ALEVELS P3

COMPLEX NUMBERS
WITHOUT DIAGRAM
(HARD)
C2

4	771			1	1		•	•	1
1	The	variable	comp	lex	number	7	18	given	h

$$z = 1 + \cos 2\theta + i \sin 2\theta,$$

where θ takes all values in the interval $-\frac{1}{2}\pi < \theta < \frac{1}{2}\pi$.

- (i) Show that the modulus of z is $2\cos\theta$ and the argument of z is θ . [6]
- (ii) Prove that the real part of $\frac{1}{z}$ is constant. [3]

9709/32/M/J/10/Q8

- 2 (a) The complex number u is defined by $u = \frac{5}{a+2i}$, where the constant a is real.
 - (i) Express u in the form x + iy, where x and y are real. [2]
 - (ii) Find the value of a for which $\arg(u^*) = \frac{3}{4}\pi$, where u^* denotes the complex conjugate of u.
 - (b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z which satisfy both the inequalities |z| < 2 and |z| < |z 2 2i|. [4]

9709/32/M/J/11/Q7

[3]

[3]

3 (i) Find the roots of the equation

$$z^2 + (2\sqrt{3})z + 4 = 0$$
,

giving your answers in the form x + iy, where x and y are real. [2]

- (ii) State the modulus and argument of each root.
- (iii) Showing all your working, verify that each root also satisfies the equation

$$z^6 = -64.$$
 [3]

9709/33/M/J/11/Q7

4 Throughout this question the use of a calculator is not permitted.

The complex number u is defined by

$$u = \frac{1+2i}{1-3i}.$$

- (i) Express u in the form x + iy, where x and y are real.
- (ii) Show on a sketch of an Argand diagram the points A, B and C representing the complex numbers u, 1 + 2i and 1 3i respectively. [2]
- (iii) By considering the arguments of 1 + 2i and 1 3i, show that

$$\tan^{-1} 2 + \tan^{-1} 3 = \frac{3}{4}\pi.$$
 [3]

9709/32/M/J/12/Q7

- 5 The complex number z is defined by z = a + ib, where a and b are real. The complex conjugate of z is denoted by z^* .
 - (i) Show that $|z|^2 = zz^*$ and that $(z ki)^* = z^* + ki$, where k is real. [2]

In an Argand diagram a set of points representing complex numbers z is defined by the equation |z - 10i| = 2|z - 4i|.

(ii) Show, by squaring both sides, that

$$zz^* - 2iz^* + 2iz - 12 = 0.$$

Hence show that |z - 2i| = 4.

[5]

(iii) Describe the set of points geometrically.

9709/33/M/J/13/Q7

[1]

- The complex number z is defined by $z = \frac{9\sqrt{3} + 9i}{\sqrt{3} i}$. Find, showing all your working, 6
 - (i) an expression for z in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$, [5]
 - (ii) the two square roots of z, giving your answers in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$. [3]

9709/31/M/J/14/Q5

- (a) It is given that $-1 + (\sqrt{5})i$ is a root of the equation $z^3 + 2z + a = 0$, where a is real. Showing your 7 working, find the value of a, and write down the other complex root of this equation.
 - **(b)** The complex number w has modulus 1 and argument 2θ radians. Show that $\frac{w-1}{w+1} = i \tan \theta$. [4]
- 8 Throughout this question the use of a calculator is not permitted.

The complex numbers w and z satisfy the relation

$$w = \frac{z + i}{iz + 2}.$$

- (i) Given that z = 1 + i, find w, giving your answer in the form x + iy, where x and y are real. [4]
- (ii) Given instead that w = z and the real part of z is negative, find z, giving your answer in the form x + iy, where x and y are real. [4]

9709/31/O/N/14/Q5

- 9 The complex numbers w and z are defined by w = 5 + 3i and z = 4 + i.
 - (i) Express $\frac{1W}{x}$ in the form x + iy, showing all your working and giving the exact values of x and y. [3]
 - (ii) Find wz and hence, by considering arguments, show that

$$\tan^{-1}\left(\frac{3}{5}\right) + \tan^{-1}\left(\frac{1}{4}\right) = \frac{1}{4}\pi.$$
 [4]

9709/33/O/N/14/Q5

10 Throughout this question the use of a calculator is not permitted.

The complex number $(\sqrt{3}) + i$ is denoted by u.

- (i) Express u in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$, giving the exact values of r and θ . Hence or otherwise state the exact values of the modulus and argument of u^4 . [5]
- (ii) Verify that u is a root of the equation $z^3 8z + 8\sqrt{3} = 0$ and state the other complex root of this equation. [3]
- (iii) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z u| \le 2$ and $\text{Im } z \ge 2$, where Im z denotes the imaginary part of z.

9709/31/M/J/19/Q10