

G-decompositions and G-designs for Forests with Seven Edges

Danny Banegas, Professor Bryan Freyberg

University of Minnesota: Duluth

February 28, 2025

OUTLINE

Forest Graphs

Decompositions and Designs

Edge Length and Decompositions

 $\sigma^{+-}\text{-labelings}$

 $n \equiv 7 \text{ or } 8 \pmod{14}$

 $K_{1,7} \sqcup P_2$

► A **forest** is a disjoint union of trees.

- ► A **forest** is a disjoint union of trees.
- ▶ It consists of multiple components, each being a tree.

Forest Graphs

- ► A **forest** is a disjoint union of trees.
- ▶ It consists of multiple components, each being a tree.

Figure: A Forest graph composed of trees with 3 and 4 vertices, respectively

• We call a set $\mathcal{G} = \{G_0, G_1, \dots, G_m\}$ of pairwise edge-disjoint subgraphs of a graph K a decomposition of K if the union of all of its members equals K.

Decompositions and Designs

- We call a set $\mathcal{G} = \{G_0, G_1, \dots, G_m\}$ of pairwise edge-disjoint subgraphs of a graph *K* a decomposition of *K* if the union of all of its members equals *K*.
- If \mathcal{G} is a decomposition of K and all of it's members are isomorphic to some graph G, then we call G a G-decomposition of K and say that K allows a G-decomposition or (K, G)-**design**.

- We call a set $\mathcal{G} = \{G_0, G_1, \dots, G_m\}$ of pairwise edge-disjoint subgraphs of a graph K a decomposition of K if the union of all of its members equals K.
- ▶ If G is a decomposition of K and all of it's members are isomorphic to some graph G, then we call G a G—decomposition of K and say that K allows a G—decomposition or (K, G)—design.
- ▶ If $K \cong K_n$ then we call \mathcal{G} a G-**design** of order n.

- We call a set $\mathcal{G} = \{G_0, G_1, \dots, G_m\}$ of pairwise edge-disjoint subgraphs of a graph *K* a decomposition of *K* if the union of all of its members equals *K*.
- If \mathcal{G} is a decomposition of K and all of it's members are isomorphic to some graph G, then we call G a G-decomposition of K and say that K allows a G-decomposition or (K, G)-**design**.
- ▶ If $K \cong K_n$ then we call \mathcal{G} a G-**design** of order n.

Figure: A P₃-Design of order 4

- We call a set G = {G₀, G₁,..., G_m} of pairwise edge-disjoint subgraphs of a graph K a decomposition of K if the union of all of its members equals K.
- ▶ If *G* is a decomposition of *K* and all of it's members are isomorphic to some graph *G*, then we call *G* a *G*—decomposition of *K* and say that *K* allows a *G*—decomposition or (*K*, *G*)—**design**.
- ▶ If $K \cong K_n$ then we call \mathcal{G} a G-**design** of order n.

Figure: A P3-Design of order 4

- We call a set $\mathcal{G} = \{G_0, G_1, \dots, G_m\}$ of pairwise edge-disjoint subgraphs of a graph K a decomposition of K if the union of all of its members equals K.
- If *G* is a decomposition of *K* and all of it's members are isomorphic to some graph *G*, then we call *G* a *G*−decomposition of *K* and say that *K* allows a *G*−decomposition or (*K*, *G*)−design.
- ▶ If $K \cong K_n$ then we call \mathcal{G} a G—**design** of order n.

Figure: A P₃-Design of order 4

Necessary condition

▶ Let *G* be a graph on *m* edges. Then there exists a (K, G)—design only if *m* divides |E(K)|.

 $n \equiv 7 \text{ or } 8 \pmod{14}$

- ▶ Let *G* be a graph on *m* edges. Then there exists a (K,G)-design only if *m* divides |E(K)|.
- ▶ If $K \cong K_n$, then there exists a (K,G)-design only if m divides $\binom{n}{2} = \frac{n(n-1)}{2}$.

