Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 5 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження складних циклічних

алгоритмів»

Варіант 15

Виконав студент	ІП-12, Кириченко Владислав Сергійович
·	(шифр, прізвище, ім'я, по батькові)
Перевірив	
	(прізвище, ім'я, по батькові)

Лабораторна робота № 5

Назва роботи: Дослідження складних циклічних алгоритмів

Мета:дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 15

Умова задачі:

Дано цілі числа р і q. Визначити всі дільники числа р, взаємно прості з q.

Постановка задачі: Задано змінні p та q, знайти всі дільники числа p, взаємно прості з q. Результатом розв'язку задачі ϵ ряд чисел.

Побудова математичної моделі:

Розіб'ємо задачу на два етапи:

- 1. Знаходження дільників числа р.
- 2.Знаходження серед дільників числа р чисел взаємнопростих з q.

Перший етап реалізуємо за допомогою арифметичного циклу.

Другий етап реалізуємо за допомогою алгоритму Евкліда, описаного ітераційним циклом.

Пояснення другого етапу:

Для знаходження взаємнопростих з деяким числом чисел з деякого ряду потрібно перевірити на цю властівість кожний з членів ряду. Тобто потрібен алгоритм перевірки чи ϵ два числа взаємнопростими.

Два числа ϵ взаємнопротими якщо ії НОД (найбільший спільний дільник дорівню ϵ 1). Тобто потрібно знайти НОД двух чисел і перевірити чи це число дорівню ϵ одиниці.

Найпростіший у реалізації метод знаходження НОД - алгоритм Евкліда, його і використаємо.

Псевдокод алгоритму Евкліда:

```
поки a!=0 & b!=0
якщо a > b
то a %= b
інакше b %= а
все якщо
виведення (a+b)
```

Щоб виконання алгоритму Евкліда не впливало на лобальні значення змінних, що перевіряються, скористаємося тимчасовими зміннми а=і та b=q.

Складемо таблицю змінних:

Змінна	Тип	Ім'я	Призначення
Перша змінна	Цілочисельний	p	Початкові дані
Друга змінна	Цілочисельний	q	Початкові дані
Лічильник	Натуральний	i	Проміжкове
			значення
Тимчасова	Цілочисельний	a	Проміжкове
змінна для			значення
перевірки чи			
число з ряду			
дільників \mathbf{p} ϵ			
взаємнопростим			
із q .(і)			
Тимчасова	Цілочисельний	b	Проміжкове
змінна для			значення
перевірки чи			
число з ряду			
дільників \mathbf{p} ϵ			
взаємнопростим			
із q .(q)			
Значення НОД	Цілочисельний	biggestCommonDivisor	Проміжкове
змінних			значення
Дільник числа р	Цілочисельний	pDivisor	Проміжкове
			значення

- 3.Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.
- Крок 1. Визначимо основні дії.
- **Крок 2.** Деталізація арифметичного циклу, який перебирає всі натуральні значення, які менша за **р**.
- Крок 3. Деталізація перевірки чи ε число \mathbf{i} дільником \mathbf{p} .
- **Крок 4.**Деталізація ітераційного циклу, який обумовлює реалізацію алгоритму Евкліда
- **Крок 5.** Деталізація знаходження НСД кожного дільника числа ${\bf p}$ і числа ${\bf q}$.(алгоритм Евкліда)
- **Крок 6.** Деталізація перевірки чи НСД чисел **і** та **q** 1 (чи ϵ число **і** одним із шуканих значень).

```
Псевдокод:
Крок 1.
початок
  введення р, q
  арифметичний цикл, який перебирає всі натуральні значення, які менші за р.
  перевірка чи \epsilon число і дільником \mathbf{p}.
  ітераційний цикл, який обумовлює реалізацію алгоритму Евкліда
  знаходження НСД кожного дільника числа р і числа q.(алгоритм Евкліда)
  перевірка чи НСД чисел і та \mathbf{q} - 1 (чи \epsilon число і одним із шуканих значень).
кінець
Крок 2.
початок
  введення р, q
  повторити
          для і від 1 до p+1
          перевірка чи є число і дільником р.
          ітераційний цикл, який обумовлює реалізацію алгоритму Евкліда
          знаходження НСД кожного дільника числа р і числа q.(алгоритм
          Евкліда)
          перевірка чи НСД чисел і та q - 1 (чи \epsilon число і одним із шуканих
          значень).
  все повторити
кінець
Крок 3.
початок
  введення р, q
  повторити
```

для і від 1 до p+1 якщо р % і == 0

T0

```
pDivisor = i
                  ітераційний цикл, який обумовлює реалізацію алгоритму
                  Евкліда
                  знаходження НСД кожного дільника числа р і числа
                  q.(алгоритм Евкліда)
                  перевірка чи НСД чисел і та \mathbf{q} - 1 (чи \epsilon число і одним із
                  шуканих значень).
          все якщо
  все повторити
кінець
Крок 4.
початок
  введення р, q
  повторити
          для і від 1 до p+1
          якщо р \% i == 0
              T0
                  pDivisor = i
                  a = pDivisor
                  \mathbf{b} = \mathbf{q}
                  поки (a!=0 & b!=0) повторити
                         знаходження НСД кожного дільника числа р і числа
                         q.(алгоритм Евкліда)
                  все повторити
                  перевірка чи НСД чисел i та q - 1 (чи \epsilon число i одним із
                  шуканих значень).
          все якщо
  все повторити
кінець
Крок 5.
початок
  введення р,q
  повторити
          для і від 1 до p+1
          якщо р \% i == 0
              T0
                  pDivisor = i
                  a = pDivisor
                  \mathbf{b} = \mathbf{q}
                  поки (a!=0 & b!=0) повторити
                         якщо а>в
```

a%=b

інакше

b % = a

все якщо

все повторити

biggestCommonDivisor = a+b

<u>перевірка чи НСД чисел і та $\bf q$ - 1 (чи ϵ число і одним із шуканих значень).</u>

все якщо

все повторити

кінець

Крок 6.

```
початок
  введення р, q
  повторити
          для і від 1 до p+1
          якщо р \% i == 0
             T0
                 pDivisor = i
                 a = pDivisor
                 \mathbf{b} = \mathbf{q}
                 поки (a!=0 & b!=0) повторити
                       якщо а>b
                             TO
                                   a\%=b
                       інакше
                                   b \% = a
                 все повторити
                 biggestCommonDivisor = a+b
                 якщо biggestCommonDivisor == 0
                       T0
                          виведення pDivisor
                 все якщо
          все якщо
  все повторити
кінець
```

Блок схема:

4. Перевірка алгоритму

Блок	Дія
	Початок
1	Введення
	x=16, n=7,
2	iteration: 1
3	(p % i == 0) = true

4	
	pDivisor = 1
5	a = 1
6	$\mathbf{b} = 7$
7	Euclid algorithm
8	(a != 0 && b != 0) = true
9	a <b =="" false<="" td="">
10	a = 1
11	$\mathbf{b} = 0$
12	biggestCommonDivisor = 1
13	(biggestCommonDivisor == 1) = true
14	виведення 1
15	iteration: 2
16	(p % i == 0) = true
17	pDivisor = 2
18	a=2
19	
20	b = 7 Euclid algorithm
21	(a != 0 && b != 0) = true
22	a <b =="" false<="" td="">
23	a=2
24	b = 1
25	(a != 0 && b != 0) = true
26	a <b =="" td="" true<="">
27	a = 0
28	b = 1
29	biggestCommonDivisor = 1
30	
	(biggestCommonDivisor == 1) = true

31	виведення 2
32	iteration: 3
33	(p % i == 0) = false
34	iteration: 4
35	(p % i == 0) = true
36	pDivisor = 4
37	a = 4
38	b = 7
39	Euclid algorithm
40	(a != 0 && b != 0) = true
41	a <b =="" false<="" td="">
42	a = 4
43	b = 3
44	(a != 0 && b != 0) = true
45	a <b =="" td="" true<="">
46	a = 1
47	b=3
48	(a != 0 && b != 0) = true
49	a <b =="" false<="" td="">
50	a = 1
51	$\mathbf{b} = 0$
52	biggestCommonDivisor = 1
53	(biggestCommonDivisor == 1) = true
54	виведення 4
55	iteration: 5
56	(p % i == 0) = false
57	iteration: 6
58	(p % i == 0) = false

50	itaration, 7
59	iteration: 7
60	(p % i == 0) = false
61	iteration: 8
62	(p % i == 0) = true
63	pDivisor = 8
64	a = 8
65	b = 7
66	Euclid algorithm
67	(a != 0 && b != 0) = true
68	a <b =="" td="" true<="">
69	a = 1
70	b = 7
71	(a != 0 && b != 0) = true
72	a <b =="" false<="" td="">
73	a = 1
74	$\mathbf{b} = 0$
75	biggestCommonDivisor = 1
76	(biggestCommonDivisor == 1) = true
77	виведення 8
78	iteration: 9
79	(p % i == 0) = false
80	iteration: 10
81	(p % i == 0) = false
82	iteration: 11
83	(p % i == 0) = false
84	iteration: 12
85	(p % i == 0) = false
86	iteration: 13

88 iteration: 14 89 (p % i == 0) = false 90 iteration: 15 91 (p % i == 0) = false 92 iteration: 16 93 (p % i == 0) = true 94 pDivisor = 16 95 a = 16 96 b = 7 97 Euclid algorithm 98 (a != 0 && b != 0) = true 99 a <= b = false 100 a = 2 101 b = 7 102 (a != 0 && b != 0) = true	
90 iteration: 15 91 (p % i == 0) = false 92 iteration: 16 93 (p % i == 0) = true 94 pDivisor = 16 95 a = 16 96 b = 7 97 Euclid algorithm 98 (a != 0 && b != 0) = true 99 a <b !="0)" &&="" (a="" 100="" 101="" 102="" =="" a="2" b="" false="" td="" true<=""><td></td>	
91	
92 iteration: 16	
92 iteration: 16	
93	
94	
95 a = 16 96 b = 7 97 Euclid algorithm 98 (a != 0 && b != 0) = true 99 a < b = false 100 a = 2 101 b = 7 102 (a != 0 && b != 0) = true	
96	
97 Euclid algorithm 98 (a != 0 && b != 0) = true 99 a <b !="0)" &&="" (a="" 100="" 101="" 102="" =="" a="2" b="" false="" td="" true<=""><td></td>	
98	
99	
100	
101	
102 (a != 0 && b != 0) = true	
, ,	
100	
$\mathbf{a} < \mathbf{b} = \mathbf{false}$	
$\mathbf{a} = 2$	
$\mathbf{b} = 1$	
106 (a != 0 && b != 0) = true	
107 a<b =="" b="" true<="">	
$\mathbf{a} = 0$	
109 b = 1	
110	
biggestCommonDivisor = 1 111 (biggestCommonDivisor == 1) = tru	e
112 виведення 16	
кінець	

Висновок - Було досліджено особливості роботи складних циклів та набуто практичних навичок їх використання під час складання програмних специфікацій.