

BETHLEHEM STRUCTURAL SHAPES

STRUCTURAL SHAPES

INFORMATION AND TABLES FOR

Architects, Engineers and Designers

OF BUILDINGS AND OTHER STEEL STRUCTURES

BETHLEHEM STEEL COMPANY

General Offices: BETHLEHEM, PA.

CATALOG S-58

Rolling Schedules and Supplementary Information are being issued from time to time. This information, if desired, may be obtained from the nearest Sales Office.

Consult us on your requirements.

Mill Practices

WF

WF&B

BJ&BS

STD

STD

ANGLES

PILING

TEES

CAR &

BULB

CAR

ZEES

General Information

This catalog gives information on structural sections which are included in Simplified Practice Recommendation R 216–46 for Hot-Rolled Carbon Steel Structural Shapes, approved by the United States Department of Commerce through the National Bureau of Standards. It supersedes all previous Bethlehem publications relating to structural shapes.

All shapes that are not noted as "Special" are rolled at frequent intervals and are readily obtainable from the mill in lots of any size. For this reason, the selection of these shapes, which are shown under Part I, is recommended.

Shapes noted as "Special" under Part II are generally used for special purposes, and consequently the rollings may be irregular and infrequent. When required tonnage of any of these shapes is comparatively small, it may be advantageous to use the nearest size shown under Part I. Before ordering any of these sizes consult the nearest sales office for delivery information.

Certain Bethlehem wide-flange sections have a 5 pct slope on the inside faces of the flanges and others have flanges whose inside and outside faces are parallel to each other. The light beams, joists and stanchions have a 2 pct slope on the inside faces of the flanges.

The radii of fillets and roundings shown are those to which the rolls are turned. The wear on rolls during process of rolling is likely to change these fillets and roundings so that proper allowance should be made for any fittings affected by such changes.

In computing the weights and properties of Bethlehem wide-flange shapes, light beams, joists and stanchions, the fillets have been included. In computing the weights of standard I-beams, channels and shipbuilding bulb angles, the actual profiles have been used, including the fillets and the roundings, while in computing the weights of angles, zees and carbuilding bulb angles, the fillets and the roundings are not included. The properties of shipbuilding bulb angles and their areas are based upon the exact profiles. In computing the published areas and properties of standard I-beams and channels and also of all angles, zees and carbuilding bulb angles, the fillets and the roundings are not included. These methods are in accordance with industry standards.

The rolling and cutting tolerances shown in this catalog are in accordance with accepted standards.

BWF

I BJ&BS

STD

L

PILING

TEES

CAR &

BULE

CAR

ZEES

INDEX

All structural shapes in this catalog are rolled of steel conforming to American Society for Testing Materials specifications. Material conforming to other specifications may be furnished by special arrangement.

Weights of rolled-steel shapes are computed on the basis that 1 cu ft of steel weighs 489.6 lb, and 3.4 times the sectional area in sq in. equals the weight per lin ft of the section.

The dimensions and weights of shapes published in this catalog are theoretical and are subject to the usual variations.

In the tables under the caption "Section Number and Nominal Size," the notations given in bold type are the manufacturer's standard nomenclature for the respective section groups. These are shown for convenience of identification in estimating, ordering, and for rolling purposes.

The beams and channels shown on pp 32 to 39 conform to industry standards. The terms "standard" and "American standard" are almost universally used in connection with this series of shapes.

Figs. 1 and 2 illustrate the method of increasing the areas and weights of Bethlehem wide-flange shapes, whereby the thickness of both flange and web may be changed with a corresponding change in the beam depth and flange width. The areas and weights of standard I-beams and channels are increased from the minimum as shown by Figs. 3 and 4, whereby an equal amount is added to the thickness of the webs and to the widths of the flanges, all other dimensions remaining unchanged. In the case of angles as shown in Fig. 5, equal increments are added to the thickness of each leg, which also slightly increases the length of each leg. The areas and weights of bulb angles are increased from the minimum or base sizes as shown by Fig. 6 and are founded upon a method which increases the thickness of the web to an extent twice as great as that of the flange. Fig. 7 shows the method of increasing the areas and weights of zees.

Rolling and Cutting Tolerances

During the production of rolled structural shapes there is a certain amount of roll wear that causes the finished pieces to vary from the theoretical or published dimensions to which the rolls are turned. This roll wear begins as soon as the pieces enter the rolls and continues until the rolling is completed. To make the proper allowance for this roll wear, certain standard rolling tolerances have been established which the rolling mills should meet. These tolerances are shown on pp 6 to 8, inclusive. Any other tolerances are subject to special negotiations with the mill. Diagrams are exaggerated for clarity.

Surface Finish and Conditioning

During the process of pouring ingots, splashings of molten metal sometimes cling to the inside of the mold, and as the hot metal rises it picks up these cold splashings which later show up in the form of minor surface imperfections. These imperfections are of minor importance and in general do not affect the full utility of the piece. To determine the extent of any imperfection, it is chipped out, and then if not serious, is filled with weld metal and ground down to make a workmanlike finish. The limitations covering this procedure are shown on p 10.

Cambering

At the present time many beam bridges are being erected to specifications calling for cambering to various dimensions. Experience over many years has taught the mills the limitations to which they can camber various sizes of beams. Tables covering these limitations are shown on p 11. Cambering of any sizes not included in these tables must be referred to the mill on inquiry.

	TABLE OF CONTENTS
	PAGE Bethlehem Wide-Flange Shapes
I	Bethlehem Light Beams, Light Columns28
I	Bethlehem Joists and Stanchions30
I	Beams—American Standard
	Channels—American Standard
	Angles—Equal Legs and Unequal Legs
	Bethlehem Steel Sheet Piling, Bearing Piles46, 48
T	Structural Tees
	Special Channels—Car Building, Shipbuilding58
	Special Bulb Angles—Shipbuilding, Car Building 64, 66
	Special Car Building Sections
7	Special Zees

Mill Practices

BWF

ANGLES

PILING

BULB

CAR

ZEES

INDEX

Index.....72....

Bethlehem Wide-Flange Shapes

ROLLING TOLERANCES, INCHES

	TODBITTO TODDITTO													
Section	De	A pth	Flange	3 Width	T + T'	E Web Off	C Max Depth at any Cross Section							
Nominal Size	Over Theor	Under Theor	Over Theor	Under Theor	Flanges Out-of-Square	Center	Over Theor Depth							
Up to 12, incl	1/8	1/8	1/4	3/16	3/16 max	3/16 max	1/4							
Over 12	1/8	1/8	1/4	3/16	1/4 max	3/16 max	1/4							

(A) is measured at center line of web. (B) is measured parallel to flange. (C) is measured parallel to web.

CUTTING TOLERANCES, INCHES

	001111									
	Variations from Specified Length for Lengths Given									
Nominal Depth	To 30	ft incl	Over 30 ft							
	Over	Under	Over	Under						
Beams up to 24, incl			% plus ½6 for each additional 5 ft or fraction thereof.	3/8						
Beams over 24 and all Columns	1/2	1/2	½ plus ¼6 for each additional 5 ft or fraction thereof.	1/2						

OTHER TOLERANCES

VARIATION IN WEIGHT: The tolerance for the calculated or specified weight is ± 2.5 pct. ENDS OUT-OF-SQUARE: 1/4 in. per in. of depth, or of flange width, if it is greater than depth.

MILLING: For sections which are ordered to be milled by the producer, customer should state on orders wheth one or both ends are to be milled, and state definitely what finished length is required.

On sections milled one end only, standard length tolerances will apply.

On sections milled two ends, length tolerance will be $\pm \frac{1}{16}$ in. for lengths up to 30 ft, and $\pm \frac{1}{16}$ in. lengths 30 ft to 50 ft.

On sections to be milled, we will add to finished length the mill's standard allowance for milling, fre 1/2 in. to 1/4 in., depending on section and length, and invoice will be rendered on basis of finished length plus the required allowance for milling.

OUT-OF-STRAIGHT: Camber or sweep = 1/2 in. x number of feet of total length

When certain sections† with flange width approximately equal to depth are specified on order as colum

Lengths to 45 ft incl: 1/8 in. x total length in feet but not over 3/8 in.

Lengths over 45 ft: 1/2 in. + 1/2 in. x total length in feet-45

* Figure is 5 for sweep when flange width is less than 6 in.

† Applies only to: 8-in.-deep Sections 31 lb per ft and heavier 12-in.-deep Sections 65 lb per ft and heavier 10-in.-deep Sections 49 lb per ft and heavier 14-in.-deep Sections 78 lb per ft and heavier If other sections are specified on order as columns, tolerance will be subject to negotiation with the product

American Standard Beams and Channels Car and Ship Channels Standard Mill H-Beams

* Back of square and **Q** of web to be parallel when measuring "out-of-square."

Channels

T + T' applies when flanges of channels are toed in or out.

ROLLING TOLERANCES, INCHES

Section	Nominal Size		4 pth†	Flange	T + T' Out-of- Square	
333131	Teomina 0120	Over Under Theor		Over Under Theor		Per In. of B, in.
American Standard Beams	3 to 7, incl Over 7 to 14, incl Over 14 to 24, incl	3/32 1/8 3/16	1/16 3/32 1/8	1/8 5/32 3/16	1/8 5/32 3/16	1/32 1/32 1/32
Standard Mill H-Beams	4 5 6 and 8	3/32 3/32 1/8	1/16 1/16 3/32	1/8 5/32 3/16	1/8 5/32 3/16	1/32 1/32 1/32
Channels	3 to 7, incl Over 7 to 14, incl Over 14	3/32 1/8 3/16	1/16 3/32 1/8	1/8 1/8 1/8	1/8 5/32 3/16	1/32 1/32 1/32

^{† (}A) is measured at center line of web for beams; and at back of web for channels.

CUTTING TOLERANCES, INCHES

All	To 30 ft, incl		Over 30 ft to 40 ft, incl			40 ft ft, incl		50 ft ft, incl	Over 65 ft		
Standard Sections	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	
	1/2	1/4	3/4	1/4	1	1/4	1 1/8	1/4	11/4	1/4	

OTHER TOLERANCES

VARIATION IN WEIGHT: The tolerance for the calculated or specified weight is ± 2.5 pct. ENDS OUT-OF-SQUARE: 1/64 in. per in. of depth. **OUT-OF-STRAIGHT:**

Camber = 1/4 in. x number of feet of total length 5

Sweep: Due to the extreme variations in flexibility of standard beams and channels about the Y-Y axis, straightness tolerances for sweep are subject to negotiation between purchaser and producer for the individual sections involved, but will in no case be less than the established straightness tolerance for camber for such sections.

BJ&BS

ANGLES

PILING

TEES

CAR & SHIP

BULB

CAR

ZEES

Angles, Bulb Angles, Zees and Tees

Zees

ROLLING TOLERANCES, INCHES

*Back of square and © of stem to be parallel when measuring "out-of-square."

Section	Nominal Size		A opth	Flange	B Width or of Leg	T Out-of-	E Web Off
		Over Theor	Under Theor	Over Theor	Under Theor	Square per in, of B	Center
Angles†	3 to 4, incl Over 4 to 6, incl Over 6			1/8 1/8 3/16	3/32 1/8 1/8	3/ ₁₂₈ ** 3/ ₁₂₈ ** 3/ ₁₂₈ **	
Bulb Angles	Depth 3 to 4, incl Over 4 to 6, incl Over 6	1/8 1/8 1/8	1/16 1/16 1/16	1/8 1/8 3/16	3/32 1/8 1/8	3/ ₁₂₈ ** 3/ ₁₂₈ ** 3/ ₁₂₈ **	• • • •
Rolled Tees	Stem or Flange 5 and under Stem or Flange Over 5 to 7	³ / ₃₂	1/16	1/8	1/8	1/32	3/32 max
Zees	3 to 4, incl Over 4 to 6, incl	1/8	1/16	1/8	3/32 1/8	3/ ₁₂₈ ** 3/ ₁₂₈ **	

(A) is measured at center line of stem for tees. ** $^3/_{128}$ in, per in. = $1\frac{1}{2}$ deg. † For unequal leg angles, longer leg determines classification.

CUTTING TOLERANCES, INCHES

All Standard	To 30	ft, incl		r 30 ft ft, incl		r 40 ft ft, incl	Over to 65	50 ft ft, incl	Over 65 ft	
Standard Sections	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under
	1/2	1/4	3/4	1/4	1	1/4	11/8	1/4	11/4	1/4

OTHER TOLERANCES

VARIATION IN WEIGHT: The tolerance for the calculated or specified weight is ± 2.5 pct.

ENDS OUT-OF-SQUARE: Angles $\dagger\dagger$ - $^3/_{128}$ in. per in. of leg length or $1\frac{1}{2}$ deg.

Bulb Angles—3/123 in. per in. of depth or 1½ deg.

Rolled Tees††—164 in. per in. of flange or stem. Zees—3/128 in. per in. of sum of both flange lengths.

OUT-OF-STRAIGHT:

Camber = 1/8 in, x number of feet of total length

^{††} Tolerances for ends out-of-square are determined on the longer members of the section

Positions for Measuring Camber and Sweep

9

WF

WF&BL

BJ&BS

STD

L

PILING

TEES

AR & SHIP

BULB

CAR

ZEES

Surface Finish

Surface Finish and Conditioning. Correcting minor imperfections at any location in structural shapes and piling sections by grinding or by chipping and grinding to sound metal and depositing weld metal by arcfusion welding, in accordance with the limitations prescribed below, is regular mill practice.

Imperfections that do not affect the full utility of the piece, shall not be considered as injurious defects. Such pieces may be processed by the following methods in order to give them a workmanlike finish.

- (1) For material less than $\frac{3}{6}$ in. in nominal thickness, when the imperfections are not more than $\frac{1}{62}$ in. in depth, they may be removed by grinding, or chipping and grinding.
- (2) For material $\frac{3}{8}$ in. and over in nominal thickness, when the imperfections are not more than $\frac{1}{16}$ in. in depth, they may be removed by grinding, or chipping and grinding.
- (3) For material ¾ in. and over in nominal thickness, when the imperfections are more than ¼ in. in depth, such imperfections may be removed by chipping and the depression filled by depositing weld metal under limiting conditions, as follows:
- (a) The cross-sectional area of any piece at any location shall not be reduced more than 1.5 pct, nor shall the total area of the chipped surface of any piece exceed 2 pct of the total surface area of that piece.
- (b) After removal of any imperfections preparatory to welding, the thickness of the material at any location must not be reduced by more than 20 pct of the nominal thickness of the shape.
- (c) The interlock of any sheet-piling section may be conditioned by welding and grinding to correct or build up the interlock at any location not to exceed 2 pct of the total surface area or length of that piece.
- (d) An experienced mill inspector shall inspect the work to see that the defects have been completely removed and that the limitation specified in items (a), (b) and (c) have not been exceeded.
- (e) All welding shall be performed by qualified welding operators using suitable coated mild-steel electrodes. The welds shall be sound; the weld metal being thoroughly fused on all surfaces and edges without undercutting or overlap. Weld metal shall project at least ½6 in. above the rolled surface after welding, and the projecting metal shall be removed by grinding, or chipping and grinding, to make it flush with the rolled surface and produce a workmanlike finish.

Cambering of Rolled Beams

The following information covers the limitations upon cold-cambering of deep beams at the mill.

Maximum length for cambering is 100 ft.

Maximum camber, measured at mid-length, is shown in the table below:

Sections	Maximum Camber, in.										
	5	41/2	4	31/2	3	21/2	2	11/2	1		
	Length, ft										
24-in. Wide Flange and over	85	75	65	55	50	45	40	35	30		
21-in. Wide Flange 24-in. Standard	80	70	60	50	45	40	35	30	25		

Camber will approximate a simple regular curve nearly the full length of the beam, or between any two points on beam as specified. Reverse or other compound curves will not be undertaken. Camber shall be specified by the ordinate at midlength of the portion of the beam to be curved (cambered). Ordinates at other points shall not be specified. The camber is subject to a tolerance as follows:

Lengths 50 ft and less Lengths over 50 ft $\frac{\text{plus tolerance}}{\frac{1}{2} \text{ in.}}$ $\frac{\text{plus tolerance}}{\frac{1}{2} \text{ in.}}$ $\frac{0}{0}$ $\frac{1}{2} \text{ in.}$ $\frac{1}{2} \text{ in.}$ $\frac{1}{2} \text{ in.}$ for each 10 ft or fraction thereof in excess of 50 ft

When a small amount of camber is specified some of it may be lost due to the release of stresses that result from the cold work in cambering. It has been determined by experience that certain minimum amounts of camber are likely to remain permanent, as shown in table below:

Wide Flange Sections	Minimum Camber Likely to Remain Permanent in.									
in.	30 ft Length	35 ft Length	40 ft Length	45 ft Length	50 ft Length	55 ft Length	65 ft Length	75 ft Length	85 ft Length	
36	1/2	1/2	3/4	1	11/4	11/2	21/4	3	33/4	
33	1/2	3/4	1	11/4	11/2	13/4	21/2	31/4	4	
30	1/2	3/4	1	11/4	11/2	2	23/4	31/2	41/2	
27	3/4	1	1	11/2	13/4	2	3	4	5	
24	3/4	1	11/4	11/2	2	21/2	31/4	41/2	5	
Wide Flange Sections			Minimum	Camber	Likely to	Remain P	ermanent			
and Standard Beams	25 ft Length	30 ft Length	35 ft Length	40 ft Length	45 ft Length	50 ft Length	60 ft Length	70 ft Length	80 ft Length	
21-in. WF	1/2	3/4	1	11/2	13/4	21/4	31/4	41/2	5	
24-in, Standard	1/2	3/4	1	11/4	11/2	2	23/4	33/4	5	

While cambers less than shown in this table can be furnished, no guarantee can be given with respect to their permanency. In some cases sections other than those listed in the table may be cambered within certain limits. All special cambering not listed in the above tables must be submitted for inquiry and negotiation and the terms of the order will govern.

WF&BL

L BJ&BS

STD

L

PILING

TEES

CAR &

BULB

1

ZEES

LIST OF SYMBOLS

- A Area in square inches
- b Flange width, inches and decimals
- b' Flange width, inches and fractions, approximate
- D Diagonal dimension, inches and fractions, approximate
- d Depth, inches and decimals
- d' Depth, inches and fractions, approximate
- g-g' Distance center of gravity from neutral axes
 - I Moment of inertia about major axis X-X
 - I' Moment of inertia about minor axis Y-Y
 - R Radius of fillets at root—inches and decimals

R', R", R"' Radius of roundings, inches

- r Radius of gyration about major axis X-X, inches
- r' Radius of gyration about minor axis Y-Y, inches
- r" Radius of gyration about axis Z-Z, inches
- S Section modulus about major axis X-X
- S' Section modulus about minor axis Y-Y
- T Tangent distance on web between fillets
- T' Distance between points of tangency on inside face of flanges
- t Flange thickness, average—inches and decimals
- t' Flange thickness at toe-inches and fractions
- t" Flange thickness at root—inches and fractions
- W Web thickness, inches and decimals
- W' Web thickness, inches and fractions

Deviations from the above symbols are indicated at the places of exception.

SHAPES

Part I

All sections shown on pp 14 to 56, inclusive, are rolled at frequent intervals, and comparatively prompt deliveries can be expected from the mill. It is therefore recommended that users, wherever possible, make their selection from this group. Furthermore, some of these sizes are carried in stock by fabricators and warehouses.

These pages cover information regarding Bethlehem Wide Flange Shapes, Bethlehem Light Beams and Light Columns, Bethlehem Solid-Web Joists, Bethlehem Stanchions, Standard Beams, Standard Channels, Standard Angles, Bethlehem Bearing Piles, Steel Sheet Piling, and Structural (Split Beam) Tees.

On p 48 are shown tables of dimensions, weights and properties of a series of Bethlehem Bearing Piles. The sections are obtained by spreading the rolls of corresponding wide-flange sections, and prompt deliveries can therefore be made.

The table covering Structural Tees, produced by splitting Beam Sections, appears on pp 49 to 56, inclusive. Prompt deliveries can be made of sizes shown in this table.

ANGLES PILING TEES

13

BULB

CAR

ZEES

				Flan	ıge		A	XIS X-X		A	XIS Y-Y	,
Section Number and Nominal Size	Weight per Foot	Area of Section	Depth of Section	Width	Thick- ness	Web Thick- ness	I	S	r	I'	S'	r'
	lb	in.2	in.	in.	in.	in.	in.4	in,3	in.	in,4	in.3	in.
*B 36A 36" WF 36 x 16½	300 280 260 245 230	88.17 82.32 76.56 72.03 67.73	36.72 36.50 36.24 36.06 35.88	16.655 16.595 16.555 16.512 16.475	1.680 1.570 1.440 1.350 1.260	.945 .885 .845 .802 .765	20290.2 18819.3 17233.8 16092.2 14988.4	1105.1 1031.2 951.1 892.5 835.5	15.17 15.12 15.00 14.95 14.88	1225.2 1127.5 1020.6 944.7 870.9	147.1 135.9 123.3 114.4 105.7	3.73 3.70 3.65 3.62 3.59
*B 36 36" WF 36 x 12	194 182 170 160 150	57.11 53.54 49.98 47.09 44.16	36.48 36.32 36.16 36.00 35.84	12.117 12.072 12.027 12.000 11.972	1.260 1.180 1.100 1.020 .940	.770 .725 .680 .653 .625	12103.4 11281.5 10470.0 9738.8 9012.1	663.6 621.2 579.1 541.0 502.9	14.52 14.47	355.4 327.7 300.6 275.4 250.4	58.7 54.3 50.0 45.9 41.8	2.49 2.47 2.45 2.42 2.38
*B 33A 33" WF 33 x 1534	240 220 200	70.52 64.73 58.79	33.50 33.25 33.00	15.865 15.810 15.750	1.400 1.275 1.150	.830 .775 .715	13585.1 12312.1 11048.2	811.1 740.6 669.6	13.88 13.79 13.71	874.3 782.4 691.7	110.2 99.0 87.8	3.52 3.48 3.43
*B 33 33" WF 33 x 11½	152 141 130	44.71 41.51 38.26	33.50 33.31 33.10	11.565 11.535 11.510	1.055 .960 .855	.635 .605 .580	8147.6 7442.2 6699.0	486.4 446.8 404.8	13.50 13.39 13.23	256.1 229.7 201.4	44.3 39.8 35.0	2.39 2.35 2.29
*B 30A 30" WF 30 x 15	210 190 172	61.78 55.90 50.65	30.38 30.12 29.88	15.105 15.040 14.985	1.315 1.185 1.065	.775 .710 .655	9872.4 8825.9 7891.5	649.9 586.1 528.2	12.64 12.57 12.48	707.9 624.6 550.1	93.7 83.1 73.4	3.38 3.34 3.30
* B 30 30" WF 30 x 10½	132 124 116 108	38.83 36.45 34.13 31.77	30.30 30.16 30.00 29.82	10.551 10.521 10.500 10.484	1.000 .930 .850 .760	.615 .585 .564 .548	5753.1 5347.1 4919.1 4461.0	379.7 354.6 327.9 299.2	12.17 12.11 12.00 11.85	185.0 169.7 153.2 135.1	35.1 32.3 29.2 25.8	2.18 2.16 2.12 2.06

^{*}These shapes have flange slope of 5 pct, and flange thicknesses shown are average thicknesses.

