

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
19 January 2006 (19.01.2006)

PCT

(10) International Publication Number
WO 2006/007400 A2

(51) International Patent Classification:
C12N 1/00 (2006.01)

(74) Agents: HINSCH, Matthew, E. et al.; Townsend and Townsend and Crew LLP, Two Embarcadero Center, 8th Floor, San Francisco, CA 94111 (US).

(21) International Application Number:

PCT/US2005/021297

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AL, AG, AI, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SB, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TI, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(22) International Filing Date: 15 June 2005 (15.06.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/580,448 16 June 2004 (16.06.2004) US

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GII, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EL, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MOODIE, Shonna A. [GB/US]; 2091 Golden Gate, San Francisco, CA 94111 (US). ZHANG, Fang [CN/US]; 566 Simon Street, Hayward, CA 94541 (US). RACK, Paul G. [US/US]; 34301 Parker Court, Fremont, CA 94555 (US). SHANG, Jin [US/US]; 3142 Flowers Lane, Palo Alto, CA 94306 (US). LAVAN, Brian E. [GB/US]; 2368 21st Avenue, San Francisco, CA 94122 (US). ALIAN, Bernard [IL/US]; 940 Guerrero Street, San Francisco, CA 94110 (US). WONG, Chi-Wai [CN/US]; 28073 Thorup Lane, Hayward, CA 94542 (US). GREGOIRE, Francine [BE/US]; 1044 Carol Lane, Lafayette, CA 94549 (US). PEREZ, Grace [US/US]; 6115 Thornton Avenue, Newark, CA 94560 (US). WATERS, Steve [US/US]; 1 Lobelia Lane, San Ramon, CA 94583 (US).

Declaration under Rule 4.17:

— of inventorship (Rule 4.17(iv)) for US only

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS OF DIAGNOSING AND TREATING OBESITY, DIABETES AND INSULIN RESISTANCE

(57) Abstract: The present invention provides compositions and methods for diagnosing and treating obesity, diabetes and insulin resistance. In particular, the invention provides methods of identifying modulators of the polynucleotides or polypeptides of the invention and using those modulators to treat obesity and/or diabetes, as well as methods of diagnosing obesity and/or diabetes by measuring the levels of the polynucleotides or polypeptides of the invention in a patient.

WO 2006/007400 A2

Methods of Diagnosing & Treating Obesity, Diabetes and Insulin Resistance

CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

5 [01] The present application claims priority to U.S. Provisional Patent Application No. 60/ 580,448, filed June 16, 2004, which is incorporated by reference in its entirety for all purposes.

BACKGROUND OF THE INVENTION

10 [02] Obesity has reached epidemic proportions globally with more than 1 billion adults overweight- at least 300 million of them clinical obese- and is a major contributor to the global burden of chronic disease and disability. Overweight and obesity leads to adverse metabolic effect on blood pressure, cholesterol, triglycerides and insulin resistance. The non-fatal but debilitating health problems associated with obesity include 15 respiratory difficulties, chronic musculoskeletal problems, skin problems and infertility. The more life-threatening problems fall into four main areas: cardiovascular disease problems, conditions associated with insulin resistance such as Type 2 diabetes, certain types of cancers especially the hormonally related and large-bowel cancers, and gall bladder disease. The likelihood of developing Type 2 diabetes and hypertension rises steeply with increasing body 20 fatness. Weight reduction leads to correction of a number of obesity- associated endocrine and metabolic disorders.

[03] Effective weight management for individuals and groups at risk of developing obesity involves a range of long term strategies. These include prevention, weight maintenance, management of co-morbidities and weight loss. Existing treatment strategies 25 include calorific restriction programs, surgery (gastric stapling) and drug intervention. The currently available anti-obesity drugs can be divided into two classes: central acting and peripheral acting. Three marketed drugs are Xenical (Orlistat), Merida (Sibutramine) and Adipex-P (Phentermine). Xenical is a non-systemic acting GI lipase inhibitor which is indicated for short and long term obesity management. Merida reduces food intake by re- 30 uptake inhibition of primarily norepinephrine and serotonin. Adipex-P is a phenteramine with sympathomimetic activities and suppresses appetite. It is indicated only for short term

use. A more drastic solution to permanent weight loss is surgery and a gastric by-pass which limits absorption of calories through massive reduction in stomach size.

[04] Carrying extra body weight and body fat go hand and hand with the development of diabetes. People who are overweight (BMI greater than 25) are at a much 5 greater risk of developing type 2 diabetes than normal weight individuals. Almost 90% of people with type 2 diabetes are overweight.

[05] Diabetes mellitus can be divided into two clinical syndromes, Type 1 and Type 2 diabetes mellitus. Type 1, or insulin-dependent diabetes mellitus (IDDM), is a chronic autoimmune disease characterized by the extensive loss of beta cells in the pancreatic 10 Islets of Langerhans, which produce insulin. As these cells are progressively destroyed, the amount of secreted insulin decreases, eventually leading to hyperglycemia (abnormally high level of glucose in the blood) when the amount of secreted insulin drops below the level required for euglycemia (normal blood glucose level). Although the exact trigger for this immune response is not known, patients with IDDM have high levels of antibodies against 15 proteins expressed in pancreatic beta cells. However, not all patients with high levels of these antibodies develop IDDM.

[06] Type 2 diabetes (also referred to as non-insulin dependent diabetes mellitus (NIDDM)) develops when muscle, fat and liver cells fail to respond normally to insulin. This failure to respond (called insulin resistance) may be due to reduced numbers of 20 insulin receptors on these cells, or a dysfunction of signaling pathways within the cells, or both. The beta cells initially compensate for this insulin resistance by increasing insulin output. Over time, these cells become unable to produce enough insulin to maintain normal glucose levels, indicating progression to Type 2 diabetes.

[07] Type 2 diabetes is brought on by a combination of genetic and 25 acquired risk factors - including a high-fat diet, lack of exercise, and aging. Worldwide, Type 2 diabetes has become an epidemic, driven by increases in obesity and a sedentary lifestyle, widespread adoption of western dietary habits, and the general aging of the population in many countries. In 1985, an estimated 30 million people worldwide had diabetes -- by 2000, this figure had increased 5-fold, to an estimated 154 million people. The 30 number of people with diabetes is expected to double between now and 2025, to about 300 million.

[08] Type 2 diabetes is a complex disease characterized by defects in glucose and lipid metabolism. Typically there are perturbations in many metabolic parameters including increases in fasting plasma glucose levels, free fatty acid levels and

triglyceride levels, as well as a decrease in the ratio of HDL/LDL. As discussed above, one of the principal underlying causes of diabetes is thought to be an increase in insulin resistance in peripheral tissues, principally muscle and fat.

[09] Therapies aimed at reducing peripheral insulin resistance are available.

5 The most relevant to this invention are drugs of the thiazolidinedione (TZD) class namely troglitazone, pioglitazone, and rosiglitazone. In the US these have been marketed under the names Rezulin™, Avandia™ and Actos™, respectively. The principal effect of these drugs is to improve glucose homeostasis. Notably in diabetics treated with TZDs there are increases in peripheral glucose disposal rates indicative of increased insulin sensitivity in both muscle
10 and fat.

[10] The molecular target of TZDs is a member of the PPAR family of ligand-activated transcription factors called PPAR gamma. This transcription factor is highly expressed in adipose tissue with much lower levels being observed in muscle. Binding of TZDs to PPAR gamma in target cells and tissues such as fat and muscle brings about a
15 change in gene expression. The link between TZD-altered gene expression in fat and muscle and increased insulin sensitivity is unknown. The present invention addresses this and other problems.

BRIEF SUMMARY OF THE INVENTION

20 The present invention provides methods for identifying an agent for treating an obese, diabetic or pre-diabetic individual. In some embodiments, the method comprising the steps of: (i) contacting an agent to a polypeptide encoded by a polynucleotide that is substantially identical to or hybridizes to a nucleic acid encoding a polypeptide listed in Table 1 under hybridization conditions of 50% formamide, 5X SSC, and 1% SDS at 42°C followed by a
25 wash in 0.2X SSC, and 0.1% SDS at 55°C, wherein the polypeptide optionally has the activity listed in Table 1; and (ii) selecting an agent that modulates the expression or activity of the polypeptide or that binds to the polypeptide, thereby identifying an agent for treating an obese, diabetic or pre-diabetic individual.

Table 1: List of Polypeptides, SEQ ID numbers and Proposed Activity

PROTEIN NAME	SEQ ID NO:	PROPOSED ACTIVITY (S)
Adlican	2, 4, 6	Signal Transduction
ALDH1A3	8, 10, 12	Aldehyde dehydrogenase
ALK7	14, 16, 18	Receptor Serine/threonine protein kinase

C3ARI	20, 22, 24	G-protein coupled receptor for Complement Component C3a
CALCRL	26, 28, 30	G-protein coupled receptor for adrenomedullin or calcitonin gene-related protein
CCL13	32, 33, 35, 37	Chemokine
CCL8	39, 40, 42, 44	Chemokine
CHI3L1	46, 47, 49, 51	Glycosyl hydrolase
CR1	53, 55	Transmembrane receptor for Complement Component C3b-C4b
CSFR1	57, 59, 61	Receptor tyrosine kinase
CTSK	63, 64, 66, 68	Cysteine protease
CXCR4	70, 72, 74	G-protein coupled receptor for CXCL12
DDAH2	76, 78, 80	Amidinotransferase
DERP7	82, 84, 86	7 transmembrane protein
ENDOGLYX1	88, 90, 92	Modifier of extracellular matrix
ETL	94, 96, 98	G-protein coupled receptor
FLJ12389	100, 102, 104, 106, 108	Acetoacetate CoA ligase
FZD4	110, 112, 114, 116	7 Transmembrane receptor for Wnt proteins
GLIPR1	118, 120, 122	Apoptosis Regulator
GPR105	124, 126, 128	G-protein coupled receptor for UDP sugars
GPR146	130, 132, 134	G-protein coupled receptor
GPR30	136, 138, 140	G-protein coupled receptor
GPR65	142, 144, 146	G-protein coupled receptor for psychosine
HTR2B	148, 150, 152	G-protein coupled receptor for serotonin
ITGB2	154, 156, 158	Cell Adhesion
JTIHS	160, 161, 163	Extracellular matrix stabilization
LGALS12	165, 167, 169, 171, 173, 175, 177, 179	Apoptosis Regulator
NMB	181, 182, 184, 186	Ligand for the G-protein coupled receptor, NMBR
NNAT	188, 190, 192, 194	Regulator of ion channels
OLFM2	196, 197, 199, 201	Secreted protein
OPN3	203, 205, 207, 209, 211	G-protein coupled receptor

PTPRE	213, 215, 217, 219, 221	Protein tyrosine phosphatase
RDC1	223, 225, 227	G-protein coupled receptor
SLC2	229, 230, 232, 234	Ligand for roundabout receptor, ROBO1
TNFRSF21	236, 238, 240	Transmembrane receptor
TNFSF13B	242, 243, 245, 247, 249	Ligand for TNFSF13B, TNFRSF13C and TNFRSF17B
TNFSF14	251, 252, 254, 256, 258, 260	Ligand for TNFRSF14
TPSB2	262, 263, 265, 267	Serine protease
WISP2	269, 270, 272, 274	Growth Regulator

In some embodiments, the polypeptide comprises an amino acid sequence at least 95% identical to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44, 46, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 5 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 182, 184, 186, 188, 190, 192, 194, 196, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 230, 232, 234, 236, 238, 240, 242, 243, 245, 247, 249, 251, 252, 254, 256, 258, 260, 262, 263, 265, 267, 269, 10 270, 272, 274 or a protein domain thereof. In some embodiments, the method further comprises detecting whether the selected agent modulates weight and/or obesity. In some embodiments, the method further comprising detecting whether the selected agent modulates insulin sensitivity.

[11] In some embodiments, step (ii) comprises selecting an agent that modulates expression of the polypeptide. In some embodiments, step (ii) comprises selecting an agent that modulates the activity of the polypeptide. In some embodiments, step (ii) comprises selecting an agent that specifically binds to the polypeptide.

[12] In some embodiments, the polypeptide is expressed in a cell and the cell is contacted with the agent. In some embodiments, the polypeptide comprises SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44, 46, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 161, 163, 165, 167, 169, 171,

173, 175, 177, 179, 181, 182, 184, 186, 188, 190, 192, 194, 196, 197, 199, 201, 203, 205, 207,
209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 230, 232, 234, 236, 238, 240, 242, 243,
245, 247, 249, 251, 252, 254, 256, 258, 260, 262, 263, 265, 267, 269, 270, 272 or 274.

[13] The present invention also provides methods of reducing body weight
5 in an animal. In some embodiments, the methods comprise administering to the animal an effective amount of an agent that modulates the activity or expression of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44, 46, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 10 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 182, 184, 186, 188, 190, 192, 194, 196, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 230, 232, 234, 236, 238, 240, 242, 243, 245, 247, 249, 251, 252, 254, 256, 258, 260, 262, 263, 265, 267, 269, 270, 272 or 274.

[14] In some embodiments, the agent is selected by a method comprising (i) contacting an agent to a mixture comprising a polypeptide encoded by a polynucleotide is substantially identical to or hybridizes to a nucleic acid encoding a polypeptide listed in Table 1 under hybridization conditions of 50% formamide, 5X SSC, and 1% SDS at 42°C followed by a wash in 0.2X SSC, and 0.1% SDS at 55°C, wherein the polypeptide optionally has the activity listed in Table 1; and (ii) selecting an agent that modulates the expression or activity 20 of the polypeptide or that binds to the polypeptide.

[15] In some embodiments, the agent is an antibody. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the animal is a human.

[16] The present invention also provides methods of treating a diabetic or pre-diabetic animal. In some embodiments, the method comprising administering to the 25 animal a therapeutically effective amount of an agent that modulates the activity or expression of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44, 46, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 182, 184, 186, 188, 190, 192, 194, 196, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 230, 232, 234, 236, 238, 240, 242, 243, 245, 247, 249, 251, 252, 254, 256, 258, 260, 262, 263, 265, 267, 269, 270, 272 or 274. In some embodiments, the polypeptide comprises an amino acid sequence at least 95% identical to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32,

33, 35, 37, 39, 40, 42, 44, 46, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 76, 78,
80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120,
122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158,
160, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 182, 184, 186, 188, 190, 192, 194,
5 196, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 230,
232, 234, 236, 238, 240, 242, 243, 245, 247, 249, 251, 252, 254, 256, 258, 260, 262, 263, 265,
267, 269, 270, 272, 274 or a protein domain thereof.

[17] In some embodiments, the agent is selected by a method comprising
10 (i) contacting an agent to a mixture comprising a polypeptide encoded by a polynucleotide
that hybridizes to a nucleic acid encoding SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
24, 26, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44, 46, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68,
70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112,
114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150,
152, 154, 156, 158, 160, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 182, 184, 186,
15 188, 190, 192, 194, 196, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223,
225, 227, 229, 230, 232, 234, 236, 238, 240, 242, 243, 245, 247, 249, 251, 252, 254, 256, 258,
260, 262, 263, 265, 267, 269, 270, 272 or 274 in 50% formamide, 5X SSC, and 1% SDS at
42°C followed by a wash in 0.2X SSC, and 0.1% SDS at 55°C; and (ii) selecting an agent that
modulates the expression or activity of the polypeptide or that binds to the polypeptide.
20

[18] In some embodiments, the agent is an antibody. In some embodiments,
the antibody is a monoclonal antibody. In some embodiments, the animal is a human.

[19] The present invention also provides methods of introducing an
expression cassette into a cell. In some embodiments, the methods comprise introducing into
the cell an expression cassette comprising a promoter operably linked to a polynucleotide
25 encoding a polypeptide, wherein the polynucleotide is substantially identical to or hybridizes
to a nucleic acid encoding a polypeptide listed in Table 1 under hybridization conditions of
50% formamide, 5X SSC, and 1% SDS at 42°C followed by a wash in 0.2X SSC, and 0.1%
SDS at 55°C, and the polypeptide optionally has the activity listed in Table 1. In some
embodiments, the polypeptide comprises an amino acid sequence at least 95% identical to
30 SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44,
46, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92,
94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130,
132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 161, 163, 165, 167,
169, 171, 173, 175, 177, 179, 181, 182, 184, 186, 188, 190, 192, 194, 196, 197, 199, 201, 203,

205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 230, 232, 234, 236, 238, 240,
242, 243, 245, 247, 249, 251, 252, 254, 256, 258, 260, 262, 263, 265, 267, 269, 270, 272, 274
or a protein domain thereof.

[20] In some embodiments, the polypeptide comprises SEQ ID NO: 2, 4, 6,
5 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44, 46, 47, 49, 51, 53,
55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100,
102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138,
140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 161, 163, 165, 167, 169, 171, 173, 175,
177, 179, 181, 182, 184, 186, 188, 190, 192, 194, 196, 197, 199, 201, 203, 205, 207, 209, 211,
10 213, 215, 217, 219, 221, 223, 225, 227, 229, 230, 232, 234, 236, 238, 240, 242, 243, 245, 247,
249, 251, 252, 254, 256, 258, 260, 262, 263, 265, 267, 269, 270, 272 or 274.

[21] In some embodiments, the cell is selected from the group consisting of
an adipocyte and a skeletal muscle cell.

[22] In some embodiments, the method further comprises introducing the
15 cell into a human. In some embodiments, the human is obese. In some embodiments, the
human is diabetic. In some embodiments, the human is prediabetic. In some embodiments,
the cell is from the human.

[23] The present invention also provides methods of diagnosing an
individual who has obesity, Type 2 diabetes or has a predisposition for diabetes or obesity. In
20 some embodiments, the method comprises detecting in a sample from the individual the level
of a polypeptide or the level of a polynucleotide encoding the polypeptide, wherein the
polynucleotide is substantially identical to or hybridizes to a nucleic acid encoding a
polypeptide listed in Table 1 under hybridization conditions of 50% formamide, 5X SSC, and
1% SDS at 42°C followed by a wash in 0.2X SSC, and 0.1% SDS at 55°C, wherein a
25 modulated level of the polypeptide or polynucleotide in the sample compared to a level of the
polypeptide or polynucleotide in either a lean individual or a previous sample from the
individual indicates that the individual is obese or diabetic or has a predisposition for diabetes
or obesity.

[24] In some embodiments, the detecting step comprises contacting the
30 sample with an antibody that specifically binds to the polypeptide. In some embodiments, the
amino acid sequence comprises SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28,
30, 32, 33, 35, 37, 39, 40, 42, 44, 46, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74,
76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118,
120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156,

158, 160, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 182, 184, 186, 188, 190, 192,
194, 196, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229,
230, 232, 234, 236, 238, 240, 242, 243, 245, 247, 249, 251, 252, 254, 256, 258, 260, 262, 263,
265, 267, 269, 270, 272 or 274. In some embodiments, the detecting step comprises
5 quantifying mRNA encoding the polypeptide. In some embodiments, the mRNA is reverse
transcribed and amplified in a polymerase chain reaction. In some embodiments, the sample
is a blood, urine or tissue sample.

[25] The present invention provides for an isolated nucleic acid that is substantially identical to or hybridizes to a nucleic acid encoding a polypeptide listed in Table 10 1 under hybridization conditions of 50% formamide, 5X SSC, and 1% SDS at 42°C followed by a wash in 0.2X SSC, and 0.1% SDS at 55°C. In some embodiments, the polynucleotide comprises SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 34, 36, 38, 41, 43, 45, 48, 50, 52, 54, 56, 58, 60, 62, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 15 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 183, 185, 187, 189, 191, 193, 195, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 231, 233, 235, 237, 239, 241, 244, 246, 248, 250, 253, 255, 257, 259, 261, 264, 266, 268, 271 or 273. In some embodiments, the polynucleotide encodes SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 35, 37, 39, 20 40, 42, 44, 46, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 182, 184, 186, 188, 190, 192, 194, 196, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 230, 232, 234, 236, 25 238, 240, 242, 243, 245, 247, 249, 251, 252, 254, 256, 258, 260, 262, 263, 265, 267, 269, 270, 272 or 274.

[26] The present invention also provides expression cassettes comprising a heterologous promoter operably linked to a nucleic acid that is substantially identical to or hybridizes to a nucleic acid encoding a polypeptide listed in Table 1 under hybridization 30 conditions of 50% formamide, 5X SSC, and 1% SDS at 42°C followed by a wash in 0.2X SSC, and 0.1% SDS at 55°C.

[27] The present invention also provides host cells transfected with nucleic acids that is substantially identical to or hybridizes to a nucleic acid encoding a polypeptide listed in Table 1 under hybridization conditions of 50% formamide, 5X SSC, and 1% SDS at

42°C followed by a wash in 0.2X SSC, and 0.1% SDS at 55°C. In some embodiments, the host cell is a human cell. In some embodiments, the host cell is a bacterium.

[28] The present invention also provides isolated polypeptides comprising an amino acid sequence at least 70% identical to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 5 22, 24, 26, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44, 46, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 182, 184, 186, 188, 190, 192, 194, 196, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 10 225, 227, 229, 230, 232, 234, 236, 238, 240, 242, 243, 245, 247, 249, 251, 252, 254, 256, 258, 260, 262, 263, 265, 267, 269, 270, 272, 274 or fragments thereof. In some embodiments, the polypeptide comprises SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44, 46, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 15 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 182, 184, 186, 188, 190, 192, 194, 196, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 230, 232, 234, 236, 238, 240, 242, 243, 245, 247, 249, 251, 252, 254, 256, 258, 260, 262, 263, 265, 267, 269, 270, 272 or 274.

[29] The present invention also provides antibodies that specifically bind to a polypeptide selected from the groups consisting of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44, 46, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 25 150, 152, 154, 156, 158, 160, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 182, 184, 186, 188, 190, 192, 194, 196, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 230, 232, 234, 236, 238, 240, 242, 243, 245, 247, 249, 251, 252, 254, 256, 258, 260, 262, 263, 265, 267, 269, 270, 272 or 274.

[30] The present invention also provides pharmaceutical compositions comprising polypeptides comprising an amino acid sequence at least 70% identical to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44, 46, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 161, 163, 165, 167, 169,

171, 173, 175, 177, 179, 181, 182, 184, 186, 188, 190, 192, 194, 196, 197, 199, 201, 203, 205,
207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 230, 232, 234, 236, 238, 240, 242,
243, 245, 247, 249, 251, 252, 254, 256, 258, 260, 262, 263, 265, 267, 269, 270, 272, 274 or
fragments thereof, and a pharmaceutically-acceptable excipient.

5

DEFINITIONS

[31] "Insulin sensitivity" refers to the ability of a cell or tissue to respond to insulin. Responses include, e.g., glucose uptake of a cell or tissue in response to insulin stimulation. Sensitivity can be determined at an organismal, tissue or cellular level. For example, blood or urine glucose levels following a glucose tolerance test are indicative of insulin sensitivity. Other methods of measuring insulin sensitivity include, e.g., measuring glucose uptake (see, e.g., Garcia de Herreros, A., and Birnbaum, M. J. *J. Biol. Chem.* 264, 19994-19999 (1989); Klip, A., Li, G., and Logan, W.J. *Am. J. Physiol.* 247, E291-296 (1984)), measuring the glucose infusion rate (GINF) into tissue such as the skeletal muscle (see, e.g., Ludvik *et al.*, *J. Clin. Invest.* 100:2354 (1997); Frias *et al.*, *Diabetes Care* 23:64, (2000)) and measuring sensitivity of GLUT4 translocation (e.g., as described herein) in response to insulin.

[32] As used herein, an overweight person has a body mass index (BMI) \geq 25 and an "obese" person has a BMI \geq 30. BMI is calculated as the weight in kilograms divided by the square of the height in meters.

[33] The term "waist-to-hip ratio or WHR" is the ratio of a person's waist circumference to hip circumference. For most people, carrying extra weight around their middle increases health risks more than carrying extra weight around their hips or thighs. For both men and women, a waist-to-hip ratio of 1.0 or higher is considered "at risk" or in the danger zone for undesirable health consequences, such as heart disease and other ailments connected with being overweight.

[34] The term "adipogenic," when used in reference to cells refers to a cell which can become an adipocyte. An "adipogenic factor" refers to a factor (including, e.g., a protein (or glycoprotein)) that can induce or stimulate the differentiation of cells into an adipocyte. Exemplary adipogenic factors include, e.g., *Wnt10b*, *Pref-1*, *ADF* and *TNF-alpha*.

[35] The term "lipid metabolism" refers to the *in vivo* process of catabolism (decomposition) and anabolism (accumulation) of lipids (e.g., triglycerides derived from food) and is intended to include, in the broad sense, reactions for transforming lipids into

energy, biosynthesis of fatty acids, acylglycerol, phospholipid metabolism and cholesterol metabolism.

[36] "Activity" of a polypeptide of the invention refers to structural, regulatory, or biochemical functions of a polypeptide in its native cell or tissue. Examples of activity of a polypeptide include both direct activities and indirect activities. Exemplary direct activities are the result of direct interaction with the polypeptide, , e.g., enzymatic activity, ligand binding, production or depletion of second messengers (e.g., cAMP, cGMP, IP₃, DAG, or Ca²⁺), ion flux, phosphorylation levels, transcription levels, and the like. Exemplary indirect activities are observed as a change in phenotype or response in a cell or tissue to a polypeptide's directed activity, e.g., loss of body weight or molecular events associated with loss of body weight or obesity or modulating insulin sensitivity of a cell as a result of the interaction of the polypeptide with other cellular or tissue components.

[37] "Predisposition for diabetes" occurs in a person when the person is at high risk for developing diabetes. A number of risk factors are known to those of skill in the art and include: genetic factors (e.g., carrying alleles that result in a higher occurrence of diabetes than in the average population or having parents or siblings with diabetes); overweight (e.g., body mass index (BMI) greater or equal to 25 kg/m²); habitual physical inactivity, race/ethnicity (e.g., African-American, Hispanic-American, Native Americans, Asian-Americans, Pacific Islanders); previously identified impaired fasting glucose or impaired glucose tolerance, hypertension (e.g., greater or equal to 140/90 mmHg in adults); HDL cholesterol less than or equal to 35 mg/dl; triglyceride levels greater or equal to 250 mg/dl; a history of gestational diabetes or delivery of a baby over nine pounds; and/or polycystic ovary syndrome. See, e.g., "Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus" and "Screening for Diabetes" *Diabetes Care* 25(1): S5-S24 (2002).

[38] A "lean individual," when used to compare with a sample from a patient, refers to an adult with a fasting blood glucose level less than 100 mg/dl or a 2 hour PG reading of 140 mg/dl. "Fasting" refers to no caloric intake for at least 8 hours. A "2 hour PG" refers to the level of blood glucose after challenging a patient to a glucose load containing the equivalent of 75g anhydrous glucose dissolved in water. The overall test is generally referred to as an oral glucose tolerance test (OGTT). See, e.g., *Diabetes Care*, 2003, 26(11): 3160-3167 (2003). The level of a polypeptide in a lean individual can be a reading from a single individual, but is typically a statistically relevant average from a group of lean

individuals. The level of a polypeptide in a lean individual can be represented by a value, for example in a computer program.

[39] A "pre-diabetic individual," when used to compare with a sample from a patient, refers to an adult with a fasting blood glucose level greater than 100 mg/dl but less than 126 mg/dl or a 2 hour PG reading of greater than 140 mg/dl but less than 200mg/dl. A "diabetic individual," when used to compare with a sample from a patient, refers to an adult with a fasting blood glucose level greater than 126 mg/dl or a 2 hour PG reading of greater than 200 mg/dl.

[40] An "agonist" refers to an agent that binds to, stimulates, increases, activates, facilitates, enhances activation, sensitizes or up regulates the activity or expression of a polypeptide of the invention.

[41] An "antagonist" refers to an agent that binds to, partially or totally blocks stimulation, decreases, prevents, delays activation, inactivates, desensitizes, or down regulates the activity or expression of a polypeptide of the invention.

[42] "Antibody" refers to a polypeptide substantially encoded by an immunoglobulin gene or immunoglobulin genes, or fragments thereof which specifically bind and recognize an analyte (antigen). The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively.

[43] An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light" (about 25 kD) and one "heavy" chain (about 50-70 kD). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (V_L) and variable heavy chain (V_H) refer to these light and heavy chains respectively.

[44] Antibodies exist, e.g., as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases. Thus, for example, pepsin digests an antibody below the disulfide linkages in the hinge region to produce $F(ab)'_2$, a dimer of Fab which itself is a light chain joined to $V_H-C_\alpha 1$ by a disulfide bond. The $F(ab)'_2$ may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the $F(ab)'_2$ dimer into an Fab' monomer. The Fab' monomer is essentially an Fab with part of the hinge region (see, Paul (Ed.) *Fundamental Immunology*,

Third Edition, Raven Press, NY (1993)). While various antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized *de novo* either chemically or by utilizing recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by 5 the modification of whole antibodies or those synthesized *de novo* using recombinant DNA methodologies (e.g., single chain Fv).

[45] The terms "peptidomimetic" and "mimetic" refer to a synthetic chemical compound that has substantially the same structural and functional characteristics of the antagonists or agonists of the invention. Peptide analogs are commonly used in the 10 pharmaceutical industry as non-peptide drugs with properties analogous to those of the template peptide. These types of non-peptide compound are termed "peptide mimetics" or "peptidomimetics" (Fauchere, J. *Adv. Drug Res.* 15:29 (1986); Veber and Freidinger *TINS* p. 392 (1985); and Evans *et al.* *J. Med. Chem.* 30:1229 (1987), which are incorporated herein by reference). Peptide mimetics that are structurally similar to therapeutically useful peptides 15 may be used to produce an equivalent or enhanced therapeutic or prophylactic effect. Generally, peptidomimetics are structurally similar to a paradigm polypeptide (i.e., a polypeptide that has a biological or pharmacological activity), such as a polypeptide exemplified in this application, but have one or more peptide linkages optionally replaced by a linkage selected from the group consisting of, e.g., -CH₂NH-, -CH₂S-, -CH₂-CH₂-, - 20 CH=CH- (cis and trans), -COCH₂-, -CH(OH)CH₂-, and -CH₂SO-. The mimetic can be either entirely composed of synthetic, non-natural analogues of amino acids, or, is a chimeric molecule of partly natural peptide amino acids and partly non-natural analogs of amino acids. The mimetic can also incorporate any amount of natural amino acid conservative 25 substitutions as long as such substitutions also do not substantially alter the mimetic's structure and/or activity. For example, a mimetic composition is within the scope of the invention if it is capable of carrying out the binding or other activities of an agonist or antagonist of a polypeptide of the invention.

[46] The term "gene" means the segment of DNA involved in producing a polypeptide chain; it includes regions preceding and following the coding region (leader and trailer) as well as intervening sequences (introns) between individual coding segments (exons).

[47] The term "isolated," when applied to a nucleic acid or protein, denotes that the nucleic acid or protein is essentially free of other cellular components with which it is associated in the natural state. It may be in a homogeneous state although it can be in either a

dry or aqueous solution. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein that is the predominant species present in a preparation is substantially purified. In particular, an isolated gene is separated from open reading frames 5 that flank the gene and encode a protein other than the gene of interest. The term "purified" denotes that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. Particularly, it means that the nucleic acid or protein is at least 85% pure, more preferably at least 95% pure, and most preferably at least 99% pure.

[48] The term "nucleic acid" or "polynucleotide" refers to 10 deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form. Unless specifically limited, the term encompasses nucleic acids containing known analogues of natural nucleotides that have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses 15 conservatively modified variants thereof (e.g., degenerate codon substitutions) and complementary sequences as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer *et al.*, *Nucleic Acid Res.* 19:5081 (1991); Ohtsuka *et al.*, *J. Biol. Chem.* 260:2605-2608 (1985); and Cassol *et al.* (1992); Rossolini *et al.*, *Mol. Cell. Probes* 8:91-98 (1994)). The term nucleic acid is used interchangeably with gene, cDNA, and mRNA encoded by a gene.

[49] The terms "polypeptide," "peptide" and "protein" are used 20 interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymers. As used herein, the terms encompass amino acid chains of any length, including full-length proteins (*i.e.*, antigens), wherein the amino acid residues are linked by covalent peptide bonds.

[50] The term "amino acid" refers to naturally occurring and synthetic 30 amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, *e.g.*, hydroxyproline, γ -carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to

compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an α carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but 5 retain the same basic chemical structure as a naturally occurring amino acid. "Amino acid mimetics" refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but which functions in a manner similar to a naturally occurring amino acid.

[51] Amino acids may be referred to herein by either the commonly known 10 three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

[52] "Conservatively modified variants" applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, "conservatively 15 modified variants" refers to those nucleic acids that encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every 20 position where an alanine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are "silent variations," which are one species of conservatively modified variations. Every nucleic acid sequence herein that encodes a polypeptide also describes every possible silent variation of the nucleic acid. One of skill will recognize that each codon in a nucleic 25 acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally identical molecule. Accordingly, each silent variation of a nucleic acid that encodes a polypeptide is implicit in each described sequence.

[53] As to amino acid sequences, one of skill will recognize that individual 30 substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a "conservatively modified variant" where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in

the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention.

[54] The following eight groups each contain amino acids that are conservative substitutions for one another:

- 5 1) Alanine (A), Glycine (G);
- 2) Aspartic acid (D), Glutamic acid (E);
- 3) Asparagine (N), Glutamine (Q);
- 4) Arginine (R), Lysine (K);
- 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V);
- 10 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W);
- 7) Serine (S), Threonine (T); and
- 8) Cysteine (C), Methionine (M)

(see, e.g., Creighton, *Proteins* (1984)).

[55] "Percentage of sequence identity" is determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (*i.e.*, gaps) as compared to the reference sequence (e.g., a polypeptide of the invention), which does not comprise additions or deletions, for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity.

[56] The terms "identical" or percent "identity," in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same sequences. Sequences are "substantially identical" if two sequences have a specified percentage of amino acid residues or nucleotides that are the same (*i.e.*, 60% identity, optionally 65%, 70%, 75%, 80%, 85%, 90%, or 95% identity over a specified region, or, when not specified, over the entire sequence), when compared and aligned for maximum correspondence over a comparison window, designated region as measured using one of the following sequence comparison algorithms or by manual alignment and visual inspection, or across the entire sequence where not indicated. The invention provides polypeptides or polynucleotides that are substantially identical to the polypeptides or polynucleotides, respectively, exemplified herein (e.g., SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
5 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,
131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168,
169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,
188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 201, 202, 203, 204, 205, 206, 207,
10 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226,
227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245,
246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264,
265, 266, 267, 268, 269, 270, 271, 272, 273 or 274). This definition also refers to the
complement of a test sequence. Optionally, the identity exists over a region that is at least
15 about 50 nucleotides in length, or more preferably over a region that is 100 to 500 or 1000 or
more nucleotides in length.

[57] For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

[58] A "comparison window", as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith and Waterman (1970) *Adv. Appl. Math.* 2:482c, by the homology alignment algorithm of Needleman and Wunsch (1970) *J. Mol. Biol.* 48:443, by the search for similarity method of Pearson and Lipman (1988) *Proc. Nat'l. Acad. Sci. USA* 85:2444, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics

Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by manual alignment and visual inspection (see, e.g., Ausubel *et al.*, *Current Protocols in Molecular Biology* (1995 supplement)).

[59] Two examples of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul *et al.* (1977) *Nuc. Acids Res.* 25:3389-3402, and Altschul *et al.* (1990) *J. Mol. Biol.* 215:403-410, respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (<http://www.ncbi.nlm.nih.gov/>). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul *et al.*, *supra*). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) or 10, M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1989) *Proc. Natl. Acad. Sci. USA* 89:10915) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.

[60] The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin and Altschul (1993) *Proc. Natl. Acad. Sci. USA* 90:5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example,

a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001.

[61] An indication that two nucleic acid sequences or polypeptides are substantially identical is that the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the antibodies raised against the polypeptide encoded by the second nucleic acid, as described below. Thus, a polypeptide is typically substantially identical to a second polypeptide, for example, where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two molecules or their complements hybridize to each other under stringent conditions, as described below. Yet another indication that two nucleic acid sequences are substantially identical is that the same primers can be used to amplify the sequence.

[62] The phrase "selectively (or specifically) hybridizes to" refers to the binding, duplexing, or hybridizing of a molecule only to a particular nucleotide sequence under stringent hybridization conditions when that sequence is present in a complex mixture (e.g., total cellular or library DNA or RNA).

[63] The phrase "stringent hybridization conditions" refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acid, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen, *Techniques in Biochemistry and Molecular Biology—Hybridization with Nucleic Probes*, "Overview of principles of hybridization and the strategy of nucleic acid assays" (1993). Generally, stringent conditions are selected to be about 5-10°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength pH. The T_m is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at T_m , 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as

formamide. For selective or specific hybridization, a positive signal is at least two times background, optionally 10 times background hybridization. Exemplary stringent hybridization conditions can be as following: 50% formamide, 5X SSC, and 1% SDS, incubating at 42°C, or 5X SSC, 1% SDS, incubating at 65°C, with wash in 0.2X SSC, and 5 0.1% SDS at 55°C, 60°C, or 65°C. Such washes can be performed for 5, 15, 30, 60, 120, or more minutes.

[64] Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides that they encode are substantially identical. This occurs, for example, when a copy of a nucleic acid is created 10 using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize under moderately stringent hybridization conditions. Exemplary "moderately stringent hybridization conditions" include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37°C, and a wash in 1X SSC at 45°C. Such washes can be performed for 5, 15, 30, 60, 120, or more minutes. A positive hybridization is 15 at least twice background. Those of ordinary skill will readily recognize that alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency.

[65] The phrase "a nucleic acid sequence encoding" refers to a nucleic acid which contains sequence information for a structural RNA such as rRNA, a tRNA, or the primary amino acid sequence of a specific protein or peptide, or a binding site for a trans- 20 acting regulatory agent. This phrase specifically encompasses degenerate codons (*i.e.*, different codons which encode a single amino acid) of the native sequence or sequences that may be introduced to conform with codon preference in a specific host cell.

[66] The term "recombinant" when used with reference, *e.g.*, to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has 25 been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, for example, recombinant cells express genes that are not found within the native (nonrecombinant) form of the cell or express native genes that are otherwise abnormally expressed, under-expressed or not expressed at all.

[67] The term "heterologous" when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences from unrelated genes arranged to make a new functional nucleic acid, *e.g.*, a promoter from one source and a

coding region from another source. Similarly, a heterologous protein indicates that the protein comprises two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).

[68] An "expression vector" is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a particular nucleic acid in a host cell. The expression vector can be part of a plasmid, virus, or nucleic acid fragment. Typically, the expression vector includes a nucleic acid to be transcribed operably linked to a promoter.

[69] The phrase "specifically (or selectively) binds to an antibody" or "specifically (or selectively) immunoreactive with", when referring to a protein or peptide, refers to a binding reaction which is determinative of the presence of the protein in the presence of a heterogeneous population of proteins and other biologics. Thus, under designated immunoassay conditions, the specified antibodies bind to a particular protein and do not bind in a significant amount to other proteins present in the sample. Specific binding to an antibody under such conditions may require an antibody that is selected for its specificity for a particular protein. For example, antibodies raised against a protein having an amino acid sequence encoded by any of the polynucleotides of the invention can be selected to obtain antibodies specifically immunoreactive with that protein and not with other proteins, except for polymorphic variants. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunoassays, Western blots, or immunohistochemistry are routinely used to select monoclonal antibodies specifically immunoreactive with a protein. See, Harlow and Lane *Antibodies, A Laboratory Manual*, Cold Spring Harbor Publications, NY (1988) for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity. Typically, a specific or selective reaction will be at least twice the background signal or noise and more typically more than 10 to 100 times background.

[70] "Inhibitors," "activators," and "modulators" of expression or of activity are used to refer to inhibitory, activating, or modulating molecules, respectively, of expression of the polypeptides of the invention as determined using *in vitro* or *in vivo* assays to monitor expression or activity. Modulators encompass e.g., ligands, agonists, antagonists, their homologs and mimetics, as well as the polypeptides of the invention, or fragments thereof with antagonist activity or that act to increase overall polypeptide activity (i.e., fragments that have at least some of the activity of the full-length protein). In some cases, fragments of the polypeptides of the invention are at least 20, 50, 75 or 100 amino acids in

length. The term "modulator" includes inhibitors and activators. Inhibitors are agents that, e.g., inhibit expression of a polypeptide of the invention or bind to, partially or totally block stimulation, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity of a polypeptide of the invention, e.g., antagonists. Activators are agents that, e.g., 5 induce or activate the expression of a polypeptide of the invention or bind to, stimulate, increase, open, activate, facilitate, or enhance activation, sensitize or up regulate the activity of a polypeptide of the invention, e.g., agonists. Modulators include naturally occurring and synthetic ligands, antagonists, agonists, small chemical molecules and the like. Such assays for inhibitors and activators include, e.g., applying putative modulator compounds to cells 10 expressing a polypeptide of the invention and then determining the functional effects on a polypeptide of the invention activity, as described above. Samples or assays comprising a polypeptide of the invention that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of effect. Control samples (untreated with modulators) are assigned a relative activity 15 value of 100%. Inhibition of a polypeptide of the invention is achieved when the polypeptide activity value relative to the control is about 80%, optionally 50% or 25, 10%, 5% or 1%. Activation of the polypeptide is achieved when the polypeptide activity value relative to the control is 110%, optionally 150%, optionally 200, 300%, 400%, 500%, or 1000-3000% or more higher.

20

DETAILED DESCRIPTION OF THE INVENTION

I. INTRODUCTION

[71] The present application demonstrates that, surprisingly, modulated levels of mRNA comprising sequences of the invention occur in human adipose tissue 25 collected from either insulin resistant obese non-diabetics or from type 2 diabetic individuals compared to levels of the mRNA in the lean, non-diabetic individuals. Insulin resistant obese individuals are generally predisposed to become type II diabetics. Therefore, the modulation of the sequences in the study described herein indicates the sequences' involvement in obesity, diabetes and/or pre-diabetes.

30

[72] Without intending to limit the invention to a particular mechanism of action, it is believed that modulation of the expression or activity of the polypeptides or polynucleotides of the invention is beneficial in treating obesity, diabetic, pre-diabetic or insulin resistant, non-diabetic patients. Furthermore, modulated levels of the polypeptides of the invention are indicative of insulin resistance, obesity, diabetes or a predisposition for

obesity and/or diabetes. Thus, the detection of a polypeptide of the invention is useful for diagnosis of obesity, predisposition for obesity and/or diabetes, diabetes and/or insulin resistance.

[73] This invention also provides methods of using polypeptides of the invention and modulators of the polypeptides of the invention to diagnose and treat obesity, diabetes, pre-diabetes (including insulin resistant individuals) and related metabolic diseases. The present method also provides methods of identifying modulators of expression or activity of the polypeptides of the invention. Such modulators are useful for treating obesity and/or Type 2 diabetes as well as the pathological aspects of obesity (e.g., increased risk for cardiovascular disease, hypertension or cancer) and/or diabetes (e.g., insulin resistance).

II. GENERAL RECOMBINANT NUCLEIC ACID METHODS FOR USE WITH THE INVENTION

[74] In numerous embodiments of the present invention, nucleic acids encoding a polypeptide of the present invention will be isolated and cloned using recombinant methods. Such embodiments are used, e.g., to isolate polynucleotides identical or substantially identical to SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 34, 36, 38, 41, 43, 45, 48, 50, 52, 54, 56, 58, 60, 62, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 183, 185, 187, 189, 191, 193, 195, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 231, 233, 235, 237, 239, 241, 244, 246, 248, 250, 253, 255, 257, 259, 261, 264, 266, 268, 271 or 273 for protein expression or during the generation of variants, derivatives, expression cassettes, or other sequences derived from an polypeptide or polynucleotide of the invention, to monitor gene expression, for the isolation or detection of sequences in different species, for diagnostic purposes in a patient, e.g., to detect mutations in a polypeptide or polynucleotide of the invention or to detect expression levels of nucleic acids or polypeptides. In some embodiments, the sequences encoding the polypeptides of the invention (or polypeptides comprising fragments of the polypeptides of the invention) are operably linked to a heterologous promoter. In some cases, fragments of the polypeptides of the invention are at least 20, 50, 75 or 100 amino acids in length. The polypeptides of the invention can be linked to heterologous amino acid sequences using recombinant DNA technology. In one embodiment, the nucleic acids of the invention are from any mammal, including, in particular, e.g., a human, a mouse, a rat, etc.

[75] Polynucleotides, including expression cassettes, encoding polypeptides of the invention can be introduced into cells and optionally expressed in the cells.

Polynucleotides of the invention can be introduced into eukaryotic or prokaryotic cells, including adipocyte or muscle cells. The cells can be primary cells or cell lines.

5 **A. General Recombinant Nucleic Acid Methods**

[76] This invention relies on routine techniques in the field of recombinant genetics. Basic texts disclosing the general methods of use in this invention include Sambrook *et al.*, *Molecular Cloning, A Laboratory Manual* (3rd ed. 2001); Kriegler, *Gene Transfer and Expression: A Laboratory Manual* (1990); and *Current Protocols in Molecular Biology* (Ausubel *et al.*, eds., 1994)).

[77] For nucleic acids, sizes are given in either kilobases (kb) or base pairs (bp). These are estimates derived from agarose or acrylamide gel electrophoresis, from sequenced nucleic acids, or from published DNA sequences. For proteins, sizes are given in kilodaltons (kDa) or amino acid residue numbers. Proteins sizes are estimated from gel electrophoresis, from sequenced proteins, from derived amino acid sequences, or from published protein sequences.

[78] Oligonucleotides that are not commercially available can be chemically synthesized according to the solid phase phosphoramidite triester method first described by Beaucage & Caruthers, *Tetrahedron Letts.* 22:1859-1862 (1981), using an automated synthesizer, as described in Van Devanter *et. al.*, *Nucleic Acids Res.* 12:6159-6168 (1984). Purification of oligonucleotides is by either native acrylamide gel electrophoresis or by anion-exchange HPLC as described in Pearson & Reanier, *J. Chrom.* 255:137-149 (1983).

[79] The sequence of the cloned genes and synthetic oligonucleotides can be verified after cloning using, e.g., the chain termination method for sequencing double-stranded templates of Wallace *et al.*, *Gene* 16:21-26 (1981).

20 **B. Cloning Methods for the Isolation of Nucleotide Sequences Encoding Desired Proteins**

[80] In general, the nucleic acids encoding the subject proteins are cloned from DNA sequence libraries that are made to encode cDNA or genomic DNA. The particular sequences can be located by hybridizing with an oligonucleotide probe, the sequence of which can be derived from the sequences disclosed herein, which provide a reference for PCR primers and defines suitable regions for isolating probes specific for the polypeptides or polynucleotides of the invention. Alternatively, where the sequence is cloned

into an expression library, the expressed recombinant protein can be detected immunologically with antisera or purified antibodies made against a polypeptide of interest, including those disclosed herein.

[81] Methods for making and screening genomic and cDNA libraries are well known to those of skill in the art (see, e.g., Gubler and Hoffman *Gene* 25:263-269 (1983); Benton and Davis *Science*, 196:180-182 (1977); and Sambrook, *supra*).

[82] Briefly, to make the cDNA library, one should choose a source that is rich in mRNA. The mRNA can then be made into cDNA, ligated into a recombinant vector, and transfected into a recombinant host for propagation, screening and cloning. For a genomic library, the DNA is extracted from a suitable tissue and either mechanically sheared or enzymatically digested to yield fragments of preferably about 5-100 kb. The fragments are then separated by gradient centrifugation from undesired sizes and are constructed in bacteriophage lambda vectors. These vectors and phage are packaged *in vitro*, and the recombinant phages are analyzed by plaque hybridization. Colony hybridization is carried out as generally described in Grunstein *et al.*, *Proc. Natl. Acad. Sci. USA.*, 72:3961-3965 (1975).

[83] An alternative method combines the use of synthetic oligonucleotide primers with polymerase extension on an mRNA or DNA template. Suitable primers can be designed from specific sequences disclosed herein. This polymerase chain reaction (PCR) method amplifies the nucleic acids encoding the protein of interest directly from mRNA, cDNA, genomic libraries or cDNA libraries. Restriction endonuclease sites can be incorporated into the primers. Polymerase chain reaction or other *in vitro* amplification methods may also be useful, for example, to clone nucleic acids encoding specific proteins and express said proteins, to synthesize nucleic acids that will be used as probes for detecting the presence of mRNA encoding a polypeptide of the invention in physiological samples, for nucleic acid sequencing, or for other purposes (see, U.S. Patent Nos. 4,683,195 and 4,683,202). Genes amplified by a PCR reaction can be purified from agarose gels and cloned into an appropriate vector.

[84] Appropriate primers and probes for identifying the genes encoding a polypeptide of the invention from mammalian tissues can be derived from the sequences provided herein. For a general overview of PCR, see, Innis *et al. PCR Protocols: A Guide to Methods and Applications*, Academic Press, San Diego (1990).

[85] Synthetic oligonucleotides can be used to construct genes. This is done using a series of overlapping oligonucleotides, usually 40-120 bp in length, representing

both the sense and anti-sense strands of the gene. These DNA fragments are then annealed, ligated and cloned.

[86] A polynucleotide encoding a polypeptide of the invention can be cloned using intermediate vectors before transformation into mammalian cells for expression.

5 These intermediate vectors are typically prokaryote vectors or shuttle vectors. The proteins can be expressed in either prokaryotes or eukaryotes, using standard methods well known to those of skill in the art.

III. PURIFICATION OF PROTEINS OF THE INVENTION

[87] Either naturally occurring or recombinant polypeptides of the invention
10 can be purified for use in functional assays. Naturally occurring polypeptides of the invention can be purified from any source (e.g., tissues of an organism expressing an ortholog). Recombinant polypeptides can be purified from any suitable expression system.

[88] The polypeptides of the invention may be purified to substantial purity by standard techniques, including selective precipitation with such substances as ammonium
15 sulfate; column chromatography, immunopurification methods, and others (see, e.g., Scopes, *Protein Purification: Principles and Practice* (1982); U.S. Patent No. 4,673,641; Ausubel *et al.*, *supra*; and Sambrook *et al.*, *supra*).

[89] A number of procedures can be employed when recombinant polypeptides are being purified. For example, proteins having established molecular
20 adhesion properties can be reversibly fused to a polypeptide of the invention. With the appropriate ligand, either protein can be selectively adsorbed to a purification column and then freed from the column in a relatively pure form. The fused protein may be then removed by enzymatic activity. Finally polypeptides can be purified using immunoaffinity columns.

A. Purification of Proteins from Recombinant Bacteria

[90] When recombinant proteins are expressed by the transformed bacteria
25 in large amounts, typically after promoter induction, although expression can be constitutive, the proteins may form insoluble aggregates. There are several protocols that are suitable for purification of protein inclusion bodies. For example, purification of aggregate proteins (hereinafter referred to as inclusion bodies) typically involves the extraction, separation
30 and/or purification of inclusion bodies by disruption of bacterial cells typically, but not limited to, by incubation in a buffer of about 100-150 µg/ml lysozyme and 0.1% Nonidet P40, a non-ionic detergent. The cell suspension can be ground using a Polytron grinder (Brinkman

Instruments, Westbury, NY). Alternatively, the cells can be sonicated on ice. Alternate methods of lysing bacteria are described in Ausubel *et al.* and Sambrook *et al.*, both *supra*, and will be apparent to those of skill in the art.

[91] The cell suspension is generally centrifuged and the pellet containing 5 the inclusion bodies resuspended in buffer which does not dissolve but washes the inclusion bodies, e.g., 20 mM Tris-HCl (pH 7.2), 1 mM EDTA, 150 mM NaCl and 2% Triton-X 100, a non-ionic detergent. It may be necessary to repeat the wash step to remove as much cellular debris as possible. The remaining pellet of inclusion bodies may be resuspended in an appropriate buffer (e.g., 20 mM sodium phosphate, pH 6.8, 150 mM NaCl). Other 10 appropriate buffers will be apparent to those of skill in the art.

[92] Following the washing step, the inclusion bodies are solubilized by the addition of a solvent that is both a strong hydrogen acceptor and a strong hydrogen donor (or a combination of solvents each having one of these properties). The proteins that formed the inclusion bodies may then be renatured by dilution or dialysis with a compatible buffer. 15 Suitable solvents include, but are not limited to, urea (from about 4 M to about 8 M), formamide (at least about 80%, volume/volume basis), and guanidine hydrochloride (from about 4 M to about 8 M). Some solvents that are capable of solubilizing aggregate-forming proteins, such as SDS (sodium dodecyl sulfate) and 70% formic acid, are inappropriate for use in this procedure due to the possibility of irreversible denaturation of the proteins, 20 accompanied by a lack of immunogenicity and/or activity. Although guanidine hydrochloride and similar agents are denaturants, this denaturation is not irreversible and renaturation may occur upon removal (by dialysis, for example) or dilution of the denaturant, allowing re-formation of the immunologically and/or biologically active protein of interest. After solubilization, the protein can be separated from other bacterial proteins by standard 25 separation techniques.

[93] Alternatively, it is possible to purify proteins from bacteria periplasm. Where the protein is exported into the periplasm of the bacteria, the periplasmic fraction of the bacteria can be isolated by cold osmotic shock in addition to other methods known to those of skill in the art (*see, Ausubel et al., supra*). To isolate recombinant proteins from the 30 periplasm, the bacterial cells are centrifuged to form a pellet. The pellet is resuspended in a buffer containing 20% sucrose. To lyse the cells, the bacteria are centrifuged and the pellet is resuspended in ice-cold 5 mM MgSO₄ and kept in an ice bath for approximately 10 minutes. The cell suspension is centrifuged and the supernatant decanted and saved. The recombinant

proteins present in the supernatant can be separated from the host proteins by standard separation techniques well known to those of skill in the art.

B. Purification of Proteins from Insect Cells

[94] Proteins can also be purified from eukaryotic gene expression systems as described in, e.g., Fernandez and Hoeffler, *Gene Expression Systems* (1999). In some embodiments, baculovirus expression systems are used to isolate proteins of the invention. Recombinant baculoviruses are generally generated by replacing the polyhedrin coding sequence of a baculovirus with a gene to be expressed (e.g., encoding a polypeptide of the invention). Viruses lacking the polyhedrin gene have a unique plaque morphology making them easy to recognize. In some embodiments, a recombinant baculovirus is generated by first cloning a polynucleotide of interest into a transfer vector (e.g., a pUC based vector) such that the polynucleotide is operably linked to a polyhedrin promoter. The transfer vector is transfected with wildtype DNA into an insect cell (e.g., Sf9, Sf21 or BT1-TN-5B1-4 cells), resulting in homologous recombination and replacement of the polyhedrin gene in the wildtype viral DNA with the polynucleotide of interest. Virus can then be generated and plaque purified. Protein expression results upon viral infection of insect cells. Expressed proteins can be harvested from cell supernatant if secreted, or from cell lysates if intracellular. See, e.g., Ausubel *et al.* and Fernandez and Hoeffler, *supra*.

20

C. Purification of secreted proteins from mammalian cells

[95] Polypeptides of the invention, and in particular, secreted proteins of the invention can be readily purified from mammalian cells expressing the polypeptides. Expression of the polypeptides can be the result of either transient or stable expression of the protein from a recombinant expression cassette introduced into the cells. Secreted proteins can generally be isolated using standard procedures to purify the proteins from the cell culture medium.

D. Standard Protein Separation Techniques For Purifying Proteins

1. Solubility Fractionation

[96] Often as an initial step, and if the protein mixture is complex, an initial salt fractionation can separate many of the unwanted host cell proteins (or proteins derived from the cell culture media) from the recombinant protein of interest. The preferred salt is

ammonium sulfate. Ammonium sulfate precipitates proteins by effectively reducing the amount of water in the protein mixture. Proteins then precipitate on the basis of their solubility. The more hydrophobic a protein is, the more likely it is to precipitate at lower ammonium sulfate concentrations. A typical protocol is to add saturated ammonium sulfate 5 to a protein solution so that the resultant ammonium sulfate concentration is between 20-30%. This will precipitate the most hydrophobic proteins. The precipitate is discarded (unless the protein of interest is hydrophobic) and ammonium sulfate is added to the supernatant to a concentration known to precipitate the protein of interest. The precipitate is then solubilized in buffer and the excess salt removed if necessary, through either dialysis or diafiltration.

10 Other methods that rely on solubility of proteins, such as cold ethanol precipitation, are well known to those of skill in the art and can be used to fractionate complex protein mixtures.

2. Size Differential Filtration

[97] Based on a calculated molecular weight, a protein of greater and lesser size can be isolated using ultrafiltration through membranes of different pore sizes (for 15 example, Amicon or Millipore membranes). As a first step, the protein mixture is ultrafiltered through a membrane with a pore size that has a lower molecular weight cut-off than the molecular weight of the protein of interest. The retentate of the ultrafiltration is then ultrafiltered against a membrane with a molecular cut off greater than the molecular weight of the protein of interest. The recombinant protein will pass through the membrane into the 20 filtrate. The filtrate can then be chromatographed as described below.

3. Column Chromatography

[98] The proteins of interest can also be separated from other proteins on the basis of their size, net surface charge, hydrophobicity and affinity for ligands. In addition, antibodies raised against proteins can be conjugated to column matrices and the proteins 25 immunopurified. All of these methods are well known in the art.

[99] Immunoaffinity chromatography using antibodies raised to a variety of affinity tags such as hemagglutinin (HA), FLAG, Xpress, Myc, hexahistidine (His), glutathione S transferase (GST) and the like can be used to purify polypeptides. The His tag will also act as a chelating agent for certain metals (e.g., Ni) and thus the metals can also be 30 used to purify His-containing polypeptides. After purification, the tag is optionally removed by specific proteolytic cleavage.

[100] It will be apparent to one of skill that chromatographic techniques can be performed at any scale and using equipment from many different manufacturers (e.g., Pharmacia Biotech).

IV. DETECTION OF POLYNUCLEOTIDES OF THE INVENTION

[101] Those of skill in the art will recognize that detection of expression of polynucleotides and polypeptides of the invention has many uses. For example, as discussed herein, detection of levels of polynucleotides and polypeptides of the invention in a patient is 5 useful for diagnosing diabetes or a predisposition for at least some of the pathological effects of diabetes. Moreover, detection of gene expression is useful to identify modulators of expression of polynucleotides and polypeptides of the invention.

[102] A variety of methods of specific DNA and RNA measurement that use nucleic acid hybridization techniques are known to those of skill in the art (see, Sambrook, 10 *supra*). Some methods involve an electrophoretic separation (e.g., Southern blot for detecting DNA, and Northern blot for detecting RNA), but measurement of DNA and RNA can also be carried out in the absence of electrophoretic separation (e.g., by dot blot). Southern blot of genomic DNA (e.g., from a human) can be used for screening for restriction fragment length polymorphism (RFLP) to detect the presence of a genetic disorder affecting a polypeptide of 15 the invention.

[103] The selection of a nucleic acid hybridization format is not critical. A variety of nucleic acid hybridization formats are known to those skilled in the art. For example, common formats include sandwich assays and competition or displacement assays. Hybridization techniques are generally described in Hames and Higgins *Nucleic Acid 20 Hybridization, A Practical Approach*, IRL Press (1985); Gall and Pardue, *Proc. Natl. Acad. Sci. U.S.A.*, 63:378-383 (1969); and John *et al.* *Nature*, 223:582-587 (1969).

[104] Detection of a hybridization complex may require the binding of a signal-generating complex to a duplex of target and probe polynucleotides or nucleic acids. Typically, such binding occurs through ligand and anti-ligand interactions as between a 25 ligand-conjugated probe and an anti-ligand conjugated with a signal. The binding of the signal generation complex is also readily amenable to accelerations by exposure to ultrasonic energy.

[105] The label may also allow indirect detection of the hybridization complex. For example, where the label is a hapten or antigen, the sample can be detected by 30 using antibodies. In these systems, a signal is generated by attaching fluorescent or enzyme molecules to the antibodies or in some cases, by attachment to a radioactive label (see, e.g., Tijssen, "Practice and Theory of Enzyme Immunoassays," *Laboratory Techniques in*

Biochemistry and Molecular Biology, Burdon and van Knippenberg Eds., Elsevier (1985), pp. 9-20).

[106] The probes are typically labeled either directly, as with isotopes, chromophores, lumiphores, chromogens, or indirectly, such as with biotin, to which a streptavidin complex may later bind. Thus, the detectable labels used in the assays of the present invention can be primary labels (where the label comprises an element that is detected directly or that produces a directly detectable element) or secondary labels (where the detected label binds to a primary label, e.g., as is common in immunological labeling). Typically, labeled signal nucleic acids are used to detect hybridization. Complementary nucleic acids or signal nucleic acids may be labeled by any one of several methods typically used to detect the presence of hybridized polynucleotides. The most common method of detection is the use of autoradiography with ^3H , ^{125}I , ^{35}S , ^{14}C , or ^{32}P -labeled probes or the like.

[107] Other labels include, e.g., ligands that bind to labeled antibodies, fluorophores, chemiluminescent agents, enzymes, and antibodies that can serve as specific binding pair members for a labeled ligand. An introduction to labels, labeling procedures and detection of labels is found in Polak and Van Noorden *Introduction to Immunocytochemistry*, 2nd ed., Springer Verlag, NY (1997); and in Haugland *Handbook of Fluorescent Probes and Research Chemicals*, a combined handbook and catalogue Published by Molecular Probes, Inc. (1996).

[108] In general, a detector that monitors a particular probe or probe combination is used to detect the detection reagent label. Typical detectors include spectrophotometers, phototubes and photodiodes, microscopes, scintillation counters, cameras, film and the like, as well as combinations thereof. Examples of suitable detectors are widely available from a variety of commercial sources known to persons of skill in the art. Commonly, an optical image of a substrate comprising bound labeling moieties is digitized for subsequent computer analysis.

[109] The amount of, for example, an RNA is measured by quantifying the amount of label fixed to the solid support by binding of the detection reagent. Typically, the presence of a modulator during incubation will increase or decrease the amount of label fixed to the solid support relative to a control incubation that does not comprise the modulator, or as compared to a baseline established for a particular reaction type. Means of detecting and quantifying labels are well known to those of skill in the art.

[110] In some embodiments, the target nucleic acid or the probe is immobilized on a solid support. Solid supports suitable for use in the assays of the invention

are known to those of skill in the art. As used herein, a solid support is a matrix of material in a substantially fixed arrangement.

[111] A variety of automated solid-phase assay techniques are also appropriate. For instance, very large scale immobilized polymer arrays (VLSIPSTM), i.e. 5 Gene Chips or microarrays, available from Affymetrix, Inc. in Santa Clara, CA can be used to detect changes in expression levels of a plurality of genes involved in the same regulatory pathways simultaneously. See, Tijssen, *supra*, Fodor *et al.* (1991) *Science*, 251: 767- 777; Sheldon *et al.* (1993) *Clinical Chemistry* 39(4): 718-719, and Kozal *et al.* (1996) *Nature Medicine* 2(7): 753-759. Similarly, spotted cDNA arrays (arrays of cDNA sequences bound 10 to nylon, glass or another solid support) can also be used to monitor expression of a plurality of genes.

[112] Typically, the array elements are organized in an ordered fashion so that each element is present at a specified location on the substrate. Because the array elements are at specified locations on the substrate, the hybridization patterns and intensities 15 (which together create a unique expression profile) can be interpreted in terms of expression levels of particular genes and can be correlated with a particular disease or condition or treatment. See, e.g., Schena *et al.*, *Science* 270: 467-470 (1995)) and (Lockhart *et al.*, *Nature Biotech.* 14: 1675-1680 (1996)).

[113] Hybridization specificity can be evaluated by comparing the 20 hybridization of specificity-control polynucleotide sequences to specificity-control polynucleotide probes that are added to a sample in a known amount. The specificity-control target polynucleotides may have one or more sequence mismatches compared with the corresponding polynucleotide sequences. In this manner, whether only complementary target polynucleotides are hybridizing to the polynucleotide sequences or whether mismatched 25 hybrid duplexes are forming is determined.

[114] Hybridization reactions can be performed in absolute or differential 30 hybridization formats. In the absolute hybridization format, polynucleotide probes from one sample are hybridized to the sequences in a microarray format and signals detected after hybridization complex formation correlate to polynucleotide probe levels in a sample. In the differential hybridization format, the differential expression of a set of genes in two biological samples is analyzed. For differential hybridization, polynucleotide probes from both biological samples are prepared and labeled with different labeling moieties. A mixture of the two labeled polynucleotide probes is added to a microarray. The microarray is then examined under conditions in which the emissions from the two different labels are

individually detectable. Sequences in the microarray that are hybridized to substantially equal numbers of polynucleotide probes derived from both biological samples give a distinct combined fluorescence (Shalon *et al.* PCT publication WO95/35505). In some embodiments, the labels are fluorescent labels with distinguishable emission spectra, such as Cy3 and Cy5
5 fluorophores.

[115] After hybridization, the microarray is washed to remove nonhybridized nucleic acids and complex formation between the hybridizable array elements and the polynucleotide probes is detected. Methods for detecting complex formation are well known to those skilled in the art. In some embodiments, the polynucleotide probes are labeled with a
10 fluorescent label and measurement of levels and patterns of fluorescence indicative of complex formation is accomplished by fluorescence microscopy, such as confocal fluorescence microscopy.

[116] In a differential hybridization experiment, polynucleotide probes from two or more different biological samples are labeled with two or more different fluorescent
15 labels with different emission wavelengths. Fluorescent signals are detected separately with different photomultipliers set to detect specific wavelengths. The relative abundances/expression levels of the polynucleotide probes in two or more samples are obtained.

[117] Typically, microarray fluorescence intensities can be normalized to
20 take into account variations in hybridization intensities when more than one microarray is used under similar test conditions. In some embodiments, individual polynucleotide probe/target complex hybridization intensities are normalized using the intensities derived from internal normalization controls contained on each microarray:

[118] Detection of nucleic acids can also be accomplished, for example, by
25 using a labeled detection moiety that binds specifically to duplex nucleic acids (*e.g.*, an antibody that is specific for RNA-DNA duplexes). One example uses an antibody that recognizes DNA-RNA heteroduplexes in which the antibody is linked to an enzyme (typically by recombinant or covalent chemical bonding). The antibody is detected when the enzyme reacts with its substrate, producing a detectable product. Coutlee *et al.* (1989)
30 *Analytical Biochemistry* 181:153-162; Bogulavski (1986) *et al. J. Immunol. Methods* 89:123-130; Prooijen-Knegt (1982) *Exp. Cell Res.* 141:397-407; Rudkin (1976) *Nature* 265:472-473, Stollar (1970) *PNAS* 65:993-1000; Ballard (1982) *Mol. Immunol.* 19:793-799; Pisetsky and Caster (1982) *Mol. Immunol.* 19:645-650; Viscidi *et al.* (1988) *J. Clin. Microbiol.* 41:199-209; and Kiney *et al.* (1989) *J. Clin. Microbiol.* 27:6-12 describe antibodies to RNA duplexes,

including homo and heteroduplexes. Kits comprising antibodies specific for DNA:RNA hybrids are available, e.g., from Digene Diagnostics, Inc. (Beltsville, MD).

[119] In addition to available antibodies, one of skill in the art can easily make antibodies specific for nucleic acid duplexes using existing techniques, or modify those 5 antibodies that are commercially or publicly available. In addition to the art referenced above, general methods for producing polyclonal and monoclonal antibodies are known to those of skill in the art (see, e.g., Paul (ed) *Fundamental Immunology, Third Edition* Raven Press, Ltd., NY (1993); Coligan *Current Protocols in Immunology* Wiley/Greene, NY (1991); Harlow and Lane *Antibodies: A Laboratory Manual* Cold Spring Harbor Press, NY (1989); Stites et 10 al. (eds.) *Basic and Clinical Immunology* (4th ed.) Lange Medical Publications, Los Altos, CA, and references cited therein; Goding *Monoclonal Antibodies: Principles and Practice* (2d ed.) Academic Press, New York, NY, (1986); and Kohler and Milstein *Nature* 256: 495-497 (1975)). Other suitable techniques for antibody preparation include selection of libraries of recombinant antibodies in phage or similar vectors (see, Huse et al. *Science* 246:1275-15 1281 (1989); and Ward et al. *Nature* 341:544-546 (1989)). Specific monoclonal and polyclonal antibodies and antisera will usually bind with a K_D of at least about 0.1 μM , preferably at least about 0.01 μM or better, and most typically and preferably, 0.001 μM or better.

[120] The nucleic acids used in this invention can be either positive or 20 negative probes. Positive probes bind to their targets and the presence of duplex formation is evidence of the presence of the target. Negative probes fail to bind to the suspect target and the absence of duplex formation is evidence of the presence of the target. For example, the use of a wild type specific nucleic acid probe or PCR primers may serve as a negative probe in an assay sample where only the nucleotide sequence of interest is present.

[121] The sensitivity of the hybridization assays may be enhanced through 25 use of a nucleic acid amplification system that multiplies the target nucleic acid being detected. Examples of such systems include the polymerase chain reaction (PCR) system and the ligase chain reaction (LCR) system. Other methods recently described in the art are the nucleic acid sequence based amplification (NASBA, Cangene, Mississauga, Ontario) and Q 30 Beta Replicase systems. These systems can be used to directly identify mutants where the PCR or LCR primers are designed to be extended or ligated only when a selected sequence is present. Alternatively, the selected sequences can be generally amplified using, for example, nonspecific PCR primers and the amplified target region later probed for a specific sequence indicative of a mutation. It is understood that various detection probes, including Taqman

and molecular beacon probes can be used to monitor amplification reaction products, e.g., in real time.

[122] An alternative means for determining the level of expression of the nucleic acids of the present invention is *in situ* hybridization. *In situ* hybridization assays are 5 well known and are generally described in Angerer *et al.*, *Methods Enzymol.* 152:649-660 (1987). In an *in situ* hybridization assay, cells, preferentially human cells from the cerebellum or the hippocampus, are fixed to a solid support, typically a glass slide. If DNA is to be probed, the cells are denatured with heat or alkali. The cells are then contacted with a hybridization solution at a moderate temperature to permit annealing of specific probes that 10 are labeled. The probes are preferably labeled with radioisotopes or fluorescent reporters.

[123] Single nucleotide polymorphism (SNP) analysis is also useful for detecting differences between alleles of the polynucleotides (e.g., genes) of the invention. SNPs linked to genes encoding polypeptides of the invention are useful, for instance, for diagnosis of diseases (e.g., diabetes) whose occurrence is linked to the gene sequences of the 15 invention. For example, if an individual carries at least one SNP linked to a disease-associated allele of the gene sequences of the invention, the individual is likely predisposed for one or more of those diseases. If the individual is homozygous for a disease-linked SNP, the individual is particularly predisposed for occurrence of that disease (e.g., diabetes). In some embodiments, the SNP associated with the gene sequences of the invention is located 20 within 300,000; 200,000; 100,000; 75,000; 50,000; or 10,000 base pairs from the gene sequence.

[124] Various real-time PCR methods including, e.g., Taqman or molecular beacon-based assays (e.g., U.S. Patent Nos. 5,210,015; 5,487,972; Tyagi *et al.*, *Nature Biotechnology* 14:303 (1996); and PCT WO 95/13399 are useful to monitor for the presence 25 of absence of a SNP. Additional SNP detection methods include, e.g., DNA sequencing, sequencing by hybridization, dot blotting, oligonucleotide array (DNA Chip) hybridization analysis, or are described in, e.g., U.S. Patent No. 6,177,249; Landegren *et al.*, *Genome Research*, 8:769-776 (1998); Botstein *et al.*, *Am J Human Genetics* 32:314-331 (1980); Meyers *et al.*, *Methods in Enzymology* 155:501-527 (1987); Keen *et al.*, *Trends in Genetics* 30 7:5 (1991); Myers *et al.*, *Science* 230:1242-1246 (1985); and Kwok *et al.*, *Genomics* 23:138-144 (1994).

V. DETECTION OF POLYPEPTIDES OF THE INVENTION

[125] In addition to the detection of polynucleotides of the invention and gene expression using nucleic acid hybridization technology, one can also use immunoassays to detect polypeptides of the invention. Immunoassays can be used to qualitatively or 5 quantitatively analyze polypeptides of the invention. A general overview of the applicable technology can be found in Harlow & Lane, *Antibodies: A Laboratory Manual* (1988).

A. Antibodies to Target Proteins or other immunogens

[126] Methods for producing polyclonal and monoclonal antibodies that react specifically with a protein of interest or other immunogen are known to those of skill in 10 the art (see, e.g., Coligan, *supra*; and Harlow and Lane, *supra*; Stites *et al.*, *supra* and references cited therein; Goding, *supra*; and Kohler and Milstein *Nature*, 256:495-497 15 (1975)). Such techniques include antibody preparation by selection of antibodies from libraries of recombinant antibodies in phage or similar vectors (see, Huse *et al.*, *supra*; and Ward *et al.*, *supra*). For example, in order to produce antisera for use in an immunoassay, the 20 protein of interest or an antigenic fragment thereof, is isolated as described herein. For example, a recombinant protein is produced in a transformed cell line. An inbred strain of mice or rabbits is immunized with the protein using a standard adjuvant, such as Freund's adjuvant, and a standard immunization protocol. Alternatively, a synthetic peptide derived from the sequences disclosed herein is conjugated to a carrier protein and used as an immunogen.

[127] Polyclonal sera are collected and titered against the immunogen in an immunoassay, for example, a solid phase immunoassay with the immunogen immobilized on a solid support. Polyclonal antisera with a titer of 10^4 or greater are selected and tested for their crossreactivity against proteins other than the polypeptides of the invention or even 25 other homologous proteins from other organisms, using a competitive binding immunoassay. Specific monoclonal and polyclonal antibodies and antisera will usually bind with a K_D of at least about 0.1 mM, more usually at least about 1 μ M, preferably at least about 0.1 μ M or better, and most preferably, 0.01 μ M or better.

[128] A number of proteins of the invention comprising immunogens may be 30 used to produce antibodies specifically or selectively reactive with the proteins of interest. Recombinant protein is the preferred immunogen for the production of monoclonal or polyclonal antibodies. Naturally occurring protein may also be used either in pure or impure form. Synthetic peptides made using the protein sequences described herein may also be

used as an immunogen for the production of antibodies to the protein. Recombinant protein can be expressed in eukaryotic or prokaryotic cells and purified as generally described *supra*. The product is then injected into an animal capable of producing antibodies. Either monoclonal or polyclonal antibodies may be generated for subsequent use in immunoassays to measure the protein.

[129] Methods of production of polyclonal antibodies are known to those of skill in the art. In brief, an immunogen, preferably a purified protein, is mixed with an adjuvant and animals are immunized. The animal's immune response to the immunogen preparation is monitored by taking test bleeds and determining the titer of reactivity to polypeptides of the invention. When appropriately high titers of antibody to the immunogen are obtained, blood is collected from the animal and antisera are prepared. Further fractionation of the antisera to enrich for antibodies reactive to the protein can be done if desired (see, Harlow and Lane, *supra*).

[130] Monoclonal antibodies may be obtained using various techniques familiar to those of skill in the art. Typically, spleen cells from an animal immunized with a desired antigen are immortalized, commonly by fusion with a myeloma cell (see, Kohler and Milstein, *Eur. J. Immunol.* 6:511-519 (1976)). Alternative methods of immortalization include, e.g., transformation with Epstein Barr Virus, oncogenes, or retroviruses, or other methods well known in the art. Colonies arising from single immortalized cells are screened for production of antibodies of the desired specificity and affinity for the antigen, and yield of the monoclonal antibodies produced by such cells may be enhanced by various techniques, including injection into the peritoneal cavity of a vertebrate host. Alternatively, one may isolate DNA sequences that encode a monoclonal antibody or a binding fragment thereof by screening a DNA library from human B cells according to the general protocol outlined by Huse *et al.*, *supra*.

[131] Once target immunogen-specific antibodies are available, the immunogen can be measured by a variety of immunoassay methods with qualitative and quantitative results available to the clinician. For a review of immunological and immunoassay procedures in general see, Stites, *supra*. Moreover, the immunoassays of the present invention can be performed in any of several configurations, which are reviewed extensively in Maggio *Enzyme Immunoassay*, CRC Press, Boca Raton, Florida (1980); Tijssen, *supra*; and Harlow and Lane, *supra*.

[132] Immunoassays to measure target proteins in a human sample may use a polyclonal antiserum that was raised to full-length polypeptides of the invention or a fragment thereof. This antiserum is selected to have low cross-reactivity against other proteins and any such cross-reactivity is removed by immunoabsorption prior to use in the 5 immunoassay.

B. Immunological Binding Assays

[133] In some embodiments, a protein of interest is detected and/or quantified using any of a number of well-known immunological binding assays (see, e.g., U.S. 10 Patents 4,366,241; 4,376,110; 4,517,288; and 4,837,168). For a review of the general immunoassays, see also Asai *Methods in Cell Biology Volume 37: Antibodies in Cell Biology*, Academic Press, Inc. NY (1993); Stites, *supra*. Immunological binding assays (or immunoassays) typically utilize a "capture agent" to specifically bind to and often immobilize the analyte (e.g., full-length polypeptides of the present invention, or antigenic 15 subsequences thereof). The capture agent is a moiety that specifically binds to the analyte. The antibody may be produced by any of a number of means well known to those of skill in the art and as described above.

[134] Immunoassays also often utilize a labeling agent to bind specifically to and label the binding complex formed by the capture agent and the analyte. The labeling 20 agent may itself be one of the moieties comprising the antibody/analyte complex. Alternatively, the labeling agent may be a third moiety, such as another antibody, that specifically binds to the antibody/protein complex.

[135] In a preferred embodiment, the labeling agent is a second antibody bearing a label. Alternatively, the second antibody may lack a label, but it may, in turn, be 25 bound by a labeled third antibody specific to antibodies of the species from which the second antibody is derived. The second antibody can be modified with a detectable moiety, such as biotin, to which a third labeled molecule can specifically bind, such as enzyme-labeled streptavidin.

[136] Other proteins capable of specifically binding immunoglobulin 30 constant regions, such as protein A or protein G, can also be used as the label agents. These proteins are normal constituents of the cell walls of streptococcal bacteria. They exhibit a strong non-immunogenic reactivity with immunoglobulin constant regions from a variety of

species (see, generally, Kronval, *et al.* *J. Immunol.*, 111:1401-1406 (1973); and Akerstrom, *et al.* *J. Immunol.*, 135:2589-2542 (1985)).

[137] Throughout the assays, incubation and/or washing steps may be required after each combination of reagents. Incubation steps can vary from about 5 seconds 5 to several hours, preferably from about 5 minutes to about 24 hours. The incubation time will depend upon the assay format, analyte, volume of solution, concentrations, and the like. Usually, the assays will be carried out at ambient temperature, although they can be conducted over a range of temperatures, such as 10°C to 40°C.

1. Non-Competitive Assay Formats

[138] Immunoassays for detecting proteins or analytes of interest from tissue samples may be either competitive or noncompetitive. Noncompetitive immunoassays are assays in which the amount of captured protein or analyte is directly measured. In one preferred "sandwich" assay, for example, the capture agent (e.g., antibodies specific for the polypeptides of the invention) can be bound directly to a solid substrate where it is immobilized. These immobilized antibodies then capture the polypeptide present in the test sample. The polypeptide of the invention thus immobilized is then bound by a labeling agent, such as a second labeled antibody specific for the polypeptide. Alternatively, the second antibody may lack a label, but it may, in turn, be bound by a labeled third antibody specific to antibodies of the species from which the second antibody is derived. The second can be modified with a detectable moiety, such as biotin, to which a third labeled molecule can specifically bind, such as enzyme-labeled streptavidin.

2. Competitive Assay Formats

[139] In competitive assays, the amount of protein or analyte present in the sample is measured indirectly by measuring the amount of an added (exogenous) protein or analyte displaced (or competed away) from a specific capture agent (e.g., antibodies specific for a polypeptide of the invention) by the protein or analyte present in the sample. The amount of immunogen bound to the antibody is inversely proportional to the concentration of immunogen present in the sample. In a particularly preferred embodiment, the antibody is immobilized on a solid substrate. The amount of analyte may be detected by providing a labeled analyte molecule. It is understood that labels can include, e.g., radioactive labels as well as peptide or other tags that can be recognized by detection reagents such as antibodies.

[140] Immunoassays in the competitive binding format can be used for cross-reactivity determinations. For example, the protein encoded by the sequences described herein can be immobilized on a solid support. Proteins are added to the assay and compete

with the binding of the antisera to the immobilized antigen. The ability of the above proteins to compete with the binding of the antisera to the immobilized protein is compared to that of the protein encoded by any of the sequences described herein. The percent cross-reactivity for the above proteins is calculated, using standard calculations. Those antisera with less than 5 10% cross-reactivity with each of the proteins listed above are selected and pooled. The cross-reacting antibodies are optionally removed from the pooled antisera by immunoabsorption with the considered proteins, e.g., distantly related homologs.

[141] The immunoabsorbed and pooled antisera are then used in a competitive binding immunoassay as described above to compare a second protein, thought 10 to be perhaps a protein of the present invention, to the immunogen protein. In order to make this comparison, the two proteins are each assayed at a wide range of concentrations and the amount of each protein required to inhibit 50% of the binding of the antisera to the immobilized protein is determined. If the amount of the second protein required is less than 10 times the amount of the protein partially encoded by a sequence herein that is required, 15 then the second protein is said to specifically bind to an antibody generated to an immunogen consisting of the target protein.

3. Other Assay Formats

[142] In some embodiments, western blot (immunoblot) analysis is used to detect and quantify the presence of a polypeptide of the invention in the sample. The 20 technique generally comprises separating sample proteins by gel electrophoresis on the basis of molecular weight, transferring the separated proteins to a suitable solid support (such as, e.g., a nitrocellulose filter, a nylon filter, or a derivatized nylon filter) and incubating the sample with the antibodies that specifically bind the protein of interest. For example, antibodies are selected that specifically bind to the polypeptides of the invention on the solid 25 support. These antibodies may be directly labeled or alternatively may be subsequently detected using labeled antibodies (e.g., labeled sheep anti-mouse antibodies) that specifically bind to the antibodies against the protein of interest.

[143] Other assay formats include liposome immunoassays (LIA), which use 30 liposomes designed to bind specific molecules (e.g., antibodies) and release encapsulated reagents or markers. The released chemicals are then detected according to standard techniques (see, Monroe *et al.* (1986) *Amer. Clin. Prod. Rev.* 5:34-41).

4. Labels

[144] The particular label or detectable group used in the assay is not a critical aspect of the invention, as long as it does not significantly interfere with the specific

binding of the antibody used in the assay. The detectable group can be any material having a detectable physical or chemical property. Such detectable labels have been well-developed in the field of immunoassays and, in general, most labels useful in such methods can be applied to the present invention. Thus, a label is any composition detectable by spectroscopic, 5 photochemical, biochemical, immunochemical, electrical, optical or chemical means. Useful labels in the present invention include magnetic beads (e.g., DynabeadsTM), fluorescent dyes (e.g., fluorescein isothiocyanate, Texas red, rhodamine, and the like), radiolabels (e.g., ³H, ¹²⁵I, ³⁵S, ¹⁴C, or ³²P), enzymes (e.g., horse radish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and colorimetric labels such as colloidal gold or colored glass 10 or plastic (e.g., polystyrene, polypropylene, latex, etc.) beads.

[145] The label may be coupled directly or indirectly to the desired component of the assay according to methods well known in the art. As indicated above, a wide variety of labels may be used, with the choice of label depending on the sensitivity required, the ease of conjugation with the compound, stability requirements, available 15 instrumentation, and disposal provisions.

[146] Non-radioactive labels are often attached by indirect means. The molecules can also be conjugated directly to signal generating compounds, e.g., by conjugation with an enzyme or fluorescent compound. A variety of enzymes and fluorescent compounds can be used with the methods of the present invention and are well-known to 20 those of skill in the art (for a review of various labeling or signal producing systems which may be used, see, e.g., U.S. Patent No. 4,391,904).

[147] Means of detecting labels are well known to those of skill in the art. Thus, for example, where the label is a radioactive label, means for detection include a scintillation counter or photographic film as in autoradiography. Where the label is a 25 fluorescent label, it may be detected by exciting the fluorochrome with the appropriate wavelength of light and detecting the resulting fluorescence. The fluorescence may be detected visually, by means of photographic film, by the use of electronic detectors such as charge coupled devices (CCDs) or photomultipliers and the like. Similarly, enzymatic labels may be detected by providing the appropriate substrates for the enzyme and detecting the 30 resulting reaction product. Finally simple colorimetric labels may be detected directly by observing the color associated with the label. Thus, in various dipstick assays, conjugated gold often appears pink, while various conjugated beads appear the color of the bead.

[148] Some assay formats do not require the use of labeled components. For instance, agglutination assays can be used to detect the presence of the target antibodies. In

this case, antigen-coated particles are agglutinated by samples comprising the target antibodies. In this format, none of the components need to be labeled and the presence of the target antibody is detected by simple visual inspection.

VI. IDENTIFICATION OF MODULATORS OF POLYPEPTIDES OF THE INVENTION

[149] Modulators of a polypeptide of the invention, i.e. agonists or antagonists of a polypeptide's activity, or polypeptide's or polynucleotide's expression or full-length polypeptides of the invention or fragments thereof, are useful for treating a number of human diseases, including diabetes or obesity. For example, administration of modulators can be used to treat diabetic patients or prediabetic individuals to prevent progression, and therefore symptoms, associated with diabetes (including insulin resistance). Modulators of the invention can also be used to reduce obesity as well as the various diseases associated with obesity (e.g., gallbladder disease, cancer, sleep apnea, atherosclerosis, diabetes, and hypertension). In some cases, the modulators of the invention are used to regulate body physiology to reduce the chance of obesity-related diseases. For example, the modulators can be used to regulate serum lipids (total cholesterol, low-density lipoprotein (LDL), cholesterol, LDL/high density lipoprotein ratio and triglycerides).

A. Agents that Modulate Polypeptides of the Invention

[150] The agents tested as modulators of polypeptides of the invention can be any small chemical compound, or a biological entity, such as a protein, sugar, nucleic acid or lipid. Essentially any chemical compound can be used as a potential modulator or ligand in the assays of the invention, although most often compounds that can be dissolved in aqueous or organic (especially DMSO-based) solutions are used. Modulators include agents designed to reduce the level of mRNA encoding a polypeptide of the invention (e.g. antisense molecules, ribozymes, DNAzymes, small inhibitory RNAs and the like) or the level of translation from an mRNA (e.g., translation blockers such as antisense molecules that are complementary to translation start or other sequences on an mRNA molecule). Modulators of the invention also include antibodies that specifically bind to and/or inhibit or activate the polypeptides of the invention. Other modulators include the polypeptides of the invention themselves, fragments thereof, or fusion proteins comprising the polypeptides or fragments thereof (e.g., in some embodiments, comprising at least 25, 50, or 100 amino acids of the polypeptide). For polypeptides of the invention that are receptors, soluble fragments of the polypeptides (i.e., lacking a transmembrane domain) can act as modulators of polypeptide

signaling activity. For polypeptides of the invention that are secreted, both full length and fragments with biological activity can act as modulators. It will be appreciated that there are many suppliers of chemical compounds, including Sigma (St. Louis, MO), Aldrich (St. Louis, MO), Sigma-Aldrich (St. Louis, MO), Fluka Chemika-Biochemica Analytika (Buchs, Switzerland) and the like.

[151] In some embodiments, high throughput screening methods involve providing a combinatorial chemical or peptide library containing a large number of potential therapeutic compounds (potential modulator compounds). Such "combinatorial chemical libraries" or "ligand libraries" are then screened in one or more assays, as described herein, to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional "lead compounds" or can themselves be used as potential or actual therapeutics.

[152] A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis, by combining a number of chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library such as a polypeptide library is formed by combining a set of chemical building blocks (amino acids) in every possible way for a given compound length (*i.e.*, the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks.

[153] Preparation and screening of combinatorial chemical libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (*see, e.g.*, U.S. Patent 5,010,175, Furka, *Int. J. Pept. Prot. Res.* 37:487-493 (1991) and Houghton *et al.*, *Nature* 354:84-88 (1991)). Other chemistries for generating chemical diversity libraries can also be used. Such chemistries include, but are not limited to: peptoids (*e.g.*, PCT Publication No. WO 91/19735), encoded peptides (*e.g.*, PCT Publication WO 93/20242), random bio-oligomers (*e.g.*, PCT Publication No. WO 92/00091), benzodiazepines (*e.g.*, U.S. Pat. No. 5,288,514), diversomers such as hydantoins, benzodiazepines and dipeptides (Hobbs *et al.*, *Proc. Nat. Acad. Sci. USA* 90:6909-6913 (1993)), vinylogous polypeptides (Hagihara *et al.*, *J. Amer. Chem. Soc.* 114:6568 (1992)), nonpeptidal peptidomimetics with glucose scaffolding (Hirschmann *et al.*, *J. Amer. Chem. Soc.* 114:9217-9218 (1992)), analogous organic syntheses of small compound libraries (Chen *et al.*, *J. Amer. Chem. Soc.* 116:2661 (1994)), oligocarbamates (Cho *et al.*, *Science* 261:1303 (1993)), and/or peptidyl phosphonates (Campbell *et al.*, *J. Org. Chem.* 59:658 (1994)), nucleic acid libraries (*see* Ausubel, Berger and Sambrook, all *supra*), peptide nucleic acid

libraries (see, e.g., U.S. Patent 5,539,083), antibody libraries (see, e.g., Vaughn *et al.*, *Nature Biotechnology*, 14(3):309-314 (1996) and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang *et al.*, *Science*, 274:1520-1522 (1996) and U.S. Patent 5,593,853), small organic molecule libraries (see, e.g., benzodiazepines, Baum C&EN, Jan 18, page 33 (1993); 5 isoprenoids, U.S. Patent 5,569,588; thiazolidinones and metathiazanones, U.S. Patent 5,549,974; pyrrolidines, U.S. Patents 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent 5,506,337; benzodiazepines, 5,288,514, and the like).

[154] Devices for the preparation of combinatorial libraries are commercially available (see, e.g., 357 MPS, 390 MPS, Advanced Chem Tech, Louisville KY, Symphony, 10 Rainin, Woburn, MA, 433A Applied Biosystems, Foster City, CA, 9050 Plus, Millipore, Bedford, MA). In addition, numerous combinatorial libraries are themselves commercially available (see, e.g., ComGenex, Princeton, N.J., Tripos, Inc., St. Louis, MO, 3D Pharmaceuticals, Exton, PA, Martek Biosciences, Columbia, MD, etc.).

15 **B. Methods of Screening for Modulators of the Polypeptides of the Invention**

[155] A number of different screening protocols can be utilized to identify agents that modulate the level of expression or activity of a polynucleotide of a polypeptide of the invention in cells, particularly mammalian cells, and especially human cells. In general terms, the screening methods involve screening a plurality of agents to identify an 20 agent that modulates the activity of a polypeptide of the invention by, e.g., binding to the polypeptide, preventing an inhibitor or activator from binding to the polypeptide, increasing association of an inhibitor or activator with the polypeptide, or activating or inhibiting expression of the polypeptide. The assays can be designed to screen large chemical libraries by automating the assay steps and providing compounds from any convenient source to 25 assays, which are typically run in parallel (e.g., in microtiter formats on microtiter plates in robotic assays).

[156] Any cell expressing a full-length polypeptide of the invention or a fragment thereof can be used to identify modulators. In some embodiments, the cells are eukaryotic cells lines (e.g., CHO or HEK293) transformed to express a heterologous 30 polypeptide of the invention. In some embodiments, a cell expressing an endogenous polypeptide of the invention is used in screens. In other embodiments, modulators are screened for their ability to affect insulin responses. In other embodiments, modulators are screened for their ability to effect body weight (as measured by BMI or waist-to-hip ratio)

and secretion of a variety of obesity markers (e.g., leptin, IL-6 or TNF alpha). In other embodiments, modulators are screened for their ability to effect lipid metabolism. In other embodiments, modulators are screened for their ability to effect the secretion and activity of adipogenic factors.

5 [157] In some embodiments, modulators of ADLICAN comprising the amino acid sequence of SEQ ID NO: 2, 4, or 6, may be identified using, e.g., modulator binding assays, expression assays or promoter-reporter assays.

10 [158] In some embodiments, modulators of ALDH1A3 comprising the amino acid sequence of SEQ ID NO: 8, 10, or 12, may be identified using, e.g., modulator binding assays, expression assays, promoter-reporter assays, or assays based on the retinoic acid production.

15 [159] In some embodiments, modulators of ALK7 comprising the amino acid sequence of SEQ ID NO: 14, 16, or 18, may be identified using, e.g., expression assays, promoter-reporter assays, modulator binding assays or kinase assays based on Smad2 phosphorylation. Kinase assays can be carried out after contacting either purified recombinant ALK7 protein, or an intact cell with the modulator. Modulators which bind to the ALK7 can be screened by a ligand binding assay method using e.g. nodal as the ligand.

20 [160] In some embodiments, modulators of C3AR1 comprising the amino acid sequence of SEQ ID NO: 20, 22, or 24, may be identified using, e.g., the expression assays, promoter-reporter assays, binding assays, or screening methods that monitor modulator-induced fluctuation of intracellular Ca^{++} concentration. Modulators which bind to the C3AR1 can be screened by a ligand binding assay method using e.g. complement anaphylatoxin C3a as the ligand.

25 [161] In some embodiments, modulators of CALCRL comprising the amino acid sequence of SEQ ID NO: 26, 28, or 30, may be identified using, e.g., expression assays, promoter-reporter assays, modulator binding assays, or screening methods that monitor modulator-induced fluctuation of intracellular cAMP concentration. Modulators which bind to the CALCRL can be screened by a ligand binding assay method using, e.g., adrenomedullin or calcitonin gene related peptide as ligands.

30 [162] In some embodiments, modulators of CCL13 comprising the amino acid sequence of SEQ ID NO: 32, 33, 35, or 37, may be identified using, e.g., expression assays promoter-reporter assays, modulator binding assays, or screening methods that monitor modulator-induced fluctuation of intracellular Ca^{++} concentration. Modulators

which bind to the CCL13 can be screened by a ligand binding assay method using, e.g., CCR1 or other C-C G-protein coupled receptors known to bind to CCL13.

[163] In some embodiments, modulators of CCL8 comprising the amino acid sequence of SEQ ID NO: 39, 40, 42, or 44, may be identified using, e.g., expression assays, promoter-reporter assays, modulator binding assays, or screening methods that monitor modulator-induced fluctuation of intracellular Ca⁺⁺ concentration. Modulators which bind to the CCL8 can be screened by a ligand binding assay method using, e.g., CCR1 or other C-C G-protein coupled receptors known to bind to CCL8.

[164] In some embodiments, modulators of CHI3L1 comprising the amino acid sequence of SEQ ID NO: 46, 47, 49, or 51, may be identified using, e.g., expression assays, promoter-reporter assays, modulator binding assays, or screening methods that monitor modulator-induced fluctuation of phosphorylation and activity of MAPK and/or AKT (see, e.g., Recklies, A.D. *et al.*, *Biochem J.* 365:119-26 (2002)).

[165] In some embodiments, modulators of CR1 comprising the amino acid sequence of SEQ ID NO: 53 or 55, may be identified using, e.g., expression assays, promoter-reporter assays, or modulator binding assays. Modulators which bind to the CR1 can be screened by a ligand binding assay method using, e.g., complement component C3b as ligand.

[166] In some embodiments, modulators of CSFR1 comprising the amino acid sequence of SEQ ID NO: 57, 59 or 61, may be identified using, e.g., expression assays, promoter-reporter assays, modulator binding assays or activity assays. Kinase assays can be carried out after contacting either purified recombinant CSFR1 protein or an intact cell with modulators. Modulators which bind to the CSFR1 can be screened by a ligand binding assay method using e.g. colony stimulating factor as ligand.

[167] In some embodiments, modulators of CTSK comprising the amino acid sequence of SEQ ID NO: 63, 64, 66 or 68, may be identified using, e.g., expression assays, promoter-reporter assays, modulator binding assays, or enzyme assays. Enzyme assays can be carried out after contacting either purified recombinant CTSK protein, or an intact cell with a modulator using e.g. fibrinogen as a substrate.

[168] In some embodiments, modulators of CXCR4 comprising the amino acid sequence of SEQ ID NO: 70, 72 or 74, may be identified using, e.g., expression assays, promoter-reporter assays, modulator binding assays, or screening methods that monitor modulator-induced fluctuation of intracellular Ca⁺⁺ concentration or phosphorylation and

activity of MAPK and/or AKT. Modulators which bind to the CXCR4 can be screened by a ligand binding assay method using e.g. CXCL12 as a ligand.

[169] In some embodiments, modulators of DDAH2 comprising the amino acid sequence of SEQ ID NO: 76, 78 or 80, may be identified using, e.g., expression assays, 5 promoter-reporter assays, modulator binding assays, or activity assays. Modulators which effect DDAH2 activity can be screened by measuring the conversion of ADMA to citrulline and methylamines.

[170] In some embodiments, modulators of DERP7 comprising the amino acid sequence of SEQ ID NO: 82, 84 or 86, may be identified using, e.g., expression assays, 10 modulator binding assays, or promoter-reporter assays.

[171] In some embodiments, modulators of ENDOGlyX1 comprising the amino acid sequence of SEQ ID NO: 88, 90 or 92, may be identified using, e.g., expression assays, modulator binding assays, promoter-reporter or activity assays based on angiogenesis (see, e.g., Christian, S. et al., *J. Biol. Chem.* 276: 48588-48595 (2001)).

15 [172] In some embodiments, modulators of ETL comprising the amino acid sequence of SEQ ID NO: 94, 96 or 98, may be identified using, e.g., expression assays, promoter-reporter assays, modulator binding assays, or assays based on a G-protein coupled receptor activity.

20 [173] In some embodiments, modulators of FLJ12389 comprising the amino acid sequence of SEQ ID NO: 100, 102, 104, 106 or 108, may be identified using, e.g., expression assays, promoter-reporter assays, modulator binding assays, or assays based on an AMP binding or an acetoacetate-CoA ligase activity.

25 [174] In some embodiments, modulators of FZD4 comprising the amino acid sequence of SEQ ID NO: 110, 112, 114 or 116, may be identified using, e.g., expression assays, promoter-reporter assays or modulator binding assays. Modulators which bind to the FZD4 can be screened by a ligand binding assay method using e.g. norrin as a ligand.

30 [175] In some embodiments, modulators of GLIPR1 comprising the amino acid sequence of SEQ ID NO: 118, 120 or 122, may be identified using, e.g., expression assays, promoter-reporter assays, modulator binding assays, or activity assays based on an induction of apoptosis.

[176] In some embodiments, modulators of GPR105 comprising the amino acid sequence of SEQ ID NO: 124, 126 or 128, may be identified using, e.g., expression assays, promoter-reporter assays, modulator binding assays, or screening methods that monitor modulator-induced fluctuation of intracellular Ca⁺⁺ concentration. Modulators

which bind to the GPR105 can be screened by a ligand binding assay method using, e.g., UDP-glucose as ligand.

[177] In some embodiments, modulators of GPR146 comprising the amino acid sequence of SEQ ID NO: 130, 132 or 134, may be identified using, e.g., expression assays, promoter-reporter assays, modulator binding assays, or assays based on a G-protein coupled receptor activity.

[178] In some embodiments, modulators of GPR30 comprising the amino acid sequence of SEQ ID NO: 136, 138 or 140, may be identified using, e.g., expression assays, promoter-reporter assays, modulator binding assays, or screening methods that monitor modulator-induced fluctuation of intracellular cAMP concentration or phosphorylation and activity of MAPK.

[179] In some embodiments, modulators of GPR65 comprising the amino acid sequence of SEQ ID NO: 142, 144 or 146, may be identified using, e.g., expression assays, promoter-reporter assays or modulator binding assays. Modulators which bind to the GPR65 can be screened by a ligand binding assay method using, e.g., psychosine as ligand.

[180] In some embodiments, modulators of HTR2B comprising the amino acid sequence of SEQ ID NO: 148, 150 or 152, may be identified using, e.g., expression assays, promoter-reporter assays or modulator binding assays. Modulators which bind to the HTR2B can be screened by a ligand binding assay method using, e.g., serotonin as ligand.

Assays detecting phosphoinositide phospholipase C activity can be used.

[181] In some embodiments, modulators of ITGB2 comprising the amino acid sequence of SEQ ID NO: 154, 156 or 158, may be identified using, e.g., expression assays, promoter-reporter assays or modulator binding assays. Modulators which bind to the ITGB2 can be screened by a ligand binding assay method using, e.g., ITG alpha chain protein.

[182] In some embodiments, modulators of ITIH5 comprising the amino acid sequence of SEQ ID NO: 160, 161 or 163, may be identified using, e.g., expression assays, promoter-reporter assays, or modulator binding assays.

[183] In some embodiments, modulators of LGALS12 comprising the amino acid sequence of SEQ ID NO: 165, 167, 169, 171, 173, 175, 177 or 179, may be identified using, e.g., expression assays, promoter-reporter assays, modulator binding assays, or screening methods that monitor modulator-induced fluctuation in apoptosis.

[184] In some embodiments, modulators of NMB comprising the amino acid sequence of SEQ ID NO: 181, 182, 184 or 186, may be identified using, e.g., expression assays, promoter-reporter assays, modulator binding assays, screening methods that monitor

modulator-induced fluctuation of intracellular Ca⁺⁺ concentration or binding assays.

Modulators which bind to the NMB can be screened by a ligand binding assay method using e.g. NMBR.

[185] In some embodiments, modulators of NNAT comprising the amino acid sequence of SEQ ID NO: 188, 190, 192 or 194, may be identified using, e.g., expression assays, promoter-reporter assays, modulator binding assays.

[186] In some embodiments, modulators of OLFM2 comprising the amino acid sequence of SEQ ID NO: 196, 197, 199 or 201, may be identified using, e.g., expression assays, promoter-reporter assays, or modulator binding assays.

[187] In some embodiments, modulators of OPN3 comprising the amino acid sequence of SEQ ID NO: 203, 205, 207, 209 or 211, may be identified using, e.g., expression assays, promoter-reporter assays, or modulator binding assays.

[188] In some embodiments, modulators of PTPRE comprising the amino acid sequence of SEQ ID NO: 213, 215, 217, 219 or 221, may be identified using, e.g., expression assays, promoter-reporter assays, modulator binding assays, or screening assays based on a receptor protein tyrosine phosphatase activity or phosphorylation and activity of MAPK.

[189] In some embodiments, modulators of RDC1 comprising the amino acid sequence of SEQ ID NO: 223, 225 or 227, may be identified using, e.g., expression assays, promoter-reporter assays, or modulator binding assays.

[190] In some embodiments, modulators of SLIT2 comprising the amino acid sequence of SEQ ID NO: 229, 230, 232 or 234, may be identified using, e.g., expression assays, promoter-reporter assays or modulator binding assays. Modulators which bind to the SLIT2 can be screened by a ligand binding assay method using, e.g., roundabout receptor ROBO1.

[191] In some embodiments, modulators of TNFRSF21 comprising the amino acid sequence of SEQ ID NO: 236, 238 or 240, may be identified using, e.g., expression assays, promoter-reporter assays, modulator binding assays, or screening methods that monitor modulator-induced fluctuation in apoptosis and activation of both NF-kappaB and JNK.

[192] In some embodiments, modulators of TNFSF13B comprising the amino acid sequence of SEQ ID NO: 242, 243, 245, 247 or 249, may be identified using, e.g., expression assays, promoter-reporter assays, modulator binding assays based on a receptor

activity using e.g. TNFRSF13b, TNFRSF13c or TNFRSF17 or screening methods that monitor modulator-induced fluctuation in activation of NF-kappaB.

[193] In some embodiments, modulators of TNFSF14 comprising the amino acid sequence of SEQ ID NO: 251, 252, 254, 256, 258 or 260, may be identified using, e.g., expression assays, promoter-reporter assays, or modulator binding assays based on a receptor activity using e.g. TNFRSF14.

[194] In some embodiments, modulators of TPSB2 comprising the amino acid sequence of SEQ ID NO: 262, 263, 265 or 267, may be identified using, e.g., expression assays, promoter-reporter assays, modulator binding assays, or screening methods that monitor modulator-induced fluctuation in serine-type peptidase activity.

[195] In some embodiments, modulators of WISP2 comprising the amino acid sequence of SEQ ID NO: 269, 270, 272 or 274, may be identified using, e.g., expression assays, promoter-reporter assays, modulator binding assays, or screening methods that monitor modulator-induced fluctuation in proliferative rate of vascular smooth muscle cells.

15

1. Polypeptide Binding Assays

[196] Preliminary screens can be conducted by screening for agents capable of binding to polypeptides of the invention, as at least some of the agents so identified are likely modulators of a polypeptide of the invention. Binding assays are also useful, e.g., for identifying endogenous proteins that interact with polypeptides of the invention. For example, antibodies, receptors or other molecules that bind polypeptides of the invention can be identified in binding assays.

[197] Binding assays usually involve contacting a polypeptide of the invention with one or more test agents and allowing sufficient time for the protein and test agents to form a binding complex. Any binding complexes formed can be detected using any of a number of established analytical techniques. Protein binding assays include, but are not limited to, methods that measure co-precipitation or co-migration on non-denaturing SDS-polyacrylamide gels, and co-migration on Western blots (see, e.g., Bennet, J.P. and Yamamura, H.I. (1985) 'Neurotransmitter, Hormone or Drug Receptor Binding Methods,' in *Neurotransmitter Receptor Binding* (Yamamura, H. I., et al., eds.), pp. 61-89. Other binding assays involve the use of mass spectrometry or NMR techniques to identify molecules bound to a polypeptide of the invention or displacement of labeled substrates. The polypeptides of the invention utilized in such assays can be naturally expressed, cloned or synthesized.

[198] In addition, mammalian or yeast two-hybrid approaches (see, e.g., Bartel, P.L. et. al. *Methods Enzymol.*, 254:241 (1995)) can be used to identify polypeptides or other molecules that interact or bind when expressed together in a host cell.

5 2. Polypeptide Activity

[199] The activity of polypeptides of the invention can be assessed using a variety of *in vitro* and *in vivo* assays to determine functional, chemical, and physical effects, e.g., measuring ligand binding (e.g., radioactive or otherwise labeled ligand binding), second messengers (e.g., cAMP, cGMP, IP₃, DAG, or Ca²⁺), ion flux, phosphorylation levels, transcription levels, and the like. Measurement of such functional, chemical and/or physical effects may be direct (e.g., directly detecting calcium flux) or indirect (e.g., detecting changes in expression or activity of gene products that are known to be modulated by the effects such as calcium flux or others listed above). Furthermore, such assays can be used to test for inhibitors and activators of the polypeptides of the invention. Modulators can also be 10 genetically altered versions of polypeptides of the invention.

15

[200] The polypeptide of the assay will be selected from a polypeptide with substantial identity to a sequence of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44, 46, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 20 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 182, 184, 186, 188, 190, 192, 194, 196, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 230, 232, 234, 236, 238, 240, 242, 243, 245, 247, 249, 251, 252, 254, 256, 258, 260, 262, 263, 265, 267, 269, 270, 272, 274 or other conservatively modified variants thereof.

25 Generally, the amino acid sequence identity will be at least 70%, optionally at least 85%, optionally at least 90, or optionally at least 95% to the polypeptides exemplified herein. Optionally, the polypeptide of the assays will comprise a fragment of a polypeptide of the invention, such as an extracellular domain, transmembrane domain, cytoplasmic domain, ligand binding domain, subunit association domain, active site, and the like. Either a 30 polypeptide of the invention or a domain thereof can be covalently linked to a heterologous protein to create a chimeric protein used in the assays described herein.

[201] Modulators of polypeptide activity are tested using either recombinant or naturally occurring polypeptides of the invention. The protein can be isolated, expressed in a cell, expressed in a membrane derived from a cell, expressed in tissue or in an animal,

either recombinant or naturally occurring. For example, tissue slices, dissociated cells, e.g., from tissues expressing polypeptides of the invention, transformed cells, or membranes can be used. Modulation is tested using one of the *in vitro* or *in vivo* assays described herein.

[202] Modulator binding to polypeptides of the invention, a domain, or chimeric protein can be tested in solution, in a bilayer membrane, attached to a solid phase, in a lipid monolayer, or in vesicles. Binding of a modulator can be tested using, e.g., changes in spectroscopic characteristics (e.g., fluorescence, absorbance, refractive index), hydrodynamic (e.g., shape), chromatographic, or solubility properties.

[203] Samples or assays that are treated with a potential modulator (e.g., a "test compound") are compared to control samples without the test compound, to examine the extent of modulation. Control samples (untreated with activators or inhibitors) are assigned a relative activity value of 100. Inhibition of the polypeptides of the invention is achieved when the activity value relative to the control is about 90%, optionally 50%, optionally 25-0%. Activation of the polypeptides of the invention is achieved when the activity value relative to the control is 110%, optionally 150%, 200%, 300%, 400%, 500%, or 1000-2000%.

3. Expression Assays

[204] Screening for a compound that modulates the expression of a polynucleotide or a polypeptide of the invention is also provided. Screening methods generally involve conducting cell-based assays in which test compounds are contacted with one or more cells expressing a polynucleotide or a polypeptide of the invention, and then detecting an increase or decrease in expression (either transcript or translation product). Assays can be performed with any cells that express a polynucleotide or a polypeptide of the invention.

[205] Expression can be detected in a number of different ways. As described *infra*, the expression level of a polynucleotide of the invention in a cell can be determined by probing the mRNA expressed in a cell with a probe that specifically hybridizes with a transcript (or complementary nucleic acid derived there from) of a polynucleotide of the invention. Probing can be conducted by lysing the cells and conducting Northern blots or without lysing the cells using *in situ*-hybridization techniques. Alternatively, a polypeptide of the invention can be detected using immunological methods in which a cell lysate is probed with antibodies that specifically bind to the polypeptide.

[206] Promoter-reporter assays can be carried out using mammalian cells transfected with a reporter gene operably linked to sequences derived from the promoter

regions of genes encoding the polypeptides of the invention. The increased or decreased expression of the reporter gene can be detected in the presence and absence of the modulator. Expression of reporter genes may be detected by hybridization to a complementary nucleic acid, by using an immunological reagent, by assaying for an activity of the reporter gene 5 product, or other methods known to those in the art .

[207] The level of expression or activity of a polynucleotide or a polypeptide of the invention can be compared to a baseline value. The baseline value can be a value for a control sample or a statistical value that is representative of expression levels of a polynucleotide or a polypeptide of the invention for a control population (e.g., lean 10 individuals as described herein) or cells (e.g., tissue culture cells not exposed to a modulator). Expression levels can also be determined for cells that do not express the polynucleotide or a polypeptide of the invention as a negative control. Such cells generally are otherwise substantially genetically the same as the test cells.

[208] A variety of different types of cells can be utilized in the reporter 15 assays. Cells that do not endogenously express a polypeptide of the invention can be prokaryotic, but are preferably eukaryotic. The eukaryotic cells can be any of the cells typically utilized in generating cells that harbor recombinant nucleic acid constructs. Exemplary eukaryotic cells include, but are not limited to, yeast, and various higher eukaryotic cells such as the HEK293, HepG2, COS, CHO and HeLa cell lines.

20 [209] Various controls can be conducted to ensure that an observed activity is authentic including running parallel reactions with cells that lack the reporter construct or by not contacting a cell harboring the reporter construct with test compound. Compounds can also be further validated as described below.

25 4. Validation

[210] Agents that are initially identified by any of the foregoing screening methods can be further tested to validate the apparent activity. Alternatively, potential modulators can be tested initially using the foregoing validation assays without preliminary screening.

30 [211] Modulators that are selected for further study can be tested for anti-diabetic effects using the "classic" insulin responsive cell line, mouse 3T3-L1 adipocytes, muscle cells such as L6 cells and the like. Cells (e.g., adipocytes or muscle cells) are pre-incubated with the modulators and tested for acute (up to 4 hours) and chronic (overnight) effects on basal and insulin-stimulated GLUT4 translocation and glucose uptake.

[212] Modulators that are selected for further study can be tested for anti-obesity effects using any adipocyte or adipogenic cell, e.g., mouse cell line 3T3-L1 adipocytes, freshly isolated rodent or human adipocytes, undifferentiated adipogenic cells and the like. Cells (e.g., adipocytes cells) are pre-incubated with the modulators and tested for acute (up to 4 hours) and chronic (overnight or longer) effects on basal and insulin-stimulated release of adipogenic factors, adipocyte cell size, leptin and TNF alpha release, and/or lipid metabolism. Undifferentiated adipogenic cells can be pre-incubated with the modulators and tested for effects on differentiation into adipocytes (including changes in differentiation markers) and/or triglyceride accumulation.

[213] The response of this increase in body weight can be determined at an organismal, tissue or cellular level. For example, increased fasting blood leptin levels are indicative of obesity. Other methods of measuring obesity include, e.g., calculation of BMI, waist-to-hip ratio, total body fat, measuring the blood levels of a variety of secreted proteins which have been shown to correlate to obesity (IL-6, TNF alpha) and measuring the fasted blood levels of free fatty acids.

[214] Following such studies, validity of the modulators is tested in suitable animal models. The basic format of such methods involves administering a lead compound identified during an initial screen to an animal that serves as a model for humans and then determining if expression of activity of a polypeptide of the invention is in fact modulated.

[215] The effect of the compound will be assessed in either obese animals, diabetic animals or in diet induced insulin resistant animals. The body weight loss, blood glucose and insulin levels will be determined. The animal models utilized in validation studies generally are mammals of any kind. Specific examples of suitable animals include, but are not limited to, primates, mice and rats. Monogenic models of diabetes (e.g., ob/ob and db/db mice, Zucker rats and Zucker Diabetic Fatty rats, etc.) or polygenic models of diabetes (e.g., OLETF rats, GK rats, NSY mice, and KK mice) can be useful for validating modulation of a polypeptide of the invention in a diabetic or insulin resistant animal. In addition, transgenic animals expressing human polypeptides of the invention can be used to further validate drug candidates.

[216] Monogenic models of obesity (e.g., OLETF, tubby, mahogany, agouti, ob/ob and db/db mice etc) or polygenic models of obesity (e.g., high fat diet-induced obese animals, NZO mice, KK mice, Wellesley mice, GK rats, etc.) can be useful for validating modulation of a polypeptide of the invention in an obese animal. The most widely used criteria for assessing the efficacy of anti-obesity treatments are those from the FDA. The

FDA defines a body weight loss of >5% as statistically significant compared to placebo. However, it will be appreciated that any detectable change in body weight following administration of a modulator of the invention can be considered a relevant result.

5 C. Solid Phase and Soluble High Throughput Assays

[217] In the high throughput assays of the invention, it is possible to screen up to several thousand different modulators or ligands in a single day. In particular, each well of a microtiter plate can be used to run a separate assay against a selected potential modulator, or, if concentration or incubation time effects are to be observed, every 5-10 wells 10 can test a single modulator. Thus, a single standard microtiter plate can assay about 100 (e.g., 96) modulators. If 1536 well plates are used, then a single plate can easily assay from about 100 to about 1500 different compounds. It is possible to assay several different plates per day; assay screens for up to about 6,000-20,000 or more different compounds are possible 15 using the integrated systems of the invention. In addition, microfluidic approaches to reagent manipulation can be used.

[218] A molecule of interest (e.g., a polypeptide or polynucleotide of the invention, or a modulator thereof) can be bound to the solid-state component, directly or indirectly, via covalent or non-covalent linkage, e.g., via a tag. The tag can be any of a variety of components. In general, a molecule that binds the tag (a tag binder) is fixed to a 20 solid support, and the tagged molecule of interest is attached to the solid support by interaction of the tag and the tag binder.

[219] A number of tags and tag binders can be used, based upon known molecular interactions well described in the literature. For example, where a tag has a natural binder, for example, biotin, protein A, or protein G, it can be used in conjunction with 25 appropriate tag binders (avidin, streptavidin, neutravidin, the Fc region of an immunoglobulin, poly-His, etc.) Antibodies to molecules with natural binders such as biotin are also widely available and appropriate tag binders (see, SIGMA Immunochemicals 1998 catalogue SIGMA, St. Louis MO).

[220] Similarly, any haptenic or antigenic compound can be used in 30 combination with an appropriate antibody to form a tag/tag binder pair. Thousands of specific antibodies are commercially available and many additional antibodies are described in the literature. For example, in one common configuration, the tag is a first antibody and the tag binder is a second antibody that recognizes the first antibody. In addition to antibody-

antigen interactions, receptor-ligand interactions are also appropriate as tag and tag-binder pairs, such as agonists and antagonists of cell membrane receptors (e.g., cell receptor-ligand interactions such as transferrin, c-kit, viral receptor ligands, cytokine receptors, chemokine receptors, interleukin receptors, immunoglobulin receptors and antibodies, the cadherin family, the integrin family, the selectin family, and the like; see, e.g., Pigott & Power, *The Adhesion Molecule Facts Book I* (1993)). Similarly, toxins and venoms, viral epitopes, hormones (e.g., opiates, steroids, etc.), intracellular receptors (e.g., which mediate the effects of various small ligands, including steroids, thyroid hormone, retinoids and vitamin D; peptides), drugs, lectins, sugars, nucleic acids (both linear and cyclic polymer configurations), oligosaccharides, proteins, phospholipids and antibodies can all interact with various cell receptors.

[221] Synthetic polymers, such as polyurethanes, polyesters, polycarbonates, polyureas, polyamides, polyethyleneimines, polyarylene sulfides, polysiloxanes, polyimides, and polyacetates can also form an appropriate tag or tag binder. Many other tag/tag binder pairs are also useful in assay systems described herein, as would be apparent to one of skill upon review of this disclosure.

[222] Common linkers such as peptides, polyethers, and the like can also serve as tags, and include polypeptide sequences, such as poly-gly sequences of between about 5 and 200 amino acids. Such flexible linkers are known to those of skill in the art. For example, poly(ethylene glycol) linkers are available from Shearwater Polymers, Inc., Huntsville, Alabama. These linkers optionally have amide linkages, sulphydryl linkages, or heterofunctional linkages.

[223] Tag binders are fixed to solid substrates using any of a variety of methods currently available. Solid substrates are commonly derivatized or functionalized by exposing all or a portion of the substrate to a chemical reagent that fixes a chemical group to the surface that is reactive with a portion of the tag binder. For example, groups that are suitable for attachment to a longer chain portion would include amines, hydroxyl, thiol, and carboxyl groups. Aminoalkylsilanes and hydroxyalkylsilanes can be used to functionalize a variety of surfaces, such as glass surfaces. The construction of such solid phase biopolymer arrays is well described in the literature (see, e.g., Merrifield, *J. Am. Chem. Soc.* 85:2149-2154 (1963) (describing solid phase synthesis of, e.g., peptides); Geysen *et al.*, *J. Immun. Meth.* 102:259-274 (1987) (describing synthesis of solid phase components on pins); Frank and Doring, *Tetrahedron* 44:60316040 (1988) (describing synthesis of various peptide sequences on cellulose disks); Fodor *et al.*, *Science*, 251:767-777 (1991); Sheldon *et al.*,

Clinical Chemistry 39(4):718-719 (1993); and Kozal *et al.*, *Nature Medicine* 2(7):753759 (1996) (all describing arrays of biopolymers fixed to solid substrates). Non-chemical approaches for fixing tag binders to substrates include other common methods, such as heat, cross-linking by UV radiation, and the like.

5 [224] The invention provides *in vitro* assays for identifying, in a high throughput format, compounds that can modulate the expression or activity of a polypeptide of the invention. Control reactions that measure activity of a polypeptide of the invention in a cell in a reaction that does not include a potential modulator are optional, as the assays are highly uniform. Such optional control reactions are appropriate and increase the reliability of
10 the assay. Accordingly, in some embodiments, the methods of the invention include such a control reaction. For each of the assay formats described, "no modulator" control reactions that do not include a modulator provide a background level of binding activity.

[225] In some assays it will be desirable to have positive controls. At least two types of positive controls are appropriate. First, a known activator of a polypeptide or a
15 polynucleotide of the invention can be incubated with one sample of the assay, and the resulting increase in signal resulting from an increased expression level or activity of a polypeptide or a polynucleotide of the invention are determined according to the methods herein. Second, a known inhibitor of a polypeptide or a polynucleotide of the invention can be added, and the resulting decrease in signal for the expression or activity of a polypeptide
20 or a polynucleotide of the invention can be similarly detected. It will be appreciated that modulators can also be combined with activators or inhibitors to find modulators that inhibit the increase or decrease that is otherwise caused by the presence of the known modulator of a polypeptide or a polynucleotide of the invention.

VII. COMPOSITIONS, KITS AND INTEGRATED SYSTEMS

25 [226] The invention provides compositions, kits and integrated systems for practicing the assays described herein using nucleic acids or polypeptides of the invention, antibodies, etc.

[227] The invention provides assay compositions for use in solid phase assays; such compositions can include, for example, one or more nucleic acids encoding a
30 polypeptide of the invention immobilized on a solid support, and a labeling reagent. In each case, the assay compositions can also include additional reagents that are desirable for hybridization. Modulators of expression or activity of a polypeptide of the invention can also be included in the assay compositions.

[228] The invention also provides kits for carrying out the assays of the invention. The kits typically include a probe that comprises (1) an antibody that specifically binds to a polypeptide of the invention or (2) a polynucleotide sequence encoding at least a fragment of such polypeptides, and a label for detecting the presence of the probe. The kits 5 may include at least one polynucleotide sequence encoding a polypeptide of the invention. Kits can include any of the compositions noted above, and optionally further include additional components such as instructions to practice a high-throughput method of assaying for an effect on expression of the genes encoding a polypeptide of the invention, or on activity of a polypeptide of the invention, one or more containers or compartments (e.g., to 10 hold the probe, labels, or the like), a control modulator of the expression or activity of a polypeptide of the invention, a robotic armature for mixing kit components or the like.

[229] The invention also provides integrated systems for high-throughput screening of potential modulators for an effect on the expression or activity of a polypeptide of the invention. The systems can include a robotic armature which transfers fluid from a 15 source to a destination, a controller which controls the robotic armature, a label detector, a data storage unit which records label detection, and an assay component such as a microtiter dish comprising a well having a reaction mixture or a substrate comprising a fixed nucleic acid or immobilization moiety.

[230] A number of robotic fluid transfer systems are available, or can easily 20 be made from existing components. For example, a Zymate XP (Zymark Corporation; Hopkinton, MA) automated robot using a Microlab 2200 (Hamilton; Reno, NV) pipetting station can be used to transfer parallel samples to 96 well microtiter plates to set up several parallel simultaneous binding assays.

[231] Optical images viewed (and, optionally, recorded) by a camera or other 25 recording device (e.g., a photodiode and data storage device) are optionally further processed in any of the embodiments herein, e.g., by digitizing the image and storing and analyzing the image on a computer. A variety of commercially available peripheral equipment and software is available for digitizing, storing and analyzing a digitized video or digitized optical image.

[232] One conventional system carries light from the specimen field to a 30 cooled charge-coupled device (CCD) camera, in common use in the art. A CCD camera includes an array of picture elements (pixels). The light from the specimen is imaged on the CCD. Particular pixels corresponding to regions of the specimen (e.g., individual hybridization sites on an array of biological polymers) are sampled to obtain light intensity

readings for each position. Multiple pixels are processed in parallel to increase speed. The apparatus and methods of the invention are easily used for viewing any sample, e.g., by fluorescent or dark field microscopic techniques.

VIII. ADMINISTRATION AND PHARMACEUTICAL COMPOSITIONS

[233] Modulators of the polypeptides of the invention (e.g., antagonists or agonists including polypeptides of the invention, fragments thereof, or fusions comprising the polypeptides or fragments which have antagonist activity or an additive effect on overall polypeptide activity) can be administered directly to the mammalian subject (typically in need thereof due to a pre-diabetic, diabetic or obese condition) for modulation of activity of a polypeptide of the invention *in vivo*. Administration is by any of the routes normally used for introducing a modulator compound into ultimate contact with the tissue to be treated and is well known to those of skill in the art. Although more than one route can be used to administer a particular composition, a particular route can often provide a more immediate and more effective reaction than another route.

[234] The pharmaceutical compositions of the invention may comprise a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers are determined in part by the particular composition being administered, as well as by the particular method used to administer the composition. Accordingly, there are a wide variety of suitable formulations of pharmaceutical compositions of the present invention (see, e.g., *Remington's Pharmaceutical Sciences*, 17th ed. 1985)).

[235] The modulators (e.g., agonists or antagonists) of the expression or activity of a polypeptide of the invention, alone or in combination with other suitable components, can be prepared for injection or for use in a pump device. Pump devices (also known as "insulin pumps") are commonly used to administer insulin to patients and therefore can be easily adapted to include compositions of the present invention. Manufacturers of insulin pumps include Animas, Disetronic and MiniMed.

[236] The modulators (e.g., agonists or antagonists) of the expression or activity of a polypeptide of the invention, alone or in combination with other suitable components, can be made into aerosol formulations (*i.e.*, they can be "nebulized") to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like.

[237] Formulations suitable for administration include aqueous and non-aqueous solutions, isotonic sterile solutions, which can contain antioxidants, buffers,

bacteriostats, and solutes that render the formulation isotonic, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. In the practice of this invention, compositions can be administered, for example, orally, nasally, topically, intravenously, intraperitoneally, or 5 intrathecally. The formulations of compounds can be presented in unit-dose or multi-dose sealed containers, such as ampoules and vials. Solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described. The modulators can also be administered as part of a prepared food or drug.

[238] The dose administered to a patient, in the context of the present 10 invention should be sufficient to induce a beneficial response in the subject over time. The optimal dose level for any patient will depend on a variety of factors including the efficacy of the specific modulator employed, the age, body weight, physical activity, and diet of the patient, on a possible combination with other drugs, and on the severity of the case of diabetes. It is recommended that the daily dosage of the modulator be determined for each 15 individual patient by those skilled in the art in a similar way as for known insulin compositions. The size of the dose also will be determined by the existence, nature, and extent of any adverse side-effects that accompany the administration of a particular compound or vector in a particular subject.

[239] In determining the effective amount of the modulator to be 20 administered a physician may evaluate circulating plasma levels of the modulator, modulator toxicity, and the production of anti-modulator antibodies. In general, the dose equivalent of a modulator is from about 1 ng/kg to 10 mg/kg for a typical subject.

[240] For administration, modulators of the present invention can be 25 administered at a rate determined by the LD-50 of the modulator, and the side-effects of the modulator at various concentrations, as applied to the mass and overall health of the subject. Administration can be accomplished via single or divided doses.

[241] The compounds of the present invention can also be used effectively in combination with one or more additional active agents depending on the desired target therapy (see, e.g., Turner, N. et al. *Prog. Drug Res.* (1998) 51: 33-94; Haffner, S. *Diabetes Care* (1998) 21: 160-178; and DeFronzo, R. et al. (eds.), *Diabetes Reviews* (1997) Vol. 5 No. 30 4). A number of studies have investigated the benefits of combination therapies with oral agents (see, e.g., Mahler, R., *J. Clin. Endocrinol. Metab.* (1999) 84: 1165-71; United Kingdom Prospective Diabetes Study Group: UKPDS 28, *Diabetes Care* (1998) 21: 87-92; Bardin, C. W.,(ed.), *Current Therapy In Endocrinology And Metabolism*, 6th Edition (Mosby

- Year Book, Inc., St. Louis, MO 1997); Chiasson, J. et al., *Ann. Intern. Med.* (1994) 121: 928-935; Coniff, R. et al., *Clin. Ther.* (1997) 19: 16-26; Coniff, R. et al., *Am. J. Med.* (1995) 98: 443-451; and Iwamoto, Y. et al., *Diabet. Med.* (1996) 13 365-370; Kwiterovich, P. *Am. J. Cardiol* (1998) 82(12A): 3U-17U). These studies indicate that modulation of diabetes, 5 among other diseases, can be further improved by the addition of a second agent to the therapeutic regimen. Combination therapy includes administration of a single pharmaceutical dosage formulation that contains a modulator of the invention and one or more additional active agents, as well as administration of a modulator and each active agent in its own separate pharmaceutical dosage formulation. For example, a modulator and a 10 thiazolidinedione can be administered to the human subject together in a single oral dosage composition, such as a tablet or capsule, or each agent can be administered in separate oral dosage formulations. Where separate dosage formulations are used, a modulator and one or more additional active agents can be administered at essentially the same time (i.e., concurrently), or at separately staggered times (i.e., sequentially). Combination therapy is 15 understood to include all these regimens.

[242] One example of combination therapy can be seen in treating pre-diabetic individuals (e.g., to prevent progression into type 2 diabetes) or diabetic individuals (or treating diabetes and its related symptoms, complications, and disorders), wherein the modulators can be effectively used in combination with, for example, sulfonylureas (such as 20 chlorpropamide, tolbutamide, acetohexamide, tolazamide, glyburide, gliclazide, glynase, glimepiride, and glipizide); biguanides (such as metformin); a PPAR beta delta agonist; a ligand or agonist of PPAR gamma such as thiazolidinediones (such as ciglitazone, pioglitazone (see, e.g., U.S. Patent No. 6,218,409), troglitazone, and rosiglitazone (see, e.g., U.S. Patent No. 5,859,037)); PPAR alpha agonists such as clofibrate, gemfibrozil, fenofibrate, 25 ciprofibrate, and bezafibrate; dehydroepiandrosterone (also referred to as DHEA or its conjugated sulphate ester, DHEA-SO₄); antiglucocorticoids; TNF α inhibitors; α -glucosidase inhibitors (such as acarbose, miglitol, and voglibose); amylin and amylin derivatives (such as pramlintide, (see, also, U.S. Patent Nos. 5,902,726; 5,124,314; 5,175,145 and 6,143,718.)); insulin secretagogues (such as repaglinide, gliquidone, and nateglinide (see, also, U.S. Patent 30 Nos. 6,251,856; 6,251,865; 6,221,633; 6,174,856)), and insulin.

[243] The modulators of the invention can also be combined with anti-obesity drugs (e.g., Xenical (Orlistat), Merida (Sibutramine) or Adipex-P (Phentermine)) or appetite-suppressing drugs.

IX. GENE THERAPY

[244] Conventional viral and non-viral based gene transfer methods can be used to introduce nucleic acids encoding engineered amino acid sequences comprising the polypeptides of the invention in mammalian cells or target tissues. Such methods can be used 5 to administer nucleic acids encoding amino acid sequences comprising polypeptides of the invention to cells *in vitro*. In some embodiments, the nucleic acids encoding amino acid sequences comprising polypeptides of the invention are administered for *in vivo* or *ex vivo* gene therapy uses. Non-viral vector delivery systems include DNA plasmids, naked nucleic acid, and nucleic acid complexed with a delivery vehicle such as a liposome. Viral vector 10 delivery systems include DNA and RNA viruses, which have either episomal or integrated genomes after delivery to the cell. For a review of gene therapy procedures, see Anderson, *Science* 256:808-813 (1992); Nabel & Felgner, *TIBTECH* 11:211-217 (1993); Mitani & Caskey, *TIBTECH* 11:162-166 (1993); Dillon, *TIBTECH* 11:167-175 (1993); Miller, *Nature* 357:455-460 (1992); Van Brunt, *Biotechnology* 6(10):1149-1154 (1988); Vigne, *Restorative* 15 *Neurology and Neuroscience* 8:35-36 (1995); Kremer & Perricaudet, *British Medical Bulletin* 51(1):31-44 (1995); Haddada *et al.*, in *Current Topics in Microbiology and Immunology* Doerfler and Böhm (eds) (1995); and Yu *et al.*, *Gene Therapy* 1:13-26 (1994).

