第二章逻辑代数基础

- 2.1 逻辑代数介绍
- 2.2 逻辑代数的基本运算
- 2.3 逻辑代数的基本定理及规则
- 2.4 逻辑函数的性质
- 2.5 逻辑函数的化简

2.1 逻辑代数介绍

逻辑代数:将布尔代数应用于开关电路的分析与描述,也称为二值布尔代数,或开关代数。逻辑代数是二值逻辑运算中的基本数学工具

定义:逻辑代数L是一个封闭的代数系统,它由一个逻辑变量集K、常量0和1以及"逻辑乘(与)"、"逻辑加(或)"、"逻辑反(非)"三种基本运算所构成,记为: $L=\{K,+,\cdot,-,0,1\}$

逻辑状态:用符号0、1分别表示事物的某些两种互不相容的状态即:0状态(0-state)和1状态(1-state)

逻辑函数

输入逻辑变量 A_1 , A_2 , ..., A_n , 当变量取值确定后, F的值唯一确定, F是 A_1 , A_2 , ..., A_n 的逻辑函数

记为: $F = f(A_1, A_2, ..., A_n)$

逻辑函数相等:两个n变量逻辑函数 F_1 和 F_2 ,若对于这n个逻辑变量的 2^n 中组合中的任意一组取值, F_1 和 F_2 都相等,则称函数 F_1 和 F_2 相等

逻辑函数的表示

真值表

逻辑表达式 $F = A \cdot B$

卡诺图(文氏图)

时序图 (波形图)

真值表例

A	В	F
0	0	0
0	1	0
1	0	0
1	1	1

Venn图

2.2 逻辑代数的基本运算

	"与"运算(逻辑乘) Logic Multiplication	"或"运算(逻辑 <mark>加</mark>) Logic Addition	"非"运算(逻辑 <mark>非</mark>) Logic Negation	
运算结果	逻辑积 Logic Product	逻辑和 Logic Sum	求 补 Complement	
示意电路	A B F	A B F	RANF	
真值表	A B F 0 0 0 0 1 0 1 0 0 1 1 1	A B F 0 0 0 0 1 1 1 0 1 1 1 1	A F 0 1 1 0	

	"与"运算(逻辑乘) Logic Multiplication	"或"运算(逻辑 <mark>加</mark>) Logic Addition	"非"运算(逻辑非) Logic Negation
代数式	$\mathbf{F} = \mathbf{A} \times \mathbf{B} = \mathbf{A} \cdot \mathbf{B}$	$\mathbf{F} = \mathbf{A} + \mathbf{B}$	$\mathbf{F} = \mathbf{A}$
逻辑符号	A — F — F — F — F	A B F F F F	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
波形图	A	A D D B D D D D D D D D D D D D D D D D	A F
文氏图	A B	A B	A

基本运算

$$0 \cdot 1 = 1 \cdot 0 = 0$$
 $1 \cdot 1 = 1$ $0 \cdot 0 = 0$
 $0 + 1 = 1 + 0 = 1$ $1 + 1 = 1$ $0 + 0 = 0$
 $\overline{1} = 0$ $\overline{0} = 1$

2.3 逻辑代数的基本定理及规则

$$0-1$$
 4: $A+0=A$

$$A + 1 = 1$$

$$A \cdot 1 = A$$

$$A \cdot 0 = 0$$

 $A \cdot B = B \cdot A$

交换律:
$$A + B = B + A$$

$$A + (B + C) = (A + B) + C$$

分配律:
$$A \cdot (B+C) = A \cdot B + A \cdot C$$
 $A+B \cdot C = (A+B)(A+C)$

互补律:
$$A + \overline{A} = 1$$
 $A \cdot \overline{A} = 0$

吸收律

$$A + A \cdot B = A$$
 $A \cdot (A + B) = A$
 $A + \overline{A} \cdot B = A + B$ $A \cdot (\overline{A} + B) = A \cdot B$
 $A \cdot B + A \cdot \overline{B} = A$ $(A + B) \cdot (A + \overline{B}) = A$

反演律

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$
 $\overline{A \cdot B} = \overline{A} + \overline{B}$

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

证明:

$$X = A + B, Y = \overline{A} \cdot \overline{B}$$

$$X + Y = A + B + \overline{A} \cdot \overline{B}$$

$$= [(A + B) + \overline{A}] \cdot [(A + B) + \overline{B}]$$

$$= [(A + \overline{A}) + B] \cdot [A + (B + \overline{B})]$$

$$= [1 + B] \cdot [A + 1] = 1$$

 $X \cdot Y = (A + B) \cdot \overline{A} \cdot \overline{B}$

 $= A \cdot \overline{A} \cdot \overline{B} + B \cdot \overline{A} \cdot \overline{B} = 0$

$$X + Y = 1 \qquad X \cdot Y = 0$$

$$\overline{X} = Y$$

N变量的摩根定理

$$\overline{A_1 + A_2 + \dots + A_n} = \overline{A_1} \cdot \overline{A_2} \cdot \dots \cdot \overline{A_n}$$

$$\overline{A_1 \cdot A_2 \cdot \dots \cdot A_n} = \overline{A_1} + \overline{A_2} + \dots + \overline{A_n}$$

包含律(蕴含律)

$$AB + \overline{A}C + BC = AB + \overline{A}C$$

$$(A+B) \cdot (\overline{A}+C) \cdot (B+C) = (A+B) \cdot (\overline{A}+C)$$

$$AB + \overline{A}C + BC = AB + \overline{A}C + 1BC$$

$$= AB + \overline{A}C + (A + \overline{A})BC$$

$$= AB + ABC + \overline{A}C + \overline{A}BC$$

逻辑代数的基本规则

1、代入规则

已知
$$f(x_1, x_2, ..., x_i, ..., x_n) = g(x_1, x_2, ..., x_i, ..., x_n)$$

有任意函数 h, 令: $x_i = h$

则
$$f(x_1, x_2, ..., h, ..., x_n) = g(x_1, x_2, ..., h, ..., x_n)$$
 依然成立

例:
$$\overline{AB} = \overline{A} + \overline{B}$$

令
$$B = BC$$
 代入式中

$$\overline{A(BC)} = \overline{A} + \overline{BC} = \overline{A} + \overline{B} + \overline{C}$$

