Module 04: Surface Water Hydraulics

Unit 06: Steady Channel Flow: Channel Network with Reverse Flow

Anirban Dhar

Department of Civil Engineering Indian Institute of Technology Kharagpur, Kharagpur

National Programme for Technology Enhanced Learning (NPTEL)

Dr. Anirban Dhar NPTEL Computational Hydraulics 1 /

Learning Objective

 To solve steady channel flow for channel network problem with reverse flow using implicit method.

Problem Definition to Solution

Problem Statement Trapezoidal Cross-section

$$A = By + \frac{1}{2}(m_1 + m_2)y^2$$

$$P = B + \left(\sqrt{1 + m_1^2} + \sqrt{1 + m_2^2}\right)y$$

$$R = \frac{A}{P}$$

$$T = B + (m_1 + m_2)y$$

where P = wetted perimeter.

Problem Statement Channel Data

Channel	length	width	Side Slope		reach(m)	m	S_0	Connectivity	
	(m)	(m)	$\overline{m_1}$	m_2	reach(III)	n	50	JN_1	JN_2
1	200	30	0	0	50	0.013	0.0005	1	3
2	200	40	0	0	50	0.013	0.0005	1	6
3	200	20	0	0	50	0.012	0.0005	3	4
4	100	20	0	0	25	0.014	0.0005	3	5
5	100	20	0	0	25	0.013	0.0005	5	4
6	100	25	0	0	25	0.013	0.0005	6	5
7	100	30	0	0	25	0.014	0.0005	4	2
8	300	30	0	0	75	0.014	0.0005	6	2

Junction Data

Junction Number	Depth (m)	Discharge (m^3/s)	Bed Elevation (m)
1	-99999	250	0.25
2	5	-250	0
3	-99999	-99999	0.15
4	-99999	-99999	0.05
5	-99999	-99999	0.10
6	-99999	-99999	0.15

Junction Data

Junction Number	Depth (m)	Discharge (m^3/s)	Bed Elevation (m)
1	-99999	250	0.25
2	5	-250	0
3	-99999	-99999	0.15
4	-99999	-99999	0.05
5	-99999	-99999	0.10
6	-99999	-99999	0.15

Required

Estimate the flow depth and discharge across the channels.

Problem Definition

Governing Equation for Channel Flow can be written as (Chaudhry, 2008),

Boundary Value Problem

Continuity Equation:

$$\frac{dQ}{dx} = 0$$

Problem Definition

Governing Equation for Channel Flow can be written as (Chaudhry, 2008),

Boundary Value Problem

Continuity Equation:

$$\frac{dQ}{dx} = 0$$

Momentum Equation:

$$\frac{d\mathbb{E}}{dx} = -S_f$$

with

$$\mathbb{E} = y + z + \frac{\alpha Q^2}{2gA^2}$$

Problem Definition

Governing Equation for Channel Flow can be written as (Chaudhry, 2008),

Boundary Value Problem

Continuity Equation:

$$\frac{dQ}{dx} = 0$$

Momentum Equation:

$$\frac{d\mathbb{E}}{dx} = -S_f$$

with

$$\mathbb{E} = y + z + \frac{\alpha Q^2}{2gA^2}$$

where

 $y{=}$ depth of flow $S_f{=} \text{ friction slope } \left(=\frac{n^2Q^2}{R^{4/3}A^2}\right)$ $A{=}$ cross-sectional area $R{=}$ hydraulic radius

x = coordinate direction

 $\alpha =$ momentum correction factor

Q = discharge

g= acceleration due to gravity

z= elevation of the channel bottom w.r.t. datum

Channel Flow

Algebraic Form Continuity Equation

Discretized form of continuity equation

$$C_{l,i} = Q_{l,i+1} - Q_{l,i} = 0, \forall i \in \{1, \dots, N_l\}$$

Algebraic Form Continuity Equation

Discretized form of continuity equation

$$C_{l,i} = Q_{l,i+1} - Q_{l,i} = 0, \forall i \in \{1, \dots, N_l\}$$

$$\frac{\partial C_{l,i}}{\partial y_{l,i}} = 0$$

$$\frac{\partial C_{l,i}}{\partial Q_{l,i}} = -1$$

$$\frac{\partial C_{l,i}}{\partial y_{l,i+1}} = 0$$

$$\frac{\partial C_{l,i}}{\partial y_{l,i+1}} = 1$$

Discretization

Momentum Equation

In discretized form of momentum equation for i^{th} segment of the l^{th} channel reach,

