

Νευρωνικά Δίκτυα και Ευφυή Υπολογιστικά Συστήματα

AIKTYA PERCEPTRON

Μονοστρωματικό perceptron

- x_i, w_i, y Είσοδοι, συναπτικά βάρη, έξοδος
 - Διέγερση (γινόμενο διανυσμάτων εισόδου-βαρών)
 - f Συνάρτηση ενεργοποίησης
 - w₀ Κατώφλι ενεργοποίησης

Μοντέλο βιολογικού νευρώνα

Διέγερση perceptron

Συνθήκες διέγερσης

$$u > 0$$
, $\alpha v \sum_{i=1}^{n} w_i x_i > w_0$
 $u = 0$, $\alpha v \sum_{i=1}^{n} w_i x_i = w_0$
 $u < 0$ $\alpha v \sum_{i=1}^{n} w_i x_i < w_0$

Συνάρτηση ενεργοποίησης Κλασική

Κλασική Διπολική
$$f(u) = \begin{cases} 1, & \alpha v \ u > 0 \\ 0, & \alpha v \ u \leq 0 \end{cases} \qquad f(u) = \begin{cases} 1, & \alpha v \ u > 0 \\ -1, & \alpha v \ u \leq 0 \end{cases}$$

5

Διανύσματα βαρών και εισόδου

$$\mathbf{w} = [w_0, w_1, \dots, w_n]$$

- $\mathbf{x} = [x_0, x_1, \dots, x_n]$
- **Γ** Κατώφλι w_0
- Πόλωση x₀ = -1

Γράφουμε: $u = \mathbf{w}^T \mathbf{x}$

Παρατήρηση

Η εξίσωση της συνάρτησης ενεργοποίησης χωρίζει σε δύο υπερεπίπεδα το χώρο \mathbb{R}^n :

$$u > 0 \quad u < 0$$

Ταξινόμηση με perceptron - Παράδειγμα

Ταξινόμηση με perceptron

Εκπαίδευση perceptron

Τυπική διατύπωση προβλήματος

Δίνεται ένα σύνολο ζευγών (\mathbf{x}_1,d_1) , \dots , (\mathbf{x}_p,d_p) με $d_i=-1$ αν $\mathbf{x}_i\in\mathcal{C}_o$ και $d_i=1$ αν $\mathbf{x}_i\in\mathcal{C}_1$

Ζητάμε την εύρεση των βαρών ${\bf w}$ και του κατωφλίου w_o , έτσι ώστε:

$$\mathbf{w}^{\top} \mathbf{x}_i + w_o \geq 0 \text{ av } d_i = 1 \ (\mathbf{x}_i \in \mathcal{C}_o)$$

 $\mathbf{w}^{\top} \mathbf{x}_i + w_o < 0 \text{ av } d_i = -1 \ (\mathbf{x}_i \in \mathcal{C}_1)$

Υπόθεση

Υπάρχει τέτοια ευθεία (οι κλάσεις είναι γραμμικά διαχωρίσιμες)

Διαδικασία εκπαίδευσης

9

Διαδικασία ανάλυσης προτύπων

- Τα δεδομένα παρουσιάζονται επαναληπτικά σε κυκλική σειρά
 - Κάθε κύκλος χρήσης των δεδομένων ονομάζεται εποχή
- Σε κάθε βήμα ελέγχουμε αν υπάρχει σφάλμα ταξινόμησης
- Τροποποιούμε (σε κάθε βήμα) το επαυξημένο διάνυσμα βαρών,
 αν υπάρχει σφάλμα ταξινόμησης

Επανάληψη k	1	2		Р	P+1	P+2		2P	2P+1	
Πρότυπο ρ	1	2		Р	1	2		Р	1	
	Εποχή 1			Εποχή 2						

Αλγόριθμος εκπαίδευσης perceptron

11

- <u>BHMA 1</u>: 1. Αρχικοποίησε το διάνυσμα βαρών τυχαίες τιμές
 - 2. Δώσε μία μικρή θετική τιμή στο βήμα εκπαίδευσης
 - 3. Όρισε το μέγιστο αριθμό εποχών
- ΒΗΜΑ 2: Επανέλαβε έως ότου δεν γίνει καμμία αλλαγή βαρών ή έχει συμπληρωθεί ο μέγιστος αριθμός εποχών
 Για κάθε ένα από τα P πρότυπα εκτέλεσε
 - 1. Υπολόγισε την έξοδο του perceptron
 - 2. Αν υπάρχει σφάλμα προσάρμοσε τα βάρη ως:

$$\mathbf{w}(k) = \mathbf{w}(k-1) + \beta(d-y)\mathbf{x}$$

 BHMA 3: Αν έχει συμπληρωθεί ο μέγιστος αριθμός εποχών επέστρεψε ΣΦΑΛΜΑ, αλλιώς επέστρεψε τα βάρη

