Moving Beyond Linearity

The truth is never linear!

Moving Beyond Linearity

The truth is never linear! Or almost never!

Moving Beyond Linearity

The truth is never linear! Or almost never!

But often the linearity assumption is good enough.

Moving Beyond Lin See board for distinction between linear regression & linear models

- C1(x), C2(x), ... Cd(x) are basis functions for linear model

The truth is never linear! Or almost never!

But often the linearity assumption is good enough.

When its not ...

- polynomials,
- step functions,
- splines,
- local regression, and
- generalized additive models

offer a lot of flexibility, without losing the ease and interpretability of linear models.

Polynomial Regression

Details

• Create new variables $X_1 = X$, $X_2 = X^2$, etc and then treat as multiple linear regression.

Details

- Create new variables $X_1 = X$, $X_2 = X^2$, etc and then treat as multiple linear regression.
- Not really interested in the coefficients; more interested in the fitted function values at any value x_0 :

$$\hat{f}(x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0 + \hat{\beta}_2 x_0^2 + \hat{\beta}_3 x_0^3 + \hat{\beta}_4 x_0^4.$$

• Since $\hat{f}(x_0)$ is a linear function of the $\hat{\beta}_{\ell}$, can get a simple expression for *pointwise-variances* $\operatorname{Var}[\hat{f}(x_0)]$ at any value x_0 . In the figure we have computed the fit and pointwise standard errors on a grid of values for x_0 . We show $\hat{f}(x_0) \pm 2 \cdot \operatorname{se}[\hat{f}(x_0)]$.

Details

- Create new variables $X_1 = X$, $X_2 = X^2$, etc and then treat as multiple linear regression.
- Not really interested in the coefficients; more interested in the fitted function values at any value x_0 :

$$\hat{f}(x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0 + \hat{\beta}_2 x_0^2 + \hat{\beta}_3 x_0^3 + \hat{\beta}_4 x_0^4.$$

- Since $\hat{f}(x_0)$ is a linear function of the $\hat{\beta}_{\ell}$, can get a simple expression for *pointwise-variances* $\operatorname{Var}[\hat{f}(x_0)]$ at any value x_0 . In the figure we have computed the fit and pointwise standard errors on a grid of values for x_0 . We show $\hat{f}(x_0) \pm 2 \cdot \operatorname{se}[\hat{f}(x_0)]$.
- We either fix the degree d at some reasonably low value, else use cross-validation to choose d.

Details continued

 Logistic regression follows naturally. For example, in figure we model

$$\Pr(y_i > 250|x_i) = \frac{\exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d)}{1 + \exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d)}.$$

• To get confidence intervals, compute upper and lower bounds on *on the logit scale*, and then invert to get on probability scale.

Details continued

 Logistic regression follows naturally. For example, in figure we model

$$\Pr(y_i > 250|x_i) = \frac{\exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d)}{1 + \exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d)}.$$

- To get confidence intervals, compute upper and lower bounds on on the logit scale, and then invert to get on probability scale.
- Can do separately on several variables—just stack the variables into one matrix, and separate out the pieces afterwards (see GAMs later).

Details continued

 Logistic regression follows naturally. For example, in figure we model

$$\Pr(y_i > 250 | x_i) = \frac{\exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d)}{1 + \exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d)}.$$

- To get confidence intervals, compute upper and lower bounds on on the logit scale, and then invert to get on probability scale.
- Can do separately on several variables—just stack the variables into one matrix, and separate out the pieces afterwards (see GAMs later).
- Caveat: polynomials have notorious tail behavior very bad for extrapolation.
- Can fit using $y \sim poly(x, degree = 3)$ in formula.

Step Functions

Another way of creating transformations of a variable — cut the variable into distinct regions.

$$C_1(X) = I(X < 35), \quad C_2(X) = I(35 \le X < 50), \dots, C_3(X) = I(X \ge 65)$$

• Easy to work with. Creates a series of dummy variables representing each group.

- Easy to work with. Creates a series of dummy variables representing each group.
- Useful way of creating interactions that are easy to interpret. For example, interaction effect of Year and Age:

$$I({\tt Year} < 2005) \cdot {\tt Age}, \quad I({\tt Year} \geq 2005) \cdot {\tt Age}$$

would allow for different linear functions in each age category.

