

Vidyalankar Institute of Technology Worksteedulin Department of Computer Engineering Exp. No.5

Semester	T.E. Semester V – Computer Engineering
Subject	Data Warehousing and Mining
Subject Professor In-charge	Prof. Kavita Shirsat
Assisting Teachers	Prof. Kavita Shirsat
Laboratory	M-313A

Student Name	Vibodh Bhosure	
Roll Number	20102A0032	
Grade and Subject		
Teacher's Signature		

Experiment Number	05		
Experiment Title	To implement K-Means Algorithm and find k clusters for a given value of k		
Resources / Apparatus	Hardware:	Software:	
Required	Computer system	Python	
Description	K-Means Clustering is an Unsupervised Learning algorithm, which groups the unlabeled dataset into different clusters. Here K defines the number of pre-defined clusters that need to be created in the process, as if K=2, there will be two clusters, and for K=3, there will be three clusters, and so on. It allows us to cluster the data into different groups and a convenient way to discover the categories of groups in the unlabeled dataset on its own without the need for any training.		
	It is a centroid-based algorithm, where each cluster is associated with a centroid. The main aim of this algorithm is to minimize the sum of distances between the data point and their corresponding clusters.		
	The algorithm takes the unlabeled dataset as input, divides the dataset into k-number of clusters, and repeats the process until it does not find the best clusters. The value of k should be predetermined in this algorithm.		
	The k-means clustering algorithm	m mainly performs two tasks:	

Department of Computer Engineering Exp. No.5

- 1. Determines the best value for K center points or centroids by an iterative process.
- 2. Assigns each data point to its closest k-center. Those data points which are near to the particular k-center, create a cluster.

Hence each cluster has datapoints with some commonalities, and it is away from other clusters.

Program

```
# -*- coding: utf-8 -*-
"""K-Means.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/10QpBOA
Irct8pThb1RYCy bg8rBdDarXo
# Code By - Vibodh Bhosure
import pandas as pd
import numpy as np
import statistics as st
import random
inp = [22, 9, 12, 15, 10, 27, 35, 18, 36, 11]
k = int(input("Enter the value of k => "))
randomValue = []
for i in range (0, k):
  rand = inp[random.randint(0, len(inp)-1)]
  if rand not in randomValue:
    randomValue.append(rand)
print(randomValue)
def distance(a,b):
 return abs(a-b)
def itr(randomValue):
 global c1
 global c2
 global c3
 c1=[]
 c2=[]
 c3=[]
 lst = []
  for i in inp:
    d1 = distance(i,randomValue[0])
    d2 = distance(i,randomValue[1])
    d3 = distance(i,randomValue[2])
    val = {"d1":d1,"d2":d2,"d3":d3}
    minValue = sorted(val.items(), key=lambda
```

t: t[1])[0][0]

Department of Computer Engineering Exp. No.5

```
if minValue == "d1":
                                c1.append(i)
                              elif minValue == "d2":
                                c2.append(i)
                              else: c3.append(i)
                            # print(c1)
                            # print(c2)
                            # print(c3)
                            c1 = np.array(c1)
                            c2 = np.array(c2)
                           c3 = np.array(c3)
                           c1 mean = np.mean(c1)
                           c2 mean = np.mean(c2)
                           c3 mean = np.mean(c3)
                           c1 = list(c1)
                           c2 = list(c2)
                           c3 = list(c3)
                           lst.append(c1 mean)
                            lst.append(c2 mean)
                           lst.append(c3 mean)
                            # print(c1 mean, c2 mean, c3 mean)
                            return 1st
                         prev_lst = []
                         \overline{lst} = itr(randomValue)
                         while prev lst != new lst:
                            prev lst = new_lst
                            new \overline{lst} = itr(\overline{new} \ lst)
                         print(c1, c2, c3)
Output
                              Enter the value of k \Rightarrow 3
                         Random centroids(means)-
                                [35, 10, 9]
                         Three clusters-
                           [-> [27, 35, 36] [22, 15, 18] [9, 12, 10, 11]
Conclusion:
                         Hence, a random dataset was taken and considering k=3, three
                         clusters were obtained. For different values of centroid(mean),
                         the same clusters were obtained, hence, it shows that the
                         obtained output is correct.
```