

Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)

Datenströme

- Sehr viele Daten, die mit hoher Rate ankommen
- Beispiele: Internetdatenverkehr, Webcrawls, Börsentransaktionen, Sensordaten

Typisches Szenario

- Kann nicht alle Daten abspeichern
- Algorithmus soll schnell einzelnen Daten verarbeiten
- Will Statistik der Daten aufrechterhalten

Das Datenstrommodell

- Jedes Element ist Integer aus Universum $U = \{1, ..., N\}$
- Ein Datenstrom ist eine Sequenz $a = (a_1, ..., a_n)$ von n Elementen aus dem Universum; Elemente können mehrfach vorkommen
- n ist unbekannt
- Speicherplatz $\mathbf{O}((\log(nN))^c)$ für n groß genug und geeignete Konstante c
- Die Sequenz a wird Element für Element verarbeitet; freier Zugriff auf den Datenstrom ist nicht möglich

Der Häufigkeitsvektor

• Der Häufigkeitsvektor F ist ein |U|-dimensionaler Vektor, der für jedes Element $x \in U$ die Anzahl F(x) seiner Vorkommen im Datenstrom enthält

Aufgabe: Die fehlende Zahl

- Annahme: Im Datenstrom kommen alle Elemente aus U genau einmal vor bis auf ein Element, das nicht vorkommt
- Wie kann man die fehlende Zahl finden? (mit O(log N) Speicher)

Definition (Mehrheitselement)

Ein Element ist ein Mehrheitselement, wenn es häufiger im Datenstrom auftritt als alle andere Elemente zusammen, d.h. wenn es mehr als n/2 mal vorkommt.

Das Mehrheitsproblem

- <u>Annahme:</u> Ein Mehrheitselement existiert
- Aufgabe: Finde dieses Element

Idee

 Finde solange zwei unterschiedliche Elemente und eliminiere sie aus dem Datenstrom, bis nur ein Element übrig bleibt

Lemma 39

Das übriggebliebene Element ist Mehrheitselement.

Beweis

Der Datenstrom hat n Elemente.

Idee

 Finde solange zwei unterschiedliche Elemente und eliminiere sie aus dem Datenstrom, bis nur ein Element übrig bleibt

Lemma 39

Das übriggebliebene Element ist Mehrheitselement.

Beweis

 Der Datenstrom hat n Elemente. Jedes mal, wenn eine Kopie des Mehrheitselements x aus dem Datenstrom entfernt wurde, wurde auch ein anderes Element entfernt.

Idee

 Finde solange zwei unterschiedliche Elemente und eliminiere sie aus dem Datenstrom, bis nur ein Element übrig bleibt

Lemma 39

Das übriggebliebene Element ist Mehrheitselement.

Beweis

Der Datenstrom hat n Elemente. Jedes mal, wenn eine Kopie des Mehrheitselements x aus dem Datenstrom entfernt wurde, wurde auch ein anderes Element entfernt. Da x mehr als n/2 mal vorkommt, kann es nicht vollständig entfernt werden, da man sonst mehr als n Elemente entfernen müsste.

Idee

 Finde solange zwei unterschiedliche Elemente und eliminiere sie aus dem Datenstrom, bis nur ein Element übrig bleibt

Lemma 39

Das übriggebliebene Element ist Mehrheitselement.

Beweis

Der Datenstrom hat n Elemente. Jedes mal, wenn eine Kopie des Mehrheitselements x aus dem Datenstrom entfernt wurde, wurde auch ein anderes Element entfernt. Da x mehr als n/2 mal vorkommt, kann es nicht vollständig entfernt werden, da man sonst mehr als n Elemente entfernen müsste.

Heavy Hitter Problem

- Gegeben Parameter ε
- Finde Menge M, die alle Elemente $x \in U$ mit $F(x) > \varepsilon n$ enthält und kein Element mit $F(x) < \varepsilon n/2$

Bemerkungen

- Für $\varepsilon = 0.5$ ist dies (ungefähr) das Mehrheitsproblem
- Es ist nicht möglich mit wenig Speicherplatz genau die Elemente $x \in U$ mit $F(x) > \varepsilon n$ zu finden

Anwendungen von Heavy Hitters: DDoS Angriffe

- Internet Monitoring
- Ziel-IPs der Pakete im Internetdatenverkehr werden beobachtet
- Gibt es Adressen, die sehr viele Pakete erhalten?

