Data Structures

- 1. Binary Search Trees
- 2. Balanced binary search trees: AVL Tree

Binary Search Tree ামুদ্ধশুদ্র

- Heap
 - Provides a good performance of O() only when handling the root
 - For searching other item than the root, it takes O(______) time
- Why binary search tree is necessary
 - requires O() for any item, which is proportional to tree height (h)

- Assume "no overlapping elements" in Tree
- The root > left sub-tree nodes
- The root < right sub-tree nodes
- Left & right sub-trees also must be Villary Search tree

• left sub-tree < node < right sub-tree

- Search a key in BST
 - Recursive & iterative versions

```
root 30
5 40
```

```
tree_ptr rBST(tree_ptr root, int key)
{

if (_!root__) return vULL;

if (key == root->data) return root;

if (key < root->data)

return rBST(_root-> vight, key);

return rBST(_voot-> vight, key);
}
```

- Insertion Algorithm
 - Before inserting a node, it should confirm whether there is no overlapping node. If overlapped, insertion fails
 - Otherwise, attach a new node (35) to the last item compared (40)


```
Overlap_check()
```

- If tree is empty, or any overlapped node exists, NULL s returned
- Otherwise, a node searched lastly will be returned
- Time complexity : O(log2)
 - search : O((921)
 - insert : O(_____)

```
void insert node(tree ptr *node, int num)
  tree ptr ptr, temp = overlap check(*node, num); //lastly found node
  if (temp | | throde) {
                                                   // no overlap, or empty tree
     ptr = (tree ptr) malloc (sizeof(node));
    if (IS FULL(ptr)) {
       printf("The memory is full \n");
                                           exit(1);
                                                                     voot pourter
                                                                      node <sup>1</sup>
     ptr->data = num;
                                                                               20
     ptr->left = ptr->right = NULL;
    if (*node) {
                                                                                          temp
       if(num < temp->data)
         temp->left = ptr;
       else
         temp->right = ptr;
                                                                                           80
    } else
                                  // empty tree
                                                                              ptr
       *node = \(\frac{1}{2}\tau^2\);
```

```
tree ptr overlap check(tree ptr tree, int key)
  tree_ptr temp = tree;
  while (tree)
    temp =
    if (key == tree->data) //overlapped
      return NULL;
    if (key < tree->data)
      tree = tree->left_child;
    else
      tree = tree->right child;
 return temp;
```


- Deletion Algorithm
 - deleting a leaf node
 - Assign NULL to the parent's link
- deleting a node with one child
 - Assign its child to the parent's link
- deleting a non-leaf node with two children
 - choose either the <u>Max</u> node in left sub-tree or the <u>MM</u> node in right sub-tree which can reduce the tree height
 - substitutes chosen node for the node to be deleted
 - Rebuild the sub-tree for BST
 - Performance => O(log₂ n)

- Time complexity
- Average case : O(log₂ n)
- Worst case : skewed tree => O()

Balance Binary Search Tree केनेल्या अविकास

- Height of binary search tree: n
 - Insertion, deletion can be O(n) in the worst case
- Good to keep a tree height small
- Minimum height of a binary tree with n nodes : $O(\log_2 n)$
- Goal
 - keep the height of a binary search tree $O(\sqrt{141})$
- Balanced binary search trees
 - AVL tree, 2-3-4 tree, red-black tree

Balanced Tree?

