Thermomechanical Properties of W-Re Alloys & Initial Survey of Molten Tin Corrosion Data

S.J. Zinkle Oak Ridge National Laboratory

presented at APEX Study Meeting UCLA, November 2-4, 1998

Motivation for Studying W-Re Alloys

- Tensile strength of recrystallized W is relatively low compared to other refractory alloys (TZM, Ta-8W-2Hf) for temperatures below 1200-1500°C
 - recrystallized tungsten UTS=380 MPa at 20°C
- Pure tungsten has poor fabricability
- W-(5-25%)Re alloys offer potential for improved low temperature fabricability
 - Low temperature (<1200°C) strength is not necessarily higher than that of pure W (depends on thermomechanical processing; "solution softening" usually occurs in W-Re alloys, cf. Klopp 1975)
- Hafnium and carbon are typically added to tungsten alloys (~0.5 at.% Hf, C) in order to improve high temperature creep strength
 - W-Re (Hf,C) alloys offer possibility of improved creep resistance at high temperatures (>1200°C) compared to pure W

Data from Tietz & Wilson (1965), Conway (1984), Buckman (1994), Zinkle et al (1998), ITER MPH, and Aerospace Structural Metals Handbook (1969)

Ultimate Strength of Group VI Refractory Alloys

Summary of Recrystallized Tungsten Properties (from IMPH)

Ultimate Tensile Strength (unirradiated)

$$\sigma_{\text{UTS}}(\text{MPa}) = 377.9 + 0.03207 * \text{T} - 1.955 \times 10^{-4} * \text{T}^2 + 5.129 \times 10^{-8} * \text{T}^3$$
 (T in °C)

Yield Strength (Unirradiated)

$$\sigma_{\rm Y}({\rm MPa}) = 94.2 - 0.0214 * {\rm T} - 2.12 \times 10^{-4} * {\rm T}^2 - 7.48 \times 10^{-10} * {\rm T}^3$$
 (T in °C)

Elongation

$$e_{tot}(\%) = 20.8 + 0.053*T - 2.18x10^{-5}*T^2$$
 (T>500°C)

Elastic constants

$$E_{\rm Y}$$
 (GPa) =398 - 0.00231*T - 2.72x10⁻⁵ T² (T in °C)
v=0.279 + 1.09x10⁻⁵ T (T in °C)

Thermophysical properties

$$\alpha_{m} (10^{-6})^{\circ} \text{C}) = 3.922 + 5.835 \times 10^{-5} \times \text{T} + 5.705 \times 10^{-11} \times \text{T}^{2} - 2.046 \times 10^{-14} \times \text{T}^{3}$$
 (T in °C)
$$C_{p} (J/kg-K) = 128.3 + 0.0328 \times \text{T} - 3.41 \times 10^{-6} \times \text{T}^{2}$$
 (T in °C)
$$K_{rh} (W/m-K) = 174.9 - 0.107 \text{ T} + 5.01 \times 10^{-5} \text{ T}^{2} - 7.835 \times 10^{-9} \times \text{T}^{3}$$
 (T in °C)

Recommended operating temperature limits (structural applications)

Tmin = 800° C (due to rad.-induced increase in DBTT at low T_{irr}) Tmax = 1400° C (Li, Pb-Li corrosion/chemical compatibility and thermal creep)

Summary of Recrystallized W-(5-10%) Re Properties

Ultimate Tensile Strength (unirradiated)

 $\sigma_{\text{UTS}}(\text{MPa}) = 377.9 + 0.03207 * \text{T} - 1.955 \times 10^{-4} * \text{T}^2 + 5.129 \times 10^{-8} * \text{T}^3$ (T in °C) –use pure W values

Yield Strength (Unirradiated)

 $\sigma_{\rm Y}({\rm MPa}) = 94.2 - 0.0214 * {\rm T} - 2.12 \times 10^{-4} * {\rm T}^2 - 7.48 \times 10^{-10} * {\rm T}^3$ (T in °C) –use pure W values

