

Multinuclear NMR Studies on Translational and Rotational Motion for Two Ionic Liquids Composed of BF₄ Anion

Kikuko Hayamizu,*,† Seiji Tsuzuki,† Shiro Seki,‡ and Yasuhiro Umebayashi§

Supporting Information

ABSTRACT: Two ionic liquids (ILs) based on the BF₄anion are studied by ¹H, ¹¹B, and ¹⁹F NMR spectroscopy by measuring self-diffusion coefficients (D) and spin-lattice relaxation times (T_1) . The cations are 1-ethyl-3-methylimidazolium (EMIm) and 1-butyl-3-methylimidazolium (BMIm). Since two NMR nuclei (¹¹B and ¹⁹F) of BF₄⁻ exhibit narrow lines and high sensitivity, the ¹¹B and ¹⁹F NMR measurements of D_{BE4} and $T_1(BF_4)$ were performed in a wide temperature range. The temperature-dependent behaviors of $T_1(^{19}F)$ and

 $T_1(^{11}\text{B})$ were remarkably different, although the values of $D_{\text{BF4}}(^{19}\text{F})$ and $D_{\text{BF4}}(^{11}\text{B})$ almost agreed. Since the Arrhenius plots of T_1 's for ^{1}H , ^{19}F , and ^{11}B exhibited T_1 minima, the correlation times $\tau_c(^{1}\text{H})$, $\tau_c(^{19}\text{F})$, and $\tau_c(^{11}\text{B})$ were evaluated. The D(cation) and $D(\text{BF}_4)$ were plotted against $1/\tau_c(^{1}\text{H})$ and $1/\tau_c(^{1}\text{H})$ $\tau_c(^{19}{\rm F})$, respectively, and the relationships between translational and rotational motion are discussed. The translational diffusion of the cations is related to molecular librational motion and that of BF₄ is coupled with reorientational motion. The $\tau_c(^{11}\text{B})$ derived from ¹¹B T_1 can be attributed to a local jump. From the plots of the classical Stokes-Einstein (SE) equation, the empirical c values, which were originally derived by theoretical boundary conditions, were estimated for each ion. The empirical $c(BF_4)$ was about 4.45, while the c values of the cations were smaller than 4.

1. INTRODUCTION

Room-temperature ionic liquids (RTILs, ILs) are composed of cations and anions, and a very large number of combinations have been synthesized and studied. BF₄⁻ is one of the most popular anions, and many papers have been published for ILs composed of BF₄ on the basis of experimental data such as density, viscosity, heat capacity, thermal measurements, and so forth. ^{I-11} The translational diffusion coefficients of BF₄⁻ and various cations have been published, ^{1,3,12,13} and spectroscopic studies have been performed over a wide frequency range for ILs containing BF₄^{-.14-20} Liquid structures of BF₄⁻-based ionic liquids have also been studied by means of X-ray diffraction techniques. ^{21–23} Molecular orbital (MO) calculations and molecular dynamics (MD) simulations have been carried out for BF_4 -based $ILs.^{24-27}$ We have studied the translational diffusion and molecular motion of anions and cations for several ILs by measuring self-diffusion coefficient (D) and spin-lattice relaxation time (T_1) by multinuclear magnetic resonance (NMR) spectroscopy. ²⁸⁻³² The D values for individual ions were determined from pulsed-gradient spinecho (PGSE) NMR measurements. The correlation times of molecular local motion were calculated from temperaturedependent T_1 data, where the anions were bis-(fluoromethylsulfonyl)amide (TFSA⁻) and bis(fluorosulfonyl)amide (FSA⁻). The BF₄⁻ anion has magnetically active nuclei of ¹⁰B, ¹¹B, and ¹⁹F. The easily accessible nuclei ¹¹B and ¹⁹F give

relatively sharp NMR spectral lines for BF₄⁻ in ILs. It is therefore possible to measure D and T_1 for BF_4^- from the ^{11}B and ¹⁹F resonances, simultaneously. Furthermore, BF₄ has tetrahedral symmetry and its molecular motion is expected to be different from that of TFSA and FSA.

In the present study, two BF₄-based ILs, 1-ethyl-3methylimidazolium (EMIm) and 1-butyl-3-methylimidazolium (BMIm) tetrafluoroborate, were studied by ¹H NMR for the cations and ¹¹B and ¹⁹F NMR for the BF₄⁻ anion. The physical constants for these ILs have been published and summarized in the ionic liquids database.³³ In this paper, we present newly measured D values of the cations and BF₄⁻ as well as viscosity (η) and density (ρ) of the two ILs. Since the correlation times of $\tau_c(H)$ for the cations and $\tau_c(F)$ and $\tau_c(B)$ for the BF₄ can be estimated from $T_1(H)$, $T_1(F)$, and $T_1(B)$, respectively, the relationships between the translational and rotational motion will be discussed. It is noted that the D values obtained by the PGSE NMR method correspond to the translational movement of species under study.

In our previous papers, using the classical SE relation, we have estimated the constant c as an empirical parameter originally related to the boundary conditions for four cations,

Received: June 22, 2012 Revised: August 9, 2012 Published: August 21, 2012

[†]National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Center 2, Tsukuba 305-8568, Japan

[‡]Central Research Institute of Electric Power Industry, Komae, Tokyo 201-8511, Japan

[§]Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata City, 950-2181, Japan

EMIm, 1,2-dimethyl-3-propylimidazolium (DMPIm), *N*-methyl-*N*-propylpyrrolidinium (P₁₃) and *N*,*N*-diethyl-*N*-methyl-*N*-(2-methoxyethyl)ammonium (DEME) and the anions TFSA and FSA and FSA and evalues were smaller than 4, and deviated from the theoretically predicted values of between 4 (stick condition) and 6 (slip condition). In the present study, the plots of the SE relation afforded good linearity between *D* and $1/\eta$. Although the cations in this study gave values smaller than 4, similar to EMIm⁺, DMPIm⁺, P_{13}^+ , and DEME⁺, the value *c* of BF₄ was about 4.4₅ in the range of theoretical values.

