Math 6122: HW 5

Padmavathi Srinivasan

Due: Thursday, Feb 21st, start of class

In the following exercises, we will define and derive some properties of analogues of the 'norm' and 'trace' maps $\mathbb{C} \to \mathbb{R}$ (i.e., $a+ib\mapsto a^2+b^2$ and $a+ib\mapsto 2a$) for an arbitrary finite extension of fields.

Let E/F be a finite extension of fields and let $\alpha \in E$. Let $M_{\alpha} \colon E \to E$ be the F-linear map induced by multiplication by α , i.e., the map $e \to \alpha e$. Let $f_{\alpha} = \det(xI - M_{\alpha}) \in F[x]$ be the characteristic polynomial of M_{α} (we have changed the usual sign for the characteristic polynomial to make f_{α} monic). Let $m_{\alpha} \in F[x]$ be the minimal polynomial of α .

- 1. If $E = F(\alpha)$, show that f_{α} equals the minimal polynomial m_{α} of α . (Hint: Choose a nice basis for $F(\alpha)/F$ and write down the matrix for M_{α} in this basis.)
- 2. Show that in general $f_{\alpha} = m_{\alpha}^{[E:F(\alpha)]}$. (Hint: Write down a matrix for M_{α} by using a nice 'product basis', that is by taking the product of the standard basis $\{1, \alpha, \alpha^2, \ldots\}$ for $F(\alpha)/F$ and any basis for $E/F(\alpha)$.) [Remark: The polynomial m_{α} can also be identified with the minimal polynomial of the the linear transformation M_{α} .]

The norm of α denoted $N_{E/F}(\alpha)$ is the determinant of M_{α} , and the trace of α denoted $\text{Tr}_{E/F}(\alpha)$ is the trace of M_{α} .

- 3. Verify that $N_{E/F}(\alpha\beta) = N_{E/F}(\alpha)N_{E/F}(\beta)$ and $\text{Tr}_{E/F}(\alpha+\beta) = \text{Tr}_{E/F}(\alpha) + \text{Tr}_{E/F}(\beta)$.
- 4. Let $\{\alpha_1 = \alpha, \alpha_2, \dots, \alpha_d\}$ be the roots of the minimal polynomial m_{α} (counted with multiplicity, so $d = \deg m_{\alpha}$) in a splitting field for α . Show that $\operatorname{Tr}_{E/F}(\alpha) = [E : F(\alpha)](\alpha_1 + \alpha_2 + \dots + \alpha_d)$ and $N_{E/F}(\alpha) = (\alpha_1 \alpha_2 \dots \alpha_d)^{[E:F(\alpha)]}$.
- 5. Let let $E = F(\sqrt{D})$ for some $D \notin F^{\times 2}$ (i.e. a quadratic extension). Verify that $N_{E/F}(a+b\sqrt{D}) = a^2 Db^2$ and $\text{Tr}_{E/F}(a+b\sqrt{D}) = 2a$.
- 6. Let $E' \supset E \supset F$ be a tower of extensions such that E'/F is Galois. Let H be the subgroup of $\operatorname{Gal}(E'/F)$ corresponding to E, and let S be a set of coset representatives for G/H. Show that $f_{\alpha}(x) = \prod_{\sigma \in S} (x \sigma \alpha)$. (Hint: First verify this for $E = F(\alpha)$ using the previous problem, and then prove this for general E using the relation between f_{α} and m_{α} .)
- 7. (Transitivity of trace) Use the previous problem to show that if $E' \supset E_1 \supset E_2 \supset F$ is a tower of extensions such that E'/F is Galois, then $\operatorname{Tr}_{E_1/F} = \operatorname{Tr}_{E_2/F}$. $\operatorname{Tr}_{E_1/E_2}$. [Remark: Transitivity of trace in fact holds in any tower of field extensions.]

The trace map can be used to detect inseparability of extensions.

- 8. Show that if m_{α} is an inseparable polynomial, then $\text{Tr}_{F(\alpha)/F} \equiv 0$.
- 9. Using the fact that every inseparable extension E/F can be factored as $E \supset E' \supset F$, where $E = E'(\alpha)$ for an inseparable element α (that is, the minimal polynomial of α over E' is inseparable) and the transitivity of trace, show that $\operatorname{Tr}_{E/F} \equiv 0$ for any inseparable extension E/F.
- 10. Using Problem 6 and Dedekind's lemma on linear independence of characters to show that $\operatorname{Tr}_{E'/F}$ does not identically vanish for a Galois extension E'/F (i.e., there exists $\alpha \in E'$ such that $\operatorname{Tr}_{E'/F}(\alpha) \neq 0$). Use transitivity of trace and the existence of Galois closures of separable extensions to conclude that $\operatorname{Tr}_{E/F}$ does not identically vanish for any separable extension.

