6. Hypothesentests

- Testen von Hypothesen
 - Nullhypothese vs. Alternativhypothese
 - Fehler und Signifikanzniveau eines Tests
 - Teststatistik V und ihre Verteilung F_V
 - Testentscheidung
- Einstichproben-Erwartungswert-Tests
- Der p-value
- Einstichproben-Anteilswert-Tests
- Einstichproben-Varianztests
- Gütefunktionen von Parametertests

- \hookrightarrow Bisher behandelte statistische Verfahren
 - □ Punktschätzer: Aus Stichprobe wird "gute" Schätzung für den Wert einer Kennzahl / eines Parameters einer Grundgesamtheit gewonnen.

- \hookrightarrow Bisher behandelte statistische Verfahren
 - □ Punktschätzer: Aus Stichprobe wird "gute" Schätzung für den Wert einer Kennzahl / eines Parameters einer Grundgesamtheit gewonnen.

Covid-19: theor. Reproduktionsfaktor ρ in Bevölkerung unbekannt, bestimme eine Schätzung R anhand der Infektionszahlen (zufallsabhängig, tagweise Änderung)

- \hookrightarrow Bisher behandelte statistische Verfahren
 - □ Punktschätzer: Aus Stichprobe wird "gute" Schätzung für den Wert einer Kennzahl / eines Parameters einer Grundgesamtheit gewonnen.

Covid-19: theor. Reproduktionsfaktor ρ in Bevölkerung unbekannt, bestimme eine Schätzung R anhand der Infektionszahlen (zufallsabhängig, tagweise Änderung)

□ Intervallschätzer: Zu "gutem" Schätzer und Überdeckungs-WS $1-\alpha$ werden "Toleranzen nach unten und oben" angegeben.

→ Bisher behandelte statistische Verfa	hrer
--	------

□ Punktschätzer: Aus Stichprobe wird "gute" Schätzung für den Wert einer Kennzahl / eines Parameters einer Grundgesamtheit gewonnen.

Covid-19: theor. Reproduktionsfaktor ρ in Bevölkerung unbekannt, bestimme eine Schätzung R anhand der Infektionszahlen (zufallsabhängig, tagweise Änderung)

 \Box Intervallschätzer: Zu "gutem" Schätzer und Überdeckungs-WS $1-\alpha$ werden "Toleranzen nach unten und oben" angegeben.

Covid-19: Angabe eines "möglichst schmalen" KI $[R-\Delta,R+\Delta]$ mit 99% Überdeckungswahrscheinlichkeit für ρ .

- \hookrightarrow Bisher behandelte statistische Verfahren
 - □ Punktschätzer: Aus Stichprobe wird "gute" Schätzung für den Wert einer Kennzahl / eines Parameters einer Grundgesamtheit gewonnen.

Covid-19: theor. Reproduktionsfaktor ρ in Bevölkerung unbekannt, bestimme eine Schätzung R anhand der Infektionszahlen (zufallsabhängig, tagweise Änderung)

 $\hfill \square$ Intervallschätzer: Zu "gutem" Schätzer und Überdeckungs-WS $1-\alpha$ werden "Toleranzen nach unten und oben" angegeben.

Covid-19: Angabe eines "möglichst schmalen" KI $[R-\Delta,R+\Delta]$ mit 99% Überdeckungswahrscheinlichkeit für ρ .

→ Jetzt Fragestellung: Erfüllt die Grundgesamtheit eine bestimmte Hypothese?

→ Bisher behandelte statistische Verfa	hrer
--	------

□ Punktschätzer: Aus Stichprobe wird "gute" Schätzung für den Wert einer Kennzahl / eines Parameters einer Grundgesamtheit gewonnen.

Covid-19: theor. Reproduktionsfaktor ρ in Bevölkerung unbekannt, bestimme eine Schätzung R anhand der Infektionszahlen (zufallsabhängig, tagweise Änderung)

 $\hfill \square$ Intervallschätzer: Zu "gutem" Schätzer und Überdeckungs-WS $1-\alpha$ werden "Toleranzen nach unten und oben" angegeben.

Covid-19: Angabe eines "möglichst schmalen" KI $[R-\Delta,R+\Delta]$ mit 99% Überdeckungswahrscheinlichkeit für ρ .

 $\hookrightarrow \mbox{ Jetzt Fragestellung: Erfüllt die Grundgesamtheit eine bestimmte Hypothese?}$

Covid-19: Liegt der (theor.) Reproduktionsfaktor unter 1 (unter 0,75,...)?

- → Bisher behandelte statistische Verfahren
 - □ Punktschätzer: Aus Stichprobe wird "gute" Schätzung für den Wert einer Kennzahl / eines Parameters einer Grundgesamtheit gewonnen.

Covid-19: theor. Reproduktionsfaktor ρ in Bevölkerung unbekannt, bestimme eine Schätzung R anhand der Infektionszahlen (zufallsabhängig, tagweise Änderung)

 $\hfill \square$ Intervallschätzer: Zu "gutem" Schätzer und Überdeckungs-WS $1-\alpha$ werden "Toleranzen nach unten und oben" angegeben.

Covid-19: Angabe eines "möglichst schmalen" KI $[R-\Delta,R+\Delta]$ mit 99% Überdeckungswahrscheinlichkeit für ρ .

 $\hookrightarrow \mbox{ Jetzt Fragestellung: Erfüllt die Grundgesamtheit eine bestimmte Hypothese?}$

Covid-19: Liegt der (theor.) Reproduktionsfaktor unter 1 (unter 0,75,...)?

Als Verfahren zur Beantwortung solcher Fragen werden statistische Tests eingesetzt. Die Entscheidungen können - mit Bezug auf den wahren Parameter - falsch sein, wobei zwei mögliche Fehler (1./2. Art) auftreten können. Ein Test sollte wenigstens den Fehler 1. Art "unter Kontrolle haben".

→ Anhand Stichproben: Prüfung von Annahmen über eine Grundgesamtheit

- → Anhand Stichproben: Prüfung von Annahmen über eine Grundgesamtheit
- → Formulierung der Annahmen mit Bezug auf
 - □ Verteilungsparameter
 - □ Verteilungskennzahlen (Erwartungswert, . . .)
 - als komplementäres Hypothesenpaar: Nullhypothese H_0 /Gegenhypothese H_1 .

- \hookrightarrow Anhand Stichproben: Prüfung von Annahmen über eine Grundgesamtheit
- \hookrightarrow Formulierung der Annahmen mit Bezug auf
 - □ Verteilungsparameter
 - □ Verteilungskennzahlen (Erwartungswert, . . .)
 - als komplementäres Hypothesenpaar: Nullhypothese $H_0/Gegenhypothese\ H_1$.
- \hookrightarrow H_0 wird verworfen (statistisch widerlegt), wenn das Stichprobenergebnis "deutlich gegen H_0 spricht".

- \hookrightarrow Anhand Stichproben: Prüfung von Annahmen über eine Grundgesamtheit
- \hookrightarrow Formulierung der Annahmen mit Bezug auf
 - □ Verteilungsparameter
 - □ Verteilungskennzahlen (Erwartungswert, ...)
 - als komplementäres Hypothesenpaar: Nullhypothese $H_0/Gegenhypothese\ H_1$.
- \hookrightarrow H_0 wird verworfen (statistisch widerlegt), wenn das Stichprobenergebnis "deutlich gegen H_0 spricht".
 - \square Verwerfung bedeutet nicht, dass H_0 falsch bzw. H_1 wahr ist.
 - \square Nichtverwerfung bedeutet nicht, dass H_0 wahr bzw. H_1 falsch ist.

\hookrightarrow Anhand Stichproben: Prüfung von Annahmen über	eine Grundgesamtheit
---	----------------------

- \hookrightarrow Formulierung der Annahmen mit Bezug auf
 - □ Verteilungsparameter
 - □ Verteilungskennzahlen (Erwartungswert, . . .)

als komplementäres Hypothesenpaar: Nullhypothese H_0 /Gegenhypothese H_1 .

- \hookrightarrow H_0 wird verworfen (statistisch widerlegt), wenn das Stichprobenergebnis "deutlich gegen H_0 spricht".
 - \square Verwerfung bedeutet nicht, dass H_0 falsch bzw. H_1 wahr ist.
 - \square Nichtverwerfung bedeutet nicht, dass H_0 wahr bzw. H_1 falsch ist.
- → Verfahren werden Hypothesentests oder statistische Tests genannt.

- → Anhand Stichproben: Prüfung von Annahmen über eine Grundgesamtheit
- → Formulierung der Annahmen mit Bezug auf
 - □ Verteilungsparameter
 - □ Verteilungskennzahlen (Erwartungswert, . . .)
 - als komplementäres Hypothesenpaar: Nullhypothese H_0 /Gegenhypothese H_1 .
- \hookrightarrow H_0 wird verworfen (statistisch widerlegt), wenn das Stichprobenergebnis "deutlich gegen H_0 spricht".
 - \square Verwerfung bedeutet nicht, dass H_0 falsch bzw. H_1 wahr ist.
 - \square Nichtverwerfung bedeutet nicht, dass H_0 wahr bzw. H_1 falsch ist.
- → Verfahren werden Hypothesentests oder statistische Tests genannt.

Generelles Testschema

- 1. Festlegung von
 - \square Nullhypothese H_0 und Gegen- bzw. Alternativhypothese H_1

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Generelles Testschema

- 1. Festlegung von
 - $\ \square$ Nullhypothese H_0 und Gegen- bzw. Alternativhypothese H_1
 - \square Signifikanzniveau α (= WS H_0 irrtümlich abzulehnen)

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Generelles Testschema

- 1. Festlegung von
 - $\ \square$ Nullhypothese H_0 und Gegen- bzw. Alternativhypothese H_1
 - \square **Signifikanzniveau** α (= WS H_0 irrtümlich abzulehnen)
- 2. Herleitung einer **Teststatistik** $V = V(X_1, \dots, X_n)$ und Verteilung F_V für H_0

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Generelles Testschema

- 1. Festlegung von
 - \square Nullhypothese H_0 und Gegen- bzw. Alternativhypothese H_1
 - **Signifikanzniveau** α (= WS H_0 irrtümlich abzulehnen)
- 2. Herleitung einer **Teststatistik** $V = V(X_1, \dots, X_n)$ und Verteilung F_V für H_0
- 3. Aufstellen einer **Entscheidungsregel** anhand der statistischen Verteilung F_V und Festlegung des **kritischen Bereiches** K mit Ablehnung von H_0 für $V \in K$.

Datenanalyse Sommersemester 2022 3

Generelles Testschema

- 1. Festlegung von
 - $\ \square$ Nullhypothese H_0 und Gegen- bzw. Alternativhypothese H_1
 - \square Signifikanzniveau α (= WS H_0 irrtümlich abzulehnen)
- 2. Herleitung einer **Teststatistik** $V = V(X_1, \dots, X_n)$ und Verteilung F_V für H_0
- 3. Aufstellen einer **Entscheidungsregel** anhand der statistischen Verteilung F_V und Festlegung des **kritischen Bereiches** K mit Ablehnung von H_0 für $V \in K$.
- 4. **Entscheidung** anhand der berechneten Teststatistik V = v

Generelles Testschema

- 1. Festlegung von
 - $\ \square$ Nullhypothese H_0 und Gegen- bzw. Alternativhypothese H_1

$$H_0: \mu = 10$$
 vs. $H_1: \mu \neq 10$

- \square Signifikanzniveau α (= WS H_0 irrtümlich abzulehnen)
- 2. Herleitung einer **Teststatistik** $V = V(X_1, \dots, X_n)$ und Verteilung F_V für H_0
- 3. Aufstellen einer **Entscheidungsregel** anhand der statistischen Verteilung F_V und Festlegung des **kritischen Bereiches** K mit Ablehnung von H_0 für $V \in K$.
- 4. **Entscheidung** anhand der berechneten Teststatistik V = v

Generelles Testschema

- 1. Festlegung von
 - \square Nullhypothese H_0 und Gegen- bzw. Alternativhypothese H_1

$$H_0: \mu = 10$$
 vs. $H_1: \mu \neq 10$

- □ Signifikanzniveau α (= WS H_0 irrtümlich abzulehnen) $\alpha = 0.05$ (H_0 wird mit WS 5% irrtümlich verworfen)
- 2. Herleitung einer **Teststatistik** $V = V(X_1, \dots, X_n)$ und Verteilung F_V für H_0
- 3. Aufstellen einer **Entscheidungsregel** anhand der statistischen Verteilung F_V und Festlegung des **kritischen Bereiches** K mit Ablehnung von H_0 für $V \in K$.
- 4. **Entscheidung** anhand der berechneten Teststatistik V = v

Generelles Testschema

- 1. Festlegung von
 - $\ \square$ Nullhypothese H_0 und Gegen- bzw. Alternativhypothese H_1

$$H_0: \mu = 10$$
 vs. $H_1: \mu \neq 10$

- □ **Signifikanzniveau** α (= WS H_0 irrtümlich abzulehnen) $\alpha = 0.05$ (H_0 wird mit WS 5% irrtümlich verworfen)
- 2. Herleitung einer **Teststatistik** $V = V(X_1, \dots, X_n)$ und Verteilung F_V für H_0

$$V=\sqrt{100}\cdotrac{ar{X}-10}{\sqrt{4}} \quad \sim \quad extit{F}_V=\mathcal{N}(0,1) ext{ für } \mu=10$$

- 3. Aufstellen einer **Entscheidungsregel** anhand der statistischen Verteilung F_V und Festlegung des **kritischen Bereiches** K mit Ablehnung von H_0 für $V \in K$.
- 4. **Entscheidung** anhand der berechneten Teststatistik V = v

Generelles Testschema

- 1. Festlegung von
 - \square Nullhypothese H_0 und Gegen- bzw. Alternativhypothese H_1

$$H_0: \mu = 10$$
 vs. $H_1: \mu \neq 10$

- □ **Signifikanzniveau** α (= WS H_0 irrtümlich abzulehnen)
 - $\alpha = 0.05$ (H_0 wird mit WS 5% irrtümlich verworfen)
- 2. Herleitung einer **Teststatistik** $V = V(X_1, \dots, X_n)$ und Verteilung F_V für H_0

$$V = \sqrt{100} \cdot rac{ar{\chi} - 10}{\sqrt{4}} \quad \sim \quad F_V = \mathcal{N}(0, 1) ext{ für } \mu = 10$$

- 3. Aufstellen einer **Entscheidungsregel** anhand der statistischen Verteilung F_V und Festlegung des **kritischen Bereiches** K mit Ablehnung von H_0 für $V \in K$.
- 4. **Entscheidung** anhand der berechneten Teststatistik V = v

Generelles Testschema

- 1. Festlegung von
 - \square Nullhypothese H_0 und Gegen- bzw. Alternativhypothese H_1

$$H_0: \mu = 10$$
 vs. $H_1: \mu \neq 10$

- \square Signifikanzniveau α (= WS H_0 irrtümlich abzulehnen)
 - $\alpha = 0.05$ (H_0 wird mit WS 5% irrtümlich verworfen)
- 2. Herleitung einer **Teststatistik** $V = V(X_1, \dots, X_n)$ und Verteilung F_V für H_0

$$V = \sqrt{100} \cdot rac{ar{X} - 10}{\sqrt{4}} \quad \sim \quad F_V = \mathcal{N}(0, 1) ext{ für } \mu = 10$$

3. Aufstellen einer **Entscheidungsregel** anhand der statistischen Verteilung F_V und Festlegung des **kritischen Bereiches** K mit Ablehnung von H_0 für $V \in K$.

$$H_0$$
 verwerfen, wenn $|V|>z_{1-lpha/2}=1.96$ (0.975-Quantil von $\mathcal{N}(0,1)$)

4. **Entscheidung** anhand der berechneten Teststatistik V = v

3 Datenanalyse Sommersemester 2022

Generelles Testschema

- 1. Festlegung von
 - \square Nullhypothese H_0 und Gegen- bzw. Alternativhypothese H_1

$$H_0: \mu = 10$$
 vs. $H_1: \mu \neq 10$

- □ **Signifikanzniveau** α (= WS H_0 irrtümlich abzulehnen) $\alpha = 0.05$ (H_0 wird mit WS 5% irrtümlich verworfen)
- 2. Herleitung einer **Teststatistik** $V = V(X_1, \dots, X_n)$ und Verteilung F_V für H_0
 - $V=\sqrt{100}\cdotrac{ar{\chi}-10}{\sqrt{4}} \quad \sim \quad F_V=\mathcal{N}(0,1) ext{ für } \mu=10$
- 3. Aufstellen einer **Entscheidungsregel** anhand der statistischen Verteilung F_V und Festlegung des **kritischen Bereiches** K mit Ablehnung von H_0 für $V \in K$.

$$H_0$$
 verwerfen, wenn $|V|>z_{1-lpha/2}=1.96$ (0.975-Quantil von $\mathcal{N}(0,1)$)

4. **Entscheidung** anhand der berechneten Teststatistik V = v

Aus
$$\bar{x} = 9.85$$
 folgt $|v| = \left|10 \cdot \frac{9.85 - 10}{2}\right| = 0.75$

Generelles Testschema

- 1. Festlegung von
 - \square Nullhypothese H_0 und Gegen- bzw. Alternativhypothese H_1

$$H_0: \mu = 10$$
 vs. $H_1: \mu \neq 10$

□ **Signifikanzniveau** α (= WS H_0 irrtümlich abzulehnen)

 $\alpha = 0.05$ (H_0 wird mit WS 5% irrtümlich verworfen)

2. Herleitung einer **Teststatistik** $V = V(X_1, \dots, X_n)$ und Verteilung F_V für H_0

$$V = \sqrt{100} \cdot \frac{\bar{X}-10}{\sqrt{4}} \quad \sim \quad F_V = \mathcal{N}(0,1) \text{ für } \mu = 10$$

3. Aufstellen einer **Entscheidungsregel** anhand der statistischen Verteilung F_V und Festlegung des **kritischen Bereiches** K mit Ablehnung von H_0 für $V \in K$.

$$H_0$$
 verwerfen, wenn $|V|>z_{1-lpha/2}=1.96$ (0.975-Quantil von $\mathcal{N}(0,1)$)

4. **Entscheidung** anhand der berechneten Teststatistik V = v

Aus
$$\bar{x}=9.85$$
 folgt $|v|=\left|10\cdot\frac{9.85-10}{2}\right|=0.75$ $|v|\leq 1.96\Rightarrow H_0$ kann nicht verworfen werden.

→ Verteilungshypothesen: Annahme eines bestimmten Verteilungstyps (oder) einer speziellen Verteilung), auch: einer bestimmten Verteilungseigenschaft.

Bsp.: Normalverteilungsannahme $H_0: F = \mathcal{N}$ vs. $H_1: F \neq \mathcal{N}$

→ Verteilungshypothesen: Annahme eines bestimmten Verteilungstyps (oder) einer speziellen Verteilung), auch: einer bestimmten Verteilungseigenschaft.

Bsp.: Normalverteilungsannahme $H_0: F = \mathcal{N}$ vs. $H_1: F \neq \mathcal{N}$

→ Parameterhypothesen: beziehen sich auf einen bestimmten Parameter

 $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$ Punkthypothese, zweiseitig

 $H_0: \theta \geq \theta_0$ vs. $H_1: \theta < \theta_0$ Bereichshypothese, rechtsseitig

 $H_0: \theta < \theta_0$ vs. $H_1: \theta > \theta_0$ Bereichshypothese, linksseitig

Beispiele für θ : Anteilswert, Erwartungswert, Varianz, ...

→ Verteilungshypothesen: Annahme eines bestimmten Verteilungstyps (oder) einer speziellen Verteilung), auch: einer bestimmten Verteilungseigenschaft.

Bsp.: Normalverteilungsannahme $H_0: F = \mathcal{N}$ vs. $H_1: F \neq \mathcal{N}$

$$H_0: F = \mathcal{N}$$

$$: F \neq \mathcal{N}$$

→ Parameterhypothesen: beziehen sich auf einen bestimmten Parameter

 $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$ Punkthypothese, zweiseitig

 $H_0: \theta > \theta_0$ vs. $H_1: \theta < \theta_0$ Bereichshypothese, rechtsseitig

 $H_0: \theta < \theta_0$ vs. $H_1: \theta > \theta_0$

Bereichshypothese, linksseitig

Beispiele für θ : Anteilswert, Erwartungswert, Varianz, ...

- → Beachte:
 - \square Sprechen in den Daten "genügend Indizien" gegen H_0 , so wird H_0 verworfen und man entscheidet sich aktiv für H_1 (" H_0 wird verworfen")

→ Verteilungshypothesen: Annahme eines bestimmten Verteilungstyps (oder) einer speziellen Verteilung), auch: einer bestimmten Verteilungseigenschaft.

Bsp.: Normalverteilungsannahme $H_0: F = \mathcal{N}$ vs. $H_1: F \neq \mathcal{N}$

$$H_0: F = \mathcal{N}$$

→ Parameterhypothesen: beziehen sich auf einen bestimmten Parameter

 $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$ Punkthypothese, zweiseitig

 $H_0: \theta > \theta_0$ vs. $H_1: \theta < \theta_0$ Bereichshypothese, rechtsseitig

 $H_0: \theta < \theta_0$ vs. $H_1: \theta > \theta_0$

Bereichshypothese, linksseitig

Beispiele für θ : Anteilswert, Erwartungswert, Varianz, ...

→ Beachte:

- \square Sprechen in den Daten "genügend Indizien" gegen H_0 , so wird H_0 verworfen und man entscheidet sich aktiv für H_1 (" H_0 wird verworfen")
- \Box H_0 kann *nie* (aktiv) akzeptiert, nur mangels genügend Informationen nicht wiederlegt werden (" H_0 wird beibehalten bzw. nicht verworfen")

→ Verteilungshypothesen: Annahme eines bestimmten Verteilungstyps (oder) einer speziellen Verteilung), auch: einer bestimmten Verteilungseigenschaft.

Bsp.: Normalverteilungsannahme $H_0: F = \mathcal{N}$ vs. $H_1: F \neq \mathcal{N}$

$$H_0: F = \mathcal{N}$$

→ Parameterhypothesen: beziehen sich auf einen bestimmten Parameter

 $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$ Punkthypothese, zweiseitig

Bereichshypothese, rechtsseitig

 $H_0: \theta > \theta_0$ vs. $H_1: \theta < \theta_0$ $H_0: \theta < \theta_0$ vs. $H_1: \theta > \theta_0$

Bereichshypothese, linksseitig

Beispiele für θ : Anteilswert, Erwartungswert, Varianz, ...

→ Beachte:

- \square Sprechen in den Daten "genügend Indizien" gegen H_0 , so wird H_0 verworfen und man entscheidet sich aktiv für H_1 (" H_0 wird verworfen")
- \Box H_0 kann *nie* (aktiv) akzeptiert, nur mangels genügend Informationen nicht wiederlegt werden (" H_0 wird beibehalten bzw. nicht verworfen")
- \Box Formulierung des "intendierten" Sachverhaltes (sofern möglich) als H_1

Fehler und Signifikanzniveau eines Tests

\hookrightarrow Fehler 1. und 2. Art:

	Testentscheidung		
Wahrer Zustand	Nichtablehnung von H_0	Ablehnung von H ₀	
H₀ korrekt	richtig	lpha-Fehler (Fehler 1. Art)	
<i>H</i> ₀ falsch	β -Fehler (Fehler 2. Art)	richtig	

Fehler und Signifikanzniveau eines Tests

\hookrightarrow Fehler 1. und 2. Art:

	Testentscheidung		
Wahrer Zustand	Nichtablehnung von H_0	Ablehnung von H_0	
H₀ korrekt	richtig	lpha-Fehler (Fehler 1. Art)	
H ₀ falsch	β -Fehler (Fehler 2. Art)	richtig	

\hookrightarrow Signifikanzniveau α :

 \Box vorgegebener Maximalwert für die Wahrscheinlichkeit des Fehlers 1. Art (d.h. W.-keit H_0 abzulehnen, obwohl H_0 korrekt ist)

- ☐ muss vor der Anwendung des Tests festgelegt werden
- \square üblich sind $\alpha = 0.01$, $\alpha = 0.05$, $\alpha = 0.1$

Testbestimmung: Konfliktäre Ziele

- \hookrightarrow Idealerweise würde man die WS des α und β -Fehler simultan minimieren
- \hookrightarrow Problem: $\alpha \downarrow \Rightarrow \beta \uparrow$
- \hookrightarrow Wie groß sind die WS der Fehler 1./2. Art, wenn $\underline{H_0}$ stets abgelehnt wird?
- \hookrightarrow Wie groß sind die WS der Fehler 1./2. Art, wenn H_0 stets angenommen wird?
- \hookrightarrow Ausweg: Wähle für fixes α den Test mit niedrigstem β (mächtigster Test).

Teststatistik V und ihre Verteilung F_V

 \hookrightarrow Aggregation der Stichprobenwerte zu einer Teststatistik V=V(X), anhand derer die Testentscheidung (H_0 beibehalten oder verwerfen) getroffen wird

- \hookrightarrow Aggregation der Stichprobenwerte zu einer Teststatistik V=V(X), anhand derer die Testentscheidung (H_0 beibehalten oder verwerfen) getroffen wird
- $\hookrightarrow V$ ist charakteristisches Merkmal eines statistischen Tests und ergibt sich oft \Box aus einer Schätzfunktion bei Parameterhypothesen
 - □ aus Gegenüberstellung von empirischen und theoretischen Kennzahlen.

- \hookrightarrow Aggregation der Stichprobenwerte zu einer Teststatistik V=V(X), anhand derer die Testentscheidung (H_0 beibehalten oder verwerfen) getroffen wird
- $\hookrightarrow V$ ist charakteristisches Merkmal eines statistischen Tests und ergibt sich oft \Box aus einer Schätzfunktion bei Parameterhypothesen
 - $\hfill\Box$ aus Gegenüberstellung von empirischen und theoretischen Kennzahlen.
- \hookrightarrow Als Aggregation von Zufallsvariablen ist die Teststatistik ebenfalls eine Zufallsvariable (und folgt einer Verteilung F_V)

- \hookrightarrow Aggregation der Stichprobenwerte zu einer Teststatistik V=V(X), anhand derer die Testentscheidung (H_0 beibehalten oder verwerfen) getroffen wird
- $\hookrightarrow V$ ist charakteristisches Merkmal eines statistischen Tests und ergibt sich oft \Box aus einer Schätzfunktion bei Parameterhypothesen
 - □ aus Gegenüberstellung von empirischen und theoretischen Kennzahlen.
- \hookrightarrow Als Aggregation von Zufallsvariablen ist die Teststatistik ebenfalls eine Zufallsvariable (und folgt einer Verteilung F_V)

Beispiel

- □ Nullhypothese H_0 : $\mu = \mu_0$
- \square Stichprobe: X_1, \ldots, X_n mit $X_i \sim \mathcal{N}(\mu_0, \sigma^2)$
- \sqsupset Teststatistik: $V=\sqrt{n}\cdotrac{ar{X}-\mu_0}{\sigma}\sim\mathcal{N}(0,1)$
 - \Rightarrow zugehörige Verteilung der Teststatistik V: $F_V = \mathcal{N}(0,1)$

- \hookrightarrow Über die statistische Verteilung F_V wird die Einhaltung des Signifikanzniveaus α geprüft.
- \hookrightarrow Verteilung F_V hängt von der Verteilung der Grundgesamtheit, insbesondere von der Korrektheit von H_0 , ab
- \hookrightarrow Bei Korrektheit von H_0 muss F_V (mindestens approximativ) bestimmbar sein.

