

Sintesi Combinatoria

Sintesi di reti combinatorie a più livelli: Introduzione

Motivazioni e Introduzione Modello per reti combinatorie a più livelli Trasformazioni e Algoritmi

versione del 2/11/2020

- Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni
 - Reti combinatorie a due livelli: area e ritardo sono ridotti contemporaneamente.
 - Reti combinatorie a più livelli: area e ritardo non procedono nella stessa direzione
- Le reti a più livelli portano in generale a soluzioni più efficienti in termini di area/prestazioni e consentono un utilizzo migliore delle librerie

- **Esempio**-(Reti combinatorie a due livelli: Area e tempo sono ridotti contemporaneamente)
 - Ipotesi: porte con un massimo di 3 ingressi (ritardo uniforme: τ)

f(a,b,c,d) = a'b'c'd'+a'b'c'd+a'b'cd'+a'bc'd'+a'bc'd+ab'c'd+ab'cd+abc'd+abcd

Sintesi di reti combinatorie a più livelli:

Introduzione

- □ **Esempio**⁻(Reti combinatorie a più livelli: trade-off area/prestazioni)
 - Ipotesi: porte con un massimo di 3 ingressi (ritardo uniforme: τ)

```
f= l'+ c'*g*h'+ a*b'*k'+ g*k'+ a'*b'*c'*d'*e'+ a*d'*e'*f'+e'*g'*i'+e'*j'; Ritardo: 4\tau; Costo: 23 f= l'+ c'*g*h'+ k' (a*b'+ g)+ a'*b'*c'*d'*e'+ a*d'*e'*f'+e'*g'*i'+e'*j'; Ritardo: 5\tau; Costo: 22 f= l'+ c'*g*h'+ k' (a*b'+ g)+ e'*(a'*b'*c'*d'+ a*d'*f'+g'*i'+j'); Ritardo: 6\tau; Costo: 19 f= l'+ c'*g*h'+ k'*(a*b'+ g)+ e'*(d'*(a'*b'*c'+ a*f')+g'*i'+j'); Ritardo: 6\tau; Costo: 18
```


- Nella realizzazione di reti combinatorie multi-livello, più che ricercare un ottimo (l'ottimo non è sempre definibile in maniera univoca), si cerca una soluzione ragionevole in termini di area e prestazioni.
- Sarebbe più corretto parlare di sintesi invece che di ottimizzazione. La sintesi può prevedere:
 - Minimizzazione dell'area (con vincolo sul ritardo)
 - Minimizzazione del ritardo (con vincolo sull'area)
- Le operazioni e trasformazioni definite per la sintesi multi-livello hanno come scopo base quello di manipolare l'espressione logica della rete combinatoria in modo da individuare ed estrarre sottoespressioni logiche comuni nell'espressione di partenza
 - questo consente, in generale, di avere realizzazioni più efficienti (con riuso) in termini di porte utilizzate, rispetto all'ottimizzazione a due livelli, con tempi di propagazione peggiori

Ottimizzazione a più livelli:

- Vantaggi:
 - · Più efficiente in termini di area e prestazioni.
 - Permette di utilizzare elementi di libreria.
- Svantaggi:
 - · Maggiore complessità della ottimizzazione.

Metodi di ottimizzazione:

- Esatti
 - Complessità computazionale estremamente elevata: inaccettabili.

Euristici

Definizione di euristica: "procedimento non rigoroso (approssimativo, intuitivo) che permette di conseguire un risultato la cui qualità è paragonabile a quella ottenuta con metodi rigorosi"

- Euristica del problema di ottimizzazione due passi:
 - a) Si produce una soluzione ottimale ignorando i vincoli di realizzazione
 - fan in, fan out, elementi di libreria...

La soluzione è ottenuta tramite sequenze di trasformazioni applicate in modo iterativo. Le trasformazioni sono basate anche sulle proprietà algebriche delle espressioni booleane. La rete è definita ottima rispetto ad un insieme di trasformazioni, quando un'ulteriore applicazione di queste non può più migliorare la funzione di costo.

