# Lecture 10

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

# Lecture 10 – Tuesday 2/12/2013

- Block 1: Mole Balances
- Block 2: Rate Laws
- Block 3: Stoichiometry
- Block 4: Combine
- Definition of Selectivity
- Semibatch Reactors

# Selectivity in Multiple Reactions

$$A + B \xrightarrow{k_D} D$$
  $r_D = k_D C_A^2 C_B$  (Desired)  
 $A + B \xrightarrow{k_U} U$   $r_U = k_U C_A C_B^2$  (Undesired)

|               | Selectivity               | Yield                              |
|---------------|---------------------------|------------------------------------|
| Instantaneous | $S_{D/U} = r_D/r_U$       | $Y_D = r_D / - r_A$                |
| Overall       | $\hat{S}_{D/U} = F_D/F_U$ | $\hat{Y}_D = F_D / (F_{A0} - F_A)$ |

$$S_{D/U} = \frac{r_D}{r_U} = \frac{k_D C_A^2 C_B}{k_u C_A C_B^2} = \frac{k_D C_A}{k_U C_B}$$

Keep  $C_A$  high and  $C_B$  low.

- Semibatch reactors can be very effective in maximizing selectivity in liquid phase reactions.
- The reactant that starts in the reactor is always the limiting reactant.



## Semibatch reactors

$$A + B \rightarrow C + D$$



Liquid level and volume increase

1) Mass Balance:  $\frac{dm}{dt} = \dot{m}$ 

$$\frac{dm}{dt} = \dot{m}$$

$$\dot{m} = \upsilon_0 \rho_0 \qquad and \qquad m = V \rho_0$$

$$\frac{dm}{dt} = \rho_0 \frac{dV}{dt} = \rho_0 \upsilon_0$$

$$\frac{dV}{dt} = \upsilon_0$$

$$t = 0 \quad V = V_0$$

$$V = V_0 + \upsilon_0 t$$

1) Mole Balance on Species A:

$$\begin{aligned} &[\text{in}] - [\text{out}] + [\text{gen}] = [\text{acc}] \\ &0 - 0 + r_A V = \frac{dN_A}{dt} \\ &\frac{dN_A}{dt} = \frac{d[C_A V]}{dt} = V \frac{dC_A}{dt} + C_A \frac{dV}{dt} \end{aligned}$$

$$\frac{dV}{dt} = v_0$$

$$\frac{dC_A}{dt} = r_A - \frac{v_0 C_A}{V}$$

## 1) Mole Balance on Species B:

$$F_{B0} - 0 + r_B V = \frac{dN_B}{dt}$$

$$\frac{dN_B}{dt} = \frac{d[C_B V]}{dt} = V \frac{dC_B}{dt} + C_B \frac{dV}{dt}$$

$$F_{B0} = C_{B0} v_0$$

$$\frac{dV}{dt} = v_0$$

$$\frac{dC_B}{dt} = r_B + \frac{(C_{B0} - C_B)\nu_0}{V}$$

## 1) Mass and Mole Balance Summary

$$(1) \frac{dC_A}{dt} = r_A - \frac{v_0 C_A}{V}$$

$$(2) \frac{dC_B}{dt} = r_B - \frac{\upsilon_0(C_{B0} - C_B)}{V}$$

$$(3) \frac{dC_C}{dt} = r_C - \frac{v_0 C_C}{V}$$

$$(4) \frac{dC_D}{dt} = r_D - \frac{\upsilon_0 C_D}{V}$$

$$(5) V = V_0 + \upsilon_0 t$$

(5) 
$$V = V_0 + v_0 t$$

2) Rate Laws

- $(6) r_A = kC_A C_B$
- 3) Stoichiometry
- $\frac{-r_A}{1} = \frac{-r_B}{1} = \frac{r_C}{1} = \frac{r_D}{1}$ 
  - $(7) \quad r_B = r_A$
  - $(8) \quad r_C = -r_A$
  - $(9) \quad r_D = -r_A$
  - (10)  $X = \frac{N_{A0} N_A}{N_{A0}}$
  - (11)  $N_{A0} = C_{A0}V_0$
  - (12)  $N_A = C_A V$

