Understanding LOL projection method

Paper: Supervised dimension reduction method in big data (Option 1)

July 25, 2024

Table of contents

STUDY OBJECTIVE

LITERATURE REVIEW

APPLICATION AND WORKFLOW

DISCUSSION AND RESULTS

CONCLUSION

Study objective

Real life problem

- Small sample size with large number of dimensions (n << p)
- Lack of interpretable supervised dimensionality reduction method

Purpose

• To explore a new dimension reduction technique introduced by Vogelstein et al. for handling big data in neuroimaging.

Aim

High accuracy

Timely and resource efficiency

Literature review

Supervised dimensionality reduction for big data

Joshua T. Vogelstein

1,2

, Eric W. Bridgeford

1,2, Minh Tang

, Da Zheng

, Christopher Douville

, Randal Burns

& Mauro Maggioni

- Applied LOL as supervised feature reduction (FR) and LDA as classifier on brain MRI
- Compared LOL performance with various FR methods (PCA, RP, LDA, QOQ, CCA, etc.)
- n > 800
- Each brain volume ~ 150mil dimensions. Each 3D image ~ (193, 256, 256)
- Each dataset 42 ~ 400 samples (60 ~ 600 Gb)
- Authors developed LOL package themselves (R)
- 1 TB RAM

LOL Overview

Linear Optimal Low-Rank (LOL) Projection Method

WHAT

- To find the best projection matrix A that projects high-dimensional data into a lower-dimensional subspace, facilitating effective classification.
- Combines the strengths of LDA and PCA

WHY

- To find the best projection matrix that reduces data dimensionality while preserving the most significant class-discriminative information.
- Address limitations of PCA and LDA

HOW

• Used in high-dimensional biomedical data for effective classification and dimensionality reduction.

Steps in LOL Algorithm

 Compute Class-Conditional Means (μ₁, μ₂)

$$\mu_c = \frac{1}{n_c} \sum_{i:y_i=c} x_i$$
.

3. Sorting Class Means

Arrange the class means in descending order of class priors:

$$\pi_{(1)} > \pi_{(2)} > \cdots > \pi_{(C)}$$

2. Class Priors $\pi_c = \frac{n_c}{n}$

πc: Prior probability of class c **n** is the total number of samples.

4. Means Differences

For each class, compute the mean difference vector

 $\delta_i = \mu_{1-} \mu_i$ for i = 2, 3,, CThe mean difference matrix $\delta = [\delta_2, \delta_3, \delta_C]$ has rank C-1

5. Normalize δi

$$ilde{\delta}_j = rac{\delta_j}{\|\delta_j\|}$$
 .

Steps in LOL algorithm

Continued.

6. Compute Covariance Matrix

Calculate the overall mean μ :

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Compute the centered data matrix:

$$X_{\text{centered}} = X - \mu$$

Compute the covariance matrix Σ :

$$\Sigma = rac{1}{n-1} X_{ ext{centered}}^T X_{ ext{centered}}$$

7. Eigen Decomposition

$$\Sigma = U\Lambda U^T$$

U contains the eigenvectors λ is the diagonal matrix of eigenvalues.

8. Construct the LOL Projection Matrix:

$$A_{\mathrm{LOL}} = [\tilde{\delta}, U_{d-(C-1)}]$$

9. Project the Data

$$Z = A_{\text{LOL}}X$$

Application & Workflow

Data Collection

The Autism Brain Imaging Data Exchange (ABIDE) aggregated data from 16 international imaging sites and shared it publicly via neurodata.io

Data Collection

The Autism Brain Imaging Data Exchange (ABIDE) aggregated data from 16 international imaging sites and shared it publicly via neurodata.io

Sample Size

Total: N = 58 (age range 18-64 years)

Autism Spectrum Disorders (ASD): n = 13 (18-25 years), n = 16 (40-62 years)

Typical Controls (TC): n = 10 (18-25 years), n = 19 (40-64 years)

Pre-processing

Anatomical Image

Time-series of Resting state Image

Pre-processing

Resize and Flatten image

3D input 193x256x256

23	34	78
90	101	130
150	220	255

Resized image 64x64x64

Flattened 1D array 262,144 dimensions

Modeling

Linear Optimal Low-Rank projection (LOL)

Linear Discriminant Analysis (LDA)

Random Projection (RP) Principal Component Analysis (PCA)

Feature reduction

Random Forest Classifier

LDA Classifier

CNN model⁽¹⁾

Model

AUC

Cohen kappa

Time

Accuracy

Performance comparison

Performance

Unlike the paper, PCA showed best results

Highest AUC for PCA + LDA

LDA classifier

RF classifier

Cohen's kappa value

Cohen Kappa Statistic

Measure The Performance of Classification Models

Kappa Statistic

$$k = \frac{2*(TP*TN - FN*FP)}{(TP+FP)*(FP+TN) + (TP+FN)*(FN+TN)}$$

Assess the level of agreement between an actual and predicted

Actual (rater 1) Predicted (rater 2)	YES	NO	
YES	45 (TP)	15 (FN)	60
NO	25 (FP)	15 (TN)	40
	70	30	