- b) Si raffina il risultato considerando i vincoli strutturali
 - b) library mapping (o library binding).
 - Risultato dell'ottimizzazione è di inferiore qualità rispetto ad una ottimizzazione che considera contemporaneamente i punti a) e b) ma risulta computazionalmente più semplice.
- In questa sezione si analizza solo il punto relativo all'identificazione della soluzione ottimale (punto a).

POLITECNICO Sintesi di reti combinatorie a più livelli: Modello della rete (1)

- Nella sintesi multilivello, il modello utilizzato per rappresentare un circuito combinatorio è un grafo orientato aciclico
 - DAG Direct Acyclic Graph
- Grafo per reti combinatorie
 - È un grafo orientato G(V,E) aciclico
 - V: insieme dei nodi
 - E: insieme degli archi
- V è partizionato negli insiemi:
 - nodi di ingresso V_⊤ (Primary Inputs PI)
 - nodi di uscita Vo (Primary Outputs PO)
 - nodi interni V_c: Sono moduli della rete combinatoria a cui è associata una funzione combinatoria scalare (una sola uscita)

POLITECNICO Sintesi di reti combinatorie a più livelli: Modello della rete (2)

- E' un modello comportamentale/strutturale
 - Strutturale: connessioni
 - Comportamentale: ad ogni nodo è associata una funzione
 - · Nel modello considerato, ogni funzione è a due livelli con una sola uscita
- Il modello è bipolare e non gerarchico
 - Bipolare: Ogni arco può assumere valore 0 o 1

Sintesi di reti combinatorie a più livelli: Trasformazioni per reti logiche (1)

- Metodi euristici
 - Realizzano un miglioramento iterativo della rete logica mediante trasformazioni logiche che conservano il comportamento di I/O del grafo
- Rispetto al grafo che rappresenta la rete combinatoria, sono possibili due tipi di trasformazioni:
 - Locali: modificano localmente (la funzione di) un nodo non toccando la struttura della rete.
 - · Esempio: la fattorizzazione di un nodo
 - Globali: modificano anche la struttura della rete
 - Esempio: l'eliminazione di un nodo nella rete sostituendo la sua espressione logica in tutti i nodi che la utilizzano.

POLITECNICO Sintesi di reti combinatorie a più livelli: Trasformazioni per reti logiche (2)

- Le trasformazioni logiche modificano sia l'area sia le prestazioni poiché agiscono:
 - Sulle funzioni locali;
 - sul numero dei letterali (area);
 - Sulle connessioni
 - variazione del n° di nodi (area) e del n° nodi del cammino critico (prestazioni: n° nodi attraversati, usato come stima per il ritardo di propagazione)
- Sono usate cifre di merito per valutare le trasformazioni
 - Trasformazioni non convenienti sono rifiutate
- Le trasformazioni sono applicate in modo iterativo
- La rete è considerata ottimale quando, rispetto ad un insieme di operatori, nessuno di questi la migliora

POLITECNICO Sintesi di reti combinatorie a più livelli: Approcci alla ottimizzazione multi-livello

- L'approccio tipicamente utilizzato è quello algoritmico
 - Ogni trasformazione è associata ad un algoritmo
 - L'algoritmo:
 - determina dove può essere applicata la trasformazione;
 - applica la trasformazione e la mantiene se porta benefici;
 - termina quando nessuna trasformazione di quel tipo è ulteriormente applicabile.
 - Il maggior vantaggio dell'approccio algoritmico è che trasformazioni di un dato tipo sono sistematicamente applicate alla rete.
 - Algoritmi legati a differenti trasformazioni sono applicati in sequenza.
 - Sfortunatamente differenti sequenze possono portare a soluzioni diverse.
 - Soluzione: uso di sequenze derivate da sperimentazioni.

Trasformazioni base - 1

Sostituzione di nodi a 1 variabile (sweep)

sostituisce la variabile assegnata nel nodo a monte in tutti i nodi a valle (globale)

Eliminazione (*eliminate*)

sostituisce l'espressione di un nodo in uno o più nodi a valle e elimina il nodo originale, +prestazioni temporali (globale, diminuisce il percorso di I/O), -area = n(l-1) - l = n(l-1) - l

Semplificazione (simplify)

- manipola l'espressione di un nodo per portarla su due livelli (successiva all'eliminazione) - locale

Fattorizzazione (*factor*)

fattorizza l'espressione di un nodo, ottenendo un'espressione su più livelli. Cerca un'espressione da portare poi a fattore comune anche per altri nodi.

