Rational Instance Checking in Defeasible \mathcal{ELI}

Igor de Camargo e Souza Câmara October 26, 2022

University of São Paulo

$$\mathcal{A} = \{a : C, b : C, (a, b) : r\}$$
$$\mathcal{T} = \{D \sqcap \exists r.D \sqsubseteq \bot\}$$
$$\mathcal{D} = \{C \sqsubseteq D\}$$

$$\mathcal{A} = \{a : C, b : C, (a, b) : r\}$$
$$\mathcal{T} = \{D \sqcap \exists r.D \sqsubseteq \bot\}$$
$$\mathcal{D} = \{C \sqsubseteq D\}$$

$$\mathcal{T} = \{D \sqcap \exists r.D \sqsubseteq \bot\}$$

$$\mathcal{T} = \{D \sqcap \exists r.D \sqsubseteq \bot\}$$

(Solution no. 1 – Apply $C \subseteq D$ to a)

$$\mathcal{T} = \{D \sqcap \exists r.D \sqsubseteq \bot\}$$

(**Solution no.** 1 – Apply $C \subseteq D$ to a)

(**Solution no. 2** – Apply $C \sqsubseteq D$ to b)

Solution no.1 [Casini & Straccia, 2010]

 \models defined w.r.t. an order s over the individuals in \mathcal{K} .

Solution no.1 [Casini & Straccia, 2010]

 \models defined w.r.t. an order s over the individuals in \mathcal{K} .

s = (a, b) characterizes the first solution, i.e.

$$\mathcal{K}\models_{s} D(a)$$
 and $\mathcal{K}\not\models_{s} D(b)$

s' = (b, a) characterizes the first solution, i.e.

$$\mathcal{K} \models_{s'} D(b)$$
 and $\mathcal{K} \not\models_s D(a)$

- 1. Enrich ${\cal A}$ with defeasible information respecting an order
 - s. The result is denoted by \mathcal{A}^* .

- 1. Enrich A with defeasible information respecting an order s. The result is denoted by A^* .
- 2. \mathcal{A}^* and \mathcal{T} induce an interpretation $\mathcal{I}_{\mathcal{A}^*,\mathcal{T}}$.

- 1. Enrich \mathcal{A} with defeasible information respecting an order s. The result is denoted by \mathcal{A}^* .
- 2. \mathcal{A}^* and \mathcal{T} induce an interpretation $\mathcal{I}_{\mathcal{A}^*,\mathcal{T}}$.
- 3. $\mathcal{I}_{\mathcal{A}^*,\mathcal{T}}$ is quasi-disjoint w.r.t. minimal typicality model $\mathcal{I}_{\min}(\mathcal{T})$.

- 1. Enrich \mathcal{A} with defeasible information respecting an order s. The result is denoted by \mathcal{A}^* .
- 2. \mathcal{A}^* and \mathcal{T} induce an interpretation $\mathcal{I}_{\mathcal{A}^*,\mathcal{T}}$.
- 3. $\mathcal{I}_{\mathcal{A}^*,\mathcal{T}}$ is quasi-disjoint w.r.t. minimal typicality model $\mathcal{I}_{\min}(\mathcal{T})$.
- 4. Define the new minimal typicality model as $\mathcal{I}_{\mathcal{A}^*,\mathcal{T}} \cup \mathcal{I}_{\min}(\mathcal{T}).$

Inducing an interpretration from \mathcal{A}^* and \mathcal{T}

Let
$$\mathcal{K}=(\mathcal{A},\mathcal{T})$$
. Then $\mathcal{I}_{\mathcal{A},\mathcal{T}}=(\Delta^{\mathcal{I}_{\mathcal{A},\mathcal{T}}},\cdot^{\mathcal{I}_{\mathcal{A},\mathcal{T}}})$ s.t.:

$$\begin{split} &\Delta^{\mathcal{I}_{\mathcal{A},\mathcal{T}}} = \operatorname{sig}(\mathcal{A}) \cup \mathit{Qc}(\mathcal{K}) \text{ where } \mathit{Qc}(\mathcal{K}) \text{ denotes quantified concepts in } \mathcal{K}. \\ &a^{\mathcal{I}_{\mathcal{A},\mathcal{T}}} = a \\ &A^{\mathcal{I}_{\mathcal{A},\mathcal{T}}} = \{a \in \operatorname{sig}(\mathcal{A}) : \mathcal{K} \models \mathit{A}(a)\} \\ &r^{\mathcal{I}_{\mathcal{A},\mathcal{T}}} = \{r(a,b) \in \mathcal{A}\} \cup \{(a,E_{\emptyset}) : \mathcal{K} \models (\exists r.E)(a)\} \end{split}$$

$$\mathcal{A} = \{a : C, b : C, (a, b) : r\}$$

$$\mathcal{T} = \{D \sqcap \exists r.D \sqsubseteq \bot\}$$

$$\mathcal{D} = \{C \sqsubseteq D\}$$

$$s = (a, b)$$

```
\mathcal{A} = \{a : C, b : C, (a, b) : r\}
\mathcal{T} = \{D \sqcap \exists r. D \sqsubseteq \bot\}
\mathcal{D} = \{C \sqsubseteq D\}
s = (a, b)
\mathcal{A}^* = \{a : C, a : D, b : C, (a, b) : r\}
```

```
A = \{a : C, b : C, (a, b) : r\}
\mathcal{T} = \{D \sqcap \exists r.D \sqsubseteq \bot\}
\mathcal{D} = \{ C \subseteq D \}
s = (a, b)
A^* = \{a : C, a : D, b : C, (a, b) : r\}
\mathcal{I}_{\mathcal{A}^*,\mathcal{T}}
\Delta^{\mathcal{I}_{\mathcal{A}^*,\mathcal{T}}} = \{a,b\}
C^{\mathcal{I}_{\mathcal{A}^*},\mathcal{T}} = \{a,b\}
 D^{\mathcal{I}_{\mathcal{A}^*},\mathcal{T}} = \{a\}
r^{\mathcal{I}_{\mathcal{A}^*,\mathcal{T}}} = \{(a,b)\}
```

1. $\mathcal{I}_{\mathcal{A}^*,\mathcal{T}}\cup\mathcal{I}_{min}(\mathcal{T})$ is a canonical model w.r.t. materialization-based rational reasoning,

- 1. $\mathcal{I}_{\mathcal{A}^*,\mathcal{T}}\cup\mathcal{I}_{min}(\mathcal{T})$ is a canonical model w.r.t. materialization-based rational reasoning,
- 2. Individuals affect the upgrade procedure.

- 1. $\mathcal{I}_{\mathcal{A}^*,\mathcal{T}}\cup\mathcal{I}_{min}(\mathcal{T})$ is a canonical model w.r.t. materialization-based rational reasoning,
- 2. Individuals affect the upgrade procedure.

What happens with defeasible \mathcal{ELI}_{\perp}

Quasi-disjointness in \mathcal{EL}_{\perp}

(Definition) ${\mathcal J}$ is quasi-disjoint from ${\mathcal I}$ iff

- $\forall A \in N_C$, $A^{\mathcal{J}} \cap \Delta^{\mathcal{I}} = \emptyset$ and
- $\forall r \in \mathsf{N}_\mathsf{R}, \ r^\mathcal{I} \cap (\Delta^\mathcal{I} \times (\Delta^\mathcal{I} \cup \Delta^\mathcal{I})) = \emptyset$

What happens with defeasible \mathcal{ELI}_{\perp}

The following property holds for \mathcal{EL}_{\perp} $For \, \mathcal{I}, \, \mathcal{J} \, s.t. \, \mathcal{J} \, is \, quasi-disjoint \, from \, \mathcal{I} \, it \, holds \, that \, C^{\mathcal{I} \cup \mathcal{J}} \cap \Delta^{\mathcal{I}} = C^{\mathcal{I}} \, For \, all \, \mathcal{EL}_{\perp} \, concepts \, C$

