Tensor Calculus J.L. Synge and A.Schild (Dover Publication) Solutions to exercises Part II Chapters V to VIII

by

Bernard Carrette

Contents

7	Rela	tive tensors, ideas of volume, Green-Stokes theorems.	4
	7.1	p241 - Exercise	5
	7.2	p242 - Exercise	7
	7.3	p243 - Exercise	8
	7.4	p243 - Exercise	9
	7.5	p245 - Exercise	10
	7.6	p245 - Clarification to 7.113	11
	7.7	p247 - Exercise	12
	7.8	p247 - Exercise	13
	7.9	p250 - Exercise	14
	7.10	p252 - Exercise	15
	7.11	p252 - Exercise	16
	7.12	p255 - Clarification	17
	7.13	p255 - Exercise	18
	7.14	p257 - Exercise	20
	7.15	p263 - Exercise	24
	7.16	p265 - Exercise	25
	7.17	p268 - Clarification	28
	7.18	p274 - Exercise	29
	7.19	p275 - Exercise	30
	7.20	p278 - Exercise 1	32
	7.21	p278 - Exercise 2	33
	7.22	p278 - Exercise 3	34
	7.23	p278 - Exercise 4	35
	7.24	p279 - Exercise 5	38
	7.25	p279 - Exercise 6	39
	7.26	p279 - Exercise 7	42
	7.27	p279 - Exercise 8†	43
	7.28	p279 - Exercise 9	44
	7.29	p279 - Exercise 10	45

List of Figures

7.1	Permutations	12
7.2	Permutations	19
	Projections of extensions	
7.4	A disk defined as $S: \left\{ \mathbb{R}^2 \to \mathbb{R}^3 : S(u, v) = \left(\frac{u}{\sqrt{u^2 + v^2 + C}}, \frac{v}{\sqrt{u^2 + v^2 + C}}, 1 \right) \right\} \dots \dots$	23
7.5	Manifold with $ds^2 = R^2 \left[dr^2 + \sin^2 r \left(d\theta^2 + \sin^2 \theta d\phi^2 \right) \right]$ metric, embedded in an Eu-	
	clidean 4—space	27

Relative tensors, ideas of volume, Green-Stokes theorems.

7.1 p241 - Exercise

If b_{rs} is an absolute tensor, show that the determinant $|b_{rs}|$ is a relative invariant of weight

2. What are the tensor characters of $|c^{rs}|$ and $|f_s^r|$?

As b_{rs} is an absolute tensor, we have

$$b_{uv}^{'} = b_{rs} \frac{\partial x^{r}}{\partial x^{'u}} \frac{\partial x^{s}}{\partial x^{'v}} \tag{1}$$

Hence,

$$\left| b'_{uv} \right| = \left| b_{rs} \right| \left| \frac{\partial x^r}{\partial x'^u} \right| \left| \frac{\partial x^s}{\partial x'^v} \right| \tag{2}$$

and as $J = \left| \frac{\partial x^k}{\partial x'^s} \right|$ we get

$$\left| b_{uv}^{'} \right| = J^2 \left| b_{rs} \right| \tag{3}$$

Conclusion, $|b_{rs}|$ is a relative invariant of weight 2.

 \Diamond

As c^{rs} is an absolute tensor, we have

$$c^{'uv} = c^{rs} \frac{\partial x^{'u}}{\partial x^r} \frac{\partial x^{'v}}{\partial x^s} \tag{4}$$

Hence,

$$\left|c^{'uv}\right| = \left|c^{rs}\right| \left|\frac{\partial x^{'u}}{\partial x^{r}}\right| \left|\frac{\partial x^{'v}}{\partial x^{s}}\right| \tag{5}$$

and as $J^{-1} = \left| \frac{\partial x^{'s}}{\partial x^k} \right|$ we get

$$\left|c^{'uv}\right| = J^{-2} \left|c^{rs}\right| \tag{6}$$

Conclusion, $|c^{rs}|$ is a relative invariant of weight -2.

 \Diamond

As f_s^r is an absolute tensor, we have

$$f_{v}^{'u} = f_{s}^{r} \frac{\partial x^{'u}}{\partial x^{r}} \frac{\partial x^{s}}{\partial x^{'v}}$$

$$\tag{7}$$

Hence,

$$\left| f_v^{'u} \right| = \left| f_s^r \right| \left| \frac{\partial x^{'u}}{\partial x^r} \right| \left| \frac{\partial x^s}{\partial x^{'v}} \right| \tag{8}$$

and we get

$$\left| f_v^{'u} \right| = JJ^{-1} \left| f_s^r \right| \tag{9}$$

Conclusion, $\left|f_s^r\right|$ is an absolute invariant tensor .

♦

7.2 p242 - Exercise

Show that, in three dimensions, the only non-vanishing components of δ^{kl}_{rs} are

$$\delta_{23}^{23} = \delta_{32}^{32} = \delta_{31}^{31} = \delta_{13}^{13} = \delta_{12}^{12} = \delta_{21}^{21} = 1$$

$$\delta_{32}^{23} = \delta_{23}^{32} = \delta_{13}^{31} = \delta_{31}^{13} = \delta_{21}^{12} = \delta_{12}^{21} = -1$$

This is easily seen. If (k,l),(r,s) are considered as sets, then $\delta^{kl}_{rs} \neq 0 \iff (k,l) \neq (r,s)$. And $\delta^{kl}_{rs} = 1 \iff k = r \land l = s$ and on the opposite $\delta^{kl}_{rs} = -1 \iff k = s \land l = r$

7.3 p243 - Exercise

Show that equations 5.231 and 6.128 can be written as follows:

$$M_{rs} = \delta_{rs}^{kl} z_k F_l$$

$$\omega_{rs} = \frac{1}{2} \delta_{rs}^{kl} v_{l,k}$$

$$(5.231) \quad M_{rs} = \epsilon_{rsn} M_n = z_r F_s - z_s F_r \tag{1}$$

In this expression $M_{rs} = 0$ when r = s, but this is also the case with δ_{rs}^{kl} .

In $M_{rs} = \delta_{rs}^{kl} z_k F_l$ we see that there is no contribution in the summation when k = l. The only contribution being those for which $k = r \wedge l = s$ (positive contribution) $\vee k = s \wedge l = r$ (negative contribution), hence

$$\delta_{rs}^{kl} z_k F_l \quad \Leftrightarrow \quad z_r F_s - z_s F_r$$

 \Diamond

(6.128)
$$\omega_{rs} = \frac{1}{2} (v_{s,r} - v_{r,s})$$
 (2)

The same arguments of the previous case apply to this case (a way to see this is to represent symbolically, z_rF_s and $v_{s,r}$ by T_{rs})

7.4 p243 - Exercise

If $T_{k_1k_2...k_M}$ is completely skew-symmetric, determine

$$\delta_{s_1 s_2 \dots s_M}^{k_1 k_2 \dots k_M} T_{k_1 k_2 \dots k_M}$$

 $\delta^{k_1k_2...k_M}_{s_1s_2...s_M}T_{k_1k_2...k_M}$ is a sum of M! terms: the first of these is $T_{s_1s_2...s_M}$; the other terms are obtained from it by permuting the subscripts and a minus sign is attached if the permutation is odd. Since $T_{s_1s_2...s_M}$ is completely skew-symmetric, each of the M! terms equals $+T_{s_1s_2...s_M}$ Hence,

$$\delta_{s_1 s_2 \dots s_M}^{k_1 k_2 \dots k_M} T_{k_1 k_2 \dots k_M} = M! \ T_{s_1 s_2 \dots s_M}$$

7.5 p245 - Exercise

Show that $\epsilon^{r_1 r_2 \dots r_N} \epsilon_{r_1 r_2 \dots r_N} = N!$.

First note that $sign(\epsilon^{r_1r_2...r_N}) = sign(\epsilon_{r_1r_2...r_N})$ so that each term in the summation is always +1.

There are N choices to chose from for r_1 , N-1 for r_2 , etc. and only one for r_N . And so $\epsilon^{r_1r_2...r_N}\epsilon_{r_1r_2...r_N}=N!$

♦

7.6 p245 - Clarification to 7.113

$$\epsilon^{k_1...k_M r_1...r_{N-M}} \epsilon_{s_1...s_M r_1...r_{N-M}} = (N-M)! \; \delta^{k_1...k_M}_{s_1...s_M}$$

This can be seen as followed.

As the permutation $(r_1 \dots r_{N-M})$ is the same for both covariant and contravariant permutation symbols, the product $\epsilon^{k_1 \dots k_M r_1 \dots r_{N-M}} \epsilon_{s_1 \dots s_M r_1 \dots r_{N-M}}$ for a fixed permutation $(r_1 \dots r_{N-M})$ (i.e. no summation on repeated indexes) will be determined by $\delta^{k_1 \dots k_M}_{s_1 \dots s_M}$. Indeed, the difference in "oddness" between $(k_1 \dots k_M r_1 \dots r_{N-M})$ and $(s_1 \dots s_M r_1 \dots r_{N-M})$ is only determined by the difference in "oddness" between $(k_1 \dots k_M r_1)$ and $(s_1 \dots s_M)$. So each term in the summation has the same contribution, i.e.; $\delta^{k_1 \dots k_M}_{s_1 \dots s_M}$.