4) Parameters

 $C_{A0}, V_0, \nu_0, k, C_{B0}$ 

## **POLYMATH Report**

**Ordinary Differential Equations** 

Calculated values of DEQ variables

|    | Variable | Initial value | Minimal value | Maximal value | Final value |
|----|----------|---------------|---------------|---------------|-------------|
| 1  | Ca       | 0.05          | 7.731E-06     | 0.05          | 7.731E-06   |
| 2  | Cao      | 0.05          | 0.05          | 0.05          | 0.05        |
| 3  | Cb       | 0             | 0             | 0.0125077     | 0.0125077   |
| 4  | Cbo      | 0.025         | 0.025         | 0.025         | 0.025       |
| 5  | Cc .     | 0             | 0             | 0.0121468     | 0.0083256   |
| 6  | Cd       | 0             | 0             | 0.0121468     | 0.0083256   |
| 7  | k        | 2.2           | 2.2           | 2.2           | 2.2         |
| 8  | ra       | 0             | -0.0001644    | 0             | -2.127E-07  |
| 9  | rate     | 0             | 0             | 0.0001644     | 2.127E-07   |
| 10 | t        | 0             | 0             | 500.          | 500.        |
| 11 | ٧        | 5.            | 5.            | 30.           | 30.         |
| 12 | vo       | 0.05          | 0.05          | 0.05          | 0.05        |
| 13 | Vo       | 5.            | 5.            | 5.            | 5.          |
| 14 | х        | 0             | 0             | 0.9990722     | 0.9990722   |

## Differential equations

$$1 d(Ca)/d(t) = ra- vo*Ca/V$$

$$2 d(Cb)/d(t) = ra+ (Cbo-Cb)*vo/V$$

$$3 d(Cc)/d(t) = -ra-vo*Cc/V$$

$$4 d(Cd)/d(t) = -ra-vo*Cd/V$$

## **Explicit equations**

$$1 \text{ vo} = 0.05$$

$$2 \text{ Vo} = 5$$

$$3 V = Vo + vo*t$$

$$4 k = 2.2$$

$$5 \text{ Cbo} = 0.025$$

$$6 \text{ ra} = -k*Ca*Cb$$

$$7 \text{ Cao} = 0.05$$

$$9 X = (Cao*Vo-Ca*V)/(Cao*Vo)$$





# Equilibrium Conversion in Semibatch Reactors with Reversible Reactions

Consider the following reaction:

$$A + B \longrightarrow C + D$$

Everything is the same as for the irreversible case, except for the rate law:

$$-r_A = k_A \left[ C_A C_B - \frac{C_C C_D}{K_C} \right]$$

# Equilibrium Conversion in Semibatch Reactors with Reversible Reactions

Where:

$$C_{A} = \frac{N_{A0}(1-X)}{V}$$

$$C_{B} = \frac{(F_{B0}t - N_{A0}X)}{V}$$

$$C_{C} = C_{D} = \frac{N_{A0}X}{V}$$

At equilibrium,  $-r_A = 0$  then

$$K_{C} = \frac{C_{Ce}C_{De}}{C_{Ae}C_{Be}} = \frac{N_{Ce}N_{De}}{N_{Ae}N_{Be}} = \frac{N_{A0}X_{e}^{2}}{(1 - X_{e})(F_{B0}t - N_{A0}X_{e})}$$

X<sub>e</sub> changes with time.

# P6-6<sub>B</sub> - Semibatch Reactors

Sodium Bicarbonate + Ethylene Chlorohydrin  $\rightarrow$  Ethylene Glycol + NaCl + CO<sub>2</sub> $\uparrow$ 

