

BEST AVAILABLE COPY

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
28 March 2002 (28.03.2002)

PCT

(10) International Publication Number
WO 02/25899 A1

- (51) International Patent Classification⁷: H04L 29/06, H04Q 7/38
- (74) Agents: KULAS, Charles, J. et al.; Townsend and Townsend and Crew, LLP, Two Embarcadero, Eighth Floor, San Francisco, CA 94111-3834 (US).
- (21) International Application Number: PCT/US01/29654
- (22) International Filing Date: 21 September 2001 (21.09.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data: 09/668,426 22 September 2000 (22.09.2000) US
- (71) Applicant (for all designated States except US): GENERAL INSTRUMENT CORPORATION [US/US]; 101 Tournament Drive, Horsham, PA 19044 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): MEDVINSKY, Sasha [US/US]; 8873 Hampe Court, San Diego, CA 92129 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

[Continued on next page]

(54) Title: INTERNET PROTOCOL TELEPHONY SECURITY ARCHITECTURE

(57) Abstract: A system is provided in which a client/server/ network can implement a key management session when the server initiates the key management session utilizing a nonce. The nonce allows a wakeup or trigger message to be conveyed to the client such that a service attack on the server can be avoided when a false nonce is received by the server with an AP request message. Thus the server can disregard AP request messages that are not accompanied by a nonce stored by the server. The method can be implemented through circuitry, electrical signals and code to accomplish the acts described in the method.

WO 02/25899 A1

WO 02/25899 A1

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

INTERNET PROTOCOL TELEPHONY SECURITY ARCHITECTURE

This application claims priority from co-pending PCT Application No.

- 5 PCT/US00/09318 filed on April 7, 2000 entitled, "Built-in Manufacturer's Certificates for
a Cable Telephony Adapter to Provide Device and Service Certification," which claims
priority from U.S. Application No. 60/128,772 entitled, "Internet Protocol Telephony
Security Architecture" filed on April 9, 1999, as well as PCT Application No.
PCT/US00/02174 filed on January 28, 2000 entitled "Key Management for Telephone
10 Calls to Protect Signaling and Call Packets Between CTA's," all of which are hereby
incorporated by reference for all that they disclose and for all purposes.

BACKGROUND

- This invention relates generally to network security, and more particularly,
15 to a system for providing key management between a server and a client, e.g., in a
telephony or an IP telephony network.

In networks that are based on a client/server configuration, there is a need
to establish a secure channel between the server and the clients. In addition, in networks
that utilize a third party to certify a trust relationship, there is a need to provide an
20 efficient mechanism that allows a key management message to be initiated by the server.
In such networks that utilize a trusted third party for the server and client, the client can
typically request an encrypted authentication token from the trusted third party that can be
used to initiate key management with the specified server; however, the server will
typically initiate the key management session directly with the client. It is less preferable
25 for the server to obtain from the trusted third party encrypted authentication tokens for
each of the clients. Such an approach would add overhead to a server, requiring it to
maintain cryptographic state for each of the clients. If such a server were to fail, a backup
server would be required to undergo a recovery procedure in which it has to obtain new
authentication tokens for each of the clients. The clients need to be initialized during
30 their provisioning phase to allow them to successfully authenticate to a trusted third party
and obtain the encrypted authentication tokens. One proposed method for client
initialization is disclosed in PCT Application No. PCT/US00/09318 entitled "BUILT-IN
MANUFACTURER'S CERTIFICATES FOR A CABLE TELEPHONY ADAPTER TO

PROVIDE DEVICE AND SERVICE CERTIFICATION." Nevertheless, a need exists to provide an efficient mechanism through which the server can initiate the key management session with the client, as opposed to a system in which only the client can initiate such a session.

5 One such client/server network is the client/server network that exists in IP telephony. In IP telephony systems, a cable telephony adapter (CTA) device can be used to allow a user to send and receive information in secure transactions over an IP telephony network. In typical operation, a series of signaling messages are exchanged that register the CTA device with the IP telephony network before a secure channel with
10 another user can be established. Therefore, the CTA device needs to be authenticated by the IP telephony system. Otherwise, the process would be open to denial of service attacks – since some provisioning exchanges can be forged. In addition, it is desirable for the service provider to identify the CTA device – to make sure that only authorized devices are allowed in its IP Telephony network.

