Math 4310 (Fall 2019)

HW2 solutions

1

- 1. Let V be a vector space over \mathbb{F} . Prove from the axioms/properties:
 - (a) (Cancellation) For all $u, v, w \in V$, if u + v = u + w, then v = w.
 - (b) For all $a \in \mathbb{F}$, and $u, v \in V$, if au = av, then either $a = \mathbf{0}_{\mathbb{F}}$ or u = v.
 - (c) For all $a, b \in \mathbb{F}$, and $u \in V$, if au = bu, then either a = b or $u = \mathbf{0}_V$.
 - (d) $\mathbf{0}_{\mathbb{F}} \cdot \mathbf{v} = \mathbf{0}_{V}$.
 - (e) If $c \in \mathbb{F}$, then $c \cdot \mathbf{0}_V = \mathbf{0}_V$.
 - (f) $(-1)\nu = -\nu$, for all $\nu \in V$.

Answer to Question 1.

- (a) If u + v = u + w, then we may add -v on both sides and "=" still holds.
- (b) If $a = 0_{\mathbb{F}}$ then we are done. Otherwise, $a \neq 0_{\mathbb{F}}$. Then there exists $a^{-1} \in \mathbb{F}$. We may multiple a^{-1} on both sides of the equation and "=" still holds.
- (c) To prove this part, we need part (e), which will be proved later. By (VS 8), $au = bu \iff (a b)u = 0_V$. If $a b = 0_F$, then we are done. Otherwise, $c := (a b) \neq 0$. We may multiple c^{-1} on both sides of the equation, so $u = c^{-1} \cdot 0_V$. And by part (e), $c^{-1} \cdot 0_V = 0_V$.
- (d) By (VS 8), for any $a \in \mathbb{F}$,

$$av + 0_{\mathbb{F}}v = (a + 0_{\mathbb{F}})v = av = av + 0_{V}.$$

By part (a), av can be canceled from both sides of the equation.

(e) If $c = 0_{\mathbb{F}}$, then $c \cdot 0_V = 0_V$ by part (d). If $c \neq 0_{\mathbb{F}}$, then by (VS 6) and (VS 7), for any $u \in V$, we have

$$c \cdot 0_V + u = c(0_V + c^{-1} \cdot u) = c(c^{-1}u) = u.$$

Again, by part (a), u can be canceled from both sides of the equation.

(f) By (VS 8) and part (d),

$$(-1)\nu = (-1)\nu + \nu - \nu = (1-1)\nu - \nu = 0_{\mathbb{F}} \cdot \nu - \nu = 0_{V} - \nu = -\nu.$$

Math 4310 (Fall 2019)

2

2. Let

$$U = \left\{ \begin{pmatrix} x \\ y \\ x \\ y \end{pmatrix} \in \mathbb{F}^4 \mid x, y \in F \right\}.$$

- (a) Show that $U \subset \mathbb{F}^4$ is a subspace.
- (b) Find a list of vectors of U which spans U, and which is linearly independent (i.e. a basis of U).
- (c) Find another subspace $W \subset \mathbb{F}^4$ such that $\mathbb{F}^4 = U \oplus W$.

Answer to Question 2.

(a) Assume that $v_1 = \begin{pmatrix} x_1 \\ y_1 \\ x_1 \\ y_1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} x_2 \\ y_2 \\ x_2 \\ y_2 \end{pmatrix}$ are two arbitrary vectors in U. Then for any $a,b \in \mathbb{F}$,

$$av_1 + bv_2 = \begin{pmatrix} ax_1 \\ ay_1 \\ ax_1 \\ ay_1 \end{pmatrix} + \begin{pmatrix} bx_2 \\ by_2 \\ bx_2 \\ by_2 \end{pmatrix} = \begin{pmatrix} ax_1 + bx_2 \\ ay_1 + by_2 \\ ax_1 + bx_2 \\ ay_1 + by_2 \end{pmatrix} \in U.$$

Hence, U is a subspace of \mathbb{F}^4 .