2. EXPERIMENTAL SECTION

- **2.1. Sample Preparation.** EMIm-BF $_4$ and BMIm-BF $_4$ of high purity grade were purchased from Kanto Chemical Co., Inc. (Tokyo). For the NMR measurements, the samples were placed into a 5 mm NMR microtube (BMS-005J, Shigemi, Tokyo) to a height of 5 mm and flame-sealed.
- **2.2.** Viscosity and Density Measurements. The samples were dried in a vacuum chamber at 323 K for more than 48 h and stored in a dry argon-filled glovebox before measurements. Viscosity η (mPas) and density ρ (g cm⁻³) measurements were carried out using a thermo-regulated SVM3000G2 Stabinger-type viscosity and density/specific gravity meter (Anton Paar). The measurements were performed during cooling from 353 to 283 K with a stopper to avoid any moisture and air contamination.
- **2.3. NMR Measurements.** All NMR spectra were measured on a Tecmag Apollo spectrometer equipped with a 6.4 T wide bore magnet using a JEOL PFG probe and controlled by a JEOL console. The T_1 measurements were performed using the inversion recovery (180° - τ - 90° -Acq.) sequence. The 1 H, 19 F, and 11 B NMR spectra were measured at frequencies of 270.2, 254.2, and 86.7 MHz, respectively.

A modified Hahn spin—echo-based sequence incorporating a gradient pulse in each period (PGSE) was used to measure the diffusion coefficient. The echo attenuation E is related to the experimental variables and the diffusion coefficient D by

$$E = \exp[-\gamma^2 g^2 \delta^2 D(\Delta - \delta/3)] \tag{1}$$

where g is the strength of the gradient pulse of duration δ and Δ is the interval between the leading edges of the gradient pulses. 34,35 Δ defines the time scale in the diffusion measurement, and in a homogeneous system, D should be independent of Δ . A single exponential diffusion plot following eq 1 indicates free diffusion. Above ambient temperature, diffusion measurements are more prone to convection artifacts leading to Δ dependence of the measured diffusion coefficient (a larger apparent D for a longer Δ), ³⁶ and hence D values measured with short Δ were adopted. At lower temperatures, the apparent D value is dependent on Δ and becomes larger for shorter Δ , which is opposite to the convection effects. In lower temperatures, we measured D values with longer Δ and confirmed that the same D values were obtained at different Δ values. Under the conditions described above, $D_{BF4}(^{19}F)$ and $D_{\rm BF4}(^{11}{\rm B})$ were in agreement. At the lower temperatures, we found that $D_{BF4}(^{19}F) \ge D_{BF4}(^{11}B)$ for shorter Δ , where the apparent D value increased for the shorter Δ . Similarly, we observed that in the lower temperatures the apparent $D(^{1}H)$ values became larger for shorter Δ and the protons in the different positions exhibited slightly different D values. Experimentally, these effects have been measured for highly viscous ILs. 32 We took reasonable values for D without Δ - and

signal-dependences observed in the longer Δ period. The errors estimated were less than 5%. It is noted that we did not observe any Δ -dependent D for neutral squalane (C $_{30}\rm H_{62}$) ($D=6.7\times10^{-12}~\rm m^2~s^{-1}$ at 273 K). The temperature range for the diffusion measurements was 353 to 253 K for EMIm-BF $_4$ and 353 to 268 K for BMIm-BF $_4$. The T_1 measurements were performed from 353 K to the lower temperature at which either heavy line-broadening or sample freezing was observed.

3. RESULTS

3.1. Density. Linear temperature dependences of the density are shown in Figure 1 for EMIm-BF₄, and BMIm-BF₄,

Figure 1. Temperature dependence of the density for EMIm- BF_4 (triangle) and BMIm- BF_4 (square).

which have molecular weights of 198.0 and 226.0 g mol⁻¹, respectively. The density EMIm-BF₄ was larger than BMIm-BF₄. The numerical data for the densities are given in Table S1 in Supporting Information (SI). The temperature dependences were analyzed for the density ρ against temperature T (K) as $\rho = b - aT$ and the fitting parameters a and b are also given in Table S2. At 303 K, the densities were 1.277 and 1.197 g cm⁻³ for EMIm-BF₄ and BMIm-BF₄, respectively. The comparison of the present work and literature data is given in Figure S1.

- **3.2. Viscosity.** The temperature dependence of the viscosity η is shown in Figure 2a. Arrhenius plots for η^{-1} (fluidity) are shown in Figure 2b. The numerical data are given in Table S3. The plots were well fitted by the VFT equation $\eta^{-1} = \eta_0^{-1} \exp(-B/(T-T_0))$ and the fitted parameters are given in Table S4. At 303 K, the viscosities of EMIm-BF₄ and BMIm-BF₄ were 31.0 and 81.5 mPas, respectively. The comparison of the present work and literature data is given in Figure S2.
- **3.3.** ¹H, ¹¹B, and ¹⁹F NMR Spectra. The ¹H NMR spectra of EMIm and BMIm did not exhibit any impurity signals as shown in Figure S3. The ¹⁹F spectrum of BF₄ consisted of large ¹¹BF₄ signal and small ¹⁰BF₄ signal, and the latter was located a little lower field side. Since BF₄ includes three magnetic nuclei such as ¹⁰B (spin I = 3, natural abundance about 20%), ¹¹B (I = 3/2, about 80%), and ¹⁹F (I = 1/2, 100%), the ¹⁹F spectrum is affected by ¹⁰B and ¹¹B nuclei through J-coupling and isotope shift. In Figure S4, the ¹⁹F and ¹¹B spectral patterns of BF₄⁻ are shown for LiBF₄ dissolved in D₂O and BF₄⁻ in EMImBF₄.
- **3.4. Self-Diffusion Coefficients.** The temperature dependence of the cation diffusion coefficients $D_{\rm EMIm}$ and $D_{\rm BMIm}$ was measured by $^{\rm 1}{\rm H}$ resonance and anion diffusion coefficient $D_{\rm BF4}$ was measured by $^{\rm 11}{\rm B}$ and $^{\rm 19}{\rm F}$ resonances. Arrhenius plots of the $D_{\rm cation}$ and $D_{\rm BF4}$ are shown in Figure 3 for EMIm-BF₄ and

