Peter Smith, Introduction to Formal Logic (CUP, 2nd edition)

Exercises 18: The truth-functional conditional

- (a) Suppose we are working in a PL language where 'P' means Putnam is a philosopher, 'Q' means Quine is a philosopher, etc. Translate the following as best you can:
- (1) If either Quine or Putnam is a philosopher, so is Russell.

$$((Q \lor P) \to R)$$

(2) Only if Putnam is a philosopher is Russell one too.

$$(R \rightarrow P)$$

(3) Quine and Russell are both philosophers only if Sellars is.

$$((Q \land R) \rightarrow S)$$

(4) Russell's being a philosopher is a necessary condition for Quine's being one.

$$(Q \rightarrow R)$$

To say (i) A is a necessary condition for B is to say that you can't have B without having A, so certainly implies (ii) if not-A, then we can't have not-B, or equivalently (ii') if B is to be true, A has to true too and hence implies the corresponding formal wff (iii) $(B \to A)$ is true.

But does (i) say *more* than (iii)? Arguably so – after all $(B \to A)$ is true just so long as A is true, and yet it would seem *very* odd to say that when A happens to be true, it is a necessary condition for any old unrelated B! What's gone missing, it seems, in going from (i) to (iii) is the implication of *some* sort of genuine link between A and B. But in the PL language we have, with just a material conditional available, the given translation for (4), or its contrapositive, is the best we can do.

(5) Russell's being a philosopher is a sufficient condition for Quine's being one.

$$(R \rightarrow Q)$$

To say (i) A is a sufficient condition for B is to say that having A true is enough for ensure that B holds as well, so certainly implies (ii) if A is to be true, B has to true too and hence implies the corresponding formal wff (iii) ($A \rightarrow B$) is true. But does (i) say more than (iii)? Surely so – after all ($A \rightarrow B$) is true just so long as B is true, and yet it would seem very odd to say that when B happens to be true, any old unrelated A is sufficient for B! Again, what's gone missing, it seems, in going from (i) to (iii) is the implication of some sort of genuine link between A and B. But in the language we have, with just a material conditional available, the given translation for (5) is also the best we can do.

(6) Putnam is a philosopher if and only if Quine isn't.

$$((\neg Q \to P) \land (P \to \neg Q))$$

The first clause translate the 'if' part, the second clause translates the 'only if' part.

(7) Provided that Quine is a philosopher, Russell is one too.

$$(Q \rightarrow R)$$

It seems that 'provided that A, B' is typically equivalent to 'if A then B'.

(8) Quine is not a philosopher unless Russell is one.

$$(Q \rightarrow R)$$

(8) is surely equivalent to Quine is a philosopher only if Russell is one, and hence the suggested formal rendition.

Now, if not-A unless B goes to the corresponding formal $(A \to B)$, plain A unless B should go to $(\neg A \to B)$, which is truth-functionally equivalent to $(A \lor B)$. That squares with our response to Exercises 10 (a) 9.

(9) Only if either Putnam or Russell is a philosopher are both Quine and Sellars philosophers.
((Q ∧ S) → (P ∨ R))

- (b) Assuming that we are dealing with a suitable PL language. Which of the following arguments ought to come out valid, assuming that ' \rightarrow ' is a reasonably good surrogate for 'if ..., then ...'? Which is tautologically valid?
- (1) P, $(P \rightarrow Q)$, $(Q \rightarrow R)$ \therefore R

Ought to be valid! Given P and if P then Q we can infer Q by modus ponens. Given if Q then R as well, we can infer R by another modus ponens, getting the conclusion as claimed.

A truth table confirms (1) is tautologically valid.

(2)
$$\neg R$$
, $(P \rightarrow R)$, $(Q \rightarrow P)$ $\therefore \neg Q$

Ought to be valid! Taking the premisses in the opposite order, given if Q then P and if P then R we of course can infer if Q then R (that's the transitivity of the conditional). And from that and the first premiss $\neg R$, our conclusion follows by modus tollens.

A truth table confirms (2) is tautologically valid.

(3)
$$(P \rightarrow \neg (Q \lor R)), (Q \rightarrow R), (\neg R \rightarrow P) \therefore (P \rightarrow R)$$

This doesn't look like a plausible argument! And it isn't tautologically valid – the line of the truth-table where P := T, Q := F, R := F makes the premisses true and conclusion false.

