R Workflows in Azure Machine Learning for Athletic Data Analysis

Emily Kraschel

Data for High Performance Athletics

Trying to keep athletes

- Healthy
- Available
- Performing well

Measured by

- Load & volume
- Performance metrics & tests
- Injuries

Online platforms host & automate reports

Data available to export manually to Excel or through API to R

Data used by Sports science, S&C, sport coaches, trainers and more

Working Fast

Day-to-Day Athletics Operations

- Data collection
 - Live, daily, weekly, longer
- Storage
- Basic analysis & reporting
- Decision making

Working Fast

Day-to-Day Athletics Operations

- Data collection
 - Live, daily, weekly, longer
- Storage
- Basic analysis & reporting
- Decision making

Working Slow

Data Science, Research, Long-Term Goals

- Data cleaning
- In-depth reports & aggregation
- Advanced analysis
- Connecting the Dots

Conflicting Needs

Changing data, constant additions, too many versions
Can't have controlled experiment
Too many bottlenecks and stopping points

Old Framework

FAST

Automated reports via dashboard

Difficult for Slow Work

- What do we put on the dashboard? New metrics?
- No central source for raw instrument data
- Variety of IDs from different instrument interfaces
- Data in different versions, different places, different files
- CSV creation and pull was slow, too many CSVs....

New Framework Goals

- Improve outcomes (more complete, valid, actionable data)
 - Lower barriers to more complex data science & analytics
- Aggregate data in one place
 - Easier data cleaning, validation, analysis
 - Unify player ID
- More compute power
 - Ability to collaborate & compute easier
- Less bottlenecks- duplication, updates, incomplete data
- Ability to share findings more easily

What is Azure?

New Framework

FAST

Automated reports via dashboard → Still in use

Better for Slow Work

- What do we put on the dashboard? New metrics? → Able to step back from constant stream of data
- No central source for raw instrument data → Able to pull from all APIs
- Variety of IDs from different instrument interfaces → Easier merging
- Data in different versions, different places, different files → Data Lives in one place
- CSV creation and pull was slow, too many CSVs.... → Easier to maintain the most recent version, quicker due to higher computing power

What we are looking at now

- Hamstring injury predictability
- Discrete time survival models
- Differences between genders
 - Relationships between metrics
 - Response to training

Countermovement Jump Analysis

Kinetic Variables of Interest

Eccentric Rate of Force Development

An athlete's ability to generate force during the eccentric phase of the movement

Jump Height

The global output of the stretch shortening cycle

Countermovement Jump Analysis

Kinetic Variables of Interest

Eccentric Rate of Force Development

An athlete's ability to generate force during the eccentric phase of the movement

Jump Height

The global output of the stretch shortening cycle

Research Questions

Is there a difference in relationship between the two variables of interest?

Can we change Jump Height or Eccentric Rate of Force Development over time as a result of training?

Gender Differences

Relationship between Eccentric Deceleration Rate of Force Development and Jump Height

Higher Eccentric
Deceleration Rate of Force
Development (RFD) has
stronger correlation with
higher jump height for men
than for women

Regression Model

Jump Height regressed by RFD, sport (separated by gender) and interaction term between gender & RFD

- Men's sports generally have a significantly higher coefficient than the baseline, with a few exceptions
- Interested in sports and individuals that break this patten or improve over time
 - Can we train this?

Jump Height by Rate of Force Development Seperated by Sport

Training Response

Individual change regressed over their entire time at Oregon

- Trained two years at Oregon, 10 tests
- RFD over time
 - Decrease for Soccer, increase for Lacrosse
- Jump Height over time
 - Decrease for Women's Tennis, increase for Softball, Football, Baseball
- Ratio of Jump Height/RFD over time
 - Increase for Soccer

Acknowledgements

Jordan Troester

Jake Searcy

Ben McKay

Lillian Aoki

Ethan Martin

University of Oregon

Department of Data Science

Athletics

Wu Tsai Human Performance Alliance