#01. 도수분포

- 1. 주요 개념
- 2. 도수분포표 예시

절대도수

상대도수

#02. 작업 준비

- 1. 패키지 가져오기
- 2. 데이터 가져오기

#03. 도수분포

- 1. numpy를 통한 도수분포 조 회
- 2. 조회 결과를 도수분포표로 생성
- 3. 상대도수 파생변수 추가

#04. 히스토그램

- 1. 그래프 기본 설정
- 2. pyplot을 사용한 히스토그 랙
 - 1) 기본 사용 방법
 - 2) x축 설정하기

데이터 분포

변수를 몇 개의 구간으로 나누어 각 구간별로 몇 개의 데이터가 분포되어 있는지를 확인하는 것

#01. 도수분포

수집된 자료를 쉽게 이해할 수 있도록 일목요연하게 정리된 표

특정 항목 또는 특정 범위에 속하는 빈도수를 나타낸 표

1. 주요 개념

용어	의미
계급 (Class)	자료가 취하는 전체 범위를 몇 개의 소집단(범주,구간)으로 나눈것
도수/빈도 (Frequency)	각 계급에 속하는 자료의 수
상대도수 (Relative Frequency)	도수를 전체 자료의 수, 즉 전체 도수로 나눈 비율 (Proportion,Probability) 상대도수를 모두 합하면, 1 이 됨
도수분포표 (Frequency Table)	데이터의 대략적인 분포 형태, 중심위치, 산포 등을 파악하기 위한 데이터정리 방법 계급, 도수, 상대도수, 누적도수 등으로 구성

도수 분포를 통해 얻을 수 있는 정보는 얻는 정보 자료 분포의 특징 (집중성,대칭성 등)이며 잃는 정보는 자료 그 자체의 수치값이다.

#01. 도수분포

- 1. 주요 개념
- 2. 도수분포표 예시

절대도수

상대도수

#02. 작업 준비

- 1. 패키지 가져오기
- 2. 데이터 가져오기

#03. 도수분포

- 1. numpy를 통한 도수분포 조 히
- 2. 조회 결과를 도수분포표로 생성
- 3. 상대도수 파생변수 추가

#04. 히스토그램

- 1. 그래프 기본 설정
- 2. pyplot을 사용한 히스토그 랙
 - 1) 기본 사용 방법
 - 2) x축 설정하기

2. 도수분포표 예시

연령대가 28, 30, 31, 33, 35, 41, 42 가 있다면 데이터 구간을 20초과 30이하, 30 초과 40이하, 40초과 50이하 로 설정했을 때 빈도수는 1, 4, 2 합계 7로 표현한다

절대도수

구간	도수
20초과 30이하	1
30초과 40이하	4
40초과 50이하	2
합계	7

상대도수

구간	도수
20초과 30이하	14.28
30초과 40이하	57.14
40초과 50이하	28.57
합계	1

#02. 작업 준비

1. 패키지 가져오기

#01. 도수분포

- 1. 주요 개념
- 2. 도수분포표 예시

절대도수

상대도수

#02. 작업 준비

- 1. 패키지 가져오기
- 2. 데이터 가져오기

#03. 도수분포

- 1. numpy를 통한 도수분포 조 히
- 2. 조회 결과를 도수분포표로 생성
- 3. 상대도수 파생변수 추가

#04. 히스토그램

- 1. 그래프 기본 설정
- 2. pyplot을 사용한 히스토그 랙
 - 1) 기본 사용 방법
 - 2) x축 설정하기

```
import sys
import numpy as np
import seaborn as sb
from pandas import DataFrame, read_excel, melt
from matplotlib import pyplot as plt
```

2. 데이터 가져오기

df = read_excel('http://data.hossam.kr/D02/ad-sales.xlsx', index_col="월 df

	광고비(백만원)	매출액(억원)
월		
1월	2	100
2월	142	1690
3월	122	298
4월	130	390
5월	185	590
6월	121	200
7월	101	190
8월	199	460

