Ордена Трудового Красного Знамени

Федеральное государственное бюджетное образовательное учреждение

Высшего профессионального образования

Московский технический университет связи и информатики

Выполнила студентка группы БВТ2002 Быковская Арина Александровна

Тема 1. Первичный анализ данных с Pandas

Практическое задание. Анализ данных пассажиров "Титаника"

Ввод [19]:

import numpy as np
import pandas as pd
%matplotlib inline

Считаем данные из файла в память в виде объекта Pandas.DataFrame

Ввод [20]:

Данные представлены в виде таблицы. Посмотрим на первые 5 строк:

Ввод [21]:

data.head(5)

Out[21]:

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
Passengerld											
1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	s

Ввод [22]:

data.describe()

Out[22]:

	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

^{**}Заполните код в клетках (где написано "Ваш код здесь")

Для примера отберем пассажиров, которые сели в Cherbourg (Embarked=C) и заплатили более 200 у.е. за билет (fare > 200).

Убедитесь, что Вы понимаете, как эта конструкция работает.

Если нет – посмотрите, как вычисляется выражение в квадратных в скобках.

Ввод [23]:

```
data[(data['Embarked'] == 'C') & (data.Fare > 200)].head()
```

Out[23]:

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
Passengerld											
119	0	1	Baxter, Mr. Quigg Edmond	male	24.0	0	1	PC 17558	247.5208	B58 B60	С
259	1	1	Ward, Miss. Anna	female	35.0	0	0	PC 17755	512.3292	NaN	С
300	1	1	Baxter, Mrs. James (Helene DeLaudeniere Chaput)	female	50.0	0	1	PC 17558	247.5208	B58 B60	С
312	1	1	Ryerson, Miss. Emily Borie	female	18.0	2	2	PC 17608	262.3750	B57 B59 B63 B66	С
378	0	1	Widener, Mr. Harry Elkins	male	27.0	0	2	113503	211.5000	C82	С

Можно отсортировать этих людей по убыванию платы за билет.

Ввод [24]:

Out[24]:

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
Passengerld											
259	1	1	Ward, Miss. Anna	female	35.0	0	0	PC 17755	512.3292	NaN	С
680	1	1	Cardeza, Mr. Thomas Drake Martinez	male	36.0	0	1	PC 17755	512.3292	B51 B53 B55	С
738	1	1	Lesurer, Mr. Gustave J	male	35.0	0	0	PC 17755	512.3292	B101	С
312	1	1	Ryerson, Miss. Emily Borie	female	18.0	2	2	PC 17608	262.3750	B57 B59 B63 B66	С
743	1	1	Rverson, Miss, Susan Parker "Suzette"	female	21.0	2	2	PC 17608	262.3750	B57 B59 B63 B66	С

Пример создания признака.

Ввод [25]:

Ввод [26]:

```
age_categories = [age_category(age) for age in data.Age]
```

Ввод [27]:

```
data['Age_category'] = age_categories
```

Другой способ - через apply.

```
Ввод [28]:
```

```
data['Age_category'] = data['Age'].apply(age_category)
```

- 1. Сколько мужчин / женщин находилось на борту?
 - 412 мужчин и 479 женщин
 - 314 мужчин и 577 женщин

- 479 мужчин и 412 женщин
- 577 мужчин и 314 женщин

```
Ввод [29]:
```

```
data['Age_category'].value_counts()
Out[29]:
1    384
2    288
3    219
Name: Age_category, dtype: int64
```

- 2. Выведите распределение переменной Pclass (социально-экономический статус) и это же распределение, только для мужчин / женщин по отдельности. Сколько было мужчин 2-го класса?
 - 104
 - 108
 - 112
 - 125

Ввод [30]:

```
print(data[data['Pclass']==2]['Sex'].value_counts())
print(data[data['Pclass']==2]['Sex'].value_counts())

male     108
female     76
Name: Sex, dtype: int64
male     108
female     76
Name: Sex, dtype: int64

BBoд [31]:

#αльтернативный варинат
pd.crosstab(data['Pclass'], data['Sex'], margins=True)
```