There are M choices to chose from for r_1 , M-1 for r_2 , etc. and only one for r_M . And so

$$\epsilon^{k_1...k_M r_1...r_{N-M}} \epsilon_{s_1...s_M r_1...r_{N-M}} = (N-M)! \, \delta^{k_1...k_M}_{s_1...s_M}$$

♦

p247 - Exercise 7.7

If T_{rs} is an absolute skew-symmetric tensor in a 4-space, show that

$$T_{14}T_{23} + T_{24}T_{31} + T_{34}T_{12}$$

is a tensor density

Be $P = T_{14}T_{23} + T_{24}T_{31} + T_{34}T_{12}$, we can write this as $P = \frac{1}{8}\delta_{1234}^{ijmn}T_{ij}T_{mn}$

Figure 7.1: Permutations

The factor $\frac{1}{8}$ is explained by te fact that are 2^3 possible permutations in the i, j, m, n indexes i.e. 2×2 for the permutations P_1 and P_2 and again 2 for the permutation P_3 . Note that a single permutation P_1 or P_2 changes the sign of $T_{ij}T_{mn}$ but also changes the sign of δ_{1234}^{ijmn} , so the combined sign doesn't change. A double permutation P_1 and P_2 changes the sign of T_{ij} and T_{mn} resulting in a unchanged sign of $T_{ij}T_{mn}$ but also δ_{1234}^{ijmn} is unchanged because of the double permutation. Finally P_3 has no effect, nor on $T_{ij}T_{mn}$ nor on δ_{1234}^{ijmn} . So we have 8 repetitions for the same set i, j, m, n. So we have,

$$P = \frac{1}{8} \delta_{1234}^{ijmn} T_{ij} T_{mn}$$

$$= \frac{1}{8} \epsilon^{ijmn} T_{ij} T_{mn}$$

$$(1)$$

$$=\frac{1}{8}\epsilon^{ijmn}T_{ij}T_{mn} \tag{2}$$

From this follows immediately as ϵ^{ijmn} is a relative tensor of weight 1 and T_{ij} an absolute tensor (i.e. a relative tensor of weight 0) that P is a relative tensor of eight 1 i.e. a density.

7.8 p247 - Exercise

Show that, for rectangular Cartesian coordinates, the vorticity tensor and the vorticity vector of a fluid are duals (cf. **6.130**).

6.130:

$$\omega_r = \frac{1}{2} \epsilon_{rmn} \omega_{mn}, \qquad \omega_{mn} = \epsilon_{rmn} \omega_r \tag{1}$$

Put $\hat{T}^r = \omega_r$ and $T_{mn} = \omega_{mn}$ then the expressions in (1) can be expressed as (considering that the covariant an contravariant expressions are identical in rectangular Cartesian coordinates)

$$\hat{T}^r = \frac{1}{(3-2)!} \epsilon^{mnr} T_{mn}, \qquad T_{mn} = \epsilon_{rmn} \hat{T}^r$$
 (2)

which are exactly the general definitions 7.121 and 7.122 (with N=3 and M=2) for dual tensors.

♦

7.9 p250 - Exercise

Show that

$$\eta_{r_1\dots r_N} = \epsilon(a)a_{r_1s_1}\dots a_{r_Ns_N}\eta^{s_1\dots s_N}$$

$$\eta^{r_1...r_N} = \epsilon(a)a^{r_1s_1}\dots a^{r_Ns_N}\eta_{s_1...s_N}$$

7.10 p252 - Exercise

Using Riemannian coordinates, prove that **7.216** $\epsilon_{r_1...r_N|k} = \epsilon^{r_1...r_N}_{|k} = 0$ $\eta_{r_1...r_N|k} = \eta^{r_1...r_N}_{|k} = 0$

♦

7.11 p252 - Exercise

Prove that if \mathbb{T}^n is a relative vector of weight W then,

7.220
$$T_{|n}^{n} = (\epsilon(a)a)^{\frac{1}{2}(W-1)} \frac{\partial}{\partial x^{n}} \left[(\epsilon(a)a)^{\frac{1}{2}(1-W)} T^{n} \right]$$

♦

7.12 p255 - Clarification

7.304
$$\Delta^{k_1...k_M} = \delta^{k_1...k_M}_{s_1...s_M} \Delta_{(1)} x^{s_1} \dots \Delta_{(M)} x^{s_M}$$

Using **7.303** and noting that a permutation of columns in the matrix changes or not the sign of its determinant depending on the sign of the permutation, we can write

$$\Delta^{k_1 \dots k_M} = \begin{vmatrix} \Delta_{(1)} x^{k_1} & \Delta_{(1)} x^{k_2} & \dots & \Delta_{(1)} x^{k_M} \\ \Delta_{(2)} x^{k_1} & \Delta_{(2)} x^{k_2} & \dots & \Delta_{(2)} x^{k_M} \\ \vdots & \vdots & \vdots & \vdots \\ \Delta_{(M)} x^{k_1} & \Delta_{(M)} x^{k_2} & \dots & \Delta_{(M)} x^{k_M} \end{vmatrix}$$
(1)

$$= \epsilon^{k_1 k_2 \dots k_m} \begin{vmatrix} \Delta_{(1)} x^1 & \Delta_{(1)} x^2 & \dots & \Delta_{(1)} x^M \\ \Delta_{(2)} x^1 & \Delta_{(2)} x^{k_2} & \dots & \Delta_{(2)} x^{k_M} \\ \vdots & \vdots & \vdots & \vdots \\ \Delta_{(M)} x^1 & \Delta_{(M)} x^2 & \dots & \Delta_{(M)} x^M \end{vmatrix}$$
(2)

And using **4.313**: $|A_{pq}| = \epsilon_{s_1 s_2 \dots s_M} A_{1s_1} A_{2s_2} \dots A_{Ms_M}$:

$$\Delta^{k_1...k_M} = \underbrace{\epsilon^{k_1 k_2...k_m} \epsilon_{s_1 s_2...s_M}}_{\text{see (7.114)}} \Delta_{(1)} x^{s_1} \Delta_{(2)} x^{s_2} \dots \Delta_{(M)} x^{s_M}$$
(3)

$$= \delta_{s_1...s_M}^{k_1...k_M} \Delta_{(1)} x^{s_1} \Delta_{(2)} x^{s_2} \dots \Delta_{(M)} x^{s_M}$$
(4)

7.13 p255 - Exercise

Show that 7.305 may be written in the equivalent form

$$d\tau_{(M)}^{k_1\dots k_m} = \epsilon^{\beta_1\dots\beta_M} d_{(\beta_1)} x^{k_1} \dots d_{(\beta_M)} x^{k_M}$$

The determinant of a matrix and its transpose are equal.

Hence we can rewrite 7.305 $\delta_{s_1...s_M}^{k_1...k_M} d_{(1)} x^{s_1} \dots d_{(M)} x^{s_M}$ as

$$d\tau_{(M)}^{k_1...k_m} = \delta_{k_1...k_M}^{s_1...s_M} d_{(s_1)} x^1 \dots d_{(s_M)} x^M$$
(1)

In order to be consistent with the notation we replace the s_i by α_i as the summation occurs along the constants $c^{(i)}$

$$d\tau_{(M)}^{k_1...k_m} = \delta_{k_1...k_M}^{\alpha_1...\alpha_M} d_{(\alpha_1)} x^1 \dots d_{(\alpha_M)} x^M$$
(2)

Given the set $\{k_1, k_2, \dots, k_M\}$ we can represent the sequence $\{1, 2, \dots, M\}$ by $\{k_j, k_m, \dots, k_M, \dots k_n\}$ (imagine that $k_j = 1, k_m = 2, \dots$ etc.). We rewrite (2) as

$$d\tau_{(M)}^{k_1 k_2 \dots k_m} = (\theta_\alpha) \delta_{12 \dots M}^{\alpha_1 \dots \alpha_M} d_{(\alpha_1)} x^{k_j} d_{(\alpha_2)} x^{k_m} \dots d_{(\alpha_M)} x^{k_n}$$

$$\tag{3}$$

where

$$\theta_{\alpha} = \epsilon_{k_1 k_2 \dots k_M} \tag{4}$$

(a permutation in the lower indexes of the generalized Kronecker deltas symbol will invert the sign depending on the 'oddness' of the permutation). Let's rearrange the product $d_{(\alpha_1)}x^{k_j}d_{(\alpha_2)}x^{k_m}\dots d_{(\alpha_M)}x^{k_n}$ so that the indexes k_i are naturally ordered

$$d\tau_{(M)}^{k_1k_2\dots k_m} = (\theta_\alpha)\delta_{12\dots M}^{\alpha_1\dots\alpha_M}d_{(\alpha_r)}x^{k_1}d_{(\alpha_n)}x^{k_2}\dots d_{(\alpha_1)}x^{k_n}\dots d_{(\alpha_s)}x^{k_M}$$

$$(5)$$

and changing the order in the upper indexes of the general Kroneckers delta's:

$$d\tau_{(M)}^{k_1k_2...k_m} = (\theta_\alpha)(\theta_k)\delta_{12...M}^{\alpha_r\alpha_n...\alpha_s}d_{(\alpha_r)}x^{k_1}d_{(\alpha_n)}x^{k_2}\dots d_{(\alpha_1)}x^{k_n}\dots d_{(\alpha_s)}x^{k_M}$$

$$\tag{6}$$

where $\theta_k = \pm 1$ depending on the 'oddness' of the permutation needed to go from $\{\alpha_1 \dots \alpha_M\}$ to $\{\alpha_r \alpha_n \dots \alpha_s\}$.

As we can see in figure 7.2, it's no hard to see that

$$\theta_k = \theta_\alpha \tag{7}$$

Figure 7.2: Permutations

Indeed suppose, as in the example (a), $k_1 = 2, k_2 = 1, k_3 = 3, \ldots, k_j = m, \ldots, k_m = j, \ldots$ etc., so we get a sequence $\{k_2, k_1, k_3, \ldots, k_m, \ldots k_j, \ldots\}$ as illustrated in (b). But to have - with this sequence - an equivalent expression of $d\tau_{(M)}^{k_1k_2\ldots k_m} = (\theta_\alpha)\delta_{12\ldots M}^{\alpha_1\ldots\alpha_M}d_{(\alpha_1)}x^{k_j}d_{(\alpha_2)}x^{k_m}\ldots d_{(\alpha_M)}x^{k_n}$, we need to make an equivalent permutation so that α_r gets in the same position as k_r , resulting in a new sequence $\{\alpha_2, \alpha_1, \alpha_3, \ldots, \alpha_M, \ldots, \alpha_j, \alpha_m\}$.

