

tf-idf

Crock Pot Pasta

Never boil pasta again

Pasta Pomodoro

Fresh ingredients Parmesan to taste

Crock Pot Pasta

Never boil pasta again

Список слов

0	crock	7	fresh
1	pot	8	ingredients
2	pasta	9	parmesan
3	never	10	to
4	boil	11	taste
5	again		
6	pomodoro		

Pasta Pomodoro

Fresh ingredients Parmesan to taste

Crock Pot Pasta

Never boil pasta again

Список слов

0	crock	7	fresh
1	pot	8	ingredients
2	pasta	9	parmesan
3	never	10	to
4	boil	11	taste
5	again		
6	pomodoro		

Pasta Pomodoro

Fresh ingredients Parmesan to taste

Вектора

1 [1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0] 2 [0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1]

Peaлизуйте класс CountVectorizer, имеющий метод fit_transform

```
corpus = [
        'Crock Pot Pasta Never boil pasta again',
        'Pasta Pomodoro Fresh ingredients Parmesan to taste'
5
    vectorizer = CountVectorizer()
    count matrix = vectorizer.fit transform(corpus)
    print(vectorizer.get feature names())
    Out: ['crock', 'pot', 'pasta', 'never', 'boil', 'again', 'pomodoro',
10
           'fresh', 'ingredients', 'parmesan', 'to', 'taste']
11
12
    print(count matrix)
13
    Out: [[1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0],
14
           [0. 0. 1. 0. 0. 0. 1. 1. 1. 1. 1. 1]]
```


Spaghetti and Meatballs

Making your own meatballs and sauce makes it even better

Spaghetti and Meatballs

Making your own meatballs and sauce makes it even better

$$tf = \frac{\text{повторений}}{\text{всего}}$$

	повторений	tf		
spaghetti	1	0,077		
and	2	0,154		
meatballs	2	0,154		
making	1	0,077		
your	1	0,077		
всего	13			

Penne Alla Vodka

True story: This is the best vodka sauce the Delish team

has tasted

$$tf = \frac{\text{повторений}}{\text{всего}}$$

	повторений	tf
vodka	?	?
всего	?	

Penne Alla Vodka

True story: This is the best vodka sauce the Delish team

has tasted

$$tf = \frac{\text{повторений}}{\text{всего}}$$

	повторений	tf
vodka	2	0,125
всего	16	

Реализуйте функцию tf_transform

```
1  count_matrix = [
2     [1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0],
3     [0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1]
4  ]
5  tf_matrix = tf_transform(count_matrix)
6  
7  print(tf_matrix)
8  Out: [[0.143, 0.143, 0.286, 0.143, 0.143, 0.143, 0, 0, 0, 0, 0, 0],
     [0, 0, 0.143, 0, 0, 0, 0.143, 0.143, 0.143, 0.143, 0.143]]
```


Задание #3: inverse document-frequency

Crock Pot Pasta

Never boil pasta again

$$idf = ln(\frac{\text{всего документов} + 1}{\text{документов со словом} + 1}) + 1$$

Pasta Pomodoro

Fresh ingredients Parmesan to taste

	док-ов со словом	idf	
crock	1	1.405	
pot	1	1.405	
pasta	2	1	
never	1	1.405	
boil	1	1.405	
•••			
всего документов	2		

Задание #3: inverse document-frequency

Реализуйте функцию idf_transform

Задание #4: tf-idf transformer

Crock Pot Pasta

Never boil pasta again

$$tfidf = tf * idf$$

Fresh ingredients Parmesan to taste

	tf	idf	tf-idf
crock	0.143	1.405	0.201
pot	0.143	1.405	0.201
pasta	0.286	1	0.286
never	0.143	1.405	0.201
boil	0.143	1.405	0.201
•••			
pasta	0.143	1	0.143

Для получения значений как в sklearn, нужно использовать from sklearn.preprocessing import normalize

Задание #4: tf-idf transformer

Peaлизуйте класс TfidfTransformer, имеющий метод fit_transform

```
count matrix = [
       [1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0],
       [0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1]
4
5
    transformer = TfidfTransformer()
6
    tfidf matrix = transformer.fit transform(count matrix)
    print(tfidf matrix)
    Out: [[0.2, 0.2, 0.286, 0.2, 0.2, 0.2, 0, 0, 0, 0, 0, 0],
10
           [0, 0, 0.143, 0, 0, 0, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2]
```


Задание #5: tf-idf vectorizer

Peaлизуйте класс TfidfVectorizer, имеющий метод fit_transform

```
corpus = [
        'Crock Pot Pasta Never boil pasta again',
        'Pasta Pomodoro Fresh ingredients Parmesan to taste'
4
5
    vectorizer = TfidfVectorizer()
6
    tfidf matrix = vectorizer.fit transform(corpus)
8
    print(vectorizer.get feature names())
9
    Out: ['crock', 'pot', 'pasta', 'never', 'boil', 'again', 'pomodoro',
10
           'fresh', 'ingredients', 'parmesan', 'to', 'taste']
11
12
    print(tfidf matrix)
13
    Out: [[0.2, 0.2, 0.286, 0.2, 0.2, 0.2, 0, 0, 0, 0, 0, 0],
14
           [0, 0, 0.143, 0, 0, 0, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2]
```


Задание #5: tf-idf vectorizer

Диаграмма классов

Спасибо за проделанную работу!