

ELECTRIC VEHICLES SALES BY STATE IN INDIA

(USING PYTHON, MATPLOTLIB, SEABORN)

DEEPAK SEN

INTRODUCTION

Why EV Sales Are Important in India:

India is at a turning point in its transition to sustainable transportation. The rise in electric vehicle (EV) sales is driven by the need to reduce air pollution, oil dependency, and carbon emissions while boosting economic growth and innovation. With increasing urbanization and fuel prices, EVs offer a cleaner, more cost-effective alternative to traditional vehicles.

1. Environmental Impact:

- India is home to 22 of the world's 30 most polluted cities. Shifting to EVs can significantly cut carbon emissions and improve air quality.
- Unlike petrol and diesel vehicles, EVs have zero tailpipe emissions, reducing harmful pollutants like CO₂, NO₂, and PM2.5.

2. Energy Independence

- India imports over 85% of its crude oil, spending billions of dollars annually.
- EVs, powered by renewable energy sources like solar and wind, can reduce oil dependency and strengthen energy security.

3. Economic Growth & Job Creation

- The EV industry is generating new jobs in battery manufacturing, charging infrastructure, and vehicle production.
- Startups and global companies are investing in India's EV sector, boosting innovation and local production.

4. Cost Savings for Consumers

- EVs have lower running costs compared to petrol/diesel cars, as electricity is cheaper than fossil fuels.
- Government subsidies and tax benefits make EVs more affordable for buyers.

EV Growth Trends in India:

- Rapid Growth: India's EV market grew by over 150% in the last two years, with more than 1.5 million EVs sold in 2023 alone.
- 2-Wheelers Leading the Way: Electric scooters and bikes account for over 60% of EV sales, driven by affordability and convenience.
- Rising EV Adoption in Cities: Delhi, Maharashtra, and Karnataka are leading in EV registrations due to strong policies and infrastructure.
- Expansion in Charging Infrastructure: Over 10,000+ new charging stations were installed in the last year, reducing range anxiety.

Government Policies Boosting EV Adoption:

FAME II (Faster Adoption and Manufacturing of Electric Vehicles) Scheme

- ₹10,000 crore allocated for EV subsidies, reducing prices for consumers.
- Incentives for electric two-wheelers, three-wheelers, and buses.

PLI (Production-Linked Incentive) Scheme

- ₹18,000 crore incentive for battery and EV manufacturing.
- Encourages global and Indian manufacturers to invest in EV production.

State-Level Incentives

- **Delhi**: No road tax & registration fees for EVs.
- Maharashtra & Gujarat: Direct subsidies on EV purchases.

Target for 2030

- EVs to make up 30% of all vehicle sales.
- 100% electrification of **public transport and government fleets**.

OBJECTIVE

This project aims:

- To analyze and forecast EV sales across Indian states, helping businesses, policymakers, and investors make data-driven decisions to accelerate EV adoption.
- Uncover Market Trends Identify the states leading in EV adoption and those lagging behind.
- Analyze Consumer Preferences Understand how vehicle class, category, and type influence purchasing patterns.
- Actionable Insights Provide recommendations to boost EV penetration and make India a global EV hub.
- Predict Future Sales Build a machine learning model to forecast EV demand based on historical trends.

DATASET INFORMATION

The dataset contains the following columns:

- Year: The year of the sales.
- Month Name: The month in which sales occurred.
- Date: The specific date of the sales.
- State: The state in India where the sales occurred.
- Vehicle Class: The class of the vehicle (e.g., sedan, SUV, etc.).
- Vehicle Category: The category of the vehicle (e.g., commercial, passenger).
- Vehicle Type: The type of the vehicle (e.g., 2-wheeler, 4-wheeler).
- EV Sales Quantity: The quantity of EV sales.

EV_Dataset.csv: Contains state-level data on EV sales, including vehicle types and categories, offering a comprehensive view of EV distribution across Indian states.

