

In [152	<pre>bias_column = np.ones(shape=(len(X_test),1)) X_test = np.append(bias_column, X_test, axis=1) Y_test = (cdf_train[['quality']]).to_numpy() X = X_train.to_numpy() Y = Y_train.to_numpy() bias_column = np.ones(shape=(len(X_train),1)) X = np.append(bias_column, X, axis=1) B = np.zeros(len(X[0])) \[\mu = 10**(-6) \] B, fold_min_fnew_List, rmse = GradDecent(X, Y, \mu, B, X_test, Y_test) \]</pre>
	plt.plot(fold_min_fnew_List) plt.xlabel('Number Of Iterations') plt.ylabel('Absolute Difference in Loss') plt.title ('Absolute Difference in Loss VS Iterations') plt.show() Absolute Difference in Loss VS Iterations 3.5
	1.5 - 0.5 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 -
In [153	0 20 40 60 80 100 120 140 160 Number Of Iterations
	4 - 3 - 3 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
In [154	<pre>Y_train = adf_train[['price']] X_test = (adf_train.loc[:, adf_train.columns != 'price']).to_numpy() bias_column = np.ones(shape=(len(X_test),1))</pre>
In [155	<pre>X_test = np.append(bias_column, X_test, axis=1) Y_test = (adf_train[['price']]).to_numpy() X = X_train.to_numpy() Y = Y_train.to_numpy() bias_column = np.ones(shape=(len(X_train),1)) X = np.append(bias_column, X, axis=1) B = np.zeros(len(X[0])) \[\mu = 10**(-6) \] B, fold_min_fnew_List, rmse = GradDecent(X, Y, \mu, B, X_test, Y_test) \[\mu \] \[\mu</pre>
	le307 Absolute Difference in Loss VS Iterations 6 - 5 -
	1 - 0 - Number Of Iterations
In [156	plt.plot(rmse) plt.xlabel('Number Of Iterations') plt.ylabel('RMSE') plt.title ('RMSE VS Iterations') plt.show() RMSE VS Iterations 25 - 20 -
	10 - 0.5 - 0.0 - 0
In [157	Parkinsons Dataset X_train = pdf_train.loc[:, pdf_train.columns != 'total_UPDRS'] Y_train = pdf_train[['total_UPDRS']] X_test = (pdf_train.loc[:, pdf_train.columns != 'total_UPDRS']).to_numpy() bias_column = np.ones(shape=(len(X_test),1)) X_test = np.append(bias_column,X_test,axis=1) Y_test = (pdf_train[['total_UPDRS']]).to_numpy() X = X_train.to_numpy() Y = Y_train.to_numpy()
In [158	bias_column = np.ones(shape=(len(X_train),1)) X = np.append(bias_column, X, axis=1) B = np.zeros(len(X[0])) \(\mu = 10**(-6) \) B,fold_min_fnew_List,rmse = GradDecent(X,Y,\mu,B,X_test,Y_test) \[\text{plt.plot(fold_min_fnew_List)} \) plt.xlabel('Number Of Iterations') plt.ylabel('Absolute Difference in Loss') plt.title ('Absolute Difference in Loss VS Iterations') plt.show() \[\text{Absolute Difference in Loss VS Iterations} \] \[\text{Absolute Difference in Loss VS Iterations} \]
	Absolute Difference in Loss 1.0 - 1.0 -
In [159	<pre>plt.xlabel('Number Of Iterations') plt.ylabel('RMSE') plt.title ('RMSE VS Iterations')</pre>
	Plt.show() RMSE VS Iterations 20 -
	0.5 - 0.0 -
In [160	<pre>Wine Quality Dataset X_train = cdf_train.loc[:, cdf_train.columns != 'quality'] Y_train = cdf_train[['quality']] X_test = (cdf_train.loc[:, cdf_train.columns != 'quality']).to_numpy() bias_column = np.ones(shape=(len(X_test),1)) X_test = np.append(bias_column,X_test,axis=1) Y_test = (cdf_train[['quality']]).to_numpy() X = X_train.to_numpy() Y = Y_train.to_numpy() bias_column = np.ones(shape=(len(X_train),1)) X = np.append(bias_column,X,axis=1)</pre>
