Data Visualization and Pre-processing

Assignment -2

ASSIGNMENT DATE	26 September 2022
TEAM ID	PNT2022TMID15559
PROJECT NAME	A GESTURE BASED TOOL FOR STERILE BROWSING OF RADIOLOGY IMAGES
STUDENT NAME	SHARUSHA S
STUDENT ROLL NO	111519205044
MAXIMUM MARKS	2 Marks

Question-1:

Download the Dataset

RowNumt Customer Surname	CreditScoi Geograph	Gender	Age	Tenure		Balance	NumOfPrcH	asCrCarc	IsActiveM	Estimated Exited	
1 15634602 Hargrave	619 France	Female		42	2	0	1	1	1	101348.9	1
2 15647311 Hill	608 Spain	Female		41	1	83807.86	1	0	1	112542.6	0
3 15619304 Onio	502 France	Female		42	8	159660.8	3	1	0	113931.6	1
4 15701354 Boni	699 France	Female		39	1	0	2	0	0	93826.63	0
5 15737888 Mitchell	850 Spain	Female		43	2	125510.8	1	1	1	79084.1	0
6 15574012 Chu	645 Spain	Male		44	8	113755.8	2	1	0	149756.7	1
7 15592531 Bartlett	822 France	Male		50	7	0	2	1	1	10062.8	0
8 15656148 Obinna	376 Germany	Female		29	4	115046.7	4	1	0	119346.9	1
9 15792365 He	501 France	Male		44	4	142051.1	2	0	1	74940.5	0
10 15592389 H?	684 France	Male		27	2	134603.9	1	1	1	71725.73	0
11 15767821 Bearce	528 France	Male		31	6	102016.7	2	0	0	80181.12	0
12 15737173 Andrews	497 Spain	Male		24	3	0	2	1	0	76390.01	0
13 15632264 Kay	476 France	Female		34	10	0	2	1	0	26260.98	0
14 15691483 Chin	549 France	Female		25	5	0	2	0	0	190857.8	0
15 15600882 Scott	635 Spain	Female		35	7	0	2	1	1	65951.65	0
16 15643966 Goforth	616 Germany	Male		45	3	143129.4	2	0	1	64327.26	0
17 15737452 Romeo	653 Germany	Male		58	1	132602.9	1	1	0	5097.67	1
18 15788218 Henderso	549 Spain	Female		24	9	0	2	1	1	14406.41	0
19 15661507 Muldrow	587 Spain	Male		45	6	0	1	0	0	158684.8	0
20 15568982 Hao	726 France	Female		24	6	0	2	1	1	54724.03	0
21 15577657 McDonald	732 France	Male		41	8	0	2	1	1	170886.2	0
22 15597945 Dellucci	636 Spain	Female		32	8	0	2	1	0	138555.5	0
23 15699309 Gerasimo	510 Spain	Female		38	4	0	1	1	0	118913.5	1
24 15725737 Mosman	669 France	Male		46	3	0	2	0	1	8487.75	0
25 15625047 Yen	846 France	Female		38	5	0	1	1	1	187616.2	0
26 15738191 Maclean	577 France	Male		25	3	0	2	0	1	124508.3	0
27 15736816 Young	756 Germany	Male		36	2	136815.6	1	1	1	170042	0
28 15700772 Nebechi	571 France	Male		44	9	0	2	0	0	38433.35	0
29 15728693 McWillian	574 Germany	Female		43	3	141349.4	1	1	1	100187.4	0
30 15656300 Lucciano	411 France	Male		29	0	59697.17	2	1	1	53483.21	0
31 15589475 Azikiwe	591 Spain	Female		39	3	0	3	1	0	140469.4	1
32 15706552 Odinakac	533 France	Male		36	7	85311.7	1	0	1	156731.9	0
33 15750181 Sanderso	r 553 Germany	Male		41	9	110112.5	2	0	0	81898.81	0
34 15659428 Maggard	520 Spain	Female		42	6	0	2	1	1	34410.55	0
35 15732963 Clements	722 Spain	Female		29	9	0	2	1	1	142033.1	0
36 15794171 Lombardo	475 France	Female		45	0	134264	1	1	0	27822.99	1
37 15788448 Watson	490 Spain	Male		31	3		1	0	1	114066.8	0
38 15729599 Lorenzo	804 Spain	Male		33	7	76548.6	1	0	1	98453.45	0
39 15717426 Armstron	850 France	Male		36	7	0	1	1	1	40812.9	0
40 15585768 Cameron	582 Germany	Male		41	6	70349.48	2	0	1	178074	0

Question-2.