KSP-Algorithmus (Karp, Shenker und Papadimitriou)

- 1. Bezeichne $a[1] \dots a[n]$ den Datenstrom
- $2. K \leftarrow \emptyset$
- 3. **new** array count $[1..[2/\epsilon]]$ indiziert durch K
- ➤ Indizierung durch

4. **for** $i \leftarrow 1$ **to** n **do**

- > AVL-Bäume realisiert
- 5. **if** a[i] ist in K **then** count $a[i] \leftarrow \text{count}[a[i]] + 1$
- 6. **else** insert a[i] in K; set count $a[i] \leftarrow 1$
- 7. if $|K| > \lceil 2/\epsilon \rceil$ then
- 8. for all $x \in K$ do
- 9. $\operatorname{count}[x] \leftarrow \operatorname{count}[x] 1$;
- 10. **if** count[x] = 0 **then** delete x from K
- 11. **return** alle $x \in K$ mit count $[x] \ge \varepsilon n/2$

Satz 40

Der KSP-Algorithmus findet alle Elemente $x \in U$ mit $F(x) > \varepsilon n$ und gibt kein Element mit $F(x) < \varepsilon n/2$ zurück.

Satz 40

Der KSP-Algorithmus findet alle Elemente $x \in U$ mit $F(x) > \varepsilon n$ und gibt kein Element mit $F(x) < \varepsilon n/2$ zurück.

Beweis

• Da der count eines Elements höchstens so groß ist wie die Anzahl seiner Vorkommen im Datenstrom, wird kein Element mit $F(x) < \varepsilon n/2$ zurückgegeben.

Satz 40

Der KSP-Algorithmus findet alle Elemente $x \in U$ mit $F(x) > \varepsilon n$ und gibt kein Element mit $F(x) < \varepsilon n/2$ zurück.

- Da der count eines Elements höchstens so groß ist wie die Anzahl seiner Vorkommen im Datenstrom, wird kein Element mit $F(x) < \varepsilon n/2$ zurückgegeben.
- Wir müssen noch zeigen, dass jedes $x \in U$ mit $F(x) > \varepsilon n$ zurückgegeben wird.

Satz 40

Der KSP-Algorithmus findet alle Elemente $x \in U$ mit $F(x) > \varepsilon n$ und gibt kein Element mit $F(x) < \varepsilon n/2$ zurück.

- Da der count eines Elements höchstens so groß ist wie die Anzahl seiner Vorkommen im Datenstrom, wird kein Element mit $F(x) < \varepsilon n/2$ zurückgegeben.
- Wir müssen noch zeigen, dass jedes $x \in U$ mit $F(x) > \varepsilon n$ zurückgegeben wird.
- Bei jeder Eliminierung eines Vorkommens von x werden auch $\lceil 2/\epsilon \rceil$ andere Symbole eliminiert.

Satz 40

Der KSP-Algorithmus findet alle Elemente $x \in U$ mit $F(x) > \varepsilon n$ und gibt kein Element mit $F(x) < \varepsilon n/2$ zurück.

- Da der count eines Elements höchstens so groß ist wie die Anzahl seiner Vorkommen im Datenstrom, wird kein Element mit $F(x) < \varepsilon n/2$ zurückgegeben.
- Wir müssen noch zeigen, dass jedes $x \in U$ mit $F(x) > \varepsilon n$ zurückgegeben wird.
- Bei jeder Eliminierung eines Vorkommens von x werden auch $\lceil 2/\epsilon \rceil$ andere Symbole eliminiert.
- Es können daher maximal $n/[2/\varepsilon] \le \varepsilon n/2$ Kopien eines Elements entfernt werden.

Satz 40

Der KSP-Algorithmus findet alle Elemente $x \in U$ mit $F(x) > \varepsilon n$ und gibt kein Element mit $F(x) < \varepsilon n/2$ zurück.

