# Magic States Distillation Using $\Delta$ -Toric (good qLDPC?).

David Ponarovsky

January 4, 2024

Let  $|f\rangle$  be a codeword in  $C_X$ , and let  $X_g$  be the indicator that equals 1 if f has support on  $X_g$ , and 0 otherwise. Observes that applying  $T^{\otimes}$  on  $|f\rangle$  yilds the state:

$$\begin{split} T^{\otimes n} \left| f \right\rangle &= T^{\otimes n} \left| \sum_{g} X_g g \right\rangle = \exp \left( i \pi / 4 \sum_{g} X_g |g| - 2 \cdot i \pi / 4 \sum_{g,h} X_g X_h |g \cdot h| \right. \\ &+ 4 \cdot i \pi / 4 \sum_{g,h} X_g X_h X_l |g \cdot h \cdot l| - 8 \cdot i \pi / 4 \cdot \text{ integers } \right) \left| f \right\rangle \\ &= \exp \left( i \pi / 4 \sum_{g} X_g |g| - 2 \cdot \pi / 4 \sum_{g,h} X_g X_h |g \cdot h| + 4 \cdot i \pi / 4 \sum_{g,h} X_g X_h X_l |g \cdot h \cdot l| \right) \left| f \right\rangle \end{split}$$

#### 1 Many to One.

Assume that f is supported on exactly one generator. Then we have that  $T^{\otimes n}|f\rangle = e^{i\pi|g|/4}|f\rangle$ . Therefore, if |g| = 4k + 1 then we are done.

## 2 Using Quntum Error Correction Codes.

Now assume that the code  $C_X$  is the quantum Tanner code, denote by G, A, B the group and the two generator sets that are used for constructing the square complex.

Claim 2.1. Consider g,h that are supported on the same  $v \in V$ . We will call such a pair a source-sharing pair. Suppose that for any we have that  $|g \cdot h|$  is even. Then there is a Clifford gate that computes  $|f\rangle \mapsto \exp\left(-i\pi \sum_{g,h \text{ source-sharing }} X_g X_h |g \cdot h|\right) |f\rangle$ .

## 3 Fail Attempt.

In addition, let us assume the existence of  $d \in G$  such that d is non-identity and commutes with any element in  $A \cup B$ . Then, observe that multiplying by d preserves adjacency on the complex. Namely, if  $\{u,v\} \in E$  then also  $\{du,dv\} \in E$ .

Consider  $|f\rangle$  such that if  $X_g$  is not zero, and g is associated with a local codeword  $c \in C_A \otimes C_B$  on vertex v, then the generator associated with the local codeword c on vertex  $d \cdot v$  also supports f, denoted by g'. Thus, the exponent above becomes:



Figure 1: Quantum Circuit for distillation.

$$\begin{split} &=\exp\left(i\pi/4\sum_{g}X_{g}|g|-2\cdot\pi/4\sum_{g,h\in G/a}X_{g}X_{h}|g\cdot h|+X_{g'}X_{h'}|g\cdot h|\\ &+4\cdot i\pi/4\sum_{g,h\in G/a}X_{g}X_{h}X_{l}|g\cdot h\cdot l|+X_{g'}X_{h'}X_{l'}|g\cdot h\cdot l|\right)|f\rangle\\ &=\exp\left(i\pi/4\sum_{g}X_{g}|g|-2\cdot2\cdot\pi/4\sum_{g,h\in G/a}X_{g}X_{h}|g\cdot h|+2\cdot4\cdot i\pi/4\sum_{g,h\in G/a}X_{g}X_{h}X_{l}|g\cdot h\cdot l|\right)|f\rangle\\ &=\exp\left(i\pi/4\sum_{g}X_{g}|g|-i\pi\sum_{g,h\in G/a}X_{g}X_{h}|g\cdot h|\right)|f\rangle \end{split}$$

Claim 3.1. The gate 
$$|f\rangle \mapsto \exp\left(-i\pi \sum_{g,h\in G/a} X_g X_h |g\cdot h|\right) |f\rangle$$
 is in the Clifford.

*Proof.* Just decode f and apply  $\mathbf{CZ}$  between any pair of qubits corresponding to the generators g,h such that  $g \cap h = 1$ . Then encode the state again. Observes that  $\mathbf{CZ}$  is a Clifford gate, and by the fact that the code is a CSS code then the decoder and the encoder are both in the Clifford.

Let's denote the circuit defined in Claim 3.1 by  $\Lambda$ . So we have that:

$$\Lambda^{\dagger} \exp\left(i\pi/4\sum_{g} X_{g}|g| - i\pi\sum_{g,h \in G/a} X_{g}X_{h}|g \cdot h|\right)|f\rangle$$

$$= \exp\left(i\pi/4\sum_{g} X_{g}|g|\right)|f\rangle$$

Maybe what do we need is to arrange in some way |g|+|g'|=4k+1 and  $\langle g,f\rangle=\langle g',f'\rangle$ 

**Claim 3.2.** For any m codewords  $x_1...x_m$  there is a set of coordinates I and  $|I| < \alpha n$ . Such that:

$$\sum_{j \in [n]/I} x_a^j x_b^j = 0$$

For any pair  $x_a, x_b$ .

Claim 3.3. For any m codewords  $x_1...x_m$  there is a set of coordinates I and  $|I| < \alpha n$ . Such that:

$$\sum_{a,b,j\in[n]/I} x_a^j x_b^j = 4k$$

For any pair  $x_a, x_b$ .

