STAT 8320 Spring 2015 Assignment 2

Peng Shao 14221765

April 8, 2015

```
libname da2 'C:\Users\psy6b\Desktop\8320 datasets';
ods graphics on;
options ls=70 ps=35;
data da2.h5q2;
infile 'C:\Users\psy6b\Desktop\8320 datasets\growthdata.dat';
input t @;
do i=1 to 6;
input y 0;
output;
end;
run;
data aver;
set da2.h5q2;
by t;
retain count yave;
if first.t then do;
count=0;
yave=0;
end;
count+1;
yave+y;
if last.t then do;
y=yave/count;
```

```
i=7;
output;
end;
keep t i y;
run;
data da2.h5q2plot;
set da2.h5q2 aver;
run;
proc sort data=da2.h5q2plot;
by i;
run;
symbol interpol=join;
proc gplot data=da2.h5q2plot;
plot y*t=i;
run;
quit;
proc nlmixed data=da2.h5q2;
parameters beta1=200
beta2=850
beta3=350
resvar=40
varu=900;
e=exp(-(t-beta2)/beta3);
model y ~ normal((beta1+u)/(1+e), resvar);
random u ~ normal(0,varu) subject=i out=EBlups;
predict beta1/(1+e) out=pred;
predict (beta1+u)/(1+e) out=predB;
estimate 'Beta_3=350?' beta3-350;
ods output ParameterEstimates=estimates;
run;
proc sort data=pred;
by i t;
```

```
run;
proc sort data=predB;
by i t;
run;
data panelplot;
merge predB(rename=(pred=PredB)) pred;
by i t;
length type $20;
keep i t type resp;
type='measurement';
resp=y;
output;
type='cluster-specific';
resp=predb;
output;
type='population-average';
resp=pred;
output;
run;
proc sgpanel data=panelplot;
panelby i/spacing=5 rows=2 columns=3 novarname;
vline t/response=resp group=type;
colaxis fitpolicy=thin alternate;
rowaxis alternate;
run;
proc print data=eblups;
title 'Estimation of Random Effect';
var i Estimate tValue Probt;
run;
title;
```

```
data da2.h5q31;
infile 'C:\Users\psy6b\Desktop\8320 datasets\ssttornado532001.dat';
retain ss1-ss49;
array ss{49} ss1-ss49;
if _N_=1 then do; input ss1-ss49; end;
loc+1;
drop ss1-ss49;
do t=1 to 49;
sst=ss{t};
input torn 0;
output;
end;
run;
data da2.h5q32;
infile 'C:\Users\psy6b\Desktop\8320 datasets\MOtornlatlon.dat';
loc+1;
input lat lon;
run;
proc sql;
create table da2.h5q3
as select * from da2.h5q31 as a, da2.h5q32 as b
where a.loc=b.loc;
run;
quit;
proc glimmix data=da2.h5q3 noitprint;
class loc;
model torn = sst sst*loc / dist=poisson link=log ddfm=betwithin solution;
random intercept / subject=loc type=sp(exp)(lon lat);
nloptions tech=newrap;
covtest 's' zerog;
output out=h5q3out pred(ilink)=predicted lcl(ilink)=lower ucl(ilink)=upper predicted lcl(ilink)=upper predicted lcl(ilink)=upper predicted lcl(ilink)=upper predicted lcl(ilink)=upper predicted lcl(ilink)=upper predicted lcl(ilink)=upper ucl(ilink)=upper predicted lcl(ilink)=upper ucl(ilink)=upper uc
run;
proc glimmix data=da2.h5q3 noitprint;
class loc;
model torn = sst sst*loc / dist=poisson link=log ddfm=betwithin solution;
```

```
random intercept sst/ subject=loc type=sp(exp)(lon lat);
nloptions tech=newrap;
run;
data panelplot2;
set h5q3out;
length type $20;
keep loc t type resp;
t=t+1952;
type='measurement';
resp=torn;
output;
type='cluster-specific';
resp=predicted;
output;
type='lower bound';
resp=lower;
output;
type='upper bound';
resp=upper;
output;
run;
proc sgpanel data=panelplot2;
where loc le 4 and loc ge 1;
panelby loc/rows=2 columns=2 spacing=5;
vline t/response=resp group=type;
colaxis fitpolicy=thin alternate;
rowaxis alternate;
run;
proc sgpanel data=panelplot2;
where loc le 8 and loc ge 5;
panelby loc/rows=2 columns=2 spacing=5;
vline t/response=resp group=type;
colaxis fitpolicy=thin alternate;
rowaxis alternate;
run;
```

```
proc sgpanel data=panelplot2;
where loc le 12 and loc ge 9;
panelby loc/rows=2 columns=2 spacing=5;
vline t/response=resp group=type;
colaxis fitpolicy=thin alternate;
rowaxis alternate;
run;
proc sgpanel data=panelplot2;
where loc le 16 and loc ge 13;
panelby loc/rows=2 columns=2 spacing=5;
vline t/response=resp group=type;
colaxis fitpolicy=thin alternate;
rowaxis alternate;
run;
proc sgpanel data=panelplot2;
where loc le 20 and loc ge 17;
panelby loc/rows=2 columns=2 spacing=5;
vline t/response=resp group=type;
colaxis fitpolicy=thin alternate;
rowaxis alternate;
run;
proc sort data=h5q3out;
by loc;
run;
data h5q3eval;
set h5q3out;
by loc;
drop sst t;
retain sumtorn summar sumpred sumu suml;
if first.loc then do;
sumtorn=0;
summar=0;
sumpred=0;
sumu=0;
suml=0;
end;
```

```
sumtorn+torn;
summar+margpred;
sumpred+predicted;
sumu+upper;
suml+lower;
if last.loc then do;
torn=sumtorn;
margpred=summar;
predicted=sumpred;
upper=sumu;
lower=suml;
output;
end;
run;
proc sort data=h5q3eval;
by torn;
run;
proc sgplot data=h5q3eval noautolegend;
scatter x=torn y=predicted/ datalabel=loc;
series x=torn y=torn;
xaxis label='Actual Measurements';
yaxis label='Predicted';
KEYLEGEND "Observations" "Reference Line";
run;
proc sgplot data=h5q3eval noautolegend;
scatter x=lat y=lon/ datalabel=loc;
run;
```