You'd discover that by a brute truth-table test. But you could also reason as follows. Suppose there is a bad line, making the premisses true and conclusion false (as we suspect there will be!). Then, to make the conclusion false, we will need P := T, and R := F. To make the second premiss true, we will then also need Q := F. So there's nothing else to do but check that this assignment of values to the atoms makes the first and third premisses true too – which it does!

(4)
$$(P \lor Q), (P \to R), \neg(Q \land \neg R) \therefore R$$

Ought to be valid! The second and third premisses reflect the claims that if P then R and that we can't have Q without also having R. So if we are also given that P or Q, we know that we can conclude R either way.

A truth table confirms (4) is tautologically valid.

(5)
$$(R \rightarrow (\neg P \lor Q)), (P \land \neg R) : \neg (\neg R \lor Q)$$

This doesn't look like a plausible argument! And it isn't tautologically valid – a line of the truth-table where $P \coloneqq T$, $R \coloneqq F$ (and Q is either value) makes the premisses true and conclusion false.

You'd discover that by a brute truth-table test. But you could also reason as follows. Suppose there is a bad line, making the premisses true and conclusion false (as we suspect there will be!). Then, to make the second premiss true, we will need P := T, and R := F. But R := F is enough to make the first premiss true and the conclusion false!

(6)
$$(\neg P \lor Q), \neg (Q \land \neg R) \therefore (P \to R)$$

Ought to be valid! Suppose we are told that (i) either not-P or Q and (ii) not(Q while not-R). Well, then, if P, by (i) we have Q, and from that and (ii) we can rule out not-R, i.e. conclude R.

A truth table confirms (6) is tautologically valid.

(7) $(P \land \neg R), (Q \rightarrow R) \therefore \neg (P \rightarrow Q)$

Ought to be valid! Suppose we are told that (i) P and not-R, (ii) if Q then R, and (iii) if P then Q. Then (i) gives us P, so from (iii) we get Q and then from (ii) we get R, contradicting (i). So (i) and (ii) together must rule out (iii), i.e. show not-(if P then Q).

A truth table confirms (7) is tautologically valid.

(8)
$$\neg(\neg S \rightarrow (\neg Q \land R)), (P \lor \neg \neg Q), (R \lor (S \rightarrow P)) \therefore (P \rightarrow S)$$

This doesn't look like a plausible argument! And it isn't tautologically valid, as you'd discover by a brute truth-table test.

However, you could also reason as follows. Suppose there is a bad line, making the premisses true and conclusion false (as we suspect there will be!). Then, to make the conclusion false, we will need P := T, and S := F.

But P := T makes the second premiss true, while S := F makes $(S \to P)$ true and hence makes the third premiss true. So can now just choose values of Q and R to make $(\neg Q \land R)$ false, and hence make the first premiss true.

- (c) Which of the following are true for all α, β, γ in a PL language and why? Which of the true claims correspond to true claims about the vernacular (bi)conditional?
- (1) If $\alpha, \beta \vDash \gamma$ then $\alpha \vDash (\beta \to \gamma)$.

This is true. Fix on some wffs α, β, γ . If every relevant valuation which makes α and β true makes γ true, then every valuation which makes α true either doesn't make β true or makes γ true, i.e. every valuation which makes α true makes $(\beta \to \gamma)$ true.

And it corresponds to an intuitive truth: given that α and β logically entail γ , then α entails that if you have β then it will be true that γ .

(2)
$$((\alpha \land \beta) \to \gamma) = (\alpha \to (\beta \to \gamma)).$$

This is true. Take some wffs α, β, γ . You can use a truth-table to confirm that (whatever values those wffs take) $((\alpha \wedge \beta) \rightarrow \gamma)$ always takes the same value as $(\alpha \rightarrow (\beta \rightarrow \gamma))$.

The left-to-right direction corresponds to an intuitive truth. If γ is true given that α and β are, then if α is indeed true, then if β is true as well, then γ will be true. Similarly for the right-to-left direction.

(3)
$$((\alpha \lor \beta) \to \gamma) \triangleq ((\alpha \to \gamma) \lor (\beta \to \gamma)).$$

It is easy to check that $((\alpha \vee \beta) \to \gamma) \vDash ((\alpha \to \gamma) \vee (\beta \to \gamma))$. Indeed we have the stronger claim $((\alpha \vee \beta) \to \gamma) \vDash ((\alpha \to \gamma) \wedge (\beta \to \gamma))$ (why should we expect that?).

