109

Riemannian connections

Spring 2023

Optimization on manifolds, MATH 512 @ EPFL

Instructor: Nicolas Boumal

Connections: from infinitely many, to one

We defined connections ∇ by requiring *some* properties.

Since manifolds have infinitely many connections, we can require even *more* properties.

Hopefully, exactly *one* connection will satisfy them.

This has two purposes:

- 1. We can pick convenient properties.
- 2. Uniqueness reduces arbitrariness.

Where to from here? Let's imagine...

Let \mathcal{M} be a Riemannian manifold.

The aim is to identify a special ∇ , called the Riemannian connection.

With *that* connection, given a smooth $f: \mathcal{M} \to \mathbf{R}$, we let

$$\operatorname{Hess} f(x) : T_x \mathcal{M} \to T_x \mathcal{M}$$

denote the Riemannian Hessian of f at x, defined by:

$$\operatorname{Hess} f(x)[u] = \nabla_u \operatorname{grad} f$$

We would like for $\operatorname{Hess} f(x)$ to be symmetric. What does it take?

Hussflx): Tx M + Tx M is symmetric or self-adjoint if: Yu, v & TaM : < Hust [x)[u], V > = < then flow [v], u > 2 (in \mathbb{R}^{3} , if $\Pi \in \mathbb{R}^{m \times n}$, $\Pi^{T} = \Pi$, $\langle u, M_{v} \rangle = u^{T} \Pi v = u^{T} \Pi^{T} v = (M_{u})^{T} v = \langle M_{u}, v \rangle$) YU, VE 7(M): < Henf [U], V> = < Henf[V], U> Notation: Hers [U] & X(M): (Hers [U]) las = Hers [u] [U[xs]] \[
\langle U, V \rangle : M \rightarrow \text{R} : \left(\langle U, V \rangle (n) = \left(\langle U(n), V(n) \rangle_{\pi}.
\]

What we want: < \(\nu \) grady, \(\nu \) = < \(\nu \) grady, \(\nu \)

 $U \langle V, V \rangle = \langle \nabla_{\!\!\!u} W, V \rangle + \langle W, \nabla_{\!\!\!u} V \rangle$ Notation: UE F(M), f:M + R mooth $uf: M \rightarrow \mathbb{R}: \quad (uf)(x) = Df(x)[u](x)]$ $uf = \langle gradf, u \rangle = \langle gradf(x), u|x\rangle_{2}$ $\langle \nabla u f (adf), v \rangle = U \langle gradf, v \rangle - \langle gradf, \nabla_{u}v \rangle.$ \[
\text{Vy gradf, u > = V \left\ gradf, u > - \left\ gradf, \text{Vu} \right\}
\] U < graf, v> - V < grad, u> = < grad, VuV-Vu> Want: $U(V_f) - V(U_f) = (\nabla_u V - \nabla_v U) f$.

Define:
$$[U,V]$$
 (the Lie bracket of $U,V \in \mathcal{X}(U)$)

acts on $f:M \to \mathbb{R}$ (smooth) as:
$$[U,V]f = U(Vf) - V(Uf).$$

whe: $[U,V]f = (\nabla_{U}V - \nabla_{V}U)f$.

Let's wrap up the imagination and clean up with proper definitions.

Symmetry

Let U, V be two smooth vector fields on a manifold \mathcal{M} .

Let $f: \mathcal{M} \to \mathbf{R}$ be a smooth function.

Def.: The action of U on f creates a new function Uf, defined by:

$$(Uf)(x) = \bigcap_{x \in \mathcal{X}} [u(x)]$$

Def.: The Lie bracket [U, V] acts on f to create the new function:

$$[U,V]f = U(V_{\frac{1}{2}}) - V(U_{\frac{1}{2}})$$

Def.: A connection ∇ is symmetric if

$$[U,V]f = (\nabla_U V - \nabla_V U)f$$

for all smooth vector fields U, V and all smooth $f: \mathcal{M} \to \mathbf{R}$.

Fact: For a linear space, $\nabla_u V = \mathrm{D}V(x)[u]$ is a symmetric connection.

Fact: For an embedded submanifold of a Euclidean space, $\nabla_u V = \text{Proj}_x(D\overline{V}(x)[u])$ is a symmetric connection.

Compatibility with the metric

The symmetry property does not require a Riemannian metric.

From now on, assume $\mathcal M$ is a Riemannian manifold.

Def.: Given two vector fields U, V on \mathcal{M} , define $\langle U, V \rangle$: $\mathcal{M} \to \mathbf{R}$ as:

$$\langle U, V \rangle(x) = \langle U(x), V(x) \rangle_{x}$$

Def.: A connection ∇ is compatible with the metric if

$$W\langle U, V \rangle = \langle \nabla_W U, V \rangle + \langle U, \nabla_W V \rangle$$

for all smooth vector fields U, V, W on \mathcal{M} .

Fact: For a Euclidean space, $\nabla_u V = DV(x)[u]$ is compatible with the metric, *regardless* of which inner product we chose.

Fact: For a Riemannian submanifold of a Euclidean space, $\nabla_u V = \text{Proj}_x(D\overline{V}(x)[u])$ is compatible with the metric.

The fundamental theorem of Riemannian geometry

Theorem. On a Riemannian manifold \mathcal{M} , there exists a unique connection ∇ which is symmetric and compatible with the metric.

It is called the Riemannian connection or Levi-Civita connection.

Fact: For a Euclidean space, $\nabla_u V = \mathrm{D}V(x)[u]$ is the LC connection.

Fact: For a Riemannian submanifold of a Euclidean space,

 $\nabla_u V = \text{Proj}_x(D\overline{V}(x)[u])$ is the LC connection.

Proof of uniqueness.

Assume ∇ is "a" Riemannian connection for \mathcal{M} . Let U, V, W be arbitrary smooth vector fields on \mathcal{M} .

Since ∇ is compatible with the metric, we have:

$$U(V,W) = \langle \nabla_{u}V, W \rangle + \langle V, \nabla_{u}W \rangle + V(W,U) = \langle \nabla_{v}W, U \rangle + \langle W, \nabla_{v}U \rangle + \langle W, \nabla_{v}V \rangle + \langle W, V \rangle + \langle V, \nabla_{u}V \rangle +$$

Since ∇ is symmetric, we know, for all U, V, f, that

$$[U,V]f = (\nabla_U V - \nabla_V U)f$$

$$\Rightarrow \quad [u,v] = \nabla_u V - \nabla_v U \quad \forall v \in \nabla_u V - [u,v]$$

This yields the *Koszul formula*:

$$2 \langle W, \nabla_{u}v \rangle = \langle W, [u,v] \rangle - \langle V, [u,w] \rangle - \langle u, [v,w] \rangle + u \langle v,w \rangle + v \langle w,u \rangle - w \langle u,v \rangle$$