Digital Fundamentals

Tenth Edition

Floyd

© 2008 Pearson Education

The Inverter

The inverter performs the Boolean **NOT** operation. When the input is LOW, the output is HIGH; when the input is HIGH, the output is LOW.

Input	Output
A	X
LOW (0) HIGH (1)	HIGH (1) LOW(0)

The **NOT** operation (complement) is shown with an overbar. Thus, the Boolean expression for an inverter is $X = \overline{A}$.

The Inverter

Example waveforms:

A X

A group of inverters can be used to form the 1's complement of a binary number:

Binary number

The AND Gate

$$\frac{A}{B}$$
 & X

The **AND** gate produces a HIGH output when all inputs are HIGH; otherwise, the output is LOW. For a 2-input gate,

the truth table is

Inputs	Output
A B	X
0 0	0
0 1	0
1 0	0
1 1	1

The **AND** operation is usually shown with a dot between the variables but it may be implied (no dot). Thus, the AND operation is written as $X = A \cdot B$ or X = AB.

The AND Gate

$$\frac{A}{B}$$
 & X

Example waveforms:

The AND operation is used in computer programming as a selective mask. If you want to retain certain bits of a binary number but reset the other bits to 0, you could set a mask with 1's in the position of the retained bits.

Example

If the binary number 10100011 is ANDed with the mask 00001111, what is the result?

Applications

AND Gate as a Enable Device

A Seat Based Alarm System

The OR Gate

$$A \longrightarrow \geq 1$$
 $X \longrightarrow B$

The **OR gate** produces a HIGH output if any input is HIGH; if all inputs are LOW, the output is LOW. For a 2-input gate,

the truth table is

Inputs	Output
A B	X
0 0	0
0 1	1
1 0	1
1 1	1

The **OR** operation is shown with a plus sign (+) between the variables. Thus, the OR operation is written as X = A + B.

The OR Gate

$$A \longrightarrow X$$

$$A \longrightarrow \geq 1$$
 $X \longrightarrow B$

Example waveforms:

The OR operation can be used in computer programming to set certain bits of a binary number to 1.

Example

ASCII letters have a 1 in the bit 5 position for lower case letters and a 0 in this position for capitals. (Bit positions are numbered from right to left starting with 0.) What will be the result if you OR a lower case ASCII letter with the 8-bit mask 00100000?

Solution

1. Intrusion Detection

Floyd, Digital Fundamentals, 10th ed

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

The NAND Gate

The NAND gate produces a LOW output when all inputs are HIGH; otherwise, the output is HIGH. For a 2-input

gate, the truth table is

Inputs	Output
A B	X
0 0	1
0 1	1
1 0	1
1 1	0

The **NAND** operation is shown with a dot between the variables and an overbar covering them. Thus, the NAND operation is written as $X = \overline{A} \cdot \overline{B}$ (Alternatively, $X = \overline{AB}$.)

The NAND Gate

Example waveforms:

The NAND gate is particularly useful because it is a "universal" gate – all other basic gates can be constructed from NAND gates.

Question

How would you connect a 2-input NAND gate to form a basic inverter?

The NAND Gate

100

Universality of NAND Gate:

Negative OR Equivalent operation NAND Gate

For a 2-input NAND gate performing a negative-OR operation, output *X* is HIGH when either input *A* or input *B* is LOW, or when both *A* and *B* are LOW.

$$X = \overline{A \cdot B} = \overline{A} + \overline{B}$$

$$\longrightarrow \longrightarrow \longrightarrow \longrightarrow$$

$$NAND \qquad \text{Negative-OR}$$

Negative OR Equivalent operation NAND Gate

EXAMPLE 3-11

Show the output waveform for the 3-input NAND gate in Figure 3–29 with its proper time relationship to the inputs.

EXAMPLE 3-14

For the 4-input NAND gate in Figure 3–33, operating as a negative-OR gate, determine the output with respect to the inputs.

EXAMPLE 3-14

For the 4-input NAND gate in Figure 3–33, operating as a negative-OR gate, determine the output with respect to the inputs.

The NOR Gate

$$A \longrightarrow \geq 1$$
 X

The **NOR gate** produces a LOW output if any input is HIGH; if all inputs are HIGH, the output is LOW. For a 2-input gate, the truth table is

Inputs	Output
A B	X
0 0	1
0 1	0
1 0	0
1 1	0

The **NOR** operation is shown with a plus sign (+) between the variables and an overbar covering them. Thus, the NOR operation is written as $X = \overline{A + B}$.

The NOR Gate

Example waveforms:

The NOR operation will produce a LOW if any input is HIGH.

When is the LED is ON for the circuit shown?

t shown? $\frac{A}{B}$

+5.0 V

Solution

Negative AND Equivalent operation NOR Gate

For a 2-input NOR gate performing a negative-AND operation, output *X* is HIGH only when both inputs *A* and *B* are LOW.

$$X = \overline{A + B} = \overline{A}.\overline{B}$$

The NOR Gate

$$A \longrightarrow X$$

$$A \longrightarrow 1$$
 X

 \boldsymbol{A}

B

C

I

X

EXAMPLE 3-18

Note: Active states are shown in yellow.

Homework:

Problems from digital fundamentals by Floyd

2,3,6,18

Floyd, Digital Fundamentals, 10th ed

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved