Gaussian Mixture Models

K-Means Clustering

 Algorithm organizes data into clusters such that there is high intra-cluster similarity and low inter-cluster similarity.

• A datapoint will belong to one cluster, not several – resulting in a specific number of

disjoint non-hierarchical clusters.

Initialized prototypes, then iterated between two phases:

- Expectation-step: Each data point assigned to nearest prototype
- Maximization-step: Prototypes updated to be the cluster means

Limitations of K-Means

- Clusters are assumed to be spherical and equally sized, which is not valid in most real-world scenarios.
- K-Means is a hard clustering method, with each data point being assigned to a single cluster.
 - A small shift of a data point can flip it to a different cluster.
 - There is no uncertainty measure or probability that tells us how much a data point is associated with a specific cluster.
- Not clear on how to choose the value of K
- Probable solution is to replace the "hard" clustering of K-means with 'soft' probabilistic assignments
- The probability distribution of the data is represented as a Gaussian Mixture Model.

Understanding the Different Approaches

Scenario 1:

We have labels and we would like to model the appearance of the two classes –

Maximum Likelihood Estimation

• Assuming observed data points are generated independently, $D = \{x_1, x_2, ..., x_N\}$

Likelihood =
$$p(x_1, ..., x_N; \mu_i, \sigma_i^2) = \prod_{n=1}^N \frac{1}{\sqrt{2\pi}\sigma_i} e^{-\frac{(x_n - \mu_i)^2}{2\sigma_i^2}}$$
 where i is for Class 0 and Class 1 respectively

Likelihood = $p(x_1, ..., x_N; \mu_i, \Sigma_i) = \prod_{n=1}^N \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma_i|^{\frac{1}{2}}} e^{\left(-\frac{1}{2}(x_n - \mu_i)^T \Sigma_i^{-1} (x_n - \mu_i)\right)}$

Gaussian Density Function

We start with the Gaussian Density Function,

$$p(x_1, ..., x_N; \boldsymbol{\mu_i}, \Sigma_i) = \mathcal{N}(\boldsymbol{x} | \boldsymbol{\mu_i}, \Sigma_i) = \prod_{n=1}^{N} \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma_i|^{\frac{1}{2}}} e^{\left(-\frac{1}{2}(x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i)\right)}$$

- x_n represents our data points,
- d is the number of dimensions of each data sample (# of features)
- μ and Σ are the mean and covariance respectively.
- Say if you have a dataset with 1500 samples and 5 features, N=1500, d=5

$$x = 1500 \times 5$$
, $\mu = 1 \times 5$, $\Sigma = 5 \times 5$ matrices

Maximum Likelihood

 We set the parameters by maximizing the likelihood function, which we have discussed before is equivalent to maximizing the log likelihood

Likelihood =
$$p(x_1, ..., x_N; \boldsymbol{\mu}_i, \Sigma_i) = \prod_{n=1}^{N} \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma_i|^{\frac{1}{2}}} e^{\left(-\frac{1}{2}(x_n - \boldsymbol{\mu}_i)^T \Sigma_i^{-1} (x_n - \boldsymbol{\mu}_i)\right)}$$

$$\ln p(x_1, ..., x_N; \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) = -\frac{N}{2} \ln |\boldsymbol{\Sigma}_i| - \frac{N}{2} d \ln(2\pi) - \frac{1}{2} \sum_{n=1}^{N} (x_n - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (x_n - \boldsymbol{\mu}_i)$$

 Maximizing w.r.t. the mean and the covariance gives the sample mean and sample covariance respectively

$$\mu_i = \frac{1}{N} \sum_{n=1}^{N} x_n,$$

$$\Sigma_i = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_i) (x_n - \mu_i)^T$$

Understanding the Different Approaches

Scenario 2:

Once we have modelled the 2 classes, how do we compute the likelihood that a point belongs to Class 1 or Class 0 –

Probabilistic Inference

We compute the likelihood that a particular model generated a sample – Bayes Theorem

$$p(C_0|x_j) = \frac{p(x_j|C_0)p(C_0)}{p(x_j|C_0)p(C_0) + p(x_j|C_1)p(C_1)}, \ p(C_1|x_j) = \frac{p(x_j|C_1)p(C_1)}{p(x_j|C_0)p(C_0) + p(x_j|C_1)p(C_1)}$$

Parameters of the Gaussian being known, we can compute the soft assignments of all the points.

