7 Принцип максимуму Понтрягіна для задачі з вільними правим кінцем

7.1 Лекція

7.1.1 Постановка задачі і формулювання принципу максимуму

Розглянемо задачу Больца з вільним правим кінцем

$$\mathcal{J}(u,x) = \int_{t_0}^{T} f_0(x(s), u(s), s) \, \mathrm{d}s + \Phi(x(T))$$
 (7.1)

за умов

$$\dot{x} = f(x, u, t), t \in [t_0, T], \tag{7.2}$$

$$x(t_0) = x_0. (7.3)$$

Тут $x = (x_1, x_2, \dots, x_n)^*$ – фазові координати, $u = (u_1, u_2, \dots, u_m)^*$ – кусково-неперервне керування таке. що $u(t) \in \mathcal{U}, t \in [t_0, T]$, де $\mathcal{U} \subseteq \mathbb{R}^m$, не залежить від часу.

 $f_0(x,u,t) \to \mathbb{R}, f(x,u,t) \to \mathbb{R}^n$ є неперервними за сукупністю змінних, разом зі своїми градієнтами за $x, \Phi(x)$ – неперервно диференційовна, $(x,u,t) \in \mathbb{R}^n \times \mathcal{U} \times [t_0,T], x_0 \in \mathbb{R}^n$.

За цих умов справджується теорема про існування та єдиність (кусково-гладкого) розв'язку задачі Коші для системи (7.2) для довільного керування.

Моменти часу t_0 і T фіксовані, а обмеження на фазові координати відсутні.

Якщо існує оптимальне керування задачі (7.1)-(7.3), тобто допустиме $u_* = u_*(\cdot)$ і відповідний йому розв'язок $x_* = x_*(\cdot)$ задачі Коші (7.2)-(7.3) такі, що

$$\inf \mathcal{J}(u,x) = \mathcal{J}(u_*,x_*),$$

то будемо говорити про розв'язок задачі як про пару $(u_*(\cdot), x_*(\cdot))$.

Функція вигляду

$$\mathcal{H}(x, u, \psi, t) = -f_0(x, u, t) + \langle \psi, f(x, u, t) \rangle, \tag{7.4}$$

де $\psi = (\psi_1, \psi_2, \dots, \psi_n)^*$ – нові, спряжені змінні, називається функцією Гамільтона-Понтрягіна.

Для кожної пари $(u(\cdot), x(\cdot))$, де $u(\cdot)$ – допустиме керування, а $x(\cdot)$ – відповідний йому розв'язок задачі Коші (7.2)-(7.3), розглянемо систему звичайних диференціальних рівнянь

$$\dot{\psi} = -\nabla_x \mathcal{H}(x, u, \psi, t), t \in [t_0, T], \tag{7.5}$$

$$\psi(T) = -\nabla\Phi(x(T)). \tag{7.6}$$

Ця система називається спряженою системою, яка відповідає парі $(u(\cdot), x(\cdot))$.

Теорема 7.1 (принцип максимуму Понтрягіна). Для розв'язку $(u_*(\cdot), x_*(\cdot))$ задачі Больца (7.1), (7.3) існує $\psi_*(\cdot)$ яка задовольняє спряженій системі яка відповідає парі $(u_*(\cdot), x_*(\cdot))$, причому майже для кожного $t \in [t_0, T]$ функція Гамільтона-Понтрягіна досягає свого максимуму при $u(t) = u_*(t)$, а саме

$$\sup_{u \in \mathcal{U}} \mathcal{H}(x_*, u, \psi, t) = \mathcal{H}(x_*, u_*, \psi_*, t)$$

Приклад 7.1. Розглянемо задачу

$$\mathcal{J}(u) = \frac{1}{2} \int_{0}^{T} u^{2}(s) ds + \frac{x^{2}(T)}{2}$$

за умови

$$\dot{x} = ax + y, x(t_0) = x_0,$$

де $x(\cdot): \mathbb{R} \to \mathbb{R}, \ u(\cdot): \mathbb{R} \to \mathbb{R}, \ a$ — сталий параметр, x_0 — фіксована точка.

Функція Гамільтона-Понтрягіна має вигляд

$$\mathcal{H}(x, u, \psi, t) = -\frac{u^2}{2} + \psi(ax + u).$$

Спряжена система записується так:

$$\dot{\psi} = -\nabla_x \mathcal{H} = -a\psi, \psi(T) = -x(T).$$

Її розв'язок

$$\psi(t) = -x(T) \cdot e^{a(T-t)}.$$

Згідно принципу максимуму, функція Гамільтона-Понтрягіна на оптимальному керуванні досягає свого максимуму, тобто, за відсутності обмежень на керування

$$\frac{\partial \mathcal{H}(x, u, \psi, t)}{\partial u} = 0.$$

Звідси $-u_* + \psi = 0$ і $u_*(t) = \psi(t) = -x(T) \cdot e^{a(T-t)}$.

