

Parshvanath Charitable Trust's A. P. SHAH INSTITUTE OF TECHNOLOGY, THANE (All Programs Accredited by NBA)

Department of Information Technology

ITL804: R-PROGRAMMING LAB

MINI-PROJECT PRESENTATION

ACADEMIC YEAR: 2021-22

CLASS-BRANCH: BE-IT

SUBJECT IN-CHARGE: SHAFAQUE FATMA SYED

PROJECT TITLE: COVID-19 WORLD VACCINATION PROGRESS

STUDENT TEAM:

- AKSHATA GAWAS (18104039)
- SIDDHESH GAIKWAD (18104069)
- KRISHITA TOLIA (18104021)

ROADMAP

- INTRODUCTION
- OBJECTIVES
- SCOPE
- SUMMARIZING THE DATASET
- VISUALIZING THE DATASET
- ALGORITHM DETAILS
- RESULTS
- REFERENCES

INTRODUCTION

- ► WORLD NEEDS TO BE IMMUNE TO COVID-19
- BEING VACCINATED IS THE SOLUTION
- TRACKING THE PROGRESS

OBJECTIVES

- TO FIND VACCINATION PROGRESS ACROSS DIFFERENT COUNTRIES.
- TO FIND TOTAL PEOPLE VACCINATED AROUND THE WORLD.
- TO VISUALIZE VACCINATION PROGRESS IN INDIA.
- TO PREDICT NUMBER OF VACCINATED PEOPLE IN INDIA AFTER N DAYS.

SCOPE

- VACCINE COMPANIES CAN KEEP TRACK OF THE ACTUAL PROGRESS
 OF VACCINATION THROUGHOUT THE WORLD
- COUNT OF VACCINES USED ALL OVER THE WORLD CAN BE TRACKED
 TO ADJUST THE SUPPLY CHAIN

SUMMARIZING THE DATASET

- THE DATASET HAS 15 COLUMNS, AND 74961 ROWS HAVING DATA OF DIFFERENT COUNTRIES.
- THE RANGE OF DATE FOR WHICH THE DATA WAS RECORDED WAS "2021-01-16" TO "2022-02-04" I.E 385 DAYS.

FIG NO.1 GLIMPSE OF DATASET

VISUALISING THE DATASET

FIG NO.2 WORLD VACCINATION PROGRESS

VISUALISING THE DATASET

FIG NO.3 INDIA'S VACCINATION PROGRESS

ALGORITHM DETAILS

LINEAR REGRESSION:

LINEAR REGRESSION IS A KIND OF STATISTICAL ANALYSIS THAT ATTEMPTS TO SHOW A RELATIONSHIP BETWEEN TWO VARIABLES. LINEAR REGRESSION LOOKS AT VARIOUS DATA POINTS AND PLOTS A TREND LINE.

RESULTS

HERE, WE HAVE PREDICTED THE VALUE OF NUMBER OF PEOPLE VACCINATED AFTER 500 DAYS USING THE PARAMETERS IN BETA VECTOR.

```
> prediction <- betas[2]*500 + betas[1]
> print(prediction)
[1] 2001555090
>
```

FIG NO. 4 PREDICTION

RESULTS

ROOT MEAN SQUARED ERROR:

```
> rmse <- 1/385*sum(a)
> print(rmse)
[1] 2.03388e+18
```

FIG NO.5 RMSE

CORRELATION COEFFICIENT:

```
> cor(Dataset$Vaccinated_people, Dataset$a)
[1] 0.9727252
```

FIG NO.6 CORRELATION COEFFICIENT

REFERENCES

1.	https://www.kaggle.com/datasets/gpreda/covid-world-vaccination-progress
2.	library(ggplot2) https://www.rdocumentation.org/packages/ggplot2/versions/3.3.5
3.	library(highcharter) https://www.rdocumentation.org/packages/highcharter/versions/0.9.4
4.	library(dpylr): https://www.rdocumentation.org/packages/dplyr/versions/0.7.8
5.	library(Hmisc) https://www.rdocumentation.org/packages/Hmisc/versions/4.7-0
6.	library(tidyverse) https://www.rdocumentation.org/packages/tidyverse/versions/1.3.1
7.	library(janitor) https://www.rdocumentation.org/packages/janitor/versions/2.1.0
8.	library(funModeling) https://www.rdocumentation.org/packages/funModeling/versions/1.9.4