Figure 2. (a) Viscosity plotted versus temperature and (b) Arrhenius plots of $1/\eta$ for EMIm-BF₄ (triangle) and BMIm-BF₄ (square).

Figure 3. Arrhenius plots of diffusion coefficients for $D_{\rm cation}$ (square), $D_{\rm BF4}({\rm F})$ (up-triangle), and $D_{\rm BF4}({\rm B})$ (down-triangle) measured by $^{1}{\rm H}$, $^{19}{\rm F}$, and $^{11}{\rm B}$ NMR, respectively, for EMIm-BF₄ and BMIm-BF₄.

BMIm-BF₄. Although the two values of $D_{\rm BF4}$ measured by $^{11}{\rm B}$ and $^{19}{\rm F}$ resonances exactly agreed at high temperatures, $D_{\rm BF4}({\rm F})$ was slightly larger than $D_{\rm BF4}({\rm B})$ at low temperatures. The fitted lines by the VTF equation $D=D_0\exp(-B/(T-T_o))$ are shown. The numerical data of the temperature dependence of $D_{\rm cation}$ and $D_{\rm BF4}$ for EMIm-BF₄ and BMIm-BF₄ are given in Tables S5 and S6, respectively. The fitting parameters of the VFT equation are also given in Table S7.

The classical SE relation connects the value of D for a diffusing particle of radius a with the bulk viscosity η as

$$D = \frac{kT}{c\pi\eta a} \tag{2}$$

where k is the Boltzmann constant and the constant c theoretically ranges between 4 and 6 for slip and stick boundary conditions, respectively. The D values are plotted against $kT/\pi\eta$ for (a) D_{BF4} and (b) D_{cation} 's for the two ILs in Figure 4 by assuming that c is an empirical parameter. When we presume that the SE relation is valid, the slope of each line corresponds to the inverse of $c \times a$. The experimental values of $c \times a$ are summarized in Table 1, where the errors estimated for the linear plots were less than 1%. Clearly, the classical SE

Figure 4. Diffusion coefficients were plotted vs $kT/\pi\eta$ for (a) BF_4^- and (b) cations.

Table 1. SE Relationships for Each Ion in EMIm-BF $_4$ and BMIm-BF $_4$

ion	counter ion	$c \times a / nm$	a /nm	V/nm^3	с		
EMIm	BF_4	0.912 ± 0.006	0.303^{a}	0.1165	3.01		
BMIm		1.017 ± 0.006	0.330^{b}	0.1505	3.08		
BF_4	EMIm	1.028 ± 0.004	0.229^{c}	0.0503	4.49		
	BMIm	1.006 ± 0.004			4.39		
^a Ref 31. ^b Ref 39. ^c Ref 40.							

consistency given in eq 2, i.e., $D \propto 1/\eta$, can be used to clarify the physical meaning between the translational ion diffusion and bulk viscosity in the present ILs. Here, we assume that the van der Waals radius calculated from the van der Waals volume can be used as the radius of diffusing ions as given in Table 1. The c values calculated for the two cations in the present study were between 3.0 and 3.1, and the c values of BF₄ were 4.5 and 4.4

3.5. Spin–lattice Relaxation Times T_1 for ${}^1\text{H}$, ${}^{19}\text{F}$, and ${}^{11}\text{B}$ NMR. The values of T_1 for ${}^{11}\text{B}$ and ${}^{19}\text{F}$ of BF₄ and for ${}^{1}\text{H}$ of N–CH₃ as well as α -CH₂ in the butyl chain in BMIm-BF₄ are plotted against temperature in Figure 5. Clearly, each T_1 exhibited a minimum value. Since spin I=1/2 for ${}^{1}\text{H}$ and ${}^{19}\text{F}$ resonances, the dipolar–dipolar relaxation mechanism predominantly determines the ${}^{1}\text{H}$ and ${}^{19}\text{F}$ T_1 . The classical Bloembergen, Purcell, and Pound (BPP) equation (eq 3)⁴¹ can be applied to obtain the correlation time τ_c for the motion of dipoles.

$$\frac{1}{T_1} = C \left(\frac{\tau_{\rm c}}{1 + \omega_0^2 \tau_{\rm c}^2} + \frac{4\tau_{\rm c}}{1 + 4\omega_0^2 \tau_{\rm c}^2} \right) \tag{3}$$

where ω_0 is the observe frequency (rad s⁻¹), and τ_c is the correlation time of the dipolar interaction. C in eq 3 is written as

$$C = \frac{3}{10} \gamma^4 \hbar^2 \sum_j \frac{1}{r_j^6} \tag{4}$$

Figure 5. Arrhenius plots of T_1 of $^1\mathrm{H}$, $^{11}\mathrm{B}$, and $^{19}\mathrm{F}$ NMR for BMIm-BF₄.

where γ is the magnetogyric ratio of $^1{\rm H}$ or $^{19}{\rm F}$, r is the atomic distance between protons ($^1{\rm H}$) or fluorine atoms ($^{19}{\rm F}$), $\tau_{\rm c}$ is the correlation time of the dipolar interaction, and the summation index j is over all interacting dipoles. Owing to the term in brackets in eq 3, T_1 is minimum when $\omega_{\rm o}\tau_{\rm c}=2\pi\nu_{\rm 0}\tau_{\rm c}=0.616$. In the present experiments, $\nu_{\rm 0}({\rm H})$ and $\nu_{\rm 0}({\rm F})$ are 270.2 and 254.2 MHz, and at the minimum temperature, the $\tau_{\rm c}({\rm H})$ and $\tau_{\rm c}({\rm F})$ are 3.63 and 3.86 \times 10⁻¹⁰ s (363 and 386 ps), respectively.

