עבודה עצמית 7

 $S = \{(1,2,3), (4,5,6), (11,16,21)\}$ נסמן **1**

- ${}^{2}\mathbb{R}^{3}$ או פורשת את S
- ב) האם האם יש יותר מדרך אחת כצרוף לינארי של הוקטורים ב- S. האם יש יותר מדרך אחת כצרוף לינארי של הוקטורים ב- S?

"ומתקיים: $S\subseteq T$ - ען דוגמא לשתי קבוצות T, כך ש- S ומתקיים:

- . \mathbb{R}^4 ו- S לא פורשת את T
- . \mathbb{R}^4 את פורשת את S -ו \mathbb{R}^4 את פורשת את T
 - . \mathbb{R}^4 את פורשת את S -ו \mathbb{R}^4 את פורשת את T

שאלה 3 - תהיינה $Y\subseteq Y$ קבוצות של וקטורים ב \mathbb{R}^n . הוכח או הפרך:

- \mathbb{R}^n אם Y פורשת את \mathbb{R}^n אז א פורשת אם Y
 - \mathbb{R}^n אם X פורשת את $0 \in X$
 - \mathbb{R}^n אם X לא פורשת את X לא
- \mathbb{R}^n אם X פורשת את \mathbb{R}^n אז Y פורשת את אם
- \mathbb{R}^n אם מספר הוקטורים ב- X גדול מ- n אז X פורשת את
 - $\operatorname{sp}(Y) \neq \operatorname{sp}(X)$ אז $v \notin X$ כך ש- $v \in Y$ אז $v \in Y$

$$u_1=egin{pmatrix}1\\1\\1\end{pmatrix}$$
 , $u_2=egin{pmatrix}1\\2\\a\end{pmatrix}$, $u_3=egin{pmatrix}2\\a\\a+1\end{pmatrix}$ שאלה 4 מתונים הוקטורים $a_1=a_2$

- עבור ערך u_3 אם שמצאת, הצג ערך ערך $u_3 \in \operatorname{sp}\{u_1,u_2\}$ מתקיים מצא לאילו ערכי $u_3 \in \operatorname{sp}\{u_1,u_2\}$ מתקיים u_1,u_2
 - \mathbb{R}^3 את פורשת אווו $\{u_1,u_2,u_3\}$ הקבוצה a טבא לאילו ערכי מצא

שאלה 5 תהי $A\in\mathbb{R}^{3 imes n}$ שאלה 5 שאלה

. אם למערכת
$$AX=\begin{pmatrix}7\\4\\3\end{pmatrix}$$
 אז למערכת $AX=\begin{pmatrix}3\\4\\7\end{pmatrix}$ אם למערכת אם למערכת און.

- . אם למערכת $AX = \begin{pmatrix} 7 \\ 4 \\ 3 \end{pmatrix}$ איים פתרון יחיד אז למערכת $AX = \begin{pmatrix} 3 \\ 4 \\ 7 \end{pmatrix}$ אם למערכת בארכת אם למערכת פתרון יחיד אז למערכת אם למערכת אם האיים פתרון יחיד.
- . אם $AX=\begin{pmatrix}7\\4\\3\end{pmatrix}$ אם למערכת $AX=\begin{pmatrix}3\\4\\7\end{pmatrix}$ קיים פתרון יחיד אז למערכת אם n=3 אם n=3
 - . אם למערכת $AX=\begin{pmatrix} 7\\4\\3 \end{pmatrix}$ איים פתרון אז למערכת $AX=\begin{pmatrix} 0\\0\\0 \end{pmatrix}$ אם למערכת אם למערכת פתרון אז למערכת פתרון אז למערכת אם איים פתרון
- למערכת פתרון, אז למערכת אז פתרון ולמערכת אז למערכת אז למערכת הייט AX=c אם למערכת יהייAX=c קיים פתרון, אז למערכת AX=c+d
- $g(x)\in \mathrm{sp}\{p_1(x),p_2(x)\}$ האם g(x)=3x+11 , $p_2(x)=-x+3$, $p_1(x)=x+1$ נסמן g(x)=x+1 שאלה 6 נסמן.
- שאלה $g(x)=x^2+6$, $p_3(x)=x^2+x-1$, $p_2(x)=x^2-x+1$, $p_1(x)=x^2+2x+1$ נסמן $p_3(x)=x^2+6$. האם יש יותר מדרך אחת? כצ"ל של $p_3(x)$, $p_2(x)$, $p_2(x)$, $p_3(x)$, $p_2(x)$, $p_3(x)$, $p_3(x)$
- שאלה 8 נסמן $u\in \operatorname{sp}\left\{\begin{pmatrix}1&1\\1&0\end{pmatrix},\begin{pmatrix}2&1\\0&1\end{pmatrix},\begin{pmatrix}0&0\\1&2\end{pmatrix}\right\}$ האם $u=\begin{pmatrix}1&1\\-1&2\end{pmatrix}$ אם כן, הצגו את $u=\begin{pmatrix}1&1\\-1&2\end{pmatrix}$ שאלה 8 הוקטורים הנ"ל.