- \hookrightarrow anhand einer konkreten Stichprobe x wird die Realisation v = v(x) bestimmt
- \hookrightarrow Bestimmung eines **kritischen Bereiches** K: Ablehnung von H_0 für $v \in K$

- \hookrightarrow anhand einer konkreten Stichprobe x wird die Realisation v = v(x) bestimmt
- \hookrightarrow Bestimmung eines **kritischen Bereiches** K: Ablehnung von H_0 für $v \in K$

$$H_0$$
 wird abgelehnt, falls $|v|>z_{1-\alpha/2},$ d.h. $K=(-\infty,z_{\alpha/2})\cup(z_{1-\alpha/2},\infty)$

- \hookrightarrow anhand einer konkreten Stichprobe x wird die Realisation v = v(x) bestimmt
- \hookrightarrow Bestimmung eines **kritischen Bereiches** K: Ablehnung von H_0 für $v \in K$

$$H_0$$
 wird abgelehnt, falls $|v|>z_{1-\alpha/2},$ d.h. $K=(-\infty,z_{\alpha/2})\cup(z_{1-\alpha/2},\infty)$

- \hookrightarrow Sicherstellung, dass $P(\text{Fehler 1. Art}) \leq \alpha$.
- \hookrightarrow endgültige Festlegung von K so, dass P(Fehler 2. Art) minimal ist.
- \hookrightarrow oft (z.B. stetiges F_V) realisiert durch $P(\text{Fehler 1. Art}) = \alpha$ für "ungünstigsten Fall der Hypothese".

- \hookrightarrow anhand einer konkreten Stichprobe x wird die Realisation v = v(x) bestimmt
- \hookrightarrow Bestimmung eines **kritischen Bereiches** K: Ablehnung von H_0 für $v \in K$

$$H_0$$
 wird abgelehnt, falls $|v|>z_{1-\alpha/2},$ d.h. $K=(-\infty,z_{\alpha/2})\cup(z_{1-\alpha/2},\infty)$

- \hookrightarrow Sicherstellung, dass $P(\text{Fehler 1. Art}) \leq \alpha$.
- \hookrightarrow endgültige Festlegung von K so, dass P(Fehler 2. Art) minimal ist.
- \hookrightarrow oft (z.B. stetiges F_V) realisiert durch $P(\text{Fehler 1. Art}) = \alpha$ für "ungünstigsten Fall der Hypothese".

Faustregel zur Festlegung des Hypothesenpaars

Statistische Tests können nur zur Widerlegung von H_0 verwendet werden – nicht zur Bestätigung.

→ Die zu bestätigende Hypothese muss als Gegenhypothese formuliert werden.

$v \in K$:

- \hookrightarrow Stichprobe steht in signifikantem Widerspruch zu H_0
- $\hookrightarrow H_0$ kann abgelehnt werden
- $\hookrightarrow H_1$ ist statistisch bestätigt mit Signifikanzniveau α .

$v \in K$:

- \hookrightarrow Stichprobe steht in signifikantem Widerspruch zu H_0
- $\hookrightarrow H_0$ kann abgelehnt werden
- \hookrightarrow H_1 ist statistisch bestätigt mit Signifikanzniveau $\alpha.$

v ∉ *K*:

- \hookrightarrow Stichprobe steht nicht in signifikantem Widerspruch zu H_0
- \hookrightarrow H_0 kann nicht abgelehnt werden anhand der konkreten Stichprobe
- $\hookrightarrow H_0$ ist dadurch nicht bestätigt!

Klassifizierungen von Tests anhand der Anzahl einbezogener Stichproben

Einstichprobentest

- \hookrightarrow Grundlage bildet eine u.i.v. Stichprobe X_1, \ldots, X_n zu einer Grundgesamtheit
- \hookrightarrow Bsp: Tests für den Anteilswert p oder den Erwartungswert μ

Zweistichprobentest

- \hookrightarrow für den Vergleich verschiedener Grundgesamtheiten
 - Unterscheidet sich das mittlere Einkommen der 20- bis 30-Jährigen signifikant vom mittleren Einkommen der 30- bis 40-Jährigen?
- \hookrightarrow Stichproben X_{11},\ldots,X_{1n_1} und X_{21},\ldots,X_{2n_2} , gezogen aus 2 Grundgesamtheiten
- → Annahme: unabhängige Stichproben
- → Bsp: Tests für die Differenz zweier Erwartungswerte oder zweier Anteilswerte

Spezialfall: Zweistichprobentest für verbundene Stichproben

- \hookrightarrow Ziehen einer zweidimensionalen Stichprobe aus einer einzelnen Grundgesamtheit.
- \hookrightarrow pro Merkmalsträger werden mehrere Merkmale erhoben
- \hookrightarrow Bsp: Differenzentests für das arithmetische Mittel oder Korrelations- oder Kontingenztest
- I) Besteht eine Abhängigkeit in den Leistungen der Studierenden in den Fächern Mathematik und Physik?
- II) Blutdruck von *n* Patienten vor und nach der Einnahme eines blutdrucksenkenden Medikamentes. Hat das Medikament einen Einfluss?
- III) Einkommen von *n* Erwerbslosen vor und nach einer Arbeitsbeschaffungsmaßnahme. Hat diese einen Einfluss?

Gemeinsame Struktur aller behandelten Tests

Abhängig von Hypothese (und Signifikanzniveau α) haben sämtliche Tests folgende Struktur mit spezifischer Teststatistik V = V(X):

	Nullhypothese H ₀	kritischer Bereich
a)	zweiseitig: $ heta= heta_0$	$V otin[q_{lpha/2};q_{1-lpha/2}]$
	F symmetrisch	$ V > q_{1-lpha/2}$
b)	rechtsseitig: $\theta \geq \theta_0$	$V < q_{lpha}$
c)	linksseitig: $\theta \leq \theta_0$	$V>q_{1-lpha}$

- \hookrightarrow Dabei ist q_{α} das α -Quantil der Stichprobenverteilung $F = F_V$ von V
- \hookrightarrow F und q_{α} werden i.d.R. auch bei b) und c) für $\theta = \theta_0$ bestimmt, weil die WS eines Fehlers 1. Art dann besonders hoch ist.

Gemeinsame Struktur aller behandelten Tests

Abhängig von Hypothese (und Signifikanzniveau α) haben sämtliche Tests folgende Struktur mit spezifischer Teststatistik V=V(X):

	Nullhypothese H ₀	kritischer Bereich	p- value
a)	zweiseitig: $ heta= heta_0$	$V otin[q_{lpha/2};q_{1-lpha/2}]$	$2 \cdot \min(F(v), 1 - F(v))$
	F symmetrisch	$ V > q_{1-\alpha/2}$	$2\cdot (1-F(v)$
b)	rechtsseitig: $\theta \geq \theta_0$	$V < q_{lpha}$	F(v)
c)	linksseitig: $ heta \leq heta_0$	$V>q_{1-lpha}$	1-F(v)

- \hookrightarrow Dabei ist q_{α} das α -Quantil der Stichprobenverteilung $F=F_V$ von V
- \hookrightarrow F und q_{α} werden i.d.R. auch bei b) und c) für $\theta=\theta_0$ bestimmt, weil die WS eines Fehlers 1. Art dann besonders hoch ist.
- \hookrightarrow p-value: für alternative Darstellung der Test-Entscheidung (s.u.)

14

6.2 Einstichproben-Erwartungswert-Tests

Konstruktionsschema (s.o.)

Zunächst werden die Modellannahmen weiter spezifiziert, danach:

- 1. Aufstellen der **Hypothesen** H_0 und H_1 , sowie des Signifikanzniveaus α .
- 2. Bestimmung der **Teststatistik** $V = V(X_1, ..., X_n)$ mitsamt zugehöriger Stichprobenverteilung F_V
- 3. Aufstellen der **Entscheidungsregel** bzgl. der Ablehnung von H_0

Anhand der konkreten Stichprobe x_1, \ldots, x_n wird dann mit dem berechneten Wert $v(x_1, \ldots, x_n)$ der Teststatistik $V(X_1, \ldots, X_n)$ die Entscheidung (H_0 beibehalten oder verwerfen) getroffen.

15

Einstichprobentests für den Erwartungswert

- \hookrightarrow Stichprobe X_1, \ldots, X_n von u.i.v. ZVen mit existierendem (unbekanntem) Erwartungswert μ und existierender (bekannter/unbekannter) Varianz σ^2
- → Die Vorgehensweise ist jeweils ähnlich, unterscheidet sich im Detail nach
 - \square Verteilung der Grundgesamtheit: $X_i \sim \mathcal{N}(\mu, \sigma^2)$ bzw. $\mathcal{L}(X)$ unspezifiziert
 - ☐ Varianz: bekannt bzw. (in der Praxis meist) unbekannt

1. Hypothesen aufstellen

Wähle aus den folgenden Möglichkeiten das zum Fall passende Hypothesenpaar:

- a) $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$
- b) $H_0: \mu \ge \mu_0$ vs. $H_1: \mu < \mu_0$
- c) $H_0: \mu \leq \mu_0$ vs. $H_1: \mu > \mu_0$

Einkommen von niedergelassenen Ärzten

Köln – Niedergelassene Ärzte haben die Erträge ihrer Praxen zwischen 2007 und 2011 deutlich steigern können. Das geht aus Erhebungen des Statistischen Bundesamts hervor. Danach stieg der Reinertrag je Arztpraxis, der dem Überschuss nach Abzug der Praxisaufwendungen vor Steuern und sonstigen Abgaben entspricht, in diesen vier Jahren um 21 Prozent auf durchschnittlich 234.000 Euro. Nach Angaben des Statistischen Bundesamts gab es bei den Arzteinkommen je nach Fachrichtung große Unterschiede. Allgemeinarztpraxen verbuchten 2011 Reinerträge von durchschnittlich 181.000 Euro, Kinderarztpraxen brachten es auf 191.000 Euro, Orthopädie-Praxen auf 293.000 Euro und Praxen für Haut- und Geschlechtskrankheiten auf 249.000 Euro.

Quelle: https://www.aerzteblatt.de/nachrichten/55525/

Uber alle Sparten hinweg beträgt demnach das mittlere Einkommen^a 181 T€ oder mehr. Gilt dies auch für Ärzte in unserer Region? D.h. Hypothesenpaar:

$$H_0: \mu \ge 181$$
 vs. $H_1: \mu < 181$

^aDass die Angaben (näherungsweise) Grundgesamtheitswerte sind, ist allerdings kritisch, da scheinbar nur freiwillige Angaben von ca. 4000 (6%) der deutschen Arztpraxen zugrunde lagen.

Festlegung: "Grenzfall" $\mu=\mu_0$ (hier $\mu=181$) gehört zu H_0 , nicht zu H_1 .

Fiktives Datenbeispiel: In einer Stichprobe von n=200 Arztpraxen unserer Region wurde ein Durchschnittseinkommen von $\bar{X}=168\,\mathrm{T} \in$ ermittelt.

Durchschnittliche Praktikumsgehälter, Clevis Praktikantenspiegel 2016

Öffentlicher Sektor	1194	Pharma	1280
TK, IT und Internet	1216	Baugewerbe, -industrie	1321
Transport, Logistik	1128	Personaldienstleistungen	1334
Medien, Unterhaltung	1231	Konsum-, Gebrauchsgüter	1380
Finanzen, Banken, Versicherungen	1260	Consulting, WP & Recht	1383

Werte gerundet, Quelle: http://www.clevis.de/CLEVIS_Praktikantenspiegel/2016.pdf

Das Studienergebnis soll für Praktikanten in der **Versicherungsbranche** geprüft werden, d.h. Hypothesen^a:

$$H_0: \mu = 1260$$
 vs. $H_1: \mu \neq 1260$

Fiktives Datenbeispiel: Von n=40 Studierenden, die 2015 ein Praktikum in der Versicherungsbranche absolvierten, wurde das Praktikumsgehalt erfragt: 1346,1187,1353,1347,1261,1066,1127,1191,1219,1460,1296,1140,1105,1191,1190, 1179,1245,1131,1264,1096,1198,1258,1233,1300,1214,1270,1329,1151,1092,1225, 1196,1166.1177,1155,1293,1335,1319,1177,1344,1192 Mittelwert: 1225,45 €

 $^{^{}a} \rm{Auch}$ hier ist die Annahme, dass $\mu = 1260$ eine Angabe zur Grundgesamtheit ist, kritisch zu beurteilen.

18

2. Bestimmung der Teststatistik V und zugehöriger Verteilung F_V

V und F_V hängen davon ab, ob σ^2 bekannt ist und welches WS-Modell für die u.i.v.-Stichprobe vorliegt.

