

<u>Home</u> <u>Gameboard</u> Physics Mechanics Statics Springs 2

Springs 2

GCSE A Level

Essential Pre-Uni Physics B7.2

A spring of <u>natural length $10.0\,\mathrm{cm}$ and <u>spring constant $4.00\,\mathrm{N\,cm^{-1}}$ has a load of $22.0\,\mathrm{N}$ placed on it. What is its new length?</u></u>

<u>Home</u> <u>Gameboard</u> Physics Mechanics Statics Springs 3

Springs 3

GCSE P P P

Essential Pre-Uni Physics B7.3

If a spring of natural length $1.50\,\mathrm{cm}$ stretches to $1.65\,\mathrm{cm}$ when a $16\,\mathrm{N}$ force is applied, what is its spring constant?

Gameboard:

STEM SMART Physics 9 - Springs & Materials

Home Gameboard Physics Mechanics Statics Springs 7

Springs 7

Essential Pre-Uni Physics B7.7

GCSE			Α	A Level		
С	С	С	С	С	С	

Part A Tension in series

Two identical springs, each of <u>natural length</u> $2.0\,\mathrm{m}$ and <u>spring constant</u> $80\,\mathrm{N}\,\mathrm{m}^{-1}$ are placed in series (that is, one joined to the end of the other), with a weight of $7.5\,\mathrm{N}$ suspended from the bottom spring.

State the tension in each spring.

Part B Total extension in series

Work out the total extension of the system.

Part C Tension in parallel

If the two identical springs were placed in parallel so that they can share the load, with the same weight of $7.5\,\mathrm{N}$ suspended from the combination, work out the tension in each of the springs.

Part D Total length in parallel

What is the total length of the system now? Give your answers to 3 significant figures.

Gameboard:

STEM SMART Physics 9 - Springs & Materials

<u>Home</u> $\underline{\mathsf{Gameboard}}$ Physics Mechanics Statics Springs 8

Springs 8

Essential Pre-Uni Physics B7.8

If three identical springs were put in series, how would:
Part A Spring constant
a) the <u>spring constant</u> of the system compare to just one of the springs on its own with the same force applied?
A quarter of the original
The same
$\frac{1}{3}$ as much
Three times as large
Part B Total extension
b) the total extension of the system compare to just one of the springs on its own with the same force applied?
Three times as much

A third as much

A quarter of the original

The same

Gameboard:

STEM SMART Physics 9 - Springs & Materials

<u>Home</u> <u>Gameboard</u> Physics Mechanics Materials Stress, Strain and Young's Modulus 4

Stress, Strain and Young's Modulus 4

A Level

Essential Pre-Uni Physics B6.4

A brass pin has a cross sectional area of $0.50\,\mathrm{cm^2}$. Brass has a tensile strength of $190\,\mathrm{MPa}$. Calculate the maximum tensile force it ought to be able to withstand without breaking.

Gameboard:

STEM SMART Physics 9 - Springs & Materials

<u>Home</u> <u>Game</u>

<u>Gameboard</u> Physics

Mechanics

Materials

Stress, Strain and Young's Modulus 5

Stress, Strain and Young's Modulus 5

A Level

Essential Pre-Uni Physics B6.5

Mild steel has a breaking strength of $500\,\mathrm{MPa}$. If you want to support a $200\,\mathrm{kg}$ piano using a single steel wire, what is the minimum diameter of wire you require? Give your answer to 2 significant figures.

Gameboard:

STEM SMART Physics 9 - Springs & Materials

<u>Home</u>

<u>Gameboard</u>

Physics

Mechanics

Dynamics Energy, Springs and Materials 4

Energy, Springs and Materials 4

GCSE c c c

Essential Pre-Uni Physics B9.4

Assume that extension is proportional to the tension.

 $60\,\mathrm{J}$ of work is done to stretch a spring with <u>spring constant $7.5\,\mathrm{N\,cm^{-1}}$ from its <u>natural length</u> of $0.24\,\mathrm{m}$ to some new length. Work out this new length.</u>

Gameboard:

STEM SMART Physics 9 - Springs & Materials

<u>Home</u> <u>Gameboard</u> Physics Mechanics Dynamics Energy, Springs and Materials 5

Energy, Springs and Materials 5

GCSE A Level

Essential Pre-Uni Physics B9.5

Assume that extension is proportional to the tension.

Calculate how much extra work must be done in order to stretch a spring from $17\,\mathrm{cm}$ to $20\,\mathrm{cm}$, if its <u>spring</u> constant is $300\,\mathrm{N}\,\mathrm{m}^{-1}$ and <u>natural length</u> $15\,\mathrm{cm}$.

Gameboard:

STEM SMART Physics 9 - Springs & Materials

Home Gameboard

<u>d</u> Physics

Mechanics

Materials Stress, Stra

Stress, Strain and Young's Modulus 6

Stress, Strain and Young's Modulus 6

A Level

Essential Pre-Uni Physics B6.6

A bolt is needed to attach an actor's harness to a wire across a stage. The bolt is $5.0\,\mathrm{cm}$ long with a $0.25\,\mathrm{cm}^2$ cross sectional area, and must extend by no more than $0.020\,\mathrm{mm}$ when supporting a $900\,\mathrm{kg}$ mass. Calculate the minimum value of Young's Modulus of a material if it is to be suitable.