[245] Methods of non-viral delivery of nucleic acids encoding engineered polypeptides of the invention include lipofection, microinjection, biolistics, virosomes, 20 liposomes, immunoliposomes, polycation or lipid:nucleic acid conjugates, naked DNA, artificial virions, and agent-enhanced uptake of DNA. Lipofection is described in e.g., US 5,049,386, US 4,946,787; and US 4,897,355) and lipofection reagents are sold commercially (e.g., Transfectam™ and Lipofectin™). Cationic and neutral lipids that are suitable for 25 efficient receptor-recognition lipofection of polynucleotides include those of Felgner, WO 91/17424, WO 91/16024. Delivery can be to cells (*ex vivo* administration) or target tissues (*in vivo* administration).

[246] The preparation of lipid:nucleic acid complexes, including targeted 30 liposomes such as immunolipid complexes, is well known to one of skill in the art (see, e.g., Crystal, *Science* 270:404-410 (1995); Blaese *et al.*, *Cancer Gene Ther.* 2:291-297 (1995); Behr *et al.*, *Bioconjugate Chem.* 5:382-389 (1994); Remy *et al.*, *Bioconjugate Chem.* 5:647-654 (1994); Gao *et al.*, *Gene Therapy* 2:710-722 (1995); Ahmad *et al.*, *Cancer Res.* 52:4817-4820 (1992); U.S. Pat. Nos. 4,186,183, 4,217,344, 4,235,871, 4,261,975, 4,485,054, 4,501,728, 4,774,085, 4,837,028, and 4,946,787).

[247] The use of RNA or DNA viral based systems for the delivery of nucleic acids encoding engineered polypeptides of the invention take advantage of highly evolved processes for targeting a virus to specific cells in the body and trafficking the viral payload to the nucleus. Viral vectors can be administered directly to patients (*in vivo*) or they can be used to treat cells *in vitro* and the modified cells are administered to patients (*ex vivo*).
5 Conventional viral based systems for the delivery of polypeptides of the invention could include retroviral, lentivirus, adenoviral, adeno-associated and herpes simplex virus vectors for gene transfer. Viral vectors are currently the most efficient and versatile method of gene transfer in target cells and tissues. Integration in the host genome is possible with the
10 retrovirus, lentivirus, and adeno-associated virus gene transfer methods, often resulting in long term expression of the inserted transgene. Additionally, high transduction efficiencies have been observed in many different cell types and target tissues.

[248] The tropism of a retrovirus can be altered by incorporating foreign envelope proteins, expanding the potential target population of target cells. Lentiviral vectors
15 are retroviral vectors that are able to transduce or infect non-dividing cells and typically produce high viral titers. Selection of a retroviral gene transfer system would therefore depend on the target tissue. Retroviral vectors are comprised of *cis*-acting long terminal repeats with packaging capacity for up to 6-10 kb of foreign sequence. The minimum *cis*-acting LTRs are sufficient for replication and packaging of the vectors, which are then used
20 to integrate the therapeutic gene into the target cell to provide permanent transgene expression. Widely used retroviral vectors include those based upon murine leukemia virus (MuLV), gibbon ape leukemia virus (GaLV), Simian Immuno deficiency virus (SIV), human immuno deficiency virus (HIV), and combinations thereof (see, e.g., Buchscher *et al.*, *J. Virol.* 66:2731-2739 (1992); Johann *et al.*, *J. Virol.* 66:1635-1640 (1992); Sommerfelt *et al.*,
25 *J. Virol.* 176:58-59 (1990); Wilson *et al.*, *J. Virol.* 63:2374-2378 (1989); Miller *et al.*, *J. Virol.* 65:2220-2224 (1991); PCT/US94/05700).

[249] In applications where transient expression of the polypeptides of the invention is preferred, adenoviral based systems are typically used. Adenoviral based vectors are capable of very high transduction efficiency in many cell types and do not require cell division.
30 With such vectors, high titer and levels of expression have been obtained. This vector can be produced in large quantities in a relatively simple system. Adeno-associated virus ("AAV") vectors are also used to transduce cells with target nucleic acids, e.g., in the *in vitro* production of nucleic acids and peptides, and for *in vivo* and *ex vivo* gene therapy procedures (see, e.g., West *et al.*, *Virology* 160:38-47 (1987); U.S. Patent No. 4,797,368; WO

93/24641; Kotin, *Human Gene Therapy* 5:793-801 (1994); Muzyczka, *J. Clin. Invest.* 94:1351 (1994)). Construction of recombinant AAV vectors are described in a number of publications, including U.S. Pat. No. 5,173,414; Tratschin *et al.*, *Mol. Cell. Biol.* 5:3251-3260 (1985); Tratschin, *et al.*, *Mol. Cell. Biol.* 4:2072-2081 (1984); Hermonat & Muzyczka, *PNAS* 81:6466-6470 (1984); and Samulski *et al.*, *J. Virol.* 63:03822-3828 (1989).

5 [250] pLASN and MFG-S are examples are retroviral vectors that have been used in clinical trials (Dunbar *et al.*, *Blood* 85:3048-305 (1995); Kohn *et al.*, *Nat. Med.* 1:1017-102 (1995); Malech *et al.*, *PNAS* 94:22 12133-12138 (1997)). PA317/pLASN was the first therapeutic vector used in a gene therapy trial. (Blaese *et al.*, *Science* 270:475-480. 10 (1995)). Transduction efficiencies of 50% or greater have been observed for MFG-S packaged vectors. (Ellem *et al.*, *Immunol Immunother.* 44(1):10-20 (1997); Dranoff *et al.*, *Hum. Gene Ther.* 1:111-2 (1997)).

15 [251] Recombinant adeno-associated virus vectors (rAAV) are a promising alternative gene delivery systems based on the defective and nonpathogenic parvovirus adeno-associated type 2 virus. All vectors are derived from a plasmid that retains only the AAV 145 bp inverted terminal repeats flanking the transgene expression cassette. Efficient gene transfer and stable transgene delivery due to integration into the genomes of the transduced cell are key features for this vector system. (Wagner *et al.*, *Lancet* 351:9117 1702-3 (1998), Kearns *et al.*, *Gene Ther.* 9:748-55 (1996)).

20 [252] Replication-deficient recombinant adenoviral vectors (Ad) can be engineered such that a transgene replaces the Ad E1a, E1b, and E3 genes; subsequently the replication defector vector is propagated in human 293 cells that supply deleted gene function in trans. Ad vectors can transduce multiply types of tissues *in vivo*, including nondividing, differentiated cells such as those found in the liver, kidney and muscle system tissues. 25 Conventional Ad vectors have a large carrying capacity. An example of the use of an Ad vector in a clinical trial involved polynucleotide therapy for antitumor immunization with intramuscular injection (Sterman *et al.*, *Hum. Gene Ther.* 7:1083-9 (1998)). Additional examples of the use of adenovirus vectors for gene transfer in clinical trials include Rosenecker *et al.*, *Infection* 24:1 5-10 (1996); Sterman *et al.*, *Hum. Gene Ther.* 9:7 1083-30 1089 (1998); Welsh *et al.*, *Hum. Gene Ther.* 2:205-18 (1995); Alvarez *et al.*, *Hum. Gene Ther.* 5:597-613 (1997); Topf *et al.*, *Gene Ther.* 5:507-513 (1998); Sterman *et al.*, *Hum. Gene Ther.* 7:1083-1089 (1998).

[253] Packaging cells are used to form virus particles that are capable of infecting a host cell. Such cells include 293 cells, which package adenovirus, and ψ2 cells or

PA317 cells, which package retrovirus. Viral vectors used in gene therapy are usually generated by producer cell line that packages a nucleic acid vector into a viral particle. The vectors typically contain the minimal viral sequences required for packaging and subsequent integration into a host, other viral sequences being replaced by an expression cassette for the protein to be expressed. The missing viral functions are supplied in *trans* by the packaging cell line. For example, AAV vectors used in gene therapy typically only possess ITR sequences from the AAV genome which are required for packaging and integration into the host genome. Viral DNA is packaged in a cell line, which contains a helper plasmid encoding the other AAV genes, namely *rep* and *cap*, but lacking ITR sequences. The cell line is also infected with adenovirus as a helper. The helper virus promotes replication of the AAV vector and expression of AAV genes from the helper plasmid. The helper plasmid is not packaged in significant amounts due to a lack of ITR sequences. Contamination with adenovirus can be reduced by, e.g., heat treatment to which adenovirus is more sensitive than AAV.

[254] In many gene therapy applications, it is desirable that the gene therapy vector be delivered with a high degree of specificity to a particular tissue type. A viral vector is typically modified to have specificity for a given cell type by expressing a ligand as a fusion protein with a viral coat protein on the viruses outer surface. The ligand is chosen to have affinity for a receptor known to be present on the cell type of interest. For example, Han *et al.*, PNAS 92:9747-9751 (1995), reported that Moloney murine leukemia virus can be modified to express human heregulin fused to gp70, and the recombinant virus infects certain human breast cancer cells expressing human epidermal growth factor receptor. This principle can be extended to other pairs of virus expressing a ligand fusion protein and target cell expressing a receptor. For example, filamentous phage can be engineered to display antibody fragments (e.g., FAB or Fv) having specific binding affinity for virtually any chosen cellular receptor. Although the above description applies primarily to viral vectors, the same principles can be applied to nonviral vectors. Such vectors can be engineered to contain specific uptake sequences thought to favor uptake by specific target cells.

[255] Gene therapy vectors can be delivered *in vivo* by administration to an individual patient, typically by systemic administration (e.g., intravenous, intraperitoneal, intramuscular, subdermal, or intracranial infusion) or topical application, as described below. Alternatively, vectors can be delivered to cells *ex vivo*, such as cells explanted from an individual patient (e.g., lymphocytes, bone marrow aspirates, tissue biopsy) or universal

donor hematopoietic stem cells, followed by reimplantation of the cells into a patient, usually after selection for cells which have incorporated the vector.

[256] *Ex vivo* cell transfection for diagnostics, research, or for gene therapy (e.g., via re-infusion of the transfected cells into the host organism) is well known to those of skill in the art. In some embodiments, cells are isolated from the subject organism, transfected with a nucleic acid (gene or cDNA) encoding a polypeptides of the invention, and re-infused back into the subject organism (e.g., patient). Various cell types suitable for *ex vivo* transfection are well known to those of skill in the art (see, e.g., Freshney *et al.*, *Culture of Animal Cells, A Manual of Basic Technique* (3rd ed. 1994)) and the references cited therein for a discussion of how to isolate and culture cells from patients).

[257] In one embodiment, stem cells are used in *ex vivo* procedures for cell transfection and gene therapy. The advantage to using stem cells is that they can be differentiated into other cell types *in vitro*, or can be introduced into a mammal (such as the donor of the cells) where they will engraft in the bone marrow. Methods for differentiating CD34+ cells *in vitro* into clinically important immune cell types using cytokines such a GM-CSF, IFN- γ and TNF- α are known (see Inaba *et al.*, *J. Exp. Med.* 176:1693-1702 (1992)).

[258] Stem cells are isolated for transduction and differentiation using known methods. For example, stem cells are isolated from bone marrow cells by panning the bone marrow cells with antibodies which bind unwanted cells, such as CD4+ and CD8+ (T cells), CD45+ (panB cells), GR-1 (granulocytes), and Iad (differentiated antigen presenting cells) (see Inaba *et al.*, *J. Exp. Med.* 176:1693-1702 (1992)).

[259] Vectors (e.g., retroviruses, adenoviruses, liposomes, etc.) containing therapeutic nucleic acids can be also administered directly to the organism for transduction of cells *in vivo*. Alternatively, naked DNA can be administered. Administration is by any of the routes normally used for introducing a molecule into ultimate contact with blood or tissue cells. Suitable methods of administering such nucleic acids are available and well known to those of skill in the art, and, although more than one route can be used to administer a particular composition, a particular route can often provide a more immediate and more effective reaction than another route.

[260] Pharmaceutically acceptable carriers are determined in part by the particular composition being administered, as well as by the particular method used to administer the composition. Accordingly, there is a wide variety of suitable formulations of pharmaceutical compositions of the present invention, as described below (see, e.g., *Remington's Pharmaceutical Sciences*, 17th ed., 1989).

X. DIAGNOSIS OF OBESITY AND/OR DIABETES

[261] The present invention also provides methods of diagnosing diabetes or obesity, or a predisposition of at least some of the pathologies of diabetes and/or obesity.

Diagnosis can involve determination of a genotype of an individual (e.g., with SNPs) and

5 comparison of the genotype with alleles known to have an association with the occurrence of obesity and/or diabetes. Alternatively, diagnosis also involves determining the level of a polypeptide or polynucleotide of the invention in a patient and then comparing the level to a baseline or range. Typically, the baseline value is representative of a polypeptide or polynucleotide of the invention in a healthy (e.g., lean) person.

10 [262] As discussed above, variation of levels (e.g., low or high levels) of a polypeptide or polynucleotide of the invention compared to the baseline range indicates that the patient is either obese, at risk for becoming obese, diabetic or at risk of developing at least some of the pathologies of diabetes (e.g., pre-diabetic). The level of a polypeptide in a lean individual can be a reading from a single individual, but is typically a statistically relevant
15 average from a group of lean individuals. The level of a polypeptide in a lean individual can be represented by a value, for example in a computer program.

20 [263] In some embodiments, the level of polypeptide or polynucleotide of the invention is measured by taking a blood, urine or tissue sample from a patient and measuring the amount of a polypeptide or polynucleotide of the invention in the sample using any number of detection methods, such as those discussed herein. For instance, fasting and fed blood or urine levels can be tested.

25 [264] In some embodiments, the baseline level and the level in a lean sample from an individual, or at least two samples from the same individual differ by at least about 5%, 10%, 20%, 50%, 75%, 100%, 150%, 200%, 300%, 400%, 500%, 1000% or more. In some embodiments, the sample from the individual is greater by at least one of the above-listed percentages relative to the baseline level. In some embodiments, the sample from the individual is lower by at least one of the above-listed percentages relative to the baseline level.

30 [265] In some embodiments, the level of a polypeptide or polynucleotide of the invention is used to monitor the effectiveness of either anti-obese therapies such as orlistat or sibutramine, or, antidiabetic therapies such as thiazolidinediones, metformin, sulfonylureas and other standard therapies. In some embodiments the activity or expression of a polypeptide or polynucleotide of the invention will be measured prior to and after treatment of an obese patient with antiobese therapies, or, diabetic or pre-diabetic patients

with antidiabetic therapies as a surrogate marker of clinical effectiveness. For example, the greater the reduction in expression or activity of a polypeptide of the invention indicates greater effectiveness.

[266] Glucose/insulin tolerance tests can also be used to detect the effect of glucose levels on levels of a polypeptide or polynucleotide of the invention. In glucose tolerance tests, the patient's ability to tolerate a standard oral glucose load is evaluated by assessing serum and urine specimens for glucose levels. Blood samples are taken before the glucose is ingested, glucose is given by mouth, and blood or urine glucose levels are tested at set intervals after glucose ingestion. Similarly, meal tolerance tests can also be used to detect the effect of insulin or food, respectively, on levels of a polypeptide or polynucleotide of the invention.

[267] Body weight or other indicators of obesity can also be used to detect the effect of modulating the levels of a polypeptide or polynucleotide of the invention. Measurement of a subject's response can be evaluated by assessing serum for altered levels of obesity-associated gene products, e.g., leptin, TNF alpha or IL-6.

[268] All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

[269] Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to one of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

25

EXAMPLES

[270] The following examples are offered to illustrate, but not to limit the claimed invention.

[271] In either obese insulin-resistant or type II diabetics, peripheral tissues, especially muscle and fat, are known to have an impaired ability to respond to insulin and hence to take up glucose. This defect in glucose metabolism is usually compensated for by increased secretion of insulin from the pancreas, thereby maintaining normal glucose levels. The majority of glucose disposal occurs in the muscle. A number of obese insulin resistant patients will progress to overt diabetics with time. The molecular defects underlying this peripheral insulin resistance in both the obese and type II diabetics are not well defined.

Genes in muscle or fat whose expression is altered in either or both the obese or type II diabetics when compared to lean individuals can be causative genes for either obesity, insulin resistance and/or diabetes and are able to predict the transition to diabetes. Modulators of such genes have the ability to reverse obesity, insulin resistance and restore normal insulin sensitivity, thereby improving whole body glucose homeostasis including for example insulin secretion. Modulators of such genes also have the ability to be used to pre-empt the transition from obesity-induced insulin resistance to diabetes. Modulators of such genes also have the ability to be used to reverse metabolic obesity-related diseases such as cardiovascular disease, hypertension or obesity-related cancer.

[272] The molecular mechanism by which thiazolidinediones (TZDs) cause an increase in peripheral insulin sensitivity was studied. Genes in muscle or fat whose expression is altered by TZDs may lie on a pathway leading from TZD treatment to increased insulin sensitivity. Modulators of such genes can elicit the same effect as TZD treatment. Moreover, such modulators can lack some of the side effects of TZD. Gene expression profiling in cultures of primary human adipocytes treated with either pioglitazone or rosiglitazone were used to identify genes important for TZD action and therefore treatment of obesity, diabetes and/or insulin resistance.

[273] Gene expression profiling was performed on tissue samples (subcutaneous adipose samples) obtained from lean, obese and diabetic individuals. Two studies were performed. In the first study, samples were isolated from all individuals after a 5 hour hyperinsulinemic euglycemic clamp.

[274] In the second study, subcutaneous adipose samples were obtained from lean (BMI< 25) and obese (BMI>30) individuals after an overnight fast.

[275] In a third study samples were obtained from human subcutaneous and omental adipose tissues. Genes expressed only, or enriched, in fat can lie on pathways involved in insulin sensitivity, appetite suppression or lipid metabolism in the adipose itself or other peripheral tissues (e.g., muscle, liver, brain). For all tissue samples mRNA was isolated from these adipose samples and converted to cRNA by standard procedures. The gene expression profile for each individual was determined by hybridization of cRNA to commercial and custom synthesized Affymetrix chips.

[276] Gene expression profile differences were calculated as follows. The expression level of a particular gene is indicated by its 'signal intensity'. The raw data was analyzed by a statistical test to remove 'outliers'. The mean 'signal intensity' was then calculated from the signal intensities for all individuals in a particular treatment group.

Genes were determined to be changed in the first two studies by calculating the Students t test statistic between the two conditions and selecting those with t less than or equal to 0.05. The fold change was determined as the ratio of mean signal intensity in condition 2 to the mean signal intensity in condition 1. In the first study three comparisons was undertaken: diabetics
5 (condition 1) versus leans (condition 2), obese (condition 1) versus lean (condition 2) and diabetics (condition 1) versus obese (condition 2). The second study comparison is lean (condition 1) versus obese (condition 2). The third comparison is identification of fat specific or fat enriched genes when comparing the expression profile of human subcutaneous and omental adipose tissues to at last 12 other human adult tissues. Genes were determined to be
10 meeting the criteria cut-off when the mean signal intensity of the human adipose samples was 3 fold greater than the mean signal intensity of all the other human adult tissues profiled or called present only in the adipose samples and absent in all others by the Affymetrix software program.

ADLICAN

15 [277] Probe set 209596 detects ADLICAN nucleic acid sequences.

Expression of ADLICAN transcripts was increased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	126.4	17.87	10	80.24	8.1	8	1.58	0.037	ADLICAN

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

"SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold

20 Change" indicates fold change of diabetics in comparison to lean patients.

[278] ADLICAN was also evaluated using real-time PCR. The results further show that ADLICAN is significantly over-expressed in subcutaneous adipose from diabetic individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	2.04	0.115

"Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic

25 expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[279] Probe set 209596 detects ADLICAN nucleic acid sequences.

Expression of ADLICAN transcripts was increased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESE			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	195.64	30.94	5	94.43	8.71	4	2.07	0.028	ADLICAN

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

5 "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[280] ADLICAN was also evaluated using real-time PCR. The results further show that ADLICAN is significantly over-expressed in subcutaneous adipose from obese individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Obese (5)/ Lean (4)	4.35	0.073

10 "Fold Change" indicates the fold expression calculated as the ratio of the mean obese expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[281] Probe set 209596 detects ADLICAN nucleic acid sequences.

Expression of ADLICAN transcripts was decreased in pio compared to vehicle treated

15 cultures of primary human adipocytes in the gene profiling experiment.

B/C	PIO			VEHICLE			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	31.8	3.53	3	51.9	4.05	3	0.61	0.021	ADLICAN

B/C indicates sample is from Basal or Clamp; "Pre-Pio" and "Post-Pio" indicates sample was taken before or after 24 hours of pioglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of primary human adipocytes post-pio in comparison to pre-pio samples.

[282] Probe set 209596 detects ADLICAN nucleic acid sequences.

Expression of ADLICAN transcripts was increased in adipose tissues compared to all other human adult tissues in the gene profiling experiment.

ADIPOSE TISSUES				OTHER TISSUES					
Mean Expr	SEM	n	Mean Expr	SEM	n	Fold Change	Students t test	Gene Name	
142.7	13.24	5	37.71	3.55	13	3.78	0.001	ADLICAN	

"Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of tissue samples; "Fold Change" indicates fold change of adipose tissues in comparison to all other human adult tissues profiled.

[283] ADLICAN contains the following protein domains (designated with reference to SEQ ID NO:2): Atrophin-1 family (PF03154) at amino acids 1405 to 2232; Leucine rich repeat N-terminal domain (PF01462) at amino acids 26 to 54; Geminivirus AL2 protein (PF01440) at amino acids 1317 to 1428; Leucine Rich Repeat (PF00560) at amino acids 80 to 103, 128 to 151; and Immunoglobulin domain (PF00047) at amino acids 494 to 557, 592 to 653, 1868 to 1930, 1965 to 2027, 2062 to 2124, 2161 to 2223, 2258 to 2326, 2361 to 2420, 2459 to 2520, 2557 to 2618, 2652 to 2713, 2748 to 2812.

10 ADLICAN is a protein which contains many domains which mediate protein-protein binding.

ALDH1A3

[284] Probe set 203180 detects ALDH1A3 nucleic acid sequences. Expression of ALDH1A3 transcripts was increased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN					
	Mean Expr	SEM	n	Mean Expr	SEM	n	Fold Change	Students t test	Gene Name
C	58.99	6.02	10	26.64	3.98	8	2.21	<0.000	ALDH1A3

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetics in comparison to lean patients.

[285] ALDH1A3 was also evaluated using real-time PCR. The results further show that ALDH1A3 is significantly over-expressed in subcutaneous adipose from diabetic individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	2.21	<0.000

"Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[286] Probe set 203180 detects ALDH1A3 nucleic acid sequences.

Expression of ALDH1A3 transcripts was increased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESE			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	42.3	3.9	8	26.64	3.98	8	1.59	0.018	ALDH1A3

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

5 "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[287] ALDH1A3 was also evaluated using real-time PCR. The results further show that ALDH1A3 is significantly over-expressed in subcutaneous adipose from obese individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Obese (8)/ Lean (8)	1.59	0.018

10 "Fold Change" indicates the fold expression calculated as the ratio of the mean obese expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[288] Probe set 203180 detects ALDH1A3 nucleic acid sequences.

Expression of ALDH1A3 transcripts was increased in obese compared to lean patients in the

15 gene profiling experiment.

B/C	OBESE			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	42.76	7.99	5	18.65	1.47	4	2.29	0.038	ALDH1A3

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

"SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[289] ALDH1A3 was over-expressed in L6 myotubes and the effect on basal

20 and insulin stimulated glucose transport was determined

Glucose Transport Analysis in L6 Myotubes

Insuline (nM)	Experiment 1		Experiment 2		Experiment 3		Mean FC.. (ALDH1A3/Con) +/- SEM (n=3)
	FC (hALDH1 A3/Con)	t test (α)	FC (hALDH1 A3/Con)	t test (α)	FC (hALDH1 A3/Con)	t test (α)	
0	1.27	0.001	1.22	0.001	1.16	0.001	1.22±0.03
10	1.29	0.001	1.07	0.532	1.11	0.050	1.16±0.07

100	1.29	0.001	1.14	0.057	1.03	0.634	1.15±0.08
-----	------	-------	------	-------	------	-------	-----------

Legend "Con" indicates control L6 myotubes that do not express hALDH1A3. "FC" indicates the fold change defined as the following ratio; glucose transport in hALDH1A3-expressing cells/glucose transport in non-hALDH1A3-expressing cells. "h" is human. "n" is the number of experiments. SEM is the standard error of the mean.

5 [290] The results show that increased levels of ALDH1A3 in a cell such as a muscle cell leads to a corresponding increase in glucose uptake. This indicates that increasing the levels or activity of ALDH1A3 in tissues of insulin resistant patients or diabetic patients will increase the ability of such tissues to take up glucose and hence, will provide an effective treatment for insulin resistance and diabetes.

10 [291] ALDH1A3 contains the following protein domains (designated with reference to SEQ ID NO:8): Aldehyde dehydrogenase family (PF00171) at amino acids 40 to 507. ALDH1A3 is a retinaldehyde dehydrogenase that catalyzes the oxidation of all-trans-retinaldehyde to retinoic acid and may have a role in cell differentiation and proliferation (Grun, F., et al *J Biol Chem.* 275: 41210-8 (2000); Rexer, B. N., et al *Cancer Res.* 61: 7065-15 7070 (2001).

15 [292] It has been established that the mRNA for ALDH1A3 can be induced in hepatocytes by agents such as omeprazole (Nishimura et al *Yakugaku Zasshi.* 122 :339-61 (2002)). Thus, an exemplary method in which ALDH1A3 activators can be identified comprises treating hepatocytes with candidate compounds and measuring increases in 20 ALDH1A3 mRNA.

ALK7

[293] Probe set MBXHUMFAT04495 detects ALK7 nucleic acid sequences. Expression of ALK7 transcripts was decreased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	173.96	12.02	10	241.5	20.33	8	0.72	0.015	ALK7

25 B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetics in comparison to lean patients.

[294] ALK7 was also evaluated using real-time PCR. The results further show that ALK7 is significantly under-expressed in subcutaneous adipose from diabetic individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	0.65	0.017

"Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic

5 expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[295] Probe set MBXHUMFAT04495 detects ALK7 nucleic acid sequences. Expression of ALK7 transcripts was decreased in patients with insulin resistance compared to normal patients in the gene profiling experiment.

CORRELATION RD				
B/C	n	Corr Co-efficient	Students t test	Gene Name
C	18	0.623	<0.005	ALK7

10 B/C indicates sample is from Basal or Clamp; "Corr Co-efficient" indicates the relationship between glucose disposal rate (Rd) and signal intensities. A positive co-efficient indicates down regulation whereas a negative co-efficient indicates up regulation of the gene with increasing insulin resistance; "n" indicates number of patient samples.

[296] ALK7 was also evaluated using real-time PCR. The results further 15 show that ALK7 is significantly decreased in patients with insulin resistance compared to normal patients.

Comparison	Expression Fold Change	t test
Correlation to Rd (18)	0.534	<0.02

"Corr Co-efficient" indicates the relationship between Rd and signal intensities. A positive co-efficient indicates down regulation whereas a negative co-efficient indicates up regulation of the gene with increasing insulin resistance. Numbers in parentheses indicates the number

20 of patient samples analyzed by real-time PCR.

[297] Probe set MBXHUMFAT04495 detects ALK7 nucleic acid sequences. Expression of ALK7 transcripts was decreased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESE			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	160.52	14.73	5	313.3	28.95	4	0.51	0.007	ALK7

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

25 "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[298] Probe set MBXHUMFAT04495 detects ALK7 nucleic acid sequences. Expression of ALK7 transcripts was increased in adipose tissues compared to all other human adult tissues in the gene profiling experiment.

ADIPOSE TISSUES			OTHER TISSUES					
Mean Expr	SEM	n	Mean Expr	SEM	n	Fold Change	Students t test	Gene Name
158.78	12.8	5	15.65	4.07	13	10.15	<0.000	ALK7

"Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n"

5 indicates number of tissue samples; "Fold Change" indicates fold change of adipose tissues in comparison to all other human adult tissues profiled.

[299] ALK7 was over-expressed in L6 myotubes and the effect on basal and insulin stimulated glucose transport was determined

10 Glucose Transport Analysis in L6 Myotubes

Insulin (nM)	Experiment 1		Experiment 2		Experiment 3		Mean FC (ALK7/Con) +/- SD (n=3)
	FC (ALK7 /Con)	t test (α)	FC (ALK7 /Con)	t test (α)	FC (ALK7 /Con)	t test (α)	
0	0.85	0.010	0.86	0.049	0.86	0.017	0.85±0.01
10	0.83	0.001	0.84	0.001	0.89	0.002	0.85±0.03
100	0.84	0.002	0.94	0.251	0.89	0.048	0.89±0.05

Legend "Con" indicates control L6 myotubes that do not express hALK7. "FC" indicates the fold change defined as the following ratio; glucose transport in hALK7-expressing L6 myotubes/glucose transport in non-ALK7-expressing L6 myotubes. "h" is human. "n" is the number of experiments. SD is the standard deviation.

15

[300] The results show that increased levels of ALK7 in a cell such as a muscle cell leads to a corresponding decrease in glucose uptake. This indicates that decreasing the levels or activity of ALK7 in tissues of insulin resistant patients or diabetic patients will increase the ability of such tissues to take up glucose and hence, will provide an effective treatment for insulin resistance and diabetes.

20

[301] ALK7 contains the following protein domains (designated with reference to SEQ ID NO:14): Signal peptide at amino acids 1 to 25; Activin types I and II receptor domain (PF01064) at amino acids 15 to 100; Protein kinase domain (PF00069) at amino acids 195 to 482; u-PAR/Ly-6 domain (PF00021) at amino acids 30 to 94; and 1 transmembrane domain (TMHMM2.0) at amino acids 114 to 136. ALK7 is a transmembrane receptor protein serine-threonine kinase for the transforming growth factor-beta (TGF-beta) superfamily related growth factors and signals through SMAD2 (Bondestam J. *et al.*,

25

Cytogenet. Cell Genet., 95: 157-162 (2001). Nodal was identified as the ligand for ALK7. ALK7 may play a role in proliferation and apoptosis (Munir, S., et al., *J Biol Chem.* May 18 Epub (2004); Jornvall, H., et al., *J Biol Chem.* 276: 5140-6. (2001)).

[302] ALK7 is a type I serine/threonine kinase receptor of the transforming growth factor (TGF)-beta family. Signalling from the ALK7 receptor involves phosphorylation of SMAD2 and SMAD3 (see, e.g., Kim J, et al., *J. Biol. Chem.* 279: 28458-28465 (2004)) Inhibitors of ALK7 kinase activity can thus be identified, for example, by using an *in vitro* phosphorylation assay containing recombinant ALK7 incubated with recombinant SMAD2 or SMAD3 and radio-labelled ATP

[303] Inhibitors of ALK7 kinase activity such as SB 505124 (2-(5-benzo[1,3] dioxol-5-yl-2-tert-butyl-3H-imidazol-4-yl)-6-methylpyridine hydrochloride (e.g., Byfield et al., *Mol. Pharmacol.* 65: 744-752 (2004) and SB 431542 (4-(5-benzol[1,3] dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)-benzamide (Inman et al., *Mol Pharmacol.* 62: 65-74 (2002))) are known. Such inhibitors as well as other ALK7 kinase inhibitors, e.g., identified using screening assays as described herein can be used to treat insulin resistance and diabetes.

C3AR1

[304] Probe set 209906 detects C3AR1 nucleic acid sequences. Expression of C3AR1 transcripts was increased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	98.52	6.15	10	55.65	13.05	8	1.77	0.014	C3AR1

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetics in comparison to lean patients.

[305] C3AR1 was also evaluated using real-time PCR. The results further show that C3AR1 is significantly over-expressed in subcutaneous adipose from diabetic individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	1.89	0.008

"Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[306] Probe set 209906 detects C3AR1 nucleic acid sequences. Expression of C3AR1 transcripts was increased in obese compared to lean patients in the gene profiling experiment.

B/C	OBES			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	84.24	8.87	5	33.8	3.56	4	2.49	0.003	C3AR1

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

5 "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[307] The cellular level of C3AR1 was reduced in 3T3-L1 adipocytes using siRNA directed against C3AR1 and the effect on basal and insulin stimulated glucose transport was determined

10

C3AR1 mRNA Level in 3T3-L1 Adipocytes Transfected with siRNA Oligonucleotides

	Expt 1	Expt 2	Expt 3	Expt 4	Mean FC ± SEM (n=4)
FC (siRNA/Scr)	0.53	0.31	0.39	0.35	0.40 ± 0.05

Legend: "siRNA" indicates Dhamacon Smartpool siRNA oligonucleotides directed against murine C3AR1. "Scr" indicates the Dhamacon Scramble siRNA Control. "FC" indicates the fold change defined as the following ratio; Level of C3AR1 mRNA in C3AR1 siRNA transfected 3T3-L1 adipocytes/Level of C3AR1 mRNA in Scramble siRNA transfected 3T3-L1 adipocytes. "n" is the number of experiments. SEM is the standard error of the mean.

Glucose Transport in 3T3-L1 Adipocytes Transfected with siRNA Oligonucleotides

Insulin (nM)	Expt 1	Expt 2	Expt 3	Expt 4	Mean FC (siRNA/Scr) ± SEM (n=4)	Mean t-test
FC (siRNA/Scr)						
0.0	0.602	0.708	0.673	0.531	0.661 ± 0.03	0.043
0.1	0.545	0.412	0.452	0.399	0.469 ± 0.03	0.004
1.0	0.588	0.715	0.553	0.546	0.619 ± 0.04	0.035
10.0	0.660	0.858	0.601	0.563	0.706 ± 0.07	0.084

Legend: "siRNA" indicates Dhamacon Smartpool siRNA oligonucleotides directed

20 against murine C3AR1. "Scr" indicates Dhamacon Scramble siRNA Control oligonucleotides. "FC" indicates the fold change defined as the following ratio; glucose transport in C3AR1 siRNA transfected 3T3-L1 adipocytes/glucose transport in Scramble

siRNA transfected 3T3-L1 adipocytes. "n" is the number of experiments. SEM is the standard error of the mean.

[308] These results show that decreasing the levels of C3AR1 in a cell such as an adipocyte leads to a corresponding decrease in glucose uptake. This indicates that increasing the levels or activity of C3AR1 in tissues of insulin resistant patients or diabetic patients will increase the ability of such tissues to take up glucose and hence, will provide an effective treatment for insulin resistance and diabetes.

[309] C3AR1 contains the following protein domains (designated with reference to SEQ ID NO:20): 7 transmembrane receptor (rhodopsin family) (PF00001) at amino acids 40 to 435; and 7 transmembrane domains (TMHMM2.0) at amino acids 24 to 46, 59 to 81, 96 to 118, 138 to 160, 338 to 360, 380 to 402, 417 to 439. C3AR1 is the G protein-coupled receptor for complement component 3a and mediates various aspects of inflammatory responses including complement activation and chemotaxis (Fischer, W. H and Hugli T.E., *J. Immunol.* 159: 4279-4286 (1997); Zwirner, J., et al., *Eur J Immunol* 28: 1570-7. (1998); Crass, T., et al., *Eur J Immunol* 26: 1944-1950 (1996)).

[310] C3AR1 is a G protein coupled receptor, activation of which results in the release of intracellular Ca²⁺ in HMC-1 cells (see, e.g., Legler, D.F. et al., *Eur.J.Immunol* 26: 753-758 (1996)). Agonists of the C3AR1 can therefore be identified, for example, using assays that measure changes in intracellular calcium. An exemplary assay is a cell based assay in which cells over-expressing C3AR1, such as HMC-1 cells, are treated with compounds and an increase in intracellular Ca²⁺ is measured using Ca²⁺ sensitive dyes such as Calcium 3.

CALCRL

[311] Probe set 210815 detects CALCRL nucleic acid sequences. Expression of CALCRL transcripts was decreased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	56.16	4.08	10	85.81	5.59	8	0.65	0.001	CALCRL

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

"SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold

Change" indicates fold change of diabetics in comparison to lean patients.

[312] CALCRL was also evaluated using real-time PCR. The results further show that CALCRL is significantly under-expressed in subcutaneous adipose from diabetic individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	0.65	0.001

"Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic

5 expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[313] CALCRL was over-expressed in 3T3-L1 adipocytes and the effect on basal and insulin stimulated glucose transport was determined.

Glucose Transport Analysis in 3T3-L1 Adipocytes:

Insulin (nM)	Experiment 1		Experiment 2		Experiment 3		Mean FC (hCALCRL/Con) +/- SEM (n=3)
	FC (hCALCR L / Con)	t test (α)	FC (hCALCR L / Con)	t test (α)	FC (hCALCR L / Con)	t test (α)	
0	1.22	0.047	1.09	0.216	1.31	0.045	1.21±0.07
0.05	1.01	0.895	1.05	0.454	1.12	0.609	1.06±0.03
0.1	1.03	0.508	1.05	0.513	1.22	0.077	1.10±0.06
0.3	0.99	0.862	1.01	0.805	1.16	0.572	1.05±0.05
1	1.08	0.007	1.01	0.774	1.13	0.604	1.07±0.03
10	1.05	0.300	1.05	0.068	1.06	0.584	1.06±0.001

10 Legend: "Con" indicates control 3T3-L1 adipocytes that do not express hCALCRL. "FC" indicates the fold change defined as the following ratio; glucose transport in hCALCRL-expressing 3T3-L1 adipocytes /glucose transport in non-hCALCRL expressing 3T3-L1 adipocytes. "h" is human. "n" is the number of experiments. SEM is the standard error of the mean.

15

[314] The results show that increasing the levels of CALCRL in a cell such as an adipocyte leads to a corresponding increase in glucose uptake. This indicates that increasing the levels or activity of CALCRL in tissues of insulin resistant patients or diabetic 20 patients will increase the ability of such tissues to take up glucose and hence, will provide an effective treatment for insulin resistance and diabetes.

[315] CALCRL contains the following protein domains (designated with reference to SEQ ID NO:26): Signal peptide at amino acids 1 to 22; Hormone receptor domain (PF02793) at amino acids 62 to 132; 7 transmembrane receptor (Secretin family) 25 (PF00002) at amino acids 138 to 391; and 7 transmembrane domains (TMHMM2.0) at amino acids 144 to 166, 179 to 198, 225 to 247, 254 to 276, 291 to 313, 334 to 352, 367 to 389. CALCRL is the G protein-coupled receptor which binds calcitonin-gene-related peptide

(CGRP) or adrenomedullin (ADM) depending upon interaction with either of the accessory proteins, RAMP1 and RAMP2 and stimulates adenylyl cyclase (Kamitani, S., *et al.*, *FEBS Lett.* 448: 111-114 (1999); Kuwasako, K., *et al.*, *Mol Pharmacol.* 65: 207-13 (2004); Flahaut, M., *et al.*, *Biochemistry*. 42: 10333-41 (2003)).

5 CCL13

[316] Probe set 206407 detects CCL13 nucleic acid sequences. Expression of CCL13 transcripts was increased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	43.25	3.49	10	29.01	4.63	8	1.49	0.028	CCL13

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

10 "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetics in comparison to lean patients.

[317] Probe set 206407 detects CCL13 nucleic acid sequences. Expression of CCL13 transcripts was increased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESE			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	34.1	1.97	5	15.77	0.18	4	2.16	0.003	CCL13

15 B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[318] CCL13 was also evaluated using real-time PCR. The results further show that CCL13 is significantly over-expressed in subcutaneous adipose from obese individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Obese (5)/ Lean (4)	2.88	0.048

"Fold Change" indicates the fold expression calculated as the ratio of the mean obese expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[319] CCL13 contains the following protein domains (designated with reference to SEQ ID NO:32): Signal peptide at amino acids 1 to 23; and Small cytokines (intecrine/chemokine), interleukin-8 like (PF00048) at amino acids 24 to 89. A soluble active

secreted form of CCL13 has been detected (Berkhout, T.A., *et al.*, *J Biol Chem.* 272:16404-13 (1997)) and this is displayed in SEQ ID NO:33. CCL13 displays chemotactic activity for monocytes, lymphocytes, basophils and eosinophils, but not neutrophils. This chemokine plays a role in accumulation of leukocytes during inflammation. It may also be involved in the recruitment of monocytes into the arterial wall during atherosclerosis (Garcia-Zepeda, E. A. *et al.*, *J Immunol* 157: 5613-5626 (1996); White, J. R. *et al.*, *J Biol Chem* 275: 36626-36631 (2000); Wain, J.H., *et al.*, *Clin Exp Immunol*.127: 436-44 (2002)).

CCL8

[320] Probe set 214038 detects CCL8 nucleic acid sequences. Expression of CCL8 transcripts was decreased in pio compared to vehicle treated cultures of primary human adipocytes in the gene profiling experiment.

B/C	PIO			VEHICLE			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	7.37	2.62	3	21.87	0.82	3	0.34	0.023	CCL8

B/C indicates sample is from Basal or Clamp; "Pre-Pio" and "Post-Pio" indicates sample was taken before or after 24 hours of pioglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of primary human adipocytes post-pio in comparison to pre-pio samples.

[321] CCL8 was also evaluated using real-time PCR. The results further show that CCL8 is significantly under-expressed in primary cultured human adipocytes treated with pio when compared to vehicle.

Comparison	Expression Fold Change	t test
Post-Pio (12) / Pre-Pio (12)	0.3	<0.000

"Fold Change" indicates the fold expression calculated as the ratio of the mean pio expression/ mean vehicle expression. Numbers in parentheses indicates the number of primary human adipocyte samples analyzed by real-time PCR.

[322] Probe set 214038 detects CCL8 nucleic acid sequences. Expression of CCL8 transcripts was decreased in rosi compared to vehicle treated cultures of primary human adipocytes in the gene profiling experiment.

B/C	ROSI			VEHICLE			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	10.3	1.63	3	21.87	0.82	3	0.47	0.008	CCL8

B/C indicates sample is from Basal or Clamp; "Pre-Rosi" and "Post-Rosi" indicates sample was taken before or after 24 hours of rosiglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of primary human adipocytes post-rosi in comparison to pre-rosi samples.

[323] CCL8 was also evaluated using real-time PCR. The results further show that CCL8 is significantly under-expressed in primary cultured human adipocytes treated with rosi when compared to vehicle.

Comparison	Expression Fold Change	t test
Post-Rosi (12)/ Pre-Rosi (12)	0.42	<0.000

"Fold Change" indicates the fold expression calculated as the ratio of the mean rosi

expression/ mean vehicle expression. Numbers in parentheses indicates the number of primary human adipocyte samples analyzed by real-time PCR.

[324] Probe set 214038 detects CCL8 nucleic acid sequences. Expression of CCL8 transcripts was increased in adipose tissues compared to all other human adult tissues in the gene profiling experiment.

ADIPOSE TISSUES			OTHER TISSUES			Fold Change	Students t test	Gene Name
Mean Expr	SEM	n	Mean Expr	SEM	n			
62.4	21.71	5	11.92	5.23	13	5.24	0.08	CCL8

15 "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of tissue samples; "Fold Change" indicates fold change of adipose tissues in comparison to all other human adult tissues profiled.

[325] CCL8 contains the following protein domains (designated with reference to SEQ ID NO:39): Signal peptide at amino acids 1 to 23; and Small cytokines (intecrine/chemokine), interleukin-8 like (PF00048) at amino acids 24 to 90. A soluble active secreted form of CCL8 has been detected (Van Damme, J. et al., *J Exp Med.* 176: :59-65 (1992)) and this is displayed in SEQ ID NO:40. CCL8 displays chemotactic activity for monocytes, lymphocytes, basophils and eosinophils. By recruiting leukocytes to sites of inflammation this cytokine may contribute to tumor-associated leukocyte infiltration and to 25 the antiviral state against HIV infection (Noso, N. et al., *Biochem. Biophys. Res. Commun.* 200: 1470-1476 (1994); Yang, O. et al., *J. Infect. Dis.* 185: 1174-1178 (2002)).

CHI3L1

[326] Probe set 209395 detects CHI3L1 nucleic acid sequences. Expression of CHI3L1 transcripts was increased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	84.62	18.54	10	24.83	9.44	8	3.41	0.013	CHI3L1

5 B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetics in comparison to lean patients.

[327] CHI3L1 was also evaluated using real-time PCR. The results further show that CHI3L1 is significantly over-expressed in subcutaneous adipose from diabetic
10 individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	3.38	0.037

"Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[328] Probe set 209395 detects CHI3L1 nucleic acid sequences. Expression
15 of CHI3L1 transcripts was increased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESE			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	39.26	8.12	5	12.25	6.2	4	3.2	0.034	CHI3L1

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

20 [329] Probe set 209395 detects CHI3L1 nucleic acid sequences. Expression of CHI3L1 transcripts was decreased in pio compared to vehicle treated cultures of primary human adipocytes in the gene profiling experiment.

B/C	PIO			VEHICLE			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	109.03	15.04	3	257.9	30.35	3	0.42	0.023	CHI3L1

B/C indicates sample is from Basal or Clamp; "Pre-Pio" and "Post-Pio" indicates sample was taken before or after 24 hours of pioglitazone treatment; "Mean Expr" indicates mean

expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of primary human adipocytes post-pio in comparison to pre-pio samples.

[330] CHI3L1 was also evaluated using real-time PCR. The results further
5 show that CHI3L1 is significantly under-expressed in primary cultured human adipocytes treated with pio when compared to vehicle.

Comparison	Expression Fold Change	t test
Post-Pio (12)/ Pre-Pio (12)	0.22	<0.000

"Fold Change" indicates the fold expression calculated as the ratio of the mean pio expression/ mean vehicle expression. Numbers in parentheses indicates the number of primary human adipocyte samples analyzed by real-time PCR.

10 [331] Probe set 209395 detects CHI3L1 nucleic acid sequences. Expression of CHI3L1 transcripts was decreased in rosi compared to vehicle treated cultures of primary human adipocytes in the gene profiling experiment.

B/C	ROSI			VEHICLE			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	102.77	16.32	3	257.9	30.35	3	0.4	0.019	CHI3L1

15 B/C indicates sample is from Basal or Clamp; "Pre-Rosi" and "Post-Rosi" indicates sample was taken before or after 24 hours of rosiglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of primary human adipocytes post-rosi in comparison to pre-rosi samples.

20 [332] CHI3L1 was also evaluated using real-time PCR. The results further show that CHI3L1 is significantly under-expressed in primary cultured human adipocytes treated with rosi when compared to vehicle.

Comparison	Expression Fold Change	t test
Post-Rosi (12)/ Pre-Rosi (12)	0.25	<0.000

"Fold Change" indicates the fold expression calculated as the ratio of the mean rosi expression/ mean vehicle expression. Numbers in parentheses indicates the number of primary human adipocyte samples analyzed by real-time PCR.

25 [333] CHI3L1 was over-expressed in L6 myotubes and the effect on basal and insulin stimulated glucose transport was determined.

Glucose Transport Analysis in L6 Myotubes

Insulin (nM)	Experiment 1		Experiment 2		Experiment 3		Mean FC (CHI3L1/Con) +/- SEM (n=3)
	FC (CHI3L1/ Con)	t test (α)	FC (CHI3L1/ Con)	t test (α)	FC (CHI3L1/ Con)	t test (α)	
0	1.07	0.277	1.18	0.451	1.17	0.040	1.14±0.03
10	1.05	0.034	1.32	0.024	1.18	0.048	1.18±0.08
100	1.11	0.103	1.37	0.026	1.24	0.026	1.24±0.07

Legend "Con" indicates control L6 myotubes that do not express CHI3L1. "FC" indicates the fold change defined as the following ratio; glucose transport in CHI3L1-expressing cells/glucose transport in non-CHI3L1-expressing cells. "h" is human. "n" is the number of experiments. SEM is the standard error of the mean.

[334] The results show that increasing the levels of CHI3L1 in a cell such as a muscle cells leads to a corresponding increase in glucose uptake. This indicates that increasing the levels or activity of CHI3L1 in tissues of insulin resistant patients or diabetic patients will increase the ability of such tissues to take up glucose and hence, will provide an effective treatment for insulin resistance and diabetes.

[335] CHI3L1 contains the following protein domains (designated with reference to SEQ ID NO:46): Signal peptide at amino acids 1 to 21; and Glycosyl hydrolases family 18 (PF00704) at amino acids 22 to 357. A soluble active secreted form of CHI3L1 has been detected (Hakala, B.E., *et al.*, *J Biol Chem.* 268:25803-10 (1993)) and this is displayed in SEQ ID NO:47. CHI3L1 is a glycoprotein secreted by a variety of cells including articular chondrocytes, synoviocytes and macrophages (Recklies, A.D., *et al.*, *Biochem J.* 365: 119-26 (2002)) and is associated with conditions of increased matrix turnover and tissue remodeling for example, arthritis (Punzi, L., *et al.*, *Ann Rheum Dis.* 62: 1224-6 (2003); Ling, H. and Recklies, A.D., *Biochem J.* Mar 12;Pt. Epub (2004)).

[336] The CHI3L1 gene has been cloned and the proximal promoter has been identified and shown to contain binding sites for transcription factors such as PU.1, Sp1, Sp3, USF, AML-1 and C/EBP proteins (*see, e.g.*, Rehli M., *et al.* *Genomics.* 43: 221-225 (1997); Rehli, M., *et al.* *J. Biol. Chem.* 278: 44058-44067 (2003)). An exemplary method of screening for CHI3L1 regulators comprises an assay as follows: A CHI3L1 promoter is inserted upstream of a reporter gene such as β -galactosidase and expressed in cells. Compounds that up-regulate the activity of the promoter can thus be identified by measuring increased β -galactosidase activity.

CR1

[337] Probe set 244313 detects CR1 nucleic acid sequences. Expression of CR1 transcripts was increased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	23.01	2.94	10	12.98	2.39	8	1.77	0.018	CR1

5 B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetics in comparison to lean patients.

[338] CR1 was also evaluated using real-time PCR. The results further show that CR1 is significantly over-expressed in subcutaneous adipose from diabetic individuals
10 when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	1.96	0.004

"Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[339] Probe set 244313 detects CR1 nucleic acid sequences. Expression of
15 CR1 transcripts was increased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESE			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	18.95	0.87	5	10.73	1.33	4	1.77	0.003	CR1

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

20 [340] CR1 contains the following protein domains (designated with reference to SEQ ID NO:53): Sushi domain (SCR repeat) (PF00084) at amino acids 43 to 99, 104 to 161, 166 to 232, 238 to 293, 297 to 353, 358 to 416, 421 to 487, 493 to 549, 554 to 611, 616 to 682, 688 to 743, 747 to 803, 808 to 866, 871 to 937, 943 to 999, 1004 to 1061, 1066 to 1132, 1138 to 1193, 1197 to 1253, 1258 to 1316, 1321 to 1387, 1393 to 1449, 1454 to 1511, 25 1516 to 1582, 1588 to 1643, 1647 to 1703, 1708 to 1766, 1771 to 1837, 1846 to 1902, 1907 to 1964, 1969 to 2035, 2041 to 2096, 2100 to 2156, 2161 to 2219, 2224 to 2290, 2298 to

2354, 2359 to 2415 and 1 transmembrane domain (TMHMM2.0) at amino acids 2447 to 2489. Complement receptor 1 (CR1) is a cell surface glycoprotein on erythrocytes, leukocytes, and other cells that inhibits both the classic and alternative pathways of complement activation. with both the classical and alternative pathways. CR1 also mediates other key immunological functions such as the transport of C3b-coated immune complexes in erythrocytes, activation of phagocytosis of C3b-bearing particles by neutrophils and monocytes, induction of interleukin 1 secretion by monocytes and enhancement of B-cell differentiation (Hamer, I., *et al.*, *Biochem. J.* 329, 183-190 (1998); Makrides, S. C. *et al.*, *J. Biol. Chem.* 267: 24754-24761 (1992)).

10 **CSFR1**

[341] Probe set 203104 detects CSFR1 nucleic acid sequences. Expression of CSFR1 transcripts was increased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	158.57	12.55	10	91.33	11.01	8	1.74	0.001	CSFR1

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

15 "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetics in comparison to lean patients.

[342] CSFR1 was also evaluated using real-time PCR. The results further show that CSFR1 is significantly over-expressed in subcutaneous adipose from diabetic individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	1.68	0.009

20 "Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[343] Probe set 203104 detects CSFR1 nucleic acid sequences. Expression of CSFR1 transcripts was increased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESE			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	148.1	8.8	5	79.28	16.17	4	1.87	0.015	CSFR1

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

5 [344] CSF1R was over-expressed in 3T3-L1 adipocytes and cells were then treated with CSF1. The effect on basal and insulin stimulated glucose transport and Glut 4 translocation was then determined

Glucose Transport Analysis in 3T3-L1 Adipocytes:

Insulin (nM)	Experiment 1		Experiment 2		Experiment 3		Mean FC (hCSF1R/Con) +/- SEM (n=3)
	FC (CSF1R/Con)	t test (α)	FC (CSF1R/Con)	t test (α)	FC (CSF1R/Con)	t test (α)	
0	5.41	0.001	3.88	0.001	3.92	0.001	4.40±0.5
0.03	3.06	0.133	3.60	0.008	2.85	0.003	3.17±0.23
0.3	1.20	0.453	1.11	0.348	1.06	0.594	1.12±0.04
3	0.73	0.065	0.91	0.487	0.91	0.149	0.85±0.06

10 Legend: "Con" indicates control 3T3-L1 adipocytes that do not express CSF1R. "FC" indicates the fold change defined as the following ratio; glucose transport in hCSF1R-expressing cells stimulated with 100 ng/ml hCSF1 for 24 hours/glucose transport in non-hCSF1R-expressing cells stimulated with 100 ng/ml hCSF1 for 24 hours. "h" is human. "n" is the number of experiments. SEM is the standard error of the mean.

15 Glut4 Translocation Analysis:

Insulin (nM)	Fold Change (Mean hCSF1R/Mean LacZ) (n=3)	t test (hCSF1R vs LacZ)
0	6.13	0.001
0.5	1.59	0.001
10	1.06	0.004

20 Legend "Fold Change" indicates the following ratio; (Mean % of hCSF1R-expressing cells incubated with 100 ng/mL murine CSF1 for 24 hours that were scored positive for cell surface Glut4)/(Mean % of LacZ-expressing cells cells incubated with 100 ng/mL murine CSF1 for 24 hours that were scored positive for cell surface Glut4). "h" is human. "n" is the number of experiments

[345] The results show that increasing the levels of CSF1R in a cell such as a adipocyte leads to a corresponding increase in glucose uptake. This indicates that increasing the levels or activity of CSF1R in tissues of insulin resistant patients or diabetic patients will

increase the ability of such tissues to take up glucose and hence, will provide an effective treatment for insulin resistance and diabetes.

[346] CSFR1 contains the following protein domains (designated with reference to SEQ ID NO:57): Signal peptide at amino acids 1 to 19; Protein kinase domain (PF00069) at amino acids 582 to 910; two immunoglobulin domain (PF00047) at amino acids 217 to 280, 412 to 487 and 1 transmembrane domain (TMHMM2.0) at amino acids 515 to 537. CSFR1 is the tyrosine kinase receptor for colony stimulating factor 1, a cytokine which controls the production, differentiation, and function of macrophages and may be associated with advanced-stage breast carcinoma and myeloid leukemia (Sapi, E., *Exp Biol Med*. 229:1-11 (2004); Boultwood, J. *et al.*, *Proc Natl Acad Sci U S A* 88: 6176-6180 (1991); Sapi, E. *et al.*, *Cancer Res*. 59: 5578-85 (1999); Fixe, P. and Praloran, V. *Cytokine* 10:32-7 (1998)).

[347] Cells over-expressing CSF1R can be generated (see, e.g., Murray L.J., *et al. Clin Exp Metastasis*. 20: 757-66 (2003). Agonists of the CSF1R can be identified, e.g., by screening such cells for compounds that have the ability to induce autophosphorylation of the CSF1R.

CTSK

[348] Probe set 202450 detects CTSK nucleic acid sequences. Expression of CTSK transcripts was increased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	227.26	9.47	10	176.54	9.77	8	1.29	0.002	CTSK

20 B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetics in comparison to lean patients.

[349] CTSK was also evaluated using real-time PCR. The results further show that CTSK is significantly over-expressed in subcutaneous adipose from diabetic individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	1.68	<0.000

"Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[350] Probe set 202450 detects CTSK nucleic acid sequences. Expression of CTSK transcripts was increased in patients with insulin resistance compared to normal patients in the gene profiling experiment.

CORRELATION RD				
B/C	n	Corr Co-efficient	Students t test	Gene Name
C	26	-0.689	<0.005	CTSK

B/C indicates sample is from Basal or Clamp; "Corr Co-efficient" indicates the relationship

5 between glucose disposal rate (Rd) and signal intensities. A positive co-efficient indicates down regulation whereas a negative co-efficient indicates up regulation of the gene with increasing insulin resistance; "n" indicates number of patient samples.

[351] CTSK was also evaluated using real-time PCR. The results further show that CTSK is significantly increased in patients with insulin resistance compared to
10 normal patients.

Comparison	Expression Fold Change	t test
Correlation to Rd (26)	-0.74	<0.005

"Corr Co-efficient" indicates the relationship between Rd and signal intensities. A positive co-efficient indicates down regulation whereas a negative co-efficient indicates up regulation of the gene with increasing insulin resistance. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

15 [352] Probe set 202450 detects CTSK nucleic acid sequences. Expression of CTSK transcripts was increased in adipose tissues compared to all other human adult tissues in the gene profiling experiment.

ADIPOSE TISSUES			OTHER TISSUES					
Mean Expr	SEM	n	Mean Expr	SEM	n	Fold Change	Students t test	Gene Name
226.1	32.74	5	62.38	10.98	13	3.62	0.005	CTSK

"Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of tissue samples; "Fold Change" indicates fold change of adipose tissues in
20 comparison to all other human adult tissues profiled.

[353] CTSK contains the following protein domains (designated with reference to SEQ ID NO:63): Signal peptide at amino acids 1 to 23; Outer membrane lipoprotein LolB (PF03550) at amino acids 4 to 158; and Papain family cysteine protease (PF00112) at amino acids 115 to 328. A soluble active secreted form of CTSK has been
25 detected and this is displayed in SEQ ID NO:64. CTSK is a cysteine (thiol) protease involved in bone remodeling and reabsorption, acts as a collagenase towards cartilage proteoglycans and may play a role in extracellular matrix degradation. Mutations in this gene are the cause

of pycnodysostosis, an autosomal recessive disease characterized by osteosclerosis and short stature. (Motyckova, G. and Fisher, D.E., *Curr Mol Med.* 2: 407-21(2002); Soderstrom, M. et al., *Biochim Biophys Acta* 1446: 35-46 (1999); Hou, W.S., et al., *Biol Chem.* 384: 891-7 (2003)).

5 CXCR4

[354] Probe set 211919 detects CXCR4 nucleic acid sequences. Expression of CXCR4 transcripts was increased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESE			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	60.88	5.37	5	37.45	5.25	4	1.63	0.027	CXCR4

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

10 "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[355] CXCR4 was also evaluated using real-time PCR. The results further show that CXCR4 is significantly over-expressed in subcutaneous adipose from obese individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Obese (5) / Lean (4)	2.79	0.001

15 "Fold Change" indicates the fold expression calculated as the ratio of the mean obese expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR

[356] CXCR4 was over-expressed in 3T3-L1 adipocytes and the cells were treated with SDF1, a ligand for CXCR4. The effects on basal and insulin stimulated glucose transport and Glut 4 translocation were determined.

Glucose Transport Analysis in 3T3-L1 Adipocytes:

Insulin (nM)	Experiment 1		Experiment 2		Experiment 3		Mean FC (hCXCR4/Con) +/- SEM (n=3)
	FC (hCXCR4/Con)	t test (α)	FC (hCXCR4/Con)	t test (α)	FC (hCXCR4/Con)	t test (α)	
0	2.35	0.001	1.54	0.001	0.95	0.48	1.61±0.40
0.03	1.64	0.014	1.62	0.004	0.71	0.07	1.32±0.31
0.3	1.79	0.003	1.05	0.341	0.96	0.73	1.27±0.26
3	1.71	0.006	0.99	0.944	1.04	0.77	1.25±0.23

Legend: "Con" indicates control 3T3-L1 adipocytes that do not express hCXCR4. "FC" indicates the fold change defined as the following ratio; glucose transport in hCXCR4-expressing cells incubated for 24 hours with 20 nM SDF1/glucose transport in non-CXCR4-expressing cells incubated for 24 hours with 20 nM SDF1. "h" is human. "n" is the number of experiments. SEM is the standard error of the mean.

Glut4 Translocation Analysis:

Insulin (nM)	Fold Change (Mean hCXCR4/Mean LacZ) (n=3)	t test (hCXCR4 vs LacZ)
0	2.33	0.028
0.5	1.10	0.344
10	0.94	0.208

Legend "Fold Change" indicates the following ratio; (Mean % of hCXCR4-expressing cells incubated with 20 nM SDF1 for 24 hours that were scored positive for cell surface Glut4)/(Mean % of LacZ-expressing cells cells incubated with 20 nM SDF1 for 24 hours that were scored positive for cell surface Glut4). "h" is human. "n" is the number of experiments.

[357] The results show that in a cell such as an adipocyte, increasing the levels of CXCR4 in the presence of the CXCR4 ligand SDF1 leads to a corresponding increase in glucose uptake. This indicates that increasing the levels or activity of CXCR4 in tissues of insulin resistant patients or diabetic patients will increase the ability of such tissues to take up glucose and hence, will provide an effective treatment for insulin resistance and diabetes.

[358] CXCR4 contains the following protein domains (designated with reference to SEQ ID NO:70): 7 transmembrane receptor (Secretin family) (PF00002) at amino acids 45 to 280; and 7 transmembrane domains (TMHMM2.0) at amino acids 43 to 65, 78 to 96, 111 to 132, 155 to 174, 199 to 221, 242 to 264, 284 to 306. CXCR4 is a G protein-coupled receptor that binds the CXC cytokine, CXCL12. CXCR4 may be required for hematopoiesis and organ vascularization (Tachibana, K. *et al.*, *Nature* 393: 591-4(1998). It is known to act as a coreceptor for HIV (Moriuchi, M. *et al.*, *J. Immunol.* 159: 4322-4329 (1997)) and inhibition of this receptor may be therapeutic for invasive breast cancer (Tamamura, H., *et al.*, *FEBS Lett.* 550: 79-83 (2003)).

[359] Stimulation of the CXCR4 receptor with its ligand SDF1-alpha leads to an increase in intracellular Ca²⁺ (see, e.g., Princen K. *et al.* *J Exp Med.* 20;186: 1383-1388 (1997)). Agonists of the CXCR4 receptor can therefore be identified, e.g., by screening cells with high levels of the CXCR4 receptor to identify compounds that increases intracellular Ca²⁺ using a calcium sensitive dye such as Calcium 3 or Fluo 3.

DDAH2

[360] Probe set 214909 detects DDAH2 nucleic acid sequences. Expression of DDAH2 transcripts was increased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	127.86	3.27	10	96.19	6.67	8	1.33	0.002	DDAH2

5 B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetics in comparison to lean patients.

[361] Probe set 214909 detects DDAH2 nucleic acid sequences. Expression of DDAH2 transcripts was increased in patients with insulin resistance compared to normal 10 patients in the gene profiling experiment.

CORRELATION RD			
B/C	n	Corr Co-efficient	Students t test
C	26	-0.814	<0.005

B/C indicates sample is from Basal or Clamp; "Corr Co-efficient" indicates the relationship between glucose disposal rate (Rd) and signal intensities. A positive co-efficient indicates down regulation whereas a negative co-efficient indicates up regulation of the gene with increasing insulin resistance; "n" indicates number of patient samples.

15 [362] DDAH2 was also evaluated using real-time PCR. The results further show that DDAH2 is significantly increased in patients with insulin resistance compared to normal patients.

Comparison	Expression Fold Change	t test
Correlation to Rd (26)	-0.556	<0.005

20 "Corr Co-efficient" indicates the relationship between Rd and signal intensities. A positive co-efficient indicates down regulation whereas a negative co-efficient indicates up regulation of the gene with increasing insulin resistance. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[363] Probe set 214909 detects DDAH2 nucleic acid sequences. Expression of DDAH2 transcripts was increased in adipose tissues compared to all other human adult tissues in the gene profiling experiment.

ADIPOSE TISSUES			OTHER TISSUES					
Mean Expr	SEM	n	Mean Expr	SEM	n	Fold Change	Students t test	Gene Name
100.24	8.97	5	29.85	4.51	13	3.36	<0.000	DDAH2

"Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of tissue samples; "Fold Change" indicates fold change of adipose tissues in comparison to all other human adult tissues profiled.

[364] DDAH2 contains the following protein domains (designated with reference to SEQ ID NO:76): Amidinotransferase (PF02274) at amino acids 6 to 281. DDAH2 regulates cellular methylarginine concentrations, which in turn inhibit nitric oxide synthase. DDAH2 expression predominates in more highly vascularized tissues and in immune tissues (Leiper, J.M., et al., *Biochem J.* 343: 209-14 (1999)).

DERP7

[365] Probe set 219410 detects DERP7 nucleic acid sequences. Expression of DERP7 transcripts was increased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESE			LEAN					
	Mean Expr	SEM	n	Mean Expr	SEM	n	Fold Change	Students t test	Gene Name
B	53.96	6.71	5	24.77	0.29	4	2.18	0.012	DERP7

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[366] DERP7 was also evaluated using real-time PCR. The results further show that DERP7 is significantly over-expressed in subcutaneous adipose from obese individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Obese (5) / Lean (4)	3.18	0.074

"Fold Change" indicates the fold expression calculated as the ratio of the mean obese expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[367] Probe set 219410 detects DERP7 nucleic acid sequences. Expression of DERP7 transcripts was decreased in pio compared to vehicle treated cultures of primary human adipocytes in the gene profiling experiment.

B/C	PIO			VEHICLE			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	278.73	15	3	432.9	27.78	3	0.64	0.015	DERP7

B/C indicates sample is from Basal or Clamp; "Pre-Pio" and "Post-Pio" indicates sample was taken before or after 24 hours of pioglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of primary human adipocytes post-pio in comparison to pre-pio samples.

[368] DERP7 contains the following protein domains (designated with reference to SEQ ID NO:82): Family of unknown function (DUF716) (PF04819) at amino acids 113 to 251; and 7 transmembrane domains (TMHMM2.0) at amino acids 4 to 23, 44 to 66, 91 to 113, 118 to 140, 150 to 172, 181 to 203, 218 to 240. DERP7 has high similarity to an uncharacterized mouse protein, p.19.5. This is a putative membrane protein which was shown to be differentially expressed in two closely related T lymphoma cell clones (MacLeod C.L. et al., *Cell Growth Differ.*, 1(6): 271-279 (1990)).

ENDOGLYX1

[369] Probe set 219091 detects ENDOGLYX1 nucleic acid sequences.

15 Expression of ENDOGLYX1 transcripts was increased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESE			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	221.54	17.86	5	146.55	13.61	4	1.51	0.013	ENDOGLYX1

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

20 [370] ENDOGLYX1 was also evaluated using real-time PCR. The results further show that ENDOGLYX1 is significantly over-expressed in subcutaneous adipose from obese individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Obese (5) / Lean (4)	2.36	0.018

"Fold Change" indicates the fold expression calculated as the ratio of the mean obese-expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[371] Probe set 219091 detects ENDOGLYX1 nucleic acid sequences.

Expression of ENDOGLYX1 transcripts was increased in adipose tissues compared to all other human adult tissues in the gene profiling experiment.

ADIPOSE TISSUES			OTHER TISSUES					
Mean Expr	SEM	n	Mean Expr	SEM	n	Fold Change	Students t test	Gene Name
151.52	16.51	5	40.09	5.18	13	3.78	0.002	ENDOGLYX1

"Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n"

5 indicates number of tissue samples; "Fold Change" indicates fold change of adipose tissues in comparison to all other human adult tissues profiled.

[372] ENDOGLYX1 contains the following protein domains (designated with reference to SEQ ID NO:88): Seryl-tRNA synthetase N-terminal domain (PF02403) at amino acids 499 to 600; Myosin tail (PF01576) at amino acids 143 to 814; Apolipoprotein 10 A1/A4/E family (PF01442) at amino acids 200 to 469; C1q domain (PF00386) at amino acids 827 to 946; TNF(Tumour Necrosis Factor) family (PF00229) at amino acids 835 to 946; and Intermediate filament protein (PF00038) at amino acids 360 to 645. ENDOGLYX1 is a cell surface glycoprotein which is attached to the extracellular matrix and capable of forming homo- and heteromers via disulfide bonding. It may play a role in angiogenesis, 15 vasculogenesis, cell-matrix adhesion, and hemostasis (Christian, S. *et al.*, *J Biol Chem* 276: 48588-95 (2001); Leimeister, C., *et al.*, *Dev Biol.* 249: 204-18 (2002)).

ETL

[373] Probe set MBXHUMFAT01286 detects ETL nucleic acid sequences.

Expression of ETL transcripts was increased in obese compared to lean patients in the gene 20 profiling experiment.

B/C	OBESE			LEAN					
	Mean Expr	SEM	n	Mean Expr	SEM	n	Fold Change	Students t test	Gene Name
C	48.6	4.32	8	32.99	3.67	8	1.47	0.016	ETL

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

"SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[374] Probe set MBXHUMFAT01286 detects ETL nucleic acid sequences.

25 Expression of ETL transcripts was increased in adipose tissues compared to all other human adult tissues in the gene profiling experiment.

ADIPOSE TISSUES			OTHER TISSUES			Fold Change	Students t test	Gene Name
Mean Expr	SEM	n	Mean Expr	SEM	n			
17.82	5.34	5	5.36	1.22	13	3.32	0.079	ETL

"Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of tissue samples; "Fold Change" indicates fold change of adipose tissues in comparison to all other human adult tissues profiled.

[375] ETL was also evaluated using real-time PCR. The results further show
 5 that ETL is significantly over-expressed in adipose tissues when compared to all other human adult tissues.

Comparison	Expression Fold Change	t test
Fat Tissues (5)/ All Other Tissues (13)	5.15	0.007

"Fold Change" indicates the fold expression calculated as the ratio of the mean adipose tissues expression/ mean other tissues expression. Numbers in parentheses indicates the number of human adult tissue samples analyzed by real-time PCR.

[376] ETL contains the following protein domains (designated with reference to SEQ ID NO:94): BphX-like (PF06139) at amino acids 629 to 728; Latrophilin/CL-1-like GPS domain (PF01825) at amino acids 487 to 539; EGF-like domain (PF00008) at amino acids 183 to 220; 7 transmembrane receptor (Secretin family) (PF00002) at amino acids 545 to 792; and 7 transmembrane domains (TMHMM2.0) at amino acids 552 to 574, 587 to 606,
 10 621 to 643, 655 to 677, 692 to 714, 740 to 762, 766 to 788. ETL belongs to the secretin family of G-protein-coupled peptide hormone receptors and the EGF-TM7 subfamily of receptors. The latter are characterized by a variable number of extracellular EGF and cell surface domains and conserved seven transmembrane-spanning regions. (Nechiporuk, T. et al., *J Biol Chem* 276: 4150-7 (2001)).

15 621 to 643, 655 to 677, 692 to 714, 740 to 762, 766 to 788. ETL belongs to the secretin family of G-protein-coupled peptide hormone receptors and the EGF-TM7 subfamily of receptors. The latter are characterized by a variable number of extracellular EGF and cell surface domains and conserved seven transmembrane-spanning regions. (Nechiporuk, T. et al., *J Biol Chem* 276: 4150-7 (2001)).

20 FLJ12389

[377] Probe set 218434 detects FLJ12389 nucleic acid sequences. Expression of FLJ12389 transcripts was decreased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	88.31	9.03	10	329.7	53.82	8	0.27	0.003	FLJ12389

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

25 "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetics in comparison to lean patients.

[378] FLJ12389 was also evaluated using real-time PCR. The results further show that FLJ12389 is significantly under-expressed in subcutaneous adipose from diabetic individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	0.19	0.001

"Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic

5 expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[379] Probe set 218434 detects FLJ12389 nucleic acid sequences. Expression of FLJ12389 transcripts was decreased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESE			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	182.13	24.09	8	329.7	53.82	8	0.55	0.032	FLJ12389

10 B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[380] FLJ12389 was also evaluated using real-time PCR. The results further show that FLJ12389 is significantly under-expressed in subcutaneous adipose from obese

15 individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Obese (8)/ Lean (8)	0.49	0.014

"Fold Change" indicates the fold expression calculated as the ratio of the mean obese expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[381] Probe set 218434 detects FLJ12389 nucleic acid sequences. Expression

20 of FLJ12389 transcripts was increased in adipose tissues compared to all other human adult tissues in the gene profiling experiment.

ADIPOSE TISSUES			OTHER TISSUES			Fold Change	Students t test	Gene Name
Mean Expr	SEM	n	Mean Expr	SEM	n			
266.24	76.69	5	48.32	9.58	13	5.51	0.046	FLJ12389

"Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of tissue samples; "Fold Change" indicates fold change of adipose tissues in comparison to all other human adult tissues profiled.

[382] FLJ12389 contains the following protein domains (designated with reference to SEQ ID NO:100): AMP-binding enzyme (PF00501) at amino acids 130 to 571. FLJ12389 has some sequence similarity to acetyl coenzyme A synthetases and is predicted to contain ATP/GTP and AMP binding sites. FLJ12389 may be a ketone body-utilizing enzyme 5 of which the physiological role of remains unclear (Ohgami, M. et al., *Biochem Pharmacol* 65: 989-994 (2003)).

FZD4

[383] Probe set 218665 detects FZD4 nucleic acid sequences. Expression of FZD4 transcripts was decreased in diabetic compared to lean patients in the gene profiling 10 experiment.

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	425.71	13.15	10	543.05	29.78	8	0.78	0.005	FZD4

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetics in comparison to lean patients.

[384] FZD4 was also evaluated using real-time PCR. The results further 15 show that FZD4 is significantly under-expressed in subcutaneous adipose from diabetic individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	0.82	0.016

"Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[385] Probe set 218665 detects FZD4 nucleic acid sequences. Expression of FZD4 transcripts was decreased in patients with insulin resistance compared to normal 20 patients in the gene profiling experiment.

CORRELATION RD			
B/C	n	Corr Co-efficient	Students t test
C	18	0.655	<0.005

B/C indicates sample is from Basal or Clamp; "Corr Co-efficient" indicates the relationship between glucose disposal rate (Rd) and signal intensities. A positive co-efficient indicates down regulation whereas a negative co-efficient indicates up regulation of the gene with increasing insulin resistance; "n" indicates number of patient samples.

[386] FZD4 was also evaluated using real-time PCR. The results further show that FZD4 is significantly decreased in patients with insulin resistance compared to normal patients.

Comparison	Expression Fold Change	t test
Correlation to Rd (18)	0.651	<0.005

"Corr Co-efficient" indicates the relationship between Rd and signal intensities. A positive

5 co-efficient indicates down regulation whereas a negative co-efficient indicates up regulation of the gene with increasing insulin resistance. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[387] Probe set 218665 detects FZD4 nucleic acid sequences. Expression of FZD4 transcripts was increased in adipose tissues compared to all other human adult tissues
10 in the gene profiling experiment.

ADIPOSE TISSUES			OTHER TISSUES					
Mean Expr	SEM	n	Mean Expr	SEM	n	Fold Change	Students t test	Gene Name
312.52	56.2	5	65.81	6.04	13	4.75	0.011	FZD4

"Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n"

indicates number of tissue samples; "Fold Change" indicates fold change of adipose tissues in comparison to all other human adult tissues profiled.

[388] FZD4 contains the following protein domains (designated with reference to SEQ ID NO:110): Signal peptide at amino acids 1 to 36; Frizzled/Smoothened family membrane region (PF01534) at amino acids 209 to 514; Fz domain (PF01392) at amino acids 35 to 159; and 7 transmembrane domains (TMHMM2.0) at amino acids 10 to 32, 221 to 243, 253 to 275, 301 to 323, 394 to 416, 437 to 459, 474 to 496. FZD4 encodes a 7-transmembrane domain protein and is a receptor for Wnt signaling proteins. The auditory and cerebellar phenotypes of FZD4 null mice implicate Frizzled signaling in maintaining the viability and integrity of the nervous system in later life and retinal angiogenesis (Wang, Y., et al., *J Neurosci.* 21: 4761-71 (2001); Singaraja, R.R., et al., *Nat Genet.* 32: 326-30 (2002)).

GLIPR1

[389] Probe set 226142 detects GLIPR1 nucleic acid sequences. Expression of GLIPR1 transcripts was increased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN			Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n		
C	45.5	4.89	10	18.31	2.44	8	2.48	<0.000

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetics in comparison to lean patients.

[390] GLIPR1 was also evaluated using real-time PCR. The results further
 5 show that GLIPR1 is significantly over-expressed in subcutaneous adipose from diabetic individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	2	0.017

"Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

10 [391] Probe set 226142 detects GLIPR1 nucleic acid sequences. Expression of GLIPR1 transcripts was increased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESE			LEAN			Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n		
B	33.18	5.13	5	14.48	2.07	4	2.29	0.018

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

15 [392] GLIPR1 was also evaluated using real-time PCR. The results further

show that GLIPR1 is significantly over-expressed in subcutaneous adipose from obese individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Obese (5)/ Lean (4)	2.93	0.015

"Fold Change" indicates the fold expression calculated as the ratio of the mean obese

20 expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[393] Probe set 226142 detects GLIPR1 nucleic acid sequences. Expression of GLIPR1 transcripts was decreased in pio+insulin compared to insulin treated cultures of primary human adipocytes in the gene profiling experiment.

PIO+INSULIN				INSULIN						
B/C	Mean Expr	SEM	n	Mean Expr	SEM	n	Fold Change	Students t test	Gene Name	
C	73.17	5.25	3	114.93	4.09	3	0.64	0.004	GLIPR1	

B/C indicates sample is from Basal or Clamp; "Pre-Pio" and "Post-Pio" indicates sample was taken before or after 24 hours of pioglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of primary human adipocytes post-pio in comparison to pre-pio samples.

[394] Probe set 226142 detects GLIPR1 nucleic acid sequences. Expression of GLIPR1 transcripts was decreased in rosi+insulin compared to insulin treated cultures of primary human adipocytes in the gene profiling experiment.

ROSI+INSULIN				INSULIN						
B/C	Mean Expr	SEM	n	Mean Expr	SEM	n	Fold Change	Students t test	Gene Name	
C	69.57	3.72	3	114.93	4.09	3	0.61	0.001	GLIPR1	

B/C indicates sample is from Basal or Clamp; "Pre-Rosi" and "Post-Rosi" indicates sample was taken before or after 24 hours of rosiglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of primary human adipocytes post-roxi in comparison to pre-roxi samples.

[395] GLIPR1 contains the following protein domains (designated with reference to SEQ ID NO:118): Signal peptide at amino acids 1 to 21; SCP-like extracellular protein (PF00188) at amino acids 38 to 174; and 1 transmembrane domain (TMHMM2.0) at amino acids 235 to 257. GLIPR1 is a putative secreted protein that may play a role in inhibition of malignant growth and progression through its proapoptotic activities (Ren, C. et al., *Mol Cell Biol* 22: 3345-57 (2002)).

20 GPR105

[396] Probe set 206637 detects GPR105 nucleic acid sequences. Expression of GPR105 transcripts was increased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	98.55	8.61	10	60.97	3.98	8	1.62	0.002	GPR105

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

"SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetics in comparison to lean patients.

[397] GPR105 was also evaluated using real-time PCR. The results further
 5 show that GPR105 is significantly over-expressed in subcutaneous adipose from diabetic individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	2	0.007

"Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[398] GPR105 contains the following protein domains (designated with reference to SEQ ID NO:124): 7 transmembrane receptor (rhodopsin family) (PF00001) at amino acids 39 to 295; and 7 transmembrane domains (TMHMM2.0) at amino acids 27 to 49, 56 to 78, 98 to 117, 137 to 159, 187 to 209, 235 to 257, 279 to 298. GPR105 is a G(i/o)-G protein-coupled receptor that is activated by extracellular UDP-sugars. Activation of the
 10 receptor stimulates intracellular calcium and may mediate primitive hematopoietic cell responses to microenvironments (Chambers, J. K. *et al.*, *J Biol Chem* 275: 10767-71 (2000); Lee, B. C. *et al.*, *Genes Dev* 17: 1592-604 (2003); Skelton, L. *et al.*, *J Immunol* 171: 1941-9 (2003); Moore, D. J. *et al.*, *Brain Res Mol Brain Res* 118: 10-23 (2003)).

15

GPR146

[399] Probe set 228770 detects GPR146 nucleic acid sequences. Expression of GPR146 transcripts was decreased in diabetic compared to lean patients in the gene profiling experiment.
 20

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	42.73	2.15	10	57.98	4.47	8	0.74	0.012	GPR146

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

"SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold

25 Change" indicates fold change of diabetics in comparison to lean patients.

[400] GPR146 was also evaluated using real-time PCR. The results further show that GPR146 is significantly under-expressed in subcutaneous adipose from diabetic individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	0.66	0.014

"Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic

5 expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[401] Probe set 228770 detects GPR146 nucleic acid sequences. Expression of GPR146 transcripts was decreased in patients with insulin resistance compared to normal patients in the gene profiling experiment.

CORRELATION RD				
B/C	n	Corr Co-efficient	Students t test	Gene Name
C	26	0.679	<0.005	GPR146

10 B/C indicates sample is from Basal or Clamp; "Corr Co-efficient" indicates the relationship between glucose disposal rate (Rd) and signal intensities. A positive co-efficient indicates down regulation whereas a negative co-efficient indicates up regulation of the gene with increasing insulin resistance; "n" indicates number of patient samples.

[402] GPR146 was also evaluated using real-time PCR. The results further 15 show that GPR146 is significantly decreased in patients with insulin resistance compared to normal patients.

Comparison	Expression Fold Change	t test
Correlation to Rd (26)	0.535	<0.005

"Corr Co-efficient" indicates the relationship between Rd and signal intensities. A positive co-efficient indicates down regulation whereas a negative co-efficient indicates up regulation of the gene with increasing insulin resistance. Numbers in parentheses indicates the number

20 of patient samples analyzed by real-time PCR.

[403] The cellular level of GPR146 was reduced in 3T3-L1 adipocytes using siRNA directed against GPR146 and the effect on basal and insulin stimulated glucose transport was determined

GPR146 mRNA Level in 3T3-L1 Adipocytes Transfected with siRNA Oligonucleotides

	Expt 1	Expt 2	Expt 3	Expt 4	Mean FC ± SEM (n=4)
FC (siRNA/Scr)	0.545	0.443	0.399	0.524	0.478 ± 0.03

Legend: "siRNA" indicates Dhamacon Smartpool siRNA oligonucleotides directed against murine GPR146. "Scr" indicates the Dhamacon Scramble siRNA Control. "FC" indicates the fold change defined as the following ratio; Level of GPR146 mRNA in GPR146 siRNA transfected 3T3-L1 adipocytes/Level of GPR146 mRNA in Scramble siRNA transfected 3T3-L1 adipocytes. "n" is the number of experiments. SEM is the standard error of the mean.

Glucose Transport in 3T3-L1 Adipocytes Transfected with siRNA Oligonucleotides

Insulin (nM)	Experiment 1		Experiment 2		Experiment 3		Experiment 4		Mean FC (siRNA/S ± SEM (n=4))
	FC (siRNA/A/Scr)	t-test	FC (siRNA/A/Scr)	t-test	FC (siRNA/A/Scr)	t-test	FC (siRNA/A/Scr)	t-test	
0.0	0.637	<0.001	0.614	<0.001	0.688	<0.001	0.785	0.0461	0.681 ± 0.0461
0.1	0.488	<0.001	0.479	<0.001	0.635	<0.001	0.679	<0.001	0.570 ± 0.0461
1.0	0.496	<0.001	0.609	<0.001	0.845	<0.001	0.886	0.0314	0.709 ± 0.0461
10.0	0.546	<0.001	0.615	<0.001	0.803	<0.001	0.908	0.0669	0.718 ± 0.0461

Legend: "siRNA" indicates Dhamacon Smartpool siRNA oligonucleotides directed against murine GPR146. "Scr" indicates Dhamacon Scramble siRNA Control oligonucleotides. "FC" indicates the fold change defined as the following ratio; glucose transport in GPR146 siRNA transfected cells/glucose transport in Scramble siRNA transfected cells. "n" is the number of experiments. SEM is the standard error of the mean.

15

[404] The results show that decreasing the levels of GPR146 in a cell such as an adipocyte leads to a corresponding decrease in glucose uptake. This indicates that increasing the levels of GPR146 in tissues of insulin resistant patients or diabetic patients will increase the ability of such tissues to take up glucose and hence, will provide an effective treatment for insulin resistance and diabetes.

[405] GPR146 contains the following protein domains (designated with reference to SEQ ID NO:130): Signal peptide at amino acids 1 to 37; and a 7 transmembrane receptor (rhodopsin family) (PF00001) at amino acids 44 to 296. GPR146 is a member of the rhodopsin family of G protein-coupled receptors (GPCR) with very low sequence similarity to GPR30.

[406] GPR146 is an orphan GPCR with unknown coupling to G proteins (Goriam DE et al. *Biochim Biophys Acta*. 1722:235-46 (2005)). Agonists of GPR146 can be detected, e.g., using cells over-expressing GPR146 along with either a promiscuous G protein (such as G α 16, Kostenis E. *Trends Pharmacol Sci.* 22:560-4 (2001) or a chimeric G protein (such as G α 16z or G α 16s) (see, e.g., Liu AM et al. *J Biomol Screen.* 8:39-49 (2003), Hazari A et al. *Cell Signal.* 16:51-62 (2004)). Screening of such cells will detect GPR146 agonists, for example either by measuring intracellular Ca $^{2+}$ with a Ca $^{2+}$ sensitive dye such as Calcium 3 or by measuring intracellular cyclic AMP.

GPR30

[407] Probe set 210640 detects GPR30 nucleic acid sequences. Expression of GPR30 transcripts was decreased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	57.91	2.58	10	68.68	1.19	8	0.84	0.002	GPR30

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

"SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold

Change" indicates fold change of diabetics in comparison to lean patients.

[408] GPR30 was also evaluated using real-time PCR. The results further show that GPR30 is significantly under-expressed in subcutaneous adipose from diabetic individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	0.79	0.005

"Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic

expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[409] Probe set 210640 detects GPR30 nucleic acid sequences. Expression of GPR30 transcripts was decreased in patients with insulin resistance compared to normal patients in the gene profiling experiment.

CORRELATION RD				Gene Name
B/C	n	Corr Co-efficient	Students t test	
C	26	0.608	<0.005	GPR30

B/C indicates sample is from Basal or Clamp; "Corr Co-efficient" indicates the relationship between glucose disposal rate (Rd) and signal intensities. A positive co-efficient indicates

down regulation whereas a negative co-efficient indicates up regulation of the gene with increasing insulin resistance; "n" indicates number of patient samples.

[410] GPR30 was also evaluated using real-time PCR. The results further show that GPR30 is significantly decreased in patients with insulin resistance compared to normal patients.

Comparison	Expression Fold Change	t test
Correlation to Rd (26)	0.5	<0.01

"Corr Co-efficient" indicates the relationship between Rd and signal intensities. A positive co-efficient indicates down regulation whereas a negative co-efficient indicates up regulation of the gene with increasing insulin resistance. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[411] Probe set 210640 detects GPR30 nucleic acid sequences. Expression of GPR30 transcripts was increased in adipose tissues compared to all other human adult tissues in the gene profiling experiment.

ADIPOSE TISSUES			OTHER TISSUES			Fold Change	Students t test	Gene Name
Mean Expr	SEM	n	Mean Expr	SEM	n			
48.76	7.76	5	13.04	4.3	13	3.74	0.006	GPR30

"Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of tissue samples; "Fold Change" indicates fold change of adipose tissues in comparison to all other human adult tissues profiled.

[412] GPR30 contains the following protein domains (designated with reference to SEQ ID NO:136): 7 transmembrane receptor (rhodopsin family) (PF00001) at amino acids 76 to 324; and 7 transmembrane domains (TMHMM2.0) at amino acids 63 to 85, 97 to 119, 134 to 153, 174 to 196, 219 to 241, 262 to 284, 304 to 326. GPR30 a G protein-coupled receptor that stimulates adenylyl cyclase and mediates attenuation of Erk-1/-2 activity by estrogen via Raf-1 inactivation. GPR30 is a progestin target gene whose expression correlates with progestin-induced growth inhibition in breast cancer cells (Filardo, E. J. et al., *Mol Endocrinol* 14: 1649-60 (2000); Ahola, T. M. et al., *Endocrinology* 143: 4620-6 (2002)).

25 GPR65

[413] Probe set 214467 detects GPR65 nucleic acid sequences. Expression of GPR65 transcripts was increased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESE			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	11.44	0.48	5	7.23	0.95	4	1.58	0.013	GPR65

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

"SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[414] GPR65 was also evaluated using real-time PCR. The results further
 5 show that GPR65 is significantly over-expressed in subcutaneous adipose from obese individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Obese (5) / Lean (4)	4.79	0.012

"Fold Change" indicates the fold expression calculated as the ratio of the mean obese expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

10 [415] GPR65 contains the following protein domains (designated with reference to SEQ ID NO:142): 7 transmembrane receptor (rhodopsin family) (PF00001) at amino acids 31 to 290; and 7 transmembrane domains (TMHMM2.0) at amino acids 15 to 37, 49 to 71, 91 to 110, 130 to 152, 181 to 203, 224 to 246, 271 to 293. GPR65 is a G protein-coupled receptor activated by the glycosphingolipid psychosine. It may function in apoptosis
 15 and immunological autotolerance, and plays a role in T-cell associated diseases and Globoid cell leukodystrophy (Kyaw, H. et al., *DNA Cell Biol* 17: 493-500 (1998); Im, D. S. et al., *J Cell Biol* 153: 429-34 (2001)). GPR65 has been described to be expressed in human primary monocytes and macrophages (Duong, C.Q., et al., *Biochim Biophys Acta*. 1682: 112-9(2004)).

HTR2B

20 [416] Probe set 206638 detects HTR2B nucleic acid sequences. Expression of HTR2B transcripts was decreased in pio compared to vehicle treated cultures of primary human adipocytes in the gene profiling experiment.

B/C	PIO			VEHICLE			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	6.13	1.65	3	15.9	1.01	3	0.39	0.012	HTR2B

B/C indicates sample is from Basal or Clamp; "Pre-Pio" and "Post-Pio" indicates sample was taken before or after 24 hours of pioglitazone treatment; "Mean Expr" indicates mean

25 expression; "SEM" indicates standard error of mean; "n" indicates number of patient

samples; "Fold Change" indicates fold change of primary human adipocytes post-pio in comparison to pre-pio samples.

[417] HTR2B was also evaluated using real-time PCR. The results further show that HTR2B is significantly under-expressed in primary cultured human adipocytes
5 treated with pio when compared to vehicle.

Comparison	Expression Fold Change	t test
Post-Pio (12) / Pre-Pio (12)	0.63	0.002

"Fold Change" indicates the fold expression calculated as the ratio of the mean pio expression/ mean vehicle expression. Numbers in parentheses indicates the number of primary human adipocyte samples analyzed by real-time PCR.

10 [418] HTR2B was over-expressed in 3T3-L1 adipocytes and the cells were then treated with 5-HT and the effect on basal and insulin stimulated glucose transport was determined.

Glucose Transport Analysis in 3T3-L1 Adipocytes:

Insulin (nM)	Experiment 1		Experiment 2		Experiment 3		Mean FC (hHTR2B/Con) +/- SEM (n=3)
	FC (hHTR2B/ Con)	t test (α)	FC (hHTR2B/ Con)	t test (α)	FC (hHTR2B/ Con)	t test (α)	
0	1.95	0.01	1.51	0.001	1.38	0.02	1.61±0.17
0.03	1.65	0.03	1.15	0.39	1.47	0.01	1.42±0.15
0.3	1.26	0.04	1.12	0.01	1.30	0.10	1.22±0.05
3	1.10	0.17	1.09	0.09	1.02	0.77	1.07±0.03

Legend: "Con" indicates control 3T3-L1 adipocytes that do not express hHTR2B. "FC" indicates the fold change defined as the following ratio; glucose transport in HTR2B-expressing cells stimulated with 1 uM 5HT for 3 hours/glucose transport in non-HTR2B-expressing cells stimulated with 1uM 5HT for 3 hours. "h" is human. "n" is the number of experiments. SEM is the standard error of the mean.

20 [419] These results show that in a cell such as a adipocyte, increasing the levels of HTR2B in the presence of its ligand 5-HT leads to a corresponding increase in glucose uptake. This indicates that increasing the levels or activity of HTR2B in tissues of insulin resistant patients or diabetic patients will increase the ability of such tissues to take up glucose and hence, will provide an effective treatment for insulin resistance and diabetes.

25 [420] HTR2B contains the following protein domains (designated with reference to SEQ ID NO:148): 7 transmembrane receptor (rhodopsin family) (PF00001) at amino acids 71 to 380; and 7 transmembrane domains (TMHMM2.0) at amino acids 59 to 81, 93 to 115, 130 to 149, 170 to 192, 217 to 239, 327 to 349, 364 to 383. HTR2B is a 5-

hydroxytryptamine 2B (serotonin) receptor that signals through phospholipase C and is known to induce mitogenesis, mediate contractile effects of serotonin on GI tract smooth muscle and may play a role in digestion and migraine headaches (Duxon M.S. *et al.*, *Neuroscience* 76(2): 323-9 (1997); Jerman J.C. *et al.*, *Eur J Pharmacol.*, 414(1): 23-30 (2001); Launay, J.M., *et al.*, *J Biol Chem.* 271: 3141-7 (1996); Nebigil, C.G. *et al.*, *Proc Natl Acad Sci U S A.* 97: 2591-6 (2000); Schaerlinger, B., *et al.*, *Br J Pharmacol.* 140: 277-84. Epub (2003)).

[421] The HTR2B receptor is a G protein coupled receptor linked to the mobilization of intracellular Ca²⁺ (see, e.g., Schmuck K. *et al* *FEBS Lett.* 342 :85-90 (1994)).

10 Agonists of the HTR2B receptor can therefore be identified, e.g., by screening cells with high levels of the HTR2B receptor to identify compounds that increase intracellular Ca²⁺ using a calcium sensitive dye such as Calcium 3 or Fluo 3.

ITGB2

[422] Probe set 202803 detects ITGB2 nucleic acid sequences. Expression of ITGB2 transcripts was increased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	143.11	20.64	10	63.33	10.52	8	2.26	0.004	ITGB2

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetics in comparison to lean patients.

20 [423] ITGB2 was also evaluated using real-time PCR. The results further show that ITGB2 is significantly over-expressed in subcutaneous adipose from diabetic individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	2.41	0.02

"Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

25 [424] Probe set 202803 detects ITGB2 nucleic acid sequences. Expression of ITGB2 transcripts was increased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESE			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	133.4	23.81	5	49.3	8.55	4	2.71	0.021	ITGB2

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

"SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[425] ITGB2 was also evaluated using real-time PCR. The results further
 5 show that ITGB2 is significantly over-expressed in subcutaneous adipose from obese individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Obese (5)/ Lean (4)	5.65	0.05

"Fold Change" indicates the fold expression calculated as the ratio of the mean obese expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

10

[426] ICAM-1, the ligand for ITGB2-containing integrin complexes such as LFA-1, was added to cultures of 3T3-L1 adipocytes and the effect on glucose transport and Glut 4 translocation was determined.

Glut4 Translocation Analysis:

Insulin (nM)	Fold Change (ICAM + Mn ²⁺ / Mn ²⁺) (n=3)	t test (ICAM + Mn vs Mn)
0	0.55	0.002
0.5	0.79	0.006
10	0.95	0.221

15 Legend "Fold Change" indicates the following ratio; (Mean % of 3T3-L1 adipocytes incubated 3 hours with 10 ug/ml ICAM + 200 uM Mn²⁺ scored positive for cell surface Glut4)/(Mean % 3T3-L1 adipocytes incubated 3 hours with 200 uM Mn²⁺ scored positive for cell surface Glut4). "h" is human. "n" is the number of experiments.

20

[427] Incubating 3T3-L1 adipocytes with 200 uM Mn²⁺ for 3 hours enhanced cell surface Glut4 in the absence of insulin. In contrast, including 10 ug/ml ICAM inhibited the increase observed with Mn alone.

Glucose Transport Analysis in 3T3-L1 Adipocytes:

Insulin (nM)	Experiment 1		Experiment 2		Experiment 3		Mean FC (ICAM+Mn/Mn) +/- SD (n=3)
	FC (ICAM+ Mn / Mn)	t test (α)	FC (ICAM+ Mn / Mn)	t test (α)	FC (ICAM+ Mn / Mn)	t test (α)	
0	0.71	0.39	0.66	0.15	0.73	0.006	0.70±0.04
0.03	0.63	0.03	0.77	0.13	0.73	0.003	0.71±0.07
0.3	0.69	0.34	0.81	0.05	0.69	0.002	0.73±0.07
3	0.76	0.28	0.72	0.24	0.67	0.008	0.72±0.05

Legend: "FC" indicates the fold change defined as the following ratio; glucose transport in 3T3-L1 adipocytes incubated with 10 ug/ml ICAM1 + 200 uM Mn for 3 hours/glucose transport in 3T3-L1 adipocytes incubated with 200 uM Mn for 3 hours. "h" is human. "n" is the number of experiments. SD is the standard deviation.

[428] The results show that increasing the activity of ITGB2 containing integrins such as LFA-1 in a cell such as an adipocyte leads to a corresponding decrease in glucose uptake. This indicates that decreasing the levels or activity of ITGB2-containing integrins such as LFA-1 in tissues of insulin resistant patients or diabetic patients will increase the ability of such tissues to take up glucose and hence, will provide an effective treatment for insulin resistance and diabetes.

[429] ITGB2 contains the following protein domains (designated with reference to SEQ ID NO:154): Signal peptide at amino acids 1 to 22; Plexin repeat (PF01437) at amino acids 24 to 63; Integrin, beta chain (PF00362) at amino acids 32 to 447; EGF-like domain (PF00008) at amino acids 582 to 612; and 1 transmembrane domain (TMHMM2.0) at amino acids 701 to 723. The ITGB2 protein product is the integrin beta chain beta 2. Integrins are integral cell-surface proteins composed of an alpha chain and a beta chain. A given chain may combine with multiple partners resulting in different integrins. For example, beta 2 combines with the alpha L chain to form the integrin LFA-1, and combines with the alpha M chain to form the integrin Mac-1. Integrins are known to participate in cell adhesion as well as cell-surface mediated signalling. The regulation of interaction mediated by adhesion molecules may provide new targets for controlling inflammatory and immune responses (Bunting, M. *et al.*, *Curr Opin Hematol.* 9: 30-5 (2002); Tsuji T. *et al.*, *Blood* 91(4): 1263-71 (1998); Zhang L. and Plow E.F. *Biochemistry* 38(25): 8064-71 (1999)).

[430] Inhibitors of LFA-1 can be detected using a variety of assays, such as those that detect the ability of candidate compounds to disrupt the association of LFA-1 with

the ligand ICAM-1. For example, purified LFA-1 can be immobilized and compounds that cause the inhibition of biotinylated ICAM-1 binding can be detected.

[431] Inhibitors of the LFA-1 integrin complex (α L/ β 2) have been developed. These include inhibitors such as BIRT0377, LFA703 and A-286982 (Shimakoa et al *Nat. Rev. Drug Discovery* 2: 703-716 (2003)). Such inhibitors, as well as other inhibitors of LFA-1 integrin complex, are useful as agents for the treatment for insulin resistance and diabetes.

ITIH5

[432] Probe set MBXHUMFAT04252 detects ITIH5 nucleic acid sequences.

10 Expression of ITIH5 transcripts was increased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	60.99	4.04	10	30.15	6.12	8	2.02	0.001	ITIH5

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetics in comparison to lean patients.

15 [433] ITIH5 was also evaluated using real-time PCR. The results further show that ITIH5 is significantly over-expressed in subcutaneous adipose from diabetic individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	1.78	0.001

"Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic expression/ mean lean expression. Numbers in parentheses indicates the number of patient

20 samples analyzed by real-time PCR.

[434] Probe set MBXHUMFAT04252 detects ITIH5 nucleic acid sequences. Expression of ITIH5 transcripts was increased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESE			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	48.05	5.62	8	30.15	6.12	8	1.59	0.049	ITIH5

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

25 "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[435] ITIHS was also evaluated using real-time PCR. The results further show that ITIHS is significantly over-expressed in subcutaneous adipose from obese individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Obese (8)/ Lean (8)	1.43	0.094

"Fold Change" indicates the fold expression calculated as the ratio of the mean obese

5 expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[436] Probe set MBXHUMFAT04252 detects ITIHS nucleic acid sequences. Expression of ITIHS transcripts was increased in adipose tissues compared to all other human adult tissues in the gene profiling experiment.

ADIPOSE TISSUES			OTHER TISSUES			Fold Change	Students t test	Gene Name
Mean Expr	SEM	n	Mean Expr	SEM	n			
19.18	4.15	5	1.86	0.63	13	10.3	0.013	ITIHS

10

"Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of tissue samples; "Fold Change" indicates fold change of adipose tissues in comparison to all other human adult tissues profiled

[437] ITIHS was over-expressed in 3T3-L1 adipocytes and the effect on
15 basal and insulin stimulated glucose transport and Glut 4 translocation was determined.
Glucose Transport Analysis in 3T3-L1 Adipocytes:

Insulin (nM)	Experiment 1		Experiment 2		Experiment 3		Mean FC (hITIHS/Con) +/- SEM (n=3)
	FC (hITIHS / Con)	t test (α)	FC (hITIHS / Con)	t test (α)	FC (hITIHS / Con)	t test (α)	
0	1.29	0.410	1.46	0.065	1.32	0.227	1.36±0.05
0.05	1.24	0.316	1.36	0.058	1.67	0.009	1.42±0.13
0.1	1.11	0.054	1.29	0.027	1.18	0.246	1.19±0.05
0.3	0.87	0.104	1.18	0.109	1.18	0.063	1.08±0.1
1	1.13	0.293	1.11	0.084	1.13	0.224	1.12±0.01
10	1.14	0.327	1.03	0.498	0.94	0.153	1.04±0.06

Legend: "Con" indicates control 3T3-L1 adipocytes that do not express ITIHS. "FC" indicates the fold change defined as the following ratio; glucose transport in ITIHS-expressing 3T3-L1 adipocytes /glucose transport in non-PTPRE-expressing 3T3-L1

20 adipocytes. "h" is human. "n" is the number of experiments. SEM is the standard error of the mean.

Glut4 Translocation Analysis:

Insulin (nM)	Fold Change (Mean hITIH5/Mean LacZ) (n=3)	t test (hITIH5 vs LacZ)
0	2.43	0.004
0.5	1.0	0.422
10	0.96	0.170

Legend "Fold Change" indicates the following ratio; (Mean % of ITIH5-expressing cells scored positive for cell surface Glut4)/(Mean % of LacZ-expressing cells scored positive for cell surface Glut4). "h" is human. "n" is the number of experiments.

5

[438] The results show that increasing the levels of ITIH5 in a cell such as an adipocyte leads to a corresponding increase in glucose uptake. This indicates that increasing the levels or activity of ITIH5 in tissues of insulin resistant patients or diabetic patients will increase the ability of such tissues to take up glucose and hence, will provide an effective treatment for insulin resistance and diabetes.

10

[439] ITIH5 contains the following protein domains (designated with reference to SEQ ID NO:160): Signal peptide at amino acids 1 to 21; Inter-alpha-trypsin inhibitor heavy chain C-terminus (PF06668) at amino acids 715 to 909; T-box (PF00907) at amino acids 310 to 426; and von Willebrand factor type A domain (PF00092) at amino acids 295 to 478. A soluble active secreted form of ITIH5 has been detected and this is displayed in SEQ ID NO:161. ITIH5 belongs to the inter-alpha-trypsin inhibitor (ITI) family constitutes a group of proteins built up from one light chain and a variable set of heavy chains. Originally identified as plasma protease inhibitors, recent data indicate that ITI proteins play a role in extracellular matrix (ECM) stabilization and in prevention of tumor metastasis. ITIH5 expression was found to be consistently downregulated in invasive mammary ductal carcinomas (Himmelfarb M. *et al.*, *Cancer Lett.* 204(1): 69-77 (2004)).

15

20

LGALS12

[440] Probe set 223828 detects LGALS12 nucleic acid sequences.

Expression of LGALS12 transcripts was decreased in diabetic compared to lean patients in the gene profiling experiment.

25

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	106.03	11	10	283.66	39.14	8	0.37	0.002	LGALS12

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

"SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold

Change" indicates fold change of diabetics in comparison to lean patients.

[441] LGALS12 was also evaluated using real-time PCR. The results further show that LGALS12 is significantly under-expressed in subcutaneous adipose from diabetic individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	0.31	<0.000

"Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic

5 expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[442] Probe set 223828 detects LGALS12 nucleic acid sequences.

Expression of LGALS12 transcripts was decreased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESE			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	153.48	16.5	8	283.66	39.14	8	0.54	0.013	LGALS12

10 B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[443] LGALS12 was also evaluated using real-time PCR. The results further show that LGALS12 is significantly under-expressed in subcutaneous adipose from obese

15 individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Obese (8)/ Lean (8)	0.49	0.002

"Fold Change" indicates the fold expression calculated as the ratio of the mean obese expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[444] Probe set 223828 detects LGALS12 nucleic acid sequences.

20 Expression of LGALS12 transcripts was decreased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESE			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	108.02	16.97	5	163.5	9.22	4	0.66	0.028	LGALS12

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

"SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[445] Probe set 223828 detects LGALS12 nucleic acid sequences.

Expression of LGALS12 transcripts was increased in adipose tissues compared to all other human adult tissues in the gene profiling experiment.

ADIPOSE TISSUES			OTHER TISSUES					
Mean Expr	SEM	n	Mean Expr	SEM	n	Fold Change	Students t test	Gene Name
150.4	40.21	5	7.31	2.04	13	20.58	0.024	LGALS12

"Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n"

5 indicates number of tissue samples; "Fold Change" indicates fold change of adipose tissues in comparison to all other human adult tissues profiled.

[446] LGALS12 contains the following protein domains (designated with reference to SEQ ID NO:165): Galactoside-binding lectin (PF00337) at amino acids 48 to 182. LGALS12 is a member of the beta-galactoside-binding lectin family and may be an 10 apoptosis activator that negatively regulates the cell cycle and cell proliferation (Yang R.Y. *et al.*, *J Biol Chem.*, 276(23): 20252-60 (2001); Hotta K. *et al.*, *J Biol Chem.*, 276(36): 34089-97 (2001); Liu, F.T., *et al.*, *Biochim Biophys Acta*. 1572: 263-73 (2002)).

NMB

[447] Probe set 205204 detects NMB nucleic acid sequences. Expression of 15 NMB transcripts was increased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN					
	Mean Expr	SEM	n	Mean Expr	SEM	n	Fold Change	Students t test	Gene Name
C	173.2	11.31	10	144.88	10.76	8	1.2	0.089	NMB

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

"SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetics in comparison to lean patients.

20 [448] Probe set 205204 detects NMB nucleic acid sequences. Expression of NMB transcripts was increased in adipose tissues compared to all other human adult tissues in the gene profiling experiment.

ADIPOSE TISSUES			OTHER TISSUES			Fold Change	Students t test	Gene Name
Mean Expr	SEM	n	Mean Expr	SEM	n			
188.38	32.19	5	35.72	2.98	13	5.27	0.009	NMB

"Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of tissue samples; "Fold Change" indicates fold change of adipose tissues in comparison to all other human adult tissues profiled.

[449] NMB was also evaluated using real-time PCR. The results further

5 show that NMB is significantly over-expressed in adipose tissues when compared to all other human adult tissues.

Comparison	Expression Fold Change	t test
Fat Tissues (5)/ All Other Tissues (13)	26.71	0.029

"Fold Change" indicates the fold expression calculated as the ratio of the mean adipose tissues expression/ mean other tissues expression. Numbers in parentheses indicates the number of human adult tissue samples analyzed by real-time PCR.

10 [450] NMB contains the following protein domains (designated with reference to SEQ ID NO:181): Signal peptide at amino acids 1 to 26; and Bombesin-like peptide (PF02044) at amino acids 47 to 60. A soluble active secreted form of NMB has been detected and this is displayed in SEQ ID NO:182. NMB is a bombesin-related neuropeptide which induces calcium flux and phosphatidylinositol turnover leading to stimulation of cell

15 proliferation through the G-protein coupled neuromedin B receptor (Ohki-Hamazaki H. *Prog. Neurobiol.* 62(3): 297-312 (2000); Mason S. et al., *Eur J Pharmacol.*, 438(1-2): 25-34 (2002)).

NNAT

[451] Probe set 204239 detects NNAT nucleic acid sequences. Expression of

20 NNAT transcripts was decreased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	80.57	7.75	10	122.46	11.93	8	0.66	0.012	NNAT

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetics in comparison to lean patients.

[452] NNAT was also evaluated using real-time PCR. The results further show that NNAT is significantly under-expressed in subcutaneous adipose from diabetic individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	0.64	0.14

"Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic

5 expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[453] Probe set 204239 detects NNAT nucleic acid sequences. Expression of NNAT transcripts was increased in rosi compared to vehicle treated cultures of primary human adipocytes in the gene profiling experiment.

B/C	ROSI			VEHICLE			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	36.43	2.23	3	18.67	2.29	3	1.95	0.005	NNAT

10 B/C indicates sample is from Basal or Clamp; "Pre-Rosi" and "Post-Rosi" indicates sample was taken before or after 24 hours of rosiglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of primary human adipocytes post-roxi in comparison to pre-roxi samples.

15 [454] NNAT was also evaluated using real-time PCR. The results further show that NNAT is significantly over-expressed in primary cultured human adipocytes treated with rosi when compared to vehicle.

Comparison	Expression Fold Change	t test
Post-Rosi (12)/ Pre-Rosi (12)	2.13	0.004

"Fold Change" indicates the fold expression calculated as the ratio of the mean rosi

expression/ mean vehicle expression. Numbers in parentheses indicates the number of

20 primary human adipocyte samples analyzed by real-time PCR.

[455] Probe set 204239 detects NNAT nucleic acid sequences. Expression of NNAT transcripts was increased in adipose tissues compared to all other human adult tissues in the gene profiling experiment.

ADIPOSE TISSUES			OTHER TISSUES			Fold Change	Students t test	Gene Name
Mean Expr	SEM	n	Mean Expr	SEM	n			
125	14.04	5	32.15	7.89	13	3.89	0.001	NNAT

"Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of tissue samples; "Fold Change" indicates fold change of adipose tissues in comparison to all other human adult tissues profiled.

[456] NNAT contains the following protein domains (designated with reference to SEQ ID NO:188): Signal peptide at amino acids 1 to 23; and 1 transmembrane domain (TMHMM2.0) at amino acids 13 to 35. NNAT is a putative proteolipid that may regulate ion channels during brain development. It is found to be highly expressed in pituitary adenomas and is frequently hypermethylated in childhood myeloid and lymphoid acute leukemias (Dou D. and Joseph R. *Genomics* 33(2): 292-7 (1996); Usui H. et al., *J Mol Neurosci.* 9(1): 55-60 (1997); Evans H.K. et al., *Genomics* 77(1-2): 99-104 (2001)).

OLFM2

[457] Probe set 223601 detects OLFM2 nucleic acid sequences. Expression of OLFM2 transcripts was decreased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	36.89	3.42	10	74.78	16.01	8	0.49	0.051	OLFM2

15 B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetics in comparison to lean patients.

[458] OLFM2 was also evaluated using real-time PCR. The results further show that OLFM2 is significantly under-expressed in subcutaneous adipose from diabetic individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	0.34	0.029

"Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[459] Probe set 223601 detects OLFM2 nucleic acid sequences. Expression of OLFM2 transcripts was increased in adipose tissues compared to all other human adult tissues in the gene profiling experiment.

ADIPOSE TISSUES			OTHER TISSUES			Fold Change	Students t test	Gene Name
Mean Expr	SEM	n	Mean Expr	SEM	n			
86.74	14.09	5	15.61	3.45	13	5.56	0.006	OLFM2

"Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of tissue samples; "Fold Change" indicates fold change of adipose tissues in comparison to all other human adult tissues profiled.

[460] OLFM2 was over-expressed in 3T3-L1 adipocytes and the effect on
5 basal and insulin stimulated glucose transport was determined

Glucose Transport Analysis in 3T3-L1 Adipocytes:

Insulin (nM)	Experiment 1		Experiment 2		Experiment 3		Mean FC (OLFM2/Con) +/- SEM (n=3)
	FC (OLFM2 / Con)	t test (α)	FC (OLFM2 / Con)	t test (α)	FC (OLFM2 / Con)	t test (α)	
0	0.73	0.043	0.55	0.110	0.82	0.144	0.70±0.08
0.05	0.91	0.445	0.81	0.330	0.93	0.654	0.88±0.04
0.1	0.88	0.402	0.99	0.843	1.04	0.406	0.97±0.05
0.3	1.20	0.134	1.11	0.196	1.03	0.539	1.11±0.05
1	1.21	0.164	1.08	0.364	1.09	0.202	1.12±0.04
10	1.16	0.132	1.07	0.306	0.97	0.694	1.07±0.06

Legend: "Con" indicates control 3T3-L1 adipocytes that do not express OLFM2. "FC" indicates the fold change defined as the following ratio; glucose transport in OLFM2-expressing 3T3-L1 adipocytes /glucose transport in non-OLFM2-expressing 3T3-L1 adipocytes. "h" is human. "n" is the number of experiments. SEM is the standard error of the mean.

[461] The results show that increasing the levels of OLFM2 in a cell such as
15 an adipocyte leads to a corresponding decrease in glucose uptake. This indicates that decreasing the levels or activity of OLFM2 in tissues of insulin resistant patients or diabetic patients will increase the ability of such tissues to take up glucose and hence, will provide an effective treatment for insulin resistance and diabetes.

[462] OLFM2 contains the following protein domains (designated with
20 reference to SEQ ID NO:196): Signal peptide at amino acids 1 to 24; and Olfactomedin-like domain (PF02191) at amino acids 196 to 446. A soluble active secreted form of OLFM2 has been predicted and this is displayed in SEQ ID NO:197. OLFM2 is a protein which possess high similarity to olfactomedin 3 (rat Olfm3), which is known to interact with myocilin and is associated with glaucoma and disorders involving the anterior segment of the eye and the
25 retina (Ortego J. et al., *FEBS Lett.* 413(2): 349-53 (1997)).

OPN3

[463] Probe set 219032 detects OPN3 nucleic acid sequences. Expression of OPN3 transcripts was increased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESEx			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	41.54	5.25	5	26.13	1.05	4	1.59	0.041	OPN3

5 B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[464] OPN3 was also evaluated using real-time PCR. The results further show that OPN3 is significantly over-expressed in subcutaneous adipose from obese
10 individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Obese (5) / Lean (4)	1.74	0.028

"Fold Change" indicates the fold expression calculated as the ratio of the mean obese expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[465] OPN3 contains the following protein domains (designated with reference to SEQ ID NO:203): 7 transmembrane receptor (rhodopsin family) (PF00001) at
15 amino acids 58 to 309; and 7 transmembrane domains (TMHMM2.0) at amino acids 44 to 66, 78 to 100, 115 to 137, 158 to 180, 200 to 222, 258 to 280, 290 to 312. OPN3 is a member of the opsins receptor cluster of G protein-coupled receptors which may play a role in non-visual photic processes such as the entrainment of circadian rhythm or the regulation of
20 pineal melatonin production (Blackshaw S., and Snyder S.H., *J Neurosci.* 19(10): 3681-90 (1999); Halford S. et al., *Genomics* 72(2): 203-8 (2001)).

PTPRE

[466] Probe set 221840 detects PTPRE nucleic acid sequences. Expression of PTPRE transcripts was increased in diabetic compared to lean patients in the gene profiling
25 experiment.

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	92.02	8.84	10	50.7	4.22	8	1.81	0.001	PTPRE

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

"SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetics in comparison to lean patients.

[467] PTPRE was also evaluated using real-time PCR. The results further
5 show that PTPRE is significantly over-expressed in subcutaneous adipose from diabetic individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	1.8	0.001

[468] "Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR

10 [469] PTPRE was over-expressed in 3T3-L1 adipocytes and the effect on basal and insulin stimulated glucose transport and Glut 4 translocation were determined.

Glut4 Translocation Analysis:

Insulin (nM)	Fold Change (Mean hPTPRE/Mean LacZ) (n=3)	t test (hPTPRE vs LacZ)
0	0.24	0.001
0.5	0.48	0.01
10	0.42	0.001

15 Legend "Fold Change" indicates the following ratio; (Mean % of hPTPRE-expressing 3T3-L1 adipocytes that were scored positive for cell surface Glut4)/(Mean % of LacZ-expressing 3T3-L1 adipocytes that were scored positive for cell surface Glut4). "h" is human. "n" is the number of experiments.

[470] Increasing the levels of hPTPRE in 3T3-L1 adipocytes significantly inhibits basal and insulin-stimulated Glut4 translocation to the cell surface.

Glucose Transport Analysis in 3T3-L1 Adipocytes:

Insulin (nM)	Experiment 1		Experiment 2		Experiment 3		Mean FC (hPTPRE/Con) +/- SEM (n=3)
	FC (hPTPRE / Con)	t test (α)	FC (hPTPRE / Con)	t test (α)	FC (hPTPRE / Con)	t test (α)	
0	1.06	0.747	0.85	0.554	0.84	0.021	0.92±0.07
0.05	0.80	0.095	1.23	0.163	0.66	0.046	0.90±0.17
0.1	0.67	0.208	0.73	0.041	0.58	0.048	0.66±0.04
0.3	0.82	0.115	0.73	0.027	0.59	0.040	0.71±0.07
1	0.94	0.340	0.76	0.006	0.65	0.018	0.78±0.08
10	0.95	0.192	0.83	0.067	0.72	0.008	0.83±0.07

Legend: "Con" indicates control 3T3-L1 adipocytes that do not express hPTPRE. "FC" indicates the fold change defined as the following ratio; glucose transport in hPTPRE-expressing 3T3-L1 adipocytes /glucose transport in non-PTPRE-expressing 3T3-L1 adipocytes. "h" is human. "n" is the number of experiments. SEM is the standard error of the mean.

5 [471] The results show that increasing the levels of PTPRE in a cell such as an adipocyte leads to a corresponding decrease in glucose uptake. This indicates that
10 decreasing the levels or activity of PTPRE in tissues of insulin resistant patients or diabetic patients will increase the ability of such tissues to take up glucose and hence, will provide an effective treatment for insulin resistance and diabetes.

15 [472] PTPRE contains the following protein domains (designated with reference to SEQ ID NO:213): Signal peptide at amino acids 1 to 19; Protein-tyrosine phosphatase (PF00102) at amino acids 159 to 393, 451 to 688; and 1 transmembrane domain (TMHMM2.0) at amino acids 47 to 69. PTPRE is found to exist in both a soluble, cytoplasmic and a transmembrane form. PTPRE is induced by IL1 and TNFA treatment in astrocytoma cells suggesting a role in the inflammatory response of the brain (Schumann,G. et al., *Brain Res Mol Brain Res.* 62: 56-64 (1988)). Other studies suggest a role for PTPRE in
20 RAS related signal transduction pathways, cytokines induced signaling, activation of voltage-gated K⁺ channels and vascular development and angiogenesis (Tiran, Z.J. et al., *J. Biol Chem.* 278: 17509-14(2003); Toledano-Katchalski,H., et al., *Mol Cancer Res.* 1: 541-50 (2003); Thompson, L.J., et al., *Am J Physiol Heart Circ Physiol.* 281: H396-403 (2001)).

25 [473] PTPRE can dephosphorylate the tyrosine phosphorylated insulin receptor (see, e.g., Nakagawa Y. et al. *Zoolog Sci.* 22:169-75 (2005). Thus, an exemplary assay for inhibitors of PTPRE comprises determining the ability of candidate compounds to inhibit the ability of purified PTPRE to dephosphorylate a tyrosine phosphorylated peptide,

e.g., a tyrosine phosphorylated peptide derived from the sequence of the insulin receptor and containing autophosphorylation sites such as Tyrosines 11158, 1162 and 1163.

RDC1

[474] Probe set 212977 detects RDC1 nucleic acid sequences. Expression of RDC1 transcripts was decreased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	169.88	9.84	10	238.53	13.88	8	0.71	0.001	RDC1

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetics in comparison to lean patients.

[475] RDC1 was also evaluated using real-time PCR. The results further show that RDC1 is significantly under-expressed in subcutaneous adipose from diabetic individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	0.65	0.008

"Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[476] Probe set 212977 detects RDC1 nucleic acid sequences. Expression of RDC1 transcripts was decreased in patients with insulin resistance compared to normal patients in the gene profiling experiment.

CORRELATION RD			
B/C	n	Corr Co-efficient	Students t test
C	26	0.649	<0.005

B/C indicates sample is from Basal or Clamp; "Corr Co-efficient" indicates the relationship between glucose disposal rate (Rd) and signal intensities. A positive co-efficient indicates down regulation whereas a negative co-efficient indicates up regulation of the gene with increasing insulin resistance; "n" indicates number of patient samples.

[477] RDC1 was also evaluated using real-time PCR. The results further show that RDC1 is significantly decreased in patients with insulin resistance compared to normal patients.

Comparison	Expression Fold Change	t test
Correlation to Rd (26)	0.567	<0.005

"Corr Co-efficient" indicates the relationship between Rd and signal intensities. A positive co-efficient indicates down regulation whereas a negative co-efficient indicates up regulation of the gene with increasing insulin resistance. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

5 [478] Probe set 212977 detects RDC1 nucleic acid sequences. Expression of RDC1 transcripts was increased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESE			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	237.66	36.98	5	153.85	5.4	4	1.54	0.086	RDC1

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

"SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold

10 Change" indicates fold change of obese in comparison to lean patients.

[479] Probe set 212977 detects RDC1 nucleic acid sequences. Expression of RDC1 transcripts was increased in adipose tissues compared to all other human adult tissues in the gene profiling experiment.

	ADIPOSE TISSUES			OTHER TISSUES			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
	261.58	37.67	5	46.15	9.41	13	5.67	0.004	RDC1

"Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n"

15 indicates number of tissue samples; "Fold Change" indicates fold change of adipose tissues in comparison to all other human adult tissues profiled.

[480] RDC1 contains the following protein domains (designated with reference to SEQ ID NO:223): 7 transmembrane receptor (rhodopsin family) (PF00001) at amino acids 61 to 315; and 7 transmembrane domains (TMHMM2.0) at amino acids 47 to 69, 20 82 to 104, 119 to 140, 160 to 182, 214 to 236, 255 to 277, 297 to 319. RDC1 is considered to be a new member of the rhodopsin family of G-protein coupled receptors. The protein is a co-receptor for human immunodeficiency viruses (HIV). Translocations involving this gene and HMGA2 on chromosome 12 have been observed in lipomas (Broberg, K., et al., *Int J Oncol.* 21: 321-6 (2002); Shimizu, N., et al., *J Virol.* 74: 619-26 (2000)).

SLIT2

[481] Probe set 209897 detects SLIT2 nucleic acid sequences. Expression of SLIT2 transcripts was increased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESSE			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	81.28	5.02	5	48.53	3.08	4	1.68	0.001	SLIT2

5 B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[482] SLIT2 was also evaluated using real-time PCR. The results further show that SLIT2 is significantly over-expressed in subcutaneous adipose from obese 10 individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Obese (5) / Lean (4)	3.31	0.014

"Fold Change" indicates the fold expression calculated as the ratio of the mean obese expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[483] Cellular levels of SLIT2 were reduced in 3T3-L1 adipocytes using 15 siRNA directed against SLIT2 and the effect on basal and insulin stimulated glucose transport was determined

SLIT2 mRNA Level in 3T3-L1 Adipocytes Transfected with siRNA Oligonucleotides

	Expt1	Expt2	Expt3	Mean FC ± SEM (n=3)
FC (siRNA/Scr)	0.29	0.22	0.26	0.26 ± 0.02

20 Legend: "siRNA" indicates Dharmacon Smartpool siRNA oligonucleotides directed against murine SLIT2. "Scr" indicates the Dharmacon Scramble siRNA Control. "FC" indicates the fold change defined as the following ratio; Level of SLIT2 mRNA in SLIT2 siRNA transfected 3T3-L1 adipocytes/Level of SLIT2 mRNA in Scramble siRNA transfected 3T3-L1 adipocytes. "n" is the number of experiments. SEM is the standard error of the mean.

25 Glucose Transport in 3T3-L1 Adipocytes Transfected with siRNA Oligonucleotides

Insulin (nM)	Expt 1		Expt 2		Expt 3		Mean FC (siRNA/Scr) ± SEM (n=3)
	FC (siRNA/Scr)	t-test	FC (siRNA/Scr)	t-test	FC (siRNA/Scr)	t-test	

0.0	1.235	0.020	0.948	0.001	0.639	0.600	0.941 ± 0.07
0.1	0.902	0.050	0.694	<0.001	0.573	0.020	0.723 ± 0.04
3.0	1.094	0.001	1.029	<0.001	0.709	0.490	0.944 ± 0.04

Legend: "siRNA" indicates Dhamacon Smartpool siRNA oligonucleotides directed against murine SLIT2. "Scr" indicates Dhamacon Scramble siRNA Control oligonucleotides. "FC" indicates the fold change defined as the following ratio; glucose transport in SLIT2 siRNA transfected 3T3-L1 adipocytes/glucose transport in Scramble siRNA transfected 3T3-L1 adipocytes. "n" is the number of experiments. SEM is the standard error of the mean.

[484] The results show that decreasing the levels of SLIT2 in a cell such as a adipocyte leads to a corresponding decrease in glucose uptake. This indicates that increasing the levels or activity of SLIT2 in tissues of insulin resistant patients or diabetic patients will increase the ability of such tissues to take up glucose and hence, will provide an effective treatment for insulin resistance and diabetes.

[485] SLIT2 contains the following protein domains (designated with reference to SEQ ID NO:229): Signal peptide at amino acids 1 to 30; Leucine rich repeat C-terminal domain (PF01463) at amino acids 233 to 258, 454 to 479, 688 to 713, 883 to 908; Leucine rich repeat N-terminal domain (PF01462) at amino acids 27 to 54, 272 to 299, 505 to 532, 726 to 753; Leucine Rich Repeat (PF00560) at amino acids 56 to 79, 128 to 151, 176 to 199, 325 to 348, 349 to 372, 559 to 582, 607 to 630, 778 to 801, 802 to 825, 826 to 849; Laminin G domain (PF00054) at amino acids 1188 to 1319; and EGF-like domain (PF00008) at amino acids 922 to 954, 961 to 995, 1002 to 1033, 1040 to 1073, 1080 to 1111, 1125 to 1156, 1336 to 1367, 1375 to 1406, 1416 to 1447. A soluble active secreted form of SLIT2 has been detected (Nguyen Ba-Charvet, K.T. et al., *J. Neurosci.*, 21: 4281-4289 (2001)) and this is displayed in SEQ ID NO:230. SLIT2 is the ligand for roundabout receptor ROBO1. Mammalian SLIT proteins may participate in the formation and maintenance of the nervous and endocrine systems by protein-protein interactions. SLIT2 has been reported to be a chemorepellant for neuronal migration in vivo induces branching of dorsal root ganglia axons (Nguyen Ba-Charvet K.T. et al., *J Neurosci.*, 21(12): 4281-9 (2001); Nguyen Ba-Charvet K.T. et al., *J Physiol Paris*. 96: 91-8 (2002)), SLIT2 also found to inhibit leukocyte chemotaxis induced by chemotactic factors (Wu, J.Y., et al., *Nature* 410: 948-52 (2001)).

[486] [The human SLIT2 gene has been cloned and the proximal promoter has been identified (see, e.g, Dalol A. et al. *Cancer Res.* 62:5874-80 (2002). Therefore, one example of a method of screening for SLIT2 regulators is as follows. A SLIT2 promoter can be inserted upstream of a reporter gene such as β-galactosidase and expressed in cells.

Compounds that up-regulate the activity of the promoter may therefore be identified by measuring increased β -galactosidase activity.

TNFRSF21

[487] Probe set 214581 detects TNFRSF21 nucleic acid sequences.

5 Expression of TNFRSF21 transcripts was increased in obese compared to lean patients in the gene profiling experiment.

B/C	OBES			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	67.98	8.98	5	25.13	3.84	4	2.71	0.006	TNFRSF21

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

"SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold

Change" indicates fold change of obese in comparison to lean patients.

10 [488] Probe set 214581 detects TNFRSF21 nucleic acid sequences.

Expression of TNFRSF21 transcripts was increased in rosi compared to vehicle treated cultures of primary human adipocytes in the gene profiling experiment.

B/C	ROSI			VEHICLE			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	52.77	3.6	3	33.8	2.99	3	1.56	0.016	TNFRSF21

B/C indicates sample is from Basal or Clamp; "Pre-Rosi" and "Post-Rosi" indicates sample

was taken before or after 24 hours of rosiglitazone treatment; "Mean Expr" indicates mean

15 expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of primary human adipocytes post-rosi in comparison to pre-rosi samples.

[489] TNFRSF21 was also evaluated using real-time PCR. The results further show that TNFRSF21 is significantly over-expressed in primary cultured human
20 adipocytes treated with rosi when compared to vehicle.

Comparison	Expression Fold Change	t test
Post-Rosi (12)/ Pre-Rosi (12)	1.32	0.007

"Fold Change" indicates the fold expression calculated as the ratio of the mean rosi

expression/ mean vehicle expression. Numbers in parentheses indicates the number of primary human adipocyte samples analyzed by real-time PCR.

[490] Probe set 214581 detects TNFRSF21 nucleic acid sequences.

25 Expression of TNFRSF21 transcripts was increased in adipose tissues compared to all other human adult tissues in the gene profiling experiment.

ADIPOSE TISSUES			OTHER TISSUES			Fold Change	Students t test	Gene Name
Mean Expr	SEM	n	Mean Expr	SEM	n			
70.58	15.04	5	16.12	2.78	13	4.38	0.021	TNFRSF21

"Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of tissue samples; "Fold Change" indicates fold change of adipose tissues in comparison to all other human adult tissues profiled.

