Unveiling the secrets of the primary structure of Phl p 4

Molecular cloning of the major pollen allergen from Timothy Grass (Phleum pratens)

A. Nandy, S. Buchhop, R. Suck, A. Petersen*, O. Cromwell, H. Fiebig

Allergopharma Joachim Ganzer KG, R&D Department, 21465 Reinbek, Germany *Research Center Borstel, Biochemical & Molecular Allergology, Borstel, Germany Contact e-mail: andreas.nandy@allergopharma.de

Introduction

Grass pollen allergy is one of the most common allergies worldwide. Recombinant allergens are believed to represent the future of allergen specific immunotherapy. Whereas the cDNA sequences of several grass pollen allergens are known, the coding sequence for Phi p 4, a major grass pollen allergen recognised by more than 70 % of altergic patients (1-5), has so far escaped detection (5).

Methods

A set of degenerate oligonucleotide primers was design based on N-terminal and internal protein sequences obtain from purified natural PhI p 4 (Tab. 1), in a complex PC strategy (Fig. 1) involving degenerate and specific prime the Phl p 4 gene could be amplified from genomic DNA a from cDNA derived from Phleum pratense pollen.

Results

The deduced amino acid sequence of full length Phl p 4 contains 500 amino acids, with a calculated MW of 55,7 kDa and a calculated basic pl of 8,8 (Tab. 2). The identity of the Phl p 4 sequence has been confirmed by positive reaction of recombinant Phl p 4 with specific monoclonal antibodies (Fig. 2) and by reaction with IgE from grass pollen allergics (Fig. 3). A sequence database homology search revealed similarities to a group of berberine bridge enzyme-like oxido-reductases (Fig. 4).

Tab. 2 Phip 4 Sequence analysis

table second	Piumites	W be watch!	\$ by	
444 4	*	2.00	400	
2.74	*	2000	835	
10 000 10 000 10 000 10 000	35	415	2.00	
4 46	325	5.00	4.50	
F 1994	26	803H	486	
\$ 36	45	4.00	346	
et etb	*	2000	200	
	20	5.00	385	
. An	26	455	3.86	
Leu	63	620	P.S.	
Noc	25	289 400	236	
Y AAP	25 30	680	2.46	
SS .	- S	3.40	5000	
AN	×	622	486	
8 80	- Si	800	6.44	
8 86° 7 78	ãc	382	420	
y 90	36	720	8.00	
S 550	34	434	2980	
1 59	39	768	4,20	
Surges rece		Polyadaye d		
DE NAMED I	1121211	86,75×30 500 en no estor 6,800 4		
600	×			
SECRETOCOD	cpatol .			
Glycoopia	x cate period			
2000000		Van *		

* To date the libraring of a Soviet co-Factor mout not be provided for published nection or recognishment Pitt is 4.

	585	448	0.00	1	916	MORRED ALGUE WISIP PREEM ARKSEP	1	202	Neemo
	X.	N.07 8004	480	1 : 17	916	NO PROCE AND RESIDE	13	-10	Necoro
•	25	430	246			YORKE ASSESS SEGUE	1		Nescolo
	*	2000	500	. , –		DANG AND DE COURT AND			Necesio
	20	5.00	236			VEROX LANCON	+:-	11	Negocia
,		670	A.S.C			EWAGE RESIDENCE CAN	 	421	365
	~	220	2,56	1 1 1	~ X	SAME ASSESS ASSESSED AND COMPANY	<u>>></u>	A321	C20-C
	35	400	3.66		> 3	SEXTR NUMBER	560	66	COC
	- X	2.50	9900 9000	1 1 6	> 4	KNSKID DNOKA W	194	229	2336
	l ŝ	622	ANG	1 1 5	20	APRICA VIDE	200	340	Ass.
	32	800	6.41			BRODY WARRY CLASSIC Y	37S	439	(38%
	ac	350	4.20	() () () () () () () ()	-	DOCUMENT CONTROL			74455
	4C	7.20	8.00	1 1000	****	sequencing of president reduced PNN a 4 and of 4 as	anasta	and the	seed town
	32	430	2000						
	34	768	4.20			r Childr steam age remeded the peoplete sequent	300: 1.1	4.0 2.	1 24 1/4
				i cecore	MARKS :	Microsoft actionics of professor Philips 4.			
KIN.		Det	a desper	,	~ ~ ~				

Tab. 1 N-terminal and internal peptide sequences of Phi p 4

Fig. 2 Reaction of recombinant Phi p.4 with monoclored antibodies

Fig. 3 Resolven of recombinant Philip 4 with tell of grass poten atterpic subjects.

Fig. 1 PN p 4 Cloreng strategy

continues CSVA.

Laced on the project of a specially original extended primer (SPRSIZ) was designed for the steed to a 21 CR approach to accordance with the entropy of the primer (SPRSIZ) was designed for the steed to a 21 CR approach to accordance with the primer with the entropy of the en

inventions for planguage.

With this for planguage is considered the construction of t

Fig. 4 Philip 4 sequence and alignment with members of the betterine bidge enzyme (BBE) existoreductase family

Conclusion

The ability to produce recombinant PhI p 4, a major allergen of grass pollen with one of the highest lgE binding frequencies measured in sera of pollen allergic patients, may represent a key sten for the development of future diagnostic and immunolherapeutic preparations

Reference

- 1) R. Suck, S. Hagen, O. Cromerell, H. Fiebig (2009), Cli Exp. Allergy, 30, 1935-1402 2) R.E. Rossi, G. Moressterolo, S. Moressterolo (2001), Allergy 56, 1180-11859 9. S. Starwoll, J. Lidholm, R. Tramberg, A. DeVVitt, P. Elteresteiner, J. Swotods, A. Buggista-Schretter, S. Spitzuer, L. Vengelista, L. Hazend-Shirazi, W.A. Spor