

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1964 A

CHEMICAL AND PHOTOGRAPHIC EVALUATION OF RIGID EXPLOSIVE TRANSFER LINES

BY ELEONORE G. KAYSER

RESEARCH AND TECHNOLOGY DEPARTMENT

MAY 1984

Approved for public release; distribution unlimited.

NAVAL SURFACE WEAPONS CENTER

Dahlgren, Virginia 22448 • Silver Spring, Maryland 20910

"Original contains color plates: All DTIC reproductations will be in black and white"

84 12 20 **013**

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
! REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
NSWC TR 84-66	Ab-A149303	
4. TITLE (and Subtitle)	WILL LIST	S. TYPE OF REPORT & PERIOD COVERED
CHEMICAL AND PHOTOGRAPHIC EVALUATI	ON OF RIGID	
EXPLOSIVE TRANSFER LINES		Interim 7/1980-5/1984
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)
Eleonore G. Kayser		
Lieodote G. Rayser		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT PROJECT TASK
Naval Surface Weapons Center (Code		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
White Oak	K16)	
Silver Spring, MD 20910		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
		May 1984
		13. NUMBER OF PAGES
		53
14. MONITORING AGENCY NAME & ADDRESS/II differen	it trom Controlling Office)	15. SECURITY CLASS, (of this report)
		UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING
		SCHEDULE
17. DISTRIBUTION STATEMENT (of the ebetract entered	in Block 20, if different troo	m Report)
18. SUPPLEMENTARY NOTES		
15. KEY WORDS (Continue on reverse elde if necessary m	nd identify by block number)	
SMDC HNS	•	1
DETONATING CORD DIPA	M	}
EXPLOSIVE TRANSFER LINE SHIE	LDED MILD DETONA	ring cord
		
This paper describes the chem on 112 explosive transfer lines us escape systems for a variety of mi wes to provide quantitative chemic lines as affected by both age and	ical and photogra ed to initiate a: litary and NASA a al data on in-ser	ircraft emergency aircraft. The purpose rvice explosive transfer

in order to make reliable, responsible, and conservative estimations of inservice cord life extension. The approach was to (a) develop a test methodology. (b) characterize the types of transfer lines in use in this country

DD , FORM 1473 EDITION OF 1 NOV 51 IS OBSOLETE S N 0102-LF-014-0601

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) (c) analyze these lines following a repeat of the thermal tests conducted in the original qualification, and (d) conduct a degradation investigation on the explosives currently in use. The results of this testing indicate that rigid explosive transfer lines are not adversely affected by age, service, or a repeat of the thermal qualification tests.

UNCLASSIFIED

FOREWORD

This report contains the analytical results generated on HNS and DIPAM removed from explosive transfer lines. The chemical and photographic techniques described in this report are part of a joint service life evaluation program funded by the Army Aviation Systems Command (AVSCOM), St. Louis, Missouri, the U.S. Air Force B-1 Program, and the National Aeronautics and Space Administration (NASA) under NASA Defense Purchase Request No. L-9492B. This program was managed at the NASA Langley Research Center, Hampton, Virginia.

The identification of commercial materials and/or manufacturers implies neither criticism nor endorsement by the Naval Surface Weapons Center.

The author wishes to thank Dr. Marriner K. Norr and the Photographic Department at NSWC-White Oak for their contributions in the form of scanning electron micrographs and the color macrophotographs; Larry J. Bement of the NASA Langley Research Center, Hampton, Virginia, and Morry L. Schimmel of the McDonnell Aircraft Company, St. Louis, Missouri, for their helpful suggestions and comments; and especially Eugene E. Kilmer of the Naval Surface Weapons Center, White Oak, for making it all possible.

Acces	sion For	
NTIS	GRALI	d
DTIC	TAB	₩
Unann	ounced	
Justi	fication	
	lability	
	Avail an	
Dist	Specia	
A-1		

Approved by:

KURT MUELLER, Head

3. 千万/2.2016 L

Energetic Materials Division

"Original contains color platen: All DTIC reproductative will be in black and

CONTENTS

	Page
INTRODUCTION	1
EXPERIMENTAL	5
TECHNICAL APPROACH	5
LINES TESTED	6
TESTING SEQUENCE	6
EXPLOSIVE MATERIALS	6
BOOSTER TIP SAMPLING	6
TRANSFER LINE SAMPLING	11
HPLC CONDITIONS	11
COLOR MACROPHOTOGRAPHY	11
SCANNING ELECTRON MICROSCOPY (SEM)	11
RESULTS AND DISCUSSION	13
CONCLUSIONS	37
REFERENCES	38
NOMENCLATURE	39

ILLUSTRATIONS

Figure		Page
1	CROSS SECTION OF RIGID EXPLOSIVE TRANSFER LINE (1 GRAIN = 65 mg)	3
2	TEMPERATURE/TIME CYCLES (100 EACH) REQUIRED FOR THERMAL QUALIFICATION OF RIGID EXPLOSIVE TRANSFER LINES	7
3	CHEMICAL STRUCTURES AND MEETING POINTS OF EXPLOSIVES IN RIGID EXPLOSIVE TRANSFER LINES	9
4	DISSECTION SITES USED FOR PHOTOGRAPHIC AND CHEMICAL ANALYSES	10
5	HPLC CHROMATOGRAM OF HNS, HNBiB, AND DIPAM	12
6	INTERNAL END VIEW OF A BOOSTER TIP REMOVED FROM A TRANSFER LINE EXPOSED TO 425°F FOR 50 HR. PERCENTAGES ARE EXPLOSIVE REMAINING BY WEIGHT	23
7	SIDE VIEW OF FERRULE CHARGE REMOVED FROM A TRANSFER LINE EXPOSED TO 500°F FOR 50 HRS	24
8	SIDE VIEW OF FERRULE CHARGE REMOVED FROM A TRANSFER LINE EXPOSED TO 425°F FOR 50 HRS	24
9	PHOTOGRAPHIC ANALYSES OF AH-1S BOOSTER TIP EXPLOSIVE	25
10	PHOTOGRAPHIC ANALYSES OF AH-1S TRANSFER LINE EXPLOSIVE	26
11	COLOR MACROPHOTOGRAPHS OF AH-1G BOOSTER TIP EXPLOSIVE; ALL LINES ARE 9 YEARS OLD	27
12	SCANNING ELECTRON MICROGRAPHS OF AH-1G BOOSTER TIP EXPLOSIVE; ALL LINES ARE 9 YEARS OLD	28
13	COLOR MACROPHOTOGRAPHS OF AH-1G TRANSFER LINE EXPLOSIVE; ALL LINES ARE 9 YEARS OLD	29
14	SCANNING ELECTRON MICROGRAPHS OF AH-1G TRANSFER LINE	20

ILLUSTRATIONS (CONT.)

