©kuko 2.10.2018

1 Prioritné fronty

- chceme "čiernu krabičku", ktorá dokáže operácie:
 - insert
 - delete min
 - decrease key
 - prípadne merge
- \bullet s takouto krabičkou vieme napr. triediť: $n \times$ insert a následne $n \times$ delete min
- tiež sa hodí na implementáciu Dijkstrovho algoritmu: vložíme začiatočný vrchol so vzdialenosťou 0 a zvyšné vrcholy so vzdialenosťou ∞; následne vždy vyberieme vrchol s najmenšou vzdialenosťou a všetkým susedom potenciálne znížime vzdialenosť (ak je to tadiaľto kratšie)
 - celkový čas: $n \times (\text{insert} + \text{delete min}) + m \times \text{decrease key}$
- všetci vedia, že prioritná fronta sa efektívne implementuje pomocou haldy, ale: dá sa lepšie? ak áno, ako? a ak nie, prečo nie? a dajú sa efektívne spojiť dve haldy?
- napr. existuje halda, ktorá spraví insert a delete min v O(1), ale decrease key v $O(\log n)$?
 - NIE, pretože potom by sme vedeli triediť vO(n) a to sa v porovnávacom modeli nedá
- existuje halda, ktorá spraví insert a decrease key v O(1), ale delete v $O(\log n)$?
 - prekvapivo ÁNO a v tejto prednáške si ukážeme, ako sa to dá
 - pozn.: v stĺpci lenivá a Fibonacciho halda sú zložitosti amortizované, nie v najhoršom prípade; existujú aj DŠ dosahujúce rovnaké časy v najhoršom prípade, ale sú pomerne komplikované
 - pozn. 2: binomiálne a Fib. haldy sú v praxi pomerne pomalé (konštanty v Óčku sú pomerne veľké) a v praxi je lepšie použiť binárnu/d-árnu haldu; otvorený problém: existuje halda, ktorá má aj dobrú asymptotickú zložitosť (ako Fib. halda) a zároveň je efektívna v praxi?

		binárna	d-árna	binomiálna	lenivá	Fibonacciho
	pole	halda	halda	halda	bin. halda	halda
insert	O(1)	$O(\log n)$	$O(\log_d n)$	$O(\log n)$	O(1)	O(1)
delete min	O(n)	$O(\log n)$	$O(d\log_d n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$
decrease key	O(1)	$O(\log n)$	$O(\log_d n)$	$O(\log n)$	$O(\log n)$	O(1)
merge	O(n)	O(n)	O(n)	$O(\log n)$	O(1)	O(1)
Dijkstrov alg.	$O(n^2)$	$O(m \log n)$	$O(m\log_{m/n}n)$			$O(m + n \log n)$

- pre Dijkstrov algoritmus:
 - obyčajné pole je najlepšia (a optimálna) možnosť, ak máme veľmi hustý graf $(m = \Theta(n^2))$
 - v praxi sú grafy väčšinou riedke (planárne grafy, graf priateľstiev, kde max. stupeň je relatívne malý); $m \log n$ je preto oveľa lepšie ako n^2
 - d-árna halda má trade-off medzi insert, decrease key (rýchlejšie) a delete min (pomalšie); pre Dijkstrov alg. dostávame $O(m\log_d n + nd\log_d n)$, čo je najmenšie, ak vezmeme d = m/n (resp. $\max(2, m/n)$); všimnite si, že pre $m = \Omega(n^{1+\varepsilon})$ je $\log_{m/n} n = \log_{n^\varepsilon} n = O(1/\varepsilon)$, takže pre grafy s aspoň $\Omega(n^\varepsilon)$ hranami je to optimálny algoritmus
 - s Fib. haldou dostávame $O(m + n \log n)$, čo je pre $m = \Omega(n \log n)$ optimálne
 - dá sa lepšie? dá sa nájsť najkratšia cesta v O(m) aj pre riedke grafy? napr. m = O(n)?

2 Binomiálna halda

 \bullet B_k – binomiálny strom s rankom k definujeme rekurzívne:

- B_0 je jediný vrchol a B_{k+1} vznikne spojením dvoch B_k stromov
- zjavne $|B_k| = 2^k$ a koreň B_k má k synov stromy B_0, \ldots, B_{k-1}
- v binomiálnej halde budeme požadovať, aby bol vždy otec menší ako všetci synovia, takže najmenší prvok je v koreni
- \bullet binomiálna halda je zoznam niekoľkých B_i + smerník na minimum
- navyše platí, že všetky ranky koreňov musia byť rôzne; z toho (a faktu $|B_k| = 2^k$) vyplýva, že tvar binomiálnej haldy s n vrcholmi zodpovedá binárnemu zápisu čísla n halda obsahuje strom B_k , ak je k-ty bit 1
 - napr. halda so 41 vrcholmi (41 = 32 + 8 + 1 = 2⁵ + 2³ + 2⁰) sa bude skladať z $B_0,\,B-3$ a B_5
- $\bullet\,$ operácia merge: jednoducho spojíme oba zoznamy a pospájame stromy s rovnakým rankom
 - funguje to rovnako ako sčítanie v dvojkovej sústave: tak ako $2^k+2^k=2^{k+1}, B_k+B_k \to B_{k+1}$
 - napr. spojenie 41-prvkovej haldy (B_0,B_3,B_5) a 75-prvkovej (B_0,B_1,B_3,B_6) dostaneme B_2,B_4,B_5,B_6 :

