

- I - processus empirique

Hypothèse (H) : Soit $(X_1, \ldots X_n)$ un n-échantillon de variables aléatoires iid suivant F (fonction de répartition de la loi commune)

o Définition: Le processus empirique est une fonction aléatoire définie par

$$F_n(t,\omega) = F_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{]-\infty,t]}(X_i(\omega))$$

- $ightharpoons F_n(t)$ représente la proportion des observations inférieures à t
- $\label{eq:fn} F_n(t) = \left\{ \begin{aligned} 0 & \text{si} & t < \min(X_1, \dots X_n) \\ 1 & \text{si} & t \geq \max(X_1, \dots X_n) \end{aligned} \right.$
- D'est une fonction constante par morceaux

- ${\it o}$ Conséquence du Th de G-C : $\forall t \in R, F_n(t) \text{ est un estimateur fortement consistant de } F(t)$
- \bullet Conséquence du TCL : $\sqrt{n}(F_n(t)-F(t)) \xrightarrow[loi]{n o \infty} \mathcal{N}(0,\sigma_t^2)$ donc $\forall t \in R, F_n(t)$ est un estimateur $\sqrt{n}-$ consistant de F(t)
- Conséquence du Th de Slutsky: Si $F(t) \neq 0$ et $F(t) \neq 1$ alors $\frac{\sqrt{n}(F_n(t) F(t))}{\sqrt{F_n(t)(1 F_n(t))}} \xrightarrow[loi]{n \to \infty} \mathcal{N}(0,1)$

Le processus empirique F_n est la fonction de répartition d'une loi discrète de support les valeurs prises par $\{X_1(\omega),\ldots X_n(\omega)\}$

- I. Si $\{X_1(\omega),\ldots X_n(\omega)\}$ sont tous distincts, F_n est la fct de répartition de la loi uniforme sur $\{X_1(\omega),\ldots X_n(\omega)\}$
- II. Sinon on note $\{\tilde{X}_1(\omega),\ldots,\tilde{X}_m(\omega)\}$ t'échantillon sans répétition et $\hat{p}_j=rac{1}{n}card\{i:X_i=\tilde{X}_j\}\quad j-1,...,m,$
- F_n est la fet de répartition de la loi discrète de support $\{\tilde{X}_1(\omega),\dots,\tilde{X}_m(\omega)\}$ et de proba $\{\hat{p}_1,\dots,\hat{p}_m\}$

Moments de F_n

- $^{\circ}$ F_n définit une loi discrète finie donc cette loi admet des moments de tout ordre
- $oldsymbol{\circ}$ Le moment d'ordre k de F_n est égal à $\hat{\mu}_k = rac{1}{n} \sum_{i=1}^n X_i^k$
 - $oldsymbol{\circ}$ Pour k=1 on retrouve la moyenne empirique $ar{X}_n = rac{1}{n} \sum_{i=1}^n X_i$
 - $\hat{\varphi}$ $\hat{\mu}_2 \hat{\mu}_1^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X}_n)^2$ est la variance empirique

Application: estimation par injection

Soit h une application telle que $h(X_1) \in L^1$ On veut estimer $\theta_h(F) = E(h(X_1))$.

Définition L'estimateur par injection du paramètre $\theta_h(F)$ est $\theta_h(F_n)$. It est égal à $\theta_h(F_n)=\frac{1}{n}\sum_{i=1}^n h(X_i)$

Propriétés Sous L'hypothèse H

- 1. Si $h(X_1) \in L^1$, $\theta_h(F_n)$ est un estimateur sans biais fortement consistant de $\theta_h(F)$
- 2. Si $h(X_1) \in L^2$ alors c'est aussi un estimateur consistant au sens L^2 et il est $\sqrt{n}-$ consistant.

Exemple: estimation des moments

On suppose que $X_1\in L^k$. On note μ_k le moment d'ordre k L'estimateur par injection de μ_k est $\hat{\mu}_k=\frac{1}{n}\sum_{i=1}^n X_i^k$

Propriétés Sous L'hypothèse H

- 1. Si $X_1\in L^p$, $\hat{\mu}=(\hat{\mu}_1,\ldots,\hat{\mu}_p)$ est un estimateur sans biais fortement consistant de $\mu=(\mu_1,\ldots,\mu_p)$
- 2. Si $X_1\in L^{2p}$ alors c'est aussi un estimateur consistant au sens L^2 et il est $\sqrt{n}-$ consistant on a $\sqrt{n}(\hat{\mu}-\mu)\stackrel{loi}{\to} \mathcal{N}_p(0,\Sigma_{\mu})$ où Σ_{μ} est définie par $\Sigma_{i,j}=\mu_{i+j}-\mu_i\mu_j$

Méthode des moments

- ${\mathfrak o}$ On suppose que H est vérifiée et la loi commune appartient à la famille paramétrique ${\mathcal F}=\{P_\theta,\theta\in\Theta\}.$
- ullet On veut estimer le paramètre heta
- **On suppose que $X_1\in L^P$ et qu'il existe $g:R^p\to\Theta$ tel que $\theta=g(\mu_1,\dots,\mu_p)$
- * Définition L'estimateur des moments du paramètre θ est défini par $\hat{\theta}_n^M = g(\hat{\mu}_1,\dots,\hat{\mu}_p)$
- Exemple : modèle exponentiel g(x) = 1/x

Méthode des moments (cont.)

Sous l'hypothèse H et $P_{X_1} \in \{P_{\theta}, \theta \in \Theta\}$

- 1. Si $X_1 \in L^p$ et 9 est continue sur R^p alors $\hat{\theta}_n^M$ est un estimateur fortement consistant de θ
- 2. Si $X_1\in L^{2p}$ et 9 est C^1 sur R^p alors $\hat{\theta}_n^M$ est $\sqrt{n}-$ consistant on a $\sqrt{n}(\hat{\theta}_n^M-\theta)\stackrel{loi}{\to} \mathcal{N}_k(0,\Lambda)$ avec $\Lambda=Dg(\mu)\Sigma_\mu Dg(\mu)^T$

10

Remarques sur la méthode des moments

Il n'y a pas unicité de l'estimateur des moments Choix de p ? Choix de g ?

Dimension 1 : On cherchera l'estimateur des moments qui possède la plus petite variance asymptotique Λ .

Variance de la loi limite $\Lambda = Dg(\mu)\Sigma_{\mu}Dg(\mu)^T$

- 1. L'estimateur des moments de la matrice de variance-covariance Σ_{μ} est donné par $\hat{\Sigma}_{\mu}$ avec $\hat{\Sigma}_{i,j} = \hat{\mu}_{i+j} \hat{\mu}_i \hat{\mu}_j$. Il est consistant sous l'hypothèse $X_1 \in L^{2p}$
- 2. $Dg(\hat{\mu})$ est un estimateur consistant de $Dg(\mu)$ sous l'hypothèse car la fonction g est C^1
- 3. On obtient un estimateur consistant de Λ en prenant $\hat{\Lambda} = Dg(\hat{\mu})\hat{\Sigma}_{\mu}Dg(\hat{\mu})^T$
- 4. En dimension 1 : on a $\frac{\sqrt{n}}{\sqrt{\hat{\Lambda}}}(\hat{\theta}_n^M \theta) \stackrel{loi}{\to} \mathcal{N}(0,1)$ [application Intervalle de confignce asymptotique]

11

II - processus quantile

 \circ Si F est inversible, la fonction quantile est $Q(u) = F^{-1}(u)$

Sinon c'est le pseudo inverse $Q(u) = F^-(u) = \inf\{x : F(x) \ge u\}$

Q(u) est le quantile d'ordre u (u=1/2 -> médiane)

- Le processus empirique n'est jamais une fonction inversible mais on peut calculer son pseudo inverse
- ** Définition : L'estimateur par injection du quantile d'ordre u est $Q_n(u) = F_n^-(u)$
- $^{\circ}$ Q_n est le processus quantile empirique

13

Convergence de Q_n

 \circ Si F est continue et inversible alors $Q_n(u) \xrightarrow[ps]{n \to \infty} F^{-1}(u)$

 $^{\circ}$ (Admis) Si F est dérivable au point $F^{-1}(u)$ avec une dérivée f strictement positive alors

$$\sqrt{n}(F_n^-(u) - F^{-1}(u)) \stackrel{loi}{\to} \mathcal{N}\left(0, \frac{u(1-u)}{f^2(F^{-1}(u))}\right)$$

- @ Remarque
 - L'estimation de la variance nécessite une estimation consistante de la densité f.

