Trigonometrische und Hyperbolische Funktionen

Beziehung zur Exponentialfunktion			
$\cos x = \frac{e^{ix} + e^{-ix}}{2}$	$ \cosh x = \frac{e^x + e^{-x}}{2} $	$\operatorname{arcosh} y = \log(y + \sqrt{y^2 - 1})$	
$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$	$\sinh x = \frac{e^x - e^{-x}}{2}$	$\operatorname{arsinh} y = \log(y + \sqrt{y^2 + 1})$	
$\tan x = \frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}} \cdot \frac{1}{i}$	$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	$\operatorname{artanh} y = \frac{1}{2} \log \frac{1+y}{1-y}$	

Reihenentwicklungen		
$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \dots$	k=0	
$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \dots$	$= \sum_{k=0}^{\infty} (-1)^k \cdot \frac{x^{2k}}{(2k)!}$	
$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} - \dots$	$= \sum_{k=0}^{\infty} (-1)^k \cdot \frac{x^{2k}}{(2k)!}$ $= \sum_{k=0}^{\infty} (-1)^k \cdot \frac{x^{2k+1}}{(2k+1)!}$	
$\cosh x = 1 + \frac{x^2}{2} + \frac{x^4}{24} + \dots$	$= \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$	
$\sinh x = x + \frac{x^3}{6} + \frac{x^5}{120} + \dots$	$= \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$	
$\log(1+x) = x - \frac{x}{2} + \frac{x^2}{3} - \dots$	$= \sum_{k=1}^{\infty} (-1)^{k-1} \cdot \frac{x^k}{k}$	
$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$	$= \sum_{k=0}^{\infty} (-1)^k \cdot \frac{x^{2k+1}}{2k+1}$	
$\arctan x = x + \frac{x^3}{3} + \frac{x^5}{5} + \dots$	$= \sum_{k=0}^{\infty} \frac{x^{2k+1}}{2k+1}$	

Additions theoreme, Pythagoras		
$e^{x+y} = e^x \cdot e^y$	$\log xy = \log x + \log y$	
$\sin(x+y) = \sin x \cos y + \cos x \sin y$	$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$	
$\cos(x+y) = \cos x \cos y - \sin x \sin y$	$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$	
$\sin(2x) = 2\sin x \cos x$	$\sinh(2x) = 2\sinh x \cosh x$	
$\cos(2x) = \cos^2 x - \sin^2 x$	$\cosh(2x) = \cosh^2 x + \sinh^2 x$	
$\cos^2 x + \sin^2 x = 1$	$\cosh^2 x - \sinh^2 x = 1$	

Definitions- und Zielbereiche	Bezeichnung
$\log y: \]0, \infty[\ \longrightarrow \]-\infty, \infty[$	Natürlicher Logarithmus
$\arcsin y: [-1,1] \longrightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	Arcus Sinus
$arccos y: [-1,1] \longrightarrow [0,\pi]$	Arcus Cosinus
$\arctan y:]-\infty, \infty[\longrightarrow]-\frac{\pi}{2}, \frac{\pi}{2}[$	Arcus Tangens
$arsinh y:]-\infty, \infty[\longrightarrow]-\infty, \infty[$	Area Sinus hyperbolicus
$\operatorname{arcosh} y: [1, \infty[\longrightarrow [0, \infty[$	Area Cosinus hyperbolicus
$artanh y:]-1,1[\longrightarrow]-\infty,\infty[$	Area Tangens hyperbolicus

sinh, cosh, tanh