Sequence (Lecture-4)

Engineering Calculus

School of Engineering and Applied Sciences Department of Mathematics Bennett University

Result

Let $a_n \neq 0$ for all $n \in \mathbb{N}$ and let $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ exist.

- (i) If L < 1, then $a_n \to 0$.
- (ii) If L > 1, then $\{a_n\}$ is divergent.

Examples: (i) $\left\{\frac{\alpha^n}{n!}\right\}$, $\alpha \in \mathbb{R}$, (ii) $\left\{\frac{2^n}{n^4}\right\}$.

Theorem

Let $\{a_n\}$, $\{b_n\}$ are two convergent sequences such that $a_n \to a$ as $n \to \infty$ and $b_n \to b$ as $n \to \infty$. Then

- (i) if $a_n \ge 0$ for all $n \in \mathbb{N}$ then $a = \lim_{n \to \infty} a_n \ge 0$.
- (ii) if $a_n \leq b_n$ for all $n \in \mathbb{N}$ then $a \leq b$.
- (iii) if $k \in \mathbb{N}$, then $(a_n)^k \to a^k$ as $n \to \infty$, converse is not true.
- (iv) if $a_n \ge 0$ then $\sqrt{a_n} \to \sqrt{a}$, converse is not true.

Divergence

Definition

Let $\{a_n\}$ be a sequence of real numbers. We say that a_n approaches **infinity or diverges to infinity**, if for any real number M > 0, there is a positive integer N such that $n \ge N \Rightarrow a_n \ge M$.

- If a_n approaches infinity, then we write $a_n \to \infty$ as $n \to \infty$.
- A similar definition is given for the sequences diverging to $-\infty$. In this case we write $a_n \to -\infty$ as $n \to \infty$.

Examples

- (i) The sequence $\{\log(1/n)\}_{1}^{\infty}$ diverges to $-\infty$.
- (ii) The sequence $\{a_n\}$ with $a_n = \frac{n^2}{n+1}$ diverges to ∞ .

Solution: (i) For any M > 0, we must produce a $N \in \mathbb{N}$ such that

$$\log(1/n) < -M, \ \forall \ n \ge N.$$

But this is equivalent to saying that $n > e^M$, $\forall n \ge N$. Choose $N > e^M$. Then, for this choice of N,

$$\log(1/n) < -M, \ \forall \ n \ge N.$$

Thus $\{\log(1/n)\}_{1}^{\infty}$ diverges to $-\infty$.

Divergence

(ii) Notice that $\frac{n^2}{n+1} \ge \frac{n}{2}$ for all $n \in \mathbb{N}$, so that for any M > 0, $a_n > M$ whenever n > 2M.

Hence, taking a positive integer N such that N > 2M, we have the relation $a_n > M$ for all

$$n \ge N$$
. Thus $\frac{n^2}{n+1} \to \infty$ as $n \to \infty$.

- Consider the sequence $\{(-1)^{n+1}n\}_{1}^{\infty}$. This is not a convergent sequence. Also it does not approach to ∞ or $-\infty$.
- The sequence $\{(-1)^n\}$ is also an example of the previous type.

Definition

If a sequence $\{a_n\}$ does not converge to a value in \mathbb{R} and also does not diverge to ∞ or $-\infty$, we say that $\{a_n\}$ oscillates.

Theorem

Let $\{a_n\}$ and $\{b_n\}$ be two sequences.

- (i) If $\{a_n\}$ and $\{b_n\}$ both diverge to ∞ , then the sequences $\{a_n + b_n\}$ and $\{a_n b_n\}$ also diverge to ∞ .
- (ii) If $\{a_n\}$ diverges to ∞ and $\{b_n\}$ converges then $\{a_n + b_n\}$ diverges to ∞ .

Remark

Difference/Division of two diverging sequences may converge.

Example

Consider the sequences $\{\sqrt{n+1}\}_{n=1}^{\infty}, \{\sqrt{n}\}_{n=1}^{\infty}$. Then both the sequences $\sqrt{n+1}$ and \sqrt{n} diverge to ∞ . But the sequence $\{\sqrt{n+1} - \sqrt{n}\}_{n=1}^{\infty}$ converges to 0 and the sequence $\{\frac{\sqrt{n+1}}{\sqrt{n}}\}$ converges to 1.

Theorem

Every convergent sequence is bounded.

Proof: Let $\{a_n\}$ be a convergent sequence and $\lim_{n\to\infty} a_n = L$. Let $\epsilon = 1$. Then there exists

 $N \in \mathbb{N}$ such that $|a_n - L| < 1$ for all $n \ge N$. Further,

$$|a_n| = |a_n - L + L| \le |a_n - L| + |L| < 1 + |L|, \forall n \ge N.$$

Let $M = \max\{|a_1|, |a_2|, ..., |a_{N-1}|, 1 + |L|\}$. Then $|a_n| \le M$ for all $n \in \mathbb{N}$. Hence $\{a_n\}$ is bounded.

Remark

The condition given in previous result is necessary but not sufficient. For example, the sequence $\{(-1)^n\}$ is a bounded sequence but not convergent sequence.

Question: Boundedness $+ (??) \Longrightarrow$ Convergence.

Monotone sequences

A sequence $\{a_n\}$ of real numbers is called a **nondecreasing** sequence if $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$ and $\{a_n\}$ is called a **nonincreasing** sequence if $a_n \geq a_{n+1}$ for all $n \in \mathbb{N}$. A sequence that is nondecreasing or nonincreasing is called a **monotone sequence**.

Examples:

- The sequences $\{1 1/n\}, \{n^3\}$ are nondecreasing sequences.
- **②** The sequences $\{1/n\}$, $\{1/n^2\}$ are nonincreasing sequences.
- The sequences $\{(-1)^n\}$, $\left\{\cos\left(\frac{n\pi}{3}\right)\right\}$, $\left\{(-1)^n n\right\}$, $\left\{\frac{(-1)^n}{n}\right\}$ and $\left\{n^{1/n}\right\}$ are not monotonic sequences.

Result

- (i) A nondecreasing sequence which is not bounded above diverges to ∞ .
- (ii) A nonincreasing sequence which is not bounded below diverges to $-\infty$.

Examples: (i) If b > 1, then the sequence $\{b^n\}_1^{\infty}$ diverges to ∞ .

(ii) Let $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$. Then $a_{n+1} = a_n + \frac{1}{n+1} > a_n$, we see that $\{a_n\}$ is an increasing sequence. Now, we show that the sequence $\{a_n\}$ is not bounded above.

$$a_{2^{n}} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \dots + \left(\frac{1}{2^{n-1} + 1} + \dots + \frac{1}{2^{n}}\right)$$

$$> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \dots + \left(\frac{1}{2^{n}} + \dots + \frac{1}{2^{n}}\right)$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2}$$

$$= 1 + \frac{n}{2}.$$

Since $\{a_n\}$ is unbounded, therefore by above result $\{a_n\}$ is divergent.

Theorem

- (i) A nondecreasing sequence which is bounded above is convergent. Or suppose $\{a_n\}$ is a bounded above and increasing sequence. Then the least upper bound of the set $\{a_n : n \in \mathbb{N}\}$ is the limit of $\{a_n\}$.
- (ii) A nonincreasing sequence which is bounded below is convergent. Or suppose $\{a_n\}$ is a bounded below and decreasing sequence. Then the greatest lower bound of the set $\{a_n : n \in \mathbb{N}\}$ is the limit of $\{a_n\}$.

Example

If 0 < b < 1, then the sequence $\{b^n\}_{1}^{\infty}$ converges to 0.

Solution: We write $b^{n+1} = b^n b < b^n$. Hence $\{b^n\}$ is nonincreasing. Since $b^n > 0$ for all $n \in \mathbb{N}$, the sequence $\{b^n\}$ is bounded below. Hence, by the above theorem, $\{b^n\}$ converges. Let $L = \lim_{n \to \infty} b^n$. Further, $\lim_{n \to \infty} b^{n+1} = \lim_{n \to \infty} b \cdot b^n = b \cdot \lim_{n \to \infty} b^n = b \cdot L$. Thus the sequence $\{b^{n+1}\}$ converges to $b \cdot L$. On the other hand, $\{b^{n+1}\}$ is a subsequence of $\{b^n\}$. Hence $L = b \cdot L$ which implies L = 0 as $b \neq 1$.

