

Matemática A

10.º ANO DE ESCOLARIDADE

Duração: 90 minutos | **Data:** JANEIRO 2023

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

1. Na figura está representado o hexágono regular [ABCDEF] e um ponto O, que é o ponto de interseção das suas diagonais. Usando as letras da figura,

- **1.1.** $F + \overrightarrow{AO}$ corresponde a:
 - (A) O
- **(B)** E **(C)** \overrightarrow{FE}
- (D) \overrightarrow{AO}

1.2. determine:

a)
$$\overrightarrow{AD} + \overrightarrow{EO}$$

b) O +
$$(2\overrightarrow{FO} - \overrightarrow{OD}) + \overrightarrow{BE}$$

- Considere, num plano munido de um referencial ortonormado xOy, os pontos $A\left(-\frac{3}{2},\sqrt{8}\right)$ e 2. $B\left(\frac{1}{2},\sqrt{2}\right)$.
 - \overrightarrow{AB} tem a mesma direção de:
 - (A) $(\sqrt{2}, 2)$
- **(B)** $\left(-6, 3\sqrt{2}\right)$
- (C) $(-\sqrt{3}, \sqrt{6})$
- **(D)** $(-2\sqrt{2}, -2)$
- **2.2.** Mostre que a ordenada na origem da reta AB tem o valor do raio da circunferência

$$x^2 + y^2 - 2x - \frac{17}{8} = 0$$

- Justifique que, sendo r uma reta do plano, se AB é paralela a r, então r não pode ser paralela 2.3. à bissetriz dos quadrantes pares.
- Considere, num plano munido de um referencial ortonormado xOy, a reta s: y = x + 43.
 - Determine o(s) ponto(s) da reta s cuja distância a P(5,4) é $\sqrt{13}$ unidades.
 - Uma equação vetorial da reta s, pode ser: 3.2.

(A)
$$(x,y) = (0,2) + k(2,2), k \in IR$$

(B)
$$(x,y) = (-1,3) + k(2,-2), k \in IR$$

(C)
$$(x,y) = (1,5) + k(2,2), k \in \mathbb{R}$$

(C)
$$(x,y) = (1,5) + k(2,2), k \in IR$$
 (D) $(x,y) = (-1,3) + k(-1,1), k \in IR$

G

В

- 4. O lugar geométrico dos pontos do plano, que são equidistantes de um dado ponto fixo é:
 - (A) um ponto

- (B) uma reta
- (C) uma circunferência
- **(D)** um círculo

z
ightharpoonup

- **5.** De um cubo [ABCDEFGH] sabe-se que:
 - o eixo *Oy* passa no centro das faces [*ADEF*] e [*BCHGF*];
 - o ponto G tem coordenadas (3, 10, 3).
 - **5.1.** Escreva uma condição que represente:
 - a) o plano que contém a face [ADEF];
 - **b)** a reta FG;
 - c) o segmento [GH];
 - **d)** o plano mediador de [AH];
 - e) a esfera tangente às faces do cubo.
 - **5.2.** Determine uma equação vetorial da reta paralela a *Oz* e que passa no centro do cubo.

- as bases [ABCD] e [EFGH] são quadrados contidos em planos paralelos;
- as faces laterais são paralelogramos.

Sabe-se que:

- a base [ABCD] está contida no plano xOy;
- os vértices A, C e F têm coordenadas (2, 0, 0), (-2, 0, 0) e (0, 0, 4), respetivamente.
- **6.1.** Determine as coordenadas dos pontos $B, D \in H$.
- **6.2.** Escreva uma equação vetorial da reta *CH*.
- **6.3**. Determine o volume do prisma.

FIM

Cotações:

						Item													
	Cotação (em pontos)																		
1.1.	1.2.a)	1.2.b)	2.1.	2.2.	2.3.	3.1.	3.2.	4.	5.1.a)	5.1.b)	5.1.c)	5.1.d)	5.1.e)	5.2	6.1	6.2.	6.3.	Total	
10	10	10	10	15	15	15	10	10	10	10	10	10	10	10	10	15	10	200	

Proposta de resolução

1.

1.1.
$$F + \overrightarrow{AO} = E$$

Resposta: (B)

1.2.

a)
$$\overrightarrow{AD} + \overrightarrow{EO} = \overrightarrow{AC}$$

b)
$$O + (2\overrightarrow{FO} - \overrightarrow{OD}) + \overrightarrow{BE} =$$

$$= O + \overrightarrow{FB} + \overrightarrow{BE} = O + \overrightarrow{FE} = D$$

2.1.
$$\overrightarrow{AB} = B - A$$

$$\overrightarrow{AB} = \left(\frac{1}{2}, \sqrt{2}\right) - \left(-\frac{3}{2}, \sqrt{8}\right) = \left(\frac{1}{2} + \frac{3}{2}, \sqrt{2} - 2\sqrt{2}\right) = (2, -\sqrt{2});$$

$$-3\overrightarrow{AB} = \left(-6, 3\sqrt{2}\right)$$

Resposta: (B)

2.2. Reta
$$AB$$
: $y = mx + b$
$$m = -\frac{\sqrt{2}}{2} ; \qquad \sqrt{2} = -\frac{\sqrt{2}}{2} \times \frac{1}{2} + b \iff b = \sqrt{2} + \frac{\sqrt{2}}{4} \iff b = \frac{5\sqrt{2}}{4}$$

$$B\left(\frac{1}{2},\sqrt{2}\right)$$

AB:
$$y = -\frac{\sqrt{2}}{2}x + \frac{5\sqrt{2}}{4}$$
; Ordenada na origem: $\frac{5\sqrt{2}}{4}$

Circunferência:

$$x^{2} + y^{2} - 2x - \frac{17}{8} = 0 \Leftrightarrow (x^{2} - 2x + 1) - 1 + y^{2} = \frac{17}{8} \Leftrightarrow$$

$$\Leftrightarrow (x-1)^2 + y^2 = \frac{17}{8} + 1 \Leftrightarrow (x-1)^2 + y^2 = \frac{25}{8}$$

Raio:
$$\sqrt{\frac{25}{8}} = \frac{5}{2\sqrt{2}} = \frac{5\sqrt{2}}{4}$$

2.3. A bissetriz dos quadrantes pares (y=-x) tem declive m'=-1 e a reta AB tem declive $m=-\frac{\sqrt{2}}{2}$. Como $m'\neq m$, se a reta r é paralela a AB então não pode ser paralela à bissetriz dos quadrantes pares.

3.

3.1. Os pontos da reta s são do tipo S(x, x + 4).

Ponto P(5,4)

$$\overline{PS} = \sqrt{13} \Leftrightarrow \sqrt{(x-5)^2 + (x+4-4)^2} = \sqrt{13} \Leftrightarrow x^2 - 10x + 25 + x^2 = 13 \Leftrightarrow$$
$$\Leftrightarrow 2x^2 - 10x + 12 = 0 \Leftrightarrow x = 2 \lor x = 3$$

Os pontos da reta são os pontos de coordenadas; (2,6); (3,7)

3.2. Tendo o declive da reta s o valor 1, o vetor diretor da reta tem de ter coordenadas iguais daí que as opções (B) e (D) sejam excluídas.

A opção (A) também é excluída pois (0, 2) não é ponto da reta s.

Resposta: (C)

4. Por definição de circunferência, a resposta correta é a Resposta: (C)

5.

5.1.

- a) A aresta do cubo mede 6 unidades. Então, o plano que contem a face [ADEF] tem equação y = 4.
- **b)** $FG: x = 3 \land z = 3$
- c) $[GH]: y = 10 \land z = 3 \land -3 \le x \le 3$
- **d)** A(3,4,-3), H(-3,10,3), P(x,y,z)

Plano mediador de [AH]:

$$d(P,A) = d(P,B) \Leftrightarrow$$

$$\Leftrightarrow (x-3)^2 + (y-4)^2 + (z+3)^2 = (x+3)^2 + (y-10)^2 + (z-3)^2 \Leftrightarrow$$

$$\Leftrightarrow x^2 - 6x + 9 + y^2 - 8y + 16 + z^2 + 6z + 9 =$$

$$= x^2 + 6x + 9 + y^2 - 20y + 100 + z^2 - 6z + 9 \Leftrightarrow$$

$$\Leftrightarrow -12x + 12y + 12z = 84 \Leftrightarrow x - y - z = -7$$

- e) O centro da esfera é o ponto médio de [AG]: $\left(\frac{3-3}{2}, \frac{4+10}{2}, \frac{-3+3}{2}\right) = (0,7,0)$ O raio é metade do comprimento da aresta: 3 Esfera: $x^2 + (y-7)^2 + z^2 \le 9$
- **5.2.** O centro do cubo é o centro da esfera encontrada na questão anterior, ou seja (0, 7, 0). Um vetor diretor da reta é um vetor com a direção de Oz, por exemplo (0,0,1). Equação vetorial da reta: $(x, y, z) = (0, 7, 0) + k(0, 0, 1), k \in \mathbb{R}$.

6.

6.1. Como as diagonais do quadrado se bissetam, são perpendiculares e têm o mesmo comprimento, os pontos $B \in D$ estão sobre o eixo Oy e têm coordenadas B(0, 2, 0) e D(0, -2, 0).

Ponto *H*:

$$H = C + \overrightarrow{AF}$$

 $\overrightarrow{AF} = F - A = (0,0,4) - (2,0,0) = (-2,0,4)$
 $H = (-2,0,0) + (-2,0,4) = (-4,0,4)$

6.2. *CH*:
$$(x, y, z) = (-2, 0, 0) + k (-2, 0, 4), k \in \mathbb{R}$$

6.3. Área da base:
$$\|\overrightarrow{AB}\|^2$$

$$A(2,0,0) \quad B(0,2,0)$$

$$\|\overrightarrow{AB}\| = \sqrt{(-2)^2 + 2^2 + 0^2} = \sqrt{8}$$
Área da base = $\|\overrightarrow{AB}\|^2 = 8$

A altura do prisma é a distância entre as bases.

Como a base [ABCD] está contida no plano xOy, a altura, h, do prisma é a cota de F, ou seja, h=4.

$$V = A_{\text{base}} \times \text{altura} = 8 \times 4 = 32 \text{ u.v.}$$