- Easy to work with. Creates a series of dummy variables representing each group.
- Useful way of creating interactions that are easy to interpret. For example, interaction effect of Year and Age:

$$I({\tt Year} < 2005) \cdot {\tt Age}, \quad I({\tt Year} \geq 2005) \cdot {\tt Age}$$

would allow for different linear functions in each age category.

• In R: I(year < 2005) or cut(age, c(18, 25, 40, 65, 90)).

- Easy to work with. Creates a series of dummy variables representing each group.
- Useful way of creating interactions that are easy to interpret. For example, interaction effect of Year and Age:

$$I({\tt Year} < 2005) \cdot {\tt Age}, \quad I({\tt Year} \geq 2005) \cdot {\tt Age}$$

would allow for different linear functions in each age category.

- In R: I(year < 2005) or cut(age, c(18, 25, 40, 65, 90)).
- Choice of cutpoints or *knots* can be problematic. For creating nonlinearities, smoother alternatives such as *splines* are available.

Piecewise Polynomials

 Instead of a single polynomial in X over its whole domain, we can rather use different polynomials in regions defined by knots. E.g. (see figure)

$$y_i = \begin{cases} \beta_{01} + \beta_{11}x_i + \beta_{21}x_i^2 + \beta_{31}x_i^3 + \epsilon_i & \text{if } x_i < c; \\ \beta_{02} + \beta_{12}x_i + \beta_{22}x_i^2 + \beta_{32}x_i^3 + \epsilon_i & \text{if } x_i \ge c. \end{cases}$$

- Better to add constraints to the polynomials, e.g. continuity.
- Splines have the "maximum" amount of continuity.

Linear Splines

A linear spline with knots at ξ_k , k = 1, ..., K is a piecewise linear polynomial continuous at each knot.

We can represent this model as

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \dots + \beta_{K+3} b_{K+3}(x_i) + \epsilon_i,$$

where the b_k are basis functions.

Claim: linear splines can be represented as the following linear model:

Linear Splines

A linear spline with knots at ξ_k , $k=1,\ldots,K$ is a piecewise typo: K+1 basis functions linear polynomial continuous at each knot.

We can represent this model as

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \dots + \beta_{K+3} b_{K+3}(x_i) + \epsilon_i,$$

where the basis functions.

baseline linear function

$$b_1(\mathbf{x}_i) = x_i$$

$$b_{k+1}(x_i) = (x_i - \xi_k)_+, \quad k \text{ allows for linear flexibility after knot } \mathbf{x}_i$$

after knot \xi_k

Here the $()_{+}$ means positive part; i.e.

$$(x_i - \xi_k)_+ = \begin{cases} x_i - \xi_k & \text{if - coefficient estimation,} \\ 0 & \text{othypothesis testing: sam} \end{cases}$$

this then becomes a linear model:

Othypothesis testing: same as for linear regression

degrees-of-freedom (df): "the number of model parameters to fit". we'll bic Splines generalize this later for non-integer df. - model df can be thought of as a $\xi_k, \ k=1,\ldots,K$ is a piecewise proxy for model complexity $nuov_{f w}$ why can we not make this rder~2~atorder 3? it would then be cubic splines with K knots will have the same cubic function K+4 dfs molover different partitions - linear splines with K knots will have bwer basis we lose our local modeling K+2 dfs property! adding additional constraints reduces the number of dfs $y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \dots + \beta_{K+3} b_{K+3}(x_i) + \epsilon_i$ $\begin{aligned}
(x_i) &= x_i \\
(x_i) &= x_i^2 \\
(x_i) &= x_i^3
\end{aligned}$ Claim: a cubic spline can baseline cubic function be represented as the following linear model efficient coefficient estimation, standard errors $(x_i) = (x_i - \xi_k)_+^3, \quad k = 1, \dots, K$

Cls, testing: same as what we did in linear regression

$$(x_i - \xi_k)_+^3 = \begin{cases} (x_i - \xi_k)^3 & \text{if } x_i > \xi_k \\ 0 & \text{otherwise} \end{cases}$$

Natural Cubic (K+4) - 4 constraints (2 on each side)

A natural cubic spline extrapolates linearly beyond the boundary knots. This adds $4 = 2 \times 2$ extra constraints, and allows us to put more internal knots for the same degrees of freedom as a regular cubic spline

Fitting splines in R is easy: bs(x, ...) for any degree splines, and ns(x, ...) for natural cubic splines, in package splines.

Natural Cubic Spline

Knot placement

- One strategy is to decide K, the number of knots, and then place them at appropriate quantiles of the observed X.
- A cubic spline with K knots has K+4 parameters or degrees of freedom.
- A natural spline with K knots has K degrees of freedom.

Comparison of a degree-14 polynomial and a natural cubic spline, each with 15df.

Knot placement

• One strategy is to decide K, the number of knots, and then What are different ways to vary the bias-variance ntiles of the observed X. trade-off for splines?

changing the number of knots K

20

30

- changing the degree of polynomials within each partition (linear splines, cubic splines, etc.)
- regularization (shrinkage) on the linear model representation of splines

as K+4 parameters or

has K degrees of freedom.

If we fit a NCS with df 15, why not fit a degree-14 polynomial?

- NCS with 15 dfs gives a much more stable fit - splines often given a better predictive performance over polynomial models
- true regression function f is typically never exactly a 14-th order polynomial over the whole domain
- splines give a more flexiblie model that allows for rapid changes in certain regions, but not in others
- true regression function f can often be wellapproximated by low-order polynomials in local regions

Comparison of a degree-14 polynomal and a natural cubic spline, each with 15df.

ns(age, df=14) poly(age, deg=14)

60

70

80

why smoothing splines?

 regularization (shrinkage) can help in Smoothing Stestimating coefficients from linear models the choice of knot selection can also be subjective

This section is a little bit mathematical

Consider this criterion for fitting a smooth function g(x) to

"RSS term": measures training error

$$\underset{g \in \mathcal{S}}{\text{minimize}} \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

penalty term:

- penalizes a measure of the smoothness of a function
- the penalty equals 0 when the function g is linear
- the penalty becomes large if the function is very wiggly

This section is a little bit mathematical

Consider this criterion for fitting a smooth function g(x) to some data:

$$\underset{g \in \mathcal{S}}{\text{minimize}} \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

• The first term is RSS, and tries to make g(x) match the data at each x_i .

This section is a little bit mathematical

Consider this criterion for fitting a smooth function g(x) to some data:

$$\underset{g \in \mathcal{S}}{\text{minimize}} \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

- The first term is RSS, and tries to make g(x) match the data at each x_i .
- The second term is a roughness penalty and controls how wiggly g(x) is. It is modulated by the tuning parameter $\lambda > 0$.

This section is a little bit mathematical

Consider this criterion for fitting a smooth function g(x) to some data:

$$\underset{g \in \mathcal{S}}{\text{minimize}} \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

- The first term is RSS, and tries to make g(x) match the data at each x_i .
- The second term is a roughness penalty and controls how wiggly g(x) is. It is modulated by the tuning parameter $\lambda > 0$.
 - The smaller λ , the more wiggly the function, eventually interpolating y_i when $\lambda = 0$.

This section is a little bit mathematical

Consider this criterion for fitting a smooth function g(x) to some data:

$$\underset{g \in \mathcal{S}}{\text{minimize}} \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

- The first term is RSS, and tries to make g(x) match the data at each x_i .
- The second term is a roughness penalty and controls how wiggly g(x) is. It is modulated by the tuning parameter $\lambda > 0$.
 - The smaller λ , the more wiggly the function, eventually interpolating y_i when $\lambda = 0$.
 - As $\lambda \to \infty$, the function g(x) becomes linear.

Smoothing Splines continued

The solution is a natural cubic spline, with a knot at every unique value of x_i . The roughness penalty still controls the roughness via λ .

Smoothing Splines continued

The solution is a natural cubic spline, with a knot at every unique value of x_i . The roughness penalty still controls the roughness via λ .

Some details

• Smoothing splines avoid the knot-selection issue, leaving a single λ to be chosen.

Smoothing Splines continued

The solution is a natural cubic spline, with a knot at every unique value of x_i . The roughness penalty still controls the roughness via λ .

Some details

- Smoothing splines avoid the knot-selection issue, leaving a single λ to be chosen.
- The algorithmic details are too complex to describe here. In R, the function smooth.spline() will fit a smoothing spline.

Smoothing Splines continued

The solution is a natural cubic spline, with a knot at every unique value of x_i . The roughness penalty still controls the roughness via λ .

