

Service

Service

Service

CL_16532008_041.eps
160501

Service Manual

Inhalt	Seite	
1. Technische Daten, Anschlüsse und Chassis-Überblick	2	
2. Sicherheitsvorschriften, Warnungen und Anmerkungen	4	
3. Gebrauchsanleitung	6	
4. Mechanische Arbeiten	10	
5. Service-Betriebsarten, Fehlercodes und Tipps für die Fehlersuche	11	
6. <i>Blockschatzbild, Messpunkte, I²C- und Stromversorgungsübersicht</i>		
Blockschatzbild	19	
Überblick über die Messpunkte	20	
I ² C-Überblick und Überblick über Versorgungsspannungen	21	
7. <i>Elektrische Schaltbilder und Platinenanordnung</i>	<i>SchaltbildPWB</i>	
Stromversorgung	(Schaltbild A1) 22	34-39
Zeilenablenkung	(Schaltbild A2) 23	34-39
Bildablenkung	(Schaltbild A3) 24	34-39
Tuner-ZF	(Schaltbild A4) 25	34-39
Video-ZF und Klang-ZF	(Schaltbild A5) 26	34-39
Synchronisierung	(Schaltbild A6) 27	34-39
Steuerung	(Schaltbild A7) 28	34-39
Audioverstärker	(Schaltbild A8) 29	34-39
BTSC- (Stereo/SAP) Decoder	(Schaltbild A9) 30	34-39
Audio-/Video-Quellenauswahl	(Schaltbild A10) 31	34-39
Vordere E/A + Steuerung, Kopfhörer	(Schaltbild A12) 32	34-39
Hintere E/A Cinch	(Schaltbild A14) 33	34-39
Kathodenstrahlröhrenplatine	(Schaltbild B) 40	41
Seitliche AV- und Kopfhörer-Platine	(Schaltbild C) 42	42
Seitliche AV-Platine	(Schaltbild E) 43	43
Seitliche AV- und Kopfhörer-Platine	(Schaltbild E1) 44	44

Inhalt	Seite
8. Einstellungen	45
9. Beschreibung der Schaltkreise	53
Liste der Abkürzungen	63
10. Ersatzteilliste	65

©Copyright 2001 Philips Consumer Electronics B.V. Eindhoven; die Niederlande.
Alle Rechte-insbesondere das Übersetzungsrecht an Text und Bildern-vorbehalten.
Jeder Nachdruck, auch auszugsweise, und jede Wiedergabe von Abbildungen sowie eine fotomechanische oder elektronische Speicherung/Vervielfältigung sowie Photokopien sind ohne vorherige Erlaubnis von Philips verboten.

PHILIPS

1. Technische Daten, Anschlüsse und Chassis-Überblick

Hinweis: Die aufgeführten Spezifikationen gelten für die gesamte Produktreihe.

1.1 Technische Daten

1.1.1 Empfang

Abstimmssystem	: PLL
Farbsysteme	: PAL B/G, D/K, I
	: SECAM B/G, L/L'
Tonsysteme	: UKW/MW-Mono
	: UKW-Stereo (Zweikanal)
	: NICAM
	: UKW-Radio (10,7 MHz)
A/V-Anschlüsse	: PAL BG
	: SECAM L/L'
	: NTSC 3.58 (nur Wiedergabe)

Kanalauswahl

ZF-Frequenz Antenneneingang

: NTSC 4.43 (nur
Wiedergabe)

: 100 Kanäle

: UVSH

: 38,9 MHz

: 75 Ω, koaxial

1.2 Anschlüsse

1.2.1 Seitliche Anschlüsse (oder Gerätewordseite) und obere (oder vordere) Steuereinheit

CL 16532016_020.eps
220501

Abbildung 1-1

Audio-/Video-Eingang

- | | | |
|---------------|---------------------------|--|
| 1 - Kopfhörer | 3,5 mm (8 - 600 Ω / 4 mW) | |
| 2 - Video | FBAS (1 Vpp / 75 Ω) | |
| 3 - Audio | Mono (0,5 Vrms / 10 kΩ) | |

2. Sicherheitsvorschriften, Warnungen und Anmerkungen.

2.1 Sicherheitsanweisungen für Reparaturen

1. Sicherheitsvorschriften erfordern, daß während einer Reparatur:
 - das Gerät über einen Trenntransformator mit der Netzspannung verbunden ist;
 - die mit dem Symbol gekennzeichneten Sicherheitsbauelemente durch Bauelemente ersetzt werden müssen, die mit den Originalteilen identisch sind;
 - beim Austausch einer Bildröhre eine Schutzbrille getragen werden muß.
2. Die Sicherheitsregeln erfordern, daß das Gerät nach einer Reparatur wieder in den ursprünglichen Zustand versetzt wird. Hierbei ist insbesondere auf folgende Punkte zu achten:
 - Als strenge Vorsorgemaßnahme empfehlen wir, die Lötstellen nachzulöten, durch die der Zeilenausgangsstrom fließt. Dies gilt insbesondere für:
 - alle Stifte des Zeilenausgangstransformators (LOT);
 - Zeilennrücklauf-Kondensator bzw. -kondensatoren;
 - S-Korrektur-Kondensator bzw. -kondensatoren;
 - Zeilenendstufentransistors;
 - Stifte der Steckerverbindung mit Drähten zur Ablenkspule;
 - andere Komponenten, durch die der Zeilenausgangsstrom fließt.
 - Hinweis:
Dieses Nachlöten wird empfohlen, um zu verhindern, daß durch Metallermüdung an Lötstellen schlechte Verbindungen entstehen, und ist daher nur bei Geräten erforderlich, die älter sind als 2 Jahre.
 - Die Kabelbäume und das Hochspannungskabel sind richtig zu verlegen und mit den montierten Kabelschellen zu befestigen.
 - Die Isolierung des Netzkabels ist auf äußere Beschädigungen hin zu kontrollieren.
 - Die einwandfreie Funktion der Zugentlastung für das Netzkabel ist zu kontrollieren, um eine Berührung mit der Bildröhre, heißen Komponenten oder Kühlkörpern auszuschließen.
 - Der elektrische Gleichstrom Widerstand zwischen dem Netzstecker und der Sekundärseite ist zu kontrollieren (nur bei Geräten mit einer vom Netz getrennten Stromversorgung). Diese Kontrolle kann folgendermaßen durchgeführt werden:
 1. den Netzstecker aus der Steckdose ziehen und die beiden Stifte des Netzsteckers mit einem Draht verbinden;
 2. den Netzschatzer einschalten (den Netzstecker jedoch noch nicht in die Steckdose stecken!);
 3. den Widerstand zwischen den Stiften des Netzsteckers und der Metallabschirmung des Tuners oder des Antennenanschlusses des Gerätes messen. Der angezeigte Wert muß zwischen 4,5 MΩ und 12 MΩ liegen;
 4. das Fernsehgerät ausschalten und den Draht zwischen den beiden Stiften des Netzsteckers entfernen.
 - Kontrollieren, ob das Gehäuse beschädigt ist, um zu verhindern, daß der Kunde Innenteile berührt kann.

2.2 Wartungsanweisungen

Es wird empfohlen, eine Instandhaltungsinspektion von einem qualifizierten Wartungstechniker ausführen zu lassen. Das Wartungsintervall hängt von den Bedingungen ab, unter denen das Gerät benutzt wird:

- Wartungsintervall von 3 bis 5 Jahren empfohlen.
- Wenn das Gerät unter normalen Bedingungen benutzt wird, z.B. im Wohnzimmer, wird ein das Gerät unter staubigeren, schmierigeren oder feuchteren Bedingungen benutzt wird, z.B. in der Küche, wird ein Wartungsintervall von einem Jahr empfohlen.
- Die Instandhaltungsinspektion umfaßt folgende Arbeiten:
 1. Die oben aufgeführten "allgemeinen Reparaturanweisungen".
 2. Reinigen der Printplatte und der Bauteile im Netzteil und Ablenkungsstromkreis.
 3. Reinigen der Bildröhren-Leiterplatte und des Bildröhrehalses.

2.3 Warnungen

- Um Beschädigungen von ICs und Transistoren zu verhüten, muß jeder Hochspannungsüberschlag vermieden werden. Um eine Beschädigung der Bildröhre zu verhindern, muß zur Entladung der Bildröhre das in Abb. 2-1 angegebene Verfahren angewendet werden. Benutzen Sie einen Hochspannungstester und ein Universalmeßinstrument (Einstellung DC-V). Die Entladung muß erfolgen, bis der Zeigerausschlag des Instruments 0 V beträgt (nach ca. 30 s).

Abbildung 2-1

- Alle ICs und viele andere Halbleiter sind empfindlich gegenüber elektrostatischen Entladungen (ESD) . Unsorgfältige Behandlung im Reparaturfall kann die Lebensdauer drastisch reduzieren. Sorgen Sie dafür, daß Sie im Reparaturfall über ein Pulsarmband mit Widerstand mit dem Massepotential des Gerätes verbunden sind. Halten Sie Bauteile und Hilfsmittel ebenfalls auf diesem Potential.
 - Kompletter Bausatz ESD3 (Tischmatte small, Pulsarmband, Anschlußdose, Verlängerungskabel und Erdungskabel) 4822 310 10671
 - Pulsarmband -Tester 4822 344 13999
- Die verwendeten Flat Square Bildröhre bildet zusammen mit der Ablenkeinheit und der eventuell vorhandenen Multipoleinheit ein Ganzes. Die Ablenk- und die Multipoleinheit wurden im Werk optimal eingestellt und sollten daher bei Reparaturen nicht nachgeregelt werden.
- Vorsicht bei Messungen im Hochspannungsteil sowie an der Bildröhre!
- Module oder andere Bauteile niemals bei eingeschaltetem Gerät auswechseln!

1.2.2 Geräterückseite

Abbildung 1-2 .eps

Extern 1: RGB/YUV-Eingang + FBAS-Ein-/Ausgang

Abbildung 1-3

- | | | |
|-----------|----------------------|----------|
| 1 - Audio | R (0,5 Vrms / 1 kΩ) | \oplus |
| 2 - Audio | R (0,5 Vrms / 10 kΩ) | \oplus |
| 3 - Audio | L (0,5 Vrms / 1 kΩ) | \oplus |
| 4 - | Masse | \perp |

5 -	Masse	\perp
6 - Audio	L (0,5 Vrms / 10 kΩ)	\oplus
7 - Blau / U	(0,7 Vpp / 75 Ω)	\ominus
8 - FBAS-Status	0 - 2,0 V: INT 4,5 - 7 V: EXT 16:9 9,5 - 12 V: EXT 4:3	\ominus
9 -	Masse	\perp
10-		\perp
11- Grün / Y	(0,7 Vpp / 75 Ω)	\oplus
12-		\perp
13-	Masse	\perp
14-	Masse	\perp
15- Rot / V	(0,7 Vpp / 75 Ω)	\ominus
16- RGB-Status	0 - 0,4 V: INT 1 - 3 V: EXT / 75 Ω	\perp
17-	Masse	\perp
18-	Masse	\perp
19- FBAS	(1 Vpp / 75 Ω)	\oplus
20- FBAS	(1 Vpp / 75 Ω)	\ominus
21- Erde	Masse	\perp

TV-Antenneneingang

Antenneneingang

75 Ω, koaxial (IEC-Typ)

UKW Radio-Eingang
Antenneneingangüber 'koaxial-in-3 Pins'-Adapter
'Kabel' oder
'Drahtantenne'

1.3 Chassis-Überblick

Abbildung 1-4

- Für Abgleicharbeiten Kunststoff-anstelle von Metallwerkzeugen benutzen! Dadurch werden mögliche Kurzschlüsse oder das Instabil-Werden bestimmter Schaltungen vermieden.

2.4 Anmerkungen

- Die Gleichspannungen und Oszillogramme müssen gegenüber der Tuner-Erde (⊖) oder der heißen Erde (⊕) gemessen werden, wenn dies angegeben ist.
- Die in den Schaltbildern angegebenen Gleichspannungen und Oszillogramme sind Richtwerte und müssen im Service Default Modus (siehe Kapitel 8) mit einem Farbbalkensignal und Stereoton (L:3 kHz, R: 1 kHz, wenn nichts anderes angegeben ist) und einer Bildträgerwelle von 475,25 MHz gemessen werden.
- Die Oszillogramme und Gleichspannungen wurden dort, wo dies nötig ist, mit (□) und ohne Antennensignal (☒) gemessen. Spannungen im Speiseteil wurden sowohl im normalem Betrieb (①) als auch in Bereitschaft (②) gemessen. Diese Werte sind mit den entsprechenden Symbolen bezeichnet.
- Die Schaltkarte der Bildröhre enthält gedruckte Funkenbrücken. Alle Funkenbrücken liegen zwischen einer Elektrode der Bildröhre und der Aquadagschicht.
- Die Halbleiter, die im Prinzipschaltbild und in den Stücklisten angegeben sind, sind für jede Position vollständig austauschbar mit den Halbleitern.

Bildeinstellungen

- ① Drücken Sie die Taste und dann die Taste . Das Menü Bild wird angezeigt:

- ② Mit den Tasten / wählen Sie eine Einstellung aus, und mit den Tasten / nehmen Sie die Einstellung vor.

Hinweis: Wählen Sie die Bildeinstellung vorgenommen wird, wird nur die ausgewählte Zeile angezeigt. Drücken Sie die Tasten / um wieder das Menü anzuzeigen.

Nachdem Sie die Einstellungen vorgenommen haben, drücken Sie die Taste wieder, um das Menü Ton wieder anzeigen.

Toneinstellungen

- ① Drücken Sie die Taste , wählen Sie die Ton und drücken Sie dann die Taste . Das Menü Ton wird angezeigt:

- ② Mit den Tasten / wählen Sie eine Einstellung aus, und mit den Tasten / nehmen Sie die Einstellung vor.
- Nachdem Sie die Einstellungen vorgenommen haben, wählen Sie den Menüpunkt Speichern und drücken die Taste , um die Einstellungen zu speichern.
- ③ Drücken Sie die Tasten / um die Menüs zu verlassen.

Einstellungen von Sonderfunktionen

- ① Drücken Sie die Taste , wählen Sie das Menü Sonderfunk , und drücken Sie anschließend die Taste . Sie können folgende Einstellungen vornehmen:

- ② Timer, Kindersicherung und Prog.-Sperrern: siehe nächste Seite

- ③ Kontrast +: Automatische Einstellung des Bildkontrasts, wobei die dunkleren Teile des Bildes auf Schwarz festgelegt werden.

Weckfunktion

Mit dieser Funktion können Sie Ihr Fernsehgerät als Wecker verwenden.

Drücken Sie die Taste um die Menüs zu verlassen.

① Wählen Sie mit den Pfeiltasten das Menü Sonderfunk und anschließend Timer:

② Weckzeit: Zum Festlegen der Helligkeit des Bildes:

- Farbbildgebung: Zum Einstellen der Farbinensicht.
- Kontrast: Zum Einstellen des Unterhalts zwischen den hellen und den dunklen Tönen.
- Schärfe: Zum Einstellen der Bildschärfe.
- Farbton: Zum Einstellen der Farbwiedergabe des Bildes: Kalt (blauliches Weißton) oder Warm (ausgewärmter Weißton) oder Warm (rödlicher Weißton).

③ Zeit: Gehen Sie die aktuelle Uhrzeit ein.

Hinweis: Die Uhrzeit wird beim Einschalten des Fernsehgeräts automatisch über die Videotextzeigzeichen des Programms aktualisiert. Wenn dieses Programm nicht über Videotext verfügbar, erfolgt keine Aktualisierung

④ Zeit: Geben Sie die Einschaltzeit des Fernsehgeräts ein. Wenn Sie das Fernsehgerät eingeschaltet lassen, erfolgt zur angegebenen Uhrzeit nur ein Programmwechsel (und zu der für Ende angegebene Uhrzeit das Umschalten in den Bereitschaftsmodus).

Durch die Kombination der Funktions Kinderersicherung und Timer können Sie die Einschaltzeit des Fernsehgeräts begrenzen z.B. für Ihre Kinder.

Sperren des Fernsehgeräts

Mit dieser Funktion können Sie die Verwendung des Fernsehgeräts teilweise oder ganz sperren. Indem Sie die Tasten sperren:

① Drücken Sie die Taste .

② Wählen Sie mit den Pfeiltasten das Menü Kinderersicherung, und stellen Sie Kinderersicherung auf Ein.

③ Geben Sie nur Ihren geheimen Zugangscode ein. Beim ersten Mal müssen Sie den Code 0711 zweimal eingeben. Danach wird der Name von Ihnen gewählten Code eingegeben. Drücken Sie die Tasten / um das Menü anzeigen.

④ Prog. Sperrern: Wählen Sie mit den Tasten / das Programm, das Sie sperren möchten, und bestätigen Sie mit . Vor dem gesperrten Symbol angezeigt. Um ein gesperrtes Programm anschauen zu können, muss nun zuvor der Geheimcode eingegeben werden. Andernfalls bleibt der Bildschirm schwarz. Auch der Zugriff auf das Menü Einstellung ist gesperrt. Achtung: Bei verschlüsselten Programmen, die über einen externen Decoder empfangen werden, muss das entsprechende externe Gerät gesperrt werden.

⑤ Code ändern: Zum Eingeben eines neuen vierstelligeren Codes: Wiederholen Sie zur Bestätigung die Eingabe des Codes. Wenn Sie Ihren Geheimcode vergessen haben, geben Sie zweimal den Universalcode 0711 ein.

⑥ Alle löschen: Zum Aufheben der Sperrre bei allen Programmen.

⑦ Alle sperren: Zum Sperrn aller Fernsehprogramme und externen Geräte. Drücken Sie die Tasten / um die Menüs zu verlassen.

Einstellungen von Sonderfunktionen

- ① NR : Zum Unterdrücken von Bildrauschen (Schmetterling) bei schlechtem Empfang.

- Wichtig: Zum Speichern der Einstellungen für Kontrast+ und NR wählen Sie den Menüpunkt Speichern im Menü Bild.

- ② Drücken Sie die Tasten / um die Menüs zu verlassen.

- ③ Drücken Sie die Tasten / um die Menüs zu verlassen.

Schnellinstallation der Programme

Plug & Play

Wenn Sie das Fernsehgerät zum ersten Mal einschalten, wird ein Menü am Bildschirm angezeigt. Über dieses Menü können Sie ein Land sowie die Menüsprache auswählen:

- ③ Die Suche wird automatisch gestartet. Alle empfangbaren Fernseh- und Radiosender* werden gespeichert. Dieser Vorgang dauert einige Minuten. Der Suchstatus sowie die Anzahl der gefundenen Programme werden am Bildschirm angezeigt. Nach Abschluss der Suche wird das Menü ausgeblendet.
- Um die Suche zu unterbrechen, drücken Sie die Taste **(#)**. Wenn kein Programm gefunden wird, schließen Sie im Kapitel mit den Hinweisen auf Seite 10 nach.
- ① Wenn der Sender oder das Kabelnetz das automatische Sortiersignal senden, werden die Programme in der richtigen Reihenfolge durchnummeriert. Die Installation ist damit beendet.
- ⑤ Andernfalls müssen Sie die Programme über das Menü Sortieren neu nummerieren. Einige Sender bzw. Kabelnetze verwenden eigene Sortierparameter (Region, Sprache, usw.). Verwenden Sie in diesem Fall für Ihre Wahl die Tasten **(#)**, **OK** und **OK** + des Fernsehgeräts. 5 Sekunden lang gedrückt. Daraufhin wird das Menü angezeigt.
- ① Wählen Sie Ihr Land mit den Tasten **(#)** der Fernbedienung aus, und bestätigen Sie mit **(OK)**. Wenn Ihr Land in der Liste nicht aufgeführt ist, wählen Sie „...“.
- ② Wählen Sie dann Ihre Sprache mit den Tasten **(OK)** aus, und bestätigen Sie mit **(OK)**.
- Nur bei Modellen mit Radio.

Manuelles Speichern

Mit Hilfe dieses Menüs können die Programme einzeln gespeichert werden.

- ① Drücken Sie die Taste **(#)**.

- ② Wählen Sie mit den Pfeiltasten das Menü **Einstellung** und anschließend den Menüpunkt **Manuell Prog**.
- ③ System: Wählen Sie **Europe** (automatische Suche*) oder suchen Sie manuell mit folgenden Empfangsnormen: **West Eur (BG)**, **East Eur (DK)**, **UK (I)** oder **France (LL)**. *Ausnahme: Frankreich (Empfangsnorm **LL**). Dort kann nur die Option **France** gewählt werden.
- ④ Suchen: Drücken Sie die Taste **(OK)**. Die Suche beginnt. Sobald ein Programm gefunden wird, wird der Suchlauf unterbrochen, und der Name des Programms wird angezeigt (falls vorhanden). Fahren Sie mit dem nächsten Schritt fort. Wenn Ihnen die Frequenz des gesuchten Programms bekannt ist, können Sie die entsprechende Zahl mit Hilfe der Tasten **(#)** bis **(9)** direkt eingegeben.
- ⑤ Programm: Geben Sie mit Hilfe der Tasten **(OK)** bzw. **(OK)** die gewünschte Programmnummer ein.
- ⑥ Feinabst.: Wenn die Empfangsqualität nicht zufriedenstellend ist, korrigieren Sie mit den Tasten **(OK)**.
- ⑦ Speichern: Drücken Sie die Taste **(OK)**. Das Programm wird gespeichert.
- ⑧ Wiederholen Sie die Schritte ④ bis ⑧, bis alle Programme gespeichert sind.
- ⑨ Verlassen der Menüs: Drücken Sie die Taste **(@)**.

Sortieren der Programme

- ① Drücken Sie die Taste **(#)**. Das Hauptmenü wird am Bildschirm angezeigt.

- ② Wählen Sie mit den Pfeiltasten das Menü zu verlassen.

Name des Programms

Sie können den Programmen und externen Geräten einen Namen zuordnen.

Hinweis: Bei der Installation werden den Programmen automatisch Namen zugeordnet, wenn das Erkennungsrad gesendet wird.

- ① Drücken Sie die Taste **(#)**.
- ② Wählen Sie mit den Pfeiltasten das Menü **Einstellung** und anschließend den **WINKI NAME**.
- ③ Wählen Sie mit den Tasten **(OK)** das Programm, dem ein Name zugewiesen bzw. dessen Name geändert werden soll.
- ④ Drücken Sie die Taste **(OK)**, um die Menüs zu verlassen.

Weitere über das Menü Einstellung verfügbare Optionen

Mit Hilfe dieses Menüs können die Programme einzeln gespeichert werden.

- ① Drücken Sie die Taste **(#)**.

- ② Wählen Sie mit den Pfeiltasten das Menü **Einstellung** und anschließend den Menüpunkt **Sortieren**.
- ③ System: Zum Auswählen der Menüsprache, Land: Zum Auswählen Ihres Landes (D für Deutschland oder A für Österreich).
- ④ Diese Einstellung bestimmt maßgeblich die Suche, die automatische Programmansammlung und die Anzeige des Videotexts. Wenn Ihr Land in der Liste nicht aufgeführt ist, wählen Sie „...“.
- ⑤ Auto. Prog.: Zum Starten der automatischen Suche nach allen in Ihrer Region empfängbaren Programmen. Wenn der Sender oder das Kabelfernetz das automatische Sortiersignal

- sender, werden die Programme in der richtigen Reihenfolge verwaltet. Andernfalls müssen Sie die Programme über das Menü Sortieren neu nummerieren (siehe S. 4).
- ④ Einige Sender bzw. Kabelnetze verwenden eigene Sortierparameter (Region, Sprache, usw.). Verwenden Sie in diesem Fall für Ihre Wahl die Tasten **(OK)**, und bestätigen Sie mit der Taste **(OK)**. Um die Suche zu verlassen bzw. zu unterbrechen, drücken Sie die Taste **(OK)**. Wenn kein Sender gefunden wird, schließen Sie im Kapitel mit den Hinweisen auf Seite 10 nach.
- ⑤ Drücken Sie die Taste **(OK)**, um die Menüs zu verlassen.

Verwendung des Radios

Wahl zwischen Radio- und TV-Modus

Mit der Taste **(OK)** können Sie Einstellungen für den Radiomodus vornehmen.

- ① Suchen der Radiosender
- ② Wenn Sie die Schnellschlüsselstation der Programme verwenden haben, wurden alle empfangbaren UKV-Sender gespeichert. Um eine neue Suche zu starten, wählen Sie im Menü Einstellung folgende Menüpunkte: **Auto. Prog.** (für einen automatischen Suchlauf) oder **Manuell Prog.** (für die programmierte Suche). Mit den Menüs **Sortieren** und **Name** können Sie die Radiosender nach ihren Namen zuordnen. Die Funktionsweise der Menüs für den Radiomodus ist identisch mit den Menüs für den TV-Modus.

4. Mechanische Arbeiten

Hinweis: Die nachfolgenden Abbildungen können aufgrund der unterschiedlichen Ausführungen der Geräte geringfügige Abweichungen zu dem zu reparierenden Gerät aufweisen.

4.1 Rückwand entfernen

- Alle (sieben) Befestigungsschrauben der Rückwand entfernen: zwei an der Oberseite, zwei an jeder Seite und eine in der Nähe der Netzkabelhalterung.
- Jetzt kann die Rückwand zum Entfernen nach hinten gezogen werden.

4.2 Service-Position Hauptplatine

- Zugentlastung vom Netzkabel entfernen.
- Die Hauptplatine entfernen, indem die beiden mittleren Clips nach außen gedrückt werden [1]. Gleichzeitig wird die Platine von der Kathodenstrahlröhre weggezogen [2].
- Die Entmagnetisierungsspule durch Abziehen des Kabels von der (roten) Steckverbindung 0201 abtrennen.
- Die Platine etwas nach links bewegen und um 90 Grad nach oben drehen [3], so dass die Komponenten in Richtung Kathodenstrahlröhre zeigen.

Abbildung 4-1

4.3 Seitliche E/A-Platine entfernen (sofern vorhanden)

- Die gesamte seitliche E/A-Einheit entfernen, nachdem die beiden Befestigungsschrauben gelöst wurden [1].
- Die beiden Befestigungsklammern lösen [2] und die Platine aus der Halterung heben.

CL 06532012_004.eps
030200

Abbildung 4-2

4.4 Montage der Rückwand

Vor der Montage der Rückwand müssen folgende Punkte geprüft werden:

- Befindet sich das Netzkabel richtig in den Kabelführungen (Zugentlastung)?
- Befinden sich alle Kabel wieder in den ursprünglichen Positionen?

