PRACTICAL WEEK 2

8BB020: Introduction to Machine Learning Solutions

Linear regression

Function

Input: m parameters x_i, \ldots, x_m . Output: y.

$$y = \hat{y} + \epsilon$$
;

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_m x_m;$$

For n observations, each with m variables:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\theta}$$

$$\mathbf{Y} = egin{bmatrix} y_1 \ y_2 \ \dots \ y_n \end{bmatrix}, \mathbf{X} = egin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1m} \ 1 & x_{21} & x_{22} & \dots & x_{2m} \ \vdots & \vdots & \vdots & \ddots & \vdots \ 1 & x_{n1} & x_{n2} & \dots & x_{nm} \end{bmatrix}, oldsymbol{ heta} = egin{bmatrix} heta_0 \ heta_1 \ \vdots \ heta_m \end{bmatrix}$$

Two methods

Using least squares

$$heta = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$
 , provided $(\mathbf{X}^T\mathbf{X})^{-1}$ is non-singular.

This is actually the product of a matrix and a vector:

$$oldsymbol{ heta} = (\underbrace{\mathbf{X}^{ op}\mathbf{X}}_{\mathbf{A}})^{-1}\underbrace{\mathbf{X}^{ op}\mathbf{y}}_{\mathbf{b}}$$

Using gradient descent

$$m{ heta}^{(ext{new})} = m{ heta}^{(ext{current})} - \eta
abla_{m{ heta}} J(m{ heta})$$
 $m{ heta}^{(ext{new})} = m{ heta}^{(ext{current})} \underbrace{m{ heta}_{m{ heta}} J(m{ heta})}_{ ext{opposite direction}} \underbrace{m{ heta}_{m{ heta}} J(m{ heta})}_{ ext{direction of the gradient}}$

Using least squares

$$J(\boldsymbol{\theta}) = RSS(\boldsymbol{\theta}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (\theta_0 + \sum_{j=1}^{m} x_{ij}\theta_{ij}))^2 \qquad \text{OR} \qquad J(\boldsymbol{\theta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$

$$J(oldsymbol{ heta}) = (\mathbf{y} - \mathbf{X} heta)^T (\mathbf{y} - \mathbf{X} heta)$$

Best solution of this function is given when gradient = 0!!!

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = -2\mathbf{X}^T(\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) = \mathbf{0}$$

$$heta = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$
 , provided $(\mathbf{X}^T\mathbf{X})^{-1}$ is non-singular.

This is actually the product of a matrix and a vector:

$$\boldsymbol{\theta} = (\underbrace{\mathbf{X}^{\top}\mathbf{X}}_{\mathbf{A}})^{-1}\underbrace{\mathbf{X}^{\top}\mathbf{y}}_{\mathbf{b}}$$

Linear regression

Function

Input: m parameters x_i, \ldots, x_m . Output: y.

$$y = \hat{y} + \epsilon$$
;

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_m x_m;$$

For n observations, each with m variables:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\theta}$$

$$\mathbf{Y} = egin{bmatrix} y_1 \ y_2 \ \dots \ y_n \end{bmatrix}, \mathbf{X} = egin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1m} \ 1 & x_{21} & x_{22} & \dots & x_{2m} \ \vdots & \vdots & \vdots & \ddots & \vdots \ 1 & x_{n1} & x_{n2} & \dots & x_{nm} \end{bmatrix}, oldsymbol{ heta} = egin{bmatrix} heta_0 \ heta_1 \ \vdots \ heta_m \end{bmatrix}$$

Two methods of training

Using least squares

$$\theta = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$
 , provided $(\mathbf{X}^T\mathbf{X})^{-1}$ is non-singular.

This is actually the product of a matrix and a vector:

$$\boldsymbol{\theta} = (\underbrace{\mathbf{X}^{\top}\mathbf{X}}_{\mathbf{A}})^{-1}\underbrace{\mathbf{X}^{\top}\mathbf{y}}_{\mathbf{b}}$$

Using gradient descent

$$m{ heta}^{(ext{new})} = m{ heta}^{(ext{current})} - \eta
abla_{m{ heta}} J(m{ heta})$$
 $m{ heta}^{(ext{new})} = m{ heta}^{(ext{current})} \underbrace{m{ heta}_{m{ heta}} J(m{ heta})}_{ ext{opposite direction}} \underbrace{m{ heta}_{m{ heta}} J(m{ heta})}_{ ext{direction of the gradient}}$

Using gradient descent (Use when $(X^TX)^{-1}$ is singular.)

STEP 1: start off with random solution for θ and calculate $J(\theta)$.

STEP 2: update θ in order to reduce cost function. This is done by changing θ in direction where gradient is less.

STEP 3: We stop when certain criterium is met (e.g. stop when θ no longer significantly changes, or after a certain # of iterations)

$$egin{aligned}
abla_{m{ heta}} J(m{ heta}) &= 2(\mathbf{X}^{ op}\mathbf{X}m{ heta} - \mathbf{X}^{ op}\mathbf{y}) \ &= 2\mathbf{X}^{ op}(\mathbf{X}m{ heta} - \mathbf{y}) \end{aligned}$$
 $abla_{m{ heta}} J(m{ heta}) &= 2\mathbf{X}^{ op}(\overbrace{\mathbf{X}m{ heta}}^{ ext{error}} - \mathbf{y}) \end{aligned}$
 $abla_{m{ heta}} J(m{ heta}) = 2\mathbf{X}^{ op}(\overbrace{\mathbf{X}m{ heta}}^{ ext{error}} - \mathbf{y})$

$$m{ heta}^{(ext{new})} = m{ heta}^{(ext{current})} - \eta
abla_{m{ heta}} J(m{ heta})$$
 $m{ heta}^{(ext{new})} = m{ heta}^{(ext{current})}$
 $m{ heta}_{ ext{opposite direction}} m{ heta}_{ ext{mall step}}
abla_{m{ heta}}
abla_{m{ heta}} J(m{ heta})$
 $m{ heta}_{ ext{opposite direction}}$

 η = learning rate

ANSWERS

```
def _solve_normal(self, X, y):
   X b = augment matrix(X)
    n samples, n features = X b.shape
    # replace the code below (which returns random values for theta) with your solution to return the correct solution for theta
    # START EXERCISE 1.1 #
    X trans = X b.transpose()
    A = np.linalg.inv(X trans.dot(X b))
    b = X trans.dot(y)
    self.theta = A.dot(b)
    #OR
    self.theta = np.dot(np.linalg.inv(np.dot(np.transpose(X_b),X_b)),np.dot(np.transpose(X_b),y))
    # END EXERCISE 1.1 #
    return self.theta
```

```
def _solve_gradient_descent(self, X, y, n_epochs, learning_rate): #linear regression with gradient descent
    X b = augment matrix(X)
    n_samples, n_features = X_b.shape
    # replace the code below (which returns random values for theta) with your solution to return the correct solution for theta
    # START EXERCISE 1.2 #
    self.theta = np.random.randn(n_features)
    #om deze loop te gebruiken moet je kijken naar de formules
    for epoch in range(n epochs):
         prediction = X_b.dot(self.theta)
         error = prediction - y
         gradient = 2 * X b.T.dot(error)
                                                                                               small step
                                                             \boldsymbol{\rho}^{(\text{new})} = \boldsymbol{\rho}^{(\text{current})}
         self.theta -= learning_rate*gradient
    # END EXERCISE 1.2 #
                                                                                 opposite direction
                                                                                                       direction of the gradient
```

return self.theta

$$abla_{oldsymbol{ heta}} J(oldsymbol{ heta}) = 2 \mathbf{X}^ op (\underbrace{\mathbf{X} oldsymbol{ heta}}_{ ext{prediction}} - \mathbf{y})$$

```
import tests
import numpy as np
from sklearn.linear_model import LinearRegression

tests.linear_regression(MyLinearRegression, LinearRegression, epochs=1000, learning_rate=0.01)
```


Effect of Learning Rate on Convergence

Large	The algorithm overshoots the minimum, leading to oscillations or even divergence (increasing error).
Medium/ small	The algorithm quickly converges to the minimum without overshooting.
Very small	The algorithm takes many iterations to reach the minimum because each step is tiny

import tests
import numpy as np
from sklearn.linear_model import LinearRegression

tests.linear_regression(MyLinearRegression, LinearRegression, epochs=1000, learning_rate=0.0001)

Logistic regression

Function

$$p(y=1|X) = rac{1}{1 + e^{-(heta_0 + heta_1 x_1 + heta_2 x_2 + \ldots + heta_n x_n)}}$$

This means the probability that y=1 given the value X.

