A Survey of Techniques for Fine-Grained Pill Image Matching

Adam Allevato

Andrew Sharp

The University of Texas at Austin

US NIH Pill Image Recognition

- Goal: Produce a system to identify cellphone-camera pictures of consumer medication
- Input: M consumer-quality (CQ) images and N highquality reference (Ref) images
- Output: M x N matrix of similarity ranks

Dataset [http://pir.nlm.nih.gov/challenge]

2 reference images

5 CQ images: taken by

1000 pills, 2000 ref images, 5000 CQ images

Challenges

- Matching: Classes are unknown at training time
- Fine-Grained: Differences between pills are small
- Small Dataset: Near zero-shot matching task
- Many Classes: 1000-way matching
- Incomplete Data: Need to infer back of pill from front **Observation**: even state-of-the-art CNN approaches struggle with this task

Key Idea: Siamese Networks

- Learn a discriminative mapping into N-D feature space
- Minimize contrastive loss (Y=1 if similar pair, else Y=0):

$$E = \frac{1}{2N} \sum_{n=1}^{N} (y)d^2 + (1-y) \max(margin - d, 0)^2$$
 [Chopra et al. 06]

Experimental Setup

Preprocessing

- Selective Search [J. R. R. Uijlings et al. 13] was used to crop consumer-quality images
- Networks were tested on selective search images (SS) and raw images (Full), as well as both together (Comb)
- SS alone generally improved mAP by about 0.001 (7%)

Successful SS Crops

LeNet

8 layers Trained from scratch Siamese configuration 2-dimensional mapping

CaffeNet

21 layers Fine-tuned last layer

Siamese configuration 20-dimensional mapping

Data Setup

- 30% of images used as test (N=600)
- Hard Negative Mining: Test networks on training set, generate new training pairs from errors, train again
- Front/Back: Use contextual knowledge (filenames) to correlate pill fronts with pill backs

Results: mAP (N=600)

-Based on **top 2** ranks (pill front and back)

'''' / CaffeNet	$\overline{(i,j)}$	LeNet, Full LeNet, SS CaffeNet, Full	
/ Carrentet,		CaffeNet,	

Network	mAP	+ Hard Neg	+ Front/Back
Random	0.0050	-	-
LeNet, Full	0.0148	0.0157	0.0280
LeNet, SS	0.0161	0.0175	0.0326
CaffeNet, Full	0.0278	-	0.0323
CaffeNet,			
Comb	0.0275	0.0287	0.0428

Observation: Combination of data mining techniques results in best performance for this challenging dataset

Analysis

+ Hard Neg

Dependence on number of reference pills

T-SNE Visualizations

Best Matches (N=600)

