

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника БАКАЛАВРСКАЯ ПРОГРАММА 09.03.01/03 Вычислительные машины, комплексы, системы и сети

ОТЧЕТ ПО ПРОИЗВОДСТВЕННОЙ ПРАКТИКЕ

Тип практики	Эксплуатацион	іная практика
Название предприятия	«НУК ИУ МГТ	У им. Н.Э.Баумана
Студент ИУ	/6-63Б	John 08.09.2022 A.A. Бушев

Оценка

OMUUUMO

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ЗАДАНИЕ

на производственную практику

Студент группы ИУ6-63Б	
Бушев Анто	он Алексеевич
(Φ	амилия, имя, отчество)
Направление подготовки 09.03.01 Информ	атика и вычислительная техника
Бакалаврская программа 09.03.01/03 Вычи	ислительные машины, комплексы, системы и сети
Тип практики Эксплуатационная практин	
Название предприятия НУК ИУ МГТУ	им. Н.Э. Баумана
Tayuuuaua	
teaningerkoe moanning noangangangang a maganagang	
и реализова	ать систему автоматизированного развёртывания систем
SIMODO	ать систему автоматизированного развёртывания систем
SIMODO	ать систему автоматизированного развёртывания систем
SIMODO	ать систему автоматизированного развёртывания систем
\$IMODO Формление отчета по практике:	ать систему автоматизированного развёртывания систем
Формление отчета по практике: тчет на 15-25 листах формата А4	
\$IMODO Формление отчета по практике:	ериала (чертежи, плакаты, слайды и т.п.)
Формление отчета по практике: тчет на 15-25 листах формата А4	
ПРОВИТЕНИЕ ОТЧЕТА ПО ПРАКТИКЕ: ТЧЕТ На <u>15-25</u> листах формата A4. вречень графического (иллюстративного) мата	ериала (чертежи, плакаты, слайды и т.п.)
Формление отчета по практике: тчет на 15-25 листах формата А4	ериала (чертежи, плакаты, слайды и т.п.)
ПРОВИТЕНИЕ ОТЧЕТА ПО ПРАКТИКЕ: ТЧЕТ На <u>15-25</u> листах формата A4. вречень графического (иллюстративного) мата	ериала (чертежи, плакаты, слайды и т.п.) «нет»
Оформление отчета по практике: тчет на <u>15-25</u> листах формата А4. еречень графического (иллюстративного) мате	ериала (чертежи, плакаты, слайды и т.п.) «нет» М.В. Фетисов
Оформление отчета по практике: тчет на <u>15-25</u> листах формата А4. еречень графического (иллюстративного) мате	ериала (чертежи, плакаты, слайды и т.п.) «нет» М.В. Фетисов

Примечание: Задание оформляется в двух экземплярах.

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ **09.03.01 Информатика и вычислительная техника** БАКАЛАВРСКАЯ ПРОГРАММА **09.03.01/03 Вычислительные машины, комплексы, системы и сети**

ОТЧЕТ ПО ПРОИЗВОДСТВЕННОЙ ПРАКТИКЕ

Тип практики	Эксплуатационная п	рактика	
Название предприятия	«НУК ИУ МГТУ им.	Н.Э.Баумана	
Студент И	У6-63Б		А.А. Бушев
		(Подпись, дата)	(И.О. Фамилия)
Руководитель практики			М.В. Фетисов
		(Подпись, дата)	(И.О. Фамилия)
Оценка		 	

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ЗАДАНИЕ

на производственную практику

по темесоздание и развитие системы развёртывания для	системы SIMODO	
Студент группы ИУ6-63Б		
Бушев Антон Алексе		
(Фамилия, имя,	отчество)	
Направление подготовки <u>09.03.01 Информатика и вы</u>	числительная техни	<u>іка</u>
Бакалаврская программа 09.03.01/03 Вычислительны	ые машины, компле	ксы, системы и сети
Тип практики <u>Эксплуатационная практика</u>		
Название предприятия НУК ИУ МГТУ им. Н.Э.	Баумана	
Техническое задание <u>разработать и реализовать систем</u>	у автоматизированного	развёртывания системы
<u>SIMODO</u>		
Оформление отчета по практике:		
Отчет на 15-25 листах формата A4. Перечень графического (иллюстративного) материала (чер		
перечень графического (иллюстративного) материала (чер «нет»	тежи, плакаты, слаиды г	4 T.II.)
MICI/		
Дата выдачи задания « <u>27</u> » <u>июня</u> <u>2022</u> г.		
Руководитель практики		М.В. Фетисов
•	(Подпись, дата)	(И.О. Фамилия)
Студент		А.А. Бушев
	(Подпись, дата)	(И.О. Фамилия)

Примечание: Задание оформляется в двух экземплярах.

Оглавление

Перечень сокращений и условных обозначений	4
Введение	5
Исследование видов установочных пакетов	6
Разработка автоматизированной системы развёртывания	8
Заключение	9
Список использованных источников	. 10
Приложение А. Листинг скрипта интеграции QtIFW в проект CMake	. 11
Приложение Б. Листинг скрипта непрерывного развёртывания для системы	
жизненного цикла DevOps Gitlab	. 16

Перечень сокращений и условных обозначений

ПО – программное обеспечение

RPM – Red Hat Package Manager – формат пакетов программного обеспечения, а также программа, созданная для управления этими пакетами, используемые в ряде Linux-дистрибутивов

DEB – расширение имён файлов «бинарных» пакетов для распространения и установки программного обеспечения в операционной системе проекта Debian, и других, использующих систему управления пакетами dpkg

NSIS – Nullsoft Scriptable Install System – система создания установочных программ для Microsoft Windows с открытым исходным кодом

MSI – Microsoft Installer – подсистема Microsoft Windows, обеспечивающая установку программ

QtIFW – Qt Installer Framework – фреймворк для разработки установщиков с графическим интерфейсом

DevOps – Методология автоматизации технологических процессов сборки, настройки и развёртывания программного обеспечения

Gitlab – Веб-инструмент жизненного цикла DevOps с открытым исходным кодом

Введение

На кафедре ИУ-6 МГТУ им. Баумана ведётся разработка системы SIMODO — адаптивной системы моделирования, предназначенной для упрощения создания моделей.

Система SIMODO решает проблему построения сложных моделей, которые зачастую объединяют несколько предметных областей. Для решения этой проблемы предлагается использование предметно-ориентированных языков, каждый из которых описывает ту или иную предметную область и должен быть интуитивно понятен специалистам этой области. Система SIMODO предоставляет способ унификации поддержки предметно-ориентированных языков [1].

Практическая значимость системы SIMODO заключается в возможности эффективно описывать и просчитывать сложные модели.

Система SIMODO предназначена для платформ Windows и Linux и не обладает автоматизированной системой развёртывания.

Развёртывание ПО — это все действия, которые делают программную систему готовой к использованию. Данный процесс является частью жизненного цикла программного обеспечения.

Целью данной эксплуатационной практики является создание и развитие системы развёртывания для системы SIMODO.

Задачами ставятся:

- 1. Исследование видов установочных пакетов приложений.
- 2. Выбор установочного пакета для системы SIMODO.
- 3. Разработка системы формирования установочного пакета.
- 4. Автоматизация формирования установочного пакета.

Исследование видов установочных пакетов

Целевыми платформами системы SIMODO являются Windows и Linux. Дистрибутив Linux существует великое множество. Решено было остановится на одном из самых распространённых дистрибутиве Ubuntu версии Jammy [3], использующий установочные пакеты DEB и дистрибутиве отечественной разработки Alt Linux версии P10, использующий установочные пакеты RPM. Первый критерий к установочным пакетам — поддержка целевых платформ Ubuntu Jammy и Alt Linux P10.

Исходные тексты программ системы SIMODO расположены в репозитории системы DevOps Gitlab [2]. Для непрерывного развёртывания в данной системе используются виртуальные машины на основе Linux дистрибутивов, что определяет второй критерий для установочного пакета системы SIMODO — возможность сборки пакета на дистрибутиве Linux, в частности под целевую платформу Windows.

Если поставлять динамические библиотеки, необходимые для работы системы SIMODO, вместе с системой SIMODO, то размер установочного пакета будет значительно больше, чем установочный пакет, к которому операционная система сможет самостоятельно предоставить необходимые зависимости. Третьим и необязательным критерием выбора установочного пакета является наличие системы разрешения зависимостей.

Были выбраны и исследованы установочные пакеты RPM, DEB, NSIS, MSI, QtIFW. В таблице 1 представлены результаты исследования.

Таблица 1. Сравнение установочных пакетов

Установоч- ный пакет	Целевые платформы	Возможность сборки под Windows в linux дистрибутиве	Наличие системы разрешения зависимостей
RPM	Linux дистрибутивы с пакетным менеджером грт	-	+

Таблица 1 продолжение

DEB	Linux дистрибутивы с пакетным менеджером dpkg	-	+
NSIS	Windows	+	-
MSI	Windows	-	+
QtIFW	Windows, Linux	+	-

Из таблицы 1 видно, что установочный пакет QtIFW наиболее полно соответствует выставленным критериям.

