Tema 6. Espacio Dual

6.0. Contenido y documentación

- 6.0. Contenido y documentación
- 6.1. Espacio dual
- 6.2. Espacio bidual

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/4494b073-91a4-4fc9-9539-91cfe79e333b/H9 EspacioDual.pdf

6.1. Espacio dual

Definición. Sea V^n un espacio vectorial sobre \mathbb{K} , entonces $V^* = \operatorname{Hom}(V^n, \mathbb{K})$ es un espacio vectorial llamada **espacio dual** de V.

Ejemplo 1. Sea $V=\mathbb{R}^3$ un espacio vectorial sobre \mathbb{R} y $\varphi:\mathbb{R}^3\to\mathbb{R}$, tal que $\varphi(x_1,x_2,x_3)=x_1+2x_2+x_3$. Entonces, $\varphi\in V^*$.

Observación. Sea $\{v_1,...,v_n\}$ una base de V, entonces, $v_1^*:V o \mathbb{K}$, con $v_1 o 1,v_2 o 0,...,v_n o 0$ y $v_1^*\in V^*$.

 $orall v \in V \Rightarrow v = \overset{\cdot}{a_1} v_1 + ... + a_n v_n, \, a_i \in \mathbb{K} \Rightarrow v_1^*(v) = a_1 v_1^*(v_1) + a_2 v_1^*(v_2) + ... + a_n v_1^*(v_n) = a_1.$

Proposición. Si $B=\{v_1,...,v_n\}$ es una base de V, entonces $\{v_1^*,...,v_n^*\}$ es una base de V^* , llamada **base dual** de B. En particular, $\dim V=\dim V^*$.

Demostración.

Supongamos que $\lambda_1 v_1^* + ... + \lambda_n v_n^* = \vec{0} \in V^*$. Entonces tenemos que $(\lambda v_1^* + ... + \lambda v_2^*)(v_2) = 0$, $0(v_2) = 0 \Rightarrow 0 = \lambda_2 v_2^*(v_2) = \lambda_2 \Rightarrow \lambda_2 = 0$.

Definición. Sea $f:V^* \to W^*$ un endomorfismo de espacios duales, se define la aplicación dual de f como $f^*:W^* \to V^*$, con $f^*(\varphi)=\varphi\circ f$.

Observación. $f^*:W^* \to V^*$ es ciertamente lineal:

- 1. $f^*(\varphi_1 + \varphi_2) = f^*(\varphi_1) + f^*(\varphi_2)$.
- 2. $f^*(\lambda arphi) = \lambda f^*(arphi)$.

Proposición. Sea $f:V^n o W^n$ una aplicación lineal, y sean $B=\{v_1,...,v_n\}$ y $B'=\{w_1,...,w_n\}$ bases de V y W respectivamente. Entonces $(M_{BB'}(f))^t=M_{(B')^*B^*}(f^*).$

Ejemplo 2. Sea $f:\mathbb{R}^3 o\mathcal{P}_2=\{ ext{polinomios de grado}\leq 2\}$ tal que $f(a_1,a_2,a_3)=a_1x+(a_2+a_3)x^2$ y dadas las bases $B_1=\left\{e_1,e_2,v=\begin{pmatrix}1\\1\\1\end{pmatrix}\right\}$, $B_2=\{w_1=1,w_2=x,w_3=x^2-1\}$.

```
Tenemos que M_{B_1B_2}(f)=egin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix} . f^*(w_1^*)=f^*(w_1^*)(e_1)e_1^*+f^*(w_1^*)(e_2)e_2^*+f^*(w_1^*)(e_3)e_3^*:\\ -f^*(w_1^*)(e_1)=(w_1^*\circ f)(e_1)=w_1^*(f(e_1))=w_1^*(x)=w_1^*(w_2)=0.\\ -f^*(w_1^*)(e_2)=(w_2^*\circ f)(e_2)=w_1^*(f(e_2))=w_1^*(x^2)=w_1^*(w_1+w_3)=1+0=1.\\ -f^*(w_1^*)(v)=(w_1^*\circ f)(v)=w_1^*(f(v))=w_1^*(x+2x^2)=w_1^*(2w_1+w_2+2w_3)=2. \\ \text{Luego, efectivamente, } M_{B_1^*B_2^*}(f^*)=(M_{B_1B_2}(f))^t=\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 1 & 2 \end{pmatrix}.
```

6.2. Espacio bidual

Definición. Sea V un espacio vectorial sobre \mathbb{K} y $V^* = \operatorname{Hom}(V, \mathbb{K})$ el espacio dual de V. Podemos definir $V^{**} = (V^*)^* = \operatorname{Hom}(V^*, \mathbb{K})$ como el espacio dual de V^* o el **espacio bidual** de V.

