Primer Parcial

Práctica 1: Repaso álgebra lineal

1.
$$v^t u u^t v = (u^t v)^2$$

2. Si
$$x^t x = 0 \Rightarrow x = 0$$

3.
$$AB \neq BA$$

$$4. \ C(A+B) = CA + CB$$

5. Regla general multiplicación AB:

$$\begin{pmatrix} a_1^t \\ a_2^t \\ a_3^t \end{pmatrix} B = \begin{pmatrix} a_1^t B \\ a_2^t B \\ a_3^t B \end{pmatrix}$$

$$A \begin{pmatrix} b_1 & b_2 & b_3 \end{pmatrix} = \begin{pmatrix} Ab_1 & Ab_2 & Ab_3 \end{pmatrix}$$

6.
$$(AB)_{ij} = fila_i(A) * col_j(B)$$

7.
$$Ae_i = col_i(A)$$

8.
$$e_i^t A = fila_i(A)$$

9.
$$e_i^t A e_i = a_{ii}$$

10. Producto de matrices triangulares (sup o inf) es triangular (sup o inf)

11. dim(Im(A)) = rango(A) (cantidad de columnas linealmente independientes)

12. Teorema de la dimensión: $A \in \mathbb{R}^{mxn}$, dim(Nu(A)) + dim(Im(A)) = n

13. Matriz estrictamente diagonal dominante: $|a_{ii}| > \sum_{j=i} |a_{ij}|$

 $\bullet\,$ A es estrictamente diagonal dominante cuando lo es por filas $\underline{\circ}$ por columnas

• Por filas: para cada fila, el módulo del elemento de la diagonal es estrictamente mayor a la norma de los elementos de la fila.

• Por columnas: análogo para columnas.

14. Matriz inversa

• A inversible es equivalente a:

$$- rango(A) = n$$
 (todas sus columnas son li)

$$- det(A) \neq 0$$

$$- Nu(A) = \{0\}$$

-Ax = b tiene única solución

 $-A^tA$ es inversible

•
$$AA^{-1} = A^{-1}A = I$$

•
$$(AB)^{-1} = B^{-1}A^{-1}$$

•
$$(A^t)^{-1} = (A^{-1})^t$$

•
$$(kA)^{-1} = k^{-1}A^{-1}, k \in \mathbb{R}$$

 $\bullet\,$ Sea A matriz triangular, es inversible si los elementos de la diagonal son distintos de cero.

1

 $\bullet\,$ La inversa de una matriz triangular superior es triangular superior, y viceversa

• Si A es estrictamente diagonal dominante entonces es inversible

• **NO VALE** que $(A+B)^{-1} = A^{-1} + B^{-1}$

15. Matriz traspuesta

• SI VALE que
$$(A+B)^t = A^t + B^t$$

•
$$(AB)^t = B^t A^t$$

16. Traza

•
$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

- tr(AB) = tr(BA)
- tr(A+B) = tr(A) + tr(B)

17. Determinante

- det(AB) = det(A) * det(B)
- det(I) = 1
- $det(A) = det(A^t)$
- $det(A^{-1}) = (det(A))^{-1} \iff A \text{ es inversible}$
- $det(A) = \prod_{i=1}^{n} a_{ii} \iff A \text{ es triangular}$
- Si $A \in \mathbb{R}^{nxn} \Rightarrow det(kA) = k^n det(A)$ Chequear qué pasa si A no es cuadrada.
- $A \in \mathbb{R}^{2x2} \Rightarrow A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

