Cyclistic Case Study Q1_2021

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for 2021's first quarter.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

```
library(tidyverse)
library(lubridate)
library(data.table)
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Jan21 <- read_csv("202101-divvy-tripdata.csv")
Feb21 <- read_csv("202102-divvy-tripdata.csv")
Mar21 <- read_csv("202103-divvy-tripdata.csv")</pre>
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**. Then, we need to combine all data one dataframe. Then we examine dataframes to find dimensions, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

```
colnames(Feb21)
```

```
colnames(Mar21)
```

Since all column names are the same. We can combine the data for each month into quarters.

```
q1_2021 <- bind_rows(Jan21, Feb21, Mar21)
```

View(q1_2021)

```
nrow(q1_2021)
```

```
## [1] 374952
```

```
dim(q1_2021)
```

```
## [1] 374952 13
```

head(q1_2021)

```
## # A tibble: 6 × 13
                    ridea…¹ started_at
##
   ride id
                                                                        start...2 start...3
                                                   ended at
                     <chr> <dttm>
##
                                                   <dttm>
## 1 E19E6F1B8D4C4... electr... 2021-01-23 16:14:19 2021-01-23 16:24:44 Califo... 17660
## 2 DC88F20C2C55F... electr... 2021-01-27 18:43:08 2021-01-27 18:47:12 Califo... 17660
## 3 EC45C94683FE3... electr... 2021-01-21 22:35:54 2021-01-21 22:37:14 Califo... 17660
## 4 4FA453A75AE37... electr... 2021-01-07 13:31:13 2021-01-07 13:42:55 Califo... 17660
## 5 BE5E8EB4E7263... electr... 2021-01-23 02:24:02 2021-01-23 02:24:45 Califo... 17660
## 6 5D8969F88C773... electr... 2021-01-09 14:24:07 2021-01-09 15:17:54 Califo... 17660
## # ... with 7 more variables: end station name <chr>, end station id <chr>,
## # start lat <dbl>, start lng <dbl>, end lat <dbl>, end lng <dbl>,
       member_casual <chr>, and abbreviated variable names ¹rideable_type,
## #
       <sup>2</sup>start station name, <sup>3</sup>start station id
```

tail(q1 2021)

```
## # A tibble: 6 × 13
##
    ride id
                     ridea…¹ started_at
                                                  ended at
                                                                       start...2 start...3
                     <chr> <dttm>
                                                                       <chr> <chr>
##
    <chr>
                                                  <dttm>
## 1 081549DEA616C... electr.. 2021-03-14 01:59:38 2021-03-14 03:13:09 Larrab... TA1309...
## 2 9397BDD14798A... docked... 2021-03-20 14:58:56 2021-03-20 17:22:47 Michig... 13042
## 3 BBBEB8D51AAD4... classi... 2021-03-02 11:35:10 2021-03-02 11:43:37 Kingsb... KA1503...
## 4 637FF754DA0BD... classi... 2021-03-09 11:07:36 2021-03-09 11:49:11 Michig... 13042
## 5 F8F43A0B978A7... classi... 2021-03-01 18:11:57 2021-03-01 18:18:37 Kingsb... KA1503...
## 6 3AE64EA5BF43C... electr... 2021-03-26 17:58:14 2021-03-26 18:06:43 <NA>
## # ... with 7 more variables: end_station_name <chr>, end_station_id <chr>,
     start lat <dbl>, start lng <dbl>, end lat <dbl>, end lng <dbl>,
## #
       member_casual <chr>, and abbreviated variable names ¹rideable_type,
## #
       2start_station_name, 3start_station_id
```

summary(q1_2021)

```
##
     ride_id
                      rideable_type
                                           started at
                                         Min. :2021-01-01 00:02:05.0
##
   Length: 374952
                      Length: 374952
##
    Class :character
                      Class :character
                                         1st Qu.:2021-01-29 19:27:50.0
                      Mode :character
   Mode :character
##
                                         Median :2021-03-08 16:10:06.5
##
                                         Mean :2021-02-26 11:12:08.9
##
                                         3rd Qu.:2021-03-21 13:36:25.0
##
                                              :2021-03-31 23:59:08.0
##
##
      ended at
                                    start station name start station id
##
   Min. :2021-01-01 00:08:39.00
                                    Length: 374952
                                                      Length:374952
   1st Ou.:2021-01-29 19:40:06.50
                                    Class :character
                                                      Class :character
##
   Median :2021-03-08 16:32:02.50
                                    Mode :character Mode :character
   Mean :2021-02-26 11:33:15.50
##
   3rd Qu.:2021-03-21 14:06:50.25
##
##
   Max. :2021-04-06 11:00:11.00
##
##
    end station name
                      end station id
                                           start lat
                                                           start_lng
##
   Length: 374952
                      Length: 374952
                                         Min. :41.64
                                                         Min. :-87.78
   Class :character
                      Class :character
                                         1st Qu.:41.88
                                                         1st Qu.:-87.66
##
                      Mode :character
                                         Median :41.90
                                                         Median :-87.64
   Mode :character
                                         Mean :41.90
##
                                                         Mean :-87.65
##
                                         3rd Qu.:41.93
                                                         3rd Qu.:-87.63
##
                                         Max. :42.07
                                                         Max. :-87.53
##
##
      end lat
                      end lng
                                    member casual
                   Min. :-88.07
##
   Min.
         :41.54
                                    Length: 374952
   1st Qu.:41.88
                   1st Qu.:-87.66
##
                                    Class :character
                                    Mode :character
##
   Median :41.90
                   Median :-87.64
##
   Mean :41.90
                   Mean :-87.65
##
   3rd Qu.:41.93
                   3rd Qu.:-87.63
   Max. :42.08
                   Max. :-87.51
##
##
   NA's :484
                   NA's :484
```

```
## spc_tbl_[374,952 \times 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
                       : chr [1:374952] "E19E6F1B8D4C42ED" "DC88F20C2C55F27F" "EC45C94683FE3F27" "4FA453A75AE377
## $ ride_id
DB" ...
                       : chr [1:374952] "electric bike" "electric bike" "electric bike" ...
## $ rideable type
                       : POSIXct[1:374952], format: "2021-01-23 16:14:19" "2021-01-27 18:43:08" ...
##
   $ started at
                       : POSIXct[1:374952], format: "2021-01-23 16:24:44" "2021-01-27 18:47:12"
##
   $ ended at
## $ start station name: chr [1:374952] "California Ave & Cortez St" "California Ave & Cortez St" "California Av
e & Cortez St" "California Ave & Cortez St" ...
## $ start station id : chr [1:374952] "17660" "17660" "17660" "17660" ...
## \ end_station_name : chr [1:374952] NA NA NA NA ...
## $ end_station_id : chr [1:374952] NA NA NA NA ..
##
   $ start lat
                       : num [1:374952] 41.9 41.9 41.9 41.9 ...
##
   $ start_lng
                       : num [1:374952] -87.7 -87.7 -87.7 -87.7 ...
##
   $ end_lat
                       : num [1:374952] 41.9 41.9 41.9 41.9 ...
##
                       : num [1:374952] -87.7 -87.7 -87.7 -87.7 ...
   $ end lna
                       : chr [1:374952] "member" "member" "member" "member" ...
##
   $ member_casual
##
    - attr(*, "spec")=
##
    .. cols(
##
         ride id = col character(),
     . .
##
         rideable_type = col_character(),
     . .
         started_at = col_datetime(format = ""),
##
         ended_at = col_datetime(format = ""),
##
##
         start_station_name = col_character(),
##
         start_station_id = col_character(),
##
         end station name = col character(),
     . .
##
         end station id = col character(),
     . .
##
         start lat = col double(),
         start lng = col double(),
##
     . .
##
         end lat = col double(),
     . .
##
     .. end_lng = col_double(),
##
     . .
         member_casual = col_character()
##
    ..)
##
    - attr(*, "problems")=<externalptr>
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
q1_2021$date <- as.Date(q1_2021$started_at)
q1_2021$month <- format(as.Date(q1_2021$date), "%m")
q1_2021$month <- month.name[as.numeric(q1_2021$month)]
q1_2021$day <- format(as.Date(q1_2021$date), "%d")
q1_2021$year <- format(as.Date(q1_2021$date), "%Y")
q1_2021$day_of_week <- format(as.Date(q1_2021$date), "%A")
q1_2021$ride_length <- difftime(q1_2021$ended_at,q1_2021$started_at)</pre>
```

Convert ride_length column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed

```
is.numeric(q1_2021$ride_length)
```

```
## [1] FALSE
```

Recheck ride_length data type.

```
q1_2021$ride_length <- as.numeric(as.character(q1_2021$ride_length))
is.numeric(q1_2021$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
q1_2021 <- na.omit(q1_2021)
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
q1_2021 <- subset(q1_2021, nchar(as.character(ride_id)) == 16)
```

Remove rows with the ride_length less than 60 seconds or 1 minute.

```
q1_2021 <- subset (q1_2021, ride_length > 59)
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the **mean**, **median**, **max** (maximum), and **min** (minimum) of *ride_length*.

```
mean(q1_2021$ride_length)
 ## [1] 1245.537
 median(q1_2021$ride_length)
 ## [1] 689
 max(q1_2021$ride_length)
 ## [1] 1900899
 min(q1_2021$ride_length)
 ## [1] 60
Run a statistical summary of the ride_length.
 summary(q1_2021$ride_length)
 ##
       Min. 1st Qu.
                       Median
                                  Mean 3rd Qu.
                                                    Max.
 ##
                 398
                          689
                                  1246
                                           1260 1900899
Compare the members and casual users
 aggregate(q1_2021\$ride_length \sim q1_2021\$member_casual, FUN = mean)
      {\tt q1\_2021\$ member\_casual\ q1\_2021\$ ride\_length}
 ##
 ## 1
                       casual
                                          2264.1109
 ## 2
                       member
                                           811.2135
 aggregate(q1_2021$ride_length ~ q1_2021$member_casual, FUN = median)
      {\tt q1\_2021\$ member\_casual\ q1\_2021\$ ride\_length}
 ##
 ## 1
                       casual
 ## 2
                       member
                                                586
 aggregate(q1_2021$ride_length \sim q1_2021$member_casual, FUN = max)
      q1_2021$member_casual q1_2021$ride_length
 ## 1
                                            1900899
                       casual
 ## 2
                                              88461
 aggregate(q1_2021\$ride_length \sim q1_2021\$member_casual, FUN = min)
 ##
      q1_2021$member_casual q1_2021$ride_length
 ## 1
                       casual
 ## 2
                                                 60
                       member
Aggregate the average ride length by each day of the week for members and users.
 aggregate(q1\_2021\$ride\_length \sim q1\_2021\$member\_casual + q1\_2021\$day\_of\_week, \ FUN = mean)
```

```
##
     ## 1
                                    Friday
                                                  1942.7303
                  casual
## 2
                  member
                                    Friday
                                                   754.7240
## 3
                                                   2510.5686
                  casual
                                    Monday
## 4
                                    Monday
                                                   801.6531
                  member
## 5
                                                   2613.8336
                  casual
                                  Saturday
## 6
                  member
                                  Saturday
                                                   910.1541
## 7
                                                   2390.5358
                  casual
                                   Sunday
## 8
                  member
                                    Sunday
                                                   922.3624
## 9
                  casual
                                  Thursday
                                                   1618.0957
## 10
                                  Thursday
                  member
                                                   727.4440
## 11
                  casual
                                   Tuesday
                                                   2147.4895
## 12
                  member
                                   Tuesday
                                                    793.4528
## 13
                  casual
                                 Wednesday
                                                   1731.7417
## 14
                                                   772.0138
                  member
                                 Wednesday
```

Sort the days of the week in order.

```
q1_2021$day_of_week <- ordered(q1_2021$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursda
y", "Friday", "Saturday"))</pre>
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
 x <- aggregate(q1_2021\$ride_length \sim q1_2021\$member_casual + q1_2021\$day_of_week, \ FUN = mean)   head(x)
```

```
##
     q1_2021$member_casual q1_2021$day_of_week q1_2021$ride_length
## 1
                    casual
                                         Sunday
                                                          2390.5358
## 2
                    member
                                         Sunday
                                                           922.3624
## 3
                    casual
                                         Monday
                                                          2510.5686
## 4
                    member
                                         Monday
                                                           801.6531
## 5
                                        Tuesday
                                                          2147.4895
                    casual
## 6
                    member
                                        Tuesday
                                                           793.4528
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
    member casual weekday number of rides average duration
##
    <chr>
                    <int>
                                     <int>
## 1 casual
                                     19343
                                                       2391.
                         1
## 2 casual
                         2
                                      12764
                                                       2511.
## 3 casual
                         3
                                     11523
                                                       2147.
## 4 casual
                         4
                                     10201
                                                       1732.
## 5 casual
                                      7492
                                                       1618.
## 6 casual
                         6
                                      10216
                                                       1943.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(q1_2021$member_casual)
```

```
##
## casual member
## 98150 230181
```

```
table(q1_2021$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 245207 18915 64209
```

```
table(q1_2021$day_of_week)
```

```
##
##
      Sunday
                 Monday
                          Tuesday Wednesday
                                               Thursday
                                                            Friday
                                                                    Saturday
##
       46703
                  46163
                             46557
                                       45911
                                                  37325
                                                             42463
                                                                        63209
```

```
table(q1 2021$month)
```

```
## February January March
## 42301 82622 203408
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

Days of the Week

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(q1_2021$day_of_week,q1_2021$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual Freq
## 1
                        casual 19343
          Sunday
## 2
          Monday
                        casual 12764
## 3
         Tuesday
                        casual 11523
## 4
      Wednesday
                        casual 10201
                        casual 7492
## 5
       Thursday
## 6
          Friday
                        casual 10216
```

Weekday trends (Monday through Friday).

Weekend trends (Sunday and Saturday).

Weekends Trends

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(q1_2021$rideable_type,q1_2021$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

```
##
     rideable_type member_casual
                                   Freq
## 1 classic bike
                                  58671
                         casual
## 2
       docked bike
                          casual
                                 18914
## 3 electric bike
                          casual 20565
## 4 classic bike
                          member 186536
## 5
      docked bike
                          member
## 6 electric_bike
                          member
                                 43644
```

Plot for bike user vs bike type.

Riders and Ride Types

Create vector of month names for Q1 2021

```
q1_months <- c("January", "February", "March")</pre>
```

Subset month.name to include only Q1 2021 months

```
q1_month_names <- month.name[match(q1_months, month.name)]</pre>
```

Create trips_by_month dataframe with only Q1 2021 months

```
trips_by_month <- data.frame(month = q1_month_names, count = table(q1_2021$month))</pre>
```

Set the levels of the month variable in the trips by month dataframe

```
trips_by_month$month <- factor(trips_by_month$month, levels = c("January", "February", "March"))
ggplot(trips_by_month, aes(x = month, y = count.Freq)) +
geom_bar(stat = "identity", fill = "#F8766D") +
labs(x = "Month", y = "Number of Rides", title = "Number of Rides by Month in Q1 2021")</pre>
```

Number of Rides by Month in Q1 2021 200000 - 150000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 10000

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(q1_2021, "q1_2021.csv")