- Suggestion
 - every node must have left and right subtrees of the same height
 - Hard to satisfy this except for complete full binary trees
- Our choice
 - for each node, the height of the left and right subtrees can differ at most

AVL Tree

- Adelson-Velskii and Landis, 1962
- AVL tree is a binary search tree in which
 - for every node in the tree, the height of the left and right sub-trees differ by at most 1

AVL tree

AVL property violated at ____

Balance factor

- 独地
- Balance factor (BF) of a node
 - = Height (left subtree of the node) Height (right subtree)
- AVL tree : BF of all node should be 1,0 or -1

AVL tree

-1 2 8 0
0 1 0 4
0 3 0 5

AVL property
violated here

AVL Tree with Min Number of Nodes

 $N_h = MN MMM$ # of nodes in a tree of height h

Thus, searching on an AVL tree will take O(\oscilon 21) time

Smallest AVL tree of height 9 N9

$$N_h = N_{h-1} + N_{h-2} + 1$$

Insertion in AVL Tree

- Basically follows insertion strategy of binary search tree
 - But may cause violation of AVL tree property
- Restore the destroyed balance condition if needed

Original AVL tree

Insert 6 Property violated

Restore AVL property

Insertion in AVL Tree

- After an insertion, only nodes that are on the path from the insertion point to the root might have their balance altered
 - Because only those nodes have their subtrees altered
- Rebalance the tree at the deepest, such node guarantees that the entire tree satisfies the AVL property

Node 5, 8, 7 might have balance altered

Rebalance node 7 guarantees the whole tree be AVL

Cases for Rebalance

- Denote the node that must be rebalanced α
 - 1. Case: an insertion into the left subtree of the left child of α
 - 2. Case: an insertion into the right subtree of the left child of α
 - 3. Case: an insertion into the left subtree of the right child of α
 - 4. Case : an insertion into the right subtree of the right child of α

Rebalance of AVL Tree

- Rebalance of AVL tree are done with simple modification to tree, known as rotation
- Insertion occurs on the "outside"
 - left-left or right-right cases
 - Is fixed by finale rotation of the tree
- Insertion occurs on the " (N5) de "
 - left-right or right-left cases
 - is fixed by total rotation of the tree

Insertion Algorithm

- First, insert a new key as a new leaf just as in ordinary binary search tree
- Check BF of each node in the path between a new node (N) and the root.
 - If BF is OK(0, -1, +1), proceed to parent(x)
 - If not, restructure it by doing either a single rotation or a double rotation
- Note
 - once we perform a rotation at a node x, we won't need to perform an y rotation at any ancestor of x.

Single Rotation (Left-Left Insertion)

An insertion in subtree X,

AVL property violated at node k2

Solution: single rotation

Single Rotation (Left-Left insertion)

Single Rotation (Right-Right insertion)

- Case 4 is a symmetric case to case 1
- Insertion takes O() time, Single rotation takes O(1) time

An insertion in subtree Z

Single Rotation (Right-Right insertion)

• right-right insertion

AVL Tree Construction

• Sequentially insert 3, 2, 1, 4, 5, 6 to an AVL Tree

AVL Tree Construction

Double Rotation (Left-Right insertion)

Facts

- A new key is inserted in the subtree B or C
- The AVL-property is violated at _____
- k₃-k₁-k₂ forms a zig-zag shape

Solution

The only alternative is to place _____ as the new root

Double rotation to fix case 2

Double Rotation (Right-Left insertion)

- Facts
 - The new key is inserted in the subtree B or C
 - The AVL-property is violated at _____
 - k₁-k₃-k₂ forms a zig-zag shape
- Case 3 is a symmetric case to case 2

Double rotation to fix case 3

AVL Tree Construction

continue to insert 15, 14, 13, 12, 11, 10, 8, 9

B-Trees

Motivation for B-Trees

- Index structures for large datasets cannot be stored in main memory
- Storing it on disk requires different approach to efficiency
- Assuming that a disk spins at <u>1200 RPM</u>, one revolution occurs in 1/120 of a second, or <u>8.3</u>ms
- Crudely speaking, one disk access takes about the same time as 200,000 instructions

Motivation (cont.)

- Assume that we use an AVL tree to store about 20 million records
- We end up with a very deep binary tree with lots of different disk accesses; $\log_2 20,000,000$ is about 24 so this takes about _0.2_ seconds
- We know we can't improve on the log n lower bound on search for a binary tree
- But, the solution is to use more branches and thus reduce the height of the tree! (ম্পাঠানা মানু মুম্বার্থ এই)
 - As <u>branching</u> increases, <u>depth</u> decreases
 - · 어디게의 재음가실수 있게 하며 높이를 걸어야한다.

