Prof. Stefano Bregni

I Appello d'Esame 2018-19 – 2 luglio 2019

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

NB: In ogni esercizio, ogni risposta non giustificata adeguatamente, anche con pochissime parole, avrà valore nullo.

Domanda 1

(svolgere su questo foglio nello spazio assegnato) (6 punti)

Bob adotta il sistema di firma elettronica di El Gamal e pubblica p = 137, $\alpha = 4$, $\beta = \alpha^a \mod p$, tenendo segreto l'esponente a = 129.

- a) Verificare la correttezza dei dati forniti, in base alle ipotesi del metodo di El Gamal. Se $\alpha = 4$ non risultasse una scelta valida, Bob userà invece un valore valido scelto nell'insieme $\alpha = \{5, 7\}$. Se nessuna di queste scelte risultasse valida, Bob rinuncerà a proseguire (e l'esercizio termina qui). Calcolare β .
- b) Bob estrae il numero casuale segreto (nonce) k = 29. Per questo valore di k, calcolare la firma di Bob A = (r, s) del messaggio P = 101.
- c) Verificare se anche la firma A' = (r', s') = (117, 32) è valida per lo stesso messaggio P = 101. Se è valida, calcolare il valore di k per cui è stata calcolata da Bob.

1)
$$\Gamma = d \mod \rho = 5^{29} \mod 13 = (46)$$
 $S = K^{-1} (\Gamma - \alpha \Gamma) \mod (\rho - 1) = 61 (101 - 129.46) \mod 136 = G9$
 $K^{-1} \mod (\rho - 1) = 20^{-1} \mod 136 = 61 \implies A = (46,99)$

C) $G \Gamma = d \cap (101 - 129.46) \mod 136 = 61 \implies A = (46,99)$
 $47^{117} \cdot 177^{12} = 20$
 $5^{101} = 20$
 $S^{101} = 20$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101 - 129.17) (101 - 129.46)$
 $S = P - \alpha \Gamma (101$

Prof. Stefano Bregni

I Appello d'Esame 2018-19 - 2 luglio 2019

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Domanda 2

(svolgere su questo foglio nello spazio assegnato) (5 punti)

Bob adotta il sistema di cifratura a chiave pubblica di El Gamal e pubblica p = 193, $\alpha = 4$, $\beta = \alpha^a \mod p$, tenendo segreto l'esponente a = 59.

- a) Verificare la correttezza dei dati forniti, in base alle ipotesi del metodo di El Gamal. Se $\alpha = 4$ non risultasse una scelta valida, Bob userà invece un valore valido scelto nell'insieme $\alpha = \{5, 6\}$. Se anche queste scelte non risultassero valide, Bob rinuncerà a proseguire (e l'esercizio termina qui). Calcolare β .
- b) Alice estrae il numero casuale segreto (nonce) k = 67 e spedisce il messaggio $P_1 = 200$. Calcolare il messaggio cifrato $C_1 = (r_1, t_1)$.
- c) Alice estrae un nuovo numero casuale segreto (nonce) k e, usando sempre questo stesso valore, spedisce i messaggi P_2 , P_3 , P_4 . Oscar intercetta i messaggi cifrati $C_2 = (r_2, t_2) = (147, 183)$, $C_3 = (r_3, t_3) = (147, 163)$, $C_4 = (r_4, t_4) = (147, 123)$ e, per altra via, viene a sapere che $P_2 = 11$. Calcolare P_3 e P_4 .

Sicurezza delle Reti Prof. Stefano Bregni

I Appello d'Esame 2018-19 – 2 luglio 2019

Prof. Stefano Bregni

I Appello d'Esame 2018-19 – 2 luglio 2019

Cognome e nome:

(stampatello)

(firma leggibile)

Matricola:

Domanda 3

(svolgere su questo foglio nello spazio assegnato) (Spunti)

Alice e Bob adottano il protocollo di *Diffie-Hellman* per l'instaurazione della loro chiave simmetrica K_{AB} . Alice pubblica p=263 e inizialmente $\alpha=13$. Alice sceglie $1 \le x \le p-2$ (segreto). Bob sceglie $1 \le y \le p-2$ (segreto).

a) Alice verifica la correttezza dei dati secondo le ipotesi di Diffie-Hellman. Nel caso $\alpha = 13$ non risulti una scelta valida, Alice si corregge e pubblica invece $\alpha = 14$ (da verificare). Se nessuna di queste scelte risultasse valida, Alice e Bob rinunceranno a proseguire (e l'esercizio termina qui).

b) Oscar osserva i numeri scambiati da Alice e Bob:

Alice → Bob:

$$\alpha^x \equiv 139 \pmod{p}$$

Alice ← Bob:

$$\alpha^y \equiv 71 \pmod{p}$$

Sulla base delle informazioni conosciute da Oscar, calcolare gli esponenti segreti x e y e la chiave K_{AB} .

