Suppose $T\in\mathcal{L}(V)$ and $\lambda\in\mathbb{F}$. Prove that λ is an eigenvalue of T iff $\overline{\lambda}$ is an eigenvalue of T^* .

Given λ is an eigenvalue of T, show that $\overline{\lambda}$ is an eigenvalue of T^* . This will imply both directions, since $\lambda=\overline{\overline{\lambda}}$ and $T=T^{*^*}$

There exists some v s.t.

$$Tv = \lambda v$$

$$\langle \lambda v \rangle = \langle Tv, w \rangle = \langle v, T^*w \rangle$$