- insert: vytvoríme novú 1-prvkovú haldu a primergujeme ju
- delete min: odstránime minimum, čo je jeden z koreňov; zo synov (stromy $B_0, B_1, B_2 \dots$) vytvoríme novú haldu, ktorú pri-merge-ujeme k pôvodnej
- decrease key: znížime a vybubleme nahor
- keďže počet binomiálnych stromov a tiež maximálny rank a maximálna výška stromov je $O(\log n)$, všetky operácie trvajú $O(\log n)$ v najhoršom prípade

3 Lenivá binomiálna halda

- zrušíme podmienku, že všetky ranky musia byť rôzne
- merge bude lenivý: iba napojíme 2 spájané zoznamy (min je menší prvok z dvoch miním v O(1) čase)
- "upraceme" až počas operácie delete min: vtedy pospájame stromy s rovnakými rankami a nájdeme nové minimum
- \bullet oproti "obyčajnej" binomiálnej halde zlepšíme čas merge a insert na O(1) amortizovane
- delete min bude v najhoršom prípade až O(n), ale amortizovane $O(\log n)$
- konkrétne tvrdím, že ak dostanem za každú operáciu insert: 2\$, merge: 1\$, delete min: $3 \log n + 1$ \$, dokážem všetky kroky algoritmu zaplatiť
- budem dodržiavať nasledovný invariant: každý koreň stromu má nasporený 1\$

- merge: za 1\$ spojíme dva zoznamy a vyberieme menšie z dvoch miním
- insert: za 1\$ vytvoríme nový vrchol a pripojíme ho, zvyšný 1\$ si vrchol odloží na neskôr, aby sme zachovali invariant
- delete min: vymazanie koreňa a pripojenie detí 1\$; nájdenie nového minima $\log n$ \$; navyše každý syn je nový koreň a musíme mu dať 1\$ na účet (spolu $\leq \log n$ \$)
- ostáva zaplatiť čas na "upratovanie" prechádzame zľava doprava, v pomocnom poli si pamätáme, aké ranky stromov máme a spájame stromy s rovnakým rankom
- \bullet toto upratovanie trvá až O(t), kde t je počet stromov, avšak my ho dokážeme zaplatiť z už našetrených peňazí:
- vždy, keď nájdeme 2 stromy s rovnakým rankom, porovnanie a spájanie zaplatí ten strom, ktorý sa pripojí pod koreň s menším kľúčom ("víťaznému" koreňu ostane 1\$, takže invariant ostane zachovaný)
- takto zaplatíme za všetky vrcholy, ktoré sa napoja pod iné; ostáva zaplatiť za prechod zvyšných vrcholov tých, ktoré ostanú koreňmi aj na konci ale tých je len $\leq \log n$

4 Fibonacciho halda

- motivácia: v Dijkstrovom algoritme len $n \times$ vkladáme/vyberáme minimum, ale potenciálne až $m \times$ znižujeme váhu existuje halda, v ktorej je znižovanie váhy rýchle?
- ullet nápad #1: ak chceme vrcholu x znížiť váhu, namiesto bublania x aj celý jeho podstrom odrežeme a pripojíme do zoznamu
- v zozname teraz už nebudeme mať nutne binomiálne stromy, ale akési osekané zvyšky
- rank vrcholu definujeme ako #synov a pri upratovaní spájame vrcholy s rovnakým rankom
- jednoduché, ale stačí to? ukazuje sa, že NIE
- pri lenivej binomiálnej halde bola veľkosť stromu exponenciálna od ranku; tým pádom bol rank (#synov) najviac $O(\log n)$ a pri vymazaní minima sme mohli pripojenie synov, nájdenie nového minima a vloženie 1\$ na ich účet zaplatiť
- problém: ak by sme "bezhlavo" odsekávali podstromy, už nemusí platiť, že rank je $O(\log n)$
- a nedá sa ten dôkaz zachrániť inak? nemohli by sme zmeniť analýzu/invarianty a šetriť inak? ukazuje sa, že NIE
- náznak dôkazu:
 - nech S_k je strom zložený z k+1 vrcholov iba koreň a k synov; nech T_k je strom, ktorý sa skladá z koreňa a deti sú stromy $S_0, S_1, \ldots, S_{k-1}$;
 - T_k má $\Theta(k^2)$ vrcholov a dá sa vyrobiť pomocou $O(k^3)$ operácií
 - všimnite si, že ak napojíme S_k pod koreň T_k , dostaneme T_{k+1}
 - začneme s T_k , insert-neme kľúč väčší ako koreň, ale menší ako všetci jeho synovia halda bude zložená z T_k a nového vrcholu T_0
 - ak teraz spravíme delete min, najmenší prvok je koreň T_k ; po ňom ostanú jeho synovia $S_0, S_1, \ldots, S_{k-1}$ a keď ich postupne pospájame s T_0 , ostane nám T_k , takže sme sa dostali do pôvodneho stavu, ale alg. spravil $\Theta(k) = \Theta(\sqrt{n})$ operácií, čo je veľa
- potrebujeme teda, aby rank bol najviac $O(\log n)$, teda aby strom s rankom k mal exponenciálne veľa vrcholov od k
- nápad #2: ak vrcholu v usekneme syna, poznačíme si to; ak mu usekneme aj druhého syna, odrežeme aj samotné v a pripojíme ho ku koreňom a rekurzívne postupujeme vyššie: ak aj otec v týmto prišiel o druhého syna, odrežeme aj jeho, atď.
- najskôr si ukážme, že zložitosť decrease key bude stále O(1) presnejšie 4\$ na operáciu
- invariant: každý označený vrchol, ktorý prišiel o syna, má nasporené 2\$
- pri decrease key 1\$ zaplatíme za O(1) operácií (odrezanie, pripojenie do zoznamu koreňov, označenie otca); 1\$ mu uložíme na účet (keďže je to nový koreň) a 2\$ uložíme na účet otcovi
- ak mal otec predtým všetkých synov, teraz má ušetrené 2\$ a všetko je v poriadku

