1 硒,碲及其化合物

- 1.1 硒,碲的单质
- 1.2 硒,碲的化合物
- 1.2.1 S, Se, Te的多原子阳离子

多硫阳离子 早在1804年,G.F.Bucholz发现将硫溶解在发烟硫酸中可得清澈透亮的溶液.随着发烟硫酸的强度和反应时间不同,溶液可呈黄色,深蓝色或红色(或其中间色).现已得知,在这些溶液中含有S₂²⁺离子.

硫在惰性溶剂(如SO₂)中极易被SbF₅或AsF₅定量氧化为深蓝色的S₈²⁺离子,例如:

$$S_8 + 2 AsF_5 \longrightarrow [S_8]^{2+} [AsF_6]_2^- + AsF_3$$

在前述黄色的溶液中含有S₄²⁺,它具有平面正方形的环状结构,理论上具有芳香性.在前述红色的溶液中含有S₁₉²⁺.

多硒阳离子 硫溶于发烟硫酸中得亮色溶液,Se与Te也有类似的性质.对非水溶剂范围内的系统研究表明Se与Te多原子阳离子比S的同系物的电正性低,可以用种类更多的强酸制备.下面是Se可以发生的典型反应:

$$4 \operatorname{Se} + (\operatorname{SO}_{3}\operatorname{F})_{2} \xrightarrow{\operatorname{HSO}_{3}\operatorname{F}} [\operatorname{Se}_{4}]^{2+} [\operatorname{SO}_{3}\operatorname{F}]_{2}^{-}$$

$$\operatorname{Se}_{4}^{2+} + 4 \operatorname{Se} \xrightarrow{\operatorname{HSO}_{3}\operatorname{F}} [\operatorname{Se}_{8}]^{2+}$$

$$\operatorname{Se}_{8} + 6 \operatorname{AsF}_{5} \xrightarrow{\operatorname{SO}_{2}} 2 [\operatorname{Se}_{4}]^{2+} [\operatorname{AsF}_{6}]_{2}^{-} + 2 \operatorname{AsF}_{3}$$

$$\operatorname{Se}_{8} + 5 \operatorname{SbF}_{5} \xrightarrow{\operatorname{SO}_{2}} [\operatorname{Se}_{8}]^{2+} [\operatorname{Sb}_{2}\operatorname{F}_{11}]_{2}^{-} + \operatorname{SbF}_{3}$$

$$15 \operatorname{Se} + \operatorname{SeCl}_{4} + 4 \operatorname{AlCl}_{3} \xrightarrow{250^{\circ}\operatorname{C}} 2 [\operatorname{Se}_{8}]^{2+} [\operatorname{AlCl}_{4}]_{2}^{-}$$

 Se_4^{2+} 是黄色的,而 Se_8^{2+} 则是绿色的.后来,通过 SbF_5 与过量 $Se在SO_2$ 中反应,又得到了深红色的 $Se_{10}(SbF_6)_2$.

多碲阳离子 用上述相似方法可以制备多原子Te阳离子.

 ${\rm Te_4}^{2+}$ 是亮红色的,而 ${\rm Te_8}^{2+}$ 尚未得到.在 ${\rm AsF_3}$ 溶剂中用 ${\rm AsF_5}$ 氧化 ${\rm Te}$ 可以生成棕色的晶体[${\rm Te_6}$][${\rm AsF_6}$] $_4 \cdot 2\,{\rm AsF_3}$:

$$6\,\mathrm{Te} + 6\,\mathrm{AsF_5} \xrightarrow{\mathrm{AsF3}} [\mathrm{Te_6}]^{2+} [\mathrm{AsF_6}]^-_4 \cdot 2\,\mathrm{AsF_3}$$

Te₆⁴⁺是三棱柱型的阳离子簇.

S, Se, Te的多原子阳离子的结构 下面给出了前述几种阳离子的立体结构.

$$\begin{bmatrix} X-X \\ \downarrow & \downarrow \\ X-X \end{bmatrix}^{2+}$$

$$\begin{bmatrix} X-X \\ \downarrow & \uparrow \\ Te & \uparrow & \uparrow \\ Te & \uparrow & \uparrow \\ Te & \uparrow & \uparrow & \uparrow \end{bmatrix}$$
 (a) $X_4^{2+}(X=S,Se,Te)$ 的结构 (b) Te_6^{4+} 的结构

图 1: 部分S, Se, Te的多原子阳离子的结构

1.2.2 Se, Te的卤化物

Te的低卤化物

Se, Te的四卤化物

Se, Te的六卤化物

1.2.3 Se, Te的-2价化合物

Substance H₂Se

硒化氢,化学式为 H_2Se ,是无色,有恶臭,有毒的气体,可溶于水,溶解度与 H_2S 相近.

Substance H_2 Te

碲化氢,化学式为 H_2 Te,是无色,有恶臭,有毒的气体,可溶于水,溶解度与 H_2 S相近.

H₂Se(与H₂O及H₂S相似)可用相应的单质在350℃以上直接化合制得,但由于H₂Te对热的不稳定性,因此不能用这种方法制得.两者也可以由各自与Al的化合物水解得到.TiCl₃在缓冲溶液中还原Na₂TeO₃也可以制得H₂Te.