02_데이터분포.ipynb

데이터 분포

#01. 도수분포

1. 주요 개념

2. 도수분포표 예시

절대도수

상대도수

#02. 작업 준비

1. 패키지 가져오기

2. 데이터 가져오기

#03. 도수분포

1. numpy를 통한 도수분포 조 회

2. 조회 결과를 도수분포표로 생성

3. 상대도수 파생변수 추가

#04. 히스토그램

1. 그래프 기본 설정

2. pyplot을 사용한 히스토그 랙

1) 기본 사용 방법

2) x축 설정하기

	광고비(백만원)	매출액(억원)
월		
9월	221	660
10월	139	350
11월	169	650
12월	237	880

#03. 도수분포

도수, 구간 = np.histogram(데이터, 클래스수)

1. numpy를 통한 도수분포 조회

```
hist, bins = np.histogram(df['매출액(억원)'], bins=5)
print(hist)
print(bins)
```

```
[6 4 1 0 1]
[ 100. 418. 736. 1054. 1372. 1690.]
```

2. 조회 결과를 도수분포표로 생성

#01. 도수분포

- 1. 주요 개념
- 2. 도수분포표 예시

절대도수

상대도수

#02. 작업 준비

- 1. 패키지 가져오기
- 2. 데이터 가져오기

#03. 도수분포

- 1. numpy를 통한 도수분포 조 회
- 2. 조회 결과를 도수분포표로 생성
- 3. 상대도수 파생변수 추가

#04. 히스토그램

- 1. 그래프 기본 설정
- 2. pyplot을 사용한 히스토그 랙
 - 1) 기본 사용 방법
 - 2) x축 설정하기

```
info = []
for i, v in enumerate(hist):
    if i+1 < len(hist):
        tpl = "%d이상 %d이만"

else:
        tpl = "%d이상 %d이하"

cls = tpl % (bins[i], bins[i+1])
    line = {"계급": cls, "도수": v}
    info.append(line)

hist_df = DataFrame(info)
hist_df.set_index('계급', inplace=True)
hist_df
```

	도수
계급	
100이상 418미만	6
418이상 736미만	4
736이상 1054미만	1
1054이상 1372미만	0
1372이상 1690이하	1

3. 상대도수 파생변수 추가

#01. 도수분포

- 1. 주요 개념
- 2. 도수분포표 예시

절대도수

상대도수

#02. 작업 준비

- 1. 패키지 가져오기
- 2. 데이터 가져오기

#03. 도수분포

- 1. numpy를 통한 도수분포 조 회
- 2. 조회 결과를 도수분포표로 생성
- 3. 상대도수 파생변수 추가

#04. 히스토그램

- 1. 그래프 기본 설정
- 2. pyplot을 사용한 히스토그 랙
 - 1) 기본 사용 방법
 - 2) x축 설정하기

```
전체데이터수 = len(df)
hist_df['상대도수'] = hist_df['도수'] / 전체데이터수
hist_df
```

	도수	상대도수
계급		
100이상 418미만	6	0.500000
418이상 736미만	4	0.333333
736이상 1054미만	1	0.083333
1054이상 1372미만	0	0.000000
1372이상 1690이하	1	0.083333

#04. 히스토그램

도수분포표를 시각화 한 그래프

1. 그래프 기본 설정

```
plt.rcParams["font.family"] = 'AppleGothic' if sys.platform = 'darwin'
plt.rcParams["font.size"] = 10
plt.rcParams["figure.figsize"] = (7, 4)
plt.rcParams["axes.unicode_minus"] = False
```

#01. 도수분포

- 1. 주요 개념
- 2. 도수분포표 예시

절대도수

상대도수

#02. 작업 준비

- 1. 패키지 가져오기
- 2. 데이터 가져오기

#03. 도수분포

- 1. numpy를 통한 도수분포 조 히
- 2. 조회 결과를 도수분포표로 생성
- 3. 상대도수 파생변수 추가

#04. 히스토그램

- 1. 그래프 기본 설정
- 2. pyplot을 사용한 히스토그 랙
 - 1) 기본 사용 방법
 - 2) x축 설정하기

2. pyplot을 사용한 히스토그램

1) 기본 사용 방법

데이터 원본을 사용해서 시각화한다.