Διαδικασία εκπαίδευσης

10

Κανόνας σταθερής αύξησης βαρών

Κατά την επανάληψη k έχουμε:

Πρότυπο στην είσοδο: (x,d)

Έξοδος perceptron: $y = f(\mathbf{w}(k-1)^T \mathbf{x})$

Τότε, τα νέα βάρη δίνονται από τη σχέση:

$$\mathbf{w}(k) = \mathbf{w}(k-1) + \boldsymbol{\beta}(d-y)\mathbf{x}$$
 βήμα εκπαίδευσης

Βελτίωση επίδοσης perceptron

10

Ιδιότητα κανόνα σταθερής αύξησης βαρών

 Αν ένα πρότυπο ταξινομήθηκε λανθασμένα, μετά τη διόρθωση των βαρών, την επόμενη φορά ή θα ταξινομηθεί σωστά, ή θα πλησιάζει περισσότερο στο να ταξινομηθεί σωστά

$$u_{k,new} = \mathbf{w}(k)^{T} \mathbf{x}$$

$$= \mathbf{w}(k-1)^{T} \mathbf{x} + \beta(d-y)\mathbf{x}^{T} \mathbf{x}$$

$$= u_{k,old} + \beta(d-y)||\mathbf{x}||^{2}$$

$$-2, \quad \text{if } d = -1, y = 1$$

$$2, \quad \text{if } d = 1, y = -1$$

Θεώρημα σύγκλισης

13

Σύγκλιση του κανόνα perceptron

 Αν το πρόβλημα είναι γραμμικά διαχωρίσιμο, τότε ο κανόνας perceptron συγκλίνει σε πεπερασμένο αριθμό επαναλήψεων

Παράδειγμα XOR

14

Πρόβλημα μη γραμμικά διαχωρίσιμο

- Συγκλίνει ο αλγόριθμος;
- Βρίσκει λύση;

Z)

Κανόνας ADALINE

15

Adaptive linear element

- Δεν χρησιμοποιείται η μη-γραμμική συνάρτηση ενεργοποίησης
 - Η έξοδος παίρνει συνεχείς τιμές
 - Οι στόχοι μπορούν να παίρνουν συνεχείς τιμές

$$\mathbf{X} = [\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(P)}]^T$$
 $\mathbf{d} = [d^{(1)}, d^{(2)}, ..., d^{(P)}]^T$

Xw = d

Επίλυση συστήματος Ρ εξισώσεων με n+1 αγνώστους

Κανόνας ADALINE

16

Adaptive linear element

- Αν P>n+1 (συνήθης περίπτωση) το σύστημα μπορεί να μην έχει λύση
- Στην περίπτωση αυτή αναζητούμε προσεγγιστική λύση,
 χρησιμοποιώντας κριτήριο απόστασης από όλα τα πρότυπα
 - Ελάχιστο τετραγωνικό σφάλμα

$$J = \sum_{i=1}^{P} \left(d^{(i)} - \mathbf{w}^{T} \mathbf{x}^{(i)} \right)^{2}$$

Ο αλγόριθμος τερματίζει αν το σφάλμα γίνει μικρότερο από ε

Αλγόριθμος εκπαίδευσης ADALINE

17

- <u>BHMA 1</u>: 1. Αρχικοποίησε το διάνυσμα βαρών τυχαίες τιμές
 - 2. Δώσε μία μικρή θετική τιμή στο βήμα εκπαίδευσης
 - 3. Όρισε ένα όριο ε για το σφάλμα εκπαίδευσης
 - 3. Όρισε το μέγιστο αριθμό εποχών
- <u>BHMA 2</u>: Επανέλαβε έως το μέγιστο αριθμός εποχών
 Για κάθε ένα από τα *P* πρότυπα εκτέλεσε
 - 1. Υπολόγισε την έξοδο του perceptron
 - 2. Αν υπάρχει σφάλμα προσάρμοσε τα βάρη ως:

$$\mathbf{w}(k) = \mathbf{w}(k-1) + \beta(d-y)\mathbf{x}$$

Επέστρεψε τα βάρη αν ισχύει ότι: $\sum_{i=1}^{P} \left(d^{(i)} - \mathbf{w}^T \mathbf{x}^{(i)} \right)^2 < \varepsilon$