Fall	σ^2	V	Modell für X_i	Verteilung von V	Testbezeichnung	
i)	bekannt	$\sqrt{n} \cdot \frac{\bar{X} - \mu_0}{\sigma}$	Normalvtlg.	$\mathcal{N}(0,1)$	Gaußtest	
ii)		σ	beliebig	approx. $\mathcal{N}(0,1)$	approx. Gaußtest	
iii)	unbekannt	$\sqrt{n}\cdot\frac{\bar{X}-\mu_0}{S}$	Normalvtlg.	t_{n-1}	t-Test	
iv)		v '' S	beliebig	approx. $\mathcal{N}(0,1)$	approx. Gaußtest	

$$\hookrightarrow$$
 Dabei $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$

2. Bestimmung der Teststatistik V und zugehöriger Verteilung F_V

V und F_V hängen davon ab, ob σ^2 bekannt ist und welches WS-Modell für die u.i.v.-Stichprobe vorliegt.

Fall
$$\sigma^2$$
 V Modell für X_i Verteilung von V Testbezeichnung

i) bekannt $\sqrt{n} \cdot \frac{\bar{X} - \mu_0}{\sigma}$ Normalvtlg. $\mathcal{N}(0,1)$ Gaußtest

ii) beliebig approx. $\mathcal{N}(0,1)$ approx. Gaußtest

iii) unbekannt $\sqrt{n} \cdot \frac{\bar{X} - \mu_0}{S}$ Normalvtlg. t_{n-1} t -Test

iv) beliebig approx. $\mathcal{N}(0,1)$ approx. Gaußtest

$$\hookrightarrow$$
 Dabei $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$

Ärzteeinkommen ($n=200, \mu_0=181, \bar{X}=168$): Bestimmen Sie den Wert ν der Teststatistik $V = \sqrt{n} \cdot \frac{X - \mu_0}{\sigma}$ die Verteilung von V für $\mu = \mu_0$ ($\sigma = 100$ bekannt)

Praktikumsbeispiel ($n = 40, \mu_0 = 1260, \bar{X} = 1225, 45$):

Bestimmen Sie
$$V=\sqrt{n}\cdot\frac{\bar{X}-\mu_0}{\sigma}$$
 (Ann.: $\sigma=120$ bekannt) bzw. $V=\sqrt{n}\cdot\frac{\bar{X}-\mu_0}{S}$ (Ann.: σ unbekannt) und jeweils die Verteilung von V unter $\mu=\mu_0$.

https://ggbm.at/u3kbgjby

3. Entscheidungsregel für die Fälle i), ii) und iv)

a) $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$: Ablehnung von H_0 , falls

 $|v|>z_{1-\alpha/2}$

b) $H_0: \mu \geq \mu_0$ vs. $H_1: \mu < \mu_0$: Ablehnung von H_0 , falls

 $v < z_{\alpha}$

c) $H_0: \mu \leq \mu_0$ vs. $H_1: \mu > \mu_0$: Ablehnung von H_0 , falls

 $v > z_{1-\alpha}$

Durchschnittseinkommen von niedergelassenen Ärzten

Stichprobe von n=200 Arztpraxen, $\bar{X}=168T \in$. Laut einer statistischen Bundesamt liegt das "wahre Durchschnittseinkommen" bei mindestens $181T \in$.

Wird das "wahre" Durchschnittseinkommen (bei einem Signifikanzniveau von 5%) durch die Stichprobe gestützt?

Annahme: $X \sim \mathcal{N}(\mu, \sigma^2), \sigma = 100$ bekannt.

$$\hookrightarrow$$
 Hypothesen: $H_0: \mu \geq 181$, vs. $H_1: \mu < 181$

$$\hookrightarrow$$
 Teststatistik: $v = \sqrt{n} \cdot \frac{\bar{x} - \mu_0}{\sigma} \approx -1.83$

Ermitteln Sie die Testentscheidung.

Tabelle der α -Quantile der Standardnormalverteilung:

	rabelle del a qualitile del otaliadi allo marvertellang.											
	ν 0.001	0.005	0.010	0.025	0.050	0.100	0.900	0.950	0.975	0.990	0.995	0.999
Z	-3.090	-2.576	-2.326	-1.960	-1.645	-1.282	1.282	1.645	1.960	2.326	2.576	3.090

Durchschnittseinkommen von Praktikanten

Stichprobe von n=40 Studenten mit durchschnittlichem Einkommen $\bar{X}=1225.45$. Laut einer Studie liegt das "wahre Durchschnittseinkommen" bei $1260 \in$. Wird die Angabe der Studie (bei einem Signifikanzniveau von $\alpha=5\%$) durch die Stichprobe gestützt?

Annahme: $X \sim \mathcal{N}(\mu, \sigma^2), \sigma = 120$ als bekannt angenommen.

Tabelle der α -Quantile der Standardnormalverteilung:

								0				
α	0.001	0.005	0.010	0.025	0.050	0.100	0.900	0.950	0.975	0.990	0.995	0.999
z_{α}	-3.090	-2.576	-2.326	-1.960	-1.645	-1.282	1.282	1.645	1.960	2.326	2.576	3.090

Bezeichne $t_{\alpha} = t_{\alpha: n-1}$ das α -Quantil von t_{n-1} . In R: qt(alpha, df = n - 1)

3. Entscheidungsregel bei iii), d.h. Normalvtlg. mit unbekanntem σ^2

- a) $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$: Ablehnung von H_0 , falls $|v| > t_{1-\alpha/2}$
- b) $H_0: \mu \ge \mu_0$ vs. $H_1: \mu < \mu_0$: Ablehnung von H_0 , falls $v < t_\alpha$ c) $H_0: \mu \le \mu_0$ vs. $H_1: \mu > \mu_0$: Ablehnung von H_0 , falls $v > t_{1-\alpha}$

Für n > 30: Approximation der t-Verteilung durch die Standardnormalverteilung.

Durchschnittseinkommen von Praktikanten

Stichprobe von n=40 Studenten mit durchschnittlichem Einkommen $\bar{X}=1225.45$. Laut einer Studie liegt das "wahre Durchschnittseinkommen" bei 1260 \in . Wird die Angabe der Studie (bei einem Signifikanzniveau von $\alpha=5\%$) durch die Stichprobe gestützt?

Annahme: $X \sim \mathcal{N}(\mu, \sigma^2)$, σ^2 unbekannt (wird durch $S^2 = 87.23354^2$ geschätzt).

(Tabelle der t-Quantile: siehe nächste Folie)

Tabelle: Quantile von Standardnormal- und t-Verteilung

∞	1.28	1.64	1.96	2.33	2.58	3.09	3.29
1	3.08	6.31	12.71	31.82	63.66	318.31	636.62
2	1.89	2.92	4.30	6.96	9.92	22.33	31.60
3	1.64	2.35	3.18	4.54	5.84	10.21	12.92
4	1.53	2.13	2.78	3.75	4.60	7.17	8.61
5	1.48	2.02	2.57	3.36	4.03	5.89	6.87
6	1.44	1.94	2.45	3.14	3.71	5.21	5.96
7	1.41	1.89	2.36	3.00	3.50	4.79	5.41
8	1.40	1.86	2.31	2.90	3.36	4.50	5.04
9	1.38	1.83	2.26	2.82	3.25	4.30	4.78
10	1.37	1.81	2.23	2.76	3.17	4.14	4.59
11	1.36	1.80	2.20	2.72	3.11	4.02	4.44
12	1.36	1.78	2.18	2.68	3.05	3.93	4.32
13	1.35	1.77	2.16	2.65	3.01	3.85	4.22
14	1.35	1.76	2.14	2.62	2.98	3.79	4.14
15	1.34	1.75	2.13	2.60	2.95	3.73	4.07
16	1.34	1.75	2.12	2.58	2.92	3.69	4.01
17	1.33	1.74	2.11	2.57	2.90	3.65	3.97
18	1.33	1.73	2.10	2.55	2.88	3.61	3.92
19	1.33	1.73	2.09	2.54	2.86	3.58	3.88
20	1.33	1.72	2.09	2.53	2.85	3.55	3.85
21	1.32	1.72	2.08	2.52	2.83	3.53	3.82
22	1.32	1.72	2.07	2.51	2.82	3.50	3.79
23	1.32	1.71	2.07	2.50	2.81	3.48	3.77
24	1.32	1.71	2.06	2.49	2.80	3.47	3.75
25	1.32	1.71	2.06	2.49	2.79	3.45	3.73
26	1.31	1.71	2.06	2.48	2.78	3.43	3.71
27	1.31	1.70	2.05	2.47	2.77	3.42	3.69
28	1.31	1.70	2.05	2.47	2.76	3.41	3.67
29	1.31	1.70	2.05	2.46	2.76	3.40	3.66
30	1.31	1.70	2.04	2.46	2.75	3.39	3.65
31	1.31	1.70	2.04	2.45	2.74	3.37	3.63
32	1.31	1.69	2.04	2.45	2.74	3.37	3.62
33	1.31	1.69	2.03	2.44	2.73	3.36	3.61
34	1.31	1.69	2.03	2.44	2.73	3.35	3.60
35	1.31	1.69	2.03	2.44	2.72	3.34	3.59
36	1.31	1.69	2.03	2.43	2.72	3.33	3.58
37	1.30	1.69	2.03	2.43	2.72	3.33	3.57
38	1.30	1.69	2.02	2.43	2.71	3.32	3.57
39	1.30	1.68	2.02	2.43	2.71	3.31	3.56
40	1.30	1.68	2.02	2.42	2.70	3.31	3.55

0.9 | 0.95 | 0.975 | 0.99 | 0.995 | 0.999 | 0.9995

arc	1110	וווכ	liai	- u	IIu	ι- ۱	<i>/</i> Ci i
	0.9	0.95	0.975	0.99	0.995	0.999	0.9995
41	1.30	1.68	2.02	2.42	2.70	3.30	3.54
43	1.30	1.68	2.02	2.42	2.70	3.29	3.53
44	1.30	1.68	2.02	2.41	2.69	3.29	3.53
45	1.30	1.68	2.01	2.41	2.69	3.28	3.52
46	1.30	1.68	2.01	2.41	2.69	3.28	3.51
47	1.30	1.68	2.01	2.41	2.68	3.27	3.51
49	1.30	1.68	2.01	2.40	2.68	3.27	3.50
50	1.30	1.68	2.01	2.40	2.68	3.26	3.50
51	1.30	1.68	2.01	2.40	2.68	3.26	3.49
52	1.30	1.67	2.01	2.40	2.67	3.25	3.49
53	1.30	1.67	2.01	2.40	2.67	3.25	3.48
54	1.30	1.67	2.00	2.40	2.67	3.25	3.48
56	1.30	1.67	2.00	2.39	2.67	3.24	3.47
57	1.30	1.67	2.00	2.39	2.66	3.24	3.47
59	1.30	1.67	2.00	2.39	2.66	3.23	3.46
62	1.30	1.67	2.00	2.39	2.66	3.23	3.45
63	1.30	1.67	2.00	2.39	2.66	3.22	3.45
64	1.29	1.67	2.00	2.39	2.65	3.22	3.45
66	1.29	1.67	2.00	2.38	2.65	3.22	3.44
68	1.29	1.67	2.00	2.38	2.65	3.21	3.44
69	1.29	1.67	1.99	2.38	2.65	3.21	3.44
71	1.29	1.67	1.99	2.38	2.65	3.21	3.43
73	1.29	1.67	1.99	2.38	2.64	3.21	3.43
74	1.29	1.67	1.99	2.38	2.64	3.20	3.43
76	1.29	1.67	1.99	2.38	2.64	3.20	3.42
77	1.29	1.66	1.99	2.38	2.64	3.20	3.42
79	1.29	1.66	1.99	2.37	2.64	3.20	3.42
81	1.29	1.66	1.99	2.37	2.64	3.19	3.41
85	1.29	1.66	1.99	2.37	2.63	3.19	3.41
88	1.29	1.66	1.99	2.37	2.63	3.19	3.40
89	1.29	1.66	1.99	2.37	2.63	3.18	3.40
96	1.29	1.66	1.98	2.37	2.63	3.18	3.39
99	1.29	1.66	1.98	2.36	2.63	3.17	3.39
102	1.29	1.66	1.98	2.36	2.62	3.17	3.39
106	1.29	1.66	1.98	2.36	2.62	3.17	3.38
112	1.29	1.66	1.98	2.36	2.62	3.16	3.38
118	1.29	1.66	1.98	2.36	2.62	3.16	3.37
128	1.29	1.66	1.98	2.36	2.61	3.16	3.37
129	1.29	1.66	1.98	2.36	2.61	3.15	3.37
132	1.29	1.66	1.98	2.35	2.61	3.15	3.37