Math 6122 - Homework 5

Caitlin Beecham (Discussed with Skye)

February 21, 2019

1

We let our basis for E/F be $\{\alpha^i | i \in \{0, \dots, n-1\}\}$. Then, the matrix M_α can be written as

$$M_{\alpha} = \begin{pmatrix} 1 & \alpha & \alpha^{2} & \alpha^{3} & \dots & \alpha^{n-2} & \alpha^{n-1} \\ 0 & 0 & 0 & 0 & \dots & 0 & -a_{0} \\ 1 & 0 & 0 & 0 & \dots & 0 & -a_{1} \\ 0 & 1 & 0 & 0 & \dots & 0 & -a_{2} \\ 0 & 0 & 1 & 0 & \dots & 0 & \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 0 & -a_{n-2} \\ \alpha^{n-1} & 0 & 0 & 0 & \dots & 1 & -a_{n-1} \end{pmatrix},$$

which gives us that

$$XI - M_{\alpha} = \begin{pmatrix} 1 & \alpha & \alpha^{2} & \alpha^{3} & \dots & \alpha^{n-2} & \alpha^{n-1} \\ X & 0 & 0 & 0 & \dots & 0 & a_{0} \\ -1 & X & 0 & 0 & \dots & 0 & a_{1} \\ 0 & -1 & X & 0 & \dots & 0 & a_{2} \\ 0 & 0 & -1 & X & \dots & 0 & \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha^{n-2} & 0 & 0 & 0 & 0 & \dots & X & a_{n-2} \\ \alpha^{n-1} & 0 & 0 & 0 & 0 & \dots & -1 & X + a_{n-1} \end{pmatrix}.$$

We can then use the cofactor expansion of the determinant along the last row to obtain that (in the case where n is odd)

$$det(XI - M_{\alpha}) = (\sum_{i=0}^{n-2} (-1)^{i} a_{i} det(M_{n-1}^{i})) + (X + a_{n-1}) det(M_{n-1}^{n-1})$$

$$= (\sum_{i=0}^{n-2} (-1)^{i} a_{i} X^{i} (-1)^{n-1-i}) + (X + a_{n-1}) X^{n-1}$$

$$= (\sum_{i=0}^{n-2} (-1)^{n-1} a_{i} X^{i}) + X^{n} + a_{n-1} X^{n-1}$$

$$= X^{n} + \sum_{i=0}^{n-1} a_{i} X^{i} = m_{\alpha}(X)$$

or

$$det(XI - M_{\alpha}) = (\sum_{i=0}^{n-2} (-1)^{i+1} a_i det(M_{n-1}^i)) + (X + a_{n-1}) det(M_{n-1}^{n-1})$$

$$= (\sum_{i=0}^{n-2} (-1)^{i+1} a_i X^i (-1)^{n-1-i}) + (X + a_{n-1}) X^{n-1}$$

$$= (\sum_{i=0}^{n-2} (-1)^n a_i X^i) + X^n + a_{n-1} X^{n-1}$$

$$= X^n + \sum_{i=0}^{n-1} a_i X^i = m_{\alpha}(X)$$

if n is even (where M^i_j is the matrix obtained from M_α by deleting row i and column j where our indexing starts at 0) since all cofactor matrices are upper triangular which means that their determinants are the product of the elements on the diagonal. More precisely, $det(M^i_{n-1}) = \prod_{l=0}^{n-2} (M^i_{n-1})^l_l = (\prod_{l< i} (M_\alpha)^l_l)(\prod_{l> i} (M_\alpha)^{l+1}_l) = (\prod_{l< i} X)(\prod_{l> i} -1) = X^i(-1)^{n-1-i}$.

2

Used the following source on computing determinants via blocks: https://math.stackexchange.com/questions/148532/general-expression-for-determinant-of-a-block-diagonahttps://arxiv.org/pdf/1112.4379.pdf

Now, say that $B:=\{1=:b_0,b_1,b_2,\ldots,b_r\}$ is a basis for $E/F(\alpha)$. Then, a basis for E/F is $\{\alpha^ib_j|i\in\{0,\ldots,n-1\},j\in\{0,\ldots,r\}\}$. Then, we note that we can write the matrix induced by the linear transformation of E which is multiplication by α . Call it M_E . See attached figure. I'm sorry but this was waaay to hard to TeX-I tried.

