

Universidade Federal de Pernambuco Centro de Informática

Cálculo Numérico (IF215)

Profa. Maíra Santana

Representação dos números

- Os dígitos são representados como potências da base.
- Exemplos outras bases para decimal:

•
$$(1101)_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 13$$

•
$$(312)_8 = 3 \cdot 8^2 + 1 \cdot 8^1 + 2 \cdot 8^0 = 202$$

•
$$(12E)_{16} = 1 \cdot 16^2 + 2 \cdot 16^1 + 14 \cdot 16^0 = 302$$

•
$$(0.1011)_2 = 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3} + 1 \cdot 2^{-4} = \mathbf{0}.6875$$

•
$$(0.17)_8 = 1 \cdot 8^{-1} + 7 \cdot 8^{-2} = 0.234375$$

• Exemplo decimal para binário:

$$347 = d_j \cdot 2^j + d_{j-1} \cdot 2^{j-1} + \dots + d_1 \cdot 2^1 + d_0 \cdot 2^0$$

$$(101011011)_2$$

n	n // 2	n % 2	
347	173	1	1
173	86	1	
1	0	1	

n	2 · n	Parte inteira
0.625	1.25	1
0.25	0.5	0
0.5	10	1

$$0.625 = d_1 \cdot 2^{-1} + d_2 \cdot 2^{-2} + d_3 \cdot 2^{-3} + \cdots$$

$$(\mathbf{0}. \, \mathbf{101})_{\mathbf{2}}$$

Tipos e análise de erros

- Tipos de erros:
 - Arredondamento, truncamento (discretização) e inerente (modelagem, entrada/erros de medição).
- · Análise de erros (mensuração/representação):
 - Erro absoluto: $\Delta \bar{x} = x \bar{x}$
 - Erro relativo: $\delta \bar{x} = \frac{\Delta \bar{x}}{x} = \frac{(x \bar{x})}{x}$
 - Percentual: $p\bar{x} = 100 \cdot \delta \bar{x} \%$
- Atenção aos arredondamentos!

Underflow

Sistema de ponto flutuante

• Sistema de ponto flutuante:

$$F(\beta, t, e_{min}, e_{max}) \rightarrow ex. F(10, 6, -99, 99)$$

β: base | e: expoente | t: número de dígitos

- É um sistema finito:
 - Portanto, é possível calcular a quantidade de elementos distintos em F(n(F)):

$$n(F) = 2 * (\beta - 1) * \beta^{t-1} * (e_{max} - e_{min} + 1) + 1$$

• Dois números (x_1 e x_2) são consecutivos em uma máquina se, fixado o expoente e, $x_2-x_1=\beta^{e-t+1}$

Ex.: Sejam $x_1 = 3.147 * 10^{-9}$ e $x_2 = 3.148 * 10^{-9}$ pertencentes a máquina F(10,4,-9,9)

$$x_2 - x_1 = (3,148 - 3,147) * 10^{-9} = 0,001 * 10^{-9} = 1 * 10^{(-9-4+1)} = 10^{-12}$$

Portanto, a distância entre números consecutivos é uniforme.

Zeros de funções

• Ponto(s) em que f(x) = 0;

Lembrem-se: as raízes reais são as **interseções** com o eixo x.

- Métodos iterativos:
 - 1. Encontrar intervalo contendo raízes: aproximação inicial.
 - 2. Refinamento para obter uma boa aproximação: **métodos**.

PARTE 1: Aproximação inicial - estudo analítico

- Teorema de Bolzano: para saber a localização da raiz "Se f é uma função **contínua** em um certo intervalo [a;b] e troca de sinal nos extremos deste intervalo, isto é, $f(a) \times f(b) < 0$, então existe <u>pelo menos uma raiz real</u> de f em [a;b]."
- Se além de satisfazer o Teorema a função for sempre crescente ou decrescente (preserva o sinal) em [a;b], existirá <u>uma única raiz real</u> no intervalo e ele será chamado de **intervalo de separação**.

