	Name : Syed Riaz Ali
	Email : syedriazali1997@gmail.com Whatsapp : 923002502513
	Day_26 : Random Forest Algorithm
	Random Forest Classification
In [30]:	<pre># Importing libraries import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt</pre>
In [31]:	<pre># Loading the data set df = sns.load_dataset("iris") df.head()</pre>
Out[31]:	sepal_length sepal_width petal_length petal_width species 0 5.1 3.5 1.4 0.2 setosa
	1 4.9 3.0 1.4 0.2 setosa 2 4.7 3.2 1.3 0.2 setosa 3 4.6 3.1 1.5 0.2 setosa 4 5.0 3.6 1.4 0.2 setosa
In [32]: In [33]:	<pre># Separating the input and output variables X = df.iloc[:, :-1] y = df.iloc[:, -1:]</pre>
111 [33].	<pre># Fitting the model from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators= 100) model.fit(X,y) model.predict([[5,4,2,6]]) C:\Users\syedriaz\AppData\Local\Temp/ipykernel_6768/258399899.py:3: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_sam ples,), for example using ravel(). model.fit(X,y) C:\Users\syedriaz\AppData\Local\Programs\Python\Python39\lib\site-packages\sklearn\base.py:450: UserWarning: X does not have valid feature names, but RandomForestClassifier was fitted with</pre>
Out[33]:	feature names warnings.warn(array(['setosa'], dtype=object)
	Definition of n_estimator
In [34]:	> This is the number of trees you want to build before taking the maximum voting or averages of predictions. Higher number of trees give you better performance but makes your code slower. # Testing the model using train_test_split Technique from sklearn.model_selection import train_test_split
0+ [0.4]	<pre>X_train, X_test, y_train, y_test = train_test_split(X, y, test_size= 0.2) predictions = model.predict(X_test) predictions</pre>
Out[34]: In [35]:	array(['virginica', 'virginica', 'virginica', 'setosa',
	<pre>score = model.score(X_test, y_test) print("The accuracy score is : ", score) The accuracy score is : 1.0</pre>
In [36]:	<pre>from sklearn import metrics print("Accuracy :", metrics.accuracy_score(y_test, predictions)) Accuracy : 1.0</pre>
In [37]:	<pre># Confusion Matrix from sklearn import metrics cm = metrics.confusion_matrix(y_test, predictions) cm</pre>
Out[37]: In [38]:	array([[9, 0, 0],
[00].	<pre># Plotting the confusion using Heatmap plot plt.figure(figsize=(9,9)) sns.set_style("darkgrid") sns.heatmap(cm, annot = True, fmt= ".3f", linewidth = .5, square = True, cmap = "Spectral") plt.ylabel("Actual Output") plt.xlabel("Predicted Output") all_sample_title = "Accuracy Score : {0}".format(score) plt.title(all_sample_title, size = 15)</pre>
Out[38]:	Text(0.5, 1.0, 'Accuracy Score : 1.0') Accuracy Score : 1.0 Accuracy Score : 1.0
	9000 0000 0000 0000 0000 -10 -10 -8
	4 Agrid Outle
	0 1 2 Predicted Output -0
In [39]:	Random Forest Regressor # Loading the data set
	<pre>df2 = sns.load_dataset("iris") df2.head()</pre>
Out[39]:	sepal_length sepal_width petal_width species 0 5.1 3.5 1.4 0.2 setosa 1 4.9 3.0 1.4 0.2 setosa 2 4.7 3.2 1.3 0.2 setosa 3 4.6 3.1 1.5 0.2 setosa 4 5.0 3.6 1.4 0.2 setosa
In [45]:	# Replacing Categorical data in label variable into numerical data # 0 for setosa # 1 for versicolor # 2 for virginica
	<pre>df2["species"] = df2["species"].replace("setosa", 0) df2["species"] = df2["species"].replace("versicolor", 1) df2["species"] = df2["species"].replace("virginica", 2) df2.tail()</pre>
Out[45]:	sepal_length sepal_width petal_width species 145 6.7 3.0 5.2 2.3 2 146 6.3 2.5 5.0 1.9 2 147 6.5 3.0 5.2 2.0 2 148 6.2 3.4 5.4 2.3 2
In [46]:	149 5.9 3.0 5.1 1.8 2 # Separating the input and output variables
In [47]:	<pre>X = df2.iloc[:, :-1] y = df2.iloc[:, -1:]</pre>
Out[47]:	
	 0 1 0 2 0 3 0
In [48]:	4 0 # Training and Fitting the data
	<pre>from sklearn.ensemble import RandomForestRegressor model = RandomForestRegressor(n_estimators= 100) model.fit(X,y) model.predict([[5,4,2,6]])</pre>
0	C:\Users\syedriaz\AppData\Local\Temp/ipykernel_6768/1412340738.py:3: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel(). model.fit(X,y) C:\Users\syedriaz\AppData\Local\Programs\Python\Python39\lib\site-packages\sklearn\base.py:450: UserWarning: X does not have valid feature names, but RandomForestRegressor was fitted with feature names warnings.warn(array([0.67])
Out[48]:	<pre># Testing the data using train_test_split technique from sklearn.model_selection import train_test_split</pre>
	<pre>from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor X_train, X_test, y_train, y_test = train_test_split(X, y, test_size= 0.2) model = RandomForestRegressor().fit(X_train,y_train) predictions = model.predict(X_test) predictions</pre>
Out[50]:	C:\Users\syedriaz\AppData\Local\Temp/ipykernel_6768/2307444712.py:6: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel(). model = RandomForestRegressor().fit(X_train,y_train) array([2. , 1.99, 0. , 1.99, 2. , 0. , 2. , 0. , 1. , 0. , 1.98,
In [51]:	1. , 1.53, 1.98, 0. , 1.01, 1.48, 2.]) # Accuracy test score = model.score(X_test, y_test)
Tn 「 ~	<pre>score = model.score(x_test, y_test) print("The accuracy score is : ", score) The accuracy score is : 0.9787667682926829</pre>
In []:	