes med a_1

 a_5 kan udskiftes med a_4

Grådigt valg: Efter a_k vælges den første aktivitet i S_k .

$$S_k = \{a_i \mid s_i \ge f_k\}$$

 $\Theta(n)$ tid.

Repræsentation af tekst

Tekst T består af bogstaver a, b, c, d, e, f. Hvordan repræsenterer viT?

a b c d e

ASCII 01100001 01100010 01100011 01100100 01100101 01100110

Tekst T består af bogstaver a, b, c, d, e, f. Hvordan repræsenterer vi T?

a b c d e f

ASCII 01100001 01100010 01100011 01100100 01100101 01100110

ASCII: badeabe = 01100010 01100001 01100100 01100101 01100001 01100010 01100101

Tekst T består af bogstaver a, b, c, d, e, f. Hvordan repræsenterer viT?

b d е a **ASCII** 01100010 01100011 01100100 01100101 01100001 01100110 3 bits 001 010 011 100 101 110

ASCII: badeabe = 01100010 01100001 01100100 01100101 01100001 01100010 01100101

Tekst T består af bogstaver a, b, c, d, e, f. Hvordan repræsenterer vi T?

b d a ASCII 01100001 01100010 01100011 01100100 01100101 01100110 3 bits 001 010 011 100 101 110

ASCII: badeabe = 01100010 01100001 01100100 01100101 01100001 01100010 01100101

3 bits: badeabe $= 010 \ 001 \ 100 \ 101 \ 001 \ 101$

Tekst T består af bogstaver a, b, c, d, e, f. Hvordan repræsenterer vi T?

b d a ASCII 01100001 01100010 01100011 01100100 01100101 01100110 3 bits 001 010 011 100 101 110

 ASCII : badeabe = 01100010 01100001 01100100 01100101 01100001 01100010 01100101

3 bits: badeabe = $010 \ 001 \ 100 \ 101 \ 001 \ 101$

Idé: Hvis nogle bogstaver er mere almindelige end andre i T, kan vi så lave en bedre kode som sparer bits?

	а	b	С	d	е	f
${\rm Frekvens}/10^3$	45	13	12	16	9	5
3 bits	001	010	011	100	101	110
Variabel længde	0	00	01	1	11	110

	а	b	С	d	е	f
${\rm Frekvens}/10^3$	45	13	12	16	9	5
3 bits	001	010	011	100	101	110
Variabel længde	0	00	01	1	11	110

Længde af tekst med 3 bit-koder:

$$(45+13+12+16+9+5) \cdot 1000 \cdot 3 = 300000.$$

Længde af tekst med koder af variable længde:

$$(45 \cdot 1 + 13 \cdot 2 + 12 \cdot 2 + 16 \cdot 1 + 9 \cdot 2 + 5 \cdot 3) \cdot 1000 = 144000.$$

	а	b	С	d	е	f
${\rm Frekvens}/10^3$	45	13	12	16	9	5
3 bits	001	010	011	100	101	110
Variabel længde	0	00	01	1	11	110

Længde af tekst med 3 bit-koder:

$$(45 + 13 + 12 + 16 + 9 + 5) \cdot 1000 \cdot 3 = 300000.$$

Længde af tekst med koder af variable længde:

$$(45 \cdot 1 + 13 \cdot 2 + 12 \cdot 2 + 16 \cdot 1 + 9 \cdot 2 + 5 \cdot 3) \cdot 1000 = 144000.$$

Hvad er problemet?

	a	b	С	d	е	f
${\sf Frekvens}/10^3$	45	13	12	16	9	5
3 bits	001	010	011	100	101	110
Variabel længde præfiksfri	0	101	100	111	1101	1100

	а	b	С	d	е	f
${\sf Frekvens}/10^3$	45	13	12	16	9	5
3 bits	001	010	011	100	101	110
Variabel længde præfiksfri	0	101	100	111	1101	1100

Længde af tekst med 3 bit-koder:

$$(45 + 13 + 12 + 16 + 9 + 5) \cdot 1000 \cdot 3 = 300000.$$

Længde af tekst med koder af variable længde:

$$(45 \cdot 1 + 13 \cdot 3 + 12 \cdot 3 + 16 \cdot 3 + 9 \cdot 4 + 5 \cdot 4) \cdot 1000 = 224000.$$

Parse tree

	а	b	С	d	е	f
${\sf Frekvens}/10^3$	45	13	12	16	9	5
3 bits	001	010	011	100	101	110
Variabel længde	0	101	100	111	1101	1100

præfiksfri

Præfiksfri ⇔ Alle symboler er i bladene.

