

UNDERSTANDING TAUTOMERISM (IN 2½D)

Roger Sayle

NextMove Software, Cambridge, UK

UNDERSTANDING TAUTOMERISM (IN 1D, 2D, 2½D AND 3D)

Roger Sayle
NextMove Software, Cambridge, UK

TAUTOMERISM 101

- Tautomers are isomers that (easily) interconvert by migration of hydrogen atoms¹.
- The term "tautomer" was introduced by Conrad Laar in 1885 in a paper describing the interconversion of $C_6H_5-N_2-C_{10}H_6-OH \Leftrightarrow C_6H_5-N_2H=C_{10}H_6=O$.

MOLECULES EXIST IN MULTIPLE FORMS

• A common misunderstanding is that there exists one "true" isomer [to be registered in a database].

• In reality, these compounds exist as mixtures.

WAHL AND SANDER'S TAUTOBASE (2020) IN DATAWARRIOR

 An excellent resource (derived from Peter Taylor's Treatise and other sources) is Tautobase.

TAUTOMERS AND IONIZATION, OH MY!

$$H_3C$$
 NH_2
 H_3C
 NH_2
 H_3C
 NH_2
 H_3C
 NH_2
 NH_2
 NH_3C
 NH_4
 NH_5
 NH_5
 NH_5
 NH_5
 NH_5
 NH_6
 NH_7
 NH_8
 NH_8
 NH_8
 NH_8
 NH_8

common cation pKa ~ -1.5

common anion pKa ~ 15

TAUTOMER RATIOS BY PKA PREDICTION

$$K_{a1} = \frac{[AB-][H+]}{[HAB]}$$
 and $pK_{a1} = -\log_{10} K_{a1}$
 $K_{a2} = \frac{[AB-][H+]}{[ABH]}$ and $pK_{a2} = -\log_{10} K_{a2}$
 $\frac{K_{a1}}{K_{a2}} = \frac{[AB-]/[HAB]}{[AB-]/[ABH]} = \frac{[ABH]}{[HAB]} = K_T$
 $K_T = 10^{(pK_{a1}-pK_{a2})}$

- Hence with an accurate way to predict acid disassociation constants (pKa), we can predict tautomer ratios.
- Even with approximate pKa predictions, we can determine the most probable/preferred tautomer.

HAMMETT AND TAFT EQUATIONS

- In 1937, Louis Hammett observed the additive effects of electron withdrawing substituents on pKa.
- The pKa of phenols is given by $9.92 2.23 \Sigma \sigma$.

- σ_{para} for nitro is 1.24 and σ_{ortho} for amine is 0.03, so the pKa of CHEMBL 316992 (above) is
 - 9.92 2.23*(1.24+0.03) = 7.09.
- Hence is 67% deprotonated physiological pH (7.4).

HIGHLY RECOMMENDED READING

PROOF OF CONCEPT VALIDATION

 Taking the classic example of 4-pyridone, and using Hammett equations for pyridones vs. phenols, we indeed confirm that the 4-pyridone is significantly preferred.

The higher pKa indicates the preferred form.

YVONNE MARTIN'S EXAMPLE

• In "Let's Not Forget Tautomers", Yvonne gave a more challenging example, that breaks the usual trend.

- Here the 2,6-dichloropyridinol is shown to be preferred, but 2-chloro prefer the pyridone form.
- It also shows 2,3-diCl is predominantly ionized.

TAUTOBASE #1007

 Another tricky example from Tautobase, where the pyrazinol is preferred over the pyrazinone.

CONSISTENCY VS. REALITY

 In database registration and AI/ML, it is often convenient to standardize resonant systems based upon the asymmetry of the local atom environment.

 Unfortunately, these registration heuristics often don't match the physiological tautomeric preference.

GUANIDINE NORMALIZATION

- The pKa of Guanidine is given by 14.0 3.60 $\Sigma \sigma^*$.
- So the double bond/deprotonation "prefers" to be towards the most electron withdrawing group.

$$H_2N$$
 H_2N
 H_3
 H_2N
 H_3
 H_4
 H_5
 H_5
 H_5
 H_7
 H_8
 H_8

 Note that a proton is more electron withdrawing than a alkyl chain (for example in arginine).

WIKIPEDIA ROGUE'S GALLERY

Siguazodan

Methylnitronitrosoguanidine^[1]

Asciminib

Nω-Nitro-L-arginine

Sibrafiban

TAFT'S o*

• Inductive effects are modelled by σ^* , σ_{meta} or σ_l .

