

1.3.5 Drawing rectangle circle

1. Drawing rectangle

Rectangle(img, pt1, pt2, color, thickness=None, lineType=None, shift=None)

Parameter Description

- img: Canvas or carrier image.
- pt1, pt2: required parameters. Represents the vertices and diagonal vertices, that is the upper left corner and lower right corner of the rectangle.
- color: required parameters, be used to set color of rectangle.
- thickness: optional parameter, be used to set the width of the rectangle side, when the value is negative, it means to fill the rectangle.
- lineType: optional parameter, be used to set the type of line segment, 8 (8 adjacent connection line-default), 4 (4 adjacent connection line) and cv2.LINE_AA are anti-aliased.

2. Drawing circle

cv2.circle(img, center, radius, color[,thickness[,lineType]])

Parameter Description

- img: canvas or carrier image
- center: the coordinates of the center of the circle, the format: (50,50)
- radius: radius
- color: color
- Thickness: be used to set the width of the circle side, when the value is -1, it means to fill the circle.
- lineType: type of line segment. The default is 8, the connection type description is shown in the table below.

Parameter	Description
cv2.FILLED	fill
cv2.LINE_4	4 Connection Type
cv2.LINE_8	8 Connection Type
cv2.LINE_AA	Anti-aliasing, this parameter will
	make the line smoother

3. Draw ellipse

cv2.ellipse(img, center, axes, angle, StartAngle, endAngle, color[,thickness[,lineType]])

Parameter Description

- center: Center point of ellipse(x, x)
- axes: hort radius and long radius, (x, x)
- angle: the angle of counterclockwise rotation
- StartAngle: The angle of the starting angle of the arc
- endAngle: The angle of the end angle of the arc

• Img, color: canvas or carrier image and color.

The fifth parameter refers to the angle at which drawing starts counterclockwise, and the sixth parameter refers to the angle at which drawing ends counterclockwise # If the fourth or fifth parameters are added with symbols, the opposite direction is indicated, that is, the clockwise direction.

4. Draw polygon

cv2.polylines(img,[pts],isClosed, color[,thickness[,lineType]])

- pts: Vertex of polygon
- isClosed: Whether closed or not. (True/False)
- Other parameters refer to the parameters of drawing circle

Code path:

/home/pi/Yahboom_Project/1.OpenCV_course/03IP_Draw_text_line_segments/ 05_Drawing rectangle_circle.ipynb

```
import cv2
import numpy as np
newImageInfo = (500,500,3)
dst = np.zeros(newImageInfo,np.uint8)
#12 upper left corner 3 lower right corner 45 fill -1 >0 line w
cv2.rectangle(dst,(350,100),(400,270),(0,255,0),3)
#2 center 3 r
cv2.circle(dst,(250,250),(50),(255,0,0),2)
# 2 center 3 axis 4 angle 5 begin 6 end 7
cv2.ellipse(dst, (256,256), (150,100), 0, 0, 180, (0,255,255), -1)
points = np.array([[150,50], [140,140], [200,170], [250,250], [150,50]], np.int32)
#print(points.shape)
points = points.reshape((-1,1,2))
#print(points.shape)
cv2.polylines(dst,[points],True,(255,255,0))
# cv2.imshow('dst',dst)
    # cv2.waitKey(0)
import matplotlib.pyplot as plt
dst = cv2.cvtColor(dst, cv2.COLOR_BGR2RGB)
plt.imshow(dst)
plt.show()
```

After running the following program, a picture will be displayed in the jupyterLab control interface, as shown below.

