# APR 0 2 2004 WITH THE ENITED STATES PATENT AND TRADEMARK OFFICE

In re application of: KAKU, Takashi, et al.

Group Art Unit: Not Yet Assigned

Serial No.: 10/803,083

Examiner: Not Yet Assigned

Filed: March 18, 2004

For. MODEM COUPLING CIRCUIT FOR POWER-LINE CARRIER

# **CLAIM FOR PRIORITY UNDER 35 U.S.C. 119**

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Date: April 2, 2004

Sir:

The benefit of the filing date of the following prior foreign application is hereby requested for the above-identified application, and the priority provided in 35 U.S.C. 119 is hereby claimed:

# Japanese Appln. No. 2003-076460, filed March 19, 2003

In support of this claim, the requisite certified copy of said original foreign application is filed herewith.

It is requested that the file of this application be marked to indicate that the applicants have complied with the requirements of 35 U.S.C. 119 and that the Patent and Trademark Office kindly acknowledge receipt of said certified copy.

In the event that any fees are due in connection with this paper, please charge our Deposit Account No. <u>01-2340</u>.

Respectfully submitted,

ARMSTRONG, KRATZ, QUINTOS, HANSON & BROOKS, LLP

Mel R. Quintos
Attorney for Applicants

Reg. No. 31,898

MRQ/lrj Atty. Docket No. **040101** Suite 1000 1725 K Street, N.W. Washington, D.C. 20006 (202) 659-2930

23850

PATENT TRADEMARK OFFICE

# 日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 3月19日

出 願 番 号 Application Number:

特願2003-076460

[ST. 10/C]:

[JP2003-076460]

出 願 人
Applicant(s):

本多エレクトロン株式会社 NECトーキン株式会社

\_

2004年 3月18日

特許庁長官 Commissioner, Japan Patent Office 今井康



【書類名】 特許願

【整理番号】 H15002

【提出日】 平成15年 3月19日

【あて先】 特許庁長官殿

【国際特許分類】 H04B 3/56

H01F 19/04

【発明者】

【住所又は居所】 東京都中央区日本橋本町一丁目8番16号 本多エレク

トロン株式会社内

【氏名】 加來 尚

【発明者】

【住所又は居所】 宮城県仙台市太白区郡山六丁目7番1号 NECトーキ

ン株式会社内

【氏名】 津田 文史郎

【発明者】

【住所又は居所】 東京都中央区日本橋本町一丁目8番16号 本多エレク

トロン株式会社内

【氏名】 東條 敏郎

【発明者】

【住所又は居所】 東京都中央区日本橋本町一丁目8番16号 本多エレク

トロン株式会社内

【氏名】 帯川 豊充

【発明者】

【住所又は居所】 宮城県仙台市太白区郡山六丁目7番1号 NECトーキ

ン株式会社内

【氏名】 佐藤 敏也

【発明者】

【住所又は居所】 宮城県仙台市太白区郡山六丁目7番1号 NECトーキ

ン株式会社内

【氏名】

山内 英明

【発明者】

宮城県仙台市太白区郡山六丁目7番1号 NECトーキ 【住所又は居所】

ン株式会社内

【氏名】

國井 昌彦

【特許出願人】

【識別番号】

000221122

【氏名又は名称】 本多エレクトロン株式会社

【特許出願人】

【識別番号】

000134257

【氏名又は名称】 NECトーキン株式会社

【代理人】

【識別番号】

100105337

【弁理士】

【氏名又は名称】

眞鍋 潔

【選任した代理人】

【識別番号】

100072833

【弁理士】

【氏名又は名称】 柏谷 昭司

【選任した代理人】

【識別番号】

100075890

【弁理士】

【氏名又は名称】 渡邊 弘一

ページ: 3/E

【選任した代理人】

【識別番号】 100110238

【弁理士】

【氏名又は名称】 伊藤 壽郎

【手数料の表示】

【予納台帳番号】 075097

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 電力線搬送用モデム結合回路

【特許請求の範囲】

【請求項1】 電力線に接続してデータの送受信を行う為の電力線搬送用モデム結合回路に於いて、

ギャップを形成したコアと、該コアにバイファイラー巻線を1層構成として設けた一次巻線と、該1層構成の一次巻線を上下に挟み込むように設けた送信用と 受信用との二次巻線とを有するトランスと、

前記電力線に他端を接続する前記バイファイラー巻線構成の一次巻線をシリアル接続構成とするように該バイファイラー巻線の他端の前記一次巻線の中点に接続した結合コンデンサと、

前記バイファイラー巻線構成の一次巻線に接続した電流制限抵抗とを備えたことを特徴とする電力線搬送用モデム結合回路。

【請求項2】 前記トランスを介して伝送する信号帯域の低い周波数帯域に 於ける送信信号歪特性及び雑音歪特性を満足できる充分に大きなインダクタンス の範囲を第一の範囲とし、大電流ドライブ及び大振幅雑音電流に耐えることがで きる充分に小さいインダクタンスの範囲を第二の範囲とし、前記トランスの一次 巻線によるインダクタンスと前記結合コンデンサとの直列共振周波数が、信号の 伝送帯域外の低い周波数となる充分に大きなインダクタンスと結合コンデンサと の値の組合せの範囲を第三の範囲とし、前記トランスのリーケージインダクタン スと前記結合コンデンサとの直列共振周波数が前記伝送帯域内となる前記リーケ ージインダクタンスと前記結合コンデンサとの値の組合せの範囲を第四の範囲と し、前記第一乃至前記第四の範囲を総て満足するように、前記トランス及び前記 結合コンデンサを構成したことを特徴とする請求項1記載の電力線搬送用モデム 結合回路。