Підставляємо знайдене керування у рівняння

$$\dot{x} = ax + u, x(t_0) = x_0.$$

Формула Коші для загального розв'язку лінійного рівняння першого порядку має вигляд

$$x(t) = e^{at}x_0 + \int_0^t e^{a(t-s)} \cdot u(s) ds = e^{at}x_0 - \int_0^t e^{a(t-s)} \cdot x(T) \cdot e^{a(T-s)} ds =$$

$$= e^{at}x_0 - e^{at+aT}x(T) \int_0^t e^{-2as} ds = e^{at}x_0 - \frac{e^{aT} \cdot x(T) \cdot (e^{at} - e^{-at})}{2a},$$

звідки, при t = T:

$$x(T) = e^{aT} \left(x_0 - \frac{x(T) \cdot \left(e^{aT} - e^{-aT} \right)}{2a} \right),$$

звідки

$$x(T) = \frac{e^{aT}x_0}{1 - \frac{e^{aT}}{2a} \cdot (e^{aT} - e^{-aT})}.$$

Підсумовуючи все вищесказане,

$$u_*(t) = -\frac{e^{a(2T-t)}x_0}{1 - \frac{e^{aT}}{2a} \cdot (e^{aT} - e^{-aT})},$$

причому

$$x_*(t) = e^{at}x_0 - \frac{e^{2aT}x_0 \cdot (e^{at} - e^{-at})}{2a - e^{2aT} - 1}.$$

7.2 Аудиторне заняття

Задача 7.1. Записати крайову задачу принципу максимуму для задачі оптимального керування:

$$\mathcal{J}(u) = \int_{0}^{T} (u^{2}(s) + x_{1}^{4}(s)) ds + x_{2}^{4}(T) \to \inf$$

за умови, що

$$\begin{cases} \dot{x}_1 = \sin(x_1 - x_2) + u, \\ \dot{x}_2 = \cos(-4x_1 + x_2), \end{cases}$$

$$x_1(0) = 1, x_2(0) = 2.$$

Тут $x = (x_1, x_2)^*$ – вектор фазових координат з \mathbb{R}^2 , u(t) – функція керування, $t \in [0, T]$, момент часу T є заданим.

Розв'язок. Для початку випишемо всі функції з теоретичної частини:

$$f_0(x, u, t) = u^2(t) + x_1^4(t), \quad f(x(t), u(t), t) = \begin{pmatrix} \sin(x_1(t) - x_2(t)) + u(t) \\ \cos(-4x_1(t) + x_2(t)) \end{pmatrix}, \quad \Phi(x(T)) = x_2^4(T).$$
 (7.7)

Функція Гамільтона-Понтрягіна має вигляд

$$\mathcal{H}(x, u, \psi, t) = -f_0(x, u, t) + \langle \psi, f(x, u, t) \rangle =$$

$$= -u^2 - x_1^4 + \langle \psi, f(x, u, t) \rangle =$$

$$= -u^2 - x_1^4 + \left\langle \psi, \begin{pmatrix} \sin(x_1 - x_2) + u \\ \cos(-4x_1 + x_2) \end{pmatrix} \right\rangle =$$

$$= -u^2 - x_1^4 + \left\langle \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}, \begin{pmatrix} \sin(x_1 - x_2) + u \\ \cos(-4x_1 + x_2) \end{pmatrix} \right\rangle =$$

$$= -u^2 - x_1^4 + \psi_1 \cdot \sin(x_1 - x_2) + \psi_1 \cdot u + \psi_2 \cdot \cos(-4x_1 + x_2).$$
(7.8)

Спряжена система записується так:

$$\dot{\psi} = -\nabla_x \mathcal{H} = \begin{pmatrix} 4x_1^3 - \psi_1 \cdot \cos(x_1 - x_2) - 4\psi_2 \cdot \sin(-4x_1 + x_2) \\ \psi_1 \cdot \cos(x_1 - x_2) + \psi_2 \cdot \sin(-4x_1 + x_2) \end{pmatrix}, \tag{7.9}$$

$$\psi(T) = -\nabla\Phi(x(T)) = \begin{pmatrix} 0\\ -4x_2^3(T) \end{pmatrix}. \tag{7.10}$$

Задача 7.2. Записати крайову задачу принципу максимуму для задачі оптимального керування:

$$\mathcal{J}(u) = \gamma^2 \int_0^T x^2(s) \, \mathrm{d}s \to \inf$$

за умови, що

$$\dot{x} = u, \quad x(0) = x_0$$

Tyr $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$,

$$|u(t)| \le \rho$$
,

 $t \in [0,T]$. Точка $x_0 \in \mathbb{R}^1$ і момент часу T є заданими.

