

Time Series: Autocorrelation

Lecture 18

STA 371G

Predicting beer production over time

Goal: Predict beer production in the US (in millions of gallons)

An autoregressive model for beer production

If we believe last month's beer figures are a good prediction for next month's beer figures, we might choose an AR(1) model:

$$y_t = \beta_0 + \beta_1 y_{t-1} + \epsilon_t$$

This means that the next month's beer figures depend only on the current month's beer figures, plus random noise.

Let's look at whether this seems a reasonable assumption

```
# Convert the data into a time series object
beer <- ts(beer.df$beer, start=c(1970,7), frequency=12)
# Create a lag-1 version
beerL1 <- lag(beer, k=-1)
#combine them in a data frame
beer_all <- cbind(beer=beer,beerL1=beerL1)
# Frequency: # of data points per year
plot(beer~beerL1,data=beer_all,xlab = "last month\'s beer production",ylab="this duction",pch=19)</pre>
```


last month's beer production

```
model <- lm(beer ~ beerL1, data=beer all)</pre>
summary(model)
Call:
lm(formula = beer ~ beerL1, data = beer all)
Residuals:
    Min 10 Median 30
                                  Max
-2.6018 -0.8428 -0.1902 0.8539 4.5109
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.25720 0.80557 2.802 0.00618 **
beerL1 0.82136 0.06417 12.800 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.183 on 93 degrees of freedom
  (2 observations deleted due to missingness)
Multiple R-squared: 0.6379.Adjusted R-squared: 0.634
F-statistic: 163.8 on 1 and 93 DF, p-value: < 2.2e-16
```

Last month's beer production is statistically significant. The \mathbb{R}^2 is good, but not amazing...

Hmmm... there seems to be more of a pattern here than in the oil price data from last week!

plot(beer)

Types of temporal variation

There are several types of temporal variation we might want to predict!

Cyclic variation is *unpredictable* up and down movement, of the sort we saw last week.

- Length of cycle may vary
- Often caused by multiple interacting factors.
- Example: Stock prices vary due to recessions, depressions and recoveries.
- Example: Sales may be affected by fashions.

Types of temporal variation

There are several types of temporal variation we might want to predict!

Cyclic variation is *unpredictable* up and down movement, of the sort we saw last week.

- Length of cycle may vary
- Often caused by multiple interacting factors.
- Example: Stock prices vary due to recessions, depressions and recoveries.
- Example: Sales may be affected by fashions.

If we don't know those factors, often the best we can do is predict based on the last time point... i.e. an autoregressive model.

Trend

A trend is a persistent, overall, upwards or downwards pattern in the data.

- Example: Effects due to population growth (e.g. demand on health services).
- Example: "Moore's Law" processor speeds double every two years.
- Could be linear or non-linear the trend may continue at a constant rate, or accelerate, or level off.

We definitely saw a trend in the beer production numbers!

Seasonal

- Seasonal variation is a regular pattern of up and down fluctuation.
- The length of the cycle is the same (e.g. yearly, monthly)
- Caused by effects such as weather, holidays.
- It is predictable.
- Example: Toy sales increase in December.
- Example: Ice cream sales affected by the weather.

There was clear seasonality in the beer production numbers!

Modeling a trend

Let's first deal with the upward trend. We can try predicting production from time using a simple linear regression:

```
summary(lm(beer ~ month count, data=beer.df))
Call:
lm(formula = beer ~ month count, data = beer.df)
Residuals:
    Min 10 Median 30
                                       Max
-2.87729 -1.48470 0.00505 1.31704 2.80344
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.576746  0.334920  31.580  < 2e-16 ***
month count 0.038784 0.005996 6.468 4.42e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.628 on 94 degrees of freedom
Multiple R-squared: 0.308, Adjusted R-squared: 0.3006
F-statistic: 41.84 on 1 and 94 DF, p-value: 4.415e-09
```

