10

MOPG FORM 422 (VERTICAL) (AUGUST 1900)

D004

NOTICE—When Government drawings, specifications, or other data are used for any surpose other than in connection with a definitely related Government presurement operation, the United States Covernment thereby insure no reasonability nor obligation whatsoever; and the lost that the Government may have fermulated, furnished, by any way supplied the said drawings specifications or other data to not to be regarded by implication or otherwise as in any manner licensing the helder or any other person or corporation, or conveying any rights or permission to manufacture, use, or said any patented invention that may in any way be related thereto.

APPLICATION

PART NO.

##

REVISIONS

APPLIC	ATION	PART No.	M.F		REVISION	S	
NEXT ASSY	USED ON			SYM	DESCRIPTION	DATE	APPROVAL
		ATT	1	Α	REVISED	5/14/73	ROV
		(1/2/2)	ध्य	В		9/25/79	EASTAW/HJUA
		(11/6/8	7	C	11	8/18/87	RIM/2016.18
		RELEA	رزي				R3R/37M
		5/1/90		D	See Revision Log Sheet	2/28/90	AT. 728 1
· ·	<u> </u>				·		per per
		11,592)	E	Incorporate EO #2	12/19/91	PHONY
·	<u> </u>	3					Jet Por

ASSESSMENT OF FLEXIBLE LINES

FOR

FLOW INDUCED VIERATION

MATERIAL 10 Tuckli	OF DRAWING DRAFTSMAN FRACER ENGINEER 7 CHOCKE SUBMITTED	DURFORI FLO	SSMENT OF T FOR UNDUCED			S SPACE NATION AND SPACE	C. MA FLIGHT AL AERON E ADMINIS VILLE, AL	CENTER AUTICS STRATION
FINAL PROTECTIVE FINISH	Floofen /	5/11/3 SCALE		- 1	DWG SIZE	20M02	540	
Provided by IHS No reproduction or networking permitted without license from IHS	JA Folle		5A Technical Standards 4 1, 10/22/2008 13:47:31 M		A Fults, Jasor	SHEET 1	OF /	07

REVISIONS

SYM DESCRIPTION DATE APPROVAL

REVISION LOG

Ī	Revision	Date of	Revised	
	Letter	Revision	Pages	Description
	Baseline	4/17/73		
	A	5/14/73		
Ì	В	9/25/79		
	С	8/18/87	ALL	Completely revised to reflect new analytical procedures developed in NASA TM-82556.
RELEASE ET	D	2/28/90	ALL	Completely revised. Major changes include convolute bending mode, new examples, new computer program (ver. 3.2), new FNCO eqn., added safety factors, added oper. velocity criteria, corrected static stress eqns., added modified Goodman method, and general clarification.
TIS 92 RELEASE	E	12/19/91	3-11,14, 15,26,29, 33,34,36, 37,39,44, 40,41,45, 46,48-58, 61,63-69, 72,74,75, 77-86,90, 93-100, 103-106, 108, 110-114, 116-118	Modified scope of the document. Changed "safety factor" to "uncertainty factor." Deleted static stress eqns. (App. B). Added a system level analysis (para. 3.0). Deleted materials data (Tables 2 & 3). Changed method of fatigue assessment. Deleted modified Goodman approach. Added two references. Made minor changes to computer program. Made several other minor changes. NOTE: Refer to EO #2 for detailed description of changes.

CODE DWG 20M0254C

A SHEET 2 0F/07

Provided by IHS

No reproduction or networking permitted without license from IHS

Licensee=NASA Technical Standards 4/9972545004 Not for Resale, 10/22/2008 13:47:31 MDT

	REVISIO	4 5	
SYM	DESCRIPTION	DATE	APPROVAL

TABLE OF CONTENTS

		<u>Page</u>
1.0 G	GENERAL	. 6
1.1 1.2 1.3 1.4	Scope	. 6 . 8 . 9
2.0	DESIGN ANALYSIS PROCEDURE	. 9
2.1	Natural Frequency Calculation	. 12
	1.1 Free Bellows	. 12
2.2	Flow Excitation Range Calculation	. 24
2.3	First Radial Acoustic Mode Resonance Calculation (Gas Media Only)	. 26
2.4	Flow-Induced Stress Calculation	. 29
2.	4.1 Uncertainty Factors	. 33
2.5	Bellows and Flexhose Fatigue Assessment	. 34
2.6	Bellows and Flexhose Operating Velocity Assessment	. 35
3.0 S	SYSTEM LEVEL ANALYSIS OF A FLEXIBLE LINE	. 37
4.0 F	FLOW TESTING	. 42
5.0	COMPUTER PROGRAM	. 42
6.0 E	EXAMPLE PROBLEMS	. 43

CODE IDENT NO	DWG SIZE	2	OMO:	2540
	Α	SHEET	3	OF 107

9999939 0000240 367 🖿

MSFC FORM 422-8 (VERTICAL) (NOVEMBER 1962)

CONTINUATION SHEET

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

TABLE OF CONTENTS (Con't)

							Pa	age
REFERENCES .		•		•				44
APPENDIX A - S	SYMBOLS AND DEFINITIONS .							45
	FLOW-INDUCED VIBRATION EXAMPLE FOR BELLOWS AND FLEXHOSE .							50
	BELLOWS FLOW-INDUCED VIBRATED PROGRAM		-			_		88

CODE DWG SIZE 20M02540

A SHEET 4 OF 107

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

LIST OF FIGURES

				Page
FIGURE	1	-	LUMPED SPRING-MASS MECHANICAL MODEL FOR FREE BELLOWS	13
FIGURE	2	-	BELLOWS NOMENCLATURE	14
FIGURE	3	-	SUMMARY OF BELLOWS VIBRATION MODES	19
*FIGURE	4	-	LUMPED SPRING-MASS MECHANICAL MODEL FOR FLEXHOSE	21
FIGURE	5	-	SUMMARY OF FLEXIBLE HOSE VIBRATION MODES	23
FIGURE	6	-	FREQUENCY VS. VELOCITY PLOT INDICATING FLOW EXCITATION RANGE	27
FIGURE	7	_	FLOWCHART FOR SYSTEM LEVEL ANALYSIS	38

LIST OF TABLES

									Page
TABLE	1	_	DIMENSIONLESS	FREQUENCY	FACTORS	B_N			17

CODE DWG IDENT NO SIZE

20M02540

SHEET 5 OF 107

REVISIONS									
SYM	DESCRIPTION	DATE	APPROVAL						

1.0 GENERAL

It is well known that the occurrence of flow-induced vibrations in flexible lines, specifically metal bellows and flexhoses, can cause premature failure. This is attributed to a resonance caused by the coupling of vortex shedding from the convolutes with the natural frequencies of the flexible line. A goal in designing these bellows and flexhoses is to prevent resonance from occurring. In the event this goal cannot be met, it is then desirable to analytically predict what the expected life of the bellows and flexhose is due to flow-induced vibration loads.

1.1 Scope

The purpose of this document is to establish the analytical methods for determining whether a given design of an annular convoluted metal bellows or flexhose is susceptible to flow-induced vibrations. These analytical methods include predicting the excitation flow range, frequency, and the corresponding stress resulting from only flow-induced vibration loads. This then leads to prediction of the expected life of the bellows or flexhose, with a final objective of achieving a theoretically infinite life for flow-induced vibrations.

The analytical assessment in this document shall be performed on all flexible lines consisting of formed annular

CODE DWG SIZE 20M02540

A SHEET 6 OF 107

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

convoluted metal bellows or flexhose, except those contained in paragraph 1.2, regardless of fluid velocity. It does not consider other bellows or flexhose configurations such as welded disc, ring reinforced, toroidal, etc. For those type configurations which do not fit this analysis, some other approved analysis or testing must be done.

The analytical model does not account for changes in the flexible line during thermal transients. Therefore, the assessment shall be performed three times on each flexible line in a application where its length changes as follows: First, for the flexible line in its free length; second, for the flexible line in maximum thermal compression; third, for the flexible line in maximum thermal extension.

The analytical method in this document was developed only for metal bellows and flexhoses manufactured with formed annular convolutes, as shown in Figure 2. These are the most commonly used type in propellant systems. The analytical model was developed in reference 1. The equations in reference 1 were empirically derived from extensive testing and are the basis of this document.

<u>CAUTIONARY NOTE:</u> The analysis in this document was developed for normal flexible line installations. It does not allow for installations where unusual flow disturbances exist

CODE DWG SIZE 20M02540

A SHEET 7 OF 107

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

(except for elbows located upstream of the flexible line) or for multi-phase flows.

CAUTIONARY NOTE: This document is intended as a tool for analyzing only one portion of the total design of a flexible line. The engineer must consider all possible load sources other than flow-induced vibration when determining the total system life of the flexible line (see paragraph 3.0). The engineer must also consider other requirements (stability, pressure capability, etc.) not covered by this document in the design of a flexible line.

1.2 <u>Excluded Flexible Line Assemblies</u>

- A. Instrumentation flexible lines.
- B. Flexible lines with steady-state flow of less than one second duration.
- C. Flexible lines with liners and sliding joints.
- D. Components which do not fall into any of the following flight criticality categories:
 - I. Personnel hazard
 - II. Mission/vehicle loss
 - III. Launch delay

CODE DWG SIZE 20M02540

A SHEET 8 OF 107

	REVISIO	N S	į
SYM	DESCRIPTION	DATE	APPROVAL

1.3 Media

Design analysis shall be repeated to verify the flexible line design integrity for all media imposed on the line, such as when a substitute medium is to be used in ground system checkout or other flow tests.

1.4 <u>Design Criteria</u>

There are two design criteria in which the flexible line (bellows and flexhose) shall be designed to meet. These are listed below:

- 1. The flexible line shall be designed to meet a theoretically infinite life, if its high cycle material curve exhibits a true endurance limit, for flow-induced vibration loads at its expected operating conditions. For a material not exhibiting a true endurance limit, an endurance limit as defined by each program shall be used.
- 2. The maximum operating flow velocity of the flexible line shall be limited per paragraph 2.6.

2.0 DESIGN ANALYSIS PROCEDURE

The procedure for analyzing a given bellows or flexhose configuration for susceptibility to fatigue failure

CODE DWG SIZE A SHEET 9 OF 107

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

from only flow-induced vibration loads consists of several different steps as follows:

For a Bellows:

- Step 1. Calculate the natural frequencies for all vibration modes of the bellows: longitudinal modes and local convolute bending mode (see paragraph 2.1.1).
- Step 2. Calculate the flow excitation velocity range for each mode of vibration (see paragraph 2.2).
- Step 3. If the flow medium is a gas, calculate the first radial acoustic mode frequency and velocity (see paragraph 2.3).
- Step 4. Calculate the flow-induced stress for each mode of vibration defined in step 1 and apply the appropriate uncertainty factors (see paragraph 2.4).
- Step 5. Determine whether infinite life is achieved (see paragraph 2.5).
- Step 6. Determine the maximum operating velocity limit (see paragraph 2.6).

CODE DWG

20M02540

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

For a Flexhose:

- Step 1. Calculate the natural frequencies for the three vibration modes of the flexhose:

 in-phase longitudinal mode, out-of-phase longitudinal mode, and local convolute bending mode (see paragraph 2.1.2).
- Step 2. Calculate the flow excitation velocity range for each mode of vibration (see paragraph 2.2).
- Step 3. If the flow medium is a gas, calculate the first radial acoustic mode frequency and velocity (see paragraph 2.3).
- Step 4. Calculate the flow-induced stress for each mode of vibration defined in step 1 and apply the appropriate uncertainty factors (see paragraph 2.4).
- Step 5. Determine whether infinite life is achieved (see paragraph 2.5).
- Step 6. Determine the maximum operating velocity limit (see paragraph 2.6).

CODE DWG SIZE 20M02540

A SHEET // OF 107

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

2.1 Natural Frequency Calculation

2.1.1 Free Bellows

Consider the bellows structure represented by a lumped spring-mass mechanical model as shown in Figure 1. The pertinent bellows nomenclature used in the frequency calculation is given in Figure 2. All of the dimensions used in these calculations should be obtained by measuring the actual bellows being used. The user is advised that the asbuilt dimensions of a bellows can vary significantly from the specified drawing dimensions. As determined in reference 1, this can cause significant differences in the final results.

Step A. Calculate the elemental spring rate of one-half of a convolution, k, from the expression:

$$k=2N_{c}K_{a}$$
 (1)

where K_a is the overall bellows spring rate determined experimentally from a force-deflection test. For a new bellows assy., the user is required to employ experimental values obtained from a force-deflection test. For those bellows where a force-deflection test is not obtainable (i.e. a bellows already installed permanently in a line assy.), a

CODE DWG SIZE 20M02540

A SHEET 12 OF 107

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL
			ALLKOVAL.

Mechanical Model and Nomenclature

A mass (m) is assigned each convolution crown and root; the number of masses is $2N_{\rm C}$ -1. The value of m is m_m +m_f where

$$m_{m} = \frac{\pi \rho_{m} D_{m} t N_{\rho} [\pi a + (h-2a)]}{g}$$

The number of springs is 2N_C and

where K A is the overall bellows spring rate.

Figure 1. Lumped Spring-Mass Mechanical Model for Free Bellows

5-8408-0-214 CODE

CODE DWG SIZE 20M02540

A SHEET /3 OF /07

	REVISIO	NS	
SYM	DESCRIPTION	DATE	APPROVAL

N_c = Number of Convolutions Counted from the Outside

 $N_0 = Number of Plys$

D_m = Mean Bellows Diameter

t = Wall Thickness (Thickness per Ply if Multi-Ply)

 λ = Inside Convolute Pitch

σ = Inside Convolute Width

a = Mean Convolute Radius

h = Mean Inside Convolute Height

 δ = Inside Convolute Gap

Figure 2. Bellows Nomenclature

5-8409-0-214

CODE IDENT NO	DWG SIZE	2	0M02	540	
	Α	SHEET	14	OF	107

-	7	REVISIO	N S	
L	SYM	DESCRIPTION	DATE	APPROVAL

rough estimate of K_a may be made from the following expression:

$$K_a = D_m E(N_p/N_c) (t/h)^3$$
 (2)

where E is Young's modulus for the bellows material at the operating temperature. If the bellows is designed to operate in the plastic range of the material then an adjusted value of E should be used in the calculations throughout this spec. One suggested method for adjusting E is discussed in paragraph 3.0.

Step B. Calculate the elemental metal mass, $\mathbf{m}_{\mathrm{m}},$ from the equation:

$$m_{m} = \frac{\mathcal{Y} \mathcal{P}_{m} D_{m} t N_{p} [\mathcal{H}a + h-2a]}{\sigma}$$
 (3)

where \mathcal{P}_{m} = weight density of bellows material (lbf/in³)

g = gravitational acceleration

a = mean convolute radius = $(\sigma - tN_p)/2$

h = mean inside convolute height

D_m = mean diameter of bellows

t = ply thickness

 N_p = number of plys

CODE DWG SIZE 20M02540

A SHEET 15 OF 107

	REVISIO	SHC	
SYM	DESCRIPTION	DATE	APPROVAL

Step C. Calculate the elemental fluid added mass, $\rm m_{f},$ consisting of two types of loading, $\rm m_{f1}$ and $\rm m_{f2},$ given as follows:

$$m_{f1} = \frac{\gamma \Gamma \mathcal{P}_f D_m h (2a - tN_p)}{2q} \tag{4}$$

$$m_{f2} = \frac{p_{f} D_{m} h^{3}}{q \delta}$$
 (5)

where \mathcal{P}_f = weight density of fluid (lbf/in³) δ = inside convolute gap = $\lambda - \sigma$

Now, the total elemental fluid added mass in slugs is given by the empirical equation:

$$m_f = K_1 m_{f1} + K_2 m_{f2} (N/N_C)$$
 (6)

where $K_1 = 1.0 \text{ (non-dim)}$

 $K_2 = 0.68 \text{ (non-dim)}$

 $N = mode number = 1,2,3,...2N_C-1$

Step D. Calculate the dimensionless frequency factor, \mathbf{B}_{N} , for each mode number N from the equation:

$$B_{N} = \{2[1+\cos(180(2N_{c}-N)/2N_{c})]\}^{1/2}$$
 (7)

Alternately, the dimensionless frequency factor may be obtained from Table 1 for certain values of N.