Approximate Dimensions for Detailing

Section Number and Nominal	Weight per Foot	Depth (Nom- inal) of Section	Width (Nom- inal)	Flange Thick- ness (Nom- inal) at Toe	Thick- ness (Nom- inal) at Root	Web Thick- ness (Nom- inal)	Web (Nom-inal)	Dis- tance (Nom- inal)	Diag- onal Dimen- sion (Nom- inal)	Radius of Fillet (Root)	Slope Inside Flange
Size		ď	b′	t'	t"	W′	Т	T'	D	R	-
	1b.	in.	in.	in.	in.	in.	in.	in.	in.	in.	pct
* B36A 36" WF 36 x 16½	300 280 260 245 230	36¾ 36½ 36¼ 36 35¾	165% 165% 16½ 16½ 16½	1½ 1¾ 1¾ 1¼ 1½ 1½	13/4 13/4 15/6 13/16	15/ ₁₆ 7/8 7/8 13/ ₁₆ 3/4	31½ 31½ 31½ 31½ 31½ 31½	2¾ 2¹½6 25% 25% 29/16	40% 40% 39% 39% 39% 39½	.95 .95 .95 .95	5.0 5.0 5.0 5.0 5.0
* B36 36" W F 36 x 12	194 182 170 160 150	36½ 36¾ 36⅓ 36 35⅓	12½ 12½ 12 12 12	11/8 1 15/16 7/8	17/16 15/16 11/4 13/16 11/16	13/ ₁₆ 3/ ₄ 11/ ₁₆ 11/ ₁₆ 5/ ₈	321/4 321/4 321/4 321/4 321/4	2 ³ / ₁₆ 2 ¹ / ₈ 2 ¹ / ₁₆ 2 ¹ / ₁₆	38½ 38¾ 38½ 38 37¾	.75 .75 .75 .75 .75	5.0 5.0 5.0 5.0 5.0
* B33A 33" WF 33 x 15%	240 220 200	33½ 33¼ 33	15% 15¾ 15¾	13/ ₁₆ 11/ ₁₆ 15/ ₁₆	19/16 11/2 15/16	7/8 13/16 3/4	285% 285% 285%	2% 2½ 2½ 27/16	371/ ₈ 367/ ₈ 365/ ₈	.90 .90 .90	5.0 5.0 5.0
* B33 33" WF 33 x 11½	152 141 130	33½ 33¼ 33⅓ 33⅓	11½ 11½ 11½	15/ ₁₆ 13/ ₁₆ 11/ ₁₆	13/16 11/8 1	5% 5% 9/16	29¾ 29¾ 29¾	1 15/16 1 15/16 1 15/16	35½ 35¼ 35½ 35½	.70 .70 .70	5.0 5.0 5.0
* B30A 30" WF 30 x 15	210 190 172	30% 301/8 297/8	15½ 15 15	1½ 1 ½	1½ 1¾ 1¼	13/16 3/4 11/16	25¾ 25¾ 25¾	23/8 25/16 21/4	34 33¾ 33½	.85 .85 .85	5.0 5.0 5.0
*B30 30" WF 30 x 10½	132 124 116 108	301/4 301/8 30 297/8	10½ 10½ 10½ 10½ 10½	7/8 13/16 3/4 5/8	1½ 1½ 1 1 ½	5/8 5/8 9/16 9/16	267/8 267/8 267/8 267/8	17/8 113/16 113/16 113/16	32½ 31½ 31¾ 31¾ 31½	.65 .65 .65	5.0 5.0 5.0 5.0

^{*} These shapes have flange slope of 5 pct.

I

L

ANGLES

PILING

CAR &

BULB

ZEES

CAR

				Flan	ge		А	XIS X-X		A	XIS Y-Y	,
Section Number and Nominal	Weight per Foot	Area of Section	Depth of Section	Width	Thick- ness	Web Thick- ness	I	s	r	I'	S'	r'
Size		Α	d	b	t	W						
	1b	in.2	in.	in.	in.	ìn.	in.4	in.8	in.	in.4	in.³	in.
*B27A	177	52.10	27.31	14.090	1.190	.725	6728.6	492.8	11.36	518.9	73.7	3,16
27" WF	160	47.04	27.08	14.023	1.075	.658	6018.6	444.5	11.31	458.0	65.3	3.12
27 x 14	145	42.68	26.88	13.965	.975	.600	5414.3	402.9	11.26	406.9	58.3	3.09
*B27	114	33.53	27.28	10.070	.932	.570	4080.5	299.2	11.03	149.6	29.7	2.11
27" WF	102	30.01	27.07	10.018	.827	.518	3604.1	266.3	10.96	129.5	25.9	2.08
27 x 10	94	27.65	26.91	9.990	.747	.490	3266.7	242.8	10.87	115.1	23.0	2.04
*B24B	160	47.04	24.72	14.091	1.135	.656	5110.3	413.5	10.42	492.6	69.9	3.23
24" WF	145	42.62	24.49	14.043	1.020	.608	4561.0	372.5	10.34	434.3	61.8	3.19
24 x 14	130	38.21	24.25	14.000	.900	.565	4009.5	330.7	10.24	375.2	53.6	3.13
*B24A	120	35.29	24.31	12.088	.930	.556	3635.3	299.1	10.15	254.0	42.0	2.68
24" WF	110	32.36	24.16	12.042	.855	.510	3315.0	274.4	10.12	229.1	38.0	2.66
24 x 12	100	29.43	24.00	12.000	.775	.468	2987.3	248.9	10.08	203.5	33.9	2.63
*B24	94	27.63	24.29	9.061	.872	.516	2683.0	220.9	9.85	102.2	22.6	1.92
24" WF	84	24.71	24.09	9.015	.772	.470	2364.3	196.3	9.78	88.3	19.6	1.89
24 x 9	76	22.37	23.91	8.985	.682	.440	2096.4	175.4	9.68	76.5	17.0	1.85
*B21B	142	41.76	21.46	13.132	1.095	.659	3403.1	317.2	9.03	385.9	58.8	3.04
21" WF	127	37.34	21.24	13.061	.985	.588	3017.2	284.1	8.99	338.6	51.8	3.01
21 x 13	112	32.93	21.00	13.000	.865	.527	2620.6	249.6	8.92	289.7	44.6	2.96
*B21A	96	28.21	21.14	9,038	.935	.575	2088.9	197.6	8.60	109.3	24.2	1.97
21" WF 21 x 9	82	24.10	20.86	8.962	.795	.499	1752.4	168.0	8.53	89.6	20.0	1.93
*B21	70	01.40	01.01	0.005	740	455	1000.0	150.7	0.04	00.0	40.0	4.70
21" WF	73 68	21.46	21.24	8.295 8.270	.740	.455	1600.3 1478.3	150.7 139.9	8.64	66.2	16.0 14.6	1.76
21 x 81/4	62	18.23	20.99	8.240	.615	.400	1326.8	126.4	8.53	53.1	12.9	1.74

^{*} These shapes have flange slope of 5 pct, and flange thicknesses shown are average thicknesses.

Approximate Dimensions for Detailing

	1	1									
		Depth		Flange		Web	Tangent		Diag-		
Section Number and Nominal	Weight per Foot	(Nom- inal) of Section	Width (Nom- inal)	Thick- ness (Nom- inal) at Toe	Thick- ness (Nom- inal) at Root	Thick- ness (Nom- inal)	Web (Nom- inal)	Dis- tance (Nom- inal)	onal Dimen- sion (Nom- inal)	Radius of Fillet (Root)	Slope Inside Flange
Size		ď	b'	t'	t"	W'	T	T'	D	R	
	lb	in.	in.	in.	in.	in.	in.	in.	in.	in.	pct
*B 27A	177	271/4	141/8	1	13%	3/4	23	21/4	303/4	.80	5.0
27" WF	160	271/8	14	7/8	11/4	1 1/16	23	23/16	301/2	.80	5.0
27 x 14	145	267/8	14	13/16	11/8	5/8	23	21/8	30%	.80	5.0
*B 27	114	271/4	101/8	13/16	11/16	9/16	24	111/16	291/8	.60	5.0
27" WF	102	271/8	10	1 1/16	15/16	1/2	24	111/16	287/8	.60	5.0
27 x 10	94	26%	10	5/8	7 ⁄8	1/2	24	13/4	28¾	.60	5.0
*B 24B	160	243/4	1417	15/	15/	117	002/	0	0017	70	- 0
24" WF	145	241/2	141/8	15/16	15/16	1 1/16 5/8	203/4	115/16	281/2	.70	5.0
24 x 14	130	241/4	14	3/4	11/16	9/16	20%	17/8	28	.70 .70	5.0 5.0
ZIX II	100	21/4		74	1716	716	2074	178	20	.70	5.0
*B 24A	120	241/4	121/8	13/16	11/16	9/16	201/8	113/16	271/8	.65	5.0
24" WF	110	241/8	12	11/16	1	1/2	201/8	13/4	27	.65	5.0
24 x 12	100	24	12	5/8	15/16	1/2	201/8	111/16	267/8	.65	5.0
*B 24	94	241/4	9	3/4	1	1/2	21%	17/16	251/8	.50	5.0
24" WF	84	241/8	9	11/16	7/8	1/2	21%	17/16	25¾	.50	5.0
24 x 9	76	237/8	9	9/16	13/16	7/16	21%	1%	25%	.50	5.0
***************************************	4.40	2414	4014		414		4==-				
*B 21B 21" WF	142	21½	131/8	15/16	11/4	1 1/16	173/4	17/8	251/4	.65	5.0
21 x 13	127 112	211/4	13 13	13/16	1/8	9/16	173/4	113/16	25	.65	5.0
21 X 13	112	21	13	1 1/16	'	9/16	17¾	13/4	243/4	.65	5.0
*B 21A	96	211/8	9	13/16	11/16	9/16	18	15%	23	.55	5.0
21" WF	82	207/8	9	1 1/16	15/16	716	18	19/16	223/4	.55	5.0 5.0
21 x 9	- 02	20/8		716	716	/2	10	716	2274	.00	5.0
*B 21	73	211/4	81/4	5/8	13/16	1/2	18%	13%	221/8	.50	5.0
21" WF	68	211/8	81/4	9/16	3/4	7/16	185%	13/8	223/4	.50	5.0
21 x 81/4	62	21	81/4	1/2	11/16	3/8	18%	13/8	225/8	.50	5.0

^{*} These shapes have flange slope of 5 pct.

I WF&BL

> L 3J&BS

> > I STD

STD

ANGLES

TEES

AR &

BULB

CAR

ZEES

				Flan	ge		А	XIS X-X		А	XIS Y-Y	
Section Number and Nominal	Weight per Foot	Area of Section	Depth of Section	Width	Thick- ness	Web Thick- ness	I	S	r	I'	S'	r'
Size		Α	d	b	t	W			-			
	lb	in.2	in.	in.	in.	in.	in.4	in. ⁸	in.	in.4	in. ³	in.
*B 18B	114	33.51	18.48	11.833	.991	.595	2033.8	220.1	7.79	255.6	43.2	2.76
18" WF	105	30.86	18.32	11.792	.911	.554	1852.5	202.2	7.75	231.0	39.2	2.73
18 x 11¾	96	28.22	18.16	11.750	.831	.512	1674.7	184.4	7.70	206.8	35.2	2.71
*B 18A	85	24.97	18.32	8.838	.911	.526	1429.9	156.1	7.57	99.4	22.5	2.00
18" WF	77	22.63	18.16	8.787	.831	.475	1286.8	141.7	7.54	88.6	20.2	1.98
18 x 8¾	70 64	20.56	18.00 17.87	8.750 8.715	.751	.438	1153.9 1045.8	128.2 117.0	7.49	78.5 70.3	16.1	1.93
		10.00	17101	0								
*0.10		47.04	40.05	7.550	605	410	004.0	107.0	7 47	47.1	12.5	1.63
*B 18 18" WF	60 55	17.64	18.25	7.558 7.532	.695	.416	984.0 889.9	107.8	7.47	42.0	11.1	1.61
18 x 71/2	50	14.71	18.00	7.500	.570	.358	800.6	89.0	7.38	37.2	9.9	1.59
*B 16B	96	28.22	16.32	11.533	.875	.535	1355.1	166.1	6.93	207.2	35.9	2.71
16" WF 16 x 11½	00	25.87	16.16	11.502	.795	.504	1222.6	151.3	6.87	185.2	32.2	2.67
10 x 11/2												
	78	22.92	16.32	8.586	.875	.529	1042.6	127.8	6.74	87.5	20.4	1.95
*B 16A 16" WF	71	20.86	16.16	8.543	.795	.486	936.9	115.9	6.70	77.9	18.2	1.93
16 x 8½	64	18.80	16.00	8.500	.715	.443	833.8	104.2	6.66	68.4	16.1	1.91
	58	17.04	15.86	8.464	.645	.407	746.4	94.1	6.62	60.5	14.3	1.88
*B 16	50	14.70	16.25	7.073	.628	.380	655.4	80.7	6.68	34.8	9.8	1.54
16" WF	45	13.24	16.12	7.039	.563	.346	583.3 515.5	72.4 64.4	6.64	30.5	8.7 7.6	1.52
16 x 7	36	10.59	15.85	6.992	.428	.299	446.3	56.3	6.49	22.1	6.3	1.45

^{*} These shapes have flange slope of 5 pct, and flange thicknesses shown are average thicknesses.

Approximate Dimensions for Detailing

	Weight	Depth (Nom-		Flange Thick-	Thick-	Web Thick-	Tangent	Dis- tance	Diag- onal Dimen-	Radius of	Slope
Section Number and Nominal	Foot	inal) of Section	Width (Nom- inal)	(Nom- inal) at Toe	(Nom- inal) at Root	ness (Nom- inal)	Web (Nom- inal)	(Nom- inal)	sion (Nom- inal)	Fillet (Root)	Inside Flange
Size		ď′	b'	t'	t"	W'	T	T'	D	R	
	lb	in.	in.	in.	in.	in.	in.	in.	in.	in.	pct
*B 18B	114	181/2	111/8	7/8	11/8	5/8	151/8	13/4	22	.60	5.0
18" WF	105	18%	113/4	3/4	11/16	9/16	151/8	111/16	211/8	.60	5.0
18 x 113/4	96	181/8	113/4	11/16	1	1/2	151/8	15%	213/4	.60	5.0
*B 18A	85	18%	87/8	13/16	1	9/16	15%	11/2	20%	.50	5.0
18" WF	77	181/8	83/4	3/4	15/16	1/2	15%	17/16	201/8	.50	5.0
18 x 8¾	70	18	83/4	5/8	7/8	7/16	15%	13/8	20	.50	5.0
	64	177/8	83/4	9/16	13/16	7/16	15%	1%	20	.50	5.0
							1				
*B 18	60	181/4	71/2	5/8	13/16	7/16	157/8	13/16	197/8	.40	5.0
18" WF	55	181/8	71/2	9/16	3/4	3/8	157/8	11/8	19%	.40	5.0
18 x 7½	50	18	71/2	1/2	11/16	3/8	157/8	11/8	191/2	.40	5.0
*											
*B 16B 16" WF	96	16%	111/2	3/4	1	9/16	131/8	111/16	20	.60	5.0
16 x 11½	88	161/8	111/2	5/8	15/16	1/2	131/8	1%	197/8	.60	5.0
10 x 11/2											
*B 16A	78	16%	85%	3/4	1	9/16	13%	11/2	181/2	.50	5.0
16" WF	71	161/8	81/2	11/16	7/8	1/2	13%	17/16	181/4	.50	5.0
16 x 81/2	64	16	81/2	5/8	13/16	7/16	13%	13%	181/8	.50	5.0
10 × 0/2	58	157/8	81/2	9/16	3/4	7/16	13%	13%	18	.50	5.0
*B 16	50	161/4	71/8	9/16	11/16	3/8	14	11/8	173/4	.40	5.0
16" WF	45	161/8	7	1/2	5/8	3/8	14	11/8	175%	.40	5.0
16 x 7	40	16	7	7/16	9/16	5/16	14	11/16	171/2	.40	5.0
	36	157/8	7	3/8	1/2	5/16	14	11/16	17%	.40	5.0

^{*} These shapes have flange slope of 5 pct.

ANGLES PILING TEES SHIP BULL CAR

ZEES

Theoretical Dimensions and Properties for Designing

				Flar	nge		P	XIS X-X		1	XIS Y-	1
Section Number and Nominal Size	Weight per Foot	Area of Section	Depth of Section	Width	Thick-ness	Web Thick- ness	I	S	r	I'	S'	r'
	- Ib	in,2	in.	in.	in.	in.	in.4	in.3	in.	in,4	in.3	
		111,-	101.		1111.	111.	111.5	111,4	III.	In.*	177.0	in.
	426 398	125.25 116.98	18.69 18.31	16.695 16.590	3.033 2.843	1.875 1.770	6610.3 6013.7	707.4 656.9	7.26 7.17	2359.5 2169.7	282.7 261.6	4.34 4.31
	370 342	108.78 100.59		16.475 16.365	2.658 2.468	1.655	5454.2 4911.5	608.1 559.4	7.08 6.99	1986.0 1806.9		4.27 4.24
	314 287	92.30 84.37	17.19 16.81	16.235 16.130	2.283 2.093	1.415 1.310	4399.4 3912.1	511.9 465.5	6.90 6.81	1631.4 1466.5		4.20 4.17
B14E 14" WF	264 246 237	77.63 72.33 69.69	16.50 16.25 16.12	16.025 15.945 15.910	1.938 1.813 1.748	1.205 1.125 1.090	3526.0 3228.9 3080.9	427.4 397.4 382.2	6.74 6.68 6.65	1331.2 1226.6 1174.8	153.9	4.14 4.12 4.11
	228 219 211 202 193 184	64.36 62.07 59.39	15.75 15.63 15.50	15.865 15.825 15.800 15.750 15.710 15.660	1.688 1.623 1.563 1.503	1.045 1.005 .980 .930	2942.4 2798.2 2671.4 2538.8	367.8 352.6 339.2 324.9	6.62 6.59 6.56 6.54	1124.8 1073.2 1028.6 979.7	135.6 130.2 124.4 118.4	4.10 4.08 4.07 4.06
	176 167	51.73 49.09	15.25 15.12	15.640 15.600	1.378 1.313 1.248	.840 .820 .780	2274.8 2149.6 2020.8 1900.6	295.8 281.9 267.3	6.49 6.45 6.42		107.1 101.3	4.04 4.02 4.01
B14F 14" WF	150 142	44.08 41.85	14.88 14.75	15.515 15.500	1.128 1.063	.695 .680	1786.9 1672.2	253.4 240.2 226.7	6.40 6.37 6.32	745.0 702.5 660.1	95.8 90.6 85.2	4.00 3.99 3.97
Column	320	94.12	16.81	16.710	2.093	1.890	4141.7	492.8	6.63	1635.1	195.7	4.17

All sections shown on this page have parallel-faced flanges.

Approximate Dimensions for Detailing

Section Number Foot Weight Flange Flange	•	Flange Tangent Diag.													
Section Pool of Section Sectio		Weight	(Nom-		Thick-		Thick-			onal	of	01			
Size	Number and	per Foot	of	(Nom-	(Nom- inal)	(Nom- inal)	(Nom-	(Nom-	(Nom-	sion (Nom-	Fillet	Inside			
## 426 18¾ 16¾ 3½ 3½ 1½ 11¾ 11¾ 3½ 25½ 260 0 0 0 0 0 0 0 0 0			ď′	b'			W'	T	T'	D	R				
398 18¼ 16¾ 21¾6 21¾6 21¾6 11¾6 11¾8 3 24¾ .60 0 370 18		lb	in.	in.	in.	in.	in.	in.	in.	in.	in.	pct			
398 18¼ 16¾ 21¾6 21¾6 21¾6 11¾6 11¾8 3 24¾ .60 0 370 18															
370					,				,,,,	, ,					
342 17½ 16¾ 27¼ 27¼ 19¼ 27¼ 27¼ 27¼ 27¼ 27¼ 27¼ 27¼ 27¼ 27¼ 27		000	10/4	10/8	- /16	2 /16	. 716	11/8		21/4	.00				
314 17¼ 16¼ 25⅓ 25⅓ 15⅓ 11⅓ 11⅓ 25⅓ 25⅓ 260 0 264 16⅓ 16⅓ 11⅓ 11⅓ 11⅓ 25⅓ 25⅓ 260 0 264 16⅓ 16 11⅓ 16 11⅓ 11⅓ 11⅓ 25⅓ 25⅓ 260 0 28 16 16⅓ 16 11⅓ 11⅓ 11⅓ 11⅓ 25⅓ 25⅓ 260 0 29 15⅓ 15⅓ 15⅓ 15⅓ 15⅓ 1 11⅓ 11⅓ 25⅓ 25⅓ 22⅓ 60 0 211 15⅓ 15⅓ 15⅓ 15⅓ 15⅓ 1 11⅓ 25⅓ 25⅓ 22⅓ 60 0 211 15⅓ 15⅓ 15⅓ 15⅓ 15⅓ 1 11⅓ 25⅓ 25⅓ 22⅓ 60 0 211 15⅓ 15⅓ 15⅓ 15⅓ 15⅓ 1 11⅓ 25⅓ 25⅓ 22⅓ 60 0 211 15⅓ 15⅓ 15⅓ 15⅓ 15⅓ 11⅓ 25⅓ 25⅓ 22⅓ 60 0 211 15⅓ 15⅓ 15⅓ 11⅓ 11⅓ 25⅓ 25⅓ 22⅓ 60 0 211 15⅓ 15⅓ 15⅓ 11⅓ 11⅓ 25⅓ 25⅓ 22⅓ 60 0 211 15⅓ 15⅓ 15⅓ 11⅓ 11⅓ 25⅓ 25⅓ 22⅓ 60 0 211 15⅓ 15⅓ 15⅓ 11⅓ 11⅓ 25⅓ 22⅓ 60 0 215 15⅓ 15⅓ 15⅓ 11⅓ 11⅓ 25⅓ 22⅓ 22⅓ 60 0 1193 15½ 15¾ 15⅓ 15⅓ 13⅓ 7⅓ 11⅓ 22⅓ 22⅓ 60 0 1193 15½ 15⅓ 15⅓ 15⅓ 13⅓ 7⅓ 11⅓ 22 21⅓ 60 0 158 15 15⅓ 15⅓ 15⅓ 15⅓ 15⅓ 11⅓ 11⅓ 2 2 21⅓ 60 0 158 15 15½ 15⅓ 15⅓ 15⅓ 11⅓ 11⅓ 11⅓ 2 2 21⅓ 60 0 158 15 15½ 15⅓ 15⅓ 11⅓ 11⅓ 11⅓ 11⅓ 2 21½ 60 0 8 14F 14″ WF Column	1			161/2				-							
287		342	171/2	16%	27/16	27/16	19/16	11%	23/4	24	.60	0			
287		314	171/4	161/4	25/16	25/16	17/16	113%	25%	23%	.60	0			
B 14E 14" WF 14 x 16 B 14E 14" WF 14 x 16 B 15% 16% 15% 15% 15% 15% 15% 15% 15% 15% 15% 15		287										_			
B 14E 14" WF 14 x 16 B 14E 14" WF 14 x 16 B 15% 16% 15% 15% 15% 15% 15% 15% 15% 15% 15% 15		004	101/	10	4.187	4.15/	417	119/	02/	00	00				
B 14E 237 16½ 15½ 1¾ 1½ 11¾ 25√16 22¾ .60 0 14" WF 14 x 16 228 16 15½ 1½6 1½6 1½6 1½6 11¾6 2½4 22½ .60 0 219 15½ 15½ 1½6 1½6 1½6 11¾6 2¾6 22½ .60 0 211 15¾ 15¾ 1½6 1½6 11¾6 2¾6 22½ .60 0 202 15½ 15¾ 1½6 1½6 11¾6 2¼6 22½ .60 0 193 15½ 15¾ 1½6 1½6 11¾6 2½8 22½ .60 0 184 15½ 15¾6 1¾6 1¾6 1¾6 1¾6 11¾6 2 22½ .60 0 176 15½6 15½6 1½6 1¾6 1¾6 1¾6 1¾6 1¾6 1¾6 1½6 1½6 1½%6 2 21½6 .60 0 158 15 15½2 1½					113/16										
14 x 16 228 16 15% 15% 15% 15% 15% 15% 15%	B 14E	237	161/8	157/8		13/4	11/8	11%	25/16	22¾	.60	0			
219		000	10	457/	1117	4.1.17	4.17	119/	017	005/	00				
211	11 × 10														
193		211	, -				1				.60	0			
184 1536 1556 136 136 136 1376 1138 2 22 .60 0 0 167 1518 1556 1144 1556 1144 1144 1136 1136 1136 2 2134 .60 0 0 1 158 15 1596 1144 1144 1136 1136 1136 2 2134 .60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		202	15%	15¾	11/2	11/2	15/16	11%	21/8	221/4	.60	0			
184 1536 1556 136 136 136 1376 1138 2 22 .60 0 0 167 1518 1556 1144 1556 1144 1144 1136 1136 1136 2 2134 .60 0 0 1 158 15 1596 1144 1144 1136 1136 1136 2 2134 .60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		193	151/2	15%	17/16	17/16	7/8	113%	21/16	221/8	.60	0			
167 15½ 15½ 1½ 1¼ 1¼ 1¾ 13/16 11¾ 2 21¾ .60 0 158 15 15½ 13/16 13/16 34 11¾ 11¾ 115/16 21¾ .60 0 150 14½ 15½ 1½ 1½ 1½ 11/16 11¾ 1½ 21½ .60 0 142 14¾ 15½ 1½ 1½ 1½ 1½ 11/16 11¾ 1½ 21½ .60 0 8 14F 14″ WF Column 320 16¾ 16¾ 2½ 2½ 2½ 1½ 1½ 13/16 11¾ 31/16 23¾ .60 0		184				,			2		.60	1			
158 15 15½ 1¾6 1¾6 ¾ 11¾6 11¾6 11¾6 11¾6 11¾6 11¾				, .	7.0	7.0	/			, ,					
150		167	151/8	15%	11/4	11/4	13/16	11%	2	213/4	.60	0			
B 14F 14" WF Column 320 1634 1634 21/6 21/6 21/6 11/8 11/8 11/8 211/2 .60 0		158	15	151/2	13/16	13/16	3/4	11%	115/16		.60	0			
B 14F 14" WF Column 320 1634 1634 21/6 21/6 17/8 113/8 31/16 2334 .60 0								/ -							
14" WF Column 320 16¾ 16¾ 2½6 2½6 11¾ 11¾ 3½6 23¾ .60 0	B 145	142	143/4	151/2	11/16	11/16	1 1/16	113/8	17/8	211/2	.60	0			
Core	14" WF	320	16¾	16¾	21/16	21/16	17/8	113%	31/16	23¾	.60	0			
	Core														

All sections shown on this page have parallel-faced flanges.

