הטכניון – מכון טכנולוגי לישראל NUMERICAL METHODS IN AEROSPACE **ENGINEERING**

HOMEWORK ASSIGNMENT x סמסטר אביב תשפ"ה **SPRING SEMESTER 2025**

GRADE	OUT OF	CHAPTER
	2	ABSTRACT
	2	CONTENTS, STYLE &C.
	4	PHYSICAL PROBLEM
	4	MATHEMATICAL MODEL
	26	NUMERICAL METHODS
	20	INFLUENCE OF NUMERICAL METHODS
	20	RESULTS
	2	SUMMARY & CONCLUSIONS
	20	COMPUTER PROGRAM
	100	TOTAL

Almog Dobrescu ID 214254252

June 2, 2025

Abstract

hii

Contents

1	The Physical Problem	1
2	The Mathematical Model	1
3	The Numerical Methods 3.1 Finite Differencing	1 1 2 2
4		2 3 3
5	Results and Discussion5.1 Temperature Distribution5.2 Strain Calculation	4 4 5
6	Summary and Conclusion	5
A	Listing of The Computer Program A.1 Parameters	6 6 6
${f L}{f i}$	st of Figures	
	Influence of the number of elements N	2 3 3 4 4
$\mathbf{L}_{\mathbf{i}}$	$_{ m stings}$	
	1 Parameters file	6 6

Nomenclature

 Δr difference between two points in space

 Δt difference between two points in time

 ε convergence criteria

i index in coordinate r

J final time coordinate

j index in time

K diffusivity coefficient

N number of cell

r radiaul coordinate

T temperature

t time coordinate

1 The Physical Problem

Heated tubing has many applications, from water cooling in computers to transporting liquid gas. Research has been conducted to investigate the stress-strain relationships and the material properties of a tube subjected to heating and cooling.

2 The Mathematical Model

The following heat equation was in use:

$$\frac{1}{4K}\frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial r^2} + \frac{1}{r}\frac{\partial T}{\partial r} \quad , \quad \frac{1}{2} \le r \le 1 \quad , \quad 0 < t \tag{1}$$

The boundary and initial conditions of the problem:

$$T_{(0.5,t)} = t$$

$$T_{(1.0,t)} = 100 + 40t$$

$$T_{(r,0)} = 200 \left(r - \frac{1}{2}\right)$$

$$K = 0.1$$
(2)

The strain I is given by the equation:

$$I = \int_{0.5}^{1} \alpha T_{(r,t)} r dr \tag{3}$$

• $\alpha = 10.7$

3 The Numerical Methods

3.1 Finite Differencing

The Heat equation can be rewritten as:

$$\frac{\partial T}{\partial t} = 4K \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} \right) \tag{4}$$

By using central differencing for the spatial derivatives and forward differencing for the time derivative we get the explicit scheme:

$$\frac{T_{i,j+1} - T_{i,j}}{\Delta t} + O\left(\Delta t\right) = 4K \left(\frac{T_{i-1,j} - 2T_{i,j} + T_{i+1,j}}{\Delta r^2} + O\left(\Delta r^2\right) + \frac{1}{r} \frac{T_{i+1,j} - T_{i-1,j}}{2\Delta r} + O\left(\Delta r^2\right)\right)$$

$$T_{i,j+1} = T_{i,j} + 4K\Delta t \left(\frac{T_{i-1,j} - 2T_{i,j} + T_{i+1,j}}{\Delta r^2} + \frac{1}{r} \frac{T_{i+1,j} - T_{i-1,j}}{2\Delta r} \right) + O\left(\Delta t, \Delta r^2\right)$$

$$T_{i,j+1} = T_{i,j} + 4KR\left(T_{i-1,j} - 2T_{i,j} + T_{i+1,j} + \frac{\Delta r}{2r} \left(T_{i+1,j} - T_{i-1,j} \right) \right) + O\left(\Delta t, \Delta r^2\right)$$
(5)

•
$$i = 1, 2, \cdots, N$$
 • $T_{(i=0,j)} = j \cdot \Delta t$

•
$$j = 1, 2, \cdots, J$$

•
$$R = \frac{\Delta t}{\Delta r^2}$$
 • $T_{(i=N+1,j)} = 100 + 40 \cdot j \cdot \Delta t$

•
$$T_{(i,j=0)} = 200\left(r - \frac{1}{2}\right), \quad 0 \le r \le N + 1$$

 Δr was calculated as follows:

$$\Delta r = \frac{r_{\text{max}} - r_{\text{min}}}{N+1} \tag{6}$$

The step size in time Δt was chosen somewhat arbitrary, only to maintain stability.

