

EXAMEN DE FIN D'ÉTUDES SECONDAIRES **2017**

BRANCHE	SECTIONS	ÉPREUVE ÉCRITE
Chimie	В, С	Durée de l'épreuve 3 heures
		Date de l'épreuve 15 septembre 2017
		Numéro du candidat

QC = question de cours [21] ; ANN = application non numérique [18] ; AN = application numérique [21])

I. Substitution dans le cycle aromatique (13 points)

On réalise la mononitration du toluène (méthylbenzène).

- a. Ecrire l'équation globale de la réaction sachant que la nitration s'effectue surtout en position para par rapport au groupement méthyle. (QC2)
- b. Dresser le mécanisme réactionnel en détail. (QC5)

Le para nitrotoluène est un liquide de masse volumique $\rho = 1100 \text{ kg/m}^3$.

- c. Déterminer la quantité de matière totale de nitrotoluène que l'on peut fabriquer à partir de 100 kg de toluène sachant que le rendement de la réaction est de 90 %. (AN1)
- d. En réalité, il se forme 2 % de métanitrotoluène et 0,5 % d'orthonitrotoluène. Calculer alors le volume de paranitrotoluène obtenu. (AN2)
- e. Quel corps obtient-on en cas d'inversion de la suite des réactions (nitration du benzène et ensuite alkylation par le chlorométhane en présence du catalyseur chlorure d'aluminium)? Justifier votre réponse sur base des formules contributives à la mésomérie. (QC3)

II. Composés organiques oxygénés (23 points)

- 1. L'acide valproïque, noté **B**, aux effets antiépileptiques est un monoacide carboxylique à chaîne carbonée saturée. Il est synthétisé par oxydation totale d'un alcool **A** avec le dichromate de potassium en milieu acide.
 - a. Ecrire les systèmes rédox qui traduisent l'oxydation de l'alcool A par le dichromate de potassium en utilisant les formules générales. (QC5)
 - b. Quel volume d'une solution de dichromate de potassium de concentration molaire $c = 0.4 \, \text{M}$ faut-il utiliser pour oxyder complètement 200 ml de la solution d'alcool A de concentration molaire $c = 0.25 \, \text{M}$? (AN2)
- 2. Une analyse quantitative de l'acide carboxylique montre que le pourcentage massique en oxygène qu'il contient est de 22,22 %.
 - a. Déterminer la formule brute de l'acide B. (AN2)
 - b. Sachant que l'acide carboxylique n'est ramifié qu'une seule fois et ceci sur le carbone numéro 2, déterminer ses formules semi-développées possibles. (ANN2)

c. En réalité, la formule semi-développée de l'acide valproïque B est de la forme suivante, où R est un groupe alkyle. Identifier alors l'acide B et donner son nom. (ANN1)

- 3. Donner la formule semi-développée de l'alcool A ainsi que son nom. (ANN1)
- 4. On désire synthétiser un ester par action de la solution d'alcool **A** sur l'acide valproïque **B** en milieu acide.
 - a. A partir des formules semi-développées de **A** et **B**, écrire l'équation-bilan de cette estérification. (ANN2)
 - b. Déterminer le rendement de la réaction d'estérification si la masse de l'ester obtenu à partir de 200 ml de la solution d'alcool A de concentration molaire c = 0,25 M, est de 8,53 g. (AN2)
 - c. Détailler le mécanisme de l'estérification en utilisant les formules générales. (QC6)

III. Acides aminés et liaison peptidique (7 points)

Le composé A_1 est un acide α -aminé de formule brute $C_3H_7NO_2$.

- a. Ecrire sa formule semi-développée et marquer le carbone asymétrique. (ANN1)
- b. Représenter l'acide α-aminé A₁ naturel en projection de Fischer. (ANN1)
- c. En dégager la formule de structure spatiale de l'acide α -aminé A_1 naturel et préciser sa configuration en nomenclature CIP. (ANN2)

Par réaction de A_1 avec un autre acide α -aminé A_2 de formule $C_6H_{13}NO_2$, on obtient le dipeptide D.

- d. Ecrire la formule semi-développée de A₂ sachant que sa molécule contient deux atomes de carbone asymétriques et donner son nom dans la nomenclature IUPAC. (ANN1)
- e. Ecrire, à l'aide de formules développées, l'équation traduisant la synthèse du dipeptide D sachant que A_1 est l'acide α -aminé N-terminal. Entourer la liaison peptidique. (ANN2)

IV. Acides et bases (7 + 10 = 17 points)

- 1. Solution tampon ammoniacale
- a. Calculer la valeur du rapport des concentrations $[NH_3]/[NH_4^{\dagger}]$ dans le mélange tampon lorsque le pH est égal à 10. (AN1)
- b. Déterminer la masse de chlorure d'ammonium à dissoudre, sans variation notable de volume, dans un litre de solution aqueuse d'ammoniac de concentration c = 0,25 M pour réaliser une solution tampon de pH = 10. (AN2)
- c. A 100 ml de la solution tampon ainsi préparée, on ajoute 1·10⁻³ mol d'une solution d'acide chlorhydrique.
 - Calculer la nouvelle valeur du pH. Commenter le résultat en prenant en considération le rôle de la solution tampon. (AN3, ANN1)

2. Titrage

On prépare une solution aqueuse d'une monoamine saturée B en versant une masse de m = 5,9 g de cette amine dans de l'eau pure afin d'obtenir un volume V = 2 litres de solution.

On dose ensuite un volume V = 20 ml de cette solution B à l'aide d'une solution d'acide chlorhydrique de concentration c(HCI) = 0.1 M.

Le pH-mètre permet de suivre l'évolution du pH du mélange au cours de ce dosage.

La courbe pH = f(V(HCI)) présente deux points remarquables :

- le point F de coordonnées V_F = 5 ml et pH_F = 9,87
- le point d'équivalence E de coordonnées : V_E = 10 ml et pH_E = 5,67
- a. Calculer la concentration molaire de la solution B. (AN1)
- b. Déterminer alors la masse molaire de l'amine B et sa formule brute. (AN2)
- c. On note BH⁺ l'acide conjugué de l'amine B. En justifiant brièvement, donner la valeur du pK_a de ce couple acide/base. En déduire la formule semi-développée de l'amine B et son nom. (ANN2)
- d. Expliquer la valeur du pH à l'équivalence (pH_E). (ANN1)
- e. Calculer le pH de la solution B initiale. (AN1)
- f. Calculer le pH de la solution après un ajout de 13 ml de solution d'acide chlorhydrique. (AN2)
- g. Le bleu de bromothymol (domaine de virage (pH) : 5,5-7,5) aurait-il pu être utilisé lors du dosage pour repérer l'équivalence ? Justifier la réponse. (ANN1)