Diszkrét matematika 1

Gráfok

Mérai László merai@inf.elte.hu

Komputeralgebra Tanszék

2025 tavasz

Gráfok

Egyszerű gráfok

Definíció

Egy G = (V, E) egy egyszerű gráf, ha

- V a gráf pontjainak halmaza,
- E a gráf éleinek halmaza, ahol E a V-ből alkotott rendezetlen párok egy halmaza.

Alternatív definíció: szimmetrikus, irreflexív reláció

Példa

- G = (V, E), $V = \{a, b, c, d, e\}$, $E = \{\{a, b\}, \{a, c\}, \{d, e\}, \{c, e\}, \{d, c\}, \{a, e\}\}$
- város úthálózata
- Internet hivatkozásai (egyszerű irányított gráf)
- szerverek és közöttük közvetlen adatkapcsolat
- ismeretségi kapcsolat

Nem egyszerű gráfok

Emlékeztető: Egy G = (V, E) egy egyszerű gráf, ha

- V a gráf pontjainak halmaza,
- E a gráf éleinek halmaza, ahol E a V-ből alkotott rendezetlen párok egy halmaza.

Nem egyszerű gráf:

- hurokél: $\{a, a\} = \{a\}$ él
- párhuzamos élek: $\{a,b\},\{a,b\}$
- ...

Nem egyszerű gráfok

Emlékeztető: Egy G = (V, E) egy egyszerű gráf, ha

- V a gráf pontjainak halmaza,
- E a gráf éleinek halmaza, ahol E a V-ből alkotott rendezetlen párok egy halmaza.

További lehetőségek:

- irányított gráf
- él-súlyozott gráf (pl. úthálózat, csomópontok között különböző hosszú út)
- csúcs-súlyozott gráf
- ...

Definíció

Egy G = (V, E) gráf véges, ha véges sok pontja van (V egy véges halmaz).

Informatikában elsősorban véges gráfokkal foglalkozunk.

Gráf alapfogalmak

Most csak egyszerű, véges gráfokkal foglalkozunk.

Definíció

Legyen G = (V, E) egy egyszerű véges gráf.

- A $v \in V$ csúcs és az $e \in E$ él illeszkednek, ha $v \in e$.
- A $v \in V$ csúcs fokszáma a rá illeszkedő élek száma: $d(v) = |\{e \in E : v \in e\}|$
- A $v \in V$ csúcs izolált csúcs, ha d(v) = 0.
- Az $u, v \in V$ csúcsok szomszédosak, ha $u \neq v \land \exists e \in E : u, v \in e$ (azaz $\{u, v\} \in E$)

Példa

• v_1 illeszkedik az e_1, e_2, e_6 élre

- $d(v_1) = 3$
- $d(v_6) = 0$ (izolált csúcs)

v₁, v₂ szomszédosak

Kézfogás-szabálv

Tétel

Minden
$$G = (V, E)$$
 gráfra $\sum_{v \in V} d(v) = 2|E|$.

1. Bizonyítás.

- Számoljuk meg az illeszkedő pont-él párokat $\{(v, e) \in V \times E : v \in e\}$:

 - $e \in E \ v \in V$

Kézfogás-szabály

Tétel

Minden
$$G = (V, E)$$
 gráfra $\sum_{v \in V} d(v) = 2|E|$.

2. Bizonyítás.

Indukció | E | szerint.

- |E| = 0 esetén az állítás igaz (üres gráf).
- Thf $|E| \le k$ esetén igaz az állítás.
- |E| = k + 1 esete: a gráfot úgy kapjuk, hogy egy k élszámú gráfba egy új élet behúzunk.
- Ekkor a jobb oldal kettővel nő $(2(|E|-1) \rightsquigarrow 2|E|)$.
- Ekkor a bal oldal is kettővel nő (új élre illeszkedő két v_1, v_2 fokszáma eggyel-eggyel nő).

