ENG 4550 – Introduction to Control Systems Lab 6

Lab 6: SRV02 Speed Control

- Step response with PI control

Submission of next lab

1. Lab report (Lab 6)

 Finish your lab report according to the template in Section 3.5.1 and tips in Section 3.5.3.

II. RESULTS

Do not interpret or analyze the data in this section. Just provide the results.

- 1. Response plot from step 7 in Section 3.3.1.1, Step response simulation with PI Control
- 2. Response plot from step 9 in Section 3.3.1.2, Step response implementation with PI Control
- 3. Signal noise plot from step 10 in Section 3.3.1.2, Step response implementation with PI Control
- 4. Provide data collected in this laboratory (from Table 3.1).

Submission of next lab

Section / Ques- Description

Peak time

mentation Peak time

Section 3.3.2.2

with Lead Control

Percent overshoot Steady-state error

Percentage overshoot

Steady-state error

Unit

Symbol Value

 t_p PO

 e_{ss}

 t_p

PO

 e_{ss}

	tion			
	Question 2	Pre-Lab: Pl Gains		
$\sqrt{}$		Proportional Gain	k_p	
		Integral Gain	k_i	
		Open-Loop Time Constant	au	
		Open-Loop Steady-state Gain	K	
	Question 4	Pre-Lab: DC Gain Estimate		
		DC Gain Estimate of $P_i(s)$	$ P_{i}(1) $	
	Question 5	Pre-Lab: Gain Crossover Frequency		
		Gain crossover frequency	ω_g	
	Section 3.3.1.1	In-Lab: PI Step Response Simulation		
1		Peak time	t_p	
V		Percent overshoot	PO	
		Steady-state error	e_{ss}	
	Section 3.3.1.2	In-Lab: PI Speed Control Implementa-		
		tion		
$\sqrt{}$		Measured peak-to-peak ripple	$e_{\omega,meas}$	
		Steady-state error	e_{ss}	
		Peak time	t_p	
		Percent overshoot	PO	
	Section 3.3.2.1	In-Lab: Step Response Simulation		

In-Lab: Lead Speed Control Imple-

Lab 6

- In 'ENG4550 control systems' on desktop, unzip 'Lab MatlabSimulink Software-20181001.zip' to a NEW DIRCTORY. All files you need in Lab 6 are in .../NEW DIRCTORY/Speed Control (Labs 6 and 7)
- When complete,
 DELETE/REMOVE your files and
 the FOLDER you created.
- calc conversion constants.m config srv02.m d lag q3.m d lead.m d_model_param.m d pi design.m q_srv02_spd.mdl s srv02 spd.mdl setup srv02 exp03 spd.m

Simulation

1. Configuring the SRV02 according to Section 3.4.2.

- In setup_srv02_exp03_spd.m, make sure CONTROL_TYPE is set to 'MANUAL'. Run setup_srv02_exp03_spd.m.
- 2. Follow the steps in 3.3.1.1 Simulation.

Experimental test

1. Configuring the SRV02 according to Section 3.4.3.

- Setup q_srv02_pos.mdl: Double-click on the QUARC HIL Initialize block. Select the data acquisition device (q2_usb or q8_usb) you are using. Click on the **Defaults** and **OK** button.
- In setup_srv02_exp03_spd.m, make sure CONTROL_TYPE is set to 'MANUAL'. Run setup_srv02_exp03_spd.m.

2. Follow the steps in 3.3.1.2 Implementing PI Speed Control.

- Before building the model (Step 7), click QUARC -> Set Default Options to avoid the possible target error.
- The amplitude in Figure 3.13 is wrong.