Claim 3.4. Let C be a code at rate  $\rho(C) > 7/8$  has at least one codeword  $x \in C$ , such that |x| = 8.

**Definition 3.1.** We will say that a code C is (l,m)-genorthogonal if there exists a generator set G for C such that for any  $I \subset G$  such that 1 < |I| < l we have that:

$$\sum_{i \in [n]} \prod_{g_j \in I \subset G} g_j^i =_m 0$$

Claim 3.5. If there exists a single (l,m)-genorthogonal code for a finite length  $\Delta$ , then there is a family of (l,m)-genorthogonal good codes. Moreover, if there exists a generator in  $C_0$  of weight  $|\cdot|_m = 1$ , then there exists a family that also has at least one generator of weight  $|\cdot|_m = 1$ .

*Proof.* Denote by  $C_0 = \Delta[1, \rho_0, \delta_0]$  an (l, m)-genorthogonal code and observes that for any  $C = [n, \rho n, \delta n]$  the tensor code  $C_0 \otimes C = [\Delta n, \rho_0 \rho \Delta n, \delta_0 \delta \Delta n]$  is also (l, m)-genorthogonal code.

For the second part of the claim, Choose C to be a good code with rate  $> (2^m - 1)/2^m$  by Claim 3.4 there is at least on codeword c in C such that  $|c| =_m 1$ .

So pick the base for  $C_0 \otimes C$  such the first generator is  $g_0 \otimes c$  where  $g_0$  denote a generator of  $C_0$  satisfies  $|g_0| =_m 1$ . Then  $|g_0 \otimes c| = |g_0| \cdot |c| =_m 1$ .

**Claim 3.6.** Suppose that there exists (m+1,m)-genorthogonal code, such that any generator of it has weight  $|\cdot| =_m 1$  then there exists also a family of good (m+1,m)-genorthogonal codes such that a liner portion of his generators g have weight  $|g| =_m 1$ .

*Proof.* Denote by  $C_0$  a finte (m+1,m)-genorthogonal code, such that any generator of it has weight  $|\cdot| =_m 1$ . Let C be a good (m+1,m)-genorthogonal code with generator c such that  $|c| =_m 1$ , the existence of which is given by Claim 3.5. Denote its rate by  $\rho$ . If C has more than  $\rho/m \cdot n$  generators at weight  $|\cdot| =_m 1$  then we are done. Otherwise, by the pigeonhole principle, there is an i such that more than  $\rho/m$  portion of the generators are at weight  $|\cdot| =_m i$ . Denote them by  $g_1, g_2, g_3, \ldots, g_m$ .

Define the set  $g_1', g_2'..g_m'$  as

$$g'_{t} = c + \sum_{j=t}^{t+m} g_{j}$$

$$\Rightarrow |g'_{t+1}| = |c| + \sum_{t} |g_{j}| + \sum_{|I| < l+1} \left| \prod_{g \in I} \alpha_{\star} g \right|$$

$$=_{m} c + m \cdot i =_{m} c =_{m} 1$$

Now take  $C_0 \otimes C$ , and set the new generator set to be  $g_i^0 \otimes g_j'$ . And it's easy to verify that we got the code we wanted.

**Claim 3.7.** There exists, a good LDPC code (classic) C such that  $C^{\perp}$  is also a good code and a generator set G, for exists  $G' \subset G$  and  $|G'| = \Theta(|G|)$  such:

- 1. For any pair  $x \neq y \in G' \rightarrow x \cdot y =_8 0$
- 2. For any triple  $x \neq y, z \in G' \rightarrow \sum_i x_i y_i z_i =_8 0$
- 3. For any  $x \in G' \rightarrow |x| =_8 1$

**Claim 3.8.** There is  $n \to \Theta(n)$  magic states distillation into a binary qldpc code with  $\Theta(\sqrt{n})$  distance, and therefore with asymptotic overhead approaching 1

*Proof.* For the encoding we are going to use the hyperproduct code defined in [TZ14]. Let C be the code given by Claim 3.7 and consider the hyperproduct of C with itself  $Q = Q(C \times_H C)$ . In addition, denote by  $C_X, C_Z$  the CSS representation of Q.

By the fact that  $C^{\perp}$  is also a good code, then Q is a positive rate, square root distance code. Let  $\rho$  be the rate of C and  $1-\rho$  be the rate of  $C^{\perp}$ . As  $\rho>0$ , then one can find  $I\subset [n]$  coordinates such that for any  $i\in I$  the indicator  $e_i\not\in C^{\perp}$ . Hence, it holds from [TZ14] that any vector of the form  $e_i\otimes x$  is a codeword of  $C_X/C_Z^{\perp}$ .

Denote by  $\rho'$  the portion of G' as defined in Claim 3.7, and define S to be:

$$S = \{ e_i \otimes x | e_i \notin C^{\perp}, x \in G' \}$$

Observes that  $|S| = \rho' \rho n^2$  and in addition S satisfies the property in Claim 3.7.

#### References

[TZ14] Jean-Pierre Tillich and Gilles Zemor. "Quantum LDPC Codes With Positive Rate and Minimum Distance Proportional to the Square Root of the Blocklength". In: *IEEE Transactions on Information Theory* 60.2 (Feb. 2014), pp. 1193–1202. DOI: 10.1109/tit.2013.2292061. URL: https://doi.org/10.1109%2Ftit.2013.2292061.