ΒΗΜΑ 3: Επέστρεψε ΣΦΑΛΜΑ

Παρατηρήσεις

19

- Αν το πρόβλημα είναι γραμμικά διαχωρίσιμο το perceptron βρίσκει πάντα λύση, σε αντίθεση με το adaline
- Αν το πρόβλημα δεν είναι γραμμικά διαχωρίσιμο, το perceptron δεν συγκλίνει, ενώ το adaline μπορεί να συγκλίνει επιτρέποντας λανθασμένες ταξινομήσεις
- Το adaline συγκλίνει σε περιπτώσεις μη-γραμμικά διαχωρίσιμων προβλημάτων μόνο όταν το πρόβλημα είναι σχεδόν γραμμικά διαχωρίσιμο (κάτω από το σφάλμα ε)

Ταξινόμηση με ADALINE

Παράδειγμα XOR

Παράδειγμα XOR

21

Ταξινόμηση με δίκτυο δύο επιπέδων νευρώνων perceptron

Πολυστρωματικό perceptron (MLP)

Πολυστρωματικό perceptron

Μορφή νευρώνων

 x_i, w_i, y Είσοδοι, συναπτικά βάρη, έξοδος

Διέγερση (γινόμενο διανυσμάτων εισόδου-βαρών)

f • Συνάρτηση ενεργοποίησης (συνήθως σιγμοειδής)

w₀ ■ Κατώφλι ενεργοποίησης

Πολυστρωματικό perceptron (MLP)

Συνάρτηση ενεργοποίησης

Σιγμοειδής
$$f(u) = \frac{1}{(1+e^{-u})}$$

Υπερβολική εφαπτομένη
$$f(u) = \frac{e^u - e^{-u}}{e^u + e^{-u}}$$

"Μαλακές", παραγωγίσιμες συναρτήσεις που δημιουργούν ομαλές επιφάνειες εξόδου

Τοπολογία ΜLΡ

25

 N_i = Πλήθος νευρώνων στο στρώμα i

 $w_{ij}^{(K)}$ Βάρος από το νευρώνα j του στρώματος K-1 στο νευρώνα i του στρώματος K

 $a_i^{(K)}$ Ενεργοποίηση νευρώνα i του στρώματος K

Ανάκληση δικτύων MLP

26

Ενεργοποίηση νευρώνα *i* του στρώματος *K*

$$a_i^K = f\left(\sum_{j=1}^{N_{K-1}} w_{ij}^K a_j^{K-1} + w_{i0}^K\right)$$

(II)

Διαδικασία υπολογισμού εξόδου MLP

27

- **1.** Επανέλαβε για κάθε στρώμα K του δικτύου, από 1 έως L
 - **1.1.** Επανέλαβε για κάθε νευρώνα *i* του στρώματος *K*
 - 1.1.1. Υπολόγισε την έξοδο του νευρώνα από τη σχέση:

$$a_i^K = f\left(\sum_{j=1}^{N_{K-1}} w_{ij}^K a_j^{K-1} + w_{i0}^K\right)$$

1.1.2. Καταχώρησέ τη στο διάνυσμα:

$$\left[a_1^K, a_2^K, ..., a_{N_K}^K\right]$$

2. Επέστρεψε ως έξοδο το διάνυσμα: $\left[a_1^L, a_2^L, ..., a_m^L\right]$

Θεώρημα προσέγγισης

26

Έστω ϕ μία συνάρτηση n μεταβλητών, ορισμένη στο διάστημα [0,1]. Τότε υπάρχει κάποιος ακέραιος αριθμός k τέτοιος ώστε:

$$\left|\phi(x_{1},x_{2},...,x_{n})-f\left(\sum_{j=1}^{n}w_{ij}x_{j}+w_{0}\right)\right|<\varepsilon$$

για οποιοδήποτε ε >0 και οποιαδήποτε $x_1, x_2, ..., x_n \in [0,1]$

 Αυτό σημαίνει ότι υπάρχει πάντα κάποιο MLP με δύο στρώματα που προσεγγίζει μία οποιαδήποτε συνάρτηση, με όσο μικρό σφάλμα θέλουμε

Εκπαίδευση δικτύων MLP

29

Τυπική διατύπωση προβλήματος

Δίνεται ένα σύνολο δεδομένων εισόδου-επιθυμητής εξόδου

$$(\mathbf{x}^{(1)},\mathbf{d}^{(1)}),(\mathbf{x}^{(2)},\mathbf{d}^{(2)}),...,(\mathbf{x}^{(P)},\mathbf{d}^{(P)})$$

όπου
$$\mathbf{x}^{(i)} = [x_1^{(P)}, x_2^{(P)}, ..., x_n^{(P)}], \mathbf{d}^{(i)} = [d_1^{(P)}, d_2^{(P)}, ..., d_m^{(P)}]$$

