Contatori

Conteggio numeri binari

111

Contatori Sincroni

Un contatore <u>sincrono è costruito mediante flip-flop pilotati da un impulso di clock in comune</u>

Ciò evita ritardi di propagazione

...Ma richiede una circuiteria più complessa

Progettazione contatori sincroni

- 1. Creare <u>un'automa a stati che descriva il</u> <u>funzionamento del contatore</u>
 - A questo punto, dato il <u>numero di bit necessari per</u> <u>codificare gli stati, abbiamo bisogno di un flip-</u> <u>flop per bit</u>
- Creare una tabella degli stati che descriva le relazioni tra stato corrente e stato successivo, e i relativi ingressi dei flip flop che codificano gli stati
- 3. Derivare le mappe di Karnaugh per ciascun flip-flop

Automa a stati finiti

Contatore binario a 3 bit

Usiamo un flip-flip T

Tabella degli Stati

Stat	о со	rrente	Stato	succe	essivo	Ingressi flip-flip			
C	В	Α	C ⁺	B^+	A^{+}	T_{C}	T_{B}	T_{A}	
0	0	0	0	0	1	0	0	1	
0	0	1	0	1	0	0	1	1	
0	1	0	0	1	1	0	0	1	
0	1	1	1	0	0	1	1	1	
1	0	0	1	0	1	0	0	1	
1	0	1	1	1	0	0	1	1	
1	1	0	1	1	1	0	0	1	
1	1	1	0	0	0	1	1	1	

Sono a 1 gli ingressi del flip flop T che vede un cambio del corrispondente bit. TA è sempre a 1 perchè il bit meno significativo cambia sempre ad ogni step

Usiamo un flip-flop D

Usiamo porte XOR

- D_A=A' = **A** ⊕ **1**
- $D_B = AB' + A'B = A \oplus B$
- $D_C = A'C + B'C + ABC' = C(A' + B') + C'(AB) =$ = $C(AB)' + C'(AB) = AB \oplus C$

Usiamo Flip Flop JK...

Tabella Degli Stati											
Q2	Q1	Q0	Q2+	Q1+	Q0+	J2	K2	J1	K1	J0	K0
0	0	0	0	0	1	0	-	0	-	1	-
0	0	1	0	1	0	0	-	1	-	-	1
0	1	0	0	1	1	0	-	-	0	1	-
0	1	1	1	0	0	1	-	-	1	-	1
1	0	0	1	0	1	-	0	0	-	1	-
1	0	1	1	1	0	-	0	1	-	-	1
1	1	0	1	1	1	-	0	-	0	1	-
1	1	1	0	0	0	-	1	-	1	-	1

Ricapitolando

- Ogni numero decimale (codificato in binario) rappresenta uno stato
- Il diagramma degli stati (e la tabella degli stati) rappresentano le transizioni da uno stato all'altro (cioè da un numero al successivo)
- Per implementare il circuito, ci occorrono tanti flip-flop quante sono le cifre binarie del contatore (bit per rappresentare gli stati)
 - · Ognuno "memorizza" una cifra
- Infine <u>dobbiamo realizzare dei circuiti che pilotano le</u> <u>transizioni di ogni flip-flop</u>

Come determinare gli ingressi dei flip-flop corrispondenti alle transizioni di stato?

A seconda se la cifra del flip flop cambia o meno nella transizione di stato, il flip flop va pilotato diversamente con input diversi

	J	K	т	D
	J	K	'	U
0→0	0	-	0	0
0→1	1	-	1	1
1→0	-	1	1	0
1→1	-	0	0	1

Circuito di pilotaggio

- Per ogni flip flip tracciamo mappe di Karnaugh (nel J-K ne occorrono due, una per J e una per K) in cui
 - Le variabili rappresentano lo stato in cui si trova il contatore (stato precedente)
 - I valori rappresentano il valore da inviare all'ingresso del flip-flop per portarlo nello stato successivo (vedi tabella precedente)
- Risolta la mappa, otteniamo il circuito di pilotaggio di ciascun flip-flop

Esercizio

- · Realizziamo un BCD decade counter
- Ovvero, un contatore a 4 bit che torna a 0 dopo aver raggiunto 9 (1001)
 - Usiamo un flip-flip J-K connesso in modalità T
- Proviamo a connettere il contatore al 7-segment decoder e quindi a un display a 7 segmenti

Tabella Degli Stati

Q3	Q2	Q1	Q0	Q3+	Q2+	Q1+	Q0+	Т3	T2	T1	T0
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	1	0	0	0	1	1
0	0	1	0	0	0	1	1	0	0	0	1
0	0	1	1	0	1	0	0	0	1	1	1
0	1	0	0	0	1	0	1	0	0	0	1
0	1	0	1	0	1	1	0	0	0	1	1
0	1	1	0	0	1	1	1	0	0	0	1
0	1	1	1	1	0	0	0	1	1	1	1
1	0	0	0	1	0	0	1	0	0	0	1
1	0	0	1	0	0	0	0	1	0	0	1

Sommario

- $T_3=Q_3Q_0+Q_2Q_1Q_0$
- T₂=Q₁Q₀
- T₁=Q₃'Q₀
- T₀=1

Contatore Up/Down

Dotato di ingresso UP/DOWN

- Se HIGH, il contatore conta in avanti (incrementa di 1)
- Se LOW, il contatore conta all'indietro (decrementa di 1)

Tabella degli stati

Mappe di Karnaugh

A questo punto costruiamo mappe per ogni flip flop che modellano lo stato successivo (e uscite) in base a:

- · Stato corrente
- Ingresso UP/DOWN (in breve U)

