Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «<u>Информатика и системы управления»</u>

КАФЕДРА «<u>Программное обеспечение ЭВМ и информационные</u> технологии»

Лабораторная работа № 6

Тема <u>Построение и программная реализация алгоритмов численного</u> <u>дифференцирования.</u>

Студент Варламова Е.А.
Группа ИУ7-41Б
Оценка (баллы)
Преподаватель Градов В.М.

Цель работы. Получение навыков построения алгоритма вычисления производных от сеточных функций.

1. Исходные данные

Задана табличная (сеточная) функция. Имеется информация, что закономерность, представленная этой таблицей, может быть описана формулой:

$$y = \frac{a_0 x}{a_1 + a_2 x},$$

параметры функции неизвестны.

X	у	1	2	3	4	5
1	0.571					
2	0.889					
3	1.091					
4	1.231					
5	1.333					
6	1.412					

Задание:

Вычислить первые разностные производные от функции и занести их в столбцы (1)-(4) таблицы:

- 1 односторонняя разностная производная.
- 2 центральная разностная производная.
- 3 2-я формула Рунге с использованием односторонней производной.
- 4 введены выравнивающие переменные.
- 5 вторая разностная производная.

2. Код программы

```
def left(y, h, i):
   return (y[i] - y[i - 1]) / h \text{ if } i > 0 \text{ else "-"}
def right(y, h, i):
   return (y[i + 1] - y[i]) / h if i < len(y) - 1 else "-"
def center(y, h, i):
   return (y[i + 1] - y[i - 1]) / 2 / h if i < len(y) - 1 and i > 0 else "-"
def left_double(y, h, i):
   return (y[i] - y[i - 2]) / 2 / h if i > 1 else "-"
def runge_left(y, h, i):
   if i < 2:
       return "-"
   f1 = left(y, h, i)
   f2 = left_double(y, h, i)
   return f1 + (f1 - f2)
def align_vars_right(y, h, i):
   if i > len(y) - 2:
       return "-"
   der = (1 / y[i + 1] - 1 / y[i]) / (1 / x[i + 1] - 1 / x[i])
   return der * y[i] * y[i] / x[i] / x[i]
def second_der(y, h, i):
   return (y[i-1]-2*y[i]+y[i+1]) / (h*h) if i < len(y)-1 and i > i
0 else "-"
x = [1, 2, 3, 4, 5, 6]
y = [0.571, 0.889, 1.091, 1.231, 1.333, 1.412]
methods = [left, center, runge_left, align_vars_right, second_der]
print("x----x----x----x")
print("| x | y | left | center | runge | align | second |")
print("x----x----x----x")
for i in range(len(x)):
   print("|\{:9.3f\}|".format(x[i]), end = "")
   print("{:9.3f}|".format(y[i]), end = "")
   for func in methods:
       res = func(y, 1, i)
       if res == '-':
          print(" - | ", end = "")
       else:
          print("{:9.4f}|".format(res), end = "")
   print()
print("x----x----x----x----x")
```

3. Результат работы программы

Результат работы программы:

====== RESTART:	/Users/kate/Desktop/comp_algs/labs/lab_06/src/lab_06.py

Ī	x	у	left	center	runge		second
X	1.000	0.571			x 	x- 0.4085	x -
- İ	2.000	0.889	0.3180	0.2600	- i	0.2469	-0.1160
- İ	3.000	1.091	0.2020	0.1710	0.1440	0.1654	-0.0620
i	4.000	1.231	0.1400	0.1210	0.1090	0.1177	-0.0380
i	5.000	1.333	0.1020	0.0905	0.0830	0.0895	-0.0230
i	6.000	1.412	0.0790	- i	0.0675	- i	– i
x	X	X-	x-	X-	x	X-	x

Комментарии по поводу использованных формул и их точности:

1. Левая разностная производная (столбец left)

Формула:

$$y'_{n} = \frac{y_{n} - y_{n-1}}{h} + O(h)$$

Точность: первый порядок точности относительно шага h.

