Multi-Armed Bandit Mechanisms for Multi-Slot Sponsored Search Auctions

Akash Das Sarma Indian Institute of Technology, Kanpur, 208016. Sujit Gujar Indian Institute of Science, Bangalore, 560012.

Y Narahari Indian Institute of Science, Bangalore, 560012.

January 17, 2010

Abstract

In pay-per click sponsored search auctions which are currently extensively used by search engines, the auction for a keyword involves a certain number of advertisers (say k) competing for available slots (say m) to display their ads. This auction is typically conducted for a number of rounds (say T). There are click probabilities μ_{ij} associated with each agent-slot pairs. The goal of the search engine is to maximize social welfare of the advertisers, that is, the sum of values of the advertisers. The search engine does not know the true values advertisers have for a click to their respective ads and also does not know the click probabilities μ_{ij} s. A key problem for the search engine therefore is to learn these click probabilities during the T rounds of the auction and also to ensure that the auction mechanism is truthful. Mechanisms for addressing such learning and incentives issues have recently been introduced and are aptly referred to as multi-armed-bandit (MAB) mechanisms. When m=1, characterizations for truthful MAB mechanisms are available in the literature and it has been shown that the regret for such mechanisms will be $O(T^{\frac{2}{3}})$. In this paper, we seek to derive a characterization in the realistic but non-trivial general case when m>1 and obtain several interesting results. Our contributions include: (1) When μ_{ij} s are unconstrained, we prove that any truthful mechanism must satisfy strong pointwise monotonicity and show that the regret will be O(T)for such mechanisms. (2) When the clicks on the ads follow a certain click precedence property, we show that weak pointwise monotonicity is necessary for MAB mechanisms to be truthful. (3) If the search engine has a certain coarse pre-estimate of μ_{ij} values and wishes to update them during the course of the T rounds, we show that weak pointwise monotonicity and weakly separatedness are necessary and sufficient conditions for the MAB mechanisms to be truthful. (4) If the click probabilities are separable into agent specific and slot specific terms, we provide a characterization of MAB mechanisms that are truthful in expectation.

1 Introduction

Whenever a user searches any set of keywords on a search engine, along with the search results, called *organic* results, the search engine displays advertisements related to those keywords on the right side of the organic results. In pay-per-click sponsored search auctions, the search engine charges an advertiser for displaying her ad only if a user clicks on her ad. The decision regarding which ads are be displayed and their respective order is based on the bids submitted by the advertisers indicating the maximum amount they are willing to pay per click. To perform any optimizations, such as maximizing social welfare or maximizing revenue to the search engine, the true valuations of the advertisers are needed. Being rational, the advertisers may actually manipulate their bids and therefore a primary goal of the search engine is to design an auction for which it is in the best interest of each advertiser to bid truthfully irrespective of the bids of the other advertisers. Such an auction is said to be *Dominant Strategy Incentive Compatible* (DSIC), or truthful.

These auctions also take into account crucially the click probabilities or clickthrough rates (CTRs). Given an agent i and a slot j, the click probability μ_{ij} is the probability with which the ad of agent i will be clicked if the ad appears in slot j. If the search engine knows the CTRs, then its problem is only to design a truthful auction. However, the search engine may not know the CTRs beforehand. Thus the problem of the search engine is two fold: (1) learn the CTR values (2) design a truthful auction. Typically, the same set of agents compete for the given set of keywords. The search engine can exploit this fact to learn the CTRs by initially displaying ads by various advertisers. Also note, it is reasonable to assume that they may not revise their bids frequently. If the advertisers were bidding true values, the search engine's problem would have been the same as that of a multi-armed bandit (MAB) problem [7] for learning the CTRs. Since the agents may not report their true values, the problem of the search engine can be described as one of designing an incentive compatible MAB mechanism. In the initial rounds, the search engine displays advertisements from all the agents to learn the CTRs. This phase is referred to as *exploration* phase. Then it uses the information gained in these rounds to maximize the social welfare. The latter phase is referred to as exploitation. The search engine will invariably lose a part of social welfare for the exploration phase. The difference between the social welfare the search engine would have achieved with the knowledge of CTRs and the actual social welfare achieved by a MAB mechanism is referred to as regret. Thus, regret analysis is also important while designing a MAB mechanism.

1.1 Related Work

The problems where the decision maker has to optimize his total reward based on gained information as well as gain knowledge about the available rewards are referred to as Multi-Armed Bandit (MAB) problem. The MAB problem was first studied by Robbins [7] in 1952. After his seminal work, MAB problems have been extensively studied for regret analysis and convergence rates. Readers are referred to [2] for regret analysis in finite time MAB problems. However, when a mechanism designer has to consider strategic behavior of the agents, these bounds on regret would not work. Recently, Babaioff, Sharma, and Slivkins [3] have derived a characterization for truthful MAB mechanisms in the context of pay-per-click sponsored search auctions if there is only a single slot for each keyword. They have shown that any truthful MAB mechanism must have at least $\Omega(T^{\frac{2}{3}})$ worst case regret and also proposed a mechanism that achieves this regret. Here T indicates the number of rounds for which the auction is conducted for a given keyword, with the same set of agents involved.

Devanur and Kakade [4] have also addressed the problem of designing truthful MAB mechanisms for payper-click auctions with a single sponsored slot. Though they have not explicitly attempted a characterization of truthful MAB mechanisms, they have derived similar results on payments as in [3]. They have also obtained a bound on regret of a MAB mechanism to be $O(T^{\frac{2}{3}})$. Note that the regret in [4] is regret in the revenue to the search engine, as against regret analysis in [3] is for social welfare of the advertisers. In this paper, unless explicitly stated, when we refer to regret, we mean loss in social welfare as compared to social welfare that could have been obtained with known CTRs.

In both of the above papers, only a single slot for advertisements is considered and therefore the practical appeal is limited. Generalization of their work to the more realistic case of multiple sponsored slots is non-trivial and our paper seeks to fill this research gap.

Prior to the above two papers, Gonen and Pavlov [5] had addressed the issue of unknown CTRs in multiple slot sponsored search auctions and proposed a specific mechanism. Their claim that their mechanism is truthful in expectation has been contested by [3, 4]. Also Gonen and Pavlov do not provide any characterization for truthful multi-slot MAB mechanisms.

1.2 Our Contributions

In this paper, we extend the results of Babaioff, Sharma, and Slivkins [3] and Devanur and Kakade [4] to the non-trivial general case of two or more sponsored slots. The precise question we address is: which MAB mechanisms for multi-slot pay-per-click sponsored search auctions are dominant strategy incentive compatible (or truthful)? We describe our specific contributions below.

In the first and most general setting (Section 3.1), we assume no knowledge of click through rate (μ_{ij}) values or any relationships among μ_{ij} values. We refer to this setting as the "unknown and unconstrained CTR"

setting. Here we show that any truthful mechanism must satisfy a highly restrictive property which we refer to as strong pointwise monotonicity property. We show that all mechanisms satisfying this property will however exhibit a high regret, which is O(T). This immediately motivates our remaining Sections 3.2, 3.3, and 3.4, where we explore the following variants of the general setting which yield more reasonable characterizations.