2、反演规则

已知原函数:
$$f = (x_1, x_2, \dots, x_n, 0, 1, +, \cdot)$$

$$\overline{f} = (x_1, x_2, \dots, x_n, 0, 1, +, \cdot) = f(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n, 1, 0, \cdot, +)$$

注意:必须保持原有的运算次序

例1:
$$F = \overline{A} + \overline{B}(C + \overline{D}E)$$

$$\overline{F} = A[B + \overline{C}(D + \overline{E})]$$

3、对偶规则

已知原函数:
$$f = (x_1, x_2, \dots, x_n, 0, 1, +, \cdot)$$

$$f' = f(x_1, x_2, \dots, x_n, 1, 0, \cdot, +)$$

注意: 必须保持原有的运算次序

$$(f')' = f$$

$$f_1 = f_2 \Longrightarrow f_1' = f_2'$$

例: 试证 A+BC=(A+B)(A+C)

$$\Rightarrow$$
: $F_1 = A + BC$ $F_2 = (A + B) (A + C)$

求两个函数的对偶:

$$F_1$$
 = A (B+C) = AB+AC F_2 = AB+AC

$$F_1 = F_2$$

2.4 逻辑函数的性质

2.4.1复合逻辑

- 1、与、或、非三种基本逻辑运算组合起来可以实现任何逻辑函数。
- 2、与门、或门、非门三种基本逻辑运算(门)组合起来可以构成实现任何逻辑功能的逻辑电路, 称此三门构成了一个逻辑完备组
- 3、实现较复杂的逻辑功能,可以增加门电路的功能,以简化电路。

1、与非逻辑(NAND)

$$F = \overline{ABC}$$

ABC	F
0 0 0	1
0 0 1	1
0 1 0	1
0 1 1	1
100	1
1 0 1	1
1 1 0	1
1 1 1	0

$$F1 = \overline{AA} = \overline{A}$$

$$F2 = \overline{\overline{AB}} = AB$$

$$F3 = \overline{\overline{A}}\overline{\overline{B}} = A + B$$

2、或非逻辑(NOR)

$$F = \overline{A + B + C}$$

ABC	F
0 0 0	1
0 0 1	0
0 1 0	0
0 1 1	0
100	0
1 0 1	0
1 1 0	0
1 1 1	0

$$F1 = \overline{A + A} = \overline{A}$$

$$F2 = \overline{A + B} = A + B$$

$$F3 = \overline{\overline{A} + A} + \overline{B} + \overline{B} = \overline{\overline{A}} + \overline{\overline{B}} = AB$$

3、与或非逻辑(AOI)

$$F = \overline{AB + CD + EF}$$

4、异或逻辑(NOR)

$$F = A \oplus B = \overline{A}B + A\overline{B}$$

A	В	F
0	0	0
0	1	1
1	0	1
1	1	0

5. 同或逻辑

$$F = A \odot B = \overline{A}\overline{B} + AB$$

A	В	F
0	0	1
0	1	0
1	0	$\begin{bmatrix} 0 \end{bmatrix}$
1	1	1

异或运算与同或运算的关系

$$\overline{A \oplus B} = A \odot B \qquad \overline{A \odot B} = A \oplus B$$

$$\overline{A} \oplus \overline{B} = \overline{A}B + A\overline{B}$$

$$= \overline{A}B \cdot \overline{A}\overline{B}$$

$$= (A + \overline{B})(\overline{A} + B)$$

$$= AB + \overline{A}\overline{B} = A \odot B$$

$$A \oplus B \oplus C = \overline{A}(B \oplus C) + A(\overline{B} \oplus C)$$

$$= \overline{A}(B \oplus C) + A(B \odot C)$$

$$= \overline{A}(\overline{B}C + B\overline{C}) + A(BC + \overline{B}\overline{C})$$

$$= \overline{A}\overline{B}C + \overline{A}B\overline{C} + ABC + A\overline{B}\overline{C}$$

$$A \odot B \odot C = \overline{A}(\overline{B} \odot C) + A(B \odot C)$$

= $\overline{A}(B \oplus C) + A(B \odot C)$

当变量为偶数时,同或运算与异或运算之间具有互补关系 当变量为奇数时,同或运算与异或运算之间具有相等关系

异或运算和同或运算的基本代数性质

$$0-1$$
律 $A \oplus 0 = A$ $A \oplus 1 = \overline{A}$ $A \oplus 0 = \overline{A}$ $A \oplus 1 = A$ 交換律 $A \oplus B = B \oplus A$ $A \odot B = B \odot A$ $A(B \oplus C) = AB \oplus AC$ $A+(B \odot C) = (A+B) \odot (A+C)$ 结合律 $A \oplus (B \oplus C) = (A \oplus B) \oplus C$ $A \odot (B \odot C) = (A \odot B) \odot C$ $A \oplus B = C, \emptyset A \oplus C = B, C \oplus B = A$ $A \odot B = C, \emptyset A \odot C = B, C \odot B = A$

例1、化简 $(\overline{A}B \odot C) + (B \oplus A\overline{C})$

$$(\overline{A}B \odot C) + (B \oplus A\overline{C}) = ((\overline{A}B)C + (\overline{A}B)\overline{C}) + (B(\overline{A}\overline{C}) + \overline{B}(A\overline{C})$$

$$= \overline{A}BC + (A + \overline{B})\overline{C} + B(\overline{A} + C) + A\overline{B}\overline{C}$$

$$= B(\overline{A}C + \overline{A} + C) + (A + \overline{B} + A\overline{B})\overline{C}$$

$$= B(\overline{A} + C) + (A + \overline{B})\overline{C}$$

$$= \overline{A}B + BC + A\overline{C} + \overline{B}\overline{C}$$

$$= B + \overline{C}$$

2.4.2逻辑函数的基本表达式

依照逻辑运算的规则,一个逻辑命题可以用多种形式的逻辑函数来描述,而这些逻辑函数的真值表都是相同的。

$$F = A \oplus B$$

 $= \overline{A}B + A\overline{B}$ 与或式(积之和式)
 $= (A+B)(\overline{A}+\overline{B})$ 或与式(和之积式)
 $= \overline{\overline{A}B}\overline{A}\overline{B}$ 与非式
 $= (\overline{A+B}) + (\overline{\overline{A}+\overline{B}})$ 或非式
 $= \overline{A}\overline{B} + A\overline{B}$ 与或非式

