Ex. No.: 9 b. Date: 8/11/23

A PYTHON PROGRAM TO IMPLEMENT K-MEANS MODEL

Aim:

To implement a python program using a K-Means Algorithm in a model.

Algorithm:

1. Import Necessary Libraries:

Import required libraries like numpy, matplotlib.pyplot, and sklearn.cluster.

2. Load and Preprocess Data:

Load the dataset.

Preprocess the data if needed (e.g., scaling).

3. Initialize Cluster Centers:

Choose the number of clusters (K). Initialize K cluster centers randomly.

4. Assign Data Points to Clusters:

For each data point, calculate the distance to each cluster center. Assign the data point to the cluster with the nearest center.

5. Update Cluster Centers:

Calculate the mean of the data points in each cluster. Update the cluster centers to the calculated means.

6. Repeat Steps 4 and 5:

Repeat the assignment of data points to clusters and updating of cluster centers until convergence (i.e., when the cluster assignments do not change much between iterations).

7. Plot the Clusters:

Plot the data points and the cluster centers to visualize the clustering result.

PROGRAM:

data = pd.read_csv('../input/k-means-clustering/KNN (3).csv') data.head(5)

Text(0.5, 1.0, 'Different Species Visualization')

req_data = data.iloc[:,1:] req_data.head(5)

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

shuffle_index = np.random.permutation(req_data.shape[0])
#shuffling the row index of our dataset req_data =
req_data.iloc[shuffle_index] req_data.head(5)

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
45	4.8	3.0	1.4	0.3	Iris-setosa
50	7.0	3.2	4.7	1.4	Iris-versicolor
135	7.7	3.0	6.1	2.3	Iris-virginica
49	5.0	3.3	1.4	0.2	Iris-setosa
89	5.5	2.5	4.0	1.3	Iris-versicolor

```
train size = int(req data.shape[0]*0.7)
train_df = req_data.iloc[:train_size,:]
test df = req data.iloc[train size:,:]
train = train_df.values test =
test df.values y true = test[:,-1]
print('Train Shape: ',train df.shape)
print('Test_Shape: ',test_df.shape)
     Train_Shape: (105, 5)
     Test_Shape: (45, 5)
from math import sqrt def
euclidean distance(x test, x train):
distance = 0 for i in
range(len(x_test)-1):
distance += (x_test[i]-x_train[i])**2 return
sqrt(distance) def get neighbors(x test, x train,
num_neighbors):
distances = []
```

```
data = [] for i in x train: distances.append(euclidean distance(x test,i))
data.append(i) distances = np.array(distances) data = np.array(data) sort indexes
= distances.argsort() #argsort() function returns indices by sorting distances data
in ascending order data = data[sort indexes] #modifying our data based on
sorted indices, so that we can get the nearest neighbors return
data[:num_neighbors] def prediction(x_test, x_train, num_neighbors):
classes = [] neighbors = get neighbors(x test, x train, num neighbors) for
i in neighbors: classes.append(i[-1]) predicted = max(classes,
key=classes.count) #taking the most repeated class return predicted def
predict classifier(x test):
classes = [] neighbors = get neighbors(x test,
req data.values, 5) for i in neighbors:
classes.append(i[-1])
predicted = max(classes, key=classes.count)
print(predicted) return
                            predicted
accuracy(y true, y pred):
num correct = 0 for i in
range(len(y true)): if
y true[i]==y pred[i]:
num correct+=1 accuracy
= num correct/len(y true)
return accuracy y pred = []
for i in test:
y pred.append(prediction(i, train, 5)) y pred
```

```
['Iris-virginica',
   'Iris-versicolor',
   'Iris-versicolor',
   'Iris-setosa',
   'Iris-virginica',
   'Iris-setosa',
   'Iris-setosa',
   'Iris-setosa',
   'Iris-virginica',
   'Iris-versicolor',
   'Iris-setosa',
   'Iris-versicolor',
   'Iris-versicolor',
   'Iris-virginica',
   'Iris-setosa',
   'Iris-setosa',
   'Iris-versicolor',
   'Iris-virginica',
   'Iris-virginica',
   'Iris-setosa',
   'Iris-virginica',
   'Iris-versicolor',
   'Iris-setosa',
   'Iris-setosa',
   'Iris-versicolor',
   'Iris-setosa',
   'Iris-setosa',
accuracy = accuracy(y_true, y_pred)
accuracy
```

0.9555555555555

test_df.sample(5)

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
113	5.7	2.5	5.0	2.0	Iris-virginica
125	7.2	3.2	6.0	1.8	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica
94	5.6	2.7	4.2	1.3	Iris-versicolor
99	5.7	2.8	4.1	1.3	Iris-versicolor

RESULT:-

Thus the python program to implement the K-Means model has been successfully implemented and the results have been verified and analyzed