

intersection divisor for a quartic

 ${\bf Canonical\ name} \quad {\bf Intersection Divisor For AQuartic}$

Date of creation 2013-03-22 15:44:59 Last modified on 2013-03-22 15:44:59 Owner alozano (2414)

Last modified by alozano (2414)

Numerical id 5

Author alozano (2414)
Entry type Definition
Classification msc 14C20
Defines hyperflex

Defines flex

Let C be a non-singular curve in the plane, defined over an algebraically closed field K, and given by a polynomial f(x,y) = 0 of degree 4 (i.e. C is a quartic). Let L be a (rational) line in the plane K^2 . The intersection divisor of C and L is of the form:

$$(L \cdot C) = P_1 + P_2 + P_3 + P_4$$

where P_i , i = 1, 2, 3, 4, are points in C(K). There are five possibilities:

- 1. The generic position: all the points P_i are distinct.
- 2. L is tangent to C: there exist indices $1 \le i \ne j \le 4$ such that $P_i = P_j$. Without loss of generality we may assume $P_1 = P_2$ and $(L \cdot C) = 2P_1 + P_3 + P_4$, and $P_3 \ne P_4$.
- 3. L is bitangent to C when $P_1 = P_2$ and $P_3 = P_4$ but $P_1 \neq P_3$. It may be shown that if $\operatorname{char}(K) \neq 2$ then C has exactly 28 bitangent lines.
- 4. L intersects C at exactly two points, thus $P_1 = P_2 = P_3 \neq P_4$. The point P_1 is called a flex.
- 5. L intersects C at exactly one point and $P_1 = P_2 = P_3 = P_4$. This point is called a *hyperflex*. A quartic C may not have any hyperflex.

References

C. [1] S. Flon, R. Oyono, Ritzenthaler, Fastadditionnon-hyperelliptic qenus3 curves, can be found http://eprint.iacr.org/2004/118.pshere.