Recommendation (Personalization)

Man-Kwan Shan
Dept. of Computer Science
National Cheng-Chi Univ.

Overview

Recommendation

- Recommendation (Personalization)
 - recommendation made by system based on user preference
 - approaches
 - Content-based filtering: based on user preference in the past
 - Collaborative filtering: based on people with similar preference
 - Hybrid

• Example

- personalized newspaper
- personalized web
- TV, Movies, Books, Music recommendations
- personalized AD(Amazon)
- personalized shopping mall(IBM IRA)

Pattern Recognition and

Machine Learning (... by

Christopher M. Bishop

***** (34) \$59.96

Introduction to Machine

Learning (Adaptive... by

****** (6) \$41.60

Ethem Alpaydin

Pattern Classification (2nd

****** (26) \$120.00

Edition) by Richard O. Duda

Data Mining: Practical

***** (21) \$39.66

Ian H. Witten

Machine Learning To... by

Data Mining, Second Edition,

Second Editi... by Jiawei Han

***** (26) \$51.96

Recommendation

$$\forall c \in C, s_c' = \underset{s \in S}{\operatorname{arg\,max}} u(c, s)$$

- -C: the set of all users
- -S: the set of all possible items
- -u: utility function that measures the usefulness of item s to user c
 - i.e. $u: C \times S \rightarrow R$, (R: nonnegative integers, a totally ordered set)
- In most cases
 - -c: user profile, user characteristics
 - -s: item characteristics
 - -u: specified by user or computed by the application

- Central problem of recommendation
 - utility is usually not defined on the whole C x S space but only only on some subset of it
 - utility is initially defined only on the items previously rated by the users
 - should be able to estimate (predicate) the ratings of the non-rated movie/user combinations

Content-based Recommendation

Content-based Recommendation

Content-based

- recommend items similar to the ones the user preferred in the past
- the utility u(c, s) of item s for user c is estimated based on the utilities $u(c, s_i)$ assigned by user c to items $s_i \in C$
- try to understand the commonalities among the items user has rated highly in the past
- only the items that have a high degree of similarity to whatever the user's preference are would be recommened

Content-based Recommendation

Approaches

- Information Filtering
 - Routing
 - the queries remain relatively static while new documents come into the system
 - User profile is kept to filter information
 - Push, rather than pull
- Classification
 - Two way classification problem
 - Learning the user's preference from training samples (users preference in the past)

Information Filtering

- User profiles
 - contain information about users' taste, preferences, and needs
 - can be elicited from users
 - explicitly, e.g. questionnaries
 - implicitly, learned from transactional behavior over time
- utility function u(c, s)

```
u(c,s)=score(ContentBasedProfile(c), Content(s))

ContentBasedProfile(c): the profile of user

Content(s): the profile of item
```

Information Filtering (cont.)

• Profile: vector space model (a vector of weights)

(data, structure, video, multimedia, audio, MPEG)

```
item = (6, 4, 10, 0, 0, 2)
user = (10, 8, 0, 8, 0, 0)
```

- User profile
 - computed from individually rated content vectors
 - averaging approach: average vector from individual content vectors

Limitations of Content-based Recommendations

- Limited Content Analysis
 - feature extraction
 - two difference items are represented by the same set of features, they are indistinguishable
- Overspecialization
 - limited to being recommended item that are similar to those already rated
 - too similar items (diversity of recommendations)
- New User Problem
 - new user having very few ratings ald start

Collaborative Recommendation

Collaborative Recommendation

- Collaborative recommendation
 - try to predict the utility of items for a particular user based on the items previously rated by other users
 - the utility u(c, s) of item s for user c is estimated based on the utilities $u(c_j, s)$ assigned to item s by those users $c_j \in C$

who are similar to user c.