Figure 1: Regression Analysis

		The NLMIXED	Procedure		
		Specifi	cations		
-	t Variable		1-7 -	DA2.H5Q2 y Normal	
Random Et	tion for Depo ffects tion for Rand		.ble	normal u Normal	
Subject V				i Dual Quasi-	Newton
-	ion Method			Adaptive Ga Quadrature	ussian
		Dimen	sions		
		ions Used		60	
		ions Not Use servations	d	0 60	
	Subjects			6	
	Max Obs p Paramete	per Subject		10 5	
		re Points		1	
		Param	eters		
beta1	beta2	beta3	resvar	varu	NegLogLike
200	850	350	40	900	229.066515

Figure 1: continued

		Iterat	ion History		
Iter	Calls	NegLogLike	Diff	MaxGrad	Slope
1	8	222.858676	6.207839	0.135255	-3.44269
2	12	221.325222	1.533454	0.108492	-1.10246
3	16	220.4229	0.902322	0.104243	-0.27509
4	21	217.621537	2.801363	0.067182	-0.77932
5	23	217.520935	0.100602	0.080529	-0.72008
6	25	217.347603	0.173332	0.058901	-0.43968
7	27	217.190674	0.156929	0.039087	-0.15741
8	29	217.100941	0.089734	0.032728	-0.10549
9	31	217.01773	0.08321	0.020822	-0.16928
10	34	217.000377	0.017353	0.012076	-0.02334
11	37	216.988644	0.011733	0.013059	-0.00631
12	39	216.98306	0.005584	0.006165	-0.01167
13	41	216.980417	0.002642	0.003475	-0.00838
14	44	216.978694	0.001723	0.001598	-0.00346
15	48	216.977806	0.000888	0.003132	-0.00003
16	54	216.842805	0.135001	0.020194	-0.00172
17	56	216.712242	0.130563	0.007343	-0.11317
18	59	216.708022	0.00422	0.000293	-0.00773
19	62	216.708009	0.000013	0.000037	-0.00002
20	65	216.708009	1.783E-7	3.067E-6	-2.54E-7
	NOTE:	GCONV converge	nce criterio	n satisfied.	
		Fit S	Statistics		
	-2 L	og Likelihood		433.4	
	AIC	(smaller is be	tter)	443.4	
	AICC	c (smaller is b	etter)	444.5	
	BIC	(smaller is be	tter)	442.4	