表达式中所有乘积项都是单个变量相乘: 积之和式

$$AB\overline{C} + DEFG + H$$
 $A + \overline{B} + C + \overline{D}E$ \times $(A+B)CD + EF$

两个分配率用于展开表达式以获得积之和式

$$A(B+C) = AB + AC$$
 $(A+B)(A+C) = A+BC$ 例1、化筒 $(A+BC)(A+D+E)$ $(A+BC)(A+D+E) = (A+BC)(A+(D+E))$ $= A+BC(D+E)$ $= A+BCD+BCE$

表达式中所有和项都是单个变量的和时: 和之积式

$$(A + \overline{B})(C + \overline{D} + E)(A + \overline{C} + \overline{E})$$

$$(A+B)(C+D)+EF$$

两个分配率用于展开表达式以获得和之积式

2.4.3逻辑函数的标准形式

逻辑命题的表示法: 真值表、逻辑表达式、卡诺图......

真值表、逻辑表达式、卡诺图之间的关系:

- ①真值表是逻辑函数最基本的表达方式,具有唯一性;
- ②由真值表可以导出逻辑表达式和卡诺图;
- ③由真值表导出逻辑表达式的两种标准形式:最小项之和与最大项之积

例1、3输入1输出的开关电路,输入A、B、C分别代表二进制数N从左往右的第1、2、3位。当N \geq (011) $_2$ 时,F=1;当N<(011) $_2$ 时,F=0。

A B C	_	表达式: 使F=1的变量A、B、C的组合	
0 0 0		当A=0、B=1、C=1时,F=1	$\overline{A}BC$
0 0 1		当A=1、B=0、C=0时,F=1	$A\overline{B}\overline{C}$
0 1 0 0 1 1			
1 0 0	1 1		
1 0 1	1	$F = \overline{A}BC + A\overline{B}\overline{C} + A\overline{B}C + AB\overline{C} + ABC$	
1 1 0		$=\overline{A}BC+A\overline{B}+AB$	
1 1 1	1	$=\overline{A}BC+A$	
	-	=BC+A	

最小项

A B C 最小项 $\overline{A}\overline{B}\overline{C} = m_0$ 0 0 0 $\mathbf{0}$ n 个变量的积(与), 积中每个变量 $\overline{A}\overline{B}C = m_1$ 0 0 1 以原/反变量形式出现且仅出现一次, $\overline{A}B\overline{C}=m_2$ 0 1 0 此积(与)称为n个变量的最小项。 $\overline{A}BC = m_3$ 0 1 1 n 变量构成 2ⁿ个最小项,记为 m_i $A\overline{B}\overline{C} = m_{A}$ 1 0 0 i: 最小项变量按顺序排好, 用1代替 1 0 1 $A\overline{B}C = m_5$ 原变量,0代替反变量,得到的二进制 $AB\overline{C} = m_6$ 1 1 0 数的等值十进制数,即为i的值。 $ABC = m_7$

当函数F写成最小项的和时, 称其为最小项展开式或标准积之和式

$$F = \overline{A}BC + A\overline{B}\overline{C} + A\overline{B}C + AB\overline{C} + ABC$$
$$= m_3 + m_4 + m_5 + m_6 + m_7$$
$$F(A, B, C) = \sum m(3, 4, 5, 6, 7)$$

 $F = \sum m^3(3,4,5,6,7)$

序号	A	B	C	最小项
0	0	0	0	$\overline{A}\overline{B}\overline{C} = m_0$
1	0	0	1	$\overline{A}\overline{B}C = m_1$
2	0	1	0	$\overline{A}B\overline{C}=m_2$
3	0	1	1	$\overline{A}BC = m_3$
4	1	0	0	$A\overline{B}\overline{C} = m_4$
5	1	0	1	$A\overline{B}C = m_5$
6	1	1	0	$AB\overline{C} = m_6$
7	1	1	1	$ABC = m_7$

最大项 n 个变量的和(或),和中每个变量 以原/反变量形式出现且仅出现一次, 此和(或)称为n个变量的最大项。 n 变量构成 2^n 个最大项,记为 M_i

i: 最大项变量按顺序排好,用1代替 反变量,0代替原变量,得到的二进制 数的等值十进制数,即为i的值。

序号	A	ВС	最大项
0	0	0 0	$A + B + C = M_0$
1	0	0 1	$A + B + \overline{C} = M_1$
2	0	1 0	$A + \overline{B} + C = M_2$
3	0	1 1	$A + \overline{B} + \overline{C} = M_3$
4	1	0 0	$\overline{A} + B + C = M_4$
5	1	0 1	$\overline{A} + B + \overline{C} = M_5$
6	1	1 0	$\overline{A} + \overline{B} + C = M_6$
7	1	1 1	$\overline{A} + \overline{B} + \overline{C} = M_7$

$$M_i = m_i$$

当函数F写成最大项的积时,称其为最大项展开式或标准和之积式

$$F = M_0 M_1 M_2$$

$$F(A, B, C) = \prod M(0, 1, 2)$$

$$F = \prod M^3(0, 1, 2)$$

序号	A	B	C	最大项
0	0	0	0	$A + B + C = M_0$
1	0	0	1	$A + B + \overline{C} = M_1$
2	0	1	0	$A + \overline{B} + C = M_2$
3	0	1	1	$A + \overline{B} + \overline{C} = M_3$
4	1	0	0	$\overline{A} + B + C = M_4$
5	1	0	1	$\overline{A} + B + \overline{C} = M_5$
6	1	1	0	$\overline{A} + \overline{B} + C = M_6$
7	1	1	1	$\overline{A} + \overline{B} + \overline{C} = M_7$

最小项与最大项具有如下性质:

