Info of Exam

- Closed-book examination: 2025-01-08 08:00-09:50
- Q & A (Tencent Meeting): 2024-12-31, 08:30-10:00
- Problem types:
 - Fill-in-the-blank
 - True / False
 - Short questions
 - Long questions
- Grade system:
 - Final exam + Homework + Attendance

Outline

PPT courseware + Homework

 Notice: specific tools (e.g., Lex or Yacc) or sample languages (e.g., TINY or C-minus), will not be examined.

Outline-1

- The phases of a compiler
- Write regular expressions
 - Pay attention to basic and extended operations
- Convert the regular expression into an NFA, and then convert the NFA into a DFA
 - Subset construction method
- Minimize DFA

Outline-2

- Derivation and parse tree
- Write a Context-Free Grammar
- Chomsky hierarchy
- Construct a LL(1) parsing table
 - Table construction: M[N, T]
 - $-e \in First(\alpha)$: fill $A \rightarrow \alpha$ in M[A, e]
 - $-e \in Follow(A)$: fill $A \rightarrow \varepsilon$ in M[A, e]
- Parse an input string corresponding to the LL(1) parsing table

Outline-3

- Construct a LR(0)/SLR(1)/LR(1)/LALR(1) parsing table
 - Table construction: state (list) + input (subtable) + goto (subtable)
 - SLR(1):
 - Follow(A): reduce with A→a
 - -LR(1)
 - b∈First(γa): ε-transition from item [A→α·Bγ, a] to item [B→·β,
 b]
- A grammar is LL or LR grammer?
 - No shift-reduce or reduce-reduce conflicts
- Parse an input string corresponding to the LR parsing table

Exercises

A. All strings of lowercase letters that begin and end in a.

Positive examples (x+): a, aa, aba, aba, abaabca, ...

Negative examples (x-): ε, ab, ba, abb,...

Perfect answer: a[a-z]*a | a

B. All strings of lowercase letters that either begin or end in *a* (or both).

x+: a, aa, ab, ba, aba, aabcaca,...

x⁻: ε, b, bab,...

Perfect answer: $a[a-z]^* \mid [a-z]^*a$

C. All strings of digits that contain no leading zeros.

x+: 0, 1, 2, 12, 123...

x-: 01, 002, 023...

Perfect answer: 0|[1-9][0-9]*

D. All strings of digits that represent even numbers.

x+: 2, 4, 12, 112...

x⁻: 1, 3, 13...

Perfect answer: [0|2|4|6|8]|[1-9][0-9]* [0|2|4|6|8]

```
(0 | 2 | 4 | 6 | 8) | [1-9]* (0 | 2 | 4 | 6 | 8) can't match some even numbers

(0) [0-8]* [0-17* [3-9]* (12 | 4 | 6 | 8) can't match some even numbers

e-g. | 102, | 1024, 302, ...
```

E. All strings of digits such that all the 2's occur before all the 9's.

x+: 2, 9, 29, 229, 12526996...

x⁻: 92, 992, 1913222...

Perfect answer: [0-8]*[0|1|3|4|5|6|7|8|9]*

F. All strings of a's and b's that contain no three consecutive b's.

x+: ε, b, bb, abb, bba, abbaaaba, bab, bbabb...

x-: bbb, bbbb, abbb, ababaabbba...

Perfect answer: $(\varepsilon|b|bb)(a|ab|abb)^*$ or $(a|ba|bba)^*(\varepsilon|b|bb)$

G. All strings of a's and b's that contain an odd number of a's or an odd number of b's (or both).

x+: a, b, aaa, bbb, ab, aaabb, bababaaba...

x⁻: ε, aa, bb, abab, aaaabb...

Perfect answer: b*a(b*ab*a)*b*|a*b(a*ba*b)*a*
Wrong answer:

H. All strings of a's and b's that contain an even number of a's and an even number of b's

x+: ε, aa, bb, abab, aaaabb, bababaabaa...

x-: a, b, aaa, bbb, ab, aaabb, bababaa...

Perfect answer: ((aa|bb)|(ab|ba)(aa|bb)*(ab|ba))*
Wrong answer:

 I. All strings of a's and b's that contain exactly as many a's as b's.

x+: ε, abab, bababaabab...

x-: a, b, aaa, bbb, aaaabb...

None. Because a regular expression cannot count.

- 2.12 a. Use Thompson's construction to convert the regular expression $(a|b)*a(a|b|\epsilon)$ into an NFA.
- b. Convert the NFA of part (a) into a DFA using the subset construction. [Solution]
 - a. An NFA of the regular expression $(a|b)*a(a|b|\epsilon)$

		/	
(b) Fro	mla), we can get that:		
5		Sa	Sb.
7	7.5,1,3.8.9	2110	4
2,10	2.6.5.1,3.8.9.10.17.11.	210.12	4,14
210112	2.6.5.1.3,8.9, ==,10,11.11, 13,15,16,18.12	2,10,12	4.14
4.14	46.5,1,3,8,9,14,18	2,10	4
4	4.6,5,1,3,8,9	2,10	4

Thorotono the anish is.