Sintesi di reti combinatorie a più livelli:

Trasformazioni base - 2

Sostituzione (substitute)

Utilizza un nodo *già* presente nella rete per semplificare un altro nodo, sostituendo una sotto-espressione (diminuisce il n° di letterali nel secondo nodo) (globale, aumenta il percorso di I/O)

Estrazione di una sotto-espressione (extract)

 Simile alla sostituzione ma più generale: il nodo da estrarre non deve già esistere (si cerca un divisore comune a più nodi)

Decomposizione di una espressione (decompose)

Applica il teorema di espansione di Shannon: estra da $\rightarrow \bigcirc \rightarrow \bigcirc$ un nodo 2^k nodi (globale, aumenta il percorso di I/O)

Sintesi di reti combinatorie a più livelli: Trasformazioni e algoritmi: eliminazione

- Eliminazione: globale, riduce la lunghezza del percorso I/O
 La lunghezza è calcolata in numero di nodi attraversati.
 - Eliminazione nella rete di tutti i vertici con un solo ingresso e di quelli relativi a funzioni costanti (Sweep)
 - Riduzione vincolata (Eliminate opzione Val-Intero) eliminate 5
 - L'eliminazione di un vertice è accettata se incrementa l'area di una quantità inferiore a Val-Intero.
 - Ad esempio, l'incremento di area può venire calcolato come
 = n(l-1) l, dove l è numero di letterali del nodo eliminato mentre n è il numero di nodi che lo assorbono
 - Riduzione non vincolata
 - tutti i nodi vengono ridotti ad un solo nodo; si ottiene una rete a due livelli.

Trasformazioni e algoritmi: eliminazione

• Esempio di eliminate 2:

Costo: 3+4+3=10

Costo: 6+5=11

incremento di costo: 2*3-2-3 = 1 (accettato)

□ eliminate -1

					n			
		1	2	3	4	5	6	7
	1	-1	-1	-1	-1	-1	-1	-1
	2	-1	0	1	2	3	4	5
	3	-1	1	3	5	7	9	11
ı	4	-1	2	5	8	11	14	17
	5	-1	3	7	11	15	19	23
	6	-1	4	9	14	19	24	29
	7	-1	5	11	17	23	29	35
	8	-1	6	13	20	27	34	41
	9	-1	7	15	23	31	39	47

Osservano i dati riportati in tabella, relativi al calcolo di n*l-n-1 al variare di n e l, si può constatare che l'effetto di eliminate -1 (con l=1) è quello di eliminare tutti i nodi composti da un solo letterale (sweep).

Trasformazioni e algoritmi: semplificazione

Semplificazione: trasformazione locale

- Semplificazione a due livelli di ogni nodo (simplify)
 - Metodo esatto (Quine-McCluskey) o euristico.
- Fattorizzazione di un nodo (factor)
 - All'interno di un nodo, raccoglie a fattore comune alcuni termini
 >> da due a più livelli
 - Esempio: (ipotesi: porte a 3 ingressi)

Fattorizzazione

- L'espressione logica fattorizzata può essere ottenuta utilizzando una euristica.
 - · Politica della euristica: si pesano i letterali dell'espressione di partenza con ordinamento lessico-grafico a parità di peso
 - Elemento più a destra per primo
- L'insieme dei termini prodotto viene ricorsivamente partizionato (blocco della partizione e blocco residuo) utilizzando come termine di riferimento il letterale che compare con più frequenza.
 - Ottimizzazione: tutti i letterali che hanno la stessa cardinalità della partizione vengono raccolti contemporaneamente
- Ad ogni passo della ricorsione le partizioni sono in OR fra loro mentre i termini a fattor comune sono in AND.