First, in Section 3.2, we consider a setting where the realization is restricted according to a property which we call the *Higher Slot Click Precedence* property (a click in a lower slot will automatically imply that a click is received if the same ad is shown in any higher slot). For this setting, we provide a weaker necessary condition than strong pointwise monotonicity. Finding a necessary and sufficient condition however remains open.

In Section 3.3, we provide a complete characterization of MAB mechanisms which are truthful in expectation under a stochastic setting where a coarse estimate of μ_{ij} is known to the auctioneer and to the agent i, perhaps from some database of past auctions. Under this setting, the auctioneer updates his database of μ_{ij} values based on the observed clicks, thereby improving his estimate and maximizing revenue.

Finally, in Section 3.4, we derive a complete characterization of truthful multi-slot MAB mechanisms for a stochastic setting where we assume that the μ_{ij} s are separable into agent-dependent and slot-dependent parts. Here, unlike the previous setting, we do not assume existence of any information on agent-dependent click probabilities.

For all the above multi-slot sponsored search auction settings, we show that the slot allocation in truthful mechanisms must satisfy some notion of monotonicity with respect to the agents' bids and a certain weak separation between exploration and exploitation.

Our results are summarized in Table 1.

Number of	Learning Parameter	Solution Concept	Allocation rule	Regret
Slots (m)	(CTR)			
m = 1 [3]	Unrestricted	DSIC	Pointwise monotone and	$O(T^{2/3})$
			Exploration separated	
m > 1	Unrestricted	DSIC	Strongly pointwise monotone	O(T)
			and weakly separated	
	Higher Slot Click Precedence	DSIC	Weakly pointwise monotone	regret analysis
			and weakly separated	not carried out
			(Necessary Condition)	
	COTTO D	T .16.1.	W 11 D 1	
	CTR Pre-estimates available	Truthful in	Weakly Pointwise monotone	regret analysis
		expectation	and weakly separated	not carried out
	G 11 GFF	T .16.1.	W 11 D 1 1 1	0 (m2/2)
	Separable CTR	Truthful in	Weakly Pointwise monotone	$\mathrm{O}(T^{2/3})$
		expectation	and weakly separated	(Experimental Evidence

Table 1: Results

Our approach and line of attack in this paper follow that of [3] where the authors use the notions of pointwise monotonicity, weakly separatedness and exploration separatedness quite critically in characterizing truthfulness. Since our paper deals with the general problem of which theirs is a special case, these notions continue to play an important role in our paper. However, there are some notable differences as explained below. We generalize their notion of pointwise monotonicity in two ways. The first notion we refer to as strong pointwise monotonicity and the second one as weak pointwise monotonicity. In addition to this, we introduce the key notions of Influential Set, i-influentiality and Strongly influential. We use these new notions to define a non-trivial generalization of their notion of weakly separatedness, to which we, however, continue to associate the same name. The characterization of truthful mechanisms for a single parameter was provided by [1, 6]. For deriving payments to be assigned to the agents for truthful implementation, we use the approach in [1, 6].

In Section 4, we provide some simple experimental results on regret analysis. We conclude the paper in Section 5.

2 System Set up and Notation

In the auction considered, there are k agents and m ad slots ($k \ge m$). Each agent has a single advertisement that she wants to display and a private value v_i which is her value per click on the ad. The auctioneer, that is the search engine wishes to distribute the ads among these slots. These advertisements have certain click probabilities which depend upon the agent as well as the slot with which the agent is associated. Let μ_{ij} be the probability of an ad of an agent i receiving click in slot j. Now, the goal of the search engine is to assign these agents to the slots in such a way that the social welfare, which is the total value received by the bidders, is maximized. However, there are two problems, (i) the search engine does not know v_i , the valuations of the agents and (ii) the search engine may not know the click probabilities μ_{ij} .

So, the goal of the search engine is: (i) to design a DSIC auction in which it is in the agents' interest to bid their true values, v_i 's (ii) to estimate μ_{ij} . We consider multi-round auctions, where the search engine displays the various advertisements repeatedly over a large number of rounds. The mechanism uses the initial rounds in an explorative fashion to learn μ_{ij} and then uses the other rounds exploitatively to gain value.

The system works as follows. At the start of the auction, each agent submits a sealed bid b_i . Based on this bid and the click information from previous rounds, the mechanism decides to allocate each ad slot to a particular agent and then displays the m chosen ads. The user can now click on any number of these ads and this information gets registered by the mechanism for future rounds. At the end of T rounds, depending on the bids submitted by the agents and the number of clicks received by each agent, the agents have to make a certain payment P_i to the mechanism.

Note: P_i and C_i are functions of b and ρ . Whenever the arguments are clear from the context, we just refer to them as P_i and C_i .

A mechanism can be formally defined as the tuple (A, P) where A is the allocation rule specifying the slot allocation and P is the payment rule.

The important notation used in the paper is summarized in Table 2. Following this, we define the terms used in this paper.

2.1 Important Notions and Definitions

Definition 2.1 (Realization ρ) We define a realization ρ as a vector $(\rho(1), \rho(2), \ldots, \rho(T))$ where $\rho(t) = [\rho_{ij}(t)]_{K \times M}$ is click information in round t. $\rho_{ij}(t) = 1$, if an agent i's ad receives a click in slot j in round t, else 0.

It is to be noted that the mechanism observes only those $\rho_{ij}(t)$ where $A_{ij}(b,\rho,t)=1$.

Definition 2.2 (Clickwise Monotonicity) We

call an allocation rule A clickwise monotone if for a fixed (b_{-i}, ρ) , the number of clicks, $C_i(b_i, b_{-i}, \rho)$ is a non-decreasing function of b_i . That is, $\frac{dC_i(.)}{db_i} \geq 0 \ \forall \ (b_{-i}, \rho)$.

Definition 2.3 (Weak Pointwise Monotonicity) We call an allocation rule weak pointwise monotone if, for any given (b_{-i}, ρ) , and bid $b_i^+ > b_i$, $A_{ij}((b_i, b_{-i}), \rho, t) = 1 \Rightarrow A_{ij'}((b_i^+, b_{-i}), \rho, t) = 1$ for some slot $j' \leq j$, $\forall t$.

Definition 2.4 (Influential Set) Given a bid vector, b, a realization ρ and round t, an influential set $I(b, \rho, t)$ is the set of all agent-slot allocation pairs (i, j), such that (i) $A_{ij}(b, \rho, t) = 1$ and (ii) a change in $\rho_{ij}(t)$ will result in a change in the allocation in a future round. t is referred to as an influential round. Agent i is referred to as an influential agent and j as influential slot w.r.t round t.

Definition 2.5 (i-Influential Set) We define the i-influential set $N(b, \rho, i, t) \subseteq I(b, \rho, t)$ as the set of all influential agent-slot pairs (i', j') such that change in $\rho_{i'j'}(t)$ will change the allocation of agent i in some future round.

Definition 2.6 (Strongly Influential) We call a slot-agent pair (i^*, j^*) strongly influential in round t w.r.t. the realization $\rho(t)$, if changing the realization (toggling) in the bit $\rho_{i^*j^*}(t)$ changes the allocation in a future round. We call such a set (i^*, j^*, t) strongly i-influential if one of its influenced agents is i.

