6

6.1

6.2

An epimorphism $(\alpha, \beta): M_1 \to M_2$ with complete machines implies $M_2 \leq M_1$: We choose $\alpha: Q_1 \to Q_2$ as our $\eta: Q_1 \to Q_2$. We define $\xi: \Sigma_2 \to \Sigma_1$ as a function which picks an arbitrary element of $\xi_{a_2} = \{a_1 | \beta(a_1) = a_2, a_1 \in \Sigma_1\}$ for an arbitrary $a_2 \in \Sigma_2$ (1). There exists at least one a_1 for each a_2 because β is surjective (2). Since (α, β) is a state machine homomorphismus and the maschines are complete following holds for all $a_1 \in \Sigma_1$ and all $q_1 \in Q_1$:

$$\alpha(q_1\delta_{a_1}^1) = (\alpha(q_1))\delta_{\beta(a_1)}^2$$

Now we show: $\eta(q_1)\delta_{a_2}^2 \subseteq \eta(q_1\delta_{\xi(a_2)}^1)$ for all $q_1 \in Q_1$ and $a_2 \in \Sigma_2$.

$$\eta(q_{1})\delta_{a_{2}}^{2} = \alpha(q_{1})\delta_{a_{2}}^{2}
= \alpha(q_{1})\delta_{\beta(a_{1})}^{2}
= \alpha(q_{1}\delta_{a_{1}}^{1})
= \alpha(q_{1}\delta_{\xi(a_{2})}^{1})
= \eta(q_{1}\delta_{\xi(a_{2})}^{1})$$
(1)

6.3

6.4

We show $M \leq M'$ by using the following covering (η, ξ) :

$$\eta: Q' \hookrightarrow Q; q' \mapsto \begin{cases} q_0, & \text{for } q' = r_0, \\ q_1, & \text{for } q' = r_2, \end{cases}$$
$$\xi: \Sigma \to \Sigma'; u \mapsto \begin{cases} b', & \text{for } u = a, \\ a', & \text{for } u = b, \end{cases}$$

Moreover we prove η, ξ is well defined. First, ξ is a function because all $dom(\xi) = \Sigma$ and it is right unique. η is surjective as its range hits all states of Q. Also it is right unique and therefore a partial function. Finally, we show $\eta(q')\delta_w \subseteq \eta(q'\delta'_{\xi(w)})$ for all $q' \in Q'$ and $w \in \Sigma^*$. We build an operation table to get Σ^+/\sim_M to get all relevant w.

X	q_0	q_1	
a	q_1	\perp	
b	q_0	q_1	
aa	1	1	
ab	q_1	\perp	same as a
bb	q_0	q_1	same as b
ba	q_1	\perp	same as a
aaa	1	1	same as aa
aab		\perp	same as aa
aba		\perp	same as aa
abb	q_1	\perp	same as a
bba	q_1	\perp	same as a
baa	q_1	\perp	same as aa
bab	q_1	\perp	same as a

We get $\Sigma^+/\sim_M=\{[a],[b],[aa]\}$. Since $\eta(q')=\emptyset|q'\notin\mathcal{D}(\eta)$ we only observe for r_0,r_2 as states from M'. We check for all relevant $q'\in Q'$ and $win\Sigma$:

$$\eta(r_{0})\delta_{a} = q_{0}\delta_{a} = q_{1} \subseteq \eta(r_{0}\delta'_{\xi(a)}) = \eta(r_{0}\delta'_{b'}) = \eta(r_{2}) = q_{1}
\eta(r_{0})\delta_{b} = q_{0}\delta_{b} = q_{0} \subseteq \eta(r_{0}\delta'_{\xi(b)}) = \eta(r_{0}\delta'_{a'}) = \eta(r_{0}) = q_{0}
\eta(r_{0})\delta_{aa} = q_{0}\delta_{aa} = \emptyset \subseteq \eta(r_{0}\delta'_{\xi(aa)}) = \eta(r_{2}\delta'_{b'b'}) = \eta(\emptyset) = \emptyset
\eta(r_{2})\delta_{a} = q_{1}\delta_{a} = \emptyset \subseteq \eta(r_{2}\delta'_{\xi(a)}) = \eta(r_{2}\delta'_{b'}) = \eta(r_{3}) = \emptyset
\eta(r_{2})\delta_{b} = q_{1}\delta_{b} = q_{1} \subseteq \eta(r_{2}\delta'_{\xi(b)}) = \eta(r_{2}\delta'_{a'}) = \eta(r_{2}) = q_{1}
\eta(r_{2})\delta_{aa} = q_{1}\delta_{aa} = \emptyset \subseteq \eta(r_{2}\delta'_{\xi(aa)}) = \eta(r_{2}\delta'_{b'b'}) = \eta(\emptyset) = \emptyset$$

For each combination $\eta(q')\delta_w \subseteq \eta(q'\delta'_{\xi(w)})$ holds which concludes the proof.