Figure 1: continued

		Parameter 1	Estima	ates			
		Standard					
Parameter	Estimate	Error	DF	t Value	Pr > t	Alpha	
beta1	199.41	15.2372	5	13.09	<.0001	0.05	
beta2	797.42	14.6250	5	54.52	<.0001	0.05	
beta3	298.48	11.4146	5	26.15	<.0001	0.05	
resvar	49.8315	9.5902	5	5.20	0.0035	0.05	
varu	1346.95	784.96	5	1.72	0.1468	0.05	
		Parameter 1	Estima	ates			
	Parameter	Lower	Ţ	Jpper	Gradient		
	beta1	160.24	23	38.58	4.83E-7		
	beta2	759.82	83	35.01	-3.07E-6		
	beta3	269.14	32	27.82	2.884E-6		
	resvar	25.1791	74	.4838	2.602E-6		
	varu	-670.87	336	64.76	-1.06E-8		
		Additional	Estir	nates			
		Standard					
Label	Estimate	Error	DF	t Valu	e Pr > t	Alpha	
Beta_3=350?	-51.5207	11.4146	5	-4.5	1 0.0063	0.05	
		Additional	Estir	nates			
	Label	j	Lower	Up	per		
	Beta_	3=350? -80	.8627	-22.1	786		

Figure 1: continued

		Es	timation of	Random 1	Effec	t	
	Obs	i	Estimate	tVal	ıe	Probt	
	1	1	9.0186	0.589	954	0.58113	
	2	2	48.3441	3.15	760	0.02516	
	3	3	-61.3289	-4.00	406	0.01028	
	4	4	28.0234	1.83	138	0.12654	
	5	5	7.4494	0.48	697	0.64687	
	6	6	-31.5072	-2.05	386	0.09457	
			The GLIMMIX	Proced	ıre		
			Model Inf	ormatio	ı		
	Data S	Set			DA2.	H5Q3	
	Respon	se V	ariable		torn		
	Respon	se D	istribution		Pois	son	
	Link F	unct	ion		Log		
	Varian	ice F	unction		Defa	ult	
	Varian	ıce M	atrix Blocke	d By	loc		
	Estima	tion	Technique		Resi	dual PL	
	Degree	es of	Freedom Met	hod	Betw	een-Within	
			Class Level	Informa	tion		
Class	Levels	V	alues				
loc	20		2 3 4 5 6 7 9 20	8 9 10	11 1	2 13 14 15 16 17 18	
	Numb	er o	f Observatio	ns Read		980	
	Numb	er o	f Observatio	ns Used		980	

Figure 1: continued

	Dimo	ensions		
	DIME	SHSTOHS		
G-side	e Cov. Para	meters	2	
Column	ns in X		22	
Column	ns in Z per	Subject	1	
	cts (Blocks		20	
1	os per Subj		49	
(Optimizatio	n Informati	on	
Optimizatio	on Techniqu	ıe Ne	wton-Raphson	
Parameters	-		•	
Lower Bound	daries	2		
Upper Bound	daries	0		
Fixed Effe	cts	Pre	ofiled	
Starting Fi	rom	Da ⁻	ta	
Convergence cr	iterion (PC	CONV=1.11022	E-8) satisfie	d.
9		atistics		
-2 Res Lo	og Pseudo-L	ikelihood	5209.11	
	zed Chi-Squ		1158.20	
	ni-Square /		1.21	
	-	meter Estim	ates	
			Standard	
Cov Parm	Subject	Estimate	Error	
Variance	loc	0.1122	0.09420	
SP(EXP)	loc	1.0000	<u>.</u>	

Figure 1: continued

		Solutions	for Fixed	Effects		
			Standard			
Effect	loc	Estimate	Error	DF	t Value	Pr > t
Intercept	t	-2.3014	0.1299	19	-17.71	<.0001
sst		0.5251	0.7078	940	0.74	0.4583
sst*loc	1	-2.3186	0.9117	940	-2.54	0.0111
sst*loc	2	-1.0147	1.0165	940	-1.00	0.3184
sst*loc	3	0.04973	0.9467	940	0.05	0.9581
sst*loc	4	-1.5813	0.9489	940	-1.67	0.0960
sst*loc	5	-2.3085	0.9207	940	-2.51	0.0123
sst*loc	6	0.1876	0.9982	940	0.19	0.8510
sst*loc	7	0.6270	0.8985	940	0.70	0.4855
sst*loc	8	-0.02175	0.9252	940	-0.02	0.9812
sst*loc	9	0.4048	0.9063	940	0.45	0.6552
sst*loc	10	-1.1604	1.0120	940	-1.15	0.2518
sst*loc	11	0.6323	0.9086	940	0.70	0.4866
sst*loc	12	-0.1940	0.9969	940	-0.19	0.8457
sst*loc	13	-0.4288	0.9597	940	-0.45	0.6551
sst*loc	14	-0.2062	1.0594	940	-0.19	0.8457
sst*loc	15	-0.3897	0.9737	940	-0.40	0.6891
sst*loc	16	-1.6004	0.9606	940	-1.67	0.0960
sst*loc	17	0.4378	0.8840	940	0.50	0.6205
sst*loc	18	0.1002	0.9572	940	0.10	0.9167
sst*loc	19	-0.4643	0.8798	940	-0.53	0.5978
sst*loc	20	0	•			•
		Type III Te	sts of Fix	ed Effect	S	
		Num	Den			
	Effect	DF	DF	F Value	Pr > F	
	sst	1	940	0.19	0.6607	
	sst*loc	19	940	2.04	0.0053	

