《计算理论导引》期末试卷

南京大学计算机科学与技术系

2016年6月

本试卷满分100分,共六题。考试时间2小时。开卷。

姓名	学号	成绩

一. (30分)

- (1) 什么是 Turing 机?
- (2) 什么是 Church-Turing Thesis?
- (3) 为什么算法和 Turing 机概念在可以构成"思维机器"的现代观点中占有如此核心的地位? 是否在原则上存在一个算法可达到绝对极限呢?

- 二. (30 分) 设 A 表示 \mathcal{EF} , B 表示 $\mathcal{PRF} \mathcal{EF}$, C 表示 $\mathcal{GRF} \mathcal{PRF}$, D 表示 $\mathcal{RF} \mathcal{GRF}$, E 表示不可计算的数论函数类。判定下列数论函数所属的函数类,选择 A、B、C、D、E 之一,填在题后的表格中。
 - (1) $f: \mathbb{N} \to \mathbb{N}$ 为处处无定义的函数。
 - (2) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(n) = \begin{cases} 0, & \text{若 } n \text{ 为偶数} \\ \text{无定义, } \text{ 否则} \end{cases}$$

- (3) Ackermann 函数。
- (4) $f: \mathbb{N}^2 \to \mathbb{N}$ 定义为

$$f(m,0) = m$$

$$f(m, n+1) = n + f(m^2, n)$$

- (5) $f: \mathbb{N} \to \mathbb{N}$ 定义为 $f(n) = \lfloor \log_{10} n \rfloor$,这里 $\lfloor x \rfloor$ 为对 x 向下取整。
- (6) $f: \mathbb{N}^2 \to \mathbb{N}$ 定义为

$$f(m,n) = \begin{cases} 1, & \text{若存在 } M, N \in \Lambda \text{ 使得 } m = \lceil M \rceil, n = \lceil N \rceil \text{ 且 } M =_{\beta} N \\ 2, & \text{否则} \end{cases}$$

- (7) $f: \mathbb{N} \to \mathbb{N}$ 定义为 $f(n) = \pi$ 的十进制展开式中的第 n 个数字。
- (8) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(n) = \begin{cases} 0, & \text{若存在 Turing} \text{ 机 } M \text{ 使 } n = \sharp M \text{ 且 } M \text{ 对于一切输入皆停机} \\ 1, & \text{否则} \end{cases}$$

(9) Gödel 的 *β*–函数。

(10)
$$f: \mathbb{N} \to \mathbb{N}$$
 定义为 $f(n) = 2^{3^4}$ ··(n+2)
$$n+1$$
 层高。

对于上述各函数,判定其所属函数类,选择 $A \times B \times C \times D \times E$ 之一,填在下面的表格中。

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)

三. (10 分) 构造 $ADD \in \Lambda^{\circ}$ 使 $ADD \lambda$ —定义数论函数 add

$$\begin{aligned} \operatorname{add}(x,0) &= x \\ \operatorname{add}(x,y+1) &= \operatorname{suc}(\operatorname{add}(x,y)) \end{aligned}$$

这里 suc 为后继函数。

四. (10 分) 若在系统 $\lambda\beta$ 中加入

$$(\star) \qquad \lambda x. \, x = \lambda x. \, xx$$

作为额外公理,则对任何的 $M,N \in \Lambda$, $\lambda \beta + (\star) \vdash M = N$ 。

五. (10 分) 设M为如下定义的Turing 机:

	0	1
1	0R8	0R2
2	0R3	1R2
3	1R4	1R3
4	1R5	
5	1L6	
6	0L7	1L6
7	0R1	1L7
8		

输入: $(2,1):01^n0\cdots$,这里 $n\in\mathbb{N}^+$ 。求输出。(只需要写出结果。)

六. (10 分) 设 Turing 机 M 计算函数 f(x)=2x,试求 Turing 机 P 其计算函数 $g(x)=2^x$ 。 (只需要写出构造 P 的思想。)

《计算理论导引》期末试卷

南京大学计算机科学与技术系

2017年6月

本试卷满分100分, 共六题。考试时间2小时。开卷。

姓名	学号	成绩

一. (30 分)

- (1)什么是 Turing 机?
- (2)什么是 Church-Turing Thesis? 你认可它吗?
- (3)什么是 Halting Problem? 它可判定吗?

