SOC542 Statistical Methods in Sociology II

Dummy, Categorical, and Non-Linear Variables

Thomas Davidson

Rutgers University

February 20, 2023

Course updates

- Homework 2 released after class
 - Multivariate regression: specification, estimation, and interpretation
 - ightharpoonup Due next Tuesday (2/27) at 5pm via Github Classroom

Paper propsals

- ► Plan for final paper
 - Relevant literature and research question(s)
 - Literature review does not need to be exhaustive!
 - Data
 - Outcome variable
 - Key predictors
 - Methodology
 - Regression approach
- ▶ Due 7/3 at 5pm (via email)

Plan

- ▶ Dummy variables
- ► Categorical variables
- Logarithms
- ► Polynomials

Definitions

- ▶ A dummy variable is used to measure the difference between two possible states.
- Dummy variables are binary, taking a value of either zero or one.
- ▶ These values stand in for social categories of interest.
 - e.g. Male/female, employed/unemployed, liberal/conservative.

Dummy variables as random variables

We can generate dummy variables using the Binomial distribution, where P(x = 1) = p and P(x = 0) = 1 - p.

$$x \sim Binomial(N, p)$$

A simple model

```
N <- 10000
x <- rbinom(N, 1, .4) # p = .4
y <- 3*x + rnorm(N, 10, 1)
m <- lm(y ~ x)
round(m$coefficients,2)
## (Intercept) x
## 9.99 3.01</pre>
```

Interpretation

Interpretation

- ▶ The coefficient represents the expected difference in the outcome when x = 1 compared to x = 0.
- Consider the following population model, predicting income as a function of union membership.

$$Income = \beta_0 + \beta_1 Union + u$$

- \triangleright β_1 represents the expected difference in income for union members compared to non-union members.
- The dummy variable also impacts the meaning of the intercept β_0 , which is the average income for non-unionized workers.

Example: Union wage returns

```
gss <- haven::read_dta("../../2022/labs/lab-data/GSS2018.dta")</pre>
data <- gss %>% select(realrinc, union, sex) %>%
    drop_na(realrinc, union) %>%
    mutate(union dummy = ifelse(union == 1, "U", "nU"),
           sex = ifelse(sex == 1, "Male", "Female"))
u.reg <- lm(realrinc ~ union_dummy, data = data)</pre>
print(u.reg)
##
## Call:
## lm(formula = realrinc ~ union_dummy, data = data)
##
## Coefficients:
    (Intercept) union dummyU
##
          24572
                          5646
##
```

Example: Union wage returns

```
means <- data %>% group_by(union_dummy) %>%
   summarize(m = mean(realrinc))
print(means)
## # A tibble: 2 x 2
## union_dummy m
## <chr> <dbl>
## 1 U 30218.
              24572
## 2 nU
mean.nonunionized <- means %>% filter(union_dummy == "nU")
print(mean.nonunionized$m + u.reg$coefficients[2])
## union_dummyU
##
       30218.2
```

Reference category

- ► The interpretation of the model depends on which value we assign to 1 or 0.
 - The value assigned to 0 is known as the reference category.
- For a statistical perspective, the choice is arbitrary.
- ▶ But often there are theoretical reasons for selecting a certain reference category and the choices encode certain assumptions about the social world.¹

¹See Johfre and Freese (2021) for further discussion of reference categories.

Reversing the reference category

5645.907

##

Removing the reference category

If we estimate a model with no intercept then we get a separate parameter for each category.

```
u.reg.ni <- lm(realrinc ~ 0 + union_dummy, data = data)
print(coefficients(u.reg.ni))

## union_dummynU union_dummyU

## 24572.3 30218.2

diff <- coefficients(u.reg.ni)[2] - coefficients(u.reg.ni)[1]
print(diff[[1]])

## [1] 5645.907
print(coefficients(u.reg)[2])

## union_dummyU</pre>
```

Removing the reference category

- In the model with no intercept we get a separate coefficient for each category.
- ► The difference between these coefficients is equivalent to the dummy variable in the model with the intercept.

$$\beta_{Union} = \beta_{NoUnion}^* - \beta_{Union}^*$$

Multiple dummy variables

- A multiple regression model can include more than one dummy variable.
- ► The interpretation of each coefficient is now the difference holding other variables at their means.
- ► The intercept is the mean value of the outcome when all dummy variables are zero.

Multiple dummy variables

This model of union wage returns includes a dummy variable for sex. What is the reference category and how can we interpret the intercept?

```
u.reg2 <- lm(realrinc ~ union_dummy + sex, data = data)
print(u.reg2)

##
## Call:
## lm(formula = realrinc ~ union_dummy + sex, data = data)
##
## Coefficients:
## (Intercept) union_dummyU sexMale
## 20077 3699 9757</pre>
```

More than two categories

- ► Categorical variables are a generalization of dummy variables to more than two categories.
 - e.g. Race/ethnicity, highest level of education, region.
- Categories can be **ordinal**, indicating some type of numerical ranking, or **nominal**.