Import Necessary Libraries and Loading Dataset

	Imp	orting	the ne	ecessary lib	oraries						(A).
os os	0	impo	ort num	das as pd py as np born as sr plotlib.py	ns /plot as pl	t					7. •
	Loa	d the	datase	t into data	frame						
os os	[7]		pd.re	ad_csv(' <mark>/</mark>	content/Ele	ctric Vehicle Sa	ales by State in India.cs	v')			
	_ →		Year	Month_Nar	ne Date	State	Vehicle_Class	Vehicle	e_Category Veh	icle_Type	EV_Sales_Quantity
		0	2014.0	ja	an 1/1/2014	Andhra Pradesh	ADAPTED VEHICLE		Others	Others	0.0
		1	2014.0	ja	an 1/1/2014	Andhra Pradesh	AGRICULTURAL TRACTOR		Others	Others	0.0
		2	2014.0	ja	an 1/1/2014	Andhra Pradesh	AMBULANCE		Others	Others	0.0
		3	2014.0	ja	an 1/1/2014	Andhra Pradesh	ARTICULATED VEHICLE		Others	Others	0.0
		4	2014.0	ja	an 1/1/2014	Andhra Pradesh	BUS		Bus	Bus	0.0
✓ Os	[32]	df.tai	1()								
	→		Year	Month_Name	Date	State	Vehic	le_Class	Vehicle_Category	Vehicle_Type	EV_Sales_Quantity
		96840	2023	dec	2023-12- 01	Andaman & Nicobar Island	MO ⁻	TOR CAR	4-Wheelers	4W_Personal	1.0
		96841	2023	dec	2023-12- 01	Andaman & Nicobar Island		SED FOR HIRE	2-Wheelers	2W_Shared	5.0
		96842	2023	dec	2023-12- 01	Andaman & Nicobar Island	()	MNI BUS	Bus	Bus	0.0
		96843	2023	dec	2023-12- 01	Andaman & Nicobar Island	THREE WHEELER	(GOODS)	3-Wheelers	3W_Goods	0.0
		96844	2023	dec	2023-12- 01	Andaman & Nicobar Island	THREE WHEELER (PASS	SENGER)	3-Wheelers	3W_Shared	0.0

Concise Summary of The Dataset

```
\int_{0s}^{\checkmark} [21] df.shape
   → (96845, 8)
√ [34] df.index
   →▼ RangeIndex(start=0, stop=96845, step=1)
\frac{\checkmark}{OS} [22] df.columns
        Index(['Year', 'Month_Name', 'Date', 'State', 'Vehicle_Class',
                 'Vehicle_Category', 'Vehicle_Type', 'EV_Sales_Quantity'],
               dtype='object')
```

```
[23] df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 96845 entries, 0 to 96844
    Data columns (total 8 columns):
       Column
                          Non-Null Count Dtype
                         96845 non-null float64
        Year
         Month Name
                          96845 non-null object
                          96845 non-null object
         Date
                         96845 non-null object
         State
       Vehicle Class 96845 non-null object
       Vehicle_Category 96845 non-null object
     6 Vehicle_Type 96845 non-null object
         EV_Sales_Quantity 96845 non-null float64
    dtypes: float64(2), object(6)
    memory usage: 5.9+ MB
```


df.describe()

•	Year	Date	EV_Sales_Quantity
count	96845.000000	96845	96845.000000
mean	2018.622768	2019-01-28 11:00:33.641385728	37.108896
min	2014.000000	2014-01-01 00:00:00	0.000000
25%	2016.000000	2016-08-01 00:00:00	0.000000
50%	2019.000000	2019-02-01 00:00:00	0.000000
75%	2021.000000	2021-09-01 00:00:00	0.000000
max	2024.000000	2024-01-01 00:00:00	20584.000000
std	2.895581	NaN	431.566675

Data Cleaning & Preprocessing :- Checking Null Values and Cleaning

```
#Checking Null Values
0s
        df_null_value = df.isnull().sum()
        print(df_null_value)
        Year
                              0
        Month Name
        Date
        State
        Vehicle_Class
        Vehicle_Category
                             0
        Vehicle_Type
                             0
        EV Sales Quantity
                              1
        dtype: int64
```

Checking Duplicate Values

```
# Checking Null Values After Cleaning
       df.isnull().sum()
\Longrightarrow
                                     0
                  Year
                                     \mathbf{O}
            Month_Name
                                     \mathbf{O}
                                     \mathbf{O}
                  Date
                  State
                                     \mathbf{O}
            Vehicle_Class
                                     \mathbf{O}
         Vehicle_Category
                                     \mathbf{O}
            Vehicle_Type
                                     \mathbf{O}
        EV_Sales_Quantity
                                     O
       dtype: int64
```

```
# Checking Duplicate Value

df[df.duplicated(keep = False)]

Year Month_Name Date State Vehicle_Class Vehicle_Category Vehicle_Type EV_Sales_Quantity
```