Some details

- Smoothing splines avoid the knot-selection issue, leaving a single λ to be chosen.
- The algorithmic details are too complex to describe here. In R, the function smooth.spline() will fit a smoothing spline.
- The vector of n fitted values can be written as $\hat{\mathbf{g}}_{\lambda} = \mathbf{S}_{\lambda} \mathbf{y}$, where \mathbf{S}_{λ} is a $n \times n$ matrix (determined by the x_i and λ).
- The effective degrees of freedom are given by

$$df_{\lambda} = \sum_{i=1}^{n} {\{\mathbf{S}_{\lambda}\}_{ii}}.$$

Smoothing Splines continued — choosing λ

We can specify df rather than λ!
 In R: smooth.spline(age, wage, df = 10)

Smoothing Splines continued — choosing λ

We can specify df rather than λ!
 In R: smooth.spline(age, wage, df = 10)

• The leave-one-out (LOO) cross-validated error is given by

$$RSS_{cv}(\lambda) = \sum_{i=1}^{n} (y_i - \hat{g}_{\lambda}^{(-i)}(x_i))^2 = \sum_{i=1}^{n} \left[\frac{y_i - \hat{g}_{\lambda}(x_i)}{1 - \{\mathbf{S}_{\lambda}\}_{ii}} \right]^2.$$

In R: smooth.spline(age, wage)

Smoothing Spline

Local Regression

Local Regression

With a sliding weight function, we fit separate linear fits over the range of X by weighted least squares.

See text for more details, and loess() function in R.

Generalized Additive Models

Allows for flexible nonlinearities in several variables, but retains the additive structure of linear models.

$$y_i = \beta_0 + f_1(x_{i1}) + f_2(x_{i2}) + \cdots + f_p(x_{ip}) + \epsilon_i.$$

$$(48) \text{ HS } \text{ HS } \text{ Coll } \text{ Coll$$

• Can fit a GAM simply using, e.g. natural splines:

$$lm(wage \sim ns(year, df = 5) + ns(age, df = 5) + education)$$

• Can fit a GAM simply using, e.g. natural splines:

```
\texttt{lm}(\texttt{wage} \sim \texttt{ns}(\texttt{year}, \texttt{df} = 5) + \texttt{ns}(\texttt{age}, \texttt{df} = 5) + \texttt{education})
```

• Coefficients not that interesting; fitted functions are. The previous plot was produced using plot.gam.

• Can fit a GAM simply using, e.g. natural splines:

```
\texttt{lm}(\texttt{wage} \sim \texttt{ns}(\texttt{year}, \texttt{df} = \texttt{5}) + \texttt{ns}(\texttt{age}, \texttt{df} = \texttt{5}) + \texttt{education})
```

- Coefficients not that interesting; fitted functions are. The previous plot was produced using plot.gam.
- Can mix terms some linear, some nonlinear and use anova() to compare models.

• Can fit a GAM simply using, e.g. natural splines:

```
\texttt{lm}(\texttt{wage} \sim \texttt{ns}(\texttt{year}, \texttt{df} = \texttt{5}) + \texttt{ns}(\texttt{age}, \texttt{df} = \texttt{5}) + \texttt{education})
```

- Coefficients not that interesting; fitted functions are. The previous plot was produced using plot.gam.
- Can mix terms some linear, some nonlinear and use anova() to compare models.
- Can use smoothing splines or local regression as well:

$$\texttt{gam}(\texttt{wage} \sim \texttt{s}(\texttt{year}, \texttt{df} = \texttt{5}) + \texttt{lo}(\texttt{age}, \texttt{span} = .\texttt{5}) + \texttt{education})$$

• Can fit a GAM simply using, e.g. natural splines:

```
\texttt{lm}(\texttt{wage} \sim \texttt{ns}(\texttt{year}, \texttt{df} = 5) + \texttt{ns}(\texttt{age}, \texttt{df} = 5) + \texttt{education})
```

- Coefficients not that interesting; fitted functions are. The previous plot was produced using plot.gam.
- Can mix terms some linear, some nonlinear and use anova() to compare models.
- Can use smoothing splines or local regression as well:

$$\texttt{gam}(\texttt{wage} \sim \texttt{s}(\texttt{year}, \texttt{df} = \texttt{5}) + \texttt{lo}(\texttt{age}, \texttt{span} = .\texttt{5}) + \texttt{education})$$

• GAMs are additive, although low-order interactions can be included in a natural way using, e.g. bivariate smoothers or interactions of the form ns(age,df=5):ns(year,df=5).

GAMs for classification

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + f_1(X_1) + f_2(X_2) + \dots + f_p(X_p).$$

 $gam(I(wage > 250) \sim year + s(age, df = 5) + education, family = binomial)$