Apreçamento de ativos

Felipe lachan

EPGE

Teoria Macroeconômica II, MD, 2 de setembro de 2025

Preços de ativos

- Vamos começar a pensar seriamente em preços de ativos.
- Modelos baseados em consumo: foco em Eq. de Euler para apreçamento.
- Vamos estudar também modelos mais agnósticos.
 Foco em um fator estocástico de desconto mais abstrato.

Um pouco de motivação

(a) Consumo e PIB (fonte: FRED) vs Índice de ações (Shiller)

(b) Razões P/E e P/D

Estrutura

- Problema de portfólio mais simples possível:
 - duas datas, tempo discreto, único bem por estado.
- $t \in 0, 1$.
- Incerteza em t = 1:
 - estado da natureza $s \in S = \{1, 2, ..., |S|\}$.
 - Probabilidade π_s de realização do estado s.

Estrutura

- Ativos: $j \in J = \{1, 2, ..., |J|\}$
 - Ativo j paga x_s^j unidades do bem de consumo no estado s. $x^j = \left(x_1^j, ..., x_{|S|}^j\right)'$ é o vetor de pagamentos do ativo j.
 - $X = (x^1, ..., x^{|J|})$ é a matriz de pagamentos. X_s , linha s da matriz X, é o vetor de pagamentos de ativos no estado s.
 - Ativos são negociados em t = 0 a preços $P = \left(P^1, P^2, ..., P^{|J|}\right)'$.

5

- Agente representativo:
 - Consumo: $C = (c_0, c_1, ..., c_{|S|})$
 - Dotação: $(e_0, e_1, ..., e_{|S|})$
 - Portfólio comprado em t = 0: $\theta = (\theta^1, ..., \theta^{|J|})'$.
 - Utilidade separável em tempo e estados: $u(c_0) + \mathbb{E}[\beta u(c_s)]$

Problema do agente

$$\max_{C,\theta} u(c_0) + \mathbb{E}\left[\beta u(c_s)\right]$$

s.a.

$$e_0 - P'\theta \ge c_0$$

 $e_s + X_s\theta \ge c_s$

CPOs:

$$c_0: u'(c_0) = \lambda_0$$
$$c_s: \beta \pi_s u'(c_s) = \lambda_s$$

е

$$\theta^j: -P^j\lambda_0 + \sum_s x_s^j \lambda_s = 0$$

Das CPOs,

$$P^{j} = \mathbb{E}\left[\beta \frac{u'(c_{s})}{u'(c_{0})} x_{s}^{j}\right].$$

• Logo, existe uma regra de apreçamento linear,

$$P'=q'X$$

em que $q=ig(q_1,q_2,...,q_{|S|}ig)'$ é um vetor de preços de estado.

• Em particular,

$$q_{s}=\frac{\beta\pi_{s}u^{'}\left(c_{s}\right)}{u^{'}\left(c_{0}\right)}.$$

8

Outras representações

- Atenção: interpretações como vetores vs interpretações como variáveis aleatórias.
- Pricing Kernel (núcleo de apreçamento): renormalização tal que $m_s=\frac{p_s}{\pi_s}$ e podemos escrever

$$P = \mathbb{E}[mx],$$

em que x o vetor de payoffs (|J| variáveis aleatórias).

Medida neutra ao risco:

$$\hat{\pi}_s := rac{q_s}{\sum_j q_j},$$

logo

$$P^j = \frac{\hat{\mathbb{E}}[x^j]}{R^f}.$$

9

"No arbitrage"

- Mas nem toda abordagem focada em apreçamento linear exige modelagem de consumo e TMS.
- Existência de regra de apreçamento linear (e pricing kernel) depende de menos hipóteses do que a nossa estrutura impôs: preferências, agente representativo, consumo, dotações.

"No arbitrage"

Definição: Não há possibilidades de arbitragem quando não existe nenhum portfólio θ tal que

$$\left[egin{array}{c} -P' heta \ X_1 heta \ ... \ X_{|S|} heta \end{array}
ight] \geq 0,$$

com pelo menos uma desigualdade estrita.