Práctica 2: Eliminación Gaussiana, Factorización LU y Normas

- 1. $\kappa_2(A) = ||A||_2 ||A^{-1}||_2$
- 2. Normas vectoriales
 - Cauchy $|z^t x|^2 \le ||z||_2^2 ||x||_2^2$
 - Desigualdad triangular $||x+y|| \le ||x|| + ||y||$
 - $||u+v||_2^2 = ||u||_2^2 + ||v||_2^2 + 2u^t v$
 - $||x||_p = \sqrt{|x_1|^p + |x_2|^p + \dots + |x_n|^p}$
 - $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$
 - $||x||_1 = \sum_{i=1}^n |x_i|$
 - $||x||_{\infty} = \max_{i=1...n} x_i$
 - $||x||_2^2 = x^t x$
 - $||x||_{\infty} \leq ||x||_1$
 - $||x||_1 \le n||x||_{\infty}$
 - $||x||_{\infty} \leq ||x||_2$
- 3. Normas Matriciales
 - $||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$ (máxima suma de cada columna)
 - $||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$ (máxima suma de cada fila)
 - $||A||_2 = \max_{||x||_2=1} ||Ax||_2$
 - $||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2} = \sqrt{||c_1(A)||_2^2 + \ldots + ||c_n(A)||_2^2}$ donde c_i es la columna i de A
 - $||A||_F = ||A^t||_F$ (ya que la $||.||_F$ es la raíz de la suma de todos sus elementos al cuadrado)
 - ||I|| = 1
 - $||Ax|| \le ||A|| * ||x||$
 - $||AB|| \le ||A|| * ||B|| \iff A,B$ son matrices cuadradas
 - $||A||_M \le ||A||_2 \le n||A||_M$

4. Factorización LU

- L ("Lower") es triangular inferior **con unos en la diagonal**. Debajo de la diagonal tiene los multiplicadores usados para la triangulación en la eliminación gaussiana.
- U ("Upper") es triangular superior, y es el resultado de la triangulación de A en la eliminación gaussiana.
- A estrictamente diagonal dominante \Rightarrow tiene factorización LU
- Submatrices de A inversibles \Rightarrow tiene factorización LU
- A inversible no necesariamente tiene factorización LU
- Si A inversible v tiene LU \Rightarrow la LU es única
- $\bullet \ M_k M_{k-1} \dots M_1 A = U$
- $M_1 = I r_1 e_1^t$, donde $r_1 = \begin{pmatrix} 0 \\ m_{21} \\ m_{31} \\ m_{41} \end{pmatrix}$ y $m_{ij} = \frac{a_{ij}}{a_{jj}}$

Práctica 3: SDP y factorización de Cholesky

- 1. Matriz simétrica: $A = A^t$
- 2. Matriz antisimétrica: $A^t = -A$
- 3. $A + A^t$ es una matriz simétrica
- 4. $A A^t$ es una matriz antisimétrica
- 5. Toda matriz puede escribirse como la suma entre una matriz simétrica y una antisimétrica
- 6. Definida positiva $\iff x^t Ax > 0 \ \forall x \in \mathbb{R}^n x \neq 0$
- 7. Si A es simétrica definida positiva $\Rightarrow A^t = A$ y A^t es definida positiva
- 8. Si A no es inversible, AA^t es simétrica semi-definida positiva, es decir que $x^tAA^tx \geq 0 \forall x$
- 9. Si A es SDP entonces:
 - A inversible
 - $a_{ii} > 0$
 - Toda submatriz de A es sdp y por lo tanto inversible
 - A tiene factorización LU (por prop anterior)
 - La submatriz 2 a n (despues del primer paso de triangulación de la eliminación gaussiana) es SDP
- 10. $A \ sdp \iff B^t AB \ sdp \ con \ B$ inversible
- 11. Si tiene fact LU y es simétrica, si es toda positiva ⇒ tiene factorización de Cholesky
- 12. Si A es sdp, el elemento de módulo máximo de A está en la diagonal.
- 13. Si A es $sdp \Rightarrow |x^t Ay| \leq \sqrt{x^t Ax} \sqrt{y^t Ay}$
- 14. Si A es $sdp \Rightarrow |a_{ij}|^2 \leq a_{ii}a_{jj}$
- 15. Factorización de Cholesky
 - A tiene factorización de Cholesky \iff A es sdp
 - $A = LU = LDL^t = L\sqrt{D}\sqrt{D}L^t = \hat{L}\hat{L}^t$ donde $D = L^{-1}U^t$ y $\hat{l}_{ii} = l_{ii}\sqrt{d_{ii}} = \sqrt{u_{ii}}$
 - D es diagonal, con elementos estrictamente positivos
 - \hat{L} no necesariamente tiene "unos" en la diagonal, pero $l_{ii} > 0$