- ak už mu 1 syn chýbal, má našetrené 2\$ + teraz prišli ďalšie 2\$ spolu 4\$ z nich 1\$ zaplatíme za O(1) operácií, 1\$ bude mať na účte ako nový koreň a 2\$ pošle svojmu otcovi atď, celá kaskáda urezávania označených vrcholov sa zaplatí z ušetrených peňazí
- \bullet ostáva dokázať, že pri takom
to urezávaní bude mať vrchol s rankom k exponenciálne veľa
 vrcholov v závislosti od k
- lema: nech vrchol x má synov y_1, \ldots, y_m , ktorých sme označili v poradí, ako sa prilinkovali ku x; potom rank $(y_i) \geq i-2$
- dôkaz: v čase, keď sme pripájali y_i pod x mal x aspoň i-1 detí (a to y_1, \ldots, y_{i-1} ; možno mal aj ďalšie, ktoré sa medzičasom usekli); my ale spájame iba stromy s rovnakým rankom, tzn. y_i malo vtedy $\geq i-1$ detí a odvtedy max. 1 zmizlo
- nech F_n je najmenšia možná veľkosť stromu s rankom n; $F_0 = 1$, $F_1 = 2$ a podľa lemy $F_n = 2 + \sum_{i=2}^n F_{i-2}$; riešením tejto rekurencie sú (trochu posunuté) Fibonacciho čísla a preto $F_n = \Theta(\phi^n)$, kde $\phi \approx 1.618$

5 Hľadanie najlacnejšej kostry

- Kruskalov algoritmus $O(m \log n)$ (kvôli triedeniu)
- Jarníkov-Primov algoritmus $O(n^2)$, resp. $O(m+n\log n)$ s Fibonacciho haldou
- otvorený problém: existuje O(m) algoritmus?
 - je známy randomizovaný O(m) algoritmus
 - je známy deterministický $O(m\alpha(n))$ algoritmus
 - je známy optimálny algoritmus, ale nevie sa jeho zložitosť
- ukážeme si riešenie v $O(m \log^* n)$
- bottleneck pri Jarníkovom algoritme s Fibonacciho haldou je veľkosť haldy: ak do haldy nasúkame $\Omega(n)$ prvkov, výber minima bude trvať $O(\log n)$ a toto sa nedá veľmi zlepšiť
- myšlienka: budeme mať haldu s maximálnou veľkosťou k; začneme vykonávať Jarníkov algoritmus a budovať kostru z jedného vrcholu; akonáhle sa nám halda preplní, zastavíme a začneme budovať kostru z iného vrcholu (s prázdnou haldou)
- takto pokračujeme, až kým nie je každý vrchol v nejakom strome; čas: $O(m + n \log k)$
- následne prejdeme celý graf a každý strom (časť kostry) skontrahujeme do jedného vrcholu; ak medzi stromami vedie viacero hrán, necháme len tú najlacnejšiu (čas: O(m))

- \bullet malé kznamená menšie $n\log k,$ čiže rýchlejšiu 1 fázu, naopak väčšie kznamená, že stromy narastú viac, takže v nasledujúcej fáze bude menej vrcholov a celkovo budeme mať menej fáz • vhodná voľba je $k=2^{2m/n}$, pretože vtedy je $n\log k=\Theta(m)$
- na konci fázy má každý strom T aspoň k hrán začínajúcich v T; každá hrana má 2 konce, preto v nasledujúcej fáze bude $m' \geq k \cdot n'/2$, preto $k' = 2^{2m'/n'} \geq 2^k$
- teda $k_0 = 2^{2m/n} = \Omega(1), \, k_1 \ge 2^{k_0}, \, k_2 \ge 2^{2^{k_0}}, \, k_3 \ge 2^{2^{2^{k_0}}}, \, \text{atd.}$ celkovo teda bude $\le \log^* n$ fáz a celkový čas je $O(m \log^* n)$