Job No.:
 EHB 245
 Address:
 108 Calypso Road, Makarewa, New Zealand
 Date:
 23/08/2024

 Latitude:
 -46.326998
 Longitude:
 168.340891
 Elevation:
 25.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N5	Ground Snow Load	0.9 KPa	Roof Snow Load	0.63 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	3.7 m
Wind Region	NZ4	Terrain Category	2.04	Design Wind Speed	48.03 m/s
Wind Pressure	1.38 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	Very High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Gable Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 3.70 m Cpe = -0.9 pe = -1.09 KPa pnet = -1.09 KPa

For roof CP,e from 3.70 m To 7.40 m Cpe = -0.5 pe = -0.61 KPa pnet = -0.61 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 11 m Cpe = 0.7 pe = 0.87 KPa pnet = 1.29 KPa

For side wall CP,e from 0 m To 3.70 m Cpe = pe = -0.81 KPa pnet = -0.81 KPa

Maximum Upward pressure used in roof member Design = 1.09 KPa

Maximum Downward pressure used in roof member Design = 0.64 KPa

Maximum Wall pressure used in Design = 1.29 KPa

Maximum Racking pressure used in Design = 1.37 KPa

Design Summary

Purlin Design

Purlin Spacing = 900 mm Purlin Span = 4850 mm Try Purlin 250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward =0.64 S1 Downward =12.68 S1 Upward =20.70

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	0.89 Kn-m	Capacity	3.40 Kn-m	Passing Percentage	382.02 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	2.49 Kn-m	Capacity	4.53 Kn-m	Passing Percentage	181.93 %
$M_{0.9D\text{-W}nUp}$	-2.29 Kn-m	Capacity	-3.71 Kn-m	Passing Percentage	162.01 %
V1 35D	0.74 Kn	Capacity	12.06 Kn	Passing Percentage	1629.73 %

Second page

 $V_{1.2D+1.5L~1.2D+Sn~1.2D+WnDn}$ 2.05 Kn Capacity 16.08 Kn Passing Percentage 784.39 % $V_{0.9D-WnUp}$ -1.89 Kn Capacity -20.10 Kn Passing Percentage 1063.49 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 8.56 mm Deflection under Dead and Service Wind = 11.69 mm Limit by Woolcock et al, 1999 Span/240 = 20.00 mm Limit by Woolcock et al, 1999 Span/100 = 48.00 mm

Reactions

Maximum downward = 2.05 kn Maximum upward = -1.89 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design External

External Rafter Load Width = 2500 mm

External Rafter Span = 5653 mm

Try Rafter 300x45 LVL11

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.88

K8 Upward =0.88 S1 Downward =15.50 S1 Upward =15.50

Shear Capacity of timber = 5 MPa Bending Capacity of timber = 38 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	3.37 Kn-m	Capacity	10.84 Kn-m	Passing Percentage	321.66 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	9.39 Kn-m	Capacity	14.45 Kn-m	Passing Percentage	153.89 %
Mo.9D-WnUp	-8.64 Kn-m	Capacity	-18.07 Kn-m	Passing Percentage	209.14 %
$V_{1.35D}$	2.38 Kn	Capacity	21.71 Kn	Passing Percentage	912.18 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	6.64 Kn	Capacity	28.94 Kn	Passing Percentage	435.84 %
$V_{0.9 D\text{-W} n U p}$	-6.11 Kn	Capacity	-36.18 Kn	Passing Percentage	592.14 %

Deflections

Modulus of Elasticity = 9900 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 8.91 mm
Deflection under Dead and Service Wind = 12.18 mm

Limit by Woolcock et al, 1999 Span/240= 22.92 mm Limit by Woolcock et al, 1999 Span/100 = 55.00 mm

Reactions

Maximum downward = 6.64 kn Maximum upward = -6.11 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 45 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

 $V = phi \times k1 \times k4 \times k5 \times fs \times b \times ds \dots (Eq 4.12) = -37.80 \text{ kn} > -6.11 \text{ Kn}$