NECESSARY CONDITION

- ▶ Let *G* be a graph on *m* edges. Then there exists a (K,G)-design only if *m* divides |E(K)|.
- ▶ If $K \cong K_n$, then there exists a (K, G)-design only if m divides $\binom{n}{2} = \frac{n(n-1)}{2}$.
- ► Equivalently, there exists a *G*—design of order *n* only if *n* is idempotent modulo 2*m*. This is easy to show.

NECESSARY CONDITION

- ▶ Let *G* be a graph on *m* edges. Then there exists a (K, G)—design only if *m* divides |E(K)|.
- ▶ If $K \cong K_n$, then there exists a (K,G)-design only if m divides $\binom{n}{2} = \frac{n(n-1)}{2}$.
- Equivalently, there exists a *G*—design of order *n* only if *n* is idempotent modulo 2*m*. This is easy to show.

Proof.

Let $m, n \in \mathbb{N}$. Suppose $m \mid \binom{n}{2}$. Then $\frac{n(n-1)}{2} = mq$ for some $q \in \mathbb{N}$. So then $\frac{n(n-1)}{2m} = q$, and $n(n-1) \equiv 0 \pmod{2m}$. Therefore $n \equiv n^2 \pmod{2m}$, and so n is idempotent modulo 2m. Suppose n is idempotent modulo 2m, then $n^2 > n$ and therefore $n^2 - n = n(n-1) = 2mp$ for some $p \in \mathbb{N}$. So then $\frac{n(n-1)}{2} = \binom{n}{2} = mp$ and m divides $\binom{n}{2}$. \square

Cyclic Designs

CYCLIC DESIGNS

▶ Let
$$V(K_n) = \mathbb{Z}_n$$

CYCLIC DESIGNS

- Let $V(K_n) = \mathbb{Z}_n$
- ▶ A *G*-design is *cyclic* if the permutation $v \mapsto v + 1$ on $V(K_n)$ is an automorphism of the design.

CYCLIC DESIGNS

- ▶ Let $V(K_n) = \mathbb{Z}_n$
- ▶ A *G*-design is *cyclic* if the permutation $v \mapsto v + 1$ on $V(K_n)$ is an automorphism of the design.
- ▶ We call this act of applying permutations to a labeling *clicking*.

Cyclic P₃-design of order 5

0

 $\left(4\right)$

(1)

(3)

2

Cyclic P_3 -design of order 5 $\{1,0,3\}$

Cyclic P_3 -design of order 5 $\{1,0,3\}$ $\{2,1,4\}$

Cyclic P_3 -design of order 5

 $\{1,0,3\}$

 $\{2, 1, 4\}$

 $\{3,2,0\}$

Cyclic P_3 -design of order 5

 $\{1, 0, 3\}$

 $\{2, 1, 4\}$

 $\{3, 2, 0\}$

 ${4,3,1}$

Cyclic P₃-design of order 5

 $\{1, 0, 3\}$

 $\{2, 1, 4\}$

 ${3,2,0}$

 ${4,3,1}$

 $\{0, 4, 2\}$

Figure: Cyclic P₃-design of order 5

Edge Length

• Let
$$V(K_n) = \{0, 1, \dots, n-1\}$$

EDGE LENGTH

Forest Graphs

- ► Let $V(K_n) = \{0, 1, ..., n-1\}$
- ▶ The *length* of edge $uv \in E(K_n)$ is min(|u v|, n |u v|) and will later be denoted $\ell(uv)$.

EDGE LENGTH

- ► Let $V(K_n) = \{0, 1, ..., n-1\}$
- ▶ The *length* of edge $uv \in E(K_n)$ is $\min(|u v|, n |u v|)$ and will later be denoted $\ell(uv)$.
- If the length of uv is n-|u-v| or equivalently, if $|u-v|>\lfloor\frac{n}{2}\rfloor$, then we call xy a *wrap-around* edge

• Edge length is preserved by the permutation $v \mapsto v + 1$ on $V(K_n)$

- Edge length is preserved by the permutation $v \mapsto v + 1$ on $V(K_n)$
- Also, when *n* is odd, edge length partitions $E(K_n)$ into $\frac{n-1}{2}$ (the number of lengths) sets of size *n* (the number of edges of each length)