Categorical variables as dummy variables

Reference categories and regression results

The only difference between these models is the order. By default, the last value will be used as the reference category.

```
m4 \leftarrow lm(y \sim a + b + c)

m5 \leftarrow lm(y \sim c + a + b)

m6 \leftarrow lm(y \sim b + c + a)
```

Reference categories and regression results

	(1)	(2)	(3)
(Intercept)	0.004	0.294***	-0.008
	(0.013)	(0.022)	(0.022)
a	-0.011	-0.302***	
	(0.026)	(0.032)	
b	0.291***		0.302***
	(0.026)		(0.032)
С		-0.291***	0.011
		(0.026)	(0.026)
Num.Obs.	10000	10000	10000
R2	0.014	0.014	0.014
R2 Adj.	0.013	0.013	0.013
RMSE	0.99	0.99	0.99
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001			

Interpretation

► Let's assume we run a survey in North America and find out respondents' country of residence. We want to estimate the following model, using USA as a reference category:

$$Income = \beta_0 + \beta_1 Canada + \beta_2 Mexico + u$$

- \triangleright β_0 represents the average income for respondents in the USA.
- \triangleright β_1 represents the expected difference between Canada and the USA.
- \triangleright β_2 represents the expected difference between Mexico and the USA.

Degrees of freedom

- Each additional category uses up a degree of freedom in our model.
 - ▶ Be careful when including variables with many categories (e.g. state of residence)
- Sometimes it may be defensible to treat ordinal variables as if they are continuous.
 - ▶ This only uses one degree of freedom.
 - Unit increases should be constant for all values and have a linear interpretation.
 - e.g. We have categories a, b, and c we could translate these values to the sequence 1, 2, 3. In this case, b a = c b.

Encoding and categorical variables

Categorical data in surveys is often coded as numeric. This can lead to misleading results since we might consider *nominal* categories as *ordinal*. Consider the example below using the region variable in the GSS.

```
coefficients(lm(realrinc ~ region, data = gss))
## (Intercept) region
## 25217.3093 -42.7065
```

Encoding and categorical variables

▶ We can fix this by casting the variable as a factor.

```
gss$region <- as.factor(gss$region)</pre>
coefficients(lm(realrinc ~ region, data = gss))
   (Intercept)
                  region2
                              region3
                                         region4
                                                     reg
##
    29665.891 -4397.330
                            -5512.035
                                       -7055.731
                                                   -3517
##
      region7
                  region8
                              region9
   -3834.901
                -6178.623
                            -3194.037
##
```

Non-linear variables

Specifying non-linearities

- Recall that OLS regression is linear in parameters.
- ► This does not require that predictors or outcomes vary in a linear way.
- ► We will consider how logarithms and polynomials allow us to specify non-linear relationships between variables.

Logarithms and the exponential function

► The **exponential function** raises a *base b* is raised to a power² x.

$$exp(x) = b^x$$

▶ The **logarithm** is the *inverse* of exponentiation.

$$log_b(b^x) = x$$

²Note how this differs from the power function, where we raise x to a specified power. E.g. $power(x,2) = x^2$

Logarithms and the exponential function

▶ Here are some examples of common bases:

$$log_2(2^4) = 4$$

$$log_{10}(10^4) = 4$$

▶ The **natural logarithm** uses the constant $e \approx 2.71828$ as its base:

$$log_e(e^4) = 4$$

Logarithms and exponents

► We can easily verify this in R using the log function with specified bases:

```
log(2^4, base = 2)
## [1] 4
log(10^4, base = 10)
## [1] 4
log(exp(1)^4)
## [1] 4
```

▶ The default base is e. Thus, $exp(1) = e^1 = e$.

Graphing logarithms

When to use logarithms

- Use logarithms when
 - All values of x are positive
 - x has a wide range (e.g. income)
- Interpretation
 - Logarithms allow us to transform variables to measure differences in magnitude and sometimes percentages.
- Specification
 - ► Logarithms can induce normality and reduce variance for if a variable has a **log normal** distribution.

A unit increase of log_{10}

A unit increase of log_{10}

The log-normal distribution

Draws generated using rlnorm().

The natural logarithm of the log normal distribution

The distribution of 2018 GSS respondent income (realinc)

The distribution of 2018 GSS respondent income (realinc), natural log

Logarithms and regression

- ► Logarithms of predictors (**Linear-log models**)
 - If we include $log_e(x)$ as a predictor, β_i now represents the expected change associated with a unit increase in $log_e(x)$

Logarithms as predictors

Here β_1 represents the effect of a one-unit increase in height *on a logarithmic scale*.

```
##
## Call:
## lm(formula = realrinc ~ log(height), data = gss)
##
## Coefficients:
## (Intercept) log(height)
## -34833 88987
```

Logarithms and regression

- ► Logarithms of outcomes (**Log-linear models**)
 - If the outcome is $log_e(y)$. For any variable x, β_i represents the expected change in $log_e(y)$ associated with a unit change in x.