- 二.(30 分) 设A表示 $\mathcal{E}\mathcal{F}$,B表示 $\mathcal{P}\mathcal{R}\mathcal{F} \mathcal{E}\mathcal{F}$,C表示 $\mathcal{G}\mathcal{R}\mathcal{F} \mathcal{P}\mathcal{R}\mathcal{F}$,D表示 $\mathcal{R}\mathcal{F} \mathcal{G}\mathcal{R}\mathcal{F}$,E表示不可计算的数论函数类。判定下列数论函数所属的函数类,选择A、B、C、D、E之一,填在题后的表格中。
- (1) $f: \mathbb{N} \to \mathbb{N}$ 为处处无定义的函数。
- (2) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(n) = \begin{cases} 0, & \exists n \text{为素数} \\ \text{无定义, 否则} \end{cases}$$

- (3) Ackermann 函数。
- (4) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(m) = \begin{cases} 0, 若存在M \in \Lambda$$
使 $m = \lceil M \rceil$ 且 M 有 $\beta - nf$ 1, 否则

- (5) $f: \mathbb{N} \to \mathbb{N}$ 定义为 $f(n) = [n! \cdot \cos(1)]$, 这里[x]为对x向下取整。
- (6) $f: \mathbb{N}^2 \to \mathbb{N}$ 定义为

$$f(m,n) = \begin{cases} 1, 若存在M, N \in \Lambda$$
使得 $m = \lceil M \rceil, n = \lceil N \rceil$ 且 $M =_{\beta} N$ 2, 否则

(7)
$$f: \mathbb{N} \to \mathbb{N}$$
定义为 $f(n) = (n+1)^{(n+1)}$, 共 $(n+1)$ 层

(8) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(n) = \begin{cases} 0, 若存在Turing机M使n = \sharp M 且M对于一切输入皆停机 1, 否则 \end{cases}$$

- (9) $G\ddot{o}del$ 的 β -函数。
- (10) $f: \mathbb{N} \to \mathbb{N}$ 定义为 $f(n) = [\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{(n+1)^2}]$,这里[x]为对x向下取整。

对于上述各函数,判定其所属函数类,选择A、B、C、D、E之一,填在下面的表格中。

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)

三. (10 分) 构造 $L \in \Lambda^{\circ}$ 使 $L\lambda$ – 定义数论函数 l , 其定义如下:

$$l(x) = \begin{cases} 0, \quad \text{若x偶} \\ 1, \quad \text{若x奇} \end{cases}$$

四. (10 分) 若在系统 $\lambda\beta$ 中加入

$$(\star) \quad \lambda xy.xy = \lambda xy.yx$$

作额外公理,则对任何的 $M,N\in\Lambda,\lambda\beta+(\star)\vdash M=N$ 。

五. (10 分)构造机器 M 使

$$S:01^{n}01^{m}0...$$

输入 \uparrow 时
 $t:0....01^{m}01^{n}0...$
输出 \uparrow (可利用已有机器)

六. (10 分)越来越多的人使用智能手机,人们在使用的过程中或多或少的遇到过手机死机的情况,死机的现象往往是有些 app 运行了不曾定义的数学运算造成的,此时手机的表现是无法对用户的操作做出任何反馈,我们这里把该现象描述为手机被"冻结"。

假如人们想构造一个能监测手机是否被冻结的 app。

证明不存在一个 app, 我们把它称为 Freeze Test, 简称 FT。

其满足: 当FT 检测一个 app A 时,

- (1)当 A 会冻结手机,则 FT 送回 Yes;
- (2)当 A 不会冻结手机,则 FT 送回 No.

(谨以此题向 Alan Turing 先生致敬!)