Parse tree

a Frekvens $/10^3$ 3 bits Variabel længde

præfiksfri

Præfiksfri ⇔ Alle symboler er i bladene.

$$\#\mathsf{bits} = \sum_{c \in C} c.freq \cdot c.bits$$

Parse tree

a Frekvens $/10^3$ 3 bits Variabel længde

præfiksfri

Præfiksfri ⇔ Alle symboler er i bladene.

$$\#\mathsf{bits} = \sum_{c \in C} c.freq \cdot c.bits$$

$$B(T) = \sum_{c \in C} c.freq \cdot d_T(c)$$

a:45 d:16 b:13 c:12 e:9 f:5

a:45 d:16 b:13 c:12

a:45 d:16

a:45

a:45

55

30

e:9

14

d:16


```
HUFFMAN(C)

1 n = |C|
2 Q = C
3 for i = 1 to n - 1
4 allocate a new node z
5 x = \text{EXTRACT-MIN}(Q)
6 y = \text{EXTRACT-MIN}(Q)
7 z.left = x
8 z.right = y
9 z.freq = x.freq + y.freq
10 INSERT(Q, z)
11 return EXTRACT-MIN(Q)
```

Køretid i alt: $O(n \log n)$

```
100
                a:45
                                              55
                                       25
                                                    30
HUFFMAN(C)
3 for i = 1 to n - 1
                                  c:12
                                        |b:13|
                                                 14
                                                       d:16
                                                    e:9
```

```
allocate a new node z
x = \text{EXTRACT-MIN}(Q)
y = \text{EXTRACT-MIN}(Q)
z.left = x
z.right = y
z.freq = x.freq + y.freq
INSERT (Q, z)
                                       INSERT(Q,z)
                            11 return EXTRACT-MIN(Q)
```

 $1 \quad n = |C|$

Hvordan bliver parse tree?

$$f_c = c.freq$$

$$B(T) = \sum_{c \in C} f_c \cdot d_T(c)$$

$$f_c = c.freq$$

$$B(T) = \sum_{c \in C} f_c \cdot d_T(c)$$

$$f_c = c.freq$$

$$B(T) = \sum_{c \in C} f_c \cdot d_T(c)$$

$$f_c = c.freq$$

$$B(T) = \sum_{c \in C} f_c \cdot d_T(c)$$

$$B(T') = B(T) - f_a \cdot d_T(a) - f_x \cdot d_T(x) + f_a \cdot d_T(x) + f_x \cdot d_T(a)$$

$$f_c = c.freq$$

$$B(T) = \sum_{c \in C} f_c \cdot d_T(c)$$

$$B(T') = B(T) - f_a \cdot d_T(a) - f_x \cdot d_T(x) + f_a \cdot d_T(x) + f_x \cdot d_T(a)$$

= $B(T) + (f_x - f_a) \cdot (d_T(a) - d_T(x))$

$$f_c = c.freq$$

$$B(T) = \sum_{c \in C} f_c \cdot d_T(c)$$

$$B(T') = B(T) - f_a \cdot d_T(a) - f_x \cdot d_T(x) + f_a \cdot d_T(x) + f_x \cdot d_T(a)$$

$$= B(T) + (f_x - f_a) \cdot (d_T(a) - d_T(x)) \le B(T)$$

$$< 0 > 0$$

Induktion over n. Basis: n = 2, trivielt.

Antag at algoritmen giver optimalt parse tree når $\mid C \mid = n-1$ og betragt alfabet med størrelse n.

x,y: bogstaver med lavest frekvens.

T: optimalt parse tree hvor x og y er naboer.

$$B(T) = \sum_{c \in C} f_c \cdot d_T(c)$$

Induktion over n. Basis: n = 2, trivielt.

Antag at algoritmen giver optimalt parse tree når $\mid C \mid = n-1$ og betragt alfabet med størrelse n.

x,y: bogstaver med lavest frekvens.

T: optimalt parse tree hvor x og y er naboer.

Induktion over n. Basis: n = 2, trivielt.

Antag at algoritmen giver optimalt parse tree når $\mid C \mid = n-1$ og betragt alfabet med størrelse n.

x,y: bogstaver med lavest frekvens.

T: optimalt parse tree hvor x og y er naboer.

$$B(T) = \sum_{c \in C} f_c \cdot d_T(c)$$

$$B(H) = \ldots + (f_x + f_y) \cdot d_H(x)$$

$$B(H') = \ldots + (f_x + f_y) \cdot (d_H(x) - 1)$$

Induktion over n. Basis: n = 2, trivielt.

Antag at algoritmen giver optimalt parse tree når |C| = n - 1 og betragt alfabet med størrelse n.

x,y: bogstaver med lavest frekvens.

T: optimalt parse tree hvor x og y er naboer.

$$B(T) = \sum_{c \in C} f_c \cdot d_T(c)$$

$$x:f_x$$
 $y:f_y$

$$B(H) = \ldots + (f_x + f_y) \cdot d_H(x)$$

$$B(H') = \ldots + (f_x + f_y) \cdot (d_H(x) - 1)$$
 induktionshyp.

$$B(H) = B(H') + f_x + f_y \le B(T') + f_x + f_y = B(T)$$

$$B(T) \le B(H)$$

$$\Rightarrow B(T) = B(H)$$