# WeightGrad: Geo-Distributed Data Analysis Using Quantization for Faster Convergence and Better Accuracy



Syeda Nahida Akter



Muhammad Abdullah Adnan

Department of Computer Science and Engineering Bangladesh University of Engineering and Technology (BUET) Dhaka, Bangladesh



#### Problem Overview



 Large scale cloud organizations are establishing data centers and "edge" clusters globally to provide their users low latency access to their services.

### Problem Overview



#### Problem

- Powerful machines.
- Huge memory.
- Large amount of time.

#### Problem Overview

Clearly, **centralization** is not a feasible solution which motivates the need to **distribute the DNN** system across multiple data centers.



### Problem Definition

For distributed setup, we define the problem as



### Problem Definition

For distributed setup, we define the problem as

How to efficiently utilize limited WAN b/w

#### Problem Definition

For distributed setup, we define the problem as

- How to efficiently utilize limited WAN b/w
- How to ensure faster convergence without loss of accuracy

# Methodology

We propose WeightGrad that



## Methodology

We propose WeightGrad that

 adapts both weight and gradient quantization to provide best speedup possible on WAN

## Methodology

#### We propose WeightGrad that

- adapts both weight and gradient quantization to provide best speedup possible on WAN
- proposes a synchronous structure to prevent the loss in accuracy due to quantization

# WeightGrad System



Figure: WeightGrad Tree Structure

### Two Level Structure



Figure: WeightGrad Tree Structure

#### Two Level Structure



Figure: WeightGrad Tree Structure

#### Local Cluster



Figure: WeightGrad: Local Cluster

### Local Cluster



Figure: WeightGrad: Local Cluster

#### Local Cluster



Figure: WeightGrad: Local Cluster

#### Dynamic Threshold

• Gradient Synchronizer maintains a dynamic threshold for distributing the gradient updates.

#### Dynamic Threshold

 Gradient Synchronizer maintains a dynamic threshold for distributing the gradient updates.

#### Fixed Interval

- To synchronize the communication process, Gradient Synchronizer maintains a fixed interval T, within which it receives aggregated gradient values from the GS.
- If an LPS does not get update from the GS within T, it stops sending updates to the WMs until gradient updates are received from the GS.



Figure: LPS Structure



Figure: LPS Structure



Figure: LPS Structure



Figure: LPS Structure



Figure: LPS Structure



Figure: LPS Structure

### Amazon EC-2



Figure: (a) Deployment Regions in AWS(b) Instance Hierarchy

| Instances | Instance Type       | RAM      | vCPU | GPU          | B/W     |
|-----------|---------------------|----------|------|--------------|---------|
| 11        | g3s.xlarge, 64-bit  | 30.5 GiB | 4    | NVIDIA Tesla | 10 Gbps |
|           | Ubuntu Server 16.04 |          |      | M60 GPU      |         |
|           | LTS                 |          |      |              |         |

## Training Loss Analysis



Figure: (a) Training loss for CifarNet model on CIFAR-10 dataset, (b) Training loss for VGGNet model on CIFAR-10 dataset, (c) Training loss for AlexNet on ImageNet dataset



