Table des matières

Statistics

Missing Data

Vidéos YouTube

- > ritvikmath: Missing Data Mechanisms
- > ritvikmath: Dealing With Missing Data Part I
- > ritvikmath: Dealing With Missing Data Multiple Imputation

>

Notes sur les vidéos YouTube

Video 1: ritvikmath: Missing Data Mechanisms

- > MCAR
 - Librarians forget to enter the data completely randomly;
- > MAR
 - Women are 90% likely to respond to a survey on the number of overdue books while men are 70% likely to respond;
- > MNAR : The missingness of a certain value depends on the true value itself
 - For example:
 - * If I have 0 books overdue, I'm 90% likely to respond to a question asking how many overdue books I have;
 - * If I have 1 books overdue, I'm 80% likely to respond to a question asking how many overdue books I have;
 - * If I have 2 books overdue, I'm 70% likely to respond to a question asking how many overdue books I have;

* ...

- So, the more books I have that are overdue, the less likely I am
 to respond to a question asking how many books I have that
 are overdue because I may be embarassed or feel shame;
- Therefore MNAR is kind of a **chicken and egg** scenario;
 - * If try to figure if a column is MNAR, need to figure out if those missing values are based on the actual values;

- * But, I don't know the **actual** values of that column because they're missing in the first place!
- * So it's really hard to figure out if something is MNAR;
- In comparision, MCAR and MAR are easier to figure out if something is one or the other;
- Can slice a dataset by values of a column
 - * For example, by sex or by age group, ...;
 - * If missing value rate is about the same for all different slices then likely to be Missing Completely At Random;
 - * If however it's different for each slice, then it's likely MAR;

Video 2: ritvikmath: Dealing With Missing Data Part I

> a

Video 3: ritvikmath: Dealing With Missing Data - Multiple Imputation

- > Row deletion;
 - Most common and easiest;
 - Omit any row in dataset with a missing value—pretend it does not exist;
 - Seems too good to be true because it usually is;
 - Can only do this if the data is Missing Completely At Random biased otherwise;

Makes sense if you reason that any other way you'd obviously be creating a bias in your data;

- Each column would have missing values completely at random and without respect to, for example, the gender and the estimations would be *unbiased*;
- Thus, have to be very careful it's really what we want to do because likely cause bias if there's any sort of relationship between the missing variables and other columns;

Pros	Cons
simple	biased

- > Mean/Median imputation;
 - A little more « clever »;
 - **Seems** intuitive and is pretty simple;
 - Mean
 - * Fill in, for example, 1.8 as the average of a few discrete values;
 - * BUT, will **artifically** reduce variability of the data;
 - * Seem like several values have the exact same value;
 - Median is the same idea but will overepresent one fixed value;

Pros	Cons
simple	lower variability

- > Hot Deck methods;
 - Most clever so far;
 - Any family of methods where:
 - * Compute a missing value based on the value of examples that are *similar* to it;
 - For example
 - * Fill in the missing value of a female by the average of only other females;
 - Better because imputing more information (whether someone is female or male);
 - * Imagine if there's a bunch of columns (income, family members, where they live, etc.);
 - * Then, we can input missing values based on a few people that are really similar to the missing person;
 - * Logical as we would expect that person's missing value to be similar to other similar people's;
 - May not be true, but it's a very *educated guess*;

Pros	Cons
more educated	more (computationnaly) expensive