(b) Notice that $u_1 := \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ and $u_2 := \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$ are two vectors in U. They are linearly independent.

Let $U'=\text{\rm span}\,_{\mathbb{F}}\{u_1,u_2\}$, then clearly $U'\subseteq U$ is a subspace of U.

We also have $U'\supseteq U$. This is because for any $v=\begin{pmatrix} x\\y\\x\\y \end{pmatrix}\in U$, v can be written as a linear combination of u_1 and u_2 ,

$$v = xu_1 + yu_2$$
.

Therefore, U' = U.

(c) Let $w_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ and $w_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$, then u_1, u_2, w_1, w_2 are linearly independent and they

span \mathbb{F}^4 . This is because the determinant of $[\mathfrak{u}_1,\mathfrak{u}_2,w_1,w_2]$ is non-zero. In fact,

$$\det[u_1, u_2, w_1, w_2] = \det\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = 1.$$

If we take $W = \operatorname{span}_{\mathbb{F}}\{w_1, w_2\}$, then $W \cap U = \{0\}$ and $W + U = \mathbb{F}^4$. So $\mathbb{F}^4 = U \oplus W$. Note: the complement W is not unique. In fact, any two vectors w_1 and w_2 which make the matrix $[u_1, u_2, w_1, w_2]$ invertible would work.

3. Let $V = \mathbb{F}^{2 \times 2}$ be the vector space of 2 by 2 matrices, with entries in \mathbb{F} .

Determine if the following subsets are subspaces (justify your answer either way). For those that are subspaces, find a complement W: i.e. a subspace $W \subset V$, such that $V = U \oplus W$.

(a)
$$U = \{A \in V \mid A^2 = A\}.$$

(b)
$$U = \{A \in V \mid AB = BA\}$$
, where $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

(c)
$$U = \{A \in V \mid A \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}.$$

Answer to Question 3.

- (a) U is not a subspace:
 - For $\mathbb{F} \neq \mathbb{Z}_2$, there exists $\mathfrak{a} \in \mathbb{F}$ such that $\mathfrak{a}^2 \neq \mathfrak{a}$. Notice that the identity matrix $I \in U$, but $(\mathfrak{a}I)^2 \neq \mathfrak{a}I$. So U is not a subspace.
 - For $\mathbb{F} = \mathbb{Z}_2$, we may verify that

$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in U,$$

but

$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \not\in U.$$

So U is not a subspace.

- (b) U is a subspace:
 - $0 \in U$, because $0 \cdot B = B \cdot 0$.
 - If $A_1, A_2 \in U$, then for all $a, b \in \mathbb{F}$,

$$(aA_1 + bA_2)B = aA_1B + bA_2B = B(aA_1) + B(bA_2) = B(aA_1 + bA_2).$$

Next, we need to find a basis for U. By solving the equation

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} B = B \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

for a, b, c, d, we get b = 0 and a = d. So

$$U = \{ \begin{bmatrix} \alpha & 0 \\ c & \alpha \end{bmatrix} | \alpha, c \in \mathbb{F} \}.$$

We know that

$$\mathsf{E}_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \; \mathsf{E}_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \; \mathsf{E}_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \; \mathsf{E}_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

is a basis of $V = \mathbb{F}^{2\times 2}$. Let $u_1 = E_{11} + E_{22}$ and $u_2 = E_{21}$. It is clear that $U = \text{span }_{\mathbb{F}}\{u_1, u_2\}$. Now we want to find a complement subspace W. Let $w_1 = E_{12}$ and $w_2 = E_{22}$. Then the coordinates of these vectors under the basis $(E_{11}, E_{12}, E_{21}, E_{22})$ are

$$u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \ u_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \ w_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \ w_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Because the matrix

$$[u_1, u_2, w_1, w_2] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

is invertible, so $W = \text{span }_{\mathbb{F}}\{w_1, w_2\}$ is a complement subspace.

