DO Minh Hieu #6

Numerical Methods (ENUME 2018) – Project Assignment B: Approximation of function

1. Make the graphs of the function $f(x) = -\sin(\pi x)e^{-x}$; on each graph mark the following points:

$$\{y_n = f(x_n) | n = 1, 2, ..., N\}$$
, where $x_n = -1 + 2 \frac{n-1}{N-1}$ for $N = 5, 10, 15$

2. Design a MATLAB procedure for approximation of the function f(x) on the basis of the data $\{(x_n, y_n)|n=1, ..., N\}$, using the method of least squares (LS) and the base functions:

$$P_k(x)$$
 for $k = 1, 2, ..., K$: $P_0(x) = 1$, $P_1(x) = x$, $P_k(x) = \frac{2k-1}{k}xP_{k-1}(x) - \frac{k-1}{k}P_{k-2}(x)$ for $k > 1$

(Legendre polynomials).

For solving the system of normal equations, use the method of Cholesky-Banachiewicz and the operator "\" implemented in MATLAB (for comparison). Check the correctness of the procedure for several pairs of the values of the parameters N and K.

3. Apply the developed procedure for a systematic study of the dependence of approximation accuracy on the parameters N and K; use the following indicators for this purpose:

$$\delta_{2}(K,N) = \frac{\left\|\hat{f}(x;K,N) - f(x)\right\|_{2}}{\left\|f(x)\right\|_{2}} \quad \text{and} \quad \delta_{\infty}(K,N) = \frac{\left\|\hat{f}(x;K,N) - f(x)\right\|_{\infty}}{\left\|f(x)\right\|_{\infty}}$$

where $\hat{f}(x;K,N)$ is the approximating function obtained for a given pair of the values of N and K. Make the graphs of the dependence of $\delta_2(K,N)$ and $\delta_\infty(K,N)$ on N for several values of K and the graphs of the dependence of $\delta_2(K,N)$ and $\delta_\infty(K,N)$ on K for several values of N.

4. Repeat the above-described study for the data corrupted with pseudorandom additive errors $\{\Delta \tilde{y}_n | n=1,..., N\}$ following the normal distribution with the zero mean and variance σ_y^2 :

$$\{(x_n, \tilde{y}_n)|n=1, ..., N\}$$
, where $\tilde{y}_n = y_n + \Delta \tilde{y}_n$

Use the MATLAB function *randn* for generation of the errors. Assess the influence of errors on the accuracy of approximation by analysing the graphs of the dependence of $\delta_2(K, N)$ and $\delta_\infty(K, N)$ on σ_v^2 .