

Figure 1

Figure 2

Figure 3

Figure 4

CTGCCCCCTCCGGCCCCGGCCCAGCGCCCGGGCTGGCCGGCAGCGGCCCGCGGGCTGGCAGCAGTGGCTGCC-81
 CGCACTCGCCCGGGCGCTCGCTTCGCTGCAGCTCCGGCTGGCCCTCGGGCCGGCCGGCTCGTT-162
 ATGGCCGCGGCCCTCCCTCCCCGCCAGGGCGAGAGGAAGCGCTGGGGTTGGGGCCGCTTGCCAGGGCGCCGGCGAGC-243
 M A A A S S P P R A E R K R W G W G R L P G A R R G S -27
 GCGGCCCTGGCCAAGAACGTCGGCTGGAGCTGGCCGGGGCCGGCGGGCGCTACCGCCTCGATCGCCTCC-324
 A G L A K K C P F S L E L A E E G G P A G G A L Y A P I -54
 GCGCCCGGCCAGGTCCCAGGGCCCTCGCTCCCGCCGGCCGGCCGGCCAGTTGCCTCCGACCTTGCCCG-405
 A P G A P G P A P P A S P A A P P V A S D L G P -81
 CGGCCGCCGGTGAGCCTAGACCCGCGCTCTCACAGCACGCGCCGGTGTGGCGCGACCCACGTCCAGGGC-486
 R P P V S L D P R V S I Y S T R R P V L A R T H V Q G -108
 ▼
 CGCGTCTACAACCTCCTCGAGCGTCCCACCGGCTGGAAATGCTTCGTTACCACTCGCCGCTTCCTCATCGTCTGGTC-567
 R V Y N F L E R P T G W K C F V Y H F A V F L I V L V -135
 ▼ S1
 TGCCTCATCTTCAGCGTGTGTCACCATCGAGCAGTATGCCGCCCTGGCCACGGGACTCTCTCTGGATGGAGATCGTG-648
 C L I F S V L S T I E Q Y A A L A T G T L F W M E I V -162
 S2
 CTGGTGGTGTCTTCGGACGGAGTACGTGGTCCGCCCTCTGGTCCGCCGGCTGCCAGCAAGTACGTGGGCTCTGGGG-729
 L V V F E G T E Y V V R L W S A G C R S K Y V G L W G -189
 ▼
 CGGCTGCCTTGCCCCAAGCCCATTCCATCATCGACCTCATCGTGGTGTGGCCCTCATGGTGGTCTCTGGTGGG-810
 R L R F A R K P I S I I D L I V V V A S M V V L C V G -216
 S3
 TCCAAGGGGCAGGTGTTGCCACGTCGGCCATAGGGGCATCCGCTCTGCAGATCCTGAGGATGCTACACGTCGACCC-891
 S K G Q V F A T S A I R G I R F L O I L R M L H V D R -243
 S4
 CAGGGAGGCACCTGGAGGCTCCGGCTCCGGTGTCTCATCCACCGCCAGGAGCTGATAACCACCTGTACATCGGCTTC-972
 Q G G T W R L L G S V V F I H R Q E L I T T L Y I G F -270
 CTGGCCTCATCTCTCGTACTTGTGTACCTGGCTGAGAAGGACCGGGTAACGAGTCAGGCCGGTGGAGTTGGC-1053
 L I G L I F S S Y F V Y L A E K D A V N E S G R V E F G -297
 S5
 AGCTACGCAGATCGCCTGTGGTGGGGGGTGTACAGTCACCAACATCGGCTATGGGACAAGGTGCCCCAGACGTGGTC-1134
 S Y A D A L W W G V V T V T I G Y G D K V P Q T W V -324
 Pore
 ▼
 GGGAAAGACCATGCCCTCTGCTCTGTCTTGCCATCTCCCTCTGGCTCCAGCGGGGATTCTGGCTCGGGTT-1215
 G K T I A S C F S V F A I S F F A L P A G I L G S G F -351
 S6
 GCCCTGAAGGTGCAGCAGAACGAGGGCAGAACGACTTCACCCAGATCCGGCCAGCCTCACTCATTAGACCGCA-1296
 A L K V Q Q K Q R Q K H F N R Q I P A A A S L I Q T A -378
 TGGAGGTGCTATGCTGCCAGAACCCGACTCCACCTGGAAAGATCTACATCCGAAGGCCCCCGGAGCCACACTCTG-1377
 W R C Y A A E N P D S S T W K I Y I R K A P R S H T L -405
 ▼
 CTGTCACCCAGCCCCAAACCAAGAACGACTGTGGTAAAGAAAAAAAGTTCAAGCTGGACAAAGACAATGGGTGACT-1458
 L S P S P K P K K S V V V K K K F K L D K D N G V T -432
 CCTGGAGAGAACGACTTCACAGTCCCCATATCACGTGCAGCCCCCAGAACGAGCGGGCTGGACCACTCTCTGTCGA-1539
 P G E K M L T V P H I T C D P P E E R R L D H F S V D -459
 ▼
 GGCTATGACAGTTCTGTAAGGAAGAGCCAAACACTGCTGGAAAGTGACCATGCCCATTTCATGAGAACCAAACAGCTTCGCC-1620
 G Y D S S V R K S P T L L E V S M P H F M R T N S F A -486
 ▼
 GAGGACCTGGACCTGGAAGGGAGACTCTGCTGACACCCATCACCCACATCTCACAGCTGCCGGAACACCACCGGCCACC-1701
 E D L D L E G E T L L T P I T H I S Q L R E H H R A T -513
 ▼
 ATTAAGGTCAATTGACGATCGCAGTACTTCAGTACTTGTGGCAAGAACGAAAGAAATTCCAGCAAGCGCGGAAGCCTTACGATGTGGGGAC-1782
 I K V I R R M Q Y F V A K K K F Q Q A R K P Y D V R D -540
 ▼
 GTCATTGAGCAGTACTCGCAGGGCCACCTCAACCTCATGGTGCCTGACAGGAGCTGCAGAGGAGGCTGGACCAAGTCCATT-1863
 V I E Q Y S Q G H L N L M V R I K E L Q R R L D Q S I -567