R-group	σ*	σ_{meta}
*OCCC	1.68	-0.25
*N(C)C	0.32	-0.15
*CC	0.10	-0.07
*C	0.00	-0.07
*[H]	0.49	0.00
*c1cccc1	0.75	0.06
*0	1.34	0.12
*Cl	2.96	0.37
*C#N	3.30	0.56
*[N+](=O)[O-]	4.25	0.71

• Stocks, Alcaraz and Griffen, "On Medicinal Chemistry", 2007.

TAUTOMERIC NORMALIZATIONS

Substructures influenced by EWG/EDG substituents.

PETER ERTL'S FANTASTIC CRAIG 2.0

• Note the horizontal banding; π is a global property but σ is dominated by the attachment atom.

SIGMA, SIGMA, EVERYWHERE

• Peter Ertl's uses of QM calculations to estimate σ values focused on Hammett's σ_{para} and σ_{meta} , but alas not Taft's σ^* . Fortunately, $\sigma^{*\sim}$ 5.1 σ_{meta} + 0.47.

PROPAGATION COEFFICIENTS

Likewise for propagation through common linkers...

PROPAGATION COEFFICIENTS

- $\sigma^*(^*C[R]) = 0.37\sigma^*(^*[R])$
- $\sigma^*(^*C=C[R]) = 0.33\sigma^*(^*[R]) + 0.26$
- $\sigma^*(^*C\#C[R]) = 0.29\sigma^*(^*[R]) + 1.17$
- $\sigma^*(^*C(=O)[R]) = 0.65\sigma^*(^*[R]) + 1.30$
- $\sigma^*(*N[R]) = 0.70\sigma^*(*[R]) 0.14$
- $\sigma^*(*O[R]) = 0.64\sigma^*(*[R]) + 1.81$
- $\sigma^*(*S[R]) = 0.55\sigma^*(*[R]) + 1.26$
- $\sigma^*(*S(=O)[R]) = 0.50\sigma^*(*[R]) + 2.88$
- $\sigma^*(*S(=O)(=O)[R]) = 0.54\sigma^*(*[R]) + 3.08$

THE ORIGINS OF σ_{META} AND σ_{PARA}

• Dewar and Grisdale (1962) decomposed σ_{meta} and σ_{para} in terms of field and mesomeric effects using Hückel theory.

image credit:wikipedia

EXTENSION TO POLYAROMATIC SYSTEMS

 Longuet-Higgins (1950) and Perrin (1965) extended Hammett equation to polyaromatic rings.

ALGORITHMIC SUMMARY

- First pass apply SMIRKS transforms to normalize to a reasonable set of tautomers (and ionization states).
- Second pass use patterns and Hammett and Taft sigma values to selected a (physiological) preference.
 - Common functional groups can be looked up in tables.
 - Propagation equations can handle common linkers.
 - Approximation algorithms can be used in missing groups have a related experimental value.
 - The connection atom type can provide a "default" value.
 - Ties can arbitrarily be split using canonical SMILES.

TODO

• Hydrogen bonding and lone pair repulsion effects can be handled by classic electrostatics, $\sum_{i>j} q_i q_j/r_{ij}$, where partial charges q can be determined using MMFF94 (atom types) and distances r can be determined from tables, 2D or 3D distance geometry.

IMPROVED DEPICTIONS

Eluxadoline

ACKNOWLEDGEMENTS

- Peter Taylor
- Peter Kenny
- Peter Ertl
- Ingvar Lagerstedt
- Thomas Sander
- John Bradshaw
- Darren Green

The NextMove Software Team

PERIODIC TABLE MADE EASY

• Dmitri Mendeleev, the father of cheminformatics, introduced a visualization of chemical behaviour.

N⁺ behaves like C, C⁻ behaves like N, C⁺ behaves like B and B⁻ behaves like C. Likewise, Li⁺ AlH₄⁻

AROMATIC BORON CHEMISTRY

- OpenSMILES considers B(III)⁺⁰ to be aromatic (0 π e).
- I propose B(IV)⁻¹ to also be aromatic (1 π electron).

$$H_3C$$
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 CH_3

- RDKit considers all three structures different.
- Aromatization would make #2 and #3 equivalent.
- Normalization should probably equivalence all 3.