The number of permutations to generate θ_{α} and θ_{k} are identical resulting in $\theta_{\alpha}\theta_{k}=1$. So (6) can be rewritten (noting that the α_{r} are dummy indexes and that we are free to rename them so that $r=1, n=2, \ldots$)

$$d\tau_{(M)}^{k_1 k_2 \dots k_m} = \delta_{12 \dots M}^{\beta_1 \beta_2 \dots \beta_M} d_{(\beta_1)} x^{k_1} d_{(\beta_2)} x^{k_2} \dots d_{(\beta_n)} x^{k_n} \dots d_{(\beta_M)} x^{k_M}$$
(8)

Finally, using 7.114

$$d\tau_{(M)}^{k_1 k_2 \dots k_m} = \underbrace{\epsilon_{12 \dots M}}_{=1} \epsilon^{\beta_1 \beta_2 \dots \beta_M} d_{(\beta_1)} x^{k_1} d_{(\beta_2)} x^{k_2} \dots d_{(\beta_n)} x^{k_n} \dots d_{(\beta_M)} x^{k_M}$$
(9)

$$= \epsilon^{\beta_1 \beta_2 \dots \beta_M} d_{(\beta_1)} x^{k_1} d_{(\beta_2)} x^{k_2} \dots d_{(\beta_n)} x^{k_n} \dots d_{(\beta_M)} x^{k_M}$$
 (10)

p257 - Exercise 7.14

Let x^k be rectangular Cartesian coordinates in Euclidean 3—space. Introduce polar coordinates nates r, θ, ϕ and consider the surface of the sphere r = a. On this sphere form the infinitesimal 2-cell with corners (θ, ϕ) , $(\theta + d\theta, \phi)$, $(\theta, \phi + d\phi)$, $(\theta + d\theta, \phi + d\phi)$. Determine the extension of this cell and interpret the rectangular components. In particular, show that the three independent components of the extension are (apart from the sign) equal to the areas obtained by normal projection of the cell onto the three rectangular planes. Does this interpretation remain valid if the sphere is replaces by some other surface?

We use **7.312**:

$$d\tau_{(2)}^{k_1 k_2} = \epsilon^{\alpha_1 \alpha_2} \frac{\partial x^{k_1}}{\partial y^{\alpha_1}} \frac{\partial x^{k_2}}{\partial y^{\alpha_2}} \left| d_{(\beta)} y^{\gamma} \right| \tag{1}$$

with $(y^1, y^2) = (\theta, \phi)$ giving if we take $f^{(i)} = c^{(i)}$ as $\theta = c^{(1)}$, $\phi = c^{(2)}$:

$$\begin{aligned} \left| d_{(\beta)} y^{\gamma} \right| &= \begin{vmatrix} d_{(1)} y^{1} & d_{(1)} y^{2} \\ d_{(2)} y^{1} & d_{(2)} y^{2} \end{vmatrix} \\ &= \begin{vmatrix} d\theta & 0 \\ 0 & d\phi \end{vmatrix}$$
 (2)

$$= \begin{vmatrix} d\theta & 0 \\ 0 & d\phi \end{vmatrix} \tag{3}$$

$$= d\theta d\phi \tag{4}$$

We also have

$$\begin{cases} x = a \sin \theta \cos \phi \\ y = a \sin \theta \sin \phi \\ z = a \cos \theta \end{cases}$$
 (5)

(6)

giving

$$\begin{cases} \frac{\partial x}{\partial \theta} = a \cos \theta \cos \phi \\ \frac{\partial x}{\partial \phi} = -a \sin \theta \sin \phi \\ \frac{\partial y}{\partial \theta} = a \cos \theta \sin \phi \\ \frac{\partial y}{\partial \phi} = a \sin \theta \cos \phi \\ \frac{\partial z}{\partial \theta} = -a \sin \theta \\ \frac{\partial z}{\partial \phi} = 0 \end{cases}$$
(7)

(8)

and get

$$d\tau_{(2)}^{xy} = \underbrace{\epsilon^{11}}_{=0} \frac{\partial x}{\partial \theta} \frac{\partial y}{\partial \theta} d\theta d\phi + \epsilon^{12} \frac{\partial x}{\partial \theta} \frac{\partial y}{\partial \phi} d\theta d\phi + \epsilon^{21} \frac{\partial x}{\partial \phi} \frac{\partial y}{\partial \theta} d\theta d\phi + \underbrace{\epsilon^{22}}_{=0} \frac{\partial x}{\partial \phi} \frac{\partial y}{\partial \phi} d\theta d\phi$$
(9)

$$= a^{2} \cos \theta \cos \phi \sin \theta \cos \phi d\theta d\phi + a^{2} \sin \theta \sin \phi \cos \theta \sin \phi d\theta d\phi \tag{10}$$

$$= a^2 \cos \theta \sin \theta d\theta d\phi \tag{11}$$

$$d\tau_{(2)}^{yx} = -a^2 \cos\theta \sin\theta d\theta d\phi \tag{12}$$

$$d\tau_{(2)}^{xz} = \underbrace{\epsilon^{11}}_{=0} \frac{\partial x}{\partial \theta} \frac{\partial z}{\partial \theta} d\theta d\phi + \epsilon^{12} \frac{\partial x}{\partial \theta} \underbrace{\frac{\partial z}{\partial \phi}}_{=0} d\theta d\phi + \epsilon^{21} \frac{\partial x}{\partial \phi} \frac{\partial z}{\partial \theta} d\theta d\phi + \underbrace{\epsilon^{22}}_{=0} \frac{\partial x}{\partial \phi} \frac{\partial z}{\partial \phi} d\theta d\phi$$
(13)

$$= -a^2 \sin^2 \theta \sin \phi d\theta d\phi \tag{14}$$

$$d\tau_{(2)}^{zx} = a^2 \sin^2 \theta \sin \phi d\theta d\phi \tag{15}$$

$$d\tau_{(2)}^{yz} = \underbrace{\epsilon^{11}}_{=0} \frac{\partial y}{\partial \theta} \frac{\partial z}{\partial \theta} d\theta d\phi + \epsilon^{12} \frac{\partial y}{\partial \theta} \underbrace{\frac{\partial z}{\partial \phi}}_{=0} d\theta d\phi + \epsilon^{21} \frac{\partial y}{\partial \phi} \frac{\partial z}{\partial \theta} d\theta d\phi + \underbrace{\epsilon^{22}}_{=0} \frac{\partial y}{\partial \phi} \frac{\partial z}{\partial \phi} d\theta d\phi$$
(16)

$$= a^2 \sin^2 \theta \cos \phi d\theta d\phi \tag{17}$$

$$d\tau_{(2)}^{zy} = -a^2 \sin^2 \theta \cos \phi d\theta d\phi \tag{18}$$

$$d\tau_{(2)}^{xx} = \underbrace{\epsilon^{11}}_{=0} \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} d\theta d\phi + \epsilon^{12} \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \phi} d\theta d\phi + \epsilon^{21} \frac{\partial x}{\partial \phi} \frac{\partial x}{\partial \theta} d\theta d\phi + \underbrace{\epsilon^{22}}_{=0} \frac{\partial x}{\partial \phi} \frac{\partial x}{\partial \phi} d\theta d\phi$$
(19)

$$=0 (20)$$

$$d\tau_{(2)}^{yy} = \underbrace{\epsilon^{11}}_{=0} \frac{\partial y}{\partial \theta} \frac{\partial y}{\partial \theta} d\theta d\phi + \epsilon^{12} \frac{\partial y}{\partial \theta} \frac{\partial y}{\partial \phi} d\theta d\phi + \epsilon^{21} \frac{\partial y}{\partial \phi} \frac{\partial y}{\partial \theta} d\theta d\phi + \underbrace{\epsilon^{22}}_{=0} \frac{\partial y}{\partial \phi} \frac{\partial y}{\partial \phi} d\theta d\phi$$
(21)

$$=0 (22)$$

$$d\tau_{(2)}^{zz} = \underbrace{\epsilon^{11}}_{=0} \underbrace{\frac{\partial z}{\partial \theta}}_{=0} \underbrace{\frac{\partial z}{\partial \theta}}_{=0} d\theta d\phi + \epsilon^{12} \underbrace{\frac{\partial z}{\partial \phi}}_{=0} d\theta d\phi + \epsilon^{21} \underbrace{\frac{\partial z}{\partial \phi}}_{=0} \underbrace{\frac{\partial z}{\partial \phi}}_{=0} d\theta d\phi + \underbrace{\epsilon^{22}}_{=0} \underbrace{\frac{\partial z}{\partial \phi}}_{=0} \frac{\partial z}{\partial \phi} d\theta d\phi$$
(23)

$$=0 (24)$$

Figure 7.3: Projections of extensions

The quantities $d\tau_{(2)}^{xy}$, $d\tau_{(2)}^{xz}$, $d\tau_{(2)}^{yz}$ are the projections of the extension on the respective Cartesian coordinates planes as can be seen in figure 7.3 where figure (a) depicts the extension (area = $a^2 \sin \theta d\theta d\phi$) when choosing θ , ϕ as the parameters y^k , while figure (b) represents the projection of this extension on the xz-plane and figure (c) represents the projection of this extension on the xy-plane.

 \Diamond

Does this interpretation remain valid if the sphere is replaces by some other surface?