CODE DWG SIZE 20M02540

A SHEET 16 OF 107

REVISIONS					
SYM	DESCRIPTION	DATE	APPROVAL		

Table 1. Dimensionless Frequency Factors B_N

MODE NUMBER N

	52													966
Ì	24													0.479 0.595 0.709 0.821 0.929 1.034 1.136 1.233 1.326 1.414 1.497 1.574 1.645 1.711 1.770 1.823 1.870 1.909 1.941 1.967 1.985 1.986
	23												1.995	1967
	22													941
	~											1.994	1961	909
	2												931	.870
	13										1.993	1.954	1.893	1.823
	=										1.975	1.918	1.847	1.770
	-									1.992	1.944 1.975	1.755 1.819 1.873 1.918 1.954 1.979	1.793	1.711
	9									1.969	1.902	1.819	1.732	1.645
	15								1.990	1.931	1.847	1.755	1.662	1.574
	=									1.879	1.782	1.682	1.586	1.497
	2							1.987	1.913	1.012	1.705	1.601	1.503	1.414
	12							0.868 1.064 1.247 1.414 1.563 1.693 1.802 1.888 1.950	0.390 0.583 0.765 0.942 1.111 1.269 1.414 1.546 1.663 1.764 1.848 1.913 1.962	1.638 1.732 1.812	65 0.908 1.044 1.175 1.298 1.414 1.520 1.618 1.705 1.782 1.847 1.902	1.081 1.198 1.309 1.414 1.511 1.601	1.414	1.326
	=						1.983	1.898	1.764	1.638	1.520	1.414	1.318	1.233
	2						1.932	1.802	1.663	1.532	1.414	1.309	1.217	1.136
	6					1.975	1.648	1.693	1.546	1.414	1.298	1.198	1.1	1.034
ŀ	•					1.782 1.902 1.975	1.217 1.414 1.587 1.732 1.848 1.932 1.983	1.563	1.414	145 1.000 1.147 1.285 1.414 1.532	1.175	1.081	1.000	0.929
	7				1.962	1.782	1.587	1.414	1.269	1.147	1.044	0.563 0.699 0.831 0.958	0.885	0.821
	9				563 1.848	14 1.618	1.414	1.247	1.111	1.000	0.908	0.831	0.765	0.709
	20			1.930	=	=	1.217	1.064	0.942		0.765	0.699	0.643	0.595
	•			1.732	1.414	1.176	1.000		0.765	0.684 0.6	0.618 0.7		0.518	0.479
ŀ	_		1.845	1.000 1.414	1.111	0.618 0.908	0.765	0.661	0.583	0.518	0.467	0.425	0.390	0.361
ŀ	7		1.414		0.765	0.618	0.518	0.226 0.445 0.661	0.390	0.174 0.347 0.518	0.157 0.313 0.467	0.142 0.285	0.262 0.390 0.518 0.643 0.765 0.885 1.000 1.111 1.217 1.318 1.414 1.503 1.586 1.662 1.732 1.793 1.847 1.893 1.931 1.961 1.982	0.121 0.241
ŀ		1.414	0.765	0.520	0.390	0.314	0.264	0.226	0.199	0.174	0.157	0.142	0.131	0.121
		-	7	n	-	2	g	7	6	6	10	=	12	=

o_N

NOTE: The Dimensionless Frequency Factors were Determined from the Equation

CODE DWG 20M02540 IDENT NO SIZE 17 OF 107 Licensee=NASA Technical Standards 4/9972545004, User=Fults, Jaso Not for Resale, 10/22/2008 13:47:31 MDT

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

Step E. Calculate the reference frequency from the equation:

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$
 (8)

where f_0 = reference frequency

k = elemental spring rate

 $m = m_m + m_f = total elemental mass$

NOTE: For a free bellows there are two different kinds of structural modes which may be flow-excited. They are the longitudinal modes and the local convolute bending mode.

These are illustrated in Figure 3.

Step F. Calculate the true longitudinal mode frequencies for each mode number N from the equation:

$$f(N) = (f_0) (B_N)$$
 (9)

where f(N) = modal frequency (Hz)

Step G. Calculate the local convolute bending mode frequency from

$$f_{CB} = \frac{1}{2\pi} \sqrt{\frac{8k}{m_m + .68m_{f2}}}$$
 (10)

CODE DWG SIZE 20M02540

A SHEET /8 OF /07

		REVISIO	N S	
L	SYM	DESCRIPTION	DATE	APPROVAL

Axisymmetric Longitudinal Modes

Higher Order Local Convolute Bending Mode

Figure 3. Summary of Bellows Vibration Modes

CODE	DWG SIZE	2	OM02	540)
* **********************	A	SHEET	19	OF	107

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

2.1.2 Flexhose

Consider the convoluted hose structure represented by the lumped spring-mass mechanical model as shown in Figure 4. Note that for a flexhose the value $N_{\rm C}$ =1 will be used.

Step A. Calculate the elemental spring rate of one-half of a convolution, k, from the expression:

$$k = 2K_{f} \tag{11}$$

where K_f is the spring rate <u>for one complete</u> <u>convolution</u> (N_c =1) determined experimentally from a force-deflection test. Note that the overall spring rate obtained from test must be multiplied by the actual number of convolutes in the hose to obtain K_f . For a new flexhose assy., the user is required to employ experimental values obtained from a force-deflection test. For those flexhoses where a force-deflection test is not obtainable (i.e. a flexhose already installed permanently in a line assy.), a rough estimate of K_f may be made from the following expression:

$$K_{f} = D_{m}EN_{p}(t/h)^{3}$$
 (12)

CODE DWG SIZE 20M02540

A SHEET 20 OF 107

	REVISIO	REVISIONS			
SYM	DESCRIPTION	DATE	APPROVAL		

STRUCTURAL MODE FOR FLEXHOSE - With the bellows pressurized, longitudinal movement of the crown is restricted due to the braid. The root may move in-phase or out-of-phase with the adjacent convolute with a single degree of freedom. Therefore, the number of masses is one; which implies $N_{\text{\tiny C}}\!=\!1\,;$ and k=2K_f .

Figure 4. Lumped Spring-Mass Mechanical Model for Flexhose

5-8407-0-214

CODE DWG

20M02540

SHEET 2/ OF 107

	REVISIO	N S -	
5YM	DESCRIPTION	DATE	APPROVAL

- Step B. Calculate the elemental metal mass using Equ. (3) as done previously.
- Step C. Calculate the in-phase and out-of-phase longitudinal mode elemental fluid masses, $m_{\mbox{\footnotesize{IP}}}$ & $m_{\mbox{\footnotesize{OP}}}$, respectively from the expressions:

$$m_{IP} = \frac{\gamma p_{f} D_{m} h (2a-tNp)}{2q}$$
 (13)

$$m_{OP} = \frac{0.68 p_f D_m h^3}{q \delta} \tag{14}$$

NOTE: For a flexhose there are, so far as is presently known, only three possible structural vibration modes which may be flow-excited. They are the in-phase and out-of-phase longitudinal modes, and the local convolute bending mode as illustrated in Fig. 5. This is true only if the braid is maintained in full contact with all convolute crowns. Should this not be the case, the engineer is cautioned that some sections of the hose may behave as free bellows and should be treated accordingly.

CODE DWG		20M02540		
		SHEET 22 OF	107	

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

(b.) Out-of-Phase Longitudinal Mode

Acceleration of Fluid in and out Results in an Apparent Mass

$$m_{OP} = \frac{.68 p_f D_m h^3}{g \delta}$$

(c.) Higher Order Local Convolute Bending Mode

Figure 5. Summary of Flexible Hose Vibration Modes

CODE IDENT NO	DWG SIZE	20M02540			
	Α	SHEET 23 OF 107			

REVISIONS					
SYM	DESCRIPTION	DATE	APPROVAL		

Step D. Calculate the in-phase, out-of-phase, and convolute bending mode frequencies from the respective expressions:

$$f_{IP} = \frac{1}{2\pi} \sqrt{\frac{2k}{m_m + m_{IP}}}$$
 (15)

$$f_{OP} = \frac{1}{2\pi} \sqrt{\frac{2k}{m_m + m_{OP}}}$$
 (16)

$$f_{CB} = \frac{1}{2 \, \gamma} \sqrt{\frac{8k}{m_{\rm m} + m_{\rm OP}}} \tag{17}$$

As of now, there is no provision in the computer program for flexhose calculations. These must be done by hand.

2.2 Flow Excitation Range Calculation

Each bellows mode and flexhose mode may experience flow excitation over a fluid velocity range from a lower limit (V_{low}) to an upper limit (V_{up}) defined as

$$V_{low} = \frac{f(N)\sigma}{S_{\sigma u}}$$
 (18)

$$V_{up} = \frac{f(N)\sigma}{S_{\sigma 1}}$$
 (19)

CODE DWG SIZE 20M02540

A SHEET 24 OF /07

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

where σ = inside convolute width = 2a + tN_p

 $S_{\sigma u}$ = upper limit Strouhal number

S₇₁ = lower limit Strouhal number

f(N) = each modal frequency calculated for a
 free bellows or flexhose

For a free bellows: Those longitudinal mode frequencies given in equ. (9) and the convolute bending mode frequency given in equ. (10).

For a flexhose: The in-phase, out-of-phase, and convolute bending mode frequencies given in equs. (15), (16), and (17) respectively.

It has been found that for most bellows and flexhose configurations, $S_{\sigma u}=0.3$ and $S_{\sigma 1}=0.1$. The optimum or most severe excitation for each bellows and flexhose mode will occur at a critical velocity (V*) related to the critical Stroubal number ($S_{\sigma c}$) as follows:

$$V^* = \frac{f(N)\sigma}{S_{\sigma C}}$$
 (20)

where $S_{\sigma c} = 0.2$

CODE DWG

20M02540

SHEET 25 OF 107

REVISIONS				
SYM	DESCRIPTION	DATE	APPROVAL	
				

The possible flow excitation range of bellows and flexhoses may be predicted as follows:

- (a) Calculate the lowest and highest bellows and flexhose excitation frequency for all longitudinal modes and the convolute bending mode as summarized in paragraphs 2.1.1 and 2.1.2.
- (b) Calculate the limits of fluid velocity (V $_{\hbox{low}}$ and $_{\hbox{Vup}}$) corresponding to these two frequencies.
- (c) Compare this flow-induced velocity range with the known operating range of the bellows. If an overlap of these ranges exist, then excitation may occur.

A graphical illustration of predicting the possible flow excitation range is given in Figure 6.

2.3 <u>First Radial Acoustic Mode Resonance Calculation</u>
(Gas Medium Only)

For a bellows or flexhose whose internal flow medium is a gas, there can occur a radial acoustic resonance. This acoustic mode can occur in addition to the longitudinal modes

CODE DWG

20M02540

No reproduction or networking permitted without license from IHS

 Licensee=NASA Technical Standards 4/9972545004, User=Fults, Jaso Not for Resale, 10/22/2008 13:47:31 MDT

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

and convolute bending mode. The frequency at which the first radial acoustic mode occurs is given by:

$$f_{\lambda} = \frac{(FNCO)(C_{\phi})}{2\pi r_{i}}$$
 (21)

where C_ϕ is the speed of sound and is determined from fluid property data or if the fluid behaves approximately as an ideal gas then one can use the equation below.

$$C_{\phi} = \sqrt{\frac{\chi(P+14.7)g}{P_{f}}}$$

P = fluid pressure

FNCO =
$$3.8-16.72 (h/r_i)^2+13.67 (h/r_i)^3$$
 for $0 \le (h/r_i) < 0.4$
FNCO = $-.336+.935 (h/r_i)^{-1}$ for $0.4 \le (h/r_i) \le 1.0$

where
$$r_i = D_i/2$$

If the longitudinal mode or convolute bending mode frequencies are greater than or equal to the first radial acoustic mode frequency, then the flow-induced stress value (FIS) is multiplied by an acoustic factor of five (5) to account for acoustic amplification. Calculation of FIS is

CODE IDENT NO	DWG SIZE	20M02540
	Α	SHEET 28 OF 107

	REVISIO	N S	
5YM	DESCRIPTION	DATE	APPROVAL

described in paragraph 2.4. If the longitudinal mode or convolute bending mode frequencies are less than the first radial acoustic mode frequency, then FIS is not adjusted by an acoustic factor.

The velocity at which the first radial acoustic mode occurs is given by

$$V_{\lambda} = \frac{f_{\lambda} \sigma}{s_{\sigma c}}$$

where $S_{\sigma'C} = 0.2$

2.4 Flow-Induced Stress Calculation

In all velocity range overlap situations, flow-induced vibrations must be assumed to exist. Therefore, flow-induced stresses must be calculated in order to determine if a given bellows or flexhose configuration meets the design criteria of infinite life (see paragraph 1.4). Flow-induced stresses can be calculated from the following equation:

FIS = (EE)
$$\left(\frac{c^* t P_D}{v' ssR \delta}\right)$$
 (E) $(C_{NP}) (C_E) \left(\frac{1}{N_P}\right)$ (22)

where EE = 1 + 0.1 $\left(\frac{400}{SSR}\right)^2$ (NON-DIM)

NOTE: The number 400 in the above equation is a reference specific spring rate having the units lbf/in^2 .

CODE DWG SIZE 20M02540

A SHEET 29 OF 107

REVISIONS				
SYM	DESCRIPTION	DATE	APPROVAL	

For a bellows:
$$SSR = \frac{K_a N_c}{D_m N_p}$$

For a flexhose:
$$SSR = \frac{K_f N_c}{D_m N_p}$$
 and $N_c=1$

For all modes except the convolute bending mode use C^{\star} equation below.

$$C^* = \frac{c_1}{c_2 + (V')^2} + \frac{c_3 |\sin(180V')|}{c_4 + (V')^2} + c_5 \qquad (NON-DIM)$$

For the convolute bending mode use $C^* = 0.4$

$$V' = V^*$$

where for a bellows:

V* = critical free stream
 velocity for a given
 longitudinal mode number N
 or for the convolute bending
 mode

 V_C = the critical velocity for longitudinal mode N=N_C

CODE DWG SIZE 20M02540

A SHEET 30 OF 107

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

where for a flexhose:

V* = critical free stream
 velocity for each of the
 three flexhose modes

 V_{C} = the critical velocity for the flexhose out-of-phase mode with frequency f_{OP} given in equ. (16), so that

$$V_{c} = \frac{f_{OP} \sigma}{S_{\sigma c}}$$
where $S_{\sigma c} = 0.2$

$$P_{D} = \frac{P_{f}(V^{*})^{2}}{2g}$$

$$\delta = \lambda - \sigma$$

CODE DWG

Licensee=NASA Technical Standards 4/9 Not for Resale, 10/22/2008 13:47:31 MDT 20M02540

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

$$C_{NP} = \begin{cases} 1.0 & \text{for } N_p = 1 \\ 1.0 - \frac{C_6(\sigma/h)}{1.0 + C_7(V')^2} & \text{for } N_p = 2,3,... \end{cases}$$

$$C_{\rm E} = \begin{cases} 1.0 & \text{For no elbow present} \\ & \text{upstream of bellows.} \\ 1.0 + \frac{4.7}{2.0 + {\rm L/D}} & \text{For elbow present} \\ & \text{upstream of bellows.} \end{cases}$$

D = inside pipe diameter

The coefficients C_1 , C_2 ,..., C_7 are non-dimensional empirical coefficients derived from the test data in reference 1 and have the following values:

$$C_1 = 0.13$$

$$c_2 = 0.462$$

$$C_3 = 1.0$$

$$C_4 = 10.0$$

$$c_5 = 0.06$$

$$c_6 = 1.25$$

$$C_7 = 5.5$$

CODE DWG SIZE 20M02540

A SHEET 32 OF /07

REVISIONS			
SYM	DESCRIPTION	DATE	APPROVAL

2.4.1 Uncertainty Factors

A uncertainty factor (UF) is to be applied to the basic theoretical value of flow-induced stress (FIS) resulting in a corrected stress value given by

$$FISC = (FIS)(UF)$$
 (23)

where UF is determined as follows:

- (a) For a free bellows if measured spring rate is used, UF \geq 1.5
- (b) For a free bellows where spring rate is estimated from equ. (2), UF \geq 2.0
- (c) For a flexhose where measured spring rate is used, UF ≥ 2.0
- (d) For a flexhose where spring rate is estimated from equ. (12), UF \geq 2.5
- (e) For a bellows or flexhose with radial acoustic resonance, multiply the above factors (a) through (d) by 1.5.