Teorema Não há possibilidades de arbitragem se e somente se existe de um vetor (estrit.) positivo q de preços de estado, tal que

$$P'=q'X.$$

Demonstração

- Da existência de preços de estado positivos para ausência de arbitragem, o argumento é trivial. Olhamos para a implicação conversa [da ausência de arb para existência de preços de est.].
- Tome o espaço de vetores de consumo, $(c_0, c_1..., c_{|S|}) \in \mathbb{R}^{|S|+1}$, e defina o conj. orçamentário $\mathcal{B} \subset \mathbb{R}^{|S|+1}$:

$$\mathcal{B} = \left\{ \left(-P'\theta, X_1\theta, .., X_{|S|}\theta \right)', \, \theta \in \mathbb{R}^{|J|} \right\}.$$

- Não arbitragem garante que $\mathcal{B} \cap \left(\mathbb{R}_+^{|S|+1} \setminus 0\right) = \emptyset$, em que $\mathbb{R}_+^{|S|+1}$ representa o ortante positivo.
- Note que \mathcal{B} e $\mathbb{R}_+^{|S|+1} \setminus 0$ são ambos conjuntos convexos. Adicionalmente, \mathcal{B} é linear.
- Usando o teorema do hiperplano separador (MWG, M.G.2 por ex.) ou o Lema de Farkas combinado com a linearidade de \mathcal{B} , mostra-se que existe um hiperplano separador que **contém** \mathcal{B} . Esse hiperplano passa por $0 \in \mathcal{B}$.

Demonstração (cont.)

• Ou seja, existe $z = (z_0, z_1, ..., z_{|S|}) \in \mathbb{R}^{|S|+1}$ tal que:

$$z'c = 0, \forall c \in \mathcal{B},$$

 $z'c > 0, \forall c \in \mathbb{R}_{+}^{|S|+1} \setminus 0.$

- A segunda condição no bloco acima garante que $z_0 > 0$ e $z_s > 0$ para cada s.
- Defina como o preço de estado s

$$q_s=z_s/z_0$$

Segue que $p_s > 0$.

• Por fim, tome o vetor $c = \left(-P^j, X_1^j, ..., X_{|S|}^j\right)$ que está no conj. orçamentário \mathcal{B} , pois corresponde à compra de uma unidade do ativo j. Logo, a condição (1) acima garante que:

$$z'c = -P^{j}z_{0} + \sum_{s} X_{s}^{j}z_{s} = 0.$$

• Rearrumando e usando $p_s = z_s/z_0$ temos que para cada ativo j,

$$P^j = \sum_s X_s^j q_s.$$

Mercados Completos

- Matriz X tem posto |S|: é possível escrever qualquer vetor em $\mathbb{R}^{|S|}$ como combinação linear de linhas de X.
- Ou seja, para qualquer variação de consumo $(\Delta c_1, ..., \Delta c_{|S|})$ que se queira causar em t=1, existe pelo menos um portifólio que a permite.
- Escolha |S| ativos L.I (ou seja, jogue fora ativos redundantes).
 - Sejam \tilde{P} seu vetor de preços e \tilde{X} sua matriz de payoffs.

Mercados Completos

- + ausência de arbitragem:
 - Logo, vetor de preço de estado p pode ser obtido simplesmente em

$$\tilde{P}'=q'\tilde{X}.$$

• Por não arbitragem, qualquer ativo redundante j' tem que satisfazer

$$p^{j}=q^{'}X^{j}.$$

- Exemplos de ativos que podem ser apreçados são ativos de Arrow (ativos que pagam 1 unidade em um estado e zero nos demais.
 - Ou seja, vetores canônicos de $\mathbb{R}^{|S|}$.
 - Seus preços são simplesmente q_s , a s-ésima coordenada de q.

Mercados incompletos

- Matriz X tem posto estritamente menor que |S|.
- Consequências:
 - Falta de ativos limita possibilidade de alteração na distribuição de consumo entre estados da natureza.
 - Há múltiplos q's positivos.
 - Ativos redundantes tem mesmo preço com qualquer um dos múltiplos q's.
 - Ativos não redundantes não são unicamente apreçados.

Dinâmica: horizontes mais longos

Tudo o que fizemos aqui estende naturalmente para um ambiente dinâmico.

• Equação de Euler para ativo de longo-prazo:

$$u'(c_t)P_t^j = \beta E_t \left[u'(c_{t+1})(d_{t+1} + P_{t+1}^j) \right]$$

Note:

- Esperança condicional ao momento da compra.
- Payoff: dividendo e valor de revenda.
- Retorno relevante inclui dois componentes: dividend(coupon/rental) yield $(\frac{d_t}{P_t^j})$ e ganho de capital $(\frac{P_{t+1}^j}{P_t^j})$.