H₂Se和H₂Te均为弱酸.它们的第一级电离常数分别如下:

$$H_2Se + H_2O \Longrightarrow HSe^- + H_3O^+ \quad K_a = 1.3 \times 10^{-4}$$

 $H_2Te + H_2O \Longrightarrow HTe^- + H_3O^+ \quad K_a = 2.3 \times 10^{-3}$

可见酸性按照 $H_2S < H_2Se < H_2Te$ 的顺序逐渐增大.

1.2.4 Se, Te的+4价化合物:氧化物和含氧酸

氧化物 我们先来讨论这两种元素的+4价氧化物.

Substance SeO₂

二氧化硒,化学式为 SeO_2 ,白色固体,密封时在 340° C熔化为黄色液体。 SeO_2 极易溶于水形成亚硒酸 H_2SeO_3 .

在热力学上, SeO_2 相较 SO_2 和 TeO_2 氧化性更强,容易被 NH_3 , N_2H_4 或 SO_2 的水溶液还原成单质Se.在有机化学中,它也可以作为氧化剂制备醇.

固态SeO₂是以{SeO₃}角锥体共用O原子形成的长链结构,示意如下.

图 2: 固态SeO2的长链结构

Substance TeO₂

二氧化碲,化学式为 TeO_2 .固体具有两种晶型:黄色的黄碲矿 β - TeO_2 和白色的副黄碲矿 α - TeO_2 . TeO_2 在733℃熔化为红色液体. TeO_2 极易溶于水形成亚碲酸 H_2 Te O_3 .

自然界中的 TeO_2 以 β - TeO_2 的形式存在,其中有复杂的二维层状结构,如下图所示.

图 3: β -TeO₂的晶体结构

而 α -TeO₂则在实验室中合成,为似金红石结构.

含氧酸 与对应的氧化物相比,两种元素的+4价含氧酸,亚硒酸 H_2SeO_3 和亚碲酸 H_2TeO_3 ,则显得有些乏善可陈.两者均为白色的晶型固体,容易脱水成对应的氧化物.

 H_2SeO_3 最佳的制备方法是 SeO_2 水溶液缓慢结晶,或者用稀 HNO_3 氧化Se粉而得到:

$$3 \operatorname{Se} + 4 \operatorname{HNO}_3 + \operatorname{H}_2 O \longrightarrow 2 \operatorname{H}_2 \operatorname{SeO}_3 + 4 \operatorname{NO}$$

 $\overline{\mathrm{mH}_{2}\mathrm{TeO}_{3}}$ 则可以由碲的四卤化物水解得到.

H₂SeO₃和H₂TeO₃都是二元中强酸.

1.2.5 Se, Te的+6价化合物:氧化物和含氧酸

氧化物 SeO₃和TeO₃具有比较明显的区别.

Substance SeO₃

三氧化硒,化学式为 SeO_3 ,是白色吸湿性的固体,在118°C熔融,容易升华,在165°C以上分解.

由于次级周期性的缘故,将Se氧化到+6价是困难的.对于S,Se和Te而言,只有SeO $_2$ 被氧化为SeO $_3$ 吸热:

$$2 \operatorname{SeO}_2(s) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{SeO}_3(s) \quad \Delta H_m^{\ominus} = +92 \text{ kJ} \cdot \text{mol}^{-1}$$

因此,最好通过 K_2SeO_4 与 SO_3 的反应制备 SeO_3 :

$$K_2SeO_4 + SO_3 \longrightarrow SeO_3 + K_2SO_4$$

固态的SeO₃以环状四聚体Se₄O₁₂的形式存在,其结构示意如下.

图 4: 环状四聚体Se₄O₁₂的结构

Substance TeO₃

三氧化碲,化学式为 TeO_3 .固体具有两种晶型:橙黄色的 α - TeO_3 和灰色的 β - TeO_3 .

与SeO₃不同,TeO₃不与水作用,自身反应性也较差.

含氧酸 同样地,+6价的Se和Te的含氧酸也具有比较明显的区别.

Substance H₂SeO₄

硒酸,化学式为 H_2SeO_4 .无水 H_2SeO_4 同浓硫酸的物理性质相似,有强烈的吸湿性,在水中的溶解度很大.

 H_2SeO_4 在很多方面与 H_2SO_4 相似: H_2SeO_4 的 K_{a1} 很大,而 $K_{a2}=1.2\times10^{-2}$ 亦与 H_2SO_4 相近;硒酸盐与硫酸盐相似,这二类盐都生成一系列矾类; Se^{VI} 也能生成多聚的酸 $H_2Se_2O_7$ 等.但与 H_2SO_4 不同的是, H_2SeO_4 是很强的氧化剂,甚至能溶解Au,Pd等惰性金属.

可以通过各类氧化剂氧化H₂SeO₃制备H₂SeO₄,例如:

$$5 H_2 SeO_3 + 2 HClO_3 \longrightarrow 5 H_2 SeO_4 + Cl_2 + H_2O$$

等等.

 Te^{VI} 的含氧酸主要是原碲酸 H_6TeO_6 .

Substance H₆TeO₆

原碲酸,化学式为H₆TeO₆,白色固体,熔点136°C.

原碲酸的晶体结构是由正八面体的 $Te(OH)_6$ 分子构成,在溶液中也是如此.与 H_2SO_4 或 H_2SeO_4 不同, H_6TeO_6 是弱酸,其 $K_{a1}=2\times 10^{-8}$.

 H_6 TeO₆可以由氧化剂氧化Te或TeO₂制备.同时, H_6 TeO₆也是一种中等强度的氧化剂.