pm-hw2

September 18, 2012

Contents

1	Properties of Nitromethane		
	1.1	Molecular Weight	1
	1.2	Center of Mass	2
	1.3	Moments of Inertia	2
	1.4	Bond Lengths	2
	1.5	Bond angle in the nitro group	3
	1.6	Generate an xyz file	3
	1.7	Create a graphic of Nitromethane	3
_	~-		
2	Cha	apter 2 of dft-book	4

1 Properties of Nitromethane

1.1 Molecular Weight

```
from ase.data.molecules import molecule
   from ase import Atoms, Atom
   from ase.io import write
5
    atoms1 = molecule('CH3N02')
    atoms2= Atoms([Atom('C'),Atom('H'),Atom('H'),Atom('H'),Atom('N'), Atom('O'), Atom('O')])
6
   masses1 = atoms1.get_masses()
9 masses2 =atoms2.get_masses()
10
    molecular_weight1 = masses1.sum()
    molecular_weight2 = masses2.sum()
11
12
  print 'The molecular weight of nitromehtane computed by ase is {0} gm/mol'.format(molecular_weight1)
    print 'The molecular weight of nitromethane computed by hand is {0} gm/mol'.format(molecular_weight2)
```

The molecular weight of nitromehtane computed by ase is 61.04032 gm/mol The molecular weight of nitromethane computed by hand is 61.04032 gm/mol

1.2 Center of Mass

```
from ase.structure import molecule
    from ase.io import write
    import numpy as np
    def fn_com(atoms):
5
6
        {\tt pos=\ atoms.positions}
        masses=atoms.get_masses()
7
        COM = np.array([0., 0.,0.])
8
9
10
        for m,p in zip(masses, pos):
            COM += m*p
11
        COM /=masses.sum()
12
        return COM
13
14
    atoms= molecule('CH3N02')
15
16
    COM1= fn_com(atoms)
17
18
    print 'COM1={0}'.format(COM1)
    print 'COM2={0}'.format(atoms.get_center_of_mass())
19
     COM1=[ 0.00619103  0.07988693
     COM2=[ 0.00619103  0.07988693  0.
```

1.3 Moments of Inertia

```
from ase.structure import molecule

atoms=molecule('CH3N02')

molecular_formula=atoms.get_chemical_symbols(reduce=True)

print 'The Moments of Inertia for {0} are {1}'.format(molecular_formula, atoms.get_moments_of_inertia())
```

The Moments of Inertia for CNH302 are [42.24164093 47.83785675 86.86751504]

1.4 Bond Lengths

```
from ase.structure import molecule
from ase.io import write

atoms= molecule('CH3N02')
print 'atom symbol'
print '-----'
for i,atom in enumerate(atoms):
print '{0} {1}'.format(i,atom.symbol)
```

```
s='The C-H bond lengths are {0:1.3f},{1:1.3f}, and {2:1.3f} Angstroms'
print s.format(atoms.get_distance(0,2),atoms.get_distance(0,3),atoms.get_distance(0,4))

atom symbol
-----
0 C
1 N
2 H
3 H
4 H
5 0
6 0
The C-H bond lengths are 1.090,1.087, and 1.087 Angstroms
```

1.5 Bond angle in the nitro group

```
from ase.structure import molecule
from numpy import pi

atoms= molecule('CH3N02')
print 'The O-N-O bond angle is {0:1.3F} degrees'.format(atoms.get_angle([5,4,6])*180/pi)
```

The O-N-O bond angle is 44.117 degrees

1.6 Generate an xyz file

```
from ase.io import read,write
from ase.data.molecules import molecule

atoms= molecule('CH3NO2')

write('CH3NO2.xyz', atoms)
```

1.7 Create a graphic of Nitromethane

```
from ase.structure import molecule
from ase.io import write
atoms= molecule('CH3NO2', cell=(10,11.5,12.1))

atoms.center()
write('CH3NO2.png',atoms,show_unit_cell=2)
```


2 Chapter 2 of dft-book

See attached.