Figure		Page
15	PHOTOGRAPHIC ANALYSES OF F-14 BOOSTER TIP EXPLOSIVE	31
16	PHOTOGRAPHIC ANALYSES OF F-14 TRANSFER LINE EXPLOSIVE	32
17	PHOTOGRAPHIC ANALYSES OF B-1 BOOSTER TIP EXPLOSIVE	33
18	PHOTOGRAPHIC ANALYSES OF B-1 TRANSFER LINE EXPLOSIVE	34
19	PHOTOGRAPHIC ANALYSES OF F-111 TRANSFER LINE EXPLOSIVE	35
20	PHOTOGRAPHIC ANALYSES OF F-111 BOOSTER TIP EXPLOSIVE	36

TABLES

<u> Table</u>	·	Page
1	NUMBER OF LINES AND RATED SERVICE LIFE OF VARIOUS AIRCRAFT	2
2	TYPES OF SMDC LINES CURRENTLY IN USE	4
3	EXPLOSIVE TRANSFER LINES TESTED	8
4	CHEMICAL ANALYSES OF RIGID EXPLOSIVE TRANSFER LINES INSTALLED ON THE F-111 AIRCRAFT AFTER 4 YEARS OF SERVICE	14
5	CHEMICAL ANALYSES OF RIGID EXPLOSIVE TRANSFER LINES INSTALLED ON THE AH-1G AIRCRAFT AFTER 7 YEARS OF SERVICE	15
6	CHEMICAL ANALYSES OF RIGID EXPLOSIVE TRANSFER LINES INSTALLED ON THE AH-1S AIRCRAFT AFTER 4.7 YEARS OF SERVICE	17
7	CHEMICAL ANALYSES OF RIGID EXPLOSIVE TRANSFER LINES INSTALLED ON THE F-15 AIRCRAFT AFTER 6 YEARS OF SERVICE	18
8	CHEMICAL ANALYSES OF RIGID EXPLOSIVE TRANSFER LINES INSTALLED ON THE B-1 AIRCRAFT AFTER 3 YEARS OF SERVICE	19
9	CHEMICAL ANALYSES OF RIGID EXPLOSIVE TRANSFER LINES INSTALLED ON THE F-14 AIRCRAFT AFTER 3 YEARS OF SERVICE	20
10	EFFECT OF HEAT ON CHEMICAL COMPOSITION	21
11	CHEMICAL ANALYSIS OF EXPLOSIVE TRANSFER LINES	22

INTRODUCTION

Extending the service life of explosive transfer lines, used to initiate and sequence aircraft emergency crew escape systems, provides an opportunity for significant savings for a wide variety of military and NASA aircraft (see Table 1). Previous surveillance programs have relied on methods which provided limited information on the functional status of transfer lines having full service, and the projection of further service extension. The purpose of the effort described in this report is to provide quantitative information on explosive transfer lines which will contribute to responsible, conservative, service life determinations.

Rigid explosive transfer lines (Figure 1), commonly called shielded mild detonating cord (SMDC), are designed to transfer a fully contained explosive stimulus, and are the most extensively applied components in aircraft crew escape systems. These lines utilize small quantities of highly stable explosives (i.e., 2,2',4,4',6,6'-hexanitrostilbene (HNS)3 and dipicramide (DIPAM)4) in a metal sheath (i.e., silver or aluminum). SMDC lines are normally used to interconnect the components of emergency escape functions. More than one million cords have been manufactured for various aircraft, spacecraft, and missiles, which include the Army AH-1, the NASA/Army Rotor Systems Research Aircraft (RSRA), the NASA Space Shuttle, 5 the Air Force F-111, F-15, F-16, and B-1, and the Navy TA-7, S-3A, F-14, and F-18. To date, this program has evaluated transfer lines from the following aircraft: the Army AH-1G, and AH-1S, the Air Force F-111, F-15, and B-1, and the Navy F-14. Each of the lines used in these aircraft is different from the others in terms of materials and manufacturing processes and represents all of the rigid transfer line types in use in this country (see Table 2).

The establishment of a rated service life for these lines has been approached on a conservative basis, due to the life-critical function that they perform. A relatively short service life, from three to five years for most aircraft systems, was originally established. Until recently, little interchange of service life technology has occurred among the various aircraft surveillance programs. The chemical and photographic techniques described in this report are part of a joint Army, Air Force, NASA, explosive transfer line service life extension program.

More than 800 rigid explosive transfer lines 7 have been evaluated. Lines were removed after full service from the Army AH-IG and AH-IS, the Air Force F-111, B-1, and F-15 and the Navy F14 aircraft. Seven year-old B-1 lines with no service were also evaluated. These lines represent the three explosive cord types (1) silver-sheathed HNS-II, (2) aluminum-sheathed HNS-II, and (3) silver-sheathed DIPAM currently in use. The three manufacturing methods used to

TABLE 1. NUMBER OF LINES AND RATED SERVICE LIFE OF VARIOUS AIRCRAFT

		SERVICE	LIFE IN YEARS
AIRCRAFT	NO. OF LINES/AIRCRAFT		CURRENT (as of May 84)
AH-1G*	13	5	on condition
AH-1S*	16	5	on condition
B-1 (capsule)	1200	3	13
B-1B	504	3	15
F-111	258	1.5	. 15
F-14	156	3	5
F-15 (fighter) F-15 (trainer)	22 68	6 6	15 15
F-16	27	15	15
F-18 (fighter) F-18 (trainer)	13 52	5 5	5 5
RSRA	145	5	on condition

^{*}Projected savings of \$9M with extension to 10 years. 1

FIGURE 1. CROSS SECTION OF RIGID EXF USIVE NNSFER LINE (1 GRAIN = 65 MG)

TABLE 2. TYPES OF SMDC LINES CURRENTLY IN USE

SMDC LIN	ES	AIRCRAFT/SPACECRAFT/MISSILE
HNS-II		
(silver	sheathed)	AH-1
11	11	EA-6
11	11	F-14
11	11	F-16
11	t t	F-18
11	#1	RSRA
11	**	S-3A
**	11	Harpoon Missile
11	**	Delta Launch Vehicle
HNS-II		
	m sheathed)	B-1
11	"	Trident Missile
DIPAM		
	sheathed)	F-111
(311701	"	r-15

fabricate these cords are: (1) swage-hammering of fully annealed tubes, (2) swage-hammering of work-hardened tubes using three 425°F/one-hour annealing cycles, and (3) pultrusion (see Nomenclature).

The overall objectives of this program were:

- 1. to develop a chemical and functional test methodology, and establish standards for comparison to all subsequent samples;
- 2. to determine chemical and functional reproducibility among line types, manufacturing methods, and batches;
 - 3. to determine effects of age and service on the oldest available lines;
- 4. to evaluate lines with rated service which have undergone a repeat thermal qualification test;
- 5. to conduct thermal degradation studies to determine the limits at which line functionality can be maintained; and
- 6. to establish degradation limits and mechanisms for the energetic materials HNS and DIPAM.

The chemical^{5,7,8} and photographic⁷ analyses (color macrophotographs and scanning electron microphotographs (SEM's)) were developed and carried out at the Naval Surface Weapons Center-White Oak, while the functional tests (velocity and energy measurements) as well as the nondestructive tests were (helium leak detection and X-ray photography) were developed and performed at the NASA Langley Research Center. The results of all these tests can be found in reference 7.

EXPERIMENTAL

TECHNICAL APPROACH

The technical approach included the five following test objectives:

- 1. Establish chemical standards against which all subsequent test groups would be compared. The most recently manufactured lines with the least service were used to establish this baseline. New lines with no history of service would have provided the best reference standards. However, only new AH-1S aircraft lines were available.
- 2. Determine the effects of age (shelf life) without service. The only components available for this study were the spares for the B-l aircraft system qualification with a storage life of 7 to 8 years.
- 3. Evaluate the effects of rated, installed service time (service life) on lines from each aircraft. The oldest age-with-service group was used for this evaluation with the exception of the AH-IG where the service life demonstration

was omitted. Thermal qualification tests including 72-hour exposure at -110°F to +200°F for the Army AF-1G and AH-1S as well as the thermal parameters detailed in Figure 2 were repeated on full service lines to provide a credible basis for possible service life extension.

- 4. Define the chemical and physical changes which occur as the transfer lines degrade.
- 5. Determine to what extent material degradation can cause functional failure. Since no functional failure due to ambient storage and/or service was observed, degradation was induced by exposure to elevated temperatures. Lines subjected to 50-hour exposures at 375°F, 400°F, 425°F, and 450°F were chemically and photographically analyzed. To investigate even broader degradation limits, lines from the F-111 aircraft were exposed to temperatures up to 600°F. Each line was inventoried in terms of aircraft, service, manufacturer, manufacturing lot, manufacturing process, manufacturing date, part number, and serial number.

LINES TESTED

Data describing the investigated rigid explosive transfer lines can be found in Table 3.