Разработка автоматизированной системы развёртывания

Выбранный установочный пакет QtIFW собирается с помощью одноимённого фреймворка, который прежде, чем собирать установочный пакет, необходимо собрать из исходников [4]. Сам фреймворк требует аналогичной процедуры для статической библиотеки Qt. Для дистрибутивов Linux, в которых нет возможности установить утилиту linuxdeployqt, так же приходится собирать из исходников. Для сборки фреймворков под платформу Windows используется среда кросскомпиляции таке, которую было решено заранее скомпилировать из исходников и разместить в репозитории Gitlab.

В приложении Б приведён листинг скрипта YAML, который используется для сборки установочного пакета в процессе непрерывного развёртывания Gitlab.

Чтобы собрать установочный пакет системы SIMODO, необходимо интегрировать данный процесс в проект системы SIMODO. В приложении А представлен листинг скрипта интеграции сборки установочного пакета в проект графического редактора системы SIMODO. С помощью переменных окружения контролируется вариант сборки под Windows или Linux.

Реализованная автоматизированная система развёртывания системы SIMODO формирует установочные пакеты системы SIMODO как артефакты конвейера системы непрерывного развёртывания Gitlab.

Заключение

В течении данной эксплуатационной практики была разработана автоматизированная система развёртывания для системы SIMODO. Автоматизированная система развёртывания формирует установочные пакеты под следующие целевые платформы: Windows, Ubuntu Jammy, Alt Linux p10.

Получаемые установочные пакеты позволяют автономно устанавливать систему SIMODO под целевые платформы.

Наработки, полученные в течении данной эксплуатационной практики могут быть применены и улучшены в новых версиях системы SIMODO, например, установка системы SIMODO из репозитория онлайн.

Список использованных источников

- Иванова Г.С., Жильцов А.И., Фетисов М.В., Чулин Н.А., Юдин А.Е.
 Адаптивная система моделирования. Автоматизация. Современные технологии, номер 11 за 2020 год, стр. 500.
- 2. SIMODO в репозитории МГТУ им. Н.Э. Баумана. [Электронный ресурс]. URL: https://bmstu.codes/lsx/simodo (дата обращения: 08.07.2022).
- 3. Рейтинг дистрибутивов Linux. [Электронный ресурс]. URL: https://www.tecmint.com/top-most-popular-linux-distributions (дата обращения: 07.07.2022).
- 4. Документация QtIFW. [Электронный ресурс]. URL: https://doc.qt.io/qtinstallerframework/ifw-getting-started.html (дата обращения: 05.07.2022).
- 5. Документация Gitlab. [Электронный ресурс]. URL: https://doc.qt.io/qtinstallerframework/ifw-getting-started.html (дата обращения: 10.07.2022).

