Tim B.

1 Standard approach

This document explores a simple strategy for improving the robustness of randomization tests. Let T_1, \ldots, T_{B-1} be the B-1 resampled test statistics. Let T^* be the statistic computed on the raw data. Let $\operatorname{rank}(T^*; B)$ be the rank of T^* in the set $\{T^*, T_1, \ldots, T_{B-1}\}$, i.e.

$$\operatorname{rank}(T^*; B) = |\{T \in \{T^*, T_1, \dots, T_{B-1}\} : T^* \ge T| = 1 + \sum_{i=1}^{B-1} \mathbb{I}(T^* \ge T_i).$$

Under the null hypothesis, $(T^*, T_1, \ldots, T_{B-1})$ is exchangeable. Therefore,

$$rank(T^*; B) = Unif(\{1, \dots, B\}).$$

We can construct a valid p-value as follows:

$$p = \operatorname{rank}(T^*; B)/B.$$

Letting $T_{(1)}, \ldots, T_{(B)}$ denote the order statistics of T_1, \ldots, T_B , we also can compute the rank of T^* as

$$rank(T^*; B) = 1 + \sum_{i=1}^{B-1} \mathbb{I}(T^* \ge T_{(i)}),$$

i.e., we can order the T_i s before computing the rank.

2 A simple strategy for improving robustness

Denote $R := \operatorname{rank}(T^*; B)$. Let $f : \{1, \dots, B\} \to \mathbb{R}$ be a function. We consider the transformed random variable W := f(R). Let $\mathcal{X} := \{f(r)\}_{r=1}^B$. For $w \in \mathcal{X}$, we have that

$$\mathbb{P}(W = w) = \mathbb{P}(R \in f^{-1}(w)) = |f^{-1}(w)|,$$

where $f^{-1}(w) = \{r \in \{1, ..., B\} : f(r) = w\}$ is the preimage of w. The latter equality follows because R is uniformly distributed on $\{1, ..., B\}$. If f

is injective, then P(W = w) = 1/B for all w, implying that W is uniformly distributed over \mathcal{X} . Therefore,

Example. Let $a_1, \ldots, a_{B-1} > 0$ be weights. Denote $a = [a_1, \ldots, a_{B-1}]^T \in \mathbb{R}^{B-1}$. Define the weighted rank W as follows:

$$W = 1 + \sum_{i=1}^{B-1} a_i \mathbb{I} \left(T^* \ge T_{(i)} \right).$$

Clearly, W is not (in general) uniformly distributed on $\{1,\ldots,B\}$, and so W/B is not a valid p-value. However, we can compute the distribution of W. Define the function $f:\{1,\ldots,B\}\to\mathbb{R}$ by

$$f(j) = 1 + \sum_{i=1}^{j-1} a_i.$$

Observe that W = f(R), where

$$R = \sum_{i=1}^{B-1} \mathbb{I}(T^* \ge T_{(i)})$$

is the (unweighted) rank of T^* . Hence, R is uniformly distributed over $\{1,\ldots,B\},$ and

$$\mathbb{P}(W = f(j)) = 1/B$$

for $j \in \{1, \dots, B\}$.