Example

Show that the sequence $\{a_n\}$, where $a_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n}$, for all $n \in \mathbb{N}$ is convergent.

Solution: Now $a_{n+1} - a_n = \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1} = \frac{1}{2(n+1)(2n+1)} > 0$ for all n.

Therefore the sequence $\{a_n\}$ is monotonically increasing. Again

$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} < \frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n} = 1.$$

i.e. $0 < a_n < 1$. Therefore, the sequence a_n is bounded. Hence the sequence being bounded and monotonically increasing, is convergent.

Subsequence

Let $\{a_n\}$ be a sequence and $\{n_1, n_2, ...\}$ be a sequence of positive integers such that i > j implies $n_i > n_j$. Then the sequence $\{a_{n_i}\}_{i=1}^{\infty}$ is called a subsequence of $\{a_n\}$.

Example

$$\left\{\frac{1}{k^2}\right\}_{k=1}^{\infty}$$
 and $\left\{\frac{1}{2^k}\right\}_{k=1}^{\infty}$ are subsequences of $\left\{\frac{1}{n}\right\}$, where $n_k=k^2$ and $n_k=2^k$.

Theorem

If the sequence of real numbers $\{a_n\}_1^{\infty}$, is convergent to L, then any subsequence of $\{a_n\}$ is also convergent to L.

Remark

Sequences $(1, 1, 1, \cdots)$ and $(0, 0, 0, \cdots)$ are both subsequences of $(1, 0, 1, 0, \cdots)$. From this we see that a given sequence may have convergent subsequence though the sequence itself is not convergent.

- If $\{a_n\}$ has two subsequences converging to two different limits, then $\{a_n\}$ cannot be convergent.
- Let $\{a_n\}$ be a sequence such that $a_{2n} \to \ell$ and $a_{2n-1} \to \ell$. Then $a_n \to \ell$. **Example:** The sequence $\{1, \frac{1}{2}, 1, \frac{2}{3}, 1, \frac{3}{4}, \cdots\}$ converges to 1.
- Every sequence has a monotone subsequence.

Bolzano-Weierstrass Theorem

Every bounded sequence has a convergent subsequence.

Theorem

Let $\{a_n\}$ be a sequence such that $|a_{n+1}-a| \le r|a_n-a|$ for all $n \in \mathbb{N}$, for some $a \in \mathbb{R}$ and for some r with 0 < r < 1. Then $a_n \to a$.

Proof: For each $n \in \mathbb{N}$, we have

$$|a_{n+1}-a|\leq r|a_n-a|\leq \cdots \leq r^n|a_1-a|.$$

Since 0 < r < 1, $r^n \to 0$ as $n \to \infty$ so by Sandwich theorem $a_n \to a$.

Question

If $\{a_n\}$ is such that $|a_{n+1} - a| < |a_n - a|$ for all $n \in \mathbb{N}$ for some $a \in \mathbb{R}$, then $a_n \to a$?

Not Necessary! Consider $\{a_n\}$ with $a_n = \frac{n+1}{n}$, $n \in \mathbb{N}$. Since $\frac{n+2}{n+1} < \frac{n+1}{n}$ for all $n \in \mathbb{N}$, taking a = 0, we have $|a_{n+1} - a| < |a_n - a|$ for all $n \in \mathbb{N}$. But $\{a_n\}$ does not converges to 0. In fact $a_n \to 1$.

Question

If the condition on a_n in the previous Theorem can be replaced by $|a_{n+2} - a_{n+1}| \le r|a_{n+1} - a_n|$ for all $n \in \mathbb{N}$ for some r with 0 < r < 1, then $\{a_n\}$ is convergent?

• The answer is affirmative.

