8. For an $m \times n$ matrix A and an $n \times m$ matrix B,

$$(AB)^T = A^T B^T.$$

Always/Sometimes/Never

Answer:

Sometimes

- When confronted with this kind of question, it pays to first thing to yourself "What if I pick somethings really simple?"
 The simplest thing one can pick is m = n = 1 and then you can see what happens if you take A = (0) and B = (0).
 You quickly conclude that for this example (AB)^T = A^TB^T (both sides evaluate
 - You quickly conclude that for this example $(AB)^T = A^TB^T$ (both sides evaluate to $\begin{pmatrix} 0 \end{pmatrix}$.
- Now think a little further: What if m = n = 1 and $A = \begin{pmatrix} \alpha \end{pmatrix}$ and $B = \begin{pmatrix} \beta \end{pmatrix}$, where α and β are arbitrary scalars. You notice that $AB = \begin{pmatrix} \alpha \end{pmatrix} \begin{pmatrix} \beta \end{pmatrix} = \begin{pmatrix} \alpha \beta \end{pmatrix}$ and $A^TB^T = \begin{pmatrix} \alpha \end{pmatrix}^T \begin{pmatrix} \beta \end{pmatrix}^T = \begin{pmatrix} \alpha \end{pmatrix} \begin{pmatrix} \beta \end{pmatrix} = \begin{pmatrix} \alpha \beta \end{pmatrix}$. So now you start thinking that perhaps the answer may be "always".
- But then you think to yourself: AB should be a matrix that is m × m and A^TB^T is a matrix that is n × n (because A^T is n × m and B^T is m × n. So, if you pick m ≠ n and you are guaranteed to have an example where AB ≠ A^TB^T.
- But then you think to yourself: What if m = n? If you pick almost any matrix where $A \neq B$ you will find that $(AB)^T \neq A^TB^T$.