Лекция 10

Представления алгебры $\mathfrak{su}(2)$

Определение 1. Представлением группы Ли G называется гладкий гомоморфизм $\rho \colon G \to GL(V)$.

Рассматривая образ любой кривой g(t) = E + tA + o(t) можно найти образ элемента $A \in \text{Lie}G$ как первый член в разложении $\rho(g(t)) = E + d\rho(A) + o(t)$. Это отображение $d\rho$ является линеаризацией отображения ρ , в локальных координатах оно задается матрицей которая является матрицей якобина ρ .

Линейность отображение $d\rho$ можно увидеть непосредственно, а именно

$$\rho(g(t)h(t)) = \rho(E + t(A + B) + o(t)) = E + d\rho(A + B)t + o(t),$$

$$\rho(g(t))\rho(h(t)) = (E + td\rho(A) + o(t))(E + td\rho(B) + o(t)) = E + (d\rho(A) + d\rho(B))t + o(t),$$

откуда $d\rho(A+B)=d\rho(A)+d\rho(B)$. Аналогично доказывается и $d\rho(\lambda A)=\lambda d\rho(A)$.

Мы использовали структуру группы на G для простоты изложения, линейность отображения $d\rho$ можно показать и без этого. Но сейчас мы покажем, что отображение $d\rho$ согласовано со структурой алгебры Ли на \mathfrak{g} . А именно, так как

$$\rho(h(s)g(t)h(s)^{-1}) = \rho(E + t(h(s)Ah(s)^{-1})) = E + d\rho \left(h(s)Ah(s)^{-1}\right)t + o(t),$$

$$\rho(h(s))\rho(g(t))\rho(h(s))^{-1} = \rho(h(s))(E + td\rho(A) + o(t))\rho(h(s))^{-1} =$$

$$= E + \rho(h(s))d\rho(A)\rho(h(s))^{-1}t + o(t),$$

то, из того, что ρ является гомоморфизмом групп следует, что

$$\rho(h(s))d\rho(A)\rho(h(s))^{-1} = d\rho\left(h(s)Ah(s)^{-1}\right),\,$$

откуда беря первый член по s получаем, что

$$[d\rho(B), d\rho(A)] = d\rho([B, A]).$$

То есть мы доказали следующий факт.

Предложение 1. Отображение $d\rho$ является гомоморфизмом алгебр Ли, т.е.

$$[d\rho(A), d\rho(B)] = d\rho([A, B]), \tag{1}$$

 $\forall A, B \in \mathfrak{g}.$

Определение 2. Представлением алгебры Ли $\mathfrak g$ называется гомоморфизм алгебр Ли $\xi \colon \mathfrak g \to \mathfrak{gl}(V).$

Предыдущее предложение доказывает, что по представлению группы Ли всегда строится представление алгебры Ли.

Одним из главных способов изучения представлений групп Ли, это сначала изучить представления соответствующей алгебры Ли, а уже потом пытаться их поднять (проинтегрировать) до представлений группы Ли.

Замечание. Операцию поъема можно объяснить при помощи экспоненциального отображения. А именно, для любого $A \in \mathfrak{g}$ есть кривая $g(\alpha) = \exp(\alpha A) \in G$, эти элементы удовлетворяют $g(\alpha + \beta) = g(\alpha)g(\beta)$. Тогда в представлении мы имеем, что

$$\rho(g(\alpha+\beta)) = \rho(g(\alpha))\rho(g(\beta)).$$

Дифференцируя это уравнение по β и подставляя $\beta=0$ получаем, что $\frac{d}{d\alpha}\rho(g(\alpha))=\rho(g(\alpha))d\rho A$. Это дифференциально уравнение имеет единственное решение с начальным условием $\rho(g(0))=E$, а именно $\rho(g(\alpha))=\exp(d\rho A)$. То есть мы показали, что

$$\rho(\exp(\alpha A)) = \exp(d\rho A).$$

Пример 1. Рассмотрим одномерную группу $SO(2) \simeq U(1)$. Ее алгебра Ли одномерна, порождена одним элементом J, с соотношением [J,J]=0. Чтобы найти n-метрное представление это алгебр Ли надо найти матрицу $n\times n$ с таким коммутатором, но это условие ничего не означает, любая матрица в коммутаторе с собой равна 0. Мы знаем, что с представлениями группы тут ситуация более тонкая, из того, что $\exp(2\pi J)=1$ следует дополнительное условие, заключающееся в том, что матрица iJ диагонализуема с целыми собственными числами.

