Capstone project 2: Biodiversity

Cedric De Leersnijder October 2018

Description of species_info.csv

- The csv file represents data about species in National Parks, especially the conservation status (5824 rows and 4 columns)
- Column names are 'category', 'scientific_name',
 'common_names' and 'conservation_status'
- 5824 rows but 5541 unique values in column 'scientific_name'
- 283 rows from double or multiple entries in column 'scientific_name'
 - 274 species have 2 entries (Agrostis capillaris, Agrostis gigantea, ...)
 - 9 species have 3 entries (Canis lupus, Castor canadensis, ...)

Description of species_info.csv

- The species are grouped by 7 categories: Mammal, Bird, Reptile, Amphibian, Fish, Vascular Plant and Nonvascular Plant
- The column conservation_status has several possible values:
 - Species of Concern: declining or appear to be in need of conservation.
 - Threatened: vulnerable to endangerment in the near future.
 - Endangered: seriously at risk of extinction.
 - In Recovery: formerly Endangered, but currently neither in danger of extinction throughout all or a significant portion of its range.

Conservation status of species set

- A lot of species are missing a value for conservation_status (nan). Later on those missing values were filled in with the value 'No Intervention'.
- 180 species need special attention/protection

Significance calculations on endangered status between different categories of species

Data is categorical: protected or not-protected

	category	not_protected	protected	percent protected
0	Amphibian	72	7	0.088608
1	Bird	413	75	0.153689
2	Fish	115	11	0.087302
3	Mammal	146	30	0.170455
4	Nonvascular Plant	328	5	0.015015
5	Reptile	73	5	0.064103
6	Vascular Plant	4216	46	0.010793

- Column 'Protected' is sum of unique species with conservation status 'Species of concern', 'Threatened', 'Endangered' and 'In recovery'.
- The higher percent_protected, the more likely to become endangered
- Comparison of 2 or more datasets: Chi-Square test

Significance calculations on endangered status between different categories of species

- Testing significance difference between Mammal and Bird
 - My contingency table: contingency = [[146,413],[30,75]]

	Mammal	Bird
Not protected	146	413
Protected	30	75

- Pval = 0.6875948096661336
- P-value > 0.5 : difference isn't significant.

Significance calculations on endangered status between different categories of species

- Testing significance difference between Reptile and Mammal
 - My contingency table: contingency = [[73,146],[5,30]]

	Reptile	Mammal
Not protected	73	146
Protected	5	30

- Pval = 0.03835559022969898 ≈ 0.04
- P-value < 0.5 : Null-hypothesis rejected, there is a significant difference.
- Mammals are more likely to be endangered than Reptiles

Recommendation for conservationists, based on previous significance calculations

- Mammals and birds need most attention because they are most likely to become endangered (although there is no significance difference between the two categories).
- Vascular and non vascular species are least likely to become endangered.

Sample Size Determination Food and mouth disease study

- Historical data: 15% of sheep at Bryce National Park have foot and mouth disease
- Yellowstone National Park program to reduce the rate of the disease.
 - They want confidence to detect reductions of at least 5 percentage points (example 15% to 10%).
- Amount of sheep to test?
 - Baseline = 15% (based on historical data)
 - Statistical difference = 90%
 - Minimum Detectable Effect = 33.33% -> (0.05 / 0.15)*100
 - Sample size = 510 -> Calculated with the sample size calculator from Optimizely (as referred in the Slack forum)

Sample Size Determination Food and mouth disease study

 Note: In one week they observed 250 and 507 sheep respectively in Bryce National Park and Yellowstone National Park (3 same species in each park).

- How many weeks to observe enough sheep?
 - At Bryce National Park: $510.0 / 250 = 2.04 \approx 2$ weeks
 - At Yellowstone National Park: 510.0 / 507 = 1.01 ≈ 1 week