Overview

Summary

This problem covers Chapter 1 and Chapter 2 of the text. Chapter 1 deals with the Design Issues of Computer Architecture and Performance Measurement. Chapter 2 covers the MIPS Instruction Set Architecture.

Problem Set (Maximum Points 100): (Note there are 14 total problems)

- 1. (1.5) <§1.6> Consider three different processors P1, P2, and P3 executing the same instruction set. P1 has a 3 GHz clock rate and a CPI of 1.5. P2 has a 2.5 GHz clock rate and a CPI of 1.0. P3 has a 4.0 GHz clock rate and has a CPI of 2.2.
 - a. Which processor has the highest performance expressed in instructions per second?
 - b. If the processors each execute a program in 10 seconds, find the number of cycles and the number of instructions.
 - c. We are trying to reduce the time by 30% but this leads to an increase of 20% in the CPI. What clock rate should we have to get this time reduction?
- 2.(1.7) <§1.6> Consider two different implementations of the same instruction set architecture. The instructions can be divided into four classes according to their CPI (class A, B, C, and D). P1 with a clock rate of 2.5 GHz and CPIs of 1, 2, 3, and 3, and P2 with a clock rate of 3 GHz and CPIs of 2, 2, 2, and 2.

Given a program with a dynamic instruction count of 1.0E6 instructions divided into classes as follows: 10% class A, 20% class B, 50% class C, and 20% class D, which is faster: P1 or P2? a.What is the global CPI for each implementation?

- b. Find the clock cycles required in both cases.
- 3.(1.8) <§1.6> Compilers can have a profound impact on the performance of an application. Assume that for a program, compiler A results in a dynamic instruction count of 1.0E9 and has an execution time of 1.1 s, while compiler B results in a dynamic instruction count of 1.2E9 and an execution time of 1.5 s.
 - a. Find the average CPI for each program given that the processor has a clock cycle time of 1 ns.
 - b. Assume the compiled programs run on two different processors. If the execution times on the two processors are the same, how much faster is the clock of the processor running compiler A's code versus the clock of the processor running compiler B's code?
 - c. A new compiler is developed that uses only 6.0E8 instructions and has an average CPI of 1.1. What is the speedup of using this new compiler versus using compiler A or B on the original processor?
- 4.(1.10) Assume for arithmetic, load/store, and branch instructions, a processor has CPIs of 1, 12, and 5, respectively. Also assume that on a single processor a program requires the execution of 2.56E9 arithmetic instructions, 1.28E9 load/store instructions, and 256 million branch instructions. Assume that each processor has a 2 GHz clock frequency.

Assume that, as the program is parallelized to run over multiple cores, the number of arithmetic and load/store instructions per processor is divided by 0.7 x p (where p is the number of processors) but the number of branch instructions per processor remains the same.

a.<§1.7> Find the total execution time for this program on 1, 2, 4, and 8 processors, and show the relative speedup of the 2, 4, and 8 processor result relative to the single processor result.

Module 1: Problem Set A1

- b.<§§1.6, 1.8> If the CPI of the arithmetic instructions was doubled, what would the impact be on the execution time of the program on 1, 2, 4, or 8 processors?
- c. <§§1.6, 1.8> To what should the CPI of load/store instructions be reduced in order for a single processor to match the performance of four processors using the original CPI values?
- 5.(2.4) <§§2.2, 2.3> For the MIPS assembly instructions above, what is the corresponding C statement? Assume that the variables f, g, h, i, and j are assigned to registers \$s0, \$s1, \$s2, \$s3, and \$s4, respectively. Assume that the base address of the arrays A and B are in registers \$s6 and \$s7, respectively.

```
sll $t0, $s0, 2  # $t0 = f * 4
add $t0, $s6, $t0  # $t0 = &A[f]
sll $t1, $s1, 2  # $t1 = g * 4
add $t1, $s7, $t1  # $t1 = &B[g]
lw $s0, 0($t0)  # f = A[f]
addi $t2, $t0, 4
lw $t0, 0($t2)
add $t0, $t0, $s0
sw $t0, 0($t1)
```

6.(2.27) <§2.7> Translate the following loop into C. Assume that the C-level integer i is held in register \$11, \$s2 holds the C-level integer called result, and \$s0 holds the base address of the integer MemArray.

```
addi $t1, $0, 0

LOOP: lw $s1,0($s0)
add $s2,$s2,$s1
addi $s0,$s0,4
addi $t1,$t1,1
slti $t2,$t1,100
bne $t2,$0,LOOP
nop
```

7. Use the MTI Bare Metal Toolchain, and push the code from problem 6 through the assembler. The Makefile provided with the example code will output a assembly version. What will the binary values be of the instruction field? You may use assembler tools to solve, but in addition please provide the equations to solve for the LOOP field. (Explain how the value of the bne instruction is calculated)