Videotext

Videotelex ist ein Informationsystem, das von einigen Sendern ausgestrahlt wird und wie eine Zeitung gelesen werden kann. Dieses System ermöglicht auch den Zugang zu Unterteilen für Schwerhörige oder Personen, die mit der Sprache des übertragenen Programms (über Kabel, Satellit usw.) nur wenig vertraut sind.

Anschluß von anderen Geräten

Je nach Modell besitzt das Fernsehengerät 1 oder 2 externe Buchsen (EXT1 und EXT2), die sich auf der Rückseite des Geräts befinden.

הוּא כִּי שָׁמַר אֶת־בְּנֵי־יִשְׂרָאֵל

Nehmen Sie die Anschlüsse vor (siehe Abbildung). Benutzen Sie ein hochwertiges Euro-Kabel.

Wenn Ihr Videoencoder keine Euro-AV-Buchse besitzt, ist nur die Verbindung über ein Antennenkabel möglich. In diesem Fall müssen Sie das Testsignal Ihres Videoencoders suchen und diesem die Programmnummer 10000 (siehe Manuelle Programmierung S. 6).

Zum Anschluß an eine HiFi-Anlage benutzt
Verbindungskabel. Verbinden Sie die Anschlüsse
des Fernsehgerätes mit einem Eingang "A"

R „R“ des Verstärkers.
seite (nur bei einigen Modellen verfügbar)
Je nach Modell befinden sich die Anschlüsse auf der

chmal hinter einer Klappe) oder auf der

rechten Seite des Fernsehgeräts.
Nehmen Sie folgende Anschlüsse vor (siehe Abbildung):
Drücken Sie die Taste und wählen Sie AV.
Bei einem Monogerät wird das Tonignal am Eingang AUDIO L angeschlossen. Drücken Sie die Taste um den rechten und linken Lautsprecher der Farbenrechtecke wiederherzustellen.

卷之三

Wahl der angeschlossenen Geräte
Drücken Sie die Taste **D**, und wählen Sie **EXT1**. Bei Modellen mit 2 externen Anschlüssen wählen Sie **EXT2** und **G-VHS2** (S-VHS-Signal von Anschluss **EXT2**), und für die seitlichen Anschlüsse (falls vorhanden) wählen Sie **AV**.

Sobald der SDM aktiv ist, erscheint das folgende Fenster, in dem in der Ecke oben rechts 'SDM' angezeigt wird.

Abbildung 5-3

SDM-Menüsteuerung

Eine der folgenden Methoden verwenden:

- Wenn die 'MENU'-Taste auf der Fernbedienung gedrückt wird, schaltet das Gerät zwischen dem SDM und dem normalen Benutzermenü hin und her (wobei der SDM-Modus im Hintergrund weiter aktiv bleibt). Mit Hilfe der OSD/STATUS-Taste kann zum SDM-Fenster zurückgekehrt werden.
- Wenn die OSD/STATUS-Taste auf der Fernbedienung gedrückt wird, zeigt oder verbirgt das Menü den Fehlerpuffer. Der Zweck dieser Eigenschaft besteht darin, Beeinträchtigungen während Schwingungsmessungen zu vermeiden.
- Die Tasten zur Lautstärkeverringerung und zum Herunterschalten der Kanäle auf dem Fernseher einige Sekunden lang drücken, um vom SDM in den SAM umzuschalten und umgekehrt.

SDM verlassen

Das Gerät in den STANDBY-Modus schalten, indem die Power-Taste auf der Fernbedienung gedrückt wird (wenn das Gerät durch Unterbrechung der Netzstromversorgung ausgeschaltet wird, kehrt das Gerät in den SDM-Modus zurück, wenn die Netzstromversorgung wieder aktiviert wird). Der Fehlerpuffer wird gelöscht.

5.2.2 Service Alignment Mode (SAM)

Zweck

- Einstellungen vornehmen
- Optioneneinstellungen ändern
- Fehlercodepuffer anzeigen/löschen

Spezifikationen

- Betriebsstundenzähler
- Software-Version
- Einstellung der Optionen
- Ablesen und Löschen des Fehlerpuffers
- Software-Einstellungen

SAM aktivieren

Der SAM kann auf verschiedene Weise aktiviert werden:

- Mit Hilfe einer Standard-Fernbedienung durch Eingabe des Codes '062596' und Drücken der Taste OSD/STATUS [i+] oder
- mit Hilfe von ComPair.

Das folgende Fenster erscheint, in dem rechts oben 'SAM' angezeigt wird.

Abbildung 5-4

- LLLL Anzeige der Gesamtzahl der normalen Betriebsstunden (ohne Standby-Stunden)
- AAABCD-X.Y Anzeige der Software-Version des Hauptmikrocontrollers
 - A = Projektname (L01)
 - B = Region: E = Europa, A = Asiatisch-pazifischer Raum, U = NAFTA, L = LATAM.
 - C = die Software-Diversität: D= DVD, F= vollständiger Videotext, M= Mono, T= 1 Seite Videotext
 - D = Nummer des Sprach-Clusters
 - X = Versionsnummer der Hauptsoftware
 - Y = Versionsnummer der Zusatzsoftware
- SAM Anzeige der aktuellen Betriebsart
- Error buffer Fünf Fehler möglich
- Option bytes Sieben Codes möglich
- Clear Inhalt des Fehlerpuffers löschen. Menüpunkt CLEAR auswählen und die rechte Pfeiltaste drücken. Der Inhalt des Fehlerpuffers wird gelöscht.
- Options Zum Setzen der Optionsbytes. Eine detaillierte Beschreibung findet sich in Kapitel 8.3.1.
- AKB Schwarzstromschleife (AKB = Auto Kine Bias) deaktivieren (0) oder aktivieren (1)
- Tuner Zum Abstimmen des Tuners. Eine detaillierte Beschreibung findet sich in Kapitel 8.3.2.
- White Tone Zum Einstellen des Weißtons. Eine detaillierte Beschreibung findet sich in Kapitel 8.3.3.
- Geometry Zum Einstellen der Geometrie. Eine detaillierte Beschreibung findet sich in Kapitel 8.3.4.
- Audio Zum Durchführen der Audio-Einstellungen. Eine detaillierte Beschreibung findet sich in Kapitel 8.3.5.

SAM-Menüsteuerung

Eine der folgenden Methoden verwenden:

5. Service-Betriebsarten, Fehlercodes und Tipps für die Fehlersuche

Dieses Kapitel enthält folgende Abschnitte:

1. Messpunkte
2. Service-Betriebsarten
3. Tipps zum Lösen von Problemen (in Bezug auf die CSM-Betriebsart)
4. ComPair
5. Fehlercodes
6. Das Verfahren "blinkende LED"
7. Schutzsysteme
8. Reparaturtipps

5.1 Messpunkte

Das Chassis ist mit Messpunkten versehen, die sich auf der Platine befinden. Diese Messpunkte beziehen sich auf folgende Funktionsblöcke:

TEST POINT OVERVIEW L01		
Test point	Circuit	Diagram
A1-A2-A3-.....	Audio processing	A8, A9 / A11
C1-C2-C3-.....	Control	A7
F1-F2-F3-.....	Frame drive	A3
I1-I2-I3-.....	Tuner & IF	A4
L1-L2-L3-.....	Line drive	A2
P1-P2-P3-.....	Power supply	A1
S1-S2-S3-.....	Synchronisation	A6
V1-V2-V3-.....	Video processing	A5, B1

CL 16532008_044.eps
210501

Abbildung 5-1

Die Nummerierung erfolgt in einer für die Fehlerdiagnose logischen Reihenfolge. Bei der Fehlerdiagnose in einem Funktionsblock muss immer die Reihenfolge der jeweiligen Messpunkte für diesen Funktionsblock berücksichtigt werden.

Die Messungen sind unter folgenden Bedingungen durchzuführen:

- Service Default Mode.
- Video: Farbbalkensignal
- Audio: 3 kHz links, 1 kHz rechts

5.2 Service-Betriebsarten

Service Default Mode (SDM) und Service Alignment Mode (SAM) bieten verschiedene Eigenschaften für den Service-Techniker, während das Customer Service Menu (CSM) für die Kommunikation zwischen Händler und Kunde verwendet wird.

Optional kann auch ComPair, eine Hardware-Schnittstelle zwischen einem Computer (siehe Anforderungen) und dem TV-Chassis, verwendet werden. ComPair bietet die Möglichkeit, in allen L01-Chassis Fehler methodisch zu suchen, Fehlercodes zu lesen und die Software-Version zu ermitteln.

Mindestanforderungen: ein 486er Prozessor, Windows 3.1 und ein CD-ROM Laufwerk. Ein Pentium-Prozessor und Windows 95/98 sind auch möglich (siehe auch Abschnitt 5.4).

SW cluster	SW name	UOC-type	Diversity	Remark
1EU0	L01EM0-x,y	TDA9570/71/72	E/W-Europe, Mono, non-TXT	All Service Modes
2EU0	L01ET0-x,y	TDA9550/52	West-Europe, 1 page TXT	All Service Modes
2EU0	L01ET9-x,y	TDA9551	East-Europe, 1 page TXT	All Service Modes
3EU1	L01EF1-x,y	TDA9567	West-Europe, 10 page TXT	All Service Modes
3EU2	L01EF2-x,y	TDA9561	East-Europe, 10 page TXT	All Service Modes

Abbreviations: E= Europe, F= Full TXT, M= mono, T= 1 page TXT

CL 16532008_057.pdf
220501

Abbildung 5-2

5.2.1 Service Default Mode (SDM)

Zweck

- Einstellung der vordefinierten Standardwerte, um die in diesem Handbuch angegebenen Messergebnisse zu erzielen.
- Überschreiben von Software-Schutzsystemen
- Um das 'blinkende LED'-Verfahren zu starten.

Spezifikationen

- Abstimmfrequenz:
 - 475,25 MHz für PAL/SECAM (Europa und AP-PAL)
 - 61,25 MHz (Kanal 3) für NTSC-Geräte (AP-NTSC).
- Farbsystem:
 - SECAM L für Frankreich
 - NTSC für NAFTA und AP-NTSC.
 - PAL-BG für Europa und AP-PAL
- Alle Bildeinstellungen auf 50 % (Helligkeit, Farbe, Kontrast)
- Bass, Höhen und Balance auf 50 %; Lautstärke auf 25 %
- Alle für den Service ungünstigen Betriebsarten (sofern vorhanden) werden deaktiviert, wie beispielsweise:
 - Sleep Timer
 - Kindersicherung
 - Blue Mute
 - Hotel-Modus
 - Automatische Ausschaltung (wenn 15 Minuten lang kein 'IDENT'-Videosignal empfangen wurde)
 - Überspringen/Abdunkeln von nicht gewünschten Voreinstellungen/Kanälen
 - Automatische Speicherung der persönlichen Einstellungen
 - Unterbrechung des Auto User-Menüs.

SDM aktivieren

Der SDM kann mit Hilfe einer der folgenden Methoden aktiviert werden:

- Mit Hilfe einer Standard-Fernbedienung durch Eingabe des Codes '062596' und Drücken der Taste 'MENU'
- Durch Kurzschließen der Kabel 9631 und 9641 auf der Grundplatte (siehe Abb. 8-1). Netzstecker in eine Steckdose stecken. Anschließend die Taste 'Power' drücken (die Kurzschlusschaltung nach der Inbetriebnahme wieder entfernen). **Achtung:** Durch das Aktivieren des SDM in Form des Kurzschließens der Kabel 9631 und 9641 wird die +8 V-Schutzschaltung deaktiviert. Der Kurzschluss darf nur für kurze Zeit bestehen. Der Kundendiensttechniker muss genau wissen, wie er vorzugehen hat, da das Gerät andernfalls beschädigt werden kann.
- Durch Verwendung von ComPair.

Bild zu dunkel oder zu hell

Den Helligkeitswert (BRIGHTNESS) und/oder den Kontrastwert (CONTRAST) entsprechend einer der folgenden Situationen erhöhen oder verringern:

- Das Bild wird besser, wenn die Taste 'Smart Picture' auf der Fernbedienung gedrückt wurde.
- Das Bild wird besser, nachdem der Customer Service Mode eingeschaltet wurde.

Der neue Wert für 'Personal Preference' wird automatisch gespeichert.

Weisse Linie um Bildelemente und Text

Den Schärfewert (SHARPNESS) bei folgenden Bedingungen verringern:

- Das Bild wird besser, nachdem die Taste 'Smart Picture' auf der Fernbedienung gedrückt wurde.
- Nach dem Einschalten des Customer Service Mode ist die Bildqualität besser.

Der neue Wert für 'Personal Preference' wird automatisch gespeichert.

Schnee

CSM-Zeile 5 prüfen. Falls in dieser Zeile 'Not Tuned' angezeigt wird, müssen folgende Punkte überprüft werden:

- Kein bzw. nur schlechtes Antennensignal. Eine geeignete Antenne anschließen.
- Antenne nicht angeschlossen; Antenne anschließen.
- Kein Kanal/keine Voreinstellung ist unter dieser Programmnummer gespeichert; Menü 'INSTALL' aufrufen und einen geeigneten Kanal unter dieser Programmnummer speichern.
- Der Tuner ist defekt (in diesem Fall enthält die Zeile 'CODES' die Fehlernummer 10). Tuner überprüfen und gegebenenfalls auswechseln oder reparieren.

Schnee und/oder instabiles Bild

- Ein verwürfeliges oder dekodiertes Signal wird empfangen.

Schwarzweiß-Bild

Den COLOR-Wert bei folgenden Bedingungen erhöhen:

- Das Bild wird besser, nachdem die Taste 'Smart Picture' auf der Fernbedienung gedrückt wurde.
- Nach dem Einschalten des Customer Service Mode ist die Bildqualität besser.

Der neue Wert für 'Personal Preference' wird automatisch gespeichert.

Menütext ist nicht scharf genug

Den CONTRAST-Wert bei folgenden Bedingungen verringern:

- Das Bild wird besser, nachdem die Taste 'Smart Picture' auf der Fernbedienung gedrückt wurde.
- Nach dem Einschalten des Customer Service Mode ist die Bildqualität besser.

Der neue Wert für 'Personal Preference' wird automatisch gespeichert.

5.3.2 Probleme mit dem Ton**Kein Ton oder Ton zu laut (nach dem Umschalten auf einen anderen Kanal/nach dem Einschalten des Gerätes)**

Nach dem Einschalten des Customer Service Mode ist die Lautstärke in Ordnung. Lautstärkewert erhöhen/verringern. Der neue Wert für 'Personal Preference' wird automatisch gespeichert.

5.4 ComPair**5.4.1 Einführung**

ComPair (Computer Aided Repair) ist ein Service-Tool für die CE-Produkte von Philips. ComPair ist eine Weiterentwicklung der europäischen DST-Service-Fernbedienung und ermöglicht eine schnellere und genauere Fehlerdiagnose. ComPair bietet drei große Vorteile:

- ComPair vermittelt Ihnen auf einfache Weise die Kenntnisse, die für eine schnelle Reparatur des Chassis erforderlich sind, indem Sie Schritt für Schritt durch die Reparaturvorgänge geführt werden.
- Mit ComPair können Sie eine sehr genaue Diagnose (auf I²C-Ebene) vornehmen. Daher kann ComPair die Problembereiche präzise angeben. Sie brauchen überhaupt nichts über I²C-Befehle zu wissen, da ComPair sich um alles kümmert.
- ComPair beschleunigt die Reparaturzeit, da es automatisch mit dem Chassis kommunizieren kann (wenn der Mikroprozessor funktioniert) und da alle Reparaturinformationen direkt verfügbar sind. Wenn ComPair zusammen mit dem elektronischen SearchMan-Manual des defekten Chassis installiert wird, sind Schemata und Schaltbilder per Mausklick abrufbar.

5.4.2 Spezifikationen

ComPair besteht aus einem Windows-gestützten Fehlersuchprogramm und einer Interface Box, die zwischen dem PC und dem (defekten) Produkt angeschlossen wird. Die ComPair-Interface Box ist über ein serielles Kabel oder ein RS232-Kabel mit dem PC verbunden.

Beim Chassis L01 erfolgt die Kommunikation zwischen der ComPair-Interface Box und dem Fernseher mit Hilfe eines bidirektionalen Service-Kabels über den Service-Stecker (der sich auf der Hauptplatine befindet; siehe auch Abbildung 8-1, Anhang D).

Das Fehlersuchprogramm von ComPair kann das Problem in dem defekten Fernseher feststellen. ComPair kann Diagnoseinformationen auf zweierlei Weise ermitteln:

- Automatisch (durch Kommunikation mit dem Fernseher): ComPair kann automatisch den Inhalt des gesamten Fehlerpuffers auslesen. Die Fehlerdiagnose erfolgt auf I²C-Ebene. ComPair kann auf den I²C-Bus des Fernsehers zugreifen. ComPair kann I²C-Befehle an den Mikrocontroller des Fernsehers senden und von diesem empfangen. Auf diese Weise kann ComPair mit Vorrichtungen auf den I²C-Bussen des Fernsehers kommunizieren.
- Manuell (durch Fragen an Sie): Eine automatische Fehlerdiagnose ist nur möglich, wenn der Mikrocontroller des Fernsehers richtig funktioniert - und auch dann nur in einem bestimmten Umfang. Sollte dies nicht der Fall sein, so werden Sie von ComPair durch das Fehlersuchschema geleitet, indem Ihnen Fragen gestellt werden (z.B. Ist ein Bild sichtbar? Klicken Sie die richtige Antwort an: YES / NO) und indem Ihnen Beispiele aufgezeigt werden (z.B. Messen Sie Messpunkt I7, und klicken Sie auf das korrekte Oszilloskopogramm, das Sie auf dem Oszilloskop sehen). Sie können antworten, indem Sie auf eine Verknüpfung (z.B. Text oder ein Oszilloskopogramm) klicken und werden so zum nächsten Schritt im Fehlersuchprozess geführt.

Durch eine Kombination aus automatischer Fehlerdiagnose und einem interaktiven Verfahren mit Fragen und Antworten können mit ComPair die meisten Probleme schnell und effektiv gelöst werden.

- Im SAM können Menüpunkte mit den Pfeiltasten (NACH UNTEN/NACH OBEN) auf der Fernbedienung ausgewählt werden. Der ausgewählte Menüpunkt wird markiert. Wenn nicht alle Menüpunkte auf dem Bildschirm angezeigt werden können, werden beim Bewegen des Cursors NACH UNTEN/NACH OBEN die nächsten/vorherigen Menüpunkte angezeigt.
- Mit den Pfeiltasten NACH LINKS/NACH RECHTS kann man:
 - den ausgewählten Menüpunkt (de)aktivieren
 - den Wert des ausgewählten Menüpunktes ändern
 - das ausgewählte Untermenü aktivieren.
- Wenn die MENU-Taste zweimal gedrückt wird, wechselt das Gerät in die normalen Benutzeroberflächen (wobei der SAM-Modus immer noch im Hintergrund aktiv ist). Um zum SAM-Menü zurückzukehren, muss die Taste OSD/ STATUS [i+] gedrückt werden.
- Durch Drücken der Taste 'MENU' in einem Untermenü gelangt man zum vorherigen Menü.

SAM-Modus verlassen

Das Gerät in den STANDBY-Modus schalten, indem die Power-Taste auf der Fernbedienung gedrückt wird (wenn das Gerät durch Unterbrechung der Netzstromversorgung ausgeschaltet wird, kehrt das Gerät in den SAM-Modus zurück, wenn die Netzstromversorgung wieder aktiviert wird). Der Fehlerpuffer wird **nicht** gelöscht.

5.2.3 Customer Service Mode (CSM)

Zweck

Wenn ein Kunde Probleme mit seinem Fernsehgerät hat, kann er seinen Händler anrufen. Der Service-Techniker kann den Kunden dann bitten, den 'Customer Service Mode' (CSM) zu aktivieren, um den Status des Gerätes zu ermitteln. Jetzt kann sich der Service-Techniker eine Vorstellung von der Schwere des Problems machen. In vielen Fällen kann er den Kunden dahingehend beraten, wie er das Problem lösen kann, oder er kann entscheiden, ob es erforderlich ist, den Kunden aufzusuchen.
Der CSM ist ein Nur-Lese-Modus; deshalb können in diesem Modus keine Änderungen vorgenommen werden.

Customer Service Mode aktivieren

```

1 A A A B C D X . Y           C S M
2 C O D E S   X X X X X X X X X X X X
3 O P         X X X X X X X X X X X X X X X X
4 D E T E C T E D   S Y S T E M   D E T E C T E D   S O U N D
5 N O T   T U N E D   S K I P P E D
6 T I M E R
7
8 C O   X X   C L   X X   B R   X X   H U   X X   S H   X X
9 V L   X X   B L   X X   A V L             D V   X X
10 T R  X X   B S   X X

```

CL 16532008_046.eps
220501

Abbildung 5-5

Der Customer Service Mode wird eingeschaltet, indem mindestens 4 Sekunden lang gleichzeitig die Taste 'MUTE' auf der Fernbedienung und eine der Einstelltasten auf dem Fernseher gedrückt wird. Diese Aktivierung funktioniert nur, wenn kein Menü auf dem Bildschirm angezeigt wird.

Nach der Aktivierung des Customer Service Menu erscheint folgendes Fenster:

1. Software-Identifizierung des Hauptmikrocontrollers (siehe Abschnitt 5.2.2).
2. Fehlercodepuffer (siehe Abschnitt 5.5 für weitere Details). Es werden die letzten sieben Fehler im Fehlercodepuffer angezeigt.

3. In dieser Zeile werden die Optionsbytes (OB) angezeigt. Jedes Optionsbyte wird als Dezimalzahl zwischen 0 und 255 angezeigt. Vielleicht arbeitet das Gerät nicht richtig, wenn ein falscher Optionscode eingestellt ist. Weitere Informationen über korrekte Optionseinstellungen werden in Kapitel 8.3.1 beschrieben.
4. Gibt an, welches Farb- und Tonsystem für die ausgewählte Voreinstellung installiert ist.
5. Zeigt an, dass das Gerät auf diesem Kanal kein "IDENT"-Signal empfängt. Die Meldung 'Not Tuned' wird angezeigt.
6. Zeigt an, ob der Sleep Timer aktiviert ist.
7. Nicht anwendbar für Europa.
8. Der Wert zeigt die Parametereinstellungen beim Aktivieren des CSM an. CO= CONTRAST, CL= COLOR, BR= BRIGHTNESS, HU= HUE, SH= SHARPNESS
9. Der Wert zeigt die Parametereinstellungen beim Aktivieren des CSM an. VL= VOLUME LEVEL, BL= BALANCE LEVEL, AVL= AUTO VOLUME LEVEL LIMITER, DV= DELTA VOLUME
10. Der Wert zeigt die Parametereinstellungen beim Aktivieren des CSM an (nur bei Stereoergeräten). TR= TREBLE, BS= BASS

CSM verlassen

Der CSM kann mit Hilfe einer der folgenden Methoden wieder verlassen werden:

- Nach Drücken einer Taste auf der Fernbedienung (mit Ausnahme der Tasten 'CHANNEL' und 'VOLUME')
- Nach Ausschalten des Fernsehgeräts über den Netzschatzler.

5.3 Probleme und Tipps zur Problemlösung (in Bezug auf den CSM)

5.3.1 Probleme mit dem Bild

Hinweis: Die nachfolgend beschriebenen Probleme beziehen sich auf die TV-Einstellungen. Die Vorgehensweise beim ändern der Werte oder des Zustands der verschiedenen Einstellungen wird beschrieben.

Keine Farben / Bildrauschen

CSM-Zeile 4 prüfen. Falsches Farbsystem installiert. Zum Ändern der Einstellung wie folgt vorgehen:

1. Taste 'MENU' auf der Fernbedienung drücken.
2. Untermenü 'INSTALL' auswählen.
3. Untermenü 'MANUAL STORE' auswählen.
4. 'SYSTEM' auswählen und Einstellung ändern, bis Bild und Ton korrekt sind.
5. Den Menüpunkt 'STORE' auswählen.

Farben nicht korrekt/instabiles Bild

CSM-Zeile 4 prüfen. Falsches Farbsystem installiert. Zum Ändern der Einstellung wie folgt vorgehen:

1. Taste 'MENU' auf der Fernbedienung drücken.
2. Untermenü 'INSTALL' auswählen.
3. Untermenü 'MANUAL STORE' auswählen.
4. 'SYSTEM' auswählen und Einstellung ändern, bis Bild und Ton korrekt sind.
5. Den Menüpunkt 'STORE' auswählen.

Fernseher schaltet sich aus (oder ein) oder wechselt den Kanal, ohne dass eine Taste gedrückt wird

Der 'Sleep Timer' hat das Gerät ausgeschaltet oder den Kanal gewechselt. Zum Ändern der Einstellung wie folgt vorgehen:

1. Taste 'MENU' auf der Fernbedienung drücken.
2. Untermenü 'FEATURES' auswählen.
3. Untermenü 'TIMER' auswählen.
4. 'SLEEP' oder 'TIME' auswählen und Einstellung entsprechend ändern.

5.5 Fehlerpuffer

Der Fehlercodepuffer enthält alle Fehler, die erfasst wurden, seit der Puffer zum letzten Mal gelöscht wurde. In den Puffer wird von links nach rechts geschrieben. Wenn ein Fehler auftritt, der noch nicht in den Fehlercodepuffer geschrieben wurde, wird er auf der linken Seite geschrieben, und alle anderen Fehler verschieben sich um eine Position nach rechts.

5.5.1 Lesen von Fehlercodes aus dem Fehlerpuffer

Der Fehlerpuffer kann auf folgende Weise gelesen werden:

- Auf dem Bildschirm über den Service Alignment Mode (nur wenn ein Bild sichtbar ist). Beispiel:
 - ERROR: 0 0 0 0 0 : keine Fehler im Puffer vorhanden
 - ERROR: 6 0 0 0 0 : Fehlercode 6 ist der letzte und einzige erfasste Fehler
 - ERROR: 9 6 0 0 0 : Fehlercode 6 wurde zuerst erfasst, und Fehlercode 9 ist der zuletzt erfasste (neueste) Fehler
- Über das Verfahren "blinkende LED" (wenn kein Bild sichtbar ist). Siehe nächsten Abschnitt.
- Über ComPair.

5.5.2 Löschen des Fehlerpuffers

Der Fehlerpuffer kann auf folgende Weise gelöscht werden:

- Im SAM-Menü durch Auswählen des Befehls 'CLEAR'.
- Wenn SDM/SAM über den STANDBY-Befehl auf der Fernbedienung verlassen werden (wenn SDM/SAM durch Trennen des Gerätes von der Netzstromversorgung verlassen werden, wird der Fehlerpuffer nicht zurückgesetzt).
- Durch Übertragung der Befehlsfolge 'DIAGNOSE' - '99' - 'OK' mit ComPair.
- Wenn der Inhalt des Fehlerpuffers 50 Stunden lang unverändert geblieben ist, wird er automatisch zurückgesetzt.

5.5.3 Fehlercodes

Bei einem nicht-intermittierenden Fehler muss der Fehlerpuffer gelöscht werden, bevor mit der Reparatur begonnen wird, um zu vermeiden, dass "alte" Fehlercodes vorhanden sind.

Wenn möglich, den gesamten Inhalt des Fehlerpuffers prüfen. In manchen Fällen ist ein Fehlercode nur die Folge eines anderen Fehlercodes und nicht die eigentliche Ursache (z.B. kann ein Fehler in den Schutzdetectionsschaltungen auch zu einer Schutzschaltung führen).

ERROR CODE TABLE				
Error	Device	Error description	Def. item	Diagram
0	Not applicable	No Error		
1	Not applicable	X-Ray/overvoltage protection (USA only)	2465, 7460	A2
2	Not applicable TDA8359/TDA9302	Horizontal protection Vertical protection	7460, 7461, 7462, 7463, 6467 7861, VlotAux+13V	A2, A3
3	Reserve			
4	MSP34X5 / TDA9853	MSP I ² C identification error	7831 or 7861	A9 or A11
5	TDA95xx	POR 3V3 / +8V protection	7200, 7560, 7480	A5, A6, A7, A1, A2
6	I ² C bus	General I ² C bus error	7200, 3624, 3625	A7
7	AN7522/3	Power down (over current) protection	7901 / 7902, 7561	A8, A1
8	Not applicable	E/W protection (Large Screen)	7400, 3405, 3406, 3400	A2
9	M24C08	NVM I ² C identification error	7602, 3611, 3603/04	A7
10	Tuner	Tuner I ² C identification error	1000, 7482	A4, A2
11	TDA6107/8	Black current loop protection	7330, RGB amps, CRT	B1, B2
12	M65669	PIP I ² C identification error	7803	P

CL 16532008_047.pdf
210501

Abbildung 5-7

Neben der Fehlersuche besitzt ComPair auch noch einige **weitere Funktionen**, wie beispielsweise:

- Herauf-/Herunterladen von Voreinstellungen
- Verwalten von Presets-Listen
- Emulation des (europäischen) Dealer Service Tools (DST)
- Wenn ComPair zusammen mit den elektronischen SearchMan-Service Manuals installiert wird, sind alle Schemata und Schaltbilder eines Fernsehers direkt verfügbar, wenn auf eine entsprechende Verknüpfung geklickt wird. Ein Beispiel: *Messen der Gleichspannung an Kondensator C2568 (Schema/Platine) auf der Grundplatte*. Wenn auf eine Platinenverknüpfung geklickt wird, erscheint automatisch ein Schaltbild, auf dem die Lage von Kondensator C2568 gekennzeichnet ist. Wenn auf eine Verknüpfung für ein Schema geklickt wird, erscheint dieses automatisch, wobei die Lage des Kondensators gekennzeichnet ist.

5.4.3 Anschließen

1. Zuerst die ComPair Browser-Software installieren (siehe die Installationsanweisungen in der Kurzanleitung).
2. Das RS232-Schnittstellenkabel zwischen einem freien seriellen (COM-) Port des PCs und dem PC-Anschluss (Kennzeichnung 'PC') der ComPair-Schnittstelle anschließen.
3. Das Netzteil an die mit 'POWER 9V DC' gekennzeichnete Buchse der ComPair-Schnittstelle anschließen.
4. ComPair-Schnittstelle ausschalten
5. Das Fernsehgerät über den Netzschalter ausschalten.
6. Mit Hilfe des ComPair-Schnittstellenkabels den Stecker auf der Rückseite der ComPair-Schnittstelle (Kennzeichnung 'I²C') mit dem ComPair-Stecker auf der Grundplatte verbinden (siehe Abbildung 8-1, Anhang D).
7. Das Netzteil in eine Steckdose stecken und die Schnittstelle einschalten. Die grünen und roten LEDs leuchten zusammen auf. Die rote LED erlischt nach etwa 1 Sekunde, während die grüne LED weiter leuchtet.
8. Das ComPair-Programm starten und das Kapitel 'Introduction' [Einführung] lesen.

Abbildung 5-6

5.4.4 Bestellinformationen

ComPair-Bestellnummern:

- Starterkit ComPair + SearchMan-Software + ComPair-Schnittstelle (ohne Netzteil): 4822 727 21629
- ComPair-Schnittstelle (ohne Netzteil): 4822 727 21631
- Starterkit ComPair-Software (Registrierversion): 4822 727 21634
- Starterkit SearchMan-Software: 4822 727 21635
- ComPair-CD (Update): 4822 727 21637
- SearchMan-CD (Update): 4822 727 21638
- ComPair-Schnittstellenkabel: 3122 785 90004

Personal Notes:

5.6 Das "blinkende LED"-Verfahren

Der Inhalt des Fehlerpuffers kann auch mit Hilfe der LED an der Gerätevorderseite sichtbar gemacht werden. Dieses Verfahren ist besonders hilfreich, wenn kein Bild vorhanden ist.

Wenn der SDM aufgerufen wird, zeigt die LED durch Blinken den Inhalt des Fehlerpuffers an.

Fehlercodes ≥ 10 werden wie folgt angezeigt:

- 1 langes Blinken von 750 ms (ein Anzeichen der Dezimalziffer)
- Pause von 1,5 Sekunden
- n mal kurzes Blinken (wobei $n = 1 - 9$)
- Wenn alle Fehlercodes angezeigt werden, wird die Blinkfolge mit einem LED-Aufleuchten von 3 Sekunden beendet.
- Die Blinkfolge beginnt von vorne.

Beispiel Fehlerpuffer: **12 9 6 0 0**

Nach der Aktivierung des SDM zeigt die LED folgendes Blinkschema:

- 1 langes Blinken von 750 ms, gefolgt von einer Pause von 1,5 Sekunden
- zweimal kurzes Blinken, gefolgt von einer Pause von 3 Sek.
- neunmal kurzes Blinken, gefolgt von einer Pause von 3 Sek
- sechsmal kurzes Blinken, gefolgt von einer Pause von 3 Sek.
- 1 langes Blinken von 3 Sek. zum Beenden der Blinkfolge
- Die Blinkfolge beginnt von vorne.

5.7 Schutzschaltungen

Wenn eine Fehlersituation erfasst wird, wird ein Fehlercode erzeugt, und das Gerät wird gegebenenfalls in Schutzschaltung gesetzt. Die Schutzschaltung wird durch das Blinken der roten LED bei einer Frequenz von 3 Hz angezeigt. Bei einigen Fehlern setzt der Mikroprozessor das Gerät jedoch nicht in Schutzschaltung. Die im Fehlerpuffer befindlichen Fehlercodes können über das Service-Menü (SAM), das 'blinkende LED'-Verfahren oder über ComPair abgelesen werden. Die DST-Diagnosefunktion versetzt das Gerät in den Service-Standbymodus, der dem normalen Standby-Betrieb entspricht; der Mikroprozessor muss jedoch vollständig im Normalbetrieb verbleiben.

Um eine schnelle Diagnose zu erzielen, sind im Chassis drei Service-Betriebsarten integriert:

- Der Customer Service Mode (CSM)
- Der Service Default Mode (SDM). Einschalten des Gerätes auf eine vordefinierte Weise.
- Der Service Alignment Mode (SAM). In dieser Betriebsart können Funktionen des Gerätes über ein Menü und mit Hilfe von Testbildern eingestellt werden.

Eine detaillierte Beschreibung findet sich in Kapitel 9 in den Abschnitten 'Ablenkung' und 'Stromversorgung'.

5.8 Reparaturtipps

Nachfolgend sind einige Fehlersymptome und die entsprechenden Reparaturtipps aufgeführt.

- **Gerät lässt sich nicht einschalten und macht Hickup-Geräusche**

Die Netzstromversorgung ist vorhanden. Die Hickup-Geräusche hören auf, wenn L5561 abgelötet wird; das Problem befindet sich hinter der Netzstromversorgungsleitung. Keine Ausgangsspannung am LOT, keine Horizontalablenkung. Ursache: Zeilentransistor 7402 ist defekt.

- **Gerät lässt sich nicht einschalten, kein Ton**
Stromversorgungs-IC7520 prüfen. Ergebnis: die Spannung an den Pins 1, 3, 4, 5 und 6 liegt über 180 V und ist an Pin 8 = 0 V. Der Grund, weshalb die Spannung an diesen Pins so hoch ist: der Ausgangstreiber (Pin 6) ist unbelastet. Deshalb kann der MOSFET TS7521 nicht schalten. Ursache: Rückkopplungswiderstand 3523 ist defekt. **Achtung:** Beim Messen am Steueranschluss des TS7521 mit Vorsicht vorgehen; der Schaltkreis ist sehr hochohmig und kann leicht beschädigt werden! (Zuerst das Messgerät erden, dann den Steueranschluss).
- **Das Gerät befindet sich im Hickup-Modus und geht nach 8 Sekunden aus.**
Die blinkende LED (Gerät im SDM-Modus) zeigt Fehler 5 an. Da es unwahrscheinlich ist, dass Mikroprozessor 'POR' und '+8 V-Schutzschaltung' zur selben Zeit erfolgen, müssen die '+8 V' gemessen werden. Falls diese Spannung nicht vorhanden ist, muss Transistor TS7408 geprüft werden.
- **Gerät befindet sich ununterbrochen im Hickup-Modus.**
Das Gerät befindet sich im Überstrom-Modus. Die sekundäre Abtastung (Optokoppler 7515) und die Stromversorgungsspannung prüfen. Das Signal 'Stdby_con' muss unter normalen Betriebsbedingungen logisch niedrig sein und unter Standby- und Fehlerbedingungen ansteigen (3,3 V).
- **Das Gerät geht an, aber ohne Bild und Ton.**
Auf dem Bildschirm ist nur Schnee, aber OSD und andere Menüs sind in Ordnung. Das 'blinkende LED'-Verfahren zeigt Fehler 10 an, so dass es sich um ein Problem im Tuner (Pos. 1000) handelt. Versorgungsspannungen überprüfen. Während 'Vlotaux+5V' an Pin 6 und 7 in Ordnung ist, fehlt 'VT_supply' an Pin 9. Schlussfolgerung: Widerstand R3428 ist defekt.
- **Das Gerät geht an, aber im unteren Bereich wird nur ein halbes Bild angezeigt. Der Ton ist in Ordnung.**
Die blinkende LED zeigt im SDM-Modus Fehler 2 an. 'Vlotaux+13V', '+5V' und '+50V' prüfen. Falls diese Punkte in Ordnung sind, liegt das Problem vermutlich im Vertikalverstärker-IC7471. Mit einem Oszilloskop die Signalform an Pin 17 des UOC und auch an Pin 1 von IC7471 messen. Falls hier kein Signal vorhanden ist, wird das Problem durch einen defekten Widerstand R3244 verursacht.

6. Block Diagram, Testpoints, I²C and Supply Voltage Overview

Block Diagram

Testpoint Overview

I²C and Supply Voltage Diagram

7. Schematics and PWB's

Large Signal Panel: Power Supply

0211 B1	0282 F11	2502 B5	2507 B7	2521 D1	2526 D6	2547 F9	2563 D8	2568 G8	3502 B4	3507 D3	3522 C5	3527 B6	3540 E8	3545 F9	3552 F8	3582 C8	3567 C9	5500 B4	5560 D8	6501 B6	6522 D8	6561 D8	6566 F10	6581 A8	7540 F9	7562 C9	9502 B4
0212 B1	1500 B3	2503 B6	2508 C7	2522 D6	2527 D7	2559 F10	2564 B9	2569 C8	3503 A4	3508 B4	3523 E6	3528 D6	3541 E8	3558 A9	3563 C9	3560 C10	5501 C4	5561 D10	6502 B5	6523 C5	6562 B8	6567 D8	7515 E7	7541 F8	7564 B10	9503 A7	
0213 C4	1515 A7	2504 B7	2515 B7	2523 D7	2528 D2	2560 D8	2565 D8	2580 A9	3504 A4	3519 E7	3524 D6	3529 C5	3542 E9	3559 A9	3564 B9	3569 F8	5502 C4	5562 B8	6503 D6	6540 F9	6563 C8	6569 F8	7520 D2	7542 F8	7580 A8	9504 C10	
0231 B1	2500 B3	2505 B2	2516 B7	2524 D6	2540 E9	2561 D9	2566 C8	3500 C2	3505 B4	3520 F2	3525 E5	3530 C5	3540 E1	3548 E9	3560 B9	3565 A9	3570 C10	5520 D9	6520 E1	6541 E8	6564 C8	6570 G7	7521 C6	7560 A10	9502 B7	9520 C7	
0251 E1	2501 B5	2506 B6	2520 F2	2525 E6	2542 E9	2562 B8	2567 B10	3501 D2	3506 C3	3521 E2	3526 D6	3531 D2	3544 F10	3549 D10	3561 C8	3566 F8	3580 A8	5521 C7	6500 B5	6521 D7	6560 D8	6565 A10	6580 A8	7522 C7	7561 D9	9501 C2	

Large Signal Panel: Line Deflection

0220 F6	6416 F4
0221 A5	6419 D9
2400 F4	6420 E10
2403 D2	6423 F9
2404 A4	7401 E2
2405 D3	7402 D4
2406 D3	7403 D2
2407 D5	7404 D2
2408 B5	7405 A10
2409 C6	7406 B9
2410 D9	7407 D10
2411 D3	7408 E9
2412 C8	7409 B9
2413 A7	7435 E5
2414 D9	9401 F5
2415 D3	9402 D5
2416 D6	9403 A4
2417 F10	9404 B3
2418 B10	9408 B5
2419 A9	
2420 B8	
2421 B10	
2422 D10	
2423 F10	
2424 D5	
3401 C4	
3402 C4	
3403 B5	
3404 C2	
3406 D2	
3408 D2	
3410 B11	
3411 AB	
3412 A9	
3413 AB	
3414 A10	
3415 A10	
3416 A7	
3417 B10	
3418 AB	
3419 BB	
3420 B10	
3421 D9	
3422 D10	
3423 E10	
3424 E9	
3425 C9	
3426 B10	
3427 F10	
3428 F9	
3429 E4	
3430 E4	
3431 C9	
3432 D4	
3435 E6	
3436 E5	
5401 B3	
5403 B4	
5406 B3	
5408 B5	
5410 F5	
5444 D4	
5445 B6	
6402 C8	
6404 D5	
6405 E9	
6406 C2	
6407 D1	
6408 E3	
6409 A6	
6410 D8	
6411 D5	
6412 D5	
6413 A8	
6414 A10	
6415 A2	

Large Signal Panel: Frame Deflection

0222 C6 2472 C3 2475 C2 2477 B2 3472 D5 3474 B2 3476 C4 3478 C5 5471 B5 6472 B5 7471 B3
 2471 B3 2473 A4 2476 C4 3471 D5 3473 B1 3475 C1 3477 C5 3479 C2 6471 A3 6473 C5 9471 B5

Large Signal Panel: Tuner IF

0265 A3 0285 B1 1002 D6 1004 E6 2002 C2 2004 B4 2006 B5 2008 C4 2010 A3 3001 C2 3003 B6 3005 C7 3007 D4 3009 D5 3011 D3 4001 C4 4003 E5 4005 D5 4007 B6 4012 F6 5002 C4 6001 A4 6003 C5 6005 D5 7002 E5
0283 B1 1000 A2 1003 E6 2001 C2 2003 D4 2005 A4 2007 B5 2009 C7 3000 C2 3002 C5 3004 C6 3006 D4 3010 D2 3012 A5 4002 E6 4004 E6 4006 D4 4011 F6 5001 A5 5003 F7 6002 B5 6004 D4 7001 E4 9001 D5

Diversity Table A4	
Item	Description
0265	3P
0285	1P
1000	TUN V+U PLL IEC BGDK
1000	TUNER UR1316R/A1-3
1002	OFWK3953M
1003	OFWK6289K
1004	OFWK9656M
2003	50V 10N
2010	1N
3002	10K
3002	Jumper
3004	B2K
3010	330R
3011	330R
4001	Jumper
4002	Jumper
4003	Jumper
4004	Jumper
4005	Jumper
4006	Jumper
4011	Jumper
4012	Jumper
4608	Jumper
4609	Jumper
5003	1UB
6002	BAS316
6002	BAS216
6004	BA792
6005	BA792
9001	Wire
	14", 21" Stereo 3W, PAL, BG-I
	14", 17", 21" Mono 4W, PAL, BG-I
	14", 21" Stereo 3W, PAL, SECAM L-L1
	14", 17", 21" Mono 4W, East Europe
	14", 20", 21" Mono 1W, PAL, BG-I
	14", 20", 21" Mono 1W, PAL, SECAM L-L1
	14", 20", 21" Mono 1W, East Europe

Large Signal Panel: Video IF + Sound IF

0243 C6	4216 F9
0248 C2	5201 D7
0249 B2	5202 A8
0266 E11	6201 F4
0276 C2	6202 F5
1200 E7	6206 G4
1201 E7	7200-A B9
1203 F8	7200-C C3
2201 D2	7201 D8
2202 C2	7204 F5
2203 D2	7206 B7
2204 D5	7209 F7
2205 B3	7210 F8
2206 D6	9200 D7
2207 D8	9618 A9
2208 B8	
2209 F4	
2210 G3	
2211 D8	
2213 E2	
2214 E2	
2215 F2	
2216 A8	
2217 A8	
2219 B4	
2220 F5	
2221 C2	
2222 F8	
2223 F9	
2225 C7	
2226 C8	
2227 D10	
2228 D11	
2229 C11	
2230 C11	
2233 E2	
2234 F6	
2235 E9	
2236 F7	
2237 G8	
2238 F5	
2239 G6	
2240 F7	
3200 B8	
3201 C5	
3202 C5	
3203 C5	
3204 E5	
3206 F5	
3207 C8	
3208 E8	
3209 D8	
3212 E6	
3213 D6	
3214 A9	
3217 G5	
3218 G4	
3219 G3	
3220 A4	
3223 E5	
3224 F3	
3225 F5	
3226 E5	
3227 C7	
3228 A7	
3229 C7	
3230 B7	
3231 A7	
3232 C10	
3233 F7	
3234 E10	
3235 E2	
3236 F7	
3237 FB	
3238 G7	
3239 G8	
3240 F6	
3261 F9	
3637 C1	
3638 D1	
4204 C8	
4205 F2	
4206 F2	
4207 E2	
4209 D9	
4210 B8	
4211 B8	
4212 B2	
4213 B2	
4214 D10	

Large Signal Panel: Synchronisation

2241 D3 2243 B3 2245 D4 2247 B6 2249 B2 2252 C6 2254 A2 3242 B2 3245 D4 3247 D6 3249 C6 3251 B6 3256 B6 3258 B2 5241 A6 6241 E4 7241 E5
 2242 D2 2244 D4 2246 D6 2248 B6 2250 B2 2253 C6 3241 D3 3244 C6 3246 D4 3248 D6 3250 C6 3254 A4 3257 A3 3259 A2 5242 B6 7200-D B3

2 3 4 5 6 7

Large Signal Panel: Control

0217 F2
 0240 A2
 0250 B2
 0261 D2
 0273 A4
 0274 B8
 0287 B2
 1660 E7
 2601 A6
 2602 D8
 2604 D2
 2606 E8
 2607 D7
 2608 A5
 2609 E7
 2611 B5
 2612 C8
 2613 B8
 2615 A6
 2616 A4
 2618 B5
 2619 D8
 3601 B3
 3603 A8
 3604 B8
 3605 C2
 3606 B7
 3607 B9
 3608 D9
 3609 D2
 3610 C3
 3611 A7
 3612 C3
 3614 F2
 3615 E2
 3617 D2
 3618 D2
 3619 C3
 3622 D7
 3623 D3
 3624 C7
 3625 B7
 3626 C7
 3627 C9
 3628 D7
 3629 B9
 3630 D8
 3632 D9
 3633 D9
 3634 C7
 3635 B2
 3636 B2
 4601 A7
 4602 A7
 4603 B7
 4604 G2
 4620 G2
 5602 A6
 5603 A6
 5604 A6
 7200-B C4
 7602 A7
 7606 E9
 9631 E2
 9641 E2
 9647 B2

F

G

Large Signal Panel: Audio Amplifier + Mono Sound Processing

1 _____ **2** _____ **3** _____ **4** _____ **5** _____ **6** _____ **7** _____ **8** _____ **9** _____ **10** _____ **11** _____

A8 AUDIO AMPLIFIER + MONO_SOUND_PROCESSING

MONO SOUND PROCESSING

(Mono sets only)

Diversity Table A8													
Item	Description												
0246	3P Male	X	X	X	X	X	X	X	X	X	X	X	X
0246	5P Male												
1831	Chrystal 18.432MHz												
2904	1uF 16V	X	X	X	X	X	X	X	X	X	X	X	X
2906	470nF 16V												
2906	470nF 16V												
2907	1nF 50V	X	X	X									
2941	1uF 50V	X	X	X	X	X	X	X					
2941	10uF 50V												
2942	33nF 50V	X	X	X	X	X	X	X					
2943	100nF 16V	X	X	X	X	X	X	X					
2944	47nF 50V	X	X	X	X	X	X	X					
2945	10nF 50V	X	X	X	X	X	X	X					
2946	1uF 16V	X	X	X	X	X	X	X					
3903	3K3												
3905	BK2	X	X	X	X	X	X	X	X	X	X	X	X
3905	3K3												
3906	10K												
3921	330K												
3922	330K												
3941	100R	X	X	X	X	X	X	X	X				
3942	3K9	X	X	X	X	X	X	X	X				
3943	2K7	X	X	X	X	X	X	X	X				
3944	2K7	X	X	X	X	X	X	X	X				

Large Signal Panel: NICAM + 2CS + BTSC (Stereo / SAP) Decoder

1 2 3 4 5 6 7 8 9 10

Large Signal Panel: Audio / Video Source Switching

2801 B4
 2802 F4
 2803 D2
 2804 C5
 2805 E5
 3801 A2
 3802 A2
 3803 C4
 3804 C4
 3805 D5
 3806 D4
 3807 E4
 3808 E5
 3809 H2
 4801 C6
 4802 C6
 4803 E6
 4804 E6
 4805 E2
 4807 H3
 4808 H3
 4809 C2
 7801 C3
 7802-A F3
 7802-B F3
 7802-C G3
 7803 C5
 7804 D5
 9801 F2

Large Signal Panel: Front I/O + Front Control + Headphone

0214 D6 0219 A8 C92 0235 E8 0259 D10 0277-A1 0279 D7 0292 E4 1182 B2 1602 A8 1606 A7 2182 B3 2184 B4 2186 C3 2692 BC 2694 E8 2696 E9 2982 F3 2984 F3 3182 A3 3184 C3 3186 C3 3684 A8 3686 B8 3692 C8 3694 E3 4695 C7 4695 D1 4697 C3 4698 C7 4699 C3 4699 D1 4699 E1 4699 F1 4699 G1 4699 H1 4699 I1 4699 J1 4699 K1 4699 L1 4699 M1 4699 N1 4699 O1 4699 P1 4699 Q1 4699 R1 4699 S1 4699 T1 4699 U1 4699 V1 4699 W1 4699 X1 4699 Y1 4699 Z1

Large Signal Panel: Rear I/O SCART

0224-A F11	3117 E4
0224-B F11	3118 E5
0227 A7	3119 F3
0229 E7	3120 F4
0235-A A1	3121 F3
0235-B A11	3122 F4
0236 A5	3131 A9
0242 F6	3132 A8
0262 G5	3133 B9
1101 A3	3134 B8
1102 B3	3135 B9
1103 B3	3136 B8
1104 C3	3137 C9
1105 C3	3138 C8
1106 D3	3139 C9
1107 C2	3140 C8
1108 D3	3141 D8
1109 C2	3142 D7
1110 E3	3143 D9
1111 E3	3144 E8
1112 F3	3145 E9
1113 F3	3146 E8
1131 A9	3151 E9
1132 B9	3152 F8
1133 B9	3153 F9
1134 C9	3154 F8
1135 B10	3155 G3
1136 C9	4101 A3
1137 C10	4102 B3
1138 C10	4103 A5
1139 D9	4104 B5
1140 C10	4105 E6
1141 D9	4151 E8
1142 E9	4152 F8
1151 F9	6101 C3
1152 F9	6102 D3
2101 A3	6103 D3
2102 A4	6104 E3
2103 A5	6105 E3
2104 B3	6131 D8
2105 B4	7101 E5
2106 B5	7131 D7
2107 B3	
2108 B4	
2109 B5	
2110 C3	
2111 C4	
2112 C5	
2113 C5	
2114 D5	
2115 D5	
2116 E5	
2117 E5	
2118 F4	
2119 F3	
2120 F4	
2131 A9	
2132 A8	
2133 A7	
2134 B9	
2135 B8	
2136 B7	
2137 B9	
2138 B8	
2139 B7	
2140 C9	
2141 C8	
2142 C7	
2143 C8	
2144 D7	
2145 D8	
2146 E9	
2147 E8	
2148 E9	
2149 E8	
2150 F9	
2151 E8	
2152 F8	
2153 F9	
2154 F8	
2161 G3	
3101 A4	
3102 A4	
3103 B4	
3104 B4	
3105 C4	
3106 C4	
3107 C4	
3108 C4	
3109 C4	
3110 C5	
3111 D4	
3112 D4	
3113 D4	
3114 D5	
3115 D5	
3116 D5	
3117 D5	
3118 D5	
3119 D5	
3120 D4	
3121 D4	
3122 D4	
3123 D4	
3124 D4	
3125 D4	
3126 D4	
3127 D4	
3128 D4	
3129 D4	
3130 D4	
3131 D4	
3132 D4	
3133 D4	
3134 D4	
3135 D4	
3136 D4	
3137 D4	
3138 D4	
3139 D4	
3140 D4	
3141 D4	
3142 D4	
3143 D4	
3144 D4	
3145 D4	
3146 D4	
3147 D4	
3148 D4	
3149 D4	
3150 D4	
3151 D4	
3152 D4	
3153 D4	
3154 D4	
3155 D4	
3156 D4	
3157 D4	
3158 D4	
3159 D4	
3160 D4	
3161 D4	
3162 D4	
3163 D4	
3164 D4	
3165 D4	
3166 D4	
3167 D4	
3168 D4	
3169 D4	
3170 D4	
3171 D4	
3172 D4	
3173 D4	
3174 D4	
3175 D4	
3176 D4	
3177 D4	
3178 D4	
3179 D4	
3180 D4	
3181 D4	
3182 D4	
3183 D4	
3184 D4	
3185 D4	
3186 D4	
3187 D4	
3188 D4	
3189 D4	
3190 D4	
3191 D4	
3192 D4	
3193 D4	
3194 D4	
3195 D4	
3196 D4	
3197 D4	
3198 D4	
3199 D4	
3200 D4	
3201 D4	
3202 D4	
3203 D4	
3204 D4	
3205 D4	
3206 D4	
3207 D4	
3208 D4	
3209 D4	
3210 D4	
3211 D4	
3212 D4	
3213 D4	
3214 D4	
3215 D4	
3216 D4	
3217 D4	
3218 D4	
3219 D4	
3220 D4	
3221 D4	
3222 D4	
3223 D4	
3224 D4	
3225 D4	
3226 D4	
3227 D4	
3228 D4	
3229 D4	
3230 D4	
3231 D4	
3232 D4	
3233 D4	
3234 D4	
3235 D4	
3236 D4	
3237 D4	
3238 D4	
3239 D4	
3240 D4	
3241 D4	
3242 D4	
3243 D4	
3244 D4	
3245 D4	
3246 D4	
3247 D4	
3248 D4	
3249 D4	
3250 D4	
3251 D4	
3252 D4	
3253 D4	
3254 D4	
3255 D4	
3256 D4	
3257 D4	
3258 D4	
3259 D4	
3260 D4	
3261 D4	
3262 D4	
3263 D4	
3264 D4	
3265 D4	
3266 D4	
3267 D4	
3268 D4	
3269 D4	
3270 D4	
3271 D4	
3272 D4	
3273 D4	
3274 D4	
3275 D4	
3276 D4	
3277 D4	
3278 D4	
3279 D4	
3280 D4	
3281 D4	
3282 D4	
3283 D4	
3284 D4	
3285 D4	
3286 D4	
3287 D4	
3288 D4	