Kappa Score Interpretation

Kappa	Agreement
<0	Less than chance agreement
0.01-0.20	Slight agreement
0.21-0.40	Fair agreement
0.41-0.60	Moderate agreement
0.61-0.80	Substantial agreement
0.81-0.99	Almost perfect agreement

$$k = \frac{2*(45*15-15*25)}{(45+25)*(25+15)+(45+15)*(15+15)} = 0.13(13\%)$$

Cohen's kappa value of PCA remains the best over RP, LOL and LDA

Modality

- Genomics
- Neuroimaging

3D CNN deep learning showed poorer classification results

Model: "sequential"

Layer (type)	Output Shape	Param #
conv3d (Conv3D)	(None, 126, 126, 126, 32)	896
max_pooling3d (MaxPooling3D)	(None, 63, 63, 63, 32)	0
batch_normalization (BatchNormalization)	(None, 63, 63, 63, 32)	128
conv3d_1 (Conv3D)	(None, 61, 61, 61, 64)	55,360
max_pooling3d_1 (MaxPooling3D)	(None, 30, 30, 30, 64)	0
batch_normalization_1 (BatchNormalization)	(None, 30, 30, 30, 64)	256
conv3d_2 (Conv3D)	(None, 28, 28, 28, 128)	221,312
max_pooling3d_2 (MaxPooling3D)	(None, 14, 14, 14, 128)	0
batch_normalization_2 (BatchNormalization)	(None, 14, 14, 14, 128)	512
flatten (Flatten)	(None, 351232)	0
dense (Dense)	(None, 512)	179,831,296
dropout (Dropout)	(None, 512)	0
dense_1 (Dense)	(None, 1)	513

Epoch 1/10	
3/3	139s 49s/step - accuracy: 0.4108 - loss: 21.6151 - val_accuracy: 0.6176 - val_loss: 0.7170
Epoch 2/10	
3/3	125s 38s/step - accuracy: 0.5516 - loss: 10.7422 - val_accuracy: 0.4412 - val_loss: 0.7315
Epoch 3/10	
3/3	124s 40s/step - accuracy: 0.6757 - loss: 5.4900 - val_accuracy: 0.4412 - val_loss: 0.7567
Epoch 4/10	
3/3	94s 25s/step - accuracy: 0.5722 - loss: 6.2629 - val_accuracy: 0.4412 - val_loss: 0.7154
Epoch 5/10	
3/3	107s 34s/step - accuracy: 0.5853 - loss: 8.0299 - val_accuracy: 0.4118 - val_loss: 0.6953
Epoch 6/10	
3/3 ———	119s 40s/step - accuracy: 0.6579 - loss: 6.4935 - val_accuracy: 0.4412 - val_loss: 0.7031
Epoch 7/10	
3/3	139s 42s/step - accuracy: 0.6475 - loss: 4.9050 - val_accuracy: 0.5588 - val_loss: 0.9233
Epoch 8/10	
	105s 33s/step - accuracy: 0.7443 - loss: 2.9353 - val_accuracy: 0.5588 - val_loss: 0.9612
Epoch 9/10	
	109s 33s/step - accuracy: 0.6771 - loss: 1.5363 - val_accuracy: 0.5588 - val_loss: 1.1903
Epoch 10/10	
3/3 ———	———— 105s 31s/step - accuracy: 0.8204 - loss: 1.4579 - val_accuracy: 0.5588 - val_loss: 1.4481
2/2	4s 235ms/step - accuracy: 0.5600 - loss: 1.4441
Validation loss: 1	1.4481221437454224, Validation accuracy: 0.5588235259056091

Total params: 180,110,273 (687.07 MB)

Trainable params: 180,109,825 (687.06 MB)

20

Processing time

Method	No. of components	Run time
RP	50	2.3s
LDA	1	18.8s
LOL	40	26s
PCA	77	5s
CNN	2,097,152	18m25s

Recommended system configuration:

CPU: 12th Gen Intel(R) Core (TM) i7-

12800H 2.40 GHz

RAM: 32GB

Filename	Number of observations
Barrow Neurological Institute (BNI)	58
Erasmus University Medical Center Rotterdam (EMC)	54
ETH Zürich (ETH)	37
Georgetown University (GU)	106
Indiana University (IU)	40
Institut Pasteur and Robert Debré Hospital (IP)	56
Katholieke Universiteit Leuven (KU)	28
Kennedy Krieger Institute (KKI)	211
NYU Langone Medical Center: Sample 1 (NYU_1)	78
NYU Langone Medical Center: Sample 2 (NYU_2)	27
Total	667

Our findings

- ✓ Successfully replicated:
 - o 3D image transformation
 - LOL as feature reduction
 - o Cohen's kappa comparison
- ✓ Handle 3D images better after this project
- ✓ Contradictory results compared to the original paper might be due to the limitation of computing resources (resized)
 - Explore other methods that can handle timeseries data
 - Follow author's suggestions for future work

Thanks for listening