Medical Project

Detecting Cancer Metastasis on Gigapixel Pathology Images

By Jiawen Huang (jh4179)

CAMELYON16 challenge

https://camelyon16.grand-challenge.org/Data/

400 WSI (whole slide images) collected independently from two medical centers in the Netherlands.

About 600GB.

I select 6 images as my training images.

075, 078, 081, 084, 091, 096

And 3 images as my testing images.

• 016, 101, 110

Project: Develop a tool to assist physicians

- Given a collection of training data, develop a model that outputs a heatmap showing regions
 of a biopsy image likely to contain cancer.
- Emphasis on assist. Not replace.

Biopsy image

Ground truth (from pathologist)

Model predictions

Approach

Detecting Cancer Metastases on Gigapixel Pathology Images, 2017

Using Multi Scale Images to classify if a region contains cancer

-- Level 5, 6, 7

Single Scale Model

40X patch (299 x 299)

Multi Scale Model

Multi Scale Model

Input images

Key Experiments

Imbalanced Data

Data Augmentation

Imbalanced data

Goal: Increase proportion of positive samples, but also keep as much original distribution as possible

- Tissue > 40%
 - Positive Sample -- Keep
 - Negative Sample Drop 85%
- Tissue < 40%
 - Positive Sample -- Drop (To avoid false positive)
 - Negative Sample Drop 98% (can train model better)

Data augmentation

- Vertical and Horizontal Flip
- Rotate -- 90 degree
- Brightness -- 20% to 100%

Model Comparison -- Accuracy (Validation)

- Single Scale Model
 - Inception V3 -- 95%
 - Simple Model 70%
- Multi Scale Model
 - Inception V3 -- 66%
 - Simple Model 92%

Model Comparison -- Test on Slide 101 (Threshold: 0.5)

Model	Accuracy	Precision	Recall
Single-scale Inception V3	0.22	0.22	1
Multi-scale Simple model	0.64	0.41	0.85

Tend to classify all as positive

Better

Multi-scale Simple Model Result -- Test Slide 101

Mask and Slide

Total patches used to test: 225

23 42 32 4

Accuracy: 0.6435643564356436 Precision: 0.4181818181818181 Recall: 0.8518518518518519

Prediction and Slide

Prediction and Mask

Further Work

1. Why can not multi-scale input improve inception V3 model?

Potential Solutions:

- If the prediction on the Level 5 image is positive, we include level 6 and 7 images as reference; otherwise we classify it directly as negative to avoid false positive
- Try other kinds of image models, like VGG

Further Work

2. Why does the multi-scale simple model work not so good for slide with less cancer tissues?

Potential Solutions:

- Higher resolution images as input
- Fine-tune training data or model to detect minor difference of patches