WF&BL

L BJ&BS

STD

STD

ANGLES

PILING

TEES

CAR &

BULE

CAR

ZEES

			1	1			1					
				Flar	nge		A	XIS X-X		1	AXIS Y-	Y
Section Number and Nominal Size	Weight per Foot	Area of Section	Depth of Section	Width	Thick- ness	Web Thick- ness	I	s	r	I'	s'	r'
0.20		A	ď	b	t	W						
	lb	in.2	in.	in.	in.	in.	in.4	in.8	in.	in.4	in.3	in.
B 14D 14" WF 14 x 14½	136 127 119 111 103 95	39.98 37.33 34.99 32.65 30.26 27.94	14.75 14.62 14.50 14.37 14.25 14.12	14.740 14.690 14.650 14.620 14.575 14.545	1.063 .998 .938 .873 .813 .748	.660 .610 .570 .540 .495	1593.0 1476.7 1373.1 1266.5 1165.8 1063.5	216.0 202.0 189.4 176.3 163.6 150.6	6.31 6.29 6.26 6.23 6.21 6.17	567.7 527.6 491.8 454.9 419.7 383.7	77.0 71.8 67.1 62.2 57.6 52.8	3.77 3.76 3.75 3.73 3.72 3.71
B 14C 14" WF 14 x 12	87 84 78	25.56 24.71 22.94	14.00 14.18 14.06	12.023 12.000	.688 .778 .718	.420 .451 .428	966.9 928.4 851.2	138.1 130.9 121.1	6.15 6.13 6.09	349.7 225.5 206.9	37.5 34.5	3.70 3.02 3.00
B 14B 14" WF 14 x 10	74 68 61	21.76 20.00 17.94	14.19 14.06 13.91	10.072 10.040 10.000	.783 .718 .643	.450 .418 .378	796.8 724.1 641.5	112.3 103.0 92.2	6.05 6.02 5.98	133.5 121.2 107.3	26.5 24.1 21.5	2.48 2.46 2.45
B 14A 14" WF 14 x 8	53 48 43	15.59 14.11 12.65	13.94 13.81 13.68	8.062 8.031 8.000	.658 .593 .528	.370 .339 .308	542.1 484.9 429.0	77.8 70.2 62.7	5.90 5.86 5.82	57.5 51.3 45.1	14.3 12.8 11.3	1.92 1.91 1.89
*B 14 14" WF 14 x 63/4	38 34 30	11.17 10.00 8.81	14.12 14.00 13.86	6.776 6.750 6.733	.513 .453 .383	.313 .287 .270	385.3 339.2 289.6	54.6 48.5 41.8	5.87 5.83 5.73	24.6 21.3 17.5	7.3 6.3 5.2	1.49 1.46 1.41

^{*} These shapes have flange slope of 5 pct, and flange thicknesses shown are average thicknesses. All other sections shown on this page have parallel-faced flanges.

Approximate Dimensions for Detailing

	Flance Toncont													
Section Number and Nominal Size	Weight per Foot	Depth (Nominal) of Section	Width (Nominal)	Flange Thickness (Nominal) at Toe	Thick- ness (Nom- inal) at Root t"	Web Thick- ness (Nom- inal)	Web (Nominal) T	Distance (Nominal)	Diag- onal Dimen- sion (Nom- inal)	Radius of Fillet (Root)	Slope Inside Flange			
							****	111•	111.	111.	pct			
B 14D 14" WF 14 x 14½	136 127 119 111 103 95 87	143/4 145/8 141/2 143/8 141/4 141/8 14	1434 1434 1458 1458 1458 1458 141/2	1 ½6 1 15/16 7/8 13/16 3/4	1 ½6 1 15½6 7/8 13½6 3/4	1 1/16 5/8 9/16 9/16 1/2 1/2 7/16	11% 11% 11% 11% 11% 11% 11%	17/8 11/3/16 13/4 13/4 11/1/16 11/1/16	20% 20% 20% 20% 20½ 20½ 20¼ 20¼	.60 .60 .60 .60 .60	0 0 0 0 0			
B 14C 14" WF 14 x 12	84 78	14½ 14	12 12	3/4 11/16	3/4 1 1/16	⁷ / ₁₆ ⁷ / ₁₆	11¾ 11¾	1% 1%	185% 181/2	.60 .60	0 0			
B 14B 14" W ⁻ 14 x 10	74 68 61	141/4 14 137/8	10½ 10 10	13/ ₁₆ 11/ ₁₆ 5/ ₈	13/16 11/16 5/8	7/ ₁₆ ` 7/ ₁₆ 3/ ₈	11% 11% 11%	15% 15% 19/16	17½ 17¼ 17⅓	.60 .60 .60	0 0 0			
B 14A 14" WF 14 x 8	53 48 43	14 13¾ 13⅓	8 8 8	1 ½ %16 ½	1 ½ 9/16 ½	3/8 3/8 5/16	11% 11% 11%	1% ₁₆ 1% ₁₆ 1½	16½ 16 15½	.60 .60	0 0 0			
*B 14 14" WF 14 x 6%	38 34 30	14½ 14 13½	63/4 63/4 63/4	7/16 3/8 5/16	5/8 9/16 7/16	5/16 5/16 5/16	121/8 121/8 121/8	1 1/16 1 1/16	15¾ 15% 15½	.40 .40 .40	5.0 5.0 5.0			

^{*} These shapes have flange slope of 5 pct. All other sections shown on this page have parallel-faced flanges.

I WE&RI

BJ&BS

STD

STD

ANGLES

PILING

TEES

AR &

BULE

CAR

ZEES

			Flan	ge		A	XIS X-X		A	XIS Y-Y	1
Weight per Foot	Area of Section	Depth of Section	Width	Thick- ness	Web Thick- ness	I	S	r	I'	S'	r'
- Ib					- In	in 4		In	in 4	in 3	in.
	In.4	In.	in.	in.	in.	fu.*	111.0	In.	111.*	In.	
190 161 133 120 106 99 92 85 79 72 65	55.86 47.38 39.11 35.31 31.19 29.09 27.06 24.98 23.22 21.16 19.11	14.38 13.88 13.12 12.88 12.75 12.62 12.50 12.38 12.25 12.12	12.670 12.515 12.365 12.320 12.230 12.190 12.155 12.105 12.080 12.040 12.000	1.736 1.486 1.236 1.106 .986 .921 .856 .796 .736 .671 .606	1.060 .905 .755 .710 .620 .580 .545 .495 .470 .430	1892.5 1541.8 1221.2 1071.7 930.7 858.5 788.9 723.3 663.0 597.4 533.4	263.2 222.2 182.5 163.4 144.5 134.7 125.0 115.7 107.1 97.5 88.0	5.82 5.70 5.59 5.51 5.46 5.43 5.40 5.38 5.34 5.31 5.28	589.7 486.2 389.9 345.1 300.9 278.2 256.4 235.5 216.4 195.3 174.6	93.1 77.7 63.1 56.0 49.2 45.7 42.2 38.9 35.8 32.4 29.1	3.25 3.20 3.16 3.13 3.11 3.09 3.08 3.07 3.05 3.04 3.02
58 53	17.06 15.59	12.19 12.06	10.014 10.000	.641 .576	.359 .345	476.1 426.2	78.1 70.7	5.28 5.23	107.4 96.1	21.4 19.2	2.51 2.48
50 45 40	14.71 13.24 11.77	12.19 12.06 11.94	8.077 8.042 8.000	.641 .576 .516	.371 .336 .294	394.5 350.8 310.1	64.7 58.2 51.9	5.18 5.15 5.13	56.4 50.0 44.1	14.0 12.4 11.0	1.96 1.94 1.94
36 31 27	10.59 9.12 7.97	12.24 12.09 11.96	6.565 6.525 6.500	.540 .465 .400	.305 .265 .240	280.8 238.4 204.1	45.9 39.4 34.1	5.15 5.11 5.06	23.7 19.8 16.6	7.2 6.1 5.1	1.50 1.47 1.44
	190 161 133 120 106 99 92 85 79 72 65 58 53	Per Section A	Per Section Section A d in.	Weight per Foot Area of Section Depth of Section Width A d b Ib in.² in. 190 55.86 14.38 12.670 161 47.38 13.88 12.515 133 39.11 13.38 12.365 120 35.31 13.12 12.320 106 31.19 12.88 12.230 99 29.09 12.75 12.190 92 27.06 12.62 12.155 85 24.98 12.50 12.105 79 23.22 12.38 12.000 58 17.06 12.25 12.040 65 19.11 12.12 12.000 58 17.06 12.19 10.014 53 15.59 12.06 10.000 50 14.71 12.19 8.042 40 11.77 11.94 8.000 36 10.59 12.24 6.565 <td>Per Foot section Section Width Thickness A d b t Ib in.² in. in. 190 55.86 14.38 12.670 1.736 161 47.38 13.88 12.515 1.486 133 39.11 13.38 12.365 1.236 120 35.31 13.12 12.320 1.106 106 31.19 12.88 12.230 .986 99 29.09 12.75 12.190 .921 92 27.06 12.62 12.155 .856 85 24.98 12.50 12.105 .796 79 23.22 12.38 12.080 .736 72 21.16 12.25 12.040 .671 65 19.11 12.12 12.000 .606 58 17.06 12.19 10.014 .641 53 15.59 12.06 10.000 .576 <t< td=""><td>Weight Per Foot Area of Section Depth of Section Width Thick-ness Web Thick-ness A d b t W Ib in.² in. in. in. in. 190 55.86 14.38 12.670 1.736 1.060 161 47.38 13.88 12.515 1.486 .905 133 39.11 13.38 12.365 1.236 .755 120 35.31 13.12 12.320 1.106 .710 106 31.19 12.88 12.230 .986 .620 99 29.09 12.75 12.190 .921 .580 92 27.06 12.62 12.155 .856 .545 85 24.98 12.50 12.105 .796 .495 79 23.22 12.38 12.080 .736 .470 72 21.16 12.25 12.040 .661 .390 58 17</td><td>Weight Per Foot Area of Section Depth of Section Width Thick-ness Web Thick-ness I A d b t W 1b in.² in. in.</td><td>Weight Per Foot Area of Section Depth of Section Width Thick-ness I I S A d b t W In. in.</td><td> Neight Proof Section Proof Section Width Thickness I S r </td><td> Neight Per Poot Section Poot Poo</td><td> Neight Prot Section Section Section Width Thickness Web Thickness I S r I' S' </td></t<></td>	Per Foot section Section Width Thickness A d b t Ib in.² in. in. 190 55.86 14.38 12.670 1.736 161 47.38 13.88 12.515 1.486 133 39.11 13.38 12.365 1.236 120 35.31 13.12 12.320 1.106 106 31.19 12.88 12.230 .986 99 29.09 12.75 12.190 .921 92 27.06 12.62 12.155 .856 85 24.98 12.50 12.105 .796 79 23.22 12.38 12.080 .736 72 21.16 12.25 12.040 .671 65 19.11 12.12 12.000 .606 58 17.06 12.19 10.014 .641 53 15.59 12.06 10.000 .576 <t< td=""><td>Weight Per Foot Area of Section Depth of Section Width Thick-ness Web Thick-ness A d b t W Ib in.² in. in. in. in. 190 55.86 14.38 12.670 1.736 1.060 161 47.38 13.88 12.515 1.486 .905 133 39.11 13.38 12.365 1.236 .755 120 35.31 13.12 12.320 1.106 .710 106 31.19 12.88 12.230 .986 .620 99 29.09 12.75 12.190 .921 .580 92 27.06 12.62 12.155 .856 .545 85 24.98 12.50 12.105 .796 .495 79 23.22 12.38 12.080 .736 .470 72 21.16 12.25 12.040 .661 .390 58 17</td><td>Weight Per Foot Area of Section Depth of Section Width Thick-ness Web Thick-ness I A d b t W 1b in.² in. in.</td><td>Weight Per Foot Area of Section Depth of Section Width Thick-ness I I S A d b t W In. in.</td><td> Neight Proof Section Proof Section Width Thickness I S r </td><td> Neight Per Poot Section Poot Poo</td><td> Neight Prot Section Section Section Width Thickness Web Thickness I S r I' S' </td></t<>	Weight Per Foot Area of Section Depth of Section Width Thick-ness Web Thick-ness A d b t W Ib in.² in. in. in. in. 190 55.86 14.38 12.670 1.736 1.060 161 47.38 13.88 12.515 1.486 .905 133 39.11 13.38 12.365 1.236 .755 120 35.31 13.12 12.320 1.106 .710 106 31.19 12.88 12.230 .986 .620 99 29.09 12.75 12.190 .921 .580 92 27.06 12.62 12.155 .856 .545 85 24.98 12.50 12.105 .796 .495 79 23.22 12.38 12.080 .736 .470 72 21.16 12.25 12.040 .661 .390 58 17	Weight Per Foot Area of Section Depth of Section Width Thick-ness Web Thick-ness I A d b t W 1b in.² in. in.	Weight Per Foot Area of Section Depth of Section Width Thick-ness I I S A d b t W In. in.	Neight Proof Section Proof Section Width Thickness I S r	Neight Per Poot Section Poot Poo	Neight Prot Section Section Section Width Thickness Web Thickness I S r I' S'

^{*} These shapes have flange slope of 5 pct, and flange thicknesses shown are average thicknesses. All other sections shown on this page have parallel-faced flanges.

Approximate Dimensions for Detailing

	Weight	Depth (Nom-		Flange Thick-	Thick-	Web Thick-	Tangent	Dis-	Diag- onal	Radius	
Section Number and Nominal	per Foot	inal) of Section	Width (Nom- inal)	ness (Nom- inal)	ness (Nom- inal)	ness (Nom- inal)	Web (Nom- inal)	tance (Nom- inal)	Dimen- sion (Nom- inal)	of Fillet (Root)	Slope Inside Flange
Size		ď	b'	at Toe	at Root t"	W'	Т	T'	D	R	
	lb	in.	in.	in.	in.	in.	in.	in.	in.	in.	pct
	100	142/	105/	12/	10/	41/	00/	014	4014	-	
	190	14%	12% 12½	13/4	13/4	11/16	93/4	21/4	191/4	.60	0
	133	13%	123/8	11/4	11/2	15/16	9¾ 9¾	2½ 1½/6	18¾ 18¼	.60	0
	120	131/8	12%	11/8	11/8	3/4	93/4	115/16	18	.60	0
B 12C	106	121/8	121/4	1	1	5/8	93/4	113/16	171/8	.60	0
12" WF	99	123/4	121/4	15/16	15/16	5/8	93/4	13/4	173/4	.60	0
12 x 12	92	12%	121/8	7/8	7/8	9/16	93/4	13/4	171/2	.60	0
	85	121/2	121/8	13/16	13/16	1/2	93/4	111/16	171/2	.60	0
	79	12%	121/8	3/4	3/4	1/2	93/4	111/16	17%	.60	0
	72	121/4	12	1 1/16	1 1/16	7/16	93/4	15%	171/4	.60	0
	65	121/8	12	5/8	5/8	3/8	93/4	19/16	171/8	.60	0
B 12B	58	121/4	10	5/8	5/8	3/8	93/4	1%16	157/8	.60	0
12" WF	53	12	10	78 9/16	9/16	78 3/8	93/4	19/16	15%	.60	0
12 x 10	00			/16	/16	78	374	1716	1078	.00	0
B 12A	50	121/4	81/8	5/8	5/8	3/8	93/4	19/16	14%	.60	0
12" WF	45	12	8	9/16	9/16	3/8	93/4	19/16	141/2	.60	0
12 x 8	40	12	8	1/2	1/2	5/16	93/4	11/2	14%	.60	0
*B 12	36	121/4	65%	7/16	5/8	5/16	10%	1,	14	.35	5.0
12" WF	31	121/8	61/2	3/8	9/16	1/4	10%	15/16	133/4	.35	5.0
12 x 61/2	27	12	61/2	5/16	1/2	1/4	10%	15/16	13%	.35	5.0

^{*} These shapes have flange slope of 5 pct.
All other sections shown on this page have parallel-faced flanges.

T WF&BL

J&B5

TD

L

ANGLES

PILING

TEES

ULB

CAR

ZEES

				Flar	nge		1	XIS X-X	(AXIS Y-	Y
Section Number and Nominal Size	Weight per Foot	Area of Section	Depth of Section	Width	Thick- ness	Web Thick- ness	I	S	r	I'	S'	r'
0.20		A	d	Ь	t	W						
	lb	in.2	in.	in.	in.	in.	in.4	in.3	in.	in.4	in.3	in.
B 10B 10" WF 10 x 10	112 100 89 77 72 66 60	32.92 29.43 26.19 22.67 21.18 19.41 17.66	11.38 11.12 10.88 10.62 10.50 10.38 10.25	10.415 10.345 10.275 10.195 10.170 10.117 10.075	1.248 1.118 .998 .868 .808 .748 .683	.755 .685 .615 .535 .510 .457	718.7 625.0 542.4 457.2 420.7 382.5 343.7	126.3 112.4 99.7 86.1 80.1 73.7 67.1	4.67 4.61 4.55 4.49 4.46 4.44 4.41	235.4 206.6 180.6 153.4 141.8 129.2 116.5	45.2 39.9 35.2 30.1 27.9 25.5 23.1	2.67 2.65 2.63 2.60 2.59 2.58 2.57
	54	15.88	10.12	10.028	.618	.368	305.7	60.4	4.39	103.9	20.7	2.56
	49	14.40	10.00	10.000	.558	.340	272.9	54.6	4.35	93.0	18.6	2.54
B 10A 10" WF 10 x 8	45 39 33	13.24 11.48 9.71	10.12 9.94 9.75	8.022 7.990 7.964	.618 .528 .433	.350 .318 .292	248.6 209.7 170.9	49.1 42.2 35.0	4.33 4.27 4.20	53.2 44.9 36.5	13.3 11.2 9.2	2.00 1.98 1.94
10" WF	29 25	8.53 7.35	10.22	5.799 5.762	.500	.289	157.3	30.8	4.29	15.2	5.2	1.34
10 x 53/4	21	6.19	9.90	5.750	.430	.252	133.2 106.3	26.4	4.26	12.7 9.7	4.4	1.31
B 8B 8" WF 8 x 8	67 58 48 40 35 31	19.70 17.06 14.11 11.76 10.30 9.12	9.00 8.75 8.50 8.25 8.12 8.00	8.287 8.222 8.117 8.077 8.027 8.000	.933 .808 .683 .558 .493 .433	.575 .510 .405 .365 .315	271.8 227.3 183.7 146.3 126.5 109.7	60.4 52.0 43.2 35.5 31.1 27.4	3.71 3.65 3.61 3.53 3.50 3.47	88.6 74.9 60.9 49.0 42.5 37.0	3.4 21.4 18.2 15.0 12.1 10.6 9.2	2.12 2.10 2.08 2.04 2.03 2.01
B 8A 8" WF 8 x 6½ *B 8	28 24 20	8.23 7.06	8.06 7.93	6.540 6.500 5.268	.463	.285	97.8 82.5	24.3 20.8	3.45 3.42	21.6	6.6 5.6	1.62
8" WF 8 x 51/4	17	5.00	8.14	5.250	.378	.248	69.2 56.4	17.0 14.1	3.43	8.50 6.72	3.2 2.6	1.20

^{*} These shapes have flange slope of 5 pct, and flange thicknesses shown are average thicknesses. All other sections shown on this page have parallel-faced flanges.