[491] TNFRSF21 was also evaluated using real-time PCR. The results
 5 further show that TNFRSF21 is significantly over-expressed in adipose tissues when compared to all other human adult tissues.

Comparison	Expression Fold Change	t test
Fat Tissues (5)/ All Other Tissues (13)	2.82	0.011

"Fold Change" indicates the fold expression calculated as the ratio of the mean adipose tissues expression/ mean other tissues expression. Numbers in parentheses indicates the number of human adult tissue samples analyzed by real-time PCR.

10 [492] TNFRSF21 was over-expressed in 3T3-L1 adipocytes and the effect on basal and insulin stimulated glucose transport was determined.

Glucose Transport

Insulin (nM)	Experiment 1		Experiment 2		Experiment 3		Mean FC (hTNFRSF21/Con) +/- SEM (n=3)
	FC (hTNFRSF21/Con)	t test	FC (hTNFRSF21/Con)	t test	FC (hTNFRSF21/Con)	t test	
0	0.99	0.944	0.78	0.066	0.71	0.127	0.83±0.08
0.05	0.74	0.048	0.84	0.029	0.74	0.107	0.77±0.03
0.1	0.73	0.106	0.75	0.133	0.68	0.306	0.72±0.02
0.3	0.79	0.062	0.88	0.112	0.88	0.709	0.85±0.03
1	0.84	0.075	0.96	0.479	0.92	0.621	0.91±0.04
10	0.95	0.760	0.93	0.400	0.93	0.839	0.94±0.01

15 Legend: "Con" indicates control 3T3-L1 adipocytes that do not express hTNFRSF21. "FC" indicates the fold change defined as the following ratio; glucose transport in hTNFRSF21-expressing cells/glucose transport in non-TNFRSF21-expressing cells. "h" is human. "n" is the number of experiments. SEM is the standard error of the mean.

[493] The results show that increasing the levels of TNFRSF21 in a cell such
 20 as an adipocyte leads to a corresponding decrease in glucose uptake. This indicates that decreasing the levels or activity of TNFRSF21 in tissues of insulin resistant patients or diabetic patients will increase the ability of such tissues to take up glucose and hence, will provide an effective treatment for insulin resistance and diabetes.

[494] TNFRSF21 contains the following protein domains (designated with reference to SEQ ID NO:236): Signal peptide at amino acids 1 to 41; Death domain (PF00531) at amino acids 416 to 498; TNFR/NGFR cysteine-rich region (PF00020) at amino acids 50 to 88, 91 to 131, 133 to 168, 171 to 211; and 1 transmembrane domain

5 (TMHMM2.0) at amino acids 350 to 369. TNFRSF21 has been shown to activate NF-kappaB and MAPK8/JNK, and induce cell apoptosis. Through its death domain, this receptor interacts with TRADD protein, which is known to serve as an adaptor that mediates signal transduction of TNF-receptors. Knockout studies in mice suggested that this gene plays a role in T-helper cell activation, and may be involved in inflammation and immune regulation (Pan
 10 G. et al., *FEBS Lett.* 431(3): 351-356 (1998); Kasof G.M. et al., *Oncogene* 20(55): 7965-7975 (2001)).

[495] TNFRSF21 is up-regulated by TNFalpha, which itself has been associated with states of insulin resistance (see, e.g., Hotamisligil GS. *J Intern Med.* 245:621-625 (1999); Kasof GM et al. *Oncogene*. 20 :7965-7975 (2001)). An exemplary assay to identify compounds that suppress TNFRSF21 can thus employ cells such as LnCAP to screen candidate compounds for the ability to inhibit TNFalpha-induced up-regulation of TNFRSF21 mRNA or protein.

TNFSF13B

[496] Probe set 223501 detects TNFSF13B nucleic acid sequences.
 20 Expression of TNFSF13B transcripts was increased in diabetic compared to lean patients in the gene profiling experiment.

B/C	DIABETIC			LEAN					
	Mean Expr	SEM	n	Mean Expr	SEM	n	Fold Change	Students t test	Gene Name
C	44.86	3.06	10	28.79	3.14	8	1.56	0.002	TNFSF13B

B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression;

"SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetics in comparison to lean patients.

25 [497] TNFSF13B was also evaluated using real-time PCR. The results further show that TNFSF13B is significantly over-expressed in subcutaneous adipose from diabetic individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Diabetic (10) / Lean (8)	1.54	0.007

"Fold Change" indicates the fold expression calculated as the ratio of the mean diabetic expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[498] TNFSF13B contains the following protein domains (designated with reference to SEQ ID NO:242): Signal anchor at amino acids 0 to 0; TNF(Tumour Necrosis Factor) family (PF00229) at amino acids 166 to 284; and 1 transmembrane domain (TMHMM2.0) at amino acids 48 to 70. A soluble active secreted form of TNFSF13B has been detected (Schneider, P. *et al.*, *J Exp. Med.*, 189: 1747-1756 (1999)) and this is displayed in SEQ ID NO:243. TNFSF13B is a ligand for multiple receptors including

5 TNFRSF13B/TACI, TNFRSF17/BCMA, and TNFRSF13C/BAFFR. This cytokine is expressed in B cell lineage cells, and acts as a potent B cell activator. It has been also shown to play an important role in the proliferation and differentiation of B cells (Patke, A., *et al.*, *Curr Opin Immunol.* 16: 251-5 (2004); Schneider, P. and Tschopp, J. *Immunol Lett.* 88: 57-62 (2003)).

10

15 TNFSF14

[499] Probe set 207907 detects TNFSF14 nucleic acid sequences. Expression of TNFSF14 transcripts was increased in omental tissue compared to all other human adult tissues in the gene profiling experiment.

OMENTAL TISSUE			OTHER TISSUES					
Mean Expr	SEM	n	Mean Expr	SEM	n	Fold Change	Students t test	Gene Name
21.2	nd	1	2.71	0.66	17	7.83	n.d.	TNFSF14

"Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of tissue samples; "Fold Change" indicates fold change of omental tissues in comparison to all other human adult tissues profiled.

20

[500] TNFSF14 was also evaluated using real-time PCR. The results further show that TNFSF14 is significantly over-expressed in omental tissue when compared to all other human adult tissues.

Comparison	Expression Fold Change	t test
Omental (1) / All Other Tissues (17)	16.75	n.d.

25 "Fold Change" indicates the fold expression calculated as the ratio of the mean omental tissue expression/ mean other tissues expression. Numbers in parentheses indicates the number of human adult tissue samples analyzed by real-time PCR.

[501] TNFSF14 contains the following protein domains (designated with reference to SEQ ID NO:251): Signal anchor at amino acids 0 to 0; TNF(Tumour Necrosis Factor) family (PF00229) at amino acids 93 to 240; and 1 transmembrane domain (TMHMM2.0) at amino acids 36 to 58. A soluble active secreted form of TNFSF14 has been detected (Harrop, J.A., *et al.*, *J Biol Chem.* 273:27548-56 (1998)) and this is displayed in SEQ ID NO:252. TNFSF14 is the ligand for HVEM (TNFRSF14) and is reported to induce lymphocyte proliferation induces apoptosis and suppresses in vivo tumor formation and facilitate herpes virus entry (Mauri D.N. *et al.*, *Immunity* 8(1): 21-30 (1998); Zhai Y. *et al.*, *J Clin Invest.* 102(6): 1142-51 (1998); Castellano, R. *et al.*, *J Biol Chem.* 277(45): 42841-51 (2001)).

TPSB2

[502] Probe set 205683 detects TPSB2 nucleic acid sequences. Expression of TPSB2 transcripts was increased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESE			LEAN			Fold Change	Students t test	Gene Name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	154.7	20.57	5	69.33	8.15	4	2.23	0.011	TPSB2

15 B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[503] TPSB2 was also evaluated using real-time PCR. The results further show that TPSB2 is significantly over-expressed in subcutaneous adipose from obese 20 individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Obese (5) / Lean (4)	2.7	0.063

"Fold Change" indicates the fold expression calculated as the ratio of the mean obese expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[504] Probe set 205683 detects TPSB2 nucleic acid sequences. Expression of 25 TPSB2 transcripts was increased in adipose tissues compared to all other human adult tissues in the gene profiling experiment.

ADIPOSE TISSUES			OTHER TISSUES					
Mean Expr	SEM	n	Mean Expr	SEM	n	Fold Change	Students t test	Gene Name
174.74	30.6	5	48.31	13.35	13	3.62	0.01	TPSB2

"Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of tissue samples; "Fold Change" indicates fold change of adipose tissues in comparison to all other human adult tissues profiled.

[505] TPSB2 contains the following protein domains (designated with reference to SEQ ID NO:262): Signal peptide at amino acids 1 to 18; and Trypsin (PF00089) at amino acids 31 to 267. A soluble active secreted form of TPSB2 has been detected and this is displayed in SEQ ID NO:263. TPSB2 is a tryptase beta 2 and belongs to the family of mast cell serine proteases which have been implicated as mediators in the pathogenesis of asthma and other allergic and inflammatory disorders. Beta tryptases appear to be the main isoenzymes expressed in mast cells (Pallaoro M. *et al.*, *J Biol Chem.*, 274(6): 3355-62 (1999).

WISP2

[506] Probe set 205792 detects WISP2 nucleic acid sequences. Expression of WISP2 transcripts was increased in obese compared to lean patients in the gene profiling experiment.

B/C	OBESE			LEAN					
	Mean Expr	SEM	n	Mean Expr	SEM	n	Fold Change	Students t test	Gene Name
B	149.48	14.39	5	97.75	11.6	4	1.53	0.044	WISP2

15 B/C indicates sample is from Basal or Clamp; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[507] WISP2 was also evaluated using real-time PCR. The results further show that WISP2 is significantly over-expressed in subcutaneous adipose from obese individuals when compared to subcutaneous adipose from lean individuals.

Comparison	Expression Fold Change	t test
Obese (5) / Lean (4)	2.24	0.002

"Fold Change" indicates the fold expression calculated as the ratio of the mean obese expression/ mean lean expression. Numbers in parentheses indicates the number of patient samples analyzed by real-time PCR.

[508] Probe set 205792 detects WISP2 nucleic acid sequences. Expression of WISP2 transcripts was increased in adipose tissues compared to all other human adult tissues in the gene profiling experiment.

ADIPOSE TISSUES			OTHER TISSUES					
Mean Expr	SEM	n	Mean Expr	SEM	n	Fold Change	Students t test	Gene Name
167.08	43.22	5	26.37	9.83	13	6.34	0.029	WISP2

"Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of tissue samples; "Fold Change" indicates fold change of adipose tissues in comparison to all other human adult tissues profiled.

[509] WISP2 contains the following protein domains (designated with reference to SEQ ID NO:269): Signal peptide at amino acids 1 to 23; Insulin-like growth factor binding protein (PF00219) at amino acids 26 to 96; von Willebrand factor type C domain (PF00093) at amino acids 100 to 163; Thrombospondin type 1 domain (PF00090) at amino acids 196 to 237; and TNFR/NGFR cysteine-rich region (PF00020) at amino acids 39 to 70. A soluble active secreted form of WISP2 has been detected (Pennica, D., *et al.*, *Proc Natl Acad Sci U S A*. 95:14717-22 (1998)) and this is displayed in SEQ ID NO:270. WISP2 is a member of the CCN family of growth factors and is found to promote the adhesion of osteoblast cells. Decreased expression of WISP2 may be therapeutic in treatment of breast cancer (Kumar S. *et al.*, *J Biol Chem.*, 274(24): 17123-31 (1999); Pennica D. *et al.*, *Proc Natl Acad Sci. USA*. 95(25): 14717-22 (1998)). WISP2 is also found to inhibit vascular smooth muscle cell proliferation, motility, and invasiveness.(Lake, A.C. *et al.*, *Am J Pathol*. 162: 219-31 (2003).

SEQUENCE LISTING

SEQ ID NO: 1

gi|18390318|ref|NM_015419.1| Homo sapiens adlcan (DKFZp564I1922), mRNA

5	1 atgccccaagc gcgcgcaactg gggggccctc tccgtggtgc tgatccctgct ttggggccat 61 ccgcgagtgg cgctggccctg cccgcatect tgcgcctgct acgtccccag cgagggtccac 121 tgcacgttcc gatccctggc ttccgtgccc gctggcattg ctagacacgt gaaaagaatc 181 aattttgggt ttaatagcat acagggccctg tcagaaaacct catttgagg actgaccacaa 241 ttggagctac ttatgattca cggcaatgag atccccaaagca tccccatgg agctttaaga 301 gacccatgc ctcttcagggt ttcaagttc agctacaaca agctgagagt gatcacagga 361 cagaccctcc agggctctcc taacttaatg aggctgcaca ttgaccacaa caagatcgg 421 tttatccacc ctcaagcttt caacgctta acgtctctga ggctactcca tttggaaagg 481 aatctccctcc accagctgca ccccagcacc ttctccacgt tcacatttt ggattatttc 541 agactctcca ccataaggca cctctactta gcagagaaca tggtagaac tcttcctgccc 601 agcatgttcc ggaacatgccc gtttctggag aatctttact tgcagggaaa tccgtggacc 661 tgcgattgtg agatgagatg gtttttggaa tggatgcaaa aatccagagg aattctgaag 721 tggaaaaagg acaaagctta tgaaggcggg cagttgtgtg caatgtgtt cagtc当地 781 aagttgtaca aacatgagat acacaagctg aaggacatga cttgtctgaa gccttc当地 841 gagtccccctc tgagacagaaa caggagcagg agtattggg aggacaaaga acaggaagag 901 gatggggca gccagctcat cctggagaaa ttccaactgc cccagtggag catcttttg 961 aatatgaccg acgagcacgg gaacatggtg aacttggtct gtgacatcaa gaaaccaatg 1021 gatgtgtaca agattcaactt gaaccaaaccg gatccctccag atattgacat aaatgcaaca 1081 gttgccttgg actttgagtg tccaatgacc cgagaaaact atgaaaagct atgaaaattt 1141 atagcataact acagtgaagt tcccgatgg ctagacacagag agctcatgtc cagaaaagac 1201 cccagagtca gctaccagta caggcaggat gctgatgagg aagctctta ctacacaggt 1261 gtgagagccc agattcttgc agaaccagaa tgggtcatgc agccatccat agatatccag 1321 ctgaaccgac gtcagagtac ggccaagaag gtgctacttt cctactacac ccagtattt 1381 caaaacaatat ccacccaaaga tacaaggcag gctcggggca gaagctgggt aatgattgag 1441 cctagtggag ctgtgcaaaag agatcagact gtcctggaaag ggggtccatg ccagttgago 1501 tgcaacgtga aagttcttgc gагтccatct atcttctggg tgcttccaga tggctccatc 1561 ctgaaaggcgc ccatggatga cccagacacgc aagttctcca ttctcagcag tggctggctg 1621 aggtcaagt ccatggagcc atctgactca ggcttgtacc agtgcattgc tcaagtgagg 1681 gatgaaatgg accgcatggt atataggta ctgtgcagt cttccatc tcaaggcagcc 1741 gagaaaagaca cagtgacaat tggcaagaac ccaggggaggt cggtgacatt gccttcaat 1801 gcttttagcaa taccggaaagc ccacccatgc tgatttcttca aaaaaaaaaaaaa 1861 gatttggcta acacatcaca tgcatacatg ttgccaaatg gaaacttccatc catccaaag 1921 gtccaaagtca gtgatagtgg ttactacaga tggatggctg tcaaccagca aggggcagac 1981 cattttacgg tggaaatcac agtgcaccaag aaagggtctg gcttgcacatc caaaagaggg 2041 agacgccccag gtgc当地ggc tctttccaga gtcagagaag acatcgatgg gatgaaagg 2101 ggctcggggca tggggatgatc agagaacact tcaaggagac ttctgc当地tcc aaaggaccaa 2161 gaggtgttcc tcaaaaacaaa ggtatgatgc atcaatggg acaagaaaagc caagaaagg 2221 agaagaaaagc tggaaactctg gaagcattcg gaaaaaaaacagagaccaaa tggatgg 2281 ggtcgcagag tggatggatc tagacgaaagg ataaacatgg caaacaaaaca gattaatccg 2341 gagcgc当地ggg ctgatattt agccaaatgc cgtggggaaa atctccctaa gggcacagaa 2401 gtaccccccgt tgataaaaac cacaaggctt ccacccatgc gcttgc当地tcc cacaccac 2461 ttccctgctg ttctccccc ctcagcatct cctgtgcaga cgtatccatc tggatggaa 2521 tcctcagcag atgtacctt ctgc当地tcc tttgggtac catttc当地tcc 2581 gccagcatgg ggcttagaaca caaccacaaat ggatggatc ttgttgaacc tgaagtaaca 2641 agcacacccctc tggaggaaatg tggatgatc ctttctgaga agactggg gataacttcc 2701 actgaaggag acctgaaagg gacagcagcc cctacactt tatctgagcc ttatgaaacca 2761 tctctactc tgacacacatt agacacagtc tatgaaaagc ccacccatgc agagacggca 2821 acagagggtt ggtctgcagc agatgttggc tgc当地tcc agcccacatc cagtgagat 2881 gagcctccat tggatgctgt ctccctggct gagtgc当地tcc ccatgc当地tcc 2941 gatgggaga ctaagtcaaccat accagatgag gataagatga aagaagacac cttgc当地tcc 3001 cttactccaa cccccaccat ctgggttaat gactccagta catcacagtt atttgaggat 3061 tctactatag gggaaaccagg tggccaggc caatcacatc tacaaggact gacagacaac 3121 atccacccatgc tgaaaaagtag tctaaggact caaaggacaccc tactqattaa aaaaqqqtatq
---	--

3181 aaagagatgt ctcagacact acagggagga aatatgtctag agggagaccc cacacactcc
3241 agaagtctcg agagtggggg ccaagagac aatccatca cttgcctga ctccacactg
3301 ggtataatga gcagtgatgtc tccagttaa aagcctgcgg aaaccacagt tggacccttc
3361 ctagacaaag acaccacaac agtaacaaca acaccaaggc aaaaaggc tccgtcatcc
5 3421 accatgagca ctcacccttc tcgaaggaga cccaacggga gaaggagatt acgccccaaac
3481 aaattccgccc accggcacaa gcaaacccta cccacaactt ttgccccatc agagactttt
3541 tctactcaac caactcaagc acctgacatt aagatttcaa gtcaagtggg gagttctctg
3601 gttccctacag cttgggtggta taacacagtt aataccccc aacagttggg aatggagaag
3661 aatgcagaac ccacatccaa gggAACACCA cggagaaaaac acgggaagag gccaaacaaa
3721 catcgatata ccccttctac agtgagctca agagcgtccg gatccaagcc cagcccttct
3781 ccagaaaata aacatagaaa cattgttact cccagttcag aaactatact ttgcctaga
3841 actgtttctc tgaaaactga gggccctt gatccttag attacatgac aaccaccaga
3901 aaaatatatt catcttaccc taaagtccaa gagacacttc cagtcacata taaaaccac
3961 tcagatggaa aagaattaa ggatgatgtt gccacaaatg ttgacaaaca taaaagtgc
4021 attttagtca ctggtgaatc aattactaat gccataccaa cttctcgctc cttggctcc
4081 actatgggag aatttaagga agaatccctt cctgttaggtt ttccaggAACACCC
4141 aatccctcaa gacggccca gcctggggg ctacagacag acataccctgt taccacttct
4201 gggggaaaatc ttacagaccc tcccctt aagagcttggg aggatgtggg ttccacttcc
4261 gagttttgtt cctcttgc agtctccaca ccatttcacc aggaagaagc tgggtttcc
20 4321 acaactctct caagcataaa agtggaggtt gttcaagtc aggcagaaaac caccaccctt
4381 gatcaagatc atcttggaaac cactgtggctt attctccctt ctgaaacttag accacagaat
4441 cacaccctta ctgctggccg gatgaaggag ccagcattct cgtccccatc cacaattctc
4501 atgtctttgg gacaaaccac caccactaag ccagcacttc ccagtcacaa aatatctca
4561 gcatctagag attccaagga aatgttttgc ttgaattatg tgggaatcc agaaacagaa
25 4621 gcaaccccaag tcaacaatga aggaacacag catatgtcag ggccaaatga attatcaaca
4681 cccttcccg accgggatgc atttaacttg tetacaaagc tggaaattggg aaagcaagta
4741 ttggtagta ggagtctacc acgtggccca gatagccaaac gccaggatgg aagagttcat
4801 gcttcctatc aactaaccag agtccctgcc aaqcccatcc taccacacgc aacagtgg
4861 ctacctgaaa tggccacaca aagcgttcc agatactttg taacttccca gtcacactcg
30 4921 cactggacca acaaaccggg aataactaca tatccttctg gggcttgcg agagaacaaa
4981 cagtttacaa ctccaaagatt atcaagtaca acaattccctc tcccattgca catgtccaaa
5041 cccagcatc cttagtaagtt tactgaccga agaactgacc aattcaatgg ttactccaaa
5101 gtgtttggaa ataacaacat ccctgaggca agaaaaccagg tggaaagcc tccctgtcc
5161 agaatttccctc attattccaa tggaaagactc ctttcttta ccaacaagac ttttttttt
35 5221 ccacagttgg gagtccaccc gagaccggc atacccactt ctctgcccc agtaatgg
5281 gagagaaaag ttatccagg ttcctacaac aggatacatt cccatagcac cttccatctg
5341 gactttggcc ctccggcacc tccgttggt cacatccgc agacccacggg atcacccatca
5401 actaacttac agaatatccc tatggctet tccacccagg gttctatctc' cttataaca
5461 tcttcgtcc agtctcagg aagttccac cagagcagttt caaagtttt tgccaggagga
5521 cctctgtcat ccaaattctg gtctcttggg gaaaagcccc aaatcttcac caagtcccc
5581 cagactgtgt ccgtcaccgc tgagacagac actgtgttcc cctgtgggc aacggaaaaaa
5641 ccaaaggctt tcgttacttg gacaaagggtt tccacaggag ctcttatgac tccgaatacc
5701 aggatacaac gggttgggt tctcaagaac ggtaccttag tgatacgaa ggtcaagta
5761 caagatcgag gccagttatgtgcaccggc agcaacctgc acggcctgg caggatgg
45 5821 gtcttgcattt cggtcaccgt gcagcaacct caaatcttag cttccacta ccaggacgtc
5881 actgtctacc tggggagacac cattgcattt gagtgtctgg ccaaaggac cccagcccc
5941 caaatttccctt ggatcttccc tgacaggagg gtgtggcaaa ctgtgtcccc cgtggagac
6001 cgcatcaccctc tgacacaaaa ccggaccctt tccatcaagg aggcgtctt ctcagacaga
6061 ggctctata agtgcgtggc cagcaatgca gccggggcgg acggcctggc catccgcctg
50 6121 cacgtggcgg cactgcccc cgttattccac caggagaagc tggagaacat ctegctgccc
6181 cggggctca gcatcaccat tcactgcact gccaaggctg cggccccatc cagcgtgcgc
6241 tgggtctcg gggacgggtac ccagatccgc ccctcgactt tccctccacgg gaaacttgg
6301 gttttccca acgggacgtt ctacatccgc aacctcgcc ccaaggacag cgggcgtat
6361 gagtgctgg ccccaaccc ggttaggttcc gcgcgcagga cgggtcagct gaacgtgcag
55 6421 cgtgcagcg ccaacgcgcgc catcacggc acctccccgc ggaggacggc cgtcaggatc
6481 ggagggaccc tcaagctggc ctgcagcgcc tggggggacc cttggcccg catccctctgg
6541 aggctccgtt ccaagaggat gatcgacgcg ctcttcagtt ttgatagcg aatcaagggt
6601 ttgcataatgg gggaccctggt ggtgaaatca gtgacggaca aagatgcgg agattacctg
6661 tgcgtagctc gaaaataagggt tggtgatgac taegtggtgc tcaaagtggg tgggtgtatg
6721 aaacccggcca agattgaaca caaggaggag aacgaccaca aagtcttcta cgggggtgac
6781 ctgaaaagtgg actgtgtggc caccggctt cccaaatcccc agatctctg gagcctccca

6841 gacgggagtc tggtaactc cttcatgcag tcggatgaca gcgggtggacg caccaagcgc
 6901 tatgtcgctc tcaacaatgg gacactctac tttacaacgaa tggttggatgag ggaggaaggaa
 6961 gactacacct gcttgctga aaatcaggac gggaaaggacg agatgagagt cagactcaag
 7021 gtggtgacag cgcccgccac catccgaaac aagacttact tggcggttca ggtgccctat
 5 7081 ggagacgtgg tcactgttagc ctgtgaggcc aaaggagaac ccatgcccac ggtgacttgg
 7141 ttgtccccaa ccaacaaggt gatccccacc tcctctgaga agatcagat ataccaagat
 7201 ggcactctcc ttattcagaa agcccagegt tctgacagcg gcaactacac ctgcctggc
 7261 aggaacagcg cgggagagga taggaagacg gtgtggattc acgtcaacgt ccagccaccc
 7321 aagatcaacg gtaaccccaa ccccatcacc acegtgcggg agatagcgc cggggcagt
 10 7381 cggaaactga ttgactgcaaa agctgaaggc atccccaccc cgagggtgtt atgggcttt
 7441 cccgagggtg ttgttctgcc agctccatac tatggaaacc ggtactgtt ccatggcaac
 7501 ggttccctgg acatcaggag tttgaggaag agcgaetccg tccagctggat atgcattggca
 7561 cgcaacgagg gaggggaggg gaggttgcgtc gtgcagtcgat ctgtcctggaa gcccattggag
 7621 aaacccatct tccacgaccc gatcagcgg aagatcacgg ccatggcggg ccacaccatc
 15 7681 agcctcaact gtcgtccgc ggggacccccc acacccagcc ttgtgtgggt cttcccaat
 7741 ggcaccgatc tgcagagtgg acagcagctc cagcgttcc accacaaggc tgacggcatg
 7801 tatacataat cggcttctc ctgggtggac gctggggcc acgcgtcggt gggccgcaat
 7861 gccgctggcc acacggagag gtcgttctcc ctgaagggtgg gactgaagcc agaagcaaac
 7921 aagcagtatc ataaccttgtt cagcatcata aatgggtggaa ccttgaagct cccctgcacc
 20 7981 cctcccgggg ctggcagggg acgtttctcc tggacgctcc ccaatggcat gcatctggag
 8041 gggcccccaccc ccttgggacg ctgttctctt ctggacaatg gcaaccctcac gtttctggag
 8101 gcctcggtgt ttgacagggg tacctatgtt tgcaggatgg agacggagta cggcccttcg
 8161 gtcaccagca tccccgttat tgcgtatcgcc tattcctcccc ggttaccatcg cgagccccacc
 8221 ccggtcatct acacccggcc cgggaaacacc gtggaaactga actgcattggc tatgggatt
 25 8281 cccaaagctg acatcacgtg ggagtttaccc gataagtcgc atctgaaggc aggggttcag
 8341 gtcgtctgt atggaaaacag atttcttcac ccccaggat cactgaccat ccagcatgcc
 8401 acacagagag atgcggctt ctacaagtgc atggcaaaaa acattctcg cagtactcc
 8461 aaaacaactt acatccacgt ttctgttataat gtggattcca gaatgattgc ttaggaactg
 8521 acaacaaagc ggggtttgtt aagggaaagcc ggttggggaa taggagctct taaaataatgt
 30 8581 gtcacagtgc atgggtggctt ctgggtgggtt tcaagtttgc gttgtatctt atctacaatt
 8641 gttggggaaaa ggaagcaatg cagacacgag aaggagggtt cagccttgc gggacacttt
 8701 cttttgtgtt tacatcatgc cagggttcc attcagggtt tctgtgtctt gactgcaatt
 8761 ttcttcttt tgcaaatgcc actcgactgc ctgcataatgc gtccatagga tatctgagga
 8821 acattcatca aaaataagcc atagacatgtt acaacacccacttccat tgaagacca
 35 8881 tcaccttagtt aacctgtgc agtttttaca tgatagactt tttccatgt tgacaagtca
 8941 tctttcagtt atttcccttg tcaattttttt actccagtt gcccaataag gattttagaac
 9001 cagagtactt gatatatata tatatatattt aattcagatg tacatacata cagctaccat
 9061 ttatatatgtt aaaaagaaaaa cattttttcc tggaaactcac tttttatata atgttttata
 9121 tatatatattt ttcccttcaa atcagacatg gagactagaa ggagaataac ttctgtctt
 40 9181 attaaaatattt ataaaattttt ggtttttaca agacttggat acattacagc agacatggaa
 9241 atataatttt aaaaaattttc tctccaaactt ccttccaaattt cagtcaccac ttttatattt
 9301 ctttctccag gaaccctcca gtggggaaagg ctgcgttattt agatttctt gtatgcaag
 9361 tttttgtgtt aagctgtgtt cagaggaggtt gagaggagag ggaggagaaa actgcattcat
 9421 aactttacag aatttaatctt agacttcc cggaaaagcc cagaaaacttc tctgcgttat
 45 9481 ctggcttgc catctggtctt aaggtggctt cttttttttt agccatgagt cagtttgc
 9541 ccataataaa tacacgacatc gttttttccat tgcgtttt actgtatattt taaggtcaat
 9601 atactgtaca ttgtataataaa aataatattt cttccaaaaaaa aaaaa

SEQ ID NO: 2

Amino acid sequence of human ADLICAN encoded by the DNA sequence shown in SEQ ID

NO: 1.

MPKRAHWGALSVVLILLWGHPRVALACPHPCACYVPSEVHCTFRSLASVPAGIARHVERI
 NLGFNSIQALSETSFAGLTKLELLMIHNEIPSIPDGALRDLSSLQVFKFSYNKLRVITG
 QTLQGLSNLMRLHIDHNKIEFIHPQAFNGLTSRLLHLEGNLLHQLPSTFSTFTFLDYF
 RLSTIRHLYLAENMVRTLPASMLRNMPLENLYLQGNPWTCDCEMRWFLEWDAKSRGILK
 55 CKKKDAKAYEGGQLCAMCFSPKLYKHEIHLKDMDTCLKPSIESPLRQNRSRSIEEEQEQQE
 DGGSQLILEKFQLPQWSISLNMTDEHGNMVNLVCDIKKPMVDVYKIHNLQTDPPDIDINAT
 VALDFECPTMRENEYEKWLKLIAYYSEVPVKLHREMLSKDPRVSYQYRQDADEEALYYTG

VRAQILAEPEWVMQPSIDIQLNRRQSTAKVLLSYYTQYSQTISTKDTQRGRSWVMIE
 PSGAVQRDQTVLEGGPCQLSCNVKASESPSIFWVLPGSILKAPMDDPDSKFSILSSGWL
 RIKSMEPSDSDGLYQCIAQVRDEMDRMVRVLVQSPSTQPAEKDTVTIGKNPGEVTLPVN
 ALAIPEAHLSWILPNRRIINDLANTSHVYMLPNGTLSIPKVQVSDSGYYRCAVNQQGAD
 5 HFTVGITVTKKGSLPSKRGRPGAKALSRVREDIVEDEGGSGMDEENTSRRLLHPKDQ
 EVFLTKDDAINGDKKAKGRRKLKLWKSEKEPETNVAEGRVFESRRRINMANKQINP
 ERWADILAKVRGNLPLKGTEVPLIKTTSPPLSLEVTPPFPAVSPPSASPVQTVTSAAE
 SSADVPLLGEHEEVLGTISSASMGLEHNHNGVILVEPEVTSTPLEEVVDDILEKTEEITS
 TEGDIKGTAAPTLISEPYEPSPTLHTLDTVYEKPTHEETATEGWSAADVGSSPEPTSSEY
 10 EPPLDAVSLAESEPMQYFDPDLETKSQPDDEDKMKEDTFAHLTPTPTIWWVNDSTSSQLFED
 STIGEPGVPGQSHLQGLTDNITHLVKSSLSTQDTLLIKKGMKEMSQTLQGGNMLEGDPTHS
 RSSESEGQESKSITLPDSTLGINSSMSMPVKPAETTVGTLLDKDTTIVTTTPRQKVAPSS
 TMSTHPSRRRPNGRRLRPNKFRHRHKQTPTTFFAPSETFSTQPTQAPDIKISSQVESSL
 VPTAWVDNTVNTPKQLEMEKNAEPTSKGTPRRKHGKRPNKHRYTPSTVSSRASGSKPS
 15 PENKHNRIVTPSSETILLPRTVSLKTEGPYDSLDYMTTRKIYSSYPKVQETLPVTKPT
 SDGKEIKDDVATNDKHKSDILVTGESITNAIPTSRSLVSTMGEFKEESSPVGFPGTPTW
 NPSRTAQPGRLQTDIPVITSGENLTDPPLLKELEDVDFTEFLSSLTVSTPFHQEEAGSS
 TTLSSIKVEVASSQAETTLDQHLETTVAISETRPNHTPTAARMKEPASSSPSTIL
 20 MSLGQTTTTKPALPSPRISQASRDSKENVFLNYVGNPETEATPVNNEGTQHMSGPNELST
 PSSDRDAFNLSKLELEKQVFGSRSLPRGPDSQRQDGRVHASHQLTRVPAKPILPTATVR
 LPEMSTQSA3RYFVTSQSPRHWTKPTEITTYPGALPENKQFTTPRLSSTTIPPLPLHMSK
 PSIPSKFTDRRTDQFNGYSKVFGNNNIPEARNPVGKPPSPRIPHYSNGRLPFFTNTKTLSF
 PQLGVTRRPQIPTSPAPVMRERKVIPGSYNRISHSTFHLDFGPPAPPPLLHTPQTTGSPS
 TNLQNIPMVSSTQSSISFITSSVQSSGSFHQSSSKFFAGGPPASKFWSLGEKPQILTCKSP
 25 QTWSVTAETDTVPCBATGKPKPFVTWTKVSTGALMTPNTRIQRFEVLKNGTLVIRKVQV
 QDRGQYMCTASNLHGLDRMVLLSVTVQQPQILASHYQDVTVYLGDTIAMECLAKGTPAP
 QISWIFPDRRVWQTVSPVESRITLHENRTLSIKEASFSDRGVYKCVASNAAGADSLAIRL
 HVAALPPVIHQEKENISLPPGLSIHIHCTAKAAMPLPSVRWVLGDGTQIRPSQFLHGNLF
 VFPNGTLYIRNLAPKDSGRYECVAANLVGSARRTVQLNVQRAAANARITGSPRRTDVRY
 30 GGTLKLDCSASGDPWPRILWRPLPSKRMIDALFSFDSRIKFANGTLVVKSVTDKDAGDYL
 CVARNKVGDDYVVLKVDVVMKPAKIEHKENDHKVFYGGDLKVDVCATGLPNPEISWSLP
 DGSLVNSFMQSDDSGGRTKRYVVFNNGTLFNEVGMREBEGDYTCFAENQVGKDEMVRVK
 VVTAPATIRNKTYLAQVQVYGDVVTVACEAKGEPMPKVTWLSPTNKVIPTSSEKYQIYQD
 GTLLIQKAQRSDSGNYTCLVRNSAGEDRKTIVIHNVQPPPKingNPNTITVREIAAGGS
 35 RKLIDCKAEGIPTPRVLWAFPEGVVLPAKYGNRITVHGNGLDIRSLRKSDSVQLVCMA
 RNEGGEARLIVQLTVLEPMEKPIFHDPISEKITAMAGHTISLNCSAAGTPTPSLVWVLPN
 GTDLQSGQQQLQRFYHKADGMLHISGLSSDAGAYRCVARNAAGHTERLVLKVGLKPEAN
 KQYHNLVSIINGETLKLPCPPGAGQGRFSWTLPGNMHLEGPQTLGRVSLLDNGTLTVRE
 ASVFDRGTYVCRMETEYGPSVTSIPVIVIAYPPRITSEPTPVITYTRPGNTVKLNCMAMGI
 40 PKADITWELPDKSHLKAGVQARLYGNRFLHPQGSLTIQHATQRDAGFYKCMACKNILGSDS
 KTTYIHVF

SEQ ID NO: 3

gi|38076521|ref|XM_143254.3| Mus musculus RIKEN cDNA 6530405F15 gene
(6530405F15Rik), mRNA

45 1 atgtgggagc tggggttcag ggcgagacag agggtgtggat gggcagaagg gtccaggaaa
 61 aggaaaagtac tggagggggag ttgggacaaa agcagcgacc aagggAACAT cgcttcagtg
 121 actgaagcca ggcaaaaggc gcgggaaaggc ttatatgttag cctgggacgc tttcataaac
 181 actgatgacg tgtttgc aagcaagcaa tttgaggaga aacccctggg acgtcgaaaa
 241 gaaggaaaagc gcctccagtt ctctgaagag tcagtcccc agctagtgaa gactaaggct
 301 actaaggcctt ttgctcccgt tggaaagcaaa gaacgttctt tcaatcaggt gaaggctctc
 361 ctcagaagat ttccctgttcc tgcttatgtt acaagaggat tcaaaagcaa gacagaagag
 421 ctcaggatgc agaagagagg caggaaagtc agctgcttgc tgatctccct cactgccatc
 481 tgcctgtgg tcacccctgg gaggcagggtc tgcctcgcc gatgtgcctg ctatgtgcc
 541 acagagggtc actgtacatt tcggtagctc acctccatcc cagacggcat cccagccaat
 601 gtggaaacgag tcaattttagg gtataacagc ctcactagat tgacagaaaa tgactttct
 661 ggcctgagca gactggagtt actcatgtc cacagcaatg gcattcacag agtcagtgac
 721 aagaccttct cgggcttgc a gtccttgcag gtctaaaaa tgagctataa caaagtccaa

781 ataattgaga aggatactt gatatggactc aggagcttga cccgggttgca cctggatcac
 841 aacaacattg agtttatcaa ccccgaggcg ttttacggac tcaccttgct ccgcggatgt
 901 catctagaag gaaaccggct gacaaagctc catccagaca catttgcctc tttgagctat
 961 ctccagatat taaaacctc cttcattaag tacctgtact tgtctgataa cttccctgacc
 5 1021 tecctecca aagaaatggt ctccctatg ccaaaccctag aaagccttta cttgcattga
 1081 aacccatgg auctgtactg ccattaaag tgggtgtccg agtggatgca gggaaaccca
 1141 gatataataa aatgcaagaa ggaaaagaatc ccctccagtc ctcagcagtg tcccccttgc
 1201 atgaacccc gcatctaa aggagatct attgtatgg ttccatctgg ctcgttctg
 1261 tgtacaaagc caaccattga tccatcactg aagtcaaaaa gcctgggtat tcaggaggac
 10 1321 aatggatctg cttccgtctc acctcaagat ttcatagaac cttttggctc cttgtctttg
 1381 aacatgacag acctgtctgg aaataaggcc aatgtatct gtatgtatcca aaagccttct
 1441 aggacattac caattgcatt cactgaagaa aatgactaca tcatgtctaaa tatgtcattt
 1501 tcaacaaatc ttgtgtcag tgcattaaatc aatcacatcc agccagtgtg gcaactctg
 1561 gctttgtaca gtgactctcc tctgtatatta gaaagaagc cccagcatac tgagactcca
 15 1621 ctgtgtctc ccaaataatca acagggtggc cttaggcctg aagacacttt tccaacata
 1681 gaggctgatt tcaaagcaga tcccttttgg ttccaacaag aaaaatttc cctgeagctc
 1741 aacagaactg ctaccacact tagcacatta cagatccaat ttccacggg tgcataatc
 1801 actttaccaa aggagat gagaccgggtt aaacgcaat ggacatgtat tctgtatgtat
 1861 aacaatacca gactggaaca tactgtttt gttggcggca ctattggctt ggactgtccg
 20 1921 ggcaaaagggtt acccttcacc tcacttggaa tgggttttag ctgtatggag taaagtgaga
 1981 gcccctttag ttatgtgagga tgggcgaatc ctaatagaca aaaaggggaa gttggactc
 2041 cagatggctg ataccttga tgcaggctt taccattgc taagcacca tgatgtat
 2101 gcagatattc tcaacatacag gataactgtg gttagagccct atgtagaaaa caagcatgaa
 2161 aatggagctc tgcacacagt aattatgggt gagatactcg atcttccatg ctttccact
 25 2221 ggtattccag atgtttctat tagctggatt ctcccccggg aacttgtgtt ctctcagtc
 2281 tcaagagaca tgcaatttct taacaatggg accttaagaa tattacaggc tacacaaaaa
 2341 gatcaaggcc attaccatgt ttagcggcc aacccatcg gggctgat tttccagttt
 2401 caagtttcag tccaaatgaa aggtcaaaagg acaattggc atgacaggga catagatgg
 2461 tctggacttgg aagaacccaa gcccagtgtt ctccctaagc agccaccatc ttgaaactc
 30 2521 cctgcatcat ctttgcacagg gacagaggct gggaaacaag tctctggat acataagaaa
 2581 aacaaacata gagacttaac acatcgacgg cgtggggatt ccactctccg gagattcagg
 2641 gaacacagga ggcagctccc tctctctgtc cggagaattt acccccaaca ctgggcagca
 2701 ctttttagaaaa aagcaaagaa gaattctgtt ctaaggaagc aagaaaatac cacagtaaag
 2761 ccaacgcac tggctattcc acttgtggaa ctcgctgggg aggaaaaaaga cgcctccggc
 35 2821 ctgactccctc cagatgaaatc attcacgggtt ctgaaaaacta aggttttgg tggcccaagaa
 2881 aggtcacccaa ctgctgactc tagaccagta aatcatggct ttgtgacaag ttcaagcttct
 2941 ggcacagaag tctctccac cgtgaatccg caaacactac taccacacgca ctteetgtat
 3001 ttcaattat ttaatgttgc gacagatgtc gctgtgtcaa agatgtatgaa cgcacactgt
 3061 acaagcaaga tagaagatac aacacatcaa aacccatca ttatcttcc atcagtagct
 40 3121 gaaattcaag attctgctca ggtggggaga acgttctccc aaagtgcaca ccccgcaaca
 3181 gggggagcca tggctaccta tggctataacc accatgttta gttagttcac caacaaagcc
 3241 aatacagttc tgcagtcagc aaatccaaca gaaagtatg gacctcagat acctttaaca
 3301 gaagtaagta gagtttagcag taataactcc ttggctcaca ctactaaaga tccaggcttc
 3361 tccaagcggc cttcagatcc ccacaccact gcccctt tatttcaaac tcctagaaac
 45 3421 aacagtacag gtaacgtggg aagagagagg acaatttggc gcagaggcg agctataagt
 3481 ccataatgaa ctccagttt cctgtccggcat agacacagga ttgtgaggcc agcactcaag
 3541 ggacctgtca acagaaaat aagtcaagtt tcagccacgg agccccctgg gatgtgccga
 3601 acctgttctt ccacagaaaag gtcacccatg gtcacggcag cactgtcagt tacaggctca
 3661 tcccacacta ccctcccaa agctaacaat gttggattt tttcagaaga gtctaccact
 50 3721 gtggtaaga agccatctt actattgttgc aacaaacaag atgtatgtat agagacaata
 3781 acaaccacta taaactatcc cagaagtggaa agtacccaca tgactccac tgaagcaagc
 3841 atgatcttc tcccaacatc catatccctg ggaaaaaaactc ctatagacac tagtggtcac
 3901 ctgagcatgc cttaggatcc ccaagcttgc acagatttag ttgtgacacc accacttcc
 3961 agtccacta gccaaaccctc aataccaaca aagcaacaa gcacaaaact ctcagaaga
 55 4021 aaaattccctt ggcacccaaat ctttgcataa aaccataaca aagagggat gctaaagaat
 4081 ctgcatcaat ttgggttaca aaagaacaca gccacttgc ctcctgaaaa agctccctt
 4141 ttacccacag atcatgttgc cttcctcacct tttacaacac ttttggcaag tctgacggca
 4201 gtcagtcg caacaatggc tgccactcg cgcaatggca ctgaagtgc aggtgccaga
 4261 agtctctctg cagggaaaga gcagcccttc atcaactctt ttctgtatgtct ttcttagcacc
 60 4321 acaagaaaaga gatctgtatc attaagcttc ctgtcaatgg aaaccccccac agtgacaact
 4381 cttccctgttta ttgcattctc gaaacccaaag aagtacgatc caaaaaaaaagca

4441 aaagacccaaa caaagggggtc tctgaagaac aggaaaggcc caaccatcac ccccaggcgag
4501 atttctggct atagcacata ctcagttcca acaaacaactg atactccctt ggcttcagt
4561 cattccccgg gaaaagtcac tggtaggact gtaagtacag ctgcetcta ctcagcagct
4621 tcttcctgg gcataactga actgccccag aaatgcactc atacttcggg aaatataaca
5 4681 gcttcggaaa caactctgtt gagcaaatca caggagagca cgcgaatgaa aagagcctcc
4741 gccacaccac cactcctcag cagtggggca ccccgaatgc ctactcett ccctcctccc
4801 ttcaactaagg ttgtgggtac agacagttag gttccagcag tttcaagat gatgtcaaat
4861 aggatggteca ccatatatga atttcaagg cacgatata tag atctgcagca accctcagca
4921 gaggctagcc ccaatcctga gatctaact ggatccactg atttccctt ctctagtcgt
10 4981 ttgacctcca ctccatgcc agcacaaga gtggataaac cacaggattc tcaatggaa
5041 ccttccctt ggccagaaaaa caaatttcag ctcaggtcat actcagaac cattgaaaag
5101 ggcaaaaggc cagaataaaag cctgtcacc caccctcagct ttccagggc cagcactcat
5161 gccttcatt ggaatgcaca gaggcatgca gaaaagagtg tttttgataa gaaacctgt
15 5221 caaaacccaa ctccaaaca cctgccttat gactctctgc ctaagactat attgaagaaa
5281 ccaagaataa ttggagggaaa ggctgeaagc ttactgttc caactaattc agatgtcett
5341 cttccttgcg aggctgttg agacccaaag cccaccatcc actggaccag agtctcatca
5401 ggacgtggaaa tatcccgagg gatacagaaa accegggttc atgtgcttcc caatggcacc
5461 ttgtccatcc agagggttag cattcaggac cgtggacagt acctgtgcgc tgccctata
5521 ccacttaggtg tagaccaccc tcatgtcaact ctgtctgtt tttcttaccc tgctaggatt
20 5581 ctggagagtc atgtcaagga gatcacagct cattccggaa gtactgtgaa acttaagtgt
5641 agatagaag gtatgccaag acctacaatt tcctggatac tcgcaaaacca aacagtggtc
5701 tcggaaaacac ccgagggaaag ccggaggtc tgggtgacac ccgatggAAC gttgatcatc
5761 cataatttga gtctttatga ccgtgggtt tacaagtgtg tagccaacaa cccatctggc
5821 caggattcac ttgtgggttaa gatacaagtc atcacagctc cccctgttat tataagagcaa
25 5881 aagagacaag ccacatgttgg cgtttttaggt gaaagttga aactgcccgt cactgcaac
5941 ggaactcccc agcccagtgt tcattgggtc ctctatgtat ggactgaact aaaaccactg
6001 cagttgactc attccaggtt ttcttgcattt ccaaattgggaa ccctgtatata aagaaacatc
6061 gtttcttcag tcaggggaccc ttatgaatgc attgtctaccac gtcctcggg ctcaagagaga
6121 aggtagttagtga ttcttaagat agaagagcaa gagacagttc ccaggataga aactgcctcg
30 6181 cagaaatgggaa cagaggtgaa ttgggtgag aaattactac tgaactgttc agtactggg
6241 gatccgaaac ctacaataat ctggaaatgtt ccatccaaagg ttgtcatttga ccagtggcac
6301 agaatgggca gccggatcca tgcgttccca aatggcttcc tggttattgg atcgggtgaca
6361 gaaaaggatg gtgggtacta cttatgtgt gcaagaaaaca aaatgggaga tgacctggtc
6421 ctgtatgcgt tccgcctaaag actgacaccc gccaaaattt aacacaagca gcattttaaag
35 6481 aagcaagtac tccatgggaa agatttccaa gttgactgtca aggcttcttgg ctccttctgt
6541 cctgggttgc cttgggttgc gcctgttggg acagtgggtg acaatgttagc acaagctgt
6601 gacagtgggttgc acaggaccaa gaggtacacc ctcttccacca acggaaacctt gtatttcaac
6661 aaagttgggaa tggcagggaa aggagattt attgtctctg ctcagaacac ctttagggaaa
6721 gatggaaatgt aagttcacct aacagtcttca acagccatcc cacggataag gcaaaaactac
40 6781 aggaccaatgt taaggatcaa ggctggagac acagtgttcc tggactgtga ggtcaactggg
6841 gaacccaaacg caaatgttatt ttgggttgc tcttccacca atgtcattc atttccaaat
6901 gacaggttca tatttcatgc caatggaaact ttgtccatca ataaagtggaa accgcttgcac
6961 tctggaaatgttgc atgtgtgttgc agtccaaat cctagtgggg atgacactaa gacataaaaa
7021 ctggatatttgc tctctaggcc tccattaatc aatggtttgc atgcaacaa aactgtttt
45 7081 aaagccacag ccattcagca ctccaaaaaaaaa cacttggact ggagagcaga tgggttccca
7141 ccaccccaaga tcacatggat tatgccagac aatattttcc tcacggctcc atactacgg
7201 ggcagaatca ccgtgcataaaatggaaacc ttggaaatttc ggaacataag gctttctgt
7261 tctggggatt tcacctgtgt ggctggagc gaaggaggag agagtgtttt ggtgggtcag
7321 taaaatgtac tggaaatgttgc gagaagacca acattcagaa acccattcaa tgaaaaatgt
50 7381 gttcccagg ttggcaagcc tgcgttgc tgcgttgc tggatggaa cccaaacac
7441 gaaattatcttgc gatcttacc tgcgttgcaca caatttgc tgcgttgc
7501 tatctgtatgg caagcaatgg ttctctcatt gtttacaaat gcaactcgaa caagttag
7561 aagtatcgct gtacagcaag aaataaagggtt ggetacatcg agaaactcat cctgttagaa
7621 attggacaga agccagtc tgcgttgc tgcgttgc
55 7681 gaatcgctat ccctgcattt tgcgttgc tgcgttgc
7741 acgcagggttgc cttggcaatcc tgcgttgc
7801 aatggcacgt tggtcatcaaa agaaaacaaa gtcgttgc
7861 gtcggatcaaa gtcgttgc tgcgttgc
7921 cccggatatttcaaaacttcc tccaggagc atgttgc
7981 ctccactgttgc tggccttggg agtcccaag ccacaaatca
8041 tccctgttcaacggcgac agaaaaggcc cccacac
gtgagatgttgc tccctacaa

8101 ggtacgctgg tcattcagaa tctacgagcc tcagattctg gcgtctataa atgcagagca
 8161 cagaacgtgc ttgggccga ttatgcaca acttacatcc aggtcctctg acaggaagg
 8221 agaaaactgaa tggAACaaaa gccaacatct gcagacttta ttttttgaa gaagttaat
 8281 caaaggcgc cataggcatg taaatgaatc cgaatacatt tacagtatta aatttacaat
 5 8341 ggacatgcag tgagacttgt aaataaatgc actgtgaact gattccgagt ttccatggat
 8401 ttcaaagcaa actcttaact taaggcactt tgatttgc aacaaataat aaaaaacatt
 8461 aagagaaaaat gatccgctac aaattaacaa atggcgaatg cacctgaatt ttcatgtaaaa
 8521 agaccttct tccgctaaca gttgccagct gccttgc tttttccac caatgttaca
 10 8581 aacatcgac acagaatgaa tggagacaac gtgaaagatt aggttgcag cccgtttaa
 8641 tctcaatgca caaatatccc gtcactggg tacaaacatt ttgataaaaac ctacagaaaa
 8701 caagcgcaga actgttctga ttatgattaa tagttacca ttgttccaca ct

SEQ ID NO: 4

Amino acid sequence of mouse ADLICAN encoded by the DNA sequence shown in SEQ ID
 15 NO: 3.

MWELGFRARQRVGWAEGSRKRVLEGSWDKSSDQGNIASVTEARQKEREGLYVAWDAPIN
 TDDVFVQSKQFEEKRLGRRKEGKRLQFSEESVPQLVKTKPTKFAPVGSKERSFNQVKAL
 LRRPPVSAYVTRGFKSKEELRMQKRGREVSCLLISLTAICLVVTGSRCPRRCACYVP
 TEVHCTFRYLTSIPDGIPANVERVNLGYNSLTRLTENDFSGSLRLELLMLHSNGIHRVSD
 20 KTFSGQLQVLKMSYNKVQIEKDLYGLRSLTRLHLDHNNIEFINPEAFYGLTLLRLV
 HLEGNRLLTKLHPDTFVSLSYLQIFKTSFIKYLYLSDNFTLSPKEMVSSMPNLESLYLHG
 NPWTCDCHLKWLSEWMQGNPDIICKKERIPSSPQQCPLCMNPRISKGRSIAMVPSGSFL
 CTKPTIDPSLKSLSLGIQEDNGSASVSPQDFGSLSLNMTDLSGNKANVICSIQKPS
 RTLPIAFTEENDYIMLNMSFSTNLVCVNYMHIQPVWQLLALYSDSLPLERKPQHTETP
 25 LLSPKYQQVALRPEDTFTNIEADFKADPFWFQQEKSILQLNRTATTLSTLQIQFSTDQI
 TLPKAEMRPVKRKWTMILMMNNTRLEHTVLVGGTIALDCPGKGDPSPHLEWVLADGSKVR
 APYVSEDGRILIDKKGKLELQMADTFDAGLYHC1STNDADADILTYRITVVEPYVENKHE
 NGALHTVIMGEIILDLPCLSGTPDASISWILPRNTVFSQSSRDMQILNNGTLLRILQATPK
 DQGHYRCVAANPSGADFSSFQVSQVMKGQRTIEHDRDIDGSGLEEPKPSVLLKQPPSLKL
 30 PASSLTGTEAGKQVSGIHKNNKHRLDTHRRGDSTLRRFREHRRQLPLSARRIDPQHWAA
 LLEKAKKNVLRKQENTTVKPTPLAIPLVELAGEEKDASGLTPPDEEFTVLKTKAFGVPE
 RSPTADSRPVNHGFVTSSASGTEVSSTVNPQTLLPTHPDFKLFNVVDSAAVSKSMNRPV
 TSKIEDTTHQNP III FPSVAEIQDSAQVGRTSSQSQAHPATGGAMATYGYTMLSSPTNKA
 NTVLQSANPTESYGPQIPLTEVSRSVSSNNSLAHTTKDGFPSKRPSDSHTTAPSLFQTPRN
 35 NSTGNVGRERTIWSRGRAISPYRTPVLRHHRIRVPALKGPNARNISQVSATEPPGMCR
 TCSSTERLTMATAALSVTGSSHTTLPKANNVGIISEESTTVVKPKSLLLKNQDVDIETI
 TTTINYFRSESTHMTPTEASMISAPTSISLGKPTIDSGHLSMPRTIQAGTDLVTPPLS
 SPLSQPSIPTKATSTKLSRRKIPWHPIFANNHNKEGMLKNLHQFLQKNTATKPPEKAPL
 40 LPTDHSSSPSTTLLASLTPAQSATMAATRRNGTEVQGARSLSGAKEQPFINSFLVLPST
 TRKRSTLSFLSVETPTVTPPIASAIISETQEVRSSKKAKDQTGSLKRNKGPTITPRQ
 ISGYSTYSVPTTDTPLAFSHSPGKVTGRTVSTAAPHSAAASLLGITELPQKCTHTSGNIT
 ASETTLLSKSQESTAMKRASATPPLLSSGAPRMPTPSPPPFTKVVVTDSEVPAVFKMMMN
 RMVTIYESSRHIDIDLQQPSAEASPNPEITGSTDFFPLSSLLTSTPMPAPRVDKPQDSQWK
 PSPWPENKFQLRSYSETIEKGKRPEISLSPHLSFPEASTHALHWNAQRHAEKSVFDKKPA
 45 QNPTSKHLHYDSLPTKILKKPRIIGGKAASPTVPTNSDVLPLCEAVGDPKPTIHWRVSS
 GREISRGIQKTRFHVLPNGTLSIQRVSIDQRGQYLCAASNPGLVDHLHVTLSVSYPAR
 LESHVKEITAHSGSTVVLKCRVEGMPRTISWIQNTVSETPEGSRKVWVTPDGTLLI
 HNLSLYDRGFYKCVANNPSGQDSLLVKIQVITAPPVIEQKRQAIVGVLGESLKLPCATA
 GTPQPSVHWVLYDGTELKPLQLTHSRFFLYPNGTLYIRNIVSSVRGTYECIATSSSGSER
 50 RVVILRVEEQQETVPRIETASQKWTENVNLGEKLLLNCATGDPKPTIIWKLPSKVVIDQWH
 RMGSRIHVPNGSLVIGSVTEKDGGDYLCVARNKMDDLVLHMVRLRLTPAKIEHKQHFK
 KQVLHGKDFQVDCKASGSPVPEVSWLSPDGTVVNNVAQADDSGYRTKRYTLFHNGTLYFN
 KVGMEEGDYICSAQNTLKGDEMVKHLTVLTAIPRIRQNYRSNVRKAGDTAVLDCEVTG
 EPKPNVFLLPSNVNVIIFSNDRFIFHANGTLSINKVKPLDSGKVVCVAQNPSGDDTKYK
 55 LDIVSRPPLINGLYANKTVIKATAIQHSKKHLDCRADGVPPPQITWIMPDNIFLTAPYYG
 GRITVHQNGTLEIRNIRLSDSADFTCVVRSEGGESEVVLVQLKVLEMLRRPTFRNPFNEKV
 VAQVGKPVAMNCSDGNPTBEIWIPLDGTQFANGPQNSPYLMASNGSLIVYKATRNKSG

KYRCTARNKVGYIEKLILLEBIGQKPVILTYEPGMIKSAGGESLSLHCVSDGIPKPNVKWT
TPGGLVIDRPPQVGGKYILHENGLVICKBTIAHDRGNYICKAQNSVGQAVISVPVTIVAYP
PRIINYLPRSMRLRTGEAMQLHCVALGVPKPQITWETPGYSSLSTATERRPHRSEMLPLQ
GTLVIQNLRAASDGSVYKCRAQNVLGADYATTYIQVL

5 SEQ ID NO: 5

gi|33355470|gb|AY273816.1| Rattus norvegicus bone specific CMF608 mRNA, complete cds

10	1	cgagagacga	cagaagggtta	cggtctgcgag	aagacgcacag	aagggtccag	aaaaaggaaa
	61	gtgctggagg	ggagtgggga	caaaagcagc	gaccaagtga	atgtcaettc	agtgactgtag
	121	gccaggcaaa	acgcgcggga	aggattttgt	gtagcttggg	acccttcat	agacactgtat
	181	gacacgttta	cgcaaaaatag	aaatttgagg	agaaaacgcct	ggcccttcgg	aaaggagtga
	241	ttgatttagta	cttgc当地	taggtactt	taaggagaac	taactaatgt	atactattga
	301	gggaggagga	agagcattac	agagttcca	gcagcagcag	gaaagctttg	gttaatttgg
	361	aaatggatga	tagcattaaa	ataacagaag	cgcccccagg	tctctgaagc	ttcagcccc
	421	cagctgaaag	ccagaaaaaga	ctaagcccac	taagcctttt	gatccctttg	gaagcaaaga
15	481	actttccctc	cctgggggtga	agactctct	cagaagattt	cctgtctctg	cctatgttac
	541	aagaggaatc	aaaaccaaga	cagaagagct	caggatgcag	tgagaggca	ggaaagtcag
	601	cggcttgg	atctccctca	ctgctgtctg	cctgggtggc	accctggga	gcagggcctg
	661	tcctcgcgc	tgtgc当地	atgtgcccac	agaggtgcac	tgtacattt	gttacactgac
20	721	ctccatccc	gatggcatcc	cggccatgt	ggaacgaata	aatttaggtat	ataacagcct
	781	tactagattg	acagaaaacg	actttatgg	cctgagcaaa	ctggagttac	tcatgctgca
	841	cagtaatggc	attcacagag	tcagtgacaa	gaccttctcg	ggcttgcagt	ccttcaggt
	901	cttaaaaatg	agctataaca	aagtccaaat	cattcggaaag	gataacttct	acgactcgg
	961	gagcttggc	cggttgcacc	tggatcacaa	caacattgaa	tcatcaacc	ctgaggcctt
25	1021	ttatggactt	acctcgctcc	gcttggtaca	tttagaagga	aaccggctca	caaagctcca
	1081	tccagacaca	tttgtctcat	taagctatct	ccagatattt	aaaaccttct	tcattaagta
	1141	cctgttcttg	tctgataact	tcctgaccc	cctcccaaaa	gaaatggct	cctacatgccc
	1201	aaaccttagaa	agcctgtatt	tgc当地	cccatggacc	tgtactgccc	attaaagtg
	1261	gttgc当地	ttggatgcagg	gaaacccaga	tataataaaa	tgcaagaaag	acagaagctc
30	1321	ttccagtcct	cagcaatgtc	ccctttgcat	gaacccccagg	atctctaaag	gcagaccctt
	1381	tgctatggta	ccatctggag	cttccctatg	tacaaagcca	accattgtac	catcaactgaa
	1441	gtcaaaagage	ctggttactc	aggaggacaa	tggatctgccc	tccacccctac	ctcaagattt
	1501	catagaaccc	tttgc当地	tgtctttgaa	catgacagac	ctgtctggaa	ataaggccga
	1561	catgtctgt	agtatccaa	agccatcaag	gacatccacca	actgcattca	ctgaagaaaa
	1621	tgactacatc	atgctaaatgt	cgtcattttc	cacaatctt	gtgtgcagtg	tagattataa
35	1681	tcacatccag	ccagttggc	aacttttggc	tttataatagt	gactctctc	tgatactaga
	1741	aaggaagccc	cagcttaccg	agactcttc	actgtctct	agatataaaac	aggtggctct
	1801	taggc当地	gacatcttta	ccagcataga	ggctgtatgtc	agagcagacc	ctttttgggt
	1861	ccaacaagaa	aaaattgtct	tgagctgaa	cagaactgccc	accacactta	gcacattaca
	1921	gatccagg	ttccactgtat	ctcaatctc	tttaccaagg	gcggagatga	gagggagag
40	1981	actcaaatgg	accatgtatcc	tgatgtatgg	caatcccaaa	ctggaaacca	ctgtcctgg
	2041	ttggc当地	attgc当地	gctgtccagg	caaaggcgcac	ccttcaccc	acttggaaatg
	2101	gcttctagct	gatgggagta	aagtggatgc	cccttacgtt	agcgaggatg	ggcgaatct
	2161	aatagacaaa	aatgggagat	tggaaactgca	gatggctgac	agctttgtat	caggcttta
	2221	ccactgcata	agcaccatgt	atgcagatgc	ggatgttctc	acatacagga	taactgtgt
45	2281	agagccctat	ggagaaaagca	cacatgacag	tggagttccag	cacacagtg	ttacgggtga
	2341	gacgctcgc	cttccatgc	tttccacggg	tgttccagat	gcttcttata	gctggattct
	2401	tccagggaaac	actgtgttct	ctcagccatc	aaagagacagg	caaatttctt	acaatgggac
	2461	cttaagaata	ttacaggat	cgccaaaaga	tcaaggatct	taccaatgt	tggctgcca
	2521	cccatcagg	ggcgactttt	ccagttttaa	agtttcagtt	aaaaagaaag	gccc当地aggat
50	2581	ggttgagcat	gacaggggagg	caggtggatc	tggacttgg	gaacccaact	ccagtgttcc
	2641	ccttaagcg	ccagcatctt	tgaaactctc	tgcatcagct	ttgacagggt	cagaggctgg
	2701	aaaacaagtc	tccgggtgtac	ataggaagaa	caaacataga	gacttaataac	atcgccggc
	2761	tggggattcc	acgctccggc	gattcaggga	gcatagggagg	cagctccctc	tctctgctcg
	2821	gagaattgac	ccgc当地	gggcagact	tctagaaaaaa	gccaaaagaa	attctgtgccc
55	2881	aaaaaaagcaa	gaaaatacca	cagtaaagcc	agtgc当地	gctgttcccc	tcgtgaaact
	2941	cactgacgag	gaaaaggatg	cctctggat	gattcctcca	gatgaagaat	tcatggttct
	3001	gaaaactaag	gcttctgg	tcccaggaa	gtcaccaact	gctgactctg	gaccagtaaa

3061 tcatggaaaa atgacgagata tagcttctgg cacagaagtc tcaactgtga atccacaacc
3121 actacaatct gaggcacccctc ctgatttcaa attattttagt gtaacaaacg gtacagctgt
3181 gacaaagagt atgaaccccat ccatagcaag caaaatagaa gataacaacca accaaaacccc
3241 aatcattatc ttccatcg tagctgaaat tcgagattct gctcaggcag gaagagcata
5 3301 ttcccaaagt gcacacccctg taacaggggg aacatggct acctatggcc ataccaacac
3361 atatagttagc tttaccagca aagccagtagc agtcttgcag ccaataaatac caacagaaag
3421 ttatggacct cagataccta ttacaggagt cagcagaccc agcagtagtg acatcttcc
3481 tcacactact gcagaccccta gcttctccag tcacccttca ggttcacaca ccactgcctc
3541 gtctttatcc cacattccta gaaacaacaa tacaggttaac ttccccctgt ccaggcactt
10 3601 gggaaagagag aggacaattt ggagcagagg gagagttaaa aacccacata gaaccccaagt
3661 tctccgacgg catagacaca ggactgttag gccagcaatc aaggacccctg ctaacaaaaa
3721 tgtgagccaa gttccagccca cagatcaccc tggatgtgc cacatgtc cttccgacca
3781 ggggctcaca gtggctactg cagcactgtc agttcaaggt tcatccaca gtggccctcc
3841 caaaactaat aatgttgggg tcatagcaga agagtctacc actgtggcata agaaaccact
3901 gttactatcc aaggacaaac aaaaatgtaga tattgagata ataacaacca ctacaaaata
3961 ttccggaggg gaaagtaacc acgtgattcc tacggaagca agcatgactt ctgctccaac
4021 atctgtatcc ctggggaaat ctcctgtaga caatgttgtt cacctgagca tgctggac
4081 catccaaact gggaaagatt cagtgaaac aacaccactt cccagcccc tcagcacacc
4141 ctcataatcca acaagcacaa aattctcaaa gggaaaact cccttgcacc agatctttgt
20 4201 aaataaccag aagaaggagg ggatgttaaa gaatccatat caattcggtt taaaaagaa
4261 cccagccgca aagttccca aaatagctcc ttttaccc acaggcaga gttccccctc
4321 agattctaca actcttcttga caagtcggcc accagctctg tctacaacaa tggctgcccac
4381 tcagaacaag ggcactgaag tagtatcagg tggcagaaggt ctctcagcag ggaagaagca
4441 gcccttcacc aactcttctc cagtgcttcc tagcaccata agcaagagat ctaatacatt
25 4501 aaacttcttg tcaacggaaa ccccccacagt gacaagtctt actgtactg catctgtcat
4561 tatgtctgaa accccaacgaa caagatccaa agaagcaaaa gaccaaaataa agggccctcg
4621 gaagaacaga aacaacgcaa acaccacccc cagggcagggtt tctggctata gtgcataactc
4681 agctctaaca acagctgata ccccttggc tttcagttcat tccccacgac aagatgtgg
4741 tggaaatgtt aagtgcagttt cttatcaactc aacaacctctt cttctggcca taactgaact
30 4801 gtttggaaaatg tacacccaga ctttggaaa tacaacagct ttggaaacaa cgttgttgag
4861 caaatcacag gagagtacca cagtggaaag agcctcagac acaccaccac cactcctcag
4921 cagttggcgc ccccccagtgc ccactcttccc cccaccttctt tttactaagg gtgtggttac
4981 agacagcaaa gtcacatcg ctttccagat gacgtcaaat agagtggcata ccatatatga
5041 atcttcaagg cacaatacag atctgcagca accctcagca gaggctagcc ccaatctgat
35 5101 gatcatataact ggaaccactg actctccctc taatctgttt ccattccactt ctgtgccagc
5161 actaagggtt gataaaaccc acgatctaa atggaagccc tctccctggc cagaacacaa
5221 atatcagttc aagtctactt ccggaaacccat tgagaaggcc aaaaggccag cagaagcat
5281 gttcccccac ctcagcccttcc cagaggccag cactcatgccc tcacactgga atacacagaa
5341 gcatgcggaa aagagtgttt ttgataagaa acctgtgtcaaa aacccaaactt ccaaaacatct
40 5401 gcttacgtc tctctaccta agactctt gaaaaagccca agaataattt gaggaaaggc
5461 tgcagttt acagttccag ctaattcaga cttttttttt ctttgtgagg ctgttgaga
5521 cccactgccc atcatccact ggccaggat ttcatcagga cttgaaatat cccaaaggcc
5581 agaaaaagc cggttccacg tgcttcccaaa tggcacctt tccatccaga gggctgat
5641 tcaggaccgt ggacagttacc ttttttttttccatccatc tggggcgtat accattttca
5701 tgtcttttg ttttttttttccatccatc tggctcttc atttatccatc gacagacatg tcaaggat
5761 cacagttcac tttggaaatg ttttttttttccatccatc tgggggat tggggggat tgccgaggcc
5821 tacggttcc tggataactttt ctttttttttccatccatc tggcacctt tggggggat
5881 aaaggcttgg gtaacacccctt atggaacacatt gatcatctt atatctgtc tttatgtatcg
5941 tggtttttac aagtgtgtgg ccagcaaccc atctggccag gattcaactt tggggggat
50 6001 acaagtcattt acagttccccc ctgtcattt attttttttccatccatc tggggggat
6061 ttttaggttggaa agtttggaaac ttttttttttccatccatc tggggggat
6121 ctgggtccctt tatgtatgggaa ttttttttttccatccatc tggggggat
6181 cttgtatccaa aatggaaactt ttttttttttccatccatc tggggggat
6241 tgagtgcatt gcccaccatc ttttttttttccatccatc tggggggat
55 6301 agagggagag acaatccccca ggttttttttccatccatc tggggggat
6361 ggggtgagaaa ttactactgaa ttttttttttccatccatc tggggggat
6421 gagggtgcca tccaaaggctt ttttttttttccatccatc tggggggat
6481 ctacccaaat ggttttttttccatccatc tggggggat
6541 atgtgtggca agaaacaaaaa ttttttttttccatccatc tggggggat
6601 gacactgtcc aaaattgtaaac agaagcagta ttttttttttccatccatc tggggggat
6661 ttccaaatggtt gactgtccaa ttttttttttccatccatc tggggggat

6721 tgatggaca gtgtcaaca atgtagccca agctgatgac agtggctata ggaccaagag
 6781 gtacaccctt ttccacaatg gaaccttcta tttcaacaac gttggatgg cagaggaagg
 6841 agattatatac tgctctgccc agaacaccc agggaaagat gagatgaaag tccacccaac
 6901 agttctaaca gccatcccac ggataaggca aagctacaag accaccatga ggctcaggc
 5 6961 tggagaaca gctgccttg actgcgaggt cactgggaa ccgaagccca atgtatcc
 7021 gttgctgcct tccacaatg tcatttcatt ctccaatgac aggttcacat ttcatgccaa
 7081 tagaacttg tccatccata aagtggaaacc acttgactct ggggactatg tgcgttagc
 7141 tcagaatctt agtggggatg acactaagac atacaactg gacattgtct ctaaacctcc
 7201 attaatcaat ggccgtatg caaacaagac tggattaaa gccacagcca ttcggcactc
 10 7261 caaaaaatac ttgtactgca gaggatgg gatcccatct tcccgatgtca cgtggattat
 7321 gccaggcaat attttctcc cagctccata ctttggaaagc agagtacgg tccatccaaa
 7381 tggAACCTTG gagatgagga acatccggtt ttctgactct gcggacttca cctgtgtgg
 7441 tcggagcggag ggaggagaga gtgttgtgt agtgcagttt gaagtcctag aaatgtcag
 7501 aagaccaaca ttcaaaaacc cattcaacga aaaagtcatc gcccagctg gcaagccgt
 15 7561 agcaactgaaac tgctctgtgg atggaaaccc cccacctgaa attacctgga tcttaccc
 7621 cggcacacag tttgctaaca gaccacacaa tttcccgat ctgtggcag gcaatggc
 7681 tctcatcctt tacaaagcaa ctcggaaacaa gtcaggaaatg ttcgtgtc cagccaggaa
 7741 taagggttgc tacatcgaga aactcattctt gtttagagatt gggcagaagc cagtattct
 7801 gacatacgaa ccaggatgg tgaagagcgt cagtggggaa ccttattcac tgcattgtgt
 20 7861 gtctgatggg atccccaaacg ccaatgtcaa gtggactaca cccgggtggcc atgtatcga
 7921 caggcctcaa gtggatggaa aatacatactt gcatggaaat ggcacgctgg tcatcaaagc
 7981 aacaacagct cacgaccaag gaaattatat ctgttagggct caaaacagtg ttggccaggc
 8041 agttatttagc gtgtcgttgc ctaccctccc cgaatcataa actaccatt
 8101 caggaacatg ctcaggagga caggggaaacg catgcagetc cactgtgtgg ccttggaaat
 25 8161 ccccaagcca aaagtccaccc gggagacggc aagacatcc ctgctctcaa aagcaacagc
 8221 aagaaaaacc catagaagtg agatgcttca cccacaaggct acgctggtca ttcagaatct
 8281 ccaaaacctcg gattccggag tctataatgt cagactcag aacctacttg ggactgatta
 8341 cgcaacaact tacatccagg tactctgaca ggaagggggaa gactaaaatt caacagaagt
 8401 ccacatccac agggtttatt ttttggaaa agttaatca aaggcagcca taggcattgt
 30 8461 aatgagtcgt aatacattt cagtattaaa tttacaatgg acatgcgtt agacttgtaa
 8521 atgaaaagcat ttttgcgtt aaccggatct ctgtgtatctt caagcaaac tcttaactt
 8581 aggcactttt attttgcctaa caaaataataa caaacattaa gaaaaaaa tgatccacta
 8641 cgaaataaca aacggctaat gcacccgtt tctcgtt aagacccccc tctcgcttac
 8701 agttggccagc tgcctcgtt ctgtttccca ccaatgtcac aaacatcgca cacagggtga
 35 8761 atggagtcctt cggggaaagat taagtttgcg gtctgtt aatctcaatgt acaaataattc
 8821 tgcctcgtt ttataaacat tttgataaaaa ccgaaaaaaa aaaaaaaaaa aaaaaaaaaa
 8881 aaa

SEQ ID NO: 6

Amino acid sequence of rat ADLICAN encoded by the DNA sequence shown in SEQ ID

NO: 5.

MQVRGREVSGLLISLTAVCLVVTPGSRACPRRCACYVPTEHCTFRYLTSPDGIPANVE
 RINLGYNLSLRLTENDFDGLSKLELLMLHSNGIHRVSDKTFGQLQSLQVLKMSYNKVQII
 RKDTFYGLGSLVRLHLDHNNIEFINPEAFYGLTSRLVHLEGNRLLTKLHPDTFVSLSYLQ
 IFKTSFIKYFLSDNPLTSLPKEMVSYMPNLESLYLHGNPWTCDCHLKWLSSEWMQGNPDI
 45 IKCKKDRSSSSPQQCPLCMNPRISKGRPFAMVPSGAFLCTKPTIDPSLKSLSLVTQEDNG
 SASTSPQDFIEPFGSLSLNMTDLSGNKADMVCISIQKPSRTSPATAFTEENDYIMLNASFST
 NLVCSVDYNHIQPWQQLALYSDSPLILERKPQLTETPSLSSRYKVALRPEDIIFTSIEA
 DVRADPFWFQQEKIVLQLNRTATTLSTLQIQQFSTDQALPRAEMRAERLKWTMILMMNN
 PKLERTVLVGGTIALSCPGKGDPSPHLEWLADGSKVRAPYVSEDRIRILIDKNGKLELOM
 50 ADSFDAGLYHCISTNDADADVLTYRITVVEPYGESTHDGVQHTVVTGETLDPCLSTGV
 PDASISWIPLPGNTVPSQPSPDQILNNNGTLRILQVTPKDQGHYQCVAANPSGADFSSFKV
 SVQKKGQRMVEHDEREAGGSGLGEPNSSVSLKQPASLKL SASALTGSEAGKQVSGVHRKNK
 HRDLIHRRRGDSTLRRFREHRRQLPLSARRIDPQRWAALLEKAKKNSVPKKQENTTVKPV
 PLAVPLVELTDEEKDASGMIPPDEEFMVLTKASGVPGRSPTADSGPVNHGFMTSIASGT
 55 EVSTVNPQTLQSEHLPDFKLPSVTNGTAVTKSMNPPIASKIEDTTQNPNIIIFPSVAEIR
 DSAQAGRASSQSAAHPVTGGNMATYGHNTTYSSTSKASTVLPQPINPTESYGPQIPITGV
 RPSSSDISSHTADPSFSSHPGSHTTASSLFHIPRNNTGNFPPLSRHLGRERTIWSRGR

VKNPHRTPVLRHRHRTVRPAIKGPANQNVSQVPATEYPGMCHTCPSAEGLTVATAALSV
PSSSHSALPKTNNGVIAEESTTVKKPLLFKDQNVDIEIITTTKYSGGESNHVIPT
EASMTSAPTSVSLGKSPVDNSGHLMSMGTIQTGKDSVETPLPSPLSTPSIPTSTKFSKR
KTPLHQIFVNQNQKKEGMLKNPYQFGLQKNPAAKLPIAPLPLTGQSSPSDSTLLTSPPP
5 ALSTTMAATQNKGTEVVSGARSLSAKKQPFTNNSPVLPSLTIKRSNTLNFLSTETPTVT
SPTATASVIMSETQRTRSKEAKDQIKGPRKRNRRNANTTPRQVSGYSAYSALTADTPLAF
SHSPRQDDGNVSAVAYHSTSLLAITELFEKYTQLGNTTALETTLLSKSQEESTVKA
SDTPPPLLSSGAPPVPTSPPPFTKGVVTDKVTSAFQMTSNRVVTIYESSRHNTDLQQP
SAEASPNEIITGTTDSPSNLFPSLTIKRSNTLNFLSTETPTVT
10 KGKRPAVISMSPLHSLPPEASTHASHWNTQKHAEKSVFDKPGQNPSTSCHKLPVSLPKTLK
KPRIIGGKAASFPTVPANSDFVLPCAEVGDPPLPIHWTRVSSGLEISQGTQKSRFHVLPNG
TLSIQRVSIQDRGQYLCSAFNPLGVDFHVSLSVFYPARIIDRHVKETIVHFGSTVELK
CRVEGMMPRTVSWILANQTVSETAKGSRKVWVTPDGTЛИYNLSLYDRGFYKCVASNPS
GQDSLLVVKIQVITAPPVIIHQKROAIVGVLGSSLKLPCTAKGTPQPSVHWVLYDGTELKP
15 LQLTHSRFFLYPNGLYIIRSIAPSVRGTYECIATSSSGSERRVVILTVEGETIPRIETA
SQKWTEVNLGEKLLNCSATGDPKPRIIWRLPSKAVIDQWHRMGSRIHVYPNGSLVVGSV
TEKDAGDYLCAVARNKMGDDLVLMHVRRLRTPAKIEQKQYFKKQVLFHGNGTLYFNNVGMAEEGDYI
CQAQNTLG
VPEVWSLPLDGTVLNNVAQADDSGYRTKRYTLFHNGTLYFNNVGMAEEGDYI
CSAQNTLG
20 KDEMVKHLTVLTAIPRIQSYTMTMLRAGETAVLDCEVTGEPKPNVFWLPSNNVISPS
NDRFTFHANRTLSIHVKVPLDSDYVCVAQNPSGDDTKYKLDIVSKPPLINGLYANKTV
IKATAIRHSKKYFDCRADGIPSSQVTWIMPGNIFLPAPYFGSRVTVHPNGTLEMNRNIRLS
DSADFTCVRSEGGESVLUVQLEVILEMRRPTFRNPFNEKVIQAQAGKPVALKNCSDGNNP
PEITWILPDGTQFANRPHNSPYLMAGNGLILYKATRNKSGKYRCRAARNKVGYIEKLILL
EIGQKPVILTYEPGMVKVSQEPPLSLHCVSDGIPKPNVKWTTPGGHVIDRPQVDGKYILH
25 ENGLVVIKATTAHDQGNYICRAQNSVGQAVISVSMVVAYPEPRIINYLPRNMLRRTGEAM
QLHCVALGIPKPKVWTETPRHSSLKATARKPHRSEMLHPQGTLVIQNLQTSDSGVYKCR
AQNLLGTDYATTYIQLV

SEQ ID NO: 7

30 gi|4502040|ref|NM_000693.1| Homo sapiens aldehyde dehydrogenase 1 family, member A3
(ALDH1A3), mRNA

	1	agccgggtgcg	cccgacacta	gggcgcctcg	ggccaggag	cgcggaggag	ccatggccac
	61	cgctaacggg	gccgtggaaa	acgggcagcc	ggacggaaag	ccgcccggcc	tgcccgcccc
	121	catccgcaac	ctggaggtca	agttcaccaa	gatatttata	aacaatgaat	ggcacgaatc
	181	caagagtggg	aaaaagttt	ctacatgtaa	cccttcaact	cgggagaaaa	tatgtgaagt
35	241	ggaagaaggg	gataagcccg	acgtggacaa	ggctgtggag	gctgcacagg	ttgccttcca
	301	gaggggctcg	ccatggcgcc	ggctggatgc	cctgagtcgt	gggcggctgc	tgcaccagct
	361	ggctgacctg	gtggagaggg	acccgcacac	cttggccgcc	ctggagacga	tggatacagg
	421	gaagccattt	tttcatgttt	ttttcatcga	cctggagggc	tgtattagaa	ccctcagata
40	481	ctttgcaggg	ttggcagaca	aaatccagg	caagaccatc	cccacagatg	acaacgtcg
	541	atgcttcacc	aggcatgagc	ccattggtgt	ctgtggggcc	atcactccat	gaaacttccc
	601	cctgtgtatg	ctgggtgtgg	agctggcacc	cgcctctgc	tgtggaaaca	ccatggctct
	661	gaagcctgcg	gagcagacac	ctctcaccgc	cctttatctc	ggctctctga	tcaaagagge
	721	cgggtccct	ccaggagtgg	tgaacattgt	gcccaggatc	gggcccacag	tggagcagc
45	781	aatttcttct	caccctcaga	tcaacaagat	cgccttcacc	ggctccacag	aggttggaaa
	841	actggtaaaa	gaagctgcgt	cccgagcaa	tctgaagcgg	gtgacgctgg	agctgggggg
	901	gaagaacccc	tgcatctgt	gtgcggacgc	tgacttggac	ttggcagtgg	agtgtgccc
	961	tcagggagtg	ttttcaacc	aaggccagt	ttgcacggca	gcctccaggg	tgtcgtgg
	1021	ggagcaggtc	tactctgagt	ttgtcaggcg	gagcgtggag	tatgccaaga	aacggcccg
	1081	gggagacccc	ttcgatgtca	aaacagaaca	ggggcctcag	attgatcaa	agcagttcga
	1141	caaaatctta	gagctgatcg	agagtggaa	gaaggaaagg	gcacagctgg	aatgggggg
	1201	ctcagccatg	gaagacaagg	ggctcttcat	caaaccact	gtcttctcag	aagtcacaga
	1261	caacatgcgg	attgccaaag	aggagat	cgcccagt	caaccaatac	tgaagttcaa
	1321	aagtatcgaa	gaagtatcaa	aaagagcga	tagcaccgac	tatggactca	cagcagccgt
	1381	gttcacaaaa	aatctcgaca	aagccctgaa	gttggcttct	gccttagagt	ctgaaacgg
55	1441	ctggatcaac	tgctacaacg	ccctctatgc	acaggctcca	tttggtggt	taaaaatgtc
	1501	aggaaatggc	agagaactag	gtgaatacgc	tttggccgaa	tacacagaag	taaaaactgt
	1561	caccatcaa	tttggcgaca	agaacccctg	aaqqaaqqc	qqqqctctt	cctcaaacat

1621 cggacggcgg aatgtggcag atgaaatgtg ctggaggaaaa aaaatgacat ttctgaccc
 1681 cccgggacac attcttctgg aggcttaca tctactggag ttgaatgatt gctgtttcc
 1741 tctactctc ctgttattc accagactgg ggatgcctat aggttgtctg tgaaatcga
 1801 gtcctgcctg gggagggage tggggccat ttctgtttt cccttaaac cagatcctgg
 5 1861 agacagttag atactcaggc cggtgttaac agggagtgg atttgaagtg tccagcagtt
 1921 gcttgaatgt ctggcccaa tctgactcca gtaagaatgt gggaaaaccc cctgtgttt
 1981 ctgcaagcag ggcttgcac ccagcggct cctcagggtg gacctgctt cagagcaagc
 2041 caccgcctt tccgaggtga aggtgggacc attccttggg aaaggattca cagtaagggt
 2101 ttttggttt tgggggtttt ttcttggttt taaaaaaaag gattcacag tgagaaagt
 10 2161 ttggtagtg cataccgtgg aaggcgcca gggtcttgg ggttgcattt tgacattga
 2221 cggcttcaaa ccaatactgc ctttgaata tgacagaatc aatagcccag
 2281 agagcttagt caaagacgtat acacggctt accttaacca agcactttc ttaagcagaa
 2341 aatattgtt aggttacctt tgctgctaaa gatccaatct tctaacgcca caacagcata
 2401 gcaaattcata ggataattca ctttcatt tgacaaatca gagctgtat tcaatttac
 15 2461 aaattacgca ttcttatcac gttaactaac agcttatgt aagtctgtt agtcttcctt
 2521 ttctccagtt ctgttacccaa atttagatta gtaaagcgtt cacaactggaa aagactgctg
 2581 taataacacaca gcctgttat ttttaagtcc tattttgtata ttaatttctg attagttagt
 2641 aaataacacc tggattctat ggaggacctt ggttccatc caagtggcct ggttattca
 2701 ctggcagggtt gtgaattttt cttttctctt ttgggaaatcc aaatgtatgtt gtcattt
 20 2761 atgttttaac ttgggaaact gaaagtgttcc ccatatagct tcaaaaaacaa aaacaaatgt
 2821 gttatccggac ggatactttt atggttactt acttagactt tcttaattgg gaaagttagt
 2881 cttaagttt caaattaatgt tggggagggc aataataaaa tgaggccccg taacagaacc
 2941 agtgtgtgtt taacaaaaac catgtataaa atgggcctat caccctgtt cagatataaa
 3001 attaccacat ttgggttccc ttcacatcgtt aacacttac acttataactt ccaataactt
 25 3061 gttaaatcag gattggctt catabactgtt attttca gtttataatcgtt agtagatata
 3121 gacataacc ttgtatgtt tacgttagag ggttccattt ctccattgtt acgataatgt
 3181 cttaatatgtt aatgttaca ttatattaa ttggtagatgtt tattgtatct ttttataatgt
 3241 gtaagtacac agaggtgttta tattttaaact tctgtatataat actgttattt gaaatggaaa
 3301 tatataatgtt gtttagtttca acttcttttca aggtttaccc ctgtgtgtt gtttttttt
 3361 ctataggcctt gggattccatccttagctt cagatcgtt cccacaatgc gagaatgata
 3421 aaataaaaattt ggttatttca ga

SEQ ID NO: 8

Amino acid sequence of human ALDH1A3 encoded by the DNA sequence shown in SEQ ID NO: 7.

35 MATANGAVENGQPDGKPPALPRPIRNLEVKFTKIFINNEWHESKSGKKFATCNPSTREQI
 CEVEEGDKPDVKDAVEAAQVAFQRGSPWRRLDALSRGRLLHQQLADLVERDRATLAALETM
 DTGKFLHAFDIFLEGCIRTLRYFAGWADKIQGKTIPTDDNVVCFTRHPIGVCGAITPW
 NFPLLMVLWKLA PALCCGNTMVLKPAEQTPLTALYLGSLIKEAGFPFGVNVNIVPGFGPTV
 GAAISHPQINKIAFTGSTEVGKLVKEAASRSNLKRTVTELGGKNPCIVCADADLDLAVE
 40 CAHQGVFFNQGQCCTAASRVFVEEQVYSEFVRRSVEYAKKRPVGDPPFDVKTTEQGPQIDQK
 QFDKILELIESGKKEGAKLECGGSAMEDKGLFIKPTVSEVTDMRIAKEEIFGPVQPI
 KFKSIEEVIKRANSTDYGLTAAVFTKNDKALKLASALESGTWINCYNALYAQAPFGGF
 KMSGNGRELGEYALAEYEVKTVTIKLGDKNP

SEQ ID NO: 9

45 gi|9295527|gb|AF280404.1|AF280404 Mus musculus retinaldehyde dehydrogenase 3 (Raldh3) mRNA, complete cds

1 gagagtgcga accagttatg gtcaccacca acggggctgt gggaaaacggc cagccggatg
 61 gggaaaccggc tgccttgcgg cgccccatcc gcaacttggg ggtcaagttt accaagatata
 121 ttatcaacaa cggactggcac gaatccaaga gtggaaagaaa gtttgcacata tataaccctt
 181 caacactaga gaaaatgtt gagggtggaaag aaggagataa gcccgttgc gacaaggctg
 241 tggaggccgc tcaagctgcc ttccagcggg gatccccgtg gcccggctg gatgcactga
 301 gcagaggcctt gttgtgcatt cagctggctg accttgcata aaggggaccgt gcgatcctgg

361 ctactctgga gaccatggac accggcaagc cattccttca tgcccttttc gtcgacctgg
 421 aaggctgtat taagaccttc agatattttg ccgggtgggc agacaaaatc cagggcagga
 481 ccatccccac agatgacaac gttgtgtgt tcaccaggca tgagcccatc ggggtgtgt
 541 gggccattac accatggaaac ttcccccgtc tcatgtggc ctggaaactg getctgccc
 5 601 tgtgctgtgg gaacaccgtg gtcctgaagc cagctgagca gacccctctc acggctctgt
 661 accttagccctc tctcatcaaaggagtcgggtt ccctccggg tgggtgaac attgtaccag
 721 gctttgggcc cactgtggga gcagcaattt cctccatcc gcagatcaac aagatagect
 781 tcacccggctc cacagaggtt ggaaagctgg tcaagagaagc cgccctccgg agcaacctga
 841 agagggtcac actggagcta ggaggcaaga atccgtgc tctgtgtca gatgctgact
 10 901 tggacttggc cgtcgagtgt gtcaccagg gagtttttcaaccaaggt cagtgtgt
 961 cagccggccctc caggggttgc gtggaaagagc aggtctacgg ggagtttgg aggaggagtg
 1021 tggagttcgc caagaagagg ccgggttggag acceccctcga tgccaaaacg gaggcagg
 1081 ctcagatcga ccaaaaagcag tttgacaaaaa tctcgagct gattgagagt gggaaagg
 1141 aaggggccaa gctagaatgt ggggggtcag ccatggagga cagagggctg ttcataaac
 15 1201 ccacgggtttt ctcagatgtt acggacaaca tgaggattgc caaagaggag attttccggac
 1261 cagtgcagcc gatcctgttgc ttcaaaaaacc tggagggaggt gatcaagaga gccaatagca
 1321 ccgactatgg actcagacagc gcaatgttca ccaaaaaaccc gacaaagca ctgaagctgg
 1381 ctgctgcgtt ctagtgggg acagtctggta tcaactgttcaatgcattt tatgcacagg
 1441 ctccatgggg tggcttcaaa atgtctggga atggcagaga actaggagaa tatgtctgg
 20 1501 ctgaatatac agaagtggaaa accgtcaccatc tcaaaactcga ggagaagaac ccctgaggaa
 1561 cag

SEQ ID NO: 10

Amino acid sequence of mouse ALDH1A3 encoded by the DNA sequence shown in SEQ ID NO: 9.

25 MATTNGAVENGQPDGKPPALPRPIRNLEVFKFTKIFINNDWHESKSGRKFATYNPSTLEKI
 CEVEEGDKPDVKDAVEAAQAAFQRGSPWRRLDALSRGQLLHQIADLVERDRAILATLETM
 DTGKPLFLHAFFVDFLEGCIKTFRYFAGWADKIQGRTIPTDDNVCFTRHEPIGVCGAITPW
 NFPLLLMLAWKLAPALCCGNTVVLKPAEQTPLTALYLASLIKEVGFPVGVVNIVPGFGPTV
 GAAISHPQINKIAFTGSTEVGKLVREAASRSNLKRVTLELGKKNPCIVCADADLDAVE
 30 CAHQGVFFNQGQCCTAASRVFVEEQVYGEFVRRSVEFAKKRPVGDPMDAKTEQGPQIDQK
 QFDKILELIESGKKEGAKLECGGSAMEDRGLFIKPTVFSVDTNMRIAKEEIFGPVQPI
 KFKNLEEVIKRANSTDYGLTAAVFTKNLKALKLAALESGTWINCYNAFYAQAPFGGF
 KMSGNRELGEYALAEYTEVKVTIKLEEKNP

SEQ ID NO: 11

35 gi|23463282|ref|NM_153300.1| Rattus norvegicus aldehyde dehydrogenase family 1, subfamily A3 (Aldh1a3), mRNA

1 atggccaccg ctaacggggc cgtggaaaac ggacagccctg atggaaaacc gcctgccttg
 61 ccgcgcctca tccgcactt ggaggtcaag ttcactaaga tattttatcaa caatgactgg
 121 cacgaaccca agatggaag aaagtttgc acatataacc cttcaactct agagaaaata
 40 181 tgtgaggtgg aagaaggcga taagecccgtt gtggacaagg ccgtggaggg cggccaaagct
 241 gccttccaga ggggtcccc gtggcgcagg ctggatgttcc tgatgtgtgg ccagtttttg
 301 caccagttgg ctgatcttat agaaaggagc cgcgetatcc tggcaactct agagaccatg
 361 gacaccggca agccgttctt tcatgcctt ttcgtgcacc tggagggttg tattaagacc
 421 ttcatgatatt ttgggggttgc ggcagacaaa atccaggcga ggaccatccc cacagatgtat
 481 aatgtcatgt gtttacccag gcatgagccc attgggggtgt gtggggccat tacaccatgg
 541 aacttcccccc tggatgtgtt ggcctggaaa ctggctccctg ccctgtgtctg cgggaacacc
 601 gtggtcctga agccagctga gcagacgcct ctcactcccc tgcacccctc ttctctcatc
 661 aaagagggtcg ggttccctcc aggtgtgggtt aacattgtgc caggctttgg gcccacagtg
 721 ggagcagcaa tctccctctea tccacagatc aacaagatag ctttccacccgg ctccacagag
 50 781 gttggaaagc tggtaaaaga agctgcctcc aggagcaacc tgaagcgggtt cacactggag
 841 ctgggaggca ggaaccctgtc catgtgtgtt gggacgcgtt acctggactt ggctgtggag
 901 tgtgctcacc agggagtgtt ttcaaccaa ggccagtgct gcacagccgc ctccagggtg

961 tttgtggaaag agcaggctca cggggagtt gtgaggagga gtgtggagtt cgccaagaag
 1021 aggccagttg gagaccccctt cgatgccaaa acggagcagg ggcctcagat cgaccaaag
 1081 cagtttgaca aaatcctcgaa gctgatcgag agtggaaaga aggaaggggc caagctagaa
 1141 tgtgggggtt cagccatggaa ggacagaggg ctgttcatca aaccacccgt ctttcagac
 5 1201 gttacggaca acatgaggat tgccaaagag gagattttg gaccagtgc accaatactg
 1261 aagttcaaaa acctggagga agtaatcaas agagcgaaca gcaactgacta tgggctcacg
 1321 gccccgtgt tcaccaaaaaa cctcgacaaa gccctgaagc tggcttccgc gctcgagtcg
 1381 gggacagtct gggtaactg ctacaacgca ttctatgcac aggttccatt tggtggttc
 1441 aaaatgtctg gaaatggcag agaacttaggt gaatacgctt tggctgaata cacagaagtg
 10 1501 aaaactgtca ccatcaaaact tgatgagaag aaccctga

SEQ ID NO: 12

Amino acid sequence of rat ALDH1A3 encoded by the DNA sequence shown in SEQ ID NO: 11.

15 MATANGAVENGQPDGKPPALPRPIRNLEVKFTKIFINNDWHEPKSGRKPATYNPSTLEKI
 CEVEEGDKPDVKDAVEAAQAAFQRGSPWRRLDALSRGQLLHQLADLIERDRAILATLETIM
 DTGKPFLHAFFVDLEGCIKTFRYFAGWADKIQGRTIPTDDNVMCFTRHEPIGVCGAITPW
 NFPPLMLAWKLAPALCCGNTVVLKPAEQTPLTALYLASLIKEVGFPPGVNVIPGFGPTV
 GAAISSHPOINKIAFTGSTEVGKLVKEAASRSNLKRVTLLELGGRNPCIVCADADLDLAVE
 20 CAHQGVFPNQGQCCTAASRVFVEEQVYGEFVRRSVEFAKKRPVGDPDFDAKTEOQPQIDQK
 QFDKILELIESGKKEGAKECGGSAMEDRGLFLIKPTVFSVTDNMRIAKEEIFGPVQPL
 KFKNLEEVIKRANSTDYGLTAAVPTKNLDKALKLASALESGTVVWVNCYNAFYAQAPFGGF
 KMSGNGRELGEYALAEYTEVKVTIKLDEKNP

SEQ ID NO: 13

gi|21687097|ref|NM_145259.1| Homo sapiens activin A receptor, type IC (ACVR1C),
 25 mRNA

1 ggtcaccggcc cggctgcggg gccagtgcca ggagcgcac gcaccgcccag ccgcaggggg
 61 cgtggatgg gggccggccgg ggagggggggc gcccacactg actagagcca accgcgcact
 121 tcaaaagggt gtcgtgtcccg cgctcccttc ccgcggcccg ggaacttcaa agcggggcgt
 181 gctgccccgg ctgcctcgct ctgcctctgg gcctcgccgc cccggcgcgg ccgcctgg
 30 241 gcgatgaccc gggcgctctg ctcagcgctc cgccaggctc tccctgtctc cgccagcc
 301 gccgagctc cgccaggact gaagtgtgt tgcattttgt gtgatttttc aaacttacc
 361 tgccaaacag aaggagcatg ttgggcataa gtcatgtcaa ccaatggaaa agagcaggt
 421 atcaaattctt gtgtctccct tccagaactg aatgtcaag tccctgtca tagttccaac
 481 aatgttacca aaaccaatgc ctgtttcaca gattttgc acaacataac actgcaccc
 541 ccaacagcat caccatgc cccaaaactt ggacccatgg agtgcacat cattattact
 601 gtgcctgttt gcctctgtc catagctcgat atgcgtacatg tatgggcattt ccagggtcga
 661 cagtgtctt acaggaagaa aaagagacca aatgtggagg aaccacttgc tgagtgcatt
 721 ctggtaaatgc ctggaaaaac tctggaaatgc ctgattttat atgtgcacccgc ctctggatct
 781 ggctctggtc tacccctgtt gttcaaaagg acaattgc aacatggattgt gttcaggaa
 40 841 atagtaggaa aaggtagat ttgtggatgt tggcatggaa gatgggtgtgg ggaagatgtg
 901 gctgtgaaaa tattttctc cagagatgaa agatatttgt ttctgtggc agaaattttac
 961 cagacggtca tgctcgaca tggaaatgc tttgtgttca ttgtgtctga caacaaagat
 1021 aatggaaatctt ggactcaact ttggctgttca tctgaatatc atgaacacaggg ctccttat
 1081 gactatttgc atagaaatatc agtgcatttgc gttcaatgc tcaagctggc gtcctcaatt
 45 1141 gcttagtggtc tgccacaccc tccatatggat attgtttgtt cacaaggtaa acctgttatt
 1201 gtcatcgag acataaaatc aaaaatatc ttagtaaaaaa agtgtgaaac ttgtgcata
 1261 gcccacttag gttggctgtt gaagcatgtat tcaatactgaa acaccatcgat cttaccc
 1321 aatcctaaatgc tggaaacca gaggatatgc gttctgttca tacaatgtat
 1381 gtgaatatctt ttgtgtctt cttttttttt gttttttttt gttttttttt
 50 1441 gaaatagccc ggagggttca agtgcggagga attgttgagg agtaccaattt gcttattat
 1501 gacatggtgc cttcagatcc cttcgatagag gaaatgagaa agtgggtttt tgaccagaag
 1561 tttcgaccaaa gttttttttt cttttttttt gttttttttt gttttttttt

1621 ataatgcgtg agtggggta tgccaaacgga gcggcccgcc taactgctct tcgtattaag
 1681 aagactatat ctcaactttg tgcggaaa gactgcaag cctaattatgtg ataaattatgt
 1741 taaaaagaaa tcttcatacg ctttctttc catttcccc ttatgtgaa tggttttgcc
 1801 atttttttt tgcggacat caaagataag acatgacatg atttaagtgc ccataaggca
 5 1861 gcatgaaaag ataactctaa agttaagcat gggcaggagt tgacttcatc caatcttat
 1921 gttatgttta atttttttt gaaagcaaca cctcaactca tctttttatt taataaggaa
 1981 gaaatataatt acaaaaatgt aaaataagct ctataaaaat gttatagtca ttaagtttt
 2041 attttacttg aaccaagagc acatgaatga acagggaaaag atgtaaaaac attttttct
 2101 gagatgaaaaa catattaaat aaacatgcaa attagagcat gctatcttta ggtgatgcaa
 10 2161 tctatgttcc ccccttttta agttagcagg actttttaaa aataaatatt gctctaaact
 2221 ttaatataatc gaacgtgaga gtggagctgc ttatgtgaa atgtaagtga ggtgggtgtc
 2281 ccatgtgtt ggtctcccct tctgtgtt cataatccac tactgcagca
 2341 gtcctgttcaac cactaaactt gtttacaaaag agataacctga cactctgaga
 2401 cactgagaaaa tgcgttcaag tcacacagct aatggcagaa ctggcacttag gtccaaatct
 15 2461 tgcgtataatg aacaccgtaa gtttagcttag ctccctactt cccttgaat agtgcctttc
 2521 tccctatgtat atatcttttta ttatgtat tgcgtttag aaggcatatt gagtttttt
 2581 gcaaaatcat aatggaccccg cacaaaatct cagaaccata tctgttgcata tttttctca
 2641 tagaaaatatc atgggtaccc catttgttta tgagcattaa tgggttctga acacttccaa
 2701 agattaatca aacataataa ttcattgtct gaaaatgtct ttaagataca attcagaggt
 20 2761 ccctattttcc tttgtacata cacacttaga aagaaaagac agaaaaggaa gaggaggaa
 2821 ggaaatattt tgagaatata ttgagaagaaa ttaagaaaac tcttcaatga agtgtaaca
 2881 accaaacccct acagacggta tcagaaacacg caaatagata ttcctctacc cttcacagt
 2941 gagtgagtga gtacagaaga atgctcatga tagtttgc ttcattctac tttctgtgga
 3001 cacagagtaa tgaatatttta atgggacatt aaatatgccc ttcaatcta taattttact
 25 3061 ttggtaaacg agattnaaca tgcgttctt tatgcctta aaacatctt tttcaaaactc
 3121 cattcccttag aacattcttc tactgagatg atccaagacc aaaagtgttc tttggtaactt
 3181 gcttataaaag tgatagtaca tgtagcata taatgttatt tgaagagtga agtaaatgt
 3241 attgataaca gaaaaaaaaaaaaaaa

SEQ ID NO: 14

30 Amino acid sequence of human ALK7 encoded by the DNA sequence shown in SEQ ID NO: 13.

MTRALCSALRQALLLAAAAELSPGLKCVCLLCDSNNFTCQTEGACWASVMLTNGKEQVI
 KSCVSLPELNAQVFCHSSNNVTKTECCFTDFCNNITLHLPTASNAPKLGPMEAIITV
 35 PVCLLSIAAMLTWVACQGRQCYSRKRRPNVEEPLSECNLVNAGKTLKDLIYDVTASGSG
 SGLPLLVQRTIARTIVLQEIVGKGRFGEVWHGRWCEDAVKIFSSRDERWFREAEIYQ
 TVMLRHENILGFIAADNKDNGTWTQLWLSEYHEQGSLYDYLNRNIVTMAGMIKLALSIA
 SGLAHLHMEIVGTQGKPAIAHRDIKSKNILVKKCETCAIADLGLAVKHDSILNTIDIPQN
 PKVGTKRYMAPEMDDTMNVNIFESFKRADIYSVGTVWEIARRCSVGGIVEEYQLPYDD
 40 MVPSPSIEEMRKVVCDQKFRPSIPNQWQSCEALRVMGRIMRECWYANGAARLTALRIKK
 TISQLCVKEDCKA

SEQ ID NO: 15

gi|38074652|ref|XM_194020.3| Mus musculus activin A receptor, type IC (Acvrlc), mRNA

1 gccccgggaa cttcaaaagcg gcccggcgctg cgggctgcgc tctgggaccc cgaaggcccttg
 61 caccggccgc gggggccat gaccccgacg cgccggctccg cactgagccct ggccctctcg
 45 121 ctgggtggccc tggccgcccga ctttgcggca ggactgaagt gtgtgtgtct tttgtgtat
 181 tcttcaaaact tcacccgttca aacggaaaggaa gcatgttggg cctccgtcat gctaaccac
 241 gggaaagagc aggtgatcaa atcggtgtgt tccctcccg aactaaatgc tcaggttcc
 301 tgcacacgtt ccaacaacgt gacaaaacc gaatgttgc tcaacagactt tcgcaacaat
 361 atcacactgc accttccac acgtatgc gatggccctc gacttggcc cacagagctg
 421 acgggttgttca tcacccgttca ggtttgcctc ctgtccatag ccgcctatgct aacaatatgg
 481 gctggccagg accggccagtg cacatacagg aagactaaga gacacaacgt ggaggaagcg
 541 ctggctgatg acaggcttgcgat gatgcagga aaaacactca aggatctgtat ctacgtatgt
 601 actgcctctg gtcacggctc tgggtgttca ctcttggccaa aagaacaat cgcaaggaca


```

4321 cttgaaatac agaacgcatt atttgggtc tacattttag catgaatttg ttgccttata
4381 agtcctgcgt tttgagttt taatcagttac tgactctgtt gtatgcattcc ttccacgtct
4441 aaaatatttg gcatgtcaca tctagaattt ctaatttatg ttctgcctatg agagtaagt
4501 gaaacatgac tgtcatgctc tattttaaagc gcagcacattt cttttcatct ttataactttt
4561 caattaacctt tgattttaa atttccatcaa ttgtatgaaa atagtaacct gatgcataatg
4621 tctgaagagt ttcaaatcggtt cgtttattttt aaaatg

```

SEQ ID NO: 16

Amino acid sequence of mouse ALK7 encoded by the DNA sequence shown in SEQ ID NO: 15.

10 MTPARGALSALLLVALAADLAAGLKCVCLLCDSNFTCQTEGACWASVMLTNGKEQVI
KSCVSLPELNAQVFCHSSNNVTKTECCFTDFCNINLHLPTASPNAPRLGPTELTVITV
PVCLLSIAAMLTIWACQDRQCTYRKTRHNVVEALAESLVNAGKTLKDLYDATASGSG
SGLPLLVQRTIARTIVLQEIVGKGRFGEVWHGRWCEDVAVKIFSSRDERSWFREAIYQ
TVMLRHENILGFIAADNKDNGTWTQLWLSEYHEQGSLYDYLNRNIVTVAGMVKLALSIA
15 SGLAHLHMEIVGTQGKPAIAKRDIKSKNILVKKCDTCIAIDLGLAVKHDSIMNTIDIPQON
PKVGTKRYMAPEMLDDTMNLISIFESTKRADIYSVGLVYWEIARRCSVGGVEEYQLPYYD
MVPSDPSIEEMRKVVCDQKLRPNLPNQWQSCEALRVMGRIMRECWYANGAARLTALRVKK
TISOLCVKEDCKA

SEQ ID NO: 17

20 gi|20806128|ref|NM_139090.1| Rattus norvegicus activin receptor-like kinase 7 (Alk7),
mRNA

	1	gggaggcccc gctgccacta gagccaaccg cgcaacctcg aaggtgtcgc ggctggcccg
25	61	ccctccccgc gccccggaa cttcaagcg gcccgcgtg cgtgccgtc tggacccccc
	121	aagccttgc a cgcgcgggg gtggccatga ccccagcaag cgcgtccca ctgagcctgg
	181	ccctccgtc ggtggactg gcctccgacc ttggccagg actgaagtgt gtgtgtt
	241	tgtgtgattc ctcaaactt acctgccaaa cgaaggagc atgctggcc tctgtcatgc
	301	taaccacaacgg gaaagaacag gtatcaat cgtgcgtgtc cctccggaa ctaaatgtc
	361	aggttcttcg tcacagttcc aacaacgtga ccaagaccga atgttgcttc acagactt
30	421	gcaacaacat cactctgcac cttcccacag catctccaga tgccctaga ctggcccca
	481	cagagctgac agttgttatac actgtacctg tttgcctcct gtccatcgca gccatgtcaa
	541	cgatatgggc ctgcccaggac cgccagtgca catacaggaa gaccaagaga cacaatgtgg
	601	aggaaccact ggcagagtac agccttgtca atgctggaaa aaccctaaa gatctgatt
	661	atgatgccac tgcctcgccc tcaggatctg gcctgcctct tttgggtcaaa agaaccatcg
35	721	caaggacaat tgcacttcaa gaaatcgtag gaaaaggctg gtttggggaa gtgtggcacf
	781	gaagatggtg tggagaagat gtggctgtga aaatattctc ctccagagat gagagatctt
	841	ggttccgtga ggcagaaaatt tattcagacgg taatgctgag acatgagaat attctcggtt
	901	tcatcgccgc cgacaacaaa gataatggaa cttggactca gttttggctt gtgtcagagt
	961	atcacgagca gggctcctta tatgactatt tgaatagaaa catagtgacc gtggctggaa
40	1021	tggtcagaatt ggccgtttca atagcgagtg gtctggctca cctacacatg gagatctgg
	1081	gcactcaagg taagcctgtc attgctcacc gagatataaa gtcaaagaat atcttagtca
	1141	aaaagtgtga cacttgtgtcc atagctgact tagggctggc tgtgaaacat gattctatca
	1201	tgaacactat agatatacccg cagaatccctaa aagtggaaac caagaggat atggctcccg
	1261	aaatgcttga tgatacaatg aacgtcaaca tctttgagtc cttcaagcgca gctgacatct
	1321	attcgggtggg gctggtttac tggggaaatag ctgcaggtg ttcagtttggaa ggacttgg
	1381	aagagtacca gttgccttat tatgacatgg tgccctcaga tccctccata gaggaaatga
45	1441	ggaaggctgt ttgtgatcaaa aactccgac caaatctccc aaaccagtgg caaagctgtg
	1501	aggcgccccg ggtcatggga agaataatgc gtgagtgctg gtatgccaac gggcagctc
	1561	gcctgaccgc cctgcgcgtg aagaagacca ttctctagct gtgtgtcaag gaagactgt
	1621	aggcctaagg cgcatacagg cgacggaaaa gcctcaccat ctctcttca tgcctcgtc
50	1681	tttgcgtaaa tggtttcggt tctttctgc tgggtttgt tttagttcta cctcaaaagat
	1741	gattcaactac agtggtaag tgcctaaagg cagcatgaaa agataactct aagcatgggc
	1801	aggcttgcac tttcccaagttt ccattgttgc cctgtactttt atttttaaag gtgacactat

1861 tcattttctt ttttatttaa ggaggaagat gttat

SEQ ID NO: 18

Amino acid sequence of rat ALK7 encoded by the DNA sequence shown in SEQ ID NO: 17.

MTPASRSALSALLVALASDLAAGLKCVCLLCDSSNFTCQTEGACWASVMLTNGKEQVI
KSCVSLPELNAQVFCHSSNNVTKTECCFTDFCNNITLHLPTASPDAIRGPTELTVITV
PVCLLSIAAMLTIWACQDRQCTYRKTKRHNVEEPLABEYSLVNAGKTLKDLYDATASGSG
SGLPLLVRQRTIARTIVLQEIVKGKRGFGEVWHGRWCEDVAVKIFSSRDERSWFREAEIYQ
TVMLRHENILGFIAADNKDNGTWTQLWLSEYHEQGSLYDYLNRNIVTVAGMVKLALSIA
SGLAHLHMEIVGTQGKPAIAHRDIKSNIILVKKCDTCAIADLGLAVKHDSIMNTIDIPQN
PKVGTKRYMAPEMLDDTMNVNIFESFKRADIIYSVGLVYWEIARRCSVGLVEEYQLPYD
MVPSPSIEEMRKVVCDQKLRPNLPNQWQSCEALRVMRIMRECWYANGAARLTALRVKK
TISOLCVKEDCKA

SEQ ID NO: 19

gi|21314629|refNM_004054.2| Homo sapiens complement component 3a receptor 1 (C3AR1), mRNA

50 SEQ ID NO: 20

Amino acid sequence of human C3AR1 encoded by the DNA sequence shown in SEQ ID NO: 19.

MASPSAETNSTDLLSQPWNEPPVILSMVILSLTFLGLPGNGLVLWAGLKMQRTVNTIW
 5 FLHHTLADLLCCLSLPFSLAHLALQGQWPYGRFLCKLIPSIIVLNMFASVFLTAISLDR
 CLVVFKPIWCQNHVRVMACSCICGCIWVVAFVMCIPVFVYREIFTTDNHNRCGYKFGLOSS
 SLDYPDFYGDPLENRSLENIVQPPGEMNDRLDPSSFQTNDHPWTVPPTVFQPQTFQRPSAD
 10 SLPRGSARLTSQLYSNVFKPADVVSPKIPSGFPIEDHETSPLNSDAFLSTHLKLFPSA
 SSNSPFESELPQGFQDYYNLQFTDDDVQVPTPLVAITITRLVVGFLLPVIMIACYSFIV
 FRMQRGRFAKSQSKTFRVAVVVAVFLVCWTPYHIFGVLSLLTDPEPLGKTLMSWDHVC
 10 IALASANSFCNPPFLYALLGKDFRKARQSIQGILEAAFSEELRSTHCPNSNNVISERNST
 TV

SEQ ID NO: 21

gi|6753223|ref|NM_009779.1| Mus musculus complement component 3a receptor 1 (C3ar1), mRNA

15 1 gaattccatc tcagtgtgct tgactgagcc atggagtctt tcgatgctga caccattca
 61 actgacccatc actcacggcc tctgtttcaa ccccaagaca ttgcctccat ggtcatttt
 121 ggtctcaattt gtctattttggg actgtctaggc aatgggctgg tctgttggtt agctggcgta
 181 aagatgaaga cgaccgtgaa cacagtctgg ttcctccatc tcaccctggc cgatttcctc
 241 tgctgcctct ccttgcctt ctcttggct cacctgattc tcacaaggaca ctggccttat
 20 301 ggcttggccc tttgtccaaact tatccccatcc atcattatttc tcaacatgtt tgccagtgtc
 361 ttcctgctta ctgcatttag cctggaccga tttgtctatag tacataagcc aatctgggtc
 421 cagaatcatc gaaacgtgag aaccgccttc gccatctgtt gatgtgtctg ggtggtagcc
 481 tttgtgtatgt ttgtgtccctt attttgtatac cgtatctgtt tcattatggca caatcgca
 541 atatgttagat ataattttga ttcttcagg tcatatgatt attgggacta cgtgtacaaa
 25 601 ctaagtctac cagaaagcaa ttctactgtt aactccactg ctcagctaac tggacatatg
 661 aatgacaggt cagcccttc ctctgtacag gcaagggtt acctttggac agttaccact
 721 gcccctccatc cacagccatt cctaacaatct cctgaagact cattctctct agattcagca
 781 aaccaacaac cccattatgg tggaaaggct cctaattgtcc tcacagccgc cgtacccage
 841 gggtttccctg ttgaagatcg taaatccaaat acactgaacg ctgacgcttt tctctctgt
 30 901 cacacagaac ttttcctac tgcttctatgt ggtcattttt acccctatga tttccagggg
 961 gattatgtt accaatttacat gtatgacaat catgtgccga caccgctgat ggcaataacc
 1021 atcacaaggc tgggtgtggg cttcctgggt ccgttttca tcatggtaat ttgttacagc
 1081 ctcatcgctc tcagaatgcg aaaaaccaac ttccacaatgtt ctcggaaacaa aaccccttcgg
 1141 gtggctgtgg ctgtgttcaat tttttttttt atctgttggat cttccatccatca ttttgtcgga
 35 1201 gtcctgtat tggatgttcaat tccagaaatgtt tttttttttt aagctgttgc gtcctgggac
 1261 cacatgttca ttgttttagt atctgttcaat agttgttca acccttttctt gtatgcctc
 1321 ttggggaaag acttttagaa gaaagcaaga cagtctataa agggcattctt ggaaggcagcc
 1381 ttccagcgaag agctcacgca ctcttaccaac tttttttttt aacaaaggctc ttcaaaaaaga
 1441 aacaatatgtt gtacagatgtt gtgtttttttt ggcctttttt acctaaggcag agttctcagg
 40 1501 tgaacagtgaa tggatgttcaat tttttttttt ggtttttttt aatggcgtt gtcctgggac
 1561 aagggtctttt attgttcaat gcatcattttt aacccatggaa agatgtttttt ttcaagcccc
 1621 catcccttccatc gtgtgttcaat agaatctctt gcccattttt ccgtttttttt aacaggcctt
 1681 ttgttttcaat tttttttttt atctgttggat tttttttttt gtcctttttt atccctgtact
 1741 acaccatgtt caatgttcaat tttttttttt tttttttttt tttttttttt tttttttttt
 45 1801 atctatctaaa tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 1861 cattttttttt acatgttggat tttttttttt tttttttttt tttttttttt tttttttttt
 1921 taagaaaaaaaatgttcaat tttttttttt tttttttttt tttttttttt tttttttttt
 1981 aatgttttttttccatc acatgttggat tttttttttt tttttttttt tttttttttt tttttttttt
 2041 agatacacat aaacatcttccatc acatgttggat tttttttttt tttttttttt tttttttttt
 50 2101 ctcttccttccatc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 2161 ttgttttttttccatc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 2221 gtttttttttccatc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 2281 aagacagtagtccatc acatgttggat tttttttttt tttttttttt tttttttttt tttttttttt
 2341 gagatcgttccatc acatgttggat tttttttttt tttttttttt tttttttttt tttttttttt
 55 2401 tccacacagg gtccttgccttccatc acatgttggat tttttttttt tttttttttt tttttttttt

2461 cctggcccca tcgttctcggttttacat tagactttgt atctcacata gaataaaaaca
 2521 atatcctaataat gggatgatgg gtggaaacttc aggatcaatg catgcttcaa cagcaatata
 2581 aaaagattt aaacatgagt cttagtatct tacatgacaa aagtgtcagg cacactctt
 2641 tttttttctt ttctttttttt ttcttttctt ttttttctt ttaatgtttg cctggaccat
 5 2701 gctaataataa agtactgtat gcagccaatt ttaaaggaac taattaaaaa tgaaataaaaa
 2761 aagggtgggtt ttcctcaggc ccagtagttc ccatctctcc ctactttgca agaattttag
 2821 ctgttccttc tgatatttac catggtgtgc ctaaaacacc tcttatgctg ctgatctt
 2881 tagacaggaa gaaaaggctg tcttgatttt gatttacttt acctacattt tcatccagca
 2941 ccccagtgtt gactggatc acacattaat ctgttctgttca tcatccatctt cttcccttt
 10 3001 ttgtcggtt ttgttgcctt tctgtccatc atctcagtgtt agcacacaca atcttagttc
 3061 agactccccag gtctcttgcctt atagtaaccca gatgagccacc accacccatcc ccacccccag
 3121 ctgaccacac aattttctgttcaataatcatt tcaatagcat acagcttttctt tctgttctt
 3181 catttttcat gctgacatattaaatttgcataatataa agttccacg tggctgatecc
 3241 atccatgcac acaacattca cactttcacc cccagctctt tctttatcat tattctactt
 15 3301 actgattgac tttaaaaaaaaaaaaaaaaaaaaaa

SEQ ID NO: 22

Amino acid sequence of mouse C3AR1 encoded by the DNA sequence shown in SEQ ID NO: 21.

20 MESFDADTNSTDLHSRPLFQPQDIASMVILGLTCLLGLGNGLVLWAGVKMKTTVNTVW
 FLHHTLADFLCCLSLPPSLAHLLILQGHWPYGLFLCKLIPSIILNMFASVFLTAISLDR
 CLIVHKPIWCQNHRNRVRTAFACGCVVVAVFVMCVPVFYRDLFIMDNRSICRYNFDSSR
 SYDYWDYVYKLSLPESNSTDNSTAQLTGHMNDRSAPSSVQARDYFWTVTTALQSQPFLLTS
 PEDSFSLDSANQQPHGGKPPNVLTAAPSGFPVEDRKSNTLNADAFLSAHTELFPTASS
 GHLYPYDFQGDYVDQFTYDNHVPTPLMAITIRLVGVFLVFFIMVICYSLIVFRMRKTN
 25 PTKSRNKTFRVAVAVVTVFFICWTPTYHLVGVLLITDPESSLGEAVMSWDHMSIALASAN
 SCFNPFPLYALLGKDFRKKARQSIKGILEAAAFSEELTHSTNCTQDKASSKRNNMSTDV

SEQ ID NO: 23

gi|14091739|ref|NM_032060.1| Rattus norvegicus complement component 3a receptor 1 (C3ar1), mRNA

30 1 tgcgcgatggcacttcacactgtccaaatccctccatggggctggaccatggatgg
 61 tttgttgggtggcacttcacatggatccatggccatggatggatggatggatggatgg
 121 gactgagcaatggatggatggatggatggatggatggatggatggatggatgg
 181 ctgtttaaaccccaagacatggatggatggatggatggatggatggatggatgg
 241 ctgcccaggcaatggatggatggatggatggatggatggatggatggatggatgg
 301 acatgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc
 361 tccgtggcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc
 421 atccccgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc
 481 ctggaccgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc
 541 acaggcttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc
 601 tttgtataaccgtgtatgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgt
 661 tcctccaggcatatgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc
 721 cctcctgacaactccactggatgtgtgtgtgtgtgtgtgtgtgtgtgtgtgt
 781 gcaaggggacctttggacagttaccactgtgtgtgtgtgtgtgtgtgtgtgt
 841 gaagaccatcttcataagaatccatgttgcgttgcgttgcgttgcgttgcgttgc
 901 actgtgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc
 961 ctgaacactgt
 1021 cctttataactgt
 1081 gcgtggacacatccatgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgt
 1141 tttttatcaatgt
 1201 accaagtcgatgt
 1261 tgctggatttcataccatattgtgtgtgtgtgtgtgtgtgtgtgtgtgtgt
 1321 ttgagagaagttgtgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc

1381 tgtttcaacc ctttccttta tgccctcttg ggaaaagact tcaggaagaa agcaagacag
 1441 tccgtaaagg gcattctgga agcagccccc agcgaagagc tcacgcactc taccaggtt
 1501 acccaggaca aagccccctc aaaaagaaaac catatgagta cgatgtgtg aagatgtgc
 1561 actggggacc taagcagatg ttctgaggtg aatactgggtg atgggtgacc tgtgagcggg
 5 1621 acacccataga cagccgtggcc accctcagag aaaggctct tattgacatc agcatcattt
 1681 gaaaaacacta aaggcacaaa atttcaagcc ccatcccaga tggggactc cgaatctctg
 1741 gcccgtgggg accaatgtct taacaggccc ctttgccttcc accaatgtta agtttatttc
 1801 aactcattt attccatcc ctgaatcgcc catgtcaat gaataacgtc ttcatctgtt
 1861 tccagtttta atctcttctt gcatagcattt atttaaatcc tttagttgt gcggggaggct
 10 1921 gctattgtcc agagtggaaag atatttttttt attgaacatt tgggtgggtgg tagcagtgt
 1981 ttttttagtgg ggaggcaggg gagaaagaca cagaataaaa agtttttgg aaaaaaaaaa
 2041 aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaa

SEQ ID NO: 24

15 Amino acid sequence of rat C3AR1 encoded by the DNA sequence shown in SEQ ID NO: 23.

MESFTADTNSTDLSRPLFKPQDIASMVILSLTCLLGLPGNGLVWAGVKMKRTVNTVW
 FLHLLADFLCCLSLPPSVHLILRGHWPYGLFLCKLIPSVIILNMPASVFLTAISLDR
 CLMVHKPIWCQNHRSVRTAFAVCGCVVVTFVMCIPVFYRDLLVVDDYSVCGYNFDSR
 20 AYDYWDYMYNSHLPEINPPDNSTGHVDDRTAPSSSVPARDLWTATTALQSQTFHSPEDP
 FSQDSASQQPHYGGKPPTVLIATIPGGFPVEDHKSNTLNTGAFLSAHTEPSLTASSSPLY
 AHDFPDDYFDQLMYGNHAWTPQVAITISRLVVGFLVPFFFIMITYCSLIVFRMRKTNLTKS
 RNKTLRVAVAVVTFFVCWIPYHIVGILLVTDQESALREVVLPWDHMSIALASANSCFN
 PFLYALLGKDFRKKARQSVKGILEAAFSEELTHSTSCTQDKAPSKRNMSTDV

SEQ ID NO: 25

25 gi|34878691|ref|NM_005795.2| Homo sapiens calcitonin receptor-like (CALCRL), mRNA

1 gaacaaccc tcctcttcca gcagagatgt tcaccccttg cttaggacc atcaagctct
 61 gctaactgaa tcctcatccata attgcaggat cacattgaa agcttccact ctttcccacc
 121 ttgcttgggg gtaaatctct tcgtcgaaat ctcagaaatg aaagttccat cctgagaata
 181 ttccacaaag aatttccatc agagctggac tgggtcttga cccctgaatt taagaaattc
 241 ttaaagacaa tgcataatata gatccaaatgaaaatgtat ttgagtctgg agacaattgt
 30 301 gcatatcgcc taataataaa aaccctataact agcctataga aacaatatt tgaaagattg
 361 ctaccactaa aaagaaaaact actacaactt gacaagactg ctgcaaactt caatttgc
 421 accacaacctt gacaagggttgc ttataaaaca agattgtac aacttcttagt ttatgttata
 481 cagcatattt cattttggct taatgtatggaa gaaaagtgt accctgtatt ttctggctct
 541 cttgcctttt tttatgattt ttgttacaggc agaattagaa gagagtcctg aggactcaat
 601 tcagttggga gttactagaa ataaaatcat gacagctcaa tatgaatgtt accaaaagat
 661 tatgcaagac cccattcaac aagcagaagg cgttactgc aacagaacctt gggatggatg
 721 gctctgtgg aacgtgttgc cagcaggaac tgaatcaatg cagctctgcc ctgattactt
 781 tcaggacttt gatccatcag aaaaagttac aaagatctgt gaccaagatg gaaactgggt
 841 tagacatcca gcaagcaaca gaacatggac aaattatacc cagtgtaatg ttaacaccca
 901 cgagaaaatgt aagactgcac taaaattgtt ttacctgacc ataattggac acggattgtc
 961 tattgcatca ctgcttatct cgcttggcat attctttat ttcaagagcc taagttgcca
 1021 aaggattacc ttacacaaaa atctgttctt ctcattttt tctaactctg ttgtacaat
 1081 cattcaccc tcgtcgttgc ccaacaacca ggccttagta gccacaaatc ctgttagtt
 45 1141 caaagtgtcc cagttcattt atctttaccc gatggctgt aattactttt ggatgctctg
 1201 tgaaggcatt tacctacaca cactcattgt ggtggccgtg tttcagaga agcaacattt
 1261 aatgtggat tattttcttgc gctggggatt tccactgtt, cctgttgc tacatgccc
 1321 tgcgttagaaggc ttatattaca atgacaatttgc tggatcgtt tctgataccatct
 1381 cattatccat ggcccaatattt gtgtgtctt actgtgtaat ctttttttct tggtaat
 50 1441 tgcgtgttgc ctcatccatc agttaaaatgt tacacacccaa ggcgtatccaa atctgtacat
 1501 gaaagctgtg agagctactc ttatcttgc ggcattgtt ggcattgtat ttgtgtgt
 1561 tccatggcga cctgaaggaa agattgcaga ggaggtat gactacatca tgcacatcc
 1621 tatgcacttc cagggtctttt tggctctac cattttctgc ttctttatg gagaggtca

1681	agcaattctg	agaagaaaact	ggaatcaata	caaaatccaa	tttggaaaaca	gcttttccaa
1741	ctcagaagct	cttcgttagtg	cgtcttacac	agtgtcaaca	atcagtgtat	gtccaggta
1801	tagtcatgac	tgtcttagtg	aacactaaaa	tgaaaaaaagc	atccatgata	ttgaaaatgt
1861	tctctaaaaa	ccagaaaaatt	tataataattg	aaaatagaag	gatggttgtc	tcactgttt
5	1921	gtgcctctcc	taactcaagg	acttggaccc	atgactctgt	agccagaaga
	1981	aaatgacttt	ttgaatgtca	taaagaagag	cccttcacatg	aaatttagtag
	2041	agagtgtaac	atccagctct	atgtggaaa	aaagaaaatcc	tggtttgtaa
	2101	taaatactcc	cactatgcct	gatgtgacgc	tactaacctg	acatcaccaa
	2161	ggagaaaaagc	acaatcaact	tttctgagct	ggtgtaaagcc	agtccagca
10	2221	tgaattcaca	aacaaaatggc	tgtaaaaacta	aacatacatg	ttgggcatga
	2281	attggcccaa	gagaccttagc	taaggtctat	aaacatgaag	ggaaaattag
	2341	taaaactctt	tatcccattct	tgattgggc	agttgacttt	ttttttgccc
	2401	agtccctttt	gtaactaccc	tctcaaatgg	acaataccag	aagtgaatta
	2461	ctttcttttc	tctatgaaaaa	gcaactgagt	acaattgtta	tccctgtgg
15	2521	acatcagttt	tatcttgg	catatccatt	gtggaaaactg	gatgaacagg
	2581	tgcaatccct	cttctatattc	attaggaaaa	catcttagtt	atgtctacaa
	2641	caaccccttcc	ctgtcttacc	aaacagtggg	agggaaattcc	tataaatttt
	2701	gtcccttcca	tttctactgt	ataaaacaaat	tagcaatcat	tttatataaa
	2761	gaaggatttc	ttatttctt	ggaattttgt	aaaaagaaaat	tgtggaaaat
20	2821	atactccatt	attttatttt	atagtctcaa	atcaaataca	tacaacccat
	2881	aagcaaataat	ataatgcaac	aatgtgtgt	tgttaatatc	tgatactgt
	2941	ttttttaaaat	aaaatagagt	ctggaaatgt	aaaaaaaaaa	aaaa

SEQ ID NO: 26

25 Amino acid sequence of human CALCRL encoded by the DNA sequence shown in SEQ ID NO: 25.

MEKKCTLYFLVLLPFFMILVTAELEESPEDSIQLGVTRNKIMTAQYECYQKIMQDPIQQA
EGVYCNRTWDGWLWCWNDAAGTESMQLCPDYFQDFDPSEKVTKICDQDGWFRHPASNR
WTNYTQCNVNTHEKVKTALNLFYLTIIGHGLSIASLLISLGIFFYFKSLSQRITLHKNL
PFSFVCNSVTTIHLTAVANNQALVATNPVSCKVSQFIHLYLMGCNYFWMLCEGIIYHLTL
30 IVVAVFAEKQHLMWYYFLGWGFPPLIPACIHAIRSLYYNDNCWISSDTLHYIIGHPIACA
ALLVNLFFLNIIVRVLITKLKVTHQAESNLYMKAVRATLILVPLLGIEFVLIIPWRPEGKI
AEEVYDYIMHILMHFQGLLVSTIFCFNGEVQAIRRNWNQYKIQFGNSFSNSEALRSAS
YTGSTISDGPGYSHDCPSEHNLNGKSJHDIEVNLKPENLYN

SEQ ID NO: 27

35 gi|9055257|ref|NM_018782.1| Mus musculus calcitonin receptor-like (Calcrl), mRNA

	1	ttagtctgga	gacaatttgt	tatgtatact	tttcttaaga	tattaaaaaa	caaatccaaag
	61	gtcacagggtt	gcttattgtat	agaagagaaa	caatacggat	agaagagaaa	tcagaaaaatt
	121	gctttagatt	gacaagaaca	gctgcagcag	ctacctagct	tgaacatatac	gcacatttca
	181	tttggactct	aataatggat	aaaaagcata	tactatgttt	tctggttctc	ttgcctctta
40	241	atatggctct	catctcagca	gagtccgaag	aaggcgtgaa	ccaaacacagac	ttgggagtc
	301	ctagaaaacaa	gatcatgacg	gctcaatatg	aatgttacca	gaagatcatg	caggaccccc
	361	ttcaacaacgc	agaaggcctt	tactgcaata	ggacctggga	cggatggcta	tgctggaaatg
	421	acgttgcagc	agggacggaa	tcaatgcagt	actgcccgt	ctattttcag	gattttgatc
	481	cttcagagaa	ggttacaaag	atctgtgacc	aagatggaca	ctgggttcgg	catccggata
45	541	gtaatagaac	atggaccaac	tacacccctgt	gtaataacag	cacgcatgag	aaagtgaaga
	601	cagccctgaa	tctgttctac	ctaactataa	ttggacatgg	attatctatt	gcatctctga
	661	tcatctctct	catcatattt	ttttaacttca	agagcctaag	ttgccaacgg	atcacattgc
	721	ataaaaaacct	gttcttttca	tttatttgta	attcgattgt	aacaatcatc	cacccacacgg
	781	cagtggccaa	taaccaggcc	ttagtggcca	caaatccgt	gagctgaaaa	gtgtctcagt
	841	ttatccatct	ctacctgtat	ggctgtact	acttctggat	gctctgtgaa	ggcggttacc
	901	tgcacacact	categtggtg	gctgtgtttg	cgagagaagca	gcacttgcgt	tggattatt
	961	ttctcggctg	ggggtttccct	ctgcttccctg	cctgcatacca	cgccattgcc	agaagcttgc
50	1021	attacaacga	caattgtctgg	atcagctcag	acactcatct	cctctacatt	atccatggtc

SEQ ID NO: 28

Amino acid sequence of mouse CALCRL encoded by the DNA sequence shown in SEQ ID NO: 27.