	0.9	0.95	0.975	0.99	0.995	0.999	0.9995
134	1.29	1.66	1.98	2.35	2.61	3.15	3.36
152	1.29	1.65	1.98	2.35	2.61	3.14	3.36
154	1.29	1.65	1.98	2.35	2.61	3.14	3.35
159	1.29	1.65	1.97	2.35	2.61	3.14	3.35
171	1.29	1.65	1.97	2.35	2.60	3.14	3.35
182	1.29	1.65	1.97	2.35	2.60	3.14	3.34
185	1.29	1.65	1.97	2.35	2.60	3.13	3.34
202	1.29	1.65	1.97	2.34	2.60	3.13	3.34
222	1.29	1.65	1.97	2.34	2.60	3.13	3.33
237	1.29	1.65	1.97	2.34	2.60	3.12	3.33
247	1.28	1.65	1.97	2.34	2.60	3.12	3.33
259	1.28	1.65	1.97	2.34	2.59	3.12	3.33
285	1.28	1.65	1.97	2.34	2.59	3.12	3.32
332	1.28	1.65	1.97	2.34	2.59	3.11	3.32
401	1.28	1.65	1.97	2.34	2.59	3.11	3.31
433	1.28	1.65	1.97	2.33	2.59	3.11	3.31
473	1.28	1.65	1.96	2.33	2.59	3.11	3.31
538	1.28	1.65	1.96	2.33	2.58	3.11	3.31
555	1.28	1.65	1.96	2.33	2.58	3.10	3.31
675	1.28	1.65	1.96	2.33	2.58	3.10	3.30
1712	1.28	1.65	1.96	2.33	2.58	3.09	3.30
∞	1.28	1.64	1.96	2.33	2.58	3.09	3.29

Beispiele und Nutzungshinweise:

- $t_{0.95}(15) \approx 1.75$
- □ Für nicht aufgeführte n nächstkleineres gelistetes n nutzen, z.B. $t_{0.9}(250) \approx t_{0.9}(247)$
- $\square \quad z_{0.975} = t_{0.975}(\infty) = 1.96$
- \square Andere α :
 - $t_{\alpha}(n) = -t_{1-\alpha}(n)$

- $z_{\alpha} = -z_{1-\alpha}$
- \Box Für n>2000 gilt $t_{lpha}(n)pprox t_{lpha}(\infty)$

← für praktische Durchführung: Bringe den Ablehnungsbereich auf eine einheitliche Form:

$$v \in K \Leftrightarrow p^* < \alpha$$

Dabei ist $p^* = p^*(v)$ eine (geeignete) Transformation der Teststatistik.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

für praktische Durchführung: Bringe den Ablehnungsbereich auf eine einheitliche Form:

$$v \in K \Leftrightarrow p^* < \alpha$$

Dabei ist $p^* = p^*(v)$ eine (geeignete) Transformation der Teststatistik.

- $\hookrightarrow p^*$ wird als *p*-value (*p*-Wert, Signifikanz) bezeichnet.
- → Der *p*-Wert entspricht der geringsten vorgegebenen Irrtumswahrscheinlichkeit, zu der die Nullhypothese bei vorliegender Stichprobe abgelehnt werden kann. aber (!): Der *p*-Wert ist keine Wahrscheinlichkeit, sondern zufallsabhängig.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

für praktische Durchführung: Bringe den Ablehnungsbereich auf eine einheitliche Form:

$$v \in K \Leftrightarrow p^* < \alpha$$

Dabei ist $p^* = p^*(v)$ eine (geeignete) Transformation der Teststatistik.

- $\hookrightarrow p^*$ wird als *p*-value (*p*-Wert, Signifikanz) bezeichnet.
- \hookrightarrow Vorteile:
 - ☐ Einheitlichkeit der Test-Darstellung,
 - □ Nutzung in statistischer Software.
 - \square Nur noch p^* wird berechnet, α kommt vom Anwender.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

für praktische Durchführung: Bringe den Ablehnungsbereich auf eine einheitliche Form:

$$v \in K \Leftrightarrow p^* < \alpha$$

Dabei ist $p^* = p^*(v)$ eine (geeignete) Transformation der Teststatistik.

- $\hookrightarrow p^*$ wird als *p*-value (*p*-Wert, Signifikanz) bezeichnet.
- → Der p-Wert entspricht der geringsten vorgegebenen Irrtumswahrscheinlichkeit, zu der die Nullhypothese bei vorliegender Stichprobe abgelehnt werden kann. aber (!): Der p-Wert ist keine Wahrscheinlichkeit, sondern zufallsabhängig.
- \hookrightarrow Vorteile:
 - ☐ Einheitlichkeit der Test-Darstellung,
 - □ Nutzung in statistischer Software.
 - \square Nur noch p^* wird berechnet, α kommt vom Anwender.
- \hookrightarrow Nachteile:

 - \square Verschiedene Hypothesenpaare \rightsquigarrow verschiedene Formeln für p^* .

26

- \hookrightarrow Klassische Testdarstellung: Teststatistik V=v, Schwellenwert q_{α} (Quantil)
- \hookrightarrow Für Umschreibung auf *p*-value: Transformation mittels Verteilungsfunktion:

- \hookrightarrow Klassische Testdarstellung: Teststatistik V=v, Schwellenwert q_{lpha} (Quantil)
- \hookrightarrow Für Umschreibung auf *p*-value: Transformation mittels Verteilungsfunktion:

 \hookrightarrow Die Verteilungsfunktion einer ZV ist die Funktion $x \mapsto F(x) = P(X \le x)$

- \hookrightarrow Klassische Testdarstellung: Teststatistik V=v, Schwellenwert q_{α} (Quantil)
- \hookrightarrow Für Umschreibung auf *p*-value: Transformation mittels Verteilungsfunktion:

 \hookrightarrow Die Verteilungsfunktion einer ZV ist die Funktion $x\mapsto F(x)=P(X\leq x)$

Symmetrische Verteilung: $1 - F(-x) = F(x) \quad \forall x$ (z.B. $\mathcal{N}(0,1), t_n$)

- \hookrightarrow Klassische Testdarstellung: Teststatistik V=v, Schwellenwert q_{α} (Quantil)
- → Für Umschreibung auf *p*-value: Transformation mittels Verteilungsfunktion:

- \hookrightarrow Die Verteilungsfunktion einer ZV ist die Funktion $x\mapsto F(x)=P(X\leq x)$ Symmetrische Verteilung: $1-F(-x)=F(x)\quad \forall x$ (z.B. $\mathcal{N}(0,1),\ t_n$)
- \hookrightarrow Die Quantilfunktion einer ZV X mit VF F ist die Funktion

$$\alpha \mapsto F^{-1}(\alpha) := q_{\alpha} := \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}$$

- \hookrightarrow Klassische Testdarstellung: Teststatistik V=v, Schwellenwert q_{α} (Quantil)
- \hookrightarrow Für Umschreibung auf *p*-value: Transformation mittels Verteilungsfunktion:

- \hookrightarrow Die Verteilungsfunktion einer ZV ist die Funktion $x\mapsto F(x)=P(X\leq x)$ Symmetrische Verteilung: $1-F(-x)=F(x)\quad \forall x$ (z.B. $\mathcal{N}(0,1),\ t_n$)
- \hookrightarrow Die Quantilfunktion einer ZV X mit VF F ist die Funktion

$$\alpha \mapsto F^{-1}(\alpha) := q_{\alpha} := \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}$$

 \hookrightarrow Für alle $x \in \mathbb{R}, \alpha \in]0; 1[$ gilt:

$$F(x) \ge \alpha \Leftrightarrow x \ge F^{-1}(\alpha)$$

- \hookrightarrow Klassische Testdarstellung: Teststatistik V=v, Schwellenwert q_{α} (Quantil)
- \hookrightarrow Für Umschreibung auf *p*-value: Transformation mittels Verteilungsfunktion:

Memo DuW: Verteilungsfunktion versus Quantilfunktion

- \hookrightarrow Die Verteilungsfunktion einer ZV ist die Funktion $x\mapsto F(x)=P(X\leq x)$ Symmetrische Verteilung: $1-F(-x)=F(x)\quad \forall x$ (z.B. $\mathcal{N}(0,1)$, t_n)
- \hookrightarrow Die Quantilfunktion einer ZV X mit VF F ist die Funktion

$$\alpha \mapsto F^{-1}(\alpha) := q_{\alpha} := \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}$$

 \hookrightarrow Für alle $x \in \mathbb{R}, \alpha \in]0;1[$ gilt:

$$F(x) \ge \alpha \Leftrightarrow x \ge F^{-1}(\alpha)$$

 \hookrightarrow Falls F stetig, streng monoton, so ist F^{-1} Umkehrfunktion von F,

- \hookrightarrow Klassische Testdarstellung: Teststatistik V=v, Schwellenwert q_{α} (Quantil)
- \hookrightarrow Für Umschreibung auf *p*-value: Transformation mittels Verteilungsfunktion:

Memo DuW: Verteilungsfunktion versus Quantilfunktion

- \hookrightarrow Die Verteilungsfunktion einer ZV ist die Funktion $x\mapsto F(x)=P(X\leq x)$ Symmetrische Verteilung: $1-F(-x)=F(x)\quad \forall x$ (z.B. $\mathcal{N}(0,1),\ t_n$)
- \hookrightarrow Die Quantilfunktion einer ZV X mit VF F ist die Funktion

$$\alpha \mapsto F^{-1}(\alpha) := q_{\alpha} := \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}$$

 \hookrightarrow Für alle $x \in \mathbb{R}, \alpha \in]0;1[$ gilt:

$$F(x) \ge \alpha \Leftrightarrow x \ge F^{-1}(\alpha)$$

 \hookrightarrow Falls F stetig, streng monoton, so ist F^{-1} Umkehrfunktion von F,d.h. es gilt

$$F(q_{\alpha}) = \alpha$$
 für alle $\alpha \in]0;1[$ (*)

- \hookrightarrow Klassische Testdarstellung: Teststatistik V=v, Schwellenwert q_{lpha} (Quantil)
- \hookrightarrow Für Umschreibung auf *p*-value: Transformation mittels Verteilungsfunktion:

Memo DuW: Verteilungsfunktion versus Quantilfunktion

- \hookrightarrow Die Verteilungsfunktion einer ZV ist die Funktion $x\mapsto F(x)=P(X\leq x)$ Symmetrische Verteilung: $1-F(-x)=F(x)\quad \forall x$ (z.B. $\mathcal{N}(0,1),\ t_n$)
- \hookrightarrow Die Quantilfunktion einer ZV X mit VF F ist die Funktion

$$\alpha \mapsto F^{-1}(\alpha) := q_{\alpha} := \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}$$

 \hookrightarrow Für alle $x \in \mathbb{R}, \alpha \in]0; 1[$ gilt:

$$F(x) \ge \alpha \Leftrightarrow x \ge F^{-1}(\alpha)$$

 \hookrightarrow Falls F stetig, streng monoton, so ist F^{-1} Umkehrfunktion von F,d.h. es gilt

$$F(q_{\alpha}) = \alpha$$
 für alle $\alpha \in]0;1[$ (*)

→ Die Quantilfunktion ist Ersatz für die Umkehrfunktion, wenn *F* nicht umkehrbar ist. Daher auch Bezeichung: "verallgemeinerte Umkehrfunktion".

p-value beim Mittelwerttest (σ bekannt) für (b) $H_0: \mu \geq \mu_0, H_1: \mu < \mu_0$

6.3 Der p-value

$$p$$
 – $value$ beim Mittelwerttest (σ bekannt) für (b) $H_0: \mu \ge \mu_0, H_1: \mu < \mu_0$
 \hookrightarrow Ablehnung von H_0 für $\sqrt{n} \frac{\bar{x} - \mu_0}{\sigma} = v < z_{\alpha}$ ($z_{\alpha} = \Phi^{-1}(\alpha)$).

- p-value beim Mittelwerttest (σ bekannt) für (b) $H_0: \mu \geq \mu_0, \ H_1: \mu < \mu_0$ \hookrightarrow Ablehnung von H_0 für $\sqrt{n} \frac{\bar{x} \mu_0}{\sigma} = v < z_{\alpha}$ $(z_{\alpha} = \Phi^{-1}(\alpha)).$
- \hookrightarrow Äquivalent $\Phi(v) < \Phi(z_{\alpha}) \stackrel{(*)}{=} \alpha$

6 Hypothesentests

- p-value beim Mittelwerttest (σ bekannt) für (b) $H_0: \mu \geq \mu_0, H_1: \mu < \mu_0$ \hookrightarrow Ablehnung von H_0 für $\sqrt{n^{\bar{x}-\mu_0}} = v < z_{\alpha}$ $(z_{\alpha} = \Phi^{-1}(\alpha)).$
- \hookrightarrow Äquivalent $\Phi(v) < \Phi(z_{\alpha}) \stackrel{(*)}{=} \alpha$
- \hookrightarrow d.h. der *p*-value ist $p^*(v) = F(v)$ mit $F = \Phi$ $(\Phi VF zu \mathcal{N}(0,1))$

- p-value beim Mittelwerttest (σ bekannt) für (b) $H_0: \mu > \mu_0, H_1: \mu < \mu_0$
- \hookrightarrow Ablehnung von H_0 für $\sqrt{n} \frac{\bar{x} \mu_0}{z} = v < z_{\alpha}$ $(z_{\alpha} = \Phi^{-1}(\alpha)).$
- \hookrightarrow Äquivalent $\Phi(v) < \Phi(z_{\alpha}) \stackrel{(*)}{=} \alpha$
- \hookrightarrow d.h. der p-value ist $p^*(v) = F(v)$ mit $F = \Phi$ (Φ VF zu $\mathcal{N}(0,1)$)

Durchschnittseinkommen von niedergelassenen Ärzten

Stichprobe von n=200 Arztpraxen, $\bar{X}=168T \in$. Laut einer statistischen Bundesamt liegt das "wahre Durchschnittseinkommen" bei mindestens 181T€. Annahme: $X \sim \mathcal{N}(\mu, \sigma^2), \sigma = 100$ bekannt.

