

Cloud Native Security 101: Building Blocks, Patterns and Best Practices

Rafik Harabi

Who Am I?

- Senior Solution Architect at Sysdig, Cloud Security Advocate
- Focus on Cloud Native Security and Observability
- Previously working on go to Cloud programmes

<u>rafikharabi</u>

@rafik8

Who are you?

- Who is here for the first time?
- Who knows one of those acronyms: CWPP, CSPM, KSPM, CIEM, CNAPP, CDR?
- Who knows two of them?
- Who knows three?
- All of them?

Agenda

- Cloud Native Security acronyms
- Anatomy of Cloud Native application
- Lifecycle of Cloud Native application
- Cloud Native Security Platform building blocks.
- Attack vectors.
- Patterns & Best Practices.
- Personas and Workflows.

Anatomy of Cloud Native Application SECURITYCON NORTH AMERICA 2023

Cloud Infrastructure

CWPP

Cloud Workload Protection Platform Workload and application security (Container, VM, Serverless).

CSPM

Cloud Security Posture Management Cloud assets configuration security: Protect the cloud control plane, basically tracking cloud resources and verifying the static configuration of the cloud

KSPM

Kubernetes Security
Posture Management

Security configuration assessment for Kubernetes.

CIEM

Cloud Infrastructure
Entitlement Management

Manage identity and access security for both humans and services. Reducing the risk of excessive permissions and entitlement in the cloud.

CDR

Cloud Detection and Response

Threat Detection and Response for Cloud Assets and Workloads.

CNAPP

Cloud Native
Application Protection
Platform

A platform that combine CSPM, CIEM, CWPP and CDR.

CNAPP Building Blocks

CSPM (& KSPM)

- Vulnerability Management
- Cloud Misconfigurations / IaC
- Cloud Inventory
- Cloud Threat Detection
- Compliance

CNAPP

CIEM

- Cloud IAM: Identities and Permissions
- Detect excessive permissions

CWPP

- Vulnerability Management
- Container / K8s Runtime
 Security
- Serverless Security
- Host/Container Threat Detection

CDR

- Cloud Threat Detection
- Container / K8s Runtime
 Security
- Host Threat Detection

Attack Vectors

Cloud Attack Vectors

- Cloud network breaches
- 2 Unauthorized resource access

- Cloud data exfiltration
- Cloud security misconfiguration
- 5 Vulnerability exploits

Kubernetes Attack Vectors

- Access K8S API Server
 / ETCD API
- 2 Dashboard misconfiguration
- Malicious container image in registry
- Application with exploitable vulnerability
- Gain access to secrets
- 6 Docker daemon misconfiguration

Container Workload Attack Vectors

- Vulnerable OS/Container engine
- 2 Vulnerable application
- 3 Exposed Container engine
- Insecure image registry
- 5 Privileged containers
- 6 Misconfigured container
- Privilege escalation on host
- Insufficient Network isolation

Patterns & Best practices

Lifecycle of Cloud Native Application

Iteration

Secure Cloud Native Application

CODE	BUILD	Deploy	RUN			Respond & Forensics
Infrastructure as Code Validation	Vulnerability Management	Admission	Configuration Management	Identity and Access Management	Threat Detection	Incident Response
Drift prevention Block risky configs	CI/CD pipelines, registries, and hosts Prioritization based on in-use vulns	Block risky images Block risky config	CSPM / cloud misconfigurations Cloud Inventory	CIEM / least privilege Prioritization based on in-use permissions	Cloud threat detection Workload runtime security	 Capture detailed record for forensics Block malicious containers / processes

Container In-Use vulnerabilities Prioritization

- Pattern: Prioritize images to be fixed based on packages that are really in use
- Why: Image contains usually many packages that are embedded but never used/loaded
- Result: Focus on what really matter to proritze and fix (avoid engineers fatigue)
 - multi-level vulnerabilities focus:
 - In use?
 - Exploitable ?
 - Has fix?
- Both for containers and Kubernetes hosts

Container In-Use vulnerabilities Prioritization

Container Image Signing

- Risk:
 - Deploy and run non-compliant/trusted image
- Benefits:

 - Container image integrity
 Images are from a trusted source
 Safe handover (from development to production)

Gatekeeper pattern (AC)

Based on Kubernetes
 Admission controller

Risk:

- Vulnerability Image
- Image from non trusted source
- Compromised Image

Benefits:

 Avoid deploying and running non compliant workloads

Base Image & Layer Analysis

Use a library of base images from a trusted source

Start with a minimal base image

Base Image & Layer Analysis

Continuous & Actionable Compliance SECUR

- Continuous CSPM: all misconfiguration are flagged, addressed in an automated and continuous way
- Configuration Drift detection and remediation

Risk Assessment and Prioritization

Personas & Workflows

Cloud Security Personas

Developer

- Build secure application
- Fix Vulnerability

Platform Engineer

- Building Platform using IaC
- Platform troubleshooting

DevOps

- Automation
- Continuous Integration
- Continuous Delivery

DevSecOps

- Automation
- Continuous Integration
- Continuous Delivery
- VulnerabilityManagement
- Policies implementation

Security Engineer

- Vulnerabilities Reports
- Compliance Reports
- Implement Policies

Security Architect

- Threat Modeling & Attack Surface
- Security Posture
- Define Policies

SecOps

- Threat Detection
- Forensics

CISO

- Compliance
- Risk Governance

Cloud Security Personas

DevSecOps workflow (CI scan)

DevSecOps (Registry scan)

- Risks:
 - Skip CI pipeline
 - 0-day vulnerability in previously validated image
 - Pulling non validated image from public repository (introduce malware, cryptomining or high and critical vulnerabilities)
- Pattern: Continuously scan container registries.

DevSecOps (workload integrity)

DevSecOps

DevSecOps (Admission Controller)

DevSecOps (Runtime scan)

- Risks:
 - 0-day vulnerability in running images (Log4shell ...)
- Pattern: Continuously scan running containers. SIEM Reporting Image Scan Result **Ticketing Kubernetes Cluster Admission Controller** Node Check vuln status Host & Container Scanner Check signature **Deploy**

laC security (build phase)

laC security (run phase)

Takeaways

- Cloud Native security implementation is a team and collaboration matter.
- Cloud native security should be adopted gradually:
 - It depends on your cloud journey stage.
 - Always start with the most important use cases for your business.

Further reading

- CNAPP Cloud Security: <u>https://sysdig.com/blog/cnapp-cloud-security-sysdig/</u>
- Google Cloud Podcast:
 EP94 Meet Cloud Security Acronyms with Anna Belak
- Gartner: <u>Innovation Insight for Cloud-Native Application Protection Platforms</u>
- MITRE ATT&CK Matrix for Containers: https://attack.mitre.org/matrices/enterprise/containers/

Thank you! Any questions?

Don't forget to rate the session and provide your feedback please :

CLOUDNATIVE SECURITYCON

NORTH AMERICA 2023

