LAB2-2 Performance Profiling

0551287 張為舜

CPU

1. 透過觀察可以得知當VM需要兩個CPU做運算時,實體主機也會將兩個CPU分配給VM做運算,也就是會將虛擬主機需要的運算資源對應到實體伺服器的CPU核心,使得虛擬主機得以進行運算,而實體主機的其他CPU則保持正常狀態。

紅圈圈起處為CPU運行pro_1.c時的狀態,可以發現cpu1與cpu2的使用率升到很高,而cpu3和cpu4則保持不變。

2.1 請解釋CPU Ready time

CPU Ready time 表示 Virtual CPU 準備要運行但是還在等 待調度到 Physical CPU 的時間

2.2

VM-1	VM-2	Ready Time		Execution	
				time	
n/2	n/2	1.85/s	1.931/s	300/s	320/s
n/4+1	n/4+1	13.082/s	13.633/s	380/s	380/s
n	n	33.954/s	31.744/s	400/s	400/s

Memory

1 請解釋Memory Ballooning

Balloon在實體記憶體充足的時候是不會啟動的。 當VM的RAM越要越多,VMkernel沒辦法再供應足夠實體記憶體的時候,Balloon就會開始將氣球膨脹,慢慢越變越大,不斷地佔據VM的Available Memory,Guest OS就

會發現到有一個應用程式一直在吃掉它的記憶體,就真正察覺到記憶體已經不夠用,便會自行先Paging,這個氣球是空心的,當它就開始膨脹,就會佔據Guest OS原本的記憶體,使Guest OS自己開始做Swap,將部分資料放置於Disk,等到VMkernel又開始有實體記憶體可以分配給VM的時候,氣球就可以縮小體積,Guest OS便會察覺自己又有RAM了,於是會將硬碟上的資料再搬回來,恢復正常的效能。

2

VM-1	VM-2	Memory		Balloon	
		consumed		memory	
n X 50%	n X 50%	2.02G	2.03G	0.83G	0.8G
n X 60%	n X 60%	2.025G	2.02G	1.25G	1.23G
n X 70%	n X 50%	2.35G	1.71G	1.35G	1.2G

3

請在vSphere中安裝兩台虛擬機器,在上面執行相同的workload, 並觀察兩台機器memory sharing的狀況,並附上performance

monitor的截圖在報告中。

VM-1

VM-2

兩台虛擬機的 shared memory 都大幅提高 代表有 memory sharing 的狀況