Understanding the Different Approaches

Scenario 3:

How can we get the labels and the distribution of the classes both at once?

Expectation Maximization (EM) Algorithm

- We introduce the concept of Gaussian Mixture which is a function comprised of several Gaussians, depending on the number of clusters of our data.
- Each Gaussian is comprised of the following features:
 - Mean μ defining the centre of the Gaussian.
 - Covariance Σ defining the width of the Gaussian.
 - An additional mixing parameter π defining how big or small the Gaussian function will be in terms of probability, $\sum_{k=1}^K \pi_k = 1$, where K is the number of clusters.

Gaussian Mixtures

Linear super-position of Gaussians

$$p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)$$

Normalization and positivity require

$$\sum_{k=1}^K \pi_k = 1, \qquad 0 \le \pi_k \le 1$$

Understanding Mixing Parameter

- The mixing coefficient for a Gaussian is the overall probability of observing a point x_n that comes from Gaussian k
- Given a data point x_n , what is the probability it comes from a Gaussian distribution k

$$p(\mathbf{x}_n) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu_k}, \boldsymbol{\Sigma_k})$$

• To determine the optimal values for μ_k , π_k , Σ_k we need to determine the maximum likelihood of the model.

$$p(X) = \prod_{n=1}^{N} p(x_n) = \prod_{n=1}^{N} \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)$$

Understanding Mixing Parameter

Applying the logarithm to both side of the equation, like before:

$$\ln p(X) = \sum_{n=1}^{N} \ln \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n | \boldsymbol{\mu_k}, \boldsymbol{\Sigma_k})$$

- Differentiating the above equation with respect to the parameters μ_k , π_k , Σ_k is not straightforward.
- The iterative method, Expectation Maximization is used to compute the above equation.

Expectation – Maximization Algorithm

- Step 1: Decide the number of clusters and initialize the mean, covariance, and mixing parameter (μ_k , Σ_k , π_k) per cluster.
 - The mixing parameter is assumed to be equal for all the clusters in the beginning, say if K = 3, $\pi = \left\{\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right\}$.
- Step 2: **Expectation Step (E step)** For each sample data x_i , we calculate the probability that the data point belongs to cluster k. [Scenario 2]

$$p(x_{ik}) = \frac{\pi_k \mathcal{N}(x_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k=1}^K \pi_k \, \mathcal{N}(x_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$$

Expectation – Maximization Algorithm

- Step 2: The E-step computes the probabilities using the current estimates of the model's parameters. It measures how much the kth Gaussian distribution is responsible for the generation of the ith data point.
- Step 3: Maximization Step (M step) The algorithm uses the measurement obtained for each data point and each Gaussian distribution in the E-step to update the estimates of the model parameters. [Scenario -1]

$$\pi_{k} = \frac{\sum_{i=1}^{N} p(x_{ik})}{N}, \qquad \mu_{k} = \frac{\sum_{i=1}^{N} p(x_{ik})x_{i}}{\sum_{i=1}^{N} p(x_{ik})}, \qquad \Sigma_{k} = \frac{\sum_{i=1}^{N} p(x_{ik}) (x_{i} - \mu_{k})^{2}}{\sum_{i=1}^{N} p(x_{ik})}.$$

Expectation – Maximization Algorithm

- Step 2: Expectation Step (E-step)
- Step 3: Maximization Step (M- step)
- Step 4: The updated estimates μ_k , Σ_k , π_k are used in the next E-step [Step -2] to compute new responsibilities for the data points.
- The process repeats iteratively until convergence, i.e., the model parameters do not change significantly from one iteration to the next.
- Each step increases the log-likelihood of our model

Flowchart

Gaussian Mixture Example: Start

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Properties of EM

- EM is trying to optimize a nonconvex function
- But EM is a local optimization algorithm
- Typical solution: Random Restarts
 - Just like K-Means, we run the algorithm many times
 - Each time initialize parameters randomly
 - Pick the parameters that give highest likelihood

Pros and Cons for EM

Pros:

- no learning rate (step-size) parameter
- automatically enforces parameter constraints
- very fast for low dimensions
- each iteration guaranteed to improve likelihood

Cons:

- can get stuck in local minima
- Sensitivity to Initialization
- Computational Complexity
- Choosing the optimal number of clusters