Du 4 au 8 juin

Programme n°28

THERMODYNAMIQUE

TH2 Le premier principe de la thermodynamique

Exercices

Annexe: premier principe gaz parfait

Exercices

TH3 Le second principe de la thermodynamique

(Cours et exercices)

TH4 Les machines thermiques (Cours et exercices sauf systèmes ouverts et les diagrammes frigoristes)

- Inégalité de Clausius Carnot Système en contact avec un thermostat
 - Généralisation
- Machine monotherme
- Machines dithermes Notations et relations
 - Principe du moteur dithermeEtude de la machine frigorifique
- Etude de la pompe à chaleur
- Le cycle de Carnot Cycle de Carnot pour un gaz parfait → Description du cycle
 - → Travail et chaleur reçus par le gaz au cours du cycle
 - → Relation entre Q_F et Q_c
 - Cycle de Carnot pour un système diphasé
- Système en écoulement permanent : système ouvert
- Modèle du système ouvert
- Choix du système
- Equation de conservation de la masse
- Le premier principe

- Les diagrammes des frigoristes
- Présentation du diagrammeCycle d'une machine frigorifique

5. Machines thermiques

Application du premier principe et du deuxieme principe aux machines thermiques cycliques dithermes : rendement, efficacité, théorème de	
Carnot.	Analyser un dispositif concret et le modéliser par une machine cyclique ditherme.
	Définir un rendement ou une efficacité et la relier aux énergies échangées au cours d'un cycle. Justifier et utiliser le théorème de Carnot.

Citer quelques ordres de grandeur des rendements des machines thermiques réelles actuelles.

Exemples d'études de machines thermodynamiques réelles à l'aide de diagrammes (p,h).

Utiliser le 1er principe dans un écoulement stationnaire sous la forme h_2 - h_1 = w_u +q, pour étudier une machine thermique ditherme.

SOLUTIONS AQUEUSES

AQ4 Diagrammes potentiel-pH (Cours uniquement)

- Définition et conventions
- Définition
- Frontières d'un diagramme E-pH
- Conventions
- Méthode générale conseillée
- Diagramme E-pH de l'eau
- Diagramme E-pH du fer
- Les données
- Frontières verticales : pH d'apparition des précipités
- Frontières horizontales
- Tracer du diagramme

Diagrammes potentiel-pH	
Principe de construction d'un diagramme potentiel- pH.	Attribuer les différents domaines d'un diagramme fourni à des espèces données.
Lecture et utilisation des diagrammes potentiel-pH Limite thermodynamique du domaine d'inertie électrochimique de l'eau.	Retrouver la valeur de la pente d'une frontière dans un diagramme potentiel-pH. Justifier la position d'une frontière verticale. Prévoir le caractère thermodynamiquement favorisé ou non d'une transformation par superposition de diagrammes.

Dosage des ions FeII par les ions CeIV dosage à la goutte et suivi potentiométrique
Dosage des ions Ag+ par les ions Cl- : potentiométrique et conductimétrique
Spectrométrie - Loi de Beer-Lambert
- Détermination du pK_A du BBT

Calorimétrie : Méthode des mélanges pour la valeur en eau du calorimètre Méthode électrique pour la capacité thermique de l'eau Méthode des mélanges pour l'enthalpie de fusion de la glace.