- (c) U is a subspace:
 - $0 \in U$, because $0 \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
 - If $A_1, A_2 \in U$, then for all $a, b \in \mathbb{F}$,

$$(aA_1 + bA_2)\begin{pmatrix} 1 \\ -1 \end{pmatrix} = aA_1\begin{pmatrix} 1 \\ -1 \end{pmatrix} + bA_2\begin{pmatrix} 1 \\ -1 \end{pmatrix} = a\begin{pmatrix} 0 \\ 0 \end{pmatrix} + b\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Next, we need to find a basis for U. By solving the equation

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

for a, b, c, d, we get b = -a and c = d. So

$$U = \{ \begin{bmatrix} \alpha & -\alpha \\ c & c \end{bmatrix} | \alpha, c \in \mathbb{F} \}.$$

We know that

$$E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \ E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \ E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

is a basis of $V = \mathbb{F}^{2\times 2}$. Let $u_1 = E_{11} - E_{12}$ and $u_2 = E_{21} + E_{22}$. It is clear that $U = \text{span } \mathbb{F}\{u_1, u_2\}$. Now we want to find a complement subspace W. Let $w_1 = E_{12}$ and $w_2 = E_{22}$. Then the coordinates of these vectors under the basis $(E_{11}, E_{12}, E_{21}, E_{22})$ are

$$u_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \ u_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \ w_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \ w_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Because the matrix

$$[u_1, u_2, w_1, w_2] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

is invertible, so $W = \text{span }_{\mathbb{F}}\{w_1, w_2\}$ is a complement subspace.

4. Find values $a, b \in \mathbb{Q}$ so that $\begin{pmatrix} 2 \\ a - b \\ 1 \end{pmatrix}$ and $\begin{pmatrix} a \\ b \\ 3 \end{pmatrix}$ are linearly dependent in \mathbb{Q}^3 .

Answer to Question 4. $\begin{pmatrix} 2 \\ a - b \\ 1 \end{pmatrix}$ and $\begin{pmatrix} a \\ b \\ 3 \end{pmatrix}$ are linearly dependent if and only if there exists

non-zero $c \in \mathbb{Q}$ such that

$$c\begin{pmatrix}2\\a-b\\1\end{pmatrix}+\begin{pmatrix}a\\b\\3\end{pmatrix}=0_V.$$

To make this equation holds, c must be -3. Then we may solve

$$\begin{cases} -6 + a = 0, \\ -3(a - b) + b = 0, \end{cases}$$

for a and b. We get a solution a = 6 and b = 9/2.

- 5. Determine which of the following lists of vectors in $\operatorname{Fun}(\mathbb{R},\mathbb{R})$ are linearly independent, and which are linearly dependent.
 - (a) $(\sin^2 x, \cos^2 x)$.
 - (b) $(1, \sin^2 x, \cos^2 x)$.
 - (c) (e^x, e^{2x}) .

Answer to Question 5. We know that

$$0: \mathbb{R} \to \mathbb{R},$$
$$x \mapsto 0$$

is the 0 vector in the vector space $\operatorname{Fun}(\mathbb{R},\mathbb{R})$.

- (a) $\sin^2 x$ and $\cos^2 x$ are linearly independent. If not, there exists non-zero $a,b\in\mathbb{R}$ such that $a\sin^2 x+b\cos^2 x=0$. In particular, this equation holds for x=0 and $x=\pi/2$. Hence a=b=0, which is a contradiction.
- (b) $(1, \sin^2 x, \cos^2 x)$ are linearly dependent, because

$$1 \cdot 1 + (-1) \cdot \sin^2 x + (-1) \cdot \cos^2 x = 0.$$

(c) e^x and e^{2x} are linearly independent. If not, there exists non-zero $a,b\in\mathbb{R}$ such that $ae^x+be^{2x}=0$. In particular, this equation holds for x=0 and x=1,

$$a+b=0$$
,

$$ae + be^2 = 0$$
.

