title

author

Resumo

abstract

Sumário

1	Introdução	2
2		2 2 3
3	Ajuste dos Modelos	3
4	Desenvolvimento	3
5	Conclusão	3
Bi	ibliography	4

1 Introdução

```
## # A tibble: 4 x 7
     variable
                    mean median
                                    sd
                                          min
                                                max na_count
##
     <chr>
                   <dbl>
                           <dbl> <dbl>
                                       <dbl>
                                              <dbl>
                                                        <dbl>
## 1 Sepal.Length
                    5.84
                            5.8
                                 0.828
                                          4.3
                                                7.9
                                                            0
## 2 Sepal.Width
                                          2
                                                            0
                    3.06
                            3
                                 0.436
                                                4.4
## 3 Petal.Length
                    3.76
                            4.35 1.76
                                          1
                                                6.9
                                                            0
                                                            0
## 4 Petal.Width
                    1.20
                            1.3 0.762
                                          0.1
                                                2.5
```

Tabela 1: You can combine this function too!

Species	$absolute_frequency$	relative_frequency
setosa	50	0.333
versicolor	50	0.333
virginica	50	0.333
Total	150	1.000

You cross-reference tables like this: Table 1

2 Metodologia

Nessa seção são apresentados os modelos aqui utilizados, a saber: β ARMA, KARMA e ARIMA¹

2.1 Modelo β ARMA

A distribuição beta é bastante conhecida pois consegue modelar variáveis aleatórias definidas em intervalos limitados, dessa maneira um caso particular importante é quando o intervalo é unitário iniciando em zero. Dessa maneira foi desenvolvido em [1] o modelo com abordagem temporal para variáveis que podem ser modeladas pela distribuição beta.

Portanto, assumindo que a variável resposta está definida no intervalo (0,1) o modelo assume que a cada variável Y_t pode ser escrita da seguinte maneira:

¹ARIMA: O modelo ARIMA já é bastante conhecido na literatura, portanto aqui é dispensado a sua introdução

$$g(\mu_t) = \alpha + x_t^T \beta + \sum_{i=1}^p \varphi_i [g(y_{t-i}) - x_{t-1}^T \beta] + \sum_{j=1}^q \theta_j r_{t-j}$$
(1)

2.2 Modelo KARMA

O modelo KARMA foi introduzido no contexto de séries temporais com o intuito de acomodar a presença de correlação serial na modelagem da mediana condicional da distribuição Kumaraswamy. O modelo KARMA² proposto em [2] assume que a mediana de cada Y_t pode ser escrita da seguinte maneira:

$$g(\mu_t) = \alpha + x_t^T \beta + \sum_{i=1}^p \varphi_i [g(y_{t-i}) - x_{t-1}^T \beta] + \sum_{j=1}^q \theta_j r_{t-j}$$
 (2)

3 Ajuste dos Modelos

Figura 1: fig name

4 Desenvolvimento

5 Conclusão

You cross-reference figures like this: Figure 1

²Para mais detalhes consultar o artigo

Bibliography

- [1] Rocha AV, Cribari-Neto F. Beta autoregressive moving average models. Test. 2009;18:529.
- [2] Bayer FM, Bayer DM, Pumi G. Kumaraswamy autoregressive moving average models for double bounded environmental data. Journal of Hydrology. 2017;555:385–396.
- [3] R Core Team. R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2021. Available from: https://www.R-project.org/.
- [4] Rosa A. Fastrep: fastrep. 2022.