 $n \equiv 7 \text{ or } 8 \pmod{14}$

- ▶ Edge length is preserved by the permutation $v \mapsto v + 1$ on $V(K_n)$
- Also, when n is odd, edge length partitions $E(K_n)$ into $\frac{n-1}{2}$ (the number of lengths) sets of size n (the number of edges of each length)

- Edge length is preserved by the permutation $v \mapsto v + 1$ on $V(K_n)$
- ► Also, when *n* is odd, edge length partitions $E(K_n)$ into $\frac{n-1}{2}$ (the number of lengths) sets of size n (the number of edges of each length)

- ▶ Edge length is preserved by the permutation $v \mapsto v + 1$ on $V(K_n)$
- Also, when n is odd, edge length partitions $E(K_n)$ into $\frac{n-1}{2}$ (the number of lengths) sets of size n (the number of edges of each length)

- Edge length is preserved by the permutation $v \mapsto v + 1$ on $V(K_n)$
- Also, when n is odd, edge length partitions $E(K_n)$ into $\frac{n-1}{2}$ (the number of lengths) sets of size n (the number of edges of each length)

EDGE LENGTH AND DECOMPOSITIONS

- Edge length is preserved by the permutation $v \mapsto v + 1$ on $V(K_n)$
- ▶ Also, when *n* is odd, edge length partitions $E(K_n)$ into $\frac{n-1}{2}$ (the number of lengths) sets of size *n* (the number of edges of each length)

EDGE LENGTH AND DECOMPOSITIONS

- ▶ Edge length is preserved by the permutation $v \mapsto v + 1$ on $V(K_n)$
- Also, when n is odd, edge length partitions $E(K_n)$ into $\frac{n-1}{2}$ (the number of lengths) sets of size n (the number of edges of each length)

$$\sigma^{+-}$$
-LABELINGS

▶ Recall the length of $uv \in E(K_n)$ is min(|u - v|, n - |u - v|).

σ^{+-} -LABELINGS

- ▶ Recall the length of $uv \in E(K_n)$ is min(|u v|, n |u v|).
- A σ-labeling is a labeling such that the length of every edge $uv \in E(K_n)$ is |u v|.

σ^{+-} -LABELINGS

- ▶ Recall the length of $uv \in E(K_n)$ is min(|u v|, n |u v|).
- A σ-labeling is a labeling such that the length of every edge $uv \in E(K_n)$ is |u v|.
- ightharpoonup Freyberg and Tran introduced the following restricted σ -labeling in 2020.

Definition

Let *G* be a bipartite graph with *m* edges and bipartition $V(G) = A \cup B$. A σ^{+-} -labeling of *G* is a σ -labeling with:

- 1. f(a) < f(b) for every edge $ab \in E(G)$ with $a \in A$ and $b \in B$
- 2. $f(a) f(b) \neq m$ for all $a, b \in V(G)$
- 3. $f(v) \notin \{2m 1, 2m\}$ for all $v \in V(G)$

σ^{+-} -LABELINGS

Theorem (Freyberg, Tran, 2020)

Let G be a graph with m edges and a σ^{+-} -labeling such that the edge of length m is a pendant edge. Then there exists cyclic G-decompositions of K_{2mt} and K_{2mt+1} for every positive integer t.

- ▶ Recall that if *G* has *m* edges, then there exists a *G*-design of order *n* only if *n* is idempotent modulo 2*m*.
- ▶ So *F* is a forest on 7 edges, there exists an *F*-design of order *n* only if $n \equiv 0, 1, 7$, or 8 (mod 14), since those are all the idempotents in \mathbb{Z}_{14} .
- So by Freyberg and Tran, if there exists a σ^{+-} -labeling of all forests F on 7 edges, then there exists F-G-decompositions and G-designs of order 14t and 14t + 1 for all t > 0 and all forests F on 7 edges.