TESTING SEQUENCE

The chemical and photographic analyses were carried out in the following order:

- 1. Color Macrophotographs
- 2. SEM
- 3. HPLC Analyses

EXPLOSIVE MATERIALS

The explosives used in the investigated rigid transfer lines include HNS⁹, ¹⁰, ¹¹ (Navy Spec. WS-5003¹²) and DIPAM (Navy Spec. WS-4660¹³). HNS-I, the initial product derived in the synthesis is used in the booster tips due to its sensitivity to low initiation inputs (pressure impulse and fragment impacts), while HNS-II (recrystallized HNS-I) is employed in the transfer lines because of its more desirable flow properties. High purity standards of HNS, DIPAM, and HNBiB (major impurity in HNS synthesis) were prepared to provide a reference calibration for the materials removed from the five aircraft types. The chemical structure and thermal properties of these compounds can be found in Figure 3.

BOOSTER TIP SAMPLING

The booster tip (Figure 4) was dissected with a tube cutter at the ferrule charge-to-booster charge plane. The cup was cut and broken open to minimize any physical disturbance of the pressed explosive. For the HPLC analyses, HNS was

FIGURE 2. TEMPERATURE/TIME CYCLES (100 EACH) REQUIRED FOR THERMAL QUALIFICATION OF RIGID EXPLOSIVE TRANSFER LINES

TABLE 3. EXPLOSIVE TRANSFER LINES TESTED

PYRO CHANGE-OUT TIME (Manhours)	09	09	200	40,000	•	
NO. OF LINES/ AIRCRAFT	13	16	156	1200	258	22-68
INITIAL SERVICE (Years)	5	'n	e	e	1.5	9
IN SE MANUFACTURER (1	Teledyne McCormick- Selph (TMc/S)	Space Ordnance Systems (SOS)	Explosive Tech- nology (ET)	Teledyne McCormick- Selph (TMc/S)	Teledyne McCormick- Selph (TMc/S)	Explosive Tech- nology (ET)
MANUFACTURING PROCESS (MDC)	<pre>swage/hammer, with anneal- ing</pre>	pultrusion	<pre>swage/hammer, no anneal- ing</pre>	swage/hammer, with anneal- ing	swage/hammer, with anneal- ing	swage/hammer, no annealing
MDC SHEATH	silver	silver	silver	aluminum	silver	silver
EXPLOSIVE CORE	HNS-11	II-SNH	HNS-II	HNS-II	ЫРАМ	DIPAM
AIRCRAFT	AH-1G	AH-18	F-14	B-1 (capsule)	F-111	F-15

DIPAM
DIPICRAMIDE
MOLECULAR WEIGHT = 454

HNS 2, 2', 4, 4', 6, 6' - HEXANITROSTILBENE MOLECULAR WEIGHT = 450

$$O_2 N \longrightarrow \begin{matrix} H & NO_2 \\ & C \end{matrix} = \begin{matrix} C \\ & H \end{matrix} \longrightarrow \begin{matrix} NO_2 & H \\ & NO_2 \end{matrix} \longrightarrow \begin{matrix} NO_2 & H \\ & NO_2 \end{matrix}$$

HNBIB
2, 2', 4, 4', 6, 6' - HEXANITROBIBENZYL,
DIPICRYLETHANE
MOLECULAR WEIGHT = 452

COMPOUND

DIPAM HNS-I HNS-II HNBiB MELTING POINT

583⁰F 601⁰F 604⁰F 424⁰F

FIGURE 3. CHEMICAL STRUCTURES AND MELTING POINTS OF EXPLOSIVES IN RIGID EXPLOSIVE TRANSFER LINES

(A) BOOSTER TIP

(B) TRANSFER LINE

FIGURE 4. DISSECTION SITES USED FOR PHOTOGRAPHIC AND CHEMICAL ANALYSES

removed from the cup and the material was mechanically blended. The samples were weighed on a Mettler Microbalance (standard deviation 1.0µgm) and then dissolved in dimethylsulfoxide (DMSO). Two to three HPLC analyses were determined on each booster tip. Additional analyses were obtained whenever changes were observed. The HNS-I booster tip analyses were reproducible to within +3%.

TRANSFER LINE SAMPLING

The explosive cord (Figure 4) was cut with a tubing cutter approximately 4cm from each end, and at the midpoint if the cord length was greater than 26cm (10 inches). For the HPLC analyses, a 1 to 2mm cross section was cut from the cord. DMSO was added to the Ag or Al sheathed transfer line samples. This solution was placed in an ultrasonic bath at room temperature for approximately 30 minutes to completely dissolve the explosive. The quantity of explosive was determined by the tare in weighing the original and empty cord length. Two or more transfer lines were tested with a minimum of 3 HPLC analyses on each sample. Additional lines and samples were tested whenever changes were observed.

HPLC CONDITIONS

A high performance liquid chromatograph (Waters Associates Model ALC 202) equipped with a 254nm wavelength detector, a solvent delivery system (Model 6000), and a U6K high pressure loop injector was used with a Model RCM-100 module containing a reverse-phase C-18 Radial-Pak cartridge. Sample solutions were eluted isocratically at ambient temperature. Column flow was 2.0ml/minute, with the mobile phase consisting of HPLC grade methanol and distilled water, 50:50(v,v). The solvent mixtures were not degassed prior to HPLC analysis and sample injections of 2 to 20 microliters were used. A typical time plot of the materials used in this study can be found in Figure 5.

COLOR MACROPHOTOGRAPHY

Color photographs (15-25X magnification) were taken of cross sections of the booster tips. In order to expose the core, a 2-inch section was opened longitudinally with a Nicholson flat file. The photographs were obtained with a Polaroid camera and a Wild Microscope lens (M-75, type 352873), made in Herrbrugg, Switzerland - Kodak Vericolor II, type L (4X5) film was used for documentation.

SCANNING ELECTRON MICROSCOPY (SEM)

The SEM photographs were obtained with an AMRAY, Model 1000A, scanning electron microscrope (5000X magnification). The SEM data were processed on a cathode ray tube (7 inch diagonal, 2500 line resolution) and photographed with a Polaroid camera. Sample preparation included vacuum sputter-coating with gold.

ISOCRATIC ELUTION

DETECTOR WAVELENGTH: 254 NM

MOBILE PHASE: METHANOL:WATER (50:50, BY VOLUME)

FLOW RATE: 2.0 ML/MIN

SCALE: 0.05 ABSORBANCE UNITS FULL SCALE

SAMPLE SIZE: 5µl

CHART SPEED: 0.5 CM/MIN

SAMPLE SOLVENT: DMSO

R.: RETENTION TIME AT MAX. PEAK HEIGHT, MINUTES

TO: TEST START

FIGURE 5. HPLC CHROMATOGRAM OF HNS, HNBIB, AND DIPAM

RESULTS AND DISCUSSION

To date, a total of 112 transfer lines have been analyzed chemically and photographically. This evaluation revealed physical and chemical changes in both HNS and DIPAM at elevated temperatures (>375°F/50 hours). Material uniformity was shown to exist among (a) various line manufacturers, (b) several manufacturing methods, (c) line types, and (d) material batches. None of the five aircraft line types exhibited any significant change due to (a) shelf life ranging from 1 to 10 years, (b) service life of 3 to 7 years, (c) rated service with a repeat thermal qualification, or (d) thermal exposure up to and including a 375°F/50 hour heat cycle (see Tables 4 through 11) which is well beyond the temperature requirements (Figure 2) for the above mentioned aircraft.

Material degradation was only noted at high thermal inputs. As expected, the HNBiB (mp 424°F) degraded more rapidly than the HNS (mp 602°F). The weight percent of HNBiB found in the HNS-I of the AH-IG, AH-IS, F-111, and F-14 lines was approximately 2%, and 6% for the B-1, while the percentage of HNBiB in the HNS-II ranged from zero to 2.1 percent. DIPAM exhibited no degradation up to and including the 450°F/50 hour heat cycle. The effects of thermal inputs on DIPAM up to and including 550°F can be seen in Table 10. Essentially, total DIPAM decomposition (94.6%) occurred at 500°F.