The system of equation will be solved by Jacobi method for every j. This method adds an iterative index n:

$$T_{i,j+1}^{n+1} = T_{i,j}^n + 4KR\left(T_{i-1,j}^n - 2T_{i,j}^n + T_{i+1,j}^n + \frac{\Delta r}{2r}\left(T_{i+1,j}^n - T_{i-1,j}^n\right)\right)$$
(7)

3.2 Convergence Criteria

In order determined if the iterative method for solving the system of equation has converged, we will check if the temperature vector at a specific time has changed from step n to step n+1 in the following way:

$$\left| T_{i,j}^{n+1} - T_{i,j}^n \right| < \varepsilon \tag{8}$$

3.3 Integral Calculation

The integral to calculate the strain I will be calculated using trapezoid integration:

$$I = \alpha \frac{h}{2} \sum_{i=0}^{N} T_{(i+1)} + T_{(i)}$$
(9)

4 Influence of The Numerical Methods

NOTE - the temperature will be presented in logarithmic scale.

4.1 Influence of Number of Elements N

Figure 1: Influence of the number of elements N

In Fig.1 we can see that for N bigger than 20, the solution does not really change. We can conclude that N=20 is a sufficient number of elements.

4.2 Influence of Convergence Criteria ε

Figure 2: FD - Influence of the convergence criteria ε

From Fig.2 we can conclude that for a convergence criteria smaller than $1e^{-5}$, the solution stays the same. We can determine that $\varepsilon = 1e^{-5}$ is a good choice.

4.3 Influence of The Numerical Parameter R

Figure 3: FD - Influence of the convergence criteria R

From Fig.3 we can conclude that the value of the numerical parameter R has close to no effect on the error of the solution.

5 Results and Discussion

5.1 Temperature Distribution

Using the parameters chosen above, the temperature distribution is therefor:

Figure 4: Temperature as a Function of r

We can also plot the temperature distribution over time for all the radiuses:

Figure 5: Temperature as a Function of r over time

5.2 Strain Calculation

When using the chosen parameters, the calculated strain is:

$$I_{N=20} = 1224.8 \tag{10}$$

However, when using and N = 40 N = 60, the strain is:

$$I_{N=40} = 1234.0 I_{N=60} = 1237.0 (11)$$

We observed that while N=20 is adequate for convergence of the temperature, a higher number of elements is necessary to accurately calculate the strain. This is due to the order of the integration being O(h).

6 Summary and Conclusion

A Listing of The Computer Program

A.1 Parameters

```
1
                  = 20;
2
   epsilon
                  = 1e-5;
3
   max_iteration = 1e6;
5
   r_max
            = 1;
6
          = 0.5;
   r_min
   t_start = 0;
8
   t_{-}end
           = 10;
9
   Κ
           = 0.1;
   alpha
          = 10.7;
11
12
           = (r_max - r_min) / (N+1);
            = 0.49;
13 R
             = delta_t / h^2;
14
   % R
15
   delta_t = R * h^2;
16
           = r_{\min}+h*(0:1:N+1);
```

