Task 1 - Iris Flower Classfication

Import necessary libraries

```
In [83]: import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, accuracy_score
```

Load the Iris dataset

```
In [84]: url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.dat
    names = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class'
    df = pd.read_csv(url, names=names)
    df
```

Out[84]:

	sepal_length	sepal_width	petal_length	petal_width	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

Split the dataset into features (X) and target (y)

```
In [85]: x = df.drop('class', axis=1)
y = df['class']
x
```

Out[85]:

```
In [85]: x = df.drop('class', axis=1)
y = df['class']
x
```

Out[85]:

	sepal_length	sepal_width	petal_length	petal_width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

Split the data into training and testing sets

```
In [86]: X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, rando
In [87]: 
    scaler = StandardScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)
```

```
In [88]: k = 3
```

Train the classifier on the training data

```
In [89]: knn_classifier = KNeighborsClassifier(n_neighbors=k)
knn_classifier.fit(X_train, y_train)
```

```
Out[89]: KNeighborsClassifier
KNeighborsClassifier(n_neighbors=3)
```

Make predictions on the test data

```
In [90]: y_pred = knn_classifier.predict(X_test)
```

```
In [91]: accuracy = accuracy_score(y_test, y_pred)
    classification_rep = classification_report(y_test, y_pred)
```

```
In [92]: print(f"Accuracy: {accuracy}")
   print("Classification Report:\n", classification_rep)
```

Accuracy: 1.0

Classification Report:

precision recall f1-score support

```
In [92]: print(f"Accuracy: {accuracy}")
    print("Classification Report:\n", classification_rep)
```

Accuracy: 1.0 Classification Report:

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	19
Iris-versicolor	1.00	1.00	1.00	13
Iris-virginica	1.00	1.00	1.00	13
accuracy			1.00	45
macro avg	1.00	1.00	1.00	45
weighted avg	1.00	1.00	1.00	45

```
In [ ]:
```