《计算理论导引》期末试卷

南京大学计算机科学与技术系

2018年6月

本试卷满分100分,共七题。考试时间2小时。开卷。

姓名	学号	成绩

一. (30分)

- (1) 什么是 Turing 机?
- (2) 什么是 Church-Turing Thesis? 你拥护吗?
- (3) 什么是 Turing 机的通用性 (universality)?
- (4) 什么是一般递归函数?
- (5) 什么是 $\lambda\beta$ 系统的 CR 性质?

- 二. $(20 \, \mathcal{G})$ 设 A 表示 \mathcal{EF} , B 表示 $\mathcal{PRF} \mathcal{EF}$, C 表示 $\mathcal{GRF} \mathcal{PRF}$, D 表示 $\mathcal{RF} \mathcal{GRF}$, E 表示不可计算的数论函数类。判定下列数论函数所属的函数类,选择 A、B、C、D、E 之一,填在题后的表格中。
 - (1) $f: \mathbb{N} \to \mathbb{N}$ 为处处无定义的函数。
 - (2) Ackermann 函数。
 - (3) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(n) = \begin{cases} 0, & \text{若 } n \text{ 为奇数} \\ \text{无定义, } & \text{否则} \end{cases}$$

(4) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(m) = \begin{cases} 0, & \text{若存在 } M \in \Lambda \text{ 使得 } m = \lceil M \rceil \text{ 且 } M \text{ 呈形 } x_1 x_2 \cdots x_n, \text{ 这里 } x_i \text{ 为变元} \\ 1, & \text{否则} \end{cases}$$

(5) $f: \mathbb{N}^2 \to \mathbb{N}$ 定义为

$$f(m,n) = \begin{cases} 1, & \text{若存在 } M, N \in \Lambda \text{ 使得 } m = \lceil M \rceil, n = \lceil N \rceil \text{ 且 } M =_{\beta} N \\ 2, & \text{否则} \end{cases}$$

- (6) $f: \mathbb{N} \to \mathbb{N}$ 定义为 $f(n) = |n! \cdot \cos(1)|$,这里 |x|为对 x 向下取整。
- (7) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(n) = \begin{cases} 0, & \text{若存在 Turing 机 } M \text{ 使得 } n = \sharp M \text{ 且 } M \text{ 对于一切输入皆停机} \\ 1, & \text{否则} \end{cases}$$

(8)
$$f: \mathbb{N}^2 \to \mathbb{N}$$
 定义为 $f(n,m) = 3^3$. $\overset{\cdot \cdot \cdot 3^n}{\longrightarrow}$ 共 $m+1 \uparrow 3$ 。

- (9) Gödel 的 β-函数。
- (10) $f: \mathbb{N} \to \mathbb{N}$ 定义为 $f(n) = \left\lfloor \left(n + 1 + \frac{1}{n+1}\right)^{n+1} \right\rfloor$, 这里 $\lfloor x \rfloor$ 为对 x 向下取整。

对于上述各函数,判定其所属函数类,选择 $A \times B \times C \times D \times E$ 之一,填在下面的表格中。

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)

三. (10分) 设 $f: \mathbb{N} \to \mathbb{N}$ 为一元函数,其定义如下:

$$f(0) = 0,$$

 $f(1) = 1,$
 $f(n+2) = (n+2) (f(n+1) + f(n)).$

证明:

1.
$$f(n) \le (n+1)!$$

2.
$$f(0) = 0$$
, $f(n+1) = (n+2)f(n) + (-1)^n$

3.
$$f(n) = (n+1)! \sum_{i=0}^{n+1} \frac{(-1)^i}{i!}$$

4.
$$f \in \mathcal{EF}$$

四. (10 分) 若在系统 $\lambda\beta$ 中加入

$$(\star) \qquad \lambda x. \, x = \lambda x. \, xxx$$

作为额外公理,则对任何的 $M,N\in\Lambda$, $\lambda\beta+(\star)$ \vdash M=N。

五. (10分) 构造机器 M 使得其满足

输入
$$s:01^n01^m0\cdots$$
 时,输出 $t:0\cdots01^{2m}01^{2n}0\cdots$

(注: 构造时可利用已有机器)

六. (10 分) (谨以此题向 Alan Turing 先生致敬!)