$$M_{l,i} = (y_{l,i+1} - y_{l,i}) + (z_{l,i+1} - z_{l,i}) + \frac{\alpha_l}{2g} \left(\frac{Q_{l,i+1}^2}{A_{l,i+1}^2} - \frac{Q_{l,i}^2}{A_{l,i}^2} \right)$$

$$+ \frac{n_l^2 \Delta x_l}{2} \left[\frac{Q_{l,i+1}^2}{R_{l,i+1}^{4/3} A_{l,i+1}^2} + \frac{Q_{l,i}^2}{R_{l,i}^{4/3} A_{l,i}^2} \right], \quad \forall i \in \{1, \dots, N_l\}$$

Considering reverse flow situation,

$$M_{l,i} = (y_{l,i+1} - y_{l,i}) + (z_{l,i+1} - z_{l,i}) + \frac{\alpha_l}{2g} \left(\frac{Q_{l,i+1}^2}{A_{l,i+1}^2} - \frac{Q_{l,i}^2}{A_{l,i}^2} \right)$$

$$+ \frac{n_l^2 \Delta x_l}{2} \left[\frac{Q_{l,i+1}|Q_{l,i+1}|}{R_{l,i+1}^{4/3} A_{l,i}^2} + \frac{Q_{l,i}|Q_{l,i}|}{R_{l,i}^{4/3} A_{l,i}^2} \right], \quad \forall i \in \{1, \dots, N_l\}$$

Discretization

Momentum Equation

In discretized form of momentum equation for i^{th} segment of the l^{th} channel reach,

$$M_{l,i} = (y_{l,i+1} - y_{l,i}) + (z_{l,i+1} - z_{l,i}) + \frac{\alpha_l}{2g} \left(\frac{Q_{l,i+1}^2}{A_{l,i+1}^2} - \frac{Q_{l,i}^2}{A_{l,i}^2} \right)$$

$$+ \frac{n_l^2 \Delta x_l}{2} \left[\frac{Q_{l,i+1}^2}{R_{l,i+1}^{4/3} A_{l,i+1}^2} + \frac{Q_{l,i}^2}{R_{l,i}^{4/3} A_{l,i}^2} \right], \quad \forall i \in \{1, \dots, N_l\}$$

Considering reverse flow situation,

$$M_{l,i} = (y_{l,i+1} - y_{l,i}) + (z_{l,i+1} - z_{l,i}) + \frac{\alpha_l}{2g} \left(\frac{Q_{l,i+1}^2}{A_{l,i+1}^2} - \frac{Q_{l,i}^2}{A_{l,i}^2} \right)$$

$$+ \frac{n_l^2 \Delta x_l}{2} \left[\frac{Q_{l,i+1}|Q_{l,i+1}|}{R_{l,i+1}^{4/3} A_{l,i+1}^2} + \frac{Q_{l,i}|Q_{l,i}|}{R_{l,i}^{4/3} A_{l,i}^2} \right], \quad \forall i \in \{1, \dots, N_l\}$$

 $2N_l$ non-linear equations with $2(N_l+1)$ unknowns (discharge + flow-depth)

