Evaluation of LWE Key Exchange Protocol

August 21, 2015

1 Asymptotics

Server work	$O(n^2\overline{n})$
Client work	$O(n^2\overline{m})$
Client downloads	$O(n\overline{n})$
Client uploads	$O(n\overline{m})$

2 First round of evaluations

2.1 ECDHE (ECDHE-ECDSA-AES128-GCM-SHA256)

Curve	Client/Server keygen (ms)	Client/Server shared (ms)
160 bit ecdh (secp160r1)	0.2	0.2
192 bit ecdh (nistp192)	0.2	0.2
224 bit ecdh (nistp224)	0.3	0.2
256 bit ecdh (nistp256)	0.3	0.3
384 bit ecdh (nistp384)	1.2	0.6
521 bit ecdh (nistp521)	0.2	1.2
163 bit ecdh (nistk163)	0.2	0.2
233 bit ecdh (nistk233)	0.4	0.2
283 bit ecdh (nistk283)	0.6	0.4
409 bit ecdh (nistk409)	1.5	0.6
571 bit ecdh (nistk571)	0.2	1.5
163 bit ecdh (nistb163)	0.2	0.2
233 bit ecdh (nistb233)	0.4	0.2
283 bit ecdh (nistb283)	0.7	0.4
409 bit ecdh (nistb409)	1.6	0.7
571 bit ecdh (nistb571)	1.6	1.6

TSH protocol transcript:

\leftarrow ClientHello	158B	0x009e
\rightarrow ServerHello	66B	0x0042
\rightarrow Certificate	408B	0x0198
\rightarrow ServerKeyExchange	125B	0x007d
\rightarrow ServerHelloDone	4B	0x4
\leftarrow ClientKeyExchange	70B	0x0046
\leftarrow ChangeCipherSpec	1B	0x1
\leftarrow Finished	16B	0x10
\rightarrow Session Ticket	170B	0x00aa
\rightarrow ChangeCipherSpec	1B	0x1
\rightarrow Finished	16B	0x10

2.2 RLWE (RLWE-ECDSA-AES128-GCM-SHA256)

Keygen: sampling s('), e(') and computing b(') = as(') + e(')

Client shared: sampling e'', computing v = s'b + e'', $c = \langle v \rangle_2$, $k = \lfloor v \rfloor_2$

Server shared: computing k = rec(b's, c)

RLWE (128 bits security, deriving 1024 bits key)

Client/Server keygen	Client shared	Server shared
$0.674 \mathrm{ms}$	$0.402 \mathrm{ms}$	$0.119 \mathrm{ms}$

TSH protocol transcript:

\leftarrow ClientHello	158B	0x009e
\rightarrow ServerHello	66B	0x0042
\rightarrow Certificate	408B	0x0198
\rightarrow ServerKeyExchange	4154B = 4KiB	0x103a
\rightarrow ServerHelloDone	4B	0x4
\leftarrow ClientKeyExchange	4232B = 4KiB	0x1088
\leftarrow ChangeCipherSpec	1B	0x1
← Finished	16B	0x10
\rightarrow Session Ticket	170B	0x00aa
\rightarrow ChangeCipherSpec	1B	0x1
\rightarrow Finished	16B	0x10

2.3 LWE (LWE-ECDSA-AES128-GCM-SHA256)

Server keygen: sampling S, E and computing B = AS + EClient keygen: sampling S', E' and computing B' = S'A + E'

Client shared: sampling E'', computing V = S'B + E'', $C = \langle V \rangle_2$, $K = \lfloor V \rfloor_2$

Server shared: computing K = rec(B'S, C)

LWE (128 bits security, deriving $128 = \overline{nm}$ bits key)

Server keygen	Client keygen	Client shared	Server shared
$15.9 \mathrm{ms}$	$14.9 \mathrm{ms}$	$0.147 \mathrm{ms}$	0.119 ms

^(*) Storing and using the A^T matrix in generating client's key gives $2 \times$ time improvement, otherwise Client keygen takes $\approx 29.5 \text{ms}$.

About 20 X slowdown in key generation compared to RLWE, the rest is comparable.

TSH protocol transcript:

\leftarrow ClientHello	158B	0x009e
\rightarrow ServerHello	66B	0x0042
\rightarrow Certificate	408B	0x0198
\rightarrow ServerKeyExchange	49209B = 48KiB	0xc039
\rightarrow ServerHelloDone	4B	0x4
\leftarrow ClientKeyExchange	49176B = 48KiB	0xc018
\leftarrow ChangeCipherSpec	1B	0x1
\leftarrow Finished	16B	0x10
\rightarrow Session Ticket	170B	0x00aa
\rightarrow ChangeCipherSpec	1B	0x1
\rightarrow Finished	16B	0x10

Time in key generation is split between sampling and matrix multiplication as 26% and 74%. So it make sense to optimize on matrix multiplication first.

2.4 Better reconciliation mechanism

See pencil notes, if B bits are extracted from a single element in Z_q , then the probability for the two parties to fail the handshake (to end up with different keys) would be bounded from above by the following expression:

$$\overline{m} \cdot \overline{n} \cdot (4n) \exp\left(-\frac{q}{2^{3+B} \cdot (2n)\sigma^2}\right)$$

Since everything scales proportionally to \overline{m} and \overline{n} , we can draw the following estimates (for now we assume $\overline{n} = \overline{m}$):

Bits extracted from one ring element (B)	Probability of failure	$\overline{n} = \overline{m} = \sqrt{\frac{128}{B}}$	Server/Client keygen (ms)	Client upload/- download (KiB)
1	1e-5553	12	16	48
2	1e-2773	8	10	32
3	1e-1384	7	9	28
4	1e-689	6	8	24
5	1e-341	5	6	20
6	1e-167	5	6	20
7	1e-81	5	6	20
8	1e-37	4	5	16
9	1e-15	4	5	16
10	1e-5	4	5	16
11	1e1	4	5	16

Tried out $1048600 \approx 2^{20}$ key exchanges extracting 16 bits and 0 failed, so the bound can potentially be improved.