Partie 3:

Les contraintes dues au bruit

Comment transmettre des bits à travers un canal bruité ? Quel niveau de qualité de la transmission peut-on attendre ?

Chaîne de transmission en bande de base

But : trouver à l'instant $t_j = jT + \tau$ la valeur de a_j !

À l'instant d'échantillonnage :
$$y(t_j) = a_j l(\tau) + \sum_{k \neq j} a_k l(\tau + (j-k)T) + b_r(jT + \tau)$$

IES=0 avec le critère de Nyquist

Modélisation du bruit

Bruit : blanc, gaussien centré

• blanc = densité spectrale bilatérale de puissance indépendante de la fréquence (= $N_0/2$)

• gaussien = loi de distribution est gaussienne, à valeur moyenne nulle (centré)

$$p_{b_r}(u) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{u^2}{2\sigma^2}\right) \qquad \sigma^2 = \text{puissance du bruit (à la sortie du filtre de réception)}$$

 $p_{br}(u)$: 'probabilité que le bruit $b_r(t)$ prenne une amplitude=u'

Expression de la puissance de bruit dans une bande B

B : définie dans le domaine des fréquences positives

$$P_{bruit} = N_0 \times B$$

Répartition statistique des échantillons reçus

cas d'une transmission NRZ polaire binaire : $a_i = \pm a$

Algorithme de décision : $\begin{array}{ll} \text{- si } & y(t_j) > 0 \\ \\ \text{alors } & \widehat{a}_j = a \\ \\ \text{- si } & y(t_j) \leq 0 \\ \\ \text{alors } & \widehat{a}_j = -a \\ \end{array}$

Estimation de la probabilité d'erreur

Principe du calcul:

$$P_{erreur} = \operatorname{proba}(a_{j} = -a) \times \operatorname{proba}(\widehat{a}_{j} = a / a_{j} = -a)$$

 $+ \operatorname{proba}(a_{j} = a) \times \operatorname{proba}(\widehat{a}_{j} = -a / a_{j} = a)$

or

$$\operatorname{proba}(\widehat{a}_{j} = a / a_{j} = -a) = \operatorname{proba}(b_{r_{j}} > al(\tau))$$
$$= \int_{al(\tau)}^{+\infty} p_{b_{r}}(u) du$$

alors:

$$P_{erreur} = \frac{1}{2} erfc \left(\sqrt{\frac{a^2 l(\tau)^2}{2\sigma^2}} \right) \qquad \text{où} \qquad erfc(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{+\infty} \exp(-u^2) du$$

Interprétation : rôle du rapport signal/bruit

$$a^2 l(au)^2$$
 : puissance du signal à l'instant d'échantillonnage

 σ^2 : puissance du bruit

- => Probabilité d'erreur dépend du rapport S/B à l'instant d'échantillonnage
- => But = maximiser S/B à l'instant d'échantillonnage !

Rmq: On peut écrire:

$$a^{2}l(\tau)^{2} = a^{2} \left[\int_{-\infty}^{+\infty} G(f)H_{e}(f)H_{r}(f) \exp(j2\pi\tau f) df \right]^{2}$$

$$\sigma^2 = \int_{-\infty}^{+\infty} \frac{N_0}{2} |H_r(f)|^2 df$$

Relation de Cauchy-Schwartz

$$\left| \int u(x)v(x)dv \right|^2 \le \int \left| u(x) \right|^2 dx \int \left| v(x) \right|^2 dx$$

Egalité si :
$$u(x) = \lambda v * (x)$$

Condition pour maximiser le rapport S/B à l'instant d'échantillonnage

Démonstration complète disponible sur Chamilo

1) Rapport S/B max pour un filtre de réception particulier, appelé le filtre adapté :

$$H_r(f) = \lambda F_e^*(f) \exp(-j2\pi rf)$$

2) La valeur du rapport S/B max est connue et dépend de la DSP du bruit, de la puissance de signal à l'entrée du récepteur et de la durée du bit

$$\frac{a^2 l(\tau)^2}{\sigma^2} \bigg|_{\text{max}} = 2 \frac{P_{reçue} \times T_b}{N_0}$$

Récepteur numérique optimal : filtrage adapté

Filtre de réception : adapté à la forme de l'impulsion qui arrive

$$h_r(t) = \lambda f_e(\tau - t)$$

 $\underline{\mathsf{Ex}}$: $forme\ de\ l'impulsion = rectangle$

Forme de la réponse impulsionnelle du filtre adapté ?