Ζητάμε την εύρεση όλων των βαρών και κατωφλίων ενός δικτύου MLP. έτσι ώστε:

$$J = \frac{1}{P} \sum_{i=1}^{P} \left\| \mathbf{d}^{(i)} - \mathbf{y}^{(i)} \right\|^{2} = \frac{1}{P} \sum_{i=1}^{P} \sum_{j=1}^{m} \left(d_{j}^{(i)} - y_{j}^{(i)} \right)^{2} < \varepsilon$$

όπου $\mathbf{y} = [y_1, y_2, ..., y_m]$ η έξοδος του δικτύου

Ιδέα αλγόριθμου back propagation

31

- Καταστρώνουμε ένα οργανωμένο πλάνο μικρής τροποποίησης κάθε βάρους του δικτύου, λαμβάνοντας υπόψην το σφάλμα που έχουμε για μία συγκεκριμένη είσοδο, την αντίστοιχη επιθυμητή έξοδο και την ανάκληση του δικτύου
- Εφαρμόζουμε το πλάνο σε εποχές, όπως και στο απλό perceptron διατρέχοντας με οργανωμένο τρόπο όλα τα δεδομένα
- Προσαρμόζουμε τα βάρη ανάλογα με το πόσο συνεισέφεραν στο συνολικό σφάλμα του δικτύου (credit asignment)
 - Για τον καθορισμό της συνεισφοράς αυτής χρησιμοποιούμε την παράγωγο του μέσου τετραγωνικού σφάλματος ως προς το συγκεκριμένο βάρος (gradient descent)

D

Παρατηρήσεις

30

- Έστω ότι τα δεδομένα αποτελούν τιμές (για τις αντίστοιχες εισόδους) μίας πραγματικής συνάρτησης που έχουμε να προσεγγίσουμε
 - Τότε, με βάση το θεώρημα προσέγγισης, υπάρχει κάποιο δίκτυο MLP που μπορεί να προσεγγίσει τη συνάρτηση αυτή
- Προσοχή
 - Αν η τοπολογία του δικτύου θεωρείται δεδομένη, δεν είμαστε σίγουροι ότι για αυτή την τοπολογία υπάρχουν βάρη που αποτελούν λύση
 - Το ότι υπάρχουν βάρη τέτοια ώστε να λύνεται το πρόβλημα,
 δεν σημαίνει απαραίτητα ότι μπορούμε να καταστρώσουμε
 μία μέθοδο που βρίσκει τα βάρη αυτά σε κάθε περίπτωση

Μέθοδος κατάβασης δυναμικού

Μεταβολή βαρών

$$\frac{dw_{ij}}{dt} = -\frac{\partial J}{\partial w_{ij}}$$

Για διακριτό χρόνο

$$w_{ij}^{(l)}(k+1) - w_{ij}^{(l)}(k) = -\beta \frac{\partial J}{\partial w_{ii}^{(l)}(k)}$$

όπου $w_{ij}^{(l)}(k)$ το βάρος σύνδεσης του νευρώνα j του στρώματος l-1 με το νευρώνα i του στρώματος l τη χρονική στιγμή k

Υπολογισμός παραγώγου

33

Απόκριση νευρώνα

$$a_{i}^{(l)}(k) = f\left(u_{i}^{(l)}(k)\right)$$

όπου $u_i^{(l)}(k) = \sum_{v=1}^{N_{l-1}} w_{iv}^{(l)}(k) a_v^{(l-1)}(k) + w_{i0}^{(l)}(k)$

Παράγοντας δέλτα 🖊

Επομένως

$$\frac{\partial J}{\partial w_{ij}^{(l)}(k)} = \frac{\partial J}{\partial u_{i}^{(l)}(k)} \frac{\partial u_{i}^{(l)}(k)}{\partial w_{ij}^{(l)}(k)} = -\underbrace{\delta_{i}^{(l)}(k)}_{i} \underbrace{\frac{\partial u_{i}^{(l)}(k)}{\partial w_{ij}^{(l)}(k)}}_{=1, j=0}$$

Τελικά

$$\frac{\partial J}{\partial w_{ij}^{(l)}(k)} = -\delta_i^{(l)}(k)a_j^{(l-1)}(k)$$

Υπολογισμός παράγοντα δέλτα

35

Ενδιάμεσο στρώμα Ι - νευρώνας ι - χρονική στιγμή k

$$\delta_{i}^{(l)}(k) = \frac{\partial J}{\partial u_{i}^{(l)}(k)} = \sum_{v=1}^{N_{l+1}} \frac{\partial J}{\partial u_{v}^{(l+1)}(k)} \frac{\partial u_{v}^{(l+1)}(k)}{\partial a_{i}^{(l)}(k)} \frac{\partial a_{i}^{(l)}(k)}{\partial u_{i}^{(l)}(k)}$$