K	$=\{1,2,\ldots,k\},$ Set of agents		
$\frac{N}{M}$	$= \{1, 2, \dots, m\} \text{ Set of agents}$ $= \{1, 2, \dots, m\} \text{ Set of slots}$		
$\frac{i}{\cdot}$	Index of an agent, $i = 1, 2, \dots, k$		
<u>Ĵ</u>	j Index of a slot, $j = 1, 2,, m$ T Total number of rounds		
t	A particular round. $t \in \{1, 2, \dots, T\}$		
$A_{ij}(t)$	i = 1 If an agent i is allocated slot j in round t		
	= 0 otherwise		
A(t) A	$(A_{ij}(t))_{i\in K, j\in M}$		
A	$=(A(1),A(2),\ldots,A(T)),$ Allocation rule		
$\rho_{ij}(t)$	i = 1 if agent i gets a click in slot j in round t		
	= 0 otherwise		
$\rho(t)$	$(\rho_{ij}(t))_{i\in K, j\in M}$		
ρ	$= (\rho(1), \rho(2), \dots, \rho(T))$		
v_i	Agent i's valuation of a click to her ad		
b_i	b_i Bid by agent i		
b	Bid vector, indicating bids of all the agents		
	$=(b_i,b_{-i})=(b_1,b_2,\ldots,b_k)$		
$C_i(b, \rho)$	Total number of clicks obtained by an agent i		
	in T rounds		
$P_i(b, \rho)$	Payment made by agent i		
$P_i(b,\rho)$ $P(b,\rho)$ $U_i(v_i,b,\rho)$	$=(P_1(.),P_2(.),\ldots,P_k(.)),$ Payment rule		
$U_i(v_i, b, \rho)$	Utility of an agent i in T rounds		
	$=v_iC_i(b,\rho)-P_i(b,\rho)$		
b_i^+	A real number \dot{b}_i		
α_i	Click probability associated with agent i		
eta_j	Click probability associated with slot j		
μ_{ij}	The probability that an ad of an agent i receives		
	click when the agent is allotted slot j .		
$N(b, \rho, i, t)$	Set of slot agent pairs in round t		
,	that influence agent i in some future rounds		
CTR	Click Through Rate (Click Probability)		
DSIC	Dominant Strategy Incentive Compatible		

Table 2: Notation

Definition 2.7 (Weakly Separated) We call an allocation rule weakly separated if for a given (b_{-i}, ρ) and two bids of agent i, b_i and b_i^+ where $b_i < b_i^+$, $N((b_i, b_{-i}), \rho, i, t) \subseteq N((b_i^+, b_{-i}), \rho, i, t)$.

This means that when an agent i increases her bid, while the other parameters are kept fixed, the allocation in the originally influential slots does not change, only new influential agent-slot pairs can get added. We continue to use definitions of *Normalized Mechanism* and *Non-degeneracy* from [3]. With these preliminaries, we are now ready to characterize truthful MAB mechanisms for various settings in the next section.

3 Characterization of Truthful MAB Mechanisms

Before stating our results, we prove a minor claim that we will use to develop our characterizations. We will use this claim implicitly in our proofs.

Claim 3.1 Given $(b, (\rho(1), \rho(2), \dots, \rho(t-1)))$, if (i^*, j^*) is i-influential in round t, then $\exists \rho^*(t)$ such that (i^*, j^*) is also strongly i-influential w.r.t. $\rho^*(t)$ in round t.

Proof:

Suppose the claim is false. Let the *i*-influential set of slots in round t be $N(b, \rho, i, t) = \{(i^1, j^1), (i^2, j^2), \dots, (i^2, j^2), \dots,$

 $(i^l, j^l), (i^*, j^*)$. N $(b, \rho, i, t) \neq \phi$ since it has at least one element (i^*, j^*) . Since we have assumed our claim to be false, (i^*, j^*) is not strongly *i*-influential for any realization $(\rho_{i^1j^1}(t), \rho_{i^2j^2}(t), \dots, \rho_{i^lj^l}(t))$ or the allocation of agent i in future rounds is the same whether $\rho_{i^*j^*}$ is 0 or 1 for every given $(\rho_{i^1j^1}(t), \rho_{i^2j^2}(t), \ldots, \rho_{i^lj^l}(t))$. This means that the allocation of agent i is the same in future rounds for all realizations $(\rho_{i^1j^1}(t), \rho_{i^2j^2}(t), \dots, \rho_{i^lj^l}(t), \rho_{i^*j^*}(t))$. But this contradicts the fact that $\{(i^1, j^1), (i^2, j^2), \dots, (i^l, j^l), (i^*, j^*)\}$ is the set of *i*-influential slot-agent pairs in round t. This proves our claim.

In our characterization of truthfulness under various settings, we show that a truthful allocation rule A must be weakly separated. Though the proofs look similar, there are subtle differences in each of the following subsections. In our proofs, we start with the assumption that a truthful allocation rule A is not weakly separated. That is,

$$\exists b_{i} < b_{i}^{+}, b_{-i}, \rho, t \ni N(b_{i}, b_{-i}; \rho, t, i) \not\subseteq N(b_{i}^{+}, b_{-i}; \rho, t, i) \Rightarrow \exists (i^{*}, j^{*}) \in N(b_{i}, b_{-i}; \rho, t, i) \ni (i^{*}, j^{*}) \not\in N(b_{i}^{+}, b_{-i}; \rho, t)$$

$$(1)$$

Subsequently, we show that this leads to a contradiction in each of the subsections, implying the necessity of weakly separatedness.

3.1 Unknown and Unconstrained CTRs

In this setting, we do not assume any previous knowledge of the CTRs although we do assume that such CTRs exist. Here, we show that any mechanism that is truthful under such a setting must follow some very rigid restrictions on its allocation rule.

Definition 3.1 (Strong Pointwise Monotonicity) An allocation rule is said to be strongly pointwise monotone if it satisfies: For any fixed (b_{-i}, ρ) , if an agent i with bid b_i is allocated a slot j in round t, then $\forall b_i^+ > b_i$, she is allocated the same slot j in round t. That is if the agent i receives a slot in round t, then she receives the same slot for any higher bid. For any lower bid, either she may receive the same slot or may loose the impression.

Theorem 3.1 Let (A, P) be a deterministic, non-degenerate mechanism for the MAB, multi-slot sponsored search auction, with unconstrained and unknown μ_{ij} . Then, mechanism (A, P) is DSIC iff A is strongly pointwise monotone and weakly separated. Further, the payment scheme is given by,

$$P_i(b_i, b_{-i}; \rho) = b_i C_i(b_i, b_{-i}; \rho) - \int_0^{b_i} C_i(x, b_{-i}; \rho) dx.$$

The proof is organized as follows. In step 1, we show the necessity of the payment structure. In step 2, we show the necessity of strong pointwise monotonicity. Step 3 proves the necessity of weakly separatedness. Finally in step 4, we prove that the above payment scheme in conjunction with strong pointwise monotonicity and weakly separatedness imply that the mechanism is DSIC.

