Ćwiczenia z topologii

Aleksandra Kwiatkowska 20.03.2020

Zadanie 1/11

Nie. Kontrprzykład: metryka dyskretna na X (gdzie |X| > 1). Weźmy dowolny $x \in X$ i kulę $B(x,1) = \{x\}$. W metryce dyskretnej każdy zbiór jest domknięty, więc $B(x,1) = \overline{B(x,1)}$. Z drugiej strony $\{y: d(x,y) \leqslant 1\} = X$, a z warunku na moc zbioru X mamy $X \neq \{x\}$.

Zadanie 1/8

a)

triv

b)

$$\text{Tw. } \overline{A} \cup \overline{B} = \overline{A \cup B}$$

$$U \subseteq V \implies \overline{U} \subseteq \overline{V}$$

- $\bullet \ \overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$
- $\bullet \ \overline{A} \cup \overline{B} \subseteq \overline{A \cup B}$

c)

$$\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$$
 dwie kule o środkach w -1 i 1 o promieniach 1. $A = [0, 1/2)B = (1/2, 1]$

d)

Cel:
$$X \setminus \overline{A} = \operatorname{Int}(X \setminus A)$$
. $X \setminus \overline{A} = X \cap \overline{A}^C$ otwarty, bo X i \overline{A}^C otwarte. $X \setminus \overline{A} \subseteq X \setminus A$, a $\operatorname{Int}(X \setminus A)$ to maksymalny zbiór otwarty zawarty w $X \setminus A$, więc $X \setminus \overline{A} \subseteq \operatorname{Int}(X \setminus A)$.

Mamy $A \subseteq X \setminus \operatorname{Int}(X \setminus A)$, dalej $\overline{A} \subseteq X \setminus \operatorname{Int}(X \setminus A)$, bo zbiór po prawej domknięty. Stąd $\operatorname{Int}(A \setminus X) \subseteq X \setminus \overline{A}$.

Alternatywne rozwiązanie drugiej inkluzji. Weźmy $x \in \text{Int}(X \setminus A)$. Istnieje otoczenie U t. że $x \in U \subseteq X \setminus A$. Korzystamy z zad 10. Zauważamy, że U ma własność $U \cap A = \emptyset$. Czyli $x \notin \overline{A}$.

e)

Z d) mamy
$$X \setminus \overline{A} = \operatorname{Int}(X \setminus A)$$
. Stad $X \setminus (\overline{X \setminus A}) = \operatorname{Int}(X \setminus (X \setminus A)) = \operatorname{Int}A$. Zatem $\overline{X \setminus A} = X \setminus (X \setminus (\overline{X \setminus A})) = X \setminus \operatorname{Int}A$.

Alternatywne rozwiązanie: Weźmy $x \in X \setminus \text{Int} A$. Dla każdego otoczenia $x \in U, U$ nie jest zawarte w całości w A. Czyli $U \cap (X \setminus A) \neq \emptyset$. Czyli $x \in \overline{X \setminus A}$.

Zadanie 1/12

$$B(x, \delta) \cap A \neq \emptyset (L)$$

$$B(x,\delta) \setminus A \neq \emptyset (P)$$

a)

Cel: $Int(A) = A \setminus Bd(A)$.

Weźmy $x \in Int(A)$, wtedy istnieje otoczenie x zawarte w A, więc x nie spełnia P. Stąd $x \notin Bd(A)$, więc $Int(A) \subseteq A \setminus Bd(A)$

Weżmy $x \in A \setminus Bd(A)$. Wtedy x spełnia L (bo $x \in A$), więc nie spełnia P, więc istnieje otoczenie x zawarte w $A \setminus Bd(A)$, więc $A \setminus Bd(A)$ otwarty, stąd $A \setminus Bd(A) \subseteq Int(A)$

b)

Cel: $\overline{A} = A \cup Bd(A)$.

Weźmy $x \in A \cup Bd(A)$, wtedy x spełnia L.

Weźmy x spełniający L. Wtedy gdy x spełnia P to należy do Bd(A), zaś gdy x nie spełnia P, to istnieje kula o środku w x zawarta w A, więc $x \in A$, stąd jeśli x spełnia L to $x \in A \cup Bd(A)$.

 $Z \text{ def. } \overline{A} (Z 1/10) : \overline{A} = A \cup Bd(A).$

Zadanie 2/1

 $B(a,\frac{1}{i})$ to ciągi, które różnią się od a po raz pierwszy dla indeksu > i.

a)

 $d(a,b) = 0 \iff a = b \text{ oraz } d(a,b) = d(b,a) \text{ trywialne. Załóżmy, że } a,b \text{ oraz } b,c$ się różnią po raz pierwszy na indeksach i oraz j odpowiednio. Wtedy $a_k = c_k$ dla $k < \min(i,j)$. Zatem $d(a,c) \leqslant \frac{1}{\min(i,j)} = \max(\frac{1}{i},\frac{1}{j}) < \frac{1}{i} + \frac{1}{j}$.

b)

Weźmy $a,b \in \mathbf{N^{+N^{+}}}$ oraz $\frac{1}{i} \geqslant \frac{1}{j} > 0$. Wtedy

$$B(a, \frac{1}{i}) \cap B(b, \frac{1}{i}) = \{c \mid d(c, a) < \frac{1}{i} \land d(c, b) < \frac{1}{i}\}$$
 (1)

$$= \{c \mid (k \leqslant i \implies c_k = a_k) \land (k \leqslant j \implies c_k = b_k)\}$$
 (2)

$$\subseteq \{c \mid k \leqslant i \implies a_k = b_k = c_k\} \tag{3}$$

$$\subseteq \begin{cases} \emptyset & \exists_{k \leqslant i} a_k \neq b_k \\ B(a, \frac{1}{i}) & \text{w przeciwnym wypadku} \end{cases}$$
 (4)

c)

$$\begin{split} A &= \{(n_1,n_2,\ldots) \mid n_i = 1 \text{ dla co najmniej trzech indeksów } i\} \\ &= \bigcup_{a \in A} B(a,\tfrac{1}{i_a}), \text{ gdzie } i_a \text{ to indeks trzeciego wystąpienia } 1 \le a \end{split}$$

$$B = \{(n_1, n_2, ...) \mid n_i = 1 \text{ dla nieskończenie wielu } i\}$$

Weźmy $b \in B, n \in \mathbb{N}^+$. Wtedy do $B(b, \frac{1}{n})$ należą ciągi, które nie mają jedynek po indeksie i, więc B nie jest otwarty.

Np. b = (0, 1, 0, 1, 0, 1, ...). Weźmy dowolnie duży $n \in N^+$, wtedy ciąg b_n równy b dla indeksów $\leq n$ i $b_n = 0$ dla indeksów > n jest w $B(b, \frac{1}{n})$, ale nie jest w B.

 \mathbf{d}

$$(a,b) = \{x \mid a < x < b\}$$

= $\bigcup_{x \in (a,b)} B(x, \min(d(x,a), d(x,b)))$

Niech c=(2,1,1,1,...). Wtedy $B(c,\frac{1}{2})$ to zbiór ciągów, które się zaczynają od (2,1,...). Ciągi mniejsze od c zaczynają się od (1,...).

 $a = (1, 9, 9, 9, \ldots) < c = (2, 1, 1, \ldots) < b = (2, 2, 2, 2, \ldots)$ W
tedy ciąg $(1, 10, 101, \ldots)$ nie zawiera się w kuli.

e)

o co chodzi?