Conducteurs en équilibre électrostatique

Table des matières

L	Conducteurs en equilibre electrostatique		
	1.1	Conducteur	
	1.2	Equilibre électrostatique	
2	Champ produit par un conducteur en équilibre électrostatique		
	2.1	Répartition des charges	
	2.2	Théorème de Coulomb	
	2.3	Pouvoir des pointes	
	2.4	Champ dans une cavité d'un conducteur	
	2.5	Capacité d'un conducteur	
3	Sys	Système de conducteurs	
	3.1	Lignes de champ	
	3.2	Théorème des éléments correspondants	
	3.3	Influence électrostatique	
	3.4	Conducteur relié à la terre	
	3.5	Influence totale	
4	Condensateurs		
	4.1	Définition	
	4.2	Condensateur plan	
	4.3	Condensateur cylindrique	
	4.4	Condensateur sphérique	
		Energie électrostatique \mathcal{E}_e d'u condensateur	

1 Conducteurs en équilibre électrostatique

1.1 Conducteur

- Définition : Un conducteur est un matériau contenant des charges électriques mobiles (charges libres),capables de se déplacer dans tout le volume disponible.
 - si les charges sont fixes le matériau est un isolant
 - Exemples : métaux...

1.2 Equilibre électrostatique

• Définition : Un conducteur est en équilibre électrostatique si ses charges libres n'ont aucune mouvement d'ensemble dans un référentiel lié au conducteur,donc le champ électrostatique \overrightarrow{E}_{int} est nul dans tout le volume du conducteur

$$\overrightarrow{E}_{int} = \overrightarrow{0}; V_{int} = cte$$

2 Champ produit par un conducteur en équilibre électrostatique

2.1 Répartition des charges

• théorème de Gauss : $\iint_S \overrightarrow{E}.dS.\overrightarrow{n} = \frac{Q_{int}}{\varepsilon_0} = 0 \text{ donc}$

$$Q_{int} = 0$$

• $Q_{int} = \iiint_V \rho_{int} d\tau = 0$

$$\rho_{int} = 0$$

 \triangleright Si le conducteur est chargé avec une charge Q, elle est répartie totalement sur la surface du conducteur avec une densité σ

$$Q = \iint_{S} \sigma.dS$$

2.2 Théorème de Coulomb

- au voisinage de la surface du conducteur \vec{E} est orthogonal à la surface du
- $\iint_{S} \overrightarrow{E} . \overrightarrow{dS} = \frac{Q_{int}}{\varepsilon_{0}} = \frac{\sigma dS}{\varepsilon_{0}}$
- $S = S_{int} + dS + S_{lat}$ $\overrightarrow{E}_{int} = \overrightarrow{0}$
- $\iint_{S_1} \overrightarrow{E} \cdot \overrightarrow{dS} = 0$ et $\iint_{S_1} \overrightarrow{E} \, \overrightarrow{dS} = 0$
- $\iint_{S} \overrightarrow{E} d\overrightarrow{S} = E.dS = \frac{\sigma.dS}{\varepsilon_0}$

$$\overrightarrow{E} = \frac{\sigma}{\varepsilon_0} \overrightarrow{n}$$

• Théorème de Coulomb : Au voisinage de la surface d'un conducteur chargé,le champ électrostatique est perpendiculaire à cette surface et vaut $\frac{\sigma}{\sigma}$

$$\overrightarrow{E} = \frac{\sigma}{\varepsilon_0} \overrightarrow{n}$$

2.3 Pouvoir des pointes

Considérons deux sphères conductrices de rayons R_1 et R_2 reliées par un fil conducteur

- la sphère (1) prend à l'équilibre une charge Q_1 répartie sur sa surface avec une densité σ_1
- la sphère (2) prend à l'équilibre une charge Q_2 répartie sur sa surface avec une densité σ_2
- les deux sphères sont supposées assez loin l'une de l'autre

- les sphères sont reliées par un fil, don elles portent le même potentiel aux voisinages de leurs surfaces $V_1 = V_2 = V$
- $V_1 = V = \frac{Q_1}{4\pi\varepsilon_0 R_1}$ et $V_2 = V = \frac{Q_2}{4\pi\varepsilon_0 R_2}$
- $\sigma_1 = \frac{Q_1}{4\pi R_1^2} = \frac{\varepsilon_0 V}{R_1}$ et $\sigma_2 = \frac{Q_2}{4\pi R_2^2} = \frac{\varepsilon_0 V}{R_2}$
- le champ électrostatique au voisinage de la sphère (1) : $E_1 = \frac{V}{R_1}$
- le champ électrostatique au voisinage de la sphère (2) : $E_2 = \frac{V}{R_2}$
- $R_2 >> R_1$,donc

$$E_2 >> E_1 \text{ et } \sigma_2 >> \sigma_1$$

- Conclusion : Pour un même conducteur, le champ au voisinage de la surface est d'autant plus grand que son rayon de courbure est plus petit, c'est le pouvoir des pointes
- Autrement : le champ électrostatique au voisinage d'une pointe d'un conducteur est plus intense.