3

We construct a basis using a tower of intermediate extensions. We note that $F\subseteq F(\alpha)\subseteq F(\alpha)(\beta)\subseteq E$. Let $m_{\alpha}(x)=\sum_{i=0}^n a_i\alpha^i$ be the minimal polynomial of α over F. Then, let $m_{\beta}(x)=\sum_{i=0}^r b_ix^i$ be the minimal polynomial of β over $F(\alpha)$. Then, let $1=:c_0,\ldots,c_{s-1}$ be a basis for E over $F(\alpha)(\beta)$ (so here $[E:F(\alpha,\beta)]=s$). Then, using the basis $\{c_i\alpha^j\beta^k|i\in\{0,\ldots,s-1\},j\in\{0,\ldots,n-1\},k\in\{0,\ldots,r-1\}\}$ we note that we can write down a matrix which represents the linear transformation induced by multiplication by $\alpha\beta$ in this basis. (For future convenience, we impose an order on the basis given by $c_{i_1}\beta^{k_1}\alpha^{j_1}< c_{i_2}\beta^{k_2}\alpha^{j_2}$ if and only if $i_1< i_2$ or $(i_1=i_2$ and $k_1< k_2)$ or $(i_1=i_2$ and $k_1=k_2$ and $j_1< j_2$). We say $c_{i_1}\beta^{k_1}\alpha^{j_1}=c_{i_2}\beta^{k_2}\alpha^{j_2}$ if and only if $i_1=i_2$ and $j_1=j_2$ and $j_1=j_2$ and $j_1=j_2$. This gives us an index for each basis element if we say that $c_0\alpha^0\beta^0=c_0$ has index 0). Call such a matrix $M:=M_{\alpha\beta}^E$. Then, we define the block C_j^i for $i,j\in\{0,\ldots,s-1\}$ of M as follows. Let $C_j^i:=M_{[rnj:rn(j+1)-1]}^{[rnj:rn(j+1)-1]}$ where $M_{[c:d]}^{[a:b]}$ denotes the submatrix of M using the ath through bth rows (inclusive) and cth through dth columns of M0 (inclusive). (Note: that these are indices of rows, NOT the corresponding basis elements and also note that row and column indexing starts at 0 according to my setup). Now, we note that C_j^i is the zero matrix for all $i\neq j$ which means that M is a block diagonal matrix. We now examine a non zero block, say C_1^1 , noting that all of the diagonal blocks C_i^i are pairwise identical for all $i\in\{0,\ldots,s-1\}$. Now, what does C_1^1 look like? We can further break $C:=C_1^1$ into blocks.

Define B^i_j for $i,j\in\{0,\ldots,r-1\}$ by $B^i_j:=C^{[ni:n(i+1)-1]}_{[nj:n(j+1)-1]}$. We then note that B^i_i is the zero matrix for all $i\in\{0,\ldots,r-2\}$ and that $B^i_{i-1}=M_\alpha$ for all $i\in[r-1]$. That defines all blocks except those in the last column. Namely, we still have not determined B^i_{r-1} for all $i\in\{0,\ldots,r-1\}$.

4

We note that M_E (which represents multiplication by α in E using the basis outlined in the figure in problem 2) is a block diagonal matrix in which each block is M_{α} . Thus, the trace of M_E is

$$Tr(M_E) = [E : F(\alpha)](-a_{d-1})$$

where a_{d-1} is a coefficient of the minimal polynomial of α over F given by $m_{\alpha}(x) = x^d + \sum_{i=0}^{d-1} a_i x^i$. We then note that if $\alpha_1 := \alpha, \alpha_2, \alpha_3, \ldots, \alpha_d$ are the roots of m_{α} (not necessarily distinct), then we have that

$$\sum_{j=0}^{d} a_j x^j = \prod_{i=1}^{d} (x - \alpha_i)$$

Then, note that

$$\prod_{i=1}^{d} (x - \alpha_i) = \sum_{i=0}^{d} \left((-1)^{d-i} \left(\sum_{S \in \binom{[d]}{d-i}} \left(\prod_{s \in S} \alpha_s \right) \right) (x^i) \right),$$

which in particular means that

$$\begin{aligned} -a_{d-1} &= (-1)(-1)^{d-(d-1)} \Big(\sum_{S \in \binom{[d]}{1}} \Big(\prod_{s \in S} \alpha_s \Big) \Big) \\ &= (-1)^2 \Big(\sum_{i=1}^d \alpha_i \Big) \\ &= \sum_{i=1}^d \alpha_i. \end{aligned}$$

