Du 14 au 18 mars

Programme n°20

MECANIQUE

M4 Les oscillateurs (Cours et exercices)

M5 Mouvement d'une particule chargée dans un champ électrique ou magnétique (Cours uniquement)

- Généralités Validité du modèle
 - Force de Lorentz
 - Ordre de grandeur et comparaison avec le poids
 - Puissance de la force de Lorentz
- Mouvement dans \vec{E} uniforme La vitesse initiale est parallèle au champ
 - La vitesse initiale n'est pas parallèle au champ
 - Bilan énergétique → Introduction du potentiel électrique
 - → Conservation de l'énergie mécanique
 - Application
- Mouvement dans \vec{B} uniforme Observations
 - Etude de la trajectoire
- Applications Le spectromètre de masse
 - Les accélérateurs

2.4. Mouvement de particules chargées de uniformes et stationnaires	ans des champs électrique et magnétostatique,
Force de Lorentz exercée sur une charge ponctuelle ; champs électrique et magnétique.	Évaluer les ordres de grandeur des forces électrique ou magnétique et les comparer à ceux des forces gravitationnelles.
Puissance de la force de Lorentz.	Justifier qu'un champ électrique peut modifier l'énergie cinétique d'une particule alors qu'un champ magnétique peut courber la trajectoire sans fournir d'énergie à la particule.
Mouvement d'une particule chargée dans un champ électrostatique uniforme.	Mettre en équation le mouvement et le caractériser comme un mouvement à vecteur accélération constant. Effectuer un bilan énergétique pour déterminer la valeur de la vitesse d'une particule chargée accélérée par une différence de potentiel.
Mouvement d'une particule chargée dans un champ magnétostatique uniforme dans le cas où le vecteur vitesse initial est perpendiculaire au champ magnétostatique.	Déterminer le rayon de la trajectoire et le sens de parcours.

SOLUTIONS AQUEUSES

AQ1 Réactions acide- base en solution aqueuse (Cours et exercices)

Dosages (Cours et exercices d'analyse de courbes)

TP

Dosage d'un acide fort ou faible par une base forte Dosage du coca cola