So a = b = 0, a contradiction.

- 6. In this problem, assume that U_1 , U_2 (and U_3 in the last two parts) are subspaces of V.
 - (a) Is $U_1 \cap U_2$ a subspace? Either prove it, or give a counter-example.
 - (b) Is $U_1 \cup U_2$ a subspace if neither contains the other? Either prove it, or give a counter-example.
 - (c) (Optional) If $\mathbb{F} = \mathbb{R}$, show that $U_1 \cup U_2 \cup U_3$ is not a subspace of V, unless one of the subspaces contains the other two.
 - (d) Suppose that $\mathbb{F} = \mathbb{F}_2$ is the field with two elements. Find an example of a vector space V, and subspaces U_1, U_2, U_3 with no one containing any other, such that $U_1 \cup U_2 \cup U_3$ is a subspace. (i.e. surprising things can happen sometimes with finite fields!)

Answer to Question 6.

(a) $U_1 \cap U_2$ is a subspace:

For any $u_1, u_2 \in U_1 \cap U_2$ and any $a, b \in \mathbb{F}$, $au_1 + bu_2 \in U_1$, because U_1 is a subspace. For the same reason, $au_1 + bu_2 \in U_2$. So $au_1 + bu_2 \in U_1 \cap U_2$.

- (b) $U_1 \cup U_2$ is not a subspace if neither contains the other: Because neither contains the other, we may pick $u_1 \in U_1 - U_2$ and $u_2 \in U_2 - U_1$. Then $u_1 + u_2 \not\in U_1$, because $u_1 \in U_1$ and $u_2 \not\in U_1$. For the same reason, $u_1 + u_2 \not\in U_2$. So $u_1 + u_2 \not\in U_1 \cup U_2$.
- (c) Because none of the subspaces contains the other two, so none contains the sum of the other two, in particular,

$$U_1 \not\supseteq U_2 + U_3$$
, $U_2 \not\supseteq U_1 + U_3$.

We may pick

$$v_1 \in U_1 - (U_2 + U_3), \qquad v_2 \in U_2 - (U_1 + U_3).$$

Denote the set $\mathbb{R} - \{0\}$ by \mathbb{R}^{\times} . We may verify that for any $a, b \in \mathbb{R}^{\times}$, $av_1 \in U_1 - (U_2 + U_3)$ and $bv_2 \in U_2 - (U_1 + U_3)$. By part (b), we know that $av_1 + bv_2 \notin U_1 \cup U_2$ for all $a, b \in \mathbb{R}^{\times}$.

Claim: There exists $a, b \in \mathbb{R}^{\times}$ such that $av_1 + bv_2 \notin U_3$.

Reason: If not, then for all $a, b \in \mathbb{R}^{\times}$, $av_1 + bv_2 \in U_3$. In particular,

$$v_1 + v_2 \in U_3$$
 and $v_1 + 2v_2 \in U_3$.

This implies $v_1 \in U_3$ and $v_2 \in U_3$, which is a contradiction.

Therefore, we may pick $av_1 + bv_2 \not\in U_3$ for some $a, b \in \mathbb{R}^\times$. And we know that $av_1 + bv_2 \not\in U_1 \cup U_2$. Hence, $av_1 + bv_2 \not\in U_1 \cup U_2 \cup U_3$ for some $v_1, v_2 \in U_1 \cup U_2 \cup U_3$ and some $a, b \in \mathbb{R}^\times$. So $U_1 \cup U_2 \cup U_3$ is not a vector space.

(d) Consider $V = \mathbb{F}_2^2$. Take

$$\begin{aligned} u_1 &= \{0_V, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \}, \\ u_2 &= \{0_V, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \}, \\ u_3 &= \{0_V, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}. \end{aligned}$$

It is easy to verify that U_1 , U_2 and U_3 are subspaces of V with no one containing each other and that

$$U_1 \cup U_2 \cup U_3 = V$$

is a subspace of V.