ERRATA: Peter H Zipfel "Modeling and Simulation of Aerospace Vehicle Dynamics", AIAA Educational Series, 2000. 1st Printing, 2000 --- As of 18 Oct 04, PHZ ---

Page		Erroneous	Correct
xix	g	CEP central error probable	CEP <u>circular</u> error probable
6	Third eq. down	(Last symbol:)] ^B	(Last symbol:)] ¹
6	Last line	as already characterized in Chapter 1,	as already characterized,
32	2 nd eq. down	$\begin{bmatrix} y_1^A \\ y_1^A \\ y_1^A \end{bmatrix}$	$\begin{bmatrix} y_1^A \\ y_2^A \\ y_3^A \end{bmatrix}$
	Last three	$[a_2]^B = \frac{[S_{AB}]^B [g]^B}{ s_{AB} g }$	$[a_2]^B = \frac{[S_{AB}]^B [g]^B}{[S_{AB}]^B [g]^B}$
65	equations Credit: Mark Smith	$[a_3]^B = [A_1]^B [a_2]^B = -\frac{[S_{AB}]^B [S_{AB}]^B [g]^B}{ s_{AB} ^2 g }$	$[a_3]^B = \dots = -\frac{[S_{AB}]^B [S_{AB}]^B [g]^B}{ S_{AB} [S_{AB}]^B [g]^B}$
		$[T]^{BA} = \left[-\frac{[s_{AB}]^B}{ s_{AB} } - \frac{[s_{AB}]^B[g]^B}{ s_{AB} g } - \frac{[s_{AB}]^B[s_{AB}]^B[g]^B}{ s_{AB} ^2 g } \right]$	$[T]^{BA} = \left[\dots \frac{[S_{AB}]^B[g]^B}{[S_{AB}]^B[g]^B[g]^B} -\frac{[S_{AB}]^B[S_{AB}]^B[g]^B}{[S_{AB}]^B[g]^B[g]^B} \right]$
0.1	F 2.27		
81	Eq. 3.27	$\gamma = \arctan\left(\frac{w_G}{\sqrt{u_G^2 + v_G^2}}\right)$	$\gamma = \arctan\left(\frac{-w_G}{\sqrt{u_G^2 + v_G^2}}\right)$
82	3 rd para, last line	to Table 3.1 for a summary.	to Table <u>3.2</u> for a summary.
113	4 th line from bottom up	$D^R v_I^M$	$D^R v_T^M$
116	First eq. on top of page	$\dots \left[\frac{dT}{dt} \right]^B \dots$	$\dots \left[\frac{dT}{dt} \right]^{BB} \dots$
117	3 rd equation	$\left[\frac{d\omega^{TE}}{dt} \right]^T = \dots$	$\left[\frac{d\omega^{TE}}{dt}\right]^{L} = \dots$
199	Eq. (6.58)	$\left[\Delta l\right]^{I} \equiv \left[l(t)\right]^{I} - \left[l(t_{o})\right]^{I} + \left[m_{B}\right]^{I} \Delta t$	$[\Delta l]^I \equiv [l(t)]^I - [l(t_o)]^I = [m_B]^I \Delta t$
121	Top line	$-\psi\sin\phi+\dot{\phi}$	$-\psi\sin\theta+\dot{\phi}$
142	Ex. 5.1	$\mathbf{p}_{\Sigma B_k}^I = \sum_k \mathbf{p}_{B_k}^I = \sum_k m^{B_k} \mathbf{v}_{B_k}^I = \dots$	$\mathbf{p}_{\Sigma B_k}^R = \sum_k \mathbf{p}_{B_k}^R = \sum_k m^{B_k} \mathbf{v}_{B_k}^R = \dots$
147 211	2 nd Eq, 2 nd line Problem 6.8, first	$= m^{\scriptscriptstyle B} D^{\scriptscriptstyle I_2} \left(D^{\scriptscriptstyle I_2} \mathbf{S}_{\scriptscriptstyle BI_2} \right) + \mathbf{\Omega}^{\scriptscriptstyle I_2 I_1} \left(D^{\scriptscriptstyle I_2} \mathbf{S}_{\scriptscriptstyle BI_2} \right) = \dots$	$= m^{\scriptscriptstyle B} D^{\scriptscriptstyle I_2} (D^{\scriptscriptstyle I_2} \mathbf{S}_{\scriptscriptstyle BI_2}) + m^{\scriptscriptstyle B} \Omega^{\scriptscriptstyle I_2 I_1} (D^{\scriptscriptstyle I_2} \mathbf{S}_{\scriptscriptstyle BI_2}) = \dots$
211	equation	$\begin{bmatrix} I_B^B \end{bmatrix}^B \begin{bmatrix} I_1 & 0 & 0 \\ 0 & I_1 & 0 \\ 0 & 0 & I_3 \end{bmatrix}$	$= m^{B} D^{I_{2}} (D^{I_{2}} \mathbf{s}_{B_{1}}) + m^{B} \Omega^{I_{2}I_{1}} (D^{I_{2}} \mathbf{s}_{B_{1}}) = \dots$ $[I_{B}^{B}]^{B} = \begin{bmatrix} I_{1} & 0 & 0 \\ 0 & I_{1} & 0 \\ 0 & 0 & I_{3} \end{bmatrix}$ insert equal signs
