Вопрос №1

Точные грани числовых множеств

Определение. Множество X вещественных чисел ограничено сверху, если $\exists b \in \mathbb{R} : \forall x \in X \Rightarrow x \leq b$.

Определение. Множество X вещественных чисел ограничено снизу, если $\exists a \in \mathbb{R} : \forall x \in X \Rightarrow a \leq x$.

Определение. Множество X вещественных чисел ограничено тогда и только тогда, когда X ограничено сверху и снизу: $\exists b \in \mathbb{R}: \ \forall x \in X \Rightarrow |x| \leq b$

Определение. Число $b \in \mathbb{R}$ называется верхней гранью множества X, если

$$\forall x \in X \Rightarrow x < b \tag{1}$$

Аналогично дается определение нижней грани множества X:

$$\forall x \in X \Rightarrow a \le x \tag{2}$$

Определение. Наименьшая из верхних граней множества $X \subset \mathbb{R}$ называется его точной верхней гранью и обозначается $\sup x$.

Согласно этому определению, $M = \sup x \Leftrightarrow (\forall x \in X \Rightarrow x \leq M) \land (\forall M_0 < M \exists x_0 \in X : x_0 > M_0).$

Определение. Наибольшая из нижних граней множества $X \subset \mathbb{R}$ называется его точной нижней гранью и обозначается $\inf x$.

Согласно этому определению, $m = \inf x \Leftrightarrow (\forall x \in X \Rightarrow x \geq m) \land (\forall m_0 < m \; \exists x_0 \in X : \; x_0 < m_0).$

Если множество X имеет наибольший элемент, то он и будет точной верхней гранью X.

Если множество X имеет наименьший элемент, то он и будет точной нижней гранью X.

Если X неограничено сверху, то полагаем $\sup x = +\infty$.

Если X неограничено снизу, то полагаем inf $x = -\infty$.

Любое множество вещественных чисел может иметь лишь одну точную верхнюю грань и одну точную нижнюю грань.

Теорема существования

Теорема (существование sup.) Любое непустое множество вещественных чисел, ограниченное сверху, имеет точную верхнюю грань, являющуюся

вещественным числом.

Доказательство. Пусть $X \subset \mathbb{R}$, $x \neq \emptyset$. Тогда $\exists a \in X$. Если X ограничено сверху, то $\exists b \in \mathbb{R} : \forall x \in X \Rightarrow x \leq b$. В частности, $a \leq b$. Таким образом, отрезок [a,b] содержит хотя бы один элемент множества X. Если a=b, то искомая точная верхняя грань задается равенством $\sup x = a$.

Пусть a < b. Тогда проведем следующие построения по индукции.

- 1. Возьмем $c_0 = \frac{a+b}{2}$. Если $\forall x \in X \Rightarrow x \leq c_0$, то возьмем $a_1 = a$, $b_1 = c_0$ и рассмотрим отрезок $[a_1, b_1]$, вместо [a, b]. Если же $\exists x \in X \Rightarrow x > c_0$, то возьмем $a_1 = c_0$, $b_1 = b$ и далее снова рассмотрим отрезок $[a_1, b_1]$, вместо [a, b].
- 2. Полагаем $c_1=\frac{a_1+b_1}{2}$ и далее построим отрезок $[a_2,b_2]$ по той же схеме, что и на шаге 1. В результате получим $[a_2,b_2]\subset [a_1,b_1]$ и $b_2-a_2=\frac{b_1-a_1}{2}$.

Таким образом, продолжая индуктивное построение, найдем последовательность вложенных отрезков $[a_n, b_n]$, обладающую свойствами:

1.
$$\forall x \in X \Rightarrow x \leq b_n, n = 1, 2, \dots$$

$$2. \ \forall n = 1, 2, \dots \ \exists x_n \in X : \ x_n > a_n$$

3.
$$b_n - a_n = (b - a) \cdot \frac{1}{2^n}, n = 1, 2, \dots$$

Таким образом, последовательность отрезков $[a_n, b_n]$ является стягивающейся. Согласно аксиоме непрерывности Кантора, эти отрезки имеют одну общую точку $c = a_n = b_n$.

При этом из оценки $x \le b \ \forall x \in X$ следует, что $\forall x \in X \Rightarrow x \le c$, т.е. c - это верхняя грань X.

