گزارش پروژه درس شبکههای عصبی

پروژهی اول

دكتر رضا صفابخش

سید احمد نقوی نوزاد (۲۰ + ۹٤۱۳۱)

توجه: در ابتدا لازم به ذکر است که در این پروژه علاوه بر دستهبندی به روش آموزش، ارزیابی و تست دادهها از روشی شاید به نوعی ابداعی مبتنی بر رویکرد محاسبات یکپارچهی برداری استفاده شده است که علاوه بر دقت بالا در محاسبهی خطا از سرعت شدیداً بالاتری نیز نسبت به روش اول برخوردار است.

در این روش بجای تقسیم داده ها به سه دستهی آموزشی، ارزیابی و تست، همگی داده ها را به یکباره در هر Epoch مورد ارزیابی قرار داده و از کلیهی خطاها میانگین گرفته و با کمینهی خطای تعریف شده توسط کاربر مقایسه مینمائیم و در صورت کمتربودن خطای حاصل از خطای کمینه، محاسبات را خاتمه میدهیم.

منظور از محاسبات یکپارچهی برداری این است که بجای محاسبهی وزنهای جدید برای هر نمونه و اعمال این وزنهای حاصله در محاسبهی وزنهای جدید برای نمونهی بعدی و ادامهی این رویه تا انتهای مجموعهی دادهها (Dataset) و به عبارتی پیشبرد مرحله به مرحله (gradual progress)، به یکباره تمامی ماتریس حاوی ویژگیهای نمونهها (مثلا در سؤال اول یک ماتریس ۴*۰۵) را در ماتریس وزن اولیهی تصادفی یا وزن حاصله از Epoch قبلی (مثلا مطابق سؤال اول یک ماتریس ۱*٤) ضرب ماتریسی کرده و ماتریس حاصله را (در اینجا یک ماتریس ۱*۰۰) منهای مقدار بایاس تصادفی اولیه و یا بایاس بهروزشده از Epoch قبلی نموده و در نتیجه مقادیر ورودی شبکه (net input) برای همگی نمونهها همزمان محاسبه شده و در فرمول محاسبهی وزن جدید اعمال می گردد و به عبار تی به ازای یک ما تریس وزن اولیه ورودی به هر Epoch برای تمامی نمونهها به طور همزمان یک ماتریس وزن جدید و به دنبال اُن یک ماتریس خطای حاصله از اعمال وزنهای ورودی (در اینجا یک ماتریس ۱*۰۵) به دست می آید که همانطور که پیش از این نیز قید شد میانگین این خطا با کمینهی خطای تعریفشده از قبل مقایسه گشته و در صورت کمتر بودن شرط پایان محاسبات خواهد بود. علاوه بر این ماتریس مقادیر مطلوب (target value) نیز در این روش تغییر یافته و در مورد جداسازی دو کلاس از نمونهها به جای کلاسهای صفر و یک از کلاسهای یک و منفی یک بهره بردهایم و در مورد تابع فعالسازی نیز بجای استفاده از تابع hardlim، از تابع sign استفاده کرده و در مورد سؤال سوم هم ناچارا نمونهها را با کم کردن مختصات هر کدام از میانگین هر بُعد به سمت مبدأ شیفت میدهیم که سبب افزایش بازه مجاز تغییر برای وزنهای وارده شده و البته در هنگام رسم نمونهها و نمودارها شیفت معکوس انجام میدهیم و باید قید کرد که همگی اینها نقش بسزائی در شدت همگرائی وزنها به یک مقدار مطلوب در جداسازی یا همان دستهبندی نمونهها را دارند.

همانطور که در ادامه مشاهده خواهید کرد برتری این روش از لحاظ سرعت انجام محاسبات سنگین ناشی از اعمال Epoch ۳۰,۰۰۰ علی بسیار زیاد (مثلا در سؤال ۱ حدود ۴۳,۰۰۰ Epoch طی حدود ۳۳ ثانیه) و البته بار محاسباتی و مصرف حافظه ی بسیار کمتر، کاملا با روش معمول مطلوب مسئله (آموزش، ارزیابی و تست) قابل تفکیک خواهد بود.

سوال اول:

√ { رویکرد محاسبات یکپارچهی برداری}

١. شرايط أزمايش:

No.	Approach Type	X vs Y	Initial Weights	Initial Threshold (Bias)	maxEpoch	minError	Learning Rate	Cessation Reason	Epoch No.	Error Quantity
	Perceptron	OveΔII	0.0027 0.0018 0.0048 0.0019	0.6643	300	1e-7	0.1	ErrorMean < minError	11	0
		0.101.111	0.0060 0.0055 0.0026 0.0033					epochNo > maxEpoch	301	0.7200
			0.0046 0.0056 0.0041 0.0038					epochNo > maxEpoch	301	0.0933
1	Adaline	0vsAll	0.0022 0.0030 0.0048 0.0059	0.1228	300	1e-7	0.01	epochNo > maxEpoch	301	NaN
		1vsAll	0.0048 0.0001 0.0045 0.0029					epochNo > maxEpoch	301	NaN
		2vsAll	0.0029 0.0008 0.0054 0.0022					epochNo > maxEpoch	301	NaN
- I - I - I - I - I - I - I - I - I - I										
		0vsAll	0.0034 0.0010 0.0037 0.0000		300	1e-4	0.1	ErrorMean < minError	10	0
	Perceptron	1vsAll	0.0051 0.0057 0.0061 0.0066					epochNo > maxEpoch	301	1.2666
		2vsAll	0.0034 0.0018 0.0007 0.0034					epochNo > maxEpoch	301	0.1200
2	Adaline	0vsAll	0.0039 0.0051 0.0006 0.0044	0.1080	300	1e-4	0.01	epochNo > maxEpoch	301	NaN
		1vsAll	0.0034 0.0011 0.0063 0.0039					epochNo > maxEpoch	301	NaN
		2vsAll	0.0029 0.0063 0.0044 0.0030					epochNo > maxEpoch	301	NaN
		0vsAll	0.0037 0.0045 0.0024 0.0016	0.8397	200	1e-3	0.01	ErrorMean < minError	7	0
		1vsAll	0.0039 0.0058 0.0027 0.0008					epochNo > maxEpoch	201	1.0266
3		2vsAll	0.0030 0.0020 0.0027 0.0056					epochNo > maxEpoch	201	0.0933
3	Adaline	0vsAll	0.0027 0.0026 0.0024 0.0009	0.5326	200	1e-3	0.001	epochNo > maxEpoch	201	2.2944e+169
l		1vsAll	0.0017 0.0006 0.0029 0.0017					epochNo > maxEpoch	201	NaN
		2vsAll	0.0020 0.0028 0.0008 0.0033					epochNo > maxEpoch	201	NaN
	Perceptron	0vsAll	0.0052 0.0005 0.0026 0.0000	0.7064	200	1e-3	0.001	ErrorMean < minError	5	0
			0.0015 0.0000 0.0013 0.0009					epochNo > maxEpoch	201	0.7600
4			0.0018 0.0012 0.0009 0.0040					epochNo > maxEpoch	201	0.0533
	Adaline	0vsAll	0.0060 0.0063 0.0015 0.0032	0.2436	200	1e-3	0.0001	epochNo > maxEpoch	201	4.9607e+16
		1vsAll	0.0025 0.0035 0.0018 0.0005					epochNo > maxEpoch	201	4.1576e+34
		2vsAll	0.0029 0.0012 0.0002 0.0064					epochNo > maxEpoch	201	3.4845e+52

۲. نتیجهی انجام آزمایش:

در اینجا فقط برای مورد اَخر نمودارهای مورد نیاز قرار گرفته و توضیحات لازم نیز در ادامه می آید:

۳. نتیجه گیری:

همانطور که جداول و نمودارها نشان می دهند، روش یادگیری پرسپترون در این مسئله بسیار سریعتر از آدالاین به جواب رسیده و کلاس صفر را از مابقی کلاسها سریعا جداسازی می نماید که این مسئله از نمودار خطای مسئله قابل برداشت است و این در حالی است که روش یادگیری آدالاین طبق رویکرد محاسبات یکپارچهی برداری شدیدا از پاسخ نهائی واگرا شده و قادر به یافتن پاسخ حتی در Epoch های بالاتر نیز نمی باشد.

سوال دوم:

 $\{$ رویکرد محاسبات یکپارچهی برداری $\}$

١. شرايط أزمايش:

No. of Perceptron Application	Initial Weights	Initial Threshold (Bias)	maxEpoch	minError	Learning Rate	Stopping Epoch No.	Before Last Epoch Error Quantity
1	0.0033 0.0051	0.2874	10	1e-7	0.1	5	0.0133
2	0.0035 0.0019	0.2874	10	1e-7	0.1	5	0.0133
3	0.0039 0.0008	0.2874	10	1e-7	0.1	5	0.0133

۲. نتیجهی انجام آزمایش:

۳. نتیجه گیری:

در سه بار اجرای پرسپترون نتایج شدیدا مشابهی حاصل می شود که حکایت از شدیدا همگرابودن رویکرد فعلی به جواب نهائی دارد.

سوال سوم:

$\{$ رویکرد محاسبات یکپارچهی برداری $\}$

١. شرايط أزمايش:

No.	Initial Weights	Initial Threshold (Bias)	maxEpoch	minError	Learning Rate	Stopping Epoch No.	Before Last Epoch Error Quantity
1	0.0361 0.6181 0.5671 0.9620	10	3000	1e-5	0.1	20	0.0133
2	0.7461 0.6625 0.5233 0.2599	10	300	1e-5	0.1	17	0.0133
3	0.9620 0.5402 0.0303 0.6963	10	300	1e-7	0.1	17	0.0400

۲. نتیجهی انجام آزمایش:

۳. نتیجه گیری:

از آنجا که تمامی محاسبات به صورت یکپارچه صورت می گیرد در نتیجه سرعت انجام کار حتی در Epoch های بالا شدیدا زیاد بوده و همانطور که از تصاویر مشهود است دقت دستهبندی نیز عملا ۱۰۰ درصد می باشد. از آنجا که نرخ خطا در این روش با سرعت بالائی افت نموده و البته شرط توقف با خطا نیز در کد برنامه تعبیه شده است، لذا با اعمال پارامترهای مختلف نتایج مشابهی حاصل شده و مطلوب مسئله در عرض حدود ۲۰ Epoch و یا حتی کمتر به دست می آید.

نگته:

با عرض پوزش از حضور استاد عالی رتبه و البته تدریسیار محترم درس، اینجانب به دلیل مسائلی چون پیچیدگی فهم اولیهی مسئله و البته عدم آشنائی اولیهی کافی با نرمافزار MATLAB و نیز سنگینی وجود درس دیگری چون SML و در نتیجهی آن ابتلای به بیماری، موفق به طراحی ظاهر گرافیکی برای همگی سؤالات نشدم و البته مورد طراحی شده نیز مطلوب نمی باشد و تأخیر فعلی نیز ناشی از همین موضوع می باشد که در پروژههای بعدی جبران گردد.

سپاسگزارم