$\acute{A}lgebra\ Linear\ e\ Geometria\ Analítica$ Ficha de Exercícios - Matrizes

LEI e LSIRC

Ano Letivo 2023/2024

1. Dadas as matrizes:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}, C = \begin{bmatrix} 5 \\ 3 \\ 1 \\ -1 \end{bmatrix}, D = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix},$$

$$E = \begin{bmatrix} i & 0 & 0 \\ 0 & 1+i & 0 \\ 0 & 0 & 5i \end{bmatrix}, F = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, G = \begin{bmatrix} 2 & 4 \\ 0 & 1 \end{bmatrix}, H = \begin{bmatrix} 1 & 0 & 0 \\ -3i & 2 & 0 \\ 1 & 1-i & 2 \end{bmatrix}.$$

- (a) Indique o tipo de cada uma das matrizes.
- (b) Indique a(s) matriz(es):
 - i. reais;
 - ii. complexas;
 - iii. quadradas;
 - iv. retangulares;
 - v. nulas;
 - vi. coluna;
 - vii. linha
 - viii. diagonais;
 - ix. identidade;
 - x. triangulares superior;
 - xi. triangulares inferior;
 - xii. escalares.
- (c) Indentifique os elementos: a_{12} , b_{13} , c_{41} , d_{22} , e_{33} , g_{21} e h_{32} .
- (d) Identifique os elementos da diagonal principal e secundária das matrizes quadradas $A, G \in \mathcal{H}$.
- 2. Sabendo que a matriz A é do tipo (2×3) e que $a_{ij} = 2^{i+j}$, escreva-a explicitamente.
- 3. Escreva as matrizes $A \in B$ de ordem 3 tais que:

$$A = \begin{cases} i+j & \text{se } i \neq j \\ 2i-j & \text{se } i=j \end{cases} \quad e B = \begin{cases} i-j+2 & \text{se } i < j \\ j & \text{se } i=j \\ i^2-1 & \text{se } i > j \end{cases}$$

4. Considere as seguintes matrizes

$$A = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}, B = \begin{bmatrix} 5 & 0 \\ -6 & 7 \end{bmatrix} e C = \begin{bmatrix} 1 & -3 & 4 \\ 2 & 6 & -3 \end{bmatrix}.$$

Efetue as seguintes operações matriciais.

- (a) 2A + 3B
- (b) 5A 2B
- (c) $0 \times A$

- (d) $1 \times B$
- (e) AB
- (f) AC
- (g) I_2A
- (h) A^2 ;
- (i) $B^T \in C^T$;
- (j) $B^T C^T$.
- 5. Considere as matrizes $A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 1 \\ -1 & 0 & 3 \end{bmatrix}$ e $B = \begin{bmatrix} -1 & 0 & 4 \\ 2 & 6 & 0 \\ -1 & 2 & 8 \end{bmatrix}$.

Utilize o Scilab para verificar todas as propriedades da multiplicação de um escalar por uma matriz, supondo $k_1 = 2$ e $k_2 = 3/2$.

- (a) $k_1(A+B) = k_1A + k_1B$
- (b) $(k_1 + k_2)A = k_1A + k_2A$
- (c) $k_1(k_2A) = (k_1k_2)A$
- (d) $0 \times A = O_3$
- (e) $1 \times A = A$.
- 6. Considere as seguintes matrizes

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 5 & 6 \end{bmatrix}, B = \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}, C = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix} \in D = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}.$$

Utilize o Scilab para verificar as seguintes das propriedades da multiplicação de matrizes.

- (a) (AD)C = A(DC)
- (b) C(B+D) = CB + CD
- (c) (B+D)C = BC + DC
- (d) $O_{1\times 2}A = O_{1\times 3}$
- (e) $AO_{3\times 2} = O_{2\times 2}$
- (f) $I_2A = A$
- (g) $CI_3 = C$
- 7. Dadas as matrizes $A = \begin{bmatrix} 2 & 3 & 1 \\ 0 & 1 & 2 \\ 1 & -2 & 3 \end{bmatrix}$ e $B = \begin{bmatrix} -1 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.

Utilize o Scilab e mostre que se verificam as seguintes propriedades:

- (a) $(A^T)^T = A;$
- (b) $(A+B)^T = A^T + B^T$;
- (c) $(AB)^T = B^T A^T$;

- (d) $(kA)^T = kA^T$, supondo que k = -1/3.
- 8. Mostre que a matriz $A=\begin{bmatrix}2&1&0\\1&1&-1\\0&-1&4\end{bmatrix}$ é simétrica, isto é, $A=A^T.$
- 9. Considere as matrizes

$$A = \begin{bmatrix} 3 & 2+i & 1 \\ 2 & i & 0 \end{bmatrix}, \ e \ B = \begin{bmatrix} 0 & -i & -1+i \\ -i & 0 & -5 \\ 1+i & 5 & 0 \end{bmatrix}.$$

Determine a matriz conjugada e a matriz transconjugada de A e de B.