Data Transformation

[24] # Year Dtype is Float so converting in INT
 df['Year'].astype(int)

•	_
~	•
	_

	Year	
0	2014	
1	2014	
2	2014	
3	2014	
4	2014	
96840	2023	
96841	2023	
96842	2023	
96843	2023	
96844	2023	
96845 rc	ws × 1	columns

6	0		is given in Matetime(df[
	₹		Date
		0	2014-01-01
		1	2014-01-01
		2	2014-01-01
		3	2014-01-01
		4	2014-01-01
		96840	2023-12-01
		96841	2023-12-01
		96842	2023-12-01
		96843	2023-12-01
		96844	2023-12-01
		96845 rd	ws × 1 colum

```
old_columns = ['Month_Name', 'State', 'Vehicle_Class', 'Vehicle_Category', 'Vehicle_Type']
    df[old_columns] = df[old_columns].astype('category')
                                                                         + Text
                                                              + Code
[27] df.info()
→▼ <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 96845 entries, 0 to 96844
    Data columns (total 8 columns):
        Column
                          Non-Null Count Dtype
                    96845 non-null int64
     0 Year
        Month_Name 96845 non-null category
     2
        Date
                       96845 non-null datetime64[ns]
        State
              96845 non-null category
     4 Vehicle Class 96845 non-null category
     5 Vehicle_Category 96845 non-null category
     6 Vehicle Type 96845 non-null category
         EV Sales Quantity 96845 non-null float64
    dtypes: category(5), datetime64[ns](1), float64(1), int64(1)
    memory usage: 2.7 MB
```

Data Visualization (Using Tableau):- Yearly EV Sales Trends In India

```
df_grouped = df.groupby('Year')['EV_Sales_Quantity'].sum().reset_index()
    print(df_grouped)
→
        Year EV_Sales_Quantity
        2014
                        2392.0
        2015
                       7805.0
        2016
                       49855.0
        2017
                      87420.0
        2018
                      130254.0
    5
        2019
                      166819.0
    6 2020
                     124684.0
        2021
                     331498.0
        2022
                   1024723.0
                    1525179.0
        2023
    10 2024
                    143182.0
```


EV Sales By State of India & Top 10 State by EV Sale

Bottom 10 State By EV Sale

Monthly Trends in EV Sales

EV Sales According to Vehicle Class, Vehicle Category and Vehicle Type

KEY INSIGHTS

- EV sales in India have grown from 2,392 units in 2014 to over 1.5 million in 2023, showing a significant shift toward electric mobility. This trend highlights the increasing consumer preference for EVs and the expanding market.
- While sales were relatively low until 2020, they saw an exponential rise after 2021, surpassing 1 million in 2022. This indicates a strong shift toward EV adoption, likely driven by increasing availability and demand.
- A decline in EV sales was observed in 2020 before a strong rebound in 2021. This could be due to factors such as supply chain disruptions, reduced consumer spending, or shifts in industry dynamics.
- Sales figures for 2024 appear lower but may be incomplete. Given past trends, EV adoption is expected to continue rising with advancements in battery technology and increased awareness.

- Some states, such as Uttar Pradesh, Maharashtra, and Karnataka, have significantly higher EV sales compared to others. This could be due to factors such as population density, urbanization, or state-level EV policies, though further investigation is required.
- Certain states have lower EV sales, which may be influenced by factors like infrastructure, consumer demand, or economic conditions. However, without additional data, the exact reasons cannot be determined.
- The **two-wheeler** and **three-wheeler** segments dominate EV sales, making up the majority of the market. Passenger and commercial EVs are also growing but at a slower pace compared to smaller vehicles.
- Monthly EV sales patterns indicate that **sales often peak in the last quarter of the year.** This could be due to festive season purchases, year-end government incentives, or corporate fleet expansions.
- In **2020**, **EV** sales declined compared to **2019**, likely due to the economic slowdown and supply chain disruptions caused by COVID-19. However, post-pandemic, there was a strong rebound in 2021, showing resilience in the EV sector.