So, we get that $-a_{n-1} = \sum_{i=1}^{d} \alpha_d$ which means that

$$Tr(M_E) = [E : F(\alpha)](\sum_{i=1}^{d} \alpha_d)$$

and we are done.

Now it remains to show that $N_{E/F}(\alpha) = (\prod_{i=1}^d \alpha_i)^{[E:F(\alpha)]}$. We recall that the determinant of M_E can be expressed as

$$\det(M_E) = \prod_{i=1}^{[E:F(lpha)]} \det(M_lpha) = \prod_{i=1}^{[E:F(lpha)]} N_{F(lpha)/F}(lpha).$$

We then recall that

$$M_{\alpha} = \begin{array}{c} 1 & \alpha & \alpha^{2} & \alpha^{3} & \dots & \alpha^{n-2} & \alpha^{n-1} \\ 1 & 0 & 0 & 0 & \dots & 0 & -a_{0} \\ 1 & 0 & 0 & 0 & \dots & 0 & -a_{1} \\ 0 & 1 & 0 & 0 & \dots & 0 & -a_{2} \\ 0 & 0 & 1 & 0 & \dots & 0 & \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha^{n-2} & 0 & 0 & 0 & \dots & 0 & -a_{n-2} \\ \alpha^{n-1} & 0 & 0 & 0 & \dots & 1 & -a_{n-1} \end{array} \right),$$

and notice recall that $m_{\alpha}(x) = \det(XI - M_{\alpha})$ which implies that $m_{\alpha}(0) = a_0 = \det(-M_{\alpha}) = (-1)^n \det(M_{\alpha})$ (here I am using n and d interchangeably as the degree of m_{α}) which gives us that $N_{F(\alpha)/F}(\alpha) = \det(M_{\alpha}) \in \{a_0, -a_0\}$. Namely, if n is odd then $N_{F(\alpha)/F}(\alpha) = \det(M_{\alpha}) = -a_0$. Otherwise, $N_{F(\alpha)/F}(\alpha) = \det(M_{\alpha}) = a_0$. Now, we return to the formula,

$$\prod_{i=1}^{d} (x - \alpha_i) = \sum_{i=0}^{d} \left((-1)^{d-i} \left(\sum_{S \in \binom{[d]}{d-i}} \left(\prod_{s \in S} \alpha_s \right) \right) (x^i) \right),$$

which tells us that

$$a_0 = (-1)^d \left(\sum_{S \in \binom{[d]}{0}} \left(\prod_{s \in S} \alpha_s \right) \right)$$
$$= (-1)^d \left(\prod_{i=1}^d \alpha_i \right)$$
$$= (-1)^d \prod_{i=1}^d \alpha_i.$$

So, if n is odd then,

$$N_{F(\alpha)/F}(\alpha) = \det(M_{\alpha}) = -a_0 = (-1)(-1)^d \prod_{i=1}^d \alpha_i = (-1)^{n+1} \prod_{i=1}^d \alpha_i = \prod_{i=1}^d \alpha_i.$$

Similarly, if n is even, we get that (still using n and d interchangeably)

$$N_{F(\alpha)/F}(\alpha) = \det(M_{\alpha}) = a_0 = (-1)^d \prod_{i=1}^d \alpha_i = \prod_{i=1}^d \alpha_i.$$

Namely, we have that

$$\det(M_E) = \prod_{i=1}^{[E:F(\alpha)]} \det(M_\alpha) = \prod_{i=1}^{[E:F(\alpha)]} \prod_{i=1}^d \alpha_i = (\prod_{i=1}^d \alpha_i)^{[E:F(\alpha)]}.$$

5

We note that

$$M_{a+b\sqrt{D}} = \frac{1}{\sqrt{D}} \left(\begin{array}{cc} 1 & \sqrt{D} \\ a & bD \\ b & a \end{array} \right)$$

which tells us that $N_{E/F}(a+b\sqrt{D})=a^2-b^2D$ and $Tr_{E/F}(a+b\sqrt{D})2a$.