MDKKHILCFLVLLPLNMLISAESSEGVNQTDLGVRNKIMTAQYECYQKIMQDPIQQAEGLYCNRTWDGWLWCDNDVAAGTESMQYCPDYFQDFDPSEKVTKICDQDGHWFRHPDSNRTWTNYTLCNNSTHEVKVTALNLFYLTIIIGHGLSIASLIIISLIIFFYFKSLSCQRITLHKNLFPSFICNSIVTIIHLTAVANQALVATNPVSKVQSFIHLYLMGCNYFWMLCEGVYLHTLIVVAVFAEKQHLMWYYFLGWGFPPLLPAICIHAIRSLYYNDNCWISSDTHLLYIIGHPIAACALLVNLFLLNIVRVLITKLKVTHQVESNLYMKAVRATLILVPLLGIEFVLFPWPRPEGKVAEEVYDYVMHILMHFQGLLVATIFCFPNGEVQAILRRRNQNQYKIQFGNGFSHSDALRSASYTVSTISDMQGYSHDCPTEHLNGKSIDENVALKSNTYDLM

SEQ ID NO: 29

gi|6978586|refNM_012717.1| Rattus norvegicus calcitonin receptor-like (Calcr1), mRNA

15	1 gggaaactctt ttctactatc tcagaaaatc aaattccctc ctgagactat tcacacagaa 61 ttccttagg agccgtgcgg ggccctatga tgatacacca acatcttgtc ctaccaactg 121 tcaaaacttt ggatggtcta acactcagg catgaccctt gtaattaaga aattctcgaa 181 gacaatattg agcatgatcc aggagaaaaat gtgatttgag tctggagaca atttgtcatg 241 tatatcttt cttagatct taaaagaaaa gagaaaaacaa atccagggtt gtcggtaact 301 gattgataga agagaaaaaca atattcagac gattgcttat gattgacaag aacagctcg 361 gccgtacccc agcttgaaca tatcgacac ttcatgtt gtcataatgat ggataaaaag 421 tgtacactat gtttctgtt tctcttgctt cttaatatgg ctctcatcgc aacagagtgc 481 gaagaaggcg cgaaccaaac agacttggg gtcacttagga acaagatcat gacggctcg 541 tatgaatgtt accaaaagat catgcaggat cccattcaac aaggagaagg ccttactgc 601 aacagaacctt gggacggatg gctatgtgg aatgacgtt cagcaggAAC cgagtcaatg 661 cagtaactgcc ctgattactt tcaagatTTT gatccttcag agaaggTTAC aaagatctgt 721 gaccaagatg gaaaactgggtt cagacatcca gatagtaaca ggacatggac aaactacacc 781 ttgtgtaaaca acagcagcga tgagaaaatg aagacagcgc tgaatttgtt ctacctaact 841 ataattggac atggattatc tattgcctt ctgatcatct cactcatcat attttttat 901 ttcaagagcc taagttgcca acggattaca ttgcataaaaa acctgttctt ttcatgtt 961 tgttaattcga ttgtgacaat cattcaccc acggcagtgg ccaataacca ggcccttagtg 1021 gccacaaatc ctgtgagctg caaggtgtcc cagttcatc atctttacat gatggctgt 1081 aactactttt ggatgtctgt tgaaggcatt tacctgcaca cactcattgt ggtggctgt 1141 ttgcagaga agcagcactt gatgtggat tattttctt gctgggggtt tcctctgtt 1201 cctgcctgca tccatgccccat cggcagaagc ttgtattaca atgacaactg ctggatcagc 1261 tcagacactc atctccctca catcatccat ggtccccatTTT gtgtgtt actggtaat 1321 ctcttttcc tattaaatat tgtacgtttt ctcatcacca agttgaaagt tacacaccaa 1381 gcagaatcca atctctacat gaaagctgtt aagccactc tcattttgtt accactactt 1441 ggcattgaat ttgtgtttt tccatggggg cctgaaggaa aggttgcgtga ggaggtgtat 1501 gactatgtca tgcacattct catgcactat cagggtctt tgggtctac aattttctgc 1561 ttctttaacg gagaggttca agcaattctg agaagaaaatt ggaaccagta taaaatccaa 1621 ttggcaatg gettttccca ctctgtatgt ctccgcagcg catcctatac ggtgtcaaca 1681 atcagcgatg tgcaggggta cagccacgc tgccccactg aacacttaaa tggaaaaaagc 1741 atccaggata ttgaaaatgt tgccttaaaa ccagaaaaaaa tggatgtatct agtgcgttg 1801 aaatacagaaa atctcaactt tttgtgtca ctggaaaccta tgatTTTata gtcggaaagat 1861 ttaatacgaaa atgggtttct tgaataccat gaagaaaagcc ctcaaatgaa atgagaattg 1921 tgtggataaa tggtaacgaa ccctctctt atggggggaga aaagcctcaa ttttattgt 1981 tggccagtaa atactcctac catagctgtat tcaagttac caacctgaca tcaccgaatg 2041 tggaaattggaa aagaaaataa gcacaatcaa ctcttggggag ctgacatcg tcgtc
----	---

SEQ ID NO: 30

50 Amino acid sequence of rat CALCRL encoded by the DNA sequence shown in SEQ ID NO:
29.

MMDKKCTLCLFLFLLLNMALIAAESEEGANQTDLGVTRNKIMTAQEYQKIMQDPIQQG
 EGLYCNRTWDGWLCWNDVAAGTESMQYCPDYFQDFDPSEKVTKICDQDGWFRHPDSNRT
 WTNYTLCCNNSTHEVKVKTALNLFYLTIIIGHGLSIASLIIISLIIFFYFKSLSCQRITLHKNL
 5 FFSFVCNSIVTIIHLTAVANNQALVATNPVSCKVSQFIHLYLMGCNYFWMLCEGIYLHTL
 IVVAVFAEKQHLMWYYPLGWGFPLLPACTHAIARSLYYNDNCWISSDTLLYIIHGPICA
 ALLVNLFFLLNIVRVLITKLKVTHQAESNLYMKAVRATLILVPLLGIEFVLPWRPEGKV
 AEEVYDYVMHILMHYQGLLVSTIFCFFNGEVQAILRRNWNQYKIQFGNGFSHSDALRSAS
 YTVSTISDVQGYSHDCPTEHLNGKSIQDIENVALKPEKMYDLVM

SEQ ID NO: 31

10 gi|22538799|ref|NM_005408.2| Homo sapiens chemokine (C-C motif) ligand 13 (CCL13), mRNA

```

  1 aaaaggccgg cggAACAGCC agaggagcag agaggcaaag aaacattgtg aaatctccaa
  61 ctcttaacct tcaacatgaa agtctctgca gtgccttcgt gcctgtgtcatgacagca
  121 gctttcaacc cccaggact tgctcagcca gatgcactca acgtccccatc tacttgtgc
  181 ttcacatttgc cagtaagaa gatctccctt cagaggctga agagctatgt gatecaccacc
  241 agcagggtgtc cccagaaggc tgcatacttc agaaccacca tgcccaagga gatctgtgtc
  301 gacccaaagg agaagtgggt ccagaattat atgaaacacc tgcccgaa agctcacacc
  361 ctgaaagactt gaactctgtt accccctactg aaatcaagct ggagtacgtg aaatgacttt
  421 tccattctcc tctggcttcc tttcttatgc ttggaaatac ttctaccata attttcaaat
  481 aggatgcattt cgggtttgtt attcaaaaatg tactatgtt taatgttataat tggcttattat
  541 ttgacttggt gctgggttgg agtttatttg agtattgtt atctttctt aagcaaggcc
  601 ttgagcaagt aggttgctgt ctctaagccc cttcccttc cactatgagc tgctggcagt
  661 gggtttgtat tcgggtccca ggggttggaa gcatgctgtt gggagtcatg gacatgaagg
  721 gatgctgcaat tggtaggaagg agagctttt gtgaatgtt ggtgttgcataatatgttataat
  781 tggaaaga tgaatgcaat tggtaggactt ctgacatttt gcaaaaaata cattttat
  841 aaaatctcct aaaaaaaaaa a

```

SEQ ID NO: 32

Amino acid sequence of human CCL13 encoded by the DNA sequence shown in SEQ ID NO: 31.

30 MKVSAVLLCLLLMTAAFPNPQGLAQPDALNVPSTCCFTFSSKKISLQRLKSYVITTSRCPO
 KAVIFRTKLGKEICADPKEWVQNYMKHLGRKAHTLKT

SEQ ID NO: 33

Amino acid sequence of human CCL13, a soluble active secreted form derived from SEQ ID NO:32.

35 QPDALNVPSTCCFTFSSKKISLQRLKSYVITTSRCPOKAVIFRTKLGKEICADPKEWVQ
 NYMKHLGRKAHTLKT

SEQ ID NO: 34

gi|20381461|gb|BC027520.1| Mus musculus chemokine (C-C motif) ligand 12, mRNA
 (cDNA clone MGC:41146 IMAGE:1548072), complete cds

40 1 ttgacctcaa catgaagatt tccacacttc tatgcctcct gctcatagct accaccatca
 61 gtcctcaggt attggctgga ccagatgcgg tgagcacccc agtcaacgtgc tgttataatg
 121 ttgttaagca gaagattcac gtccggaaagc tgaagagcta caggagaatc acaagcagcc
 181 agtgtcccccg ggaagctgtt atcttcagga ccatactggta taaggagatc tggctgtacc
 241 ccaaggagaa gtgggttaag aattccataa accacttggta taagacgtct caaaccttca

301 tccttgaacc ttcatgtcta ggctgagagt tccaaaaact ctacgtatt tccccctgaa
 361 gttccccacg ggcagtgtga tatttattat gatatctaaa aagagatgtt ttaataatt
 421 taaacaaaact tgcttaata atatthaatg gtatthaatg aatatggg ccaattaaac
 481 cgaatcta attaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa

5 SEQ ID NO: 35

Amino acid sequence of mouse CCL13 encoded by the DNA sequence shown in SEQ ID NO: 34.

MKISTLLCLLIATTISPQVLAGPDAVSTPVTCYNNVKQKIHVRKLKSYRRITSSQCPR
 EAIVFRTILDKEICADPKEKWVKNSINHLDKTSQTFILEPSCLG

10 SEQ ID NO: 36

gi|27674224|ref|XM_213425.1| Rattus norvegicus similar to small inducible cytokine A12 precursor (LOC287562), mRNA

1 ggctcctgag tcctccagct ctcattccaa agccttggc ctcAACATGA agatctccac
 61 ctttctttgc ttcttcgtca tagctgccgc catcagccca caggtgttgg ctggaccaga
 121 ttcaagtgttc accccagtca cctgctgtta taatgtcgct aagcagaaga tccacattcg
 181 gaggctaaag agctacagga aaatcacaag cagccagtgt ccccgaaaag ctgtgatctt
 241 cagaactgtt ctggataagg agctctgtgc tgacccaag gagaagtggg ttaaggactc
 301 catgaaccac ttggatcaga agtctcgaac tcagcatct tgaaccttca cgtcttagct
 361 gaaagttcca gaaaaattac atttatttcc tctgacccctt cccatggaca gtgcgatagt
 421 tatttattat gatatctaaa gagagatgtt ttaataatt taaaacacaa acttactgaa
 481 gtaatattta atgataatcta agttatattt gggccaatta aactgacttt aattt

SEQ ID NO: 37

Amino acid sequence of rat CCL13 encoded by the DNA sequence shown in SEQ ID NO: 36.

MKISTLLCLLIAAAISPQVLAGPDSVPTPVTCYNNVKQKIHIRRLKSYRKITSSQCPR
 EAIVFRTVLDKELCADPKEKWVKDSMNHLDQKSRTQHP

SEQ ID NO: 38

gi|22538815|ref|NM_005623.2| Homo sapiens chemokine (C-C motif) ligand 8 (CCL8), mRNA

1 gtgatggaga gcaccagcaa agccttaggg cccatccctg gcctcctgtt acccacagag
 61 gggtaggccc ttggctctct tcactatga cgtcagcttc catttttctt ttcttataga
 121 caattttcca tttcaaggaa atcagagccc ttaatagttc agtgagggtca ctttgcgttag
 181 cacaatccca tacccttcag cctctgtcc acagggctt agaaaaagat agaaactcac
 241 aacttccttg ttttttatac tgaaattat cccaggatct ggtgttact cagcatattc
 301 aaggaagggtc ttacttcatt ctcccttgc ttttttttttgc ttttttttttgc ttttttttttgc
 361 taaaaggcag gcayagccac cgaggagcag agaggttgag aacaacccag aaacccatc
 421 ctctcatgtt gaagctcaca cccttgcctt ccaagatgaa gtttttttttgc gtttttttttgc
 481 gtttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 541 ccattccaat cacctgtgc ttaacgtga tcaataggaa aatccctatc cagaggctgg
 601 agagctcacac aagaatcacc aacatccaat gtttttttttgc ttttttttttgc ttttttttttgc
 661 aacggggcaa ggaggtctgt gtttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 721 atctggacca aatatttcaa aatctgaagc catggccctt catacatggc ctgagatgtca
 781 gagcttgaag aaaagttat ttatccc caaccccccc caggtgcagt gtgacattat
 841 tttattataa catccacaaa gagattattt ttaataatt taaagcataa tatttcttaa

901 aaagtattta attataattta agttgttgat gttttaactc tatctgtcat acatcctagt
 961 gaatgtaaaa tgcaaaatcc tggtgatgtg tttttgttt ttgttttccct gtgagctcaa
 1021 ctaagttcac ggcaaaatgt cattgttctc cctccctacct gctctgttagtgg ttgtggggtc
 1081 ctccccatgga tcatcaaggt gaaacacttt ggtattctt gccaatcagt gctccctgtaa
 5 1141 gtc当地atgtg tgcttgc tac tgctgttgtt gaaattgtat ttactgtata taactatgga
 1201 attttgaaaa aaaatttcaa aagaaaaaaaaa atatatataa ttaaaacta aaaaaaaaaaaa
 1261 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
 1321 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa a

SEQ ID NO: 39

10 Amino acid sequence of human CCL8 encoded by the DNA sequence shown in SEQ ID NO: 38.

MKVSAALLCLLLMAATFSPQGLAQPDHSVSIPIITCCFNVINRKIPIQRLESYTRITNIQCP
 KEAVIFKTKRGKEVCADPKERWVRDSMKHLDQIFQNLKP

SEQ ID NO: 40

15 Amino acid sequence of human CCL8, a soluble active secreted form derived from SEQ ID NO:39.

QPDSVSIPITCCFNVINRKIPIQRLESYTRITNIQCPKEAVIFKTKRGKEVCADPKERWV
 RDMSMKHLDQIFQNLKP

SEQ ID NO: 41

20 gi|20381461|gb|BC027520.1| Mus musculus chemokine (C-C motif) ligand 12, mRNA
 (cDNA clone MGC:41146 IMAGE:1548072), complete cds

1 ttgacctcaa catgaagatt tccacacttc tatgcctcct gtcataatc accaccatca
 61 gtcctcaggatttggctgga ccagatgcgg tgagccccc agtcacgtgc tggtataatg
 121 ttgttaagca gaagattcac gtccggaaagc tgaagagacta caggagaatc acaagcagcc
 181 agtgtccccgg ggaagctgtg atcttcaggg ccatactggta taaggagatc tggctgacc
 241 ccaaggagaa gtggggttaag aattccataa accacttggta taagacgtct caaaccttca
 301 tccttgaacc ttcatgtcta ggctgagatg tccaaaaact ctacgtatt tccccctgaa
 361 gttccccacg ggcagtgtga tatttattat gatatctaaa aagagatgtt ttaataatt
 421 taaacaaact tgcttaata atatttaatg gtatttaatg aatatttggg ccaattaaac
 30 481 cgaatctaattt aaaaaaaaaa aaaaaaaaaa aaaaaaa

SEQ ID NO: 42

Amino acid sequence of mouse CCL8 encoded by the DNA sequence shown in SEQ ID NO: 41.

35 MKISTLLCLLIATTISPQVLAGPDAVSTPVTCYNNVKQKIHVRKLKSYRRITSSQCPR
 EAVIFRTILDKEICADPKEKWKNSINHLDKTSQFILEPSCLG

SEQ ID NO: 43

gi|27674224|ref|XM_213425.1| Rattus norvegicus similar to small inducible cytokine A12 precursor (LOC287562), mRNA

1 ggctcctgag tcctccagct ctcattccaa agccttggc ctcaacatga agatctccac

61 ccttctttgc cttctgctca tagctgccgc catcagccca caggtgttgg ctggaccaga
 121 ttcagtgttc acccccagtca cctgtgtta taatgtcgct aagcagaaga tccacattcg
 181 gaggctaaag agctacagga aaatcacaag cagccagtgt ccccgaaaag ctgtgatctt
 241 cagaactgta ctggataagg agctctgtgc tgaccccaag gagaagtggg ttaaggactc
 5 301 catgaaccac ttggatcaga agtctcgaac tcagcatcct tgaacccctca cgtctaggct
 361 gaaagtccca gaaaaattac atttatttcc tctgacccctc cccatggaca gtgcgatagt
 421 tatttattat gatatctaa gagagatgt ttaataatt taaaacacaa acttactgaa
 481 gtaatattta atgatatcta agttatattt gggccaattt aactgacttt aattt

10 SEQ ID NO: 44

Amino acid sequence of rat CCL8 encoded by the DNA sequence shown in SEQ ID NO: 43.

MKISTLLCLLIAAAISPQVLAGPDSVFTPVTCCYNVAKQKIHIRRLKSYRKITSSQCPR
 EAVIFRTVLDKELCADPKEKWVKDSMNHLDQKSRTQHP

SEQ ID NO: 45

15 gi|4557017|ref|NM_001276.1| Homo sapiens chitinase 3-like 1 (cartilage glycoprotein-39) (CHI3L1), mRNA

1 agtggagtgg gacaggtata taaaggaagt acagggcctg gggaaagaggc cctgtctagg
 61 tagctggcac caggagccgt gggcaaggga agaggccaca ccctgcccctg ctctgctgca
 121 gccagaatgg gtgtgaaggc gtctcaaaca ggcttggc ttctgggtgt gctccagtgc
 20 181 tgctctgcat acaaactggt ctgctactac accagctggt cccagtaccg ggaaggccat
 241 gggagctgtc tcccagatgc ccttgaccgc ttctctgtt cccacatcat ctacagcttt
 301 gccaataataa gcaacgatca catcgacacc tgggagtggg atgatgtgac gctctacggc
 361 atgctcaaca cactcaagaa caggaacccc aacctaaga ctctcttgc tgcggagga
 421 tggaaactttg ggtctcaaag attttccaag atagctcca acacccagag tgcggact
 481 ttcatcaagt cagtaccgc acccatggct ttgtatggct ggaccttgcc
 541 tggctctacc ctggacggag agacaaaacag cattttacca ccctaatacaa ggaaatgaag
 601 gccgaattta taaaggaagc ccagccaggg aaaaagcagc tcctgtctcg cgccagcaactg
 661 tctgcgggga aggtccaccat tgacagcagc tatgacattt ccaagatatac ccaacacctg
 721 gatttcatta gcacatcatgac ctacgattt catggaccc ggcgtgggac cacagggcat
 781 cacagtcccc ttgtccgggg tcaggaggat gcaagtccctg acagattcag caacactgac
 841 tatgctgtgg ggtacatgtt gaggctgggg gctccctgcca gtaagctggt gatgggcattc
 901 cccacccctcg ggaggaggtt cactctgggt tttctgtaga ctgggttgtgg agccccaaatc
 961 tcaggacccg gaatccagg ccggttccac aaggaggcag ggaccccttgc ctactatgag
 1021 atctgtgact tcctccggg agccacagtc catagaaccc tcggccagca ggtcccstat
 1081 gccacccaagg gcaaccaggc ggttaggatc gacgaccagg aaagcgtcaa aagcaagggt
 1141 cagtacctga aggataggca gctggcaggc gccatggat gggccctggg cctggatgac
 1201 ttccagggtt ccttcgtgg ccaggatctg cgctttccctc teaccaatgc catcaaggat
 1261 gcaactcgctg caacgtagcc ctctgttctg cacacagcac gggggccaaag gatccccgt
 1321 ccccccctgg ctccagctgg ccggggagctt gatcacctgc cctgtctgat cccaggctga
 40 1381 gcccctcgtt ccctcccttgg gggccatgtc agaggccac aacacacaga tttgagctca
 1441 gcccctgggg gcagagaggtt aaggatgggg ctgtggggat agtgaggcat cgcaatgtaa
 1501 gactcgggat tagtacacac ttgttgcgtt gtaatggaaa ttttacaga tcccccaagcc
 1561 tggcaaggga atttcttcaa ctccctgccc cctagccctc ctatcaaag gacaccattt
 1621 tggcaagctc tatcaccaag gagccaaaca tcctacaaga cacagtgacc atactaatta
 45 1681 taccccccgtc aaagccagct tgaaacccctt accttaggaac gtaatcgtgt cccctatcct
 1741 acttccctt cctaatttcca cagctgctca ataaagtaca agagtttac acgtgttgtgg
 1801 cgctttgtttt tggcttatct ttgagcggccc actagacccca ctggactcac ctccccccatc
 1861 tcttctgggtt tccttcctt gaggccttggg accccctgagc ttgcagagat gaaggccgccc
 1921 atgtt

50 SEQ ID NO: 46

Amino acid sequence of human CHI3L1 encoded by the DNA sequence shown in SEQ ID NO: 45.

MGVKASQTGFVVLVLLQCCSAYKLVCYYTSWSQYREGDGSCFPDALDRFLCTHIIYSFAN
 5 ISNDHIDTWEWNDVTLYGMLNTLKNRNPNLKTLLSVGGWNFGSQRFSKIASNTQSRTTFI
 KSVPPFLRTLHGFDGLDLAWLYPGRRDKQHFTTLIKEKMAEFIKEAQPQGKKQLLSAALSA
 GKVTIDSSYDIAKISQHLDFIGSINTYDFHGAWRGTTGHHSPLFRGQEDASPDRFSNTDYA
 VGYMLRLGAPASKLVMGIPTFGRSFTLASSETGVGAPISGPGIPGRFTKEAGTLAYYEIC
 DFLRGATVHRTLGQQVVPYATKGNQWVGYDDQESVSKVQYLKDRLAGAMWALDLDDFQ
 GSFCGQDRLRFPLTNAIKDALAAT

10 SEQ ID NO: 47

Amino acid sequence of human CHI3L1, a soluble active secreted form derived from SEQ ID NO:46.

YKLVCYYTSWSQYREGDGSCFPDALDRFLCTHIIYSFANISNDHIDTWEWNDVTLYGMLN
 15 TLKRNPNLKTLLSVGGWNFGSQRFSKIASNTQSRTFIKSVPFLRTLHGFDGLDLAWLY
 PGRRDKQHFTTLIKEKMAEFIKEAQPQGKKQLLSAALSAGKVTIDSSYDIAKISQHLDFIG
 SIMTYDFHGAWRGTTGHHSPLFRGQEDASPDRFSNTDYAVGYMLRLGAPASKLVMGIPTF
 GRSFTLASSETGVGAPISGPGIPGRFTKEAGTLAYYEICDFLRGATVHRTLGQQVVPYATK
 GNQWVGYDDQESVSKVQYLKDRLAGAMWALDLDDFQGSFCGQDRLRFPLTNAIKDALA
 AT

20 SEQ ID NO: 48

gi|33468846|ref|NM_007695.1| Mus musculus chitinase 3-like 1 (Chi3l1), mRNA

1 cggacgcgtg ggcggacgcg tggggctggg tactaggaga agccatcatg cacacctcta
 61 ctgaagccag gatgggcatg agggcggcac tgacaggctt tgccgtcctg atgctgtcc
 121 agagctgctc tgcgtacaag ctggctctgt acttcaccag ctggcccag taccggaaag
 181 gcgttggaaag cttttacca gacgccatcc aaccttccct gtgcacccac atcatctaca
 241 gctttgccaa catcagcagc gacaacatgc ttagcacatg ggagtggaaat gacgagtcga
 301 actatgacaa gctgaataaaa ctgaagacca gaaacaccaa cctgaagacc ctccgtctg
 361 ttggagggtg gaaatttggc gaaaaaaagat ttcccgagat tgccctccaac actgagagac
 421 gcactgctt cgtccggctcg ttagccccgt tcctgcgttc ttatggctt gatggctgg
 481 atctcgccct gcttacccct cgcttaagag acaagcgtt attctccacc ctgatcaagg
 541 aactgaatgc ggaattcaca aaggaggctc agccaggccg agagaaactc ctgctcagcg
 601 cagctttgtc agcaggaaag gtggccattt acactggcta tgacatcgcc cagatagccc
 661 aacaccttggaa ttttatcaat ctcatgaccc acgatttcca tgagttctgg cgccaaatca
 721 caggccacca cagccccctc ttccaaggcc agaaggacac tagtttgac agatacagca
 781 atgtgaacta tgccgtcag tacatgatac gtctggagc ccaggccagc aagctactga
 841 tgggcattccc caccttggg aagagttca ctctggcattc ttctgaaaat cagttggag
 901 ctccaatctc aggggaagga ttaccaggcc ggttccacca ggaggcaggg accctggcct
 961 actacgagat atgcacttc ctcaaaggag ctgaagtaca tgcactctcc aacgagaagg
 1021 ttcccttcgc taccaggc aaccagtggg tggggatgaa ggacaaggag agtgtcaaaa
 1081 acaagggtgg gttctgttcaag gagaagaagc tggcaggagc catgggttgg gcactggatt
 1141 tggatgattt ccaggccacc tgcgtccgcg aggaatttcc cccgctcacc aacgcccattca
 1201 aggatgcccgtt ggcttagctc ccccttccct atatggtacc cccactctct ggccaggagt
 1261 ttaatctttt gcaatgtttaa gttcccaac tgagcc:cg tttcttccttc cttggcacc
 1321 tgtgttaaggg gcccacccgag gtcagctat ggagaacaaagg gaacttagggt aggacgatgg
 1381 tggggttgtg agagtcacag tgtgagcaga tacacaaccc tttaaggaa tgcaaattct
 1441 cagactctaa cttcccttta cccacccgtc ccaaaggaca ccacttggat caagtagggca
 1501 aatatcttac aggattgagg gaccatacta attataccct ctgcaaaagcc caacttgaat
 1561 cttccctta ggaacttaat cgtccactt ccctttccct aattccacag ctgttcaata
 1621 aagcggccaga acctaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaa aaaa

SEQ ID NO: 49

Amino acid sequence of mouse CHI3L1 encoded by the DNA sequence shown in SEQ ID NO: 48.

5 MGMRRAALTGFAVIMLLQSCSAYKLVCYFTSWSQYREGVGSFLPDAIQPFLCTHIIYSPAN
 ISSDNMLSTWENDESNYDKLNKLKTRNTNLKTLLSVGGWFGEKRSEIASNTERRTAF
 VRSVAPFLRSYGFGLDLAWLYPRLRDKQYFSTLIKEELNAEFTKEVQPGREKLLLSSAALS
 AGKVAIDTGYDIAQIAQHLDIFINLMTYDFHGWRQITGHHSPLFQGQKDTRFDYNSNVNY
 AVQYMIQLGAQASKLLMGIPPTFGKSFTLASSENQLGAPISGEGLPGRFTKEAGTLAYYEI
 CDFLGKAEVHRLSNEKVPPATKGNQWVGYEDKESVKNKVGFLKEKKLAGAMVWALDDF
 10 QGTCQPKEFFPLTNAIKDALA

SEQ ID NO: 50

gi|34880227|ref|XM_341123.1| Rattus norvegicus chitinase 3-like 1 (cartilage glycoprotein-39) (Chi3l1), mRNA

15 1 gcctgaacag agggctggag ctgcagacag gagctgccgg gaatgctggg agactactgg
 61 caagaagctt tgccgtcctg atgctgctcc agagctgctc tgcgtacaaa ctggctctgt
 121 actacaccaa ctggcccag taccggaaag gcaatgggag ctgcttccca gatgccctcg
 181 accattccct gtgcacccat atcatctaca gctttgccaa catcagcaac aacaagctca
 241 gcacatcgga gtggaatgac gtaaccctgt atggcatgtc gaatactctc aagaccagaa
 301 acccccagact gaagacactg ctgtctgtt gaggatggag ctttgctca gaaagatttt
 361 ccaggattgt ctccaaacgct aagagtgcga agactttcgccatcgtc gtcggatgtt
 421 tgcggaccta tggctttgtat ggactggatc tgcgttgcgtt ctacccgggc cggaaagaca
 481 agcaacattt taccacactg atcaaggaac tgaaggcga attcacaaag gaagtccagc
 541 caggcacaga gaaactccctg ctcaatgtc ccgtgtcgc aggaaaggtg acccttgaca
 601 gtggctatga tggcccttgc atagcccaac acctagattt cattaatctc atgacctatg
 661 atttccatgg aacctggcgc cacaccacag gacatcacag cccctcttc cgaggccagc
 721 aggacactgg gcctgacaga ttcaatgttggactatgg tggactatgg atgctaaggc
 781 tgggagcccc caccaacaag ctatgtatgg gtatccccac ctttggaaag agtttactc
 841 tggcatcttc tgagaatcaa gtggggactc caatcacagg gtcaggatta ccaggccgt
 901 acaccaagga gaaagggacc ctcgcctact acggatatg cgtttccctc agaggactg
 961 aagtacatag aatttttggc cagcggatgtt ccttgcgtac caaggcaac cagtgggtgg
 1021 ggttatgtga cccggagagc gtcaaaaaca aggtgaagta cctgaagaac aagcagctgg
 1081 caggagccat ggtgtggca gtggattttgg atgattttcg gggctcttc tggggcata
 1141 acgtacactt cccgttcacc aacgcctca agggggccct ggtgtggct tagctcccc
 1201 ttccccatcat gtcctccatc cccctccggcc agggatgtt tcaattgttgc aaatgttcc
 1261 cccgactggg tgcgttgc ccccttcgtt aacctgtgtt gggggccaca gcaggctcg
 1321 acctggtaa caggaaaata gggtaggac gtggattttgg gaaagtccacc gtgtgagata
 1381 gatacagggtc atccctgtta atgaatgcaatttcaagg ctcttaactc ctttccct
 1441 atctctcccg accaaggac accaatttttgc acaatgttata gcatcaagta ggcacacatc
 1501 ttacaggatt caggaccat actaattata ctttgcgttcaaa agcccaactt gaaaccttcc
 1561 ctttaggaact taatgttgc tctgtccac ttcccttcc ctaattccac agctgttcaaa
 1621 taaaatgttcaaa gagcttaaca gtg

SEQ ID NO: 51

Amino acid sequence of rat CHI3L1 encoded by the DNA sequence shown in SEQ ID NO: 50.

45 MLLQSCSAYKLVYYTNWSQYREGNGSCFPDALDHSLCTHIIYSPANISNNKLSTSEWND
 VTLYGMLNTLKTRNPRLKTLLSVGGWSFGSERFSRIVSNAKSRKTFVQSVAFLRTYGF
 GLDLAWLYPGPKDKQHFTTLIKEELKAETKEVQPGTEKLLLSSAAVSAGKVTLDGYDVAQ
 IAQHLDIFINLMTYDFHGWRHTTGHHSPLFRGQQDTGPDRFSNVYGVGYMLRLGAPTNK
 LVMGIPPTFGKSFTLASSENQVGAPITGSGLPGRYTKEGTLAYYEICDFLRAEVHRLG

QQVPFATKGNQWVGYDDPESVKNKVYLKNKQLAGAMVAVDLDDFRGSFCGHNVHPPLTNAIKEALAVA

SEQ ID NO: 52

gi|21536275|ref|NM_000651.3| Homo sapiens complement component (3b/4b) receptor 1, including Knops blood group system (CR1), transcript variant S, mRNA

	1	acactctggg	cgcggagcac	aatgatttgt	cactcttatt	ttegtctgagc	ttttcccttt
10	61	attttagttt	tcttcgagat	caaatacttgt	tttagatgt	gtttggggag	aatgggggcc
	121	tcttcctccaa	gaageccccgg	gcctgtcggg	ccgcggcgcc	ceggctctcc	cttctgtgc
	181	ggaggatccc	tgctggcggt	tgtggtgctg	cttgcgtctgc	eggtggccctg	gggtcaatgc
	241	aatgccccag	aatggcttcc	atttgcagg	cctaccacacc	taactgatga	atttgagttt
	301	cccatggga	catactgtaa	ctatgaatgc	cgcctgtgtt	attccgaaag	accgttttct
	361	atcatctgcc	taaaaaactc	agtctggact	ggtgcataagg	acaggtgcag	acgtaaatca
	421	tgtctgtatc	ctccagatcc	tgtgaatggc	atggtgcatg	tgatcaaagg	catccagttc
15	481	ggatccaaa	ttaaatattt	ttgtactaaa	ggataccgac	tcattggttc	ctcgctgtcc
	541	acatgcatca	tctcagggtga	tactgtcatt	tggataatg	aaacacctat	tttgacaga
	601	attccctgtg	ggttacccccc	caccatcacc	aatggagatt	tcattagcac	caacagagag
	661	aattttact	atggatcagt	ggtgcacccac	cgtgcataatc	cttgaagcgg	aggagaaaag
	721	gtgtttgagc	ttgtgggtga	gcccctccata	tactgcacca	gcaatgacga	tcaagtggc
20	781	atctggagcg	gccccggcccc	tcagtgcatt	atacctaaca	aatgcacgcc	tccaaatgtg
	841	gaaaatggaa	tattggtatac	tgacaacaga	agcttattttt	ccttaaatga	agttgtggag
	901	tttaggtgtc	agcctggctt	tgtcataaaa	ggaccccgcc	gtgtgaagtg	ccaggccctg
	961	aacaatggg	agccggagct	accaagctgc	tccagggtat	gtcagccacc	tccagatgtc
	1021	ctgcatgtcg	agcgtacccca	aaggacaag	gacaactttt	cacctggca	ggaagtgttc
	1081	tacagctgtg	agcccggtca	cgacccatcaga	ggggctgcgt	ctatgcgtg	cacaccccg
25	1141	ggagactgga	gcccctgcagc	ccccacatgt	gaagtgaaat	cctgtgtatg	cttcatggc
	1201	caactctta	atggccgtgt	gctatttcca	gtaaaatctcc	agcttggagc	aaaagtggat
	1261	tttgggtgtg	atgaaggatt	tcaattaaaa	ggcagctctg	ctagttactg	ttgtttggct
	1321	ggaatggaaa	gcctttggaa	tagcagtgtt	ccagtgtgtg	aacaaatctt	ttgtccaagt
30	1381	cctccagttt	tccctaatgg	gagacacaca	ggaaaacctc	tggaagtctt	tccctttgga
	1441	aaagcagttaa	attacacatg	cgaccccccac	ccagacagag	ggacgagctt	cgacccatt
	1501	ggagagagca	ccatccgcgt	cacaagtgc	cetcaaggga	atggggttt	gaggcagccct
	1561	gcccctcgct	gtggatttct	gggtcaactgt	caagccccag	atcattttct	gtttgccaag
	1621	ttgaaaaacc	aaaccaatgc	atctgacttt	cccattggg	catttttaaa	gtacgaatgc
	1681	cgtctgtag	actacgggag	gcccatttttct	atcacatgtc	tagataacct	ggtctggc
35	1741	agtcccaaag	atgtctgtaa	acgtaaaatca	tgtaaaactc	ctccagatcc	agtgaatggc
	1801	atgggtgcatt	tgatcaca	catccagggt	ggtccagaa	tcaactattt	ttgtactaca
	1861	gggcaccggac	tcattggtca	ctcatactgt	gaatgtatcc	tctcgggca	tgctgccccat
	1921	tggagacgca	agccggccat	ttgtcaacga	attccttgg	ggttacccccc	caccategcc
40	1981	aatggagatt	tcatttagcac	caacagagag	aattttact	atggatcagt	ggtgacccat
	2041	cgctgcata	cttggaaagcg	agggagaaaag	gtgtttgg	ttgtgggtga	gcccctccata
	2101	tactgcacca	gcaatgacga	tcaagttggc	atctggagcg	gcccggcccc	tcagtcatt
	2161	atacctaaca	aatgcacgc	tccaaatgt	gaaaatggaa	tattggatc	tgacaacaga
	2221	agcttatttt	ccttaatga	agttgtggag	tttaggtgtc	agcttggctt	tgtcatgaaa
45	2281	ggaccccgcc	gtgtgaagtg	ccaggccctg	aacaaatggg	agccggagct	accaaagctgc
	2341	tccagggtat	gtcagccacc	tccagatgtc	ctgcatactgt	agegtaccca	aggagacaaag
	2401	gacaactttt	cacccggggca	ggaagtgtt	tacagctgtg	agccgggtt	cgacccatcaga
	2461	ggggctgcgt	ctatgcgtg	cacacccag	ggagactgga	gcccctgcagc	ccccacatgt
	2521	gaagtgaaat	cctgtgtatg	cttcataatgg	caacttctt	atggccgtgt	gttatttcca
	2581	gtaaaatctcc	agcttggagc	aaaagttggat	tttgggtgt	atgaaggatt	tcaattaaaa
50	2641	ggcagctctg	ctagttactg	tgtcttggct	ggaatggaaa	gcccattggaa	tagcagtgtt
	2701	ccagttgtgt	aacaaatctt	ttgtccaaatgt	cctccagtt	ttcctaattgg	gagacacaca
	2761	ggaaaaaccc	tggaaagtctt	tccctttggg	aaaacagtaa	attacacatg	cgaccccccac
	2821	ccagacagag	ggacgagctt	cgacccat	ggagagagca	ccatccgcgt	cacaagtgc
	2881	cctcaaggga	atggggttt	gagcagccct	gcccctcgct	gttggaaattct	gggtcaactgt
55	2941	caagccccag	atcattttct	gtttgccaag	ttgaaaaccc	aaaccaatgc	atctgacttt
	3001	cccatggga	catctttaaa	gtacgaatgc	cgtctgtag	actacggag	gcccattctt
	3061	atcacatgtc	tagataacct	gttctggc	agtccaaaag	atgtctgtaa	acqtaaatca

3121 tggtaaaactc ctccagatcc agtgaatggc atggtcgtg tgatcacaga catccagggt
 3181 ggatccagaa tcaactattc ttgtactaca gggcacccgc tcattggtca ctcatctgt
 3241 gaatgtatcc tctcgccaa tgctgcccatt tggagcacga aaccgccaat ttgtcaacga
 3301 attccttggtg ggctaccccc caccatcgcc aatggagatt tcattagcac caacagagag
 5 3361 aattttcact atggatcagt ggtgacctac cgctgcaatc ctggaaaggcg aggaggaaaag
 3421 gtgtttggc ttgtgggtga gcccctccata tactgcacca gcaatgacga tcaagtggc
 3481 atctggagcg gcccccccccc tcagtgattt atacctaaca aatgcacgccc tccaaatgtg
 3541 gaaaatggaa tatttgttac tgacaacaga agcttatttt ccttaaatga agttgtggag
 3601 tttaggtgtc agcctggctt tgcattgaaa ggaccggcc ggtgtgaatg ccaggccctg
 10 3661 aacaaatggg agccggagct accaagctgc tccagggat tgcagccacc tccagatgtc
 3721 ctgcattgtc agcgtaccca aagggacaag gacaactttt caccggggca ggaagtgtc
 3781 tacagctgtg agccggctt tgacctcaga gggctgcgt ctatgcgcgt cacaccccg
 3841 ggagactgga gcccgtcagc ccccacatgt gaagtgaaat cctgtgtgaa cttcatggc
 3901 caacttctt atggccgtt gtttttcca gtaaatctcc agcttggagc aaaagtggat
 15 3961 ttgtttgtg atgaaggatt tcaattaaaa ggcagctgt ctgttattt tgcatttttgc
 4021 ggaatggaaa gccttggaa tagcgtgtt ccagtgtgt aacaaatctt ttgttcaagt
 4081 cttccagttt ttcattatgg gagacacaca gggaaacccctc tggaaatgtt tcccttgg
 4141 aaagcgttaa attacacatg cgaccccccac ccagacagag ggaacgagctt egacccctt
 4201 ggagagagca ccatccgtc cacaagtgtc cctcaaggaa atgggggtt gggcggcc
 20 4261 gcccctcgct gtggaaatttctt ggttgcatttgc caagccccag atcttttctt gtttgc
 4321 ttgaaaacccaa accaaatgc atctgactt cccattggaa catttttaaa gtacgaatgc
 4381 cgtcctgagt actacgggag ggcatttctt atcacatgtc tagataaacctt ggttgc
 4441 agtcccaaag atgtctgtt acgttaatc tggtaaaactc cttccagatcc agtgaatggc
 4501 atggtcgtt tgatcacaga catccagggtt ggttgc
 25 4561 gggcacccgc tcattggtca ctcattgtt gtttttgc ttcaggccaa tactgcccc
 4621 ttggacacca agccccaat ttgtcaacga attccttgc ggttccccc aaccatcgcc
 4681 aatgggatt tcattagcac caacagagag aattttcact atggatcagt ggttgc
 4741 cgctgcaatc ttggaaacccgc agggagaaat ggttttgc ttgtgggtga gcccctcc
 4801 tactgcacca gcaatgacga tcaagtggc atctggagc gcccccccccc tcaatgtt
 30 4861 atacctaaca aatgcacgccc tccaaatgtt gaaaatggaa tatttgttac tgacaacaga
 4921 agtttttccctt cttttttttt gttttttttt ggttgcattt ggttgc
 4981 ggaccccccgc ttgttgcgtt ccaggccctt aacaaatggg agccagagtt accaagctgc
 5041 tccagggtt gtcacccgc tccagaaatc ctgcattgtt agcataacccca aagccatc
 5101 gacaactttt cacctggc ggaagtgtt tacagctgtt agcctggctt tgacccctt
 35 5161 gggctcggtt ctctgcactt cacacccca gggacttggaa gccccttgc cccggatgt
 5221 gcaatgtt tttttttttt tttttttttt tttttttttt tttttttttt
 5281 ctttatctcc agttttttt gttttttttt tttttttttt tttttttttt
 5341 ggcagttccg ttagtcttgc ttgtttttttt ggaatggaa gccccttggaa taacagtgtt
 5401 cttttttttt aacatatctt ttgtttttttt cttttttttt tttttttttt
 40 5461 ggaactccctt ctggagatattt tttttttttt aaagaaatattt ctacacatgt tgacccccc
 5521 ccagacagag ggttgcattt caacccctt gggagagca ccatccgtc cacaagtgc
 5581 cttttttttt atgggggtt gggagagcc gccccttgc gtttgc
 5641 ggttgcattt aaacccccaga gtttgcattt tttttttttt tttttttttt
 5701 tttttttttt tttttttttt tttttttttt tttttttttt
 45 5761 atgttcttca tttttttttt agaaaactt gtttgcattt gtttgcattt
 5821 cttttttttt tttttttttt tttttttttt tttttttttt
 5881 acacagtttt gatcaacagt taattttttt tttttttttt tttttttttt
 5941 cttttttttt tttttttttt tttttttttt tttttttttt
 6001 tttttttttt tttttttttt tttttttttt tttttttttt
 50 6061 aatagaacat tttttttttt tttttttttt tttttttttt tttttttttt
 6121 ggagaacagc tttttttttt tttttttttt tttttttttt tttttttttt
 6181 caagttttt tttttttttt tttttttttt tttttttttt tttttttttt
 6241 ccagaagttt tttttttttt tttttttttt tttttttttt tttttttttt
 6301 atcgatgttca gtttgcattt gtttgcattt gtttgcattt
 55 6361 cagaccaatg gtttgcattt gtttgcattt gtttgcattt gtttgcattt
 6421 ccagaatcc tttttttttt tttttttttt tttttttttt tttttttttt
 6481 gtttgcattt tttttttttt tttttttttt tttttttttt tttttttttt
 6541 acggcccccagg gtttgcattt gtttgcattt gtttgcattt gtttgcattt
 6601 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 6661 aaggtgttcc tttttttttt tttttttttt tttttttttt tttttttttt
 6721 gtttgcattt gtttgcattt gtttgcattt gtttgcattt gtttgcattt

	6781	tgtccaaatc	ctccagctat	ccttaatggg	agacacacag	gaactccctt	tggagatata
	6841	ccctatggaa	aagaaaatatac	ttacgcattgc	gacacccacc	cagacagagg	gatgacccctt
	6901	aacccatttg	gggagagctc	cattccgtgc	acaagtgacc	gtcaaggaa	tggggtttgg
	6961	agcagccctg	ccccctcgctg	tgaactttct	gttcctgtcg	cctgcccaga	tccacccaaag
5	7021	atccaaaacg	ggcattacat	tggaggacac	gtatctctat	atcttcctgg	gatgacaatc
	7081	agctacattt	gtgaccccccgg	ctacccgtta	gtgggaaagg	gttccatttt	ctgtacagac
	7141	cagggaatct	ggagccaatt	ggatcattat	tgc当地aaag	taaattttag	cttcccaactg
	7201	tttatgaatg	gaatctcgaa	ggagtttagaa	ataaaaaaag	tatatcacta	tggagattat
	7261	gtgactttga	agtgtgaaga	tgggtataact	ctggaaggca	gtccctggag	ccagtgcacg
10	7321	gcggatgaca	gatggggacc	tcctctggcc	aatgtacct	ctcgtgcaca	tgatgctctc
	7381	atagttggca	ctttatctgg	tacgatcttc	tttattttac	tcatcatttt	cctcttgg
	7441	ataattctaa	agcacagaaaa	aggcaataat	gcacatgaaa	accctaaaga	agtggctatc
	7501	catttacatt	ctcaaggagg	cagcagcgtt	catccccgaa	ctctgcaaac	aaatgaagaa
	7561	aatagcaggg	tccttccttg	acaaagtact	atacagctga	agaacatctc	gaatacagtt
15	7621	ttgggtggaa	aggagccaat	tgatttcaac	agaatcagat	ctgagcttca	taaagtcttt
	7681	gaagtgactt	cacagagacg	cagacatgtg	cacttgaaga	tgctgcctt	tcctctggac
	7741	ctagcaasgc	tcctgcctct	ttgtgtgcgt	cactgtgaaa	ccccccaccc	tctgcctctgt
	7801	gctaaacgca	cacagtatct	agtcagggga	aaagactgca	ttttaggagat	agaaaaatagt
	7861	ttggattact	taaaggaaata	aggtgttgc	tgaatttct	ggtttgtaa	gtggtaactg
20	7921	ttctttttta	aaatatttgt	aatatggaa	gggctcagta	agaagagctt	ggaaaatgca
	7981	gaaagttatg	aaaaataagt	cacttataat	tatgtctacct	actgataacc	actccataata
	8041	ttttgattca	ttttctgcct	atcttccttc	acatatgtgt	ttttttacat	acgtcccttt
	8101	ccccccagtt	tttttccttt	tatttatag	agcagaaccc	tagtcttttta	aaccagttta
	8161	gagtgaaata	tatgtctatat	cagttttac	tttctcttagg	gagaaaaatt	aatttactag
25	8221	aaaggcatga	aatgtatcg	ggaagagtgg	ttaagactac	tgaagagaaa	tatttggaaa
	8281	ataagatttc	gatatcttct	tttttttta	gatggagtc	ggctctgtct	cccaaggctgg
	8341	agtgcagtgg	cgtaatctcg	gtcactgc	agctccgcct	cctgggttga	caccattttc
	8401	ctgcctcgc	ctccgtgat	gttgggacta	ccagtagatg	ggactacagg	cacctgccaa
	8461	cacccccggc	taattttttt	gtatttttag	tagagacggg	gtttcacat	gttagccagg
30	8521	atggcttgg	tctcttgacc	tgtgtatcc	cccccctcg	cctcccaaaag	tgctgcgatt
	8581	acaggcatga	gccacccgcgc	ctggccgtt	tcgatatttt	tcaaacttta	attcaaaaagc
	8641	actttgtct	gtgttctata	taaaaaacat	aataaaaaatt	gaaatgaaaag	aataattgtt
	8701	attataaaaag	tactagctt	cttttgtat	gattcagaat	atactaaatt	aactttttaa
	8761	aacacaactt	ttaaaaaat	aataaaacgtg	ttctgtatatt	ttta	

SEO ID NO: 53

Amino acid sequence of human CR1 encoded by the DNA sequence shown in SEQ ID NO: 52.

40 MGASSPRSPEVGPPAPGLPFCCGGSLAVVVLALPVAWGQCNAPEWLPFARPTNLTD
FEFFIGTYLNYECRPGYSGRPF\$IICLKNSVWTGAKDRCRRKSCRNPPDVNGMVHVIKG
IQFGSQIKYSCTKGYRLIGSSSATCIIISGDTVIWDNETPICDRIPCGLPPITNGDFIST
NRENFHGSVVTYRCNPGSRRKVFELVGEPSIYCTSNDQVGIWSGPAPQCIIPNKCTP
PNVENGLVSDNRSLFSLNEVVFRCPQPGFVMKGPRRVKCQALNKWEPELPSCSRVCQPP
PDVLHAERTQRDKDNFSPGQEVFYSCEPGYDLRGAASMRCTPQGDWSPAAPTCEVKSCDD
45 FMGQLLNGRVLFPVNLQLGAKVDFVCDLEGFKLGSSASYCVLAGMESLWNSSVPVCEQIF
CPSPPVIPNGRHGTGKPLEVFPFGKAVNYTCDFPHDRGTSFDLIGESTIRCTSDPQGNGVW
SSPAPRCGILGHQCQADPHFLFAKLKTQTNASDFPIGTSLKYECRPEYYGRPFSITCLDNL
VWSSPKDVCKRKSCKTPDPDVNGMVHVIDIQVGSRINYSCTTGHLIGHSSAECILSGN
AAHWSTKPPICQRIPCGLPPTIANGDFISTNRENFHGSVVTYRCNPGSRRKVFELVGE
50 PSIYCTSNDQVGIWSGPAPQCIIPNKCTPPNVENGILVSDNRSLFSLNEVVFRCPQGP
VMKGPRRVVKCQALNKWEPELPSCSRVCQPPPDLVHAERTQRDKDNFSPGQEVFYSCEPGY
DLRGAASMRCTPQGDWSPAAPTCEVKSCDDFMGQLLNGRVLFPVNLQLGAKVDFVCDEGF
QLKGSSASYCVLAGMESLWNSSVPVCEQIFCPSPPPVIPNGRHTGKPLEVFPFGKTVNYTC
DPHPDRGTSFDLIGESTIRCTSDPQGNGVWSSPAPRCGILGHQCQADPHFLFAKLKTQTN
55 SDFFIGTSLKYECPYGRPFSITCLDNLVWSSPKDVCKRKSCKTPDPDVNGMVHVID
IQVGSRINYSCTTGHLIGHSSAECILSGNAAHWSTKPPICQRIPCGLPPTIANGDFIST
NRENFHGSVVTYRCNPGSRRKVFELVGEPSIYCTSNDQVGIWSGPAPQCIIPNKCTP

PNVENGILVSDNRSLSLNEVVEFRCQPGFVMKGPRRVKCQALNKWEPELPSCSRVCQPP
 PDVLHAERTQRDKDNFSPGQEVFYSCEPGYDLRGAASMRCTPQGDWSPAAPTCEVKSCDD
 FMGQLLNNGRVLFPVNQLGAKVDFVCDEGFQLKGSSASYCVLAGMESLWNSSVPVCEQIF
 CPSPPVIPNNGRHTGKPLEVFPFGKAVNYTCDPHPDRGTSFDLIGESTIRCTSDPQGNGVW
 5 SSPAPRCGILGHQCAPDHFLFAKLKTQTNASDFPIGTSLKYECRPEYYGRPFSITCLDNL
 VWSSPKDVKRKSCCKTPPDVPNMGMVHITDIQVGSRINYSCCTTGHLIGHSSAECILSGN
 TAHWSTKPPICQRIPCGLPPTIANGDFISTNRENHYGSVVTYRCNLGSRGKVFELVGE
 PSIYCTSNDQVGWIWSGPAPQCIIPNKKTPPNVENGILVSDNRSLSLNEVVEFRCQPGF
 10 VMKGPRRVKCQALNKWEPELPSCSRVCQPPPPEILHGEHTPSHQDNFSPGQEVFYSCEPGY
 DLRGAASLHCTPQGDWSPEAPRCAVKSCDDFLGQLPHGRVLFPNLQLGAKVSFVCDEGF
 RLGSSSVSHCVLVGMRSLWNNSVPVCEHIFCPNPAPLNGRHTGTPSGDIPYGKEISYTC
 DPHPDRGMTFNLIGESTIRCTSDFHGNGWSSPAPRCELSVRAGHKTPEQFPPASPTIP
 INDPEPPVGTSLYECRPGYFGKMFISCLENLVWSSVEDNCRKSCGPPPEPFNGMVHI
 15 NTDTQFGSTVNYSNEGFRLLIGSPSTTLCVSGNNVTWDKKAPICEIIISCEPPPTISNGDF
 YSNRRTSFHNGTTVYQCHTGPDGEQLFELVGERSIYCTSKKDQVGVWSSPPRCISTNK
 CTAPEVENAIRVPGNRSFFSLTEIVRFRCQPGFVMGSHTVQCQTNGRWGPKLPHCSRVC
 QPPPEILHGEHTLSSHQDNFSPGQEVFYSCEPSYDLRGAASLHCTPQGDWSPEAPRCTVKS
 CDDPLQLPLHGRVLLPLNLQLGAKVSFVCDEGFRLKGRSASHCVLAGMKALWNSSVPVCE
 QIFCPNPPAIALNCRHTGTPFGDIPYGKEISYACDTHPDRGMTFNLIGESSIRCTSDRQGN
 20 GVWSSPAPRCELSVPAAACPDPPIKIQNGHYIGGHVSILYLPGMTISIYICDPGYLLVGKGFI
 CTDQGIWSQLDHYCKEVNCSPFLFMNGISKELEMKVYHYGDYVTLKEDGYTLEGPWS
 QCQADDRWDPPPLAKCTSRAHDALIVGTLSTGTIFILLIIFLSWIILKHRKGNNAHENPKE
 VAIHLHSQGGSSVHPRTLQTNNEENSRVLP

SEQ ID NO: 54

25 gi|18490996|ref|NM_000573.2| Homo sapiens complement component (3b/4b) receptor 1, including Knops blood group system (CR1), transcript variant F, mRNA

1 acactctggg cgccggacac aatgattggg cactcctatt ttcgtcgagc tttccctt
 61 atttcagttt tcttcagat caaatctggg ttgttagatgt gttggggag aatgggggccc
 121 tttctccaa gaagccccga gcctgtcggt ccgcggcgc cccgtctccc cttctgtgc
 181 ggaggatccc tgctggcggt tgggtgcgt cttgcgtgc cggtggcctg gggtaatgc
 241 aatggcccaag aatgcttcc atttgcagg cctaccaccc taactgtatgc gtttgagttt
 301 cccattggga catatctgaa ctatgtatgc cgcctgggtt attccggaaag accgtttct
 361 atcatctgcc taaaaaaactc agtctggact ggtctaagg acagggtgcag acgttaatca
 421 tgcgtataatc ctccagatcc tggtaatggc atgggtcatg tgcataaagg catccagttc
 481 ggatccaaa ttaaatattc ttgtactaaa ggataccgc tcattggttc ctcgtctgcc
 541 acatgcatac tctcaggta tactgtcatt tgggataatg aaacacctat ttgtacaga
 601 attccctgtg ggctacccccc caccatcacc aatggagatt tcattagcac caacagagag
 661 aattttcaatc atggatcagt ggtacatc cgcgtcaatc ctggaaagcgg agggagaaag
 721 gtgtttgagc ttgtgggtga gcccctccata tactgcacca gcaatgacga tcaagtggc
 781 atctggagcg gcccccccccc tcagtcatt atacctaaca aatgcacgc tccaaatgt
 841 gaaaatggaa tatttgtatc tgacaacaga agtttattt ccttaatgt atgttggag
 901 ttttaggtgtc agcctggctt tgcataaaa ggacccgc ggtgtaaatg ccaggccctg
 961 aacaaatggg agccggagct accaagctgc tccagggtat gtcagccacc tccagatgtc
 1021 ctgcgtgcg agcgtaccca aagggacaag gacaacttt cacctggca ggaagtgttc
 1081 tacagctgtg agccggcta cgacccatc ggggtctgtcgt ctatgcgtc cacacccag
 1141 ggagactgga gcccgtcgc cccacatgt gaagtgaaat cctgtatgc cttcatggc
 1201 caacttctta atggccgtgt gttatccca gtaaatctcc agttggagc aaaagtggat
 1261 ttgtttgtg atgaaggatt tcaattaaaa ggcagctgc ctgtttactg ttgtttggct
 1321 ggaatggaaa gcccggaa tagcagtgtt ccagtggtg aacaaatctt ttgtccaatg
 1381 cctccaggta ttccataatgg gagacacaca gggaaaccc tcgttttttggaa
 1441 aaagcgtaa attacacatg cgaccccccac ccagacagag ggacgagctt cgacccatc
 1501 ggagagagca ccatccgtc cacaagtgc cctcaaggga atgggttttgg gggcggcc
 1561 gcccctcgct gtggatttc gggtaactgt caagccccag atcattttctt gtttggcaag
 1621 ttggaaaaccc aaaccaatgc atctgacttt cccattggga catctttaaa gtacgaatgc
 1681 cgtccctgagt actacggag gccattctct atcacatgtc tagataaccc ggtctggca
 1741 agtcccaag atgtctgtaa acgttaatca tggtaaaactc ctccagatcc agtgaatggc
 1801 atggtgcatg tgatcacaga catccaggtt ggatccagaa tcaactattc ttgtactaca

1861 gggcacccgac tcattggtca ctcatctgtc gaatgtatcc tctcgcccaa tgctgccat
 1921 tggagcacga agccgc当地 ttgtcaacga attcccttgc ggctacccc caccatcgcc
 1981 aatggagatt tcattagcac caacagagag aattttact atggatcagt ggtgacctac
 2041 cgctgcaatc ctggaaagcgg agggagaaaag gtgttgagc ttgtgggtga gccctccata
 5 2101 tactgc当地 gcaatgc当地 tcaagtggc atctggagcg gcccccccccc tcagtgc当地
 2161 atacctaaca aatgc当地 gccc当地 atgttgc当地 gaaaatggaa tattggatc tgacaacaga
 2221 agcttattt ccttaaatga agttgtggag ttttagtgc当地 agcctggctt tgtcatgaaa
 2281 ggacccccc当地 gtgtgaagtg ccaggccctg aacaatggg agccggagct accaagctgc
 2341 tccagggtat gtc当地 cccatgtc ctgc当地 agcgtaccca aagggacaag
 10 2401 gacaactttt caccggc当地 ggaatgtt tacagtc当地 agccggctt tgacccatc
 2461 ggggctgc当地 ctatgc当地 cacccccc当地 ggagactgga gccc当地 cccatgt
 2521 gaagt当地 aatggaaat cctgtatgc当地 ttcatggc当地 caacttctt当地 atggccgtt gctatttcca
 2581 gtaaaatctcc agctggagc aaaagtggat ttgttgc当地 atgaaggatt tcaattaaaa
 2641 ggc当地 ctgc当地 ctgttattt ttttttgc当地 ggaatggaaat gctttggaa tagcagtt
 15 2701 ccagtc当地 gtgttgc当地 aacaaatctt ttgtccaaatg cctccatgtt ttccatatgg gagacacaca
 2761 gaaaaaccc当地 tggaaatgtt tcccttggaa aaagc当地 attacacatg cgacccccc当地
 2821 ccagacagag ggacgagctt cgacccatg ggagagagca ccatccgctg cacaagtgac
 2881 cctcaaggaa atggggtt gggc当地 gggc当地 gggc当地 gggc当地 gggc当地
 2941 caagccccc当地 atcatttctt gtttgc当地 ttgaaaatccc aaaccaatgc atctgactt
 20 3001 cccattgggaa catctt当地 aaatgtc ctgc当地 cgtc当地 ctttgc当地 actacgggag gccatttctt
 3061 atcacatgtc tagataaccc ggttgc当地 agtcccaatg atgttgc当地 acgtaaaatca
 3121 tggaaaatctt ctccagatcc agtgaatggc atggtgc当地 tgatcacaga catccaggat
 3181 ggatccagaa tcaactattt ttgtactaca gggc当地 cccatgtc ctcatctt
 3241 gaatgtatcc ttc当地 cccatgtc tactgc当地 tggagcacga agccgcaat ttgtcaacga
 25 3301 attcatttgc当地 ggctacccc当地 aaccatgc当地 aatggagatt tcaatgc当地 caacagagag
 3361 aattttactt atggatcagt ggtgacctac cgctgcaatc ttggaaatgc当地 agggagaaaag
 3421 gtgttgc当地 ttgtgggtga gccc当地 cccatgtc tactgc当地 gcaatgc当地 tcaatgc当地
 3481 atctggagcg gcccccccccc当地 tcaatgc当地 atacctaaca aatgc当地 cccatgt
 3541 gaaaatggaa tattggatc tgacaacaga agtttattt ctttaaatga agttgtggag
 30 3601 tttaggtgc当地 agcctggctt ttttgc当地 ggacccccc当地 gtgtgaatgc当地 ccaggccctg
 3661 aacaaatggg agccagatgtt accaagctgc当地 tccagggtt gtc当地 cccatgt
 3721 ctgc当地 gtgttgc当地 agcataccccc当地 aagccatc当地 gacaactttt cccatgt
 3781 tacagtc当地 agcctggctt tgacccatgtt gggc当地 cccatgt
 3841 ggagactgga gccc当地 gggc当地 cccgagatgtt gc当地 agtgc当地 ctttgc当地
 3901 caactccctc atggccgtt gctatttcca cttatctcc agcttgggaaat aaagggtt
 3961 ttgttgc当地 atgaagggtt tccatgtt ggc当地 cccatgtt ttgttgc当地
 4021 ggaatgagaa gccc当地 ttgtggaa taacagtgtt cctgttgc当地 aacatatctt ttgtccaaat
 4081 cctccatgtt cccatgtt gggc当地 gggc当地 gggc当地
 4141 aaagaaaatcatgtt tggccatgtt gggc当地 gggc当地
 40 4201 ggggagagca cccatgtt gggc当地 gggc当地
 4261 gccc当地 cccatgtt gggc当地 gggc当地
 4321 ttgttgc当地 ctacgatccc attaatgtc ttgttgc当地 cccatgt
 4381 tatgaatgtc ttgttgc当地 ttgttgc当地 agaaaactt
 4441 ttgttgc当地 ttgttgc当地 caactgtt gggc当地
 45 4501 ttcaatggaa ttgttgc当地 aacacatgtt acacatgtt gggc当地
 4561 tggccatgtt gggc当地 gggc当地
 4621 aatgttgc当地 gggc当地
 4681 accatatccca atggagactt ctacgatccc aatagaacat
 4741 gtaacttacc agtgc当地 tggccatgtt gggc当地
 50 4801 cggtcaatcatgtt atggccatgtt gggc当地
 4861 cggt当地 ttttgc当地 cccatgtt gggc当地
 4921 gggccatgtt gggc当地
 4981 ttgttgc当地 ttgttgc当地
 5041 ccacactgtt cccatgtt gggc当地
 55 5101 agccatc当地 gggc当地
 5161 gacctc当地 gggc当地
 5221 cccatgtt gggc当地
 5281 ctacttccatgtt gggc当地
 5341 cgatggatgtt gggc当地
 60 5401 agcactgtt gggc当地
 5461 agacacacag gggc当地
 5521 cccatgtt gggc当地
 5581 ctacttccatgtt gggc当地
 5641 agacacacag gggc当地
 5701 agacacacag gggc当地
 5761 gacctc当地 gggc当地
 5821 cccatgtt gggc当地
 5881 ctacttccatgtt gggc当地
 5941 agacacacag gggc当地
 5961 agacacacag gggc当地
 5981 ctacttccatgtt gggc当地
 6041 agacacacag gggc当地
 6101 agacacacag gggc当地
 6161 gacctc当地 gggc当地
 6221 cccatgtt gggc当地
 6281 ctacttccatgtt gggc当地
 6341 agacacacag gggc当地
 6401 agacacacag gggc当地
 6461 agacacacag gggc当地
 6521 cccatgtt gggc当地
 6581 ctacttccatgtt gggc当地
 6641 agacacacag gggc当地
 6701 agacacacag gggc当地
 6761 gacctc当地 gggc当地
 6821 cccatgtt gggc当地
 6881 ctacttccatgtt gggc当地
 6941 agacacacag gggc当地
 6961 agacacacag gggc当地
 6981 ctacttccatgtt gggc当地
 7041 agacacacag gggc当地
 7101 agacacacag gggc当地
 7161 gacctc当地 gggc当地
 7221 cccatgtt gggc当地
 7281 ctacttccatgtt gggc当地
 7341 agacacacag gggc当地
 7401 agacacacag gggc当地
 7461 agacacacag gggc当地
 7521 cccatgtt gggc当地
 7581 ctacttccatgtt gggc当地
 7641 agacacacag gggc当地
 7701 agacacacag gggc当地
 7761 gacctc当地 gggc当地
 7821 cccatgtt gggc当地
 7881 ctacttccatgtt gggc当地
 7941 agacacacag gggc当地
 7961 agacacacag gggc当地
 7981 ctacttccatgtt gggc当地
 8041 agacacacag gggc当地
 8101 agacacacag gggc当地
 8161 gacctc当地 gggc当地
 8221 cccatgtt gggc当地
 8281 ctacttccatgtt gggc当地
 8341 agacacacag gggc当地
 8401 agacacacag gggc当地
 8461 agacacacag gggc当地
 8521 cccatgtt gggc当地
 8581 ctacttccatgtt gggc当地
 8641 agacacacag gggc当地
 8701 agacacacag gggc当地
 8761 gacctc当地 gggc当地
 8821 cccatgtt gggc当地
 8881 ctacttccatgtt gggc当地
 8941 agacacacag gggc当地
 8961 agacacacag gggc当地
 8981 ctacttccatgtt gggc当地
 9041 agacacacag gggc当地
 9101 agacacacag gggc当地
 9161 gacctc当地 gggc当地
 9221 cccatgtt gggc当地
 9281 ctacttccatgtt gggc当地
 9341 agacacacag gggc当地
 9401 agacacacag gggc当地
 9461 agacacacag gggc当地
 9521 cccatgtt gggc当地
 9581 ctacttccatgtt gggc当地
 9641 agacacacag gggc当地
 9701 agacacacag gggc当地
 9761 gacctc当地 gggc当地
 9821 cccatgtt gggc当地
 9881 ctacttccatgtt gggc当地
 9941 agacacacag gggc当地
 9961 agacacacag gggc当地
 9981 ctacttccatgtt gggc当地
 10041 agacacacag gggc当地
 10101 agacacacag gggc当地
 10161 gacctc当地 gggc当地
 10221 cccatgtt gggc当地
 10281 ctacttccatgtt gggc当地
 10341 agacacacag gggc当地
 10401 agacacacag gggc当地
 10461 agacacacag gggc当地
 10521 cccatgtt gggc当地
 10581 ctacttccatgtt gggc当地
 10641 agacacacag gggc当地
 10701 agacacacag gggc当地
 10761 gacctc当地 gggc当地
 10821 cccatgtt gggc当地
 10881 ctacttccatgtt gggc当地
 10941 agacacacag gggc当地
 10961 agacacacag gggc当地
 10981 ctacttccatgtt gggc当地
 11041 agacacacag gggc当地
 11101 agacacacag gggc当地
 11161 gacctc当地 gggc当地
 11221 cccatgtt gggc当地
 11281 ctacttccatgtt gggc当地
 11341 agacacacag gggc当地
 11401 agacacacag gggc当地
 11461 agacacacag gggc当地
 11521 cccatgtt gggc当地
 11581 ctacttccatgtt gggc当地
 11641 agacacacag gggc当地
 11701 agacacacag gggc当地
 11761 gacctc当地 gggc当地
 11821 cccatgtt gggc当地
 11881 ctacttccatgtt gggc当地
 11941 agacacacag gggc当地
 11961 agacacacag gggc当地
 11981 ctacttccatgtt gggc当地
 12041 agacacacag gggc当地
 12101 agacacacag gggc当地
 12161 gacctc当地 gggc当地
 12221 cccatgtt gggc当地
 12281 ctacttccatgtt gggc当地
 12341 agacacacag gggc当地
 12401 agacacacag gggc当地
 12461 agacacacag gggc当地
 12521 cccatgtt gggc当地
 12581 ctacttccatgtt gggc当地
 12641 agacacacag gggc当地
 12701 cccatgtt gggc当地
 12761 ctacttccatgtt gggc当地
 12821 agacacacag gggc当地
 12881 ctacttccatgtt gggc当地
 12941 agacacacag gggc当地
 13001 cccatgtt gggc当地
 13061 ctacttccatgtt gggc当地
 13121 agacacacag gggc当地
 13181 ctacttccatgtt gggc当地
 13241 agacacacag gggc当地
 13301 cccatgtt gggc当地
 13361 agacacacag gggc当地
 13421 ctacttccatgtt gggc当地
 13481 agacacacag gggc当地
 13541 agacacacag gggc当地
 13601 cccatgtt gggc当地
 13661 agacacacag gggc当地
 13721 ctacttccatgtt gggc当地
 13781 agacacacag gggc当地
 13841 agacacacag gggc当地
 13901 cccatgtt gggc当地
 13961 agacacacag gggc当地
 14021 ctacttccatgtt gggc当地
 14081 agacacacag gggc当地
 14141 agacacacag gggc当地
 14201 cccatgtt gggc当地
 14261 agacacacag gggc当地
 14321 ctacttccatgtt gggc当地
 14381 agacacacag gggc当地
 14441 agacacacag gggc当地
 14501 cccatgtt gggc当地
 14561 agacacacag gggc当地
 14621 ctacttccatgtt gggc当地
 14681 agacacacag gggc当地
 14741 agacacacag gggc当地
 14801 cccatgtt gggc当地
 14861 agacacacag gggc当地
 14921 ctacttccatgtt gggc当地
 14981 agacacacag gggc当地
 15041 cccatgtt gggc当地
 15101 agacacacag gggc当地
 15161 ctacttccatgtt gggc当地
 15221 agacacacag gggc当地
 15281 ctacttccatgtt gggc当地
 15341 agacacacag gggc当地
 15401 cccatgtt gggc当地
 15461 agacacacag gggc当地
 15521 cccatgtt gggc当地
 15581 agacacacag gggc当地
 15641 ctacttccatgtt gggc当地
 15701 agacacacag gggc当地
 15761 ctacttccatgtt gggc当地
 15821 agacacacag gggc当地
 15881 ctacttccatgtt gggc当地
 15941 agacacacag gggc当地
 15961 agacacacag gggc当地
 15981 ctacttccatgtt gggc当地
 16041 agacacacag gggc当地
 16101 agacacacag gggc当地
 16161 ctacttccatgtt gggc当地
 16221 agacacacag gggc当地
 16281 ctacttccatgtt gggc当地
 16341 agacacacag gggc当地
 16401 cccatgtt gggc当地
 16461 agacacacag gggc当地
 16521 ctacttccatgtt gggc当地
 16581 agacacacag gggc当地
 16641 ctacttccatgtt gggc当地
 16701 agacacacag gggc当地
 16761 ctacttccatgtt gggc当地
 16821 agacacacag gggc当地
 16881 ctacttccatgtt gggc当地
 16941 agacacacag gggc当地
 16961 agacacacag gggc当地
 16981 ctacttccatgtt gggc当地
 17041 agacacacag gggc当地
 17101 agacacacag gggc当地
 17161 ctacttccatgtt gggc当地
 17221 agacacacag gggc当地
 17281 ctacttccatgtt gggc当地
 17341 agacacacag gggc当地
 17401 cccatgtt gggc当地
 17461 agacacacag gggc当地
 17521 ctacttccatgtt gggc当地
 17581 agacacacag gggc当地
 17641 ctacttccatgtt gggc当地
 17701 agacacacag gggc当地
 17761 ctacttccatgtt gggc当地
 17821 agacacacag gggc当地
 17881 ctacttccatgtt gggc当地
 17941 agacacacag gggc当地
 17961 agacacacag gggc当地
 17981 ctacttccatgtt gggc当地
 18041 agacacacag gggc当地
 18101 agacacacag gggc当地
 18161 ctacttccatgtt gggc当地
 18221 agacacacag gggc当地
 18281 ctacttccatgtt gggc当地
 18341 agacacacag gggc当地
 18401 cccatgtt gggc当地
 18461 agacacacag gggc当地
 18521 ctacttccatgtt gggc当地
 18581 agacacacag gggc当地
 18641 ctacttccatgtt gggc当地
 18701 agacacacag gggc当地
 18761 ctacttccatgtt gggc当地
 18821 agacacacag gggc当地
 18881 ctacttccatgtt gggc当地
 18941 agacacacag gggc当地
 18961 agacacacag gggc当地
 18981 ctacttccatgtt gggc当地
 19041 agacacacag gggc当地
 19101 agacacacag gggc当地
 19161 ctacttccatgtt gggc当地
 19221 agacacacag gggc当地
 19281 ctacttccatgtt gggc当地
 19341 agacacacag gggc当地
 19401 cccatgtt gggc当地
 19461 agacacacag gggc当地
 19521 ctacttccatgtt gggc当地
 19581 agacacacag gggc当地
 19641 ctacttccatgtt gggc当地
 19701 agacacacag gggc当地
 19761 ctacttccatgtt gggc当地
 19821 agacacacag gggc当地
 19881 ctacttccatgtt gggc当地
 19941 agacacacag gggc当地
 19961 agacacacag gggc当地
 19981 ctacttccatgtt gggc当地
 20041 agacacacag gggc当地
 20101 agacacacag gggc当地
 20161 ctacttccatgtt gggc当地
 20221 agacacacag gggc当地
 20281 ctacttccatgtt gggc当地
 20341 agacacacag gggc当地
 20401 cccatgtt gggc当地
 20461 agacacacag gggc当地
 20521 ctacttccatgtt gggc当地
 20581 agacacacag gggc当地
 20641 ctacttccatgtt gggc当地
 20701 agacacacag gggc当地
 20761 ctacttccatgtt gggc当地
 20821 agacacacag gggc当地
 20881 ctacttccatgtt gggc当地
 20941 agacacacag gggc当地
 20961 agacacacag gggc当地
 20981 ctacttccatgtt gggc当地
 21041 agacacacag gggc当地
 21101 agacacacag gggc当地
 21161 ctacttccatgtt gggc当地
 21221 agacacacag gggc当地
 21281 ctacttccatgtt gggc当地
 21341 agacacacag gggc当地
 21401 cccatgtt gggc当地
 21461 agacacacag gggc当地
 21521 ctacttccatgtt gggc当地
 21581 agacacacag gggc当地
 21641 ctacttccatgtt gggc当地
 21701 agacacacag gggc当地
 21761 ctacttccatgtt gggc当地
 21821 agacacacag gggc当地
 21881 ctacttccatgtt gggc当地
 21941 agacacacag gggc当地
 21961 agacacacag gggc当地
 21981 ctacttccatgtt gggc当地
 22041 agacacacag gggc当地
 22101 agacacacag gggc当地
 22161 ctacttccatgtt gggc当地
 22221 agacacacag gggc当地
 22281 ctacttccatgtt gggc当地
 22341 agacacacag gggc当地
 22401 cccatgtt gggc当地
 22461 agacacacag gggc当地
 22521 ctacttccatgtt gggc当地
 22581 agacacacag gggc当地
 22641 ctacttccatgtt gggc当地
 22701 agacacacag gggc当地
 22761 ctacttccatgtt gggc当地
 22821 agacacacag gggc当地
 22881 ctacttccatgtt gggc当地
 22941 agacacacag gggc当地
 22961 agacacacag gggc当地
 22981 ctacttccatgtt gggc当地
 23041 agacacacag gggc当地
 23101 agacacacag gggc当地
 23161 ctacttccatgtt gggc当地
 23221 agacacacag gggc当地
 23281 ctacttccatgtt gggc当地
 23341 agacacacag gggc当地
 23401 cccatgtt gggc当地
 23461 agacacacag gggc当地
 23521 ctacttccatgtt gggc当地
 23581 agacacacag gggc当地
 23641 ctacttccatgtt gggc当地
 23701 agacacacag gggc当地
 23761 ctacttccatgtt gggc当地
 23821 agacacacag gggc当地
 23881 ctacttccatgtt gggc当地
 23941 agacacacag gggc当地
 23961 agacacacag gggc当地
 23981 ctacttccatgtt gggc当地
 24041 agacacacag gggc当地
 24101 agacacacag gggc当地
 24161 ctacttccatgtt gggc当地
 24221 agacacacag gggc当地
 24281 ctacttccatgtt gggc当地
 24341 agacacacag gggc当地
 24401 cccatgtt gggc当地
 24461 agacacacag gggc当地
 24521 ctacttccatgtt gggc当地
 24581 agacacacag gggc当地
 24641 ctacttccatgtt gggc当地
 24701 agacacacag gggc当地
 24761 ctacttccatgtt gggc当地
 24821 agacacacag gggc当地
 24881 ctacttccatgtt gggc当地
 24941 agacacacag gggc当地
 24961 agacacacag gggc当地
 24981 ctacttccatgtt gggc当地
 25041 agacacacag gggc当地
 25101 agacacacag gggc当地
 25161 ctacttccatgtt gggc当地
 25221 agacacacag gggc当地
 25281 ctacttccatgtt gggc当地
 25341 agacacacag gggc当地
 25401 cccatgtt gggc当地
 25461 agacacacag gggc当地
 25521 ctacttccatgtt gggc当地
 25581 agacacacag gggc当地
 25641 ctacttccatgtt gggc当地
 25701 agacacacag gggc当地
 25761 ctacttccatgtt gggc当地
 25821 agacacacag gggc当地
 25881 ctacttccatgtt gggc当地
 25941 agacacacag gggc当地
 25961 agacacacag gggc当地
 25981 ctacttccatgtt gggc当地
 26041 agacacacag gggc当地
 26101 agacacacag gggc当地
 26161 ctacttccatgtt gggc当地
 26221 agacacacag gggc当地
 26281 ctacttccatgtt gggc当地
 26341 agacacacag gggc当地
 26401 cccatgtt gggc当地
 26461 agacacacag gggc当地
 26521 ctacttccatgtt gggc当地
 26581 agacacacag gggc当地
 26641 ctacttccatgtt gggc当地
 26701 agacacacag gggc当地
 26761 ctacttccatgtt gggc当地
 26821 agacacacag gggc当地
 26881 ctacttccatgtt gggc当地
 26941 agacacacag gggc当地
 26961 agacacacag gggc当地
 26981 ctacttccatgtt gggc当地
 27041 agacacacag gggc当地
 27101 agacacacag gggc当地
 27161 ctacttccatgtt gggc当地
 27221 agacacacag gggc当地
 27281 ctacttccatgtt gggc当地
 27341 agacacacag gggc当地
 27401 cccatgtt gggc当地
 27461 agacacacag gggc当地
 27521 ctacttccatgtt gggc当地
 27581 agacacacag gggc当地
 27641 ctacttccatgtt gggc当地
 27701 agacacacag gggc当地
 27761 ctacttccatgtt gggc当地
 27821 agacacacag gggc当地
 27881 ctacttccatgtt gggc当地
 27941 agacacacag gggc当地
 27961 agacacacag gggc当地
 27981 ctacttccatgtt gggc当地
 28041 agacacacag gggc当地
 28101 agacacacag gggc当地
 28161 ctacttccatgtt gggc当地
 28221 agacacacag gggc当地
 28281 ctacttccatgtt gggc当地
 28341 agacacacag gggc当地
 28401 cccatgtt gggc当地
 28461 agacacacag gggc当地
 28521 ctacttccatgtt gggc当地
 28581 agacacacag gggc当地
 28641 ctacttccatgtt gggc当地
 28701 agacacacag gggc当地
 28761 ctacttccatgtt gggc当地
 28821 agacacacag gggc当地
 28881 ctacttccatgtt gggc当地
 28941 agacacacag gggc当地
 28961 agacacacag gggc当地
 28981 ctacttccatgtt gggc当地
 29041 agacacacag gggc当地
 29101 agacacacag gggc当地
 29161 ctacttccatgtt gggc当地
 29221 agacacacag gggc当地
 29281 ctacttccatgtt gggc当地
 29341 agacacacag gggc当地
 29401 cccatgtt gggc当地
 29461 agacacacag gggc当地
 29521 ctacttccatgtt gggc当地
 29581 agacacacag gggc当地
 29641 ctacttccatgtt gggc当地
 29701 agacacacag gggc当地
 29761 ctacttccatgtt gggc当地
 29821 agacacacag gggc当地
 29881 ctacttccatgtt gggc当地
 29941 agacacacag gggc当地
 29961 agacacacag gggc当地
 29981 ctacttccatgtt gggc当地
 30041 agacacacag gggc当地
 30101 agacacacag gggc当地
 30161 ctacttccatgtt gggc当地
 30221 agacacacag gggc当地
 30281 ctacttccatgtt gggc当地
 30341 agacacacag gggc当地
 30401 cccatgtt gggc当地
 30461 agacacacag gggc当地
 30521 ctacttccatgtt gggc当地
 30581 agacacacag gggc当地
 30641 ctacttccatgtt gggc当地
 30701 agacacacag gggc当地
 30761 ctacttccatgtt gggc当地
 30821 agacacacag gggc当地
 30881 ctacttccatgtt gggc当地
 30941 agacacacag gggc当地
 30961 agacacacag gggc当地
 30981 ctacttccatgtt gggc当地
 31041 agacacacag gggc当地
 31101 agacacacag gggc当地
 31161 ctacttccatgtt gggc当地
 31221 agacacacag gggc当地
 31281 ctacttccatgtt gggc当地
 31341 agacacacag gggc当地
 31401 cccatgtt gggc当地
 31461 agacacacag gggc当地
 31521 ctacttccatgtt gggc当地
 31581 agacacacag gggc当地
 31641 ctacttccatgtt gggc当地
 31701 agacacacag gggc当地
 31761 ctacttccatgtt gggc当地
 31821 agacacacag gggc当地
 31881 ctacttccatgtt gggc当地
 31941 agacacacag gggc当地
 31961 agacacacag gggc当地
 31981 ctacttccatgtt gggc当地
 32041 agacacacag gggc当地
 32101 agacacacag gggc当地
 32161 ctacttccatgtt gggc当地
 32221 agacacacag gggc当地
 32281 ctacttccatgtt gggc当地
 32341 agacacacag gggc当地
 32401 cccatgtt gggc当地
 32461 agacacacag gggc当地
 32521 ctacttccatgtt gggc当地
 32581 agacacacag gggc当地
 32641 ctacttccatgtt gggc当地
 32701 agacacacag gggc当地
 32761 ctacttccatgtt gggc当地
 32821 agacacacag gggc当地
 32881 ctacttccatgtt gggc当地
 32941 agacacacag gggc当地
 33001 cccatgtt gggc当地
 33061 agacacacag gggc当地
 33121 ctacttccatgtt gggc当地
 33181 agacacacag gggc当地
 33241 ctacttccatgtt gggc当地
 33301 agacacacag gggc当地
 33361 ctacttccatgtt gggc当地
 33421 agacacacag gggc当地
 33481 ctacttccatgtt gggc当地
 33541 agacacacag gggc当地
 33601 cccatgtt gggc当地
 33661 ag

5521 gacacccacc cagacagagg gatgacccattt aacccatttgggagagctc catccgctgc
 5581 acaagtgacc ctcaaggaa tggggtttgg agcagccctg cccctcgctg tgaacttct
 5641 gtccctgctg cctgcccaaca tccacccaag atccaaaacg ggcattacat tggaggacac
 5701 gtatcttat atcttcctgg gatgacaatc agtacactt gtgaccccccgttacacgttta
 5 5761 gttggaaagg gtttcatatctt ctgtacagac cagggaatcttggagccatttggatcattat
 5821 tgcaaaagaat taaattgttag ctccccactg tttatgaatg gaatctcgaa ggagttagaa
 5881 ataaaaaaag tatatcacta tggagattat gtgactttga agtgtgaaga tgggtatact
 5941 ctgaaaggca gttccctggag ccagtgcac gccggatgaca gatgggaccc tcctctggcc
 6001 aaatgtaccc tctgtgcaca tgatgctctc atagttggca ctttatctgg tacgatcttc
 10 6061 ttatatttac tcatacatatctt cttcttgg ataattctaa agcacagaaaa aggcaataat
 6121 gcacatgaaa accctaaaga agtggctatc catttacatt ctcaggaggaggcagcagcggt
 6181 catccccgaa ctctgcaaac aaatgaagaa aatagcagggttcccttgcacaaagatact
 6241 atacagctga agaacatctc gaatacaatt ttggggaaaggagccat tggatcttcaac
 6301 aeaatcagat ctgagcttca taaagtcttgaatgtactt cacagagacg cagacatgtg
 15 6361 cacttgaaga tgctgcccccttcccttggatcttgcacaaagcttgccttttgatgtgcgt
 6421 cactgtgaaa ccccccccttcttgcctgtgttttttttttttttttttttttttttttttttttttt
 6481 aaagactgca tttaggagat agaaaaatagt ttggattact taaaggaata aggtgttgc
 6541 tggatatttcttggatcttgcgttt
 6601 gggctcagta agaagagctt ggaaaaatgca gaaagttatg aaaaataagt cacttataat
 20 6661 tatgtctacct actgataacc actcctaata ttttgcattca ttttctgcctt atcttcttc
 6721 acatatgtt ttttttacat acgtactttt ccccccttag ttgttttctt tttatattttat
 6781 agagcagaac cctagttttt taaacagttt agagtggaaat atatgtata tcagttttta
 6841 ctttctcttag ggagaaaaat taattttacta gaaaggatcg aatgtatcat gggaaagatgt
 6901 gttaaagacta ctgaaagagaa atatggaa aataagattt cgatatctt ttttttttttttt
 25 6961 agatggagtc tggcttgc tccctggatcttgcgttttttttttttttttttttttttttttttt
 7021 aacgtccccc tccctggatcttgcgttttttttttttttttttttttttttttttttttttttt
 7081 accagtagat gggactacag gcacccgttca acaccccccgg ctaatttttt tttttttttt
 7141 gtagagacgg gtttttccacatgtttagccat gatggcttgc atcttgcac ttcgtatcc
 7201 acccgcccttgc tccctccaaaatgttgcgtatcaggatcg accaccggcgc cctggccgct
 30 7261 ttcgatattt tctaaactttaattcaaaatgcaacttgc ttttttttttttttttttttttttt
 7321 taataaaaaat tgaaaatgaaa gaataattgt tattataaaaatgacttagctt actttttgtat
 7381 ggattcagaa tatactaaaat taatctttaaaatcacaact ttttttttttttttttttttttt
 7441 taataaaatgttgcatatt

SEQ ID NO: 55

35 Amino acid sequence of human CR1 variant ORF number 1 encoded by the DNA sequence shown in SEQ ID NO: 54.

MGASSPRSPPEPVGPPAPGLPCCGGSLLAVVVLLALPVAVGQCNAPPEWLPFARPTNLTD
 FEFPIGTYLNYYCRPGYSGRPFSTIICLKNVSWTGAKDRCRRKSCRNPPDPVNGMVHVIKG
 IQFGSQIKYSCTKGYRLIGSSSATCIIISGDTVIWDNETPICDRIPCGLPPTTNGDFIST
 40 NRENFHGSVVTYRCNPNGGRRKVFLVGEPSIYCTSNDQVGIWSGPAPQCIIPNKCTP
 PNVENGILVSDNRSLFSLNEVVEFRCQPGFVMKGPRRVKCQALNKWEPELPSCSRVCQPP
 PDVLHAERTQRDKDNFSPGQEVFYSCPEQYDLRGAASMRCTPQGDWSPAAPTCEVKSCDD
 FMGQLLNGRVLFPVNQLQGAKVDFVCDEGFQLKGSSASYCVLAGMESLWNSSVPVCEQIF
 CPSPPVIPNGRHTGKPLEVFPFGKAVNYTCDPHPDRGTSFDLIGESTIRCTSDPQGNGVW
 45 SSPAPRCGILGHQCQAPDHFLFAKLKTQTNASDFFPIGTSILKYECRPEYYGRPFSTICLDNL
 VWSSEPKDVCKRKSCCKTTPDPVNGMVHVITDIQVGSRINYSCTTGHLIGHSSAECILSGN
 AAHWSTKPPICQRIPCGLPPTIANGDFISTNRENFHGSVVTYRCNPNGGRRKVFLVGE
 PSIYCTSNDQVGIWSGPAPQCIIPNKCTPPNVENGILVSDNRSLFSLNEVVEFRCQPGF
 VMKGPRRVKCQALNKWEPELPSCSRVCQFPDPVNLHAEERTQRDKDNFSPGQEVFYSCPEQY
 50 DLRGAASMRCTPQGDWSPAAPTCEVKSCDDFMGQLLNGRVLFPVNQLQGAKVDFVCDEGF
 QLKGSASASYCVLAGMESLWNSSVPVCEQIFCPSPPPVIPNGRHTGKPLEVFPFGKAVNYTC
 DPHPDRGTSFDLIGESTIRCTSDPQGNGVWSSPAPRCGILGHQCQAPDHFLFAKLKTQTN
 SDFFPIGTSILKYECRPEYYGRPFSTICLDNLVWSSPKDVKRKSCCKTTPDPVNGMVHVIID
 IQVGSRINYSCTTGHLIGHSSAECILSGNTAHWSTKPPICQRIPCGLPPTIANGDFIST
 55 NRENFHGSVVTYRCNPNGGRRKVFLVGEPSIYCTSNDQVGIWSGPAPQCIIPNKCTP
 PNVENGILVSDNRSLFSLNEVVEFRCQPGFVMKGPRRVKCQALNKWEPELPSCSRVCQPP
 PEILHGEGHTPSHQDNFSPGQEVFYSCPEQYDLRGAASLHCTPQGDWSPEAPRCAVKSCDD

FLGQLPHGRVLFFPLNLQLGAKVSPVCDEGFRLKGSSVSHCVLVGMRSLWNNSVPVCEHIF
 CPNPPA1LNGRHTGTPSGDIPYGKEISYTCDPHPDRGMFTNLIGESTIRCTSDPHGNVW
 SSPAPRCELVRAGHCKTPEQFPFASPTIPINDFEFPVGTSLNYECRPGYFGKMFISICL
 ENLVWSSVEDNCRRKSCGPPPEPFNGMVHINTDTQFGSTVNYSNEGFRLLIGSPSTTCVL
 5 SGNNVTWDKKAPICEIIISCEPPPPTISNGDPYSNNRTSFHNGTVVTVQCHTGPDGEQLFEL
 VGERSIYCTSCKDDQGVWSSPPPRCISTNKCTAPEVENAIRVPGNRSSFLTEIIRFRCQ
 PGFVMGSHTVQCQTNGRWGPKLPHCSRVCQPPPPEILHGEHTLSHQDNFSPGQEVFYSC
 PSYDLRGAASLRCTPQGDWSPEAPRCTVKSCDDFLGQLPHGRVLLPLNLQLGAKVSVCD
 EGFLRKGRSASHCVLAGMKALWNSSVPVCEQIFCPNPPIALNGRHTGTPFGDIPYGKEIS
 10 YACDTHPDRGMFTNLIGESSIRCTSDPQNGVWSSPAPRCELSPVAAACPHEPKIQNQHYI
 GGHVSLYLPGMTISYTCDPGYLLVGKGFIFCTDQGIWSQLDHYCKEVNCSFPLFMNGISK
 ELEMKKVYHYGDYVTLKCEDGYTLEGSPWSQCADDRWDPPLAKCTSRAHDALIVGTLSG
 TIPPILLIIFLSWIILKHRKGNNAHENPKEVAIHLHSQGGSSVHPRTLQTNNEENSRVLP

SEQ ID NO: 56

15 gi|27262658|ref|NM_005211.2| Homo sapiens colony stimulating factor 1 receptor, formerly McDonough feline sarcoma viral (v-fms) oncogene homolog (CSF1R), mRNA

1 gaaggccaga cagagtgtcc aaaagcgtga gagcacgaaag tgaggagaag gtggagaaga
 61 gagaagagga agaggaagag gaagagagga agcggaggaa actgcggcca ggctaaaagg
 121 ggaagaagag gatcagccca aggaggagga agaggaaaaac aagacaaaaca gccagtgcag
 181 aggagagggaa cgtgtgtcca gtgtcccgat ccctgcggag cttagtagctg agagctctgt
 241 gcccctggca ctttcgcggcc ctgcacactc ctgcacttc cccacccgagg ccatggggcc
 301 aggagttctg ctgctcctgc tggtgccac agcttggcat ggtcaggaa tcccaagtat
 361 agagccccgt gtccctgagc tggtcgtgaa gccaggagca acggtgacct tgcgtatgt
 421 gggcaatggc agcgtggaaat gggatggccc cccatcacct cactggaccc tgcgtatctgt
 481 tggctccagc agcatccatca gcaccaacaa cgctacccatc caaaacacgg ggacccatcg
 541 ctgcactgag cctggagacc ccctggggagg cagcgcggcc atccacccatc atgtcaaaga
 601 ccctggcccg ccctggaaacg tgcttagcaca ggaggtggtc gtgttcgagg accaggacgc
 661 actactgcgc tgcgtatccatca cagacccgggt gctggaaagca ggcgttcgc tggtcgtat
 721 gctggcccg ccctccatgc gccacaccaa ctactccatc tggccctggc atggccatcg
 781 catccacagg gccaagttca ttccatgc ggcactatcaa tgcgtatccatc tggatgggtgg
 841 caggaagggtg atgtccatca gcatccgggt gaaagtgcag aaagtcatcc cagggcccccc
 901 agccttgaca ctgggtccatc cagacgtgggt gggatccatc ggggaggctg cccagatcg
 961 gtgcgtccatc agcagcgttg atgttactt tgatgttccatc ctccaaacaca acaacaccaa
 1021 gctcgcaatc cctcaacaaat ctgacttca taataaccgt taccaaaaaaat tcctgaccct
 1081 caacccatcgat caagttagatt tccaaacatgc cggcaactac tcctgcgtgg ccagcaacgt
 1141 gcaggccaaat cactccacccatc ccatgttccatc cccgggtggta gagatgtccatc acttgcactt
 1201 gagctctgat cagaacccatc tccaggagggt gaccgtgggg gaggggatccatc acctcaaaat
 1261 catgggtggat gcttacccatc gcttgcacccatc ttttaacttgg accttgcactt gacccttttcc
 1321 tgaccaccatc cctgagccatc agcttgcata tgcgtatccatc aaggacacat acaggcacac
 1381 cttcacccatc tctctggccatc gcctgaagcc ctctgaggct ggcgcgtact ctttctggc
 1441 cagaaacccatc ggaggcttggat gagctctgac gtttgagcttccatc accttgcatc accccccaga
 1501 ggtaaggctc atatggacat tcatcaacatgc ctctggccatc cttttgtgtg ctgcctctgg
 1561 gtaccccccac cccaaacatgc catggctcaatc gtcagttggc cacactgtata ggtgtatgt
 1621 ggcggccatc ctgcaggatccatc gggatgacccatc accttgcatc gtcctgagcc aggaggccat
 1681 ccacaaggatc acgggtgcaga gcctgctgac tggatggacc ttagagcaca accaaacatca
 1741 cgaggatgcagg gcccacaaca gcgtggggagg tggctctgg gccttcataccatc ctgcctctgc
 1801 aggagccacatc acggatccatc cggatgaggatc ccttccatca ccagtgggtgg tgcctgcata
 1861 gtccatcatgc gccttgcata tgcgtatccatc cctgctgcata ttgtacaatgt ataaggatggaa
 1921 gcccacatgc caggatccatc ggaagatcat cggatgtatc gaggatggccatc gttataatccat
 1981 catcgacccatc acggatgtatc cttacaacatgc gaaatggggat tttccatccatc acaacatgc
 2041 gtttggtaat accctccatc ctggaggatccatc tggggatggatc gttggaggccatc cggccatccat
 2101 tctggccatc gaggatgtatc tccatccatc ggcgtatccatc ggcgtatccatc atgtgtatccatc
 2161 tgcgtatccatc aaggatggccatc tcatgtccatc gtcgtatccatc atggatccatc tggggccatc
 2221 cgagaacatc gtcaacccatc tggggatggccatc tccatccatc ggcgtatccatc tggatggatccat
 2281 ggaggatgtatc tgcgtatccatc accttgcata ctttctgcata agggatggccatc aggccatccat
 2341 gggacccatc ctggatccatc gccaggatccatc cgaggatggccatc gtcgtatccatc agaacatccat
 2401 cttccatccatc aaatatgtatc gcaatggccatc tggatggatccatc agggatggccatc tggatggatccat

2461 tgtggagatg aggctgtctt ccacttcttc aaatgactcc ttctctgagc aagacctgga
 2521 caaggaggat ggacggcccc tggagctccg ggacctgctt cacttctcca gccaagtgc
 2581 ccagggcatg gccttcctcg ttccaaagaa ttgcattccac cgggacgtgg cagcgcgtaa
 2641 cgtgctgttg accaatggtc atgtggccaa gattggggac ttccggctgg cttagggacat
 5 2701 catgaatgac tccaactaca ttgtcaaggga caatggccgc ctgcctgtga agtggatgac
 2761 cccagagagc atcttgcact gtgtctacac ggttcagagc gacgtctggc cctatggcat
 2821 cttctctgg gagatcttct cacttgggtc gaatccetac cttggcatcc tggtaacag
 2881 caagttcttat aaactggtga aggtatggata ccaaattggcc cagcctgcac ttggccaaaa
 2941 gaatataatac agcatcatgc aggcctgtcg ggccttggag cccacccaca gacccaccc
 10 3001 ccagcagatc tgctcttcc ttcaggagca ggcccaagag gacaggagag agcgggacta
 3061 taccaatctg ccgagcagca gcagaagegg tggcagcggc accagcagca gtgagctgga
 3121 ggaggagagc tctagtgcac acctgacactg ctgcgagca ggggatatcg cccagccctt
 3181 gctgcagccc aacaactatc agttctgtcg aggaggatggc gacaggagat accactctcc
 3241 cttctctccaa acttcaactc ctccatggat gggcgacac ggggagaaca tacaaactct
 15 3301 gccttcggtc atttactca acagctcggc ccagctctga aacttggaa ggtgaggatgg
 3361 tcaggggagg tcagaggatc ccacttctcg agcatggcc atcaactgcca gtcaggggct
 3421 ggggctgag ccctcacccc cccctccctt actgttctca tgggttggc ctctgtttg
 3481 ctatgccaac tagtagaacc ttctttctca atcccccttat ctcatggaa atggactgac
 3541 tttatgcca tgaagtcccc aggagctaca ctgataactga gaaaaccagg ctctttgggg
 20 3601 cttagacagac tggcagagag ttagatctcc ctctctgaga ggagcagcag atgtcacac
 3661 accacactca gtcaggcccc cttggagcag gatggctect ctaagaatct cacaggaccc
 3721 cttatgtctt gcccatacg ccccttcac tccacagcct cacccttccc accccatcac
 3781 tggtaactgtc gtaatgagcc aagtggcagc taaaagtgg ggtgttctg cccagtcccc
 3841 tcattctgg ctagaaggca ggggaccttg gcatgtggc gcccacacca agcaggaagc
 25 3901 acaaactccc ccaagctgac tcatacctaact taacagtcac gccgtggat gtctctgtcc
 3961 acattaaact aacagcatta atgca

SEQ ID NO: 57

Amino acid sequence of human CSFR1 encoded by the DNA sequence shown in SEQ ID NO: 56.

30 MGPGVLLLLLVATAWHGQQIPVIEPSVPELVVKPGATVTLRCVGNGSVBWDGPPSPHWTLYSDGSSSILSTNNATFQNTGYRCTEPGDPLGGSAIIHLVKDPARPNVLAQEVVVFEDQDALLPCLLTDPVLEAGVSLVRVRGRPLMRHTNYSFSPWHGFTIHRAKFIQSQDYQCSALMGGRKVMSISIRLKVKQVKIPGPPALTLVPAELVRIRGEAAQIVCSASSVDVNFDVFLQHNNTKLAIPQQSDFHNNRYQKVLTNLNDQVDPQHAGNYSCVASNVQGKHSTSMPFRVVESAY
 35 LNLSSEQNLIQEVTVGEGGLNLKVMVEAYPGLQGPWNWYTLGPFSDHQPEPKLANATTKDTYRHTFTLSPRLKPSEAGRYSFALARNPGGWRALTPELTLYRPPPEVSVIWTFINGSGTLLCAASGYQPQNVTWLQCSGHTDRDCEAQVLQWDDPYPEVLSQEPFKVTVQSLLTETLEHNQTYECRAHNSVGSGSWAFIPIISAGAHTHPPDEFLEFTPVVVACMSIMALLLLLLLLLYKYKQKPKYQVRWKIIIESYEGBNSYTFIDPTQLPYNEKWEPPRNNLQFGKTLGAGAFGKVVEAT
 40 AFGLGKEDAVLKVAVKMLKSTAHADEKEALMSELKIMSHLGQHENIVVNLLGACTHGPVLVITEYCCYGDLLNFLRRKAEAMLGPSLSPGQDPEGGYDVKNIHLKKYVRDSDGFSSQGVDTYVEMRPVSTSSNDSFSEQDLDKEDGRPLELRDLHMFSSQVAQGMAFLASKNCIHRDVAARNVLITNGHVAKIGDFGLARDIMNDSNYIVKGNAJLPVKWMAPESiFDCVYTVQSDVWSYGILLWEIFSLGLNPYPGILVNSKFYKLVKDGYQMAQPAFAPKNIYSIMQACWALEPTHRPTFQQICSLQEQEDRRERDYTNLPSSSRSGGSSSSSELEEEESSEHLTCCEQGDIAQPLLQPNNYQFC

SEQ ID NO: 58

gi|6681044|ref|NM_007779.1| Mus musculus colony stimulating factor 1 receptor (Csfr), mRNA

50 1 cagaactagc agctgggagc cccgtgcccc gcccactctc caacctgcac cggctcacgc
 61 61 tatccctgg aggctatggc gttggggctt cctctgtcc tgcgtgtcc cacagtttgg
 121 catggtcagg gggccctgt catcgagcct agtggccag aactgggttgc agagccgggt

181	gaaacggtga	ccctgcgatg	tgtgagcaat	ggcagtgtgg	aatgggatgg	ccccatctct
241	cccatctgga	ccttggacccc	tgaatctccc	ggaagcaccc	tgaccacaag	caacgcgacc
301	ttcaaaaaca	ctgggaccta	cggttgtacc	gagcttgaag	accccatggc	aggcagtacc
361	accatccact	tgtatgtcaa	agatccggcc	cactcttgg	atttgcgtgc	acaggaggtg
5	421	acagtgggt	agggccagg	agctgtgtc	ccctgtctga	tcactgaccc
	481	gacagtgtct	cactgatgq	tgagggggc	aggcagggtct	tacgcaaaac
	541	ttctcgccat	ggcgagggtc	gattatccgc	aaggctaaag	tccttgacag
	601	gtgtcaaga	ccatgggtgaa	tggttagggaa	tccacctcca	ctggcatctg
10	661	aatcgagtcc	acccagagcc	cccacagata	aaattgggac	ctagcaagct
	721	cgaggggagg	ctgcccagat	cgtgtctcg	gccactaacg	ccgaagtggg
	781	atcctcaa	gtggagacac	caagctggaa	atccccctaa	acagtgaett
	841	tattataaaa	aagtccgggc	tctcagtc	aacgctgtgg	acttccaaga
	901	tattttgtg	tgccagcaa	tgatgttgc	acacgcacgg	ccaccatgaa
15	961	gtggagagt	cctacttaaa	cttgacctct	gagcagagcc	tcttgcagga
	1021	ggtgcacagcc	tcatcctcac	ggtccatgca	gatgectacc	ctagcataca
	1081	tggacetacc	taggttcatt	ctttgaagac	cagcgcaga	ttgagtttat
	1141	gccatataca	ggtacacatt	caagctttt	ctgaaccgtg	taaaggcctc
	1201	cagtaacttct	taatggcaca	aaacaaggca	ggcttgaata	atctgacett
20	1261	ctgcgatatc	ccccagaggt	cagtgttaca	tggatgcctg	tgaatggctc
	1321	ttctgtgacg	tctctgggt	ccctcagccc	acgctgacat	ggatggagt
	1381	accgataggt	gtgatgaagc	ccaggtttt	caccttgg	atgacaccca
	1441	ctgagtcaga	agcccttcga	caaagtgtac	atcagagcc	agctgcctat
	1501	aaacacaaca	tgacttattt	ttgcaaaacc	cacaacagt	ttggtaacag
25	1561	ttcagggccg	tctccctagg	acaaagcaag	cagctccccg	atgagtcct
	1621	gtgggtgtgg	cctgtatgtc	tgtcatgtct	ctgctggc	tactgctgtt
	1681	tacaagtaca	agcagaagcc	gaagtaccag	gtgcgttgg	agatcatcga
	1741	ggcaatagct	acaccttcat	tgaccctact	cagttgcct	acaatgagaa
	1801	cctcggaaaca	acctgcagtt	tggtaagact	ctaggagccg	gtgccttgg
30	1861	gaggctacag	cctttggct	gggcaagaa	gatgcagtgc	tgaagggtgg
	1921	ctaaagtcca	cggtctatgc	tgtatgagaag	gaggccctga	tgtcagagct
	1981	agtcacccctgg	gacagcacga	gaatatagtc	aaccttcttgg	gagcctgtac
	2041	cctgtcttgg	tctacactga	atactgtctc	tatggagacc	atctcaactt
	2101	aaggccgagg	ctatgtctagg	acccagctg	agtcctgtc	aggactccga
35	2161	agctacaaga	acatccacct	ggagaagaaa	tatgtgcgc	gggacagtgg
	2221	cagggtgttag	acacctacgt	ggagatggg	cttgcgtcga	tttcttc
	2281	tttaagcaag	atctggacaa	agacacagc	cggccccctgg	agctctggg
	2341	ttctccagcc	agtggcttca	gggcattggc	tttcttgc	ctaaaaactg
	2401	gacgttagcag	ctcgaaaacgt	gctgttggacc	agccggacatg	tggcaagat
40	2461	ggacttggct	ggggacatcat	gaatgactcc	aactatgttg	tcaaggccaa
	2521	gtaaaagtgg	tgcccccaga	gagcatttt	gactgcgtca	tcacagtca
	2581	tggctctacg	gcatecctct	ctgggagatc	tttcgcgtt	gtctgaaccc
	2641	atccatgtga	acaacaagtt	ctacaaaactg	gtgaaggatg	gataccaaat
	2701	gtatttgac	cgaagaacat	atacagcata	atgcagtc	gctgggacct
45	2761	agaagaccca	ccttccaaca	gatctgttc	cttctccagg	agcaggcccc
	2821	agagaccagg	actatgtca	cctgcggaa	agcgggtggc	tgacagtgg
	2881	ggtggcagca	gcgggtggcag	cagcagttag	ccagaagagg	agagctccag
	2941	gcctgtgt	agccaggggg	catcgcccc	ccctctgtc	agectaaacaa
	3001	tgtgtaaagt	ggagggagag	ccgagtcctg	ccgtctctca	cttcccgctt
50	3061	atggcagg	gaacatgggg	agaacatatg	gacttcgccc	tcagcttggc
	3121	caacttcagaa	catgaggggt	ctggggaggt	cagaggcccc	gtttgttccc
	3181	ccatcaactgc	cagtgggggt	ctcacagtgc	tagcctctat	atttactatg
	3241	caccctctgt	tctcttctc	catectattc	ccatttaaa	aaacccgtcc
	3301	tgtttcaat	gaaaagactga	tttatgtctc	aaaagacaag	agtctcaag
55	3361	agctgtaaaggc	ttgcctccct	gacagatgct	tagactacag	gcttcttggg
	3421	ccttcctaag	ctcacaggag	tggccaccac	tcttgacctt	cactctgtct
	3481	ctctgtactg	agcgtgtact	gagcggcag	ctaaaaagt	ttctaccagg
	3541	ctctagactg	gaaggatatgg	ggcctgtatgc	aaggctgacc	acaccaacaa
	3601	ctcctctcca	agtctgactc	gtcctcaatt	aatctgtcaa	cattaaacta
	3661	acatc				acagtcatta

60 SEQ ID NO: 59

Amino acid sequence of mouse CSFR1 encoded by the DNA sequence shown in SEQ ID NO: 58.

5 MELGPPLVLLLATVWHGQGAPVIEPSGPELVVEPGETVTLRCVSNGSVEWDGPISPYWT
 DPESPGSTLTTRNATFKNTGTYRCTELEDPMAGSTTIHLYVKDPAHSWNLLAQEVTVVEG
 QEAVLPCЛИTDPALKDSVSLMREGGRQVLRKTVYFFSPWRGPIIRKAKVLDNTYVCKTM
 VNGRESTSTGИWLKVNRVHPEPPQIKLEPSKLVRIRGEAAQIVCSATNAEVGFNVILKRG
 DTKLEIPLNSDFQDNYYKKVRALSLNAVDFQDAGIYSCVASNDVGTRTATMNFQVVESAY
 10 LNLTSEQSLLQEVSVDGLSLITVHADAYPSIQHYNWTYLGPFFEDQRKLEFITQRAlYRY
 TFKLFLNRRVKASeAGQYFLMAQNKGAGWNNLTFBLTLYRPPVEVSVTWMVPVNGSDVLFCDVS
 GYPQPSVTWMECRGHTDRCDEAQALQVWNNDTHPEVLSQKPFDKVIIQSQLPIGTЛKHNM
 YFCKTHNSVGNSSQYFRAVSLGQSKQLPDESFTPVVVACMSVMSSLVLLLLLYKYKQ
 KPKYQVRWKIIERYEGNSYTIDPTQLPYNEKWEFPNNLQFGKTLGAGAFGKVVEATAP
 GLGKEDAVLKVAVKMLKSTAHADEKEALMSSELKIMSHLGQHENIVNLLGACTHGPVLVI
 TEYCCYGDLLNFLRRKAEAMLGPSLSPGQDSEGDSYKNIHLKVKYVRRDGFSSQGVDT
 15 YVEMRPVSTSSSDSFFKQDLDKEASRPLEWLWDLHFSSQVAQGMAPLASKNCIHRDVAAR
 NVLLTSGHVAKIGDPGLARDIMNDSNYVVKGNARLPVKWMAPESiPDCVYTQSDVWSYG
 ILLWEIFSLGLNPYPGILVNNKFYKLVKDGYQMAQPVFAPKNIYSIMQSCWDLEPTRRPT
 FQQICFLLQEQARERRDQDYANLPSSGGSSGSDGGGSSGGSSPEEEESSSEHLACCE
 PGDIAQPLLQPNNYQFC

20 SEQ ID NO: 60

gi|34932021|ref|XM_225897.2| Rattus norvegicus similar to Macrophage colony stimulating factor I receptor precursor (CSF-1-R) (Fms proto-oncogene) (c-fms) (LOC307403), mRNA

1 atgtgcaagg ctgttgtgaa cgcttagggaa tccacccca ttggcatccg gcttaagtg
 61 aatcgagccc accecaaggcc cccacacatc atattgaaac ctactaagct ggtgaggatt
 121 cgaggggagg ctgcccagat cgtgtgctcg gccactcact cagaagtta attcaacgtt
 181 atccctcaaaac gtggagacac caagttggaa atccccataa acagtgactt ccaagacaac
 241 gcttataaaa aggtcctgac tcttaaccc aatgctgtgg acttccaaga tgctggcata
 301 tattcctgtg tggccaaacaa cgcagctggc tcgaacacgg ccaccatgaa ctteccagggt
 361 gtggagagtg cctacttaaa cttgacctct gaggcagagcc tcttgcagga ggtgtctgt
 421 ggtgagaacc tgcacccac agtcattgca gatgccttacc ctggcctaca gcgttacaac
 481 tggacctacc tagggccgtt ctttgaagac ccacacaatc ttgagtttag aacccaatgg
 541 accacataca gctactcatt caaaactccac ctgaacccgtg taaagccctt ggaggccggc
 601 cgctactct taatggcaca aaacaaggca ggctgaaata atctgacett tgagcteacc
 661 ctgcgatacc cccccagaatc cagtgttaca tggataacctg tgaacggctc tgatgtccctg
 721 ctctgtatg tctctggta tcctcagccc aacgtgacat ggtggagtg cagggccac
 781 accgatagt gtgatgaggc ccaggcctcg caggttggg atgacacaca acctgaagtc
 841 ctgagtcaga agcccttcca cagagtgate cttcagagcc agtgcctt tggaccccta
 901 aagcacaaca tgaattatgt ttgcagagcc cacaacaatg tggtaacag ctcccagttc
 961 ttccaggcca tctccctagg acaaagcaag cagtcctctt atgagttaccc ttcaactca
 1021 gtgggtgggg cctgtatatc tgcattgtc ctgtgttac tactgtgtc gctgtcttg
 1081 tacaagtaca agcagaagcc gaaatattcag gtgcgttgg agatcattga gagtcacgag
 1141 ggcaacaact acacccatc cgcacccatc cagttccctt acaatgagaa gtgggagttt
 1201 ccccgaaaca acctgcaatt tggtgagact ctgcggatgt gtgcctttgg gaagggtgg
 1261 gaggccacag ccttgggtct gggcaaagaaa gatgcagtgc tgaagggtggc tggaaatgt
 1321 ctcaagtcca cggctcatgc ccatgatgaa gacattgtc aaccccttgg gagcctgtac tcatggagg
 1381 agtcacccatgg gacagcatga gaacattgtc aaccccttgg gagcctgtac tcatggagg
 1441 cctgttccatgg tcatcaccga atactgtgtc tacggagacc ttctcaactt ctttcgaagg
 1501 aaggccgagg ctatgtggg accccggctc agtcctggc aggaccccgaa gggggactcc
 1561 agctacaaga acatccacat ggagaagaaa tatgtgcga gggacagtgg cttctccagt
 1621 caggccgtatc atacccatgt ggagatgagg cctgttgc ctccctcaaa tgaactccctc
 1681 ttaagcaaa atctggacaa agaggccacg cggccgttgg agtctgtggc cctgttccac
 1741 ttctctagcc aagtggctca gggcatggct ttccctgtt cttaaaaattt catccatgt
 1801 gatgttagctc ctgcggatgt gctgttgcacc agcggacatgt tgccaaatgt tggggacttt
 1861 gggctggctt gggacatcat gaatgactt aactatgtt tcaagggcaat tggccctgt
 1921 cctgtaaatgt ggatggccccc agagagcatc ttgcactgtc tttacacagt tcagatgtat

5	1981 gtgtggtcct acggcattcct cctctggag attttctcac ttggctcgaa cccctaccca 2041 ggcatttag tgaacaacaa gttctacaaa ctggtaagg atggatacca aatggcccag 2101 cctgtatTTG cacccggagaa catatacagc atcatgcagt cctgctggga cctggagcct 2161 accaaaagac ctaccttcca gcagatctgc ttctcttcc aggaacaggc ccgactggag 2221 aggagagagc aggactatgc taacctgcca agcagcagca gcagcagtag cagcagcagt 2281 gacagtggtg gtggcagtgg tggtagcagc atgagccctg aagaggagag ctccagtgag 2341 cacctggcct gctgtgagcc aggggacatc gcccagcccc tgctgcagcc taacaactac 2401 cagttctgtt gaagcggggac agcagagtcc tgctgcctc cacgtccccag ctgcacctcc 2461 tccatggatg ggccgacatgg ggagagcata tgaacttcgt cctcagctcg gcccagctct 2521 gacgttctg aacatgaggg gttcccgag cctgggcccatt cactgcccagt ggggttctca 2581 cagtgcgtac ctctatTTTAC tacaccaact ggtgaacccca tacttcaattt ttttcatctt 2641 gttcccactt gaaaaaaactg tcccccaactc tcgtttcaat gaaaagactg atttgtgtct 2701 caaaaaagaca ggtctcagggt tgtaggttag cagaagcttg cttccctgac agaggctcag 2761 actgcaggct tcttggggca ggccccctt cccaagctca cagactggtc gccactctta 2821 ctttctcttt atctacagtc ccgttcattt ctggatcttg tacacttagga gcccagtgcc 2881 agctgagagc cagggtatgtt ttacttagtgc ccctgcattt taggtggca ggcataggggac 2941 cttgggtgcaa ggctgacaac gccaagcaaa tactgcgtgc tcccttcctt aaactaacaq cattaacac 3001 cctcatttaac agtcaacatt
10	
15	

SEQ ID NO: 61

20 Amino acid sequence of rat CSFR1 encoded by the DNA sequence shown in SEQ ID NO: 60.

MELGPPVLVLLATVWHGQGAPVIEPSGPVELVVEPGETVTLRCVSNGSVEWDGPISPYWTLDPEPGSTLTTRNATFKNTGTYRCTELEDPMAGSTTIKLYVKDPAHSWNLLAQEVTTVVEQEAFLVPLCLITDPAKDSVSLMREGGRQVLRKTVYFFSAWRGFIIRKAKVLDNTYVCKTMVNRESTSTGJWLKVNRVHPEPPQIKLEPSKLVRIRGEAAQIVCSATNAEVGFNVILKRGDTKLEIPLNSDFQDNYYKKVRAISLNAVDFQDAGIYSCVASNDVGTRTATMNQFQVVESAYLNLTSEQSLLQEVSVDSSLILTVAHDAYPSIQHYNWTYLGPFEDQRKLEFITQRAIYRYTFKLFNLRVKASEAGQYFLMAQNKGAWNNLTFELTLRYPPEVSVTWMPVNGSDVLFCDVSGYPQPSVTWMECRGHTDRCDDEAQALQVWNDTHPBEVLSQKPDFKVIIQSQLPIGTLKHNMTYFCKTHNSVGNSSQYFRAVSLGQSKQLPDSELFTPVVVACMSVMSLLVLLLLLYKYKQKPKYQVRWKIERYEGBNTFTIDPTQLPYNEKWEPFRNNLQFGKTLGAGAFGKVVEATAFGLGKEDAVLKVAVKMLKSTAHADEKEALMSELKIMSHLGQHENIVNLLGACTHGGPVLVITEYCCYGDLLNFLRRKAEAMLGPSLSPGQDSEGDSYKNIHLEKKYVRDSDGFSSQGVDTYVEMRPVSTSSSDSFFKQDLDKEPSRPLELWDLHFSSQVAQGMAFLASKNCIHRDVAARNVLLTSGHVAKIGDFGLARDIMNDNSYVVKGNARLPVKWMAPEISILYCVTVQSDVWSYGILLWEIFSLGLNPYPGILVNNKFYKLVKDGYQMAQPVFPAPKNIYSIMQCWDLEPTRRPTFQQICFLLQEQRLERRDQDYANLPSSGGSSGSDDSGGGSSGSSSEPEEEESSSEHLACCEPGDIAQPLLQPNNYQFAC

SEQ ID NO: 62

40 gi|23110958|ref|NM_000396.2| Homo sapiens cathepsin K (pyknodysostosis) (CTSK), mRNA

	1	aaattttcca	ggcgatca	act	ggagctgact	tccgc	aatcc	cgatggaaa	aatcttagc
	61	ccctgatgg	gtgcccacac	tttgc	tttgc	ccg	aaacgaagcc	agacaacaga	tttccatc
	121	caggatgtgg	gggctcaagg	ttctgt	gtgt	gtgt	actgtgg	tgtttg	ctc
	181	ggagatactg	gacacccact	gggag	ctat	atg	gaagaagacc	cacaggaa	gc
45	241	caagg	tggat	aaaat	ctctc	ggcg	tttaat	ttggaaaa	aaacctgaa
	301	ccataaac	cc	ttt	ttctc	ttgg	gttcca	tacat	atgaa
	361	ggacatgacc	agtgaagagg	tggtt	cagaa	tggtt	catgga	ctgg	ctatga
	421	ttcccgc	agt	aat	gacaccc	tttat	atccc	aaat	gggaa
	481	cgactatc	ga	aaga	aggat	atgtt	actcc	tgtca	aaaaat
50	541	ttggg	ctttt	atg	ctgtgg	gtgc	ccctg	ggcca	actc
	601	cttaaaat	ctc	gtg	ccccaga	acct	tagtgg	ttgt	gtgt
	661	gggct	acatg	acc	aatgc	tcc	aatat	gt	gtgt
	721	tgc	cttaccc	ca	atgc	tcc	aaat	gt	aa

781	taaatgcaga	gggtacagag	agatccccga	gggaaatgag	aaaggccctga	agagggcagt
841	ggcccgagtg	ggacctgtct	ctgtggccat	tgtcaagc	ctgacctctt	tccagttta
901	cagcaaagg	gtgttattat	atgaaagctg	caatagcgat	aatctgaacc	atgcgggttt
961	ggcagtggga	tatgaaatcc	agaaggaaa	caagcactgg	ataattaaaa	acagctgggg
5	1021	agaaaaactgg	ggaaacaaaag	gatataatct	catggctcga	aataagaaca
	1081	cattgccaac	ctggccagct	tccccaagat	gtgactccag	ccagccaaat
	1141	cttccatttc	ttccacgatg	gtcagtgta	acgatgcact	ttggaaaggga
	1201	tatTTTgaa	gcagatgtgg	tgatactgag	attgtctgtt	cagttcccc
10	1261	gcttccaaatg	atccttccta	ctttgttct	ctccacccat	gaccttttc
	1321	tcaggacttt	ccctgacagc	tgtgtactct	taggctaaga	actgtggcca
	1381	ctgactgtgt	tgtcccagg	ctgatgtgt	acaggtaacag	cagccgtgcc
	1441	tttagattctc	attcacggga	ctagtttagct	ttaagcaccc	ttcacatagg
	1501	acttctca	tcctaagttc	ccttctatat	cctcaaggta	ggtaatctg
	1561	tccaaattcat	aaatctattc	ataagttttt	ggtacaagtt	tacatgataa
	1621	gatttgtctt	cccttcttt	cactttgaa	ataaaagtatt	aaagaaatgt
. 15	1681	ataaaatagca	tctagtagcac	at	tatctccctgt	ctacagttta

SEQ ID NO: 63

Amino acid sequence of human CTSK encoded by the DNA sequence shown in SEQ ID NO: 62.

20 MWGLKVLLPVVSFALYPEEILDTHWELWKKTHRQYNNKVDEISRRLIWEKNLKYISIH
NLEASLGVHTYEIAMNHLDGDTSEEVVKMGTGLKVPVSHRSNDTLYIPEWEGRAPDSDV
YRKKGYVTPVKNQGQCGSCWAFSSVGCALEGQLKKKTGKLNLSPQNVLDCVSENDGCGGG
YMTNAFOYVQKNRGIDSEDAYPYVGQEESCMNPNTGKAACKRGYREIPEGNEKALKRAVA
RVGPVSAIDASLTSFQFYSKGVYYDESCNSDNLNHAVLAVGYGIQKGNKHWIINKSWGE
25 NWGNKGYILMARNKNNAACGIANLASPPKM

SEQ ID NO: 64

Amino acid sequence of human CTSK, a soluble active secreted form derived from SEQ ID NO:63.

30 THWELWKKTHRQYNNKVDEISRRLIWEKNLKYIISIHNLEASLGVHTYELAMNHLGDMTS
EEVVQKMTGLKVPLSHRSNDTLYIPEWEGRAPDSVDYRKKGYVTPVKQNQGQCSCWA
FSGVALEGQLKKKTGKLNLSPQNLVDCVSENDGCGGGYMTNAFQYVQKRNRGIDSE
DAYPYVGQEESCMYPTGKAAKCRGYREIPEGNEKALKRAVARVGPVSA
IDASLTSFQFY8KGVYYDECSNDLNHAVLAVGYGIQKGNKH
WIIKNSWGENWGNKGYILMARNKNACGIANL
ASFPKM

35 SEQ ID NO: 65

gi|31982432|ref|NM_007802.2| Mus musculus cathepsin K (Ctsk), mRNA

	1	gagccacgct	tccttatccgaa	aaagagccata	gccaacagat	tctcaacagc	aggatgtgggg
	61	tgttcaagtt	tctgtctgcta	ccccatgggtga	gttttgctct	gtctccggag	gaaatgctgg
40	121	acaccaggatg	ggagctatgg	aagaagactc	accagaagea	gtataacagc	aagggtggatg
	181	aaatctctcg	gegttaatt	tgggagaaaa	acctgaagca	aatctctgc	cataaacctgg
	241	aggccctctct	tggtgtccat	acatatgaac	tggccatgaa	ccacttggga	gacatgacca
	301	gtgaagaagt	ggttcagaag	atgacggggac	tcagaataacc	tccctctcg	tcctacagta
	361	atgacactct	ctataccccca	gagtgggaag	gcagggtccc	agactccatc	gactatcgaa
45	421	agaaaaggata	cgttactccaa	gtcaagaacc	aggccagtg	tggttccctgt	tgggctttca
	481	getctgcgg	ggccctggaa	ggccaaactca	agaagaaaaac	tggtaaactc	ttagctctga
	541	gtccccagaa	tcttgtggac	tgtgtgactg	agaattatgg	ctgtggaggc	ggctatatga
	601	ccactgcett	ccaaatacgtg	cagcagaacg	gaggcattga	ctctgaagat	gcttacccat
	661	atgtggccaa	ggatgaaagt	tgtatgtata	acgccacggc	aaaggcagct	aaatgcagag

721 ggtacagaga gattcctgtg gggAACGAGA aAGCCCTGAA gagAGCAGTG GCGCGGGTAG
 781 gACCCATCTC TGTGTCATC gATGCAAGCT TGGCATCTT CCAGTTTAC AGCAGAGGTG
 841 tGTACTATGA TgAAAATTGT gACC GTGATA ATGTGAAACCA TGCA GTGTTG GTGGTGGGCT
 901 ATGGCACCCA GAAGGGAAAGC AAGCACTGGA TAATTAaaaa CAGCTGGGGA GAGAGCTGGG
 5 961 gAAACAAAGG ATATGCTCTC TTGGCTCGGA ATAAGAACAA CGCCTGCAGG ATTACCAACA
 1021 TGGCCAGCTT CCCAAAGATG TGATTCAGC CAGCCAGCCC ATCTCTTC AGATTCCTC
 1081 CTTCATGGTG CAAGATATTG GTGGCTTG AAGGGAGTGG GCA GTGGGGCT CCTGAGAGGG
 1141 ACAGCAGCGAT GCTA ACTAAG ATTGTTCAT TTCTCTTC GTGGTGTGTT CCAGTGACAA
 1201 CTCTACTTCC TTCTCTCTG CCCAGGGCCC TTTCCTTGT GGACACAAACA GGGCATTGTT
 10 1261 CTGAGAGTTG TGGACTCTGT GCTGGTAGAC ATTGGAGTCC TCCAGCAGGC TGGAGGACTA
 1321 AGGTGACCTT CCCGAGCCCC TGTCTCTGT ATACACCACTG AACACATTCA GTCTTCACT
 1381 GAGATGCACA AATCTATTG TGATTCTTG ACAAAATTAC ATGATATTAA AAAAAGTGT
 1441 TTTCCTTCTT TGTATTGAA ATAAAGTATC TCATTTACAA TTT

SEQ ID NO: 66

15 Amino acid sequence of mouse CTSK encoded by the DNA sequence shown in SEQ ID NO: 65.

MWVFKFLLLPMVSFALSPEEMLDTQWELWKKTHQKQYNSKVDEISRRLIWEKNLKQISAH
 NLEASLGVHTYELAMNHLDMDTSEEVVQKMTGLRIPPSRSYSNDTLYTPWEGRVPDSID
 20 YRKKGYVTVPVKNQGQCGSCWAFSSAGALEGQLKKKTGKLALSPQNLVDCVTENYCGGG
 YM TTAFQYVQQNNGIDSEDAYPYVGQDESCMYNATAKAAKCRGYREIPVGNEKALKRAVA
 RVGPISVSIDASLASFQFYSRGVYYDENCRDNVNHAVLVVGYGTQKGSKHWIICKNSWGE
 SWGNKGYALLARNKNNACGITNMASFPKM

SEQ ID NO: 67

gi|13928757|ref|NM_031560.1| Rattus norvegicus cathepsin K (Ctsk), mRNA

25 1 cttgtctgaa aagAGCATAg ACAACAGATT CTCACACAGCA ggATGTGGGT gttcaAGTTT
 61 ttgctgtac ccgtggtagg ctttgcTCA tccccggagg aaACGCTGGA cACGcAGTGG
 121 gagCTGTGGA AGAAGACCCa CGGGAAAGCAG TACAACAGCA AGGTGGATGA aATCTCTCGG
 181 CGTTTAATTT GGGAAAAAAA CCTGAAAGAAA ATTCTGTCC ATAATCTTGA ggcctctt
 241 ggtgcccata cgtatgagct ggccatgaat cacTGGGAG acatgaccAG cgaAGAAGTG
 30 301 gttcagaaga tgactggact cagagtGCCA CCTTcCGTT CCTTCAGTAA tgacactctc
 361 tataccccAG agtggGAAGG cagAGTCCCA gactccatcg actatcgaaa gaaaggctat
 421 gttactccAG tcaAAACCA gggccAGTGT ggttcctgtt gggctttcAG ctctgeGGGT
 481 gcccTggagg gccaactcaa gaAGAAAact ggcaAAactct tagctctgag tccccagaat
 541 cttgtggact gtgtgtctGA gAACTATGGC tGTGGAGGCG gctatATGAC cactgccttc
 35 601 caaatATGTGc agcagaATGG aggCATTGAC tctGAAGACG CTTACCCGTA tGTGGGGCAG
 661 gatgaaAGTT gtatgtataa cGCCACGGCA aaggcAGCTA agtgcAGAGG gtacAGAGAG
 721 atccccTGTGg ggaACGAGAA AGCCCTGAAG agAGCAGTGG CTCGGGTAGG acccgtctc
 781 gTGTCCATCG ATGCAAGCTT GACATCTTC CAATTTACA GCAGAGGTGT gtactatGAC
 841 gaaaaACTGCG ACCGTGATAA TGTGAACCAT GCGTGTGG tggTGGGGCTA tggcacccAG
 40 901 aAGGGAAATA agtactggat aTTAAaaaAC AGCTGGGGAG AAAGCTGGGG aaACAAAGGC
 961 tatgttctt tggctcgaa taAGAACAA GCGTGTGGCA ttaccaACCT ggccAGCTC
 1021 cccaaAGATGT gATTCAGCC AGCCAGCCCC TCTGTCTCA CATTCCTTC tcaacAGTGC
 1081 aAGCGAACGG TGGCTTGGA GTGACACCTC TGTCTCCCTT CTOTCCACCC aAGGCCCTT
 1141 TCTTGTGGA CACAACCTGGG CATTTCCTGA gAGTTGTGGC CTCTGTGTG atagacGCTG
 45 1201 gAGTCTCTCA GCAGGCTGGA GGACTAAGGT GACCTTCCCA AGCCCTG

SEQ ID NO: 68

Amino acid sequence of rat CTSK encoded by the DNA sequence shown in SEQ ID NO: 67.