Layout Large Signal Panel (Top View)

Layout Large Signal Panel (Overview Bottom View)

2001 A6	2602 B4	3236 A6	4003 A5	7002 A5
2002 A6	2606 B5	3237 A6	4004 A5	7101 B6
2003 A5	2607 B4	3238 A6	4005 A5	7131 B6
2004 A6	2608 B5	3239 A6	4006 A5	7200 A4
2007 A6	2609 B4	3240 A6	4007 A6	7201 A4
2009 A5	2811 B4	3241 A6	4011 A5	7204 B4
2010 A6	2612 B5	3242 A3	4012 A5	7206 A4
2101 C6	2613 B5	3245 A5	4101 C6	7209 A6
2102 C6	2615 B4	3246 A4	4102 C6	7210 A6
2103 C6	2616 B5	3247 C5	4103 C6	7241 B4
2104 C6	2618 B4	3248 A4	4104 C6	7401 C4
2105 C6	2619 B5	3254 A5	4105 B6	7405 D5
2106 C6	2692 E1	3256 C4	4151 A6	7406 C5
2107 C6	2693 D2	3257 A5	4152 B6	7409 C5
2108 C6	2694 D1	3258 B6	4171 B6	7522 D3
2109 C6	2695 D1	3259 B5	4204 A4	7541 C3
2110 C6	2696 D1	3261 A5	4205 B4	7542 C3
2111 C6	2802 C2	3410 D6	4206 B4	7561 C4
2112 C6	2803 C2	3413 D5	4207 B4	7562 D4
2113 B6	2804 B3	3418 C5	4209 A4	7564 D4
2114 B6	2805 B3	3419 C5	4210 A4	7580 C2
2115 B6	2831 B1	3420 C6	4211 A4	7606 B5
2116 B6	2832 B1	3422 C5	4212 A4	7801 C3
2117 B6	2833 B1	3423 C5	4213 A4	7802 B3
2118 B6	2834 B2	3426 C5	4214 B3	7803 C3
2119 B6	2835 B2	3431 C5	4216 A3	7804 B3
2120 B6	2836 B2	3520 D3	4217 A4	7832 C2
2121 C6	2838 B2	3522 D3	4410 C5	7833 C2
2122 C6	2839 B2	3524 D3	4501 D4	7834 C1
2123 C6	2840 B2	3525 D3	4601 B5	7835 C2
2124 C6	2842 B2	3526 D3	4602 B5	7941 A3
2125 C6	2845 B2	3527 D3	4603 B4	7942 A3
2126 C6	2847 C2	3530 A3	4604 A3	7943 A3
2127 C6	2848 B2	3531 D3	4608 A7	
2128 C6	2849 B2	3540 D4	4609 A7	
2129 C6	2850 B2	3541 D3	4613 B4	
2130 C6	2851 B2	3542 D3	4614 A3	
2131 C6	2852 C2	3545 D4	4615 B5	
2132 C6	2853 B2	3546 C3	4616 B4	
2133 C6	2854 C2	3548 C3	4617 A5	
2144 B6	2856 C2	3552 C3	4619 A4	
2145 B6	2857 C2	3559 C4	4620 A3	
2146 B6	2858 C2	3562 D4	4622 A5	
2147 B6	2859 C1	3563 C4	4623 A5	
2151 A6	2860 C2	3566 C3	4691 E1	
2152 A6	2887 B2	3567 D4	4692 C2	
2153 B6	2894 B2	3568 D4	4693 C2	
2154 B6	2895 B2	3569 C3	4694 B1	
2161 D1	2896 C2	3580 C3	4695 E1	
2182 C1	2897 B2	3605 C3	4801 B3	
2183 C1	2898 B2	3611 B4	4802 B3	
2184 C1	2901 B3	3622 B5	4803 B3	
2185 D1	2904 B3	3623 B5	4804 B3	
2186 C1	2905 B3	3626 B5	4805 B3	
2201 A4	2906 A3	3627 B4	4806 C3	
2202 B4	2907 A3	3628 B4	4807 B3	
2203 A4	2942 A3	3629 B4	4808 B3	
2204 B4	2943 A3	3630 B5	4809 C3	
2205 A5	2944 A3	3632 B5	4811 B3	
2206 A4	2945 A3	3633 B5	4812 B3	
2207 A4	2946 A3	3636 A5	4813 B2	
2208 A4	2947 A3	3637 B3	4814 C2	
2211 A4	2948 B3	3639 B4	4812 C2	
2213 B4	2949 B3	3681 B1	4832 C2	
2214 B4	2950 B3	3682 C1	4833 C2	
2215 B4	2982 D1	3683 C1	4834 C2	
2217 A4	2984 D1	3686 B1	4835 C2	
2219 A5	3002 A3	3685 C2	4836 C1	
2221 B4	3003 A3	3686 B1	4901 A3	
2222 A6	3004 A3	3691 E1	4902 A3	
2223 A5	3006 A5	3692 E1	4903 A3	
2225 A4	3007 A5	3693 E1	4904 A3	
2226 A4	3008 A5	3694 E1	4911 A6	
2227 A4	3009 A5	3695 C2	4921 B3	
2228 A4	3010 A5	3803 B3	4941 A3	
2233 B4	3011 A6	3804 C3	4982 E1	
2234 A6	3102 C6	3805 B4	4991 A6	
2236 A6	3104 C6	3806 C3	5003 A4	
2237 A6	3106 C6	3807 C2	5835 C2	
2238 A6	3108 C6	3809 B3	6002 A6	
2239 A6	3112 B4	3831 B2	6003 A6	
2240 A6	3120 B4	3835 C2	6004 A5	
2241 A5	3132 C6	3838 C2	6005 A5	
2242 A5	3134 C6	3840 C2	6101 B6	
2243 A5	3136 C6	3841 C2	6102 B6	
2245 A4	3138 C1	3842 C1	6103 B6	
2248 A5	3140 B6	3843 C2	6104 B6	
2249 A5	3144 B6	3849 C2	6105 B6	
2252 A5	3152 A6	3901 B3	6131 B6	
2253 A5	3154 B6	3902 B3	6181 C1	
2254 A5	3184 C1	3903 A3	6201 B4	
2403 C4	3186 C1	3904 A3	6202 B4	
2405 D5	3206 B4	3905 A3	6206 B4	
2406 C4	3208 A4	3906 A3	6241 C4	
2415 C5	3209 A4	3907 A3	6406 C4	
2418 C6	3212 A4	3921 A3	6407 C4	
2421 C5	3213 A3	3922 A3	6408 C5	
2475 D6	3217 B4	3923 A3	6415 C5	
2477 C6	3218 B4	3941 A3	6416 D5	
2520 D3	3219 B4	3942 A3	6417 C5	
2522 D3	3223 B4	3943 A3	6522 D3	
2524 D3	3224 B4	3944 A3	6563 D4	
2525 D3	3225 B4	3945 A3	6565 C4	
2526 D3	3226 B4	3946 A3	6566 C3	
2527 D3	3227 A4	3947 A3	6567 D4	
2528 D3	3229 A4	3948 A3	6569 D4	
2540 C4	3230 A4	3949 A3	6570 C3	
2542 D3	3231 A4	3950 A3	6580 C2	
2559 C3	3232 A4	3951 A3	6581 C2	
2569 D4	3233 A6	4001 B3	6901 B3	
2601 B4	3234 A4	4002 A5	7001 A5	

Layout Large Signal Panel (Part 1 Bottom View)

1

2

Part 1

Layout Large Signal Panel (Part 2 Bottom View)

Layout Large Signal Panel (Part 3 Bottom View)

Layout Large Signal Panel (Part 4 Bottom View)

CRT Panel

VG2 F9 0244 G2 0254-A D7 2313 E3 2331 B3 2342 G2 3311 F2 3313 F3 3316 D4 3321 D2 3323 D3 3326 B4 3331 B2 3333 B3 3336 A4 3341 E5 3348 D5 3350 E6 5342 G2 6321 C4 6341 A4 6343 G4 7312 D4 7321 C3 7323 C4 7332 A4 9300 F3
0165 A7 0245 C1 1300-1 B7 2323 D3 2341 F5 2343 G2 3312 F2 3314 E3 3317 C5 3322 D2 3324 C3 3327 C5 3332 B2 3334 A3 3337 B5 3347 F4 3349 E6 5341 G2 6311 D4 6331 A4 6342 F3 7311 E3 7313 E4 7322 C4 7331 B3 7333 A4

Layout CRT Panel (Top View)

Layout CRT Panel (Bottom View)

2313 A2
2323 A2
2331 A2
2344 A2
3311 A2
3312 A2
3313 A2
3321 A2
3322 A2
3323 A2
3331 A2
3332 A2
3333 A2
6343 A2
6344 A2

Side AV + HP Panel

0232 E4
0250-A
0250-B
0250-C
0251 A5
0254 E2
0255 E5
0277-A
0277-B
2171 D4
2172 C4
2173 C4
2174 D4
2176 F5
2177 F5
2178 E3
2179 E3
3150 D5
3151 D5
3152 C5
3153 B5
3155 A5
3156 E5
3157 F5
5161 A5
9152 C5
9153 B5
SG02 G5
SG03 D5
SG04 O5
SG06 F5
SG07 E5

Layout Side AV + HP Panel (Top View)

Side AV Panel

0250-A B1
0250-B C1
0250-C A1
0251 B4
0252 B1
0253 A4
0261 D4
1152 A2
1153 C2
1154 B2
2171 C3
2172 B3
2173 B2
2174 C2
2175 B1
3150 C3
3151 C3
3152 B3
3153 B3
3155 A3
5010 B3
6161 A3
9152 B2
9153 B3
9155 B3

Layout Side AV Panel (Top View)

Side AV Panel + Headphone

Layout Side AV Panel + Headphone (Top View)

8. Einstellungen

Inhalt dieses Kapitels:

1. Allgemeine Einstellbedingungen
2. Hardware-Einstellungen
3. Software-Einstellungen

Hinweis: Service Default Mode (SDM) und Service Alignment Mode (SAM) werden in Kapitel 5 beschrieben. Die Menüsteuerung erfolgt mit Hilfe der Pfeiltasten 'NACH OBEN', 'NACH UNTEN', 'NACH LINKS' oder 'NACH RECHTS' auf der Fernbedienung.

8.1 Allgemeine Einstellbedingungen

Alle elektrischen Einstellungen müssen unter folgenden Bedingungen vorgenommen werden:

- Netzspannung und -frequenz: gemäß Länderstandard.
- Das Gerät über einen Isoliertransformator an das Stromnetz anschließen.
- Gerät etwa 20 Minuten aufwärmen lassen.
- Die Spannungen und Oszillogramme werden über die Chassis-Masse gemessen (mit Ausnahme der Spannungen auf der Primärseite der Stromversorgung). Niemals die Kühlrippen/-platten als Masse verwenden.
- Prüfspitze: $R_i > 10 \text{ M}\Omega$; $C_i < 2.5 \text{ pF}$.
- Bei der Durchführung der Einstellarbeiten darf nur Werkzeug mit Schutzisolierung verwendet werden.

8.2 Hardware-Einstellungen

Abbildung 8-1

8.2.1 Einstellung von Vg2

1. SAM aktivieren
2. Untermenü 'WHITE TONE' auswählen.
3. Die Werte für NORMAL RED, GREEN und BLUE auf 40 einstellen.

4. Mit Hilfe der MENU-Taste das normale Benutzermenü öffnen
 - und CONTRAST auf null einstellen.
 - BRIGHTNESS auf einen minimalen Wert einstellen (so dass das OSD in einem dunklen Raum gerade noch zu erkennen ist).
5. Mit Hilfe der MENU-Taste zum SAM zurückkehren.
6. Den HF-Ausgang eines Testbildgenerators an den Antenneneingang anschließen. Das Testbild ist ein 'schwarzes' Bild (leerer Bildschirm **ohne** OSD-Info).
7. Den Kanal des Oszilloskops auf 50 V/div und die Zeitbasis auf 0,2 ms einstellen (externe Auslösung des Vertikalimpulses verwenden).
8. Das Oszilloskop auf der Kathodenstrahlröhrenplatine erden und eine 10:1-Prüfspitze an eine der Kathoden des Bildröhrensockels anschließen (siehe Schaltbild B).
9. Den Sperrpunktimpuls während der ersten vollen Zeile nach der Dunkeltastung messen (siehe Abb. 8-2). Es sind zwei Impulse sichtbar: der Sperrpunktimpuls und der Weißabgleichsimpuls. Der Impuls mit dem niedrigsten Wert ist der Sperrpunktimpuls. Er muss ausgewählt werden.
10. Die Kathode mit dem höchsten Gleichspannungswert V_{DC} für die Einstellung auswählen. Die Sperrpunktspannung V_{cutoff} dieses Elektronenkanonenstroms mit dem SCREEN-Potentiometer auf dem LOT (siehe Abb. 8-1) auf den korrekten Wert (siehe Tabelle unten) einstellen.
11. BRIGHTNESS und CONTRAST wieder auf die Normalwerte einstellen (= 31).

Abbildung 8-2

CUT-OFF VOLTAGE	
Screen size	Cut-off [V]
13V, 14", 14RF, 15RF, 17", 19V, 20"	140 ± 4
21" (L01S)	150 ± 4
21" (L01L), 20RF, 21RF, 24WS, 25BLD, 25HF, 28 BLD, 28WS	125 ± 4
25V, 25BLS, 25RF, 27V, 28BLS, 29", 29RF, 32V, 33", 32WS, 35V	145 ± 10

CL 16532008_058.pdf
220801

Abbildung 8-3

8.2.2 Fokussierung

1. Das Gerät auf ein Kreis- und Schachbrettmuster einstellen (dazu einen externen Video-Testbildgenerator verwenden).
2. Den Bildmodus mit Hilfe der 'SMART PICTURE'-Taste auf der Fernbedienung auf 'NATURAL' (oder 'MOVIES') einstellen.
3. Das FOCUS-Potentiometer (siehe Abb. 8-1) so einstellen, dass die senkrechten Linien bei 2/3 von Ost und West in Höhe der Mittellinie die minimale Breite aufweisen, ohne dass eine Trübung sichtbar ist.

8.3 Software-Einstellungen

Service Alignment Mode im Gerät einstellen (siehe Kapitel 5). Das SAM-Menü erscheint jetzt auf dem Bildschirm.

Eine der folgenden Einstellungen auswählen:

1. Options
2. Tuner
3. White Tone
4. Geometry
5. Audio

8.3.1 Options

Bit (value)	OB1	OB2	OB3	OB4	OB5	OB6	OB7
0 (1)	OP10	OP20	OP30	OP40	OP50	OP60	OP70
1 (2)	OP11	OP21	OP31	OP41	OP51	OP61	OP71
2 (4)	OP12	OP22	OP32	OP42	OP52	OP62	OP72
3 (8)	OP13	OP23	OP33	OP43	OP53	OP63	OP73
4 (16)	OP14	OP24	OP34	OP44	OP54	OP64	OP74
5 (32)	OP15	OP25	OP35	OP45	OP55	OP65	OP75
6 (64)	OP16	OP26	OP36	OP46	OP56	OP66	OP76
7 (128)	OP17	OP27	OP37	OP47	OP57	OP67	OP77
Total:	Sum						

CL 16532008_049.pdf
210501

Abbildung 8-4

Optionen werden verwendet, um das Vorhandensein bzw. Nichtvorhandensein bestimmter Eigenschaften und Hardware-Elemente zu kontrollieren.

Optionsbytes ändern

Ein Optionsbyte steht für eine Anzahl unterschiedlicher Optionen. Wenn diese Bytes direkt geändert werden, können alle Optionen sehr schnell eingestellt werden. Alle Optionen werden über sieben Optionsbytes gesteuert. Optionsbyte (OB1..OB7) mit Hilfe der MENU UP/DOWN-Tasten auswählen und den neuen Wert eingeben.

Beim Verlassen des Untermenüs OPTION werden die Änderungen an den Optionsbyte-Einstellungen gespeichert. Einige Änderungen werden erst wirksam, nachdem das Gerät über den Netzschalter aus- und wieder eingeschaltet wurde (Kaltstart).

Den Wert eines Optionsbytes errechnen

Der Wert eines Optionsbytes (OB1 .. OB7) wird wie folgt errechnet:

1. Den Status der einzelnen Optionsbits (OP) prüfen: sind sie aktiviert (1) oder deaktiviert (0)?
2. Wenn ein Optionsbit aktiviert ist (1), steht es für einen bestimmten Wert (siehe erste Spalte 'Wert in Klammern' in der ersten Tabelle unten). Wenn ein Optionsbit deaktiviert ist, beträgt sein Wert 0.
3. Der Gesamtwert eines Optionsbytes ergibt sich aus der Summe seiner acht Optionsbits. In der zweiten Tabelle unten sind die korrekten Optionsnummern für jede Typenummer angegeben.

Abbildung 8-5

Type number	OB1	OB2	OB3	OB4	OB5	OB6	OB7
14PT1346/05	4	196	0	0	64	0	66
14PT1346/58	4	196	0	0	64	0	65
14PT1356/00	4	196	0	0	208	0	66
14PT1356/01	4	196	0	0	208	0	67
14PT1356/05	4	196	0	0	208	0	66
14PT1356/58	4	196	0	0	208	0	65
14PT1556/00	4	196	0	0	208	0	66
14PT1556/01	4	196	0	0	208	0	67
14PT1556/05	4	196	0	0	208	0	66
14PT1556/21	4	196	0	0	208	0	67
14PT1666/01	220	246	65	16	208	54	67
14PT1666/58	220	246	65	16	208	54	65
14PT1686/01C	220	246	65	16	208	54	67
14PT1686/01B	220	246	65	16	208	54	67
14PT1686/01L	220	246	65	16	208	54	67
14PT1686/01M	220	246	65	16	208	54	67
14PT1686/01V	220	246	65	16	208	54	67
14PT1686/01Y	220	246	65	16	208	54	67
14PT1686/05B	220	246	65	16	208	54	66
14PT1686/05C	220	246	65	16	208	54	66
14PT1686/05L	220	246	65	16	208	54	66
14PT1686/05M	220	246	65	16	208	54	66
14PT1686/05V	220	246	65	16	208	54	66
14PT1686/05Y	220	246	65	16	208	54	66
14PT1686/58B	220	246	65	16	208	54	65
14PT1686/58C	220	246	65	16	208	54	65
14PT1686/58L	220	246	65	16	208	54	65
14PT1686/58M	220	246	65	16	208	54	65
14PT1686/58V	220	246	65	16	208	54	65
14PT1686/58Y	220	246	65	16	208	54	65
14PT2666/01	220	246	65	184	208	54	67
14PT2666/05	220	246	65	184	208	54	66
14PT2666/58	220	246	65	184	208	54	65
17PT1666/00	220	246	65	16	208	54	66
17PT1666/01	220	246	65	16	208	54	67
17PT1666/05	220	246	65	16	208	54	66
17PT1666/58	220	246	65	16	208	54	65
20PT1346/00	4	196	0	0	192	0	67
20PT1346/01	4	196	0	0	192	0	67
20PT1346/58	4	196	0	0	192	0	65
20PT1546/00	4	196	0	0	192	0	67
20PT1546/01	4	196	0	0	192	0	67
20PT1546/58	4	196	0	0	192	0	65
21PT1346/58	4	196	0	0	64	0	65
21PT1356/00	4	196	0	0	208	0	66
21PT1356/01	4	196	0	0	208	0	67
21PT1356/58	4	196	0	0	208	0	65
21PT1546/58	4	196	0	0	64	0	65
21PT1556/00	4	196	0	0	208	0	66
21PT1556/05	4	196	0	0	208	0	66
21PT1556/58	4	196	0	0	208	0	65
21PT1666/01	220	246	65	16	208	54	67
21PT1666/05	220	246	65	16	208	54	66
21PT1666/58	220	246	65	16	208	54	65
21PT4406/01	4	196	64	40	240	0	67
21PT4406/05	4	196	64	40	240	0	67
21PT4406/21	4	196	64	40	240	0	67
21PT4406/58	4	196	64	40	240	0	65
21PT4456/01	220	246	65	56	240	2	67
21PT4456/05	220	246	65	56	240	2	67
21PT4456/58	220	246	65	56	240	2	65
37TA1266/18	4	20	0	0	64	0	67
37TA1266/58	4	20	0	0	64	0	65
37TA1276/03	4	4	0	0	64	0	66
37TA1276/08	4	4	0	0	64	0	66
37TA1276/11	4	4	0	0	64	0	67
37TA1276/16	4	4	0	0	64	0	66
37TA1476/18	4	4	0	0	64	0	67
37TA1476/16	4	4	0	0	64	0	66
37TA1476/03	4	4	0	0	64	0	66
37TA1476/16	4	4	0	0	64	0	66
51TB1256/19	4	20	0	0	64	0	67
51TA1266/18	4	4	0	0	64	0	67
51TA1476/11	4	4	0	0	64	0	67
51TA1476/03	4	4	0	0	64	0	66
51TA1476/16	4	4	0	0	64	0	66
51TB1256/19	4	4	0	0	64	0	67
52TA1466/18	4	4	0	0	64	0	67
52TA1476/03	4	4	0	0	64	0	66
52TA1476/11	4	4	0	0	64	0	67
52TA1476/16	4	4	0	0	64	0	66
52TB1456/19	4	4	0	0	64	0	67

CL 16532008_062.pdf
230501

Abbildung 8-6

Optionsbit-Zuordnung

Nachfolgend sind die Optionsbit-Zuordnungen für alle L01-Softwarecluster aufgeführt.

• **Optionsbyte 1 (OB1)**

- OP10: CHINA
- OP11: VIRGIN_MODE
- OP12: UK_PNP
- OP13: ACI
- OP14: ATS
- OP15: LNA
- OP16: FM_RADIO
- OP17: PHILIPS_TUNER

• **Optionsbyte 2 (OB2)**

- OP20: HUE
- OP21: COLOR_TEMP
- OP22: CONTRAST_PLUS
- OP23: TILT
- OP24: NOISE_REDUCTION
- OP25: CHANNEL_NAMING
- OP26: SMART_PICTURE
- OP27: SMART_SOUND

• **Optionsbyte 3 (OB3)**

- OP30: AVL
- OP31: WSSB
- OP32: WIDE_SCREEN
- OP33: SHIFT_HEADER_SUBTITLE
- OP34: CONTINUOUS_ZOOM
- OP35: COMPRESS_16_9
- OP36: EXPAND_4_3
- OP37: EW_FUNCTION

• **Optionsbyte 4 (OB4)**

- OP40: STEREO_NON_DBX
- OP41: STEREO_DBX
- OP42: STEREO_PB
- OP43: STEREO_NICAM_2CS
- OP44: DELTA_VOLUME
- OP45: ULTRA_BASS
- OP46: VOLUME_LIMITER
- OP47: INCR_SUR

• **Optionsbyte 5 (OB5)**

- OP50: PIP
- OP51: HOTEL_MODE
- OP52: SVHS
- OP53: CVI
- OP54: AV3
- OP55: AV2
- OP56: AV1
- OP57: NTSC_PLAYBACK

• **Optionsbyte 6 (OB6)**

- OP60: Reserviert (Wert = 0)
- OP61: SMART_TEXT
- OP62: SMART_LOCK
- OP63: VCHIP
- OP64: WAKEUP_CLOCK
- OP65: SMART_CLOCK
- OP66: SMART_SURF
- OP67: PERSONAL_ZAPPING

Optionsbit-Definition**OP10: CHINA**

0: Abstimmung gilt nicht für chinesische Geräte, oder dieses Optionsbit ist nicht anwendbar

1: Abstimmung gilt für chinesische Geräte

Standard-Einstellung : 0.

OP11: VIRGIN_MODE

0 : Virgin Mode ist deaktiviert oder nicht anwendbar
 1 : Virgin Mode ist aktiviert. Ein Plug-and-Play-Menüpunkt wird angezeigt, um die Installation bei der ersten Inbetriebnahme des Fernsehers durchzuführen, wenn VIRGIN_MODE auf 1 eingestellt ist. Nach Beendigung der Installation wird dieses Optionsbit automatisch auf 0 gesetzt.
 Standard-Einstellung : 0.

