

TRIGONOMETRIC RATIOS

RIGHT TRIANGLES

prepared by:

Gyro A. Madrona

........

Electronics Engineer

TOPIC OUTLINE

Sine

Cosine

Tangent

TRIGONOMETRIC RATIOS

TRIGONOMETRIC RATIOS

Consider a right triangle with θ as one of its acute angles.

Trigonometric Ratios

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$

$$\csc \theta = \frac{\text{hypotenuse}}{\text{opposite}}$$

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$

$$\sec \theta = \frac{\text{hypotenuse}}{\text{adjacent}}$$

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$$

$$\cot \theta = \frac{\text{adjacent}}{\text{opposite}}$$

RECIPROCAL IDENTITIES

Trigonometric Ratios

$$\sin\theta = \frac{1}{\csc\theta}$$

$$\csc\theta = \frac{1}{\sin\theta}$$

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$

$$\csc \theta = \frac{\text{hypotenuse}}{\text{opposite}}$$

$$\cos\theta = \frac{1}{\sec\theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$

$$\sec \theta = \frac{\text{hypotenuse}}{\text{adjacent}}$$

$$\tan\theta = \frac{1}{\cot\theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$$

$$\cot \theta = \frac{\text{adjacent}}{\text{opposite}}$$

Relative to angle G, which side is the adjacent side of \triangle EMG?

Relative to angle N, which side is the opposite side of \triangle END?

In the given triangle, find $\sin A$, $\cos C$, $\csc A$, and $\tan C$.

Solution

$$\sin A = \frac{0}{h}$$

$$\sin A = \frac{8}{17}$$
ans

$$CSCA = \frac{1}{SinA}$$

$$CSCA = \frac{17}{8}$$

$$\omega c C = \frac{a}{h}$$

$$\omega c C = \frac{8}{17}$$

$$\tan C = \frac{0}{a}$$

$$\tan C = \frac{15}{8}$$

ans

ans

A surveyor wants to determine the height of a lighthouse. Standing 120 feet away from its base, he measures the angle of elevation to the top and find that:

$$\tan A = \frac{2}{3}$$

Using this information, calculate the height of the lighthouse.

Solution

$$\tan A = \frac{\delta}{a}$$

$$\tan A = \frac{h}{120}$$

$$\frac{2h}{3} = \frac{1}{120}$$

$$2(120) = \frac{1}{3}$$

$$h = 80 \text{ ft}$$
ans

Find the cosine of an angle if its sine is 3/5.

$$\sin A = \frac{0}{h} = \frac{3}{5}$$

Solution

$$h^{2} = \alpha^{2} + 0^{2}$$

$$5^{2} = \chi^{2} + 3^{2}$$

$$25 = \chi^{2} + 97$$

$$-9$$

$$16 = \chi^{2}$$

$$x = \sqrt{16}$$

$$05 = 4$$

$$057 = 4$$

ans

A ladder is leaning against the side of a house. The ladder is 26 feet long and forms an angle with the ground such that the cosine of the angle is 1/4. How far is the base of the ladder from the house?

Solution

$$a = \frac{a}{4}$$

$$a = \frac{a}{2a}$$

$$a = \frac{a}{4}$$

$$a = \frac{a}{4}$$

$$a = \frac{a}{4}$$

A base line AC 350 ft. in length is laid along one bank of a river. On the opposite bank a point B is located so that CB is perpendicular to AC. The tangent of the angle CAB is then measured and found to be 16/5.

Solution

$$\tan \theta = \frac{0}{16}$$

$$\tan \theta = \frac{0}{350}$$

$$\frac{16}{5} = \frac{0}{350}$$

$$\frac{1}{5} = \frac{0}{350}$$

SEATWORK