Esempio 1:

f=acd+a'bc'+a'bd'+b'cd

	а	a '	b	b '	С	C ′	d	d ′
acd	1	0	0	0	1	0	1	0
a'bc'	0	1	1	0	0	1	0	0
a'bd'	0	1	1	0	0	0	0	1
b'cd	0	0	0	1	1	0	1	0
	1	2	2	1	2	1	2	1

Ritardo: 3τ costo: 12

□ Esempio 2: (forma 2 livelli non ottimizzata)

f = abcd+ab'c'd+a'b'cd+a'b'c'd

	a	a '	b	b'	С	C ′	d	ď'
abcd	1	0	1	0	1	0	1	0
ab'c'd	1	0	0	1	0	1	1	0
a'b'cd	0	1	0	1	1	0	1	0
a'b'c'd	0	1	0	1	0	1	1	0
	2	2	1	<u>ر</u>	2	2	1	\cap

Ritardo: 4τ costo: 12

□ Esempio 2: (forma 2 livelli non ottimizzata)

f = abcd+ab'c'd+a'b'cd+a'b'c'd

Ritardo: 4τ costo: 12

	а	a '	b	b'	С	C ′	d	d'
abcd	1	0	1	0	1	0	1	0
ab'c'd	1	0	0	1	0	1	1	0
a'b'cd	0	1	0	1	1	0	1	0
a'b'c'd	0	1	0	1	0	1	1	0
	2	2	1	3	2	2	4	0

C C' a a' ac' a'c'

b'

f = abcd+ab'c'd+a'b'cd+a'b'c'd

Ritardo: 4τ costo: 12

	a a	′	b b'	C C'	d	d'			а	a'	b b'	C C'	
abcd	1 0		1 0	1 0	1	0	Fattore comune d	abc	1	0	1 0	1 0	
ab'c'd	1 0		0 1	0 1	1	0		ab'c'	1	0	0 1	0 1	
a'b'cd	0 1		0 1	1 0	1	0		a'b'c a'b'c'		1	0 1	1 0	
a'b'c'd	0 1		0 1	0 1	1	0	Blocco della			1	0 1	0 1	
	2 2		1 3	2 2	4	0	partizione indotta dal		2	2	1 3	2 2	_/
	ind	dot		a partizi fattore	ion		fattore comune b' a a' ac' 1 0 a'c 0 1 a'c' 0 1	C C' 0 1 1 0 0 1	+	F	abc	Blocco (della partizio	
		_ /		a a'	1	a' 0 1	1 2 +		Ritardo: 5τ costo: 10				
$\mathbf{a} + \mathbf{a}'$ $1 1$ $\mathbf{f} = \mathbf{d}(\mathbf{abc+b'}(\mathbf{a'c+c'}(\mathbf{a+a'})))$))	

Sintesi di reti combinatorie a più livelli:

Trasformazioni e algoritmi: sostituzione

- Sostituzione (substitute): globale, aumenta la lunghezza del percorso
 I/O
- Sostituzione di una sotto-espressione mediante una variabile (nodo) già presente nella rete. In generale, ogni sostituzione è accettata se produce guadagno nel numero di letterali.
 - Fa uso della divisione algebrica; si cerca di ridurre f_i usando f_i

Trasformazioni e algoritmi: estrazione

- Estrazione (extract) globale, aumenta la lunghezza del percorso I/O
 - Estrae una espressione da gruppi di nodi. L'estrazione viene fatta fino a che è possibile.
 - · Identificazione un divisore comune a due o più espressioni.
 - Il divisore costituisce un nuovo nodo della rete ed ha per successori i nodi da cui è stato estratto.

Sintesi di reti combinatorie a più livelli: Trasformazioni e algoritmi: decomposizione algebrica

- Decomposizione algebrica (decompose): globale, aumenta la lunghezza del percorso I/O
 - Riduce le dimensioni di una espressione per:
 - Rendere più semplice l'operazione di library mapping.
 - Aumentare la probabilità di successo della sostituzione
 - La decomposizione può essere applicata ricorsivamente al divisore, quoziente e resto.

