Arkusz I 2022 - Klucz rozwiązań

Zadanie 1.1 (0-1) Test

Poprawna odpowiedź: F,F,P,F

Wymagania ogólne	Wymagania szczegółowe
III. Rozwiązywanie problemów i podejmowanie decyzji z wykorzystaniem komputera, z zastosowaniem podejścia algorytmicznego.	Zdający analizuje i rozwiązuje sytuacje problemowe z różnych dziedzin (5.1), Zdający stosuje podejście algorytmiczne do rozwiązywania problemu (5.2), stosuje rekurencję w prostych sytuacjach problemowych (5.9), opisuje własności algorytmów na podstawie ich analizy (16)

Zadanie 1.2 (0-1)

Poprawna odpowiedź: P, F, F, P

Wymagania ogólne	Wymagania szczegółowe
V. Ocena zagrożeń i ograniczeń, docenianie społecznych aspektów rozwoju i zastosowań informatyki.	Uczeń Komunikuje się za pomocą komputera i technologii informacyjno-komunikacyjnych. (3) Uczeń wykorzystuje komputer i technologie informacyjno-komunikacyjne do rozwijania swoich zainteresowań, opisuje zastosowania informatyki, ocenia zagrożenia i ograniczenia (7), stosuje normy etyczne i prawne związane z ochroną danych oraz informacji w komputerze i sieciach komputerowych. (7.3)

Zadanie 1.3. (0–1)

Poprawna odpowiedź: F, P, F, F

Wymagania ogólne	Wymagania szczególowe	
III. Rozwiązywanie problemów i podejmowanie decyzji z wykorzystaniem komputera, z zastosowaniem podejścia algorytmicznego.	Zdający analizuje i rozwiązuje sytuacje problemowe z różnych dziedzin (5.1), Zdający stosuje podejście algorytmiczne do rozwiązywania problemu (5.2), dobiera odpowiednie struktury danych do realizacji algorytmu, w tym struktury dynamiczne (14)	

Zadanie 1.4. (0–1)

Poprawna odpowiedź: F, F, F, P

Wymagania ogólne	Wymagania szczegółowe	
I. Bezpieczne posługiwanie się komputerem i jego oprogramowaniem, wykorzystanie sieci komputerowej; komunikowanie się za pomocą komputera i technologii informacyjnokomunikacyjnych.	Zdający przedstawia sposoby reprezentowania różnych form informacji w komputerze: liczb, znaków, obrazów, animacji, dźwięków (1.1, A 1.1).	

Zadanie 1.5. (0–1)

Poprawna odpowiedź: P, P, P, P.

Wymagania ogólne	Wymagania szczegółowe	
II. Wyszukiwanie, gromadzenie i przetwarzanie informacji z różnych źródeł [].	Zdający wyszukuje, gromadzi, selekcjonuje, przetwarza informacje [] (2.).	
	Stosuje metody wyszukiwania i przetwarzania informacji w relacyjnej bazie danych (2.2)	

Zadanie 2. (0-5) Liczby dwupierwsze

Wymagania ogólne	Wymagania szczegółowe
III. Rozwiązywanie problemów i podejmowanie decyzji z wykorzystaniem komputera, stosowanie podejścia algorytmicznego.	Rozwiązywanie problemów i podejmowanie decyzji z wykorzystaniem komputera, stosowanie podejścia algorytmicznego. (5, A 4) Zdający analizuje, modeluje i rozwiązuje sytuacje problemowe z różnych dziedzin (5.1, A 4.1), stosuje algorytmiczne podejście do rozwiązywania problemu (5.2, A 4.2), dobiera efektywne algorytm do rozwiązania sytuacji problemowej i zapisuje go w wybranej notacji (5.4, A 4.4)

Zadanie 2.1. (0-1)

p	q	\overline{pq}
61	67	6671
83	19	8139
7	71	771

Punktacja:

1 pkt – poprawnie wypełniona tabela 0 pkt – w pozostałych przypadkach

Zadanie 2.2. (0–2)

C++:

```
n = 100*(dwucyfrowe[j]/10) + 10*jednocyfrowe[i] +
(dwucyfrowe[j]%10);
                cout << n << endl;</pre>
           }
     }
     return 0;
}
Python:
jednocyfrowe = [2, 3, 5, 7]
dwucyfrowe = [11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97]
for p in jednocyfrowe:
     for q in dwucyfrowe:
          n = 100*(q//10) + 10*p + (q%10)
          print(n)
Lista kroków:
Krok 1. jednocyfrowe := [2, 3, 5, 7]
Krok 2. dwucyfrowe := [11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
Krok 3. Dla wszystkich liczb p w tablicy jednocyfrowe wykonuj Kroki 4-6
       Krok 4. Dla wszystkich liczb q w tablicy dwucyfrowe wykonuj Kroki 5-6
              Krok 5. n := n = 100*(q \text{ div } 10) + 10*p + (q \text{ mod } 10)
              Krok 6. Wypisz n
Uwaga. Uczeń zamiast wypisywać liczby pierwsze może je wygenerować algorytmem, np. sitem
Eratostenesa, lub przebiec pętlami po wszystkich liczbach jednocyfrowych i dwucyfrowych,
sprawdzać, czy liczby są pierwsze i dopiero wtedy generować liczbę dwupierwszą.
Punktacja:
2 pkt – rozwiązanie w pełni poprawne
1 pkt – za propozycje algorytmu wypisującego wszystkie takie liczby, lecz z powtórzeniami; lub za
poprawny algorytm, lecz z usterką w tablicach z liczbami pierwszymi; lub za poprawny algorytm, lecz
z usterką w algorytmie wyznaczającym kolejne liczby pierwsze
0 pkt – w pozostałych przypadkach
Zadanie 2.3. (0–2)
C++:
#include <iostream>
```

