Part 4

Chapter 2: THE INTEGERS

Mphako-Banda

MATHEMATICS

LEARNING OUTCOMES FOR THE LECTURE

By the end of this lecture, students will be able to:

- Determine when two integers are relatively prime
- Apply divisibility properties of coprime integers and division by a prime
- Define a prime number
- State and apply Prime Factorisation Theorem
- *

RELATIVELY PRIME

Definition (2.4.1)

 $m, n \in \mathbb{Z}$ and gcd(m, n) = 1 then m and n are relatively prime.

Theorem (2.4.2)

Let $m, n \in \mathbb{Z}$, not both zero. gcd(m, n) = 1 iff $\exists x, y \in \mathbb{Z}$ such that xm + yn = 1.

PROOF:

- \Rightarrow If gcd(m, n) = 1 then by Euclidean Algorithm 1 = xm + yn as required.
- \Leftarrow If $\exists x, y \in \mathbb{Z}$ such that xm + yn = 1 and $d = \gcd(m, n)$. Then $d \mid 1$. Thus d = 1.

Corollary (2.4.3)

 $m, n \in \mathbb{Z}$ and gcd(m, n) = d, then $\frac{m}{d}$ and $\frac{n}{d}$ are relatively prime.

Proof:

$$\gcd(m,n)=d, \Rightarrow d=xm+yn \Rightarrow 1=x(\frac{m}{d})+y(\frac{n}{d})$$
 and $\frac{m}{d}$ and $\frac{n}{d}\in\mathbb{Z} \Rightarrow \gcd(\frac{m}{d},\frac{n}{d})=1$.

Theorem (2.4.4 - (i))

Let gcd(m, n) = 1. Then if $m \mid k$ and $n \mid k$, then $mn \mid k$.

show tha

k=t(mn),

acd(m.n)=1

Proof:

$$\Rightarrow$$
 $k = k_1 m$; $k = k_2 n$; $xm + yn = 1$.

n|k

$$\Rightarrow$$
 $k.1 = k(xm + yn)$

$$= (k_2 n) x m + (k_1 m) y n$$

$$= mn(xk_2 + yk_1)$$

$$\Rightarrow$$
 mn | k.

E.M.B Part 4

Theorem (2.4.4 - (ii))

Let gcd(m, n) = 1. Then if $m \mid kn$ for some k, then $m \mid k$.

Proof:
$$m \mid kn \Rightarrow kn = k_1 m \text{ and } xm + yn = 1$$
 $\Rightarrow k = k.1 = k(xm + yn) = kxm + kyn = kxm + k_1 my = m(xk + yk_1).$ $\Rightarrow m \mid k.$ k=mt, some integer t thus m|k

Example
2 | 30 and 3 | 30 so 6 | 60.
2 | 4.5 and gcd(2,5) = 1 \Rightarrow 2 | 4.

PRIME NUMBERS

Definition (2.5.1)

An integer p is a prime if

(i)
$$p \geq 2$$

(ii) if
$$d \mid p \text{ and } d > 0$$
, then $d = 1 \text{ or } d = p$.

divisors of p are 1 and p only

Theorem (2.5.2 EUCLID'S LEMMA)

p is prime.

(i) If
$$p \mid mn \Rightarrow p \mid m \text{ or } p \mid n$$
.

$$| \text{(ii)} | \text{ If } p \mid m_1 m_2 m_3 \dots m_k \Rightarrow p \mid m_i \text{ for some } i.$$

Part 4

E.M.B

PROOF: given that p|mn;

(i) Let $d = \gcd(p, m)$. Then $d \mid p$ so d = 1 or d = p. If d = p then $p \mid m$. if d = 1 then $\gcd(p, m) = 1$ so $p \mid n$ by theorem2.4.4 [If $m \mid kn$ for some k, then $m \mid k$.]

(ii) Prove by Induction Use induction on k to show if p is prime and $p \mid m_1 m_2 m_3 \dots m_k$ where $m_i \in \mathbb{Z}$ then $p \mid m_i$ for some i.

 $k = 1 p \mid m_1$ we are done and k = 2 gives part (i).

Part 4

Assume statement true for some k > 1 assume true that if plm_1m_2..._k then plm_i and let $p \mid m_1 m_2 m_3.....m_k m_{k+1}$, then part(i) shows either $p \mid m_1 m_2 m_3.....m_k$ or $p \mid m_{k+1}$. So either $P_p \mid m_i$ for some $i = 1, \dots, k$ by induction hypothesis or $p \mid m_{k+1}$. $\therefore P_p \mid m_i$ for some $i = 1, \dots, k, k+1$.

Theorem (2.5.3 PRIME FACTORISATION THEOREM)

- (i) Every integer $n \ge 2$ is the product of one or more primes.
- The factorisation is unique up to the order of the factors. In fact $n = p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$, where the p_i are distinct primes and $n_i \ge 1$ for all i. Then the positive divisors of n are the integers of the form $d = p_1^{d_1} p_2^{d_2} \cdots p_r^{d_r}$, where $0 \le d_r \le n_i$ holds for i.

Definition (2.5.4 Greatest common divisor/ least common multiple)

Let n_1, n_2, \dots, n_r be positive integers.

- (i) The greatest common divisor of these integers, denoted $gcd(n_1, n_2, \dots, n_r)$, is the positive common divisor that is a multiple of every common divisor.
- (ii) The least common multiple of these integers, denoted by $lcm(n_1, n_2, \dots, n_r)$, is the positive common multiple that is a divisor of every common multiple.

least positive integer that is divisible by all n_i, i=1...r

Example

- (i) Find gcd(4,6,10) and lcm(4,6,10) $4 = 2^2 3^0 5^0$ $6 = 2^1 3^1 5^0$ $10 = 2^1 3^0 5^1$ gcd((4,6,10) = 2 and $lcm(4,6,10) = 2^2 3^1 5^1 = 60$.
- (ii) Find gcd(12, 20, 18) and lcm(12, 20, 18) $12 = 2^2 3^1 5^0$ $20 = 2^2 3^0 5^1$ $18 = 2^1 3^2 5^0$ $gcd(12, 20, 18) = 2^1 3^0 5^0 = 2$ and $lcm(12, 20, 18) = 2^2 3^2 5^1 = 180$.
- Find gcd(63, 60, 245) and lcm(63, 60, 245). $63 = 2^0 3^2 5^0 7^1$ $60 = 2^2 3^1 5^1 7^0$ $245 = 2^0 3^0 5^1 7^2$ $gcd(63, 60, 245) = 2^0 3^0 5^0 7^0 = 1$ and $lcm(63, 60, 245) = 2^2 3^2 5^1 7^2 = 8820$.