Elongation

 $e_{tot}(\%) = 20.8 + 0.053*T - 2.18x10^{-5}*T^2$ (T>500°C) --use pure W values

Elastic constants

 $E_{\rm Y}$ (GPa) =398 - 0.00231*T - 2.72x10⁻⁵ T² (T in °C) --pure W values; W-25Re E(20°C)=410 GPa v=0.279 + 1.09x10⁻⁵ T (T in °C) W-25Re v(20°C)=0.30, G(20°C)=159 GPa

Thermophysical properties

 $\alpha_{m} (10^{-6}/^{\circ}C) = 3.9 + 5.8 \times 10^{-5} \times T + 5.7 \times 10^{-11} \times T^{2} - 2.0 \times 10^{-14} \times T^{3} \qquad (T \text{ in } ^{\circ}C) \text{ --use pure W values}$ $C_{p} (J/kg-K) = 128 + 0.033 \times T - 3.4 \times 10^{-6} \times T^{2} \quad ??? \quad (T \text{ in } ^{\circ}C) \quad \text{--use pure W values}$ $K_{th} (W/m-K) \sim 85 \text{ W/m-K} \quad (1000-2400 ^{\circ}C) \qquad \text{--conductivity decreases with increasing Re content}$

Recommended operating temperature limits (structural applications)

Tmin = 800° C (due to rad.-induced increase in DBTT at low T_{irr})
Tmax = 1400° C (Li, Pb-Li corrosion/chemical compatibility and thermal creep)

Maximum temperatures of structural alloys (bare walls) in contact with high-purity liquid coolants, based on a 5 μ m/yr corrosion limit

	Li	Pb-17 Li	Flibe
F/M steel	550-600°C [1,2,3]	450°C [1,2,9]	700°C ? 304/316 st. steel [13]
V alloy	600-700°C [1,4,5]	~650°C [1,10]	?
Nb alloy	>1300°C [6,7]	>600°C [10] (>1000°C in Pb) [11]	>800°C [14]
Ta alloy	>1370°C [6,7]	>600°C [10] (>1000°C in Pb) [11]	?
Mo	>1370°C [6,7]	>600°C [10]	>1100°C? [15,16]
W	>1370°C [6,7]	>600°C [10]	>900°C? [15]
SiC	~550°C ? [8]	>800°C ? [12]	?

References:

- 1. S. Malang and R. Mattas, Fus. Eng. Des. <u>27</u> (1995) 399.
- 2. O.K. Chopra and D.L. Smith, J. Nucl. Mater. 155-157 (1988) 715.
- 3. P.F. Tortorelli, J. Nucl. Mater. 155-157 (1988) 722.
- 4. K. Natesan et al., Fus. Eng. Des. <u>27</u> (1995) 457.
- 5. O.K. Chopra and D.L. Smith, J. Nucl. Mater. 155-157 (1988) 683.
- 6. J.H. Devan et al., Proc. Symp. on Refractory Alloy Technology for Space Nuclear Power Applications, CONF-8308130 (1984) p. 34.
- 7. J.R. DiStefano, J. Mater. Eng. <u>11</u> (1989) 215.
- 8. D.R. Curran and M.F. Amateau, Am. Ceram. Soc. Bulletin <u>65</u>, 10 (1986) 1419.
- 9. M. Broc et al., J. Nucl. Mater. 155-157 (1988) 710.
- 10. H. Feuerstein et al., J. Nucl. Mater. <u>233-237</u> (1996) 1383.
- 11. H. Shimotake et al., Trans. ANS 10 (1967) 141.
- 12. P. Hubberstey and T. Sample, J. Nucl. Mater. <u>248</u> (1997) 140.
- 13. J.R. DiStefano, ORNL/TM-12925/R1 (1995).
- 14. W.D. Manley, Prog. Nucl. Energy, Series IV, <u>2</u> (1960) 164.
- 15. Y. Desai et al., Journal of Metals <u>40</u>, 7 (1988) A63.
- 16. J.W. Koger and A.P. Litman, ORNL/TM-2724 (1969).