Note that these uncertainty factors are applied only to account for uncertainties in the analysis and data base and should not be confused with programmatic safety factors.

In addition to the above uncertainty factors, (a) through (e), an acoustic factor is to be applied in the case

CODE DWG

20M02540

SHEET 33 OF 107

	REVISIO	IONS	
SYM	DESCRIPTION	DATE	APPROVAL

of radial acoustic resonance, as discussed already in paragraph 2.3. If any modal frequency for a given bellows or flexhose mode is greater than or equal to the first radial acoustic mode frequency (f_2), then an acoustic factor of five (5) must also be applied to the flow-induced stress value (FIS). If the modal frequency is less than the first radial acoustic mode frequency, then FIS is not adjusted by an acoustic factor.

2.5 <u>Bellows and Flexhose Fatigue Assessment</u>

After calculating the flow-induced stresses and applying the appropriate uncertainty factors, an assessment of the fatigue life must now be made. The fatigue life criterion is that the flexible line shall be designed to meet a theoretically infinite life for flow-induced vibration loads at its expected operating conditions (para. 1.4). For the assessment a comparison should be made between FISC and the endurance limit of the flexible line material.

NOTE: For a material not exhibiting a true endurance limit, an endurance limit as defined by each program shall be used.

If FISC is less than the endurance limit then infinite life is achieved. If FISC is greater than the endurance limit

CODE DWG SIZE 20M02540

Licensee=NASA Technical Standards 4/9972545004, User=Fulls, Jason-T 3 4 OF 107

Not for Resale, 10/22/2008 13:47:31 MDT

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

then infinite life cannot be met. This fatigue assessment assumes the mean stress of the flexible line is zero or negligible. A system level analysis to predict the overall life of the flexible line must be performed, although not required by this document. This system level analysis is discussed in paragraph 3.0.

If infinite life cannot be achieved through this fatigue assessment, then a redesign and reanalysis is necessary or the maximum flow velocity must be restricted in order to meet infinite life. If it is determined that a bellows redesign is necessary and if no other geometrical configurations are available or possible, then bellows liners may be required. Liners isolate the convolutes from flow impingement, thereby eliminating flow-induced vibration occurence. However, a weight and cost penalty may be associated with the installation of liners. Liners should be designed to minimize pressure differential (delta P), and where there is reverse flow, two-piece liners should be used.

Once it has been established that the bellows and flexhose will have infinite life, it is still necessary to limit the maximum operating velocity of the line. This is necessary because of the uncertanties beyond the last mode

CODE DWG

20M02540

SHEET 35 OF 10;

	REVISIO	NS	
SYM	DESCRIPTION	DATE	APPROVAL

predicted. Depending on the case, the maximum operating velocity of the bellows and flexhose shall be limited as follows:

- Case A: For liquid flow in a bellows and flexhose, where infinite life is predicted for all longitudinal modes and the convolute bending mode, the maximum operating velocity shall be limited to the upper limit $(V_{\rm up})$ of the convolute bending mode.
- Case B: For gas flow in a bellows and flexhose, where infinite life is predicted for all modes (longitudinal and convolute bending) and the first radial acoustic mode velocity (V_2) is less than the upper limit (V_{up}) of the convolute bending mode, the maximum operating velocity shall be limited to (V_{up}) of the convolute bending mode.
- Case C: If in Case B, the first radial acoustic mode velocity (V_2) was greater than the upper limit $(V_{\rm up})$ of the convolute bending mode, then the maximum operating velocity shall be limited to the lesser of $V_{\rm up}$ of the convolute bending mode or 80% of V_2 .

CODE DWG SIZE 20M02540

Licensee=NASA Technical Standards 4/9972545004, User=Fults, Jason Not for Resale, 10/22/2008 13:47:31 MDT

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

Case D: For liquid or gas flows in a bellows and flexhose, where infinite life cannot be met for all of its modes, the maximum operating velocity shall be limited to less than the lower limit (V_{low}) of the mode that first indicates finite life.

3.0 SYSTEM LEVEL ANALYSIS OF A FLEXIBLE LINE

Although the requirements of this document deal strictly with assessing the fatigue life of flexible lines from flow-induced vibration loading, the designer must realize that flow-induced vibration is only one source of a wide spectrum of loads imposed on a flexible line. Strength and fatigue analyses which include all of the load sources imposed on a flexible line must be performed. The flowchart in Figure 7 shows a general path one might follow, and some of the load sources which must be considered, in performing the analyses of a flexible line.

This section presents a few comments, guidelines, and recommendations on performing a system level analysis of a flexible line. Even though a system level analysis is not within the scope of this document and also not a requirement of this document, it should be performed sometime in the

CODE DWG SIZE A SHEET 37 OF 107

Provided by IHS
No reproduction or networking permitted without license from IHS

Licensee=NASA Technical Standards 4/9972545004, User=Fults, Jason Not for Resale, 10/22/2008 13:47:31 MDT

	REVISIO	N 5	
SYM	DESCRIPTION	DATE	APPROVAL

design process. All flexible line analysis should be reviewed and accepted by the governing agency.

- 1. Equations for the static stresses resulting from deflection and static pressure in a flexible line operating in the elastic material range may be found in references 2, 3, 4, and 5.
- 2. Flexible lines, by definition, must be flexible and capable of accommodating deflections across its length.

 Because of this, many flexible lines operate in the non-linear (plastic) material range. This phenomenon increases the difficulty of the analysis and requires that good engineering judgement and analysis procedures be used to assure that all loading effects are accounted for. The following are some items to be considered in performing a plastic analysis:
- A. A computer code capable of including large displacement and non-linear material effects will be needed. This is necessary to determine the stress field along the meridian and through the wall thickness of the flexible line. Plastic behavior of the material would be expected in the inner radius of the convolutes at the root and crown.

CODE DWG SIZE 20M02540

A SHEET 37 OF 107

	REVISIO	N 5		
SYM	DESCRIPTION	DATE	APPROVAL	_;

- B. Gross yielding of the material should be avoided. Yielding should not occur more than 25% of the way through the wall thickness.
- C. Margins of safety may need to be calculated based on strain capability. Maximum strains must include the effects of all loading, both static and dynamic.
- D. Strains induced by static loading; e.g., deflections, pressures, etc., may be calculated by use of finite difference or finite element computer codes capable of handling large deflection and non-linear material effects. Dynamic loading effects; e.g., flow-induced vibration stresses, however, cannot be modeled directly with these methods and are usually known as loads across the flexible line or stresses in the flexible line. Several effects must be taken into consideration when calculating strains from these loads and stresses. 1. The spring rate of the flexible line changes as the line is deflected. The deflection due to the dynamic load should be calculated using the spring rate consistent with the configuration of the line when the loading is applied. The resultant strains can then be calculated using the methods employed for the static loading. 2. The material modulus of elasticity will vary along the meridian

CODE DWG SIZE 20M02540

A SHEET 40 OF 107

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

and through the wall thickness of the flexible line, depending on if the material at that point has yielded, and the amount of yielding experienced. Therefore, the modulus of elasticity needs to be adjusted. This must be considered when calculating strains due to dynamic stresses. One factor which may be used to adjust the elastic modulus is the ratio of the spring rate of the flexible line consistent with the configuration of the line when the stresses occur, versus the spring rate of the flexible line in the undeflected condition.

- E. The change in material modulus when yielding occurs will affect the response of the flexible line to the flow. The calculation of flow-induced stresses should be repeated with an adjusted modulus if the line is found to have yielded. The method previously discussed can be used for adjusting the modulus of elasticity.
- 3. Fatigue analysis of the line must include effects of creep, low cycle, and high cycle loading. Life fractions for the creep, low cycle, and high cycle fatigue must include the required life factors and are additive. Their sum must be less than or equal to one.

CODE DWG SIZE 20M02540

Licensee=NASA Technical Standards 4/9972545004, User=Fults, Jason ET 4/ 0F /07

Not for Resale, 10/22/2008 13:47.31 MDT

	REVISI	ONS	
SYM	DESCRIPTION	DATE	APPROVAL

These are just a few of the issues which must be considered when performing a system level analysis of a flexible line. The analyst should assure that all loading conditions are accounted for in the analysis. The analysis should also be accompanied by a test program which simulates the operating conditions of the flexible line as closely as possible. The analysis and test program should be approved by the governing agency of the project.

4.0 FLOW TESTING

When flow testing of a bellows or flexhose is necessary, it shall be conducted in accordance with MSFC-SPEC-626 and must demonstrate a safety factor of four (4) on life.

5.0 COMPUTER PROGRAM

A computer program for conducting flow-induced vibration analysis of only a free bellows is included in Appendix C. This program calculates the frequency, flow excitation range, and flow-induced stresses for each longitudinal mode and the convolute bending mode for a free bellows. This program applies for both liquid and gas flows through the bellows. This program also calculates the first

CODE DWG SIZE 20M02540

Licensee=NASA Technical Standards 4/9972545004, User=Fults, Jason Not for Resale, 10/22/2008 13:47:31 MDT

	REVISI	ONS	
SYM	DESCRIPTION	DATE	APPROVAL

radial acoustic mode resonance for gas flows. The program does not conduct flow-induced vibration analysis for a flexhose and does not calculate any static stresses. These flexhose and static stress analyses have to be done by hand.

Also given in Appendix C is the input data file format along with two examples. The corresponding output files for the two examples are also given. These two examples are the same as those presented in Appendix B.

6.0 EXAMPLE PROBLEMS

There are three examples of hand calculations for flowinduced stresses given in Appendix B.

The three examples are:

Example 1.1 - - - Liquid flow through a bellows

Example 1.2 - - - Gas flow through a bellows

Example 2.0 - - - Gas flow through a flexhose

DWG CODE IDENT NO SIZE

		REVISIOI	4 5	
SY	M	DESCRIPTION	DATE	APPROVAL

REFERENCES

- Tygielski, P.J., Smyly, H.M., Gerlach, C.R., "Bellows Flow-Induced Vibrations," NASA Technical Memorandum, NASA TM-82556, George C. Marshall Space Flight Center, Huntsville, Alabama, October 1983.
- Salzmann, F.: "Ueber die Nachgiebigkeit von Wellrohrexpansionen," Schweiz. Bauztg., Bank 127, NR. 11, March 16, 1946, pp. 127-130.
- 3. Kellogg, M. W. Co.: "Design of Piping Systems," Second edition 1956, John Wiley and Sons, Inc., p. 222.
- 4. Anderson, W.F., 1964, <u>Analysis of Stresses in Bellows</u>,

 <u>Part I and Part II Design Criteria and Test Results</u>,

 Atomics International, Report No. NAA-SR-4527, Canoga Park,
 California.
- 5. Standards of the Expansion Joint Manufacturers Association, Inc., 5th Edition, White Plains, New York, 1980.
- 6. MSFC-SPEC-626, <u>Test Control Document for Assessment of Flexible Lines for Flow-Induced Vibration.</u>

CODE DWG

20M02540

SHEET 44 OF 107

Provided by IHS

No reproduction or networking permitted without license from IHS

Licensee=NASA Technical Standards 4/9972545004, Us Not for Resale, 10/22/2008 13:47:31 MDT **9999939 0000282 816**

	REVISI	ONS	
SYM	DESCRIPTION	DATE	APPROVAL

APPENDIX A

SYMBOLS AND DEFINITIONS

CODE DWG 20M02540 IDENT NO SIZE Licensee=NASA Technical Standards 4/9972545004, User=Fults, Jason Not for Resale, 10/22/2008 13:47:31 MDT

Provided by IHS No reproduction or networking permitted without license from IHS

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

SYMBOLS

= Mean convolute radius = $(\sigma - tN_p)/2$

= Dimensionless frequency factor B_N

= Elbow factor (non-dim) c_{E}

= Damping modifier coefficient (non-dim) C_{NP}

= Force and damping coefficient (non-dim)

= Speed of sound

= Inside diameter of flexible line Di

= Mean diameter of flexible line = $(D_i + D_0)/2$ D_{m}

= Outside diameter of flexible line Do

= Young's modulus of elasticity Ε

= First radial acoustic mode frequency \mathbf{f}_{2}

f(N) = Modal frequency

= Flexhose in-phase longitudinal mode frequency f_{TP}

= Flexhose out-of-phase longitudinal mode f_{OP}

frequency

= Convolute bending mode frequency f_{CB}

= Critical frequency for mode N=N_C f_C

= Reference frequency fo

FNCO = First radial acoustic mode frequency number

(non-dim)

= Flow-induced stress FIS

= Flow-induced stress with uncertainty factor

CODE DWG IDENT NO SIZE

20M02540

SHEET 46 OF 107

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

SYMBOLS (Cont.)

g = Gravitational acceleration

h = Mean inside convolute height = $[(D_0-D_1)/2]-tN_p$

k = Elemental spring rate of one-half of a convolution

K_a = Overall bellows spring rate

K_f = Flexhose spring rate for one complete convolution

m = Total elemental mass

 m_m = Elemental metal mass

m_f = Total elemental fluid added mass

m_{f1} = Fluid added mass

 m_{f2} = Fluid added mass

m_{IP} = Flexhose in-phase elemental fluid mass

 m_{OP} = Flexhose out-of-phase elemental fluid mass

 $N = Mode number (1,2,3...2N_c-1)$

 N_C = Number of convolutes counted from the outside

 N_{p} = Number of plys

P_D = Free stream dynamic pressure

P = Fluid pressure

 r_i = Inside flexible line radius = $D_i/2$

 S_{σ_1} = Lower Strouhal number (non-dim)

S_{ou} = Upper Strouhal number (non-dim)

 S_{σ_C} = Critical Strouhal number (non-dim)

SSR = Specific spring rate

CODE DWG

20M02540

SHEET 47 OF 107

	REVISION	7)	
SYM C	DESCRIPTION	DATE	APPROVAL

SYMBOLS (Cont.)

S_{EL} = Endurance limit of flexible line material

t = Ply thickness

UF = Uncertainty factor

V_{low} = Lower limit velocity for mode N

V = Critical velocity for mode N

 V_{up} = Upper limit velocity for mode N

V_C = Critical velocity for mode N=N_C

V' = Normalized velocity parameter = V^*/V_c (non-dim)

V₂ = First radial acoustic mode velocity

= Specific heat ratio for the gas = C_p/C_V (non-dim)

σ = Inside convolute width = 2a + tN_p

 δ = Inside convolute gap = $\lambda - \sigma$

2 = Inside convolute pitch

 P_f = Weight density of fluid (lbf/in³)

 p_m = Weight density of flexible line matl. (lbf/in³)

CODE DWG

MSFC FORM 422-8 VERTICAL) (NOVEMBER 1962)

CONTINUATION SHEET

	REVISIO	NS	
SYM	DESCRIPTION	DATE	APPROVAL

DEFINITIONS

Angulation

- Angular deflection imposed on a flexible line.

Axial deflection - Elongation or compression of a flexible line along its longitudinal axis.

Flexhose

- A flexible metal hose where convolutes are partially restrained at the crown by wire braid.

Flexible line

Metal bellows or flexhose assembly that
joins two duct sessions and permits
relative motion between the ducts in one
or more planes.

Free bellows

- Where convolutes have unrestricted movement when exposed to fluid flow impingement.

CODE DWG

■ 9999939 0000287 3T8 ■

SYM DESCRIPTION DATE APPROVAL

APPENDIX B

FLOW-INDUCED VIBRATION EXAMPLE PROBLEMS

FOR BELLOWS AND FLEXHOSE

CODE IDENT NO SIZE 20M02540

Licensee=NASA Technical Standards 4/9972545004, User=Fults, Jason Not for Resale, 10/22/2008 13:47:31 MDT

REVISIONS				
SYM	DESCRIPTION	DATE	APPROVAL	

1.0 BELLOWS EXAMPLE PROBLEMS

1.1 Liquid Medium Example

Given: H_2O flowing through a 3 inch 321 stainless steel bellows at 68 $^{\rm O}F$ and at 35 psig with an elbow 4 inches from the first convolute.

BELLOWS PARAMETERS

Inside convolute width, $\sigma = 0.095$ in.

Inside convolute pitch, $\lambda = 0.148$ in.

Mean inside convolute height, h = 0.325 in.

Ply thickness, t = 0.007 in.

Inside diameter, $D_i = 3.00$ in.

