EXPERIMENT-5

AIM: To design a binary to gray and a gray to binary code converter circuit.

HARDWARE / SOFTWARE APPARATUS: Power supply, bread board, connecting wires, respective IC (7486)

TRUTH TABLE:

Gray Code Input				Binary Code Output			
G3	G2	G1	GO	В3	B2	B1	ВО
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	1	0	0	1	0
0	0	1	0	0	0	1	1
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	1
0	1	0	1	0	1	1	0
0	1	0	0	0	1	1	1
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	1
1	1	1	1	1	0	1	0
1	1	1	0	1	0	1	1
1	0	1	0	1	1	0	0
1	0	1	1	1	1	0	1
1	0	0	1	1	1	1	0
1	0	0	0	1	1	1	1

THEORY: Gray code is defined as an ordering of the binary number system such that each incremental value can differ by one bit. To convert to gray code,

- 1. The MSB of the gray code will be exactly equal to the first bit of the binary number.
- 2. The second bit of the code will be exclusive or of the first and second bit of the binary number
- 3. The third bit of the gray code will be equal to the exclusive or of the second and third bits and so on.

PROCEDURE (MULTISIM):

- Select the required gate symbol from the digital section of the tool bar on the left .
- Select a resistor from the same toolbar.
- Select the voltage sources and ground symbols from that toolbar.
- Ground both the voltage sources(clock) and then connect them to the input terminal of the gate.
- Connect the output terminal to 1kohm resistor and ground it.

CIRCUIT DIAGRAMS:

BINARY TO GRAY CONVERTOR

GRAY TO BINARY CONVERTOR

INPUT /OUTPUT WAVEFORMS:

BINARY TO GRAY

GRAY TO BINARY

PRECAUTIONS:

- Power supply should not exceed than 5V.
- Connections should be tight.
- Components should be tested before the practical.