Предположим, что $c_0 < c$. Тогда $\exists x_{n_0} \in X : x_{n_0} > a_{n_0} > c_0$. Следовательно, c_0 не может быть верхней гранью $X \Rightarrow c = \sup x$.

Аналогично доказывается теорема о существовании inf у любого ограниченного снизу множества чисел.

В множестве Q рациональных чисел точные верхние и нижние грани множеств могут не существовать.

Определение покрытия промежутка числовой оси

Определение. Семейство интервалов называется покрытием промежутка числовой оси, если любая точка этого промежутка принадлежит некоторому интервалу исходного семейства.

Иными словами, промежуток должен содержаться в объединении всех интервалов заданного семейства.

Пример. Пусть $a=10^{-n}$ и $b=1-10^{-n}$. Тогда последовательность интервалов (a_n,b_n) является покрытием интервала (0,1). $\forall x \in (0,1) \ \exists n \in N: \ 10^{-n} < x < 1-10^{-n}$.

При этом точки $x_0=0$ и $x_1=1$ не принадлежат $\bigcup_{n=0}^{\infty}(a_n,b_n)$ и поэтому последовательность (a_n,b_n) не является покрытием отрезка [0,1].

Лемма о покрытии (Лемма Гейне-Бореля)

Лемма. Из любого покрытия интервалами конечного отрезка числовой прямой можно выделить конечное подпокрытие этого отрезка.

Доказательство. Предположим противное. Тогда существует отрезок $[a,b] \subset \mathbb{R}$ и некоторое его покрытие интервалами, никакая конечная совокупность которых не является покрытием [a,b]. При этом необходимо, чтобы a было меньше b (иначе, т.е. при a=b, отрезок состоит из одной точки и покрывается одним интервалом).

Полагаем $c_0 = \frac{a+b}{2}$. Согласно предположению, по меньшей мере один из отрезков $[a, c_0]$ или $[c_0, b]$ не покрывается никакой конечной совокупностью интервалов рассматриваемого покрытия. Если указанным свойством обладает отрезок $[a, c_0]$, то полагаем $[a_1, b_1] = [a, c_0]$, в противном случае возьмем $[a_1, b_1] = [c_0, b]$.

Дальнейшее построение проведем по индукции: отрезок $[a_1,b_1]$ разобьем на два равных, взяв $c_1=\frac{a_1+b_1}{2}$; через $[a_2,b_2]$ обозначим либо $[a_1,c_1]$, если для него не существует конечного подпокрытия, либо $[c_1,b_1]$ - и тогда для $[a_2,b_2]$ также нет конечного подпокрытия.

В результате получим последовательность $[a_n, b_n]$ отрезков, вложенных друг в друга, каждый из которых не покрывается никакой конечной совокупностью исходных интервалов. Эти вложенные отрезки стягиваются в единственную общую точку

$$c = a_n = b_n \tag{3}$$

При этом $a \le c \le b$, следовательно, существует интервал (α, β) из исходного покрытия: $\alpha < c < \beta$.

Из 3 следует, что $\exists N: \alpha < a_n < b_n < \beta$. Таким образом, отрезок $[a_n,b_n]$ покрывается в точности одним интервалом исходного покрытия. Это противоречит построению $[a_n,b_n]$.

Следовательно, исходное предположение неверно.

Компактность замкнутого конечного отрезка

Следствие леммы о покрытии. Любой конечный отрезок числовой оси обладает свойством компактности: из любого его покрытия интервалами всегда можно выделить конечное подпокрытие.

Замечание. В условии леммы нельзя заменить семейство интервалов на семейство отрезков. Пример: [0,1] покрывается последовательностью $[10^{-n}, 1-10^{-n}], [-10^{-n}, 0]$ и $[1, 1+10^{-n}]$. Однако никакая конечная подпоследовательность указанного покрытия весь отрезок [0,1] не покрывает.

Теорема. Множество \mathbb{R} вещественных чисел несчетно.

Доказательство. Пусть \mathbb{R} - счетное, т.е. все его элементы можно пронумеровать натуральными числами:

$$x_n = p_{0n}, \alpha_{1n}, \alpha_{2n}, \dots, \alpha_{kn}, \dots; \ n = 1, 2, \dots$$
 (4)

Как обычно, будем предполагать, что среди бесконечных дробей нет периодических с периодом 9.

Рассмотрим теперь вещественное число x, построенное согласно следующему правилу:

$$x = 0, \alpha_1 \alpha_2 \dots \alpha_k \dots \tag{5}$$

где $\alpha_1 \neq 9$ и $\alpha_1 \neq \alpha_{11}$; $\alpha_2 \neq 9$ и $\alpha_2 \neq \alpha_{22}$; ... $\alpha_k \neq 9$ и $\alpha_k \neq \alpha_{kk}$; Тогда $\nexists n$: $x = x_n$, т.е. $\bigcup_{n=1}^{\infty} \{x_n\} \neq \mathbb{R}$. Это противоречит предположению.

Вопрос №2

Общее уравнение плоскости

Пусть задана произвольная декартова прямоугольная система координат Oxyz. Общим уравнением плоскости называется линейное уравнение

$$Ax + By + Cz + D = 0 (6)$$

где A, B, C, D - некоторые постоянные, причем хотя бы один из элементов A, B или C отличен от нуля.

Теорема. В произвольной декартовой прямоугольной системе координат в пространстве каждая плоскость α может быть задана линейным уравнением 6. Обратно, каждое линейное уравнение 6 в произвольной декартовой прямоугольной системе координат в пространстве определяет плоскость.

Доказательство. Так как числа A, B и C одновременно не равны нулю, то существует точка $M_0(x_0,y_0,z_0)$, координаты которой удовлетворяют уравнению Ax+By+Cz+d=0, то есть, справедливо равенство $Ax_0+By_0+Cz_0=0$. Отнимем левую и правую части полученного равенства соответственно от левой и правой частей уравнения Ax+By+Cz+D=0, при этом получим уравнение вида $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$ эквивалентное исходному уравнению Ax+By+Cz+D=0.

Равенство $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$ представляет собой необходимое и достаточное условие перпендикулярности векторов $\vec{n}=(A,B,C)$ и $\vec{M_0M}=(x-x_0,y-y_0,z-z_0)$. Иными словами, координаты плавающей точки M(x,y,z) удовлетворяют уравнению $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$ тогда и только тогда, когда перпендикулярны векторы $\vec{n}=(A,B,C)$ и $\vec{M_0M}=(x-x_0,y-y_0,z-z_0)$. Тогда мы можем утверждать, что если справедливо равенство $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$, то множество точек M(x,y,z) определяет плоскость, нормальным вектором которой является $\vec{n}=(A,B,C)$, причем эта плоскость проходит через точку $M_0(x_0,y_0,z_0)$. Другими словами, уравнение $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$ определяет в прямоугольной системе координат Oxyz в трехмерном пространстве указанную выше плоскость. Следовательно, эквивалентное уравнение Ax+By+Cz+D=0 определяет эту же плоскость.

Пусть нам дана плоскость, проходящая через точку $M_0(x_0,y_0,z_0)$, нормальным вектором которой является $\vec{n}=(A,B,C)$. Докажем, что в прямоугольной системе координат Oxyz ее задает уравнение вида Ax+By+Cz+D=0.

Для этого, возьмем произвольную точку этой плоскости. Пусть этой точкой будет M(x,y,z). Тогда векторы $\vec{n}=(A,B,C)$ и $\vec{M_0M}=(x-x_0,y-y_0,z-z_0)$ будут перпендикулярны, следовательно, их скалярное

произведение будет равно нулю: $(\vec{n}, \vec{M_0M}) = A(x - x_0) + B(y - y_0) + C(z - z_0) = Ax + By + Cz - (Ax_0 + By_0 + Cz_0) = 0$. Принимая во внимание $D = -(Ax_0 + By_0 + Cz_0)$, уравнение примет вид Ax + By + Cz + D = 0.

Разные уравнения одной плоскости

Если уравнения $A_1x + B_1y + C_1z + D_1 = 0$ и $A_2x + B_2y + C_2z + D_2 = 0$ определяют одну и ту же плоскость, то найдётся такое число λ , что выполнены равенства: $A_2 = A_1\lambda$, $B_2 = B_1\lambda$, $C_2 = C_1\lambda$, $D_2 = D_1\lambda$.

Уравнение плоскости, проходящей через три данные точки

способ нахождения уравнения плоскости, проходящей через три заданные точки $M_1(x_1, y_1, z_1)$, $M_2(x_2, y_2, z_2)$, $M_3(x_3, y_3, z_3)$.

Очевидно, что множество точек M(x,y,z) определяет в прямоугольной системе координат Oxyz в трехмерном пространстве плоскость, проходящую через три различные и не лежащие на одной прямой точки $M_1(x_1,y_1,z_1),\,M_2(x_2,y_2,z_2),\,M_3(x_3,y_3,z_3),\,$ тогда и только тогда, когда три вектора $\overrightarrow{M_1M_2}=(x-x_1,y-y_1,z-z_1),\,M_1\overrightarrow{M_2}=(x_2-x_1,y_2-y_1,z_2-z_1)$ и $M_1\overrightarrow{M_3}=(x_3-x_1,y_3-y_1,z_3-z_1)$ компланарны.

Следовательно, должно выполняться условие компланарности трех векторов $M_1M = (x-x_1,y-y_1,z-z_1),\ M_1M_2 = (x_2-x_1,y_2-y_1,z_2-z_1)$ и $M_1M_3 = (x_3-x_1,y_3-y_1,z_3-z_1)$, то есть, смешанное произведение векторов M_1M , M_1M_2 , M_1M_3 должно быть равно нулю: $M_1M \cdot M_1M_2 \cdot M_1M_3 = 0$. Это равенство в координатной форме имеет вид $\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix} = 0$. Оно, после вычисления определителя, пред-

ставляет собой общее уравнение плоскости, проходящей через три заданные точки $M_1(x_1,y_1,z_1), M_2(x_2,y_2,z_2), M_3(x_3,y_3,z_3).$

Примеры:

1. Напишите уравнение плоскости, которая проходит через три заданные точки $M_1(-3,2,-1)$, $M_2(-1,2,4)$, $M_3(3,3,-1)$.

Решение

(а) Первый способ решения. По координатам заданных точек вычисляем координаты векторов $\vec{M_1 M_2}$ и $\vec{M_1 M_3}$:

$$\vec{M_1 M_2} = (-1 - (-3), 2 - 2, 4 - (-1)) \Leftrightarrow \vec{M_1 M_2} = (2, 0, 5)$$

 $\vec{M_1 M_3} = (3 - (-3), 3 - 2, -1 - (-1)) \Leftrightarrow \vec{M_1 M_3} = (6, 1, 0)$

Найдем векторное произведение векторов $\vec{M_1M_2}=(2,0,5)$ и $M_1M_3 = (6, 1, 0)$:

$$\vec{n} = [\vec{M_1 M_2} \times \vec{M_1 M_3}] = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 0 & 5 \\ 6 & 1 & 0 \end{vmatrix} = -5 \cdot \vec{i} + 30 \cdot \vec{j} + 2 \cdot \vec{k}.$$

Следовательно, нормальным вектором плоскости, проходящей через три заданные точки, является вектор $\vec{n} = (-5, 30, 2)$. Теперь записываем уравнение плоскости, проходящей через

точку $M_1(-3,2,-1)$ (можно взять точку M_2 или M_3) и имеющей нормальный вектор $\vec{n} = (-5, 30, 2)$. Оно имеет вид -5. $(x-(-3))+30\cdot(y-2)+2\cdot(z-(-1))=0 \Leftrightarrow -5x+30y+2z-73=0.$ Так мы получили общее уравнение плоскости, проходящей через три заданные точки.

(b) Второй способ решения. Уравнение плоскости, проходящей через три заданные точки $M_1(x_1,y_1,z_1), M_2(x_2,y_2,z_2), M_3(x_3,y_3,z_3),$

записывается как
$$\begin{vmatrix} x-x_1 & y-y_1 & z-z_1\\ x_2-x_1 & y_2-y_1 & z_2-z_1\\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix}=0. \ \text{Из условия}$$
 задачи имеем $x_1=-3,\ y_1=2,\ z_1=-1,\ x_2=-1,\ y_2=2,\ z_2=4,$

 $x_3 = 3, y_3 = 3, z_3 = -1$. Тогда

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = \begin{vmatrix} x - (-3) & y - 2 & z - (-1) \\ -1 - (-3) & 2 - 2 & 4 - (-1) \\ 3 - (-3) & 3 - 2 & -1 - (-1) \end{vmatrix} = \begin{vmatrix} x + 3 & y - 2 & z + 1 \\ 2 & 0 & 5 \\ 6 & 1 & 0 \end{vmatrix} = \begin{vmatrix} x + 3 & y - 2 & z + 1 \\ 2 & 0 & 5 \\ 6 & 1 & 0 \end{vmatrix}$$

Следовательно, уравнение плоскости, проходящей через три заданные точки, имеет вид -5x + 30y + 2z - 73 = 0.

2. В прямоугольной системе координат Oxyz в трехмерном пространстве заданы три точки $M_1(5, -8, -2), M_2(1, -2, 0), M_3(-1, 1, 1)$. Составьте уравнение плоскости, проходящей через три заданные точки.

Решение

(a) **Первый способ решения.** Вычисляем координаты векторов $M_1\vec{M}_2$ и $M_1\vec{M}_3$: $M_1\vec{M}_2=(-4,6,2),\ M_1\vec{M}_3=(-6,9,3).$ Находим векторное произведение векторов $M_1\vec{M}_2$ и $M_1\vec{M}_3$: $[M_1\vec{M}_2 \times$

$$\vec{M_1 M_3} = \begin{vmatrix} i & j & k \\ -4 & -6 & 2 \\ -6 & 9 & 3 \end{vmatrix} = 0 \cdot \vec{i} + 0 \cdot \vec{j} + 0 \cdot \vec{k} = 0.$$

Так как $[M_1\vec{M}_2 \times M_1\vec{M}_3] = \vec{0}$, то векторы $M_1\vec{M}_2$ и $M_1\vec{M}_3$ коллинеарны, следовательно, заданные точки $M_1(5,-8,-2),\,M_2(1,-2,0),\,M_3(-1,1,1)$ лежат на одной прямой. Таким образом, поставленная задача имеет бесконечное множество решений, так как любая плоскость, содержащая прямую, на которой лежат точки $M_1,\,M_2,\,M_3,\,$ является решением задачи.

(b) Второй способ решения. Имеем $\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0 \Leftrightarrow \begin{vmatrix} x - 5 & y - (-8) & z - (-2) \\ 1 - 5 & -2 - (-8) & 0 - (-2) \\ -1 - 5 & 1 - (-8) & 1 - (-2) \end{vmatrix} = 0 \Leftrightarrow \begin{vmatrix} x - 5 & y + 8 & z + 2 \\ -4 & 6 & 2 \\ -6 & 9 & 3 \end{vmatrix} = 0 \Leftrightarrow 0 \Rightarrow 0.$

Мы приходим к тождеству, из которого можно заключить, что заданные точки $M_1(5, -8, -2)$, $M_2(1, -2, 0)$, $M_3(-1, 1, 1)$ лежат на одной прямой.

Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору

Пусть P(x,y,z) – произвольная точка пространства. Точка P принадлежит плоскости тогда и только тогда, когда вектор $MP=\{x-x_0,y-y_0,z-z_0\}$ ортогонален вектору $n=\{A,B,C\}$.

Написав условие ортогональности этих векторов (n, MP) = 0 в координатной форме, получим:

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$
(7)

Это и есть искомое уравнение. Вектор $n = \{A, B, C\}$ называется нормальным вектором плоскости.

Таким образом, чтобы написать уравнение плоскости, нужно знать нормальный вектор плоскости и какую-нибудь точку, принадлежащую плоскости.

Если теперь в уравнении 7 раскрыть скобки и привести подобные члены, получим общее уравнение плоскости:

$$Ax + By + Cz + D = 0 (8)$$

где
$$D = -Ax_0 - By_0 - Cz_0$$
.

Уравнение прямой, проходящей через 2 точки

Необходимо составить уравнение прямой a, проходящей через две несовпадающие точки $M_1(x_1,y_1)$ и $M_2(x_2,y_2)$, находящиеся в декартовой системе координат.

В каноническом уравнении прямой на плоскости, имеющим вид $\frac{x-x_1}{a_x}=\frac{y-y_1}{a_y}$, задается прямоугольная система координат Oxy с прямой, которая пересекается с ней в точке с координатами $M_1(x_1,y_1)$ с направляющим вектором $a=(a_x,a_y)$

Прямая a имеет направляющий вектор M_1M_2 с координатами (x_2-x_1,y_2-y_1) , так как пересекает точки M_1 и M_2 . Преобразуя каноническое уравнение с координатами направляющего вектора $M_1M_2=(x_2-x_1,y_2-y_1)$ и координатами лежащих на них точек $M_1(x_1,y_1)$ и $M_2(x_2,y_2)$, получим уравнение вида $\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}$ или $\frac{x-x_2}{x_2-x_1}=\frac{y-y_2}{y_2-y_1}$. Запишем параметрические уравнения прямой на плоскости, которая

Запишем параметрические уравнения прямой на плоскости, которая проходит через две точки с координатами $M_1(x_1,y_1)$ и $M_2(x_2,y_2)$. Получим уравнение вида $\begin{cases} x = x_1 + (x_2 - x_1) \cdot \lambda \\ y = y_1 + (y_2 - y_1) \cdot \lambda \end{cases}$ или $\begin{cases} x = x_2 + (x_2 - x_1) \cdot \lambda \\ y = y_2 + (y_2 - y_1) \cdot \lambda \end{cases}$

Уравнение прямой, проходящей через данную точку параллельно данному вектору

Пусть прямая проходит через точку $M_0(x_0, y_0, z_0)$ параллельно вектору $\vec{a} = \{l; m; n\}$.

точка M(x,y,z) лежит на прямой тогда и только тогда, когда векторы $\vec{a}=\{l;m;n\}$ и $\vec{M_0M}=\{x-x_0;y-y_0;z-z_0\}$ коллинеарны. Векторы $\vec{a}=\{l;m;n\}$ и $\vec{M_0M}=\{x-x_0;y-y_0;z-z_0\}$ коллинеарны тогда и только

тогда, когда их координаты пропорциональны, то есть

$$\frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}. (9)$$

Полученная система уравнений задает искомую прямую и называется каноническими уравнениями прямой в пространстве.

Условия параллельности и перпендикулярности прямой и плоскости

- 1. Для параллельности прямой a, не лежащей в плоскости α , и плоскости α необходимо и достаточно, чтобы направляющий вектор прямой a был перпендикулярен нормальному вектору плоскости α .
 - Следовательно, необходимое и достаточное условие параллельности прямой a и плоскости α (a не лежит в плоскости α) примет вид $(\vec{a}, \vec{n}) = a_x \cdot A + a_y \cdot B + a_z \cdot C = 0$, где $\vec{a} = (a_x, a_y, a_z)$ направляющий вектор прямой a, $\vec{n} = (A, B, C)$ нормальный вектор плоскости α .
- 2. Для перпендикулярности прямой a и плоскости γ необходимо и достаточно, чтобы направляющий вектор прямой a и нормальный вектор плоскости γ были коллинеарны.

Для перпендикулярности прямой a и плоскости γ необходимо и достаточно, чтобы выполнялось условие коллинеарности векторов

$$\vec{a}=(a_x,a_y,a_z)$$
 и $\vec{n}=(n_x,n_y,n_z)$: $\vec{a}=t\cdot\vec{n}\Leftrightarrow egin{cases} a_x=t\cdot n_x\ a_y=t\cdot n_y\ a_z=t\cdot n_z \end{cases}$, где t -

некоторое действительное число.

Вычисление расстояния от данной точки до данной плоскости

Определение. Расстоянием от точки до плоскости называется длина перпендикуляра, опущенного из данной точки на данную плоскость.

Расстояние от точки A_0 с координатами (x_0, y_0, z_0) до плоскости α , заданной уравнением ax + by + cz + d = 0 вычисляется следующим образом.

Пусть A с координатами (x,y,z) - точка плоскости α , $\vec{n}=(A,B,C)$ - вектор нормали. Тогда $\cos\phi=\frac{\vec{n}\cdot A\vec{A}_0}{|\vec{n}|\cdot |A\vec{A}_0}=\frac{a(x_0-x)+b(y_0-y)+c(z_0-z)}{\sqrt{a^2+b^2+c^2}\cdot |A\vec{A}_0|}$. Учитывая, что -ax-by-cz=d и то, что искомое расстояние $h=|A\vec{A}_0|\cdot\cos\phi$, получаем $h=\frac{|ax_0+by_0+cz_0+d|}{\sqrt{a^2+b^2+c^2}}$.