The answer is no. For a two-space in Cartesian coordinates system and with surface with parameters (u, v), equation (2) reduces to

$$d\tau_{(2)}^{xy} = \left(\frac{\partial x}{\partial u}\frac{\partial y}{\partial v} - \frac{\partial x}{\partial v}\frac{\partial y}{\partial u}\right)dudv \tag{25}$$

So $d\tau_{(2)}^{xy} = 0$ if $\frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u} = 0$. Consider the disk defined by the following parametric function

$$S: \left\{ \mathbb{R}^2 \to \mathbb{R}^3: \ S(u, v) = \left(\frac{u}{\sqrt{u^2 + v^2 + C}}, \ \frac{v}{\sqrt{u^2 + v^2 + C}}, \ 1 \right) \right\}$$

(the constant C is there just to avoid the undefinedness of the surface for (u, v) = (0, 0)).

It is easy to see that $\frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u} = 0$, yet the surface is parallel with the xy-plane, which implies that the projection on the xy-plane of an elementary cell on S will not have a zero area as can be seen in the figure hereunder.

Figure 7.4: A disk defined as $S: \left\{ \mathbb{R}^2 \to \mathbb{R}^3: \ S(u,v) = \left(\frac{u}{\sqrt{u^2 + v^2 + C}}, \ \frac{v}{\sqrt{u^2 + v^2 + C}}, \ 1 \right) \right\}$

Conclusion: The interpretation of $d\tau_{(2)}^{k_1k_2}$ as the projection of a cell on a axis-plane, does not hold for every surface.

♦

7.15 p263 - Exercise

Using polar coordinates in Euclidean 3—space find the volume of an infinitesimal cell whose edges are tangent to the coordinate curves. Obtain the volume of a sphere by integration.

For polar spherical coordinates we have

$$(a_{mn}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \theta \end{pmatrix}$$
 (1)

giving

$$|a_{mn}| = r^4 \sin^2 \theta \tag{2}$$

and using as parameters the $x^k \equiv (r,\theta,\phi)$ as parameters for the parametric surface we get

$$|d_{(s)}x^{k}| = \begin{vmatrix} dr & 0 & 0 \\ 0 & d\theta & 0 \\ 0 & 0 & d\phi \end{vmatrix}$$
(3)

$$= dr d\theta d\phi \tag{4}$$

Using **7.405**:

$$dv_{(N)}^2 = \epsilon(a) |a_{mn}| |d_{(s)}x^k|^2$$
(5)

$$= r^4 \sin^2 \theta \left(dr d\theta d\phi \right)^2 \tag{6}$$

getting for the volume of a sphere with radius R:

$$V = 8 \int_0^R \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} dv_{(N)} \tag{7}$$

$$=8\int_{0}^{R}\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}r^{2}\sin\theta dr d\theta d\phi \tag{8}$$

$$=\frac{4}{3}\pi R^3\tag{9}$$

7.16 p265 - Exercise

In the relativistic theory of finite, expanding universe, the following line element is adopted:

$$ds^{2} = R^{2} \left[dr^{2} + \sin^{2} r \left(d\theta^{2} + \sin^{2} \theta d\phi^{2} \right) \right] - dt^{2}$$

where R = R(t) is a function of the "time" t. the ranges of the coordinates may be taken to be $0 \le r \le \pi$, $0 \le \theta \le \pi$, $0 \le \phi < 2\pi$, $-\infty < t < +\infty$.

Find the total volume of "space", i.e., of the surface t = constant, and show that it varies with the "time" t as $R^3(t)$.

For the considered metric, we have

$$(a_{mn}) = \begin{pmatrix} R^2 & 0 & 0 & 0 \\ 0 & R^2 \sin^2 r & 0 & 0 \\ 0 & 0 & R^2 \sin^2 r \sin^2 \theta & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
 (1)

Using as parameters the $x^k \equiv (r, \theta, \phi)$ as parameters for the parametric surface and using **7.409**: $b_{\alpha\beta} = a_{ks} \frac{\partial x^k}{\partial y^\alpha} \frac{\partial x^s}{\partial y^\beta}$, we get for the 3–space t = constant

$$(b_{mn}) = \begin{pmatrix} R^2 & 0 & 0 \\ 0 & R^2 \sin^2 r & 0 \\ 0 & 0 & R^2 \sin^2 r \sin^2 \theta \end{pmatrix}$$
 (2)

giving

$$|b_{mn}| = R^6 \sin^4 r \sin^2 \theta \tag{3}$$

Using **7.413**:

$$dv_{(M)}^2 = \frac{\epsilon(b)}{M!} a_{k_1 s_1} \dots a_{k_M s_M} d\tau_{(M)}^{k_1 \dots k_M} d\tau_{(M)}^{s_1 \dots s_M}$$
(4)

$$= -\frac{1}{6} a_{k_1 s_1} \dots a_{k_M s_M} d\tau_{(M)}^{k_1 \dots k_M} d\tau_{(M)}^{s_1 \dots s_M}$$
 (5)

$$= -\frac{6}{6}a_{11}a_{22}a_{33} \left(\underbrace{d\tau_{(M)}^{123}}_{=dxt\theta\theta d\phi}\right)^{2} \tag{6}$$

$$= -R^6 \sin^4 r \sin^2 \theta \left(dr d\theta d\phi \right)^2 \tag{7}$$

$$\Rightarrow dv_{(M)} = R^3 \sin^2 r \sin \theta dr d\theta d\phi \tag{8}$$

getting for the volume of "space" with "radius" R:

$$V = \int_0^\pi \int_0^\pi \int_0^{2\pi} R^3 \sin^2 r \sin \theta dr d\theta d\phi \tag{9}$$

$$=2R^{3}\pi \int_{0}^{R} \sin^{2}r dr \underbrace{\int_{0}^{\pi} \sin\theta d\theta}_{=-\cos\theta|_{0}^{\pi}}$$

$$(10)$$

$$=4R^{3}\pi \underbrace{\int_{0}^{R} \sin^{2}r dr}_{=\frac{1}{2}\left(\theta-\frac{1}{2}\sin(2r)\right)\Big|_{0}^{\pi}}_{1}$$
(11)

$$=2\pi^2 R^3 \tag{12}$$

(the integral in (11) can be found by substituting $\sin^2 r = 1 - \cos^2 r$ and using the cosine sum of angles rule $\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$ with $\alpha = \beta = r$).

 \Diamond

In order to try to understand a little bit better what manifold is represented by the metric, let's use the trick to embed it in an higher dimensional space with en Euclidean metric.

Therefore let's use the following map:

$$\begin{cases} x = R \sin r \sin \theta \cos \phi \\ y = R \sin r \sin \theta \sin \phi \\ z = R \sin r \cos \theta \\ w = R \cos r \end{cases}$$
 (13)

then it's easy to see that

$$ds_{(4)}^2 = dx^2 + dy^2 + dz^2 + dw^2 (14)$$

$$=R^{2}\left[dr^{2}+\sin^{2}r\left(d\theta^{2}+\sin^{2}\theta d\phi^{2}\right)\right] \tag{15}$$

which is exactly the hypersurface we sought. Now let's see what happens when we keep $\phi = 0$ or π . Then y = 0 and in fact we take a slice of the 4 - space along the xzw subspace, and can visualize this 3-space as a sphere as represented by figure 7.5(a).

We can also keep r at a certain value. We get also a sphere as represented in figure 7.5(b). Here the biggest possible sphere corresponds to $r=(2k+1)\frac{\pi}{2}, \quad k=\{\ldots,-1,0,1,\ldots\}$ all other spheres having a smaller radius. When r tends to $r=k\pi$ $k=\{\ldots,-1,0,1,\ldots\}$ the sphere shrinks to a point with coordinates $(0,0,0,\pm R)$.

Finally, keeping $\theta = k\pi$, $k = \{..., -1, 0, 1, ...\}$ we get a circle of radius R situated in the xw plane.

Remember that what we do here is just take 'slices' of a space. compare it to an Euclidean 3–space with a sphere: taking a slice e.g. parallel to the xy plane will give us a circle, a point or an empty set while taking a one-dimensional slice along a line will give us 2, 1 or 0 point(s).

Figure 7.5: Manifold with $ds^2=R^2\left[dr^2+\sin^2r\left(d\theta^2+\sin^2\theta d\phi^2\right)\right]$ metric, embedded in an Euclidean 4–space

p268 - Clarification 7.17

Since $\frac{\partial T_k}{\partial x^s}$ differs from the tensor $\frac{1}{2}(T_{k,s}-T_{s,k})$ by an expression symmetric in k, s and $d\tau_{(2)}^{ks}$ is an absolute tensor, skew-symmetric in these suffixes, it follows that the integrand on the left is an invariant.

Let's express 7.504 in curvilinear coordinates, equipped with metric

$$\int_{R_2} T_{k|s} d\tau_{(2)}^{ks} = \int_{R_1} T_r d\tau_{(1)}^r \tag{1}$$

Obviously we have

$$T_{k|s} = \frac{1}{2} \left(T_{k|s} - T_{s|k} \right) + \frac{1}{2} \left(T_{k|s} + T_{s|k} \right)$$
 (2)

Let's put $A_{ks} = \frac{1}{2} (T_{k|s} - T_{s|k})$ and $B_{ks} = \frac{1}{2} (T_{k|s} + T_{s|k})$.

 A_{ks} is skew-symmetric, while B_{ks} is symmetric. Note also that A_{ks} reduces to $A_{ks} = \frac{1}{2} (T_{k,s} - T_{s,k})$ as the Christoffel symbols vanish in this expression, leaving only the partial differentials and hence, independent of a metric. So the integrand on the left side becomes

$$T_{k|s}d\tau_{(2)}^{ks} = A_{ks}d\tau_{(2)}^{ks} + B_{ks}d\tau_{(2)}^{ks}$$
(3)

$$\Rightarrow T_{k|s}d\tau_{(2)}^{ks} = A_{ks}d\tau_{(2)}^{ks} - B_{ks}d\tau_{(2)}^{sk}$$
(4)

$$= A_{ks} d\tau_{(2)}^{ks} - B_{sk} d\tau_{(2)}^{sk} \tag{5}$$

$$= A_{ks} d\tau_{(2)}^{ks} - B_{sk} d\tau_{(2)}^{sk}$$

$$(5)$$

$$(3)+(5) \Rightarrow T_{k|s} d\tau_{(2)}^{ks} = A_{ks} d\tau_{(2)}^{ks}$$

$$(6)$$

We note that both A_{ks} and $d\tau_{(2)}^{ks}$ are tensors, independent of the metric defined, and thus $A_{ks}d\tau_{(2)}^{ks}$ is an invariant of order 0.

