周学习总结

许典

视频学习

- 视频学习到了GAN 和Meta Learning,总体进度(95/119)
- 最近没有合适的设备来做视频后面的实验, 暂且搁置

论文

- Revisiting Locally Supervised Learning: an Alternative to End-toend Training(ICLR 2021)
- 局部监督学习: 一种端到端训练的替代方法

可以节省显存或者增加并行性

然而这种方法会对模型的效果造成影响

Table 1: Test errors of a ResNet-32 using greedy SL on CIFAR-10. The network is divided into K successive local modules. Each module is trained separately with the softmax cross-entropy loss by appending a global-pool layer followed by a fully-connected layer (see Appendix F for details). "K = 1" refers to end-to-end (E2E) training.

	K=1	K=2	K=4	K=8	K = 16
Test Error	7.37%	10.30%	16.07%	21.19%	24.59%

Figure 2: The linear separability (left, measured by test errors), mutual information with the input x (middle), and mutual information with the label y (right) of the intermediate features h from different layers when the greedy supervised learning (greedy SL) algorithm is adopted with K local modules. The ends of local modules are marked using larger markers with black edges. The experiments are conducted on CIFAR-10 with a ResNet-32.

Method – *Information Propagation* (InfoPro) *Loss*

Definition of Information Propagation (InfoPro) Loss

实验效果

Table 3: Trade-off between GPU memory footprint during training and test errors. Results of training ResNet-110 on a single Nvidia Titan Xp GPU are reported. 'GC' refers to gradient checkpointing (Chen et al., 2016).

	CIFAR-10 (batch size = 1024)			STL-10 (batch size = 128)		
Methods	Test Error	Memory Cost	Computational Overhead	Test Error	Memory Cost	Computational Overhead
			(Theoretical / Wall Time)	Test Effor		(Theoretical / Wall Time)
E2E Training	$6.50 \pm 0.34\%$	9.40 GB	-	$22.27 \pm 1.61\%$	10.77 GB	_
GC (Chen et al., 2016)	$6.50 \pm 0.34\%$	3.91 GB (↓58.4%)	32.8% / 27.5%	$22.27 \pm 1.61\%$	4.50 GB (↓58.2%)	32.8% / 27.0%
$InfoPro^*, K = 2$	$\textbf{6.41} \pm \textbf{0.13}\%$	5.38 GB (\psi 42.8\%)	1.3% / 1.1%	$20.95 \pm 0.57\%$	6.15 GB (\(\psi 42.9\%)\)	1.3% / 1.7%
$InfoPro^*, K = 3$	$6.74 \pm 0.12\%$	4.22 GB (↓55.1%)	3.3% / 7.5%	$21.00 \pm 0.52\%$	4.96 GB (\$\d\ 53.9\%)	3.3% / 7.0%
$InfoPro^*, K = 4$	$6.93 \pm 0.20\%$	3.52 GB (↓62.6%)	5.9% / 13.4%	$21.22 \pm 0.72\%$	4.08 GB $(\downarrow 62.1\%)$	5.9% / 11.4%

Table 4: Single crop error rates (%) on the validation set of ImageNet. We use 8 Tesla V100 GPUs for training.

Models	Methods	Batch Size	Top-1 Error	Top-5 error	Memory Cost	Computational Overhead
					(per GPU)	(Theoretical / Wall Time)
ResNet-101	E2E Training	1024	22.03%	5.93%	19.71 GB	_
	InfoPro*, $K=2$	1024	21.85%	5.89%	12.06 GB (\psi 38.8\%)	5.7% / 11.7%
ResNet-152	E2E Training	1024	21.60%	5.92%	26.29 GB	-
	InfoPro*, $K=2$	1024	21.45%	5.84%	15.53 GB (↓40.9%)	3.9% / 8.7%
ResNeXt-101, 32×8d	E2E Training	512	20.64%	5.40%	19.22 GB	_
	InfoPro*, $K=2$	512	20.35%	5.28%	11.55 GB (↓39.9%)	2.7% / 5.6%

FPGA

- 简单了解了OpenCL
- 在虚拟机中用qemu虚拟机测试XRT和OpenCL
- •解决了实验时读取外部存储的数据文件的问题,而又不用自己写 Linux驱动