Load the dataset

solution:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import sklearn
data = pd.read_csv(r'/content/Churn_Modelling.csv')
data.head
```

Question-3.

Perform Below Visualizations.

3.1 Univariate Analysis

Solution:

sns.displot(data['CreditScore'])

sns.histplot(data['CreditScore'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f9edc45e1d0>

sns.boxplot(x = data['CreditScore'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ec6b6e8d0>

sns.distplot(data['Age'])

sns.histplot(data['Age'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ec6efbe10>

sns.boxplot(data['Age'])

3.2 Bivariate Analysis

Solution:

```
plt.figure(figsize=(7,7))
sns.lineplot(data = data, x = 'Tenure', y = 'CreditScore')
```


plt.figure(figsize=(8,10)) sns.barplot(data = data, x = 'CreditScore', y = 'EstimatedSalary')


```
plt.figure(figsize=(10,10))
sns.barplot(data = data, x = 'CreditScore', y = 'Tenure')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ec34bca10>

plt.figure(figsize=(8,8))
sns.lineplot(data['Age'], data['EstimatedSalary'])

plt.figure(figsize=(17,17))
sns.barplot(data['Age'], data['EstimatedSalary'])

sns.scatterplot(data = data, x = 'CreditScore', y = 'Age')

3.3 Multivariate Analysis

Solution:

sns.scatterplot(data = data, x = 'CreditScore', y = 'Balance', hue = 'Gender')

sns.scatterplot(data['Tenure'], data['CreditScore'], hue = data['Gender'])

sns.scatterplot(data['Age'], data['Balance'], hue = data['Gender'])

sns.pairplot(data)

Question-4

Perform descriptive statistics on the dataset.

Solution:

data.mean(numeric_only = True)

RowNumber 5.000500e-03
CustomerId 1.569094e+07
Credit5core 6.505280e+02
Age 3.892180e+01
Tenure 5.012800e+00
Balance 7.648589e+04
Num0fProducts 1.530220e+00
HasCrCard 7.055000e-01
IsActiveMember 5.151000e-01
EstimatedSalary 1.000902e+05
Exited 4.2037000e-01

data.median(numeric_only = True)

RowNumber 5.000500e+03 CustomerId 1.569074e+07 CreditScore 6.520000e+02 Age 3.700000e+01 Tenure 5.000000e+00 Balance 9.719854e+04 NumOfProducts 1.000000e+00 HasCrCard 1.000000e+00 IsActiveMember 1.000000e+00 EstimatedSalary 1.001939e+05 Exited 0.000000e+00

data['CreditScore'].mode()

dtype: float64

0 850
dtype: int64

data['EstimatedSalary'].mode()

0 24924.92
dtype: float64

data['HasCrCard'].unique()

array([1, 0])

data['Tenure'].unique()

array([2, 1, 8, 7, 4, 6, 3, 10, 5, 9, 0])

data.std(numeric_only=True)

RowNumber 2886.895680 CustomerId 71936.186123 CreditScore 96.653299 10.487806 Age Tenure 2.892174 Balance 62397.405202 NumOfProducts 0.581654 HasCrCard 0.455840 IsActiveMember 0.499797 EstimatedSalary 57510.492818 0.402769

dtype: float64
data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

data['Tenure'].value_counts()

```
2
     1048
1
     1035
7
     1028
8
     1025
5
     1012
3
    1009
4
     989
9
     984
     967
6
10
      490
      413
0
Name: Tenure, dtype: int64
```

Question-5:

Handle the Missing values.

Solution:

data.isnull().any()

```
RowNumber
                 False
CustomerId
                 False
Surname
                 False
CreditScore
                False
Geography
                False
Gender
                 False
Age
                False
                 False
Tenure
Balance
                 False
NumOfProducts
                False
HasCrCard
                 False
IsActiveMember
                False
EstimatedSalary
                False
Exited
                 False
dtype: bool
```

data.isnull().sum()

```
RowNumber
                  0
CustomerId
Surname
CreditScore
                  0
Geography
Gender
Age
Tenure
Balance
NumOfProducts
HasCrCard
IsActiveMember
EstimatedSalary
                  0
Exited
dtype: int64
```

Question-6.