Listing 1: Parameters file

A.2 Main Code

```
clc; clear; close all;
2
3
   4
5
6
   parameters
8
   % Ns = [5, 10, 15, 20, 40, 60, 100];
9
   Ns = [3, 5, 7, 10];
11
   results_vec = {};
12
   r_{vec} = \{\};
   for Ns_index = 1:length(Ns)
13
14
       N
              = Ns(Ns_index);
       h
              = (r_max - r_min) / (N+1);
16
       R
              = 0.45;
       delta_t = R * h^2;
17
18
              = r_{min+h*(0:1:N+1);}
19
20
       results_vec{Ns_index,1} = solver(r_min, r, K, h, delta_t, t_start, t_end, N, epsilon,
            max_iteration);
21
   end
22
23
   load("effect_of_N_to_60.mat")
24
   fig1 = figure('Name', '1', 'Position', [50, 250, 900, 600]);
25
26
   size = 15;
27
28
   colors = cool(length(results_vec(:,1)))*0.9;
29
   for i = length(results_vec(:,1))
       plot(results_vec{i,1}.r, results_vec{i,1}.Ts(end,:), 'LineWidth', 2, 'Color', colors(
30
           i,:))
```

```
31
   end
   xlabel('r$\displaystyle\left[\frac{m}{sec}\right]$', 'FontSize',size, 'Interpreter','
33 | ylabel('T$\left[K\right]$', 'FontSize', size, 'Interpreter', 'latex')
  title('Temperature as a Function of The Radius', 'FontSize', size, 'Interpreter', 'latex')
34
   subtitle(sprintf('$N=%g$ $||$ $t=%f[s]$ $||$ $\\varepsilon=%g$ $||$ R=%g', results_vec{
       end,1}.N, results_vec{end,1}.t_vec(end), results_vec{end,1}.epsilon, results_vec{end
       ,1}.R), 'FontSize', size, 'Interpreter','latex')
   grid on
36
   grid minor
37
   box on
39
   % exportgraphics(fig1, 'images/T over r.png', 'Resolution', 400);
41
   42
   43
44
   fig2 = figure('Name', '2', 'Position', [150, 250, 900, 600]);
45
   size = 15;
46
47
   colors = cool(length(results_vec(:,1)))*0.9;
48
   lg = {};
49
   for i = 1:length(results_vec(:,1))
       semilogy(results_vec{i,1}.r, results_vec{i,1}.Ts(end,:), 'LineWidth', 2, 'Color',
50
          colors(i,:))
51
       hold on;
52
       lg\{end+1\} = sprintf('N=%g, $\\Delta t=%f$', results_vec{i,1}.N, results_vec{i,1}.
53
   end
   xlabel('r$\displaystyle\left[\frac{m}{sec}\right]$', 'FontSize',size, 'Interpreter','
54
       latex')
   ylabel('T$\left[K\right]$', 'FontSize',size, 'Interpreter','latex')
56
   title('Temperature as a Function of The Radius For Different N', 'FontSize', size, '
       Interpreter','latex')
   subtitle(sprintf('$t=%f[s]$ $||$ $\\\varepsilon=%g$ $||$ R=%g', results_vec{end,1}.t_vec(
       end), results_vec{end,1}.epsilon, results_vec{end,1}.R), 'FontSize', size,
       Interpreter','latex')
58
   legend(lg, 'FontSize', size-2, 'Location', 'eastoutside', 'Interpreter', 'latex')
59
   grid on
   grid minor
60
61
   box on
62
   % exportgraphics(fig1, 'images/T over r.png', 'Resolution',400); exportgraphics(fig2, '
       images/Influenc of N.png', 'Resolution',400);
63
64
   65
   fig3 = figure('Name', '3', 'Position', [250, 250, 900, 600]);
67
68
   rms_vec = [];
69
          = [];
   Ns
   for i = 1:length(results_vec(:,1))-1
71
       rms\_vec(i) = RMS(results\_vec\{i,1\}.r, results\_vec\{i,1\}.Ts(end,:), results\_vec\{i+1,1\}.r
          , results_vec{i+1,1}.Ts(end,:));
       Ns(i) = results_vec{i,1}.N;
73
   end
74
   plot(Ns, rms_vec, 'LineWidth', 2, 'Color', colors(end,:))
75
77
  xlabel('N', 'FontSize', size, 'Interpreter', 'latex')
```

```
ylabel('rms$\left[K\right]$', 'FontSize',size, 'Interpreter','latex')
    title('The RMS between two solution as a function of N', 'FontSize', size, 'Interpreter','
 79
    subtitle(sprintf('$t=%f[s]$ $||$ $\\varepsilon=%g$ $||$ R=%g', results_vec{end,1}.t_vec(
80
        end), results_vec{end,1}.epsilon, results_vec{end,1}.R), 'FontSize', size,
        Interpreter', 'latex')
   grid on
82
    grid minor
83 box on
    % exportgraphics(fig1, 'images/T over r.png','Resolution',400); exportgraphics(fig2, '
84
        images/Influenc of N.png', 'Resolution', 400); exportgraphics(fig3, 'images/Influenc of
         N — error.png', 'Resolution', 400);
85
86
    % Influenc of epsilon =========
88
    89
90
    parameters
91
92
    epsilon_vec = logspace(-1, -10, 10);
93
    % epsilon_vec = logspace(-1, -6, 6);
94
    results_vec = {};
96
    r_{vec} = \{\};
    for eps_index = 1:length(epsilon_vec)
98
        epsilon = epsilon_vec(eps_index);
99
        results_vec{eps_index,1} = solver(r_min, r, K, h, delta_t, t_start, t_end, N, epsilon
            , max_iteration);
100
    end
101
102
    load("effect_of_epsilon_-1_to_-10.mat")
103
    fig4 = figure('Name', '4', 'Position', [350, 250, 900, 600]);
104
    size = 15;
106
107
    colors = cool(length(results_vec(:,1)))*0.9;
108
    lg = {};
109
    for i = 1:length(results_vec(:,1))
110
        semilogy(results_vec{i,1}.r, results_vec{i,1}.Ts(end,:), 'LineWidth', 2, 'Color',
            colors(i,:))
111
        hold on;
112
        lq{end+1} = sprintf('$\\varepsilon=%q$', results_vec{i,1}.epsilon);
113
114
   |xlabel('r$\displaystyle\left[\frac{m}{sec}\right]$', 'FontSize',size, 'Interpreter','
        latex')
    ylabel('T$\left[K\right]$', 'FontSize', size, 'Interpreter', 'latex')
    title('Temperature as a Function of The Radius For Different $\varepsilon$', 'FontSize',
116
        size, 'Interpreter','latex')
117
    subtitle(sprintf('$t=$f[s]$ $||$ $N=$g$ $||$ R=$g', results_vec{end,1}.t_vec{end}),
        results_vec{end,1}.N, results_vec{end,1}.R), 'FontSize', size, 'Interpreter','latex')
118
    legend(lg, 'FontSize', size-2, 'Location', 'eastoutside', 'Interpreter', 'latex')
119
    grid on
    grid minor
121
    box on
122
    % exportgraphics(fig4, 'images/Influenc of epsilon.png', 'Resolution',400);
124 | fig5 = figure('Name', '5', 'Position', [450, 250, 900, 600]);
125 | rms_vec = [];
```

