Critical Points, Singular Points, and Endpoints

Figure 4.17 suggests that a function f(x) can have local extreme values only at points x of three special types:

- (i) **critical points** of f (points x in $\mathcal{D}(f)$ where f'(x) = 0),
- (ii) singular points of f (points x in $\mathcal{D}(f)$ where f'(x) is not defined), and
- (iii) **endpoints** of the domain of f (points in $\mathcal{D}(f)$ that do not belong to any open interval contained in $\mathcal{D}(f)$).

Critical Points, Singular Points, and Endpoints

Figure 4.17 suggests that a function f(x) can have local extreme values only at points x of three special types:

- (i) **critical points** of f (points x in $\mathcal{D}(f)$ where f'(x) = 0),
- (ii) singular points of f (points x in $\mathcal{D}(f)$ where f'(x) is not defined), and
- (iii) **endpoints** of the domain of f (points in $\mathcal{D}(f)$ that do not belong to any open interval contained in $\mathcal{D}(f)$).

THEOREM

Locating extreme values

If the function f is defined on an interval I and has a local maximum (or local minimum) value at point $x = x_0$ in I, then x_0 must be either a critical point of f, a singular point of f, or an endpoint of I.

A function need not have extreme values at a critical point or a singular point

Finding Absolute Extreme Values

EXAMPLE

Find the maximum and minimum values of the function $g(x) = x^3 - 3x^2 - 9x + 2$ on the interval $-2 \le x \le 2$.

Finding Absolute Extreme Values

EXAMPLE

Find the maximum and minimum values of the function $g(x) = x^3 - 3x^2 - 9x + 2$ on the interval $-2 \le x \le 2$.

$$g'(x) = 3x^{2} - 6x - 9 = 3(x^{2} - 2x - 3)$$

$$= 3(x + 1)(x - 3)$$

$$= 0 if x = -1 or x = 3.$$

Finding Absolute Extreme Values

EXAMPLE

Find the maximum and minimum values of the function $g(x) = x^3 - 3x^2 - 9x + 2$ on the interval $-2 \le x \le 2$.

$$g'(x) = 3x^2 - 6x - 9 = 3(x^2 - 2x - 3)$$

= $3(x + 1)(x - 3)$
= 0 if $x = -1$ or $x = 3$.

Finding Absolute Extreme Values

EXAMPLE

Find the maximum and minimum values of the function $g(x) = x^3 - 3x^2 - 9x + 2$ on the interval $-2 \le x \le 2$.

$$g'(x) = 3x^2 - 6x - 9 = 3(x^2 - 2x - 3)$$

= $3(x + 1)(x - 3)$
= 0 if $x = -1$ or $x = 3$.
not in the domain!
 $g(-2) = 0$, $g(-1) = 7$, $g(2) = -20$.

Finding Absolute Extreme Values

EXAMPLE

Find the maximum and minimum values of the function $g(x) = x^3 - 3x^2 - 9x + 2$ on the interval $-2 \le x \le 2$.

$$g'(x) = 3x^2 - 6x - 9 = 3(x^2 - 2x - 3)$$

= $3(x + 1)(x - 3)$
= 0 if $x = -1$ or $x = 3$.
not in the domain!
 $g(-2) = 0$, $g(-1) = 7$, $g(2) = -20$.
maximum minimum value

Finding Absolute Extreme Values

EXAMPLE

Find the maximum and minimum values of the function $g(x) = x^3 - 3x^2 - 9x + 2$ on the interval $-2 \le x \le 2$.

$$g'(x) = 3x^2 - 6x - 9 = 3(x^2 - 2x - 3)$$
 $= 3(x + 1)(x - 3)$
 $= 0$ if $x = -1$ or $x = 3$.

 $g(-2) = 0$, $g(-1) = 7$, $g(2) = -20$.

maximum minimum value value

Finding Absolute Extreme Values

EXAMPLE

Find the maximum and minimum values of $h(x) = 3x^{2/3} - 2x$ on the interval [-1, 1].

Finding Absolute Extreme Values

EXAMPLE

Find the maximum and minimum values of $h(x) = 3x^{2/3} - 2x$ on the interval [-1, 1].