OP12: UK_PNP

0 : Die Plug-and-Play Standard-Einstellung für Großbritannien ist nicht verfügbar oder nicht anwendbar
 1 : Die Plug-and-Play Standard-Einstellung für Großbritannien ist verfügbar. Wenn UK_PNP und VIRGIN_MODE bei der ersten Inbetriebnahme auf 1 eingestellt sind, ist LANGUAGE = ENGLISH und COUNTRY = GREAT BRITAIN. Nach Verlassen des Menüs wird VIRGIN_MODE automatisch auf 0 eingestellt, während UK_PNP = 1 bleibt.
 Standard-Einstellung : 0.

OP13: ACI

0 : ACI ist deaktiviert oder nicht anwendbar
 1 : ACI ist aktiviert
 Standard-Einstellung : 0.

OP14: ATS

0 : ATS ist deaktiviert oder nicht anwendbar
 1 : ATS ist aktiviert. Wenn ATS aktiviert ist, werden die Programme in einer ansteigenden Reihenfolge sortiert, beginnend mit Programm 1
 Standard-Einstellung : 0.

OP15: LNA

0 : 'Auto Picture Booster' ist nicht verfügbar oder nicht anwendbar
 1 : 'Auto Picture Booster' ist verfügbar
 Standard-Einstellung : 0.

OP16: FM_RADIO

0 : UKW-Radio ist deaktiviert oder nicht anwendbar
 1 : UKW-Radio ist aktiviert
 Standard-Einstellung : 0.

OP17: PHILIPS_TUNER

0 : ALPS/MASCO-kompatibler Tuner wird verwendet
 1 : Philips-kompatibler Tuner wird verwendet
 Standard-Einstellung : 0.

OP20: HUE

0 : Farbton-/Farbnuancen-Anteil ist deaktiviert oder nicht anwendbar
 1 : Farbton-/Farbnuancen-Anteil ist aktiviert
 Standard-Einstellung : 0.

OP21: COLOR_TEMP

0 : Farbtemperatur ist deaktiviert oder nicht anwendbar
 1 : Farbtemperatur ist aktiviert
 Standard-Einstellung : 0.

OP22: CONTRAST_PLUS

0 : Kontrast+ ist deaktiviert oder nicht anwendbar
 1 : Kontrast+ ist aktiviert
 Standard-Einstellung : 0

OP23: TILT

0 : Bildrotation ist deaktiviert oder nicht anwendbar
 1 : Bildrotation ist aktiviert
 Standard-Einstellung : 0.

OP24: NOISE_REDUCTION

0 : Rauschunterdrückung ist deaktiviert oder nicht anwendbar

1 : Rauschunterdrückung ist aktiviert

Standard-Einstellung : 0.

OP25: CHANNEL_NAMING

0 : 'Name FM Channel' ist deaktiviert oder nicht anwendbar
 1 : 'Name FM Channel' ist aktiviert
 Standard-Einstellung : 0.

Hinweis: 'Name FM Channel' kann nur aktiviert werden, wenn FM_RADIO = 1 eingestellt ist.

OP26: SMART_PICTURE

0 : 'Smart Picture' ist deaktiviert oder nicht anwendbar
 1 : 'Smart Picture' ist aktiviert
 Standard-Einstellung : 1.

OP27: SMART_SOUND

0 : 'Smart Sound' ist deaktiviert oder nicht anwendbar
 1 : 'Smart Sound' ist aktiviert
 Standard-Einstellung : 1.

AP30: AVL

0 : AVL ist deaktiviert oder nicht anwendbar
 1 : AVL ist aktiviert
 Standard-Einstellung : 0.

OP31: WSSB

0 : WSSB ist deaktiviert oder nicht anwendbar
 1 : WSSB ist aktiviert
 Standard-Einstellung : 0. **Hinweis:** Dieses Optionsbit kann nur auf 1 eingestellt werden, wenn WIDE_SCREEN = 1 ist.

OP32: WIDE_SCREEN

0 : Software wird für 4:3-Geräte verwendet oder Option nicht anwendbar
 1 : Software wird für 16:9-Geräte verwendet
 Standard-Einstellung : 0.

OP33: SHIFT_HEADER_SUBTITLE

0 : 'Shift Header/Subtitle' ist deaktiviert oder nicht anwendbar
 1 : 'Shift Header/Subtitle' ist aktiviert
 Standard-Einstellung : 0. **Hinweis:** Dieses Optionsbit kann nur auf 1 eingestellt werden, wenn WIDE_SCREEN = 1 ist.

OP34: CONTINUOUS_ZOOM

0 : 'Continuous Zoom' ist deaktiviert oder nicht anwendbar
 1 : 'Continuous Zoom' ist aktiviert
 Standard-Einstellung : 0. **Hinweis:** Dieses Optionsbit kann nur auf 1 eingestellt werden, wenn WIDE_SCREEN = 1 ist.

OP35: COMPRESS_16_9

0 : 'COMPRESS 16:9'-Auswahl ist nicht anwendbar. Diese Option sollte nicht in der FORMAT-Menüliste aufgeführt werden.
 1 : 'COMPRESS 16:9'-Auswahl ist anwendbar. Diese Option sollte in der FORMAT-Menüliste aufgeführt werden.
 Standard-Einstellung : 0.

OP36: EXPAND_4_3

0 : 'Expand 4:3'-Auswahl ist nicht anwendbar. Diese Option sollte nicht in der FORMAT-Menüliste aufgeführt werden.
 1 : 'Expand 4:3'-Auswahl ist anwendbar. Diese Option sollte in der FORMAT-Menüliste aufgeführt werden.
 Standard-Einstellung : 0.

OP37: EW_FUNCTION

0 : Die OW-Funktion ist deaktiviert. In diesem Fall ist nur 'Expand 4:3' zulässig, 'Compress 16:9' ist nicht anwendbar.
 1 : Die OW-Funktion ist aktiviert. In diesem Fall sind 'Expand 4:3' und 'Compress 16:9' anwendbar.
 Standard-Einstellung : 0.

OP40: STEREO_NON_DBX

0 : Für AP_NTSC ist Chip TDA 9853 nicht vorhanden
 1 : Für AP_NTSC ist Chip TDA 9853 vorhanden
 Standard-Einstellung : 0.

OP41: STEREO_DBX

0 : Für AP_NTSC ist Chip MSP 3445 nicht vorhanden
 1 : Für AP_NTSC ist Chip MSP 3445 vorhanden
 Standard-Einstellung : 0.

OP42: STEREO_PB

0 : Für AP_PAL ist Chip MSP3465 nicht vorhanden
 1 : Für AP_PAL ist Chip MSP3465 vorhanden
 Standard-Einstellung : 0.

OP43: STEREO_NICAM_2CS

0 : Für EU und AP_PAL ist Chip MSP 3415 nicht vorhanden
 1 : Für EU und AP_PAL ist Chip MSP 3415 vorhanden
 Standard-Einstellung : 0.

OP44: DELTA_VOLUME

0 : 'Delta Volume Level' ist deaktiviert oder nicht anwendbar
 1 : 'Delta Volume Level' ist aktiviert
 Standard-Einstellung : 0.

OP45: ULTRA_BASS

0 : 'Ultra Bass' ist deaktiviert oder nicht anwendbar
 1 : 'Ultra Bass' ist aktiviert
 Standard-Einstellung : 0.

OP46: VOLUME_LIMITER

0 : 'Volume Limiter Level' ist deaktiviert oder nicht anwendbar
 1 : 'Volume Limiter Level' ist aktiviert
 Standard-Einstellung : 0.

OP47: INCR_SUR

0 : 'Incredible Surround' ist deaktiviert
 1 : 'Incredible Surround' ist aktiviert
 Standard-Einstellung : 1.

OP50: PIP

0 : 'PIP' ist deaktiviert oder nicht anwendbar
 1 : 'PIP' ist aktiviert
 Standard-Einstellung : 0.

OP51: HOTEL_MODE

0 : Hotel-Modus ist deaktiviert oder nicht anwendbar
 1 : Hotel-Modus ist aktiviert
 Standard-Einstellung : 0.

OP52: SVHS

0 : SVHS-Quelle ist nicht verfügbar
 1 : SVHS-Quelle ist verfügbar
 Standard-Einstellung : 0.
Hinweis: Dieses Optionsbit ist für EU nicht anwendbar.

OP53: CVI

0 : CVI-Quelle ist nicht verfügbar
 1 : CVI-Quelle ist verfügbar
 Standard-Einstellung : 0.

OP54: AV3

0 : Seitliche/vordere AV3-Quelle ist nicht vorhanden
 1 : Seitliche/vordere AV3-Quelle ist vorhanden
 Standard-Einstellung : 0.

OP55: AV2

0 : AV2-Quelle ist nicht vorhanden
 1 : AV2-Quelle ist vorhanden
 Standard-Einstellung : 0.
Hinweis: Für EU: wenn AV2=1, sollten EXT2 und SVHS2 in der OSD-Schleife vorhanden sein.

OP56: AV1

0 : AV1-Quelle ist nicht vorhanden
 1 : AV1-Quelle ist vorhanden
 Standard-Einstellung : 0.

OP57: NTSC_PLAYBACK

0 : NTSC-Wiedergabe ist nicht verfügbar
 1 : NTSC-Wiedergabe ist verfügbar
 Standard-Einstellung : 0.

OP60: Reserviert
 Standard-Einstellung : 0.

OP61: SMART_TEXT

0 : 'Smart Text Mode' und 'Favourite Page' sind deaktiviert oder nicht anwendbar
 1 : 'Smart Text Mode' und 'Favourite Page' sind aktiviert
 Standard-Einstellung : 1.

OP62: SMART_LOCK

0 : 'Child Lock' (Kindersicherung) und 'Lock Channel' (Kanalsperre) sind deaktiviert oder für EU nicht anwendbar.
 1 : 'Child Lock' (Kindersicherung) und 'Lock Channel' (Kanalsperre) sind für EU aktiviert.
 Standard-Einstellung : 1.

OP63: VCHIP

0 : VCHIP ist deaktiviert
 1 : VCHIP ist aktiviert
 Standard-Einstellung : 1.

OP64: WAKEUP_CLOCK

0 : Weckvorrichtung ist deaktiviert oder nicht anwendbar
 1 : Weckvorrichtung ist aktiviert
 Standard-Einstellung : 1.

OP65: SMART_CLOCK

0 : 'Smart Clock Using Teletext' und 'Smart Clock Using PBS' sind deaktiviert oder nicht anwendbar
 1 : 'Smart Clock Using Teletext' und 'Smart Clock Using PBS' sind aktiviert. Für NAFTA ist der Menüpunkt AUTOCHRON im INSTALL-Untermenü vorhanden.
 Standard-Einstellung : 0.

OP66: SMART_SURF

0 : 'Smart Surf' ist deaktiviert oder nicht anwendbar
 1 : 'Smart Surf' ist aktiviert
 Standard-Einstellung : 0.

OP67: PERSONAL_ZAPPING

0 : 'Personal Zapping' ist deaktiviert oder nicht anwendbar
 1 : 'Personal Zapping' ist aktiviert
 Standard-Einstellung : 0.

OP70: MULTI_STANDARD_EUR

0 : Nicht für europäisches Mehrnormgerät, oder dieses Optionsbit ist nicht anwendbar
 1 : Für europäisches Mehrnormgerät
 Standard-Einstellung : 0.

Hinweis: Dieses Optionsbit wird für die Steuerung der SYSTEM-Auswahl der Option 'Manual Store' verwendet : Falls MULTI_STANDARD_EUR = 1, dann ist SYSTEM = Europe, West Europe, East Europe, UK, France. Andernfalls ist SYSTEM = 'Europe, West Europe, UK for West Europe' (WEST_EU=1) oder SYSTEM = 'Europe, West Europe, East Europe for East Europe' (WEST_EU=0)

OP71: WEST_EU

0 : Für osteuropäisches Gerät, oder dieses Optionsbit ist nicht verfügbar
 1 : Für westeuropäisches Gerät
 Standard-Einstellung : 0.

OP71 und 70: SYSTEM_LT_1, SYSTEM_LT_2

Diese beiden Optionsbits stehen für die LATAM-Systemauswahl zur Verfügung.
 00 : NTSC-M
 01 : NTSC-M, PAL-M
 10 : NTSC-M, PAL-M, PAL-N
 11 : NTSC-M, PAL-M, PAL-N, PAL-BG
 Standard-Einstellung : 00.

OP70, 71 und 72: SOUND_SYSTEM_AP_1, SOUND_SYSTEM_AP_2, SOUND_SYSTEM_AP_3

Diese drei Optionsbits stehen für die AP_PAL-Tonsystemauswahl zur Verfügung.

- 000 : BG
- 001 : BG/DK
- 010 : I/DK
- 011 : BG/I/DK
- 100 : BG/I/DK/M

Standard-Einstellung : 00.

OP73: COLOR_SYSTEM_AP

Dieses Optionsbit steht für die AP-PAL Farbsystemauswahl zur Verfügung.

- 0 : Auto, PAL 4.43, NTSC 4.43, NTSC 3.58
- 1 : Auto, PAL 4.43, NTSC 4.43, NTSC 3.58, SECAM

Standard-Einstellung : 0.

OP74: Reserviert

Standard-Einstellung : 0.

OP75: Reserviert

Standard-Einstellung : 0.

OP77 und 76: TIME_WIN1, TIME_WIN2

00 : Das Zeitfenster ist auf 1,2 s eingestellt

01 : Das Zeitfenster ist auf 2 s eingestellt

10 : Das Zeitfenster ist auf 5 s eingestellt

11 : wird nicht verwendet

Standard-Einstellung : 01.

Hinweis: Die Zeitüberschreitung für alle Zeicheneingaben hängen von dieser Einstellung ab.

8.3.2 Tuner

Hinweis: Die beschriebenen Einstellarbeiten sind nur erforderlich, wenn der Permanentspeicher (Position 7602) ausgetauscht wird.

Abbildung 8-7

IFPLL

Diese Einstellung erfolgt automatisch. Deshalb sind keine Arbeiten erforderlich(Standardwert = 30).

AFW (AFC-Fenster)

Den niedrigsten Wert auswählen.

AGC (AGC-Übernahmepunkt)

Den externen Testbildgenerator auf ein Farbbalken-Videosignal einstellen und den HF-Ausgang an den Antenneneingang anschließen.

Die Amplitude auf 10 mV und die Frequenz auf 475,25 MHz (PAL/SECAM) oder 61,25 MHz (NTSC) einstellen.

Ein Vielfachmessgerät an Pin 1 des Tuners (Position 1000 auf der Hauptplatine) anschließen und auf Gleichspannung einstellen.

1. SAM aktivieren.
 2. Das Untermenü 'TUNER' aufrufen.
 3. Mit Hilfe der Pfeiltasten NACH OBEN/NACH UNTEN 'AFW' auswählen und auf 'ON' einstellen.
 4. Mit Hilfe der Pfeiltasten NACH OBEN/NACH UNTEN 'AGC' auswählen
 5. Den AGC-Wert (Standardwert ist 27) mit Hilfe der Pfeiltasten NACH LINKS/NACH RECHTS einstellen, bis die Spannung an Pin 1 des Tuners zwischen 3,8 und 2,3 V liegt.
 6. 'AFW' mit Hilfe der Pfeiltasten NACH OBEN/NACH UNTEN auswählen und auf 'OFF' einstellen.
 7. Das Gerät in den STANDBY-Modus schalten.
- Standardwert ist 28.

YD (Y-Delay Einstellung)

Festwert ist 7.

CL (Kathodensteuerungspiegel)

Festwert ist 5.

AFA

Nur-Lese-Bit; nur für Überwachungszwecke.

AFB

Nur-Lese-Bit; nur für Überwachungszwecke.

8.3.3 White Tone

Abbildung 8-8

Im WHITE TONE-Untermenü können die Werte für den schwarzen Cut-off Pegel eingestellt werden. Für gewöhnlich ist kein Abgleich für 'WHITE TONE' erforderlich. Es können die angegebenen Standardwerte übernommen werden. Farbtemperatur-Modus ('NORMAL', 'COOL' und 'WARM') und Farbe (R, G und B) können mit Hilfe der Pfeiltasten NACH OBEN/ NACH UNTEN/ NACH RECHTS/ NACH LINKS ausgewählt werden. Der Wert kann über die Pfeiltasten NACH LINKS/NACH RECHTS geändert werden. Zuerst werden die Werte für die Farbtemperatur 'NORMAL' ausgewählt. Dann werden die Werte für 'COOL' und 'WARM' ausgewählt. Nach Beendigung des Abgleichs wird das Gerät in den Standby-Modus geschaltet, um alle Einstellungen zu speichern.

Standardeinstellungen:

1. **NORMAL** (Farbtemperatur = 8500 K):
 - NORMAL R = 26
 - NORMAL G = 32
 - NORMAL B = 27
2. **COOL** (Farbtemperatur = 11500 K):
 - DELTA COOL R = -3
 - DELTA COOL G = 0
 - DELTA COOL B = 5
3. **WARM** (Farbtemperatur = 7000 K):
 - DELTA WARM R = 2
 - DELTA WARM G = 0
 - DELTA WARM B = -6

8.3.4 Geometrie

Das Menü für den Geometrie-Abgleich enthält verschiedene Optionen zum Abgleichen des Geräts, um eine korrekte Bildgeometrie zu erhalten.

CL 16532044_022.eps
140501

Abbildung 8-9

Vorgehensweise

Einen externen Testbildgenerator an den Antenneneingang des Fernsehers anschließen und ein Testbild mit einem Schachbrettmuster einspeisen.
Die Amplitude auf mindestens 10 mV und die Frequenz auf 475,25 MHz (PAL/SECAM) oder 61,25 MHz (NTSC) einstellen.

1. 'Smart Picture' auf 'NATURAL' (oder 'MOVIES') einstellen.
2. SAM-Menü aufrufen (siehe Kapitel 5).
3. Untermenü 'GEOMETRY' aufrufen.
4. Einstelloption 'HORIZONTAL' oder 'VERTICAL' auswählen

Jetzt können folgende Einstellarbeiten durchgeführt werden:

CL 16532008_059.pdf
220501

Abbildung 8-10

Horizontalabgleich

- **Horizontal Parallelogram (HP)**. Zum Abgleichen gerader vertikaler Linien im oberen und unteren Bildschirmbereich; vertikale Rotation um die Mitte.
- **Horizontal Bow (HB)**. Zum Abgleichen gerader horizontaler Linien im oberen und unteren Bildschirmbereich; horizontale Rotation um die Mitte.
- **Horizontal Shift (HSH)**. Zum Abgleich der horizontalen Mitte des Bildes mit der horizontalen Mitte der Kathodenstrahlröhre.

Siehe auch Abbildung 8-9, Nummern 11, 12 und 5.

CL 16532008_060.pdf
220501

Abbildung 8-11

Vertikalabgleich

- **Vertical slope (VSL)**. Zum Abgleich der vertikalen Mitte des Bildes mit der vertikalen Mitte der Kathodenstrahlröhre. Dies ist der erste der vertikalen Abgleichsschritte, die durchgeführt werden müssen. SBL auf 'ON' einstellen, um die Arbeit zu erleichtern.
- **Vertical Amplitude (VAM)**. Die Vertikalamplitude so ausrichten, dass das komplette Testbild sichtbar ist.

- **Vertical S-Correction (VSC).** Vertikale Linearität einstellen (d.h. Vertikalintervalle eines Gittermusters müssen über die gesamte Bildschirmhöhe gleich sein).
 - **Vertical Shift (VSH).** Die Vertikalverschiebung so ausrichten, dass sich das Testbild vertikal in der Mitte befindet. Die Ausrichtung der Vertikalamplitude gegebenenfalls wiederholen.
 - **Service blanking (SBL).** Die Dunkeltastung der unteren Bildschirmhälfte auf 'ON' oder 'OFF' einstellen (muss in Verbindung mit der Ausrichtung der vertikalen Flankensteilheit verwendet werden).
 - **H60.** Gerade horizontale Linien ausrichten, falls NTSC-Eingang (60 Hz) statt PAL (50 Hz) verwendet wird.
 - **V60.** Gerade vertikale Linien ausrichten, falls NTSC-Eingang (60 Hz) statt PAL (50 Hz) verwendet wird.
- Siehe auch Abbildung 8-9, Nummern 1, 3, 4 und 2.

In der nachfolgenden Tabelle sind die GEOMETRY-Standardwerte für die verschiedenen Geräte aufgeführt.

DEFAULT GEOMETRY VALUES (L01 SMALL SCREEN)						
Alignment	Description	14"	14" Real Flat	17"	20"	21"
HP	Hor. Parallelogram	31	31	31	31	31
HB	Hor. Bow	31	31	31	31	31
HSH	Hor. Shift	25	25	25	25	25
VSL	Vert. Slope	33	33	33	33	33
VAM	Vert. Amplitude	26	30	26	26	30
VSC	Vert. S-correction	23	23	23	23	23
VSH	Vert. Shift	35	35	35	35	35
VX	Vert. Zoom	25	25	25	25	25
H60	Hor. Shift offset (60 Hz)	9	9	9	9	9
V60	Vert. Shift offset (60 Hz)	4	4	4	4	4

CL 16532008_061.pdf
210501

Abbildung 8-12

8.3.5 Audio

CL 16532008_055.pdf
220501

Abbildung 8-13

Im Audio-Untermenü sind keine Abgleichtätigkeiten erforderlich. Die angegebenen Standardwerte können verwendet werden.

AT (Attack Time)

Standardwert ist 0 (**Ausnahme:** für 14PT26xx und 21PT44xx ist der Standardwert 8).

AF-M

Standardwert ist 0 (**Ausnahme:** für 14PT26xx und 21PT44xx ist der Standardwert 301).

A2T

Standardwert ist 0 (**Ausnahme:** für 14PT26xx und 21PT44xx ist der Standardwert 250).

QSS (Quasi Split Sound)

'OFF' für Intercarrier Geräte, 'ON' für QSS Geräte.

FMI (Freq. Modulation Intercarrier)

'OFF' für QSS Geräte, 'ON' für Intercarrier Geräte.

9. Beschreibung der Schaltkreise

Inhalt dieses Kapitels:

1. Einführung
2. Audiosignal-Verarbeitung
3. Videosignal-Verarbeitung
4. Synchronisierung
5. Ablenkung
6. Stromversorgung
7. Steuerung
8. Liste der Abkürzungen

Hinweise:

- Die nachfolgenden Abbildungen können aufgrund der unterschiedlichen Ausführungen der Geräte geringfügig von denen des zu reparierenden Gerätes abweichen.
- Für ein besseres Verständnis der nachfolgenden Schaltkreisbeschreibungen bitte das Blockschaltbild in Kapitel 6 oder die elektrischen Schaltbilder in Kapitel 7 zu Rate ziehen. Falls erforderlich, steht zum besseren Verständnis eine separate Zeichnung zur Verfügung.

9.1 Einführung

Das L01-Chassis ist ein globales TV-Chassis für das Modelljahr 2001 und wird für Fernsehgeräte mit Bildschirmgrößen von 14" - 21" (kleiner Bildschirm) und 21" - 32" (großer Bildschirm) verwendet.

Die Standard-Architektur besteht aus einer Hauptplatine, einer Bildröhrenplatine, einer seitlichen E/A-Platine (nicht bei allen Ausführungen) und einer oberen Steuereinheit.

Die Hauptplatine ist konventionell aufgebaut und besitzt nur sehr wenige oberflächenmontierte Bauteile.

Abbildung 9-1

Die Funktionen für die Videoverarbeitung, der Mikroprozessor (µP) und der Videotext- (TXT-) Decoder befinden sich in einem IC (TDA958xH), dem so genannten 'Ultimate One Chip' (UOC). Dieser Chip befindet sich auf der Kupferseite der Hauptplatine.

Abbildung 9-2

Der L01 ist in 2 Grundsysteme unterteilt, und zwar Mono- und Stereo-Wiedergabe. Während die Audio-Verarbeitung für die Mono-Wiedergabe im Audioblock des UOCs erfolgt, wird für Stereogeräte ein externer Audioverarbeitungs-IC verwendet.

Zum Abstimmssystem gehören 100 Videokanäle mit OSD-Anzeige. Das Hauptabstimmssystem verwendet einen Tuner, einen Mikrocomputer und einen Speicher-IC, der sich auf der Hauptplatine befindet.

Bei einigen Typen ist zusätzlich ein UKW-Radio mit 40 voreingestellten Kanälen eingebaut.

Der Mikrocomputer kommuniziert mit dem Speicher-IC, der Kundentastatur, dem Empfangsteil für die Fernbedienung, dem Tuner, dem Signalverarbeitungs-IC und dem Audioausgangs-IC über den I²C-Bus. Der Speicher-IC speichert die Einstellung der Lieblingssender, die persönlichen Einstellungen sowie die Service-Daten und die werkseitigen Daten.

Die Darstellung der Bildschirmgrafiken und die Bildtext-Decodierung erfolgen innerhalb des Mikroprozessors und werden anschließend zum Signalverarbeitungs-IC übertragen, wo sie dem Hauptsignal hinzugefügt werden.

Im Chassis wird eine 'Switching Mode Power Supply'-Stromversorgung (SMPS) für die Hauptstromversorgungsquelle verwendet. Das Chassis verfügt über eine spannungsführende Referenzmasse auf der Primärseite und eine nicht spannungsführende Referenzmasse auf der Sekundärseite der Stromversorgung und dem restlichen Chassis.

9.2 Audiosignal-Verarbeitung

9.2.1 Stereo

In Stereogeräten wird das Signal über den Oberflächenwellenfilter (Position 1004 bei Quasiparallelton-Demodulation und 1003 bei Differenzträgerdemodulation) zum Audiodesmodulator-Teil des UOC IC7200 übertragen. Der Stereo-Audioausgang an Pin 33 geht über TS7206 zum Stereodecoder 7831.

Der Schalter im Stereodecoder 7831 wählt (über I²C) entweder den internen Decoder oder eine externe Quelle aus.

Der NICAM + 2CS MW/UKW Stereodecoder ist ein ITT MSP34X5.

Der Ausgang zum Audioverstärker (AN7522 in Position 7901) gespeist. Die Lautstärke wird bei diesem IC (Pin 9) durch eine Steuerleitung (VolumeMute) vom Mikroprozessor

reguliert. Das Audiosignal vom 7901 wird dann zur Lautsprecher-/Kopfhörer-Ausgangsplatine übertragen.