7.18 p274 - Exercise

Due to the skew-symmetry of $d\tau_{(M)}^{k_1...k_M}$, the integrand on the left-hand side is also an invariant. This may be proved in a few lines, preferably with the use of the compressed notation of 1.7; the proof is left as an exercise for the reader.

We will use the indices i, j for the transformed tensor components and p, q for the original components. We have

$$T'_{i_1...i_{M-1}} = T_{p_1...p_{M-1}} X_{i_1}^{p_1} \dots X_{i_{M-1}}^{p_{M-1}}$$
(1)

$$\Rightarrow T_{i_{1}...i_{M-1},i_{M}}^{'} = T_{p_{1}...p_{M-1},i_{M}} X_{i_{1}}^{p_{1}} \dots X_{i_{M-1}}^{p_{M-1}} + T_{p_{1}...p_{M-1}} \left(X_{i_{1}}^{p_{1}} \dots X_{i_{M-1}}^{p_{M-1}} \right)_{.i_{M}}$$
(2)

$$=T_{p_{1}...p_{M-1},p_{M}}X_{i_{1}}^{p_{1}}\ldots X_{i_{M-1}}^{p_{M-1}}X_{i_{M}}^{p_{M}}+T_{p_{1}...p_{M-1}}\left(X_{i_{1}}^{p_{1}}\ldots X_{i_{M-1}}^{p_{M-1}}\right)_{.i_{M}}\tag{3}$$

and

$$d\tau_{(M)}^{'i_1...i_M} = d\tau_{(M)}^{s_1...s_M} X_{s_1}^{i_1} \dots X_{s_M}^{i_M}$$
(4)

This gives

$$T'_{i_{1}...i_{M-1},i_{M}}d\tau'^{i_{1}...i_{M}}_{(M)} = \begin{cases} T_{p_{1}...p_{M-1},p_{M}}X^{p_{1}}_{i_{1}}...X^{p_{M-1}}_{i_{M-1}}X^{p_{M}}_{i_{M}}d\tau^{s_{1}...s_{M}}_{(M)}X^{i_{1}}_{s_{1}}...X^{i_{M}}_{s_{M}} \\ + \underbrace{T_{p_{1}...p_{M-1}}\left(X^{p_{1}}_{i_{1}}...X^{p_{M-1}}_{i_{M-1}}\right)_{,i_{M}}d\tau^{s_{1}...s_{M}}_{(M)}X^{i_{1}}_{s_{1}}...X^{i_{M}}_{s_{M}}}_{=0} \end{cases}$$
(5)

$$=T_{p_{1}...p_{M-1},p_{M}}X_{s_{1}}^{p_{1}}...X_{s_{M-1}}^{p_{M-1}}X_{s_{M}}^{p_{M}}d\tau_{(M)}^{s_{1}...s_{M}}\tag{6}$$

$$=T_{p_1...p_{M-1},p_M}\delta_{s_1}^{p_1}...\delta_{s_{M-1}}^{p_{M-1}}\delta_{s_M}^{p_M}d\tau_{(M)}^{s_1...s_M}$$
(7)

$$=T_{s_1...s_{M-1},s_M}d\tau_{(M)}^{s_1...s_M} \tag{8}$$

The term $T_{p_1...p_{M-1}}\left(X_{i_1}^{p_1}\dots X_{i_{M-1}}^{p_{M-1}}\right)_{,i_M}d au_{(M)}^{s_1...s_M}X_{s_1}^{i_1}\dots X_{s_M}^{i_M}$ in (5) is zero. Indeed, rewriting this as :

$$T_{p_1...p_{M-1}}\left(X_{i_1}^{p_1}\dots X_{i_{M-1}}^{p_{M-1}}\right)_{p_M}X_{i_M}^{p_M}d\tau_{(M)}^{s_1...s_M}X_{s_1}^{i_1}\dots X_{s_M}^{i_M}\tag{9}$$

The terms in brackets are zero as they are of the form

$$\cdots + X_{i_1}^{p_1} \cdots \underbrace{\frac{\partial^2 x^{p_m}}{\partial x^{p_M} \partial x'^{i_m}}}_{= \frac{\partial \delta_{p_M}^{p_m}}{\partial x'^{i_m}} = 0} \cdots X_{i_{M-1}}^{p_{M-1}} + \cdots$$

$$(10)$$

From (8) we conclude that the integrand is indeed an invariant.

7.19 p275 - Exercise

The skew-symmetric part of a tensor $T_{k_1...k_M}$ is defined as

$$T_{[k_1...k_M]} = (M!)^{-1} \delta_{k_1...k_M}^{s_1...s_M} T_{s_1...s_M}$$

Show that the left-hand side of equation 7.525 is unchanged if $T_{k_1...k_M}$ is replace by its skew-symmetric part. Show that the same is true for the right-hand side.

The integrand of the left-hand side of 7.525 is

$$T_{k_1\dots k_{M-1},k_M} d\tau_{(M)}^{k_1\dots k_M} \tag{1}$$

replacing the tensor with it's skew-symmetric part gives

$$T_{[k_1...k_{M-1}],k_M} d\tau_{(M)}^{k_1...k_M} = \frac{1}{(M-1)!} \delta_{k_1...k_{M-1}}^{s_1...s_{M-1}} T_{s_1...s_{M-1},k_M} d\tau_{(M)}^{k_1...k_M}$$
(2)

$$= \frac{1}{(M-1)!} \delta_{k_1 \dots k_{M-1}}^{s_1 \dots s_{M-1}} \delta_{k_M}^{s_M} T_{s_1 \dots s_{M-1}, s_M} d\tau_{(M)}^{k_1 \dots k_M}$$
(3)

$$= \frac{1}{(M-1)!} \delta_{k_1 \dots k_{M-1}}^{s_1 \dots s_{M-1}} T_{s_1 \dots s_{M-1}, s_M} d\tau_{(M)}^{k_1 \dots k_{M-1} s_M}$$
(4)

$$= T_{s_1...s_{M-1},s_M} \frac{1}{(M-1)!} \left(\delta_{k_1...k_{M-1}}^{s_1...s_{M-1}} d\tau_{(M)}^{k_1...k_{M-1}s_M} \right)$$
 (5)

(6)

The terms in the brackets can be reduced to $(M-1)!d\tau_{(M)}^{s_1...s_{M-1}s_M}$. Indeed, the number of choices in choosing the $k_1,\ldots k_{M-1}$ are restricted to M-1 choices, due to the skew-symmetry of $d\tau_{(M)}^{k_1...k_{M-1}s_M}$ (choosing a $k_i=s_M$ would result in a zero value for $d\tau_{(M)}^{k_1...k_{M-1}s_M}$). So, in total there will be (M-1)! terms and due to the skew-symmetry of $d\tau_{(M)}^{k_1...k_{M-1}s_M}$ a change in sign of $\delta_{k_1...k_{M-1}}^{s_1...s_{M-1}}$ will also result in a change of sign in $d\tau_{(M)}^{k_1...k_{M-1}s_M}$. Hence, we get

$$T_{[k_1...k_{M-1}],k_M} d\tau_{(M)}^{k_1...k_M} = T_{s_1...s_{M-1},s_M} \frac{1}{(M-1)!} (M-1)! d\tau_{(M)}^{s_1...s_{M-1}s_M}$$
(7)

$$=T_{s_1...s_{M-1},s_M}d\tau_{(M)}^{s_1...s_{M-1}s_M}$$
(8)

 \Diamond

The integrand of the right-hand side of 7.525 is

$$T_{k_1...k_{M-1}} d\tau_{(M-1)}^{k_1...k_{M-1}} \tag{9}$$

replacing the tensor with it's skew-symmetric part gives

$$T_{[k_1...k_{M-1}]} d\tau_{(M-1)}^{k_1...k_{M-1}} = \frac{1}{(M-1)!} \delta_{k_1...k_{M-1}}^{s_1...s_{M-1}} T_{s_1...s_{M-1}} d\tau_{(M-1)}^{k_1...k_{M-1}}$$
(10)

$$= T_{s_1...s_{M-1}} \frac{1}{(M-1)!} \left(\delta_{k_1...k_{M-1}}^{s_1...s_{M-1}} d\tau_{(M-1)}^{k_1...k_{M-1}} \right)$$
 (11)

The terms in the brackets can be reduced to $(M-1)!d\tau_{(M-1)}^{s_1...s_{M-1}}$. Indeed, the number of choices in choosing the $k_1,\ldots k_{M-1}$ is M-1, giving (M-1)! terms and due to the skew-symmetry of $d\tau_{(M-1)}^{k_1...k_{M-1}}$ a change in sign of $\delta_{k_1...k_{M-1}}^{s_1...s_{M-1}}$ will also result in a change of sign in $d\tau_{(M)}^{k_1...k_{M-1}}$. Hence, we get

$$T_{[k_1...k_{M-1}]} d\tau_{(M-1)}^{k_1...k_{M-1}} = T_{s_1...s_{M-1}} \frac{1}{(M-1)!} (M-1)! d\tau_{(M-1)}^{s_1...s_{M-1}}$$
(12)

$$=T_{s_1...s_{M-1}}d\tau_{(M-1)}^{s_1...s_{M-1}}$$
(13)

7.20 p278 - Exercise 1

Show from 7.312 that the number of independent components of the extension of an M-cell in N-space is

$$\frac{N!}{M! \, (N-M)!}$$

7.312:
$$d\tau^{k_1...k_M} = \epsilon^{\alpha_1...\alpha_M} \frac{\partial x^{k_1}}{\partial y^{\alpha_1}} \dots \frac{\partial x^{k_M}}{\partial y^{\alpha_M}} \left| d_{(\beta)} y^{\gamma} \right|$$
 (1)

As all k_i are different, the unconstrained number of ordered arrangement of M elements picked out of a set of N possibilities is $N(N-1)...(N-M+1) = \frac{N!}{(N-M)!}$.