Dinâmica: horizontes mais longos

Teorias baseadas em ausência de possibilidade de arbitragem e fator estocástico de desconto também estendem para horizonte longo:

- Sob as mesmas condições de inexistência de arbitragem em s^t , temos apreçamento linear.
- Ou seja, $\exists q_{s^t} \in \mathbb{R}^{|S|}$ tal que

$$P^j(s^t) = \sum_{s' \in S} q_{s^t}(s')(d^j(s') + P^j(s')), \forall j \in J.$$

Apreçamento linear e β s

Suponha um modelo de apreçamento linear

$$p^{j} = \mathbb{E}_{t}\left[mx^{j}\right].$$

Em um modelo com múltiplos períodos, podemos tomar

$$x_{t+1}^j = d_{t+1}^j + P_{t+1}^j.$$

Todo ativo satisfaz

$$1 = \mathbb{E}_t \left[m_{t+1} R_{t+1}^j
ight]$$

e suas combinações lineares (portifólios) também.

- Retornos são portifólios que têm preços unitários.
 - E excessos de retorno têm preço zero.

Apreçamento linear e β s

• Suponha que haja um ativo livre de risco, que paga \mathbb{R}^f em todos os estados da natureza,

$$1 = \mathbb{E}_t \left[m R^f
ight] = \mathbb{E}_t \left[m
ight] R^f$$
 $R^f = \mathbb{E}_t \left[m
ight]^{-1}$

Apreçamento linear e β s

- Temos $1 = \mathbb{E}_t \left[mR^j \right]$.
- Lembramos que

$$\mathit{Cov}\left(a,b
ight) = \mathbb{E}\left[ab
ight] - \mathbb{E}\left[a
ight]\mathbb{E}\left[b
ight]$$

Escrevemos

$$1 = \textit{Cov}\left(m, R^{j}\right) + \mathbb{E}\left[m\right]\mathbb{E}\left[R^{j}\right]$$

Prêmios de risco

• Logo,

$$\mathbb{E}\left[R^{j}\right] - \frac{1}{\mathbb{E}\left[m\right]} = -\frac{Cov\left(m, R^{j}\right)}{\mathbb{E}\left[m\right]}$$

• Usando, $R^f = \frac{1}{\mathbb{E}[m]}$, escrevemos

$$\underbrace{\mathbb{E}\left[R^{j}\right]-R^{f}}_{\text{exc. de retorno}} = -\frac{Cov\left(m,R^{j}\right)}{\mathbb{E}\left[m\right]} = -\underbrace{\frac{Cov\left(m,R^{j}\right)}{Var\left[m\right]}}_{\beta_{m,R^{j}}}\underbrace{\frac{Var\left[m\right]}{\mathbb{E}\left[m\right]}}_{\text{preço/prêmio de risco}}$$

Ajuste para risco, em termos de preço

Temos também

$$P_{t}^{j} = \mathbb{E}_{t} [m_{t+1} x_{t+1}]$$

$$= \mathbb{E}_{t} [m_{t+1}] \mathbb{E}_{t} [x_{t+1}] + \mathsf{Cov}_{t} (m_{t+1}, x_{t+1})$$

$$= \frac{\mathbb{E}_{t} [x_{t+1}]}{R^{f}} + \mathsf{Cov}_{t} (m_{t+1}, x_{t+1})$$

ou ainda

$$egin{aligned} P_t^j &= \mathbb{E}_t \left[m_{t+1} x_{t+1}
ight] \ &= rac{\mathbb{E}_t \left[x_{t+1}
ight]}{R^{rep}(x_{t+1})} \end{aligned}$$

em que
$$R^{rep}(x_{t+1}) := \frac{\mathbb{E}_t[x_{t+1}]}{\mathbb{E}_t[m_{t+1}x_{t+1}]}$$

Lições

- Prêmio de risco tem a ver com β : correlação e quantidade de risco no ativo.
- Podemos ter prêmio de risco zero em ativos arriscados.
- Nem todo risco demanda prêmio.
- Podemos derivar muitas propriedades usando linearidade e produtos internos.
- Projeções e implementações econométricas: mas *m* não é observável.