$$|X = SS|$$
 (m=4 263) Thermite BSGS
 $Y = 30$ (—)
 $|X = 30|$ (—)
 $|X = 30|$ (=)
 $|X = 30|$ (m=4) 263)
 $|X = 30|$ (m=4) 263)

Sicurezza	delle	Reti
Prof Stefan	n Bred	mi

I Appello d'Esame 2018-19 – 2 luglio 2019

Prof. Stefano Bregni

I Appello d'Esame 2018-19 – 2 luglio 2019

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Domanda 4

(svolgere su questo foglio nello spazio assegnato) (5 punti)

- a) Si disegni lo schema di un generatore di sequenza PRBS basato su registro a scorrimento LFSR, realizzato come scrambler autosincronizzante con polinomio caratteristico $P(x) = 1 + x^2 + x^4$ alimentato con tutti "0". Si indichino la sequenza binaria in ingresso con $\{I_k\} \equiv \{0\}$ e la sequenza binaria in uscita con $\{R_k\}$.
- b) Si inizializzino gli elementi di ritardo D_i (i = 1, 2, 3, 4) con $\{0, 1, 0, 0\}$ al passo iniziale k = 0. Ricavare la sequenza PRBS $\{R_k\}$ generata all'uscita, evidenziando la sua periodicità. Qual è il periodo P della sequenza?
- c) Verificare se il polinomio P(x) è irriducibile. Se lo fosse, quali sarebbero i valori possibili di P?

a) I	3 D T	RK	b) -	K	IK	DIK	Dak	D3K	N _{4k}	R_{k}
				012	000	0	1 0 1	0 1 0	001	700
		D3		3 4	0	0 0	0	10	0	10001
		D4	**	5	0	1 0	0	0	0	1
				7	0			}	}	\
	$(x) = x^4 +$:	X4+1	2 1	X+1	<i></i>	1
1	Simplife Simplife	ph X+	12) NO	<u>`</u>	x + x (3+x)	3	X3+	1.2	+X+X
	Tiristike,		۴νζ	51		(3+X)		_ /	x3+1 x3+x+	¥
)=(x2+x-	•					1	$\frac{1}{x}$	2 + X + ´	
	x) naiduā		/ 4	<u>_</u>)				Χ.	+8+7	
Ţ	rs P	= {1,5,	2/15){						

Prof. Stefano Bregni

I Appello d'Esame 2018-19 – 2 luglio 2019

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Domanda 5

(rispondere su questo foglio negli spazi assegnati) (15 punti) (NB: ogni risposta non giustificata adeguatamente, anche con pochissime parole, avrà valore nullo).

1) Si consideri un generatore di password composte da 20 caratteri casuali X scelti nell'alfabeto inglese di 26 caratteri. (3 punti)

a) Qual è la quantità di informazione [bit] delle password, se i 26 caratteri sono equiprobabili?

b) Qual è la quantità di informazione delle password, se invece la probabilità che X sia una vocale è 0.50, e le consonanti sono equiprobabili?

consonanti sono equiprobabili?

a)
$$P(x=x_i) = \frac{1}{26} \quad M(x) = -\frac{36}{7} \cdot \frac{1}{26} \quad left = 4.7 \quad ht/ \quad constitue$$

$$= 3 \quad H(20 \quad cm. lten) = 9.4 \quad ht/$$

b) $P(x=varcale) = 0.50/5$
 $P(x=cannonante) = 9.50/21$
 $H(x) = -[9.50 \quad left = 9.50/21] = 4,357 \quad left = 4.7 \quad left =$

²⁾ Nella suite di protocolli Transport Level Security (TLS), quali sono i passi principali e le funzioni svolte dallo Handshake Protocol? Quante chiavi sono create e per quali scopi? (4 punti)

3) Definire la proprietà "fortemente resistente alle collisioni" per una buona funzione di hash. Si consideri la funzione $h(x) = LSB_{16}(x^4)$, che restituisce i 16 bit meno significativi di x^4 , con x intero. Provare che h(x) non è fortemente resistente alle collisioni. (2 punti)

4) Si supponga di avere un sistema di autenticazione di utenti basato su biometria. Il pattern del candidato k è confrontato con il pattern memorizzato per l'utente A, misurandone la *distanza* d_{kA} secondo un'opportuna metrica. Il candidato è accettato come A se $d_{kA} < D$. Suggerire come scegliere la soglia di accettazione D e spiegare pro e contro di una scelta non ottimale. (2 punti)

5) Si presenti a grandi linee l'algoritmo di creazione della chiave di round (key schedule) in AES.

(**4**punti)