- (1) 对于任意最小项,只有一组输入变量组合可使其值为1 对于任意最大项,只有一组输入变量组合可使其值为0
- (2) n变量的所有最小项之和为1 n变量的所有最大项之积为0
- (3) 任意两个最小项之积必为0,即: $m_i \cdot m_j = 0(i \neq j)$ 任意两个最大项之和必为1,即: $M_i + M_i = 1(i \neq j)$
- (4) $m_i = \overline{M}_i$ $M_i = \overline{m}_i$ $F = \sum m^3 (3, 4, 5, 6, 7)$

$$\overline{F} = (\overline{m_3 + m_4 + m_5 + m_6 + m_7}) = \overline{m_3 m_4 m_5 m_6 m_7} = M_3 M_4 M_5 M_6 M_7 = \prod M^3 (3, 4, 5, 6, 7)$$

函数的最小项标准式

如果构成函数的积之和表达式中每一个乘积项(与项)均为最小项,则这种表达式称为最小项标准式,这种表示是唯一的。

例2、
$$F = AC + \overline{A}B + BC$$

 $= ABC + A\overline{B}C + \overline{A}BC + \overline{A}B\overline{C} + ABC + \overline{A}BC$
 $= ABC + A\overline{B}C + \overline{A}BC + \overline{A}B\overline{C}$
 $= m_7 + m_5 + m_3 + m_2$
 $= \sum m^3(2,3,5,7)$

写出逻辑函数的最小项标准式的方法:

函数为与或式:反复应用 $A = A(B + \overline{B})$ 代入缺少某变量(Y)的与项,形成最小项之和的形式。

例3、
$$F = AC + A\overline{B} + BC$$
$$= AC(B + \overline{B}) + A\overline{B}(C + \overline{C}) + BC(A + \overline{A})$$
$$= ABC + A\overline{B}C + A\overline{B}\overline{C} + \overline{A}BC$$
$$= \sum m^{3}(3,4,5,7)$$

真值表转化标准式:真值表每一行变量的组合对应一个最小项。如果对应该行的函数值为1,则函数的最小项表达式中应包含该最小项;不包含函数值为0的行对应的最小项。

$$F = m_3 + m_4 + m_5 + m_6 + m_7 = \sum m^3 (3, 4, 5, 6, 7)$$

$$\overline{F} = m_0 + m_1 + m_2 = \sum m^3 (0, 1, 2)$$

n 变量函数F有2ⁿ个最小项,不是包含在原函数 F的表达式中,就是包含在反函数的表达式中。

A	B	C	F	$\overline{\mathbf{F}}$
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

函数的最大项标准式

如果构成函数的<mark>和之积</mark>表达式中每一个和项均为最大项,则这种表达式称为最大项标准式,这种表示是唯一的。

函数为或与式:反复应用 $A = (A + B)(A + \overline{B})$ 代入缺少某变量(Y)的与项,形成最大项之积的形式。

例4、
$$F = (A+C)(\overline{A}+B)$$

 $= (A+C+B\overline{B})(\overline{A}+B+C\overline{C})$
 $= (A+C+B)(A+C+\overline{B})(\overline{A}+B+C)(\overline{A}+B+\overline{C})$
 $= M_0M_2M_4M_5$
 $= \prod M^3(0,2,4,5)$

真值表每一行变量组合对应一个最大项。如果对应该行的函数值为0,则函数的最大项表达式中应包含该最大项;不包含函数值为1的行应该的最大项。

$$F = M_0 M_1 M_2 = \prod M^3(0,1,2)$$

$$\overline{F} = M_3 M_4 M_5 M_6 M_7 = \sum M^3(3,4,5,6,7)$$

n 变量函数F有2ⁿ个最大项,不是包含在原函数 F的表达式中,就是包含在反函数的表达式中。

_	A	B	C	F	$\overline{\mathbf{F}}$
-	0	0	0	0	1
	0	0	1	0	1
	0	1	0	0	1
	0	1	1	1	0
	1	0	0	1	0
	1	0	1	1	0
	1	1	0	1	0
	1	1	1	1	0

同一函数的最小项标准式与其最大项标准式的关系

逻辑函数的两种标准式变换时,互换 $\sum m^n 和 \prod M^n$,并在符号后列出原式中缺少的数字。两种标准式都是唯一的。

$$F = \sum m^{3}(0,2,3) = \prod M^{3}(1,4,5,6,7)$$

$$\overline{F} = \sum m^{3}(1,4,5,6,7) = m_{1} + m_{4} + m_{5} + m_{6} + m_{7}$$

$$\overline{\overline{F}} = \overline{m_{1} + m_{4} + m_{5} + m_{6} + m_{7}}$$

$$= \overline{m_{1} \cdot m_{4} \cdot m_{5} \cdot m_{6} \cdot m_{7}}$$

$$= M_{1} \cdot M_{4} \cdot M_{5} \cdot M_{6} \cdot M_{7}$$

$$= \prod M^{3}(1,4,5,6,7)$$

2.5 逻辑函数的化简

逻辑函数对应实现其逻辑功能的电路,使该函数最简意味电路最简。

最简逻辑电路:门数最少;门的输入端最少;门的级数最少。

最简与或式:与项的数目最少;每个与项的变量个数最少。

最简或与式:或项的数目最少;每个或项的变量个数最少。

$$F = AB(B + \overline{C}) + \overline{A}C + \overline{B}C = AB + C$$

化简定理

$$A + A \cdot B = A \qquad A \cdot (A + B) = A$$

$$A + \overline{A} \cdot B = A + B \qquad A \cdot (\overline{A} + B) = A \cdot B$$

$$A \cdot B + A \cdot \overline{B} = A \qquad (A + B) \cdot (A + \overline{B}) = A$$

$$AB + \overline{A}C + BC = AB + \overline{A}C$$

$$(A + B) \cdot (\overline{A} + C) \cdot (B + C) = (A + B) \cdot (\overline{A} + C)$$

$$(A + B)(\overline{A} + C) = AC + \overline{A}B$$

$$AB + \overline{A}C = (A + C)(\overline{A} + B)$$

例1、
$$\overline{A}BC + \overline{A} = \overline{A}$$

例2、
$$[A+\overline{B}C+D+EF][A+\overline{B}C+\overline{(D+EF)}] = A+\overline{B}C$$

例3、
$$(AB+C)(\overline{B}D+\overline{C}\overline{E})+\overline{(AB+C)}=\overline{(AB+C)}+(\overline{B}D+\overline{C}\overline{E})$$

例4、
$$(A+B+\overline{C})(A+B+D)(A+B+E)(A+\overline{D}+E)(\overline{A}+C)$$

$$= (A+B+\overline{C}D)(A+B+E)(AC+(\overline{D}+E)\overline{A})$$

$$= (A+B+\overline{C}DE)(AC+\overline{A}\overline{D}+\overline{A}E)$$

$$= AC+ABC+\overline{A}B\overline{D}+\overline{A}BE+\overline{A}\overline{C}DE$$

$$= AC+\overline{A}B\overline{D}+\overline{A}BE+\overline{A}\overline{C}DE$$

2.5.1代数化简法

- (1) 要求熟记化简公式、定理;
- (2) 技巧性强,特别是采用"配项法",要先找出"配项",使表达式"由简变繁",再消除多余项,"由繁变简";
- (3)代数化简的过程和结果呈多样性,且不易发现出错,也不易判断是否最简。

与或式的化简

与或式化简常用的公式主要有四个:

$$A + \overline{A} = 1$$
 $A + \overline{A}B = A + B$
 $AB + A\overline{B} = A$ $AB + \overline{A}C + BC = AB + \overline{A}C$

化简过程:代入规则,把子函数看成变量,应用公式简化需要变换子函数的形式,以应用公式,化简为最简与或式

吸收法

利用公式: A + AB = A , 消去多余变量

例1、
$$F = AB + AB(C+D)E = AB$$

利用公式: $A + \overline{AB} = A + B$, 消去反变量

例2、
$$F = AB + \overline{A}C + \overline{B}C$$

 $= AB + (\overline{A} + \overline{B})C$
 $= AB + \overline{AB}C$
 $= AB + C$

合并项法

利用公式:
$$AB + A\overline{B} = A$$
 ,两项合并为一项且消去一个变量 例3、 $F = \sum m^4(5,7,13,15) = \overline{A}B\overline{C}D + \overline{A}BCD + AB\overline{C}D + ABCD$ $= \overline{A}BD + ABD$ $= BD$

消去法

利用公式:
$$AB + \overline{AC} + BC = AB + \overline{AC}$$
, 消去多余项

例4、
$$F = AC + ADE + \overline{C}D$$

= $AC + \overline{C}D + AD + ADE$
= $AC + \overline{C}D$

配项法

无法直接应用公式时,先增加与项,再利用增加项消除多余项。

利用公式:
$$1 = A + \overline{A}$$
, 增加项数

$$F = A\overline{B} + B\overline{C} + \overline{B}C + \overline{A}B = A\overline{B} + B\overline{C} + \overline{B}C(A + \overline{A}) + \overline{A}B(C + \overline{C})$$

$$= A\overline{B} + B\overline{C} + A\overline{B}C + \overline{A}BC + \overline{A}BC + \overline{A}BC$$

$$= A\overline{B} + B\overline{C} + \overline{A}BC + \overline{A}BC = A\overline{B} + B\overline{C} + \overline{A}C$$

$$F = A\overline{B} + B\overline{C} + \overline{B}C + \overline{A}B = A\overline{B}(C + \overline{C}) + B\overline{C}(A + \overline{A}) + \overline{B}C + \overline{A}B$$
$$= A\overline{B}C + A\overline{B}\overline{C} + B\overline{C}A + B\overline{C}A + B\overline{C}A + \overline{B}C + \overline{A}B$$
$$= A\overline{C} + \overline{B}C + \overline{A}B$$

利用公式:
$$AB + \overline{A}C = AB + \overline{A}C + BC$$
, 增加项数
$$F = A\overline{B} + B\overline{C} + \overline{B}C + \overline{A}B$$
$$= A\overline{B} + B\overline{C} + \overline{B}C + \overline{A}B + \overline{A}C$$
$$= A\overline{B} + B\overline{C} + \overline{A}C$$

$$F = A\overline{B} + B\overline{C} + \overline{B}C + \overline{A}B$$
$$= A\overline{B} + B\overline{C} + A\overline{C} + \overline{B}C + \overline{A}B$$
$$= A\overline{C} + \overline{B}C + \overline{A}B$$

综合法

$$F = AB + A\overline{C} + \overline{B}C + \overline{C}B + \overline{B}D + \overline{D}B + ADE(F + G)$$

$$= A(B + \overline{C}) + \overline{B}C + \overline{C}B + \overline{B}D + \overline{D}B + ADE(F + G)$$

$$= A\overline{B}C + \overline{B}C + \overline{C}B + \overline{B}D + \overline{D}B + ADE(F + G)$$

$$= A + \overline{B}C + \overline{C}B + \overline{B}D + \overline{D}B + ADE(F + G)$$

$$= A + \overline{B}C + \overline{C}B + \overline{B}D + \overline{D}B$$

$$= A + \overline{B}C + \overline{C}B + \overline{B}D + \overline{D}B + \overline{C}D$$

$$= A + \overline{B}C + \overline{C}B + \overline{D}B + \overline{C}D$$

$$= A + \overline{B}C + \overline{C}B + \overline{D}B + \overline{C}D$$

$$= A + \overline{B}C + \overline{C}B + \overline{D}B + \overline{C}D$$

或与式的化简

常规法:

$$(A+B)(A+\overline{B}) = A$$
 $A(A+B) = A$
 $A(\overline{A}+B) = AB$ $(A+B)(\overline{A}+C)(B+C) = (A+B)(\overline{A}+C)$

