Framework per reti 5G

1) NESAS

L'articolo "<u>The Digital Revolution with NESAS Assessment and Evaluation</u>" presenta il Network Equipment Security Assurance Scheme (NESAS) come framework di riferimento per la sicurezza delle reti mobili, con un ruolo centrale nello sviluppo e nella protezione delle infrastrutture 5G.

Definizione e obiettivi

NESAS è stato sviluppato da 3GPP e GSMA per l'industria mobile con l'intento di stabilire uno standard di sicurezza comune e dei case test di sicurezza sulle apparecchiature di rete e sui processi dei fornitori. Fornisce una base di sicurezza riconosciuta e trasparente, così che operatori ed autorità competenti possano valutare i livelli di sicurezza delle proprie tecnologie.

Funzionamento

- I fornitori documentano i propri processi di design, sviluppo e performance.
- Auditor accreditati valutano la conformità ai requisiti.
- Laboratori indipendenti eseguono test definiti da 3GPP (SCAS).
- I risultati vengono condivisi con gli operatori.

Rilevanza per il 5G

Il 5G introduce nuove superfici di attacco (cloud, IoT, slicing, MIMO, edge computing). NESAS risponde a queste sfide fornendo un modello unificato per:

- sicurezza per l'intero ciclo di vita del prodotto;
- valutazione comparabile tra fornitori;
- maggiore resilienza delle infrastrutture critiche.

Benefici per gli attori

- Operatori di rete: meno test duplicati, più trasparenza e fiducia.
- Fornitori: standardizzazione, riduzione costi di certificazione e promozione di una cultura di "security by design".
- Enti ed autorità: schema globale, industrialmente finanziato, coerente con i requisiti di sicurezza nazionale.

Contesto europeo

Nell'articolo NESAS viene collegata con le iniziative di ENISA e il Cybersecurity Act dell'UE. NESAS viene visto come base per futuri schemi di certificazione europei dedicati al 5G, con l'obiettivo di ridurre rischi legati alla dipendenza da un singolo fornitore e aumentare la resilienza delle reti.

Conclusione

NESAS è quindi un framework fondamentale per valutare e garantire un alto standard di sicurezza delle reti 5G. Non è un framework di testing generico, ma uno schema specifico per valutare e certificare l'affidabilità delle infrastrutture 5G nel mercato globale.

2) LoadCore

Il documento " $\underline{LoadCore^{TM}} - \underline{4G/5G\ Core\ Network\ Test\ Solution}$ " descrive LoadCore, una piattaforma sviluppata da Keysight per la validazione completa del 4G/5G Core Network.

Definizione e obiettivi

LoadCore è un framework di test che simula utenti, nodi e interfacce dell'intera rete core. È progettato per validare la scalabilità, l'affidabilità e la qualità dei servizi 5G in scenari reali, inclusi network slicing, edge computing, VoNR (Voice over New Radio) e servizi IoT critici.

Capacità di testing

Simulazione end-to-end o isolamento di singoli nodi (AMF, SMF, UPF, UDM, NRF, ecc.).

- Simulazione del comportamento degli utenti, anche milioni (registrazione, autenticazione, handover, roaming).
- Supporto a test multi-accesso (4G/5G iRAT), slicing e MEC.
- Validazione sia del control plane (sessioni, signaling HTTP/2, SBA) sia dell'user plane (traffico dati, voce, video con metriche QoE).
- Piena integrazione cloud-native (VM o container), compatibile con AWS, Azure, Google Cloud, OpenShift e VMware.

Rilevanza per il 5G

LoadCore è progettato specificamente per il 5G Core, supportando architetture cloud-native basate su microservizi. Permette di riprodurre scenari reali e valutare la rete in condizioni critiche, fornendo indicazioni sulle performance e sulla sicurezza prima del deployment commerciale.

Benefici principali

- Operatori di rete: possono garantire affidabilità, QoS e resilienza della rete prima della messa in produzione.
- Fornitori e integratori: ottengono un framework standard per validare NF (Network Functions) e interfacce.
- Sicurezza: include strumenti per la verifica di conformità alle specifiche 3GPP SCAS, aumentando la fiducia nella robustezza delle implementazioni 5G.

Conclusione

LoadCore si configura come un framework essenziale per il testing del 5G Core Network, integrando validazione funzionale, prestazionale e di sicurezza. È complementare a schemi come NESAS, che forniscono la valutazione di sicurezza a livello di processo e standard, mentre LoadCore permette la verifica pratica delle funzionalità e della resilienza della rete in scenari realistici.