In [161	<pre>B = np.zeros(len(X[0])) μ = 10**(-5) B, foldmin_fnew_List,rmse = GradDecent(X,Y,μ,B,X_test,Y_test)</pre>
	Absolute Difference in Loss 4 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -
In [162	<pre>plt.xlabel('Number Of Iterations') plt.ylabel('RMSE') plt.title ('RMSE VS Iterations') plt.show()</pre>
	1e150 RMSE VS Iterations 7
	Air Travel Dataset
In []:	<pre>Y_train = adf_train[['price']] X_test = (adf_train.loc[:, adf_train.columns != 'price']).to_numpy() bias_column = np.ones(shape=(len(X_test),1)) X_test = np.append(bias_column,X_test,axis=1) Y_test = (adf_train[['price']]).to_numpy() X = X_train.to_numpy() Y = Y_train.to_numpy() bias_column = np.ones(shape=(len(X_train),1)) X = np.append(bias_column,X,axis=1) B = np.zeros(len(X[0])) p = 10**(-5)</pre>
	<pre>B, fold_min_fnew_List, rmse = GradDecent(X, Y, µ, B, X_test, Y_test) plt.plot(fold_min_fnew_List) plt.xlabel('Number Of Iterations') plt.ylabel('Absolute Difference in Loss') plt.title ('Absolute Difference in Loss VS Iterations') plt.show() plt.plot(rmse) plt.xlabel('Number Of Iterations') plt.ylabel('RMSE') plt.title ('RMSE VS Iterations') plt.show()</pre> Parkinsons Dataset
In []:	<pre>X_train = pdf_train.loc[:, pdf_train.columns != 'total_UPDRS'] Y_train = pdf_train[['total_UPDRS']] X_test = (pdf_train.loc[:, pdf_train.columns != 'total_UPDRS']).to_numpy() bias_column = np.ones(shape=(len(X_test),1)) X_test = np.append(bias_column,X_test,axis=1) Y_test = (pdf_train[['total_UPDRS']]).to_numpy() X = X_train.to_numpy() Y = Y_train.to_numpy() bias_column = np.ones(shape=(len(X_train),1)) X = np.append(bias_column,X,axis=1) B = np.zeros(len(X[0])) p = 10**(-5)</pre>
	<pre>B, foldmin_fnew_List, rmse = GradDecent(X, Y, µ, B, X_test, Y_test) plt.plot(foldmin_fnew_List) plt.xlabel('Number Of Iterations') plt.ylabel('Absolute Difference in Loss') plt.title ('Absolute Difference in Loss VS Iterations') plt.show() plt.plot(rmse) plt.xlabel('Number Of Iterations') plt.ylabel('Number Of Iterations') plt.ylabel('NumSE') plt.title ('RMSE VS Iterations') plt.show()</pre> Exercise 3: Steplength Control for Gradient Descent
In [70]:	<pre>1. steplength-backtracking def stepLengthBacktracking(X,Y,B_old,xtest,ytest):</pre>
In [43]:	<pre>i += 1</pre>
	<pre>X_train = cdf_train.loc[:, cdf_train.columns != 'quality'] Y_train = cdf_train[['quality']] X_test = (cdf_train.loc[:, cdf_train.columns != 'quality']).to_numpy() bias_column = np.ones(shape=(len(X_test),1)) X_test = np.append(bias_column,X_test,axis=1) Y_test = (cdf_train[['quality']]).to_numpy()</pre>
In [44].	<pre>X_train = cdf_train.loc[:, cdf_train.columns != 'quality'] Y_train = cdf_train[['quality']] X_test = (cdf_train.loc[:, cdf_train.columns != 'quality']).to_numpy() bias_column = np.ones(shape=(len(X_test),1)) X_test = np.append(bias_column,X_test,axis=1) Y_test = (cdf_train[['quality']]).to_numpy() X = X_train.to_numpy() bias_column = np.ones(shape=(len(X_train),1)) X = np.append(bias_column,X,axis=1) B = np.zeros(len(X[0])) fold_min_fnew_List,rmse_List, \mu = stepLengthBacktracking(X,Y,B,X_test,Y_test) [5.72282983] [44375614.27355857] [4.66494021e+11] [4.92900566e+12] [4.86622736e+12] [4.86622736e+12] [4.86622736e+12] [4.86622736e+12] [4.86622736e+12] [4.86622736e+12] [4.86622736e+12]</pre>