Step 1: The utility structure for each agent $i \in N$ is

$$U_i(v_i, (b_i, b_{-i}), \rho) = v_i C_i((b_i, b_{-i}), \rho) - P_i((b_i, b_{-i}), \rho)$$

The mechanism is DSIC iff it is the best response for each agent to bid truthfully. That is, by bidding truthfully, each agent's utility is maximized. Thus

$$(A, P)$$
 is DSIC $\Leftrightarrow \frac{dU_i}{db_i}|_{b_i=v_i}=0$ and $\frac{d^2U_i}{db_i^2}|_{b_i=v_i}\leq 0 \ \forall v_i$. From the first order equation, we obtain,

$$b_i \frac{dC_i}{db_i} - \frac{dP_i}{db_i} = 0 \ \forall b_i$$

We need $P_i(0) = 0$ for normalization. Integrating the above and by second order conditions, we need $\frac{dC_i}{db_i} \ge 0$, which is the clickwise monotonicity condition.

Thus, for (A, P) to be DSIC, we need

$$P_{i}(b_{i}, b_{-i}; \rho) = b_{i}C_{i}(b_{i}, b_{-i}; \rho) - \int_{0}^{b_{i}} C_{i}(x, b_{-i}; \rho) dx$$
and $\frac{dC_{i}}{db_{i}} \ge 0 \ \forall ((b_{i}, b_{-i}), \rho)$ (2)

Step 2: We first prove the necessity of strong pointwise monotonicity by contradiction. We have seen from (2) that $\frac{dC_i}{db_i} \geq 0 \ \forall ((b_i, b_{-i}), \rho)$ is necessary for DSIC of A. We show that if A is not strongly pointwise monotone, then there exists some allocation and realization ρ for which $\frac{dC_i}{db_i} < 0$. If A is not strongly pointwise monotone, there exists $(b_i, b_i^+, b_{-i}, \rho, t) \ni$

$$A_{ij_1}((b_i, b_{-i}), \rho, t) = 1 \text{ and } A_{ij_2}((b_i^+, b_{-i}), \rho, t) = 1,$$

where $j_1 \neq j_2$ (3)

Over all such counter-examples, choose the one with the minimum t. By this choice, we ensure that in this example $\forall t' < t$, we have $A_{ij}(b_i, t') = A_{ij}(b_i^+, t')$. The only difference occurs in round t. Now, consider the game instance where $\rho_{ij_1}(t) = 1$, $\rho_{ij_2}(t) = 0$, $\rho_{ij}(\tau) = 0 \forall \tau > t$. The occurrence of such ρ has non-zero probability. Now, under (b_{-i}, ρ) , agent i has the same allocation and the same number of clicks until round (t-1) independent of whether she bids b_i or b_i^+ . However, in round t with bid b_i , she receives a click and with bid b_i^+ she does not, implying for this case that $\frac{dC_i}{db_i} < 0$. This violates the click monotonicity requirement. So, strong pointwise monotonicity is indeed a necessary condition for truthful implementation of MAB mechanisms under this setting.

Step 3: We prove the necessity of the weakly separatedness condition by contradiction. That is we assume (1). Over all such possible counter-examples of b_i, b_i^+, b_{-i}, ρ , choose the one with the least t. Now, either $i^* = i$ or $i^* \neq i$.

Case 1: $(i^* = i)$. Consider the realization ρ' differing from ρ only in round t in the entry $\rho_{i^*j^*}$. That is, $\rho'_{i^*j^*}(t) = 1 - \rho_{i^*j^*}(t)$ and $\rho'_{i'j}(t'') = \rho_{i'j}(t'') \, \forall (i',j,t'') \neq (i^*,j^*,t)$. We can assume, $\rho_{ij}(\tau) = 0 \, \forall \, \tau > t$ as the clicks in future rounds do not affect decisions in the current round. Since $(i^* = i,j^*)$ is not part of the allocation in round t under the original bid b_i , the difference between ρ and ρ' is not observed by the mechanism. However, the prices computed by the payment scheme (2) to agent i differ under these two realizations. (See [3] for details on why the payments are different).

Case 2: $i^* \neq i$. Now, choose $\rho(t)$ to be that realization for which (i^*, j^*) is strongly *i*-influential. Now, let t' be the first round *i*-influenced by (i^*, j^*, t) . Consider the realization ρ' which differs from ρ in that $\rho'_{i^*j^*}(t) = 1 - \rho_{i^*j^*}(t)$. Agent *i*'s allocation and click information differs only in round t' under the two different realizations ρ and ρ' . Now, let $A_{ij_1}((b_i, b_{-i}), \rho, t') = 1$ and $A_{ij_2}((b_i, b_{-i}), \rho', t') = 1$ or agent *i* gets slot j_1 in round t' with bid b_i under realization ρ and slot j_2 under realization ρ' . Here since the two differ only in $\rho_{i^*j^*}(t)$, by the strongly *i*-influential nature of (i^*, j^*, t) under this realization we have $j_1 \neq j_2$. Without loss of generality, let $j_1 < j_2$ (or j_1 be the better slot, since it is possible that one of the realizations leads to no slot allocation). Now, we choose $\rho(t') = \rho'(t')$ in the following manner: $\rho_{ij_1}(t') = \rho'_{ij_1}(t') = 1$, $\rho_{ij_2}(t') = \rho'_{ij_2}(t') = 0$, and $\rho_{ij}(\tau) = \rho'_{ij}(\tau) = 0$, $\forall \tau > t'$. We can make such an arbitrary choice since the realization from the round t' onwards does not affect the allocation in round t.

Under this choice of ρ and ρ' , agent i clearly gets more clicks under realization ρ than ρ' with bid b_i . Now, agent i's number of clicks varies with her bid based on only her allocation in round t' which changes only if with bid x the pair (i^*, j^*) is i-influential in round t with t' earliest influenced round. With any such bid x, under realization ρ' , agent i will either get slot j_2 in round t' or no slot at all (by strong pointwise monotonicity), which in turn means that she will never get a click under realization ρ' in round t'. Hence, $C_i((x,b_{-i}),\rho) \geq C_i((x,b_{-i}),\rho') \forall x \leq b_i^+$. Additionally, we have $C_i((x_0,b_{-i}),\rho) > C_i((x_0,b_{-i}),\rho')$. Using these relations and the non-degeneracy condition (see [3] for details), we have $P_i((b_i^+,b_{-i}),\rho) < P_i((b_i^+,b_{-i}),\rho')$. ρ' only differs from ρ in the unobserved bit (i^*,j^*,t) . Hence, the mechanism fails to assign unique payment to agent i leading to a contradiction. This shows the necessity of weakly separatedness.

Step 4: Finally, we show that strong pointwise monotonicity and weakly separatedness are sufficient conditions for clickwise monotonicity and computability of the payments and hence for truthfulness. Suppose A is a strongly pointwise monotone and weakly separated allocation rule. So, it clearly satisfies the clickwise monotonicity. Now, by the weakly separatedness condition, we already have all the information required to calculate the allocation of agent i in every round for every bid $x < b_i$. This is because the i-influential set for bids $x < b_i$ is a subset of the known influential set, we already have all the possible click information required for the i-influential sets. Additionally, by the strong pointwise monotonicity condition, we know that for each bid $x < b_i$ and each round t, either agent i keeps the same slot she had in the observed game instance $(b_i, b_{-i}; \rho)$ or loses the impression altogether, that is, does not get a click. Hence, we have all the information required to compute $P_i(b_i, b_{-i}; \rho) = b_i C_i(b_i, b_{-i}; \rho) - \int_0^{b_i} C_i(x, b_{-i}; \rho) dx$. This completes the sufficiency part of the theorem.

