Student_ID: 19652

Student_Name: Shuilian Shen

21. Project: Design XOR Gate

- Step 1: Study the general idea on how to design XOR Gate
- o Step 2: Using the following rules to design your own AND Gate, OR Gate, and NAND Gate
 - The forward/backward process
 - Forward process
 - Calculate the output Z for the given input (X, Y).
 - Backward process

Adjust weights

- Adjust weights + If the output Z is too low, increase the weights by 0.5 which had inputs that were "1".

 + If the output Z is too high, decrease the weights by 0.5 which had inputs that were "1".

Step 2:

AND Gate

Desired

"And"

Function

 $X Y \mid Z$

0 0 | 0

0 1 0

1 0 0

 $1 \ 1 \ | \ 1$

Loop 1

W1 = W2 = 0

Function

 $X Y \mid Z$

0 0 0

0 1 0

10 0

 $1 \quad 1 \quad 0$

Loop 2

W1=W2=0.5

Function

 $X Y \mid Z$

0 0 | 0

0 1 0

1 0 0

 $1 \ 1 \ | \ 1$

OR Gate

Desired "OR"
Function X Y | Z
---0 0 | 0
0 1 | 1
1 0 | 1

Loop 1 W1=W2=0 Function X Y | Z -----0 0 | 0

1 1 | 1

Loop 2
W1=W2=0.5
Function
X Y | Z
---0 0 | 0
0 1 | 0
1 0 | 0
1 1 | 1

Loop 3
W1=W2=1
Function
X Y | Z
---0 0 | 0
0 1 | 1
1 0 | 1
1 1 | 1

NAND Gate

Train NOR gate to get W1, W2, Y

$$Z := (W0 * C + W1 * X + W2 * Y >= T)$$

where $T := 1.0$.

	Loop 1	Loop 2	Loop 3
Desired	WO = 0.0	W0=0.5	WO=1
"NOR"	W1=W2=0.5	W1=W2=0.5	W1=W2=0.5
Function	Function	Function	Function
C X Y Z	C X Y Z	C X Y Z	C X Y Z
1 0 0 1 1 1 1	1 0 0 0 1 0 1 0 1 0	1 0 0 0 1 0 1 1	1 0 0 1 1 0 1 1
1 1 0 1	1 1 0 0	1 1 0 1	1 1 0 1
1 1 1 0	$1 \ 1 \ 1 \ \ 1$	$1 \ 1 \ 1 \ \ 1$	$1 \ 1 \ 1 \ \ 1$

Loop 4	Loop 5	Loop 6
WO=1	WO=1	W0=1.5
W1 = W2 = 0.0	W1 = W2 = -0.5	W1 = W2 = -0.5
Function	Function	Function
C X Y Z	C X Y Z	C X Y Z
1 0 0 1	1 0 0 1	100 1
1 0 1 1	1 0 1 0	1 0 1 1
1 1 0 1	1 1 0 0	1 1 0 1
$1 \ 1 \ 1 \ \ 1$	$1 \ 1 \ 1 \ \ 0$	$1 \ 1 \ 1 \ \ 0$

Step 3:

$$Z1 := X "AND" Y$$

=0.5 * X + 0.5 * Y >= 1.0

$$Z1 := X "OR" Y$$

=1 * X + 1 * Y >= 1.0

$$Z2 := X "NAND" Y$$

=1.5 + -0.5 * X + -0.5 * Y >= 1.0

$$Z := Z3 := Z1 \text{ "AND" } Z2$$

=(1 * X + 1 * Y >= 1.0) "AND" (1.5 + -0.5 * X + -0.5 * Y >= 1.0)

```
Z := (0.5 * (1.0 * X + 1.0 * Y) = 1.0) + 0.5 * (1.5 * 1.0 + -0.5 * X + -0.5)
* Y >= 1.0
Step 4:
Please prove that the neural network works for XOR Gate
X=1, Y=1
Z := (0.5 * (1.0 * 1.0 + 1.0 * 1.0 >= 1.0) +
     0.5 * (1.5 + -0.5 * 1.0 + -0.5 * 1.0 >= 1.0 >= 1.0)
Z := (0.5 + 0.0 >= 1.0)
Z := (false)
Z := 0
X=1, Y=0
Z := (0.5 * (1.0 * 1.0 + 1.0 * 0.0) = 1.0) +
     0.5 * (1.5 + -0.5 * 1.0 + -0.5 * 0.0 >= 1.0 >= 1.0)
Z := (0.5 + 0.5 >= 1.0)
Z := (true)
Z := 1
X=0, Y=1
Z := (0.5 * (1.0 * 0.0 + 1.0 * 1.0 >= 1.0) +
     0.5 * (1.5 + -0.5 * 0.0 + -0.5 * 1.0 >= 1.0 >= 1.0)
Z := (0.5 + 0.5 >= 1.0)
Z := (true)
Z := 1
X=0, Y=0
Z := (0.5 * (1.0 * 0.0 + 1.0 * 0.0) = 1.0) +
     0.5 * (1.5 + -0.5 * 0.0 + -0.5 * 0.0 >= 1.0 >= 1.0)
```

Hence, proved that OR AND NAND = XOR

Z := (0.0 + 0.5 >= 1.0)

Z := (false)

Z := 0