Figure: Training Speed Comparison





Figure: Training Speed Comparison





Figure: Training Speed Comparison





Figure: Training Speed Comparison



# Accuracy Comparison: CIFAR-10

| Model     | SGD | Base LR        | Total mini-batch size | Steps | Gradients  | Workers        | Accuracy       |
|-----------|-----|----------------|-----------------------|-------|------------|----------------|----------------|
| CifarNet  | GD  | 0.1            | 128                   | 50k   | Baseline   | 4              | 84.56%         |
| Charivet  | GD  | 0.1            | 120 50                |       | ` Gaia     | 4              | 83.48%(-1.08%) |
|           |     |                |                       |       | TernGrad   | 4              | 82.41%(-2.15%) |
|           |     |                |                       |       | WeightGrad | 4              | 84.56%(-0.00%) |
|           | GD  | 0.1            | 0.1 512 50k           | 50k   | Baseline   | 8              | 83.19%         |
|           | GD  | GD 0.1 512 50K | SUK                   | Gaia  | 8          | 83.04%(-0.13%) |                |
|           |     |                |                       |       | TernGrad   | 8              | 81.40%(-1.79%) |
|           |     |                |                       |       | WeightGrad | 8              | 83.21%(+0.03%) |
| VGG-Net   | GD  | 0.1 512 50k    | E10                   | EOL   | Baseline   | 8              | 88.14%         |
| v GG-IVEL | GD  |                | JUK                   | Gaia  | 8          | 87.19%(-0.95%) |                |
|           |     |                |                       |       | TernGrad   | 8              | 86.3%(-1.84%)  |
|           |     |                |                       |       | WeightGrad | 8              | 88.13%(-0.01%) |

Table: Result of WeightGrad on CIFAR-10 dataset

# Accuracy Comparison: ImageNet

| Model            | Steps | Training Method           | Top-1 Accuracy | Top-5 Accuracy |
|------------------|-------|---------------------------|----------------|----------------|
|                  |       | Baseline                  | 58.17%         | 80.19%         |
|                  |       | Gaia                      | 58.02%(-0.15%) | 80.20%(+0.01%) |
| $Ale \times Net$ | 185k  | TernGrad                  | 57.32%(-0.85%) | 80.18%(-0.01%) |
|                  |       | Deep Gradient Compression | 58.20%(+0.03%) | 80.20%(+0.01%) |
|                  |       | WeightGrad                | 59.28%(+1.06%) | 80.25%(+0.06)  |

Table: Comparison of training methods on ImageNet data



• Problem: How to perform DNN on geo-distributed data?

- Problem: How to perform DNN on geo-distributed data?
  - Limited WAN bandwidth and slower convergence rate
  - DNN models contain billions of parameters

- Problem: How to perform DNN on geo-distributed data?
  - Limited WAN bandwidth and slower convergence rate
  - DNN models contain billions of parameters
- We introduce WeightGrad,
  - A loss-aware weight-quantized deep learning system with quantized gradient

- Problem: How to perform DNN on geo-distributed data?
  - Limited WAN bandwidth and slower convergence rate
  - DNN models contain billions of parameters
- We introduce WeightGrad,
  - A loss-aware weight-quantized deep learning system with quantized gradient
  - Maintains a tight synchronization over LAN to simulate each data center as a centralized system and a loose synchronization over WAN to reduce communication cost.

- Problem: How to perform DNN on geo-distributed data?
  - Limited WAN bandwidth and slower convergence rate
  - DNN models contain billions of parameters
- We introduce WeightGrad,
  - A loss-aware weight-quantized deep learning system with quantized gradient
  - Maintains a tight synchronization over LAN to simulate each data center as a centralized system and a loose synchronization over WAN to reduce communication cost.
- Results: WeightGrad achieves,
  - 2.4-5.36× speedup over state-of-the-art distributed systems

- Problem: How to perform DNN on geo-distributed data?
  - Limited WAN bandwidth and slower convergence rate
  - DNN models contain billions of parameters
- We introduce WeightGrad,
  - A loss-aware weight-quantized deep learning system with quantized gradient
  - Maintains a tight synchronization over LAN to simulate each data center as a centralized system and a loose synchronization over WAN to reduce communication cost.
- Results: WeightGrad achieves,
  - 2.4-5.36× speedup over state-of-the-art distributed systems
  - 0.03-1.06% accuracy gain over Baseline



## THANK YOU!

Syeda Nahida Akter and Muhammad Abdullah Adnan, "WeightGrad: Geo-Distributed Data Analysis Using Quantization for Faster Convergence and Better Accuracy," Proc. of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM SIGKDD 2020), San Diego, CA, USA, August 23-27, 2020.