HNS-II degradation in the aluminum sheathing was less than that observed in the silver sheathing. This could be due to the lower HNS-II loading density of the aluminum cords. The velocity data obtained from the Ag and Al cords corroborates these results. HNS degradation observed at the high temperatures was also accelerated by the presence of HNBiB. The higher the concentration of HNBiB, the greater the degree of degradation.

As heat-induced degradation occurred in the explosive materials, both color and physical texture changed. The booster tip explosive was found to darken progressively from the outer circumference (Figure 6). Removal and analysis of the darkened material revealed considerably more degradation at the explosive/stainless steel interface than could be found in the center material. Heat-induced decomposition of the HNS-I contained in the ferrule can be seen in Figures 7 and 8. The percentage of explosive material remaining after exposure to 500°F for 50 hours is shown in Figure 7. The density variations noted in Figure 8 were caused by pressing the explosive into the conical cavity (ferrule). Increased decomposition was observed where HNS compaction was the highest (lowest density at the left - Figure 8).

Color macrophotographs and scanning electron micrographs provided qualitative corroboration for the chemical analyses by high performance liquid chromatography. The results of these chemical and photographic analyses were also corroborated by actual functional tests as described in reference 7. The color macrophotographs show a darkening of the explosive material with increased thermal inputs (Figures 9-11, 13, 15-20). SEM photographs (Figures 9, 10, 12, 14-20) indicate a gradual roughening of the particles, as degradation increased, leading finally to a perforated "swiss cheese"-like texture.

CHEMICAL ANALYSES OF RIGID EXPLOSIVE TRANSFER LINES INSTALLED ON THE F-111 AIRCRAFT AFTER 4 YEARS OF SERVICE TABLE 4.

	LINE	MANUFACTURER	RER - TMC/S				
TEST GROUP		MFG.		R TIP WT. % HNBiB	TRANSFER LINE WT. % DIPAM	Lor no.	SERIAL NO.
PS	as received	1/75	96.7±0.6	3.8±0.2	97.4±1.0	MSV 8555-5	37304895
PS	as received	1/75	96.3±0.4	3.4±0.0	97.4±0.2	MSV 8555-5	28200253
PS	as received	1/75	98.2±1.3	3.6±0.1	100.0±2.0	MSV 8555-5	36504503
PS	as received	6/72	99.7±0.4	1.5±0.1	99.3±0.3	MSV 8553-10	49349468
SLD	as received	5/72	97.0±0.2	2.1±0.3	101.9±2.0	MSV 8553-5	39339383
SLD	as received	5/72	98.1±0.3	2.1±0.1	96.4±2.0	MSV 8553-5	39439457
SLD	as received	6/72	98.1±1.0	2.0±0.2	98.2±1.0	MSV 8553-10	45949091
SLD	as received	6/72	97.2±0.1	1.9±0.1	96.9±0.1	MSV 8553-10	64349649
SLD	as received	6/72	98.1±0.0	1.8±0.0	98.0±0.9	MSV 8553-10	64449675
SLD	as received	6/72	95.1±1.0	3.6±0.2	98.0±0.5	MSV 8553-10	46049150
RTQ	Figure 2	6/72	98.0±1.5	1.8±0.2	98.3±0.5	MSV 8553-9	646449
RTQ	Figure 2	6/72	97.4±1.3	1.7±0.2	1.016.86	MSV 8553-9	09646527
DI	400°F/50 hrs	1/75	93.1±1.1	2.5±0.2	101.1±0.3	MSV 8555-5	49308638
IQ	400°F/50 hrs		88.9±1.2	2.1 ± 0.1	96.9±1.5	MSV 8555-5	26199420
DI	425°F/50 hrs	1/75	75.3±0.8	1.4±0.1	100.0±2.3	MSV 8555-5	65702369
IQ	425°F/50 hrs		82.9±1.3	1.4±0.2	96.611.5	MSV 8555-5	65702418
DI	450°F/50 hrs	1/75	71.9±2.9	0.8 ± 0.0	100.0 ± 3.2	MSV 8555-5	63401029
DI	450°F/50 hrs		65.5±1.1	0.8 ± 0.0	100.8±2.2	MSV 8555-6	26414524
DI	500°F/50 hrs	2/15	8.6±1.5		*	MSV 8555-4	P/N 1609
DI	500°F/50 hrs		32.7±3.2		8.3±0.0	MSV 8555-4	40289904
Id	500°F/50 hrs	11/74	23.7±3.7		8.1±0.0	MSV 8555-3	25988189
10	550°F/50 hrs		*		*	MSV 8555-3	25493359
10	550°F/50 hrs	10/14	0.3 ± 1.3		<0.1	MSV 8555-3	25493359
IO	550°F/50 hrs	10/74	*		*	MSV 8555-3	26288244
Id	600°F/50 hrs	10/74	0.9 ± 3.7		*	MSV 8555-3	24993152
DI	600°F/50 hrs		0.4±3.5		*	MSV 8555-3	24492992
Id	600°F/50 hrs	10/74	*		*	MSV 8555-3	09692597

*Both booster tips were burst by internal pressure, transfer line was empty

CHEMICAL ANALYSES OF RIGID EXPLOSIVE TRAWSFER LINES INSTALLED ON THE AH-1G AIRCRAFT AFTER 7 YEARS OF SERVICE TABLE 5.

Þ

	LINE	MANUFACTURE	MANUFACTURER - TMc/S PERIOD 2/81 - 5/82					
TEST	TEST PARAMETERS	MFG.	<u>-</u>	R TIP	TRANSFER	LINE WT. % HNB; R	LOT NO.	SERIAL NO.
PS	as recieved	2/17	93.4±0.1	5.5±0.2	100.010.5	0.0	7967-1	1523
PS	as received	1/12	98.7±0.2	1.7±0.1	95.4±1.5	1.1±0.0	7180-9	443
PS	as received	2/17	93.0±0.1	5.2±0.2	94.2±0.2	0.0	7967-1	1546
RTQ	-110°F/72 hrs	9/72	98.910.9	1.3±0.2	96.410.5	2.0±0.2	7180-13	970
RTQ		9/72	94.5±0.0	1.7±0.1	93.9±0.4	1.3±0.0	7180-13	983
RTQ	-110°F/72 hrs	7/72	92.3 ± 0.8	1.6±0.3	92.2±0.1	0.0	7180-9	999
RTQ		7/72	93.9±0.3	2.5±0.1	95.6±0.5	0.4±0.2	7180-9	650
RTQ	+200°F/72 hrs	4/72	90.2±0.3	5.5±0.5	94.410.5	0.0	7180-2	229
RTQ		5/72	93.8±0.7	2.010.2	93.9±0.4	0.7±0.2	7180-3	252
RTQ	+200°F/72 hrs	1/12	96.0 ± 0.3	1.7±0.2	96.5±0.3	0.9 ± 0.2	7180-9	531
RTQ		5/72	99.0±0.6	2.010.5	94.9±0.3	1.1 ± 0.3	7180-3	238
RTQ	+200°F/72 hrs	6/72	96.8±1.0	1.940.1	95.6±0.0	1.0±0.0	7180-9	330
RTQ	+200°F/72 hrs	6/72	94.6±0.1	1.8±0.1	94.5±0.2	0.9±1.0	7180-7	342
DI	375°F/50 hrs	1/17	92.7±0.5	4.2±0.2	96.9±1.5	0.0	7967-1	1562
Id	375°F/50 hrs	2/17	92.411.0	4.110.1	97.6±3.3	0.0	7967-1	1645
DI	400°F/50 hrs	7/72	93,4±0.2	1.8±0.2	51.4±3.7	0.0	7180-9	531
DI	400°F/50 hrs	5/72	92.2±1.8	2.0±0.0	89.9±2.0	0.0	7180-3	238
10	400°F/50 hrs	10/73	90.7 ± 0.5	1.4±0.2	87.8±1.0	0.7 ± 0.3	7452-3	1216
DI	400°F/50 hrs	9/72	91.6 ± 0.4	1.6±0.2	71.0±2.0	0.9±0.4	7180-13	1051
Id	400°F/50 hrs	8/72	91.4±0.9	2.0±0.2	66.6±5.0	0.0	•7180-12	161
DI	400°F/50 hrs	1/12	91.4±0.9	1.3±0.1	51.7±4.8	0.0	7180-9	245
DI	425°F/50 hrs	8/72	88.5±2.6	1.1±0.1	11.5±1.4	0.0	7180-12	800
DI	425°F/50 hrs	8/72	93.1±1.5	1.3±0.1	53.6±0.9	0.0	7180-11	858
DI	425°F/50 hrs	8/72	88.4±0.8	1.2 ± 0.1	42.1±2.1	0.0	7180-11	884
Id	425°F/50 hrs	8/72	93,4±2.9	1.1±0.5	6.0 ± 1.2	0.0	7180-11	716
DI	425°F/50 hrs	8/72	88.3 ± 0.3	0.9±0.0	43.3±0.7	0.0	7180-11	894
10	425°F/50 hrs	8/72	93.9 ± 0.7	0.9 ± 0.0	41.4±0.2	0.0	7180-12	901
IQ	425°F/50 hrs	8/72	93.5±1.8	0.9 ± 0.1	0.0	0.0	7180-12	927
10	425°F/50 hrs	8/72	93.6±1.9	1.2±0.3	37.9±5.2	0.0	7180-12	921
10	425°F/50 hrs	9/72	90.4±0.1	1.0±0.0	44.0±2.9	0.0	7180-13	894