MWVFKFLLLPVVFALSPEETLDTQWELWKKTHGKQYNSKVDEISRRLIWEKNLKKISVH

NLEASLGAHTYELAMNHLDGDTSEEVVQKMTGLRVPPSRSPSNTLYTPEWEGRVPDSID
 YRKKGYVTPVKNQGQCGSCWAFSSAGALEGQLKKKTGKLLALSPQNLVDCVSENYGCGGG
 YMTTAFQYVQQNNGIDS EDAYPYVGQDESCMYNATAAKCRGYREIPVGNEKALKRAVA
 RVGPVSVISASILTSFQFYSRGVYYDENCDRDNVNHAVLVVGYGTQKGNKYWIKNSWG
 5 SWGNKGYVLLARNKNNACGITNLASFPM

SEQ ID NO: 69

gi|4503174|ref|NM_003467.1| Homo sapiens chemokine (C-X-C motif) receptor 4 (CXCR4), mRNA

10 1 gtttggc tgcggcagca ggttagcaaag tgacgcccag ggccctgagt ctccagtagc
 61 caccgcatct ggagaaccag cggttaccat ggaggggatc agtatataca cttagataa
 121 ctacaccgag gaaatggct caggggacta tgactccatg aaggaaccct gtttccgtga
 181 agaaaatgtt aatttcaata aaatcttcct gcccaccatc tactccatca tcttcttaac
 241 tggcattgtg ggcaatggat tggtcatcct ggtcatgggt taccagaaga aactgagaag
 301 catgacggac aagtacaggc tgcacccgtc agtggccgac ctcccttttgc tcatcacgct
 361 tcccttctgg gcagggtatg ccgtggcaaa ctggtaactt ggaacttcc tatgcaaggc
 421 agtccatgtc atctacacag tcaaccccta cagcagtgtc ctcatccctgg ctttcatcag
 481 tctggaccgc tacctggcca tctgtccacgc caccaacagt cagaggccaa ggaagctgtt
 541 ggctgaaaag gtggctatg ttggcgttgc gatccctgcc ctccctgtga ctattcccg
 601 cttcatctt gccaacgtca gtgaggcaga tgacagatat atctgtgacc gtttctaccc
 661 caatgacttg tgggtgggtt tggtaactt tcagcacatc atgggtggcc ttatcctgcc
 721 tggtaattgtc atcctgtcct gctattgtat tatcatctcc aagctgtcac acttccaagg
 781 ccaccagaag cgcaaggccc tcaagaccac agtcatccctc atcctggctt ttttcgcctg
 841 ttggctgcct tactacattt ggttcagcat cgactccctc atcctcttgg aaatcatcaa
 901 gcaagggtgt gagtttggaa acactgtgtca caagtggatt tccatcaccc agggccctagc
 961 tttcttccac tggtaacttgc accccatccctt ctatgttcc ctggagccaa aatttaaaac
 1021 ctctgcccag cacgactca cctctgtgag cagagggtcc agcctcaaga tcctctccaa
 1081 aggaaagoga ggtggacatt catctgttcc cactgagtct gagtcttcaa gttttcactc
 1141 cagctaacac agatgtaaaa gacttttttatacgtataaa ataaactttttt ttaaaggat
 1201 acatccccca gatataaaaag actgaccaat attgtacagt ttttattgtct tggat
 1261 ttgtcttgc tttctttagt ttttgcggaa ttttattgtac ttttattat aaaaaaaaa
 1321 ttttcatat tgatgtgtt cttaggcggaa cctgtggccaa agtttcttagt tgctgtatgt
 1381 ctcgtggtag gactgttagaa aaggaaactg aacattccag agcgtgttagt gaatcacgt
 1441 aagctagaaa tgatccccag ctgtttatgc atagataatc tctccatcc cgtggaaacgt
 1501 ttttctgtt cttaaagacgt gattttgtct tagaagatgg cacttataaac caaagcccaa
 35 1561 agtggtataag aaatgtgtt ttttcaactt tcaggagtgg gttgattca gcacccatc
 1621 tgtacagttc ttttcaactt ttttcaactt agtacatgtt aaacttactt agtggat

SEQ ID NO: 70

Amino acid sequence of human CXCR4 encoded by the DNA sequence shown in SEQ ID NO: 69.

MEGISIYTSNDYTEEMGSGDYDSMKEPCFREEANFNKIFLPTIYSIIFLTGIVGNGLVI
 LVMGYQKKLRSMTDKYRLHLSVADLLFVITLPFWAVDANWYFGNFLCKAVHVIYTVNL
 YSSVLILAFISLDRYLAIHVATNSQRPRKLLAEKVVYVGWIPALLTIPDFIFANVSEA
 DDRYICDRFPNDLWVVVFQFHIMVGLILPGIVILSCYCIIISKLHSKGHQKRKALKT
 45 TVILILAFFACWLPPYYIGISIDSFILLEIIKQGCEFENTVHKWISITEALAFFHCCLNPI
 LYAFLQAKFKTSQHALTSVSRGSSLKILSKGKRGHHSSVSTESSE99FH99

SEQ ID NO: 71

gi|2632100|emb|Z80112.1|MMLCR12 Mus musculus lcr-1 gene

	1	atggaaaccga	tca	gttatata	cacttctgat	aactactctg	aagaagtggg	gtctggagac		
	61	tatgactcca	aca	aggAACCC	ctgc	ttccgg	gatgaaaacg	tccattcaa	tagatcttc	
	121	ctgccca	cca	tctacttcat	cat	tttcttg	actggcata	tcggcaatgg	atttgtatc	
	181	ctgg	catgg	gttaccagaa	gaag	ctaagg	agcatgacgg	acaagtacccg	gtgcacactg	
5	241	tc	agttggctg	accttctt	tgt	catcaca	ctcccccttct	gggcagttga	tgccatggct	
	301	gact	gggtact	ttgggaaatt	ttt	gtgtta	ag gctgtccata	tcatctacac	tgtaaacctc	
	361	tacag	cagcg	tttc	tatcc	gc	ccttcata	agcctggacc	ggtacctcgc	cattgtccac
	421	gcc	acccaaca	gtc	aaaaggcc	aagg	aaaactg	ctggctgaaa	aggcagttca	tgtggggcgtc
10	481	tggat	cccag	cccttctt	gact	tatacct	gacttcatct	ttgcccacgt	cagccagggg	
	541	gacat	cagtc	agggggatga	cagg	tacatc	tgtgaccg	tttaccccga	tagcctgtgg	
	601	atgg	ttgggtgt	tca	atttca	gcatataatg	gtgggtctca	tcctgc	ccgg catcgatc	
	661	ct	tcttctgtt	act	gtcatcat	cat	cttcaag	ctgtcacact	ccaaggggca	ccagaagcgc
	721	aagg	ccctca	agac	gacagt	cat	cttcttct	ttgc	ctgtg gtc	
	781	tatg	tgggg	ta	ca	tcagcatcg	ctc	tttgggag	tcatcaagca	aggatgtgac
15	841	ttc	cgagagca	ttgt	gcacaa	gtggat	ccccc	atcacagagg	ccctcg	ccctt cactgt
	901	tgc	cttgaacc	ccat	ccctct	tgc	cttctc	ggggca	tcaaa	agatctc tgcccagcat
	961	gc	actcaact	ccat	gagcag	agg	cttcc	ctcaagatcc	tttcc	aaagggggg
	1021	gg	acactt	ccgt	tccac	ggag	tca	ccagtt	ttcact	ccag ctaaccctta
	1081	tg	caaaagact	tatataat	atata	atata	at	tgataaaag	act	ttttttat gttacaccat
20	1141	ttt	ccagat	ata	agagact	gacc	agg	tctt	gtac	agg tttt

SEQ ID NO: 72

Amino acid sequence of mouse CXCR4 encoded by the DNA sequence shown in SEQ ID NO: 71.

MEPISIYTSNDYSEEVGSQDYDSNKEPCFRDENVFNRIFLPTIYFIIFLTGIVGNGLVI
LVMGYQKKLRSMTDKYRLHLSVADLLFVITLPFWAVDAMADWYFGKFLCKAVHIIYTVNLYSSVLILAFISLDRYLAIVHATNSQRPRKLLAEKAVYGVWIIPALLTIPDFIFADVSGQDISQGDDRYICDRLYPDSDLWMVVFPQFHIMVGLILPGIVILSCYCIIISKLSHSKGHQKRKALKTTVILIAFFACWLPLYYVGISIDSFILLGVIKQGCDFEISIVHKWISITEALAFFHCCLNPILYAFLGAKFKSSAQHALNSMSRGSSLKILSKGKGRRGGHHSSVSTESESSSFHSS

30 SEQ ID NO: 73

gi|17902280|gb|AF452185.1|AF452185 Rattus norvegicus strain Holtzman chemokine receptor CXCR4 (Cxcr4) gene, complete cds

	1	atggaaatat	acacttcgga	taactactcc	gaagaaggtag	ggtctggaga	ctatgactcc
35	61	aacaaggaac	cctgtttccg	ggataaaaac	gaaaacttca	acaggatctt	cctgcccacc
	121	atctatTTA	tcatcttctt	gactggcata	gtgggcaatg	ggttggtaat	cctggtcatg
	181	ggttaccaga	agaagctgag	gagcatgaca	gacaagtacc	ggctgcacct	gtccgtggct
	241	gacctctct	ttgtcatcac	actccccctt	tgggcagtgg	aegccatggc	tgactggtag
	301	tttggaaat	tttatgtaa	ggctgtgcat	atcatctaca	ccgtcaacct	ttacagcagt
40	361	gttctcatcc	ttggccttcat	cagectggac	cgctacattt	ccattgtcca	cgccaccaac
	421	agccagagggc	cgaggaagct	gctgggtgaa	aaggccgtct	atgtgggtgt	ctggatcccc
	481	gccctctcc	tgactatccc	tgacatcate	ttcggcgatg	tcagccaggg	ggacggcagg
	541	tacatctgtg	acccgcTTTA	ccccgacage	ctgtggatgg	ttgtgttcca	gttccagcac
	601	atcatggtgg	gtctcatect	gcccggcata	gtcatcttgt	cctgttactg	catcatcatc
45	661	tccaaGTgt	cacactccaa	gggcccacca	aagcgcacagg	ccctcaagac	tacggtcate
	721	cttatacctgg	ttttctttgc	ctgtggcta	ccgtattacg	ttggggatcag	catcgatccc
	781	ttcatccTTT	tgaggtcat	caagcaagga	tgtgagttcg	agagcgtcgt	gcacaagtgg
	841	atctccatca	cgaggcccc	cgccttcc	cactgttggc	tgaacccat	cctctacgccc
	901	ttcctcgggg	ccaaattcaa	gagctccgcg	cagcatgcac	tcaattccat	gagcagagggc
50	961	tccagcctca	agatcTTTC	caaaggaaa	cgggggtggac	actttccgt	ctccacagag
	1021	tcagaatcct	caagtttca	ctccagctaa			

SEQ ID NO: 74

Amino acid sequence of rat CXCR4 encoded by the DNA sequence shown in SEQ ID NO: 73.

5 M8IYTSNDYSEEVGSGDYDSNKEPCFRDENENFNRIFLPTIYFIIFLTGIVGNGLVILVM
GYQKKLRSMTDKYRLHLSVADLLFVITLPPWAVDAMADWYFGKFLCKAVHIYTVDLYSS
VLILAFISLDRYLAIVHATNSQRPRKLLAEKAVYVGWIPALLTIPDIIFADVSQGDGR
YICDRLYPDSDLWMVVQFQHIMVGLILPGIVILSCYCIIISKLSHSKGHQKRKALKTTVI
LILAFFACWLPPYYVGISIDSPFILLEVIKQGCEFESVHKWISITEALAFFHCLNPILYA
FLGAKFKSSAQHALNSMSRGSSLKILSKGKRGHHSSVSTESESSSFHSS

SEQ ID NO: 75

10 gi|7524353|ref|NM_013974.1| Homo sapiens dimethylarginine dimethylaminohydrolase 2
(DDAH2), mRNA

1 ccgcttagac aatgcggcgg agccgccaga ccgtcgcc cctgccccat cgttgtatata
61 gagctcgctt acacaaggac ccccgctaa agccagagct cccagttccc gaggcttgaa
121 gacggggact cccttctcca ccaactctgt cctcgggggg tggggcccca gccgagatca
181 cagcgccaca ggagtggggg tggccgctgg agacaggta agaaaacaaga aaactaagaa
241 atcccgagcgg ttggaggggg agtctgtgt gatggatgg ggacgcgggg ggaggggctg
301 ggccgctgtt cccatgcctt gatccgggg gtcggagaga gcctggcgctc gggggaaaggt
361 gcgggggctg gccttcccgcc tctggatctg gccaaagctc aaaggagca cgggggtgt
421 ggaggtaaac tgaggcaacg actggggcta cagctgttag aactgcacc tgaggatca
481 ttggccgctgg gaccgtgtt tggcgacacg gccgtgtatcc aaggggacac ggccctaattc
541 atcgccgcctt ggagccccc tcgttaggcca gaggtcgatg gagtccgcaaa agccctgca
601 gacctggggc tccgaattgt ggaaatagga gacgagaacg cgacgcttggaa tggcaactgac
661 gttcttcca ccggccggga gtttttctgtt ggccttcca aatggaccaa tcaccgagga
721 gctgagatcg tggcgacac gttccgggac ttccggctt ccactgtgcc agtctcggt
781 ccctccccacc tgcgcggctt ctgcggcatg gggggaccc tcactgttgc ggcaggcagc
841 agcgacgtt cccaaaaggc tgccgggca atggcagtgc tgacagatca cccatatgcc
901 tccctgaccc tcccagatga cgcagctgtt gactgcctt ttcttcgtcc tgggttgcct
961 ggtgtcccc ctttcccttgc acgggttggaa ggtggggatc tgcccaacag ccaggaggca
1021 ctgcagaagc tctctgtatgt caccctggta cctgtgttgc gtcagaact ggagaaggt
1081 ggcccccggc tcagctccct ctgcgggttgc ctcagcacac gccccccacag ctgaggccct
1141 ggccttgggg tactgtggc caggggttagg atagtagatgg aagttagaagg ggaaggaggg
1201 tttagatagag aatgtgtatgg aggcagtatgg tggagagag cctcaatatt gggggaggg
1261 agagtgttagg gaaaaggatc cactgggtga atcctccctc tcagaaccaa taaaatagaa
1321 ttgacccccc aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa a

35 SEQ ID NO: 76

Amino acid sequence of human DDAH2 encoded by the DNA sequence shown in SEQ ID NO: 75.

40 MGTPGEGLGRCSHALIRGVPESSLASGEAGAGAGLPALDLAKAQREHGVGGKLRLQLGLQL
LELPPEESLPLGPLLGDATAVIQGDTALITRPWSARRPEVDGVRKALQDLGLRIVEIGDE
NATLDGTDVLFTGREFFVGGLSKWTNHRGAEIVADTFRDFAVSTVPGPSHLRGLCGMGG
PRTVVAGSSDAAQKAVRAMAVLTDHPYASLTLPDDAAADCLFLRPGLPGVPPFLLHRGGG
DLPNSQEALQKLSVTLPVSCSELEKAGAGLSSLCLVLSTRPHS

SEQ ID NO: 77

45 gi|7949034|ref|NM_016765.1| Mus musculus dimethylarginine dimethylaminohydrolase 2
(Ddah2), mRNA

1 ccggccggcc ccatcgctgtt acgtgagctc tcctaccctg ggaacccctc aaaagccga

61 gctatccgtc ttcagctt gaggactcg actcccatct tcattaactc tctctctgg
 121 ggggtggggcc aaggctgaaa tcacaaggct gcaggagtgg aggtggccgc tgaccagtga
 181 agtcaagaga aaaaacaaaa cagttggct ggaaggggct tcgggtgtgg a tgtgatgggg
 241 acgcgggggg aggggctggg tcgttgcctc catgcctga tcgggggtgt ccccggagac
 5 301 ttggcatccg gggaaagggtgc tggcgctggg ctccggctc tggacctggc taaagctcaa
 361 agggagcatg gtagtactagg aggtaaactg aggcaacgac tagggctgca gctgttgaa
 421 ctgccttcgtt aggagtcaact ggcgttggg ccactgttg gtgacacggc tggatccaa
 481 ggagacacgg ccctaattcac aaggccctgg agccacac gtaggcctga gttgtatgg
 541 gtgcgtaaag ccctccagga cttgggactc cgaattgtgg agatgggaga tgagaatgcg
 10 601 acgctggacg gcaccgacgt ccttttcaacc ggccggaggt ttttctgtgg cctctccaag
 661 tggaccaata atcgaggagc ttagatcgta gcagacacgt tccgggactt cgctgtctca
 721 acggtaacgg ttcaggttc ctcgcaccta cgcggctct gtggcatggg gggacctcgc
 781 accgtgggtgg ctggaaagcag cgaggctgcc caaaaagcag tcagggcaat ggcagcgcgt
 841 actgatcacc cctacgcctc tctgaccctc ccagatgtat cagctgtga ctgtctttt
 15 901 ctgcgttcgtt ggttgcctgg tggcacaccc ttcctctgc accgcggagg ctctgcagaa
 961 gtcctctgtat gtcaccctgg tacctgtgtc ctgctcagaa ctggagaagg ctggagctgg
 1021 ctcagctcc ctctgcctgg tgcgtcagcac acggccccac tgcgtggggc ctggattttgg
 1081 ggatcccact ggttagaat agagctgtat agtgggtaga atcagcta at agaggctgg
 1141 tagtcgtggg gagatgcccc aggataggaa aggacttagt gtggaaaaga atagaagcca
 20 1201 ttgggtgagt ctcctctgtc aaaaccaata aaataaaaatt gaccttttag ataaaaaaaa
 1261 aaaaaaaaaa

SEQ ID NO: 78

Amino acid sequence of mouse DDAH2 encoded by the DNA sequence shown in SEQ ID NO: 77.

25 MGTPGEGLGRCSHALIRGVPELASGEGAGAGLPALDLAKAQREHGVILGGKLQRQLGLQL
 LELPPEESLPLGPPLLGDATVIQGDTALITRPWSPARRPEVDGVRKALQDLGLRIVEMGDE
 NATLDGTDVLFTGREFFVGLSKWTNHRGAEEIVADTFRDFAVSTPVSGSSHRLGLCGMGG
 PRTVVAGSSEAAQKAVRAMAALTDPYASLTPDDAASDCLFLRPGATPFLLHRGGS
 AEAL

30 SEQ ID NO: 79

gi|34852173|ref|XM_215315.2| Rattus norvegicus similar to Ddah2 protein (LOC294239), mRNA

1 ggcttctgtg tggatgtat ggggacgccc ggggaggggc tgggtcgctg ttcccatgcc
 61 ctgatccggg gtgtccccga gagcttggca tccggggaaag gtgtcgccgc tggcttccg
 121 gctctggatc tggctaaagc tcaaagggag catggagtac taggaggtaa actgaggcaa
 181 cgacttaggtc tgcagcttc tgaactgcct cctgagaaat cactgcgcgt gggaccactg
 241 cttgggtaca cggctgtat ccaaggagac acggctctaa tcacaaggcc ctggagccca
 301 gcgcgttagc ctgaggttga tggagtccgc aaagcttcc aggacttggg gctcagaatt
 361 gtggagatgg gggatgagaa cgctacgctg gacggcaccg acgtcctctt caccggccgg
 421 gagtttttcg taggcctctc caagtggacc aatcatcgag gagctgagat cgtggcagac
 481 acgttccggg acttcgtgt ctctacggta ccggctctcg ggcgcctcgca tctgcgcggc
 541 ctctgtggca tgggaggacc tgcacgggtg tggctggaa gcaatggggc tgcccaaaaa
 601 gccgtcaggc caatggcagc actgactgtat cacccttacg cctctctgac cctccagat
 661 gacgcagcga gtgactgtct ctgttgcgt cctgggttgc ctggtaccac acctttctt
 721 ctgcaccgcg gaggtggggc ctgcacccaa acgcaggagg ctctgcaaaa gctctctgac
 781 gtcaccctgg tacctgtgtc ctgtcggtaa ctggagaagg ttggagctgg cctcagctcc
 841 ctctgcctgg tgctcagcac acggccccac tgctggggc tgggtttggg gctccaaat
 901 gcttaggaata gagccgtcta gggagtagaa tcaggtata gaggctgggt agtcgtggga
 961 gatgccccag gatagggaaag gacttagtat gggacaaaga cttaggagcca gtgggtgagt
 50 1021 cttctctgtc aaaaccaata aaataaaaatt ggccttttag at

SEQ ID NO: 80

Amino acid sequence of rat DDAH2 encoded by the DNA sequence shown in SEQ ID NO: 79.

5 MGTPGEGLGRCSHALIRGVPESLASGEAGAGAGLPAALDLAKAQREHGVLGKLRQRLGLQL
 LELPPEESLPLGPLLGDATAVIQQDTALITRPWSPARRPEVDGVRKALQDGLGLRIVEMGDE
 NATLDGTDVLFTGREFVGLSKWTNHRGAEIVADTFRDPAVSTVPPVSGASHLRGLCGMGG
 PRTVVAGSSEAAQAKAVRAMAALTDPYASLTLPDDAASDCLFLRPGLPGTTPFLHRGCC
 DLPNSQEALQKLSDVTLPVSCSELEKVGAGLSSLCLVLSTRPHC

SEQ ID NO: 81

gi|8922242|ref|NM_018004.1| Homo sapiens hypothetical protein FLJ10134 (FLJ10134),

10 mRNA

15 1 gaagcacatc tggacacatc tgcggccctcc ttgcgggccc acgtcagccg agcacgtccc
 61 ccacgtccctc tccttctcg cacttattat ttattcgttt tcacaaagaa gcgacttaggg
 121 acccaagttt aaaaattcct cccccccactc aatgcgagac gtggccagat cccatccaac
 181 acacggttta atttcatgg ggctctggga tcaaaaagaac agaaaacagca acaacaaaag
 241 cccagccgct gtctgatttt aagctggcaa agtggggaaaa ataaaagtgtt gagtaaacag
 301 accaagttgg atcatgggaa atttcagagg tcatgccctc cctggAACCT tcttttttat
 361 tattggctt tgggtgtta caaagagtat tctgaatgtt atctgcaaaa agcaaaagcg
 421 aacctgttat ctgggttcca aaacattatt ctatcgattt gaaattttgg agggaaattac
 481 aatagttggc atggcttaa ctggcatggc tggggagcag ttattcctg gaggccc
 541 tctgtatgtt tatgactata aacaaggctca ctggatcaa ctccctggct ggcattcatt
 601 caccatgtat ttcttcttg ggctgttggg tggggcagat atcttatgtt tcaccatcag
 661 ttcacttctt gtgtccttaa ccaagttaat gttgtcaaat gccttatttg tggaggcctt
 721 tatcttctac aaccacactc atggccggga aatgtggac atctttgtgc accagctgt
 781 ggttttggtc gtcttctga caggccctcg tgccttccta gagttccttgc ttggaaacaa
 841 tgtacttctg gagctattgc ggtcaagttt cattctgtt cagggggagct ggttcttca
 901 gattggattt gtccctgtatc cccccactgg aggtccgtca tggatctga tggatcatga
 961 aaatattttt tttcteacca tatgtttttt tggcattat gcaatcattttt ttgtcategt
 1021 tggaatgaat tatgtttca ttacctgggtt ggttaaatct agacttaaga ggctctgtc
 1081 ctcagaagttt ggacttctga aaaatgtca acggagaacaa gaatcagaag aagaaatgtg
 1141 actttgatga gttccagtt tttctagata aaccttttct tttttacatt gttcttggtt
 1201 ttgtttctcg atctttgtt tggagaacag ctggcttaagg atgactctaa gtgtactgtt
 1261 tgcatttcca atttggtaa agtatttga tttaaatatt ttcttttag cttgaaaat
 1321 attttgggtg atactttcat tttcacatc atgcacatca tggatctag gggctagagt
 1381 gattttttc cagattatct aaagttggat gcccacacta tggatctttttaat
 1441 tttgccttat agatatgttc aaggttactg ggcttgcac tattttttttaac tccttgacca
 1501 tggattata cttgttatac ttgttgcgc aatgagaaat aaatgaatgt atgtatttttgc
 1561 gtgc

SEQ ID NO: 82

Amino acid sequence of human DERP7 encoded by the DNA sequence shown in SEQ ID

40 NO: 81.

MGNFRGHALPGTFFIIIGLWWCTKSILKYICKKQKRTCYLGSKTLFYRLEILEGITIVGM
 ALTMAGEQFIPGGPHMLMYDYKQGHWNQLLGWHHPTMYFFFGLLGVADILCFTISSLPV
 SLTI:LMLSNALFVEAFIFYNHTHGCREMLIDIFVHQVLLVFLTGIVAFLEFLVRNNVLE
 LLRSSLILLQGSWPFQIGFVLYPPSGGPAWDLMDHENILFLTICFCWHYAVTIVIVGMNY
 45 AFTWJVKSRLKRLCSSEVGLKNAEREQESEEM

SEQ ID NO: 83

gi|31542277|ref|NM_019631.2| Mus musculus RIKEN cDNA C630002M10 gene
 (C630002M10Rik), mRNA

	1	ggccccgccc	ggaaacccag	atgaagcaca	tctggacagc	tgtgctgaga	aagtttgtgg
5	61	gcctttcca	ggcctgccc	ccgcaaggca	cgtccccccac	gtagcctcct	gctagccact
	121	tactactaa	tttttttttc	cccaagaagc	aataageaac	ccacgcttga	atctttttct
	181	ctccctcccc	cccacccccc	atgtgaggcg	aggccacatc	acatcaaca	cagtttagtt
	241	ttcatggggc	tttgagatca	aaagaacaga	aacagcaacc	aaagctcagc	tgccctctga
10	301	tcctaactga	caaagtgggg	agagtaaggt	gtgcgcääac	aggacaagtt	gggtcatggg
	361	gagtttcaaa	ggacatgctc	tccctggag	tttcttcttc	gccatgggct	tttggggac
	421	tatgaagaac	atcctgaaat	ctgtetacaa	aaggcaaaact	cgaacctgtc	accttaactc
	481	taaaacatta	ttacgtcgga	cagagattt	ggaaggagtt	gttgtgtctt	taatgtctct
15	541	cactggtata	gctggtgaac	agtttatctc	aggaggacct	gccttgcatt	tgcataaaaga
	601	tggccagtgg	aaccagatcc	tgggctggca	tcacacaacc	atgtacttat	tcttgggct
	661	acagggtata	acccaaatca	tatgttccac	tactaatgtt	cttccacttt	cctcaagcaa
	721	gttaatgtt	tcaattgcca	tctttgttga	gacatttatg	ttctacaacc	acacacacgg
	781	tcgggaaatg	attgacattt	ttgtacacca	acttctggtc	tttgttgca	cattttgggg
20	841	tctgggtgcc	ttcttggagt	tcctctaaa	gaacaacgca	cttctggagc	tcctgcgggt
	901	cagtctccctc	atgtttcaag	gaacctgggt	ctggcagatg	gctttgtgc	tgtacccccc
	961	tagtggaaatg	gctacatgga	acctgtcaga	tattcaaaat	aaaatgttcc	tctcaatgtg
	1021	cttttgcgtt	cattatgcat	caatccctat	cctcatttgg	gtaaaatatg	cttggccaa
	1081	ctggttagtc	aagtcttaggc	tgaggaaggg	ctgcacctca	gaagttggac	tcctgaagca
25	1141	tgctgaccgt	gagcaagaat	cagaagaaga	agatgtatct	tgaagtcttt	cttgataagc
	1201	cttctccctt	tgcggtgcct	ttgttcatgg	cttgcattttct	tgacctctgg	tctcaagaac
	1261	acttgcgttga	ggctgactcc	atgctgtttt	tacttccagt	tttggtaaaag	tgtggactt
	1321	taagtatctt	actttcagct	ctgaaaagaa	catgagtgtat	aaattcaactt	tttacactgt
	1381	gcatgccatg	taattcaaga	ccaatcataa	ttgttttcca	aagttagt	tcgtgtccat
30	1441	ttattaaaaa	tatTTTTT	atTTTCCGGG	tagatacctt	caagatttgc	ggacttgcac
	1501	tcactgtaat	acatgacgtg	ttgacttgta	tttgcattatc	ttgttgcac	aatggaaaat
	1561	aaatgaatgc	atgcacccctt	gtgcagaaac	caaaaatctt	catttttttt	ttcttagtaa
	1621	agtataccgc	acccctcacat	gatacagaaa	aaaatctgca	tgtacaaaat	tccatttctt
	1681	tgagactttt	ctctatggag	agcttgcatt	aaaaggtaga	gcagaagtt	tcttcgtcat
35	1741	tttcaaaaag	taatgtatgtt	gagacatata	gttccaaaga	tgacagagac	tagagagag
	1801	gaattgtgtt	attcacatata	cctagcgtt	gtcactgtgc	catttgcct	gttaatgagg
	1861	taaaggattt	ataacaacgg	cttttctacaa	tctcttaggtaa	aaagtctttt	tcctgtgg
	1921	gccaagaaaac	ttcccaatgtt	gtgtaaaaaa	aaaattatctt	atattactt	ggccctactg
	1981	ttaaccactc	tccatgtttc	tcataattag	ctcatcttc	ttcttgact	tgatcttagt
40	2041	taaaaaggcca	aaagggtggt	cttcactctt	aaattaaagggg	gttaaaatga	cttaataggc
	2101	atatggaccc	tttcttacta	tcacatctta	tgaatctcaa	atggaaaacaa	gaagagaat
	2161	aaattaaatac	aatgttacac	atcatgggtt	acttgcaggaa	ttagatgtat	ataatcttct
	2221	tgcggaaaaaa	ctgggagcag	tcatcttgc	acataagatt	ttaaaaagac	agatgtgagt
	2281	acccaaaaat	atctcttgc	ctgttaatgt	gtgtacttca	ggatacaagg	taccgatatg
45	2341	tcatgttccct	ctgacgtca	tgtgttctgc	tcatgtctgt	cttagatttt	aggactctat
	2401	tttagaccaa	caacattctg	tgactgccc	atttgagctt	caaaggaaacc	aggaatcagc
	2461	ctcagctagt	tgagacaagt	cactgtatatt	gtgacagat	aaggttacac	ccgaaagttt
	2521	gaaaggccaat	gaatccagat	tttctgtgt	ttttatgaga	atacagagat	cactacttct
	2581	ccaggttcaa	acccagagaa	tacaagtaaa	cttcaaccca	gggagtttctc	agaaacatctg
	2641	agtctgagac	cagttcgagg	atgtttccct	acatgttctq	aaataaaaaac	cttcttqc

SEQ ID NO: 84

Amino acid sequence of mouse DERP7 encoded by the DNA sequence shown in SEQ ID NO: 83.

50 MGSFKGHALPGSFFFAMGFWWTMKNILKSVYKRQRTCYLNKSTLLRRTEIWEGVVVLLM
SLTGIAGEQFISGGPALIHLKDQWQNQILGWHHTTMYLFFGLQGITQIICFTTNVLPLSS
SKLMLSIAIFVETFMFYNHHTHGREMIDIFVHQLLVFGTFSGLVAFLFVKNNALLELL
RCSLLMPQGTWFWQMAFVLYPPSGSATWNLSDIQNKMFLSMCFCWHYASILILIGVKYAL
ANWLVKSRLRKCTSEVGLLKHADREOESEEEEV

55 SEQ ID NO: 85

gi|34868010|ref|XM_340979.1| Rattus norvegicus similar to Dermal papilla derived protein 7 homolog (19.5) (LOC360708), mRNA

	1	gccccggccgg	gaaaccagat	gaagcacatc	tggacagctg	tgcccgagaaa	gttggcgggc
5	61	cctttccagg	cctgccacca	gcaaggcacg	tcccccacgt	agcctcctgc	tagccacta
	121	ctacttaaat	attttttttt	cccaagaaga	aatcagcaac	ccaagcttga	atcttttttt
	181	tctccctat	ttgaggcgg	gccacatcac	atcaacacag	ttaattttc	atggggcttt
	241	gcgatcaaaa	gaacagaaaaac	ggcaacaaaa	gtccagctgc	cttctgatcc	taactgacaa
10	301	agtggggacc	cagtaagggt	tgagtaaaca	ggccaagctg	ggtcataaaaa	agtttcatag
	361	gtcatgtct	ccctgggact	tttttcatca	tgtatggctt	ttggtgact	acaaagaaca
	421	ttttgaaatc	tgtttacaaa	aaacacactc	gaacctgcta	tttgaattct	aaaacattat
	481	tacgtcgaat	agagatttgg	gaaggagttt	tttgtgttat	aatggcttct	actggatata
15	541	ctggggaaaca	gtttatctcg	ggaggacactg	cettgatctt	gtataaagac	ggccaatggaa
	601	accagatcct	gggctggcat	cacacccacca	tgtacttctt	ctttggctta	cagggtgtaa
	661	cccagatcgt	atgttttact	actaatgcac	ttccgccttc	cttaagcaag	ttgtatgttag
	721	cgaatgccat	ctttgtggag	acatttatct	tctacaacca	cacacatgg	cgggaaatgg
	781	ttgatatttt	tgtacaccaa	cttctgtctt	acaccacccac	ggcggcgggt	ctagttgcct
	841	tcatggagtt	cctcacaaaag	aacaatgtac	ttctggagct	cgtgaggctca	agtttcatcc
	901	tattacaagg	aacctggttc	tggcaggttg	ctttgttct	gtaccctct	aaaggaagag
20	961	ctacatggaa	cctgtccgat	attggaaata	aaatgtttct	ctcaatgtgc	ttttgttggc
	1021	attatgcata	aattgtcatg	ctcatcgag	taatatttgc	gttggccaaac	tggtagtta
	1081	aatctagact	taggaaggct	tgcacccat	aagttggact	ccttaaacat	gttggaccgtg
	1141	aacaagaatc	agaqaqaqaaa	gtatga			

SEO ID NO: 86

Amino acid sequence of rat DERP7 encoded by the DNA sequence shown in SEQ ID NO: 85.

25 MGSFIGHALPGTFFIMMGFWWTTKNILKSVYKKHTRTCYLNSKTLLRRIEWEGVVVIM
ALTGIAGEQFISGGPALI LYKDQWNQILGWHRTTMYFFGQLQGVQTQIVCFITNALPLSL
SKLMLANAIFVETFIYFNHHTGREMDIFVHQLSYTAAGLVAFMELFTKNNVLLELV
RSSLILLQGTWFWQAVFVLVPPKGRTATWNLSIGNKMFLSMCFCWHYASIVMLIGVIFAL
ANWLVKSRLLRKVCTSEVGLLKHVDREQESEEEEV

30 SEQ ID NO: 87

gi|13376090|ref|NM_024756.1| Homo sapiens elastin microfibril interfacer 3 (EMILIN3), mRNA

35	1	aagacaacgt	cactagcagt	ttctggagct	acttgccaag	gctgagtgtg	agctgagccct
	61	gcccccaccac	caagatgatc	ctgagcttgc	tgttcagcct	tggggcccccc	ctgggcttggg
	121	ggctgctggg	ggcatgggcc	caggttcca	gtactagcct	ctctgatctg	cagagcttcca
	181	ggacacacctgg	ggtctggaa	gcagaggctg	aggacaccag	caaggacccc	gttggacgtt
	241	actggtgccc	ctacccaatg	tccaagctgg	tcaccttact	agcttcttgc	aaaacagaga
	301	aattcctcat	ccactcgca	cagccgtgc	cgcaggggac	tccagactgc	cagaaaagtca
40	361	aagtcatgtt	ccgcatggcc	cacaagccag	tgtaccaggt	caagcagaag	gtgctgaccc
	421	ctttggcctg	gagggtctgc	cctggctaca	cggggcccaa	ctgcgagcac	cacgattcca
	481	tggcaatccc	tgagcctgca	gatecctgggt	acagccacca	ggaacctcag	gatggaccag
	541	tcagcttcaa	acctggccac	cttgctgcag	tgtatcaatga	ggtttaggtg	caacaggaac
	601	agcaggaaca	tctgttggga	gatetccaga	atgatgtgca	ccgggtggca	gacagcctgc
45	661	caggcctgtt	aaaagccctg	cctggtaacc	tcaacagctgc	agtgtatggaa	gcaaatcaaa
	721	cagggcacga	gttccctgtat	agatccttgg	agcaggtgtc	gctacccac	gtggacaccc
	781	tcctacaagt	gcatttcagc	cccatctgg	ggagctttaa	ccaaaggctg	cacagcctta
	841	cccagggcat	aaagaaaacctg	tctcttgacg	tggaggccaa	ccggccaggcc	atctccagag
	901	tccagggacag	tgcctgtggcc	agggtctgact	tccaggagct	ttgtgcaaaa	tttggaggcc
	961	aggtccagga	gaacactcg	agagtgggtc	agctgcgaca	ggacgtggag	gaccggcctgc
50	1021	acgcccacga	ctttaccctgt	caccgcgtoga	tctcagagct	ccaaaggccat	gtggacaccca
	1081	aattgaaqaq	gctgcacaag	gctcaaggaa	cccccaqqqac	caatggcaqt	ctqgttgtgg

5	1141	caacgcctgg	ggctggggca	aggcctgagc	cggacagcct	gcaggccagg	ctggggccagg
	1201	tgcagaggaa	cctctcagag	ctgcacatga	ccacggccc	cagggaggag	gagttgcagt
	1261	acaccctgga	ggacatgagg	gccaccctga	cccgacacgt	ggatgagatc	aagaacttgt
	1321	actccgaatc	ggacgagact	ttecatcaga	ttagcaagg	ggagcggcag	gtggaggagc
	1381	tgcaggtgaa	ccacacggcg	ctccgtgagc	tgccgtgtat	cctgatggag	aagttcttga
10	1441	tcatggagga	gaacaaggag	gagggtggagc	ggcagctcct	ggagctcaac	ctcacgtgc
	1501	agcacctgca	gggtggccat	gccgacacta	tcaagtaacgt	gaaggactgc	aattgccaga
	1561	agctctattt	agacctggac	gtcatccggg	agggccagag	ggacgcacg	cgtgccttgg
	1621	aggagaccca	ggtgagcctg	gacgagcggc	ggcagcttgg	cggctctcc	ctgcaggcccc
	1681	tgcagaacgc	cgtggacgc	gtgtcgctgg	ccgtggacgc	gcacaaagcg	gagggcgagc
15	1741	gggcgcgggc	ggccacgtcg	cggctccgg	gccaagtgc	ggegtggat	gacgaggtgg
	1801	gcgcgtgaa	ggcggcccg	gccgaggccc	gcaacgaggt	gcgcagctg	cacagcgcct
	1861	tcgcccct	gctggaggac	gwgctcgcc	acgaggccgt	gctggcccg	ctttcgffff
	1921	aggaggtgct	ggagggagatg	tctgagcaga	cgccgggacc	gctgccccctg	agttacgagc
	1981	agatcccgct	ggccctgca	gacgccccta	gccccgtgca	ggagcaggcg	ctccgctggg
20	2041	acgagctggc	cgccccagtg	acggccctgg	acagggcctc	ggagcccccg	cgccggccag
	2101	agcacctgga	gcccagccac	gacgcccccc	gwgaggagc	cgccaccacc	gccctggccg
	2161	ggctggcgcg	ggagctccag	agcctgagca	acgacgtcaa	aatgtcg	cggtgctgcg
	2221	aggccgaggg	ccccggccggg	gccgcctccc	teaacgcctc	cctgacggc	ctccacaacg
	2281	cactcttcg	cactcagcg	agtttgagc	acaccagcg	getcttccac	agctcttttg
	2341	ggaacttcca	agggctcatg	gaagccaaacg	tcagcctgg	cetggggaaag	ctgcagacca
	2401	tgctgagcag	gaaagggaaag	aagcagcaga	aagacctgg	agctccccgg	aagagggaca
	2461	agaaggaagc	ggagcctttt	gtggacatac	gggtcacagg	gctgtgcca	ggtgccttgg
25	2521	gcgcggcgct	ctgggaggca	ggatccccctg	tggccttcta	tgcagcttt	tcagaaggga
	2581	cggctgcct	gcagacagtg	aagttcaaca	ccacatacat	caacattggc	agcagctact
	2641	tccctgaaca	tggctacttc	cgagcccttg	agcgtgggt	ctacctgttt	gcagtgagcg
	2701	ttgaattttg	cccaggccca	ggcacccggc	agctgggt	tggaggtc	cattggactc
	2761	cagtctgtac	cactggcag	gggagttggaa	gcaacagcaac	ggtcttgc	atggctgagc
	2821	tcgcagaagg	tgagcgagta	tggttttagt	taacccagg	atcaataaca	aagagaagcc
30	2881	tgtcgccac	tcacattttgg	ggcttcctga	tgtttaaagac	ctgaacccca	gccccaaatct
	2941	gatcagacat	catggactcg	cccagctc	ctcggccctgg	ggctctggcc	aaggatgggc
	3001	tggaggtcat	tcagttgg	tgtcttcc	ctggaaaacct	tctgcaaaaga	tgggtgtgg
	3061	tacgtggctt	ccctgtaaac	acatggggct	tggccatttc	tccatgtga	gaaggactgg
	3121	aatgtcttc	ccccggggac	atggctctag	gaagcctgaa	ccttggctt	gcatgccttc
35	3181	tcagacagca	ccccctgggc	tccaaactctt	caccacaccc	tgtatttcac	aacttttttg
	3241	gtgtttgtct	cctctgtgg	tggaaaactt	ctgtacaaca	ctttaaaactt	ttctttgtct
	3301	tccttccttc	ttctccctta	tctgtatgate	gaaagacatt	cttccccagg	aggaatgttt
	3361	aaaatggagg	caacattttg	gccaacattt	gaaagcacta	gaggcgaatg	ggattaaacc
	3421	aacctgttg	gtctcttta	gtcagtaatg	aagacgacag	cctggccaaac	caagggaaag
40	3481	gaaatttagt	tcttttagtt	cagtcttcc	ttgttaggata	tggtttagt	gtgccccccac
	3541	ctaaaaatatc	atcttgaatt	gtaatcccta	taatccccac	atcaaggag	agatcagggt
	3601	gaggtatatt	gatcttgggg	gcccgttttt	catgctgtt	ttgtatagt	tctcacgaga
	3661	tctgtatgatt	ttataagttt	gatagtttct	cctgtgttca	ttcttcctcc	tgcacccctt
	3721	tgaagatgcc	ttggtttctc	ttcactgtct	gccatgattt	taagtttctt	gaggcctccc
45	3781	caqccatgtq	qaacagtqaa	tcaattaaac	ctcttttctt	tatasatt	

SEQ ID NO: 88

Amino acid sequence of human ENDOGLYX1 encoded by the DNA sequence shown in
SEQ ID NO: 87.

50 MILSLLFSLGGPLGWGLI.GAWAQASSTSLSDLQSSRTPGVWKAEAEAEDTSKDPVGRNWCOPY
PMISKLVTLALLCKTEKFJLHSQQPCPQGAPDCQKVVMYRMAHKPVYQVKQKVLTSLAWR
CCPGYTGPNCHEHDSMAIPEPADPGDHSHQEPQDGVPVSFKPGHLAAVINBVEVQQBSQQEHL
LGLDLQNDVHRVADSLPGWLKALPGNLTAAVMEANQTGHEFPDRSLEQVLLPHVDTFLQVH
FSPIWRSFNQSLHSLTQAIRNLSLDVANEARQAIISRVQDSDAVERADPQELGAKFEAKVQEN
TQRVGQLRQDVEDRLLHAQHFTLHRS ISELQADVDTKLKRLHKQAQEAPGTNGSLVLATPGA
55 GARPEPDSLQARLGQLQRNLSELHMITARREEELQYTLEDMRATLTRHVDEIKELYSESD
ETFDQISKVERQVEELQVNHTALRERLVRVILMEKSLIMEENKEEVERQLLIENLTLQHQLG
GHADLIKVVKDCNCOKLYLDDVIREGORDATRALETOVSLDERROLQGSSLQALQNAV

DAVSLAVDAHKAEGERARAATSLRSQVQALDDEVGALKAAAAEARHEVRQLHSafaALL
 EDALRHEAVLAALFGEEVLEEMSEQTPGPLPLSYEQIRVALQDAASGLQEQLGWDELAA
 RVTALEQASEPPRPAEHLPESHDAGREEATTALAGLARELQLSNDVKNVRCCEAEAG
 AGAASLNASLDGLHNALFATQRSLEQHQRLFHSLFGNFQGLMBANVSDLGKLQTMLSRK
 5 GKKQQKDLEAPRKDKKEAEPPLVDIIRVTGPVPGALGAALWEAGSPVAFYASFSEGTAALQ
 TVKFNTTYINIGSSYFPEHGYFRAPERGVYLFAVSVEFGPGPGTGQLVFGHHRTPVCTT
 GQGSGSTATVFAMAELOKGERVWFELTQGSITKRSLSGTAFGGFLMPKT

SEQ ID NO: 89

gi|37620146|ref|NM_153127.2| Mus musculus elastin microfibril interfacer 3 (Emilin3),
 10 mRNA

1 ttttctgaca tttcgcttga agaccacatc accagcaa at ttgagagtca cttgttaaggc
 61 tgagcatca gacaggagcc cctcaccatg atccccacac tgctgtctggg ctttggggtg
 121 tacctgagct ggggactgct agggtcctgg gcacaggacc ccggtagccaa gttctccat
 181 ctcaatagcc ccggcatgcc tgaaggctgg agacttagggg ctgaggatac cagcagagac
 15 241 cccatcagac ggaactgggt tccttaccag aagtccaggc tagtcacctt tgttagctgt
 301 tgcaaaaacag agaaattcct ggtccattca cagcagccat gtccacaggg agccccgtac
 361 tgccaggagag tcagagtcat gtatcgagtg gcccagaagc cagtgtacca ggtccaggcag
 421 aaggtgctga tctctgtggc ctggcgggtc tgcccagggt tccaggacc agactccag
 481 gaccacaatc ccacagcaaa ccctgagccc acagagccaa gtggtaaact ccaggagact
 20 541 tgggactcga tggatggctt tgaacttggt caccctgtcc cagagtttaa tgagattaag
 601 gtgcacaaag aacaacagga aaacctgctt caaaatctcc agaatgtgc ccagtcagta
 661 gaagatggct ttccaggctc ttggaaagcc ccacccagca acctcacaga tgagatgaca
 721 gaagccaatc taacagaatt cgagtttccct ggcaggacat cagagcacct gctgcagccc
 781 catattgtatc cattcctgaa agcacacttc agtcccatct ggaagaactt caacgcacagc
 25 841 ttgcacagcc tctccaggc catcagaaac ttgtctttt atgtggaggc caatcaccag
 901 gccatcaaga tgatccagga gggcacagtg gctagggtg acttccaaaga gcttgggtcc
 961 aagtttgggg ccaaggtcca gcagaatagc cagagactgg gccaactgtg gcaggatgtg
 1021 gaggaccaggc tgcatgccc ggcggatcg gtgcattatc ccctctctga tgtccaggct
 1081 gaggtgagca ccaagttaaa gcagcttgc aaggctcagg aacttccagg ggccaatggc
 30 1141 ggcctgggtga tggcatctgc agcagcggca gcaaggccag agccagagag cctgcaggcc
 1201 aggcttagggc agctgcagag aaacctcttct gctctgcaca tggtaacttag ccagagggag
 1261 gaggagtgc agagcacccct caagaacatg gacagcgtcc tgaagcagca cgccgaagag
 1321 atcaaagagc tctattctga atcggatgag accttcgacc agatcagcaa ggtagagagg
 1381 caggtggagg agctgttgtt gaaccacacc gggcttcgag agctgcgggt gatcctaatt
 35 1441 gaaaagtccc tgatcatggc ggagaacaaa gaggagatag agcggcaact gttgaactc
 1501 aaccttaccc tgcagcatct gcatgcgggt catgcagacc tcattaagta tgcaggac
 1561 tgcactgccc aaagggtcaa ctctgacgtg gatgtcgctc cggagggcca cagggatgtc
 1621 atgcacacccc tagaagagac ccaagtgagc ctggacaac agcaccagct agacggttct
 1681 tctttgcagg ccctgcaaag cactgttagat gccatgtctt cagcaatggc tgcctataga
 40 1741 ggaggggtg aacgggcccc ggtgtaaaagg gcacggatac ggagccaact gcgggctctg
 1801 gatcatgtc tggaaagcgt gaagacagcg gcaatggaa cccgcaaaaga gatacgctt
 1861 ctgcacggct cttcacago cttgtctggag gatgccctgc gacateaggc cgtgctagct
 1921 gcaacttctcg gggaggagat gatagacgag atgtcagagg agggccctcg ccctctgcca
 1981 ctggattatg agcagatccg cttagccctg caggacggg ccagtgggtc acaggaacag
 45 2041 gcgattgggtt gggaggactt ggcacccgg gtggaggcat tggagaaggc cgcagggtggc
 2101 tttgtggcage agcacccaca gttggcagag ggacttgcgc ccagccacga ctctgggaga
 2161 gaggaggaag ccatgacttt ggcggagctg gaggcaggaga ttctggcgtt gagttctgt
 2221 gtcaagcaga ttggcgttgc ctgtgaggcc ttctggcgtt cctccctcaa tagtccctt
 2281 gaagacatca acagcatgtt cttggcagacc cagcacggcc tgagacagea cccggagctc
 50 2341 ttccacaaacc tttccatggaa cttccaaaggct ctgggtggca gcaacatcag cctagactt
 2401 gggaaagctgc aggccatgtt gatgtggc gataagaagc aaccgagagg cccaggagaa
 2461 tcccggaaaga gggataagaa gcaagtgggtt atgtctacag atgcacacacgc caaaggctcg
 2521 gagctctggg agacaggctc cccatgtggcc ttctatggc gttttcaga agggggccact
 2581 getctgcaga tggtaaggat caacaccaca tccatcaatg tggcagcag ctactttct
 55 2641 gaacatggct acttccgagc tcccaaaacgt ggcgttact tgggtgtt gacattaca
 2701 tttggcccaag gcccaggaaat gggcagctg gtatgttggc gtcacacccg ggttccagtc
 2761 tacagtacgg aacagagggg cgggagcaca gcccaccact tttgttatgg tagagctaca

2821 aaagggtgag agagcgtgg ttagttaat ccaagggtca gcaacccaaag ggagccaacc
 2881 aggcaactgca tttggggctt tcctgatgtt caagacctga acacctggct cggctcaagct
 2941 tgtatcagac atggtagatc cgcctgtgc tcttagactg aggtctggc cagcaaaggc
 3001 tggagaacat ctatggctt agctttccc tggacacctt ctgcaaagac cctcgccca
 5 3061 gcagcacgta ctttcgttgc gacacacagg ttggggaggc cagaatactg ctctctggac
 3121 tggccgggg cctggagtgg gagctggat ttccatgcct tccccatgg cacggctcg
 3181 cttgtctctg agacacttcc tcagttctac agctttttt ttctctccc ttgtgggtgg
 3241 aaacttgtac acttacgct ttttgggtt ccactttct gtgttagaaa gtcactgttt
 3301 ctcagaagga atgtctacag tgatgggtt gccatgcaga aaggtcccag attcttttc
 10 3361 caatgtc

SEQ ID NO: 90

Amino acid sequence of mouse ENDOGLYX1 encoded by the DNA sequence shown in SEQ ID NO: 89.

15 MIPTLLLGFVYLSWGLLGSAQDPGKFSHLNRPGMPEGWRLGAEDTSRDPIRRNCWPY
 QKSRLVTFVAACKTEKFLVHSQQPCPQGAPDCQGVVRVMYRAQKPVYVQQKVLISVDWR
 CCPGFQGPDCQDHNPNTANPEPETEPSGKLQETWDSDMDGFELGHGPVPEFNEIKVPQEQQENL
 LQNLLQNDASQVEDGFPGSWEAPPNSLTDEMTANLTSFEFPGRTEHLLQPHIDAFLKAH
 FSPIWKNFNDSLHSLSQAIRNLSDVEANHQAIKMIQEGTVARADFOELGAKFEAKVQQN
 SQRLGQLWQDVEDQLHAQRRSVHHSALSDVQAEVSTKLKQLVKAQELPGANGGLVMASAAA
 20 AARPEPESLQARLQLQRNLSALHMVTSQREELQSTLNKNMDSVLKQHAEELKELYSESD
 ETFDQISKVERQVEELLVNHTGLRELRVILMEKSLIMEENKEIERQLLELNLTQHLHA
 GHADLIKVKDCNCQRVNSDVDAPEGHDRVMHTEETQVSLDEQHQLDGSSLQALQSTV
 DAMSSAMDAYRGEGERARAERARIRSQRALDHAVEALKTAANGTRKEIRLLHGSPTALL
 25 EDALRHQAVALAALFGEEMIDESEEAPRPLPLDYEQIRLALQDAASGLQEQAIWGEDIAT
 RVEALEKAAGGFVEQHPQLAEGLEPSHDSGREEEAMTLAELEQEIRRLSSDVQIGQCCE
 ASWAASLNSSLEDLHSMLLDTQHGLRQHQLPHNLQONFQGLVASNISLDLGKLQAMLSK
 KDKKQPRGPGESRKRDKKQVVMSTDAAKGLELWETGSPVAFYAGSSEGATAQMVKPNT
 TSINVGSSYFPEHGFRAPKRGVYLFAVSITFGPGPGMQLVPEGHHRVPVYSTEQRGGS
 TAHHFCYGRATKG

30 SEQ ID NO: 91

gi|27668203|ref|XM_224646.1| Rattus norvegicus similar to elastin microfibril interfacer 3; EMILIN-like protein EndoGlyx-1 (LOC306288), mRNA

1 atgatcctga cactgtgtc gggccttgcg gggtaacctga gctggggact gctggggcc
 61 tgggcacagg accctggttc cagggtctcc aaccctaata ggctcagcgt gcctgaaggc
 121 tggaggatag gggctgacga cgtatccagc agagacccca gccaacggaa ctgggtgtct
 181 taccagaagt ccaggctgtt cacctttgtt gctgcctgca aaacagagaa attcctggtt
 241 cattcacaac agccatgtcc gcaggccgct cctgactgcc agagagtcaa agtcatgtat
 301 cgagtggccc agaaggccagt gtaccaggc cagcagaagg tgctgtatgtc tggactgg
 361 aggtgctgcc cagggttcca gggtccagac tgccaggacc atcatccac agcaaacc
 421 gagcccacag aggcaagtgg taactccag gagacttggg actcattggg tggcttggaa
 481 cctggtcacc ctgtcacaga tttaatggg attaaggcgc cacaggaaca cctgcttcaa
 541 aatccccaga atgacgccc gccggtagaa gatggcttt cagggcccttggggggccca
 601 tccagcaacc tcacagctgc aatgacagaa gccaatctga cagaatttga gtctcttggc
 661 aggacatcga aacatctgtt gcaagcccat atccatgtat tccatggaaac acacttcagt
 721 cccatctggaa agacccat cggagatcta cagacccat tccaggccat cagaaatctg
 781 tctcttgatg tggaggccaa tcacggggcc atcaagatga tccaggaggg caccgtggct
 841 agggctgact tccagagatc ttgtccaaag ttggggccat aggtccagca gaatagccag
 901 agactggcc agctgtggca ggtatgtggag gaccagctgc atgcccagcg ccgatccgt
 961 catcatggcc tctctgaggt ccaggctggat gtgagccatc agttaagca gcttggtaaa
 1021 gtcaggaac ttccaggggc caacggcagc ctggcggtgg catctgcggc aaggccagag
 1081 ccagagagcc tgcaggccag actggggcag ctgcagagaa acctctccgc tctgcacatg
 1141 gtcactaacc agagggagga ggatgtgggg ggcacccatca aggacatggc cagcgccctg

1201 aggcagcaca cggatgaaat caaggagctc tattctgaat cggatgagac cttcgaccag
 1261 atcagcaaag tagagaggca ggtggaggag ctgctggta accacacggg gttcgagag
 1321 ctacgagtga tcttaatggta gaagtccctg atcatggagg agaacaaga ggagatggag
 1381 cggcaactct tggacctcaa ccteactctg cagcatctgc aggcatctca tgcatgtt
 5 1441 atcaaataatgc tcaaggactg caactgccga agggctact cgcacatggta tgcatcccc
 1501 gagggccgca gggatgccat gcacacccta gaggagaccc aagtaagccc ggacgaaacag
 1561 caccagctag acgggtcttt gcaggccttg caaagcaactg tagacgcccgt gtctccggca
 1621 ttggatgcct acagaggaga ggttgaacgg gcccggctg agagggcccg gatgcccggc
 1681 cagctgcggg ccctggacca cgtgtggaa gactgaaga ccgcggcga cgggaccgc
 10 1741 aaagagatac gcctgctgca tggctcttc gcagccctac tggaggatgc actgcgacat
 1801 caggccgtgc tggccgcaact ctteggggag gagatggtg acagatgtc ggaggagcct
 1861 cctcgccctc tgcctctgaa ttatgagcag atccgcctgg ccctgcagga cggcccgact
 1921 gggctgcaag agcaggcggt tggttggag gacttggcca ctgggtggaa ggctttggag
 1981 aaggccgcag gtggcttgtt ggagcagcac ccacggctgg cagagggact tgagcccgac
 15 2041 cacgactttg ggagagagga ggacaccagg gctttgggg acctggagca agagatttag
 2101 cgcctgagct cggatgtcaa gcagatgggg cagtgtgcg aggctctcg gcccctcaat
 2161 ggctcccttg aagacctaca cagcgcgtc tctgacaccc agcacagcct gagacagcac
 2221 cagcagetct tccgtggctt cttccacaaac ttccaaggcgt tggcaag caacaccagg
 2281 cttagacctgg ataagctgca ggccatgtcg agtaagaaa acaagaagca acagaaaggc
 20 2341 cggggagaat cccgaaagag ggataagaaa caagtagtga tgcctgcaga tgccaaaggt
 2401 ctggggctct gggaaagcagg ttcccctgtg gccttctatg coagttcttc agaagaggcc
 2461 accgctctgc agatggtaa gttcaacgct acatccgtca acgtggcag cggctacttc
 2521 cccgaacacag gctatttccg agctcccaa cgtggcatct acctgtttgc agtgagcggt
 2581 acatttggtc caggccccgg aatggggcag ctggtatttg aaggcatacg cgggttcca
 25 2641 gtctacagtg cgaaacagag ggttgggagc acagccacta ccttgctat ggcagagctg
 2701 caaaagggtg agaggggtgtg gtttgagta attcaagggt cgtgacaaa ggggagccgg
 2761 ccaggcaactg catttggagg cttcctgtat ttcaagacat ga

SEQ ID NO: 92

Amino acid sequence of rat ENDOGLYX1 encoded by the DNA sequence shown in SEQ ID
 30 NO: 91.

MILTLLGLAGYLWGLLGSAQDPGSRFSNPNRLSVPEGWRIGADDDTSRDPQRSTRNWCP
 YQKSRLVTFVAACKTEKFLVHSQQPCPQGAPDCQRVKVMYRVAQKPVYQVQQKVLMVDW
 RCCPGFQGPDCQDHPTANPEPTEASGKLQETWDSLGDGFEPGHPVTEFNEIKAPQEHLQ
 NLQNDAQPVEDGFAFPWEAPSSNLTAAMTEANLTFEPESLGRTSKHLQPHIAFLEAHFS
 35 PIWKSFNESLQSLFQAIRNLSLDVEANHRAIKMIIQEGTVARADFRELGAKEAKVQQNSQ
 RLGQLWQDVEDQLHAQRSSVHALSEVQAEVSTKLKQLVKAQELPGANGSLAVASAARPE
 PESLQARLGQLQRNLSALHMVTNQREEELRGTLKMDMSVLRQHTDEIKEYSESDETFDQ
 ISKVERQVEELLVNHTGLRELRVILMEKSЛИMEENKEEMERQLLDLNLTQHLQAAHADL
 IKYVKDCNCRRVYSDMDVIPEGRDRAMHTLEETQVSPDEQHQLDGSLQALQSTVDAMSSA
 40 LDAYRGEGERARAERARMRSQRLRADLHAVEALKTAANGTRKEIRLLHGSFAALLEDALRH
 QAVLAALGEEMVDEMSEEPPRPLPLNYEQIRLALQDAASGLQEQAQVGWEDLATRVEALE
 KAAGGPVEQHPRSAEGLEPHDFGRBEDTRALGDLEQEIQRLLSSDVKQMGQQCEASWALN
 GSLEDLHSALSDTQHSLRQHQLFRGLHFNFQGLLASNTSLDLDKLQAMLSKKDKQQKG
 PGESRKRDKKQVVMMSADAKGLWEAGSPVAFYASSSEEATALQMVKPNTASVNVGSGYF
 45 PEHGYPRAPKRGYIYLFAVSVTPGPGPGMGQLVFEGHRRVPVYSAEQRGGSTATTFAMAEL
 QKGERVWFELIQGSVTKGSRPGTAPGGFLMFKT

SEQ ID NO: 93

gi|37540060|ref|XM_351265.1| Homo sapiens EGF, latrophilin and seven transmembrane domain containing 1 (ELTD1), mRNA

50 1 atgcaccaat tttctgcag atgttaaggaa gggctacagg gtgtcactct gggagctgc
 61 cctggggata aactgattcc tcagtgggc tgtaacattt ctcagggtca gtggtcacta
 121 ggcaggaaat ggagcccagg aggctgtgggg aaagggatg gaggccggac gtggccagcg

	181	gattcagggc	ttgactcaca	cactcacaca	aaagaggccg	gaaagtgtcc	ggaggaaggg
	241	ggcgctcac	ggaggacgga	tccgggaccc	tgcgcgcggcc	gcccagccgc	gcccggtccc
	301	gggtccacag	ccgactcac	tccgcgcgc	tctccgcacac	cgccaccact	gcccacccg
	361	ccaatgaaac	gcctcccgct	cctagtggtt	tttccactt	tgttgaattg	ttcttataact
5	421	caaaaattgca	ccaagacacc	ttgtctccca	aatgcaaaaat	gtgaaatacg	caatggaaatt
	481	gaagcctgct	attgcaacat	gggattttca	ggaaatggtg	tcacaatttg	tgaagatgat
	541	aatgaatgtg	gaaatttaac	tcagtcctgt	ggcgaaaatg	ctaattgcac	taacacagaa
	601	ggaagttatt	attgtatgt	tgtacctggc	ttcagatcca	gcagtaacca	agacaggttt
10	661	atcactaatg	atggAACCGT	ctgtatagaa	aatgtgaatg	caaactgcca	tttagataat
	721	gtctgtatag	ctgcasatat	taataaaaact	ttaacaaaaaa	tcagatccat	aaaagaacact
	781	gtggctttgc	tacaagaagt	ctatagaaat	tctgtgacag	atctttcacc	aacagatata
	841	attacatata	tagaaatatt	agctgaatca	tcttcattac	taggttacaa	gaacaacact
	901	atctcagcca	aggacaccct	ttcttaactca	actcttactg	aatttgtaaa	aaccgtgaat
15	961	aattttgttc	aaagggatac	atttgttagt	tggacaagt	tatctgtgaa	tcataggaga
	1021	acacatctta	caaaaactcat	gcacactgtt	gaacaagcta	ctttaaggat	atcccagagc
	1081	ttccaaaaga	ccacagagtt	tgatacaat	tcaacggata	tagctctcaa	agttttcttt
	1141	tttgattcat	ataacatgaa	acatattcat	cctcatatga	atatggatgg	agactacata
	1201	aatatatttc	caaagagaaa	agctgcata	gattcaatg	gcaatgttgc	agttgcattt
	1261	gtatattata	agagtattgg	tcctttgtt	tcatcatctg	acaacttctt	atgaaacact
20	1321	caaaaattatg	ataattctga	agaggaggaa	agagtcatat	ttcagataat	ttcagtctca
	1381	atgagctcaa	acccacccac	attatatgaa	cttgaaaaaa	taacatttac	attaagtcat
	1441	cgaaaaggta	cagataggt	taggagtc	tgtgcatttt	ggaatttactc	acctgatacc
	1501	atgaatggca	gttgttcttc	agagggtctgt	gagctgacat	actcaaatga	gaccacaccc
	1561	tcatggcgt	gtatcacct	gacacatttt	gcaattttg	tgtcctctgg	tccttccatt
25	1621	ggttataaaag	attataat	tcttacaagg	atcaactcaac	taggaataat	tatttcactg
	1681	attttgtcttg	ccatcatgcat	ttttacettc	tggttcttca	gtgaaattca	aagcaccagg
	1741	acaacaattc	acaaaaatct	ttgctgtage	ctatttcttg	ctgaacttgc	ttttcttgg
	1801	gggatcaata	caaataacta	taagctttc	tgttcaatca	tgcgggact	gtcacactac
	1861	ttcttttttag	ctgctttgc	atggatgtgc	attgaaggca	tacateteta	tctcatttgg
30	1921	gtgggtgtca	tctacaacaa	gggatttttgc	cacaagaatt	tttatatctt	tggctatcta
	1981	agcccagccg	tggtagttgg	attttcgca	gcactaggat	acagatatta	tggcacacacc
	2041	aaagtatgtt	ggcttagcac	cgaaaaacaa	tttatttgg	gttttatagg	accagatgc
	2101	ctaatcatc	ttgttaatct	cttggctttt	ggagtcatca	tatacaaagt	tttctgtc
	2161	actgcagggt	tgaaaaccaga	agtttagttgc	tttgagaaca	taagggtcttg	tgcaagagg
35	2221	gcctcgctc	ttctgttctt	tctcgccacc	acctggatct	ttgggggttct	ccatgttgc
	2281	cacgcatacg	tggttacagc	ttaccttctt	acagtgcac	atgttttcca	ggggatgttc
	2341	atttttttat	tcctgtgtgt	tttatctaga	agattcaag	aagaatatta	cagattgttc
	2401	aaaaatgtcc	cctgttgc	tggatgttta	agctgttgc	atgaagtctg	ccaaatcttg
	2461	ctctaacaaa	taaaaatgtta	tctaaatqaa			

40 SEQ ID NO: 94

Amino acid sequence of human ETL encoded by the DNA sequence shown in SEQ ID NO: 93.

MHQFFCRCKEGLQGVTLGAAPGDKLIPIQWGCNIAQGQWSLGREWSPGGVKGKDGGRTWPADSLDSHTHTKEAGKCPPEAGASRRTDPGPCRARPAAPPGGSTAALTTPRSPPPLRLPPPMKRLPLLVVVFSTLLNCYTQNCTKTPCLPNAKEIRNGIEACYCNGFSGNGVTICEDDNECGNLTQSCGENANCTNTEGSYVYCMCVPGRSSSNQDRFITNDGTVCIENVANCHLDNV CIAANINKTLTKIRSIKEPVALLQEVEYRNVTDLSPTDIITYIEILAESSSSLGYKNNTISAKDTLSNSTLTFVKTVNNFVQRDTFVWWDKLSVNHRRTHLTKLMHTVQEATLRISQSFQKTTFEDTNSTDIALKVFFFDSYNMKGIIHPHMNMDGDYINIFPKRKAA YDSNGNVAFAFVYYKSIGPLLSSSDNFLLKPQNYDNSEEEERVISSVISVSMSSNPPTLYELEKITFTLSHRKVTDYRSLCAFWNYS PDTMNGWSSEGCELTYSNETHTSCRCHLTHFAILMSSGPSIGIKDYNILTRITQLGIIISLICLAI CIFTFWPFSEIQSTRTTIHKNLCCSLFLAELVFLVGINTNTNKLFCSIAGLLHYFFLAAPAWMCIEGIHLYLIVVGVIIYNGKFLHKNPFYI PGYSPAUVVGFSALGYRYGTTKVCWLSTENNFIIWSFIGPACLIILVNLLAPGVIIYKVFRH55TAGLKPEVSCFENIRSCARGALALLFLLGTTWIFGVLVHVVHASVVTAYLFTVSNAFGMFIFLFLCVLSRKIQEBYYRLFKNVPCCFGCLSC

SEQ ID NO: 95

gi|18875377|refNM_133222.1| Mus musculus EGF, latrophilin seven transmembrane domain containing 1 (Eltd1), mRNA

3301 ttgatgaagt gaattataat tctttctga tcagaaaaata cacaattaaa gcattattta
 3361 taacaaataa gaagtcaactg agtgcgttag gggtttcaca gtgggtctag ttttagactg
 3421 tttctactat ctctcaragt ctattggcctt aaatgtatgg ctctatctat tctcttgccc
 3481 aaatgaagag gcagatttt tttcagaagt gagtcattgt tctgaacctt cstgaacagc
 5 3541 ataattcaat ctactggaca ttgcatttt aattcttgc ctgttgaatg aagcctgtcg
 3601 agacctctcc tgaaaaatga acagtcagct ggatgaagca gcctatcgc tgcctgaccg
 3661 agttgttctc tcaggagaga ccactcacct gtcaagaagg gcttgcatt tctagagcct
 3721 gtgagatggt acactttgac taaatctcg gatttcttgc gtctaagtc tgtggccat
 3781 gactgccatt gtcattctgg gttggactg tagaaatagg atataaaaac ctatgtcg
 10 3841 caatcagtgg atatgaaact attgcacgtg gtagacagag tgaccctcca caaatatctg
 3901 tacgctcctc ttccagagcct gtgbctgtgg tggatggcga ggagcaggag ggccctgtgk
 3961 ggagggaggg tagctgaccc ctactcagtt ggagcactt cactaccctg agggaaagtca
 4021 gcatgctgct gatgtatttc agtgtggcgc tcctggtttgaactctcat ttctagagct
 4081 acaagacaat aaaattctat tatcaaagcc aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
 15

SEQ ID NO: 96

Amino acid sequence of mouse ETL encoded by the DNA sequence shown in SEQ ID NO: 95.

20 MRLPLLLVGESTLLNCSYTQNCSKTTCLPNAKCEVHNGVEACFCQSQYSGNGVTICEDID
 ECSESSVCGDHAVCENVNGGFSCFCREGYQTATGKSQFTPNDGSYCQDIDECSESSVCGD
 HAVCENVNGGFSCFCREGYQTATGKSQFTPNDGSYCQESMNSNCLEHACIAANINKTLK
 RIGPITEQTTLLQBIYRNSEAEISLMDIVTYIEILTESSSLGHPNSTTSYKDAHFNSTL
 TEFGETINNFVERSTHKMDQLPTNHRRHLTKLMHTAELVTLQIAQNIQKNSQFDMNST
 DLALKVFAFDSTHMKAHPHMNVGGYVKISP RRKA AHGTTGNVVVAFLCYKSIGPLLSS
 25 SDNFLLDTQNDNSEBKEVKISSVISASIISNPPTLYELEKITFTLSHVKLSDKHRTQCAP
 WNYSDAMNNNGXWSTEGCELTHSNDTHTSCRCSSHLLTHFAILMSSTSSIGIKDYNILTRIT
 QLGIIISLICLAI CIFTFWFPSEIQSTRTTIHKNLCCSLFLAELVFLIGININTNKLVCS
 IIAGLLHYFFLAFAWM CIEGIHLYLIVGVYIYNGFLHKNFYIFGYLSPAVVVGFSASL
 30 GYRYGGTTKVCWLSTENNFIWSFIGPACLIILVNLLAFGVIIYKVFRHTAGLKPEVSCYE
 NIRSCARGALALLFLLGTTWIFGVLVHVVHASVVTAYLFTVSNAFQGMFIFLFCVLSRKI
 QEEYYRLFKNVPCCFGCLR

SEQ ID NO: 97

gi|11560110|ref|NM_022294.1| Rattus norvegicus ETL protein (Etl), mRNA

35 1 ccacaggctg agacttagtgc ccaggctgtt tgggtgaagg ggcctggcgg cggacgtgg
 61 cctgcagagt ctggctgtg cacacattca cacaaaagag gcccggaaat gacaggagga
 121 agctgtgcgt cacaaggac tgagcgggac cttgcgcgc ctgcggcgtt ccaggacaga
 181 ccccaactct tgccttcage gctctggga gccaggccagc tccacccggc ttccaatgg
 241 actccttcctg cttctatgtgg gtcctccac ttgtctgaat cactcttaca cacaactg
 301 caagacaccg tgcctccaa atgcacatgt tgagggttg gacgaaatgg cagcctgtt
 361 ctgcagttaca ggcacactg gaaatggcat cacgatgtt gaaatgttag acgatgtcaa
 421 cgagacctcc gtcctgggtg atcacgtgt gtgtggaaac acgaaatggag gatggatgt
 481 cttctgcgtg gaaggatgtt acacccatcc cggggaaatggc cagttcacgc ctaatgtatgg
 541 ctcttactgc caagatgttag acgatgtca cggacaccgc gtcctgggtg atcacgtgt
 601 gtgtggaaac acgaaatggag gatggatgtt cttctgggtg gaaggatgtt acgacccatcc
 661 cggggaaatggc cagttcacgc ctaatgtatgg ctcttactgc caagaaatgg tgaattcaaa
 721 ttggccactta gagcatgact gcattgtgc aaacattaa aaaaactctaa aaagaattgg
 781 acccataaca gaacagctga cttaactcca tggaaatctac aagaattctg aggctgatgt
 841 ttctctgggtg gatatagtca catacataga gataactaaca gaatcatctt cactacaagg
 901 ctacataaaatg aacaccactt cggccaaatgg tgcctacttc gtttcgttgc ttactgtatgg
 961 ttggaaaaacc gtcaataatt ttgttggaaa gaacacacat gaatgtggg accagttacc
 1021 tacaatgttgc agaagactcc atctcacaa actgtatgttgc gtcgttgc acgtcacctt
 1081 acagatctt cagaacatcc agaagaataac tcagtttgc atgaattctt cccacttggc
 1141 tctcaagggtt ttcttttttgc attcagttca catgaagcat actcatcccc atatgtatgg

	1201	ggacggaggc	tatgtaaaaa	tatcccgag	gagaaaaatct	gcatatgacc	caaatggcaa
	1261	cgtcattgtt	gcattcctgt	gctataggag	cattggcccc	ttgcttcct	cacttgacga
	1321	cttcttactg	ggcgctcaga	gtgacaattc	caaaggaaag	gagaagtca	tttcttcagt
	1381	gatttctgcc	tcaatttagct	caaaccacc	cacactgtat	gaacttgaaa	aaattacatt
5	1441	tacactgagt	catgtaaaagc	tctcagataa	gcaccagaca	cagtgcgcct	tttggacta
	1501	ctcagtcgt	gacatgaaca	atggcagctg	gtcatctgag	ggctgtgagc	tgacatactc
	1561	caagcacacc	catacttcct	gccgatgtag	tcatctgaca	cactttgcga	ttttgatgtc
	1621	ccccagtagc	tccattgaag	ttaaagatta	caatatcctg	acgaggatca	ctcagctggg
	1681	aataatcatc	tcctctgtatc	gcctcgccat	atgcattttc	accttctgg	tcttcagtga
10	1741	gattcaaagc	accaggacca	caatccacaa	gaatctctgc	tgcagccctc	ttcttcgcaca
	1801	actagtttt	cttgcggca	tcaacataaa	cacaaacaag	ctggctctgt	ctatcatgc
	1861	tggcctgtc	cattacttct	tcttagctgc	cttgcctgg	atgtgcattg	aaggcatcta
	1921	cctatacctc	atcggtgttg	ggctcatcta	taacaagggg	tttttacaca	agaacttcta
	1981	tatctttggc	tatcttagcc	cggctgttagt	tgttggattc	tggccctc	tgggatacag
15	2041	atattatggt	accacccaaag	tatgttggtt	gagcactgaa	aacaacttta	tctggagctt
	2101	catagggcca	gggtgtctaa	tcattttgt	taatcttctt	gcttttggag	ttatcatata
	2161	caaagtgttc	cggccacactg	ctggactgaa	gccagaagtt	agttgctacg	agAACATAAG
	2221	gtcttgcgc	agaggagccc	tggccctctt	cttccttctg	ggtaccacct	ggacctttgg
	2281	ggttctccac	gtagtgcatg	cacatgttgt	gacagcctac	ctttcacag	tcagcaacgc
20	2341	tttccaaggg	atgttttattt	tcttattttct	atgttttttta	tctagaaaga	ttcaagaaga
	2401	atattacaga	ttgttcaaaa	atgtccctgt	ctgttttgaa	tgtttaagat	aaacaacgag
	2461	aagacacaat	attatagct	gaaatgaaat	ggaaatttcca	agatttgcga	tagctgtgt
	2521	gacaaaaatg	agcctgcctt	cattgttagt	aattaatttc	aaattcgctt	ttctgttgc
	2581	agtataaaag	atgttagttaa	tgtgagataa	aattatggc	cagagagctc	ctgtgtgttt
25	2641	tcctacatga	catagttaga	tatgtaaaaa	atagtactgc	agatatttgg	aaagtaattt
	2701	gtttctctgg	agtgtatata	ctgtgccccaa	ggaaagattt	ctttctaaca	caagaaatag
	2761	atgaatgtcc	tcaaggaagc	gactggcttg	atatctttgt	gactcatgtt	gcctttcaaa
	2821	cgagtcctt	accaccatag	taatgtgtt	cttgcagaa	aggagagat	aagaaacttgc
	2881	gagggcaga	atatgaagca	atggagaagc	cttctctgac	aaggaattgt	cattccaata
30	2941	aaattggctt	tctccaaaat	tgaagaggaa	aaaattttca	ggctaaaata	acgaaaaagg
	3001	aatatgtatcc	taeactttt	ggaatttggtc	tgaacttaaa	aggcccagac	ctaaattttac
	3061	tacatccatg	ttttttctta	ctgttctaaa	ccaaagaaaa	accttaaaat	ttacagatac
	3121	atggatgatgt	tttctcacat	aacatctat	ttgaatgtaa	atttttttca	tttccacag
	3181	attaagactt	cagcaacata	tttggtaaaa	cataaattttg	tcaaaactata	agactgttca
35	3241	tatcttttagt	gaaaaaaaaatag	aatgtgaagt	atrttgcata	taatatttttta	ctgttatgaa
	3301	aataatcttt	tcatataga	gcagttactat	tgaatacttt	actgttttttta	atcttacaaa
	3361	tagtgtatt	catgttgcaa	ccagcccttt	taattgtactg	tattttaaaag	ggcattataaa
	3421	attttaaacta	ttgatgaagt	aaattataat	ggttttctga	tcaaaaaata	cataactttaaa
	3481	gcatttatta	taacaaataaa	aaagtcaactg	agactgcag	gggtttcaca	gtggatctga
40	3541	tatTTTttaga	ccgtttctta	tcacctatca	gtcttatttac	ttaaatgtac	agctcttacca
	3601	attcttttac	tcaaaggaaag	aggcagttt	tttctcagaa	gtgagtcatt	gttctgttacc
	3661	ttcctggaga	catgattcg	tccattgaac	attgtggttt	taattcttgt	gtctgttgaat
	3721	gaaggctgac	aagacacac	ctaaaaaaatg	aaatgtcagc	tggatgaagc	agccctgtca
	3781	ctgcctgtact	gagttgttct	ctcagggaaag	accactcacc	tgccaagaag	cacgttgc
	3841	ctctacagat	ctcagggttt	ctcccatgca	aegtctgtag	cccacgagca	tcatgttcat
	3901	tctaagatgg	gactgttagaa	ataggatatac	aaaacataat	ccgttcaatc	aatggataag
	3961	aaactatcac	atgttagtaga	cagaataacc	cttctcaaaat	attcatacac	tccttttca
	4021	aagctgtggc	cgtgggtggat	agtgaggagc	aggaggtctt	gtcaggagga	agagtagctg
	4081	aggtccactc	agttggagaa	ggctctcaact	gtgctgggggg	aagtccat	gtgcacgtat
	4141	ttacttttagt	ttgggtctct	tgttttggac	atcttatttc	tagagctgt	aagacaataa
	4201	aattcttata	tcaaagccaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa
50	4261	aaaaaaaaaa	aaaa				

SEQ ID NO: 98

Amino acid sequence of rat ETL encoded by the DNA sequence shown in SEQ ID NO: 97.

55 MRLLLLLVGLSTLLNHSYTQNCKTPCLPNAKCEVILDEVAACFCSTGTYGNGITICBDVDE
CNETSVCGDHAVCENTNGGFSCFCVVEGYQTSTGKTQFTPNDGSYCDVDECNETSVCGDH
AVCENTNGGFSCFCVVEGYQTSTGKTQFTPNDGSYCOEIVNSNCHLEHDCIAANINKTLKR

1 IGPITEQLTLLHEIYKNSEAEELSLVDIVTYIEILTESSSLQGYIKNTTSPKDAYFGSALT
 5 EFGKTVNNFVEKNTTHEMWDQLPTNRRRLHLTKLMHAAEHVTLQISQNIQKNTQFDMNSTD
 LALKVVFDSVHMGTTHPHMNVDGGYVKISPRRKSAYDPNGNVIVAFLCYRSIGPLLSSS
 DDFLLGAQSDNSKGKEKVSISSVISASISSNPPTLYELEKITFTLSHVKLSDKHQTCACFW
 10 NYSVDDMNNGSWSEGCETYSNDTHTSCRCSHLTHFAILMSPSTSIEVKDYNILTRITQ
 LGIIISLICLAIICIFTFWFSEIQSTRTTIHKNLCCSLFLAQLVFLVGININTNKLVCSI
 IAGLLHYFFLAFAWMCIEGIYLYLIVVGLIYNKGFLHXNPYIFGYLSPA VVGF SASLG
 YRYYGTTKVCWLSTENNFPIWSFIGPACLIILVNLLAFGVIIYKVFRHTAGLKPEVSCYEN
 IRS CARGA LALLFLLGTTWTFGVLHVHASVVTAYLFTVSNAFQGMPIFLFLCVLSRKIQ
 BEYYRLFKNVPCCFECLR

SEQ ID NO: 99

gi|31982926|ref|NM_023928.2| Homo sapiens acetoacetyl-CoA synthetase (AACS), mRNA

1 cgctgacc ca gcccgcagg cgctcctgac cgtcgccattcc tccggteccca ggtccccggc
 61 cctcgccctca gccccggccc ctggtcccca gcccctgtcg cagccccggc cgccccggc
 121 cgccatgtcc aaggaggagc gccccggctcg ggaggagatc ctggagtgtcc aggtgatgtg
 181 ggagcctgac agtaagaaga acacgcagat ggaccgcattc cggccggctg tggccggc
 241 ctgcggccctg gcgctggaga gttatgtga cttgtaccat tggccgttgc agtcataattc
 301 agacttctgg gcagagttct ggaaattttagtgg tggatattgtc ttctcacgtg tggatgtga
 361 ggttgtggac acatcgaaag gaatcgaga tggcccccgg tggccaaag gca gtcggc
 421 caactatgca gaaaacctcc tgcggcacaa agagaatgtc agatgtggc tttacattgc
 481 aagggaaggc aaagaggaaa ttgtgaaatggt gacttggaa gagctgaggc aagaagtggc
 541 tttgttgca gcagacatga gaaaaatggg tggatggaaa ggagatcggg ttgttggtt
 601 tttacccaaac agtggacacg ctgtcgaggc gatgctggct gcccgaagca ttggtgc
 661 ctggagctcc acgtccccgg acttcgggtt gaatgggtg ctggaccgg ttttc
 721 tcagccaaag ctcatcttct ctgtggaggc tggatgttat aatggccaaag agcacaacca
 781 catggaaaag ctgcagcagg tggatggaaa cttaccatgtt tggatggaaa tggatgttat
 841 tccttatgtg tcctccagag agaacataga ctttccaaag attccaaaca gttgtttt
 901 ggtgactttt cttgcacccg gcaccatgtg gca gggcccccgg cagctggatc tggatgt
 961 gcccattcgc caccactgtt tcatcatgtt ctcatccggc accacggggc caccac
 1021 catggatcat tccgtgggg gca ccattcat ccagcatctg aaggagcacc tgctgcacgg
 1081 caacatgacc agcagtgaca tccctctgtg ctacaccacg gtcggctgg tggatgtggaa
 1141 ctggatgttgc tccctcttgc ccacaggagc ggcattgtc tggatgttgc gtc
 1201 ggtgcccacg cccaaatgtgc tctggaccc tggatgttgc ataggcatca ctgtcc
 1261 aactggggcc aagtggctgt cagtgttgc agagaaggcc atggatgttgc tggaaac
 1321 cagtc tccatgttgc atgctccaca cgtatgttgc cactggccatcc cactgaaa
 1381 cggatgttgc tacagggttgc tcaagaggat ctttccatgtt ctttccatgtt
 1441 cggatgttgc tccatgttgc tggccacaa ttttccatgtt ctttccatgtt
 1501 tcaggcccccgg aacctggggca tggccgttgc agcgttgc acggatgttgc
 1561 gggagagagc ggcggatgttgc tggatgttgc ggcgttgc tggatgttgc
 40 1621 gaacatgttgc aacccatgttgc tggatgttgc ggcgttgc tggatgttgc
 1681 ggctcatgttgc gactactgttgc tggatgttgc ggcgttgc tggatgttgc
 1741 gatgttgc aacccatgttgc tggatgttgc ggcgttgc tggatgttgc
 1801 tggatgttgc tggatgttgc tggatgttgc ggcgttgc tggatgttgc
 1861 ggaggagagg gtatgttgc tggatgttgc ggcgttgc tggatgttgc
 45 1921 ggtttaagagg atccgttgc ccatccgttgc ggcgttgc tggatgttgc
 1981 catccatgttgc accaaggggca tccctgttgc gtcacatgttgc aaggatgttgc
 2041 caacatgttgc atccgttgc aacccatgttgc gcaaggatgttgc tggatgttgc
 2101 ctttccatgttgc tccatgttgc tccatgttgc ggcgttgc tggatgttgc
 2161 gtcacttgc cgcacccgttgc tggatgttgc ttttccatgttgc tggatgttgc
 2221 octacatgttgc tggatgttgc atccgttgc ccatccgttgc ggcgttgc tggatgttgc
 2281 ttttccatgttgc tggatgttgc cgcacccgttgc tggatgttgc
 2341 ctttccatgttgc tggatgttgc cgcacccgttgc tggatgttgc
 2401 ttttccatgttgc tggatgttgc ggcgttgc tggatgttgc
 2461 ttttccatgttgc tggatgttgc ggcgttgc tggatgttgc
 2521 ggttgcacatgttgc ttttccatgttgc cgcacccgttgc tggatgttgc
 2581 tatgttgcacatgttgc tggatgttgc ggcgttgc tggatgttgc
 2641 ctggatgttgc ggcacccgttgc tggatgttgc atccgttgc

2701 ggccctggag gactgtgcgt caccgtcaa ccagagcgtg cctccggcc agcttccctc
 2761 caaggaatga gtggatttca tacaggatct ctttattgca cagactgaat ggctttacat
 2821 gtttctaata gtaatttaggc atgtgaagca gtgggtgtcc acccggttcc ctcattgggt
 2881 ageccctccag ctgtgagccc aggeagtgtt gtcacccgtt gaggaccctc ctcaccagga
 5 2941 accgcatttcc tttgtgtgcct ccacccgtt gttgttaggg ggttcttgcc gagatcatgt
 3001 catcagcacc cctaaatgttca gtcacccgtt tccatagcca ggcagttgtt atgtacaatt
 3061 cagttcagcg tatgaacttg tatctctaata ctgtatgttca ttttttatatt ttttgaact
 3121 gagcacaatg aaatcccttc ttgaatcatt ttccctttgg attataaaaa tatggggaa
 10 3181 agtgctatga tgagtttat gcaataaatg tatacatgtt tgacatgttca cccaaaaaaaa
 3241 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
 3301 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa

SEQ ID NO: 100

Amino acid sequence of human FLJ12389 encoded by the DNA sequence shown in SEQ ID NO: 99.

15 MSKEERPGREEILECQVMWEPDSKKNTQMDRFRAAVGAACGLALESYDDLYHWSVESYSD
 FWAEFWKFSGIVPSRVYDEVVDTSKGIADVPEWFKGSRILNYAENLLRHKENDRVALYIAR
 EGKEEIVKVTFBELLRQEVALFAAAMRKMGVKKGDRVVGYPNSEHAVEAMLAAASIGAIW
 SSTSPDFGVNGVLDLRFQSQIQPKLIFSVBAVVYNGKEHNHMEKLQVVKGLPDLKKVVVIP
 YVSSRENIDLSKIPNSVFLDDPLATGTSEQAPQLEFSQLPFSHPLFIMFSSGTTGAPKCM
 20 VHSAGGTLIQHLKEHLLHGNTSSDILLCYTTVGWMWNWMVSLATGAAMVLYDGSPLV
 PTPNVLWDLVDRIGITVLVIGAKWLSPLEEAKMPVETHSLQMLHTILSTGSPPLKAQSYE
 YVYRCIKSSILLGSISGGTDIISCFMGHNFSLPVYKGEIQARNLGMABAWNERGKAVWG
 ESGELVCTKPPIPCQPTFWNDENGNKYRKAYFSKFFGIWAHDYCRINPKTGGIVMLGRS
 25 DGTLPNGVRFGSSEIYNIVESFEEVEDSLCVPQYNKYREERVLFLKMASGHAFQPDLV
 KRIRDAIRMGLSARHVPSLILETKIPIYTLNGKKVEAVKQIIAGKAVEQGGAFSNPETL
 DLYRDIPELQGF

SEQ ID NO: 101

gi|10436299|dbj|AK024036.1| Homo sapiens cDNA FLJ13974 fis, clone Y79AA1001581, weakly similar to ACETYL-COENZYME A SYNTHETASE (EC 6.2.1.1)

30 1 cccttgttcc ccgcgcgcgc cgtegtgtac ccagccgcgc aggegttccctt gaccgtcgct
 61 tcctccgggtc ccagggtcccc ggccttcgtcc tcagcccccgg cccttgggtcc ccagccctcg
 121 tccgcaggcccc ggccgtccgc cgccgcgtat tccaaggagg agccgcgggg tcgggaggag
 181 atccctggagt gccaggtgtat gtgggagccct gacagtaaga agaacacgcgca gatggaccgc
 241 ttccggggcggt ctgtgggcgc ccgttgcggc ctggcgctgg agagttatgtt tgacttgcac
 301 cattggtcccg ttgagtcata ttcaagacttc tggcagaggt tctggaaatt cagtggaaatt
 361 gtcttcgtcac gtgtgtatgtt tgagggttgcgtt gacacatcgaa aagaatcgca agatgtcccc
 421 gagggttgtca aaggcgttcg gtcactat gcagaaaacc tcctgcggca caaagagaat
 481 gacagagtttgc ccctttatcat tgcaggggaa ggcaagaggaa aatttgttggaa ggtgactttt
 541 gaagagactgtt ggcagaatgtt ggctttgttt gcagcagcaaa tgaggaaaat ggggtgtgaag
 601 aaaggagatc ggggttgtgg ttatccatcc aacagtgttgc acgtgttgcgaa ggcatgtgt
 661 gctggggcaaa gcattttgttc catctggagc tccacgtccc cggacttcgg tttgttgcgt
 721 gtgttgttgc aatttgcgttca aatctcatct tctctgttggaa ggctgttgttgc
 781 tataatggca aagagcacaa ccacatggaa aagctgcgttgc aggtgtttaa aggccatcca
 841 gacttgcgtt aagtgttgtt gatccatccatgtt gttgttgcgtt gaggagaacat agacccatcc
 901 aagatccaa acagtgttgtt ttt
 961 ccgcagctgg agttcgatgtt gtcgttgcgttcc agccacccac ttttttttttttttttttttttt
 1021 ggcaccacgg ggcacccaa gtcgttgcgttcc ttttttttttttttttttttttttttttttttt
 1081 ctgttt
 1141 acggtcgggtt ggtatgtgtt gaaactggatgtt gtttttttttttttttttttttttttttttt
 1201 gtctttgttgcgtt atgggttt
 1261 aggtatggca tcaactgttgcgtt gtt
 1321 gccatgttt

	1381	tccccactga	aagcccagag	ctacgagtat	gtctacagggt	gcatcaagag	cagecatcctc
	1441	ctgggcctcca	tctcaggagg	caccgacate	atcttcctgtct	tcatggccca	caatttttct
	1501	cttcctgtgt	ataaaaggggg	gattcaggcc	cggAACCTGG	gcatggccgt	ggaAGCgtgg
	1561	aacgaggaag	gaaaggcggt	ctggggagag	agcggcgagc	tggtgtgtac	taagccgatc
5	1621	ccttgcgcgc	ccacacactt	ctggAACGAT	gagaACGGCA	acaAGTACAG	gaaggcgat
	1681	ttctccaaat	tcccaggat	tgggctcatg	gCGACTACTG	cagaATCAAC	cccaAGACCG
	1741	ggggcatcgt	catgttggc	cgagtgacg	GCACCCCTCAA	ccccAAACGGG	gtgeggttcg
	1801	gcagctcgga	aatctataac	attgtggat	cettcgagga	ggtggaggac	agcctgtgtg
10	1861	tccccagta	taacaagtac	agggaggaga	gggtgatcct	cttcttgaag	atggcctccg
	1921	ggcacgcctt	ccagcctgac	ttggtaaga	ggatccgtga	cgccatccgc	atgggcttgt
	1981	ctgcgcgaca	cgtgcccage	ctcatctgg	aaaccaagggg	catecccgtat	acgctcaacg
	2041	gcaagaaaagt	ggaagttgcc	gtcaaacaga	tcatcgctgg	aaaagccgtg	gagaaggag
	2101	gtgttttctc	gaacccccgag	accctggatc	tgtaccggga	catccctgag	ctgcagggct
15	2161	tctgagtcag	actggctggc	gtgtcaacta	gcccgcaccccg	tgtgactgt	aaacctttgtg
	2221	tgctcaagaa	attatacaga	aacctacagc	tgttgtaaaa	ggatgctcgc	accaagtgtt
	2281	ctgttaggctt	ggggagggat	cgttttcttg	ttttgtttaaa	tetgggggt	acctggatct
	2341	tccacacacgag	tgggattctg	gccttcagag	accaggaggg	agtgtctggg	ccgcaggtgt
	2401	ggcactgtgg	tgagagtgt	tgtcttgc	cacacagtgc	ageggaaacg	gtggggctgg
	2461	ctggtgctga	agacagacac	actccctgagc	caagggttttg	tcttcaacct	ccccgtccccg
20	2521	ttgtccccatt	ttgtctctgt	aagggtgcaaa	tccctttttt	cccttcccat	ctcagggctct
	2581	cctgttttcc	ctcagggtcc	agtatgcctt	ttaggttttag	ctgttagaaaa	gaaaccccccgg
	2641	tgacttgaca	cagttttcac	agctggctgc	taggacccggc	gggctgggtg	ttaacgtgtg
	2701	tctgtgtcat	ggatgcaatg	caggccctgg	aggactgtgc	gtcaccctgc	aaccagagcg
	2761	tgcctccggg	ccagcttccc	tccaaaggat	gggtggattt	catacaggat	ctcttttattg
25	2821	cacagactga	atgggtttac	atgtttctaa	tgtgaatttag	gcatgtgaag	cagtgggtgt
	2881	ccacccgtgt	ccctcatggg	tgagccctcc	agctgtgagc	ccaggcagtg	tggcacccga
	2941	gtgaggaccc	tcctcaccag	gaaccgcata	cctgtgtgc	ctccacccgt	gagggtctag
	3001	ggggtttttg	tcgagatcat	gtcattcagca	ccctctaagtc	aagtcacggg	tttccatata
	3061	caggcagtttgc	gtatgtacaa	ttcaggatcg	cgtatgaact	tgtatctctaa	atctgtatgtc
.30	3121	catttttata	ttttttgaaa	ctgagcacaa	tgaatccctt	tcttgaatca	ttttccctttt
	3181	ggattataaaa	aatatggggg	aaagtgttat	gatgaatttt	atgcaataaaa	tgtatacatgt
	3241	tgtgcacatg	c				

SEQ ID NO: 102

35 Amino acid sequence of human FLJ12389 variant ORF number 1 encoded by the DNA sequence shown in SEQ ID NO: 101.

MSKEERPGREEILECQVMWEPDSKNTQMDFRAAVGAAAGLAESYDDLYHWSVESYSD
FWAEOFWKFSEIVFSRVYDEVVDTSKIGIADVPFEWKGSRLNYAENLLRKENDRVALYIAR
EGKEEIEVETFEELRQEVALFAAAAMRKMGVKKGDRVVGYLPNSEHAVEAMLAASIGAIW
SSTSPPDGFVGNGVLDLRFQSIQPKLIFSVEAVVYNGKEHHNMKELQQVVKGLPDLKKVVVIP
40 YVSSRENIDLISKIPNSVFLDDFLATGTSEQAPQLEFEQLPFSHPLFIMPSSGTTGAPKCM
VHSAGGTLIQHLKEHLLHGNMNTSSDILLCYTTGVWMWNWMSLLATGAAMVLYDGSPLV
PTPNVLWDLVDRIGITVLVTGAKWLSVLEEKAMKPVETHSLQMLHTILSTGSPLKAQSYE
YVYRCIKSSILLGSISGGTDIISCFMGMHNFSLPVYKGEGIQARNLGMAVEAWNBEKGKAVWG
45 ESGELVCTKPPIPQCPTHFWNDENGNKYRKAYFSKFPGLIGLMATTAESTPRPGASSCLAGV
TAPSTPTGCGSAARKSITLWNPSSRRWRATACVSPSITSTGRGG

SEQ ID NO: 103

gi|10434316|dbj|AK022740.1| Homo sapiens cDNA FLJ12678 fis, clone NT2RM4002409, weakly similar to ACETYL-COENZYME A SYNTHETASE (EC 6.2.1.1)

```

50      1 agacacatcg aaaggaatcg cagatgtccc cgagtggttc aaaggcagtc ggctcaacta
       61 tgcagaaaac ctcctgcggc acaaagagaa tgacagagtt gcccttaca ttgcaaggga
      121 aggcaaaagag gaaattgtga aggtgacttt tgaagagctg aggcaagaag tggctttgtt
      181 tgcagcagca atgaggaaaa tgggtgtgaa gaaaggqat cgggttgtt gttatcc

```

241 caacagttag cacgtgtcg aggcgatgt ggctgcggca agcattggtg ccatctggag
 301 ctccacgtcc cggacttcg gtgagaatgg tggctggac cggttttetc aaattcagcc
 361 aaagctcatc ttctctgtgg aggctgttg ctataatggc aaagagcaca accacatgga
 421 aaagctgeag cagggtgtta gaggcctacc agacttgaag aaagtggtg tgattccta
 5 481 tgtgtctcc agagagaaca tagaccttc aaagattcca aacagtgtgt ttctggatga
 541 ctttcttgcc accggcacca gtgagcaggc cccgcagctg gagttcgagc agctgccctt
 601 cagccaccca ctgtcatca tggctcatc gggcaccacg ggcgcaccca agtgcattgt
 661 gcattccgct gggggcaccc tcatccagca tctgaaggag cacctgctgc acggcaacat
 721 gaccagcagt gacatctcc tggctcacac caeggctggc tggatgtatgt ggaactggat
 10 781 ggtgtccccctt ctggccacag gageggccat ggtttgtac gatggctccc ccctgggcc
 841 cacgccccaaat gtgccttggg acctgggtga caggataggg tatctgggt catggcact
 901 actgcagaat caaccccaag acggggggca tcgtcatgt tggceggagt gacggcaccc
 961 tcaaccccaa cggggtgcgg tteggcagct cggaaatcta taacattgtg gaatccctcg
 1021 aggaggtgga ggacagectg tggccccccc agtataacaa gtacagggag gagaggggtga
 15 1081 tccctttctt gaagatggcc tccggggcaeg cttccagcc tgacttgggt aagaggatcc
 1141 gtgaecccat cggcatggc ttgtctgccc gacacgtgcc cagcctcatc ctggaaacca
 1201 agggcatccc gtatacgtc aacggcaaga aagtggaaat tggcgtcaaaa cagatcatcg
 1261 ctggaaaaggc cgtggagcaa ggaggtgctt tctcgaaccc cgagaccctg gatctgtacc
 1321 gggacatccc tgagctgcag ggcttctgag tcagactggc tggcgtgtca ctcagccca
 20 1381 cccgtgtgca ctgttaacttt tggctgtca agaaattata cagaaacacta cagctttgt
 1441 aaaaggatgc tggcacaag tggctgttag gcttggggag ggatcggttc tctgtttgt
 1501 taaatctggt gggtaacctgg atttccaca cggatggat tctggccttc agagaccagg
 1561 agggagtgtc tggggccgag gtgtggcaact gtggtgagag tgggtgtctt tgcacacaca
 1621 gtgcagcggg aacgggtggg ctggctgggt ctgaagacag acacactcct gagccaaggt
 25 1681 cttgtcttca acctccccgt cccgtgtcc cattttgtc tggtaagggtg caaatccctt
 1741 tttttcccttc ccatctcagg ctctctctgtt ttccctcagg gtccagttatg cctttgagct
 1801 ttagctgtta gaaaggaatg agtggatttc atacaggatc tctttattgc acagactgaa
 1861 tggctttaca tggcttaat gtgaatttagg catgtgaagc agtgggtgtc caccctgtc
 1921 cctcatgggt gagccctcca gctgtgagcc cagggcgtgt ggtcaccggag tgaggaccct
 30 1981 cctcaccagg aaccgcatcc ctgtgtgtcc tccacctgg agttgtctagg gggtttttgt
 2041 cgagatcatg tcatcagcac ccctaagtca agtcacgggt ttccatagcc aggcaattgg
 2101 tatgtacaat tcagttcagc gtatgaactt gtatctcaa tctgtatgtcc atttttatat
 2161 tttttgaaac tgagcacaat gaaatccctt cttgaatcat tttccttttgg gattataaaaa
 2221 atatggggga aagtgtatgt atgaatttta tgcaataaaat gtatacatgt gtgcacatgc
 35

SEQ ID NO: 104

Amino acid sequence of human FLJ12389 variant ORF number 2 encoded by the DNA sequence shown in SEQ ID NO: 103.

MRKMGVKKGDRVVGYLPNSEHAVEAMLAAASIGAIWSSSTSPDFGENVLDLDRFSQIQPKLI
 40 FSVEAVVYNGKEHNHMEKLQQVVRGLPDLKVVVIVYVSSRENIDLSKIPNSVFLDDPLA
 TGTSEQAPQLEFEQLPPFSHPLFIMFSSGGTGTGAPKCMVHSAGGTLIQHLKEHLLHGNMTSS
 DILLCYTTVGWMMWNVNVMVSLLATGAAMVLYDGSPVPTPNVLWDLVDRICYLGSWRLLQN
 QPQDRGHRHAWPE .

SEQ ID NO: 105

45 gi|21313519|ref|NM_030210.1| Mus musculus acetoacetyl-CoA synthetase (Aacs), mRNA

1 gagtctcgcg ctgtgggtcg tcggcgcacc gctgatccgc tccacgcctt gcgctctccg
 61 ctctcagccca aagcccgccca gccccggccca cgcagctccg caaccatgtc caagctggcg
 121 eggctcgagc gcgaggagat catggatgtc caggtgtatgt gggagcctga cagcaagaag
 181 gacacgcaga tggacccgtt cccggccggcc gttgggtaccc cctgcggccct ggcgtttgg
 241 aattacaatg acttatacca ctggctgtc cggtcgtata tggacttttgg ggctgaggatc
 301 tggaaagtccca gtgaaatcgat ctactcacgc atgtatgtatgg aggttggatc cacaatccaaa
 361 gggattgcag atgtccccca gtggttcaga ggcagccgccc tcaactacgc agagaacactc
 421 ctgcggcaca aggagaacga cagatgtcccttacgtgg cccgggaagg tagagaggag

481 atcgtgaagg tgactttga agagctgcgg cagcagggtgg ctctgttcgc agctgccatg
 541 aggaagatgg gcgtgaagaa aggggaccgt gtggtcggct atctacccaa cagtgecat
 601 gcggtggagg ccatgctggc tgctgccagt attggggcca tttggagttt tacctcgccg
 661 gactttggtg taaatggtgt cctggacccg ttttctcaaa ttccagccgaa acttatettc
 5 721 tcgggtggagg ctgtgtcta caatggcaag gagcatggtc acctggagaa gctgcagcga
 781 gttgtgaaaag gactgcctga cctgcagcga gtggtgcgttgc tcccctatgt cctcccaagg
 841 gagaagattt acattccaa gatccccaaac agtgcgttcc tggatgattt cctggcaagc
 901 gggacccggcg cgccaggccgc gcaagctcgag tttgagccgc tgcccttcag ccaccctctg
 961 ttcatcatgt tctcttcagg cacgacgggg gcccggcaactt gcatggtgca ctcagccggg
 10 1021 ggcacccctca tccagcacct gaaggagcac atgcatacag gcaacatgac aagcagtgc
 1081 atcctgcctt actacaccac gtcggctgg atgatgttgc actggatgtt gtcagccctg
 1141 gcccacaggag catccttgcgt cctgtatgtt ggctccccgc tggttccgac ccccaacgtg
 1201 ttgtgggacc ttgtggacag gatagggtttt accatccctgg gaacggggagc caagtggctg
 1261 tcagtgcgttgg aggagaagga catgaagcca gtggaaactc acaacctcca caccgtgcac
 15 1321 acgatccctgt ccaccggctc gcccgtgaaa gcccaggtt acgagtatgt gtacagatgc
 1381 atcaagagct cccgtgcctt gggctccatc tcaggaggca ctgacatcat ctctgttcc
 1441 atggggccaga actcctctat tcctgtgttgc aagggtgaga tccaagcccg gaaccttggc
 1501 atggctgtgg aaggctggga cgaggaaggaa aaggccgtt ggggagcgg tggcggagctg
 1561 gtgtgcacta agcccatattcc ctgcccggcc acgcacttcc ggaacgcacga gaacggcagc
 20 1621 aagtaccgga aggtttactt ctccaaatttcc caaggtgttcc gggcacacgg tgactactgc
 1681 aggatcaacc cccaaacagg aggatttttccatc atgctggcc gtagtgcgttcc caccctcaac
 1741 cccaatggcg tccgctttgg cagctcgaggat atctacaaca tcgtggaaagc cttcgtatgg
 1801 gtggaggaca gctgtgtgtt accccagtttcc aacagagatg gggggggggc ggtggctctg
 1861 ttccgttggaa tggcgccggc gcacactttcc cagcctgacc tcgtgttgcg catccgagac
 25 1921 gccatccggc ttggctgttgc tgccggccat gtcggccagcc tcatecttggc gacccggggc
 1981 attccatata cactaatgg caagaaatgtt ggggtggcccg tgaaggcaggat gatggcttggg
 2041 aggactgtgg agcaccgggg ggccttctcc aaccccgaga ccctcgaccc gtaaccggggc
 2101 atccctgagc tgcaggactt ctgagccggc acgtgcacttcc ccatccggat gtgcgtatgt
 2161 tggaaacttag ggacacttttta gagacaacag ctgtccggc tgcccttggc actgcacact
 30 2221 ccacaggctc aggaacacgtt ttcccttttcc gggatgttcc gttggggggccca ggtctcccg
 2281 gtcggatgttgg gtcgttggcc ttccggagacc ctaagcataacttcc gtagggctt gtcctgggg
 2341 tgctgtata ggtcggccaca cagccgttgc gggggggccca tgggtacatt tggtaacaggc
 2401 acactggagg agcgatgtgg cttccggccatc gggggggccca tgggttgcatt tgcgtatgt
 2461 aagggttgcgtt cttactata ctctctgttcc ttaacttggcc tgggttccctt acgtttacttgc
 35 2521 tttctcaag agctgactaa agccaggggca cttggcccgat gatggcttgc acctcacacgc
 2581 tggctgttgg gacacttggg ctgacggctc ctgtaccgttcc taccaggcc agaacaccat
 2641 tctaggaaat ggttgcgttggaa ttgtccggccatc agccaaatggc tctctgtat ggcacatccc
 2701 ctctgtgttcc ggggttccccc gactgtttcc ggggttccacc agcacaatgtt gatggatgg
 2761 caaacgggtt aatgtttaattt gggggccgtt gggccacttgc atccctgggtt gtcataccca
 40 2821 ggttaccact tagctgtgttcc gggggccatgtt gatggcttgc gtcggccagg gatggatgt
 2881 ccccgccctca gggggaaatgg ccccggttccat gatggatggcc tttttttat tggatgg
 2941 tggactgttcc tcttacatccat gtaaatggat tctcggccat gggcttgcgg gacttaatgg
 3001 tgcttcttccctt ctggccacacg gatggatgttca taaatcttgc tggatgttcc tggatgg
 3061 tttttaaaaaa ctggccacaa cataaaatccat ttttttttttttttttttttttttttttttttt
 45 3121 aaggaaaaatgtt gctatgttgcgtt gggccatgcacca cccatggccatc
 3121 aaggaaaaatgtt gctatgttgcgtt gggccatgcacca cccatggccatc

SEQ ID NO: 106

Amino acid sequence of mouse FLJ12389 encoded by the DNA sequence shown in SEQ ID NO: 105.

50 MSKLARLEREEIMECQVMWEPDSKKDTQMDRFRAAVGTCAGLALGNYNDLYHWSVRSYMD
 FWAEFWKFSGIVYSRMYDEVVDTSKGIADVPFWFRGSRLNVAENLLRKENDRVALYVAR
 EGREEIVKVTFEELRQQVALFAAAMRKMGVKKGDRVVGYLPNSAHAVEAMLAASIGAIW
 SSTSPDPFGVNGVLDLDRFSQIQPKLIFSVEA VVYNGKEHGHLEKLQLRVLKGLPDLRVVLIP
 YVLPREKIDISKIPNSVFLDDFLASGTGAQAPQLEFEEQLPFPFSHPLFIMFSSGGTTGAPKCM
 55 VHSAGGTLIQLHLKEMMLHGNMTSSDILLYTTVGWMMWNSALATGASLVLVYDGSPLV
 PTPNVLWDLVDRIGITILGTGAKWLVSLEKDMKPVEHNLHTLHTLSTGSPPLKAQS YE
 YYVRCIKSSVLLGSISGGTIDISCFMGQNSSI PVYKGEI QARNLGMAVEAWDEEGKAVWG

	481	atcgtgaagg	tgacttttga	agagctgcgg	cagcagggtgg	ctctgtcgc	agctgcccatt
	541	aggaagatgg	gcgtgaagaa	aggggaccgt	gggttcggct	atctacccaa	cagtgegcat
	601	gcgggtggagg	ccatgctggc	tgctgccagt	attggggcca	tttggagttc	tacctcgccg
	661	gactttgtg	taaatgggt	cctggaccgc	tttctcaaa	ttcagccgaa	acttatcttc
5	721	tcgggtggagg	ctgttgtcta	caatggcaag	gagcatggtc	acctggagaa	gctgcagcga
	781	gttgtgaaag	gactgcctga	cctgcagcga	gggtgtctga	tccccatgt	cctcccaagg
	841	gagaagattg	acatttccaa	gatcccaac	agtgtgttcc	tggatgattt	cctggcaagc
	901	gggacccggcg	cgcaggcgc	gcagetcgag	ttttagcag	tgccttcag	ccacccctctg
	961	ttcatcatgt	tctctcagg	cacgacggga	gcgcctcaaa	gcatggtca	ctcagccggg
10	1021	ggcacccctca	tcacgcac	gaaggagcac	atgctacacg	gcaacatgac	aagcagtgc
	1081	atccctgtct	actacaccac	ggtcgctgg	atgatgttga	actggatgtt	gtcagccctg
	1141	gccacaggag	caccccttgg	cctgtatgt	ggctcccccgc	tggttccgac	ccccaacgtg
	1201	ttgtgggacc	ttgtggacag	gatagggtatc	accatectgg	gaacgggagc	caagtggctg
	1261	tcagtgttgg	aggagaagga	catgaagcca	gtggaaactc	acaacctcca	cacgctgcac
15	1321	acgatccctgt	ccacccggctc	gcccgtaaa	gcccagagtt	acgagtatgt	gtacagatgc
	1381	atcaagagct	ccgtgctct	gggctccatc	tcaggaggca	ctgacatcat	ctcccttggc
	1441	atggggccaga	actcctctat	tcctgtgtac	aagggtgaga	tccaagcccg	gaaccttggc
	1501	atggctgtgg	aagcctggga	cgaggaaggg	aaggccgtct	ggggagcggag	tggcgagctg
	1561	gtgtgcacta	agcccattcc	ctgcccagccc	accacttct	ggaacgacga	gaacggcage
20	1621	aagtaccgga	aggcttactt	ctccaaatc	ccaggtgtct	gggcacacgg	tgactactgc
	1681	aggatcaacc	ccaaaacagg	aggcattatc	atgctgggc	gtagtgtatgg	cacccctcaac
	1741	cccaatggcg	tcgcctttgg	cagctcgagg	atttacaaca	tctgtggaa	cttcgtatgag
	1801	gtggaggaca	gcctgtgtgt	accccagtac	aacagagatg	gctggaggacg	ggttggctctg
	1861	tccctgaaga	ttgcgtccgg	gcacacttcc	cagectgacc	tctgtggaa	catccgagac
25	1921	ccatccgac	ttgcgtctgt	tgcctccat	gtggccagecc	tccatcttgg	gacccggaggc
	1981	attccatata	cactcaatgg	caagaaagt	gaggtggccg	tgaagcagg	gatggcttggg
	2041	aggactgtgg	agcacccgggg	ggccttctcc	aaccccgaga	ccctcgac	gtacccggac
	2101	atccctgagc	tgcaggactt	ctgagccagc	agctcgact	ccatccagct	gtgcgtatgt
	2161	tggaaacttag	ggacacttta	gagacaacag	ctgctccagg	tggcccttggc	actgcacatc
30	2221	ccacaggctc	aggaacacgt	ttccttcc	ggagtcattt	gtggggccca	ggtctcccg
	2281	gctccaggat	gtgcctggcc	ttcgagacc	ctaaagcatac	actggaggctt	gtctcgccgg
	2341	tgctgtctata	gttcagcaca	cagccttgc	ggggcaggggc	tgtgtacatt	tgtgtacagc
	2401	acactggagg	agcgatgtgg	ccttcagct	catgagcccg	ctgtgtatc	tcgtctat
	2461	aaggtgaagt	cttacctata	ctctctgtcc	ttaactggcc	tggcttcctc	agcgatgt
35	2521	tcttcataag	agctgactaa	agccaggggca	cctggcccg	catgcctgtc	acccacacgc
	2581	tggctgttgg	gacacctggg	ctgacggctc	ctgtaccgtc	taccaaggcc	agaacaccat
	2641	tctagggaaat	ggtgatgtgaa	ttgtccagac	agccaagagc	tctctgtat	ggcaagtccc
	2701	ctctgtgtc	gggtgtccccc	gactgtttct	gggtcttacc	agcacagtgt	ttgaatgggt
	2761	caaacggttt	aatgtttaatt	gagggcctgg	gggcacttga	atccctgggt	gtctacccca
40	2821	ggttaccact	tagctgtgt	ctgggcagtg	tgatcttgg	gtccggccagg	gatggagctg
	2881	ccccgcctca	gagggaaatg	gccccgtgt	cccttcataat	agtttcttggg	cttttctat
	2941	tgtgactgtc	ctctacattt	gtaaatgaag	tctcaggctt	tggtgtccag	gacttaatgg
	3001	tgcttcctt	ctagcacacg	gaatatgtca	taaatcttgg	tgattgtttt	tgtatffff
	3061	ttttaaaaaa	ctgagcacaa	cataaaacct	ttttaagata	tcctggatct	taagtctata
45	3121	aaggaaaaagt	gtatgttgaaga	attttatgg	ataaaatctgt	gcatgcaca	ccttg

SEQ ID NO: 106

Amino acid sequence of mouse FLJ12389 encoded by the DNA sequence shown in SEQ ID NO: 105.

50 MSKLARLEREIMECQVMWEPDSKKDTQMDRFRAAVGTACGLALGNYNDLYHWSVRSYM
.PWAEFWKFSGIVSRMYDEVVDTSKIADVPWEFRGSRLNYAENLLRHENDRVALYVAR
EGREEIVKVTFEELRQQVALFAAAMRKMGVKGDRVVGYLPNSAHAVEAMLAAASIGAIW
SSTSPDFGVNGVLDRFSQIQPKLIFSVEAVVYNGKEHGHLEKLQRVVKGPLPDQLQRVVLIP
YVLPREKIDISKIPNSVFLDDFLASGTGAQAPQLEFEQLPFSHPLFIMFSSGTTGAPKCM
55 VHSAGGTLIQHLKEHMLHGNMTSSDILLYTTVGWMWNWMSALATGASLVLYDGSPLV
PTPNVLWDLVDRIGITILGTGAKWLSVLEEKDMKPVEHTNLHTLHTILSTGSPPLKAQSYE
XVYRCIKSSVLLGSISGGTDIISCFMGONSSIPIVYKGEOFARNLGMAVEAWDEEGKAVWG

ASGELVCTKPIPCQPTFWNDENGSKYRKFPSKFPGVWAHDYCRINPKTGGIMLGRSDGTLNPNGVRFGSSEIYNIVEAFDEVEDSLCVPQYNRDGEERVVLFLKMASGHTFQPDLVKRIRDRAIRLGLSARHVPSSLILETRGIPYT LNGKKVEAVKQVMAGRTEHRGAFSNPETLDLYRDIPELODF

5 SEQ ID NO: 107

gi|12831226|refNM_023104.1| Rattus norvegicus acetoacetyl-CoA synthetase (LOC65984), mRNA

10	1 ttcgcgtcg tggttcgccc gcgccacgct gagccgctcc acgcctcgct ctctcccgctg 61 ttcgcgcgc taaagccccgg gcagccccgg ccacgcagct ccgaacccat gtccaagctg 121 gcacggctcg agcgcgaggaa gatcatggag tggccaggta tgtggagcc tgacagcaag 181 aaggacacgc agatggaccg cttccggcg gccgtggta ctgcctcggt cctggcgctt 241 gggattacg atgacttata ccactggctc gttccggctg attcagactt ctgggcttag 301 ttcttggaaat tcagtgaaat tgcgtctcg cgcgttatg atgaggtgt ggacacatcc 361 aaaggaaattt cagatgtccc tgagtggtc agaggcagcc gcctcaacta tgcaaaaaac 421 cttctgcggc acaaggagaa cgacagagtc gcccttacg tggccggga aggccagagag 481 gagattgcga aggtgacttt cgaagagctt cggcagcagg tggctctgtt tgcaagccg 541 atgaggaaga tagacatttc caagatcccc aacagcatgt ttcttgatga ctccctggca 601 catggcgtgg aggccatgtt ggctgtgtcc agatattggag ccatttgag ttctacactca 661 ccagactttt gttgtaaatgg tgcctggac cgcttttctc aaattcagcc gaaacttata 721 ttctcggtgg aagctgtggt ctacaacggc aaggaacacg gccacettggaa gaagctgcag 781 cgagtcgtga aaggacttcc tgacccctcg cagtggtgc tgatccctta tgcctccca 841 aaggagaaga tagacatttc caagatcccc aacagcatgt ttcttgatga ctccctggca 901 agcgggacag gtgcgcaggg accacagctc gagtttgaac agctgcctt cagccatcccc 961 ctgttcatca tggttcttcc gggcacgaca ggacgcggca agtgcattggt gcactctgt 1021 gggggcaccc tcataccagca cctgaaggag cacgtgtac atggcaacat gacaaggcagt 1081 gacatccctgc tctactacac cacggcggc tggatgtatgt ggaactggat ggtgtcagcg 1141 ctggccacag gaggcatcctt ggttctgtac gatggctccc cgctgggtcc aacacccaaat 1201 gtgttgtggg accttggaa caggatagga atcaccatcc tgggaacggg agccaagtgg 1261 ctgtcagtgc tggaggagaa ggacatgaag ccgatggaaa ctcacaaccc ctacacgc 1321 cacacgatcc tggccacccgg ctgcacactg aaagccccaga gctatgagta tgccttacaga 1381 tgcataaaga gcacccgtgt cctcggtctcc atctcagggtg gcaactgacat catttcctgt 1441 ttcatggggcc agaactcattc tattccctgtg tacaagggtg agatccaaagc cggAACCTC 1501 ggcattggccg tggaaaggcttgg ggacggggaa gggaaaaccgg tctggggagc gagtggcgag 1561 ctgggttgc acaagcccat accctggccag cccacgcact tctggaaacga cgagaacggc 1621 agcaagtaca ggaaggcttgc cttctccaaa taccgggtg tctgggcaca cggcgaactac 1681 tgcaggatca aacccaaagac aggaggatcc gtcgttgg gccggagtga tggccacccctc 1741 aaccccaatgg gctacgcgtt tggcagctcg gagatctaca acattgtggaa agccttcgtat 1801 gaggtggggg acagccctttg tggcccccgg tacaacaggaa atggtgagga gcccggtagtc 1861 ctgtttctga agatggcctc tggccacact tttccagccccg acctcggtaa gcaatccgt 1921 gatccatcc gccttggccct gtctgtcgca cactgtccccca gcttcatttgg gggacccaa 1981 ggcattccat acacaatcaa cggcaagaaaa gttggaggtgg ccgtgaagca ggtatagct 2041 gggaaagactg tggagcccccgg gggggcccttc tccaaaccttgc agtccctggaa cctgtatccg 2101 gacatccctg agctgcaggaa cttctgaacc aatggctcgc actcggtcca gctgtgcacg 2161 tgcattgtact tagggacagc agctgcgtccg tggcccccagg cactacgca cccacgggt 2221 cagagacagc tttccctgtttt cggagtcattg ggtggggacc aggtctgtct cctgagctcc 2281 aggtatgtgcc tggcccttcgg agacaaaaag ggtacactga ggcctgtctt ggcctgtct 2341 ctataaggta gcaacacagcc ttgcaggcgc agggctggcg acattttggta acaacacact 2401 ggaggagcga tggcccttcgg agcttcattga gcccacagtt ccacccctcgct ctatgaaggt 2461 gaaatcttac ctgtattctc tggcccttaat aactggctcg gttcccttag gttactgtc 2521 ttctcgagag ctgcctgaaat ccaggccacc tggccagca ggcctgtcac ctacacacttgc 2581 gctgttgggg tggccctgggtt gatggctctg tctggcaagg ccagaacacc attctaggga 2641 actgcgtatgtt aatccctccatg acagccaaaga gctctgtct gttggcaagtc ccctctgt 2701 gcgagcgtcc cccactgtttt ctgggtcttta acagcacaag tatttgaatg ggtcaaacgt 2761 caatgttact ggaggatctg cggcgttggag gcaactgtat ccctgggtt tgccttccat 2821 gttaccactt agctgtgtgc tggccgggtgt gatccctggag tttcccccggg atggagctgc 2881 cccgcctcg agggaaatgg cccgcgtctc cctccataa gttccgggtt cttctcttgc 2941 tgcgttactt ccatgtttgtt aaatgcgtc tcaaggctttg gttggccaggaa ctcaatgggt
----	--

3001 cttcttgctc agcacacaga atatgtcata aatcctggtg attatacttt tgtatccctt
 3061 tctttttttt tttttttta aaactgagca caacataaaa ccttttaaaa atatcttgg
 3121 tttaactct ataaggaaaa agtgctatga agaattttat ggaataaaacc tgtgccatgc
 3181 acgcctatcc

5 SEQ ID NO: 108

Amino acid sequence of rat FLJ12389 encoded by the DNA sequence shown in SEQ ID NO: 107.