void Rozloz (unsigned int n, unsigned int & p, unsigned int & q)

using namespace std;

int k = 1, r;

```
p = 0;
    q = 0;
    while (n > 0)
        r = n%10;
        p += r*k;
        n = n/10;
        r = n%10;
        q += r*k;
        n = n/10;
        k *= 10;
    }
}
bool CzyPierwsza(unsigned int n)
    int d = 2;
    if(n == 1)
        return false;
    if(n == 2 | | n == 3)
        return true;
    while (d*d \le n)
        if(n % d == 0)
             return false;
        else
             d++;
    return true;
}
int main()
    unsigned int n, p, q;
    cin >> n;
    Rozloz(n, p, q);
    if(CzyPierwsza(p) && CzyPierwsza(q))
        cout << "TAK" << endl;</pre>
    else
        cout << "NIE" << endl;</pre>
    return 0;
}
Python:
def Rozloz(n):
    k = 1
```

```
p = q = 0
     while n > 0:
         r = n%10
          p += r*k
         n = n//10
          r = n%10
          q += r*k
          n = n//10
          k *= 10
     return p, q
def CzyPierwsza(n):
     d = 2
     if n==1:
          return False
     if n==2 or n==3:
          return True
     while d*d<=n:</pre>
          if n%d == 0:
               return False
          else:
              d += 1
     return True
n = int(input("Podaj n: "))
p, q = Rozloz(n)
if CzyPierwsza(p) and CzyPierwsza(q):
    print("TAK")
else:
     print("NIE")
Lista kroków:
Krok 1. k := 0, p := 0, q := 0
Krok 2. Dopóki n > 0 wykonuj Kroki 3-9:
      Krok 3. r := n mod 10
      Krok 4. p := p + r*k
      Krok 5. n := n div 10
      Krok 6. r := n mod 10
      Krok 7. q := q + r * k
      Krok 8. n := n div 10
      Krok 9. k := k*10
Krok 10. d := 2
Krok 11. Jeżeli p = 1 lub q = 1, to wypisz NIE i zakończ algorytm
Krok 12. Jeżeli p = 2 lub p = 3 to idź do Kroku 17
Krok 13. Dopóki d*d <= p wykonuj Kroki 14-15
```

Krok 14. Jeżeli p mod d = 0, to wypisz NIE i zakończ algorytm **Krok 15.** d := d + 1

Krok 16. d := 2

Krok 17. Jeżeli q = 2 lub q = 3 to wypisz TAK i zakończ algorytm

Krok 18. Dopóki d*d <= q wykonuj Kroki 19-20

Krok 19. Jeżeli q mod d = 0, to wypisz NIE i zakończ algorytm

Krok 20. d := d + 1

Krok 21. Wypisz TAK i zakończ algorytm

Punktacja:

2 pkt – rozwiązanie w pełni poprawne

1 pkt – za poprawny rozkład n na p i q oraz niepoprawne sprawdzenie pierwszości p lub q (lub jego brak); lub za usterkę w rozkładzie n na p i q (lub jego brak) oraz poprawne sprawdzenie pierwszości p i q

0 pkt – w pozostałych przypadkach

Zadanie 3. (0-5) FlipSort

Wymagania ogólne	Wymagania szczególowe	
III. Rozwiązywanie problemów i podejmowanie decyzji z wykorzystaniem komputera, stosowanie podejścia algorytmicznego.	 Rozwiązywanie problemów i podejmowanie decyzji z wykorzystaniem komputera, stosowanie podejścia algorytmicznego. Zdający: analizuje, modeluje i rozwiązuje sytuacje problemowe z różnych dziedzin; stosuje algorytmiczne podejście do rozwiązywania problemu; dobiera efektywne algorytm do rozwiązania sytuacji problemowej i zapisuje go w wybranej notacji; 	

Nr pytania	Oczekiwana odpowiedź			Maksymalna punktacja	
	Za podanie pełnej poprawnej odpowiedzi – 1 punkt. Odpowiedź:				
	tab	flip(a,b)	Tablica po wykonaniu		
3.1			operacji flip	1	
	[1,4,8,3,8,2,9]	flip(2,6)	[1,2,8,3,8,4,9]		
	[1,2,7,6,3,9,0]	flip(3,5)	[1,2,3,6,7,9,0]		
	[1,2,3,7,9,4,5]	flip(4,6)	[1,2,3,4,9,7,5]		
	Za podanie pełnej poprawnej odpowiedzi: 1 punkt.				
	Odpowiedź:				
3.2	Tablica tab		Sekwencja operacji flip] 1	
_	[2, 3, 1, 7, 5]		flip(1,3), flip(2,3), flip(4,5)		
	[4, 7, 1, 2, 3]		flip(1,3), flip(2,4), flip(3,5),		
			flip(4,5)		5
3.3	Za podanie pełnej poprawnej odpowiedzi: 1 punkt. Odpowiedź: n-1			1	
	Za podanie poprawnego algorytmu: 2 punkty. W tym 1 punkt za poprawną implementację znajdowania wartości minimalnej w podanym zakresie tablicy.				
3.4	Przykładowe rozwiązanie:		2		
	<pre>funkcja szukajMin(n, tab, ind): min := tab[ind] minInd := ind od i := ind do n, wykonuj:</pre>				