

Quicksort

- Proposed by C.A.R. Hoare in 1962.
- Divide-and-conquer algorithm.
- Sorts "in place" (like insertion sort, but not like merge sort).
- Very practical (with tuning).

Divide and conquer

Quicksort an *n*-element array:

1. Divide: Partition the array into two subarrays around a pivot x such that elements in lower subarray $\le x \le$ elements in upper subarray.

- 2. Conquer: Recursively sort the two subarrays.
- 3. Combine: Trivial.

Key: Linear-time partitioning subroutine.

Partitioning subroutine

```
PARTITION(A, p, q) \triangleright A[p ... q]

x \leftarrow A[p] \triangleright \text{pivot} = A[p]

Running time

i \leftarrow p

\text{for } j \leftarrow p + 1 \text{ to } q

\text{do if } A[j] \leq x

\text{then } i \leftarrow i + 1

\text{exchange } A[i] \leftrightarrow A[j]

exchange A[p] \leftrightarrow A[i]

return i
```

Invariant:

Pseudocode for quicksort

```
Quicksort(A, p, r)

if p < r

then q \leftarrow \text{Partition}(A, p, r)

Quicksort(A, p, q-1)

Quicksort(A, p, q-1)
```

Initial call: QUICKSORT(A, 1, n)

Analysis of quicksort

- Assume all input elements are distinct.
- In practice, there are better partitioning algorithms for when duplicate input elements may exist.
- Let T(n) = worst-case running time on an array of n elements.

Worst-case of quicksort

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

$$= \Theta(1) + T(n-1) + \Theta(n)$$

$$= T(n-1) + \Theta(n)$$

$$= \Theta(n^2) \qquad (arithmetic series)$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(0)$$
 $T(n-1)$

$$T(n) = T(0) + T(n-1) + cn$$

Best-case analysis

(For intuition only!)

If we're lucky, Partition splits the array evenly:

$$T(n) = 2T(n/2) + \Theta(n)$$

= $\Theta(n \lg n)$ (same as merge sort)

What if the split is always $\frac{1}{10}$: $\frac{9}{10}$?

$$T(n) = T\left(\frac{1}{10}n\right) + T\left(\frac{9}{10}n\right) + \Theta(n)$$

What is the solution to this recurrence?

T(n)

$$T\left(\frac{1}{10}n\right) \qquad T\left(\frac{9}{10}n\right)$$

More intuition

Suppose we alternate lucky, unlucky, lucky, unlucky, lucky,

$$L(n) = 2U(n/2) + \Theta(n)$$
 lucky
 $U(n) = L(n-1) + \Theta(n)$ unlucky

Solving:

$$L(n) = 2(L(n/2 - 1) + \Theta(n/2)) + \Theta(n)$$

$$= 2L(n/2 - 1) + \Theta(n)$$

$$= \Theta(n \lg n) \quad Lucky!$$

How can we make sure we are usually lucky?

Sorting in linear time

Counting sort: No comparisons between elements.

- *Input*: A[1...n], where $A[j] \in \{1, 2, ..., k\}$.
- Output: B[1 ... n], sorted.
- Auxiliary storage: C[1 ... k].

Counting sort

```
for i \leftarrow 1 to k
    do C[i] \leftarrow 0
for i \leftarrow 1 to n
    do C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|
for i \leftarrow 2 to k
    do C[i] \leftarrow C[i] + C[i-1]
                                                     \triangleright C[i] = |\{\text{key} \le i\}|
for j \leftarrow n downto 1
    \operatorname{do} B[C[A[j]]] \leftarrow A[j]
          C[A[j]] \leftarrow C[A[j]] - 1
```


Counting-sort example

B:

Loop 1

for
$$i \leftarrow 1$$
 to k

$$do C[i] \leftarrow 0$$

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

$$C: \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 2 & 2 \end{bmatrix}$$

for
$$i \leftarrow 2$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{\text{key } \le i\}|$

$$ightharpoonup C[i] = |\{\text{key} \le i\}|$$

for
$$i \leftarrow 2$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{\text{key } \le i\}|$

$$ightharpoonup C[i] = |\{\text{key} \le i\}|$$

for
$$i \leftarrow 2$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{\text{key } \le i\}|$

$$ightharpoonup C[i] = |\{\text{key} \le i\}|$$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

