Bachelorarbeit

Measure Concentration for Symplectic Groups

Florian Starke

October 5, 2018

Technische Universität Dresden Fakultät Mathematik Institut für Geometrie

Betreuender Hochschullehrer: Prof. Dr. Andreas Thom

Contents

1	Introduction	2
2	Preliminaries	2
3	Azema's Inequality and Measure Concentration	6
4	Special Linear Groups and Extreme Amenability	13
5	Witt's Lemma	17
6	Symplectic Groups and Extreme Amenability	19
7	Symplectic Groups and Ramsey Theory	22

1 Introduction

The objects studied in this thesis are groups of matrices over some finite field. Given such group, we can equip it with the normalized rank metric and the normalized Haar measure to obtain a *metric measure space*. Observe that, since matrix groups over finite fields are again finite, the normalized Haar measure is just the normalized counting measure. For some sequences of matrix groups of increasing size there is a well defined limit. For example, this is the case for the special linear group of $(n \times n)$ -matrices SL_n . Carderi and Thom showed in [2] that a suitable limit of SL_n is, as a topological group, *extremely amenable*. The goal of this thesis is to generalize this result to limits of other families of matrix groups, namely groups of symplectic, unitary, and orthogonal matrices. These matrices can be seen as *Isometries*, i.e. bijective linear maps from a vector space into itself preserving a symplectic, unitary, or orthogonal form. The general strategy to prove extreme amenability for limits of families of these groups will be as follows: given such a family $(G_n)_{n\in\mathbb{N}}$ of finite matrix groups considered as metric measure spaces. We apply a consequence of Azema's inequality [4] to obtain an upper bound for the measure concentration function of G_n in terms of the length of G_n . As the upper bounds converge to zero we conclude that $(G_n)_{n\in\mathbb{N}}$ is a *Lévy family*, making their limit a *Lévy group*. Finally, we know from [3] that every Lévy group is extremely amenable.

This thesis is structured as follows. In Section 2, we will give a short introduction on how to view matrix groups as metric measure spaces and how to define a limit of a sequence of matrix groups. Furthermore we will introduce the notion of extreme amenability and its connection to Lévy groups. In Section 3, we will briefly introduce the notion of *conditional expectation* to show Azema's inequality. Next we will introduce an important invariant of metric measure spaces, namely their *length*. Azema's inequality will allow us to connect the length of a metric measure space with their measure concentration function. This connection is used in Section 4 to show that the limit of SL_n is extremely amenable. To generalize this result we give a proof of Witt's lemma, which says that isometries between subspaces can be extended to the whole space, in Section 5. In Section 6, we generalize the result from Section 4 to symplectic, unitary, and orthogonal groups. Finally, in Section 7, a Ramsey theoretic result from [2] about SL_n is generalized to symplectic, unitary, and orthogonal groups.

2 Preliminaries

LAAG

Let q be a prime power and \mathbb{F}_q be the unique q element field. Denote the the general linear group over \mathbb{F}_q by $GL_n(q)$. We can equip $GL_n(q)$ with the (normalized) rank-metric $d(g,h) := \frac{1}{n} r(g-h)$, where r(g) is the rank of g or equivalently the dimension of the image of g.

Lemma 1. *The metric d is* bi-invariant, *i.e. for all* g, h, $k \in GL_n(q)$ *we have*

$$d(kg,kh) = d(g,h) = d(gk,hk).$$

Proof. Let $g, h, k \in GL_n(q)$. Note that k has full rank. Therefore

$$n \cdot d(kg, kh) = r(kg - kh) = r(k(g - h)) = r(g - h) = n \cdot d(g, h).$$

The other equality follows similarly.

Let $G_n \leq \operatorname{GL}_{2^n}(q)$ be a family of subgroups, such that $\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \in G_{n+1}$ for all $g \in G_n$. Denote the normalized rank-metric of G_n by d_n .

Lemma 2. For all $n \in \mathbb{N}$ the map

$$\varphi_n \colon G_n \mapsto G_{n+1}$$
, where $\varphi_n(g) = \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}$

is an isometric embedding.

Proof. Let $n \in \mathbb{N}$ and $g, h \in G_n$. Then

$$d(g,h) = \frac{1}{n} r(g-h)$$

$$= \frac{1}{2n} (r(g-h) + r(g-h))$$

$$= \frac{1}{2n} r \begin{pmatrix} g-h & 0\\ 0 & g-h \end{pmatrix}$$

$$= d(\begin{pmatrix} g & 0\\ 0 & g \end{pmatrix}, \begin{pmatrix} h & 0\\ 0 & h \end{pmatrix}).$$

Clearly, φ_n is also a homomorphism.

Let $\varphi: ||_{n \in \mathbb{N}} G_n \to ||_{n \in \mathbb{N}} G_n$ with $\varphi|_{G_n} = \varphi_n$.

Definition 3. Let \sim be the equivalence relation on $\bigsqcup_{n\in\mathbb{N}} G_n$, defined by $g\sim h$ iff there are $m,n\in\mathbb{N}$ such that $\varphi^n(g)=\varphi^m(h)$. Then the *limit* of $(G_n)_{n\in\mathbb{N}}$ is defined as

$$\lim_{n\in\mathbb{N}}G_n:=\left(\bigsqcup_{n\in\mathbb{N}}G_n\right)/\sim.$$

Lemma 4. The sequence of metric groups $(G_n, d_n)_{n \in \mathbb{N}}$ induces a group structure and a metric d on $G = \lim G_n$.

Proof. Note that $\psi_n \colon G_n \to G$, $\psi(g) = [g]$, is injective and

$$G=\bigcup_{n\in\mathbb{N}}\psi_n(G_n).$$

For [g], $[h] \in G$ we can assume w.l.o.g. that $g, h \in G_n$ for some $n \in \mathbb{N}$. Hence we define $[g] \cdot [h] := [gh]$ and $d([g], [h]) := d_n(g, h)$. This is well defined since the following diagram commutes for all $n \leq m$.

Where $\varphi_{n,m} := \varphi^{m-n}|_{G_n}$. Note that now the ψ_n are isometric embeddings.

Note that Hence we can define the inductive limit of $(G_n)_{n\in\mathbb{N}}$. We denote the metric completion of this limit by clim G_n .

Topo group

Levy

Lemma 5. The sequence $(G_n)_{n\in\mathbb{N}}$ with the normalized rank metric induces a topology on clim G_n .

Now that we have $G := \operatorname{clim} G_n$ as a topological group we can ask whether it is *extremely amenable*, i.e. every continuous action of G on a compact topological space admits a fixed point. It is hard to show this directly, but we know from [3] that every Lévy group is extremely amenable. Hence we will show that for suitable $(G_n)_{n \in \mathbb{N}}$ the limit G will be a Lévy group.

Before we can define Lévy groups we need the following definition.

Definition 6. A *metric measure space* (mm-space) X is a triple (X, d, μ) , where d is a metric on the set X and μ is a measure on the Borel σ -algebra induced by d. We will always assume that $\mu(X) = 1$. For any set $A \subseteq X$ denote the ε -neighborhood of A, i.e. $\{x \in X \mid \exists y \in A.\ d(x,y) < \varepsilon\}$, by $N_{\varepsilon}(A)$. The *measure concentration function* of X is defined as

$$\alpha_X(\varepsilon) = \sup\{1 - \mu(N_{\varepsilon}(A)) \mid A \subseteq X, \mu(A) \ge \frac{1}{2}\}.$$

A family of mm-spaces X_n with diameter 1 is called a *Lévy family* if

$$\alpha_{X_n}(\varepsilon) \to 0$$

for all $\varepsilon > 0$.

A topological space *X* is a *Polish space* if it is homeomorphic to a complete metric space that has a countable dense subset.

Now we can come back to groups.

Definition 7. A *Polish group G* is a topological group where the underlying topological space is a Polish space. A *Lévy group* is a group *G* equipped with a metric *d*, where

- *G* with the topology induced by *d* is a Polish group and
- there is a sequence $(G_n)_{n\in\mathbb{N}}$ of compact subgroups, such that $(G_n,d|_{G_n},\mu_n)_{n\in\mathbb{N}}$ is a Lévy family. Here μ_n is the normalized Haar measure of G_n .

