Number Theory And Cryptography CO313 Paper Implementation Mini Project

Siddesh L C - 16CO144

Shreyas Pandith – 16CO142

Paper Selected for Mini Project

Fast Prime Generation Algorithms using proposed GCD test on Mobile Smart Devices

https://ieeexplore.ieee.org/document/7425951

- A prime is a natural number that is bigger than 1 and has no positive divisors except 1 and itself.
- N-bit Prime generation steps generally
 - A n-bit positive odd random number r
 - The primality test examines whether r is a prime or not.
- Th important task is developing fast primality tests.
- A deterministic primality test
 - certifies that r is a prime with probability 1
 - GCD test, elliptic curve analogue and Maurer's algorithm.
- A probabilistic primality test
 - certifies that r is a prime with high probabilities closer to 1
 - Fermat test, Miller-Rabin test and Solovay-Strassen test.

Popular primality tests

• Trial division and Miller-Rabin test (TD-MR combination hereafter)

GCD test and Miller-Rabin test(GCD-MR combination hereafter)

TD-MR Combination(n, k)

- 1. Random Number Generation
 - Generate an n-bit odd random number r.
- 2. GCD test on r with k primes
 - Divides r by k small primes.
 - If r is divided by any prime, go to Step 1.
- 3. Miller-Rabin test on r
 - Perform Miller-Rabin Test on r.
 - If r passes, return r as a prime.
 - Otherwise, go to Step 1.

k small primes => k primes less than or equal to \sqrt{n}

GCD-MR combination(n, k)

- 1. Random Number Generation
 - Generate an n-bit odd random number r.
- 2. Trial division on r with k primes
 - Find GCD of r and k small primes individually.
 - If GCD is not 1 for any prime with r go to Step 1.
- 3. Miller-Rabin test on r
 - Perform Miller-Rabin Test on r.
 - If r passes, return r as a prime.
 - Otherwise, go to Step 1.

k small primes => k primes less than or equal to √n

Proposed new Algorithms by Authors

• Since the running time of GCD test is slower than the running time of division, if the number of GCD test and the number of division are the same, GCD-MR combination is always slower.

PGCD-MR combination

MGCD-MR combination.

PGCD-MR Combination

• GCD(r, p1 · p2)=1

⇔ GCD(r, p1)=1 and GCD(r, p2) = 1)

• We define PGCD that computes the greatest common divisor between r and Πk where Πk is the product of small primes.

PGCD(r, k) = GCD(r,
$$\Pi$$
k)

PGCD-MR Combination(n, k)

- 1. Random Number Generation
 - Generate an n-bit odd random number r.
- 2. GCD test on r and Πk
 - Computes GCD(r, Πk).
 - If the result is not 1, go to Step 1.
- 3. Miller-Rabin test on r
 - Perform Miller-Rabin Test on r.
 - If r passes, return r as a prime.
 - Otherwise, go to Step 1.

 $\Pi k =$ product k primes less than or equal to $\forall n$

MGCD-MR Combination

- PGCD becomes slower as the bit-length of Πk becomes bigger and bigger.
- The key idea of MGCD is dividing Πk into the several proper bit-length of Πkj .
- MGCD(r, Πk)=1
 ⇔ GCD(r, Πk1)=1, GCD(r, Πk2)=1, ... GCD(r, Πks)=1
- MGCD computes the greatest common divisor between r and Π ki sequentially until finding the gcd of r and Π ki is not one.

MGCD-MR Combination(n, k)

- 1. Random Number Generation
 - Generate an n-bit odd random number r.
- 2. GCD test on r and Πkj
 - Divide Πk into the proper length of Πk.
 - Computes GCD(r, Πkj) sequentially
 - If the result is not 1, go to Step 1.
- 3. Miller-Rabin test on r
 - Perform Miller-Rabin Test on r.
 - If r passes, return r as a prime.
 - Otherwise, go to Step 1.

 Π kj => product j < k primes less than or equal to \forall n

Result Comparison

• The result shows the running time of TD-MR, PGCD-MR and MGCD-MR combination when 1,024 bit prime generated.

