CIT自律移動_勉強会_3回目

~マルコフ決定過程と動的計画法~

千葉工業大学 未来ロボティクス学科

上田研 b3 池邉 龍宏

目次

- ・ナビゲーションについて
- ・詳解確率ロボティクス10章の1部の マルコフ決定過程について
- ・ 来週の内容

詳解確率ロボティクス 10.1について (マルコフ決定過程)

10.1.1 状態遷移と観測

- 時刻t=0, 姿勢 x_0 start->goal 到着時刻T
 - ロボットの動きを状態遷移モデルで表すと

$$x_t \sim p(x|x_{t-1}, u_t) \quad (t = 1, 2 ..., T)$$

10.1.1 状態遷移と観測

- 時刻t=0, 姿勢 x_0 start->goal 到着時刻T
 - ロボットの動きを状態遷移モデル

時刻t-1のロボット姿勢の時から行動 u_t を加えたときの次のロボット姿勢は確率分布p(x)の中から x_t とされる

10.1.1 状態遷移と観測

- $x_t \sim p(x|x_{t-1}, u_t)$ (t = 1, 2, ..., T) のマルコフ性について
 - x_{t-1} さえ分かっていれば、 x_t の統計的性質が x_{t-2} 以前の状態に左右されない。 u_t を決めるときに x_{t-1} より前のことを考慮する必要がない。

→マルコフ性を持つ

- 10.1.1 <u>状態遷移と観測</u>
 変数を工夫すれば、マルコフ性を持たせ ることが出来る。
- 観測モデルについては、全ての真の状態 を知覚することができるとして考えない。
- ・ ある有限個の行動を(右回転, 左回転, 前進) 集合として表すと

$$A = \{a_j | j = 0,1,2,...,M-1\}$$

10.1.1 状態遷移と観測 - ある有限個の行動を(右回転, 左回転, 前進) 集合として表すと

来週の内容

・前回の続きの評価関数から 順番に理解していく

今週のナビゲーションの勉強会

• 内容

- move_baseとamclについて もう少し踏み入った話をする