Práctica 4: Matrices ortogonales y factorización QR

- 1. $u \perp v \iff u^t v = 0$
- 2. $Q \in \mathbb{R}^{n \times n}$ ortogonal $\iff QQ^t = Q^t Q = I \land Q^t = Q^{-1}$
- 3. $||Q||_2 = 1$
- 4. $\kappa_2(Q) = 1$
- 5. $||Qx||_2 = ||x||_2$
- 6. Producto de matrices ortogonales es ortogonal
- 7. Sus columnas (filas) son ortogonales entre sí y tienen norma 2 igual a 1, entonces forman un conjunto ortonormal
- 8. $det(Q) = 1 \circ -1$
- 9. $Ax = b \Rightarrow Rx = Q^t b$, Q ortogonal y R triangular superior
- 10. Si Q es ortogonal y triangular, entonces Q es diagonal y además $col_i(Q) = \pm e_i$
- 11. Si A es inversible, entonces tiene una única factorización QR posible, donde R triangular superior con $r_{ii} > 0$

12.
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, x = \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix}, y = \begin{pmatrix} ||x||_2 \\ 0 \end{pmatrix}$$

13. Matrices de rotación (Givens)

• W =
$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
• Rotación hacia el eje x:

$$W = \begin{bmatrix} \frac{x_1}{||x||_2} & \frac{x_2}{||x||_2} \\ \frac{x_2}{||x||_2} & \frac{x_1}{||x||_2} \end{bmatrix}$$

- 14. Matrices de reflexión (Householder)
 - $\bullet \ v = x + y$
 - $\bullet \ u = \frac{x-y}{||x-y||_2}$
 - $\bullet \ \ H = I 2uu^t$
 - $\bullet \ H$ es simétrica y ortogonal

Segundo Parcial

Propiedades generales

- $||Ax||_2^2 = (Ax)^t Ax$
- $a^2 b^2 = (a b)(a + b)$
- $\bullet \ \ x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- ||QA|| = ||A|| para cualquier Q matriz ortogonal
- $||(v,w)|| = ||v||_2^2 + ||w||_2^2$ concatenación de vectores
- Pitágoras: $||u+v||_2^2 = ||u||_2^2 + ||v||_2^2 + 2u^t v$. Si $u \perp v \Rightarrow ||u+v||_2^2 = ||u||_2^2 + ||v||_2^2$
- A^tA es simétrica semidefinida positiva, tiene base ortonormal de autovectores reales y autovalores no negativos.
- Sea $\{x_1, x_2 \dots x_n\}$ base, puedo escribir a cualquier vector como $v = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n$ donde $\alpha_i = x_i^t v$