Outside diameter, $D_o = 3.69$ in.

Number of convolutes, $N_c = 16$ Number of plys, $N_p = 3$ Young's modulus, E = 29.0E + 06 psi

Material weight density, $P_m = 0.286$ lbf/cu. in.

Problem: Assess the fatigue life from flow-induced vibration loads for the first longitudinal mode N=1 and the longitudinal mode N= N_c .

Licensee=NASA Technical Standards 4/9
Not for Resale, 10/22/2008 13:47:31 MD

CODE DWG

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

CALCULATION PROCEDURE:

I. Frequency Calculation for Longitudinal Mode N=1.

1.
$$K_a = D_m E(N_p/N_c) (t/h)^3$$

 $K_a = 3.345(29E+06)(3/16)(.007/.325)^3$
 $K_a = 181.735 \text{ lbf/in}$
 $k = 2N_c K_a = 2(16)(181.735) = 5815.52 \text{ lbf/in}$

2.
$$m = m_m + m_f$$

$$m_{m} = \frac{\gamma p_{m} t N_{p} D_{m} [\gamma a + h-2a]}{g}$$

$$a = (\sigma - tN_p)/2 = [.095 - .007(3)]/2 = 0.037 in.$$

$$m_{\text{m}} = \frac{27 (.286) (.007) (3) (3.345) [27 (.037) + .325 - 2 (.037)]}{32.174}$$

$$m_{\rm m}$$
 = 7.20E-04 slugs

$$m_f = K_1 m_{f1} + K_2 m_{f2} (N/N_c)$$

$$m_{f1} = \frac{\gamma p_{f} D_{m} h (2a-t N_{p})}{2g}$$

$$m_{f1} = \frac{\mathcal{H}(62.4/1728)(3.345)(.325)[2(.037)-.007(3)]}{2(32.174)}$$

CODE DWG

20M02540

SHEET 52 OF 107

	REVISIONS				
SYM	DESCRIPTION	DATE	APPROVAL		

$$m_{fl} = 1.02E-04$$
 slugs

$$m_{f2} = \frac{p_f D_m h^3}{g \delta} = \frac{(62.4/1728)(3.345)(.325)^3}{32.174(.148-.095)}$$

$$m_{f2} = 2.43E-03$$
 slugs

$$m_f = 1.0(1.02E-04) + 0.68(2.43E-03)(1/16)$$

$$m_f = 2.05E-04$$
 slugs

$$m = m_m + m_f = 7.20E-04 + 2.05E-04$$

$$m = 9.25E-04$$
 slugs

*3.
$$B_N = \{2[1+\cos(180(2N_C-N)/2N_C)]\}^{1/2}$$

for N=1,
$$B_1 = \{2[1+\cos(180(32-1)/32)]\}^{1/2}$$

$$B_1 = 0.0981$$

4.
$$f_0 = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{1}{2\pi} \sqrt{\frac{12(5815.52)}{9.25E-04}} = 1382.40 \text{ Hz}$$

5.
$$f(1) = (f_0)(B_1)$$

$$f(1) = (1382.40)(.0981) = 135.61 Hz$$

*If calculating cos in degrees, use 180; if calculating cos in radians, use γ .

CODE DWG

	REVISIO	N S	
5YM	DESCRIPTION	DATE	APPROVAL

II. Velocity Range Calculation for Longitudinal Mode N=1.

$$V(N,i) = \underbrace{f(N)\sigma}_{(S\sigma i)} \qquad \text{where } N = 1,2,3..., 2N_{C}-1$$

$$i = 1,2,3$$

$$S\sigma_{1} = S\sigma_{u} = 0.3$$

$$S\sigma_{2} = S\sigma_{C} = 0.2$$

$$S\sigma_{3} = S\sigma_{1} = 0.1$$

$$V_{low} = V(1,1) = \frac{f(1)\sigma'}{(S_{ou})} = \frac{135.61(.095)}{12(0.3)} = 3.58 \text{ fps}$$

$$V^* = V(1,2) = \frac{f(1)\sigma'}{(S_{\sigma C})} = \frac{135.61(.095)}{12(0.2)} = 5.37 \text{ fps}$$

$$V_{up} = V(1,3) = \frac{f(1)\sigma'}{(S_{\sigma 1})} = \frac{135.61(.095)}{12(0.1)} = 10.74 \text{ fps}$$

- III. Flow-Induced Stress Calculation for Longitudinal Mode N=1
 - 1. Critical frequency (f_c) at N=N_c $m_f = 1.0(1.02E-04) + 0.68(2.43E-03)(16/16)$ $m_f = 1.75E-03 \text{ slugs}$ $m = m_m + m_f = 7.20E-04 + 1.75E-03$ m = 2.47E-03 slugs $e N = N_c, B_{16} = \sqrt{2}$

CODE DWG

MSFC FORM 422-8 (VERTICAL) (NOVEMBER 1962)

REVISIONS					
5YM	DESCRIPTION	DATE	APPROVAL		

$$f_C = (f_0)(B_{16})$$

$$f_C = \frac{1}{2\pi} \sqrt{\frac{12(5815.52)}{2.47E-03}} \left(\sqrt{2}\right) = 1196.4 \text{ Hz}$$

2. Critical velocity
$$(V_c)$$
 at $N=N_c$

$$V_c = \frac{f_c \sigma}{(S_{\sigma c})} = \frac{1196.4(.095)}{12(0.2)} = 47.36 \text{ fps}$$

3.
$$V' = V^*/V_c = \frac{5.37}{47.36} = 0.113$$

4.
$$SSR = \frac{K_a N_c}{D_m N_p} = \frac{181.735(16)}{3.345(3)} = 289.762 \text{ lbf/in}^2$$

*5.
$$c_{NP} = 1.0 - \frac{c_6 (\sigma/h)}{1 + c_7 (V')^2}$$

$$C_{NP} = 1.0 - \frac{1.25(.095/.325)}{1 + 5.5(.113)^2} = .659$$

$$c^* = \frac{c_1}{c_2 + (V')^2} + \frac{c_3|\sin(180V')|}{c_4 + (V')^2} + c_5$$

$$c^* = \frac{0.13}{0.462 + (.113)^2} + \frac{1.0|\sin[180(.113)]|}{10.0 + (.113)^2} + 0.06$$

$$c^* = 0.369$$

DWG CODE IDENT NO SIZE

20M02540

A SHEET 55 OF 107

MSFC FORM 422-8 (VERTICAL) (NOVEMBER 1962)

CONTINUATION SHEET

T				
	SYM	DESCRIPTION	DATE	APPROVAL

6.
$$P_D = P_f(V^*)^2 = \frac{(62.4/1728)(5.37)^2(12)}{2(32.174)} = 0.194 \text{ psi}$$

7.
$$DD = \frac{C^* tP_D}{V' SSR \delta} = \frac{0.369(.007)(.194)}{0.113(289.762)(.053)} = 2.89E-04$$

*If calculating sin in degrees, use 180; if calculating sin in radians, use γ .

8. EE = 1.0 + 0.1
$$\left(\frac{400}{SSR}\right)^2$$
 = 1.0 + 0.1 $\left(\frac{400}{289.762}\right)^2$

$$EE = 1.191$$

9.
$$C_E = 1.0 + \frac{4.7}{2 + L/D} = 1.0 + \frac{4.7}{2 + 4/3} = 2.41$$

10. FIS = (EE) (DD) (E) (
$$C_{NP}$$
) (C_{E})

11. FIS =
$$\frac{1.191(2.89E-04)(29E+06)(.659)(2.41)}{3}$$

FIS = 5,284 psi for longitudinal mode N=1

CODE DWG

20M02540

SHEET 56 OF 107

REVISIONS					
SYM	DESCRIPTION	DATE	APPROVAL		

Following the same procedure as above the value of FIS for the $N=N_{\rm C}$ mode is determined to be

FIS = 26,873 psi for longitudinal mode $N=N_{\odot}$

12. Uncertainty Factor:

The spring rate was estimated using equ. (2) therefore, the uncertainty factor is

UF = 2.0

and the corrected predicted flow-induced stress for longitudinal modes N=1 and N=N $_{\rm C}$ is:

FISC = (UF)(FIS)

FISC = (2.0)(5,284) = 10,568 psi for long. mode N=1

FISC = (2.0)(26,873) = 53,747 psi for long. mode N=N_C

IV. Fatigue Assessment

From the results above

FISC = 10,568 psi for longitudinal mode N=1

FISC = 53,747 psi for longitudinal mode N=N_C

For 321 steel at $68^{\circ}F$ the endurance limit is $S_{\rm EL}$ = 26,500 psi

CODE DWG

Licensee=NASA Technical Standards 4/99725450 Not for Resale, 10/22/2008 13:47:31 MDT

9999939 0000295 474

MSFC FORM 422-8 (VERTICAL) (NOVEMBER 1962)

CONTINUATION SHEET

REVISIONS					
SYM	DESCRIPTION	DATE	APPROVAL		

Conclusion:

For longitudinal mode N=1 FISC is less than $S_{\rm EL}$, therefore, infinite life is predicted. For longitudinal mode N=N_C FISC is greater than $S_{\rm EL}$, therefore, finite life is indicated and the bellows must be redesigned if operated to a velocity capable of exciting this mode. Repeating this analysis for each mode lower than N=N_C could be performed to find the mode and corresponding maximum velocity the bellows can be operated and still achieve infinite life.

CODE DWG SIZE 20M02540

Licensee=NASA Technical Standards 4/9972545004, User=Fults, Jason HEET 58 OF 107

Not for Resale, 10/22/2008 13:47:31 MDT

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

1.2 Gaseous Medium Example

Given: GN_2 flowing through an 8 inch 21-6-9 steel bellows at -200 $^{\rm O}F$ and at 39.3 psig with no elbow upstream.

BELLOWS PARAMETERS

Inside convolute width, $\sigma=0.400$ in.

Inside convolute pitch, $\lambda=0.726$ in.

Mean inside convolute height, h=1.25 in.

Ply thickness, t=.037 in.

Inside diameter, $D_i=8.00$ in.

Outside diameter, $D_0=10.574$ in.

Number of convolutes, $N_C=7$ Number of plys, $N_p=1$ Young's modulus, E=28.5E+06 psi

Material weight density, $p_m=0.282$ lbf/cu. in.

Problem: Determine the maximum safe flow velocity

which will result in a predicted infinite life

from flow-induced vibration loads.

CODE DWG

	REVISIO	H S	
SYM	DESCRIPTION	DATE	APPROVAL

CALCULATION PROCEDURE:

I. Frequency Calculation for Longitudinal Mode N=1.

1.
$$K_a = D_m E(N_p/N_c) (t/h)^3$$

$$K_a = \left(\frac{8.00 + 13.574}{2}\right) \left(28.5E + 06\right) \left(\frac{1}{7}\right) \left(\frac{.037}{1.25}\right)^3$$

$$K_a = 980.61 lbf/in$$

$$k = 2N_CK_a = 2(7)(980.61) = 13,728.54 lbf/in$$

2.
$$m = m_m + m_f$$

$$m_{m} = \frac{\mathcal{N} p_{m}tN_{p}D_{m}[\mathcal{A}a + h-2a]}{g}$$

$$a = (\sigma - tN_p)/2 = [.400 - .037(1)]/2 = 0.182 in$$

$$m_{m} = \gamma(.282)(.037)(1)(9.287)[\gamma(.182)+1.25-2(.182)]$$

$$32.174$$

$$m_{m} = 137.93E-04$$
 slugs

$$m_f = K_1 m_{f1} + K_2 m_{f2} (N/N_c)$$

$$m_{f1} = \frac{\gamma p_{f} D_{m} h (2a-tN_{p})}{2g}$$

MSFC FORM 422-8 'VERTICAL' (NOVEMBER 1962)

CONTINUATION SHEET

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

where
$$\mathcal{P}_{f} = \mathcal{P}_{ref}(P/P_{ref})(T_{ref}/T)$$
 (Z_{ref}/Z)

P = gas pressure, psia

Pref = reference pressure = 14.7 psia

T = gas temperature, OR

Z = gas compressibility factor (non-dim)

Tref = reference temperature = 528 °R

$$\mathcal{P}_{\text{ref}} = \frac{14.7(144)}{54.92(528)(1.0)} = 0.073 \text{ lbf/ft}^3$$

$$\mathcal{P}_{f} = \left(\frac{0.073}{1728}\right) \left(\frac{39.3 + 14.7}{14.7}\right) \left(\frac{528}{-200 + 460}\right) \left(\frac{1.0}{.982}\right)$$

$$P_f = 3.21E-04 \text{ lbf/in}^3$$

$$m_{f1} = \frac{\%(3.21E-04)(9.287)(1.25)[2(.182)-.037(1)]}{2(32.174)}$$

 $m_{f1} = 5.95E-05$ slugs

$$m_{f2} = \frac{\rho_f D_m h^3}{g \delta} = \frac{3.21E - 04(9.287)(1.25)^3}{32.174(.726 - .400)}$$

 $m_{f2} = 5.55E-04$ slugs

ee=NASA Technical Standards 4/9 Resale, 10/22/2008 13:47:31 MDT

CODE DWG

20M02540

JASON THEET 6/ OF 107

No reproduction or networking permitted without license from IHS

	·		
SYM	DESCRIPTION	DATE	APPROVAL

$$m_f = 1.0(5.95E-05) + 0.68(5.55E-04)(1/7)$$

 $m_f = 1.13E-04 \text{ slugs}$

$$m = m_m + m_f = 137.93E-04 + 1.13E-04$$

 $m = 13.91E-03 slugs$

*3.
$$B_N = \{2[1+\cos(180(2N_C-N)/2N_C)]\}^{1/2}$$
 for N=1, $B_1 = \{2[1+\cos(180(14-1)/14)]\}^{1/2}$ $B_1 = 0.2239$

4.
$$f_0 = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{1}{2\pi} \sqrt{\frac{12(13728.54)}{13.91E-03}} = 547.72 \text{ Hz}$$

5.
$$f(1) = (f_0)(B_1) = 547.72(0.2239) = 122.63 Hz$$

- *If calculating cos in degrees, use 180; if calculating cos in radians, use γ .
- II. Velocity Range Calculation for Longitudinal Mode N=1

$$V_{low} = V(1,1) = f(1) = \frac{122.63(.400)}{S_{o'u}} = 13.63 \text{ fps}$$

CODE DWG SIZE 20M02540

A SHEET 62 OF 107

Licensee=NASA Technical Standards 4/9972545004, User=Fults, Jason SHEET 62 0
Not for Resale, 10/22/2008 13:47:31 MDT

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

$$V^* = V(1,2) = \frac{f(1)\sigma}{S_{\sigma_C}} = \frac{122.63(.400)}{12(0.2)} = 20.44 \text{ fps}$$

$$V_{up} = V(1,3) = \frac{f(1)\sigma'}{S_{\sigma'1}} = \frac{122.63(.400)}{12(0.1)} = 40.88 \text{ fps}$$

III. First Radial Acoustic Mode Resonance Calculation

1.
$$h/r_i = 1.25/(8.00/2) = .3125$$

2. FNCO =
$$3.8-16.72(h/r_i)^2 + 13.67(h/r_i)^3$$

FNCO = 2.58

3. Speed of Sound

$$C_{\phi} = \sqrt{\frac{\chi(P+14.7)g}{Pf}} = \sqrt{\frac{1.40(39.3+14.7)(32.174)}{3.21E-04(12)}}$$

$$C_{\phi} = 794.6 \text{ fps}$$

4. First Radial Acoustic Mode Frequency

$$f_{\lambda} = \frac{(FNCO)(C_{\phi})}{2\pi r_{1}} = \frac{12(2.58)(794.6)}{2\pi (4.0)} = 978.84 \text{ Hz}$$

Licensee=NASA Technical Standards 4/99 Not for Resale, 10/22/2008 13:47:31 MDT

5. First Radial Acoustic Mode Velocity

$$V_{\lambda} = \frac{f_{\lambda}\sigma}{f_{\lambda}\sigma} = \frac{978.84(.400)}{12(0.2)} = 163.14 \text{ fps}$$

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

- IV. Flow-Induced Stress Calculation for Longitudinal Mode N=1
 - 1. Critical frequency (f_c) at $N=N_c$

$$m_f = 1.0(5.95E-05) + 0.68(5.55E-04)(7/7)$$

$$m_f = 4.37E-04$$
 slugs

$$m = m_m + m_f = 137.93E-04 + 4.37E-04$$

$$m = 14.23E-03$$
 slugs

at N=N_C, B₇ =
$$\sqrt{2}$$

$$f_c = (f_0)(B_7)$$

$$f_C = \frac{1}{2\pi} \sqrt{\frac{12(13728.54)}{14.23E-03}}$$
 ($\sqrt{2}$) = 765.84 Hz

2. Critical velocity (V_c) at $N=N_c$

$$V_c = \frac{f_c \sigma}{S_{\sigma'c}} = \frac{765.84(.400)}{12(0.2)} = 127.64 \text{ fps}$$

- 3. $V' = V^*/V_C = 20.44/127.64 = 0.160$
- 4. SSR = $\frac{K_a N_c}{D_m N_p}$ = $\frac{980.61(7)}{9.287(1)}$ = 739.13 lbf/in²

CODE DWG

MSFC FORM 422-8 (VERTICAL) (NOVEMBER 1962)

CONTINUATION SHEET

	REVISIO	NS	
SYM	DESCRIPTION	DATE	APPROVAL

5.
$$C_{NP} = 1.0$$
 for $N_p = 1$

*6.
$$c^* = \frac{c_1}{c_2 + (V')^2} + \frac{c_3 |\sin(180V')|}{c_4 + (V')^2} + c_5$$

$$c^* = \frac{0.13}{.462 + (.160)^2} + \frac{1.0|\sin[180(.160)]!}{10 + (.160)^2} + 0.06$$

$$C^* = 0.375$$

*If calculating sin in degrees, use 180; if calculating sin in radians, use γ .