Since spin I=3/2 for 11 B, a quadrupolar interaction can be assumed as the dominant relaxation mechanism. Here, we assume the quadrupolar BPP equation 42 for the 11 B relaxation process

$$\frac{1}{T_{\rm l}} = \frac{\omega_{\rm q}^2}{50} \left(\frac{\tau_{\rm c}}{1 + \omega_{\rm 0}^2 \tau_{\rm c}^2} + \frac{4\tau_{\rm c}}{1 + 4\omega_{\rm 0}^2 \tau_{\rm c}^2} \right) \tag{5}$$

where $\omega_{\rm q}=2\pi\nu_{\rm q}$ (rad s $^{-1}$) is the quadrupole coupling constant for the $^{17}{\rm B}$ nuclei. At the minimum T_1 , $\omega_0\tau_{\rm c}=2\pi\nu_0\tau_{\rm c}=0.616$ and $\nu_0(^{11}{\rm B})=86.7$ MHz giving $\tau_{\rm c}(^{11}{\rm B})=1.13\times 10^{-9}$ s (1.13 ns). The calculated $\nu_{\rm q}$ ($^{11}{\rm B}$) from the T_1 minimum values were about 43 and 39 kHz for BF $_4$ in BMIm-BF $_4$ and EMim-BF $_4$, respectively. These values are similar to the value of $\nu_{\rm q}$ ($^7{\rm Li}$) (40–55 kHz) for Li $^+$ ion in polymer electrolytes, in which the translational motion of the lithium ions can be assumed as relaxation mechanism. 43

3.6. Cation Motion (1 H NMR). The temperature dependence of T_1 for all the protons of BMIm-BF $_4$ and $\tau_c(H)$ calculated using eq 3 are shown in Figure S5. The activation energies calculated from the $\tau_c(H)$ are given in Table 2 together with the temperature range for the linear plots. Similarly, the T_1 of 1 H for EMIm-BF $_4$ exhibited minima and the

activation energies are included in Table 2. It is clear that the activation energies became smaller as the protons of the alkyl chains approached the terminal positions.

As described in our previous papers, $^{28-32}$ the motion of cations, which results in the Arrhenius plots having minimum value of T_1 , is mainly due to isotropic reorientational motion. Local faster intramolecular motions such as the rotation of CH₃ and segmental motions of chain of CH₂ are averaged out in the condensed state. The correlation time τ_c can be written as

$$\frac{1}{\tau_{\rm c}} = \frac{1}{\tau_{\rm o}} + \frac{1}{\tau_{\rm s}} \tag{6}$$

where $\tau_{\rm o}$ and $\tau_{\rm s}$ are the correlation times for the isotropic reorientational and residual local intramolecular motion, respectively. The longest $\tau_{\rm c}$ is most likely to be the closest value for the overall reorientational motion. In Figure S5(b), $\tau_{\rm c}$ for N–CH₃ had the largest value above 278 K, which corresponds to the slowest motion. We assume that $\tau_{\rm c}({\rm NCH_3})$ is the correlation time of the reorientational motion for BMIm. Similarly, N–CH₃ of EMIm had the largest $\tau_{\rm c}$ value. The comparison of the behaviors of the T_1 of $^1{\rm H}$ resonance for N–CH₃ of EMIm and BMIm is shown in Figure S6. The $\tau_{\rm c}$ values obtained at 303 K are summarized in Table 3, where the $\tau_{\rm c}$ of EMIm is much smaller (faster motion) than that of BMIm.

Table 3. $\tau_c(^1H)$, $\tau_c(^{19}F)$, and $\tau_c(^{11}B)/ps$ at 303 K

	EMIm-BF ₄	BMIm-BF ₄
N-CH ₃	166	450
$lpha$ -CH $_2$	141	340
β -CH ₂ /CH ₃	88	230
δ -CH $_2$	-	178
t-CH ₃	-	158
¹⁹ F	-	119
¹¹ B	68	192

The overall isotropic molecular correlation time τ_2 is related to the viscosity η by the Stokes–Einstein-Debye (SED) relation as

$$\tau_2 = \frac{V\eta}{kT} \tag{7}$$

where V is the effective molecular volume. ^{44,45} This relation was originally proposed for rotational time of a solute in a solvent of shear viscosity η . The values of τ_2 calculated using the viscosity and the van der Waals volume in Table 1 are plotted against temperature in Figure 6, in addition to the values of τ_c (cation) obtained from the 1 H T_1 of NCH₃. In

Table 2. Activation Energies/kJ mol⁻¹ for $\tau_c(^1H)$, $\tau_c(^{19}F)$, and $\tau_c(^{11}B)$