【請求項3】 前記トランスは、前記コアのギャップを、前記一次巻線の許容電流値と所望インダクタンスとにより設定した構成を有することを特徴とする請求項1又は2記載の電力線搬送用モデム結合回路。

【請求項4】 前記トランスの一次巻線に電流制限抵抗を接続し、該トラン

スの送信用の二次巻線にドライブ抵抗を介して送信回路を接続し、該トランスの 受信用の二次巻線に終端抵抗を接続し、且つ該受信用の二次巻線に受信回路を接 続した構成を有することを特徴とする請求項1乃至3の何れ1項記載の電力線搬 送用モデム結合回路。

【請求項5】 前記トランスの前記送信用の二次巻線と前記一次巻線との巻数比n:1のnを2前後の値とし、前記受信用の二次巻線と前記一次巻線との巻数比m:1のmを、環境雑音レベルとフロアノイズレベルとがほぼ一致する値に設定したことを特徴とする請求項1乃至4の何れか1項記載の電力線搬送用モデム結合回路。

【請求項 6 】 前記トランスのコアのギャップの設定によりインダクタンス を  $40 \mu$  H  $\pm 10 \mu$  H に設定した構成を有することを特徴とする請求項 1 乃至 5 の何れか 1 項記載の電力線搬送用モデム結合回路。

# 【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$ 

# 【発明の属する技術分野】

本発明は、電力線搬送システムに於ける電力線とモデムとを結合する為の電力線搬送用モデム結合回路に関する。

[0002]

#### 【従来の技術】

電力線搬送システムは、電力線を伝送路として各種のデータを送受信するもので、既に各種提案され、且つ実用化されている。その場合の電力線とモデムとを結合する為に、コンデンサによる結合回路やトランスによる結合回路或いはコンデンサとトランスとを組合せた結合回路が知られている。例えば、電力線にコンデンサを介してトランスの一次巻線を接続し、トランスの二次巻線に受信回路を接続した構成(例えば、特許文献1参照)や、電力線とトランス結合した通信装置を設けた構成(例えば、特許文献2参照)が知られている。

#### [0003]

又通信用トランスとして、各芯線を並列的に接続した多芯平行線をコアに巻回 して一次巻線とし、そのコアに通常の芯線を巻回して二次巻線とした構成が知ら れている(例えば、特許文献3参照)。又トランスに3個の二次巻線を設け、その中の2個の直列接続の二次巻線に抵抗を介して送信側の回路を接続し、3個の直列接続の二次巻線に抵抗を介して受信側の回路を接続し、送受共用の二次巻線部分を有し、それによって送信信号レベルを高くし、且つ反響消去回路を簡単化する為の構成が知られている(例えば、特許文献4参照)。

#### [0004]

#### 【特許文献1】

特開平8-96277号公報

### 【特許文献2】

特開2001-186063号公報

## 【特許文献3】

特開2001-267139号公報

# 【特許文献4】

特開2001-136107号公報

# [0005]

## 【発明が解決しようとする課題】

トランスは、電力用と通信用とに分けることができ、電力用のトランスは、雑音や歪等により電力変換効率が重視されるが、通信用のトランスは、微小信号でも歪みなく伝送することが重視される。又電力線搬送システムに用いるトランスは、通信用のトランスに類似するが、低電圧の通信回線とは異なり、100 V以上の高い電圧の電力線に接続し、且つ電力線には大振幅の雑音成分が重畳されていることを考慮する必要がある。

#### [0006]

従って、電力線搬送用モデムに用いるトランスに対する要望は、第一に、大電流ドライブに耐え、且つ小型/安価/高性能のトランスであること、第二に、線間容量は、コモンモードインピーダンスをできるだけ大きくする為に、できるだけ小さい値であること、第三に、送信側ではコモンモード漏洩電流の最小化による漏洩電磁界の最小化の為に、対地間平衡度はできるだけ大きいこと、又受信側では、コモンモードノイズ耐力の向上の為、対地間平衡度はできるだけ大きいこ

と、第四に、送信THD(Total-Harmonic-Distortion)は不要な帯域外スプリアスの最小化の為に、できるだけ大きいこと、又雑音 THDは受信側での大振幅雑音環境下で微小振幅信号を受信可能とする為に、できるだけ大きいこと、第五に、効率のよい大電流ドライブを実現する為に、電流 ピーク点が伝送帯域内にあり、且つ、できるだけ低インピーダンスドライブが実現できること、第六に、安定した受信特性を実現する為に、伝送特性はできるだけ平坦であること等がある。

# [0007]

前述の要望に対しては、例えば、送信側では、回線側ドライブ電流は最大 1.4 A以上、1.0 0.0 0.0 0.0 の範囲内の低ドライブインピーダンス、効率よく信号注入する為、伝送帯域(150 k H z 0.0 k

#### [0008]

しかし、従来の通信用トランスと称されるトランス及び電力線搬送用のトランスは、前述の第一乃至第六の要望に対して総て満足する構成ではなく、且つこのような問題点についても提起されていない。

本発明は、前述の第一乃至第六の要望に総て満足できる構成のトランスを含む 電力線搬送用モデム結合回路を提供することを目的とする。

### [0009]

## 【課題を解決するための手段】

本発明の電力線搬送用モデム結合回路は、図1を参照して説明すると、電力線に接続してデータの送受信を行う為の電力線搬送用モデム結合回路に於いて、ギャップを形成したコア1 a と、このコア1 a にバイファイラー巻線を1層構成として設けた一次巻線N1 a, N1 b と、この1層構成の一次巻線を上下に挟み込