MSKLARLEREEIMECQVMWEPDSKKDTQMDRFRAAVGTACGLALGNYDDLYHWSVRSYSD
 FWAEFWKPSGIVCSRMYDEVVDTSKGIADVPEWFRGSRLNYAENLLRKENDRVALYVAR
 10 EGREEIAKVTFEELRQQVALFAAAMRKMGVKKGDRVVGYPNNSA HAVE AMLAAASIGAIW
 SSTSPDFGVNGVLDRFSQIQPKLIFSVEA VVYNGKEHGHLEKLQRVVKGPLPDLQRVVLIP
 YVLPREKIDISKIPNSMFLDDFLASGTGAQAPQLEFEQLPFSHPLFIMFSSOTTGAPKCM
 VHSAGGTLI QHLKEHVLHG NM TSSDILLYTTVGWMMWNVMSA LATGASIVLVYDGSPLV
 PTPNVLWDLVDRIGITILGTGAKWL SVLEEKDMKPMETHNLHTLHTILSTGSPPLKAQS YE
 15 XYVYCIKSTVLLGSISGGTDIISCFMGQN SSI PVYKGEIQARNLGMAVEAWDEEGKTVWG
 ASGELVCTKPIPCQPTFWNDENGSKYRKAYFSKYPGVWAHGDYCRINPKTGGIVMLGRS
 DGTLNPNGVRFGSSEIYNIVEAFDEVEDSLCVPQYNRDGEERVVLFLKMASGHTFPQD LV
 KHIRDAIRLGLSARHPSLILETQGIPYTINGKKVEAVKQVIAGKTVEHRCAFSNPESL
 DLYRDIPELQDF

20 SEQ ID NO: 109

gi|22547160|ref|NM_012193.2| Homo sapiens frizzled homolog 4 (Drosophila), mRNA

1 gctgcgcagc gctggctgct ggctggcetc gcggagacgc cgaacggacg cggccggcgc
 61 cggcttgg gctcggcgcc tgcagccatg accctcgacg cctgtccctc ggcctcgcc
 121 cgggacgtct aaaatcccac acagtcgcgc gcagctgctg gagagccggc cgctgcccc
 181 tcgtcgccgc atcacactcc egccccggga gctgggagca ggcggggcag cccggccccc
 241 cgtgcaact ggggtgtct gccagagcag ccccagccgc tgccgctgtt acccccgtg
 301 ctggccatgg cctggggggg cgcaggccgc agcgtccccgg gggcgccccgg gggcgctgg
 361 ctca gtcgtctgg ggttgtctct gcagttgtct ctgtctctgg ggccggcgcc gggcttcggg
 421 gacgaggaa agcggcgctg cgacccatc cgcacatccca tggcccgaaa cctcggtcac
 481 aacgtgacca agatccccaa cctgggtggg cacgagctgc agacggacgc cgagctgcag
 541 ctgacaacttc tcacaccgc tcatccgtac ggctgtccca gccagctgca gtttttcctt
 601 tggatgtt atgtccaaat gtgcacagag aagatcaaca tccccattgg cccatgcggc
 661 ggcatgtgtc ttccatgtcaa gagacgctgt gaacccgtcc tgaaggaaatt tggatttgcc
 721 tggccagaga gtctgaactg cagcaattc ccaccacaga acgaccacaa ccacatgtgc
 781 atggaaaggc caggtatgtca agaggtgccc ttacctcaca aaaccccat ccagcctggg
 841 gaagagtgtc actctgtggg aaccaattt gatcagatca tctgggtgaa aaggagctg
 901 aactgtgtgc tcaagtgtgg ctatgatgtt ggcttataca ggcgttcagc caaggagttc
 961 actgatatct ggatggctgt gtggggccagc ctgtgttca tcttccatgtc cttcacagta
 1021 ctgacccccc tgatcgattc ttcttaggtt tcctaccctg agccccat catatttctc
 1081 agtatgtgtc ataatattta tagcattgt tatattgtca ggctgactgt aggccggaa
 1141 aggatatctt gtgatattga agaggcagca gaacctgttc tcatccaaga aggacttaag
 1201 aacacaggat gtgcataat ttcttgcgtt atgtactttt ttgaaatggc cagctccatt
 1261 tgggggtta ttctgacact cacttggttt ttggcagcag gactcaa atg gggctatgaa
 1321 gccattgaaa tgcacagctc ttatccac attgcagccct gggccatccc cgcagtggaa
 1381 accattgtca ttctgattat gagactgggt gatgcagatg aactgactgg cttgtgttat
 1441 gttggaaacc aaaatctcga tgcctcacc gggttcggtt tggctccctt ctttacttat
 1501 ttggatgtt gaaacttgcgtt cattgtgc ggtttgggtt cttgttcaaa aattccgtca
 1561 aatcttcaaa aggatggac aaagacagac aagttgaaaa gactgatgtt caagattgg
 1621 gtgttctcag tactgtacac agttccgtca acgtgtgtga ttgcctgtta ttttatgaa
 1681 atctccaact gggca tttt tcggatattt gca gatgatt ccaacatggc tggtaatg
 1741 ttgaaaattt ttatgtttt gttgggtggc atca ttcag gcatgtggat ttggctgccc

1801 aaaacttttc acacgtggca gaagtgtcc aacagattgg tgaattctgg aaaggtaaa
1861 agagagaaga gaggaaatgg ttgggtgaag cctggaaaag gcagttagac tgtgtataa
1921 ggctagtcg cctccatgt ttctcattt tgaagggggg aatgcagca ttttgagga
1981 aattctacta aaagtttat gcagtgaatc tcagttgaa caaactagca acaattaagt
5 2041 gaccggcgte aaccctactgc ctcccacccc gaccggcgca taaaaaacc aatgattttg
2101 ctgcagactt tggaatgatc caaaatggaa aagccagttt gaggcttca aagctgtgaa
2161 aaatcaaaac gttgatcaact ttagcagggtt gcagcttggc gcgtggaggt cctgcctaga
2221 ttccaggaag tccaggcga tactgtttt ccctgcagggtt gggatttga gctgtgagtt
2281 ggttaacttgc agggagaaat attaactttt ttaaccctt accatttaa atactaactg
2341 ggtctttcag atagcaaagc aatctataaa cactggaaac gctgggttca gaaaagtgtt
2401 acaagagttt tatagtttgg ctgatgtaac ataaacatct tctgtgtgc gctgtctgc
2461 gtttagaact ttgtggactg cactccaaag aagtgggtt agaactttt cgtgccttgg
2521 tcataaaaaca gttatggaa caaacaaaag tactgtactc acacacataa ggtatccagt
2581 ggattttctt tctctgtttt cctctttttaa atttcaacat ctcttttctt ggctgtgc
15 2641 gtttcttca tttttagtta atgactcaaa aaaggttattt ttatagaatt ttgtactgc
2701 agcatgctta aagaggggaa aaggaaagggtt gattcaactt ctgacaatca cttaaattcag
2761 aggaaaatgaa gatttactaa gttgacttac ctgacggacc ccagagacctt attgcattga
2821 gcagtgggaa cttaaatatat tttacttgg tgattgcattc tattgcagacg ccagtctgg
2881 agagctgaaa ttgttaagttt cttggcaact ttgcattcac acagatttgc tttgttaattt
20 2941 ttgtgtgtca attacaattt aaagcacattt gttggaccat gacatgtat actcaactg
3001 cttttaaaactt atggtaact tcaacttgca ttctcagaat gatagtgcct tttttttttt
3061 ttttattttt taaagcataa gaatgttatac agaatctggt ctacttagga caatggagac
3121 ttttcagtt ttataaaggg aactgaggac agctaattcca actacttggt gctgttaattt
3181 ttcccttagtta ttggcaaaagg cttctgtttaa gatttcaactt gggcagggtt ggcctggagt
25 3241 atttatatgg tgcttaatgaa atctccagaa tgccagccag aagcctgatt gtttagtagg
3301 gaataaaatgt tagaccatataa gaaatgaaact gcaaaactcta atagcccagg tcttaattgc
3361 ctttagcaga ggtatccaaa gttttttttt tttatgcata cgttcttcac aagggggggtac
3421 ccccagcagc ctctcgaaaa ttgcacttctt cttttttttttaactggcctt ttcttttacc
3481 ttgccttagg cttctcaatc atgagatttt ggggacaaaat tgactatgtc acagggtgc
3541 ctccctgttaa ctcataccctg tctgtttttttt cttttttttt tttttcaatc
3601 attcatgtct taaaaaaaaa ggaagggaagttt tttttttttt tttttcaatc
3661 acactttgtg gaaaaacattt tccaggactt cttttttttttaaagggtgtt ctttttttacc
3721 aagtaagcat ttctttttttt tttttttttt gttttagtgc ttatgccccat agtttgacat
3781 ttccctttttt tttttttttt tttttttttt gttttagtgc ttatgccccat agtttgacat
3841 catgtaaatgt cgattgtat tttttttttt gttttagtgc ttatgccccat agtttgacat
3901 gtggccacag gtggcccccctg ctgttgttgc cttttttttt tttttcaatc
3961 caggctccag gaggatgaga attgtttttt tttttttttt tttttacttcc atctgttact
4021 ccattgccta tggaaatgtaa aatgttgcactt ccctgtgttgc tttttttttt tttttcaatc
4081 ctgtccacgg ccctggagca cgcacccagg ggcagggccctt gttttagtgc tttttttttt
4141 ctgggtgttca gggagttgtg caggactt gttttagtgc tttttttttt tttttcaatc
4201 taggggactg gtcttgcgtt tagagatag tttttttttt tttttttttt tttttcaatc
4261 gtcagtgttca gttttagtgc tttttttttt tttttttttt tttttcaatc
4321 gatacttgc tttttttttt tttttttttt tttttttttt tttttcaatc
4381 gatttttttgc tttttttttt tttttttttt tttttttttt tttttcaatc
4441 ctttttccaca atctcttgc tttttttttt tttttttttt tttttcaatc
4501 ggatttttttgc tttttttttt tttttttttt tttttttttt tttttcaatc
4561 tggagatgtt tttttttttt tttttttttt tttttttttt tttttcaatc
4621 ctttcaatca actccatcac tttttttttt tttttttttt tttttcaatc
4681 ttatttttttgc tttttttttt tttttttttt tttttttttt tttttcaatc
50 4741 ctaggttgg gacgcacccca ggtctgttca tttttttttt tttttttttt tttttcaatc
4801 gacctcttgc tttttttttt tttttttttt tttttttttt tttttcaatc
4861 ccaccacacc caggctgggtt tttttttttt tttttttttt tttttcaatc
4921 ttttttttttgc tttttttttt tttttttttt tttttttttt tttttcaatc
4981 ctctggagaa atccctttagg aagactatgaa gttttagtgc tttttttttt tttttcaatc
5041 ttttttttttgc tttttttttt tttttttttt tttttttttt tttttcaatc
5101 ttttttttttgc tttttttttt tttttttttt tttttttttt tttttcaatc
5161 tacatgttttttgc tttttttttt tttttttttt tttttttttt tttttcaatc
5221 atgggttgc tttttttttt tttttttttt tttttttttt tttttcaatc
5281 ataggccaaa ctttgcggc tttttttttt tttttttttt tttttcaatc
5341 gtttgcgttca tttttttttt tttttttttt tttttttttt tttttcaatc
5401 ctggactgttgc tttttttttt tttttttttt tttttttttt tttttcaatc

5461 ttttaattt cagagatgct ttctgatttt cctcccccag gtcactgtct cacctgcact
 5521 ctccaaactc aggttccggg aagcttgtgt gtctagatac tgaattgaga ttctgttcag
 5581 caccttttag ctctatactc tctggctccc ctcataatca tggtcaactga attaaatgct
 5641 tattgtatgg agaaccaga a tgggacactga ggacacaaag atgagctcaa cagtctcagc
 5 5701 cctagaggaa tagactcagg gatttacca ggtcggtca gtatttgatt tctggtgagg
 5761 tgaccacagc tgca gttttagg gaaggagcc attgagcaca gactttggaa ggaaccttt
 5821 ttttgttgg ttttgttgg ttttgttgg agacagggtc ttgtctgtc
 5881 acccaggctg gggcgaatg gcacgatctt ggctcaactgc aacctctgco tctgggttc
 5941 aagtgattt cctgccacag cctcctgagg agctggact acagggtcgt gctaccacgc
 10 6001 ccagctactt ctgtat tttt agtagagacg gggtttcaet gtgtggcca ggctgggtc
 6061 gaactcctga cctcatgatc tgeccgcctc agcctccaa atgtctggga ttacaagtgt
 6121 gagccaccac acctggcctg gaaggaaacctt cttaaaatca gttacgtct ttttgttgg
 6181 tctgtatgg aggacactgg agagagttgc tattccagtc aatcatgtcg agtcaactgg
 6241 ctctgaaaaat cctattggg tcttattttt atttgatgg agaggatccct tctgggttgg
 15 6301 tattatgtct ggcaatgac ctgggttate actttccctc cagggtttaga tcataagatct
 6361 tggaaactcc ttagagagca tttgtcttcc accaaggatc agatactgg a cccacata
 6421 atagatccat tttcaactcta gcctacata agctttctgt tttgtctct tgecatgcac
 6481 ttgtcggttgg attacacact tgacagttcc aggagacaaa tgacttacag atccccggac
 6541 atgcctcttcc ccttggcaa gtcagttgc cctgatagta gcatgttct tttctgtatgg
 20 6601 tacctttttt ctcttcttct ttgcatcage caattcccg aatttccccca gcaatttgg
 6661 agaggaccc tttgggtcc tatatgagcc atgtccatca agttttaaa cctccttgc
 6721 ctcctacaat attcgttaca tgaccactgt catcctagaa ggcttctgaa aagaggggca
 6781 agagccactc tgcgccacaa aggttgggtc catcttctct ccgagggtgt gaaagtttc
 6841 aaattgtact aataggctgg ggcctgact tggctgtggg ctggggagg ggttaagctgc
 25 6901 tttcttagatc tctccagtg aggcatggag gtgttttca attttgcata cctcacagg
 6961 atgttgcag gcttggaaat gtcaaaaat gatggccct tgacttctt gtaagaaagg
 7021 tagatgaaat atcgatgtt atctgaaaaa aagataaaaat gtacttccc ctgtctgt
 7081 cagcagtccg gctggatgtt ctgtggcctt tcttgggtcc tcatgccacc ccacagctcc
 7141 aggaacctt aagccaatct gggggacttt cagatgttgc acaaagaggt accaggccaa
 30 7201 cttcctgctt ccatgccc ttttcaat ttttca aaggaaatgg accctgtt
 7261 taaggatgtt caaaatgtt tctgtatcgatc ttttgcata ttttgcata
 7321 ttttgcata aaaaatgg ttttgcata ttttgcata aaaaatgg gtttgcata
 7381 ttttgcata aaaaatgg ttttgcata ttttgcata aaaaatgg gtttgcata

SEQ ID NO: 110

35 Amino acid sequence of human FZD4 encoded by the DNA sequence shown in SEQ ID NO:
 109.

MAWRGAGPSVPGAPGGVGLSLGLLQLLLLLGPARGFGDEEERRCDPIRISMQNLGYNV
 TKMPNLVGHELQTDALQLTTFTPLIQQYGCSSQLQFFLCSVYVPMCTEKINIPIGPCGGM
 CLSVKRRCEPVLKKEFGFAWPESLNCSKFPQNDHNHMCMEGPGDEEVPLPHKTPIQPGEE
 40 CHS VGTNSDQYIWVKRSLNCLVKCGYDAGLYRSRAKEFTDIWMAVWASLCFISTAFVLT
 FLIDSSRFSPERPIIFLSMCYNIYISIAYIVRLTVGRERISCDFEEAAEPVLIQEGLKNT
 GCACIIFLLMYFFGMASSIWWVILTLWPLAAGLKWGHEAIEMHSSYFHIAAWAIPAVKTI
 VILIMRLVDADELTGLCYVGNQNLDALTGFVVAPLFTYLVIGTLFIAAGLVALFKIRSNL
 QKDGTKTDKLERLMVKIGVFSVLYTVPATCVIACYFYEISNWALFRYSADDNSNMAVEMLK
 45 IPMSLLV GITSGMWIWSAKTLHTWQKCSNRVLVNSGKVREKRGNGWVKPGKGSETVV

SEQ ID NO: 111

gi|13548680|dbj|AB054881.1| Homo sapiens mRNA for Soluble-type polypeptide FZD4S,
complete cds

50 1 atccccacaca gtcgcgcgca gtcgtggag agccggccgc tgccttcgt tcgcgcac
 61 acactcccgatcccggttggagcttggagcagcg cggccagccg ggcggccgtt gcaactgg
 121 ggtgtctgttggatggccatggccatggccatggccatggccatggccatggccatggccatgg
 181 ggcggggcgc agggccgagc gtcgggggg cgtcggttc agtctgggtt

5	3901 gtattctgca gatgattcca acatggctgt taaaatgttg aaaattttta tgcttttgtt 3961 ggtgggcate acttcaggca tggatggattt gtctgcacaa actcttcaca cgtggcagaa 4021 gtgttccaaac agattggtga attctggaaa ggtaaagaga gagaagagag gaaatggttg 4081 ggtgaagecct ggaaaaggca gtgagactgt ggtataaggc tagtcagcct ccatgctttc 4141 ttcattttga aggggggaat gccagcattt tgaggaaat tctactaaaaa gtttatgc 4201 gtgaatctca gtttgaacaa actagcaaca attaagtgac ccccgtaaac ccactgcctc 4261 ccacccccgac cccagcatca aaaaaccaat gattttgcgtg cagacttgg aatgatccaa 4321 aatggaaaag ccagtttagag gtttcaaag ctgtaaaaaa tc当地acgtt gatcactttt 4381 gcagggttgca gcttggagcg tggaggcct gcctagattc caggaagtcc agggcgatac 4441 tggtttcccc tgcagggttg qatttgcgt gtga
10	

SEQ ID NO: 112

Amino acid sequence of human FZD4 variant ORF number 1 encoded by the DNA sequence shown in SEQ ID NO: 111.

MLAMAWRGAGPSVPGAPGGVGLSLGLLQLLLLGPARGFGDEERRCDPIRISMQCNLG
YNTKMPNLVGHELQTDALQLTTFTPLIQYGCSSQLQVGAPTPTPGTPWGGLTLQTNFA
EPMPS

SEQ ID NO: 113

gi|15929644|gb|BC015256.1| Mus musculus frizzled homolog 4 (Drosophila), mRNA (cDNA clone MGC:18403 IMAGE:4238940), complete cds

20	1	agcgctgggg	cggtgagaac	agcgccgcgt	agagtgcagg	cgggcttcgc	cgaaaagccg
	61	gactcggccg	gcgccgagtt	ctgggatcgc	ccctgcagc	catgacccta	cgactccatc
	121	cctcgccccg	ggctccggac	gtctgatata	ccgcacattc	tcttacaact	gctggagagg
	181	cgactgctgc	ccccctgtcg	cccttggcgc	cttaccgcata	tccctatccg	gagttgggag
25	241	cagcggccc	accggcgccc	ctgtgaaac	tgggggtgtc	tgctagatca	gcctctgcgg
	301	ctgctgccc	cagctctggc	catggcctgg	ccgggcacag	ggccgagcag	ccggggggccg
	361	cctggaggcg	tcgggctca	gctggggctg	ctgctgcagt	tgctctgtct	cctcgccgg
	421	acattggggt	tcggggacga	ggaggagcgg	cgtctgcgacc	ccatccgcata	cgccatgtgc
30	481	cagaacctcg	gctacaacgt	gaccaagatg	cccaacttag	tgggacacga	gctgcagaca
	541	gaccccgagc	tgca	aactttcac	ccgc	at	ctccagccag
	601	ctgcagttct	tcctttgttc	ggtttatgt	ccaatgtgc	caga	aaatcccc
	661	atcggccccgt	gcgg	gtgc	gtca	gctgt	taacc
	721	gaatttgggt	ttgc	cgac	aact	atgt	ccatctgaga
	781	cacaaccaca	tgt	aggac	catgg	ttcc	ccacaagact
35	841	cccatccagc	ccgggg	gtgc	gtgg	at	ctcatctgg
	901	gtgaagagga	gcct	tg	tg	at	gtacagccgc
	961	tca	act	tt	gg	ct	ttccatctcc
	1021	accac	ttca	ccgt	gt	cc	ccatgagcgc
	1081	ccat	at	ttc	ca	at	tttgcataat
	1141	actgt	aggc	ggaa	aggat	ttt	gttgcggctg
40	1201	caagaaggac	tta	aaa	acac	at	tttttgg
	1261	atggcc	ca	ttt	gggt	ttt	tttttggc
	1321	aagt	ggg	tc	at	ttt	ccctgagcgc
	1381	attcc	cc	tgaa	aaacc	ttt	at
	1441	actgg	ctt	gtt	gg	at	at
	1501	cct	ctt	ttt	gtt	at	tttttgg
	1561	tc	aaa	ttt	gg	ttt	tttttgg
	1621	atgg	tca	aga	tgg	ttt	tttttgg
	1681	tgtt	at	ttt	ttt	ttt	tttttgg
	1741	atgg	cag	ttt	gtt	ttt	tttttgg
	1801	tgg	at	ttt	gtt	ttt	tttttgg
	1861	tct	ggg	aa	ggg	ttt	tttttgg
50	1921	gag	act	gtt	ggg	ttt	tttttgg

1981 ggaatctcag tttgaacaaa cttagaaaaca cttcagccca cacacaccca cgtcagccca
 2041 ccaccactca cccaaactcag catcagaaga ccaatggctt cactgcagac tttggaatgg
 2101 tccaaaatgg aaaagccagt tagagggttt caaagctgtg aaaaatcaaa atgttcatca
 2161 ctttagcagg tcacagctt gagtcggcgg aggtccgc tagattcctg aagcccaggg
 5 2221 tgatagtgtt tgctcctact ggggtggatt tcaactgtga gtgataaca tgcaaggaga
 2281 aagattaatt tttaaaaccc ttttaaattt taaatagtaa cttagtctt cagatagcaa
 2341 agtgatctat aaacactgga aatgctgggt tgggagacgt gtgcagagt tttatagtt
 2401 ggctggctca acataaacat cttctggcct acactgtctg ctgtttagaa ctctgtagcg
 2461 cactccccaaag aggtgggtgtc aaaatccctt agtgccttg tcgtaaaaca gaatttttg
 10 2521 agcaaacaaa agtactgtac taacacacgt aaggatcca gtggatttct ctctcctgaa
 2581 atttcaacat ccctaattctt aggccageccc tgtttctt acctttaact aatgactcaa
 2641 aaaaaaaaaaag gttttttta taggattttt ttttgcactg cagcatgcct aatgagagga
 2701 aaagggaagg tgatctactt tctgacaatc acttaattca gaaaaaaatg agatttgcta
 2761 agttgactta ccttaccgac cctagagacc tattgcatta agcaatgtt agcaattggg
 15 2821 actttaaaata tttagttt tttgatttca tctaggcaga cggcagtctg gaagaactga
 2881 aatgttaaat ttcttggcaa ctttgcattt acacagatta actgtgtaat ttgtgtgtt
 2941 caattacaat taaaagcaca ttcttggacc atgaaaaaaaaaaaaaaaa

SEQ ID NO: 114

Amino acid sequence of mouse FZD4 encoded by the DNA sequence shown in SEQ ID NO:
 20 113.

MAWPGTGPSSRGAPGGVGLRLGLLLQLLRLRPTLGFGEERRCDPIRIAMCQNLGYNV
 TKMPNVLVGHELOQTDAELQLTFTPLIYQGCSSQLQFPLCSVYVPMCTEKINIPIGPCGGM
 CLSVKRRCEPVLRERFGFAWPDTLNCSKFPPQNDDHNMCMEGPGDEEVPLPHKTPIQPGE
 CHS VGSNSDQYI WVKRS LNCV LKC GYD GL YRS R S AKE FTD I WMA VWA SLC FIST T FTV LT
 25 FLIDSSRF SYPER PI IF L SMC YNI Y SIA Y I VRL TV GRER IS CDFEE AAE P VLI Q E GL K NT
 GC AII F L L M Y FFG MASSI WW VIL TL TWFLAAGLKGHEAI EMH SSY F HIA AWA IP AVK TI
 VILIMRLV DADELTGLCYVGNQNLDALTGFVVAPLFTYLVIGTLFIAAGLVALFKIRS NL
 QKDGT KTD KLER LMV KIGVFSVLYTVPATCVIACYFYEISNWALFRYSADDNSNMAVEMLK
 IFMSLLV GITSGMWIWSAKTLHTWQKCSNRLVNSGKVREKRGNGWVKPGKGNETVV

30 SEQ ID NO: 115

gi|12018309|ref|NM_022623.1| Rattus norvegicus frizzled homolog 4 (Drosophila) (Fzd4), mRNA

1 gagcttggta actagagcag gtcattcat taaatcggtc acatgattct acagcagctg
 61 aagaagcgcc cgctgcccccc tggcgccctt ccgcattccc tatccggagc
 121 tgggagctgc gcggccacccg gggcccccgt gcaaactggg ggtgtctgtt agagcagcc
 181 cccgcgtgc tggccggcc tctggccatg gcttggcagg gcacaggccc aagcgtccgg
 241 gggatgcctg gagggcgtcag gtcaggctg gggctgtgc tggcgtcagg ttcctgtctc
 301 cagcggcccg ccctggggtt cggggacgag gaggagccg gttgcgaccc catccgcac
 361 gccatgtgcc agaacacctgg ctacaacgtg accaagatgc ccaacttagt gggacacgag
 421 ctgcagacag acgcggagct gcaactgaca actttcacgc cgtcatcca gtacggctgc
 481 tccagccagc tgcaggctt ctttggttc gtttatgtc caatgtgcac agagaagatc
 541 aacatccccca tggcccggtg cgggtggcatg tgccttcag tcaagagacg atgtgaacca
 601 gtcctgaaag aattttgggtt tgcctggccg gacagcctga actgcacca gttcccaccc
 661 cagaacgacc acaaccacat gtgcattggaa ggaccagggt acgaagaggt acccttggcc
 721 cacaactc ccattccaggcc gggggaaagag tggccactccg tggaaaccaa ttccgatccag
 781 tacatctggg tgaaaaggag cctgaactgt gttctcaagt gtggctacga tgctggcttg
 841 tacagccgt cagctaaggaa gttcacggat atttggatgg ccgtgtggc cagcctctgc
 901 ttcatctcta ccacccatc tggctgtacc ttccctgattt attcgccag gttttcttac
 961 cctgagccgc ccattcatatt cctcgtatgt tgcataata ttatagcat tgcttatatt
 50 1021 gttcggttta ctgttagggccg ggaaaggata tcctgtgatt ttgaagaggc ggcagaaccc
 1081 gttctcatcc aagaggact taagaacaca ggatgtgcaaa taatttctt gctgatgtac
 1141 ttttttggaa tggccagctc catttggtgg gttattctga cactcacttg gtttttggca

1201 gccggactca agtggggtca cgaagccatt gaaatgcaca gttcttattt ccacatcgca
 1261 gcctgggcta tccctgccgt gaaaaccatt gtcatcttga ttatgagact agtggatgcc
 1321 gatgagctga ctggcctgtg ctatgtcggtt aaccaaagcc tagatgccctt caccggcttt
 1381 gtggggcac ctcttttac etatttggtg attggaactc tatttcattgc tgcaggcttg
 5 1441 gtggccctct tc当地attcg gt当地aaatctt caaaaagatg ggaccaagac agacaagttg
 1501 gaaaggctaa tggtcaagat cggggcttcc tc当地gtctgt acacgggtcc tgcgacctgt
 1561 gtgattgcct gttatctca t当地aaatctca aactgggcac tcttcggta ttctgcagat
 1621 gactcaaaca tggcagttga aatgttgaaa attttatgt ct当地tgcetgt gggcatcact
 1681 tcaggcatgt ggatttggtc tgccaaaact ct当地cacacgt ggccaaaatg ttctaaaccga
 10 1741 ttgtgaatt ctgggaaggt aaagagagag aagagggga atgggtgggt gaagccaggg
 1801 aaaggcaacg aaactgtggt gt当地gactag ct当地tcca ct当地tccat tttgaaggaa
 1861 aggatgcagt gaatctcatttgaacaaac tagaaaca

SEQ ID NO: 116

Amino acid sequence of rat FZD4 encoded by the DNA sequence shown in SEQ ID NO: 115.

15 MAWQGTGPSVRGMPGGVRLRLGLLLLQLLQLRPAALGFGDEERRCDPIRIAMCQNLGVN
 VTKMPNLVGHELQTDALQLTTFTPLIQYGCSSQLQFFLCSVYVPMCTEKINIPIGPCGG
 MCLSVKRRCEPVILKEFGFAWPDSLNCSKFPPQNNDHNHMCMEGPGEVPLPHKTPIQPG
 ECHSVGTNSDQYIIVWKRSLNCVLKCGYDAGLYRSRAKEFTDIWMAVVASLCFISTTFTVL
 20 TFLIDSSRFSYPERPIIFLSMCYNIYSIAYIVRLTVGRERISCFREAAEPVLIQEGLKN
 TGCAIIFLLMYFFGMASSIWVWVILTLTWFLAAGLKGHEAIEMHSSYFHIAAWAIAPAVKT
 IVILIMRLVDADELTLGLCYVGNQSLDALTGFVVAPLFTYLVIGTLFIAAGLVALFKIRSN
 LQKDGTKTDKLERLMVKIGVFSVLYTVPATCVIACYFYEISNWALFRYSADDNSNMAVEML
 KIFMSLLV GITSGMWIWSAKTLHTWQKCSNRNVNSGKVREKRGNGWVKPGKGNETVV

SEQ ID NO: 117

25 gi|5803150|ref|NM_006851.1| Homo sapiens GLI pathogenesis-related 1 (glioma) (GLIPR1), mRNA

1 ctctgttttc tcaaagctga agtcggctag gtttgc当地aaag ctgtggctg agcactcagg
 61 caatcacact ctcagaaact gc当地ggctc tggactgc当地 cctccaaagg ctccatgcca
 121 gacaaagcat gctgtcaca cttgtctaca tagcctggat gtttctttt gtctccaaatt
 181 attcacacac agcaaataatt ttgccc当地ata tc当地aaatga agatttcatc aaagactgc当地
 241 ttgcaatcca taacaagttc cgatcagagg tgaaaccaac agccagtgat atgctataaca
 301 tgacttggga cccagacta gccc当地aaattt caaaagcatg gccc当地aaat tgccagttt
 361 cacataatac acggctgaag cc当地ccccaca agctgeaccc aaatctcact tcaactggag
 421 agaacatctg gactgggtct gt当地ccattt ttctgtgtc ttccgccc当地 acaaactgg
 481 atgacgaaat ccaggactat gacttcaaga ctc当地gatag caaaaaaatc tggccact
 541 acactcaggat tggttggca gatagttaca aagttggctg cgc当地ttcaaa ttttgc当地
 601 aagtttctgg ct当地ggactt ct当地ccaatg gagc当地attt tatatgc当地 tacggacc
 661 gagggaaatta cccaaacttgg ccatataaga gagggaccac ct当地gactgcc tgcccc
 721 atgacaagtg ttggacaat ctc当地gttta accgacagcg agaccaagtg aaacgttact
 781 actctgttgtt atatccaggc tggccc当地at atccacgtaa cagataact tctctt
 841 tc当地tggtaa tt当地gtaatt ctaatactgt ct当地tataat taccat
 901 agtaccctaa tt当地gttctt tt当地gactaat acaattcagg aaagaaaaaaa
 961 aacctcatc acatatggct tt当地ttaac caataacaat taggtgtact tctat
 1021 aacatcttca aaaaaaaaaat atgtaatgc aataactctt c

45 SEQ ID NO: 118

Amino acid sequence of human GLIPR1 encoded by the DNA sequence shown in SEQ ID NO: 117.

MRVTLATIAWMVSFVSNSHTANILPDIE
NEDFIKDCVRIHNKFRSEVKPTASDM
LYMTW

DPALAQIAKAWASNCQFSHNTRLKPPHKLHPNFTSLGENIWTGSPVIFSVSSAITNWYDE
 IQDYDFKTRICKKVGHYTQVVWADSYKVGCAVQFCPKVSGFDALSNGAHFICNYGPAGN
 YPTWPYKRGATCSACPNNDKCLDNLCVNQRDQVKRYYSVVYPGWPIYPRNRYTLSFLIV
 NSVILILSVIITILVQLKYPNLVLLD

5 SEQ ID NO: 119

gi|21312071|ref|NM_028608.1| Mus musculus GLI pathogenesis-related 1 (glioma) (Glipr1), mRNA

1 gagcatgctg aagatggagc tcagaggcag agcacattgtc tagcataaac aaccctgggt
 61 taatccgagc tccaacaggaa acacagtctg cagactgaga gaaccgagca ttcttatcaga
 10 121 accccgcagc tctggattct aggtccagca gcaaccagag agaccatgca ggtcatcctt
 181 gctgtgatag tctggatggc ttctgtctgt tcttagttctt cattttacagc aagcactttg
 241 ccagatataaa caaacgagga cttcattaaa gaatgtgttc aagttcacaa ccagcttcgg
 301 tcaaaagtga gtcccaccagc ccggaatatcg ctgtacatgt ctgggaccc aaaaactagcc
 361 caaattgcaa aagcatggac aaaatcttgtaa gattttaaac acaacccaca gctgcattca
 15 421 cggtatcaccc caaatttcac cggccctggg gagaatatctt ggcttggctc ttatccatc
 481 ttttcagtat cctcagccat ctctgcctgg tatgaagaaa ttaagcacta tgacttcagc
 541 actagggaaat gtagacatgt ctgtggccat tataactcagg ttgtttggc agacagttac
 601 aaacttggct gtgcagtgcactttggccat aatggagcaaa attttatatg cgactatgg
 661 ccagcaggaa attacccaaac gtggccatata aagcaaggag ccacgtgcag tgattggcca
 20 721 aaagatgaca agtgtctcaa cagtctctgc attaaccac gacgagacca ggtctcaegt
 781 tactactctg tggattatcc agactggccat atatacctgc gtaacagata cacatctctc
 841 tttctcatgg ctaagtcgg tctccttata ctgtctgttataattaccat ctgggtaaag
 901 cacaaatatc ctaacttgggt tcttttggac taaagctgtg gtgggggac aactgaatca
 961 catgcggcta tttaaaaact tttcaataaa atctcagtca aaagg

25 SEQ ID NO: 120

Amino acid sequence of mouse GLIPR1 encoded by the DNA sequence shown in SEQ ID NO: 119.

MQVILAVIVWMASSVSSSSFTASTLPDITNEDPIKECVQVHNQLRSKVSPPARNMLYMSW
 DPKLAQIAKAWTKSCEFKHNPQLHSRIHPNFTALGENIWLGLSISFSVSSAISAWYEEIK
 30 HYDFSTRKCRHVCGHYTQVVWADSYKLGCAVQLCPNGANFICDYGPGAGNYPTWPYKQGAT
 CSDCPKDDKCLNSLCINPRRDQVSRYYSVDYPDWPYIYLRNRYTLSFLIAKSVLLLSVII
 TIWVKHKYPNLVLLD

SEQ ID NO: 121

gi|27718248|ref|XM_216892.1| Rattus norvegicus similar to GLI pathogenesis-related 1 (glioma); related to testes-specific, vespid, and pathogenesis proteins (LOC299783), mRNA

1 gtgaactgaa gatggggctc aggaggcagag cacttgcata gcataaacaa ccctgggttc
 61 attcaagctc caacatggaa actgtctgcata gactgagcga accaaggcatt ctatcagaac
 121 cctgaggccc tggattcttag gtccagcagc agccagagg accatgcagg tcctcctcgc
 181 tgtgtatggtc tggatggctt cttctgcgtc tggttttca tatacagcaa gtactttgc
 241 aaaaataaaca aacgaggact tcatcgaaga atgcgttgc gttcacaacc actttcgtgc
 301 aaaaggctat ccacccggcg ggaatatgtt gtacatgtct tgggacccaa aactagccca
 361 aattgcaaaa gctgtggcac agtcttgcgtt atttcaacac aacccacagc tgcattcgc
 421 aatcacccca aactttaactg gcttggcga aaacattgg cttggcttc tattcccttt
 481 ctcagtagt gcccacatcc tcgcctgggt tgaagaaagc cagtagatgt acttcagcac
 541 tgggaaatgt aaaaaagtct gttggcattaa cactcagatt gttggggcag atagttacaa
 601 gattggctgt gcagtgcacatc tctggcccccag aggagcaaatttttgcatactatggacc
 661 agcaggaaat taccacacgt gcccataaa gcaggagcc acttgcgtt cttggccaaa
 721 gatgacaag tgcctgaaca atctctgcac taacccacaa cgagatcagg tctcactgtca

781 ctctgctgat tatccaaaat atctacgtaa cagatacaca tcgctctatc tcatcgctaa
841 gtcagttctc ctattactgt ctgtcataat taccatttgg gtaaaggcaca aatatcctaa
901 ctttagttctt ttggactaat gccctggta ggggacaact tattcatatg tggtgatttt
961 aaaatgttcc aataaaaatct tagaagagtt

5 SEQ ID NO: 122

Amino acid sequence of rat GLIPR1 encoded by the DNA sequence shown in SEQ ID NO: 121.

MQVLLAVMVWMASSASGFSYTASTLPKITNEDFIEECVEVHNHFRSKAYPPAGNMLYMSW
DPKLAQIAKAWAQSCVFQHNPQLHSRIHPNFTGLGENIWLGSLSLFSVRRAILAWFEESQ
YYDFSTGKCKKVCGHYTQIVWADSYKIGCAVQLCPRGANFICNYGPAGMNPWTWPYKQGAT
CSACPDKDCKLNLCNTNPQRDVQSRHSADYPKYLNRRTSLYLIAKSVLLLIVITIIVW
KHKYPNIVLJLD

SEO ID NO: 123

gi|7661847|ref|NM_014879.1| Homo sapiens G protein-coupled receptor 105 (GPR105), mRNA

1 gaacagtgtt accttgagc ctacaatgag aggtatttca aaatgagtga agcatgactc
61 tcacagatga aggccatgc gcaggatctt taatggaaaa acacttggc cacttcaaga
121 cgacaaacgc tcactggca aaacaccc actgaaaaga gacctcatat tatgaaaaaa
181 aaatctaag aggccctctgc cttcagaagt tacaagatga tcaattcaac ctccacacag
241 cctccagatg aatcctgctc tcagaaccc ctgatcactc agcagatcat tcctgtctg
301 tactgtatgg tcttcattgc gggaaatccta ctcataatggag tgtcaggatg gatattctt
361 tacgtgccc gctctaagag ttcatcatac tatctcaaga acattttat tgctgacttt
421 gtgatgagcc tgactttcc ttcaagatc cttggtaact caggccttgg tccctggcag
481 ctgaacgtgt ttgtgtgcag ggtctgtcc gtgtcttct acgtcaacat gtacgtcagc
541 attgtgttct ttggctcat cagcttgc agtattata aaattgtaaa gccttttgg
601 acttccttca tccagtcag gagttacagc aaacttctgt cagtgtatgt atggatgctc
661 atgctcttcc ttgctgttcc aaatattatt ctcaccaacc agagtgttag ggagggtaca
721 caaataaaaat gtatagaact gaaaagtgaa ctggacggg agtggcacaa agcatcaaac
781 tacatcttcg tggccatctt ctggattgtg ttcttttgc taatcgcccc ctataactgt
841 atcacaaga aaatctttaa gtcccacctt .aagtcaagtc ggaattccac ttccgtcaaa
901 aagaaatcta gcccacat attcagcatc gtgtttgtgt tttttgtctg ttttgtacct
961 taccatattt ccagaatccc ctacacaaag agtcagaccg aagtcatttta cagtcggccag
1021 tcaaaaagaaa tcttgcggta tatgaaagaa ttcaactctgc tactatctgc tgcaaattgt
1081 tgcttggacc ctattattttt tttcttcttgc gcccagccgt ttagggaaat ttatgtaa
1141 aaattgcaca ttccattttaa agtcagaat gacccatgaca ttccaggaaat caaaagagga
1201 aataacaacac ttgaaagcac agataactttg tgagttcttca cccttttcca aagaaagacc
1261 acgtgtcat gttgtcatct tcaattacat aacagaaaatc aataagatat gtccctcat
1321 cataaaatatc atctctagca ctggccatcca atttagttca ataaaattca aatataagtt
1381 tccatgtttt ttgttaacat caaagaaaaac atacccatca gtaatttttc taatactgac
1441 ctttcttattc tcttattttttt aaaaattaat acatataattt attcaatttctt attatattaa
1501 aataagttaa agtttataac cactgtctg gtcagttaat gtagaaattt aaatagtaaa
1561 taaaacacaaa cataatcaaa gacaactcac tcaggcatct tttttcttca aataccagaa
1621 tcttagtatgt aattttttt aacactgtcc ttaaagacta acttggaaagc aggcacagtt
1681 tgatgaagggg ctagagagct gtttgcataa aaaagtccgg tttttttctt gatttgaaga
1741 agcaggaaaaa gctgacaccc agacaatcac ttaagaaaacc ctttattgtat gtatttctg
1801 gcaactgcaaa ggaagaggaa tattattgt atacttagca agaaaaattttt tttttcttga
1861 tagcactttt agatatttag atacatgtca aatatgtttt ctacaaagac ttacgtcatt
1921 taatgagccct ggggttctgg ttttgcataa tttttttttt ggtttttactg agagaaaacta
1981 aatattggca tacgttataca gcaacttccc ctgttcaata gtagggaaa aataagatgt
2041 ctggggaaaaa gacacacccca caccgttagaa catatattaa tctactggcg aatggggaaag
2101 gagaccattt tcttgcataa aataaaaact tgatttttt aatctaaaa ttacattaa
2161 tgatgtcaaa ataacacata aatgaaaaat tcacacatca catttttctg gaaaacagac

2221 ggattttact tctggagaca tggcatacgg ttactgactt atgagctacc aaaactaaat
 2281 tctttcttg ctattaactg gctagaagac attcatctat ttttcaaataat ttctttcaaa
 2341 acattttat aagtaatgtt tgtatctatt tcatacttta ctgtctataat actaataaaag
 2401 aaatgtttta atactg

5 SEQ ID NO: 124

Amino acid sequence of human GPR105 encoded by the DNA sequence shown in SEQ ID NO: 123.

MINSTSTQPPDESCSQNLLITQQIIPVLYCMVFIAGILLNGVSGWIFFYVPSSKSPFIIYL
 10 KNIVIAFDVMSLTPPFKILGDSGLGPWQLNVFCRVSALFYVNMYVSIVFFGLISFDRY
 YKIVKPLWTSFIQSVSYSKLLSVIVWMLLLLAVPNIILTNQSREVTQIKCIELKSELG
 RKWHKASNYIFVAIFWIVFLLLIVFTAITKKIFKSHLKSSRNSTSVKKSSRNIFSIVF
 VFFVCFVCPYHIARIPIYTKSQTTEAHYSCQSKEILRYMKEFTLLLSAANVCLDPIIYFFLCQ
 PFREILCKKLHPIPLKAQNDLDISRIKRGNNTLESTDTL

SEQ ID NO: 125

15 gi|34328344|ref|NM_133200.2| Mus musculus G protein-coupled receptor 105 (Gpr105), mRNA

1 aatttcggatc catggaaggc cgccacccca gcagactgaa gccagacgtg aaggaggatca
 61 tggtaaggagg tccctgctgt cctccagaca cactgatgcc tgggctacgg atggggacgg
 121 ggacgcatacg tggcttggaaat tctcttcc gaatcctgaa ttctgttgcac gaagcttgc
 181 tttgagatc ctgaacacgg agaaaatagag attaaaaacc ccagaagagaa gaaagtaaat
 241 gattcacaat cttgatgggt tttgccgtat ttatgttctt ccactgttatt agataccagt
 301 cacaaatgac ttagaggcca taaaactgtgc tttaaatgttac tagcctgcct ttctatccag
 361 atctttgcct ccagaggtaa gaagatgaaac aactccacca ccacagaccc tccaaaccag
 421 ccctgtctt ggaacaccctt gatcacaaatc cagatcattt ccgttgcgttgc cggatggtc
 481 ttcatcacgg ggctcttcctt caatggata tcaggatggaa tattcttttta tggcccacgc
 541 tccaagagtt ttatcatcta ttcagaac atatgttgttgc ctgactttctt catgggcctg
 601 actttccctt tcaaagtctt tggtgactca ggcctcggcc cctggcagggt gaatgtgtt
 661 gtgtgcagggtt tctctgttgtt catcttctat gttaatatgtt acgtcagcat cgtttttt
 721 gggctcatca gctttgacag gtactataaa attgtgaaccc cccttctgac gtctattgtg
 781 cagtcgggtga actatagcaa gctgtttttt tggctctgtt ggtatgttcat gttttctt
 841 gctgtcccaa acatcatctt gacaaaccag ggtgtcaagg agtgcacgaa gatacagtgc
 901 atggagctca aaaacgagct ggggcggaaag tggcacaagg cgtctaacta tatcttcgtg
 961 agtatcttctt gggctgtgtt tcttctgttca atcgtttctt acacggccat caccggaaag
 1021 atcttcaagt ctcaccccaa gtccaggaaat aattccacccctt ccgtcaagag gaagtccacgc
 1081 cgcaatatctt tcagcatacg tgcgtttttt tgcgtctgtt tttgtgcctt ccacatttgc
 1141 agaatccccctt acacaaagag tcagacggaa ggtcaactaca gtcgcggac gaaggagacc
 1201 ctgtctatgc gaaaaaaattt cactctgttca ctcttcggctt ccaatgtgtg tctggacccc
 1261 attttttttt tcttcttcttgc ccagccattt agagaagtctt taaaataagaa gttacacatg
 1321 tcactcaaaatg tccagaatgtt cctagaggat tccaaaacca aaaggaaaaa tgcgatttcat
 1381 gaaagcacag atacttgc tttttccatcc ccccttccaaatg tattatcgtt cttgttacat
 1441 gataattaatg atacatgaaat aaaaaggcagg catatgttca taagttactt agcttagcaat
 1501 atatctaata atatgttatgtt ggttataataaa aataaaata taagtttcca
 1561 tgcaaaaatgg aagtntgttag cacatcacat ttttttagaa atcaaaaggaa cagagaagtgg
 1621 gctttgtggg tgctggctt tgatgttaccat aaacccaaactt tctttcttat taactggctt
 1681 ctttagaagac acccagtctt tccgacccctt ctccttaagca ttcttccaaatg caacactcg
 1741 atcttatttca tgctttgttac tatgtatgtt ccaataaaaca agttgttcttcaaaaacccaaa
 1801 aaaaaaaaaaaaaaaa aaaaaaaaaaaaaggcggcccaagttatgtttaa

SEQ ID NO: 126

Amino acid sequence of mouse GPR105 encoded by the DNA sequence shown in SEQ ID NO: 125.

5 MNNSTTDPPNQPCSWNTLITKQIIPVLYGMVFITGLLLNGISGWIFFYVPSSKSFIGYL
 KNIVVADFLMGLTFPKVLGDSGLGPWQNVFVCRVSAVIFYVNMYVSIVFFGLISFDY
 YKIVKPLLTSIVQSVNYSKLLSVLVWMLMLLAAPNIILTNQGVKEVTKIQCMELKNELG
 RKWHKASNYIFVSIWFVWVFLLLIVFYTAIRKIKFSHLKSRKNSTSVRKSSRNIFSIVL
 VFVVCFVPIYHIARIPTYKSQTEGHYSCRTKETLLYAKEFTLLLSSANVCLDPIIYFFLCQ
 PFREVLNKKLHMSLKQNDLEVSKTKRENAIHESTDTL

SEQ ID NO: 127

10 gi|25742688|ref|NM_133577.1|Rattus norvegicus G protein-coupled receptor 105 (Gpr105), mRNA

1 aattctctct tccgcacccct gggttctgtg gatgaaacctt gcctctgaga atcctgaaca
 61 tggagaaaata gagataaata ccccagaaga gggggagtaa gtttcacaa cttgggtgg
 121 tttegcctca tgtctgtccc tccactttaa gagatgccgg tcacctgagg gccacaaaact
 181 ggcgtctaag taaccagect gcctttctac ccagatctt gtctccagaa gtgagaagat
 241 ggacaacaca acaaccacag aacccctaaa gcagccctgc acccgaaaca ccctgatcac
 301 acagcagatc atccccatgt tgtacttgtt ggtcttcatc acaggggtcc tcctcaacgg
 361 aatatcggga tggatatttt ttacgtgcc cagtcataag agtttatca tctatctcaa
 421 gaacatagggt gtggctgact ttctcatggg ctcacttcc cttttcaaaag tcctcagcga
 481 ctacggccctc ggtccctggc agctgaatgt gtttgtattt aggggtgtctg ccgtgatctt
 541 ctacgtcaac atgtacgtca gcatcgcgtt ctccgggctc atagctttt acaggtaacta
 601 taaaatcggt aagcccttc tgggtgtctat cgtccagtca gtgaactaca gcaaagtgt
 661 gtccgtgtt gtgtgggtgc tcatgtttt ctcgtgttc cccaacatca ttctgacaaa
 721 ccagagtgtc aaggatgtca ctaacataca gtgcatttcccttcccttcccttcccttccctt
 781 gaagtggcac aaggcgtcta actatgtctt cgtgaggcatt ttctggatcg tgttccctt
 841 gctgaccgtc ttctacatgg ccataacgag gaagatctt aagtctcacc tcaagtccag
 901 aaagaattcc atctccgtca aaaggaagtc cagccgcaat atattcagca ttgtgctcgc
 961 atttgcgc tgggtgtgttgc tcatgtttt ctcgtgttc cccaacatca ttctgacaaa
 1021 ggaaggacac tacagtgcc aggccaaggaa gaccctgtc tatacgaaag aattcaccct
 1081 gctgctctcg gctgccaatg tgggtctggc ccccatatctt atttcttctt atgccagccg
 1141 ttttagagaag ttttgcataaa gaagtttgcataaa atgtactaa cagtcagaa tgacccatag
 1201 acttccaaaa ccagaagggg aaatatgattt cagaaagca cagatactttt gcaattctca
 1261 ccctttccaa gtattatggc ctttttttaca cggtaattaa gatgtatgaa gtgaaaagca
 1321 gaaaagtata ataaaaatgt aaggtaagttt cccatgtaaa gtgaaagtctt acagcacca
 1381 gaaaagtata ataaaaatgt aaggtaagttt cccatgtaaa gtgaaagtctt acagcacgtc
 1441 acatctttt agaaatcgaa tggagaagtg gcatgtgggt gctagtctgc gagttacccc
 1501 aaaactaaac tctctcttctt attaacgggc ttcttagaag acacccaccc ttctcagaatgt
 1561 tctctctgag ttttttttca agtaatgtt acctctgtt catgttttgc tctgtgtatg
 1621 cgccaaataaa caagttgtt taaaacccc aaa

40 SEQ ID NO: 128

Amino acid sequence of rat GPR105 encoded by the DNA sequence shown in SEQ ID NO: 127.

45 MDNTTTTEPPKQPCTRNTLITQQIIPMLYCVVFITGVLLNGISGWIFFYVPSSKSFIGYL
 KNIVVADFLMGLTFPKVLSDGSLGPWQLNVFVFRVSAVIFYVNMYVSIAFFGLISFDY
 YKIVKPLLVSIVQSVNYSKVLSQLVWMLMLLAAPNIILTNQSVKDVTNIQCMELKNELG
 RKWHKASNYVFVSIWFVWVFLLLIVFYTAIRKIKFSHLKSRKNSTSVRKSSRNIFSIVL
 AFVACFAPYHVARIPYTKSQTEGHYSCRTKETLLYAKEFTLLLSSANVCLDPISISSYAS
 RLEKS

SEQ ID NO: 129

gi|19923974|ref|NM_138445.1| Homo sapiens G protein-coupled receptor 146 (GPR146), mRNA

	1	ggcacgaggc	gccggccgccc	atgtggagct	gcagctggtt	caacggcaca	gggctgggtgg
5	61	aggagctgcc	tgcctgcag	gacctgcage	tggggctgtc	actgttgtcg	ctgctggggcc
	121	tgggtgtggg	.cgtgcacgt	ggcctgtgt	acaacgcctt	gctgggtgt	gcacaacctac
	181	acagaaggc	cagcatgacc	atgcccggacg	tgtactttgt	caacatggca	gtggcaggggc
	241	tggtgctcag	cgcgcctggcc	cctgtgcacc	tgtctggccc	ccc gagctcc	cggtggggcgc
10	301	tgtggagtgt	ggccggcgaa	gtccacgtgg	cactgcagat	ccccttcata	gtgttctcaca
	361	tggtgccat	gtactccacc	gccctgtga	gcctcgacca	ctacatcgag	cgtgactcgc
	421	cgcggaccta	catggccagc	gtgtacaaca	cgcggcactgt	gtgcggcttc	gtgtgggggtg
	481	gcgcgcgtct	gaccagcttc	teetcgtgc	tcttctacat	ctgcagccat	gtgtccacccc
	541	gcgcgcgtaga	gtgcgcacaag	atgcagaacg	cagaagctgc	cgacgcacag	ctggtgttca
15	601	tcggctacgt	gtgtccagca	ctggccaccc	tctacgcgt	ggtgctactc	tcccgcttcc
	661	gcaggggagga	cacgccccctg	gaccggaca	cggggccggct	ggagccctcg	gcacacagggc
	721	tgcgtgtggc	caccgtgtgc	acgcagtttgc	ggctctggac	gccacactat	ctgatcctgc
	781	tggggcacac	ggtcatcattc	tcgcgaggga	agccccgtgga	cgcacactac	ctggggctac
	841	tgcactttgt	gaaggatttc	tccaaaactcc	tggccttctc	cagcagcttt	gtgacaccac
	901	ttctctacccg	ctacatgaac	cagagcttcc	ccagcaagct	ccaacgctg	ataaaaaaaggc
20	961	tgcctgcgg	ggaccggcac	tgctccccgg	accacatggg	ggtgacagcag	gtgtggcggt
	1021	aggcgccccca	gccctctgg	ggagacgtga	ctctgtgg	cgcagagcac	ttagttaccc
	1081	tggacgcctcc	ccacatcctt	ccagaaggag	acgagctgt	ggaagagaag	caggaggggt
	1141	gttttcttgc	aagtttcctt	tttccccacaa	atgccactct	ttggcacaagg	ctgtggtccc
	1201	cgtggctggc	atctggcttg	agtcctcccc	aggcctgtgc	gtctccaaa	cacgcagctc
25	1261	aaggcccaca	tctgcaaaag	cctcctcgcc	ttcagcctcc	tcagcattca	gtttgtcaat
	1321	gaagtgtatga	aagcttagag	ccagtattta	tactttgtgg	ttaaaaatact	tgattcccccc
	1381	ttgtttgttt	tacaaaaaaca	gatgtttct	agaaaaaatga	caaatagtaa	aatgaacaaa
	1441	accctacgaa	agaatggcaa	cagccagggt	ggccggggccc	tgccagtggt	cgccgtgtgc
	1501	tagcaaggcc	tgccgggtgt	gccgcagtca	ccacagggtt	ctgagaacat	ttcacagaag
30	1561	tgcctgagac	gccccggacat	ggctgggtt	aaatggagct	attcaatagc	agtgacgcgc
	1621	tctccctcagc	caccaaatgt	ccctgcacacc	ctccccagcc	cccacagata	acatcagctg
	1681	aggttttttt	cagtatgaac	ctgtctaaa	tcaattcctc	aaagtgtgca	caaaactaaa
	1741	gaatataaaat	aaacaaaaaga	aagggtaaaaa	aaaaaaaaaa	aaaaaa	.

SEQ ID NO: 130

Amino acid sequence of human GPR146 encoded by the DNA sequence shown in SEQ ID NO: 129.

MWSCSWFGTGLVEELPACQDLQLGLSLLSLLGVVGPVGLCYNALLVLANLHSKASMT
MPDVYFVNMAVAGLVLSALAPVHLLGPPSSRWALWSVGGEVHVALQIPFNVSSLVAMYST
ALLSLDHYIERALPRTYMASVYNTRHVCGFVWGALLTSFPSSLLFYICSHVSTRALECAK
MQNAEAADATL VFFIGVVPALATLYALVLLSRVRREDTPLDRDTGRLEPSAHRLLVATVC
TQFGLWTPHYLILLGHTVIISRGKPVDAHYLGLLFVKDFSKLLAFSSSFVTPLLYRYMN
QSFP SKLQLRMLMKKLP CGDRHCSPDHMGVQOVL A

SEQ ID NO: 131

gi|31981401|ref|NM_030258.2| Mus musculus cDNA sequence BC003323 (BC003323), mRNA

```

45    1 ggtacacagc cccccacggcg tgcgcgcgt gagctccgct gccttcgtca agcccaagct
      61 cccgcggcg cgccgggtgcgc gggccgcgc ccagcgagcg ctgcgaagct ggggtgtgact
     121 gccatgttgg a gctgtggccc actcaacagc acagcgtggg ctgaggagcc gctgtgcggg
     181 aacctgcggcc tggggctgtg ggtccctctcg ctgctctacc tgggggcagg gttccctgt
      50 241 agcttaggct ataatgtct tctgggtgtg gccaacctgg ccagcaagaa caccatgacc
     301 atgcccggacg tggacttgcg gaacatggcc gtggcggggc tggtgtcac ggcactggca
     361 cctgcgtacc ttgtggggcc tggccactcc aggtggggcc tggagggct cagcagtgtgg

```

421 gccccatgtga cactgctcat cctgttcaac gtggcttccc tggtaaccat gtactccact
 481 gcaactgctga gccttgacta ctacatcgag cgtgcctgc caccgcaccta catggccagt
 541 gtgtacaaca cccggcacgt gtgtggcttc gtctggggag gggcggtgct caccagcttc
 601 tcctccctgc tcttctacat ctgcagtcac gtgtttctta gaatcgctga gtgtgccgg
 5 661 atgcagaaca cggaggcagc cgatgctata cttgtctca tcggctacgt ggtgccaggt
 721 ctggctgtgt tggatgcctt ggcactcatc tggaaatcg ggaaggaaga cacaccctg
 781 gaccaggaca ccaggcaggct ggacccctcg gtgcacaggc tggctgtggc caccgtgtc
 841 actcagtttgc cctctggac accttactac ttgagctgg ggcacacagt gctgacgtca
 901 cgggggagga cctgggaggg gcattatctg ggcacatctac agttgtctaa ggacctggcc
 10 961 aagtccctgg ctttctcaag cagttctgtg acaccactgc tctaccgtta catcaacaaa
 1021 gccttecccg gcaagctccg gggctgtatg aagaagatgc actgcggggc cggccactgc
 1081 tccccccgacc cctccggat acagcagggt atggcacagg ctagctaac cctccctggg
 1141 ctgaccacga ggaacacta aactcaactg gacacatgc actttgttcc ccaggcacat
 1201 ggagcttcca gcccaggaga caccgtgaag ccagagatgc acagcggggc atttcttgg
 15 1261 atgttccctg ttttccctt aaaggccaa cttggcttta tgctgtcatgg tggaaagcag
 1321 aggtggccctg tggtaacagg ctgttctga ctaacccatc cacccttcc ctcaagggt
 1381 gtgccttttcccaggaca ctttcaagggt ccatgttcc acaaggcaggc tgaccttgg
 1441 cttccctggat tttggctt tctaaatgaa gcgatgaaat ctaaagccag tattttact
 1501 tcatatttgc atgataacttgc atttcttcat tatttttt taaaaaatag aagtgtttaga
 20 1561 aagataccat gatataagaa gaaggactt caggggaaatg tgctgtcgc tgataccatg
 1621 gtttagagctt gaggacagga cagtggccct gtcaggcctg cagcagctac acagccattt
 1681 ctgacagtga cagctatggc gcactggccc tctccctac tgagagagga tctttccagt
 1741 gcttcaacat atgcataat

SEQ ID NO: 132

25 Amino acid sequence of mouse GPR146 encoded by the DNA sequence shown in SEQ ID NO: 131.

MWSCGPLNSTAWAEEPLCRNLRLGLWVLSSLYLGAGVPVSLGYNALLVLANLASKNTTM
 PDVYFVNMAVAGLVLTALAPAYLLGPAHSRWAWSLSSEAHVTLLILFNVASLVTMYSTA
 30 LLSLDYYIERALPRTYMASVYNTRHVCGFWGGAVLTSFSSLLFYICSHVSSRIAECARM
 QNTEAADAILVLIGYVPGAVLYALALISRIGKEDTPLDQDTSRLDPSVHRLLVATVCT
 QFGLWTPYYLSLGHVTLSRGRTVEGHYLGILQVAKDLAKFLAFSSSVTPLLYRYINKA
 FPGKLRRLMKKMHCRRHCSDPSGIQQQVMAQA

SEQ ID NO: 133

ENSRNOT00000001733 cDNA sequence, EnsEMBL transcript [Rattus norvegicus]

35 1 atgtggagct gtggccact caacagcaca gcgtggctg aggagccgt gtgcggaa
 61 ctgcgcctgg ggctgtgggt cttctactg ttctaccctgg gggcagggtt ccctgtggc
 121 ttaggctaca atgctttttt ggtgtggcc aatctggca gcaagaacag catgaccatg
 181 cctgatgtgt acttcgtgaa catggctgtg gggggctgg tgctcacagc actggcacct
 241 gcgtacctgc tgggtcctgc ccactccagg tggggctgt ggagcctcag cagcggagcc
 301 catgtgacac tgctcatcct gttcaacgtg gttccctgg tgaccatgtt ctccactgca
 361 ctgctgagtc ttgactacta catcgagctg gcccgtccgc gtacccatcat ggctagttgt
 421 tacaacaccc ggcacgtgtg tggcttcgtc tgggggggg cagtgtcac cagctttcc
 481 tccctgtct tctatatctg cagttcatgtg tttcttagaa ttggccagtg tgccggatg
 541 cagaacacgg aggccacccgc cgccttcgtt gtgtcattt gctacgtggt gccaggctg
 601 gctgttgtt atgcctggc actcatctca aggattggga aggaagacac accccctggac
 661 caggacacca gcaggctgga cccctcgtg cacaggctgc tggccac tggtaacc
 721 cagtttgcc tctggacacc ttactacctg agcctggggc acacagtgtt agtgtcacgg
 781 ggaaggaccc tggagggca ttatctggc atcctacagg ttgctaagg cctggcaag
 841 ttcttggct tctcaagcag ttctgtgacg cgcgtctt accgttacat caacaaagcc
 50 901 tccccccagca agctccggcg cctggtgaaa aagataacact gtggccggc cactgttcc
 961 cccgaccctg cggggataca gcaggctgtatg gcccaggcgt ag

SEQ ID NO: 134

Amino acid sequence of rat GPR146 encoded by the DNA sequence shown in SEQ ID NO: 133.

5 MWSCGPLNSTAWAEEPLCRNLRGLWVLSQLFYLGAGGPVGLGYNALLVLANLASKNSMTM
 PDVYFVNMAVAGLVLTALAPAYLLGPAHSRWALWSLSSEAHVTLLILFNVASLVTMYSTA
 LLSDLYYIERALPRTYMASVYNTRHVCFFVWGGAVLTSFSSLFYICSHVSSRIAECARM
 QNTEAADAILVLVLIYVVPGLAVLYALALISRIGKEDTPLDQDTSRLDPSPVHRLLVATVCT
 QFGLWTPYYLSLGHHTVLVSRGRTVEGHYLGILQVAKDLAKFLAFSSSVTPLLRYINKA
 FPSKLRLLVKKIHCGRRHCSDPAGIQQQVMAQA

10 SEQ ID NO: 135

gi|4504090|ref|NM_001505.1| Homo sapiens G protein-coupled receptor 30 (GPR30), mRNA

1 gaaaaaacgac acctagaagt aggagtgaga ttcgtcgttcccttcgg aggaagaccc
 61 accccctccgc ctggagagcc ggggtggcg gtgcctgagg acccccttcgg cctggacagc
 121 ccacgcgggc ttggggggcc tcgtcttcggc ctcatggggc ggccttcggg tccccaaagcg
 181 gcgagtggaaa attcaaatacg ccagtagggg ggcacttcgg aagtggccgc cccgcattgg
 241 gcagttcaagc ggcccccggaa gtccggggag ggagggtttat ttcggccctg caccggactg
 301 tgaatccgc aaceatggc aggagggcg gcccgggttgg ggaagaggcc accaacaatct
 361 ggacggcagg taccggaga gtggcggat ccacgcgggaa ctgtcaacgg tggccgacac
 421 ccgcaggggac gcccgggaa cgacgcacggc gagggccctc gctccacgg atgcaccatg
 481 ccggtgtgag gagcatctgt ttcggccatc ctgtcgttgg aacaaaccca acccaaacc
 541 ccacagggtgc tcctcttggg gagtttctg ttcgtacaaat gccaggctca cttcaaggag
 601 aatcacgtttt ctttctaaag atggattcac cattttaaac agagctctgg gagecttgc
 661 gcaatcttgc aaagctgcac ggccggaga catggatgtt acttcccaag cccggggcgt
 721 ggccctggag atgtacccag gcacccggca gcctggggcc cccaaacacca cttccccca
 781 gctcaacccgc tcccaacccgc tcctggggac ccggccggcc aatgggacag gtgagcttc
 841 ggagcaccatc cagtagtgc tcggcgttgc ctcgttcgtgc ctctacacca ttttcctt
 901 ccccatcgcc ttgtgggca acatcctgtt cctgggtgg aacatcagct tccggagaa
 961 gatgaccatc cccgacccgtt acttcatca cctgggggttgc gcccggccatca tcctgggttgc
 1021 cgactccctc attgagggtt tcaacctgc acggcggttac tacgacatcg cggcccttgc
 1081 cacccatcg tgcgttcc tgcaggtaaa catgtacacgc agcgttttcttccatcacttgc
 1141 gatgagcttc gacccgtaca tcggccctggc cggccatcg cgtgcggcc tggccgcac
 1201 caagcaccac gcccggctga gctgtggccat ctttgcgttgc gcatccgttgc cggccacgt
 1261 ggtggcccttc acccgggtgc acctgcacca caccggacgg gctgttttgc gtttgcgg
 1321 tggccggag gtgcgttgc tcggaggtaac gctgggttgc atcgtggccatc tggccatcat
 1381 cggccgttgc tactccctca ttgtccgggt gctggcgttgc ggcacccggc accgtgggg
 1441 gggccccccgg cggcagaagg cgtccgtat gatcctcgat gttgtgttgc ttttcttgc
 1501 ctgtgttgc cggggaaacg ttttgcgttgc cgtgcacccgc ctgcagccgg cggcccttgc
 1561 ggccgctccc tgcaagcgtt ctttccggca tgcccaaaaa ctcacggggcc acattgtcaa
 1621 cctcgccccc ttctccaaca gtcgttccaa ccccttcatac tacagtttc tcggggagac
 1681 cttcaggggac aagctggggc ttttgcgttgc gtcgttgc gtcgttgc ttttgcgttgc
 1741 ctttgcgttgc gtcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc
 1801 gttcagcgtt gtcgttgc ttttgcgttgc cggccatcg cggccatcg gtcgttgc
 1861 agctgcacac acctgggtgg acacaaggca cggccacgttac atgttttca actgcgggtca
 1921 gatgtggctt ctggcccttc gggggcccttc gagggttgc ctttgcgttgc caccctgggg
 1981 ctgtgttgc aacccatcgat ctggccatcg ttttgcgttgc acacagaatt gtcgttgc
 2041 caaagcgttgc gccccggcagg gtcgttgc cggccatcg cggccatcg cccagcttgc
 2101 ccccgccaaac cctggccatcg gtcgttgc ctttgcgttgc cggccatcg ttttgcgttgc
 2161 cggccatcgat cggccatcg gtcgttgc ctttgcgttgc cggccatcg ttttgcgttgc
 2221 ctttgcgttgc atctggccatcg gtcgttgc ctttgcgttgc cggccatcg ttttgcgttgc
 2281 ctgtgttgc ctttgcgttgc ttttgcgttgc ctttgcgttgc cggccatcg ttttgcgttgc
 2341 cggccatcgat cggccatcg gtcgttgc ctttgcgttgc cggccatcg ttttgcgttgc
 2401 tccaggatgg cggccatcgat gtcgttgc ctttgcgttgc cggccatcg ttttgcgttgc
 2461 cggccatcgat cggccatcg gtcgttgc ctttgcgttgc cggccatcg ttttgcgttgc
 2521 ctttgcgttgc ttttgcgttgc ctttgcgttgc cggccatcg ttttgcgttgc

2581 gctgccgtgt gggttagtcg ggtgccagga caatgaaata cttccagcacg tgtggctgac
 2641 gaatttgttt ctacagaaaat aacagctggg gacaactgcg gtatgtatgt aaaaaccttc
 2701 ccataaaaatg taagaaaagc tgatgaggct ggtgacgttc agcctttgtc aataaacctg
 2761 tcatgtgcgg atcctt

5 SEQ ID NO: 136

Amino acid sequence of human GPR30 encoded by the DNA sequence shown in SEQ ID NO: 135.

MDVTSQARGVGLEMYPGTAQPAAPNTTSPELNLSHPLLGTALANGTSELSEHQYVIGLF
 10 LSCLYTIFLFFPIGFVGNILILVVNISFREKMTIPDLYFINLAVADLILVADSLIEVFNLH
 ERYYDIAVLCTFMSLFLQVNMYSSVFFLTWMSFDRYIALARAMRCSLFRTKHARLSCGL
 IWMASVSATLVPFTAVHLQHTDEACFCFADVREVQWLLEVTLGFIVPFAIIGLCYSLIVRV
 LVRAHRHRGLRPRROKALRMILAVVLVFVCWLPENVFISVHLLQRTQPQGAAPCKQSFRH
 AHPLTGHIVNLAAFSNSCLNPLIYSFLGETFRDKLRLYIEQKTNLPALNRFCHAALKAVI
 PDSTEQSDVRFSSAV

15 SEQ ID NO: 137

gi|38081363|ref|XM_355659.1| Mus musculus G protein-coupled receptor 30 (Gpr30), mRNA

1 ataaaggagg cgctgtgcca agggggccag acgctgctgg acggccacag gcatccatcc
 61 ccaggcatcg ggccgggtgct tctgttccct tcctgctggg tcctgctgg gcaccgtccc
 121 caaagtgcgt caagtccagg gtccatccct ggagcaagct ccaggagcac ctccagcaga
 181 tggcctggta acgccccggc acagatcagg acacccaaaca gaaaatcaga aggacactaa
 241 gtctgatcgt tagattaaca gaggcagcgt ctggaccaag gacagaagcc agggtgtcat
 301 ttctgcccattc caccacccaa aacagctgtat cagatctagg gagaaagccca tccaggact
 361 ctgtccccct taagctgctg gaattgtggc caagcctcaa cactcacaca ctctgggtgc
 421 ccagaagggtg agcaggcagc aggtgtgcct gcccagcacc agcccgacaca tcagacacccc
 481 tgcacccct tctggtttc tgagactaac aggtcccccag gacgattttt cctgcctcac
 541 aaatgcctgg ttatctttt tttgtgaaga tggagctgtc acataaaaaca gctttctgtg
 601 accctttcag caaatcctga aaactgcccgg gggaaagccat ggtatgcgact actccagcccc
 661 aaatctgtgg ggtggagat taccttagtgc ccgtgtggcc agcccccttcc aacagcacccc
 721 ctctggccct caactgttcc ctggcactgc gggaaagatgc cccggggaaac ctcaactgggg
 781 acctctctga gcatacggcag tacgttgcgtt cccttcttcc ctctgcctc tacaccatct
 841 tctcttttcc tattggctttt gtgggcaaca teetcatctt ggtggtaaac atcagcttcc
 901 gggagaagat gaccatccca gacctgtact teatcaacccctt gggggggcc gacccatcc
 961 tggtggtctga ctccctgttcc gagggtttca acctggacga gcgtactac gacatcgac
 1021 tgcctctgcac ctccatgttcc ctcttcctgc agatcaacat gtacagcagc gtcttcttcc
 1081 tcacctggat gagtttcgac aggttacccatg cgctggccaa ggcattgcgc tggccctct
 1141 tccgcacccaa gcacccacgcg cggctcgttgcgttgcacat gggatggcc tcagtgtccg
 1201 ccacgcgtgtt gccccttccaca gcccgtgcacc tggggcacac ggaggaggcc tggccctct
 1261 ttctgtatgtt caggagggtt cagttggctgg aggttccatc gggcttccatc atggcccttc
 1321 ccatcattgg ctctgttccatc tccctcatcg tgcgagccctt catccggggcc cacaggeacc
 1381 gccgcctgcg cccacggcagg cagaaagccc tgaggatgtt ctgcgcgtt gtccttgc
 1441 tcttcattctg ctggctggcc gagaacgtct tcatcgtt ccacccatgtt cagtgacgc
 1501 agccaggggaa cactccctgc aagcagtctt tccgtcacgc ctaccccttg acaggccaca
 1561 tagtcaacccat tgcagcccttcc tccaaacagctt ggcgttatcc cctcatcttcc agcttcc
 1621 gagagacccat caggagacaaat ctcaggcttctt atgtggagca gaagacgagc ctgcggc
 1681 tgaacccgtt ctgcacatgc acgttcaagg ccgttcatcc agacagcaca gagcagtc
 1741 aggtcagggtt cagcagtgtt gtgtgagagg aaaaggtcag gggccggc tgggtgttcc
 1801 gacttgcaca cacctagcac aggtgggttag tgggtcaagc tatgtcatac tctcaaaaa
 1861 cagttggctt gggaaagacgtt caccattgcgg ggttcatcttcc ggttcatcttcc
 1921 tgactgttcca gtcacatggat gtcacatcc agatcaagg tcccaaggca gcccggccac
 1981 tgacattgac ctctgacccctt aaaggccacc agggccggctt gtcgtttggc tttcttcc
 2041 tagccatcttcc tcccaacatca caagtctgtt gtttgcatacgaa ggacaggccca tgcgtatggg

2101 gcaccatgtt acatgcctgc tacgtggagg agtctagaga cagactttat gtaccagacc
 2161 caaactggct accttccctt tgcttgcgt gtgtaactga ccagtatac accgtccagt
 2221 gcagccagag ccttcttcctt gtcttcaga aggctgttag gtcaccccaag atgccactcc
 2281 taactctgtt gtgaacagcg tgcgtactg agaaaaggccc tttaacaaaaa cgccttcctg
 5 2341 ctctggatg ctccctcac aaagtttgtt tacaagggtt ttgccttc cgtgaaggtg
 2401 gaaggagact ggggtgtct gtgcaggctg gtggatgcc gccataagat gtgtggtaga
 2461 aggacttacc accacagaaa atcatactgg gaacagcgag ctgtaaatgg atctcattaa
 2521 aacgt

SEQ ID NO: 138

10 Amino acid sequence of mouse GPR30 encoded by the DNA sequence shown in SEQ ID NO: 137.

MDATTPAQTGVVEIYLGPVWPAPSNSTPLALNLSLALREDAPGNLTGDLSEHQYVIALF
 LSCLYTIFLFFIGFVGNIILILVVNISFREKMTIPDLYFINLAAADLILVADSLIEVFNL
 15 EQYYDIAVLCTFMSLFLQINMYSSVFFLTWMSFDRLALAKAMRCGLFRTHARLSCGL
 IWMASVSATLVPFTAVHLRHTEEACFCFADVREVQWLLEVTLGFIMPFAIIGLCYSLIVRA
 LIRAHHRHGLRPRRQKALRMIFAVVLVFICWLPENVFISVHLLQWTQPGDTPCQSFH
 AYPLTGHIVNLAAFSNSCLNPLIYSFLGETFRDKLRLYVEQKTSQPALNRFCATLKAVI
 PDSTEQSEVRFSSAV

SEQ ID NO: 139

20 gi|19424261|ref|NM_133573.1| Rattus norvegicus G protein-coupled receptor 30 (Gpr30), mRNA

1 ttctgtgacc ctttcagcaa gtcctgaaag cttctacggg aagccatggc tgcaactact
 61 ccagcacaag atgttggcgt agagatctac ctgggtcccg tggccgcgc cccttccaaac
 121 agcacccttc tggccctcaa cctgtccctg ggcgtgcggg aagatgcccc ggggaacctc
 181 actggggacc tctctgaaca tcagcaatat gtgtatcgctc tcttcctctc ctgcctctac
 241 accatcttcc tcttcccat cggctttgtt ggcaacatcc tcatacttggt ggtgaacatc
 301 agcttccggg agaagatgac tatcccagac ctgtacttca tcaacctggc agcggctgac
 361 ctcatacttgg tggccgactc cctgtatcgag gtgttcaacc tggacgagca gtattacat
 421 atcgcgtgc tctgcacattt catgtccctc ttcctgcaga tcaacatgtt cagcagcgcc
 481 ttcttcctca cctggatgag ctgcacagg tacctggcgc tggccaaagc catgcgcgtgt
 541 ggccttccgc gcaaccagca ccacgcgcgg ctcagctgtt gcctcatctg gatggccctca
 601 gtgtccgcaca cgctgtgtt cttcacggcc gtgcacatctg ggcacaccga ggaggcctgc
 661 ttctgttttgc cctgtatcgag ggaggtgcag tggctggagg tcaacatgtt ctttatttg
 721 cccttcgcaca tcataccgcgtt gtgttatcc ctcatactgtc gggccctcat cggggccac
 781 aggcatcggt gcctgcgcgc acgcaggcag aaagccctga ggatgtatctt cgcagtgtc
 841 cttgttcttc tcatactgttgc gtcgcggag aacgtttca tcagcgttcca cctactgcag
 901 tgggcgcagec caggggacac tccctgcag cagtcttcc gtcatgccta ccccttgaca
 961 ggccacatag tcaacacttgc agcccttctcc aacagctgac tgagttccctt catctatagc
 1021 ttccctggag agacccatcg ggacaagatc aggtgtatg tggcgcagaa gacgagctg
 40 1081 ccagctctca accgccttctg ccatgcacac ctcaaggcag tcataccaga cagcacggag
 1141 cagtcagatg tcaaggatcg cagtgtgttgc tggatgttgc ctccttagagg aaaaacggaca
 1201 ggggagcagg cgtgcggcagg agtcacac tctagcacag gtggatggcg agctgagcca
 1261 tgtcataactc taaaacccc

SEQ ID NO: 140

45 Amino acid sequence of rat GPR30 encoded by the DNA sequence shown in SEQ ID NO: 139.

MAATTPAQDVGVVEIYLGPVWPAPSNSTPLALNLSLALREDAPGNLTGDLSEHQYVIALF
 LSCLYTIFLFFIGFVGNIILILVVNISFREKMTIPDLYFINLAAADLILVADSLIEVFNL

5 EQYYDIAVLCTFMSLPLQINMYSSVFFLTWMSFDRLALAKAMRCGLFRTHARLSCGL
 IWMASVSATLVPFTAVHLRHTEEACFCFADREVQWLLEVTLGIVPFAIIGLCYSLIVRA
 LIRAHRRHGLRPRRQKALRMIFAVVLVFFICWLPENVFISVHLLQWAQPGDTPCQSFH
 AYPLTGHIVNLAAFSNSCLSPLIYSPLGETFRDKLRLYVAQKTSLPALNRFCHATLKAVI
 PDSTEQSDVKFSSAV

SEQ ID NO: 141

gi|33695103|ref|NM_003608.2| Homo sapiens G protein-coupled receptor 65 (GPR65), mRNA

10 1 ttcttgactt gatgcaggca cagatttatac aagctcctca gtcacaaaac acatcacccgg
 61 aagaaacatg gaaggaaagg aattttaaaaa ggaaatacca atctctgtgc aaacaaaagcc
 121 ttgtatattc atgtttgcac caatctactg tgagatttat gaagaaaaac aaattgcgga
 181 caactctcta tgtacactta caaatgcctc agttgtatgt tttgggctgt ttgtcagcgt
 241 tctgtgataa tgaacacatg gacttctgtt tattaaattc agttgacccc ttagccaat
 301 tgccaggagc ctggattttt acttccaact gctgatattct gtgtaaaaat tgatctacat
 361 ccacccttta aaagcattga tgaattaatt agaactttag acaacasaaga aaaattgaaa
 421 aagaattctc agtaaaagcg aattcgatgt tcacaaacaaa ctacaaagag acaagactc
 481 tctgtttact ttctaaagaac taatataatt gctacottaa aaaggaaaaaa atqacagca
 541 catgtattga agaacagcat gacctggatc actatttgtt tcccatgtt tacatcttg
 601 tgattatagt cagcattcca gccaatattt gatctctgtg tttgtcttcc ctgcaagcaa
 661 agaagggaaag tgaacttagga atttacctct tcagttgtc actatcagat ttactctatg
 721 cattaaactt ccctttatgg attgattataa cttggataaa agacaactgg actttcttc
 781 ctgccttgc caaaggggagt gctttctca tgtacatgaa tttttacagc agcacagcat
 841 tcctcacctg cattggcggtt gatcggtt tggctgtt ctaccctttt aagtttttt
 901 tcctaaggac aagaagattt gcactcatgg tcagccgtc catctggata ttggaaacca
 961 tcttcaatgc tgcattgtt tggaaagatg aaacagggt tgaatattgc gatggccgaaa
 1021 agtctaattt tactttatgc tatgacaaat accctttttaga gaaatggcaa atcaacctca
 1081 acttggtcag gacgtgtaca ggctatgca tacctttgtt caccatcctg atctgcaacc
 1141 ggaaagtcta ccaagctgtg cggcacaata aagccacggg aaacaaggaa aagaagagaa
 1201 tcataaaaact acttggcagc atcacagttt cttttgtt atgctttact ccctttatg
 1261 tgatgttgc gattcgctgc atttttagagc atgctgtgaa cttcgaagac cacagcaatt
 1321 ctgggaagcg aacttacaca atgtatagaa tcacgggtgc attaacaagt ttaaattgtg
 1381 ttgctgatcc aattctgtac tgttttgtaa ccgaaacagg aagatatgtatgttggaaata
 1441 tattaaaatt ctgcactggg aggtgtataa catcacaaag acaaagaaaa cgccatactt
 1501 ctgtgtctac aaaagatact atgaaattag aggtccttga gttagaaccaa ggatgtttt
 1561 aagggaaggg aagtttaagt tatgcattat tatatcatca agattacatt ttgaaaagga
 1621 aatcttagcat gtgaggggac taagtgttct cagagtgtatg tttatccatca gtccaaataaa
 1681 aatatcttaa aactgcatttgc tacagctccc tccctgcgtt ttataaaatg atgtatatta
 1741 aacaaagatc aataaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa

SEQ ID NO: 142

40 Amino acid sequence of human GPR65 encoded by the DNA sequence shown in SEQ ID NO: 141.

45 MNSTCIEEQHLDHYLFIVYIFVIIVSIPANIGSLCVSFLQAKKESELGIYLFSLSLSD
 LLYALTPLWIDYTWNKDNWTFSPALCKGSAFLMFMNFYSSATAFLTCIADVRLAVVYPL
 KFFFRLTRRFALMVSLSIWILETIFNAVMLWEDETVEYCDAEKSNTLKYDCKPLEKQ
 INLNLFRTCTGYAIPLVTILICNRKVYQAVRHNKATENKEKKRIIKLLVSITVTFVLCFT
 PFHVMLLIRCILEHAVNFEDHSNSGKRTYTMYRITVALTSNCADPILYCFVTETGRYD
 MWNILKFCTGRCNTSQRQRKRILSVSTKDTMELEVLE

SEQ ID NO: 143

gi|1103872|gb|U39827.1|MMU39827 Mus musculus putative G protein-coupled receptor TDAG8 (TDAG8) mRNA, complete cds

```

1 gataacaagca gatttgccag cctcctcagt caagagaagc atccctccag aaacaggaa
 61 acatgacact tttgaaagaa tgccaaacgg cgtaaaata aaaaacagacg attcgcattt
 5 121 gcaccgacca atctccaatc tcctgtaaaa ttcaaaaggaa caagcaagag gcggtgaccg
 181 ttcacgaaag ctAAAATCCC atgttattga acatgaagac ttctgtatgt taaatctcat
 241 taactgtttt aagtcaactcc caggagctt gatcccact tcttagcgtt atagtctgt
 301 taaaaaaaaaaa aaaaaatca gtctacaacc actcttaaa tgcatggatg aactcatcag
 361 aacatcaaaa cccaaaggaaa ccctaagaga gaagaattct aataaaaaaga attttacatt
 10 421 gaaaaacttac aaggcaaggt ccctttccct gctgacagcc taagaagtga tgtaactgcc
 481 actgtgaaga ccatggcgat gaacagcatg tgcattgaag agcagcgcac cctcgacac
 541 tattttgttcc cggtggctta cataattgtt tttatgtca gcttcccgac caacatcgga
 601 tctttatgtcg tttttttctt gcaagcgaag aaggaaaatg agctaggat ttaccttcc
 661 agtctgtccc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 15 721 tggataaaaag acaactggac tttttttttt tttttttttt tttttttttt tttttttttt
 781 tacatgaact ttttacagcag cacggcgat cttttttttt tttttttttt tttttttttt
 841 gcaatcgatcc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 901 agcctctcca tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 961 acgagttttt aatattgttca tttttttttt tttttttttt tttttttttt tttttttttt
 20 1021 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 1081 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 1141 gcccacggaaa acagcgagaa gagaaggatc ataaatgttca tttttttttt tttttttttt
 1201 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 1261 gacatgaacg tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 1321 gcccctgacca tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 1381 gggagagctg atatgtggaa catattaaaaa tttttttttt tttttttttt tttttttttt
 1441 gggaaaaaaa gggacataact tttttttttt tttttttttt tttttttttt tttttttttt
 1501 gactaagagg tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 1561 aaaagaaaatc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 1621 ctatgttgc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 1681 taggcataat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 1741 cgcgggactg tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 1801 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 1861 cttcaacaaa tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 35 1921 gcccactccat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 1981 acctttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt

```

SEQ ID NO: 144

Amino acid sequence of mouse GPR65 encoded by the DNA sequence shown in SEQ ID

40 NO: 143.

```

MAMNSMCIEEQHHLEHYLFPVVYIIVFIVSVPANIGSLCVSFLQAKKENELGIYLFSLSL
SDLLYALTLPLWINYTWNKDNWTFSPTLCKGSVFTYMNFSSTAFLTCIALDRYLAVYY
PLKFSFLRTRRFAFITSLSIWILESFPNSMILLWKDETSVEYCDSDKSNFTLCYDKYPLEK
WQINLNLFRTCMGYAIPLITIMICNHKVYRAVRHNQATENSEKRRIIKLLASITLTFVLC
45 FTPFHVMLIRCVLERDMNVNDKSGWQFTVYRVTVALTSLNCVADPILYCFVTETGRAD
MWNLKLCRKHNRHQGQKRDILSVSTRDAVELEIID

```

SEQ ID NO: 145

gi|27667219|ref|XM_234367.1| Rattus norvegicus similar to Gpcr25 protein (LOC299242), mRNA

```

50 1 atgacgtatca acagcacatg tttttttttt tttttttttt tttttttttt tttttttttt
 61 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt

```

121 tcttttctgc aagcgaagaa ggaaaatgaa ctaggagttt acctcttcag tctgtcactg
 181 tcagatctgc tgtatgcgtt gacgctgcct ctctggataa actacacttg gaataaagac
 241 aactggacgc tctctccac cttgtgcaaa ggaagcgaaa tcttcaccta cctgaacttt
 301 tacagcagca cgccctteet cacttgcatt gccttgacc gtatTTAGC agtcgtctac
 361 cctctaagggt ttctttctc aagaacaaga agatttgcatt ttatcaccag cctgtctatc
 421 tggatattgg aatccgtttaaactccatc ttctgtggg aagacgaaac aagtgtcgaa
 481 tactgtgtc cagagaaatc taatttcaact ctctgtatc acaaataaccc tctggagaag
 541 tggcagataa accttaaccc gttcaggact ttctgggct acgcaataacc cttggtcacc
 601 atcatgatet gcaaccataa agtctaccgc gccgtgaagc acaaccaagc tacggaaaac
 661 aacgaaagga gacggatcat aaagctgctt gcccagcatca cgctgacttt catcttatgc
 721 ttacccctt tccacgtat ggtgtcatac cgctgcattt tagagcgcaa cgtgaacttc
 781 aataacaaga ctggaaagca gacatttacg gtgtacagaa tcaacagtggc cctgacgagt
 841 ctaaactgtg tgcgcgatcc aattcttac ttttctgtga cgaaaaaccgg gagatccgat
 901 atgtggaaaca tattaaaagt gtgtgttgg aagcgaata gatcccggg aaaaaaaaaaaga
 961 gacataacttt ctgtgtccac aagagataacc atagaactgg agattataga ataa

SEQ ID NO: 146

Amino acid sequence of rat GPR65 encoded by the DNA sequence shown in SEQ ID NO: 145.

20 MTMNSTCVEEQHDLDHYLFPVVYIFVPIVSVPANIGSLCVSFLQAKKENELGVYLFSLSL
 SDLLYALTPLWINYTWNKDNWTLSPTLCKGSVFFTYLNFSSTAFLTCIALDRYLAVVV
 PLRFSFLRTRRFAPITSLSIWILESVFNNSILLWEDETSVEYCDAEKSNFTLCYDKYPLEK
 WQINLNLFRTFLGYAIPLVTIMICNHKVYRAVKHQNQATENNERRRIIKLLASITLTFILE
 25 FTPFHVMVLIRCILERNVNFFNNKTGKQTFVTYRITVALTSLNCVADPILYCFVTETGRSD
 MWNLKVCARKRNRSRGQKRDILSVSTRDIELEIE

SEQ ID NO: 147

gi|40254430|ref|NM_000867.2| Homo sapiens 5-hydroxytryptamine (serotonin) receptor 2B (HTR2B), mRNA

1 gggggtatttt gtttcaactgc tttcaaccgc ctgtgtggg ggctcagaat aagtcaatgg
 61 gaggaggatt tcagtcacag cagcaagcaa gtctagtggaa cagataagat gacatgcctca
 121 gcaaaaataac aacgaaacca gagggggaaac tctctggcat gcaagttcaa acacgactct
 181 acaactacgg cagaaaaaaga gagagagaga aactaaaaat atatatataat cctatTTTT
 241 tcacagctat cagtttctt cactgagctt tcctaaattt aagcctctag aaaataataa
 301 atacttggat atcttaccta caaacatggc cagatgtgtg tatgcgtca ttttagagaa
 361 cttgaatttt ttttttaaa ggaagggtgc aactttggct tttgagtgtt tggcatgggt
 421 acaatgcctt aaaaaaacag atgagcagct tagctactaa ccatgctgac cactgttcgg
 481 aacgggattt aatcacagaa aaacagcaaa tggctctc ttacagagtg tctgaaccttc
 541 aaagcacaat tcctgagcac attttgcaga gcacctttgt tcacgttatac tttcttaact
 601 ggtctggatt acagacagaa tcaataccag aggaaatgaa acagattgtt gaggaacagg
 661 gaaataaaact gcactgggca gctttctga tactcatggt gataataaccc acaattggtg
 721 gaaataaccc tggatattctg gctgtttcac tggagaagaa gctgcagttt gctactaatt
 781 actttctaat gtccttggcg gtggctgatt tgctgggtgg attttttgtt atgccaattt
 841 ccctcttgcac aataatgttt gaggctatgt ggccccctcc acttggctta tgcctgcct
 901 ggttattttt tggatcttc tttcaaccg catccatcat gcatctctgt gccatTTCA
 961 tggatctgtt catagccatc aaaaagccaa tccaggccaa tcaatataac tcacgggcta
 1021 cagcattcat caagattaca gtgggtggg taatttcaat aggcatggcc attccagttcc
 1081 ctattaaagg gatagagact gatgtggaca acccaaaacaa tattttttgtt gtcgtacaa
 1141 aggaacgtt tggcgttttcc atgtcttttgc gtcactggc tgccttcttc acaccttttgc
 1201 caattatgtat tggatcttc tttctcaacta tccatgtttt acagaagaag gtttttttt
 1261 tcaaaaacaa gccacccaa cgccttaacat ggttgcactgt gtcacgtt ttccaaagg
 1321 atgaaacacc tggatctgtca cggaaaaagg tggcaatgtt ggttgcactgtt cggaaaggaca
 1381 aggctctgttccaaactcaggat gatgaaacac ttatgcgttccaaacatccaca attggaaaa

1441 agtcagtgc aaccattcc aacgaacaga gagcctcaaa ggtccttaggg attgtgttt
 1501 tccttctttt gcttatgtgg tgccttctt ttattacaaa tataacttta gttttatgtg
 1561 attccctgtaa ccaaactact ctccaaatgc tcctggagat atttgtgtgg ataggctatg
 1621 ttccctcagg agtgaatcct ttggtctaca cccttcttca taagacattt cgggatgcat
 5 1681 ttggccgata tatcacctgc aattaccggg ccacaaatgc agtaaaaact ctcagaaaac
 1741 gctccagtaa gatctacttc cggaaatccaa tggcagagaa ctctaagttt ttcaagaaaac
 1801 atggaattcg aaatgggatt aaccctgcca tgtaccagag tccaatgagg ctccgaagtt
 1861 caaccattca gtcttcatca atcattctac tagatacgt ttccttact gaaaatgaag
 1921 gtgacaaaac tgaagagcga gtttagttatg tatagcagaa ctggcagttt tcataaaca
 10 1981 taatgtatgag taagatgtatg aatgagatgt aaatgtgcca agaatatatt atataaaagaa
 2041 ttttatgtca tatataat catcttta acctaagatg taatgtatgaa gaatatctaa
 2101 tttcctaattt ttggacaaga ttattccatg aggaaaataa ttttatatag ctacaaatga
 2161 aaacaatcca gcactctggg taaaattttaa ggtattcga tgaaaataaag tcaaataat
 2221 aaatttcagg caaaaaaaaa aaaaaaaaaa aaaaaaaaaa

15 SEQ ID NO: 148

Amino acid sequence of human HTR2B encoded by the DNA sequence shown in SEQ ID NO: 147.

MALSYRVSELQSTIPEHILQSTFPVHVISSNWSGLQTESIPEEMKQIVEEQGNKLHWAALL
 ILMVIPIPTIGGNTLVILAVSLEKKLQYATNYFLMSLAVADLLVGLFVMPIALLTIMFEAM
 20 WPLPLVLCPAWLFLDVLFSTASIMHLCAISVDRYIAIKKPIQANQYNSRATAFIKITVVW
 LISIGIAIPVKPIGIEDVDNPNNITCVLTKERFGDFMLFGSLAAPPFTPLAIMIVTYFLT
 IHALQKKAYLVKNKPQRLTWLTVSTVFPQRDETPCSPEKVAMLDGSRKDKALPNSGDET
 LMRRRTSTIGKKSQVTISNEQRASKVLGIVPFLLMWCPFFITNITLVLCDSCNQTTLQM
 25 LLEIFVWIGYVSSGVNPLVYTLFNKTFRDAFGRYITCNYRATKSVKTLRKRSSKIYFRNP
 MAENSKFFKKHGIRNGINPAMYQSPMRLRSSTIQSSSIILLDTLLTENEGDKTEERVSY
 V

SEQ ID NO: 149

gi|6680322|ref|NM_008311.1| Mus musculus 5-hydroxytryptamine (serotonin) receptor 2B (Htr2b), mRNA

30 1 actgtctgga actggactga gtcacaaaaa ggcgaatggc ttcatcttat aaaatgtctg
 61 aacaaagcac aacttctgag cacatttac agaagacatg tgatcacatg atccatgacta
 121 accgttctgg attagagaca gactcagtg cagaggaaat gaagcagact gtggagggac
 181 aggggcatac agtgcactgg gcagctctc tgatactcgc ggtataata cccaccattg
 241 gttggaaacat ccttgcattt ctggctgtt cactggagaa aaggctgcag tacgctacca
 301 actactttt aatgtccctt gcgatagcag atttgcgtt tggattgttt gtgatgccga
 361 ttggcccttt gacaatcatg ttggaggcta tatggccctt ccaactggcc ctgtgtctg
 421 cctggttt cctcgatgtt ctcttttca cttgccttcat catgcatctc tttggccattt
 481 ccctggaccc ctatataggcc ataaaaaagg caattcaggc caatcagtgc aacacccggg
 541 ctactgcattt catcaagatt acagtggat ggttaatttc aataggcattt gccatcccag
 601 tcccttattaa aggaatcgg actgtatgtttaatccaca caatgtcacc tttggatgtt
 661 caaaggaccc ctttggcagt ttatgttctt tgggttact ggctgtttc ttgtaccc
 721 tcaccatcat ggtatgcact tactttctca ccattcacaac ttatcagaag aaagcttact
 781 tggtaaaaaa taagccaccc caacgcctaa cacgggtggac tttttccatca gttttccatca
 841 gggaaagactc atcctttca tcaccagaaa aggtggcaat gctggatggg tttttccatca
 901 ataaaaattt acctaactca agtgcatttttca ctttgcgtt aagaatgtcc tcagttggaa
 961 aaagatcagc cccaaaccatt tctaatgcgc agagagccctc gaaggccctt ggagtcgtgt
 1021 ttttcccttt tctgcatttgcact tactttctca ccattcacaac ttatcagaag aaagcttact
 1081 gtgattccctg caatcagacc actctcaaaa cacttcgttgc gatattttgtt tggatagct
 1141 acgtttccctc gggggtaat ctttcgttgcactt atacactttt caataagaca tttccggaaag
 50 1201 catttggcag gtacatcacc tgcaattacc gagccacaaa gtcagtaaaa gcacttagga
 1261 agttttccag tacactttgtt tttggaaattt caatggtaga aaactctaaa tttttccatca
 1321 aacatggaaat tcgaaatggg atcaaccctg ccatgtacca gagcccaatg aggctccat

1381 gttcaaccat tcagtcctca tcaatcatcc tcctcgatac ctttctcaact gaaaacgatg
 1441 ggcacaaagc ggaagagcag gtcagctaca tattgcagga acgggccggc ctcatcttga
 1501 gagagggtga tgagcaggac gcacgcgcac catggcaggt tcaagagtga

SEQ ID NO: 150

5 Amino acid sequence of mouse HTR2B encoded by the DNA sequence shown in SEQ ID NO: 149.

MASSYKMSEQSTTSEHILQKTCDFHLILTNRSGLETDSVAEEMKQTVEGQGHVHWAALLI
 LAVIIPTIGGNILVILAVALEKRLQYATNYFLMSLAIADLLVGLFMPIALLTIMFEAIW
 10 PLPLALCPAWLFLDVLFSTASIMHLCAISLDRYIAIKKPIQANQCNTRATAFIKITVVWL
 ISIGIAIPVPIKGIEDVIPHNVTCLETKDRFGSFMVFGSLAFFFVPLTIMVVTVYFLTI
 HTLQKAKAYLVKNKPPQRQLTRWTVPTVFLREDSSFSSPEKVALDGSHRDKILPNSSDETL
 MRRMSSVGKRSQAQTISNEQRASKALGVVFFLFLMWCPFFITNLTLACDSCNQTTLKTL
 LEIFWIGYVSSGVNPLIYTLFNKTFREAFGRYITCNYRATKSVKALRKFSSTLCFGNSM
 15 VENSKKFTKHGIRNGINPAMYQSPMRLRCSTIQSSSIILDTLLENDGDKAEEQVSYIL
 QERAGLILREGDEQDARAPWQVQE

SEQ ID NO: 151

gi|8393585|ref|NM_017250.1| Rattus norvegicus 5-hydroxytryptamine (serotonin) receptor 2B (Htr2b), mRNA

20 1 ctgaaatcta agcctctaga aggactagaa tctggatgtc ttacctgcaa acatggacag
 61 atatgtacac agtcccatct tggagaacct gaatctttt agaagaaaaga aggccacett
 121 ggctgggagt gtctggagga taccatgct tgcaaaagca gatgacctgc tagcaactga
 181 ccatgctgac cactgtctgg aactggactg agtcacagaa aggcaatgg cttcatctta
 241 taaaatgtct gaacaaagca caatttctga gcacatttt cagaaaacat gtgatcacct
 301 gatcttact gaccgttctg gattaaaggc agaatcagca gcagaggaaa tgaagcagac
 361 tgccgagaac cagggaaata cagtgcactg ggcagcttc ctgatcttcg cggtataata
 421 cccccaccatt ggcggaaaca tcctggttat tctggctgtt tcactggaga aaaggctgca
 481 gtacgctacc aactactttc taatgtcctt ggcggtggtt gatttgcgtt ttggattgtt
 541 tgtgtatgccg attgtctct taacaatcat gtttgggtt acatggcccc tcccactggc
 601 cctgtgtctt gcttggttat tccttgatgt tcttttca actgcctcca tcatgcac
 661 ctgtgccatt tccctggatc gctatatagc catcaaaaag ccaattcagg ccaatcagt
 721 caattcccg actactgcat tcgtcaagat tacgggttta tggtaattt caataggcat
 781 cggcatccca gtccttatta aaggaataga ggctgtatgtc gtcaacgcac acaacatcac
 841 ctgtgagctg acaaaggacc gctttggcag tttcatgctc tttgggtcac tggctgcctt
 901 ctttgcaccc ttcaccatca tgatagtccat ctacttttc accattcactc ctttgcgaa
 961 gaaagcttac ttggtcagaa acaggccacc tcaacgcctt acacgggttgc ctgtgtccac
 1021 agttctccaa agggaaagact catccttttccatcaccatggaa aagatgttgc tgctggatgg
 1081 ctctcacaag gataaaaatttccatcaactt aactgtatgg acactgtatgg gaagaatgtc
 1141 ctcagcagga aaaaaaccag cccagaccat ttctaatggaa cagagaccc caaaggctt
 1201 tggatttgtt ttctcttct ttctgtttat gtgggtcccc ttttcattt caaacgtaac
 40 1261 tttagctctg tgtgttctt gcaaccagac tactctaaa acactctgc agatatttgt
 1321 gtgggttaggc tacgttctt cgggagtggaa tcctttgatc tataccctt tcaataagac
 1381 atttcgggaa gcattggca ggtacatcac ctgcaattac caggccacaa agtcgtaaa
 1441 agtgcctttaga aagtgttctt gtacactctt ttttggaaat tcaatggtag aaaactctaa
 1501 atttttcaca aaacatggaa ttggaaatgg gatcaaccctt gccatgttacc agagcccagt
 1561 aaggctccga agtcaacca ttcttgttcc atccatcatt ctctcaata catttctcac
 1621 tgaaaaacgat ggtgacaaag tagaagacca agtcagctac atatagtggat atggggcagc
 1681 cctcatctga ctgaggaggagg ggtatggaggag gacgcaagca tacaaggaa aaggcaagag
 1741 tgaagcacta aggttgtcca gtttccttcatc taaaacaaac tcaacgcacg ggtatgttag
 1801 ttccgtatgg ctacaaacaa aagcattttcc tactctggta ttggaaatggaa aaaaaatcaa
 1861 ataagtggat atacttcgtt cttaaaaag aaaaagaagggtt gttgggatt tagtcgtt
 1921 gtagagagtt tgctctgtt gtcacaggcc ctgggttcgg ttctcagctc cagaaaaaaaa
 1981 aaaaataaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa a

SEQ ID NO: 152

Amino acid sequence of rat HTR2B encoded by the DNA sequence shown in SEQ ID NO: 151.

5 MASSYKMSEQSTISEHILQKTCDFLILTDRSGLKAESAAEEMKOTAENQGNTVHWAALLI
 FAVIIPТИGGNILVILAVSLEKRLQYATNYFLMSLAVALLVGLFVMPIALLTIMFEATW
 PLPLALCPAWLFLDVLFSTASIMHLCAISLDRYIAIKPKIQANQNSRTTAFVKITVWL
 ISIGIAIPVPIKGIEADVVNAHNITCELTQDRFGSFMFLFGSLAAFFAPLTIMIVTYFLTI
 HALRKAYLVRNRPPQRLLTRWTVSTVLQREDSSFSPEKVMVLGSHKDILPNSTDTEL
 10 MRRMSAGKKPAQTISNEQRASKVLGIVFLFFLMWCFFFITNVTLALCDSCNQTTLKTL
 LQIFVWVGYVSSGVNPLIYTLFNKTFRERAFGRYITCNYQATKSVKVLRKCSSTLYFGNSM
 VENSKFTKHGIRNGINPAMYQSPVRLRSSTIQ9SSIIILLNTFLTENDGDKVEDQVSYI

SEQ ID NO: 153

gi|4557885|ref|NM_000211.1| Homo sapiens integrin, beta 2 (antigen CD18 (p95),
 lymphocyte function-associated antigen 1; macrophage antigen 1 (mac-1) beta subunit
 15 (ITGB2), mRNA

1 cagggcagac tggtagcaa gcccccacgc ccagccagga gcaccgccc ggactccagc
 61 acaccgaggg acatgtggg cctcgcccccc ccactgtcg ccctgggtggg gctgtctcc
 121 ctccgggtcgcc tcctcttcga ggagtgcacg aagttaagg tcagcagctg cccggaaatgc
 181 atcgagtcgg gcccggctg cacctgggtgc cagaagctga acttcacagg gccgggggat
 241 cctgactcca ttgcgtgcga cacccggcca cagctgtca tgaggggctg tgcggctgac
 301 gacatcatgg accccacaag cctcgctgaa acccaggaag accacaatgg gggccagaag
 361 cagctgtccc cacaaaaagt gacgcatttac ctgcgaccag gccaggcage agcgttcaac
 421 gtgaccttcc ggcgggcca gggctacccc atcgacctgt actatctgat ggacctctcc
 481 tactccatgc ttgtatgaccc tggaaatgtc aagaagctag ttggcgaccc gctccgggccc
 541 ctcaacgaga tcaccgagtc cggccgcatt ggcttcgggt ctttcgtgga caagaccgtg
 601 ctgccgttcc tgaacacgca ccctgataag ctgcgaaaacc catgccccaa caaggagaaa
 661 gagtgccagc ccccgtttgc cttcaggacat gtgctgaagc tgaccaacaa ctccaaccag
 721 ttccagaccc aggtcgggaa gcagctgatt tccggaaaacc tgatgcacc cgaggggtggg
 781 ctggacgcca tggatgcagg tggccgcctgc cggagggaaa tccggctggcg caacgtcacc
 841 cggctgtgg tggccac tggatgcggc ttccatttcg cggcgacgg aaagctggc
 901 gccatcctga ccccaacga cggccgctgt cacctggagg acaacttgta caagaggagc
 961 aacgaattcg actacccatc gttggggccag ctggcgacata agctggctga aaacaacate
 1021 cagcccatct tcgegggtgac cagtaggatg gtgaaagaccc acgagaaaact caccgagatc
 1081 atcccaagt cagccgtggg ggagctgtct gaggacttcca gcaatgtggt ccattctcatt
 1141 aagaatgtt acaataaaact ctccctccagg gtcttcctgg atcacaacgc cctcccccgc
 1201 accctgaaag tcacccatcg ctccttcgtc agcaatggag tgacgcacag gaaccagccc
 1261 agagggtact gtgatggcgt gcagatcaat gtcggatca cttcccgatgt gaaggtcacc
 1321 gcccacagat gcatccagga gcagtcgg tgcataccgg cgtctggcgtt caccggacata
 1381 gtgacccgtgc aggttcttcc ccagtgtgg tggccgggtgcc gggaccagag cagagaccgc
 1441 agcctctgcc atggcaaggg cttttggag tggccgtatc gcagggtgtga cactggctac
 1501 attggggaaa actgtgagtg ccagacacag gggccggagca gcaaggagct ggaaggaagc
 1561 tgccggaaagg acaacaactc catcatctgc tcagggtgg gggactgtgt ctggggcag
 1621 tgccctgtgcc acaccagcga cgtcccccggc aagctgatata acggcagta ctgcgagtg
 1681 gacaccatca actgtgagcg ctacaacggc caggtctgcg gggccccggg gggggggctc
 1741 tgcttctgcg ggaagtgcgg ctgcacccgg ggctttgagg gtcagcgtg ccagtgcggag
 1801 aggaccactg agggctgcct gaaacccggcg cgtgttggat gtgttggcgt tggccgggtgc
 1861 cgctgcacg tatgcgtgt ccattcaggc taccagctgc ctctgtgcc gggatggccc
 1921 ggctgccttcc caccctgtgg caagtagatc ttctgcggcc agtgcctgt gttcgaaaag
 1981 ggcccccttg ggaagaactg cagcgcggcg tggccggggc tgcagctgtc gaaacacccc
 2041 gtgaaaggcga ggacctgca gggagggac tcaagagggt gtcgggtggc ctacacgtg
 2101 gagcagcagg acgggatggc cgcgtaccc atctatgtgg atgagagccg agagtgtgt
 2161 gcaggccccca acatcgcggc catcgtcggg ggcacccgtgg caggcatcgt gtcgtatggc
 2221 attctcctgc tggatgcagg atccacctga ggcacccgtgg gggatcagg

2281 cgctttgaga aggagaagct caagtcccgag tggaaacaatg ataatccccct tttcaagagc
 2341 gcccacacga cggtcatgaa ccccaagttt gctgagagtt aggagcactt ggtgaagaca
 2401 agggccgtca gaccacccat gtctgccccca tcacgcggcc gagacatggc ttggccacag
 2461 ctcttgagga tgtcaccaat taaccagaaaa tccaggattt ttccgcctc aaaatgacag
 5 2521 ccatggccgg ccgggtcttc tgggggctcg tcggggggac agtccactc tgactggcac
 2581 agtctttgca tggagacttg aggagggctt gaggttggt aggttaggtg cgtgttctt
 2641 gtgcaagtca ggacatcagt ctgattaaag gtggtccaa ttatattaca tttaaacttg
 2701 tcagggtata aaatgacatc ccattaatta tattgttaat caatcacgtg tatagaaaaaa
 2761 aaaataaaaac ttcaat

10 SEQ ID NO: 154

Amino acid sequence of human ITGB2 encoded by the DNA sequence shown in SEQ ID NO: 153.

MLGLRPPPLLALVGLLSILGCVLSQECTKFKVSSCRECIESGPGCTWCQKLNFTGPGDPDSI
 15 RCDTRPQLLMRGCAADDIMDPTSLAETQEDHNGGQKQLSPQKVTLYLRPGQAAAFNVTFR
 RAKGYPIDLYYLMDLSYSMLDDLRNVKKLGGDLLRALNEITESGRIGFGSFVDKTVLPFV
 NTHPDKLRNRPCKNEKECQPPFAFRHVLKLTNNNSNQFQTEVGKQLISGNLDPEGGLDAM
 MQVAACPEEIGWRNVTRLLVFATDDGFHFAGDGKLGAITLETPNDGRCHLEDNLKRSNEFD
 YPSVGQLAHKLAENNIQPIFAVTSRMVKTYEKLTEIIPKSAVGELSEDSSNVVHLIKNAY
 20 NKLSSRVFLDHNALPDTLKVTYDSFCSNGVTHRNPQRGDCDGVQINVPITFQVKTATEC
 IQEQSFSVIRALGFTDIVTVQVLPQCECRDRQSRDSLCHKGPLECGICRCDTGYIGKN
 CECQTQGRSSQELEGSCRKDNNSIICSGLGDCVCGQCLCHTSVPGKLHYGQYCECDTIN
 CERYNGQVCGGPGRGLCFCGKCRCHPGFEGSACQCERTTEGCLNPRRVECSGRGRCRCNV
 CECHSGYQLPLCQECPGCPSPCGKYISCAECLKFEKGPFKGNCACPGQLQLSNNPVKGR
 25 TCKERDSEGCWVAYTLEQQDGMDRYLIYVDESRECVAAGPNIAIVGGTVAGIVLIGILL
 VIWKALIHLSDLREYRRFEKEKLKSQWNNDNPLFKSATTTVMNPKFaes

SEQ ID NO: 155

gi|6680489|ref|NM_008404.1| Mus musculus integrin beta 2 (Itgb2), mRNA

1 atgctgggcc tgcgc(ccc)ctc actgctgctt gccctagctg gactgttctt cctgggatct
 61 gctgtgtccc aggaatgcac caagtacaaa gtcagcagtt gccgggactg tatccagtc
 121 gggcctggct gttcctgggt ccagaagctg aacttcaactg gaccaggaga acctgactcc
 181 ttgcgtgtg acacacgggc acagctgctg ctgaagggtt gtccagccga tgatatacatg
 241 gaccccaagga gcatcgctaa ttctgagttt gaccaacggg ggcaacggaa acagctatct
 301 ccacaaaaag tgacacttta ttgcgaccca ggacagctg ccgcattcaa ttttgcatttt
 361 cggcgggcca agggatacccc cattgtatcg tactaccta tggatcttc ctactccatg
 421 cttgatgacc tcaacaacgt caagaagctg ggccgggact tgcgtgcaggc cctcaacag
 481 atcaccgagt ctggccgcattt cggctttggg tgcgttgtt acaagacggt gtcgccttt
 541 gttAACACCC atccttgagaa gtcggaaac ccattttttt acaaggagaa ggccctgcag
 601 cccccatttgc cttttccggca cgtgcctaaatggatggc aactccaaatca gtttcagaca
 661 gaggtccggca agcaacttatggatggatggatggatggatggatggatggatggatggatgg
 721 ataatgcacatggatggatggatggatggatggatggatggatggatggatggatggatggatgg
 781 gttttgcacatggatggatggatggatggatggatggatggatggatggatggatggatggatgg
 841 acccccaatggatggatggatggatggatggatggatggatggatggatggatggatggatggatgg
 901 gactaccatccgtgggtca gtcggcacac aaactttccg agagcaacat ccagcccatc
 961 tttgcgggtca aaaaatggatggatggatggatggatggatggatggatggatggatggatggatgg
 1021 tcagcagtttgggaaactgtc tgacgactcc agcaacgtgg tgcaactcat caagaatgcc
 1081 tactataaac tctccctctg agtcttcctg gaccacagca ccctccccggaa caccctgaaa
 1141 gtcacctatg actccttctg cagaatggaa gcatcgagta taggcaaatc ccgtggggac
 1201 tgcgtatggcg tacagatcaa caacccgggtc accttcagg taaaggatcat ggcttccgag
 1261 tgcgtatccagg agcagtcattt tgcgtatccgg gcaactgggtt tcacggatcat agtgcacgt
 1321 cagggtccgtc cccagttgtca gttgtcaactgc cgggaccaga gtcgggagca gatgtcttgt
 1381 ggaggcaagg gagtcatggaa gttgtggatcat tgcaggatgtc agtctggcta cattggaaa
 1441 aactgtgagt gcccacatca gggtcggagc agccagggc tggagagaaa ctgtcggaaag
 1501 gacaatagtt ccattgtgtc ctcagggtttt gggactgca tttttttttt gttgtatgc

1561 cataccagtg acgtccccaa caaagagatc tttggcaat actgcgagtg tgacaatgtc
 1621 aactgtgaga gatataacag ccaagtctgc ggtggctcg atccgggttc ctgcaactgt
 1681 ggcaaatgt a gttgcaagcc cggttacgag ggctccgcct gccagtgtca gaggtccacc
 1741 acggctgtc tgaatgcacg gctggtagag tgcagtggcc gtggccactg ccaatgcaac
 5 1801 aggtgcata t gtcacgagg ctaccaggcca cccatgtgt aggattgtcc cagctgtggc
 1861 tcgcactgca gggacaacca caccccttgc gccaggtgc tgaagtttga taagggccct
 1921 tttgagaaga actgttagtgt tca gatgtgtgc ggtatgacgc tgcagactat ccctttgaag
 1981 aaaaagccct gcaaggagaa ggactcggaa ggctgttggtaa acttacac tttgcagcag
 2041 aaggacggaa ggaacat tta caacatccat gtggaggaca gcttagatgt tttgaaggc
 10 2101 cccaatgtgg ctgcacatgt agggggcacc gtggtagtgc tcgtactgtat tgggtgtcctc
 2161 ctcctgg tca tctggaaaggc cctgacccac ctgactgacc tcagggagta caggcgtt
 2221 gagaaggaga aactcaagtc ccaatggaa aatgacaacc cccttctcaa gagtgtacg
 2281 acaacgg tca tgaacccaa gtttgc gaa agctagagca tgagttatca taatcaagca
 2341 gatgtgaccc cctcagacca cgcctc cctctgcaaa cacaacgtgg cttacagctc
 15 2401 accccag tgc tgccaaaggat cccaaaggct gtcggttt ctnccgccc tatataaag

SEQ ID NO: 156

Amino acid sequence of mouse ITGB2 encoded by the DNA sequence shown in SEQ ID NO: 155.

20 MLGLRPSLLLALAGLFFLGS AVSQECTK YKVSSCRDCIQSGPGCSWCQKL NFTGPGE PDS
 LRC DTR AQLL K GCP ADDIMD PRS IANPEF DQRG QRKQLSPQ KVTL YLRPGQAA AFN VTF
 RR AKG YP IDLY LM DLSY MLDL NNVK LGGDL L QAL NEIT E SGRIG FGS FVD KTV LPF
 VNTH PEK LRN PC PN KEK ACQ PPF AFRH VL K TDNS NQ F QT EV GK QL IS GN L DA PEG GL D
 IMQVA AC PEEI GWRN VTR LLV PAT DDGF H FAGD G K L G AIL T PND GRCH LED NM Y KRS N EF
 25 DYPSVG QLA HKL S ES NI QP I FA VT K KM V K TY E K L TE I IPK SAV GEL SDD SS NV QL I K NA
 YY K L S R V F LDH ST L P D TL K V T Y DS F C S NG A S S I G K S R G D C D G V Q I N N P V T F Q V K V M A S E
 C I Q E Q S F V I R A L G F T D T V T V Q V R P Q C E C H C R D Q S R E Q S L C G G K G V M E C G I C R C E S G Y I G K
 N C E C Q T Q G R S S Q E L E R N C R K D N S S I V C S G L G D C I C G Q C V C H T S D V P N K E I F G Q Y C E C D N V
 30 NC E R Y N S Q V C G G S D R G S C N C G K C S C K P G Y E G S A C Q C Q R S T T G C I N A R L V E C S G R G H C Q C N
 RC I C D E G Y Q P P M C E D C P S C G S H C R D N H T S C A E C L K F D K G P F E K N C S V Q C A G M T L Q T I P L K
 KK P C K E K D S E G C W I T Y T L Q Q K D G R N I Y N I H V E D S L E C V K G P N V A A I V G G T V V G V V L I G V L
 LL V I K A L T H L T D L R E Y R R F E K E K L K S Q W N N D N P L F K S A T T V M N P K F A E S

SEQ ID NO: 157

35 gi|34852368|ref|XM_228072.2| Rattus norvegicus similar to Integrin beta-2 precursor (Cell surface adhesion glycoproteins LFA-1/CR3/P150,95 beta-subunit) (CD18) (Complement receptor C3 beta-subunit) (LOC309684), mRNA

1 atggatggct ttgggttgc t gtaacagga gccc t gtc c aggaatgcac caagtacaaa
 61 gtcagcaact gcccggactg t atccagtgc gggcctggct gtcgtggc ccagaagctg
 121 aacttcacccg gaccagg gga gcctgactcc ttgcgtgtgc acacgcggc acagctgtc
 181 ctcaagggtt gcccacccg t gatataatg gaccccaaga gtttgc tca tccaccc
 241 caatatcagg tgcaacggag tcaactgtc ccacaaaaag tgacccctaa ttgcgacca
 301 gggcaggctg ctgcattca t g t g a t t t c c g a c g g g c c a a g g g t a c c c c a t t g a t c t g
 361 tactacccca tggacccctc ctactctatg t c t g a t g a c c a a t g t a a g a a g t t g
 421 ggtgggtatt tgctgcaggc ctc a a c c a g g a t c a c a c a g a g t c g g c c g c a t c g g c t t c g g g
 481 tcccttcgtgg acaagacgg t g t c a a c a c c c a t t c e c c g a a g a g t c a a g g a a c
 541 ccatccccca acaaggagaa a g c c t g c c a g c t t c g c c a c g t c t c a a g
 601 ctaa cccaca actccaaacca gtttca gaca gaggtccggca agcaactgtat tccggaaac
 661 ctggacccc ctgaggcgg g t c g g a t c c a a g a g t t g g t c e c t g t c g g t t c e c
 721 t g t g a g c c a g g t c g c c a g c a g t g g a t c t t c t g g t t c t a g a g t t c c
 781 caagacccacg acggatccca ctttgc cggat gatggaaac tgggtgc cat cctgaccc
 841 aacgatggcc gtc gecaccc ggaggataac atgtacaaga ggagcaatga gttcgactac
 901 ccgtcagtgg gccagctggc ccacaaaactt tccgagagca acatccagcc catctttgca

	961	gtgacaaaaga	agatggtgaa	aacctatgag	aaactgacag	agattatccc	caagtgcggc
	1021	gtggcgagc	tgtctgacga	ttccagtaac	gtatccagc	ttatcaagaa	agcttactac
	1081	aaactctct	ctagagtctt	cctggaccac	accaccatcc	cggacacccct	gaaagtcacc
	1141	tatgactcct	tctgtataaa	cagatgtatcg	agtataggca	aatccccagg	ggactgtgac
5	1201	ggtgtgcaga	tcaacaaccc	ggtcaccccttc	caggtaaagg	tcacggcttc	ggagtgtatc
	1261	caggagcagt	cctttgtcat	ccgggcgctg	ggcttcacccg	acacagtgac	gtacagggtc
	1321	catccccagt	gcgagtgcua	gtgcgggac	cagagtcgg	tgaggaatct	ctgtggaggc
	1381	aaggaggatca	tggagtgtgg	catctgcagg	tgtgagtctg	gctacattgg	aaaaaactgt
	1441	gagtgtcaga	cgcaggggccg	gagcagccag	gagctggagg	ggaactgcgg	gaaggacaat
10	1501	agttccattg	tgtgtctggg	gctgggggac	tgcatctgcg	ggcagtgcgt	gtgccacacg
	1561	agtgcacatcc	ccaacaaagt	gatctttggg	caatactgcg	agtgtgacaa	cttcaactgt
	1621	gagagatatg	atggccaaagt	ctgcgggtgc	ctaaagagag	gctccctgc	ctgtggccag
	1681	tgtattgtca	aggagggttt	cgagggttct	gcttgcctgt	gtcagaggc	taccacgggc
	1741	tgtctgaacg	cacggctgtt	ggagtgcagt	ggccgtgtcc	ggtgccaatg	caacagatgc
15	1801	atctgtgaga	aaggttacca	gccacccctg	tgtgaagagt	gtccccggctg	cccttgc
	1861	tgcagcacct	acgtcttctg	tgccgagatgc	ctgaaatttg	ataaggggccc	ctttcagaag
	1921	aattgttagt	ttcagtgtgc	caatgtgacg	ctgcagactg	tcccttcaa	aaaaaagccc
	1981	tgcaaggaga	gggactcgga	gggctgtctgg	ataacactaca	ctttgcagca	gaaggacgg
20	2041	aacgccttaca	acatccatgt	ggacgcacgt	cgagagtgtg	tgaaaggccc	caacgtggct
	2101	gcccattcatag	ggggactgt	ggccggcggt	gtactgtatt	gtgtccctct	cctggtcate
	2161	tggaaaggctc	ttacccacct	gactgaccc	aatgaataca	gacgctttga	gaaggagaaa
	2221	ctcaagtccc	agtggaaacaa	cgacaaacccc	ctttcaaga	gcgcacac	aacggtcatg
	2281	aacccctaagt	ttgtgttagag	ctagagaagg	agttaggg	gacccttca	gaccatgcct
	2341	cctcccccct	gcaaatagaa	tgttagttac	agctagcccc	agtgtgc	cccaaggatccaaa
25	2401	agcctacttt	gtttcttcc	gccattata	caaggctgccc	agggtttcca	cagactate
	2461	ttccgaccta	tacaatctt	ccacagagcc	tgtagattgt	tccggagttc	caagaggttc
	2521	cacacacgtt	ttcgtgcata	aaggaaagac	aggggtctca	gtaaaagg	ttggccacccgtt
	2581	tttatattta	aacttggtag	cgtataaaac	tactattata	ttgttaat	cctgtccgtt
	2641	gtattatatg	tgagtgtaaa	actatatccc	acatatatca	gaatcatgtg	tgtaaaaata
30	2701	ataaaagcttc	cattcagggc	tgcagagatg	gctcagtgtt	taagagcact	gactgcttt
	2761	ccagaggctc	tgagttcaat	tcccagacatc	cacatggtgg	ctcacaacca	tctgtatgg
	2821	gatctgtatgc	ccttgcgtgg	tgtggctgaa	gatagcaaca	gtgtactcac	atacataaaa
	2881	taaataaagc	cttttaataaa	aaaaattaat	aaagcttcca		

SEQ ID NO: 158

35 Amino acid sequence of rat ITGB2 encoded by the DNA sequence shown in SEQ ID NO: 157.

MDFGFCVTGALSEECTKYKVSNCRDCIQSGPGCSCWQKLNFTGPGEPEDSLRCDTRAQLL
LKGC PAD DMDPKSFADLHPQYQVQRSQLSPQKVTLNLRPGQAAAFNVTFRRAKGYPIDL
YYLMDLSYSMLDDLNVKKLGGDLLQALNEITESGRIGFGSFVDKTVLPFVNTHPEKLRN
PCPNKEKACQPPFAFRHVLKLTDNSNQFQTEVGKQLISGNLDAPEGGLDAIMQVAACPFS
CEPGCPAVDLLVPKAFLS DQEHDGFHFAGDGKLGAI LTPNDGRCHLEDNM YKRSNEFDY
PSVGQLAHKLSESNIQPIFAVTKMKVKTYEKLTEIIPKSAVGELSDDSNVVQLIKKAYY
KLSSRVFLDHTTIPDTLKVTYDSFCNNRVSISGKSRGCDGVQINNPVTFQVKVTASECI
QE QSFVIRALGFTDTVQVHPQCECQC RDQS RMRNLCGGKGVMECGICRCESGYIGKNC
ECQTQGRSSQELEGNCRKDNSSIVCSGLGDCICGQCVCHTSDIPNKVIFGQYCECDNFNC
ERYDGQVC CGGLKRGSCCGQCNC KEGFEGSACQCQRSTGCLNARLVECSGRGRQCNC
ICEKGYQPLCEECPG CPLPC STYVFCAECLKF DKGPFQKNCSVQCANVTLQTVF KKPK
CKERDSEGCIWITYTLQQKDGNAYNIHVDDDREC VKGPNVAA IIGGT VAGVULIGVLLVI
WKALTHLTDLNEYRRFKEKLKSQWNNDNPLFKSATITVVMNPKFAES

50 SEQ ID NO: 159

gi|20127646|refNM_030569.2| Homo sapiens inter-alpha (globulin) inhibitor H5 (ITIH5), mRNA

1 gtgtccccgcc gggccccgaa gggtcccgcg ccctcgcccc gcctatgtcc tgctgctggg
 61 gctgtgcctg gggctgtccc tttgtgtggg gtcgcaggaa gagggcgcaga gctggggcca
 121 ctcttcggag caggatggac tcagggtccc gaggaagtc agactgttgc agaggctgaa
 181 aaccaaaacct ttgtatgacag aattctcagt gaagtttacc atcatttccc gttatgcctt
 5 241 cactacggtt tcttcggagaa tgctgaacag agcttttgc gaccaggaca ttgagtcca
 301 gatgcagatt ccagctgcag ctttcatcac caacttcact atgcttattt gagacaaggt
 361 gtatcaggggc gaaattacag agagagaaaaa gaagatgtt gatagggtta aagagaaaaag
 421 gaataaaaacc acagaagaaaa atggagagaaa ggggactgaa atttcagag cttctgcagt
 481 gattccccggc aaggacaaaag cccgcctttt cctgagttt gaggagttc tgccagggcg
 10 541 cctggggcaag tacggcaca gcatcagcgt gcccggcccg cagctgtccg ggaggctgag
 601 cgtggggctg aatatactgg agagcgcggg catcgcatcc ctggagggtgc tgccgcctca
 661 caaacaggcagg cagaggggca gtggggcggg ggaagatgt tctgggcctc ccccatctac
 721 tgcattaaac caaaatgaaa attttccaa cataattttt aaacctactg tagtacaaca
 781 agccaggatt gcccagaatg gaattttggg agacttttac attagatatg acgtcaatag
 15 841 agaacagagc attggggaca tccaggttct aatgtctat ttttgtcact actttgtcc
 901 taaagacccctt cctcccttac ccaagaatgt ggtattctg cttgacagca gtgccttat
 961 ggtggggacc aaactccggc agaccaagga tgcccttcc acaattctcc atgaccccg
 1021 acccccaggac cgttcagta tcattggatt tcccaaccgg atcaaaggat ggaaggacca
 1081 cttgatatac gtcactccag acagcatcag ggatggaaa gtttacattt accatatgtc
 20 1141 acccaacttggaa ggcacagaca tcaacggggc cctgcagagg gccatcaggc tcctcaacaa
 1201 gtacgtggcc cacagtggca ttggagaccc gagegtgtcc ctcatctgtc tcctgacgga
 1261 tggaaagcccc acggcgggg agacgcacac cctcaagatc ctcaacaaca cccgagaggc
 1321 cggccggaggc caagtctgca ttttacccat tggcatcggc aacgacgtgg acttcaggct
 1381 gctggagaaa ctgtcgctgg agaactgtgg cctcacacgg cgcgtgcacg aggaggagga
 25 1441 cgcaggctcg cagtcatcg gtttctacga tggaaatcagg acccccgtcc tctctgacat
 1501 cgcacatcgat tatccccca gtcagtggt gcaggccacc aagaccctgt tcccccaacta
 1561 cttcaacggc tcggagatca tcatttgcggg gaagctggg gacaggaagc tggatcacct
 1621 gcaacgtggag gtcacccggca gcaacagtaa gaaatttacatc atcctgaaga cagatgtgcc
 1681 tgcggccct cagaaggcag ggaaagatgt cacaggaagc cccaggcctg gaggcgatgg
 30 1741 agagggggac cccaaaccaca tcgagcgtct ctggagctac ctcaccacaa aggagctgt
 1801 gagcttctgg ctgcaaagtg acgtatgaaacc ggagaaggag cggctgcggc agcggggcca
 1861 ggccttggct gtgagctacc gtttcttca tcccttccacc tccatgaagc tgagggggcc
 1921 ggtcccacgc atggacggcc tggaggaggg ccacggcatg tcggctgcca tgggaccgaa
 1981 accgggtggc cagacgtgc gaggagctgg cacgcagcca ggaccttgc tcaagaagcc
 35 2041 ataccagccca agaattaaaa ttctaaaac atcagtggat ggtatcccc actttgttgc
 2101 ggatttcccc ctgagcagac tcaccgtgtt cttcaacatt gatgggcagc cgggggacat
 2161 cctcaggctg gtctctgtac acagggactc tgggtgtaca gtaacccggag agttaatttgg
 2221 ggcacccggcc cctccaaatg gccacaagaa acagcgact tacttgcgc tstatcaccat
 2281 cctcatcaac aagccagaga gattttatct cgagatcaca ccgagcagag tcatcttgg
 40 2341 tgggtgggac agactggtgc tccctgca ccagagtgtt gttgggggaa gctgggggt
 2401 ggaggtgtcc gtgtctgcca acgccaatgt caccgttacc atccagggtt ccatagcctt
 2461 tgcattccctc atccacccctt aaaaaagcc ggcgccttc cagcgacacc acctgggtt
 2521 ctacattggc aacagcgagg gccttccag caactgccac ggactgttgc gtcagttct
 2581 gaatcaggat gccagactca cagaagaccc tgcaggcccc agccagaacc tcactcacc
 45 2641 tctgtccctt cagggtggag aggggcctga ggccttccacc acagtggaaag gccaccaagt
 2701 cccaggtggc tggaaacaaa ggaagattt caacggggaa gagcagatag actgtgtgg
 2761 tgcaggaaac aatggccca aactgttgc cggggagttt aaggatttcc tggcatccca
 2821 tccatttgcac acagggtatga cacttggcca gggaatgttcc agggagctt gaaatgtgg
 2881 gccttaaaaatg tgcaagtgc tgaaggacag tggatgtggg agggcgtggg gcaatctt
 50 2941 tcatggctt tacacgcctc agtcttggc aatttagtggt actccatgac ccacccctgg
 3001 tgcagcatag atccgacgtc tgcgtggc aagggttaggg gttgggttaggg gcggggaaagcc
 3061 tgagtgcataa tgcatttcc ctctactgccc ttttcttgc tttcccccacc ctgcacccat
 3121 ccacagaggc gagagaaggg tcatagctaa atgcaacaaaaa gtcgtatct tgcggccat
 3181 tgcatttcttgc ttctgtttagc atatcataaa gtaaggccctt ctgggt
 55 SEQ ID NO: 160

Amino acid sequence of human ITIH5 encoded by the DNA sequence shown in SEQ ID NO: 159.

MLLLLGLCLGLSLCVGSQEEAQSWGHSSSEQDGLRVPQRVLLQRLKTKPLMTEFSVKSTI
 ISRYAPTTVSCRMLNRASEDQQDIEFQMQIPAAAFITNFTMLIGDKVYQGEITEREKKSGD
 RVKEKRNKTTTEENGEGTEIFRASAVIPSQDKAAPPFLSYEELLQRRLGKYEHSISVRPQQ
 LSGRLSVGVNILESGIASLEVLPLHNSRQRGSGRGEDDSGPPPSTVINQNETFANIIFK
 5 PTVVQQARIAQNGILGDFIIRYDVNREQSIGDIQVNLNGYFVHYFAPKDLPPLPKNVVFV
 DSSASMVGTKLRQTKDALFTILHDLRPQDRFSIIGFPNRIKVWKDHLSVT PDSIRDGKV
 YIHHMSPTGGTDINGALQRAIRLLNKYVAHSGIGDRSVSLIVFLTDGKPTVGETHTLKIL
 NNTREAARGQVCIFTIGIGNDVDFRLLKEKLSLENCGLTRRVHEEEDAGSQLIGFYDEIRT
 PLLSDIRIDYPPSSVQATKTLPPNYFNGSEIIIAAGKLVDRKLDLHLHVEVTASNSKKFI
 10 LKTDVPVRPQKAGKDVTGSPPPGDGE GDPN HIERLWSYLTTKELLSSWLQSDDEPEKER
 LRQRAQALAVSYRFLTPFTSMKLRGPVPRMDGLEAHGMSAAMGPEPVVQSVRGAGTQPG
 PLLKKPYQPRIKISKTSV DGDPHFVVDPLSRLTVCFNIDGQPGDILRLVSDHRDGVTV
 NGELIGAPAPPNGHKKQRTYLTITILINKPERSYLEITPSRVILDGGDRLVLP CNQSVV
 15 VGSGWGLEVSVSANANVTVTIQGSIAFVILIHLYKKPAPFQRHHLFYIANSEG LSSNCHG
 LLGQFLNQDARLTEDPAGPSQNLT HPLLQVGEGPEAVLTVKGHQVPPWWKQRKIYNGEE
 QIDCW FARNNAAKLIDGEYKDYLASHPFDTGMTL GQGMSREL

SEQ ID NO: 161

Amino acid sequence of human ITIH5, a soluble active secreted form derived from SEQ ID NO:160.

