# The 3D Genome

Quantitative Biology 2022 10/14/22





### Scales of chromatin organization





## Hi-C



ightharpoonup CTCF

Cohesin

#### Hi-C



#### Hi-C

#### Advantages

- Whole genome interrogation
- (Relatively) unbiased coverage across all interacting elements

#### Disadvantages

- Requires a large number of cells (~5M)
- Requires a large number of sequenced reads (50M-2G)
- Does not capture transient interactions well
- Can only look at pairwise interactions

### Single cell Hi-C





Nagano, T. et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61–67 (2017).

### Single cell Hi-C



Use molecular dynamic simulation with interactions as attractive constraints to model chromatin configuration

### Hi-ChIP vs. capture-Hi-C



Schoenfelder S, Javierre BM, Furlan-Magaril M, Wingett SW, Fraser P. Promoter Capture Hi-C: High-resolution, Genome-wide Profiling of Promoter Interactions. J Vis Exp. 2018 Jun 28;(136):57320.

### Pairwise or multiway interactions?



### SPRITE (Split-Pool Recognition of Interactions by Tag Extension)



Quinodoz, S. A. et al. Higher-Order Inter-chromosomal Hubs Shape 3D Genome Organization in the Nucleus. Cell 0, (2018).

### SPRITE (Split-Pool Recognition of Interactions by Tag Extension)



Quinodoz, S. A. et al. Higher-Order Inter-chromosomal Hubs Shape 3D Genome Organization in the Nucleus. Cell 0, (2018).

#### SPRITE (Split-Pool Recognition of Interactions by Tag Extension)

#### Advantages

- Can identify multi-way interactions
- Can identify interactions when DNA is too far apart to ligate

#### Disadvantages

- Requires large number of cells (10M)
- Requires a large number of mapped reads (50M-500M)
- Laborious to perform

### GAM (genome architecture mapping)



Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519-524 (2017).

#### GAM (genome architecture mapping)



Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519-524 (2017).

### GAM (genome architecture mapping)

#### Advantages

- Can identify multi-way interactions
- Can identify any DNA regions in close proximity
- Requires a small number of cells (100s)
- Provides single-cell information

#### Disadvantages

Requires a large number of mapped reads (100M-1G)

#### Pore-C (Nanopore Concatemer Sequencing)



#### Pore-C (Nanopore Concatemer Sequencing)



### Pore-C (Nanopore Concatemer Sequencing)



#### Hi-C Bias

Given a symmetric matrix, multiply rows and columns by some vector of values such that the marginal means are all 1.



Matthey-Doret, C., Baudry, L., Mortaza, S., Moreau, P., Koszul, R., Cournac, A. (2022). Normalization of Chromosome Contact Maps: Matrix Balancing and Visualization. In: Bicciato, S., Ferrari, F. (eds). Hi-C Data Analysis. Methods in Molecular Biology, vol 2301. Humana, New York, NY.

#### Hi-C Bias



### TADs (topologically associated domains)



#### The world of TAD finders



#### Approach based on:

- Linear Score
- Statistical Model
- Clustering
- Network features

#### Percentage of Reads \*10-2 5 0.1 0.2 0.5 20 100 Reads (%) 2 2 5 10 50 0.2 0.3 0.8 1.6 3.1 7.9 16 31 79 157 2 3 8 Reads (x106) 14 21 56 1.4 2.1 5.6 22 55 112 216 550 1094 Cost\* (\$) IS 0.2 TopDom **TADbit** 0.5 HiCseg 0.5 Minimal % of reads required for MoC CaTCH 0.5 **HiTAD EAST** DI **CHDF TADtree** 2 MrTADFinder 2 2 matryoshka armatus 2 5 5 **PSYCHIC** HiCExplorer chromoR **ICFinder** 20 **GMAP** ٧ 20 0.75 arrowhead 20 spectral 50 ClusterTAD 100 3DNetMod 100 TAD Measure of Concordance (matrix resolution 50kb) \* estimation based on 150bp pair-end sequencing (2017)

Zufferey, M., Tavernari, D., Oricchio, E. et al. Comparison of computational methods for the identification of topologically associating domains. Genome Biol 19, 217 (2018).

#### Insulation Score



Mateo LJ, Murphy SE, Hafner A, Cinquini IS, Walker CA, Boettiger AN. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature. 2019 Apr;568(7750):49-54. doi: 10.1038/s41586-019-1035-4. Epub 2019 Mar 18.

### Calculating the insulation score