		$EMIm ext{-}BF_4$	BMIm-BF ₄
¹ H NMR	N-CH ₃	$21.4 \pm 0.2 \ (263 - 353 \text{K})$	$22.9 \pm 0.6 \ (288-353 \ \text{K})$
	$lpha$ -CH $_2$	$20.7 \pm 0.2 \ (263-353 \ K)$	$19.4 \pm 0.4 (273 - 353 \text{ K})$
	β -CH ₂ /CH ₃	$16.1 \pm 0.1 \ (238-353 \ K)$	$18.8 \pm 0.3 \ (243-353 \ K)$
	γ -CH $_2$	-	$18.5 \pm 0.2 \ (243 - 353 \ K)$
	t-CH ₃	-	$15.3 \pm 0.2 \ (243-353 \ K)$
¹⁹ F NMR	BF_4	$7.8 \pm 0.2 (248-298 \text{ K})^a$	$25.6 \pm 0.2 \ (248-283 \ K)$
		$10.8 \pm 0.1 (303 - 353 \text{ K})^a$	$11.5 \pm 0.2 \ (288-353 \ K)$
¹¹ B NMR	$\mathrm{BF_4}^-$	$26.1 \pm 0.5 \ (233-303 \ K)$	$13.4 \pm 0.5 \ (228-273 \ K)$
		$16.2 \pm 0.4 \ (313 - 353 \text{K})$	$26.9 \pm 0.4 (273 - 353 \text{ K})$

^aEstimated from $T_1(^{19}F)$.

Figure 6. Temperature dependences of τ_t (circle), τ_2 (triangle), and τ_c (diamond) for the cations. Solid red: BMIm⁺; and open blue: EMIm⁺.

NMR relaxation theory, the translational correlation time can be defined as $\tau_{\rm t}=2a^2/D$ following Abragam, ⁴⁶ where a is the radius of the diffusing particle. Additionally, the values of $\tau_{\rm t}$ are included in Figure 6. Clearly, $\tau_{\rm t}>\tau_2>\tau_{\rm c}$ for each cation and the correlation times of BMIm are longer than those of EMIm. In this study, we adopted the simplest models for translational and rotational molecular motion without considering the molecular shapes, mutual ionic interactions, and so forth over wide range of temperatures.

To understand the relationship between ion translational diffusion and the molecular motion, D_{cation} values were plotted against the rate of molecular motion $1/\tau_{\text{c}}(\text{cation})$ in Figure 7.

Figure 7. Values of $D_{\rm cation}$ plotted against $1/\tau_{\rm c}(^1{\rm H})$ for EMIm⁺(red circle) and BMIm⁺(blue square).

Almost linear and bilinear relations were obtained for the BMIm⁺ and EMIm⁺, respectively, and the slopes have the unit of m². The square-root value of the slope for BMIm⁺ was 0.12₀ nm in the entire temperature range measured. It was 0.11 nm above 313 K and 0.09 nm below 313 K for EMIm⁺. The value obtained from the slope affords the estimation for a distance during a rotational flip of each cation. EMIm⁺ flips more frequently with slightly shorter distance rather than BMIm⁺.

3.7. BF_4^- **Motion.** BF_4^- includes two easily accessible magnetic nuclei, ¹¹B and ¹⁹F. Although $D(^{11}B)$ and $D(^{19}F)$ had similar values in Figure 3, T_1 values of ¹⁹F and ¹¹B for the same BF_4 are quite different as shown in Figure 5. The Arrhenius plots of ¹⁹F T_1 for the BF_4^- of the two ILs are shown in Figure S7(a). BMIm-BF₄ gave the ¹⁹F T_1 minimum and afforded

 $\tau_c(^{19}{\rm F})$ using eq 3 as shown in Figure S7(b). Two activation energies for the $\tau_c(^{19}{\rm F})$ obtained from a bilinear plot are given in Table 2. The activation energy for BF₄ $^-$ obtained $^{19}{\rm F}$ T_1 of EMIm-BF₄ is also included. The $\tau_c(^{19}{\rm F})$ value for BMIm-BF₄ at 303 K is given in Table 3. The activation energies of $\tau_c(^{19}{\rm F})$ for BF₄ $^-$ are clearly smaller than those of $\tau_c({\rm cation, for }N-{\rm CH_3})$ above 288 K in Table 2. This suggests that the rotational motion of BF₄ $^-$ can be activated more easily than that of the cations owing to the smaller ion size and a tetrahedral symmetrical structure.

The values of $D_{\rm BF4}$ are plotted against the rate $1/\tau_{\rm c}(^{19}{\rm F})$ in Figure 8 for BMIm-BF₄. A good bilinear correlation was

Figure 8. Plot of D_{BF4} versus $1/\tau_c(^{19}\text{F})$ for BMIm-BF₄.

obtained, where the value of the smaller slope at lower temperatures corresponds to 0.04 nm and the steeper slope at higher temperatures gave the values of 0.11 nm. These values can be assumed to translational distances during a single rotational motion. The distance for BF_4^- resembles those for the cations at higher temperatures in Figure 7, while it is much shorter in BF_4^- in the lower temperature region.

The Arrhenius plots of the 11 B $^{-}$ T_{1} and the $\tau_{c}(^{11}$ B) based on the T_1 minimum are plotted for the two BF₄⁻ in Figure S8. The activation energies calculated for the bilinear region for the $\tau_{\rm c}(^{11}{\rm B})$ are given in Table 2. From the tetrahedral symmetry of BF₄-, we assumed that the translational motion more significantly affects the ¹¹B relaxation process rather than the rotational motion. Since T_1 is reflected by one flip of dipole $(^{19}F^{-19}F)$ or a quadrupole (^{11}B) , the time derived from T_1 corresponds to a single motion. Comparing the activation energies in various temperatures in Table 2, we presume that, in the lower temperature region, the rotational motion (19F) of BF₄ in EMIm-BF₄ is carried out with smaller activation energy than the translation motion (11B). In the higher temperature region, the relation is similar but the difference of the activation energies became smaller. The BF₄ in BMIm-BF₄ behaves in different ways that the activation energy was larger in rotational motion (19F) rather than translational motion (11B) in the lower temperatures, while in the higher temperature region, rotational motion (19F) is easily activated rather than translational motion (11B).

