IN- 43747 CAT-25

P-10

(NASA-CR-179961) NONLINEAR INFRARED GENERATION IN AIKALI METAL VAPORS: STEADY STATE SUSCEPTIBILITIES AND DYNAMIC BEHAVIOR. EFFECTIVE RELAXATION BATES AND PRELIMINARY RAMAN GAIN PREDICTIONS FOR THE CS SYSTEM N87-13498

Unclas G3/25 43640

Technical Progress Report to the National Aeronautics and Space Administration (NASA) Greenbelt, MD 20771

For the period: July 1, 1986 - December 31, 1986

Nonlinear Infrared Generation in Alkali Metal Vapors: Steady State Susceptibilities and Dynamic Behavior NAG 5-526

> Effective Relaxation Rates and Preliminary Raman Gain Predictions for the Cs System

> > from

Nabil M. Lawandy Division of Engineering Brown University Providence, RI 02912

Report prepared by:

Nabil M. Lawandy

Associate Profesor of

Engineering and Physics

Principal Investigator

Carl Cometta

Executive Officer

Division of Engineering

18 December 1986

Effective Rates for the Cs System Pumped by Doubled Alexandrite Radiation

Laser Level: |8S 1/2>

Resonance Level: $|3\rangle = |8P |1/2\rangle$

$$\begin{split} \frac{1}{T_1} &= \frac{1}{t_{8P8S}} \\ \frac{1}{T_2} &= \frac{1}{t_{8P7S} + t_{7S6P} + t_{6P6S}} + \frac{1}{t_{8P6S}} \\ \frac{1}{T_3} &= \left(t_{8S7P} + \frac{1}{1/t_{7P6S} + (t_{7P7S} + t_{7S6P} + t_{6P6S})^{-1}}\right)^{-1} + \frac{1}{t_{8S6P} + t_{6P6S}} \end{split}$$

Laser Level: |9S 1/2>

Resonance Level: |8P 1/2>

$$\begin{split} \frac{1}{T_1} &= \frac{1}{t_{9P9S}} \\ \frac{1}{T_2} &= \frac{1}{t_{9P6S}} + \frac{1}{t_{9P8S} + t_{8S6S}^{eff}} + \frac{1}{t_{9P7S} + t_{7S6P} + t_{6P6S}} \\ \frac{1}{t_{8S6S}^{eff}} &= \left(t_{8S7P} + \frac{1}{1/t_{7P6S} + (t_{7P7S} + t_{7S6P} + t_{6P6S})^{-1}}\right)^{-1} + \frac{1}{t_{8S6P} + t_{6P6S}} \\ \frac{1}{T_3} &= \frac{1}{t_{9S8P} + t_{8P6S}^{eff}} + \frac{1}{t_{9S7P} + t_{7P6S}^{eff}} + \frac{1}{t_{9S6P} + t_{6P6S}} \\ \frac{1}{t_{7P6S}^{eff}} &= \frac{1}{t_{7P6S}} + \frac{1}{t_{7P7S} + t_{7S6P} + t_{6P6S}} \\ \frac{1}{t_{8P6S}^{eff}} &= \frac{1}{t_{8P6S}} + \frac{1}{t_{8P7S} + t_{7S6P} + t_{6P6S}} + \frac{1}{t_{8P8S} + t_{8S6S}^{eff}} \end{split}$$

ENERGY LEVELS OF ATOMIC CESIUM

Pumped with a peak pulse height of 0.5MW in a 200µ diameter spot size.

Cesium Raman Transition: 6s to 8s

Resonance Level 8p

Pumped with a peak pulse height of 0.5MW in a 200µ diameter spot size.

Cesium Raman Transition: 6s to 9s

Resonance Level 9p