SISTEMAS OPERATIVOS

TRABAJO PRÁCTICO DE IMPLEMENTACION Nº 1

TPI-01-PP – PLANIFICACION DEL PROCESADOR

Objetivo:

Se trata de programar un sistema que simule distintas estrategias de planificación del procesador (dispatcher), y calcule un conjunto de indicadores que serán utilizados para discutir las ventajas y desventajas de cada estrategia.

Características del sistema a simular:

Asuma que se trata de un sistema multiprogramado y monoprocesador.

El simulador debe leer un archivo en el que cada registro tiene los siguientes datos:

- nombre del proceso
- tiempo de arribo
- cantidad de ráfagas de CPU a emplear para terminar
- duración de la ráfaga de CPU
- duración de la ráfaga de entrada-salida entre ráfagas de CPU
- prioridad externa

Completada la lectura del archivo aceptará una entrada por teclado que indicará la política de planificación a aplicar a la tanda. Como mínimo se deben permitir las siguientes opciones:

- a) FCFS (First Come First Served)
- b) Prioridad Externa
- c) Round-Robin
- d) SPN (Shortest Process Next)
- e) SRTN (Shortest Remaining Time Next)

Finalmente permitirá introducir los siguientes datos:

- Tiempo que utiliza el sistema operativo para aceptar los nuevos procesos (TIP)
- Tiempo que utiliza el sistema operativo para terminar los procesos (TFP)
- Tiempo de conmutación entre procesos (TCP)
- Quantum (si fuera necesario)

El simulador ejecutará la tanda hasta que se hayan completado la totalidad de los trabajos produciendo las siguientes salidas:

Un archivo en el que se indiquen todos los eventos que se producen en el sistema a lo largo de la simulación y el tiempo en el que ocurren los mismos. Ejemplos de eventos: arriba un trabajo, se incorpora un trabajo al sistema, se completa la ráfaga del proceso que se está ejecutando, se agota el quantum, termina una operación de entrada-salida, se atiende una interrupción de entrada-salida, termina un proceso.

Al finalizar la simulación imprimirá y mostrará por pantalla –como mínimo– los siguientes indicadores:

- a) Para cada proceso: Tiempo de Retorno, Tiempo de Retorno Normalizado, Tiempo en Estado de Listo
- b) Para la tanda de procesos: Tiempo de Retorno y Tiempo Medio de Retorno

Universidad Nacional de Tierra del Fuego

c) Para el uso de la CPU: Tiempos de CPU desocupada, CPU utilizada por el SO, CPU utilizada por los procesos (en tiempos absolutos y porcentuales)

Otras condiciones:

- Deberá probarlo con al menos cuatro tandas de trabajos que tengan características distintas cada una y comentar los resultados obtenidos con cada estrategia de planificación en función de las características de las tandas.
- Para resolverlo, utilice java. puede elegir cualquier lenguaje de programación que conozca.
- El trabajo es unipersonal.
- Además de probar el simulador en la Universidad, deberá presentar el ejecutable y el código fuente en soporte digital.
- El trabajo correctamente resuelto y presentado antes de rendir el parcial pertinente al tema, exime al alumno de rendir el/los punto/s del mismo que tengan que ver con planificación de procesos, otorgándosele en el examen el máximo puntaje previsto para esos puntos.

Acuerdos para su realización:

- a. Orden de procesamiento de eventos:
 - 1. Corriendo a Terminado.
 - 2. Corriendo a Bloqueado.
 - 3. Corriendo a Listo.
 - 4. Bloqueado a Listo.
 - 5. Nuevo a Listo.
 - 6. Finalmente el despacho de Listo a Corriendo.
- b. En Round Robin si tenemos un único proceso y su q termina, lo pasamos a listo y luego le volvemos a asignar la cpu (usamos un TCP).
 - Para despachar el primer proceso también usamos un TCP.
- c. Un proceso pasa de bloqueado a listo instantáneamente (aunque se esté ejecutando otro) y consume 0 unidades de tiempo (este tiempo lo consideramos dentro del TCP posterior).
- d. En RR al producirse el cambio de bloqueado a listo de un proceso mientras otro se estaba ejecutando no nos afecta y debemos terminar el tiempo de quantum.
- e. Las prioridades las definimos de 1 a 100 siendo los valores mas grandes de mayor prioridad.
- f. En Prioridades, y SRT debo expropiarle la CPU a un proceso si, apareció uno con mayor prioridad o con menor tiempo restante y por lo tanto guardo lo que me resta de la ráfaga del proceso que se estaba ejecutando para terminarla cuando le vuelva a tocar.
- g. La tanda de trabajos a procesar se cargará en un archivo que el simulador debe leer y será un txt donde cada línea (registro) define un proceso, y cada uno de los campos a saber, se separan por comas:

Campos:

- 1. Nombre del proceso.
- 2. Tiempo de arribo.
- 3. Ráfagas de CPU para completarse.
- 4. Duración de ráfagas de cpu.
- 5. Duración de rafagas de I/O.

Universidad Nacional de Tierra del Fuego

6. Prioridad.

h. Un proceso no computará estado de listo hasta que no haya cumplido su TIP (inicialmente no computa tiempo de listo).

i. Recordar:

- 1) Tiempo de Retorno de un proceso (TR_p): es desde que arriba el proceso hasta que termina (después de su TFP, incluyendo éste).
- 2) Tiempo de retorno normalizado (TR_n)= Es el tiempo de Retorno del proceso dividido el tiempo efectivo de CPU que utilizó.
- 3) Tiempo de retorno de la tanda (TR_t)= desde que arriba el primer proceso hasta que se realiza el último TFP (incluyendo el tiempo de éste).
- 4) Tiempo Medio de retorno de la tanda (**TMR**_t)= la suma de los tiempos de retorno de los procesos, dividido la cantidad de procesos.
- j. Las ráfagas de I/O pueden ejecutar en //.