Implications of Strong Pointwise Monotonicity

For a given round t, if an agent i is allocated a slot j, then by the definition of strong pointwise monotonicity she receives the same slot for any higher bid that she places. If she lowers her bid, she may either retain the slot j, or lose the impression entirely. This leads to the strong restriction that an agent's bid can only decide whether or not she obtains an impression, and not which slot she actually gets. As we shall show below, this restriction has serious implications on the regret incurred by any truthful mechanism.

Regret Estimate

In the single slot case it is a known result that the worst case regret is $O(T^{2/3})$ [3]. So, for the multi-slot case, the regret is $\Omega(T^{2/3})$. We show here that the worst case regret generated in the multi-slot general setting by a truthful mechanism is in fact O(T). We show this for the 2 slot, 3 agent case with an intuitive argument, which can be generalized.

Consider a setting with two slots and three competing agents, that is m = 2, k = 3. Let the agents be A_1 , A_2 and A_3 . By Theorem 3.1, any truthful mechanism has to be strongly pointwise monotone. That is, in any round, the bids of the agents only determine which agents will be displayed and not the slots they obtain.

Suppose, A_3 's bid $b_3 < \min(b_1, b_2)$ in addition to having low CTRs. In this case, any mechanism that grants A_3 an impression O(T) times, will have regret O(T).

So, we can assume that A_3 's ad gets an impression for a very small number of times when compared with T. Thus, ads by A_1 and A_2 will appear O(T) times. In each round, A_1 will get either slot 1 or slot 2 independent of her bid, while the other slot is assigned to A_2 .

In any strongly pointwise monotone mechanism, either A_1 is assigned a slot 1 O(T) times or slot 2.

Without loss of generality, we assume that A_1 is assigned slot 1 O(T) times. So, the allocation (slot 1, slot 2) \leftrightarrow (A_1,A_2) is made O(T) times. Consider a game instance where this is not the welfare maximizing assignment, that is, the relation $(\mu_{11}b_1 + \mu_{22}b_2) < (\mu_{12}b_1 + \mu_{21}b_2)$ holds true. Since the slot allocation does not depend on the individual bids, such an instance can occur. In such a setting (A_2, A_1) would have been optimal assignment. As a result, each round having the allocation (A_1, A_2) incurs constant non-zero regret. Since such an allocation occurs O(T) times, the mechanism has a worst case regret of O(T). Hence any truthful mechanisms under the unrestricted CTR setting exhibit a high O(T) regret.

Since the strong monotonicity condition places such a severe restriction on A and also leads to a very high regret, in the following sections we explore some relaxations on the assumption that μ_{ij} 's are unrelated. With such settings which are in fact practically quite meaningful, we are able to prove more encouraging results.

3.2 Higher Slot Click Precedence

This setting is similar to the general one discussed above in that we do not assume any knowledge about the CTRs. However, we impose a restriction on the realization ρ that it follows higher slot click precedence defined below.

Definition 3.2 A realization ρ is said to follow Higher Slot Click Precedence if $\forall i \in K, \forall t = 1, 2, ..., T$,

$$\rho_{ij_1}(t) = 1 \Rightarrow \rho_{ij_2}(t) = 1 \ \forall j_2 < j_1$$

Higher slot click precedence implies that if an agent i obtains a click in slot j_1 in round t, then in that round, she receives a click in any higher slot j_2 . This assumption is in general valid in the real world since any given user (fixed by round t) who clicks on a particular ad when it is displayed in a lower slot would definitely click on the same ad if it was shown in a higher slot.

We show, under this setting, that weak pointwise monotonicity and weakly separatedness are necessary conditions for truthfulness. They are, however, not sufficient conditions. Clearly, strong pointwise monotonicity and weakly separatedness will still be sufficient conditions. A weaker sufficient condition for truthfulness under this setting is still elusive.

Implications of the Assumption

Observe that a slot-agent pair (i, j) is influential in some round t only if changing the realization in the entry $\rho_{i,j}(t)$ for some realization ρ results in a change in allocation in some future round. Crucial to the influentiality is the fact that $\rho_{i,j}(t)$ can change.

Now, consider the following situation: it has been observed that in the game instance $((b_i, b_{-i}), \rho)$, we have $\rho_{ij_1}(t) = 0$ where agent i obtains slot j_1 in round t. We are interested in the game instance $((x, b_{-i}), \rho)$ where agent i gets slot $j_2 > j_1$ where $x < b_i$ and in knowing whether (i, j_2) is an influential pair in round t for some influenced agent. Now, since $\rho_{ij_1} = 0$ and $j_1 < j_2$, by our defining assumption, we conclude that $\rho_{ij_2}(t) = 0 \ \forall x < b_i$. Hence, our mechanism knows that in all the relevant cases, the realization in the given slot-agent pair never changes. Hence, (i, j_2) cannot be an influential pair for any $j_2 > j_1$ in round t. We will use this observation in the proof of necessity characterization.

Proposition 3.1 Consider the setting in which realization ρ follows Higher Slot Click Precedence. Let (A, P) be a deterministic non-degenerate DSIC mechanism for this setting. Then the allocation rule A must be weak pointwise monotone and weakly separated. Further, the payment scheme is given by,

$$P_i(b_i, b_{-i}; \rho) = b_i C_i(b_i, b_{-i}; \rho) - \int_0^{b_i} C_i(x, b_{-i}; \rho) dx$$

Proof:

The proof for the payment scheme is identical to that in Theorem 3.1. We prove the necessity of weak pointwise monotonicity and weakly separatedness.

Step 1: We first prove the necessity of weak pointwise monotonicity, in a very similar fashion to that of the necessity of strong pointwise monotonicity in Theorem 3.1. The crucial difference is, while constructing ρ , we have to ensure that it satisfies the higher order click precedence. Suppose A is truthful but not weakly pointwise monotone, that is, $\exists (b_i, b_i^+, b_{-i}, \rho, t)$ and

 $A_{ij_1}(b_i,b_{-i}), \rho, t=1$ and $A_{ij_2}((b_i^+,b_{-i}),\rho,t)=1$ for some $j_1 < j_2$. Over all such examples, choose the one with the least t. By this choice, we ensure that in this example, $\forall t' < t$, we have $A_{ij}(b_i,t') = A_{ij}(b_i^+,t')$. The only difference occurs in round t. Now, consider the game instance where $\rho_{ij_1}(t)=1$ and $\rho_{ij_2}(t)=0$. Such realization has a non-zero probability of occurrence. Now, under (b_{-i},ρ) , agent i gets the same allocation and the same number of clicks until round (t-1) independent of whether she bids b_i or b_i^+ . However, in round t with bid b_i she gets a click and with bid b_i^+ she does not, implying for this case that $\frac{dC_i}{db_i} < 0$. This leads to a contradiction. So, weak pointwise monotonicity is a necessary condition. If A is not strongly pointwise monotone, does not violate clickwise monotonicity. That is, for truthful A, it may possible that, $A_{ij_1}((b_i,b_{-i}),\rho,t)=1$ and $A_{ij_2}((b_i^+,b_{-i}),\rho,t)=1$ where $j_2 < j_1$. Thus, for A to be truthful, strong pointwise monotonicity may not be necessary.