ABLE 5. (Cont.)

TEST GROUP	TEST Parameters	MFG. Date	BOOSTE WT. % HNS-I	BOOSTER TIP WT.% HNS-I WT.% HNBIB	TRANSFER WT. Z HNS-II	LINE WT. % HNBiB	LOT NO.	SERIAL NO.
Ž	1,75°E/50 hrs	7/17	91.4±0.9	0.7±0.1	11.1±0.8	0.0	7180-9	549
11	427 C/3C H18	0/77	01 3+1.0	1.7±0.2	47.111.0	0.0	7180-13	939
10	8111 OC/3 C74	2116	8/. 7+2 0	0 7+0.1	0.0	0.0	7180-9	244
101 21	425 F/30 nrs	67/7	89 6+0 5	1.3±0.1	2.9±0.4	0.0	7180-7	441
1 Z	423 F/30 Mrs	8/72	90.1+2.0	1.5±0.1	7.0±0.5	0.0	7180-12	904
10	425°F/50 hrs	7/72	90.5±1.0	1,4±0.2	0.0	0.0	7180-9	276

CHEMICAL ANALYSES OF RIGID EXPLOSIVE TRANSFER LINES INSTALLED ON THE AH-1S AIRCRAFT AFTER 4.7 YEARS OF SERVICE TABLE 6.

	SERIAL.	2	897	322	1724	1684	1710	1699	1681	1693	4157	4156	797	813
	I ON TO		SNF5	SNF4	SNE14	SNE 14	SNE14	SNE 14	SNE14	SNE 14	TAEII	TAE11	SNE4	SNE4
	LINE	6164H	0.0	0.0	0.1±0.0	0.2±0.1	0.2±0.2	0.1±0.0	0.7 ± 0.1	0.1±0.1	0.0	0.0	0.5±0.1	0.0
	TRANSFER		97.5±0.5	96.5±0.0	98.5±1.0	98.6±1.6	99.6±1.5	98.3±1.0	96.8±0.8	96.4±0.9	100.5±0.2	99.2±1.2	86.1±2.0	89.1±0.7
LINE MANUFACTURER - SOS TEST PERIOD 7/82 - 11/82			3.6±0.8	2.0±0.2	2.9±0.8	3.4±0.4	3.2±0.5	3.4±0.2	3.4±0.5	3.4±0.6	2.3±0.2	1.3±0.1	3.5±0.2	2.6±0.0
	BOOSTER TIP	***	96.0±1.0	98.0±0.5	96.0±1.5	96.4±1.2	95.0±0.8	98.0±1.3	97.0±1.2	91.9±0.6	96.1±1.0	96.4±1.0	91.7±0.1	88.7±0.2
	MFG.	3196	7/17	1/17	2/78	2/78	2/78	2/78	2/78	2/78	12/79	12/79	7/17	1/11
	TEST	ייייייייייייייייייייייייייייייייייייייי	as received	as received	as received	as received	-110°F/72 hrs	-110°F/72 hrs	+200°F/72 hrs	+200°F/72 hrs	375°F/50 hrs	375°F/50 hrs	400°F/50 hrs	400°F/50 hrs
	TEST	10045	PS	PS	SLD	SLD	RTQ	RTQ	RTQ	RTQ	Id	Id	DI	Id

CHEMICAL ANALYSES OF RIGID EXPLOSIVE TRANSFER LINES INSTALLED ON THE F-15 AIRCRAFT AFTER 6 YEARS OF SERVICE TABLE 7.

LINE MANUFACTURER - ET TEST PERIOD 10/82 - 2/83

TEST GROUP	TEST PARAMETERS	MFG. DATE	BOOSTER TIP WT. % HNS-I WT. % HNBiB	TIP WT. % HNBiB	TRANSFER LINE DIPAM	LOT NO.	SERIAL NO.
SLD	6 years of service	4/14	4/74 100.0±3.0	0.5±0.0	98.0±2.5 ETI-1-6	ET1-1-6	0373
SLD	6 years of service	4/14	98.0±2.5	0.5±0.2	97.1±1.0	ETI-1-6	0373
SLD	6 years of service	4/14	97.2±1.0	1.0±0.1	94.5±1.0	ETI-1-6	0373

CHEMICAL ANALYSES OF RIGID EXPLOSIVE TRANSFER LINES INSTALLED ON THE B-1 AIRCRAFT AFTER 3 YEARS OF SERVICE TABLE 8.

LINE MANUFACTURER - TMc/S TEST PERIOD 5/81 - 4/82

SERIAL NO.	10434 43717	74225 74201	10400 .10403 10577 10578 10513	82102 34253 34190
LOT NO.	7886-21 7060-269	7060-213	7886-21 7886-21 7886-21 7886-21 7886-21	7060-275 7060-274 7060-216
LINE WT.% HNBiB	0.0	1.5±0.2 1.2±0.1	0.0000	2.0±0.1 2.1±0.2 0.7±0.2
TRANSFER LINE WT.% HNS-II WT.%	97.0±0.5 97.9±0.4	93.3±0.4 95.4±0.5	99.8±0.1 100.2±1.9 93.8±0.3 93.1±1.0 85.4±0.5	94.3±0.0 94.0±0.8 94.7±0.0
BOOSTER TIP WT.% HNS-I WT.% HNBiB	4.9±0.0 6.0±0.2	6.3±0.3 6.6±0.4	4.4±2.0 5.2±0.1 5.0±0.2 5.1±0.2 3.3±0.2	5.8±0.2 6.7±0.2 5.6±0.2
BOOSTE WT.% HNS-I	94.0±0.6 92.8±0.2	90.8±0.4 90.4±0.2	96.4±0.2 92.3±0.1 89.6±0.2 90.1±0.1 85.9±0.6	88.2±2.0 89.5±0.5 89.3±0.3
MFG. DATE	3/77 7/73	6/73 4/73	3/77 77/8 77/8 77/8	7/73 7/73 4/73
TEST PARAMETERS	as received as received	as received as received	375°F/50 hrs 375°F/50 hrs 400°F/50 hrs 400°F/50 hrs 425°F/50 hrs	Figure 2 Figure 2 Figure 2
TEST GROUP	PS PS	SL	01 01 01 01	RTQ RTQ RTQ

NSWC TR 84-66

CHEMICAL ANALYSES OF RIGID EXPLOSIVE TRANSFER LINES INSTALLED ON THE F-14 AIRCRAFT AFTER 3 YEARS OF SERVICE TABLE 9.