 \hookrightarrow Hypothesen: $H_0: \mu \geq 181$, vs. $H_1: \mu < 181$, $v = \sqrt{n} \cdot \frac{\bar{x} - \mu_0}{\sigma} \approx -1.83$

Ermitteln Sie den p-value und die Testentscheidung ($\alpha = 0.05$).

Tabelle der VF zu $\mathcal{N}(0,1)$ auf folgender Folie:

Beispiel:

 $\Phi(1.240) = \Phi(1.3 + .040) \approx 0.893$. Für nicht aufgeführte *x*:

- $\Box x \ge 3.2$: $\Phi(x) \approx 1 \text{ für } x \ge 3.2$.
- $\Box \quad \text{Für } x < 0: \\ \Phi(x) = 1 \Phi(-x)$
 - Interpolation: für vertafelte x, y und $t = \lambda x + (1 - \lambda)y), \ \lambda \in]0; 1[$ $\Phi(t) \approx \lambda \Phi(x) + (1 - \lambda)\Phi(y)$

(c)
$$H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$$
: $v \in K \Leftrightarrow v > z_{1-\alpha}$

(c)
$$H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$$
: $v \in K \Leftrightarrow v > z_{1-\alpha}$

$$p^* = 1 - \Phi(v)$$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

(c)
$$H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$$
: $v \in K \Leftrightarrow v > z_{1-\alpha}$

$$p^* = 1 - \Phi(v)$$

denn $v > z_{1-\alpha}$

c)
$$H_0: \mu \le \mu_0, H_1: \mu > \mu_0$$
: $v \in K \Leftrightarrow v > z_{1-\alpha}$

$$p^* = 1 - \Phi(v)$$

denn
$$v > z_{1-\alpha} \quad \Leftrightarrow \quad F(v) > F(z_{1-\alpha})$$

c)
$$H_0: \mu \le \mu_0, H_1: \mu > \mu_0$$
: $v \in K \Leftrightarrow v > z_{1-\alpha}$

$$p^* = 1 - \Phi(v)$$

denn
$$v > z_{1-\alpha} \Leftrightarrow F(v) > F(z_{1-\alpha}) \stackrel{(*)}{=} 1 - \alpha$$

c)
$$H_0: \mu \le \mu_0, H_1: \mu > \mu_0$$
: $v \in K \Leftrightarrow v > z_{1-\alpha}$

$$p^* = 1 - \Phi(v)$$

denn
$$v > z_{1-\alpha} \Leftrightarrow F(v) > F(z_{1-\alpha}) \stackrel{(*)}{=} 1 - \alpha \Leftrightarrow 1 - F(v) < \alpha$$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

(c)
$$H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$$
: $v \in K \Leftrightarrow v > z_{1-\alpha}$

$$p^* = 1 - \Phi(v)$$

denn
$$v > z_{1-\alpha} \Leftrightarrow F(v) > F(z_{1-\alpha}) \stackrel{(*)}{=} 1 - \alpha \Leftrightarrow 1 - F(v) < \alpha$$

(a)
$$H_0: \mu = \mu_0, \ H_1: \mu
eq \mu_0:$$
 $v \in K \Leftrightarrow |v| > z_{1-lpha/2}$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

6 Hypothesentests

Berechnung des *p*-values in den anderen Fällen (σ bekannt, mit $F = \Phi$):

c)
$$H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$$
: $v \in K \Leftrightarrow v > z_{1-\alpha}$

$$p^* = 1 - \Phi(v)$$

$$\operatorname{denn} v > z_{1-\alpha} \quad \Leftrightarrow \quad F(v) > F(z_{1-\alpha}) \stackrel{(*)}{=} 1 - \alpha \quad \Leftrightarrow \quad 1 - F(v) < \alpha$$

a)
$$H_0: \mu = \mu_0, H_1: \mu \neq \mu_0:$$
 $v \in K \Leftrightarrow |v| > z_{1-\alpha/2}$

$$p^* = 2\min(\Phi(v), 1 - \Phi(v)) = 2\min(1 - \Phi(-v), 1 - \Phi(v)) = 2(1 - \Phi(|v|))$$

$$|v|>z_{1-lpha/2} \ \Leftrightarrow \ v < -z_{1-lpha/2} \ {
m oder} \ v > z_{1-lpha/2}$$

c)
$$H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$$
: $v \in K \Leftrightarrow v > z_{1-\alpha}$

$$p^* = 1 - \Phi(v)$$

$$\operatorname{denn} v > z_{1-\alpha} \quad \Leftrightarrow \quad F(v) > F(z_{1-\alpha}) \stackrel{(*)}{=} 1 - \alpha \quad \Leftrightarrow \quad 1 - F(v) < \alpha$$

a)
$$H_0: \mu = \mu_0, H_1: \mu \neq \mu_0:$$
 $v \in K \Leftrightarrow |v| > z_{1-\alpha/2}$

$$p^* = 2\min(\Phi(v), 1 - \Phi(v)) = 2\min(1 - \Phi(-v), 1 - \Phi(v)) = 2(1 - \Phi(|v|))$$

$$|v|>z_{1-\alpha/2}$$
 \Leftrightarrow $v<-z_{1-\alpha/2}$ oder $v>z_{1-\alpha/2}$ \Leftrightarrow $-v>z_{1-\alpha/2}$ oder $v>z_{1-\alpha/2}$

c)
$$H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$$
: $v \in K \Leftrightarrow v > z_{1-\alpha}$

$$p^* = 1 - \Phi(v)$$

$$\operatorname{denn} v > z_{1-\alpha} \quad \Leftrightarrow \quad F(v) > F(z_{1-\alpha}) \stackrel{(*)}{=} 1 - \alpha \quad \Leftrightarrow \quad 1 - F(v) < \alpha$$

a)
$$H_0: \mu = \mu_0, H_1: \mu \neq \mu_0:$$
 $v \in K \Leftrightarrow |v| > z_{1-\alpha/2}$
 $p^* = 2 \min(\Phi(v), 1 - \Phi(v)) = 2 \min(1 - \Phi(-v), 1 - \Phi(v)) = 2(1 - \Phi(|v|))$

$$p^* = 2\min(\Phi(v), 1 - \Phi(v)) = 2\min(1 - \Phi(-v), 1 - \Phi(v)) = 2(1 - \Phi(|v|))$$

$$|v|>z_{1-\alpha/2}$$
 \Leftrightarrow $v<-z_{1-\alpha/2}$ oder $v>z_{1-\alpha/2}$ \Leftrightarrow $-v>z_{1-\alpha/2}$ oder $v>z_{1-\alpha/2}$ \Leftrightarrow $F(-v)>1-rac{\alpha}{2}$ oder $F(v)>1-rac{\alpha}{2}$

(c)
$$H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$$
: $v \in K \Leftrightarrow v > z_{1-\alpha}$

$$p^* = 1 - \Phi(v)$$

$$\operatorname{denn} v > z_{1-\alpha} \quad \Leftrightarrow \quad F(v) > F(z_{1-\alpha}) \stackrel{(*)}{=} 1 - \alpha \quad \Leftrightarrow \quad 1 - F(v) < \alpha$$

a)
$$H_0: \mu = \mu_0, \ H_1: \mu \neq \mu_0:$$
 $v \in K \Leftrightarrow |v| > z_{1-\alpha/2}$ $p^* = 2\min(\Phi(v), 1 - \Phi(v)) = 2\min(1 - \Phi(-v), 1 - \Phi(v)) = 2(1 - \Phi(|v|)$

$$|v|>z_{1-\alpha/2} \Leftrightarrow v < -z_{1-\alpha/2} \quad \text{oder} \qquad v > z_{1-\alpha/2}$$
 $\Leftrightarrow -v > z_{1-\alpha/2} \quad \text{oder} \qquad v > z_{1-\alpha/2}$

$$\Leftrightarrow$$
 $F(-v) > 1 - \frac{\alpha}{2}$ oder $F(v) > 1 - \frac{\alpha}{2}$

30

$$\Leftrightarrow 1 - F(-v) < \frac{\alpha}{2}$$
 oder $1 - F(v) < \frac{\alpha}{2}$

c)
$$H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$$
: $v \in K \Leftrightarrow v > z_{1-\alpha}$

$$p^* = 1 - \Phi(v)$$

$$\operatorname{denn} v > z_{1-\alpha} \quad \Leftrightarrow \quad F(v) > F(z_{1-\alpha}) \stackrel{(*)}{=} 1 - \alpha \quad \Leftrightarrow \quad 1 - F(v) < \alpha$$

a)
$$H_0: \mu = \mu_0, H_1: \mu \neq \mu_0:$$
 $v \in K \Leftrightarrow |v| > z_{1-\alpha/2}$ $p^* = 2\min(\Phi(v), 1 - \Phi(v)) = 2\min(1 - \Phi(-v), 1 - \Phi(v)) = 2(1 - \Phi(|v|)$

$$\begin{aligned} |v| > z_{1-\alpha/2} &\Leftrightarrow v < -z_{1-\alpha/2} & \text{oder} & v > z_{1-\alpha/2} \\ &\Leftrightarrow -v > z_{1-\alpha/2} & \text{oder} & v > z_{1-\alpha/2} \\ &\Leftrightarrow F(-v) > 1 - \frac{\alpha}{2} & \text{oder} & F(v) > 1 - \frac{\alpha}{2} \\ &\Leftrightarrow 1 - F(-v) < \frac{\alpha}{2} & \text{oder} & 1 - F(v) < \frac{\alpha}{2} \\ &\Leftrightarrow F(v) < \frac{\alpha}{2} & \text{oder} & 1 - F(v) < \frac{\alpha}{2} \end{aligned}$$

c)
$$H_0: \mu \le \mu_0, H_1: \mu > \mu_0$$
: $v \in K \Leftrightarrow v > z_{1-\alpha}$

$$p^* = 1 - \Phi(v)$$

$$\operatorname{denn} v > z_{1-\alpha} \quad \Leftrightarrow \quad F(v) > F(z_{1-\alpha}) \stackrel{(*)}{=} 1 - \alpha \quad \Leftrightarrow \quad 1 - F(v) < \alpha$$

a)
$$H_0: \mu = \mu_0, H_1: \mu \neq \mu_0:$$
 $v \in K \Leftrightarrow |v| > z_{1-\alpha/2}$ $p^* = 2\min(\Phi(v), 1 - \Phi(v)) = 2\min(1 - \Phi(-v), 1 - \Phi(v)) = 2(1 - \Phi(|v|)$

$$\begin{split} |v| > z_{1-\alpha/2} & \Leftrightarrow \qquad v < -z_{1-\alpha/2} \quad \text{oder} \qquad v > z_{1-\alpha/2} \\ & \Leftrightarrow \qquad -v > z_{1-\alpha/2} \quad \text{oder} \qquad v > z_{1-\alpha/2} \\ & \Leftrightarrow \qquad F(-v) > 1 - \frac{\alpha}{2} \quad \text{oder} \qquad F(v) > 1 - \frac{\alpha}{2} \\ & \Leftrightarrow \qquad 1 - F(-v) < \frac{\alpha}{2} \quad \text{oder} \qquad 1 - F(v) < \frac{\alpha}{2} \\ & \Leftrightarrow \qquad F(v) < \frac{\alpha}{2} \quad \text{oder} \qquad 1 - F(v) < \frac{\alpha}{2} \\ & \Leftrightarrow \qquad \min(F(v), 1 - F(v)) < \frac{\alpha}{2} \end{split}$$

(c)
$$H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$$
: $v \in K \Leftrightarrow v > z_{1-\alpha}$

$$p^* = 1 - \Phi(v)$$

$$\operatorname{denn} v > z_{1-\alpha} \quad \Leftrightarrow \quad F(v) > F(z_{1-\alpha}) \stackrel{(*)}{=} 1 - \alpha \quad \Leftrightarrow \quad 1 - F(v) < \alpha$$

a)
$$H_0: \mu = \mu_0, H_1: \mu \neq \mu_0:$$
 $v \in K \Leftrightarrow |v| > z_{1-\alpha/2}$ $p^* = 2\min(\Phi(v), 1 - \Phi(v)) = 2\min(1 - \Phi(-v), 1 - \Phi(v)) = 2(1 - \Phi(|v|)$

$$|v| > z_{1-\alpha/2} \iff v < -z_{1-\alpha/2} \quad \text{oder} \qquad v > z_{1-\alpha/2}$$

$$\Leftrightarrow \quad -v > z_{1-\alpha/2} \quad \text{oder} \qquad v > z_{1-\alpha/2}$$

$$\Leftrightarrow \quad F(-v) > 1 - \frac{\alpha}{2} \quad \text{oder} \qquad F(v) > 1 - \frac{\alpha}{2}$$

$$\Leftrightarrow \quad 1 - F(-v) < \frac{\alpha}{2} \quad \text{oder} \quad 1 - F(v) < \frac{\alpha}{2}$$

$$\Leftrightarrow \quad F(v) < \frac{\alpha}{2} \quad \text{oder} \quad 1 - F(v) < \frac{\alpha}{2}$$

$$\Leftrightarrow \quad \min(F(v), 1 - F(v)) < \frac{\alpha}{2} \iff 2 \min(F(v), 1 - F(v)) < \alpha$$

6 Hypothesentests 6.3 Der p-value

Durchschnittseinkommen von Praktikanten

Stichprobe von n=40 Studenten mit durchschnittlichem Einkommen $\bar{X}=1225.45$. Laut einer Studie liegt das "wahre Durchschnittseinkommen" bei $1260 \in$. Wird die Angabe der Studie (bei einem Signifikanzniveau von $\alpha=5\%$) durch die

Stichprobe gestützt? Berechnen Sie den p-value.

