# Machine Learning in Practice: a Crash Course

Lecture 3: Bayesian

胡津铭 DolphinDB

# Recap

• Machine Learning Pipeline

Generalization

Metrics

# Today

Bayesian Decision Theory

Naïve Bayes Classifier

### Today

- Since we are going to talk about models in ML
- Big picture of machine learning models:
- Learning = Representation + Evaluation + Optimization

#### Bayesian Decision Theory

 Decision problem posed in probabilistic terms

- *x*: sample
- y: state of the nature, often is class label
- P(y|x): given x, what is the probability of the state of the nature
- e.g. P(y = 1|x)



### Bayes' Theorem

- Conditional probability: P(A|B) = P(A,B)/P(B).
- Independence: A and B are said to be independent if and only if P(A, B) = P(A) P(B).

Bayes' Theorem:

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

#### Illustration

| Α | 0 | 0 | 1 | 1 | 1 | 0 |
|---|---|---|---|---|---|---|
| В | 0 | 1 | 1 | 0 | 1 | 1 |

• 
$$P(A = 1) =$$

$$P(A = 0) =$$

• 
$$P(B = 1) =$$

$$P(B = 0) =$$

• 
$$P(A = 1, B = 1) =$$

• 
$$P(A = 1|B = 1) =$$

• 
$$P(A = 1|B = 1) =$$

• Bayes' Theorem

#### Prior

| lightness | 1 | 2  | Total |
|-----------|---|----|-------|
| See bas   | 5 | 10 | 15    |
| salmon    | 6 | 5  | 11    |

- Reflects our prior knowledge about how likely we are to observe a sea bass or salmon
- The catch of salmon and sea bass is equally probable
  - $P(y_1) = P(y_2)$  (uniform priors)
    - Is this always the case?
    - For example, bomb/cancer detection?
  - $P(y_1) + P(y_2) = 1$  (exclusivity and exhaustivity)
- Decision rule with only the prior information
  - Decide  $y_1$  if  $P(y_1) > P(y_2)$ , otherwise  $y_2$
  - What's the problem with this? It does not utilize any feature.

#### Likelihood

| lightness | 1 | 2  | Total |
|-----------|---|----|-------|
| See bas   | 5 | 10 | 15    |
| salmon    | 6 | 5  | 11    |

- In sea bass/salman example
- $P(x|y_1)$  and  $P(x|y_2)$  describe the difference in lightness feature between populations of sea bass and salmon
- $P(x|y_i)$  is called the **likelihood** of  $y_i$  with respect to x;
- the category  $y_j$  for which  $P(x|y_j)$  is large is more likely to be the true category
- Maximum likelihood decision
  - Decide  $y_1$  if  $P(x|y_1) > P(x|y_2)$  otherwise  $y_2$

#### Posterior

| lightness | 1 | 2  | Total |
|-----------|---|----|-------|
| See bas   | 5 | 10 | 15    |
| salmon    | 6 | 5  | 11    |

Bayes formula

$$P(y_i|x) = \frac{P(x|y_i)P(y_i)}{P(x)}$$

$$P(x) = \sum_{i=1}^{k} P(x|y_i)P(y_i)$$

#### **Posterior** = (**Likelihood** × **Prior**) / Evidence

- Evidence P(x) can be viewed as a scale factor that guarantees that the posterior probabilities sum to 1

### Optimal Bayes Decision Rule

- Decide  $y_1$  if  $P(y_1|x) > P(y_2|x)$ , otherwise  $y_2$
- Bayes decision rule minimizes the probability of error, that is the term Optimal comes from.
  - But why?

# Bayesian Decision Theory – Generalization

- Generalization of the preceding ideas
- Use of more than one feature (p features)
- Use of more than two classes (c classes)
- Are errors equal?

# Bayesian Risk

- $E_{ij} = E(\widehat{y}_i | y_j)$
- $R(\widehat{y_1}|x) = E_{11}P(y_1|x) + E_{12}P(y_2|x) = E_{12}P(y_2|x)$
- $R(\widehat{y_2}|x) = E_{21}P(y_1|x) + E_{22}P(y_2|x) = E_{21}P(y_1|x)$
- Decide  $y_1$  if  $R(\widehat{y_1}|x) < R(\widehat{y_2}|x)$ , otherwise  $y_2$
- Special Case, if  $E_{12} = E_{21}$ , then this is?
  - Posterior decision rule!
- Recall the sea bass/salmon, what is it?



#### Example 1: Two-class classification

- Decide  $y_1$  if  $R(\widehat{y_1}|x) < R(\widehat{y_2}|x)$ , otherwise  $y_2$
- $y_1$  if  $E_{21}P(y_1|x) > E_{12}P(y_2|x)$ , otherwise  $y_2$
- $E_{21} P(x|y_1) P(y_1) > E_{12} P(x|y_2) P(y_2)$
- The preceding rule is equivalent to the following rule:
- If  $\frac{P(x|y_1)}{P(x|y_2)} > \frac{E_{12}}{E_{21}} \times \frac{P(y_2)}{P(y_1)}$
- "If the likelihood ratio exceeds a threshold value that is independent of the input pattern x, we can take optimal actions"