10. Considere as matrizes

$$A = \begin{bmatrix} 1+i & 2+i \\ 2 & i \end{bmatrix}, B = \begin{bmatrix} -i & -1-i \\ 1+i & 1 \end{bmatrix}.$$

Verifique se:

- (a) A é idempotente, isto é, $A^2 = A$;
- (b) $A \in B$ são permutáveis, isto é, AB = BA.
- 11. Resolva, em ordem a X, e supondo definidas todas as operações apresentadas, a seguinte equação matricial:

$$(B^T X^{-1})^{-1} B^T C + (C^T B^{-1})^T = I.$$

- 12. Resolva, em ordem a X, e supondo definidas todas as operações apresentadas, cada uma das seguintes equações matriciais:
 - (a) $AX + (X^{-1}B)^{-1} = A;$
 - (b) $(A^{-1}X + B)^{-1} = A;$
 - (c) $(A^{-1}X)^{-1} + 2A = B$;
 - (d) $(X^T A)^{-1} + (X^{-1} B^T)^T = I;$
 - (e) $A(B+X)^T = I$;
 - (f) $(2A^{-1}X)^{-1} + B = A$;
 - (g) $AX^{-1} + (XB^{-1})^{-1} = A;$
 - (h) $(X^TA B)^T = CX$;
 - (i) $AX + (X^T B)^T = C$;
 - (j) $AX + (X^T B^T)^T = A$;
 - (k) $[(A^T X)^{-1} B]^T = (A^T)^{-1}$.

SOLUÇÕES

- 1. (a) A matriz com 3 linhas e 3 colunas (3 por 3), $A_{3\times3}$ ou matriz de ordem 3, A_3 .
 - B matriz com 1 linha e 4 colunas (1 por 4), $B_{1\times 4}$.
 - C matriz com 4 linhas e 1 coluna (4 por 1), $C_{4\times 1}.$
 - D matriz com 3 linhas e 3 colunas (3 por 3), $D_{3\times3}$.
 - E matriz com 3 linhas e 3 colunas (3 por 3), $E_{3\times3}$.
 - F matriz com 2 linhas e 3 colunas (2 por 2), $F_{2\times 3}$.
 - G matriz com 2 linhas e 2 colunas (3 por 2), $G_{2\times 2}.$
 - H matriz com 3 linhas e 3 colunas (3 por 3), $H_{3\times3}$.
 - (b) i. A, B, C, D, F, G;
 - ii. E, H;
 - iii. A, D, E, G, H;
 - iv. B, C, F;
 - v. F;
 - vi. C;
 - vii. B;
 - viii. A, E;
 - ix. A;
 - x. A, E, G;
 - xi. A, E, H;
 - xii. $A = I_3$.
 - (c) $a_{12} = 0$, $b_{13} = 3$, $c_{41} = -1$, $d_{22} = 1/3$, $e_{33} = 5i$, $g_{21} = 0$ e $h_{32} = 1 i$.
 - (d) Diagonal principal: $a_{ii} = 1, i = 1, 2, 3; g_{11} = 2, g_{22} = 1; h_{11} = 1, h_{22} = 2, h_{33} = 2;$

Diagonal secundária: $a_{31} = 0$, $a_{22} = 1$, $a_{13} = 0$; $g_{21} = 0$, $g_{12} = 4$; $h_{31} = 1$, $h_{22} = 2$, $h_{13} = 0$.

2.
$$A = \begin{bmatrix} 4 & 8 & 16 \\ 8 & 16 & 32 \end{bmatrix}$$

3.
$$A = \begin{bmatrix} 1 & 3 & 4 \\ 3 & 2 & 5 \\ 4 & 5 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 & 0 \\ 3 & 2 & 1 \\ 8 & 8 & 3 \end{bmatrix}$

4. (a)
$$2A + 3B = \begin{bmatrix} 17 & 4 \\ -12 & 13 \end{bmatrix}$$

(b)
$$5A - 2B = \begin{bmatrix} -5 & 10 \\ 27 & -34 \end{bmatrix}$$

- (c) $0 \times A = O_{2 \times 2}$
- (d) $1 \times B = B$

(e)
$$AB = \begin{bmatrix} -7 & 14 \\ 39 & -28 \end{bmatrix}$$

(f)
$$AC = \begin{bmatrix} 5 & 9 & -2 \\ -5 & -33 & 24 \end{bmatrix}$$

(g)
$$I_2A = A$$

(h)
$$A^2 = \begin{bmatrix} 7 & -6 \\ -9 & 22 \end{bmatrix}$$

(i)
$$B^T = \begin{bmatrix} 5 & -6 \\ 0 & 7 \end{bmatrix} e C^T = \begin{bmatrix} 1 & 2 \\ -3 & 6 \\ 4 & -3 \end{bmatrix}$$

(j) B^TC^T impossível

9.
$$\overline{A} = \begin{bmatrix} 3 & 2-i & 1 \\ 2 & -i & 0 \end{bmatrix}$$
, $A^* = \begin{bmatrix} 3 & 2 \\ 2-i & -i \\ 1 & 0 \end{bmatrix}$; $\overline{B} = \begin{bmatrix} 0 & i & -1-i \\ i & 0 & -5 \\ 1-i & 5 & 0 \end{bmatrix}$, $B^* = \begin{bmatrix} 0 & i & 1-i \\ i & 0 & 5 \\ -1-i & -5 & 0 \end{bmatrix}$.

11.
$$X = C^{-1} - B^{-T}$$
.

12. (a)
$$X = (A + B^{-1})^{-1}A;$$

(b)
$$X = I - AB$$
;

(c)
$$X = A(B - 2A)^{-1}$$
 ou $X = (BA^{-1} - 2I)^{-1}$;

(d)
$$X = A^{-T} + B^T$$
;

(e)
$$X = A^{-T} - B$$
;

(f)
$$X = A(A - B)^{-1}/2$$
;

(g)
$$X = A^{-1}(A+B)$$
;

(h)
$$X = (A^T - C)^{-1}B^T$$
;

(i)
$$X = (A + B^T)^{-1}C;$$

(i)
$$X = (A+B)^{-1}A$$
;

(k)
$$X = A^{-T}BA$$
.