Annahme: $X \sim \mathcal{N}(\mu, \sigma^2), \sigma = 120$ als bekannt angenommen.

Wie lautet, ausgehend von Ihren bisherigen Berechnungen, Ihre Testentscheidung?

31

Berechnung des p-Wertes

a) bei zweiseitiger Hypothese H_0 : $\mu = \mu_0$ (zweiseitigem Test):

$$p^* = 2 \cdot \min(P(V \leq v), 1 - P(V \leq v))$$

b) bei rechtssseitiger Hypothese $H_0: \mu \ge \mu_0$ (rechtsseitigem Test):

$$p^* = P(V \leq v)$$

c) bei linksseitiger Hypothese $H_0: \mu \leq \mu_0$ (linkssseitigem Test):

$$p^* = 1 - P(V \le v)$$

32

 \hookrightarrow In allen Fällen wird p^* jeweils mit $\mu = \mu_0$ berechnet.

p-Werte p^* bei Mittelwert-Tests (Fälle i),ii),iv), d.h. Normalverteilung mit σ^2 bekannt, bzw. approx. Normalverteilung s.o.)

a)
$$H_0: \mu = \mu_0$$
 $p^* = 2 \cdot (1 - P(V \le |v|)) = 2 \cdot (1 - \Phi(|v|))$

b)
$$H_0: \mu \ge \mu_0$$
 $p^* = P(V \le v) = \Phi(v)$

c)
$$H_0: \mu \leq \mu_0$$
 $p^* = (1 - P(V \leq v)) = 1 - \Phi(v)$

Fall iv): Für Normalverteilung und unbekanntes σ^2 ist die Nullverteilung die t_{n-1} -Verteilung, dann analog:

a)
$$H_0: \mu = \mu_0$$
 $p^* = 2 \cdot (1 - P(V \le |v|)) = 2 \cdot (1 - F_{t_{n-1}}(|v|))$

b)
$$H_0: \mu \ge \mu_0$$
 $p^* = P(V \le v) = F_{t_{n-1}}(v)$

c)
$$H_0: \mu \leq \mu_0$$
 $p^* = (1 - P(V \leq v)) = 1 - F_{t_{n-1}}(v)$

Berechnung mittels Software (R) oder (für n > 30 approximativ) durch $F_{t_{n-1}} \approx \Phi$

6 Hypothesentests 6.3 Der p-value

Durchschnittseinkommen von Praktikanten

Stichprobe von n=40 Studenten mit durchschnittlichem Einkommen $\bar{X}=1225.45$. Laut einer Studie liegt das "wahre Durchschnittseinkommen" bei 1260 \in .

Wird die Angabe der Studie (bei einem Signifikanzniveau von $\alpha=5\%$) durch die Stichprobe gestützt? Berechnen Sie den p-value.

Annahme: $X \sim \mathcal{N}(\mu, \sigma^2)$, σ^2 unbekannt (wird durch $S^2 = 87.23354^2$ geschätzt).

 \hookrightarrow Formeln für *p*-Werte auf viele stetige(!) Modelle übertragbar:

$$\Box \ \ H: \theta = \theta_0: \ p^* = 2 \cdot \min(F(v), 1 - F(v))$$

$$\Box \ \ H:\theta\geq\theta_0:\ p^*=F(v)$$

$$\Box H: \theta \leq \theta_0: p^* = 1 - F(v)$$

Geeignet bei unimodaler Nullverteilung F.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

- \hookrightarrow Formeln für *p*-Werte auf viele stetige(!) Modelle übertragbar:
 - $\Box H: \theta = \theta_0: p^* = 2 \cdot \min(F(v), 1 F(v))$
 - $\Box H: \theta \geq \theta_0: p^* = F(v)$
 - $\Box H: \theta \leq \theta_0: p^* = 1 F(v)$

Geeignet bei unimodaler Nullverteilung F.

→ Bei diskreten Modellen Formeln nicht einfach übertragbar, weil die VF nicht invertierbar ist. Grundsätzlich aber weiterhin:

6.3 Der p-value

 $p^* \cong \min$. Signifikanzniveau, zu dem H_0 bei V = v abgelehnt wird.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

 \hookrightarrow Formeln für *p*-Werte auf viele stetige(!) Modelle übertragbar:

$$\square H: \theta = \theta_0: p^* = 2 \cdot \min(F(v), 1 - F(v))$$

$$\Box \ \ H:\theta \geq \theta_0: p^* = F(v)$$

$$\Box \ \ H: \theta \leq \theta_0: \ \rho^* = 1 - F(\nu)$$

Geeignet bei unimodaler Nullverteilung F.

→ Bei diskreten Modellen Formeln nicht einfach übertragbar, weil die VF nicht invertierbar ist. Grundsätzlich aber weiterhin:

$$p^*\cong \min$$
. Signifikanzniveau, zu dem H_0 bei $V=v$ abgelehnt wird.

Vor allem bei zweiseitigen Hypothesen dann diverse Ansätze, z.B.:

"Principle of minimum likelihood" (z.T. in R verwendet)

$$p^* \cong \text{Summe aller WS } P(V = k) \text{ mit } P(V = k) \leq P(V = v).$$

 \hookrightarrow Formeln für *p*-Werte auf viele stetige(!) Modelle übertragbar:

$$\square H: \theta = \theta_0: p^* = 2 \cdot \min(F(v), 1 - F(v))$$

$$\Box H: \theta \geq \theta_0: p^* = F(v)$$

$$\Box H: \theta \leq \theta_0: p^* = 1 - F(v)$$

Geeignet bei unimodaler Nullverteilung F.

→ Bei diskreten Modellen Formeln nicht einfach übertragbar, weil die VF nicht invertierbar ist. Grundsätzlich aber weiterhin:

 $p^* \cong \min$. Signifikanzniveau, zu dem H_0 bei V = v abgelehnt wird.

Vor allem bei zweiseitigen Hypothesen dann diverse Ansätze, z.B.:

"Principle of minimum likelihood" (z.T. in R verwendet)

$$p^* \cong \text{Summe aller WS } P(V = k) \text{ mit } P(V = k) \leq P(V = v).$$

Vgl.: Gibbons/Pratt: P-values: Interpretation and Methodology, Amer. Statist. 29 (1975), 20-25.

6.4 Einstichproben-Anteilswert-Tests

Modell: $X_i \sim \mathcal{B}(1, p)$

1. Hypothesensysteme

- a) $H_0: p = p_0 \text{ vs. } H_1: p \neq p_0$
- b) $H_0: p \ge p_0$ vs. $H_1: p < p_0$
- c) $H_0: p \le p_0 \text{ vs. } H_1: p > p_0$

Beispiele:

- a) Der Anteil iPad-Besitzer unter den Studenten in Münster liegt bei p_0 . Eine (verbogene) Münze ist fair $(p=\frac{1}{2})$.
- b) Der Anteil Kunden, die einem Vertreterbesuch zustimmen, ist mindestens p_0 .
- c) Der Anteil fehlerhafter Artikel einer Tagesproduktion ist höchstens p_0 .

Anteilswert-Tests sind Mittelwert-Tests für dichotome X_i . ($E(X_i) = p$). Sie lassen sich exakt oder approximativ ausführen.

Exakter Test

- \hookrightarrow Teststatistik: $V = X_1 + \cdots + X_n \sim Bin(n, p_0)$ für $p = p_0$
- a) $H_0: p=p_0$: Ablehnung wenn $v \notin [q_{\alpha/2}; q_{1-\alpha/2}]$,

*p** s.u.

37

b) $H_0: p \ge p_0$: Ablehnung wenn $v < q_{\alpha}$,

 $p^* = F(v).$ $p^* = 1 - F(v - 1).$

- c) $H_0: p \leq p_0$: Ablehnung, wenn $v > q_{1-\alpha}$,
- $p^* \cong \min$. Sig.-niveau, mit dem H_0 abgelehnt wird.

Davon abweichend in R: "minimum likelihood principle"

Exakter Test

- \hookrightarrow Teststatistik: $V = X_1 + \cdots + X_n \sim Bin(n, p_0)$ für $p = p_0$
- a) $H_0: p = p_0$: Ablehnung wenn $v \notin [q_{\alpha/2}; q_{1-\alpha/2}],$ p^* s.u.
- b) $H_0: p \ge p_0$: Ablehnung wenn $v < q_\alpha$, $p^* = F(v)$.
- c) $H_0: p \le p_0$: Ablehnung, wenn $v > q_{1-\alpha}$, $p^* \cong \min$. Sig.-niveau, mit dem H_0 abgelehnt wird.

p = min. Sig.-inveau, mit dem H_0 abgelennt wird. Davon abweichend in R: "minimum likelihood principle"

Approx. Test für $np_0(1-p_0) \geq 9$ (Fall iv) der Mittelwerttests)

- \hookrightarrow Teststatistik $V=\sqrt{n} \frac{\bar{X}-p_0}{\sqrt{p_0(1-p_0)}}$, näherungsweise $\sim \mathcal{N}(0,1)$ für $p=p_0$.
- a) $H_0: p=p_0$: Ablehnung wenn $|v|>z_{1-lpha/2}, \qquad \qquad p^*=2(1-\Phi(|v|)).$
- b) $H_0: p \geq p_0$: Ablehnung wenn $v < z_{\alpha}$, $p^* = \Phi(v)$.
- c) $H_0: p \leq p_0$: Ablehnung, wenn $v > z_{1-\alpha}$, $p^* = 1 \Phi(v)$.

Exakter und approx. Test ergeben nicht immer die gleiche Entscheidung (Übung!)

Beispiel: Handynutzung unter Rentnern

Laut einer Studie besitzen 68% der Rentner ein Handy. Wird dies durch eine Stichprobe von n=52 Rentnern, von denen 30 ein Handy besitzen, gestützt ($\alpha=0.05$)? Hypothesen: $H_0: p=p_0=0.68, H_1: p\neq 0.68$

Beispiel: Handynutzung unter Rentnern

Laut einer Studie besitzen 68% der Rentner ein Handy. Wird dies durch eine Stichprobe von n = 52 Rentnern, von denen 30 ein Handy besitzen, gestützt ($\alpha = 0.05$)? Hypothesen: $H_0: p = p_0 = 0.68, H_1: p \neq 0.68$

$$\Box V = v = 30$$

 $\Box q_{0.025} = 29 \le 30 \le q_{0.975} = 42$: H_0 wird nicht verworfen.

$$p^* = P(V \le 30) + P(V \ge 41) \approx 0.136$$

in R: binom.test (30,52,0.68) \$p. value ("minimum likelihood principle")

Beispiel: Handynutzung unter Rentnern

Laut einer Studie besitzen 68% der Rentner ein Handy. Wird dies durch eine Stichprobe von n=52 Rentnern, von denen 30 ein Handy besitzen, gestützt ($\alpha=0.05$)? Hypothesen: $H_0: p=p_0=0.68, H_1: p\neq 0.68$

$$\Box V = v = 30$$

$$q_{0.025} = 29 \le 30 \le q_{0.975} = 42$$
:
 $q_{0.025} = 42$:

$$p^* = P(V \le 30) + P(V \ge 41) \approx 0.136$$

https://ggbm.at/rqrpwked

in R: binom.test (30,52,0.68) \$p.value ("minimum likelihood principle")

 \hookrightarrow approximativer Test:

$$V = v = \sqrt{n} \frac{\hat{\rho} - p_0}{\sqrt{p_0(1 - p_0)}} = \sqrt{52} \frac{30/52 - 0.68}{\sqrt{0.68 \cdot 0.32}} = -1.59$$

$$|v| = 1.59 < z_{0.975} = 1.96$$
: H_0 wird nicht verworfen.

$$p^* = 2 \cdot (1 - \Phi(1.59)) = 0.11 > 0.05$$

Gültigkeit der Normalapproximation: $52 \cdot 0.68 \cdot 0.32 = 11.32 > 9$

Umfrage unter Studierenden

Von n=40 Befragten teilten 25 mit, dass sie im Jahr 2018 Tablet-Nutzer gewesen seien. Lässt sich hieraus statistisch schließen, dass der Anteil der Tablet-Nutzer in 2018 auf über 47% gestiegen ist $(\alpha=5\%)$?

Anmerkung: Eine verallgemeinernde Aussage ist aufgrund der speziellen Auswahl der Befragten eher nicht möglich ("selection bias").

Zusammenhang von Test und Konfidenzintervall

 $H_0: p = p_0$ wird nicht abgelehnt, falls

$$\begin{aligned} |V| &= \left| \frac{\hat{p} - p_0}{\sigma_{\hat{p}}} \right| \le z_{1-\alpha/2} \\ \Leftrightarrow &- z_{1-\alpha/2} \le \frac{\hat{p} - p_0}{\sigma_{\hat{p}}} \le z_{1-\alpha/2} \\ \Leftrightarrow &\hat{p} - z_{1-\alpha/2}\sigma_{\hat{p}} \le p_0 \le \hat{p} + z_{1-\alpha/2}\sigma_{\hat{p}} \end{aligned}$$

- → entspricht dem (approximativen) Konfidenzintervall f
 ür den Anteilswert (s.o.)
- \hookrightarrow H₀ wird abgelehnt, wenn der hypothetische Wert p₀ außerhalb der Realisation des Konfidenzintervalles liegt.