$$NaCHO_3 + CH_2OHCH_2CI \rightarrow (CH_2OH)_2 + NaCI + CO_2 \uparrow$$

$$A + B \rightarrow C + D + CO_2 \uparrow$$



# P6-6<sub>R</sub> - Semibatch Reactors

Semibatch Reactors in terms of Moles

$$A + B \rightarrow C + D + CO_2$$

## **Mole Balances**

$$A (1) \frac{dN_a}{dt} = r_A V$$

$$B \qquad (2) \quad \frac{dN_b}{dt} = F_{B0} + r_B V$$

$$C (3) \frac{dN_c}{dt} = r_C V$$

$$D (4) N_D = N_C$$

$$O \qquad (4) \quad N_D = N_C$$

$$CO_2 \qquad 0 = -F_{CO_2} + r_{CO_2}V$$

$$(5) \quad F_{CO_2} = r_{CO_2} V$$

$$-r_{A} = -r_{B} = r_{C} = r_{D} = r_{CO_{2}}$$

$$(6) \quad \frac{dV}{dt} = v_0 - v_{CO_2}$$

$$(7) \quad v_{CO_2} = \frac{F_{CO_2}MWCO_2}{RHO}$$

$$(8) \quad MW = 44$$

$$(9) \quad RHO = 1000$$

$$(10) \quad C_a = N_A/V$$

$$(11) \quad C_B = N_B/V$$

$$(12) \quad r_A = -kC_AC_B$$

$$(13) \quad X = \frac{N_{a0} - N_a}{N_{a0}}$$

$$(14) \quad N_{a0} = V_0C_{a0}$$
Rest of the Polymath Statements

Similar to Concentration Program

## P6-6 Semibatch: Moles, N<sub>a</sub>, N<sub>b</sub>, etc.

### **POLYMATH Report**

**Ordinary Differential Equations** 

Calculated values of DEQ variables

|    | Variable | Initial value | Minimal value | Maximal value | Final value |
|----|----------|---------------|---------------|---------------|-------------|
| 1  | Ca       | 0.75          | 8.845E-14     | 0.75          | 8.845E-14   |
| 2  | Cao      | 0.75          | 0.75          | 0.75          | 0.75        |
| 3  | СЬ       | 0             | 0             | 0.15303       | 0.15303     |
| 4  | Cbo      | 1.5           | 1.5           | 1.5           | 1.5         |
| 5  | Cc       | 0             | 0             | 0.4967829     | 0.45909     |
| 6  | Cd       | 0             | 0             | 0.4967829     | 0.45909     |
| 7  | Fbo      | 6.            | 6.            | 6.            | 6.          |
| 8  | FCO2     | 0             | 0             | 5.987114      | 1.692E-10   |
| 9  | k        | 5.1           | 5.1           | 5.1           | 5.1         |
| 10 | MWCO2    | 44.           | 44.           | 44.           | 44.         |
| 11 | Na       | 1125.         | 2.167E-10     | 1125.         | 2.167E-10   |
| 12 | Nao      | 1125.         | 1125.         | 1125.         | 1125.       |
| 13 | Nb       | 0             | 0             | 375.          | 375.        |
| 14 | Nc       | 0             | 0             | 1125.         | 1125.       |
| 15 | ra       | 0             | -0.0039389    | 0             | -6.903E-14  |
| 16 | rho      | 1000.         | 1000.         | 1000.         | 1000.       |
| 17 | t        | 0             | 0             | 250.          | 250.        |
| 18 | ٧        | 1500.         | 1500.         | 2450.5        | 2450.5      |
| 19 | vCO2     | 0             | 0             | 0.263433      | 7.443E-12   |
| 20 | vo       | 4.            | 4.            | 4.            | 4.          |
| 21 | х        | 0             | 0             | 1.            | 1.          |

### **Differential equations**

$$1 d(V)/d(t) = vo-vCO2$$

$$2 d(Nc)/d(t) = -ra*V$$

$$3 d(Nb)/d(t) = Fbo+ra*V$$

$$4 d(Na)/d(t) = ra*V$$

### **Explicit equations**

1 
$$Cbo = 1.5$$

3 
$$Cao = 0.75$$

$$5 \text{ Nao} = 1125$$

$$7 k = 5.1$$







## P6-6 Semibatch: Concentrations C<sub>A</sub>, C<sub>B</sub>, C<sub>C</sub>

#### **POLYMATH Report**

**Ordinary Differential Equations** 

Calculated values of DEQ variables

|    | Variable | Initial value | Minimal value | Maximal value | Final value |
|----|----------|---------------|---------------|---------------|-------------|
| 1  | Ca       | 0.75          | 8.846E-14     | 0.75          | 8.846E-14   |
| 2  | Cao      | 0.75          | 0.75          | 0.75          | 0.75        |
| 3  | СЬ       | 0             | 0             | 0.15303       | 0.15303     |
| 4  | Cbo      | 1.5           | 1.5           | 1.5           | 1.5         |
| 5  | Cc       | 0             | 0             | 0.496826      | 0.45909     |
| 6  | CC       | 0             | 0             | 0.496827      | 0.45909     |
| 7  | Cd       | 0             | 0             | 0.496827      | 0.45909     |
| 8  | Fbo      | 6.            | 6.            | 6.            | 6.          |
| 9  | FCO2     | 0             | 0             | 5.987132      | 1.692E-10   |
| 10 | k        | 5.1           | 5.1           | 5.1           | 5.1         |
| 11 | MWCO2    | 44.           | 44.           | 44.           | 44.         |
| 12 | Na       | 1125.         | 2.168E-10     | 1125.         | 2.168E-10   |
| 13 | Nao      | 1125.         | 1125.         | 1125.         | 1125.       |
| 14 | NC       | 0             | 0             | 1125.         | 1125.       |
| 15 | Nc       | 0             | 0             | 1125.         | 1125.       |
| 16 | ra       | 0             | -0.0039413    | 0             | -6.904E-14  |
| 17 | rate     | 0             | 0             | 0.0039413     | 6.904E-14   |
| 18 | rho      | 1000.         | 1000.         | 1000.         | 1000.       |
| 19 | t        | 0             | 0             | 250.          | 250.        |
| 20 | v        | 1500.         | 1500.         | 2450.5        | 2450.5      |
| 21 | vCO2     | 0             | 0             | 0.2634338     | 7.444E-12   |
| 22 | vo       | 4.            | 4.            | 4.            | 4.          |
| 23 | Vo       | 1500.         | 1500.         | 1500.         | 1500.       |
| 24 | х        | 0             | 0             | 1.            | 1.          |