CAPM e CCAPM

- CAPM clássico usava utilidade quadrática e retorno de um portfólio de mercado (agregado de todos os ativos da economia) para obter m_s .
- CCAPM, baseado em Lucas(1978), usa:

$$m_{t+1|t} = \beta \frac{u^{'}(c_{t+1})}{u^{'}(c_t)}.$$

Adicionalmente hipótese paramétrica comum: utilidade iso-elástica

$$u\left(c_{t}\right)=\frac{c_{t+1}^{1-\gamma}}{1-\gamma}.$$

- Esta formulação implica elasticidade de substituição intertemporal e aversão ao risco ambas constantes e relacionadas a γ :
 - CARR: $-\frac{u''c}{u'}$
 - ESI: $\frac{d\left(\ln\frac{c_t}{c_{t+1}}\right)}{d\left(\ln\frac{\rho_{t+1}}{\rho_t}\right)}$ ou, para ser mais preciso, $\frac{d\left(\ln\frac{c_t}{c_{t+1}}\right)}{d\left(\ln\frac{u'\left(c_{t+1}\right)}{u'\left(c_{t}\right)}\right)}$.
 - γ alto: desejo forte de suavização no tempo e entre estados da natureza.

Logo,

$$m_{t+1|t} = \beta \left(\frac{c_{t+1}}{c_t}\right)^{-\gamma},$$

fator estocástico de desconto é relacionado à taxa de crescimento do consumo, e equação fundamental de aprecamento torna-se

$$1 = eta \mathbb{E}_t \left[\left(rac{c_{t+1}}{c_t}
ight)^{-\gamma} R_{t+1}^j
ight].$$

- Mehra e Prescott, usando dados de consumo agregado e retorno do mercado de capital.
- Taxa de crescimento do consumo log-normal

$$\frac{c_{t+1}}{c_{t}} = \overline{g} \, e^{\epsilon_{g} - \frac{1}{2} \sigma_{g}^{2}}, \, \epsilon_{g} \sim \textit{N}\left(0, \sigma_{g}^{2}\right)$$

(Para uma variável $x \sim N(\mu, \sigma^2)$, $\mathbb{E}[e^x] = e^{\mu + \frac{\sigma^2}{2}}$). Logo,

$$\mathbb{E}_t\left[\frac{c_{t+1}}{c_t}\right] = \overline{g}.$$

Retorno log-normal de um ativo j

$$R_{t+1}^{j} = \left(1 + \overline{r}^{j}\right) e^{\epsilon_{j} - \frac{1}{2}\sigma_{j}^{2}}, \ \epsilon_{j} \sim N\left(0, \sigma_{j}^{2}\right)$$

logo

$$\mathbb{E}_t\left[R^j\right] = \left(1 + \overline{r}^j\right).$$

- Sejam $\left(\frac{c_{t+1}}{c_t}\right)$ e R^j conjuntamente log-normais (hipótese não feita em Mehra e Prescott, mas ilustrativa).
 - Seja $\sigma_{j,g}$ a covariância entre ϵ_g e ϵ_j .
- Logo,

$$\begin{split} 1 &= \beta \mathbb{E}_{t} \left[\left(\frac{c_{t+1}}{c_{t}} \right)^{-\gamma} R_{t+1}^{j} \right] \\ &= \beta \overline{g}^{-\gamma} \left(1 + \overline{r}^{j} \right) E_{t} \left[e^{-\gamma \epsilon_{g} + \epsilon_{j}} \right] e^{-\frac{1}{2}\sigma_{j}^{2} + \frac{\gamma}{2}\sigma_{g}^{2}} \\ &= \beta \overline{g}^{-\gamma} \left(1 + \overline{r}^{j} \right) e^{\frac{1}{2} \left(\gamma^{2} \sigma_{g}^{2} + \sigma_{j}^{2} - 2\gamma \sigma_{j,g} \right)} e^{-\frac{1}{2}\sigma_{j}^{2} + \frac{\gamma}{2}\sigma_{g}^{2}} \\ &= \beta \overline{g}^{-\gamma} \left(1 + \overline{r}^{j} \right) e^{-\gamma \sigma_{j,g}} e^{\frac{1}{2} \left(\gamma^{2} + \gamma \right) \sigma_{g}^{2}} \end{split}$$

• Portanto,

$$(1+\overline{r}^{j})=eta^{-1}\overline{g}^{\gamma}e^{\gamma\sigma_{j,g}}e^{-rac{1}{2}(\gamma^{2}+\gamma)\sigma_{g}^{2}}$$

Em logs,

$$ar{r}^{j}pprox \ln\left(1+ar{r}^{j}
ight)=-\lneta+\gamma\ln\overline{g}-rac{1}{2}\left(\gamma^{2}+\gamma
ight)\sigma_{g}^{2}+\gamma\sigma_{j,g}$$

Temos

$$ar{r}^{j}pprox \ln\left(1+ar{r}^{j}
ight)=-\lneta+\gamma\ln\overline{g}-rac{1}{2}\left(\gamma^{2}+\gamma
ight)\sigma_{g}^{2}+\gamma\sigma_{j,g}$$

Com dois ativos, ações (s, dados S&P 500) e ativo livre de risco (f) temos

$$\overline{r}^s - \overline{r}^f = \gamma \sigma_{s,g}.$$

 Prêmio é proporcional a parâmetro que governa aversão relativa a risco e à correlação entre retorno de ações e crescimento do consumo.