214	Two equations	both equal signs are missing	insert equal signs
222	Unnamed eq. after Eq.(7.21) Credit: M. Weiss	$D' \mathbf{p}_{\scriptscriptstyle B}' = \dots$	$D' \varepsilon \mathbf{p}_{\scriptscriptstyle B}' = \dots$
245	Eq. 7.79, 3 rd line	$C_{n_{\delta c}}$	$C_{m_{\delta\!e}}$

245	Eq. 7.80, 2 nd line	$C_{l_{eta}}$	$C_{l_{\hat{\beta}}}$ (dot over β)
264	Eq.(8.13) (and also equation above)	$\begin{bmatrix} \dot{V} \\ \dot{\chi}V\cos\gamma \\ V\dot{\gamma} \end{bmatrix}$	$\begin{bmatrix} \dot{V} \\ \dot{\chi}V\cos\gamma \\ -V\dot{\gamma} \end{bmatrix}$
270	Eq. 8.20	$C_L = C_{L_{\alpha 0}} + C_{L_{\alpha}} \alpha$	$C_L = C_{L_{\alpha 0}} + C_{L_{\alpha}} \alpha$
280	1 st Eq.	$F_r = \frac{C_D S}{\cos \alpha} q_c$	$F_r = \frac{C_D S}{\cos \alpha} \overline{q}_c$
282	Fig 8.14, "A2 Propulsion" block	$m = \frac{F}{I_{sp}g_o}$	$\dot{m} = \frac{F}{I_{sp}g_o}$
283	First para	$[\overline{s_{BI}}]^G = [0 \ 0 \ R_{\oplus} + h]$	$[\overline{s_{BI}}]^G = [0 \ 0 - (R_{\oplus} + h)]$
297	Eq. (9.19), second line on left side	$\dot{\psi}_{UI}V\cos\theta_{UI}$	$\dot{\psi}_{UI}U\cos\theta_{UI}$
359	Fig. 9.60, second block	$\ddot{\Phi} = \dots$	Φ=
327	Eq. (9.80), second part	$\theta_{SB} = \arctan\left\{\frac{(u_{TB})_3^B}{\dots}\right\}$	$\theta_{SB} = \arctan\left\{\frac{-\left(u_{TB}\right)_3^B}{\dots}\right\}$
346	Fig. 9.45 Credit: M. Weiss	G1 Environment	G2 Environment
379	3 rd equation from bottom	$\omega^{BE} = \omega^{BB'} \omega^{B'E}$	$\omega_{BE} = \omega_{BB'} + \omega_{B'E}$
387	4 th line from top	e = 0.8181919	e = 0.08181919
390	Eq. (10.41), first component on right side	$3\sqrt{5} C_{2,0} \dots$	$-3\sqrt{5}C_{2,0}$
399	Eq. 10.56	$\left[\frac{dv_B^E}{dt}\right]^D = -[\Omega^{BE}]^B [v_B^E]^B \frac{1}{m} [f_{a,p}]^B + \dots$	$\left[\frac{dv_B^E}{dt}\right]^B = -[\Omega^{BE}]^B [v_B^E]^B + \frac{1}{m} [f_{a,p}]^B + \dots$
409	4-th text line	$\delta_{eff}^2 = \left \delta q \right + \left \delta r \right / 2$	$\delta_{eff} = (\delta q + \delta r)/2$
462	Line above Eq. 10.133	the covariance σ_{xy}^2	the covariance σ_{xy}
462	Eq. 10.133	$\sigma_{xy}^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \mu_{x})(y_{i} - \mu_{y})}{n-1}$	$\sigma_{xy} = \frac{\sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)}{n-1}$ $\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$ $\frac{1}{2} \int_{0}^{m} \frac{r}{\sigma_r^2} e^{-\frac{r^2}{2\sigma_r^2}} dr$
462	4 th Eq.	$\rho_{xy} = \frac{\sigma_x \sigma_y}{\sigma_{xy}}$ $\rho_{xy} = \frac{\sigma_x \sigma_y}{\sigma_{xy}}$	$\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$
464	In 2 nd eq. from top	$\frac{1}{2}\int_{0}^{m}\frac{r}{\sigma_{r}}e^{-\frac{r^{2}}{2\sigma_{r}^{2}}}dr$	$\frac{1}{2}\int_{0}^{m} \frac{r}{\sigma_{r}^{2}} e^{-\frac{r^{2}}{2\sigma_{r}^{2}}} dr$