Unit III

Optimal Binary Search Tree

Optimal Binary Search Trees

Problem: Given n keys $a_1 < ... < a_n$ and probabilities $p_1 \le ... \le p_n$ searching for them, find a BST with a minimum average number of comparisons in successful search.

Since total number of BSTs with n nodes is given by C(2n,n)/(n+1), which grows exponentially, brute force is hopeless.

Example: What is an optimal BST for keys *A*, *B*, *C*, and *D* with search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?

DP for Optimal BST Problem

Let C[i,j] be minimum average number of comparisons made in T[i,j], optimal BST for keys $a_i < ... < a_j$, where $1 \le i \le j \le n$. Consider optimal BST among all BSTs with some a_k ($i \le k \le j$) as their root; T[i,j] is the best among them.

DP for Optimal BST Problem (cont.) After simplifications, we obtain the recurrence for C[i,j]:

$$C[i,j] = \min \{C[i,k-1] + C[k+1,j]\} + \sum_{s=i}^{\infty} p_s \text{ for } 1 \le i \le j \le n$$

 $i \le k \le j$ $s=i$

$$C[i,i] = p_i$$
 for $1 \le i \le i \le n$

Example: key A B C D probability 0.1 0.2 0.4 0.3

The tables below are filled diagonal by diagonal: the left one is filled using the recurrence

$$C[i,j] = \min \{C[i,k-1] + C[k+1,j]\} + \sum p_s, C[i,i] = p_i;$$

 $i \le k \le j$ s = i the right one, for trees' roots, records k's values giving the minima

i j	0	1	2	3	4
1	0	.1	.4	1.1	1.7
2		0	.2	.8	1.4
3			0	.4	1.0
4				0	.3
5					0

j i	0	1	2	3	4
1		1	2	3	3
2		a	2	3	3
3				3	3
4					4
5					

optimal BST

Optimal Binary Search Trees

```
ALGORITHM Optimal BST(P[1..n])
//Finds an optimal binary search tree by dynamic programming
//Input: An array P[1..n] of search probabilities for a sorted list of n keys
//Output: Average number of comparisons in successful searches in the
            optimal BST and table R of subtrees' roots in the optimal BST
for i \leftarrow 1 to n do
     C[i, i-1] \leftarrow 0
     C[i,i] \leftarrow P[i]
     R[i,i] \leftarrow i
C[n+1,n] \leftarrow 0
for d \leftarrow 1 to n - 1 do //diagonal count
     for i \leftarrow 1 to n - d do
          i \leftarrow i + d
          minval \leftarrow \infty
          for k \leftarrow i to j do
               if C[i, k-1] + C[k+1, i] < minval
                    minval \leftarrow C[i, k-1] + C[k+1, i]; kmin \leftarrow k
          R[i, j] \leftarrow kmin
          sum \leftarrow P[i]; for s \leftarrow i + 1 to j do sum \leftarrow sum + P[s]
          C[i, j] \leftarrow minval + sum
```

return C[1, n], R

Analysis DP for Optimal BST Problem

Time efficiency: $\Theta(n^3)$ but can be reduced to $\Theta(n^2)$ by taking advantage of monotonicity of entries in the

root table, i.e., R[i,j] is always in the range

between R[i,j-1] and R[i+1,j]

Space efficiency: $\Theta(n^2)$

Method can be expended to include unsuccessful searches

