# Using R for Analytic Graphs: Learn How Data Visualization Can Improve Interpretation in Social Work Research

Saturday, November 01, 2014

# Why Use R?

- Free
- Open Source
- Easy Collaboration
- ► Replicable Research
- Effective statistical communication

### Why Wouldn't You Use R?

Steep(er) learning curve compared to, say, Excel or SPSS. This matters a lot if

- You run statistics rarely.
- You want a point and click interface.

# Where Can you Get R?

- ► CRAN
- Our Thumb Drives

# Where Are We Going Today?

- Graphing Descriptive Statistics
- Graphing Model Results

#### Means and standard deviations

#### Excerpt from

Holland, D. E., Mistiaen, P., Knafl, G. J., & Bowles, K. H. (2011). The English translation and testing of the problems after discharge questionnaire. *Social Work Research*, 35(2), 107–116.

### What we see in the journal article...

| Subscale and Range   | Abbreviated item and Content | M(+-SD)    | Item-total correlation |
|----------------------|------------------------------|------------|------------------------|
| Household Activities | Prepare food                 | 1.60(1.00) | 0.72                   |
|                      | Grocery shop                 | 2.97(1.80) | 0.78                   |
|                      | Clean house                  | 2.78(1.70) | 0.82                   |
|                      | Laundry                      | 2.25(1.60) | 0.83                   |
|                      | Change bed linen             | 2.75(1.70) | 0.83                   |
|                      | Wash dishes                  | 1.80(1.30) | 0.72                   |
|                      | Tidy living area             | 1.57(1.20) | 0.74                   |

What we could see in the journal article...



### Bi-variate categorical data

#### Excerpt from

Trocme, N., Knoke, D., & Blackstock, C. (2004). Pathways to the overrepresentation of Aboriginal children in Canada's child welfare system. *Social Service Review*, 78(4), 577–600.

### What we see in the journal article...

| Placement status        | Aboriginal (%) | Caucasian (%) |  |
|-------------------------|----------------|---------------|--|
| Child welfare placement | 9.90           | 4.6           |  |
| Informal placement      | 11.20          | 3.4           |  |
| Placement considered    | 3.90           | 2.4           |  |
| No placement required   | 75.10          | 89.6          |  |
| N                       | 831.00         | 3,563         |  |

What we could see in the journal article...



### Single regression model

#### Excerpt from

Trocme, N., Knoke, D., & Blackstock, C. (2004). Pathways to the overrepresentation of Aboriginal children in Canada's child welfare system. *Social Service Review*, 78(4), 577–600.

### What we see in the journal article...

| Variable                         | Coefficient | OR   | pvalue |
|----------------------------------|-------------|------|--------|
| Aboriginal(Caucasian)            | 0.07        | 1.08 | 0.74   |
| Part-time(full-time)             | 0.61        | 1.85 | 0.04   |
| Benefits(full-time)              | 0.27        | 1.31 | 0.30   |
| Other income(full-time)          | -0.86       | 0.42 | 0.14   |
| Unsafe housing                   | 0.53        | 1.70 | 0.07   |
| One move(no moves)               | 0.42        | 1.52 | 0.06   |
| Two moves(no moves)              | 1.12        | 3.06 | 0.00   |
| Two parent blend(two parent bio) | 0.58        | 1.79 | 0.05   |
| Single parent(two parent bio)    | 0.73        | 2.08 | 0.00   |
| Previous case                    | 0.19        | 1.21 | 0.34   |
| Sexual abuse(physical abuse)     | -0.80       | 0.45 | 0.05   |
| Neglect(physical abuse)          | -0.24       | 0.78 | 0.26   |
| Emotional(physical abuse)        | -0.64       | 0.53 | 0.06   |
| Domestic violence                | -1.42       | 0.24 | 0.00   |
| Child sub abuse                  | 0.07        | 1.08 | 0.84   |
| One child beh(none)              | 0.47        | 1.60 | 0.70   |
| Two more beh(none)               | 1.22        | 3.38 | 0.00   |
| Age 4-7(0-3)                     | -0.52       | 0.59 | 0.06   |
| Age 8-11((0-3)                   | -0.32       | 0.72 | 0.28   |
| Age 12-15(0-3)                   | -0.12       | 0.88 | 0.71   |
| Parent age 31-40(<30)            | 0.37        | 1.44 | 0.12   |
| Parent age 41-50(<30)            | 0.44        | 1.55 | 0.21   |
| Parent age 50more(<30)           | 0.88        | 2.41 | 0.32   |
| Parent drug                      | -0.14       | 0.87 | 0.59   |
| Parent criminal                  | 0.57        | 1.77 | 0.02   |
| Parent cognitive                 | 0.89        | 2.44 | 0.00   |
| Few social support               | 0.33        | 1.39 | 0.07   |
| Caregiver maltx                  | 0.40        | 1.49 | 0.04   |
| Parent alcohol                   | 0.43        | 1.54 | 0.05   |

#### What we could see in the journal article. . .

#### Predictors of Child Welfare Placement (N = 2891)



#### What we could see in the journal article. . .



### Multiple regression models

#### Excerpt from

Shiovitz-Ezra, S., & Leitsch, S. A. (2010). The role of social relationships in predicting loneliness: The national social life, health, and aging project. *Social Work Research*, 34(3), 157–167.

### What we see in the journal article...

| Variable         | Coef  | SE   | р     | Coef  | SE   | р     | Coef  | SE   | р    |
|------------------|-------|------|-------|-------|------|-------|-------|------|------|
| Education        | 0.01  | 0.04 | 0.2   | 0.01  | 0.03 | 0.2   | 0.02  | 0.03 | 0.20 |
| Eyesight         | -0.18 | 0.04 | 0.001 | -0.1  | 0.04 | 0.01  | -0.08 | 0.04 | 0.05 |
| Health           | -0.16 | 0.03 | 0.001 | -0.13 | 0.03 | 0.001 | -0.1  | 0.03 | 0.01 |
| Income           | -0.23 | 0.04 | 0.001 | -0.13 | 0.04 | 0.01  | -0.16 | 0.04 | 0.01 |
| Men              | -0.14 | 0.07 | 0.2   | -0.09 | 0.06 | 0.2   | -0.06 | 0.07 | 0.20 |
| White            | -0.13 | 0.09 | 0.2   | -0.07 | 0.09 | 0.2   | 0.04  | 0.09 | 0.20 |
| Friend contact   |       |      |       | -0.07 | 0.03 | 0.1   | -0.07 | 0.03 | 0.10 |
| Neighbor contact |       |      |       | -0.09 | 0.03 | 0.001 | -0.09 | 0.03 | 0.00 |
| Married          |       |      |       | -0.6  | 0.08 | 0.001 | -0.61 | 0.08 | 0.00 |
| Friends #        |       |      |       | -0.09 | 0.03 | 0.05  | -0.08 | 0.03 | 0.10 |
| Relatives        |       |      |       | -0.12 | 0.03 | 0.001 | -0.09 | 0.03 | 0.01 |
| Fam strain       |       |      |       |       |      |       | 0.25  | 0.04 | 0.00 |
| Fam support      |       |      |       |       |      |       | -0.09 | 0.03 | 0.01 |
| Friend support   |       |      |       |       |      |       | -0.01 | 0.03 | 0.20 |
| Spouse support   |       |      |       |       |      |       | 0.08  | 0.06 | 0.20 |

What we could see in the journal article. . .



What if we had more information than what was available in peer-reviewed journals?

### Consider this basic algorithm

- 1. Choose a counterfactual  $x_c$ .
- 2. Estimate a model to get a vector of parameters  $\hat{\beta}$  and the associated variance-covariance matrix,  $\hat{\mathbf{V}}$ .
- 3. Draw several  $\tilde{\boldsymbol{\beta}}$  from  $\mathcal{N}(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{V}})$ , where  $\mathcal{N}$  is a mulivariate normal distribution.
- 4. Calculate expected outcomes based on model parameters for all of your draws from  $\mathcal{N}$ .
- 5. Calculate summary statistics for each level of  $x_c$ .

This approach will work for most of the models that social welfare researchers tend to encounter.



# A Practical Example - Background

#### Research Question

How does a child's probability of exiting the foster care system vary by child characteristics?

### Multiple Permanency Outcomes

Requires that we estimate a mulinomial logistic regression model.

#### Data in Question

- ▶ 500 children entering out-of-home care in late 2007.
- Children's parent's were surveyed once in 2007. The survey results were then linked to administrative data which faciliated a longitudinal follow-up.
- Data have been jittered and randomly sampled from a larger set of data to mask the identity of subjects. The data used here do not reflect the data of individual subjects.



### A practical example - Choose a counterfactual $x_c$ .

Load the data

```
dat <- read.csv("dat.csv")</pre>
```

# A practical example - Choose a counterfactual $x_c$ .

```
#looking at age of child at episode begin
require(ggplot2)
ggplot(dat, aes(x=age_eps_begin)) +
  geom_histogram(binwidth = 1)
```



# A practical example - Choose a counterfactual $x_c$ .

```
#looking at age of child at episode begin by outcome
ggplot(dat, aes(x=age_eps_begin, fill=outcome)) +
  geom_histogram(binwidth = 1) +
  facet_wrap(~ outcome)
```



### Need to estimate a statistical model to get

- 1. A vector of parameters  $\hat{\boldsymbol{\beta}}$ , and
- 2. The associated variance-covariance matrix,  $\hat{\boldsymbol{V}}$ .

#### Prep the data

```
# easy to load external packages
# install.packages("nnet") # install once
require(nnet)
                           # load every time
# relevel our outcome variable
dat$outcome_rl <- relevel(dat$outcome</pre>
                            , ref = "Emancipation")
# recode to numeric
dat$outcome_rl <- as.numeric(dat$outcome rl)</pre>
```

#### Run the model

```
## # weights: 16 (9 variable)
## initial value 1386.294361
## iter 10 value 931.103300
## iter 20 value 860.375750
## final value 860.374425
## converged
```

### Display of summary the model

```
model
```

```
## Call:
## multinom(formula = outcome_rl ~ age_eps_begin + eps_rank
##
      Hess = TRUE
##
## Coefficients:
     (Intercept) age_eps_begin eps_rank
##
## 2 11.457365 -1.0280750 -0.10995325
## 3 9.797665 -0.8393067 0.05195097
## 4 11.597181 -0.8691345 0.07149574
##
## Residual Deviance: 1720.749
## ATC: 1738 749
```

Extract a vector of parameters  $\hat{\boldsymbol{\beta}}$ 

```
#run the multinomial model
pe <- model$wts[c(6,7,8,10,11,12,14,15,16)]
pe[1:3]
## [1] 11.4573653 -1.0280750 -0.1099532
pe[4:6]
## [1] 9.79766546 -0.83930667 0.05195097
pe[7:9]
```

[1] 11.59718150 -0.86913446 0.07149574

Extract the associated variance-covariance matrix,  $\hat{\boldsymbol{V}}$ 

```
#run the multinomial model
vc <- solve(model$Hess)</pre>
```

# A practical example - Draw several $\tilde{\boldsymbol{\beta}}$ from $\mathcal{N}(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{V}})$ .

```
#load a package which contains a multivariate normal
#sampling function
require(MASS)
#assign a variable for the number of simulations
sims <- 10000
#draw the indicates number of beta simulates
#using our extracted model data
simbetas <- mvrnorm(sims,pe,vc)</pre>
```

### A practical example - Last two steps. . .

- ightharpoonup Calculate expected values for all of your draws from  $\mathcal N$ , and
- ▶ Calculate summary statistics for each level of  $x_c$ .
- ► Specific calculations are beyond the scope of this presentation
- ▶ But the simcf package from Chris Adolph (political scientist at the University of Washington) will do them for us!
- http://faculty.washington.edu/cadolph/?page=60

### A practical example - Last two steps

#### Get data read for simcf

▶ Re-arrange simulates to array format

```
simb <- array(NA, dim = c(sims,3,3))
simb[,,1] <- simbetas[,1:3]
simb[,,2] <- simbetas[,4:6]
simb[,,3] <- simbetas[,7:9]</pre>
```

Specify range of counterfactual values

```
agerange <- seq(0,17,by=0.1)
```

### A practical example - Last two steps

#### Get data read for simcf

► Load simcf and use the cfFactorial() function to set specific values for simulation.

▶ Run the simulation (this is where the last two steps are really performed).

```
test_sims <- mlogitsimev(xhyp,simb,ci=0.95)</pre>
```

### Get the data ready to graph

```
y <- as.vector(test_sims$pe[,1:4])
x <- rep(1:length(agerange), 4)
lower <- as.vector(test_sims$lower[,1:4,])</pre>
upper <- as.vector(test sims$upper[,1:4,])
Outcome <- c(rep("Adoption", length(agerange))
                  ,rep("Guardianship"
                       ,length(agerange))
                  ,rep("Reunification"
                       ,length(agerange))
                  ,rep("Emancipation"
                       ,length(agerange)))
```

### Get the data ready to graph

```
dat_sim_plot <- data.frame(y,x,lower,upper,Outcome)</pre>
```

### Graph the data!

```
p1 <- ggplot(dat_sim_plot
    ,aes(x=x/10, y=y, group=Outcome)) +
        geom_line()</pre>
```

# Graph the data!



### Make it Pretty!

## Make it Pretty