利用最简与或式得到最简或与式

对偶规则:求F的对偶式F',将F'化简为最简与或式,再求对偶,得到F最简或与式。

$$F = (A+B)(A+\overline{B})(B+C)(\overline{C}+D)(B+D)$$

$$F' = AB + A\overline{B} + BC + \overline{C}D + BD$$

$$= A + BC + \overline{C}D + BD$$

$$= A + BC + \overline{C}D$$

$$(F')' = (A+BC+\overline{C}D)'$$

$$F = A(B+C)(\overline{C}+D)$$

反演规则:求F的反函数 \overline{F} ,将 \overline{F} 化简为最简与或式,再求反,得到 \overline{F} 最简或与式。

$$F = AB + \overline{A}\overline{B} + \overline{A}\overline{C} + B\overline{D}$$

$$\overline{F} = (\overline{A} + \overline{B})(A + B)(A + C)(\overline{B} + D)$$

$$= (\overline{A}B + A\overline{B})(A + C)(\overline{B} + D)$$

$$= (\overline{A}BC + A\overline{B} + A\overline{B}C)(\overline{B} + D)$$

$$= \overline{A}BCD + A\overline{B} + A\overline{B}D$$

$$= \overline{A}BCD + A\overline{B}$$

$$F = \overline{F} = (A + \overline{B} + \overline{C} + \overline{D})(\overline{A} + B)$$

代数化简的特点:

应用基本公式和法则

一定的技巧

没有严格的规则可循

化简结果是否最简难以判断

2.5.2卡诺图

卡诺图和文氏图一样,是逻辑函数真值表的一种图形表示,它使得函数的最小项以特殊方式编排,这样可以很容易观察出什么时候可以对两个最小项、缺少变量的乘积项等使用化简定理。

A	В	F
0	0	
0	1	
1	0	
1	1	

D

		A	4	
000	010	110	100	
001	011	111	101	\bigcap C
		В		- —

0	4	12	8			
1	5	13	9			
3	7	15	11			
2	6	14	10			
	D					

B

A

B

B

0	4	12	8
1	5	13	9
3	7	15	11
2	6	14	10

E

16	20	28	24
17	21	29	25
19	23	31	27
18	22	30	26

D

C

卡诺图的特点

- (1) 卡诺图被每个变量逐次地分成两半
- (2) 2ⁿ个单元,每个单元对应一个最小 项,单元的十进制数就是它对应的最 小项的下标值
- (3) 相邻单元,仅有一个变量状态不同
- (4) 若干单元对应一个逻辑函数,即逻 辑函数可以图示于卡诺图上

		<u>A</u>				
	0	4	12	8		
n	1	5	13	9		
D	3	7	15	11		
	2	6	14	10		

逻辑函数与卡诺图

A	В	F
0	0	
0	1	
1	0	
1	1	

i个独立变量

2ⁱ个单元

单元序号

单元标记

$$F = \overline{A}\overline{B} + \overline{A}B$$

卡诺图可以通过每个独立变量值的组合来确定函数值。

 $F = m_1 + m_2 + m_5 + m_7$, 其真值表和卡诺图标注如下:

行号	ABC	F	m _i
0	000	0	$\mathbf{m_0}$
1	001	1	\mathbf{m}_1
2	010	1	$\mathbf{m_2}$
3	011	0	$\mathbf{m_3}$
4	100	0	$\mathbf{m_4}$
5	101	1	m_5
6	110	0	\mathbf{m}_{6}
7	111	1	\mathbf{m}_7

0	1	0	0
1	0	1	1

$$F = \sum m(0,3,5) = m_0 + m_3 + m_5$$
$$= \prod M(1,2,4,6,7) = M_1 M_2 M_4 M_6 M_7$$

逻辑函数在卡诺图上的表示

- ① 把给定的逻辑函数化为最小项标准式
- ② 按变量数画出相应卡诺图
- ③ 在对应于最小项标准式中各最小项的小方格内标"1"
- ④ 所有标有"1"的小方格的合成区域就表示该函数

同或运算和异或运算在卡诺图上的表示

卡诺图化简逻辑函数的基本原理

- 1. "相邻"的判断
 - (1) 相邻最小项:两个最小项只有一个变量不同(一个为原变量,
- 一个为反变量),在图上反映为两个相邻的小方格。
- (2) 卡诺图相邻小方格: 是指对应最小项相邻。 n 变量卡诺图每个小方格具有n个相邻小方格:

具有共同边界的小方格(几何相邻)

同一幅卡诺图中分别处于行(或列)两端的小方格(相对相邻) 在相邻两幅卡诺图中,处于相同位置的两个小方格(相重相邻) 0 1

0213

0	2	6	4
1	3	7	5

0	4	12	8
1	5	13	9
3	7	15	11
2	6	14	10

0	4	12	8	16	20	28	24
1	5	13	9	17	21	29	25
3	7	15	11	19	23	31	27
2	6	14	10	18	22	30	26

0	4	12	8	16	20	28	24
1	5	13	9	17	21	29	25
3	7	15	11	19	23	31	27
2	6	14	10	18	22	30	26
32	36	44	40	48	52	60	56
33	37	45	41	49	53	61	57
35	39	47	43	51	55	63	59
34	38	46	42	50	54	62	58

真值表上,最小项相邻关系不直观,卡诺图上则相邻关系一目了然

A

				В		В			
	0	4	12	8	16	20	28	24	
	1	5	13	9	17	21	29	25	1
E	3	7	15	11	19	23	31	27	
	2	6	14	10	18	22	30	26	-

画卡诺圈的规则

寻找相邻块的目的是为了在图上进行函数化简

- 标1/0的相邻同维块可画在一个卡诺圈;
- 标1/0的非相邻同维块不能画入一个卡诺圈,至少在两个圈内

- 任何 2^{i} 个 ($i \le n$) 标1的相邻小方格均可画在一个卡诺圈内
- 任何2ⁱ个标1的非相邻的小方格不能画入一个卡诺圈内,它们 至少画在两个圈内。

16	20	28	24
17	21	²⁹ 1	²⁵ 1
19	23	31	27
18	²² 1	³⁰ 1	26

① 0维块: m₇是五变量的与项

② 1维块:由两个相邻的 0 维块构成的一个卡诺圈, m_0+m_{16} 、 $m_{22}+m_{30}$ 是四变量的与项。

¹⁶ 1	20	28	24
17	21	29 1	²⁵ 1
19	23	31	27
18	²² 1	³⁰ 1	26

③2维块:由四个相邻的 0 维块构成的卡诺圈, $m_8+m_9+m_{12}+m_{13}$ 、 $m_0+m_2+m_8+m_{10}$ 、 $m_9+m_{13}+m_{25}+m_{29}$ 是三变量的与项。

