

Varianta 59

Subiectul I.

- **a)** $AC = 4\sqrt{2}$.
- **b**) 4.
- c) $i^{2007} = -i$.
- **d)** Ecuația tangentei este: x+2y+6=0.
- e) $x_A + y_A + z_A = x_B + y_B + z_B = x_C + y_C + z_C = 4$, deci punctele A, B, C aparțin planului din enunț.
- **f**) $z_{1,2} = 3 \pm 4i$.

Subjectul II.

- 1
- a) $C_5^1 + C_5^3 + C_5^5 = 16$.
- **b**) $\log_2(\log_3 9) = 1$.
- c) $1-2+2^2-2^3+...+2^8=171$.
- **d)** x = 3.
- e) Există 6 funcții surjective ca în enunț.
- 2.
- **a)** $f'(x)=1-\frac{1}{x}$, pentru x>0.
- b) Există un unic punct de extrem (de minim) al funcției f.
- c) $\lim_{x \to \infty} \frac{f(x)}{x} = 1$.
- **d**) f''(x) > 0, $\forall x > 0$ deci funcția f este convexă pe $(0, \infty)$.
- **e**) $\int_{0}^{e} (x-1-f(x)) dx = 1$

Subjectul III.

- **a**) $\det(A) = -4$.
- **b**) $f_A(x) = x^3 + 2x^2 2x 4$.
- c) Se arată prin calcul direct, sau ținând cont de faptul că $f_A(x) = (x+2)(x^2-2)$ și $f_A(-A) = 0$.
- d) Calcul direct.
- e) Pentru orice $n \in \mathbb{N}^*$, considerăm $k \in \mathbb{Z}$ și numerele întregi consecutive k+1, k+2, ..., k+n.

I. $\underline{k \ge 0}$: Din punctul **d**) avem că $P = (k+1) \cdot (k+2) \cdot ... \cdot (k+n) = n! \cdot C_{k+n}^k$ și deoarece $C_{k+n}^k \in \mathbf{N}^*$, rezultă că P este divizibil cu n!.

II. $k \in [-n, -1]$: Avem că P = 0, așadar P este divizibil cu n!.

III.
$$k \le -n-1$$
: Avem $P = (-1)^n \cdot (-k-1) \cdot (-k-2) \cdot ... \cdot (-k-n) = (-1)^n \cdot Q$.

Deoarece numerele -k-n, ..., -k-2, -k-1 sunt numere naturale consecutive, din cazul **I.** rezultă că numărul Q este divizibil cu n!, deci și numărul P este divizibil cu n!.

f) Notăm cu a rădăcina întreagă a polinomului g.

Există polinomul $h \in \mathbf{Z}[X]$ astfel încât $g(X) = (X - a) \cdot h(X)$.

$$E = g(0) \cdot g(1) \cdot g(2) \cdot \dots \cdot g(n) = (-a)(1-a) \cdot \dots \cdot (n-a) \cdot h(0) \cdot h(1) \cdot \dots \cdot h(n)$$

Deoarece $h \in \mathbf{Z}[X]$, avem că

$$h(0) \cdot h(1) \cdot \dots \cdot h(n) \in \mathbf{Z}$$

Pentru că $P = (-a)(1-a) \cdot ... \cdot (n-a)$ este produsul a n+1 numere întregi consecutive, din punctul **e**) rezultă că P este divizibil cu (n+1)!.

Deducem că numărul E este divizibil cu (n+1)!.

g) $\det(A) \cdot \det(A + I_3) \cdot \det(A + 2I_3) \cdot \dots \cdot \det(A + 2006I_3) = f_A(0) \cdot f_A(1) \cdot \dots \cdot f_A(2006)$. Deoarece f_A are coeficienți întregi, aplicăm punctul **f**) pentru n = 2006 și obtinem concluzia.

Subjectul IV.

- a) Calcul direct.
- **b**) Pentru $x \in \mathbf{R}$, avem $g(x) = \arctan(\sin x)$ și g'(x) = f(x).
- c) Funcția g este o primitivă a funcției f, pentru care g(0) = 0.

Se demonstrează că $\forall x \in \mathbf{R}$, $g(x+2\pi)=g(x)$, așadar funcția g este periodică, de perioadă 2π .

d) Pentru
$$x \in \mathbf{R}$$
 şi $n \in \mathbf{Z}^*$, avem $f(2n\pi - x) = f(-x) \stackrel{\text{a}}{=} f(x)$ (1)

Pentru n = 0, avem din a) f(-x) = f(x), deci (1) este adevărată pentru orice $n \in \mathbb{Z}$.

Din (1) obținem că există $g(2n\pi - x) = -g(x), \forall n \in \mathbb{Z}, \forall x \in \mathbb{R}$.

e) Considerăm funcția $h: \mathbf{R} \to \mathbf{R}$, $h(t) = t \cdot f(t)$.

Obţinem
$$I_1 = \int_{0}^{2\pi} h(t) dt = 0 = \int_{0}^{2\pi} h(2\pi - t) dt = 0$$
.

f) Pentru $k \in \mathbb{N}$, făcând schimbarea de variabilă $t - 2k\pi = y$, și folosind a) obținem:

$$\int_{2k\pi}^{2(k+1)\pi} t \cdot f(t) dt = \int_{0}^{2\pi} (y + 2k\pi) \cdot f(y + 2k\pi) dy = \int_{0}^{2\pi} t \cdot f(t) dt = I_{1} = 0.$$

Avem
$$I_n = \int_0^{2n\pi} t \cdot f(t) dt = \int_0^{2\pi} t \cdot f(t) dt + \int_{2\pi}^{4\pi} t \cdot f(t) dt + ... + \int_{2(n-1)\pi}^{2n\pi} t \cdot f(t) dt = n \cdot I_1 = 0$$
.

g) Pentru x > 0, notăm cu $n = \left[\frac{x}{2\pi}\right] \in \mathbb{N}$ și avem că $x \in \left[2n\pi, 2(n+1)\pi\right)$.

Atunci,
$$u(x) = \int_0^x t \cdot f(t) dt = I_n + \int_{2n\pi}^x t \cdot f(t) dt = \int_{2n\pi}^x t \cdot f(t) dt$$
.

$$u\left(2n\pi + \frac{\pi}{2}\right) = \int_{2n\pi}^{2n\pi + \frac{\pi}{2}} t \cdot f(t) dt$$
 şi făcând schimbarea de variabilă $t - 2n\pi = y$ obținem:

$$\lim_{n\to\infty} u\left(2n\pi+\frac{\pi}{2}\right) = \infty.$$

Avem însă
$$u(2n\pi) = \int_{2n\pi}^{2n\pi} t \cdot f(t) dt = 0$$
, de unde $\lim_{n \to \infty} u(2n\pi) = 0$.

În concluzie, nu există $\lim_{x\to\infty} \int_{0}^{x} t \cdot f(t) dt$.