Dr. Anirban Dhar NPTEL Computational Hydraulics 14 / 27

Algebraic Form

Momentum Equation

$$\begin{split} &\frac{\partial M_{l,i}}{\partial y_{l,i}} = -1 + D_1 \frac{2Q_{l,i}^2}{A_{l,i}^3} \frac{dA}{dy} \Big|_{l,i} - D_2 \left[\frac{2Q_{l,i}|Q_{l,i}|}{A_{l,i}^3 R_{l,i}^4} \frac{dA}{dy} \Big|_{l,i} + \frac{4Q_{l,i}|Q_{l,i}|}{3A_{l,i}^2 R_{l,i}^7} \frac{dR}{dy} \Big|_{l,i} \right] \\ &\frac{\partial M_{l,i}}{\partial Q_{l,i}} = -D_1 \frac{2Q_{l,i}}{A_{l,i}^3} + D_2 \frac{2|Q_{l,i}|}{A_{l,i}^2 R_{l,i}^4} \\ &\frac{\partial M_{l,i}}{\partial y_{l,i+1}} = 1 - D_1 \frac{2Q_{l,i+1}^2}{A_{l,i+1}^3} \frac{dA}{dy} \Big|_{l,i+1} - D_2 \left[\frac{2Q_{l,i+1}|Q_{l,i+1}|}{A_{l,i+1}^3 R_{l,i+1}^4} \frac{dA}{dy} \Big|_{l,i+1} + \frac{4Q_{l,i+1}|Q_{l,i+1}|}{3A_{l,i+1}^2 R_{l,i+1}^7} \frac{dR}{dy} \Big|_{l,i+1} \right] \\ &\frac{\partial M_{l,i}}{\partial Q_{l,i+1}} = D_1 \frac{2Q_{l,i+1}}{A_{l,i+1}^3} + D_2 \frac{2|Q_{l,i+1}|}{A_{l,i+1}^2 R_{l,i+1}^3} \\ &\frac{\partial M_{l,i}}{\partial Q_{l,i+1}} = D_1 \frac{2Q_{l,i+1}}{A_{l,i+1}^3} + D_2 \frac{2|Q_{l,i+1}|}{A_{l,i+1}^2 R_{l,i+1}^3} \end{split}$$

with

$$D_1 = \frac{\alpha_l}{2g} \quad \text{and} \quad D_2 = \frac{1}{2} n_l^2 \Delta x_l$$

Trapezoidal Section

For trapezoidal channel cross-section,

$$\frac{dA}{dy} = B + (m_1 + m_2)y$$

Trapezoidal Section

For trapezoidal channel cross-section,

$$\frac{dA}{dy} = B + (m_1 + m_2)y$$

$$\frac{dR}{dy} = \frac{T}{P} - \frac{R}{P} \frac{dP}{dy}$$

with

$$T = B + (m_1 + m_2)y$$

$$P = B + \left(\sqrt{1 + m_1^2} + \sqrt{1 + m_2^2}\right)y$$

$$R = \frac{A}{P}$$

$$\frac{dP}{dy} = \left(\sqrt{1 + m_1^2} + \sqrt{1 + m_2^2}\right)$$

Algebraic Form

In general form, continuity and momentum equations can be written as,

$$\begin{split} &\frac{\partial C_{l,i}}{\partial y_{l,i}} \Delta y_{l,i} + \frac{\partial C_{l,i}}{\partial Q_{l,i}} \Delta Q_{l,i} + \frac{\partial C_{l,i}}{\partial y_{l,i+1}} \Delta y_{l,i+1} + \frac{\partial C_{l,i}}{\partial Q_{l,i+1}} \Delta Q_{l,i+1} = -C_{l,i} \\ &\frac{\partial M_{l,i}}{\partial y_{l,i}} \Delta y_{l,i} + \frac{\partial M_{l,i}}{\partial Q_{l,i}} \Delta Q_{l,i} + \frac{\partial M_{l,i}}{\partial y_{l,i+1}} \Delta y_{l,i+1} + \frac{\partial M_{l,i}}{\partial Q_{l,i+1}} \Delta Q_{l,i+1} = -M_{l,i}, \\ &\forall i \in \{1,\dots,N_l\} \end{split}$$

Program Implementation Configuration 1

$$\mathsf{chl_inf} = \begin{bmatrix} 1 & 200 & 30 & 0 & 0 & 50 & 0.0130 & 0.0005 & 1 & 3 \\ 2 & 200 & 40 & 0 & 0 & 50 & 0.0130 & 0.0005 & 1 & 6 \\ 3 & 200 & 20 & 0 & 0 & 50 & 0.0120 & 0.0005 & 3 & 4 \\ 4 & 100 & 20 & 0 & 0 & 25 & 0.0140 & 0.0005 & 3 & 5 \\ 5 & 100 & 20 & 0 & 0 & 25 & 0.0130 & 0.0005 & 5 & 4 \\ 6 & 100 & 25 & 0 & 0 & 25 & 0.0130 & 0.0005 & 6 & 5 \\ 7 & 100 & 30 & 0 & 0 & 25 & 0.0140 & 0.0005 & 4 & 2 \\ 8 & 300 & 50 & 0 & 0 & 75 & 0.0140 & 0.0005 & 6 & 2 \end{bmatrix}$$

Program Implementation

$$\mathsf{chl_inf} = \begin{bmatrix} 1 & 200 & 30 & 0 & 0 & 50 & 0.0130 & 0.0005 & 1 & 3 \\ 2 & 200 & 40 & 0 & 0 & 50 & 0.0130 & 0.0005 & 1 & 6 \\ 3 & 200 & 20 & 0 & 0 & 50 & 0.0120 & 0.0005 & 3 & 4 \\ 4 & 100 & 20 & 0 & 0 & 25 & 0.0140 & 0.0005 & 3 & 5 \\ 5 & 100 & 20 & 0 & 0 & 25 & 0.0130 & 0.0005 & 5 & 4 \\ 6 & 100 & 25 & 0 & 0 & 25 & 0.0130 & 0.0005 & 6 & 5 \\ 7 & 100 & 30 & 0 & 0 & 25 & 0.0140 & 0.0005 & 4 & 2 \\ 8 & 300 & 50 & 0 & 0 & 75 & 0.0140 & 0.0005 & 6 & 2 \end{bmatrix}$$

$$\mathsf{jun_inf} = \begin{bmatrix} -99999 & 250 & 0.25 \\ 5 & -250 & 0 \\ -99999 & -99999 & 0.15 \\ -99999 & -99999 & 0.05 \\ -99999 & -99999 & 0.10 \\ -99999 & -99999 & 0.15 \end{bmatrix} \quad \mathsf{jun_con} = \begin{bmatrix} 2 & 1 & 2 & 0 \\ 2 & -7 & -8 & 0 \\ 3 & -1 & 3 & 4 \\ 3 & -3 & -5 & 7 \\ 3 & -4 & -6 & 5 \\ 3 & -2 & 6 & 8 \end{bmatrix}$$

Program Implementation Configuration 2

$$\mathsf{chl_inf} = \begin{bmatrix} 1 & 200 & 30 & 0 & 0 & 50 & 0.0130 & 0.0005 & 1 & 3 \\ 2 & 200 & 40 & 0 & 0 & 50 & 0.0130 & 0.0005 & 1 & 6 \\ 3 & 200 & 20 & 0 & 0 & 50 & 0.0120 & 0.0005 & 3 & 4 \\ 4 & 100 & 20 & 0 & 0 & 25 & 0.0140 & 0.0005 & 5 & 3 \\ 5 & 100 & 20 & 0 & 0 & 25 & 0.0130 & 0.0005 & 5 & 4 \\ 6 & 100 & 25 & 0 & 0 & 25 & 0.0130 & 0.0005 & 6 & 5 \\ 7 & 100 & 30 & 0 & 0 & 25 & 0.0140 & 0.0005 & 4 & 2 \\ 8 & 300 & 50 & 0 & 0 & 75 & 0.0140 & 0.0005 & 6 & 2 \end{bmatrix}$$

Program Implementation

$$\mathsf{chl_inf} = \begin{bmatrix} 1 & 200 & 30 & 0 & 0 & 50 & 0.0130 & 0.0005 & 1 & 37 \\ 2 & 200 & 40 & 0 & 0 & 50 & 0.0130 & 0.0005 & 1 & 6 \\ 3 & 200 & 20 & 0 & 0 & 50 & 0.0120 & 0.0005 & 3 & 4 \\ 4 & 100 & 20 & 0 & 0 & 25 & 0.0140 & 0.0005 & 5 & 3 \\ 5 & 100 & 20 & 0 & 0 & 25 & 0.0130 & 0.0005 & 5 & 4 \\ 6 & 100 & 25 & 0 & 0 & 25 & 0.0130 & 0.0005 & 6 & 5 \\ 7 & 100 & 30 & 0 & 0 & 25 & 0.0140 & 0.0005 & 4 & 2 \\ 8 & 300 & 50 & 0 & 0 & 75 & 0.0140 & 0.0005 & 6 & 2 \end{bmatrix}$$

$$\mathsf{jun_inf} = \begin{bmatrix} -99999 & 250 & 0.25 \\ 5 & -250 & 0 \\ -99999 & -99999 & 0.15 \\ -99999 & -99999 & 0.05 \\ -99999 & -99999 & 0.10 \\ -99999 & -99999 & 0.15 \end{bmatrix} \quad \mathsf{jun_con} = \begin{bmatrix} 2 & 1 & 2 & 0 \\ 2 & -7 & -8 & 0 \\ 3 & -1 & 3 & -4 \\ 3 & -3 & -5 & 7 \\ 3 & 4 & -6 & 5 \\ 3 & -2 & 6 & 8 \end{bmatrix}$$