Solution The derivative of h is

$$h'(x) = 3\left(\frac{2}{3}\right)x^{-1/3} - 2 = 2(x^{-1/3} - 1).$$

Finding Absolute Extreme Values

EXAMPLE

Find the maximum and minimum values of $h(x) = 3x^{2/3} - 2x$ on the interval [-1, 1].

Solution The derivative of h is

$$h'(x) = 3\left(\frac{2}{3}\right)x^{-1/3} - 2 = 2(x^{-1/3} - 1).$$

x = 0 is a singular point of h. Also, h has a critical point at x = 1

$$h(-1) = 5$$
, $h(0) = 0$, $h(1) = 1$.

Finding Absolute Extreme Values

EXAMPLE

Find the maximum and minimum values of $h(x) = 3x^{2/3} - 2x$ on the interval [-1, 1].

Solution The derivative of h is

$$h'(x) = 3\left(\frac{2}{3}\right)x^{-1/3} - 2 = 2(x^{-1/3} - 1).$$

x = 0 is a singular point of h. Also, h has a critical point at x = 1

$$h(-1) = 5,$$

$$h(0) = 0,$$
 $h(1) = 1.$

$$h(1) = 1$$

max.

min.

THEOREM

The First Derivative Test

PART I. Testing interior critical points and singular points.

Suppose that f is continuous at x_0 , and x_0 is not an endpoint of the domain of f.

- (a) If there exists an open interval (a, b) containing x_0 such that f'(x) > 0 on (a, x_0) and f'(x) < 0 on (x_0, b) , then f has a local maximum value at x_0 .
- (b) If there exists an open interval (a, b) containing x_0 such that f'(x) < 0 on (a, x_0) and f'(x) > 0 on (x_0, b) , then f has a local minimum value at x_0 .

PART II. Testing endpoints of the domain.

Suppose a is a left endpoint of the domain of f and f is right continuous at a.

- (c) If f'(x) > 0 on some interval (a, b), then f has a local minimum value at a.
- (d) If f'(x) < 0 on some interval (a, b), then f has a local maximum value at a.

Suppose b is a right endpoint of the domain of f and f is left continuous at b.

- (e) If f'(x) > 0 on some interval (a, b), then f has a local maximum value at b.
- (f) If f'(x) < 0 on some interval (a, b), then f has a local minimum value at b.

EXAMPLE

Find the local and absolute extreme values of $f(x) = x^4 - 2x^2 - 3$ on the interval [-2, 2]. Sketch the graph of f.

EXAMPLE

Find the local and absolute extreme values of $f(x) = x^4 - 2x^2 - 3$ on the interval [-2, 2]. Sketch the graph of f.

Solution We begin by calculating and factoring the derivative f'(x):

$$f'(x) = 4x^3 - 4x = 4x(x^2 - 1) = 4x(x - 1)(x + 1).$$

The critical points are 0, -1, and 1. The corresponding values are f(0) = -3, f(-1) = f(1) = -4. There are no singular points. The values of f at the endpoints -2 and f are f(-2) = f(2) = 5.

	EP		CP		CP		CP		EP	
x	-2		-1		0		1		2	
f'		<u> </u>	0	+	0	_	0	+		→
f	max	>	min	7	max	7	min	7	max	_

EXAMPLE

of f.

Find and classify the local and absolute extreme values of the function $f(x) = x - x^{2/3}$ with domain [-1, 2]. Sketch the graph

EXAMPLE

of f.

Find and classify the local and absolute extreme values of the function $f(x) = x - x^{2/3}$ with domain [-1, 2]. Sketch the graph

Solution $f'(x) = 1 - \frac{2}{3}x^{-1/3} = \left(x^{1/3} - \frac{2}{3}\right)/x^{1/3}$. There is a singular point, x = 0, and a critical point, x = 8/27. The endpoints are x = -1 and x = 2. The values of f at these points are f(-1) = -2, f(0) = 0, f(8/27) = -4/27, and $f(2) = 2 - 2^{2/3} \approx 0.4126$.

 $\begin{array}{c}
\hline
\textbf{EXAMPLE} \\
\text{of } f.
\end{array}$

Find and classify the local and absolute extreme values of the function $f(x) = x - x^{2/3}$ with domain [-1, 2]. Sketch the graph

Solution $f'(x) = 1 - \frac{2}{3}x^{-1/3} = \left(x^{1/3} - \frac{2}{3}\right)/x^{1/3}$. There is a singular point, x = 0, and a critical point, x = 8/27. The endpoints are x = -1 and x = 2. The values of f at these points are f(-1) = -2, f(0) = 0, f(8/27) = -4/27, and $f(2) = 2 - 2^{2/3} \approx 0.4126$.