LINE MANUFACTURER - ET TEST PERIOD 12/81 - 3/83

TEST GROUP	TEST Parameters	MFG. DATE	BOOSTER TIP WT.% HNS-I WT.%	BOOSTER TIP WT.% HNS-I WT.% HNBiB	TRANSFER WT.% HNS-II	LINE WT.% HNBiB	LOT NO.	SERIAL NO.
PS PS	as received as received	2/75 2/75	97.8±0.1 99.4±0.2	0.8±0.1 0.8±0.1	100.0±0.0 100.0±0.1	0.0	4-ETI-0275 4-ETI-0275	3380-12 3380-2
SLD SLD	as received as received	2/72 2/72	95.8±0.1 96.6±0.1	3.8±1.6 3.5±1.2	99.8±0.0 100.0±0.0	0.0	3002-79 3002-79	43 44
RTQ RTQ RTQ	Figure 2 Figure 2 Figure 2	10/73 10/73 10/73	95.7±0.6 93.5±0.5 97.5±0.2	3.0±0.4 4.1±0.3 3.7±0.1	97.7±0.3 98.3±0.1 97.1±0.0	0.0	ETI-2-150 ETI-2-150 ETI-2-150	3164-28 3164-20 3164-5
IQ IQ	375°F/50 hrs 375°F/50 hrs	2/75	94.2±0.3 94.8±0.2	4.0±0.5	97.2±0.0 100.0±0.0	0.0	ETI-2-213 2-ETI-0275	3380-15 3380-22
10 10	375°F/50 hrs 400°F/50 hrs 400°F/50 hrs	2/75 3/75 3/75	93.5±0.5 97.7±0.2 90.3±0.2	2.6±0.3 0.0 0.0	100.0±0.00 95.5±0.2 95.6±0.2	0.00	3-ETI-0275 11-ETI-0375 10-ETI-0375	3380-18 3380-6 3380-16
01 01 0	400°F/50 hrs 425°F/50 hrs 425°F/50 hrs	3/75 3/75 3/75	95.8±1.2 76.8±2.0 94.0±0.5	3.9 ± 0.2 1.1 ± 0.1 2.2 ± 0.2	92.6±0.4 53.1±3.0 66.3±1.3	$0.0 \\ 0.1 \pm 0.0 \\ 0.1 \pm 0.0$	10-ETI-0375 11-ETI-0375 11-ETI-0375	3380-6 3380-12 3380-16
IQ IO	425°F/50 hrs 425°F/50 hrs	3/75	95.5±0.2 91.2±0.3	2.7±0.1	70.0±2.0	0.2 ± 0.1 0.2 ± 0.1	12-ETI-0375 14-ETI-0375	3380-8 3380-13
01 01 01	425°F/50 hrs 425°F/50 hrs 425°F/50 hrs 425°F/50 hrs	3/75 5/75 3/75 3/75	89.0±1.0 91.0±0.3 92.8±0.3 91.1±0.5	2.3±0.1 2.1±0.2 3.0±0.2 2.1±0.2	47.1±5.0 70.3±3.0 78.1±1.0 95.3±0.3	0.2±0.2 0.2±0.2 0.2±0.2 0.1±0.1	12-ETI-0375 40-ETI-0575 12-ETI-0375 12-ETI-0375	3380-22 3380-33 3380-17 3380-14

TABLE 10. EFFECT OF HEAT ON CHEMICAL COMPOSITION

			TRANSFER LINES	R LINES		1		1		
				REPEAT		AVER.	RAGE CHEMIC. EXPLOSIVE B	AVERAGE CHEMICAL RESULTS % EXPLOSIVE BY WEIGHT		
	AIRCRAFT	EXPLOSIVE (SHEATH) A	AS RECEIVED	THERMAL QUALIFICATON	375°F/ 50 HRS		425°F/ 50 HRS	450°F/ 50 HRS	500°F/ 50 HRS	550°F/ 50 HRS
	AH-1S	HNS-II/ HNBiB (silver)	98.6/0.1	97.8/0.0	0.0/8.66	87.9/0.1				
	AH-1G	=	96.5/0.6	94.8/1.0	98.4/0.2	77.0/0.2	23.2/0.0			
	F-14	=	100/001	6.0/1.76	99.1/0.9	0.0/9.46	68.2/0.2			
	B-1	HNS-II/HNBiB (aluminum)	в 97.5/0.0	94.3/1.6	100/0.0	93.5/0.0	88.4/0.0			
21	F-111	DIPAM (silver)	98.4	98.6		7.66	98.3	100	5.4	0.1
	F-15	=	96.5							
			BOOSTER TIPS	R TIPS						
	All-1S	HNS-I/ HNBiB (304 stain- less steel)	96.2/3.2	97.0/3.4	96.3/1.8 91.2/2.9	91.2/2.9				
	AH-1G	=	96.2/3.3	94.8/2.4	95.2/2.7	91.5/2.2	90.7/1.1			
	F-14	=	8.0/9.86	93.5/2.9	93.4/3.3	91.0/1.6	90.2/2.2			
	B-1	=	93.4/5.5	0.9/0.68	8.4/4.8	88.9/5.1	86.7/3.3			
	F-111	=	97.5/2.5	97.7/1.8		91.0/2.3	79.1/1.4	79.1/1.4 74.8/0.9	22.0/0.0	1.3/0.0
	F-15	=	98.4/0.7							
								•		

NSWC TR 84-66

TABLE 11. CHEMICAL ANALYSIS OF EXPLOSIVE TRANSFER LINES

	NO. OF LINES/	NO. OF YEARS	AVERAGE CHE BOOSTER TIP	MICAL ANALYSIS RES TRANSFER LINE	SULTS*
SAMPLE	UNITS TESTED	IN SERVICE	HNS-I/HNBiB	HNS-II/HNBiB	DIPAM
RSRA	3	5.0	97.7/2.7	97.3/0.1	
F-15	3	6.0	98.4/0.7		96.5
F-111	4	4.0	99.0/2.2		99.3
AH-1S	2	4.7	96.2/3.2	98.6/0.1	
AH-1G	1	7.0	98.7/1.7	95.4/1.1	
B-1	1	3.0	94.0/4.9	97.0/9.9	
F-14	2	3.0	96.2/3.7	99.9/0.0	

^{*}average weight percent

FIGURE 6. INTERNAL END VIEW OF A BOOSTER TIP REMOVED FROM A TRANSFER LINE EXPOSED TO 425⁰ FOR 50 HR. PERCENTAGES ARE EXPLOSIVE REMAINING BY WEIGHT

Copy available to DTIC does not permit fully legible reproduction

FIGURE 7. SIDE VIEW OF FERRULE CHARGE REMOVED FROM A TRANSFER LINE EXPOSED TO 500° F FOR 50 HRS (HNS-I WT % = 0.7-2.6 %)

FIGURE 8. SIDE VIEW OF FERRULE CHARGE REMOVED FROM A TRANSFER LINE EXPOSED TO 425° F FOR 50 HRS

Copy available to DTIC does not permit fully legible reproduction

AV. WT % HNS+HNBIB=93.7 3 YEARS TOTAL AGE, +400°F FOR 50 HOURS

AV. WT. % HNS+HNBiB=99.8 NO SERVICE, 3 YEARS TOTAL AGE

PHOTOGRAPHIC ANALYSES OF AH-1S BOOSTER TIP EXPLOSIVE FIGURE 9.

3 YEARS TOTAL AGE, +400 F FOR 50 HOURS AV. WT. % HNS=88.1

FIGURE 10. PHOTOGRAPHIC ANALYSES OF AH-1S TRANSFER LINE EXPLOSIVE

.!h

Copy available to DTIC does not permit fully legible reproduction.

NO SERVICE, 3 YEARS TOTAL AGE AV. WT % HNS= 97.0

S.L. AND DELTA QUALIFICATION (+200 F FOR 72 HOURS) 5 TO 7 YEAR SERVICE LIFE (S.L.)

