Produit de convolution

Amphi B

TD 5

Exercice 1: Produit de convolution.

Soient deux fonctions boréliennes $f, g: \mathbb{R} \to \mathbb{R}$. Le but de cet exercice est d'étudier l'existence du produit de convolution

 $f \star g : x \mapsto \int_{\mathbb{T}} f(x-t)g(t)dt$.

(a) Montrez que si f est bornée et g est intégrable, alors $f \star g$ est bien définie sur \mathbb{R} .

(b) Montrez que si f et g sont de carré intégrable, (c'est à dire si f^2 et g^2 sont intégrables), alors $f \star g$ est bien définie sur \mathbb{R} .

(c) On suppose maintenant que f et g sont intégrables. Montrez que pour presque tout $x \in \mathbb{R}$,

$$\int_{\mathbb{R}} |f(x-t)g(t)|dt < +\infty.$$

En déduire que $f \star g(x)$ est bien défini pour presque tout x dans \mathbb{R} .

Pour toutes les valeurs de x pour lesquelles $f \star g(x)$ n'est pas bien défini, on conviendra désormais que $f \star g(x) = 0$. $f \star g$ est alors bien définie sur $\mathbb R$ tout entier. Montrez que la fonction ainsi obtenue est intégrable sur \mathbb{R} .

Exercice 2: Transformée de Fourier.

Le but de cet exercice est d'étudier le lien entre produit de convolution et transformée de Fourier. Pour toute fonction intégrable $f: \mathbb{R} \to \mathbb{R}$, on définit f, sa transformée de Fourier, par

$$\hat{f}: u \in \mathbb{R} \mapsto \int_{\mathbb{R}} f(x)e^{iux}dx$$
.

(a) Soit $f:\mathbb{R}\to\mathbb{R}$ un fonction intégrable. Montrez que \hat{f} est bien définie et continue sur \mathbb{R} et que $||f||_{\infty} \le \int_{\mathbb{R}} f(x) dx.$

(b) Soient f et g deux fonctions intégrables. On considère le produit de convolution $f \star g$ défini à la question (c) de l'exercice précédent, qui est donc intégrable. Montrez que pour tout $u \in \mathbb{R}$,

$$\widehat{f \star g}(u) = \widehat{f}(u)\widehat{g}(u).$$