Single Shear Capacity under short term loads = -14.56 Kn > -6.11 Kn

Intermediate Design Front and Back

Intermediate Spacing = 2500 mm

Intermediate Span = 1549 mm

Try Intermediate 2x150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 9.63 S1 Upward = 0.40

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

MWind+Snow	0.97 Kn-m	Capacity	4.2 Kn-m	Passing Percentage	432.99 %
V _{0.9D-WnUp}	2.50 Kn	Capacity	-24.12 Kn	Passing Percentage	964.80 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 2.705 mm

Limit byWoolcock et al, 1999 Span/100 = 15.49 mm

Reactions

Maximum = 2.50 kn

Girt Design Front and Back

Girt's Spacing = 1300 mm

Girt's Span = 2500 mm

Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.86 S1 Downward = 9.63 S1 Upward = 16.05

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 Mwind+Snow
 1.31 Kn-m
 Capacity
 1.80 Kn-m
 Passing Percentage
 137.40 %

 V0.9D-WnUp
 2.10 Kn
 Capacity
 12.06 Kn
 Passing Percentage
 574.29 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 13.47 mm

Limit by Woolcock et al, 1999 Span/100 = 25.00 mm

Sag during installation = 2.37 mm

Reactions

Maximum = 2.10 kn

Girt Design Sides

Girt's Spacing = 1300 mm

Girt's Span = 2750 mm

Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.82 S1 Downward = 9.63 S1 Upward = 16.84

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mw $_{ind+Snow}$ 1.59 Kn-m Capacity 1.73 Kn-m Passing Percentage 108.81 % $V_{0.9D-WnUp}$ 2.31 Kn Capacity 12.06 Kn Passing Percentage 522.08 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 19.73 mm

Limit by Woolcock et al. 1999 Span/100 = 27.50 mm

Sag during installation = 3.47 mm

Reactions

Maximum = 2.31 kn

End Pole Design

Geometry For End Bay Pole

Geometry

175 SED H5 (Minimum 200 dia. at Floor Level) Dry Use Height 3500 mm

Area 27598 mm2 As 20698.2421875 mm2

Ix 60639381 mm4 Zx 646820 mm3 Iy 60639381 mm4 Zx 646820 mm3

Lateral Restraint mm c/c

Loads

Total Area over Pole = 13.75 m²

3.44 Kn Live 3.44 Kn Dead 8.80 Kn Wind Down Snow 8.66 Kn Moment Wind 5.85 Kn-m Moment snow 1.38 Kn-m Phi 0.74 0.8 K8

K1 snow	0.8	K1 Dead	0.6

K1 wind 1

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	292.42 Kn	PhiMnx Wind	13.82 Kn-m	PhiVnx Wind	49.01 Kn
PhiNcx Dead	175.45 Kn	PhiMnx Dead	8.29 Kn-m	PhiVnx Dead	29.41 Kn
PhiNcx Snow	233.93 Kn	PhiMnx Snow	11.06 Kn-m	PhiVnx Snow	39.21 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.48 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.24 < 1 OK$

Deflection at top under service lateral loads = 19.98 mm < 36.91 mm

L = 1350 mm Pile embedment length

f1 = 2775 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 13.75 m²

Moment Wind =	5.85 Kn-m	Moment Snow =	1.38 Kn-m
Shear Wind =	2.11 Kn	Shear Snow =	1.38 Kn

Pile Properties

Safety Factory 0.55

Hu = 5.31 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 8.76 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.67 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L = 1350 mm Pile embedment length

f1 = 2775 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 5.85 Kn-m Moment Snow = 1.38 Kn-m Shear Wind = 2.11 Kn Shear Snow = 1.38 Kn

Pile Properties

Safety Factory 0.55

Hu = 5.31 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 8.76 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.67 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m³

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1600) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1600)

Skin Friction = 20.68 Kn

Weight of Pile + Pile Skin Friction = 24.83 Kn

Uplift on one Pile = 23.79 Kn

Uplift is ok