7 EDGE FOREST G-DECOMPOSITIONS AND G-DESIGNS

- ► The matching on 7-edges: $\prod_{i=1}^{n} P_2$ was solved by De Werra in 1970.
- ▶ So last summer I found a σ^{+-} -labeling of all forests on seven edges, up to isomorphism except $\prod_{i=1}^{7} P_2$. There are 46 total excluding the matching.

7 EDGE FOREST G-DECOMPOSITIONS AND G-DESIGNS

Figure: A σ^{+-} -labeling of $K_{1,7} \sqcup P_2$

How do these work?

-LABELINGS OF SEVEN EDGE FORESTS

How do these work?

• σ^{+-} -labelings give these decompositions because there are only lengths $\{1,\ldots,7\}$ in K_{14} and so for for K_{14t} we can simply 'stretch' the B partite set on our σ^{+-} -labeling via $b \mapsto b + 7i$ for each $1 \le i \le t$ and then *develop* them by 1; permute all vertices in the labeling via $v \mapsto v + 1$, to generate the new lengths (since they come 7 at a time) and obtain a *G*-design of order 14*t*.

σ^{+-} -Labelings of seven edge forests

How do these work?

- σ^{+-} -labelings give these decompositions because there are only lengths $\{1,\ldots,7\}$ in K_{14} and so for for K_{14t} we can simply 'stretch' the B partite set on our σ^{+-} -labeling via $b\mapsto b+7i$ for each $1\le i\le t$ and then *develop* them by 1; permute all vertices in the labeling via $v\mapsto v+1$, to generate the new lengths (since they come 7 at a time) and obtain a G-design of order 14t.
- ▶ This idea also gives G-designs of order 14t + 1 where the new node is labeled ∞ , and the lengths are still $\{0, \dots, 7\}$ since $\lfloor \frac{15}{2} \rfloor = 7$ plus a new length ∞ for each edge incident to the node ∞ .

σ^{+-} -LABELINGS OF SEVEN EDGE FORESTS

How do these work?

- σ^{+-} -labelings give these decompositions because there are only lengths $\{1,\ldots,7\}$ in K_{14} and so for for K_{14t} we can simply 'stretch' the B partite set on our σ^{+-} -labeling via $b\mapsto b+7i$ for each $1\le i\le t$ and then *develop* them by 1; permute all vertices in the labeling via $v\mapsto v+1$, to generate the new lengths (since they come 7 at a time) and obtain a G-design of order 14t.
- ▶ This idea also gives G-designs of order 14t + 1 where the new node is labeled ∞ , and the lengths are still $\{0, \dots, 7\}$ since $\lfloor \frac{15}{2} \rfloor = 7$ plus a new length ∞ for each edge incident to the node ∞ .

1

What about the cases where $n \equiv 7$ or $8 \pmod{14}$?

What about the cases where $n \equiv 7 \text{ or } 8 \pmod{14}$?

Lets just look at the starting case we want for $n \equiv 7 \pmod{14}$: K_{14t+7} where t > 0 or K_n where $n \equiv 7 \pmod{14}$. This is K_{21} .

What about the cases where $n \equiv 7$ or 8 (mod 14)?

- Lets just look at the starting case we want for $n \equiv 7 \pmod{14}$: K_{14t+7} where t > 0 or K_n where $n \equiv 7 \pmod{14}$. This is K_{21} .
- ▶ $\lfloor \frac{21}{2} \rfloor = 10$, so we have lengths $\{1, \ldots, 10\}$. This means we can't use the same labeling idea as before to develop a single labeling by 1, because 7-edge forest can only fit 7 distinct lengths...

What about the cases where $n \equiv 7$ or $8 \pmod{14}$?

- Lets just look at the starting case we want for $n \equiv 7 \pmod{14}$: K_{14t+7} where t > 0 or K_n where $n \equiv 7 \pmod{14}$. This is K_{21} .
- ▶ $\lfloor \frac{21}{2} \rfloor = 10$, so we have lengths $\{1, \ldots, 10\}$. This means we can't use the same labeling idea as before to develop a single labeling by 1, because 7-edge forest can only fit 7 distinct lengths...
- Well, what if we can collect edges of some lengths $\{a,b,c\}$ from $\{1,\ldots,10\}$ in some other way for each? Then we can simply take some variation of our σ^{+-} -labelings accounting for lengths $\{1,\ldots,10\}\setminus\{a,b,c\}$ and develop them by 1 to get the remaining lengths.