- Nos dados:
 - $r^s \approx 7\%$ e $r^f \approx 0.8\%$
- Kocherlakota (1996) discute duas dificuldades do modelo analisado, ressaltando 3 únicas hipóteses centrais:
 - Utilidade iso-elástica
 - Agente representativo (ou mercados completos).
 - Ausência de custos de transação.
- Dificuldade do modelo se manifesta em duas dimensões:
 - Prêmio é excessivamente alto, incompatível com parâmetros tidos como razoáveis de aversão ao risco.
 - Taxa livre de risco é demasiadamente baixa, dada a taxa de crescimento (desejo de suavização deveria manifestar-se não só entre estados da natureza, mas entre períodos).

Mehra-Prescott

Figura: Com aversão rel. ao risco entre 0 e 10, não se consegue justificar o prêmio. Em particular: "The observed real return of 0.80 percent and equity premium of 6 percent is clearly inconsistent with the predictions of the model. The largest premium obtainable with the model is 0.35 percent..."

Kocherlakota (1996)

Revendo os dados de MP:

TABLE 1 SUMMARY STATISTICS UNITED STATES ANNUAL DATA, 1889–1978				
	Sample Means			
\mathbf{R}_{t}^{s}		0.070		
\mathbf{R}_{t}^{b}		0.010		
C_t/C_{t-1}		0.018		
	Sam	ple Variance-Cov	ariance	
	R:	R_i^b	C_t/C_{t-1}	
\mathbf{R}_{i}^{s}	0.0274	0.00104	0.00219	
\mathbf{R}_{i}^{b}	0.00104	0.00308	-0.000193	
C_i/C_{i-1}	0.00219	-0.000193	0.00127	

In this table, C_t/C_{t-1} is real per capita consumption growth, R_t^* is the real return to stocks and R_t^* is the real return to Treasury bills.

Supondo log-normalidade, daí sairia

$$0,07 - 0,01 = 0,06 = \gamma 0,00219. \ \sigma_{s,g}$$

Logo,

$$\gamma = \frac{0,06}{0,00219} = 27,4$$

(cálculo simplificado supõe que R_t^b é conhecido um período antes. Resultados não qualitativamente afetados, caso contrário).

Estimação

Duas condições de momentos são geradas pela teoria:

$$\mathbb{E}_{t}\left[\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma}\left(R_{t+1}^{s}-R_{t+1}^{f}\right)\right]=0$$

e

$$\mathbb{E}_{t}\left[\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma}R_{t+1}^{f}\right]=1$$

GMM exatamente identificado, que não faz aproximações ou hipóteses sobre distribuição leva a $\gamma=17,95$ e $\beta=1,08$.

2 puzzles

Equity Premium Puzzle e Risk-free rate Puzzle:

- Primeira condição de momento demanda aversão ao risco grande: γ em desacordo com evidência micro e experimental.
- Outra face da moeda: taxa livre de risco baixa pede elasticidade de substituição alta.
 Agentes não parecem demandar prêmio alto pelo consumo que cresce rápido.
- Desejo de suavização forte entre estados da natureza e fraco inter-temporalmente aparente nos dados é problema para a parametrização com utilidade com função potência.

TABLE 2
THE EOUTY PREMIUM PUZZLE

a	\overline{e}	t-stat
0.0	0.0594	3.345
0.5	0.0577	3.260
1.0	0.0560	3.173
1.5	0.0544	3.082
2.0	0.0528	2.987
2.5	0.0512	2.890
3.0	0.0496	2.790
3.5	0.0480	2.688
4.0	0.0464	2.584
4.5	0.0449	2.478
5.0	0.0433	2.370
5.5	0.0418	2.262
6.0	0.0403	2.153
6.5	0.0390	2.044
7.0	0.0372	1.934
7.5	0.0357	1.824
8.0	0.0341	1.715
8.5	0.0326	1.607
9.0	0.0310	1.501
9.5	0.0295	1.395
10.0	0.0279	1.291

In this table, \bar{e} is the sample mean of $e_i = (C_{ti}/C_t)^{-\alpha}$ $(R_{t-1} - R_{t-1}^{\alpha})$ and α is the coefficient of relative risk aversion. Standard errors are calculated using the implication of the theory that e_i is uncorrelated with e_{tb} for or all k; however, they are little changed by allowing e_t to be MA(1) instead. This latter approach to calculating standard errors allows for the possibility of time aggregation (see Hansen, Heaton, and Yaron 1994).