Under the assumption that ^{11}B relaxation occurs by mainly translational movement, the $\tau_{\rm c}(^{11}B)$ corresponds to a single jump of BF₄⁻. The average diffusion distance $\sim\!10^{-6}$ m is calculated by $(6D\Delta)^{1/2}$ during the period $\Delta~(\sim\!10^{-2}~{\rm s})$ in eq 1 and experimental D. The activation energies for the $D_{\rm BF4}$ in

Figure 3 were calculated to be 25.9 \pm 0.3 (293–353 K) and 34.6 \pm 0.6 (283–353 K) kJ mol⁻¹ for EMIm-BF₄ and BMIm-BF₄, respectively. The larger activation energies for $D_{\rm BF4}$ compared with those of the $\tau_{\rm c}(^{11}{\rm B})$ are reasonable. The average distance for one-jump translational diffusion can be assumed for $\overline{r} = [6D_{\rm BF4}\tau_{\rm c}(^{11}{\rm B})]^{1/2}$, and the calculated values are plotted against temperature in Figure 9. When the temperature

Figure 9. Temperature dependence of mean distance for one flip of BF₄⁻ derived from $D_{\rm BF4}$ and $\tau_{\rm c}(^{11}{\rm B})$.

increased from 273 to 353 K, the values of \overline{r} increased from approximately 0.1 to 0.17 nm for the BF₄⁻ in BMIm-BF₄. This is comparable with the distance of during one flip obtained from the relation of $D_{\rm BF4}$ and $1/\tau_{\rm c}(^{19}{\rm F})$ in Figure 8, which were calculated to be 0.04 and 0.11 nm in low and high temperatures, respectively. The behavior of the average distance of BF₄⁻ in EMIm-BF₄ was different from that of BF₄⁻ in BMIm-BF₄ and linearly increased as the temperature increased. Unfortunately, a flip distance of BF₄⁻ in EMIm-BF₄ could not be estimated from the relation of $D_{\rm BF4}$ and $1/\tau_{\rm c}(^{19}{\rm F})$, because the $^{19}{\rm F}$ T_1 minimum was not observed in the Arrhenius plot.

To understand the relationships among the translational correlation time $\tau_{\rm t}$ calculated from $D_{\rm BF4}$, the rotational correlation time $\tau_{\rm 2}$ calculated from the viscosity and ion size, the rotational correlation time $\tau_{\rm c}(^{19}{\rm F})$ and local translational correlation time $\tau_{\rm c}(^{11}{\rm B})$, the temperature dependences of these correlation times were plotted for BMIm-BF₄ as shown in Figure 10. It was found that $\tau_{\rm t} > \tau_{\rm 2} > \tau_{\rm c} \ (\tau_{\rm c}(^{19}{\rm F}) \ {\rm and} \ \tau_{\rm c}(^{11}{\rm B}))$,

Figure 10. Correlation times of τ_v τ_2 , $\tau_c(^{19}F)$, and $\tau_c(^{11}B)$ plotted against temperature for BMIm-BF₄.

similar to the correlation times for the cations in Figure 6. A comparison between $\tau_c(^{19}\mathrm{F})$ and $\tau_c(^{11}\mathrm{B})$ suggests that the BF₄⁻ rotational motion $(\tau_c(^{19}\mathrm{F}))$ is slower than the local jump $\tau_c(^{11}\mathrm{B})$ in the high temperatures, while it is opposite in the low temperature. When the temperature is low, the rotational motion occurs more frequently than the translational one-jump. It is not certain that the $\tau_c(^{19}\mathrm{F})$ and $\tau_c(^{11}\mathrm{B})$ represent purely rotational and translational motion, respectively. The rotational and translational motion may be coupled in the local motion of BF₄⁻.

4. DISCUSSION

4.1. Relationships between D and \eta. Although D is generally proportional to $1/\eta$ in ILs, the exact application of SE relation (eq 2) to ILs is difficult. We have proposed empirical c values (theoretically between 4 and 6) of each ion in ILs from the experimental values of D and η in the temperature range between 283 and 353 K using an ionic radius calculated by MO methods. In this study, the empirical c values for BF_4 ($c(BF_4)$) were 4.4 and 4.5 and larger than the c(TFSA) of 3.5–3.8 for four ILs and the c(FSA) of 2.8–3.1 in two ILs. 30 The values of c(cation) in this study were about 3.1. As included in our previous studies, approximate values of c(EMIm) were 3.1 in EMIm-BF₄, 2.8 in EMIm-TFSA, and 2.5 in EMIm-FSA. The values of c(cation) were between 2.5 and 3.2 hitherto obtained, 32 and smaller than 4. Although the empirical c values were calculated from the ion size, the shape of ions was not accounted. Note that the ions having smaller c values undergo intramolecular motion. If the actual radius of diffusing ions were smaller in ILs, the c value would become larger, and vice versa. Theoretical interpretation of empirical c values is needed in the future.

4.2. Molecular Motion. The D values of BF_4^- for the movement of the center of mass were almost the same for the ^{11}B and ^{19}F resonances, except for a short period Δ at low temperatures. The diffusion phenomena in ILs are coupled with molecular reorientational motion described above by the D versus $1/\tau_c$. To interpret the isotropic reorientational motion of the cations and the BF_4^- anion, the flip amplitudes were estimated under the assumption that τ_2 corresponds to 360° rotation, while τ_c is the time for librational motion. The amplitude of the angle is plotted against temperature in Figure 11. EMIm $^+$ and BMIm $^+$, which include an imidazolium ring,

Figure 11. Flip amplitude of librational motion plotted against temperature for the EMIm⁺ (open square) and BMIm⁺ (open triangle) and that of rotational motion for BF₄⁻ (solid diamond) in BMIm-BF₄.

exhibited similar flip amplitudes above ambient temperature, while at lower temperatures, the flip amplitude of BMIm⁺ decreased significantly. The flip amplitude of BF₄⁻ was very small at lower temperatures in spite of the small ion size. At higher temperatures, the flip amplitude rapidly increased with the increase of temperature and approached a π -flip. Strong interactions around BF₄⁻ are suggested to occur in lower temperatures which prevent a rapid rotational flip. Actually, the activation energies of $\tau_{\rm c}(^{19}{\rm F})$ in Table 3 clearly indicate that the BF₄⁻ rotational motion is activated much easier in high temperatures (about 12 kJ mol⁻¹) than in low temperatures (about 26 kJ mol⁻¹).