What about the cases where $n \equiv 7$ or 8 (mod 14)?

- Lets just look at the starting case we want for $n \equiv 7 \pmod{14}$: K_{14t+7} where t > 0 or K_n where $n \equiv 7 \pmod{14}$. This is K_{21} .
- ▶ $\lfloor \frac{21}{2} \rfloor = 10$, so we have lengths $\{1, \ldots, 10\}$. This means we can't use the same labeling idea as before to develop a single labeling by 1, because 7-edge forest can only fit 7 distinct lengths...
- Well, what if we can collect edges of some lengths $\{a,b,c\}$ from $\{1,\ldots,10\}$ in some other way for each? Then we can simply take some variation of our σ^{+-} -labelings accounting for lengths $\{1,\ldots,10\}\setminus\{a,b,c\}$ and develop them by 1 to get the remaining lengths.
- ▶ In the case of $n \equiv 8 \pmod{14}$, we look at $\{a, b, c, \infty\}$. If we can successfully do this, we can once again just 'stretch' the B partite set of some variation of our σ^{+-} -labelings to scale up (since new lengths still come 7 at a time).

(1-2-3)-Labelings and 1-rotational (1-2-3)-labelings

We present the following labeling, which allows us to develop 3 labelings of each forest G by 7 to collect all edges of lengths in $\{1,2,3\}$ in copies of G:

Definition

Let *G* be a graph with 7 edges. A (1-2-3)-*labeling* of 3*G* is an assignment f of the integers $\{0, \ldots, 20\}$ to the vertices of 3*G* such that:

- 1. $f(u) \neq f(v)$ whenever u and v belong to the same component
- 2.

$$\bigcup_{uv \in E(3G)} \{ (f(u) \bmod 7, f(v) \bmod 7) \} = \bigcup_{i=0}^{6} \bigcup_{j=1}^{3} \{ (i, i+j \bmod 7) \}$$

(1-2-3)-Labelings and 1-rotational (1-2-3)-labelings

Similarly, we present the 1-rotational version of this labeling which allows us to develop 4 labelings of each forest G by 7 to collect all edges of lengths in $\{1, 2, 3, \infty\}$ in copies of G

Definition

Let *G* be a graph with 7 edges. A 1-rotational (1-2-3)-labeling of 4*G* is an assignment *f* of $\{0, \ldots, 20\} \cup \infty$ to the vertices of 4*G* such that

- 1. $f(u) \neq f(v)$ whenever u and v belong to the same connected component
- 2.

$$\bigcup_{uv \in E(4G)} \{ (f(u) \bmod 7, f(v) \bmod 7) \} = \bigcup_{i=0}^{6} \bigcup_{j=1}^{3} \{ (i, i+j \bmod 7), (i, \infty) \}$$

(1-2-3)-LABELINGS AND 1-ROTATIONAL (1-2-3)-LABELINGS

How do these work?

• We once again first focus on the $n \equiv 7 \pmod{14}$ case. Essentially, we introduce a new length function on top of the previously defined length function ℓ ; $\ell_7^+ := uv \mapsto (u+v) \mod 7$. We have labeled all vertices in 3G via \mathbb{Z}_{21} such that only non-wraparound lengths {1, 2, 3} appear, but also we have another crucial constraint.

(1-2-3)-LABELINGS AND 1-ROTATIONAL (1-2-3)-LABELINGS

How do these work?