6.5 Chi-Quadrat-Test für die Varianz bei $X_i \sim \mathcal{N}(\mu, \sigma^2)$

1. Hypothesensystem

- a) $H_0: \sigma^2 = \sigma_0^2$ vs. $H_1: \sigma^2 \neq \sigma_0^2$
- b) $H_0:\sigma^2\geq\sigma_0^2$ vs. $H_1:\sigma^2<\sigma_0^2$
- c) $H_0: \sigma^2 \le \sigma_0^2$ vs. $H_1: \sigma^2 > \sigma_0^2$

2. Teststatistik und ihre Verteilung

Für $\sigma = \sigma_0$ gilt (s.o.) mit $\hat{\sigma}^2 = S^2$:

$$V = \frac{(n-1)\hat{\sigma}^2}{\sigma_0^2} = \frac{1}{\sigma_0^2} \sum_{i=1}^{n} (X_i - \bar{X})^2 \sim \chi^2(n-1)$$
 (μ unbekannt),

$$V = \frac{1}{\sigma_0^2} \sum_{i=1}^n (X_i - \mu)^2 \sim \chi^2(n) \qquad (\mu \text{ bekannt})$$

43

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

3. Entscheidungsregel

Für unbekanntes μ wird H_0 abgelehnt, wenn:

a)
$$H_0: \sigma^2 = \sigma_0^2, H_1: \sigma^2 \neq \sigma_0^2$$
 $v < \chi^2_{\alpha/2}(n-1) \text{ oder } v > \chi^2_{1-\alpha/2}(n-1)$

b)
$$H_0: \sigma^2 \ge \sigma_0^2, H_1: \sigma^2 < \sigma_0^2$$
 $0 < v < \chi_\alpha^2(n-1)$

c)
$$H_0: \sigma^2 \le \sigma_0^2, H_1: \sigma^2 > \sigma_0^2$$
 $v > \chi_{1-\alpha}^2(n-1)$
 \Rightarrow die χ^2 -Verteilung ist nicht symmetrisch, deshalb unsymmetrische Festlegung

 \hookrightarrow die $\chi^2\text{-Verteilung}$ ist nicht symmetrisch, deshalb unsymmetrische Festlegung bei zweiseitiger Hypothese.

p-Werte

a)
$$H_0, \sigma^2 = \sigma_0^2$$
: $p^* = 2 \cdot \min(F_{\chi^2(n-1)}(v), 1 - F_{\chi^2(n-1)}(v))$

b)
$$H_0, \sigma^2 \ge \sigma_0^2$$
: $p^* = F_{\chi^2(n-1)}(v)$ c) $H_0, \sigma^2 \le \sigma_0^2$: $p^* = 1 - F_{\chi^2(n-1)}(v)$

$$\hookrightarrow$$
 Für bekanntes μ werden Quantile und Verteilungsfunktion der χ^2 -Verteilung mit n Freiheitsgraden verwendet (aber eher unrealistisch).

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022 44

Lebensdauer eines Verschleißteils

Annahme: Lebensdauer X eines Verschleißteils sei normalverteilt. In der Vergangenheit galt $\sigma^2=2.5$ Jahre². Nach Umstellung des Produktionsverfahrens soll geprüft werden, ob die Variabilität zurückgegangen ist ($\alpha=0.1$). Eine Stichprobe bei unbekanntem μ ergab: $n=25, \hat{\sigma}^2=2.3$.

... ... 40.154(0.1341 0(21,20)) 0.8.00 0(20.0000)20.110.12)

6.6 Gütefunktionen von Parametertests

- \hookrightarrow Partition des Parameterraums gemäß Hypothesenpaar H_0, H_1 in $\Theta = \Theta_0 \cup \Theta_1$.
- \hookrightarrow Bestimmung der Teststatistik v = V = V(X). Damit Testentscheidungen:
 - $\Box \quad d(v) = d_1 \quad (Ablehnung von \ H_0) \ für \ v \in K$
 - \Box $d(v) = d_0$ (Nichtablehnung von H_0) für $v \notin K$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

6.6 Gütefunktionen von Parametertests

- \hookrightarrow Partition des Parameterraums gemäß Hypothesenpaar H_0, H_1 in $\Theta = \Theta_0 \cup \Theta_1$.
- \hookrightarrow Bestimmung der Teststatistik v = V = V(X). Damit Testentscheidungen:
 - \Box $d(v) = d_1$ (Ablehnung von H_0) für $v \in K$
 - \Box $d(v) = d_0$ (Nichtablehnung von H_0) für $v \notin K$
- $\hookrightarrow \mathsf{Risiko^2} \colon R(\theta, V) = \begin{cases} P_{\theta}(V \in K) & \theta \in \Theta_0 \text{ (Fehler 1. Art)} \\ P_{\theta}(V \notin K) & \theta \in \Theta_1 \text{ (Fehler 2. Art)} \end{cases}$

$${}^2R(heta,V)=E_{ heta}(L(heta,d(V)))$$
 m. Verlustfunktion $L(heta,d)=egin{cases} 1 & ext{für } heta\in\Theta_i, d=d_j, \ i
eq j \\ 0 & ext{sonst} \end{cases}$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

6.6 Gütefunktionen von Parametertests

- \hookrightarrow Partition des Parameterraums gemäß Hypothesenpaar H_0, H_1 in $\Theta = \Theta_0 \cup \Theta_1$.
- \hookrightarrow Bestimmung der Teststatistik v = V = V(X). Damit Testentscheidungen:
 - \Box $d(v) = d_1$ (Ablehnung von H_0) für $v \in K$
 - \Box $d(v) = d_0$ (Nichtablehnung von H_0) für $v \notin K$
- $\hookrightarrow \mathsf{Risiko}^2 \colon R(\theta, V) = \begin{cases} P_{\theta}(V \in K) & \theta \in \Theta_0 \text{ (Fehler 1. Art)} \\ P_{\theta}(V \notin K) & \theta \in \Theta_1 \text{ (Fehler 2. Art)} \end{cases}$
- \hookrightarrow Tests sollten ein möglichst kleines Risiko haben \rightsquigarrow 2 konfliktäre Ziele:
 - \Box Für $\theta \in \Theta_0$: $P_{\theta}(V \in K)$ möglichst klein
 - \Box Für $\theta \in \Theta_1$: $P_{\theta}(V \notin K)$ möglichst klein, d.h. $P_{\theta}(V \in K)$ möglichst groß

47

Gütefunktion

$$g:\Theta
ightarrow [0;\infty], g(heta) \ = \ P_{ heta}($$
"Ablehnung von H_0 " $) = P_{ heta}(V \in K)$

https://ggbm.at/cedn5dkr

Beispiel: linksseitiger Gaußtest :
$$\Theta_0$$
 : $]-\infty$; $\mu_0]$ Θ_1 : $]\mu_0$; $\infty[$

 $g(\mu) = P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu_0}{\sigma} > z_{1-\alpha} \right)$

Dr. Ingolf Terveer Datenanalyse

Beispiel: linksseitiger Gaußtest :
$$\Theta_0$$
 : $]-\infty$; $\mu_0]$ Θ_1 : $]\mu_0$; $\infty[$

https://ggbm.at/cedn5dkr

48

$$g(\mu) = P_{\mu}\left(\sqrt{n}\frac{\bar{X}-\mu_0}{\sigma} > z_{1-\alpha}\right) = P_{\mu}\left(\sqrt{n}\frac{\bar{X}-\mu+\mu-\mu_0}{\sigma} > z_{1-\alpha}\right)$$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Beispiel: linksseitiger Gaußtest :
$$\Theta_0$$
 : $]-\infty$; $\mu_0]$ Θ_1 : $]\mu_0$; $\infty[$

https://ggbm.at/cedn5dkr

$$g(\mu) = P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu_{0}}{\sigma} > z_{1-\alpha} \right) = P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu + \mu - \mu_{0}}{\sigma} > z_{1-\alpha} \right)$$
$$= P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu}{\sigma} + \sqrt{n} \frac{\mu - \mu_{0}}{\sigma} > z_{1-\alpha} \right)$$

https://ggbm.at/cedn5dkr

$$\begin{split} g(\mu) &= P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu_{0}}{\sigma} > z_{1-\alpha} \right) = P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu + \mu - \mu_{0}}{\sigma} > z_{1-\alpha} \right) \\ &= P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu}{\sigma} + \sqrt{n} \frac{\mu - \mu_{0}}{\sigma} > z_{1-\alpha} \right) \\ &= P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu}{\sigma} > z_{1-\alpha} - \sqrt{n} \frac{\mu - \mu_{0}}{\sigma} \right) \end{split}$$

https://ggbm.at/cedn5dkr

$$\begin{split} g(\mu) &= P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu_{0}}{\sigma} > z_{1-\alpha} \right) = P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu + \mu - \mu_{0}}{\sigma} > z_{1-\alpha} \right) \\ &= P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu}{\sigma} + \sqrt{n} \frac{\mu - \mu_{0}}{\sigma} > z_{1-\alpha} \right) \\ &= P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu}{\sigma} > z_{1-\alpha} - \sqrt{n} \frac{\mu - \mu_{0}}{\sigma} \right) = 1 - \Phi \left(z_{1-\alpha} - \sqrt{n} \frac{\mu - \mu_{0}}{\sigma} \right) \end{split}$$

https://ggbm.at/cedn5dkr

$$\begin{split} g(\mu) &= P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu_0}{\sigma} > z_{1-\alpha} \right) = P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu + \mu - \mu_0}{\sigma} > z_{1-\alpha} \right) \\ &= P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu}{\sigma} + \sqrt{n} \frac{\mu - \mu_0}{\sigma} > z_{1-\alpha} \right) \\ &= P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu}{\sigma} > z_{1-\alpha} - \sqrt{n} \frac{\mu - \mu_0}{\sigma} \right) = 1 - \Phi \left(z_{1-\alpha} - \sqrt{n} \frac{\mu - \mu_0}{\sigma} \right) \\ &= \Phi \left(\sqrt{n} \frac{\mu - \mu_0}{\sigma} - z_{1-\alpha} \right) \end{split}$$

https://ggbm.at/cedn5dkr

48

$$\begin{split} g(\mu) &= P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu_{0}}{\sigma} > z_{1-\alpha} \right) = P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu + \mu - \mu_{0}}{\sigma} > z_{1-\alpha} \right) \\ &= P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu}{\sigma} + \sqrt{n} \frac{\mu - \mu_{0}}{\sigma} > z_{1-\alpha} \right) \\ &= P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu}{\sigma} > z_{1-\alpha} - \sqrt{n} \frac{\mu - \mu_{0}}{\sigma} \right) = 1 - \Phi \left(z_{1-\alpha} - \sqrt{n} \frac{\mu - \mu_{0}}{\sigma} \right) \\ &= \Phi \left(\sqrt{n} \frac{\mu - \mu_{0}}{\sigma} - z_{1-\alpha} \right) = \Phi \left(\frac{\sqrt{n}}{\sigma} \cdot \left(\mu - \left(\mu_{0} + \frac{\sigma}{\sqrt{n}} z_{1-\alpha} \right) \right) \right) = \Phi (b(\mu - a)) \end{split}$$

Dr. Ingolf Terveer Sommersemester 2022 Datenanalyse

https://ggbm.at/cedn5dkr

48

$$g(\mu) = P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu_{0}}{\sigma} > z_{1-\alpha} \right) = P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu + \mu - \mu_{0}}{\sigma} > z_{1-\alpha} \right)$$

$$= P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu}{\sigma} + \sqrt{n} \frac{\mu - \mu_{0}}{\sigma} > z_{1-\alpha} \right)$$

$$= P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu}{\sigma} > z_{1-\alpha} - \sqrt{n} \frac{\mu - \mu_{0}}{\sigma} \right) = 1 - \Phi \left(z_{1-\alpha} - \sqrt{n} \frac{\mu - \mu_{0}}{\sigma} \right)$$

$$= \Phi \left(\sqrt{n} \frac{\mu - \mu_{0}}{\sigma} - z_{1-\alpha} \right) = \Phi \left(\frac{\sqrt{n}}{\sigma} \cdot \left(\mu - \left(\mu_{0} + \frac{\sigma}{\sqrt{n}} z_{1-\alpha} \right) \right) \right) = \Phi (b(\mu - a))$$

Die Gütefunktion entsteht aus der VF Φ zu $\mathcal{N}(0,1)$ durch lineare Transformation:

- \square Skalenfaktor $b=rac{\sqrt{n}}{\sigma}$ legt "Steilheit" fest. Je größer n/kleiner σ , desto steiler.
- \Box $a = \mu_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha}$ ist Wendestelle (Übung).

Ein Test mit steiler verlaufender Gütefunktion stellt einen besseren Kompromiss zwischen Fehler-WS dar.

Einfluss des Stichprobenumfangs n auf die Testgüte

Durch Erhöhung von *n* können Vorgaben an beide Fehlertypen erfüllt werden.

Konkret: Wie groß muss n sein, damit die Gütefunktion an der Stelle μ^* einen vorgegebenen Wert β überschreitet?

Einfluss des Stichprobenumfangs n auf die Testgüte

Durch Erhöhung von *n* können Vorgaben an beide Fehlertypen erfüllt werden.

Konkret: Wie groß muss n sein, damit die Gütefunktion an der Stelle μ^* einen vorgegebenen Wert β überschreitet?

Gütefunktion im zweiseitigen Testproblem

$$g(\mu) = \Phi(\frac{\mu - \mu_0}{\sigma/\sqrt{n}} - z_{1-\alpha/2}) + \Phi(-\frac{\mu - \mu_0}{\sigma/\sqrt{n}} - z_{1-\alpha/2})$$

Rechnung dazu: Übung