Instituto Federal de Educação Ciência e Tecnologia de São Paulo Curso de Graduação em Engenharia Eletrônica

Circuitos Lógicos Combinacionais

RELATÓRIO DA DISCI-PLINA LABORATÓRIO DE ELETRÔNICA 1 COM O PROF. GILBERTO CUARELLI E O PROF. HAROLDO GUIBU.

Gustavo Senzaki Lucente Luís Otávio Lopes Amorim SP303724X SP3034178

São Paulo

SUMÁRIO

1	INTRODUÇÃO TEORICA !
1.1	Objetivos
1.2	Materiais e Equipamentos Utilizados
2	PROCEDIMENTOS EXPERIMENTAIS
2.1	Primeiro circuito
2.2	Segundo circuito
3	QUESTÕES
3.1	Mintermos
3.2	Maxtermos
4	CONCLUSÃO
	REFERÊNCIAS 14

LISTA DE FIGURAS

Figura 1 – Circu	ito Lógico Mintermos	7
Figura 2 – Circu	ito Lógico Maxtermos	7
Figura 3 – Circu	ito Lógico Mintermos Simplificado	8
Figura 4 – Circu	ito Lógico Mintermos Simplificado no simulador	8
Figura 5 – Circu	ito Lógico Mintermos	10
Figura 6 – Circu	ito Lógico Mintermos Simplificado no simulador	10
Figura 7 – Circu	ito Lógico Mintermos	11

LISTA DE TABELAS

Tabela	1 -	- Tabela	verdade	do	primeiro	circuito		 			•						(
Tabela	2 -	- Tabela	verdade	do	segundo	circuito		 					_		_	_	(

1 INTRODUÇÃO TEÓRICA

Um circuito lógico combinacional é um circuito lógico em que o nível lógico do sinal de saída depende sempre de uma combinação dos sinais de entrada (OLIVEIRA, 2013). Esse tipo de circuito é especialmente útil quando não há necessidade de armazenar ou ler algum vaor armazenado em algum tipo de memória, uma aplicação interessante é em processos de automatização de hortas, em que caso a entrada, que pode ser fornecida por um sensor de umidade do solo, for 1, o circuito acionará regadores automáticos, independete de qualquer outra coisa.

1.1 Objetivos

Analisar e entender as etapas de elaboração de um circuito digital combinacional. Usar a tabela verdade para descrever a lógica de um sistema combinacional. Usar a simplificação via álgebra de Boole em um projeto.

1.2 Materiais e Equipamentos Utilizados

- 1 Circuito integrado 7400 (Porta NAND MED50)
- 1 Circuito integrado 7402 (Porta NOR MED50)
- 1 Circuito integrado 7408 (Porta AND MED50)
- 1 Circuito integrado 7432 (Porta OR MED50)
- 1 Circuito integrado 7486 (Porta XOR MED52)
- 1 Circuito integrado 74266 (Porta XNOR MED52)
- 1 Circuito integrado 7404 (Porta NOT MED52)
- 1 Fonte de alimentação DC (LEG2000)
- 1 Gerador de Sinais (LEG2000)
- LED's e resistores para monitoramento dos níveis lógicos (LEG2000)

2 PROCEDIMENTOS EXPERIMENTAIS

No experimento fizemos a montagem e análise de dois circuitos lógicos combinacionais, cada um para um propósito diferente.

2.1 Primeiro circuito

O primeiro circuito proposto foi um que possui três entradas e que a saída é 1 quando a maioria das entradas for 1. Para realizar a montagem, inicialmente construímos a tabela 1, tabela verdade do cirtuito e, depois sua expressão booleana de mintermos e de maxtermos, visíves nas equações 2.1 e 2.2 respectivamente.