שאלה $oldsymbol{9}$ מתקיים לאילו ערכי

$$? \begin{pmatrix} 2 & -1 \\ 0 & -1 \end{pmatrix} \in \operatorname{sp} \left\{ \begin{pmatrix} 1 & 1 \\ 0 & m \end{pmatrix}, \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} m & 1 \\ 0 & 1 \end{pmatrix} \right\}$$

שאלה $V(a)=\mathbb{C}^3$ כאשר לכל $a\in\mathbb{C}$ לכל לכל 10 שאלה

$$V(a) = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 3 \\ a \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ a \\ 1 \end{pmatrix} \right\}$$

שאלה 11 יהי V מרחב וקטורי מעל שדה \mathbb{R} . נניח כי $v_1,v_2,v_3\in V$ וקטורים לינארית. קבעו יהי V מרחב בלתי תלויים לינארית:

$$w_1 = v_1 + v_2 + v_3$$
, $w_2 = v_1 - v_2 + 3v_3$, $w_3 = v_1 + 2v_2$.

פתרונות

<u>שאלה 1</u>

א) נבדוק אם S בת"ל:

$$\begin{pmatrix} 1 & 4 & 11 \\ 2 & 5 & 16 \\ 3 & 6 & 21 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & 4 & 11 \\ 0 & -3 & -6 \\ 0 & -6 & 12 \end{pmatrix} \xrightarrow{R_3 \to R_3 - 2R_2} \begin{pmatrix} 1 & 4 & 11 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{pmatrix}$$

יש עמודה לא מובילה, לכן הוקטורים ת"ל.

$$\dim(\operatorname{sp}(S)) = 2 < \dim(\mathbb{R}^3)$$

 \mathbb{R}^3 לכן S לא פורשת את S

נסמן
$$.u=(6,9,12)$$
 , $\mathbf{v}_3=(11,16,21)$, $\mathbf{v}_2=(4,5,6)$, $\mathbf{v}_1=(1,2,3)$ נסמן
$$u=k_1u_1+k_2u_2+k_3u_3$$

$$\begin{pmatrix} 1 & 4 & 11 & 6 \\ 2 & 5 & 16 & 9 \\ 3 & 6 & 21 & 12 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & 4 & 11 & 6 \\ 0 & -3 & -6 & -3 \\ 0 & -6 & -12 & -6 \end{pmatrix} \xrightarrow{R_3 \to R_3 - 2R_2} \begin{pmatrix} 1 & 4 & 11 & 6 \\ 0 & -3 & -6 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{R_2 \to -\frac{1}{3}R_2} \begin{pmatrix} 1 & 4 & 11 & | & 6 \\ 0 & 1 & 2 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{R_1 \to R_1 - 4R_2} \begin{pmatrix} 1 & 0 & 3 & | & 2 \\ 0 & 1 & 2 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$-v_1 - v_2 + v_3 = u$$