But the converse doesn't hold, i.e. $((\alpha \to \gamma) \lor (\beta \to \gamma)) \vDash ((\alpha \lor \beta) \to \gamma)$ is false. Just replace α and γ with false wffs and β with a true wff, and the left-hand wff will be true, and the right-hand wff false.

(4) If
$$\vDash (\alpha \to \beta)$$
 and $\vDash (\beta \to \gamma)$, then $\vDash (\alpha \to \gamma)$.

Obviously true. Take some wffs α, β, γ . If every valuation makes both $(\alpha \to \beta)$ and $(\beta \to \gamma)$ true it will make $(\alpha \to \gamma)$ true.

But the converse doesn't hold, i.e. $((\alpha \to \gamma) \lor (\beta \to \gamma)) \vDash ((\alpha \lor \beta) \to \gamma)$ is false. Just replace α and γ with false wffs and β with a true wff, and the left-hand wff will be true, and the right-hand wff false.

(5) If
$$\vDash (\alpha \to \beta)$$
 and $\vDash (\alpha \to \neg \beta)$, then $\vDash \neg \alpha$.

Obviously true. Take some wffs α, β . If $\vDash (\alpha \to \beta)$, then every valuation which makes α true makes β true. If $\vDash (\alpha \to \neg \beta)$, then every valuation which makes α true makes β false. So no valuation can make α true (since no valuation can make β and $\neg \beta$ true). Hence $\vDash \neg \alpha$.

And this is again what we should intuitively expect: if it a logical truth both that if α then β and if α than $\neg \beta$, then it will be a logical truth that α is false.

- (6) $\models (\alpha \leftrightarrow \alpha)$
- (7) $(\alpha \leftrightarrow \beta) \vDash (\beta \leftrightarrow \alpha)$.
- (8) $(\alpha \leftrightarrow \beta), (\beta \leftrightarrow \gamma) \vDash (\alpha \leftrightarrow \gamma).$

Three easy results corresponding to three intuitive claims about the logic of the biconditional.

- (9) If $\vDash \alpha \leftrightarrow \beta$ then α and β are tautologically consistent.
 - False! Suppose α and β are both contradictions; then $\models \alpha \leftrightarrow \beta$ but they are not tautologically consistent (no valuation makes them true together).
- (10) If $\vDash \alpha \leftrightarrow \neg \beta$ then α and β are tautologically inconsistent.

True! If $\vDash \alpha \leftrightarrow \neg \beta$ then every valuation which makes α true makes β false – hence there is no valuation which makes α and β true together, i.e. they are tautologically inconsistent.

- (d*) On alternative languages for propositional logic:
- (1) Suppose the language PL_1 has just the connectives \rightarrow and \neg (with the same interpretation as before). Show that disjunction and conjunction can be expressed in PL_1 . Conclude that PL_1 has an expressively adequate set of built-in connectives.

This question is starred not because it is difficult or involved, but simply to highlight that here are two (easy!) facts that you ought to know.

- For (1), just note that in PL, $(\alpha \vee \beta)$ is equivalent to $(\neg \alpha \to \beta)$ and $(\alpha \wedge \beta)$ is equivalent to $\neg(\alpha \to \neg\beta)$. Now we knew already that any truth-function can be expressed in PL using a wff using conjunction, disjunction and negation. So now we know that truth-function can be expressed in PL using a wff using just the conditional and negation (by replacing each conjunction or disjunction with an equivalent using the conditional and negation). So in fact the limited resources of PL₁ will be enough to express every truth-function.
- (2) Consider too the variant language PL_2 whose only logical constants are \rightarrow and the absurdity constant \bot . Show that in PL_2 we can introduce a negation connective so that $\neg \alpha$ is shorthand for $(\alpha \rightarrow \bot)$. Conclude that PL_2 is also expressively adequate.

Check that claim that $\neg \alpha$ is equivalent to $(\alpha \to \bot)$. It then follows from the result in (1) that every truth-function can be expressed by some wff using just the conditional and negation, that (2) every truth-function can be expressed by some wff using just the conditional and the absurdity constant.