Пример 2. Найдем теперь представления алгебры $\mathfrak{su}(2) \simeq \mathfrak{so}(3)$. Эта алгебра задается образующими J_1, J_2, J_3 с соотношениями $[J_a, J_b] = \epsilon_{abc}J_c$. Прежде чем строить общую теорию поищем маломерные представления.

У любой алгебр есть тривиальное одномерное представление, в котором все генераторы переходят в 0. У алгебры $\operatorname{Ли}\mathfrak{so}(3)$ других одномерных представлений нет, так как любой элемент является коммутатором, а в одномерном представлении все коммутаторы равны нулю.

Конечно представления большой размерности можно строить как прямые суммы уже имеющихся. Например, можно взять прямую сумму n тривиальных одномерных, в нем все генераторы переходят в нулевые матрицы размера $n \times n$. Это не очень интересно, далее мы будем искать неприводимые представления.

Мы знаем, что у алгебры $\mathfrak{so}(3) \simeq \mathfrak{su}(2)$ есть двумерное представление (где она задана матрицами $\frac{-\mathrm{i}}{2}\sigma_1, \frac{-\mathrm{i}}{2}\sigma_2, \frac{-\mathrm{i}}{2}\sigma_3$. Здесь σ матрицы Паули определяются по формулам

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
(2)

Также есть и трехмерное представление оно задано матрицами

$$J_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, J_{2} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, J_{3} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$
 (3)

Мы докажет, что для любого натурального числа n у алгебры Ли $\mathfrak{su}(2)$ существует единственное n-мерное неприводимое представление. Рассмотрим для этого дополнительные операторы действующие в представлении:

$$J^2 = -J_1^2 - J_2^2 - J_3^2$$
, $J_+ = J_1 + iJ_2$, $J_- = J_1 - iJ_2$

Отметим, что все представления у нас над комплексными числами поэтому мы можем рассматривать такие линейные комбинации. Выбор J_+, J_- похож на переход к комплексным координатам, как видно из следующего предложения полученные операторы являются собственными относительно коммутатора с J_3 . Оператор J^2 полезно сравнить с квадратом момента импульса.

Предложение 2. Операторы $J^2, J_+.J_-$ удовлетворяют соотношениями:

$$[iJ_3, J_+] = J_+, \quad [iJ_3, J_-] = -J_-, \quad [J_+, J_-] = -2iJ_3,$$

 $[J_a, J^2] = 0, \ a = 1, 2, 3;$

Доказательство. Проверим одно соотношение, остальные проверяются аналогично

$$[J_1, J^2] = [J_1, -J_2^2 - J_3^2] = -J_1 J_2 J_2 + J_2 J_1 J_2 - J_2 J_1 J_2 + J_2 J_2 J_1 - J_2 J_3 J_3 + J_3 J_1 J_3 - J_3 J_1 J_3 + J_3 J_3 J_1 = -[J_1, J_2] J_2 - J_2 [J_1, J_2] - [J_1, J_3] J_3 - J_3 [J_1, J_3] = -J_3 J_2 - J_2 J_3 - (-J_2) J_3 - J_3 (-J_2) = 0.$$

Оператор J^2 называется оператором Казимира. Из того, что он коммутирует со всемы генераторами алгебры следует, что он действует константой (постоянной матрицей) в любом конечномерном неприводимом представлении. В одномерном тривиальном представлении это J^2 конечно действует нулем, используя формулу (2) находим, что в двумерном представлении J^2 действует числом $\frac{3}{4}$, используя формулу(3) находим, что в трехмерном представлении J^2 действует числом 2.

