Statistical Methods I (Lecture 5)

Outline:

- ▶ Parameter, Statistics, Estimate
- Point estimate: methods of moments
- ▶ Interval estimate: sampling distribution
- Summary of hypothesis testing
 - One-sample test
 - ▶ Two-sample test

Population vs. Sample

- Population attributes
 - ▶ *X*, *Y*,... (capital letters): **random variable** following some probability model or data generating process
 - $m{\theta}, \mu, \sigma, \dots$ (Greek letters): intrinsic **population parameters** in some probability model
- Sample attributes
 - $x_1, x_2, \bar{x}, s, ...$ (small letters): (a function of) the **observed** values/outcome of r.v.'s in a particular data set.
 - $\hat{\theta}, \hat{\mu}, \hat{\sigma}, ...$ ("hat"): **estimated parameter/estimate** from a particular data set.
- Example: A survey conducted by a research in art education found that, 17% of those surveyed, had taken one course in dance in their life.
 - Q: Is the number 17% a sample attribute or a population attribute?

Sample and Statistics

- Let $(X_1, ..., X_n)$ be a random sample of size n. Any random variable $T = f(X_1, ..., X_n)$ as a function of $(X_1, ..., X_n)$ is called a **statistic**.
 - If we treat each X_i as a random variable, T is called an **estimator**.
 - If we plug X_i by the observed value from a particular sample, T is called an **estimate**.
- Dance Survey Problem: Is the 17% an estimate, estimator, or parameter? What is the statistics in this setting?
- Example
 - ▶ The sample mean, defined by $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$, is a **statistics**.
 - ▶ The sample variance, defined by $S^2 = \sum_{i=1}^n \frac{(X_i \bar{X})^2}{n-1}$, is a **statistics**.
 - Why capital letter?
- Note: A statistic/estimator/estimate cannot involve any unknown parameter in its expression. For example, $\bar{X} \mu$ is not a statistic if the population mean μ is unknown.

Sample and Statistics

- Key: A statistic (a function from sample) can be viewed as a random variable varying from sample to sample.
- ► How to infer the **population attributes (parameter)** from the sample statistic?
- Point estimate
 - Objective: obtain an "good" guess of a population parameter from a sample statistic.
 - ▶ Methods: methods of moment, least sum of squares, MLE, etc.
- Interval estimate.
 - Objective: obtain an "good" interval in which the population parameter will most likely lie on.
 - Methods: Distribution of sample statistics.

Point estimation (Method of moments)

- Use the data you have to calculate sample moments or centered sample moments.
- ▶ To fit a certain distribution, use relation to moments formula:
 - ▶ Option 1:

$$\mathbb{E}(X^k) = \hat{\mu}_k \equiv \frac{1}{n} \sum_{i=1}^n x_i^k$$

where $\mathbb{E}(X^k)$ is k-th population moments and $\hat{\mu}_k$ is k-th sample moment (**from data**);

▶ Option 2:

$$\mathbb{E}\left[\left(X - \mathbb{E}X\right)^{k}\right] = \hat{\mu}'_{k} \equiv \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{k}$$

where $\mathbb{E}\left[\left(X - \mathbb{E}X\right)^k\right]$ is k-th centered population moments and $\hat{\mu}'_k$ is k-th centered sample moment.

Example: Method of Moments

 Suppose Michale recorded the temperatures (°F) at noon for recent 10 days

Sample Mean:
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 65.5$$

Sample Variance:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = 173.83$$

So 2nd centered sample moment:

$$\hat{\mu}_2' = \frac{n-1}{n} s^2 = 173.83 \times 9/10 = 156.45.$$

▶ Note: 2^{nd} centered sample moment μ'_2 is different from sample variance s^2 .

Example: Method of Moments

 $Temperature: 50 60 45 52 67 76 80 68 75 82$

Model 1: Suppose we want to fit an i.i.d. uniform U(a, b) model

$$f_X(x) = \frac{1}{b-a}$$
 $a \le x \le b$.

i.e. what is the estimate of a and b?

Remember
$$E(X)=\frac{(a+b)}{2}$$
, and $Var(X)=\frac{(b-a)^2}{12}$. Now use "relation to moment" formula
$$\frac{(a+b)}{2}=E(X)=\bar{x}=65.6,$$

$$\frac{(b-a)^2}{12}=Var(X)=\hat{\mu}_2=156.45.$$

Therefore we have $\hat{a} = 43.93, \hat{b} = 87.26$.

Example

Temperature: 50 60 45 52 67 76 80 68 75 82

▶ Model 2: Suppose we want to fit with an i.i.d. $N(\mu, \sigma)$ model

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \left[-\frac{1}{2} \left(\frac{x - \mu^2}{\sigma} \right) \right].$$

i.e. what is the estimate of μ and σ ?

Remember $E(X) = \mu$, and $Var(X) = \sigma^2$. Now use "relation to moment" formula

$$\mu = E(X) = \bar{x} = 65.6,$$
 $\sigma^2 = Var(X) = \hat{\mu}_2 = 156.5.$

Solving the above gives $\hat{\mu}=65.6$ and $\hat{\sigma}=12.6$.

Generalization: method of moments

In general, estimate m parameters, need m sample moments

Exponential- (λ) Distribution

Sample Mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Population Mean

$$E(X) = 1/\lambda$$

Parameter Estimate:

$$\hat{\lambda} = 1/\bar{x}$$

Possion(λ) Distribution

► Sample Mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Population Mean

$$E(X) = \lambda$$

► Parameter Estimate:

$$\hat{\lambda} = \bar{x}$$

Generalization: method of moments

Aren't there other estimators?

Exponential- (λ) Distribution

► 2nd centered sample moment

$$\mu_2' \equiv \frac{n-1}{n} s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - x)^2$$

Population Variance

$$Var(X) = 1/\lambda^2$$

► Parameter Estimate:

$$\hat{\lambda} = \sqrt{1/\mu_2'} = \sqrt{\mathit{ns}^2/(\mathit{n}-1)}$$

Poisson(λ) Distribution

 2nd centered sample moment

$$\mu_2' \equiv \frac{n-1}{n} s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - x)^2$$

Population Variance

$$Var(X) = \lambda$$

Parameter Estimate:

$$\hat{\lambda} = \mu_2' = \frac{n-1}{n} s^2$$

Method of Moments

- Advantages
 - ► Simple to generate
 - Asymptotically normal (tends to normal when sample size n is large)
- Disadvantages:
 - ▶ Inconsistent results (more than one estimator equation)
 - Do not know how close the estimate is from parameter of interest.

Sampling Distribution

Sampling Distribution: the probability distribution of a given random-sample-based statistic.

Let $(X_1, X_2, ..., X_n)$ be an **i.i.d.** sample drawn from $N(\mu, \sigma^2)$.

Parameter	Estimator	Distribution	Property
(Population)	(Sample)	(do we need $n \to \infty$?)	
mean μ	$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	$rac{ar{X}-\mu}{\sigma/\sqrt{n}} o extstyle extstyle$	Unbiased
variance σ^2	$\hat{\sigma}^2(=S^2) = \frac{1}{(n-1)} \sum_{i=1}^n (X_i - \bar{X})^2$	$\frac{(n-1)\hat{\sigma}^2}{\sigma^2} \to \chi^2(n-1)$	Unbiased

An estimator $\hat{\theta}$ for a parameter θ is called **unbiased** estimator if

$$\mathbb{E}(\hat{\theta}) = \theta$$

▶ Overestimate: $\mathbb{E}(\hat{\theta}) > \theta$; Underestiamte: $\mathbb{E}(\hat{\theta}) < \theta$.

Sampling Distribution of Estimators/Statistics

In general, let $\hat{\theta}$ be an estimator. How to find its bias?

