

High Voltage IGBT with Diode

IXSK 35N120BD1 IXSX 35N120BD1

1200 V 70 A $\mathbf{V}_{\text{CE(SAT)}}$ 3.6 V

Short Circuit SOA Capability

Preliminary data sheet

Symbol	TestConditions	Maximum Ratings	
V _{CES}	T _J = 25°C to 150°C	1200	V
V_{CGR}	T_J = 25°C to 150°C; R_{GE} = 1 $M\Omega$	1200	V
V _{GES}	Continuous	±20	V
V_{GEM}	Transient	±30	V
I _{C25}	T _c = 25°C	70	Α
I _{C90}	$T_c = 90$ °C	35	Α
I _{CM}	$T_c = 25$ °C, 1 ms	140	Α
SSOA (RBSOA)	V_{GE} = 15 V, T_J = 125°C, R_G = 5 Ω Clamped inductive load	= 90 @ 0.8 V _{CES}	А
t _{sc} (SCSOA)	$V_{GE} = 15 \text{ V}, V_{CE} = 720 \text{ V}, T_{J} = 125 ^{\circ}\text{C}$ $R_{G} = 5 \Omega$, non repetitive	10	μS
P _c	T _c = 25°C IGBT Diode	300 190	W
T _J		-55 + 150	°C
T _{JM}		150	°C
T _{stg}		-55 + 150	°C
$\overline{T_L}$	1.6 mm (0.063 in) from case for 10 s	300	°C
Weight	TO-264 PLUS247	10 6	g g

Symbol	Test Conditions	Characteristic Values (T _J = 25°C, unless otherwise specified) min. typ. max.			
BV _{CES}	$I_{\rm C}=3$ mA, $V_{\rm GE}=0$ V	1200			V
$V_{\text{GE(th)}}$	$I_{_{\text{C}}} = 250 \ \mu\text{A}, \ V_{_{\text{CE}}} = V_{_{\text{GE}}}$	3		6	V
I _{CES} ①	$V_{CE} = 0.8 \cdot V_{CES}$ $V_{GE} = 0 V$	T _J = 125°C		1 3	mA mA
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$			±100	nΑ
V _{CE(sat)}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \text{ V}$			3.6	V

① Device must be heatsunk for high temperature measurements to avoid thermal runaway. IXYS reserves the right to change limits, test conditions and dimensions

G = Gate,	C = Collector,
E = Emitter,	TAB = Collector

Features

- Hole-less TO-247 package for clip mounting
- High frequency IGBT and anti-parallel FRED in one package
- Low V_{CE(sat)}
- for minimum on-state conduction losses
- MOS Gate turn-on
 - drive simplicity
- Fast Recovery Epitaxial Diode (FRED)
- soft recovery with low $I_{_{\!\!RM}}$

Applications

- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies

Advantages

- Space savings (two devices in one package)
- Reduces assembly time and cost
- · High power density

Symbol	Test Conditions Character ($T_J = 25$ °C, unless of min.		istic Values se specified) max.
\mathbf{g}_{fs}	$I_{\text{C}} = I_{\text{C90}}$; $V_{\text{CE}} = 10 \text{ V}$, 16 Pulse test, $t \le 300 \mu\text{s}$, duty cycle $\le 2 \%$	23	s
C _{ies})	3600	pF
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	315	pF
C _{res}		75	pF
$\overline{\mathbf{Q}_{g}}$)	120	nC
\mathbf{Q}_{ge}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \rm V, V_{\rm CE} = 0.5 \rm V_{\rm CES}$	33	nC
\mathbf{Q}_{gc}	J	49	nC
t _{d(on)}	Nuctive load, T _J = 25°C	36	ns
t _{ri}	$I_{c} = I_{c90}, V_{GE} = 15 \text{ V},$ $V_{cE} = 0.8 \text{ V}_{CES}, R_{g} = 5.0 \Omega$	27	ns
$\mathbf{t}_{ ext{d(off)}}$	$\bigvee_{CE} = 0.8 V_{CES}, R_{G} = 5.0 \Omega$	160	300 ns
t _{fi}	Switching times may increase for V _{CE} (Clamp) > 0.8 • V _{CES} , higher T _J or	180	300 ns
E _{off}	increased R _g	5	9 mJ
t _{d(on)}	\ Inductive load, T _J = 125°C	38	ns
t _{ri}	_	29	ns
E _{on}	$I_{c} = I_{c90}, V_{GE} = 15 \text{ V},$ $V_{CE} = 0.8 V_{CES}, R_{G} = 5.0 \Omega$	6	mJ
$\mathbf{t}_{ ext{d(off)}}$	Switching times may increase for V _{CF}	240	ns
t _{fi}	(Clamp) > 0.8 • V _{CES} , higher T _J or	340	ns
E _{off}) increased R _g	9	mJ
R _{thJC}			0.42 KW
R_{thCK}		0.15	KW

Reverse	` '	Characteristic Values (T ₁ = 25°C, unless otherwise specified)		
Symbol	Test Conditions min.		1	mou
V _F	$I_F = 130$ A, $V_{GE} = 0$ V, Pulse test, $t \le 300$ μ s, duty cycle d ≤ 2 %, $T_J = 125$ °C		2.75 1.85	V
I _{RM} t _{rr}	$\begin{cases} I_F = 130A, V_{GE} = 0 \text{ V}, -di_F/dt = 100 \text{ A/}\mu\text{s T}_J = 100^{\circ}\text{C} \\ V_R = 100 \text{ V} \\ I_F = 1 \text{ A}; -di/dt = 200 \text{ A/}\mu\text{s}; V_R = 30 \text{ V} \end{cases}$	7 40	14.3	A
R _{thJC}			0.65	KW