Out[31]:

Sex female male All Pclass 94 122 216 2 76 108 184 3 144 347 491 All 314 577 891

- 3. Каковы медиана и стандартное отклонение платежей (Fare)? Округлите до 2 десятичных знаков.
 - Медиана 14.45, стандартное отклонение 49.69
 - Медиана 15.1, стандартное отклонение 12.15
 - Медиана 13.15, стандартное отклонение 35.3
 - Медиана 17.43, стандартное отклонение 39.1

Ввод [16]:

```
print(round(data['Fare'].median(),2))
print(round(data['Fare'].std(),2))

14.45
49.69
```

- 4. Правда ли, что люди моложе 30 лет выживали чаще, чем люди старше 60 лет? Каковы доли выживших в обеих группах?
 - 22.7% среди молодых и 40.6% среди старых
 - 40.6% среди молодых и 22.7% среди старых
 - 35.3% среди молодых и 27.4% среди старых
 - 27.4% среди молодых и 35.3% среди старых

Ввод [17]:

```
print(data['data['Survived'] == 1) & (data['Age'] < 30)]['Age'].count()/data[data['Age'] < 30]['Age'].count())
print(data[(data['Survived'] == 1) & (data['Age'] > 60)]['Age'].count()/data[data['Age'] > 60]['Age'].count())
```

0.40625

0.22727272727272727

5. Правда ли, что женщины выживали чаще мужчин? Каковы доли выживших в обеих группах?

- 30.2% среди мужчин и 46.2% среди женщин
- 35.7% среди мужчин и 74.2% среди женщин
- 21.1% среди мужчин и 46.2% среди женщин
- 18.9% среди мужчин и 74.2% среди женщин

```
Ввод [18]:
```

```
print(data[(data['Survived'] == 1) & (data['Sex'] == 'male')]['Sex'].count()/data[data['Sex'] == 'male']['Sex'].count())
print(data[(data['Survived'] == 1) & (data['Sex'] == 'female')]['Sex'].count()/data[data['Sex'] == 'female']['Sex'].count())
4
```

- 0.18890814558058924
- 0.7420382165605095

6. Найдите самое популярное имя среди пассажиров Титаника мужского пола?

- Charles
- Thomas
- William
- John

Ввод [16]:

```
list = []
for name, row in data.iterrows():
    if row['Sex'] == 'male':
        list.append(row['Name'].split()[2])
print(statistics.mode(list))
```

7. Сравните графически распределение стоимости билетов и возраста у спасенных и у погибших. Средний возраст погибших выше, верно?

- Да
- Нет

Ввод [17]:

```
sns.boxplot(x='Survived', y='Fare', data=data);
sns.boxplot(x='Survived', y='Age', data=data);
```

8. Как отличается средний возраст мужчин / женщин в зависимости от класса обслуживания? Выберите верные утверждения:

- В среднем мужчины 1-го класса старше 40 лет
- В среднем женщины 1-го класса старше 40 лет
- Мужчины всех классов в среднем старше женщин того же класса
- В среднем люди в 1 классе старше, чем во 2-ом, а те старше представителей 3-го класса

Ввод [20]:

```
data[(data['Sex'] == 'male') & (data['Pclass'] == 1)]['Age'].mean() > 40
data[(data['Sex'] == 'female') & (data['Pclass'] == 1)]['Age'].mean() > 40

for i in range(3):
    print(data[(data['Sex'] == 'male') & (data['Pclass'] == i + 1)]['Age'].mean() > data[(data['Sex'] == 'female') & (data['Pclass']
data[data['Pclass'] == 3]['Age'].mean() > data[data['Pclass'] == 2]['Age'].mean() and data[data['Pclass'] == 2]['Age'].mean() > data[data['Pclas
```

False

Out[20]:

Ввод []: