Engineering Optics, Homework 3

He Tianyang

March 26, 2024

1 Problem 1

Chapter 3, Problem 3

The optical leaver follows the following equation:

$$y = x \cdot \frac{2f'}{a} \tag{1}$$

where f' is the focal length of the lens, a is the distance between the axis and the test rod, and x is the distance between the mirror and the original position.

Given that f' = 1000mm, a = 10mm, and y = 2mm, we can calculate the displacement x;

$$x = \frac{y \cdot a}{2f'} = \frac{2 \cdot 10}{2 \cdot 1000} = 0.02 \text{mm}$$
 (2)

Therefore, the mirror rotates by 0.02mm. the angle of rotation is given by:

$$\theta = \arcsin \frac{x}{a} = \arcsin \frac{0.02}{10} \approx 0.114591635420675 \text{rad}$$
 (3)

To summarize, the mirror rotates by 0.02mm, and the angle of rotation is 0.114591635420675rad.

2 Problem 2

Chapter 3, Problem 7

The answer is given in the Figure 1 and marked with boxed.

Figure 1: Chapter 3, Problem 7

3 Problem 3

Chapter 3, Problem 13

The Optical Wedge follows the following equation:

$$\delta = \left(n \cdot \frac{\cos I_1'}{\cos I_1} - 1\right)\alpha\tag{4}$$

where δ is the deviate angle, n is the refractive rate of the wedge, I_1 is the angle of incidence, I'_1 is the angle of refraction, and α is the angle of the wedge.

In this case, I_1 and I'_1 are small enough, so we have

$$\delta = (n-1)\alpha = (1.5163 - 1) \cdot 4^{\circ} = 0.20652^{\circ}$$
(5)

Therefore, the incidence ray deviates by 0.20652° . to accomplish the same deviation, the mirror should rotates by θ , where:

$$\theta = \frac{\alpha}{2} = 0.10326^{\circ} \tag{6}$$

4 Problem 4

Chapter 3, Problem 17

When passing a mirror, the y axis is always perpendicular to the mirror, the z axis is always parallel to the axis, and the x axis will be reversed.

When passing a lens, the z axis is still parallel to the axis, but the x and y axis will be reversed.

In this case, after passing the P_1 , the x axis is reversed, so the coordinate system is shown in Figure 2.

Figure 2: Coordinate System after P_1

Then, passing the P_2 , the x axis is reversed again, so the coordinate system is shown in Figure 3. .

Figure 3: Coordinate System after P_2

After that, padding the reverse lens L_1 , the x and y axis is reversed, so the coordinate system is shown in Figure 4

Figure 4: Coordinate System after L_1

And then, padding the reverse lens L_2 , the x and y axis is reversed again, so the coordinate system is shown in Figure 5

Figure 5: Coordinate System after L_2

The next step is padding the mirror P_3 , the x axis will be reversed, so the coordinate system is shown in Figure 6

Figure 6: Coordinate System after P_3

Finally, padding the mirror P_4 , there is two times reflection, so no axis will be reversed. Therefore the coordinate system is shown in Figure 7

Figure 7: Coordinate System after P_4