

COM3503/4503/6503: 3D Computer Graphics

Lectures 18: Ray tracing: Part 2

Dr. Steve Maddock, s.maddock@sheffield.ac.uk

http://commons.wikimedia.org/wiki/File%3ABallsRender.png , Mimigu at English Wikipedia [CC-BY-3.0 (http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons

0. Summary of part 1

shootRay (ray structure)

```
intersection test for all objects;
if ray intersects objects {
 get closest object intersection;
  for every light cast shadow ray;
                                                    11
 get normal at intersection point;
  calculate local intensity (I_{local});
  if (reflection)
     calculate and shootRay (reflected ray)
  if (refraction)
                                                                   Screen
     calculate and shootRay(refracted ray)
  Intensity at hit point P = local
     + reflected + transmitted
```

1. Part 2

Part 1

- Visible surface ray tracing
- Naïve, recursive (Whitted) ray tracing
 - HSR, Shadows, Reflection, Refraction, Recursion

Part 2

- Intersection calculations
- Speed-up techniques

Part 3

- Anti-aliasing
- Advanced techniques

2. Initial ray direction

- Position of camera and view plane are defined
 - Viewplane is at distance d from camera along N
- A ray is traced for each screen pixel
 - Ray start position and direction calculated using camera and (x,y) screen position

2.1 Ray representation

- P(t) = R₀ + t * R_d = origin + t * direction
- Given two points, (x_1,y_1,z_1) and (x_2,y_2,z_2) , which are ray origin and 'some point':

$$x = x_1 + (x_2-x_1)t = x_1 + it$$

 $y = y_1 + (y_2-y_1)t = y_1 + jt$
 $z = z_1 + (z_2-z_1)t = z_1 + kt$

where (i,j,k) is the direction

3. Ray/sphere intersection

- Given equation of ray (line) using two points (x₁,y₁,z₁) and (x₂,y₂,z₂)
- Sphere with centre (l,m,n), radius r: $(x-1)^2 + (y-m)^2 + (z-n)^2 = r^2$
- Substitute line equation into sphere equation, and solve for the roots, choosing closest root

3. Ray/sphere intersection

Substitution gives a quadratic in t: at² + bt + c = 0
 where

$$a = i^{2} + j^{2} + k^{2}$$

$$b = 2i(x_{1}-l) + 2j(y_{1}-m) + 2k(z_{1}-n)$$

$$c = l^{2} + m^{2} + n^{2} + x_{1}^{2} + y_{1}^{2} + z_{1}^{2} + 2(-lx_{1}-my_{1}-nz_{1}) - r^{2}$$

$$t = (-b \pm sqrt(b^{2}-4ac)) / 2a$$

- If b²-4ac is
 - < 0 then no intersection, since no real solutions
 - = 0 then line grazes sphere
 - > 0 then roots give front and back intersection.
- If b^2 -4ac > 0 then substitute roots into line equation to give (x,y,z) of intersection points; and use intersection at smallest +ve t;
- Since it is a sphere, normal at intersection point (x_i, y_i, z_i) is given by:

$$N = ((x_i-1)/r, (y_i-m)/r, (z_i-n)/r)$$

3.1 Geometric method

Ray:
$$P = P_0 + tV$$

Sphere: $|P - O|^2 - r^2 = 0$
 $L = O - P_0$
 $t_{ca} = L \cdot V$
if $(t_{ca} < 0)$ return 0
 $d^2 = L \cdot L - t_{ca}^2$
if $(d^2 > r^2)$ return 0
 $t_{hc} = \text{sqrt}(r^2 - d^2)$
 $t = t_{ca} - t_{hc}$ and $t_{ca} + t_{hc}$
 $P = P_0 + tV$

http://www.cs.princeton.edu/courses/archive/fall00/cs426/lectures/raycast/sld013.htm Also see Glassner, 1990, p.388

4. Ray/plane intersection

• Equation for a plane:

$$Ax + By + Cz + D = 0$$

• Substitute the line equation into the plane equation to give the intersection point:

$$t = -(Ax_1 + By_1 + Cz_1 + D) / (Ai + Bj + Ck)$$

If (t < 0) then behind start point of ray

5. Ray/polygon intersection

- Find the plane equation for the polygon
 need 3 non colinear points
 - A, B, C are the components of the polygon's normal vector N_p and D is computed by substituting any vertex into (Ax+By+Cz+D=0)
- Check for ray/plane intersection
- Check if the intersection point is in the polygon
 - use of Barycentric coordinates

5.1 Barycentric coordinates

- $P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c$ with $\alpha + \beta + \gamma = 1$ and $0 \le \alpha \le 1$ and $0 \le \beta \le 1$ and $0 \le \gamma \le 1$ where $\alpha = A_a/A$ $\beta = A_b/A$ $\gamma = A_c/A$
- Rewrite:

$$P(\beta, \gamma) = a + \beta(b-a) + \gamma(c-a)$$

Set ray eqn equal to this

$$P(t) = P(\beta, \gamma)$$

$$R_o + t * R_d = a + \beta(b-a) + \gamma(c-a)$$

- Solve the 3 equations (in x, y and z) for the 3 unknowns t, β and γ
- Intersection if:

$$\beta + \gamma < 1$$
 and $\beta > 0$ and $\gamma > 0$

P is the *barycentre*: U the single point upon which the plane would balance if weights of size α , β , & γ are placed on points a, b, & c.