Proposición. V se identifica con V^{**} , $V\equiv V^{**}$, mediante la regla $v o \tilde v$: $v^* o \mathbb K$, tal que arphi o ilde v(arphi)=arphi(v).

Demostración.

Comprobamos que $ilde{v} \in (V^*)^*$, es decir, $ilde{v}: v^* o \mathbb{K}$ es lineal.

-
$$ilde{v}(arphi_1+arphi_2)=(arphi_1+arphi_2)(v)=arphi_1(v)+arphi_2(v)= ilde{v}(arphi_1)+ ilde{v}(arphi_2)$$

-
$$ilde{v}(\lambdaarphi)=\lambdaarphi(v)=\lambda ilde{v}(arphi)$$

Comprobamos que $\Phi: V o V^{**} \equiv v o ilde{v}$ es un isomorfismo.

-
$$\widetilde{v_1+v_2}(arphi)=arphi(v_1+v_2)=arphi(v_1)+arphi(v_2)= ilde{v}_1(arphi)+ ilde{v}_2(arphi)\Rightarrow \Phi$$
 es lineal

- Si $v
eq \vec{0} \Rightarrow$ tomamos una base de V de la forma $\{v_1 = v, v_2, ..., v_n\}$ y consideramos su base dual $\{v_1^*, v_2^*, ..., v_n^*\}$, entonces $\tilde{v}(v_1^*) = v_1^*(v) = v_1^*(v_1) = 1 \neq 0 \Rightarrow \tilde{v} \neq \vec{0} \Rightarrow \Phi$ es inyectiva - $\dim V = \dim V^* = \dim V^{**} \Rightarrow \Phi$ es sobreyectiva \square

- dim v = dim v = dim v → Ψ es sobreyectiva □

Definición. Sea $S\subset V$, se define el **anulador** de S como $S^\circ=\{\varphi\in V^*: \varphi(v)=0, \forall v\in S\}\subset V^*$. Nota. S° es un subespacio de V^* .

Proposición. Sea $F\subset V$ un subespacio vectorial. Entonces, $\dim F+\dim D^\circ=\dim V=n$.

Demostración.

Sea $\{u_1, u_2, ..., u_r\}$ una base de F, $\{u_1, ..., u_r, u_{r+1}, ..., u_n\}$ una base de V y $\{u_1^*, ..., u_r^*, u_{r+1}^*, ..., u_n^*\}$ una base dual; basta ver que $\{u_{r+1}^*, ..., u_n^*\}$ es una base de F° . 1. $u_{r+1}^* \in F^\circ$ porque $u_{r+1}^*(u_1) = u_{r+1}^*(u_2) = ... = u_{r+1}^*(u_r) = 0$, es decir, u_{r+1}^* anula a todos los vectores de F. $\{u_{r+1}^*, ..., u_n^*\}$ son independientes y generadores de forma trivial. \square

Proposición. Sea f:V o V un endomorfismo, entonces $({
m Im}\ f)^\circ=\ker f^*\subset V^*.$

Demostración.

$$\varphi \in (\operatorname{Im} f)^{\circ} \Leftrightarrow \varphi(f(v)) = \vec{0}, \forall v \in V \Leftrightarrow (f^{*} \circ \varphi)(v) = 0, \forall v \in V \Leftrightarrow f^{*}(\varphi) = 0 \Leftrightarrow \varphi \in \ker f^{*}.$$

Tema 6. Espacio Dual

Teorema. $\dim(\operatorname{Im} f) = \dim(\operatorname{Im} f^*)$.

Demostración. $\dim(\operatorname{Im} f^*) = \dim V^* - \dim(\ker f^*) = \dim V - \dim(\operatorname{Im} f)^\circ = \dim V - (\dim V - \dim(\operatorname{Im} f) = \dim(\operatorname{Im} f).$

Corolario. rango filas(A) = rango columnas(A).

Tema 6. Espacio Dual 3