x축을 pyplot이 임의로 지정하기 때문에 데이터 구간을 파악하기 어렵다.

```
plt.figure()
plt.hist(df['매출액(억원)'], bins=5, edgecolor='black', linewidth=1.2)
plt.show()
plt.close()
```


#01. 도수분포

- 1. 주요 개념
- 2. 도수분포표 예시

절대도수

상대도수

#02. 작업 준비

- 1. 패키지 가져오기
- 2. 데이터 가져오기

#03. 도수분포

- 1. numpy를 통한 도수분포 조 히
- 2. 조회 결과를 도수분포표로 생성
- 3. 상대도수 파생변수 추가

#04. 히스토그램

- 1. 그래프 기본 설정
- 2. pyplot을 사용한 히스토그 랙
 - 1) 기본 사용 방법
 - 2) x축 설정하기

2) x축 설정하기

np.histogram() 메서드를 사용하여 데이터 구간 정보를 리턴받은 후 그래프의 xticks() 로 적용한다.

```
hist, bins = np.histogram(df['매출액(억원)'], bins=5)

plt.figure()
plt.hist(df['매출액(억원)'], bins=5, edgecolor='black', linewidth=1.2)
plt.xticks(bins, bins)
plt.show()
plt.close()
```


#01. 도수분포

- 1. 주요 개념
- 2. 도수분포표 예시

절대도수

상대도수

#02. 작업 준비

- 1. 패키지 가져오기
- 2. 데이터 가져오기

#03. 도수분포

- 1. numpy를 통한 도수분포 조 히
- 2. 조회 결과를 도수분포표로 생성
- 3. 상대도수 파생변수 추가

#04. 히스토그램

- 1. 그래프 기본 설정
- 2. pyplot을 사용한 히스토그 랙
 - 1) 기본 사용 방법
 - 2) x축 설정하기

2. 원본 데이터 자체를 사용

```
hist, bins = np.histogram(df['매출액(억원)'], bins=5)

plt.figure()
df.hist(column='매출액(억원)', bins=5, edgecolor='black', linewidth=1.2)
plt.xticks(bins, bins)
plt.show()
plt.close()
```

<Figure size 700×400 with 0 Axes>

02_데이터분포.ipynb

데이터 분포

#01. 도수분포

- 1. 주요 개념
- 2. 도수분포표 예시

절대도수

상대도수

#02. 작업 준비

- 1. 패키지 가져오기
- 2. 데이터 가져오기

#03. 도수분포

- 1. numpy를 통한 도수분포 조 회
- 2. 조회 결과를 도수분포표로 생성
- 3. 상대도수 파생변수 추가

#04. 히스토그램

- 1. 그래프 기본 설정
- 2. pyplot을 사용한 히스토그 랙
 - 1) 기본 사용 방법
 - 2) x축 설정하기

3. seaborn 사용하기

23/07/07일 version '0.12.2'에서 sb.set_theme()를 호출하면 기존의 한글 글꼴 설정이 깨짐. sb.set_theme() 호출 이후에 글꼴을 다시 한번 설정해야 함.

• bins : 계급수

• kde: 확률밀도곡선 표시 여부

• stat : 절대, 상대도수 구분. "percent"라고 지정할 경우 상대도수, 기본값은 절대도수

• hue: 범주 지정

hist, bins = np.histogram(df['매출액(억원)'], bins=5)