20 QSWGHSSSEQDGLRVPQRVLLQRLKTKPLMTEFSVKSTIISRYAPTTVSCRMLNRASEDQ
 DIEFQMQIPAAAFITNFTMLIGDKVYQGEITEREKKSGDRVKEKRNKTTTEENGEGTEIF
 RASAVIPSQDKAAPPFLSYEELLQRRLGKYEHSISVRPQQLSGRLSVGVNILESGIASLE
 VLPLHNSRQRGSGRGEDDSGPPPSTVINQNETFANIIFKPTVQVQARIAQNGILGDFIIR
 YDVNREQSIGDIQVNLNGYFVHYFAPKDLPPLPKNVVFVLDSSASMVGTKLRQTKDALFTI
 25 LHDLRPQDRFSIIGFPNRIKVWKDHLSVT PDSIRDGKVYIHHMSPTGGTDINGALQRAI
 RLLNKYVAHSGIGDRSVSLIVFLTDGKPTVGETHTLKILNNNTREAARGQVCIFTIGIGND
 VDFRLLKEKLSLENCGLTRRVHEEEDAGSQLIGFYDEIRTPLLSDIRIDYPPSSVQATKT
 LFPNYFNGSEIIIAAGKLVDRKLDLHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTGSPR
 PGGDGEGDPNHIERLWSYLTTKELLSSWLQSDDEPEKERLRQRAQALAVSYRFLTPFTSM
 30 KLRGPVPRMDGLEAHGMSAAMGPEPVVQSVRGAGTQPGPLLKPYQPRIKISKTSV DGD
 PHFVVDPLSRLTVCFNIDGQPGDILRLVSDHRDGVTVNGELIGAPAPPNGHKKQRTYLT
 RTITILINKPERSYLEITPSRVILDGGDRLVLP CNQSVVVGSGWGLEVSVSANANVTVTIQ
 GSIAFVILIHLYKKPAPFQRHHLFYIANSEG LSSNCHGLLGQFLNQDARLTEDPAGPSQ
 35 NLTHPLLQVGEGPEAVLTVKGHQVPPWWKQRKIYNGEEQIDCW FARNNAAKLIDGEYKD
 YLASHPFDTGMTL GQGMSREL

SEQ ID NO: 162

gi|27369643|ref|NM_172471.1| Mus musculus inter-alpha (globulin) inhibitor H5 (Itih5), mRNA

1 gccc tga aaaa accttgcgtg tcccagagag gtcgcgcgct ctggcttcgc catgctcctg
 40 61 ctgctagg gc tggc ttgggg gttccc ctc ttctca aggt cccagg aaga ggcaagg agt
 121 tgggacaca cctcgagca agtcgtgc tc agg tccccca ggcagctc agt gttg caa
 181 agactgaaaa ccaagg cctt gatggc agag tttcgtga agt ctaccat catttccgc
 241 tatgccttca ccacgg tgc ctgcaggatg ctcaacagag cttctgaaga ccaggagct
 301 gagttccaga tgcagattcc agaatc agt ttc atcacca acttc accat gcttata gga
 361 gacagcgtgt atcgggtgaa aattacacag aaagataaga aaaggc agt gta gac gctt aaaa
 421 gataaaagga acagaac ctc agacgataat gaagaa acg ggagt gacat gttca aac gca
 481 tcttttagtga ttcccagcaa ggacaa agt gcttcttcc tc agttatga agagcttctg
 541 cagaggagc tggggaaata cgagcatagc atc agcgtgc gccccca gca gcttggg
 601 aggctgactg tggagg tggaa catcctggag cgatcggca tc acatc ctt gga agt gctg
 661 cctctccaca acagcaggaa gaagggt agt ggg aaggc agt gatgt ggg tccccc
 721 ctttctactc tcatca acca aaatg agaca tttgcca aag tcatctt aa gcctactgt
 781 gtc caaca ag cta agat tgc ccaga atggg atttc atc tgc tgg tata

841 gtcgagagag agcagaacat tggtgacatc caggttctga atggttattt cgtgcactac
 901 ttgtctcta aaaacctccc tcctctaccc aagaacgtgg tcttcgtgt tgacatccagc
 961 gcttccatgg tgggagcga actccagcag accaggagg ctctcgtaaaatctcaat
 1021 gacccggac cccaggatcg cttcaataatc attgggttct ccaatcgat taaaatgtgg
 5 1081 aaggaccact tactaccgt gactctgtac aacatttagga atggcaagat ctacatgtac
 1141 catctgtcac ccactggagg cacagacatc aatggggccc ttccaggctgc catcaaactg
 1201 ctcaacaact acgtggccca gaatgcatt gaagaccgaa gtgtgtccct catcatcttc
 1261 ctcaccgtatggaaaccac ctttggggag accaatatccc tcaagatctt cagcaacacc
 1321 aaggaagcca ccagggttca gatctgtatc ttccacgttg gcattggcga tgacgtggac
 10 1381 ttcaaaactgt tagagaaact ctgcgtggag aactgcggtc teacgaggcg tggtcatgag
 1441 gaggacaagg cgggcgcaca gtcateggg ttctatgtatc agatccggac cccgcttctt
 1501 tctgacatcc gcatagatcc tccctgtac gtatgtatc atggccaccaa gaccctgttc
 1561 cctaactactt caatggctc tgagatagt attgcaggaa agatggtggaa caagaagttt
 1621 gatcaactgc atgtgggggt cactgcggc aacagatggaa aatggtcat cctaaaaaaga
 1681 gacatccccg tggagtccg gaagatgggg aatgtatgtt cagtcacacc tggtcaagcc
 1741 agagatggcg ggaaggaccc aaaccacatt gagcactttt ggagctaccc cactgtgaag
 1801 gagctgtaa gtcctggag gcagagcaac agtgcggc aagaaagagca gtcggcgg
 1861 aaggcccagg acttagcctt gaaatcat ttcctcaccc cttcaccc catgaagctg
 1921 aggaagccag ggctccgcac aaaccagctg gaggacaccc atggcatgtc tgcatcaca
 20 1981 ggacctgcga ccgtgggtca gaaccttcga gaggccggca agcagccaga acctgatctc
 2041 aaaaaaacat atgacccaaatc attaaaatc tctaaaacat cagtggatgg tgatccat
 2101 ttgttagtgg attttccctt aagcaaaactc actgtctgt ttaacatcga cggagagccg
 2161 ggggacatcc tacgtcttgt ctctgatcat ctgaaatctg gtgtactgt gaatggcgag
 2221 cttattgggg ccccccgcacc tccgaatggt cacaagaaac agcgcacccata cttccgcacc
 25 2281 atcaccatcc tcatcaaccg gccagagaga tcttacctgg agatcacacc aagcagggtc
 2341 atcctggacag gtggggacag gtcgtactc ccctgcaacc agagcgtggt agtagggagt
 2401 cgaggattgg aggtgtcagt gtctgccaat gccaacatca ccgtggtcat ccaggccaac
 2461 attgcctttt tcatcctcat ccacctgtac aaaaacccag cacccttcca gagagaccac
 2521 ctgggcttct acatgccaa cagcagagggt ctctccgaca actgccacgg actgtcttagt
 30 2581 cagttcctga accaggatgc caaacttgcg ggagctcctg aggaatacgg caagaatctt
 2641 agtaaccaggc catttcctcg ggcagaaggg atgcctgagg ctatcctgaa ggtgaaaggg
 2701 cggcgagttc cagttgtctg gaaacaaaagg aagattaca acgggcaagc acaggtagac
 2761 tgctggttt acagaaaacaa tgctgccaag ctgattgacg gtgtctataa ggactacctg
 35 2821 gcatctcatc cgtttgacac agagagtgc ctgggctga gcacgcccag gaaacctgag
 2881 accgacaggc cccatgagga gagtgtctaa aaggaaaggg atattgggtc tactctggac
 2941 gcaactcttt ttatgtgtgg ctaccttggc tcttgcatac cgtgtactg tgttagccgc
 3001 cccctggtga gctggaggc caatgtctct tagagaatg agtcaggcga ggaagctgaa
 3061 atgcaaaatac ttcccttctt gccttcctca tctataactag ataaaaaaaaaa aaacaaacaa
 3121 ac

40 SEQ ID NO: 163

Amino acid sequence of mouse ITIH5 encoded by the DNA sequence shown in SEQ ID NO: 162.

MLLLLGLCLGLPLFSESQEEARSWDDTSEQVVLRVPRQLRLLQRLKTKPLMAEPSVKSTI
 ISRYAPTTVSCRMLNRASEDQEAEFQMQIPESAFITNFTMLIGDSVYRGEITQKDJKSSBE
 45 SVKDKRNRTSDDNEENGSDMFKAISLVIPISKDKAAFLSYEELLQRRLGKYEHHSISVRPQQ
 LVGRLTVEVDILERSGITSLLEVPLHNSRKKGSGKAEGDVGPPPSTLINVNETFAKVI
 PTVVQAKIAQNGILGDFIVRYDVEREQNIGDIQVNLNGYFVHYFAPKNLPPLPKNVVFVL
 DISASMVGAKLQQTREALVTIINDLRPQDRFNIIGFSNRRIKMWKDHLPPVTPDNIRNGKI
 YMYHLSPTGGTDINGALQAAIKLLNNYVAQNDIEDRSVSLIIFLTGKPTFGETNTLKIL
 50 SNTKEATRGQICIFTVGIGDDVDFKLLEKSLENCGLTRRVHEEDKAGAQLIGFYDEIRT
 PLLSDIRIDYPPDVEHATKTLFPNYFNGSEIVIAGKMVDKKFDQLHVETASNSKKFVI
 LKRDIPIVEFRKMGNDVSVPGSARDGGKDLNHIERLWSYLTVKELLSSWRQSNSQEKEQ
 LRQKAQDIALNYHFTPFTSMKLRKPGLRTNQLEDTYGMSAATGPATVQNLREAGKQPE
 PDLKKTYDPRIKISKTSVGDGPHFVVFPLSKLTVCFNIDGEPEGDILRLVSDHLSNVTV
 55 NGELIGAPAPPNGHKKQRTYFRTITILINRPERSYLEITPSRVILDGGDRLVLPNCQSVV
 VGSRGLEVSVSANANITVVIQGNIAFVILHLYKNPAPFQRDHLGFYIANSRGLSDNCHG
 LLGQFLNQDAKLVGAPEEYGNLSNQPFPRAEGMPEAILKVKGRRVPVWKQRKIYNGQA

QVDCWFDRNNAAKLIDGVYKDYLASHPFDTESALGLSTPRKPETDRPHEESV

SEQ ID NO: 164

gi|20127658|ref|NM_033101.2| Homo sapiens lectin, galactoside-binding, soluble, 12
(galectin 12) (LGALS12), mRNA

```

5      1 acaaaaccctc gttggcccca cagggagcca gcctctggct tctctctgca atggccatgt
       61 gctgcagacc cggagtgggt agtttagttgg ttaatgccag tcttcctccc ctggacactg
      121 agttctgtcg acagcccccg cccagccaga gctctgtgt ataccacccgg gagtggggct
      181 ggtgtggagc ctggaggctcg cccgtgtccc tccttagggct gctccagacaca gcattaaac
      241 gctgcaggctc gcaggtgaga ctaacagctg ggagagctgc tccaggcatt taggaccctg
     10 301 actggggcag atgagtcatgc ccagtgggg cagggctctt ggaacgagga tctacagttg
      361 gagttgcctcc actgtcatgt cacctggaga aaaactggac ccaatccctg acagcttcat
      421 tctgcaacca ccagtcttcc accccgggtgtt tccttatgtc acgacgattt ttggaggcct
      481 gcatgcaggc aagatggtca tgctgcaagg agtggccct cttagatgcac acaggttca
      541 ggtggacttc cagtggtggct gcagcctgtg tccccggcca gatatgcct tccacttcaa
     15 601 ccctcgttcc cataccacca agccccatgt catctgcaac accctgcattg gtggacgctg
      661 gcaaaggagg gcccgggtggc cccacctggc cctgcaaga ggctccagct tccatcatct
      721 ctttctcttc gggaatgagg aagtgaaggt gagtgtgaat ggacagcaact ttctccactt
      781 ccgctaccgg ctcccaactgt ctcatgtggc aacgctgggtt atatttgggt acatcctgg
      841 agaggctgtt ggattctgtc acatcaatcc atttgggtggag ggacagcagag agtaccacgc
     20 901 tggacatctt ttccgtgtc tgagccccag gctggagggtg ccctgtctcac atgetctcc
      961 ccagggtctc tgcgtggggc aggtcatcat agtacggggc ctgggtcttgc aagagccaa
     1021 gcattttact gtgagcctga gggaccaggc tgcctcatgtc cctgtgacac tcagggcctc
     1081 cttcgcagac agaactctgg cctggatctc ccgtgggggg cagaagaaac tgatctcagc
     1141 ccccttcctc ttttacccccc agagattctt tgagggtgtc ctccctgttcc aggagggagg
     25 1201 gctgaagctg ggcgtcaatg ggcaggggcgt gggggccacc agcatgaacc agcaggccct
      1261 ggagcagctg cgggagctcc ggatcagtgg aagtgtccag ctctactgtg tccactctcg
      1321 aggatggttc cagggggaaat accgcacaa aacaagaagg tcageccact cccagggccc
      1381 cactcttcctc ccctcattaa accatccacc tgacaccaggc acatcaggcc tggttcacct
      1441 ctggggtcaac gagactgagt ctacaggagc tttggggctg aggaaaggca caagagtgc
     30 1501 aaggttccctc gaactctgca ctttcctcca ccaggagctt gggatatggc tccatctgccc
      1561 ttcaaggcct ggactgcact cacagaggca agtggtagtactaacaag atactccaaa
      1621 atacaatggc ttataaaatg tggtcatttta ttctttattt tttatttttattt tgtggtcaaa
      1681 taaaataataa aggtta

```

SEQ ID NO: 165

35 Amino acid sequence of human LGALS12 encoded by the DNA sequence shown in SEQ ID NO: 164.

```

MSQPSSGRAPGTRIYSWSCPTVMSPGEKLDPIPDSFILQPPVFHPVVVYVTTIFGGLHAG
KMVMLQGVVPLDAHRFQVDFQCGCSLCPRPDIAFPHNPRFHTTKPHVICNTLHGGRWQRE
ARWPHLALRRGSSFLILFLFGNEEVKVSNGQHFLHFRYRLPLSHVDTLGIFGDLILVEAV
40 GFLNINPVEGSREYPAGHPFLLMSPRLEVPCSHALPQGLSPGQVIIIVRGLVLQEPKHFT
VSLRDQAAHAPVTLRASFADRTLAWISRWGQKKLISAPFLFPQRFFEVLFFQEGGLKL
ALNGQGLGATSMNQQALEQLRELRISGSVQLYCVHS

```

SEQ ID NO: 166

45 gi|15010855|gb|AF244977.1|AF244977 Homo sapiens galectin-12 isoform d mRNA,
complete cds

```

1 cttcagcttc ccagagtgtct gagattacag gcatgaccca cagagccca cccaggttaac
61 ttctacatgg ggaaagggtga gcctggggag gccattgtta agtgccttc caggggtcca
121 tttcagaggat agctgtcagt tcctaaacttg tccattcttc ttgcctccca gttccttagtc

```

181 tccagccact caacagtctt cagaaaagccc cagtaccagg cttctgggga ccagggtgac
 241 atcttagtgga tggcaagcct ccctggggtc actgcagcct gttgtgcctt aggagctggg
 301 gaaaggcaac tggctggtgc tgaatttggc aaggaggcgg aatttgactt ctctggtga
 361 atgcagctt gccgtgtac ggtccaggaa aggggattag gtggaaagaaa atatttcagt
 5 421 gaacactgat ttttacctat aaggaattt ctgtttggag agaaaaagtt gagttttatt
 481 ctgtccccctt cctcccaactc gcctgacata gaggcccta agccctttt ccaaacctgc
 541 atggatgagt ttcttttctt gttcagggtg ttccctatgt cacgacgatt tttggaggcc
 601 tgcatgcagg caagatggc atgctgcaag gagtggtccc tctagatgca cacaggttc
 661 aggtggactt ccagtgtggc tgccagcctgt gtcccccggcc agatatcgcc ttccacttca
 10 721 accctcgctt ccataccacc aagccccatg tcatctgcaa caccctgcat ggtggacgct
 781 ggcaaaggga ggcccggtgg ccccacctgg ccctgcgaag aggctccagc ttccctatcc
 841 tctttcttctt cgggaatgag gaagtgaagg tgagtgtgaa tggacagcac tttctccact
 901 tccgctaccg gctccccatg tctcatgtgg acacgctggg tatatttggt gacatccctgg
 961 tagaggctgt tggattcctg aacatcaatc catttgtgg aggcagcaga gagtacccag
 15 1021 ctggacatga ggtgcctgc tcacatgc tttccccaggg tctctcgcc gggcagggtca
 1081 tcatagtgaccc gggactggc ttgcaagagc cgaagcatt tactgtgagc ctgaggggacc
 1141 aggtgcctca tgctcctgtt acactcaggg cctcccttcg agacagaact ctggccttgg
 1201 tctcccgctg gggcagaag aaactgatct cagccccctt cctcttttac ccccagagat
 1261 tctttgaggt gctgctcctg ttccaggagg gagggtgaa gctggcgctc aatggcagg
 20 1321 ggctgggggc caccagcatg aaccagcagg ccctggagca gctggggag ctccggatca
 1381 gtggaaagtgt ccagctctac tttgttccact cctggaggat gttccaggggg aaataccgccc
 1441 agaaaacaag aaggtcagcc cactcccaagg gccccactct cctccctca ttaaaccatc
 1501 cacctgacac cagcacatca ggcctggtgc acctctgggg tcaagact gagtctacag
 1561 gagtttggg cctgaggaa ggcacaagag tgcaaaagggtt cctcgaactc tgcaccccttcc
 25 1621 tccaccagga gcctggata tggctccatc tgccttcagg gcctggactg cactcacaga
 1681 ggcaagtgtt gttagactaac aaagataactc caaaatacaa tggcttaaag aatgtggtca
 1741 ttatttctt attatttattt tatttgtgtt caaataaata aataaggta

SEQ ID NO: 167

Amino acid sequence of human LGALS12 variant ORF number 1 encoded by the DNA sequence shown in SEQ ID NO: 166.

MVMLQGVVPLDAHRFQVDFQCGCSLCPRPDIAFHFNPRFHTTKPHVICNTLHGGRWQREA
 RWPHIALRRGSSFLILFLFGNEEVKVSNGQHFLHFRYRLPLSHVDTLGIFGDILVEAVG
 FLNINPVEGSREYPAGHEVPCSHALPQGLSPGQVIIIVRGLVLQEPKHFVSLRDQAAHA
 PVTLRASFADRTLAWISRWGQKKLISAPFLFYPQRFFEVLLLQEGGLKLALNGQGLGAT
 35 SMNQQALEQLRELRISSGVQLYCVHS

SEQ ID NO: 168

gi|15010853|gb|AF244976.1|AF244976 Homo sapiens galectin-12 isoform c mRNA, complete cds

40 1 acaaaccctc gttggcccca cagggagcca gcctctggct tctctctgca atggccatgt
 61 gctgcagacc cggagtgggt agttagttgg ttaatgccag tcttcctccc ctggacactg
 121 agttctgtg acagccccccg cccagccaga gctctgtgtt ataccaccgg gagtggggct
 181 ggtgtggagc ctggaggctcg cccgctgccc tccttagggctt gotccagaca gcattaaaac
 241 getgcaggctc gcaggtgaga ctaacagctg ggagagctgc tccaggcatt taggaccctg
 301 actggggcag atgagtctgc ccagtggggg cagggtctctt ggaacgagga tctacatgg
 361 gagttcccccc actgtcatgt caccctggaga aaaactggac ccaatttcgt acagcttcatt
 421 tctgcaacca ccagtcttcc accccgggtgg tcccttatgtc acgacgattt ttggaggcct
 481 gcatgcaggc aagatggtca tgctgcaagg agtggccctt cttagatgcac acaggtttca
 541 ggtggacttc cagttgtggct gcagcctgtg tcccccggccca gatatcgctt tccacttcaa
 601 ccctcgcttc cataccacca agccccatgt catctgcaac accctgcattt gtggacgctg
 661 gcaaaggagg gcccgggtggc cccacctggc cctgcgaaga ggctccagct tccctatcc
 721 ctttctcttc gggaaatgagg aagtgaagggtt gagggtgaat ggacagcac tttctccactt
 781 ccgctaccgg ctccactgtt ctcattgtggc cacgcgtgggtt atatttgtgtt acatccctgg

841 agaggctgtt ggattcctga acatcaatcc atttgtggag ggcagcagag agtacccagc
 901 tggacatgag gtgcctgtc cacatgtct tccccagggt ctctcgctg ggcaggcat
 961 catagtacgg ggactggtct tgcaagagcc gaagcatttt actgtgagcc tgagggacca
 1021 ggctgccat gtcctgtga cactcagggc ctcctcgca gacagaactc tggcctggat
 5 1081 ctcccgtgg gggcagaaga aactgatctc agcccccttc ctcttttacc cccagagatt
 1141 ctgtgggtg ctgtccctgt tccaggaggg agggctgaag ctggcgctca atgggcagg
 1201 gctgggggccc accagcatga accagcaggc cctggagcag ctgcgggagc tccggatcat
 1261 tggaaagtgtc cagetctact gtgtccactc ctgaggatgg ttccagggga aataccgcca
 1321 gaaaacaaga aggtcagccc actccccaggg ccccaactctc ctccccctcat taaaaccatcc
 10 1381 acctgacacc agcacatcag gcctggttca cctctgggt cacgagactg agtctacagg
 1441 agctttgggc ctgagggaaag gcacaagagt gcaaagggtt ctcgaactct gcaccccttct
 1501 ccaccaggag cctgggatat ggtccatct gcettcaggg cctggactgc actcagag
 1561 gcaagtgtg tagactaaca aagataactcc aaaatacaat ggcttaaaga atgtggcat
 1621 ttatttttta ttatttttta atttgtggtc aaataaataa ataaggta

15 SEQ ID NO: 169

Amino acid sequence of human LGALS12 variant ORF number 2 encoded by the DNA sequence shown in SEQ ID NO: 168.

MSQPSGGRAPGTRIYSWSCPTEVSPGEKLDPIPDSFILQPPVFHPVVYPVTTIFGGLHAG
 20 KMVMLQGVVPLDAHRFQVDFQCGCSLCPRPDIAFHFNPRFHTTKPHVICNTLHGRWRQRE
 ARWPHLALRRGSSFLILPLFGNEEVKVSNGQHFLHFRLPLSHVDTLGIIFGDILVEAV
 GFLNINPFPVEGSREYPAHVPCSHALPQGLSPGQVIIIVRGLVILQEPKHFTVSLRDQAAH
 APVTLRASFADRTLAWISRWGQKKLISAPFLFYPQRFFEVLFFQEGGLKLALNGQGLGA
 TSMNQQALEQLRELRIISGSVQLYCVHS

SEQ ID NO: 170

25 gi|15010851|gb|AF244975.1|AF244975 Homo sapiens galectin-12 isoform b mRNA,
 complete cds

1 cctcagcttc ccagagtgtc gagattacag gcatgagcca cagagcccag cccaggtAAC
 61 ttctacatgg ggaaagggtga gcctggaaag gccattgtta agtgcctctc caggggtCCA
 121 ttccagagggt agctgtcagt tcctaacttg tccatttctc ttgcctccca gttccctagTC
 181 tccagccact caacagtctt cagaaagccc cagtaccagg ctctctgggg ccagggtGAC
 241 atctagtggc tggcaaggct ccctgggggtc actgcagccct gttgtgtctt aggagctGGG
 301 gaaaggcaac tggcttgtgc tgaatttggc aaggggagcgg aatttgcattt ctctgggtTA
 361 atgcgtttt ggcgtgtgac ggtccaggaa aggggatttag gtggaaagAAA atatttcaGT
 421 gaacacttat ttttacat aaggaattttt ctgtttggag agggaaaggTT gagttttATT
 481 ctgtctttt cctcccaactc gcctgacata gaggtcccta agccctttt CCAAACCTGC
 541 atggatgagt ttctttttt gttcagggtgg ttcccttatgt cacgcacgatt ttggaggCC
 601 tgcattgcagg caagatggc atgctgcag gagttggccc tctagatgca cacaggTTT
 661 aggtggactt ccagtgtggc tgcagcctgt gtccccggcc agatatGCC ttccacttCA
 721 accctcgctt ccataccacc aagccccatg tcatctgca caccctgcAT ggtggacGCT
 781 ggcaaaaggga ggccccgggtgg cccccacctgg ccctgcgaag aggtccAGC ttccatC
 841 tctttctttt cgggaatgag gaagtgtgg tgagtgtgaa tggacagcac ttctccACT
 901 tccgctaccg gtcctccactg tctcatgtgg acacgcgtgg tatatttggT gacatcc
 961 tagaggctgt tggatccctg aacatcaatc catttgcgg gggcagcaga gagtaccc
 1021 ctggacatcc ttccctgtatggccccca ggctggaggt gcctcgctca catgc
 45 1081 cccagggtct ctgcctggg cagggtcatca tagtacgggg actgggttttG caagagccGA
 1141 agcattttac tggatgttcg agggaccagg ctggccatgc tccgtgtaca ctcagg
 1201 ctttcgcaga cagaactctg gcctggatct cccgctgggg gcagaagAAA ctgatct
 1261 ccccccttctt ctttacccca cagagattt tggaggtgtc gtcctcggtt caggagg
 1321 ggctgaagct ggctcaat gggcaggggc tggggggccac cagcatgaac cagcagg
 50 1381 tggagcagct gcccggagctc cggatcgtt gaaatgttca gtcacttgcgtt gtccact
 1441 gaggatgggtt ccaggggaaa taccggcaga aaacaagaag gtcagccac tcccagg
 1501 ccactcttcc cccctcatta aaccatccac ctgacaccagc caccatc
 gac ctttcc

1561 tctggggtca cgagactgag tctacaggag cttgggcct gagggaaaggc acaagagtgc
1621 aaaggttctt cgaactctgc accttcctcc accaggagcc tggatatgg ctccatctgc
1681 cttcaggggcc ttgactgcac tcacagaggc aagtgttgta gactaacaaa gatactccaa
1741 aataacaatgg cttaaagaat gtggtcattt attctttatt atttatttat ttgtggtcaa
5 1801 ataaataaaat aaggta

SEQ ID NO: 171

Amino acid sequence of human LGALS12 variant ORF number 3 encoded by the DNA sequence shown in SEQ ID NO: 170.

10 MVMLQGVVPLDAHRFQVDQCGCSLCPRPDIAFPFNPRFTTKPHVICNTLHGGRWQREA
RWPHLALRRGSSFLILFLFGNEEVKVSVNGQHFLHFRYRLPLSHVDTLGIFGDI
FLNINPFWEGSREYPAGHPFLMSPRLEVPCSHALPQGLSPGQVIIIVRGLVLQEPKHFTV
SLRDQAAAHAPVTLRASFADRTLAWISRWGQKKLISAPFLFYPQRFFPEVLLLFQE
BEGGLKLA
LNGOGLGATSMNOAQLEOLRELRISSGSVOLYCVHS

SEQ ID NO: 172

15 . gi|11878242|gb|AF310686.1|AF310686 Homo sapiens galectin-12 splice form 1 mRNA, complete cds, alternatively spliced

	1	agttggagtt	gccccactgt	catgtcacct	ggagaaaaac	tggacccta	tcctgacagc
	61	ttcattctgc	aaccaccagt	cttccaccccg	gtggttccctt	atgtcacgac	gatttttgg
20	121	ggcttcatg	caggcaagat	ggtcatgtg	caaggagtgg	tccctetaga	tgcacacagg
	181	ttcaggtgg	acttccagtg	tggctgcage	ctgtgtcccc	ggccagatat	cgccctccac
	241	ttcaaccctc	gttccatac	caccaagccc	catgtcatct	gcaacacccct	gcatggg
	301	cgctggcaa	gggaggcccc	gtggcccccac	ctggccctgc	gaagaggctc	cagttctc
	361	atccttttc	tcttcggaa	tgaggaagtg	aagggtgagtg	tgaatggaca	gcacttctc
25	421	cacttccgct	accggctccc	actgtctcat	gtggacacgc	tgggtatatt	tgggacatc
	481	ctggtagagg	cttgtggatt	cctgaacatc	aatccatTTG	tggagggcag	cagagagtac
	541	ccagctggac	atcctttct	gctgatgagc	cccaggctgg	aggtgcctg	ctcacatgt
	601	cttcccagg	gtctctcgcc	tgggcaggtc	atcatagtagc	ggggacttgg	cttgcagag
	661	ccgaagcatt	ttactgtgag	cctgaggggac	caggctgccc	atgctctgt	gacactcagg
30	721	gcctccctcg	cagacagaac	tctggcctgg	atctcccgct	ggggggcagaa	gaaactgatc
	781	tcagccccct	tcctctttta	ccccccagaga	ttctttgagg	tgctgctcct	gttccaggag
	841	ggagggctga	agctggcgct	caatggcag	gggctggggg	ccaccagcat	gaaccagcag
	901	gccctggagc	agctgcggga	gctccggatc	agtggaaagtg	tccagctcta	ctgtgtccac
	961	tcctgaggat	ggttccaggg	aaataccgcc	agaaaaacaag	aaggtcagcc	cactcccagg
35	1021	gccccactct	cctccccctca	ttaaaccatc	cacctgacac	cagcacatca	ggccctggtc
	1081	acctctgggg	tcacgagact	gagtctacag	gagctttggg	cctgagggaa	ggcacaagag
	1141	tgcaaagggtt	cctcgaactc	tgcacccctcc	tccaccagga	gcctggata	tggctccatc
	1201	tgccttcagg	gcctggactg	cactcacaga	ggcaagtgtt	gtagactaac	aaagataactc
	1261	caaaaataca	tggcttaaag	aatgtggtca	tttattcttt	attatttatt	tatttgtgg
	1321	caaataaaata	aataaggta	tttattt			

40 SEQ ID NO: 173

Amino acid sequence of human LGALS12 variant ORF number 4 encoded by the DNA sequence shown in SEQ ID NO: 172.

45 MSPGEKLDPIPDPSFILQPPVFPVPPVYTTIFGGLHAGKVMQLQGVVPLDAHRFQVDFQC
GCSLCPRPDIAFHFNPRFHTTKPHVICNTLHGGRWQREARPHLALRRGSSFLILFLFGN
EEVKVSVNGQHFLHFRYRLPLSHVDTLGIFGDIILVEAVGFLNINPFWEGSREYPAGHPFL
LMSPRLEVPCHALPQGSPQVIIVRGLVLQEPKHFVSLRDQAAHAFVTLRASFADRT
LAWISRWGQKKLISAPFLFYQRFFEVLLLQEGGLKLALNGQGLGATSMNQQALEQLRE
LRISGSVQLYCVHS

SEQ ID NO: 174

gi|11878244|gb|AF310687.1|AF310687 Homo sapiens galectin-12 splice form 2 mRNA, complete cds, alternatively spliced

```

5      1 agttggagtt gccccactgt catgtcacct ggagaaaaac tggacccaat tcctgacagc
       61 ttcatctgc aaccaccagt cttccacccg gtggttccctt atgtcacgac gatTTTggA
      121 ggcctgcatt caggcaagat ggtcatgctg caaggagtgg tccctctaga tgcacacagt
      181 aggTTTCAGG tggacttcca gtgtggctgc agcctgtgtc cccggccaga tatcgccccc
      241 cacttcaacc ctgcgttcca taccaccaag ccccatgtca tctgcaacac cctgcattgt
      301 ggacgctggc aaaggggaggc cgggtggccc cacctggccc tgcgaagagg ctccagcttc
10     361 ctcatccctt ttcttcttgg gaatgaggaa gtgaaggta gtgtgaatgg acagcactt
      421 ctccacttcc gtcacccggct cccactgtct catgtgaca cgctgggtat atttgggtac
      481 atcctggtag aggctgttgg attcctgaac atcaatccat ttgtggaggg cagcagagag
      541 tacccagctg gacatccctt cctgtgtat agccccaggc tggaggtgcc ctgcacat
      601 gctcttcccc agggcttctc gcctggcag gtcatacatag tacggggact ggtcttgcAA
      661 gagccgaage attttactgt gaggcctgagg gaccaggctg cccatgtcc tgcacactc
      721 agggcctcct tecgcacag aactctggc tggatctccc gctggggca gaagaaactg
      781 atctcagcccc ctttccctt ttaccccccag agatttttg aggtgtgtct cctgttccag
      841 gagggagggc tgaagctggc gtcataatggc caggggctgg gggccaccag catgaaccag
      901 caggccctgg agcagctgcg ggagctccgg atcagtgaa gtgtccagct ctactgtgtc
      961 cacteetgag gatggttcca gggaaatacc gcccggaaaac aagaaggta gcccacttccc
      1021 agggccccac ttccttcccc tcattaaacc atccacatgt caccagcaca tcaggectgg
      1081 ttcacctctg gggcacgag actgagtcata caggagctt gggctgagg gaaggcaca
      1141 gagtgcaaag gttcctcgaa ctctgcacct tcctccacca ggacgcctggg atatggctcc
      1201 atctgccttc agggcctggc ctgcactcac agaggcaagt gtttagact aacaaagata
      1261 ctccaaaata caatggctt aagaatgtgg tcatttattt ttttattttt atttattttt
      1321 ggtcaaataa ataaataagg ttattttttt

```

SEQ ID NO: 175

Amino acid sequence of human LGALS12 variant ORF number 5 encoded by the DNA sequence shown in SEQ ID NO: 174.

```

30 MSPGEKLDPIPDSFILQPPVFPVV/PYVTTIFGGLHAGKMVMLQGVVPLDAHSRFQVDFQ
CGCSLCPRPDIAFHFNPRFHTTKPHVICNTLHGRWQREARWPHLALRRGSSFLILFLFG
NEEVKVSVNGQHFLHFRYRLPLSHVDLTLGIFGDILVEAVGFLNINPFVEGSREYPAGHPF
LLMSPRLEVPCSHALPQGLSPGQVIIVRGLVLQEPKHFVSLRDQAAHAPVTLRASFADR
TLAWISRWGQKKLISAPFLFPQRFFEVLFFFQEGGLKLALNGQGLATSMNQQALEQLR
35 ELRISGSVQLYCVHS

```

SEQ ID NO: 176

gi|15010845|gb|AF244978.1|AF244978 Mus musculus galectin-12 mRNA, variant a, complete cds, alternatively spliced

```

40      1 cacgtgtacc accagcagca gcagttccc ttcctactat ccgcgtgaagg cccagctgtt
       61 gcagaggctg ggaaaagtga gtcacatccg tgggaatcg cggtgtggc atcaggatca
      121 gaggctgagt tgaagggtcc cttccccat gtcaactgac gaacacctgg acccgatcc
      181 tgacagcttc atcctgcagc cggcagttt ccacccggc atttcttatg gcacaacaat
      241 ttttgtggc ctgtatgcag gcaagatggt cacgcgtcag ggtgtggtcc ctctgcatt
      301 aaggagggtt cagggtggact tccagtgtgg gtgcgtgcgtt catcctcagc cagatgtgc
      361 cttccgccttc agccctcgat ttcacactgt caagccccat gtcatctgca acacccacca
      421 aggtggactc tggcaaaaag agatacgggtg gccagggtc gccctgcaga gaggggatag
      481 cttccctcatt ctcttctct ttgagaacga agaggtaag gtgagtgtaa atggccagca
      541 ctttcttcac taccgcattt ggctcccaact gtcacgggtt gatacccttg acatatctgg
      601 tgacatcttg tggatttccat gaacatcaat ccatttgtgg agggtagcag

```

661 agagtatcca gttggatatac ccttcctgt gtatacccc aggctggagg tgccctgctc
 721 acgtgcctt cctcggggtc tctggctgg gcaagtcatt gtatgtcgag gactggctt
 781 gaaaagagccg aaagatTTTA ccctgagct gaaggatggg accacccatg ctccctgtgac
 841 actcagggtt tccttcacag acagaacact ggctgggtc tcctcctggg gacgaaagaa
 5 901 gctgatctcc gccccttcc tctttcaccc ccagcgattc ttccgggtac tgcttcgtg
 961 ccaagaggga gggctgaagt tggcactcaa tggggcagggg ctggggccca ccagccctgga
 1021 ccagaaaGCC ctggagcagc tgcggggact caggatcagt gggaaatgtcc acctctactg
 1081 tgtccactgc taagaagggc tccaaggcga ccccccggcag agaagaggag gggcggtgc
 1141 aaccagggtt ccacagttac agcccatctt cctattctca agggagaaac tgacctggca
 10 1201 tcactttgtc aggccgagct cacatctcaa agggcgcgcg cacacacacaca c

SEQ ID NO: 177

Amino acid sequence of mouse LGALS12 encoded by the DNA sequence shown in SEQ ID NO: 176.

15 MSTDEHLDPIPDSFILQPPVFHPVIPYGTTFGGLYAGKMVTLQGVVPLHARRFQVDFQC
 GCCLHPQPDPVAFRFSPRFYTVKPHVICNTHQGGLWQKEIRWPGVALQRGDSFLILFLFEN
 BEVKVSVNGQHFLHYRYRLPLSRVDTLDISGDLVKAvgFLNINPFVEGSREYPVGYPFL
 LYSPRLEVPVCSRALPRLWPQVIVVRGLVLKEPKDFTLSLKDGTTAHPVTLRASFTDRT
 LAWVSSWGRKKLISAPFLFHQPQRFEEVLLLCQEGGLKLALNGQGLGATSLDQKALEQLRE
 20 LRISGNVHLYCVHC

SEQ ID NO: 178

gi|34861855|ref|XM_219545.2| Rattus norvegicus similar to galectin-12 (LOC293710), mRNA

1 atgtcaactg acgaacacac ggacccgatc cctgacagct tcatttcgtca gcccggatc
 25 61 ttccacccctg tgggtgctga gcttgctgaa gggaaagaca tggctccagg tttttatac
 121 agtgatcaga atggaaaaac agccggggcag atccctata ctggggccat ggaccgagca
 181 agcatttgta ttcccttatgt cacaacaatt ttccgggtggc tggatgcagg caagatgatc
 241 atgctgcagg gtgtgttccc tcggccatgtca cggaggttc aggtggactt ccagtgtgg
 301 tgctgcctgc atccctggcc agatgttgc ttccacttca gcctcgctt ctacactgtc
 361 aagccccatg tcattctgtca caccctccaa ggtggactt ggcagaaaga ggtccgggtgg
 421 ccaggaatcg ccctgtcagaa aggggcttag ttccctatcc tttttctt tgacaatgaa
 481 gaggtgaagg tgagttgtgaa cggacagcac ttcttcact accgctatcg gtcggactt
 541 tcacgggtgg atactttgtatatctggc gacatcttgg taaaggctgt tggatcttgc
 601 aacatcagtc cattctgtgg gggtagcaga ggtatccag ttggatatecc cttccctgtc
 661 tatagccccca ggctgtacca agcatcaggc caggaaaccatcc accatccatcc agacccatcc
 721 ctgctcatcg gtggcagaat gacaaaccac tggatccatcg ctacatcatcg ttcagagcac
 781 actctggaa aaggacctgt gacacggccca gagggcttga agaagcttc agcaggctt
 841 catttcaccc tgagcttgc ggtatggggcc accatgttc ctgtgcactt cagggttcc
 901 ttccacagaca gaacacttggc ctgggttcc tcctggggac gaaagaagct gatctcagcc
 40 961 cccttcctt tttatccccca gggattttc gaggttctgc ttttgtggca agagggaggg
 1021 ctgaagctgg cactaatgg gcatgggtgt gggggccacca gcttggatca gaaagccctg
 1081 gagcagctgc gggacccatcg gatcgtggg aggctccaca gtacagcccc caccctgcct
 1141 ttcttcactgg agaacttgcc ctggcatcac tggatccatcg ctatgttca aactgggtact
 1201 caacttagttt gttggggcctt tggccaaatgtt gacacaaatatac acatgtctt ttcatggttt
 45 1261 tggtaaaagg gacacggcca catccccagaa aaacacactg ataatggggc cacattctgg
 1321 tcacctaaca ataatcttgc ataa

SEQ ID NO: 179

Amino acid sequence of rat LGALS12 encoded by the DNA sequence shown in SEQ ID NO: 178.

MSTDEHLDPIPDSFILQPQPVFHVGAEELAEGKDMAPVFLYSDQNGKTAGQILYTGAMDRA
SIVIPVTTIFGGLYAGKIMLQGVVPRHARRFQVDFQCGCCLHPRPDVAFHFSPRFYTV
KPHVICNTLQGGLWQKEVRWPGIALQKGASFLILFLFDNEEVKVSVNGQHFLHYRTRLPL
SRVDTLDISGDLVKAvgFLNISPVFVEGSREYPVGYPLLLSPRLYQASGQENHPAPDLO
5 LLIGGRMTNHCIPATYSSEHTLEQGPVHSPESLKKLSAGLHFTLSLRDGATHVPVTLRAS
FTDRTLAWSWGRKKLISAPFLFPQRFFEVLLCQEGLKLALNGHGLGATSLDQKAL
EQLRDLRISGRHLHSYSTLPLSLENLPWHHCFRPSSHLVTQDCGAFAQSEQISQLLSWF
WSKGTSIPEKHTDNEATFWSPNNNL

SEQ ID NO: 180

10 gi|24475648|ref|NM_021077.2| Homo sapiens neuromedin B (NMB), mRNA

1	cgcgcgccccg	aacgaaggccg	cgccccgggc	acagccatgg	cccggcgggc	ggggggcgc
61	cgatgttcg	gcagcctct	gctttcgcc	ctgctcgctg	ccggcgtcgc	ccgcgtcagc
121	tggatctcc	cggagccccg	cagccgagcc	agcaagatcc	gagtgcactc	gcgaggcaac
181	ctctgggcca	ccggtaacctt	catgggcaag	aagagtctgg	agccttccag	cccatcccat
241	tggggacagc	tccccacacc	tccccctgagg	gaccagcgcac	tgcatgtgag	tcatgatctg
301	ctcggaatcc	tctgtctaää	gaaggctctg	ggcgtgagcc	tcagccgccc	cgcaccccaa
361	atccagtaca	ggaggctgtct	ggtacaaaata	ctgcagaaat	gacaccaata	ataggggcaag
421	acacaacagc	gtggcttaga	ttgtccccac	ccagggaaagg	tgctgaatgg	gaccctgttg
481	atggccccat	ctggatgtaa	atccctgagct	caaattctctg	ttactccatt	actgtgattt
541	ctggctgggt	caccagaaat	atcgctgtatg	cagacacacaga	ttatgttccct	gctgtatttc
601	ctgtttccct	gttgaattgg	tgaataaaaac	cttgctcttt		

SEQ ID NO: 181

Amino acid sequence of human NMB encoded by the DNA sequence shown in SEQ ID NO: 180.

25 MARRAGGARMFGSLLLLFALLAAGVAPLSWDLPEPRSRASKIRVHSRGNLWATGHFMGKKS
LEPSSPSHWGQLPTPPLRDQRLQLSHDLLGILLKKALGVSLSRPAPQIQYRRLLLQVILQ
K

SEQ ID NO: 182

30 Amino acid sequence of human NMB, a soluble active secreted form derived from SEQ ID NO:181.

APLSWDLPEPRSASKIRVHSRGNLWATGHFMGKKSLEPSSPSHWGQLPTPPLRQRLQLSHDLLGILLKKALGVSLSRPAPOIJOYRRLLVQILOK

SEQ ID NO: 183

gi|13386017|ref|NM_026523.1| Mus musculus neuromedin B (Nmb), mRNA

35	1 gatttggcgc gcttcgagaa ctagtatcct gagagtgcga gagaagagcc tgtttggcac 61 agccatgacc cggcaagcag ggagcttgc gctcctccgt ggtctctgc tcttcgcatt 121 gttcgttcc ggcgtcgctc ccttcaactg ggatctcccg gagccccgca gccgagcaag 181 caagatcga gtgcacccctc ggggcaacct ctggggcacc ggtcacttca tgggcaagaaa 241 gagcctggaa ccccccggcc tgcactgg tgggacagca cccccctaaca ccccgaggga 301 ccagagacta cagctgagtc atgatctgt caggatcctc ctgcgaaaaga aagctctagg 361 catgaacttc agtggcccaag ctcccccaat ccagtacagg aggctgtgg agccactact 421 gcagaagaatgt a tggcaataat ggaacaaaacc ggatgtctggg cttagaatgt gtccatccag 481 ggaagatgtac aatggaaaccc tagcagtggc ctctcttgta tgtaaatcct aagctcaaat 541 gtgttaatct gttactgtga ttcttgggtt ggtcaccagg aatgttaatg atgcagacac
40	

601 aaagtctttc ctgctgtatt tcttgcttcc ctggtaagt ggtgaataaa aatactctct
 661 tc

SEQ ID NO: 184

Amino acid sequence of mouse NMB encoded by the DNA sequence shown in SEQ ID NO:
 5 183.

MTRQAGSSWLLRGLLLALFASGVAPFNWDLPEPRSASKIRVHPRGNLWATGHFMGKKS
 LEPPSLSLVGTAPPNTPRDQLQLSHDLLRILLRKALGMNFSGPAPPIQYRRLLEPLLQ
 K

SEQ ID NO: 185

10 ENSRNOESTT00000034038 cDNA sequence, EnsEMBL transcript [Rattus norvegicus]

1 cagagaaaaac ccgtttggca cagccatgac cccgc当地 gggagcactt ggctgctccg
 61 tggctcttcg ctcttgcct tggcgatggc ccccttttcctt gggatctccc
 121 ggagccccgc agccgagcaa gcaagattcg agtgc当地 cccggcaacc tctggccgac
 181 tggtaacttc atggcaaga agatctggg accccccggc ctgtcaactgg tgggtacage
 15 241 accccctatac acccagaggg acagagact acagctgagt catgatctgc tcaggatctt
 301 cctgctacag aaagcgctag gcatgaacct cagtggcata gctcccccaa tccagtacag
 361 gaggctgctg cagaagtgac gccaataatg gaacaaacac ggc当地 tggcgttagtgc
 421 tccatccagg gaaactgagg aatggaaaccc tagcagtgcc ctctctggg tggtaacact
 481 aagctcaaat gtgttactct ttactgtga ttctgggg ggtcaccagg aatgttaacg
 20 541 atacagacac agtctttcct gctgtatttc ttgttccctt ggtgaagttt tgaataaaaa
 601 tactgttcc tacgaaga

SEQ ID NO: 186

Amino acid sequence of rat NMB encoded by the DNA sequence shown in SEQ ID NO: 185.

25 MTRQAGSTWLLRGLLLALFVGITPFSDLPESRSASKIRVHPRGNLWATGHFMGKKS
 LEPPSLSLVGTAPPITQREQLQLSHDLLRILLQKALGMNLSGPAPPIQYRRLLQK

SEQ ID NO: 187

gi|32307134|ref|NM_005386.2| Homo sapiens neuronatin (NNAT), transcript variant 1,
 mRNA

30 1 taggtggcgg gcgggtactt aaggcgcggc caccgcggct gccgc当地 gcccaacagc
 61 ggactccgag accagcggat ctcggcaac cctctttctc gaccaccac ctaccattct
 121 tggAACATG gcggcactgg cggcgccctc ggctgaactg ctcatcatcg gctggtagat
 181 ctccgcgtg ctgctgcagg tggctctggg atgctgcatt tactggtag gattcgctt
 241 tcgaaatctt ccaggacac agcccatgtc gagaagttagt gtgttcaggt actccctgca
 301 gaagctggca tacacgggtt cgccggaccgg gccgc当地 ttgggggagc gcaggcagcg
 361 agcccccaac tgaggccccca gctcccagcc ctggggccccc gatcatcatcg gtgttccct
 421 gcatctcgcc cagcacgggaa gccagtgccg cgc当地 agt tggttcccc tggttccct
 481 cgccagagga gcaacttggca aggtcactgt gggccagta gaccccccga gaagcagttac
 541 cgacaatgac gaagatacca gatcccttc caaccctttt gcaaggcgtcc cactaagggg
 601 cagggtcggag agaggagggg ggataggggg agcagatcccc tgagatctgg gcataggcac
 40 661 cgccattctga tctggacaaa gtcgggacag caccatccc gccccgaagc caggccatg
 721 ccaggcggcc ccaccatggaa aatcaaaca ccgc当地 cagc当地 agt gacattctga
 781 catcgccagc cgacgcccctg aatcttgggg cagcaccaac cgc当地 cctg tggtgggg
 841 ctggaggcga cagttgagga aggagggtgg ttaagaaata cagtgccccc ctctcgctgt
 901 cccttgc当地 gggcacttgc attccagccct cgc当地 ctttgcattt tgccccccttc

961 ctcctcaactg cctcccaagc ccaccctact ccaaataat gtgtcaatttggaaact
 1021 attcaagecag taaaagtaaa tgaatcccac cttaactaaa acactttctc tgaaccccc
 1081 ttgccttcctca ctgatcttgc tttccctgg tctcatgcag ttgtggtaa tattgtggta
 1141 atcgctaatt gtactgattt gttaaatgtgt cattagttgt gtctccctcag cttagattgt
 5 1201 agctcctgga ggacaggac cacctctaca aaaaataaaa aaagtacctc ccctgtctcg
 1261 cacagtgtcc caggaccctg cggtgcagta gaggcgcacc aaaaaaaaaaaaaaaa
 1321 aaaaaaaaaaaa aaaaaaaaaaaa

SEQ ID NO: 188

10 Amino acid sequence of human NNAT encoded by the DNA sequence shown in SEQ ID
 NO: 187.

MAAVAAASAELLIIGWYIFRVLLQVFLLECCIYWVGFAFRNPPGTQPIARSEVFRYSLQKL
 AYTVSRTGRQVLGERRQRAPN

SEQ ID NO: 189

15 gi|32307135|ref|NM_181689.1| Homo sapiens neuronatin (NNAT), transcript variant 2,
 mRNA

1 taggtggcgg gcgggtactt aaggcgcggc caccgcggct gggcagtgc gccaacagg
 61 ggactccgag accagcggat ctcggcaac ccttttctc gaccacccac ctaccattct
 121 tggAACCATG gcggcagtgg cggcgccctc ggctgaactg ctcatcatcg gctggtatcat
 181 ctcccgctg ctgctgcagg ttgcaggtt ctccctgcag aagctggcat acacgggtgc
 20 241 gcccggcggc cggcagggtt tgggggagcg caggcagcga gcccccaact gaggccccag
 301 ctcccgccccc tggcgcccg tatcatcagg tgctctgtg catctcgcc agcacggag
 361 ccagtgcgcgc gcaggaatgt ggggtccccct gtgtccctc gccagaggag cacttggcaa
 421 ggtcagttag gggccagtag accccccggag aagcagtagc gacaatgacg aagataccag
 481 atcccttccc aacccttttgc caccggtccc actaaggggc agggtcgaga gaggaggggg
 541 gataggggga gcagacccct gagatctggg cataggcacc gcattctgtat ctggacaaag
 601 tcgggacagc accatcccaac ccccgaaagcc agggccatgc cagcaggccc caccatggaa
 661 atcaaaacac cgcaccagcc agcagaatgg acattctgac atcgcacagcc gacgcctga
 721 atcttggtgc agcaccaccc gcgtgcctgt gtggcggac tggagggcac agttgagaa
 781 ggagggttgt taagaaatac agtggggccc ttcgtgtc ctttgcggcag ggcacttgca
 841 ttccagccctc gtcgtatgg ctctctcgat tccctttcc ttcactgc ctcccaagcc
 901 caccctacta caaaataatg tgcacttga ttggaaacta ttcaggcgt aaaagtaat
 961 gaatccccc tttactaaaa cactttctc gaacccccc tgccttcac tgatcttgct
 1021 ttccctgtt ctcgtgtc ttttttttttcaatttggtaa ttcgttattt tactgtattgt
 1081 ttaagtgtgc attagttgtg ttcctccagc tagattgtaa gtcctggag gacaggagacc
 35 1141 acctctacaa aaaaataaaaaa aagtacctc ctcgtctcgc acagtgtccc aggacccctgc
 1201 ggtcagttag aggcgcacca aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa

SEQ ID NO: 190

40 Amino acid sequence of human NNAT variant ORF number 1 encoded by the DNA sequence
 shown in SEQ ID NO: 189.

MAAVAAASAELLIIGWYIFRVLLQVFRYSLQKLYTVSRTGRQVLGERRQRAPN

SEQ ID NO: 191.

gi|6754863|ref|NM_010923.1| Mus musculus neuronatin (Nnat), transcript

1 variant1,m rnagcggact cccgagaccag tagacctcg cgaacccttg ctctcgacca

61 cccacccact ttcggaacca tggccgcagt ggcagcagcc tcggcagaac tgctcatcat
 121 cggctgtac atctcccg cg tgcgtctgca ggtgttctg gaatgctgca tttactgggt
 181 aggattcgct tttcgaaatc ctccaggac acagcccatt gcgagaagtg aggtgttcag
 241 gtactccctg cagaagctgg cgcacacggt gtcccgacc gggcggcagg tgctggggga
 5 301 gcgcaggcag cgaggccccca actgaggccc cagctcccg ccctgggcgg cctgtctcatc
 361 aggtgttctt gtgttctcg accagcatgg gagccagtgc cgccgaggaa tgggggttcc
 421 cctgtgtcc ctcgtcagag gagcaactgc caaggtcagt gagggggccgg tagggccccc
 481 agaaaagcag caccgacaat gatgaagata tcagttccct tcccagcccc tttgeccctg
 541 tcccactacc ggcgggtggg agaggagggg ggaagagggg agcaaccctc gagatatggg
 10 601 cgttaggcacc acattctgtat ctggaccaag tcggAACAGC accatctcg ccgcacaaga
 661 tcctaccatg aagatcgaac agcccatcaa ccagcagaat ggacattctg acatcaccag
 721 ctgaagccct acatctcggt gcagaagaga aagtgtcaac tgtgtgcgc atggggggag
 781 tggaggcgt ggggtgtgg ggaagagggt taagaaaact agtggggccc cttgtgtcc
 841 ctttgcctt ggcacacata ttctgcctt gtcctcat ttccctttt cccccccct
 15 901 tcgaagcccc tcccccaaat gttcaacttgc atttggatatttcaaccag taattgaatc
 961 ccaccttac caaaaacacgt tctcttaaccc cggcccttc actgtatctt cttatccctg
 1021 gtctcacgca gcagttgtgg tcaatattgt ggtatgtcatttgcgtttaagtgt
 1081 gcatttagtag tgtctccccca gctagattgt aagctctgg agacaggcgc cacccaccc
 1141 aaaaataaaaa aaatggaccc ttcctgtttt gtagtgtccctt aggaccctgc agggca
 20

SEQ ID NO: 192

Amino acid sequence of mouse NNAT encoded by the DNA sequence shown in SEQ ID NO: 191.

25 MAAVAAAASAEELLIIGWYIFRVLLQVFLECCIYWVGFAFRNPPGTQPIARSEVPRYSLQKL
 AHTVSRTGRQVLGERRQRAPN

SEQ ID NO: 193

gi|16758385|ref|NM_053601.1| Rattus norvegicus neuronatin (Nnat), transcript variant 1, mRNA

30 1 gcgaaccctt gctctcgacc accccacccac ttccggaacc atggccgcag tggcagcagc
 61 ctcggcagaa ctgcgtcatca tcggctggta catctccgc gtgcgtctgc aggtgttctt
 121 ggaatgctgc atttactggg taggattcgc ttttcgaaat cctccaggaa cacagcccat
 181 tgcgagaagt gagggttca ggtactccct gcagaagctg ggcacacgg tgcgtggac
 241 cggcggcag gtgtggggg agcgcaggca ccggcccccc aactgaggcc ccatctccca
 301 gcccctggcg gccgtgtcat cagggtctcc tgcgtttctc gaccagcatg ggagccaatg
 361 ccgcgcagga atgggggttc ccctgtgtc cctcgatcaga ggagcaacttg ccaaggtag
 421 tgagggcccg gtaggtcccc agaaaagcag caccgacaat gatgaagaca tcagttccct
 481 tccccccccc cccccctttt gccccctgtcc catggccggc ggggtgggaga ggatggggga
 541 agaggggagc aaccctcgag atatggcgat aggccaccaca ttctgatctg gaccaagtgt
 601 gaacagcacc atctcgccg cacagatcc accatggaga gctaacaccc caccaccc
 661 cagaatggac attctgacat caccagctga aaccctgaat ctccgtgcag aagagaaagt
 721 gtcaactgcg tgcagcaactg gggggatggta ggggtggggt ggtggaggaa gagggtaag
 781 aaaactatgt gggccctt gctgtccctt gctatggca cgcattttcc tgccttgc
 841 cctcaactccc cctctccccctt gcttccaaa gccccccccc cccaaaaatgt gtcacttgc
 901 tcggacccat tcaaccagta attggatccc acctttacca aaacaccgtc tetgacccccc
 45 961 ggccttcac tgatcttgc tatccctggt ctcacgcgc aggtgtgggt gctattgtgg
 1021 tagtcgctaa ttgtactatgt ttacgtgtgc attagttgt tctccccggc tagattgtaa
 1081 gctcctggag acagggacca cctccacaaa aaataaaaaa acggacccctt cctgtcttgc
 1141 agtgtgttag gaccctgcag ggcagttggg gtgcacca

SEQ ID NO: 194

Amino acid sequence of rat NNAT encoded by the DNA sequence shown in SEQ ID NO: 193.

MAAVAAAASAEELLIIGWYIFRVLLQVPLECCIYWVGFAFRNPPGTQPIARSEVFRYSLQKL
AHTVSRTGRQVLGERRHRAPN

5 SEQ ID NO: 195

gi|17157992|ref|NM_058164.1| Homo sapiens olfactomedin 2 (OLFM2), mRNA

```

1 ctaggtcggg acgcgggct agggggcggt catgtggccg ctcacgggtcc cgccgcgcgt
61 gctgctgtc ctgtgtccag gcctggccgg acagactctc ttccagaacc cagaagagg
121 ctggcagctg tacacctca tagcggggaaa tgcatctgca cggccgtat
181 ccacgcgcag agtacactgct ctgcagatgg caggagtcgg gagctgcggc aactgtatgg
241 gaagggtccag aacgtctccc agtccatggg ggtccttgag ttgcggaaegt atcgcaccc
301 ccagtatgtc cgccgcattgg agaccctcat gcggagcctg gatgcgcggc tccgggcage
361 tgatgggtcc ctctggcca agagcttcca ggagctgaag gacaggatga cggaaactgtt
421 gcccctgagc tgggtcttgg agcagttaca ggcagacacg cgaccatgg tacgcttgcg
481 ggaggagggtg aggaatctt cccggcgtct ggcggccatt caggaggaga tgggtgccta
541 cgggtatgag gacctgcagc aacgggtat ggcctggag gcccgcgtcc acgcctgcgc
601 ccagaagctg ggctgtggg agctgaccgg ggtcagtaac cccatcaccc ttccggccat
661 ggggtccccgc ttccggctt gatgactga cacgtggcc cccagtgcgg atagccgggt
721 ctggtacatg gatggctatt acaaaggccg cccggctctg gatgtccgtt ccctgggaga
781 cttcatcaaa ggccagaact ttatccagca cctgctgccc cagccgtggg cgggcacggg
841 ccacgtgggt tacaacggct ccctgttata taacaagtac cagagcaacg tgggtggtaa
901 ataccacttc cgctcgcgt ctgtgtggg gcagaggagc ctccggggcg ccggttacaa
961 caacacccctc ccctacttcc gggggccgtt ctccgcacatg gacttcatgg tggacgagag
1021 cgggtcttgg gctgtgtaca ccaccaacca gaacgcgggc aacatcggtt tcagccggc
1081 ggacccgcac accctcgagg tcatgcgggt ctgggacacc ggctacccca agcgcagcgc
1141 tggcgaggcc ttcatgatct ggggtgtgt ctacgtgacc aactccacc tggctggggc
1201 caagggtctac ttccgttatt ttaccaacac gtccagttac gactacacgg acgtgcctt
1261 ccacaaccag tattccca ttcgtatgtt ggattacaac cccggggagc gcgcctcta
1321 tacctggAAC aacggccacc aggtgtctta caatgtcacc ctgtttcacc tcatacgcac
1381 ctctgggac ccctgagcca atgtgtggc tcgggtgtt gcctgggggg cctccggggg
1441 ctggggggcc ttccatttgc ctcaagggtt atctctctgt ctctgtcag
1501 ccctttctcc ccgcctttt gctgggttt tttctctgc ctatgtatcc ctgttatcc
1561 ttcaatttc ccctttctc ctttattgt ctctgtttt aatacaccac ttctttttt
1621 ctgcctttt atggatgtt tttctttt atgggtctgg ttctccagtt ttccgtct
35 1681 ctgcctctt ctgtctctt ctctgttcc ttccacccct ccctccttgc ttccaccca
1741 ttccctatcc ctcactcccc cccccccccc cccccccagg agttgaggtgc atggatctgt
1801 ttctttttt atttacactt ttctttccg gtttgccgga ataaaacagga ctttgacat
1861 ttaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aa

```

SEQ ID NO: 196

40 Amino acid sequence of human OLFM2 encoded by the DNA sequence shown in SEQ ID NO: 195.

```

MWPLTVPPPLLLLLCSGLAGQTLFQNPEEGWQLYTSQAQAPDGKCICTAVIPAQSTCSRQ
RSRELRLQMLEKVQNVSQSMEVLELRTYRDLQYVRGMETLMRSLDARLRAADGSLSAKSFQ
ELKDRMTELLPLSSVLEQYKADTRTIVRLREEVRNLSGSLSAAIQEEMGAYGYEDLQQRVM
45 ALEARLHACAQKLGCGKLTGVSNPITVRAMGSRGWSMTDTMAPSADSRWYMDGYYKGR
RVLEFRTLGDFIGQNFIQHLLPQPWAGTGHVVYNGSLFYNKYQSNVVVKYHFRSRSVLV
QRSLPGAGYNNTFPYSWGGFSMDPMVDESGLWAVYTTTNQNAGNIVVSRLDPHTLEVRS
WDTGYPKRSAGEAFMICGVLYVTNSHLAGAKVYFAYFTNTSSYEYTDVPFHNQYSHISML
DYNPRERALYTWNNGHQVLYNVTLFHVIESTSGDP

```

SEQ ID NO: 197

Amino acid sequence of human OLFM2, a soluble active secreted form derived from SEQ ID NO:196.

5 QTLFQNPEEGWQLYTSQAQAPDGKCICTAVIPAQSTCSRDRSRELRLQLMKVQNVSQSME
 VLELRRTYRDLQYVRGMETLMSLDARLRAADGSLSAKSQELKDRMTELLPLSSVLEQYK
 ADTRTIVRLREEVNLGSLAAIQEEMGAYGYEDLQQRVMALEARLHACAQKLGCGLTG
 VSNPITVRAMGSRGWSMTDMAPSADSRVWYMDGYYKGRRVLEFRTLGDFIKGQNFIQH
 LLPQPWAGTGHVVNGSLFYNKYQSNVVVKYHFRSRSLVQRSLPGAGYNNTFPYSWGGF
 10 SDMDFMVDESGLWAVYTTQNAGNIVVSRILDPTHLEVMRSWDTGYPKRSAGEAFMICGVL
 YVTNSHLAGAKVVFAYFTNTSSYEYTDVPPHNQYSHISMLDYNPRERALYTWNNGHQVLY
 NVTLFHVISTSGDP

SEQ ID NO: 198

gi|31343362|ref|NM_173777.2| Mus musculus hypothetical protein A030009A06
 (A030009A06), mRNA

15 1 gagttgagcg gcaggctacc tctggcttct tacacatacc tgacccatca ggccccaga
 61 accactttac agatgaggaa actgagacag accggaacaa ctattgtcgg aggtcagact
 121 ctcttcaga gcccggagga gggctggcag ctttatacgt cagcccaggc acctgtatggc
 181 aagtgcgtct gcacagccgt gatccctgcg cagagcacct gtccccgaga cggtcggagc
 241 agagagcttc ggcaactcat ggagaaggc cagaatgtgt cccagtcctat ggagggtcctt
 301 gagctaaggaa cattccggga tctccagttt gttcgcagca tgagacccct catgcggagc
 361 ctggatgcaa ggctcaggc agccgatggg tcagtcctag cccaaaagctt tcaggaactg
 421 aaggacagga tgacagagct gctgccctg agttcagtgc tgagcagta caaagcagac
 481 acacgaacca ttgtgcgcct gccccggaggg gtgaggaacc tctctggcaa cttggctgccc
 541 atccaagagg aaatgggtgc ctacgggtac gaggacttgc aacagcgcgt gatggccctg
 601 gaagccgcac tccatgcctg cgccgagaag ctgggctgcg ggaagctgac aggctcagt
 661 aaccctatta ccattccggc catggggctcc cgcttcgggtt cctggatgac tgacacaatg
 721 gcccccaagt gacacagcag ggtctgtac atggatgggtt attacaaagg cccggcagtg
 781 ctggagttcc gtactctggg agacttcataa aacggccaga acttcatacca gcacctgtctg
 841 ccacagccat gggcaggatgc gggccatgtg gtatacaatg getctctctt ctacaataag
 901 taccagagca atgtgggtgtt caagtaccac ttccggtccc gtcgggtgtt ggtgcagagg
 961 agcctccccc gggctggta caataacacc ttccctattt cctggggccgg cttctccggac
 1021 atggacttca tggtagacga gagtgggtgtt tgggctgtgtt ataccaccaa ccagaatgcg
 1081 ggcaacatcg tagtcagtcg gtcggaccct cacacccctgg aggtcgtgag atccctggac
 1141 accgggttacc ctaagcgcag cgccggcggag gtcggatgtt ttcgggtgtt cctctatgtg
 1201 accaacttc acctggccgg agccaaggc tactttcgtt acttcaccaa cacgtccagc
 1261 tatgagtaca cggatgtgc cttcaacaac cagtttcg acatctcgat gctggattac
 1321 aaccccaggg agccggccct gtatacctgg aacaacgggc accaggtgtt gtacaacgtc
 1381 accctgttcc acgtcatcag cactgcccggg gacccctagg tgccctgca agggcttgg
 1441 ggagccttcc cacatcgccgt gtgacccca ccccaaggctt ctcttggta tgcccttgcc
 1501 ttccttagatt cctgtcccc acttccccag cccaggttcc tggatctcgtt atcttcaccc
 1561 atgcatttcc cccatattat tggatctcgtt ttttggatact ccacttcgtt gtccttcgtc
 1621 cttttatgg atgcttcgtt tccttattga tggaaacctt cttcttcgtt ccctccatct
 1681 acttccttc ctcttcctt cccacttcc cacattccctt accccteact cccacccatct
 1741 ccctggatct gaggatgttgg attttgtttt taaaatttat tatttacatg ttttcttcc
 45 1801 gggttgccag aataaaccgg accttt

SEQ ID NO: 199

Amino acid sequence of mouse OLFM2 encoded by the DNA sequence shown in SEQ ID NO: 198.

MRKLQTGTTCAGGQTLFQSPEEGWQLYTSQAQAPDGKCVCTAVIPAQSTCARDGRSRELR

QLMEKVQNVSQSMEVLELRTFRDLQYVRSMETLMRSILDARLRAADGSVSAKSFQELKDRM
 TELLPLSSVLEQYKADTRTIVRLREEVRLSGNLAAIQEEMGAYGYEDLQQRVMALEARL
 HACAQKLGCGKLTGVSNPITIRAMGSRGSWMTDTMAPSADSRRVWMDGYYKGRRVLEFR
 5 TLGDFIKGQNFIQHLLPQPWAGTGHVVYNGSLFYNKYQSNVVVKYHFRSRSLVQRSLPG
 AGYNNTFPYSWGGFSMDMFMVDESGLWAVYTTNQNAGNIVVSRLDPHTLEVVRSDTGYP
 KRSAGEAFMICGVLYVTNSHLAGAKVYFAYFTNTSSYEYTDVPFHNQYSHISMLDYNPRE
 RALYTWNNGHQVLYNVTLFHVISTAGDP

SEQ ID NO: 200

gi|34860388|ref|XM_233742.2| Rattus norvegicus similar to olfactomedin 2; neuronal
 10 olfactomedin related ER localized protein 2; noelin 2 (LOC313783), mRNA

1 cccccatcccc atccccacccgg ccaccgcccc cttggacccg gtcatctcgc catcgccacc
 61 ccgacccctc caccggactg ggggtggatag cgacatctt agtgccgagg aaaggggacg
 121 gaacacctgc tcttttaggg tgggtggtgcg gggcatgagg cgaggggcgc gatgtcggtg
 181 ccgctgctca agatcggggc ggtgctgagc accatggcc tggtcactaa ctggatgtcg
 241 cagacgctgc cctcgctcg gggactcaac agcaccgtgt cccgcgcggg ctccctcagag
 301 aaaatcaccc tttccagag cccagaagag ggctggcage tgacacgtc agcgcaggcg
 361 ccggatggca aatgcattcg cacagctgtt attctgcac agacacccgt tgcccggagat
 421 ggtccggatca gagagcttcg ccagctcatg gagaagggtcc agaatgtgtc tcagtccatg
 481 20 aggtccctg agctaaggac ataccggat ctccgtatg ttgcagcat ggagaccctc
 541 atgcggagcc tggatgcaag gtcaggaca ggcgcattttt cagtcgtc caaaagctt
 601 caggaactga aggacaggat gacagagctg ctgccttgc gttcgtgtt ggagcagttac
 661 aaagcagaca cacggaccat tgtgcgcctg cggggaggagg tgaggaacct ctcaggcaac
 721 ctggctgccttccaggagga aatgggtgc tacgggtac aggacttgcg gcagcgcgtg
 781 atggccctgg aggcccacttccatgcctgc ggcgcagaagc tgggtgcgg gaagctgaca
 841 ggcgtcagta acccccattac catccgagcc atggatccc gttcggttc ctggatgtact
 901 gacacgatgg ccccccagtgc agacagtcgg gtgagtgacc ccactccagt gactgcctgc
 961 aggtgttcag tgaacattct tagccctgttccatgttgc gttcgtgtt caataacacc
 1021 atggatgggtt attacaaaagg cccgcgcgtt ctggaggatcc gttacttttttgg agacttcatc
 1081 aaaggccaga acttcatcca gcacccatttc cccgcaggccat gggcaggatc gggccatgtg
 1141 gtataacaatg gatctctgtt ctacaacaag taccagagca atgtgggttgt taagtaccac
 1201 ttccggtccc gtcctgtt ggtcagagg agcctccgg gggctggatca caataacacc
 1261 ttccctatt cctggggcgg cttctcgac atggacttca tggtagacga gagcgggctg
 1321 tgggtgtgtt ataccoaccaa ccagaacacgc ggcaacatttgc tggcagccg gctggaccc
 1381 cacaccctgg aggtcgttag gtcctgggac actgggtacc ctaagcgcag cgccgggtgag
 1441 gccttcatga tctgtgttgc cctctacgtt accaacttcc acctggccgg agccaaggtc
 1501 tactttgcgt acttcaccaa cacgttcacgc tatgagttaca cggatgtgcc cttccacaac
 1561 cagtagtcgc acatctccat gctggattac aaccccaggagc agcggggccct gtataacccgg
 1621 aacaacgggc accaggtgttgc gtacaacgtc accctttcc acgtcatcag cactgcccgg
 1681 gacccttag

40 SEQ ID NO: 201

Amino acid sequence of rat OLFM2 encoded by the DNA sequence shown in SEQ ID NO:
 200.

MSVPLLKIGAVLSTMAMVTNWSQTLPSLVGLNSTVSRAKSSEKITLPQSPEEGWQLYTS
 45 AQAPDGKCICTAVIPAQSTCARDGRSRELRLQLMEKVNVSQSMETELRTYRDLQYVRSME
 ETLMRSLDARLRTADGSVSAKSFOELKDRMTELLPLSSVLEQYKADTRTIVRLREEVRL
 SGNLAAIQEEMGAYGYEDLQQRVMALEARLHACAQKLGCGKLTGVSNPITIRAMGSRGFS
 WMWMTDTMAPSADSRRVSDPTPVACRCSVNLSPVSSSEVIPWMDGYYKGRRVLEFRTLGC
 DFIKGQNFIQHLLPQPWAGTGHVVYNGSLFYNKYQSNVVVKYHFRSRSLVQRSLPGAGY
 NNTFPYSWGGFSMDMFMVDESGLWAVYTTNQNAGNIVVSRLDPHTLEVVRSDTGYPKRS
 50 AGEAFMICGVLYVTNSHLAGAKVYFAYFTNTSSYEYTDVPFHNNQYSHISMLDYNPRERAL
 YTWNNGHQVLYNVTLFHVISTAGDP

SEQ ID NO: 202

gi|7657070|ref|NM_014322.1| Homo sapiens opsin 3 (encephalopsin, panopsin) (OPN3), mRNA

```

5      1 cgagccccgc cgcaagctga ggcgcctccgc ccgccaggcg cgccggcgcc gggccatgt
       61 ctcgggaaac cgcaagcggcg gccacggcta ctggacggc ggcggggccg cgggcgtgt
       121 ggggcccggcg cggcgccgggta caactgagcc cgccgccttc ttccatggcc gcaccta
       181 gcgcctggcg ctgcgtctgg gtcattttgg gtcgtggc gtcggcaaca acctgttgt
       241 gtcgtgtctc tactacaagt tccagcggtt ccgcactccc actcaactcc tcctggtaa
       301 catcagctc agcgacccgc tgggtgtccctt cttcgccggc acctttaccc tcgtgtctg
10     361 cctgaggaaac ggctgggtgtt gggcacccgtt gggtgcgtt tgggacgggtt ttagcggcag
       421 cctcttcggg atttttcca ttgcacccctt aaccgtgttgc gcctatgttac gttacattcg
       481 cgtggtccat gccagagtgttcaattttttc ctggggctgg agggccatttta cctacatctg
       541 gtcgtactca ctggcggtggg caggagcacc ttcctggga tggAACAGGT acatccgtt
       601 cgtacacgggatccatgtgttgc gaaatccaaag gatgcacaaacg attcccttcc
15     661 tggcttttc ttatttcttgc gtcgttgc ggtgcctgtt ggtgtcatag cccattgttca
       721 tggccatattt ctttatccatgttcaatgttgc tggatgttgc gaaatccatc agacaattca
       781 agtgatcaag atttaaaat atgaaaagaa actggccaaa atgtgtttt taatgtat
       841 cacccctgttgc gtctgttggatccatgttgc ttcctgggtt gttatgttca
       901 tggtcaccttgc gtcactccaa caatatctat tggatgttgc ttcctgggtt aatcgaacac
20     961 tggatatacaat ccagtgttgc atgtcttcat gatcagaagat tttcgaagat cccttttgc
       1021 gcttctgtgc ctccgactgc tgagggttgc gaggcgttgc aaagacccatc cagcagctgg
       1081 aagtggaaatcg cagatcagac ccattgtgttgc acacagaaa gatggggaca ggccaaagaa
       1141 aaaatgtactt ttcacttccatcat tttatcatc accatgttgc aatcaactgtt
       1201 agttgacgac agcgacaaaa ccattgggttgc ccaaagtttgc atgttgc aatccgttcc
25     1261 tttgttaggaa tggatgttgc caacggaaagg tggggcttgc aattggatgttgc cacttttgc
       1321 ctttcatcat cttctgttgc aagaatgttgc tggatgttgc gttctatgttgc atatcaacat
       1381 aacccctgtgg tccagcagga aatccgaaatttgc tccatgttgc ttttggggcttgc caggaagagg
       1441 ttggatgttgc acaatttccatcat tttatcatc accatgttgc aatcaactgtt
       1501 tggacacatgggatccatcatcat tttatcatc ttctatgttgc tggagatgttgc ttttccat
30     1561 tatattttttaaatttactt attttccaaac acacgttgc ctttttccatcatcatcatcat
       1621 tactgtaaaaataactgttgc ctttacttgc ttttgc ttttgc ttttgc ttttgc ttttgc
       1681 ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc
       1741 taatttcttgc atgaaaaaaaatgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc
       1801 gtatgttgc gaggatgttgc agagacaacttgc ttttgc ttttgc ttttgc ttttgc ttttgc
35     1861 cagagggatc tacaaggccaa actcccatat ttttgc ttttgc ttttgc ttttgc ttttgc
       1921 gactcaaaatgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc
       1981 tgctatataatgc gcccggatgttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc
       2041 attttccatcatcatcatcatcatcatcatcatcatcatcatcatcatcatcatcatcatcatcatcat
       2101 aaaaaaaaaaaaaaa

```

40 SEQ ID NO: 203

Amino acid sequence of human OPN3 encoded by the DNA sequence shown in SEQ ID NO: 202.

```

45      MYSGNRSGGHGYWDGGGAAGAEGPAPAGTLSPAPLFSFGTYERLALLLGSIGLLGVGNNL
       LVLVLYYKPFQRLRPTPHLLVNISLSDLVSLPGVTFTFVSCRLRNGWVWDTVGCVWDGFS
       GSLFGIVSIATLTVLAYERYIRVVHARVINFSWAWRAYTILWYSLAWAGAPLLGWNRYI
       LDVHGLGCTVDWKSKDANDSSFLFLGLCLVVPLGVIAHCYGHILYSIRMLRCVEDLQT
       IQVIKILKYEKKLAKMCFLMIFTFLVCMWMPYIVICFLVNVNGHGLVTPTISIVSYLFAKS
       NTVYNPVIYVFMIRKFRRSLLQLLCLRLRCQRPAKDLPAAGSEMQIRPIVMSQKDGDPR
       KKKVTFNSSIIIFIITSDELSVDDSDKTIGVQSLMLIQVRPL

```

50 SEQ ID NO: 204

(gi|27463268:201-667, 24621-24703, 42570-42821, 45876-47409) Homo sapiens encephalopsin splice variant 1 (OPN3) gene, alternatively spliced; and choroideremia-like protein (CHML) gene, complete cds

5	1 gccggcggagc cccaacccccca cccagtgcgg agcgcgcccgc gagccccgccc gcaagctgaa 61 cgcctccggcc cgccaggcgcc gccgggcggc gcccattgtac tcggggaaacc gcagcggcgcc 121 ccacggctac tgggacggcg gccccggccgc gggcgtcgag gggccggcgcc cggcgggggac 181 actgagcccc ggcggccctct tcagccccgg cacctacgag cgcctggcgc tgctgctggg 241 ctccattggg ctgctggcg tggcaacaa cctgctggtg ctcgtcttactacaatgtt 301 ccagcggctc cgcactcccc ctcacccctt cctggtaaac atcagcctca ggcacactgt 361 ggtgtccctc ttccgggtca cctttacctt cgtgtctgc ctgaggaacg gctgggtgt 421 ggacacccgtg ggtgtcggtg gggacgggtt tagccgcgc ctcttcgggtt ggatcagcca 481 gtttcaggca gccacttaggg aagccagacg cccatgggtt ccagtgcagc aaggcactat 541 ctgcattgcag cttcgttgc tggaaagatct tcagacaattt caagtgtatca agataaaaaa 601 atatgaaaag aaactggcca aaatgtgtt ttaatgata ttcacccccc tggctgttg 661 gatgccttat atcgtgtatct gcttcttggt ggttaatggc catggtcacc tggtaactcc 721 aacaatatctt attgtttcg acctcttgc taaatcgaaactgtatata atccagtgat 781 ttatgtttc atgatcgaaa agttcgaag atcccttttgcagttctgt gcctccgact 841 gctgagggtgc cagaggccctg ctaaagacctt accagcagctt ggaagtgaaa tgcagatcg 901 acccattgtg atgtcacaga aagatggggc caggccaaag aaaaagtgtt cttcaactc 961 ttcttccatc attttatca tcaccaggta tgaatcaactg tcagttgacg acagcgacaa 1021 aaccaatggg tccaaagggtt atgtaatccca agttcgttgc ttgttaggaat gaagaatggc 1081 aacgaaagat gggggccctaa attggatgcc acctttggac tttcatcata agaagtgtct 1141 ggaataccgg ttctatgtaa tatcaacaga accttgcgtt ccagcaggaa atccgaattt 1201 cccatatgtc ttggggccctt aggaagaggat tgaacaaaaaaa caaattttt taattcaacg 1261 ggtgttttac ataatggaaa aaccacttgtt ggacacatgtt gggcatctaa catcatcatc 1321 ttctaatgtt ttggagattt tcattttcaaa tatattttt aaattactctt atttccaaa 1381 acacgtatgtt catttttctt gaaaataccct tactgtaaaaa ataaactgtcg cgtacacatg 1441 tgtgaagtag cttagaacata ctgaattttt ttgtactgttggactctat tcagttgtcat 1501 gtcctatatac tgatcaagtt atcaaggaga taattctaga atggaaaaga aaatccctt 1561 gttggaaaca aaagacgtttt tatatgtgc gtatgacaaa gaggagtttca agagacaact 1621 ttgaatccctt gtcagcctgg agaccagcac cagaggaatc tacaaggcaa actcccatat 1681 atttgcctcc cccaaattgc tgccccatca gactcaaagc tctttttttt tggtttgttg 1741 tttctctaaa aatttactgt tctttgtcga tgctatataa gccagggagt tctaagacgc 1801 cagcttttgc agatttgtctt atccccctgtt attccccaca tatatattac atatacccg 1861 taataaaattt atgtttgtttt ttctctgtc aatctgtttt ttgttatagg ggccccagcc 1921 aaggaaaccta aagtgggttag aaggaaaaat tattttttctt ttccctacaa actgaacatg 1981 gattattaga actcaagggtt ttctattgtca atatagaaaaa gaaacactga atcattttat 2041 tttattgtccc aatttttattt tcttattatgtc ctctgtgtt tcatttttcat aattaatcat 2101 gtttgaagggat ttctgtgttgc actcagcgc cgtttaaaga aggtgaacc aaagaaaaaca 2161 ttctactaaa tggcttttaaaaatcaagt gtattgtcggtt ttctgtcgtatgt 2221 gaagaataaa ttagttaattt gttctgtgagg gtctgaaattt gaataaaagta atggctttgt 2281 atttctataaa aagtgtcttcc cccctgttttcc tttccatc tggcacatgtt agacat
---	--

SEQ ID NO: 205

45 Amino acid sequence of human OPN3 variant ORF number 1 encoded by the DNA sequence shown in SEQ ID NO: 204.

MYSGNRSSGGHGYWDGGGAAGAEGPAPAGTILSPAPLFSPTGYERLALLGSIGLLGVGNNL
LVLVLYKFQRRLRTFTHLLVNISLSDLVSLFGVTFTFVSLRNGWWDTVGCVWDGFS
GSLFGWISQLQAATREARASMGPVQQGTICMQLRCVEDLQTIVKILKYEKKLAKMCF
MIFTFLVCWMPYIVICFLVVNGHGLVTPTISIVSYLFAKSNTVYNPVIYVFMRKFRRS
LLQLLCRLRRLRCQRAKDLPAAGSEMQIRPIVMSQKDGRPKKKVTFNSSSIIIFIITSDE
SLSVDDSDKTNGSKVDVIQVRPL

SEQ ID NO: 206

(gi|27463268:201-667, 35987-36306, 42570-42821, 45876-47409) *Homo sapiens*
encephalopsin splice variant 1 (OPN3) gene, alternatively spliced; and choroideremia-like
protein (CHML) gene, complete cds

5	1	gcggcgggagc	cccaacccca	cccagtgcgg	agcgcgccgc	gagccccgcc	gcaagctgag
	61	cgccctccgccc	cgccaggcgcc	gcccggccgc	ggccatgtac	tccgggaaacc	gcagcggcg
	121	ccacggctac	ttggacggcg	ggggggccgc	gggcgtcgag	gggcggcgcc	cggggggac
	181	actgagcccc	gegcceccct	tcagccccgg	cacctacgag	cgccctggcgc	tgctgctggg
	241	ctccattggg	ctgctgggccc	tcggcaacaa	cctgctggtg	ctcgctct	actacaagtt
10	301	ccagcggctc	cgcaactccca	ctcacccct	cctggtaaac	atcagcctca	gcgacactgt
	361	ggtgtccctc	tccggggtca	ccttaccc	cgtgtctgc	ctgaggaacg	gctgggtgt
	421	ggacacccgt	ggctgctgt	gggacgggtt	tagcggcagc	ctetteggga	ttgtttccat
	481	tgccacccta	accgtgctgg	cctatgaacg	ttacattcgc	gtggtccatg	ccagagtgt
	541	caattttcc	ttggcctgga	gggcattac	ctacatctgg	ctctactcac	ttgcgtgggc
15	601	aggagcacct	ctccctggat	ggaacaggta	catcctggac	gtacacggac	tagctgcac
	661	tgtggactgg	aaatccaagg	atgccaacga	tccctccctt	gtgctttct	tatttcttgg
	721	ctgcctggtg	gtgcccctgg	gtgtcatagc	ccattgtctat	ggccatattc	tatattccat
	781	tcgaatgtct	cgttgtgtgg	aagatctca	gacaattcaa	gtgatcaaga	ttttaaaaata
	841	tgaaaagaaa	ctggccaaaa	tgtgctttt	aatgatattc	accttcctgg	tctgttggat
20	901	gccttatatac	gtgatctgc	tcttgggt	taatggtcat	gttcacctgg	tcactccaac
	961	aatatctatt	gttctgtacc	tcttgcataa	atcgaacact	gtataacaatc	cagtgattta
	1021	tgtcttcatg	atcagaaaagt	ttcgaagatc	ccttttgcag	cttctgtgcc	tcggactgtct
	1081	gagggtccag	aggcctgcta	aagacccattc	agcagctgg	agtgaaatgc	agatcagacc
	1141	cattgtgatg	tcacagaaaag	atggggacag	gcacaaagaaa	aaagtgaact	tcaactcttc
25	1201	ttccatcatt	tttatcatca	ccagtgtatga	atcaactgtca	gttgacgaca	gcgcacaaaac
	1261	caatgggtcc	aaagttgatg	taatccaaatg	tgcgtctttt	taggaatgaa	gaatggcaac
	1321	gaaagatggg	gccttaaat	ggatgcact	tttggacttt	catcataaga	agtgtctgg
	1381	ataccctgttc	tatgtataat	caacagaacc	ttgtggtca	gcagggaaatc	cgaattggcc
	1441	atatgtcttt	gggcctcagg	aagagggtga	acaaaaaaacaa	attcttttaa	tcaacgggt
30	1501	gctttacata	atgaaaaaaac	cacttgcgg	acacgatggg	catctaacat	catcatcttc
	1561	taatgtgttg	gagattttca	tttcaaatat	attttttaaa	ttactctatt	ttccaaaaca
	1621	cgtaatgtcat	ttttctcgaa	aataccctac	tgtaaaaata	actgtcgcgt	acacatgtgt
	1681	gaagtagcta	gaacatactg	atttttttt	gtactgttgg	actcttatoa	gtgtcatgt
	1741	ctatatctga	tcaagtatc	aaggagataa	ttctagaatg	aaaaagaaaa	tcctcttgg
35	1801	ggaaacaaaa	gacgttttat	atgtgcagta	tgacaaaagag	gagtttcaga	gacaactttg
	1861	aatccttgtc	agcctggaga	ccagcaccag	aggaatctac	aaggcaact	cccatatata
	1921	tgctttttttt	aaattgtctgc	ccctacagac	tcaaagctct	ttttcttgt	tttgttggtt
	1981	ctctaaaaat	ttactgttct	ttgtcgatgc	tatataagcc	agggagttct	aaagacggccag
	2041	ctctttgaga	tttgcatt	ccccctgtatt	tcccacatata	atattacata	tacccgctaa
40	2101	taaattttatg	tttgcattt	tcttgcataat	ctgtctttt	ttataggggc	cccgagccaag
	2161	gaacctaaag	ttggtagaaag	aaaaattat	tttttctt	cctacaaact	gaacatggat
	2221	tattagaact	caagggtttt	attgacaata	tagaaaaagaa	acactgaatc	attttatttt
	2281	attgccccat	ttttatccct	tatatgactc	tagtgtttca	tettcataat	taatcatgtt
	2341	tgaaggattt	ctgagtgact	cagcagccgt	ttaaaaagaagg	atgaacccaaa	aaaaacattt
	2401	cactaaatgt	gtctttaaaa	atcaagtgt	ttgtcggttc	tgctgcagta	tgttagtcga
45	2461	gaataaaatta	gtaaaattgt	tctgagggtc	tgaaattgaa	taaagttaatg	gttttgcatt
	2521	tctataaaaag	ttgtctcccc	ttgtttctt	tccattctgg	cacatgtaga	cat

SEQ ID NO: 207

50 Amino acid sequence of human OPN3 variant ORF number 2 encoded by the DNA sequence shown in SEQ ID NO: 206.

MYSGNRSGGHGKYWDGGGAAGAEGPAPAGTLSPAPLFSPGTYERLALLGSIGLLGVGNNL
LVLVLYKFQRRLRPTHLLLVNISLSDLLVSLFGVTFTFVSLRNWGWWDTVGCVWDGFS
GSLFGIVSIATLTVLAYERYIRVVHARVINFSWAWRATIYIWLYSLAWAGAPLLGWNRYI
LDVHGLGCTVDWKSKDANDSSFVLFLGLCLVPLGVIAHCYGHILYSIRMLRCVEDLQT
IQVIKILKYEKKLAKMCFLMIFTPLVCWMPYIVICFLVNVNGHGLVTPTISIVSYLFAKS

NTVYNPVIYVFMIRKFRRSLLQLLCRLLRCQRPALKPAAGSEMQIRPIVMSQKDGRP
KKVTFNSSIIIFIITSDELSVDDSDKTNGSKVDVIQVRPL

SEQ ID NO: 208

gi|6753709|ref|NM_010098.1| Mus musculus opsin (encephalopsin) (Opn3), mRNA

5 1 tcggggccgc cggctcaccg agccctctct ctcacggcgc gcccggcg cgccatgtac
61 61 tggggaaacc gtatggcga ccagggctac tggaggacg gggcgccgc cgagggcgca
121 121 gcacccgggg gcacccggag ccccgccgcct ctcttgcgc ccaccggcta cgacccgcctg
181 181 gcgctgctac tcggctgcct cgcgctgcgt ggcgtccggcg gcaacctgtct ggtgtctt
241 241 ctctactcca agttccccag actcgccacg cccacccacc tcttcttggt caacccgtac
10 301 ctggggcacc tgctggatc cttgttccggta gtcacccatca ctttgcgcgtc gtgcctgcgg
361 361 aacggctggg tggggacgc cttggggctgc gctggggacg gtttagccgg cagccctt
421 421 gggtttgtttt ccattaccac ctttactgtgt ctggccatgt aacgttatata ccgtgtggta
481 481 catggcggag tgatcaactt ttccctggcc tggaggggcca ttacccatata ctggctctac
541 541 tccttggcat gggcaggagc accttccctg ggctggaaaca ggtacatcc agacatacat
15 601 ggactgggct gtaccgtgga ctggagatcc aaggatggca accacttcc ctttgcgc
661 661 ttccctgtttt teggtctgcct gttggatc tggggatca tagccattt ctacggccac
721 721 attctctatt ctgttcaat gtttgcgtgt gttgaagatc ttccatccat tcaagtgate
781 781 aagatgtctaa gatatgaaaaaaa gaaaggatgca aagatgtgt ttttgcgttcc ctttgcgc
841 841 ctcacccgtct ggtgcctta cattgtgacc cgttccctgg tggcaatgg ctatggacac
20 901 ctggtcaccc caactgtgtc tatttttttct tatcttttgc cttaaatcgag cactgtgtac
961 961 aaccccgatca tctacatctt catgaacaga aagtttccggaa ggtcccttgc cagatctca
1021 1021 tgcttccggcc tgctggatg ccagccgcct gctaaaaacc tcccagccgc tgagatgaa
1081 1081 atgcacatca ggcccatcgatgtcacag aaagatgggg acaggccaaa gaagaaaatgt
1141 1141 acctttaactt ctccctctat cattttatac atcaccatgt atgatccct gtcagtcgag
25 1201 gacagtgaca gaagcagcgc atctaagggtc gatgtcatcc aagtgcgtcc tctataagaa
1261 1261 tggaaagacag agtccatat ccagccacca caatgttccct gtcaggagtg ccccgagatc
1321 1321 cccattttgtt gtaatagtga cagaacctct gtggccctgt gggaaatccg aatcaccac
1381 1381 atgttgcgtt tattcaagaa gcgactgagc aagacaaattt attttaactc aatgggtgt
1441 1441 ttataactt agaacccctt gttggcacaa gatgagcatc tgccgtcatc gctactatgc
30 1501 caggattttaa tatttgaatg actgtattt cc当地agcaca taatacattt tgtttatcaa
1561 1561 atgtatttca ctataaaaaat aacaatctca tatacacgtg tacaatgact ggaacatctg
1621 1621 gagtacgtt cgggtttgag ttctgttctg tgccatgttgc tggttttgc caattaaatt
1681 1681 tatttgaagatc ataataaaatc aatccctact ttatctgaa aaaaaaaaaaaaaaaa aaaaaaaaaa

35 SEQ ID NO: 209

Amino acid sequence of mouse OPN3 encoded by the DNA sequence shown in SEQ ID NO: 208.

40 MYSGNRSGDQGYWEDGAGAEGAAPAGTRSPAPLFSPTAYERLALLLGCLALLGVGGNLLV
LLLYSKFPRRLRTPTHLFLVNLSLGDLLVSLFGVTFTFASCLRNGWVWDVGCAWDGFSGS
LFGFVSIITLTIVLAYERYIRVUVHARVINFSWAWRATIYIWLYSLAWAGAPLLGWNRYILD
IHGLGCTVDWRSKDANDSSFVLFLGLCIVVPVGIIAHCYGHILYSVRMLRCVEDLQTIQ
VIKMLRYEKVKVAKMCFMAVFVLTCTWMPYIVTRFLVVNGYGHLLPTVSVSYLFAKSST
VYNPVIYIFMNRKFRRLQLLCFRLLRCQRPALKPNAESEMHIRPIVMSQKDGRPKK
KVTFNSSIIIFIITSDELSVDDSDRSSASKVDVIQVRPL

45 SEQ ID NO: 210

ENSRNOT00000005072 cDNA sequence, EnsEMBL transcript [Rattus norvegicus]

1 atgtactcggtt ggaaccgttag cggccggccag ggctactggg aggacggggc gggcgccgag
61 ggcgcagcac cggccggcac gccggagcccc ggcgcctcttc tcaatccccac cgcgtacgag

	121	cgcctggcgc	tgctgctcg	ttgcctcg	ctgctggcg	tcggcgca	ctgtgtgt
	181	ctgtttctct	actccaagg	cccgcgact	cgcacgccc	cccacctt	cttgtcaac
	241	ctcagtctgg	ggatctgt	gttatccct	ttcggagtc	ccttcacett	cgctcg
	301	ctgccaacg	gctgggtgt	ggacggcgt	ggctgcgcgt	ggaaagg	tagccgcage
5	361	ctctttgggt	ttgtttccat	taccaccctc	actgtgtgg	cttatgaacg	ttatatccgt
	421	gtggatcatg	ccagagtgat	caattttcc	tgggcctgg	gggcattac	ctatatctgg
	481	ctctactctt	ttggcatgggc	aggagcgct	cttcctggct	ggaacaggta	catccctcgat
	541	gtacatggac	ttggctgtac	tgtggactgg	aatccaagg	atgccaacga	ctccctttt
10	601	gtgctttcc	tgtttcttgg	ctgtctgg	gtgcctatgg	gcatcatagc	ccattgtac
	661	ggtcataattc	tgtattctgt	tcgaatgtt	cgctgtgtt	aagatctca	gacaattcaa
	721	gtgatcaaga	tgttgcata	cgaaaaaaa	gttgcataaga	tgtgtttt	gatggcttt
	781	gtctttctca	cctgtctggat	gccttatgtt	gtaaacccgct	tcttgggtt	caatggctat
	841	ggacacctgg	tcaccccaac	tgtgtctatc	gtttcttata	tcttgcataa	atcgagcaact
	901	gtgtacaacc	cagttatcta	catcttcat	atcagaaaagt	tccggaggtc	ccttcgtcaa
15	961	ctcctctgtt	tccgcctgt	gagatgccag	aggcgtcta	aaaacctccc	agcagctgag
	1021	agtgaatatgc	agatcaggcc	cattgtgtat	tacacagaaaag	atggggacag	gc当地aagaag
	1081	aaagtgcacat	ttaactcttc	ctccatcatc	ttcatcatca	ccagtgtatga	gtccctgtca
	1141	gtcgaggaca	gcgacagaag	cagcgtatc	aagggtcgatg	taatccaagt	gcgtcccttta
	1201	tga					

20 SEQ ID NO: 211

Amino acid sequence of rat OPN3 encoded by the DNA sequence shown in SEQ ID NO: 210.

25 MYSGNRSGGQGYWEDGAGAEGAAPAGTRSPAPLFSP TAYERLALLLGCLALLGVGGNLLV
LLLYSKFPR LRTPTHLFLVNLSLGDLVLSLFGVTFTFASCLRNGWVWDAVGCAWDGFSGS
LFGFVSIITLTVLAYERYIRVVHARVINFSWAWR AITYIWLYSLAWAGAPLLGWNRYILD
VHGLGCTVDWKSKDANDSSFVLFLFLGCLVVPMGIIAHCYGHILYSVRMLRCVEDLOTIQ
VIKMLRYEKKVKAMCFLMAFVFLTCWMPYVVTRFLVVNGYGHILVPTVSIVSYLFAKSST
VYNPVIYIFMIRKFRRSSLQLLCFRLLRCQRPAKNLPAAESEMQIRPIVMSQKDGRPKK
KVTFNSSSIIIFIITSDESLSEDSDRSSASKVVDIVQVRPL

SEQ ID NO: 212

30 gi|18860860|ref|NM_006504.2| Homo sapiens protein tyrosine phosphatase, receptor type, E
(PTPRE), transcript variant 1, mRNA

	I	agccggagct	ggagccgagg	cgccggcggg	acgcggccgg	ccggacaaat	ttcctgttag
35	61	gctgggaacg	agcggggcggc	aggagccggc	gcgagccggct	tcaggaaccc	acggcctctg
	121	cgcgtccccg	cgacccttct	tcgcggccgg	cgaagacago	cgggcggccc	ggagggcggc
	181	gggcaggcgc	ccgggagatg	cggagccetc	getgcagcgc	gatctgcgcg	accagaccgg
	241	cccccccgag	actatagct	tcactttccc	tcgggtccacc	atggagccct	tgtgtccaqt
40	301	cctgtgttg	ggttttagct	tgccgctcgc	cagggtctc	aggggcaacg	agaccactgc
	361	cgacagcaac	gagacaacca	cgacccagg	ccctccggac	ccgggcccct	cccagccgc
	421	gctggcctgg	ctgtactgc	cgctgtgtct	cctccctctc	gtgtctttc	tcggccgccta
	481	cttcttcagg	ttcaggaagc	agagggaaagc	tgtggtcagc	accagcgaca	agaagatgcc
45	541	caacggaaatc	ttggaggagc	aagagcagca	aagggtgtatg	ctgcteagca	ggtcacccctc
	601	agggcccaag	aagtattttc	ccatccccgt	ggagcacctg	gaggaggaga	tccgtatcat
	661	atccggccgac	gactgcaagc	agtttcggga	ggagttcaac	tcattgccccat	ctggacacat
	721	acaaggaact	tttgaactgg	caaataaaaga	agaaaaacaga	aaaaaaaaaca	gatatcccaa
	781	catccccc	aatgaccatt	ctaggggtat	tctgagccaa	ctggatggaa	ttccctgttc
	841	agactacatc	aatgtttctt	acatagatgg	ttacaaaagag	aagaataaaat	tcatagcagc
	901	tcaaggtccc	aaacagggaaa	cggtaaacga	cttctggaga	atggtctgggg	agcaaaagtc
	961	tgcgaccatc	gtcatgttaa	caaacttggaa	agaaaaggaaaa	gaggaaaaagt	gccatcagta
50	1021	ctggcccgac	caaggctgtct	ggaccttatgg	aaacatccgg	gtgtgcgtgg	aggactgcgt
	1081	ggttttgttc	gactacacca	tccggaaagtt	ctgcatacag	ccacagctcc	ccgacggctg
	1141	caaagccccc	aggctggtct	cacagctgca	cttcaccagc	tggcccgact	tcggagtgcc
	1201	ttttacccccc	attgggatgc	tgaagttctt	caagaaagta	aagacgtca	accccggtgca
	1261	cgctggccccc	atcggtgtcc	actgtagcgc	gggcgtgggc	cggacgggca	ccttcattgt

	1321	gatcgatgcc	atgatggcca	tgatgcacgc	ggagcagaag	gtggatgtgt	ttgaatttgt
	1381	gtctcgaatc	cgtaatcagc	gccctcgat	ggttcaaaacg	gatatgcagt	acacgttcat
	1441	ctaccaagcc	ttactcgagt	actacctcta	cggggacaca	gagctgacg	tgtcctccct
	1501	ggagaagcac	ctgcagagcca	tgcacggcac	caccacccac	ttcgacaaa	tcgggctgga
5	1561	ggaggagttc	aggaaattga	caaatgtccg	gatcatgaag	gagaacatga	ggacgggcaa
	1621	cttgcggca	aacatgaaga	aggccagggt	catccagatc	atcccgtatg	acttcaaccg
	1681	agtgatectt	tccataaaaa	ggggtcaaga	atacacagac	tacatcaacg	catccttcat
	1741	agacggctac	cgacagaagg	actattcat	cggccacccag	gggcacttg	cacacacgg
	1801	tgaggacttc	tggaggatga	tctggaaatg	gaaatcccac	actatcgta	tgctgacgga
10	1861	ggtgcaggag	agagagcagg	ataaaatgcta	ccagtattgg	ccaaaccgagg	gctcagttac
	1921	tcatggagaa	ataacgattt	agataaaagaa	tgataccctt	tcagaagcca	tcagtatacg
	1981	agactttctg	gtcaactctca	atcagccccca	ggcccgccag	gaggagcagg	tccgagtagt
	2041	gcgcaggattt	cacttccacg	gctggcctga	gatcgggatt	ccgcggagg	gcaaaggcat
	2101	gattgacctc	atcgacgccc	tgcagaagca	gcagcagcag	acaggcaacc	accccatcac
15	2161	cgtcaactgc	agtgcggag	ctggcgaac	agttacattt	atagccctca	gcaacatttt
	2221	ggagcggagta	aaagccgagg	gactttttaga	tgatatttcaa	gctgtgaaga	gttacgact
	2281	tcaagagacca	cataatggtc	aaaccctgga	acagttatgaa	ttctgcata	aagtggtaca
	2341	agattttatt	gatataatttt	ctgattatgc	taatttcaaa	tgaagattcc	tgcctaaaa
	2401	tatTTTTaa	ttaatggtc	agttatTTT	gtaaaaatca	tgttaatttta	tttcatagtt
	2461	gacattaata	tcttccctaa	tttctttgt	tatTTTTGT	tatgccttaa	agggccacctg
	2521	ctatacagtt	gttaaatctt	aaatatgctt	ttaaaaattt	ggaataatgt	attaaggtca
	2581	aataatatcc	cataaaatat	atatttctgc	taatattagt	aaatatctta	atTTTTaaaa
	2641	aaaaaaaaaa	aaaa				

SEQ ID NO: 213

25 Amino acid sequence of human PTPRE encoded by the DNA sequence shown in SEQ ID NO: 212.

MEPLCPLLLVGFSLPLARALRGNETTADSNETTTSGPPDPGASQPPLALLLPLLLLL
VLLLAAYFFRFRKQRKAVVSTSDKKMPNGILEEEQEQQRVMLLSRSPGPKYPPIPVHEL
EEEIRIRSADDCKQFREFNSLPSGHIQGTFELANKEENREKNRYPNILPNDHSRVILSQ
LDGIPCSDYINASYIDGYKEKNKFIAAQGPQETVNDFWRMVWEQKSATIVMLTNLKERK
EEKCHQYWPDQGCWTYGNIRVCVEDCVVLVDYTIRKFCIQPQLPDGCKAPRLVSQHLFTS
WPDFGVFTPPIGMLKFLKKVKTLNPVHAGPIVUVHCSAGVGRTGTFIVIDAMMAMMHAEQK
VDVFEFVSRIRNQRQPQMVTDMQYTFIYQALLEYYLYGDTELDVSLEKHLQTMHGTTTH
FDKIGLEEEFRKLTVRIMKENMRTGNLPANMKKARVIQIIPYDFNRVILSMKRGQEYTD
YINASFIDGYRQKDYFIATQGPLAHTVEDFWRMIWEEWSHTIVMLTEVQEREQDKCYQYW
PTEGSVTHGEITIEIKNDTLSEAISIRDFLVTLNQPOQARQEEQVRRVRFHFHWPEIGI
PAEGKGMIDLIAAVQKQQQQTGNHPITVHCASAGAGRGTGTFIALSNILERVKAEGLLDVFQ
AVKSLRLQRPHMVOTLEQYEFYCYKVVQDFIDIFSDYANFK

SEQ ID NO: 214

40 gi|40805848[ref]NM_130435.2| Homo sapiens protein tyrosine phosphatase, receptor type, E (PTPRE), transcript variant 2, mRNA

45	1 gtgcagcaga gggcagctga gaggctgggt ggctggccct gggagacaca cagaggccag 61 gccttagcgc ggctcagcca tgagcaacag gatgtacttt tccccgctca cctggttcag 121 gaagcagagg aaagctgtgg tcagcaccag cgacaagaag atgcccacg gaatcttgg 181 ggagcaagag cagcaaaggg tgatgtctc cagcaggta ccctcaggc ccaagaaagta 241 ttttccccatc cccgtggagc acctggagga ggagatccgt atcagatccg ccgacgactg 301 caagcagttt cggggaggagt tcaactcatt gccatctggc cacatacaag gaacttttga 361 actggcaaat aaagaagaaa acagagaaaa aaacagatata cccaaacatcc ttcccaatg 421 ccattcttagg gtgattctga gccaactggc tggaattccc tgttcagact acatcaatgc 481 ttcctacata gatggttaca aagagaagaa taaattcata gcagctcaag gtcccaaaca 541 ggaaacggtt aacgacttct ggagaatggt ctgggagcaa aagtctgcga ccatacgcat 601 gttaacaaac ttgaaagaaa ggaaagagga aaagtqccat cagtaqtqcc ccqaccaagg
50	

661 ctgtctggacc tatgaaaaca tccgggtgtc cgtggaggac tgcgtggttt tggtcgacta
 721 caccatccgg aagtctgca tacagccaca gctccccac ggctgcaaag cccccaggct
 781 ggtctcacag ctgcacttca ccagctggcc cgacttcgga gtgccttttta cccccattgg
 841 gatgtctaaag ttcctcaaga aagtaaaagac gctcaacccc gtgcacgtcg gccccatcg
 5 901 ggtccactgt agcgcggcgc tggccggac gggcaccttc attgtatcg atgcccattat
 961 ggcattatcg cacgcggagc agaagggtgaa tttgttgc ttgtgtctc gaatccgtaa
 1021 tcagegcct catatggttt aaacggatat gcagttacacg ttcatctacc aagccttact
 1081 cgagttactac ctctacgggg acacagatc ggacgtgtcc tccctggaga agcacctgca
 1141 gaccatgcac ggcacccacca cccacttca caagatcggtt ctggaggagg agttcaggaa
 10 1201 attgacaaat gtccggatca tgaaggagaa catgaggacg ggcacacttgc cggcaaacat
 1261 gaagaaggcc agggcatcc agatcatccc gtatgactt aaccggatgtca ttctttccat
 1321 gaaaagggtt caagaataca cagactacat caacgcattcc ttcatagacg gtcaccgaca
 1381 gaaggactt ttcatcgcca cccagggccc actggcacac acgggttgggg acttctggag
 1441 gatgtatcgga aatggaaat cccacactat cgtatgtcg acggaggtgc aggagagaga
 15 1501 gcaggataaa tgcttaccat attggccaac cgagggtctca ttactatcg gagaataaac
 1561 gattgatataa aagaatgata ccctttcaga agccatcgat atacgagact ttctggtcac
 1621 tctcaatcag cccaggcccc gccaggagga gcagggtccga ttactatcgcc agtttcaatt
 1681 ccacggctgg cctgagatcg ggatcccgc cgaggccaa ggcattgttg acctcatcg
 1741 agccgtgcag aagcagcgcg acgagacagg caaccacccc ataccgtgc actgcagtgc
 20 1801 cggagctggg cgaacaggta cattcatagc cctcagcaac attttggagc gagtaaaagc
 1861 cgagggactt ttagatgtat ttcaagctgtt gaagagtttta cgttccaga gaccacatat
 1921 ggtgcaaaacc ctggAACAGT atgaattctt ctacaaatgtt gtacaagatt ttattgatatt
 1981 attttctgtat tatgctaatt tcaaataaag attcctgcct taaaatattt ttaatttaaa
 2041 tggtcgttat attttgtaaa aatcatgttta atttatttca tagttgacat taatatctt
 25 2101 cctaattttt ttgtatataat tttgttatgc cttaaaggcc acctgtata cagttttaa
 2161 atcttaataa tgcttttaa aatttggaaat aatgtattaa aatgtattaa ggtcaaaataa tatccatataa
 2221 aatataatatt tctgctaata tttagtaata ttcttaatttt tcatttagatt cattatcattt
 2281 aatttccat attcaacacc tttaaatgtt gtaatctta tatgcgaatgt gtgcctctgc
 2341 aagataactaa cacaaggctc atgttaagaa aacagtttag gactcagaag tcagttaaaa
 30 2401 atgcacttcc taaacagtga attcacaacc ctgaacacgca gcatgggggg aaggcaact
 2461 gttcgtatgt gtaaaatgtt aatggggact tctgttttttgc ggtccatgt
 2521 gtttatctt acattttaaa gatcaaagaa gtctttacaa cctgaatcca ggtctaaaac
 2581 acactagatc agctgggtgac tataaataat attttttttt gctgtgttca caccatcaag
 2641 actgtgttca cactatcttgc gctgaacggag aagagatgtt aatgtctgggt ggtcccttgg
 35 2701 acccacggcg ttgggtacaa caaaaccaggc catcgaggat acacccaaa gcaccatgg
 2761 ctgtccagct gctgtcggtt tggcccgacac caccctcaga aaaaaaccagg ctgcctctcc
 2821 cattctcccc tcccggttctg ccacagcgcc ctgggttgc ccagtgttat gcttggaggc
 2881 tcaacacaaa acttccatc caaacattca gatgaactga gcttcttaca cacgcagttac
 2941 agaggagcac acattaggat agaaacagta gaataaccac gggcaattaa actttaaatt
 40 3001 ttctgagcac cattttgtt tttttttttt tttttttttt tttttttttt tttttttttt
 3061 aaagaatctt taaaatctttag atttataccca tttttttttt tttttttttt tttttttttt
 3121 taaaacaaaaa agagaaatcc ttaatctaa agctaaattttt tttttttttt tttttttttt
 3181 tgagaccatt gacactggat aacagtaatg atccctttttt tttttttttt tttttttttt
 3241 gaaaaaaa aaaaaaagaa tgggggtgtt gatgtttttt tttttttttt tttttttttt
 45 3301 tctttcttat gccatttaggt accttagcaga tttttttttt tttttttttt tttttttttt
 3361 cttacccatc tactaaaaggc attttttttt tttttttttt tttttttttt tttttttttt
 3421 taaaagctac ataaaggccct tttttttttt tttttttttt tttttttttt tttttttttt
 3481 tgcagtgttc gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 3541 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 50 3601 atccaaggggc aagacttggt gcccagctgg aaggacaaa gcaacacttgc tgaccgocat
 3661 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 3721 acaatgtttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 3781 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 3841 agggaaagtaa gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 3901 aaggttgcacat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 3961 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 4021 ggcattttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 4081 gggccctgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 4141 gttctgcctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 60 4201 gacgcacagac tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 4261 tacagccctca tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt

4321 ctcacgctgg gggaatcaat ccctgagggc ctcagaatct tctccgtgca acctggaaag
 4381 ttcatcttgc ttcccttca gtcaaagaaa gtccattgtc cataacaaaa cagccccaa
 4441 acagccccagt gcccaccca ttgttccctt cacacttcc ttgttgcat gcagttgggt
 4501 tcaaataatgcca aatagtgtt agaagacgac cattctgatc ttttgtgtat ctggtaacta
 5 4561 tgtgactgcc tttaacggttt ctctccatgt gctatataaa tgaagaatgc ataccagtgt
 4621 tttaaaaaggat atttttatgt gttttttaaac acttttttaa atgagcctga cacctgtgtt
 4681 tcagcatttg gagacatccc catgttattc ttttaagtgt ataattactg atacttttt
 4741 gtttgggtt ttaactaagt ttttgtttaac tttatgtgcg tttttataat gtatgtatgt
 10 4801 tatttacaggat tcaactatca tattttttt gattacattt ataaattttatgtt cttgtctga
 4861 ttataatgcc agtgaatgtt gctgaactct ttgttatatgc aaattgcaag atttaaacca
 4921 ttctgatgca aggataaaacc tttaacttttga ctaccagcct gtgtttttgtt ctttaaatct
 4981 ctttaatttca ttccctctgca aa

SEQ ID NO: 215

Amino acid sequence of human PTPRE variant ORF number 1 encoded by the DNA
 15 sequence shown in SEQ ID NO: 214.

MSNRSSFSRLTWFRKQRKAVVSTSDKKMPNGILEEQQQRVMLLSRSPSGPKKYFPIPV
 HLEEEIRIRSADDCKQFREEFNSLPSGHIQGTPELANKEENREKNRYPNILPNDHSRVIL
 20 QLDGIPCSDYINASYIDGYKEKNFIAAQGPQETVNDFWRMVWEQKSATIVMLTNLKE
 RKEEKCHQYWPDPQGCWITYGNIRVCVEDCVVLDVDTIRKFCIOPQLPDGCKAPRLVSQLHF
 TSWPDFGVFTPPIGMLKFLKVKTLNPVHAGPIVVHCSAGVGRTGTFIVIDAMMAMMHAE
 QKVDVFEFVSRIRNQRQPQMVTDMQYTFIYQALLEYLYGDTELVDSSLEKHLQTMHGTT
 THFDKIGLEEEFRKLTVRIMKENMRTGNLPANMKKARVIQIIPYDFNRVILSMKRGQEY
 25 TDYINASFIDGYRQKDYFIATQGPLAHTVEDFWRMWIWEWSHTIVMLTEVQEREQDKCYQ
 YWPTEGSVTHGEITIEIKNDTLSEAISIRDFTLNLNPQPARQEEQVRVVRQFHFGWPEI
 GIPAEGKGMDLIAAVQKQQQQTGNHPITVHCSAGAGRTGTFIALSNILERVKAEGLLDV
 FQAVKSLRLQRPHMVQTLQYEFCYKVVQDFIDIFSDYANFK

SEQ ID NO: 216

gi|19171238|emb|AJ430580.1|HSA430580 Homo sapiens mRNA for tyrosine phosphatase
 epsilon PD1 (PTPRE gene)

30 1 ccttagcgcg gtcagccat gagcaacagg agtagctttt cccggctcac ctggttcagg
 61 aagcagagga aagctgtggt cagcaccaggc gacaagaaga tgcccaacgg aatcttggag
 121 gagcaagagc agcaaagggt gatgctgctc agcagggtcac cctcaggggcc caagaagat
 181 tttccccatcc ccgtggagca cctggaggag gagatccgtt tcagatccgc cgacgactgc
 241 aagcagtttc gggaggagtt caactcattt ccattctggac acatacaagg aacttttggaa
 301 ctggcaaaa aagaagaaaa cagagaaaaaa aacagatatac ccaacatcct tcccaatgac
 361 cattcttaggg tgattcttag ccaactggat ggaattccctt gttcagacta catcaatgct
 421 tcctacatag atggttacaa agagaagaat aaattcatag cagtcacagg tcccaaacag
 481 gaaacggta acgacttctg gagaatggtc tgggagcaaa agtctgcgac catcgtcatg
 541 ttaacaaaact taaaagaaaa gaaagaggaa aagtgcacatc agtactggcc cgaccaaggc
 601 tgctggacct atggaaacat ccgggtgtgc gtggaggact gctgggtttt ggctgactac
 661 accatccgga agttctgcat acagccacag cttcccgacg gctgcaaagc ccccaaggctg
 721 gtctcacaggc tgcaacttcac cagctggccc gacttccggag tgccttttac ccccaattggg
 781 atgctgaagt tccctcaagaa agttaaagacg ctcaaccccg tgcacgcgtt gccccatcg
 841 gtccactgtt ggcggggcgt gggccggacg ggcacccatca ttgtgtatcg tgcctatgt
 901 gccatgtatgc acgcggagca gaagggtggat gtgtttgaat ttgtgtctcg aatccgtat
 961 cagcgccctc agatggttca aacggatatcg cagtcacatc tcatctacca agccttactc
 1021 gagtaactacc tctacggggc cacagagctg gacgtgttcc cccctggagaa gcacctgcag
 1081 accatgcacg gcaccacccac ccacttcgac aagatccggc tggaggagga gttcaggaaa
 1141 ttgacaaaatg tccggatcat gaaggagaac atgaggacgg gcaacttgc ggcacaaatcg
 50 1201 aagaaggcca gggcatcca gatcatcccg tgtaaggcac ccgtggcgtt gcttggcag
 1261 ggctggggctt gggctggcgtt cttccctggag aagccatttg cccgttaccc
 1321 ctgtgcacca gggtaaaaag cagggtgtcc tctggctca ggctaaggc tccctgtgtc

1381 tgtaccaat gtcaggtaga aaagacacct gtgaagcacc agctgaccca gacagtccctg
 1441 catgggtctc aggcaagctg cttggatata gacttgcag atgcgggagg gacgcccagg
 1501 ctgatttcag gggagggctt cacagaact ggagatggc ggcaggcact acctgggatt
 1561 ctttgtctca ttccttgctt cccaaagctt gggcagaggc cccctcccc cttacacaga
 5 1621 ggggccttag ccacccagcc gagggcatgc aggtgaactc agctgagacc acctaggaaa
 1681 aggctgtggc cttgaggagg acaagaaaat ggccttaggt agagttagga cactggctcg
 1741 ccacccaggat catggggag ggaaggagga cttggcaggat gtgggaggag tggaggcaaa
 1801 gctggcaaga agacaggccc acatgcgtt ggcaggggag tggaaatcg gaggctcacc
 1861 aagtggggaaa aagagaaact tgagaaaccc ggcctaaag cagactccac agggatccga
 10 1921 ggaacttaggg agggagggtgg gagatcccc gcttgggagg agggtgtgcc tcgttataga
 1981 cttgtccctcg acagactc acgtcaacaa acaccatcg gaaacactg ggagcaggcc
 2041 tgctgcagca gggctcccc ggcactgca gatgacttca acggagtgtat ccttcctatg
 2101 aaaagggttc aagaatacac agactacate aacgcatect tcatagacgg ctaccgacag
 2161 aaggactatt tcatgcaccc ccaggggcca ctggcaca cggtttagga ctctggagg
 15 2221 atgatctggg aatgaaagtc ccacactatc gtgatgtca cggaggtgca ggagagagag
 2281 caggataaat gctaccagta ttggccaacc gagggtctcg ttactcatgg agaaataacg
 2341 attgagataa agaatgatac ctttcagaa gccatcaga tacagactt tctggctact
 2401 ctcaatcagc cccaggccc ccaggaggag cagggtcccg tagtgcgcctt gtttacttc
 2461 cacggctggc ctgagatcgg gattcccggc gaggccaaag gcatgattga cctcatcgca
 20 2521 gccgtgcaga agcagcagca gcagacaggc aaccacccca tcaaccgtca ctgcagtgcc
 2581 ggagctgggc gaacaggtac attcatagcc ctcaagcaaca ttttggagcg agtaaaagcc
 2641 gagggacttt tagatgtatt tcaagctgtg aagagtttac gacttcagag accacatatg
 2701 gtgc当地 tggaaacagta tgaattctgc tacaaggatgg tacaagattt tattgatata
 2761 ttttctgatt atgctaattt caaatgaaga ttctgcctt aaaatatttt ttaatttaat
 25 2821 ggtcagtata ttttggaaaa atcatgtttaa ttttatttcat agttgacatt aatatttcc
 2881 ctaatttctt tgtatatatt ttgttatgcc ttaaaggcca cctgctatac agttgtaaa
 2941 tcttaaatat gctttttaaa aatttggata atgttataag gtcaaataat atcccataaa
 3001 atatatattt ctgctaataa aaaaaactt t

SEQ ID NO: 217

30 Amino acid sequence of human PTPRE variant ORF number 2 encoded by the DNA sequence shown in SEQ ID NO: 216.

MSNRSSFSRLTWFRKQRKAVVTSDDKKMPNGILEEQEQQRVMLLSRSPSGPKYFPIPVHE
 LEEEIRIRSADDCKQFREFNSLPSGHIQGTFELANEENREKNRYPNILPNDHSRVIL
 35 SQLDGIPCSDYINASYIDGYKEKNKFIAAQGPQKETVNDFWRMVWEQKSATIVMLTNLKE
 RKEEKCHQYWPDQGCWTYGNIRVCVEDCVELVDYTIKFCIQPQLPDGCKAPRLVSQLHF
 TSWPDFGVFTPPIGMLKFLKKVKTLPVHAGPIVVHCSAGVGRGTGFIVIDAMMAMMHA
 EKVDFEFVSRIRNQRQPQMVTQDMQYTFTIYQALLEYLYGDTEDLVSSLEKHLQTMHGTT
 THFDKIGLEEEFRKLTVRIMKENMRTGNLPANMKKARVIQIIPCKAPVAWLQGWGWA
 AGGFHPGEAIDRLPLCTRVKSRVSSGLRLRAPVCCTKCQVEKTPVKHQLTQTVLHGSQAS
 40 CLGYELADAGGTPLRISGEGFTEAGDLRQARLGIPLCPKPGQRPASPLHRGA

SEQ ID NO: 218

gi|1199932|dbj|D83484.1|MUSPTPE Mouse mRNA for protein tyrosine phosphatase epsilon, complete cds

1 cacgggtccc agccctgctt taccagttgc gaaaccttaa gtgccacact actttgtgg
 61 gtncagact aaggctaaat acgaaggagc gttgagttt ctctatggct cgtctgagtg
 121 ccatcacctt ttaggatctt ccctgataga gtgtcgtca gagtgcagga gagaggcatg
 181 ttccctgcata ctccccaggat aagccaaag ctccagaggg tgagcgcgc gtcgcctccc
 241 agagccaggg accaggcgcc ggcgtcgccc ctgcgcgtc cacggcccccc ccccnccgc
 301 ggagctggag ctggagccgg agccggagcc ctggccaga gctggaggcg gccggaccgg
 361 gcccagacaga ttccctgctc ttctgttaggg ctgagggtctg cccgctgcgg gctacgggct
 421 gcccggctaca ggctacggggc tacggactgc gggctgcgg agaagtcacc ggcggcgc
 481 gtacctcact gcctacgcgc gtcctccatcg cggccggcg gacagcggac

	541	gccccggagc	ggagcgcgtc	ggcggggcgc	ccggggagatg	cggagtgcgc	gcggcgaggc
	601	gatcggggct	acagcaccgg	tccctggag	actatacgccc	tcattttccc	tttgtgcacc
	661	atggagccct	tctgtccact	cctgctggca	agtttttagct	tgtcgctcgc	cagagctggc
	721	cagggcaacg	acaccacccc	aacagagage	aactggacca	gcacaactgc	agggccctccg
5	781	gaccctggtg	catcccagcc	gctgctcacc	tggctgctgc	tgcceccctgct	cctccctctcg
	841	ttcctgttgc	cagectactt	cttcagggttc	cggaaaggcaga	ggaaggccgt	ggtcagcagc
	901	aacgacaaga	aatgcctaa	cgggatctta	gaagagcaag	agcagcagag	agtgtatgtcg
	961	ctgagcagat	ctccatcagg	ccccaaagaag	tttttccccca	tccccgtgga	gcacccctggag
10	1021	gaggagatcc	gggtgagatc	tgccgatgac	tgcaggcgat	tcccgagagga	gttcaattca
	1081	ttgccatctg	gacacataca	aggaaccttt	gaactagcaa	ataaaagaaga	aaacagagaa
	1141	aaaaacacat	accccaacat	tctgccaat	gatcattgca	gagtgatttt	gagccaagtg
	1201	gatggaatcc	cctgtctctga	ctacattaat	gettcctaca	tgcgtggcta	caaagaaaag
	1261	aacaaattca	tagcagctca	agggccctaag	caggagacag	tgaatgactt	ctggagaatg
15	1321	gtctgggagc	aaaggtcagc	caccatcgtc	atgttgacga	acctgaagga	gaggaaggag
	1381	gagaagtgt	accagtactg	gccagaccag	ggctgttgga	cctacggcaa	catccgggtg
	1441	tgtgttagagg	actgcgtgg	cctgggtggat	tacacgatcc	gaaagtctg	catccatccg
	1501	caactcccag	acagctgcaa	agccccgggg	ctgggtctcac	agctgcactt	caccagctgg
	1561	cctgacttcg	gggtgcccgtt	taccccccattc	gggatgctca	agttcctgaa	gaaagtgaag
20	1621	acactcaacc	cctcacatgc	tggggccatt	gtgggttact	gtagegcggg	cgtgggtcgg
	1681	actggcacct	tcattgtgtat	cgatgcctat	atggacatga	tacactcgga	gcagaagggtt
	1741	gacgtctttg	agtttgcgtc	tagaatccgc	aatcagcgcc	ctcagatgg	ccagacggat
	1801	gttcaagtata	cattcatctc	ccaagcccta	ctggaatact	acctctatgg	ggacacagag
	1861	ctggatgtgt	cctccctgg	gagggcacctg	cagacgtcc	atagcacagc	caccatcttt
	1921	gacaagatcg	ggctggagga	agagttcagg	aagctgacca	acgtgcgaat	catgaaggag
25	1981	aacatgagga	cgggcaaccc	gcctgccaac	atgaagaagg	cccgcgctat	ccagatcatt
	2041	ccatatgact	tcaatcggtt	catccgttcc	atgaaaagag	ggcaagagtt	cacagactat
	2101	atcaacgcat	ccttcataga	tggctacagg	cagaaggact	acttcatggc	cacacaggcg
	2161	cctctggctc	acacagttg	ggacttctgg	aggatgttat	gggagttggaa	gttcacacaca
	2221	atgcctatgc	tgacgggggt	gcaggagcgg	gaacaggata	aatgtacca	gtattggcca
30	2281	acggagggt	cgggtactca	tggagatata	actatacgaga	taaagagcga	caccctgtct
	2341	gaagcaatca	gcgtacgaga	ctttctggtt	accttcaaaac	agcccccgtgc	ccgcccaggaa
	2401	gagcagggtcc	catgggtgag	acaatttccat	ttccatggct	ggcctggaggt	ttgcataccccc
	2461	gctgaaggca	aaggcatgtat	tgacctgtt	gcagcagtgc	agaagcagca	gcagcagacg
	2521	ggcaaccacc	ccatcaccgt	gcactgcagc	gggggagcag	ggcggacagg	tacattcata
35	2581	gcactcgtat	acattttgg	acgagtaaaa	gccgaggggac	tccttagacgt	gtttcaagct
	2641	gtgaagagct	taagacttca	gagaccacac	atgggtcaga	ccctggagca	atatgaattc
	2701	tgctacaaag	tgttacaaga	ttttatcgat	atattttctg	attatgtta	tttcaaatga
	2761	agattccctgc	ctaaaaatat	tttttaattt	aatggtcagt	atattttgtt	aaaaaaaaaa
	2821	aaaaaaaa					

40 SEQ ID NO: 219

Amino acid sequence of mouse PTPRE encoded by the DNA sequence shown in SEQ ID NO: 218.

MEPFCPLLLASFSLSLARAGQGNDTPTESNWSTTAGPPDPGASQPLLTWLLPLLLLL
FLLAAYFFRFRKQRKAVVSSNDKKMPNGILEEQEQQQRVMLLSRSPSGPKFFPIPVEHLE
EEIRVRSAADDCKRFREEFNSLPSGHIQGTFELANKEENREKNRYPNILPNDHCRVILSQV
DGIPCSDYINASYIDGYKEKKNKFIAAOQPKQETVNDFWRMVWEQRSATIVMLTNLKERKE
EKCYQYWPDQGCWTYGNIRVCVEDCVVLVDYTIRKFCIHPQLPDSCAKPRLVSQLHFTSW
PDFGVFTPFIGMLKFLKKVKTLNPShAGPIVVHCSAGVGRGTGFIVIDAMMDMIKSEQKV
DVFEFVSRIRNQRPQMVTDVQYTFIYQALLEYLYGDTELDVSSLERHLQTLHSTATHF
DKIGLEEEFRKLNTVRIMKENMRTGMLPANMKKARVIQIIPYDFNRVILSMKRGQEEPTDY
INASFIDGYRQKDYFMATQAPLAHTVEDFWRMVWEWSHMTMLTEVQEREQDKCYQYW
TEGSVTHGDIITIEIKSDTLESEAISVRDFLVTFKQPLARQEEQVRMVRQFHFHGWPVEVGIP
AEGKGMIDLIAAVQKQQQQTGNHPITVHCSAGAGRTGTFIALSNILERVKAEGLLDVFQA
VKSLRLQRPHMVOTLEQEFCYKVQDFIDIFSDYANFK

55 . SEQ ID NO: 220

gi|34861150|ref|XM_341950.1| Rattus norvegicus Protein tyrosine phosphatase, receptor type, epsilon polypeptide (Ptprε), mRNA

SEQ ID NO: 221

Amino acid sequence of rat PTPRE encoded by the DNA sequence shown in SEQ ID NO: 220.