4.3. Translational Distance during a Flip of an Ion. The jump distances during the molecular flip of the cations are about 0.08 and 0.11-0.12 nm at lower and higher temperatures, respectively, and are smaller than their van der Waals radii (0.3 to 0.33 nm). Thus, the rotational and translational motion is strongly suggested to be coupled, and it would be difficult to strictly apply a rigid particle model for diffusion, particularly in the lower temperatures. The translational distances of BF₄ during a flip motion obtained from D(BF₄) and $1/\tau_c(^{19}F)$ were 0.04 and 0.11 nm at lower and higher temperatures, respectively. The averaged distance during a molecular flip of BF₄ derived from $D(BF_4)$ and $\tau_c(^{19}F)$ increased from about 0.1 to 0.2 nm from 273 to 353 K. Since the van der Waals radius of BF₄⁻ is 0.23 nm, each jump takes place within the ion size. A short displacement is accompanied by small-angle librational or rotational motion of both the cations and the BF₄ anion in the present ILs.

We described the interactions between rotational and translational motion from experimental data for the BF₄-based ILs. Similarly, ionic rotation and translation dynamics study for PF₆⁻ having octahedral symmetry in BMIm-PF₆ have been made by MD calculation. 47 In viscous ILs, translational motion may be deeply influenced by molecular rotational motion.

5. CONCLUSION

Two BF₄-based ILs with cations of EMIm⁺ and BMIm⁺ were studied by ¹H, ¹¹B, and ¹⁹F NMR by measuring the T_1 and self-diffusion coefficients. The relationships between D and $1/\eta$ were interpreted using the classical SE relation and the empirical constant c was derived for each ion. The c values of the cations were small, about 3.1, while the c values of the BF₄ were about 4.4₅. The correlation times $\tau_c(\text{cation})$, and $\tau_c(^{19}\text{F})$ and $\tau_c(^{11}\text{B})$ for BF₄ were evaluated from the Arrhenius plots of $T_1(^{11}\text{H})$, $T_1(^{19}\text{F})$, and $T_1(^{11}\text{B})$ having the T_1 minima, respectively, and the relationships between D and $1/\tau_c$ showed that the diffusion distance during a flip is shorter than the radius of the ions. Our results indicate that the translational and rotational motion of ions in ILs is strongly coupled.

ASSOCIATED CONTENT

Supporting Information

Numerical data of density, viscosity, and anion and cation diffusion coefficients for EMIm-BF₄ and BMIm-BF₄. Comparison of density and viscosity of the present work and literature data. 1 H, 19 F, and 11 B spectral patterns. Arrhenius plots of T_{1} and correlation time τ_{c} for 1 H, 19 F, and 11 B resonances. This information is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: hayamizu.k@aist.go.jp.

Notes

The authors declare no competing financial interest.

