几何选讲-1

例 1. (伊朗引理)  $\triangle ABC$  内切圆  $\bigcirc I$  切 AC,AB 于 E,F , P,Q 分别为 AB,BC 中点,B 在 CI 上的投影为 N 。求证: P,N,Q 三点共线,F,N,E 三点共线。

例 2. (清宫定理)设 P,Q 为  $\triangle ABC$  外接圆上异于 A,B,C 的两点, P 点关于三边 BC,CA,AB 的对称点分别为 U,V,W , QU,QV,QW 分别与直线 BC,CA,AB 交于点 D,E,F 。求证: D,E,F 三点共线。



例 3. 等腰梯形 ABCD 中, AB = 3CD ,过 A 和 C 分别作其外接圆的切线,两者交于点 K 。求证:  $\triangle KDA$  是直角三角形。

例 4. (旁切圆的欧拉定理)设  $\triangle ABC$  的外心和点 A 所对的旁心分别为  $O,I_A$  ,  $\bigcirc I_A$  的半径为  $r_A$  。 求证:  $OI_A^2=R^2+2Rr_A$  。 由此得出  $r_A=R$  当且仅当  $OI_A=\sqrt{3}R$  。



例 5. (关于三角形旁切圆的彭赛列闭合定理)设  $\triangle ABC$  的外接圆和点 A 所对的旁切圆分别为  $\bigcirc O, \bigcirc I_A$ ,D, E, F 是  $\bigcirc O$  上的三个不同的点,满足 DE, DF 的延长线都与  $\bigcirc I_A$  相切。求证:线段 EF 也和  $\bigcirc I_A$  相切。

例 6. 设 P 是  $\triangle ABC$  外接圆上异于 A,B,C 的任意一点,过 P 作三边 BC,CA,AB 的垂线,垂足分别为 D,E,F , H 是  $\triangle ABC$  的垂心。求证:西姆松线 DEF 平分 PH 。



例 7. 在锐角  $\triangle ABC$  的 AB, AC 边上分别取点 E, F 使得  $BE \perp CF$  ,然后在  $\triangle ABC$  的内部 取点 X 使得  $\angle XBC = \angle EBA$ ,  $\angle XCB = \angle FCA$  。求证:  $\angle EXF = \frac{\pi}{2} - A$  。

例 8. 已知菱形 ABCD,作平行四边形 APQC,使得 B 在其内部,且 AP 与菱形的边长相等。求证: B 是  $\triangle DPQ$  的垂心。