15

SUMMARY OF THE INVENTION

One embodiment of the invention comprises a system for providing key management in a client/server network. This embodiment of the invention utilizes a method to provide key management by providing a server; providing a client configured
20 to be coupled to the server; providing a trusted third party configured to be coupled to the client; and allowing the server to initiate the key management session with the client.

One embodiment is operable as a method to generate a trigger message at the server; generate a nonce at the server; and, convey the trigger message and the nonce to the client. At the client, the client receives the trigger message and the nonce and
25 responds by conveying a response message with a return nonce. The server can then determine that the response message is valid by comparing the values of the returned_nonce and the nonce that was generated by the server.

In addition, one embodiment can be implemented in code and by circuitry operable to produce the acts of the method.

30 A further understanding of the nature of the inventions disclosed herein will be realized by reference to the remaining portions of the specification and the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a flow chart demonstrating an overview of one embodiment of the invention.

FIGS. 2A and 2B show a more detailed flow chart demonstrating a key 5 management session between a server and a client.

FIG. 3 shows steps of a key management session after the key management session is initiated.

FIG. 4 shows a general block diagram of a client/server/trusted third party network.

10 FIG. 5 shows a block diagram of an IP telephony network in which a cable telephony adapter, a signaling controller, and a key distribution center are coupled with one another.

FIG. 6 shows the implementation of the data structures for establishing a key management session as implemented by one embodiment of the invention.

15

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

FIG. 1 shows a flow chart demonstrating an overview of one embodiment of the invention. In flow chart 100, a server is provided 104 and a client coupled to the server is also provided 108. A trusted third party for the server and the client is provided 20 112 and the server is allowed to initiate a key management session with the client by utilizing a nonce 116.

It should be understood that a server is a shared computer on a network, such as a signaling controller used in an IP telephony network. Furthermore, it should be understood that a client is a computer or device served by another network computing 25 device, such as a cable telephony adapter (client) being served by a signaling controller (server) via an IP telephony system. In addition, it should be understood that a trusted third party for the server and the client is a device or computer utilized by at least two parties that facilitates cryptographic processes such as certifying the identity of one of the two parties to the other. Finally, it should be understood that a nonce is a number 30 generated that is utilized only once. The use of a nonce helps to prevent an attacker from implementing a replay attack. Such a nonce can be generated randomly.

The method of FIG. 1 can be better understood by reference to FIG. 2A and FIG. 2B. In the method designated 200 in FIG. 2A and FIG. 2B, a server such as a signaling controller in an IP telephony system is provided 204. In addition, a client such

as a cable telephony adapter in an IP telephony system is also provided 208. A trusted third party for the client and server, such as a key distribution center in an IP telephony system, is provided 212, as well. The server, client, and trusted third party are coupled to one another. Typically, the client initiates key management sessions with the server.

- 5 However, there will be times when the server will need to initiate a key management session with the client. Rather than authenticating the trigger message (e.g. with a digital signature and certificate), the invention can utilize a nonce in the authentication of the subsequent AP Request message from the client. This embodiment of the invention does not prevent an adversary (impersonating a legitimate server) from sending an illicit
- 10 trigger message to the client and fooling it into responding with an AP Request. Instead it provides that such an AP Request will be rejected by the legitimate server. This mechanism is designed to reduce the server's overhead of initiating key management exchanges with its clients, while still maintaining sufficient security. Thus, in 216 a trigger message is generated at the server to initiate a key management session. Then, a
- 15 nonce is generated at the server 220 and the nonce and trigger message are coupled together and conveyed to the client 224. The client receives the trigger message and the nonce 228. Then the client designates the nonce as a returned_nonce 232. In this way, the client can return the received nonce to the server for verification that the message is from the client. In 236, a second nonce is generated at the client. The second nonce is for use by the server and client as part of the key management session being initiated. The client generates a response message to the trigger message that was received from the server 240. Then the response message, the returned_nonce, and the second nonce are conveyed to the server 244:
- 20

At the server, the value of the returned_nonce is compared to the value of the nonce which was generated at the server. If the values of the returned_nonce and the nonce stored at the server are equivalent, the key management session can proceed. However, if the value of the returned_nonce does not equal the value of the nonce stored at the server then a determination is made that the returned_nonce is actually a false nonce 252. In such a case there is a possibility that the signal has been corrupted; or,

