

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ _	Фундаментальные науки
КАФЕДРА	Прикладная математика

Отчёт по лабораторной работе №4

Численное решение краевых задач для двумерного уравения Пуассона

Студент:	Φ Н2-62Б		А.И. Токарев
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
			Ю. А. Сафронов
		(Подпись, дата)	(И.О. Фамилия)
			
Проверил:			
		(Подпись, дата)	(И. О. Фамилия)

Оглавление

1.	Погрешность на точном решении	3
	1.1. Пример №1	3
	1.2. Пример №2	4
2.	Контрольные вопросы	6

1. Погрешность на точном решении

1.1. Пример №1

Требуется рассмотреть погрешность разностной схемы на точном решении и проверить порядок аппроксимации. Рассмотрим второй тестовый пример:

$$\Delta u = 0, \quad (x_1, x_2) \in G = [0, 1] \times [0, 1],$$

 $\frac{\partial u}{\partial n}(x_1, 0) = -1, \quad \frac{\partial u}{\partial n}(x_1, 1) = 1,$
 $u(0, x_2) = 1 + x_2, \quad u(0, x_2) = 1 + x_2.$

Точное решение:

$$u(x_1, x_2) = 1 + x_2.$$

Проведем рассчет на равномерной сетке для разных шагов по пространственным координатам, для этих решений построим таблицу с погрешностью на точном решении в норме C пространства непрерывных функций:

h1 \ h2	0.2	2. →	0.1	2. →	0.05
0.2	0.04551	2.23527 →	0.02036	2.12304 →	0.00959
2.↓	0.977448↓	2.17335 ⅓	0.972302↓	2.05865 🗵	0.969666↓
0.1	0.04656	2.2235 →	0.02094	2.11729 →	0.00989
2.↓	1. ↓	2.22456 🗵	1.00048↓	2.11729 🛚	1.↓
0.05	0.04656	2.22456 →	0.02093	2.11628 →	0.00989

Рис. 1. Значение рядом со стрелочкой показывает, во сколько раз уменьшилась ошибка или уменьшился шаг

Рис. 2. График точного решения

Рис. 3. График численного решения при $N_1=30,\,N_2=30\,\,(h_1=h_2=\frac{1}{30})$

2. Контрольные вопросы

1. Оцените число действий, необходимое для перехода на следующий слой по времени методом переменных направлений.

Чтобы расчитать прогонку для перехода к промежуточному временному слою нужно $5(N_2-1)$ действий, для перехода от промежуточного к следующему нужно еще $5(N_1-1)$ действий. Для подсчета правой части $F_{ij}^k, j=\overline{1,N_2-1},$ нужно $3(N_2-1)$ действий, для подсчета правой части $\hat{F}_{ij}^k, i=\overline{1,N_1-1},$ нужно еще $3(N_1-1)$ действий. Итого требуется

$$(3+5)(N_2-1)(N_1-1) + (3+5)(N_1-1)(N_2-1) = 16(N_2-1)(N_1-1) = O(N_1N_2)$$

действий (без учета подсчета $\frac{1}{h_1^2}$, $\frac{1}{h_2^2}$ и т.д.).

- 2. Почему при увеличении числа измерений резко возрастает количество операций для решения неявных схем (по сравнению с одномерной схемой)? Потому что матрица системы сильно увеличивается.
- 3. Можно ли использовать метод переменных направлений в областях произвольной формы?
 - Да. Форма области влияет лишь на размерность трехдиагональной матрицы на каждой итерации.
- 4. Можно ли использовать метод переменных направлений для решения пространственных и вообще n-мерных задач?
 - Нет. Существует локально-одномерная схема, которую можном трактовать как обобщение продольно-поперечной схемы (метод переменных направлений) на трехмерный случай (и даже на случай произвольного числа измерений).
- 5. Можно ли использовать метод переменных направлений на неравномерных сетках?

Да, можно, но только на прямоугольных.