Tabela 1 – Tabela verdade do primeiro circuito

A	B	C	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Fonte: Elaborada pelos autores

$$\bar{A}BC + A\bar{B}C + AB\bar{C} + ABC \tag{2.1}$$

$$\overline{(A+\bar{B}+\bar{C})} \cdot \overline{(\bar{A}+B+\bar{C})} \cdot \overline{(\bar{A}+B+\bar{C})} \cdot \overline{(\bar{A}+\bar{B}+\bar{C})}$$
(2.2)

O circuito lógico que representa cada uma dessas expressões booleanas foi montado. Asim, a figura 1 é o circuito da expressão dos mintermos e o da figura 2 representa a expressão dos maxtermos.

A S

Figura 1 – Circuito Lógico Mintermos

Fonte: Elaborada pelos autores

Figura 2 – Circuito Lógico Maxtermos

Fonte: Elaborada pelos autores

Esses dois circuitos são muito complexos, isso fica vísivel inclusive pois o entendimento dos desenhoe é difícil. Por isso, podemos utilizar a álgebra de boole para sdimplificar essas expressões e, com isso, montar um circuito equivalente que seja mais simples. Fizemos esse processo com a expressão de mintermos:

$$\bar{A}BC + A\bar{B}C + AB\bar{C} + ABC = \bar{A}BC + A\bar{B}C + AB(C + \bar{C}) = \bar{A}BC + A\bar{B}C + AB = \bar{A}BC + \bar{A}BC + \bar{A}BC = \bar{$$

$$\bar{A}BC + A(\bar{B}C + B) = \bar{A}BC + A(B + C) = \bar{A}BC + AB + AC =$$

$$B(\bar{A}C + A) + AC = AC + B(AC) = AB + AC + BC$$

Assim, o circuito simplificado pode ser visto na figura 3, e o circuito montado em um simulador na figura 4. Além disso, utilizamos o circuito do simulador para montar a tabela verdade experimental que, na verdade, foi igual à pedida nos requisitos do sistema, ou seja, a tabela 1 serve tanto para o sistema teórico quanto o prático.

Figura 3 – Circuito Lógico Mintermos Simplificado

Fonte: Elaborada pelos autores

Figura 4 – Circuito Lógico Mintermos Simplificado no simulador

Fonte: Elaborada pelos autores

2.2 Segundo circuito

O segundo experimento trata-se de um circuito lógico utilizado para avaliar se guardar 4 elementos químicos num depósito, as especificações do projeto informam que se or produtos B e C ou C e D forem armazenados juntos, sem que o produto A esteja junto é perigoso. Portanto, inicialmente montamos uma tabela verdade em que, temos quatro entradas (A, B, C, D) sendo que, uma entrada 1 significa que o produto está sendo armazenado, já 0 o contrário, e a saída é 1 para quando há perigos nesse armazém. A tabela 2 representa isso.

A	В	C	D	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Tabela 2 – Tabela verdade do segundo circuito

Fonte: Elaborada pelos autores

Com essa tabela podemos montar a esxpressão utilizando os mintermos. Essa expressão pode ser vista na equação 2.3. Além disso, a figura 5 representa o circuito digital para essa expressão booleana.

$$\bar{A}\bar{B}CD + \bar{A}BC\bar{D} + \bar{A}BCD \tag{2.3}$$

A B S

Figura 5 – Circuito Lógico Mintermos

Fonte: Elaborada pelos autores

Novamente, podemos simplificar a expressão e, assim, conseguir um circuito mais legível, barato e simples de ser construído:

$$\bar{A}\bar{B}CD + \bar{A}BC\bar{D} + \bar{A}BCD = \bar{A}C(\bar{B}D + B\bar{D} + BD) =$$

$$\bar{A}C(D(\bar{B}+B)+B\bar{D})=\bar{A}C(D+B\bar{D})=\bar{A}C(B+D)$$

Assim, a equação 2.4 é a expressão booleana do problema simplificada, já a figura 7 é o diagrama do circuito que representa essa equação e a figura 6 é a montagem feita em simulador desse circuito.

$$\bar{A}C(B+D) \tag{2.4}$$

Figura 6 – Circuito Lógico Mintermos Simplificado no simulador

Fonte: Elaborada pelos autores

Figura 7 – Circuito Lógico Mintermos

Fonte: Elaborada pelos autores

Dessa forma, fica vísivel como a simplificação de expressões booleanas utilizando os teoremas da álgebra de boole é essencial. Um circuito de 4 entradas, conexões complexas e 7 portas diferentes, pode ser simplificado para um com apenas 3 portas e algumas poucas e simples conexões.

