Q-1

Due Aug 26 at 11:59pm	Points 100	Questions 5	
Available Aug 25 at 11am -	Aug 26 at 11:59pr	m 1 day Time Limit 30 Minutes	

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	26 minutes	40 out of 100 *

^{*} Some questions not yet graded

Score for this quiz: 40 out of 100 *

Submitted Aug 25 at 2:48pm This attempt took 26 minutes.

Question 1

Not yet graded / 20 pts

Use one sentence to explain the difference between embedded and desktop computers.

Your Answer:

Embedded systems have a very specific, or set of, purpose(s) where desktops have a much wider and general purpose.

Desktop computers is general purpose and can execute different applications, while embedded computers are special purpose and can only perform specific tasks.

Question 2

Not yet graded / 20 pts

What are the two main driving forces behind computer performance improvement in the last several decades?

Your Answer:

1. Improvements in semiconductor technology, ie: Feature size, clock speed, cost.

2. Improvements in computer architectures, ie: Enabled by high-level language compiles, UNIX and Lead to RISC architectures.

	Question 3	20 / 20 pts
	Power is a better metric to measure computer efficiency	
	True	
Correct!	• False right	

	Question 4	20 / 20 pts
	The higher the clock frequency is, the more heat a computer ger	ierates.
Correct!	True	

Right	
False	

Question 5

Not yet graded / 20 pts

What are the possible consequences of high heat dissipation?

Your Answer:

- 1. Hardware can be damaged.
- 2. Hardware can fail completely.
- 3. Hard to cool, air cooling can only go so far.
- 4. Cooling can cost more than HW, ie: with quantum computers, the cooling requires more power/energy than the chip does.

More powerful cool equipment is needed, which increase system cost, or heat may damage or destroy computer.

Quiz Score: 40 out of 100

https://usflearn.instructure.com/courses/1294588...