Figure 1: continued

	Tests of Covariance Parameters	
	Based on the Residual Pseudo-Likelihood	
Label	DF -2 Res Log P-Like ChiSq Pr > ChiSq No	ote
	0 000 00 0000	
S	2 5212.01 2.89 0.2352	_
: Standa	d test with unadjusted p-values.	
	The GLIMMIX Procedure	
	Model Information	
	Data Set DA2.H5Q3	
	Response Variable torn	
	Response Distribution Poisson	
	Link Function Log	
	Variance Function Default	
	Variance Matrix Blocked By loc	
	Estimation Technique Residual PL	
	Degrees of Freedom Method Between-Within	
	Class Level Information	
	01422 20.01 11101ma0101	
Class	Levels Values	
loc	20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0
100	19 20	0
	Number of Observations Read 980	
	Number of Observations Used 980	
	Dimensions	
	Dimensions	
	G-side Cov. Parameters 2	
	Columns in X 22	
	Columns in Z per Subject 2	
	Subjects (Blocks in V) 20	
	Max Obs per Subject 49	

Figure 1: continued

Optimization Technique Newton-Raphson

Parameters in Optimization 2 Lower Boundaries 2 Upper Boundaries 0

Fixed Effects Profiled Starting From Data

Convergence criterion (PCONV=1.11022E-8) satisfied.

Estimated G matrix is not positive definite.

Fit Statistics

-2 Res Log Pseudo-Likelihood	5209.11
Generalized Chi-Square	1158.20
Gener. Chi-Square / DF	1.21

Covariance Parameter Estimates

			Standard
Cov Parm	Subject	Estimate	Error
Variance	loc	0.1122	0.09420
SP(EXP)	loc	1.0000	

Figure 1: continued

			Standard			
ffect	loc	Estimate	Error	DF	t Value	Pr > t
Intercept	,	-2.3014	0.1299	19	-17.71	<.0001
sst		0.6842	0.8048	940	0.85	0.3955
sst*loc	1	-2.3722	0.9425	940	-2.52	0.0120
sst*loc	2	-1.0899	1.0884	940	-1.00	0.3169
sst*loc	3	-0.1626	1.0903	940	-0.15	0.8815
sst*loc	4	-1.7982	0.9983	940	-1.80	0.0720
sst*loc	5	-2.3047	0.9505	940	-2.42	0.0155
sst*loc	6	0.2787	1.1485	940	0.24	0.8083
sst*loc	7	0.4961	1.0736	940	0.46	0.6442
sst*loc	8	-0.3755	1.0646	940	-0.35	0.7244
sst*loc	9	0.1688	1.0704	940	0.16	0.8747
sst*loc	10	-1.2240	1.0758	940	-1.14	0.2555
sst*loc	11	0.5692	1.0841	940	0.53	0.5997
sst*loc	12	-0.2797	1.1234	940	-0.25	0.8034
sst*loc	13	-0.7348	1.0723	940	-0.69	0.4934
sst*loc	14	-0.06291	1.1820	940	-0.05	0.9576
sst*loc	15	-0.6257	1.0882	940	-0.58	0.5654
sst*loc	16	-1.7484	1.0079	940	-1.73	0.0831
sst*loc	17	0.07983	1.0491	940	0.08	0.9394
sst*loc	18	-0.03744	1.1037	940	-0.03	0.9729
sst*loc	19	-1.2069	0.9933	940	-1.22	0.2246
sst*loc	20	0				•
		Type III Te	sts of Fix	ed Effect	S	
		Num	Den			
	Effect	DF	DF	F Value	Pr > F	
	sst	1	940	0.15	0.6975	
	sst*loc	19	940	1.97	0.0077	

Figure 2: Graphs for Regression Analysis

Figure 2: continued

