Задача физико-механического практикума Калибровка инерциального измерительного блока (IMU)

Болотин Юрий Владимирович ybolotin@yandex.ru

механико-математический факультет МГУ Кафедра прикладной механики

Содержание теоретической части практикума.

- Введение
- Калибровочные модели IMU
- Калибровка с привязкой к корпусу акселерометров
 - Калибровка акселерометров
 - Калибровка ДУС
- Калибровка с привязкой к осям акселерометров
- Характеристики шумов*
 - Типичные компоненты шума*
 - Вариация Аллана*
 - Спектральная плотность мощности*
- * необязательные разделы

Введение

Навигация — определения координат и скоростей движущегося объекта.

- Одними из важнейших систем навигации являются инерциальные навигационные систем (ИНС). Они не требуют внешней информации.
- Широкое распространение получили миниатюрные ИНС, работающие на МЭМС (микро электронных механических сенсорах). Они способны прогнозировать движение лишь на очень короткие отрезки времени.

Инерциальный измерительный блок (Inertial Measurement Unit - IMU) — прибор, позволяющий определять

- \blacksquare удельную силу реакции f, действующую на чувствительную массу (ЧМ), и
- lacktriangle угловую скорость ω корпуса ИИБ относительно инерциального пространства.
- \blacksquare Для измерения f используются акселерометры (AKC),
- lacktriangle для определения ω датчики угловой скорости (ДУС).

Инерциальная навигационная система — ИИБ, дополненный необходимым программным обеспечением, решающим задачу инерциальной навигации

Системы координат

В инерциальной навигации важен выбор систем координат. Мы рассмотрим две.

- Приборный трехгранник Mz ортогональная система координат, связанная с корпусом ИИБ, в проекции на оси которой вычисляются кажущееся ускорение f_z и угловая скорость ω_z корпуса ИИБ.
- Опорный трехгранник Ox ортогональная система координат, в проекции на оси которой вычисляется сила тяжести g, записываются и интегрируются уравнения Ньютона движения ЧМ ИИБ.

Считая опорную систему координат инерциальной, имеем уравнения Ньютона, записанные в этой системе (g — вектор удельной силы тяжести)

$$\ddot{x} = f_x + g_x \tag{1}$$

- lacktriangle $g_{\scriptscriptstyle X}$ известна из модели силы тяжести
- f_z измеряется ИИБ

Важно — g_x и f_z заданы в разных системах координат

Уравнения идеальной работы

- lacktriangledown f_z преобразуется из Mz в Ox ортогональной матрицей B_{xz} : $f_x = B_{xz}f_z$
- \blacksquare B_{xz} может быть определена из уравнения Пуассона

$$\dot{B}_{zx} = -\omega_z \times B_{zx}, \qquad B_{xz} = B_{zx}^T. \tag{2}$$

Уравнения (1), (2) называют уравнениями идеальной работы.

Если знать начальные условия, они позволяют определить координаты объекта в любой момент времени.

Измерения отличаются от истинных значений на погрешности $\delta f_z, \delta \omega_z$:

$$f_z' = f_z + \delta f_z, \qquad \omega_z' = \omega_z + \delta \omega_z$$

Используя вместо истинных измеренные показания ИИБ, получим т.н. модельные уравнения, описывающие движение расчетной точки M^\prime :

$$\ddot{x}' = f'_x + g'_x, \qquad f'_x = B'^T_{zx} f'_z$$
 (3)

$$\dot{B}'_{zx} = -\omega'_z \times B'_{zx} \tag{4}$$

- lacksquare x' координаты расчетной точки M'
- lacksquare $g_{\scriptscriptstyle X}'$ сила тяжести, вычисленная в расчетной точке M'
- lacksquare B'_{zx} матрица ориентации модельного трехгранника

Замечания

Задача инерциальной навигации включает подзадачи

- \blacksquare Калибровка определение формул пересчета сырых измерений в f_z', ω_z'
- lacktriangle Начальная выставка определение начальных значений $x',\dot{x}',\,B'_{zx}$
- Собственно навигация интегрирование модельных уравнений.
- Коррекция навигационного решения по неинерциальной информации.