6

First say $E = F(\alpha)$. Now, $H := Gal(E'/E) = Gal(E'/F(\alpha))$. When are two automorphisms σ_1 and σ_2 in the same coset of G/H? When $\sigma_1(\alpha) = \sigma_2(\alpha)$. Why? These automorphisms are in the same coset, more precisely $\sigma_1 \in \sigma_2 H$, exactly when $(\sigma_2)^{-1}(\sigma_1) \in H$, which means that $(\sigma_2)^{-1}\sigma_1(\alpha) = \alpha$ or $\sigma_2(\alpha) = \sigma_1(\alpha)$. Now, $\sigma(\alpha) \in \{\alpha_1 := \alpha, \alpha_2, \dots, \alpha_k\}$ where $\{\alpha_1 := \alpha, \alpha_2, \dots, \alpha_k\}$ are the (not necessarily distinct) roots of the minimal polynomial of α . Now, E'/F Galois means that any polynomial with a root in E' splits completely in E'. So, all roots $\{\alpha_1 := \alpha, \alpha_2, \dots, \alpha_k\}$ are contained in E', which means that for all $i \in [k]$ there exists some $\sigma_i \in \operatorname{Gal}(E'/F)$ such that $\sigma_i(\alpha) = \alpha_i$, each corresponding to a different coset of G/H (because we note that E'/F Galois implies E'/F separable which implies that the minimal polynomial of any element of E'/F is separable. Thus, all roots of the minimial polynomial of α actually are distinct meaning that $\alpha_i \neq \alpha_i$ for $j \neq i$). Thus, a valid set of coset representatives for G/H is such a set $S := \{\sigma_i | i \in [k]\}$. Thus, if we denote the minimal polynomial of α by $m_{\alpha}(x)$, we have $m_{\alpha}(x) = \prod_{i=1}^{k} (x - \alpha_i) = \prod_{\sigma_i \in S} (x - \sigma_i(\alpha))$. Finally, by noting that $f_{\alpha}(x) = m_{\alpha}(x)^{[E:F(\alpha)]}$ we see that in this case $[E:F(\alpha)] = 1$ which gives us $f_{\alpha}(x) = m_{\alpha}(x)$ in this case. Now, say that $E \supseteq F(\alpha)$ and denote $H := \operatorname{Gal}(E'/E)$ while $K := \operatorname{Gal}(E'/F(\alpha))$. Now, once again we have that if $S := {\sigma_i | i \in [k]}$ where σ_i is a field automorphism fixing F such that $\sigma_i(\alpha) = \alpha_i$, then S is a set of coset representatives of G/K and $m_{\alpha}(x) = \prod_{\sigma_i \in S} (x - \sigma_i(\alpha))$. Finally, we note that if we have S a set of coset representatives for G/K and T a set of coset representatives for K/H (none of G/K or K/H are claimed to be groups), then $R := \{st | s \in S, t \in T\}$ is a set of coset representatives for G/H. Finally, one notes that $t(\alpha) = \alpha$ for all $t \in T$ since $t \in K := \text{Gal}(E'/F(\alpha))$. So, $\prod_{st\in R}(x-st(\alpha)) = \prod_{st\in R}(x-s(\alpha)) = \prod_{s\in S}(x-s(\alpha))^{|T|} = \prod_{s\in S}(x-s(\alpha))^{|E|F(\alpha)} = (\prod_{s\in S}(x-s(\alpha)))^{[E:F(\alpha)]} = m_{\alpha}(x)^{[E:F(\alpha)]} = f_{\alpha}(x)$ and we are done.

7

Let G:=Gal(E'/F). Then, let $K:=Gal(E'/E_1)$, $H:=Gal(E'/E_2)$. Now, let S be a set of coset representatives for G/H and let T be a set of coset representatives for H/K. Then, $R:=\{st|s\in S,t\in T\}$ is a set of coset representatives for G/K. Finally, note that $Tr_{E_1/F}(\alpha)=\sum_{q\in Q}(q(\alpha))$ where Q is a set of coset representatives for G/K. Recalling that R is such a set, we get that $Tr_{E_1/F}(\alpha)=\sum_{r\in R}(r(\alpha))=\sum_{s\in S}\sum_{t\in T}st(\alpha)=\sum_{s\in S}s(\sum_{t\in T}t(\alpha))=\sum_{s\in S}s(Tr_{E_1/E_2}(\alpha))=Tr_{E_2/F}(Tr_{E_1/E_2}(\alpha))$ and we are done.