REFERENCES

- (1) Noda, A.; Hayamizu, K.; Watanabe, M. J. Phys. Chem. B 2001, 105, 4603-4610.
- (2) Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, S. N. V. K.; Brennecke, J. F. *J. Chem. Eng. Data* **2004**, *49*, 954–964.
- (3) Tokuda, H.; Ishii, K.; Susan, MABH; Tsuzuki, S.; Hayamizu, K.; Watanabe, M. J. Chem. Phys. B **2006**, 110, 19593–19600.
- (4) Harris, K. R.; Kanakubo, M.; Woolf, L. A. J. Chem. Eng. Data 2007, 52, 2425-2430.
- (5) Pensado, A. S.; H. Pádua, A. A.; Comuñas, M. J. P.; Fernández, J. J. Phys. Chem. B 2008, 112, 5563-5574.
- (6) Sánches, L. G.; Espel, J. R.; Onink, F.; Meindersma, C. W.; de Haan, A. B. J. Chem. Eng. Data 2009, 54, 2803-2812.
- (7) Mokhtarani, B.; Sharifi, A.; Mortaheb, H. R.; Mirzaei, M.; Mafi, M.; Sadeghian, F. J. Chem. Thermodyn. 2009, 41, 323–329.
- (8) Ghatee, M. H.; Moosavi, F.; Zolghadr, A. R.; Jahromi, R. *Ind. Eng. Chem. Res.* **2010**, 49, 12696–12701.
- (9) Sanmamed, Y. A.; Navia, P.; González-Salgado, D.; Troncoso, J.; Romaní, L. J. Chem. Eng. Data 2010, 55, 600–604.
- (10) Fletcher, S. I.; Sillars, B.; Hudson, N. E.; Hall, P. J. J. Chem. Eng. Data 2010, 55, 778–782.
- (11) Stoppa, A.; Zech, O.; Kunz, W.; Buchner, R. J. Chem. Eng. Data 2010, 55, 1768–1773.
- (12) Hayamizu, K.; Aihara, Y.; Nakagawa, H.; Nukuda, T.; Price, W. S. J. Phys. Chem. B **2004**, 108, 19527.
- (13) Sangoro, J.; Iacob, C.; Serghei, A.; Naumov, S.; Galvosas, P.; Kärger, J.; Wespe, C.; Bordusa, F.; Stoppa, A.; Hunger, J.; Buchner, P.; Kremer, F. *J. Chem. Phys.* **2008**, *128*, 214509–214513.
- (14) Dahl, K.; Sando, G. M.; Fox, D. M.; Sutto, T. E.; Owrutsky, J. C. J. Chem. Phys. **2005**, 123, 084504–084514.
- (15) Umebayashi, Y.; Fujimori, T.; Sukizaki, T.; Asada, M.; Fujii, K.; Kanzaki, R.; Ishiguro, S. *J. Phys. Chem. A* **2005**, *109*, 8976–8982.
- (16) Heimer, N. E.; Del Sesto, R. E.; Meng, Z.; Wilkes, J. S.; Carper, W. R. J. Mol. Liq. **2006**, 124, 84–95.
- (17) Nishi, T.; Iwahashi, T.; Yamane, H.; Ouchi, Y.; Kanai, K.; Seki, K. Chem. Phys. Lett. **2008**, 455, 213–217.
- (18) Hunger, J.; Stoppa, A.; Schrödle, S.; Hefter, G.; Buchner, R. ChemPhysChem 2009, 10, 723-733.
- (19) Khara, D. C.; Samanta, A. Phys. Chem. Chem. Phys. 2010, 12, 7671-7677.
- (20) Hayamizu, K.; Tsuzuki, S.; Seki, S. Magn. Reson. Chem. **2011**, 49, 6–8.
- (21) Kanzaki, R.; Mitsugi, T.; Fukuda, S.; Fujii, K.; Takeuchi, M.; Soejima, Y.; Takamura, T.; Yamaguchi, T.; Umebayashi, Y.; Ishiguro, S. *J. Mol. Liq.* **2009**, *147*, 77–82.
- (22) Takamuku, T.; Kyoshoin, Y.; Shimomura, T.; Kittaka, S.; Yamaguchi, T. J. Phys. Chem. B 2009, 113, 10817–10824.
- (23) Kanakubo, M.; Aizawa, T.; Nanjo, H.; Kameda, Y.; Amo, Y.; Usuki, T. Fluid Phase Equilib. **2010**, 297, 183–186.
- (24) Lynden-Bell, R. M.; Popolo, M. D. Phys. Chem. Chem. Phys. 2006, 8, 949-954.
- (25) Bagno, A.; D'Amico, F.; Saielli, G. J. Phys. Chem. B 2006, 110, 23004–23006.
- (26) Borodin, O. J. Phys. Chem. B 2009, 113, 11463-11478.
- (27) Sun, H.; Qiao, B.; Zhang, D.; Liu, C. J. Phys. Chem. A 2010, 114, 3990–3996.
- (28) Hayamizu, K.; Tsuzuki, S.; Seki, S. J. Phys. Chem. A 2008, 112, 12027–12036.
- (29) Hayamizu, K.; Tsuzuki, S.; Seki, S.; Ohno, Y.; Miyashiro, H.; Kobayashi, Y. *J. Phys. Chem. B* **2008**, *112*, 1189–1197.
- (30) Hayamizu, K.; Tsuzuki, S.; Seki, S.; Fujii, K.; Suenaga, M.; Umebayashi, Y. J. Chem. Phys. **2010**, 113, 194505–194513.

- (31) Hayamizu, K.; Tsuzuki, S.; Seki, S.; Umebayashi, Y. *J. Chem. Phys.* **2011**, *135*, 084505–08416.
- (32) Hayamizu, K. Translational and Rotational Motions for TFSA-Based Ionic Liquids Studied by NMR Spectroscopy, Handy, S. T. (Ed.), (InTech, 2011) . http://www.intechopen.com/articles/show/title/translational-and-rotational-motions-for-tfsa-based-ionic-liquids-studied-by-nmr-spectroscopy
- (33) http://ilthermo.boulder.nist.gov/ILThermo/mainmenu.uix
- (34) Stejskal, E. O.; Tanner, J. E. J. Chem. Phys. 1965, 42, 288-293.
- (35) Tanner, J. E. J. Chem. Phys. 1970, 52, 2523-2527.
- (36) Hayamizu, K.; Price, W. S. J. Magn. Reson. 2004, 167, 328-333.
- (37) Tyrrell, H. J. V.; Harris, K. R. Diffusion in Liquids: A Theoretical and Experimental Study; Butterworth: London, 1984.
- (38) Price, W. S. NMR Studies of Translational Motion, Principles and Applications; Cambridge University Press: Cambridge, 2009.
- (39) Ue, M.; Murakami, A.; Nakamura, S. J. Electrochem. Soc. 2002, 149, A1385–A1388.
- (40) Ue, M. J. Electrochem. Soc. 1996, 143, L270-L272.
- (41) Traficante, D. D. Relaxation: An Introduction, in Encyclopedia of Nuclear Magnetic Resonance, Grant, M. D., Harris, R. K., Eds.; Wiley: New York, 1996; Vol. 6, p 3988.
- (42) Werbelow, L. G. Relaxation Theory for Quadrupolar Nuclei, in Encyclopedia of Nuclear Magnetic Resonance, Grant, M. D., Harris, R. K., Eds.; Wiley: New York, 1996; Vol. 6, p 4092.
- (43) Hayamizu, K.; Aihara, Y.; Price, W. S. J. Chem. Phys. 2000, 113, 4785-4793
- (44) Mazza, M. G.; Giovambattista, N.; Stanley, H. E.; Starr, F. W. Phys. Rev. E 2007, 76, 031203-031215 and references therein..
- (45) Köddermann, T.; Ludwig, R.; Paschek, D. ChemPhysChem 2008, 9, 1851–58.
- (46) Abragam, A. The Principles of Nuclear Magnetism; Oxford University Press: London, 1961; p 302.
- (47) Li H.; Kobrak, M. N. J. Chem. Phys. 2009, 1