14

III- estimation d'une loi discrète

- ${\it \circ}$ On suppose que H est vérifiée et la loi de X_1 est discrète à valeurs dans E.
- On veut estimer pour tout $e \in E : P(X_1 = e) = p(e)$
- $m{\circ}$ Le processus empirique définit une loi discrète de support $\{ ilde{X}_1(\omega),\dots, ilde{X}_m(\omega)\}$ et de probabilités $\hat{p}_j=rac{1}{n}card\{i:X_i= ilde{X}_j\},$
- ${\mathfrak S}$ Pour tout $e\in E$, it exists $n\in N: \ \forall m\geq n \ {\rm et} \ e\in \{\tilde{X}_1(\omega),\dots,\tilde{X}_m(\omega)\}$.
- **Proposition : La loi discrète du processus empirique est un estimateur sans biais , fortement consistant , consistant au sens L^2 et $\sqrt{n}-$ consistant de la loi de commune

IV- Estimation d'une densité

- $^{\circ}$ On suppose que H est vérifiée et la loi de X_1 admet une densité ${\sf f}$
- On veut estimer la fonction f
- Remarque : Comme le processus empirique n'admet pas de densité, on ne peut pas en déduire un estimateur de la densité de X₁

8

Histogramme

- Rappel: Si F est dérivable par morceaux on a $f(x) = \lim_{h \to 0} \frac{1}{2h} (F(x+h) F(x-h))$
- A (h, x) fixé: $\frac{1}{2h}(F_n(x+h)-F_n(x-h))$ est un estimateur de $\frac{1}{2h}(F(x+h)-F(x-h))$ Il est sans biais et fortement consistant

Propriétés de l'histogramme

- Définition : on définit l'histogramme mobile par $f_n^H(x) = \frac{1}{2h}(F_n(x+h) F_n(x-h)) = \frac{1}{2nh} \sum_{i=1}^n \mathbf{1}_{[x-h,x+h]}(X_i)$
- où h est la fenêtre de l'histogramme.
- ${\mathfrak o}$ On choisit une fenêtre qui dépend du nombre d'observation n Soit h_n une suite réelles positive Théorème :
- 1. Si $h=h_n \xrightarrow{n \to \infty} 0$ alors $f_n^H(x)$ est un estimateur asymptotiquement sans biais de la densité f(x)
- 2. Si $h = h_n \xrightarrow{n \to \infty} 0$ et $nh_n \xrightarrow{n \to \infty} \infty$ alors $f_n^H(x)$ est un estimateur L^2 consistant de la densité f(x)

Estimateur à noyau de la densité

- L'idée est de régulariser l'estimateur de la densité pour obtenir un estimateur continu.
- Remarque: on a $f_n^H(x) = \frac{1}{2nh_n} \sum_{i=1}^n 1_{]-1,1]} \left(\frac{x X_i}{h_n} \right) = \frac{1}{nh_n} \sum_{i=1}^n K_U \left(\frac{x X_i}{h_n} \right)$ où K_U est la densité de la loi uniforme sur [-1,1]
- On remplace K_U par une densité K telle que K est paire et les fonctions K^2 et $x o x^2 K(x)$ sont intégrables
- @ Exemple de noyau : la densité de la loi gaussienne standard

22

Estimateur à noyau

o L'estimateur à noyau de la densité f est défini par

$$f_n(x) = \frac{1}{nh_n} \sum_{i=1}^n K\left(\frac{x - X_i}{h_n}\right)$$

K: Le noyau est une densité paire et les fonctions K^2 et $x \to x^2 K(x)$ sont intégrables h_n est une suite de réels positifs appelée fenêtre.

Théorème : On suppose que la densité f est C^2 et f,f',f'' sont bornées, strictement positives

- 1. Si $h=h_n \xrightarrow{n \to \infty} 0$ alors $f_n(x)$ est un estimateur asymptotiquement sans biais de la densité f(x)
- 2.5i $h = h_n \xrightarrow{n \to \infty} 0$ et $nh_n \xrightarrow{n \to \infty} \infty$ alors $f_n(x)$ est un estimateur L^2 consistant de la densité f(x)

9

A partir de l'estimateur à noyau de la densité f_n on peut estimer

La fonction de répartition en prenant $F_n^{noyau}(x) = \int_{-\infty}^x f_n(t) \, dt$ $E(h(X_1))$ en prenant $\int h(t) f_n(t) \, dt$ si $h(X_1) \in L^1$ et $h(Y) \in L^1$ avec $Y \sim K$.

Cas particulier la moyenne, la variance etc

La fonction quantile en prenant l'inverse ou le pseudo inverse de F_n^{noyau}