Topological Data Analysis

2022-2023

Lecture 7

Interleaving Distance

24 November 2022

Let (V, π) be a persistence module and let $\delta \in \mathbb{R}$. Let us define a persistence module $(V[\delta], \pi[\delta])$ as follows:

$$V[\delta]_t = V_{t+\delta}, \quad \pi[\delta]_{s,t} = \pi_{s+\delta}, t+\delta.$$

This is called a δ -shift of (V, π) . It is a backwards shift if $\delta > 0$.

Note that $\pi[\delta]_{s,t} \circ \pi[\delta]_{r,s} = \pi_{s+\delta,t+\delta} \circ \pi_{r+\delta,s+\delta} = \pi_{r+\delta,t+\delta} = \pi[\delta]_{r,t}$.

Note also that, if (V, π) is of finite type, then $(V[\delta], \pi[\delta])$ is also of finite type. If the spectrum of V is $\{a_0, ..., a_n\}$ then the spectrum of $V[\delta]$ is $\{a_0, ..., a_n\}$ then the spectrum of $V[\delta]$ is $\{a_0, ..., a_n\}$.

If $\delta \ge 0$, then there is a morphism $\sigma_{\delta}: V \longrightarrow V[\delta]$ given by $(\sigma_{\delta})_{t} = \pi_{t,t+\delta}.$

Check that of is indeed a morphism:

$$\int (\sigma_{\delta})_{t} \circ \pi_{s,t} = \pi_{t,t+\delta} \circ \pi_{s,t} = \pi_{s,t+\delta} \quad \text{since } s \leq t \leq t+\delta, \text{ as } \delta \geq 0$$

$$|\pi[\delta]_{s,t} \circ (\sigma_{\delta})_{s} = \pi_{s+\delta}, t+\delta \circ \pi_{s,s+\delta} = \pi_{s,t+\delta} \checkmark$$

Moreover, each morphism $f:V \to V'$ of persistence modules yields a morphism $f[\delta]:V[\delta] \to V'[\delta]$ for all $\delta \in \mathbb{R}$, namely

$$f[\delta]_t = f_{t+\delta}$$
.

$$f[\delta]_t \circ \pi[\delta]_{s,t} = f_{t+\delta} \circ \pi_{s+\delta,t+\delta} = \pi'_{s+\delta,t+\delta} \circ f_{s+\delta} = \pi'[\delta]_{s,t} \circ f[\delta]_s. \checkmark$$

In what follows, recall that there is a nonzero morphism $F[a,b) \rightarrow F[c,d)$ if and only if $c \in A < d \leq b$:

For $\delta>0$, two persistence modules V and V' are δ -interleaved if there exist morphisms

$$V \xrightarrow{f} V'[\delta], \qquad V' \xrightarrow{g} V[\delta]$$
 such that $g[\delta] \circ f = \sigma_2 \delta$ and $f[\delta] \circ g = \sigma'_2 \delta$.

$$V \xrightarrow{f} V'[\delta] \xrightarrow{g[\delta]} V[2\delta]$$

$$V' \xrightarrow{g} V[\delta] \xrightarrow{f[\delta]} V'[2\delta]$$

V and V' are 0-interleaved \$\lorer{V}^2V'\$

V'[δ] cannot exceed the vertical lines if V and V' are δ-interleaved

Suppose that V and V are of finite type with ordered spectra {20,..., any and of 20,..., 2m y. Denote Van = Voo and Van = Voo.

If V and V' are δ -interlessed for some $\delta>0$, then dim Voo = dim Voo.

Proof: Pick $t \in \mathbb{R}$ such that $t \ge \max \{a_n, a'_n Y\}$. Then $(\mathcal{I}_{2\delta})_t = \pi_t, t+2\delta$ is an isomorphism. Since $\mathcal{I}_{2\delta} = g[\delta] \circ f$, we infer that $f_t: V_t \longrightarrow V'_{t+\delta}$ is injective and $g_{t+\delta}: V'_{t+\delta} \longrightarrow V_{t+2\delta}$ is surjective. Hence $\dim V_t \le \dim V'_{t+\delta}$ and this tells us that $\dim V_\infty \le \dim V'_\infty$ since $V_t \cong V_\infty$ and $V'_{t+\delta} \cong V'_\infty$. Similarly $(\mathcal{I}_{2\delta})_t$ is an isomorphism and it follows that $\dim V_\infty \le \dim V_\infty$.

The interteaving distance between two persistence modules of finite type V and V' with dim $V_\infty = \dim V'_\infty$ is defined as

 $d_{int}(V,V') = \inf \{ \delta > 0 \mid V \text{ and } V' \text{ are } \delta - \text{interleaved } \gamma.$

We will next prove that V and V' are δ -interleaved for some $\delta > 0$ and therefore this number is well defined.

Examples:

$$\begin{array}{c} (1) \quad \bigvee = \mathbb{F}[a,\infty) \\ \bigvee' = \mathbb{F}[c,\infty) \end{array}$$

suppose that c>a without loss of generality.

First note that if $\delta \geq c-2$ then V and V' are δ -interteaved:

$$\delta \geq c-a \Rightarrow c-\delta \leq a$$
 $\Rightarrow a-2\delta \leq c-\delta \leq a$. \checkmark $a-2\delta \leq a-\delta \leq c-\delta$

$$\delta \geq c-a \Rightarrow c-\delta \leq a \Rightarrow c-2\delta \leq a-\delta \Rightarrow c-2\delta \leq a-\delta < a < c. \checkmark$$

We next check that if $\delta < c-a$ then V and V' are not δ -interleaved.

 $\delta < c-a \Rightarrow a < c-\delta \Rightarrow \text{Every morphism } f: V \rightarrow V'[\delta] \text{ is zero}$ $\Rightarrow \text{There are no } f \text{ and } g \text{ such that } g[\delta] \text{ of } = \sigma_{2\delta}.$

In conclusion, $d_{int}(\mathbb{F}[a,\infty),\mathbb{F}[c,\infty))=|a-c|$.

Suppose first that a < c < b < d. Then V and V' are 5-interleaved in two cases:

2) Suppose that $\sigma_{2\delta} \neq 0$. Then find g exist with $g[\delta] \circ f = \sigma_{2\delta}$ if and only if $g[\delta] \circ f = \sigma_{2\delta} \circ f = \sigma_{2\delta} \circ f$ if $g[\delta] \circ f = \sigma_{2\delta} \circ f = \sigma_{2\delta$

The inequalities $a-2\delta \le c-\delta$ and $b-2\delta \le d-\delta$ are automatic. Hence we need to impose that $\delta \ge c-a$ and $\delta \ge d-b$, that is, $\delta \ge max + c-a$, d-b + d-b = max + c-a.

If we assume instead that $\sigma'_{2\delta} \neq 0$, then by symmetry fundge exist with $f[\delta] \circ g = \sigma'_{2\delta}$ if and only if $\delta \geq \max\{c-a, d-b\}$ as well.

b) It can also happen that $\sigma_{2\delta} = 0$. In this case, we can pick f = 0 and g = 0 and $g[\delta] \circ f = \sigma_{2\delta}$ holds. We say that V is δ -short.

The case $\sigma_{2\delta} = 0$ occurs when $b-2\delta \leq a$, that is, $\delta \geq \frac{1}{2}(b-a)$.

In conclusion, V and V are 5-interleaved if and only if either

- $\sigma_{2\delta} \neq 0$ and $\sigma_{2\delta} \neq 0$ and $\delta \geq \max\{c-2, d-b4\}$, or
- σ₂δ = 0 and σ'₂δ ≠ 0 and δ ≥ max{c-a, d-b4, or
- σ₂δ ≠ 0 and σ'₂δ = 0 and δ ≥ max{c-a, d-b4, or
- $\mathcal{C}_{2\delta} = 0$ and $\mathcal{C}_{2\delta}' = 0$.

Equivalently, either

- · 5≥ max{c-a, d-b4, or
- $\delta \geq \frac{1}{2}(b-2)$ and $\delta \geq \frac{1}{2}(d-c)$, i.e., $\delta \geq \max\left\{\frac{b-2}{2}, \frac{d-c}{2}\right\}$.

Therefore, if $a \le c < b \le d$ then $d_{int}(F[a,b), F[c,d)) = \min\{\max\{c-a, d-b\}, \max\{\frac{b-a}{2}, \frac{d-c}{2}\}\}$. Now let us assume that $a < b \le c < d$:

In this case $g:V' \to V[\mathcal{E}]$ is necessarily zero and hence V and V' are \mathcal{E} -interleaved if and only if $\mathcal{E} \geq \max\{\frac{b-a}{2}, \frac{d-c}{2}\}$. Thus, $d_{int}(\mathbb{F}[a,b), \mathbb{F}[c,d)) = \max\{\frac{b-a}{2}, \frac{d-c}{2}\}$ if a < b < c < d.

Finally, suppose that 2 < c < d < b:

Then d-c < b-a, so $\max\{\frac{b-a}{2}, \frac{d-c}{2}\} = \frac{b-a}{2}$. In this case, dint $(\mathbb{F}[a,b), \mathbb{F}[c,d)) = \max\{c-a, b-d\}$.

To prove this claim, note that if $\frac{b-a}{2} < c-a$ then b < 2c-a and hence b < 2d-a, from which it follows that $\frac{b-a}{2} > b-d$. Consequently $\frac{b-a}{2} > \max\{c-a, b-d\}$. By symmetry, if c < a < b < d we find that $\frac{d-c}{2} > \max\{a-c, d-b\}$. In conclusion, in all cases,

 $d_{int}(F[a,b),F[c,d)) = min\{max\{|c-a|,|d-b|\}, max\{\frac{b-a}{2},\frac{d-c}{2}\}\}$