Approximate Dimensions for Detailing

		Weight	Depth (Nom- inal)		Flange Thick-	Thick-	Web Thick-	Tangent	Dis-	Diag- onal	Radius	
Nu	ction mber ind minal	per Foot	of Section	Width (Nom- inal)	ness (Nom- inal) at Toe	ness (Nom- inal) at Root	ness (Nom- inal)	Web (Nom- inal)	tance (Nom- inal)	Dimen- sion (Nom- inal)	of Fillet (Root)	Slope Inside Flange
	Size		ď′	b'	t'	t"	W'	Т	T'	D	R	
		lb	in.	in.	in.	in.	in.	in.	in.	in.	in.	pct
		112	113%	10%	11/4	11/4	3/4	77/8	13/4	151/2	.50	0
		100	111/8	10%	11/8	11/8	11/16	71/8	111/16	151/4	.50	0
		89	101/8	101/4	1	1	5/8	77/8	15%	15	.50	0
B 1		77	10%	101/4	7/8	7/8	9/16	77/8	19/16	143/4	.50	0
	WF	72	101/2	101/8	13/16	13/16	1/2	71/8	11/2	14%	.50	0
10	x 10	66	10%	101/8	3/4	3/4	7/16	77/8	17/16	141/2	.50	0
		60	101/4	101/8	11/16	11/16	7/16	77/8	17/16	143/8	.50	0
		54	101/8	10	5/8	5/8	3/8	71/8	13%	141/4	.50	0
		49	10	10	9/16	9/16	3/8	77/8	15/16	141/8	.50	0
B 1	0.0	45	101/8	8	E/	E/	0/	77/	10/	10	50	
10"		39	10/8	8	5/8	5/8	3/8	77/8	13%	13	.50	0
10		33	93/4	8	1/2	1/2	5/16	77/8	15/16	127/8	.50	0
107		33	374	0	7/16	7/16	5/16	77/8	15/16	12%	.50	0
*B	10	29	101/4	53/4	7/16	9/16	5/16	81/2	7/8	1134	.30	5.0
10"	WF	25	101/8	53/4	3/8	1/2	1/4	81/2	13/16	115%	.30	5.0
10 >	53/4	21	97/8	53/4	1/4	7/16	1/4	81/2	13/16	111/2	.30	5.0
		67	9	81/4	15/	15/	0/	C2/	19/	101/	40	
		58	834	81/4	15/16	15/16	%16 1/2	6% 6%	13/8 15/16	121/4	.40	0
B 8	В	48	81/2	81/8	11/16	11/16				117/8	.40	0
8"\	NF	40	81/4	81/8	9/16		7/16 3/8	6% 6%	13/16	, ,	.40	0
8 x	8	35	81/8	8	1/2	%16 1/2	5/16	63%	13/16	111/2	.40	0
		31	8	8	7/16	7/16	5/16	63/8	11/16	113/8	.40	0
		01		0	716	716	716	078	1 716	1178	.40	U
B 8		28	8	61/2	7/16	7/16	5/16	63%	11/16	101/2	.40	0
8" \		24	77/8	61/2	⁷ /16	3/8	916 1/4	63%	1 1/16	101/4	.40	0
8 x			1/8	072	78	78	74	078	1 716	1074	,40	0
*B 8" \		20	81/8	51/4	5/16	7/16	1/4	63/4	13/16	93/4	.30	5.0
8 x		17	8	51/4	1/4	3/8	1/4	63/4	13/16	95%	.30	5.0
0 X	5/4											

^{*} These shapes have flange slope of 5 pct. All other sections shown on this page have parallel-faced flanges.

I WF&BL

BJ&BS

STD

L

PILING

TEES

CAR &

BULE

ZEES

BETHLEHEM LIGHT BEAMS LIGHT COLUMNS

		,										
				Flar	nge			AXIS X-X		1	AXIS Y-	Y
Section Number and Nominal Size		Area of Section	Depth of Section	Width	Thick- ness	Web Thick- ness	I	S	r	I'	S'	r'
0120		A	d	b	t	W						
	lb	in.2	in.	in.	in.	in.	in.4	in.8	in.	in.4	in.3	in.
† B 12L 12" BL 12 x 4	22 19 16½	6.47 5.62 4.86	12.31 12.16 12.00	4.030 4.010 4.000	.424 .349 .269	.260 .240 .230	155.7 130.1 105.3	25.3 21.4 17.5	4.91 4.81 4.65	4.55 3.67 2.79	2.26 1.83 1.39	.84 .81 .76
† B 10L 10" BL 10 x 4	19 17 15	5.61 4.98 4.40	10.25 10.12 10.00	4.020 4.010 4.000	.394 .329 .269	.250 .240 .230	96.2 81.8 68.8	18.8 16.2 13.8	4.14 4.05 3.95	4.19 3.45 2.79	2.08 1.72 1.39	.86 .83 .80
† B 8L 8" BL 8 x 4	15 13	4.43 3.83	8.12 8.00	4.015 4.000	.314	.245	48.0 39.5	11.8 9.88	3.29 3.21	3.30 2.62	1.65 1.31	.86
† B 6L 6" BL 6 x 4	16 12	4.72 3.53	6.25 6.00	4.030 4.000	.404	.260	31.7 21.7	10.1 7.24	2.59 2.48	4.32	2.14	.96
B 6 6" WF 6 x 6	25 20 15.5	7.37 5.90 4.62	6.37 6.20 6.00	6.080 6.018 6.000	.456 .367 .269	.320 .258 .240	53.5 41.7 30.3	16.8 13.4 10.1	2.69 2.66 2.56	17.1 13.3 9.69	5.6 4.4 3.2	1.52 1.50 1.45
B 5 5" WF 5 x 5	18.5	5.45 4.70	5.12 5.00	5.025 5.000	.420	.265	25.4 21.3	9.94 8.53	2.16 2.13	8.89 7.51	3.54 3.00	1.28 1.26

 $[\]dagger$ These shapes have flange slope of 2 pct, and flange thicknesses shown are average thicknesses. All other sections shown on this page have parallel-faced flanges.

BETHLEHEM LIGHT BEAMS LIGHT COLUMNS

Approximate Dimensions for Detailing

ı.												
	Section Number and Nominal	Weight per Foot	Depth (Nom- inal) of Section	Width (Nom- inal)	Thick- ness (Nom- inal) at Toe	Thick- ness (Nom- inal) at Root	Web Thick- ness (Nom- inal)	Web (Nom- inal)	Dis- tance (Nom- inal)	Diag- onal Dimen- sion (Nom- inal)	Radius of Fillet (Root)	Slope Inside Flange
	Size		ď′	b'	t'	t"	W'	T	T'	D	R	
ı		lb	in.	in.	in.	in.	in.	in.	in.	in.	in.	pct
	† B 12L 12" BL 12 x 4	22 19 16½	121/4 121/8 12	4 4 4	3/8 5/16 1/4	7/16 3/8	1/4	10¾ 10¾ 10¾	⁷ / ₈	13 1234	.30 .30	2.0 2.0 2.0
	12 / 1	10/2	12	7	74	5/16	1/4	10%	13/16	12%	.50	2.0
	†B 10L	19	101/4	4	3/8	7/16	1/4	87/8	13/16	11	.30	2.0
1	10" BL	17	101/8	4	5/16	3/8	1/4	87/8	13/16	10%	.30	2.0
	10 x 4	15	10	4	1/4	5/16	1/4	81/8	13/16	10¾	.30	2.0
•	†B 8L	15	81/8	4	5/16	5/16	1/4	67/8	13/16	9	.30	2.0
	8" BL 8 x 4	13	8	4	1/4	1/4	1/4	67/8	13/16	9	.30	2.0
	†B 6L	40	01/					4				
1	6" BL 6 x 4	16 12	61/4 6	4	3/8 1/4	7/16 5/16	1/4	47/8 47/8	3/4 3/4	73/8 71/4	.25 .25	2.0
ı	B 6	25	63%	6	14	1/	5/	47/8	15/	87/8	.30	0
1	6" WF	20	61/4	6	1/2 3/8	1/2 3/8	5/16	47/8	15/16 7/8	85%	.30	0
	6 x 6	15.5	6	6	1/4	1/4	1/4	47/8	13/16	81/2	.30	0
1	B 5 5" WF	18.5	51/8	5	7/16	7/16	1/4	311/16	7/8	71/8	.30	0
	5 x 5	16	5	5	3/8	3/8	1/4	311/16	13/16	7	.30	0

[†] These shapes have flange slope of 2 pct.
All other sections shown on this page have parallel-faced flanges.

I WF&BL

Т

J&BS

STD

ANGLES

PILING

TEES

AR &

BULB

CAR

ZEES

BETHLEHEM JOISTS and STANCHIONS

	1	1	1			,						
				Flange				AXIS X-	<	AXIS Y-Y		
Section Number and Nominal Size	Weight per Foot	Area of Section	Depth of Section	Width	Thick- ness	Web Thick- ness	I	s	r	I'	s'	r'
3126		Α	d	b	t	W						
	lb	in.2	in.	in.	in.	in.	in.4	in.8	in.	in.4	in.3	in.
† BJ 12 12″ BJ 12 x 4	14	4.14	11.91	3.970	.224	.200	88.2	14.8	4.61	2.25	1.13	.74
† BJ 10 10″ BJ 10 x 4	11½	3.39	9.87	3.950	.204	.180	51.9	10.5	3.92	2.01	1.02	.77
† BJ 8 8" BJ 8 x 4	10	2.95	7.90	3.940	.204	.170	30.8	7.79	3.23	1.99	1.01	.82
† BJ 6 6" BJ 6 x 4	81/2	2.50	5.83	3.940	.194	.170	14.8	5.07	2.43	1.89	.96	.87
BS 5 5" BS 5 x 5	18.9	5.47	5.00	5.000	.417	.313	23.8	9.5	2.08	7.80	3.10	1.20
† BS 4 4" BS 4 x 4	13	3.82	4.16	4.060	.345	.280	11.3	5.45	1.72	3.76	1.85	.99

[†] These shapes have flange slope of 2 pct, and flange thicknesses shown are average thicknesses.

BETHLEHEM JOISTS and STANCHIONS

ANGLES

PILING

ZEES

INDEX

Approximate Dimensions for Detailing

Section Number and Nominal Size	Weight per Foot	Depth (Nom- inal) of Section	Width (Nom- inal)	Thick- ness (Nom- inal) at Toe	Thick- ness (Nom- inal) at Root	Web Thick- ness (Nom- inal)	Web (Nom-inal)	Dis- tance (Nom- inal)	Diag- onal Dimen- sion (Nom- inal)	Radius of Fillet (Root)	Slope Inside Flange
0120		ď	b'	t'	t"	W'	Т	T'	D	R	
	lb	in.	in.	in.	in.	in.	in.	in.	in.	in.	pct
† BJ 12 12" BJ 12 x 4	14	117/8	4	3/16	1/4	3/16	1034	13/16	121/2	.30	2.0
† BJ 10 10" BJ 10 x 4	11½	97/8	4	3/16	1/4	3/16	81/8	3/4	105%	.30	2.0
† BJ 8 8″ BJ 8 x 4	10	71/8	4	3/16	1/4	3/16	61/8	3/4	81/8	.30	2.0
† BJ 6 6" BJ 6 x 4	81/2	57/8	4	3/16	3/16	3/16	5	11/16	7	.25	2.0
BS 5 5" BS 5 x 5	18.9	5	5	5/16	1/2	5/16	3%	₹8	71/8	.313	7.4
† BS 4 4" BS 4 x 4	13	41/8	4	5/16	3/8	5/16	21/8	3/4	57/8	.25	2.0

[†] These shapes have flange slope of 2 pct.

BEAMS American Standard

*				Flange			А	XIS X-X		AXIS Y-Y			
Section Number and Nominal	Weight per Foot	Area of Section	Depth of Section	Width	Average Thick- ness	Web Thick- ness	I	S	r	I'	S'	r'	
Size		A	d	b	t	W							
	lb	in.2	in.	in.	in.	in.	in.4	in. ³	in.	in.4	in.3	in.	
I 24A 24" Ia 24 x 7%	120.0 105.9	35.13 30.98	24.00 24.00	8.048 7.875	1.102	.798 .625	3010.8 2811.5	250.9 234.3	9.26 9.53	84.9 78.9	21.1 20.0	1.56 1.60	
I 24	100.0	29.25	24.00	7.247	.871	.747	2371.8	197.6	9.05	48.4	13.4	1.29	
24" I	90.0	26.30	24.00	7.124	.871	.624	2230.1	185.8	9.21	45.5	12.8	1.32	
24 x 7	79.9	23.33	24.00	7.000	.871	.500	2087.2	173.9	9.46	42.9	12.2	1.36	
I 20A 20" Ia 20 x 7	95.0 85.0	27.74 24.80	20.00	7.200 7.053	.916 .916	.800 .653	1599.7 1501.7	160.0 150.2	7.59 7.78	50.5 47.0	14.0 13.3	1.35 1.38	
I 20	75.0	21.90	20.00	6.391	.789	.641	1263.5	126.3	7.60	30.1	9.4	1.17	
20" I	65.4	19.08	20.00	6.250	.789	.500	1169.5	116.9	7.83	27.9	8.9	1.21	
20 x 61/4 I 18 18" I 18 x 6 I 15 15" I 15 x 51/2	70.0 54.7 50.0 42.9	20.46 15.94 14.59 12.49	18.00 18.00 15.00	6.251 6.000 5.640 5.500	.691 .691 .622 .622	.711 .460 .550 .410	917.5 795.5 481.1 441.8	101.9 88.4 64.2 58.9	6.70 7.07 5.74 5.95	24.5 21.2 16.0 14.6	7.8 7.1 5.7 5.3	1.09 1.15 1.05 1.08	

BEAMS American Standard

Approximate Dimensions for Detailing

-			Depth		Flange		M/ala	Tangent		Diag-		Radius	
	Section Number and Nominal	Weight per Foot	Weight (Nom-	Width (Nom- inal)	Thick- ness (Nom- inal) at Toe	Thick- ness (Nom- inal) at Root	Web Thick- ness (Nom- inal)	Web (Nom- inal)	Dis- tance (Nom- inal)	onal Dimen- sion (Nom- inal)	Radius of Fillet (Root)	of Round- ing (Toe)	Slope Inside Flange
	Size		ď′	b'	ť	t"	W'	T	T'	D	R	R'	
		lb	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	pct
2	24A 4″ Ia 4 x 7½	120 105.9	24 24	8 71/8	13/ ₁₆	136 136	13/16 5/8	20½ 20½	1 ¹³ / ₁₆ 15/ ₈	25% 25¼	.60	.30	16¾ 16¾
		100	24	71/4	5/8	11/8	3/4	203/4	134	251/8	.60	.30	163/3
	24 4″ I	90	24	71/8	5/8	11/8	5/8	203/4	15%	25	.60	.30	163/3
_	4 x 7	79.9	24	7	5/8	11/8	1/2	203/4	11/2	25	.60	.30	163/3
2	20A 0" Ia 0 x 7	95 85	20 20	7½ 7	5% 5%	13/16 13/16	13/16	16½ 16½	2	211/4 211/4	.70 .70	.36	16¾ 16¾
2	20 0" I 0 x 61/4	75 65.4	20 20	63/8 61/4	9/16 9/16	1	5/8 1/2	167/8 167/8	1% 1½	21 21	.60 .60	.30 .30	16¾ 16¾
1	18 8″ I 8 x 6	70 54.7	18 18	61/4	7/16 7/16	15/ ₁₆	3/4 1/2	151/4 151/4	15% 13%	19 19	.56 .56	.28	163/3 163/3
1	15 5" I 5 x 5½	50 42.9	15 15	55% 5½	7/16 7/16	13/ ₁₆		12½ 12½	13/8	16 16	.51 .51	.25	16% 16%
									1				

I

STD

ANGLES

PILING

TEES

BULB

CAR

ZEES

BEAMS American Standard

				Flange			A	XIS X-X		AXIS Y-Y		
Section Number and Nominal Size	Weight per Foot	Area of Section	Depth of Section	Width	Average Thick- ness	Web Thick- ness	I	S	r	I'	S'	r'
	lb	in.2	in.	in.	in.	in.	in.4	in.3	in.	in.4	in.3	in.
I 12A 12" Ia 12 x 51/4	50.0 40.8	14.57 11.84	12.00 12.00	5.477 5.250	.659 .659	.687	301.6 268.9	50.3 44.8	4.55 4.77	16.0 13.8	5.8 5.3	1.05
I 12 12" I 12 x 5	35.0 31.8	10.20 9.26	12.00 12.00	5.078 5.000	.544 .544	.428 .350	227.0 215.8	37.8 36.0	4.72 4.83	10.0	3.9	.99 1.01
I 10 10" I 10 x 45%	35.0 25.4	10.22 7.38	10.00	4.944 4.660	.491 .491	.594	145.8 122.1	29.2 24.4	3.78 4.07	8.5 6.9	3.4	.91 .97
I 8 8" I 8 x 4	23.0 18.4	6.71 5.34	8.00 8.00	4.171 4.000	.425 .425	.441 .270	64.2 56.9	16.0 14.2	3.09 3.26	4.4 3.8	2.1	.81 .84
I 7 7" I 7 x 3%	20.0 15.3	5.83 4.43	7.00	3.860 3.660	.392	.450	41.9 36.2	12.0 10.4	2.68 2.86	3.1 2.7	1.6	.74 .78
I 6 6" I 6 x 3%	17.25 12.5	5.02 3.61	6.00	3.565 3.330	.359	.465	26.0 21.8	8.7 7.3	2.28 2.46	2.3	1.3 1.1	.68
I 5 5" I 5 x 3	14.75 10.0	4.29 2.87	5.00 5.00	3.284 3.000	.326	.494	15.0 12.1	6.0	1.87	1.7	1.0	.63 .65
I 4 4" I 4 x 25%	9.5 7.7	2.76 2.21	4.00	2.796 2.660	.293	.326	6.7 6.0	3.3	1.56 1.64	.91 .77	.65 .58	.58
I 3 3" I 3 x 2%	7.5 5.7	2.17 1.64	3.00 3.00	2.509 2.330	.260	.349	2.9 2.5	1.9	1.15 1.23	.59	.47	.52 .53

BEAMS American Standard

Approximate Dimensions for Detailing

	1			Flange			Tangent	1	P			
Section Number and Nominal	Weight per Foot	Depth (Nom- inal) of Section	Width (Nom- inal)	Thick- ness (Nom- inal) at Toe	Thick- ness (Nom- inal) at Root	Web Thick- ness (Nom- inal)	Web (Nom- inal)	Dis- tance (Nom- inal)	Diag- onal Dimen- sion (Nom- inal)	Radius of Fillet (Root)	Radius of Round- ing (Toe)	Slope Inside Flange
Size		ď′	b'	ť	t"	W'	Т	T'	D	R	R'	
	lb	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	pct
I 12A 12" Ia 12 x 51/4	50 40.8	12 12	5½ 5¼	7/16 7/16	7/8 7/8	11/16	9% 9%	1% 1%	131/4	.56 .56	.28	16¾ 16¾
I 12 12" I 12 x 5	35 31.8	12 12	5½ 5	3/8 3/8	3/4 3/4	7/16 3/8	9¾ 9¾	13/ ₁₆ 11/ ₈	13 13	.45 .45	.21 .21	16% 16%
I 10 10" I 10 x 45%	35 25.4	10 10	5 45%	5/16 5/16	11/16	5/8 5/16	8 8	11/4	111/8	.41 .41	.19	163/s 163/s
I 8 8" I 8 x 4	23 18.4	8	41/8	1/4 1/4	%16 %16	⁷ /16 ⁵ /16	61/4	11/16	9	.37	.16	16¾ 16¾
I 7 7" I 7 x 35%	20 15.3	7 7	37/8 35/8	1/4 1/4	9/16 9/16	7/16 1/4	5% 5%	11/16	8 71/ ₈	.35 .35	.15 .15	16¾ 16¾
I 6 6" I 6 x 3%	17.25 12.5	6	35% 33%	1/4 1/4	1/2 1/2	1/2	41/2	1 13/16	7 67/8	.33	.14 .14	16¾ 16¾
I 5 5" I 5 x 3	14.75 10	5 5	31/4 3	3/16 3/16	7/16 7/16	1/2 1/4	35% 35%	1 3/4	6 57/8	.31 .31	.13	16¾ 16¾
I 4 4" I 4 x 2%	9.5 7.7	4 4	2¾ 2½	3/16 3/16	3/8 3/8	5/16 3/16	2¾ 2¾	13/16	47/8 43/4	.29 .29	.11 .11	16¾ 16¾
I 3 3" I 3 x 2%	7.5 5.7	3 3	21/2 23/8	3/16 3/16	3/8 3/8	3/8 3/16	17/8 17/8	13/ ₁₆ 5/8	37/8 33/4	.27 .27	.10 .10	163/3 163/3

ANGLES
PILING
TEES
CAR & SHIP

CAR

ZEES

				Fla	ange			AXIS X-	-X		AXIS	Y-Y	
Section Number and Nominal Size	Weight per Foot	Area of Section	Depth of Section	Width	Average Thick- ness	Web Thick- ness	I	s	r	I'	s'	r'	g
Size		Α	d	b	t	W							
	lb	in.2	in.	in.	in.	in.	in.4	in.3	in.	in.4	in,3	in.	in.
*SC 18 18" SC 18 x 4	58.0 51.9 45.8 42.7	16.98 15.18 13.38 12.48	18.00 18.00 18.00	4.200 4.100 4.000 3.950	.625 .625 .625 .625	.700 .600 .500 .450	670.7 622.1 573.5 549.2	74.5 69.1 63.7 61.0	6.29 6.40 6.55 6.64	18.5 17.1 15.8 15.0	5.6 5.3 5.1 4.9	1.04 1.06 1.09 1.10	.88 .87 .89 .90
15" 🗀	40.0	11.70	15.00	3.716 3.520	.650	.716 .520	401.4	53.6	5.24	11.2 9.3	3.8	.87	.80
15 x 3%	33.9	9.90	15.00	3.400	.650	.400	312.6	41.7	5.62	8.2	3.2	.89	.78
C 12 12" L 12 x 3	30.0 25.0 20.7	8.79 7.32 6.03	12.00 12.00 12.00	3.170 3.047 2.940	.501 .501 .501	.510 .387 .280	161.2 143.5 128.1	26.9 23.9 21.4	4.28 4.43 4.61	5.2 4.5 3.9	2.1 1.9 1.7	.77 .79 .81	.68 .68 .70
C 10	30.0 25.0	8.80 7.33	10.00	3.033	.436	.673	103.0	20.6	3.42	4.0	1.7	.67	.65
10" 🗀	20.0	5.86	10.00	2.739	.436	.526	90.7 78.5	18.1	3.52	3.4	1.5	.68	.62
10 x 25%	15.3	4.47	10.00	2.600	.436	.240	66.9	13.4	3.87	2.3	1.2	.72	.64
C 9 9″ ⊔ 9 x 2½	20.0 15.0 13.4	5.86 4.39 3.89	9.00 9.00 9.00	2.648 2.485 2.430	.413 .413 .413	.448 .285 .230	60.6 50.7 47.3	13.5 11.3 10.5	3.22 3.40 3.49	2.4 1.9 1.8	1.2 1.0 .97	.65 .67 .67	.59 .59 .61

^{*} Car and shipbuilding channel; not an American standard.

PILING

BULB

CAR

ZEES

INDEX

Approximate Dimensions for Detailing

	147-1-1-1	Depth		Flange	Thirt	Web	Tangent	Dis-	Diag- onal	Radius	Radius	
Section Number and Nominal	Weight per Foot	(Nom- inal) of Section	Width (Nom- inal)	Thick- ness (Nom- inal) at Toe	Thick- ness (Nom- inal) at Root	Thick- ness (Nom- inal)	Web (Nom- inal)	tance (Nom- inal)	Dimen- sion (Nom- inal)	of Fillet (Root)	Round- ing (Toe)	Slope Inside Flange
Size		ď′	b'	t'	t"	W'	T	T'	D	R	R'	
	lb	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	pct
	58	18	41/4	9/16	11/16	11/16	15%	15/16	181/2	.625	.425	3.5
*SC 18 18" SC	51.9	18	41/8	9/16	1 1/16	5/8	15%	13/16	181/2	.625	.425	3.5
18 x 4	45.8	18 18	4	9/16 9/16	11/16	1/2 7/16	15% 15%	11/8	18½ 18¾	.625	.425	3.5
C 15							123%	11/8	151/2	.50	.24	16%
15" 🖂	50 40	15 15	33/4	3/8 3/8	7/8 7/8	3/4 9/16	12%	15/16	153/8	.50	.24	163/3
15 x 3%	33.9	15	33%	3/8	7/8	7/16	123/8	13/16	15%	.50	.24	163/3
C 12	30	12	31/8	1/4	3/4	1/2	97/8	13/16	12%	.38	.17	1634
12″ └┘ 12 x 3	25 20.7	12 12	3	1/4	3/4 3/4	3/8 5/16	97/8	5/8	12%	.38	.17	163/3 163/3
12 × 3		10	3			11/16	81/8	15/16	10%	.34	.14	16%
C 10	30 25	10	27/8	1/4	5/8 5/8	9/16	81/8	13/16	103/8	.34	.14	163/3
10″ ⊔ 10 x 25⁄8	20	10	23/4	1/4	5/8	3/8	81/8	11/16	103/8	.34	.14	16%
	15.3	10	25%	1/4	5/8	1/4	81/8	1/2	10%	.34	.14	163/3
C 9	20	9	25%	1/4	5/8	7/16	71/4	3/4	93%	.33	.14	163/3
9″ ك	15	9	21/2	1/4	5/8	5/16	71/4	9/16	93/8	.33	.14	16%
9 x 2½	13.4	9	23/8	1/4	5/8	1/4	71/4	1/2	9%	.33	.14	163/3

^{*} Car and shipbuilding channel; not an American standard.