2.4 Champ dans une cavité d'un conducteur

- le conducteur est creux
- la cavité du conducteur est vide de charge
- le théorème d'extremum : V = cte dans la cavité
- $\overrightarrow{E} = -\overrightarrow{grad}V = \overrightarrow{0}$ à l'intérieur de la cavité

•
$$\iint_{S} \overrightarrow{E} \cdot \overrightarrow{dS} = \frac{Q_{int}}{\varepsilon_{0}} = 0 \text{ donc}$$
$$\sigma_{int} = 0$$

donc pas de charges sur la surface interne du conducteur

- Conclusion : Dans une cavité vide de charge d'un conducteur
 - ▶ le champ électrostatique est nul
 - ▶ il n' y a pas de charge sur la surface interne du conducteur

•Application : cage de Faraday

Il s'agit d'un conducteur creux, maintenu à un potentiel constant, permet de réaliser un écran électrostatique. On utilise la cage de faraday pour protéger les appareils de mesure contre un champ électrostatique .

2.5 Capacité d'un conducteur

• Définition : la capacité d'un conducteur est définie par

$$C = \frac{Q}{V}$$

- ullet Q : charge du conducteur (surfacique)
- \bullet l'unité de C est le Farad : F
- lacktriangle la capacité C ne dépend que de la forme géométrique du conducteur et C>0
- ▶ Exemple : sphère métallique chargée en surface

- $\overrightarrow{E} = E(r)\overrightarrow{e}_r$
- au voisinage de la surface $V_s = \frac{Q}{4\pi\varepsilon_0 R}$
- $C = \frac{Q}{V_s} = 4\pi\varepsilon_0 R$
- terre de rayon $R_T = 6400km$: $C = 710\mu F$

3 Système de conducteurs

3.1 Lignes de champ

- ▶ les lignes de champ sont normales à la surface des conducteurs et partent des charges positives vers les charges négatives
- ▶ une ligne de champ ne peut se refermer sur lui un même conducteur

3.2 Théorème des éléments correspondants

Soient deux conducteurs (A) et (B) placés l'un à coté de l'autre et portant des densités surfaciques de charge σ_1 et σ_2 . Soit (T) le tube de champ reliant les éléments A_1 de A et B_1 de B.

- théorème de Gauss : $\iint_{\Sigma} \overrightarrow{E}.\overrightarrow{dS} = \frac{Q_{int}}{\varepsilon_0}$
- $Q_{int} = Q_1 + Q_2$ et $\Sigma = S_1 + S_2 + S_l$

- $\overrightarrow{E} = \overrightarrow{0} \text{ sur } S_1 \text{ et } S_2$
- $\iint_{S_l} \overrightarrow{E} . \overrightarrow{dS}_l = 0 \text{ car } \overrightarrow{E} \bot \overrightarrow{dS}_l$
- $\bullet \iint_{\Sigma} \overrightarrow{E}.\overrightarrow{dS} = 0 = \frac{Q_{int}}{\varepsilon_0}$

$$Q_1 = -Q_2$$

•Théorème : les charges électriques portées par deux éléments correspondant sont égales et de signs opposés.

$$Q_1 = -Q_2$$

3.3 Influence électrostatique

• Définition : On dit qu'il y a une influence électrostatique entre deux conducteur A et B s'il existe une partie des lignes de champ partent de A et arrivant en B, alors les charges au départ et à l'arrivée ne sont pas indépendantes.

- A et B sont en influence
- la charge totale des deux conducteur reste constante
- nouvelle répartition des charges
- noveau potentiel

3.4 Conducteur relié à la terre

- Terre : sphère globalement neutre qui porte un potentiel constant on le prend par convention égale à zéro $V_T=0$
- lorsqu'on relie un conducteur à la terre ses charges s'écoulent au sol, càd elles se répartissent sur toute la surface de la terre, donc sa charge et son potentiel deviennent nul.

3.5 Influence totale

•Définition : deux conducteurs A et B sont en influence totale si tout ligne de champ partant da A arrive en B.

- A et B sont en influence totale
- $Q_A = -Q_{B_{int}}$
- $\bullet \ Q_B = Q_{B_{int}} + Q_{B_{ext}}$

$$Q_{B_{ext}} = Q_B - Q_{B_{int}}$$

• si B est isolé au départ, il reste isolé : $Q_{B_{ext}} = Q_A$ et $Q_B = 0$

4 Condensateurs

4.1 Définition

• Définition : Un condensateur est un système de deux conducteurs en influence totale ils constituent les armatures du condensateur.