$$\mathbf{p} = rac{1}{1+e^{-\mathbf{X}oldsymbol{ heta}}}$$
 $\mathbf{p} = egin{bmatrix} p(y_1 = 1) \ p(y_2 = 1) \ dots \ p(y_m = 1) \end{bmatrix}, \mathbf{X} = egin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1n} \ 1 & x_{21} & x_{22} & \dots & x_{2n} \ dots & dots & dots & dots \ 1 & x_{m1} & x_{m2} & \dots & x_{mn} \end{bmatrix}, oldsymbol{ heta} = egin{bmatrix} heta_0 \ heta_1 \ dots \ heta_n \end{bmatrix}$

Gradient of logistic regression loss function

$$J(oldsymbol{ heta}) = -rac{1}{m} \sum_{i=1}^m [y_i \log(p_i) + (1-y_i) \log(1-p_i)]$$

$$oldsymbol{ heta}^{ ext{(next)}} = oldsymbol{ heta}^{ ext{(current)}} - \eta
abla_{oldsymbol{ heta}} J(oldsymbol{ heta})$$
 $oldsymbol{ heta}^{ ext{(next)}} = oldsymbol{ heta}^{ ext{(current)}} - \eta rac{1}{m} \mathbf{X}^ op (\mathbf{p} - \mathbf{y})$

Logistic regression loss function

$$J(oldsymbol{ heta}) = -rac{1}{m} \sum_{i=1}^m [y_i \log(p_i) + (1-y_i) \log(1-p_i)]$$

1. What is the name of the summation factor?

Given a training data $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ we can estimate the model coefficients $\hat{\beta}_0$ and $\hat{\beta}_1$ that maximise the <u>likelihood function</u>:

$$\mathcal{E}(\beta_0, \beta_1) = \prod_{i: y_i = 1} p(x_i) \prod_{i': y_i = 0} (1 - p(x_i'))$$

i.e. it gives a probability close to 0 for observations in class 0 and close to 1 for observations in class 1.

Logistic regression

Function

$$p(y=1|X) = rac{1}{1 + e^{-(heta_0 + heta_1 x_1 + heta_2 x_2 + \ldots + heta_n x_n)}}$$

This means the probability that y=1 given the value X.

$$\mathbf{p} = rac{1}{1+e^{-\mathbf{X}oldsymbol{ heta}}}$$
 $\mathbf{p} = egin{bmatrix} p(y_1 = 1) \ p(y_2 = 1) \ dots \ p(y_m = 1) \end{bmatrix}, \mathbf{X} = egin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1n} \ 1 & x_{21} & x_{22} & \dots & x_{2n} \ dots & dots & dots & dots \ 1 & x_{m1} & x_{m2} & \dots & x_{mn} \end{bmatrix}, oldsymbol{ heta} = egin{bmatrix} heta_0 \ heta_1 \ dots \ heta_n \end{bmatrix}$

Gradient of logistic regression loss function

$$J(oldsymbol{ heta}) = -rac{1}{m} \sum_{i=1}^m [y_i \log(p_i) + (1-y_i) \log(1-p_i)]$$

$$oldsymbol{ heta}^{ ext{(next)}} = oldsymbol{ heta}^{ ext{(current)}} - \eta
abla_{oldsymbol{ heta}} J(oldsymbol{ heta})$$
 $oldsymbol{ heta}^{ ext{(next)}} = oldsymbol{ heta}^{ ext{(current)}} - \eta rac{1}{m} \mathbf{X}^ op (\mathbf{p} - \mathbf{y})$

ANSWERS

```
class MyLogisticRegression:
   def init (self, epochs=1000, learning rate=0.01):
        self.theta = None
        self.epochs = epochs
        self.learning rate = learning rate
   def fit(self, X, y):
       X_b = augment_matrix(X)
        n_samples, n_features = X_b.shape
        self.theta = np.random.randn(n features)
        # END EXERCISE 3.1 #
        for _ in range(self.epochs):
             predictions = sigmoid(X b.dot(self.theta))
             error = predictions - y
             gradients = 1 / n samples * X b.T.dot(error)
             self.theta -= self.learning rate * gradients
        #'''
        # FND FXFRCTSF 3.1 #
```

$$m{ heta}^{(ext{next})} = m{ heta}^{(ext{current})} - \eta
abla_{m{ heta}} J(m{ heta})$$
 $m{ heta}^{(ext{next})} = m{ heta}^{(ext{current})} - \eta rac{1}{m} \mathbf{X}^ op (\mathbf{p} - \mathbf{y})$