2.16 Apply the state minimization algorithm of Section 2.4.4 to the following DFAs:

b.

3.20 a. Write a regular expression that generates the same language as the following grammar:

$$A \rightarrow aA \mid B \mid \varepsilon$$

 $B \rightarrow bB \mid A$

b. Write a grammar that generates the same language as the following regular expression:

$$(a|c|ba|bc)*(b|\epsilon)$$

1
$$(a|b)^*$$

Or
$$A \rightarrow aA|cA|baA|bcA|B$$

 $B \rightarrow b|\epsilon$

4.9 Consider the following grammar (similar, but not identical to the grammar of Exercise 4.8):

- a. Left factor this grammar.
- b. Construct First and Follow sets for the nonterminals of the resulting grammar.
- c. Show that the resulting grammar is LL(1).
- d. Construct the LL(1) parsing table for the resulting grammar.

1.

```
| lexp → atom|list | S→Follow(lexp-seq) | Follow(lexp)→follow(atom) or follow(list) | The seq of the seq of
```

Nonterminal	First set	Follow set		
lexp	number, identifier, (\$,), ,		
atom	number, identifier	\$,), ,		
list	(\$,), ,		
lexp-seq	number, identifier, (\$,)		
lexp-seq'	, , ε	\$,)		

	Nonterminal			First set			Follow set		
	lexp numbe			er, identifier, (\$,), ,			,		
	atom			numbe	er, identifier		\$,), ,		
	list			(\$,),	,	
	lexp-seq			numbe	er, identifier,	, (\$,)	<u> </u>	
	lexp-seq	,		, , ε			\$,)		
N	/[N,T]	number	ide	ntifier	()		,	\$
le	exp	lexp → atom	lexp ator		lexp → list				
а	tom	atom → number		m → ntifier					
li	st				list → (lexp-seq)				
le	exp-seq	lexp-seq → lexp lexp-seq'	\rightarrow i	o-seq exp o-seq'	lexp-seq → lexp lexp-seq'				
le	exp-seq'					lexp-s → ε	eq'	lexp-seq' → , lexp- seq	lexp-seq' → ε

5.1 Consider the following grammar:

$$E \rightarrow (L) \mid \mathbf{a}$$

 $L \rightarrow L, E \mid E$

- a. Construct the DFA of LR(0) items for this grammar.
- **b.** Construct the SLR(1) parsing table.
- c. Show the parsing stack and the actions of an SLR(1) parser for the input string ((a),a,(a,a)).
- **d.** Is this grammar an LR(0) grammar? If not, describe the LR(0) conflict. If so, construct the LR(0) parsing table, and describe how a parse might differ from an SLR(1) parse.

a. DFA of LR(0) items

b. SLR(1) parsing table

 $Follow(E')=\{\$\}$

 $Follow(E)=\{\}, , \$\}$

Follow(L)= $\{$), , $\}$

$$E
ightarrow$$
 (L) \mid a $L
ightarrow L$, $E \mid E$

State				Goto			
,	()	a	,	\$	E	L
0	s3		s2			1	-
1					accept		
2		$r(E \rightarrow a)$		$r(E \rightarrow a)$	$r(E \rightarrow a)$		
3	s3		s2			6	4
4		s5		s7			
5		$r(E \rightarrow (L))$		$r(E \rightarrow (L))$	$r(E \rightarrow (L))$		
6		r(L→E)		$r(L \rightarrow E)$			
7	s3		s2			8	
8		r(L→L,E)		$r(L\rightarrow L,E)$			

c. parse of ((a),a,(a,a))

	Parsing stack	Input	Action
1	\$0	((a),a,(a,a))\$	s3
2	\$0(3	(a),a,(a,a))\$	s3
3	\$0(3(3	a),a,(a,a))\$	s2
4	\$0(3(3a2),a,(a,a))\$	$r(E \rightarrow a)$
5	\$0(3(3E6),a,(a,a))\$	$r(L \rightarrow E)$
6	\$0(3(3L4),a,(a,a))\$	s5
7	\$0(3(3L4)5	,a,(a,a))\$	$r(E \rightarrow (L))$
8	\$0(3E6	,a,(a,a))\$	$r(L \rightarrow E)$
9	\$0(3L4	,a,(a,a))\$	s7
10	\$0(3L4,7	a,(a,a))\$	s2
11	\$0(3L4,7a2	,(a,a))\$	$r(E \rightarrow a)$
12	\$0(3L4,7E8	,(a,a))\$	$r(L \rightarrow L,E)$
13	\$0(3L4	,(a,a))\$	s7
14	\$0(3L4,7	(a,a))\$	s3
15	\$0(3L4,7(3	a,a))\$	s2
16	\$0(3L4,7(3a2	,a))\$	$r(E \rightarrow a)$
17	\$0(3L4,7(3E6	,a))\$	$r(L \rightarrow E)$
18	\$0(3L4,7(3L4	,a))\$	s7
19	\$0(3L4,7(3L4,7	a))\$	s2
20	\$0(3L4,7(3L4,7a2))\$	$r(E \rightarrow a)$
21	\$0(3L4,7(3L4,7E8))\$	$r(L \rightarrow L,E)$
22	\$0(33L4,7(3L4))\$	s5
23	\$0(33L4,7(3L4)5)\$	$r(E \rightarrow (L))$
24	\$0(33L4,7E8)\$	$r(L \rightarrow L, E)$
25	\$0(3L4)\$	s5
26	\$0(3L4)5	\$	$r(E \rightarrow (L))$
27	\$0E1	\$	accept

5.1

d. Is LR(0) grammar?

