Problem Types and Reductions

Jidong Yuan
Beijing Jiaotong University
yuanjd@bjtu.edu.cn

SCC 120: Fundamentals of Computer Science

Outline

Problems

Decision problems

Versus optimization problems

- Traveling salesman (TSP): Find shortest tour
 - Optimization problem
 - Answer: a tour of length k such that there exists no tour of length less than k
- Traveling salesman decision (TSD): Is there a tour of length less than k?
 - Decision problem
 - The answer is either a yes or no

Decision Problem or Not?

- Sorting an array of integers
- Searching for an integer in an array
- Find minimum integer in an array
- · Checking if an array is sorted
- Hamiltonian cycle
- Subset sum
- Propositional satisfiability
- Propositional entailment

Using TSD to Solve TSP

• Can we solve TSP by solving TSD?

Using TSD to Solve TSP

- Suppose for some instance of TSP, the shortest tour is 50
 - Is there a tour of length less than 0? No!
 - Is there a tour of length less than 1? No! And so on, until
 - Is there a tour of length at most 50? Yes!
- Eventually you will find the length of the shortest tour
- However, something is missing ...

Using TSD cannot solve TSP

• You won't get the tour (the route), which is what we are interested in

Using TSP to Solve TSD

- Suppose for some instance of TSP, the shortest tour is 50
- We ask Is there a tour of length less than 42?
- Can we apply TSP to answer this?

Using TSP to Solve TSD

- Solve TSP, which tells you the shortest tour is 50.
 - Therefore, no tour of length less than 42!
- TSP can be used to solve TSD

Kinds of Problems

- Decision
 - Yes or no
- Optimization
 - least cost, minimum, maximum, shortest ...
- Witness, a variant of decision
 - If yes, provide witness (also certificate or proof)
 - Traveling Salesman Witness: Is there a tour of length less than k? If yes, give the tour as well.
- Function: broad general category
 - Map input to output

Relations Among Problems

- Witness at least as hard as decision
 - TSW at least as hard as decision.
- Optimization at least as hard as witness
 - TSP at least as hard as TSW
- By transitivity, optimization at least as hard as decision
- Why study decision problems?
 - Many interesting intractable ones (and undecidable ones!)
 - Simpler than optimization and witness
 - A separation of concerns
 - Understand one class of problems, say decision
 - · Understand its relationships with other classes

Reduction from Problem P to Problem P'

- Rephrasing of P into P' such that the solution to P' provides the solution to P
- Rephrasing is an algorithm

```
// \rho is an instance of P, \sigma is a solution of \rho
solve (\rho) {
      //\rho' is an instance of P'
      \rho' = transformPToP'(\rho)
      //\sigma' is a solution of \rho'
     \sigma' = solveP'(\rho')
      \sigma = transformSolP'ToSolP(\sigma')
      return \sigma
```

Example: TSD to TSP

```
//Returns true iff there is a tour of boolean length less than k solveTSD(Graph g, int k) {

//k' is length of shortest tour t
</k', t> = solveTSP(g)

if (k' < k)

return true
else
return false
}
```

Why Reduce from *P* to *P* '?

- To take advantage of solved problems instead of building things from scratch
- To show that solving P is no harder than solving P', that is, P is no more complex than P'

14 / 15

Polynomial-Time Reductions

```
// \rho is an instance of P, \sigma is a solution of \rho
solve (\rho) {
       //\rho' is an instance of P'
      \rho' = transformPToP'(\rho)
      //\sigma' is a solution of \rho'
     \sigma' = solveP'(\rho')
      \sigma = transformSolP'ToSolP(\sigma')
      return \sigma
```

- If the *transformPToP'* and *transformSolP'ToSolP* steps can be done in polynomial time
 - If ρ' can be solved in polynomial time, this means that ρ can be solved in polynomial time!