3 QUESTÕES

Como sempre, além dos experimentos, os professores proporam algumas questões a serem resolvidas pelo grupo.

3.1 Mintermos

- 1. $S = A + \bar{B} + C = A(B + \bar{B})(C + \bar{C}) + \bar{B}(A + \bar{A})(C + \bar{C}) + C(A + \bar{A})(B + \bar{B}) = (AB + A\bar{B})(C + \bar{C}) + (AB + \bar{A}\bar{B})(C + \bar{C}) + (AC + \bar{A}C)(B + \bar{B}) = ABC + \bar{A}BC + AB\bar{C}\bar{A}\bar{B}C + A\bar{B}\bar{C} + \bar{A}\bar{B}\bar{C}$
- 2. $S = \overline{A(\bar{B} + C\bar{D})} + \bar{A}BC = \bar{A}BC + B\overline{(C\bar{D})} = \bar{A}BC + \bar{A} + B(\bar{C} + D) = \bar{A}BC + \bar{A} + B(\bar{C} + D) = \bar{A}BC + \bar{A} + B(\bar{C} + D) + B\bar{C}(A + \bar{A}) + B\bar{C}(A + \bar{A}) + B\bar{C}(A + \bar{A}) = \bar{A}BCD + \bar{A}BC\bar{D} + (AB\bar{C} + \bar{A}B\bar{C})(D + \bar{D}) + (ABD + \bar{A}BD)(C + \bar{C}) = ABCD + \bar{A}BCD + AB\bar{C}D + \bar{A}B\bar{C}D + \bar{A}B\bar{C}\bar{D} + \bar{A}B\bar{C}\bar{D}$

3.2 Maxtermos

- 1. $S = A\bar{B}C\bar{D} = \overline{(\bar{A} + B + \bar{C} + D)}$ (pelo teorema de DeMorgan).
- 2. $S = (\bar{A} + C)D + \bar{B}D = \overline{(A + B + C + \bar{D})} \times \overline{(A + B + \bar{C} + \bar{D})} \times \overline{(A + \bar{B} + C + \bar{D})} \times \overline{(A + \bar{C} + \bar{C} + \bar{D})} \times \overline{(\bar{A} + B + C + \bar{D})} \times \overline{(\bar{A} + B + \bar{C} + \bar{D})} \times \overline{(\bar{A} + \bar{C} + \bar{C} + \bar{C} + \bar{D})} \times \overline{(\bar{A} + \bar{C} + \bar{C} + \bar{C} + \bar{C} + \bar{C} + \bar{C})} \times \overline{(\bar{A} + \bar{C} + \bar{C})}$

4 CONCLUSÃO

Como pudemos ver, circuitos lógicos combinacionais são muito úteis para modelar problemas e sistemas reais, por isso eles são amplamente utilizados no dia-a-dia. Porém, é notável que apenas a utilização desses circuitos, a partir de uma tabela verdade montada a partir das especificações do projeto pode ser muito complexa, sendo assim, na maioria dos casos, necessário simplificar esse circuito de alguma forma.

Uma das formas mais utilizadas para essa simplificação é a simplificação algébrica utilizando os teoremas da álgebra de Boole, porém, em situações mais complexas, as expressões podem ser muito grande e difíceis de serem simplificadas algébricamente, dessa forma há outros mecanismos, como o mapa de Karnaugh, tema do próximo experimento.

REFERÊNCIAS

OLIVEIRA, A. M. B. de. **CIRCUITOS LÓGICOS COMBINACIONAIS**. 2013. Disponível em: https://amauroboliveira.files.wordpress.com/2013/03/circuitos-logicos-combinacionais.pdf>. Acesso em: 2 de fev. de 2021. Citado na página 5.