5/

むように設けて送信回路2に接続した二次巻線N2と、受信回路3に接続した二次巻線N3とを有するトランス1と、電力線L1,L2に他端を接続するバイファイラー巻線構成の一次巻線をシリアル接続構成とするように該バイファイラー巻線の他端の一次巻線の中点に接続した結合コンデンサC1と、バイファイラー巻線構成の一次巻線N1a,N1bに接続した電流制限抵抗とを備えている。

# [0010]

又トランス1を介して伝送する信号帯域の低い周波数帯域に於ける送信信号歪特性及び雑音歪特性を満足できる充分に大きなインダクタンスの範囲を第一の範囲とし、大電流ドライブ及び大振幅雑音電流に耐えることができる充分に小さいインダクタンスの範囲を第二の範囲とし、前記トランスの一次巻線によるインダクタンスと前記結合コンデンサとの直列共振周波数が、信号の伝送帯域外の低い周波数となる充分に大きなインダクタンスと結合コンデンサとの値の組合せの範囲を第三の範囲とし、前記トランスのリーケージインダクタンスと前記結合コンデンサとの直列共振周波数が前記伝送帯域内となる前記リーケージインダクタンスと前記結合コンデンサとの値の組合せの範囲を第四の範囲とし、前記第一乃至前記第四の範囲を総て満足するように、前記トランス1及び前記結合コンデンサC1を構成する。

#### [0011]

又トランス1は、コア1 aのギャップを、一次巻線の許容電流値と所望インダクタンスとにより設定した構成とすることができる。又トランス1の一次巻線に電流制限抵抗を接続し、トランス1の送信用の二次巻線N2にドライブ抵抗R2 a, R2bを介して送信回路2を接続し、トランス1の受信用の二次巻線N3に終端抵抗R3a,R3bを接続し、且つ受信回路3を接続した構成とすることができる。又トランス1の送信用の二次巻線N2と一次巻線との巻数比n:1のnを2前後の値とし、受信用の二次巻線N3と一次巻線との巻数比m:1のmを、環境雑音レベルとフロアノイズレベルとがほぼ一致する値に設定した構成とすることができる。又トランス1のコア1aのギャップの設定によりインダクタンスを40μH±10μHに設定した構成とすることができる。

## [0012]

# 【発明の実施の形態】

図1は、本発明の一実施の形態の説明図であり、1はトランス、1aはコア、N1a,N1bはバイファイラー巻線構成の一次巻線、N2は送信用の二次巻線、N3は受信用の二次巻線、2は送信回路、3は受信回路、C1は結合コンデンサ、R1a,R1bは電流制限抵抗、R2a,R2bはドライブ抵抗、R3a,R3bは終端抵抗、L1,L2は電力線を示す。

#### [0013]

トランス1は、ギャップを形成したコアと、バイファイラー巻線構成の一次巻線N1a,N1bと、通常の巻線構成の二次巻線N2,N3とを有し、バイファイラー巻線構成の一端側を結合コンデンサC1を介して直列接続して一次巻線を構成している。なお、結合コンデンサC1と、一次巻線N1a,N1bとの間に電流制限抵抗R1a,R1bを接続しているが、この電流制限抵抗R1a,R1bは、電力線L1,L2側に接続することも可能であり、又何れか一方のみとすることも可能である。

# [0014]

又送信回路2と送信用の二次巻線N2との間にドライブ抵抗R2a,R2bを接続し、受信用の二次巻線N3に受信回路3を接続すると共に、終端抵抗R3a,R3bを接続する。即ち、二次巻線N3を終端抵抗R3a,R3bによって終端して、受信回路3を接続する。従って、送信用の二次巻線N2と、受信用の二次巻線N3とは直流的には分離された接続構成となる。

#### [0015]

図2はトランスの説明図であり、一部を切り欠いて示すもので、コア1aの中心のコア中脚1dにギャップ1cを形成し、このコア中脚1dに受信用の二次巻線N3を巻回し、その上にバイファイラー巻線構成の一次巻線N1を1層構成で巻回し、その上に送信用の二次巻線N2を巻回した構成を有するもので、1dはボビン、1eは外装テープ、1fは接続ピンを示す。即ち、一次巻線N1を上下に挟むように、二次巻線N2,N3を形成してリーケージインダクタンスを小さくしている。なお、一次巻線N1は、白円と黒円とにより2本平行で巻回したバイファイラー巻線構成を示している。このバイファイラー巻線構成の一端を少な

くとも結合コンデンサC1を介して直列接続して、電力線L1, L2に接続する 一次巻線とするものである。

#### [0016]

図3はトランスのピン配置の説明図であり、(A)は一次巻線N1a,N1bと二次巻線N2,N3とに対する接続ピン1fのピン番号を示し、一次巻線は、バイファイラー巻線構成で7T(ターン)とし、前述のように、直列接続構成とするから、合計で14Tの一次巻線となる。又送信用の二次巻線N2は28T、受信用の二次巻線N3は140Tとした場合を示す。又図3の(B)はトランスを上から見た場合の一番ピン表示を基に、各接続ピン1fの位置を識別できることを示している。

#### [0017]

図4はバイファイラー巻線構成の説明図であり、(A)は、パラレルバイファイラー巻きとした通常の一次巻線を示し、(B)は、シリアルバイファラー巻とした本発明の実施の形態に適用する一次巻線を示す。又C1は結合コンデンサ、Rは電流制限抵抗を示す。パラレルバイファイラー巻きは、図4の(A)に示すように、2本の芯線を1本の芯線と同様に巻回した構成であり、これに対して、シリアルバイファラー巻きは、2本の芯線の両端を開放とし、結合コンデンサC1を介して、又は電流制限抵抗Rを含めて各芯線を直列接続して、電力線L1,L2に接続することになる。

