<u>Квадратные уравнения</u>

$$ax^2+bx+c=0$$
, $a\neq 0$

$$D = b^2 - 4ac, D \ge 0$$

 $\chi = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},$

D < 0 если корней нет.

Теорема Виета

$$\begin{cases} x_1 + x_2 = -\frac{b}{a}, \\ x_1 \cdot x_2 = -\frac{c}{a}. \end{cases}$$

Разложение квадратного трехчлена

 $ax^2 + bx + c = a \cdot (x - x_1) \cdot (x - x_2)$, где x_1 , x_2 -корни уравнения

Корень п-ой степени

$$\sqrt[n]{a} = b, b^n = a,$$

 $rde \ a \ge 0, b \ge 0, n \in \mathbb{N}, n > 1$

Свойства корня п-ой степени

Coodemod Ropha II od emendia		
$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$, где $a \ge 0$, $b \ge 0$	$\sqrt[np]{a^{kp}} = \sqrt[n]{a^k}$, $z \partial e \ a \ge 0$	
$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}, \ \text{sde } a \ge 0, \ b > 0$	$\sqrt[n]{a^n} = \begin{cases} a , n-4emho, \\ a, n-he4emho \end{cases}$	
$(\sqrt[n]{a})^k = \sqrt[n]{a^k}$, εδε $a \ge 0$	$\sqrt[n]{-a} = -\sqrt[n]{a}$, $n - $ нечетно	
$\sqrt[n]{\sqrt[k]{a}} = \sqrt[nk]{a}$, где $a \ge 0$	$a^{\frac{k}{m}} = \sqrt[m]{a^n}$, где $a \ge 0$	

Степени

$a^{\frac{p}{q}} = \sqrt[q]{a^p}$, εδε $a \ge 0$, $q \in N$, $p \in Z$			
Свойства степени (для $n \in R$, $k \in R$)			
a ⁰ = 1, где a ≠ 0	$a^1 = a$,		
$a^{-1} = \frac{1}{a'} : \partial e \ a \neq 0$	$a^{-n} = \frac{1}{a^{n'}} \operatorname{rde} a \neq 0$		
$a^n \cdot a^k = a^{n+k}$	$a^n:a^k=a^{n-k}$, где $a\neq 0$		
$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n, \ \partial e \ b \neq 0$	$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$, $z\partial e \ a \neq 0$, $b \neq 0$		

Логарифм

$log_a b = c$, $a^c = b$, ε $de a > 0$, $a \ne 1$, $b > 0$			
Основное логарифмическое тождество: $a^{\log_a b} = b$			
Свойства логарифма			
$log_a 1 = 0$	$a^{\log_a c} = c^{\log_a a}$		
$log_a a = 1$	$\log_a b = \frac{\log_c b}{\log_c a}$		
$\log_{a^k} b = \frac{1}{k} \log_a b$	$\log_a b = \frac{1}{\log_b a}$		
$\log_a b^k = k \log_a b$	$\log_a b \cdot c = \log_a b + \log_a c$		
$\log_{a^k} b^m = \frac{m}{k} \log_a b$	$\log_a \frac{b}{c} = \log_a b - \log_a c$		

Тригонометрия

Тригонометрические функции основных углов

	Углы					
Фунцина	<i>0</i> º	30⁰	45º	60º	90º	
Функция -	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	
sinx	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	
COSX	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	
tgx	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	-	
ctgx	-	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	

Основные тригонометрические тождества

$tgx = \frac{sinx}{cosx}$		$ctgx = \frac{1}{tgx} = \frac{cosx}{sinx}$
$\sin^2 x + \cos^2 x = 1$	$tgx + 1 = \frac{1}{\cos^2 x}$	$ctgx + 1 = \frac{1}{\sin^2 x}$

Решение простейших тригонометрических уравнений

$$-1 \le sinx \le 1$$
; $-1 \le cosx \le 1$

$$sinx = a, x = \begin{bmatrix} arcsina + 2\pi k, k \in \mathbb{Z} \\ \pi - arcsina + 2\pi k, k \in \mathbb{Z} \end{bmatrix}$$

$$cosx = a, x = \pm arccosa + 2\pi k, k \in \mathbb{Z}$$

$$tgx = a, x = arctga + \pi k, k \in \mathbb{Z}$$

$$ctgx = a, x = arcctga + \pi k, k \in \mathbb{Z}$$