- Da der count eines Elements höchstens so groß ist wie die Anzahl seiner Vorkommen im Datenstrom, wird kein Element mit $F(x) < \varepsilon n/2$ zurückgegeben.
- Wir müssen noch zeigen, dass jedes $x \in U$ mit $F(x) > \varepsilon n$ zurückgegeben wird.
- Bei jeder Eliminierung eines Vorkommens von x werden auch $\lceil 2/\varepsilon \rceil$ andere Symbole eliminiert.
- Es können daher maximal $n/[2/\varepsilon] \le \varepsilon n/2$ Kopien eines Elements entfernt werden.
- Gilt also $F(x) > \varepsilon n$, so sind am Ende des Datenstroms noch mehr als $\varepsilon n/2$ Kopien übrig und das Element wird zurückgegeben.

Satz 40

Der KSP-Algorithmus findet alle Elemente $x \in U$ mit $F(x) > \varepsilon n$ und gibt kein Element mit $F(x) < \varepsilon n/2$ zurück.

- Da der count eines Elements höchstens so groß ist wie die Anzahl seiner Vorkommen im Datenstrom, wird kein Element mit $F(x) < \varepsilon n/2$ zurückgegeben.
- Wir müssen noch zeigen, dass jedes $x \in U$ mit $F(x) > \varepsilon n$ zurückgegeben wird.
- Bei jeder Eliminierung eines Vorkommens von x werden auch $\lceil 2/\varepsilon \rceil$ andere Symbole eliminiert.
- Es können daher maximal $n/[2/\varepsilon] \le \varepsilon n/2$ Kopien eines Elements entfernt werden.
- Gilt also $F(x) > \varepsilon n$, so sind am Ende des Datenstroms noch mehr als $\varepsilon n/2$ Kopien übrig und das Element wird zurückgegeben.

```
KSP-Algorithm
                                                      Papadimitriou)
                       K wird als AVL-Baum
      Bezeichne
                               realisiert.
      K \leftarrow \emptyset
3.
      new array count [1..[2/\epsilon]] indiziert durch K
                                                                      > Indizierung durch
      for i \leftarrow 1 to n do
4.
                                                                      AVL-Bäume realisiert
        if a[i] ist in K then count [a[i]] \leftarrow \text{count}[a[i]] + 1
5.
        else insert a[i] in K; set count [a[i]] \leftarrow 1
6.
        if |K| > \lceil 2/\epsilon \rceil then
8.
          for all x \in K do
             count[x] \leftarrow count[x] - 1;
10.
             if count[x] = 0 then delete x from K
      return alle x \in K mit count[x] \ge \varepsilon n/2
```

```
KSP-Algorithm
                                                       Papadimitriou)
                        K wird als AVL-Baum
      Bezeichne
                               realisiert.
      K \leftarrow \emptyset
3.
      new array count[1..[2/\epsilon]] indiziert durch K
      for i \leftarrow 1 to n do
4.
        if a[i] ist in K then count [a[i]] \leftarrow \text{count}[a[i]]
5.
        else insert a[i] in K; set count a[i] \leftarrow 1
6.
        if |K| > [2/\epsilon] then
8.
           for all x \in K do
9.
             count|x| \leftarrow count|x| - 1;
10.
             if count[x] = 0 then delete x from K
      return alle x \in K mit count |x| \ge \varepsilon n/2
```

count ist unsortiertes Feld.
Jeder Knoten des AVL-Baums
speichert den zugehörigen Index
des Arrays.

KSP-Algorithm K wird als AVL-Baum Bezeichne realisiert. $K \leftarrow \emptyset$ 3. **new** array count[1..[2/ ε]] indiziert durch K for $i \leftarrow 1$ to n do 4. **if** a[i] ist in K **then** count $[a[i]] \leftarrow \text{count}[a[i]]$ 5. **else** insert a[i] in K; set count $a[i] \leftarrow 1$ 6. if $|K| > [2/\epsilon]$ then 8. for all $x \in K$ do $count|x| \leftarrow count|x| - 1$; 10. **if** count[x] = 0 **then** delete x from K

return alle $x \in K$ mit count $[x] \ge \varepsilon n/2$

Papadimitriou)

count ist unsortiertes Feld.