	EP		SP		CP		EP	
X	-1		0		8/27		2	8
f'		+	undef	_	0	+		
f	min	1	max	7	min	1	max	_

There are two local minima and two local maxima. The absolute maximum of f is $2-2^{2/3}$ at x=2; the absolute minimum is -2 at x=-1.

There are two local minima and two local maxima. The absolute maximum of f is $2-2^{2/3}$ at x=2; the absolute minimum is -2 at x=-1.

Functions Not Defined on Closed, Finite Intervals

THEOREM

Existence of extreme values on open intervals

If f is continuous on the open interval (a, b), and if

$$\lim_{x \to a+} f(x) = L \quad \text{and} \quad \lim_{x \to b-} f(x) = M,$$

then the following conclusions hold:

- (i) If f(u) > L and f(u) > M for some u in (a, b), then f has an absolute maximum value on (a, b).
- (ii) If f(v) < L and f(v) < M for some v in (a, b), then f has an absolute minimum value on (a, b).

In this theorem a may be $-\infty$, in which case $\lim_{x\to a+}$ should be replaced with $\lim_{x\to -\infty}$, and b may be ∞ , in which case $\lim_{x\to b-}$ should be replaced with $\lim_{x\to \infty}$. Also, either or both of L and M may be either ∞ or $-\infty$.

Functions Not Defined on Closed, Finite Intervals

EXAMPLE

Show that f(x) = x + (4/x) has an absolute minimum value on the interval $(0, \infty)$, and find that minimum value.

Functions Not Defined on Closed, Finite Intervals

EXAMPLE

Show that f(x) = x + (4/x) has an absolute minimum value on the interval $(0, \infty)$, and find that minimum value.

Solution We have

$$\lim_{x \to 0+} f(x) = \infty \quad \text{and} \quad \lim_{x \to \infty} f(x) = \infty.$$

Since $f(1) = 5 < \infty$, Theorem guarantees that f must have an absolute minimum value at some point in $(0, \infty)$.

Functions Not Defined on Closed, Finite Intervals

EXAMPLE

Show that f(x) = x + (4/x) has an absolute minimum value on the interval $(0, \infty)$, and find that minimum value.

Solution We have

$$\lim_{x \to 0+} f(x) = \infty \quad \text{and} \quad \lim_{x \to \infty} f(x) = \infty.$$

Since $f(1) = 5 < \infty$, Theorem guarantees that f must have an absolute minimum value at some point in $(0, \infty)$.

$$f'(x) = 1 - \frac{4}{x^2} = \frac{x^2 - 4}{x^2} = \frac{(x - 2)(x + 2)}{x^2},$$

which equals 0 only at x = 2 and x = -2.

Functions Not Defined on Closed, Finite Intervals

EXAMPLE

Show that f(x) = x + (4/x) has an absolute minimum value on the interval $(0, \infty)$, and find that minimum value.

Solution We have

$$\lim_{x \to 0+} f(x) = \infty \quad \text{and} \quad \lim_{x \to \infty} f(x) = \infty.$$

Since $f(1) = 5 < \infty$, Theorem guarantees that f must have an absolute minimum value at some point in $(0, \infty)$.

$$f'(x) = 1 - \frac{4}{x^2} = \frac{x^2 - 4}{x^2} = \frac{(x - 2)(x + 2)}{x^2},$$

which equals 0 only at x = 2 and x = -2. In the domain!

Functions Not Defined on Closed, Finite Intervals

EXAMPLE

Show that f(x) = x + (4/x) has an absolute minimum value on the interval $(0, \infty)$, and find that minimum value.

Solution We have

$$\lim_{x \to 0+} f(x) = \infty \quad \text{and} \quad \lim_{x \to \infty} f(x) = \infty.$$

Since $f(1) = 5 < \infty$, Theorem guarantees that f must have an absolute minimum value at some point in $(0, \infty)$.

$$f'(x) = 1 - \frac{4}{x^2} = \frac{x^2 - 4}{x^2} = \frac{(x - 2)(x + 2)}{x^2},$$

which equals 0 only at x = 2 and x = -2. In the domain!

$$f(2) = 4 \rightarrow absolute min. value$$

Functions Not Defined on Closed, Finite Intervals

EXAMPLE

Let $f(x) = x e^{-x^2}$. Find and classify the critical points of f, evaluate $\lim_{x \to \pm \infty} f(x)$.

