EXERCISES 4.2

In Problems 1–6, find all values of the given complex power.

1.
$$(-1)^{3i}$$

2.
$$3^{2i/\pi}$$

3.
$$(1+i)^{1-i}$$

4.
$$(1+\sqrt{3}i)^i$$

5.
$$(-i)^i$$

6.
$$(ei)^{\sqrt{2}}$$

In Problems 7–12, find the principal value of the given complex power.

7.
$$(-1)^{3i}$$

8.
$$3^{2i/\pi}$$

9.
$$2^{4i}$$

10.
$$i^{i/\pi}$$

11.
$$(1+\sqrt{3}i)^{3i}$$

12.
$$(1+i)^{2-i}$$

13. Verify that
$$\frac{z^{\alpha_1}}{z^{\alpha_2}} = z^{\alpha_1 - \alpha_2}$$
 for $z \neq 0$.

14. (a) Verify that $(z^{\alpha})^n = z^{n\alpha}$ for $z \neq 0$ and n an integer.

(b) Find an example that illustrates that for $z\neq 0$ we can have $(z^{\alpha_1})^{\alpha_2}\neq z^{\alpha_1\alpha_2}.$

Let z^{α} represent the principal value of the complex power defined on the domain $|z|>0, \ -\pi<\arg(z)<\pi$. In Problems 15–18, find the derivative of the given function at the given point.

15.
$$z^{3/2}$$
; $z = 1 + i$

16.
$$z^{2i}$$
; $z = i$

17.
$$z^{1+i}$$
; $z = 1 + \sqrt{3}i$

18.
$$z^{\sqrt{2}}; z = -i$$