Lab1 Introduction

Computer Organization & Architecture

Nedaa Hussein Ahmed

nh1179@fayoum.edu.eg

Course information

"Computer Organization And Architecture", 6th edition, by William Stallings.

" Assembly language for INTEL-based computers", 4th edition , by KIP R. I RV I N E

Emu8086 \rightarrow 8086 microprocessor emulator version 4.08.

MDA 8086 trainer kit.

Introduction

A program written by a high level language is translated into an assembly language before it can be executed by the computer H/W.

Introduction cont...

Problem

Algorithm

Program/ Language

Runtime system (OS)

ISA (Architecture)

Microarchitecture

Logic

Circuits

Electron

Machine Languages

- In the earliest days of computers, the only programming language s available were **machine languages**.
- It was made of streams of 0s and 1s.
- The only language understood by a computer is machine language.

Example:

Let us see a machine language program that do the following steps:

- Read two integers,
- > Add them and,
- > Print the result.

Machines Language cont...

Code in machine language to add two integers

Use eleven lines of code to do the required program, each line is 16 bits.

Hexadecimal	Code in machine language			
(1FEF) ₁₆	0001	1111	1110	1111
(240F) ₁₆	0010	0100	0000	1111
(1FEF) ₁₆	0001	1111	1110	1111
(241F) ₁₆	0010	0100	0001	1111
(1040) ₁₆	0001	0000	0100	0000
(1141) ₁₆	0001	0001	0100	0001
(3201) ₁₆	0011	0010	0000	0001
(2422) ₁₆	0010	0100	0010	0010
(1F42) ₁₆	0001	1111	0100	0010
(2FFF) ₁₆	0010	1111	1111	1111
(0000) ₁₆	0000	0000	0000	0000

Assembly Languages

- The next evolution in programming came with the idea of replacing binary code for instruction and addresses with symbols.
- ➤ Because they used symbols, these languages were first known as symbolic languages.
- The set of these symbolic languages were later referred to as assembly languages.
- ➤ It provides direct access to a computer's hardware, making it necessary for you to understand a great deal about your comput er's architecture and operating system.

This course focuses on **programming Intel microprocessors** by using **Assembly language**.

Let's do the same example....

Assembly Languages cont...

Code in assembly language to add two integers

Code in	Code in assembly language			Description
LOAD	RF	Keyboard	Load from keyboard controller to register F	
STORE	Number1	RF Store register F into Number1		Store register F into Number1
LOAD	RF	Keyboard Load from keyboard controller to register F		
STORE	Number2	RF		Store register F into Number2
LOAD	R0	Number1		Load Number1 into register 0
LOAD	R1	Number2 Load Number2 into register 1		Load Number2 into register 1
ADDI	R2	R0	R1	Add registers 0 and 1 with result in register 2
STORE	Result	R2		Store register 2 into Result
LOAD	RF	Result		Load Result into register F
STORE	Monitor	RF		Store register F into monitor controller
HALT				Stop

High-Level Languages

- ➤ Working with symbolic languages was also very tedious, because each machine instruction had to be individually coded.
- The desire to improve programmer efficiency led to the development of high-level languages.
- ➤ Over the years, various languages, most notably BASIC, Pascal, C, C++ and Java, were developed.

Let's show the code for adding two integers as it would appear in the C++ language.

High-Level Languages cont...

```
Addition program in C++
```

```
This program reads two integers from keyboard and prints their sum.
       Written by:
       Date:
#include <iostream.h>
using namespace std;
int main (void)
       // Local Declarations
       int number1:
       int number2;
       int result;
       // Statements
       cin >> number1;
       cin >> number2;
       result = number1 + number2;
       cout << result;
       return 0;
} // main
```

Important Questions

►What background should I have?

- ✓ You should have completed a single college course or its equivalent in computer programming.
- ✓ Like c/c++, C#, Java...

> Why learn computer architecture & assembly language?

- ✓ Creating embedded system programs.
- ✓ For games programmers who wants to takes full advantage of specific hardware features in a target system.
- ✓ Gain an over all understanding of the interaction between the computer hardware, operating system, and application programs.
- ✓ Using fast libraries (DLL) made in Assembly.

Assembler & Linker

- An assembler is a program that converts **source-code** programs from **assembly language** into **machine language**.
- Two of the most popular assemblers for the Intel family are MASM (Microsoft Assembler) and TASM (Borland Turbo Assembler).
- A linker combines individual files created by an assembler into a single executable program.
- A third program, called a debugger provides a way for a programmer to trace the execution of a program and examine the contents of memory.

Needed H/W & S/W

>Hardware:

✓ You need a computer with an Inte1386, Inte1486, or One of the Pentium processors.

>Software:

- ✓OS: Windows, MS-DOS, or even Linux with DOS emulator.
- ✓ Editor: To write assembly code.
- ✓ Assembler: Like MASM
- ✓ Linker.
- ✓ Debugger: MASM supplies a good 16-bit debugger named CodeView.

► How do C++ and Java relate to assembly language?

✓ A single statement in C++ (Or Java) expands into multiple assembly language or machine instructions.

Numbering Systems

- To understand machine language and then assembly language we must first have a quick review to the previous knowledge of Number Systems.
- Number systems that we will work with are:
 - •Binary \rightarrow Base 2
 - •Octal \rightarrow Base 8
 - •Decimal \rightarrow Base 10
 - •Hexadecimal → Base 16

Numbering Systems cont...

System	Base	Possible Digits	
Binary	2	01	
Octal	8	01234567	
Decimal	10	0123456789	
Hexadecimal	16	0 1 2 3 4 5 6 7 8 9 A BCDEF	

1-Binary Numbers

- ➤Base 2 system.
- ➤ Uses digits 0 &1.

2 ⁿ	Decimal Value
2^0	
21	2
2^2	24 24
To the	
28	256
W C	2472247
2 ¹⁵	32768

1- Binary Numbers cont...

Translating unsigned binary integers to decimal:

- 8- bit Binary 00001001
- Decimal equivalence = $1*2^0+1*2^3=9$

Translating unsigned decimal integers to binary:

• Divide the decimal value by 2, saving each remainder as a binary digit. Binary of 37d = 100101b

Quotient	Remainder
18	1 LSB
9	0
4	1
2	0
1	0
0	1 MSB
	18 9 4 2 1

100101

1- Binary Numbers cont...

Convert 67 to its binary equivalent:

1- Binary Numbers cont...

Convert (10101101)₂ to its decimal equivalent:

 173_{10}

Binary Addition

Rules:

$$> 0+0=0$$

$$\rightarrow$$
 0 + 1 = 1

$$\rightarrow$$
 1 + 0 = 1

$$\rightarrow$$
 1 + 1 = 10 (0 and Carry 1)

Example: add 12+7 convert to binary and then add

Complementary Arithmetic

- How do you represent a minus sign electronically in a computer?
- How can you represent it such that arithmetic operations are manageable?
- There are two types of compliments for each number base system.
 - ➤ Have the r's complement
 - ➤ Have the (r-1)'s complement
- For base 2 have 2's complement and 1's complement

1's complement:

Switch all 0's to 1's and 1's to 0's

Binary # 10110011 1's complement 01001100

Complementary Arithmetic

2's complement:

```
➤ Step 1: Find 1's complement of the number

Binary # 11000110

1's complement 00111001
```

> Step 2: Add 1 to the 1's complement

 $\begin{array}{r} 00111001 \\ +\ 00000001 \\ \hline 00111010 \end{array}$

Binary Subtraction

➤ We can deal with the second number as it is negative so we must find the 2's complement of it and convert the subtraction operation to summation.

Now do the operation 4-6

$$4 \longrightarrow 0100 \longrightarrow 0100$$

$$- 6 \longrightarrow 0110 \longrightarrow 1001+1=1010 \longrightarrow +1010$$

$$1110 \longrightarrow 0001+1=-0010$$

$$=-2$$

2-Octal Number System

- Also known as the Base 8 System
- Uses digits 0 7
- Groups of three (binary) digits can be used to represent each octal digit
- Also uses multiplication and division algorithms for conversion to and from base 10

Decimal to Octal Conversion

Convert 427₁₀ to its octal equivalent:

Octal to Decimal Conversion

Convert 653₈ to its decimal equivalent:

Octal to Binary Conversion

Each octal number converts to 3 binary digits

To convert 653₈ to binary, just substitute code:

Code

0 - 000

1 - 001

2 - 010

3 - 011

4 - 100

5 - 101

6 - 110

7 - 111

3. Hexadecimal Number System

- Base 16 system.
- Uses digits 0-9 & letters A,B,C,D,E,F.
- Groups of four bits represent each base 1 6 digit.

Decimal	Hexadecimal	
0	0	
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
10	Α	
11	В	
12	С	
13	D	
14	E	
15	F	

Decimal to Hexadecimal Conversion

Convert 830₁₀ to its hexadecimal equivalent:

$$830 / 16 = 51 \longrightarrow 14 \longrightarrow E \text{ in Hex}$$
 $51 / 16 = 3 \longrightarrow 3$
 $3 / 16 = 0 \longrightarrow 3$

$$33E_{16}$$

Hexadecimal to Decimal Conversion

Convert 3B4F16 to its decimal equivalent:

Hex Digits
$$3 \quad B \quad 4 \quad F$$
Positional Values $16^3 \quad 16^2 \quad 16^1 \quad 16^0$

Products $12288 + 2816 + 64 + 15$

15,183₁₀

Binary to Hexadecimal Conversion

- The easiest method for converting binary to hexadeci mal is to use a substitution code
- Each hex number converts to 4 binary digits

Binary to Hexadecimal Conversion cont...

Convert 0101 0110 1010 1110 0110 1010₂ to hex using the 4-bit substitution code:

5 6 A E 6 A 0101 0110 1010 1110 0110 1010

56AE6A₁₆

Binary to Octal Conversion

Substitution code can also be used to convert binary to octal by using 3-bit groupings:

255271528

Combinational Gates

	The second second second	Carried State of the State of t	Committee of the Commit
Name	Symbol	Function	Truth Table
AND	$\frac{A}{B}$ \longrightarrow X	X = A • B or X = AB	A B X 0 0 0 0 1 0 1 0 0 1 1 1
OR	$A \longrightarrow X$	X = A + B	A B X 0 0 0 0 1 1 1 1 1 1 1
Not	A — X	X = A`	A X 0 1 1 0
Buffer	A	X = A	A X 0 0 1 1
NAND	А x	X = (AB)'	A B X 0 0 1 0 1 1 1 0 1 1 1 0
NOR	Аx	X = (A + B)'	A B X 0 0 1 0 1 0 1 1 0 0 1 1 0
XOR Exclusive OR	$A \longrightarrow X$	X = A ⊕ B or X = A'B + AB'	A B X 0 0 0 0 1 1 1 1 1 0
XNOR Exclusive NOR or Equivalence	<u>А</u>	X = (A ⊕ B)' or X = A'B'+ AB	A B X 0 0 1 0 1 0 1 0 0 1 1 1

Assignment

From the book Solve:

- >Section1.3.7 (Pages23-24-25):
 - •Points:3,5,9,11,13,16,17,21
- > Section1.4.2 (page29):
 - •Points:6,9