Analysis

```
\Theta(k) \begin{cases} \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ k \\ \mathbf{do} \ C[i] \leftarrow 0 \end{cases}
       \Theta(n) \begin{cases} \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ n \\ \mathbf{do} \ C[A[j]] \leftarrow C[A[j]] + 1 \end{cases}

\begin{cases}
\mathbf{for } i \leftarrow 2 \mathbf{to } k \\
\mathbf{do } C[i] \leftarrow C[i] + C[i-1]
\end{cases}

                                       \begin{cases} \mathbf{for} \ j \leftarrow n \ \mathbf{downto} \ 1 \\ \mathbf{do} \ B[C[A[j]]] \leftarrow A[j] \\ C[A[j]] \leftarrow C[A[j]] - 1 \end{cases}
\Theta(n+k)
```


Running time

If k = O(n), then counting sort takes $\Theta(n)$ time.

- But, sorting takes $\Omega(n \lg n)$ time!
- Where's the fallacy?

Answer:

- Comparison sorting takes $\Omega(n \lg n)$ time.
- Counting sort is not a *comparison sort*.
- In fact, not a single comparison between elements occurs!

Stable sorting

Counting sort is a *stable* sort: it preserves the input order among equal elements.

Exercise: What other sorts have this property?

Radix sort

- *Origin*: Herman Hollerith's card-sorting machine for the 1890 U.S. Census. (See Appendix ①.)
- Digit-by-digit sort.
- Hollerith's original (bad) idea: sort on most-significant digit first.
- Good idea: Sort on *least-significant digit first* with auxiliary *stable* sort.

Operation of radix sort

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order *t* − 1 digits.
- Sort on digit *t*

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order *t* 1 digits.
- Sort on digit *t*
 - Two numbers that differ in digit t are correctly sorted.

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order *t* 1 digits.
- Sort on digit *t*
 - Two numbers that differ in digit t are correctly sorted.
 - Two numbers equal in digit t are put in the same order as the input \Rightarrow correct order.

Analysis of radix sort

- Assume counting sort is the auxiliary stable sort.
- Sort *n* computer words of *b* bits each.
- Each word can be viewed as having b/r base- 2^r digits.

Example: 32-bit word

 $r = 8 \Rightarrow b/r = 4$ passes of counting sort on base-28 digits; or $r = 16 \Rightarrow b/r = 2$ passes of counting sort on base-216 digits.

How many passes should we make?

Analysis (continued)

Recall: Counting sort takes $\Theta(n + k)$ time to sort n numbers in the range from 0 to k - 1.

If each *b*-bit word is broken into *r*-bit pieces, each pass of counting sort takes $\Theta(n + 2^r)$ time. Since there are b/r passes, we have

$$T(n,b) = \Theta\left(\frac{b}{r}(n+2^r)\right).$$

Choose r to minimize T(n, b):

• Increasing r means fewer passes, but as $r \gg \lg n$, the time grows exponentially.

Choosing r

$$T(n,b) = \Theta\left(\frac{b}{r}(n+2^r)\right)$$

Minimize T(n, b) by differentiating and setting to 0.

Or, just observe that we don't want $2^r \gg n$, and there's no harm asymptotically in choosing r as large as possible subject to this constraint.

Choosing $r = \lg n$ implies $T(n, b) = \Theta(bn/\lg n)$.

• For numbers in the range from 0 to $n^d - 1$, we have $b = d \lg n \Rightarrow$ radix sort runs in $\Theta(dn)$ time.

Conclusions

In practice, radix sort is fast for large inputs, as well as simple to code and maintain.

Example (32-bit numbers):

- At most 3 passes when sorting ≥ 2000 numbers.
- Merge sort and quicksort do at least $\lceil \lg 2000 \rceil = 11$ passes.

Downside: Unlike quicksort, radix sort displays little locality of reference, and thus a well-tuned quicksort fares better on modern processors, which feature steep memory hierarchies.