Lab 6 Solutions - The Case of Prolaco

Lab 6 - The Case of Prolaco

While monitoring for security events, you determine that one of the host (192.168.1.100) is sending a spam email, you suspect this host to be infected with a spambot, you collect the memory image (prolaco.vmem) from the host. use memory image prolaco.vmem to answer below questions:

- Does the network connection show any indication of host sending the spam?
- Can you determine the malicious process id that is responsible for spam activity?
- Can you determine the name of the malicious process that is sending the spam?
- Can you dump the malicious process from the memory?
- Can you confirm, if the dumped process is malicious?
- Can you determine any unique indicator associated with this malware?
- Is there any other process that is related to the malicious process?

Answers

01. Does the network connection show any indication of the host sending the spam?

Running the connscan plugin shows a process with process id 1700 communicating on the SMTP port 25.

02. Can you determine the malicious process id that is responsible for spam activity?

Process id responsible for sending the spam activity is 1700 as shown in the screenshot

03. Can you determine the name of the malicious process that is sending the spam?

The name of the malicious process is "**nvid.exe**", the **pslist** plugin does not show the presence of the process with pid **1700**, whereas **psscan** and **psxview** plugin shows its presence indicating that the attackers unlinked this process from the double-linked list used by the operating system to keep track of active processes.

root@kratos:~/Volatility# python vol.py -f prolaco.vmem pslist -p 1700
Volatility Foundation Volatility Framework 2.5
ERROR : volatility.debug : Cannot find PID 1700. If its terminated or unlinked, u se psscan and then supply --offset=OFFSET

0x00000000015cf5a0	svchost.exe	1052	700	0x08440120	2014-06-11	14:49:38	UTC+0000
0x00000000015d7688	svchost.exe	884	700	0x084400e0	2014-06-11	14:49:37	UTC+0000
0x00000000015dcla8	winlogon.exe	656	380	0x08440060	2014-06-11	14:49:37	UTC+0000
0x00000000016aeda0	vmacthlp.exe	868	700	0х084400с0	2014-06-11	14:49:37	UTC+0000
0x00000000016ba360	nvid.exe	1700	1660	0x08440320	2014-10-17	09:16:10	UTC+0000
0x0000000016d8380	smss.exe	380	4	0x08440020	2014-06-11	14:49:36	UTC+0000
0x0000000001706c68	spoolsv.exe	1388	700	0x084401a0	2014-06-11	14:49:40	UTC+0000

Offset(P) tTime	Name	PID	pslist	psscan	thrdproc	pspcid	csrss	session	deskthrd	Exi
0x01956b08	alg.exe	564	True	True	True	True	True	True	True	
0x01857910	lsass.exe	712	True	True	True	True	True	True	True	
0x01964da0	VMUpgradeHelper	224	True	True	True	True	True	True	True	
0x01945da0	wuauclt.exe	1452	True	True	True	True	True	True	True	
0x019e2818	svchost.exe	1112	True	True	True	True	True	True	True	
0x01587710	explorer.exe	1456	True	True	True	True	True	True	True	
0x01859020	services.exe	700	True	True	True	True	True	True	True	
0x015dc1a8	winlogon.exe	656	True	True	True	True	True	True	True	
0x015254b0	wmiprvse.exe	420	True	True	True	True	True	True	True	
0x015d7688	svchost.exe	884	True	True	True	True	True	True	True	
0x015b0da0	vmtoolsd.exe	1984	True	True	True	True	True	True	True	
0x01578a10	VMwareTray.exe	1680	True	True	True	True	True	True	True	
0x0156a0e8	ctfmon.exe	1764	True	True	True	True	True	True	True	
0x016aeda0	vmacthlp.exe	868	True	True	True	True	True	True	True	
0x0170b020	svchost.exe	1184	True	True	True	True	True	True	True	
0x0193b850	VMwareUser.exe	1688	True	True	True	True	True	True	True	
0x01576558	ZoomIt.exe	1716	True	True	True	True	True	True	True	
0x01553c88	lsass.exe	1664	True	True	True	True	True	True	True	
0x016ba360	nvid.exe	1700	False	True	True	True	True	True	True	
0x01af5d10	svchost.exe	964	True	True	True	True	True	True	True	
	-		The second second				_	_		