Next, we prove the necessity of the weakly separatedness condition. Again, we prove this claim by contradiction. We follow the same steps as in proof of Theorem 3.1, except we need to justify our choices of ρ , as it should satisfy higher order click precedence property.

Case 1: $(i^* = i)$. Here, as in the previous proof we choose ρ' such that, $\rho'_{i^*j^*}(t) = 1 - \rho_{i^*j^*}(t)$ and $\forall (i', j, t'') \neq (i^*, j^*, t) \ \rho'_{i'j}(t'') = \rho_{i'j}(t'')$. We need to show that this choice of ρ does not contradict the higher slot click precedence. Now, from our assumption, (i^*, j^*) is an influential pair in round t. From our observation in Section 3.2, it follows that $\rho_{i^*j^*}(t)$ and $\rho'_{i^*j^*}(t)$ must be able to take any value from $\{0, 1\}$. It also forces that $\forall j < j^*, \rho_{i^*j}(t) = 1$. Since $(i^*, j^*) = (i, j^*)$ is not part of the allocation in round t under the original bid b_i , the difference between ρ and ρ' is not observed by the mechanism. However, the payments by agent i differ under these two realizations (see [3] for details on why the payments are different).

Case 2: $i^* \neq i$. Here, over all examples with (i^*, j^*) influential pair in round t with influenced agent i in the earliest influenced round t', we choose the one with minimum x_0 . In this case, our choice of $\rho(t)$ and $\rho'(t)$ is the same as in Theorem 3.1, while our choice of $\rho(t') = \rho'(t')$ differs. Again the choice of $\rho(t)$ and $\rho'(t)$ is a valid assumption by the influentiality of (i^*, j^*) . Without loss of generality, let $j_1 < j_2$ where j_1 and j_2 are defined as in Theorem 3.1. Now, we choose $\rho(t') = \rho'(t')$ in the following manner: $\rho_{ij}(t') = \rho'_{ij}(t') = 1 \ \forall j \leq j_1$ and $\rho_{ij'}(t') = \rho'_{ij'}(t') = 0 \ \forall j' > j_1$. We can make such an arbitrary choice since the realization from the round t onwards does not affect the allocation in round t. Now, the rest of the arguments from the proof of Theorem 3.1 follow and lead to contradiction that a mechanism can not distinguish between ρ and ρ' , however it needs to assign different payments under these realizations. This shows the necessity of weakly separatedness.

3.3 When CTR Pre-estimates are Available

In this setting, we assume the existence of some previous database or pre-estimate of CTR values but no restriction on ρ . That is, $\mu_{ij} = \frac{X_{ij}}{Y_{ij}}$ where X_{ij} is the number of clicks obtained by agent i in slot j out of the Y_{ij} times she obtained the slot j over all past auctions. Here, in general, $\mu_{i1} \geq \mu_{i2} \geq \ldots \geq \mu_{im}$. For our characterization, we assume that each $\mu_i = (\mu_{i1}, \mu_{i2}, \ldots, \mu_{im})$ is known to the agent i and the auctioneer.

In this setting, the auctioneer uses explorative rounds to improve his estimate of the CTRs and updates the database. Then, he makes use of his new knowledge of the CTRs in the exploitative rounds. The payment scheme, however, only makes use of the old CTR matrix. Under this scheme, we derive the conditions required for a mechanism to be truthful in expectation over μ , defined as follows.

Definition 3.3 (Truthful in Expectation) A mechanism is said to be truthful in expectation over μ , the CTR pre-estimate, if each of the agents believes that the number of clicks she obtains is indeed $\sum_t \sum_j (\mu_{ij} A_{ij})$, which is the number of clicks she will obtain if the CTR pre-estimate is perfectly accurate.

3.3.1 Fairness

For this characterization, we need the notion of fair allocation rules, as defined below.

Definition 3.4 (Fair Allocation) Consider two game instances $((b_i, b_{-i}), \rho)$ and $((b'_i, b_{-i}), \rho)$ having the same slot-agent-round triplets, (i', j', t') as strongly i-influential. Let (i^*, j^*, t) be such triplet with the smallest t' in which i is influenced. Consider the realization ρ' differing from ρ only in this influential element $\rho_{i^*j^*}(t)$. Then, the allocation rule A is said to be fair if for every such pair of games it happens that

$$\textstyle \sum_{j} \mu_{ij} A_{ij}((b_i,b_{-i}),\rho,t') \geq \sum_{j} \mu_{ij} A_{ij}((b_i,b_{-i}),\rho',t') \Leftrightarrow \sum_{j} \mu_{ij} A_{ij}((b_i',b_{-i}),\rho,t') \geq \sum_{j} \mu_{ij} A_{ij}((b_i',b_{-i}),\rho',t') \geq \sum_{j} \mu_{ij} A_{ij}((b_j',b_{-i}),\rho',t') \geq \sum_{j} \mu_{ij}((b_j',b_{-i}),\rho',t') \geq \sum_{j} \mu_{ij}((b_j',b_{-i}),\rho',t') \geq \sum_{j} \mu_{ij}((b_j',b_{-i}),\mu',t') \geq \sum_{j} \mu_{ij}((b_j',b_{-i}),\mu'$$

The intuition behind fair allocations is that changing the realization only in a fixed strongly i-influential slot generally changes agent i's allocation in a predictable fashion independent of her own bid, either improving her slot or worsening it in the earliest influenced round, irrespective of the allocation or realization in the rest of the game. For example, if agent i's chief competitor agent, i', is strongly i-influential, then i' not getting a click in the influential round will generally mean that agent i will go on to get a better slot than if agent i' got a click, independent of b_i .

3.3.2 Truthfulness Characterization

Here, the expected utility for the agent i,

$$U_i(v_i, b, \rho) = \left(\sum_{t=1}^{T} \sum_{j=1}^{m} \mu_{ij} A_{ij}(b, t) v_i\right) - P_i(b, \mu)$$
(4)

Proposition 3.2 Let (A, P) be a normalized mechanism under this setting. Then, the mechanism is truthful in expectation over μ iff A is weakly pointwise monotone and the payment rule is given by

$$P_i(b,\mu) = \sum_{t=1}^{T} \sum_{i=1}^{m} \mu_{ij} \{ b_i A_{ij}(b,\mu,t) - \int_0^{b_i} A_{ij}(x,b_{-i},\mu,t) dx \}$$

and payments are computable.

Proof:

In Step 1, we prove the necessity and sufficiency of the payment structure. For the mechanism to be implemented, we need to compute the payments of all the agents uniquely. That is, P_i s need to be computable for all agents i. In Step 2, we show weak pointwise monotonicity is equivalent to the second order condition which is clickwise monotonicity in the context of this paper.

Step1: The expected utility of an agent i is given by (4).

The (A, P) is truthful iff $\frac{dU_i}{db_i}|_{b_i=v_i}=0$ & $\frac{d^2U_i}{db_i^2}|_{b_i=v_i}\leq 0$ $\forall v_i$.

From the first order condition we get,

$$P_i(b,\mu) = \sum_{t=1}^{T} \sum_{j=1}^{m} \mu_{ij} \{ b_i A_{ij}(b,\mu,t) - \int_0^{b_i} A_{ij}(x,b_{-i},\mu,t) dx \}$$

From the second order condition, we need,

$$\forall i, \ \sum_{t} \sum_{j} \mu_{ij} \frac{dA_{ij}}{db_i} \ge 0 \tag{5}$$

Step 2: We show, $(5) \Leftrightarrow weak \ pointwise \ monotonicity$.