$$f_{i}=f_{d} (f_{dq} f_{qq} + f_{rq}) + (f_{dr} f_{qr} + f_{rr})$$

$$f_{k}=f_{dq}$$

$$f_{1}=f_{dr}$$

$$f_{i}=f_{j} (f_{k} f_{qq} + f_{rq}) + f_{l} f_{qr} + f_{rr}$$

Trasformazioni e algoritmi: divisori

- Decomposizione algebrica, estrazione e sostituzione: come si trovano i divisori?
 - Modello algebrico: le espressioni booleane vengono viste come espressioni algebriche, cioè come polinomi di primo grado, nelle variabili naturali e complementate, con coefficienti unitari
 - Lavorando con il modello algebrico valgono le proprietà algebriche mentre quelle dell'algebra booleana non sono valide
 - È definita la divisione algebrica: $f_{divisore}$ è un divisore algebrico di $f_{dividendo}$ se
 - $f_{dividendo} = f_{divisore} \bullet f_{quoziente} + f_{resto} e$
 - $f_{quoziente} \bullet f_{divisore} \neq 0 e$
 - il supporto di $f_{divisore}$ e di $f_{auoziente}$ è disgiunto
 - Esistono algoritmi diversi per calcolare i divisori di una espressione algebrica

Sintesi di reti combinatorie a più livelli: Trasformazioni e algoritmi: decomposizione disgiuntiva

- Decomposizione disgiuntiva semplice (decompose) globale, aumenta la lunghezza del percorso I/O
 - Riduce le dimensioni di una espressione (v. decomposizione algebrica)
 - La decomposizione disgiuntiva semplice può essere applicata ricorsivamente.

Trasformazioni e algoritmi: decomposizione disgiuntiva

Decomposizione disgiuntiva (cont.)

- Deriva dalla applicazione del teorema di espansione di Shannon:

$$f(a_1, a_2, ... a_n) = a_1 * f_{a_1} + a_1' * f_{a_1}'$$

- Il risultato, in termini di costo, dipende fortemente dalla decomposizione che viene effettuata sulle variabili di supporto della funzione.
 - Con n variabili il numero di possibili scomposizioni è 2ⁿ-2

Teorema di espansione di Shannon

se f: $B^n \to B$ è una funzione booleana si ha $f(x_1, x_2, \dots, x_n) = x_1' * f_{x1=0} + x_1 * f_{x1=1}$ per ogni (x_1, x_2, \dots, x_n) in B^n .
Ad esempio, f(a, b, c) = a' * f(0, b, c) + a * f(1, b, c)

POLITECNICO Sintesi di reti combinatorie a più livelli: Decomposizione disgiuntiva - esempi

Esempio 1:

Esempio: scomposizione disgiuntiva di f rispetto a b

$$f = a'b+ab'+c'd'+cd$$
 Costo: 8

$$f = bf_b + b'f_b$$

POLITECNICO Sintesi di reti combinatorie a più livelli: Decomposizione disgiuntiva - esempi

Esempio 1:

Esempio: scomposizione disgiuntiva di f rispetto a b

Esempio 1:

Esempio: scomposizione disgiuntiva di f rispetto ad ab

$$f = a'b+ab'+c'd'+cd$$
 Costo: 8

$$f = a(bf_{ab}+b'f_{ab'})+a'(bf_{a'b}+b'f_{a'b'})=abf_{ab}+ab'f_{ab'}+a'bf_{a'b}+a'b'f_{a'b'}$$

Esempio 1:

Esempio: scomposizione disgiuntiva di f rispetto ad ab

Esempio 2 (xor):

- scomposizione disgiuntiva di f rispetto ad ab

Esempio3: f=a*!b*c+!a*!b*d+!a*c*d+!c*!d <u>Costo: 11</u>

scomposizione disgiuntiva di f rispetto ad ab

Esempio3: f=a*!b*c+!a*!b*d+!a*c*d+!c*!d Costo: 11

scomposizione disgiuntiva di f rispetto ad ab

```
 \mathbf{f_{ab}} = 1 \times 0 \times c + 0 \times 0 \times d + 0 \times c \times d + 1 \times c \times 1 d = 1 \times 1 \times c \times 1 \times d 
 \mathbf{f_{a!b}} = 1 \times 1 \times c + 0 \times 1 \times d + 0 \times c \times d + 1 \times c \times 1 d = c + 1 \times c \times 1 d \Rightarrow c + 1 d 
 \mathbf{f_{a!b}} = 0 \times 0 \times c + 1 \times 0 \times d + 1 \times c \times d + 1 \times c \times 1 d = c \times d + 1 \times c \times 1 d 
 \mathbf{f_{a!b}} = 0 \times 1 \times c + 1 \times 1 \times d + 1 \times c \times d + 1 \times c \times 1 d = d + c \times d + 1 \times c \times 1 d \Rightarrow 1 \times c \times 1 d
```


