Лабораторна робота "MNIST"

Група ТК-41 Соловей Євгеній

Зміст

Зміст	2
Мета роботи	3
Опис датасету	3
Архітектура нейронної мережі	3
Додаток	5
Приклад виводу:	7

 $github: \underline{https://github.com/TheYev/KNU/tree/main/NHCI/lab2}$

Мета роботи

Метою даної роботи ϵ створення, навчання та оцінка нейронної мережі для класифікації рукописних цифр на основі датасету MNIST. Для реалізації використовується бібліотека Keras, яка ϵ високорівневим API для TensorFlow.

Опис датасету

У роботі використовується датасет MNIST, який складається з 70 000 зображень рукописних цифр розміром 28×28 пікселів у градаціях сірого:

- 60 000 зображень у тренувальній вибірці
- 10 000 зображень у тестовій вибірці
- Кожне зображення подано у вигляді 784 пікселів (28×28) та має мітку від 0 до 9.

Архітектура нейронної мережі

Архітектура нейронної мережі складається з кількох щільно з'єднаних (Dense) шарів. Перший шар містить 512 нейронів і приймає на вхід вектор з 784 ознак (розгортка зображення 28х28 пікселів у плоский вектор). Активаційною функцією на цьому шарі є ReLU (Rectified Linear Unit), яка добре працює для задач класифікації та дозволяє уникнути проблеми зникаючого градієнта.

Після кожного шару з нейронами додається Dropout-шар із ймовірністю 0.2. Dropout вимикає випадкову частину нейронів під час навчання, що допомагає уникнути перенавчання (overfitting) та покращує здатність моделі до узагальнення.

Після другого прихованого шару знову додається ReLU-активація, і ще один Dropout для регуляризації. Завершується мережа вихідним шаром із 10 нейронів, де кожен відповідає одному з можливих класів (цифри від 0 до 9). На цьому шарі використовується функція активації softmax, яка перетворює

вихідні значення в ймовірнісне розподілення — модель визначає ймовірність належності зображення до кожного класу.

Для навчання моделі було використано оптимізатор Adam, що є адаптивним методом градієнтного спуску і дозволяє швидко досягати гарної збіжності. В якості функції втрат застосовується категоріальна кросентропія, яка добре підходить для багатокласової класифікації. Навчання відбувалося протягом десяти епох з розміром пакета даних 128.

```
Epoch 1/10
469/469
                             10s 17ms/step - accuracy: 0.8613 - loss: 0.4574
Epoch 2/10
                             9s 15ms/step - accuracy: 0.9669 - loss: 0.1094
469/469
Epoch 3/10
469/469 -
                             8s 18ms/step - accuracy: 0.9759 - loss: 0.0724
Epoch 4/10
469/469
                             8s 18ms/step - accuracy: 0.9834 - loss: 0.0522
Epoch 5/10
469/469
                             9s 15ms/step - accuracy: 0.9864 - loss: 0.0407
Epoch 6/10
469/469
                             8s 18ms/step - accuracy: 0.9867 - loss: 0.0390
Epoch 7/10
469/469
                             10s 18ms/step - accuracy: 0.9880 - loss: 0.0346
Epoch 8/10
469/469 -
                             11s 18ms/step - accuracy: 0.9906 - loss: 0.0266
Epoch 9/10
                             9s 15ms/step - accuracy: 0.9923 - loss: 0.0256
469/469
Epoch 10/10
469/469
                             8s 18ms/step - accuracy: 0.9930 - loss: 0.0203
313/313
                             1s 3ms/step - accuracy: 0.9763 - loss: 0.0963
```

Після навчання модель показала високу точність на тестовій вибірці. Це свідчить про її здатність узагальнювати інформацію з навчального набору і правильно класифікувати нові зображення. Така архітектура ϵ достатньо простою, але вже демонстру ϵ високі результати на базових задачах машинного навчання.

Додаток

```
import numpy as np
import pandas as pd
import random
from tensorflow.keras.models import Sequential # Model type to be used
from tensorflow.keras.layers import Dense, Dropout, Activation # Types of
layers
from tensorflow.keras.utils import to categorical # One-hot encoding
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to categorical
(X train, y train), (X test, y test) = mnist.load data()
X train = X train.reshape(-1, 784).astype("float32") / 255.0
X test = X test.reshape(-1, 784).astype("float32") / 255.0
y train = to categorical(y train, 10)
y test = to categorical(y test, 10)
print('X train:', X train.shape)
print('y_train:', y_train.shape)
print('X test:', X test.shape)
print('y test:', y test.shape)
# Візуалізація зображень
x_{train} = X_{train.reshape(-1, 28, 28)}
x \text{ test} = X \text{ test.reshape}(-1, 28, 28)
plt.rcParams['figure.figsize'] = (9, 9)
```

```
for i in range(9):
    plt.subplot(3, 3, i + 1)
    num = random.randint(0, len(x train) - 1)
    plt.imshow(x train[num], cmap='gray', interpolation='none')
    plt.title("Class {}".format(np.argmax(y_train[num])))
plt.tight layout()
def matprint(mat, fmt="g"):
col in mat.T]
    for x in mat:
        for i, y in enumerate(x):
            print(("{:" + str(col maxes[i]) + fmt + "}").format(y), end="
       print("")
matprint(x train[num])
model = Sequential()
model.add(Dense(512, input shape=(784,)))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))
model.summary()
model.compile(loss='categorical crossentropy', optimizer='adam',
metrics=['accuracy'])
EPOCHS = 10
```

```
model.fit(X train, y train, batch size=128, epochs=EPOCHS, verbose=1)
# Оцінка моделі
score = model.evaluate(X test, y test)
print('Test score:', score[0])
print('Test accuracy:', score[1])
predict x = model.predict(X test)
predicted classes = np.argmax(predict x, axis=1)
correct indices = np.nonzero(predicted classes == np.argmax(y test,
axis=1))[0]
plt.figure()
for i, correct in enumerate(correct indices[:9]):
    plt.subplot(3, 3, i + 1)
    plt.imshow(X test[correct].reshape(28, 28), cmap='gray',
interpolation='none')
    plt.title("Pred {}, Class {}".format(predicted_classes[correct],
np.argmax(y test[correct])))
plt.tight layout()
# Візуалізація неправильних передбачень
incorrect indices = np.nonzero(predicted classes != np.argmax(y test,
axis=1))[0]
plt.figure()
for i, incorrect in enumerate(incorrect indices[:9]):
   plt.subplot(3, 3, i + 1)
   plt.imshow(X test[incorrect].reshape(28, 28), cmap='gray',
interpolation='none')
    plt.title("Pred {}, Class {}".format(predicted classes[incorrect],
np.argmax(y test[incorrect])))
plt.tight layout()
```

