Lab 03, Spring 2017 Deadline: 11:59pm, 2/15/2017

Solving the Max Subarray Problem via divide-and-conquer

Description In this lab assignment, your job is to implement the $O(n \log n)$ time divideand-conquer algorithm for the Max-Subarray-Problem; for the pseudo-code, see page 72 in the textbook. Recall that in the problem, we are given as input an array $A[1 \cdots n]$ of n integers, and would like to find i^* and j^* $(1 \le i^* \le j^* \le n)$ such that $A[i^*] + \cdots + A[j^*]$ is maximized.

Input structure The input starts with an integer number n, which indicates the array size. Then, the integers, $A[1], A[2], \dots, A[n]$ follow, one per line.

Output structure Output the sum of integers in the max subarray, i.e., $A[i^*] + \cdots + A[j^*]$.

Examples of input and output:

Input

6

-3

11

-2

-3

10 -5

Output

16

Note that in this example, the max subarray is $A[2\cdots 5]$. (The array's starting and ending indices are 1 and 6, respectively.) So, we output $A[i^*] + \cdots + A[j^*] = 11 - 2 - 3 + 10 = 16$. The output is only one number and has no white space.

See the lab guidelines for submission/grading, etc., which can be found in Files/Labs.