Precalculus Homework Lecture 12

1. Sketch by hand approximately the given function. The function is obtained by transforming linearly the graph of a known function. The known function has been sketched for you by computer.

(a)
$$f(x) = -\frac{1}{2}x^2 + 1$$
.

(b)
$$f(x) = \frac{1}{2}x^2 + x - 1$$
.

(c)
$$f(x) = \frac{1}{2x-1} + 1$$
.

(d)
$$f(x) = \frac{\frac{1}{2}x + \frac{1}{4}}{x - \frac{1}{2}} + \frac{1}{2}$$
.

(e)
$$f(x) = -\sqrt{2x-1} - 1$$

(f)
$$f(x) = -\sqrt{-2x - 1} + 1$$

Solution. 1.c.

We are asked to plot $f(x) = \frac{1}{2x-1} + 1$ by linearly transforming the graph of $g(x) = \frac{1}{x}$ to the graph of f(x). To do that we have to compose g with a sequence of linear transformations to obtain f(x). There are two natural ways to do that; we show both by presenting two different solutions.

Solution I. We show how to get from $g(x) = \frac{1}{x}$ to f(x) by composing g with a sequence of linear transformations.

$$\begin{array}{c|cccc} g(x) & = & \frac{1}{x} \\ \text{Define } h(x) \text{ via:} & h(x) & = & g(x+1) = \frac{1}{x-1} \\ \text{Define } k(x) \text{ via:} & k(x) & = & h(2x) = \frac{1}{2x-1} \\ \text{Therefore} & f(x) & = & k(x)+1 = \frac{1}{2x-1}+1 \end{array}$$

We plot consecutively the functions g(x), h(x), k(x) and f(x). We start from the given graph of g(x).

Solution II. In the previous solution we used horizontal stretch to transform the graph of h(x) to the graph of k(x) = h(2x). Algebra suggests a second way to transform the graph of g(x) to the graph of f(x), this time using a vertical stretch. Indeed, we have the equality

$$f(x) = \frac{1}{2x - 1} + 1 = \frac{1}{2} \cdot \frac{1}{x - \frac{1}{2}} + 1.$$

Therefore we can carry out the sequence of transformations shown below.

We plot consecutively the functions g(x), l(x), k(x) and f(x). We start from the given graph of g(x).

