ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ, ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ

Μάθημα: "Ρομποτική ΙΙ: Ευφυή Ρομποτικά Συστήματα"

(8° εξάμηνο, **Ακαδ. Έτος: 2018-19**) Διδάσκων: Κων/νος Τζαφέστας

## Αναλυτική Άσκηση #2:

**Διακριτό φίλτρο Kalman** για σύμμιξη αισθητηριακών δεδομένων και εκτίμηση θέσης κινητού ρομπότ

(Discrete Kalman filter for sensor fusion and mobile robot localisation)

Έστω ρομποτικό όχημα διαφορικής οδήγησης (differential drive) (βλ. Σχήμα 2). Η θέση του οχήματος σε κάθε χρονική στιγμή t περιγράφεται από το διάνυσμα:  $\begin{bmatrix} x^{(t)} & y^{(t)} \end{bmatrix}^T$  και η γωνία προσανατολισμού του (μετρούμενη ως προς τον άξονα x) ωρίζεται ως  $\theta^{(t)}$ . Έστω επίσης  $v^{(t)}$  η γραμμική ταχύτητα του οχήματος (κατά τον εμπρόσθιο άξονα κίνησης x, βλ. Σχ. 1 και Σχ. 2), και  $\omega^{(t)}$  η γωνιακή ταχύτητα του οχήματος, τη χρονική στιγμή t.

Υποθέτουμε ότι το ρομπότ είναι εφοδιασμένο:

- (α) με σύστημα γραμμικών επιταχυνσιόμετρων, το οποίο παρέχει μετρήσεις για την επιταχυνόμενη κίνηση του οχήματος, όπου  $a_x$  η μέτρηση επιτάχυνσης κατά τον άξονα x (εμπρόσθιας κίνησης του οχήματος),
- (β) μαγνητόμετρου το οποίο παρέχει πληροφορία για τον προσανατολισμό  $\, heta\,$  του οχήματος και
- (γ) με σύστημα αισθητήρων υπερήχων, συμμετρικά τοποθετημένων ως προς τον κεντρικό άξονα του οχήματος, όπως εικονίζεται στο Σχήμα 2.

Θεωρούμε ότι το όχημα ξεκινά (από στάση) τη χρονική στιγμή 0 (με απόλυτη βεβαιότητα) από τη θέση  $[0, 0]^T$ , με αρχική μέτρηση προσανατολισμού  $\theta = 0^\circ$  και αρχική μέτρηση στον εμπρόσθιο ασθητήρα υπερήχων  $I_{front} = 50$  cm (από σταθερό τοίχο ο οποίος ευρίσκεται κάθετα προσανατολισμένος ως προς την αρχική διεύθυνση x του οχήματος). Υποθέτουμε ότι το όχημα εκτελεί μια ευθύγραμμη ομαλά επιταχυνόμενη κίνηση κατά το χρονικό διάστημα  $[0, T_1]$  (όπου  $T_1 = 0.5 \mathrm{sec}$ ).

Έστω ότι τη χρονική στιγμή  $T_1$  λαμβάνονται οι εξής μετρήσεις:  $I_{front} = 46$  cm,  $\theta = 5^\circ$ ,  $a_x = 0.4$  m/(sec)<sup>2</sup>.

Υποθέτουμε επίσης ότι: (1) η μέτρηση απόστασης που παρέχει κάθε αισθητήρας υπερήχων παρουσιάζει αβεβαιότητα η οποία ακολουθεί κανονική κατανομή με τυπική απόκλιση που αντιστοιχεί σε σφάλμα μέτρησης ίσο με 1 cm, (2) το μαγνητόμετρο παρουσιάζει αβεβαιότητα η οποία ακολουθεί κανονική κατανομή με τυπική απόκλιση που αντιστοιχεί σε σφάλμα μέτρησης ίσο με 3° και (3) το σύστημα επιταχυνσιόμετρων παρέχει απ'ευθείας μετρήσεις της γραμμικής επιτάχυνσης του οχήματος, με αβεβαιότητα η οποία ακολουθεί και αυτή κανονική κατανομή με τυπική απόκλιση 0.1 m/(sec)<sup>2</sup>.

Να περιγραφεί αναλυτικά η εφαρμογή ενός διακριτού φίλτρου Kalman εκτίμησης θέσης του ρομποτικού οχήματος (localisation) και να προσδιορισθεί η βέλτιστη εκτίμηση θέσης που επιστρέφει τη χρονική στιγμή  $T_1$ .

Παρατήρηση: Όπου χρειάζεται, βάσει της επιλογής των μοντέλων που θα εφαρμοσθούν, μπορούν να γίνουν υποθέσεις γραμμικοποίησης για να εφαρμοσθεί ένα γραμμικό Γκαουσιανό φίλτρο.



Σχήμα 1: Κινούμενο ρομποτικό όχημα εφοδιασμένο με αισθητήρες απόστασης και επιτάχυνσης



Σχήμα 2 Διαστάσεις και πλαίσια αναφοράς της ρομποτικής διάταξης