(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

		Player 2		
\vdash		L (q)	L (1-q)	
layer	T (p)	3, 3	0, 0	
<u>∂</u>	B (1-p)	0, 0	4, 4	

Highlight the best responses in pure strategies.

Diamer 2

(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

		Player 2		
П		L (q)	L (1-q)	
layer	T (p)	3, 3	0, 0	
<u>ø</u> ,	B (1-n)	0.0	4 4	

For which values of q is Player 1 indifferent?

(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

_			
Р	la١	/er	- 2

4		L (q)	L (1-q)
ayer	T (p)	3, 3	0, 0
<u>ب</u> هِ	B (1-p)	0, 0	4, 4

For which values of q is Player 1 indifferent?

Find q such that Player 1 expect to have equal payoffs from playing T and B:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
=

(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

		Player 2	
Н		L (q)	L (1-q)
layer	T (p)	3, 3	0, 0
Play	B (1-p)	0, 0	4, 4

Find q such that Player 1 expect to have equal payoffs from playing T and B:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
$$3q = 4(1-q) \Rightarrow q = \frac{4}{7}$$

Write up all NE (pure and mixed).

$$NE = (p^*, q^*) =$$

(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

Player 2

Н		L (q)	L (1-q)
layer	T (p)	3, 3	0, 0
<u>9</u>	B (1-p)	0, 0	4, 4

Find q such that Player 1 expect to have equal payoffs from playing T and B:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
$$3q = 4(1-q) \Rightarrow q = \frac{4}{7}$$

Write up all NE (pure and mixed).

The players have symmetric payoffs, thus:

$$NE = (p^*, q^*) = \{(0, 0); (1, 1); ...\}$$

(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

$$BR_1(q) = \{$$

Find q such that Player 1 expect to have equal payoffs from playing T and B:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
$$3q = 4(1-q) \Rightarrow q = \frac{4}{7}$$

The players have symmetric payoffs, thus:

$$\textit{NE} = (p^*, q^*) = \left\{ (0, 0); (1, 1); \left(\frac{4}{7}, \frac{4}{7}\right) \right\}$$

Write up Player 1's best-response (BR) function, $p^*(q)$

(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

Find q such that Player 1 expect to have equal payoffs from playing T and B:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
$$3q = 4(1-q) \Rightarrow q = \frac{4}{7}$$

The players have symmetric payoffs, thus:

$$\textit{NE} = (p^*, q^*) = \left\{ (0, 0); (1, 1); \left(\frac{4}{7}, \frac{4}{7}\right) \right\}$$

Plot Player 1's best-response (BR) function, $p^*(q)$

$$BR_1(q) = \begin{cases} p = 0 & \text{if} \quad q < 4/7 \\ p \in [0, 1] & \text{if} \quad q = 4/7 \\ p = 1 & \text{if} \quad q > 4/7 \end{cases}$$

(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

Find q such that Player 1 expect to have equal payoffs from playing T and B:

$$E[u_1(T)|q] = E[u_1(B)|q]$$

 $3q = 4(1-q) \Rightarrow q = \frac{4}{7}$

The players have symmetric payoffs, thus:

$$NE = (p^*, q^*) = \left\{ (0, 0); (1, 1); \left(\frac{4}{7}, \frac{4}{7}\right) \right\}$$

Write up Player 2's BR function, $q^*(p)$

$$BR_{1}(q) = \begin{cases} p = 0 & \text{if} \quad q < 4/7 \\ p \in [0, 1] & \text{if} \quad q = 4/7 \\ p = 1 & \text{if} \quad q > 4/7 \end{cases}$$

$$BR_{2}(p) = \{$$

(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

Find q such that Player 1 expect to have equal payoffs from playing T and B:

$$E[u_1(T)|q] = E[u_1(B)|q]$$

 $3q = 4(1-q) \Rightarrow q = \frac{4}{7}$

The players have symmetric payoffs, thus:

$$\textit{NE} = (p^*, q^*) = \left\{ (0, 0); (1, 1); \left(\frac{4}{7}, \frac{4}{7}\right) \right\}$$

Plot Player 2's BR function, $q^*(p)$

$$BR_1(q) = \begin{cases} p = 0 & \text{if} \quad q < 4/7 \\ p \in [0, 1] & \text{if} \quad q = 4/7 \\ p = 1 & \text{if} \quad q > 4/7 \end{cases}$$

$$BR_2(p) = \begin{cases} q = 0 & \text{if} \quad p < 4/7 \\ q \in [0, 1] & \text{if} \quad p = 4/7 \\ q = 1 & \text{if} \quad p > 4/7 \end{cases}$$

(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

Find q such that Player 1 expect to have equal payoffs from playing T and B:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
$$3q = 4(1-q) \Rightarrow q = \frac{4}{7}$$

The players have symmetric payoffs, thus:

$$\textit{NE} = (p^*, q^*) = \left\{(0, 0); (1, 1); \left(\frac{4}{7}, \frac{4}{7}\right)\right\}$$

$$BR_1(q) = \begin{cases} p = 0 & \text{if} \quad q < 4/7 \\ p \in [0, 1] & \text{if} \quad q = 4/7 \\ p = 1 & \text{if} \quad q > 4/7 \end{cases}$$

$$\begin{cases} q = 0 & \text{if} \quad p < 4/7 \end{cases}$$

