QSAR

Analysis of Macromolecular Structures

A FreeBIT/CYTED and EMBnet course

2011-Nov FreeBIT/CYTED EMBnet CNB/CSIC

José R. Valverde EMBnet/CNB www.es.embnet.org jr@cnb.csic.es

Lecture Outline

- What is QSAR?
- 3D-QSAR
- Identifying active elements
- Ligand-receptor interactions
- Ligand databases

QSAR

- Quantitative Structure Activity Relationship
 - A body of techniques
 - Aim is activity prediction of small compounds
 - Active role
 - Dynamic transport
 - Side effects
 - Etc...
 - An alternative to S. James Black method
 - Modify substrates in search of analogues
 - Test experimentally
 - Not a substitute:
 - Experimental testing still needed
 - But for a smaller set
 - ADME-TOX
 - 3D-QSAR

ADME-TOX

- ADME
 - Absoprtion, distribution, metabolism and excretion
 - Administration method
 - Transport and barrier-crossing
 - Metabolism (liver redox by CytP450)
 - Elimination (kidney, lungs, seat, stools..)
- TOX
 - Potential for toxicity
 - Of the compound
 - Of its metabolites
- Methods
 - QSPR, QSAR
- Side effects?
 - Usually by experiment

- Similar molecules have similar functions and similar structures
 - Similar structures should have similar functions
 - Wouldn't it be nice if we could say...
 - why one analogue works and other doesn't?
 - if an analogue will work or block function?
 - which analogue will work in advance?
 - what will be the effects of a substance?
 - What is the specific binding activity of different substrates?
 - what is the actual activity / reactivity of different species?
 - etc...
- Look at structural similarities and try to predict.
 - Any similarity in any property is worth using for our guess

3D-QSAR

- Traditional QSAR models used any structural property
 - Mainly bulk properties
 - Volume
 - Dimensions
 - Charges, etc...
 - Generally simplifications to speed up computation
- With bigger computers we can now consider the 3D structure
 - We may start from simplifications
 - Extreme coordinates/dimensions
 - Distribution of charges in space
 - Etc...
 - And go all the way to full models
 - Rigid
 - Flexible...

We want to

- Tell how structures interact
 - Identify possible interaction sites
 - Identify other molecules that might interact
 - Identify the 3D structure of the interaction
 - Analyze the 3D interactions
- Make inferences
 - Where is the active site?
 - What are the relevant residues for activity?
 - How can I interpret a polymorphism/mutation?
 - What are potential analogues
 - Will they bind more weakly or strongly?
 - Will the interaction be stable?
 - How will the reaction proceed?
 - Better or worst
 - Not at all (blocker)

Identifying analogues

- Protein structure:
 - Experiment: X-ray, NMR, ME...
 - Modelling: homology, threading
 - Else...?
- Active analogue
 - Analyze fine structure of an active substrate
 - Groups most probably involved in the interaction
 - Refine fine structure
 - Most stable structure
 - Use several alternatives and look for possibly common features
 - Use several substrates and look for common features
 - If nothing is preserved use other properties (VdW, charge, etc...)

Ab initio prediction

Analyzing analogues

- Pharmacophore (Paul Ehrlich 1909)
 - Molecular framework that carries the essential features for a drug's biological activity
 - The set of features recognized by the receptor and reponsible for the biological activity.
- Receptor volumes

From the superposition we may deduce the

complementary cavity

Ligand-receptor binding

- Once the properties of ligands and binding site are known we can explore the binding process
 - Experiment (e. g. X-ray)
 - Elements
 - Receptor (experiment, model or receptor volume)
 - Ligand (one, pharmacophore or superposed group)
 - Grid maps
 - Define a grid around the protein
 - use functional sites as probes (e. g. H₂O for -OH)
 - Place probes on grid and look for putative interaction sites
 - Multiple copy minimization
 - Build a cloud of copies of the probe around the receptor
 - Minimize each of them independently
 - Model approximation of probe to receptor
 - Refine

Docking

- Grid maps and minimization identify putative interaction sites, but not the mechanism
- Docking
 - Simulate the interaction process
 - Start from many configurations and bind
 - MC
 - MM/MD
 - Compute interaction energies
 - Computationally costy
 - Rigid models
 - Flexible model
 - Electrostatic interactions
 - Full MM/MD
 - Once the active site is known we can repeat/compare with other target drugs.

Docking 8oxoGTP

Over 200 docking experiments, 100 models each. Which are the correct ones?

Autodock
Dock6
3D-Dock
Gramm
Etc..

Searching

- Once the active site is known we can look for other target drugs
 - Match them in the active site
 - Match them in a receptor map
 - Match them with the pharmacophore
- Convert chemical formulas to structures
- Search databases
 - Commercial
 - CORINA (gives isolated structures and synthesis info)
 - HIC-UP (PDB ligands)
 - NCI (antitumour drugss)
 - ZINC (the database: millions of compounds)
 - Lead compounds: representatives of drug families
 - Dimensions → pKa, charge → aspect → structure.

De novo design

- Good molecules may be known
- But better molecules might be designed
- Start from an interaction map
 - Match interaction points with interaction groups
 - Join groups with bridges that stabilize their position without damaging the interaction
- Very difficult process
 - Requires expert chemist
- Not limited to known existing molecules
- May potentially yield a much better drug