Розв'язок. Для початку випишемо всі функції з теоретичної частини:

$$f_0(x, u, t) = \gamma^2 x^2(t), \quad f(x(t), u(t), t) = u(t), \quad \Phi(x(T)) = 0, \quad \mathcal{U} = \mathcal{U}(t) = [-\rho, \rho].$$
 (7.11)

Функція Гамільтона-Понтрягіна має вигляд

$$\mathcal{H}(x, u, \psi, t) = -f_0(x, u, t) + \langle \psi, f(x, u, t) \rangle = -\gamma^2 x^2 + \psi u. \tag{7.12}$$

Спряжена система записується так:

$$\dot{\psi} = -\nabla_x \mathcal{H} = -2\gamma^2 x,\tag{7.13}$$

$$\psi(T) = -\nabla\Phi(x(T)) = 0, (7.14)$$

її розв'язок

$$\psi = -2\gamma^2 xt. \tag{7.15}$$

7.3 Домашне завдання

Задача 7.7. Записати крайову задачу принципу максимуму для задачі оптимального керування:

$$\mathcal{J}(u) = \int_{0}^{T} (4u_1^2(s) + u_2^2(s) + \cos^2(x_1(s))) \,ds + \sin^2(x_2(T)) \to \inf$$

за умови, що

$$\begin{cases} \dot{x}_1 = x_1 + x_2 + 3x_1x_2 + 2u_1, \\ \dot{x}_2 = -x_1 + 6x_2 - 3x_1x_2 + u_2, \\ x_1(0) = 4, x_2(0) = -2. \end{cases}$$

Тут $x = (x_1, x_2)^*$ – вектор фазових координат з \mathbb{R}^2 , $u_1(t)$, $u_2(t)$ – функції керування, $t \in [0, T]$, момент часу T є заданим.

Розв'язок. Для початку випишемо всі функції з теоретичної частини:

$$f_0(x, u, t) = 4u_1^2(s) + u_2^2(s) + \cos^2(x_1(s)),$$

$$f(x(t), u(t), t) = \begin{pmatrix} x_1 + x_2 + 3x_1x_2 + 2u_1 \\ -x_1 + 6x_2 - 3x_1x_2 + u_2 \end{pmatrix},$$

$$\Phi(x(T)) = \sin^2(x_2(T)).$$
(7.16)

Функція Гамільтона-Понтрягіна має вигляд

$$\mathcal{H}(x,u,\psi,t) = -f_0(x,u,t) + \langle \psi, f(x,u,t) \rangle =$$

$$= -4u_1^2(t) - u_2^2(t) - \cos^2(x_1(t)) + \langle \psi, f(x,u,t) \rangle =$$

$$= -4u_1^2(t) - u_2^2(t) - \cos^2(x_1(t)) + \left\langle \psi, \begin{pmatrix} x_1 + x_2 + 3x_1x_2 + 2u_1 \\ -x_1 + 6x_2 - 3x_1x_2 + u_2 \end{pmatrix} \right\rangle =$$

$$= -4u_1^2(t) - u_2^2(t) - \cos^2(x_1(t)) + \left\langle \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}, \begin{pmatrix} x_1 + x_2 + 3x_1x_2 + 2u_1 \\ -x_1 + 6x_2 - 3x_1x_2 + u_2 \end{pmatrix} \right\rangle =$$

$$= -4u_1^2(t) - u_2^2(t) - \cos^2(x_1(t)) + \psi_1(x_1 + x_2 + 3x_1x_2 + 2u_1) + \psi_2(-x_1 + 6x_2 - 3x_1x_2 + u_2).$$

$$(7.17)$$

Спряжена система записується так:

$$\dot{\psi} = -\nabla_x \mathcal{H} = \begin{pmatrix} \sin(2x_1) + \psi_1 + 3\psi_1 x_2 - \psi_2 - 3\psi_2 x_2 \\ \psi_1 + 3\psi_1 x_1 + 6\psi_2 - 3\psi_2 x_1 \end{pmatrix}, \tag{7.18}$$

$$\psi(T) = -\nabla\Phi(x(T)) = \begin{pmatrix} 0\\ \sin(2x_2) \end{pmatrix}. \tag{7.19}$$

Задача 7.8. Записати крайову задачу принципу максимуму для задачі оптимального керування:

$$\mathcal{J}(u) = \gamma^2 \int_0^T (x(s) - z(s))^2 ds \to \inf$$

за умови, що

$$\dot{x} = u, x(0) = x_0.$$

Tyr $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$,

$$|u(t)| \le \rho$$
,

 $t\in[0,T]$. Точка $x_0\in\mathbb{R}^1$, неперервна функція $z(t)\in\mathbb{R}^1$ і момент часу T є заданими.

Розв'язок. Для початку випишемо всі функції з теоретичної частини:

$$f_0(x, u, t) = \gamma^2(x - z)^2, \quad f(x(t), u(t), t) = u(t), \quad \Phi(x(T)) = 0, \quad \mathcal{U} = \mathcal{U}(t) = [-\rho, \rho].$$
 (7.20)

Функція Гамільтона-Понтрягіна має вигляд

$$\mathcal{H}(x, u, \psi, t) = -f_0(x, u, t) + \langle \psi, f(x, u, t) \rangle = -\gamma^2 (x - z)^2 + \psi u. \tag{7.21}$$

Спряжена система записується так:

$$\dot{\psi} = -\nabla_x \mathcal{H} = -2\gamma^2 x + 2\gamma^2 z,\tag{7.22}$$

$$\psi(T) = -\nabla\Phi(x(T)) = 0, (7.23)$$

її розв'язок

$$\psi = 2\gamma^2 (z - x)t. \tag{7.24}$$