Ferromagnetische formisotrope NiO-Nanopartikel

Marek Petrik, Clemens Pietzonka und Bernd Harbrecht Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität, 35032 Marburg

petrik@chemie.uni-marburg.de

EINLEITUNG

Nanoskalige antiferromagnetische Materialien, z. B. nanokristallines Nickeloxid (**nc-NiO**), sind im Gegensatz zur Bulk-Phase superparamagnetisch (bzw. ferromagnetisch unterhalb der Blocking-Temperatur). Obwohl seit mehr als 50 Jahren bekannt [1, 2], ist dieses Phänomen noch nicht aufgeklärt und wird in neuerer Zeit sowohl experimentell [3, 4] als auch theoretisch [5, 6] untersucht.

harbrecht@chemie.uni-marburg.de

WARUM NiO?

Für das Studium der magnetischen Anomalien in nanoskaligen Antiferromagnetika ist NiO als Testsystem besonders geeignet:

- \bullet Der Néel-Punkt ($T_N=523~K$) liegt weit über dem experimentell meist untersuchten Temperaturbereich von 4-350 K.
- Die chemische Zusammensetzung ist wohl definiert: NiO ist das einzige beständige Oxid des Nickels. Nickel liegt nur als Ni²⁺ vor.
- Kleine Partikel (unter 10 nm) sind leicht zugänglich, weil NiO aus geeigneten Vorläufern schon bei relativ niedrigen Temperaturen gebildet wird.

BEKANNTES

Bislang ist NiO für magnetische Untersuchungen fast ausschliesslich durch thermische Zersetzung von $Ni(OH)_2$ (Brucit-Struktur) hergestellt worden. Hierbei entsteht formanisotropes, plättchenförmiges ${\it nc-NiO}$ [1, 3].

- Bei Magnetisierungsmessungen im schwachen Feld korrelieren die superparamagnetischen Momente weder mit der Partikeloberfläche noch mit dem Partikelvolumen und sind nicht unabhängig von der Temperatur.
- Der Magnetismus hängt von der Nachbehandlung der Proben ab. Diese Beobachtungen sind vermutlich auf Austauschwechselwirkungen zwischen den superparamagnetischen Momenten zurückzuführen.

NEUE SYNTHESE

Durch oxidative Pyrolyse von amorphen oder semikristallinen Ni-Arylcarboxylaten oder anderen Ni-Salzen bei 220-390°C an Luft entsteht weitgehend formisotropes **nc-NiO**.

• Die Formisotropie wird durch Vergleich von röntgenographisch bestimmten Kristallitdurchmessern (Balken in Bild a-c) mit TEM-Aufnahmen belegt. Sie rührt von der amorphen Struktur des Precursors her.

• Die Oxidation verläuft quasi-autokatalytisch (die Reaktionsgeschwindigkeit nimmt kontinuierlich zu). Die Ausbeute beträgt bis zu 99,9 % d. Th., das nc-NiO enthält somit praktisch keine organischen Verunreinigungen.

• Der Kristallitdurchmesser des **nc-NiO** nimmt - wie bei der Zersetzung von Ni(OH)₂ - mit steigender Pyrolyse-Temperatur und Dauer des Nachtemperns zu und kann durch diese experimentellen Parameter kontrolliert werden.

MAGNETISMUS

Um bei den Magnetisierungsmessungen eine etwaige Austauschwechselwirkung zwischen den superparamagnetischen Momenten unwirksam zu machen, führen wir Hochfeldmessungen bis 5,5 T durch.

• Die Magnetisierung M (und somit auch die Suszeptibilität M/H bzw. ihr Kehrwert) als Funktion der Temperatur T kann nur dann durch die Langevin-Gleichung

$$M = N\mu \left[\coth \frac{\mu H \mu_{VAK}}{k_B T} - \frac{k_B T}{\mu H \mu_{VAK}} \right]$$

angefittet werden, wenn das superparamagnetische Moment μ als proportional zu $\mu_0(1\text{-BT})$ angesetzt wird, wobei B eine Konstante ist. Ein negativer linearer Temperaturkoeffizient ist für die spontane Magnetisierung von antiferromagnetischen Nanopartikeln theoretisch hergeleitet worden [5].

- Die Sättigungsmagnetisierung $M_s{=}N\mu_O$ (N ist die Zahl der superparamagnetischen Momente pro Gewichtseinheit) skaliert mit der inneren Oberfläche $A{=}n\pi d^2$ (n ist die Zahl der Kristallite, d der mittlere Durchmesser) gemäss $M_s{=}M_AA$. Das magnetische Moment pro Partikel als Funktion des Partikelvolumens wächst also mit dem Exponenten $S{=}2/3$.
- \bullet Der empirische Proportionalitätsfaktor $M_A,$ die Oberflächenmagnetisierung, hängt von der Formanisotropie der Partikel ab. Er variiert je nach dem benutzten Precursor um einen Faktor 2 (in der Abb.: $\log 2 = 0.3$). Das ist im Einklang mit dem beobachteten Aspekt-Verhältnis von ca. 6 bei plättchenförmigem nc-NiO aus Hydroxid [3]. Vorausgesetzt, dass das röntgenographisch bestimmte Partikelvolumen $1/6\pi d^3$ (d aus der Scherrer-Gleichung) auch bei ellipsoidförmigen Kristalliten annähend richtig ist, berechnet man theoretisch eine Zunahme der Partikeloberfläche um den Faktor 2, wenn sich das Aspektverhältnis von 1 nach 7,5 erhöht.

SCHLUSSFOLGERUNG

- Die thermische Zersetzung von amorphen oder semikristallinen Precursoren führt zu weitgehend formisotropem **nc-NiO**.
- Die aus Hochfeld-Magnetisierungsmessungen bestimmten superparamagnetischen Momente skalieren mit der Partikeloberfläche.
- \bullet Die Formanisotropie kann empirisch durch die spezifische Oberflächenmagnetisierung $M_{\rm A}$ beschrieben werden.
- Der negative Temperaturkoeffizient der superparamagnetischen Momente steht mit der Theorie für antiferromagnetische Nanopartikel in Einklang [5].

DANKSAGUNG

Wir danken A. K. Schaper, M. Hellwig und A. Weisbrod für die Hilfe bei der Anfertigung von HRTEM-Bildern.

- [1] W. O. Milligan, J. T. Richardson, J. Phys. Chem., 1955, 59, 831.
- [2] L. Néel, in Low Temp. Physics, C. DeWitt et al., eds., 1962, 413.
- [3] S. N. Klausen et al., Phys. Stat. Sol., (a), 2002, 189, 1039.
- [4] E. Winkler et al., *Phys. Rev.*, *B*, **2005**, *72*, 132409.
- [5] S. Mørup, B. R. Hansen, Phys. Rev., B, 2005, 72, 024418.
- [6] D. E. Madsen et al., J. Magn. Magn. Mater., 2006, 305, 95.