BIOKEY

Brandon Kucera Tony Wu Connor Giles Sankalp Hariharan Josh Weinstein

Advisor: Dr. Jagath Samarabandu

Cybersecurity is a growing problem

Authentication plays a key role in security

General trend toward dynamic authentication in the industry because it is harder to imitate behaviour than it is to get a password.

Keystroke dynamics have academic support, but have not been implemented commercially because it has historically been computationally expensive.

Implemented Functionality

BioKey will constantly monitor the behaviour of the user for suspicious activity

Run Locally

Application runs locally in the background of machines

Detect Suspicious Behaviour

Checks keystroke input against the model to detect suspicious behaviour

Lock Out Imposters

If suspicious behaviour is detected, BioKey locks the machine

Online and Offline Reauthentication

Users can reauthenticate using either SMS or Google Authenticator

Remote Locking

Admins are able lock and unlock machines remotely through the BioKey companion web application

Generating Gaussian Profiles

Training Neural Nets

Neural Net Architecture

Model Prediction Results

We evaluated our model by comparing model prediction results to actual users

On average the model predicted a value of **96.65% for actual users** and **26.54% for imposters**

Looking at all imposter results is a tough bar. The model needs some time to determine when an imposter has started typing. When a grace period was added, the model performed significantly better.

With a **buffer period of 30 and 100 keys**, average imposter scores dropped to **17.95% and 10.80%**

Simulated Real World Results

We simulated a series of 200 user keystrokes followed by 200 imposter keystrokes and tracked results by session.

98.8% of imposters were locked out in an average of **47 keystrokes**.

9% of users are locked out in an average of 120 keystrokes. This translates to approximately **2200** keystrokes on average **between improper lockouts.**

Percentage of Users Locked Out by Number of Keys Typed

High-Level Architecture

Admin

We leveraged many technologies

ON THE WEB

We leveraged many technologies

PROCEDURAL

Challenges Surmounted

BioKey's ambition posed many obstacles

Obscurity of the Field

No standard or best practice for keystroke CA so we had to get creative to improve

Sparse Data

Recurrent neural networks struggle to converge with highly sparse data

Improving Upon Existing Results

Developed a novel algorithm as existing methods did not show reasonable results

Large Amounts of Data

Processing efficiency was a constant consideration

High Security Expectations

We had to consider many possible ways in which BioKey could be circumvented

Maintaining Client-Server Agreement Especially considering network disconnects

LIVE DEMO

Resources

- 1) https://www.reuters.com/article/us-cybersecurity-mcafee-csis/cyber-crime-costs-global-economy-445-billion-a-year-report-idUSKBN0EK0SV20140609
- 2) http://blogs.wsj.com/venturecapital/2016/02/17/the-daily-startup-increased-spending-in-cybersecurity-drives-funding-surge/
- 3) 2016 Symantec Internet Security Threat Report