Math 437: Homework Section 1

1. (2.1.1(b))

Prove that the set of complex numbers of absolute value 1 in the complex plane form a subgroup under multiplication.

Proof. Any such number can be represented by $e^{i\theta}$ for some choice of θ . Hence for any two such numbers

$$e^{i\theta_1}(e^{i\theta_2})^{-1} = e^{i(\theta_1 - \theta_2)}$$

which is again in the set. Therefore it is a subgroup.

2.(2.1.9)

Prove that $SL_n(F) \leq GL_n(F)$.

Proof. If $M, N \in SL_n(F)$ then since $|N| \neq 0$ we have that N^{-1} exists. Also $|N^{-1}| = \frac{1}{|N|} = 1$. So

$$|MN^1| = |M||N^{-1}| = 1 \cdot 1 = 1$$

Hence $MN^{-1} \in SL_n(F)$.

3. (2.2.3)

Prove that if A and B are subsets of G and $A \subseteq B$ then $C_G(B)$ is a subgroup of $C_G(A)$.

Proof. First we establish the subset relation. If $x \in C_G(B)$ then $\forall y \in B$ we have xy = yx. Since $A \subseteq B$ then in particular this also holds for all $y \in A$.

Next we let $x, y \in C_G(B)$ and we let $b \in B$ then $(xy^{-1})b = xby^{-1} = bxy^{-1}$ so $xy^{-1} \in C_G(B)$.

This depends on the fact that if y commutes with b then so does y^{-1} . We can see this from the fact that xy = yx implies $y^{-1}x = xy^{-1}$.

4. (2.2.6(b))

Let $H \leq G$. Show that $H \leq C_G(H)$ if and only if H is abelian.

Proof. If $H \leq C_G(H)$ then for all $a, b \in H$ we have that $a \in C_G(H)$ and hence ab = ba.

5. (2.2.9)

For any subgroup H of G and non-empty subset $A \subseteq G$, define $N_H(A) = \{h \in H | hAh^{-1} = A\}$. Show that $N_H(A) = N_G(A) \cap H$ and deduce that $N_H(A)$ is a subgroup of H.

Proof. If $x \in N_H(A)$ then $x \in G$ and $xAx^{-1} = A$ so $x \in N_G(A)$. Also directly we have $x \in H$. Hence $x \in N_G(A) \cap H$. Conversely, if $x \in N_G(A) \cap H$ then x immediately satisfies both conditions for $x \in N_H(A)$.

Now because $N_G(A)$ is equal to the intersection of two subgroups it must be a subgroup.

6. (2.3.6)

In $\mathbb{Z}/48\mathbb{Z}$ write out all elements of $\langle \overline{a} \rangle$ for every \overline{a} . Find all inclusions between subgroups in $\mathbb{Z}/48\mathbb{Z}$.

Proof. The following lattice shows all of the subgroups of $\mathbb{Z}/48\mathbb{Z}$.

The following facts then entail all of the set memberships and subgroup relationships that exist in $\mathbb{Z}/48\mathbb{Z}$.

$$\mathbb{Z}/48\mathbb{Z} = \langle \overline{1} \rangle = \langle \overline{5} \rangle = \langle \overline{7} \rangle = \langle \overline{11} \rangle = \langle \overline{13} \rangle = \langle \overline{17} \rangle = \langle \overline{19} \rangle = \langle \overline{23} \rangle$$

$$= \langle \overline{25} \rangle = \langle \overline{29} \rangle = \langle \overline{31} \rangle = \langle \overline{35} \rangle = \langle \overline{37} \rangle = \langle \overline{41} \rangle = \langle \overline{43} \rangle = \langle \overline{47} \rangle$$

$$\langle \overline{2} \rangle = \langle \overline{10} \rangle = \langle \overline{14} \rangle = \langle \overline{22} \rangle = \langle \overline{26} \rangle = \langle \overline{34} \rangle = \langle \overline{38} \rangle = \langle \overline{46} \rangle$$

$$\langle \overline{3} \rangle = \langle \overline{9} \rangle = \langle \overline{15} \rangle = \langle \overline{21} \rangle = \langle \overline{27} \rangle = \langle \overline{33} \rangle = \langle \overline{39} \rangle = \langle \overline{45} \rangle$$

$$\langle \overline{4} \rangle = \langle \overline{20} \rangle = \langle \overline{28} \rangle = \langle \overline{44} \rangle$$

$$\langle \overline{6} \rangle = \langle \overline{18} \rangle = \langle \overline{30} \rangle = \langle \overline{36} \rangle = \langle \overline{42} \rangle$$

$$\langle \overline{12} \rangle = \langle \overline{36} \rangle$$

 $\langle \overline{8} \rangle = \langle \overline{40} \rangle$

7. (2.3.18)

Show that if H is any group and $h \in H$ with $h^n = 1$ then there is a unique homomorphism from $Z_n = \langle x \rangle$ to H such that $x \mapsto h$.

Proof. That there exists such a homomorphism: Define $\varphi(x^i) = h^i$. To see that this is a homomorphism let $x^i, x^j \in Z_n$. Then $\varphi(x^i x^j) = h^{i+j} = h^i h^j = \varphi(x^i) \varphi(x^j)$.

Now to see that this is unique, let ψ be any other homomorphism with $\psi(x) = h$. Then for any $x^i \in \mathbb{Z}_n$

we must have
$$\psi(x^i) = \psi(x) \cdots \psi(x) = \varphi(x) \cdots \varphi(x) = \varphi(x^i)$$
. So in fact $\psi = \varphi$.

8. (2.3.24(b))

Let G be a finite group and $x \in G$. Prove that if $gxg^{-1} = x^a$ for some $a \in \mathbb{Z}$ then $g \in N_G(\langle x \rangle)$ [Show first that $gx^kg^{-1} = (gxg^{-1})^k = x^{ak}$ for any integer k so that $g\langle x \rangle g^{-1} \leq \langle x \rangle$. If x has order n show the elements gx^ig^{-1} , $i = 0, 1, \ldots, n-1$ are distinct, so that $|g\langle x \rangle g^{-1}| = |\langle x \rangle| = n$ and conclude equality.]

Proof. We can easily see

$$gx^kg^{-1} = \overbrace{(gxg^{-1})\cdots(gxg^{-1})}^{k \text{ times}} = (gxg^{-1})^k = (x^a)^k = x^{ak}$$

So we now have $g\langle x\rangle g^{-1} \leq \langle x\rangle$.

Now suppose $gx^ig^{-1} = gx^jg^{-1}$ for i < j and $i, j \in \{0, 1, ..., n-1\}$. Then clearly $x^i = x^j$ and so $1 = x^{j-i}$. Since the order of x is n and j-i < n then j-i = 0 hence i = j, a contradiction.

This shows all the elements gx^ig^{-1} are distinct for $i=0,1,\ldots,n-1$. So $g\langle x\rangle g^{-1}$ has at least n elements. As a subset of $\langle x\rangle$ which has exactly n elements, these sets must be equal. Therefore $g\in N_G(\langle x\rangle)$ by definition.

9. (2.4.8)Prove that $S_4 = \langle (1\ 2\ 3\ 4), (1\ 2\ 4\ 3) \rangle$.

Proof. We prove that from these two we can generate any transposition. It then follows that we can generate any permutation.

$$(1 2 3 4)(1 2 4 3)^{3}(1 2 3 4) = (1 2)$$
$$(1 2 4 3)^{2}(1 2 3 4) = (1 3)$$
$$(1 2 3 4)^{2}(1 2 4 3) = (1 4)$$

Now somewhat famously, because I have every transposition of the form (1, i) for i = 2, ..., n then I can generate any permutation I want. This is because

$$(i, j) = (1, i)(1, j)(1, i)$$

And of course, now that we know this generates every transposition, then we can generate any cycle by writing it in a transposition decomposition.

$$(a_1 \ a_2 \ \dots \ a_k) = (a_1 \ a_k) \cdots (a_1 \ a_3)(a_1 \ a_2)$$

Since this generates every cycle, and we know that every permutation has a cycle decomposition, then this generates every permutation. \Box

10. (2.4.13)

Prove that the multiplicative group of positive rationals is generated by $\{\frac{1}{n}|p\text{ is a prime }\}$.

Proof. Let G be the group generated by $\{\frac{1}{p}|p\text{ is a prime }\}$. As a first step let's see that $1 \in G$, but this is clear because $\frac{1}{2} \in G$ and $\left(\frac{1}{2}\right)^{-1} \in G$.

Let $r \in \mathbb{Q}^+$ and suppose r = a/b where $a, b \in \mathbb{Z}^+$. Now let

$$a = x_1^{e_1} x_2^{e_2} \cdots x_m^{e_m}$$

$$b = y_1^{f_1} y_2^{f_2} \cdots y_n^{f_n}$$

be the prime decompositions of a and b. Now of course if either of these is 1, we have already shown it is in G. Otherwise, each $\frac{1}{y_i} \in G$ and so is $\frac{1}{y_i^{f_i}}$ and hence so is 1/b.

Also each x_i is $\frac{1}{x_i}$ which is the multiplicative inverse of some element in the generating set. So $x_i \in G$ and so is $x_i^{e_i}$ and so is a.

In all cases we have seen $a, \frac{1}{b} \in G$ and so $a/b \in G$.

11. (2.4.19)

A non-trivial abelian group A is called *divisible* if for each element $a \in A$ and each non-zero integer k, there is an element $x \in A$ such that $x^k = a$, i.e. each element has a kth root.

- (a) Prove that the additive group of rational numbers \mathbb{Q} , is divisible.
- (b) Prove that no finite abelian group is divisible.

Proof. (a) For any $a/b \in \mathbb{Q}$ the number $\frac{a}{kb} \in \mathbb{Q}$ and since this is the additive group, that makes this the kth root.

- (b) Say that G is a non-trivial abelian group with order n=|G|>1. Let $x\in G$ be a non-identity element. If G is divisible then x has an nth root, call this y. Then $y^n=x$ but since n is the order of the group, $y^n=1=x$. A contradiction. \mathcal{F}
- 12. (2.5.7)

Find the center of D_{16} .

Proof. We have already seen that the only non-identity element of the dihedral group which commutes with everything, is the rotation by 180-degrees, when this is an element (homework 1). Hence $Z(D_{16}) = \{1, r^4\}$.

13. (2.5.12)

The group $A = Z_2 \times Z_4 = \langle a, b | a^2 = b^4 = 1$, $ab = ba \rangle$ has order 8 and three subgroups of order 4: $\langle a, b^2 \rangle \cong V_4$, $\langle b \rangle \cong Z_4$, and $\langle ab \rangle \cong Z_4$, and every proper subgroup is in one of these. Draw the lattice of all subgroups of A, giving each subgroup in terms of at most two generators.