02_데이터분포.ipynb

데이터 분포

#01. 도수분포

- 1. 주요 개념
- 2. 도수분포표 예시

절대도수

상대도수

#02. 작업 준비

- 1. 패키지 가져오기
- 2. 데이터 가져오기

#03. 도수분포

- 1. numpy를 통한 도수분포 조 회
- 2. 조회 결과를 도수분포표로 생성
- 3. 상대도수 파생변수 추가

#04. 히스토그램

- 1. 그래프 기본 설정
- 2. pyplot을 사용한 히스토그 랙
 - 1) 기본 사용 방법
 - 2) x축 설정하기

plt.figure()
sb.set_theme(style='whitegrid', font='Malgun Gothic', font_scale=1.2)
sb.histplot(data=df, x='매출액(억원)', bins=5, kde=True, stat="percent")
plt.xticks(bins, bins)
plt.show()
plt.close()


```
# index를 일반 컬럼으로 변환
df2 = df.reset_index()
mdf = melt(df2, id_vars=['월'], value_vars=['광고비(백만원)', '매출액(억원)'
```

#01. 도수분포

1. 주요 개념

2. 도수분포표 예시

절대도수

상대도수

#02. 작업 준비

1. 패키지 가져오기

2. 데이터 가져오기

#03. 도수분포

1. numpy를 통한 도수분포 조 히

2. 조회 결과를 도수분포표로 생성

3. 상대도수 파생변수 추가

#04. 히스토그램

1. 그래프 기본 설정

2. pyplot을 사용한 히스토그 랙

1) 기본 사용 방법

2) x축 설정하기

var_name='구분', value_name='금액')

mdf

	월	구분	금액
0	1월	광고비(백만원)	2
1	2월	광고비(백만원)	142
2	3월	광고비(백만원)	122
3	4월	광고비(백만원)	130
4	5월	광고비(백만원)	185
5	6월	광고비(백만원)	121
6	7월	광고비(백만원)	101
7	8월	광고비(백만원)	199
8	9월	광고비(백만원)	221
9	10월	광고비(백만원)	139
10	11월	광고비(백만원)	169
11	12월	광고비(백만원)	237
12	1월	매출액(억원)	100
13	2월	매출액(억원)	1690
14	3월	매출액(억원)	298
15	4월	매출액(억원)	390

23. 7. 7. 오전 11:11

02_데이터분포.ipynb

데이터 분포

#01. 도수분포

1. 주요 개념

2. 도수분포표 예시

절대도수

상대도수

#02. 작업 준비

1. 패키지 가져오기

2. 데이터 가져오기

#03. 도수분포

1. numpy를 통한 도수분포 조 회

2. 조회 결과를 도수분포표로 생성

3. 상대도수 파생변수 추가

#04. 히스토그램

1. 그래프 기본 설정

2. pyplot을 사용한 히스토그 랙

1) 기본 사용 방법

2) x축 설정하기

	월	구분	금액
16	5월	매출액(억원)	590
17	6월	매출액(억원)	200
18	7월	매출액(억원)	190
19	8월	매출액(억원)	460
20	9월	매출액(억원)	660
21	10월	매출액(억원)	350
22	11월	매출액(억원)	650
23	12월	매출액(억원)	880

```
hist, bins = np.histogram(mdf['금액'], bins=5)

#for i, v in enumerate(bins):
# bins[i] = round(v, 1)

bins2 = np.round(bins, 1)

plt.figure()
sb.set_theme(style='whitegrid', font='Malgun Gothic', font_scale=1.2)
sb.histplot(data=mdf, x='금액', bins=5, hue='구분', kde=True, palette='co
plt.xticks(bins2, bins2)
plt.show()
plt.close()
```

#01. 도수분포

- 1. 주요 개념
- 2. 도수분포표 예시

절대도수

상대도수

#02. 작업 준비

- 1. 패키지 가져오기
- 2. 데이터 가져오기

#03. 도수분포

- 1. numpy를 통한 도수분포 조 회
- 2. 조회 결과를 도수분포표로 생성
- 3. 상대도수 파생변수 추가

#04. 히스토그램

- 1. 그래프 기본 설정
- 2. pyplot을 사용한 히스토그 랙
 - 1) 기본 사용 방법
 - 2) x축 설정하기