Logarithms as outcomes

Here β_1 represents the effect of a one-unit increase in height on the logarithm of income. Note the difference in the coefficient compared to the previous model.

```
##
## Call:
## lm(formula = log(realrinc) ~ height, data = gss)
##
## Coefficients:
## (Intercept) height
## 5.60849 0.06041
```

Logarithms and regression

- ► Logarithms of predictors and outcomes (Log-log models)
 - If both x and y are entered into the model as logarithms, β_i represents the expected change in $log_e(y)$ associated with a unit change in $log_e(x)$
 - ▶ Equivalently, this corresponds to the expected percentage change in *y* as a result of a 1% change in *x*. Hence, such coefficients can be interpreted as **elasticities**.

Log-log models

Here β_1 represents the effect of a one-unit increase in *logarithm* of height on the *logarithm* of income. A 1% increase in height is associated with a 4% increase in income.

```
##
## Call:
## lm(formula = log(realrinc) ~ log(height), data = gss)
##
## Coefficients:
## (Intercept) log(height)
## -7.341 4.044
```

Log-log models

We can still incorporate untransformed variables into these models. Here the coefficient for sex can be interpreted as the *difference in the expected logarithm of income* between male and female respondents.

```
##
## Call:
## lm(formula = log(realrinc) ~ log(height) + sex, data = gss)
##
## Coefficients:
## (Intercept) log(height) sex
## -0.4834 2.5136 -0.2774
```

Model comparison

	Log x	Log y	Log-log	Log-log+	
(Intercept)	-348333.267***	5.608***	-7.341***	-0.483	
,	(55342.266)	(0.520)	(2.181)	(3.046)	
log(height)	88986.528***		4.044***	2.514***	
	(13158.504)		(0.519)	(0.703)	
height		0.060***			
		(0.008)			
sex				-0.277**	
				(0.086)	
Num.Obs.	1194	1194	1194	1194	
R2	0.037	0.049	0.049	0.057	
R2 Adj.	0.036	0.048	0.048	0.055	
n < 0.1 * n < 0.05 ** n < 0.01 *** n < 0.001					

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Definitions

- ▶ **Polynomial** regression expresses non-linear relationships between continuous predictors in a linear model by adding exponents of *x*.
- ► The expected value of *y* is expressed as an *k*th degree polynomial:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \dots + \beta_k x^k + u$$

Generally, we use a restricted form, such as the quadratic model:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + u$$

Quadratic functions and parabolas

$$y = 2 + -3x + 2x^2.$$

When to use polynomial regression

▶ We add polynomials to capture non-linear relationships. For example, we might expect a non-linear relationship between age and income. We could express this using the following model:

$$Income = \beta_0 + \beta_1 Age + \beta_2 Age^2 + u$$

- ▶ The effect of age is now decomposed into two coefficients:
 - $ightharpoonup eta_1$ captures the linear relationship between age and income.
 - \blacktriangleright β_2 captures a non-linear association between age and income.
- ▶ The coefficients do not have a simple interpretation.
 - ► Consider whether we can change *Age* while holding *Age*² constant.

Age and Age-Squared

Income and age

Age < 89 and income < 1E5. OLS fitted line.

Income and age

Age < 89 and income < 1E5. OLS & LOESS fitted lines.

Income and age

-						
	(1)	(2)	(3)	(4)		
(Intercept)	8.917***	5.759***	2.958***	-2.453		
	(0.108)	(0.294)	(0.764)	(1.964)		
age	0.014***	0.166***	0.368***	0.894***		
	(0.002)	(0.013)	(0.053)	(0.184)		
age2		-0.002***	-0.006***	-0.024***		
		(0.000)	(0.001)	(0.006)		
age3			0.000***	0.000***		
			(0.000)	(0.000)		
age4				0.000**		
				(0.000)		
Num.Obs.	1357	1357	1357	1357		
R2	0.027	0.114	0.124	0.130		
R2 Adj.	0.027	0.112	0.122	0.127		
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001						

Predictions

Predicted values from OLS models. Income measured using realrinc. Respondents under 89 only.

When to use polynomial regression

- ► A second-order polynomial (e.g. Age^2) is sufficient to capture non-linearity.
 - ► In this case, there is evidence of a curvilinear relationship between age and income.³
- Higher-order polynomial terms can improve model fit and capture more complex non-linearities but use up degrees of freedom and become difficult to interpret.

³For an example of polynomials used in a different context, see Dokshin, Fedor A. 2016. "Whose Backyard and What's at Issue? Spatial and Ideological Dynamics of Local Opposition to Fracking in New York State, 2010 to 2013." *American Sociological Review* 81 (5): 921–48.

Next week

Interaction terms

- What is an interaction?
- ► How to specify an interaction
- ► How to interpret an interaction

Lab

► Regression models using the General Social Survey