Высокоточные ИНС

- Высокоточная ИНС позволяет измерять угловую скорость Земли
- \blacksquare Для высокоточных ИНС система Ox, связанная с Землей, не инерциальная.
- lacktriangle Измерения g_z и ω_z на стоянке позволяют сделать начальную выставку.

Низкоточные ИНС на МЭМС

- Не чувствуют угловую скорость Земли
- Система координат, связанная с Землей, считается инерциальной.
- Задача начальной выставки неразрешима без внешней информации.
- Требуется постоянная коррекция по внешней информации.

Задача практикума — калибровка низкоточных ИНС на МЭМС

Устройство БИС на на аналоговых МЭМС

Микромеханический АКС вырезается на кремниевой пластине и есть тело в упругом подвесе, снабженное щетками - конденсаторами.

- На вход щеток подается периодическое напряжение.
- Когда тело смещается под действием ускорения, меняется емкость конденсаторов, и меняется амплитуда напряжения на выходе конденсаторов.
- Амплитуда оцифровывается и служит "сырым"измерением АКСа.

Микромеханический ДУС устроен сходным образом, с той разницей, что тело совершает вынужденные колебания вокруг оси, перпендикулярной оси чувствительности прибора. Когда корпус ДУС приобретает угловую скорость, сила Кориолиса поворачивает плоскость колебаний.

Рис.: Схема АКС

Рис.: Схема ДУС

Устройство БИС на МЭМС 2

- АКС и ДУС бывают с одной, двумя (иногда тремя) выходами, измеряя проекции искомой величины на разные оси.
- Для практики требуются три компоненты удельной силы и три компоненты угловой скорости. ИИБ включает нужное число датчиков.
- Набор датчиков можно рассматривать как один векторный датчик удельной силы и один векторный датчик угловой скорости.

На рис. показан ИИБ 6DOF компании Sparkfun, на которой установлено два 2D-акселерометра и два 2D-ДУС и приемопередатчик Bluetooth.

Калибровка БИС

АКС и ДУС фактически измеряют емкость конденсаторов. Чтобы измерения можно было использовать в навигации, датчики необходимо калибровать.

Калибровка ИИБ состоит в определении формул пересчета сырых показаний a, w АКС и ДУС в проекции f_z , ω_z вектора удельной силы и абсолютной угловой скорости прибора на оси Mz.

Калибровка проводится (условно) в четыре этапа.

- Выбирается приборный трехгранник Mz.
- Выбираются, исходя из физических соображений, параметрические калибровочные модели датчиков.
- Показания датчиков сравниваются с внешней информацией, параметры подбираются так, чтобы удовлетворялись калибровочные соотношения.

Внешней информацией о движении бывает, например, следующая:

- Углы поворота корпуса ИИБ
- Неподвижность прибора в течение какого-то отрезка времени.
- Абсолютная величина силы тяжести на неподвижном основании
- Абсолютная величина угловой скорости вращения Земли

Калибровка БИС на коленке

Возможные подходы к калибровке

- Исторические первыми ИНС были высокоточные системы, для калибровки которых использовались прецизионные поворотные стенды, и внешней информацией были углы поворота корпуса ИИБ.
- Идея, что калибровку грубых ИИБ можно проводить фактически без всякого оборудования, была высказана разными авторами довольно давно. Широкое развитие подход приобрел в 2000-х годах.
- Идея калибровки АКС использовать независимость абсолютной величины силы тяжести от ориентации ИИБ — метод инвариантных соотношений.
- Методы, рассмотренные в задаче практикума, позволяет калибровать ИИБ без специального оборудования.

Предположения при калибровке БИС 6DOF

- Угловая скорость вращения Земли не учитывается (равна нулю).
- Сила тяжести постоянна.
- Корпус БИС правильный куб.
- Манипуляции проводятся на ровном горизонтальном столе.

Калибровочные модели IMU: модель AKC

В рамках линейной модели вектор сырых показаний АКС $a' = [a'_1 \ a'_2 \ a'_3]^T$ связан с проекциями $f_z = [f_1 \ f_2 \ f_3]^T$ удельной силы реакции f на оси Mz формулой

Калибровочные соотношения АКС

$$f_z = S_f a' + b_f + \delta f, \tag{5}$$

$$S_{f} = \begin{bmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{bmatrix}, \qquad b_{f} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix}, \qquad \delta f = \begin{bmatrix} \delta_{1} \\ \delta_{2} \\ \delta_{3} \end{bmatrix}.$$
 (6)

Здесь

- *s*₁₁, *s*₂₂, *s*₃₃ масштабные коэффициенты,
- *s*₁₂, *s*₁₃, *s*₂₁, *s*₂₃, *s*₃₁, *s*₃₂ параметры перекоса осей,
- b_1 , b_2 , b_3 аддитивные погрешности, называемые смещениями,
- $\delta_1, \delta_2, \delta_3$ случайные составляющие шума измерений.

Иногда удобно разрешить (5) относительно a'

Обратные калибровочные соотношения АКС

$$a' = S_a f_z + b_a + \delta a. \tag{7}$$

Здесь
$$S_a = S_f^{-1}, \quad b_a = -S_f^{-1}b_f, \quad \delta a = -S_f^{-1}\delta f.$$

Неоднозначность выбора приборной системы координат

Важное замечание

- Система координат *Mz* может быть выбрана разными способами.
- Пусть есть другая система My, также неподвижная относительно корпуса IMU, и связанная с Mz ортогональным преобразованием $f_y = U_{yz} f_z$
- Тогда калибровочное соотношение (5) может быть переписано в виде

$$f_y = S_f' \cdot a' + b_f' + \delta f', \tag{8}$$

- $lacksymbol{\bullet}$ Введены обозначения $S_f' = U_{yz}S_f, \quad b_f' = U_{yz}b_f, \quad \delta f' = U_{yz}\delta f$
- Конкретный выбор Mz зависит от ситуации

Калибровочная модель ДУС

Так же как и АКС, ДУС имеют масштабные коэффициенты, углы перекосов осей, сдвиги нуля и случайные погрешности. Сырые показания ДУС $w' = [w'_1, w'_2, w'_3]^T$ связаны с проекциями ω_z угловой скорости корпуса на оси Mz формулой

Калибровочные соотношения ДУС

$$\omega_z = S_\omega \cdot w' + b_\omega + \delta\omega, \tag{9}$$

$$S_{\omega} = \begin{pmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{pmatrix}, \quad b_{\omega} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, \quad \delta\omega = \begin{pmatrix} \delta_1 \\ \delta_2 \\ \delta_3 \end{pmatrix}. \tag{10}$$

Здесь

- *s*₁₁, *s*₂₂, *s*₃₃ масштабные коэффициенты ДУС,
- \blacksquare $s_{12}, s_{13}, s_{21}, s_{23}, s_{31}, s_{32}$ параметры перекоса осей чувствительности,
- b_1 , b_2 , b_3 аддитивная погрешность, называемая смещением,
- $\delta_1, \delta_2, \delta_3$ случайные составляющие шума ДУС.

Иногда удобно разрешить (9) относительно w'

Обратные калибровочные соотношения ДУС

$$w' = S_w \omega_z + b_w + \delta w. \tag{11}$$

Задача калибровки

Для введенных моделей задача калибровки состоит в следующем:

- lacktriangle Провести калибровочный эксперимент, записав a'(t), w'(t) в файлы.
- Ввести приборную систему координат Mz.
- По показаниям АКСов a'(t) определить оценки \widetilde{S}_f , \widetilde{b}_f так, чтобы откалиброванные показания АКСов по возможности совпадали с f_z .
- По показаниям ДУС w'(t) определить матрицу \widetilde{S}_{ω} и вектор \widetilde{b}_{ω} так, чтобы откалиброванные показания ДУСов по возможности совпадали с ω_z .

Приборная система координат Mz — общая для AKC и ДУС.

Заметим также, что,

- Если направления осей чувствительности датчиков совпадают с осями Mz, то соответствующая калибровочная матрица $(S_f$ или $S_\omega)$ диагональна.
- Это объясняет использование термина "параметры перекоса" для внедиагональных элементов калибровочных матриц.
- Если параметры перекоса равны нулю, то диагональные элементы − в точности масштабные коэффициенты.

Подготовка данных

В экспериментах корпус IMU последовательно устанавливается в N различных положений. Присвоим этим положениям номера $i=1,\dots,N$. В интервалы времени $t_i \leq t \leq t_i + \Delta t_i$ IMU неподвижен. Учитывая способ введения приборной системы координат, на этих интервалах

$$g_z[i] = \text{const}, \quad \|g_z[i]\| = g.$$

Поскольку IMU неподвижен на указанных интервалах, удельная сила реакции $f_z(t)$ в проекциях на оси Mz постоянна и равна $f_z[i] = -g_z[i]$. На каждом из интервалов выполнены калибровочные соотношения

$$a'(t) = S_a f_z[i] + b_a + \delta a(t), \qquad t_i \le t \le t_i + \Delta t_i. \tag{12}$$

Чтобы уменьшить влияние шума датчиков, удобно осреднить показания АКС на участке $t_i \leq t \leq t_i + \Delta t_i$, вводя среднее значение показаний на интервале

$$a'[i] = \frac{1}{\Delta t_i} \int_{t_i}^{t_i + \Delta t_i} a'(t) dt, \qquad \delta a[i] = \frac{1}{\Delta t_i} \int_{t_i}^{t_i + \Delta t_i} \delta a(t) dt.$$
 (13)

Калибровочное уравнение

$$a'[i] = S_a f_z[i] + b_a + \delta a[i], \qquad i = 1, \dots, N.$$
 (14)

Для нахождения S_a , b_a можно воспользоваться одним из методов оценивания.

Калибровка с привязкой к корпусу IMU

Калибровка АКСов основывается на знании ускорения свободного падения |g|.

- Опишем методику калибровки, применимую к IMU с кубическим корпусом.
- Эксперимент проводится на плоском горизонтальном столе.
- Для произвольного корпуса IMU такая методика не работает.

Приборная система координат Мz

- На корпусе IMU фиксируем три ортогональные грани, с номерами i=1,2,3.
- lacktriangle Оси $Mz_i, i=1,2,3$ направлены по внешним нормалям к граням.
- Противоположным граням присвоим номера i = -1, -2, -3.

Эксперимент по калибровке АКС

- Куб корпуса IMU устанавливается на стол так, что грани $i=\pm 1, \pm 2, \pm 3$ смотрят вверх.
- lacktriangleright Записываются измерения a'[i] на участках, где IMU неподвижен.

Калибровка АКС: калибровочные соотношения

Свяжем со столом систему Ox, ось x_3 которой направлена вверх, а оси x_1 , x_2 лежат в плоскости стола. Имеем $g_x^T = \begin{bmatrix} 0 & 0 & -|g| \end{bmatrix}$.

Пусть e_i – столбец, у которого i-й элемент равен sign i, остальные нули. Имеем на интервалах $t_i \leq t \leq t_i + \Delta t_i$

- $lacksymbol{\blacksquare}$ значения g в приборной системе $g_z[i] = -|g|e_i$.
- lacktriangle удельная сила $f_z(t) \equiv f_z[i] = -g_z[i] = |g|e_i$,

Поэтому на интервалах неподвижности IMU

$$a'(t) = S_a f_z[i] + b_a + \delta a(t), \qquad t_i \le t \le t_i + \Delta t_i$$
 (15)

Получим калибровочное уравнение АКС

$$a'[i] = S_a f_z[i] + b_a + \delta a[i], \qquad i = \pm 1, \pm 2, \pm 3.$$
 (16)
 $f_z[i] = ge_i$

Получено 18 уравнений относительно 12 неизвестных — элементов S_a, b_a .

Аналитическое решение уравнений калибровки АКС

Вычитая уравнения (16) с номерами i, -i, и учитывая $g_z[-i] = -g_z[i]$, получим

$$a'[i] - a'[-i] = 2S_a f_z[i] + \delta a[i] - \delta a[-i]$$

Пренебрегая δa , найдем

$$S_a f_z[i] = \frac{1}{2} (a'[i] - a'[-i]), \qquad i = 1, 2, 3$$

Поскольку левая часть — i-й столбец S_a , умноженный на |g|, получим

Оценка Sa

$$\widetilde{S}_a = \frac{1}{2|g|} [a'[1] - a'[-1] \quad a'[2] - a'[-2] \quad a'[3] - a'[-3]]$$

Складывая соответствующие уравнения (16), получим

$$a'[i] + a'[-i] = 2b_a + \delta a[i] + \delta a[-i]$$

Пренебрегая δa , и осредняя по i, отсюда сразу находим:

Оценка b_a

$$\widetilde{b}_a = \frac{1}{6} \sum_{i=1}^{3} (a'[i] + a'[-i])$$

Калибровка ДУС.

Эксперимент

При калибровке ДVC проводим повороты IMU на столе у стены на углы ϕ_i , кратные $\pi/2$.

- Поскольку стол горизонтален, оси вращения направлены по вертикали x_3 .
- Повороты проводятся на плоских гранях корпуса IMU, ортогональных приборным осям, так что оси вращения направлены по осям Mz.
- Всего проводится K=12 поворотов на известные векторы конечного поворота $\phi_z[i]=\phi_ie_i,\ i=\pm 1,\pm 2,\pm 3$ за время $t_i\leq t\leq t_i+\Delta t_i.$

Вычислим интегралы от сырых показаний ДУС на этих интервалах

$$\varphi'[i] = \int_{t_i}^{t_i + \Delta t_i} w'(t) dt, \qquad \delta \varphi[i] = \int_{t_i}^{t_i + \Delta t_i} \delta w(t) dt.$$
 (17)

Получим

Калибровочное уравнение для ДУС

$$\varphi'[i] = S_w \phi_z[i] + b_w \Delta t_i + \delta \varphi[i], \qquad i = \pm 1, \pm 2, \pm 3.$$
(18)

Оценки S_w,b_w , и далее S_ω,b_ω могут быть найдены отсюда, как и выше, b_ω b_ω

Калибровка ДУС — упрощение

Для ДУС расчеты можно ещё упростить.

- $lacksymbol{\blacksquare}$ Введем дополнительный поворот на нулевой угол $\phi[0]=0.$ Тогда $\widetilde{b}_w=arphi'[0].$
- lacksquare Вычтем \widetilde{b}_w из сырых показаний ДУС, обозначив разности $\Delta w'(t)$.
- lacksquare Проинтегрировав $\Delta w'(t)$, получим $\Delta arphi'[i]$.

Получим вместо (18)

Калибровочное уравнение для ДУС без учета смещения

$$\Delta \varphi'[i] = S_w \phi_z[i] + \delta \phi[i], \qquad \Delta \varphi'[i] = \int_{t_i}^{t_i + \Delta t_i} \Delta w'(t) dt \qquad i = \pm 1, \pm 2, \pm 3. \quad (19)$$

Метод калибровки АКС, не привязанный к форме корпуса IMU

Выбор приборной системы координат

Число параметров можно сократить, если ориентация Mz произвольна. Пусть

- \blacksquare Ось z_1 совпадает с осью чувствительности a_1 первого АКСа
- Ось z_2 принадлежит плоскости (a_1, a_2) ,
- Ось z_3 ортогональна осям z_1, z_2 (так, чтобы система Mz была правая).

Тогда можно записать матрицу S_f в нижнетреугольном виде

$$S_f = \begin{bmatrix} s_{11} & 0 & 0 \\ s_{21} & s_{22} & 0 \\ s_{31} & s_{32} & s_{33} \end{bmatrix}$$
 (20)

где s_{11}, s_{22}, s_{33} - параметры масштабов, s_{21}, s_{31}, s_{32} - параметры перекосов. Математическим обоснованием (20) является т.н. QR – разложение матриц.

Другой способ выбора Mz — так, чтобы матрица S_f была симметричной:

$$S_f = \begin{bmatrix} s_{11} & s_{21} & s_{31} \\ s_{21} & s_{22} & s_{32} \\ s_{31} & s_{32} & s_{33} \end{bmatrix}$$
 (21)

Математическим обоснованием (21) является т.н. полярное разложение разложение матриц на произведение симметричной и ортогональной. 🗼 🗦 🗦 🧓 💍

Калибровка АКС методом ММП

Пусть погрешности IMU — независимые нормальные величины: $\delta a[i] \sim \mathcal{N}(0,\sigma)$. Функционал ММП — $\log p(a'|\theta)$ примет вид

ММП

$$\min_{S_a,b_a} \min_{\|f_z[i]\|=g} \sum_{i=1}^N \|a'[i] - S_a f_z[i] - b_a\|^2$$
 (22)

Параметрами задачи являются $S_a, b_a, g_z[i]$, с ограничением $\|g_z[i]\| = g$

Чтобы ввести независимые параметры θ , положим

$$f_{z}[i] = |g| \begin{bmatrix} \cos \gamma[i] \sin \varphi[i] \\ \sin \gamma[i] \sin \varphi[i] \\ \cos \varphi[i] \end{bmatrix}, \qquad \theta = (S_a, b_a, \gamma[1], \dots, \gamma[N], \varphi[1], \dots, \varphi[N])$$

Задача квадратична по S_a, b_a , но нелинейна по $\varphi[i], \gamma[i]$

Калибровка АКС с использованием инвариантных соотношений

Если IMU неподвижен относительно Земли, то $g - \|f_z\| = 0$. Выполнено

Инвариантное соотношение

$$||f_z[i]|| - g = 0, \qquad i = 1, ..., N$$
 (23)

Предполагая $g\gg \|\delta f[i]\|$, отсюда можно записать

$$g = \|f_z[i]\| = \|S_f a'[i] + b_f + \delta f[i]\| \approx \|S_f a'[i] + b_f\| + \delta_i,$$

$$\delta_i \approx \frac{f_z^T[i]\delta f[i]}{g}$$
(24)

Здесь δ_i для всех i нормально распределено с дисперсией σ^2 . Доказано

Утверждение. В предположении $|g|\gg |\delta f|$ ММП сводится к критерию

$$\min_{S_f, b_f} \sum_{s=1}^{N} (g - ||S_f a'[i] + b_f||)^2$$
 (25)

Функционал (25) минимизируется по S_f и b_f , используя стандартные программы.

О наблюдаемости задачи калибровки

Функционал J минимизируется численно, используя стандартные программы. Тем самым находятся параметры калибровки S_f и b_f .

Утверждение

Функционал J имеет неединственный локальный минимум. В частности, минимум достигается при $S_f=0, b_f=g_x.$

Определение

Под наблюдаемостью понимается возможность однозначно разрешить калибровочные соотношения для определения калибровочных параметров.

- При численной минимизации (25) наблюдаемость эквивалентна наличию строгого локального минимума функционала в районе истинного решения.
- Для нахождения нужного минимума требуется начальное приближение.

Утверждение

Для локальной наблюдаемости при калибровке по методу 2 достаточно поставить куб на шесть граней и 12 ребер.

Сведение калибровки АКС к определению параметров эллипсоида

Попробуем построить алгоритм с гарантированной сходимостью.

Возведя (24) в квадрат, получим

$$a'^T[i]\,S_f^TS_f\,a'[i] + b_f^Tb_f + 2b_f^TS_f\,a'[i] \approx g^2 - 2g\delta_i + \delta_i^2 \approx g^2 - 2g\delta_i$$

Введя обозначения $M = S_f^\mathsf{T} S_f$, $c = b_f^\mathsf{T} b_f$, $m = S_f^\mathsf{T} b_f$, получим

Измерения a'[i] лежат на эллипсоиде

$$a'^{T}[i] M a'[i] + 2m^{T} a'[i] \approx g^{2} - c - 2g\delta_{i},$$
 (26)

Разобьем решение на два шага.

- Определение параметров эллипсоида.
- Определение калибровочных параметров
- 1) Чтобы найти эллипсоид, перепишем (26) в виде

$$a'^{T}[i] \bar{M} a'[i] + 2\bar{m}^{T} a'[i] \approx 1 - \bar{\delta}_{i}$$
 (27)

Здесь

$$\bar{M} = (g^2 - c)^{-1}M, \qquad \bar{m} = (g^2 - c)^{-1}m, \qquad \bar{\delta}_i = 2g\delta_i(g^2 - c)^{-1}$$

Сведение калибровки АКС к определению параметров эллипсоида 2

Введем матрицу

$$H[i] = \begin{bmatrix} a_1'^2[i] & a_2'^2[i] & a_3'^2[i] & 2a_1'[i]a_2'[i] & 2a_1'[i]a_3'[i] & 2a_2'[i]a_3'[i] & 2a_1'[i] & 2a_2'[i] & 2a_3'[i] \end{bmatrix}$$
 и вектор

$$\mathbf{x} = \begin{bmatrix} \bar{M}_{11} & \bar{M}_{22} & \bar{M}_{33} & \bar{M}_{12} & \bar{M}_{13} & \bar{M}_{23} & \bar{m}_1 & \bar{m}_2 & \bar{m}_3 \end{bmatrix}^T$$

Параметры \bar{M}, \bar{m} в (27) находятся как решение задачи МНК

$$H[i]x = 1 - \bar{\delta}_i, \quad i = 1, 2, \dots, \qquad \sum_i \bar{\delta}_i^2 \to \min_{\bar{M}, \bar{m}}$$

Параметры M,m,c в (26) определяются по \bar{M},\bar{m} как

$$c = \frac{g^2 \bar{m}^T \bar{M} \bar{m}}{1 + \bar{m}^T \bar{M}^{-1} \bar{m}}, \quad M = \frac{g^2}{1 + \bar{m}^T \bar{M}^{-1} \bar{m}} \bar{M}, \quad m = \frac{g^2}{1 + \bar{m}^T \bar{M}^{-1} \bar{m}} \bar{m}$$

- **2)** Пусть M, m, m_0 найдены.
 - lacksquare S_f находится факторизацией $M=S_fS_f^T$. Если использовать разложение Холецкого, получится треугольная матрица.
 - Затем определяется $b_f = S_f^{-T} m$.

Метод не требует начального приближения.

Пример калибровки AKC IMU 6DOF

Для калибровки IMU устанавливалась в 18 различных положений, в каждом из которых на протяжении некоторого времени она была неподвижна. Показания АКСов представлены на рис.

В результате были получены параметры калибровки

$$S_f = \begin{bmatrix} -0.0393 & 0.0000 & 0.0000 \\ 0.0001 & 0.0390 & 0.0000 \\ 0.0001 & 0.0002 & 0.0385 \end{bmatrix}, \qquad b_f = \begin{bmatrix} 19.5696 \\ -22.4746 \\ -20.3088 \end{bmatrix}$$

Необходимо выделить участки неподвижности — желательно программно

Пример калибровки ДУС IMU 6DOF

Для калибровки ДУС на столе проводилась серия поворотов на трех непараллельных гранях на углы 8π и -8π . Показания ДУС представлены на рис.

В результате были получены параметры калибровки

$$S_{\omega} = \begin{bmatrix} -0.0290 & 0.0002 & 0.0002 \\ 0.0021 & 0.0251 & -0.0022 \\ 0.0004 & -0.0005 & 0.0285 \end{bmatrix}, \quad b_{\omega} = \begin{bmatrix} -457.6807 \\ -400.5889 \\ -447.4656 \end{bmatrix}$$

Необходимо выделить участки вращения — желательно программно

Теория вариации Аллана

Рассмотрим скалярный сигнал

$$x'(i) = x + \delta x(i), \quad x = \text{const}, \quad \delta x(i) - \text{шум}$$

Предположения

$$\delta x(i) = \delta x(i) = \delta x(i) + \delta x(i)$$
 белый шум + броуновское движение $\delta x(i) + \delta x(i)$

- $\delta_0(i)$ имеет постоянную дисперсию σ_0^2
- $\delta_1(i)$ имеет линейный рост дисперсии $\sigma_1^2 i$.

Для уменьшения белого шума применяют сглаживающий фильтр, например среднее арифметическое M отсчетов. Обозначим результаты фильтрации

$$\bar{x}'(i)$$
, $\bar{\delta}_0(i)$, $\bar{\delta}_1(i)$.

Шум $\bar{\delta}_0(i)$ не белый, а $\bar{\delta}_1(i)$ — не броуновский. Рассмотрим прореженный сигнал $\bar{\chi}(Mk)$.

Свойства

Прореженный шум $\bar{\delta}_0(Mk)$ – белый, с дисперсией $\bar{\sigma}_0^2=\sigma_0^2/M$.

Прореженный шум $\bar{\delta}_1(Mk)$ — броуновское движение, с дисперсией $\bar{\sigma}_1^2k$:

$$\bar{\sigma}_1^2 = \sigma_1^2 \frac{(M+1)(2M+1)}{6M}$$

Продолжение теории вариации Аллана

Введем разность отсчетов прореженного сигнала

$$y(k) = \frac{1}{\sqrt{2}}(\bar{x}'(Mk) - \bar{x}'(M(k-1))$$

Разность отсчетов для компонент шумов

Разность отсчетов представима в виде $y(k)=\xi_0(k)+\xi_1(k)$, где шумы $\xi_0(k),\xi_1(k)$ — белые с нулевым средним и дисперсиями

$$\sigma^{2}[\xi_{0}] = \frac{\sigma_{0}^{2}}{M}, \qquad \sigma^{2}[\xi_{1}] = \sigma_{1}^{2} \frac{(M+1)(2M+1)}{12M}$$

Выборочная дисперсия сигнала y(k) называется вариацией Аллана процесса x'(i) и обозначается $\sigma_A^2[\tau]$, где $\tau=M\Delta t$ – длительность интервала фильтрации.

Следствие

Если шум в x' представим в виде суммы белого шума и броуновского движения, то вариация Аллана убывает как 1/ au при малых au и растет как au при больших au.

Вариация Аллана для БИС

Сырые данные АКС и ДУС поступают в виде последовательности записей. Интервал Δt между записями близок к постоянному и составляет в нашем эксперименте 0.02 сек.

Результаты экспериментов

Оптимальное время осреднения ДУС ~ 1 сек.

Оптимальное время осреднения AKC $ \geq 5$ сек.

Оптимальное время осреднения слишком велико для навигации. Однако его удобно использовать при калибровке.

Типовые задания

- Вычислить вариацию Аллана АКСов и ДУСов по имеющимся данным.
 Определить оптимальное время осреднения данных.
- Каково минимальное число ориентаций в эксперименте для калибровки АКСов по Методу 1?
- Каково минимальное число ориентаций в эксперименте для калибровки АКСов по Методу 2?
- Показать, что аналитическое решение задачи калибровки АКСов по методу 1 эквивалентно МНК.
- Предложить алгоритм автоматического определения участков стояния и участков движения. Проверить на имитации и на реальных данных.
- 🛽 Считая корпус БИС кубом, и использовав Метод 1, откалибровать АКСы.
- 🗾 Считая корпус БИС кубом, и использовав Метод 1, откалибровать ДУСы.
- *Откалибровать АКСы Методом 2.
- *Откалибровать ДУСы, считая АКСы откалиброванными, Методом 2.

Порядок работы.

Сейчас:

- Эксперименты с АКС по методу 1 с записью данных в файл
- Эксперименты с ДУС по методу 1 с записью данных в файл
- Эксперименты с АКС по методу 2 с записью данных в файл

Дома:

- Вычисление коэффициентов АКС по методу 1
- Вычисление коэффициентов ДУС по методу 1
- Вычисление коэффициентов АКС по методу 2

При сдаче:

- Демонстрация работы программ с построением графиков
- Вопросы по теории