4.2 Condensateur plan

- on néglige les effets de bord
- la distance e est suffisamment faible devant les rayons de courbure pour que l'on puisse les assimiler localement à des plans
- les lignes de champs sont paralléles à Oz

- l'armature $A_1(\text{plan})$ crée la champ $\overrightarrow{E}_1 = \frac{\sigma}{2\varepsilon_0} \overrightarrow{e}_z$ dans l'espace entre les armatures
- l'armature A_2 crée le champ $\overrightarrow{E}_2=\frac{\sigma}{2\varepsilon_0}\overrightarrow{e}_z$ dans l'espace entre les armatures

$$\overrightarrow{E} = \overrightarrow{E}_1 + \overrightarrow{E}_2 = \frac{\sigma}{\varepsilon_0} \overrightarrow{e}_z$$

- $V_1 V_2 = \int_{M_1}^{M_2} \overrightarrow{E} . \overrightarrow{dl} = E \int_0^z dz = E.e = \frac{\sigma}{\varepsilon_0}.e$
- $Q = \sigma.S$ donc $Q = \frac{\varepsilon_0.S}{e}U = C.U$, avec S: surface de l'armature

$$C = \frac{\varepsilon_0 \cdot S}{e}$$

• Pour augmenter la capacité C du condensateur on introduit un diélectrique de permittivité relatif ε_r dan l'espace entre les armatures

$$C = \varepsilon_0 . \varepsilon_r \frac{S}{e}$$

4.3 Condensateur cylindrique

- le condensateur cylindrique est constitué par deux cylindres coaxiaux 1 et 2, de rayons R_1 et R_2 , portan sur des surfaces en regard les charges -Q et +Q
- on suppose que les longueurs des cylindres sont trés grand devant les rayons pour négliger les effets de bord
- théorème de Gauss appliqué à un cylindre de longueur l de rayon r compris entre R_1 et R_2

$$\iint_{\Sigma} \overrightarrow{E} \cdot \overrightarrow{dS} = E_r 2\pi r l = \frac{Q}{\varepsilon_0}$$

$$\overrightarrow{E} = \frac{Q}{2\pi\varepsilon_0} \frac{l}{r} \overrightarrow{e}_r$$

•
$$U = V_1 - V_2 = \int_1^2 \overrightarrow{E} . \overrightarrow{dr} = \frac{Q}{2\pi\varepsilon_0 l} \int_1^2 \frac{\overrightarrow{e} . \overrightarrow{dr}}{r} = \frac{Q}{2\pi\varepsilon_0 l} \int_{R_1}^{R_2} \frac{dr}{r}$$

$$U = \frac{Q}{2\pi\varepsilon_0} l \ln \left(\frac{R_2}{R_1}\right) = \frac{Q}{C}$$

$$C = \frac{2\pi\varepsilon_0 l}{\ln\left(\frac{R_2}{R_1}\right)}$$

•
$$R_2$$
 est voisin de R_1 : $R_2 = R_1 + e$ avec $e \ll R_1, R_2$

$$R_2 = R_1 \left(1 + \frac{e}{R_1} \right) \Rightarrow \ln \left(\frac{R_2}{R_1} \right) \approx \frac{e}{R_1}$$

$$C \approx \frac{2\pi\varepsilon_0 l R_1}{e}$$

4.4 Condensateur sphérique

- le condensateur sphérique est constitué de deux sphères de rayons R_1 et R_2
- théorème de Gauss sur une sphère de rayon r compris entre R_1 et R_2

•
$$\iint_{\Sigma} \overrightarrow{E} \cdot \overrightarrow{dS} = E_r 4\pi r^2 = \frac{Q}{\varepsilon_0}$$

$$\overrightarrow{E} = \frac{Q}{4\pi\varepsilon_0 r^2} \overrightarrow{e}_r$$

•
$$U = V_1 - V_2 = \int_1^2 \frac{Q}{4\pi\varepsilon_0 r^2} \overrightarrow{e}_r . \overrightarrow{dr} = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

$$C = 4\pi\varepsilon_0 \frac{R_1 R_2}{R_2 - R_1}$$

4.5 Energie électrostatique \mathcal{E}_e d'u condensateur

- $d\mathcal{E}_e = -dW_e = -dq(V_{A2} V_{A1})$
- $d\mathcal{E}_e = udq = \frac{q}{C}dq$
- En intégrant entre 0 et Q

$$\mathcal{E}_e = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} Q.U = \frac{1}{2} CU^2$$

- pour un condensateur plan : U = e.E et $C = \varepsilon \frac{S}{e}$
- $\mathcal{E}_e = \frac{1}{2}E^2\varepsilon\tau$ avec $\tau = eS$

$$\mathcal{E}_e = \omega \tau \text{ et } \omega = \frac{1}{2} \varepsilon E^2$$

 ω : densité volumique d'énergie