```
from google.colab import drive
drive.mount('/content/drive/')
    Mounted at /content/drive/

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

sns.set()

raw_data = pd.read_csv('/content/drive/MyDrive/Data science projects /churn.csv', delimiter=',')
```

state account_length area_code phone_number international_plan voice_mail_plan number_vmail_messages total_day_minutes total_day_calls tota 265.1 161.6 243.4 299.4 166.7 ... 235.7 184.2 140.6 188.8 129.4

5000 rows × 21 columns

data = raw data.copy()

data

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	state	5000 non-null	int64
1	account length	5000 non-null	int64
2	area_code	5000 non-null	int64
3	phone_number	5000 non-null	int64
4	international_plan	5000 non-null	int64
5	voice_mail_plan	5000 non-null	int64
6	number_vmail_messages	5000 non-null	int64
7	total_day_minutes	5000 non-null	float64
8	total_day_calls	5000 non-null	int64
9	total_day_charge	5000 non-null	float64
10	total_eve_minutes	5000 non-null	float64
11	total_eve_calls	5000 non-null	int64
12	total_eve_charge	5000 non-null	float64
13	total_night_minutes	5000 non-null	float64
14	total_night_calls	5000 non-null	int64
15	total_night_charge	5000 non-null	float64
16	total_intl_minutes	5000 non-null	float64
17	total_intl_calls	5000 non-null	int64
18	total_intl_charge	5000 non-null	float64
19	number_customer_service_calls	5000 non-null	int64
20	class	5000 non-null	int64

dtypes: float64(8), int64(13)
memory usage: 820.4 KB

data.isnull().sum()

state	0
account_length	0
area_code	0
phone_number	0
international_plan	0
voice_mail_plan	0
number_vmail_messages	0
total_day_minutes	0
total_day_calls	0
total_day_charge	0
total_eve_minutes	0

```
total_eve_calls
                                   0
total_eve_charge
                                   0
total_night_minutes
total_night_calls
                                   0
total_night_charge
                                   0
total_intl_minutes
                                   0
total_intl_calls
{\tt total\_intl\_charge}
                                   0
number_customer_service_calls
                                   0
class
dtype: int64
```

data.describe()

area_code phone_number international_plan voice_mail_plan number_vmail_messages total_day_minutes total_day_call state account length count 5000.00000 5000.00000 5000.000000 5000.000000 5000.000000 5000.000000 5000.000000 5000.000000 5000.00000 436.911400 2499.500000 0.094600 0.264600 7.755200 180.288900 25.99840 100.25860 100.02940 mean std 14.80348 39.69456 42.209182 1443.520003 0.292691 0.441164 13.546393 53.894699 19.83119 0.00000 1.00000 408.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 min 25% 13.00000 73.00000 408.000000 1249.750000 0.000000 0.000000 0.000000 143.700000 87.00000 50% 26.00000 100.00000 415.000000 2499.500000 0.000000 0.000000 0.000000 180.100000 100.00000 75% 0.000000 1.000000 17.000000 216.200000 113.00000 39.00000 127.00000 415.000000 3749.250000 50.00000 243.00000 510.000000 4999.000000 1.000000 1.000000 52.000000 351.500000 165.00000 max

8 rows × 21 columns

dataset = data.copy()

#exploring the dataset certain data like phone_number, area_code are not needed for this model, so it would be taken out
data_to_remove = ['phone_number', 'area_code']

dataset = dataset.drop(data_to_remove, axis=1)

dataset.head()

	state	account_length	${\tt international_plan}$	<pre>voice_mail_plan</pre>	number_vmail_messages	total_day_minutes	total_day_calls	total_day_charge	total_eve_minu
0	16	128	0	1	25	265.1	110	45.07	1!
1	35	107	0	1	26	161.6	123	27.47	1!
2	31	137	0	0	0	243.4	114	41.38	1:
3	35	84	1	0	0	299.4	71	50.90	(
4	36	75	1	0	0	166.7	113	28.34	1.

Next steps: Generate code with dataset

View recommended plots

inputs_unbalanced = dataset.iloc[:,:-1]
targets_unbalanced = dataset.iloc[:,-1]

 ${\tt inputs_unbalanced}$

	state	account_length	international_plan	voice_mail_plan	number_vmail_messages	total_day_minutes	total_day_calls	total_day_charge	total_eve_n
0	16	128	0	1	25	265.1	110	45.07	
1	35	107	0	1	26	161.6	123	27.47	
2	31	137	0	0	0	243.4	114	41.38	
3	35	84	1	0	0	299.4	71	50.90	
4	36	75	1	0	0	166.7	113	28.34	
4995	11	50	0	1	40	235.7	127	40.07	
4996	49	152	0	0	0	184.2	90	31.31	
4997	7	61	0	0	0	140.6	89	23.90	
4998	7	109	0	0	0	188.8	67	32.10	
4999	46	86	0	1	34	129.4	102	22.00	
5000 r	0W0 v 10	columno							

5000 rows × 18 columns

Next steps: Generate code with inputs_unbalanced

• V

View recommended plots

Explolatory data analysis

inputs_unbalanced.hist(figsize=(13,14))
plt.show()


```
inputs_unbalanced['international_plan'].value_counts(),inputs_unbalanced['voice_mail_plan'].value_counts()
```

```
(0 4527
1 473
Name: international_plan, dtype: int64,
0 3677
1 1323
```

Name: voice_mail_plan, dtype: int64)

```
targets_unbalanced
```

```
0
        0
2
        0
        0
        0
4995
        0
4996
        1
        0
4997
4998
4999
        0
Name: class, Length: 5000, dtype: int64
```

```
inputs_unbalanced.shape, targets_unbalanced.shape
     ((5000, 18), (5000,))
customer_churn = targets_unbalanced.value_counts()
#creating cusomer churn chart
wedgeprop = {'linewidth':1, 'edgecolor':'black', 'antialiased':True}
color = ['yellow', 'brown']
label = ['Not_churn', 'Churn']
textprops = {'fontstyle':'italic'}
explode = (0,0.1)
fig = plt.figure(figsize=(20, 5))
# Create the pie chart
plt.pie(customer_churn, colors=color, wedgeprops=wedgeprop, autopct="%0.1f%%", labels=label, startangle=90, explode=explode, shadow=True, textprops=textprops
# Add the legend
plt.legend(title='Churn', loc='upper left', fontsize='small')
# Add the title
plt.title('churn customers', fontsize='small', fontweight='bold')
# Show the pie chart
plt.show()
```


Balancing the dataset

```
#number of customers that churn
number_of_churn = int(np.sum(targets_unbalanced))
#count of non churn customers
zero count = 0
#create empty list to append rows to be removed from data
row_to_remove = []
# Identify rows to remove
for i in range(len(targets_unbalanced)):
    if targets_unbalanced[i] == 0:
        zero count += 1
        if zero_count > number_of_churn:
           row_to_remove.append(i)
# Remove rows from inputs and target
balanced_inputs = inputs_unbalanced.drop(row_to_remove)
balanced_targets = targets_unbalanced.drop(row_to_remove)
#checking if data is balanced
balanced_targets.sum()/balanced_targets.shape
     array([0.5])
```

```
#shuffling the dataset
shuffle_indices = np.arange(balanced_targets.shape[0])
np.random.shuffle(shuffle_indices)
# Convert shuffle_indices to a NumPy array of integers
shuffle_indices = np.array(shuffle_indices, dtype=int)
# Use shuffle indices to index the DataFrame
shuffled_inputs = balanced_inputs.iloc[shuffle_indices]
shuffled_targets = balanced_targets.iloc[shuffle_indices]
Scaling the variables
from sklearn.preprocessing import StandardScaler
 scale = StandardScaler()
scale.fit(balanced_inputs)
balanced_scale_inputs = scale.transform(balanced_inputs)
{\tt balanced\_scale\_inputs}
     array([[-0.65259473, 0.6956714, -0.46344, ..., -0.53225966,
              -0.15759705, -0.54759085],
            [ 0.64621334, 0.16154686, -0.46344 , ..., -0.53225966, 1.17758703, -0.54759085],
            [ 0.37278006, 0.92458192, -0.46344 , ..., 0.25955008,
              0.63016156, -1.1812189 ],
            [ 0.1677051 , 1.00088543, -0.46344 , ..., 0.65545495, -1.05217038, -0.54759085],
            [-1.54125289, -0.09279816, -0.46344 , ..., 0.25955008,
            -0.58485595, -0.54759085],
[ 1.60322981, 1.30609945, -0.46344 , ..., -0.92816453,
              1.53808673, 0.71966523]])
balanced_scale_inputs.shape
     (1414, 18)
from sklearn.model selection import train test split
x_train, x_test, y_train, y_test = train_test_split(balanced_scale_inputs, balanced_targets, test_size = 0.2, random_state=350)
from sklearn.linear_model import LogisticRegression #importing logistic regression
from sklearn.metrics import accuracy_score, precision_score #importing metrics to measure model accuracy and precision
pred = LogisticRegression()
pred.fit(x_train,y_train)
      ▼ LogisticRegression
     LogisticRegression()
result = pred.predict(x_train)
accuracy = accuracy_score(y_train, result)
precision = precision_score(y_train, result)
print(f'Model accuracy {accuracy}, Model precision {precision}')
     Model accuracy 0.7550839964633068, Model precision 0.7452667814113597
pred.intercept_
     array([0.02042402])
pred.coef
     array([[ 0.12033786, 0.05649394, 0.84617471, -0.77824887, 0.37375208,
```

0.38802795, 0.07139122, 0.38073672, 0.19111044, 0.05076029,

summary_table = pd.DataFrame(columns = ['Feature_names'], data = feature_names)
summary_table['Coefficient'] = np.transpose(pred.coef_)
summary table

	Feature_names	Coefficient	
0	state	0.120338	ılı
1	account_length	0.056494	+/
2	international_plan	0.846175	_
3	voice_mail_plan	-0.778249	
4	number_vmail_messages	0.373752	
5	total_day_minutes	0.388028	
6	total_day_calls	0.071391	
7	total_day_charge	0.380737	
8	total_eve_minutes	0.191110	
9	total_eve_calls	0.050760	
10	total_eve_charge	0.187390	
11	total_night_minutes	0.118170	
12	total_night_calls	-0.078098	
13	total_night_charge	0.114463	
14	total_intl_minutes	0.138787	
15	total_intl_calls	-0.193420	
16	total_intl_charge	0.080452	
17	number_customer_service_calls	0.967280	

Next steps: Generate code with summary_table

View recommended plots

summary_table.index = summary_table.index + 1
summary_table.loc[0] = ['Intercept', pred.intercept_[0]]
summary_table = summary_table.sort_index()
summary_table

	Feature_names	Coefficient	=
0	Intercept	0.020424	11.
1	state	0.120338	+/
2	account_length	0.056494	
3	international_plan	0.846175	
4	voice_mail_plan	-0.778249	
5	number_vmail_messages	0.373752	
6	total_day_minutes	0.388028	
7	total_day_calls	0.071391	
8	total_day_charge	0.380737	
9	total_eve_minutes	0.191110	
10	total_eve_calls	0.050760	
11	total_eve_charge	0.187390	
12	total_night_minutes	0.118170	
13	total_night_calls	-0.078098	
14	total_night_charge	0.114463	
15	total_intl_minutes	0.138787	
16	total_intl_calls	-0.193420	
17	total_intl_charge	0.080452	
18	number_customer_service_calls	0.967280	

Next steps: Generate code with summary_table View recommended plots

summary_table['Odds_ratio'] = np.exp(summary_table.Coefficient) summary_table

	Feature_names	Coefficient	Odds_ratio
0	Intercept	0.020424	1.020634
1	state	0.120338	1.127878
2	account_length	0.056494	1.058120
3	international_plan	0.846175	2.330714
4	voice_mail_plan	-0.778249	0.459209
5	number_vmail_messages	0.373752	1.453177
6	total_day_minutes	0.388028	1.474071
7	total_day_calls	0.071391	1.074001
8	total_day_charge	0.380737	1.463362
9	total_eve_minutes	0.191110	1.210593
10	total_eve_calls	0.050760	1.052071
11	total_eve_charge	0.187390	1.206098
12	total_night_minutes	0.118170	1.125435
13	total_night_calls	-0.078098	0.924874
14	total_night_charge	0.114463	1.121272
15	total_intl_minutes	0.138787	1.148880
16	total_intl_calls	-0.193420	0.824136
17	total_intl_charge	0.080452	1.083777
18	number customer service calls	0.967280	2.630778

Next steps: Generate code with summary_table View recommended plots

	Feature_names	Coefficient	Odds_ratio	
18	number_customer_service_calls	0.967280	2.630778	11.
3	international_plan	0.846175	2.330714	+/
6	total_day_minutes	0.388028	1.474071	
8	total_day_charge	0.380737	1.463362	
5	number_vmail_messages	0.373752	1.453177	
9	total_eve_minutes	0.191110	1.210593	
11	total_eve_charge	0.187390	1.206098	
15	total_intl_minutes	0.138787	1.148880	
1	state	0.120338	1.127878	
12	total_night_minutes	0.118170	1.125435	
14	total_night_charge	0.114463	1.121272	
17	total_intl_charge	0.080452	1.083777	
7	total_day_calls	0.071391	1.074001	
2	account_length	0.056494	1.058120	
10	total_eve_calls	0.050760	1.052071	
0	Intercept	0.020424	1.020634	
13	total_night_calls	-0.078098	0.924874	
16 ext ster	total_intl_calls os: Generate code with summary voice mail plan	-0.193420 y_table	0.824136 View recom 0.459209	mended plo

Using the odds_ratio column it shows that all of the variables used have an impact on the model as most of the variable odds_ratio is not close to zero hence removing any variable from the model will affect the accuracy of the model.

Testing the model

 $\hbox{\it\#thecking the accuracy of the model}\\$