A MOTION CAPTURE AND IMITATION LEARNING-BASED APPROACH TO ROBOT CONTROL

A PREPRINT

• Peteris Racinskis*†
peteris.racinskis@edi.lv

Janis Arents*
janis.arents@edi.lv

Modris Greitans†
modris_greitans@edi.lv

June 19, 2022

ABSTRACT

Imitation Learning is a discipline of Machine Learning primarily concerned with replicating observed behavior of agents known to perform well on a given task, collected in demonstration data sets. In an industrial robotics context this presents the opportunity to replace explicit programming of behavior with demonstrations of the task to be performed. Motion capture is one of the methods for recording such data. It enables lesser model complexity compared to more indirect observation modalities such as visual data, yet requires additional data pre-processing if signals beyond a time series of effector positions and orientations are relevant to the task at hand. In this paper, an approach for motion capture-based imitation learning and implicit control signal estimation is introduced and evaluated on an object throwing task.

Keywords Imitation Learning · Motion capture · Robotics · Artificial neural networks · RNN

1 Introduction

Manipulator arms and other types of robots have become ubiquitous in modern industry and their use has been proliferating for decades, yet even now the primary method for programming these devices remains procedural code, hand-crafted by specially trained technicians and engineers. This significantly increases the cost and complexity of commissioning process nodes that utilize industrial robots. Therefore, it is not surprising that attempts to reduce the skill requirements and complexity of robot programming stretch back decades – with Imitation Learning (IL), or, as it has been otherwise referred to, programming by demonstration, having been proposed and reexamined many times in various technical implementations [Muench et al., 1994, Attia and Dayan, 2018].

As a means of collecting demonstration data, motion capture also has a long history of being studied

Traditionally, theoretical literature in IL has operated on state-action pairs in the context of a Markov Decision Process (MDP)

2 Related Work

asgasgasgags asgasgasgags asgasgasgagsagaga asg

^{*}Robotics and Machine Perception Laboratory

[†]Institute of Electronics and Computer Science, Riga, Latvia

3 Preliminaries

asfasf

4 Materials and Methods

The overall approach proposed in this paper can be broken down into three main sections – the collection of observations in the physical environment (4.1), a pipeline for turning raw observation data into structured demonstrations (4.2) and neural network model implementations (4.3). Two general approaches to system evaluation and design feedback were employed. First, qualitative observations of the generated trajectories were made using spatial visualization in a virtual environment, followed by execution on simulated and real robots (4.4). Additionally, a series of quantitative metrics have been computed comparing system outputs with training and validation datasets (4.5).

4.1 Data collection

4.2 Pre-processing, extraction of implicit control signals

bla bla bla

4.3 Models

bla bla bla

4.4 Visualization and execution

bla bla bla

4.5 Evaluation metrics

bla bla bla

5 Results

bla bla bla

6 Discussion

bla bla bla

7 Examples of citations, figures, tables, references

7.1 Citations

Citations use natbib. The documentation may be found at

http://mirrors.ctan.org/macros/latex/contrib/natbib/natnotes.pdf

Here is an example usage of the two main commands (citet and citep): Some people thought a thing [Kour and Saabne, 2014a, Hadash et al., 2018] but other people thought something else [Kour and Saabne, 2014b]. Many people have speculated that if we knew exactly why Kour and Saabne [2014b] thought this...

References

S Muench, J Kreuziger, M Kaiser, and R Dillman. Robot programming by demonstration (rpd)-using machine learning and user interaction methods for the development of easy and comfortable robot programming systems. In *Proceedings of the International Symposium on Industrial Robots*, volume 25, pages 685–685. INTERNATIONAL FEDERATION OF ROBOTICS, & ROBOTIC INDUSTRIES, 1994.

- Alexandre Attia and Sharone Dayan. Global overview of imitation learning. arXiv preprint arXiv:1801.06503, 2018.
- George Kour and Raid Saabne. Real-time segmentation of on-line handwritten arabic script. In *Frontiers in Handwriting Recognition (ICFHR), 2014 14th International Conference on*, pages 417–422. IEEE, 2014a.
- Guy Hadash, Einat Kermany, Boaz Carmeli, Ofer Lavi, George Kour, and Alon Jacovi. Estimate and replace: A novel approach to integrating deep neural networks with existing applications. *arXiv preprint arXiv:1804.09028*, 2018.
- George Kour and Raid Saabne. Fast classification of handwritten on-line arabic characters. In *Soft Computing and Pattern Recognition (SoCPaR)*, 2014 6th International Conference of, pages 312–318. IEEE, 2014b. doi:10.1109/SOCPAR.2014.7008025.