- Express the estimator $\hat{\theta}$ as a function of sample $(X_1, ..., X_n)$. (hint: don't plug in the numerical value associated with a particular sample.)
- ▶ Treat each component $X_1, ..., X_n$ as a random variable with the **population** distribution.
- ▶ Use the properties of expectation (e.g., linearity) to calculate the expectation of $\hat{\theta}$.
- ▶ Compare $\mathbb{E}(\hat{\theta})$ with the real population parameter θ .
- ▶ In-class example

Sampling distribution

Example: Temperature Problem

What Michael observed is a sample of the temperatures for 10 days. 50 60 45 52 67 76 80 68 75 82

His estimate of population mean is

$$\hat{\mu} = \bar{x} = 65.6.$$

 Suppose Army also recorded the temperatures at the same location for recent 10 days

53	61	46	52	66	78	78	69	75	81
\//\begin{array}{c c c c c c c c c c c c c c c c c c c									

What is her estimate for population mean?

$$\hat{\mu} = \bar{x} = 65.9.$$

▶ Why different $\hat{\mu}$? Who is right?

Distribution of Test Statistics

Let $(X_1, X_2, ..., X_n)$ be an i.i.d. sample drawn from a population $N(\mu, \sigma^2)$.

- ▶ If μ is unknown, σ is known, then
 - ► Sample Mean:

$$rac{ar{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$$

Sample Variance:

$$\frac{(n-1)\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-1}^2$$

• If both μ and σ are unknown, then

$$T = \frac{\bar{X} - \mu}{\hat{\sigma} / \sqrt{n}} \sim T_{n-1}$$

.

Summary: Hypothesis Testing on Population Mean

If σ is known, z-statistics: $z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$

significance level	α	0.1	0.05	0.01
	$1-\alpha$	90%	95%	99%
N(0,1)	$z_{\alpha/2}^*$	1.64	1.96	2.58

	Two-Sided	Lower One-Sided	Upper One-Sided
H ₀	$\mu = \mu_0$	$\mu = \mu_0$	$\mu = \mu_0$
H_1	$\mu \neq \mu_0$	$\mu < \mu_0$	$\mu > \mu_0$
Test		$\bar{x} - \mu_0$	
Statistic		$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$	
P-value	P(Norm(0,1) > z)	P(Norm(0,1) < z)	P(Norm(0,1) > z)
	- z z	z	Z
Accept H ₀	$ z < z_{\alpha/2}^*$	$z > -z_{\alpha}^*$	$z < z_{\alpha}^*$
w/ significance	or equivalently	or equivalently	or equivalently
level α	$ \bar{x} - \mu_0 < z_{\alpha/2}^* \frac{\sigma}{\sqrt{n}}$	$\bar{x} - \mu_0 > -z_{\alpha}^* \frac{\sigma}{\sqrt{n}}$	$\bar{x} - \mu_0 < z_{\alpha}^* \frac{\sigma}{\sqrt{n}}$

Summary: Hypothesis Testing on Population Mean

If σ is unknown, t-statistics: $t = \frac{\bar{x} - \mu_0}{\hat{\sigma} / \sqrt{n}} \sim T_{n-1}$

significance level	α	0.1	0.05	0.01
	$1 - \alpha$	90%	95%	99%
T_{n-1}	$t_{n-1,\alpha/2}^*$	$qt(\alpha/2,n-1)$		

	Two-Sided	Lower One-Sided	Upper One-Sided
H ₀	$\mu = \mu_0$	$\mu = \mu_0$	$\mu = \mu_0$
H ₁	$\mu \neq \mu_0$	$\mu < \mu_0$	$\mu > \mu_0$
Test		$t = \frac{\bar{x} - \mu_0}{\hat{\sigma} / \sqrt{n}}$	
Statistic		$t = \frac{1}{\hat{\sigma}/\sqrt{n}}$	
P-value	$P(T_{n-1} > t)$	$P(T_{n-1} < t)$	$P(T_{n-1} > t)$
	- t t		
Accept H_0 w/ significance level α	$ t < t^*_{n-1,lpha/2}$ or equivalently $ ar{x} - \mu_0 < t^*_{n-1,lpha/2} rac{\hat{\sigma}}{\sqrt{n}}$	$t>-t^*_{n-1,lpha}$ or equivalently $ar x-\mu_0>-t^*_{n-1,lpha}rac{\hat\sigma}{\sqrt n}$	$t < t^*_{n-1,\alpha}$ or equivalently $ar{x} - \mu_0 < t^*_{n-1,\alpha} rac{\hat{\sigma}}{\sqrt{n}}$

Confidence Interval (Variance Known)

Parameter of interest: population mean μ

- When σ^2 known: z-test
 - Statistics

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

▶ 95% Confidence Interval (CI)

$$\mu \in (\bar{x} - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{x} + 1.96 \frac{\sigma}{\sqrt{n}})$$

• $(1 - \alpha)$ -Confidence Interval (CI):

$$\mu \in (\bar{x} - z_{\alpha/2}^* \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2}^* \frac{\sigma}{\sqrt{n}})$$

• $z_{\alpha/2}^*$ is called critical value at level $\alpha/2$.

significance level	α	0.1	0.05	0.01
	$1-\alpha$	90%	95%	90%
N(0,1)	$z_{\alpha/2}^*$	1.64	1.96	2.58

Confidence Interval (Variance Unknown)

Parameter of interest: population mean μ

- ▶ When σ^2 is unknown: t-test
 - Statistics

$$t = \frac{\bar{x} - \mu_0}{\frac{\hat{\sigma}}{\sqrt{n}}}$$

• $(1-\alpha)$ -Confidence Interval (CI)

$$\mu \in (\bar{x} - t_{n-1,\alpha/2}^* \frac{\hat{\sigma}}{\sqrt{n}} \quad , \quad \bar{x} + t_{n-1,\alpha/2}^* \frac{\hat{\sigma}}{\sqrt{n}})$$

• $t_{n-1,\alpha/2}^*$ is called critical value at level $\alpha/2$.

In R: qt(...,df=n-1).

Margin of Error & Sample Size & Confidence Level

$$\underbrace{\bar{x}}_{\text{estimate}} \pm \underbrace{z_{\alpha/2}\frac{\sigma}{\sqrt{n}}}_{\text{margin of error}} \quad \text{or} \quad \underbrace{\bar{x}}_{\text{estimate}} \pm \underbrace{t_{n-1,\alpha/2}\frac{\hat{\sigma}}{\sqrt{n}}}_{\text{margin of error}}$$

The size of the margin of error can be reduced if

- ▶ confidence level is smaller (e.g. $95\% \rightarrow 90\%$);
- sample size n is larger;
- ightharpoonup or if σ is smaller

We usually prefer **shorter** Confidence Interval.

Duality of Confidence Intervals and Hypothesis Tests

In a two sided test, H_0 : $\mu=\mu_0$ is not rejected at level α

if and only if

$$\mu_0$$
 is in the $(1-lpha)$ CI for μ

Proof: In a two sided z-test, H_0 : $\mu = \mu_0$ is not rejected if

$$|\bar{x} - \mu_0| \le z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \iff -z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \bar{x} - \mu_0 \le z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
$$\iff \bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu_0 \le \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Confidence Interval

In general, $(1 - \alpha)$ -CI for population parameter θ can be calculated from the test statistic for θ .

- \triangleright Find the test statistic for θ and its null distribution;
- Find the critical value at level $\alpha/2$ (if two sided test) based on null distribution, say $c_{\alpha/2}^*$;
- Write the (1α) -CI in the form of

estimate \pm margin of error

where the margin of error usually is the $c_{\alpha/2}^* \times$ denominator in test statistics.

Assumption for T-test vs. Z-test

- ▶ In either case, observations must be i.i.d.
- \triangleright Z-test: σ known.
- ▶ T-test: σ unknown, thus replace σ by sample variance $\hat{\sigma}$.
- ▶ Give similar results when sample size is large.
- ► The population distributions should be normal if n is low, if however n > 30 normality assumption is not required.

Comparison of Two Population Means: Paired T Test

- ▶ Parameter of interest: $\mu_1 \mu_2$
- ▶ Data: $D_1 = y_1 y_2, ..., D_n = y_1 y_n$
- ▶ Paired two-sample inference:
 - Hypothesis testing $H_0: \mu_D = \mu_D^0$

$$T = rac{ar{D} - \mu_D^0}{S_D / \sqrt{n}} \sim T_{n-1}, ext{ where } S_D = \sqrt{rac{1}{n-1} \sum_{i=1}^n (D_i - ar{D})^2},$$

• $(1 - \alpha)$ CI for $\mu_D = \mu_1 - \mu_2$:

$$ar{d} \pm t_{n-1,lpha/2} rac{s_D}{\sqrt{n}}$$

Comparison of Two Population Means: Independent Two Sample T Test

- ▶ Independent two-sample inference assuming $\sigma_1^2 = \sigma_2^2$:
 - Hypothesis testing $H_0: \mu_1 \mu_2 = \mu_D^0$

$$T = \frac{\bar{Y}_1 - \bar{Y}_2 - \mu_D^0}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim T_{n_1 + n_2 - 2},$$

where
$$S_p^2 = n_1 + n_2 - 2\sum_{i=1}^{n_1} (Y_{1i} - \bar{Y}_1)^2 + \sum_{i=1}^{n_2} (Y_{2i} - \bar{Y}_2)$$
.

• $(1 - \alpha)$ CI for $\mu_1 - \mu_2$:

$$ar{y}_1 - ar{y}_2 \pm t_{n_1 + n_2 - 2, \alpha/2} \sqrt{s_p^2 \left(rac{1}{n_1} + rac{1}{n_2}
ight)}$$

Quiz

- A camera is recommended to be sold at price of μ , with a standard deviation of \$12. In a sample of 50 randomly selected stores, the average price is \$194.
 - ► Find the 95%-CI for average price of camera.
 - Based on the observation, do we have strong evidence to claim that the recommended price is set as $\mu=\$190$ with 0.05 type 1 error?
- ► A manufacturer claims that his tires last 40,000 miles on average. A test on 25 tires reveals that the mean life of a tire is 39,750 miles, with a sample standard deviation of 387 miles.
 - ▶ Find the 95%-CI for the average lifetime of the tire.
 - ▶ Based on the observation, can we reject the the manufacturer's claim with 0.05 type 1 error?

Answer to Problem 1:

- Let X_i denote the price of the camera in store i, where $i = 1, \ldots, n$.
- Assumption: $\{X_i\}$ is an i.i.d. sample with $\mu = \mathbb{E}(X_i)$ and $\sigma^2 = \text{Var}(X_i)$. Since the sample size $n \geq 30$, the normality assumption can be relaxed.
- ▶ Since the true variance is known, we consider the *Z*-statistics:

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}.$$

▶ The 95%-CI for μ is

$$\mu \in [\bar{x} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}, \bar{x} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2}].$$

Note that $\bar{x}=194$, $\sigma=12$, $z_{\alpha/2}=1.96$. Therefore the 95%-CI is [190.7, 197.3].

▶ The claim $\mu = \$190$ is outside the 95%-CI [190.7, 197.3]. Due to the duality of CI and hypothesis testing, we reject the claim $H_0: \mu = 190$ with 0.05 type 1 error.

Answer to Problem 2:

- Let X_i denote the lifetime of the tire i, where i = 1, ..., n.
- **Assumption:** $\{X_i\}$ is an i.i.d. sample, where $X_i \sim N(\mu, \sigma^2)$.
- ▶ Since the true variance is unknown, we consider the *T*-statistics:

$$T = rac{ar{X} - \mu}{\hat{\sigma}/\sqrt{n}} \sim T_{n-1}, \quad ext{where } \hat{\sigma}^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - ar{X})^2$$

▶ The 95%-CI for μ is

$$\mu \in [\bar{x} + \frac{\hat{\sigma}}{\sqrt{n}}t_{n-1,\alpha/2}, \bar{x} - \frac{\hat{\sigma}}{\sqrt{n}}t_{n-1,\alpha/2}].$$

Note that $\bar{x}=39750$ (miles), $\hat{\sigma}=387$ (miles), $t_{24,0.025}=2.064$. Therefore, the 95%-CI for μ is [39590, 39913].

▶ Since the $\mu = 40000$ (miles) is outside the 95%-CI, we reject the claim $H_0: \mu = 40000$ (miles) with 0.05 type 1 error.