Práctica 5: Autovalores y Autovectores

- 1. $x \neq 0$ autovector con autovalor λ de $A \iff Ax = \lambda x$
- 2. Radio espectral: $\rho(A) = \max\{|\lambda| : \lambda \text{ autovalor de } A\}$
- 3. $det(A \lambda I) = 0$ por lo tanto no es inversible
- 4. Polinomio característico: $P(\lambda) = det(A \lambda I)$, λ autovalor de $A \iff \lambda$ es raíz de $P(\lambda)$
- 5. Si v es autovector de A, αv también lo es.
- 6. Si λ es autovalor de $A \Rightarrow \lambda \alpha$ es autovalor de $A \alpha I$
- 7. Si λ es autovalor de A, entonces los autovalores de $\alpha \mathbb{I} \beta A$ son $\alpha + \beta \lambda$
- 8. Si $Av = \lambda v \Rightarrow A^k v = \lambda^k v$
- 9. Un λ puede estar asociado a lo sumo a m autovectores l.i., donde m es la multiplicidad en el polinomio característico
- 10. Si A es $ortogonal \implies$ todos sus autovalores son 1 o -1
- 11. Si A es definida positiva o semi definida positiva, todos sus autovalores $\lambda > 0$
- 12. Si A no es inversible $\Rightarrow \lambda = 0$ es autovalor de A
- 13. Si $\lambda = 0$ no es autovalor de $A \Rightarrow$ A es inversible
- 14. Si A es inversible, si $\lambda \neq 0$ es autovalor $\Rightarrow \lambda^{-1}$ es autovalor de A^{-1}
- 15. Si $\lambda^1, \lambda^2, \dots, \lambda^n$ son autovalores distintos, con autovectores asociados v^1, v^2, \dots, v^n entonces A tiene n autovalores distintos, entonces tiene base de autovectores son todos l.i. Si A es simétrica también son ortonormales
- 16. Si A es $triangular \implies$ sus autovalores son los elementos de su diagonal
- 17. Si v es un autovector asociado a λ entonces αv también es un autovector asociado a α
- 18. A y A^t tienen los mismos autovalores, por lo tanto si λ es autovalor de AA^t lo es de A^tA
- 19. Si A es simétrica, todos sus autovalores son reales y existen sus autovectores con coeficientes reales, además tiene base ortonormal de autovectores.
- 20. Matrices semejantes: A y B son semejantes si existe una matriz P inversible tal que: $A = P^{-1}BP$. blueSi son semejantes, comparten autovalores.
- 21. Sea Q matriz ortogonal, λ es autovalor de $A \iff \lambda$ es autovalor de Q^tAQ

- 22. Si A tiene todos sus autovalores reales, existe Q ortogonal tal que $Q^tAQ = T$ con T triangular superior. Si A es simétrica, T = D diagonal conteniendo sus autovalores.
- 23. Si A tiene base de autovectores es **diagonalizable**: $\exists S$ inversible con sus autovectores como columnas y D con sus autovalores en la diagonal, se escribe como $A = SDS^{-1}$
- 24. Si A es diagonalizable, $tr(A) = \sum_{i} \lambda_{i}$ y $det(A) = \prod_{i} \lambda_{i}$
- 25. **Método de potencia** A con base de autovectores y $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$, el autovalor principal se obtendrá a partir de un $x^{(0)}$ cualquiera iterando $x_{k+1} = \frac{Ax_k}{||Ax_k||}$
- 26. **Método de deflación** $A' = A \lambda_1 v_1 v_1^t$ donde v_1 es el autovector asociado al máximo autovalor λ_1 . A esta matriz se le vuelve a aplicar el método de la potencia para conseguir el segundo mayor autovalor.

Práctica 6: Descomposición en Valores Singulares

Idea. $A \in \mathbb{R}^{mxn}$, r = rg(A), existe descomposición $A = U\Sigma V^t$ con $U \in \mathbb{R}^{mxm}$, $\Sigma \in \mathbb{R}^{mxn}$, $V \in \mathbb{R}^{nxn}$

- 1. Valores singulares: $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0 \in \Sigma$
- 2. $\frac{Av_i}{\sigma_i} = u_i$, si i = 1, ..., r
- 3. $Av_i = 0$, si i = r + 1, ..., n
- 4. $A^t u_i = \sigma_i v_i \text{ si } i = 1, ..., r$
- 5. $A^t u_i = 0$, si $i = r + 1, \ldots, n$
- 6. $A^t A v_i = \sigma_i^2 u_i$, si i = 1, ..., r
- 7. $A^t A v_i = \lambda_i v_i$ ya que $\sigma_i^2 = \lambda_i$
- 8. $A^t A v_i = 0$, si i = r + 1, ..., n
- 9. Obtener descomposición en valores singulares:
 - $\sigma_i = \sqrt{\lambda_i} \operatorname{con} \lambda_i$ autovector de $A^t A$
 - Las columnas v_1, v_2, \ldots, v_n son base ortonormal de autovectores de $A^t A, V$ ortogonal
 - Calcular U según 3 y completar el resto de las columnas con base ortonormal del $Nu(A^t)$, o usar que las columnas u_1, u_2, \ldots, u_n son base ortonormal de autovectores de AA^t , con U ortogonal
- 10. $AA^t = U\Sigma\Sigma^tU^t$
- 11. $A^t A = V \Sigma \Sigma^t V^t$
- 12. $||A||_2 = \sigma_1$ valor singular mas grande
- 13. Si A inversible, el número de condición basado en la norma 2: $\kappa_2(A) = \frac{\sigma_1}{\sigma_n}$
- 14. Si A inversible, los valores singulares de A^{-1} son $\frac{1}{\sigma_n} \ge \cdots \ge \frac{1}{\sigma_1}$
- 15. $||A||_F = \sqrt{(\sigma_1)^2 + \dots + (\sigma_r)^2}$
- 16. Si $\Sigma \in \mathbb{R}^{nxn} \Rightarrow \Sigma^t \Sigma = \Sigma \Sigma^t = \Sigma^2$
- 17. $A \in \mathbb{R}^{nxn}$ simétrica definida positiva \Rightarrow los autovalores de A coinciden con sus valores singulares.