设 \mathcal{L} 为某个给定的程序设计语言。对于每一个 \mathcal{L} -程序 P,假设我们已经构造了程序 P 的 Gödel 编码 $\sharp P$,且由 $\sharp P$ 可能行地重构 P。证明: 若定义数论谓词 H(x,y) 为 "编码为 y 的程序 P 对于输入 x 停机",则 H(x,y) 不可判定;即不存在一般递归函数 h 使得

$$h(x,y) = \begin{cases} 0, & \text{若 } H(x,y) \text{ 真} \\ 1, & \text{否则} \end{cases}$$

七. $(10\, f)$ Let f(n) be the n-th digit in the decimal expansion of the real number $\sinh(1)$, where $\sinh(x)=(e^x-e^{-x})/2$ is the hyperbolic sine function. For example, suppose that $\sinh(1)=a_0.a_1a_2\cdots$, then $f(0)=a_0,\,f(1)=a_1,\,f(2)=a_2,\,\cdots$. Prove that function f is Turing-computable. Furthermore, prove that it is elementary. $\Diamond f(n)$ 为实数 $\sinh(1)$ 的十进制展开式中的第 n 位数字,其中 $\sinh(x)$ 为双曲正弦函数。例如,假设 $\sinh(1)=a_0.a_1a_2\cdots$,那么 $f(0)=a_0$, $f(1)=a_1$, $f(2)=a_2$,…。证明函数 f 是 Turing 可计算的。进而,证明 f 是初等函数。

《计算理论导引》期末试卷

南京大学计算机科学与技术系 2019 年 6 月

本试卷满分100分, 共七题。考试时间2小时。开卷。

姓名	学号	成绩

一. (30分)

- (1) 什么是 Church-Turing Thesis? 你拥护吗?
- (2) 什么是通用 Turing 机?
- (3) 什么是部分递归函数?
- (4) 什么是 $\lambda\beta$ 系统的 CR 性质?
- (5) 什么是配对函数组?
- (6) 什么是停机问题?

- 二. (20 分) 设 A 表示 $\mathcal{E}\mathcal{F}$, B 表示 $\mathcal{P}\mathcal{R}\mathcal{F} \mathcal{E}\mathcal{F}$, C 表示 $\mathcal{G}\mathcal{R}\mathcal{F} \mathcal{P}\mathcal{R}\mathcal{F}$, D 表示 $\mathcal{R}\mathcal{F} \mathcal{G}\mathcal{R}\mathcal{F}$, E 表示不可计算的数论函数类。判定下列数论函数所属的函数类,选择 A、B、C、D、E 之一,填在题后的表格中。
 - (1) $f: \mathbb{N} \to \mathbb{N}$ 为处处无定义的函数。
 - (2) Ackermann 函数。
 - (3) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(n) = \begin{cases} 0, & \text{若 } n \le 100\\ \text{无定义}, & \text{否则} \end{cases}$$

(4) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(m) = \begin{cases} 0, & \text{若存在 } M \in \Lambda \text{ 使得 } m = \lceil M \rceil \text{ 且 } M \text{ 呈形 } \lambda v.vv\cdots v, \text{ 这里 } v \text{ 为变元} \\ 1, & \text{否则} \end{cases}$$

(5) $f: \mathbb{N}^2 \to \mathbb{N}$ 定义为

$$f(m,n) = \begin{cases} 1, & \text{若存在 } M, N \in \Lambda \text{ 使得 } m = \lceil M \rceil, \ n = \lceil N \rceil, \ \coprod M \neq_{\beta} N \\ 2, & \text{否则} \end{cases}$$

- (6) $f: \mathbb{N} \to \mathbb{N}$ 定义为 $f(n) = \lfloor n! \cdot 2^n \cdot \sqrt{e} \rfloor$, 这里 $\lfloor x \rfloor$ 为对 x 向下取整。
- (7) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(n) = \begin{cases} 0, & \text{若存在 Turing } \text{机 } M \text{ 使得 } n = \sharp M \text{ 且 } M \text{ 对于一切输入皆停机} \\ 1, & \text{否则} \end{cases}$$

- (9) Gödel 的 β-函数。
- (10) $f:\mathbb{N}\to\mathbb{N}$ 定义为 $f(n)=\lfloor a_n\rfloor$,这里 $\lfloor x\rfloor$ 为对 x 向下取整, $\{a_n\}$ 为单调递增数列且 $\lim_{n\to\infty}a_n=\pi$ 。

对于上述各函数,判定其所属函数类,选择 A、B、C、D、E 之一,填在下面的表格中。

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)

三. (10 分) 设 $K, S \subseteq \mathbb{N}$ 是可判定的 (decidable),证明

- (1) N − S 是可判定的;
- (2) *K*∩*S* 是可判定的;
- (3) $\mathcal{K} \cup \mathcal{S}$ 是可判定的。

四. $(10 \, \text{分})$ 证明:数论函数 $f(n) = \left\lfloor (\frac{\sqrt{5}+1}{2})^n \right\rfloor$ 为初等函数。

五. (10 分) 若在系统 $\lambda\beta$ 中加入

$$(\star)$$
 $I = K$

作为额外公理,则对任何的 $M,N\in\Lambda$, $\lambda\beta+(\star)$ \vdash M=N。

六. (10 分) 构造机器计算函数 $f(x) = x^3$;

(注: 构造时可利用已有机器)

七. (10 分)Let f(n) be the n-th digit in the decimal expansion of the real number $\frac{e^2+1}{2e}$. For example, suppose that $\frac{e^2+1}{2e}=a_0.a_1a_2a_3\cdots$, then $f(0)=a_0,\,f(1)=a_1,\,f(2)=a_2,\cdots$. Prove that function f is Turing-computable. Furthermore, prove that it is elementary.

令 f(n) 为实数 $\frac{e^2+1}{2e}$ 的十进制展开式中的第 n 位数字。例如,假设 $\frac{e^2+1}{2e}=a_0.a_1a_2a_3\cdots$,那么 $f(0)=a_0$, $f(1)=a_1$, $f(2)=a_2$, \cdots 。证明函数 f 是 Turing 可计算的。进而,证明 f 是初等函数。

《计算理论导引》期末试卷

南京大学计算机科学与技术系 2019 年 12 月

本试卷满分100分, 共七题。考试时间2小时。开卷。

姓名	学号	成绩

一. (30分)

- (1) 什么是 Church-Turing Thesis? 你拥护吗?
- (2) 什么是通用 Turing 机?
- (3) 什么是部分递归函数?
- (4) 什么是 $\lambda\beta$ 系统的 CR 性质?
- (5) 什么是配对函数组?
- (6) 什么是停机问题?

- 二. $(20\, \mathcal{G})$ 设 A 表示 $\mathcal{E}F$, B 表示 $\mathcal{P}\mathcal{R}F \mathcal{E}F$, C 表示 $\mathcal{G}\mathcal{R}F \mathcal{P}\mathcal{R}F$, D 表示 $\mathcal{R}F \mathcal{G}\mathcal{R}F$, E 表示不可计算的数论函数类。判定下列数论函数所属的函数 类,选择 A、B、C、D、E 之一,填在题后的表格中。
 - (1) $f: \mathbb{N} \to \mathbb{N}$ 为处处无定义的函数。
 - (2) Ackermann 函数。
 - (3) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(n) = \begin{cases} 0, & \text{若 } n \text{ 呈形 } m^m \\ \text{无定义}, & \text{否则} \end{cases}$$

(4) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(m) = \begin{cases} 0, & \text{若存在 } M \in \Lambda \text{ 使得 } \lceil m \rceil = \lceil M \rceil \text{ 且 } M \text{ 呈形 } \lambda vu.\,vuvu\cdots vu, \text{ 这里 } v,u \text{ 为变元} \\ 1, & \text{否则} \end{cases}$$

(5) $f: \mathbb{N}^2 \to \mathbb{N}$ 定义为

$$f(m,n) = \begin{cases} 1, & \text{若存在 } M, N \in \Lambda \text{ 使得 } \lceil m \rceil = \lceil M \rceil, & \lceil n \rceil = \lceil N \rceil, & \text{且 } M \neq_{\beta} N \\ 2, & \text{否则} \end{cases}$$

- (6) $f: \mathbb{N} \to \mathbb{N}$ 定义为 $f(n) = \left| (\frac{\sqrt{5}+1}{2})^n \right|$,这里 [x] 为对 x 向下取整。
- (7) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(n) = \begin{cases} 0, & \text{若存在 Turing } \text{机 } M \text{ 使得 } n = \sharp M \text{ 且 } M \text{ 对于一切输入皆停机} \\ 1, & \text{否则} \end{cases}$$

- (9) Gödel 的 β -函数。
- (10) $f: \mathbb{N} \to \mathbb{N}$ 定义为 $f(n) = \lfloor a_n \rfloor$, 这里 $\lfloor x \rfloor$ 为对 x 向下取整, $\{a_n\}$ 为单调 递减数列且 $\lim_{n \to \infty} a_n = \pi$ 。

对于上述各函数,判定其所属函数类,选择 A 、B 、C 、D 、E 之一,填在下面的表格中。

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)

- 三. (10 分) 设 $K, S \subseteq \mathbb{N}$ 是可判定的 (decidable),证明
 - N S 是可判定的;
 - (2) *K*∩*S* 是可判定的;
 - (3) $\mathcal{K} \cup \mathcal{S}$ 是可判定的。

- 四. (10 分) 设数论函数 $f(n) = \lfloor (\sqrt{6} + \sqrt{5})^{2n} \rfloor$,
 - (1) 计算 f(3) 的值;
 - (2) 证明 f(n) 为初等函数.

五. (10 分) 若在系统 $\lambda\beta$ 中加入

$$(\star)$$
 $\mathbf{I} = \mathbf{S}$

作为额外公理,则对任何的 $M,N\in\Lambda$, $\lambda\beta+(\star)$ \vdash M=N。

六. $(10 \, \text{分})$ 构造机器计算函数 $f(x) = x^4$; (注:构造时可利用已有机器)

七. (10分)

Let f(n) be the n-th digit in the decimal expansion of the real number e. For example, suppose that $e=a_0.a_1a_2a_3\cdots$, then $f(0)=a_0,\,f(1)=a_1,\,f(2)=a_2,\,\cdots$. Prove that function f is Turing-computable. Furthermore, prove that it is elementary.

令 f(n) 为实数 e 的十进制展开式中的第 n 位数字。例如,假设 $e=a_0.a_1a_2a_3\cdots$,那么 $f(0)=a_0$, $f(1)=a_1$, $f(2)=a_2$, \cdots 。证明函数 f 是 Turing 可计算的。进而,证明 f 是初等函数。

《计算模型导引》期末试卷

南京大学计算机科学与技术系 2020 年 6 月

本试卷满分100分, 共七题。考试时间2小时。开卷。

姓名	学号	成绩

- 一. (20分)解释下列概念:
 - (1) 一般递归函数
 - (2) 数论全函数的 λ -可定义性
 - (3) λ -演算中 $\lambda\beta$ 的 CR 性质
 - (4) Turing 机(Turing Machine)
 - (5) 停机问题

- 二. $(20\, \text{分})$ 设 A 表示 \mathcal{EF} , B 表示 $\mathcal{PRF} \mathcal{EF}$, C 表示 $\mathcal{GRF} \mathcal{PRF}$, D 表示 $\mathcal{RF} \mathcal{GRF}$, E 表示不可计算的数论函数类。判定下列数论函数所属的函数类,选择 A、B、C、D、E 之一,填在题后的表格中。
 - (1) $f: \mathbb{N} \to \mathbb{N}$ 为处处无定义的函数。
 - (2) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(n) = \begin{cases} 0, & \text{若 } n \text{ 为平方数} \\ 1, & \text{否则} \end{cases}$$

- (3) Ackermann 函数。
- (4) $f: \mathbb{N}^2 \to \mathbb{N}$ 定义为

$$f(n,m) = \begin{cases} 0, & \text{若 } n = P_m \\ \text{无定义, 否则} \end{cases}$$

- (5) $f: \mathbb{N} \to \mathbb{N}$ 定义为 $f(n) = \lfloor 10^n \cdot e \rfloor$, 这里 $\lfloor x \rfloor$ 为对 x 向下取整,e 为自然 对数之底。
- (6) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(n) = \begin{cases} 1, & \text{若存在 } M \in \Lambda \text{ 使得 } \lceil n \rceil = \lceil M \rceil \text{且 } M \text{ 有 } \beta - nf \\ 2, & \text{否则} \end{cases}$$

(7)
$$f: \mathbb{N} \to \mathbb{N}$$
 定义为 $f(n) = 2^{3}$ ··(n+1) n 层。

(8) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(n) = \begin{cases} 0, & \text{若存在 Turing 机 } M \text{ 使 } n = \sharp M \text{ 且 } M \text{ 对于一切输入皆停机} \\ 1, & \text{否则} \end{cases}$$

- (9) Gödel 的 β-函数。
- (10) $f: \mathbb{N} \to \mathbb{N}$ 定义为 $f(n) = \left\lfloor \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n+1} \right\rfloor$, 这里 $\lfloor x \rfloor$ 为对 x 向下取整。

对于上述各函数,判定其所属函数类,选择 A、B、C、D、E之一,填在下面的表格中。

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	

三. (10分)

- (1) 构造 $\mathbf{D} \in \Lambda^{\circ}$ 使 $\mathbf{D} \lambda$ -定义数论全函数 f(x) = 2x。
- (2) 构造 $\mathbf{H} \in \Lambda^{\circ}$ 使 $\mathbf{H} \lambda$ -定义数论全函数 $g(x) = \left\lfloor \frac{x}{2} \right\rfloor$ 。

四. (10 分) 若在系统 $\lambda\beta$ 中加入

$$(\star) \qquad \lambda x.xx = \lambda x.xxx$$

作为额外公理,则对任何的 $M,N\in\Lambda$, $\lambda\beta+(\star)\vdash M=N$ 。

五. (10 分) 构造计算下列函数的 Turing 机: f(x,y) = x - y

六. (20分)

- (1) What is Church-Turing's thesis? 何谓 Church-Turing 论题?
- (2) Let f(n) be the n-th digit in the decimal expansion of the real number sin(1), where sin(x) is the sine function. For example, suppose that $sin(1) = 0.a_1a_2a_3\cdots$, we have f(0) = 0, $f(1) = a_1$, $f(2) = a_2$, \cdots . Prove by Church-Turing's thesis that the function f is computable. 令 f(n) 为实数 sin(1) 的十进制展开式中的第 n 位数字,其中 sin(x) 是正弦函数。例如,假设 $sin(1) = 0.a_1a_2a_3\cdots$,则我们有 f(0) = 0, $f(1) = a_1$, $f(2) = a_2$, \cdots 。利用 Church-Turing 论题证明函数 f 是可计算的。
- (3) Prove that the above function f is elementary. 证明上述函数 f 是初等的。

七. $(10 \, \text{分})$ 设 f 为 k 元数论全函数,证明: 若 f 为 Turing-可计算函数,则 f 为一般递归函数。

《计算模型导引》期末试卷

南京大学计算机科学与技术系 2021 年 6 月

本试卷满分100分, 共七题。考试时间2小时。开卷。

姓名	学号	成绩			

- 一. (20分)解释下列概念:
 - (1) Church-Turing Thesis
 - (2) 原始递归函数
 - (3) λ -演算中的不动点算子
 - (4) Turing 机 (Turing Machine)
 - (5) 停机问题