 $\overline{\text{(i) It is}}$ obvious that weak pointwise monotonicity \Rightarrow

 $\sum_{t}\sum_{j}\mu_{ij}\frac{dA_{ij}}{db_{i}}\geq 0$. An increase in b_{i} under a weakly pointwise monotone A would result in a better slot allocation for agent i. This in turn, would result in an increase in $\sum_{j}\mu_{ij}A_{ij}$ in each round.

(ii) Now we prove the converse. Suppose A is not weakly pointwise monotone. That is, $\exists i, b_i, b_i^+, b_{-i}, \rho, \mu, t \ni A_{ij}(b_i, b_{-i}, \rho, \mu, t) = 1$ and $A_{ij'}(b_i^+, b_{-i}, \rho, \mu, t) = 1$ where j' > j. Consider the smallest such t. Allocation in this round does not depend upon the realization of this round or of future rounds. We consider the instance of the game where $\rho_{ij}(t) = 1$ and $\rho_{ij'}(t) = 0$ and t is the last round. Such an instance has a non-zero probability and for this instance, $\sum_t \frac{d}{db_i} \sum_j \mu_{ij} A_{ij} < 0$. This proves the equivalence claim.

Note, it is crucial that each μ_{ij} is a previously known constant and cannot be defined as $\mu_{ij} = X_{ij}/Y_{ij}$ based on the clicks in the current T rounds post facto. If we do so, X_{ij}/Y_{ij} can change with the allocation of agent i in a particular game and hence, μ_{ij} would become a function of b_i and the mechanism would be no longer truthful.

¹Note, the characterization in this section would hold even if μ_{ij} are arbitrary weights. However, while using arbitrary weights, mechanism may charge some agents more than their actual willingness to pay. Also regret in the revenue, that is loss in the revenue to the search engine will be trivially O(T).

For truthful implementation, the payments need to be computable and computing the payments may involve the unobserved part of ρ . In the next theorem, we show that weakly separatedness is necessary and sufficient for computation of these payments. So, along with the computation of payments and the above proposition, we get,

Theorem 3.2 Let (A, P) be a mechanism for this stochastic multi-round auction setting where A is a non-degenerate, deterministic and fair allocation rule. Then, (A, P) is truthful in expectation over μ iff A is weakly pointwise monotone and weakly separated and the payment scheme is given by

$$P_i(b,\rho) = \sum_{t=1}^{T} \sum_{j=1}^{m} \mu_{ij} \{ b_i A_{ij}(b,\rho,t) - \int_0^{b_i} A_{ij}(x,b_{-i},\rho,t) dx \}$$

Proof:

² This setting/characterization works best with old advertisers who have already taken part in a large number of auctions. As we already have proved Proposition 3.2, we just need to show that weakly separatedness is in fact a necessary and sufficient condition for the computability of payments, that is, computability of $\sum_{j=1}^{m} \mu_{ij} \int_{0}^{b_i} A_{ij}(x, b_{-i}, \rho, t) dx$ for each agent *i*.

Step 1: We first provide the proof for the sufficiency of weakly separatedness. Suppose A is weakly separated. The mechanism observes and knows all allocations and the observed realization for the game instance carried out with the original bid vector (b_i, b_{-i}) . Specifically, it knows $N((b_i, b_{-i}), i, \rho, t)$ for all rounds t and the respective realizations in these slots. Now, in the game instance (x, b_{-i}) where $x \leq b_i$, by weakly separatedness, we have $N((x, b_{-i}), i, \rho, t) \subseteq N((b_i, b_{-i}), i, \rho, t)$. This means that the allocation in i-influential slots for game instance $((x, b_{-i})t)$ is a subset of that in observed game instance $((b_i, b_{-i}), \rho)$. So, the mechanism already knows all the click information in the i-influential slots for the game instance $((x, b_{-i}), \rho)$. Since the payment scheme is only interested in the allocation of agent i, the realization in the unobserved slots is unimportant and can be assumed arbitrarily. Thus, the mechanism has complete information to compute $P_i((b_i, b_{-i}), \rho, t)$.

Step 2: Next, we prove the necessity of weakly separatedness by contradiction. That is, we assume (1) is true. Consider a complete realization $\rho(t)$ in round t for which (i^*, j^*) is strongly i-influential (such a realization exists by our previous theorem) and construct the two complete realizations ρ and ρ' from $(\rho(1), \rho(2), \ldots, \rho(t-1), \rho(t))$ which only differ in $\rho_{i^*j^*}(t)$. Over all choices of counter-examples $(b_i, t, \rho(t), i^*, j^*)$, we choose the one which has the smallest influenced round t'. Now, we compare the payment that the mechanism has to make for this game instance at the end of t' rounds under the two different realizations ρ and ρ' .

Let $\varphi \in \{\rho, \rho'\}$. By the strong *i*-influence of (i^*, j^*, t) , the agent *i* gets different allocations in round *t'* under the different realizations ρ and ρ' . This implies,

 $\sum_{j} \mu_{ij} A_{ij}((b_i, b_{-i}), \rho, t') \neq \sum_{j} \mu_{ij} A_{ij}((b_i, b_{-i}), \rho', t').$ Without loss of generality,

$$\sum_{j} \mu_{ij} A_{ij}((b_i, b_{-i}), \rho, t') > \sum_{j} \mu_{ij} A_{ij}((b_i, b_{-i}), \rho', t')$$
(6)

(or agent i gets a higher slot under realization ρ than ρ').

By the non-degeneracy of A, there exists a finite interval of bids about b_i such that for every bid x in this interval,

$$A_{ij}((x, b_{-i}), \varphi, t') = A_{ij}((b_i, b_{-i}), \varphi, t') \forall j$$

$$\tag{7}$$

Suppose $x' \in (0, b_i^+)$ is another bid such that the same slot-agent-round set (i^*, j^*, t) is strongly *i*-influential with the same influenced round t' for the game $((x', b_{-i}), \rho)$. Then by the fairness of A,

$$\sum_{i} \mu_{ij} A_{ij}((x', b_{-i}), \rho, t') \ge \sum_{i} \mu_{ij} A_{ij}((x', b_{-i}), \rho', t') \tag{8}$$

²The idea for our proof is similar to that in the characterization of the single-slot case [3]; however, the details are non-trivially different.