What happens with defeasible \mathcal{ELI}_{\perp}

The following property holds for \mathcal{EL}_{\perp} For \mathcal{I} , \mathcal{J} s.t. \mathcal{J} is quasi-disjoint from \mathcal{I} it holds that $C^{\mathcal{I} \cup \mathcal{J}} \cap \Delta^{\mathcal{I}} = C^{\mathcal{I}}$ For all \mathcal{EL}_{\perp} concepts C

... but not in \mathcal{ELI}_{\perp}

$$\mathcal{J}$$
 s.t. $\Delta^{\mathcal{J}} = \{a, C\}, r^{\mathcal{J}} = \{(a, C)\} \text{ and } (\exists r^-.\top)^{\mathcal{J}} = \{C\}$
 \mathcal{I} s.t. $\Delta^{\mathcal{I}} = \{C\}, r^{\mathcal{I}} = \emptyset \text{ and } (\exists r^-.\top)^{\mathcal{J}} = \emptyset.$

Without quasi-disjointness...

Definition (New ABox Interpretation)

Let
$$\mathcal{K} = (\mathcal{A}, \mathcal{T})$$
. Then:

$$\Delta^{\mathcal{I}_{\mathcal{A}, \mathcal{T}}} = \operatorname{sig}(\mathcal{A}) \cup \{M_{\emptyset} : M \in \mathcal{P}(\operatorname{sig}(\mathcal{T}))\}$$

$$a^{\mathcal{I}_{\mathcal{A}, \mathcal{T}}} = a$$

$$A^{\mathcal{I}_{\mathcal{A}, \mathcal{T}}} = \{a \in \operatorname{sig}(\mathcal{A}) : \mathcal{K} \models A(a)\}$$

$$r^{\mathcal{I}_{\mathcal{A}, \mathcal{T}}} = \{r(a, b) \in \mathcal{A}\}$$

$$\cup \{(a, M_{\emptyset}) : \mathcal{K} \models (\exists r. \lceil M \rceil)(a) \text{ and } M \text{ is maximal for } \mathcal{K}, r \text{ and } a\}$$

$$\cup \{(M_{\emptyset}, a) : \mathcal{K} \models (\exists r^{-}. \lceil M \rceil)(a) \text{ and } M \text{ is maximal for } \mathcal{K}, r^{-} \text{ and } a\}$$

Why the new construction do NOT break the model property

$$A \sqsubseteq B \mid A \sqsubseteq \exists r.B \mid A \sqsubseteq \forall r.B$$

Why the new construction do NOT break the model property

$$A \sqsubseteq B \mid A \sqsubseteq \exists r.B \mid A \sqsubseteq \forall r.B$$

With the new definition

- $\mathcal{I}_{\mathcal{A}^*,\mathcal{T}} \cup \mathcal{I}_{min}(\mathcal{T}) \models \mathcal{K}$.
- $\mathcal{I}_{\mathcal{A}^*,\mathcal{T}} \cup \mathcal{I}_{min}(\mathcal{T})$ is canonical w.r.t. rational defeasible subsumption and defeasible instance checking (for named concepts).

Upgrading the typicality of the edges

1. Upgrades of edges owned by individuals can block upgrades of concept representatives.

Upgrading the typicality of the edges

- 1. Upgrades of edges owned by individuals can block upgrades of concept representatives.
- 2. Individuals own every edge to which they belong.

Upgrading the typicality of the edges

- 1. Upgrades of edges owned by individuals can block upgrades of concept representatives.
- 2. Individuals own every edge to which they belong.
- 3. There are three types of violations brought by upgrades on edges with individuals.

Violation #1

Violation #2

Violation #3

Quantification Neglect and Defeasible Instance Checking

Quantification Neglect and Defeasible Instance Checking

$$\mathcal{K} \models_{rat,nest} (\exists eats.Flying)(felix)$$

Next chapters

- Instance checking in relevant and lexicographic defeasible reasoning.
- Skeptical instance checking without order over individuals.
- Defeasible assertions?