8

By definition m_{α} is irreducible. One can only have an inseparable irreducible polynomial in an infinite field of finite characteristic (or perhaps non-zero characteristic is a better way to say it). Now, for any field, its characteristic is either 0 or a prime number p. So, say F has characteristic p. We wish to show that p divides $Tr_{F(\alpha)/F}$. Well, first note that $Tr_{F(\alpha)/F} = \sum_{i=1}^n \alpha_i$ where $\{\alpha_i|i\in[n]\}$ are the not necessarily distinct roots of m_{α} . Now, we also note that as computed in problem $4\sum_{i=1}^n \alpha_i = \pm a_{n-1}$ where a_{n-1} is the coefficient of x^{n-1} in m_{α} . Next, one notes that m_{α} inseparable means that $\gcd(m_{\alpha}, m'_{\alpha}) \neq 1$. So, say $m_{\alpha}(x) = g(x)f(x)$ and $m'_{\alpha}(x) = g(x)h(x)$ where $g(x) =: \sum_{i=0}^k d_i x^i$, $f(x) =: \sum_{i=0}^{n-k} b_i x^i$, and $h(x) =: \sum_{i=0}^{n-k-1} c_i x^i$. Next, note that $m_{\alpha}(x) = \sum_{i=0}^k \sum_{j=0}^{n-k} d_i b_j x^{i+j}$ and $m'_{\alpha}(x) = \sum_{i=0}^k \sum_{j=0}^{n-k-1} d_i c_j x^{i+j}$. As noted before $Tr_{F(\alpha)/F} = \pm a_{n-1} = \pm (d_{k-1}b_{n-k} + d_k b_{n-k-1})$. However, m_{α} monic implies that $b_{n-k} = d_k = 1$. So, $Tr_{F(\alpha)/F} = \pm a_{n-1} = \pm (d_{k-1} + b_{n-k-1})$. Next, one notes that the coefficient of x^{n-2} in m'_{α} is $a'_{n-2} = (n-1)$

 $1)a_{n-1} = \pm (n-1)(Tr_{F(\alpha)/F}) = \pm (n-1)(d_{k-1} + b_{n-k-1}) = (d_{k-1}c_{n-k-1} + d_kc_{n-k-2}), \text{ but } a'_{n-1} = n = d_kc_{n-k-1} = c_{n-k-1} \text{ implies that } c_{n-k-1} = n. \text{ So, } a'_{n-2} = (n-1)a_{n-1} = \pm (n-1)(Tr_{F(\alpha)/F}) = \pm (n-1)(d_{k-1} + b_{n-k-1}) = (nd_{k-1} + c_{n-k-2}).$

9

Say E/F is an inseparable extension with $E'\supset E\supset F$ and $E'=E(\alpha)$ for some $\alpha\in E'$ whose minimal polynomial over E is inseparable. Now, as shown in problem 7, $Tr_{E'/F}=Tr_{E/F}Tr_{E'/E}$. Now, since $Tr_{E'/E}=Tr_{E(\alpha)/E}\equiv 0$, we get that $Tr_{E'/F}=Tr_{E/F}*0\equiv 0$ and we are done.

10

We note that $\sigma: F^\times \to F^\times$ is a group homomorphism for any field automorphism σ (regardless of what is fixed by σ , I'm just saying it's an automorphism). Now $Tr_{E'/F}(\alpha) = \sum_{\sigma \in Gal(E'/F)} \sigma(\alpha)$. Say $Tr_{E'/F}(\alpha) = 0$ for all $\alpha \in E'$. Then, Dedekind's lemma says that $\sum_{\sigma \in Gal(E'/F)} a_i \sigma_i = \sum_{\sigma \in Gal(E'/F)} \sigma_i$ must satisfy $a_i = 0$ for all $i \in |Gal(E'/F)|$, a contradiction. Now, say we have a separable extension E/F. We know that there exists field $E' \supset E$ such that E'/F is Galois. Now, $Tr_{E'/F} = Tr_{E/F}Tr_{E'/E}$. Since E'/F is Galois, we just showed that $Tr_{E'/F}$ is not the zero function. Assume for contradiction that $Tr_{E/F}$ were the zero function. Then, one would have $Tr_{E'/F} = 0(Tr_{E'/E}) \equiv 0$, a contradiction and we are done.