Measurement of Biodiversity (MoB): methodological details

Measurement of Biodiversity (MoB) Team

Brian McGill Jon Chase

Nick Gotelli

Shane Blowes

Tiffany Knight

MoB Framework

- Spatial sample-based rarefaction
- Non-spatial sample-based rarefaction
- Individual-based rarefaction

Provide unique information on community structure

Spatial, plot-based accumulation

Non-spatial, plot-based rarefaction

Shuffle individuals maintain density

Individual-based rarefaction

Randomly sample individuals

Nested Information

Three types of Collector Curves

Spatial sample-based

Depends on

- SAD
- Density of Individuals (N)
- Intraspecific spatial aggregation (Agg.)

Collect nearby samples first, do not shuffle individuals.

Three types of Collector Curves

Non-spatial, sample-based

Depends on

- SAD
- Density of Individuals (N)

Randomly draw individuals into samples based on observed density

Three types of Collector Curves

Individual-based, spatially random

Randomly draw individuals

Depends on

- Species Abundance Distribution (SAD)
 - commonness & rarity, size of species pool

Number of individuals (n)

Case Study: How does invasion effect diversity?

Powell et al. 2013

Traditional Analysis

Invasion decreased density

Change in density influences S

Evenness scale dependent

Collector Curves

Reflect treatment effects on ...

- Invasion increases evenness → gain of biodiversity
- Invasion decreases abundance → loss of biodiversity
- The univariate analyses capture different aspects of these results and make sense in the context of the MoB analysis.

20 Years of Change in South Eastern Coastal Atlantic Fish

Nathan Baker

No Change in Richness

Number of Individuals

Caveats and Future Directions

- Abundance data is not easy to collect
 - For perennial herbs this is very difficult
 - Other estimates of frequency (e.g., cover, biomass) may also provide insight
 - Presence-Absence data allow for spatial analysis
- Spatial sampling design will strongly influence results
 - Treatments need to have similar spatial sampling designs
- MoB approach can be extended to continuous explanatory variables and other metrics of biodiversity

Take Home Messages

• MoB can decompose richness into its underlying components across scales

Take Home Messages

- Provides a great deal more insight than traditional analyses
- But it comes at a cost

Questions!

Meta-analysis of Scale Dependence

103 comparisons within 52 studies

TABLE 1. Observed and null relationships between native and exotic species richness from a riparian plant community sampled at four spatial scales.

Scale		Observed relationship		Null relationship		Observed vs. null	
(m^2)	N	r	Slope	r	Slope	r	Slope
100	119	0.439***	0.170	0.765***	0.159	***	NS
1	119	0.223*	0.052	0.337***	0.075	NS	NS
0.1	113	0.029	0.012	0.142	0.053	NS	NS
0.01	106	-0.225*	-0.137	-0.125	-0.063	NS	*

Notes: Observed correlation coefficients and regression slopes of the native—exotic richness relationship at each scale are followed by those statistics determined under a null model, where correlation coefficients and slopes are calculated as means of those from 499 random permutations of native—exotic labels. The final two columns are one-tailed tests of whether observed correlation coefficients and slopes significantly differ from the null model, with P values determined by the proportion of permutation-derived values that are as extreme or more extreme than the observed statistic.

^{*} P < 0.05; *** P < 0.001.

Productivity – Richness Controversy

Productivity – Richness Controversy

Productivity – Richness Controversy

Adler et al. 2011

Species richness (m⁻²) 0 500 1500 Live biomass (gm⁻²)

McGlinn and Palmer 2010

p < 0.001

Take Home Messages

- Provides a great deal more insight than traditional analyses
- But it comes at a cost

