

Tensor Visualization

Curvature Tensor

Scientific Visualization Professor Eric Shaffer

Curvature

Curvature in 1D

- take a curve c
- locally, c can be described as a function y = f(x)

- curvature of $f\left(C(x) = \frac{\partial^2 f}{\partial x^2}\right)$ (2nd derivative of f)
- analytically: C(x) = how quickly the normal \mathbf{n}_c changes around x (why? Because the tangent to c is $\partial f/\partial x$ and its change is $\partial^2 f/\partial x^2$)

Curvature in 2D

- take a surface $S \subset \mathbb{R}^3$
- at each $x_0 \in S$
 - take a coordinate system xyz with x,y tangent to S and z along \mathbf{n}_S
 - locally, S can be described as a function z = f(x,y)

How to describe 2D curvature?

- 1D analogy: how quickly the normal \mathbf{n}_S changes around x_θ
- problem: we have a surface in which direction to look for change?

We must compute

$$C(x,s) = \frac{\partial^2 f(x)}{\partial s^2}$$

for any directions

Curvature Tensor

$$C(x,s) = \frac{\partial^2 f(x)}{\partial s^2}$$

• recall our definition of a tensor $T: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$? The above is precisely that

Also note that

$$\frac{\partial^2 f}{\partial s^2}(x_0) = \mathbf{s}^T H \mathbf{s}.$$

where H is the so-called Hessian of f

$$H = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}$$

In other words, if we have H, we can compute the curvature tensor

- at any point x_0
- in any direction s

The Curvature Tensor

However, there's a problem with the previous definition

- we need to construct local coordinate systems at every point on S
- not obvious how to do that....

General solution:

Describe *S* as an implicit function (i.e. the zero-level isosurface of a function)

$$S = \{x \in \mathbf{R}^3 | f(x) = 0\}$$
 for a given $f: \mathbf{R}^3 \to \mathbf{R}$

Then, we still have

$$\frac{\partial^2 f}{\partial s^2}(x_0) = \mathbf{s}^T H \mathbf{s}$$
 where H is the 3x3 Hessian matrix

$\frac{\partial^2 f}{\partial s^2}(x_0) = \mathbf{s}^T H \mathbf{s} \quad \text{where H is the 3x3 Hessian matrix} \quad H = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial x \partial z} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} & \frac{\partial^2 f}{\partial y \partial z} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} & \frac{\partial^2 f}{\partial y \partial z} \end{pmatrix}$

Conclusion

A curvature tensor is fully described by a 3x3 matrix of 2nd order derivatives