Forme de l'impulsion à échantillonner ?

=> Rôle du filtre adapté = concentrer le max d'énergie au moment de la prise de décision !

Probabilité d'erreur pour la transmission binaire en bande de base

probabilité d'erreur fonction du rapport énergie d'un bit / DSP de bruit au niveau du récepteur :

$$P_{erreur} = \frac{1}{2} erfc \left(\sqrt{\frac{E_b}{N_0}} \right)$$

 E_b : énergie du bit = $P_{reçue} \times T_b$

Où:
$$erfc(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{+\infty} \exp(-u^2) du$$

 $\underline{\text{Rmq}} : E_b/N_0 \text{ (dB)} = 10\log_{10}(E_b/N_0) !$

Généralisation à la transmission M-aire en bande de base

$$P_{erreur} \approx \frac{M-1}{M \log_2 M} erfc \left(\sqrt{\frac{3 \log_2 M}{M^2 - 1} \frac{E_b}{N_0}} \right)$$

Rmq: en pratique on mesure TEB qui permet d'estimer la $P_{erreur.}$

- => Si M \uparrow , pour avoir la même qualité de transmission, E_b/N_0 doit \uparrow
- => Si M 1, moins de contraintes fréquentielles, mais + de contraintes sur la puissance émise!

Quelques exemples

Une transmission binaire à 10 Mbit/s, garantissant un TEB de 10⁻³ (pour un signal téléphonique) pour un canal de bande égale à 7 MHz :

- Que se passe-t-il si le signal est momentanément atténué de 5 dB ?

- Comment faire si on veut garantir maintenant un TEB de 10⁻⁶ (pour un signal video) ?

Performances optimales des différentes modulations

Modulations PSK-M

Modulations QAM-M

- => Si M \uparrow , pour avoir la même qualité E_b/N_0 doit \uparrow
- => Si M ↑, moins de contraintes fréquentielles, mais + de contraintes sur la puissance émise !

Lien avec la théorie de l'information

Sous réserve que le débit reste inférieur à la capacité du canal, il est possible de réduire à une valeur arbitrairement petite la probabilité d'erreur sans réduire le débit de transmission.

Expression de la capacité du canal gausien en bit/s (théorème de Shannon-Hartley):

Figure du cours SICN SEOC2A L.Ros

Bilan sur la chaine optimale de transmission numérique

Conditions à respecter pour le récepteur optimal :

filtrage de Nyquist pour supprimer l'IES

$$(F_e \times H_r)(f) = CS_\alpha(f)$$

• filtrage adapté pour maximiser Signal/Bruit à l'instant d'échantillonnage

$$H_r(f) = \lambda F_e^*(f) \exp(-j2\pi \pi f)$$

=> équirépartition du filtrage de Nyquist entre l'émission et la réception

Bilan 4

Canal: de bande B limitée pour la transmission, à bruit additif

Ressources à utiliser le + efficacement possible :

largeur de bande fréquentielle et puissance émise

- Comprendre le compromis bande occupée / puissance émise et les implications en cas d'augmentation du débit binaire
- Connaître les rôles des principaux blocs d'une chaîne de transmission
- Savoir s'adapter au canal
- Faire le lien entre débit binaire et le débit symboles
- Choisir un codage optimal (nombre d'états, forme d'impulsion pour un canal) en fonction de la bande du canal et du débit binaire voulu
- Estimer la qualité de la transmission en utilisant les courbes $P_{erreur}(E_b/N_o)$ ou optimiser la puissance nécessaire en réception
- Savoir interpréter un diagramme de l'œil