From (6),(7), and (8) and using the fact that t' the smallest influenced round that is strongly i-influenced by the bit $\rho_{i^*j^*}(t)$ which is the only differing bit between ρ and ρ' , we can see that $\forall x' \in (0, b_i^+)$

$$\sum_{j} \mu_{ij} A_{ij}((x', b_{-i}), \rho, t') \ge \sum_{j} \mu_{ij} A_{ij}((x', b_{-i}), \rho', t') \tag{9}$$

and \exists a finite interval X around bid b_i such that $\forall x \in X$, we have,

$$\sum_{j} \mu_{ij} A_{ij}((x, b_{-i}), \rho, t') > \sum_{j} \mu_{ij} A_{ij}((x, b_{-i}), \rho', t')$$
(10)

From equations (9) and (10), and the fact that agent i's allocation is the same under both realizations ρ and ρ' until round t' (from smallest influenced round choice), we conclude that,

$$\sum_{t=1}^{t'} \int_0^{b_i^+} \sum_j \mu_{ij} A_{ij}((x, b_{-i}), \rho, t) dx > \sum_{t=1}^{t'} \int_0^{b_i^+} \sum_j \mu_{ij} A_{ij}((x, b_{-i}), \rho', t) dx$$

Additionally, we can assume that there are no clicks after round t'. As a result, we have $P_i(b_i^+, b_{-i}, \rho) \neq P_i(b_i^+, b_{-i}, \rho')$. However, the mechanism cannot distinguish between the two realizations ρ and ρ' as the only differing bit $\rho_{i^*j^*}(t)$ is unobserved. Hence, the mechanism fails to assign a unique payment to agent i. This is a consequence of our initial assumption (1). Thus if A is not weakly separated the payments are not computable. This completes the proof.

3.4 When CTR is Separable

In the previous setting we assumed that some pre-estimate on the CTR matrix $[\mu_{ij}]$ existed. In real world applications, however, it is very often the case that the slot-dependent probabilities are known while the agent dependent probabilities are unknown. To leverage this fact, we make a widely accepted assumption: we assume that the click probability due to the slot is independent of the click probability due to the agent. That is, we assume that $\mu_{ij} = \alpha_i \beta_j$, where α_i is the click probability associated with agent i and β_j is the click probability associated with slot j. We also assume that the vector $\beta = (\beta_1, \beta_2, \ldots, \beta_m)$ is common knowledge. In general $\beta_1 \geq \beta_2 \ldots \geq \beta_m$. Here, any mechanism will use the explorative rounds to try to learn the values of α_i as accurately as possible.

Let Y_{ij} denote the number of times that agent i obtains the impression for slot j, and X_{ij} denote the corresponding number of times she obtains a click. Then, we define $\alpha'_i = avg_j\{\frac{1}{\beta_j}\frac{X_{ij}}{Y_{ij}}\}$ and $\mu'_{ij} = \alpha'_i\beta_j$.

In this section, we assume $\frac{d\alpha'_i}{db_i} = 0$ or that α'_i does not change with bid b_i . We are justified in making this assumption since α'_i is a good estimate of α_i which is independent of which slot agent i obtains how many times. By changing her bid b_i , agent i can only alter her allocations which should not predictably or significantly affect α' . It is trivial to see that $\frac{d\alpha'_i}{db_i} = 0 \Rightarrow \frac{d\mu'_{ij}}{db_i}$. We model truthfulness based on the utility gained by each agent in expectation over this μ'_{ij} . That is, utility

We model truthfulness based on the utility gained by each agent in expectation over this μ'_{ij} . That is, utility to an agent i is given by equation (4), with μ being replaced by μ' . With the above setup, it can easily be seen that truthfulness mechanisms under this setting have the same characterization as the truthful mechanisms with a pre-estimate of CTR.

Theorem 3.3 Let (A, P) be a mechanism for the stochastic multi-round auction setting where A is a non-degenerate, deterministic and fair allocation rule. Then, (A, P) is truthful in expectation over μ' iff A is weakly pointwise monotone and weakly separated and the payment scheme is given by

$$P_i(b,\rho) = \sum_{t=1}^{T} \sum_{j=1}^{m} \mu'_{ij} \{ b_i A_{ij}(b,\rho,t) - \int_0^{b_i} A_{ij}(x,b_{-i},\rho,t) dx \}$$

Proof:

This theorem can be proven using similar arguments as used in the proof of Theorem 3.2, with μ being replaced by μ' .

13

4 Experimental Analysis

Since the single slot setting is a special case of the multi-slot setting, we obtain $\Omega(T^{2/3})$ as a lower bound for the regret incurred by a truthful multi-slot sponsored search mechanism.

We have characterized truthful MAB mechanisms in various settings in the previous section. However, we have not studied MAB mechanisms in multi-slot auctions for regret estimation in such mechanisms (except the O(T) worst case bound we showed for the unconstrained case in Section 3.1). In this section, we present a brief experimental study on the regret of an truthful MAB mechanism for multi-slot sponsored search auction under separable CTR case.

For our study, we have picked a simple mechanism belonging to the separable CTR case. In the simulation, we displayed the agents in the available slots in a round robin fashion for the first $T^{\frac{2}{3}}$ rounds. Then, we used the observed information on the clicks to estimate the μ_{ij} values. The payments were computed as per Theorem (3.3).

We performed simulations for various T values with k=4 and m=2. For a fixed T, we generated 100T different instances, and estimated the average case as well as worst case regrets. In each instance, we generate CTRs and bids randomly. Figure 1 depicts ln(worst case regret) and ln(average case regret). It is observed that ln(worst case regret) is closely approximated by $ln(\frac{17}{3}T^{2/3})$ while ln(average case regret) is closely approximated by $ln(\frac{1}{3}T^{2/3})$, clearly showing that the worst case regret is $O(T^{2/3})$ and the average case regret is upper bounded by $O(T^{2/3})$.

5 Conclusion

In this paper, we have provided characterizations for truthful multi-armed bandit mechanisms for various settings in the context of multi-slot pay-per-click auctions, thus generalizing the work of [3, 4] in a non-trivial way. The first result we proved is a negative result which states that under the setting of unrestricted CTRs, any strategyproof allocation rule is necessarily strongly pointwise monotone. We also showed that every strategyproof mechanism in unrestricted CTR setting will have O(T) regret. By weakening the notion of unrestricted CTRs, we were able to derive a larger class of strategyproof allocation rules. Our results are summarized in the Table 1.

In the auctions that we have considered, the auctioneer cannot vary the number of slots he wishes to display. One possible extension of this work could be in this direction, that is, the auctioneer can dynamically decide the number of slots for advertisements. We assume that the bidders bid their maximum willingness to pay at the start of the first round and they would not change their bids till T rounds. Another possible extension would be to allow the agents to bid before every round. We are also exploring the cases where the bidders have budget constraints.

References

- [1] A. Archer and É. Tardos. Truthful mechanisms for one-parameter agents. In *Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science*, page 482, Washington, DC, USA, 2001.
- [2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem. *Machine Learning*, 47(2-3):235–256, 2002.
- [3] M. Babaioff, Y. Sharma, and A. Slivkins. Characterizing truthful multi-armed bandit mechanisms: extended abstract. In *Proceedings of the 10th ACM Conference on Electronic Commerce*, pages 79–88, Stanford, California, 2009.
- [4] N. R. Devanur and S. M. Kakade. The price of truthfulness for pay-per-click auctions. In *Proceedings of the* 10th ACM Conference on Electronic Commerce, pages 99–106, 2009.
- [5] R. Gonen and E. Pavlov. An incentive-compatible multi-armed bandit mechanism. In *PODC '07*, pages 362–363, New York, NY, USA, 2007. ACM.

Figure 1: Average Case Regret and Worst Case Regret in a Logarithmic Scale

- [6] R. B. Myerson. Optimal auction design. Math. Operations Res., 6(1):58–73, Feb. 1981.
- [7] H. Robbins. Some aspects of the sequential design of experiments. *Bulletin of American Maths Society*, 58, Number 5:527–535, 1952.