ИДЗ №4 Вариант № 25

БПИ217 Селезнев Григорий

17 ноября 2023 г.

Задача 7

Условие

Постороить 90%-ный доверительный интервал для вероятности попадания снаряда в цель, если после 220-ти выстрелов в цель попало 75 снарядов (предполагается, что случайная величина - попадания снаряда в цель - имеет нормальное распределение).

Решение

Чтобы найти доверительный интервал воспользуемся формулой:

$$p^* - t_{\frac{\alpha}{2}}(220)\sqrt{\frac{p^*(1-p^*)}{n}}$$

Где

 p^* - точечная оценка р $(p^* = \frac{75}{220})$

 α - уровень значимости (в данной задаче он равен $1-\alpha=0.9)$

 $t_{\frac{\alpha}{2}}(220)$ - квантиль соответсвующего уровня (распределение стьдента).

Посчитаем леваю границу:

$$p^* - t_{\frac{0.1}{2}}(220)\sqrt{\frac{p^*(1-p^*)}{n}} = \frac{75}{220} - t_{0.05}(220)\sqrt{\frac{\frac{75}{220}\left(1-\frac{75}{220}\right)}{220}}$$

Квантиль $t_{0.05}(130)$ посмотрим в табличке и он равен 1.64. Значит левая граница:

$$\frac{75}{220} - t_{0.05}(220)\sqrt{\frac{\frac{75}{220}\left(1 - \frac{75}{220}\right)}{220}} = \frac{75}{220} - 1.64 \cdot \sqrt{\frac{\frac{75}{220}\left(1 - \frac{75}{220}\right)}{220}} \approx 0.288$$

Правая граница:

$$\frac{75}{220} + t_{0.05}(220)\sqrt{\frac{\frac{75}{220}\left(1 - \frac{75}{220}\right)}{220}} = \frac{75}{220} + 1.64 \cdot \sqrt{\frac{\frac{75}{220}\left(1 - \frac{75}{220}\right)}{220}} \approx 0.393$$

Следовательно:

$$0.288$$

Ответ:

(0.288; 0.393)

Задача 8

Условие

Будем считать, что наблюдаемая в задаче №6 СВ имеет гаессовское рапределение.

- а) Постройте двусторонние доверительные интервалы уровня надежности 0.99 для математического ожидания и дисперсии наблюдаемой случайной величины.
- b) Проверьте на уровне значимости 0.05 гипотезу о том, что математическое ожидание наблюдаемой CB равно 350, а дисперсия равна 1000.

Условие задачи 6

ЗАДАЧА 6. Для заданной выборки:

- 1)построите вариационный ряд выборки;
- пользуясь формулой Стерджесса, определите количество интервалов разбиения выборки;
- постройте таблицу статистического ряда, в первой строке которой указаны интервалы разбиения, а во второй-частоты попадания элементов выборки в соответствующие интервалы;
- 4) постройте гистограмму;
- 5) найдите реализации точечных оценок математического ожидания и дисперсии;
- на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения наблюдаемой случайной величины.

Результаты определения долговечности шерстяной пряжи при самоистирании в петле на приборе ИПП, число циклов.

288	284	291	268	265	280	382	290	335	353	440	353	400
366	338	315	384	367	328	388	348	360	409	311	336	280
290	335	353	400	335	300	361	360	325	345	349	307	344
323	360	397	379	334	399	352	349	361	385	333	377	347
321	359	449	356	343	391	332	375	345	358	320	342	420
352	368	331	373	357	339	319	309	341	335	367	375	371
292	356	317	340	329	334	366	383	332	354	313	328	425
295	355	345	339	334	365	379	349	401	367	364	386	318
407	381	337	289	366	369	384	347	405	360	344	336	306
350	369	403	346	362	326	346	340	385	419	351	356	377

Решение

a)

Построим для математического ожидания. Так как истиная дисперсия неисвестна и $X_1, \dots, X_n \sim N(\theta_1, \theta_2^2)$ следовательно:

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{X})$$

$$G = \frac{(\overline{X} - \theta_{1}) \sqrt{n-1}}{S} \sim t(n-1)$$

$$P\left(t_{\frac{\alpha}{2}}(130) < \frac{(\overline{X} - \theta_1)\sqrt{n-1}}{S} < t_{1-\frac{\alpha}{2}}(130)\right) = 1 - \alpha \tag{1}$$

Возьмем из предыдущего ИДЗ посчитаное $\overline{X}=350,26$ и $S^2=1210,18$. А также подставим $\alpha=0.01$ так как уровень доверия нужный нам равен $1-\alpha=0.99$

$$P\left(t_{\frac{0.01}{2}}(130) < \frac{(350.26 - \theta_1)\sqrt{130 - 1}}{\sqrt{1210.18}} < t_{1 - \frac{0.01}{2}}(130)\right) = 0.99$$

Получается:

$$350.26 - \frac{t_{0.005}(130) \cdot \sqrt{1210.18}}{\sqrt{130 - 1}} > \theta_1 > 350.26 - \frac{t_{0.995}(130) \cdot \sqrt{1210.18}}{\sqrt{130 - 1}}$$

По табличке $t_{0.495}(130) = 2.58$

$$350.26 - \frac{2.58 \cdot \sqrt{1210.18}}{\sqrt{130 - 1}} > \theta_1 > 350.26 + \frac{2.58 \cdot \sqrt{1210.18}}{\sqrt{130 - 1}}$$
$$342.358 > \theta_1 > 358.162$$