Comparing Trees

- Binary trees
 - Can become unbalanced and lose their good time complexity (O(log ln))
 - AVL trees are strict binary trees that overcome the balance problem
 - Heaps remain balanced but only good to get the root(max/min)
- Multi-way trees 4
 - B-Trees can be *m*-way, they can have any number of children

MFL B-tree

Definition: m-way B-Tree

- DEF: A B-Tree of order m is an m-way search tree that either is empty or satisfies the following properties
- (1) The root node has at least wo children or a leaf
- (2) All nodes other than the root node and external nodes have at most m and at least <u>cell(m/2)</u> children
 - (3) All external nodes are at the 4 level
 - (4) The number of keys is one less than the number of childre n for non-leaf nodes and at most m-1 and at least (c)(M/2)-1 for leaf nodes

M-way B tree

- m = 3 (\rightarrow Tree), min children = ceil(3/2)
 - Degree(internal) = 2 or 3, Degree(root) = 0, 2, 3
 - # keys in a leaf node = 1, 2
- m = $4\left(\frac{2}{4}\right)$ tree, min children = ceil(4/2)
 - Degree(internal) = 2, 3, 4, Degree(root) = 0, 2, 3, 4
 - # keys in a leaf node = 1, 2, 3
- m = 5, min children = ceil (5/2)
 - Degree(internal) = 3, 4, 5, Degree(root) = 0, 2, 3, 4, 5
 - # keys in a node = 2, 3, 4

Entries in B-trees of Various orders

Order	Number of Subtrees		Number of Entries	
	Min	Max	Min	Max
3	2	3	1	2
4	2	4	1	3
5	3	5	2	4
6	3	6	2	5
m	ceil(m/2)	m	ceil(m/2) -1	m-1

Creating a B-tree of order 5

• A G F B K D H M J E S I R X C L N T U P

• A G F B K D H M J E S I R X C L N T U P

• A G F B K D H M J E S I R X C L N T U P

B-Trees

45

• A G F B K D H M J E S I R X C L N T U P

• A G F B K D H M J **E S I R X** C L N T U P

• A G F B K D H M J E S I R X C L N T U P

• A G F B K D H M J E S I R X C L N T U P

• A G F B K D H M J E S I R X C L N T U P

Final

• A G F B K D H M J E S I R X C L N T U P

B-Trees

50

• so combine

- Delete M from non-leaf node
- Note: immediate predecessor in non-leaf Is always in a leaf.
- Overwrite M with immediate predecessor (L) => underflow

• Borrow from a neighbor

• Delete U, X

• Delete R

• Underflow, can't borrow => combine

Final

Analysis of B-Trees

• The maximum number of items in a B-tree of order *m* and height *h*:

```
root m-1
height 1 m(m-1)
height 2 m^2(m-1)
. . .
height h m^h(m-1)
```

• So, the total number of items is

$$(1 + m + m^2 + m^3 + ... + m^h)(m - 1) =$$

 $[(m^{h+1} - 1)/(m - 1)](m - 1) =$

• When m = 5 and h = 2, this gives $5^3 - 1 = 124$

Reasons for using B-Trees

- When searching tables held on disc, the cost of each disc transfer is high but doesn't depend much on the amount of data transferred, especially if consecutive items are transferred
 - If we use a B-tree of order 101, say, we can transfer each node in one disc read operation
 - A B-tree of order 101 and height 3 can hold _____items (approximately 100 million) and any item can be accessed with 3 disc reads (assuming we hold the root in memory)
- If we take m = 3, we get a **2-3 tree**, in which non-leaf nodes have two or three children (i.e., one or two keys)
 - B-Trees are always balanced (since the leaves are all at the same level), so 2-3 trees make a good type of balanced tree