CS 361 – Homework 7 Total possible points: 75

- 1. (20 points) Create a **state-diagram** representation of a **Turing Machine M**₁ that accepts the language $A = \{w \text{ over } \{0, 1, \#\}^* \mid w \text{ contains an equal number of 0's and 1's}\}$. $10\# \in A$, $01\#10 \in A$, and $\#001 \notin A$.
- 2. Consider the **TM M**₂ defined by the set of transitions shown below. Here we use B to indicate the tape's "blank symbol."
 - a. (10 points) Give the **state diagram** of M_2 (assuming q_2 is a final state)
 - b. (4 points) **Describe** the result of a computation in M_2 (i.e., explain in your own words what M_2 does given a string). Do *not trace the computation*, instead provide a high level overview of the language associated with M_2
 - c. (3 points) Trace the computation of "BaabcaB"
 - d. (3 points) **Trace** the computation of "BbcbB"

δ	В	а	b	С
q 0	q ₁ ,B,R			
q ₁	q ₂ ,B,L	q ₁ ,a,R	q ₁ ,c,R	q ₁ ,c,R
q ₂		q₂,a,L		q ₂ ,c,L

- 3. (20 points) Construct a **state-diagram** representation of a **Turing Machine M**₃ with input alphabet {a, b} that accepts strings of the form ww^R (where w is a string over {a, b}). The **final configuration** should be q_f ww^R B.
- 4. (15 points) Give a **description**¹ of a **TM M**₄ that decides language B = {w over $\{0, 1\}^*$ | w contains twice as many 1's as 0's}. For example: $101 \in B$, $011 \in B$, and $001 \notin B$

-

¹ Pseudocode of the behavior of the machine.