Problem Statement Configuration 3

Program Implementation Configuration 3

$$\mathsf{chl_inf} = \begin{bmatrix} 1 & 200 & 30 & 0 & 0 & 50 & 0.0130 & 0.0005 & 1 & 3 \\ 2 & 200 & 40 & 0 & 0 & 50 & 0.0130 & 0.0005 & 1 & 6 \\ 3 & 200 & 20 & 0 & 0 & 50 & 0.0120 & 0.0005 & 3 & 4 \\ 4 & 100 & 20 & 0 & 0 & 25 & 0.0140 & 0.0005 & 5 & 3 \\ 5 & 100 & 20 & 0 & 0 & 25 & 0.0130 & 0.0005 & 4 & 5 \\ 6 & 100 & 25 & 0 & 0 & 25 & 0.0130 & 0.0005 & 6 & 5 \\ 7 & 100 & 30 & 0 & 0 & 25 & 0.0140 & 0.0005 & 4 & 2 \\ 8 & 300 & 50 & 0 & 0 & 75 & 0.0140 & 0.0005 & 6 & 2 \end{bmatrix}$$

Program Implementation

$$\mathsf{chl_inf} = \begin{bmatrix} 1 & 200 & 30 & 0 & 0 & 50 & 0.0130 & 0.0005 & 1 & 37 \\ 2 & 200 & 40 & 0 & 0 & 50 & 0.0130 & 0.0005 & 1 & 6 \\ 3 & 200 & 20 & 0 & 0 & 50 & 0.0120 & 0.0005 & 3 & 4 \\ 4 & 100 & 20 & 0 & 0 & 25 & 0.0140 & 0.0005 & 5 & 3 \\ 5 & 100 & 20 & 0 & 0 & 25 & 0.0130 & 0.0005 & 4 & 5 \\ 6 & 100 & 25 & 0 & 0 & 25 & 0.0130 & 0.0005 & 6 & 5 \\ 7 & 100 & 30 & 0 & 0 & 25 & 0.0140 & 0.0005 & 4 & 2 \\ 8 & 300 & 50 & 0 & 0 & 75 & 0.0140 & 0.0005 & 6 & 2 \end{bmatrix}$$

$$\mathsf{jun_inf} = \begin{bmatrix} -99999 & 250 & 0.25 \\ 5 & -250 & 0 \\ -99999 & -99999 & 0.15 \\ -99999 & -99999 & 0.05 \\ -99999 & -99999 & 0.10 \\ -99999 & -99999 & 0.15 \end{bmatrix} \quad \mathsf{jun_con} = \begin{bmatrix} 2 & 1 & 2 & 0 \\ 2 & -7 & -8 & 0 \\ 3 & -1 & 3 & -4 \\ 3 & -3 & 5 & 7 \\ 3 & 4 & -6 & -5 \\ 3 & -2 & 6 & 8 \end{bmatrix}$$

List of Source Codes

Channel Flow with Reverse Flow

- Channel Network with Configuration 1
 - steady_1D_channel_network_with_reverse_cfg1.sci

List of Source Codes

Channel Flow with Reverse Flow

- Channel Network with Configuration 1
 - steady_1D_channel_network_with_reverse_cfg1.sci
- Channel Network with Configuration 2
 - steady_1D_channel_network_with_reverse_cfg2.sci

List of Source Codes

Channel Flow with Reverse Flow

- Channel Network with Configuration 1
 - steady_1D_channel_network_with_reverse_cfg1.sci
- Channel Network with Configuration 2
 - steady_1D_channel_network_with_reverse_cfg2.sci
- Channel Network with Configuration 3
 - steady_1D_channel_network_with_reverse_cfg3.sci

Thank You

Reference

Chaudhry, M. H. (2008). Open-Channel Flow. Springer, India.