Digital Image Processing (CSE/ECE 478)

Lecture-15: Image Segmentation

Ravi Kiran

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Image Segmentation

Partitioning an image into a collection of connected sets of pixels.

1. into regions, which usually cover the image

Image Segmentation

Partitioning an image into a collection of connected sets of pixels.

- 1. into regions, which usually cover the image
- 2. into linear structures, such as
 - line segments
 - curve segments

Image Segmentation

Partitioning an image into a collection of connected sets of pixels.

1. into regions, which usually cover the image

- 2. into linear structures, such as
 - line segments
 - curve segments

- 3. into 2D shapes, such as
 - circles
 - ellipses
 - ribbons (long, symmetric regions)

Image Segmentation - Approaches

- Edge-based
- Thresholding
- Region-growing
- Morphological Watersheds
- Motion

Edge-based segmentation \rightarrow Detection of Discontinuities

- Three basic types of grey level discontinuities
 - Points / Corners
 - Edges
 - Lines
- Typically find discontinuities using masks and correlation

Point Detection

-1	-1	-1
-1	8	-1
-1	-1	-1

Point Detection (cont...)

-1	-1	-1
-1	8	-1
-1	-1	-1

X-ray image of a turbine blade

Result of point detection

Result of thresholding

Example: Blinking/LED detector

Oriented Line Detection

-1	-1	-1	-1	-1	2	-1	2	-1	2	-1	-1
2	2	2	-1	2	-1	-1	2	-1	-1	2	-1
						-1					

Horizontal +45° Vertical -45°

Oriented Line Detection (cont...)

Binary image of a wire bond mask

After processing with -45° line detector

Result of thresholding filtering result

Edge Detection

•Edge = <u>set</u> of <u>connected</u> pixels that lie on the boundary between two regions

Edges & Derivatives

- •1st derivative → edge location
- •2nd derivative \rightarrow
 - edge location
 - edge direction

Edge Detection Example With Smoothing

Vertical Gradient Component Combined Edge Image

Laplacian Edge Detection

•2nd-order derivative based Laplacian filter

0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

- Typically not used by itself → too sensitive to noise
- Combined with a smoothing Gaussian filter
 - Smooth the image with Gaussian, then apply Laplacian

Laplacian of Gaussian (LoG)

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Laplacian Of Gaussian

- The Laplacian of Gaussian (or Mexican hat)
 - Gaussian for noise removal
 - Laplacian for edge detection

$$LoG(x,y) = -\frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2} \right] e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

	ı			
0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

Laplacian Of Gaussian Example

Derivatives & Noise

- Derivative-based edge detectors are extremely sensitive to noise
- We need to keep this in mind

Laplacian ~ Difference of Gaussian

Hough Transform

- Straight lines
- Circles
- Algebraic curves
- Arbitrary specific shapes in an image

Hough Transform for Lines: Image and Parameter Spaces

Line in Img. Space ~ Point in Param. Space

Image Parameter Spaces

- Image Space
 - Lines
 - Points
 - Collinear points

- Parameter Space
 - Points
 - Lines
 - Intersecting lines

Hough Transform Technique

- Given an edge point, there is an infinite number of lines passing through it (Vary m and n).
 - These lines can be represented as a line in parameter space.

Parameter space representation

- Where is the line that contains both (x_0, y_0) and (x_1, y_1) ?
 - It is the intersection of the lines $b = -x_0m + y_0$ and $b = -x_1m + y_1$

Hough Transform Algorithm

- Initialize an accumulator array A(m,b) to zero
- For each edge element (x,y), increment all cells that satisfy b = -x m + y
- Local maxima in A(m,b) correspond to lines

Thresholded edge images

Visualizing the accumulator space
The height of the peak will be defined by the number of pixels in the line.

Thresholding the accumulator space and superimposing this onto the edge image

Practical Issues with This Hough Parameterization

- The slope of the line is $-\infty < m < \infty$
 - The parameter space is INFINITE
- The representation y = mx + n does not express
 lines of the form x = k

Solution:

• Use the "Normal" equation of a line:

Consequence:

A Point in Image Space is now represented as a SINUSOID

```
-\rho = x \cos\theta + y \sin\theta
```

New Parameter Space for Hough based on trigonometric functions

- Use the parameter space (ρ, θ)
- The new space is FINITE
 - 0 < ρ < D , where D is the image diagonal.
 - $-\pi < \theta < \pi$
- The new space can represent all lines
 - Y = k is represented with ρ = k, θ =90
 - X = k is represented with ρ = k, θ =0

Hough Transform Algorithm

Input is an edge image (E(i,j)=1 for edgels)

- 1. Discretize θ and ρ in increments of $d\theta$ and $d\rho$. Let A(R,T) be an array of integer accumulators, initialized to 0.
- 2. For each pixel E(i,j)=1 and h=1,2,...T do
 - 1. $\rho = j \cos(h * d\theta) + i \sin(h * d\theta)$
 - 2. Find closest integer k corresponding to ρ
 - 3. Increment counter A(h,k) by one
- 3. Find local maxima in A(R,T)

SHT: Another Viewpoint

Taking any particular (x,y) point its set of (r,φ) points
is a sinusoid through parameter space

• The line upon which the (x,y) points lie is then given by the (r,φ) pair on which all the sinusoids agree (i.e. intersect)

• Finding this intersection we then have the required (r,φ) parameters and therefore the line in the image

Animation

Hough Transform – cont.

Hough Transform – cont.

