Lógica para Computação Aula 20 - Lógica de Predicados¹

Sílvia M.W. Moraes

Escola Politécnica - PUCRS

¹Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores.

Sinopse

- Nesta aula, continuamos a introduzir Dedução Natural para Lógica de Predicados.
- Este material foi construído com base nos slides do prof. Rafael Bordini e dos livros do Mortari e do Huth & Ryan.

Sumário

1 Lógica de Predicados

2 Próxima Aula

Lógica de Predicados - Relembrando ...

- Predicado
- Quantificadores: Universal e Existencial
- Definição de Termo
- Definição de Fórmula
- Variável livre / ligada
- Fórmula aberta / fechada
- Substituição de Variáveis
- $\forall x \ e \ e \ \forall x \ i$

Lógica de Predicados: Dedução Natural - Introdução do ∃

$$\frac{\varphi(c)}{\exists x. \varphi[x/c]} \exists x_i$$

- A regra diz que podemos deduzir $\exists x. \varphi$ sempre que φ for verdadeira para uma constante c.
- A substituição de c por x só pode ser realizada se c for livre em φ .

Lógica de Predicados: Dedução Natural - Introdução do ∃

- O termo c pode ser visto como um exemplo concreto de x.
 - Exemplo: "Platão é um filósofo grego": $F(p) \land G(p)$, onde:
 - F(x): x é um filósofo.
 - G(x): x é grego
 - p: Platão
 - Dado que Platão tem essas propriedades, pode-se dizer que "Existe alguém que é um filósofo grego".
 - $\exists x. (F(x) \land G(x))$

Lógica de Predicados: Dedução Natural - Introdução do ∃

• Exemplo - Considere o argumento:

$$\forall x.P(x) \vdash \exists x.P(x)$$

- 1. $\forall x.P(x)$ premissa
- 2. P(a) $\forall x_e 1$
- 3. $\exists x.P(x)$ $\exists x_i \ 2$

Lógica de Predicados: Exercícios

- Atividade I: Prove o sequente dos argumentos abaixo usando dedução natural.

Lógica de Predicados: Dedução Natural - Eliminação do ∃

$$\begin{array}{ccc} & \varphi[c/x] \\ & \vdots \\ & \exists x. \varphi & \chi \\ \hline & \chi & \exists x_e \end{array}$$

- Regra de caráter hipotético.
- Para eliminar o existencial deve-se concluir um indivíduo em particular. Como tal indivíduo não é conhecido é necessário introduzir uma nova constante para indicá-lo.
- Além disso, a constante c só poderá substituir x se esta constante não ocorrer:
 - em uma premissa,
 - em uma hipótese vigente,
 - em φ ou em χ .

Lógica de Predicados: Dedução Natural - Eliminação do 🗦

- Exemplo 1 Considere o argumento: "Existem gatos pretos, logo existem gatos", onde
 - G(x): x é um gato,
 - P(x): x é preto.

$$\exists x. (G(x) \land P(x)) \vdash \exists x. G(x)$$

1.	$\exists x. (G(x) \land P(x))$	premissa
2.	$G(a) \wedge P(a)$	hipótese
3.	G(a)	<i>∧e</i> ₁ 2
4.	$\exists x. G(x)$	∃ <i>x</i> i 3
5.	$\exists x. G(x)$	∃ <i>x</i> e 1, 2-4

Lógica de Predicados: Dedução Natural - Eliminação do ∃

• Exemplo 2 - Considere o argumento:

$$\forall x.(P(x) \rightarrow Q(x)), \exists x.P(x) \vdash \exists x.Q(x)$$

1.	$\forall x. (P(x) \rightarrow Q(x))$	premissa
2.	$\exists x. P(x)$	premissa
3.	P(a)	hipótese
4.	P(a) o Q(a)	$\forall x_e \ 1$
5.	Q(a)	ightarrow e 4,5
6.	$\exists x. Q(x)$	∃ <i>x</i> i 5
7.	$\exists x. Q(x)$	∃ <i>x</i> e 2, 3-6

Lógica de Predicados: Exercícios

- Atividade II: Prove o sequente dos argumentos abaixo usando dedução natural.

 - $\exists x. P(x) \rightarrow \forall x. \neg Q(x), P(a) \vdash \neg Q(a)$
 - $\exists x. P(x) \rightarrow \forall x. Q(x), \exists x. \neg Q(x) \vdash \neg \exists x. P(x)$

Lógica de Predicados: Exercícios

- Atividade III: Traduza as sentenças abaixo para Lógica de Predicados e prove o sequente dos seus argumentos usando dedução natural.
 - Nenhum papagaio é cor de laranja. Algumas aves são papagaios. Logo, algumas aves não são cor de laranja.
 - 2 Alguém é amado por todos. Logo, todos amam alguém.

Leitura

- Mortari, C. A. Introdução à Lógica: Capítulo 14
- Huth & Ryan. Lógica em Ciência da Computação:
 Modelagem e Argumentação sobre Sistemas: Capítulo 2