

ESS302 Applied Geophysics II

Gravity, Magnetic, Electrical, Electromagnetic and Well Logging

Electromagnetic 2: GPR Applications

Instructor: Dikun Yang Feb – May, 2019

Quiz

 True or false and why: While dc resistivity is only sensitive to the electrical resistivity, GPR data only response to the variation of electrical permittivity.

- Both dc resistivity and GPR can use electrical dipole sources. In a dc survey the dipole electrodes need to be in contact with the earth, but the GPR dipole source can be suspended in the air. Why?
- Which survey parameters determine the depth of investigation (DOI) in dc resistivity and GPR?

- Propagation Velocity: $v = \sqrt{\frac{2}{\mu \varepsilon}} \left[\left(1 + \left(\frac{\sigma}{\omega \varepsilon} \right)^2 \right)^{1/2} + 1 \right]^{-1/2}$
- Skin Depth: $\delta = \sqrt{\frac{2}{\omega^2 \mu \varepsilon}} \left[\left(1 + \left(\frac{\sigma}{\omega \varepsilon} \right)^2 \right)^{1/2} 1 \right]^{-1/2}$

where $\omega = 2\pi f_c$ and f_c is the operating frequency. Here, we assume that the Earth is non-magnetic (e.g. $\mu = \mu_0$). The app propagation velocity and skin depth at frequencies $f_c = 25,100$ and 1000 MHz.

Wave regime:

- Propagation Velocity: $v = \frac{c}{\sqrt{\varepsilon_r}}$
- Skin Depth: $\delta = 0.0053 \, \frac{\sqrt{\overline{\varepsilon_r}}}{\sigma}$

Parameters for the App:

- · epsr: Relative permittivity of the medium (unitless)
- sigma: Log (base 10) conductivity of the medium. Note that sigma = -1.5 corresponds to a true conductivity of σ = 0.0316 S/m.

Common Offset

Tx Rx

Common Midpoint

Zero Offset: Finding Buried Objects

Two-way travel time for a point scatter

$$t_p = rac{2L_2}{V} = rac{2\sqrt{(x-x_p)^2 + d^2}}{V}$$

- (1) Estimate the velocity V. Can you think of two methods?
- (2) Calculate the depth of burial *d* or *h*

Exercise: "Curve-fitting" Inversion

Migration

Zero offset survey along lines

Common Midpoint

$$t = \frac{2\sqrt{x^2 + d^2}}{V}$$

Solve for V and d

Transillumination Surveys

- Tx and Rx are placed on opposing sides of a target.
- Sometimes many Tx and Rx
- Used for:
 - Structural integrity of mine shafts
 - Borehole surveys
 - Finding internal structures within objects

Q: If higher frequencies give better resolution, what does that say about pulse width?

$$f_c = rac{1}{\Delta t}$$

Q: What are some things you want to know before choosing an operating frequency?

Noise – External Radiowave or Above Ground Reflection

Noise - "Ringing"

Wire below surface

2 nearby objects

- Caused when signals reverberate in regular fashion
- Signal repeatedly bounces within a layer or between objects.

Noise – Scattering

- Deviations in signal path due to localized non-uniformities.
- Reduces amplitude of usable signal and increases noise.

Processing – Time-depth Conversion

Apparent depth:

$$d_a=rac{Vt}{2}$$

- Vertical axis usually 2-way travel time [ns]
- Get velocity first, then get an apparent depth

Processing – Gain Correction

- Multiply raw data by a gain factor so that late signals can be recognized.
- Gain factor generally counteracts exponential decay in amplitude

Processing – Stacking and Averaging

- Data from repeated shots are averaged (stacked)
- Stacking reduces the amplitude of incoherent noise

- Wavelet signal is smooth whereas incoherent noise is random
- Smoothing decreases amplitude of random noise relative to returning signals.

GPR Antenna

Half-wave dipole antenna:

Length is determined by the intended wavelength (or frequency) of operation

GPR Antenna

Water Hazard in Potash Mine

Water was leaking into the potash mine

Reducing structural integrity of mine shafts

Want to know where water is and its source

Water infiltration produces a strong reflector

- Zero offset GPR survey performed.
- Arrival time to depth conversion performed

Q: Without a direct ground wave measurement or hyperbola to obtain propagation speed, how could they do conversion?

A: Potash in an anhydrite mineral.

From known physical properties, V ~ 0.13 m/ns

Apparent depth $d_a = Vt/2$

Q: What kinds of features do you see in the data?

- Strong reflector from intruding water (7 8 m into the wall)
- Water is delineated and seems to be coming from the right
- Ringing from mine infrastructure

GPR on SUSTech Campus

On SUSTech campus: search for buried power cables

- Frequency range: 100M to 1G Hz
- Depth of penetration: within 100 m
- High frequency: good resolution but shallow
- Low frequency: poor resolution but deep
- Good reflectors: water ($\varepsilon_r = 81$), metal ($\varepsilon_r = infinity$)

MARSIS antenna beam

Mars Radar

40 m dipole antenna 1.8 ~ 5.0 MHz

Mars Advanced Radar for <u>S</u>ubsurface and <u>Ionosphere Sounding</u> **MARSIS** mission

Liquid water beneath ice cap

Mars Express radar footprints (blue = brightest radar echo)

Radar image of subsurface

Summary

- GPR survey types
- GPR data analysis: velocity and depth
- GPR data processing
- GPR noise in practice
- GPR instruments: Antenna
- Applications: Water gushing in potash mines, MARS radar, Searching pipes on SUSTech campus.