PARTE 2: Aplicar os métodos

Método da Bisseção

Passos do método da Bisseção:

- I. Parte de um intervalo de separação I = [a; b] de uma raiz ξ da função f(x);
- I. Divide o intervalo em 2 subintervalos **a partir do ponto médio** (x_i) de [a;b] (subintervalos iguais);
- III. Verifica em qual subintervalo a raiz ficou ($[a; x_i]$ ou $[x_i; b]$):
 - Lembrando: condição para ter uma raiz em um intervalo troca de sinal:

$$f(a) \times f(x_i) < 0$$
 ou $f(b) \times f(x_i) < 0$

- IV. Passa a considerar o subintervalo onde a raiz ficou como um novo intervalo [a;b]:
 - Perceba que esse novo intervalo possui amplitude igual a metade da amplitude do intervalo original.
- Repete os passos II a IV até que as condições de parada sejam satisfeitas.

Método da Falsa Posição (cordas)

Passos do Método da Falsa posição:

- I. Parte de um intervalo de separação I = [a; b] de uma raiz ξ da função f(x);
- II. Calcula o valor de x_i a partir do intervalo [a;b] aplicado ao cálculo da raiz da reta;
- III. Verifica em qual subintervalo a raiz ficou ($[a; x_i]$ ou $[x_i; b]$):
 - Lembrando: condição para ter uma raiz em um intervalo troca de sinal:

$$f(a) \times f(x_i) < 0$$
 ou $f(b) \times f(x_i) < 0$

- IV. Passa a considerar o subintervalo onde a raiz ficou como um novo intervalo [a;b]:
 - Se $f(a) \times f(x_i) < 0$, $b = x_i$.
 - $Sef(b) \times f(x_i) < 0$, $a = x_i$.
- V. Repete os passos II a IV até que o critério de parada seja alcançado.

Método Iterativo Linear (MIL)

Passos do MIL:

- Parte de um intervalo de separação $I=[a\;;b]$ de uma raiz ξ da função f(x), com valor inicial x_0 preestabelecido;
- II. Define $\varphi(x)$ de maneira que $\varphi(x) = x$ e sua derivada $\varphi'(x)$;
- III. Verifica se há convergência:
 - i. $\varphi \in \varphi'$ forem contínuas em I;
 - ii. $|\varphi'(x)| < 1, \forall x \in I$;
 - *iii.* $x_0 \in I$;
- IV. Calculamos sucessivos valores de x_i a partir de $x_{i+1} = \varphi(x_i)$ até que as condições de parada sejam satisfeitas.

$\varphi(x_i) = x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$

Método de Newton

- Nem sempre é simples definir uma função de iteração $\varphi(x)$ que satisfaça as condições de convergência;
- Método de Newton, Newton-Raphson ou Tangentes:
 - Fornece uma função de iteração que satisfaça antecipadamente as condições de convergência.
 - Objetivo: construir φ tal que $\varphi'(\xi) = 0$.

$$\varphi(x) = x - \frac{f(x)}{f'(x)}$$

Processo iterativo:

$$\varphi(x_i) = x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
, $i = 0, 1, 2, ...$

Método das Secantes

$$\varphi(x_i) = x_{i+1} = \frac{x_{i-1}f(x_i) - x_if(x_{i-1})}{f(x_i) - f(x_{i-1})}$$

- Quando a primeira derivada da função fica muito próxima de zero no intervalo de separação pode haver overflow quando utilizamos o método de Newton:
 - A derivada está no **denominador**: $\varphi(x) = x \frac{f(x)}{f'(x)}$
- Uma alternativa é **substituir** $f'(x_i)$ por:

$$\frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$$

Processo iterativo:

$$\varphi(x_i) = x_{i+1} = \frac{x_{i-1}f(x_i) - x_if(x_{i-1})}{f(x_i) - f(x_{i-1})}$$
, $i = 1, 2, 3, ...$

Referências

• Métodos Numéricos. José Dias dos Santos e Zanoni Carvalho da Silva. (capítulos 1 e 2);

Cálculo Numérico – aspectos teóricos e computacionais.
 Márcia A. Gomes Ruggiero e Vera Lúcia da Rocha Lopes.
 (capítulos 1 e 2).

Atividade prática

- 1. Será aceito apenas 1 envio;
- 2. A nota da atividade prática vale até 1,0 ponto extra;
- 3. O formulário ficará aberto até às 12h (meio dia) de amanhã.

https://forms.gle/id5puUrU9nWTjSwZ8