#### Example 2: Multi-class classification

- If we predict as  $\hat{y}_i$  and the label is  $y_i$  then:
- the decision is correct if i = j and in error if  $i \neq j$
- Seek a decision rule that minimizes the probability of error or the error rate or maximize the accuracy

• 
$$E(\widehat{y}_i|y_j) = \begin{cases} 0 & i=j\\ 1 & i\neq j \end{cases}$$

• Minimizing the risk  $\rightarrow$  Maximizing the posterior  $P(y_i|x)$ 

## Bayesian Decision Rule

• Decide  $y_i$  if  $P(y_i|x) > P(y_j|x) \forall j \neq i$ 



# Bayesian Decision Rule

• Decide  $y_i$  if  $P(y_i|x) > P(y_j|x) \forall j \neq i$ 



# Bayesian Decision Rule

• Decide  $y_i$  if  $P(y_i|x) > P(y_j|x) \forall j \neq i$ 



#### Discriminant Functions and Classifiers



- Set of discriminant functions:  $g_i(x)$ ,  $i=1,\cdots,c$
- Classifier assigns a feature vector  $\mathbf{x}$  to class  $y_i$  if:  $g_i(\mathbf{x}) > g_i(\mathbf{x}), \quad \forall j \neq i$

#### Decision Regions and Surfaces

- Effect of any decision rule is to divide the feature space into c decision regions
- If  $g_i(x) > g_j(x) \ \forall j \neq i$ , then  $x \in \mathcal{R}_i$ (Region  $\mathcal{R}_i$  means assign x to  $y_i$ )



#### So Far…

- Bayesian framework
  - We could design an optimal classifier if we knew:
    - $P(y_i)$ : priors
    - $P(x \mid y_i)$ : class-conditional densities

Unfortunately, we rarely have this complete information!

- Design a classifier based on a set of labeled training samples (supervised learning)
  - Estimate it from the data

#### How to Estimate Probabilities from Data?

| Tid | Refund | Marital<br>Status | Taxable<br>Income | Evade |
|-----|--------|-------------------|-------------------|-------|
| 1   | Yes    | Single            | 125K              | No    |
| 2   | No     | Married           | 100K              | No    |
| 3   | No     | Single            | 70K               | No    |
| 4   | Yes    | Married           | 120K              | No    |
| 5   | No     | Divorced          | 95K               | Yes   |
| 6   | No     | Married           | 60K               | No    |
| 7   | Yes    | Divorced          | 220K              | No    |
| 8   | No     | Single            | 85K               | Yes   |
| 9   | No     | Married           | 75K               | No    |
| 10  | No     | Single            | 90K               | Yes   |

• Class: 
$$P(y_k) = \frac{N_{y_k}}{N}$$
  
• e.g.,  $P(No) = 7/10, P(Yes) = 3/10$ 

For discrete attributes:

$$P(x_i|y_k) = \frac{|x_{ik}|}{N_{y_k}}$$

- where  $|x_{ik}|$  is number of instances having attribute  $x_i$  and belongs to class  $y_k$
- Examples:

$$P(Status = Married|No)$$
  
= 4/7  
 $P(Refund = Yes|Yes) = 0$ 

#### How to Estimate Probabilities from Data?

- For continuous attributes:
  - **Discretize** the range into bins
    - one ordinal attribute per bin
  - Two-way split: (x < v) or (x > v)
    - choose only one of the two splits as new attribute
  - Probability density estimation:
    - Assume attribute follows a normal distribution or some other distribution

# Bayesian Decision Rule Notebook Demo

#### So Far…

- Design a classifier based on a set of labeled training samples (supervised learning)
  - Estimate the probability from the data
  - Need sufficient no. of training samples for estimating class-conditional densities, especially when the dimensionality of the feature space is large
  - Curse of Dimensionality

### Naïve Bayes Classifier

- Given  $\mathbf{x} = (x_1, \cdots x_p)$ 
  - Goal is to predict class y
  - Specifically, we want to find the value of y that maximizes  $P(y|x) = P(y|x_1, \dots x_p)$
  - $P(y|x_1, \dots x_p) \propto P(x_1, \dots x_p \mid y)P(y)$
- Conditional independence assumption among features
  - $P(x_1, \dots x_p|y) = P(x_1|y) \dots P(x_p|y)$
  - Clearly not true for most applications, thus the name "Naïve"

# Naïve Bayes Classifier

- Conditional independence assumption among features
  - $P(x_1, \dots x_p|y) = P(x_1|y) \dots P(x_p|y)$
  - What are the potential problems?
    - Float point underflow: take a log!
    - One zero will zero-out all
  - Smoothing

$$P(x_i|y_k) = \frac{|x_{ik}|+1}{N_{y_k}+K}$$

### Naïve Bayes Classifier Notebook Demo

#### Naïve Bayes Summary

- Advantages
  - Robust to isolated noise points
  - Handle missing values by ignoring the instance during probability estimate calculations
  - Robust to irrelevant attributes
- Disadvantages
  - Independence assumption may not hold for some attributes
- But it works for spam/ham classifier very well, why?
  - Many words are sort of independent
  - $P(x_1, \dots x_p|y) = P(x_1|y) \dots P(x_p|y)$
  - Even if the value may not be equal, the order may keep
  - Very efficient to train/predict even with a large vocabulary, i.e. a lot of features

#### Question?

Thanks and welcome to give us suggestions and feedbacks afterwards.