MAS241 Analysis 1 Quiz 9

May 27, 2021, 13:45-14:10

Problem 1. (18 points) For each of the following sentences, we assume f is Riemann integrable on [a, b] and F is the function on [a, b] defined by

$$F(x) = \int_{a}^{x} f(t) \, \mathrm{d}t.$$

Mark **True** or **False**. Then **justify your answers in one or two sentences**. (There are no extra minus points if your answer is opposite to the correct one.)

- (a) (6 points) The function $x \mapsto f(x)F(x)$ is Riemann integrable on [a,b].
- (b) (6 points) If F is differentiable at $c \in (a, b)$, then f is continuous at c.
- (c) (6 points) There exists $c \in [a, b]$ such that

$$\frac{F(b) - F(a)}{b - a} = f(c).$$

Problem 2. (12 points) Let f be a bounded function on \mathbb{R} , which is continuous on $\mathbb{R} \setminus S$ for some finite set S. Prove that f is Riemann integrable on every closed interval. (Hint: Consider a small neighborhood near each point in S.)