- Approaches
 - memory-based
 - model-based

Approaches of Collaborative Recommendation

- Memory-based
 - prediction online based on user preference information
 - model learning is not required
 - user-based CF, allaborative fittening
- Model-based
 - based on offline preprocessing or model-learning
 - at run-time, only the learned model is used to make predictions
 - models are updated (retrained) periodically
 - model-building and updating can be computationally expensive
 - item-based CF

Memory-based

- memory-based (heuristic-based)
 - heuristics that make rating predictions based on the entire collection of previously rated items by the users
 - unknown rating $r_{c,s}$ for a user c & item s

$$r_{c,s} = \underset{c' \in C'}{\operatorname{aggr}} r_{c',s}$$
 aggregation fac, often weighted
$$c' \in C'$$
 sum based on similarity
$$\operatorname{Problem: different users may use the rating scale}$$

- differently
 - adjusted weighted sum
 - preference-based filtering: relative preference

Memory-based (cont.)

- User-centric approach
 - Nearest neighbor users
 - based on ratings of items that both users have rated
 - approaches
 - correlation-based
 - cosine-based
 - Graph-theoretic approach: IMB IRA
- Item-centric approach
 - Compute similarity between items
 - Computes the prediction on an item *i* for a user *u* by computing the sum of the ratings given by the user on the items similar to *i*

Memory-based: IBM IRA

- IRA: rating-based recommendation engine
- Concept
 - horting: customer 1 horts customer 2 provided number of items
 both customers have rated in common normalized by number of
 items rated by customer 1 exceeds some threshold
 - * if customer 1 horts customer 2, it doesn't follow that customer 2 horts customer 1 (this why not cohort)
 - predictability: customer 2 predict customer 1 if customer 1 hort
 customer 2 & there exists a *linear transformation* for which the
 transformed rating of customer 2 and rating of customer 1 are close
 - shortest path in a directed graph

Memory-based: IBM IRA (cont.)

- IRA maintains 2 data structure
 - For each item, maintains an inverted index
 - Maintains a directed graph
 - Vertex: customer
 - Directed edge <i, j>: customer j predicts customer i
- If a customer updates rating of items
 - Find the set of customer horted by this customer using inverted index
 - Find the subset of customer who predict the target customer
 - Shortest path from any customer in the predictive subset to this customer is computed

Collaborative Recommendation (cont.)

• Process of collaborative recommendation

User based CF algorithm

The User x Item Matrix:

	Shrek	Snow-white	Superman
Alice	Like	Like	Dislike
Bob	?	Dislike	Like
Chris	Like	Like	Dislike
Jon	Like	Like	?

Shall we recommend Superman for John?

Jon's taste is similar to both Chris and Alice tastes → Do not recommend Superman to Jon

User based CF algorithm (cont)

- Voting: v_{ij} corresponds to the vote of user i for item j
 - •The mean vote for user i:

$$\overline{v_i} = \frac{1}{|Ii|} \sum_{i_j \in I_i} v_{ij}$$

I_i is the set of items on which user i voted

•Predictive vote: $p_{i,j} = \overline{v_i} + \kappa \sum_{k=1}^{n} w(i,k)(v_{kj} - \overline{v_k})$

- w(i,k) -the similarity between u_i and u_k
- k a normalization factor

$$\kappa = \left(\sum w(i,k)\right)^{-1}$$

Predictive Vote Formula

$$p_{i,j} = \overline{v_i} + k \sum_{k=1}^n w(i,k) (v_{k,j} - \overline{v_k})$$

Components:

- 1. $\overline{v_i}$:
 - The mean vote (average rating) of user i.
 - · Formula:

$$\overline{v_i} = \frac{1}{|I_i|} \sum_{j \in I_i} v_{i,j}$$

Where I_i is the set of items rated by user i.