				Fla	nge		-	XIS X-	x		AXIS	Y-Y	
Section Number and Nominal Size	Weight per Foot	Area of Section	Depth of Section	Width	Aver- age Thick- ness	Web Thick- ness	I	s	r	I'	S'	'r'	g
0120		A	d	b	t	W							
	lb	in.2	in.	in.	in.	in.	in.4	in.3	in.	in.4	in.3	in.	in.
C 8 8″ ⊔ 8 x 2½	18.75 13.75 11.5	5.49 4.02 3.36	8.00 8.00 8.00	2.527 2.343 2.260	.390 .390 .390	.487 .303 .220	43.7 35.8 32.3	10.9 9.0 8.1	2.82 2.99 3.10	2.0 1.5 1.3	1.0 .86 .79	.60 .62 .63	.57 .56 .58
C 7 7″ ⊔ 7 x 2⅓	14.75 12.25 9.8	4.32 3.58 2.85	7.00 7.00 7.00	2.299 2.194 2.090	.366 .366 .366	.419 .314 .210	27.1 24.1 21.1	7.7 6.9 6.0	2.51 2.59 2.72	1.4 1.2 .98	.79 .71 .63	.57 .58 .59	.53 .53 .55
C 6 6″ ⊔ 6 x 2	13.0 10.5 8.2	3.81 3.07 2.39	6.00 6.00 6.00	2.157 2.034 1.920	.343 .343 .343	.437 .314 .200	17.3 15.1 13.0	5.8 5.0 4.3	2.13 2.22 2.34	1.1 .87 .70	.65 .57 .50	.53 .53 .54	.52 .50 .52
C 5 5″ ⊔ 5 x 1¾	9.0 6.7	2.63 1.95	5.00 5.00	1.885 1.750	.320	.325	8.8 7.4	3.5 3.0	1.83 1.95	.64 .48	.45	.49	.48
C 4 4″ ⊔ 4 x 15⁄8	7.25 5.4	2.12 1.56	4.00	1.720 1.580	.296 .296	.320	4.5	2.3 1.9	1.47 1.56	.44	.35	.46 .45	.46 .46
C 3 3″ ⊔ 3 x 1½	6.0 5.0 4.1	1.75 1.46 1.19	3.00 3.00 3.00	1.596 1.498 1.410	.273 .273 .273	.356 .258 .170	2.1 1.8 1.6	1.4 1.2 1.1	1.08 1.12 1.17	.31 .25 .20	.27 .24 .21	.42 .41 .41	.46 .44 .44

TX R R' Y T' Y T' T' Y

Approximate Dimensions for Detailing

		Double		Flange		34/-1	Tangent		Diag-		D. div.	
Section Number and Nominal	Weight per Foot	Depth (Nom- inal) of Section	Width (Nom- inal)	Thick- ness (Nom- inal) at Toe	Thick- ness (Nom- inal) at Root	Web Thick- ness (Nom- inal)	Web (Nom- inal)	Dis- tance (Nom- inal)	onal Dimen- sion (Nom- inal)	Radius of Fillet (Root)	Radius of Round- ing (Toe)	Slope Inside Flange
Size		ď′	b'	t'	t"	W'	T	T'	D	R	R'	
	lb	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	pct
C 8	18.75	8	21/2	1/4	9/16	1/2	63%	3/4	83%	.32	.13	163/3
8" LJ 8 x 21/4	13.75	8	23/8	1/4	9/16 9/16	5/16	6% 6%	9/16 1/2	83% 83%	.32	.13	163/3 163/3
C 7	14.75											1634
7″ 山	12.25	7 7	21/4	3/16 3/16	1/2	7/16 5/16	5% 5%	1 1/16 9/16	73/8 73/8	.31	.13	163/3
7 x 21/8	9.8	7	21/8	3/16	1/2	1/4	5%	1/2	71/4	.31	.13	163/3
C 6 6″ ⊔ 6 x 2	13.0 10.5 8.2	6 6 6	2½ 2 1½	3/16 3/16 3/16	1/2 1/2 1/2	7/16 5/16 3/16	4½ 4½ 4½ 4½	1 1/16 9/16 7/16	63% 63% 61/4	.30 .30 .30	.12 .12 .12	16% 16% 16%
C 5	9.0	5	17/8	3/16	7/16	5/16	35%	9/16	53%	.29	.11	163/3
5 x 13/4	6.7	5	13/4	3/16	7/16	3/16	35/8	7/16	51/4	.29	.11	163/3
C 4 4" L-J 4 x 15%	7.25 5.4	4 4	13/4 15/8	3/16 3/16	7/16 7/16	5/16 3/16	2¾ 2¾	9/16 7/16	43/8 41/4	.28	.11	16¾ 16¾
C 3 3" ⊔ 3 x 1½	6.0 5.0 4.1	3 3 3	1% 1½ 1%	3/16 3/16 3/16	3/8 3/8 3/8	3/8 1/4 3/16	13/4 13/4 13/4	%16 1/2 3/8	3% 3% 3%	.27 .27 .27	.10 .10 .10	163/4 163/4 163/4

ANGLES

PILING

CAR &

37111

BULE

CAR

ZEES

ANGLES Equal Legs

					A	XIS X-X A	ND AXIS Y	-Y	AXIS Z-Z
Section Number and Size	Thickness	Weight per Foot	Area of Section	Radius of Fillet	I	S	r or r'	g	r"
	in.	lb	in.2	in.	in.4	in.3	in.	in.	in.
8 × 8 A 80	11/8 1 7/8 3/4 5/8 9/16	56.9 51.0 45.0 38.9 32.7 29.6 26.4	16.73 15.00 13.23 11.44 9.61 8.68 7.75	5% 5% 5% 5% 5% 5% 5%	98.0 89.0 79.6 69.7 59.4 54.1 48.6	17.5 15.8 14.0 12.2 10.3 9.3 8.4	2.42 2.44 2.45 2.47 2.49 2.50 2.50	2.41 2.37 2.32 2.28 2.23 2.21 2.19	1.56 1.56 1.57 1.57 1.58 1.58 1.59
6 × 6 A 60	7/8 3/4 5/8 9/16 1/2 7/16 3/8	37.4 33.1 28.7 24.2 21.9 19.6 17.2 14.9	11.00 9.73 8.44 7.11 6.43 5.75 5.06 4.36	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	35.5 31.9 28.2 24.2 22.1 19.9 17.7 15.4	8.6 7.6 6.7 5.7 5.1 4.6 4.1 3.5	1.80 1.81 1.83 1.84 1.85 1.86 1.87	1.86 1.82 1.78 1.73 1.71 1.68 1.66 1.64	1.17 1.17 1.17 1.18 1.18 1.18 1.19 1.19
5 × 5 A 50	7/8 3/4 5/8 1/2 7/16 3/8 * 5/16	27.2 23.6 20.0 16.2 14.3 12.3 10.3	7.98 6.94 5.86 4.75 4.18 3.61 3.03	1/2 1/2 1/2 1/2 1/2 1/2 1/2	17.8 15.7 13.6 11.3 10.0 8.7 7.4	5.2 4.5 3.9 3.2 2.8 2.4 2.0	1.49 1.51 1.52 1.54 1.55 1.56 1.56	1.57 1.52 1.48 1.43 1.41 1.39 1.36	.97 .97 .98 .98 .98 .99
4 × 4 A 40	34 56 1/2 7/16 3/8 5/16 * 1/4	18.5 15.7 12.8 11.3 9.8 8.2 6.6	5.44 4.61 3.75 3.31 2.86 2.40 1.94	% % % % % % % % % %	7.7 6.7 5.6 5.0 4.4 3.7 3.0	2.8 2.4 2.0 1.8 1.5 1.3	1.19 1.20 1.22 1.23 1.23 1.24 1.25	1.27 1.23 1.18 1.16 1.14 1.12 1.09	.78 .78 .78 .78 .79 .79

^{*} Special gauge, taking a special extra.

ANGLES Equal Legs

Theoretical Dimensions and Properties for Designing

-					A	XIS X-X AIX	ND AXIS Y-	·Y	AXIS Z-Z
Section Number and Size	Thickness	Weight per Foot	Area of Section	Radius of Fillet	I	s	r or r'	g	r"
	in,	lb	in.2	in.	in.4	in.3	in.	in.	in.
3½ x 3½ A 35	1/2 7/16 3/8 5/16	11.1 9.8 8.5 7.2 5.8	3.25 2.87 2.48 2.09 1.69	3/8 3/8 3/8 3/8 3/8	3.6 3.3 2.9 2.5 2.0	1.5 1.3 1.2 .98 .79	1.06 1.07 1.07 1.08 1.09	1.06 1.04 1.01 .99	.68 .68 .69 .69
3 x 3 A 30	1/2 7/16 3/8 5/16 1/4 * 3/16	9.4 8.3 7.2 6.1 4.9 3.71	2.75 2.43 2.11 1.78 1.44 1.09	5/16 5/16 5/16 5/16 5/16 5/16	2.2 2.0 1.8 1.5 1.2	1.1 .95 .83 .71 .58	.90 .91 .91 .92 .93	.93 .91 .89 .87 .84	.58 .58 .58 .59 .59
2½ x 2½ †A 25	1/2 3/8 5/16 !/4 3/16	7.7 5.9 5.0 4.1 3.07	2.25 1.73 1.47 1.19 .90	1/4 1/4 1/4 1/4 1/4	1.2 .98 .85 .70 .55	.72 .57 .48 .39 .30	.74 .75 .76 .77	.81 .76 .74 .72 .69	.49 .49 .49 .49
2 x 2 †A 20	3/8 5/16 1/4 3/16 1/8	4.7 3.92 3.19 2.44 1.65	1.36 1.15 .94 .71 .48	3/16 3/16 3/16 3/16 3/16	.48 .42 .35 .27 .19	.35 .30 .25 .19 .13	.59 .60 .61 .62 .63	.64 .61 .59 .57	.39 .39 .39 .39
13/4 x 13/4 †A 17	1/4 3/16 1/8	2.77 2.12 1.44	.81 .62 .42	3/16 3/16 3/16	.23 .18 .13	.19 .14 .10	.53 .54 .55	.53 .51 .48	.34 .34 .35
1½ x 1½ †A 15	1/4 3/16 1/8	2.34 1.80 1.23	.69 .53 .36	1/8 1/8 1/8	.14 .11 .08	.13 .10 .07	.45 .46 .47	.47 .44 .42	.29 .29 .30
1¼ x 1¼ †A 12	1/4 3/16 1/8	1.92 1.48 1.01	.56 .43 .30	1/8 1/8 1/8	.08 .06 .04	.09 .07 .05	.37 .38 .38	.40 .38 .36	.24 .24 .25
1 x 1 †A 100	1/4 3/16 1/8	1.49 1.16 .80	.44 .34 .23	1/8 1/8 1/8	.04 .03 .02	.06 .04 .03	.29 .30 .30	.34 .32 .30	.20 .19 .20

 $[\]dagger$ These sections are in the bar classification, and are subject to bar extras. * Special gauge, taking a special extra.

41

ANGLES

PILING

CAR 8

BULB

CAR

ZEES

						AXI	s x-x			AXI	S Y-Y		AXIS Z-Z
Section Number and Size	Thick- ness	Weight per Foot	Area of Section	Radius of Fillet	I	S	r	g	I'	s'	r'	g'	r"
	in.	lb	in.2	in.	in.4	in.3	in.	in.	in.4	in.3	in.	in.	in.
9 x 4 A 94	1 ½8 ¾4 ½8 ½16 ½2	40.8 36.1 31.3 26.3 23.8 21.3	12.00 10.61 9.19 7.73 7.00 6.25	1/2 1/2 1/2 1/2 1/2 1/2 1/2	97.0 86.8 76.1 64.9 59.1 53.2	17.6 15.7 13.6 11.5 10.4 9.3	2.84 2.86 2.88 2.90 2.91 2.92	3.50 3.45 3.41 3.36 3.33 3.31	12.0 10.8 9.6 8.3 7.6 6.9	4.0 3.6 3.1 2.6 2.4 2.2	1.00 1.01 1.02 1.04 1.04 1.05	1.00 .95 .91 .86 .83	.83 .84 .84 .85 .85
8 x 6 A 86	1 3/8 3/4 5/8 9/16 1/2 7/16	44.2 39.1 33.8 28.5 25.7 23.0 20.2	13.00 11.48 9.94 8.36 7.56 6.75 5.93	1/2 1/2 1/2 1/2 1/2 1/2 1/2	80.8 72.3 63.4 54.1 49.3 44.3 39.2	15.1 13.4 11.7 9.9 9.0 8.0 7.1	2.49 2.51 2.53 2.54 2.55 2.56 2.57	2.65 2.61 2.56 2.52 2.50 2.47 2.45	38.8 34.9 30.7 26.3 24.0 21.7 19.3	8.9 7.9 6.9 5.9 5.3 4.8 4.2	1.73 1.74 1.76 1.77 1.78 1.79 1.80	1.65 1.61 1.56 1.52 1.50 1.47 1.45	1.28 1.29 1.29 1.30 1.30 1.31
8 × 4 A 84	1 78 34 58 9/16 1/2 7/16	37.4 33.1 28.7 24.2 21.9 19.6 17.2	11.00 9.73 8.44 7.11 6.43 5.75 5.06	1/2 1/2 1/2 1/2 1/2 1/2 1/2	69.6 62.5 54.9 46.9 42.8 38.5 34.1	14.1 12.5 10.9 9.2 8.4 7.5 6.6	2.52 2.53 2.55 2.57 2.58 2.59 2.60	3.05 3.00 2.95 2.91 2.88 2.86 2.83	11.6 10.5 9.4 8.1 7.4 6.7 6.0	3.9 3.5 3.1 2.6 2.4 2.2 1.9	1.03 1.04 1.05 1.07 1.07 1.08 1.09	1.05 1.00 .95 .91 .88 .86 .83	.85 .85 .86 .86 .86
7 × 4 A 74	7/8 3/4 5/8 9/16 1/2 7/16 3/8	30.2 26.2 22.1 20.0 17.9 15.8 13.6	8.86 7.69 6.48 5.87 5.25 4.62 3.98	1/2 1/2 1/2 1/2 1/2 1/2 1/2	42.9 37.8 32.4 29.6 26.7 23.7 20.6	9.7 8.4 7.1 6.5 5.8 5.1 4.4	2.20 2.22 2.24 2.24 2.25 2.26 2.27	2.55 2.51 2.46 2.44 2.42 2.39 2.37	10.2 9.1 7.8 7.2 6.5 5.8 5.1	3.5 3.0 2.6 2.4 2.1 1.9 1.6	1.07 1.09 1.10 1.11 1.11 1.12 1.13	1.05 1.01 .96 .94 .92 .89	.86 .86 .86 .87 .87 .88

PILING

BULE

CAR

ZEES

INDEX

-											- 0		
1						AXI	s x-x			AXI	S Y-Y		AXIS Z-Z
Section Number and Size	Thick- ness	Weight per Foot	Area of Section	Radius of Fillet	I	S	r	g	I'	S'	r'	g'	r"
	in.	lb	in.2	in.	in.4	in.3	in.	in.	in.4	in.3	in.	in.	in,
6 × 4 A 64	7/8 3/4 5/8 9/16 1/2 7/16 3/8 * 5/16	27.2 23.6 20.0 18.1 16.2 14.3 12.3 10.3	7.98 6.94 5.86 5.31 4.75 4.18 3.61 3.03	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	27.7 24.5 21.1 19.3 17.4 15.5 13.5	7.2 6.3 5.3 4.8 4.3 3.8 3.3 2.8	1.86 1.88 1.90 1.90 1.91 1.92 1.93 1.94	2.12 2.08 2.03 2.01 1.99 1.96 1.94 1.92	9.8 8.7 7.5 6.9 6.3 5.6 4.9 4.2	3.4 3.0 2.5 2.3 2.1 1.9 1.6 1.4	1.11 1.12 1.13 1.14 1.15 1.16 1.17	1.12 1.08 1.03 1.01 .99 .96 .94	.86 .86 .87 .87 .87 .88
6 x 3½ A 63	½ 3/4 3/8 * 5/16	15.3 11.7 9.8	4.50 3.42 2.87	1/2 1/2 1/2	16.6 12.9 10.9	4.2 3.2 2.7	1.92 1.94 1.95	2.08 2.04 2.01	4.2 3.3 2.8	1.6 1.2 1.0	.97 .99 1.00	.83 .79 .76	.76 .77 .77
5 x 3½ A 54	34 58 1/2 7/16 3/8 5/16 * 1/4	19.8 16.8 13.6 12.0 10.4 8.7 7.0	5.81 4.92 4.00 3.53 3.05 2.56 2.06	7/16 7/16 7/16 7/16 7/16 7/16	13.9 12.0 10.0 8.9 7.8 6.6 5.4	4.3 3.7 3.0 2.6 2.3 1.9	1.55 1.56 1.58 1.59 1.60 1.61 1.61	1.75 1.70 1.66 1.63 1.61 1.59 1.56	5.6 4.8 4.1 3.6 3.2 2.7 2.2	2.2 1.9 1.6 1.4 1.2 1.0	.98 .99 1.01 1.01 1.02 1.03 1.04	1.00 .95 .91 .88 .86 .84	.75 .75 .75 .76 .76 .77
5 x 3 A 53	1/2 3/8 5/16 * 1/4	12.8 9.8 8.2 6.6	3.75 2.86 2.40 1.94	3/8 3/8 3/8	9.4 7.4 6.3 5.1	2.9 2.2 1.9 1.5	1.59 1.61 1.61 1.62	1.75 1.70 1.68 1.66	2.6 2.0 1.7 1.4	1.1 .89 .75 .61	.83 .84 .85 .86	.75 .70 .68 .66	.65 .65 .66

^{*} Special gauge, taking a special extra.

					1	AX	S X-X		Т	AXI	S Y-Y	-	AXIS
Section Number and Size	Thick- ness	Weight per Foot	Area of Section	Radius of Fillet	I	S	r	g	I'	s'	r'	g'	r"
	in.	lb	in.2	in.	in.4	in.3	in.	in.	in.4	in.3	in.	in.	in.
4 x 3½ A 44	5/8 1/2 7/16 3/8 5/16 * 1/4	14.7 11.9 10.6 9.1 7.7 6.2	4.30 3.50 3.09 2.67 2.25 1.81	% % % % % %	6.4 5.3 4.8 4.2 3.6 2.9	2.4 1.9 1.7 1.5 1.3	1.22 1.23 1.24 1.25 1.26 1.27	1.29 1.25 1.23 1.21 1.18 1.16	4.5 3.8 3.4 3.0 2.6 2.1	1.8 1.5 1.4 1.2 1.0 .81	1.03 1.04 1.05 1.06 1.07	1.04 1.00 .98 .96 .93	.72 .72 .72 .73 .73 .73
4 × 3 A 43	5/8 1/2 7/16 3/8 5/16 * 1/4	13.6 11.1 9.8 8.5 7.2 5.8	3.98 3.25 2.87 2.48 2.09 1.69	3/8 3/8 3/8 3/8 3/8 3/8	6.0 5.1 4.5 4.0 3.4 2.8	2.3 1.9 1.7 1.5 1.2	1.23 1.25 1.25 1.26 1.27 1.28	1.37 1.33 1.30 1.28 1.26 1.24	2.9 2.4 2.2 1.9 1.7	1.4 1.1 1.0 .87 .73 .60	.85 .86 .87 .88 .89	.87 .83 .80 .78 .76	.64 .64 .64 .65
3½ x 3 A 38	½ 7/16 3/8 5/16 ½	10.2 9.1 7.9 6.6 5.4	3.00 2.65 2.30 1.93 1.56	3% 3% 3% 3% 3%	3.5 3.1 2.7 2.3 1.9	1.5 1.3 1.1 .95 .78	1.07 1.08 1.09 1.10 1.11	1.13 1.10 1.08 1.06 1.04	2.3 2.1 1.9 1.6 1.3	1.1 .98 .85 .72 .59	.88 .89 .90 .90	.88 .85 .83 .81	.62 .62 .62 .63
3½×2½ A 37	1/2 7/16 3/8 5/16 1/4	9.4 8.3 7.2 6.1 4.9	2.75 2.43 2.11 1.78 1.44	5/16 5/16 5/16 5/16 5/16	3.2 2.9 2.6 2.2 1.8	1.4 1.3 1.1 .93 .75	1.10 1.11		1.4 1.2 1.1 .94 .78	.76 .68 .59 .50 .41	.70 .71 .72 .73 .74	.70 .68 .66 .64	.53 .54 .54 .54

^{*} Special gauge, taking a special extra.

Theoretical Dimensions and Properties for Designing

						AXIS	X-X			AXIS	Y-Y		AXIS Z-Z
Section Number and Size	Thick- ness	Weight per Foot	Area of Section	Radius of Fillet	I	S	r	g	I'	S'	r'	g'	r"
	in.	lb	in. ²	in.	in.4	in.3	in.	in.	in.4	in.3	in.	in.	in.
3 x 2½ A 33	1/2 7/16 3/8 5/16 1/4	8.5 7.6 6.6 5.6 4.5	2.50 2.21 1.92 1.62 1.31	5/16 5/16 5/16 5/16 5/16	2.1 1.9 1.7 1.4 1.2	1.0 .93 .81 .69	.91 .92 .93 .94 .95	1.00 .98 .96 .93	1.3 1.2 1.0 .90	.74 .66 .58 .49	.72 .73 .74 .74 .75	.75 .73 .71 .68 .66	.52 .52 .52 .53 .53
3 x 2 A 32	1/2 7/16 3/8 5/16 1/4 * 3/16	7.7 6.8 5.9 5.0 4.1 3.07	2.25 2.00 1.73 1.47 1.19 .90	5/16 5/16 5/16 5/16 5/16 5/16	1.9 1.7 1.5 1.3 1.1	1.0 .89 .78 .66 .54 .41	.92 .93 .94 .95 .96	1.08 1.06 1.04 1.02 .99 .97	.67 .61 .54 .47 .39	.47 .42 .37 .32 .26 .20	.55 .55 .56 .57 .57	.58 .56 .54 .52 .49 .47	.43 .43 .43 .43 .43 .44
2½ x 2 †A 27	3/8 5/16 1/4 3/16	5.3 4.5 3.62 2.75	1.55 1.31 1.06 .81	1/4 1/4 1/4 1/4	.91 .79 .65	.55 .47 .38 .29	.77 .78 .78 .79	.83 .81 .79 .76	.51 .45 .37 .29	.36 .31 .25 .20	.58 .58 .59	.58 .56 .54 .51	.42 .42 .42 .43
2½×1½ †A 26	5/16 1/4 3/16	3.92 3.19 2.44	1.15 .94 .72	3/16 3/16 3/16	.71 .59 .46	.44 .36 .28	.79 .79 .80	.90 .88 .85	.19 .16 .13	.17 .14 .11	.41 .41 .42	.40 .38 .35	.32 .32 .33
2 x 1½ †A 21	1/4 3/16 1/8	2.77 2.12 1.44	.81 .62 .42	3/16 3/16 3/16	.32 .25 .17	.24 .18 .13	.62 .63 .64	.66 .64 .62	.15 .12 .09	.14 .11 .08	.43 .44 .45	.41 .39 .37	.32 .32 .33
2 x 11/4 †A 23	1/4 3/16	2.55 1.96	.75 .57	3/16 3/16	.30 .23	.23 .18	.63 .64	.71 .69	.09	.10 .08	.34	.33	.27 .27
13/4×11/4 †A 16	1/4 3/16 1/8	2.34 1.80 1.23	.69 .53 .36	3/16 3/16 3/16	.20 .16 .11	.18 .14 .09	.54 .55 .56	.60 .58 .56	.09 .07 .05	.10 .08 .05	.35 .36 .37	.35 .33 .31	.27 .27 .27
				1									

ZEES

^{*} Special gauge, taking a special extra.
† These sections are in the bar classification, and are subject to bar extras.