CL 16532008_039.eps
220501

Abbildung 9-3

9.2.2 Mono

In Monogeräten wird das Signal über den Oberflächenwellenfilter (Position 1004 bei Quasiparallelton-Demodulation und 1003 bei Differenzträgerdemodulation) zum Audiodesmodulator-Teil des UOC IC7200 geleitet. Der

Audioausgang an Pin 48 geht direkt über den Puffer 7943 zum Audio-Verstärker (AN7523 in Position 7902). Die Lautstärke wird bei diesem IC (Pin 9) durch eine 'VolumeMute'-Steuerleitung vom Mikroprozessor reguliert. Das Audiosignal vom IV7902 wird dann zur Lautsprecher-/Kopfhörer-Ausgangsplatine übertragen.

CL 16532008_040.eps
220501

Abbildung 9-4

9.2.3 UKW-Radio (sofern vorhanden)

Beim UKW-Radio wird das 10,7 MHz-Konzept verwendet. Diese SIF-Frequenz ist an Pin 10 des Tuners vorhanden. über einen Vorverstärker (TS7209 und TS7210) wird das Signal zur Demodulation entweder zum UOC (für Mono UKW-Radio) oder zum Micronas MSP34X5 (für Stereo UKW-Radio) gespeist.

9.3 Videosignal-Verarbeitung

9.3.1 Einführung

Der Videosignal-Verarbeitungspfad besteht aus folgenden Teilen:

- RF-Signalverarbeitung
- Videoquellen-Auswahl
- Videodemodulation
- Luminanz-/Chrominanz-Signalverarbeitung
- RGB-Steuerung
- RGB-Verstärker

Die oben aufgeführten Verarbeitungskreise sind alle im UOC TV-Prozessor integriert. Die umliegenden Komponenten sind für die Adaptation der ausgewählten Anwendung bestimmt. Der I²C-Bus definiert und steuert die Signale.

9.3.2 RF-Signalverarbeitung

Das eingehende RF-Signal wird zum Tuner (Pos. 1000) übertragen, wo das 38,9 MHz ZF-Signal erzeugt und verstärkt wird. Die ZF-Signale verlassen den Tuner dann von Pin 11, um den Oberflächenwellenfilter (Position 1002 bei Quasiparalleltion-Demodulation und 1003 bei Differenztrrägerdemodulation) zu durchlaufen. Das geformte Signal wird dann zum ZF-Prozessorteil des UOCs (Pos. 7200) übertragen.

Die automatische Verstärkungsregelung 'Tuner AGC' reduziert die Verstärkerleistung und somit die Tuner-Ausgangsspannung, wenn starke RF-Signal empfangen werden. Der AGC-Übernahmepunkt im Service Alignment Mode (SAM) einstellt. 'Tuner AGC' wird aktiv, wenn der Video-ZF-Eingang einen bestimmten Eingangsspeigel erreicht und reguliert diesen Pegel über den I²C-Bus. Das Tuner AGC-Signal wird über den Ausgang des offenen Kollektors (Pin 22) des UOCs zum Tuner (Pin 1) geleitet.

Der IC erzeugt außerdem ein AFC-Signal (automatische Frequenzregelung), das über den I²C-Bus zum Abstimmsystem geleitet wird, um erforderlichenfalls eine Frequenzkorrektur vorzunehmen.

Das demodulierte FBAS-Signal ist an Pin 38 verfügbar und wird dann durch Transistor 7201 gepuffert.

9.3.3 Videoquellen-Auswahl

Das FBAS-Signal von Puffer 7201 wird zu den Tonträger-Sperrfiltern (1200 und 1201) übertragen, um das Audiosignal zu entfernen. Das Signal wird dann zu Pin 40 des IC7200 geleitet. Der interne Eingangsschalter wählt folgende Eingangssignale aus:

- Pin 40: terrestrischer FBAS-Eingang
- Pin 42: externer AV1 FBAS-Eingang
- Pin 44: externer seitlicher E/A FBAS- oder AV2 Luminanz- (Y) Eingang
- Pin 45: externer AV2 Chrominanz- (C) Eingang

Abbildung 9-5

Wenn die Signalquelle ausgewählt wurde, wird eine Kalibrierung des Chrominanzfilters durchgeführt. Die empfangene Farbsynchron-Hilfsträgerfrequenz wird dafür verwendet. Entsprechend wird der Chrominanz-Bandpassfilter für die PAL-Verarbeitung oder der Glockenfilter für die SECAM-Verarbeitung eingeschaltet. Das ausgewählte Luminanz- (Y-) Signal wird zum horizontalen und vertikalen Synchronisierungsverarbeitungskreis und zum Luminanz-Verarbeitungsschaltkreis geleitet. Im Luminanz-Verarbeitungsblock wird das Luminanzsignal zum Chroma-Sperrfilter geleitet. Dieser Sperrfilter wird je nach Farbsynchronsignal-Detektion des Chrominanzkalibrierungsschaltkreises ein- oder ausgeschaltet. Die Gruppenlaufzeitkorrektur kann zwischen BG und einer flachen Gruppenlaufzeit-Charakteristik umgeschaltet werden. Der Vorteil besteht darin, dass in Mehrfachnorm-Receivern keine Kompromisse hinsichtlich der Wahl des Oberflächenwellenfilters gemacht werden müssen.

9.3.4 Video-Demodulation

Der Farbdecoder-Schaltkreis ermittelt, ob es sich bei dem Signal um ein PAL-, NTSC- oder SECAM-Signal handelt. Das Ergebnis wird dem Autosystem-Manager mitgeteilt. Der PAL-/NTSC-Decoder besitzt einen internen Taktgeber, der durch Verwendung des 12 MHz-Taktsignals vom Referenzoszillator des Mikrocontrollers/Videotext-Decoders für die erforderliche Frequenz stabilisiert wird. Die Basisband-Laufzeitleitung wird verwendet, um eine wirkungsvolle Unterdrückung der Cross-colour-Effekte zu erzielen. Das Y-Signal und die Ausgänge U und V der Laufzeitleitung werden zum Luminanz-/Chrominanz-Signalverarbeitungsteil des TV-Prozessors übertragen.

9.3.5 Luminanz-/Chrominanz-Signalverarbeitung

Der Ausgang des YUV-Separators wird zum internen YUV-Schalter gespeist, der zwischen dem Ausgang des YUV-Separators oder dem externen YUV (für DVD oder PIP) an den Pins 51-53 umschaltet. Pin 50 ist der Eingang für das Einfügungssteuersignal 'FBL-1'. Wenn dieser Signalpegel 0,9 V übersteigt (aber unterhalb von 3 V liegt), werden die RGB-Signale an den Pins 51, 52 und 53 mit Hilfe der internen Schalter in das Bild eingefügt. Außerdem sind einige Bildverbesserungseigenschaften in diesem Teil implementiert:

- Black Stretch. Mit Hilfe dieser Funktion wird der Schwarzanteil der eingehenden Signale korrigiert, die eine Differenz zwischen dem Schwarzanteil und dem Dunkeltastungsspeigel aufweisen. Der Erweiterungsbetrag hängt von der Differenz zwischen dem tatsächlichen Schwarzanteil und dem dunkelsten Teil des eingehenden Videosignalpegels ab. Die Detektion erfolgt über einen internen Kondensator.
- White Stretch. Diese Funktion passt die Übertragungscharakteristik des Luminanzverstärkers auf nicht lineare Weise in Abhängigkeit vom durchschnittlichen Bildinhalt des Luminanzsignals an. Mit Hilfe der Funktion wird maximales Stretchen erzielt, wenn Signale mit einem niedrigen Videopegel empfangen werden. Bei hellen Bildern ist die Funktion nicht aktiv.
- Dynamic skin tone correction. Dieser Schaltkreis korrigiert (unmittelbar und örtlich) den Farbton derjenigen Farben, die sich im Bereich der UV-Ebene befinden, die den Hautton anpasst. Die Korrektur hängt von der Luminanz, Sättigung und Entfernung zur bevorzugten Achse ab.

Das YUV-Signal wird dann zum Farbmatrix-Schaltkreis gespeist, wo es in R-, G- und B-Signale umgewandelt wird. Das OSD-/TXT-Signal vom Mikroprozessor wird mit dem Hauptsignal an diesem Punkt vermischt, bevor es zur Kathodenstrahlröhrenplatine (Pins 56, 57 und 58) übertragen wird.

9.3.6 RGB-Steuerung

Mit Hilfe der RGB-Steuerung können die Bildparameter Kontrast, Helligkeit und Farbsättigung eingestellt werden, wobei eine Kombination aus den Benutzermenüs und der Fernbedienung verwendet wird. Zusätzlich wird die automatische Verstärkungsregelung (AGC) für die RGB-Signale über die Sperrpunktstabilisierung in diesem Funktionsblock erzielt, um eine genaue Vorpolung der Bildröhre zu erreichen. Dazu fügt der Block die Sperrpunkt-Messimpulse während der vertikalen Rücklaufzeit in die RGB-Signale ein.

Folgende zusätzliche Steuerungen werden verwendet:

- **Schwarzstrom-Kalibrierungsschleife.** Aufgrund der Zweipunkt-Schwarzstromstabilisierung hängen der Schwarzanteil und die Amplitude der RGB-Ausgangssignale von den Ansteuerungseigenschaften der Bildröhre ab. Das System prüft, ob die zurückkehrenden Messströme den Anforderungen genügen und passt den Ausgangspegel und die Leistung des Schaltkreises erforderlichenfalls an. Nach der Stabilisierung der Schleife werden die RGB-Ansteuerungssignale eingeschaltet. Das Zweipunkt-Schwarzanteilsystem passt die Ansteuerungsspannung für jede Kathode so an, dass die beiden Messströme den richtigen Wert aufweisen. Dies geschieht mit Hilfe der Messimpulse während des Bildrücklaufs. Während des ersten Bildrücklaufs werden drei Impulse mit einer Stromstärke von $8 \mu\text{A}$ erzeugt, um die Sperrpunktspannung einzustellen. Während des zweiten Bildrücklaufs werden drei Impulse mit einer Stromstärke von $20 \mu\text{A}$ erzeugt, um den Weißabgleich zu erzeugen. Als Folge wird eine Änderung der Ausgangsstufenleistung durch eine Leistungsänderung des RGB-Steuerkreises kompensiert. Pin 55 (BLKIN) des UOCs wird als Rückkopplungseingang von der Kathodenstrahlröhren-Grundplatine verwendet.
- **Blue Stretch.** Diese Funktion erhöht die Farbtemperatur der hellen Bildschirmbereiche (Amplituden, die einen Wert von 80% der Nominalamplitude überschreiten). Dieser Effekt wird erzielt, indem die geringe Signalleistung der Signale des roten und grünen Kanals, die diese 80% überschreiten, verringert wird.

- **Strahlstrombegrenzung.** Ein Strahlstrombegrenzungskreis im Innern des UOCs übernimmt die Kontrast- und Helligkeitsregelung für die RGB-Signale. Auf diese Weise wird verhindert, dass die Kathodenstrahlröhre übersteuert wird, was ernsthafte Schäden an der Horizontalablenkstufe verursachen könnte. Die Bezugsspannung, die für diesen Zweck verwendet wird, ist die Gleichspannung an Pin 54 (BLCIN) des TV-Prozessors. Kontrast- und Helligkeitsverringerung der RGB-Ausgangssignale ist deshalb proportional zur Spannung, die an diesem Pin vorhanden ist. Die Kontrastverringerung beginnt, wenn die Spannung an Pin 54 niedriger als 2,8 V ist. Die Verringerung der Helligkeit beginnt, wenn die Spannung an Pin 54 geringer als 1,7 V ist. Die Spannung an Pin 54 beträgt normalerweise 3,3 V (Begrenzer nicht aktiv). Während des Abschaltens des Gerätes erzeugt der Schwarzstromregelkreis einen festen Strahlstrom von 1 mA. Dieser Strom gewährleistet, dass die Kapazität der Bildröhre entladen wird. Während des Ausschaltens wird der Strahl durch die vertikale Ablenkung in einen nicht sichtbaren Bereich projiziert.

9.3.7 RGB-Verstärker

Über die Ausgänge 56, 57 und 58 von IC7200 werden die RGB-Signale zu den analogen Ausgangsverstärkern auf der Kathodenstrahlröhrenplatine gespeist. Das R-Signal wird durch einen Schaltkreis verstärkt, der um die Transistoren TS7311, 7312 und 7313 gebaut ist und die Kathoden der Bildröhre ansteuert.

Die Netzspannung für den Verstärker beträgt +160 V und stammt von der Horizontalablenkendstufe.

9.4 Synchronisierung

Im Innern von IC7200 (Teil D) werden die vertikalen und horizontalen Synchronisierungsimpulse getrennt. Diese 'H'- und 'V'-Signale werden mit dem eingehenden FBAS-Signal synchronisiert. Sie werden dann zu den H- und V-Drive-Schaltkreisen und zum OSD/TXT-Schaltkreis zur Synchronisierung der OSD- und Videotext- (oder Bildtext-) Informationen gespeist.

9.5 Ablenkung

9.5.1 Horizontalansteuerung

Das Horizontalansteuerungssignal stammt von einem internen VCO, der mit der doppelten Zeilenfrequenz arbeitet. Diese Frequenz wird durch zwei geteilt, um die erste Regelschleife zu dem eingehenden Signal zu verriegeln. Wenn der IC eingeschaltet wird, wird das H-Drive-Signal unterdrückt, bis die Frequenz korrekt ist. Das H-Drive-Signal ist an Pin 30 verfügbar. Das 'Hflybk'-Signal wird an Pin 31 gespeist, um die Phasen des Horizontaloszillators zu regeln, so dass TS7401 während der Rücklaufzeit nicht einschalten kann. Das 'EWdrive'-Signal für die OW-Schaltung (sofern vorhanden) ist an Pin 15 vorhanden, wo es Transistor 7400 ansteuert, um Linearitätskorrekturen an der horizontalen Ansteuerung vorzunehmen.

Wenn das Gerät eingeschaltet wird, wird die '+8 V'-Spannung zu Pin 9 von IC7200 geleitet. Die horizontale Ansteuerung beginnt in einem Warmstart-Modus. Sie beginnt mit einer sehr kurzen T_{ON} Zeit des Horizontal-Ablenktransistors. Die T_{OFF} Zeit des Transistors entspricht der Zeitdauer im Normalbetrieb. Die Startfrequenz während des Einschaltens ist deshalb etwa zweimal länger als der Normalwert. Die Betriebszeit wird langsam auf den nominellen Wert in 1175 ms erhöht. Wenn der nominelle

Wert erreicht ist, wird der Phasenregelkreis so geschlossen, dass nur sehr geringe Phasenkorrekturen erforderlich sind.

Die EHT-Info-Leitung an Pin 11 soll als Schutz gegen Röntgenstrahlen verwendet werden. Wenn dieser Schutz aktiviert ist (wenn die Spannung 6 V überschreitet), wird die horizontale Ansteuerung (Pin 30) sofort ausgeschaltet. Falls 'H-Drive' gestoppt wird, wird Pin 11 wieder negativ. Jetzt wird die horizontale Ansteuerung wieder über das langsame Einschaltverfahren aktiviert.

Die EHT-Info-Leitung (Aquadag) wird auch wieder an Pin 54 von UOC IC7200 zurückgespeist, um den Bildpegel einzustellen, damit Änderungen im Strahlstrom kompensiert werden können.

Die Heizspannung wird dahingehend kontrolliert, ob 'keine' oder eine 'überhöhte' Spannung anliegt. Diese Spannung wird durch Diode 6413 gleichgerichtet und zum Emitter von Transistor 7405 gespeist. Falls die Spannung 6,8 V übersteigt, wird Transistor 7405 leitend, wodurch die 'EHT0'-Leitung aktiviert wird. Dadurch wird die Horizontalansteuerung (Pin 30) sofort über das langsame Stopfverfahren ausgeschaltet.

Das Horizontalansteuerungssignal verlässt IC7200 an Pin 30 und fließt zu 7401, dem Horizontalansteuerungstransistor. Das Signal wird verstärkt und mit dem Grundkreis von 7402, dem Horizontalausgangstransistor gekoppelt. Dadurch wird der Horizontalablenktransformator (LOT) und die entsprechenden Schaltkreise angesteuert. Der LOT liefert die Höchstspannung (EHT), die VG2-Spannung und die Fokussier- und Heizspannungen für die Kathodenstrahlröhre, während die Horizontalablenkschaltung die Horizontalablenkspule ansteuert.

9.5.2 Vertikalansteuerung

Eine Untersetzungsschaltung führt die Vertikalsynchronisierung durch. Der vertikale Sägezahngenerator benötigt einen externen Widerstand (R3245, Pin 20) und einen Kondensator (C2244, Pin 21). Ein Differentialausgang ist an den Pins 16 und 17 verfügbar, die mit der Ausgangsstufe der Vertikalendstufe galvanisch gekoppelt sind. Um eine Beschädigung der Bildröhre zu vermeiden, wenn die Vertikalablenkung nicht funktioniert, wird der 'V_GUARD'-Ausgang zum Strahlstrom-Begrenzungseingang gespeist. Wenn eine Störung erfasst wird, werden die RGB-Ausgänge dunkelgetastet. Wenn keine Vertikalablenkungs-Ausgangsstufe angeschlossen ist, wird diese Schutzschaltung auch die Ausgangssignale dunkeltasten.

Diese 'V_DRIVE+'- und 'V_DRIVE-'-Signale werden zu den Eingangspins 7 und 1 von IC 7471 (Vertikalablenkungsverstärker) übertragen. Dabei handelt es sich um spannungsgesteuerte Differentialeingänge. Die von der Ansteuerungsvorrichtung (IC 7200) gelieferten Ausgangsströme werden von R3474 und R3479 in Spannung umgewandelt. Die Differentialeingangsspannung wird mit der Spannung um den Messwiderstand R3471 verglichen, der interne Rückkopplungsinformationen liefert. Die Spannung um diesen Messwiderstand ist proportional zum Ausgangsstrom, der an Pin 5 verfügbar ist, wo er die Vertikalablenkspule (Anschluss 0222) ansteuert. IC 7471 wird mit +/-13 V versorgt. Die vertikale Rücklaufspannung wird an Pin 3 erzeugt.

9.6 Stromversorgung

Abbildung 9-6

Abbildung 9-7

9.6.1 Einführung

Die Stromversorgung ist eine SMPS-Versorgung (Switching Mode Power Supply). Die Betriebsfrequenz variiert in Abhängigkeit von der Schaltkreisbelastung. Dieses 'Quasi-Resonanzrücklauf'-Verhalten besitzt einige wichtige Vorteile gegenüber einem 'schnell schaltenden' Sperrwandler mit fester Frequenz. Die Effizienz kann bis zu 90% erhöht werden, was zu einem geringeren Stromverbrauch führt. Außerdem wird weniger Wärme entwickelt, und die Sicherheit wird erhöht.

Die Stromversorgung beginnt, wenn eine Gleichspannung von der Gleichrichterschaltung über T5520, R3532 an Pin 8 gespeist wird. Die Betriebsspannung für den Antriebsstromkreis stammt auch von der spannungsführenden Seite dieses Transistors. Der Sperrwandler IC7520 beginnt, den FET ein- und auszuschalten, um den Stromfluss durch die Primärwicklung des Transformators 5520 zu steuern. Die Energie, die in eingeschaltetem Zustand in der Primärwicklung gespeichert ist, wird im ausgeschalteten Zustand zu den Sekundärwicklungen geliefert. Die 'MainSupply'-Leitung ist die Referenzspannung für die Stromversorgung. Sie wird durch die Widerstände 3543 und

3544 abgetastet und zum Eingang des Reglers 7540/6540 gespeist. Dieser Regler steuert den Rückkopplungsoptokoppler 7515 an, um die Rückführungssteuerspannung an Pin 3 des 7520 einzustellen. Die Stromversorgung in dem Gerät ist jedes Mal 'an', wenn das Gerät mit Wechselstrom versorgt wird.

Abzweigspannungen

Folgende Spannungen werden von den Sekundärwicklungen des T5520 geliefert:

- 'MainAux' für den Audio-Schaltkreis (Spannung hängt von der Geräteausführung ab, siehe Tabelle unten)
- 3,3 V und 3,9 V für den Mikroprozessor und
- 'MainSupply' für die Horizontalausgabe (Spannung hängt von der Geräteausführung ab, siehe Tabelle unten).

Die übrigen Netzspannungen werden vom LOT geliefert. Er liefert +50 V (nur für Geräte mit großem Bildschirm), +13 V, +8 V, +5 V und eine +200 V-Quelle für die Video-Ansteuerung. Die Sekundärspannungen des LOT werden von den EHT-Info-Leitungen kontrolliert. Diese Leitungen werden zum Videoprozessor-Teil des UOC IC7200 an Pins 11 und 34 gespeist.

Dieser Schaltkreis deaktiviert die Horizontalsteuerung bei Überspannung oder überhöhtem Strahlstrom.

Abbildung 9-8

Power supply voltages L01				
Screen Size	Voltage name	Meas. point	Value	Remark
14", 17", 20", 21"	MainSupply	P6 (C2561)	95 V	
	MainAux	P5 (C2564)	11 V	Stereo 2x3 W and Mono 1x2 W, 3 W, 4 W
			10 V	Stereo 2x1 W and Mono 1x1 W
All others	MainSupply	P6 (C2561)	130 V	21/25/29RF and 25/27/32/35V
			143 V	25/28/29SF, 25/28BLD, 25/28BLS, 28/32WS, 24/28BLDWS & BLWS
	MainAux	P5 (C2564)	12 V	Stereo 2x1 W, 3 W, 5 W
			10 V	Mono 1x1 W

CL 16532008_063.pdf
230501

Abbildung 9-9

Entmagnetisierung

Wenn das Gerät eingeschaltet wird, wird das Entmagnetisierungsrelais 1515 sofort aktiviert, da Transistor 7580 leitet. Aufgrund der RC-Zeit von R3580 und C2580 dauert es etwa 3 bis 4 Sekunden, bevor Transistor 7580 ausgeschaltet wird.

9.6.2 IC-Basisfunktionalität

Das Quasi-Resonanzverhalten kann zum besseren Verständnis durch ein vereinfachtes Schaltbild erklärt werden (siehe Abbildung unten). In diesem Schaltbild wird die Sekundärseite auf die Primärseite verlagert, und der Transformator wird durch einen Inductance-L_P ersetzt. C_D ist die gesamte Absaugkapazität, einschließlich des Resonanzkondensators C_R, des Parasitärausgangskondensators C_{OSS} des MOSFET und der Wicklungskapazität C_W des Transformatoren. Das Wicklungsverhältnis des Transformatoren wird durch n (N_P/N_S) angegeben.

Abbildung 9-10

Im Quasi-Resonanzmodus kann jede Zeitspanne in vier unterschiedliche Zeitintervalle unterteilt werden. In chronologischer Reihenfolge:

- Zeitintervall 1: $t_0 < t < t_1$ Erster Anstieg. Zu Beginn des ersten Zeitintervalls wird der MOSFET eingeschaltet, und Energie wird in der Primärinduktion (Magnetisierung) gespeichert. Am Ende wird der MOSFET ausgeschaltet, und das zweite Zeitintervall beginnt.
- Zeitintervall 2: $t_1 < t < t_2$ Kommutierungszeit. Im zweiten Zeitintervall steigt die Absaugspannung von nahezu null auf $V_{IN} + n(V_{OUT} + V_F)$ an. V_F ist der Vorwärtsspannungsabfall der Diode, die von jetzt an von den Gleichungen weggelassen wird. Der Strom ändert seine positive Ableitung entsprechend V_{IN}/L_P in eine negative Ableitung, entsprechend $-nV_{OUT}/L_P$.
- Zeitintervall 3: $t_2 < t < t_3$ Zweiter Anstieg. Im dritten Zeitintervall wird die gespeicherte Energie zum Ausgang übertragen, so dass die Diode anfängt zu leiten und der Induktivstrom I_L abfällt. Mit anderen Worten: der Transformator wird entmagnetisiert. Wenn der Induktivstrom null geworden ist, beginnt das nächste Zeitintervall.
- Zeitintervall 4: $t_3 < t < t_{00}$ Resonanzzeit. Im vierten Zeitintervall fängt die im Absaugkondensator C_D gespeicherte Energie an, mit dem Inductance- L_P zu schwingen. Die Spannung und die Stromschwingungsformen sind sinusförmige Schwingungsformen. Die Absaugspannung fällt von $V_{IN} + nV_{OUT}$ auf $V_{IN} - nV_{OUT}$ ab.

Frequenzverhalten

Die Frequenz im QR-Modus wird durch die Leistungsstufe bestimmt und wird nicht vom Controller beeinflusst (wichtige Parameter sind L_P und C_D). Die Frequenz variiert mit der Eingangsspannung V_{IN} und der Ausgangsleistung P_{OUT} . Falls die erforderliche Ausgangsleistung ansteigt, muss mehr Energie im Transformator gespeichert werden. Dies führt zu längeren Magnetisierungs- (t_{PRIM} und Entmagnetisierungszeiten (t_{SEC} , die die Frequenz senken (siehe die Merkmale von Frequenz gegenüber Ausgangsleistung unten). Die Frequenzeigenschaft hängt nicht nur von der Ausgangsleistung, sondern auch von der Eingangsspannung ab. Je höher die Eingangsspannung, desto geringer t_{PRIM} , also desto höher die Frequenz.

Abbildung 9-11

Punkt P1 ist die Minimalfrequenz f_{MIN} , die bei der angegebenen minimalen Eingangsspannung und der maximalen Ausgangsleistung auftritt, die für die Anwendung erforderlich sind. Natürlich muss die minimale Frequenz so gewählt werden, dass sie oberhalb der Hörbarkeitsgrenze liegt (>20 kHz).

Einschaltreihenfolge

Wenn die gleichgerichtete Wechselspannung V_{IN} (über die Primärwicklung, die an Pin 8 angeschlossen ist) den netzstromabhängigen Betriebspiegel (Mlevel: zwischen 60 und 100 V) erreicht, wird der interne 'Mlevel'-Schalter geöffnet, und die Startstromquelle kann Kondensator C2521 am V_{CC} Pin laden (siehe unten).

Der 'Softstart'-Schalter wird geschlossen, wenn V_{CC} einen Pegel von 7 V erreicht und der 'Softstart'-Kondensator C_{SS} (C2522 zwischen Pin 5 und dem Abtastwiderstand R3526) auf 0,5 V geladen wird.

