CSCI 2300: Introduction to Algorithms ${\bf Homework~1}$

Lucien Brule Prof. Bulent Yener April 27, 2023

1 Problem 1

- (a) $f = \theta(g)$
- **(b)** f = O(g)
- (c) $f = \theta(g)$
- (d) $f = \theta(g)$
- (e) $f = \theta(g)$
- (f) $f = \theta(g)$
- (g) $f = \Omega(g)$
- (h) $f = \Omega(g)$
- (i) $f = \Omega(g)$
- (j) $f = \Omega(g)$

2 Problem 2

Consider the following psuedocode which takes the integer n>=n>=0 as input:

```
def bar(n):
print("*")
if n == 0:
    return
for i in range(0,n-1):
    bar(i)
```

Let T(n) be the number of times the character "*" is printed by the above code with input n >= 0. What is T(n) exactly, in terms of only n? (ie: not values like T(n-1) or T(n-2)). Prove your answer.

Answer: $T(n) = n + \sum_{i=0}^{n-1} T(i)$

Proof: Base case: Let's first verify the base case, n = 0.

When n = 0, the code directly prints "*", and since no recursive calls are made, T(0) = 1.

Now, let's check the equation:

- $T(0) = 0 + \sum_{i=0}^{0-1} T(i)$
- T(0) = 0

The equation doesn't hold true for the base case.

Let's modify the equation for T(n) considering the base case: T(n) = $1 + \sum_{i=0}^{n-1} T(i)$

Now let's verify the base case again: $T(0) = 1 + \sum_{i=0}^{0-1} T(i)$ T(0) = 1The modified equation holds true for the base case.

Inductive step: Let's assume the modified equation holds true for n = k, and we will show that it also holds true for n = k + 1. We have the following equation for n = k: $T(k) = 1 + \sum_{i=0}^{k-1} T(i)$

Now, let's find the equation for n = k + 1: $T(k + 1) = 1 + \sum_{i=0}^{k} T(i)$ We can rewrite the sum as: $T(k + 1) = 1 + \sum_{i=0}^{k-1} T(i) + T(k)$ From our assumption, we know that: $T(k) = 1 + \sum_{i=0}^{k-1} T(i)$

Substituting this into the equation for T(k + 1), we get: T(k + 1) = $1 + (1 + \sum_{i=0}^{k-1} T(i)) + T(k)$

Simplifying, we get: $T(k + 1) = 1 + \sum_{i=0}^{k} T(i)$

Therefore, the modified equation holds true for n = k + 1, and by induction, it holds true for all n >= 0.

Thus, the correct answer for T(n) is: T(n) = $1 + \sum_{i=0}^{n-1} T(i)$

3 Problem 3

Problem: Let f(n) and g(n) be asymptotically nonnegative functions. Using the basic definition of θ -notation, prove that $\max(f(n), g(n)) = \theta(f(n) + \theta(n))$ g(n)).

Solution: To show that $\max(f(n), g(n)) = \Theta(f(n) + g(n))$, we need to prove that there exist constants $c_1, c_2 > 0$ and $n_0 \ge 0$ such that for all $n \geq n_0$:

$$c_1(f(n) + g(n)) \le \max(f(n), g(n)) \le c_2(f(n) + g(n))$$

Lower Bound: Let $c_1 = \frac{1}{2}$. Then, for any $n \ge n_0$ (with $n_0 \ge 0$), we have:

$$c_1(f(n) + g(n)) = \frac{1}{2}(f(n) + g(n))$$

Since f(n) and g(n) are asymptotically nonnegative functions, at least one of them is greater than or equal to half of their sum. Therefore, we can conclude that:

$$\frac{1}{2}(f(n)+g(n)) \le \max(f(n),g(n))$$

Upper Bound: Let $c_2 = 1$. Then, for any $n \ge n_0$ (with $n_0 \ge 0$), we have:

$$c_2(f(n) + g(n)) = f(n) + g(n)$$

Clearly, the sum of f(n) and g(n) is always greater than or equal to the maximum of the two. Therefore, we can conclude that:

$$\max(f(n), g(n)) \le f(n) + g(n)$$

Since we have established both the lower and upper bounds, we can conclude that:

$$\max(f(n), q(n)) = \Theta(f(n) + q(n))$$

4 Problem 4

Problem:

Is
$$2^{2n} = O(2^n , Why?$$

Solution:

This statement is false. 2^{2n} is not $O(2^n)$.

To prove this, we need to show that there do not exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$:

$$2^{2n} \le c \cdot 2^n$$

Let's assume there exists such a constant c > 0. Then:

$$2^{2n} \le c \cdot 2^n$$

Dividing both sides by 2^n , we get:

$$2^n \le c$$

However, this inequality is not true for all $n \geq n_0$, because as n approaches infinity, 2^n will also approach infinity, which contradicts the assumption that there exists a constant c > 0 that satisfies this inequality.

Therefore, the statement $2^{2n} = O(2^n)$ is incorrect.