25

30 there is a possibility that an attacker is trying to initiate a service attack. In a service attack, the attacker tries to fraudulently initiate a rekeying session in order to cause the server to utilize processor cycles which prevent the processor from utilizing those cycles for other operations. Thus the server would become less effective under such an attack than it would be under normal conditions. By repeating such an attack, an attacker can

- prevent the server from operating efficiently and thus can compromise the operation of the client server network, such as an IP telephony network. If the returned_nonce is determined to be not equivalent to the value of the nonce stored at the server, the response message sent with the returned_nonce is disregarded as being unauthenticated 256.
- 5 However, if the returned_nonce does equal the value of the nonce stored at the server, then the key management session continues 260.

FIG. 3 shows additional steps in a typical key management session as highlighted by block 260 in FIG. 2B. In FIG. 3, method 300 shows that an application (AP) REPLY is generated 364 by the server. The AP REPLY is conveyed to the client 10 with the second nonce that was generated by the client 368. The AP Request is an abbreviation for Application Request and AP Reply stands for Application Reply. For example, these two messages can be specified by the Kerberos Key Management standard (see IETF RFC 1510). As a further example, in the context of Kerberos, the second notice can be the client's time expressed in microseconds. When the AP REPLY and 15 second nonce are received at the client, the client transmits a security association (SA) recovered message to the server 372. This completes the applicable Kerberos key management session.

FIG. 4 shows a block diagram of a client/server/trusted third party network. A client 401 is coupled with a server 402. In addition, the client is coupled 20 with a trusted third party 404. The trusted third party is also coupled with the server 402. FIG. 4 thus demonstrates the network within which one embodiment of the invention can be implemented.

In FIG. 5 an IP telephony network implementing one embodiment of the invention is demonstrated. A client such as a cable telephony adapter 501 is coupled with 25 a server, such as signaling controller 502. Furthermore, the cable telephony adapter and signaling controller are also coupled to a trusted third party, illustrated as key distribution center 504. Furthermore the signaling controller is coupled with the IP telephony network 508. Such a network as that illustrated in FIG. 5 would be useful for establishing an IP telephony call from a user who is coupled to the cable telephony adapter through 30 the IP telephony network 508 to another user connected to a similar network. Thus the user can be authenticated as the calling party through the cable telephony adapter and signaling controller when the call is placed across the IP telephony network. Further details of such a network are illustrated in the references which were incorporated by reference.

FIG. 6 illustrates data structures for implementing a Kerberos key management session initiated by a server in a client/server network. In FIG. 6 a nonce number 1 is coupled with an initiation signal such as a trigger or wakeup message and the combined message is transmitted across an interface 601 to the client. The client stores 5 nonce number 1. It then adds nonce number 2 and an application request in data structure such as that shown in FIG. 6. This set of data is then transmitted across the interface back to the server. The server compares the value of received nonce number 1 with the value of nonce number 1 stored at the server so as to confirm the authenticity of the AP Request. Upon authenticating the AP Request, the server generates an AP Reply and 10 couples it with nonce number 2 which was generated by the client. The combined nonce number 2 and AP Reply are then transmitted across the interface to the client. The client is able to verify the authenticity of the AP Reply by comparing the value of nonce number 2 received from the server with the value of nonce number 2 stored at the client. Upon authenticating the AP Reply, the client generates a Security Association (SA) recovered 15 message and transmits that across the interface to the server. This Kerberos-based key management protocol is thereby implemented in an efficient way and furthermore allows the server to initiate the key management session with the use of only an additional nonce as overhead to the initiation message. Thus the method is highly efficient in that only a nonce need be used in the authentication process of the initiation message.