As $d\tau^{k_1...k_M}$ is skew-symmetric we have to divide this number by the number of constraints of the form $d\tau^{k_1...k_j...k_p...k_M} = -d\tau^{k_1...k_p...k_j...k_M}$. This number just corresponds to the number of permutations of M distinct objects and is equal to M!.

$$\frac{N!}{M! (N-M)!}$$

7.21 p278 - Exercise 2

Prove that the covariant derivative of a generalized Kronecker delta is zero.

(2.525) gives:

$$\delta_{s_{1}...s_{M}|s_{\tau}}^{k_{1}...k_{M}} = \underbrace{\frac{\partial \delta_{s_{1}...s_{M}}^{k_{1}...k_{M}}}{\partial x^{s_{\tau}}}}_{=0} + \Gamma_{qs_{\tau}}^{k_{1}} \delta_{s_{1}...s_{M}}^{qk_{2}...k_{M}} + \dots + \Gamma_{qs_{\tau}}^{k_{M}} \delta_{s_{1}...s_{M}}^{k_{1}...k_{(M-1)}q} - \Gamma_{s_{1}s_{\tau}}^{q} \delta_{qs_{2}...s_{M}}^{k_{1}...k_{M}} - \dots - \Gamma_{s_{M}s_{\tau}}^{q} \delta_{s_{1}...s_{(M-1)}q}^{k_{1}...k_{M}}$$

(1)

(2)

Let us now consider the following notation for $\delta_{s_1...s_M}^{k_1...k_M}$

$$\delta_{s_1 \longleftrightarrow k_y \longleftrightarrow s_M}^{k_1 \longleftrightarrow s_x \longleftrightarrow k_M}$$

showing the respective position of an element in the two series use in the generalized Kronecker delta.

Consider in this expression (no summations on the indexes) the positive and negative terms like

$$\left. \Gamma_{qs_{\tau}}^{k_{y}} \delta_{s_{1} \longleftrightarrow k_{y} \longleftrightarrow s_{M}}^{k_{1} \longleftrightarrow q \longleftrightarrow k_{M}} \right|_{q \neq s_{\tau}}, \dots, -\left. \Gamma_{s_{x}s_{\tau}}^{q} \delta_{s_{1} \longleftrightarrow q \longleftrightarrow s_{M}}^{k_{1} \longleftrightarrow s_{x} \longleftrightarrow k_{M}} \right|_{q \neq k_{y}}$$
(3)

Obviously these terms are zero as q does not refer to the value necessary to have no repetition in the set $\{s_1 \dots s_M\}$ or $\{k_1 \dots k_M\}$.

Consider now the sum of two terms like (no summations on the indexes).

$$\left. \Gamma_{qs_{\tau}}^{k_{y}} \delta_{s_{1} \longleftrightarrow k_{y} \longleftrightarrow s_{M}}^{k_{1} \longleftrightarrow q \longleftrightarrow k_{M}} \right|_{q=s_{x}} - \left. \Gamma_{s_{x}s_{\tau}}^{q} \delta_{s_{x} \longleftrightarrow q \longleftrightarrow s_{M}}^{k_{1} \longleftrightarrow s_{x} \longleftrightarrow k_{M}} \right|_{q=k_{y}} \tag{4}$$

(5)

As each term in this sum occurs only once in (1) and we get

$$\left. \Gamma_{qs_{\tau}}^{k_{y}} \delta_{s_{1} \longleftrightarrow k_{y} \longleftrightarrow s_{M}}^{k_{1} \longleftrightarrow q \longleftrightarrow k_{M}} \right|_{q=s_{x}} - \left. \Gamma_{s_{x}s_{\tau}}^{q} \delta_{s_{x} \longleftrightarrow q \longleftrightarrow s_{M}}^{k_{1} \longleftrightarrow s_{x} \longleftrightarrow k_{M}} \right|_{q=k_{y}}$$
(6)

$$= \delta_{s_1...s_M}^{k_1...k_M} \left(\Gamma_{s_x s_\tau}^{k_y} - \Gamma_{s_x s_\tau}^{k_y} \right) \tag{7}$$

$$=0 (8)$$

This show that indeed the covariant derivative of the generalize Kronecker delta is zero.

 \Diamond

Note: probably this can also be proved by induction, starting with the result in exercise in chapter 2, page 53 (see part I of this solution manual).

٠

7.22 p278 - Exercise 3

Show that $\delta_{k_1...k_M}^{s_1...s_M} = \begin{vmatrix} \delta_{s_1}^{k_1} & \delta_{s_2}^{k_1} & \dots & \delta_{s_M}^{k_1} \\ \vdots & \vdots & \vdots & \vdots \\ \delta_{s_1}^{k_M} & \delta_{s_2}^{k_M} & \dots & \delta_{s_M}^{k_M} \end{vmatrix}$

The determinant on the right side can be represented as

$$\Delta = \epsilon_{i_1 i_2 \dots i_M} \delta_{s_1}^{k_{i_1}} \delta_{s_2}^{k_{i_2}} \dots \delta_{s_M}^{k_{i_M}} \tag{1}$$

Be K_M , S_M the (unordered) sets $\{k_1, k_2, \ldots, k_M\}$ and $\{s_1, s_2, \ldots, s_M\}$. If $K_M \neq S_M$ then, one of the elements will differ and from (1) it follows that $\Delta = 0$ as for all terms in (1) at least one of the $\delta_{s_m}^{k_{i_n}}$ will be zero.

If $K_M = S_M$ then there will be only 1 term left in (1) having value ± 1 depending on the value of the corresponding $\epsilon_{i_1 i_2 \dots i_M}$ associated with this term. Be \hat{K}_M , \hat{S}_M the (ordered) list generated by K_M , S_M , then the value of the $\epsilon_{i_1 i_2 \dots i_M}$ will be determined by the number of permutation needed to map bijectively \hat{K}_M to \hat{S}_M . The above reasoning shows that the determinant can be expressed as

$$\Delta = \delta^{s_1 \dots s_M}_{k_1 \dots k_M}$$

7.23 p278 - Exercise 4

If T_{rs} is a symmetric tensor density and S_{rs} a skew-symmetric tensor density, show that

$$T_{.s|r}^r = \partial_r T_{.s}^r - \frac{1}{2} T^{rk} \partial_s a_{rk}$$
$$S_{..|r}^{rs} = \partial_r S^{rs}$$

Let's define the absolute oriented tensor.

$$\overline{T}_{.s}^{r} = \left(\epsilon(a)a\right)^{-\frac{1}{2}}T_{.s}^{r} \tag{1}$$

By **7.214** we have

$$T^r_{.s|r} = (\epsilon(a)a)^{\frac{1}{2}} \left[\overline{T}^r_{.s} \right]_{|r} \tag{2}$$

with

$$\left[\overline{T}_{.s}^{r}\right]_{|r} = \partial_{r}\overline{T}_{.s}^{r} + \Gamma_{mr}^{r}\overline{T}_{.s}^{m} - \Gamma_{rs}^{m}\overline{T}_{.m}^{r}$$

$$(3)$$

Using **2.542**: $\Gamma_{mr}^{r} = (\epsilon(a)a)^{-\frac{1}{2}} \partial_{m} (\epsilon(a)a)^{\frac{1}{2}}$

$$\left[\overline{T}_{.s}^{r}\right]_{|r} = \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} \partial_{r} T_{.s}^{r} + T_{.s}^{r} \partial_{r} (\epsilon(a)a)^{-\frac{1}{2}} \\
+ (\epsilon(a)a)^{-\frac{1}{2}} \partial_{m} (\epsilon(a)a)^{\frac{1}{2}} \overline{T}_{.s}^{m} \\
-\frac{1}{2} (\partial_{s} a_{rk} + \partial_{r} a_{sk} - \partial_{k} a_{rs}) a^{mk} \overline{T}_{.m}^{r} \\
= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} \partial_{r} T_{.s}^{r} + T_{.s}^{r} \partial_{r} (\epsilon(a)a)^{-\frac{1}{2}} \\
+ (\epsilon(a)a)^{-\frac{1}{2}} (\epsilon(a)a)^{-\frac{1}{2}} T_{.s}^{m} \partial_{m} (\epsilon(a)a)^{\frac{1}{2}} \\
-\frac{1}{2} (\epsilon(a)a)^{-\frac{1}{2}} \left(T^{rk} \partial_{s} a_{rk} + \underline{T^{rk}} \partial_{r} a_{sk} - T^{rk} \partial_{k} a_{rs}\right)
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk}) \\
+ T_{.s}^{r} \left[\partial_{r} (\epsilon(a)a)^{-\frac{1}{2}} + (\epsilon(a)a)^{-1} \partial_{r} (\epsilon(a)a)^{\frac{1}{2}}\right]
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk}) \\
+ T_{.s}^{r} \left[\partial_{r} (\epsilon(a)a)^{-\frac{1}{2}} + (\epsilon(a)a)^{-1} \partial_{r} (\epsilon(a)a)^{\frac{1}{2}}\right]
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk})
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk})
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk})
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk})
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk})
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk})
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\delta_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk})
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\delta_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk})
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\delta_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk})
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\delta_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk})
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\delta_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk}
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\delta_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk}
\end{cases}$$

giving

$$\left[\overline{T}_{.s}^{r}\right]_{|r} = \left(\epsilon(a)a\right)^{-\frac{1}{2}} \left(\partial_{r}T_{.s}^{r} - \frac{1}{2}T^{rk}\partial_{s}a_{rk}\right) \tag{8}$$