Find the outliers and replace the outliers

SOLUTION:

sns.boxplot(data['CreditScore'])#Outlier detection - box plot

fig, ax = plt.subplots(figsize = (5,3)) #Outlier detection - Scatter plot
ax.scatter(data['Balance'], data['Exited'])

```
# x-axis label
ax.set_xlabel('Balance')

# y-axis label
ax.set_ylabel('Exited')
plt.show()
sns.boxplot(x=data['Balance'])
```


<matplotlib.axes._subplots.AxesSubplot at 0x7f8cadb22ad0>


```
from scipy import stats #Outlier detection - zscore
zscore = np.abs(stats.zscore(data['CreditScore']))
print(zscore)
print('No. of Outliers : ', np.shape(np.where(zscore>3)))
```

```
0.326221
0
1
        0.440036
2
        1.536794
3
        0.501521
        2.063884
9995
        1.246488
9996
        1.391939
9997
        0.604988
9998
        1.256835
9999
        1.463771
Name: CreditScore, Length: 10000, dtype: float64
No. of Outliers: (1, 8)
q = data.quantile([0.75,0.25])
q
```

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0.75	7500.25	15753233.75	718.0	44.0	7.0	127644.24	2.0	1.0	1.0	149388.2475	0.0
0.25	2500.75	15628528.25	584.0	32.0	3.0	0.00	1.0	0.0	0.0	51002.1100	0.0

```
iqr = q.iloc[0] - q.iloc[1]
iqr
```

```
RowNumber
                    4999.5000
  CustomerId
                 124705.5000
  CreditScore
                    134.0000
  Age
                      12.0000
  Tenure
                       4.0000
                  127644.2400
  Balance
  NumOfProducts
                       1.0000
  HasCrCard
                       1.0000
  IsActiveMember
                       1.0000
                   98386.1375
  EstimatedSalary
  Exited
                       0.0000
  dtype: float64
u = q.iloc[0] + (1.5*iqr)
u
                    1.499950e+04
   RowNumber
   CustomerId
                    1.594029e+07
   CreditScore
                    9.190000e+02
                   6.200000e+01
   Age
   Tenure
                   1.300000e+01
   Balance
                   3.191106e+05
   NumOfProducts
                  3.500000e+00
   HasCrCard
                    2.500000e+00
   IsActiveMember
                    2.500000e+00
   EstimatedSalary
                    2.969675e+05
   Exited
                    0.000000e+00
   dtype: float64
1 = q.iloc[1] - (1.5*iqr)
1
   RowNumber
                  -4.998500e+03
   CustomerId
                  1.544147e+07
   CreditScore
                   3.830000e+02
   Age
                   1.400000e+01
   Tenure
                   -3.000000e+00
   Balance
                   -1.914664e+05
   NumOfProducts
                   -5.000000e-01
   HasCrCard
                  -1.500000e+00
   IsActiveMember
                  -1.500000e+00
   EstimatedSalary
                  -9.657710e+04
   Exited
                   0.000000e+00
   dtype: float64
Q1 = data['EstimatedSalary'].quantile(0.25) #Outlier detection - IQR
Q3 = data['EstimatedSalary'].quantile(0.75)
iqr = Q3 - Q1
print(iqr)
upper=Q3 + 1.5 * iqr
lower=Q1 - 1.5 * iqr
count = np.size(np.where(data['EstimatedSalary'] >upper))
count = count + np.size(np.where(data['EstimatedSalary'] <lower))</pre>
print('No. of outliers : ', count)
```