−‰−

```
126
    eps_vec = [];
127
    for i = 1:length(results_vec(:,1))-1
128
        rms_vec(i) = RMS(results_vec{i,1}.r, results_vec{i,1}.Ts(end,:), results_vec{i+1,1}.r
            , results_vec{i+1,1}.Ts(end,:));
129
        eps_vec(i) = results_vec{i,1}.epsilon;
130
    end
132
    loglog(eps_vec, rms_vec, 'LineWidth', 2, 'Color', colors(end,:))
133
    xlabel('$\varepsilon$', 'FontSize', size, 'Interpreter', 'latex')
134
    ylabel('rms$\left[K\right]$', 'FontSize',size, 'Interpreter','latex')
136
    title('The RMS between two solution as a function of $\varepsilon$', 'FontSize', size, '
        Interpreter','latex')
137
    subtitle(sprintf('$t=\%f[s]$ $||$ $N=\%g$ $||$ R=\%g', results_vec{end,1}.t_vec(end),
        results_vec{end,1}.N, results_vec{end,1}.R), 'FontSize', size, 'Interpreter','latex')
138
    grid on
    grid minor
139
140
    box on
    % exportgraphics(fig4, 'images/Influenc of epsilon.png','Resolution',400); exportgraphics
141
        (fig5, 'images/Influenc of epsilon — error.png', 'Resolution',400);
142
143
    144
145
147
    parameters
148
    % Rs = linspace(0.05, 0.49, 10);
149
150
   Rs = linspace(0.45, 0.3, 4);
151
152
    results_vec = {};
153
    r_vec = {};
154
    for R_index = 1:length(Rs)
155
        R = Rs(R_index);
156
        delta_t = R * h^2;
157
        results\_vec\{R\_index,1\} = solver(r\_min, r, K, h, delta\_t, t\_start, t\_end, N, epsilon,
            max_iteration);
158
    end
159
160
    load("effect_of_R_0.05_to_0.49.mat")
161
162
    fig6 = figure('Name', '6', 'Position', [550, 250, 900, 600]);
163
    size = 15:
164
    colors = cool(length(results_vec(:,1)))*0.9;
    lg = {};
167
    for i = 1:length(results_vec(:,1))
168
        semilogy(results_vec{i,1}.r, results_vec{i,1}.Ts(end,:), 'LineWidth', 2, 'Color',
            colors(i,:))
169
        hold on;
170
        lg{end+1} = sprintf('$R=%g$', results_vec{i,1}.R);
171
    end
172
    xlabel('r$\displaystyle\left[\frac{m}{sec}\right]$', 'FontSize',size, 'Interpreter','
        latex')
173
    ylabel('T$\left[K\right]$', 'FontSize', size, 'Interpreter', 'latex')
    title('Temperature as a Function of The Radius For Different R', 'FontSize',size, '
        Interpreter', 'latex')
```

