Lecture 21

Theorem (Egorov) (Littlewood 3rd principle)

Suppose $\{f_k\}_{k=1}^{\infty}$ is a segrence of measurable functions defined on a measurable set $E \subseteq \mathbb{R}^q$ with $m(E) < \infty$. Assume that $f_k(x) \to f(x)$ are on E. Given E > 0 there exists a closed set $f_k \subseteq E$ such that $m(E \setminus A_E) \le E$ & $f_k \to f$ uniformly on f_k

proof:— Given that $f_k(n) \longrightarrow f(n)$ are on E, we may assume without lass of generality.

That $f_k(x) \longrightarrow f(x)$ $\forall x \in E$.

For each pair n, k >1, let

 $E_{k}^{(n)} = \left\{ x \in \mathbb{E} \left[f(a) - f(a) \right] < \frac{1}{n} , \forall j > k \right\}$ For a fixed n, $E_{k}^{(b)} \subseteq E_{k+1}^{(b)}$

For het ne Ex => |fin-fin| < 1 +j >k

$$= \int_{|x_{t+1}|} |f(x_{t}) - f(x_{t})| < \frac{1}{h}$$

$$|f(x_{t}) - f(x_{t})| < \frac{1}{h}$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

$$\Rightarrow |f_{k}(n) - f_{k}(n)| < \frac{1}{n} + j > k+1$$

and all these sets are measurable

$$\frac{1}{|\zeta|^{\infty}} = \int_{k}^{k} = \int_{k}^{k} = E$$

$$\frac{1}{|\zeta|^{\infty}} - \frac{1}{|\zeta|^{\infty}} = \int_{k}^{k} |\xi|^{\infty} - \frac{1}{|\zeta|^{\infty}} |\xi|^{\infty} = \int_{k}^{k} |\xi|^{\infty} + \int_{k$$

We have $|f_i(n) - f_i(n)| < \frac{1}{n}$, whenever $|f_i(n)| < \frac{1}{n}$.

Choose on integer N>0 so that $\sum_{n=0}^{\infty} \frac{1}{2^n} < \frac{\varepsilon}{2}. \quad \S \quad \text{let}$ $A_{\varepsilon} = \bigcap_{n \geq N} E_{k_n}^{(b)}$ NOW M(FIÃE) - M(U(EIEG)) < Im (EIEB) $\leq \sum_{i=1}^{NS'N} \frac{5_{i}}{i}$ ٧ ٤ Thus m(EIA) < 5/2. claim: f, -> f uniformly on Fe. grosfiof the claims_ Let 2/20 To show: there exists on such that

 $|f(n)-f(a)| < \epsilon! \quad \forall k > M.$ $\forall x \in A_{\epsilon}!$

choose n > N such that $\frac{1}{n} < \varepsilon'$.

If note that $n \in A_{\varepsilon}$ implies that $n \in A_{\varepsilon}$ implies that $n \in A_{\varepsilon}$ implies $n \in A_{\varepsilon}$ in $n \in A_{\varepsilon}$ in

 $|f(x)-f(x)|<\frac{1}{n}<\epsilon'$, whenever $j>k_n$.

i.e. $|f_j(x) - f(x)| < \varepsilon' + j > k_n & + x \in \widetilde{A}_{\varepsilon}$. $\Rightarrow f_j \longrightarrow f$ uniformly on $\widetilde{A}_{\varepsilon}$ and $\to \infty$.

Hers completer the proof the claim.

Now $\widetilde{A}_{\varepsilon}$ is measuable.

Then there exists a closed set $A_{\epsilon} \subseteq \widetilde{A}_{\epsilon}$ such that $m\left(\widetilde{A}_{\epsilon} \mid A_{\epsilon}\right) < \frac{\epsilon}{2}$.

Abro f of uniformly on $A_{\varepsilon} \subseteq \widetilde{A_{\varepsilon}}$.

K FIAE C (FIÃE) U(ÃEIA)

This completes the proof.

Proposition: - (patching dema for Continuous functions)

Let $B_i \subseteq \mathbb{R}^d$ be closed sets, $1 \le i \le s$.

Suppose $f: \bigcup_{i=1}^g B_i \longrightarrow \mathbb{R}$ is a function

such that $f|_{B_i}: B_i \longrightarrow \mathbb{R}$, $(f|_{B_i}(a) = f(a))$ are Continuous, $\forall i = 1, 2, \dots, s$.

Then f is a Continuous function.

- Jeach (Recell'- A funtion f: X -> Y x, y one metric sprues is bald to be Continuous of f'(U) is open in X, for USY ar open be any open set. $\overline{f}(U) = \left\{ x \in \bigcup_{i=1}^{\infty} B_i \mid f(x) \in U \right\}$ $= \left(\int_{-\infty}^{\infty} \left\{ x \in \mathcal{B}_{f} \right\} f(x) \in \mathcal{V} \right\}$ $= \bigcup_{i=1}^{3} \left\{ x \in B_{i} \middle| f \middle|_{B_{i}}(x) \in U \right\}$ $=\bigcup_{i=1}^{\infty}\left(f|_{B_{i}}\right)^{i}(U)$ But fly one continus, & hence (fly)(U) $\int_{S} (v) = \int_{S} (f|_{B_{i}})(v)$

if is Continous.