The objective of this advanced topic is to prove the Schröder-Bernstein Theorem (without using the Axiom of Choice). This theorem makes precise the intuition that when there exists an injection from A to B, then the cardinality (size) of A is less or equal than that of B (even when they are potentially infinite sets) by showing that if there exist injections from A to B and from B to A, then there must exist a bijection between the sets.

Theorem 0.1 (Schröder–Bernstein). Let A and B be sets and suppose there exist injections $f: A \to B$ and $g: B \to A$. Then there exists a bijection $h: A \to B$.

Here is the step-by-step to prove Theorem 0.1: throughout this section, we fix A, B, f and g as in the statement of the theorem. Furthermore, we will make a slight abuse of notation and denote by $f^{-1}: f(A) \to A$ and $g^{-1}: g(B) \to B$ the inverse functions of f and g when we restrict their codomains to their image (after this restriction, the resulting functions are bijective).

Define a sequence of sets $(C_n)_{n\in\mathbb{N}}$ inductively as follows. Let $C_1 \stackrel{\text{def}}{=} A \setminus g(B)$ and for every $n \in \mathbb{N}$, let $C_{n+1} \stackrel{\text{def}}{=} g(f(C_n))$. We also let

$$C \stackrel{\text{def}}{=} \bigcup_{n \in \mathbb{N}} C_n, \qquad D \stackrel{\text{def}}{=} f(C).$$

Define $h: A \to B$ by

$$h(a) \stackrel{\text{def}}{=} \begin{cases} f(a), & \text{if } a \in C, \\ g^{-1}(a), & \text{if } a \notin C. \end{cases}$$

Lemma 0.2. h is well-defined, that is, if $a \in A \setminus C$, then $a \in g(B)$ (i.e., $A \setminus C \subseteq g(B)$).

Proof. If $a \in A \setminus C$, we have that $a \in A$, $a \notin C$. Hence, we know that $a \in A$, $a \notin \bigcup_{n \in \mathbb{N}} C_n$, thus $a \notin C_1$. Hence, $a \notin A \setminus g(B)$, but $a \in A$, hence $a \in g(B)$.

QED

Lemma 0.3. We have $g^{-1}(A \setminus C) = B \setminus D$. (Hint: it might be easier to prove the equivalent statement $B \setminus g^{-1}(A \setminus C) = D$.)

Proof. We prove this by double containment.

Below is the first containment.

Let $x \in f(C)$, then since $f: A \to B$, we know that $x \in B$. Then, we want to show that $x \notin g^{-1}(A \setminus C)$. We know that $x \in f(C)$, hence $x \in f(C_i)$ for some $i \in \mathbb{N}$. Then, $C_{i+1} = g(f(C_i))$, hence $g(x) \in C_{i+1}$, hence $g(x) \in C$. Thus, $g(x) \notin A \setminus C$, hence $x \notin g^{-1}(A \setminus C)$.

Below is the second containment.

Let $x \in B$ such that $x \notin g^{-1}(A \setminus C)$, then we want to show that $x \in f(C)$. We have that $g(x) \notin A \setminus C$, hence $g(x) \in C$. Then, there exists C_i such that $g(x) \in C_i$ for some $i \in \mathbb{N}$.

If i = 1, then $g(x) \in C_1$, i.e., $g(x) \in A \setminus g(B)$ and this is a contradiction. Hence we know that i > 1.

Then, $g(x) \in C_i$ and $C_i = g(f(C_{i-1}))$, hence $g(x) \in g(f(C_{i-1}))$. Since g is injective, we have that $x \in f(C_{i-1})$, hence $x \in f(C)$.

This completes the proof.

QED

Lemma 0.4. If $a_1, a_2 \in A$ are such that $h(a_1) = h(a_2)$ then either both a_1 and a_2 are in C or both a_1 and a_2 are in $A \setminus C$.

Proof. Suppose without loss of generality that $a_1 \in C$, $a_2 \in A \setminus C$ and $h(a_1) = h(a_2)$. Then, $h(a_1) = f(a_1)$ and $h(a_2) = g^{-1}(a_2)$ by the definition of h. Hence, $f(a_1) = g^{-1}(a_2)$.

We know by Lemma 1.3 that $f(C) \cap g^{-1}(A \setminus C) = \emptyset$. Hence, $f(a_1) \notin g^{-1}(A \setminus C)$, i.e., $g^{-1}(a_2) \notin g^{-1}(A \setminus C)$ where $a_2 \in A \setminus C$. This is a contradiction.

QED

Put the lemmas above together to prove that h is bijective (i.e., Theorem 0.1 holds).

Proof. Define $h: A \to B$ by

$$h(a) \stackrel{\text{def}}{=} \begin{cases} f(a), & \text{if } a \in C, \\ g^{-1}(a), & \text{if } a \notin C. \end{cases}$$

First we want to show that h is well defined. We know this by Lemma 1.2.

Next we want to show that h is surjective.

Case 1: if $b \in D$, then $b \in f(C)$. Since f is injective, $\exists! a_0 \in C$ such that $b = f(a_0)$, then $b = h(a_0)$.

Case 2: if $b \in B \setminus D$, then by Lemma 1.3, $b \in g^{-1}(A \setminus C)$. Since g^{-1} is injective, $\exists! a' \in A \setminus C$ such that $b = g^{-1}(a')$, then b = h(a').

If $a_1, a_2 \in A$ such that $h(a_1) = h(a_2)$, then, by Lemma 1.4,

Case 1: both $a_1, a_2 \in C$. Then, $h(a_1) = f(a_1)$, and $h(a_2) = f(a_2)$ by definition, but f is injective so this implies $a_1 = a_2$ hence h is injective.

Case 2: both $a_1, a_2 \in A \setminus C$. Then, $h(a_1) = g^{-1}(a_1)$, and $h(a_2) = g^{-1}(a_2)$ by definition, but g^{-1} is injective so this implies $a_1 = a_2$ hence h is injective.

Thus, we know that h is both injective and surjective, hence it is bijective.

QED