20 In addition to embodiments where the invention is accomplished by hardware, it is also noted that these embodiments can be accomplished through the use of an article of manufacture comprised of a computer usable medium having a computer readable program code embodied therein, which causes the enablement of the functions and/or fabrication of the hardware disclosed in this specification. For example, this might 25 be accomplished through the use of hardware description language (HDL), register transfer language (RTL), VERILOG, VHDL, or similar programming tools, as one of ordinary skill in the art would understand. The book "A Verilog HDL Primer" by J. Bhasker, Star Galaxy Pr., 1997 provides greater detail on Verilog and HDL and is hereby incorporated by reference for all that it discloses for all purposes. It is therefore 30 envisioned that the functions accomplished by the present invention as described above could be represented in a core which could be utilized in programming code and transformed to hardware as part of the production of integrated circuits. Therefore, it is desired that the embodiments expressed above also be considered protected by this patent in their program code means as well.

- It is noted that embodiments of the invention can be accomplished by use of an electrical signal, such as a computer data signal embodied in a carrier wave, to convey the pertinent signals to a receiver. Thus, where code is illustrated as stored on a computer medium, it should also be understood to be conveyable as an electrical signal.
- 5 Similarly, where a data structure is illustrated for a message, it should be understood to also be capable of being embodied in an electrical signal for transmission across a medium, such as the internet.

It is also noted that many of the structures and acts recited herein can be recited as means for performing a function or steps for performing a function,

10 respectively. Therefore, it should be understood that such language is entitled to cover all such structures or acts disclosed within this specification and their equivalents, including the matter incorporated by reference.

It is thought that the apparatuses and methods of the embodiments of the present invention and many of its attendant advantages will be understood from this

15 specification and it will be apparent that various changes may be made in the form, construction and arrangement of the parts thereof without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the form herein before described being merely exemplary embodiments thereof.

WHAT IS CLAIMED IS:

1. 1. A method of providing key management comprising:
 2. providing a server;
 3. providing a client configured to be coupled to said server;
 4. providing a trusted third party configured to be coupled to said client;
 5. allowing said server to initiate a key management session with said client
1. 2. The method as described in claim 1 wherein said allowing said server to initiate said key management session with said client comprises:
 3. generating a trigger message at said server;
 4. generating a nonce at said server;
 5. conveying said trigger message and said nonce to said client.
1. 3. The method as described in claim 2 and further comprising:
 2. receiving said trigger message and said nonce at said client;
 3. generating a response message to said trigger message;
 4. conveying said response message and a returned _nonce to said server.
1. 4. The method as described in claim 3 and further comprising:
 2. predetermining an out-of-bounds value for said nonce to prevent an attacker from
 3. simulating a client initiated key management session;
 4. checking said nonce to determine whether the value of said nonce is said out-of- bounds value.
1. 5. The method as described in claim 3 and further comprising:
 2. confirming the value of said returned _nonce at said server; and
 3. conveying a reply message from said client to said server.
1. 6. The method as described in claim 1 and further comprising:
 2. receiving from said client a response message and a false _nonce at said server;
 3. determining that said false _nonce is false;
 4. disregarding said client response message.
1. 7. A method of providing key management in a Kerberos based system, said method comprising:
 3. providing a server;

4 providing a client configured to be coupled to said server;
5 providing a key distribution center configured to act as a trusted third party for
6 said client and said server;
7 initiating a key management session by said server with said client.

1 8. The method as described in claim 7 and further comprising:
2 generating a trigger message at said server;
3 generating a nonce at said server;
4 conveying said trigger message and said nonce to said client.

1 9. The method as described in claim 8 and further comprising:
2 receiving said trigger message and said nonce at said client;
3 generating a response message to said trigger message;
4 conveying said response message and a returned _nonce to said server.

1 10. The method as described in claim 9 and further comprising:
2 confirming the value of said returned _nonce at said server; and then
3 continuing with said key management session.

1 11. The method as described in claim 7 and further comprising:
2 receiving at said server a response message and a false _nonce from said client;
3 determining that said false _nonce does not match said nonce;
4 determining that said server did not initiate said key management session.

1 12. A method of initiating a key management session for a cable telephony adapter
2 (CTA) and a Signaling Controller in an IP Telephony network, the method comprising:
3 providing said Signaling Controller;
4 providing said CTA configured to be coupled to said Signaling Controller;
5 providing a key distribution center (KDC);
6 generating a trigger message at said Signaling Controller;
7 generating a nonce at said Signaling Controller;
8 coupling said nonce with said trigger message;
9 transmitting said nonce coupled with said trigger message to said CTA;
10 generating a response message to said trigger message;
11 using the value of said nonce as the value of a returned _nonce;
12 coupling said response message with said returned _nonce;

13 transmitting said returned_nonce and said response message to said Signaling
14 Controller;
15 comparing said returned_nonce to said nonce;
16 transmitting an AP reply in reply to said response message;
17 transmitting an SA recovered message to said Signalling Controller.