Figure 5A

```

GGGAAGCCCTCACTGTTCATCTCCGTCTCAGAAAAGAGCAAGGCATCGGGCAGCAACACGATCGGCCGCCCCGCTGAACCGA-1944
G K P S L F I S V S E K S R D R G S N T I G A R L N R -594
    ▼
GTAGAACAGACAAGGTGACCGCAGCTGGACCAGAGGCTGGCACTCATACCGACATGCTTCACCAGCTGCTCTCCCTGACCGT-2025
V E D K V T Q L D Q R L A L I T D M L H Q L L S L H G -621
GGCAGCACCCCCGGCAGCGGGGGCCCCCAGAGAGGGCGGGGCCACATCACCAGGCCACTGCGGAGTGGCGGCTCCGTC-2106
G S T P G S G G P P R E G G A H I T Q P C G S G G S V -648
GACCCCTGAGCTCTCCCTGCCCAGCAACACCCCTGCCCACCTACCGAGCAGCTGACCGTGACCGCAGGAGGGGCCGATGAGGGG-2187
D P E L F L P S N T L P T Y E Q L T V P R R G P D E G -675
TCCCTGAGGAGGGATGGGGCTGGGGATGGGCTGAGTGAGAGGGGAGGCCAAGAGTGGCCCACCTGGCCCTCTGAAG-2268
S * -676
GAGGCCACCTCTAAAGGCCAGAGAGAACAGGCCACTCTCAGAGGCCCAATAACCCATGGACCATGCTGCTGGCAC-2349
AGCTGCACTGGGGCTCAGCAAGGCCACCTCTTCTGGCCGGTGTGGGGGCCGCTCAGGTCTGAGTTGTACCCCCA-2430
AGGCCCTGGCCCCACATGGTGTGACATCACTGGCATGGTGGTGGACCCAGTGGCAGGGCACAGGGCCTGGCCC-2511
ATGTATGGCCAGGAAGTAGCACAGGCTGAGTCAGGCCACCCCTGCTTGGCCAGGGGCTCTGAGGGAGACAGAGCA-2592
ACCCCTGGACCCAGCCTCAAATCCAGGACCCCTGCAGGCACAGGCAGGGCAGGCCACGCTGACTACAGGGCAC-2673
CGGCAATAAAAGGCCAGGAGCCATTGGAGGGCTGGGCTGGCTCCCTCACTCTCAGGAAATGCTGACCCATGGCAGG-2754
AGACTGTGGAGACTGCTCTGAGGCCCAAGCTCCAGCAGGAGGGACAGTCTCACCATTTCCCAAGGGCACGTGGTTGAGT-2835
GGGGGAAAGGCCACTTCCCTGGGTAGACTGCCAGCTTCCCTAGCTGGAGGGGCCCTGCCCTCCGGCCCCCTGAGGCC-2916
ACTGTGCGTGGGGCTCCGCCCAACCCCTGCCAGTCCAGGCCACGCCAACACAGAAGGGGACTGCCACCTCC-2997
CTCTGCCAGCTGCTGAGCCAGAGAAAGTGACGGTCTCTCACAGGACAGGGGTTCTCTGGCATTACATCGCATAGAA-3078
ATCAATAATTGTGGTGAATTGGATCTGTGTTTAIGAGTTCACAGTGTGATTATTAAATTGTCCAAGCTTTC-3159
CTAATAAACGTGGAGAACAC(A)n -3180