AV. WT. % HNS + HNB1B=918"

FIGURE 12. SCANNING ELECTRON MICROGRAPHS OF AH.1G BOOSTER TIP EXPLOSIVE; ALL LINES ARE 9 YEARS OLD

BOOSTER TIP

.18

S.L. AND +375 F FOR 50 HOURS

1. 10 40 00 0 Copy avail permit fully legible reprodu

1 4

D

FIGURE 13. POR CHARGE PHOTOGRAPHS OF AH 1G TRANSFER LINE EXPLOSIVE, ALL LINES ARF 9 YEARS OLD

TRANSFER LINE

19m, .075m

| 12 | ラマ

A DESCRIPTION OF THE PROPERTY OF THE PROPERTY

FIGURE 14. SCANNING ELECTRON MICROGRAPHS OF AH-1G TRANSFER LINE EXPLOSIVE; ALL LINES ARE 9 YEARS OLD

TRANSFER LINE

1.9m, .075in.

FIGURE 15. PHOTOGRAPHIC ANALYSES OF F.14 BOOSTER TIP EXPLOSIVE

COLOR MACROPHOTOGRAPHS 1.9mm

3 YEARS SERVICE AND AV. WT. % HNS=99.9% 9 YEARS TOTAL AGE

3 YEARS SERVICE AND 6.5 YEARS TOTAL AGE

AV. WT. % HNS= 100%

AV. WT. % HNS+HNBiB=56.3% 6.5 YEARS TOTAL AGE, +425 F FOR 50 HOURS 3 YEARS SERVICE,

TRANSFER LINE 1.9m, .075in.

FIGURE 17. PHOTOGRAPHIC ANALYSES OF B-1 BOOSTER TIP EXPLOSIVE

REPRODUCED AT COVERNMENT EXPENSE.

3.5 YEARS TOTAL AGE, +425 F FOR 50 HOURS

TRANSFER LINE 1.9m, .075in.

FIGURE 18. PHOTOGRAPHIC ANALYSES OF 9-1 TRANSFER LINE EXPLOSIVE

FIGURE 19. PHOTOGRAPHIC ANALYSES OF F.111 TRANSFER LINE EXPLOSIVE

· 经营营等 一个是要要求

FIGURE 20. PHOTOGRAPHIC ANALYSES OF F-111 BOOSTER TIP EXPLOSIVE

CONCLUSIONS

The effects of service, age, and thermal degradation were determined on transfer lines (used to initiate emergency escape systems) removed from the Army AH-IG and AH-IS, the Air Force B-I and F-III, and the Navy F-I4 aircraft. The results of this study indicate that the HNS and DIPAM explosive lines were not adversely affected by age (ambient storage from 1 to 10 years), service life (from 3 to 7 years) or a repeat thermal qualification cycle. These findings suggest that significant savings in the cost of (a) HNS and DIPAM rigid explosive transfer lines, (b) manhours needed for pyro change-out time, and (c) aircraft down-time can be realized for military and NASA aircraft by extending the service life of rigid explosive transfer lines. These data, when added to functional and nondestructive test results can be used to make responsible, conservative judgments concerning cord life extension.

REFERENCES

- Boen, J. M., and Bement, L. J., <u>Astronautics and Aeronautics</u>, 21, No. 4, p. 76, 1983.
- 2. Carr, B. M., Service Life Evaluation Program (SLEP) for F-14A Aircraft Canopy Jettisoning and Ejection Seat Ballistic Sequencing System Explosive Actuated Devices, Indian Head Technical Report 755, Aug 1982.
- 3. Shipp, K. G. and Kaplan, L. A., J. Org. Chem., Vol. 31, 1966, p. 857.
- 4. Dacons, J. C., Adolph, H. G., and Kemlet, M. J., Heat Resistant Explosives, XIII. Preparation and Properties of 3,3'-Diamino-2,2',4,4',6,6'-hexanitrobiphenyl, DIPAM, NOLTR 62-82, May 1962.
- 5. Kilmer, E. E., Hexanitrostilbene (HNS): Review of Chemical Assays and Detonation Cord Performance, II, NSWC TR 80-13, Oct 1980.
- 6. Kilmer, E. E., Overviews of HNS Production/Properties/Applications, NSWC TR 79-181, Jul 1979.
- 7. Bement, L. J., Kayser, E. G., and Schimmel, M. L., "Service Life Evaluation of Rigid Explosive Transfer Lines," NASA Technical Paper No. 2143, Aug 1983.
- 8. Kayser, E. G., Analysis Method for Explosive Materials I. Polynitro Compounds, NSWC TR 81-123, 3 Mar 1982.
- 9. Kilmer, E. E., Hexanitrostilbene (HNS): Review of Industrial Syntheses and Recrystallizations, NSWC TR 79-497, Mar 1980.
- 10. Kayser, E. G., Analysis of 2,2',4,4',6,6'-Hexanitrostilbene (HNS) by High Performance Liquid Chromatography, NSWC/WOL TR 77-154, 14 Mar 1978.
- 11. Kayser, E. G., An Investigation of the Shipp Hexanitrostilbene (HNS) Process, NSWC TR 80-111, 25 Aug 1980.
- 12. Material Specification for HNS Explosive, WS 5003 J, Surface Weapons Center, U.S. Navy, 18 Feb, 1981.
- 13. Purchase Description DIPAM Explosive, WS 4660 C, Surface Weapons Center, U.S. Navy, 22 May 1968.

NOME NCLATURE

Al Aluminum	
Ag Silver	
BT Booster tip	
DI Degradation investigation	
DIPAM Dipicramide	
DMSO Dimethylsulfoxide	
ET Explosive Technology	
HNBiB 2,2',4,4',6,6'-hexanitrobibenzyl	
HNS 2,2',4,4',6,6'-hexanitrostilbene	
HPLC High performance liquid chromatography	
MDC Mild detonating cord	
on condition SMDC lines remain in an aircraft and their	
condition verified by periodic sampling using	the
chemical, photographic, and functional tests	
established in this program ⁷	
PS Performance standard, newest available	
Pultrusion Process in which a tube containing explosive i	s
pulled through various fixed dies that reduce	
tube diameter to the required dimensions	
Pyro change-out Removal and replacement of explosive component	S
from aircraft	
RSRA NASA/Army rotor systems research aircraft	
RTQ Repeat thermal qualification	
SEM Scanning electron microphotograph	
SL Shelf life	
SLD Service life demonstration	
SMDC Shielded mild detonating cord	
SOS Space Ordnance Systems	
Swage/Hammer Process in which an explosive is press-loaded	
with annealing into a work-hardened tube. The tube is then	
moved through segmented dies and rapidly hamme	red
to reduce the cross section. The die diameter	
are decreased during multiple passes until the	
desired explosive core load (grains/foot) are	
achieved. Three 218°C (425°F)-one hour heat	
achieved. Three 218°C (425°F)-one hour heat cycles are used to anneal the work hardened tu	be

NOMENCLATURE (Cont.)

