CS220 Discrete Math - Homework #3

Brendan Nguyen - brendan.nguyen001@umb.edu

February 17, 2022

Question 1

A, B,and Care sets.

$$(A - C) - (B - C) = (A \cap C^c) \cap (B \cap C^c)^c$$

$$= (A \cap C^c) \cap (B^c \cup C)$$

$$= ((A \cap C^c) \cap B^c) \cup ((A \cap C^c) \cap C)$$

$$= ((A \cap B^c) \cap C^c) \cup (A \cap (C^c \cap C))$$

$$= ((A \cap B^c) \cap C^c) \cup (A \cap \varnothing)$$

$$= ((A - B) - C) \cup \varnothing$$

$$= (A - B) - C$$

Question 2

By definition, f(x) is strictly increasing if:

$$\forall x \forall y (x < y \rightarrow f(x) < f(y))$$

Dividing the inequality f(x) < f(y) by the inequality f(x)f(y) > 0 results in:

$$\frac{1}{f(y)} < \frac{1}{f(x)}$$

The above inequality is equal to g(y) < g(x), therefore:

$$\forall x \forall y (x < y \rightarrow g(x) > g(y))$$

Conversely, we can prove the inverse by testing $g(x) = \frac{1}{f(x)}$ which is strictly decreasing:

$$\forall x \forall y (x < y \rightarrow g(x) > g(y))$$

Using $g(x) > g(y) \stackrel{\text{def}}{=} \frac{1}{f(x)} < \frac{1}{f(y)}$ that we proved previously, we get:

$$\forall x \forall y (x < y \rightarrow f(x) < f(y))$$

Meaning that f(x) is strictly increasing.

Question 3

- (a) $A_n = 1.09 \cdot A_{n-1}$ denotes the recurrence relation for the amount in the account at the end of n years.
- (b) $A_n = 1000 \cdot 1.09^n$ denotes the explicit formula for the amount in the account at the end of n years.
- (c) $A_{100} = 1000 \cdot 1.09^{100} = \$5,529,040.79$ is the amount of money in the account after 100 years.

Question 4

Question 5