Yes. No conflicts.

State	Action	Rule		In	put		Ge	oto
			(a)	,	E	L
0	shift		3	2			1	
1	reduce	$E' \rightarrow E$						
2	reduce	$E \rightarrow a$						
3	shift		3	2			6	4
4	shift				5	7		0
5	reduce	$E \rightarrow (L)$						
6	reduce	$L \rightarrow E$						
7	shift		3	2			8	
8	reduce	$L \rightarrow L,E$						

- 5.2 Consider the grammar of the previous exercise.
 - a. Construct the DFA of LR(1) items for this grammar.
 - **b.** Construct the general LR(1) parsing table.
 - c. Construct the DFA of LALR(1) items for this grammar.
 - **d.** Construct the LALR(1) parsing table.
- e. Describe any differences that might occur between the actions of a general LR(1) parser and an LALR(1) parser.

a. DFA of LR(1) items


```
State 0: [E' \rightarrow .E, \$]
            [E\rightarrow.(L),S]
                [E \rightarrow , a, S]
State 2: [E \rightarrow (.L),\$]
```

$$[E\rightarrow (.L),\$]$$

$$[L\rightarrow .L,E,)]$$

$$[L \rightarrow , E ,)]$$

 $[L \rightarrow , L, E , ,]$
 $[L \rightarrow , E , ,]$
 $[E \rightarrow , (L),)]$
 $[E \rightarrow , a,)]$
 $[E \rightarrow , (L), ,]$

$$[E\rightarrow. a, ,]$$
State 6:
$$[E\rightarrow(.L),)]$$

$$[E\rightarrow(.L), ,]$$

$$[L\rightarrow. L, E,)]$$

$$[L\rightarrow, E,)]$$

$$[L\rightarrow, L, E, ,]$$

$$[L\rightarrow, E, ,]$$

$$[E\rightarrow, (L),)]$$

$$[E\rightarrow. (L), j]$$
$$[E\rightarrow. a, j]$$

$$[E \rightarrow . (L), ,]$$

 $[E \rightarrow . a, ,]$

State 10:
$$[E\rightarrow(L.),]$$

 $[E\rightarrow(L.),]$
 $[L\rightarrow L., E,]$

 $[L\rightarrow L..E,.]$

State 4:
$$[E\rightarrow(L.),\$]$$

 $[L\rightarrow L.,E,)]$
 $[L\rightarrow L.,E, ,]$

State 5:
$$[L\rightarrow E.,]$$

 $[L\rightarrow E.,]$
State 7: $[E\rightarrow a.,]$

State 8:
$$[E\rightarrow(L).,\$]$$

State 9:
$$[L\rightarrow L, E,]$$

 $[E\rightarrow . (L),]$
 $[E\rightarrow . a,]$
 $[L\rightarrow L, E,]$

$$[E\rightarrow. (L), ,]$$

 $[E\rightarrow. a, ,]$
State 11: $[L\rightarrow L, E, ,]$

State 11:
$$[L \rightarrow L, E.,]$$

 $[L \rightarrow L, E.,]$

State 12:
$$[E \rightarrow (L),,]$$

 $[E \rightarrow (L),,]$

b. LR(1) parsing table

 $r1: E \rightarrow (L)$

r2: $E \rightarrow a$ r3: $L \rightarrow L, E$ r4: $L \rightarrow E$

State			Goto				
	(a	Input)	,	\$	L	E
0	S2	S3	N -0407	200			1
1				8	Accept		
2	S6	S7				4	5
3					r2		
4		Į.	S8	S9			
5			r4	r4	8		
6	S6	S7				10	5
7			r2	r2			
8		Ĭ.			rl		(10 g) (10 g)
9	S6	S7					11
10			S12	S9			
11			r3	r3			
12		Ī.	rl	rl			21 87 71 83

c. DFA of LALR(1) items

d. LALR(1) parsing table

d. $r1: E \rightarrow (L)$ $r2: E \rightarrow a$ $r3: L \rightarrow L, E$ $r4: L \rightarrow E$

State		Input					Goto		
	(a)	,	\$	L	E		
0	S2/6	S3/7					1		
1					Accept				
2/6	S2/6	S3/7				4/10	5		
3/7			r2	r2	r2				
4/10			S8/12	S9					
5			r4	r4					
8/12			r1	r1	r1				
9	S2/6	S3/7					11		
10			S8/12	S9					
11			r3	r3					