### **Differential equations**

$$1 d(Ca)/d(t) = ra + ((vo-vCO2) / V) * ( - Ca)$$

$$2 d(Cb)/d(t) = ra + vo*Cbo/V + ((vo-vCO2) / V) * (-Cb)$$

$$3 d(Cc)/d(t) = -ra + ((vo-vCO2) / V) *(-Cc)$$

$$4 d(V)/d(t) = vo-vCO2$$

### **Explicit equations**

$$3 \text{ Cao} = 0.75$$

$$6 k = 5.1$$

$$10 \text{ rho} = 1000$$

rho=1000g per dm^3





Three Forms of the Mole Balances applied to Semibatch Reactors:

| 1. Molar Basis         | $\frac{dN_A}{dt} = r_A V$               |                                                              |
|------------------------|-----------------------------------------|--------------------------------------------------------------|
|                        | $\frac{dN_B}{dt} = F_{B0} + r_B V$      |                                                              |
| 2. Concentration Basis |                                         | $\frac{dN_A}{dt} = r_A V$ $\frac{dN_B}{dt} = F_{B0} + r_B V$ |
| 3. Conversion          | $\frac{dX}{dt} = \frac{-r_A V}{N_{A0}}$ |                                                              |

Consider the following elementary reaction:

$$A+B \rightarrow C+D$$
  
 $-r_{\Delta}=kC_{\Delta}C_{B}$ 

The combined Mole Balance, Rate Law, and Stoichiometry may be written in terms of number of moles, conversion, and/or concentration:

| Conversion                                                              | Concentration                                                     | No. of Moles                       |  |
|-------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------|--|
| $\frac{dX}{dt} = \frac{k(1-X)(N_{Bi} + F_{B0}t - N_{A0}X)}{V_0 + v_0t}$ | $\frac{dC_A}{dt} = r_A - C_A \frac{v_0}{V}$                       | $\frac{dN_A}{dt} = r_A V$          |  |
| 26                                                                      | $\frac{dC_B}{dt} = r_A + \left(C_{B0} - C_B\right) \frac{v_0}{V}$ | $\frac{dN_B}{dt} = F_{A0} + r_B V$ |  |

# Polymath Equations

| Conversion                   | Concentration                     | Moles                   |
|------------------------------|-----------------------------------|-------------------------|
| d(X)/d(t) = -ra*V/Nao        | d(Ca)/d(t) = ra - (Ca*vo)/V       | d(Na)/d(t) = ra*V       |
| ra = -k*Ca*Cb                | d(Cb)/d(t) = rb + ((Cbo-Cb)*vo)/V | d(Nb)/d(t) = rb*V + Fbo |
| Ca = Nao*(1 - X)/V           | ra = -k*Ca*Cb                     | ra = -k*Ca*Cb           |
| Cb = (Nbi + Fbo*t - Nao*X)/V | rb = ra                           | rb = ra                 |
| V = Vo + vo*t                | V = Vo + vo*t                     | V = Vo + vo*t           |
| Vo = 100                     | Vo = 100                          | Vo = 100                |
| vo = 2                       | vo = 2                            | vo = 2                  |
| Nao = 100                    | Fbo = 5                           | Fbo = 5                 |
| Fbo = 5                      | Nao = 100                         | Ca = Na/V               |
| Nbi = 0                      | Cbo = Fbo/vo                      | Cb = Nb/V               |
| k = 0.1                      | k = 0.01                          | k = 0.01                |
|                              | Na = Ca*V                         |                         |
|                              | X = (Nao-Na)/Nao                  |                         |

# End of Lecture 10