## [0018]

又一般の通信用トランスに於いては、トランスのコアの透磁率 $\mu$ を12000程度の高透磁率のものを使用する場合が多いが、このようなコアは高価である。そこで、比較的安価な透磁率 $\mu$ が4000程度のコアを使用することができる。又コア1aの大きさとして例えば、20×20×16 (mm) (タイプA) と、15×15×14 (mm) (タイプB) と、8×10×11 (mm) (タイプC)の中から選択する場合、タイプAは約3A程度のドライブ電流とすることができるが、線間容量が約100pF程度の大きさとなる。又タイプBは、約1.4A程度のドライブ電流とすることができ、又線間容量は約50pF以下程度である。又タイプCは、約0.4A程度のドライブ電流とすることができ、線間容量

は約14pF以下程度である。従って、電流ドライブ条件と体積と線間容量とを 考慮すると、前述の場合、タイプBが望ましいことになる。

#### [0019]

又一般の通信用のトランスは、前述のように、高透磁率のコアを用い、且つそのコアには微小ギャップを形成若しくはギャップのないものが使用される。これに対して、本発明に於けるトランス1は、コア1aにギャップ1cを形成するものである。図5の(A)は、コア1aの透磁率を4000とし、寸法は、前述のタイプBを用いた場合のコア1aのギャップGap(mm)に対する許容電流I(A)特性を示し、同図の(B)はコア1aのギャップGap(mm)に対するインダクタンスL(μ H)特性を示す。

## [0020]

低い周波数帯域に於ける送信THD(Total Harmonic Distortion)や雑音THDを考慮すると、電力線に接続するトランスの一次側のインダクタンスはできるだけ大きいことが望ましい。これは、インダクタンスが小さいと、低い周波数帯域に於いては、インピーダンスが小さくなるから、巻線に流れる電流量が増大して、THD特性が劣化する。

#### [0021]

図7は、周波数24kHz,48kHz,96kHz,192kHz,384kHzに於けるトランスのインダクタンス( $\mu$ H)と送信THD(dB)との関係を示す。インダクタンスが10 $\mu$ H程度の小さい値の場合は、低い周波数帯域に於ける送信THD特性が著しく劣化する。従って、インダクタンスは或る程度以上の値であることが必要であり、送信THDを50dB以上とする為には、インダクタンスは40 $\mu$ H以上が必要となる。

#### [0022]

又図 8 は、インダクタンスが  $10\mu$  Hと、 $20\mu$  Hと、 $40\mu$  Hとに於ける直流重畳特性の説明図であり、巻数 T、即ち、インダクタンス(巻数 Tの二乗に比例)を増大させると、飽和電流値が急速に減少することになり、電力線搬送用としては、或る程度以上の直流重畳特性が得られることが必要である。具体的には、1.4 A程度の直流重畳に耐えるトランスであることが要求されている。従っ

て、約40μ Η以下のインダクタンスであることが必要となる。

# [0023]

前述のように、トランスの巻線の巻数を増大することによりインダクタンスは増大し、図7に示すように、送信THD特性は良好となるが、図8に示すように、直流重畳特性は劣化する。従って、インダクタンスには最適値が存在し、前述の条件の場合には、40 μ H ± 10 μ H 程度が最適となる。

# [0024]

図 6 は、コア 1 a の透磁率とギャップとの関係を示し、横軸はインダクタンス ( $\mu$  H)、縦軸は飽和電流値(A)を示し、G A P 小,G A P 大は、コア 1 a の ギャップ 1 c の大小を示し、 $\mu$  小は、透磁率 = 4 0 0 0、 $\mu$  大は、透磁率 = 1 2 0 0 0 の場合を示す。従って、コア 1 a のギャップ 1 c によるインダクタンス及 び飽和電流値特性に対する影響は大きいが、透磁率  $\mu$  の大小には余り影響がないことが判る。従って、比較的安価な  $\mu$  = 4 0 0 0 程度のコアを用いることができ、所望の特性はギャップの設定で得ることができる。

#### [0025]

# [0026]

### [0027]

リーケージインダクタンスと結合コンデンサとの直列共振周波数は、伝送帯域、例えば、150kHz~450kHz内に存在するように構成して、送信時のドライブ電流のピーク点を伝送帯域内とすることにより、電力線に対して効率の良い信号注入特性を得ることができる。又回線一次側インダクタンスと結合コンデンサとの直列共振点に於いては、群遅延特性が劣化するから、一般的には、伝送帯域外、例えば、150kHz以下に存在するように設定する。

# [0028]

例えば、前述の伝送帯域の中心周波数は300kHzとなるから、充分な群遅延特性を得る為には、回線一次側インダクタンスと結合コンデンサとの直列共振周波数は30kHz程度以下となるように設定する。即ち、リーケージインダクタンスの値と、回線一次側インダクタンスの値とは約100倍程度以上の差が生じるように設定することが望ましいことになる。このように、リーケージインダクタンスを小さくする為に、図2に示すように、一次巻線N1を送信用の二次巻線N2と受信用の二次巻線N3とにより挟み込むサンドイッチ構成とする。

# [0029]

又トランス1の一次巻線N1と送信用の二次巻線N2と受信用の二次巻線N3との巻数比について、送信用の二次巻線N2の巻数:一次巻線N1の巻数=n:1とすると、巻数比nを大きくする程、低インピーダンスドライブが可能となるが、それに伴って直流抵抗も増大するから、送信側の伝達損失が増加する。反対に巻数比nを小さくすると、送信の低インピーダンスドライブの実現が困難となる。従って、この巻数比nには最適値が存在する。シミュレーション結果、n=2が最適値となった。前述のタイプBのコアを用いた場合、一次巻線の巻数を14T(バイファイラー巻7T)とすると、送信用の二次巻線N2の巻数は28Tとなる。