04. Can you dump the malicious process from the memory?

The malicious process cannot be dumped by giving the **-p** option to the **procdump** plugin as this process is hidden. To dump the malicious process we can use the physical offset (determined from the **psscan** or **psxview** output) and then use the **-o** option as shown in the below screenshot.

```
root@kratos:~/Volatility# python vol.py -f prolaco.vmem procdump -o 0x000000000016ba360 -D dump/
Volatility Foundation Volatility Framework 2.5
Process(V) ImageBase Name Result

0x814ba360 0x00400000 nvid.exe OK: executable.1700.exe 
root@kratos:~/Volatility# □
```

05. Can you confirm, if the dumped process is malicious?

Submitting the dumped process to VirusTotal confirms it to be malicious as shown in the screenshot

Antivirus	Result	Update
Ad-Aware	Gen:Trojan.Heur.uyW@XYXrJCci	20161215
AegisLab	DangerousObject.Multi.Generic!c	20161215
AhnLab-V3	Trojan/Win32.Buzus.C83857	20161215
Arcabit	Trojan.Heur.EFFFF1	20161215
AVG	Worm/Generic2.CKMF	20161215
Avira (no cloud)	WORM/Prolaco.C.10	20161215
AVware	Worm.Win32.Prolaco.gen (v)	20161215
Baidu	Win32.Trojan.WisdomEyes.16070401.9500.9995	20161207
BitDefender	Gen:Trojan.Heur.uyW@XYXrJCci	20161215
Comodo	UnclassifiedMalware	20161215
CrowdStrike Falcon (ML)	malicious_confidence_100% (D)	20161024
DrWeb	Trojan.Spambot.10329	20161215

06. Can you determine any unique indicator associated with this malware?

Inspecting the handles of the malicious process using its physical offset shows a Mutex created by the malware. This can be used as a unique indicator.

```
root@kratos:~/Volatility# python vol.py -f prolaco.vmem handles -o 0x0000000016ba360 -t Mutant
 --silent
Volatility Foundation Volatility Framework 2.5
                                                          Details
              Pid
Offset(V)
                      Handle
                                 Access Type
0x814b58f8
                        0x3c
                               0x1f0001 Mutant
                                                          Googlxe.exeDm28sf0V@XK$NX8hOu
             1700
                        0xf0
                                                          !MSFTHISTORY!
0x81647b78
             1700
                               0x100000 Mutant
                                                          c:!documents and settings!administrato
             1700
0x81369460
                        0xf4
                               0x100000 Mutant
r!local settings!temporary internet files!content.ie5!
0x813847c8
                                                          c:!documents and settings!administrato
                               0x100000 Mutant
             1700
                       0x104
r!cookies!
                                                          c:!documents and settings!administrato
0x813845f0
                       0x110
             1700
                               0x100000 Mutant
r!local settings!history!history.ie5!
                                                          WininetStartupMutex
0x81689ea8
             1700
                       0x11c
                               0x100000 Mutant
```

07. Is there any other process that is related to the malicious process?

psscan plugin can be used to get the parent-child relationship; this can be done by dumping it in dot format and opening it a dot viewer. From the below screenshot it can be seen that malicious process **nvid.exe** (**pid 1700**) was created by a process **nvid.exe** (**pid 1660**) and malicious process **nvid.exe** (**1700**) in turn created the rundll45.exe process

root@kratos:~/Volatility# python vol.py -f prolaco.vmem psscan --output=dot --output-file=prola
co.dot
Volatility Foundation Volatility Framework 2.5
Outputting to: prolaco.dot