BETHLEHEM STEEL SHEET PILING

Dimensions and Properties

	Nominal	Web Thick-	Flange Thick-	Nominal		Single	Section		Per Foo	t of Wall
Section Number	Width	ness	ness	Depth	Weight per Foot	Area	I	S	Weight Ib per	S
	in.	in.	in.	in.	lb	in.2	in,4	in.8	sq ft	
ZP 38 ZP 32 ZP 27 DP 1 DP 2	18 21 18 16 16	3/8 3/8 3/8 3 1/64 3/8	1/2 1/2 3/8 3/8 3/8	12 11½ 12 6 5	57.0 56.0 40.5 42.7 36.0	16.77 16.47 11.91 12.56 10.59	421.2 385.7 276.3 87.0 53.0	70.2 67.0 45.3 20.4 14.3	38.0 32.0 27.0 32.0 27.0	46.8 38.3 30.2 15.3 10.7

BETHLEHEM STEEL SHEET PILING

PILING

TEES

BULE

CAR

ZEES

INDEX

Dimensions and Properties

	Nominal	Web	Flange	Nominal		Single	Section		Per Foo	t of Wall
Section Number	Width	Thick- ness	Thick- ness	Depth	Weight per Foot	Area	I	S	Weight Ib per sq ft	S
	in.	in.	in.	in.	lb	in.2	in.4	in.3		in.3
AP 3	19%	3/8	3/8	31/2	36.0	10.59	26.0	8.8	22.0	5,4
SP 4	16	3/8		111/32	30.7	8.99	5.5	3.2	23.0	2.4
SP 5	16	1/2		111/32	37.3	10.98	6.0	3.3	28.0	2.5
SP 6a	15	3/8			35.0	10.29	4.6	3.0	28.0	2.4
SP 7a	15	1/2			40.0	11.76	4.6	3.0	32.0	2.4

BETHLEHEM BEARING PILES

				Fla	nge		1	XIS X-X	(T	AXIS Y-	.Y
Section Number and Nominal Size	Weight per Foot	Area of Section	Depth of Section	Width	Thick- ness	Web Thick- ness	I	S	r	I'	S'	r'
	lb	in.2	in.	in.	in.	in.	in.4	in.3	in.	in,4	in,3	in.
											111,5	111.
BP 14	117		14.234		.805	.805	1228.5	172.6	5.97	443.1	59.5	3.59
	102	30.01	14.032	14.784	.704	.704	1055.1	150.4	5.93	379.6	51.3	3.56
14 x 14½	89	26.19	13.856	14.696	.616	.616	909.1	131.2	5.89	326.2	44.4	3.53
	73	21.46	13.636	14.586	.506	.506	733.1	107.5	5.85	261.9	35.9	3.49
BP 12	74	21.76	12.122	12.217	.607	.607	566.5	93.5	5.10	184.7	30.2	2.91
12 x 12	53	15.58	11.780	12.046	.436	.436	394.8	67.0	5.03	127.3	21.2	2.86
BP 10	57	16.76	10.012	10.224	.564	.564	294.7	58.9	4.19	100.6	19.7	2.45
10 x 10	42	12.35	9.720	10.078	.418	.418	210.8	43.4	4.13	71.4	14.2	2.40
BP 8 8 x 8	36	10.60	8.026	8.158	.446	.446	119.8	29.9	3.36	40.4	9.9	1.95

STRUCTURAL TEES

Split from Wide-Flange Sections and Standard Beams

Split tees are produced by shearing or flame-cutting either standard beams or wide-flange sections.

Generally, any beam or channel section from 3 in. to 36 in. in depth can be split to form tees or angles.

Orders should cover the full product of the beam or channel section prior to splitting.

The following tolerances, over or under, apply to the depth of the tee or angle:

Beams or Channels	up to 6 in., excl	. ½ in.
Beams or Channels	6 in. to 16 in., excl	3/16 in.
	16 in. to 20 in., excl	
Beams	20 in. to 24 in., excl	
Beams	24 in, and over	

The above tolerances for depth of tees or angles include the allowable tolerances in depth for the beams or channels before splitting. Tolerances both for dimensions and straightness, as set up for the beams or channels from which these tees or angles are cut, will apply, except:

Straightness =
$$\frac{1}{8}$$
 in. x $\frac{\text{length, in ft}}{5 \text{ ft}}$

Length: The length tolerances for split tees or angles are the same as those applicable to the section from which the tees or angles are split.

TEES
CAR & SHIP
BULE
CAR

ZEES

				Fla	nge			AXIS	X-X		/	AXIS Y-	Υ
Section Number	Weight per Foot	Area of Section	Depth of Tee	Width	Average Thick- ness	Stem Thick- ness	I	S	r	у	I'	S'	r'
		Α	d	b	t	W							
	lb	in.2	in.	in.	in.	in.	in.4	in.3	in.	in.	in.4	in.3	in.
	150	44.09	18.36	16.655	1.680	.945	1222.7	85.9	5.27	4.13	C10.0	70.0	0.70
	140	41.16	18.25	16.595	1.570	.885	1133.3	79.9	5.25	4.13	612.6 563.7	73.6 67.9	3.73
BT 18A	130	38.28	18.12	16.555		.845	1059.2	75.4	5.26	4.07	510.3	61.6	3.65
ST 18 WF	122.5	36.01	18.03	16.512	1.350	.802	994.3	71.1	5.25	4.04	472.3	57.2	3.62
	115	33.86	17.94	16.475	1.260	.765	935.8	67.2	5.26	4.02	435.5	52.9	3.59
					1.200				0.20	7.02	433.3	32.3	3.39
	97	28.56	18.24	12.117	1.260	.770	904.0	67.3	5.63	4.81	177.7	29.3	2.49
BT 18	91	26.77	18.16	12.072	1.180	.725	844.0	63.0	5.61	4.77	163.9	27.1	2.47
ST 18 WF	85	24.99	18.08	12.027	1.100	.680	784.7	58.8	5.60	4.74	150.3	25.0	2.45
	80	23.54	-	12.000	1.020	.653	741.0	56.0	5.61	4.76	137.7	22.9	2.42
	75	22.08	17.92	11.972	.940	.625	696.7	53.0	5.62	4.79	125.2	20.9	2.38
DT 1/A	120	35.26	16.75	15.865	1,400	.830	822.5	63.2	4.83	3.73	437.2	55.1	3.52
BT 16A	110	32.36		15.810	1.275	.775	754.1	58.4	4.83	3.71	391.2	49.5	3.48
ST 16 WF	100	29.40	16.50	15.750	1.150	.715	683.6	53.3	4.82	3.67	345.8	43.9	3.43
												10.0	
BT 16	76	22.35	16.75	11.565	1.055	.635	591.9	47.4	5.15	4.26	128.1	22.1	2.39
ST 16 WF	70.5	20.76		11.535	.960	.605	551.8	44.7	5.16	4.30	114.9	19.9	2.35
	65	19.13	16.55	11.510	.855	.580	513.0	42.1	5.18	4.37	100.7	17.5	2.29
BT 15A	105	30.89	15.19	15.105	1.315	.775	578.0	48.7	4.33	3.31	354.0	46.9	3.38
ST 15 WF	95	27.95	15.06	15.040	1.185	.710	520.4	44.1	4.31	3.26	312.3	41.5	3.34
91 15 W	86	25.32	14.94	14.985	1.065	.655	471.0	40.2	4.31	3.23	275.1	36.7	3.30
	CC	10.44	15.45	10.554	1 000	045	400	07.4					
BT 15	66	19.41	15.15	10.551	1.000	.615	420.7	37.4	4.66	3.90	92.5	17.5	2.18
ST 15 WF	62	18.22	15.08	10.521	.930	.585	394.8	35.3	4.65	3.90	84.8	16.1	2.16
S1 15 W-	58 54	17.07		10.500	.850	.564	371.8	33.6	4.67	3.94	76.6	14.6	2.12
	34	15.88	14.91	10.484	.760	.548	349.5	32.1	4.69	4.03	67.6	12.9	2.06
BT 13A	88.5	26.05	13.655	14.090	1.190	.725	391.8	36.7	3.88	2.97	259.4	36.8	3.16
ST 13 WF	80	23.52	13.54	14.023	1.075	.658	351.4	33.1	3.87	2.91	229.0	32.7	3.12
01 10 10	72.5	21.34	13.44	13.965	.975	.600	316.3	29.9	3.85	2.85	203.5	29.1	3.09
DT 10	57	16.77	13.64	10.070	.932	.570	288.9	28.3	4.15	3.42	74.8	14.9	2.11
BT 13	51	15.01	13.535		.827	.518	257.7	25.4	4.14	3.39	64.8	12.9	2.08
ST 13 WF	47		13.455	9.990	.747	.490	238.5	23.7	4.15	3.41	57.5	11.2	2.04
								20.,	7.10	3.71	37.3	11.2	2.04

Theoretical Dimensions and Properties for Designing

					Fla	nge			AXIS	X-X		A	XIS Y-	,
	Section Number	Weight per Foot	Area of Section	Depth of Tee	Width	Average Thick- ness	Stem Thick- ness	I	s	r	у	I'	s'	r'
			Α	d	b	t	W							
		lb	in.2	in.	in.	in.	in.	in.4	in. ³	in.	in.	in.4	in. ³	in.
	BT 12B	80	23.54	12.36	14.091	1.135	.656	271.6	27.6	3.40	2.51	246.3	35.0	3.23
	ST 12 WF	72.5 65	21.31	12.245 12.13	14.043 14.000	1.020	.608	246.2	25.2 23.1	3.40	2.48	217.1 187.6	30.9 26.8	3.19
	BT 12A	60 55	17.64	12.155	12.088	.930	.556	213.6 195.2	22.4	3.48	2.62	127.0 114.5	21.0 19.0	2.68
	ST 12 WF	50	14.71	12.00	12.000	.775	.468	176.7	18.7	3.46	2.54	101.8	17.0	2.63
	BT 12	47	13.81	12.145	9.061	.872	.516	185.9	20.3	3.67	2.99	51.1	11.3	1.92
	ST 12 WF	42	12.35	12.045	9.015	.772	.470	165.9	18.3	3.66	2.97	44.2	9.80	1.89
		38	11.18	11.955	8.985	.682	.440	151.1	16.9	3.68	3.00	38.3	8.51	1.85
	BT 10B	71 63.5	20.89	10.73	13.132	1.095	.659	177.3 155.8	20.8	2.91	2.18	193.0 169.3	29.4	3.04
	ST 10 WF	56	16.48	10.50	13.000	.865	.527	136.4	16.2	2.88	2.06	144.8		2.96
. 1	BT 10A	48	14.11	10.57	9.038	.935	.575	137.1	17.1	3.11	2.55	54.7	12.1	1.97
	ST 10 WF	41	12.05	10.43	8.962	.795	.499	115.4	14.5	3.09	2.48	44.8	10.0	1.93
	BT 10	36.5	10.73	10.62	8.295	.740	.455	110.2	13.7	3.21	2.60	33.1	7.98	1.76
	ST 10 WF	34	10.01	10.57	8.270	.685	.430	102.8	12.9	3.20	2.59	30.2 26.6	7.30 6.45	1.74
		31	9.12	10.495	8.240	.615	.400	93.7	11.9	3.21	2.59			
	BT 9B	57 52.5	16.77 15.45	9.24 9.16	11.833	.991	.595	102.6	13.9	2.47	1.85	127.8 115.5	21.6	2.76
	ST 9 WF	48	14.13	9.08	11.750	.831	.512	85.3	11.7	2.46	1.78	103.4	17.6	2.71
		42.5	12.49	9.16	8.838	.911	.526	84.4	11.9	2.60	2.05	49.7	11.3	2.00
	BT 9A	38.5	11.32	9.08	8.787	.831	.475	75.3	10.6	2.58	1.99	44.3		1.98
	ST 9 WF	35 32	10.28	9.00 8.935	8.750 8.715	.751	.438	68.1	9.67	2.57 2.56	1.96	39.2 35.2	8.97 8.07	1.95
							.416		9.32	2.71	2.17	23.5		1.63
	BT 9	30 27.5	8.82	9.125	7.558 7.532		.390	64.8 59.6	8.63	2.71	2.17	21.0		1.61
	ST 9 WF	25	7.35	9.00	7.500		.358	53.9	7.85	2.71	2.14	18.6	4.96	1.59
	BT 8B	48	14.13	8.16	11.533	.875	.535	64.7	9.82	2.14	1.57	103.6		2.71
,	ST 8 WF	44	12.95	8.08	11.502	.795	.504	59.5	9.11	2.14	1.55	92.6	16.1	2.67

CAR & SHIP

BULL

ZEES

				Fla	inge			AXIS	X-X			AXIS Y-	Y
Section Number	Weight per Foot	Area of Section	Depth of Tee	Width	Average Thick- ness	Stem Thick- ness	I	s	r	у	I'	S'	r'
		A	d	b	t	W							
	lb	in.2	in.	in.	in.	in.	in.4	in.3	in.	in.	in.4	in.3	in.
	39	11.46	8.16	8.586	.875	.529	60.0	9.45	2.28	1.81	43.8	10.2	1.95
BT 8A	35.5	10.43	8.08	8.543		.486	54.0	8.57	2.28	1.77	38.9		1.93
ST 8 WF	32	9.40	8.00	8.500	.715	.443	48.3	7.71	2.27	1.73	34.2	1	
	29	8.52	7.93	8.464	.645	.407	43.6	7.00		1.70	30.2		
	25	7.35	8.125	7.073	.628	.380	42.2	6.77	2.40	1.89	17.4		
BT 8	22.5	6.62	8.06	7.039	.563	.346	37.8	6.10		1.87	15.2		
ST 8 WF	20	5.88	8.00	7.000	.503	.307	33.2	5.37	2.37	1.82	13.3		
	18	5.30	7.93	6.992	.428	.299	30.7	5.10	2.41	1.90	11.1	3.17	1.45
	105.5	31.04	7.875	15.800	1.563	.980	102.2	16.2	1.81	1.57			
	101	29.70	7.815	15.750		.930	95.7	15.2	1.80	1.53	514.3 489.8	1	4.07
	96.5	28.36	7.75	15.710		.890	90.1	14.4	1.78	1.49	465.1	59.2	4.06
	92	27.04	7.69	15.660		.840	83.9	13.4	1.76	1.45	441.4		4.05
BT 7E	88	25.87	7.625	15.640	1.313	.820	80.2	12.9	1.76	1.42	418.9		4.02
ST 7 WF	83.5	24.55	7.56	15.600	1.248	.780	75.0	12.1	1.75	1.39	395.1	50.7	4.01
	79	23.24	7.50	15.550	1.188	.730	69.3	11.3	1.73	1.34	372.5		4.00
	75	22.04	7.44	15.515	1.128	.695	64.9	10.6	1.72	1.31	351.3		3.99
	71	20.92	7.375	15.500	1.063	.680	62.1	10.2	1.72	1.29	330.1	42.6	3.97
	68	19.99	7.375	14.740	1.063	.660	60.0	9.89	1.73	1.31	283.9	38.5	3.77
	63.5	18.67	7.31	14.690	.998	.610	54.7	9.04	1.71	1.26	263.8	35.9	3.76
BT 7D	59.5	17.49	7.25	14.650	.938	.570	50.4	8.36	1.70	1.22	245.9	33.6	3.75
ST 7 WF	55.5	16.33	7.185	14.620	.873	.540	46.7	7.80	1.69	1.19	227.4		3.73
	51.5	15.13	7.125	14.575	.813	.495	42.4	7.10	1.67	1.15	209.9	28.8	3.72
	47.5	13.97	7.06	14.545	.748	.465	39.1	6.58	1.67	1.12	191.9	26.4	3.71
	43.5	12.78	7.00	14.500	.688	.420	34.9	5.88	1.65	1.08	174.8	24.1	3.70
BT 7C	42	12.36	7.09	12.023	.778	.451	37.4	6.36	1.74	1.21	112.7		
ST 7 WF	39	11.47		12.000	.718	.428	34.8	5.96	1.74	1.19		18.8	3.02
	37	10.88		10.072	.783	.450							
BT 7B	34	10.00	7.035	10.072	.718	.418	36.1	6.26	1.82	1.32		13.3	2.48
ST 7 WF	30.5	8.97		10.000	.643	.378	29.2	5.74	1.81	1.29		12.1	2.46
									1.80	1.25	53.6	10.7	2.45
BT 7A	26.5 24	7.79 7.06	6.97	8.062	.658	.370	27.7		1.88	1.38	28.8	7.14	1.92
ST 7 WF	21.5	6.32	6.905	8.031	.593	.339	24.9		1.88	1.35	25.6		1.91
	21.0	0.32	6.84	8.000	.528	.308	22.2	4.02	1.87	1.33	22.6	5.64	1.89

Theoretical Dimensions and Properties for Designing

				Fla	nge			AXIS	X-X		1	XIS Y-	Y
Section Number	Weight per Foot	Area of Section	Depth of Tee	Width	Average Thick- ness	Stem Thick- ness	I	S	r	у	I'	S'	r'
		A	d	b	t	W							
	lb	in.2	in.	in.	in.	in.	in.4	in.3	in.	in.	in.4	in. ³	in.
BT 7 ST 7 WF	19 17 15	5.59 5.00 4.41	7.06 7.00 6.93	6.776 6.750 6.733	.513 .453 .383	.313 .287 .270	23.5 21.1 19.0	4.27 3.86 3.55	2.05 2.05 2.08	1.56 1.55 1.59	12.3 10.6 8.77	3.64 3.15 2.61	1.49 1.46 1.41
	80.5 66.5 60 53	23.69 19.56 17.65 15.59	6.94 6.69 6.56 6.44	12.515 12.365 12.320 12.230	1.236 1.106	.905 .755 .710	62.6 48.4 43.4	11.5 9.03 8.22	1.63 1.57 1.57	1.47 1.33 1.28	243.1 195.0 172.5	38.9 31.5 28.0	3.20 3.16 3.13
BT 6C ST 6 WF	49.5 46 42.5 39.5	14.54 13.53 12.49 11.61	6.375 6.31 6.25 6.19	12.190 12.155 12.105 12.080	.986 .921 .856 .796 .736	.620 .580 .545 .495 .470	36.7 33.7 31.0 27.8 25.8	7.01 6.46 5.98 5.38 5.02	1.53 1.52 1.51 1.49 1.48	1.20 1.16 1.13 1.08 1.06	150.4 139.1 128.2 117.7 108.2	24.6 22.8 21.1 19.5 17.9	3.11 3.09 3.08 3.07 3.05
BT 6B	36 32.5 29	10.58 9.55 8.53	6.125 6.06 6.095	12.040 12.000 10.014	.671 .606	.430 .390	23.1 20.6	4.53 4.06 3.75	1.48 1.47	1.02 .98	97.6 87.3 53.7	16.2 14.6	3.04 3.02 2.51
ST 6 WF	26.5	7.80	6.03	10.000	.576	.345	17.7	3.54	1.51	1.02	48.0	9.60	2.48
ST 6 WF	22.5	6.62 5.89	6.03 5.97	8.042 8.000	.576	.336	16.6 14.4	3.40 2.94	1.59 1.56	1.13	25.0 22.0	6.98 6.20 5.50	1.96 1.94 1.94
BT 6 ST 6 WF	18 15.5 13.5	5.29 4.56 3.99	6.12 6.045 5.980	6.565 6.525 6.500	.540 .465 .400	.305 .265 .240	15.3 13.0 11.4	3.14 2.69 2.39	1.70 1.69 1.69	1.26 1.22 1.21	11.9 9.91 8.30	3.62 3.04 2.55	1.50 1.47 1.44
BT 6L ST 6 L	11.00 9.5 8.25	3.24 2.81 2.43	6.16 6.08 6.00	4.030 4.010 4.000	.424 .349 .269	.260 .240 .230	11.7 10.2 9.02	2.58 2.32 2.13	1.90 1.91 1.93	1.63 1.67 1.76	2.27 1.84 1.39	1.13 .92 .70	.84 .81 .76
ST 6 J	7.00	2.07	5.96	3.970	.224	.200	7.66	1.83	1.92	1.76	1.13	.57	74

CAR & SHIP

BULL

CAR

ZEES

				Fla	nge			AXIS	X-X		/	AXIS Y-	Y
Section Number	Weight per Foot	Area of Section	Depth of Tee	Width	Average Thick- ness	Stem Thick- ness	I	S	r	у	I'	S'	r'
		A	d	b	t'	W							
	- Ib	in.2	in.	in.	in.	in.	in.4	in.8	in.	in.	in.4	in.8	in.
BT 5B ST 5 WF	56 50 44.5 38.5 36 33 30 27 24.5	16.46 14.72 13.09 11.33 10.59 9.70 8.83 7.94 7.20	5.69 5.56 5.44 5.31 5.25 5.19 5.125 5.06 5.00	10.415 10.345 10.275 10.195 10.170 10.117 10.075 10.028 10.000		.755 .685 .615 .535 .510 .457 .415 .368	28.8 24.8 21.3 17.7 16.4 14.5 12.8 11.2	6.42 5.62 4.88 4.10 3.83 3.39 3.02 2.64 2.40	1.32 1.30 1.28 1.25 1.24 1.22 1.21 1.18	1.21 1.14 1.07 1.00 .97 .92 .88 .84	117.7 103.3 90.3 76.7 70.9 64.6 58.2 51.95 46.5	22.6 20.0 17.6 15.1 13.9 12.8 11.6 10.4 9.30	2.67 2.65 2.63 2.60 2.59 2.58 2.57 2.56 2.54
BT 5A ST 5 WF	22.5 19.5 16.5	6.62 5.74 4.85	5.06 4.97 4.875	8.022 7.990 7.964	.618 .528 .433	.350 .318 .292	10.3 8.96 7.80	2.48 2.19 1.95	1.25 1.25 1.27	.91 .88 .88	26.6 22.5 18.2	6.63 5.62 4.58	2.00 1.98 1.94
BT 5 ST 5 WF	14.5 12.5 10.5	4.27 3.67 3.10	5.11 5.04 4.95	5.799 5.762 5.750	.500 .430 .340	.289 .252 .240	8.38 7.12 6.31	2.07 1.77 1.62	1.40 1.39 1.43	1.05 1.02 1.06	7.61 6.34 4.87	2.62 2.20 1.69	1.34 1.31 1.25
BT 4B ST 4 WF	33.5 29 24 20 17.5 15.5	9.85 8.53 7.06 5.88 5.15 4.56	4.50 4.375 4.25 4.125 4.06 4.00	8.287 8.222 8.117 8.077 8.027 8.000	.933 .808 .683 .558 .493 .433	.575 .510 .405 .365 .315 .288	10.94 9.11 6.92 5.80 4.88 4.31	3.07 2.60 2.00 1.71 1.45 1.30	1.05 1.03 .99 .99 .97	.94 .87 .78 .74 .69	44.3 37.5 30.45 24.5 21.25 18.5	10.7 9.10 7.50 6.05 5.30 4.60	2.12 2.10 2.08 2.04 2.03 2.01
BT 4A ST 4 WF	14 12	4.11 3.53	4.03 3.965	6.540 6.500	.463 .398	.285	4.22 3.53	1.28 1.08	1.01	.73 .70	10.8 9.10	3.30 2.80	1.62 1.61
BT 4 ST 4 WF	10 8.5	2.94 2.50	4.07 4.00	5.268 5.250	.378	.248	3.66 3.21	1.13 1.01	1.12 1.13	.83 .84	4.25 3.36	1.61 1.28	1.20 1.16

Theoretical Dimensions and Properties for Designing

				Fla	nge			AXIS	X-X			AXIS Y-	Y
Section Number	Weight per Foot	Area of Section	Depth of Tee	Width	Average Thick- ness	Stem Thick- ness	I	S	r	у	I'	S'	r'
		Α	d	b	t	W							
	lb	in. ²	in.	in.	in.	in.	in.4	in. ⁸	in.	In.	in.4	in.3	in.
BT 6 IA ST 6 I	25 20.4	7.35 5.99	6.00 6.00	5.477 5.250	.660 .660	.687	25.2 18.8	6.05 4.26	1.85	1.84	7.85 6.77	2.87 2.58	1.03
BT 6 I ST 6 I	17.5 15.9	5.14 4.67	6.00	5.078 5.000	.544 .544	.428 .350	17.2 14.9	3.95 3.31	1.83 1.78	1.65 1.51	4.93 4.68	1.94 1.87	.98 1.00
BT 5 I ST 5 I	17.5 12.7	5.15 3.73	5.00 5.00	4.944 4.660	.491 .491	.594 .310	12.5 7.81	3.63 2.05	1.56 1.45	1.56 1.20	4.18 3.39	1.69 1.46	.90 .95
BT 4 I ST 4 I	11.5 9.2	3.38 2.70	4.00 4.00	4.171 4.000	.425	.441 .270	5.03 3.50	1.77	1.22 1.14	1.15 .94	2.15 1.86	1.03	.80 .83
BT 3.5 I ST 3.5 I	10 7.65	2.94 2.24	3.50 3.50	3.860 3.660	.392	.450 .250	3.36 2.18	1.36	1.07	1.04	1.58 1.32	.82	.73 .77
BT 3 I ST 3 I	8.625 6.25	2.53 1.83	3.00	3.565 3.330	.359	.465 .230	2.13 1.27	1.02	.92	.91	1.15	.65 .56	.67 .71

CAR &

BULB

ZEES

Theoretical Dimensions and Properties for Designing

				Fla	nge			AXIS	X-X		,	AXIS Y-	Y
Section Number	Weight per Foot	Area of Section	Depth of Tee	Width	Average Thick- ness	Stem Thick- ness	I	S	r	у	I'	S'	r'
			u	D	E	**							
	lb	in.2	in.	in.	in.	in.	in.4	in.3	in.	in.	in.4	in.3	in.