Chemical Compatibility of Structural Materials with Molten Tin (static tests)

Nb: no corrosion observed at ~600°C chemical attack occurred at 800°C [1] and 1000°C [2,3]

Ta: chemical attack observed at both 600-630 [1,4] and 800°C [1] intergranular penetration observed at 1000°C [2,3,5]

Mo: minimal corrosion observed below ~600°C [4] chemical attack observed at both 630 and 800°C [1] significant corrosion (predominantly intergranular) observed at 1000°C [2,3-5,6] -1.7% weight loss after 340 h at 1000°C [4,6]

W: good chemical resistance at 630°C; moderate attack at 800°C [1] Very little corrosion (10 ppm weight loss) observed after 40 h at 1000°C [6] moderate corrosion (<5 μm) observed after 100 h at 1000°C [3]

Austenitic, Ferritic stainless steels: rapid attack at temperatures above 400-500°C [7]

References

- 1. J.R. Lance and G.A. Kemeny, Trans. Metall. Soc. AIME and Trans. Quarterly of ASM 56 (1963) 204-205
- 2. H. Shimotake and J.C. Hesson, Trans. ANS 8 (1965) 413-415
- 3. H. Shimotake, N.R. Stalica and J.C. Hesson, Trans. ANS 10 (1967) 141-142
- 4. F.L.LaQue and H.R. Copson, Corrosion Resistance of Metals and Alloys, 2nd Ed., ACS Monograph #158 (Reinhold Publ., 1963) 721 pp.
- 5. T.A. Coultas, MAA-SR-192 (Sept. 15, 1952) 23 pp.
- 6. E.L. Reed, J. Am. Ceram. Soc. 37 (1954) 146-153
- 7. Liquid Metals Handbook, 2nd ed., Ed. R.N. Lyon, US Office of Naval Research (1952); L.R. Kelman et al., ANL-4417 (1950); ASM Handbook of Corrosion Data, 2nd Ed., Eds. B.D. Craig & D.S. Anderson (1992)

Summary of maximum temperatures of structural alloys (bare walls) in contact with high-purity liquid or gaseous coolants, based on a 5 μ m/yr corrosion limit

	Li	Pb-17 Li	Sn-20 Li (pure Sn)	Flibe	He*
F/M steel	550-600°C	450°C	~400°C	700°C ? 304/316 st. steel	
V alloy	600-700°C	~650°C	?	?	~600°C?§
Nb alloy	>1300°C	>600°C (>1000°C in Pb)	800-850°C	>800°C	?
Ta alloy	>1370°C	>600°C (>1000°C in Pb)	>600°C (>900°C/Sze)	?	?
Мо	>1370°C	>600°C	>700°C (1000°C/Sze)	>1100°C?	~1100°C **
W	>1370°C	>600°C	~1000°C	>900°C?	~1100°C **
SiC	~550°C ?	>800°C ?	?	?	•

^{*} assumes 1 appm O in 50 MPa He gas

§ the temperature limit for vanadium and other Group V metals in helium will be determined by oxide dissolution and oxygen absorption kinetics; recent work (e.g., B.A. Pint et al. 1998) suggests that the temperature limit for V-4Cr-4Ti may be ~600°C due to interstitial oxygen hardening/embrittlement effects

dashed line (--) indicates that the corrosion-based temperature limit is higher than the structural temperature limit

^{**} see accompanying APEX presentation by N.M. Ghoniem

Estimated Operating Temperature Limits for Refractory Alloys in Fusion Reactors

- § Lower temperature limit based on radiation hardening/ fracture toughness embrittlement (K_{1C} <30 MPa-m^{1/2})
- § Upper temperature limit based on 100 MPa creep rupture strength; chemical compatibility considerations may cause further decreases in the max operating temp.