Relationale Algebra

Weiterführende Literatur:

- RelaX - relational algebra calculator

Symbole

Name	Symbol	LaTeX	Alternativtext
Selektion	σ	\sigma	SEL
Projektion	π	\pi	PR
Vereinigung	U	\cup	UNION
Durchschnitt	\cap	\cap	INTERSECTION
Mengendifferenz	_	-	-
kartesisches Produkt	×	\times	X
Umbenennung (+Zuweisung)	$\rho \leftarrow$	\rho \leftarrow	RENAME
Division	÷	\div	DIV
Symmetrische Differenz	\triangle	\bigtriangleup	
Join	\bowtie	\bowtie	JOIN
Left Outer Join	\bowtie	\leftouterjoin	LOJOIN
Right Outer Join	×	<pre>\$\rightouterjoin\$</pre>	ROJOIN
Full Outer Join	\bowtie	<pre>\$\fullouterjoin\$</pre>	FOJOIN
Left Semi Join	×	\ltimes	LSJOIN
Right Semi Join	×	\rtimes	RSJOIN
Und	Λ	\land	AND
Oder	V	\lor	OR
Negation	_	\neg	-
Größer-gleich	<u> </u>	\geq	>=
Kleiner-gleich	≥ ≤ ≠	\leq	<=
Ungleich	 ≠	\neq	=/=
Äquivalenz	=	\equiv	EQ
Existenzquantor	∃	\exists	EXISTS
All-Quantor	A	\forall	FORALL

Operationen der Relationen Algebra

Mengenoperation

Vereinigung

Symbol-Schreibweise $R \cup S$

SQL UNION

Mengendifferenz

Symbol-Schreibweise R - S

SQL EXCEPT

Mengendurchschnitt (Schnittmenge/Intersection)

Symbol-Schreibweise $R \cap S$

SQL INTERSECT

Symmetrische Differenz

Symbol-Schreibweise $R \triangle S$

SQL INTERSECT

Selektion

Symbol-Schreibweise $\sigma_{Ausdruck}(R)$

lineare Schreibweise R[Ausdruck]

SQL WHERE

Projektion

Symbol-Schreibweise $\pi_{\beta}(R)$

lineare Schreibweise $R[\beta]$

SQL SELECT

Kartesisches Produkt (Kreuzprodukt)

Symbol-Schreibweise $R \times S$

lineare Schreibweise $R \times S$

SQL CROSS JOIN

Umbenennung

Symbol-Schreibweise $\rho_{[neu \leftarrow alt]}(R)$

lineare Schreibweise $R[alt \rightarrow neu]$

Division¹

2

Symbol-Schreibweise $R \div S$

 $^{^1}$ Wikipedia-Artikel "Relationale Algebra", Division.

 $^{^2} Qualifizierung smaß nahme\ Informatik-Datenbank systeme\ 2, Seite\ 31-43.$

Da die Division eine abgeleitete Operation ist, definieren wir sie mit Hilfe der anderen Operationen der RA. Seien R, S Relationen und β die zu R sowie γ die zu S dazugehörigen Attributmengen. $R' := \beta \setminus \gamma$.

Die Division ist dann definiert durch:

```
R \div S := \pi_{R'}(R) - \pi_{R'}((\pi_{R'}(R) \times S) - R)
```

```
1 SELECT distinct MatrNr
2 FROM hoert
3 WHERE MatrNr NOT IN(
4 SELECT R.MatrNr
5 FROM hoert R, Professor P, Vorlesung V
6 WHERE P.Name = 'Sokrates'
7 AND P.PersNr=V.gelesenVon
8 AND (R.MatrNr, V.VorlNr) NOT IN (
9 SELECT MatrNr, VorlNr
10 FROM hoert
11 )
12 );
```

Die 5 Grundoperationen der Relationalen Algebra³

Mit diesen Grundoperationen lassen sich weitere Operationen (z. B. die Schnittmenge) nachbilden.

- Verenigung $R = S \cup T$
- Differenz R = S T
- Kartesisches Prokukt (Kreuzprodukt) $R = S \times T$
- Selection $R = \sigma_F(S)$
- Projektion $R = \pi_{A,B,...}(S)$

Joins⁴

Natürlicher Verbund (Natural Join) ⋈: Zwei Tabellen werden miteinander über ein gleichbenanntes Attribut verbunden.

Theta-Join \bowtie_p : Zwei Tabellen werden miteinander über ein Prädikat verbunden. Das Prädikat schreibt vor, welche Bedingungen erfüllt sein müssen, damit Tupel der unterschiedlichen Relationen miteinander verbunden werden können (z. B. inner join s on r.a = s.e).

Äußerer Join: Bei äußeren Join-Operatoren werden auch partnerlose Tupel der linken / rechten / beider Argumentrelationen "gerettet".

Left outer join \bowtie : Die Tupel der linken Argumentrelation bleiben in jedem Fall erhalten (z. B. left outer join s on r.a=s.a).

³Kröger, Einführung in die Informatik: Systeme und Anwendungen.

⁴Qualifizierungsmaßnahme Informatik - Datenbanksysteme 2, Seite 44.

- Right outer join ⋈: Die Tupel der rechten Argumentrelation bleiben in jedem Fall erhalten (z.B. right outer join s on r.a=s.a).
- Full outer join ▷ Die Tupel beider Argumentrelation bleiben in jedem Fall erhalten (z. B. full outer join r using(a)).
- Semi-Join \times / \times : enthält alle Tupel der linken/rechten Relation, die einen potentiellen Join-Partner in der rechten/linken Relation haben (z. B. SELECT A,B,C,D FROM R NATURAL JOIN S;).

Literatur

- [1] PD Dr. Peer Kröger. Einführung in die Informatik: Systeme und Anwendungen. https://www.dbs.ifi.lmu.de/Lehre/InfoNF/SS09/slides/InfoNF_03_Teil03.pdf. aufgerufen 2020-06-22. LMU München.
- [2] Qualifizierungsmaßnahme Informatik Datenbanksysteme 2. Einführung SQL, Relationale Algebra. https://www.studon.fau.de/file2480903_download.html.
- [3] RelaX relational algebra calculator. https://dbis-uibk.github.io/relax. aufgerufen 2020-06-22. DBIS Databases und Information Systems, Universität Innsbruck.
- [4] Wikipedia-Artikel "Relationale Algebra". https://de.wikipedia.org/wiki/Relationale_Algebra.