2ⁱ个(i≤n)标1相邻小方格构成的卡诺圈表示一个(n-i)变量的与项2ⁱ个相邻的最小项被化简为一个(n-i)变量的与项

$$AB + \overline{A}C + BC = AB + \overline{A}C$$

画卡诺圈的规则: 任何2ⁱ个标1的相邻小方格均可画在一个卡诺圈内

蕴涵项: 函数的与或表达式,每一个与项称为蕴涵项

质蕴涵: 函数中的蕴涵项不是该函数的其他蕴涵项的子集,则此蕴涵项为质蕴涵,

在卡诺图中称为极大圈

实质最小项:只被一个质蕴涵所覆盖的最小项称为实质最小项

必要质蕴涵:包含实质最小项的质蕴涵。卡诺图上称为必要极大圈

最小覆盖: 挑选数目最少的必要质蕴涵,它们覆盖了图上全部标1的小方格。最小覆盖对应最简表达式。

 $F(A,B,C,D) = \overline{A}\overline{B}D + B\overline{C}D + \overline{B}\overline{C}\overline{D} + \overline{A}B\overline{D}$

卡诺图化简的流程:

- 1、将逻辑函数表示在卡诺图上
- 2、根据实质最小项确定所有的必要极大圈
- 3、如果已覆盖卡诺图上全部标1单元,这些必要极大圈集合就是最小覆盖
- 4、如果还有标1单元未被必要极大圈覆盖,加上选择最少的极大圈覆盖剩余标1单元,获得最小覆盖
- 5、写出最小覆盖所对应的逻辑表达式,即最简与或式

将逻辑函数化简成最简与或表达式

$$F_1 = \sum m^4(1,3,4,5,9,11,12,13,14,15)$$

- 1、将F₁表示在卡诺图中
- 2、画出极大圈,确定实质最小项 m_3, m_4, m_{14}
- 3、确保必要极大圈 a,b,c已覆盖全部标1小方格;
- 4、写出函数最简表达式 $F_1 = a + b + c = \overline{B}D + B\overline{C} + AB$

	AB			
CD `		1	1	
	1	1	1	1
	1		1	1
			1	

$$F_2 = \sum m^4(0,1,2,3,4,5,7,14,15)$$

$$F_2 = a + b + c + d = \overline{A}\overline{B} + \overline{A}\overline{C} + \overline{A}D + ABC$$

$$F_3 = \sum m^4(1,5,7,9,11,15)$$

有两种表达式,如下所示

$$F_3 = \overline{B}\overline{C}D + \overline{A}BD + ACD$$

$$F_3 = \overline{A}\overline{C}D + BCD + A\overline{B}D$$

 $F_4 = \sum m^5(0, 2, 4, 10, 12, 13, 15, 18, 26, 28, 29, 31)$

$$F_4 = a + b + c + d = BC\overline{D} + BCE + \overline{C}D\overline{E} + \overline{A}\overline{B}\overline{D}\overline{E}$$

将逻辑函数化简成最简或与式

求反函数的最简与或式, 按反演规则得原函数的最简或与式

原函数在卡诺图上标0小方格的集合是反函数在卡诺图上的表示:

- (1)按原函数在卡诺图中标0小方格的相邻情况,即可求出反函数的最简与或式;
 - (2) 将反函数求反,得到原函数的最简或与式

$$F_1 = \sum m^4(0,8,9,10,11,12,13,14,15)$$

- 1、将函数表示在卡诺图上、将未填1的小方格均填上0
- 2、对所有标0小方格选出必要极大圈、选择最小覆盖,得到反函数

$$\overline{F}_1 = a + b + c = \overline{A}B + \overline{A}D + \overline{A}C$$

$$F_1 = \overline{\overline{A}B + \overline{A}D + \overline{A}C}$$

$$= (A + \overline{B})(A + \overline{D})(A + \overline{C})$$

同一函数最简与或式和最简或与式的电路比较

$$F_1 = \sum m^4(0,8,9,10,11,12,13,14,15)$$

$$F_1 = (A + \overline{B})(A + \overline{D})(A + \overline{C})$$

$$F_1 = A + \overline{B}\overline{C}\overline{D}$$

	AB			
CD `	1	0	1	1
	0	0	1	1
	0	0	1	1
	0	0	1	1

如果能用输入端为非的与门,则 $F_1 = A + \overline{BCD}$ 可转换成二级电路 没有输入端为非的与门,变换成或与式 $F_1 = \overline{A} \cdot (B + C + D)$

2.5.3利用无关项化简函数表达式

一位BCD码输入偶数判别电路

分析: 当输入为偶数时,输出F为1,否则输出F为0

输入为
$$A_8 A_4 A_2 A_1$$
, $F(A_8 A_4 A_2 A_1) = \sum m^4 (0, 2, 4, 6, 8)$

函数的最简与或式 $F = \overline{A_8} \overline{A_1} + \overline{A_4} \overline{A_2} \overline{A_1}$

A_2A_1	A ₈ A ₄			
1-21-1	1	1	d	1
			d	
			d	d
	1	1	d	d
!				

