Unsupervised Learning of MultipleLanguages Using Recurrent Neural Networks

Miquel Perelló Nieto, Mathias Berglund¹ and Tapani Raiko¹

Course:

T-61.5910 Research Project in Computer and Information Science

Aalto, Nov 2013

- Introduction
 - Motivation
- Method
 - Summary
 - Corpus
 - Techniques
- 3 Experiment
 - Experiment
- Results
 - Error measure
 - Training Error
 - Test Error
- Discusion

- Introduction
 - Motivation
- 2 Method
 - Summary
 - Corpus
 - Techniques
- 3 Experiment
 - Experiment
- Results
 - Error measure
 - Training Error
 - Test Error
- Discusion

Learning multiple languages

- Le langage est la capacite d'exprimer une pense e et de communiquer au moyen d'un système de signes
- Un idioma ye una llingua, o seya, un sistema de comunicación verbal propiu d'una comunidá humana, usáu por ún o varios pueblos o naciones.
- El llenguatge es la facultat de poder comunicar els propis pensaments o sentiments a un receptor o interlocutor mitjançant un sistema o codi determinat de signes interpretable per a ell.

Text prediction

- Involves improving text compression
- Good compresion requires a deep understanding of the text
- It can help on human-computer interaction

Deep Neural Networks

- Outstanding in recent challenges
- Ability to get underlying information
- New approaches to train DNN and RNN

3rd layer "Objects"

2nd layer "Object parts"

> 1st layer "edges"

> > Input

Aalto University School of Science

Image from Honglak Lee slides: Deep Learning Methods for Vision

Recent results

- Learned linguistic and grammatical structure
- Balance parentheses and quotes (e.g., 30 characters)
- Creates plausible words
- Easy to improve adding more neurons

Example (trained with Wikipedia) 2:

In: The meaning of life is

Out: the tradition of the ancient human reproduction: it is less favorable to the good boy.

to the good boy[...]

- - Motivation
- Method
 - Summary
- - Experiment
- - Error measure
 - Training Error
 - Test Error

Summary

Economy, Literature. Science ... house. casa ... a, b, c, A, B, C,

1, 2 ...

classes

languages

words

characters

- es
- Create or get a Corpus
- Generate and evaluate text with N-grams
- Generate text with RNN
- Compare both systems

Aalto University School of Science Summary

Timeline

- Introduction
 - Motivation
- 2 Method
 - Summary
 - Corpus
 - Techniques
- Experiment
 - Experiment
- Results
 - Error measure
 - Training Error
 - Test Error
- Discusion

By language

English - 1.4GB

- Wikipedia
- Previously cleaned

Spanish - 466MB

- Joint Research Center
- "Total body of European Union (EU) law applicable in the EU Member States"
- Divided by years in xml format (1958-2006)
- Merged all contents into one file
- Removed accents, "ñ" and "ü"

Char frequencies

Length words

- Only kept words of less than 40 characters
- Larger ones are usually URL's or numbers

Length sentences

- Removed sentences of less than 50 characters
- also larger than 1000

- Introduction
 - Motivation
- 2 Method
 - Summary
 - Corpus
 - Techniques
- 3 Experiment
 - Experiment
- 4 Results
 - Error measure
 - Training Error
 - Test Error
- Discusion

N-grams

- Need to choose the N
- Preprocess to create the list of N-grams
- Compute frequencies and create a DB
- Smoothing techniques to improve likelihood
 - Add-one Smoothing
 - Add-α Smoothing
 - Good-Turing Smoothing
 - Interpolation

Recurrent Neural Networks

- Need to choose parameters
 - Number hidden layers
 - Learning rates
 - Number of steps
 - Number of epochs
- Need to transform textual data to input data
- Training requires a lot of time

- Introduction
 - Motivation
- 2 Method
 - Summary
 - Corpus
 - Techniques
- 3 Experiment
 - Experiment
- 4 Results
 - Error measure
 - Training Error
 - Test Error
- Discusion

Experiment

Models

- 2-grams, 3-grams, 4-grams
- RNN
 - 86 input
 - ▶ 300 hidden
 - 86 output
 - 50 steps

Datasets

- English wikipedia
- JRC and wikipedia merged

- - Motivation
- - Summary

 - Techniques
- - Experiment
- Results
 - Error measure
 - Training Error
 - Test Error

Cross-entropy error

Cross-entropy

$$H(p,q) = -\sum_{x} p(x) \log q(x) \tag{1}$$

- For each prediction of a sentence
- Then averaged

$$Error = \frac{1}{N} \sum_{i=1}^{N} H_i(p_i, q_i)$$
 (2)

- Introduction
 - Motivation
- 2 Method
 - Summary
 - Corpus
 - Techniques
- 3 Experiment
 - Experiment
- Results
 - Error measure
 - Training Error
 - Test Error
- Discusion

RNN

- From 22 epochs the test error starts increasing
- Because of the avaliable time we apply one epoch

- Introduction
- Motivation
- Method
 - Summary
 - Corpus
 - Techniques
- Experiment
 - Experiment
- Results
 - Error measure
 - Training Error
 - Test Error
- Discusion

English models

- Large values of N needs more training data
- RNN performs better

Spanish/English models

- Large values of N needs more training data
- RNN performs better

Discusion

N-grams

- Depends on the N size
- Small N do not have a context
- Large N needs more data

RNN

- Need more time to train
- Fast in generation time

More info.

Bibliography I

Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text with recurrent neural networks.

In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages 1017–1024, 2011.

Unsupervised Learning of MultipleLanguages Using Recurrent Neural Networks

Miquel Perelló Nieto, Mathias Berglund¹ and Tapani Raiko¹

Course:

T-61.5910 Research Project in Computer and Information Science

Aalto, Nov 2013

