1 Homework

1. Suppose that the p.d.f. of a random variable X has a 2-component mixture form:

$$p_{\alpha}(x) = \alpha p_1(x) + (1 - \alpha)p_2(x) \tag{1}$$

One component is the density model $p_1(x)$ and the other component is the density model $p_2(x)$. We know both $p_1(x)$ and $p_2(x)$. We do not know α . Given that $\{x_1, x_2, \cdots, x_n\}$ are i.i.d. samples from the distribution of X, please give an EM algorithm for estimating α . (Describe the E-step and M-step clearly in your answer)

Hint: You may want to introduce the latent variable $Z=(z_1,z_2,\cdots,z_N)$ to indicate which component "generated" each data item. $z_i\in\{1,2\}$ for each i, and $z_i=k$ if the i^{th} sample was generated by the k^{th} mixture component. You can also introduce the similar latent variable z_i^j as that in my slides.