Functions Not Defined on Closed, Finite Intervals

EXAMPLE

Let $f(x) = x e^{-x^2}$. Find and classify the critical points of f, evaluate $\lim_{x \to \pm \infty} f(x)$.

Solution $f'(x) = e^{-x^2}(1 - 2x^2) = 0 \iff 1 - 2x^2 = 0 \iff$ the critical points are $\pm \frac{1}{\sqrt{2}}$. $f\left(\pm \frac{1}{\sqrt{2}}\right) = \pm \frac{1}{\sqrt{2e}}$.

Functions Not Defined on Closed, Finite Intervals

EXAMPLE

Let $f(x) = x e^{-x^2}$. Find and classify the critical points of f, evaluate $\lim_{x \to \pm \infty} f(x)$.

Solution $f'(x) = e^{-x^2}(1 - 2x^2) = 0 \iff 1 - 2x^2 = 0 \iff$ the critical points are $\pm \frac{1}{\sqrt{2}}$. $f\left(\pm \frac{1}{\sqrt{2}}\right) = \pm \frac{1}{\sqrt{2e}}$.

		CP		CP		
x		$-1/\sqrt{2}$		$1/\sqrt{2}$		12/
f'	===	0	+	0	22	
f	7	min	1	max	7	_

Functions Not Defined on Closed, Finite Intervals

EXAMPLE

Let $f(x) = x e^{-x^2}$. Find and classify the critical points of f, evaluate $\lim_{x \to \pm \infty} f(x)$.

Solution $f'(x) = e^{-x^2}(1 - 2x^2) = 0 \iff 1 - 2x^2 = 0 \iff$ the critical points are $\pm \frac{1}{\sqrt{2}}$. $f\left(\pm \frac{1}{\sqrt{2}}\right) = \pm \frac{1}{\sqrt{2e}}$.

		CP		CP		lim xē ×→±∞	×=lim ×→±∞	<u> </u>
x		$-1/\sqrt{2}$		$1/\sqrt{2}$				
f'	=	0	+	0	-22	→ (1'Hospital)	=lim X→±∞	
f	7	min	1	max	7		X→±∞	2x
				**			-()	

Functions Not Defined on Closed, Finite Intervals

EXAMPLE

Let $f(x) = x e^{-x^2}$. Find and classify the critical points of f, evaluate $\lim_{x \to \pm \infty} f(x)$.

Solution $f'(x) = e^{-x^2}(1 - 2x^2) = 0 \iff 1 - 2x^2 = 0 \iff$ the critical points are $\pm \frac{1}{\sqrt{2}}$. $f\left(\pm \frac{1}{\sqrt{2}}\right) = \pm \frac{1}{\sqrt{2}e}$.

 $f(\frac{1}{\sqrt{2}}) > 0$ and $f(-\frac{1}{\sqrt{2}}) < 0 \Rightarrow f$ assumes both absolute max. and absolute min.

Functions Not Defined on Closed, Finite Intervals

EXAMPLE

Let $f(x) = x e^{-x^2}$. Find and classify the critical points of f, evaluate $\lim_{x \to \pm \infty} f(x)$.

Solution $f'(x) = e^{-x^2}(1 - 2x^2) = 0 \iff 1 - 2x^2 = 0 \iff$ the critical points are $\pm \frac{1}{\sqrt{2}}$. $f\left(\pm \frac{1}{\sqrt{2}}\right) = \pm \frac{1}{\sqrt{2e}}$.

 $f(\frac{1}{\sqrt{2}}) > 0$ and $f(-\frac{1}{\sqrt{2}}) < 0 \Rightarrow f$ assumes both absolute max. and absolute min.

 $\frac{1}{\sqrt{2e}}$ is the absolute max., $\frac{-1}{\sqrt{2e}}$ is the absolute min.

We say that the function f is **concave up** on an open interval I if it is differentiable there and the derivative f' is an increasing function on I. Similarly, f is **concave down** on I if f' exists and is decreasing on I.

We say that the function f is **concave up** on an open interval I if it is differentiable there and the derivative f' is an increasing function on I. Similarly, f is **concave down** on I if f' exists and is decreasing on I.

We say that the function f is **concave up** on an open interval I if it is differentiable there and the derivative f' is an increasing function on I. Similarly, f is **concave** down on I if f' exists and is decreasing on I.

Inflection points

We say that the point $(x_0, f(x_0))$ is an **inflection point** of the curve y = f(x) (or that the function f has an **inflection point** at x_0) if the following two conditions are satisfied:

- (a) the graph of y = f(x) has a tangent line at $x = x_0$, and
- (b) the concavity of f is opposite on opposite sides of x_0 .

x = 0 is a critical point of $f(x) = x^3$, and f has an inflection point there

The concavity of g is opposite on opposite sides of the singular point a, but its graph has no tangent and therefore no inflection point there

This graph of h has an inflection point at the origin even though x = 0 is a singular point of h

THEOREM

Concavity and the second derivative

- (a) If f''(x) > 0 on interval I, then f is concave up on I.
- (b) If f''(x) < 0 on interval I, then f is concave down on I.
- (c) If f has an inflection point at x_0 and $f''(x_0)$ exists, then $f''(x_0) = 0$.

EXAMPLE

Determine the intervals of increase and decrease, the local extreme values, and the concavity of $f(x) = x^4 - 2x^3 + 1$. Use the information to sketch the graph of f.

EXAMPLE

Determine the intervals of increase and decrease, the local extreme values, and the concavity of $f(x) = x^4 - 2x^3 + 1$. Use the information to sketch the graph of f.

Solution

$$f'(x) = 4x^3 - 6x^2 = 2x^2(2x - 3) = 0$$
 at $x = 0$ and $x = 3/2$,
 $f''(x) = 12x^2 - 12x = 12x(x - 1) = 0$ at $x = 0$ and $x = 1$.

EXAMPLE

Determine the intervals of increase and decrease, the local extreme values, and the concavity of $f(x) = x^4 - 2x^3 + 1$. Use the information to sketch the graph of f.

Solution

$$f'(x) = 4x^3 - 6x^2 = 2x^2(2x - 3) = 0$$
 at $x = 0$ and $x = 3/2$,
 $f''(x) = 12x^2 - 12x = 12x(x - 1) = 0$ at $x = 0$ and $x = 1$.

		CP				CP	
х		0		1		3/2	
f'	-	0	7-		-	0	+
f''	+	0		0	+		+
f	7		7		/	min	1
		infl	^	infl	$\overline{}$		_

EXAMPLE

Determine the intervals of increase and decrease, the local extreme values, and the concavity of $f(x) = x^4 - 2x^3 + 1$. Use the information to sketch the graph of f.

Solution

$$f'(x) = 4x^3 - 6x^2 = 2x^2(2x - 3) = 0$$
 at $x = 0$ and $x = 3/2$,
 $f''(x) = 12x^2 - 12x = 12x(x - 1) = 0$ at $x = 0$ and $x = 1$.

		infl	$\widehat{}$	infl	$\overline{}$		_
	7		7		7	min	1
.11	+	0	-	0	+		+
'	_	0	-		_	0	+
		0		1		3/2	
		CP				CP	

THEOREM

The Second Derivative Test

- (a) If $f'(x_0) = 0$ and $f''(x_0) < 0$, then f has a local maximum value at x_0 .
- (b) If $f'(x_0) = 0$ and $f''(x_0) > 0$, then f has a local minimum value at x_0 .
- (c) If $f'(x_0) = 0$ and $f''(x_0) = 0$, no conclusion can be drawn; f may have a local maximum at x_0 or a local minimum, or it may have an inflection point instead.

EXAMPLE

Find and classify the critical points of $f(x) = x^2 e^{-x}$.

EXAMPLE

Find and classify the critical points of $f(x) = x^2 e^{-x}$.

Solution We begin by calculating the first two derivatives of f:

$$f'(x) = (2x - x^2)e^{-x} = x(2 - x)e^{-x} = 0$$
 at $x = 0$ and $x = 2$,
 $f''(x) = (2 - 4x + x^2)e^{-x}$
 $f''(0) = 2 > 0$, $f''(2) = -2e^{-2} < 0$.

Thus, f has a local minimum value at x = 0 and a local maximum value at x = 2.