In [44]:	<pre>X_train = cdf_train.loc(;, cdf_train.columns != 'quality'] Y_train = cdf_train.['quality'] X_test = (cdf_train.loc(;, cdf_train.columns != 'quality']).to_numpy() bias_column = np.ones(shape=[len(X_test,1)) X_test = np.append(bias_column,X_test,axis=1) Y_test = (cdf_train['(quality']]).to_numpy() X = X_train.to_numpy() Y = Y_train.to_numpy() Y = Y_train.to_numpy() X = np.append(bias_column,X,axis=1) B = np.zeros(len(X[0])) fold_mln_fnew_List,xmse_List,p= stepLengthBacktracking(X,Y,B,X_test,Y_test) [5.7228293] [4.66434621e=11] [4.9290056e=12] [4.86622736e=12] [4.86622736e=12] [4.86622736e=12] [4.86622736e=12] [4.86622736e=12] [4.86622736e=12] [4.86622736e=12] [4.86622736e=12] [4.86622736e=1] Alsolute Difference in Loss VS Iterations') plt.ylabel('Mumber Of Therations') plt.ylabel('Mumber Of Therations') plt.ylabel('Absolute Difference in Loss VS Iterations') plt.title ('Absolute Difference in Loss VS Iterations') plt.title ('Absolute Difference in Loss VS Iterations')</pre>
In [44]:	<pre>x_train = cdf_train.loc(;, cdf_train.columns != 'quality') Y_train = cdf_train.['quality'] X_test = (cdf_train.loc(;, cdf_train.columns != 'quality']).to_numpy() bias_column = np.ones(shape=(len(X_test),1)) X_test = np.append(bias_column,X_test,axis=1) Y_test = (cdf_train['('quality'])].to_numpy() X = X_train.to_numpy() Y = Y_train.to_numpy() Y = Y_train.to_numpy() X = np.append(bias_column,X,axis=1) B = np.xeros(len(X(0])) fold_min_fnew_List,rmse_List,p= stepLengthBacktracking(X,Y,B,X_test,Y_test) [5.7228293] [4.375514,2735557] [4.66434021e+11] [4.9290556e+1.2] [4.86622736e+1.2] [4.8662736e+1.2] [4.86622736e+1.2] [4.86622736e+</pre>
In [44]:	X team = old _reals.tow(), old team.columns to 'quality') X_team = (off_reals.tow(), off_reals.columns to 'quality') X_team = (off_reals.tow(), off_reals.columns to 'quality')
	<pre>pyt.osin = oof_train.loolin.dof;, odf_train.columns t= 'quality'] % Lett = (oof_train.dof;, odf_train.columns t= 'quality']) to .nampy() % Lett = (oof_train.dof;, odf_train.columns t= 'quality']) to .nampy() % Lett = (oof_train.dof;, odf_train.columns t) % Lett = (oof_train.dof;, odf_train.columns t) % Lett = (oof_train.dof;) % Lett = (oof_train.dof</pre>
In [45]:	### Train = out twon.incol., out twent.notures ! "quality") # Lost = (cof_train.log(), cof_train.columns ! "daslity"); # Lost = (cof_train.log(), cof_train.columns !" "daslity"); # Train = out_popending. # Lost = po_appending. doi.org. % total.py # Train = po_appending. doi.org. % total.py # Train = po_appending. # Train = roughposting. out_post_py # Train = roughpost. # Train = rou
In [45]:	Air Travel Dataset Air Tr
In [45]:	Air Travel Dataset Air Tr
In [45]:	About a Office of Section (1997), and and a Company of Section (1997), and a Compan
In [45]:	Section 1.