1 13. A method of conveying a key from a server to a client, comprising:
2 generating a wakeup message at said server;
3 generating a server_nonce at said server;
4 conveying said wakeup message and said nonce to said client;
5 generating an AP request message at said client;
6 conveying a client_nonce and said AP request message to said server;
7 confirming that said client_nonce conveyed with said AP request message
8 matches said server_nonce generated at said server;

1 14. A method of confirming that a message received by a server from a client was
2 triggered by the server:
3 receiving an AP request message from said client;
4 receiving a client_nonce from said client wherein said client_nonce is associated
5 with said AP request;
6 determining whether said client_nonce matches a nonce conveyed from said
7 server.

1 15. The method as described in claim 14 and further comprising:
2 determining that said client_nonce does not match said nonce conveyed from said
3 server; and
4 disregarding said AP request.

1 16. The method as described in claim 15 and further comprising:
2 awaiting at said client for a reply from said server to said AP request;
3 aborting said AP request session after a predetermined time period if no reply is
4 received from said server.

1 17. The method as described in claim 14 and further comprising:
2 determining that said client_nonce does match said nonce conveyed from said
3 server; and

4 generating an AP reply at said server to said AP request.

1 18. A system for providing key management in a Kerberos based system, said system
2 comprising:

3 a server;

4 a client configured to be coupled to said server;

5 a key distribution center configured to act as a trusted third party for said client
6 and said server;

7 computer code coupled to said server operable to initiate a key management
8 session by said server with said client.

1 19. The system as described in claim 18 wherein said computer code operable to
2 initiate a key management session comprises computer code operable to generate a trigger
3 message at said server; and further comprising:

4 computer code coupled to said server operable to generate a nonce at said server;
5 computer code coupled to said server operable to convey said trigger message and said
6 nonce to said client.

1 20. The system as described in claim 19 and further comprising:

2 computer code coupled to said client operable to generate a response message to
3 said trigger message;

4 computer code coupled to said client operable to convey said response message
5 and a returned _nonce to said server.

1 21. The system as described in claim 20 and further comprising:

2 computer code coupled to said server operable to confirm the value of said
3 returned _nonce at said server.

FIG. 1

FIG. 2a

FIG. 2b

FIG. 3

FIG. 4

FIG. 5

FIG. 6

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/US 01/29654

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 H04L29/06 H04Q7/38

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 H04L H04Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 6 058 480 A (BROWN GARY S) 2 May 2000 (2000-05-02) column 3, line 34 - line 49 column 5, line 50 -column 6, line 20 column 6, line 33 - line 67 Y column 8, line 43 -column 10, line 9	1-6, 14-17 7-11, 18-21 12,13
A	column 3, line 34 - line 49 column 5, line 50 -column 6, line 20	12,13
Y	US 5 590 199 A (KRAJEWSKI JR MARJAN ET AL) 31 December 1996 (1996-12-31) column 4, line 65 -column 5, line 38; figure 3	7-11, 18-21
	-/-	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- *&* document member of the same patent family

Date of the actual completion of the international search

6 December 2001

Date of mailing of the international search report

12/12/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax (+31-70) 340-3046

Authorized officer

Pereira, M

INTERNATIONAL SEARCH REPORT

In Application No
PCT/US 01/29654

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 668 876 A (FALK JOHAN PER ET AL) 16 September 1997 (1997-09-16) column 5, line 20 -column 9, line 12; claim 1	1-21

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l Application No
PCT/US 01/29654

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 6058480	A 02-05-2000	US	5740361 A	14-04-1998
US 5590199	A 31-12-1996	NONE		
US 5668876	A 16-09-1997	AU AU CA EP FI JP WO	692881 B2 2688795 A 2193819 A1 0766902 A2 965161 A 10502195 T 9600485 A2	18-06-1998 19-01-1996 04-01-1996 09-04-1997 13-02-1997 24-02-1998 04-01-1996

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.