≎X÷

```
175
    subtitle(sprintf('$t=\%f[s]$ $||$ $N=\%g$ $||$ $\\varepsilon=\%g$', results\_vec{end,1}.t\_vec
        (end), results_vec{end,1}.N, results_vec{end,1}.epsilon), 'FontSize', size, '
        Interpreter', 'latex')
    legend(lg, 'FontSize', size-2, 'Location', 'eastoutside', 'Interpreter', 'latex')
177
    grid on
178
    grid minor
179
    box on
180
    % exportgraphics(fig6, 'images/Influenc of R.png', 'Resolution',400);
181
182 | fig7 = figure('Name', '7', 'Position', [650, 250, 900, 600]);
183
    rms_vec = [];
184 | R_{vec} = [];
185
    for i = 1:length(results_vec(:,1))-1
186
        rms_vec(i) = RMS(results_vec\{i,1\}.r, results_vec\{i,1\}.Ts(end,:), results_vec\{i+1,1\}.r
            , results_vec{i+1,1}.Ts(end,:));
187
        R_{vec}(i) = results_{vec}(i,1).R;
188
    end
189
190
    semilogy(R_vec, rms_vec, 'LineWidth', 2, 'Color', colors(end,:))
191
192
    xlabel('$R$', 'FontSize',size, 'Interpreter','latex')
    ylabel('rms$\left[K\right]$', 'FontSize',size, 'Interpreter','latex')
194
    title('The RMS between two solution as a function of R', 'FontSize', size, 'Interpreter','
        latex')
195
    subtitle(sprintf('$t=%f[s]$ $||$ $N=%g$ $||$ $\varepsilon=%g$', results_vec{end,1}.t_vec
        (end), results_vec{end,1}.N, results_vec{end,1}.epsilon), 'FontSize', size, '
        Interpreter','latex')
196
   grid on
197
    grid minor
198
    box on
199
    % exportgraphics(fig6, 'images/Influenc of R.png', 'Resolution',400); exportgraphics(fig7,
         'images/Influenc of R - error.png', 'Resolution', 400);
200
201
    202
203
    204
205
    parameters
206
    result = solver(r_min, r, K, h, delta_t, t_start, t_end, N, epsilon, max_iteration);
207
208
    % integrate N=20
209 | sum_N20 = 0;
210 \mid for i = [0:result.N+1-1]+1
211
        sum_N20 = sum_N20 + (result.Ts(end,i)+result.Ts(end,i+1))*result.r(i);
212
213
    sum_N20 = sum_N20 * 10.7 * 0.5 * result.h
214
215
    % integrate N=40
216 | load("effect_of_N_to_60.mat")
217 | result = results_vec{end-1};
218 | sum_N40 = 0;
219 \mid for i = [0:result.N+1-1]+1
220
221
        sum_N40 = sum_N40 + (result.Ts(end,i)+result.Ts(end,i+1))*result.r(i);
222
223
    sum_N40 = sum_N40 * 10.7 * 0.5 * result.h
224
225 % integrate N=60
```