¹На самом деле мы здесь воспользовались так называемой леммой Шура, которая гласит, что любой оператор A который коммутирует с операторами $\rho(g)$ в неприводимом представлении групп G является константой. Доказывается она так — рассматривается любой собственный вектор v оператора A с собственным значением λ , тогда вектора вида $\rho(g)v$ порождают все векторное пространство (из неприводимости), с другой стороны они будут все собственными для оператора A с собственным значением λ , откуда следует, что $A = \lambda$.

Пусть V — какое-то неприводимое представление алгебры $\mathfrak{so}(3)$. Так как операторы J^2 и iJ_3 коммутируют, то их можно одновременно диагонализовать. ² Обозначим через $v_{\lambda,m}$ базис из их собственных векторов:

$$J^2 v_{\lambda,m} = \lambda v_{\lambda,m}, \quad iJ_3 v_{\lambda,m} = m v_{\lambda,m}.$$

Предложение 3. $J_+v_{\lambda,m}$ является собственным для операторов J, J_3 с собственными значениями λ и m+1 соответственно, т.е. $J_+v_{\lambda,m}$ пропорционален $v_{\lambda,m+1}$. Аналогично $J_-v_{\lambda,m}$ пропорционален $v_{\lambda,m-1}$.

Доказательство. Используя выведенные выше соотношения имеем:

$$J^{2}(J_{+}v_{\lambda,m}) = J_{+}(J^{2}v_{\lambda,m}) = \lambda J_{+}v_{\lambda,m}$$
$$iJ_{3}(J_{+}v_{\lambda,m}) = J_{+}(iJ_{3}v_{\lambda,m}) + [iJ_{3}, J_{+}]v_{\lambda,m} = (m+1)J_{+}v_{\lambda,m}$$

Вычисления с J_{-} полностью аналогичны.

Таким образом начиная с одного собственного вектора $v_{\lambda,m}$ можно построить целую цепочку собственных векторов применяя J_+ и J_- . Так как V конечномерное, то в цепочке найдутся крайние вектора $J_+v_{\lambda,m_{max}}=0$ и $J_-v_{\lambda,m_{min}}=0$.

Вычислим теперь J^2 :

$$\begin{split} \lambda v_{\lambda,m_{max}} &= J^2 v_{\lambda,m_{max}} = (-J_3^2 - J_1^2 - J_2^2) v_{\lambda,m_{max}} = \left(-J_3^2 - \frac{J_+ J_- + J_- J_+}{2}\right) v_{\lambda,m_{max}} = \\ &= \left(-J_3^2 - \frac{2J_- J_+ + [J_+, J_-]}{2}\right) v_{\lambda,m_{max}} = \\ &= \left(-J_3^2 + iJ_3 - \frac{2J_- J_+}{2}\right) v_{\lambda,m_{max}} = (m_{max}^2 + m_{max}) v_{\lambda,m_{max}} = (m_{m$$

Аналогично $\lambda v_{\lambda,m_{min}}=J^2v_{\lambda,m_{min}}=(m_{min}^2-m_{min})v_{\lambda,m_{max}}$. Обозначим теперь $j=m_{max}$, тогда $\lambda=j^2+j$, и на m_{min} мы получаем квадратное уравнение с корням j+1 и -j. Первый корень не подходит, так как $m_{max}-m_{min}\in\mathbb{Z}_{\geq 0}$ так как один вектор получается из другого операторами J_- . Второй корень может подойти если $2j\in\mathbb{Z}_{>0}$. Эквивалентно $j\in\{0,\frac12,1,\frac32,2,\ldots\}$.

Будем обозначать через π_j представление $\mathfrak{su}(2)$ в котором $j=m_{max}$. Оно имеет базис из векторов $v_{\lambda,j}, v_{\lambda,j-1}, \ldots, v_{\lambda,-j}$. Следовательно $\dim \pi_j = 2j+1$.