Florian sagt: " $\lim G_n$ dense in G_n "

Note that, since G_n is finite, the normalized Haar measure of G_n is just the normalized counting measure. The following theorem from [3, Theorem **4.1.3**] gives the desired connection to extreme amenability.

Theorem 8. Every Lévy group is extremely amenable.

To apply this theorem to our setting we need the following lemma.

Lemma 9. Let $G_n \leq \operatorname{GL}_{2^n}(q)$ with the normalized rank metric d_n and $G = \operatorname{clim}_{n \to \infty} G_n$. Then G equipped with the metric induced by d_n is a Polish group.

Proof. By Lemma 5 G is already a topological group and by definition it is also a complete metric space. Furthermore, every G_n is finite. Hence the inductive limit of the G_n is a countable dense subset of G.

Whether G is also a Lévy group depends on the particular choice of $(G_n)_{n\in\mathbb{N}}$. To show that for certain sequences G will be a Lévy group, we will bound $\alpha_{G_n}(\varepsilon)$ in terms of n and ε and show that this bound converges to 0 as n tends to infinity. The next section develops the methods necessary to obtain this upper bound.

3 Azema's Inequality and Measure Concentration

In this section we will prove Azema's inequality and as a consequence, we will obtain an upper bound for the measure concentration function. As the next results rely heavily on stochastic methods we will briefly introduce the necessary notions. Since the G_n are all finite and equipped with the normalized counting measure we will only consider *probability spaces* (X, Σ, μ) , where X is finite, Σ is a σ -algebra over X, and $\mu(A) = |A|/|X|$ for $A \subseteq X$. In this section we will roughly follow Section 3.2 from [4]. Most of the statements presented in this section hold in a more general setting. Note that Σ has a very nice representation.

"remove page oreak"

Lemma 10. Let Σ be a σ -algebra over a finite set X and A_1, \ldots, A_n be the minimal nonempty sets in Σ . Then A_1, \ldots, A_n is a partition of X and Σ is the smallest σ -algebra containing A_1, \ldots, A_n .

Proof. First we show that A_1, \ldots, A_n is a partition of X. Since $A_i \cap A_j \in \Sigma$ we conclude, by minimality of A_i and A_j , that either i = j or $A_i \cap A_j = \emptyset$. Clearly, every element of X is contained in one of the A_i .

For $A \in \Sigma$ we have, again by minimality, that $A \cap A_i$ is either A_i or \emptyset . Therefore A can be written as a union of A_i 's.

Note that it follows from the proof that any $A \in \Sigma$ can be written as $\bigcup_{i \in I} A_i$ for a suitable $I \subseteq \{1, ..., n\}$. This lemma allows us to use partitions and σ -algebras interchangeably. We will denote the partition corresponding to Σ by $A_1, ..., A_n$, for Σ' we will use $A'_1, ..., A'_{n'}$, etc. The next definition is simplified a lot by only considering finite X.

Definition 11. Let (X, Σ, μ) be a finite probability space, $f: X \to \mathbb{R}$ be a measurable function, and Σ' be a sub- σ -algebra of Σ . Then the *conditional expectation* of f with respect to Σ' is defined as

$$\mathbb{E}(f \mid \Sigma') := \sum_{i=1}^{n'} \mathbb{E}(f \mid A'_i) \cdot \mathbb{1}_{A'_i}.$$

One often thinks of Σ' as the available information, a finer partition means more information. The conditional expectation $\mathbb{E}(f \mid \Sigma')$ is the best approximation of f given only the information from Σ' . With this intuition the statements from the following lemma are not surprising.

Lemma 12. Let (X, Σ, μ) be a finite probability space, $f, g: X \to \mathbb{R}$ be measurable functions, $\Sigma'' \subseteq \Sigma' \subseteq \Sigma$ be sub- σ -algebras. Then

- i) if $f \leq g$, then $\mathbb{E}(f \mid \Sigma') \leq \mathbb{E}(g \mid \Sigma')$,
- ii) for any Σ' -measurable function $h: X \to \mathbb{R}$ we have $\mathbb{E}(hf \mid \Sigma') = h \cdot \mathbb{E}(f \mid \Sigma')$,
- iii) also $\mathbb{E}(\mathbb{E}(f \mid \Sigma') \mid \Sigma'') = \mathbb{E}(f \mid \Sigma'') = \mathbb{E}(\mathbb{E}(f \mid \Sigma'') \mid \Sigma')$.

Proof. To i): If $f \leq g$, then

$$\mathbb{E}(f \mid \Sigma') = \sum_{i=1}^n \mathbb{E}(f \mid A_i') \cdot \mathbb{1}_{A_i'} \leq \sum_{i=1}^n \mathbb{E}(g \mid A_i') \cdot \mathbb{1}_{A_i'} = \mathbb{E}(g \mid \Sigma').$$

To ii): Let $h: X \to \mathbb{R}$ be Σ' -measurable function, then $h = \sum_{i=1}^{n'} h_i \mathbb{1}_{A'_i}$. Now

$$\mathbb{E}(hf \mid \Sigma') = \sum_{i=1}^{n'} \mathbb{E}(hf \mid A'_i) \mathbb{1}_{A'_i}$$
$$= \sum_{i=1}^{n'} h_i \mathbb{E}(f \mid A'_i) \mathbb{1}_{A'_i}$$
$$= h \cdot \mathbb{E}(f \mid \Sigma').$$

To iii): Note that $\mathbb{E}(\mathbb{E}(f \mid \Sigma') \mid A') = \mathbb{E}(f \mid A')$ for all $A' \in \Sigma'$. Hence

$$\mathbb{E}(\mathbb{E}(f \mid \Sigma') \mid \Sigma'') = \sum_{i=1}^{n''} \mathbb{E}(\mathbb{E}(f \mid \Sigma') \mid A_i'') \cdot \mathbb{1}_{A_i''}$$

$$= \sum_{i=1}^{n''} \mathbb{E}(f \mid A_i'') \cdot \mathbb{1}_{A_i''} \qquad (A_i'' \in \Sigma')$$

$$= \mathbb{E}(f \mid \Sigma'')$$

$$= \sum_{j=1}^{n''} \mathbb{E}(f \mid A_j'') \cdot \mathbb{1}_{A_j''} \cdot \sum_{i=1}^{n'} \mathbb{1}_{A_i'}$$

$$= \sum_{i=1}^{n'} \sum_{j=1}^{n''} \mathbb{E}(\mathbb{E}(f \mid A_j'') \mid A_i') \cdot \mathbb{1}_{A_j''} \cdot \mathbb{1}_{A_i'}$$

$$= \sum_{i=1}^{n'} \sum_{j=1}^{n''} \mathbb{E}(\mathbb{E}(f \mid A_j'') \cdot \mathbb{1}_{A_j''} \mid A_i') \cdot \mathbb{1}_{A_i'} \qquad (by ii)$$

$$= \mathbb{E}(\mathbb{E}(f \mid \Sigma'') \mid \Sigma').$$

This concludes the proof.

The following lemma might not seem very interesting, but changing the exponent from x to x^2 is the very foundation for Azema's inequality.

Lemma 13. *For all* $x \in \mathbb{R}$

$$e^x \leq x + e^{x^2}$$
.

Proof. Note that for x=0 both sides are equal to 1. As both sides are differentiable it suffices to show that the derivative of the right hand side is larger than the derivative of the left hand side for all $x \ge 0$ and smaller for all $x \le 0$. Hence, we want to show

$$e^x \ge 1 + 2xe^{x^2}$$
 for all $x \le 0$ and $e^x \le 1 + 2xe^{x^2}$ for all $x \ge 0$.

As for x = 0 both sides are again equal to 1 we can reduce the problem, by similar reasoning, to the question whether

$$e^x \le 2e^{x^2} + 4x^2e^{x^2}$$
 for all $x \in \mathbb{R}$.