(2) and (8):
$$T_{.s|r}^{r} = \partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk}$$
 (9)

Let's define the absolute oriented tensor.

$$\overline{S}^{rs} = (\epsilon(a)a)^{-\frac{1}{2}} S^{rs} \tag{10}$$

By **7.214** we have

$$S_{\cdot\cdot\cdot|r}^{rs} = (\epsilon(a)a)^{\frac{1}{2}} \left[\overline{S}^{rs} \right]_{|r} \tag{11}$$

with

$$\left[\overline{S}^{rs}\right]_{|r} = \partial_r \overline{S}^{rs} + \Gamma^r_{mr} \overline{S}^{ms} + \Gamma^s_{mr} \overline{S}^{rm}$$
(12)

Using **2.542**: $\Gamma_{mr}^{r} = (\epsilon(a)a)^{-\frac{1}{2}} \partial_{m} (\epsilon(a)a)^{\frac{1}{2}}$

$$\left[\overline{S}^{rs}\right]_{|r} = \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} \partial_r S^{rs} + S^{rs} \partial_r (\epsilon(a)a)^{-\frac{1}{2}} \\
+ (\epsilon(a)a)^{-\frac{1}{2}} \partial_m (\epsilon(a)a)^{\frac{1}{2}} \overline{S}^{ms} \\
+ \frac{1}{2} (\partial_m a_{rk} + \partial_r a_{mk} - \partial_k a_{mr}) a^{sk} \overline{S}^{rm} \\
= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} \partial_r S^{rs} + S^{rs} \partial_r (\epsilon(a)a)^{-\frac{1}{2}} \\
+ (\epsilon(a)a)^{-\frac{1}{2}} (\epsilon(a)a)^{-\frac{1}{2}} S^{ms} \partial_m (\epsilon(a)a)^{\frac{1}{2}} \\
+ \frac{1}{2} (\epsilon(a)a)^{-\frac{1}{2}} (S^{rm} \partial_m a_{rk} + S^{rm} \partial_r a_{mk} - S^{rm} \partial_k a_{mr}) a^{sk}
\end{cases} \tag{13}$$

(15)

Using the skew-symmetry of S_{rm} we get

$$\left[\overline{S}^{rs}\right]_{|r} = \begin{cases}
\frac{\left(\epsilon(a)a\right)^{-\frac{1}{2}}\partial_{r}S^{rs}}{S^{rs}\partial_{r}\left(\epsilon(a)a\right)^{-\frac{1}{2}} + \left(\epsilon(a)a\right)^{-1}S^{ms}\partial_{m}\left(\epsilon(a)a\right)^{\frac{1}{2}}}{S^{rs}\partial_{m}\left(\epsilon(a)a\right)^{\frac{1}{2}}} \\
+\frac{1}{2}\left(\epsilon(a)a\right)^{-\frac{1}{2}}\left(S^{rm}\partial_{m}a_{rk} + S^{rm}\partial_{r}a_{mk} - S^{rm}\partial_{k}a_{mr}\right)a^{sk}
\end{cases}$$

$$= \begin{cases}
\left(\epsilon(a)a\right)^{-\frac{1}{2}}\partial_{r}S^{rs} \\
-\frac{1}{2}\left(\epsilon(a)a\right)^{-\frac{1}{2}}\left(a^{sk}\partial_{k}a_{mr}S^{rm}\right)
\end{cases}$$
(17)

In the last term, put $b_{smr} \doteq a^{sk} \partial_k a_{mr}$ which is symmetric in the last two indexes. Due to the skew-symmetry of S^{rm} we have then $b_{srm} S^{rm} = 0$ and get

$$\left[\overline{S}^{rs}\right]_{r} = \left(\epsilon(a)a\right)^{-\frac{1}{2}} \partial_r S^{rs} \tag{19}$$

(2) and (19):
$$S_{...|r}^{rs} = \partial_r S^{rs}$$
 (20)

p279 - Exercise 5 7.24

Let b_{mn} an absolute covariant tensor. Show that the cofactors of the elements b_{mn} in the determinant $|b_{mn}|$ are the components of a relative contravariant tensor of weight 2.

Let's put $b \doteq |b_{mn}|$. We have (see **2.202**)

$$b_{mr}\Delta^{ms} = \delta_r^s b \tag{1}$$

where Δ^{ms} is the cofactor associated with element b_{ms} . Note that, for the moment being, the position of the indexes does not imply any tensor characteristics of this object. δ_r^s is a mixed absolute tensor of order 2 (see page 243). Also b is a relative invariant of weight 2 (see 7.202).

So we have the following transformation rules

$$\begin{cases}
\delta'_{r}^{s} = \delta_{v}^{u} \frac{\partial x'^{s}}{\partial x^{u}} \frac{\partial x^{v}}{\partial x'^{r}} \\
b' = J^{2}b \\
b'_{mr} = b_{uv} \frac{\partial x^{u}}{\partial x'^{m}} \frac{\partial x^{v}}{\partial x'^{r}}
\end{cases}$$
(2)

Using (1)

$$b'_{mr}\Delta^{'ms} = \delta_r^{'s}b' \tag{3}$$

Substituting with (2)

$$b_{uv} \frac{\partial x^u}{\partial x'^m} \frac{\partial x^v}{\partial x'^r} \Delta^{'ms} = \delta_v^u \frac{\partial x^{'s}}{\partial x^u} \frac{\partial x^v}{\partial x'^r} J^2 b \tag{4}$$

$$b_{uv} \frac{\partial x^{u}}{\partial x'^{m}} \frac{\partial x^{v}}{\partial x'^{r}} \Delta'^{ms} = \frac{\partial x'^{s}}{\partial x^{u}} \frac{\partial x^{v}}{\partial x'^{r}} J^{2} b_{mv} \Delta^{mu}$$

$$\tag{5}$$

$$b_{uv} \frac{\partial x^{u}}{\partial x'^{m}} \frac{\partial x^{v}}{\partial x'^{r}} \Delta^{'ms} = \frac{\partial x^{'s}}{\partial x^{u}} \frac{\partial x^{v}}{\partial x'^{r}} J^{2} b_{mv} \Delta^{mu}$$

$$\times \frac{\partial x^{'r}}{\partial x^{p}} \qquad b_{up} \frac{\partial x^{u}}{\partial x'^{m}} \Delta^{'ms} = J^{2} b_{mp} \Delta^{mu} \frac{\partial x^{'s}}{\partial x^{u}}$$

$$(5)$$

This is a system of N^2 linear equations in N^2 unknowns $\Delta^{'ms}$. We claim that $\Delta^{'ms} = J^2 \Delta^{ij} \frac{\partial x^{'m}}{\partial x^i} \frac{\partial x^{'s}}{\partial x^j}$ is a solution of that system.

Substituting this candidate solution in the left side of (6) gives

$$b_{up} \frac{\partial x^{u}}{\partial x'^{m}} J^{2} \Delta^{ij} \frac{\partial x^{'m}}{\partial x^{i}} \frac{\partial x^{'s}}{\partial x^{j}} = J^{2} b_{up} \delta^{u}_{i} \Delta^{ij} \frac{\partial x^{'s}}{\partial x^{j}}$$
 (7)

$$=J^{2}b_{mp}\Delta^{mu}\frac{\partial x^{'s}}{\partial x^{u}}\tag{8}$$

proving that our candidate solution is indeed the solution for (6), provided of course the usual conditions on the solvability of a system of linear equations.

7.25 p279 - Exercise 6

Determine the tensor character of the cofactors in the determinants formed by the components of

- (a) a mixed absolute tensor
- (b) a relative contravaraint tensor of weight 1.

(a)

Let's put $b \doteq |b_n^m|$. We have (see **2.202**)

$$b_r^m \Delta^{ms} = \delta_r^s b \tag{1}$$

where Δ^{ms} is the cofactor associated with element b_s^m . Note that, for the moment being, the position of the indexes does not imply any tensor characteristics of this object. δ_r^s is a mixed absolute tensor of order 2 (see page 243). Also b is a relative invariant of weight 2 (see **7.202**).

So we have the following transformation rules

$$\begin{cases}
\delta'_{r}^{s} = \delta_{v}^{u} \frac{\partial x'^{s}}{\partial x^{u}} \frac{\partial x^{v}}{\partial x'^{r}} \\
b' = J^{2}b \\
b'_{r}^{m} = b_{v}^{u} \frac{\partial x'^{m}}{\partial x^{u}} \frac{\partial x^{v}}{\partial x'^{r}}
\end{cases}$$
(2)

Using (1)

$$b_r^{'m} \Delta^{'ms} = \delta_r^{'s} b^{'} \tag{3}$$

Substituting with (2)

$$b_{v}^{u} \frac{\partial x^{'m}}{\partial x^{u}} \frac{\partial x^{v}}{\partial x^{'r}} \Delta^{'ms} = \delta_{v}^{u} \frac{\partial x^{'s}}{\partial x^{u}} \frac{\partial x^{v}}{\partial x^{'r}} J^{2} b \tag{4}$$

$$b_v^u \frac{\partial x^{'m}}{\partial x^u} \frac{\partial x^v}{\partial x^{'r}} \Delta^{'ms} = \frac{\partial x^{'s}}{\partial x^u} \frac{\partial x^v}{\partial x^{'r}} J^2 b_v^m \Delta^{mu}$$
 (5)

$$\times \frac{\partial x^{'r}}{\partial x^{p}} \qquad \qquad b_{p}^{u} \frac{\partial x^{'m}}{\partial x^{u}} \Delta^{'ms} = J^{2} b_{p}^{m} \Delta^{mu} \frac{\partial x^{'s}}{\partial x^{u}} \tag{6}$$

This is a system of N^2 linear equations in N^2 unknowns $\Delta^{'ms}$. We claim that $\Delta^{'ms} = J^2 \Delta^{ij} \frac{\partial x^i}{\partial x^{'m}} \frac{\partial x^{'s}}{\partial x^j}$ is a solution of that system.