Práctica 7: Métodos iterativos

Idea. Aproximar $Ax = b, A \in \mathbb{R}^{nxn}, b \in \mathbb{R}^n$ reescribimos A = D - L - U

- 1. Esquema de iteración: $x^{(k)} = Tx^{(k-1)} + c$ donde $T \in \mathbb{R}^{n \times n}, c \in \mathbb{R}^n$
- 2. Jacobi:
 - Solo puede ser aplicado a una matriz A tal que $a_{ii} \neq 0$
 - $\bullet\,$ Si A es estrictamente diagonal dominante \Rightarrow el método converge
 - $T = D^{-1}(L+U), c = D^{-1}b$

3. Gauss Seidel:

- $\bullet\,$ Si A es estrictamente diagonal dominante \Rightarrow el método converge
- $T = (D-L)^{-1}U$, $c = (D-L)^{-1}b$
- 4. A es convergente si $\lim_{k\to\infty} A^k = 0$
- 5. Si ||T|| < 1 o $\rho(T) < 1$ el sistema converge
- 6. Si $\rho(A) < 1 \iff \lim_{k \to \infty} ||A^k|| = 0 \iff \lim_{k \to \infty} A^k x = 0 \forall x \in \mathbb{R}^n$
- 7. Si $\rho(A) < 1$ entonces I A es inversible
- 8. Si A es simétrica definida positiva, GS converge
- 9. Si $L \in \mathbb{R}^{mxn}$ es estrictamente triangular superior (ceros en la diagonal) entonces $L^n = \emptyset$ ya que al multiplicarla por si misma se anulan sus supradiagonales

Práctica 8: Cuadrados mínimos lineales

Idea. Dado un conjunto de pares ordenados (x_i, y_i) para i = 1, ..., m buscamos una función f(x) perteneciente a una familia \mathcal{F} que "mejor aproxime" a los datos.

- 1. $Im(A) \bigoplus Nu(A^t) = \mathbb{R}^n$
- 2. $Im(A)^{\perp} = Nu(A^t)$
- 3. $Nu(A)^{\perp} = \{ y \in \mathbb{R}^n | y \perp x, \forall x \in Nu(A) \}$
- 4. Si $b \in \mathbb{R}^n \Rightarrow b = b^1 + b^2$ donde $b^1 \in Im(A)$ y $b^2 \in Nu(A^t)$
- 5. Todo $y \in Im(A)$ puede escribirse como combinación lineal de las columnas de A
- 6. CML: $\min_{x \in \mathbb{R}^n} ||Ax b||_2^2$
- 7. Ecuaciones normales: $A^tAx = A^tb$ cualquier solucion de ecuaciones normales es solución de cuadrados mínimos para Ax = b
- 8. $||u+v||_2^2 = ||u||_2^2 + ||v||_2^2 + 2u^t v$
- 9. Si $u \perp v \Rightarrow ||u + v||_2^2 = ||u||_2^2 + ||v||_2^2$
- 10. $Ax^* = b \iff x x^* \in Nu(A)$
- 11. Cuadrados mínimos siempre tiene solución. La solución es **única** $\iff Nu(A) = Nu(A^tA) = \{0\}$ o sea si las columnas de A son linealmente independientes.
- 12. Si $Nu(A^tA) = \{0\}$ entonces A^tA es inversible, por lo tanto $x^* = (A^tA)^{-1}A^tb$
- 13. $||Ax||_2^2 = 0 \Rightarrow Ax = 0$
- 14. $A \in \mathbb{R}^{mxn}$:
 - A^tA semidefinida positiva
 - Si $m < n \ A^t A$ no es definida positiva
 - Si $m \ge n \ A^t A$ definida positiva si y solo si A tiene rango máximo
- 15. Si $s \in S$ y $t \in S^{\perp}$, entonces existe una única forma de escribir w = s + t para todo $w \in \mathbb{R}^n$
- 16. Sea $S \subseteq \mathbb{R}^m$ subespacio, sea $s \in S$ la proyección ortogonal P de x sobre el subespacio $S \Rightarrow Px = s$
- 17. Caso cuadrados mínimos Ax es la proyección ortogonal de b sobre la imagen de A
- 18. $Ax \in Im(A) \land (b Ax^*) \in Im(A)^{\perp}$ donde x^* solución de cuadrados minimos

