

Background on the Apollo Guidance Computer (AGC)

Background of the AGC

- MIT Instrumentation Laboratory (later named Draper Labs)
- 16 bit wordlength, 1 parity bit
- Block 1 was used for unmanned flights in orbit & Block 2 went to the moon
 - Same architecture
 - Differently sized memory
 - More instructions in Block 2
 - Both used core rope memory
- AGC was one of the 1st to use ICs.
 - Block 1 used 4100 single 3-input NOR gates
 - o Block 2 used 2800 dual 3-input NOR gates

Block 1 vs Block 2

Block 1 had:

- 1 kiloword in erasable
- 24 kilowords in fixed memory
- 11 instructions + EXTEND

Block 2 had:

- 4 kilowords in erasable
- 32 kilowords in fixed memory
- 34 instructions
 (including original 11)

Memory

- Two types of memory:
 - Fixed
 - o Erasable
- Very tight on memory
- Used 34 banks of fixed memory
 - Bank 0 = Erasable
 - Fixed-Fixed: Banks 1 and 2 of Fixed Memory
 - Fixed-Switchable: Register holding value of bank to address into
 - F-bank could hold extra addressing bits
- Little Old Lady Memory (core rope memory- fixed)

Erasable memory

Core rope memory (Fixed)

Interface

DSKY interface:

Astronauts could reprogram instructions (in erasable memory) through DSKY

Instructions

- Instructions were mostly stored in fixed memory
- Op Code: Operation code, 3 bits in Block 1.
- Quarter Code: Extra information for the operation. Differentiates Op Codes
- Peripheral Code: Specifically for specifying which I/O operation

Format was: (Op code+Quarter Code) + K

K = 12 or 10 bit Address

Example Block 1 instructions

- TC: Transfer Control (jump)
- TS: Transfer to storage
- 3. CCS: Count, Compare and Skip (similar to branch)
- INDEX: Add a constant to program counter
- 5. CS: Clear and subtract, get one's complement
- 6. XCH: Exchange between register A & Memory[address]
- 7. MASK: bit-wise AND operation
- 8. ADD
- 9. MULTIPLY
- 10. DIVIDE
- 11. SUBTRACT

One's Complement

- Two's complement was still being developed (~1963).
- -0 (15'b111111111111111) and +0 (15'b00000000000000) were useful for CCS, the 4-way branch
 - +0, -0, >0 or <0
- To represent something as negative in 1's complement, have a sign bit (1 → negative) and NOT the rest of the bits

Scaling factors and fractions

"Here, maintaining the magnitude, or scaling factor, was a burden imposed upon the programmer"

-The Apollo Guidance Computer: Architecture and Operation

Our implementation

AGC GENERAL BLOCK DIAGRAM

We adapted it for behavioral Verilog.

Control logic

We implemented: (behavioral Verilog)

11 timing pulses control the sequence of events in writing/reading/computing

They implemented: (NOR gates)

Cycles of 12 timing pulses, with each cycle taking 11.72 µS

822

Lines of code

11

3

Block 1 Instructions

Block 2 Instructions

Original source code

The original assembly machine code has been put onto GitHub¹ to show the world how we got to the moon. This particular snippet is what we used to show our AGC works.

30	# Page 1207	177	
31		BLOCK	02
32			
33	# SINGLE PRECIS	ION SINE	AND COSINE
34			
35		COUNT	02/INTER
36			
37	SPCOS	AD	HALF
38	SPSIN	TS	TEMK
39		TCF	SPT
40		CS	TEMK
41	SPT	DOUBLE	
42		TS	TEMK
43		TCF	POLLEY
44		XCH	TEMK
45		INDEX	TEMK
46		AD	LIMITS
47		COM	
48		AD	TEMK
49		TS	TEMK
50		TCF	POLLEY
51		TCF	ARG90
52	POLLEY	EXTEND	
53		MP	TEMK
54		TS	SQ
55		EXTEND	
56		MP	C5/2
57		AD	C3/2
58		EXTEND	
59		MP	SQ

¹https://github.com/chrislgarry/Apollo-11

Hasting's Approximation of a sine wave

 $\sin(pi/2^*x) = C_1x + C_3x^3 + C_5x^5$

 $C_1 = 1.5706...$ $C_3 = -0.6432...$ $C_5 = 0.0727...$

Results

X	sin(x)	Our sin(x)
1/4	0.7071	0.8053
1/8	0.3827	0.3951
1/16	0.1951	0.1966
-1/8	-0.3827	-0.4295
3/16	0.5556	0.5974

APOLLO COMMAND MODULE MAIN CONTROL PANEL