שאלה 2

אט
$$S$$
 . $S\subseteq T$, $T=\left\{egin{pmatrix}1\\0\\0\\0\end{pmatrix}, \begin{pmatrix}0\\1\\0\\0\end{pmatrix}, \begin{pmatrix}0\\0\\1\\0\end{pmatrix}, \begin{pmatrix}0\\0\\0\\1\end{pmatrix}\right\}$, $S=\left\{\begin{pmatrix}1\\0\\0\\0\\0\end{pmatrix}\right\}$ עא פורשת את S . $S=\left\{\begin{pmatrix}1\\0\\0\\0\\0\end{pmatrix}\right\}$ כי S הוא הבסיס הסטנדרטי של S 4.

$$\mathbb{R}^4$$
 את אות את T ו S . $S\subseteq T$, $T=\left\{egin{pmatrix}1\\0\\0\\0\end{pmatrix},egin{pmatrix}0\\1\\0\\0\end{pmatrix}
ight\}$, $S=\left\{egin{pmatrix}1\\0\\0\\0\end{pmatrix}
ight\}$

$$.S = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}, T = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

שאלה 3

 \mathbb{R}^n פורשת $X \Leftarrow \mathbb{R}^n$ פורשת Y - 1

דוגמה נגדית:

$$Y = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} , \quad X = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} ,$$

 \mathbb{R}^2 את פורשת את X , \mathbb{R}^2 את פורשת את Y . $X,Y\in\mathbb{R}^2$

 \mathbb{R}^n את פורשת את $X \Leftarrow 0 \in X$

דוגמה נגדית:

$$X = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\} \subseteq \mathbb{R}^2$$

 \mathbb{R}^2 את פורשת X

 \mathbb{R}^n את פורשת את $X \Leftarrow 0 \in X$

דוגמה נגדית:

$$X = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

 \mathbb{R}^2 פורשת את X

 \mathbb{R}^n את פורשת את $Y \Leftarrow \mathbb{R}^n$ פורשת את אז X

 $\operatorname{sp}(X) = \mathbb{R}^n, X \subseteq Y$:נתוך

.sp $(Y)=\mathbb{R}^n$ צ"ל:

הוכחה:

נקח $u_1,\dots,u_m\in\mathbb{R}^n$ לכן קיימים .v \in sp(X) אז .v $\in\mathbb{R}^n$ נקח

 $\mathbf{v} = k_1 u_1 + \ldots + k_m u_m \ .$

 $v \in \operatorname{sp}(Y) \Leftarrow u_1, \dots, u_m \in Y$ לכן, $X \subseteq Y$

 \mathbb{R}^n את פורשת את אר א בורל מ- א גדול מ- גדול ב- מספר הוקטורים ה

דוגמה נגדית:

$$X = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \end{pmatrix} \right\} .$$

 \mathbb{R}^2 אינה פורשת את X

 $\operatorname{sp}(Y) \neq \operatorname{sp}(X) \Leftarrow \operatorname{v} \notin X$ כך ש- $\operatorname{v} \in Y$ קיים (1)

דוגמה נגדית:

$$X = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}, \qquad Y = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$$
$$\operatorname{sp}(Y) = \operatorname{sp}(X) = \mathbb{R}^2.$$

$$\Leftarrow u_3 \in \operatorname{sp}(u_1,u_2)$$
 $u_1=egin{pmatrix}1\\1\\1\end{pmatrix}$, $u_2=egin{pmatrix}1\\2\\a\end{pmatrix}$, $u_3=egin{pmatrix}2\\a\\a+1\end{pmatrix}$ **4 שאלה**

$$u_3 = k_1 u_1 + k_2 u_2$$

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & a \\ 1 & a & a+1 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & a-2 \\ 0 & a-1 & a-1 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & a-2 \\ 0 & 0 & -(a-1)(a-3) \end{pmatrix}$$

a=1,3 יש פתרון אם

$$a=3$$
 ו $a=1$ עבור $u_3\in\operatorname{sp}(u_1,u_2)$ לכן

a = 1

$$\left(\begin{array}{c|c|c} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array}\right) \to \left(\begin{array}{c|c|c} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array}\right)$$

 $\Leftarrow k_1 = 3, k_2 = -1$

$$u_3 = 3u_1 - u_2$$
.

a = 3

$$\left(\begin{array}{c|c|c} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right) \to \left(\begin{array}{c|c|c} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right)$$