#### [0030]

又受信用の二次巻線については、一次巻線N1の巻数:受信用の二次巻線N3 の巻数=1:mとすると、巻数比mを大きくする程、微小振幅信号の受信が可能 となるが、同時に巻数比mの増大に伴うQの増大により伝送帯域が狭くなる。又 巻数比mの増大に伴って直流抵抗が増大し、受信側の伝達損失が増大する。更に 環境雑音レベルの最小値、更に装置側フロアノイズの実力値が或る程度の実現可能の範囲とすれば、必要以上の巻数比mの増大は不必要である。

#### [0031]

そこで、回線側の環境雑音レベルと、装置側のフロアノイズレベルとを基に受信用の二次巻線N3の巻数比mの最小値を求める。環境雑音レベルの評価基準は、ITU-T(International Telecommunication Union-Telecommunication Standardization Sector;国際電気通信連合の電気通信標準化部門)では、-140dBm/Hz, @50Ωと定められている。

# [0032]

電力線搬送用モデムとしての最大許容入力電圧を6.2 V p p とし、16 ビットの高精度AD変換器でサンプリングして、受信した信号をディジタル化し、その時のサンプリング周波数は1.536 MHz とすると、最大許容レベルPは、

又量子化ノイズLは、

$$L = 6 \times 16 \ (\forall y \mid b) + 1. \ 8 = 97. \ 8 \ (dB)$$
 ... (2)

従って、フロアノイズレベルFは、

$$F = +28.86 (dBm) - 97.8 (dB) = -68.94 d (Bm)$$

となる。

一方、サンプリング周波数 S は、1.536 M H z であるから、有効帯域幅は 半分の 768 k H z となる。従って、帯域換算値 H は、

$$H = 1 \ 0 \ \log (1 / 7 \ 6 \ 8 \ 0 \ 0 \ 0 \ (H z)) = -5 \ 8. \ 8 \ 5 \ (d B)$$

1 H z 当たりのフロアノイズレベル f は、

 $\cdot \cdot \cdot (4)$ 

 $\cdot \cdot \cdot (3)$ 

$$f = -68.94 - 58.85 = -127.79 (dBm/Hz)$$

 $\cdot \cdot \cdot (5)$ 

となる。

[0035]

又電流制限抵抗R1a, R1bを含むから、最大6dBの損失がある。又トランス1の直流抵抗分に伴う損失も最大1dB程度を見込む必要がある。従って、装置側のフロアノイズレベルと回線側の環境雑音レベル-140dBm/Hzを一致させるためのゲインGは、

$$G = -127.79 - (-140.00) + 6 + 1$$
  
= 19.21 (dB) = 9.13 (巻数比m) · · · (6)

[0036]

従って、受信用の二次巻線についての巻数比mは、9.13以上とすれば良いことが判り、整数としてm=10とすることができる。前述のように、一次巻線の巻数を14Tとすると、受信用の二次巻線N3の巻数は140Tとなる。

[0037]

前述のように、送信用の二次巻線N2と一次巻線との巻数比n:1のnの値を 、伝達損失が小となる範囲で1より大なる値、例えば、2に最適化設定し、一次 巻線と受信用の二次巻線N3との巻数比1:mのmの値を1より大で、回線側の 環境雑音レベルの最小値が受信側の回路のフロアノイズレベル以上となるように 、mの値を、例えば、10に最適化設定する。

[0038]

又電流制限抵抗R1a,R1bと、ドライブ抵抗R2a,R2bと、終端抵抗R3a,R3bとについて設定するものであるが、電力線搬送用モデムに於いては、できるだけ低インピーダンスでドライブすることが要望されている。即ち、ドライバとしての最大の能力を発揮できるように、ドライブ抵抗は:最小の値、例えば、約6 $\Omega$ とする。従って、送信用の二次巻線N2の両端にそれぞれ接続するドライブ抵抗R2a,R2bはそれぞれ3 $\Omega$ とする。

[0039]

又受信用の二次巻線N3に接続する終端抵抗R3a,R3bは、受信特性の平

坦性に影響を及ぼすものであり、図10に示すように、 $500\Omega$ から $2.5k\Omega$  の間について周波数 $10kHz\sim10MHz$ の帯域についてみると、 $1k\Omega$ 程度 の場合の平坦性が良好となる。

#### [0040]

又一次巻線に接続する電流制限抵抗については、その抵抗値を大きくすると、 巻線の短絡状態に於いても耐えられると共に大振幅雑音電流にも耐えることが可能となるが、注入信号電力が減少し、更に受信側への伝達特性も劣化する。従って、約 $0.6\Omega$ 程度がシミュレーション結果、良好であった。この場合、図1に示す電流制限抵抗R1a= $0.3\Omega$ 、R1b= $0.3\Omega$ として、合計で $0.6\Omega$ として、平衡性を維持することができる。

# [0041]

前述のように、トランス1のコア1aのギャップ1cの設定と、一次巻線と送信用の二次巻線N2と受信用の二次巻線N3との巻数比の設定と、結合コンデンサC1とによる直列共振周波数の設定と、電流制限抵抗R1a,R1bとドライブ抵抗R2a,R2bと終端抵抗R3a,R3bとの設定とを行うことにより、回線の負荷インピーダンスが完全オープン状態から完全ショート状態までの大きな変動が生じた場合でも、送信側では良好な送信THD特性を維持して、大電流ドライブを可能とし、受信側では、良好な雑音THDのもとで、受信振幅特性の平坦性を維持することができる。