MISCELLANEOUS

00 540										
80 5.13 49 5.06 20 5.00	4.020 4.010 4.000	.394 .329 .269	.250 .240 .230	6.70 6.07 5.46	1.74 1.62 1.50	1.55 1.56 1.57	1.28 1.32 1.37	2.09 1.73 1.39	1.04 .86 .70	.86 .83 .80
69 4.94	3.950	.204	.180	4.15	1.16	1.57	1.35	1.00	.51	.77
22 4.06 91 4.00	4.015 4.000	.314	.245	3.29 2.90	1.07	1.22 1.23	1.00 1.03	1.65 1.31	.82 .66	.86 .83
48 3.95	3.940	.204	.170	2.15	.72	1.21	.96	1.00	.51	.82
36 3.13 77 3.00	4.030 4.000	.404 .279	.260	1.66 1.30	.68 .56	.84	.67 .67	2.16 1.44	1.07	.96 .90
25 2.92	3.940	.194	.170	.90	.40	.85	.64	.94	.48	.87
	49 5.06 20 5.00 69 4.94 22 4.06 91 4.00 48 3.95 36 3.13 77 3.00	49 5.06 4.010 4.000 4.000 4.94 3.950 4.00 4.00	49 5.06 4.010 .329 20 5.00 4.000 .269 69 4.94 3.950 .204 22 4.06 4.015 .314 91 4.00 4.000 .254 48 3.95 3.940 .204 36 3.13 4.030 .404 77 3.00 4.000 .279	49 5.06 4.010 .329 .240 20 5.00 4.000 .269 .230 69 4.94 3.950 .204 .180 22 4.06 4.015 .314 .245 91 4.00 4.000 .254 .230 48 3.95 3.940 .204 .170 36 3.13 4.030 .404 .260 77 3.00 4.000 .279 .230	49 5.06 4.010 .329 .240 6.07 20 5.00 4.000 .269 .230 5.46 69 4.94 3.950 .204 .180 4.15 22 4.06 4.015 .314 .245 3.29 91 4.00 4.000 .254 .230 2.90 48 3.95 3.940 .204 .170 2.15 36 3.13 4.030 .404 .260 1.66 77 3.00 4.000 .279 .230 1.30	49 5.06 4.010 .329 .240 6.07 1.62 20 5.00 4.000 .269 .230 5.46 1.50 69 4.94 3.950 .204 .180 4.15 1.16 22 4.06 4.015 .314 .245 3.29 1.07 91 4.00 4.000 .254 .230 2.90 .98 48 3.95 3.940 .204 .170 2.15 .72 36 3.13 4.030 .404 .260 1.66 .68 77 3.00 4.000 .279 .230 1.30 .56	49 5.06 4.010 .329 .240 6.07 1.62 1.56 20 5.00 4.000 .269 .230 5.46 1.50 1.57 69 4.94 3.950 .204 .180 4.15 1.16 1.57 22 4.06 4.015 .314 .245 3.29 1.07 1.22 91 4.00 4.000 .254 .230 2.90 .98 1.23 48 3.95 3.940 .204 .170 2.15 .72 1.21 36 3.13 4.030 .404 .260 1.66 .68 .84 77 3.00 4.000 .279 .230 1.30 .56 .86	49 5.06 4.010 .329 .240 6.07 1.62 1.56 1.32 20 5.00 4.000 .269 .230 5.46 1.50 1.57 1.37 69 4.94 3.950 .204 .180 4.15 1.16 1.57 1.35 22 4.06 4.015 .314 .245 3.29 1.07 1.22 1.00 91 4.00 4.000 .254 .230 2.90 .98 1.23 1.03 48 3.95 3.940 .204 .170 2.15 .72 1.21 .96 36 3.13 4.030 .404 .260 1.66 .68 .84 .67 77 3.00 4.000 .279 .230 1.30 .56 .86 .67	49 5.06 4.010 .329 .240 6.07 1.62 1.56 1.32 1.73 20 5.00 4.000 .269 .230 5.46 1.50 1.57 1.37 1.39 69 4.94 3.950 .204 .180 4.15 1.16 1.57 1.35 1.00 22 4.06 4.015 .314 .245 3.29 1.07 1.22 1.00 1.65 91 4.00 4.000 .254 .230 2.90 .98 1.23 1.03 1.31 48 3.95 3.940 .204 .170 2.15 .72 1.21 .96 1.00 36 3.13 4.030 .404 .260 1.66 .68 .84 .67 2.16 77 3.00 4.000 .279 .230 1.30 .56 .86 .67 1.44	49 5.06 4.010 .329 .240 6.07 1.62 1.56 1.32 1.73 .86 20 5.00 4.000 .269 .230 5.46 1.50 1.57 1.37 1.39 .70 69 4.94 3.950 .204 .180 4.15 1.16 1.57 1.35 1.00 .51 22 4.06 4.015 .314 .245 3.29 1.07 1.22 1.00 1.65 .82 91 4.00 4.000 .254 .230 2.90 .98 1.23 1.03 1.31 .66 48 3.95 3.940 .204 .170 2.15 .72 1.21 .96 1.00 .51 36 3.13 4.030 .404 .260 1.66 .68 .84 .67 2.16 1.07 77 3.00 4.000 .279 .230 1.30 .56 .86 .67 1.44 .72

SPECIAL SHAPES

Part II

Pages 58 to 69, inclusive, cover dimensions, weights and properties of special structural shapes. These shapes are generally used for a special purpose and consequently the rollings are irregular and infrequent. Unless the tonnage of any one size is sufficient in itself to warrant a rolling, the use of these sections should be avoided and sections with regular rollings should be specified. Before specifying any of these special sizes, it is recommended that the Home Office be consulted in regard to delivery possibilities.

These pages cover information on Special Car Building and Shipbuilding Channels; Special Shipbuilding Bulb Angles; Special Car Building Bulb Angles; Car Building Half Center Sill Sections; Car Building Side Plate Section; Car Building Side Post Section; Car Building W-Side Plate Section and Special Rolled Zees.

CAR & SHIP

ZEES

Theoretical Dimensions and Properties for Designing

				Fla	nge			AXIS X-	X		AXIS	S Y-Y	
Section Number and Nominal	Weight per Foot	Area of Section	Depth of Channel	Width	Aver- age Thick- ness	Web Thick- ness	I	S	r	I'	S'	r'	g
Size		Α	d	ь	t	W							
	lb	in.2	in.	in.	in.	in.	in.4	in.3	in.	in.4	in.3	in.	in.
SC 18	For de	tails s	ee pag	e 36									
	50.0	14.66	13	4.412	.610	.787	312.9	48.1	4.62	16.7	4.9	1.07	.98
SC 13	40.0	11.71	13	4.185	.610	.560	271.4	41.7	4.82	13.9	4.3	1.09	.97
13 x 4	35.0	10.24	13	4.072	.610	.447	250.7	38.6	4.95	12.5	4.0	1.10	.99
	31.8	9.30	13	4.000	.610	.375	237.5	36.5	5.05	11.6	3.9	1.11	1.01
	50.0	14.64	12	4.135	.700	.835	267.9	44.6	4.28	17.8	5.8	1.10	1.00
SC 12B	45.0	13.24	12	4.000	.700	.700	248.4	41.4	4.37	16.0	5.4	1.11	1.06
12 x 4	40.0	11.70	12	3.890	.700	.590	232.6	38.8	4.46	14.5	5.1	1.11	1.05
	35.0	10.22	12	3.767	700	.467	214.9	35.8	4.58	12.9	4.8	1.12	1.07
SC 12	37.0	10.80	12	3.600	.600	.600	203.4	22.0	4.04	400			
(BSC 25)	32.9	9.60	12	3.500	.600	.500	189.0	33.9	4.34	10.3	3.8	.98	.89
12 x 3½	30.9	9.00	12	3.450	.600	.450	181.8	30.3	4.50	8.9	3.5	.99	.89
	*41.1	10.00	10	4.040									
SC 10B	33.6	12.06 9.80	10	4.319	.575	.794	156.3 138.0	31.3	3.61	16.4	5.1	1.17	1.11
10 x 4	28.5	8.30	10	3.950	.575	.425	125.5	27.6 25.1	3.75	13.7	4.6	1.18	1.11
				0.000	.010	. 120	120.0	20.1	3.03	11.0	4.2	1.19	1.15
SC 10	28.3	9.00	10	2 500	E 7 E	475	1100	00.5					
(BSC 20) 10 x 31/2	24.9	8.23 7.23	10	3.500	.575	.475	116.9	23.4	3.77	8.6	3.4	1.02	.96
10 X 3/2	21.3	1.23	10	3.400	.575	.375	108.6	21.7	3.88	7.6	3.2	1.03	.98
SC 10A	25.3	7.38	10	3.550	.500	.425	106.0	21.2	3.79	7.9	3.0	1.04	.94
10 x 3½	21.9	6.38	10	3.450	.500	.325	97.6	19.5	3.91	7.0	2.8	1.05	.98

Dimensions and properties of corresponding British standard section are shown opposite the British number marked BSC.

* Rolled by arrangement for cars.

Approximate Dimensions for Detailing

		Depth		Flange	1	Web Thick-	Tangent	Dis-	Diag- onal	Radius	Radius	
Section Number and Nominal	Weight per Foot	(Nom- inal) of Section	Width (Nom- inal)	Thick- ness (Nom- inal) at Toe	Thick- ness (Nom- inal) at Root	ness (Nom- inal)	Web (Nom- inal)	tance (Nom- inal)	Dimen- sion (Nom- inal)	of Fillet (Root)	of Round- ing (Toe)	Slope Inside Flange
Size		ď	b'	t'	t"	W'	T	T'	D	R	R'	
	lb	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	deg
SC 18	For de	tails s	ee pag	e 36								
	50	13	43%	5/16	7/8	13/16	10%	13/16	133/4	.48	.23	8.5
SC 13 13 x 4	40	13	41/8	5/16	7/8	9/16	10%	1	13%	.48	.23	8.5
13 X 4	35 31.8	13	41/8	5/16	7/8	7/16	10%	7/8	135/8	.48	.23	8.5
	31.0	13	4	5/16	7/8	3/8	10%	13/16	13%	.48	.23	8.5
	50	12	41/8	5/8	3/4	7/a	91/2	15/16	12¾	.50	.30	1.7
SC 12B	45	12	4	5/8	3/4	11/16	91/2	13/16	12%	.50	.30	1.7
12 X 4	40 35	12 12	37/8	5/8	3/4	5/8	91/2	11/16	125/8	.50	.30	1.7
	33	14	3¾	5/8	3/4	1/2	91/2	15/16	12%	.50	.30	1.7
SC 12	37	12	35%	9/16	5/8	5/8	91/2	13/16	121/2	.60	.425	2
(BSC 25) 12 x 31/2	32.9	12	31/2	9/16	5/8	1/2	91/2	11/16	121/2	.60	.425	2
12 X 3/2	30.9	12	31/2	%16	5/8	7/16	91/2	1	121/2	.60	.425	2
SC 10B	*41.1	10	45/16	1/2	5/8	13/16	75%	11/4	101/8	.575	.40	2
10 x 4	33.6	10	41/8	1/2	5/8	9/16	75%	11/8	103/4	.575	.40	2
	28.5	10	4	1/2	5/8	7/16	75%	1	10¾	.575	.40	2
SC 10												
(BSC 20)	28.3	10	31/2	1/2	5/8	1/2	75%	1	105%	.575	.40	2
10 x 3½	24.9	10	3%	1/2	5/8	3/8	7%	15/16	101/2	.575	.40	2
SC 10A	25.3	10	31/2	7/16	9/16	7/16	77/8	15/16	10%	.50	.35	2
10 x 3½	21.9	10	31/2	7/16	9/16	5/16	71/8	13/16	105/8	.50	.35	2

Dimensions and properties of corresponding British standard section are shown opposite the British number marked BSC.

* Rolled by arrangement for cars.

ZEES

Theoretical Dimensions and Properties for Designing

				Fla	ange			AXIS X	-X		AXI	S Y-Y	
Section Number and Nominal Size	Weight per Foot	Area of Section	Depth of Channel		Aver- age Thick- ness	Web Thick- ness	I	S	r	I'	S'	r'	g
		A	d	b	t	W							
	- lb	in.2	in.	in.	in,	in.	in.4	in.3	in.	in.4	in.3	in.	in.
SC 9 (BSC 17)	25.4	7.41	9	3.500	.550	.450	87.3	19.4	3.43	8.0	3.2	1.04	1.00
9 x 3½	23.9	6.96	9	3.450	.550	.400	84.3	18.7	3.48	7.5	3.1	1.04	1.01
SC 8													
(BSC 13)	22.8	6.63	8	3.500	.525	.425	63.3	15.8	3.09	7.4	3.0	1.05	1.04
8 x 3½	21.4	6.23	8	3.450	.525	.375	61.2	15.3	3.13	6.9	2.9	1.05	1.05
SC 8A	20.0	5.83	8	3.025	.500	.400	54.0	13.5	3.05	4.7	2.2	.90	.86
8 x 3	18.7	5.43	8	2.975	.500	.350	51.9	13.0	3.09	4.4	2.1	.90	.88
SC 7	22.7	6.60	7	3.600	.500	.500	47.1	13.5	2.67	7.5	3.0	1.07	1.07
7 x 3½	19.1	5.55	7	3.450	.500	.350	42.8	12.2	2.78	6.3	2.7	1.07	1.11
SC 7B (BSC 9) 7 x 3	17.6	5.12	7	3.000	.475	.375	37.3	10.7	2.70	4.2	2.0	.90	.90

Dimensions and properties of corresponding British standard section are shown opposite the British number marked BSC.

T'Y X X X Y It' Y It'

Approximate Dimensions for Detailing

	Weight	Depth (Nom-		Flange Thick-	Thick-	Web Thick-	Tangent	Dis- tance	Diag- onal Dimen-	Radius	Radius	Slope
Section Number and	per Foot	inal) of Section	Width (Nom- inal)	ness (Nom- inal)	ness (Nom- inal)	ness (Nom- inal)	(Nom- inal)	(Nom- inal)	sion (Nom- inal)	Fillet (Root)	Round- ing (Toe)	Inside Flange
Nominal Size		ď'	b'	at Toe	at Root	W'	Т	T'	D	R	R'	
	lb	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	deg
SC 9										550	075	
(BSC 17)	25.4	9	31/2	1/2	5/8	7/16	63/4	1	95%	.550	.375	2.0
9 x 3½	23.9	9	31/2	1/2	5/8	7/16	63/4	15/16	95%	.550	.375	2.0
SC 8												
(BSC 13)	22.8	8	31/2	1/2	9/16	7/16	57/8	15/16	83/4	.525	.375	2.0
8 x 31/2	21.4	8	31/2	1/2	9/16	3/8	57/8	7/8	834	.525	.375	2.0
									014	500	250	0.0
SC 8A	20.0	8	3	7/16	%16	7/16	57/8	7/8	81/2	.500	.350	2.0
8 x 3	18.7	8	3	7/16	9/16	3/8	57/8	13/16	81/2	.500	.350	2.0
SC 7	22.7	7	35%	7/16	9/16	1/2	47/8	1	71/8	.500	.350	2.0
7 x 3½	19.1	7	31/2	7/16	9/16	3/8	47/8	13/16	73/4	.500	.350	2.0
SC 7B	17.6	7	3	7/	14	3/	5	13/16	75%	.475	.325	2.0
(BSC 9) 7 x 3	17.0		3	7/16	1/2	3/8	3	. 716	78	.475	,020	2.0

Dimensions and properties of corresponding British standard section are shown opposite the British number marked BSC.

ZEES

Theoretical Dimensions and Properties for Designing

	1		1			1	1			_			
				Fla	ange			AXIS X	-X		AXIS	S Y-Y	
Section Number and Nominal Size	Weight per Foot	Area of Section	Depth of Channel		Aver- age Thick- ness	Web Thick- ness	I	S	r	I'	S'	r'	g
		A	d	b	t	W							
	lb	in.2	in.	in.	in.	in.	in.4	in. ³	in.	in.4	in.³	in.	in.
SC 6 (BSC 8) 6 x 3½	18.0	5.22	6	3.500	.475	.375	29.4	9.8	2.38	6.1	2.6	1.08	1.15
SC 6A 6 x 3½	15.3	4.47	6	3.500	.385	.340	25.3	8.4	2.38	5.1	2.1	1 07	1.08
SC 6C (BSC 7)	16.3	4.75	6	3.000	.475	.375	25.8	8.6	2.33	4.0	1.9	.91	.95
6 x 3	15.1	4.37	6	2.938	.475	.313	24.7	8.2	2.38	3.6	1.8	.91	.97
SC 6B (BSC 5) 6 x 2½	12.0	3.52	6	2.500	.375	.313	18.6	6.2	2.30	2.0	1.1	.75	.72
*SC 3	9.0	2.64	3	2.125	.351	.500	3.1	2.1	1.09	.97	.68	.61	.70
3 x 11/8	7.1	2.08	3	1.938	.351	.312	2.7	1.8	1.14	.71	.56	.59	.67
Dimen													

Dimensions and properties of corresponding British standard section are shown opposite the British number marked BSC.

* SC 3B has same dimensions as SC 3 except that flanges flare outward to 3 1/4 in. across the toe.

d' X X X X Y 1t' Y 1t'

Approximate Dimensions for Detailing

		Depth		Flange		Web	Tangent	Dia	Diag-	Dadius	Radius	
Section Number and Nominal Size	Weight per Foot	(Nom- inal) of Section	Width (Nom- inal)	Thick- ness (Nom- inal) at Toe	Thick- ness (Nom- inal) at Root	Thick- ness (Nom- inal)	Web (Nom- inal)	Dis- tance (Nom- inal)	onal Dimen- sion (Nom- inal)	Radius of Fillet (Root)	of Round- ing (Toe)	Slope Inside Flange
SIZE		ď′	b'	t'	t"	W'	T	T'	D	R	R'	
	lb	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	deg
SC 6 (BSC 8) 6 x 3½	18.0	6	31/2	₹/16	1/2	3/8	4	13/16	7	.475	.325	2.0
SC 6A 6 x 3½	15.3	6	31/2	5/16	7/16	3/8	43%	11/32	7	.385	.300	2.0
SC 6C (BSC 7)	16.3	6	3	7/16	1/2	3%	4	13/16	63/4	.475	.325	2.0
6 x 3	15.1	6	3	7/16	1/2	5/16	4	3/4	6%	.475	.325	2.0
SC 6B (BSC 5) 6 x 21/2	12.0	6	21/2	5/16	7∕16	5/16	41/2	11/16	6½	.375	.260	2.0
SC 3	9.0	3	21/8	5/16	3%	1/2	17/8	11/16	35%	.190	.060	2.7
	7.1	3	2	5/16	3/8	5/16	17/8	1/2	35%	.190	.060	2.7

Dimensions and properties of corresponding British standard section are shown opposite the British number marked BSC.

