Master of Science in quantitative and financial modeling 'Travaux Pratiques'

EXAMINER: Prof. L. Laayouni	Due date: Monday March 18 2024

FAMILY NAME:										
GIVEN NAMES:										

INSTRUCTIONS

- 1. Fill in the above clearly.
- 2. Do not tear pages from this book; all your writing even rough work must be handed in. You may do rough work for this paper anywhere in the booklet.
- 3. This is a closed book examination.
- 4. This examination booklet consists of this cover, Pages 1 through 5 containing questions; and Pages 6 and 7, which are blank.
- 5. You are expected to simplify your answers wherever possible. You are advised to spend the first few minutes scanning the problems.
- 6. A TOTAL OF 100 MARKS ARE AVAILABLE ON THIS EXAMINATION.

PLEASE DO NOT WRITE INSIDE THIS BOX

1	2	3	4	5		
/20	/20	/20	/20	/20		
						Total
						/100

1. [20 MARKS] Find the LU-factorization of the following matrix A in $\mathbb{R}^{n\times n}$:

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & -1 & 2 & -1 \\ 0 & \cdots & 0 & -1 & 2 \end{bmatrix}$$
 (1)

Is the matrix **A** positive definite, or is it positive semi-definite?

Write a Python script to solve a linear system associated with the above matrix.

2. [20 MARKS] Consider the following boundary value problem modeling the heat flow in a long pipe:

$$\begin{cases} y''(x) - p(x)y'(x) - q(x)y(x) = r(x), & x \in [a, b] \\ y(a) = \alpha, \ y(b) = \beta \end{cases}$$
 (2)

- (a) Use a uniform discretization of the interval [a, b] to derive the linear system corresponding to the model problem.
- (b) Solve the linear system using the Gaussian elimination method.
- (c) Solve the linear system using QR-factorization.
- (d) Solve the linear system using SVD-decomposition.
- (e) Compare the three methods.

Remark: You are free to decide about the size of the matrix.

3. [20 MARKS] Solve the problem of fitting a polynomial $p(x) = \sum_{i=0}^{d} c_i x^{i-1}$ of degree d to data points (x_i, y_i) , $i = 1, \ldots, m$, in the plane by the method of normal equations and QR decomposition. Choose the degree of the polynomial to be d = 5 and then d = 15, choose the interval $x \in [-1, 1]$, discretize it using N = 10 or N = 20 points.

4. [20 MARKS]

- (a) Explain how Singular Value Decomposition (SVD) can be applied to compress color images. Discuss the process in the context of an RGB image.
- (b) Given a color image, implement an SVD-based compression algorithm in Python. Your implementation should:
 - Load a color image and separate it into R, G, and B channels.
 - Apply SVD to each channel and reconstruct the image using only the first k singular values and vectors.
 - Display the original and compressed images side by side for comparison, and compute the compression ratio.
- (c) Analyze the effect of varying the number of singular values (k) on the compression ratio and image quality. Use a specific color image for this analysis and provide visual and numerical results for at least three different values of k. Discuss the trade-off between compression ratio and image quality.

5. [20 MARKS] Modeling option: Consider the biharmonic equation

$$\Delta^2 u(s,t) := \Delta(\Delta u(s,t)) = f(s,t) \quad (s,t) \in \Omega, \tag{3}$$

with

$$u(s,t) = 0$$
, $\Delta u(s,t) = 0$ $(s,t) \in \partial \Omega$.

Here Ω is the open unit square. The condition $\Delta u = 0$ is called the Navier boundary condition. Moreover,

$$\Delta^2 u = u_{xxxx} + 2u_{xxyy} + u_{yyyy}.$$

a) Let $v = -\Delta u$. Show that 3 can be written as a system

$$\begin{split} -\Delta v(s,t) &= f(s,t) \quad (s,t) \in \Omega \\ -\Delta u(s,t) &= v(s,t) \quad (s,t) \in \Omega \\ u(s,t) &= v(s,t) = 0 \quad (s,t) \in \partial \Omega. \end{split}$$

b) Discretizing with $T = \text{tridiag}(-1, 2, -1) \in \mathbb{R}^{m \times m}$, $h = \frac{1}{m+1}$, and $F = (f(jh, kh))_{j,k=1}^m$ we get two matrix equations

$$TV + VT = h^2F$$
, $TU + UT = h^2V$.

Data science or Financial engineering option: Consider the heat equation,

$$\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right).$$

Here, u(x, y, t) represents the state variable (image intensity or option price), at spatial location (x, y) and time t, with α as the diffusion coefficient. This equation can be used both in data science (image denoising) and financial engineering (option pricing).

- (a) Discretize the heat equation using the Finite Difference Method (FDM) for a 2D image grid.
- (b) Construct matrices for the discrete Laplacian operator. Discuss the use of the Kronecker product for this purpose.
- (c) Implement the code in Python, iterating over time steps using an explicit scheme.

L	

CONTINUATION	PAGE	FOR	PROBLEM	NUMBER

You must refer to this continuation page on the page where the problem is printed!

Travaux Pratiques — — Due Date: March 18 2024	7
[
CONTINUATION PAGE FOR PROBLEM NUMBER	

You must refer to this continuation page on the page where the problem is printed!

AGE FOR PROBLEM NUMBER

You *must* refer to this continuation page on the page where the problem is printed!