#### $[0\ 0\ 4\ 2]$

又トランス1と結合コンデンサC1との関係について、トランス1を介して伝送する信号帯域の低い周波数帯域に於ける送信信号歪特性(送信THD特性)及び雑音歪特性(雑音THD特性)を満足できる充分に大きなインダクタンスの範囲を第一の範囲とし、大電流ドライブ及び大振幅雑音電流に耐えることができる充分に小さいインダクタンスの範囲を第二の範囲とし、トランス1の一次巻線によるインダクタンスと結合コンデンサC1との直列共振周波数が、信号の伝送帯域外の低い周波数となる充分に大きなインダクタンスと結合コンデンサC1との値の組合せの範囲を第三の範囲とし、トランス1のリーケージインダクタンスと結合コンデンサC1との直列共振周波数が、伝送帯域内となるリーケージインダ

クタンスと結合コンデンサC1との値の組合せの範囲を第四の範囲とし、第一乃 至前記第四の範囲を総て満足するように、トランス1及び結合コンデンサC1を 構成するものである。

#### [0043]

前述のように、トランス1のコア1aを、透磁率  $\mu$  = 4000で、15×15×14 (mm) 程度の小型のコアを用い、一次巻線を1層構成でバイファイラー 巻線構成且つ結合コンデンサC1を介して直列接続構成とし、一次巻線の巻数を 14 T (バイファイラー巻 7 T)、送信用の二次巻線N2の巻数を 28 T、受信用の二次巻線N3の巻数を 140 Tとして、一次巻線を送信用の二次巻線N2と 受信用の二次巻線N3とにより挟み込むようにサンドイッチ構成で設け、又コア 1 a のギャップ1 c を 0.12 mm程度としてインダクタンス値を 40  $\mu$  H程度 とし、結合コンデンサC1を 0.47  $\mu$  F程度とし、電流制限抵抗R1a,R1 b の合成抵抗値を 0.6  $\Omega$ 、ドライブ抵抗R2a,R2b の合成抵抗値を 6  $\Omega$ 、終端抵抗R3a,R3b の合成抵抗値を 1 k  $\Omega$ に設定した。

#### [0044]

この具体的な実施の形態のモデム結合回路により、トランス 1 の一次側では、 1 . 4 3 A に耐えることができ、又線間容量は 2 2 . 9 p F  $\sim$  3 9 p F 、送信対地間平衡度は 6 7 . 2 d B 以上、受信対地間平衡度は 5 7 . 3 d B 以上、送信 T H D は 1 0  $\Omega$  終端時で 5 7 . 2 d B 以上、0 . 1  $\Omega$  + 0 . 7  $\mu$  H 終端時で 5 1 . 5 d B 以上、雑音 T H D は 0  $\sim$  5 0 k H z 帯域内で + 2 5 . 7 d B m、5 0 k H z  $\sim$  4 5 0 k H z 帯域内で + 2 3 . 5 d B m、ドライブ電流のピーク値の周波数は 1 7 3 k H z 、群遅延特性は 0 . 1  $\Omega$  + 0 . 7  $\mu$  H 終端時で 2 . 8 3  $\mu$  s、ドライブインダクタンスは 1 . 6  $\Omega$ 、最大受信レベルは - 1 . 4 d B m / k H z 、最小受信レベルは - 9 9 . 1 d B m / k H z (所要 S / N = 1 5 d B 時に於いて )、振幅特性は、0 . 1  $\Omega$  + 0 . 7  $\mu$  H 終端時に帯域内偏差値で 4 . 6 5 d B の特性が得られた。

#### [0045]

図11は、本発明の他の実施の形態の説明図であり、図1と同一符号は同一部分を示す。この実施の形態は、トランス1の一次巻線に接続する電流制限抵抗R

1 a, R 1 b を電力線L 1, L 2 側に接続した構成に相当する。即ち、電流制限抵抗R 1 a, R 1 b は、電力線L 1, L 2 からの大振幅雑音電流等を制限する為のものであるから、電力線L 1, L 2 に対する接続端子間に電流制限抵抗が接続された構成であれば、図1又は図11の何れの構成でも電流制限を行うことができる。

#### [0046]

図12は、本発明の更に他の実施の形態の説明図であり、図1と同一符号は同一部分を示し、R1は電流制限抵抗であって、バイファイラー巻線構成の一方の一次巻線N1aと結合コンデンサC1との間に接続した場合を示し、又図13は、バイファイラー巻線構成の他方の一次巻線N1bと結合コンデンサC1との間に接続した場合を示す。これらの実施の形態に於いては、1個の電流制限抵抗R1を用いるもので、構成を簡単化することができる。なお、平衡度については図1又は図11に示す構成の方が良好である。

# [0047]

前述のように、トランス1のコア1aにギャップ1cを形成して大電流に耐えるトランス構造とし、このトランス1の回線側の一次巻線を、1層のバイファイラー巻きとし、且つシリアル接続とするシリアルバイファイラー巻線構成とし、このバイファイラー巻線構成のシリアル接続点に結合コンデンサC1を接続し、トランスから見た送受および回線側の負荷回路を全てバランス設計とすることができるから、結合コンデンサC1の偏差が大の場合でも、優れた対地間平衡度を確保し、送信側ではコモンモード漏洩電流低減による不要な漏洩電磁界の最小化を行い、受信側ではコモンモードノイズに対する耐力を飛躍的に向上させることができる。

# [0048]

又トランス1の送信用の二次巻線N2には送信回路2を接続し、受信用の二次巻線N3には受信回路3を接続して、それらの二次巻線N2,N3を直流的に分離し、又一次側巻線を二次巻線N2,N3で挟み込むサンドイッチ構造として、リーケージインダクタンスを最小化し、回線一次側インダクタンスの値と結合コンデンサC1の値を最適化することにより、送信側では大電流ドライブを可能と