- For x = 0 the terms reduce to $1 \le 2$.
- For x < 0 the left hand side is bounded by 1, while the right hand side is still larger that 2.
- For $1 \le x$ we have $x \le x^2$ and the inequality holds trivially.
- For 0 < x < 1 note that the both sides are increasing. Hence the inequality holds for all x with $e^x \le 2$. Finally, $\ln 2 \ge \frac{1}{2}$ and therefore the right hand side with $x = \ln 2$ evaluates to a number larger then e.

Before we will prove Azema's inequality let us introduce some useful notation. Whenever there is no danger of confusion we will abbreviate sets of the form

$$\{x \in X \mid \text{Condition}(x) \text{ holds}\}$$
 by {Condition}.

For example $\{x \in X \mid f(x) = c\}$ becomes $\{f = c\}$.

Lemma 14. [Azema's inequality] Let (X, Σ, μ) be a finite probability space, $f: X \to \mathbb{R}$ a measurable function, and $\{X\} = \Sigma_0 \subseteq \cdots \subseteq \Sigma_n = \Sigma$ a chain of sub- σ -algebras. Define $f_i := \mathbb{E}(f \mid \Sigma_i)$ and $d_i := f_i - f_{i-1}$. Then for every $\varepsilon \geq 0$

$$\mu(\{|f - \mathbb{E}(f)| \ge \varepsilon\}) \le 2 \cdot \exp\left(-\frac{\varepsilon^2}{4 \cdot \sum_{i=1}^n \|d_i\|_{\infty}^2}\right).$$

Note that $(f_i, \Sigma_i)_{0 \le i \le n}$ is a discrete martingale.

Proof. First, observe that $f_0 = \mathbb{E}(f \mid \{X\}) = \mathbb{E}(f)$ and $f_n = \mathbb{E}(f \mid \Sigma) = f$. Using

a simple telescoping sum we obtain $f - \mathbb{E}(f) = d_1 + \cdots + d_n$. Therefore

$$\mu(\lbrace f - \mathbb{E}(f) \geq \varepsilon \rbrace) = \mu(\lbrace \sum_{i=1}^{n} d_{i} \geq \varepsilon \rbrace)$$

$$= \mu(\lbrace \lambda \cdot \sum_{i=1}^{n} d_{i} \geq \lambda \varepsilon \rbrace)$$

$$= \mu(\lbrace e^{\lambda \cdot \sum_{i=1}^{n} d_{i} - \lambda \varepsilon} \geq 1 \rbrace)$$

$$\leq \mathbb{E}(e^{\lambda \cdot \sum_{i=1}^{n} d_{i}}) \cdot e^{-\lambda \varepsilon} \qquad (*)$$

$$= \mathbb{E}(e^{\lambda d_{1}} \cdot \ldots \cdot e^{\lambda d_{n-1}} \cdot \mathbb{E}(e^{\lambda d_{n}} \mid \Sigma_{n-1})) \cdot e^{-\lambda \varepsilon} \qquad \text{(Lemma 12)}$$

$$\leq \mathbb{E}(e^{\lambda d_{1}} \cdot \ldots \cdot e^{\lambda d_{n-1}}) \cdot e^{\lambda^{2} \cdot \|d_{n}\|_{\infty}^{2}} \cdot e^{-\lambda \varepsilon} \qquad (**)$$

$$\vdots$$

$$\leq e^{\lambda^{2} \cdot \|d_{1}\|_{\infty}^{2}} \cdot \ldots \cdot e^{\lambda^{2} \cdot \|d_{n-1}\|_{\infty}^{2}} \cdot e^{\lambda^{2} \cdot \|d_{n}\|_{\infty}^{2}} \cdot e^{-\lambda \varepsilon}$$

$$= e^{\lambda^{2} \cdot \sum_{i=1}^{n} \|d_{i}\|_{\infty}^{2} - \lambda \varepsilon}.$$

For (*) note that for any measurable function $g: X \to \mathbb{R}$ with $g \ge 0$ we have

$$\mu(\{g \ge 1\}) = \mathbb{E}(\mathbb{1}_{\{g \ge 1\}}) \le \mathbb{E}(g).$$

For (**) we need to use Lemma 13

$$\mathbb{E}(e^{\lambda d_i} \mid \Sigma_{i-1}) \leq \mathbb{E}(\lambda d_i \mid \Sigma_{i-1}) + \mathbb{E}(e^{\lambda^2 d_i^2} \mid \Sigma_{i-1})$$

$$= \lambda \cdot \mathbb{E}(f_i - f_{i-1} \mid \Sigma_{i-1}) + \mathbb{E}(e^{\lambda^2 d_i^2} \mid \Sigma_{i-1})$$

$$\leq 0 + e^{\lambda^2 \|d_i\|_{\infty}^2}.$$
 (Lemma 12)

Substituting $-\frac{\varepsilon^2}{\sum_{i=1}^n \|d_i\|_{\infty}^2}$ for λ we conclude that

$$\mu(\{f - \mathbb{E}(f) \ge \varepsilon\}) \le \exp\left(-\frac{\varepsilon^2}{4 \cdot \sum_{i=1}^n \|d_i\|_{\infty}^2}\right).$$

The same calculations with $-d_i$ instead of d_i yield the dual inequality

$$\mu(\{f - \mathbb{E}(f) \le -\varepsilon\}) \le \exp\left(-\frac{\varepsilon^2}{4 \cdot \sum_{i=1}^n \|d_i\|_{\infty}^2}\right).$$

These two statements obviously give us the desired result.

Since μ is the counting measure Azema's inequality bounds the number of elements for which f differs at least ε from its mean. This seems at least somewhat connected to the measure concentration function, as there we want to show that for any set A with $\mu(A) \geq \frac{1}{2}$ only a few elements are more than ε away from A. The next goal is to formalize this connection. But to achieve this we first need to introduce a new property of mm-spaces.

Definition 15. Let $X = (X, d, \mu)$ be a finite mm-space. The *length* of X is the minimum over all l with the following property. There is a refining sequence of partitions

$$\{X\} = \Omega_0 \prec \cdots \prec \Omega_n = \{\{x\} \mid x \in X\},\$$

where for every $i \in \{1, ..., n\}$ there is an a_i such that $\sum_{i=1}^n a_i^2 = l^2$ and for every $A \in \Omega_{i-1}$, $x, y \in A$ there is an isomorphism (of metric spaces) $\phi \colon [x]_i \to [y]_i$ with

$$d(z, \phi(z)) \le a_i \text{ for all } z \in [x]_i.$$

Note that since μ is the counting measure ϕ is also an isomorphism of mmspaces. As this definition is quite hard we will look at some properties and examples of the length of X before proceeding.

Lemma 16. Let X be a finite mm-space. Then the length of X is at most the diameter of X.

Proof. Consider only the two partitions $\{X\} \prec \{\{x\} \mid x \in X\}$. Clearly, $x \rightarrow y$ is an isomorpism between $\{x\}$ and $\{y\}$ for all $x, y \in X$.

We will see more properties later in Lemma 25 and Lemma 26.

Example 17. Let us look at the *n*-dimensional cube $X_n = \{0,1\}^n$.

We will only consider the following sequence of partitions

$$\Omega_0 \prec \cdots \prec \Omega_n$$
 with $\Omega_i = \{wX_{n-i} \mid w \in \{0,1\}^i\}.$

First, we equip X_n with the euclidean metric and rescale it such that the diameter is 1. To bound the length of the resulting space X_n^E consider $[x]_i \neq [y]_i$. Note that x and y are w.l.o.g. of the form w0u and w1v for some $w \in \{0,1\}^{i-1}$, $u,v \in \{0,1\}^{n-i}$. The isomorphism ϕ takes an element w0u' in $[x]_i$ and maps it to w1u'. The length of a side in X_n^E is $\frac{1}{\sqrt{n}}$, hence a_i is $\frac{1}{\sqrt{n}}$ for every i and the length of X_n^E is bounded by $(\sum_{i=1}^n \frac{1}{\sqrt{n^2}})^{\frac{1}{2}} = 1$.