Комментарий: получается из разложения функции в ряд Тейлора

2. Центральная разностная производная (столбец center)

Формула:

$$y'_n = \frac{y_{n+1} - y_{n-1}}{2h} + O(h^2)$$

Точность: второй порядок точности относительно шага

<u>Комментарий:</u> получается из разности двух разложениий функции в ряд Тейлора:

$$y_{n+1} = y_n + \frac{h}{1!} y'_n + \frac{h^2}{2!} y_n'' + \frac{h^3}{3!} y_n''' + \frac{h^4}{4!} y_n^{IV} + \dots$$

$$y_{n-1} = y_n - \frac{h}{1!} y'_n + \frac{h^2}{2!} y_n'' - \frac{h^3}{3!} y_n''' + \frac{h^4}{4!} y_n^{IV} - \dots$$

3. 2-я формула Рунге с использованием односторонней производной (столбеи runge)

Формула:

$$\Omega = \Phi(h) + \frac{\Phi(h) - \Phi(mh)}{m^p - 1} + O(h^{p+1})$$

<u>Точность:</u> формула Рунге позволяет за счет расчета на двух сетках с отличающимися шагами получить решение с более высокой точностью, чем заявленная теоретическая точность используемой формулы, соотвественно, если точность $\Phi = p$, то точность формулы будет p + 1.

<u>Комментарий:</u> так как была использована формула Рунге для левой разностной производной, то в формуле m=2 (удвоенный шаг), а p=1, поэтому:

$$res = left(h) + left(h) - left(2*h)$$

4. Введение выравнивающих переменных (столбец align)

Так как в условии сказано, что сеточная функция может быть описана следующей зависимостью:

$$y = \frac{a_0 x}{a_1 + a_2 x},$$

то целесообразно ввести такие выравнивающие переменные:

$$\eta(y) = 1 / y$$
 $\xi(x) = 1 / x$

Действительно, тогда указанная зависимость принимает вид:

$$\eta(\xi) = \xi \frac{a1}{a0} + \frac{a2}{a0}$$

А смысл выравнивающих переменных как раз и состоит в том, чтобы исходная кривая была преобразована в прямую линию, производная от которой вычисляется точно по самым простым формулам.

Для возврата к исходным переменным используется формула:

$$y'_{x} = y'_{\eta} \eta'_{\xi} \xi'_{x} = \frac{\eta'_{\xi} \xi'_{x}}{\eta'_{y}}$$

Окончательно, формула принимает вид (используется правая разностная производная):

5. Вторая разностная производная (столбец second)

Формула:

$$y_n'' = \frac{y_{n-1} - 2y_n + y_{n+1}}{h^2} + O(h^2)$$

Точность: второй порядок точности относительно шага

Комментарий: получается из разложения функции в ряд Тейлора

4. Ответы на вопросы

1. Получить формулу порядка точности $O(h^2)$ для первой разностной производной y'_N в крайнем правом узле x_N .

$$\begin{cases}
f_{n-1} = f_n - \frac{h}{e!} f_n' + \frac{h^2}{a!} g_n'' - . & (1) \\
f_{n-2} = f_n - \frac{2h}{e!} g_n' + \frac{(2h)^2}{a!} g_n' - . & (2) \\
44(1) - (2) = 7 \quad 4g_{n-1} - g_{n-2} = 3g_n - 2hg_n' + O(h^2)
\end{cases}$$

$$f_n' = -\frac{4g_{n-1} + g_{n-2} + 3g_n}{2h}$$

2. Получить формулу порядка точности $O(h^2)$ для второй разностной производной у" $_0$ в крайнем левом узле x_0 .

3. Используя 2-ую формулу Рунге, дать вывод выражения (9) из Лекции №7 для первой производной у'₀ в левом крайнем узле

$$\begin{array}{lll}
SL &= 9^{n}(h) + 9^{n}(h) - 9^{n}(mh) \\
P(h) &= \frac{y_{1} - y_{0}}{h} \\
P(h) &= \frac{y_{2} - y_{0}}{h} \\
SL &= \frac{y_{1} - y_{0}}{h} + \frac{y_{1} - y_{0}}{h} + \frac{y_{2} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + \frac{y_{1} - y_{0}}{h} + \frac{y_{2} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + \frac{y_{1} - y_{0}}{h} + \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{1} - y_{0}}{h} + O(h^{2}) = 0 \\
SL &= \frac{y_{$$

4. Любым способом из Лекций №7, 8 получить формулу порядка точности $O(h^3)$ для первой разностной производной у' $_0$ в крайнем левом узле x_0 .