Basic Descriptive Analysis Numerical Variables

K. Gibert

Department of Statistics and Operation Research
Knowledge Engineering and Machine Learning group
Universitat Politècnica de Catalunya, Barcelona
karina.gibert@upc.edu

www.eio.upc.edu/homepages/karina

Guió'

- 0. Basic Principles in descriptive analysis
- 1. Graphical Descriptive tools for numerical variables
- 2. Numerical Descriptive tools for numerical variables
- 3. Descriptive Analysis of Temporal variables
- 4. Introduction to Space
- 5. Normality and Exponentiality Evaluation

0. Descriptive analysis

Compact and Informative view of the variable structure

DATA= FIT+ ERROR

General Pattern

Structural Component

Random Component

Tools

1. Graphical

Visualitze variable's distribution

Objectivate

2. Numerical

Quantify what is observed in he graphs

1. Graphical tools

1. Performing the graph

Mechanical

(software)

2. Reading the graph

Technical

(statistitian or data miner)

3. Interpretation

Conceptual

(domain expert)

Contextualization

Graphical tools for numerical variables

1.Histogram

2.Boxplot

3. Others (dotplot, stem and leaf plot....)

Histogram

Visualitzation of frequencies distribution table

Intervalo	Número de Observaciones	Observaciones Acumuladas	Frec Relativas	Frec Acumuladas	
45-65	1	1	1/17 = .06	0.06	
65-75	5	6	0.29	0.35	
75-85	5	11	0.29	0.64	
85-95	1	12	0.06	0.70	
95-105	3	15	0.17	0.87	
10° 115	0	15	0	0.87	
ency	1	16	0.06	0.93	
ency ses? 35	0	16	0	7	
35-145	1	17	0.06	Bars PROPO	AREAS

Heuristics: $\begin{cases} 6 \log_{10}(n) & \text{, si } n < 100 \\ 1,2\sqrt{n} & \text{, si } n \ge 100 \end{cases}$

 $3,49 s n^{-\frac{1}{3}}$

n 3 © K. Gibert

to frequencies

Histogram

Intervalo	Número de Observaciones
45-65	1
65-75	5
75-85	5
85-95	1
95-105	3
105-115	0
115-125	1
125-135	0
135-145	1

- 1.Range of variable (max-min)
- 2.Central trend
- 3. Dispersion
- 4.Simmetry
- 5. Anomalies

Central trend

Dispersion/Variability

How observations concentrate arround central trend?

Mean distance to central trend

Anomalies

Outliers: Observations anormaly far from rest

Main Patterns

[Gibert, JANO1996]

Albumine

Bilirrubine

Symmetric

Main Patterns

Height

Multimodality

Several central trends!!

Find discriminant factor

Main Patterns

Main Patterns

Height of Men

Scarped

Part of distribution trunked!

(only adult men)

Main Patterns

Dentat

Measurement approximations!

Count one minute

Count 10 sec x 6

Count 25 sec x 4

Pulse per minute

Tools

1. Graphical

Visualitze variable's distribution

Objectivate

2. Numerical

Quantify what is observed in he graphs

2. Numerical tools

Quantify and synthetize characteristics of a distribution

- 1. According to the information provided
 - 1. Central trend statistics
 - 2. Variability statistics
- 2. According to the stability
 - 1. Classic
 - 2. Robust

Numerical tools for numerical variables

	Robusto	Clásico
Posición	Mediana	Media
	Cuartiles	
	Percentiles	
	Moda	
Dispersión	Distancia entre	S
	cuartiles	Desviación
		estándar
		S^2
		Varianza
		Coef.
		variación
		Amplitud

Numerical tools Mean

 $x_1, x_2, ... x_n$ are *n* observations of a variable X

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Central trend

Numerical tools

Mean

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Numerical tools Mode

The most frequent observation

Numerical tools

Dispersion Measures

$$V(X) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}$$

$$S_X = \sqrt{V(X)} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}}$$

$$qV(X) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

$$q = \sqrt{qV(X)} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

Dispersion/Variability

How observations concentrate arround central trend?

Mean distance to central trend

Numerical tools

Dispersion Measures

Variation Coeficient:

$$\frac{s}{\bar{x}} \times 100$$

d_i/range

Numerical tools 5-Number Summary

Boxplot

[Tukey 1956]

Symbolic representation of 5-Number Summary

READING BOXPLOTS

- 1.Range of variable (max-min)
- 2.Central trend
- 3. Dispersion
- 4.Simmetry
- 5. Anomalies

READING BOXPLOTS

- 1.Range of variable (max-min)
- 2.Central trend
- 3. Dispersion
- 4.Simmetry
- 5. Anomalies

READING BOXPLOTS

Dispersion

Ammonium

QB-B

READING BOXPLOTS

Simmetry

QR-G

SS-S

READING BOXPLOTS

Symmetry

if Mean <> Median then

if Me-Q1 < >Q3-Me then assymmetry else outliers

else symmetry without outliers

Synthesis

- 1. Descriptive analysis of numerical variable
 - 1. Central trend and variability (classical/robust)
 - 2. Graphical and Numerical tools

Antiquedad Trabaio

mean, q-stdev, variation coefficient

3. Characterize the variable

Central trend, variability, symmetry, n-modality....

3. Cronological data

Observations are sequentially sorted in the dataset

Cronological data

Observations are sequentially sorted in the dataset

Evenctually the Date is Available

Cronological data Date Objects in R

Symbo	Meaning	Example
%d %D	day as a number (0-31) Date format	01-31
%a %A	abbreviated weekday unabbreviated weekday	Mon Monday
%m	month (00-12)	00-12
%b %B	abbreviated month unabbreviated month	Jan January
%y %Y	2-digit year 4-digit year	07 2007

31/12/2014: %d/%m/%Y

31-Dic-07: %d-%b-%y

Cronological data Date Objects in R

Symbo	Meaning	Example
%c %C	Date and time Century	
%H %I	Hours (00-23) Hours (1-12)	15 3
% j	Day of the year (0-365)	250
%M	minute (00-59)	January
%S	Second as integer (0-61)	07

23:12:59 = %H:%M:%S

 $11\ 12\ 59 = \%I\ \%M\ \%S$

Cronological data

Observations are sequentially sorted in the dataset

Evenctually the Date is Available

To consider time

4. Assessing Normality

1. 68-97-99.5 Rule

$$[x +-s], [x+-2s] [x+-3s]$$

- 2. Normality plot (qq-plot, Henri line)
- 3. Normality assessment test: Shapiro Wilk

$$W = \frac{\left(\sum_{i=1}^{N} a_i y_i\right)^2}{\sum_{i=1}^{N} (y_i - m_1)^2}$$

yi= ith order statistic m1=sample mean

ai= computed as linear regression to the expected value of standard normal order statistics

5. Assessing Exponentiality

The rule of 70

Time of doubling: 70/R, R growing factor [Moore, McCabe 93]

X has exponential growth with constant factor R if needs 70/R time to pass from X to 2X

Basic Descriptive Analysis Numerical Variables

Karina Gibert

Dpt. Statistics and Operation Research
Knowledge Engineering and Machine Learning Research group
Universitat Politècnica de Catalunya-BarcelonaTech (Spain)

karina.gibert@upc.edu

www.eio.upc.edu/homepages/karina

Are there any questions?...

READING HISTO Central tren Value arround which observa 60 100 120 140

Numerical tools

Dispersion

