Advanced Constraint Programming : Solveur pour *Social Golfeur Problem*

Coralie Marchau Maxime Rekar

8 janvier 2025

Introduction

- Modélisation de Social Golfer Problem
- Solveur
- Comparaison
- Améliorations

Social Golfer Problem

- Problème d'optimisation combinatorial
- Problème posé Mai 1998
- Utilisé pour benchmark de cassage de symétries en Programmation par Contraintes

Г	{4,6,9,15}	{3,5,10,16}	{2,8,11,13}	{1,7,12,14}
Γ	{4,7,10,13},	{3,8,9,14}	{2,5,12,15}	{1,6,11,16}
Г	{4,8,12,16}	{3,7,11,15}	{2,6,10,14}	{1,5,9,13}
Γ.	{13,14,15,16}	{9,10,11,12}	{5,6,7,8}	{1,2,3,4}

Variables:

- w semaines
- g groupes par w
- s golfers dans g
- q = g*s total de joueurs par w

Challenges :

- Problème hautement symétrique
 w! * s! * g! * q! solutions symétriques possibles
- Défi de représentation des variables

Social Golfer Problem : Première version "classique"

Contraintes:

 Chaque semaine, tous les joueurs sont dans un groupe

$$\bigcup_{i=1}^{w}\bigcup_{j=1}^{g}S_{i,j}=n$$

- Tous les joueurs se croiseront une fois maximum
 - $\bigcap_{i=1}^{s-1}\bigcap_{i=i}^{s}|S|\leq 1$
- Tous les groupes sont remplis

Social Golfer Problem : Seconde version "Avancé"

La première ligne est

S =					
			g		
	s1	s2	s3	s4	C
w1	{1,2,3,4}	{5,6,7,8}	{9,10,11,12}	{13,14,15,16}	
w2	{1,5}	{2}	{3}	{4}	
w3	{1,9}	{2}	{3}	{4}	
w4	{1,13}	{2}	{3}	{4}	

• La première ligne est initialisé S[1, i] = [i * p + 1 : $i * p + 4] \forall i \in [0 : s - 1]$

Contraintes supplémentaires :

 Le joueur 1 est affecté au premier groupe de toute semaine

$$|S_{i,j}|=s, \forall i\in w, \forall j\in g$$

- Partant de 2^{eme} semaine, $(i-1*p+1) \in S[i,1] \forall i \in [2:w]$
- Partant de 2^{eme} semaine/groupe, $i \in S[i,j], \forall i \in [2:w], \forall j \in [2:g]$

Social Golfer Problem: Writer

- Génération de modèles Minizinc (lu aussi par notre parseur).
- Observations de cas triviaux ou impossibles.
 Réponse ? Étude rapide des cas où le modèle est prouvé impossible.
- Un cas observé : Si w = g et $s \le w$, alors modèle impossible

{}	{}	{}
{}	{}	{}
{}	{}	{}

Minizinc : Résultats (Gecode 6.3.0)

$M{p,g,w,v}$	{2,2,2,C}	{2,2,2,A}	{2,3,2,C}	{2,3,2,A}	{2,3,3,C}	{2,3,3,A}
Feasible?	Υ	Υ	Υ	Υ	Υ	Υ
Time(s)	0.199	0.164	0.164	0.167	0.191	0.181
$M\{p,g,w,v\}$	{2,4,2,C}	{2,4,2,A}	{2,4,3,C}	{2,4,3,A}	{2,4,4,C}	{2,4,4,A}
Feasible ?	Y	Υ	Y	Υ	Υ	Y
Time(s)	0.166	0.165	0.179	0.184	0.178	0.183
$M\{p,g,w,v\}$	{3,2,2,C}	{3,2,2,A}	{3,3,2,C}	{3,3,2,A}	{3,3,3,C}	{3,3,3,A}
Feasible ?	N	N	Y	Υ	Υ	Y
Time(s)	0.172	0.126	0.151	0.140	0.245	0.151
$M\{p,g,w,v\}$	{3,4,2,C}	{3,4,2,A}	{3,4,3,C}	{3,4,3,A}	{3,4,4,C}	{3,4,4,A}
Feasible ?	Y	Υ	Y	Υ	Υ	Y
Time(s)	0.138	0.165	0.318	0.165	0.198	0.151
$M\{p,g,w,v\}$	{4,2,2,C}	{4,2,2,A}	{4,3,2,C}	{4,3,2,A}	{4,3,3,C}	{4,3,3,A}
Feasible?	N	N	N	N	N	N
Time(s)	0.148	0.123	6.214	0.134	9.623	0.119
$M{p,g,w,v}$	{4,4,2,C}	{4,4,2,A}	{4,4,3,C}	{4,4,3,A}	{4,4,4,C}	{4,4,4,A}
Feasible ?	Y	Υ	Y	Υ	Υ	Y
Time(s)	0.165	0.180	0.156	0.165	0.188	0.164

Solveur maison

- Développé sous Julia
- Utilisation des domaines finis avec cardinalités
- Domain(lb[liste rangée], up[liste rangée], cardMin, cardMax) = symétrie s! retiré, et gain lors des opérations de filtrage ou entre domaines.
- Doublons interdits, si un élement est dans lb, il n'est pas dans up, et inversement
- Filtrage fonctionnel pour Union et Intersection

Solveur maison : Faiblesse

Solveur SGP avant Solveur CP

- Parseur uniquement pour les modèles écrits par le writer, soit que SGP
- Filtrage uniquement pour contraintes "union" et "intersection"

Vérification erronée

- Problème liées aux contraintes : la vérification n'est pas correcte, présence de vrai faux et de faux vrai
- Conséquence, la pile est rarement vide.

Solveur maison : Comparaison

$M\{p,g,w,v\}$	{2,2,2,C}	{2,2,2,A}	{2,3,2,C}	{2,3,2,A}	{2,4,2,C}	{3,2,2,A}
Time	0.051	0.00025	0.0012	0.002	0.066	0.0005
MZ_Reussi?	Y	Y	Y	Y	Υ	N
MZ_Time	0.199	0.164	0.164	0.167	0.166	0.126
$M\{p,g,w,v\}$	{3,2,2,C}	{3,3,2,A}	{3,3,3,C}	{4,2,2,A}	{4,2,2,C}	
Time	0.001	0.033	0.0203	0.008	0.066	
MZ_Reussi?	N	Y	Y	N	N	
MZ_Time	0.172	0.140	0.245	0.123	0.148	

Solveur maison : Comparaison - Suite

- A prendre avec recul
- Sur les 28 modèles résolus par Minizinc (sur 36 modèles), 11 résolus par le solveur
- Quelques problèmes pas encore corrigés : Certains des modèles résolus par le solveur sont déclarées impossibles par MiniZinc...

Améliorations?

- Pour le solveur :
 - Corriger la vérification avant de tenter des SGP de plus grande taille
 - Créer une file de domaines modifiés pour cibler plus précisément
 - Créer de nouvelles fonctions de filtrage pour d'autres types de contraintes
- Améliorer le parseur pour pouvoir charger n'importe quelle modèles de CPP
- Étudier plus la nature des problèmes de SGP pour améliorer le writer et limiter les modèles impossibles

Fin

Merci d'avoir écouté Des questions?

Introduction

- Social Golfer Problem model
- Solver
- Benchmark with Minizinc
- Ameliorations

Social Golfer Problem

- Combinatorial optimisation problem
- Problem from Mai 1998
- Often used as benchmark of symmetries breakers in Constraint Programmation.

{4,6,9,15}	{3,5,10,16}	{2,8,11,13}	{1,7,12,14}
{4,7,10,13},	{3,8,9,14}	{2,5,12,15}	{1,6,11,16}
{4,8,12,16}	{3,7,11,15}	{2,6,10,14}	{1,5,9,13}
{13,14,15,16}	{9,10,11,12}	{5,6,7,8}	{1,2,3,4}

Variables:

- w Weeks
- g Groups per w
- s Golfers in g
- q = g*s total amounts of golfers per w

Challenges :

- Highly symmetrical problem
 w! * s! * g! * q! solutions symétriques possibles
- How to consider variables in CP

Social Golfer Problem: First classical version

$$S =$$

Constraints:

 Each week, all players are in one group

$$\bigcup_{i=1}^{w}\bigcup_{j=1}^{g}S_{i,j}=n$$

- All players would met exactly once $\bigcap_{i=1}^{s-1}\bigcap_{j=i}^{s}|S|\leq 1$
- All groups are full $|S_{i,j}| = s, \forall i \in w, \forall j \in g$

Social Golfer Problem : Symmetries breakers

$$S =$$

			8	
	s1	s2	s3	s4
w1	{1,2,3,4}	{5,6,7,8}	{9,10,11,12}	{13,14,15,16}
w2	{1,5}	{2}	{3}	{4}
w3	{1,9}	{2}	{3}	{4}
w4	{1,13}	{2}	{3}	{4}

Additional constraints :

- First lines is initialized $S[1, i] = [i * p + 1 : i * p + 4] \forall i \in [0 : s 1]$
- Player 1 is affected in the first group on all week $|S_{i,j}| = s, \forall i \in w, \forall j \in g$
 - Starting second week, $(i-1*p+1) \in$ $S[i,1] \forall i \in [2:w]$
 - Starting second week per group, $i \in S[i,j], \forall i \in [2:w], \forall j \in [2:g]$

Social Golfer Problem: Writer

- Minizinc models generator (also readed by our solver).
- Trivial or impossibles cases observed.
 Answer? Quick study to learn when a model is impossible with proof.
- Eg : If w = g and $s \le w$, then the model is impossible.