```

Figure 5B

chromosome 11

Figure 6

Figure 7A

Figure 7B

Figure 7C

Figure 7D

Figure 7E

Figure 8A

Figure 8B

Figure 8C

Figure 9A

Figure 9B

Figure 9C

Figure 9D

Figure 9E

Xenopus	MNENAINSLYEAIPLPQDGSSNGQRQEDRQANSFELKRETIVATDPPRPT
Human	QGRVYNFLERPTGWCFCVYHFAVFLIVL
Xenopus	INLDPRVSIYSGRRPLFSRTNIQGRVYNFLERPTGWCFCVYHFTVFLIVL
Human	S1 _____ S2 _____ VCLIFSVLSTIQQYAAALATGTLFWMEIVLVVFFGTYYVVRILSAGCRSKY
Xenopus	ICLIFSVLSTIQQYNNLATETLFWMEIVLVVFFGAEYVVRILSAGCRSKY
Human	S3 _____ S4 _____ VGLWGRLLRFARKPISIDLTIVVAVSMVVLCVGSKGQVFATSAIRGIRFLQ
Xenopus	VGVWGRLLRFARKPISVIDLTIVVAVSIVLCVGSNGQVFATSAIRGIRFLQ
Human	S5 _____ Pore _____ ILRMLHVDRQGGTWRLLGSVVFIRHQELITLTYIGFLGLIFSSYFVYLAE
Xenopus	ILRMLHVDRQGGTWRLLGSVVFIRHQELITLTYIGFLGLIFSSYFVYLAE
Human	KDAVNESGRVERGSYADALWWGVVTITIGYGDVKPQTWVGKTIASCFSV
Xenopus	KDAJDSSGEYQFGSYADALWWGVVTITIGYGDVKPQTWIGKTIASCFSV
Human	S6 _____ FAISFFALPAGILGSGFALKVQQKOROKHFNRQIPAAASLIQTAWRCYAA
Xenopus	FAISFFALPAGILGSGFALKVQQKOROKHFNRQIPAAASLIQTAWRCYAA
Human	ENPDSSIWKIYIRKAPRSHTLLSPSPKPKKSVVVKKKFKLKDNGVTPG
Xenopus	ENPDSAIWKIYIRKQSRNHIMSPSP
Human	EKMLTVPHITCDPPEERRLDHFSVDGYDSVRKSPILLEVSMPHFMRTNS
Human	FAEDLDLEGETLLTPITHISQLREHHRATIKVIRRMQYFVAKKKFQQARK
Human	PYDVRDVIEQYSQGHLNLMRVIKELQRRLDQSIGKPSLFISVSEKSKDRC
Human	SNTIGARLNRVVEDKVTQLDQRLALITDMLHQLLSLHGGSTPGSGGPREG
Human	GAHITQPCGSGGSVDPELFLPSNTLPTYEQLTVPRRGPDDEGS

