of september, 28

SEQUENTIAL CIRCUITS :

In significate circuit, there is a feedback path b/w outputs and inputs. It means output depends upon present state as well as past outputs.

R-S hatch

R	S	Qn+1	Clearly comment R Qn Qn
0	0	Qn	No change (memory is
L0	2	1	Set sutaided).
L1	0	0	Risit
1	1	x	Invalid / Forbidden / A of Qn and Qn same, then it is invalid condition.

→ at any 1 imput of NOR gate is high, then the output will be low iverspective of other inputs value.

- \rightarrow set condition $(\overline{Q_n} = 1)*(\overline{Q_n} = 0) \rightarrow S = 1$
- \rightarrow Result condition (Qn=0) & (Qn=1) \rightarrow R=1

NAND Based S-R Latch

es	BR	Qn+1	Comment
0	0	×	gunlid
0	1	81	set
2	0	0	Risit
1	2	TO Qu	No change

 \rightarrow 9 we apply a clock pulse (CP) in latch, it becomes flip-flop.

Flip - Flop

- one bit at a time.
- It has two stable states that's voly it is also called bi-stable multi-vibrator.
- It has two outputs and both are complement of each other. If both are same, then this condition is known as Invalid condition.
- If $Q_{n+1} = 2$ and $\overline{Q_{n+1}} = 0$, this is called set condition.
- of $Q_{n+1} = 0$ and $\overline{Q}_{n+1} = 1$, this is called Reset / (unset) condition.

R-s pip-flop:

CP	R	S	Q _{n+1}	Comment R R
0	K	K	FF doesn't	1 0
1	0	0	Qn	No change CP
1	0	1	1	Set 4
1	1	0		Right
1	1	1	×	Annalid Springer
1				

NOR based R-S flip-flop

NAND Based SR FF:-

CP	R	S	Qn+1	Comment 5
0	×	×	won't	
1	0	0	Qn	No change CP
1	0	1	2	set 0 2
1	2	0	0	Risit
2	2	1	×	Invalid R

De flip flop (DFF):-

· We are getting stable output when both inputs are complement of each other in SR Flip Plop.

Block diagram:

CP	D	Q n+1
1	09	0
1	1	1
MOUNT	100	0

$$Q_{n+1} = D$$

Characteristics Equation of SR Flip Flop.

			V	
CP	S	R	Qn	Qn+1
1	0	0,	3.70 2	0 1
1	0	0		
1	0	1	0	0
		1	1	0
1	0			1
1	2	0	0	
	2	0	1	1
1	+		^	d
1	1	1	0	
1	1	1	1	d

SRI	Rnoo	01	11	10
0	44	1	hyay	8 0
Ь	12.	1	d	d

C. Eq = Q(n+1) = f (f.f. 9/ps, Qn)

DFF :-

CP	D	Qn	Qn+1	
1	0	0	0	
1	0	1	0	
1	1-	0	1	

 $Q_n+1=0$ from Truth Table.

JK flip flop:

$$S = J \overline{Q}_n$$

 $R = K Q_n$

CP	J	K	Qn+1
0	×	X	Qn
1	0	0	an No change
1	0	1	0 Reset
1	1	0	2 Set
1	1	1	an Toggle.

$$J=0$$
, $K=0$
 $Q_n=0$, $Q_n+1=0$
 $Q_n=1$, $Q_n+1=1$

uppor) goet giet

J=2, K=2

Qn = 0, Qn+1=0 $Q_n = 1, Q_n+1=0$

Flap Flor

JK pup pup

an ant J K

o o o d

o I I d

I o d I

I o d O

flip flop conversion: 1. Convert D Flip-Flop into T. Flip Flop. available suguired. STEP1: Draw characteristics Table of required FF and excitation table of available of and combine STEP 2: Now with the help of Boolian Algebra on k-Map determine available flip flop inputs which are of present state (Qn) and required function flip flop inputs. STEP 3: with the help of available ff and suitable logic gates, araw required FF. CT(T) ET(D) ET (b) Qn Qn+1 100 b D= TOQn füp flop SR to JK CT (JK) S= J Q ROLLEGO R = KQn

3° Convert SR to T.

T	Qn	Qn+1	5	R
0	0	0	0	d
0	1	1	d	O
		1	1	0
1	0		0	1
1	1	0		
			1.337 -	

40	convert		convert Dff into				JK FF.			
•	J	K	Qn	Qn+1		D carry	BEJK			
	0	0	0	i		Ĭ	D = Q			
	0	!	0	0		0	D = JQ,	+ KQn		
	0	0	0	1		@1				
	bree	0	0	porti	4	@1	coprincio	tuque		
	130,19,	1	10 spe 1	0	ed	O Maisi	ornal auto	. 795		

* RAC arises due to

i) here triggering either the on -w.

ii) when propogation delay of FF < prop pulse width of CP.

Total time reg. to propogate any signal from 1/p to 0/p

(1) D-FF (T)

iv) SR.

$$Q_{n}=0$$

$$S=1$$

$$R=Q_{n}=0$$

$$Q_{n}+1=1$$

v)