TABLE 3
THE RISK FREE RATE PUZZLE

a	\overline{e}	t-stat
0.0	0.0033	0.0567
0.5	-0.0081	-1.296
1.0	-0.0162	-2.233
1.5	-0.0239	-2.790
2.0	-0.0313	-3.100
2.5	-0.0382	-3.263
3.0	-0.0448	-3.339
3.5	-0.0510	-3.360
4.0	-0.0569	-3.348
4.5	-0.0624	-3.312
5.0	-0.0675	-3.259
5.5	-0.0723	-3.195
6.0	-0.0768	-3.123
6.5	-0.0808	-3.043
7.0	-0.0846	-2.959
7.5	-0.0880	-2.871
8.0	-0.0910	-2.779
8.5	-0.0937	-2.685
9.0	-0.0960	-2.590
9.5	-0.0980	-2.492
10.0	-0.0997	-2.394

In this table, \bar{e} is the sample mean of $e_t = \beta(c_{t+1}/c_t)^{-\alpha}$ ($R_{t+1}^{\alpha} - 1$) and α is the coefficient of relative risk aversion. The discount factor P is set equal to 0.99. The standard errors are calculated using the implication of the theory that e_t is uncorrelated with e_{t+} for all k; however, they are little changed by allowing e_t to be MA(1) instead. This latter approach to calculating standard errors allows for the possibility of time aggregation (see Hansen, Heaton, and Varon 1994).

Soluções buscadas na literatura

- Preferências:
 - Separação de aversão ao risco e elasticidade de substituição intertemporal
 - Aversão ao risco de primeira ordem
 - Hábitos
 - Considerações de riqueza relativa
 - Aversão a perdas
 - Incerteza Knightiana

Soluções buscadas na literatura

- Incompletude de mercados, problemas de contratos e outras fricções
 - Compromisso limitado
 - Custos de transação e participação limitada
 - Risco idiossincrático não-negociável (trabalho e empreendimento)
- Não há puzzles
 - Questionamento da implausibilidade da ARR acima de 10-20.
 - Prêmio de liquidez/conveniência em alguns títulos especiais.
 - Particularidade da amostra americana: Falta de desastres. Retornos excepcionais (surpresas).
 - Papel de riscos de longo prazo (choques persistentes no crescimento).

Hansen e Jagannathan (JPE 1991)

- Qualquer modelo de apreçamento, para aderir aos dados, precisa ter o fator estocástico de desconto suficientemente volátil.
- Ideia:

$$\mathbb{E}\left(m_{t}R_{t}^{j}
ight)=1,\,orall j\in J$$

logo

$$\mathbb{E}\left(m_{t}R_{t}^{j}
ight)=\mathbb{E}\left(m_{t}
ight)R_{t}^{f}$$
 $Cov\left(m_{t},R_{t}^{j}
ight)=\mathbb{E}\left(m_{t}
ight)\left[R_{t}^{f}-\mathbb{E}\left(R_{t}^{j}
ight)
ight].$

Temos que

$$Cov\left(m_t, R_t^j\right) = \rho_{j,m} \sigma_m \sigma_{R^j}$$

Daí

$$|\mathbb{E}\left(R_{t}^{j}\right)-R_{t}^{f}|\mathbb{E}\left(m_{t}
ight)=|
ho_{j,m}\sigma_{m}\sigma_{R^{j}}|\leq\sigma_{m}\sigma_{R^{j}}$$

Rearrumando,

$$\frac{|\mathbb{E}\left(R_t^j\right) - R_t^f|}{\sigma_{R^j}} \leq \frac{\sigma_m}{\mathbb{E}\left(m\right)}.$$

• Razão $\frac{\sigma_m}{\mathbb{E}(m)}$ tem que superar índice de Sharpe dos ativos apreçados. Para ações como um todo nos EUA, esse número é aprox. $\frac{6\%}{16\%} = 0,375$. Possível achar ativos transacionados com índices muito superiores.