Figure 10

K1532

Figure 11A

K2605

Figure 11B

K1723

Figure 11C

K1807

Figure 11D

Gly168Arg

Figure 12H

Gly168Arg

Figure 12I

Gly168Arg

Gly314Ser

Tyr315Cys

Lys318Asn

Leu353Pro

Arg366Trp

Figure 12J

Figure 12K

Figure 12L

Figure 12M

Figure 12N

Figure 12O

K1789

Normal	CAC	TCG	AAC	GAC	CCA	TTC	AAC
	H	S	N	D	P	F	N
↓							
Mutant	CAC	TCG	AAC	AAC	CCA	TTC	AAC
	H	S	N	N	P	F	N

Figure 13A

K1754

Normal	CTG	GAG	CAC	TCG	AAC	GAC	CCA
	L	E	H	S	N	D	P
↓							
Mutant	CTG	GAG	CAC	TTG	AAC	GAC	CCA
	L	E	H	L	N	D	P

Figure 13B

Figure 13C

Figure 14B

Figure 14A

Figure 15A

Figure 15B

Figure 15C

Figure 15D

Figure 16A

Figure 16B

Figure 16C

Figure 16D

Figure 17

ACACCCGGCTCTCGGCATCTCAGACCCGGAAAAATGCCCTGCTTCTGCCAGTTCACACAATCATCAGGTGAG-81
 CCGAGGATCCATTGGAGGAAGGCATTATCTGTATCCAGAGGAAATAGCCAAGGGATATTCAAGGGTGTGCCCTGGGAAGTTG-162
 AGCTGCAGCAGTGGAACCTTAATGCCAGGATGATCTGCTAACACCACAGCGGTGACGCCCTTGACCAAGCTGTGG-243
 M I L S N T T A V T P F L T K L W -17
 CAGGAGACAGTCAGCAGGGTGGCAACATGTCGGGCTGGCCGCAGGTCCCCCGCAGCGGTGACGCCAGCTGGAGGCC-324
 Q E T V Q Q G G N M S G L A R R S P R S G D G K L E A -44
 CTCTACGTCCTCATGGTACTGGGATTCTCGGCTTCTCACCCCTGGCATCATGCTGAGCTACATCGCTCCAAGAAGCTG-405
 L Y V L M V L G F F G E F T L G I M L S X I R S K K L -71
 GAGCACTCGAACGACCCATTCAACGTCATCGAGTCCGATGCCCTGGCAAGAGAAGGGACAAGGCCTATGTCAGGCCGG-486
 E H S N D P F N V Y I E S D A W Q E K D K A Y V Q A R -98
 GTCTGGAGAGCTACAGCTCGTCTATGTCGTTAAAACCATCTGCCATAGAACACCCAACACACACCTCCTGAGACG-567
 V L E S Y R S C Y V V E N H L A I E Q P N T H L P E T -125
 AAGCCTCCCCATGAACCCCACACTGGCTAAACTGGACACCTCTGCTGGNNNNNAGATTCTAATCACATTCTCA-648
 K P S P *
 TACTCTTATTGTGATGGATACCACTGGATTCTTTGGCTGTTGTAANGGTGAGGGGTGGATAATGACACTGTTCA-729
 CTGTTCTCTAAATCACGTTCTTTGTGATAGACTGTCAGTGGTCCCCATATCTGCTCCCTGCTAAATTAGCA-810
 GAATCCCTGAGGACATGGCTCTGAGAATAGCAGCTGCATTCCAGACTCCCTGAGCTAGCAAGGTGTGACTAAG-891
 CCCTGGCCAGTAGGCATGGAAGACTGTAATGTCAGTAATCCTTGGAAAGAAAAGAACGTGCCCTAACTAACTT-972
 TGCTCTGCTCCAGTGGCTGGATGTTGGAGGGAGGAGCAGTTAGAGACTGGAAAGTTCGGGGCACTCAAAGAGCC-1053
 ACACACATCTGGCCTGGCGACGTGGATCCTCTTACCAACCCACCAGGCCAGATTACAGGAGAGAGAAATCCACTCCAC-1134
 TCTCTCTTAAGCCAATGTTATTCTGATCTCTGTTAAGGTGCGAGAATCAATGCCCTTACTGATAACACCTACCTTATAGGAC-1215
 TGAACTAAAGGCATGACATTCCATACTTGTCAAGGACACACTGATTCTGCCCTTGTCACTTCTGCTCACTCTGT-1296
 GGCTCTATCCTCCCTGCCCTCCGCCCTCCACTCCTCCCTGACCCATCCTGCACACATCTCCCTGAAAACACACAGG-1377
 CAACATACACTCATACATAGACACACATACACACCTCAACTAGAAAGAAACTGCTTGTACAGGGCTGAGATGGAGGAG-1458
 AAAAAATGCCCTTCAGAATGCATACCAAGGGAGGTGCTGGTCACTGTGGAGCAGGGAAAGGTGCCCTTCACTCCC-1539
 CGAGAGCCAGGGAGGTGGCTGGCAGAGAGGGACACATAGCACTGGGTGGCAGGTCTTTGAGGTGATGGGCC-1620
 GCTTTGTGAGATGAATTGTATCCCCAAAAAGACAGGTACCTCAATGTGACCTAATTGGAAATAGAGTCTTGCAGAT-1701
 G(A)n -1702

Figure 18