 $k_2 = -k_3, k_1 = k_3$

 $u_1,u_2,u_3 \Leftarrow \dim(\mathbb{R}^3)=3$ בסיס של $u_1,u_2,u_3 \Leftarrow u_1,u_2,u_3$ בסיס של $u_1,u_2,u_3 \Leftarrow u_1,u_2,u_3 \Rightarrow u_1,u_2,u_3 \Leftrightarrow u_1,u_3 \Leftrightarrow u_1,u_2 \Leftrightarrow u_1$

 $u_1,\ldots,u_n\in\mathbb{R}^3$ אז u_1,\ldots,u_n נסמן את העמודות $A\in\mathbb{R}^{3 imes n}$

$$\mathbf{v}=egin{pmatrix} 3\\4\\7 \end{pmatrix}\in \mathrm{sp}(u_1,\dots,u_n)$$
 טענה: למערכת $AX=egin{pmatrix} 3\\4\\7 \end{pmatrix}$ יש פתרון, ז"א וקטור $\mathbf{v}=AX=egin{pmatrix} 3\\4\\7 \end{pmatrix}$ יש פתרון, $\mathbf{v}=AX=egin{pmatrix} 3\\4\\3 \end{pmatrix}$ $\mathbf{v}=AX=egin{pmatrix} 3\\4\\7 \end{pmatrix}$ יוקטור $\mathbf{v}\in \mathrm{sp}(u_1,u_2)$. $u_2=egin{pmatrix} 0\\0\\0 \end{pmatrix}$, $u_1=egin{pmatrix} 3\\4\\7 \end{pmatrix}$: דוגמה נגדית:

בת"ל, לכן
$$u_2,u_1$$
 .v = $\begin{pmatrix} 3\\4\\7 \end{pmatrix} = u_1+u_2$ כי $v\in \operatorname{sp}(u_1,u_2)$. $u_1=\begin{pmatrix} 2\\4\\7 \end{pmatrix}$ $u_1=\begin{pmatrix} 1\\0\\0 \end{pmatrix}$ בת"ל, לכן $AX=v$ למערכת $AX=v$ יש פתרון יחיד.

יש פתרון: $AX = \begin{pmatrix} 7 \\ 4 \\ 3 \end{pmatrix}$ יש פתרון:

$$\begin{pmatrix} 1 & 2 & 7 \\ 0 & 4 & 4 \\ 0 & 7 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 7 \\ 0 & 1 & 1 \\ 0 & 7 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 7 \\ 0 & 1 & 1 \\ 0 & 0 & -4 \end{pmatrix}$$

אין פתרון למערכת.

- אנט u_1,u_2,u_3 למערכת u_1,u_2,u_3 יש פתרון יחיד, לכן הוקטורים u_1,u_2,u_3 בת"ל. לכן, u_1,u_2,u_3 יש פתרון יחיד. $AX = \begin{pmatrix} 7 \\ 4 \\ 3 \end{pmatrix}$ למערכת $AX = \mathbb{R}^3$ של $AX = \mathbb{R}^3$
 - :דוגמה נגדית (ד

$$u_1=egin{pmatrix}1\\0\\0\end{pmatrix}$$
 , $u_2=egin{pmatrix}0\\1\\0\end{pmatrix}$. .
$$AX=egin{pmatrix}7\\4\\3\end{pmatrix}$$
 אין פתרון. למערכת $AX=0$ אין פתרון.

.AX=d מסמם ב \mathbf{v}_1 פתרון של המערכת אל יוב \mathbf{v}_2 וב AX=c פתרון של פתרון אל ייא

$$A\mathbf{v}_1 = c$$
, $A\mathbf{v}_2 = d$.