MEPFPCPLLLASFSLSLATAGQGNDTTPTESNWTSTTAGPPDPGTSQLTLWLLLPLLLLL
FLLAAYFFRFRKQRKAVVNSNDKKMPNGILEEQEQQRVMLLSRSPSGPKKYFPIPVEHLE
EEIRVRSAADDCKRFREEFNSLPSGHIQGTFELANEENREKNRYPNILPNDHCRVILSQL
DGIPCSDYINASYIDGYKEKNKFIAAQGPQKETVNDFWRMVWEQRSATIVMLTNLKERKE
EKCYQYWPDQGCWTYGNIRVCVEDCWLVDYTIRKFCIHPQLPDSCKAPRLVSQLHFTSW
PDFGVFTPPIGMLKFLKKVKTLPNSHAGPIVVHCSAGVGRTGFIVIDAMMDMIKSEQKV
DVFEFVSRINQRQPQMVTDVQYTFIYQALLEYYLYGDTELDVSSLERHLQOTLHGTAJTHF
DKIGLEEEFRKLTVRIMKENMRTGNLPANMKKARVIQIIPYDFNRVILSMKRQQEFTDY
INASFIDGYRQKDYFMATQGPLAHTVEDFWRMVWEWSHTIVMLTEVQEREQDKCYQYWP
TEGSVTHGDITIEIKSDTLESEAISIRDFLVTFKQPLARQEEQVRMVRQFHFGWPEVGIP
TEGKGMDLIAAVQKQQQQTGNHPITVHCSAGAGRTGTFIALSNILERVKAEGLTDVFQA

VKSRLQLRPHMVQTLLEQYEFCKVVKVQDFIDIFSDYANPK

SEQ ID NO: 222

gi|31083343|ref|NM_020311.1| Homo sapiens G protein-coupled receptor (RDC1), mRNA

```

1 tgcaagtctg cagccagcag agctcacagt tggcaaaag tgctcagcac taaggagcc
5 61 agcgacacgc acaggcagga aggcgagcga gcccagccag cccagccagc ccagccagcc
121 cggaggatcat ttgattgccc gcctcagaac gatggatctg catcttctcg actactcaga
181 gccaggaaac ttctcggaca tcagctggcc atgcaacagc agcgactgca tcgtggtgga
241 cacggtgatg tgcctcaaca tggccaaaca aagcgtctg ctctacacgc tctcattcat
301 ttacatttc atctcgta tcggcatgtat tgccaactcc gtgggtgtct gggtaatat
361 ccaggccaag acccagggct atgacacgcgca ctgctacatc ttgaacctgg ccattgccga
421 cctgtgggtt gtcctcacca tccccagtcgt ggtggtcagt ctcgtgcagc acaaccagtg
481 gccccatgggc gagtcacgt gcaaaagtcaac acaccatc ttctccatca acctcttcgg
541 cagcatc ttcctcacgt gcatgagcgt ggaccgtac ctctccatca ctacttcac
601 caaacacccccc agcagcagga agaagatggt acggccgtc gtcgtcatcc tgggtggct
661 gctggccctc tgcgtgtc tgcctgacac ctactacatc aagaccgtca cgtctgcgtc
721 caacaatgag acacttcgac ggtccttcta ccccgagcac agcatcaagg agtggctgt
781 cggcatggag ctggctccg ttgtttggg ctttggctt ccccttccaa ttatcgctgt
841 ctctacttc ctgcgtggca gagccatctc ggcgtccagt gacaggaga agcacacgc
901 ccggaagatc atcttcctt acgtgggtggt ctccctgtc tgcgtggctc cctaccacgt
961 ggcgggtgtc ctggacatct tccatccatc gcaactacatc ctttccatctt gceggcttgg
1021 gcaacgccttc ttacggccc tgcacatgtc acagtcgtc tgcgtgggtc actgtcggt
1081 caaccctgtc ctctacatc tcatcaatcg caactacagg tacgagctga tgaaggcctt
1141 catcttcaag tactcggca aaacagggtt caccaagctc atcgatgcct ccagagtctc
1201 agagacggag tactctgcct tggagcagag caccaaata tctgcccgtt agaggctctg
1261 ggacgggtttt acctttttt gaacagggtt atggggccata tggttttata gaggaaagca
1321 aagttagcttc gggctttagt gctttagtagt agtgaagagg ggagcacgtg cccctgtcat
1381 ccattcttc ttctcttga tgacgcgtt gtcatttgc tgcgtgtt gacagtttt
1441 caacaggcag agctgtgtcg cacagcgtt ctgtgcgtca gagccagctg aggacaggct
1501 tgcctggact tctgtttagt aggatttttt gtgtttctt aattttttat atgggtattt
1561 gtatataat tttaagactt ttttttctca ctattgggtt accttataaa tggatggaa
1621 agttaatata attttaataa ttgtttggg ggcataatgc tgacatataat tcagagtgtt
1681 gtatTTTAA ggttagcgtt acctttagttt tgactaagga tgacactaat tgtagctgt
1741 ttgaaaatata tatataatata aatataataa aatataataa tatatgccag tcttggctga
1801 aatgttttat ttaccatagt ttatatactg tgggtgttt tgcgtggca cgggatatgg
1861 aacgaaaact gctttgtat gcatgttgc acattaatag tattgtaaag ttacattttt
1921 aaataaaca aaaaactgttc tggactgca atctgcacac acaacgaaca gttgcatttc
1981 agagagtctt ctcaattttt aagttttttt ttttaataa agatttttgt ttccaaaaaa
2041 aaaaaaaaaa aaaaaaaaaa aaaa

```

SEQ ID NO: 223

40 Amino acid sequence of human RDC1 encoded by the DNA sequence shown in SEQ ID NO: 222.

```

MDLHLFDYSEPGNFSDISWPCNSSDCIVVDTVMCPNMPNKSVLVLYTLSFIYIFIVIGMI
ANSVVVVNIQAKTTGYDTHCYILNLAIADLWVVLTIPIVWWVSVLVQHNQWPMGELTCKVT
45 HLIFSIHLFGSIFLTCMSVDRYLSITYFTNTPSSRKKMVRVVVCILVWLAFCVSLPDT
YYLKTVTTSASNNETYCRSFYPEHNSIKEWLIGMELVSVVLGFAVPSIIAVFYFLLARAIS
ASSDQEKGSSRKIIFSYYVVFLVCWLPHYAVLTDIFSIHLHYIPPTCRLEHALFTALHVT
QCLSLVHCCNPVLYSPINRNRYELMKAFIGKYSAKTGLTKLIDASRVSETEYSALEQS
TK

```

SEQ ID NO: 224

gi|31560714|ref|NM_007722.2| Mus musculus chemokine orphan receptor 1 (Cmkor1), mRNA

SEQ ID NO: 225

Amino acid sequence of mouse RDC1 encoded by the DNA sequence shown in SEQ ID NO: 224.

50 MDVHLFDYAEPGNYS DIN WPCNSSDCIVD TVQCPTMPNKNVLLYTL SFIYIFIFVIGMI
ANSVVVVVN IQAKTTG DTHCY I LNLAIADLWV VITIPVWWVSLVQHNQWP MGE LTCKIT
HLIPS INLF GS IF FLACMSV DRYLSITYFTGTSSYKKKMVRVVCILVWLLA FFVSLPDT
YYLKTVTSA NN NETYCRSF YPEHSIKEWLIGMELVSVILGF AVPFTI IA F YFLARAMS
ASGDQE KHS SRK IIIFS YV VFLVCWL PYHFVULLDIFSILHYI PFTC QLEN VLFTALHVT
55 QCLSLVHCCVNPVLYSFINRNYRYELMKAFI FK YSAKTGLTKLIDASRVSETB YSALEON

TK

SEQ ID NO: 226

gi|16758073|ref|NM_053352.1| Rattus norvegicus chemokine orphan receptor 1 (Rdc1), mRNA

SEQ ID NO: 227

Amino acid sequence of rat RDC1 encoded by the DNA sequence shown in SEQ ID NO: 226.

40 MDVHLFDYVEPGNYS DINWPCNSSDCI VVDTVQCPAMPNKVNLLYTLSFIYIFIFVIGMI
ANSVVVVNVNIQAKTTGYDTHCYILNLIAIDLWVWITIPVWVVSLSVQHNQWPMGELTKIT
HLIIFSINLFGSIFFACMSVDRYLSITYFTSTSSYKKKMVRVVCVLWVLLAFFVSLPDT
YYLKTVTSASNNEETYCRSPYPEHSIKEWLIGMELVSVILGFAVPFTIIIAIFYFLARAMS
45 ASGDQEKGHSSRKIIFSYVVVFLVCWLPHYHFVLLDIFSILHYIPFTCQLENVLFTALHVT
QCLSLVHCCVNPVLYSFINRNYRYBLMKAFIFKYSAKTGLTKLIDASRVSETEYSALEQN
TK

SEQ ID NO: 228

gi|4759145|refNM_004787.1| Homo sapiens slit homolog 2 (Drosophila) (SLIT2), mRNA

1 cagagcaggg tggagagggc ggtgggaggc gtgtgcctga gtgggctcta ctgccttgg
61 ccatattatt ttgtgcacat ttccctggc actctgggtt gctagccccg ccgggactg
121 ggcctcagac actgcgcggt tccctcgag cagcaagcta aagaaagecc ccagtgcgg
181 cgaggaagga ggccgcgggg aaagatgcgc ggcgttggct ggcagatgtc gtccctgtcg
5 241 ctggggtag tgctggcgat cctgaacaag gtggcacgc aggctgccc ggccgcgtgc
301 tttgtctcg ggagcacagt ggactgtcac gggctggc tgccgcagct gcccaggaaat
361 atccccgca acaccgagag actggattta aatggaaata acatcacaag aattacgaag
421 acagattttg ctggtcttag acatctaaga gtcttcagc ttatggagaa taagattagc
481 accattgaaa gaggagcatt ccaggatctt aaagaactag agagactgcg tttaaacaga
10 541 aatcacccctc agctgttcc tgagttctg tttcttggg ctgcgaagct atacaggctt
601 gatctcagtg aaaaccaaata tcaggaatc ccaaggaaag ctttccgtgg ggcagttgac
661 ataaaaaaatt tgcaacttgaa ttacaaccag atcagctgta ttgaagatgg ggcattcagg
721 gctctccggg accttggaaat gtcactctc aacaataaca acattactag actttctgt
781 gcaagttca accatatgcc taaaacttagg acttttcgac tgcatcaaa caacctgtat
841 tgtgactgcc acctggcctg gctctccgac tgcttcgac aaaggctcg ggttggctg
901 tacactcagt gtatggccc ctccccacgt agaggccata atgtagccg ggtcaaaaa
961 cgagaatttg tctgcagtgg tcaccagtca ttatggctc ctttctgt tagtgcac
1021 tgccctgccc cctgtacctg tagcaacaat atcgttagact gtcgtggaa aggtctca
1081 gagatccccca caaatcttcc agagaccatc acagaataac gtttggaaaca gaacacaatc
20 1141 aaagtcatcc ctccctggagc ttcttcacca tataaaaagc ttagacgaat tgacctgagc
1201 aataatcaga tctctgaact tgccaccat gcttccaag gactacgctc tctgaattca
1261 cttgtctct atggaaataa aatcacaagaa ctccccaaaa gtttatttga aggactgtt
1321 tccttacagc ttcttattttt gaatgccaac aagataaaact gccttcgggt agatgcttt
1381 caggatctcc acaacttggaa cttctctcc ctatatgaca acaagctca gaccatcgcc
25 1441 aaggggacct tttcacctc tcgggcccatt caaactatgc atttggccca gaacccttt
1501 atttgtgact gccatctcaa gtggctagcg gattatctcc ataccaaccc gattgagacc
1561 agtgggcccc gttgcaccag ccccccggc ctggcaaaaca aaagaatgg acagatcaaa
1621 agcaagaaat tccgttggtc agttaaagaa cagtatttca ttccaggatc agaagattat
1681 cgatccaaat taagtggaga ctgttttgcg gatctggctt gcccctgaaaa ggttgcgtgt
30 1741 gaaggaacca cagtagattt ctctaatcaa aagctcaaca aaatcccgaa gcacattccc
1801 cagtcactg cagagttgcg tctcaataat aatgaatttta cctgttggg agccacagga
1861 atctttaaga aacttcttca attacgtaaa ataaacttta gcaacaataa gatcacagat
1921 attgggggg gaggatttga aggagcatct ggtttaatg aaatacttct tacgagtaat
1981 cgtttggaaa atgtgcagca taagatgttc aagggtttgg aaagcctcaa aactttgtat
35 2041 ttgagaagca atcgaataac ctgtgtgggg aatgacagg tcataggact cagttctgt
2101 cgtttctt ctttgtatga taatcaattt actacagttt caccaggggc atttgcata
2161 ctccatttt tatctactct aaacctttt gccaatectt ttaactgtaa ctgttacatcg
2221 gcttgggttgg gagagtggct gagaaagaag agaattgtca cggggaaatcc tagatgtcaa
2281 aaaccataact ttctgaaaga aataccatc caggatgtgg ccattcagga ctteacttgc
40 2341 gatgacggaa atgatgacaa tagttgcctc ccacttttcc getgtccatc tgaatgtact
2401 tgcttggata cagtcgtccg atgtacaaac aagggtttga aggtcttgc gaaaggtatt
2461 ccaagagatg tcacagagtt gtatctggat gggaaaccaat ttacactgg tcccaggaa
2521 ctctccaact acaaacattt aacacttata gacttaagta acaacagaat aagcacgcctt
2581 tctaattcaga gcttcagcaa catgaccatc ctccctcacct taattcttag ttacaacccgt
45 2641 ctgagatgta ttccctctcg caccttgcgat ggattaaagt ctcttcgatt actttcttca
2701 catggaaatg acatttctgt tgcctgaa ggtgtttca atgatcttc tgcattatca
2761 catctagcaa ttggagccaa ccctcttac tgcattgttgc acatgcagt gttatccgac
2821 tgggtgaagt cggaaatataa ggagcttgcgattgtcgat gttgttgc tggagaaatg
2881 gcagataaaac tttactcactc aactccctcc aaaaaatttta cctgtcaagg tcctgtggat
50 2941 gtcaatattt tagctaagtg taacccctgc ctatcaaata cgtgtaaaaa tgatggcaca
3001 tgtaatagtg atccagttga cttttaccga tgcacctgtc catactggttt caaggggcag
3061 gactgtgatg tcccaattca tgcctgcac agtaacccat gtaaaacatgg aggaacttgc
3121 caattaaagg aaggagaaga agatggattc tgggttgcattt gtcgtatgg atttgaaggaa
3181 gaaaattgtg aagtcaacgt tgatgattgt gaagataatg actgtaaaaa taattctaca
3241 tgcgtcgatg gcatataaa ctacacatgc ctttgcggccat ctgagttatc aggtgagtt
3301 tgcgtggaga agctggactt ctgtgcggc gacctgaacc cctgcccagca cgatccaaag
3361 tgcattctaa ctccaaaggg attcaatgt gactgcacac cagggtacgt aggtgaacac
3421 tgcgcacatcg attttgcgaa ctgccaagac aacaagtgtaa aaaaacggcgc ccactgcaca
3481 gatgcgtga acggctatac gtgcataatgc cccgaagggtt acagtggctt gttctgtgag
3541 ttttctccac ccattggtccct ccctcgatcc agccctgtg ataatttta ttgtcagaat
60 3601 ggagctcagt gtatgcgtc aataaaatgag ccaatatgtc agtgtttgc tggctatca

3661 ggagaaaaagt gtgaaaaatt ggttagtgtg aatttataa acaaagagtc ttatcttcag
 3721 attccttcag ccaagggtcg gcctcagacg aacataaacac ttcagattgc cacagatgaa
 3781 gacageggaa tcctccgtta taagggtgac aaagaccata tgcggtaga actctatcg
 3841 gggcggttgc tgccagcta tgacaccggc tctcatccag ctctgccat ttacagtgtg
 5 3901 gagacaatca atgatggaaa cttccacatt gtgaaactac ttgccttggc tcagagtctc
 3961 tctttgtccg tggatgggtgg gaaccccaaa atcatacta acttgtcaaa gcagtcact
 4021 ctgaattttg actctccact ctatgttagga ggcattccag ggaagagtagaa cgtggcatct
 4081 ctgcgccagg cccctgggca gaacggAAC agctccacg gctgcacccg gaacctttac
 4141 atcaacagtg agctgcagga cttccagaag gtgcgcgtgc aaacaggcat ttgccttggc
 10 4201 tgtgagccat gccacaagaa ggtgtgtgcc catggcacat gccagccccag cagccaggca
 4261 ggcttcacct gcgagtgcacca ggaaggatgg atggggcccc tctgtgacca acggaccaat
 4321 gacccttgccttggaaataa atgcgtacat ggcacccgtct tgcccatcaa tgcgttctcc
 4381 tacagctgttga agtgcttggat gggccatggaa ggtgtctct gtgatgaaga ggaggatctg
 4441 ttaaccat gccaggcgat caagtgcacg cacggaaagt gcaggcttc aggtctgggg
 15 4501 cagccctact gtgaatgcacg cagtggatac acgggggaca gctgtatgc agaaatctct
 4561 tgcgagggg aaaggataag attattac caaaaggcgcg aggctatgc tgcttgc当地
 4621 acaaccaaga aggtgtcccg attagagtgc agaggtgggt gtgcaggagg gcagtgc当地
 4681 ggaccgctga ggagaagcg gcgaaatac tcttcgeat gcactgacgg ctccctt
 4741 gtggacgagg ttgaaaatgtt ggtgaagtgc ggctgtacga ggtgtgtgc ctaaacacac
 20 4801 tcccggcagc tctgtcttggaaaaggatgttatactt gaccatgtgg gactaatgaa
 4861 tgcttcatacg tggaaatattat tggaaaatac agaaatgact tatttttatt
 4921 atgagaataa agacttttt tctgcatttgc

SEQ ID NO: 229

Amino acid sequence of human SLIT2 encoded by the DNA sequence shown in SEQ ID NO:

25 228.

MRGVGQWQMLSLSLGLVLAILNKVAPQACPAQCSCSGSTVDCHGLALRSVPNIPRNTERL
 DLNGNNITRITKTDFAGLRHLRLVQLMENKISTIERAFQDLKELERLRLNRNHLQLFPE
 LLFLGTAKLYRLLDSENQIQAIPRKAFRGAVIDIKNLQLDYNQICIEDGAFRALRDLEVL
 TLNNNNITRLSVASFNHMPKLRTFRLHSNNLYCDCHLAWLSDWLQRPRVGLYTQCMGPS
 30 HLRGHNVAEVQKREFVCSGHQSFMAPSCSVLHCPAACTCSNNIVDCRGKGLTEIPTNLPE
 TITEIRLEQNTIKVIPPGAFPSVKLRLDLSNNQISELAPDAFQGLRSLSNLSVLYGNKI
 TELPKSLFEGLFLSLLNANKINCLRVDAFQDLHNLNLLSLYDNKLQTIAKGTFSPCLR
 AIQTMHLAQNPFCIDCHLKWLADYLHTNPIETSGARCTS PRRLLANKRIGQIKSKKPRCSA
 KEQYFIPGTEDYRSKLSGDCFADLACPEKRCCEGTTVDCSNQKLNKIPHEHIPQYTAELRL
 35 NNNEFTVLEATGIFKKLPQLRKINFNSNNKITDIEEGAFEGASGVNEILLTSNRLENVQHK
 MFKGLESLKTLMLRSNRITCVGNDSFIGLSSVRLLSLYDNQITTVAPGAFDTLHSLSTLN
 LLANPPNCNCYLAWLGEWRKKRIVTGNPRCQKPYFLKEIPIQDVAIQDFTCDDGNDNS
 CSPLSRCPTECTCLDTVVRCSNKGLKVLPGKIPRDUVTELYLDGNQPTLVPKELSNSYKHLT
 LIDLSNNRISTLSNQFSNMTQLLTLILSYNRLRCIPPRTFDGLKSLRLLSLHGNDISVV
 40 PEGAFNDLSALSLSHLAIGANPLYCDCNMQWLSDWVKSEYKEPGIARCAAGPGEMADKLLLTT
 PSKKFTCQGPVDVNILAKCNPCLSNSPCNKDGTCSNDSPPDVFYRCTCPYGFKGQDCDVPPIHA
 CISNPCKHGGTCHLKEGEEDGFWCICADGFEGENCEVNVDCCEDNDCCENNSTCVDGINNY
 TCLCPPEYTGELCEEKLDFAQDLDNPQHQHDKCILTPKGFKCDCTPGYVGEHCDIDFDDC
 QDNKCKNGAHCTDAVNGYTCICPEGYSGLCEFSPPMVLPRTPCDNFDCQNGAQCIVRI
 45 NEPICQCLPGYQGEKCEKLVSVNFINKESYLOQIPSASKVRPQTNTLQIATDEDSGILLYK
 GDKDHIAVELYRGRVRASYDTGSHPASAIYSVETINDGNFHIVEELLALDQSLSLSDGGN
 PKIITNLSKQSTLMFDSPLYVGGMPGKSNSVASLRQAPGQNGTSFHGCIRNLINSELQDF
 QKVMQGTGILPGCEPCHKVCAHGTCPQSSQAGFTCECQBGWMGPLCDQRTNDPCLGNKC
 VHGTCLPINAFSYSCKCLEGHGGVLCDEEEDLFNPQCQAIKCKHGKRLSGLGQPYCECSS
 50 GYTGDSCDREISCRGERIRDYYQKQQGYAACQTTKKVSRLECRGGCAGGQCCGPLRSKRR
 KYSPECTDGSSFVDEVEKVVKGCTRVCVS

SEQ ID NO: 230

Amino acid sequence of human SLIT2, a soluble active secreted form derived from SEQ ID NO:229.

QCSCSGSTVDCHGLALRSVPNIPRNTERLDLNGNNITRITKTDFAGLRHRLRVQLMENK
 ISTIERGAFQDLKELERLRLNRNHLQLFPELLPLGTAALKYRLLDSENQIQAIPRKAFRGA
 VDIKNLQLDYNQISCIEDGAFRALRDLEVTLNNNNITRLSVASFNHMPKLRTFRLHSNN
 LYCDCHLAWLSDWLQRPRVGLYTQCMGPSPHLRGHNVAEVQKREFVCSGHQSFMAPCSV
 5 LHCPAACTCSNNIVDCRGKGLTEIPTNLPETITEIRLEQNTIKVIPPGAFSPYKKLRID
 LSNNQISELAPDAFQGLRSILNSLVLYGNKITELPKSLFEGLFLSFLQLLLNNANKINCLRV
 AFQDLHNLLNLLSYDNKLQTIAKGTPSLRAIQTMLAQNPFICDCDHLKWILADYLHTNPI
 ETSGARCTS PRRLLANKRIGQIKSKKFRCSAKEQYFIPGTEDYRSKLSGDCFADLACPEKC
 RCEGTTVDCSNQKLNKIPHEHIPOYTAELRLNNNEFTVLEATGIFKFLPQLRKINFNSNNKI
 10 TDIEEGAPEGASGVNIEILLTSNRLENVQHKMFKGLESLKTLMLRSNRITCVGNDSFIGLS
 SVRLSLSYDNQITTAVPAGFDLTLHSLSTLNLLANPNCNCYLAWLGEWLRKKRIVTGNPR
 CQKPYFLKEIPIQDVAIQCDDGNDNSCSPLSRCPTECTCLDTVVRCSNKGLKVLPK
 GIPRDVTELYLDGNQFTLVPKELSNEYKHLTLIDLSNNRISTLSNQSFNSMTQLLTLILSY
 NRLRCIPPRTFDGLKSLRLLSLHGNNDISVVPAGAPNDLSALSHLAIGANPLYCDCNMQWL
 15 SDWVKSEYKEPGIARCAGPGEMADKLLTTPSKFKTCQGPVDVNILAKCNPCLSNPCKND
 GTCNSDPVDFYRCTCPYGFKGQDCDVPIHACISNPCKHGGTCHLKEGEEDGFWCICADGF
 EGENCEVNVDDENDCEENNSTCVDGINNYTCLCPPEYTGELCEEKLFCAQDINPCQHD
 SKCILTPKGFKCDDCTPGYVGHEHCDIDFDDCQDNCKNGAHCTDAVNGYTCICPEGYSGLF
 CEFSPPMVLPR

20 SEQ ID NO: 231

gi|30794373|ref|NM_178804.2| Mus musculus slit homolog 2 (Drosophila) (Slit2), mRNA

1 tattcagaac ttaagttgcc cacggatctt ctgctctgtc agaaaaggctt gaagagcaga
 61 ggaaagacct gtgccttgtc cagctctccccc gccccatatac actgttccag attactgtgt
 121 gagcatctcc cccgggtctg tgggctgcaa gcccagcgcc aggcaactggg cctcgac
 181 tgcccggtt ttacacaacc gaaagctcaa gagaagtctt tcaaagcaag gagtcatta
 241 gggaaagatga gtggcattgg ctggcagaca ctgtccctat cgctggggtt agtgttgtcg
 301 atottgaaca aggtggcgcc gcaggcgtgc cccggcccaactgtcctgttc aggcaac
 361 gtggactgtc atgggctggc actgcgcagt gtgcccaggatataccccca caacaccgag
 421 agactggatt tgaatggaaa taacatcacg aggatcacga agacagattt tgctggctc
 481 aggcaccca gaggcttca gtcatggag aacagaatca gcaccatcga gaggggagca
 541 ttccaggatc ttaaggagct ggaaagactg cgttttaaca gaaataacct tcagttttt
 601 cctgagctgc tggttctcg gactgcgaag ctctaccggc ttgatctcag taaaatcaa
 661 attcaagcaa ttccaaggaa ggctttccgt ggggcagttt acattaaaaa cctgcaactg
 721 gattacaacc agatcagctg cattgaagat ggggcgttca gagctctacg agatctggaa
 781 gtgcctactc tgaacaataa caatattact agacttcacg tgcaagttt caaccatatg
 841 cctaaactta ggacatttcg actccactcg aacaacttgtt actgcgactg ccacccatgc
 901 tggctctcag actggcttcg ccaaaggcca cgggtgggtc tgacactcgtt gtttatggc
 961 ccatcccacc tgaggggcca caatgttagca gaggttcaaa aacgagagtt tgcgtcag
 1021 ggtcaccagt cattcatggc tccctcttcg agtgtctgc actgccccgc tgcttgacc
 1081 tggtagcaaca acatttgtaga ctggcgaggg aaaggctca ctgagatccc cacaatctg
 1141 cctgagacca tcacagaaat acgtttggaa cagaactcca tcagggtcat ccctccagga
 1201 gccttctcac cataaaaaa gcttagacga cttagaccta gcaacaacca gatctctgaa
 1261 cttgcaccag atgccttcca aggactgcgc tctctgaatt caattgttct gtatggaaat
 1321 aaaatcacag aactccaaa aagtttatttca gaggactat ttcttgcac gctactatta
 1381 ttgaatgcca acaagataaa ctgccttcgg gttagatgtt ttctaggaccc gcacaacttg
 1441 aaccttctct ctttatataa caataagctt cagacgggtt ccaagggcac cttctcagcc
 1501 ctcagagcca tccaaactat gcatttggcc cagaatccctt tcatttgcata ctgcctatc
 1561 aagtggctag cggattatct ccacaccaac ccaattgaga ccagcggtgc cgggtgcacc
 1621 agccccccgc gcctggcaaa caaaagaatt ggacagatca aaagcaagaa attccgtt
 1681 tcaggtacag aagattatcg atcaaaaatttca gttggagact gtttgcaga cttggctt
 1741 cctgagaagt gtgcgttgta agggaccaca gttagactgtt ccaatcaaag actcaacaaa
 1801 atccctgacc atattccca gtacacacgca gagctgcgtc tcaataataa tgaattcaca
 1861 gtgttagaaat ccacggaaat attaagaaa ttctctcgt tacgtaaaat caactttagc
 1921 aacaataaga tcacggatat cgaggagggt gcatttgcag ggcgcgtctgg tgcgtatggaa
 1981 attcttctca ccagtaaccg tttggaaaat gttcagcata agatgttcaaa aggactggag
 2041 agcctcaaaa cattgtatgtt gagaagtaat cgaataagct gtgttgggaa cgacagttc
 2101 ataggactcg gtctgtgc tctgtctctt ttatatgaca atcaaaattac cacagtggca

2161	ccaggagcat	ttgattctct	ccattcatta	tccactctaa	acctcttggc	caatccttgc
2221	aactgttaact	gtcacctggc	atggctggga	gaatggctca	gaaggaaaag	aattgttaaca
2281	ggaaatcctc	gatgccaaaa	accctacttc	ctgaaggaaa	tcccaatcca	ggatgttagcc
2341	attcaggact	tcacacctgt	tgatggaaat	gatgacaata	gttgctctcc	actctcccg
5	2401	tgtccttctg	aatgtacctg	cttgataca	gtggtacgat	gtagcaacaa
	2461	gtttgccta	aaggatttcc	aaaagatgtc	acagagctgt	atctggatgg
	2521	acgctggtcc	cgaaggaaact	ctctaactac	aaacatttaa	cacttataga
	2581	aaccgaataa	gcacccttgc	caatcaaagc	ttcagcaaca	tgacccagct
10	2641	atcctcagtt	acaaccgtct	gagatgtatc	cctccacgaa	cctttgatgg
	2701	cttcggttac	tgtcttaca	tggaaatgac	atttctgtt	tgccctgaagg
	2761	gacttgtcag	ccttgcaca	cttagcgatt	ggagccaacc	ctctttactg
	2821	atgcagtgg	tatccgactg	ggtaagtcg	gaatataagg	aacctggaaat
	2881	gccggccctg	gagaaatggc	agataaattta	ttactacta	ctcccctccaa
15	2941	tgtcaaggc	ccgtggatata	cactattca	gccaagtgt	atcccctgtt
	3001	tgtaaaaatg	atggcacctg	taacaatgac	cccggttatt	tttategatg
	3061	tatggattca	agggtcagga	ctgtgtatgc	cccatccatg	tttgcataatgt
	3121	aaacatggag	gaacttgtca	cttaaaggaa	ggagagaatg	ctggattctg
	3181	gctgtatgg	ttgaaggaga	aaactgtgaa	gtcaatattg	atgattgtga
20	3241	tgtggaaata	attctacatg	cggtgtatgg	attaacaact	acacatgtct
	3301	gaatacacacag	gtgaactgt	tgagggaaag	ctggacttct	gtgcacaaga
	3361	tgccagcatg	actccaaatgt	catccctgact	ccaaagggtat	tcaagtgtga
	3421	ggatacatgt	gtgagactg	tgacatttgc	tttgcattact	gccaagataaa
	3481	aacgggtgtc	actgcacaga	tgccgtgaac	ggatacacgt	gcgtctgtcc
25	3541	agtggcttgc	tctgtgagtt	ttctccaccc	atggctctcc	ctcgcaccag
	3601	aattttgatt	gccagaatgg	agccccatgt	atcatcagga	taaatgaacc
	3661	gttttgcctg	gtcacctggg	agagaatgt	gagaatttgg	tcagtgtaaa
	3721	aaagagtcc	atcttcagat	tccttcagcc	aagggttgcgc	ctcagacaaa
	3781	cagattgcca	cagatgaaga	cagcggcatc	ctcttgcata	aagggtgacaa
30	3841	gcccgttggac	tctatagagg	gcgagttcga	gccagctatg	acacccgtc
	3901	tctgcattt	acagtgtgg	gacaatcaat	gatggaaact	tccacattgt
	3961	accctggatt	ccagtcattt	cctctctgt	gtggaggaa	gccctaaatgt
	4021	ttgtccaaac	aatctactct	gaatttgcac	tctccactct	atgttaggagg
	4081	aaaaataaacg	tggcatccct	gcccggggcc	ccttgggaaa	atggcaccag
35	4141	tgtatccgg	acctttacat	taacagttag	ctgcaggact	tccggaaaat
	4201	accggaaattc	tgcctggctg	tgaaccatgc	cacaagaaa	tatgtgc
	4261	cagcccgagca	gccaatcagg	cttcacatgt	gaatgtgagg	aagggtggat
	4321	tgtgaccaga	gaaccatgt	tccctgcct	ggaaacaaaat	gtgtgc
	4381	cccatcaatg	ccttcctcta	tagttgcag	tgcttggagg	gcccattgg
40	4441	gatggaaag	aagatctctt	taaccctgc	cagatgtca	agtgcacaa
	4501	aggctttctg	gagtggggca	gcccatttgt	gaatgcacaa	gtggattcac
	4561	tgtgatagag	aaattttctt	tcggaggggaa	cggataagg	acttacca
	4621	ggttaatgc	cctgtcaaac	aactaaagaaa	gtatctcg	tggaatgcag
	4681	gctggaggcc	agtgtgttgg	acctctgaga	agcaagaggc	ggaaataact
45	4741	acagatggct	cctcatttt	ggacgagggt	gagaaagtgg	tgaagtgcgg
	4801	tgtccctct	aaagcgcgtc	ctagaagtt	ctagttcgg	cgaaggttgt
	4861	accatgttgg	actaattcat	gtttcataat	gaaaatattt	aaaatataca
	4921	gaacagactt	atttttata	tgataataaa	gacttgc	catttggaaa
	4981	taaaagccac	gcttgcacta	aagctcccc	tacacttgg	aagtgtggag
50	5041	cttggaggca	ttagtgaagc	ggtgggtacc	attgcaacac	ggagccatct
	5101	ccaatactag	cagaagcaca	tctacaagag	cctgacatgg	gactgtacgc
	5161	ttgccttagag	cgtcaaaacc	gtgaccctt	tcacatcgat	tcccuaaggac
	5221	caagtgtgt	agtggactg	agaggttagat	gaatgggaaat	acatcgagca
	5281	caaggatgt	gatataattt	gtgcaagatc	taaagtgtcc	ctagaatctg
55	5341	gaaagaaatg	ggtgtggagt	gtgtgtatgt	attttattgt	tagatagtc
	5401	aggcagaaac	agcacacgaa	ggtgtttagc	taccagttc	attttcaatgt
	5461	tataaatgac	aaaggagatg	ataaagaacc	aatagattat	tttgcatttt
	5521	taatatgaat	ttttgtttct	atgagttcta	aatatcccta	tttgcatttt
	5581	aggaatattt	attgtattaa	agtagtttt	acttaacgt	tttgcatttt
60	5641	gtttcttgc	gctttaatat	atattaattt	ataattatcc	tttgcatttt
	5701	aaactttaaa	aaaaatcag	gattttttg	gcaatagtg	taacatagga
	5761	ttatctcg	ataagtataat	gttgcattgt	ttgctgac	tttgcatttt

5821 cactgaactg tggctccctt caggacactt gcagaagggtt tgcaaaagtct cagagttagaa
 5881 acagcaagtg aatctatctg ccacatgtcc tcacaagaag aaagaactta tctgtagcaa
 5941 tggccagtaa gaagtagatg ttttacaaat taattaataa acatttcctt gccatgttt
 6001 gttggggagg gtggagaag aaagactgtt atgtcaaaaa ttgtatssc tttccaaaca
 5 6061 ataaaattcc tttattaacg taa

SEQ ID NO: 232

Amino acid sequence of mouse SLIT2 encoded by the DNA sequence shown in SEQ ID NO: 231.

10 MSGIGWQTLSSLGLVLSILNKVAPQACPAQCSCSGSTVDCHGLALRSVPRNIPRNTERL
 DLNGNNITRITKTD FAGLRLHRLVQLMENRISTIERGAFQDLKELERLRLNRNNNLQLFPE
 LLFLGTAKLYRLDLSENQIQAIPRKAFRGAVIDIKNLQLDYNQISCIEDGAFRALRDLEVL
 TLNNNNITRLSVASFNHMPKLRTRFLHSNNLYCDCHLAWLSDWLRQRPRVGLYTQCMGPS
 HLRGHNVAEVQKREFVCSGHQSFMAPSCSVLHCPAACTCSNNIVDCRGKGLTEIPTNLPE
 TITEIRLEQNSIRVIPPAGFSPYKKLRRLDLSNNQISELAPDAFQGLRSLNSLVLYGNKI
 15 TELPKSLFEGLFLSLLNANKINCLRVDAFQDLHNLNLSSLYDNKLQTVAKGTFSAJR
 AIQTMHLAQNPFIICDCHLKWLADYLHTNPIETSGARCTSPLLANKRIGQIKSKKFRCSSG
 TEDYRSKLSGDCPADLACPEKRCEREGTVDCSNQRINKIPDHIPQYTAELRLNNNEFTVL
 EATGIFKKLPQLRKINFNSNNKITDIEEGAFEGASGVNEILLTSNRLENVQHKMFKGLES
 20 KTLMLRSNRISCVGNDSLQIGLGSVRLLSLLYDNQITTAVPGAFDSLHSLSTLNLLANPFNC
 NCHLAWLGEWLRKRIVTGNPQRCQPKYFLKEIPIQDVAIQDFTCDDGNDDNSCPLSRCP
 SECTCLDTVVRCSNKGLKVLPGIPKDVTELYLDGNQPTLVPKELSNEYKHLTLIDLSNNR
 ISTLSNQSFSNMTQLLTLLSYNRLRCIPPRTFDGLKSLRLLSLHGNDISVVPAGEAFNDL
 SALSHLAIGANPLYCDCNMQWLSDWVKSEYKEPGIARCAGPGEMADKLLLTPSKKFTCQ
 25 GPVDITIQAQCNPCLSNCNPKNDGTCNNDPVDFYRCTCPYGFKGQDCDVPPIHACISNPCKH
 GGTCHLKEGENAGFWCTCADGPEGENCEVNIDDCEDNDCEENNSTCVDGINNYTCLCPPEY
 TGELCEEKLDFAQDLNPCQHDSKICLTPKGFKCDCTPGYIGEHCDIDFDDCQDNKCKNG
 AHCTDAVNGYTCVCPEGYSGLFCESPPMVLPRTSPCDNFDCQNGAQCIIINEPICQCL
 PGYLGEKCEKLVSVNFVNKESYLQIPSAKVRPQTNITLQIATDEDGILLYKGDKDHIAV
 30 ELYRGRVRASYDTGSHPASAIIYSVETINDGNFHIVELLTDSSLSSLDGGSPKVITNLS
 KQSTLNFDSPPLYVGGMGKNNVNASLRQAPGQNGETSFHGCIRNLINYINSELQDFRKMPMQTG
 ILPGCEPCHKVCAHGMCPQSSQSGFTCECEEGWMGPLCDQRTNDPCLGNKCVHGTCLPI
 NAFSYSCKCLEGGHGVLCDEEEDLFNPCQMIKCKHGKCRLSGVGPYCECNSGFTGDSCD
 REISCRGERIRDYYQKQQGYAACQTTKKVSRLECRGGCAGGQCCGPLRSKRKYSPECTD
 GSSFVDEVEKVVKGCGCARCAS

35 SEQ ID NO: 233

ENSRNOT00000005477 cDNA sequence, EnsEMBL transcript [Rattus norvegicus]

1 atgagtgcca ttggctggca gacactgtcc ctatctctgg cgtagtggtt gtcgatcttg
 61 aaccagggtgg cgcctcaggc gtgcccggcc cagtgcctt gttcaggcag cacagtggac
 121 tgtcatggc tggactgcgc cagtgtgcc aggaatatcc cccgcacac ggagagactg
 40 181 gatttgaatg gaaataacat cacaaggatc acgaagacag attttgcggg tctcagacac
 241 ctcagagttc ttcaagtcat ggagaacaag atcagcacca tcgagagggg agcattccag
 301 gatcttaagg agctagaaaag actgcgtta aacagaaaata accttcagtt gtttcctgag
 361 ctgctgtttc ttggactgc gaagctctac cggcttgatc tcagtgaaaa tcagattcaa
 421 gcaattccaa ggaaggcttt ccgtggtgc gttgacatta aaaatctgca gttggattac
 481 aaccagatca gtcgattga agatggggca ttccgagatc tgcgagatct ggaagtgtc
 541 actctgaaca ataacaatat tactagactt tcagtgcacca gttcaacca tatgcctaaa
 601 cttaggacat ttgcactcca ctccaacaac ctatactgcgc actgcccaccc ggcctggctc
 661 tcggactgcc ttgcacaaag gccacgggtt ggcttgata ctcagtgtat gggcccatcc
 721 cacctgaggg gccataatgt agcagaggtt caaaaacggag agtttgcgtc cagtggtcac
 781 cagtcattca tggctccctc ctgcagtggtt ctgcactgccc cgattgttt tacctgtac
 841 aacaacattg tagactgccc agggaaaggt ctcaactgaga tccccacaaa tctgcctgag
 901 accatcacag aaatacgttt ggaacagaac tccataaggg tcatccctcc aggagcattc
 961 tcaccatatac aaaaacttcg acgactagac ctgagtaata accagatctc ggaacttgc

1021 ccagatgcct tccaaggact gcgttctctg aattcccttg tcctgtatgg aaataaaatc
 1081 acagaactcc caaaaagttt atttgaagga ctgtttcct tacagctact attattgaat
 1141 gccaacaaga taaactgcct tcgggttagat gctttcagg acctgcacaa cttgaacctt
 1201 ctctecccatt acgacaataa gcttcagact gttgccaagg gcaccccttc agctctcaga
 5 1261 gccatccaaa ctatgcattt ggccccagaat cctttcattt gtgactgcca tctcaagtgg
 1321 ctacgggatt atctccacac caaccccaatt gagaccageg gtgcccgttg caccagtc
 1381 cgccgcctgg ctaacaaaag aattggacag atcaaaaagca agaaaattccg ttgttcagg
 1441 acagaagatt atcgatcaa attaagtgg aactgtttg cagacttggc ttgttcctgaa
 1501 aaatgttgtt gtgaagggac cacagtagac tgctccataa aaaaactcaa caaaatccca
 10 1561 gaccatattt cccagtagcac agcagagctg cgtctcaata ataatgaatt cacagtgtt
 1621 gaagccacgg gaatatttaa gaaacttcct caattgcgt aaatcaacat tagcaacaat
 1681 aagatctcg atatcgagggggggattt gaagggtcg tctgggtgtgaa tgagattctg
 1741 cttaccatggc acgggttggaa aatgttcag cataagatgt tcaaaggattt ggagagcc
 1801 aaaaatttgcattt tgctgagaag taatcgatata agctgtgtgg gaaacgcacag tttcacagga
 15 1861 ctccggttctg tgctgtctgt ctctttatata gacaatcaaa ttaccacagt tgccacc
 1921 gcatttggta ctctccattt attatctaca ctaaacctct tgcccaatcc tttcaactgt
 1981 aactgtcacc tggcatggct tggagaatgg ctcagaagga aaaaattgtt aacaggaaat
 2041 ctcgcattgcc aaaaacccta cttcttggaa gaaataccat tccaggatgt agccattc
 2101 gacttcaccc gtgtgacgg aaacgatgat aatagctgt ctccactctc ccgttgc
 20 2161 tcggaatgtt cttgttggaa tacagtagta cgatgttagca acaagggtt gaagggttta
 2221 cctaaaggca ttccaagaga tgcacccggaa ctgtatctgg atgggaacca gtttacactg
 2281 gtcggaaagg aactctccaa ctacaaacat ttaacactta tagacttaag taacaacaga
 2341 ataagcaccctt ttcacccaa aagttcagc aacatgaccc aacttctc cttatttctc
 2401 agttacaacc gtctgagatg tatccctccaa cggacccctt atggattgaa atctcttctg
 25 2461 ttactgtctc tacatggaaa tgacatttttctt gtcgtgcctt aagggtgcctt tgggtac
 2521 tcagccttgc cacacttgc aattggagcc aaccctttt actgtgattt taacatgc
 2581 tgggtatccg actgggtgaa gtcggaaat aaggaaacctg gaattgcccctt ctgtgc
 2641 cccggagaaaa tggcagataa attgttactc acaactccctt ccaaaaaattt tacatgt
 2701 ggttctgtgg atgttactat tcaagccaa tgcataaccctt gttgtcaaa tccatgtaaa
 30 2761 aatgatggca cctgtacccaa tgacccgggtt gattttttgc gatgcacccgc cccatatgg
 2821 ttcaaggggcc aggactgtga tgcacccattt catgcctgtt tcaacttcc atgtaaacat
 2881 ggaggaactt gccactttaaa agaaggagaa aatgatggat tctgggtgtac ttgtgctgat
 2941 gggtttggaa gagaaggctg tgacatcaat attgatgattt gcaagataa tgattgtgaa
 3001 aataatttca catgcgttgc tggaaattaa aactacacgt gtccttgc accggaaatc
 35 3061 acaggcgaac tgcgttgc aaaaactggac ttctgtgcac aagaccccttgc tccctgc
 3121 catgacttccaa agtgcatttgc gacgcacaa ggttcaatgt gtactgcac tccgggat
 3181 attgggtgac actgtgacat cgttgcatttgc gactgcacaa atacaatgtt cccaaac
 3241 gtcatttgcacatgcgttgc gacccgttgc tccctgcacccgc tccatgtgg
 3301 ttgttctgttgc agttttctcc accccatggc tccctgcacccgc tccatgtgg
 40 3361 gattgtcaga atggggccaa gtgttatcatc agggttgcatttgc aaccaatatgc ccagtgttgc
 3421 cctggctact tggggagaaa gtgttgcatttgc ttgttgcatttgc tgaattttgtt aacaaag
 3481 tccatcttc agattcccttc agccaaagggtt cgcacccatcaga caaacatcac acttc
 3541 gccacagatg aagacagccgg catcccttttgc tacaagggtt gcaaggacca cattgtgt
 3601 gaaacttccatc gaggccggatg tgcacccgc tatgcacccgc gtccttc
 45 3661 atttacatgttgc tggagacaat caatgtatggaa aacttccacca ttgttgcatttgc actgc
 3721 gatttgcatttgc ttcccttc tgggtatggaa ggaaggcccttgc aacatcatcac
 3781 aaacaatctt ctctgttgcatttgc ttccatgttgc gagggtatggcc tggggaaaat
 3841 aacgtggccatc cgctgcgc tggcccttgc cagaacccgc ccaacttccatc tgggtatgg
 3901 cggaaaccttgc acatgttgcatttgc gacttccgc tggcccttgc
 3961 atttgcatttgc gtcgttgcatttgc atggccacaa aatgttgcatttgc
 4021 agcaggccat cggccatc tgggtatggcc gagggttgcatttgc
 4081 cagagaacatc atgttgcatttgc tggcccttgc
 4141 aacgccttgc cttacatgttgcatttgc gaggccacgc gggggccatc
 4201 gaagaagatc tgggttgcatttgc
 55 4261 tctggcttgc ggcaggccatc tgggtatggcc
 4321 agagaaatattt cttgttgcatttgc gggatttgcatttgc
 4381 gtcgttgcatttgc aacgttgcatttgc
 4441 gggcaggccatc tgggttgcatttgc
 4501 gggatccat tgggttgcatttgc
 60 4561 tccttgcatttgc

SEQ ID NO: 234

Amino acid sequence of rat SLIT2 encoded by the DNA sequence shown in SEQ ID NO: 233.

MSGIGWQTLSSLALVLISLNQVAPQACPAQCSCSGSTVDCHGLALRSVPNIPRNTERL
 5 DLNGNNITRITKTDFAGLRHRLVQLMENKISTIERGAFQDLKELERLRLNRNNLQLFPE
 LLFLGTAKLYRLLDSENQIQAIPRKAFRGAVDIKNQLDYNQISCIEDGAFRALRDLEV
 TLNNNNITRLSVASFNHMPKLRTRLHSNNLYCDCHLAWLSDWLQRPRVGLYTQCMGPS
 HLRGHNVAEVQKREFVCVSGHQSFMAPCSVLCPIACTCSNNIVDCRGKGLTIEPTNLPE
 TITEIRLEQNSIRVIPPAGFSPYKKLRRLLDSNNQISELAPDAFQGLRSLSLVLYGNKI
 10 TELPKSLFEGLFSLQLLLNANKINCLRVDAFQDLHNLLSLLYDNKLQTVAKGTFSA
 AIQTMHLAQNPFIQCDCHLKWLA
 15 DYLHTNPIETSGARCTS
 PRRLANKRIGQIKSKFRC
 SGGTEDYRSKLSGDCFADLACPEKRC
 EGTVD
 CSNQKLN
 KIPDHI
 PQYTAEL
 RLNNNEFT
 VLEATGIPKKLPQLRKINLSNN
 KITDIEEGAFEGASGVNE
 ILLTSNRLEN
 VQHKMF
 KGLESL
 KTLM
 LRSNR
 RISCV
 GND
 SFTGLGS
 VRL
 LSLLYDN
 QITTV
 VAPGA
 FGT
 LHS
 LST
 LN
 LANPF
 NC
 NCHL
 LA
 GEWL
 RKR
 IVT
 GPN
 PR
 CQ
 PK
 PY
 FL
 KE
 PI
 QD
 F
 C
 D
 G
 N
 D
 N
 S
 C
 P
 L
 S
 R
 C
 P
 SECT
 CL
 D
 T
 V
 V
 R
 C
 S
 N
 G
 L
 K
 V
 L
 P
 K
 G
 I
 P
 R
 D
 V
 T
 E
 LY
 LD
 G
 N
 Q
 F
 T
 L
 V
 P
 K
 E
 L
 S
 N
 Y
 K
 H
 L
 T
 L
 I
 D
 L
 S
 N
 R
 I
 S
 T
 L
 S
 N
 Q
 F
 S
 N
 M
 T
 Q
 L
 L
 T
 L
 I
 L
 S
 Y
 N
 R
 L
 R
 C
 I
 P
 P
 R
 T
 F
 D
 G
 L
 K
 S
 L
 R
 L
 L
 S
 L
 H
 G
 N
 D
 I
 S
 V
 V
 P
 E
 G
 A
 F
 G
 D
 L
 S
 A
 L
 S
 H
 L
 A
 I
 G
 A
 N
 P
 L
 Y
 C
 D
 C
 N
 M
 Q
 W
 L
 S
 D
 W
 V
 K
 S
 E
 Y
 K
 E
 P
 G
 I
 A
 R
 C
 A
 G
 P
 G
 E
 M
 A
 D
 K
 L
 L
 L
 T
 T
 P
 S
 K
 K
 F
 T
 C
 Q
 G
 P
 V
 D
 V
 T
 I
 Q
 A
 K
 C
 N
 P
 C
 L
 S
 N
 P
 C
 K
 N
 D
 G
 T
 C
 N
 N
 D
 P
 V
 D
 F
 Y
 R
 C
 T
 C
 P
 Y
 G
 F
 K
 G
 Q
 D
 C
 D
 V
 P
 I
 H
 A
 C
 I
 S
 N
 P
 C
 H
 G
 T
 C
 H
 L
 K
 E
 G
 E
 N
 D
 G
 F
 W
 C
 T
 C
 A
 D
 G
 F
 E
 G
 E
 S
 C
 D
 I
 N
 I
 D
 D
 C
 E
 N
 D
 C
 E
 N
 S
 T
 C
 V
 D
 G
 I
 N
 M
 Y
 T
 C
 L
 C
 P
 P
 E
 Y
 20 T
 G
 E
 L
 C
 E
 E
 K
 L
 D
 F
 C
 A
 Q
 D
 L
 N
 P
 C
 Q
 H
 D
 S
 K
 C
 I
 L
 T
 P
 K
 G
 F
 K
 C
 D
 C
 T
 P
 G
 Y
 I
 G
 E
 H
 C
 D
 I
 D
 F
 D
 D
 C
 Q
 D
 N
 K
 C
 K
 N
 G
 A
 H
 C
 T
 D
 A
 V
 N
 G
 Y
 T
 C
 V
 C
 P
 E
 G
 Y
 S
 G
 F
 C
 E
 F
 S
 P
 P
 M
 V
 L
 P
 R
 T
 S
 P
 C
 D
 N
 F
 D
 C
 Q
 N
 G
 A
 Q
 C
 I
 I
 R
 V
 N
 E
 P
 I
 C
 Q
 C
 L
 P
 G
 Y
 L
 G
 E
 B
 K
 C
 E
 K
 L
 V
 S
 V
 N
 F
 V
 N
 K
 E
 S
 Y
 L
 Q
 I
 P
 S
 A
 K
 V
 R
 P
 Q
 T
 N
 I
 T
 L
 Q
 I
 A
 T
 D
 E
 D
 S
 G
 I
 L
 L
 Y
 K
 G
 D
 K
 D
 H
 I
 A
 V
 E
 L
 Y
 R
 G
 R
 V
 R
 A
 S
 Y
 D
 T
 G
 S
 H
 P
 A
 S
 A
 I
 Y
 S
 V
 E
 T
 I
 N
 D
 G
 N
 F
 H
 I
 V
 E
 L
 L
 T
 D
 S
 S
 L
 S
 V
 D
 G
 G
 S
 P
 K
 I
 I
 T
 N
 L
 S
 K
 O
 S
 T
 L
 N
 F
 D
 S
 P
 L
 Y
 V
 G
 G
 M
 P
 G
 K
 N
 V
 A
 S
 L
 R
 Q
 A
 P
 G
 Q
 N
 G
 T
 S
 F
 H
 G
 C
 I
 R
 N
 L
 Y
 I
 N
 S
 E
 L
 Q
 D
 F
 R
 K
 V
 P
 M
 Q
 T
 G
 25 I
 L
 P
 G
 C
 E
 P
 C
 H
 K
 K
 V
 C
 A
 H
 G
 T
 C
 Q
 P
 S
 S
 Q
 G
 F
 T
 C
 E
 C
 E
 E
 G
 W
 M
 G
 P
 L
 C
 D
 Q
 R
 T
 N
 D
 P
 C
 L
 G
 N
 K
 C
 V
 H
 G
 T
 C
 P
 I
 N
 A
 P
 S
 Y
 S
 C
 K
 C
 L
 E
 G
 H
 G
 G
 V
 L
 C
 D
 E
 E
 D
 L
 F
 N
 P
 C
 Q
 V
 I
 K
 C
 K
 H
 G
 K
 C
 R
 L
 S
 G
 L
 G
 Q
 P
 Y
 C
 E
 C
 S
 S
 G
 F
 G
 D
 S
 C
 D
 R
 E
 I
 S
 C
 R
 G
 E
 R
 I
 R
 D
 Y
 Y
 Q
 K
 Q
 Q
 Y
 A
 C
 Q
 T
 K
 K
 V
 S
 R
 L
 E
 C
 R
 G
 G
 C
 A
 G
 G
 Q
 C
 C
 G
 P
 L
 R
 S
 K
 R
 R
 K
 Y
 S
 F
 E
 C
 T
 D
 G
 S
 S
 F
 V
 D
 E
 V
 E
 K
 V
 V
 K
 C
 G
 C
 T
 R
 C
 A
 S

SEQ ID NO: 235

30 gi|23238206|ref|NM_014452.3| Homo sapiens tumor necrosis factor receptor superfamily, member 21 (TNFRSF21), mRNA

1 gccaccacgt gtgtccctgc gccccgggtggc caccgactca gtcctcgcc gaccagtctg
 61 ggcagcggag gagggtggtt ggcagtggtt ggaagcttcg ctatggaaag ttgttccctt
 121 gctctctcgc gcccagtcct ctccttcgtt tctccctcagc cgctgtcgga ggagagcacc
 181 cggagacgcgc ggctgcagtc gcccggggctt ctccccgcct ggccggccgc gcccgcgg
 241 aggtgctgag cgccttcata gcttccttgc cgcctccctt cctctgtccccg gccgcagcag
 301 tgcacatgggg gtgttggagg tagatgggtt cccggccccc gaggccgggg tggatgcggc
 361 gctggggcaga agcagccgc gattccagat gccccggcg ccccccggccgc ccctgcagat
 421 ccccggttca gccatgggg a ccttcgcag cagcagcacc gcctcgccct cctgcagccg
 481 catcgccgc c gagccacag ccacgtat cgcggcgtcc ctcttcetgc ttggatcc
 541 tagcaccacc acagtcagc cagaacagaaa ggcctcgaat ctcattggca catacccca
 601 ttttgcgtt gcccggcc aggtgctaac ctgtgacaag tttccagcag gaacctatgt
 661 ctctgagcat ttatccaaaca caagcctgcg cgtctgcagc agttgcctg tggggacett
 721 taccaggcat gagaatggca tagagaaatg ccatgactgt atgcagccat gcccattggcc
 781 aatgatttgcgg aaattacctt gtgtcgccct gactgaccga gaatgcactt gcccaccc
 841 catgttcccg tctaagccta cctgtcccccc ccatacggtt tttccctgtgg gttgggggtt
 901 gggaaagaaaa gggacagaga ctgaggatgt ggggtgttaa cgttgtgtc ggggtaccc
 961 ctcagatgtt ctttcctatgt ttatccaaatg ccaagcatac acagactgtc tgagtcc
 1021 cctgggtgggtt atcaagccgg gaccaaggaa gacagacaaatc gtcgttggca cactcc
 1081 cttctcccaac tccacccatc cttcccttcgtt cacaggccatc ttccacgcgc ctgag
 1141 gggaaacccat gaaatccctt ctcctactt ttatccaaatg gcatgaaact caacaaatc
 1201 caactcttctt gctctgttta gaccaaggat actgagtagc atccaggaaag ggacagtc
 1261 tgacaaacaca agctcagcaa gggggaaaggaa agacgtgaac aagaccctcc caaaac
 1321 ggttagtcaac caccagcaag gccccccacca cagacacatc ctgaaagctgc tgccg
 tccat

	1381	ggaggccact	gggggcgaga	agtccagcac	gcccatcaag	ggccccaaaga	ggggacatc
	1441	tagacagaac	ctacacaaggc	attttgacat	caatgagcat	ttgccttgg	tgattgtgt
	1501	tttcctgt	ctgggtcttg	tgggtattgt	ggtgtgcagt	atccggaaaa	gtcgaggac
	1561	tctaaaaaaag	gggccccggc	aggatccccag	tgccattgtg	gaaaaggcag	ggctgaagaa
5	1621	atccatgact	ccaacccaga	accggggagaa	atggatctac	tactgcaatg	gcatggtat
	1681	cgatatctg	aagctttag	cagcccaagt	gggaagccag	tggaaagata	tctatcagtt
	1741	tctttgcaat	gccagtgaga	gggaggttgc	tgcttctcc	aatgggtaca	cagccgacca
	1801	cgagcgggccc	tacgcagctc	tgcagactg	gaccatccgg	ggccccggg	ccagcctcgc
	1861	ccagctaatt	agcgcctgc	gccagcacccg	gagaaacgat	gttgtggaga	agatcgtgg
10	1921	gctgatggaa	gacaccaccc	agctggaaac	tgacaaaacta	gtctcccg	tgagccccag
	1981	cccgcttagc	ccgagccccca	tccccagccc	caacgcgaaa	cttggaaatt	ccgcctctct
	2041	gaegggtggag	ccttccccac	aggacaagaa	caagggttcc	ttcgtggatg	agtcggagcc
	2101	ccttctccgc	tgtgactcta	catccagcg	ctctcccg	ctgagcagga	acggttccctt
	2161	tattacaaa	gaaaagaagg	acacagtgtt	ggggcaggtt	cgcctggacc	cctgtgactt
15	2221	gcagcctatc	tttgatgaca	tgctccactt	tetaaatcct	gaggagctgc	gggtgattga
	2281	agagattccc	caggctgagg	acaaaactaga	ccggctattt	gaaattattt	gagtcaagag
	2341	ccaggaagcc	agccagaccc	tcctggactc	tgtttatago	catcttctg	acctgctgt
	2401	gaacataggg	atactgcatt	ctggaaatta	ctcaattttag	tggcagggtg	gttttttaat
20	2461	tttcttctgt	ttctgatttt	tgttgtttgg	ggtgtgtgt	tgttgtttgt	tgtgtgtgt
	2521	tgtgtgtgt	tgtgtgtgt	ttaacagag	aatatggcca	gtgctttagt	tctttcttcc
	2581	tctcttctc	tctttttttt	ttaaataact	cttctggaa	gttggtttat	aaggctttgc
	2641	caggtgtaac	tgttgtgaaa	tacccaccac	taaagttttt	taagttccat	attttctcca
	2701	ttttgccttc	ttagtatttt	tcaagattat	tctgtgcact	ttaaatttac	ttaacttace
	2761	ataaatgcag	tgtgactttt	cccacacact	ggattgtgag	gtcttaact	tctaaaagt
25	2821	ataatggcat	tttgtgaattc	ctataagcag	tctttatgtc	tcttaacatt	cacacactact
	2881	ttttaaaaaac	aaatattttt	actatttttta	ttagtgtttt	tcctttataa	attttcttaa
	2941	agattaagaa	aatttaagac	cccatttgc	tactgtatg	caattcaact	ttgagttate
	3001	ttttaaaat	gtcttgata	gttcatattc	atggctgaaa	cttgaccaca	ctattgtga
	3061	ttgtatggtt	ttcacctgg	cacccgttgc	aatgttttgc	tacttgtact	tctttatgtc
30	3121	taatatgtctc	ttggctggaa	aatggaaatc	ctcaagccat	caggatttgc	tatthaagtgc
	3181	gcttgacaac	ttggccacca	aagaacttgc	acttcacattt	tttaggatttgc	agctgttctg
	3241	gaacacatttgc	ctgcacttttgc	gaaaggctaaa	atcaagtgc	agtggcgccc	tttccataga
	3301	gaatttgc	agctttgtt	taaaatgtt	cttgcattttt	atatacacat	aatcaatagg
	3361	tccaaatctgc	tctcaaggcc	ttggctctgg	ttggatttct	tcaccaatta	ctttaattaa
35	3421	aaatggctgc	aactgttgc	acccttgc	gatatatttgc	caactatgt	cccatatttca
	3481	aatgtacattt	ctaatgttgc	gttgcacgtt	tccaaatgttgc	aggtggcggt	gactcccttt
	3541	gtgtgggtgg	ggtttgggg	tagtgggttgc	ggaccgat	cagaaaaatgt	ccttcaagtg
	3601	tactaatttta	ttaataaaaca	tttaggttttgc	gttaaaaaaaa	aaaaaaaaaaaa	aaaaaaaaaaaa
	3661	aa					

40 SEQ ID NO: 236

Amino acid sequence of human TNFRSF21 encoded by the DNA sequence shown in SEQ ID NO: 235.

45 MGTPSSSTA^LASCSRIARRATATM^IAGS^LLLGFLSTTTAQPEQKASNLIGTYRVDRATGQVLTCDCPKCPAGTYVSEHCTNTSLRVCCSCPVGTFTRHEN^GIEKCHDCSQCPWP^MIEKLPCAALT^DRECTCP^PGMFOSNATCAPHTVC^PVGWGV^RKKGTETEDVRCKQCARGTFS^DV^PSSVMKCKAYTDCL^SQN^LVV^IKPGTKETDN^VC^GTLP^SFSS^SSPSGTA^IF^PPR^EH^MTHEVPSSTYV^PKGMNSTES^NSSASVRPKVL^SSIQEGTVPDNTSSARGKEDVN^KTL^PNLQVVNH^QQGP^HH^RH^IL^KL^LPSMEATGGEKS^STP^IK^GPKR^GH^PRQNL^H^GFD^INEHLP^WMIVL^FL^LVL^VVIVVCSIRKSSRTLKKGPRQDPSAIVEKAGL^KKS^MPTQNREKWIYYCNGHGIDIL^K50 LVA^AQVG^SQWKDIYQPLCNASER^EVA^AFS^NGYTADHERAYA^AQHWT^IR^GPEASLAQ^LIS^ALRQHRRNDV^VEKIRGLMEDTTQLET^DKLALPMSP^SPL^SPSPIP^SPNAKLENSALLT^VEP^SSPQDKNK^GFFF^DESEPLLRC^DSTSSGSS^SALSRNGSFITKEKKDT^VLQRQVL^DPCDLQPI^FDDMLHFLNPEELRV^IE^EIPOQAED^KL^DRL^FE^II^GV^KSQEA^SQT^LLD^SV^YSHLP^DLL

SEQ ID NO: 237

gi|31341673|ref|NM_178589.2| Mus musculus tumor necrosis factor receptor superfamily, member 21 (Tnfrsf21), mRNA

1 aggtgtcccc gagctgagtg gccatccgc tcagtcctc gccggccggt ctaggcacgc
61 gaggaggcga gtgcgttata gtggctggaa gcttcgttat gggaaagtgcg tctttacgc
121 tgcgcggct agccctgctc tctgggtctc cgagccgct gtcgttgag agcaccggaa
181 ggcgcgggtt gcgagcgcgc ctgttctca ccggccgggc gccagcgcgc ctgggcaggt
241 gctgagcgc tttcgagcc tccctgtct cctcccttcc cgcctgggt gcctggctgc
301 tgcagtgcac atgggctgt ggaggtatag gggttcaccc cccgtgaggc ggccgtggat
361 gccgcgtgg gcagaaaacag ccaccaattc cagtcgcgt gggggccgagc gccccggcg
421 cgcgtgcgag ccccgagctc ggccatgggg accccggcaa gcagcatcac cgcctcgcc
481 tcttcagcc gcacccggg ccaagtggaa gccacgatgg tgccggctc tcttcctcg
541 cttggattcc tcaagcaccat cacagctaa ccagaacaaa agactctgag tctccctggc
601 acctaccgccc atgttgcacc taccactggc caggtgtcaa ctcgcacaa gtccccagca
661 ggaacgtacg tctccgagca ctgtaccaac atgagcctgc gagtctgcag cagtcgcccc
721 gccccggaccc ttaccaggca cgagaacggc atagagagat gcatgactg tagtcagcca
781 tgcctatggc cgatgattga gagattaccc tgcgtgtct tgactgaccg agagtgcac
841 tgcacccaccc gaatgtatca gtctaattgt accttgcgtc cccatacagt gtccccgtg
901 ggctgggggtg tgcggaaagaa agggacagag aatgaagatg tgcgtgtaa gcagtgcgt
961 cggggtaacct tctctgacgt gccttcagt gtgtatgaagt gtaaaagctca cacggactgt
1021 ctgggtcaga acctggaggt ggtcaagcca gggaccaagg agacagacaa cgtctgtggc
1081 atgcgcctgt tcttcctccag cacaacccca ccttcctctg gcacagttac cttttctcac
1141 cctgagcata tggaaatccca cgatgtccct tcctccaccc atgagccca aggcatgaac
1201 tcaacagatt ccaactctac tgcctctgtt agaactaagg taccaaagtgg catcgaggaa
1261 gggacagtgc ctgacaatac gagtcacacc agtgggaaagg aaggcactaa taggaccctg
1321 cccaaacccac cacaagttac ccaccagca gccccccacc acagacacat tctgaagctg
1381 ctgcacatcg tcatggaggc cacgggttag aagtcacagca cagccatcaa ggcccccaag
1441 aggggtcacc ccagacagaa cgctcacaag catttcgaca tcaacagaca cttgccttgg
1501 atgatctgtcc ttttccttct gctggctctg gtgtatgatg tggtgtcag tatccgaaag
1561 agctccagga ctctcaaaaaa gggggccccc caggatccca gcccatactg gggccatagt ggaaaaggcg
1621 gggctgaaga agtccctgac tcccacccag aaccgggaga aatggatcta ctaccgcaac
1681 ggcacatggta ttgacatctt gaagctgtt gtagccccagg tgggaagcca gtggaggac
1741 atctatcagt ttctttgcaa cggcagcggag agggaggtgg cggccttctc caatggatac
1801 actgcagatc atgaacgggg ctacgcggct ctgcagcact ggaccatccg tggccttgag
1861 gccagccttgc cccagatct taggccttgc cggcagcacc gacgcaatga tggtgtggag
1921 aagatctgt ggctgtatgg agacacacag cagttggaaa cagacaact ggcttcccc
1981 atgagccca gtccgccttag cccgagcccc atgcccagtc ctaacgtgaa acttggaaat
2041 tccactctcc tgacagtggaa gcccteaccc ctggacaaga acaagtgttt ctttgtggac
2101 gagtcagaccc cccttctgcg atgcgactee acatccagtg gctttcagc actgagcaga
2161 aacggctctt ttattaccaaa agaaaaaaag gacacagtgt tgccgcggg cgcctggac
2221 ccctgtgact tgcagcccat ctttgcgtac atgctgcata tcctgaacc cgaggagctg
2281 cgggtgattt aagagattcc ccagggttag gacaaaactgg accgccttcc cgagatcatt
2341 ggggtcaaga gccaagaagc cagccagacc ctcttggact ctgtgtacag tcatcttct
2401 gacctattgt agaacacagg ggcactgtcat tctggaaatc aaccaactgg cgggtgtgatt
2461 tcatttcgtt tctgactttt gtgttttgt gtgtatgtat gttttttttt ttctttttt
2521 cccggtagtt tgggttcttt ctttcttctt ttctttttt gttttttttt ttctttttt
2581 ctttctttctt ttctttctt cttccttctt gaaagtgtat gttttttttt ttctttttt
2641 ataactgttg gaaaatgcc accactaaat tttttttttt gttttttttt ttctttttt
2701 ttgccttctt atatatatct tcaacactat tctgtgcact tttttttttt ttctttttt
2761 cagtgact tcccccataat gctgggtccc gagactctca tttttttttt ttctttttt
2821 catctgtga ctccctagaag tagacataag tctttcaacc tttttttttt ttctttttt
2881 tttttttttt attgttattt gtcttattgt ttgtgtttttt tttttttttt ttctttttt
2941 gggaaatctac gaccctgttg atgactgtaa ctcttattcga tttttttttt ttctttttt
3001 gtcttggat atagttcata ttcatggctg aaacttgcacc tttttttttt ttctttttt
3061 tatgggttttgc tgcgtggacac cgtacactgc ctgtataactt tttttttttt ttctttttt
3121 atgcgtctggg ctggagaatg aaatctttaa gtcaacccggaa tttttttttt ttctttttt
3181 acacctgggc caccaaagaa ctcgatcttcc atcttttttgg gacacccctg ctgcacccctg
3241 gaaagccaaac ctaagtgcc agtggcactt tttttttttt tttttttttt ttctttttt
3301 tttttttttt ttatcttttcc tttttttctc tttttttttt tttttttttt ttctttttt
3361 tccagtttgc cttcaaggcc ttgtgtgggtt ttcttcatca tttttttttt ttctttttt

3421 atggctgcag ctgtttaagaac tctttgtctga taaattttca actatgtctt catttatcta
 3481 cctgcccctct gatgttcagt cgtcagactc taatgcaaag gtggacgtcg gctgcctttg
 3541 cgtgggggggg ctttagtggtg aggaactgtat atcagaaaaaa aaatgccttc aagtataacta
 3601 atttattaat aaatattagg tgtttgg

5 SEQ ID NO: 238

Amino acid sequence of mouse TNFRSF21 encoded by the DNA sequence shown in SEQ ID NO: 237.

MGTRASSITALASCSRTAGQVGATMVAGSLLLLFLSTITAQPEQKTLSLPGTYRHVDRT
 TGQVLTCDKCPAGTYVSEHCTNMSLRVCSSCPAGTFRHENGERCHDCSQPCPWPMIER
 10 LPCAALTDRECICPPGMYQSNNGTCAPHTVCPVGWGRKKGTENEDVRCKQCARGTFSDVP
 SSVMKCKAHTDCLGQNLEVVKGPTKETDNVCGMRLFFSSTNPPSSGTFTSHPEHMESHD
 VPSSTYEPQGMNSTDSNSTASVRTKVPMSGIEEGTVPDNTSSTSKEGTNRTPNPPQVTH
 QQAPHRRHILKLKPSSMEATGEKSSTAIAKPKRGHPRQNAHKHFIDINEHLPWMIVLFLLL
 15 VLVLIVVCSIRKSSRTLKKGPQRQDPSAIVEKAGLKKSLTPTNREKWIYYRNNGHIDILK
 LVAAQVGSQWKDIYQFLCNASEREVAAFSNGYTADHERAYAALQHWTIRGPEASLAQLIS
 ALRQHRRNDVVEKIRGLMEDTTQLETDKLALPMSPPSPLSPSPMPSPNVKLENSTLLTVEP
 SPLDKNKCFVDESEPLLRCSTSSGSSALSRNNGSFITKEKDTVLRQVRLDPQCDLQPIF
 DDMLHILNPEELRVIEEIPQAEDKLDRLFEIIGVKSQEASQTLDSVYSHLPDLL

SEQ ID NO: 239

20 gi|34874517|ref|XM_236992.2| Rattus norvegicus similar to death receptor 6 (LOC316256), mRNA

1 cccgggaggcg cgggttgc aa ggcgcctgc ttctccccgc cggggcgcca ggcgcctgg
 61 gcagggtctg a ggcgccttc cggcgcctcc cctgtctgc ctgcgcctcc cctgcgc
 121 ttgtgtctg a gtcacatg ggctgtgg a ggtatgtgg ctacccgccc gtgaggcgcc
 181 ggtgatgtcg ggcgtggca gaaacagcca cggatcccag ctggcggtgg gccgagcgcc
 241 cggagcgccg ctgcgagccc cgggctcagc catggggacc tccgcaagca gcatcacccg
 301 cctgccttc tgcagccgca tcggccggca agttggagcc acgtatggtcg cggcgtccct
 361 tctttgtctc gggttctca gcaccatcac agcccaacca gaacaaaaaa ctctgatct
 421 cacgggcacg tacggccacg ttgaccgtac cactggccag gtgtcaacct ggcacaatg
 481 tccggcagga acgtatgtct cgcgacactg taccacacac agcctgcgag tctgcagcag
 541 ctgcccctcg gggaccttta ccaggcatga gaacggcata gagatgtcc atgactgtag
 601 tcagccatgc ccacggccga tgattggagat attacccgt gtcgccttga ctgaccggaga
 661 atgcacatgc ccacccggaa ttgtatcgtc taatggacc tgcgtcccccc acacgggttg
 721 ccccggtggc tgggggtgtga ggaagaaaagg gacagagaat gaagatgtgc ggttaagca
 781 gtgtgtctg ggtacccctt ctgacgtgc ttccagttgt atgaagtgtt gagcccacac
 841 ggactgtctg ggtcagaacc tgatgggtt caagcaggaa actaaggaga cagacaacgt
 901 ctgtggcgtg cacctgtctt cctccagcac gaccccatct tccccctggca tagtaccc
 961 ttctcatctt ggcacacgg aatcccacga tgcgtccctcc tccacccatgt agccccaaagg
 1021 catgaactca acagattcca actctactgc ctctgtttaga actaaggatc caagtgcacat
 1081 ccaggaagag acagtgcctg acaataacaag ctccacaggat gggaaaggaga gcacgaacag
 1141 gaccctgcca aacccaccac aacttaccca ccagcaaggc cccaccacca gacacatct
 1201 gaagctgtcg ccatcatcca tggaggccac tggtgagaag tccagcacag ccatcaaggc
 1261 ccccaagagg ggccatcccc gacagaaccc acacaaggat tccgacatca acgagcattt
 1321 gccctggatg attgtactct tccttctgt ggtcctggc ctcatgtgg tgtcagttat
 1381 ccgaaagagc tctaggactc tcaagaagg gccccggcag gatcccaggccatgt ccatcatgg
 1441 aaaggcaggc ctgaagaagt cttgtactcc aacccagaac cgggagaaat ggatctacta
 1501 cccgaatggc cacggatttg acatctgtaa gttgttagca ggcgcagggtgg gaagccagtg
 1561 gaaggacatc tatcgtttt tttgcaacgc cagcggagg gagggtggctg ctttctccaa
 1621 tggatacact gcagaccatg aacgagccca tgcagctctg cagcactggc ccattccgggg
 1681 ccctgaggcc agccttgctc agctcatcg cgccttgcc cagcaccgac gcaatgtatgt
 1741 tggatggaaag attcgtgggc tgatggaaaga tactacgcag ttggaaacccg acaaactggc
 1801 tctccccatg agccccaggc cgccttagccc gagccccatt cccaggctca acgtgaaact

5	1861 tgagaattcc actctcctga cagtggagcc ctcacccctg gacaagaaca agggcttctt 1921 cgtggacgag tcggagcccc ttctgcgttg tgactccacg tccagcggtt cttcagca 1981 gagcaggaat ggctccctta taacccaaga aaagaaggac acagtgttgc ggcaggatcc 2041 cctggacccc tgtgacttgc agcccatctt tgacgcacatg ctgcacatcc tgaatccgga 2101 agagctgcgg gtaatcgaag agattcccca ggctgaggac aaactggacc gtctttcga 2161 gatcatggg gtcaagagcc aagaagccag ccagaccctc ttggactctg tgtacagcca 2221 tcttcctqac ctattqtaq
---	--

SEO ID NO: 240

10 Amino acid sequence of rat TNFRSF21 encoded by the DNA sequence shown in SEQ ID NO: 239.

MGTSASSITALASCSRIAGQVGATMVAGSLLLGFNSTITAQPEQKTLSTLTGTYRHVDRT
TQGVLTCDKCPAGTYVSEHCTNTSLRVCCSSPGTFTRHENGERCHDCSQPCPRPMIER
LPCAALTDRECICPPGMYQSNGTCAPHTCVPVGWGRKKGTENEDVRCKQCARGTFSDVP
SSVMKCRAHTDCLGQNLMVVKGQTKEFDNVCGVHLSSSTTPSSPGIATPSHPEHTESHD
15 VPSSSTYEPQGMNSTDSNSTASVRTKVPSDIQEETVDNTSSTSGKESTNRTLPNFPQLTH
QOGPHHRHILKLLPSSMEATGEKSSTAIAKPKRGHPQRQNPKHFDINEHLPWMIVLFLLL
VLVLIVVCSIRKSSRTLKKGPQDPSAIMEKAGLKKSLPTQNREKWIIYRNHGHDILK
LVAAGQVGSQWKDIYQFLCNASEREVAAFSNGYTADHERAYAALQHWTIRGPEASLAQLIS
20 ALRQHRRNDVVEKIRGLMEDTTQLETDKLALPMPSPSPLSPSPPIPSPNVKLENSTLILTVEP
SPLDKNKGFFVDESEPLLRCDSSTSSGSSALSNRNGSFITKEKDTVLRQVRLDPCDQLQPIF
DDMLHILNPEELRVIEEIPOAEDKLDRLEIIGVKSOEASOTLLDSVYSHLPDLL

SEQ ID NO: 241

gi|23510443|refNM_006573.3| Homo sapiens tumor necrosis factor (ligand) superfamily, member 13b (TNFSF13B), mRNA

25	1 gaaattctta caaaaactga aagtgaaatg aggaagacag attgagcaat ccaatcgagg 61 ggttaatgcc agcaaaccctt ctgtacagta ggggttagaga tgcagaaagg cagaaaggag 121 aaaattcagg ataactctcc tgaggggtga gccaagccct gccatgtagt gcacgcagg 181 catcaacaaa cacagataac aggaaatgtat ccattccctg tggtcactta ttctaaaggc 241 cccaacccctt aaagttcaag tagtgatatg gatgactcca cagaaaggga gcagtcaacgc 300 cttacttctt gccttaagaa aagagaagaa atgaaaactga aggagtggtt ttccatccctc 361 ccacggagg aaagccccctc tgtccgatcc tccaaagacg gaaagctgct ggctgcaacc 421 ttgctgctgg cactgctgtc ttgctgcctc acgggtgggt ctttctacca ggtggccgccc 481 ctgcaagggg acctggccag cctccggca gagctgcagg gccaccacgc ggagaagctg 541 ccagcaggag caggagcccc caaggccgc ctggaggaag ctccagctgt caccgcggga 601 ctgaaaatct ttgaaccacc agctccaggaa gaaggcaact ccagtcaagaa cagcagaaat 661 aagcgtcccg ttcaagggtcc agaagaaaaca gtcaactcaag actgctgca actgattgca 721 gacagtggaa caccactat acaaaaaaggta tttcacat ttgttccatg gcttctcagc 781 tttaaaaggg gaagtgcctt agaagaaaaa gagaataaaaa tattggtaa agaaaactgg 841 tacttttta tatatggta ggttttatat actgataaaga cctaccccat gggacatcta 901 attcagagga agaagggtcca tgtcttggg gatgaattga gtctggtgac ttgttgcga 961 tgtattcaaa atatgcctga aacactaccc aataattccct gctattcagc tggcattgca 1021 aaactggaaag aaggagatga actccaaacctt gcaataccaa gagaaaatgc acaaataatca 1081 ctggatggag atgtcacatt ttttgggtca ttgaaactgc tggacttac ttacaccatg 1141 tctgttagcta ttttccctcccttctgtat cctctaagaa gaaagaatct aactgaaaat 1201 acca
----	--

SEQ ID NO: 242

Amino acid sequence of human TNFSF13B encoded by the DNA sequence shown in SEQ ID NO: 241.

MDDSTEREQSRLTSCLKKREEMKLKECVSILPRKESPSVRSSKGKLLAATLLLALLSCC
 LTVVVFYQVAALQGDLASLRAELQGHHAEKLPGAGAPKAGLEEAPAVTAGLKIFEPPAP
 GEGNSSQNSRNKRRAVQGPEETVTQDCLQLIADSETPTIQKGSYTFVPWLLSFKRGSALEE
 KENKILVKETGYFFIYQGVLYTDKTYAMGHЛИQRKKVHVGDELSLVTLFRCIQNMPETL
 5 PNNSCYSAGIAKLEEGDELQLAIPRENAQISLDGDVTFFGALKLL

SEQ ID NO: 243

Amino acid sequence of human TNFSF13B, a soluble active secreted form derived from SEQ ID NO:242.

10 AVQGPEETVTQDCLQLIADSETPTIQKGSYTFVPWLLSFKRGSALEEKENKILVKETGYF
 FIYGQVLYTDKTYAMGHЛИQRKKVHVGDELSLVTLFRCIQNMPETLPNNSCYSAGIAKL
 EEGDELQLAIPRENAQISLDGDVTFFGALKLL

SEQ ID NO: 244

gi|32454911|gb|AY302751.1| Homo sapiens delta BAFF (TNFSF13b) mRNA, complete cds; alternatively spliced

15 1 atggatgact ccacagaaaag ggagcagtca cgccttactt cttgccttaa gaaaagagaa
 61 gaaatgaaac tgaaggagtg tgtttccatc ctccccacgga agaaaagccc ctctgtccga
 121 tcccccaag acggaaaagct gctggctgca accttgctgc tgccactgct gtcttgctgc
 181 ctcacggctgg tgcctttcta ccaggtggcc gcccgtcaag gggacctggc cagcctccgg
 241 gcagagctgc agggccacca cgcggagaag ctgccagcag gagcaggagc ccccaaggcc
 301 ggcctggagg aagctccacgc tgteacccgct ggactgaaaa ttcttgaacc accagctcca
 361 ggagaaggca actccagtca gaacagcaga aataagcgtg ccgttcaggg tccagaagaa
 421 acaggatctt acacattttgt tccatggctt ctcagcttta aaaggggaaag tgcccttagaa
 481 gaaaaaaagaga ataaaaatatt gtc当地agaa actgttact tttttatata tggtcaggtt
 541 ttatatactg ataagaccctaa cgcctatggga catctaattc agaggaagaa ggtccatgtc
 601 ttggggatg aatttgcgtt ggtactttt ttgcgtatgtt ttccaaaatatat gctgaaaca
 661 ctacccaata attctgtca ttcatgtgc attgcaaaac tggaaaagg agatgaactc
 721 caacttgcata taccaagaga aatgcaccaa atatcactgg atggagatgt cacattttt
 781 ggtgcattga aactgctgtg a

SEQ ID NO: 245

30 Amino acid sequence of human TNFSF13B variant ORF number 1 encoded by the DNA sequence shown in SEQ ID NO: 244.

35 MDDSTEREQSRLTSCLKKREEMKLKECVSILPRKESPSVRSSKGKLLAATLLLALLSCC
 LTVVVFYQVAALQGDLASLRAELQGHHAEKLPGAGAPKAGLEEAPAVTAGLKIFEPPAP
 GEGNSSQNSRNKRRAVQGPEETVTQDCLQLIADSETPTIQKGSYTFVPWLLSFKRGSALEE
 LYTDKTYAMGHЛИQRKKVHVGDELSLVTLFRCIQNMPETLPNNSCYSAGIAKLEEGDEL
 QLAIPRENAQISLDGDVTFFGALKLL

SEQ ID NO: 246

gi|32441946|gb|AY290823.1| Mus musculus delta BAFF (Tnfsf13b) mRNA, complete cds; alternatively spliced

40 1 atggatgagt ctgcaaagac cctgccacca ccgtgcctct gttttgtctc cgagaaagga
 61 gaagatatga aagtggata tgatccccatc actccgcaga aggaggaggg tgcctggttt
 121 gggatctgca gggatggaaag gctgctggct gctaccctcc tgcgtggccct gttgtccacgc
 181 agtttcacag cgatgtccctt gtaccaggttt gctgccttgc aagcagacct gatgaacctg
 241 cgcattggagc tgcagagcttca ccggaggttca gcaacaccag ccggccgggg tgctccagag

301 ttgaccgctg gagtcaaact cctgacacccg gcagctcctc gacccccacaa ctccagccgc
 361 ggcccacagga acagacgcgc ttcccaggaa ccagaggaaa cagaacaaga tgtagacetc
 421 tcagctcctc ctgcaccatg cctgcctgga tgccgccatt ctcacatgtg tgataatgga
 481 atgaacctca gaaacaagaac ttacacattt gttcatggc ttctcagctt taaaagagga
 5 541 aatgccttgg aggagaaaaga gaacaaaata gtggtagggc aacaggcta ttcttcate
 601 tacagccagg ttctatacac ggaccccatc tttctatgg gtcatgtcat ccagaggaag
 661 aaagtacacg tcttgggga cgagctgagc ctggtagcc tttcccgatg tattcagaat
 721 atgcccaaaa cactgccccaa caattcctgc tactcggctg gcatcgcgag gctggaagaa
 781 ggagatgaga ttcatgtgc aattcctgg gagaatgcac agatttcacg caacggagac
 10 841 gacacctctt ttggccct aaaactgctg taa

SEQ ID NO: 247

Amino acid sequence of mouse TNFSF13B encoded by the DNA sequence shown in SEQ ID NO: 246.

15 MDESAKTLPPPCLCPCSEKGEDMKVGYDPITPKKEGAWSGICRDGRLLAATLLLALLSS
 SFTAMSLYQLAALQADLMNLRMELQSRYRSATPAAPGAPGLSAGVKLPTPAAPGPHNSSR
 GHRNRRAFQGPEETEQDVLSAPPAPCLPGCRHSQHDDNGMNLRNRTYTFVPWLLSPFKRG
 NALEEKENKIVVRQQTGYFFIYSQVLYTDPIFAMGHVIQRKKVHFGDELSVTLFRCIQN
 MPKTLPNNSCYSAGIARLEEGDEIQLAIPRENAQISRNGDDTFGALKLL

SEQ ID NO: 248

20 ENSRNOT00000019397 cDNA sequence, EnsEMBL transcript [Rattus norvegicus]

1 atggataagt ctgcaaagaa cctgccacca cccgcgcctct gtttttgcgg tgagaaaagga
 61 gaagatataa aagtggata tttcccccattt aactccgcaga aggagggtgc ctgggttggg
 121 atctgcaggaa acagacggct gctggctgtt acccttcctgc tgctctgtt gtccagcagt
 181 ttcacagcga tgccttgc tccatggct gtcctgcaag cagacctgtat gagcctgcgc
 25 241 atggagctgc agagcttaccg aagttcagcg acacccgcgg ccccgggggc tccagggttg
 301 tccgcggggag tcaaaactccc aacacccgcga gtcctggac cccacaactc cagccgaggc
 361 caaaggaaca gacgcgtttt ccaggggaccg gaggaaacag aacaagatgt agacctctca
 421 gctactccag tgcctatccc gcctggaaac gtcctatgtt ctcaccatgt tgagaatgga
 481 ctgaacccca gaaaccatcat tcaagactgt ctgcagctga ttgcagacag caacacgcgg
 541 actatacggaa aaggaactta cacatttgtt ccatggcttc tcagctttaa aagagggaaac
 601 gccttggagg agaaagagaa caaaatagtg gtgaggcaaa caggctattt cttcatctac
 661 agccaggttc tgcctatccc gcctggatcc atgtcatcca gaggaaagaa
 721 atacacgtgt ttggggatga gtcctatgtt gtcactctgt tccgatgtcat ccagaatatg
 781 ccgaaaacac tgcctatccc tccatggca tccatggca tccatggca tccatggca
 841 gacgagatc agcttgcattt acctcggggatcc aatgcccaga tttcactggaa cggagacac
 901 accttcttgc tgcctatccc actgtgtgtt

SEQ ID NO: 249

Amino acid sequence of rat TNFSF13B encoded by the DNA sequence shown in SEQ ID NO: 248.

40 MDKSAKNLPPPRLCFCPEKGEDMKVGYVPITPKKEAWVGICRDRLLAATLLLALLSSS
 FTAMSLYQAVLQADLMNLRMELQSRYRSATPAAPGAPGLSAGVKLPTPAAPGPHNSSR
 QRNRRAFQGPEETEQDVLSATPVPSLPGNCASHHDENGNLNRTIIQDCLQLIADSNTP
 TIRKGTYTFVPWLLSPFKRGNNALEEKENKIVVRQQTGYFFIYSQVLYTDPIFAMGHVIQRKK
 IHVFGDELSVTLFRCIQNMPKTLPNNSCYSAGIARLEEGDEIQLAIPRENAQISRNGDD
 45 TFFGALKLL

SEQ ID NO: 250

gi|25952143|ref|NM_003807.2| Homo sapiens tumor necrosis factor (ligand) superfamily, member 14 (TNFSF14), transcript variant 1, mRNA

	1	cgagactcca	tctcaaaaac	aaaacaaaata	aacgaacaaa	aaaacccaca	acgtatttt
5	61	ttcttggta	cgagggttct	tgtctctcg	gctccaccag	aagaggagca	gggacccttc
	121	ttgctgtgt	tcattgtgc	atccccacac	ccgagagcag	agcctggcat	gggcagaaaag
	181	tcctcagtcg	atatttggtg	gccccaaagcg	aatgaagcat	ccaagaagggg	aaagctgggg
	241	gtccccact	gcacttgcca	cctgagtcac	atttcagaa	gcctctgaa	agtcgtgcac
10	301	agcccaggag	tgttgagcaa	tttcggtttc	ctctgagggtt	gaaggaccca	ggcgtgtcag
	361	ccctgctcca	gacacccctgg	gcatggagga	gagtgtcgta	cgcccttcag	tgtttgtgtt
	421	ggatggacag	accgacatcc	cattcaacag	gctgggacga	agccacccgga	gacagtctgt
	481	cagtgtggcc	cggggtgggtc	tgggtctctt	gctgttgcgt	atggggggccg	ggctggccgt
	541	ccaaggctgg	ttcctctctgc	agctgcactg	gcgtcttagga	gagatggtca	cccgccctgc
15	601	tgacggaccc	gcagggtctt	gggagcagat	gataacaagag	cgaaggcttc	acgaggtcaa
	661	cccagcageg	catctcacag	gggccaactc	cagettgacc	ggcagggggg	ggccgctgtt
	721	atgggagact	cagctgggc	tggccttcct	gagggggctc	agctaccacg	atggggccct
	781	tgtggtcacc	aaagctggct	actactacat	ctactccaag	gtgcagctgg	gcgggtgtggg
	841	ctgcccgcgt	ggcctggcca	gcaccatcac	ccacggcctc	tacaagcgc	caccccgcta
	901	ccccgaggag	ctggagctgt	tggtcagcca	gcagtccaccc	tgccgacggg	ccacccagcag
20	961	ctccccgggtc	ttgtgggaca	gcagcttcct	gggtgggtgtg	gtacacctgg	aggctgggg
	1021	gaagggtggc	gtccgtgtgc	tggatgaacg	cctgggttgc	ctgcgtgtat	gtacccgggtc
	1081	ttacttcggg	gttttcatgg	tgtgaaggaa	ggagcgtgtt	gcattggaca	tgggtctgac
	1141	acgtggagaa	ctcagagggt	gcctcagggg	aaagaaaaact	cacgaagcag	aggctgggg
	1201	ttgtggctct	cgccctgtaat	cccagcactt	tgggaggcca	aggcaggcgg	atcacctgag
	1261	gtcaggagtt	cgagaccaggc	ctggctaaaca	tgcaaaaacc	ccatctctac	aaaaaataca
25	1321	aaaatttagcc	ggacgtgggt	gtgcctgcct	gtaatccagc	tactcaggag	gtcgaggcag
	1381	gataattttg	cttaaaccccg	ggaggcggag	gttgcagtga	gcccagatca	caccactgca
	1441	ctccaaacctg	ggaaacgcag	tgagactgtg	cctcaaaaaaa	aaaaaaaaaa	a.

SEQ ID NO: 251

30 Amino acid sequence of human TNFSF14 encoded by the DNA sequence shown in SEQ ID NO: 250.

MEESVVRSPVFVVDGQTDIPFTRLGRSHRRQSCSVARVGLGLLLLLMAGLA VQGWPLLQ
LHWRLGEMVTRLPDGPAGSWEQLIQERRSHEVNPAAHLTGANS LTGSGGPLWETQLGL
AFLRGLSYHDGALVVTKAGYYYIYSKVQLGGVGCPGLLASTITHGLYKRTPRYPEELELL
VSOOSPCGRATSSSRVWDSSFLGGVVHLEAGEKVVRVLDERLVRLDGTTSYFGAFMV

SEQ ID NO: 252

Amino acid sequence of human TNFSF14, a soluble active secreted form derived from SEQ ID NO:251.

40 QERRSHEVNPAAHLTGANSSLTGSGGPLLWETQLGLAFLRGLSYHDGALVVTKAGYYIY
SKVQLGGVGCPPLGLASTITHGLYKRTPRYPEEELLVSQQSPCGRATSSSRVWWDSSFLG
GVVHLEAGEKVVVRVLDERLVRLRDGTTSYFGAFMV

SEQ ID NO: 253

gi|17390119|gb|BC018058.1| Homo sapiens tumor necrosis factor (ligand) superfamily, member 14, mRNA (cDNA clone MGC:26477 IMAGE:4793299), complete cds

45 . 1 gggtcacacgc ccaggagggtgt tgagcaattt cggtttcctc tgagggttggaa ggaccggc
61 gtgtcagcccc ttgctccagac accttgggca tggaggagag tgcgtacgg ccctcagtgt

121 ttgtggtgg a tggacagacc gacateccat tcacgaggct gggacgaagc caccggagac
 181 agtcgtcag tggggcccgg gtgggtctgg gtctttgtct gttgctgtat ggggcgggc
 241 tggccgtcca aggctggttc ctccctgcgc tgcaactggcg tctaggagag atggtcaccc
 301 gcctgcctga cggacctgca ggctctggg agcagctgtat acaagagcga aggtctcaeg
 361 aggtcaaccc agcagcgcatt tcacagggg ccaactccag cttagccggc agcggggggc
 421 cgctgtatg ggagactcag ctggggctgg ctttctgtgg gggcctcagc taccacgtat
 481 gggcccttgt ggtcacaaaa gctggctact actacatcta ctccaaagggtg cagctggcg
 541 gtgtgggctg cccgcgtggc ctggccagca ccatacaccac cggcctctac aagcgcacac
 601 cccgcatacc cggaggagctg tagctgttgg tcagccagca gtcacccctgc ggacgggcca
 661 ccagcagctc cgggtctgg tgggacagca gcttctggg tgggtgttga cacctggagg
 721 ctggggagga ggtggctgtc cgtgtgtgg atgaacgcct ggttcgactg cgtatggta
 781 cccgcgttta cttcggggctt tcatgggtt gaagaagga ggtgggtgca ttggacatgg
 841 gtctgacacg tggagaactc agagggtgtcc tcagggggaaa gaaaactcac gaagecagagg
 901 ctggggctgg tggctctcg ctgtatcccc agcactttgg gaggccaagg caggccgatc
 961 acctgagggtc aggagttcga gaccagctg gtaacatgg caaaacccca tctctactaa
 1021 aaatacaaaaa attagccgga cgtgggtggt cctgcctgta atccagctac tcaggaggct
 1081 gaggcaggat aattttgtttt aaacccggga ggcggagggtt gcaagtggcc gagatcacac
 1141 cactgcaactc caacctggga aacgcagtga gactgtgcct caaaaaaaaaa gaaagaaaaa
 1201 aaaaaaaaaa a

20 SEQ ID NO: 254

Amino acid sequence of human TNFSF14 variant ORF number 1 encoded by the DNA sequence shown in SEQ ID NO: 253.

MEESVVRPSVFVVDGQTDIPFTRLGRSHRRQSCSVARVGLGLLLLLMGAGLAVQGWFLQ
 LHWRIGEMVTRLPDGPAGSWEQLIQERRSHEVNPAAHLTGANSSTGSGGPLLWETQLGV
 25 AFLRGLSYHDGALVVTKAGYYYIYSKVQLGGVGCPGLLASTITHGLYKRTPRYPEEL

SEQ ID NO: 255

gi|25952146|ref|NM_172014.1| Homo sapiens tumor necrosis factor (ligand) superfamily, member 14 (TNFSF14), transcript variant 2, mRNA

1 cgagactcca tctcaaaaaac aaaacaaata aacgaacaaa aaaacccaca acgtattatt
 61 ttcttggtta cgagggtttct tgcgtctctg gtcaccacag aagaggagca gggacccttc
 121 ttgctgtgt tcattgtgc atccccacca cccgagagcag agcctggcat gggcagaaaag
 181 tcctcagtcg atattttggg gcccccaagcg aatgaagcat ccaagaaggg aaagctgggg
 241 gctccccact gcaattgcac cctgagtcac attttcagaa gcctctggaa agtcgtgcac
 301 agcccaggag tggtagcaa tttcggttgc ctctgagggtt gaaggaccca ggcgtgtcag
 361 ccctgcttca gacacccctgg gcatggagga gatgtcgta cggccctcag tgggggttgc
 421 ggatggacag accgacatcc cattcacgag gctggacgca agccacccgaa gacagtctgt
 481 cagttgtggcc cgggacggac ctgcaggctc ctgggagcag ctgataacaag agcgaaggc
 541 tcacgaggctc aaccacggcag cgcatttcac agggccaaac tccagcttgc cggcagccgg
 601 gggccgcgtt ttagggaga ctcagctggg cttggcccttc ctgaggggcc tcaacttacca
 661 ctagggggcc cttgtggtca ccaaaagctgg ctactactac atctacttca aggtgcagct
 721 gggcggtgtt ggctggccgc tggccctggc cagcaccatc accccggcc tctacaagcg
 781 cacacccccc taccggagg agctggagct gttggtcagc cagcagtcac cttgcggacg
 841 ggcacccaggc agctccccggg tctgggtggc cagcagcttcc ctgggtgggt tggtagaccc
 901 ggaggctggg gaggagggtgg tcgtccgtgt gctggatgaa cgcctggttc gactgcgtga
 961 tggtagccgg tcttacttgc gggctttcat ggtgttgcagg aaggagcgtt gtcatttgc
 1021 catgggtctg acacgtggag aactcagagg gtgcctcagg gggaaagaaaa ctcacgaagc
 1081 agaggctggg cgtgggtggct ctgcctgtt atccccagcac tttggggaggc caaggcaggc
 1141 ggtatcacctg aggtttagggat ttcgagacca gctggctaa catggcaaaa ccccatctt
 1201 actaaaaata caaaaaattag cccggacgtgg tgggtgcctgc ctgtatccca gctactcagg
 1261 aggctgggc aggataattt tgcttaaaccc cgggaggccgg aggttgcagt gagccgagat
 1321 cacaccactg cactccaaacc tgggaaacgc agttagactg tgcctcaaaaa aaaaaaaaaa
 1381 aaaaaaaaaa aaaaa

SEQ ID NO: 256

Amino acid sequence of human TNFSF14 variant ORF number 2 encoded by the DNA sequence shown in SEQ ID NO: 255.

5 MEESVVRPSVPVVDGQTDIPFTRLGRSHRRQSCSVARDGPAGSWEQLIQERRSHEVNPA
 10 HL TGANSSLTGSGGPLLWETQLGLAPRLGLSYHDGALVVTKAGYYYIYSKVQLGGVGCL
 15 GLASTITHGLYKRTPRYPEELELLVSQQSPCGRATSSSRVWWDSSPLGGVVHLEAGEEVV
 20 VRVLDERLVRLRDGTRSYFGAFMV

SEQ ID NO: 257

10 gi|9507194|ref|NM_019418.1| Mus musculus tumor necrosis factor (ligand) superfamily,
 member 14 (Tnfsf14), mRNA

1 gcccacacg ctcggccagt ttgcacagcc cgagcgtgtt ggcaattgt ggttctcc
 61 ggaggaggagg aactcaggct tgccaaacctt ttcctgggc ttccggagcc cagctgtct
 121 ggcatggaga gtgttgtaca gccttcagtg ttttgtgtgg atggacagac ggacatcccc
 181 ttccaggccgc tggaacagaaa ccacccggaga cggcgctgtg gcaactgtcca ggtcagectg
 241 gcccgggtgc tgctgttagg tgctgggtctg gcaactcagg gctgggttct cctgagactg
 301 catcaacgtc ttggagacat agtagctcat ctgcccagat gaggcaaaagg ctcctggag
 361 aagctgatac aagatcaacg atctcaccag gccaaccccg cagcacatct tacaggagcc
 421 aacgccagct tgataggtat ttgtggaccc ctgttatggg agacacgact tggcctggcc
 481 ttcttgaggg gcttgacgta tcatgatggg gcccgggtga ccatggagcc cggttactac
 541 tatgtgtact ccaaagtgc gctgagccgc gtggggtgc cccaggggct ggccaatggc
 601 ctccccatca cccatggact atacaagcgc acatcccgt acccgaagga gttagaactg
 661 ctggtcagtc ggcgttcacc ctgtggccgg gccaacagct cccgagtcgt gtgggacagc
 721 agtttcctgg gccggcgtgtt acatctggag gctggggaaag agtgggtgtt ccgcgtgcct
 781 gaaaaaccggcc tggtcagacc acgtgacggc accaggtcct atttcggagc tttcatggc
 841 tgaaggctgc ggtgacaatg tattttgtgg agggacccct ccaggactca cctcaaacc
 901 agcaataggg tttgaagtcc tccctttaag gagccctgaa ctctgcgtg ctggggccgg
 961 ttagactgc tgacctgtt tggcaatct tcaaattcaga gacctggaga cttggggcgt
 1021 ggagcccaagg aegcgggggt cagctcattt gcctgatatt caggaagaaa gaatcaagct
 1081 ggggtattta tgcttctgtat gcaaacactg agatttcggc ttctgggtt ttgagctgg
 1141 ggcaagaaaac cttcccagag tgcattcagg accatgttgg caggacttgg ggctccagac
 1201 ttgccaccac actctggcct ctcccattca tccgctgcat tggtttccag ccacccaaac
 1261 agcactggcc ccctggctgc aactggccag gtacgagctt ctgagcacct acattccca
 1321 gggacatctt gatgagatct cagttactca tccaatgcgc agcagcgcaca gacatgccag
 1381 gaatgggtgg tcagaaggaa agggagggaa gggagggaaag aagggaatgc agaagagaag
 1441 gggggaaaaac aagacaaaaaa caaaacagca acaacaaaagc ggcagggagg aggtgacacc
 1501 cttggggata ctttagtcaa cacacttaga acagattgtg ccaggcctgt tggattctg
 1561 gagttgatgg gatcgtggga aggccacaatg gggagcaagt gggcttgggt tatggctcg
 1621 tgggtaaatg gcaattatgg ggatctgat ttgaatccct ggtacccata taaagacaca
 1681 gatgcggta tggcacttg tgacaatgat atcatcaata gggaatggag acaggaggg
 1741 cctctgggtt tcactggcca ggcagtctag ctgaatcaa gagctccaag ttcagtctgat
 1801 agctcctgaa gatgacaact gaggctattc tccaaacccc acacgcagga cacatgcgta
 1861 at

SEQ ID NO: 258

45 Amino acid sequence of mouse TNFSF14 encoded by the DNA sequence shown in SEQ ID NO: 257.

MESVVQPSVFVVDGQTDIPFRRLEQNHRRLRCGTQVQLALVLLGAGLATQGWPLLRLH
 QRLGDTVAHLPDGKGGSWEKLIQDQRSHQANPAAHLTGANASLIGIGGPLLWETRLGLAP
 LRGLTYHDGALVTMPEGYYYYVSYVKQLSGVGCPQGLANGLPITHGLYKRTSRYPKELELL
 VSRRSPCGRANSSRVWWDSSFLGGVVHLEAGEEVVVRVPGNRLVRPRDGTRSYFGAFMV

SEQ ID NO: 259

gi|27672737|ref|XM_236794.1| Rattus norvegicus similar to LIGHT protein (LOC301133), mRNA

```

5   1 atggagagtg tggcacagcc ttcaagtgtt gtgggtggatg gacagacaga catccccatc
  61 aggccgcctgg gacagaacca caggagacgg cactgcggca ctgtcccggt cagccctggcc
  121 ctgctgcgtgc tgctgggtgc tgggctggcc actgagggtc ggtttctccct gagactgcgt
  181 cagcgtcttg gggacatagt agctcatctg ccagatggag gcaaaggctc ctgggagaag
  241 ctgataacaag gagctaaccgc cagcttgata ggcattgggtg gacccctgtt atgggagaca
  301 caacttgccc tggccttcctt gaggggccctg acgtatcatg atggggccctt ggtgaccacc
  361 gagggctggct actactacgt gtactccaaa gtgcagttga gtgggtgtggg ctggcccccag
  421 gggctggcca atggcctccc catcaccac gggctgtaca agegcacatc ccgataaaaa
  481 aaggagtttag aactgctggt cagccggccgg tcacccctgt gccggggccaa cagctcccgaa
  541 gtctgggtggg acatgtttt cctccggccggta gtggtacatc tggaggccgg agaagaggtg
  601 gtggtcccgcg tggctggaaa ccgcctggtc agaccacgtg atggcacgag gtcctatttc
  661 ggagcttca tggatctga

```

SEQ ID NO: 260

Amino acid sequence of rat TNFSF14 encoded by the DNA sequence shown in SEQ ID NO: 259.

```

20 MESVQVQPSVFVVVDGQTDIPFRRRLGQNHRRLRCGTQVQSLALLLLGAGLATEGWFLRLH
 QRLGDIVAHLPDGGKGSWEKLIQGANASLIGIGGPLLWETQLGLAFLRGLTYHDGALVTT
 EAGYYYYVSYVKVQLSGVGCPQGLANGLPITHGLYKRTSRYPKELLELLVSRRSPCGRANSSR
 VWDSSFLGGGVVHLEAGEEVVVRVPGNRLVRPRDGTRSYFGAFMI

```

SEQ ID NO: 261

gi|13775596|ref|NM_024164.2| Homo sapiens tryptase beta 2 (TPSB2), mRNA

```

25   1 ggccaggatg ctgaatctgc tgctgctggc gctgcccgtc ctggcgagcc gcccctacgc
  61 ggcgcctgcc ccagggcagg ccctgcagcg agtgggcattt gttgggggtc aggagggcccc
  121 caggagcaag tggccctggc aggtgacccctt gagagtccac ggcgcctactt ggatgcactt
  181 ctgcgggggc tccctcatcc accccccatgtt ggtgctgacc gcagcgcactt gcgtgggacc
  241 ggacgtcaag gatctggcccg ccctcagggtt gcaactgcgg gaggcaggacc tctactacca
  301 ggaccagctg ctgcgggtca gcaggatcat cgtgcaccca cagtttctaca ccgcggccat
  361 cggagcggac atcgccttc tggagctggg ggagccgggtt aagggtctcca gccacgttca
  421 cacggtcacc ctgcggccctg cctcagagac cttccccccgg gggatgcgtt gctgggttac
  481 tggctggggc gatgtggaca atgatgagcg cttccccccgg ccatttcttc tgaaggcagg
  541 gaaggccccccataatggaaa accacattttt tgacgcaaaaa taccacccctt ggcgcctacac
  601 gggagacgac gtcgcacatcg tccgtgacga catgctgtt gccggaaaca cccggaggaa
  661 ctcatgcctgg ggcgcactccg gaggggccctt ggtgtcaag gtgaatggca cctggcttca
  721 ggcggggctg gtcagctggg gcgagggtt gtcggccccc aaccggccgtt gcatctacac
  781 ccgtgttacc tactacttgg actggatcca ccactatgtt cccaaaaaaatc cgtgagtc
  841 gcctgggtt gccacccctggg tcaactggagg accaaccctt gctgtccaaa acaccactgc
  901 ttccctaccctt ggtggcgact gccccccaca cttcccttc cccgttcccttga gtggcccttc
  961 ctgttcttaag cccctgttcc tcttcttgc gtccttccctt gtccttgc gtccttgc
  1021 tcccttgc gtccttgc ccccttgc tcttgc gtccttgc gtccttgc gtccttgc
  1081 tggccaggca gtcgttgggtt ggcgcataatc ctccttgc gtccttgc gtccttgc
  1141 tggaaatc.

```

45 SEQ ID NO: 262

Amino acid sequence of human TPSB2 encoded by the DNA sequence shown in SEQ ID NO: 261.

MLNLLLLLPVLASRAYAAPAPGQALQRVGIVGGQEAPRSKWPWQVSLRVHGPYWMHFCG
 5 GSЛИHPQWLTAACVGPDVKDLAALRVQLREQHLYYQDQLLPVSRIIVHPQFYTAQIGA
 DIALLELEEPVKVSSHVHTVTLPPASETFPPPGMPCWVTGWDVDNDERLPPPPLKQVKV
 PIMENHICDAKYHLGAYTGDDVIRVRDDMLCAGNRRDSCQGDGGPLVCKVNGTWLQAG
 VVSGEGCAQPNRPGIYTRVTTYYLDWIHHYVPKKP

SEQ ID NO: 263

Amino acid sequence of human TPSB2, a soluble active secreted form derived from SEQ ID NO: 262.

IVGGQEAPRSKWPWQVSLRVHGPYWMHFCGGSЛИHPQWLTAACVGPDVKDLAALRVQL
 REQHLYYQDQLLPVSRIIVHPQFYTAQIGADIALLELEEPVKVSSHVHTVTLPPASETFP
 PGMPCWVTGWDVDNDERLPPPPLKQVKVPI
 15 MENHICDAKYHLGAYTGDDVIRVRDDMLCAGNRRDSCQGDGGPLVCKVNGTWLQAGV
 VVSGEGCAQPNRPGIYTRVTTYYLDWIHHYVPKKP

SEQ ID NO: 264

gi|6857813|ref|NM_010781.1| Mus musculus mast cell protease 6 (Mcp6), mRNA

1 ctaagatgct gaagccggcg ctgctgctgc tggggcact gtccttcctg gctagtctgg
 61 tgtactcagc ccctcgccca gccaatcagc gagtggcat cgtggagga cataggcatt
 121 ctgagagtaa gtggccctgg caggtgagcc tgagatttaa attaaactac tggatacatt
 181 tctgcggagg ctcttcatc caccacagt gggtgcac ac tggccacac tggatggac
 241 cgcacatcaa aagcccacag ctcttcggg tgcagcttcg tgtagcgtat ctatactatg
 301 gggaccagct cctcttttg aaccggatcg tggtgacccc ccactattac acggccgagg
 361 gtggggcaga cggtccccctg ctggagcttg aggtccctgt gaatgtctcc accccatatcc
 421 accccatatac cctggccctt gcctcgaga ctttcccccc tggacatcg tgctgggta
 481 caggctgggg cgacattgtat aatgacgagc ctctccacc tccttaccc ctgaagcaag
 541 tgaaggttcc cattgtggaa aacagcctgt gtgacccgaa gtaccacact ggcctctaca
 601 cgggagatga ttttccatt gtccatgatg gcatgtgtg tgcggaaat accaggagag
 661 actcctgcca gccattctgt attggagatg acatctgtg agggtgacat ctacattta
 721 caattactgc tgagtgcga ctttccctc tcttggatgg aggcctcatc ttgatggga
 781 aatttagtca gttgtcccac ccagtgcgtag gtgtcatctc tggctctctg tggatgtcac
 841 actcttcacc gctgaaccat ctctcgagtt ctttagttt cattttaat gtcaaacata
 901 acagactcat ccatcacaaa aataaaaggt gaatgtaaaa aaaa

SEQ ID NO: 265

35 Amino acid sequence of mouse TPSB2 encoded by the DNA sequence shown in SEQ ID NO: 264.

MLKRRLLLLWALSLLASLVYSAPRPANQRVGIVGGHEASESKWPWQVSLRFKLNYWIHFC
 40 GSЛИHPQWLTAACVGPPIKSPQLFRVQLREQHLYYQDQLLSNRIVVHPHYTAEGG
 ADVALLELEPVNVSTHIHPISLPPASETFPPGTSCWVTGWDIDNDEPLPPPYPLKQVK
 VPIVENSLCDRKYHTGLYTGDDFPIVHDGMLCAGNRRDSCQPFICGDDI

SEQ ID NO: 266

gi|9506886|ref|NM_019180.1| Rattus norvegicus mast cell protease 6 (Mcp6), mRNA

1 ggagagagagga gcccggacacg ccaagatgtc gaagctgtcg ctgctgtcg cactgtcccc
 61 cctggctagt ctgggcacg cggcccccctt cccagtcaag cagcgagtgg gcattgtggg
 121 aggacggag gcttctgaaa gtaagtggcc ctggcagggtg agcctgagat taaaattcag
 181 cttctggatg cattctgtg ggggtccctt cattcaccca cagtgggtgc tcactgcggc
 5 241 acactgtgtg ggactgcaca tcaaaagccc agagcttc cgtgtacagc ttctgtgagca
 301 gtatctatac tatgcggacc agctactgac tgtgaaccgg accgttgtgc acccccaacta
 361 ctacacagtc gagggatgggg cagacattgc cctgtggag cttgagatcc ctgtaatgt
 421 ctccaccat atccacccca tatecctgcc ccctgcctcg gagaccccttc cctcggggac
 481 ttcttgctgg gtaacaggct ggggcgacat tgatagtgc gageccttc tgccaccta
 10 541 tcctctgaag caagtgaagg tccccattgt ggaaaaacacg ctgtgtgatc ggaagtacca
 601 cactggcctc tacacaggag atgatgttcc cattgtccag gatggcatgc tigtgtctgg
 661 aaataccagg agcgactcct gccaggggaga ctcagggggc ccaactggtct gcaaagtgaa
 721 gggtacctgg ctgcggcagc gagttgtcag ctgggggtgag ggctgcgcag aggccaaatcg
 781 tcctggcatt tacacccggg tgacgtacta cctggactgg attcaccgcg atgtccctca
 15 841 gcggtcttga gaccatcca gggtcaggga agaaccaggc acctgtgtc tttaaactc
 901 tggttcttgg ccagatggaa ccctggcctt cttgtactc tggctccctt gtcaccggg
 961 tggccctctg agccccact ttgttccacc ttgagtcctt cgccacttc gtcacccttc
 1021 cctccacca caacacagct gcaactgtgcg gtcacccttt ttctgtggct cattaaagta
 1081 tggaaaatt ttgtcc

20 SEQ ID NO: 267

Amino acid sequence of rat TPSB2 encoded by the DNA sequence shown in SEQ ID NO: 266.

MLKLLLLLALSPLASLVHAAPCPVKQRVGIVGGREASESKWPWQVSLRFKFSFWMHFCGG
 25 SLIHPQWVLTAACVGLHIKSPELFRVQLREQYLYADQLLTNVRTVPHPYYTVEDGAD
 IALLELEIPVNVSITHIHPISLPPASETFPSGTSCWTGWGDIDSDEPLLPPYPLKQVKVP
 IVENSLCDRKYHTGLYTGDDVPIVQDGMLCAGNTRSDSCQGDGGPLVCKVKGTWLQAGV
 VSWGEGCAEANRPGIYTRVTYYLDWIHRYVPQRS

SEQ ID NO: 268

gi|18491001|ref|NM_003881.2| Homo sapiens WNT1 inducible signaling pathway protein 2 (WISP2), mRNA

1 tgggtgtgtg tgggtgtgag cgcgcgcgcg cgcgcgcgtg tggactgtcg cgtgtgcctg
 61 tgggtgcctg ggagggtaccc cacagctgcc ggaacataaa gactcacagg tccgcctccc
 121 aggctcaag ctggctctgc aggggacatg agaggcacac cgaagaccca ctcctggcc
 181 ttctccctcc tctgcctctt ctcaaaagggtg cgtaccgcg tggcccgac accatgtacc
 241 tggccctggc cacccccccg atgccccgtg ggagtaaaaa tgggtgtggaa tggctgtggc
 301 tgggtccggg tatgtgcacg gcccgtgggg gagccctgcg accaactcca cgtctgcac
 361 gcccggcagg gctggctctg ccagccccggg gcaggacccg tggccggggg gcccctgtgc
 421 ctcttggcag aggacgcacag cagctgtcag gtgaacggcc gctgtatcg ggaaggggag
 481 accttccaggc cccactgcac catccgcgtc cgctgcgagg acggcggtt cacctgcgt
 541 cccgtgtgca gcgaggatgt gcccgtgcac agctggact gccccccaccc caggagggtc
 601 gaggtcttgg gcaagtgtcg ccctgagtgg gtgtgcggcc aaggagggggg actggggacc
 661 cagcccccttc cagcccaagg accccagttt tctggcttgc tctttccct gccccctgg
 721 tggccctggc cagaatggag cacggcctgg ggaccctgtc cgaccacctg tgggtggc
 781 atggccaccc ggggtccaa ccagaaccgc ttctggcgcac tgagacccca gggccgcctg
 841 tggctgtcca gggccctggccc accctccagg ggtcgacgtc cacaacacag tggcttctag
 901 agccgggcgtg ggaatggggc cacgggtgtcc accatccccca gctgggtggcc ctgtgcctgg
 961 gcccctggct gatggaaagat gttccgtgc cagggccctt gctgcaggca acactttac
 1021 tgggtccac catgcagaac accaatatta acacgtgc tggctgtct ggatccccag
 1081 gtatggcaga ggtgcacagac ctatgtccctt tggcttcaac tcaactgccta ggaggctggc
 50 1141 caaggggtcc agggctctt ageccactcc ctgcctacac acacgccta tatcaaacat
 1201 gcacacggc gagtttetc tccgacttcc cctggggcaag agatggggaca agcagtccct
 1261 taatattgag gtcacggcag gtgtggcgt ggactggca tttttctggg gtaggatga

1321 agagaaggca cacagagatt ctggatctcc tgctgccttt tctggagttt gtaaaattgt
 1381 tcctgaatac aagcctatgc gtaaaaaaaaaaaaaaa aaaaaaaaaaaa aaa

SEQ ID NO: 269

5 Amino acid sequence of human WISP2 encoded by the DNA sequence shown in SEQ ID NO: 268.

MRGTPKTHLLAFSLLCLLSKVRTQLCPTCPLGVPLVLDGCGCCRVCARRL
 GEPCDQLHVCDASQGLVCQPGAGPGGRGALCLLAEDDSSCEVNRLYREGETFQPHCSIR
 CRCEDGGFTCVPLCSEDVR LP SWDCPHPRRVEVLGKCCPEWVCGQGGGLGTQPLPAQGPQ
 10 FSGLVSSLPPGVPCPEWSTAWGPCSTTCGLGMATRVSNQNRCRLETQRRLCLSRCPFPS
 RGRSPQNSAF

SEQ ID NO: 270

Amino acid sequence of human WISP2, a soluble active secreted form derived from SEQ ID NO:269.

15 RTQLCPTPCTCPWPPPRCPLGVPLVLDGCGCCRVCARRLGEPCDQLHVCDASQGLVCQPG
 AGPGGRGALCLLAEDDSSCEVNRLYREGETFQPHCSIRCRCEDGGFTCVPLCSEDVR LP
 SWDCPHPRRVEVLGKCCPEWVCGQGGGLGTQPLPAQGPQFSGLVSSLPPGVPCPEWSTAW
 GPCSTTCGLGMATRVSNQNRCRLETQRRLCLSRCPFPSRGRSPQNSAF

SEQ ID NO: 271

20 gi|8394540|ref|NM_016873.1| Mus musculus WNT1 inducible signaling pathway protein 2 (Wisp2), mRNA

1 cccacgcgtc cgcgctccgt atctccagag gacccgggc tgggacaggg gccttggcga
 61 ggctgcagct gctgtggcag tagcttggga tggaggcttt ctcttgcgttggg aactgaggag
 121 ctgagaggct cctgtcaggc ttctgtcccta aactcttggc acttgcggtg gcttgggttt
 181 cacacactgt cagacacacctt ctttgtggcc ttcttcggcct cagggtttgaa gctggctcca
 241 caagggacac ggtgacatga ggggcaaccc actgtatccat ctcttcggcca ttttccttcct
 301 ctgcatttc tcaatggtgt attccccatgt gtgcggcaca ccctgtgcct gtcccttggac
 361 accaccccccac tggccaccgg gggtaaaaaatc ggtgctggat ggtgtggct gctgtcgagt
 421 gtgtgcacgg aggctgggg agtcttcgca ccacccatgt gtcttcgacc ccagccagg
 481 ctttgtttgt cagccctgggg caggccccaa tggccgtgg tcttgtgtgcc ttttcgaaga
 541 ggatgacggg agctgtgagg tgaatggccg caggtacatgt gatggggaga cctttaaacc
 601 caattgcagg gtttgtgcc getgtgtatgt cggtggtttt acctgcctgc cgctgtgcag
 661 tgaggatgtg cggctgccccca gctgggactg cccacccccca agagaataac aggtgcccagg
 721 aagggtgctgc cccgagtggg tttgtgtatgtt ggcagtgtatgtt cccggccaa tccagccctc
 781 ctcagcccaa ggacaccaac tttctgcctt ttttttttttgcacccatgtt gcatgtcccg atggccctc
 841 tccaaactgg agcacagccctt gggggccctt ctcacccacc ttttttttttgcacccatgtt gcatagccac
 901 ccgagtatccc aaccagaacc gatttttgcctt actgggatgtt cccggccaa tccagccctc
 961 cagaccctgc ctggcatccca ggagccacgg ctcatggaaatgtt agtgccttgc ttttttttgc
 1021 cggggatgtg gatacaggcc ctggccattttt ctcacccatgtt cccggccaa tccagccctc
 1081 ctgtatgttag atggcccttccatgtctt ggctgcgtt aactgttgcctt ggtggatca
 1141 gtgtccagag cttctgtatgtt atccctgtatgtt ttttttttttgcacccatgtt gcatagccac
 1201 tccatatttccatgtatgtt cccaggccctt ttttttttttgcacccatgtt gcatagccac
 1261 cccctgtatgtt aaaggacaac cccaggccctt ttttttttttgcacccatgtt gcatagccac
 1321 gccaccatgtc tggggatgtt gacagatataa ggttccaggc agcagattgc ctggaaatcc
 1381 cagggtccctt cttggacttcc tatgtgtatgtt ttttttttttgcacccatgtt gcatagccac
 1441 tgcctttctt gatctgtatgtt cccaggccctt ttttttttttgcacccatgtt gcatagccac
 1501 agatggaaatc acactatttttgcacccatgtt gacatgtatgtt gcatagccac
 1561 tgtaaaaata cacatcttccatgtatgtt gacatgtatgtt gcatagccac

1621 cagggccctt ctcttcagca tgagagagac aaggaacagt agagtaccct cctctggagg
 1681 actggcccg tctgaaataa acacccaaat caagtgtgga aaaaaaaaaaaa aaaa

SEQ ID NO: 272

5 Amino acid sequence of mouse WISP2 encoded by the DNA sequence shown in SEQ ID NO: 271.

MRGNPLIHLAISFLCILSMVSQLCPAPCACPWTPQCPGVPLVLGCGCCRVCAARRL
 GESCDHLHVCDPSQGLVCQPGAGPSGRGAVCLFEEDDGSCEVNGRRYLDGETFKPNCRVL
 10 CRCDDGGFTCLPLCSEDVRLPSPWDCPRPRRIQVPGRCCEWVCDQAVMQPAIQPSSAQGH
 QLSALVTPASADGPCPNWSTA WGPCSTTCGLGIATRVSNQNRCQLEIQRRLCLSRPCLA
 SRSHGSWNSAF

SEQ ID NO: 273

gi|13928801|ref|NM_031590.1| Rattus norvegicus WNT1 inducible signaling pathway protein 2 (Wisp2), mRNA

15 1 ctgcaaagat ctgacagacg cttctgatct ccagaggacc ctgggggtggg acaggggctt
 61 ggcaaggctg cagcgcgtggg cagtggctg gaatggaggt ctttattact gggaaactgag
 121 gagctaagag gctctgtca gtttgtecta aacccttagc acttgtggtg gcttgggctt
 181 cacacactgt cagacacccctt cgtgggtggcc tccacccgtc accctccaggt ttgaagctgg
 241 cttccacaagg gacacgggtga catgaggggc agcccaactga tccgtttctt ggcacactcc
 301 ttcctctgcc ttctctcaat ggtgtgtgcc cagctgtgcc ggacaccctg cacctgtct
 361 tggacacccac cccagtggcc acagggggta cccctgggtgc tggatggctg tggctgtgt
 421 aaagtgtgtg cacggaggct gacggagttc tgcgaacacc tgcattgtctg cgaaccceagc
 481 cagggcctgg ttgtcagcc tggggcaggc cctggcggcc atggggctgt gtgtcttctt
 541 gatgaggatg acgggtactg tgaggtgaat ggccgcaggt accttggatgg agagaccttt
 601 aaacccaat gcagggtctt gtgcggctgt gatgacggtg gttcacctg cttcccgctg
 661 tgcagtgtgagg atgtgacgct gcccagctgg gactgcccac gccccaaagag aatacagggt
 721 ccaggaaagt gctggccca gttggatgt gaccaggag tgacaccggc gatccagcgc
 781 tccggggcgc aaggacacca actttctgcc ttgtcactc ctgcctctgc ttagtgcct
 841 tggccaaatt ggagcacago ctggggccccc tgctcaacca cttgtggct gggcatagcc
 901 aaccggatgtt ccaaccagaa ccgattctgc caactggaga tccaaacggcc cctgtgtctg
 961 cccagaccct gcctggcgc caggagccac agctcatgg aacatgtctt ctaaggccaa
 1021 ctggggatgc ggatacaggg cttgcctatcc tcagcaaatg acccttggac cagggcctgg
 1081 actgtgttgc gatgtcttc tccatgtctt tggctgcagt taactgtccct gcttggattc
 1141 actgtgttgc gcaactggc gatccctgtt ctgtctgagg taggcggagc aggtgaccag
 1201 ctccagttct ctgggtcgc ctggaaattctt gggttctctt ggtctattcc tcaaaacatc
 1261 cctgtacaaa aaggacaacc aaaaagaccc ttaaaacctag gctatactgg gcaaacctgg
 1321 ccaccgtgtt ggggataagg tcaatgttag gaccagacag cagattgcct gaaacttcca
 1381 attcccttctt tggacttctg tatgcttgc accaaagatg atgaatgaac tcgttaagtgt
 1441 accttccctg acctggagaac accctgcctg ctggaaagt attcaggggc agaattctct
 40 1501 gtgaacatga agagatgaat cacactgtcc ttaaaaattt cctcaaagtc caggagcttgc
 1561 agttttgtat tttcaggaat gcacatctt taagcactcg caaaacagga aggctccaca
 1621 cctctaacag ccagggccctt tctttcagc atgagaaaaga caagggacag cagagtactc
 1681 tcgtctggag gactagtcta gcctagaata aacacccaaa tcaagcgtga aaaaaaaaaaaa
 1741 a

45 SEQ ID NO: 274

Amino acid sequence of rat WISP2 encoded by the DNA sequence shown in SEQ ID NO: 273.

MRGSPRLIRLLATSFLCLLSMVCAQLCRTPTCTCPWTTPQCPQGVPLVLGCGCCVKCARRL

TESCEHLHVCEPSQGLVCQPGAGPGGHGAVCLLDDEDDGDCEVNRRYLDGETPKPNCRVL
CRCDDGGFTCLPLCSEDVTLPSWDCPRPKRIQVPGKCCPEWVCDQGVTPAIQRSAAQGHQ
LSALVTPASADAPWPNWSTAWGPCSTTCGLGIATRVSNQNRFQCQLEIQRRLCLPRPCLAA
RSHSSWNSAF

5

1 **WHAT IS CLAIMED IS:**

2 1. A method for identifying an agent for treating an obese, diabetic or
3 pre-diabetic individual, the method comprising the steps of:

4 (i) contacting an agent to a polypeptide encoded by a polynucleotide that
5 hybridizes to a nucleic acid encoding SEQ ID NO: 213, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
6 24, 26, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44, 46, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68,
7 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112,
8 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150,
9 152, 154, 156, 158, 160, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 182, 184, 186,
10 188, 190, 192, 194, 196, 197, 199, 201, 203, 205, 207, 209, 211, 215, 217, 219, 221, 223, 225,
11 227, 229, 230, 232, 234, 236, 238, 240, 242, 243, 245, 247, 249, 251, 252, 254, 256, 258, 260,
12 262, 263, 265, 267, 269, 270, 272 or 274 in 50% formamide, 5X SSC, and 1% SDS at 42°C
13 followed by a wash in 0.2X SSC, and 0.1% SDS at 55°C; and

14 (ii) selecting an agent that modulates the expression or activity of the
15 polypeptide or that binds to the polypeptide, thereby identifying an agent for treating an
16 obese, diabetic or pre-diabetic individual.

1 2. The method of claim 1, wherein the polypeptide comprises an amino
2 acid sequence at least 95% identical to SEQ ID NO: 213, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
3 24, 26, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44, 46, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68,
4 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112,
5 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150,
6 152, 154, 156, 158, 160, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 182, 184, 186,
7 188, 190, 192, 194, 196, 197, 199, 201, 203, 205, 207, 209, 211, 215, 217, 219, 221, 223, 225,
8 227, 229, 230, 232, 234, 236, 238, 240, 242, 243, 245, 247, 249, 251, 252, 254, 256, 258, 260,
9 262, 263, 265, 267, 269, 270, 272, 274 or a protein domain thereof.

1 3. The method of claim 1, the method further comprising detecting
2 whether the selected agent modulates weight and/or obesity.

1 4. The method of claim 1, the method further comprising detecting
2 whether the selected agent modulates insulin sensitivity.

1 5. The method of claim 1, wherein step (ii) comprises selecting an agent
2 that modulates expression of the polypeptide.

1 6. The method of claim 1, wherein step (ii) comprises selecting an agent
2 that modulates the activity of the polypeptide.

1 7. The method of claim 1, wherein step (ii) comprises selecting an agent
2 that specifically binds to the polypeptide.

1 8. The method of claim 1, wherein the polypeptide is expressed in a cell
2 and the cell is contacted with the agent.

1 9. The method of claim 1, wherein the polypeptide comprises SEQ ID
2 NO: 213, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44, 46,
3 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94,
4 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132,
5 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 161, 163, 165, 167, 169,
6 171, 173, 175, 177, 179, 181, 182, 184, 186, 188, 190, 192, 194, 196, 197, 199, 201, 203, 205,
7 207, 209, 211, 215, 217, 219, 221, 223, 225, 227, 229, 230, 232, 234, 236, 238, 240, 242, 243,
8 245, 247, 249, 251, 252, 254, 256, 258, 260, 262, 263, 265, 267, 269, 270, 272 or 274.