Приклад виводу:

		(6000																				
		(6000																				4
		10000																				4
		10000																				4
		0 0																				
		0 0																				
		0 0																				
0 0											0	0	0	0	9				0			
0 0									· ·		0.0196078		0.509804			1	1	0.556863				
0 0		0 0					0.0117647		0.0941176 0.635294	0.533333 0.992157	0.858824 0.992157		0.992157 0.992157		0.992157 0.992157				0.792157 0.992157	0.0509804 0.529412		
0 0		00				0.0117647	0.0117647			0.992157	0.992157		0.992157		0.992157				0.992157 0.992157	0.529412		
		00				0.0117647		0.992157		0.992157	0.992157			0.894118	0.634902	0.894118 0	0.894118 A	0.984314		0.486275		
0 0						0.0980392			0.992157	0.870588	0.905882		0.039216		0 106078			0.332941	0.386233		0 0	
		0 0						0.992157		0.92549	0.729412		0.992157		0.67451						0 0	
		0 0				0.0705882				0.992157	0.992157		0.992157								0 0	
0 0		0 0				0.0313726		0.992157		0.992157	0.992157		0.933333								0 0	
		0 0						0.992157		0.992157	0.992157		0.309804								0 0	
0 0		0 0				0.027451			0.992157	0.992157	0.992157		0.54902								0 0	
0 0	0 (0 0				0.243137	0.992157			0.992157	0.992157		0.933333									
0 0					0.215686			0.992157		0.992157	0.992157		0.992157									
0 0					0.709804																	0
0 0			0.0117647					0.760784			0.745098											0
0 0			0.027451								0.819608											0
0 0			0.027451																			
0 0			0.027451																			
0 0			0.0156863							0.992157			0.403922	0.0117647								
0 0				0.0352941	0.780392	0.992157	0.992157	0.992157		0.898039	0.4											
0 0																						
0 0		0																				

Model: "sequential_2"

Layer (type)	Output Shape	Param #
dense_6 (Dense)	(None, 512)	401,920
activation_6 (Activation)	(None, 512)	0
dropout_4 (Dropout)	(None, 512)	0
dense_7 (Dense)	(None, 512)	262,656
activation_7 (Activation)	(None, 512)	0
dropout_5 (Dropout)	(None, 512)	0
dense_8 (Dense)	(None, 10)	5,130
activation_8 (Activation)	(None, 10)	0

```
Total params: 669,706 (2.55 MB)
Trainable params: 669,706 (2.55 MB)
Non-trainable params: 0 (0.00 B)
Epoch 1/10
469/469 -
                              - 10s 17ms/step - accuracy: 0.8613 - loss: 0.4574
Epoch 2/10
469/469 -
                              - 9s 15ms/step - accuracy: 0.9669 - loss: 0.1094
Epoch 3/10
                              - 8s 18ms/step - accuracy: 0.9759 - loss: 0.0724
469/469 -
Epoch 4/10
469/469 -
                              - 8s 18ms/step - accuracy: 0.9834 - loss: 0.0522
Epoch 5/10
469/469
                               - 9s 15ms/step - accuracy: 0.9864 - loss: 0.0407
Epoch 6/10
469/469 -
                               - 8s 18ms/step - accuracy: 0.9867 - loss: 0.0390
Epoch 7/10
469/469
                               - 10s 18ms/step - accuracy: 0.9880 - loss: 0.0346
Epoch 8/10
                               - 11s 18ms/step - accuracy: 0.9906 - loss: 0.0266
469/469
Epoch 9/10
469/469
                              - 9s 15ms/step - accuracy: 0.9923 - loss: 0.0256
Epoch 10/10

    8s 18ms/step - accuracy: 0.9930 - loss: 0.0203
    1s 3ms/step - accuracy: 0.9763 - loss: 0.0963

469/469 -
313/313
Test score: 0.08142556995153427
Test accuracy: 0.9785000085830688
313/313 -
                            — 1s 3ms/step
```

