INSTITUTO DE MATEMÁTICA -UFRI

Cálculo Vetorial e Geometria Analtica - 2022.2 - Professor Felipe Acker Prova 4 - 23 de dezembro

PARTE I - Contas (4 pontos) - Justifique suas respostas

1. Sejam

$$B = \left\{ z \in \mathbb{R}^2 \mid |z| \le 1 \right\}, \ \ S = \left\{ z \in \mathbb{R}^2 \mid |z| = 1 \right\}.$$

Suponha que $f: B \rightarrow B$ é tal que

$$f(z) \neq z \ \forall \ z \in B.$$

Para cada z em B, obtenha um ponto g(z) em S da seguinte forma: g(z) é a interseção com S da semirreta que parte de f(z) e contém z.

- (a) Obtenha a expressão de g(z) em função de z e de f(z). Atenção: trata-se de obter a interseção entre uma semirreta e um círculo. Tem contas, mas é algo que você tem que saber fazer. Se não souber fazer, não terei o menor remorso em reprovar você neste curso (mas vou, é claro, me sent1r um péssimo professor). (valor: 2 pontos)
- (b) Mostre que a função $g: B \to S$ acima definida satisfaz as seguintes propriedades:
 - i. $f(z) = z \forall z \in S$; (valor: 0,5 ponto)
 - ii. é de classe C^k , se f for de classe C^k . (valor: 0,5 ponto)

2. Seja p(z) o polinômio a coeficientes complexos, dado por

$$p(z) = z^n + a_{n-1}z^{n-1} + \ldots + a_1z + a_0$$
, com $a_0 \neq 0$.

Suponha que p não é constante (ou seja, n > 0).

(a) Faça $q(z) = a_{n-1}z^{n-1} + \ldots + a_1z + a_0$. Mostre que existe R > 0 (real, claro) tal que

$$|z| \ge R \Rightarrow |q(z)| < |z^n|$$
.

Exiba um tal R, maior do que 1, em função dos coeficientes de q. (valor: 0,5 ponto)

(b) Faça $q(z) = z^n + a_{n-1}z^{n-1} + \ldots + a_1z$. Mostre que existe $\varepsilon > 0$ (real, claro) tal que

$$|z| \le \varepsilon \Rightarrow |q(z)| < |a_o|$$
.

Exiba um tal ε , menor do que 1, em função dos coeficientes de p. (valor: 0,5 ponto)

PARTE II - Homotopias - 1,5 pontos, cada - Justifique suas respostas

1. Sejam Ω um aberto do plano (que identificaremos a \mathbb{C}) e $F:\Omega\to\mathbb{C}$ uma função de classe C^1 (isto é, F é contínua e tem derivadas parciais contínuas - se você não fez Cálculo II, não se martirize, é apenas um detalhe técnico).

Sejam r_0 e r_1 reais, com $0 \le r_0 < r_1$. Suponha que Ω contém a coroa circular

$$K[r_o, r_1] = \{z \in \mathbb{C} \mid r_o \le |z| \le r_2\}.$$

Seja

$$H: [0,1] \times [0,2\pi] \to \mathbb{C}$$
, dada por $H(s,t) = F([(1-s)r_0 + sr_1](\cos t + i\sin t))$.

Para cada s em [0,1], seja $c_s:[0,2\pi]\to\mathbb{C}$ a curva definida por

$$c_s(t) = H(s,t).$$

Chame de γ_0 e γ_1 as curvas definidas, respectivamente, por

$$\gamma_o(t) = F(r_o(\cos t + i\sin t)), \quad \gamma_1(t) = F(r_1(\cos t + i\sin t)).$$

Mostre que:

- (a) H é de classe C^1 ;
- (b) $c_s(2\pi) = c_s(0)$, para todo s em [0,1];
- (c) $c_o(t) = \gamma_o(t)$, para todo t em $[0, 2\pi]$.
- (d) $c_1(t) = \gamma_1(t)$, para todo $t \text{ em } [0, 2\pi]$.
- 2. Suponha $c_0, c_1: [a,b] \to \mathbb{C}$ são duas curvas parametrizadas, fechadas (istoé: $c_0(b) = c_0(a)$ e $c_1(b) = c_1(a)$), de classe C^k . Defina $v: [a,b] \to \mathbb{C}$ por

$$v(t) = c_1(t) - c_0(t)$$
.

Seja

$$H: [0,1] \times [a,b] \rightarrow \mathbb{C}$$
, dada por $H(s,t) = c_o(t) + sv(t)$.

Mostre que:

- (a) H é de classe C^k ;
- (b) $c_s(b) = c_s(a)$, para todo s em [0, 1];
- (c) $H(0,t) = c_0(t)$, para todo t em [a,b].
- (d) $H(1,t) = c_1(t)$, para todo t em [a,b];
- (e) se $c_o(t) \neq O$ para todo t em [a,b] e $|v(t)| < |c_o(t)|$ para todo t em [a,b], então $c_s(t) \neq O$ para todo t em [a,b] e para todo t em [a,b] en [a,b] e para todo t em [a,b] en [a,b] en

PARTE III - Teoremas - 7 pontos - Justifique suas respostas

Se $c : [a, b] \to \mathbb{R}^2 \setminus \{(0, 0)\}$ é uma curva fechada (c(b) = c(a)) de classe C^1 , dada por

$$c(t) = (x(t), y(t)),$$

definimos o **índice** de c em relação a O = (0,0), n(c,O), por

$$n(c,O) = \frac{1}{2\pi} \int_a^b \frac{-y(t)\dot{x}(t) + x(t)\dot{y}(t)}{x^2(t) + y^2(t)} dt.$$

Se $c_0, c_1 : [a, b] \to \mathbb{R}^2$ são curvas fechadas de classe C^1 , uma homotopia de caminhos fechados, de classe C^k , entre c_0 e c_1 é uma função

$$H: [0,1] \times [a,b] \rightarrow \mathbb{R}^2$$

tal que

- 1. H é de classe C^k ;
- 2. H(s,b) = H(s,a), para todo s em [0,1];
- 3. $H(0,t) = c_o(t)$, para todo t em [a,b].
- 4. $H(1,t) = c_1(t)$, para todo t em [a,b];

Admitiremos provados os seguintes resultados:

Resultado 1: O índice, quando definido, é sempre um número inteiro.

Resultado 2: se existe homotopia C^1 de caminhos fechados, H, entre c_0 e c_1 e a origem, O, não está na imagem de H (ou, dito de outra forma, se podemos deformar c_0 em c_1 sem passar por O), então $n(c_1, O) = n(c_0, O)$.

Teorema Fundamental da Álgebra(**valor:4 pontos**): Se p(z) é um polinômio não constante a coeficientes complexos, então p tem, pelo menos, uma raiz em \mathbb{C} .

- 1. Dê uma olhada na playlist TFA. Use os resultados das partes I e II.
- 2. Defina, para $r \geq 0$, a curva $c_r : [0, 2\pi] \to \mathbb{C}$ por

$$c_r(t) = p(r(\cos t + i\sin t)).$$

Mostre que $n(c_0, O) = 0$ e que, caso p não tenha raiz, então $n(c_r, O) = 0$ para todo r.

3. Seja, para r > 0, $\gamma_r : [0, 2\pi] \to \mathbb{C} \setminus \{O\}$ dada por

$$\gamma_r t = r^n(\cos(nt) + i\sin(nt)).$$

Mostre que

$$n(\gamma_r, O) = k$$
, sendo k o grau de p .

- 4. Mostre que, se R é suficientemente grande, então existe homotopia de caminhos fechados entre γ_R e c_r em $\mathbb{R}^2 \setminus \{O\}$.
- 5. Conclua a demonstração do TFA.

Teorema de Irretratabilidade de B **em** S(**valor: 2 pontos**): Com as definições da questão 1 da Parte I, não existe $g: B \to S$, de classe C^1 , com g(z) = z para todo z em S.

- 1. Veja o vídeo Lema de Brouwer.
- 2. Suponha que uma tal *g* exista. Usando a ideia da questão 1 da Parte II, construa uma homotopia entre uma curva constante (a imagem é um ponto) e uma que percorre *S* uma vez.
- 3. Prove o Teorema.

Teorema de Brouwer(valor: 1 ponto): Se $f: B \to B$ é de classe C^1 , então existe z_0 em B tal que $f(z_0) = z_0$.

1. Suponha que tal z_0 não exista. Construa g contrariando o Teorema de Irretratabilidade de B em S.

PARTE IV - Mecânica - 7 pontos - Justifique suas respostas

1. Suponha que I é um intervalo em \mathbb{R} e $c: I \to \mathbb{R}^2$, c(t) = (x(t), y(t)) é de classe C^1 e tal que

$$-y(t)\dot{x}(t) + x(t)\dot{y}(t) \neq 0 \ \forall \ t \in I.$$

Mostre que podemos reparametrizar c de forma a fazer valer a lei das áreas, isto é: existem um intervalo J e uma função bijetiva,

$$t:I\to I$$

tais que, se definirmos $\gamma: J \to \mathbb{R}^2$ por

$$\gamma(s) = c(t(s)) = (x(t(s)), y(t(s)),$$

então γ , como função de s, satisfará a Lei das Áreas.(valor: 2 pontos)

2. Sejam m um real estritamente positivo e $k:[0,\infty[\to]0,\infty[$ uma função contínua. O objetivo deste problema é estudar as possíveis soluções da equação diferencial

$$(*) m\ddot{x}t = -k(|x(t)|^2)x(t).$$

- (i) Justifique sucintamente, com base em seus conhecimentos de Cálculo de uma variável real, as afirmações a seguir.
 - (a) Para todo R>0, existem k_1 e k_2 , com $0 < k_1 \le k_2$, tais que, para r real,

$$r^2 \leq R^2 \Rightarrow k_1 \leq k(r^2) \leq k_2$$
.

(b) Existe $U: [0, \infty[\to [0, \infty[$ (expresse U por meio de uma integral), com U(0) = 0 e

$$U'(s) = k(s) \ \forall \ s \in [0, \infty[.$$

- (ii) Suponha que I é um intervalo em $\mathbb R$ e que $x:I\to\mathbb R^3$ é uma solução de (*). Mostre que:
 - (a) a função $L: I \to \mathbb{R}^3$,

$$L(t) = x(t) \otimes m\dot{x}(t),$$

é constante;

(b) a função $E: I \to \mathbb{R}$,

$$E(t) = \frac{1}{2} \left(m |\dot{x}(t)|^2 + U(|x(t)|^2) \right),$$

é constante

- (iii) Suponha que I é um intervalo em \mathbb{R} e que $x:I\to\mathbb{R}^3$ é uma solução de (*). Suponha também que, para um certo t_o em I, os vetores $x(t_o)=x_o$ e $\dot{x}(t_o=v_o)$ são linearmente independentes. Mostre que:
 - (a) existe um plano, α (exiba, em função de x_0 e v_0 , um ponto de α e um vetor não nulo normal a α), tal que $x(t) \in \alpha$ para todo t em I;
 - (b) x(t) não passa pela origem;
 - (c) não existe uma reta, γ , tal que $x(t) \in \gamma$ para todo t em I.
- (iv) Você acha que, nas condições do problema, é possível garantir que, fixados, x_o e v_o , sempre existe uma correspondente solução $x: \mathbb{R} \to \mathbb{R}^3$ de (*) (com $x(t_o) = x_o$ e $\dot{x}(t_o) = v_o$ e definida para todo "tempo"t)? Explique!
- (v) Suponha que a resposta para o item anterior seja positiva. Mostre que, para todo R>0 e para todo x_o , existe v_o tal que uma correspondente solução, x(t) vai ser tal que, para algum t, teremos |x(t)|>R.

(vi) Suponha que

$$\int_0^\infty k(s)\ ds = \infty.$$

Mostre que toda solução de (*) é limitada, isto é: que se $x:I\to\mathbb{R}^3$ é solução de (*), então existe R tal que $|x(t)|\le R$ para todo t em I.

3.

4.

5.

6.