Метрический анализ пространства параметров глубоких нейросетей.

Насыров Э.Р.

МФТИ

16 марта 2023 г.

Содержание

Введение

- Высокоразмерные данные видео, звук - избыточны.
- Модели тяжело обучаются на избыточных данных, часто переобучаются.
- Нужно бороться с избыточностью и переобучением.

Рис.: Переобучение.

Методы улучшения обучения

- Методы снижения размерности входных данных:
 - PCA
 - Quadratic Programming Feature selection
 - Neural Autoencoders
- Выбор оптимальной структуры модели:
 - Optimal Brain Surgeon
 - Correlational analysis
 - Weights freezing

Мотивация

- В предыдущих работах параметры модели w рассматриваются как отдельные скаляры.
- Не учтена простая структура нейросети композиция линейных и простых нелинейных функций.
- Составной блок нейросети:

$$y = \sigma(\mathsf{W} x + b),$$

y,
$$b \in \mathbb{R}^m$$
, $x \in \mathbb{R}^n$, $W \in \mathbb{R}^{m \times n}$, $\sigma : \mathbb{R} \to \mathbb{R}$.

• В нашей работе будут исследованы не отдельные жлементы W, а ее строки w_i , которые в нейросети называют *нейронами*:

$$W = \begin{pmatrix} w_1^T \\ \dots \\ w_m^T \end{pmatrix}.$$

Постановка задачи

- ullet Дан временной ряд $\mathbf{x} = [x_1, \dots, x_N]^\mathsf{T}, x_i \in \mathbb{R}$, ширина окна n.
- Точка $\mathbf{x}_t = [x_t, \dots, x_{t+n-1}]^\mathsf{T}$ точка фазовой траектории временного ряда в траекторном пространстве $\mathbb{H}_{\mathbf{x}} \subset \mathbb{R}^n$.
- Предположение: точка фазовой траектории распределена нормально в фазовом пространстве.
- Тогда параметры обученной нейросети будут случайными.

Постановка задачи

- Для каждого вектора-параметра w_i оцениваем его матожидание $e_1 = Ew_i$ и ковариационную матрицу $D_i = cov(w_i)$.
- Для каждого вектора вычисляем его 90% вероятностную область и траекторном пространстве.
- Проецируем на 2-х мерное (3-х) мерное пространство.
- Визуализируем результаты.

gaussian_mixture.jpg

gaussian_conf_area

Рис.: Смесь гауссианов трех 2-х мерных векторов.

Рис.: Доверительные области 3-х мерных векторов.

Формальная постановка задачи

- Решается задача авторегрессионного декодирования.
- Обозначим множество всех одномерных временных рядов через \mathbb{S} :

$$\mathbb{S} = \bigcup_{n=1}^{+\infty} \{ [s_1, \ldots, s_n] \in \mathbb{R}^n \}.$$

- Прогностическая модель $f^{AR}:\mathbb{S}\to\mathbb{R}$ предсказывает следующее значение временного ряда по предыдущим.
- Модель $f = f(w,s), w \in \mathbb{W}, s = [s_1, \dots, s_t] \in \mathbb{R}^t$ выбирается из некоего параметрического семейства. Параметры модели выбираются таким образом, чтобы минимизировать функцию ошибки S = S(w|s,f):

$$w^* = \arg\min_{w \in \mathbb{W}} S(w|s, f).$$

В работе будет использоваться функция ошибки MSE, то есть

$$S(w|s, f) = \sum_{t=h+1}^{T} (s_t - \hat{s}_t)^2.$$

Используемые модели

• Нелинейный РСА:

$$f(x) = \sigma(w^{\mathsf{T}} \cdot \sigma(W^{\mathsf{T}}x + b_1) + b_2)$$
$$x \in \mathbb{R}^h, \ W \in \mathbb{R}^{h \times d}, \ w \in \mathbb{R}^d : w^{\mathsf{T}}w = 1, WW^{\mathsf{T}} = I.$$

RNN:

$$h_t = \sigma(W \cdot h_{t-1} + V \cdot x_t),$$

$$s_{t+1} = tanh(w_o^\mathsf{T} \cdot h_t)$$

Данные

- Синтетические: зашумленный sin.
- Данные акселерометра.
- Данные активности мозга во время прослушивания звуковой дорожки.

acsel.jpg

Рис.: Показания аксеелерометра во время подъема по лестнице.

Планируемые результаты

- Провести метрический анализ признакового пространства нейронов сети.
- Научиться выявлять ненужные нейроны.
- Научиться выделять структуру сообществ в нейронах.
- Преобразовать признаковое пространство, объединяя сильно скореллированные нейроны в новые.
- Разработать алгоритм снижения размерности признакового пространства.
- Ускорить обучение известных моделей работы с временными рядами, улучшить их качество, увеличить стабильность.