In [45]: In [47]:	## About the result of the res
In [46]: In [47]:	AND THE PROPERTY OF THE PROPER
In [46]: In [47]:	All Travel Dateset All Tr
In [46]: In [47]:	AND TOTAL OF THE CONTROL OF THE CONT
In [46]: In [47]:	And the control of th
In [45]: In [47]:	And the control of th
In [45]: In [47]:	And Transformer and Andrews an
In [45]: In [47]:	For interest to the control of the c
In [45]: In [46]: In [47]:	Section of the control of the contro
In [45]: In [47]: In [49]:	The control of the co
In [47]: In [47]: In [49]:	Section of Control of
In [45]: In [46]: In [47]: In [50]:	The control of the co
In [46]: In [47]: In [51]:	

Absolute Difference in Loss VS Iterations 1e24 1.2 1.0 Absolute Difference in Loss
70
9
9 0.2 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 Number Of Iterations plt.plot(rmse_List) plt.xlabel('Number Of Iterations') plt.ylabel('RMSE') plt.title ('RMSE VS Iterations') plt.show() RMSE VS Iterations le10 3.0 2.5 RW 1.5 1.0 0.5 0.0 0.00 0.25 0.50 1.50 1.75 1.00 1.25 2.00 Number Of Iterations **Wine Quality Dataset** cdf_train X_train = cdf_train.loc[:, cdf_train.columns != 'quality'] X test = (cdf train.loc[:, cdf train.columns != 'quality']).to numpy() bias_column = np.ones(shape=(len(X_test),1)) X test = np.append(bias column, X test, axis=1) Y_test = (cdf_train[['quality']]).to_numpy() X = X_train.to_numpy() Y = Y_train.to_numpy() bias_column = np.ones(shape=(len(X_train),1)) X = np.append(bias column, X, axis=1) B = np.zeros(len(X[0])) $\texttt{fold} _\texttt{min} _\texttt{fnew} _\texttt{List}, \\ \texttt{rmse} _\texttt{List}, \\ \mu = \\ \texttt{stepLengthBolddriver} (X, Y, B, 0.001, 1.1, 0.5, X _\texttt{test}, Y _\texttt{test})$ print(μ) old [41921.] new [3.04930416e+12] [48808.49183588] [5.13094674e+08] [2.69698044e+12] [7.08672347e+15] [9.30717481e+18] [6.10702152e+21] 6 [2.00054654e+24] [3.26670626e+26] [2.65078007e+28] [1.06223842e+30] 10 [2.0752247e+31] [1.92335314e+32] 12 [7.95130359e+32] [1.2460027e+33] 14 6.7138671875e-08 In [123... plt.plot(fold_min_fnew_List) plt.xlabel('Number Of Iterations') plt.ylabel('Absolute Difference in Loss') plt.title ('Absolute Difference in Loss VS Iterations') plt.show() Absolute Difference in Loss VS Iterations le69 1.75 1.50 1.25 Absolute Difference in Loss 1.00 0.75 0.50 0.00 10 12 Number Of Iterations In [124... plt.plot(rmse_List) plt.xlabel('Number Of Iterations') plt.ylabel('RMSE') plt.title ('RMSE VS Iterations') plt.show() RMSE VS Iterations 1e33 1.2 1.0 0.8 0.6 0.4 0.2 0.0 10 12 Number Of Iterations **Air Travel Dataset** X_train = adf_train.loc[:, adf_train.columns != 'price']
Y_train = adf_train[['price']] X_test = (adf_train.loc[:, adf_train.columns != 'price']).to_numpy() bias_column = np.ones(shape=(len(X_test),1)) X_test = np.append(bias_column, X_test, axis=1) Y_test = (adf_train[['price']]).to_numpy() X = X_train.to_numpy() Y = Y_train.to_numpy() bias_column = np.ones(shape=(len(X_train),1)) X = np.append(bias_column, X, axis=1) B = np.zeros(len(X[0])) $\texttt{fold_min_fnew_List,rmse_List}, \texttt{\mu=} \ \texttt{stepLengthBolddriver} \ (\texttt{X}, \texttt{Y}, \texttt{B}, \texttt{0.001}, \texttt{1.1}, \texttt{0.5}, \texttt{X_test}, \texttt{Y_test})$ old [18271457.6459] new [1.74157925e+20] [4.66289206e+08] [1.60417376e+15] 2 [2.76407279e+21] [2.3816278e+27] [1.02605863e+33] [2.21024187e+38] [2.38053975e+43] [1.2819676e+48] 8 [3.45176005e+52] [4.64684325e+56] 10 [3.12761431e+60] [1.05238302e+64] 12 [1.77000866e+67] 13 [1.48760853e+70] 14 [6.2438849e+72] 15 [1.30723955e+75] 16 [1.36190289e+77] 17 [7.02616499e+78] [1.77729629e+80] 19 [2.1590059e+81] 20 [1.20339731e+82] 21 [2.75207886e+82] 22 plt.plot(fold__min_fnew_List) plt.xlabel('Number Of Iterations') plt.ylabel('Absolute Difference in Loss') plt.title ('Absolute Difference in Loss VS Iterations') plt.show() Absolute Difference in Loss VS Iterations le167 5 4 Absolute Difference in Loss 1 0 ó 15 20 10 Number Of Iterations plt.plot(rmse) plt.xlabel('Number Of Iterations') plt.ylabel('RMSE') plt.title ('RMSE VS Iterations') plt.show() RMSE VS Iterations 3.0 2.5 2.0 1.0 0.0 20 60 80 100 120 Number Of Iterations **Parkinsons Dataset** In [104... X_train = pdf_train.loc[:, pdf_train.columns != 'total_UPDRS'] Y_train = pdf_train[['total_UPDRS']] X_test = (pdf_train.loc[:, pdf_train.columns != 'total_UPDRS']).to_numpy() bias column = np.ones(shape=(len(X test),1)) X test = np.append(bias column, X test, axis=1) Y_test = (pdf_train[['total_UPDRS']]).to_numpy() X = X_train.to_numpy() Y = Y train.to numpy()bias_column = np.ones(shape=(len(X_train),1)) X = np.append(bias_column, X, axis=1) B = np.zeros(len(X[0])) $\texttt{fold} _\texttt{min} _\texttt{fnew} _\texttt{List}, \\ \texttt{rmse} _\texttt{List}, \\ \mu = \\ \texttt{stepLengthBolddriver} (X, Y, B, 0.001, 1.1, 0.5, X _\texttt{test}, Y _\texttt{test})$ old [3893459.50415063] new [8.38820951e+16] [4224151.72379144] 1 [6.96562241e+11] 2 [5.74477782e+16] 3 [2.3689275e+21] 4 [4.8841588e+25] [5.03473622e+29] 6 [2.59472621e+33] [6.68485643e+36] 8 [8.60783689e+39] 9 [5.53768915e+42] 10 [1.77851497e+45] 11 [2.84709611e+47] [2.26461974e+49] [8.89331878e+50] 14 [1.70176739e+52] 15 [1.54310709e+53] 16 [6.22464199e+53] 17 [9.44227364e+53] 18 plt.plot(fold__min_fnew_List) plt.xlabel('Number Of Iterations') plt.ylabel('Absolute Difference in Loss') plt.title ('Absolute Difference in Loss VS Iterations') plt.show() Absolute Difference in Loss VS Iterations 4.0 3.5 3.0 Absolute Difference in Loss 1.5 1.0 0.5 0.0 0.0 2.5 5.0 7.5 12.5 15.0 17.5 Number Of Iterations In [106... plt.plot(rmse) plt.xlabel('Number Of Iterations') plt.ylabel('RMSE') plt.title ('RMSE VS Iterations') plt.show() RMSE VS Iterations 3.0 2.5 2.0 1.0 0.5 0.0 20 60 100 120 Number Of Iterations 3. Look-ahead optimizer def lookAheadOptimizer(X,Y,B_old,p,k,a,xtest,ytest): $\mu = \mu_{old} *\mu_{plus}$ $B_{new} = B_{old} - (\mu * lossGrad(X,Y,B_{old}))$ i= 0 fold__min_fnew_List = [] rmse List = [] numberOfIterations =500 for t in range (500): while(loss(X,Y,B_old) - (loss(X,Y,B_new)) <= 0):
 B_new = B_old - (\mu* lossGrad(X,Y,B_old))
 fold_min_fnew_List.append(abs(loss(X,Y,B_old)-loss(X,Y,B_new)))</pre> print(RMSE(xtest,ytest,B_old)) rmse_List.append(RMSE(xtest,ytest,B_old)[0]) B_old = B_new i += 1 $\mu = \mu * \mu _{minus}$ print (i) $\textbf{return} \ \texttt{fold} _ \texttt{min} _ \texttt{fnew} _ \texttt{List}, \texttt{rmse} _ \texttt{List}, \mu$