7.
$$P_D = \frac{p_f(V^*)^2}{2g} = \frac{3.21E - 04(20.44)^2(12)}{2(32.174)} = 0.025 \text{ psi}$$

8. DD =
$$\frac{c^* tP_D}{v' ssr \delta}$$
 = $\frac{0.375(.037)(.025)}{0.160(739.13)(.326)}$ = 9.00E-06

9. EE = 1.0 + 0.1
$$\left(\frac{400}{SSR}\right)^2$$
 = 1.0 + 0.1 $\left(\frac{400}{739.13}\right)^2$ = 1.029

10. $C_E = 1.0$ for no elbow present upstream

11. FIS = (EE) (DD) (E) (
$$C_{NP}$$
) (C_{E})

CODE DWG

	REVISI	ONS	
SYM	DESCRIPTION	DATE	APPROVAL

FIS = (1.029)(9.00E-06)(28.5E+06)(1.0)(1.0)1.0

FIS = 263.94 psi

12. $f(1) = 122.63 \text{ Hz} < f_2 = 978.84 \text{ Hz}$; therefore

FIS = 263.94 psi for long. mode N=1

NOTE: If $f(N) \ge f_{\mathbf{2}}$, then FIS is multiplied by an acoustic factor of five (5).

13. Uncertainty Factor:

The spring rate was estimated using equ. (2) therefore, the uncertainty factor is

UF = 2.0

and the corrected predicted flow-induced stress for longitudinal mode N=1 is:

FISC = (UF)(FIS)

FISC = (2.0)(263.94) = 527.88 psi for long. mode N=1

V. Calculations for Longitudinal Modes N=2 thru 13.

A similar proceedure has been applied to the remaining bellows longitudinal modes (N=2 thru 13) and the results are

CODE DWG 20M02540

Licensee=NASA Technical Standards 4/9972545004, User=Fults, Jason ET 66 OF /07

Ţ		REVISIO	N S	
	SYM	DESCRIPTION	DATE	APPROVAL

summarized in Table B-1. The convolute bending mode is calculated next as shown below and is also summarized in Table B-1.

VI. Frequency Calculation for Convolute Bending Mode.

$$f_{CB} = \frac{1}{2\pi} \sqrt{\frac{8k}{m_m + .68 m_{f2}}}$$

where k, m_m , and m_{f2} were previously calculated

$$f_{CB} = \frac{1}{2\pi} \sqrt{\frac{8(13,728.54)(12)}{137.93E-04 + .68(5.55E-04)}}$$

$$f_{CR} = 1534.89 \text{ Hz}$$

VII. Velocity Range Calculation for Convolute Bending Mode.

$$V_{low} = f_{CB} \sigma = 1534.89(.400) = 170.54 \text{ fps}$$

$$S_{\sigma u}$$

$$V^* = \frac{f_{CB}\sigma}{s_{\sigma c}} = \frac{1534.89(.400)}{12(0.2)} = 255.82 \text{ fps}$$

$$V_{up} = \frac{f_{CB}\sigma}{s_{\sigma 1}} = \frac{1534.89(.400)}{12(0.1)} = 511.63 \text{ fps}$$

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

VIII. Flow-Induced Stress Calculation for Convolute Bending Mode.

1.
$$V' = V^*/V_C$$

where $\mathbf{V}_{\mathbf{C}}$ was previously calculated

$$V' = 255.82/127.64 = 2.004$$

2.
$$C_{NP} = 1.0 \text{ for } N_p=1$$

3. $C^* = 0.4$ for the convolute bending mode

4.
$$P_D = \frac{p_f(V^*)^2}{2g} = \frac{12(3.21E-04)(255.82)^2}{2(32.174)}$$

$$P_{D} = 3.918 \text{ psi}$$

5. DD =
$$\frac{c^*tP_D}{V'ssr \delta}$$

where SSR and δ were previously calculated

$$DD = \frac{(0.4)(.037)(3.918)}{(2.004)(739.13)(.326)} = 1.20E-04$$

- 6. EE = 1.029 as previously calculated
- 7. $C_F = 1.0$ for no elbow present upstream

Licensee=NASA Technical Standards 4/9 Not for Resale, 10/22/2008 13:47:31 MDT

CODE DWG

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

8. FIS =
$$(EE) (DD) (E) (C_{NP}) (C_E)$$

$$N_P$$
FIS = $(1.029) (1.20E-04) (28.5E+06) (1.0) (1.0)$
1.0

$$FIS = 3,519.18 psi$$

- 9. The convolute bending mode frequency is higher than the first radial acoustic mode frequency $f_{CB} = 1534.89 \text{ Hz} > f_2 = 978.84 \text{ Hz}$ therefore, an acoustic factor of 5 is applied to FIS below.
- 10. Uncertainty Factors:

 The spring rate was estimated using equation (2)

 and since radial acoustic resonance is predicted,
 therefore, the uncertainty factor is

$$UF = (2.0)(1.5) = 3.0$$

An acoustic factor of 5 is also applied to FIS to account for an increase in stress levels due to radial acoustic resonance. The corrected

CODE DWG

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

flow-induced stress for the convolute bending mode is now:

FISC = (UF)(5.0)(FIS)

FISC = (3.0)(5.0)(3,519.18)

FISC = 52,788 psi for the convolute bending mode

IX. Fatigue Assessment

For 21-6-9 steel at -200°F the endurance limit is $S_{EL} = 47,000 \text{ psi}$

Conclusion:

From the results summarized in Table B-1 and in Figure B-1 we now compare the predicted FISC values with the $S_{\rm EL}$ value given above. If FISC is less than $S_{\rm EL}$, infinite life is predicted. If FISC is greater than $S_{\rm EL}$, the life of the bellows is finite. All 13 longitudinal modes have FISC values less than $S_{\rm EL}$. The convolute bending mode FISC value is greater than $S_{\rm EL}$ because the first radial acoustic mode resonance occurs at 163.14 fps.

Based on the above, infinite life is predicted until the convolute bending mode frequency is reached. This

CODE DWG SIZE 20M02540

Licensee=NASA Technical Standards 4/9972545004, User=Fults, Jason HEET 70 OF 10 >

Not for Resale, 10/22/2008 13:47:31 MDT

37999939 0000308 952

MSFC FORM 422-8 (VERTICAL) (NOVEMBER 1962)

CONTINUATION SHEET

	REVISI	DNS	····
SYM	DESCRIPTION	DATE	APPROVAL

convolute bending mode has a flow excitation range from V_{low} = 170.54 fps to V_{up} = 511.63 fps with the optimum or most severe flow excitation occurring at V^* = 255.82 fps. Therefore, the maximum safe flow velocity should be limited, according to case D in paragraph 2.6, to less than 170.54 fps to maintain a predicted infinite life.

CODE DWG 20M02540

Licensee=NASA Technical Standards 4/9972545004, User=Fults, Jason HEET 7/ 0F/07
Not for Resale, 10/22/2008 13:47:31 MDT

Provided by IHS __.
No reproduction or networking permitted without license from IHS

MSFC FORM 422-8 (VERTICAL) (NOVEMBER 1962)

CONTINUATION SHEET

	REVISIO	NS	
SYM	DESCRIPTION	DATE	APPROVAL

MODE	CRITICAL VELOCITY (ft/sec)	FREQUENCY (Hz)	ACOUSTIC FACTOR	FIS (psi)	UNCERTAINTY FACTOR	FISC	1
1	20.44	122.63	1.0	263.94	2.0	(PS1)	ELIFE Telian
2	40.56	243.37	1.0	522	2.0	1045	Infinite
е	60.09	360.53	1.0	719	2.0	1438	Infinite
4	78.79	472.71	1.0	824	2.0	1640	
5	96.42	578.53	1.0	835	2.0	1671	Infinite
9	112.78	676.70	1.0	768	2.0	1536	Infinite Infinite
7	127.64	765.99	1.0	654	2.0	1309	Total
80	140.89	845.34	1.0	804	2.0	1600	THEINITE
6	152.30	913.78	1.0	937	2.0	1875	Infinite
10	161.75	970.49	1.0	1041			
11	169.14	1014.82		5563	7.0	2082	Infinite
12	174.37	1046.25		5784		16, 690 17, 352	Infinite Infinite
13	177.40	1064.43	5.0	5897	3.0	17.690	Infludto
Convolute Bending	255.82	1534.89	5.0 17	17,596		52,788	Finite
2	Divot Deal						

 V_{λ} = 163.14 fps, f_{λ} = 978.84 Hz First Radial Acoustic Mode Resonance:

Gaseous Medium Example Summary

CODE DWG IDENT NO SIZE

20M02540 72 OF 107

Licensee=NASA Technical Standards 4/9972545004, Use Not for Resale, 10/22/2008 13:47:31 MDT

Provided by IHS
No reproduction or networking permitted without license from IHS

CODE DWG 20M02540 IDENT NO SIZE Jason HEET 73 OF 107

Provided by IHS No reproduction or networking permitted without license from IHS

5-8873-0-224

Licensee=NASA Technical Standards 4/9972545004 Not for Resale, 10/22/2008 13:47:31 MDT

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

2.0 FLEXHOSE EXAMPLE PROBLEM

Given: Gaseous helium flowing through a flexible metal hose at 75°F and at 600 psig.

The flexhose is made of 21-6-9 steel and it is assumed the braid will be in contact with all of the convolute crowns. There is no elbow upstream of the flexhose.

FLEXHOSE PARAMETERS

Inside convolute width, $\sigma=0.072$ in. Inside convolute pitch, $\lambda=0.104$ in. Mean inside convolute height, h=0.154 in. Ply thickness, t=0.010 in. Inside diameter, $D_i=1.850$ in. Outside diameter, $D_0=2.198$ in.

- * Number of convolutes, N_C = 32

 Number of plys, N_p = 2

 Young's modulus, E = 28.5E+06 psi

 Material weight density, P_m = 0.282 lbf/cu. in.
- * NOTE: This is the actual number of convolutes of the flexhose, however, in the analysis $N_{\rm c}=1$ is used.

Problem: Determine if the flexhose will have infinite life from flow-induced vibration loads when operated at 800 fps flow velocity.

CODE	DWG SIZE	20M02540
Standards 4/997254500	A 04, User=Fults, v	JASON HEET 74 OF 107

	REVISIO	N S		_
SYM	DESCRIPTION	DATE	APPROVAL	_;

CALCULATION PROCEDURE:

I. Frequency Calculation for the Three Flexhose Modes.

1.
$$K_f = D_m E(N_p/N_c) (t/h)^3$$
 $K_f = 2.024 (28.5E+06) (2/1) (.010/.154)^3$
 $K_f = 31,588 \text{ lbf/in}$
 $k = 2 K_f = 2(31,588) = 63,176 \text{ lbf/in}$

2.
$$m_{m} = \frac{\gamma p_{m} t N_{p} D_{m} [\gamma a + h - 2a]}{g}$$

$$a = (\sigma - tN_p)/2 = [.072 - .010(2)]/2 = 0.026 \text{ in}$$

$$m_m = \frac{\gamma (.282)(.010)(2)(2.024)[\gamma (.026) + .154 - 2(.026)]}{32.174}$$

$$m_{\rm m}$$
 = 2.05E-04 slugs

3.
$$m_{IP} = \frac{\gamma p_{f} D_{m} h (2a-tN_{p})}{2g}$$

where
$$\mathcal{P}_{f} = \mathcal{P}_{ref}(P/P_{ref})(T_{ref}/T)(Z_{ref}/Z)$$

These terms are explained in example 1.2

CODE DWG 20M02540

	REVISIO	N S	
5YM	DESCRIPTION	DATE	APPROVAL

$$P_{\text{ref}} = \frac{14.7(144)}{385.96(528)(1.0)} = 0.010 \text{ lbf/ft}^3$$

$$\mathcal{P}_{f} = \left(\frac{.010}{1728}\right) \left(\frac{600+14.7}{14.7}\right) \left(\frac{528}{535}\right) \left(\frac{1.0}{1.02}\right)$$

$$\mathcal{P}_{f} = 2.34E-04 \text{ lbf/in}^3$$

$$m_{\text{IP}} = \frac{\mathcal{T}(2.34E-04)(2.024)(.154)[2(.026)-.010(2)]}{2(32.174)}$$

$$m_{TP} = 1.13E-07$$
 slugs

$$m_{OP} = \frac{0.68 p_f D_m h^3}{g \delta}$$

$$m_{OP} = \frac{0.68(2.34E-04)(2.024)(.154)^3}{32.174(.032)}$$

$$m_{OP} = 1.14E-06$$
 slugs

5.
$$f_{IP} = \frac{1}{2\pi} \sqrt{\frac{2k}{m_m + m_{IP}}}$$

$$f_{\text{IP}} = \frac{1}{2\pi} \sqrt{\frac{2(63,176)12}{2.05E-04+1.13E-07}}$$

$$f_{IP} = 13,684 \text{ Hz}$$
 (In-Phase Mode)

CODE DWG

20M02540

MSFC FORM 422-8 VERTICAL) (NOVEMBER 1962)

CONTINUATION SHEET

	REVISIO	N S	
SYM	DESCRIPTION	CATE	APPROVAL

6.
$$f_{OP} = \frac{1}{2 \text{M}} \sqrt{\frac{2k}{m_m + m_{OP}}}$$

$$f_{OP} = \frac{1}{2\pi} \sqrt{\frac{2(63,176)12}{2.05E-04+1.14E-06}}$$

$$f_{OP} = 13,650 \text{ Hz}$$
 (Out-of-Phase Mode)

7.
$$f_{CB} = \frac{1}{2\pi} \sqrt{\frac{8k}{m_m + m_{OP}}}$$

$$f_{CB} = \frac{1}{2\pi} \sqrt{\frac{8(63,176)12}{2.05E-04+1.14E-06}}$$

$$f_{CB} = 27,299 \text{ Hz}$$
 (Convolute Bending Mode)

- II. Velocity Range Calculation for the Three Flexhose Modes:
 - 1. In-Phase Mode:

$$V_{low} = \frac{(f_{IP})\sigma}{s_{du}} = \frac{13,684(.072)}{12(0.3)} = 273.7 \text{ fps}$$

$$V^* = \frac{(f_{IP})\sigma}{S_{CC}} = \frac{13,684(.072)}{12(0.2)} = 410.5 \text{ fps}$$

$$V_{up} = \frac{(f_{IP})\sigma}{S_{\sigma 1}} = \frac{13.684(.072)}{12(0.1)} = 821.0 \text{ fps}$$

CODE DWG SIZE 20M02540

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

2. Out-of-Phase Mode:

$$V_{low} = \frac{(f_{OP})\sigma}{S_{\sigma u}} = \frac{13.650(.072)}{12(0.3)} = 273.0 \text{ fps}$$

$$V^* = \frac{(f_{OP})\sigma}{S_{\sigma c}} = \frac{13,650(.072)}{12(0.2)} = 409.5 \text{ fps}$$

$$V_{up} = \frac{(f_{OP})\sigma}{S_{O1}} = \frac{13,650(.072)}{12(0.1)} = 819.0 \text{ fps}$$

3. Convolute Bending Mode:

$$V_{low} = \frac{(f_{CB})\sigma}{s_{\sigma u}} = \frac{27,299(.072)}{12(0.3)} = 546.0 \text{ fps}$$

$$V^* = \frac{(f_{CB})\sigma}{S_{\sigma c}} = \frac{27,299(.072)}{12(0.2)} = 819.0 \text{ fps}$$

$$V_{up} = \frac{(f_{CB})\sigma}{S\sigma_1} = \frac{27,299(.072)}{12(0.1)} = 1637.9 \text{ fps}$$

CODE DWG SIZE 20M02540

A SHEET 78 OF 107

ļ	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL :

III. First Radial Acoustic Mode Resonance Calculation

1.
$$h/r_i = .154/(1.850/2) = .166$$

2. FNCO =
$$3.8-16.72 (h/r_i)^2+13.67 (h/r_i)^3$$

FNCO = 3.40

3. Speed of Sound:

$$C_{\phi} = \sqrt{\frac{\chi(P+14.7)g}{P_{f}}} = \sqrt{\frac{1.66(600+14.7)(32.174)}{2.34E-04(12)}}$$
 $C_{\phi} = 3419.32 \text{ fps}$

4. First Radial Acoustic Mode Frequency:

$$f_{\lambda} = \frac{(FNCO)(C_{\phi})}{2\pi r_{i}} = \frac{12(3.40)(3419.32)}{2\pi (.925)}$$

$$f_2 = 24,004 \text{ Hz}$$

5. First Radial Acoustic Mode Velocity:

$$V_{\lambda} = \frac{f_{\lambda}\sigma}{S_{\sigma c}} = \frac{24,004(.072)}{12(0.2)}$$

$$V_{\lambda} = 720.12 \text{ fps}$$

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

- IV. Flow-Induced Stress Calculation for the Three Flexhose Modes
 - 1. Critical frequency (f_c)

The critical frequency corresponds to the out-of-phase mode frequency, $f_{\mbox{OP}}$, previously calculated.

$$f_{C} = f_{OP} = 13,650 \text{ Hz}$$

2. Critical velocity (V_c)

The critical velocity corresponds to the out-of-phase mode critical velocity, v^* , previously calculated.

$$V_C = V^*$$
 (out-of-phase) = 409.5 fps

3.
$$V'_{IP} = V^*/V_{C} = 410.5/409.5 = 1.00$$

$$V'_{OP} = V^*/V_{C} = 409.5/409.5 = 1.00$$

$$V'_{CB} = V^*/V_{C} = 819.0/409.5 = 2.00$$

4.
$$SSR = \frac{K_f N_c}{D_m N_p} = \frac{31.588(1)}{2.024(2)} = 7803.4 \text{ lbf/in}^2$$

where $N_C=1$ for a flexhose

CODE DWG SIZE 20M02540

A SHEET 80 OF 107

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

5.
$$c_{NP} = 1.0 - \frac{c_6 (\sigma/h)}{1 + c_7 (V')^2}$$

In-Phase Mode

 $C_{NP} = .91$

Out-of-Phase Mode

 $C_{NP} = .91$

Convolute Bending Mode $C_{NP} = .97$

6. C* for in-phase and out-of-phase modes

$$c^* = \frac{c_1}{c_2 + (V')^2} + \frac{c_3 |\sin(180V')|}{c_4 + (V')^2} + c_5$$

In-Phase Mode

 $C^* = .15$

Out-of-Phase Mode C* = .15

For the convolute bending mode use $C^* = 0.4$

$$P_{D} = \frac{p_{f}(v^{*})^{2}}{2q}$$

$$P_D = \frac{(2.34E-04)(410.5)^212}{2(32.174)} = 7.35 \text{ psi}$$

$$P_D = \frac{(2.34E-04)(409.5)^212}{2(32.174)} = 7.32 \text{ psi}$$

Convolute Bending Mode
$$P_D = \frac{(2.34E-04)(819.0)^212}{2(32.174)} = 29.27 \text{ psi}$$

CODE DWG IDENT NO SIZE

20M02540

SHEET 8/ OF 10>

MSFC FORM 422-8 (VERTICAL) (NOVEMBER 1962)

CONTINUATION SHEET

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

$$DD = \frac{C^* tP_D}{V' SSR \delta}$$

$$DD = \underbrace{.15(.010)(7.35)}_{1.0(7803.4)(.032)} = 4.41E-05$$

$$DD = 4.40E - 05$$

Convolute Bending Mode DD = 23.44E-05

$$DD = 23.44E - 05$$

9. EE = 1+0.1
$$\left(\frac{400}{SSR}\right)^2$$
 = 1+0.1 $\left(\frac{400}{7803.4}\right)^2$ = 1.00

10. $C_E = 1.0$ for no elbow present upstream

11. FIS =
$$\frac{\text{(EE) (DD) (E) (C}_{NP}) (C_{E})}{N_{D}}$$

In-Phase Mode

Out-of-Phase Mode FIS = 570.6 psi

$$FTS = 570.6$$
 psi

Convolute Bending Mode FIS = 3240.0 psi

$$FTS = 3240.0 psi$$

CODE DWG 20M02540 IDENT NO SIZE SHEET 82 OF 107

		REVISIO	SHC	
9	MY	DESCRIPTION	DATE	APPROVAL

12. Since the first radial acoustic mode frequency (f_{λ}) is greater than the in-phase and out-of phase mode frequencies, no acoustic factor of 5 is applied to FIS. However, the convolute bending mode frequency is higher than the first radial acoustic mode frequency.

$$f_{CB} = 27,299 \text{ Hz} > f_{\lambda} = 24,004 \text{ Hz}$$

therefore, an acoustic factor of 5 is applied to FIS below.

13. Uncertainty Factor:

For the in-phase and out-of-phase modes the spring rate was estimated using equation (12) and no radial acoustic resonance is predicted, therefore the uncertainty factor is

$$UF = 2.5$$

For the convolute bending mode the spring rate was estimated using equation (12) and since radial acoustic resonance is predicted, therefore the uncertainty factor is

$$UF = (2.5)(1.5) = 3.75$$

CODE DWG SIZE A SHEET 83 OF 107

		REVISIO	N S	
L	SYM	DESCRIPTION	DATE	APPROVAL

The corrected predicted flow-induced stress for each of the three flexhose modes are:

FISC = (UF)(FIS)

In-Phase Mode

FISC = (2.5)(571.9) = 1429.8 psi

Out-of-Phase Mode FISC = (2.5)(570.6) = 1426.5 psi

Convolute Bending Mode FISC = (3.75)(5.0)(3240.0)= 60,750 psi

The results of the three flexhose modes are summarized . in Table B-2.

V. Fatigue Assessment

For 21-6-9 steel at 75°F the endurance limit is $S_{EI} = 31,000 \text{ psi}$

Conclusion:

From the results summarized in Table B-2 and in Figure B-2, we now compare the predicted FISC values with the $S_{\rm EL}$ value given above. If FISC is less than $S_{\rm EL}$, infinite life is predicted. If FISC is greater than SEL then a finite life is predicted. The in-phase and out-ofphase mode FISC values are less than S_{EI} . The convolute

> CODE DWG 20M02540 IDENT NO SIZE SHEET 84 OF 107

MSFC FORM 422-8 (VERTICAL) (HOVEMBER 1962)

CONTINUATION SHEET

	REVISI	ONS	
SYM	DESCRIPTION	DATE	APPROVAL

bending mode FISC value is greater than $S_{\rm EL}$ because radial acoustic resonance occurs at 720.12 fps.

Based on the above infinite life is predicted until the convolute bending mode frequency is reached. This convolute bending mode has a flow excitation range from $V_{low}=546.0$ fps to $V_{up}=1637.9$ fps with the optimum or most severe flow excitation occurring at $V^*=819.0$ fps. Therefore, the maximum safe flow velocity should be limited, according to case D in paragraph 2.6, to less than 546.0 fps to maintain a predicted infinite life. This flexhose will not have infinite life when operated at 800 fps flow velocity.

CODE DWG

20M02540

SHEET 85 OF 107

Licensee=NASA Technical Standards 4/9972545004, User= Not for Resale, 10/22/2008 13:47:31 MDT

				REVISIONS				
			SYM		DESCRIPTION	DATE	APPROVAL	
LIFE	Infinite	Infinite	Finite					
FISC (ps1)	1426.5	1429.8	60,750	24,004 Hz				
UNCERTAINTY FACTOR	2.5	2.5	3.75	720.12 fps, f ₂ =	nmary			
FIS (psi)	570.6	571.9	3240.0	Vz = 720.	Example Summary			
ACOUSTIC	1.0	1.0	5.0		Flexhose Ex			
FREQUENCY	13,650	13,684	.27,299	First Radial Acoustic Mode Resonance:	Table B-2.			
CRITICAL VELOCITY ft/sec	409.5	410.5	819.0	Radíal Acou				
MODE	Out-of-Phase	In-Phase	Convolute Bending	First	-			

CODE DWG

20M02540

Figure B-2. Frequency vs. Velocity Plot Indicating Flow Excitation Range for Example 2.0

CODE DWG 20M02540

A SHEET 87 OF 107

5-8872-0-224

Licensee=NASA Technical Standards 4/9972545004, User Not for Resale, 10/22/2008 13:47:31 MDT 🖿 9999939 0000325 T31 💳

MSFC FORM 422-8 (VERTICAL) (NOVEMBER 1962)

CONTINUATION SHEET

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

APPENDIX C

BELLOWS FLOW-INDUCED VIBRATION COMPUTER PROGRAM

"BELFIV" Version 3.3

CODE DWG SIZE 20M02540

A SHEET 88 OF 107

	REVISIO	N S		-
SYM	DESCRIPTION	DATE	APPROVAL	:

1.0 COMPUTER PROGRAM:

The computer program was written to calculate the modal frequencies, flow excitation ranges, and flow-induced stresses for the longitudinal modes and the convolute bending mode in a metal bellows. This program is written to apply to both liquid and gas flows through a metal bellows. In the case of gas flows, it also calculates the first radial acoustic mode frequency and velocity. This program, however, does not conduct flow-induced vibration analysis for a flexhose and does not calculate static stresses in a bellows. The flexhose and static stress analysis have to be done by hand.

This computer program takes into account the uncertainty factors and acoustic factor for flow-induced stress. The output values for flow-induced stress have the appropriate uncertainty factors and acoustic factor already applied.

The computer program gives the user the option of inputing the data from the keyboard or from a data file. example of an input data file is given in paragraph 1.2. output data can be saved in a data file or sent to a printer.

> CODE DWG SIZE

20M02540

REVISIONS				
5YM	DESCRIPTION	DATE	APPROVAL	

The computer program was written in Fortran language to run interactively with an IBM-XT personal computer. However, this does not limit its use as it can be readily modified to suit the needs of the designer. The differences between the hand calculations and computer calculations are attributed to round-off errors. Differences may also be found when different Fortran compilers are used. The Fortran compiler used for this computer program is the IBM Professional Fortran Compiler, version 1.00 by Ryan-McFarland Corp.

1.1 Comparison of Theoretical and Computer Program Variables:

<u>ANALYSIS</u>	COMPUTER	COMMENT
a	A	Mean convolute radius
В	BN	Dimensionless frequency factor
$c_{\mathtt{E}}$	CE	Elbow factor
c _{NP}	CNP	Damping modifier coefficient
c*	CST	Force and damping coefficient
c ϕ	co	Speed of sound
Di	DI	Bellows inside diameter
Do	DO	Bellows outside diameter
$D_{\mathfrak{m}}$	DMEAN	Bellows mean diameter
E	E	Young's modulus of elasticity

CODE	DWG SIZE	20M02540
	Α	SHEET 90 OF 107

MSFC FORM 422-8 (VERTICAL) (NOVEMBER 1962)

CONTINUATION SHEET

				
	SYM	DESCRIPTION	DATE	APPROVAL
f ₂	FREQCO	First radial ac	coustic	mode
fo	FO	Reference frequ	iency	
f _c	FREQC	Critical freque mode N=N _C	ency for	•
f _{CB}	FREQCB	Convolute bendifrequency	ing mode	9
f(N)	FREQ(MODE)	Modal frequency	7	
g	G	Gravitational a	acceler	ation
h	Н	Mean inside con	nvolute	height
k	K	Elemental sprin	ng rate	
Ka	KA	Overall bellows	s sprin	g rate
m	MASS MASSR	Total elementa	l mass	
$m_{\overline{m}}$	MMETAL	Elemental meta	l mass	
^m fl	FLUID1	Fluid added mas	SS	
^m f2	FLUID2	Fluid added mag	ss	
m _f	MFLUID MFLUDR	Total elementa added mass	l fluid	
И	MODE	Mode number		1
2N _C -1	NDEG	Number of degr	ees of	
		freedom for a	bellows	
N _C	NC	Number of conv	olutes	
и _р	NPLY	Number of plys		
P_{D}	PD	Free stream dy	namic p	ressure
P	P	Fluid pressure		

REVISIONS

CODE IDENT NO	DWG SIZE	20M02540
	Α	SHEET 9/ OF 107

9999939 0000329 687

REVISIONS

CONTINUATION SHEET

MSFC FORM 422-8 (VERTICAL) (NOVEMBER 1962)

	STM	DESCRIPTION	DATE	APPROVAL
s ₀₁	STLO	Lower Strouhal n	umber	
Syu	STUP	Upper Strouhal n	umber	
Soc	STCRIT	Critical Strouhal number		r
t	Т	Ply thickness		
Vlow	V(MODE,1)	Lower limit velo	city fo	r mode N
· V*	V(MODE,2)	Critical velocit	y for m	ode N
v_{up}	V(MODE,3)	Upper limit velo	city fo	r mode N
v _c	VELC	Critical velocit	y for m	ode N=N _C
v ′	VP	Normalized veloc	ity par	ameter
∨2	VELCO	First radial acovelocity	ustic m	ode -
X	GAMMA	Specific heat ra	tio for	the gas
0	SIGMA	Inside convolute	width	
δ	DELTA	Inside convolute	gap	
2	LAMBDA	Inside convolute	pitch	
$\mathcal{P}_{\mathtt{f}}$.	RHOF	Weight density o	f fluid	
$\mathcal{P}_{\mathtt{m}}$	RHOM	Weight density of line material.	f flexi	ble

CODE DWG SIZE 20M02540

A SHEET 92 OF 107

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

1.2 Input Data File Format and Examples

Input File: DFILE

Description of Input File DFILE:

Line 1--TITLE (A70)

This line assigns an identifying label to a particular bellows.

Line 2--JFLAG, NFLUID, NDEG (313)

This line enters certain conditions of the bellows.

> JFLAG determines origin of overall spring rate KA

> > JFLAG=1 program will calculate KA

JFLAG=2 program will use the given value of KA

NFLUID · · · · · . . . flow medium

NFLUID=1 gas

NFLUID=2 liquid

. . no. of bellows longitudinal degrees of freedom=2NC-1

> CODE DWG IDENT NO SIZE

20M02540

93 OF 107 Licensee=NASA Technical Standards 4/99729 Not for Resale, 10/22/2008 13:47:31 MDT

REVISIONS				
	SYM	DESCRIPTION	DATE	APPROVAL

Line 3--NC, NPLY, SIGMA, LAMBDA, H, T (6F10.3)

This line enters certain geometric parameters of the bellows.

NC number of convolutes counted from the outside

NPLY number of plys

SIGMA inside convolute width, inches

LAMBDA inside convolute pitch, inches

H mean inside convolute height, inches

T ply thickness, inches

Line 4--DI, DO, E, RHOM, KA, LOVERD (2F10.3, F10.0, 3F10.3)

This line enters certain geometric parameters, matl. properties, and conditions of the bellows.

DI bellows inside diameter, inches

DO bellows outside diameter, inches

E Young's modulus of elasticity, lbs/sq. in.

RHOM weight density of the material, lbf/cu. in.

CODE DWG

20M02540

SHEET 94 OF 107

	REVISI	ONS	
SYM	DESCRIPTION	DATE	APPROVAL

LOVERD length from termination of elbow to first convolute divided by the I.D. of pipe just before the bellows (input 0.0 if no elbow upstream)

Line 5--This line enters the conditions of the fluid whether a gas or a liquid.

For a liquid--P, TEMP, RHOF (3F10.3)

P liquid pressure, psig

TEMP liquid temperature, Faherenheit

RHOF Weight density of liquid at P and TEMP, lbf/cu. ft.

For a gas--P, TEMP, PREF, TREF, RHOREF (5F10.4)

P gas pressure, psig

TEMP gas temperature, Faherenheit

PREF gas pressure at reference state, psia

TREF gas temperature at reference state, Fahrenheit

RHOREF Weight density of gas at reference state, lbf/cu. ft.

CODE DWG

20M02540

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

Line 6--Z, ZREF, GAMMA (3F10.3)

This line enters the gas compressibility factors and specific heat ratio for the gas. This line is only used when the fluid is a gas and is not used when the fluid is a liquid.

Z	•	•	•	•	•	•	•	٠	•	•	•		compressibility n-dim)	factor
---	---	---	---	---	---	---	---	---	---	---	---	--	------------------------	--------

CODE DWG 20M02540

A SHEET 96 OF 107

	REVISIO	H 5			
5YM	DESCRIPTION	DATE	APPROVAL		

An example of an input file for liquid flow through a metal bellows is shown below. The corresponding output file is shown in paragraph 1.3. This example is identical to the liquid medium example 1.1 presented in Appendix B.

LIQUID MEDIUM	EXAMPLE	1.1			
1 2 31					
16.000	3.000	0.095	0.148	0.325	0.007
3.000	3.690	29000000.	0.286	0.000	1.333
35.000	68.000	62.400			

An example of an input file for gas flow through a metal bellows is shown below. The corresponding output file is shown in paragraph 1.3. This example is identical to the gaseous medium example 1.2 presented in Appendix B.

GASEOUS MEDIUM	EXAMPLE 1.2				
1 1 13					
7.000	1.000	0.400	0.726	1.250	0.037
8.000	10.574	28500000.	0.282	0.000	0.000
39.3000	-200.0000	14.7000	68.0000	0.0730	
0.982	1.000	1.400			

3 9999939 0000335 980

MSFC FORM 422-8 (VERTICAL) (NOVEMBER 1962) CONTINUATION SHEET

	REVISIO	NS	
SYM	DESCRIPTION	DATE	APPROVAL

1.3 Output File Examples

On the following pages are the output files corresponding to the two sample input files (liquid and gas).

> CODE DWG 20M02540 IDENT NO SIZE SHEET 98 OF 107

	REVISIO	NS	
SYM	DESCRIPTION	DATE	APPROVAL

LIQUID MEDIUM EXAMPLE 1.1

BELLOWS PARAMETERS

SIGMA(INSIDE CONVOLUTE WIDTH, IN) 0.095 LAMBDA (INSIDE CONVOLUTE PITCH, IN) 0.148 H(MEAN INSIDE CONVOLUTE HEIGHT, IN) 0.325 T(CONVOLUTE THICKNESS PER PLY, IN) 0.007 DI(INSIDE DIAMETER, IN) 3.000 DO (OUTSIDE DIAMETER, IN) 3.690 NC(NUMBER OF CONVOLUTES) 16.000 NPLY (NUMBER OF PLYS) 3.000 E(YOUNG'S MODULUS, LB/SQ.IN)
KA(OVERALL SPRING RATE, LBF/IN) 0.2900E+08 181.735 RHOM (MATERIAL DENSITY, LBF/CU.IN) 0.286

FLUID PARAMETERS

P(PRESSURE, PSIG) 35.000 TEMP(TEMPERATURE, DEG F) RHOF (FLUID DENSITY, LBF/CU.IN) 0.3611E-01 NFLUID(1=GAS, 2=LIQUID) CE(ELBOW FACTOR, DIMENSIONLESS) 2.410

THEORETICAL BELLOWS PERFORMANCE

LONG.	FLOW-IND. STRESS	MODE FREQUENCY	FLOW EXCT	TATION RANGE,	FT/SFC
MODE NO.	WITH U.F., PSI	HZ	LOWER	CRITICAL	UPPER
				0.1.2.2.2.07.12	OFFLA
1 2	0.10502E+05	135.638	3.579	5.369	10.738
	0.21952E+05	256.980	6.781	10.172	20.344
3	0.33304E+05	366.715	9.677	14.516	29.032
4	0.43439E+05	466.738	12.317	18.475	36.950
5 6	0.51738E+05	558.422	14.736	22.104	44.208
6	0.58014E+05	642.788	16.962	25.444	50.887
. 7	0.62338E+05	720.613	19.016	28.524	57.049
8	0.64914E+05	792.497	20.913	31.370	62.739
9	0.66006E+05	858.912	22.666	33.999	67.997
10	0.65896E+05	920.234	24.284	36.426	72.852
11	0.64862E+05	976.768	25.776	38.664	77.327
12	0.63155E+05	1028.764	27.148	40.722	81.444
13	0.61000E+05	1076.429	28.406	42.609	85.217
14	0.58585E+05	1119.936	29.554	44.331	88.662
15	0.56062E+05	1159.435	30.596	45.894	91.789
16	0.53554E+05	1195.053	31.536	47.304	94.608
17	0.56752E+05	1226.904	32.377	48.565	97.130
18	0.59664E+05	1255.088	33.120	49.681	99.361
19	0.62256E+05	1279.697	33.770	50.655	101.309
20	0.64508E+05	1300.814	34.327	51.491	101.309
21	0.66410E+05	1318.519	34.794	52.191	102.981
22	0.67960E+05	1332.886	35.173	52.760	
23	0.69160E+05	1343.988	35.466	53.200	105.520
24	0.70015E+05	1351.896	35.675	53.513	106.399
25	0.70532E+05	1356.679	35.801	53.702	107.025
26	0.70719E+05	1358.407	35.847		107.404
27	0.70583E+05	1357.149	35.814	53.770	107.541
28	0.70132E+05	1352.978	35.704	53.720	107.441
29	0.69374E+05	1345.964	35.518	53.555	107.111
30	0.68316E+05	1336.180	35.260	53.278	106.555
31	0.66969E+05	1323.703	34.931	52.890	105.781
		1323.703	34.931	52.397	104.793
CONVOLUTE					
BENDING					
MODE	0.30653E+06	2440.707	64.408	96.611	193.223
	-		04.400	70.011	173.423

CODE DWG 20M02540 IDENT NO SIZE Licensee=NASA Technical Standards 4/9972545004, User=Fults, Jas Not for Resale, 10/22/2008 13:47:31 MDT 99 OF 107 SHEET

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

GASEOUS MEDIUM EXAMPLE 1.2

BELLOWS PARAMETERS

SIGMA(INSIDE CONVOLUTE WIDTH, IN) LAMBDA (INSIDE CONVOLUTE PITCH, IN) H (MEAN INSIDE CONVOLUTE HEIGHT, IN) 0.726 1.250 T(CONVOLUTE THICKNESS PER PLY, IN) 0.037 DI (INSIDE DIAMETER, IN) 8.000 DO(OUTSIDE DIAMETER, IN) 10.574 NC(NUMBER OF CONVOLUTES) 7.000 NPLY(NUMBER OF PLYS) 1.000 E(YOUNG'S MODULUS, LB/SQ.IN) 0.2850E+08 KA(OVERALL SPRING RATE, LBF/IN) RHOM(MATERIAL DENSITY, LBF/CU.IN)

FLUID PARAMETERS

P(PRESSURE, PSIG) 39.300
TEMP(TEMPERATURE, DEG F) -200.000
RHOF(FLUID DENSITY, LBF/CU.IN) 0.3209E-03
NFLUID(1=GAS, 2=LIQUID) 1
CE(ELBOW FACTOR, DIMENSIONLESS) 1.000

THEORETICAL BELLOWS PERFORMANCE

LONG. MODE NO.	FLOW-IND. STRESS WITH U.F., PSI	MODE FREQUENCY HZ	FLOW EXCI LOWER	TATION RANGE CRITICAL	, FT/SEC UPPER
1 2 3 4 5 6 7 8 9 10 11 12 13	0.52738E+03 0.10446E+04 0.14377E+04 0.16493E+04 0.16705E+04 0.15359E+04 0.13086E+04 0.16087E+04 0.18747E+04 0.20817E+04 0.16690E+05 0.17352E+05 0.17690E+05	122.691 243.368 360.526 472.710 578.533 676.693 765.990 845.336 913.776 970.493 1014.819 1046.246 1064.426	13.632 27.041 40.058 52.523 64.281 75.188 85.110 93.926 101.531 107.833 112.758 116.250 118.270	20.449 40.561 60.088 78.785 96.422 112.782 127.665 140.889 152.296 161.749 169.137 174.374	40.897 81.123 120.175 157.570 192.844 225.564 255.330 281.779 304.592 323.498 338.273 348.749
CONVOLUTE BENDING MODE	0.52836E+05	1535.182	170.576	255.864	354.809 511.727

FIRST RADIAL ACOUSTIC MODE FREQUENCY= 980.654 HZ

FIRST RADIAL ACOUSTIC MODE VELOCITY= 163.442 FT/SEC

CODE DWG

20M02540

SHEET 100 OF 107

REVISIONS							
SYM	DESCRIPTION	DATE	APPROVAL				

1.4 Program Listing for BELFIV

.... THIS IS THE BELFIV PROGRAM ----- VERSION 3.3 С., THIS PROGRAM CALCULATES THE MODAL FREQUENCIES, FLOW EXCITATION RANGES, AND THE FLOW-INDUCED STRESSES FOR THE LONGITUDINAL MODES AND THE CONVOLUTE BENDING MODE IN A METAL BELLOWS. C THIS PROGRAM APPLIES TO BOTH LIQUID AND GAS FLOWS. CASE OF GAS FLOWS, IT ALSO CALCULATES THE FIRST RADIAL ACOUSTIC C MODE FREQUENCY AND VELOCITY. THIS PROGRAM, HOWEVER, DOES NOT CONDUCT FLOW-INDUCED VIBRATION ANALYSIS FOR A FLEXHOSE AND C C DOES NOT CALCULATE STATIC STRESSES IN A BELLOWS. C C THIS PROGRAM WAS WRITTEN TO OPERATE ON AN IBM-XT COMPUTER C WITH A FORTRAN COMPILER WRITTEN BY RYAN-MCFARLAND CORPORATION. C THE FOLLOWING PARAMETERS ARE USED: C C JFLAG = 1(COMPUTE KA), 2(USE GIVEN KA). KA IS THE OVERALL С С BELLOWS SPRING RATE, LBF/IN C NFLUID = 1(GAS), 2(LIQUID)NDEG = NUMBER OF BELLOWS LONGITUDINAL DEGREES OF FREEDOM, 2*NC-1 C NC = NUMBER OF BELLOWS CONVOLUTES COUNTED FROM THE OUTSIDE C С SIGMA = INSIDE CONVOLUTE WIDTH, IN. LAMBDA = INSIDE CONVOLUTE PITCH, IN. C H = MEAN INSIDE CONVOLUTE HEIGHT, IN. C C T = CONVOLUTE THICKNESS PER PLY, IN. C NPLY = NUMBER OF PLYS IN THE BELLOWS CONVOLUTES C DI = BELLOWS INSIDE DIAMETER, IN. DO = BELLOWS OUTSIDE DIAMETER, IN. E = YOUNG'S MODULUS OF THE BELLOWS MATERIAL, LB/SQ IN. RHOM = WEIGHT DENSITY OF THE BELLOWS MATERIAL, LBF/CU IN. LOVERD = LENGTH FROM TERMINATION OF ELBOW TO FIRST CONVOLUTE C DIVIDED BY THE I.D. OF PIPE JUST BEFORE THE BELLOW, NON-DIM. CE = DIMENSIONLESS ELBOW FACTOR IF NFLUID = 1(GAS), THE PERFECT GAS EQUATION OF STATE IS USED FOR CALCULATING GAS DENSITY AT THE STATE DEFINED BY P AND TEMP. C IT IS ASSUMED THAT THE GAS PROPERTIES ARE KNOWN AT A REFERENCE C STATE DEFINED BY RHOREF, PREF, AND TREF. P = GAS PRESSURE, PSIG C TEMP = GAS TEMPERATURE, DEG. F. C PREF AND TREF = REFERENCE GAS STATE, PSIA AND DEG. F. RHOREF = WEIGHT DENSITY OF GAS AT REFERENCE STATE, LBF/CU FT. Z = GAS COMPRESSIBILITY FACTOR, NON-DIM. C ZREF = GAS COMPRESSIBILITY FACTOR AT REFERENCE STATE, NON-DIM. GAMMA = SPECIFIC HEAT RATIO FOR THE GAS, NON-DIM. C IF NFLUID = 2(LIQUID), THE LIQUID DENSITY MUST BE KNOWN APRIORI С AT THE LIQUID STATE (P AND TEMP). P = LIQUID PRESSURE, PSIG TEMP = LIQUID TEMPERATURE, DEG. F. RHOF = WEIGHT DENSITY OF LIQUID AT P AND TEMP, LBF/CU FT. C С IMPLICIT REAL(A-H, O-Z) REAL MODER, MASS, MFLUID, MFLUDR, MMETAL, MASSR REAL KA, K, N1, LOVERD, NC, NPLY, LAMBDA, FLUID1, FLUID2 INTEGER*2 ANS, DEV

CHARACTER*5 TITLE(80), DFILE(20), OFILE(20) DIMENSION FREQ(75), V(75,3), FISC(75)

CODE DWG

20M02540

SHEET /0/ OF /07

REVISIONS				
SYM	DESCRIPTION	DATE	APPROVAL	

```
C.... SET DATA FILES
      WRITE(6,5)
    5 FORMAT(1X, 'DID YOU SET OUTPUT AND INPUT FILE NAMES ?'/
     $' (YES=1,NO=2)'/)
     READ(5,*) NAM
      GO TO (20,10), NAM
   10 WRITE(6,15)
   15 FORMAT(1X, 'RETURN TO DOS ENVIRONMENT TO SET FILE NAMES.'/
     $' (SET DFILE=input.DAT)'/' (SET OFILE=output.DAT)')
      GO TO 2000
   20 WRITE(6,25)
   25 FORMAT(1X, 'WILL THE INPUT DATA BE FROM THE KEYBOARD OR FILE ?'/
     $' KEYBOARD=1,FILE=2'/)
      READ(5,*) INP
      GO TO (30,220), INP
C..... INPUT DATA FROM KEYBOARD
   30 WRITE(6,35)
   35 FORMAT(1X, 'HOW DO YOU IDENTIFY THIS BELLOWS ?',/)
      READ(5,40)(TITLE(I), I=1,70)
   40 FORMAT (70A1)
      WRITE(6,45)
   45 FORMAT(1X, 'COMPUTE OR USE GIVEN SPRING RATE ?'/
     $' 1 (COMPUTE KA), 2 (USE GIVEN KA)'/)
      READ(5,*) JFLAG
      GO TO (60,50), JFLAG
   50 WRITE(6,55)
   55 FORMAT(1X, 'OVERALL BELLOWS SPRING RATE, LBF/IN. ?'/)
      READ(5,*) KA
   60 CONTINUE
      WRITE(6,65)
   65 FORMAT(1X, 'IS THE FLUID A GAS OR LIQUID ?'/
     $' 1 (GAS), 2 (LIQUID)'/)
      READ(5,*) NFLUID
      WRITE(6,70)
   70 FORMAT(1X, 'NUMBER OF BELLOWS CONVOLUTES COUNTED FROM THE OUTSIDE
     5?'/)
      READ(5,*) NC
      NDEG = 2*NC-1
      WRITE(6,75)
   75 FORMAT(1X, 'NUMBER OF PLYS IN THE BELLOWS CONVOLUTES ?'/)
      READ(5, *) NPLY
      WRITE(6,80)
   80 FORMAT(1X, 'INSIDE CONVOLUTE WIDTH, IN. ?'/)
      READ(5, *) SIGMA
      WRITE(6,85)
   85 FORMAT(1X, 'INSIDE CONVOLUTE PITCH, IN. ?'/)
      READ(5, ±) LAMBDA
      WRITE(6,90)
   90 FORMAT(1X, 'MEAN INSIDE CONVOLUTE HEIGHT, IN. ?'/)
      READ(5,*) H
      WRITE(6,95)
   95 FORMAT(1X, 'CONVOLUTE THICKNESS PER PLY, IN. ?'/)
      READ(5,*) T
      WRITE(6,100)
  100 FORMAT(1X, 'BELLOWS INSIDE DIAMETER, IN. ?'/)
      READ(5,*) DI
      WRITE(6,105)
  105 FORMAT(1X, 'BELLOWS OUTSIDE DIAMETER, IN. ?'/)
```

CODE DWG SIZE 20M02540

A SHEET 102 OF 107

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

```
READ(5,*) DO
      WRITE(6.110)
 110 FORMAT(1X, 'YOUNGS MODULUS FOR BELLOWS MATERIAL, LB/SQ IN. ?'/)
      READ(5,*) E
      WRITE (6, 115)
 115 FORMAT(1X, 'WEIGHT DENSITY OF THE BELLOWS MATERIAL, LBF/CU IN. ?'/)
      READ(5, *) RHOM
      WRITE(6,120)
 120 FORMAT(1X, 'LENGTH FROM TERMINATION OF ELBOW TO FIRST CONVOLUTE',
     S' DIVIDED BY THE I.D. OF PIPE JUST BEFORE THE BELLOW ? (INPUT O IF
     $NO ELBOW) '/
      READ(5, ±) LOVERD
      GO TO (125,160), NFLUID
 125 WRITE(6,130)
  130 FORMAT(1X, 'GAS PRESSURE, PSIG ?'/)
      READ(5,*) P
      WRITE(6,135)
 135 FORMAT(1X, 'GAS TEMPERATURE, DEG. F ?'/)
      READ(5,*) TEMP
      WRITE(6,140)
 140 FORMAT(1X, 'GAS PRESSURE AT REFERENCE STATE, PSIA ?'/)
      READ(5, *) PREF
      WRITE(6,145)
  145 FORMAT(1X, 'GAS TEMPERATURE AT REFERENCE STATE, DEG. F ?'/)
      READ(5,*) TREF
      WRITE(6,150)
 150 FORMAT(1X, 'WEIGHT DENSITY OF GAS AT REFERENCE STATE, LBF/CU FT. ?'
     $/)
      READ(5,*) RHOREF
      WRITE(6,151)
  151 FORMAT(1X, 'GAS COMPRESSIBILITY FACTOR, NON-DIM. ?'/)
      READ(5, *)
      WRITE(6,152)
  152 FORMAT (1X, 'GAS COMPRESSIBILITY FACTOR AT REFERENCE STATE, NON-DIM.
     $ ?'/)
      READ(5, *) ZREF
      WRITE(6,155)
  155 FORMAT(1X, 'SPECIFIC HEAT RATIO FOR THE GAS, NON-DIM. ?'/)
      READ(5, *) GAMMA
      GO TO 180
 160 WRITE(6,165)
  165 FORMAT(1X, 'LIQUID PRESSURE, PSIG ?'/)
      READ(5,*) P
      WRITE(6,170)
 170 FORMAT(1X, 'LIQUID TEMPERATURE, DEG.F ?'/)
      READ(5, *) TEMP
      WRITE(6,175)
  175 FORMAT(1X, 'WEIGHT DENSITY OF LIQUID AT THE LIQUID STATE (P AND TEM
     $P), LBF/CU FT. ?'/)
      READ(5, *) RHOF
C..... SAVE INPUT DATA FROM KEYBOARD
C
  180 WRITE(6,185)
  185 FORMAT(1X,'DO YOU WISH TO SAVE INPUT DATA ? (YES=1, NO=2)'/)
      READ(5,*) NSAVE
      IF(NSAVE .EQ. 2) GO TO 250
      OPEN (UNIT=10, FILE='DFILE')
      WRITE(10,225) (TITLE(I), I=1,70)
      WRITE(10,230) JFLAG, NFLUID, NDEG
```

CODE DWG SIZE 20M02540

A SHEET 103 OF 107

	REVISIO	N S	`
SYM	DESCRIPTION	DATE	APPROVAL

```
WRITE(10,235)NC,NPLY,SIGMA,LAMBDA,H,T
      IF (JFLAG .EQ. 1) KA=0.0
      WRITE(10,236)DI,DO,E,RHOM,KA,LOVERD
      GO TO (200,210), NFLUID
 200 WRITE(10,241)P, TEMP, PREF, TREF, RHOREF
      WRITE(10,242)Z, ZREF, GAMMA
      GO TO 250
  210 WRITE(10,242)P, TEMP, RHOF
      GO TO 250
C..... INPUT DATA FROM FILE
  220 OPEN (UNIT=7, FILE='DFILE')
      READ(7,225) (TITLE(I), I=1,70)
  225 FORMAT(70A1)
      READ (7, 230) JFLAG, NFLUID, NDEG
  230 FORMAT(3I3)
      READ(7,235)NC, NPLY, SIGMA, LAMBDA, H, T
      READ(7,236)DI,DO,E,RHOM,KA,LOVERD
  235 FORMAT(6F10.3)
  236 FORMAT(2F10.3,F10.0,3F10.3)
  GO TO (240,245),NFLUID
240 READ(7,241)P,TEMP,PREF,TREF,RHOREF
  241 FORMAT (5F10.4)
      READ(7,242)Z,ZREF,GAMMA
  242 FORMAT(3F10.3)
      GO TO 250
  245 READ(7,242)P,TEMP,RHOF
  250 CONTINUE
      PI=3.1415927
      G=32.174049
      DMEAN=(DI+DO)/2.0
      GO TO (400,405), JFLAG
C..... CALCULATION OF SPRING RATE
  400 KA=DMEAN*E*(NPLY/NC)*(T/H)**3
  405 K=2.*NC*KA
C
C..... CALCULATION OF METAL MASS AND FLUID MASS
C
      A = (SIGMA - T * NPLY) / 2.
      MMETAL=PI*RHOM*T*NPLY*DMEAN*(PI*A+H-2.*A)/G
      GO TO (410,415), NFLUID
  410 RHOF=(RHOREF/1728.)*((P+14.7)/PREF)*((TREF+460.)/(TEMP+460.))*
     $(ZREF/Z)
      GO TO 420
  415 RHQF=RHOF/1728.
  420 FLUID1=PI*RHOF*DMEAN*H*(2.*A-T*NPLY)/(2.*G)
      DELTA=LAMBDA-SIGMA
      FLUID2=RHOF*DMEAN*(H**3)/(G*DELTA)
C..... CALCULATION OF CRITICAL FREQUENCY AND VELOCITY (AT MODE N=NC)
      STUP=0.3
      STL0=0.1
      STCRIT=0.2
      MODER=NC
      MFLUDR=1.0*FLUID1 + 0.68*(FLUID2*MODER)/NC
      MASSR=MFLUDR+MMETAL
```

CODE	DWG SIZE	20M02540		
		SHEET 104 OF	107	

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

```
FO=(1./(2.*PI))*SQRT(12.*K/MASSR)
      FREOC=FO*SQRT(2.)
      VELC=FREQC*SIGMA/(STCRIT*12.)
C..... CALCULATION OF FREQ. AND VEL. RANGE FOR LOGITUDINAL MODES
      DO 440 MODE=1.NDEG
      MFLUID=1.0*FLUID1 + 0.68*FLUID2*(MODE/NC)
      MASS=MFLUID+MMETAL
      BN=SQRT(2.*(1.+COS((PI*(2.*NC-MODE))/(2.*NC))))
      FO=(1./(2.*PI))*SQRT(12.*K/MASS)
      FREQ (MODE) = FO*BN
      DO 440 J=1,3
      GO TO (425,430,435),J
  425 V(MODE, J) = FREQ(MODE) *SIGMA/(STUP*12.)
      GO TO 440
  430 V(MODE, J) = FREQ(MODE) *SIGMA/(STCRIT*12.)
      GO TO 440
  435 V(MODE,J)=FREQ(MODE)*SIGMA/(STLO*12.)
  440 CONTINUE
C..... CALCULATION OF FIRST RADIAL ACOUSTIC MODE (GAS MEDIA ONLY)
C
      GO TO (600,615), NFLUID
  600 RI=DI/2.
      HRI=H/RI
      CO=SQRT(GAMMA*(P+14.7)*G/(RHOF*12.))
      IF(HRI.LE.0.40) GO TO 605
      FNCO=-.336+.935*(RI/H)
      GO TO 610
  605 FNCO=3.8-16.72*(HRI**2)+13.67*(HRI**3)
  610 FREQCO=12.*FNCO*CO/(2.*PI*RI)
      QADJUS=5.0
      VELCO=FREQCO*SIGMA/(STCRIT*12.)
C..... CALCULATION OF FLOW-INDUCED STRESS FOR LONGITUDINAL MODES
  615 SSR=KA*NC/(DMEAN*NPLY)
      C1 = .13
      C2 = .462
      C3=1.0
      C4=10.0
      C5=.06
      C6=1.25
      C7 = 5.5
      N1=1.0
      IF(LOVERD.EQ.0.0) N1=0.0
      CE=1.+(N1*4.7/(2.+LOVERD))
      DO 655 MODE=1,NDEG
      VP=V(MODE, 2)/VELC
      IF(NPLY.GT.1.) GO TO 620
      CNP=1.0
      GO TO 625
  620 CNP=1.0-((C6*SIGMA/H)/(1.0+C7*VP**2))
  625 BB=C1/(C2+VP**2)
      CC=C3*ABS(SIN(PI*VP))/(C4+VP**2)
      CST=BB+CC+C5
      PD=12.0*RHOF*(V(MODE, 2) **2)/(2.0*G)
      DD=CST*T*PD/(VP*SSR*DELTA)
      EE=1.0+0.1*((400.0/SSR)**2)
```

CODE DWG

20M02540

SHEET 105 OF 107

	REVISIO	N S	
SYM	DESCRIPTION	DATE	APPROVAL

```
FIS=EE*DD*E*CNP*CE/NPLY
C
C..... UNCERTAINTY FACTORS FOR STRESS (LONGITUDINAL MODES)
      GO TO (630,635), NFLUID
  630 IF (FREQ(MODE).GE.FREQCO) FIS=FIS*QADJUS*1.5
  635 CONTINUE
      GO TO (640,645), JFLAG
  640 FIS=FIS*2.0
      GO TO 650
  645 FIS=FIS*1.5
  650 CONTINUE
      FISC(MODE) =FIS
  655 CONTINUE
С
C..... CALCULATION OF FREQ. AND VEL. RANGE FOR CONVOLUTE BENDING MODE
С
      FREQCB=(1./(2.*PI)) *SQRT(8.*K*12./(MMETAL+.68*FLUID2))
      VCBLOW=FREQCB*SIGMA/(STUP*12.)
      VCBSTAR=FREQCB*SIGMA/(STCRIT*12.)
      VCBUP=FREQCB*SIGMA/(STLO*12.)
C
C..... CALCULATION OF FLOW-INDUCED STRESS FOR CONVOLUTE BENDING MODE
C
      VP=VCBSTAR/VELC
      IF (NPLY.GT.1) GO TO 660
      CNP=1.0
      GO TO 665
  660 CNP=1.0-((C6*SIGMA/H)/(1.0+C7*VP**2))
  665 CST=0.4
      PD=12.0*RHOF*(VCBSTAR**2)/(2.0*G)
      DD= CST*T*PD/(VP*SSR*DELTA)
      FIS=EE*DD*E*CNP*CE/NPLY
C
C..... UNCERTAINTY FACTORS FOR STRESS (CONVOLUTE BENDING MODE)
      GO TO (670,675), NFLUID
  670 IF (FREQCB.GE.FREQCO) FIS=FIS*QADJUS*1.5
  675 CONTINUE
      GO TO (680,685), JFLAG
  680 FIS=FIS*2.0
      GO TO 690
  685 FIS=FIS*1.5
  690 CONTINUE
      FISCB=FIS
C..... OUTPUT DATA
      DEV=6
  800 WRITE(DEV, 805) (TITLE(I), I=1,70)
  805 FORMAT(1X,70A1)
      WRITE(DEV,840) SIGMA, LAMBDA, H, T, DI, DO, NC, NPLY, E
      WRITE (DEV, 845) KA, RHOM, P, TEMP, RHOF, NFLUID, CE
      WRITE (DEV. 850)
      DO 810 MODE=1,NDEG
  810 WRITE(DEV,855) MODE, FISC(MODE), FREQ(MODE), V(MODE,1), V(MODE,2),
      $V(MODE,3)
      WRITE (DEV, 856) FISCB, FREQCB, VCBLOW, VCBSTAR, VCBUP
      GO TO (815,820), NFLUID
  815 WRITE(DEV,860) FREQCO
```

CODE DWG SIZE 20M02540

A SHEET 106 OF 10 7

REVISIONS			
SYM	DESCRIPTION	DATE	APPROVAL

```
WRITE(DEV, 865) VELCO
820 CONTINUE
825 IF (DEV.EQ.8 .OR. DEV.EQ.9) GO TO 835
     WRITE(6,830)
830 FORMAT(//,1X,'WHERE DO YOU WANT OUTPUT SENT? 0-EXIT.1-FILE.2-PRINT
    SER'/)
     READ(5, *) ANS
     IF(ANS.EQ.0) GO TO 2000
     IF(ANS.EQ.1) DEV=8
     OPEN (UNIT=8, FILE='OFILE')
     IF(ANS.EQ.2) DEV=9
     OPEN (UNIT=9, FILE='LPT1')
     GO TO 800
835 CONTINUE
840 FORMAT(/,29X,18HBELLOWS PARAMETERS,//
             19X,33HSIGMA(INSIDE CONVOLUTE WIDTH, IN),4X,F6.3,/
19X,34HLAMBDA(INSIDE CONVOLUTE PITCH, IN),3X,F6.3,/
             19X,35HH (MEAN INSIDE CONVOLUTE HEIGHT, IN),2X,F6.3,/
             19X,34HT(CONVOLUTE THICKNESS PER PLY, IN),3X,F6.3,/
             19X,23HDI(INSIDE DIAMETER, IN),14X,F6.3,/
19X,24HDO(OUTSIDE DIAMETER, IN),13X,F6.3,/
             19X,24HNC(NUMBER OF CONVOLUTES),12X,F7.3,/
             19X,20HNPLY(NUMBER OF PLYS),16X,F7.3,
$ 19X,28HE(YOUNG'S MODULUS, LB/SQ.IN),4X,E11.4)
845 FORMAT(19X,31HKA(OVERALL SPRING RATE, LBF/IN),1X,F11.3,/
             19X,33HRHOM(MATERIAL DENSITY, LBF/CU.IN),3X,F7.3,//
             30X,16HFLUID PARAMETERS,//
              19X,17HP(PRESSURE, PSIG),19X,F7.3,/
             19X,24HTEMP(TEMPERATURE, DEG F),11X,F8.3,/
              19X,30HRHOF(FLUID DENSITY, LBF/CU.IN),2X,E11.4,/
             19X,23HNFLUID(1=GAS, 2=LIQUID),19X,I1,/
19X,'CE(ELBOW FACTOR, DIMENSIONLESS)',6X,F6.3///
25X,'THEORETICAL BELLOWS PERFORMANCE',/)
                                                      MODE FREQUENCY
 850 FORMAT(2X,78HLONG.
                               FLOW-IND. STRESS
                                                                               FLOW
    $ EXCITATION RANGE, FT/SEC,/,1X,8HMODE NO.,3X,14HWITH U.F., PSI,
    $11X,2HHZ,13X,5HLOWER,5X,8HCRITICAL,4X,5HUPPER,/)
 855 FORMAT(3X,I2,8X,E11.5,7X,F11.3,5X,3F11.3)
 856 FORMAT(//,1X,9HCONVOLUTE,/,2X,7HBENDING,/,3X,4HMODE,6X,E11.5,7X,
    $F11.3,5X,3F11.3)
 860 FORMAT(//,3X,'FIRST RADIAL ACOUSTIC MODE FREQUENCY=',F9.3.1X.
    S'HZ'/
 865 FORMAT(3X, 'FIRST RADIAL ACOUSTIC MODE VELOCITY=', F9.3, 1X,
    S'FT/SEC'/)
2000 CONTINUE
     END
```

CODE DWG SIZE IDENT NO

20M02540

SHEET 187 OF 107