Práctica 9: Interpolación. Integración numérica

Interpolación

Idea. Dado un conjunto de pares ordenados de valores (x_i, y_i) para i = 0, ..., n buscamos un polinomio P(x) de grado a lo sumo n tal que interpole los datos:

$$P(x_i) = y_i \qquad \forall i = 0, \dots, n$$

1. Dados (x_i, y_i) para i = 0, ..., n, el **polinomio interpolante** de grado menor o igual a n existe y es único.

2. Polinomio de Lagrange:

$$P(x) = \sum_{k=0}^{n} f(x_k) L_{nk}(x_i) = \sum_{k=0}^{n} f(x_k) \prod_{j=0, j \neq k}^{n} \frac{(x - x_j)}{(x_k - x_j)}$$

3. Fórmula del error: Si $x_0, \ldots, x_n \in [a, b], f \in \mathcal{C}^{n+1}([a, b])$ y $\xi_x \in [a, b]$

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^{n} (x - x_i)$$

4. Diferencias divididas:

$$P(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots + f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$

- Orden 0: $f[x_i] = f(x_i)$
- Orden 1: $f[x_i, x_{i+1}] = \frac{f[x_{i+1}] f[x_i]}{x_{i+1} x_i}$
- Orden k: $f[x_i, x_{i+1}, \dots, x_{i+k}] = \frac{f[x_{i+1}, \dots, x_{i+k}] f[x_i, \dots, x_{i+k-1}]}{x_{i+k} x_i}$

Integración

Idea. Aproximar la integral $\int_a^b f(x)dx \approx \sum_{i=0}^n a_i f(x_i)$

1. Regla del trapecio: Usando polinomio interpolador de grado 1 sobre a,b

$$\int_{a}^{b} f(x)dx = \frac{h}{2}[f(x_1) - f(x_0)] - \frac{h^3}{12}f''(\xi) \qquad h = x_1 - x_0$$

2. Regla de Simpson: Usando polinomio interpolador de grado 2 sobre $a, \frac{a+b}{2}, b$

$$\int_{a}^{b} f(x)dx = \frac{(x_2 - x_0)}{6} [f(x_0) + 4f(x_1) + f(x_2)] - \frac{h^5}{90} f^{(4)}(\mu) \qquad h = x_1 - x_0 \ \text{y} \ \mu \in (a, b)$$

- 3. Regla compuesta: Sumar las distintas aproximaciones de las integrales en los distintos intervalos, aprovechando el hecho que $\int_a^b f(x)dx = \sum_{i=0}^{n-1} (\int_{x_i}^{x_{i+1}} f(x)dx)$
 - (a) Regla compuesta de trapecios: Dividir [a,b] en n intervalos de longitud $h=\frac{b-a}{n}$

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \left(f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right)$$

$$Error = -\frac{b-a}{12}h^2f''(\mu) \qquad \mu \in (a,b)$$

8

(b) Regla compuesta de Simpson: