Energy-aware Event-detection and Resolution through Decentralized Co-ordination of Intelligent Entities in Smartphone-based Remote Elderly Health Monitoring System

Deepak Uniyal, Vaskar Raychoudhury

Department of Computer Science and Engineering

Introduction

Remote Health Monitoring System for Elderly Patients (EHMS)

- ✓ To bridge the infrastructure gap and to provide round-the clock monitoring of the elderly patients
- ✓ Elderly healthcare is emerging as a very important and practical research area
- ✓ Existing infrastructure available to us is insufficient to cater to the needs of growing population.
- ✓ Multiple embedded sensors will monitor the vital signs and the surrounding environments.

Goals

- The goals of the proposed research are
- ✓ To decide critical health situations of elderly patients through collaborative interaction of multiple embedded and wearable micro-sensors
- ✓ To inform patients about potential threats (pollen count, pollution, etc.) in indoor and outdoor environments based on their past health history
- ✓ To adopt smartphone based decision making approaches for emergency actions and to use simple multimodal interfaces to facilitate interaction between patients and caregivers

Research Objectives

- ✓ Continuously monitoring the physiological status of high risk elderly patients to detect abnormal events.
- ✓ Premonition of ensuing health risks by monitoring vital and environmental signs in both indoor and outdoor locations.
- ✓ Automatically alerting the appropriate nearby caregivers to emergency situations regarding a patient's health.
- ✓ Providing smartphone based user friendly interface to facilitate communication between patient and care givers in emergency situations, and
- ✓ Ensuring proper security of sensitive healthcare information of individual patients

Research Plan

- ✓ Studying Application Requirement and Identifying Issues
- ✓ Developing a Multi-Sensor Intelligent Co-ordination Model
- ✓ Developing Data Analysis and Decision Making Algorithms

Pervasive Healthcare: The State of Art

- ✓ Extensive survey for studying application requirement and identifying issues
- ✓ Existing systems are loosely coupled
- ✓ Different sensor collect data but are not integrated into a single
- system ✓ So we have proposed a multi- Hardware-based sensor intelligent co-ordination Manual
- ✓ Different smart sensors can coordinate together to take a final decision

model

Developing a Multi-Sensor Intelligent Co-ordination Model

1) Data Collection

- ✓ Multiple embedded sensors will monitor the vital signs and the surrounding environments.
- ✓ All Sensor attached to e-health sensor shield which in turn transfer the data to Pc through Arduino UNO board.
- ✓ Data could be directly send to mobile wirelessly.

Figure-2: Health Sensor connected to body

2) Event Detection

- ✓ Several smart sensors deployed into the physical environment of a patient to form a network.
- ✓ All sensors work together in a coordinated fashion to detect a event.
- ✓ The sensed data is initially sent to the user's smartphone, which, based on the past health history of the patients, looks for abnormal sensor data readings.
- ✓ Events are detected in real-time and by the smartphone carried by patients.
- ✓ The smartphone then takes proper decision regarding future actions and asks for feedback from the user through convenient user interface.
- ✓ User responses are recorded for self-learning purposes and for future use.

Hardware

Arduino UNO

- ✓ Arduino can sense the environment by receiving input from a variety of sensors
- ✓ Can affect surroundings by controlling lights, motors and other actuators
- ✓ Microcontroller on the board is programmed using Arduino programming language
- ✓ Microcontroller board based on Atmega328
- ✓8-bit microcontroller with 32K Bytes in-system programmable flash
- ✓ 14 digital input/output pins (6 provide PWM output)
- ✓ SRAM 2KB and EEPROM 1 KB
- ✓ Clock speed 16 MHz

E-Health Sensor Shield

- ✓ Allows Arduino and Raspberry Pi users to perform biometric and medical applications using 9 different sensors
- ✓ Data can be wirelessly sent using any of the 6 connectivity options: Wi-Fi, 3G, GPRS, Bluetooth, 802.15.4 and ZigBee
- ✓ Privacy of data is important issue
 - ➤ In the communication link layer: AES for ZigBee and WPA2 for Wi-Fi
 - ➤ In the application layer: HTTPS for point to point security tunnel between each node and web server
- ✓ 9 sensors that can be connected to e-health sensor shield are as follows
 - ➤ Accelerometer, Glucometer, Airflow Sensor
 - > ECG Sensor, EMG Sensor
 - ➤ Body temperature sensor, Sphygmomanometer
 - ➤ Pulse and oxygen in blood sensor
 - ➤ Galvanic skin response

Body position connector Digital I/O connectors GLCD push-button ← → Blood pressure connector GSR connector Airflow connector → Temperature connector EMG connector ← → EMG / ECG Jumpers

General purpose pins

Analog inputs connector

Figure-3: Arduino UNO Board

Figure-4: E-Health Sensor Shield

ECG connector

Results

Airflow Sensor

- ✓ Graph shows the respiratory rates and changes in respiratory rates
- ✓ Abnormal breathing rate is broad indicator of major physiological instability
- ✓ Normal adult has a respiratory rate of 15-30 breaths/min

Electrocardiogram (ECG) Sensor

- ✓ ECG is a tool to assess the electrical and muscular functions of the heart.
- ✓ Graph shows the ECG of data collected in lab which indicates the electrical activity of heart.
- ✓ ECG is one of the commonly used medical tests in the diagnosis of a myriad of cardiac pathologies.
- ✓ A heart problem may not always show up on the ECG.
- ✓ Some heart conditions never produce any ECG changes.
- ✓ ECG leads are attached to the body while patient lies flat.

Electromyography (EMG) Sensor

- ✓ EMG measures the electrical activity of muscles at rest and during contraction.
- ✓ EMG detects the electrical potential generated by muscle cells when these cells are electrically activated.
- ✓ The signals can be analysed to detect medical abnormalities, activation level or the biomechanics of human or animal movement.
- ✓ EMG is used as a tool for identifying neuromuscular diseases, assessing low-back pain and disorder of motor control.
- ✓ Graph shows the EMG of data collected in lab which indicates the electrical activity of muscles depending on the amount of activity in the selected muscle.

Pulse and Oxygen in Blood (SPO2) Sensor Figure-4: Blood Oxygen

- ✓ Graph shows the blood oxygen i.e. the amount of oxygen dissolved in blood based on the detection of Haemoglobin and Deoxyhaemoglobin.
- ✓ Acceptable normal ranges for patients are from 95-99%, for hypoxic drive problem it's between 84-99% and values of 100% indicate carbon monoxide poisoning.

Figure-5: Pulse Rate

- ✓ Graph shows the pulse rate (beats per minute).
- ✓ Normal range of pulse rate for adults is between 60-100.

Figure-5: Airflow Sensor

Figure-6: ECG Sensor

Figure-7: EMG Sensor

Figure-8: Blood Oxygen

Figure-9: Pulse Rate

Future Work

- To implement a prototype of the proposed EHMS framework with the following objectives:
- ✓ Connect different health sensors with a smartphone to facilitate mobile healthcare by local processing of critical vital signs.
- ✓ Build a rule-based decision making engine for the smartphone environment which will take real-time decision based on collected sensor data.
- ✓ Long term data storage and patient health case study and analysis to be done at the server side.