−‰−

```
load("effect_of_N_to_60.mat")
226
227
    result = results_vec{end};
228
    sum_N60 = 0;
229
    for i = [0:result.N+1-1]+1
231
        sum_N60 = sum_N60 + (result.Ts(end,i)+result.Ts(end,i+1))*result.r(i);
232
233
    sum_N60 = sum_N60 * 10.7 * 0.5 * result.h
235
238
    239
    240
241
242
    function T = init_fuild(r_min, h, N)
243
        i = 0:1:N+1;
244
        r = r_min+h * i;
245
        T = 200 * (r - 0.5);
246
    end
247
248
    function T = set_BC(T, t)
249
        T(1)
               = t:
250
        T(end) = 100 + 40 * t;
251
    end
252
253
    function T_next = step_space_jacobi(T_current, r, K, h, delta_t, N)
254
        T_{-}next(1) = T_{-}current(1);
255
        T_{\text{next}}(N+1+1) = T_{\text{current}}(N+1+1);
256
        for i = [1:N]+1
257
            T_{\text{next}}(i) = T_{\text{current}}(i) + 4 * K * delta_t * ((T_{\text{current}}(i+1) - 2 * T_{\text{current}}(i))
                + T_{current(i-1)} / (h^2) + 1 / r(i) * (T_{current(i+1)} - T_{current(i-1)}) /
                (2*h));
258
            % T_next(i) = T_current(i) + 4 * K * delta_t * ((T_current(i+1) - 2 * T_current(i
                ) + T_next(i-1) / (h^2) + 1 / r(i) * (T_current(i+1) - T_next(i-1)) / (2*h))
                ;
259
        end
260
    end
261
262
     function converged = check_convergence(T_next, T_current, epsilon, N)
263
        converged = true;
264
        for i = [1:N]+1
            if abs(T_next(i) - T_current(i)) > epsilon
266
                converged = false;
267
                return
268
            end
269
        end
270
    end
271
272
    function T_next_t = solve_for_specific_t_jacobi(T_current_t, r, K, h, delta_t, N, epsilon
        , max_iteration)
273
        T_current = T_current_t;
274
        for n = 1:max_iteration
            T_next = step_space_jacobi(T_current, r, K, h, delta_t, N);
276
            if check_convergence(T_next, T_current, epsilon, N)
                break
278
            end
```

≎X÷

```
279
             T_current = T_next;
280
         end
281
         T_next_t = T_next;
282
    end
283
284
     function results = solver(r_min, r, K, h, delta_t, t_start, t_end, N, epsilon,
         max_iteration)
285
         T_current_t = init_fuild(r_min, h, N);
286
         t = t_start;
287
         Ts(1, :) = T_current_t;
288
289
         while t <= t_end
290
             fprintf('N: %d || R: %g || epsilon: %g || delta_t: %g || t: %6.4f/%g\n', N,
                 delta_t / h^2, epsilon, delta_t, t, t_end)
291
             T_current_t = set_BC(T_current_t, t);
292
             T_next_t = solve_for_specific_t_jacobi(T_current_t, r, K, h, delta_t, N, epsilon,
                  max_iteration);
293
             Ts(end+1, :) = T_next_t;
294
295
             t = t + delta_t;
296
             T_current_t = T_next_t;
297
         end
298
         results.Ts
                         = Ts;
299
         results.N
                          = N:
         results.r
                         = r;
         results.h
                          = h;
302
         results.delta_t = delta_t;
         results.epsilon = epsilon;
304
                         = delta_t / h^2;
         results.R
305
         results.t_vec
                         = delta_t*(0:1:t_end/delta_t);
306
     end
307
308
     function y = interpulate(x, x_vec, y_vec)
309
     % This function assume an ordered x_vec from low to high
         if x > x_vec(end) \mid \mid x < x_vec(1)
311
             fprintf('value out of bounds\n');
             return;
313
         end
314
         index_i = 0;
316
         for i = 1:length(x_vec)
             if x \ll x_vec(i)
318
                 index_i = i;
319
                 break;
             end
321
         end
         if x == x_vec(index_i)
324
             y = y_{vec(index_i)};
325
             return;
326
         end
327
328
         m = (y_vec(index_i+1) - y_vec(index_i)) / (x_vec(index_i+1) - x_vec(index_i));
         b = y_vec(index_i) - x_vec(index_i) * m;
         y = m * x + b;
332
    end
```

~**%**~

```
334
    function rms = RMS(x1, y1, x2, y2)
335
     \ensuremath{\$} This functions calcutlates the RMS value for 1 compared to 2
336
         y2_len_y1 = [];
337
         for i = 1:length(x1)
338
             y2_len_y1(i) = interpulate(x1(i), x2, y2);
339
         end
340
341
         rms = sqrt(sum((y1-y2_len_y1).^2)/length(y1));
342
     end
```

Listing 2: The main file