Esempio 3: f=ab'c+a'b'd+a'cd+c'd' Costo: 11

scomposizione disgiuntiva di f rispetto ad ab

$$f_{ab} = c'd'$$

 $f_{ab} = c+c'd$

$$\mathbf{f}_{ab'} = c+c'd' \Rightarrow c+d'$$

$$\mathbf{f_{a'b'}} = d+cd+c'd' = \Rightarrow c'+d$$

scomposizione disgiuntiva di f rispetto ad a

scomposizione disgiuntiva di f rispetto ad b

scomposizione disgiuntiva di f rispetto ad d

$$\mathbf{f_d}$$
= ab'c+a'b'+a'c \Rightarrow ab'+a'b'+a'c
 $\mathbf{f_{d'}}$ = ab'c+c' \Rightarrow ab'+c'

Costo: 13

Costo: 14

Costo: 15

```
sweep; eliminate -1; simplify -m nocomp; eliminate -1 sweep; eliminate 5; simplify -m nocomp resub -a; fx; resub -a sweep; eliminate -1 sweep; full_simplify -m nocomp
```


Sintesi multilivello di reti combinatorie - esempio (1)

Data una rete combinatoria con ingressi (a, b, c, d, e, f), uscite (Y1, Y2, Y3) e rappresentata dal seguente modello (rete multilivello)

Equazioni dei nodi

$$V_{1} = \overline{abd} + ef$$

$$V_{2} = a\overline{V_{1}b} + aV_{1}c + V_{1}cd + \overline{V_{1}bd}$$

$$V_{3} = \overline{bde} + a\overline{bce} + b\overline{de} + a\overline{bce} + \overline{bde}f$$

$$Y_{1} = V_{3} + a\overline{f}$$

$$Y_{2} = \overline{V_{1}ab} + \overline{abcde} + \overline{bcde} + \overline{V_{1}abf} + \overline{abcde}$$

$$Y_{3} = a\overline{bf} + d\overline{bf} + ae + a\overline{V_{2}} + de + d\overline{V_{2}}$$

Sintesi multilivello di reti combinatorie - esempio (2)

Applicare in sequenza alla rete multi livello le trasformazioni sotto indicate

- a) COST(): Calcolo del numero di letterali. La funzione COST() calcola il costo in letterali indipendentemente dalla forma (SOP o multi livello) delle espressioni algebriche dei nodi.
- b) SIMPLIFY(Y₂): Minimizzazione a due livelli di Y₂.
- c) SIMPLIFY(V_3): Minimizzazione a due livelli di V_3 .
- d) ELIMINATE(V_3 , +3): Eliminazione del nodo V_3 : la trasformazione viene accettata solo se l'incremento di area, dovuto all'eliminazione è inferiore o uguale alla soglia data (+3).
- e) FACTOR(V_2): Fattorizzazione del nodo V_2 .
- f) COST(): Calcolo del numero di letterali.
- g) $[V_4]$ = EXTRACT (V_2, Y_3) : Estrazione di un fattore comune a V_2 e Y_3 . Il nodo V_4 derivato dall'estrazione può essere un nuovo nodo o un nodo già presente nella rete.
- h) COST(): Calcolo del numero di letterali.

POLITECNICO Sintesi di reti combinatorie a più livelli: Esercizi

Esercizi & Soluzioni di fattorizzazione:

```
f = abcd' + ab'c' + a'bc' + b'cd = c(abd' + b'd) + c'(ab' + a'b)
```

```
f = abcd' + abc'd + ab'c'd' + a'bc'd' + a'b'd + a'cd + b'cd =
   d'(abc + c'(ab' + a'b)) + d(abc' + c(b' + a') + a'b')
```

```
f = ac'd + a'bcd + a'c'd' + b'c'd = a'bcd + c'(d(b'+a)+a'd')
```

```
f= abc'+ abd'+ ab'cd+ ac'd'+ a'bcd+ bc'd'=
  a(b'cd+c'd')+b(a'cd+d'(c'+a)+ac')
```

```
f= ab'cd+ a'bcd+ a'b'c'+ a'b'd'+ b'c'd'=
  a'bcd+b'(acd+d'(c'+a')+a'c')
```