

SPMS23019 – Incorporating Gale-Berlekamp Switch Game in Image Steganography

Presented by Le Yanzhi Supervised by Asst Prof Kiah Han Mao

Introduction

Image Steganography

- The process of hiding information (usually a string) within images.
- The least significant bit (LSB) in each pixel value is altered such that it matches the parity of bits in the string.
 - LSB Replacement: Replace LSB with corresponding parity of the string.
 - LSB Matching: Randomly add or subtract 1 from pixel value if parity does not match.

Example: Embed bit value 1 into pixel (0x94)

/^J + /		U	U	_ +	U	_ +	U	U	
LSB Matching									
Case add 1:									
	1	0	0	1	0	1	0	1	
	1 —	_	-	1 —	•	ı —	•	_	

0 0 1 0 1 0 1

LSB Replacement

Case subtract 1:

1 0 0 1 0 0

Gale-Berlekamp Switch Game

- Given a matrix of '0's and '1's, each row and column are controlled by a switch.
- Turning on the switch ('0' \rightarrow '1') toggles the parity of the bits across the corresponding row or column.
- Goal is to fine the combination of toggled switches that minimize the number of '1's within the matrix (excluding switches).

Number of '1's reduced from 5 to 1

Methodology

Cover Image

LSB Matrix (partial)

1	0	0	1
1	1	0	0
1	1	1	1
0	1	1	0

Information to be embedded 'Y' – ASCII 0101 1001

0	1	0	
1	1	0	
0	1		

With Optimization

- Matrix containing information to be embedded is XORed with LSB Matrix to identify mismatch in the form of '1'.
- 2. Gale-Berlekamp Swich Game is applied to minimize:
 - number of '1's within the matrix bordered in red, and
 - number of changes to parity of switches.
- 3. The remaining '1's within the matrix bordered in red as well as changes to the parity of the switches are the bit changes to the cover image.
- 4. Information can be extracted from the resulting images by turning off all the switches $('1' \rightarrow '0')$.

All switches are initially turned off, regardless of whether its initial value is '0' or '1'

Without Optimization

_				
	1	0	0	1
	1	0	1	0
	1	1	1	0
	0	0	1	0

Number of bit changes = 4

'1' signifies mismatch in parity of bit between cover image and information

Final state of switch is independent of its initial value

- '0' turned off
- '1' turned on

Findings

- Random bit sequences of various length are generated and tested on greyscale images.
- On average, optimization reduces the number of bit changes by 26%.
- However, as length increases, time taken to solve the linear optimization problem increased exponentially.

Length of information (bits)	Without Optimization	With Optimization	Time Taken (s)
81 (9 × 9 matrix)	39	27	0.313
409 (≈ 20 × 20 matrix)	206	153	57.5
819 (≈ 28 × 28 matrix)	404	308	5292

Conclusion

- Incorporating Gale-Berlekamp Switch Game leads to lesser bit changes to images during Image Steganography.
- Resulting images are less detectable by steganalysis tools and thus more secure.
- However, the high time complexity of solving linear optimization problems suggest that this methodology may not be well-suited for very large data sets.