Hough Transform Speed Up

- The orientation of the edge: arctan(\(\frac{G_y}{G_x}\))
 - If we know the orientation of the edge —
 usually available from the edge detection step
 - We fix theta in the parameter space and increment only one counter!

Hough Transform Speed Up

- If we know the orientation of the edge —
 usually available from the edge detection step
 - We fix theta in the parameter space and increment only one counter!
 - We can allow for orientation uncertainty by incrementing a *few* counters around the "nominal" counter.

Animation

http://homepages.inf.ed.ac.uk/amos/hough.html

Hough Transform Generalizations

- It locates straight lines (SHT) standard, simple HT
- It locates straight line intervals
- It locates circles
- It locates algebraic curves
- It locates arbitrary specific shapes in an image
 - But you pay progressively for complexity of shapes by time and memory usage

HT for Circles

- Extend HT to other shapes that can be expressed parametrically
- Circle, fixed radius r, centre (a,b)
 - $-(x_1-a)^2 + (x_2-b)^2 = r^2$
 - accumulator array must be 3D
 - unless circle radius, r is known
 - re-arrange equation so x_1 is subject and x_2 is the variable
 - for every point on circle edge (x,y) plot range of (x_1,x_2) for a given r

Hough circle Fitting

• Implicit circle equation: $(x - a)^2 + (y - b)^2 = r^2$

Hough Transform – cont.

A 3-dimensional parameter space for circles in general Shape = ?

Speedup using gradient info

•For line detection the gradient is @, and so need only to vote for one cell (p,@) where p is

• p =
$$x_i \cos @ + y_i \sin @$$

- For circle detection
 - the gradient is @, and so need only to vote along a line given by the equations
 - a=x + r cos @, b = y + r sin @

Optimization: HT for circles

- With edge direction
 - edge directions are quantized into 8 possible directions
 - only 1/8 of circle needs take part in accumulator
- Using edge directions
 - a & b can be evaluated from

$$egin{aligned} a &= x_1 - R \cos(\psi(\mathbf{x})) \ b &= x_2 - R \sin(\psi(\mathbf{x})) \ \psi(\mathbf{x}) \in [\phi(\mathbf{x}) - \Delta \phi \ , \ \phi(\mathbf{x}) + \Delta \phi] \end{aligned}$$

- $-\theta$ = edge direction in pixel x
- delta θ = max anticipated edge direction error
- Also weight contributions to accumulator A(a) by edge magnitude

Hough Transform – cont.

- More complicated shapes
 - Can be used to find shapes with arbitrary complexity
 - ... as long as we can describe the shape with some fixed number of parameters
 - The number of parameters required indicates the dimensionality of the accumulator

Generalized Hough Transform

- Some shapes may not be easily expressed using a small set of parameters
 - In this case, we explicitly list all the points on the shape
 - This variation of Hough transform is known as generalized Hough transform

Problems with Hough Transform

Problems with Hough Transform – cont.

Problems with Hough Transform – cont.

Hough Transform: Philosophy

- A method for detecting straight lines, shapes and curves in images.
- Main idea:
 - Map a difficult pattern problem into a simple peak detection problem

Hough Transform: Properties

- Advantage robustness of segmentation results
 - better than edge linking
 - works through occlusion
- Any part of a straight line can be mapped into parameter space

Harris corner detector

 C.Harris, M.Stephens. "A Combined Corner and Edge Detector". 1988

The Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in *any direction* should give *a large change* in intensity

Harris Detector: Basic Idea

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Change of intensity for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

"I'm sorry, Taylor, but Fourier had one of the best series of 1807."

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

"I'm sorry, Taylor, but Fourier had one of the best series of 1807."

For small shifts [u,v] we have a *bilinear* approximation:

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} \quad M \quad \begin{bmatrix} u\\v \end{bmatrix}$$

where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Intensity change in shifting window: eigenvalue analysis

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} \quad M \quad \begin{bmatrix} u\\v \end{bmatrix}$$

$$\lambda_1, \lambda_2$$
 – eigenvalues of M

Ellipse E(u,v) = const

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

direction of the slowest change

Measure of corner response:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$R = \det M - k \left(\operatorname{trace} M \right)^2$$

$$\det M = \lambda_1 \lambda_2$$
$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

(k - empirical constant, k = 0.04-0.06)

$$R = \det M - k \left(\operatorname{trace} M \right)^{2}$$
$$\det M = \lambda_{1} \lambda_{2}$$
$$\operatorname{trace} M = \lambda_{1} + \lambda_{2}$$

- R depends only on eigenvalues of M
- *R* is large for a corner
- *R* is negative with large magnitude for an edge
- |R| is small for a flat region

Harris Detector

- The Algorithm:
 - Find points with large corner response function R
 (R > threshold)
 - Take the points of local maxima of R

Compute corner response R

Find points with large corner response: *R*>threshold

Take only the points of local maxima of R

Harris Detector: Summary

 Average intensity change in direction [u,v] can be expressed as a bilinear form:

$$E(u,v) \cong [u,v] M \begin{bmatrix} u \\ v \end{bmatrix}$$

Describe a point in terms of eigenvalues of M:
 measure of corner response

$$R = \lambda_1 \lambda_2 - k \left(\lambda_1 + \lambda_2 \right)^2$$

• A good (corner) point should have a *large intensity* change in all directions, i.e. R should be large positive

Harris Detector: Some Properties

Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation

Harris Detector: Some Properties

Partial invariance to affine intensity change

✓ Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$

✓ Intensity scale: $I \rightarrow a I$

Harris Detector: Some Properties

• But: non-invariant to *image*

All points will be classified as edges

Corner!