- 二. $(20\, \%)$ 设 A 表示 \mathcal{EF} , B 表示 $\mathcal{PRF} \mathcal{EF}$, C 表示 $\mathcal{GRF} \mathcal{PRF}$, D 表示 $\mathcal{RF} \mathcal{GRF}$, E 表示不可计算的数论函数类。判定下列数论函数所属的函数类,选择 A、B、C、D、E 之一,填在题后的表格中。
 - (1) $f: \mathbb{N} \to \mathbb{N}$ 为处处无定义的函数。
 - (2) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(n) = \begin{cases} 0, & \text{若 } n \text{ 为素数} \\ 1, & \text{否则} \end{cases}$$

- (3) Ackermann 函数。
- (4) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(n) = \begin{cases} 0, & \text{若 } n \text{ 为素数} \\ \text{无定义, } \text{ 否则} \end{cases}$$

- (5) $f: \mathbb{N} \to \mathbb{N}$ 定义为 $f(n) = \lfloor 10^n \cdot e \rfloor$, 这里 $\lfloor x \rfloor$ 为对 x 向下取整,e 为自然 对数之底。
- (6) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(n) = \begin{cases} 1, & \text{若存在 } M \in \Lambda \text{ 使得 } \lceil n \rceil = \lceil M \rceil \text{ 且 } M \text{ 有 } \beta - nf \\ 2, & \text{否则} \end{cases}$$

(7) $f: \mathbb{N}^2 \to \mathbb{N}$ 定义为

$$f(m,n) = \begin{cases} 2^{2^{n-2^{n}}} \end{cases} \\ + m + 1 \\ - m \end{cases}$$
 若 $m \neq 0$
 若 $m = 0$

(8) $f: \mathbb{N} \to \mathbb{N}$ 定义为

 $f(n) = \begin{cases} 0, & \text{若存在 Turing } \text{机 } M \text{ 使得 } n = \sharp M \text{ 且 } M \text{ 对于一切输入皆停机} \\ 1, & \text{否则} \end{cases}$

- (9) Gödel 的 β -函数。
- (10) $f: \mathbb{N} \to \mathbb{N}$ 定义为 $f(n) = \left| (n + \frac{1}{n})^{\frac{1}{n}} \right|$, 这里 [x] 为对 x 向下取整.

对于上述各函数,判定其所属函数类,选择 A、B、C、D、E 之一,填在下面的表格中。

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)

- 三. (15 分) 设 $f(n) = \lfloor (2+\sqrt{3})^n \rfloor$,
 - (1) 计算 f(5).
 - (2) 证明 f(n) 为初等函数.

- 四. (15 分) 证明: 若在系统 $\lambda\beta$ 中加入
- $(\star)\quad \lambda x.x=\lambda x.x\cdots x\quad (在\lambda x.x\cdots x 中有n+3 \uparrow x, 且n\in \mathbb{N})$ 作为额外公理,则对任何的 $M,N\in \Lambda$, $\lambda\beta+(\star)\vdash M=N$ 。

五. (10 分) 构造 Turing 机 M 使其计算函数 $f: \mathbb{N}^2 \to \mathbb{N}$, 这里 $f(x,y) = x^2y$.

六. $(10\, \mathcal{G})$ 设 $l\in\mathbb{N}^+$, 对于 $0\leq n\leq l$, M_n 为 Turing 机,证明存在 Turing 机 M 使对于任何输入 $\overline{(n_1,\cdots,n_k)}$, 若对于 $0\leq n\leq l$, $M_n|\overline{(n_1,\cdots,n_k)}\twoheadrightarrow \overline{y_n}$, 则对于 $0\leq n\leq l$, $M|\overline{(n,n_1,\cdots,n_k)}\twoheadrightarrow \overline{y_n}$.

七. $(10\, \circlearrowleft)$ Show that $M\in \Lambda$ is a fixed-point combinator iff M is a fixed-point of SI. 在 $\lambda-$ 演算中,对于 $M\in \Lambda$,证明: $(\forall F\in \Lambda.F(MF)=_{\beta}MF)\Leftrightarrow SIM=M$,这里 $I\equiv \lambda x.x$, $S\equiv \lambda xyz.xz(yz)$.