В базисе $v_{\lambda,j}, v_{\lambda,j-1}, \ldots, v_{\lambda,-j}$ матрица оператора iJ_3 имеют диагональный вид. У оператора J_+ все ненулевые элементы стоят над диагональю, у оператора J_- все

 $^{^2}$ Как уже выше было сказано J^2 действует просто числом. Теоретически могло оказаться, что оператор і J_3 действует с нетривиальными жордановыми блоками, но как будет видно из следующего предложения собственные вектора оператора і J_3 образуют подпредставление алгебры $\mathfrak{su}(2)$. Это подпредставление должно совпасть со всем пространством, так как мы сейчас рассматриваем неприводимое представление. Значит в представлении есть базис из векторов собственных относительно і J_3 (и J^2).

ненулевые элементы стоят под диагональю.

$$iJ_{3} \mapsto \begin{pmatrix} j & 0 & 0 & \dots & 0 & 0 \\ 0 & j-1 & 0 & \dots & 0 & 0 \\ 0 & 0 & j-2 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & -j+1 & 0 \\ 0 & 0 & 0 & \dots & 0 & -j \end{pmatrix},$$

$$J_{+} \mapsto \begin{pmatrix} 0 & a_{j-1} & 0 & \dots & 0 & 0 \\ 0 & 0 & a_{j-2} & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & a_{-j} \\ 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix}, J_{-} \mapsto \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 0 \\ b_{j} & 0 & 0 & \dots & 0 & 0 \\ 0 & b_{j-1} & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & b_{1-j} & 0 \end{pmatrix}.$$

$$(4)$$

Матричные элементы a_m , b_m зависят от нормировки собственных векторов $v_{\lambda,m}$. Обычно изучают унитарные представления групп Ли, в которых элементам группы соответствуют операторы из унитарной группы U(N), а элементам алгебры Ли соответствуют элементы из алгебры ли $\mathfrak{u}(N)$. Тогда разные собственные вектора являются ортогональными и можно сделать вектора $v_{\lambda,m}$ ортонормированным базисом.

Тогда оператор $J_a^*=-J_a$, откуда $J_+^*=-J_-$, т.е. $\overline{a_m}=-b_{m+1}$. Можно найти точное значение a_m , см. задачу ниже.

Заметим, что все представление π_j порождено из вектора v_λ действием оператора J_- . По аналогии с квантово-механической задачей о гармоническом осцилляторе его можно называть оператором рождения, а оператор J_+ оператором уничтожения. Но, в отличии от гармонического осциллятора, где нарождать состояния можно до бесконечности, представления π_j конечномерны.

Перейдем теперь от представления алгебры Ли к представлению группы. Начнем с группы SO(3). На прошлой лекции мы показали, что любой элемент этой группы имеет вид $\exp(\alpha \sum n_a J_a)$, где $\sum n_a^2 = 1$. Легко написать формулу для $\exp(\alpha J_3)$:

$$e^{\alpha J_3} \mapsto \begin{pmatrix} e^{-i\alpha j} & 0 & 0 & \dots & 0 & 0\\ 0 & e^{-i\alpha(j-1)} & 0 & \dots & 0 & 0\\ 0 & 0 & e^{-i\alpha(j-2)} & \dots & 0 & 0\\ \dots & \dots & \dots & \dots & \dots\\ 0 & 0 & 0 & \dots & e^{it(j-1)} & 0\\ 0 & 0 & 0 & \dots & 0 & e^{i\alpha j} \end{pmatrix},$$
 (5)

С другой стороны в группе SO(3) верно $\exp 2\pi J_3 = E$ (так как геометрически α это угол поворота и поворот на угол 2π это тождественное преобразование). А по формуле (5) получаем, что в представлении π_j элементу $e^{2\pi J_3}$ соответствует единич-

ный только если если j — целое. А для полуцелых j получается, что единичному элементу соответствует неединичный элемент, что невозможно.