Приложение A. Листинг скрипта интеграции QtIFW в проект СМаке

```
cmake minimum required (VERSION 3.8)
project (edit LANGUAGES CXX)
if(${CROSS WIN})
  enable language("RC")
  set(ICON RESOURCE ${CMAKE CURRENT SOURCE DIR}/simodoedit.rc)
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/src/MainWindow.cpp.in
               ${CMAKE_CURRENT_SOURCE_DIR}/src/MainWindow.cpp)
set(CMAKE_INCLUDE_CURRENT_DIR ON)
set (CMAKE AUTOUIC ON)
set(CMAKE_AUTOMOC ON)
set (CMAKE AUTORCC ON)
set (CMAKE CXX STANDARD 17)
set (CMAKE CXX STANDARD REQUIRED ON)
find package (
  QT NAMES Qt6 Qt5 REQUIRED
  COMPONENTS Widgets Charts
             DataVisualization 3DCore
             3DRender 3DInput 3DLogic 3DExtras
             3DAnimation)
find package (
  Qt${QT VERSION MAJOR} REQUIRED
  COMPONENTS Widgets Charts
             DataVisualization 3DCore
             3DRender 3DInput
             3DLogic 3DExtras
             3DAnimation)
if(NOT (${CROSS WIN}))
  set(TERM WIDGET CPP src/TermWidget.cpp)
  set(TERM WIDGET H src/TermWidget.h)
endif()
add executable (
  ${PROJECT NAME}
  ${ICON RESOURCE}
 res/simgui.qrc
  src/BufferedListWidget.cpp
  src/BufferedListWidget.h
  src/ChartBuffer.cpp
  src/ChartBuffer.h
  src/ChartView.cpp
  src/ChartView.h
  src/cockpit/Cockpit3D.cpp
  src/cockpit/Cockpit3D.h
  src/cockpit/CockpitAviagorizont.h
  src/cockpit/CockpitBar.cpp
  src/cockpit/CockpitBar.h
  # src/cockpit/CockpitCBar.cpp
  # src/cockpit/CockpitCBar.h
  src/cockpit/CockpitHBar.h
  src/cockpit/CockpitVBar.h
```

```
src/cockpit/CockpitVariometer.h
  src/cockpit/CockpitView.cpp
 src/cockpit/CockpitView.h
  src/codeeditor/CodeEditor.cpp
  src/codeeditor/CodeEditor.h
  src/codeeditor/CodeEditorColorTheme.h
  src/codeeditor/ErrorInfo.h
  src/codeeditor/Highlighter.cpp
  src/codeeditor/Highlighter.h
  src/codeeditor/LineNumberArea.cpp
 src/codeeditor/LineNumberArea.h
 src/codeeditor/RuleData.cpp
 src/codeeditor/RuleData.h
 src/codeeditor/SpellChecker.cpp
 src/codeeditor/SpellChecker.h
 src/codeeditor/TextBlockData.cpp
 src/codeeditor/TextBlockData.h
 src/CommonConfig.cpp
 src/CommonConfig.h
 src/FindReplace.cpp
 src/FindReplace.h
 src/FindReplace.ui
 src/GrammarTable.cpp
 src/GrammarTable.h
 src/Graph3D.cpp
 src/Graph3D.h
 src/Graph3DBuffer.cpp
 src/Graph3DBuffer.h
 src/ListReporter.cpp
 src/ListReporter.h
 src/ListReporterBuffer.cpp
 src/ListReporterBuffer.h
 src/main.cpp
 src/MainWindow.cpp
 src/MainWindow.h
 src/MdiChild.cpp
 src/MdiChild.h
 src/ScriptC NS Chart.cpp
 src/ScriptC NS Chart.h
 src/ScriptC NS Cockpit.cpp
 src/ScriptC_NS_Cockpit.h
 src/ScriptC_NS_Q3DScatter.cpp
src/ScriptC_NS_Q3DScatter.h
 src/SimodoRuler.cpp
 src/SimodoRuler.h
  ${TERM WIDGET CPP}
  ${TERM WIDGET H}
 src/WorkDirectory.cpp
 src/WorkDirectory.h
 src/WorkDirectoryGetName.cpp
 src/WorkDirectoryGetName.h
 src/WorkDirectoryGetName.ui
 src/WorkObject.cpp
 src/WorkObject.h
 ts/simgui ru RU.ts)
target include directories(${PROJECT NAME})
                            PUBLIC ${CMAKE SOURCE DIR}/src/thirdparts/hunspell)
target link libraries(${PROJECT NAME} Qt${QT VERSION MAJOR}::Widgets)
target_link_libraries(${PROJECT_NAME} Qt${QT_VERSION_MAJOR}::Charts)
target_link_libraries(
 ${PROJECT NAME}
 Qt${QT VERSION MAJOR}::DataVisualization
```

```
Qt${QT VERSION MAJOR}::3DCore
  Qt${QT VERSION MAJOR}::3DRender
  Qt${QT VERSION MAJOR}::3DInput
  Qt${QT VERSION MAJOR}::3DLogic
  Qt${QT VERSION MAJOR}::3DExtras
  Qt${QT VERSION MAJOR}::3DAnimation)
target link libraries(${PROJECT NAME} SIMODOdsl)
target link libraries(${PROJECT NAME} hunspell)
if(NOT (${CROSS WIN}))
  target link libraries(${PROJECT NAME} "qtermwidget5")
endif()
# target link libraries(${PROJECT NAME} "stdc++fs")
set(PROJECT OUTPUT NAME "simodoedit")
set target properties (
  ${PROJECT NAME}
  PROPERTIES MACOSX BUNDLE GUI IDENTIFIER my.example.com
             MACOSX BUNDLE BUNDLE VERSION ${SIMODO VERSION}
             MACOSX BUNDLE SHORT VERSION STRING
             ${SIMODO VERSION MAJOR}.${SIMODO VERSION MINOR}
             MACOSX BUNDLE TRUE
             WIN32 EXECUTABLE TRUE
             RUNTIME OUTPUT DIRECTORY ${CMAKE SOURCE DIR}/bin
             OUTPUT NAME ${PROJECT OUTPUT NAME})
set(RELEASE STRIP $<IF:$<CONFIG:Release>,${CMAKE STRIP},>)
if(NOT (${RELEASE STRIP}) STREQUAL "" AND (${CROSS WIN}))
  set (PON EXT .exe)
endif()
set (RELEASE STRIP ARGS
$<IF:$<CONFIG:Release>,"${CMAKE SOURCE DIR}/bin/${PROJECT OUTPUT NAME}${PON EXT}
",>
)
add custom command(
  TARGET ${PROJECT NAME}
  POST BUILD
  COMMAND ${RELEASE STRIP} ARGS ${RELEASE STRIP ARGS})
set(CPACK GENERATOR "IFW")
set(CPACK PACKAGE NAME ${PROJECT OUTPUT NAME})
set(CPACK_PACKAGE_VERSION ${SIMODO_VERSION})
set(CPACK_PACKAGE_RELEASE ${SIMODO_VERSION_BUILD})
set(CPACK_PACKAGE_CONTACT "Michael Fetisov")
set(CPACK_PACKAGE_VENDOR "BMSTU")
set (CPACK PACKAGE FILE NAME
    "${CPACK PACKAGE NAME}-${CPACK PACKAGE VERSION}-
${CPACK PACKAGE RELEASE}.${CMAKE SYSTEM PROCESSOR}"
set (CPACK IFW COMPONENT INSTALL ON)
set(CPACK IFW PACKAGE NAME "SIMODO edit")
set(CPACK_IFW_PACKAGE_START_MENU_DIRECTORY "Simodo")
set(CPACK_IFW_PACKAGE_TITLE "SIMODO edit Installer")
set(CPACK_IFW_PACKAGE_START_MENU DIRECTORY "SIMODO")
set(CPACK_IFW_TARGET_DIRECTORY "@HomeDir@/Simodo/SimodoEdit")
set(CPACK_IFW_PACKAGE_ICON "${CMAKE SOURCE DIR}/installer/logo-01.ico")
set(CPACK_IFW_PACKAGE_WINDOW_ICON "${CMAKE_SOURCE_DIR}/installer/logo-01.png")
set(CPACK IFW PACKAGE LOGO "${CMAKE SOURCE DIR}/installer/logo-01-128.png")
set(CPACK IFW PACKAGE WIZARD STYLE "Modern")
set(CPACK_IFW_PACKAGE_ALLOW_NON_ASCII_CHARACTERS ON)
set(CPACK IFW PRODUCT URL "https://bmstu.codes/lsx/simodo/stars")
set(CPACK IFW ROOT "${CMAKE SOURCE DIR}/../../Qt/QtIFW")
```

```
include (CPackIFW)
cpack ifw configure component(
  simodo-edit FORCED INSTALLATION
  NAME simodo.edit
  DISPLAY NAME "SIMODO edit"
  DESCRIPTION "Install SIMODO edit."
  SCRIPT ${CMAKE SOURCE DIR}/installer/installscript.qs
  LICENSES "MIT License" ${CMAKE SOURCE DIR}/installer/LICENSE.MIT
  DEFAULT true
 DEPENDS support)
cpack ifw configure component(
  support FORCED INSTALLATION VIRTUAL
  NAME support
 DEFAULT true)
if(${CROSS WIN})
  install(
    PROGRAMS ${CMAKE SOURCE DIR}/bin/${PROJECT OUTPUT NAME}.exe
    DESTINATION bin
    COMPONENT simodo-edit)
  install(
    DIRECTORY ${CMAKE SOURCE DIR}/bin/
    DESTINATION bin
    COMPONENT simodo-edit
    PATTERN ${PROJECT OUTPUT NAME}.exe EXCLUDE)
else()
  install(
    CODE "
        execute process (
            COMMAND rm -rf tmp
            WORKING DIRECTORY ${CMAKE_SOURCE_DIR}
            COMMAND ERROR IS FATAL ANY
        execute process (
            \operatorname{\mathtt{COMMAND}} mkdir -p tmp/ifw-installer/bin
            WORKING DIRECTORY ${CMAKE SOURCE DIR}
            COMMAND ERROR IS FATAL ANY
        execute process (
            COMMAND cp bin/${PROJECT OUTPUT NAME} tmp/ifw-
installer/bin/${PROJECT OUTPUT NAME}
            WORKING DIRECTORY ${CMAKE SOURCE DIR}
            COMMAND ERROR IS FATAL ANY
        execute process (
            COMMAND linuxdeployqt ${PROJECT OUTPUT NAME} -bundle-non-qt-libs -
extra-
plugins=iconengines, platformthemes, renderers, geometryloaders, kf5, kf5/kio, styles
-unsupported-allow-new-glibc
            WORKING DIRECTORY ${CMAKE SOURCE DIR}/tmp/ifw-installer/bin
            COMMAND ERROR IS FATAL ANY
        )
    COMPONENT simodo-edit)
  install (
    PROGRAMS ${CMAKE SOURCE DIR}/tmp/ifw-installer/bin/${PROJECT OUTPUT NAME}
    DESTINATION bin
    COMPONENT simodo-edit)
```

```
install(
    DIRECTORY ${CMAKE SOURCE DIR}/tmp/ifw-installer/
    DESTINATION .
    COMPONENT simodo-edit
    PATTERN bin/${PROJECT_OUTPUT NAME} EXCLUDE)
endif()
if(${CROSS WIN})
  install(
    CODE "
        execute process(
            COMMAND rm -rf tmp/data
            WORKING DIRECTORY ${CMAKE SOURCE DIR}
            COMMAND ERROR IS FATAL ANY
        )
        execute process (
            COMMAND mkdir -p tmp
            WORKING DIRECTORY ${CMAKE SOURCE DIR}
            COMMAND ERROR IS FATAL ANY
        )
        execute process(
            COMMAND cp -RL data tmp/data
            WORKING DIRECTORY ${CMAKE SOURCE DIR}
            COMMAND ERROR IS FATAL ANY
        )
    COMPONENT support)
  install(
    DIRECTORY "${CMAKE SOURCE DIR}/tmp/data"
    DESTINATION "."
    COMPONENT support)
else()
  install(
    DIRECTORY "${CMAKE SOURCE DIR}/data"
    DESTINATION "."
    COMPONENT support)
endif()
if(${CROSS WIN})
  install(
    FILES "${CMAKE_SOURCE_DIR}/installer/icons/Simodo-simodoedit.ico"
    DESTINATION "icons"
    COMPONENT support)
else()
  install(
    DIRECTORY "${CMAKE SOURCE DIR}/installer/icons/"
    DESTINATION "icons"
    COMPONENT support
    PATTERN *.ico EXCLUDE)
endif()
install(
 DIRECTORY "${CMAKE SOURCE DIR}/test/examples"
  DESTINATION "."
 COMPONENT support)
include (CPack)
```

Приложение Б. Листинг скрипта непрерывного развёртывания для системы жизненного цикла DevOps Gitlab

```
image: alt:p10
stages:
  - build
  - test
  - coverage
  - delivery
.remove_utils: &remove utils
  - rm -rf ../../Qt ../../linuxdeployqt ../../cross /opt/mxe
.save_dir_to_env_var: &save_dir_to_env_var
  - __GITLAB_CI_last_location_dir__=$PWD
.return_to_saved_dir: &return_to_saved_dir
  - cd $__GITLAB_CI_last_location_dir__
.build deploylinuxqt: &build deploylinuxqt
  # Cборка linuxdeployqt
  - git clone https://github.com/probonopd/linuxdeployqt.git
  - cd linuxdeployqt && qmake && make && export PATH=$PWD/bin:$PATH && cd ..
.build ifw with static qt: &build ifw with static qt
  # Сборка Qt5 из исходников
  - mkdir Qt && cd Qt && mkdir Qt5-static
  - git clone git://code.qt.io/qt/qt5.git Qt5-source
  - cd Qt5-source
  - git checkout ifw-5.15.2
  - ./init-repository --module-
subset=qtbase,qtdeclarative,qttools,qttranslations,qtwayland,qtx11extras
  - sed -i 's/#ifdef cplusplus/#ifdef cplusplus\n# include <limits>/'
qtbase/src/corelib/global/qglobal.h
  - ./configure -prefix $PWD/../Qt5-static -opensource -confirm-license -release
-static -static-runtime -platform linux-clang -accessibility -qt-zlib -qt-libpng
-qt-libjpeq -qt-pcre -no-qlib -no-cups -no-sql-sqlite -no-qml-debug -no-opengl -
no-eql -no-sm -no-icu -nomake examples -nomake tests -no-libudev
  - make -j8 module-qtbase module-qtdeclarative module-qttools module-
qttranslations module-qtwayland module-qtx11extras
  - make install
  - cd ../Qt5-static
  - export PATH=$PWD/bin:$PATH
  - cd ../..
  # Сборка IFW из исходников
  - cd Qt
  - git clone https://github.com/qtproject/installer-framework.git QtIFW
  - cd QtIFW
  - echo "CONFIG += libarchive"$'\n' > installerfw.pri.tmp
  - cat installerfw.pri >> installerfw.pri.tmp
  - rm -f installerfw.pri
  - cp installerfw.pri.tmp installerfw.pri
  - qmake && make -j8
  - cd ../..
  - PATH=$(echo $PATH | sed 's/.*Qt5-static\/bin://')
# Устанавливаем общие программы для сборки
.download build programs: &download build programs
  # Обновляем список пакетов в репозиториях
  - apt-get -y update
  # Устанавливаем q++ и Qt
  - apt-get -y install gt-creator
  - gcc --version
  # Устанавливаем пакеты
  - apt-get -y install ninja-build clang boost-devel cmake make
  - cmake --version
```

```
# Устанавливаем библиотеки для edit
  - apt-get -y install qt5-charts-devel qt5-datavis3d-devel libqtermwidget-devel
qt5-3d qt5-3d-devel
# Задаём команды, которые будут выполнены до прогона скриптов
before script:
  # Создаём рабочие каталоги
  - ./configure
  # - export DEBIAN FRONTEND=noninteractive
  # - export TZ=Europe/Moscow
deploy-alt:
  dependencies: []
  stage: delivery
  script:
  - *remove utils
  - *download build programs
  # Устанавливаем пакеты
  - apt-get -y install rpm-build rpm-build-ninja sudo linuxdeployqt
  - apt-get -y install git qt5-tools-devel bzlib-devel zlib-devel liblzma-devel
libexpat-devel
  - apt-get -y install qt5-declarative-devel
  - apt-get -y install fontconfig-devel libfreetype-devel libX11-devel libxcb-
devel libxcbutil-devel
  - apt-get -y install libxcbutil-icccm libxcbutil-icccm-devel libxcbutil-image-
devel libqt5-xcbqpa
  - apt-get -y install libxcb-render-util-devel libxcbutil-cursor-devel
libxcbutil-keysyms-devel libxcbutil-xrm-devel
  - apt-get -y install libxcbwin-devel libXext-devel libXfixes-devel libXi-devel
libXrender-devel libxcb libXrandr-devel
  - apt-get -y install libshape-devel libXinerama-devel libxkbcommon-devel
libxkbcommon-x11-devel
  - apt-get -y install libxshmfence-devel libGLX libGLX-mesa
  # Плагины для ifw
  - apt-get -y install libkf5iconthemes kf5-plasma-integration kde5-kio-extras
plasma5-oxygen plasma5-breeze
  - *save dir to env var
  # Сборка утилит и фреймворков
  - cd ../..
  - *build ifw_with_static_qt
  # Возврат в директорию проекта
  - *return to saved dir
  - ./gomake

    ./godeploy

  - *remove_utils
  # Установка gitlab-release-cli
  # - apt-get -y install curl
  # - curl --location --output /usr/local/bin/release-cli
"https://gitlab.com/api/v4/projects/gitlab-org%2Frelease-
cli/packages/generic/release-cli/latest/release-cli-linux-amd64"
  # - sudo chmod +x /usr/local/bin/release-cli
  # - release-cli -v
  # release:
     tag_name: '0.2.0'
     name: 'Release 0.2.0'
     description: 'Release created using the release-cli.'
  artifacts:
    paths:
    - packages/*
    expire in: 120 days
  only:
    - prod
deploy-ubuntu:
  dependencies: []
```

```
stage: delivery
 image: ubuntu:jammy
 script:
  - *remove utils
  # Устанавливаем пакеты
  - apt update
  - apt -y install build-essential libgl1-mesa-dev cmake ninja-build clang
 - apt -y install qtbase5-dev qtchooser qt5-qmake qtbase5-dev-tools
 - apt -y install libqt5charts5-dev libqt5datavisualization5-dev qt3d5-dev
 - apt -y install libboost-all-dev libqtermwidget5-0-dev patchelf
 - apt -y install git g++
 - apt -y install libghc-bzlib-dev liblzma-dev
 - apt -y install qtdeclarative5-dev libxkbcommon-dev
 - apt -y install libqt5waylandclient5-dev libqt5waylandclient5
libqt5waylandcompositor5-dev libqt5waylandcompositor5
  - apt -y install libxkbcommon-x11-dev libxcb-xkb-dev libxcb-icccm4-dev libxcb-
  - apt -y install xutils-dev xutils xdg-utils x11-utils libxcb-util0-dev
libxcb-util-dev libxcb-util1 libx11-xcb-dev libx11-xcb1 libxcb1-dev libxcb1 xcb
 - apt -y install libxcb-shm0 libxcb-shm0-dev libclang1 libclang-dev xwayland
  - apt -y install (apt list | grep libwayland | sed 's/\/.*//g')
 - apt -y install $(apt list | grep libqt5wayland | sed 's/\/.*//g')
 - apt -y install $(apt list | grep qtwayland | sed 's/\/.*//g')
 - apt -y install $(apt list | grep libegl | sed 's/\/.*//g')
 - apt -y install $(apt list | grep libgegl | sed 's/\/.*//g')
 - apt -y install libfontconfig1-dev libfreetype6-dev libx11-dev libx11-xcb-dev
libxext-dev libxfixes-dev libxi-dev libxrender-dev libxcb1-dev libxcb-qlx0-dev
  - apt -y install libxcb-keysyms1-dev libxcb-image0-dev libxcb-shm0-dev libxcb-
icccm4-dev libxcb-sync0-dev libxcb-xfixes0-dev libxcb-shape0-dev libxcb-randr0-
dev
  - apt -y install libxcb-render-util0-dev libxcb-xinerama0-dev libxkbcommon-dev
libxkbcommon-x11-dev
 - apt -y install qt5-style-plugins qt5-styles-ukui qt5-style-kvantum qt5-
style-kvantum-themes qt5-style-kvantum-110n
  # Плагины ifw
 - apt -y install libkf5iconthemes5 plasma-integration kio-extras plasma-theme-
oxygen breeze qt3d-defaultgeometryloader-plugin
  - *save dir to env var
  # Сборка утилит и фреймворков
  - cd ../..
  - *build deploylinuxqt
  - *build ifw with static qt
  # Возврат в директорию проекта
  - *return to saved dir
  - ./gomake
  - ./godeploy
  - *remove utils
  # Установка gitlab-release-cli
  # - apt-get -y install curl
  # - curl --location --output /usr/local/bin/release-cli
"https://gitlab.com/api/v4/projects/gitlab-org%2Frelease-
cli/packages/generic/release-cli/latest/release-cli-linux-amd64"
  # - sudo chmod +x /usr/local/bin/release-cli
  # - release-cli -v
  # release:
     tag name: '0.2.0'
     name: 'Release 0.2.0'
     description: 'Release created using the release-cli.'
 artifacts:
   paths:
    - packages/*
   expire in: 120 days
  only:
    - prod
```

```
deploy-windows:
  dependencies: []
  stage: delivery
  image: ubuntu:jammy
 script:
  - *remove_utils
  - apt -y update && apt -y install git cmake ninja-build libxcb-glx0 libx11-
xcb1 libxcb-icccm4 libxcb-image0 libxcb-keysyms1 libxcb-randr0 libxcb-render-
util0 libxcb-shape0 libxcb-sync1 libxcb-xfixes0 libxcb-xinerama0 libxcb-xkb1
libxkbcommon-x11-0 libegl1 libpcre2-16-0 libgl1
  # Устанавливаем пакеты
  # - apt update
  # - apt -y install build-essential libgl1-mesa-dev cmake ninja-build clang
  # Плагины ifw
  # - apt -y install libkf5iconthemes5 plasma-integration kio-extras plasma-
theme-oxygen breeze qt3d-defaultgeometryloader-plugin
  - *save dir to env var
  # Скачивание утилит и фреймворков
  - cd ../..
  - git clone http://bmstu.codes/a.bushev/cross-linux-win-boost-qt5-qtifw.git
cross
    cross dir =$PWD/cross
  - cd /opt
  - tar -zxf $__cross_dir__/mxe.tar.gz
  - chmod -R +x .
  - export PATH=$PWD/mxe/usr/bin:$PATH
  # Возврат в директорию проекта
  - *return to saved dir
  - cd bin
  - tar -zxf $ cross dir /runtime.tar.gz
 - cd ../../..
  - mkdir -p Qt/QtIFW/bin
  - cd Qt/QtIFW/bin
  - echo \#\!/bin/bash > binarycreator
  - echo /opt/mxe/usr/bin/x86 64-pc-linux-gnu-binarycreator -t
/opt/mxe/usr/x86 64-w64-mingw32.static/qt5/bin/installerbase.exe \$\@ >>
binarycreator
  - chmod +rwx binarycreator
  - *return to saved dir
  - ./crossmake

    ./godeploy

  - cd packages
  - for i in *; do mv "$i" "${i/run/exe}"; done;
  - cd ..
  - *remove utils
  # Установка gitlab-release-cli
  # - apt-get -y install curl
  # - curl --location --output /usr/local/bin/release-cli
"https://gitlab.com/api/v4/projects/gitlab-org%2Frelease-
cli/packages/generic/release-cli/latest/release-cli-linux-amd64"
  # - sudo chmod +x /usr/local/bin/release-cli
  # - release-cli -v
  # release:
     tag name: '0.2.0'
     name: 'Release 0.2.0'
     description: 'Release created using the release-cli.'
  artifacts:
   paths:
    - packages/*
   expire in: 120 days
  only:
    - prod
```