και μετά από απλές πράξεις

$$\delta_i^{(l)}(k) = \sum_{\nu=1}^{N_{l+1}} \delta_{\nu}^{(l+1)}(k) w_{\nu i}^{(l+1)}(k) f'(u_i^{(l)}(k))$$

Για τον υπολογισμό χρησιμοποιούνται τα σφάλματα του στρώματος *I*+1 (επόμενο στρώμα)

Υπολογισμός παράγοντα δέλτα

34

Στρώμα εξόδου - νευρώνας i - χρονική στιγμή k

$$\delta_i^{(L)}(k) = \frac{\partial J}{\partial a_i^{(L)}(k)} \frac{\partial a_i^{(L)}(k)}{\partial u_i^{(L)}(k)} = \frac{\partial J}{\partial a_i^{(L)}(k)} \frac{\partial f(u_i^{(L)}(k))}{\partial u_i^{(L)}(k)}$$

Δηλαδή

$$\delta_i^{(L)}(k) = \left(\delta_i(k) - y_i(k)\right) f'\left(u_i^{(L)}(k)\right)$$

Παράγωγος συνάρτησης ενεργοποίησης

Σιγμοειδής	$f(u) = \frac{1}{(1+e^u)}$	f'(u) = f(u)(1 - f(u))
Υπερβολική εφαπτομένη	$f(u) = \frac{(e^{u} - e^{-u})}{(e^{u} + e^{-u})}$	f'(u) = (1 + f(u))(1 - f(u))
Γραμμική	f(u) = u	f'(u)=1

Αλγόριθμος back-propagation

36

- 1. Αρχικοποίησε όλα τα βάρη του δικτύου σε μικρές τυχαίες τιμές
- 2. Επανέλαβε αυξάνοντας την εποχή, ξεκινώντας από 1
- 2.1. Επανέλαβε για κάθε πρότυπο, από 1 έως Ρ
 - 2.1.1. Υπολόγισε τις εξόδους για κάθε στρώμα Κ του δικτύου, από 1 έως L
 - 2.1.2. Υπολόγισε τους παράγοντες δέλτα για τους m νευρώνες εξόδου
 - **2.1.3.** Επανέλαβε ανάστροφα για κάθε στρώμα I του δικτύου από L-1 έως 1
 - **2.1.3.1** Υπολόγισε τους παράγοντες δέλτα για όλους τους νευρώνες του στρώματος, από 1 έως *N_i*
 - 2.1.4. Ανανέωσε όλα τα βάρη του δικτύου, με βάση τους παράγοντες δέλτα
- 2.2. Υπολόγισε το σφάλμα εξόδου
- **2.3.** Αν το σφάλμα είναι μικρότερο από ε επέστρεψε τα βάρη του δικτύου
- 2.4. Αν οι εποχή είναι Ε επέστρεψε σφάλμα

Επίδοση back-propagation

37

- Ο αλγόριθμος back-propagation δεν βρίσκει πάντα λύση (παρότι με βάση το θεώρημα προσέγγισης πάντα υπάρχει)
 - Δεν προσεγγίζει πάντα τη συνάρτηση εισόδου-εξόδου με σφάλμα μικρότερο του ε
 - Όσο πιο σύνθετη η δομή του δικτύου, τόσο πιο πολλές οι πιθανότητες να βρεθεί λύση (σε κάποιο αριθμό εποχών)
 - Δεν είναι όμως απαραίτητο ότι η λύση αυτή θα είναι πρακτικά καλή (πρόβλημα overfitting)
- Ο αλγόριθμος back-propagation δεν βρίσκει πάντα τη λύση που δίνει το μικρότερο τετραγωνικό σφάλμα
 - Εξαρτάται από πολλούς παράγοντες όπως η αρχικοποίηση (πρόβλημα τοπικών ελαχίστων)

Πρόβλημα overfitting Ταξινόμιση σε δύο κλάσεις Λιγότεροι νευρώνες στο κρυμμένο στρώμα Περισσότεροι νευρώνες στο κρυμμένο στρώμα

Παράμετροι που επηρεάζουν

41

- Δομή δικτύου
 - Αριθμός στρωμάτων
 - Αριθμός νευρώνων σε κάθε στρώμα
- Αρχικές τιμές βαρών
- Βήμα εκμάθησης
- Δεδομένα εκμάθησης
- Εποχές εκμάθησης