INDEX

BULE

SPECIAL BULB ANGLES Shipbuilding

							AXIS	X-X			AXIS	Y-Y	
Section Number and Nominal Size	Weight per Foot	Area of Section	Flange Thick- ness	Flange Width	Web Thick- ness	I	S	r	g	I'	S'	r'	g'
	lb	in.2	in.	in.	in.	in.4	in.3	in.	in.	in.4	in.3	in.	in.
BA 103 10 x 3½	32.3 29.9 27.2 24.8 22.4	9.49 8.78 7.98 7.28 6.57	.61 .58 .485 .455 .425	3.69 3.63 3.57 3.51 3.45	.64 .58 .52 .46 .40	118.1 110.7 102.9 95.4 88.0	22.1 20.9 19.6 18.4 17.2	3.53 3.55 3.59 3.62 3.66	4.69 4.70 4.80 4.82 4.85	6.2 5.6 5.1 4.6 4.1	2.2 2.0 1.8 1.6 1.5	0.81 0.80 0.80 0.80 0.79	0.77 0.75 0.72 0.70 0.68
BA 93 9 x 3½	23.8 21.6 19.4	7.00 6.35 5.70	.465 .435 .405	3.57 3.51 3.45	.50 .44 .38	73.3 67.7 62.2	15.1 14.1 13.1	3.24 3.27 3.30	4.19 4.21 4.22	4.7 4.2 3.7	1.7 1.5 1.4	0.82 0.82 0.81	0.72 0.70 0.68
BA 84 8 x 3½	24.3 20.0 16.0	7.14 5.87 4.70	.55 .43 .37	3.68 3.56 3.44	.58 .46 .34	57.0 48.9 40.9	12.7 11.1 9.4	2.83 2.89 2.95	3.53 3.61 3.62	5.2 4.2 3.3	1.9 1.5 1.2	0.85 0.85 0.84	0.78 0.72 0.69
BA 74 7 x 3½	21.1 17.1 13.6	6.19 5.03 3.98	.54 .41 .35	3.68 3.56 3.44	.56 .44 .32	37.5 32.0 26.4	9.2 8.0 6.7	2.46 2.52 2.58	2.95 3.03 3.01	4.8 3.9 3.0	1.8 1.4 1.1	0.88 0.88 0.87	0.80 0.74 0.71
BA 64 6 x 3½	17.4 13.9 10.7	5.12 4.06 3.13	.49 .365 .305	3.69 3.57 3.45	.52 .40 .28	22.7 19.0 15.3	6.3 5.3 4.4	2.10 2.16 2.21	2.42 2.47 2.45	4.3 3.4 2.6	1.6 1.2 0.94	0.92 0.91 0.91	0.82 0.76 0.73
BA 52 5 x 2½	9.8 7.3	2.88 2.13	.33	2.56 2.44	.36	9.1 7.1	3.1 2.4	1.78 1.83	2.06 2.01	1.1	0.56 0.42	0.63 0.62	0.55 0.51

SPECIAL BULB ANGLES Shipbuilding

Approximate Dimensions for Detailing

-		Fla	nge	w	eb			Tan	gents				
Section Number and Nominal	Weight per Foot	Width (Nom- inal)	Thick- ness (Nom- inal)	Depth (Nom- inal)	Thick- ness (Nom- inal)	Width of Bulb (Nom- inal)		(eb ninal)	Fla (Non	nge ninal)	Radius of Fillet (Root)	1	adii of odings
Size		b'	ť	ď	W'	В	а	Т	a'	T'	R	R'	R"
	1b	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.
BA 103 10 x 3½	32.3 29.9 27.2 24.8 22.4	334 35% 35% 31/2 31/2	5/8 9/16 1/2 7/16	10 10 10 10 10	5/8 9/16 1/2 7/16 3/8	1 5/16 17/8 1 13/16 1 3/4 1 1/16	1½ 1½ 1 1 15/16	7% 7% 7% 7% 7% 7%	13/16 11/8 11/16 1	21/4 21/4 21/4 21/4 21/4	.54 .54 .54 .54 .54	.27 .27 .27 .27 .27	.40 .40 .40 .40
BA 93 9 x 3½	23.8 21.6 19.4	35% 3½ 3½	7/16 7/16 3/8	9 9 9	1/2 7/16 3/8	1 1 ½6 15% 19/16	1 1 15/16	6%6 6%6 6%6	1 ½16 1 15/16	21/4 21/4 21/4	.54 .54 .54	.27 .27 .27	.36 .36 .36
BA 84 8 x 3½	24.3 20.0 16.0	35/8 31/2 31/2	9/16 7/16 3/8	8 8 8	9/16 7/16 5/16	15% 1½ 13%	1 ½6 1 15/16	5¾ 5¾ 5¾	1½ 1 ½	25/16 25/16 25/16	.54 .54 .54	.27 .27 .27	.32 .32 .32
BA 74 7 x 3½	21.1 17.1 13.6	35/8 31/2 31/2	9/16 7/16 3/8	7 7 7	9/16 7/16 5/16	1½ 1¾ 1¼	1 ½6 15/16 7/8	415/16 415/16 415/16	1½ 1 ½	25/16 25/16 25/16	.54 .54 .54	.27 .27 .27	.28 .28 .28
BA 64 6 x 3½	17.4 13.9 10.7	3¾ 3½ 3½	1/2 3/8 5/16	6 6 6	1/2 3/8 1/4	15/ ₁₆ 13/ ₁₆ 11/ ₁₆	1 7/8 7/8	4 ³ / ₁₆ 4 ³ / ₁₆ 4 ³ / ₁₆	1 ½6 15/16 13/16	2% 2% 2% 2%	.54 .54 .54	.27 .27 .27	.24 .24 .24
BA 52 5 x 2½	9.8 7.3	2½ 2½	5/16 1/4	5 5	3/8 1/4	1 7/8	3/4 11/16	3½ 3½	3/4 1 1/16	1%16 1%16	.42	.21	.20

65

INDEX

CAR

ZEES

SPECIAL BULB ANGLES Car Building

Theoretical Dimensions and Properties for Designing

		Area	Depth	Web			AXIS	X-X			AXIS	Y-Y	
Section Number and Nominal Size	Weight per Foot	of	of Section	Thick- ness	Flange Width	I	S	r	g	I'	S'	r'	g'
	lb	in.2	in.	in.	in.	in.4	in. ³	in.	in.	in.4	in.3	in.	in.
BA 5 5 x 41/2	19.1	5.64	5.00	.438	4.50	20.7	7.9	1.92	2.38	8.0	2.4	1.19	1.19
BA 5A 5 x 3½	13.0	3.81	5.00	.375	3.50	13.4	4.8	1.88	2.22	3.3	1.2	.93	.86
BA 4 4 x 3½	11.9	3.48	4.00	.375	3.50	7.9	3.5	1.50	1.77	3.1	1.2	.94	.94
BA 4A 4 x 3½	14.3	4.20	4.00	.500	3.50	8.7	3.7	1.44	1.65	3.8	1.5	.96	.99

Approximate Dimensions for Detailing

				Flange			Bu	lb		Tang	ents				Radii o	f
Section Number		Depth (Nom) of Sec-	Width (Nom)	Thick- ness at	Thick- ness at	Web Thick- ness	Width	Thick-	(Nom		Flar (Nor		Radii of Fillet		oundin	
Nominal Size	Foot	tion d'	b'	Toe (Nom)	Root (Nom)	(Nom)	(Nom)		a	Т	a'	T'	(Root)	R'	R"	R'''
														- Iva		in.
	lb	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	
BA 5 5 x 4½	19.1	5	41/2	7/16	7/16	7/16	21/4	9/16	15%	29/16	13/16	35/16	3/8	1/2	3/8	1/2
BA 5A 5 x 3½	13.0	5	31/2	3/8	3/8	3/8	11/2	7/16	11/4	3	3/4	27/16	3/8	1/2	5/16	3/8
BA 4 4 x 3½	11.9	4	31/2	3/8	3/8	3/8	11/2	1/2	1%32	131/32	3/4	27/16	3/8	1/2	5/16	3/8
BA 4A 4 x 3½	14.3	4	31/2	1/2	1/2	1/2	11/2	1/2	11/4	17/8	7/8	25/16	3/8	1/2	5/16	3/8

SPECIAL SECTIONS Car Building

(All dimensions are in inches)

HALF CENTER SILL SECTION

SIDE POST SECTION

SIDE PLATE SECTION

W-SIDE PLATE SECTION

Theoretical Dimensions and Properties for Designing

5.1 lb

	D	Weight			AXIS X-X			AXIS Y-Y	
Section Number	Depth	Foot	Area	I	S	r	I'	S'	r'
	in.	lb	in. ²	in.4	in.3	in.	in.4	in.3	in.
Z 12	13½6 12½6 12½8 12⅓16	51.2 41.2 36.21 31.3	15.06 12.12 10.65 9.20	373.66 313.02 276.10 240.97	55.79 47.51 42.75 37.08	4.98 5.08 5.09 5.12	71.02 59.14 51.38 43.76	11.16 9.41 8.17 6.94	2.17 2.21 2.20 2.18
Z 30 Z 34 Z 47	3 33/8 77/16	5.10 8.30 9.9	1.50 2.44 2.89	2.13 6.53 11.26	1.34 1.81 2.70	1.19 1.64 1.97	1.16 4.48 6.94	0.58 2.25 2.34	0.88 1.36 1.55

CAR

ZEES

SPECIAL ZEES

			Fla	nge		Flange	А	XIS X-	х	1	XIS Y	-Y	AXIS Z-Z
Section Number and Nominal Size	Weight per Foot	Area of Section	Width	Width	Depth of Section	and Stem Thick- ness	I	s	r	I'	S'	r'	r"
	-					t							
	lb	in.²	in.	in.	in.	in.	in.4	in,3	in.	in.4	in. ³	in.	in.
Z 4A 4 x 3	15.9	4.66	3.12	3.12	4.06	.500	11.2	5.5	1.55	8.0	2.8	1.31	.67
	105	2.00	0.40	0.40	4.40	075			4.00				
Z 4	12.5	3.66	3.19	3.19	4.12	.375	9.6 7.9	4.7 3.9	1.62	6.8	2.3	1.36	.69
4 x 3	8.2	2.41	3.06	3.06	4.00	.250	6.3	3.1	1.62	4.2	1.4	1.33	.67
Z 3B 3 × 2¾	12.6	3.69	2.69	2.69	3.00	.500	4.6	3.1	1.12	4.9	2.0	1.15	.53
Z 3A													
3 x 23/4	9.8	2.86	2.69	2.69	3.00	.375	3.9	2.6	1.16	3.9	1.6	1.17	.54
Z 3 3 × 2¾	6.7	1.97	2.69	2.69	3.00	.250	2.9	1.9	1.21	2.8	1.1	1.19	.55

SPECIAL ZEES

Approximate Dimensions for Detailing

		Fla	nges			Ra	ıdii		Tangents		
Section Number and Nominal	Weight per Foot	Width (Approx)	Width (Approx)	Depth (Approx)	Flange and Stem Thick- ness	Fillets	Round- ings (Approx)	Т	T'	T"	Diag- onal Dis- tance
Size		b'	b"	ď′	t'	R	R ₁	(Approx)	(Approx)	(Approx)	D
	lb	in.	in.	in.	in.	in.	in.	in.	în.	in.	in.
Z 4A 4 x 3	15.9	31/8	31/8	41/16	1/2	5/16	3%	115/16	115/16	27/16	7½e
Z 4 4 x 3	12.5 10.3 8.2	3 ³ / ₁₆ 3 ¹ / ₈ 3 ¹ / ₁₆	3 ³ / ₁₆ 3 ¹ / ₈ 3 ¹ / ₁₆	4½ 4½ 4 4	3/8 5/16 1/4	5/16 5/16 5/16	1/4 1/4 1/4	21/4 21/4 21/4	21/4 21/4 21/4	2¾ 21¾ 2½ 2½	71/4 73/16 71/8
Z 3B 3 x 23/4	12.6	211/16	211/16	3	1/2	5/16	3/8	1½	1½	1%	5¾
Z 3A 3 x 2 ³ / ₄	9.8	211/16	211/16	3	3/8	5/16	5/16	111/16	111/16	15%	513/16
Z 3 3 x 2¾	6.7	211/16	211/16	3	1/4	5/16	3/16	1 15/16	115/16	11/8	515/16

ZEES

DECIMALS OF A FOOT FOR INCHES AND FRACTIONS OF AN INCH

Use of table in estimating weights of cut-to-length sections:

EXAMPLE: To find weight of 7 pieces, B 12 L (16.5 lb per ft), 29 ft 5% in. long. Weight of one piece = 16.5×29.448 (from table) = 485.9 lb. Weight of 7 pieces = $7 \times 485.9 = 3401.3$ lb.

Inches	0	1	2	3	4	5	Inches
							1
0	0	.083	.167	.25	.333	.417	0
1/8	.01	.094	.177	.26	.344	.427	1/8
1/4	.021	.104	.188	.271	.354	.438	1/4
3/8	.031	.115	.198	.281	.365	.448	3/8
			1				
			1				
1/2	.042	.125	.208	.292	.375	.458	1/2
5/8	.052	.135	.219	.302	.385	.469	5/8
3/4	.063	.146	.229	.313	.396	.479	3/4
7/8	.073	.156	.24	.323	.406	.49	7/8
Inches	6	7	8	9	10	11	Inches
0	.5	.583	.667	.75	.833	.917	0
1/8	.51	.594	.677	.76	.844	.927	1/8
1/4	.521	.604	.688	.771	.854	.938	1/4
3/8	.531	.615	.698	.781	.865	.948	3/8
							, ,
17	540						
1/2	.542	.625	.708	.792	.875	.958	1/2
5/8 3/	.552	.635	.719	.802	.885	.969	5/8
3/4 7/8	.563 .573	.646 .656	.729	.813	.896	.979	3/4
/8	.573	.000	.74	.823	.906	.99	7/8

DECIMALS OF AN INCH FOR EACH 64^{TH}

With Millimeter Equivalents

Fraction	1/4ths	Decimal Equivalent	Millimeters	Fraction	1/4ths	Decimal Equivalent	Millimeters
	1	.015625	0.39688		33	.515625	13.09690
1/32	2	.03125	0.79375	17/32	34	.53125	13,49378
	3	.046875	1.19063		35	.546875	13.89065
1/16	4	.0625	1.58750	9/16	36	.5625	14.28753
	5	.078125	1.98438		37	.578125	14.68440
3/32	6	.09375	2.38125	19/32	38	.59375	15.08128
	7	.109375	2.77813		39	.609375	15.47816
1/8	8	.125	3.17501	5/8	40	.625	15.87503
	9	.140625	3.57188		41	.640625	16.27191
5/32	10	.15625	3.96876	21/32	42	.65625	16.66878
	11	.171875	4.36563		43	.671875	17.06566
3/16	12	.1875	4.76251	1 1/16	44	.6875	17.46253
	13	.203125	5.15939		45	.703125	17.85941
7/32	14	.21875	5.55626	23/32	46	.71875	18.25629
	15	.234375	5.95314	• • •	47	.734375	18.65316
1/4	16	.25	6.35001	3/4	48	.75	19.05004
	17	.265625	6.74689		49	.765625	19.44691
9/32	18	.28125	7.14376	25/32	50	.78125	19.84379
	19	.296875	7.54064		51	.796875	20.24067
5/16	20	.3125	7.93752	13/16	52	.8125	20.63754
	21	.328125	8.33439		53	.828125	21.03442
1 1/32	22	.34375	8.73127	27/32	54	.84375	21.43129
	23	.359375	9.12814	• •	55	.859375	21.82817
3/8	24	.375	9.52502	7/8	56	.875	22.22504
	25	.390625	9.92189		57	.890625	22.62192
13/32	26	.40625	10.31877	29/32	58	.90625	23.01880
	27	.421875	10.71565		59	.921875	23.41567
7/16	28	.4375	11.11252	15/16	60	.9375	23.81255
	29	.453125	11.50940		61	.953125	24.20942
15/32	30	.46875	11.90627	3 1/32	62	.96875	24.60630
	31	.484375	12.30315		63	.984375	25.00318
1/2	32	.5	12.70003	1	64	1.	25.40005

INDEX

A	Page
American standard beams, properties and dimensions for detailing	32-3
American standard channels, properties and dimensions for detailing	36-39
Angles, equal legs, dimensions and properties of	40, 4
Angles, unequal legs, dimensions and properties of	42-4
Aligies, build angles, zees and tees, rolling and cutting tolorance	8
Areas, methods of computing	2
Areas of sections: See properties.	
В	
Beams, properties and dimensions for detailing American standard	32-35
Deams, properties and dimensions for detailing Rethlehem	14-29
Dearing piles, properties of Bethlehem	48
Detillenem beams; See Bethlehem wide flange shapes	
Bethlehem bearing piles, properties and dimensions of	48
Detiliene Joists, properties and dimensions for detailing	30, 31
Bethlehem light beams, properties and dimensions for detailing.	28-29
Bethlehem light columns, properties and dimensions for detailing.	28, 29
Bethlehem stanchions, properties and dimensions for detailing.	30, 31
Bethlehem steel sheet piling, dimensions and properties of.	46, 47
Bethlehem structural (split beam) tees, notes on. Bethlehem structural (split beam) tees, dimensions and properties of	49
Bethlehm wide-flange shapes, cambering of	50-56
Bethlehem wide-flange shapes, properties and dimensions for detailing	4, 11
Bethlehem wide-flange shapes, rolling and cutting tolerances	14-29
Bulb angles, dimensions and properties for (special) car building and	6
(special) shipbuilding.	GA GG
	64-66
C	
Camber and sweep, positions for measuring.	9
Cambering of Detinienem Wide-Hange shapes	4, 11
Campering limits, specifications on surface finish and mill practices	4-11
Car building bulb angles, properties and dimensions for detailing special	66
car building special sections, dimensions and properties of	
half center sill section.	67
side plate section	67
side post section	67
W-side plate section.	67
Car building and shipbuilding channels (special), detailing dimensions	
and properties	58-63
Channels, detailing dimensions and properties for car and shipbuilding	
(special)	FO 00
Channels, detailing dimensions and properties for American standard	58-63
Channels, structural sizes, rolling and cutting tolerances	36-39
Computation of areas, weights, and properties of sections; notes on	7 2
	4
D	
Defects. Notes on surface imperfections	4, 10
Definitions; regular, special	2
Difficultions and properties of sections: See properties	
Dimensions for detailing American standard beams	32-35
Dimensions for detailing American standard channels.	36-39
Dimensions for detailing Bethlehem joists and stanchions	31
Dimensions for detailing Bethlehem light beams and light columns. Dimensions for detailing Bethlehem wide-flange shapes.	29
Dimensions for detailing special bulb angles, car building	14-29

	rages
Dimensions for detailing special bulb angles, shipbuilding	64, 65
Dimensions for detailing special car building sections	
half center sill section	67
side plate section	67
side post section	67
Dimensions for detailing special channels, car building and shipbuilding	67
Dimensions for detailing special zees	58-63 69
	03
F	
Finish, notes on surface.	4, 10
Flange slope, notes on	2
G	
General information	2
Gyration of sections, radius of: See properties.	
of the sections, radius of see properties.	
I	
Imperfections, notes on surface	4, 10
Increasing areas and weights of structural shapes	3
Inertia, moment of. See properties of desired shape.	
J	
Joists, dimensions for detailing and properties of Bethlehem	30, 31
L	
Light beams and light columns, properties of and dimensions for detailing	
Bethlehem.	28-29
List of special shapes (PART II)	57
M	
Methods of rolling	
Mill practices, standard	3
Modulus of sections, section: See properties.	5-11
Moment of inertia: See properties of desired section.	
N	
Notes on Bethlehem structural (split beam) tees	49
Notes on cambering	4, 11
Notes on surface finish.	4, 10
PADE I CI	
PART I Spacial de la constant de la	13-56
PART II—Special shapes	57-69
Piling, properties of Bethlehem bearing piles. Piling, dimensions and properties of Bethlehem Steel Sheet.	48
Positions for measuring camber and sweep.	46, 47
Practices, standard mill	9 5-11
Properties and dimensions of American standard beams	32-35
Properties and dimensions of American standard channels	36-39
Properties and dimensions of angles, equal legs	40, 41
Properties and dimensions of angles, unequal legs	42-45
Properties and dimensions of Bethlehem bearing piles	48
Properties and dimensions of Bethlehem steel sheet piling	46, 47
Properties and dimensions of Bethlehem joists and stanchions.	30, 31
Properties and dimensions of Bethlehem light beams	28-29
Properties and dimensions of Bethlehem wide-flange shapes	49-56
Properties and dimensions of special bulb angles, car building	14-29

	Pages
Properties and dimensions of special bulb angles, shipbuilding	64, 65
Properties and dimensions of special car building sections	
half center sill section	67
side plate sectionside post section	67 67
W-side plate section.	67
Properties and dimensions of special channels, car building and	0.
shipbuilding	58-63
Properties and dimensions of special zees.	68, 69
Properties, methods of computing.	2
R	
Radius of gyration of sections: See properties.	
Regular, definition	2
Regular tolerances, specifications on surface finish and cambering limits	4-11
Rolling and cutting tolerances. See tolerances. Rolling methods	0
Rolling methods	3
S	
Section modulus of sections: See properties.	
Shapes, PART I	13-56
Shapes, special—PART II	57-69
Shipbuilding bulb angles, dimensions and properties of special	64, 65
Shipbuilding channels, dimensions and properties of special car building and	58-63
Slope of flanges, notes on	2
Special shapes, definition and list of	2, 57
Specification of steel, notes on	3
Stanchions, dimensions and properties of Bethlehem	30, 31
Standard mill practices. Steel quality, notes on.	4-11
Steel sheet piling, dimensions and properties of	46, 47
Surface finish	10
Surface imperfections, removal of	4, 10
Sweep and camber, positions for measuring. Symbols, list of	9
Symbols, list of	12
T	
Tees, angles, bulb angles and zees, rolling and cutting tolerances	8
Tees, notes on Bethlehem structural (split beam)	49
Tees, properties of Bethlehem structural (split beam) and dimensions	50-56
Tolerances, American standard beams and channels, rolling and cutting Tolerances, angles, bulb angles, tees and zees, rolling and cutting	7 8
Tolerances, Bethlehem wide-flange shapes, rolling and cutting	6
Tolerances, channels, rolling and cutting.	7
Tolerances, notes on (standard mill practices)	4
w	
	0.4
Wear of rolls	2, 4
Weights, methods of computing.	2
Weights of standard, special, and miscellaneous regular material; See	
section desired.	
Wide-flange Bethlehem shapes, rolling and cutting tolerances. Wide-flange shapes, cambering of Bethlehem.	4 9 11
Wide-flange shapes, dimensions and properties of Bethlehem	14-29
Z	
Zees, bulb angles, tees, and angles, rolling and cutting tolerances for	8
Zees, dimensions and properties of special	68, 69

BETHLEHEM STEEL COMPANY GENERAL OFFICES: BETHLEHEM, PA.

Sales Offices

Akron 10555 East Tallmadge Ave.
Albany 790 State St.
Atlanta 155 Marietta St.
Baltimore 3201 East Baltimore St.
Bethlehem 701 East Third St.
Boston 10
Buffalo 2424 Main St.
Chicago 1 Prudential Plaza
Cincinnati 24th & Walnut Sts.
Cleveland 1350 Public Square
Columbus 1517 South High St.
Dallas 2 104 South Akard St.
Dayton 2120 West Second St.
Detroit 23044 West Grand Blvd.
Greensboro, N. C. 101 North Elm St.
Houston 17100 Clinton Drive
Indianapolis 45 East Market St.
Jacksonville 3, Fla101 Cantee St.
Johnstown, Pa119 Walnut St.
The state of the s

111000
Milwaukee 2735 North Water St.
New Haven 10205 Church St.
New Orleans 61052 Magazine St.
New York 425 Broadway
Philadelphia 3
1617 Pennsylvania Blvd.
Pittsburgh 22 Mellon Square
Providence 3111 Westminster St.
Richmond 19, Va. 219 East Broad St.
St. Louis 31221 Locust St.
St. Paul 1335 Robert St.
Springfield 3, Mass44 Vernon St.
Syracuse 2420 East Genesee St.
Toledo 2709 Madison Ave.
Tulsa 315 East Fifth St.
Washington 5, D. C.
730 Fifteenth St., N.W.
Wilkes-Barre8 West Market St.
York25 North Duke St.

On the Pacific Coast Bethlehem products are sold by BETHLEHEM PACIFIC COAST STEEL CORPORATION GENERAL OFFICES: SAN FRANCISCO

Sales Offices

Los Angeles 6000 South Boyle Ave., Vernon
Phoenix
Portland 5 1010 Southwest 14th Ave.
San Francisco 1920th and Illinois Sts.
Seattle 43651 East Marginal Way
Spokane 4

Export Distributor

BETHLEHEM STEEL EXPORT CORPORATION 25 BROADWAY, NEW YORK 4, N. Y.

575, Printed in U.S.A.