{}	{}	{}
{}	{}	{}
{}	{}	{}

Minizinc : Results (Gecode 6.3.0)

$M{p,g,w,v}$	{2,2,2,C}	{2,2,2,A}	{2,3,2,C}	{2,3,2,A}	{2,3,3,C}	{2,3,3,A}
Feasible?	Υ	Υ	Υ	Υ	Υ	Υ
Time(s)	0.199	0.164	0.164	0.167	0.191	0.181
$M\{p,g,w,v\}$	{2,4,2,C}	{2,4,2,A}	{2,4,3,C}	{2,4,3,A}	{2,4,4,C}	{2,4,4,A}
Feasible ?	Y	Υ	Y	Υ	Υ	Y
Time(s)	0.166	0.165	0.179	0.184	0.178	0.183
$M\{p,g,w,v\}$	{3,2,2,C}	{3,2,2,A}	{3,3,2,C}	{3,3,2,A}	{3,3,3,C}	{3,3,3,A}
Feasible ?	N	N	Y	Υ	Υ	Y
Time(s)	0.172	0.126	0.151	0.140	0.245	0.151
$M\{p,g,w,v\}$	{3,4,2,C}	{3,4,2,A}	{3,4,3,C}	{3,4,3,A}	{3,4,4,C}	{3,4,4,A}
Feasible ?	Y	Υ	Y	Υ	Υ	Y
Time(s)	0.138	0.165	0.318	0.165	0.198	0.151
$M\{p,g,w,v\}$	{4,2,2,C}	{4,2,2,A}	{4,3,2,C}	{4,3,2,A}	{4,3,3,C}	{4,3,3,A}
Feasible?	N	N	N	N	N	N
Time(s)	0.148	0.123	6.214	0.134	9.623	0.119
$M{p,g,w,v}$	{4,4,2,C}	{4,4,2,A}	{4,4,3,C}	{4,4,3,A}	{4,4,4,C}	{4,4,4,A}
Feasible ?	Y	Υ	Y	Υ	Υ	Y
Time(s)	0.165	0.180	0.156	0.165	0.188	0.164

Our solver

- Made in Julia
- Use finites domains with cardinalities
- Domain(lb[sorted list], up[sorted list], cardMin, cardMax) = symmetry s! solved, gain on filtering operations or between domains.
- Element can only be in one bound. If element in lb, then the element isn't in up, and opposite.
- Focus on filtering in Union and Intersection

Our solver: Weakness

SGP Solver before a CP Solveur

- Parser only work for models written by the writer, so we can only use it for the SGP
- Filtering only for Union and Intersection constraints

Errors in verification

- Constraints linked problems: wrong verification, false positives and true negative in solutions
- Therefore, the pile isn't often empty.

Our solver : Benchmark

$M\{p,g,w,v\}$	{2,2,2,C}	{2,2,2,A}	{2,3,2,C}	{2,3,2,A}	{2,4,2,C}	{3,2,2,A}
Time	0.051	0.00025	0.0012	0.002	0.066	0.0005
MZ_Reussi?	Y	Y	Y	Y	Υ	N
MZ_Time	0.199	0.164	0.164	0.167	0.166	0.126
$M\{p,g,w,v\}$	{3,2,2,C}	{3,3,2,A}	{3,3,3,C}	{4,2,2,A}	{4,2,2,C}	
Time	0.001	0.033	0.0203	0.008	0.066	
MZ_Reussi?	N	Y	Y	N	N	
MZ_Time	0.172	0.140	0.245	0.123	0.148	

Our solver: Benchmark

- Take with a pitch of salt
- On 28 solved models by Minizinc (on 36 models), 11 solved by our solver
- Unsolved problems: Some models solved by our solver are declared impossible by MiniZinc...

Fixing it and improving it?

- For the solver :
 - Fix the verification before trying SGP of bigger size
 - Making a file of modified domains to make the pile more efficient to find filtering operations
 - Make new filtering functions for others types of constraints
- Improve the parser so he could load any models of CPP
- Deepen the study on SGP problem to improve the writer and limits impossibles models

End

Thx for listening Any questions?