単体的圏

Toshi2019

概要

単体的圏の性質についてまとめる.

記号など

- 1 点から成る集合を {pt} で表す.
- 集合 X の基数を |X| とか # X とか $\operatorname{Card} X$ で表す.
- 圏 \mathcal{C} の始対象を $\mathcal{Q}_{\mathcal{C}}$, 終対象を $\operatorname{pt}_{\mathcal{C}}$ で表す.
- 有限集合とその間の写像のなす圏を Setf で表す.

1 単体的圏

[KS06] を参考にした.

定義 1.1. 単体圏 (simplex category)* 1 Δ を次で定める.

射の合成は写像の合成で定める.

 Δ の部分圏 $\widetilde{\Delta}$ を次で定める.

$$\operatorname{Ob}\left(\widetilde{\boldsymbol{\Delta}}\right)\coloneqq\left\{\sigma\in\boldsymbol{\Delta};\sigma\neq\varnothing\right\},$$

$$\operatorname{Hom}_{\widetilde{\boldsymbol{\Delta}}}(\sigma,\tau)\coloneqq\left\{u\in\operatorname{Hom}_{\boldsymbol{\Delta}}(\sigma,\tau);\;u\;\mathrm{は最大元と最小元を保つ}\right\}.$$

有限全順序集合 [n,m] を $\{k \in \mathbf{Z}; n \le k \le m\}$ で定める. 以下単体的集合の性質を述べる.

命題 **1.2.** うめこみ関手 ι : $\Delta \hookrightarrow \mathsf{Set}^\mathsf{f}$ は半充満かつ忠実である.

注意 1.3. 関手 $F: \mathcal{C} \to \mathcal{C}'$ が半充満 (half-full) であるとは、任意の対象 $X,Y \in \mathcal{C}$ に対し、 $F(X) \cong F(Y)$ ならば、X と Y の間の同型が存在することをいう。ただし、 \mathcal{C}' における同型

 $F(X)\stackrel{\sim}{\to} F(Y)$ は $\mathcal C$ における同型 $X\to Y$ から来るものでなくともよい. $\mathcal C$ の部分圏 $\mathcal C'$ が半充満であるとは、うめこみ関手 $\mathcal C\hookrightarrow \mathcal C'$ が半充満であることをいう.

命題 1.2 の証明 まず ι が半充満であることを示す. $\sigma, \tau \in \Delta$ を $\iota(\sigma) \cong \iota(\tau)$ をみたすものとする と, # $\sigma = \# \tau$ である.

参考文献

[KS06] Masaki Kashiwara, Pierre Schapira, *Categories and Sheaves*, Grundlehren der Mathematischen Wissenschaften, 332, Springer, 2006.