Centro Federal de Educação Tecnológica de Minas Gerais ENGENHARIA DA COMPUTAÇÃO

Aula 03 Funções Lógicas, Portas Lógicas e Circuitos Lógicos

Introdução

Definição "Lógicas": Lógicas são linguagens formais para a representação de conhecimento, que permite que conclusões possam ser tomadas.

George Boole (1815-1864): Matemático Britânico que através de trabalhos publicados a partir de 1847 sobre Análise Matemática da Lógica divulgou idéias sobre Lógica Simbólica - assim, a Lógica apresentada por Aristóteles poderia ser apresentada por Equações Algébricas. Seu trabalho de 1954, intitulado "Uma investigação das leis do pensamento", descreve o modo como tomamos decisões lógicas com base em circunstâncias verdadeiras ou falsas.

O modo como um circuito digital responde a uma entrada é denominado *lógica* do circuito. Por esta razão, os circuitos digitais são também chamados de circuitos lógicos. Os dois termos são usados indistintamente.

Circuito integrado

A Álgebra Booleana é uma ferramenta matemática que nos permite descrever relações entre as entradas e as saídas dos circuitos lógicos como uma equação algébrica (uma expressão Booleana).

A Álgebra Booleana é uma ferramenta matemática que nos permite descrever relações entre as entradas e as saídas dos circuitos lógicos como uma equação algébrica (uma expressão Booleana).

A principal diferença entre a **álgebra Booleana** e a **álgebra convencional** é que as constantes e variáveis podem assumir apenas dois valores possíveis: **0 e 1**.

A Álgebra Booleana é uma ferramenta matemática que nos permite descrever relações entre as entradas e as saídas dos circuitos lógicos como uma equação algébrica (uma expressão Booleana).

A principal diferença entre a **álgebra Booleana** e a **álgebra convencional** é que as constantes e variáveis podem assumir apenas dois valores possíveis: 0 e 1.

As **variáveis Booleanas** não representam efetivamente números, mas sim o estado da variável monitorada – indica um **nível lógico**.

A Álgebra Booleana é uma ferramenta matemática que nos permite descrever relações entre as entradas e as saídas dos circuitos lógicos como uma equação algébrica (uma expressão Booleana).

A principal diferença entre a **álgebra Booleana** e a **álgebra convencional** é que as constantes e variáveis podem assumir apenas dois valores possíveis: **0 e 1**.

As variáveis Booleanas não representam efetivamente números, mas sim o estado da variável monitorada – indica um nível lógico.

Em nosso estudo, letras serão usadas como símbolos para representar as variáveis lógicas.

A Álgebra Booleana é uma ferramenta matemática que nos permite descrever relações entre as entradas e as saídas dos circuitos lógicos como uma equação algébrica (uma expressão Booleana).

A principal diferença entre a **álgebra Booleana** e a **álgebra convencional** é que as constantes e variáveis podem assumir apenas dois valores possíveis: **0 e 1**.

As variáveis Booleanas não representam efetivamente números, mas sim o estado da variável monitorada – indica um nível lógico.

Em nosso estudo, letras serão usadas como símbolos para representar as variáveis lógicas.

A álgebra booleana tem, de fato, apenas três operações básicas:

OR (OU), AND (E) e NOT (INVERSOR).

Função OR ("OU") e a Porta OR

(a)

Exercício 1: Obtenha a forma de onda na saída para:

Exercício 1: Obtenha a forma de onda na saída para:

Função AND ("E") e a Porta AND

Exercício 2: Obtenha a forma de onda na saída para:

Exercício 2: Obtenha a forma de onda na saída para:

Função NOT ("NÃO") ou Inversor

INVERSOR

A	x = A
0	1
1	0

(b)

Função NOT ("NÃO") ou Inversor

Com as operações **OR**, **AND** e **NOT** pode-se descrever qualquer circuito lógico!

Resumo das Operações Booleanas

As regras para as operações OR, AND e NOT com duas entradas podem ser resumidas como segue:

OR

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 1$$

AND

$$0 \cdot 0 = 0$$

$$0 \cdot 1 = 0$$

$$1 \cdot 0 = 0$$

$$1 \cdot 1 = 1$$

NOT

$$\bar{0} = 1$$

$$\bar{1} = 0$$

Qualquer circuito lógico, não importando sua **complexidade**, pode ser descrito usando as três operações Booleanas básicas, porque as portas **OR, AND** e **NOT** são os blocos fundamentais dos sistemas digitais.

Qualquer circuito lógico, não importando sua **complexidade**, pode ser descrito usando as três operações Booleanas básicas, porque as portas **OR, AND** e **NOT** são os blocos fundamentais dos sistemas digitais.

Exercícios 3: Obtenha a expressão na saída (S) do circuito lógico abaixo:

Circuito lógico cuja expressão requer parênteses.

Uma vez de posse da **expressão Booleana** para a saída de um circuito, podemos obter o **nível lógico** da saída para qualquer conjunto de níveis lógicos de entrada.

$$X = \overline{A}BC\left(\overline{A+D}\right)$$

Uma vez de posse da **expressão Booleana** para a saída de um circuito, podemos obter o **nível lógico** da saída para qualquer conjunto de níveis lógicos de entrada.

$$X = \overline{A}BC\left(\overline{A+D}\right)$$

$$X = \overline{0} \cdot 1 \cdot 1 \left(\overline{0+1} \right)$$

Uma vez de posse da **expressão Booleana** para a saída de um circuito, podemos obter o **nível lógico** da saída para qualquer conjunto de níveis lógicos de entrada.

$$X = \overline{A}BC(\overline{A+D})$$

$$X = \overline{0} \cdot 1 \cdot 1(\overline{0+1})$$

$$X = 1 \cdot 1 \cdot 1(\overline{1})$$

Uma vez de posse da **expressão Booleana** para a saída de um circuito, podemos obter o **nível lógico** da saída para qualquer conjunto de níveis lógicos de entrada.

$$X = \overline{A}BC(\overline{A} + \overline{D})$$

$$X = \overline{0} \cdot 1 \cdot 1(\overline{0} + \overline{1})$$

$$X = 1 \cdot 1 \cdot 1(\overline{1})$$

$$X = 1 \cdot (0) \qquad \therefore \qquad X = 0$$

Exercício 4: Seja A = 0, B = 0, C = 1, D = 1 e E = 1.

Calcule o valor da saída S, dada por:

$$S = \left[D + \overline{(A+B)C}\right]E$$

O nível lógico da saída, em função dos níveis lógicos especificados para as entradas, pode ser determinado diretamente a partir do diagrama do circuito sem usar a expressão Booleana. Esta técnica é muitas vezes utilizada para a análise de defeitos, ou teste de um sistema lógico.

O nível lógico da saída, em função dos níveis lógicos especificados para as entradas, pode ser determinado diretamente a partir do diagrama do circuito sem usar a expressão Booleana. Esta técnica é muitas vezes utilizada para a análise de defeitos, ou teste de um sistema lógico.

Quando a operação de um circuito é definida por uma **expressão Booleana**, podemos desenhar o diagrama do circuito lógico a partir da expressão.

$$Y = AC + B\overline{C} + \overline{A}BC$$

Quando a operação de um circuito é definida por uma **expressão Booleana**, podemos desenhar o diagrama do circuito lógico a partir da expressão.

$$Y = AC + B\overline{C} + \overline{A}BC$$

Exercício 5: Construir o circuito lógico que representa a expressão abaixo:

$$S = (A + C)(\overline{B} + C)$$

Porta Lógica NOR ("NÃO-OU")

Dois outros tipos de portas lógicas, as portas NAND e NOR, são muito usados em circuito digitais.

		OR	NOR
Α	В	A+B	A+B
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Diagrama de Tempo:

Diagrama de Tempo:

Porta Lógica NAND ("NÃO-E")

	-	4.5	1 .5
A	В	AB	AB
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0
		(c)	

Diagrama de Tempo:

Diagrama de Tempo:

Exercício 6: Determine a expressão na saída do circuito lógico abaixo utilizando porta NOR:

Exercício 6: Determine a expressão na saída do circuito lógico abaixo utilizando porta NOR:

Exercício 7: Implemente usando portas lógicas NAND e NOR a expressão abaixo.

$$X = \overline{AB(\overline{C+D})}$$

Tabelas Verdade:

Uma maneira de fazer o estudo de uma função booleana é através da **tabela verdade**:

Exemplo: Obtenha a tabela verdade da expressão abaixo:

$$S = A\overline{B}C + A\overline{D} + \overline{A}BD$$

Tabelas Verdade:

$$S = A\overline{B}C + A\overline{D} + \overline{A}BD$$

A B C D ABC AD ABD S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
0 0 0 1 0	Α	В	С	D	$A\overline{B}C$	$A\overline{D}$	$\overline{A}BD$	S
0 0 1 0	0	0	0	0	0	0	0	0
0 0 1 1 0 1 1 1 0	0	0	0	1	0	0	0	0
0 1 0 1 1 1 0	0	0	1	0	0	0	0	0
0 1 0 1	0	0	1	1	0	0	0	0
0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0	0	1	0	0	0	0	0	0
0 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 1	0	1	0	1	0	0	1	1
1 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 1	0	1	1	0	0	0	0	0
1 0 0 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 1 1 0 0 1 0 1	0	1	1	1	0	0	1	1
1 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 1	1	0	0	0	0	1	0	1
1 0 1 1 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 1 0 1	1	0	0	1	0	0	0	0
1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0 1	1	0	1	0	1	1	0	1
1 1 0 1 0 0 0 1 1 1 0 0 1 0 1	1	0	1	1	1	0	0	1
1 1 1 0 0 1 0 1	1	1	0	0	0	1	0	1
	1	1	0	1	0	0	0	0
1 1 1 1 0 0 0	1	1	1	0	0	1	0	1
	1	1	1	1	0	0	0	0

Tabelas Verdade:

Exercícios 8: Prove as identidades abaixo, montando as tabelas verdade:

a)
$$\overline{A} \cdot \overline{B} \neq \overline{A \cdot B}$$

$$b) \ \overline{A} + \overline{B} \neq \overline{A + B}$$

$$c) \ \overline{A} \cdot \overline{B} = \overline{A + B}$$

$$d) \ \overline{A} + \overline{B} = \overline{A \cdot B}$$

Para solucionar, extraímos os casos onde a expressão é **verdadeira** (X = 1):

ABC	X
000	0
001	1
010	0
011	0
100	1
101	1
110	0
111	1

Para solucionar, extraímos os casos onde a expressão é **verdadeira** (X = 1):

$$X = \overline{ABC} + A\overline{BC} + A\overline{BC} + ABC$$

Exercícios 9: Obtenha a expressão lógicas para a tabela verdade:

a)

ABC	х
000	0
001	0
010	0
011	0
100	0
101	1
110	1
111	1

Exercícios 9: Obtenha a expressão lógicas para a tabela verdade:

b)

ABCD	х
0000	1
0001	1
0010	0
0011	1
0100	0
0101	1
0110	1
0111	0
1000	0
1001	1
1010	0
1011	0
1100	1
1101	0
1110	0
1111	0

Circuitos Exclusive-OR (EXOR)

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	0

Esse circuito produz uma saída em nível ALTO sempre que duas entradas estiverem em níveis opostos.

Símbolos para a porta XOR

$$A \longrightarrow X = A \oplus B = \overline{A}B + A\overline{B}$$

Circuitos Exclusive-OR – Particularidades!!!

Uma porta EX-OR (OU-EXCLUSIVO) tem apenas duas entradas; não existem portas EX-OR de três ou quatro entradas. Uma forma abreviada algumas vezes usada para indicar uma saída EX-OR é:

$$x = A \oplus B$$

Existem disponíveis alguns Cls contendo portas EX-OR, como os seguintes que são chips quádruplos destas portas:

• **74LS86** - chip quádruplo EX-OR (família TTL)

Circuitos Exclusive-NOR (EXNOR)

Α	В	Х
0	0	1
0	1	0
1	0	0
1	1	1

Símbolos para a porta XNOR

$$X = \overline{A \oplus B} = AB + \overline{A} \overline{B}$$

Circuitos Exclusive-NOR

Uma forma abreviada de indicar a expressão de saída de uma porta EX-NOR é:

$$x = A \odot B$$

74LS266

chip quádruplo EX-NOR (família TTL)

Devido ao fato de fornecer 1 à saída quando houver uma coincidência nos valores das variáveis de entrada, esta porta lógica ficou conhecida como "circuito coincidência".