Для группы SU(2) ситуация другая. Любой элемент это экспонента $\exp(\alpha i \sum n_a \sigma_a)$, но элементы J_3 соответствует матрица $\frac{-i}{2}\sigma_3$. Поэтому в группе SU(2) верно $\exp 4\pi J_3 = E$, но из формулы (5) следует, что в представлении π_j элементу $e^{4\pi J_3}$ всегда соответствует единичная матрица, так что противоречия не получается.

Предложение 4. а) Для целых j представление π_j интегрируется до представления группы SO(3). При полуцелых j однозначного представления группы SO(3) не существует.

б) Для любого j представление π_i интегрируется до представления группы SU(2).

Замечание. Это предложение является свидетельством того, что группы Π и SU(2) и SO(3) не изоморфны в отличии от соответствующих алгебр Π и.

Замечание. Выше мы доказали только при полуцелых j нет представления группы SO(3), но строго не доказывали существования представления при целых j. Мы это выведем из другой конструкции представлений π_j на следующей лекции.

Перейдем к характерам представлений и тензорным произведениям. Характер вводится стандартной формулой $\chi(g)={\rm Tr}\,\rho(g)$. В группе SU(2) любая матрица сопряжена матрице $\begin{pmatrix} e^{\mathrm{i}\varphi} & 0 \\ 0 & e^{-\mathrm{i}\varphi} \end{pmatrix}=\exp(\mathrm{i}\varphi\sigma_3)$. Поэтому характер достаточно вычислять на таких диагональных матрицах: $\chi(\varphi)={\rm Tr}\,\rho\left(\exp(\mathrm{i}\varphi\sigma_3)\right)$.

Предложение 5. Характеры неприводимых представлений π_j группы SU(2) равны

$$\chi_j(\varphi) = e^{2ji\varphi} + e^{2(j-1)i\varphi} + \ldots + e^{-2ji\varphi} = \frac{\sin((2j+1)\varphi)}{\sin\varphi}.$$

Доказательтво. Следует из формулы (5). ■

Рассмотри тензорное произведение двух представлений. Оно задается той же формулой, что раньше. Как и раньше характер тензорное произведения равен произведению характеров. Чтобы понять что такое тензорное произведение на уровне алгебр Π и, надо опять взять кривую q(t). Тогда

$$\rho_1(g(t)) \otimes \rho_2(g(t)) = E \otimes E + (d\rho_1(A) \otimes E + E \otimes d\rho_2(A))t + o(t)$$

Определение 3. Пусть ξ_1 , ξ_2 два представления алгебры ли \mathfrak{g} . Их тензорным произведением $\xi = \xi_1 \otimes \xi_2$ называется представление заданное формулой:

$$\xi(x) = \xi_1(x) \otimes 1 + 1 \otimes \xi_2(x), \quad \forall x \in \mathfrak{g}.$$

Предыдущее вычисление показывает, что если представления ξ_1 , ξ_2 происходят из представлений соответствущих групп, то понятия тензорного произведения представлений групп и тензорного произведения представлений алгебр Ли между собой согласованы.

Домашнее задание

Решения задачи 2 надо прислать до начала лекции 18 апреля. Решения задач 1 и 3 надо прислать до 10 мая. Помимо письменной сдачи надо быть готовым ответить на вопросы по решениям.

 ${f 3a}$ дача 1. а) Докажите, что $J_+J_-=-J^2-J_3^2-{\rm i}J_3.$

- б) Найдите значение a_m в предположении, что базис $v_{\lambda,m}$ ортонормированный (уравнения фиксируют только $|a_m|$, можно еще домножить вектора ортонормированного базиса на фазу чтобы a_m^2 стало вещественным).
- **Задача 2.** Найдите разложение тензорного произведения $\pi_{1/2} \otimes \pi_{1/2}$ на неприводимые представления SU(2).

Указание: напишите характер и представьте его в виде суммы характеров π_i

Задача 3. Докажите, что представление π_j в котором действие генераторов iJ_3, J_+, J_- задано формулами (4) является неприводимым.

Указание: докажите, сначала, что в любом инвариантном подпространстве должен содержаться старший вектор $v_{\lambda,j}$.