Jeder Knoten des AVL-Baums
speichert den zugehörigen Index
des Arrays.

Wird ein Knoten aus dem Baum gelöscht, so wird der zugehörige Eintrag in count gelöscht.

Satz 41

Die Laufzeit des KSP-Algorithmus ist $\mathbf{0}(n \log(1/\epsilon))$.

Beweis:

Zeile 5 und 6 benötigen O(log(1/ε)) Zeit
 (Einfügen in AVL-Baum und Suche in AVL-Baum)

Satz 41

Die Laufzeit des KSP-Algorithmus ist $\mathbf{O}(n \log(1/\varepsilon))$.

- Zeile 5 und 6 benötigen **0**(log(1/ε)) Zeit
 (Einfügen in AVL-Baum und Suche in AVL-Baum)
- Zeile 8 wird $\mathbf{O}(1/\varepsilon)$ mal wiederholt

Satz 41

Die Laufzeit des KSP-Algorithmus ist $\mathbf{O}(n \log(1/\varepsilon))$.

- Zeile 5 und 6 benötigen **0**(log(1/ε)) Zeit
 (Einfügen in AVL-Baum und Suche in AVL-Baum)
- Zeile 8 wird $\mathbf{0}(1/\varepsilon)$ mal wiederholt
- Zeile 10 benötigt $\mathbf{O}(\log(1/\varepsilon))$ Laufzeit

Satz 41

Die Laufzeit des KSP-Algorithmus ist $\mathbf{O}(n \log(1/\varepsilon))$.

- Zeile 5 und 6 benötigen **0**(log(1/ε)) Zeit
 (Einfügen in AVL-Baum und Suche in AVL-Baum)
- Zeile 8 wird $\mathbf{0}(1/\varepsilon)$ mal wiederholt
- Zeile 10 benötigt $O(\log(1/\epsilon))$ Laufzeit
- Gesamtlaufzeit: $\mathbf{0}(n/\varepsilon \log(1/\varepsilon))$

Satz 41

Die Laufzeit des KSP-Algorithmus ist $\mathbf{O}(n \log(1/\varepsilon))$.

- Zeile 5 und 6 benötigen **0**(log(1/ε)) Zeit
 (Einfügen in AVL-Baum und Suche in AVL-Baum)
- Zeile 8 wird $\mathbf{O}(1/\varepsilon)$ mal wiederholt
- Zeile 10 benötigt $\mathbf{O}(\log(1/\varepsilon))$ Laufzeit
- Gesamtlaufzeit: $\mathbf{O}(n/\varepsilon \log(1/\varepsilon))$
- <u>Verbesserung:</u> Die Laufzeit von Zeile 8 und 9 ist insgesamt **0**(n log(1/ε)), da jedes Element, das gelöscht wird, vorher eingefügt wurde und es insgesamt n Elemente gibt

Satz 41

Die Laufzeit des KSP-Algorithmus ist $\mathbf{O}(n \log(1/\varepsilon))$.

- Zeile 5 und 6 benötigen **0**(log(1/ε)) Zeit
 (Einfügen in AVL-Baum und Suche in AVL-Baum)
- Zeile 8 wird $\mathbf{O}(1/\varepsilon)$ mal wiederholt
- Zeile 10 benötigt $\mathbf{O}(\log(1/\varepsilon))$ Laufzeit
- Gesamtlaufzeit: $\mathbf{O}(n/\varepsilon \log(1/\varepsilon))$
- <u>Verbesserung:</u> Die Laufzeit von Zeile 8 und 9 ist insgesamt $\mathbf{0}(n \log(1/\epsilon))$, da jedes Element, das gelöscht wird, vorher eingefügt wurde und es insgesamt n Elemente gibt

Zusammenfassung

Datenströme

Sehr große Datenmengen, die als Sequenz auftreten

Datenstrommodell

- Daten treten als Sequenz auf
- Wenig Speicher
- Die Sequenz kann nur einmal und nur in der vorgegebenen Reihenfolge gelesen werden

KSP-Algorithmus

Findet "Heavy Hitter"