Image Formation: Pinhole Model, Binocular Stereo and Thin Lens Model

Lecture by Margrit Betke, CS 585, April 23, 2020

Pinhole Model: View from Top

Pinhole Model: View from Top

Similar Triangles

<u>Special Considerations:</u>

right image

plane

left image

plane

In a Monocular System: Coordinate System Origin = Center of Projection (CoP) = Pinhole

In a Monocular System: Coordinate System Origin = Center of Projection (CoP) = Pinhole

In a Binocular System: Coordinate System Origin in the middle between CoPs

In a Monocular System: Coordinate System Origin = Center of Projection (CoP) = Pinhole

In a Binocular System: Coordinate System Origin in the middle between CoPs

3D Binocular Stereo scene point scene light rays from scene to depth depth image planes CoP_{right} **CoP**_{left} left image right image plane plane

Projection Equations:

$$x_{left}/f = (X+b/2)/Z$$

 $x_{right}/f = (X-b/2)/Z$

Projection Equations:

$$x_{left}/f = (X+b/2)/Z$$

 $x_{right}/f = (X-b/2)/Z$

Projection Equations:

$$x_{left}/f = (X+b/2)/Z$$

 $x_{right}/f = (X-b/2)/Z$

Subtract the 2nd equation from the 1st equation:

$$(\mathbf{x}_{left} - \mathbf{x}_{right})/f = (X+b/2-X+b/2))/Z$$

which results in:

$$(x_{left} - x_{right})/f = b/Z$$
 or:

$$Z = bf/(x_{left} - x_{right})$$

Increasing Depth

Summary of Concepts: Binocular Stereo

- Considered only special case: Parallel optical axes, image planes aligned, same focal length
- Combining perspective projection equations for both cameras yields formula $Z = bf/\delta$
- Disparity changes with changes in b or Z

Back to the Single Camera Pinhole Model

Projection Equation:

$$X/Z = x/f$$

Placing Image Plane in Front of Pinhole

Projection Equation:

$$X/Z = x/f$$

Placing Image Plane in Front of Pinhole

Projection Equation:

$$X/Z = x/f$$

This is done for mathematical convenience: Image x and scene X are measured in the same direction on the x-axis (a positive x means a positive X). The focal length is often set to f=1.

Back to the Original Single Camera Pinhole Model

Projection Equation:

$$X/Z = x/f$$

Let's rotate the camera counterclockwise:

Vertical Dimension Included:

Vertical Dimension Included:

Field of View

Field of View

Field of View

Field of View α

Field of View of Lenses

Field of View of Lenses

"Rule of thumb:"

"Normal" lens: 25° - 40°

Wide-angle lens: $> 40^{\circ}$ Use perspective projection (f << image size)

Telephoto lens: : < 25° Use orthographic projection (i.e., rays parallel to optical axis)

Ideal Lens: Same projection as pinhole camera but gathers more light

- 1) Ray through center of lens is not reflected
- 2) Parallel ray intersects optical axis at F from CoP
- 3) Spherical shape of lens -> well-focused images only at particular distance
- 4) Well-focused system = all rays from scene point H reach same image point h as central ray

Ideal Lens: Same projection as pinhole camera but gathers more light

z = principal distance

Z = depth

F = Focal point

f = focal length

Interpretation of the Lens Equation: Depth of Focus

Depth of focus = range of image plane placement so that objects are focused sufficiently well Blur circle must be < resolution of the image device

Interpretation of the Lens Equation: Depth of Focus

Depth of focus = range of image plane placement so that objects are focused sufficiently well Blur circle must be < resolution of the image device

Interpretation of the Lens Equation: Depth of Field

Depth of field = range of distances over which objects are focused sufficiently well

Interpretation of the Lens Equation: Aperture of Lens

Large Aperture:

- \Rightarrow Large blur circle
- \Rightarrow Small depth of field

Small Aperture:

- ⇒ Small blur circle
- ⇒ Large depth of field

Summary of Concepts: Ideal Thin Lens

- Field of View
- Imaging rules for lenses
- Focal Point
- Lens Equation
- Depth of Focus
- Depth of Field
- Aperture