ページ: 16/

し、受信側では、良好な伝送特性を実現することができる。

#### [0049]

又一次巻線に電流制限抵抗を接続し、送信側では受信側を、又受信側では送信側をお互いの負荷に見立てることで、回線の大幅な負荷変動に耐えることができる。又低い周波数帯での送信THD特性及び雑音THD特性が充分に満足できる大きなインダクタンスの範囲を第一の範囲とし、大電流ドライブおよび大振幅雑音電流に耐える充分に小さなインダクタンスの範囲を第二の範囲とし、一次側のインダクタンスと結合コンデンサC1との直列共振周波数が、伝送帯域外の低い周波数帯域となるようなインダクタンス値と結合コンデンサ値との組み合わせの範囲を第三の範囲とし、トランスのリーケージインダクタンスと結合コンデンサ C1との直列共振周波数が伝送帯域内となるようなリーケージインダクタンス値と結合コンデンサ値を選択する。例えば、インダクタンス値を40μH、結合コンデンサ値を選択する。例えば、インダクタンス値を40μH、結合コンデンサ値をの・47μFに設定することができる。それにより、送信側では、電流ピーク点を伝送帯域内に持つ良好な送信THD特性での大電流ドライブを実現し、受信側では、良好な雑音THD特性並びに良好な群遅延特性での受信特性を実現することができる。

#### [0050]

本発明は、前述の各実施の形態にのみ限定されるものではなく、種々付加変更することが可能であり、トランス1のコア1aの透磁率 $\mu$ , ギャップ1c, 一次巻線と二次巻線N2, N3との巻数比等も実施の形態の数値以外の値とすることができるものである。又本発明は、10 k H z  $\sim$  4 5 0 k H z  $\stackrel{*}{\pi}$ への適用ばかりでなく、1. 7 M H z  $\sim$  3 0 M H z  $\stackrel{*}{\pi}$ 用のトランスとして、定数変更により対応可能であることは言うまでもない。

# [0051]

#### 【発明の効果】

以上説明したように、本発明は、電力線搬送用モデムの送信回路 2 と受信回路 3 と電力線 L 1, L 2 とを結合する電力線搬送用モデム結合回路に於いて、トランス 1 のコア 1 a にギャップを形成して、所望のインダクタンスを有する構成と

し、又電力線L1, L2に接続する一次巻線を1層構成のバイファイラー巻線構成とし、且つ結合コンデンサC1を介して直列接続構成とし、この一次巻線を挟み込むように、送信用の二次巻線N2と受信用の二次巻線N3とを設けてリーケージインダクタンスを小さくして、結合コンデンサC1を含む最適化により、この結合コンデンサC1の偏差が例えば±20%程度の場合でも、対地間平衡度を、例えば、送信側では約70dB程度、受信側では約60dB程度を確保し、送信側のコモンモード漏洩電流低減による不要な漏洩電磁界の最小化を達成し、受信側ではコモンモードノイズに対する耐力を飛躍的に向上することができた。

### [0052]

又本発明によれば、送信側で、例えば、1.4A程度の大電流ドライブを可能とし、受信側では、例えば、群遅延特性  $3\mu$  S以下、帯域内振幅特性 5d B以下の良好な伝送特性を得ることができた。又トランス 1 の一次巻線に電流制限抵抗を接続することにより、送信側では受信側を、又受信側では送信側を互いに等価的な負荷として動作し、回線の大幅な負荷変動に対しても安定な動作を可能とすることができる。

#### [0053]

又結合コンデンサC 1等を含むパラメータの最適化により、送信側では、電流ピーク点を伝送帯域内として、例えば、60dB程度の良好な送信THD特性で、且つ約1.4A程度の大電流ドライブを可能とし、例えば、3 $\mu$ s以下の群遅延特性の受信特性を実現することができた。又送信側は低インダクタンスドライブを可能とし、受信側は巻数比mを例えば10程度とすることにより、例えば、-99.1dBm/kHz (所要S/N=15dB時)程度の微小振幅の受信信号に対しても受信処理可能とすることができた。又受信用の二次巻線N3に終端抵抗を接続して、例えば、約60dB程度の雑音THDのもとで、受信振幅特性の例えば5dB以下の平坦化を図ることができた。

#### 【図面の簡単な説明】

## 【図1】

本発明の一実施の形態の説明図である。

## 【図2】

トランスの説明図である。

# 【図3】

トランスのピン配置の説明図である。

#### 【図4】

バイファイラー巻線構成の説明図である。

#### 【図5】

コアのギャップと許容電流特性及びインダクタンス特性の説明図である。

# 【図6】

コアのギャップと透磁率との関係説明図である。

## 【図7】

インダクタンスと送信THDとの関係説明図である。

## 【図8】

直流重畳特性の説明図である。

#### 【図9】

共振点の説明図である。

## 【図10】

終端抵抗の選択説明図である。

#### 【図11】

本発明の他の実施の形態の説明図である。

# 【図12】

本発明の更に他の実施の形態の説明図である。

#### 【図13】

本発明の更に他の実施の形態の説明図である。

## 【符号の説明】

1 トランス

la コア

Nla, Nlb 一次卷線

N2 送信用の二次巻線

N3 受信用の二次巻線

- 2 送信回路
- 3 受信回路
- L1, L2 電力線
- C1 結合コンデンサ
- Rla, Rlb 電流制限抵抗
- R2a, R2b ドライブ抵抗
- R3a, R3b 終端抵抗

【書類名】

図面

【図1】

# 本発明の一実施の形態の説明図



【図2】

# トランスの説明図



【図3】

# トランスのピン配置の説明図



【図4】

# バイファイラー巻線構成の説明図



【図5】

# コアのギャップと許容電流特性 及びインダクタンス特性説明図





[図6]