A = area of whole triangle

P

Durand, 06

5.2 Calculating the normal

 The normal at the intersection point can be calculated using a linear combination of the polygon's vertex normals

- A comment on ray/polygon test:
 - Expensive process, since have to repeat for every polygon in the polygon mesh

6. Ray/box intersection

- For each pair of planes defining the box, find the t_{near} and t_{far} intersection
- Test: If larger value of t_{near} > smaller value of t_{far} then no intersection with the box

7. Speed-up techniques

- Intersection testing for every polygon of every object is impractical
- A 1000x1000 image of a scene containing 100 objects each of 1000 polygons would require 100 billion intersection calculations for first hit ray tracing
- Reflection rays, refraction rays and shadow rays would increase this exponentially
- (Whitted, 80) estimates 75 to 95 percent of rendering time is intersection calculations
- We cannot cull or clip
 - An out-of-view object part may reflect in a visible object part
- We must use one or more of a range of speed-up techniques

7. Speed-up techniques

Simple, limited techniques include:

- First hit speed-up
 - Use z-buffer to determine closest object to a pixel
 - Ray trace through each pixel and immediately intersect with known closest object, then continue ray tracing as normal
- Adaptive tree-depth control
- Screen extents

Most used approaches:

- Bounding volumes and hierarchies of bounding volumes
- Spatial partitioning approaches

8. Adaptive tree-depth control

- Multiple interactions rapidly become insignificant as we proceed down the ray tree
- Terminate recursion when product of reflection and transmission attenuation factors is less than a threshold

9. Screen extents

 Project each object to screen space and only ray trace areas within projection extent

10. Bounding volume

- Enclose each object in a bounding volume, e.g. sphere
- Only test object if ray intersects bounding volume
 - One sphere test versus, say, test ray against 1000 polygons
- Efficiency depends on how well the object fits into the space of the bounding volume

Figure 9.3 The 'efficiency' of a bounding volume is a function of the void area.

10.1 Different bounding volumes

- Sphere
 - Stays same as object translates and rotates

- Axis-aligned bounding box (AABB)
 - Box stays aligned with coordinate system
 - Box alters in size to contain object as it rotates
- Oriented bounding box (OBB)
 - Box translates and rotates with object

10.2 Comparing bounding volumes

- Compare tightness of fit vs. intersection speed
- Consider the wine glass and the rod:
 - Increasing tightness of fit: bounding spheres, AABBs, OBBs
 - Increasing intersection speed: OBBs, AABBs, bounding spheres
- Other issues:
 - Updating as object moves

10.3 Mixing bounding volumes

 Different bounding volumes can be combined to create a better fit at the expense of extra complexity

Fig. 6. The intersection and union of multiple bounding volumes can be used to obtain a better fit. Each approach requires a different ray-intersection algorithm for best performance. (a) Intersection of box and sphere. (b) Union of box and sphere. (c) Intersection of slabs.

10.4 Hierarchies of bounding volumes

- Bound clusters of bounding volumes to form a hierarchy
 - Possibly use different bounding volumes for different cluster levels
- Test against successive tree levels before testing contained objects
- Can be labour intensive to set up and may need updating during animation, e.g. objects moving apart, or breaking up, etc.

Bounding volume tree structure

Alex Benton, Univ Cambridge, Lecture series on 'Advanced Graphics'

Your scene graph and you

- A common optimization derived from the scene graph is the propagation of bounding volumes.
 - These take many forms: bounding spheres, axis-aligned bounding boxes, oriented bounding boxes...
- Nested bounding volumes allow the rapid culling of large portions of geometry
 - Test against the bounding volume of the top of the scene graph and then work down.

- Great for...
 - Collision detection between scene elements
 - Culling before rendering
 - Accelerating ray-tracing

11. Spatial partitioning

- Label world space by object occupancy
- Instead of testing a ray against all objects, we ask: "Is the region through which a ray is travelling occupied by any object? If so, which object?"

- Aim: make rendering time constant, eliminating dependence on scene complexity
- Common alternatives:
 - Regular grids
 - Octree
 - Binary space partitioning (BSP) tree

11.1 Uniform subdivision

- 3D space is divided into voxels need to decide size of a voxel
 - Easy to step from cell to cell

11.2 Octree

- Divide 3D space (which is a cube) into 8 cubes
- If needed, divide a cube into 8 smaller cubes, etc
- More difficult to step from cell to cell

11.3 BSP tree

- Use a plane to partition 3D space into two parts
- If needed, divide a part into two further parts, and so on
- Partition planes can be at any angle in the general scheme
- Issue: Finding good space partitions

12. Bounding volumes (BV) and spatial partitioning (SP)

- BV Advantages
 - Saves on intersection tests
 - Easy to update single bounding volumes as objects move
- BV Disadvantages
 - May be difficult to bound objects efficiently
 - Need to update bounding volume hierarchy as objects move
- SP Advantages
 - Saves on intersection tests
 - Eliminate dependence on scene complexity
- SP Disadvantages
 - Potentially large size of secondary data structure
 - Need to update structure as objects move

13. Summary

- We trace rays from the eye into the scene
- The global part of the classic (Whitted) algorithm only deals with pure specular-specular interaction
- Direct diffuse calculation is done using Phong for local illumination,
 but diffuse-diffuse interaction between objects is not included
- Intersection calculations dominate and we need speed-up techniques for any practical ray tracer

POV-Ray: Persistence of Vision Raytracer: www.povray.org

"Office" by Jaime Vives Piqueres (2004)

"Christmas Baubles" by Jaime Vives Piqueres (2005)

"Pebbles" by Jonathan Hunt (2008)

"Thanks for all the fish" by Robert McGregor (2008)