Теперь построим для дисперсии. Так как истинное математическое ожидание нам неизвестно и $X_1, \ldots, X_n \sim N(\theta_1, \theta_2^2)$ следовательно:

$$G = \sum_{i=1}^{n} \left(\frac{x_i - \overline{X}}{\theta_2} \right)^2 \sim \chi^2(n-1)$$

Получаем

$$P\left(\chi_{n-1;\frac{\alpha}{2}}^{2} < \frac{1}{\theta_{2}^{2}} \sum_{i=1}^{n} \left(x_{i} - \overline{X}\right)^{2} < \chi_{n-1;1-\frac{\alpha}{2}}^{2}\right) = 1 - \alpha \tag{2}$$

Подставим значения $n=130, S^2=1210.18, 1-\alpha=0.99$ и преобразуем выражение

$$P\left(\frac{n \cdot S^2}{\chi_{n-1;\frac{\alpha}{2}}^2} < \theta_2^2 < \frac{n \cdot S^2}{\chi_{n-1;1-\frac{\alpha}{2}}^2}\right) = 1 - \alpha$$

$$P\left(\frac{130 \cdot 1210.18}{\chi_{129;\frac{0.01}{2}}^2} < \theta_2^2 < \frac{130 \cdot 1210.18}{\chi_{129;1-\frac{0.01}{2}}^2}\right) = 0.99$$

$$\frac{129 \cdot 1210.18}{174.118} \approx 896.594$$

$$\frac{129 \cdot 1210.18}{91.382} \approx 1708.359$$

b)

Первая гипотеза:

1) Нулевая и альтернативаня гипотезы:

 $H_0: \theta_1 = 350$

 $H_1: \theta_1 \neq 350$

2) Уровень значимости:

 $\alpha = 0.05$

3) Центральная статистика:

$$G = \frac{\left(\overline{X} - \theta_1\right)\sqrt{(n)}}{S}$$

4) Распределение центральной статистики при справедливости гипотезы H_0 :

$$\frac{(\overline{X}-350)\sqrt{n}}{S} \sim t(n-1)$$

 $\frac{(\overline{X}-350)\sqrt{n}}{S} \sim t(n-1)$ 5) Строим доверительные и критические области:

$$350.26 - \frac{t_{0.05/2}(130) \cdot \sqrt{1210.18}}{\sqrt{130 - 1}} > \theta_1 > 350.26 + \frac{t_{1 - 0.05/2}(130) \cdot \sqrt{1210.18}}{\sqrt{130 - 1}}$$

 $t_{0.025}(130)$

$$350.26 - \frac{1.96 \cdot \sqrt{1210.18}}{\sqrt{130 - 1}} > \theta_1 > 350.26 + \frac{1.96 \cdot \sqrt{1210.18}}{\sqrt{130 - 1}}$$
$$344.257 > \theta_1 > 356.263$$

Д.О.: (344.257; 356.263)

K.O.: $(-\infty; 344.257) \cup (356.263; -\infty)$

6) Считаем значение центральной статистики:

$$\frac{(350.26 - 350)\sqrt{130}}{1210.18} = 0.002$$

7) Гипотезу H_0 принимаем так как $350 \in (344.257; 356.263)$

Вторая гипотеза:

1) Нулевая и альтернативаня гипотезы:

 $H_0: \theta_2 = 1000$

 $H_1: \theta_2 \neq 1000$

2) Уровень значимости:

 $\alpha = 0.05$

3) Центральная статистика:

$$G = \sum_{i=1}^{n} \left(\frac{x_i - \overline{X}}{\theta_2} \right)^{\frac{1}{2}}$$

 $G = \sum_{i=1}^{n} \left(\frac{x_i - \overline{X}}{\theta_2}\right)^2$ 4) Распределение центральной статистики при справедливости гипотезы H_0 : $\sum_{i=1}^{n} \left(\frac{x_i - \overline{X}}{1000}\right)^2 \sim \chi^2(n-1)$

$$\sum_{i=1}^{n} \left(\frac{x_i - \overline{X}}{1000}\right)^2 \sim \chi^2(n-1)$$

5) Строим доверительные и критические области:

$$\chi_{n-1;\frac{\alpha}{2}}^2 < \frac{1}{\theta_2^2} \sum_{i=1}^n \left(x_i - \overline{X} \right)^2 < \chi_{n-1;1-\frac{\alpha}{2}}^2$$

$$\frac{130 \cdot 1210.18}{\chi_{129;\frac{0.05}{2}}^2} < \theta_2^2 < \frac{130 \cdot 1210.18}{\chi_{129;1-\frac{0.05}{2}}^2}$$

$$\chi^2_{129;\frac{0.05}{2}} = 162.331$$

$$\chi^2_{129;1-\frac{0.05}{2}} = 99.453$$

$$\frac{130 \cdot 1210.18}{162.331} < \theta_2^2 < \frac{130 \cdot 1210.18}{99.453}$$

$$969.152 < \theta_2^2 < 1581.887$$

Д.О.: (969.152; 1581.887)

K.O.: $(-\infty; 969.152) \cup (1581.887; -\infty)$

6) Считаем значение центральной статистики:

$$\sum_{i=1}^{n} \left(\frac{x_i - 350.26}{1000} \right)^2 = 0.16$$

7) Гипотезу H_0 принимаем так как $1000 \in (969.152; 1581.887)$

Ответ:

- а) Математическое ожидание: (342.358; 358.162). Дисперсия: (896.594; 1708.359)
- b) Принимаем обе гипотезы