# コアのギャップと透磁率との関係説明図



【図7】

# インダクタンスと送信THDの関係説明図



【図8】

# 直流重畳特性の説明図



【図9】



【図10】

# 終端抵抗の選択説明図



【図11】

# 本発明の他の実施の形態の説明図



【図12】

# 本発明の更に他の実施の形態の説明図



【図13】

# 本発明の更に他の実施の形態の説明図



ページ: 1/E

【書類名】 要約書

【要約】

【課題】 トランスを含む電力線搬送用モデム結合回路に関し、各種の要望条件に総て対応できる構成とする。

【解決手段】 ギャップを形成したコア1aと、このコア1aに電力線L1,L2と接続するバイファイラー巻線を1層構成として設けた一次巻線N1a,N1bと、この1層構成の一次巻線とサンドイッチ構成とした送信回路2に接続した二次巻線N2と、受信回路3に接続した二次巻線N3とを有するトランス1と、電力線L1,L2側と接続しない方の端子の一次巻線の中点に接続した結合コンデンサC1と、バイファイラー巻線構成の一次巻線N1a,N1bに接続した電流制限抵抗R1a,R1bと、送信用の二次巻線N2に接続したドライブ抵抗R2a,R2bと、受信用の二次巻線N3に接続した終端抵抗R3a,R3bとを備えたモデム結合回路である。

【選択図】

図 1

ページ: 1/E

# 認定・付加情報

特許出願の番号 特願2003-076460

受付番号 50300453015

書類名 特許願

担当官 末武 実 1912

作成日 平成15年 4月 9日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000221122

【住所又は居所】 東京都新宿区西新宿七丁目5番25号

【氏名又は名称】 東芝セラミックス株式会社

【特許出願人】

【識別番号】 000134257

【住所又は居所】 宮城県仙台市太白区郡山6丁目7番1号

【氏名又は名称】 エヌイーシートーキン株式会社

【代理人】 申請人

【識別番号】 100105337

【住所又は居所】 東京都港区虎ノ門二丁目9番11号 信和ビル

【氏名又は名称】 眞鍋 潔

【選任した代理人】

【識別番号】 100072833

【住所又は居所】 東京都港区虎ノ門二丁目9番11号 信和ビル

【氏名又は名称】 柏谷 昭司

【選任した代理人】

【識別番号】 100075890

【住所又は居所】 東京都港区虎ノ門二丁目9番11号 信和ビル

【氏名又は名称】 渡邊 弘一

【選任した代理人】

【識別番号】 100110238

【住所又は居所】 東京都港区虎ノ門二丁目9番11号 信和ビル

テクノパル特許事務所

【氏名又は名称】 伊藤 壽郎

次頁無

【書類名】 手続補正書

【提出日】 平成15年 4月 4日

【あて先】 特許庁長官殿

【事件の表示】

【出願番号】 特願2003-76460

【補正をする者】

【識別番号】 301022703

【氏名又は名称】 本多エレクトロン株式会社

【補正をする者】

【識別番号】 000134257

【氏名又は名称】 エヌイーシートーキン株式会社

【代理人】

【識別番号】 100072833

【弁理士】

【氏名又は名称】 柏谷 昭司

【発送番号】 028339

【手続補正 1】

【補正対象書類名】 特許願

【補正対象項目名】 特許出願人

【補正方法】 変更

【補正の内容】

【特許出願人】

【識別番号】 301022703

【氏名又は名称】 本多エレクトロン株式会社

【特許出願人】

【識別番号】 000134257

【氏名又は名称】 エヌイーシートーキン株式会社

【プルーフの要否】 要

ページ: 1/E

# 認定・付加情報

特許出願の番号 特願2003-076460

受付番号 50300561296

書類名 手続補正書

担当官 末武 実 1912

作成日 平成15年 4月 9日

<認定情報・付加情報>

【補正をする者】

【識別番号】 301022703

【住所又は居所】 東京都中央区日本橋本町1丁目8番16号

【氏名又は名称】 本多エレクトロン株式会社

【補正をする者】

【識別番号】 000134257

【住所又は居所】 宮城県仙台市太白区郡山6丁目7番1号

【氏名又は名称】 エヌイーシートーキン株式会社

【代理人】 申請人

【識別番号】 100072833

【住所又は居所】 東京都港区虎ノ門二丁目9番11号 信和ビル

【氏名又は名称】 柏谷 昭司

特願2003-076460

出願人履歴情報

識別番号

 $[0\ 0\ 0\ 2\ 2\ 1\ 1\ 2\ 2]$ 

1. 変更年月日

1999年 9月 8日

[変更理由] 住 所

住所変更

氏 名

東京都新宿区西新宿七丁目5番25号

東芝セラミックス株式会社

## 出願人履歴情報

識別番号

[000134257]

1. 変更年月日 [変更理由]

2002年 4月 1日

住 所

名称変更

宮城県仙台市太白区郡山6丁目7番1号

エヌイーシートーキン株式会社

2. 変更年月日

2003年 7月 9日

[変更理由] 名称変更

住 所

宮城県仙台市太白区郡山6丁目7番1号

氏 名 NECトーキン株式会社

特願2003-076460

## 出願人履歴情報

識別番号

[301022703]

1. 変更年月日

2001年 3月30日

[変更理由]

新規登録

住 所

東京都中央区日本橋本町1丁目8番16号

氏 名 本

本多エレクトロン株式会社

2. 変更年月日

2004年 1月20日

[変更理由]

住所変更

住 所

東京都中央区京橋二丁目14番1号

氏 名

本多エレクトロン株式会社