- We once again first focus on the $n \equiv 7 \pmod{14}$ case. Essentially, we introduce a new length function on top of the previously defined length function ℓ ; $\ell_7^+ := uv \mapsto (u+v) \mod 7$. We have labeled all vertices in 3G via \mathbb{Z}_{21} such that only non-wraparound lengths {1, 2, 3} appear, but also we have another crucial constraint.
- When the vertices are reduced modulo 7, each of the 7 edges total across the labeling originally each length $i \in 1, 2, 3$ has a distinct length via ℓ_7^+ in $\{0, 1, \dots, 6\}$. This allows us to develop the labelings by 7 to generate smaller partite sets (equivalence classes) of edges with lengths $(i, j) \in \{1, 2, 3\} \times \{0, 1, \dots, 6\}.$

(1-2-3)-LABELINGS AND 1-ROTATIONAL (1-2-3)-LABELINGS

How do these work?

- We once again first focus on the $n \equiv 7 \pmod{14}$ case. Essentially, we introduce a new length function on top of the previously defined length function ℓ ; $\ell_7^+ := uv \mapsto (u+v) \mod 7$. We have labeled all vertices in 3G via \mathbb{Z}_{21} such that only non-wraparound lengths {1, 2, 3} appear, but also we have another crucial constraint.
- When the vertices are reduced modulo 7, each of the 7 edges total across the labeling originally each length $i \in 1, 2, 3$ has a distinct length via ℓ_7^+ in $\{0, 1, \dots, 6\}$. This allows us to develop the labelings by 7 to generate smaller partite sets (equivalence classes) of edges with lengths $(i, j) \in \{1, 2, 3\} \times \{0, 1, \dots, 6\}.$

An example:

Consider the non-wraparound edge $\{1,2\}$ in K_{21} . $\ell(\{1,2\}) = 1$ and $\ell_7^+(\{1,2\}) = 3$. Developing {1,2} by 7 modulo 21 repeatedly, we get the whole partite set $\{\{1,2\},\{8,9\},\{15,16\}\}\$ of edges with standard length ℓ of 1 and new ℓ_{τ}^+ length of 3.

7-edge forest designs of order 14t + 7 and 14t + 8

 We found (1-2-3)-labelings of 3G and 1-rotational (1-2-3)-labelings of 4G for each seven edge forest G, except K_{1,6}

□ P₂.

7-edge forest designs of order 14t + 7 and 14t + 8

- ▶ We found (1-2-3)-labelings of 3G and 1-rotational (1-2-3)-labelings of 4G for each seven edge forest G, except $K_{1.6} \sqcup P_2$.
- For the remaining lengths $\{4, 5, 6, 7, 8, 9, 10\}$ we simply 'stretched' σ^{+-} –labelings for each forest except $K_{1,6} \sqcup P_2$ via $b \mapsto b + 3$ so that the edges go from lengths $\{1, 2, ..., 7\}$ to lengths $\{1 + 3, 2 + 3, ..., 7 + 3\} = \{4, 5, ..., 10\}$.
- Combining these two labeling techniques, we proved that there exists a seven edge forest design of orders 14t + 7 and 14t + 8 where t > 0 for all forests except $K_{1,6} \sqcup P_2$.

An example of such a $S_6 \sqcup P_3$ -design of order 21

$$K_{1,7} \sqcup P_2$$

We were unable to find (1-2-3) and 1-rotational (1-2-3) labelings for exactly one graph (by hand and using a constraint programming algorithm). So we took a completely different approach for this exceptional graph $K_{1,7} \sqcup P_2$.

In 1974, Pauline Cain proved that there exists an K_{1,7}−design of order 21. She provided a construction, which is based on partitioning K₂₁ into three joined copies of K₇.

$$K_{1,7} \sqcup P_2$$

We were unable to find (1-2-3) and 1-rotational (1-2-3) labelings for exactly one graph (by hand and using a constraint programming algorithm). So we took a completely different approach for this exceptional graph $K_{1,7} \sqcup P_2$.

- In 1974, Pauline Cain proved that there exists an K_{1,7}−design of order 21. She provided a construction, which is based on partitioning K₂₁ into three joined copies of K₇.
- ▶ By 'peeling' an edge off each 7-edge star in this decomposition, we seperated the decomposition into resulting in 30 6-edge stars and 30 single edge paths. We paired the paths with a vertex disjoint 6-edge star, and these 30 unions resulted in a $K_{1,7} \sqcup P_2$ -design of order 21.

$$K_{1,7} \sqcup P_2$$

We were unable to find (1-2-3) and 1-rotational (1-2-3) labelings for exactly one graph (by hand and using a constraint programming algorithm). So we took a completely different approach for this exceptional graph $K_{1,7} \sqcup P_2$.