Wenn der V_{CC} Kondensator mit der Einschaltspannung $V_{CC,start}$ (11 V) geladen ist, beginnt der IC, den MOSFET anzusteuern. Beide internen Stromquellen werden ausgeschaltet, nachdem sie diese Einschaltspannung erreicht haben. Widerstand R_{SS} (3524) entlädt den 'Softstart'-Kondensator so, dass der Spitzengleichstrom langsam ansteigt. Dadurch wird 'Transformatorschnarren' verhindert. Während des Einschaltens wird der V_{CC} Kondensator bis zu dem Augenblick entladen, an dem die Primärhilfswicklung diese Spannung übernimmt.

CL 16532020_078.eps
110401

Abbildung 9-12

In dem Moment, in dem die Spannung an Pin 1 unter den Unterspannungsschwellwert fällt ($UVLO = \pm 9$ V), hört der IC auf zu schalten und leitet über die gleichgerichtete Netzspannung einen sicheren Neustart ein.

Funktionsweise

Die Versorgung kann je nach Ausgangsleistung in drei verschiedenen Betriebsarten erfolgen:

- Quasi-Resonanz Modus (QR). Der QR-Modus, der weiter oben beschrieben wird, wird im normalen Betrieb verwendet. Es ergibt sich eine hohe Effizienz.
- Frequenzreduktionsmodus(FR). Im FR-Modus (auch VCO-Modus genannt) werden die Schaltverluste bei niedrigen Ausgangslasten verringert. Auf diese Weise wird die Effizienz bei geringen Ausgangsleistungen erhöht, wodurch der Stromverbrauch im Standby-Modus unterhalb von 3 W liegt. Die Spannung an Pin 3 (Ctrl) bestimmt, wo die Frequenzreduktion beginnt. Eine externe Ctrl-Spannung von 1,425 V entspricht einem internen VCO-Pegel von 75 mV. Dieser niedrige VCO-Pegel wird $V_{VCO,start}$ genannt. Die Frequenz wird im Verhältnis zur VCO-Spannung auf eine Spannung zwischen 75 mV und 50 mV verringert (werden 75 mV überschritten, Ctrl-Spannung < 1,425V, läuft der Oszillator normalerweise bei einer maximalen Frequenz $f_{osc,H} = 175$ kHz). Bei 50 mV ($V_{VCO,max}$) wird die Frequenz auf den Mindestpegel

von 6 kHz verringert. Die Talschaltung ist in diesem Modus immer noch aktiv.

- Mindestfrequenz-Modus (MinF). Bei VCO-Pegeln unterhalb von 50 mV verweilt die Mindestfrequenz bei 6 kHz (der so genannte MinF-Modus). Aufgrund dieser niedrigen Frequenz ist es möglich, bei sehr geringen Belastungen zu laufen, ohne dass Ausgangsregulierungsprobleme auftreten.

Abbildung 9-13

Betriebsart 'Sicherer Neustart'

Diese Betriebsart wurde eingeführt, um zu vermeiden, dass Bauelemente im Verlauf eventueller Systemstörungen zerstört werden. Sie wird auch für den Burst-Modus verwendet. Die Betriebsart 'Sicherer Neustart' wird durch eine der folgenden Funktionen ausgelöst:

- Überspannungsschutz
- Kurzschlusschutz
- Maximaler Direktschutz
- V_{CC} erreicht UVLO-Level (Kurzschluss während Überlastung)
- Erfassung eines Impulses für Burst-Modus
- Übertemperaturschutz.

Bei der Aktivierung der Betriebsart 'Sicherer Neustart' wird der Ausgangstreiber sofort deaktiviert und verklinkt. Die V_{CC} Wicklung lädt den V_{CC} Kondensator nicht mehr, und die V_{CC} Spannung sinkt, bis UVLO erreicht ist. Um den V_{CC} Kondensator wieder zu laden, muss die interne Stromquelle ($I_{(restart)}(V_{CC})$) eingeschaltet werden, um eine neue Einschaltsequenz zu initiieren (siehe Beschreibung oben). Die Betriebsart 'Sicherer Neustart' bleibt aktiv, bis der Controller keine Störungen oder Burst-Auslöser mehr erfasst.

Standby-Modus

Das Gerät wird in folgenden Fällen in den Standby-Modus versetzt:

- Nach Betätigung der 'Standby'-Taste auf der Fernbedienung
- Wenn sich das Gerät im Schutzmodus befindet.

Im Standby-Betrieb arbeitet die Stromversorgung im 'Burst-Modus'.

Der Burst-Modus kann verwendet werden, um den Stromverbrauch im Standby-Betrieb auf unter 1 W zu senken. In diesem Modus ist der Controller nur kurze Zeit aktiv (und erzeugt Steueranschluss-Impulse) und längere Zeit inaktiv (wobei er auf den nächsten Burst-Zyklus wartet). In der aktiven Zeitspanne wird die Energie zur Sekundärseite übertragen und im Pufferkondensator C_{STAB} vor dem linearen Stabilisator gespeichert (siehe Abbildung unten). Während der inaktiven Phase wird dieser Kondensator z.B. durch den Mikroprozessor entladen. In diesem Modus verwendet der Controller die Betriebsart 'Sicherer Neustart'.

Abbildung 9-14

Das System gelangt in den Standby-Betrieb für den Burst-Modus, wenn der Mikroprozessor die 'Stdby_con'-Leitung aktiviert. Wenn diese Leitung aktiviert wird, wird auch die Basis von TS7541 spannungsführend. Die Auslösung erfolgt durch den Strom von Kollektor TS7542. Wenn TS7541 eingeschaltet wird, wird der Optokoppler (7515) aktiviert und sendet ein großes Stromsignal an Pin 3 (Ctrl). Als Reaktion auf dieses Signal hört der IC auf zu schalten und gelangt in einen 'Hickup'-Modus. Dieses Burst-Aktivierungssignal sollte länger vorhanden sein als die 'Burst-blank'-Periode (für gewöhnlich 30 μs): die Dunkeltastungszeit verhindert eine falsche Burst-Auslösung aufgrund von Zacken. Der Standby-Betrieb im Burst-Modus dauert fort, bis der Mikrocontroller das 'Stdby_con'-Signal wieder deaktiviert. Die Basis von TS7541 kann nicht spannungsführend und somit nicht eingeschaltet sein. Dadurch wird der Burst-Modus deaktiviert. Das System beginnt dann mit der Einschaltreihenfolge und dem normalen Schaltverhalten.

Für eine detailliertere Beschreibung eines Burst-Zyklus wurden drei Zeitintervalle definiert:

- t1: Entladung von V_{CC} , wenn die Ansteuerung des Steueranschlusses aktiv ist. Während des ersten Intervalls wird Energie übertragen, was zu einem stufenweisen Anstieg der Ausgangsspannung (V_{STAB}) vor dem Stabilisator führt. Wenn ausreichend Energie im Kondensator gespeichert ist, wird der IC durch einen Stromimpuls ausgeschaltet, der auf der Sekundärseite erzeugt wird. Dieser Impuls wird über den Optokoppler zur Primärseite übertragen. Der Controller deaktiviert den Ausgangstreiber (Betriebsart 'Sicherer Neustart'), wenn der Stromimpuls einen Schwellenpegel von 16 mA im Ctrl-Pin erreicht. Ein Widerstand R_1 (R3519) wird in Reihe mit dem Optokoppler geschaltet, um den Strom zu begrenzen, der in den Ctrl-Pin fließt. In der Zwischenzeit wird der V_{CC} Kondensator entladen; er muss jedoch oberhalb von V_{UVLO} bleiben.
- t2: Entladung von V_{CC} , wenn die Ansteuerung des Steueranschlusses inaktiv ist. Während des zweiten Zeitintervalls wird V_{CC} bis V_{UVLO} entladen. Die Ausgangsspannung sinkt in Abhängigkeit von der Belastung.
- t3: Ladung von V_{CC} , wenn die Ansteuerung des Steueranschlusses inaktiv ist. Das dritte Zeitintervall beginnt, wenn UVLO erreicht ist. Die interne Spannungsquelle lädt den V_{CC} Kondensator (auch der Warmstart-Kondensator wird wieder geladen). Sobald der V_{CC} Kondensator die Startspannung erreicht hat, wird der Treiber aktiviert, und ein neuer Burst-Zyklus beginnt.

Abbildung 9-15

9.6.3 Schutzereignisse

Der SMPS IC7520 verfügt über folgende Schutzeigenschaften:

Entmagnetisierungsabtastung

Diese Eigenschaft garantiert einen nicht kontinuierlichen Leistungsbetrieb in jeder Situation. Der Oszillator beginnt keinen neuen ersten Anstieg, bevor der zweite Anstieg beendet ist. Dadurch soll sichergestellt werden, dass FET 7521 nicht aktiviert wird, bevor die Entmagnetisierung von Transformator 5520 abgeschlossen ist. Die Funktion ist eine zusätzliche Schutzeigenschaft gegen:

- Sättigung des Transfornators
- Beschädigung der Bauelemente während der ersten Inbetriebsnahme
- eine Überlastung des Ausgangs.

Die Entmagnetisierungsabtastung erfolgt durch einen internen Schaltkreis, der die Spannung (V_{demag}) an Pin 4 überwacht, der mit der V_{CC} Wicklung durch den Widerstand R_1 (R3522) verbunden ist. Die nachfolgende Abbildung zeigt den Schaltkreis und die idealisierten Schwingungsformen durch diese Wicklung.

Abbildung 9-16

Überspannungsschutz

Der Überspannungsschutz stellt sicher, dass die Ausgangsspannung unterhalb eines einstellbaren Wertes bleibt. Dazu wird die Hilfsspannung über den Strom abgetastet, der während des zweiten Anstiegs in Pin 4 (DEM) fließt. Diese Spannung ist eine gut definierte Kopie der Ausgangsspannung. Der Mittelwert aller Spannungszacken wird durch einen internen Filter bestimmt. Falls die Ausgangsspannung den maximalen Wert der OVP überschreitet, schaltet der OVP-Schaltkreis den Leistungsmosfet aus.

Anschließend wartet der Controller, bis der Unterspannungsschwellwert ($UVLO = \pm 9 V$) an Pin 1 (V_{CC}) erreicht wird. Dem folgt ein 'Sicherer Neustart'-Zyklus, nachdem das Schalten erneut beginnt. Dieser Prozess wird solange wiederholt, wie der OVP-Zustand existiert. Die Ausgangsspannung, bei der die OVP-Funktion ausgelöst

wird, wird vom Entmagnetisierungswiderstand R3522 bestimmt.

Überstromschutz

Die interne Überstromschutzschaltung begrenzt die 'Abtastspannung' an Pin 5 auf einen internen Pegel.

Übersteuerungsschutz

Während des ersten Anstiegs wird die gleichgerichtete Eingangswechselspannung durch Abtasten des Stroms gemessen, der von Pin 4 (DEM) abgeht. Dieser Strom hängt von der Spannung an Pin 9 von Transformator 5520 und dem Wert von R3522 ab. Die Strominformationen werden verwendet, um den Spitzenabsaugstrom einzustellen, der über Pin I_{SENSE} gemessen wird.

Kurzschlusschutz

Falls die 'Abtastspannung' an Pin 5 die Kurzschlusschutzspannung (0,75 V) überschreitet, hört der Wandler auf zu schalten. Sobald V_{CC} unter den UVLO-Wert absinkt, wird Kondensator C2521 neu geladen, und die Versorgung beginnt erneut. Dieser Zyklus wird wiederholt, bis der Kurzschluss beseitigt wird (Betriebsart 'Sicherer Neustart'). Der Kurzschlusschutz schützt auch, wenn ein Kurzschluss in einer Sekundärdiode vorliegt. Diese Schutzschaltung wird nach der Leading Edge Blanking- (LEB) Zeit aktiviert.

LEB-Zeit

Die LEB- (Leading Edge Blanking) Zeit ist eine intern festgelegte Verzögerung, die ein falsches Auslösen des Komparators aufgrund von Spannungszacken verhindert. Diese Verzögerung bestimmt die minimale Betriebszeit des Controllers.

Übertemperaturschutz

Wenn die Sperrschiichttemperatur die Ausschalttemperatur (normalerweise 140°C) überschreitet, deaktiviert der IC den Treiber. Wenn die V_{CC} Spannung bis auf UVLO-Wert abfällt, wird der V_{CC} Kondensator bis auf $V_{(start)}$ Wert nachgeladen. Falls die Temperatur immer noch zu hoch ist, sinkt die V_{CC} Spannung erneut bis auf UVLO-Wert (Betriebsart 'Sicherer Neustart'). Dieser Modus bleibt bestehen, bis die Sperrschiichttemperatur um 8 Grad unterhalb der Ausschalttemperatur fällt.

Netzstromabhängiger Betrieb

Um zu verhindern, dass die Versorgung mit einer niedrigen Eingangsspannung beginnt, was zu einem hörbaren Rauschen führen könnte, ist eine Netzstrom erfassung implementiert (Mlevel). Diese Erfassung steht über Pin 8 zur Verfügung, der die minimale Einschaltspannung zwischen 60 und 100 V erfasst. Wie bereits erwähnt, wird der Controller bei einer Spannung zwischen 60 und 100 V aktiviert.

Ein zusätzlicher Vorteil dieser Funktion ist der Schutz vor einem unterbrochenen Pufferkondensator (C_{IN}). In diesem Fall kann die Versorgung das Gerät nicht einschalten, da der V_{CC} Kondensator nicht bis zur Einschaltspannung geladen wird.

9.7 Steuerung

Abbildung 9-17

9.7.1 Einführung

Im Mikroprozessor-Teil des UOC befindet sich die vollständige Steuerung und der Videotext. Benutzeroberfläche, Service Default Mode, Service Alignment Mode und Customer Service Mode werden durch den Mikroprozessor erzeugt. Die Kommunikation mit anderen ICs erfolgt über den I²C-Bus.

9.7.2 I²C-Bus

Das Hauptsteuerungssystem, das aus dem Mikroprozessor-Teil des UOC (7200) besteht, ist über den I²C-Bus mit den externen Vorrichtungen (Tuner, Permanentenspeicher, MSP etc.) verbunden. Ein interner I²C-Bus wird für die Steuerung anderer Signalverarbeitungsfunktionen (wie beispielsweise Videoverarbeitung, Ton-ZF, Bild-IF, Synchronisierung etc.) verwendet.

9.7.3 Benutzerschnittstelle

Es gibt zwei Steuersignale: 'KEYBOARD_protn' und 'IR'. Der Anwender kann das Gerät entweder mit Hilfe der Fernbedienung oder durch Betätigung der entsprechenden Bedienungstasten auf dem Fernseher bedienen. Beim L01 wird eine Fernbedienung mit RC5-Protokoll verwendet. Das eingehende Signal wird mit Pin 67 des UOCs verbunden. Das Gerät kann auch mit Hilfe der Tastatur der oberen Steuereinheit bedient werden, die mit UOC-Pin 80 verbunden ist. Die Tastenerkennung erfolgt über einen Spannungsteiler. Die 'KEYBOARD_protn'-Leitung dient auch dazu, Störungen im OW-Schaltkreis zu erfassen, die den Mikroprozessor veranlassen würden, das Gerät auszuschalten (indem die Stromversorgung in den Standby-Modus geschaltet wird).

Die LED (6691) auf der Gerätevorderseite ist an eine Ausgangssteuерleitung des Mikroprozessors (Pin 5) angeschlossen. Sie wird aktiviert, um den Benutzer darüber zu informieren, ob das Gerät korrekt funktioniert oder nicht (z.B. hinsichtlich der Reaktion auf die Fernbedienung oder Störungen).

9.7.4 Tonschnittstelle

Es gibt drei Steuersignale: 'Volume_Mute', 'Treble_Buzzer_Hosp_app' und 'Bass_panorama'. Die 'Volume_Mute'-Leitung steuert den Tonpegelausgang des Audioverstärkers oder schaltet ihn stumm, falls keine Videoidentifikation vorliegt oder der Benutzer einen entsprechenden Befehl eingeibt. Diese Leitung regelt außerdem die Lautstärke beim Ein- und Ausschalten des Fernsehers (um Plopgeräusche zu vermeiden). Die 'Treble'- und 'Bass'-Leitungen besitzen andere Funktionen:

- Die 'Bass_panorama'-Leitung wird verwendet, um den Panoramamodus in Breitwandgeräten zu aktivieren (um 4:3-Bilder an eine 16:9-Anzeige anzupassen, ist es möglich, eine Panorama-Horizontalverzerrung anzuwenden, um ein bildschirmgerechtes Bild ohne schwarze Balken oder Bildverluste zu erzeugen).
- 'Treble_Buzzer_Hosp_app' wird in ITV-Anwendungen für andere Anwendungen und in Breitwandgeräten verwendet, um die 'Tilt'-Eigenschaft (über R3172 in Schaltbild A8) im Ablenkungsteil zu ermöglichen.

9.7.5 Ein- und Ausgangsauswahl

Es stehen drei Leitungen für die Ein- und Ausgangsauswahl zur Verfügung:

- **STATUS1** Dieses Signal liefert dem Mikroprozessor Informationen darüber, ob ein Videosignal am SCART1 AV-Eingangs- und Ausgangsanschluss verfügbar ist.
 - 0 bis 2 V: INTERNAL 4:3
 - 4,5 bis 7 V: EXTERNAL 16:9
 - 9,5 bis 12 V: EXTERNAL 4:3
- **STATUS2** Dieses Signal liefert dem Mikroprozessor Informationen darüber, ob ein Videosignal am SCART2 AV-Eingangs- und Ausgangsanschluss verfügbar ist (Signal ist nicht aktiv). Bei Geräten mit SVHS-Eingang gibt es zusätzliche Informationen darüber, ob eine Y/C- oder FBAS-Quelle vorhanden ist (Signal ist aktiv). Durch das Vorhandensein einer externen Y/C-Quelle wird diese Leitung aktiv, während sie durch eine FBAS-Quelle inaktiv wird.
 - 0 bis 2 V: INTERNAL 4:3
 - 4,5 bis 7 V: EXTERNAL 16:9
 - 9,5 bis 12 V: EXTERNAL 4:3
- **SEL-MAIN-FRNT-RR** Dies ist das 'Quellenauswahlsteuersignal' vom Mikroprozessor. Diese Steuerleitung wird vom Benutzer gesteuert oder kann durch die beiden anderen Steuerleitungen aktiviert werden.

9.7.6 Stromversorgungssteuerung

Der Mikroprozessor-Teil wird mit den Spannungen 3,3 V und 3,9 V versorgt, die beide von der 'MainAux'-Spannung über einen 3V3-Stabilisator (7560) und eine Diode abgeleitet werden.

Zwei Signale werden für die Steuerung der Stromversorgung verwendet:

- **Stdby_con** Dieses Signal wird vom Mikroprozessor erzeugt, wenn Überstrom an der 'MainAux'-Leitung vorliegt. Dadurch kann die Stromversorgung in den Standby-Burst-Modus geschaltet werden, und dieser Modus kann während einer Schutzschaltung ermöglicht werden. Dieses Signal ist unter normalen Betriebsbedingungen nicht aktiv und wird aktiv (3,3 V) im 'Standby'-Modus und bei Störungen.
- **POWER_DOWN** Dieses Signal wird von der Stromversorgung erzeugt. Unter normalen Betriebsbedingungen ist dieses Signal aktiv (3,3 V). Im 'Standby'-Modus ist dieses Signal eine Pulsfolge von etwa 10 Hz und 5 ms lang aktiv. Es wird verwendet, um dem UOC Informationen über Störungen im Audioverstärker-Versorgungsschaltkreis zu übermitteln.

Diese Informationen werden durch Abtasten des Stroms an der 'MainAux'-Leitung erzeugt (durch Verwendung eines Spannungsabfalls um R3564, um TS7562 auszulösen). Dieses Signal wird inaktiv, wenn der Gleichspannungsstrom an der 'MainAux'-Leitung 1,6 - 2,0 A übersteigt. Er wird außerdem verwendet, um den UOC frühzeitig über einen Stromausfall zu informieren. Dann wird die Information zur Stummschaltung des Audioverstärkers verwendet, um Ausschaltgeräusche und den Ausschaltfleck zu unterdrücken.

AGC

Automatic Gain Control:
Algorithmus, der den Video-Eingang der Feature Box steuert
Amplitude Modulation [Amplitudenmodulation]
Asiatisch-pazifischer Raum
Aspect Ratio [Seitenverhältnis]: 4:3 oder 16:9

AM

Amplitude Modulation [Amplitudenmodulation]
Asiatisch-pazifischer Raum
Aspect Ratio [Seitenverhältnis]: 4:3 oder 16:9

AP

Asiatisch-pazifischer Raum
Aspect Ratio [Seitenverhältnis]: 4:3 oder 16:9

AR

Aspect Ratio [Seitenverhältnis]: 4:3 oder 16:9

ATS

Automatic Tuning System [automatisches Abstimmssystem]

AV

Externes Audio Video

AVL

Automatic Volume Level

[automatische Lautstärkeregelung]

BC-PROT

Strahlstromschutz

BCL

Strahlstrombegrenzung

B/G

Monochromes TV-System.
Tonträgerdistanz ist 5,5 MHz

BLC-INFORMATION

Schwarzstrom-Informationen
'Broadcast Television Standard Committee'. Multiplex-UKW-Stereosystem, das ursprünglich aus den USA stammt und z.B. in LATAM und AP-NTSC-Ländern verwendet wird

BTSC

Blauer Videotext
Closed Caption [Bildtext]
Computer-unterstützte Reparatur
Kathodenstrahlröhre oder Bildröhre
Customer Service Mode
Colour Transient Improvement [Farbübergangsverbesserung]: manipuliert die Steilheit von Chroma-Übergängen

B-TXT

Composite Video Blanking and Synchronisation [FBAS]

CC

Digital to Analogue Converter [D/A-Wandler]

ComPair

Dynamic Bass Enhancement:
Verstärkung besonders tiefer Frequenzen

CRT

Dynamic Bass Expander
Monochromes TV-System.
Tonträgerdistanz ist 6,5 MHz

CSM

Directions For Use:
Bedienungshinweise für den Endverbraucher

CTI

Digital Noise Reduction: digitale Rauschunterdrückung
Digital Signal Processing [digitale Signalverarbeitung]

CVBS

Dealer Service Tool: spezielle Fernbedienung für Händler, z.B. zur Eingabe eines Service-Modus

DAC

Digital Versatile Disc

DBE

Electrically Erasable and Programmable Read Only Memory [elektrisch lösch- und programmierbarer Nur-Lese-Speicher]

DBX

Extra High Tension [Höchstspannung]

D/K

Extra High Tension Information [Höchstspannungsinformation]

DFU

Europa

DNR

East West [Ost/West]; (bezieht sich auf die horizontale Ablenkung des Gerätes)

DSP

Externe Quelle, die an das Gerät über SCART-Buchsen oder Cinchbuchsen angeschlossen wird

DST

Fast Blanking:
Gleichspannungssignal, das RGB-Signale begleitet

DVD

EEPROM

EHT

EHT-INFORMATION

EU

EW

EXT

FBL

9.7.7 Tuner IF

Pin 3 des UOCs (SEL-IF-LL_M-TRAP) ist ein Ausgangspin, der den Oberflächenwellenfilter durch Umschalten an das entsprechende System anpasst.

- Falls UOC-Pin 3 nicht aktiv ist, lauten die ausgewählten Systeme:
 - Westeuropa: PAL B/G, I, SECAM L/L'
 - Osteuropa: PAL B/G
 - Asiatisch-pazifischer Raum: NTSC M
- Falls UOC-Pin 3 aktiv ist, laufen die ausgewählten Systeme:
 - Westeuropa: SECAM L', L'-NICAM
 - Osteuropa: PAL D/K
 - Asiatisch-pazifischer Raum: PAL B/G, D/K, I

Hinweis: Für Westeuropa werden zwei separate Oberflächenwellenfilter (1002 und 1004) für Video und Audio verwendet (Quasiparallelton-Demodulation). Für Osteuropa wird ein Oberflächenwellenfilter (1003) für Video und Audio verwendet (Differenzträgerdemodulation).

9.7.8 Schutzereignisse

Verschiedene Schutzereignisse werden vom UOC gesteuert:

- Strahlstromschutz.** Zum Schutz der Bildröhre vor einem zu hohen Strahlstrom. Der UOC kann den normalen Schwarzstrom während des Vertikalaufklaufs messen. Falls aus irgendeinem Grund Fehlfunktionen im Kathodenstrahlröhren-Schaltkreis (d.h. hoher Strahlstrom) auftreten, befindet sich der normale Schwarzstrom außerhalb des 75 & micro;A-Bereichs, und der UOC veranlasst die Stromversorgung, das Gerät auszuschalten. Dies geschieht jedoch nur bei hohem Strahlstrom; der Fernsehbildschirm wird hellweiß, bevor das Gerät ausgeschaltet wird.
- I²C-Schutz.** Zum Prüfen, ob alle I²C-ICs funktionieren.

Falls eine dieser Schutzschaltungen aktiviert ist, wird das Gerät in den Standby-Modus geschaltet. Die LEDs für 'Ein' und 'Standby' werden über den UOC gesteuert.

9.8 Liste der Abkürzungen

2CS

Zweikanal-Stereo

ACI

Automatic Channel Installation:
Algorithmus, der die Sender in einem Fernseher direkt beim Anschluss an das Kabelnetz mit Hilfe einer voreingestellten TXT-Seite einstellt

EHT

Extra High Tension Information [Höchstspannungsinformation]
Europa

ADC

Analogue Digital Converter [A/D-Wandler]

EU

Extra High Tension [Höchstspannung]

AFC

Automatic Frequency Control:
Steuersignal, das zur Abstimmung der richtigen Frequenz verwendet wird

EW

East West [Ost/West]; (bezieht sich auf die horizontale Ablenkung des Gerätes)

AFT

Automatic Fine Tuning
[automatische Feinabstimmung]

EXT

Externe Quelle, die an das Gerät über SCART-Buchsen oder Cinchbuchsen angeschlossen wird

FBL

Fast Blanking:
Gleichspannungssignal, das RGB-Signale begleitet

FILAMENT	Heizfaden der Kathodenstrahlröhre	PLL	Phase Locked Loop [Phasenregelschleife]. Wird beispielsweise für FST-Abstimmssysteme verwendet. Der Kunde kann die gewünschte Frequenz direkt eingeben.
FLASH	Flash-Kartenspeicher		
FM	Field Memory [Feldspeicher]		
FM	Frequenzmodulation		
HA	Horizontal Acquisition: horizontaler Synchronisierungsimpuls, der vom HIP ausgegeben wird	POR	Power-On Reset
HFB	Horizontal Flyback Pulse: horizontaler Synchronisierungsimpuls von der Großsignalablenkung	Progressive Scan	Abtastmodus, bei dem alle Abtastzeilen in einem Bild zur selben Zeit angezeigt werden, wodurch eine doppelte vertikale Auflösung erzeugt wird.
HP	Headphone [Kopfhörer]	PTP	Picture Tube Panel (oder CRT-panel) [Bildröhrenplatine (oder Kathodenstrahlröhrenplatine)]
Hue	Farbtonsteuerung für NTSC (nicht identisch mit 'Tint')		Random Access Memory [RAM-Speicher]
I	Monochromes TV-System.	RAM	Remote Control [Fernbedienung]
Tonträgerdistanz ist 6,0 MHz			Fernbedienungssystem 5, Signal vom Empfangsteil der Fernbedienung
I2C	Integrierter IC-Bus	RC	Rot, Grün, Blau
IF	Intermediate Frequency [Zwischenfrequenz, ZF]	RC5	Read Only Memory [ROM-Speicher]
IIC	Integrierter IC-Bus		Service Alignment Mode
Interlaced	Abtastmodus, bei dem zwei Felder verwendet werden, um einen Rahmen zu bilden. Jedes Feld enthält die Hälfte der Gesamtzahl der Zeilen. Die Felder sind in 'Paaren' geschrieben, die Zeilenflimmern verursachen.	RGB	Second Audio Program [zweites Audioprogramm]
ITV	Institutionelles Fernsehen	SC	Sandcastle: Impuls, der von den Synchronisierungssignalen stammt
LATAM	Lateinamerika	S/C	Short Circuit [Kurzschluss]
LED	Light Emitting Diode [LED]	SCAVEM	Scan Velocity Modulation [Abtastgeschwindigkeitsmodulation]
L/L'	Monochromes TV-System. Tonträgerdistanz ist 6,5 MHz. L' ist Band I, L ist alle Bänder außer Band I	SCL	Serial Clock [serieller Taktgeber]
LNA	Low Noise Amplifier	SDA	Serielle Daten
LS	Großbildschirm	SDM	Service Default Mode
LS	Lautsprecher	SECAM	'S'equence Couleur Avec Memoire'. Farbsystem, das überwiegend in Frankreich und Osteuropa verwendet wird.
LSP	Großsignalplatine		Farbräger = 4,406250 MHz und 4,250000 MHz
M/N	Monochromes TV-System.		Sound Intermediate Frequency [Tonzwischenfrequenz]
Tonträgerdistanz ist 4,5 MHz		SIF	Kleinbildschirm
MSP	Mehrnorm-Tonprozessor: ITT Tondecoder	SS	Standby
MUTE	Stummschaltungsleitung	STBY	Super Video Home System
NC	Not Connected [nicht angeschlossen]	SVHS	Software
NICAM	'Near Instantaneous Compounded Audio Multiplexing'. Ein digitales Tonsystem, das überwiegend in Europa verwendet wird.	SW	Total Harmonic Distortion [harmonische Gesamtverzerrung]
NTSC	National Television Standard Committee. Farbsystem, das überwiegend in Nordamerika und Japan verwendet wird. Farbräger NTSC M/N = 3,579545 MHz, NTSC 4,43 = 4,433619 MHz (dies ist eine Videorecorder-Norm, die nicht terrestrisch übertragen wird)	THD	Teletext [Videotext]
NVM	Non Volatile Memory [Permanentspeicher]: IC, der Fernsehkonfigurationsdaten (z.B. Einstellungen) enthält	TXT	Mikroprozessor
OB	Optionsbyte	μP	Ultimate One Chip
OC	Open Circuit [offener Stromkreis]	UOC	Vertical Acquisition [vertikale Erfassung]
OSD	On Screen Display [Bildschirmanzeige]	VA	Netzstromversorgung für Ablenkung (überwiegend 141 V)
PAL	Phase Alternating Line [zeilenweiser Phasenwechsel]. Farbsystem, das überwiegend in Westeuropa (Farbräger = 4,433619 MHz) und Südamerika (Farbräger PAL M = 3,575612 MHz und PAL N = 3,582056 MHz) verwendet wird.	VBAT	Violence Chip
PCB	Printed Circuit Board [Leiterplatte]	V-chip	Videorekorder
PIP	Picture In Picture [Bild im Bild]	VCR	What You See Is What You Record: Aufnahmeauswahl, die Hauptbild und Ton folgt
		WYSIWYR	Quartzkristall
		XTAL	Luminanz- (Y) und Chrominanz- (C) Signal
		YC	

10. Ersatzteilliste

Mono Carrier [A]		2210	4822 124 41407	0.47µF 20% 63V	2206	5322 126 10511	1nF 5% 50V
Various		2211	4822 126 13482	470nF 80/20% 16V	2607	5322 122 32659	33pF 5% 50V
		2213	5322 122 32654	22nF 10% 63V	2608	4822 126 14043	1µF 20% 16V
		2214	5322 122 32654	22nF 10% 63V	2609	5322 122 32659	33pF 5% 50V
		2215	5322 122 32654	22nF 10% 63V	2611	4822 126 14043	1µF 20% 16V
		2216	4822 124 40207	100µF 20% 25V	2612	4822 126 13694	68pF 1% 63V
		2217	5322 122 32654	22nF 10% 63V	2613	4822 126 13694	68pF 1% 63V
		2219	4822 126 14076	220nF 25V	2615	5322 126 10511	1nF 5% 50V
		2222	4822 122 33177	10nF 20% 50V	2618	4822 126 14043	1µF 20% 16V
		2223	5322 122 32448	10pF 5% 63V	2619	4822 126 14043	1µF 20% 16V
		2225	4822 126 14076	220nF 25V	2691	4822 124 40207	100µF 20% 25V
		2226	5322 126 10465	3.9nF 10% 50V	2801	4822 124 81151	22µF 50V
		2227	5322 126 10223	4.7nF 10% 63V	2803	2020 552 96305	4U7 20% 10V
		2228	5322 126 10184	820P 5% 50V 3	2804	2020 552 96305	4U7 20% 10V
		2229	4822 124 40248	10µF 20% 63V	2805	2020 552 96305	4U7 20% 10V
		2230	4822 124 40769	4.7µF 20% 100V	2831	5322 122 32447	1pF 5% 63V
		2234	4822 126 14585	100nF 10% 50V	2832	5322 122 32447	1pF 5% 63V
		2235	5322 122 32331	1nF 10% 100V	2833	4822 126 13692	47pF 1% 63V
		2238	5322 126 10511	1nF 5% 50V	2834	5322 122 32268	470pF 5% 63V
		2239	5322 126 10511	1nF 5% 50V	2835	4822 122 33575	220pF 5% 63V
		2240	5322 126 10511	1nF 5% 50V	2836	4822 126 13344	1.5nF 5% 63V
		2241	4822 126 13344	1.5nF 5% 63V	2837	4822 124 40769	4.7µF 20% 100V
		2242	4822 126 14043	1pF 20% 16V	2838	4822 126 13692	47pF 1% 63V
		2243	4822 122 33127	2.2nF 10% 63V	2839	4822 126 13692	47pF 1% 63V
		2244	5322 121 42386	100nF 5% 63V	2840	4822 126 14585	100nF 10% 50V
		2245	4822 126 14076	220nF 25V	2841	4822 124 40248	10µF 20% 63V
		2246	4822 124 40769	4.7µF 20% 100V	2842	4822 126 14585	100nF 10% 50V
		2247	4822 124 40207	100µF 20% 25V	2843	4822 124 40248	10µF 20% 63V
		2248	5322 122 32654	22nF 10% 63V	2844	4822 124 40248	10µF 20% 63V
		2249	5322 122 32654	22nF 10% 63V	2845	4822 126 14585	100nF 10% 50V
		2250	4822 124 22652	2.2µF 20% 50V	2846	4822 124 40207	100µF 20% 25V
		2252	5322 126 10511	1nF 5% 50V	2849	5322 126 10511	1nF 5% 50V
		2253	5322 126 10511	1nF 5% 50V	2850	5322 126 10511	1nF 5% 50V
		2254	5322 122 32531	100pF 5% 50V	2851	2020 552 96305	4U7 20% 10V
		2400	4822 121 43901	4.7nF 5% 50V	2852	5322 126 10511	1nF 5% 50V
		2404▲	4822 121 10781	470nF 5% 250V	2853	2020 552 96305	4U7 20% 10V
		2405	5322 126 10511	1nF 5% 50V	2854	5322 126 10511	1nF 5% 50V
		2407▲	4822 121 70649	9.1nF 5% 1.6kV	2855	4822 122 30045	27pF 2% 100V
		2408	4822 122 30103	22nF 80% 63V	2856	4822 126 13486	15pF 2% 63V
		2409	4822 124 11575	47µF 20% 160V	2857	5322 122 33538	150pF 2% 63V
		2410	2020 021 91577	470µF 16V	2858	5322 126 10511	1nF 5% 50V
		2411	5322 121 10472	47µF /25	2859	5322 126 10511	1nF 5% 50V
		2412	2222 347 90236	33nF 10% 100V	2860	4822 126 13693	56pF 1% 63V
		2413	4822 124 11565	10µF 20% 250V	2860	4822 126 13695	82pF 1% 63V
		2414	4822 124 81145	1000µF 20% 16V	2894	4822 122 33575	220pF 5% 63V
		2416▲	4822 126 12263	220pF 10% 2kV	2895	5322 116 80853	560pF 5% 63V
		2417	4822 124 81145	1000µF 20% 16V	2897	4822 122 33172	390pF 5% 50V
		2418	4822 122 33177	10nF 20% 50V	2898	4822 122 33177	10nF 20% 50V
		2419	4822 124 22776	1µF 50V	2902	4822 124 11767	470µF 20% 25V
		2420	4822 124 21913	1µF 20% 63V	2903	4822 124 21913	1µF 20% 63V
		2421	4822 126 13751	47nF 10% 63V	2904	4822 126 13482	470nF 80/20% 16V
		2422	2020 021 91577	470µF 16V	2904	4822 126 14043	1µF 20% 16V
		2423	4822 124 42127	100V 20% 10µF	2905	5322 126 10511	1nF 5% 50V
		2424	4822 121 43526	47nF 5% 250V	2906	4822 126 13482	470nF 80/20% 16V
		2471	5322 121 42386	100nF 5% 63V	2907	5322 126 10511	1nF 5% 50V
		2472	5322 121 42386	100nF 5% 63V	2908	4822 124 40248	10µF 20% 63V
		2473	4822 124 40255	100µF 20% 63V	2941	4822 124 21913	1µF 20% 63V
		2475	5322 122 32268	470pF 5% 63V	2942	4822 126 12105	50V 33nF 5%
		2476	4822 121 42408	220nF 5% 63V	2943	4822 126 14585	100nF 10% 50V
		2477	5322 122 32268	470pF 5% 63V	2944	4822 126 13751	47nF 10% 63V
		2500▲	4822 126 13589	470nF 275V	2945	4822 122 33177	10nF 20% 50V
		2501▲	4822 126 14153	2.2nF 10% B 1kV	2946	4822 126 14043	1µF 20% 16V
		2502▲	4822 126 14153	2.2nF 10% B 1kV	2905	5322 126 10511	1nF 5% 50V
		2503	4822 124 12439	100µF 20% 400V	2906	4822 126 10511	1nF 5% 50V
		2505▲	4822 126 14153	2.2nF 10% B 1kV	2908	4822 124 40248	10µF 20% 63V
		2506▲	4822 126 14153	2.2nF 10% B 1kV	2981	4822 124 40248	10µF 20% 63V
		2508▲	4822 122 50116	470pF 10% 1kV	2982	5322 122 32268	470pF 5% 63V
		2515▲	4822 126 14049	1.5nF 20% 250V	2983	4822 124 40248	10µF 20% 63V
		2516▲	4822 126 13867	330P 20% 250V	2984	5322 122 32268	470pF 5% 63V
		2520	4822 126 14585	100nF 10% 50V	3000	4822 116 52175	100Ω 5% 0.5W
		2521	4822 124 81151	22µF 50V	3001	4822 116 52175	100Ω 5% 0.5W
		2522	4822 126 14585	100nF 10% 50V	3002	4822 051 20008	Jumper
		2523▲	4822 126 13862	1.5nF 10% 2kV	3002	4822 117 10833	10k 1% 0.1W
		2525	5322 122 34099	470pF 10% 63V	3003	4822 117 11139	1k5 1% 0.1W
		2526	5322 122 31647	1nF 10% 63V	3005	4822 116 52175	100Ω 5% 0.5W
		2527	5322 122 34099	470pF 10% 63V	3006	4822 117 11449	2k 5% 0.1W
		2540	4822 126 13188	15nF 5% 63V	3007	4822 117 11507	6k8 1% 0.1W
		2560▲	4822 126 11382	1nF 10% 1kV	3008	4822 117 11449	2k 5% 0.1W
		2561	4822 124 42336	47µF 20% 160V	3010	4822 051 20008	Jumper
		2562	5322 122 32331	1nF 10% 100V	3010	4822 117 13577	330Ω 1% 1.25W
		2563	5322 121 42386	100nF 5% 63V	3011	4822 117 13577	330Ω 1% 1.25W
		2564	2020 012 93057	2200µF 20% 16V	3101	4822 116 83868	150Ω 5% 0.5W
		2565▲	4822 122 50116	470pF 10% 1kV	3102	4822 117 13579	220k 1% 0.1W
		2566	4822 124 40433	47µF 20% 25V	3103	4822 116 83868	150Ω 5% 0.5W
		2567	4822 124 40433	47µF 20% 25V	3104	4822 117 10834	47k 1% 0.1W
		2568	4822 124 21913	1µF 20% 63V	3105	4822 116 83868	150Ω 5% 0.5W
		2569	5322 122 34099	470pF 10% 63V	3106	4822 117 13579	220k 1% 0.1W
		2601	4822 126 14076	220nF 25V	3107	4822 116 83868	150Ω 5% 0.5W
		2602	5322 122 32531	100pF 5% 50V	3108	4822 117 10834	47k 1% 0.1W

3109	4822 116 52201	75Ω 5% 0.5W	3425▲	4822 116 52238	12k 5% 0.5W	3692	4822 051 10102	1k 2% 0.25W
3110	4822 116 52175	100Ω 5% 0.5W	3426	4822 051 20105	1M 5% 0.1W	3693	4822 117 11503	220Ω 1% 0.1W
3111	4822 116 52264	27k 5% 0.5W	3427	4822 116 52238	12k 5% 0.5W	3694	4822 051 20472	4k 7.5% 0.1W
3112	4822 117 11507	6k 8% 0.1W	3428▲	4822 052 11399	39Ω 5% 0.5W	3801	4822 116 83872	220Ω 5% 0.5W
3113	4822 116 52201	75Ω 5% 0.5W	3429	4822 116 52269	3k3 5% 0.5W	3802	4822 050 11002	1k 1% 0.4W
3114	4822 116 52175	100Ω 5% 0.5W	3430	4822 116 52244	15k 5% 0.5W	3803	4822 117 10837	100k 1% 0.1W
3115	4822 116 52201	75Ω 5% 0.5W	3431▲	4822 051 20472	4k 7.5% 0.1W	3804	4822 117 11149	82k 1% 0.1W
3116	4822 116 52175	100Ω 5% 0.5W	3431▲	4822 051 20562	5k6 5% 0.1W	3805	4822 051 10102	1k 2% 0.25W
3117	4822 116 52201	75Ω 5% 0.5W	3432	4822 116 52186	22Ω 5% 0.5W	3806	4822 117 10837	100k 1% 0.1W
3118	4822 116 52175	100Ω 5% 0.5W	3435	4822 100 12159	100k 30%	3807	4822 117 11149	82k 1% 0.1W
3119	4822 116 52199	68Ω 5% 0.5W	3436▲	4822 052 10478	47k 5% 0.33W	3808	4822 050 11002	1k 1% 0.4W
3120	4822 051 10102	1k 2% 0.25W	3471	4822 050 23908	3Ω9 1% 0.6W	3831	4822 117 10834	47k 1% 0.1W
3121	4822 116 52201	75Ω 5% 0.5W	3471	4822 050 25608	5Ω6 1% 0.6W	3832	4822 116 52175	100Ω 5% 0.5W
3122	4822 116 52176	10Ω 5% 0.5W	3472	4822 050 25608	5Ω6 1% 0.6W	3833	4822 116 52175	100Ω 5% 0.5W
3140	4822 117 11507	6k8 1% 0.1W	3472	4822 050 26808	6Ω8 1% 0.6W	3836	4822 050 11002	1k 1% 0.4W
3155	4822 116 52195	47Ω 5% 0.5W	3473	4822 050 22202	2k2 1% 0.6W	3837	4822 116 52175	100Ω 5% 0.5W
3181	4822 116 52201	75Ω 5% 0.5W	3474	4822 050 11002	1k 1% 0.4W	3838	4822 051 10102	1k 2% 0.25W
3182	4822 116 52175	100Ω 5% 0.5W	3475	4822 050 22202	2k2 1% 0.6W	3839	4822 116 52175	100Ω 5% 0.5W
3183	4822 116 83868	150Ω 5% 0.5W	3476▲	4822 052 10158	1Ω5 5% 0.33W	3840	4822 051 20472	4k 7.5% 0.1W
3184	4822 117 10834	47k 1% 0.1W	3477	4822 116 83872	22Ω 5% 0.5W	3841	4822 051 20822	8k2 5% 0.1W
3185	4822 116 83868	150Ω 5% 0.5W	3478	4822 116 83872	220Ω 5% 0.5W	3842	4822 051 10102	1k 2% 0.25W
3186	4822 117 10834	47k 1% 0.1W	3479	4822 050 11002	1k 1% 0.4W	3843	4822 117 11449	2k 2.5% 0.1W
3200	4822 116 83881	390Ω 5% 0.5W	3500▲	4822 053 21335	3M3 5% 0.5W	3849	4822 051 20471	47Ω 5% 0.1W
3201	4822 116 52175	100Ω 5% 0.5W	3501▲	4822 053 21335	3M3 5% 0.5W	3901	4822 051 10102	1k 2% 0.25W
3202	4822 116 52175	100Ω 5% 0.5W	3504▲	2120 660 90043	PTC 9Ω 200V	3902	4822 051 20332	3k3 5% 0.1W
3203	4822 116 52175	100Ω 5% 0.5W	3506▲	4822 116 83872	220Ω 5% 0.5W	3903	4822 051 20332	3k3 5% 0.1W
3204	4822 050 21003	10k 1% 0.6W	3507	4822 252 11215	Spark gap	3903	4822 051 20822	8k2 5% 0.1W
3206	4822 117 10837	100k 1% 0.1W	3519	4822 116 83876	27Ω 5% 0.5W	3904	4822 117 10833	10k 1% 0.1W
3207	4822 050 11002	1k 1% 0.4W	3520	4822 051 20122	1k2 5% 0.1W	3905	4822 051 20332	3k3 5% 0.1W
3208	4822 051 20391	390Ω 5% 0.1W	3521	4822 116 52186	22Ω 5% 0.5W	3906	4822 117 10833	10k 1% 0.1W
3208	4822 117 10353	150Ω 1% 0.1W	3522	4822 051 20334	330k 5% 0.1W	3907	4822 051 20822	8k2 5% 0.1W
3209	4822 117 11373	100Ω 1%	3523▲	4822 052 10101	100Ω 5% 0.33W	3941	4822 117 11373	100Ω 1%
3212	4822 051 20471	47Ω 0.5% 0.1W	3524	4822 117 11148	56k 1% 0.1W	3942	4822 051 20392	3k9 5% 0.1W
3213	4822 051 20561	56Ω 5% 0.1W	3525	4822 051 10102	1k 2% 0.25W	3943	4822 117 12955	2k7 1% 0.1W
3214	4822 116 52175	100Ω 5% 0.5W	3526	2120 106 90636	0Ω18 5%	3944	4822 117 12955	2k7 1% 0.1W
3217	4822 051 20334	330k 5% 0.1W	3527▲	4822 052 10222	2k2 5% 0.33W	3945	4822 051 10102	1k 2% 0.25W
3218	4822 117 11149	82k 1% 0.1W	3528	4822 117 10833	10k 1% 0.1W	3946	4822 117 10965	18k 1% 0.1W
3219	4822 117 11449	2k 2.5% 0.1W	3529	4822 117 10834	47k 1% 0.1W	3947	4822 117 13577	330Ω 1% 1.25W
3223	4822 117 11373	100Ω 1%	3530	4822 051 20472	4k 7.5% 0.1W	3948	4822 117 10834	47k 1% 0.1W
3226	4822 051 20561	56Ω 5% 0.1W	3531	4822 051 20008	Jumper	3949	4822 116 83933	15k 1% 0.1W
3227	4822 117 10837	100k 1% 0.1W	3541	4822 051 20471	47Ω 5% 0.1W	3950	4822 051 20561	560Ω 5% 0.1W
3228	4822 116 52234	100k 5% 0.5W	3542	4822 117 11139	1k5 1% 0.1W	3951	4822 051 20391	390Ω 5% 0.1W
3229	4822 117 11454	82Ω 1% 0.1W	3543▲	4822 050 28203	8k2 1% 0.6W	3981	4822 116 52206	120Ω 5% 0.5W
3230	4822 051 10102	1k 2% 0.25W	3544▲	4822 050 26802	6k8 1% 0.6W	3982	4822 116 52206	120Ω 5% 0.5W
3230	4822 117 11504	27Ω 1% 0.1W	3545▲	4822 117 11149	82k 1% 0.1W	4xxx	4822 051 10008	Jumper
3231	4822 051 20008	Jumper	3546	4822 051 20008	Jumper	4xxx	4822 051 20008	Jumper
3231	4822 051 20561	56Ω 5% 0.1W	3547	4822 117 11342	0Ω33 5% 2W			
3232	4822 117 11449	2k 2.5% 0.1W	3548	4822 051 20822	8k2 5% 0.1W			
3233	4822 117 11454	82Ω 1% 0.1W	3549	4822 116 83883	47Ω 5% 0.5W			
3234	4822 117 10361	68Ω 1% 0.1W	3552	4822 117 10833	10k 1% 0.1W			
3235	4822 116 52175	100Ω 5% 0.5W	3553	4822 051 10102	1k 2% 0.25W			
3236	4822 051 20154	150k 5% 0.1W	3560	4822 116 52195	47Ω 5% 0.5W			
3236	4822 117 10837	100k 1% 0.1W	3561	4822 116 83872	220Ω 5% 0.5W			
3237	4822 051 20122	1k 2.5% 0.1W	3562	4822 117 10833	10k 1% 0.1W			
3237	4822 117 13577	33Ω 1% 1.25W	3563	4822 051 20822	8k2 5% 0.1W			
3238	4822 051 20561	56Ω 5% 0.1W	3564	3198 012 21070	0.33Ω 2W			
3238	4822 117 11504	27Ω 1% 0.1W	3565	4822 053 10331	33Ω 5% 1W			
3239	4822 117 11504	27Ω 1% 0.1W	3566	4822 117 11149	2k 2.5% 0.1W			
3239	4822 117 13577	33Ω 1% 1.25W	3567	4822 117 11149	2k 2.5% 0.1W			
3240	4822 117 10837	100k 1% 0.1W	3568	4822 051 20822	8k2 5% 0.1W			
3241	4822 051 20223	22k 5% 0.1W	3569	4822 051 20562	5k6 5% 0.1W			
3242	4822 051 20273	27k 5% 0.1W	3603	4822 116 52175	100Ω 5% 0.5W			
3244	4822 116 52231	82Ω 5% 0.5W	3604	4822 116 52175	100Ω 5% 0.5W			
3245	4822 051 20393	39k 5% 0.1W	3605	4822 051 20472	4k 7.5% 0.1W			
3246	4822 117 10833	10k 1% 0.1W	3606	4822 116 52256	2k 2.5% 0.5W			
3247	4822 117 13579	220k 1% 0.1W	3607	4822 116 52256	2k 2.5% 0.5W			
3248	4822 051 20273	27k 5% 0.1W	3608	4822 116 52175	100Ω 5% 0.5W			
3249	4822 116 52231	82Ω 5% 0.5W	3609	4822 050 11002	1k 1% 0.4W			
3251	4822 116 52175	100Ω 5% 0.5W	3610	4822 116 52303	8k2 5% 0.5W			
3254	4822 051 20105	1M 5% 0.1W	3611	4822 117 11373	100Ω 1%			
3256	4822 051 10102	1k 2% 0.25W	3612	4822 116 52303	8k2 5% 0.5W			
3257	4822 051 20106	10M 5% 0.1W	3614	4822 116 52283	4k 7.5% 0.5W			
3258	4822 051 20334	330k 5% 0.1W	3615	4822 050 21003	10k 1% 0.6W			
3259	4822 051 20474	47Ω 5% 0.1W	3617	4822 116 52283	4k 7.5% 0.5W			
3261	4822 117 13577	33Ω 1% 1.25W	3618	4822 116 83961	6k8 5%			
3403	4822 053 12229	22Ω 5% 3W	3619	4822 116 52303	8k2 5% 0.5W			
3404▲	4822 052 10688	6Ω8 5% 0.33W	3622	4822 117 11373	100Ω 1%			
3406	4822 050 21003	10k 1% 0.6W	3623	4822 051 20472	4k 7.5% 0.1W			
3408	4822 116 52303	8k2 5% 0.5W	3624	4822 116 52175	100Ω 5% 0.5W			
3410	4822 051 20333	33k 5% 0.1W	3625	4822 116 52175	100Ω 5% 0.5W			
3411▲	4822 052 10109	10Ω 5% 0.33W	3626	4822 051 20472	4k 7.5% 0.1W			
3412▲	4822 050 23903	39k 1% 0.6W	3627	4822 051 20472	4k 7.5% 0.1W			
3413	4822 117 10833	10k 1% 0.1W	3628	4822 117 10833	10k 1% 0.1W			
3414▲	4822 050 21203	12k 1% 0.6W	3630	4822 117 11149	2k 2.5% 0.1W			
3415▲	4822 050 11002	1k 1% 0.4W	3632	4822 051 20008	Jumper			
3416	4822 052 10398	3Ω9 5% 0.33W	3634	4822 116 52175	100Ω 5% 0.5W			
3417	4822 050 23303	33k 1% 0.6W	3636	4822 117 11373	100Ω 1%			
3418	4822 051 20333	33k 5% 0.1W	3681	4822 051 20391	39Ω 5% 0.1W			
3419	4822 117 111507	6Ω8 1% 0.1W	3682	4822 051 20332	3k3 5% 0.1W			
3420</								