- 2. w(i, k):
 - The similarity between user i and another user k.
 - · Measures how similar the preferences of the two users are (e.g., using Pearson correlation or cosine similarity).
- 3. $(v_{k,j}-\overline{v_k})$:
 - The deviation of user k's rating for item j ($v_{k,j}$) from their average rating ($\overline{v_k}$).
 - Captures how much user k rates item j relative to their typical ratings.
- 4. k:
 - A normalization factor to ensure the predictive vote is properly scaled.
 - Formula:

$$k = \left(\sum_{k=1}^{n} w(i, k)\right)^{-1}$$

Cosine based similarity between users

$$w(u,v) = \frac{\sum_{i \in I} r_{u,i} r_{v,i}}{\sqrt{\sum_{i \in I} r_{u,i}^2} \sqrt{\sum_{i \in I} r_{v,i}^2}}$$

Pearson based similarity between users

$$w(u,v) = \frac{\sum_{i \in I} (r_{u,i} - \overline{r_u})(r_{v,i} - \overline{r_v})}{\sqrt{\sum_{i \in I} (r_{u,i} - \overline{r_u})^2} \sqrt{\sum_{i \in I} (r_{v,i} - \overline{r_v})^2}}$$

Item-Based Nearest Neighbor Algorithms

- The transpose of the user-based algorithms
 - generate predictions based on similarities between items
 - The prediction for an item is based on the user's ratings for similar items

	Shrek	Snow-white	Superman
Alice	Like	Like	Dislike
Bob	?	Dislike	Like
Chris	Like	Like	Dislike
Jon	Like	Like	?

Bob dislikes Snow-white (which is similar to Shrek) \rightarrow do not recommend Shrek to Bob

$$p_{i,j} = \kappa \sum_{k=1}^{m} w(k,j) \cdot v_{i,k}$$

- traverse over all m items rated by user i and measure their rate, averaged by their similarity to the predicted item
- w(k,j) is a measure of item similarity usually the cosine measure
- Average correcting is not needed because the component ratings are all from the same target user

Dimensionality Reduction Algorithms

- Reduce domain complexity by mapping the item space to a smaller number of underlying "dimensions"
 - represent the latent topics or tastes present in those items
 - improve accuracy in predicting ratings for the most part
 - reduce run-time performance needs and lead to larger numbers of co-rated dimensions
- Popular techniques: Singular value decomposition and Principal Component Analysis
 - Require an extremely expensive offline computation step to generate the latent dimensional space

Recommendation Based on Association Rule

Simplest approach

 transform 5-point ratings into binary ratings (1 = above user average)

Mine rules such as

Item1 → Item5

		Item1	Item2	Item3	Item4	Item5
1		Itellia	Itelliz	Itellio	It Gill-	Items
	Alice	1	0	0	0	?
	User1	1	0	1	0	1
	User2	1	0	1	0	1
	User3	0	0	0	1	1
	User4	0	1	1	0	0

- support (2/4), confidence (2/2) (without Alice)
- Make recommendations for Alice (basic method)
 - Determine "relevant" rules based on Alice's transactions (the above rule will be relevant as Alice bought Item1)
 - Determine items not already bought by Alice
 - Sort the items based on the rules' confidence values

	ltem1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

$$M = U \times \Sigma \times V^T$$

• SVD:
$$M_k = U_k \times \Sigma_k \times V_k^T$$

U_k	Dim1	Dim2
Alice	0.47	-0.30
Bob	-0.44	0.23
Mary	0.70	-0.06
Sue	0.31	0.93

	Tator	ard	3	16	Tom
V_k^T				6	13
Dim1	-0.44	-0.57	0.06	0.38	0.57
Dim2	0.58	-0.66	0.26	0.18	-0.36

•	Prediction:	$\hat{r}_{ui} = \overline{r}_u + U_k(Alice) \times \Sigma_k \times V_k^T(EPI)$	(2
		= 3 + 0.84 = 3.84	

\sum_{k}	Dim1	Dim2
Dim1	5.63	0
Dim2	0	3.23

Limitations of Collaborative Recommendations

New Item Problem

 until the new item is rated by a substantial number of users, the recommender system would not be able to recommend it

Sparsity

 the number of ratings already obtained is usually very small compared to the number of ratings that need to be predicted.