Secondly, we use the normalized hemming metric and obtain the mm-space X_n^H with diameter 1. It has side length $\frac{1}{n}$ and therefore the length of X_n^H is bounded by $(\sum_{i=1}^n \frac{1}{n^2})^{\frac{1}{2}} = n^{-\frac{1}{2}}$. We see that here the length of X_n^H converges to 0 as n tends to infinity. We will show that this means that the measure concentration function $\alpha_{X_n^H}(\varepsilon)$ also goes to 0 for any fixed $\varepsilon > 0$.

Now we come back to the connection between Azema's inequality and the measure concentration function.

Lemma 18. Let $X = (X, d, \mu)$ be a finite mm-space of length l and $f: X \to \mathbb{R}$ be a 1-Lipschitz function. Then

$$\mu(\{|f - \mathbb{E}(f)| \ge \varepsilon\}) \le 2 \exp\left(-\frac{\varepsilon^2}{4l^2}\right)$$
 for every $\varepsilon > 0$.

Proof. Let $\Omega_0 \prec \cdots \prec \Omega_n$ be a refining sequence of partitions with a_1, \ldots, a_n as in Definition 15 such that $\sum_{i=1}^n a_i^2 = l^2$. These partitions correspond to σ -algebras $\Sigma_0 \subseteq \cdots \subseteq \Sigma_n$. Now we can apply Azema's inequality to obtain

$$\mu(\{|f - \mathbb{E}(f)| \ge \varepsilon\}) \le 2 \cdot \exp\left(-\frac{\varepsilon^2}{4 \cdot \sum_{i=1}^n \|d_i\|_{\infty}^2}\right),$$

where $f_i = \mathbb{E}(f \mid \Sigma_i)$ and $d_i = f_i - f_{i-1}$ as before. Therefore we only need to show that $||d_i||_{\infty} \leq a_i$. Since on any $A \in \Omega_{i-1}$ we have $f_{i-1} = \mathbb{E}(f_i \mid A)$ it suffices to show that for all $A \in \Omega_{i-1}$ it holds that $f_i(x) - f_i(y) \leq a_i$ for all $x, y \in A$. Let $\phi \colon [x]_i \to [y]_i$ be the isomorphism from Definition 15.

$$f_{i}(x) - f_{i}(y) = \mathbb{E}(f \mid [x]_{i}) - \mathbb{E}(f \mid [y]_{i})$$

$$= \mathbb{E}(f \mid [x]_{i}) - \mathbb{E}(f \circ \phi \mid [x]_{i})$$

$$= \mathbb{E}(f - f \circ \phi \mid [x]_{i})$$

$$\leq \mathbb{E}(d(., \phi(.)) \mid [x]_{i}) \qquad (f \text{ is 1-Lipschitz})$$

$$\leq a_{i}$$

This concludes the proof.

Let $X = (X, d, \mu)$ be a finite mm-space and $A \subseteq X$ measurable. Observe that $d_A \colon X \to \mathbb{R}$, $d_A(x) := \inf_{y \in A} d(x, y)$ is a 1-Lipschitz function. Using d_A we can rewrite the definition of the measure concentration function

$$\alpha_X(\varepsilon) = \sup\{\mu(\{d_A \ge \varepsilon\}) \mid \mu(A) \ge \frac{1}{2}\}.$$

This gives us the desired connection.

Theorem 19. *If a finite mm-space* $X = (X, d, \mu)$ *has length* l, *then the measure concentration function of* X *satisfies*

$$\alpha_X(\varepsilon) \leq 2 \exp\left(-\frac{\varepsilon^2}{16l^2}\right) \text{ for all } \varepsilon > 0.$$

Proof. Let $\varepsilon > 0$ and $A \subseteq X$ be measurable with $\mu(A) \ge \frac{1}{2}$. As mentioned above d_A is 1-Lipschitz and therefore, by Lemma 18,

$$\mu(\{|d_A - \mathbb{E}(d_A)| \ge \varepsilon\}) \le 2 \exp\left(-\frac{\varepsilon^2}{4l^2}\right).$$

Now there are two cases to consider, the first case is the more interesting one.

If $\mathbb{E}(d_A) \leq \varepsilon$, then for any x with $d_A(x) \geq 2\varepsilon$ we know $d_A(x) \geq \varepsilon + \mathbb{E}(d_A)$ and therefore $|d_A(x) - \mathbb{E}(d_A)| \geq \varepsilon$. As a consequence

$$\mu(\{d_A \geq 2\varepsilon\}) \leq \mu(\{|d_A - \mathbb{E}(d_A)| \geq \varepsilon\}) \leq 2\exp\left(-\frac{\varepsilon^2}{4l^2}\right).$$

Replacing ε by $\frac{\varepsilon}{2}$ gives the desired inequality.

If $\mathbb{E}(d_A) > \varepsilon$, then $A \subseteq \{|d_A - \mathbb{E}(d_A)| \ge \varepsilon\}$. Consequently,

$$\mu(\{d_A \geq \varepsilon\}) \leq \mu(X \setminus A) \leq \frac{1}{2} \leq \mu(A) \leq \mu(\{|d_A - \mathbb{E}(d_A)| \geq \varepsilon\}) \leq 2\exp\left(-\frac{\varepsilon^2}{4l^2}\right).$$

This proves the theorem.

Note that in the second case the upper bound is at least $\frac{1}{2}$, which means that if l is large enough then we are in the first case and the expected distance to a set with at least half measure is less then ε . In Section 7 we will see a slight modification of this lemma. But for now our goal is to apply Theorem 8 to groups and as it turns out we can bound the length of a group using sequences of subgroups. Before we can write down the corresponding corollary we need to make a quick excursion into factor metrics.

Definition 20. Let (X, d) be a metric space and let \sim be an equivalence relation on X. Then

$$d_{\sim}([x],[y]) = \inf\{d(p_1,q_1) + \dots + d(p_n,q_n) \mid q_i \sim p_{i+1}, x \sim p_1, q_n \sim y\}$$

defines a pseudometric on X/\sim .

In case that *X* is a group with bi-invariant metric this definition simplifies.

Lemma 21. Let G be a finite group with bi-invariant metric d and H a (not necessarily normal) subgroup of G. Then the factor metric d_H on $G/H = \{gH \mid g \in G\}$ is a proper metric and satisfies $d_H(gH, g'H) = \inf\{d(g, g'h) \mid h \in H\}$.

Proof. Let $x, y \in G$. We show that for any path $p_1, q_1, \ldots, p_n, q_n$ as in the definition there are $x \sim p$ and $q \sim y$ such that $d(p,q) \leq d(p_1,q_1) + \cdots + d(p_n,q_n)$. It suffices to show this for n = 2. By definition p_1, q_1, p_2, q_2 are of the form g, g', g'h, g'' for some $g, g', g'' \in G$ and $h \in H$. Since d is bi-invariant

$$d(gh, g'') \le d(gh, g'h) + d(g'h, g'') = d(g, g') + d(g'h, g'').$$

Furthermore we are given that G is finite. Hence the infimum becomes a minimum and $d_H([x], [y]) = 0$ only if [x] = [y].

Equipped with this knowledge we can formulate the final statement for this section.

Corollary 22. Let G be a finite group with a bi-invariant metric d, and let

$$\{e\} = G_0 < G_1 < \cdots < G_n = G$$

be a chain of subgroups. Denote the diameter of G_i/G_{i-1} with respect to the factor metric by a_i . Then the length of G is at most $\left(\sum_{i=1}^n a_i^2\right)^{\frac{1}{2}}$ and the measure concentration function of the mm-space (G,d,μ) , where μ is the normalized counting measure, satisfies

$$\alpha_{(G,d,\mu)}(\varepsilon) \leq 2 \exp\left(-\frac{\varepsilon^2}{16 \cdot \sum_{i=1}^n a_i^2}\right).$$

Proof. We show that the length l of (G, d, μ) is bounded by $(\sum_{i=1}^n a_i^2)^{\frac{1}{2}}$ and apply Theorem 19. Define the sequence of partitions $\Omega_i := \{gG_i \mid g \in G\}$

$$\{\{g\} \mid g \in G\} = \Omega_0 \succ \Omega_1 \succ \cdots \succ \Omega_n = \{G\}$$
$$\{e\} = G_0 < G_1 < \cdots < G_n = G.$$

Take $A \in \Omega_{i+1}$ and $g, g' \in A$. Since the distance of gG_i and $g'G_i$ with respect to the factor metric is at most a_i there is an $h' \in G_i$ such that $d(g, g'h') \leq a_i$. Hence the map

$$\phi \colon gG_i \to g'G_i$$
$$gh \mapsto g'h'h$$

is, by bi-invariance of d, an isomorphism of metric spaces with $d(gh, g'h'h) = d(g, g'h') \le a_i$ for all $gh \in gG_i$. Therefore $(\sum_{i=1}^n a_i^2)$ is an upper bound for l^2 . \square

Carderi and Thom used this result to show that the closure of the limit of $SL_{2^n}(q)$ is extremely amenable [2]. We will recreate this proof in the next section.

4 Special Linear Groups and Extreme Amenability

When studying matrices it is often useful to look at the corresponding linear maps of a suitable vector space. In the case of $SL_n(q)$ an n dimensional \mathbb{F}_q vector space V suffices. Fixing a basis e_1, \ldots, e_n gives us an embedding from $SL_n(q)$ into Aut(V). Next we will apply the methods from the previous section to show that $c\lim SL_{2^n}(q)$ is extremely amenable.

Theorem 23. The normalized counting measure μ_n on the groups $SL_n(q)$ concentrates with respect to the normalized rank-metric d_n , i.e. for all $\varepsilon > 0$

$$\lim_{n\to\infty}\alpha_{(\mathrm{SL}_n(q),d_n,\mu_n)}(\varepsilon)=0.$$

Proof. We will apply Corollary 22 to a sequence of subgroups which also shows that the length of $SL_n(q)$ is bounded by $3n^{-\frac{1}{2}}$. Let e_1, \ldots, e_n be a basis of an n dimensional \mathbb{F}_q vector space V. Look at the sequence

$$SL_0(q) < SL_1(q) < \cdots < SL_n(q),$$

where $SL_{i-1}(q)$ becomes a subgroup of $SL_i(q)$ via the embedding $g \mapsto \begin{pmatrix} g & 0 \\ 0 & 1 \end{pmatrix}$.

Next we want to bound the diameter of $SL_i(q)/SL_{i-1}(q)$ by $\frac{3}{n}$. By Lemma 21 it suffices to show that for any $g, g' \in SL_i(q)$ there is an $h \in SL_{i-1}(q)$ such that $d(g, g'h) \leq \frac{3}{n}$. Since d is bi-invariant we can assume w.l.o.g. that g' is equal to the identity matrix I_i . Our goal is now to find a $g' \in SL_i(q)$ that is the identity on e_i and has a small distance to g.

Let us take a closer look at ge_i . If e_i is an eigenvector of g with eigenvalue λ , then $\lambda \neq 0$ and g is of the form $\begin{pmatrix} A & 0 \\ c^{\perp} & \lambda \end{pmatrix}$. Define $h' := \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$ and $g' := \begin{pmatrix} I_{i-2} & 0 \\ 0 & h' \end{pmatrix} \cdot g$. By construction $g' \in \operatorname{SL}_i(q)$ and it is of the form $\begin{pmatrix} A' & 0 \\ c'^{\perp} & 1 \end{pmatrix}$. Since $\det g' = 1$ we have that $\det A' = 1$ and therefore $A' \in \operatorname{SL}_{i-1}(q)$ making it a suitable candidate for h. Using the triangle inequality we obtain

$$d(g,h) \leq d(g,g') + d(g',h)$$

$$= d(I_i, \begin{pmatrix} I_{i-2} & 0 \\ 0 & h' \end{pmatrix}) + \frac{1}{n} \operatorname{r}(\begin{pmatrix} 0 & 0 \\ -c'^{\perp} & 0 \end{pmatrix})$$

$$\leq \frac{2}{n} + \frac{1}{n}$$

as desired.

If e_i is not an eigenvector of g, then we can make a change of basis of $\langle e_1, \dots, e_{i-1} \rangle$ such that $ge_i = e_{i-1} + \lambda e_i$. Henceforth we can assume w.l.o.g. that g is of the

form
$$\begin{pmatrix} A & 0 \\ c^{\perp} & c_{i-1} & \lambda \end{pmatrix}$$
. Define $h' := \begin{pmatrix} \lambda & -1 \\ 1 & 0 \end{pmatrix}$ and as before $g' := \begin{pmatrix} I_{i-2} & 0 \\ 0 & h' \end{pmatrix} \cdot g$.

Now we can apply the argument from above to get an $h \in SL_{i-1}(q)$ such that $d(g,h) \leq \frac{3}{n}$. Applying Corollary 22 we obtain

$$\alpha_{(\mathrm{SL}_n(q),d_n,\mu_n)}(\varepsilon) \leq 2\exp\left(-\frac{\varepsilon^2}{16\cdot\sum_{i=1}^n\frac{9}{n^2}}\right) = 2\exp\left(-\frac{\varepsilon^2n}{16\cdot9}\right),$$

which tends to 0 as n goes to infinity.

From this theorem the main result of this section easily follows.

Corollary 24. The Polish group clim $SL_{2^n}(q)$ is extremely amenable.

Proof. Theorem 23 implies that $c\lim SL_{2^n}(q)$ is a Levy group and is therefore extremely amenable, by Theorem 8.

As a byproduct we found an upper bound for the length of $SL_n(q)$. The natural question to ask is: How good is this upper bound? Therefore our next goal is to also determine a lower bound. This part is not essential to the rest of the thesis but still interesting.

Lemma 25. Let (X, d, μ) be a finite mm-space with diameter Δ and

$$\Omega_0 = \{X\} \prec \cdots \prec \Omega_n = \{\{x\} \mid x \in X\}$$

with a_1, \ldots, a_n as in Definition 15. Then

$$\sum_{i=1}^n a_i \ge \Delta.$$

Proof. Let $x,y\in X$, with $x\neq y$, we show $d(x,y)\leq \sum_{i=1}^n a_i$. Let i_0 be the smallest number such that $[x]_{i_0}\neq [y]_{i_0}$. Since $[x]_0=X=[y]_0$ we know that i_0 is at least 1. Therefore $[x]_{i_0-1}=[y]_{i_0-1}$ and there is an isomorphism $\varphi_{i_0}\colon [x]_{i_0}\to [y]_{i_0}$ such that $d(\varphi_{i_0}(x),y)\leq a_{i_0}$. Let $x_{i_0}=\varphi_{i_0}(x)$, then

$$d(x,y) \leq d(x,x_{i_0}) + d(x_{i_0},y).$$

If $x_{i_0} = y$, then we are done. Otherwise let i_1 be the smallest number such that $[x_{i_0}]_{i_1} \neq [y]_{i_1}$. Then let $\varphi_{i_1} \colon [x_{i_0}]_{i_1} \to [y]_{i_1}$ be an isomorphism such that $d(\varphi_{i_1}(x_{i_0}), y) \leq a_{i_1}$. Define $x_{i_1} = \varphi_{i_1}(x_{i_0})$. Proceeding in this fashion yields elements x_{i_0}, \ldots, x_{i_k} such that $x_{i_k} = y$ and

$$d(x,y) \leq d(x,x_{i_0}) + d(x_{i_0},x_{i_1}) + \cdots + d(x_{i_{k-1}},x_{i_k}) \leq a_{i_0} + \cdots + a_{i_k} \leq \sum_{i=1}^n a_i.$$

From this the claim immediately follows.

Lemma 26. Let (X, d, μ) be a finite mm-space with diameter Δ and $\delta = \min_{x \neq y} d(x, y)$. Then the length of X is at least $(\Delta \cdot \delta)^{\frac{1}{2}}$.

Proof. We show by induction on n that for any nonnegative a_1, \ldots, a_n with $\delta = \min_{1 \le i \le n} a_i$ we have

$$\sum_{i=1}^{n} a_i \ge \Delta \implies \sum_{i=1}^{n} a_i^2 \ge \Delta \cdot \delta.$$

For n = 1: Note that $\Delta \geq \delta$. Hence

$$\sum_{i=1}^{n} a_i^2 = a_1^2 = \delta \cdot \delta \ge \Delta \cdot \delta.$$

For n > 1: Assume w.l.o.g. that $a_1 \le \cdots \le a_n$. Then

$$\sum_{i=1}^{n} a_i \ge \Delta \implies \sum_{i=2}^{n} a_i \ge \Delta - \delta$$

$$\stackrel{\text{I.H.}}{\Longrightarrow} \sum_{i=2}^{n} a_i^2 \ge (\Delta - \delta) \cdot \delta'$$

$$\implies \sum_{i=2}^{n} a_i^2 \ge \Delta \cdot \delta - \delta^2$$
(with $\delta' = a_2$)
$$\iff \sum_{i=2}^{n} a_i^2 \ge \Delta \cdot \delta - \delta^2$$
($\delta \le \delta'$)

 $\implies \sum_{i=1}^{n} a_i^2 \ge \Delta \cdot \delta. \tag{a_1^2 = \delta^2}$

From this claim together with Lemma 25 we obtain the desired lower bound.

Using this we can give an interval for the length of $SL_n(q)$.

Corollary 27. Consider $(SL_n(q), d, \mu)$, where d is the normalized rank-metric and μ is the normalized counting measure. Then the length l of this mm-space satisfies

$$n^{-\frac{1}{2}} < l < 3n^{-\frac{1}{2}}.$$

Proof. The diameter of $SL_n(q)$ is equal to 1 and for any $g \neq g' \in SL_n(q)$ we have that $d(g,g') \geq \frac{1}{n}$.

The next goal is to show that the closure of the limit of symplectic groups is also extremely amenable. Theses groups can be seen as automorphism groups of a vector space together with a symplectic form. The proof will be similar to the one for the special linear groups but extending the partial inverse h' becomes much harder. This is why in the next section we will prove Witt's Lemma which does exactly what we need, i.e. extending isometries.

5 Witt's Lemma

In this section we will prove Witt's Lemma and explore the structure of symplectic spaces. Witt's Lemma states that an isometry between subspaces of a finite dimensional symplectic, unitary, or orthogonal space can always be extended to an isomtry on the whole space. We will roughly follow the proof in [1]. Since we are mainly interested in symplectic spaces we will only show Witt's Lemma for those but it also holds for unitary and orthogonal spaces.

Florian sagt: "remove page break"

Definition 28. Let V be an \mathbb{F}_q vector space. A bilinear form ω on V is called *symplectic* if ω is nondegenerate, i.e. $\omega(x, .) \neq 0_V$ for all $x \in V \setminus \{0\}$, and $\omega(x, y) = -\omega(y, x)$ for all $x, y \in V$. We call (V, ω) a *symplectic space*.

A finite group G is called *symplectic* if there is a symplectic space (V, ω) such that $G \cong \operatorname{Aut}(V, \omega)$.

A subspace $U \leq V$ is *nondegenerate* if ω restricted to U is nondegenerate (this is the case if and only if $U \cap U^{\perp} = \{0\}$).

Throughout this section let (V, ω) be a finite dimensional symplectic \mathbb{F}_q vector space. Note that $\omega(x,y)=0$ iff $\omega(y,x)=0$, also $\omega(x,x)=0$ for all $x\in V$. We will start of with some technical lemmas.

Florian sagt:
"make shortversion for each

Lemma 29. For a subspace U < V we have

$$\dim U^{\perp} = \dim V - \dim U.$$

Proof. Let u_1, \ldots, u_m be a basis of U and consider the linear map

$$g \colon V \to \mathbb{F}_q^m$$
 with $g(v) = \begin{pmatrix} \omega(v, u_1) \\ \vdots \\ \omega(v, u_m) \end{pmatrix}$.

By definition the kernel of g is U^{\perp} and since ω is nondegenerate g is also surjective. Therefore the claim follows from the Rank-Nullity Theorem.

The following lemma is an immediate consequence of the previous one.

Lemma 30. *Let* $U \leq V$. *Then*

- i) U is nondegenerate iff $V = U \oplus U^{\perp}$ and
- ii) $U^{\perp\perp} = U$.

Proof. If *U* is nondegenerate then $U \cap U^{\perp} = \{0\}$. By Lemma 29

$$U \oplus U^{\perp} = \langle U, U^{\perp} \rangle = V.$$

The other direction is clear from the definition

For ii) note that $U \subseteq U^{\perp \perp}$. By Lemma 29 they also have the same dimension and are therefore equal.

Now we want to better understand the structure of symplectic spaces. We start with 2-dimensional symplectic spaces, which we will call *hyperbolic planes*.

Lemma 31. There is only one hyperbolic plane up to isometry.

Proof. Let (V, ω) and (V', ω') be hyperbolic planes with basis r, s and r', s', respectively. Then $r \mapsto r', s \mapsto \lambda s'$ with $\lambda = \omega'(r', s')^{-1} \cdot \omega(r, s)$ is an isometry between the two hyperbolic planes.

Next we will strengthen this result and show that any symplectic space is the direct sum of hyperbolic planes.

Theorem 32. Let $r \in V \setminus \{0\}$. Then there is a hyperbolic plane $U \leq V$ containing r such that $V = U \oplus U^{\perp}$. Furthermore, if $W \leq V$ with $W \perp r$ and $r \notin W$, then there is a U as before that also fulfills $W \perp U$.

Proof. Since $\omega(r,r)=0$ we know that $r\in r^{\perp}$. Let $H\leq r^{\perp}$ containing W such that $\langle r\rangle\oplus H=r^{\perp}$. Then, by Lemma 29, $\dim r^{\perp}=\dim V-1$, $\dim H^{\perp}=2$, and $r\in H^{\perp}$. In particular $\dim V>1$. Our goal is to show that

$$V=H^{\perp}\oplus H$$
,

then H^{\perp} would be a suitable choice for U. It suffices to show that H^{\perp} is non-degenerate, as then the claim follows from Lemma 30. Let $s \in H^{\perp}$ such that $H^{\perp} = \langle r, s \rangle$. Now H^{\perp} is nondegenerate iff $\omega(r, s) \neq 0$.

Assume $\omega(r,s)=0$. Then $r\in s^{\perp}$ and $H\subseteq s^{\perp}$. Since, by construction, $r\notin H$ we have $r^{\perp}=\langle r,H\rangle=s^{\perp}$. Hence r and s are linearly dependent contradicting that r,s is a basis of H^{\perp} .

Using Theorem 32 we can describe the structure of symplectic spaces.

Corollary 33. Let (V, ω) be a symplectic space. Then V is of even dimension 2n and there are hyperbolic planes $U_1, \ldots, U_n \leq V$ such that $V = U_1 \oplus \cdots \oplus U_n$ and $U_i \perp U_j$ for $i \neq j$. In particular for any n there is exactly one symplectic space of dimension 2n.

Proof. We use induction on $n = \dim V$.

If n=1 then $V=\langle v\rangle$ for $v\in V\setminus\{0\}$. But $\omega(v,v)=0$ and therefore ω is degenerate which is a contradiction.

If n = 2 then the claim follows from Lemma 31.

If n > 2 then by Theorem 32 there is a hyperbolic plane $U_1 \le V$ satisfying $V = U_1 \oplus U_1^{\perp}$. Hence, by induction hypothesis, n is even and $U^{\perp} = U_2 \oplus \cdots \oplus U_m$ for some hyperbolic planes $U_2, \ldots, U_m \le U^{\perp}$ with $m = \frac{n}{2}$ and $U_i \perp U_j$ for $i \ne j$.

With these powerful tools we can easily prove Witt's Lemma. Let $\alpha \colon U \to W$ be an isometry between subspaces $U, W \leq V$.

Lemma 34. There are subspaces $U' \ge U$ and $W' \ge W$ with U', W' nondegenerate such that α can be extended to an isometry $\tilde{\alpha}: U' \to W'$.

Proof. We show this claim using induction on $n = \dim(U \cap U^{\perp})$.

If n = 0 then U itself is nondegenerate and we are done.

If n>0 then let $r\in (U\cap U^\perp)\setminus\{0\}$ and $\tilde{U}\leq V$ such that $\langle r\rangle\oplus \tilde{U}=U$. By Theorem 32 there is a hyperbolic plane $H\leq V$ containing r such that $\tilde{U}\perp H$. Similarly, there is a hyperbolic plane $H'\leq V$ containing $r':=\alpha(r)$ such that $H'\perp \tilde{W}$ with $\tilde{W}=\alpha(\tilde{U})$. Let r,s and r',s' be a basis of H and H', respectively. Note that $\omega(r,s)\neq 0$ and $r\perp U$ imply $s\notin U$. Analogously, $s'\notin W$. We can assume w.l.o.g. that $\omega(r,s)=\omega(r',s')$. Now we can extend α to $\tilde{\alpha}:\langle U,s\rangle\to\langle W,s'\rangle$ by defining $\tilde{\alpha}(s):=s'$. Note that $\langle U,s\rangle=\langle \tilde{U},H\rangle$. Since $\tilde{U}\perp H$ we have

$$\dim(\langle \tilde{U}, H \rangle \cap \langle \tilde{U}, H \rangle^{\perp}) = \dim(\tilde{U} \cap \tilde{U}^{\perp}) < \dim(U \cap U^{\perp}).$$

Hence we can apply the induction hypothesis to $\tilde{\alpha}$.

Lemma 35. If U is nondegenerate. Then α can be extended to an isometry $\tilde{\alpha} \colon V \to V$.

Proof. Since U is nondegenerate we have that W is also nondegenerate and we can apply Lemma 30 and obtain

$$V = U \oplus U^{\perp} = W \oplus W^{\perp}$$
.

By Lemma 29 we have dim $U^{\perp} = \dim W^{\perp}$. Hence, by Corollary 33, there is an isometry $\beta \colon U^{\perp} \to W^{\perp}$. Finally, $\alpha \oplus \beta \colon V \to V$ is an isometry extending α .

With this preparation we can now come to the main result.

Corollary 36 (Witt's Lemma). The map α can be extended to an isometry $\tilde{\alpha}: V \to V$.

Proof. Using Lemma 34 extend α to $\tilde{\alpha}$: $U' \to W'$ for some $U' \geq U$, $W' \geq W$ nondegenerate. Now apply Lemma 35 to extend $\tilde{\alpha}$ to $\tilde{\tilde{\alpha}}$: $V \to V$.

Now that we understand symplectic spaces and can extend isometries we are well equipped for the next section, where will show that the closure of the limit of symplectic groups is also extremely amenable.

6 Symplectic Groups and Extreme Amenability

Our goal in this section is to show that $\dim \mathrm{Sp}_{2^n}(q)$ is extremely amenable. The structure of the proof is the same as in Section 4 for special linear groups. We will bound the length of $\mathrm{Sp}_n(q) \cong \mathrm{Aut}(V,\omega)$ by applying Corollary 22 to a sequence of subgroups $(G_i)_{0 \le i \le n}$. To bound the diameter of G_i/G_{i-1} we will construct for any $g \in G_i$ an $h' \in G_i$ such that the distance between g and h'g is small and $h'g \in G_{i-1}$. The h' will behave like the inverse of g on a small subspace of V and like the identity on most of the rest. The proof can be generalized to unitary and

orthogonal groups and therefore we will briefly introduce those and afterwards show extreme amenability for the closure of the limits of symplectic, unitary, and orthogonal groups.

Definition 37. Let V be a finite dimensional \mathbb{F}_q vector space and ω a nondegenerate map from $V \times V$ to \mathbb{F}_q .

Then (V, ω) is an *orthogonal space* if ω is bilinear, $\omega(x, y) = \omega(y, x)$ for all $x, y \in V$, and if q = 2 then $\omega(x, x) = 0$ for all $x \in V$.

And (V, ω) is a *unitary space* if there is an $h \in \operatorname{Aut}(\mathbb{F}_q)$ with $h^2 = 1$ such that

$$\omega(ax + y, z) = a\omega(x, z) + \omega(y, z)$$

$$\omega(x, ay + z) = h(a)\omega(x, y) + \omega(x, z)$$

$$\omega(x, y) = h(\omega(y, x))$$

for all $x, y, z \in V$ and $a \in \mathbb{F}_q$.

Orthogonal and *unitary groups* are the automorphism groups of unitary and orthogonal spaces, respectively.

In the following let (V, ω) be a symplectic, unitary, or orthogonal space. Note that in any case ω is nondegenerate and

$$\omega(x,y) = 0$$
 iff $\omega(y,x) = 0$ for all $x,y \in V$.

Obviously, Lemmas 29 and 30 from the previous section still hold in unitary and orthogonal spaces. Furthermore, Witt's Lemma also holds in unitary and orthogonal spaces, for a proof see [1]

Theorem 38 (Witt's Lemma). Let (V, ω) be a symplectic, unitary, or orthogonal space and $\alpha \colon U \to W$ be an isometry between subspaces $U, W \leq V$. Then α can be extended to an isometry $\tilde{\alpha} \colon V \to V$.

The next lemma is necessary to construct the chain of subgroups, in the case of symplectic spaces it is a trivial consequence of Theorem 32.

Lemma 39. There exists a $U \leq V$ with dim $U \leq 2$ such that $V = U \oplus U^{\perp}$.

Proof. Let $r \in V \setminus \{0\}$. By Lemma 29 dim $r^{\perp} = n - 1$.

If $r \notin r^{\perp}$, then $V = \langle r \rangle \oplus r^{\perp}$ and $\langle r \rangle$ is the desired U.

If $r \in r^{\perp}$, then let $H \leq r^{\perp}$ such that $\langle r \rangle \oplus H = r^{\perp}$. Now proceed as in the proof of Theorem 32 to show that H^{\perp} is a suitable U.

The following lemma shows that isometries interact nicely with complements.

Lemma 40. Let $U \leq V$ and $\alpha \colon V \to V$ be an isometry such that $\alpha(U) = U$. Then $\alpha(U^{\perp}) = U^{\perp}$.

Proof. As dim $\alpha(U^{\perp}) = \dim U^{\perp}$ it suffices to show that $\alpha(u') \perp u$ for all $u \in U$ and $u' \in U^{\perp}$. Let $v \in U$ with $\alpha(v) = u$. Then

$$\omega(\alpha(u'), u) = \omega(\alpha(u'), \alpha(v))$$

$$= \omega(u', v)$$

$$= 0.$$

This concludes the proof.

The next lemma gives us a large subspace on which h' can be the identity without interfering with the part where it is the inverse of g.

Lemma 41. For all $W \leq V$ there is a $W' \leq W^{\perp}$ such that $W \cap W' = 0$ and

$$\dim W' \ge \dim V - 2\dim W$$
.

Proof. Let $W' \leq W^{\perp}$ such that

$$W^{\perp} = (W^{\perp} \cap W) \oplus W'.$$

Clearly, $W \cap W' = 0$ and

$$\dim W' = \dim W^{\perp} - \dim(W^{\perp} \cap W)$$

$$\geq \dim W^{\perp} - \dim W$$

$$= \dim V - \dim W - \dim W. \qquad \text{(Lemma 29)}$$

This concludes the proof.

Now we can proof the analogue of Theorem 23 from Section 4.

Theorem 42. Let G be a symplectic, unitary, or orthogonal group equipped with the rank metric d and of diameter n. Then there is a symplectic, unitary, or orthogonal subgroup $H \leq G$ with diameter at most n-1 such that the diameter of G/H is at most 8.

Proof. We have $G \cong \operatorname{Aut}(V, \omega)$ for some n-dimensional vector space V and some ω . Use Lemma 39 to obtain $U \leq V$ such that $V = U \oplus U^{\perp}$ and $\dim U \leq 2$. Define $H = \operatorname{Aut}(U^{\perp}, \omega)$. Our aim is to find for any $g \in G$ an $g' \in H$ such that $d(g, g') \leq 8$. The idea is to find a map $h' \in G$ that behaves like the inverse of g on gU and like the identity on most of the rest. Then h'g is the desired g'.

Let $g \in G$ and define $W = \langle U, gU \rangle$. By Lemma 41 there is a W' such that $\dim W' \ge n - 8$, $W' \le W^{\perp}$, and $W' \cap W = 0$. Consider the map

$$g^{-1}|_{gU} \oplus 1_{W'} \colon gU \oplus W' \to U \oplus W'$$

since $g^{-1}|_{gU}$ and $1_{W'}$ are isometries and $W \perp W'$ we have that the above map is also an isometry. By Theorem 38 this isometry can be extended to an isometry $h': V \to V$. Furthermore,

$$\begin{split} d(g,h'g) &= \dim \operatorname{im}(g - h'g) \\ &\leq 8 + \dim \operatorname{im}(g - h'g)|_{W'} \\ &= 8 + \dim \operatorname{im}(g - g)|_{W'} \\ &= 8. \end{split} \qquad (\dim W' \geq n - 8) \\ (h'|_{W'} = 1_{W'}) \end{split}$$

Finally, we need to show that $h'g \in H$, here the choice of H using Lemma 39 comes into play. By construction of h' we have that $h'g|_U = 1_U$. Therefore we can apply Lemma 40 and get that $h'g(U^{\perp}) = U^{\perp}$. Hence $h'g \in H$ and $d(g,h'g) \leq 8$.

Corollary 43. Let $G = \operatorname{Aut}(V, \omega)$ be a symplectic, unitary, or orthogonal group equipped with the normalized rank metric d and the normalized counting measure μ , where V is n dimensional. Then the length of G is at most $8n^{-\frac{1}{2}}$ and for all $\varepsilon > 0$

$$\alpha_{(G,d,\mu)}(\varepsilon) \leq 2 \exp\left(-\frac{\varepsilon^2 n}{16 \cdot 64}\right).$$

Proof. Applying Theorem 42 multiple times gives us a sequence of subgroups $\{e\} = G_0 \le \cdots \le G_m = G$ such that $m \le n$ and the diameter of G_i/G_{i-1} is at most $\frac{8}{n}$. Now we can use Corollary 22 to obtain the desired upper bound.

Observe that as in Section 4 we can apply Lemma 26 and obtain $n^{-\frac{1}{2}}$ as a lower bound for the length of G. Now we can prove the main result of this thesis.

Corollary 44. Let $(V_0, \omega_0) \subset (V_1, \omega_1) \subset \ldots$ be a sequence of \mathbb{F}_q vector spaces such that (V_n, ω_n) is a symplectic, unitary, or orthogonal space of dimension 2^n and $\omega_{n+1}|_{V_n} = \omega_n$ for all $n \in \mathbb{N}$. Let $G_n = \operatorname{Aut}(V_n, \omega_n)$ equipped with the normalized rank metric d_n and the normalized counting measure μ_n . Then

$$\lim_{n\to\infty}\alpha_{(G_n,d_n,\mu_n)}(\varepsilon)=0$$

for all $\varepsilon > 0$ and clim G_n is extremely amenable.

Proof. Immediate from Corollary 43 and Theorem 8.

7 Symplectic Groups and Ramsey Theory

In this section we will use the upper bound obtained for the length of symplectic, unitary, and orthogonal groups to deduce a Ramsey theoretic result. As in Section 6 the results from this section are already shown in [2] for special linear groups.

The first lemma is very similar to Theorem 19.

Lemma 45 (Lemma 2.7 in [2]). Let (X, d, μ) be a finite mm-space with length l. Then for every $\varepsilon > 0$ and $A \subseteq X$ with $\mu(A) > 2 \exp\left(-\frac{\varepsilon^2}{16l^2}\right)$ we have

$$\mu(N_{\varepsilon}(A)) \geq 1 - 2 \exp\left(-\frac{\varepsilon^2}{16l^2}\right).$$

A covering \mathcal{U} of a metric space (X,d) is an ε -covering if for every $x \in X$ the ε -neighborhood of x is contained in some $U \in \mathcal{U}$.

Theorem 46. Let $\varepsilon > 0$, $k, m \in \mathbb{N}$. Define $N := 16 \cdot 64\varepsilon^{-2} \cdot \max\{\ln(2k), \ln(2m)\}$ and let $G = \operatorname{Aut}(V, \omega)$, where (V, ω) is a symplectic, unitary, or orthogonal space of dimension n > N, with an ε -cover \mathcal{U} of cardinality at most m. Then there is a $U \in \mathcal{U}$ such that for all $F \subseteq G$ satisfying $|F| \le k$ there is a $g \in G$ with $g \in G$.

Intuitively the theorem says that whenever we color G with m colors, where a single element can have multiple colors, such that all elements of ε -balls have at least one color in common, then there is one color c such that for every F with at most k elements there is a g where the elements of gF all have the color c.

Proof. Look at G as the usual mm-space with normalized rank metric and normalized counting measure. Let I be the length of G. Observe that, by Corollary 43, $I \leq 8n^{-\frac{1}{2}}$. For $U \in \mathcal{U}$ define $Core(U) := \{x \in U \mid N_{\varepsilon}(x) \subseteq U\}$. Since \mathcal{U} is an ε -covering we have $\bigcup_{U \in \mathcal{U}} Core(U) = G$. Therefore there is a $U \in \mathcal{U}$ such that $\mu(Core(U)) \geq \frac{1}{m}$. As $n > 16 \cdot 64\varepsilon^{-2} \cdot \ln(2m)$ we have

$$\frac{1}{m} > 2 \exp\left(-\frac{\varepsilon^2 n}{16 \cdot 64}\right) \ge 2 \exp\left(-\frac{\varepsilon^2}{16l^2}\right).$$

Now we can apply Lemma 45 to Core(U) and obtain

$$\mu(U) \geq \mu(N_{\varepsilon}(\operatorname{Core}(U))) \geq 1 - 2\exp\left(-\frac{\varepsilon^2}{16l^2}\right) \geq 1 - 2\exp\left(-\frac{\varepsilon^2n}{16\cdot 64}\right).$$

Let $F \subseteq G$ with $|F| \le k$. Note that

$$\{g \in G \mid gF \subseteq U\} = \bigcap_{h \in F} \{g \in G \mid gh \in U\} = \bigcap_{h \in F} Uh^{-1}.$$

Therefore, $\mu(\{g \in G \mid gF \subseteq U\}) \ge 1 - k \cdot 2 \exp\left(-\frac{\varepsilon^2 n}{16 \cdot 64}\right)$. By assumption $n > 16 \cdot 64\varepsilon^{-2} \cdot \ln(2k)$, hence $\mu(\{g \in G \mid gF \subseteq U\}) > 0$ and there is a suitable g.

References

- [1] M. Aschbacher. *Finite Group Theory*. 2nd ed. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2000. DOI: 10.1017/CB09781139175319.
- [2] A. Carderi and A. Thom. "An exotic group as limit of finite special linear groups". In: *ArXiv e-prints* (Mar. 2016). arXiv: 1603.00691 [math.GR].
- [3] Donald S. Ornstein and Benjamin Weiss. "Entropy and isomorphism theorems for actions of amenable groups". In: *Journal d'Analyse Mathématique* 48.1 (Dec. 1987), pp. 1–141. ISSN: 1565-8538. DOI: 10.1007/BF02790325. URL: https://doi.org/10.1007/BF02790325.
- [4] V. Pestov and American Mathematical Society. *Dynamics of Infinite-dimensional Groups: The Ramsey-Dvoretzky-Milman Phenomenon*. University lecture series. American Mathematical Society, 2006. ISBN: 9780821841372. URL: https://books.google.de/books?id=dz%5C_vAAAAMAAJ.

ERKLÄRUNG

Hiermit erkläre ich, dass ich die am heutigen Tag eingereichte Diplomarbeit zum Thema "Topological Entropy of Formal Languages" selbstständig erarbeitet, verfasst und Zitate kenntlich gemacht habe. Andere als die angegebenen Hilfsmittel wurden von mir nicht benutzt.

Datum Unterschrift