98386.1375 No. of outliers : 0

```
data['CreditScore'] = np.where(np.logical or(data['CreditScore']>900, data['
CreditScore']<383), 650, data['CreditScore'])</pre>
sns.boxplot(data['CreditScore'])
   «πατριστιοιάλεσι_σαρριστοιλικέσσαρριστ ατ σλεισταάα.
      400
             500
                    600
                          700
                                 800
                   CreditScore
upper = data.Age.mean() + (3 * data.Age.std()) #Outlier detection - 3 sigma
lower = data.Age.mean() - (3 * data.Age.std())
columns = data[ ( data['Age'] > upper ) | ( data['Age'] < lower ) ]</pre>
print('Upper range : ', upper)
print('Lower range : ', lower)
print('No. of Outliers : ', len(columns))
    Upper range : 70.38521935511383
    Lower range : 7.458380644886169
    No. of Outliers: 133
columns = ['EstimatedSalary', 'Age', 'Balance', 'NumOfProducts', 'Tenure', '
CreditScore'] #After outlier removal
for i in columns:
 Q1 = data[i].quantile(0.25)
 Q3 = data[i].quantile(0.75)
 iqr = Q3 - Q1
 upper=Q3 + 1.5 * iqr
 lower=Q1 - 1.5 * iqr
 count = np.size(np.where(data[i] >upper))
 count = count + np.size(np.where(data[i] <lower))</pre>
 print('No. of outliers in ', i, ' : ', count)
 No. of outliers in EstimatedSalary : 0
 No. of outliers in Age : 359
 No. of outliers in Balance : 0
 No. of outliers in NumOfProducts : 60
 No. of outliers in Tenure : 0
 No. of outliers in CreditScore : 0
Question-7.
Check for Categorical columns and perform encoding
```

```
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
le = LabelEncoder()
oneh = OneHotEncoder()
data['Surname'] = le.fit_transform(data['Surname'])
data['Gender'] = le.fit_transform(data['Gender'])
data['Geography'] = le.fit_transform(data['Geography'])
data.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10	0

Question-8.

Split the data into dependent and independent variables split the data in X and Y

```
# independent values (inputs)
x = data.iloc[:, 0:13]
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10
9995	9996	15606229	1999	771	0	1	39	5	0.00	2	1	0	96270.64
9996	9997	15569892	1336	516	0	1	35	10	57369.61	1	1	1	101699.77
9997	9998	15584532	1570	709	0	0	36	7	0.00	1	0	1	42085.58
9998	9999	15682355	2345	772	1	1	42	3	75075.31	2	1	0	92888.52
9999	10000	15628319	2751	792	0	0	28	4	130142.79	1	1	0	38190.78
10000 ו	rows × 13 colu	umns											

```
# dependent values (output)
y = data['Exited']
```

```
2
        1
 3
        0
 9995
        0
 9996
        0
 9997
        1
 9998
        1
 9999
        0
 Name: Exited, Length: 10000, dtype: int64
Question-9.
```

Scale the independent variables

SOLUTION:

Question-10:

Split x and y into Training and Testing

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size =
    0.3, random_state = 0)
x_train
```

```
array([[ 0.92889885, -0.79703192, -1.47580983, ..., 0.64609167,
          0.97024255, -0.77021814],
[ 1.39655257, 0.71431365, -1.58808148, ..., 0.64609167,
          -1.03067011, -1.39576675],
[-0.4532777 , 0.96344969, -0.24082173, ..., -1.54776799,
            0.97024255, -1.49965629],
          [-0.60119484, -1.62052514, -0.36136603, ..., 0.64609167,
          -1.03067011, 1.41441489],

[ 1.67853045, -0.37403866, 0.72589622, ..., 0.64609167,

    0.97024255, 0.84614739],

[-0.78548505, -1.36411841, 1.3829808, ..., 0.64609167,
           -1.03067011, 0.32630495]])
x train.shape
 (7000, 13)
x test
 array([[ 1.52229946, -1.04525042, 1.39834429, ..., 0.64609167,
            0.97024255, 1.61304597],
          [-1.42080128, -0.50381294, -0.78208925, ..., 0.64609167,
          -1.03067011, 0.49753166],
[-0.90118604, -0.7932923 , 0.41271742, ..., 0.64609167,
0.97024255, -0.4235611 ],
          [ 1.49216178, -0.14646448, 0.6868966 , ..., 0.64609167,
            0.97024255, 1.17045451],
          [ 1.1758893 , -1.29228727, -1.38481071, ..., 0.64609167,
          0.97024255, -0.50846777],
[ 0.08088677, -1.38538833, 1.11707427, ..., 0.64609167, 0.97024255, -1.15342685]])
x test.shape
    (3000, 13)
y train.shape
      7681
                1
      9031
                0
      3691
                0
      202
                1
      5625
                0
      9225
               0
      4859
               0
      3264
               0
      9845
               0
      2732
      Name: Exited, Length: 7000, dtype: int64
y_test
```

```
9394 0

898 1

2398 0

5906 0

2343 0

...

4004 0

7375 0

9307 0

8394 0

5233 1

Name: Exited, Length: 3000, dtype: int64
```