Substituting this candidate solution in the left side of (6) gives

$$b_{p}^{u} \frac{\partial x^{'m}}{\partial x^{u}} J^{2} \Delta^{ij} \frac{\partial x^{i}}{\partial x^{'m}} \frac{\partial x^{'s}}{\partial x^{j}} = J^{2} b_{p}^{u} \delta_{u}^{i} \Delta^{ij} \frac{\partial x^{'s}}{\partial x^{j}}$$
 (7)

$$=J^2 b_p^m \Delta^{mu} \frac{\partial x'^s}{\partial x^u} \tag{8}$$

proving that our candidate solution is indeed the solution for (6), provided of course the usual conditions on the solvability of a system of linear equations.

We rewrite the cofactor as Δ_m^s which transform as

$$\Delta_m^s = J^2 \Delta_j^i \frac{\partial x^i}{\partial x'^m} \frac{\partial x'^s}{\partial x^j}$$

and conclude that the cofactor is a relative mixed tensor of weight 2.

 \Diamond

(b) Let's put $b = |b^{mn}|$. We have (see **2.202**)

$$b^{mr}\Delta^{ms} = \delta^s_r b \tag{9}$$

where Δ^{ms} is the cofactor associated with element b^{ms} . Note that, for the moment being, the position of the indexes does not imply any tensor characteristics of this object. δ_r^s is a mixed absolute tensor of order 2 (see page 243). Also b is a relative invariant of weight 2 (see 7.202).

So we have the following transformation rules

$$\begin{cases}
\delta'_{r}^{s} = \delta_{v}^{u} \frac{\partial x'^{s}}{\partial x^{u}} \frac{\partial x^{v}}{\partial x'^{r}} \\
b' = J^{2}b \\
b'^{mr} = Jb^{uv} \frac{\partial x'^{m}}{\partial x^{u}} \frac{\partial x'^{r}}{\partial x^{v}}
\end{cases} (10)$$

Using (1)

$$b^{'mr} \Delta^{'ms} = \delta_r^{'s} b^{'} \tag{11}$$

Substituting with (2)

$$Jb^{uv}\frac{\partial x^{'m}}{\partial x^{u}}\frac{\partial x^{'r}}{\partial x^{v}}\Delta^{'ms} = \delta^{u}_{v}\frac{\partial x^{'s}}{\partial x^{u}}\frac{\partial x^{v}}{\partial x^{'r}}J^{2}b$$
(12)

$$Jb^{uv}\frac{\partial x^{'m}}{\partial x^{u}}\frac{\partial x^{'r}}{\partial x^{v}}\Delta^{'ms} = \frac{\partial x^{'s}}{\partial x^{u}}\frac{\partial x^{v}}{\partial x^{'r}}J^{2}b^{mv}\Delta^{mu}$$
(13)

$$Jb^{uv}\frac{\partial x^{'m}}{\partial x^{u}}\frac{\partial x^{'r}}{\partial x^{v}}\Delta^{'ms} = \frac{\partial x^{'s}}{\partial x^{u}}\frac{\partial x^{v}}{\partial x^{'r}}J^{2}b^{mv}\Delta^{mu}$$

$$\times \frac{\partial x^{p}}{\partial x^{'r}} \qquad b^{up}\frac{\partial x^{'m}}{\partial x^{u}}\Delta^{'ms} = Jb^{mp}\Delta^{mu}\frac{\partial x^{'s}}{\partial x^{u}}$$

$$(13)$$

This is a system of N^2 linear equations in N^2 unknowns $\Delta^{'ms}$. We claim that $\Delta^{'ms} = J\Delta^{ij} \frac{\partial x^i}{\partial x'^m} \frac{\partial x^i}{\partial x^j}$ is a solution of that system.

Substituting this candidate solution in the left side of (6) gives

$$b^{up} \frac{\partial x^{'m}}{\partial x^{u}} J \Delta^{ij} \frac{\partial x^{i}}{\partial x^{'m}} \frac{\partial x^{'s}}{\partial x^{j}} = J b^{up} \delta^{i}_{u} \Delta^{ij} \frac{\partial x^{'s}}{\partial x^{j}}$$

$$\tag{15}$$

$$= Jb^{mp} \Delta^{mu} \frac{\partial x'^{s}}{\partial x^{u}} \tag{16}$$

proving that our candidate solution is indeed the solution for (6), provided of course the usual conditions on the solvability of a system of linear equations.

We rewrite the cofactor as Δ_m^s which transform as

$$\Delta_{m}^{s} = J \Delta_{j}^{i} \frac{\partial x^{i}}{\partial x'^{m}} \frac{\partial x'^{s}}{\partial x^{j}}$$

and conclude that the cofactor is a relative mixed tensor of weight 1.

7.26 p279 - Exercise 7

In the space-time of relativity with metric form

$$(dx^1)^2 + (dx^2)^2 + (dx^3)^2 - (dx^4)^2$$

the 3-space with equation

$$(x^1)^2 + (x^2)^2 + (x^3)^2 - (x^4)^2 = 0$$

is called a null cone. prove that the 3-volume of any portion of the null cone is zero.

We have $\mathbf{7.414}: v_{(3)} = \int_{R_{(3)}} dv_{(3)}$ with $\mathbf{7.410}: dv_{(3)} = (\epsilon(b)b)^{\frac{1}{2}} \epsilon(\tau) \left| d_{(\beta)} y_{\alpha} \right|$ and $(\mathbf{7.409}): b_{\alpha\beta} = a_{ks} \frac{\partial x^k}{\partial y_{\alpha}} \frac{\partial x^s}{\partial y_{\beta}}$. Let's compute $b = |b_{\alpha\beta}|$. We define the intrinsic parameters (x^1, x^2, x^3) for the (y_{α}) . We have

$$(a_{mn}) = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{vmatrix}$$
 (1)

Let's define $R = \sqrt{(y^1)^2 + (y^2)^2 + (y^3)^2}$ and using the equation of the null cone in the form

$$\left(x^4\right)^2 = R^2$$

we get

$$|b_{mn}| = \begin{vmatrix} 1 - \left(\frac{x^1}{R}\right)^2 & \frac{x^1 x^2}{R^2} & \frac{x^1 x^3}{R^2} \\ \frac{x^1 x^2}{R^2} & 1 - \left(\frac{x^2}{R}\right)^2 & \frac{x^2 x^3}{R^2} \\ \frac{x^1 x^3}{R^2} & \frac{x^2 x^3}{R^2} & 1 - \left(\frac{x^3}{R}\right)^2 \end{vmatrix}$$
(2)

$$=1-\left(\frac{x^1}{R}\right)^2-\left(\frac{x^2}{R}\right)^2-\left(\frac{x^2}{R}\right)^2\tag{3}$$

$$=1 - \frac{R^2}{R^2} \tag{4}$$

$$=0 (5)$$

So, $dv_{(3)} = 0$ at any point of the null cone giving a zero 3-volume everywhere on that manifold.

7.27 p279 - Exercise 8†

Prove that a polar N-space of constant curvature is oriented if N is odd and unoriented if N is even., but that an antipodal N-space of constant curvature is always oriented.

Let's us first sum up some key-definitions which could be usefull for proving the above assumption.

- a) Chapter 4 pages 111-116: In a space with constant positive curvature, two adjacent geodesics issuing from a point O intersect at a point O' at a distance $s = \frac{\pi}{\sqrt{\epsilon K}}$. If we have O = O', than the space is called **polar** (or elliptic).
- b) The factor $d\tau_{(M)} = |d_{(\beta)}y^{\alpha}|$ is called the *intrinsic extension of the infinitesimal cell in* the subspace V_M . The following relations exist:

$$d\tau_M^{k_1...k_M} = \nu^{k_1...k_M} d\tau_{(M)}$$

with

$$\nu^{k_1...k_M} = \epsilon^{k_1...k_M} \frac{\partial x^{k_1} \dots x^{k_M}}{\partial y^{\alpha_1} \dots y^{\alpha_M}}$$

 $\nu^{\mathbf{k_1}...\mathbf{k_M}}$ is called the \mathbf{M} -direction of V_M at a point P.

If M = N then we see that $\nu^{k_1...k_M} = \epsilon^{k_1...k_M}$.

- c) page 261: Comparison of M-cells at two different points A and B in a region R_M of the subspace V_M is achieved as follows: The infinitesimal cell at A, say, is moved in a continuous manner to B along a path C lying in R_M , such that, at each stage of the continuous motion, the intrinsic extension of the cell is non-zero. The orientations of the two cells are then compared at point B.
- d) page 261: There are, however, regions where the orientations of cells at different points cannot be compared because the procedure adapted above is not unique. Such regions are called unoriented or one-sided.

Before delving in an attempt, some things are not clear for me. E.g. in c), how can one be sure that such a path exist zo that the intrinsic extension does not vanish.

7.28 p279 - Exercise 9

Show that the total volme of a polar 3–space of constant curvature R^{-2} is $\pi^2 R^3$, and that the volume is $2\pi^2 R^3$ if the space is antipodal.

7.29 p279 - Exercise 10

If r_{mn} is an absolute tensor in 4-space, show that L defined by,

$$L = |r_{mn}|^{\frac{1}{2}}$$

is an invariant density. Discuss the tensor character of f^{mn} and g^{mn} , defined by

$$f^{mn} = \frac{\partial L}{\partial r_{mn}}, \quad g^{mn} = f^{mn} \left| f^{ks} \right|^{-\frac{1}{2}}$$

and also of g_{mn} , defined by

$$g_{ms}g^{ns} = \delta_n^n$$

prove that $|g_{mn}| = |f^{mn}|$. (Schrödinger)

♦