MAT2001	Statistics for Engineers	L	T	P	J	С
		3	0	2	0	4
Prerequisites	MAT1011 – Calculus for Engineers	Syllabus Version:			1.0	

Course Objectives:

- 1. To provide students with a framework that will help them choose the appropriate descriptive methods in various data analysis situations.
- 2. To analyse distributions and relationship of real-time data.
- 3. To apply estimation and testing methods to make inference and modelling techniques for decision making.

Expected Course Outcome:

At the end of the course the student should be able to:

- 1. Compute and interpret descriptive statistics using numerical and graphical techniques.
- 2. Understand the basic concepts of random variables and find an appropriate distribution for analysing data specific to an experiment.
- 3. Apply statistical methods like correlation, regression analysis in analysing, interpreting experimental data.
- 4. Make appropriate decisions using statistical inference that is the central to experimental research.
- 5. Use statistical methodology and tools in reliability engineering problems.
- 6. demonstrate R programming for statistical data

Module: 1	Introduction to Statistics	6 hours					
Introduction to statis	tics and data analysis-Measures of c	central tendency -Measures of					
variability-[Moments-Skewness-Kurtosis (Concepts only)].							

Module: 2 Random variables 8 hours

Introduction -random variables-Probability mass Function, distribution and density functions - joint Probability distribution and joint density functions- Marginal, conditional distribution and density functions- Mathematical expectation, and its properties Covariance , moment generating function – characteristic function.

Module: 3 Correlation and regression 4 hours

Correlation and Regression – Rank Correlation- Partial and Multiple correlation- Multiple regression.

Module: 4Probability Distributions7 hoursBinomial and Poisson distributions – Normal distribution – Gamma distribution –

Exponential distribution – Weibull distribution.

Module: 5 Hypothesis Testing I 4 hours

Testing of hypothesis – Introduction-Types of errors, critical region, procedure of testing hypothesis-Large sample tests- Z test for Single Proportion, Difference of Proportion, mean and difference of means.

Module: 6 Hypothesis Testing II 9 hours

Small sample tests- Student"s t-test, F-test- chi-square test- goodness of fit - independence of attributes- Design of Experiments - Analysis of variance – one and two way classifications - CRD-RBD- LSD.

Module: 7 Reliability 5 hours

Basic concepts- Hazard function-Reliabilities of series and parallel systems- System Reliability - Maintainability-Preventive and repair maintenance- Availability.