最小项 $m_{10}\sim m_{15}$ 不会出现,用"d"表示输入组合的无关项,填入卡诺图,表示此类小方格既可表示1也可表示0

$$F = \overline{A}_1$$

未使用无关最小项和使用无关最小项的电路比较

$$F = \overline{A}_8 \overline{A}_1 + \overline{A}_4 \overline{A}_2 \overline{A}_1$$

$$F = \overline{A}_1$$

$$A_1 \longrightarrow A_1 \longrightarrow F$$

无关项也称任意项、约束项,构成的函数为不完全给定函数

当函数输出与某些输入组合无关时,这些输入的组合称为无关项

产生原因:输入组合在正常操作中不会出现;即使某个输入组合可能出现,但实际上输出与它们无关

当输入出现无关组合d时,d可以随意加/不加入其对应的函数F,不 影响F原有的逻辑功能,但为函数F的化简提供了帮助

$$F = \sum m^4(4,5,13,15) + \sum d^4(2,3,7,9,14)$$

$$F = \overline{A}B\overline{C} + BD$$

二进制数表示的十进制数码

最小项m _i	8421码	2421码	余3码
m_0	0000 0	0000 0	d
m_1	0001 1	0001 1	d
m_2	0010 2	0010 2	d
m_3	0011 3	0011 3	0011 <mark>0</mark>
m_4	0100 4	0100 4	0100 1
m_5	0101 5	d	0101 2
m_6	0110 6	d	0110 3
m_7	0111 7	d	0111 4
m_8	1000 8	d	1000 5
m_9	1001 <mark>9</mark>	d	1001 <mark>6</mark>
m_{10}	d	d	1010 7
m_{11}	d	1011 5	1011 8
m_{12}	d	1100 6	1100 <mark>9</mark>
m_{13}	d	1101 7	d
m ₁₄	d	1110 8	d
m ₁₅	d	1111 9	d

BCD码输入质数检测器,假设输入为N₃N₂N₁N₀,输出表达式

$$F = \sum m^4(2,3,5,7) + \sum d^4(10,11,12,13,14,15)$$

找出必要质蕴涵,区别是:相邻的"d"尽可能包含在极大圈内,使画出的极大圈尽可能地大,减少质蕴涵的变量数。不圈任何仅包含 d 的圈;不圈任何标 0 的小方格。

$$F = N_2 N_0 + \overline{N}_2 N_1$$

2421码输入四舍五入判别电路

最小项m _i	2421码
m_0	0000 0
m_1	0001 1
m_2	0010 2
m_3	0011 3
m_4	0100 4
m_5	d
m_6	d
m_7	d
m_8	d
m_9	d
m_{10}	d
m_{11}	1011 5
m_{12}	1100 6
m ₁₃	1101 7
m_{14}	1110 <mark>8</mark>
m ₁₅	1111 9

$$F = \sum m^4(11,12,13,14,15) + \sum d^4(5,6,7,8,9,10)$$

$$F = A$$

余3码输入偶数判别电路

最小项m _i	余3码
m_0	d
m_1	d
m_2	d
m_3	0011 <mark>0</mark>
m_4	0100 1
m_5	0101 2
m_6	0110 3
m_7	0111 4
m_8	1000 5
m_9	1001 6
m_{10}	1010 7
m_{11}	1011 8
m_{12}	1100 <mark>9</mark>
m_{13}	d
m_{14}	d
m ₁₅	d

$$F = \sum m^4(3,5,7,9,11) + \sum d^4(0,1,2,13,14,15)$$

$$F = N_0$$

2.5.4 输入无反变量的函数的化简

电路中为减少连线数目,对其外部输入变量只有原变量没有反变量, 电路要通过非门来实现反变量。

$$F = A \oplus B = A\overline{B} + \overline{A}B = A\overline{AB} + B\overline{AB}$$

对于与或式, 共享的门是与非门

当反变量较多时,每个反变量都加非门不经济。 共享非门:多个单输入非门合并成一个多输入与非门,可以减少非门个数

替代尾因子法

定义:每个与项中原变量部分称为头因子,反变量部分称为尾因子特点:把头因子中的任何变量放入任一个尾因子中,该与项不变,即头因子是不变的,尾因子是可变的。

$$F = AB\overline{C}\overline{DE} = AB\overline{AC}\overline{DE} = AB\overline{BC}\overline{DE} = AB\overline{ABC}\overline{DE}$$
$$= AB\overline{ABC}\overline{ADE} = AB\overline{ABC}\overline{ABDE}$$

1、把最简式中具有相同头因子的与项合并成一个与项

$$F = A\overline{B}\overline{C} + BC\overline{D} + A\overline{C}\overline{D} + \overline{B}CD + \overline{A}BC + \overline{A}CD$$
$$= A(\overline{B}\overline{C} + \overline{C}\overline{D}) + BC(\overline{D} + \overline{A}) + CD(\overline{A} + \overline{B})$$
$$= A\overline{C}\overline{B}\overline{D} + BC\overline{A}B + CD\overline{A}B$$

2、列出最简与或式中所有与项的头因子、尾因子及替代尾因子

与项	头因子	尾因子	替代尾因子
$\overline{AC} \overline{BD}$	A	$\overline{\mathbf{C}}$	\overline{C} , \overline{AC}
AC BD		$\overline{\mathrm{BD}}$	$\overline{\mathrm{BD}}, \ \overline{\mathrm{ABD}}$
$\overline{BC \overline{AD}}$	BC	$\overline{ m AD}$	AD, ABD, ACD, ABCD
$\overline{\text{CD AB}}$	CD	ĀB	AB, ABC, ABD, ABCD

3、选择共享的替代尾因子,选择的原则如下:

替代尾因子共享数尽可能多 在共享数相等时选择最简单的

与项	头因子	尾因子	替代尾因子
$\overline{AC} \overline{BD}$	A	$\overline{\mathbf{C}}$	\overline{C} , \overline{AC}
AC BD		$\overline{ m BD}$	$\overline{\mathrm{BD}}$, $\overline{\mathrm{ABD}}$
$\overline{BC \overline{AD}}$	BC	$\overline{ m AD}$	AD, ABD, ACD, ABCD
$\overline{\text{CD AB}}$	CD	$\overline{\mathrm{AB}}$	AB, ABC, ABD, ABCD

$$F = A\overline{C}\overline{ABD} + BC\overline{ABD} + CD\overline{ABD}$$

2.5.5 多输出函数的化简

逻辑电路多输出,每个输出函数最简,整个电路未必最简

解决途径:尽可能共享中间变量

卡诺图化简法

- 1、将函数——填入卡诺图
- 2、函数相互作与运算,找出它们之间较多可被共享的与项
- 3、根据分析结果选择全部函数的质蕴涵
- 4、写出各函数的与或表达式

$$F = \sum m^3(3,6,7)$$
 $G = \sum m^3(0,1,3)$

$$F = P_1 + P_5 = \overline{A}BC + AB$$
$$G = P_1 + P_3 = \overline{A}BC + \overline{A}\overline{B}$$