- In 1974, Pauline Cain proved that there exists an K_{1,7}−design of order 21. She provided a construction, which is based on partitioning K₂₁ into three joined copies of K₇.
- ▶ By 'peeling' an edge off each 7-edge star in this decomposition, we seperated the decomposition into resulting in 30 6-edge stars and 30 single edge paths. We paired the paths with a vertex disjoint 6-edge star, and these 30 unions resulted in a $K_{1,7} \sqcup P_2$ -design of order 21.
- ▶ We obtained the $K_{1,7} \sqcup P_2$ -design of order 21 by adding the ∞ node and it's new edges to this $K_{1,7} \sqcup P_2$ -design of order 21 and changing some pairings.

$K_{1,7} \sqcup P_2$ -decomposition of $K_{7:7}$ and $K_{8:7}$

Why did we do this?

- ▶ We begin this case by constructing K_n for $n \equiv 7$ or 8 (mod 14) and $n \ge 21$ using *joined* copies of K_{22} , K_{21} , and K_{14} . The *join* of two graphs G_1 and G_2 is the graph obtained by adding an edge $\{g_1, g_2\}$ for every vertex $g_1 \in V(G_1)$ and every vertex of $g_2 \in V(G_2)$.
- ▶ Let t be a positive integer and join t-1 copies of K_{14} with each other and a lone copy of K_{21} . The resulting graph is $K_{14(t-1)+21} \cong K_{14t+7}$. So we can think of K_{14t+7} as K_t whose t "vertices" consist of t-1 copies of K_{14} and 1 copy of K_{21} and whose edges are the join between them. From now on, we will refer to these "vertices" as nodes. Similarly, K_{14t+8} can be constructed as K_t whose nodes are t-1 copies of K_{14} and 1 copy of K_{22} and whose edges are the join between them.

We show a figure to illustrate this construction on the next slide.

Special Construction for K_{14t+7} and K_{14t+8}

K_{21}	K_{35}	K_{49}	• • •	$K_{14(t-1)+21} = K_{14t+7}$	
	$\frac{1}{\left(K_{14}\right)}$	$ \begin{array}{c c} \hline & 2 \\ \hline & K_{14} \\ \hline & K_{14} \end{array} $		$t-1$ K_{14} K_{14} K_{14} K_{14}	$ \Rightarrow \frac{\overline{K_7} - \overline{K_7}}{\overline{K_7} - \overline{K_7}} $
(K ₂₁)	(K ₂₁)	K ₁₄ K ₁₄ K ₁₄ K ₂₁	•••	K ₁₄ K ₁₄	$(\overline{K_7} - \overline{K_7})$ $(\overline{K_7} - \overline{K_7})$ $(\overline{K_7} - \overline{K_7})$
(K ₂₂)	(K ₂₂)	K ₂₂		K ₂₂	$ \begin{array}{c} \overline{K_8} \\ \overline{K_7} \\ \overline{K_7} \\ \overline{K_7} \end{array} $
<u>K₂₂</u>	$\frac{\binom{\kappa_{14}}{1}}{1}$ $\frac{K_{36}}{}$	$\frac{K_{14}}{1} \underbrace{K_{14}}_{2}$	•••	$K_{14(t-1)+22} = K_{14t+8}$	(K₇ − (K₇) (K₇ − (K₇)

BUILDING THE DECOMPOSITIONS PIECE-BY-PIECE

▶ We show that $K_{1,7} \sqcup P_2$ decomposes K_n for $n \equiv 7$ or 8 (mod 14) by proving $K_{22}, K_{21}, K_{14}, K_{22,14}, K_{21,14}$, and $K_{14,14}$ are each $K_{1,7} \sqcup P_2$ -decomposable. Notice that these 6 graphs make up the nodes and edges of the K_t representations of K_{14t+7} and K_{14t+8} stated in the constructions above.

BUILDING THE DECOMPOSITIONS PIECE-BY-PIECE

- ▶ We show that $K_{1,7} \sqcup P_2$ decomposes K_n for $n \equiv 7$ or 8 (mod 14) by proving $K_{22}, K_{21}, K_{14}, K_{22,14}, K_{21,14}$, and $K_{14,14}$ are each $K_{1,7} \sqcup P_2$ -decomposable. Notice that these 6 graphs make up the nodes and edges of the K_t representations of K_{14t+7} and K_{14t+8} stated in the constructions above.
- ▶ We have already proven that K_{14} , K_{21} , and K_{22} are $K_{1,7} \sqcup P_2$ -decomposable. So all we need to do is prove $K_{22,14}$, $K_{21,14}$, and $K_{14,14}$ are also $K_{1,7} \sqcup P_2$ -decomposable.

BUILDING THE DECOMPOSITIONS PIECE-BY-PIECE

- ▶ We show that $K_{1,7} \sqcup P_2$ decomposes K_n for $n \equiv 7$ or 8 (mod 14) by proving $K_{22}, K_{21}, K_{14}, K_{22,14}, K_{21,14}$, and $K_{14,14}$ are each $K_{1,7} \sqcup P_2$ -decomposable. Notice that these 6 graphs make up the nodes and edges of the K_t representations of K_{14t+7} and K_{14t+8} stated in the constructions above.
- ▶ We have already proven that K_{14} , K_{21} , and K_{22} are $K_{1,7} \sqcup P_2$ -decomposable. So all we need to do is prove $K_{22,14}$, $K_{21,14}$, and $K_{14,14}$ are also $K_{1,7} \sqcup P_2$ -decomposable.

We do so in style. See the figure below.

Figure: A generating presentation of the $K_{1,7} \sqcup P_2$ -decomposition of $K_{n,7}$ for $n \ge 2$

FINALLY!

We get these theorems as a result of this fun left generated labeling:

Theorem

 $K_{1,7} \sqcup P_2$ -decomposes $K_{n,7}$ for all $n \ge 2$.

Theorem

 $K_{1,7} \sqcup P_2$ decomposes $K_{22,14}$, $K_{21,14}$, and $K_{14,14}$.

Proof.

Notice $K_{14,14}$ can be expressed as the edge-disjoint union of four copies of $K_{7,7}$, $K_{21,14}$ can be expressed as the edge-disjoint union of six copies of $K_{7,7}$, and $K_{22,14}$ can be expressed as the edge-disjoint union of two copies of $K_{8,7}$ and four copies of $K_{7,7}$. Therefore, $K_{1,7} \sqcup P_2$ decomposes them all. This is visualized in a previous figure.

So finally...

Theorem

There exists a seven edge forest design of order n if and only if $n \equiv 0, 1, 7$ *or* 8 (mod 14).

A BONUS RESULT!

From this one-sided cyclic permutation idea, we can generalize this bipartite idea to a special subset of forest graphs called *Galaxy* graphs whose connected components are all star graphs.

Theorem

Let $C = \{G_1, ..., G_n\}$ be a set of vertex disjoint star graphs, $x_i = k$ if $G_i \cong K_{1,k}$, and $m = \sum_{i=1}^n x_i$. The Galaxy graph $\mathcal{G} = \bigsqcup_{G \in C} G$ decomposes $K_{N,m}$ for all N > n.

Proof.

This works the same way the $K_{1,7} \sqcup P_2$ -labeling works. Simply color the centers of G_1, \ldots, G_n and label them $0, \ldots, n-1$, respectively. Now simply develop the white vertices by 1 modulo N and you get the decomposition.

Naturally what follows is that such a Galaxy $\mathcal G$ also decomposes $K_{N,M}$ where $N \geqslant n$ and M is a multiple of m, and we can also extend this to $\overline{K_N} \vee (\overline{K_{M_1}} \sqcup \cdots \sqcup \overline{K_{M_c}})$ where all M_i 's are multiples of M... and so on.

THANK YOU!

Questions? - Thank you all for coming!