Modeling a trend

Let's first deal with the upward trend. We can try predicting production from time using a simple linear regression:

```
summary(lm(beer ~ month count, data=beer.df))
Call:
lm(formula = beer ~ month count, data = beer.df)
Residuals:
    Min 10 Median 30
                                       Max
-2.87729 -1.48470 0.00505 1.31704 2.80344
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.576746  0.334920  31.580  < 2e-16 ***
month count 0.038784 0.005996 6.468 4.42e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.628 on 94 degrees of freedom
Multiple R-squared: 0.308, Adjusted R-squared: 0.3006
F-statistic: 41.84 on 1 and 94 DF, p-value: 4.415e-09
```

9/15

Seasonal variation

How can we deal with the seasonal effect?

Seasonal variation

How can we deal with the seasonal effect?

The simplest solution is to treat month as a categorical variable!

- This means that we assume there is some commonality between September 1970, September 1971, September 1972...
- More general, we might want to treat quarters or days of the weeks as categorical variables.

```
Call:
lm(formula = beer ~ month count + month, data = beer.df)
Residuals:
     Min
              10
                 Median
                               30
                                       Max
-2.23574 -0.30407 -0.01724 0.40160 1.65361
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                         0.255140 44.926 < 2e-16 ***
(Intercept)
              11.462493
month count
               0.037887
                         0.002351 16.114 < 2e-16 ***
monthAugust
             0.400097
                         0.317257 1.261 0.210801
monthDecember -2.752326
                         0.316839 -8.687 2.76e-13 ***
monthFebruary -2.686726
                         0.316734 -8.483 7.08e-13 ***
monthJanuary -2.159214
                         0.316778 -6.816 1.39e-09 ***
monthJuly
              1.164859
                         0.317405 3.670 0.000428 ***
monthJune
               1.227101
                         0.316734 3.874 0.000213 ***
monthMarch
            -0.440613
                         0.316708 -1.391 0.167874
monthMay
             0.642738
                         0.316708 2.029 0.045618 *
monthNovember -3.026064
                         0.316917
                                   -9.548 5.23e-15 ***
monthOctober -1.544927
                         0.317013
                                   -4.873 5.20e-06 ***
monthSeptember -0.932040
                         0.317127 -2.939 0.004263 **
Signif. codes:
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6334 on 83 degrees of freedom
Multiple R-squared: 0.9075, Adjusted R-squared: 0.8941
F-statistic: 67.86 on 12 and 83 DF. p-value: < 2.2e-16
```


- Now that we've modeled seasonality, we've got an R^2 of 0.9075 and an adjusted R^2 of 0.8941... pretty good!
- We've modeled the trend and the seasonality...

- Now that we've modeled seasonality, we've got an R^2 of 0.9075 and an adjusted R^2 of 0.8941... pretty good!
- We've modeled the trend and the seasonality...
- ... maybe there's also a cyclic effect! Let's take a look at the residuals.

```
# Convert the residuals into a time series object

beer_res <- ts(model$residuals, start=c(1970,7),
quency=12)
    plot(beer_res)</pre>
```


Let's try running an autoregressive model on the residuals

```
Call:
lm(formula = beer res ~ beer res L1, data = res all)
Residuals:
    Min
            10 Median 30
                                       Max
-2.25571 -0.34325 -0.00875 0.35091 1.86982
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.002829  0.058897 -0.048  0.9618
beer res L1 0.273770 0.099983 2.738 0.0074 **
Signif. codes: 0 '*** 0.001 '** 0.01 '*' 0.05 '.' 0,1 ' ' 1
Residual standard error: 0.574 on 93 degrees of freedom
  (2 observations deleted due to missingness)
Multiple R-squared: 0.0746, Adjusted R-squared: 0.06465
F-statistic: 7.498 on 1 and 93 DF, p-value: 0.007404
```

Statistically significant... but not really practically significant

Series beer_res

Autocorrelation function agrees... fairly low autocorrelation at lag one.