לכן

$$A(v_1 + v_2) = Av_1 + Av_2 = c + d.$$

$$g(x) = 3x + 11$$
 , $p_2(x) = -x + 3$, $p_1(x) = x + 1$ 6 שאלה

$$g(x) = k_1 p_1(x) + k_2 p_2(x)$$

$$k_1(x+1) + k_2(-x+3) = 3x + 11$$

$$(k_1 + 3k_2) + (k_1 - k_2)x = 3x + 11$$

$$\begin{cases} k_1 + 3k_2 &= 11 \\ k_1 - k_2 &= 3 \end{cases}$$

$$\begin{pmatrix} 1 & 3 & | & 11 \\ 1 & -1 & | & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & | & 11 \\ 0 & -4 & | & -8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & | & 11 \\ 0 & 1 & | & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & | & 5 \\ 0 & 1 & | & 2 \end{pmatrix}$$

$$k_1 = 5 , \quad k_2 = 2 .$$

$$5p_1(x) + 2p_2(x) = g(x) .$$

$$g(x)=x^2+6$$
 , $p_3(x)=x^2+x-1$, $p_2(x)=x^2-x+1$, $p_1(x)=x^2+2x+1$ שאלה ${f 7}$

$$k_1p_1(x) + k_2p_2(x) + k_3p_3(x) = g(x)$$

$$k_1(x^2 + 2x + 1) + k_2(x^2 - x + 1) + k_3(x^2 + x - 1) = x^2 + 6$$

$$(k_1 + k_2 + k_3)x^2 + (2k_1 - k_2 + k_3)x + (k_1 + k_2 - k_3) = x^2 + 6$$

$$\left. \begin{array}{ll}
 k_1 + k_2 + k_3 &= 1 \\
 2k_1 - k_2 + k_3 &= 0 \\
 k_1 + k_2 - k_3 &= 6
 \end{array} \right\}$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & -1 & 1 & 0 \\ 1 & 1 & -1 & 6 \end{pmatrix} \xrightarrow{\begin{array}{c} R_2 \to R_2 - 2R_1 \\ R_3 \to R_3 - R_1 \\ \end{array}} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -3 & -1 & -2 \\ 0 & 0 & -2 & 5 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 2 & 0 & 7 \\ 0 & 2 & 0 & 3 \\ 0 & 0 & -2 & 5 \end{pmatrix} \xrightarrow{R_1 \to R_1 + R_3} \begin{pmatrix} 2 & 0 & 0 & 12 \\ 0 & 2 & 0 & 3 \\ 0 & 0 & -2 & 5 \end{pmatrix}$$

פתרון יחיד:

$$(k_1, k_2, k_3) = \left(2, \frac{3}{2}, -\frac{5}{2}\right)$$
$$g(x) = 2p_1(x) + \frac{3}{2}p_2(x) - \frac{5}{2}p_3(x)$$

שאלה 8

$$.u=\begin{pmatrix}1&1\\-1&2\end{pmatrix}$$
 , $u_1=\begin{pmatrix}1&1\\1&0\end{pmatrix}$, $u_2=\begin{pmatrix}2&1\\0&1\end{pmatrix}$, $u_3=\begin{pmatrix}0&0\\1&2\end{pmatrix}$ עסמן $u=\operatorname{sp}(u_1,u_2,u_3)$, $u=\begin{pmatrix}1&1\\-1&2\end{pmatrix}$.

$$k_1 u_1 + k_2 u_2 + k_3 u_3 = u$$

$$\begin{pmatrix}
1 & 2 & 0 & 1 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & -1 \\
0 & 1 & 2 & 2
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - R_1 \atop R_3 \to R_3 - R_1}
\begin{pmatrix}
1 & 2 & 0 & 1 \\
0 & -1 & 0 & 0 \\
0 & -2 & 1 & -2 \\
0 & 1 & 2 & 2
\end{pmatrix}$$

 $u \notin \operatorname{sp}(u_1, u_2, u_3)$ אין פתרון למערכת, לכן

שאלה 9

$$\begin{aligned} u &\in \operatorname{sp}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right) \\ \begin{pmatrix} 2 & -1 \\ 0 & -1 \end{pmatrix} &\in \operatorname{sp}\left\{ \begin{pmatrix} 1 & 1 \\ 0 & m \end{pmatrix}, \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} m & 1 \\ 0 & 1 \end{pmatrix} \right\} \end{aligned}$$

$$\left(egin{array}{ccc|c} 1 & 1 & m & 2 \ 1 & m & 1 & -1 \ 0 & 0 & 0 & 0 \ m & 1 & 1 & -1 \ \end{array}
ight) \qquad rac{R_2}{R_4-1}$$

$$\begin{pmatrix} 1 & 1 & m & 2 \\ 1 & m & 1 & -1 \\ 0 & 0 & 0 & 0 \\ m & 1 & 1 & -1 \end{pmatrix} \qquad \qquad \underbrace{\begin{array}{c} R_2 \to R_2 - R_1 \\ R_4 \to R_4 - mR_1 \\ 0 & 0 & 0 \\ 0 & 1 - m^2 & 1 \end{array}}_{\qquad \qquad \begin{pmatrix} 1 & 1 & m & 2 \\ 0 & m - 1 & 1 - m & -3 \\ 0 & 0 & 0 & 0 \\ 0 & 1 - m^2 & 1 & -1 - 2m \end{pmatrix}$$

 $u \notin \operatorname{sp}(\mathsf{v}_1,\mathsf{v}_2,\mathsf{v}_3)$ עבור m=1 למערכת אין פתרון, לכן $u \in \operatorname{sp}(v_1, v_2, v_3)$ עבור $m \neq 1$ למערכת יש פתרון, לכן

עבור אילו ערכי . $\dim V(a)=3$ שאלה ערכי צריך לבדוק עבור אילו ערכי $V(a)=\mathbb{C}^3$ עבור אילו ערכי בת"ל. v_1, v_2, v_3 בת"ל. $a \in \mathbb{C}$

$$\begin{pmatrix} 1 & 1 & 1 \\ 3 & 4 & a \\ a & 1 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 3R_1} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & a - 3 \\ 0 & 1 - a & 1 - a \end{pmatrix} \xrightarrow{R_3 \to R_3 + 4R_2} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & a - 3 \\ 0 & 0 & 1 - a - (1 - a)(a - 3) \end{pmatrix}$$

$$\stackrel{=}{\to} \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & a - 3 \\ 0 & 0 & (1 - a)(4 - a) \end{array}\right)$$

 $V(a)=\mathbb{C}^3$ מכאן אם a
eq 1,4 למערכת פתרון יחיד ובפרט

 $V(a)
eq \mathbb{C}^3$ ובפרט $\dim V(a) < 3$,a = 1, 4 עבור

.(ווקטור האפס) עלינו לבדוק האם ar 0 צירוף לינארי לא טריוויאלי של w_1,w_2,w_3 אשר נותן את צירוף ar 0 (ווקטור האפס).

$$0 = \alpha_1 w_1 + \alpha_2 w_2 + \alpha_3 w_3$$

= $\alpha_1 (v_1 + v_2 + v_3) + \alpha_2 (v_1 - v_2 + 3v_3) + \alpha_3 ()$
= $(\alpha_1 + \alpha_2 + \alpha_3)v_1 + (\alpha_1 - \alpha_2 + 2\alpha_3)v_2 + (\alpha_1 + 3\alpha_2 + 0\alpha_3)v_3$

נשים לב

יש לנו כאן צירוף לינארי של v_1, v_2, v_3 שנותן את v_1, v_2, v_3 שנותן את לנו כאן אירוף לינארי של

$$\alpha_1 + \alpha_2 + \alpha_3 = 0$$
$$\alpha_1 - \alpha_2 + 2\alpha_3 = 0$$
$$\alpha_1 + 3\alpha_2 + 0\alpha_3 = 0$$

. אם w_1, w_2, w_3 אחרת w_1, w_2, w_3 אם למערכת פתרון יחיד אז w_1, w_2, w_3 בת"ל

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 1 & 3 & 0 \end{pmatrix} \xrightarrow{R_2 \to R_2 - R_1 \atop R_3 \to R_3 - R_1} \begin{pmatrix} 1 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & 2 & -1 \end{pmatrix} \xrightarrow{R_2 \to -\frac{1}{2}R_2} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -\frac{1}{2} \\ 0 & 2 & -1 \end{pmatrix}$$

. לא ת"ל. $w_1, w_2, w_3 \Leftarrow m$ פתרונות אי
 ∞ יש למערכת ל

$$\frac{3}{2}w_1 - \frac{1}{2}w_2 = w_3 \ .$$