Swage/Hammer without annealing

TMc/S

Process in which fully annealed tubes are moved through segmented dies until the desired core loads are achieved.
Teledyne McCormick Selph

DISTRIBUTION

	Copies		Copies
Commanding Officer		Commanding Officer	
Naval Weapons Support Center		Naval Weapons Station	
Crane, IN 47522	1	Attn: Technical Library	1
•	_	NEDED	1
Commander		L. Carlton	ī
Naval Air Systems Command		Yorktown, VA 23690	
Attn: AIR-1116	1		
Washington, DC 20361	_	Director Air & Ordnance Prog, OASN	
Commander		Office of Assistant Sec. of Navy	
Naval Sea Systems Command		(Shipbuilding & Logistics)	
Attn: SEA-62A	1	Attn: Frank Swafford	1
SEA-64E (R. Beauregard)	1	Navy Department	
SEA-09G32 (Technical		Washington, DC 20360	
Library)	1	,	
Washington, DC 20362		Commanding Officer	
•		Naval Academy	
Office of Naval Research		Attn: Hd Weps Dept	1
Attn: ONR-175 (Technical		Annapolis, MD 21402	
Library)	1	• •	
ONR-473 (R. Miller)	1	Superintendent	
801 N. Quincy Street		Naval Postgraduate School	
Arlington, VA 22217		Monterey, CA 93940	1
Chief of Naval Operations		Director	
Washington, DC 20360	1	Strategic Systems Projects Office	2
		Attn: M. Baron (SSPO-2731)	1
Commander		Department of the Navy	
Naval Weapons Center		Washington, DC 20376	
Attn: Technical Library	1		
China Lake, CA 93555		Commanding Officer	
		Ballistics Research Laboratory	
Commanding Officer		Attn: Technical Library	1
Naval Ordnance Station		Aberdeen Proving Ground	
Attn: W. Carr	1	Aberdeen, MD 21005	
D. Taylor (Code 51)	1		
D. Chappell	1	Commanding Officer	
D. Carillo (51223A)	1	U.S. Armament Research &	
Indian Head, MD 20640		Development Command	
		Attn: Explosives Division	1
		SARPA-FR-E-C/BLDG 407	1
		W. Fisco	1
		Dover, NJ 07801	

DISTRIBUTION (Cont.)

	Copies		Copies
Commanding General		AFLC/MMWRME	
Army Material Command		Attn: D. Burton	1
Department of the Army		Hill AFB	_
Washington, DC 20316	1	Provo, UT 84056	
	_		
Commander		Director	
Army Rocket and Missile Agency		Defense Technical Information	
Redstone Arsenal		Center	
Huntsville, AL 35809	1	Cameron Station	
		Alexandria, VA 22314	12
U.S. Army Aviation			
System Command (AVSCOM)		Library of Congress	
Attn: J. Boen (DRDAV-EED)	10	Attn: Gift and Exchange	
M. L. Baucio (DRDAV-NS)	1	Division	4
MAJGEN O. E. Gonzales	1	Washington, DC 20540	
4300 Goodfellow Blvd.			
St. Louis, MO 63120		Lyndon B. Johnson Space Center	
		National Aeronautics & Space	
Headquarters US Army DARCOM		Administration	
Attn: James Laster (DRCSA-JS)	1	Attn: Technical Library	1
5001 Eisenhower Ave.		T. Graves (EP4)	1
Alexandria, VA 22333		2101 Webster-Seabrook Road	
·		Houston, TX 77058	
Commander		•	
Systems Engineering Group		George C. Marshall Space	
Attn: RTD	1	Flight Center	
Wright-Patterson		National Aeronautics & Space	
Air Force Base, OH 45433		Administration	
		Attn: Technical Library	1
Chief of Staff		Robert White (EP-14)	1
U.S. Air Force		Huntsville, AL 35812	
Attn: AFORD-AR	1		
Washington, DC 20350		University of California	
		Lawrence Livermore National	
Air Force Inspection and		Laboratory	
Safety Center		Attn: Milton Finger	1
Attn: R. C. Delgado	1	Walter Selig	1
Norton AFB, CA 92409		P.O. Box 808	
		Livermore, CA 94550	
AFWAL/FIER			
Attn: MAJ W. Miller (ASD/B-1)	1	Chemtronics	
P. Mullen (AELE)	1	Division of Airtronics	
R. C. Brashears (Code ASD	/	Attn: Technical Library	1
ENECC)	1	H. Hudson	1
H. Peot (ASD/B-1)	1	F. Hudson	1
B. J. White	1	Old Bee Tree Road	
Wright Patterson AFB, OH 45433		Swannanoa, NC 28778	

DISTRIBUTION (Cont.)

	Copies		Copies
Ensign Bickford Company		Mason & Hanger-Silas Mason	
Attn: B. Boggs	1	Company, Inc.	
660 Hopmeadow Street		Pantex Plant	
Simsbury, CT 06070		Attn: Dr. Clyde Alley	1
• •		Ted Stull	1
General Dynamics		P.O. Box 30020	
Attn: W. Early (Code 2813)	1	Amarillo, TX 79177	
K. Monroe	1	•	
P.O. Box 748		McDonnell Douglas Astronautics	
Fort Worth, TX 76101		Company	
		Attn: H. W. Fairchild	1
Grumman Aerospace Corporation		5301 Bolsa Avenue	
Attn: Library	1	Huntington Beach, CA 92647	
R. Gerard/B15	1	,	
South Oyster Bay Road		Explosive Technology	
Bethpage, NY 11714		Attn: F. Burkdoll	1
1 0 ,		D. Moore	ī
Teledyne McCormick Selph		P. Posson	ī
Attn: Library	1	P.O. Box KK	-
P.O. Box 6	-	Fairfield, CA 94533	
Hollister, CA 95023		- 	
		McDonnell Douglas Corporation	
Lockheed Missiles & Space		Attn: M. Schimmel (D-353 B-32)	
Corporation, Inc.		Post 315)	20
Attn: I. B. Gluckman	1	R. M. Chinnery (D-353 B-3	_ -
F. Chapman (B3-20, B15)	1	E. R. Lake (D-353, B-32)	l
P.O. Box 504	-	P.O. Box 516	L
Sunnyvale, CA 94086			
Julily vale, CA 74000		St. Louis, MO 62166	
Los Alamos National Laboratory		Douglas Aircraft Company	
Attn: Dr. L. Smith	1	Attn: R. G. McIntyre	1
Harry Flaugh	1	(Dept. Cl-E76)	
P.O. Box 1663		3855 Lakewood Blvd.	
Los Alamos, NM 87544		Long Beach, CA 90846	
Sandia Corporation	_	Rocketdyne Chemical Corp.	
Attn: Dr. N. Brown	1	Attn: J. Trom	1
P.O. Box 5400		Dept. 529-165	
Albuquerque, NM 87115		Mail Code AB37	
		6633 Canoga Ave.	
Space Ordnance Systems, Inc.		Canoga Park, CA 91304	
Attn: Dr. N. Zable	1		
375 Santa Trinita		Scot Inc.	
Sunnyvale, CA 94006		Attn: S. Levin	1
		2525 Curtiss St.	
Langley Research Center		Downers Grove, IL 60515	
National Aeronautics & Space			
Administration		Martin Marietta	
Attn: L. Bement	20	Attn: N. Butterfield	1
Hampton, VA 23665		P.O. Box 179	
		Denver, CO 80201	

DISTRIBUTION (Cont.)

	Copies		<u>Copies</u>
Irv Kabik 11412 Fair Oaks Drive Silver Spring, MD 20902	1	Space Ordnance Systems Attn: R. Ritche 25977 Sand Canyon Road Saugus, CA 91351	1
Jet Propulsion Laboratory Attn: W. Gin 125-124 4800 Oak Grove Drive Pasadena, CA 91103	1	Rockwell International Attn: L. Corvin (MA2) • Los Angeles, CA 90009	1
Franklin Institute Attn: C. Davey Benjamin Franklin Parkway Philadelphia, PA 19103	1	Internal Distribution: R11 (H. Adolph) R11 (M. Kamlet) R11 (J. Holden)	1 1 1
Hi Shear Corp. Attn: H. Karp 2600 Skyparks Drive Torrance, CA 90509	1	R11 (C. Gotzmer) R11 (V. Ringbloom) R11 (J. Leahy) R11 (K. Mueller) R12 (E. Kilmer) R16 (L. Lee)	1 1 1 1
Aerospace Corp. Attn: W. J. Fitzgerald El Segundo, CA 90245	1	R16 (D. Glover) R16 (J. Hoffsommer) R16 (R. Renner) R16 (E. Kayser) R16 (S. Deiter) R16 (H. Haiss) R34 (M. Norr)	1 1 1 20 1 1
		E431 E432	9

END

FILMED

2-85

DTIC