QUESTION

Let x1(t) and x2(t) be two band-limited signals having bandwidth $B = 4\pi \times 10^3$ rad/s each. In the figure below, the Nyquist sampling frequency, in rad/s, required to sample y(t), is

Fig. 0. Enter Caption

- (a) $20\pi \times 10^3$
- (b) $40\pi \times 10^3$
- (c) $8\pi \times 10^3$
- (*d*) $32\pi \times 10^3$

From figure,

 $-16\pi \times 10^3$

(GATE EC 50)

$$y(t) = x_1(t)\cos(12\pi \times 10^3) + x_2(t)\cos(4\pi \times 10^3)$$
 (1)

Y(f)

y(t) in frequency domain

 $-8\pi \times 10^3$

$$\omega_m = 16\pi \times 10^3 rad/sec. \tag{2}$$

 $8\pi \times 10^3$

 $16\pi \times 10^3$

$$\omega_s = 2\omega_m = 32\pi \times 10^3 rad/sec. \tag{3}$$

Solution

Symbol	Description
Y(f)	y(t) in frequency domain
ω_m	Maximum frequency of $Y(f)$
ω_s	Nyquist sampling rate
TABLE 0	
~	

CAPTION

 $x_1(t)$ and $x_2(t)$ in frequency domain,

 $X_1(f)$

