

TEACHING PLAN

Computer Organization and Architecture (CS307)

Faculty	Gauravkumarsingh Gaharwar]	Division	
Contact				03.00 pm to 04.00 pm	
School	School of Engineering and Technology				
Program	BTech(CSE)				
Semester	Spring Credits 3				3
Academic Year	2022-23				
Lecture time & Weekdays	Monday: 03.00 pm to 04.00 pm Location 506				
	Tuesday: 02.00 pm to 03.00 pm 511				
	Wednesday: 10.00 am to 11.00 am		506		
	Wednesday: 11.00 am to 12.00 noon		506		
	Wednesday: 02.00 pm to 03.00 pm		507		
	Wednesday: 03.00 pm to 04.00 pm		511		
	Friday: 10.00 am to 11.00 am		507/502		
Pre-requisites	CSE 139: Introduction to computers and programming				
Course Description	This course teaches the Von-Neumani		•	•	
	Students learn about internal compon			•	•
	Advanced topics such as parallel pr	-	cicore comput	ers and	graphic
	processing units are taught in this course.				
Course Abstract *					
Course Objectives	 To teach basic organization of computer system. 				
	To understand central processing unit.				
	3. Study of pipelining and vector processing.				
	4. Study of parallel processing.				
	5. Study of Control unit operation.				
Learning Outcomes	After completing this course, student will be able to				
	1. Comprehend organization of computer system and assembling of a computer				
	2. To understand the Central Processing Unit.				
	3. Identify performance issues and Design issues in parallel processing				
	4. Understand when to use a GPU co-processor				
Typology of Course	Theory / Tutorial				
Course Outline	Unit 1: INTRODUCTION TO COMPUTER	SYSTEM			
(Units, Hours, Textbooks,	Computer organization and architecture, evolution, brief history, embedded				
Reference Books)	systems, ARM architecture, Performance issues, Ahmdahl's Law, benchmarks				
	and specification, computer components, functions, interconnection structures,				
	Bus interconnection, PCI, Computer memory, cache memory, Internal memory,				
	external memory, I/O modules, DMA, DCA, operating systems, Operating system				
	support, Number systems, Computer Arithmetic, Positional Arithmetic, Binary				
	system, Hexadecimal system, Digital Logic: Combinational circuits, gates,				
	sequential circuits.				
	Unit 2: THE CENTRAL PROCESSING UNIT				
	Instruction sets: Characteristics and functions, types of operands, types of				
	operations, intel x86.				
	Instruction sets: Addressing modes and formats, Addressing mode, assembly				

	T				
	language. Processor structure and function: processor organization, register organization, ARM processor				
	Unit 3: PIPELINE AND VECTOR PROCESSING Reduced instruction set computers: RISC pipelining, MIPS, SPARC, RISC v/s CISC, compiler based register organization. Instruction Level Parallelism and Superscalar processors: Design Issues, intel core microarchitecture, ARM Cortex. Vector Processing, Array Processors				
	Unit 4: PARALLEL ORGANIZATION Parallel processing: Multiple processor organization, symmetric multiprocessor, Multithreading and chip microprocessors, clusters, non-uniform memory access, cloud computing Multicore computers: Hardware and software performance issues, multicore organization, heterogeneous multicore organization General purpose graphic processing unit: GPU v/s CPU, CUDA basics, intel generation 8 GPU.				
	Unit 5: THE CONTROL UNIT Control Unit operation: Micro operations, hardwired implementation Microprogrammed control: Microinstruction sequencing, microinstruction execution				
Pedagogy	Explaining each topic with and example and then allow students to solve similar type of problems				
Expectations from Students *	Students should attend 100% classes Timely submission of assignments				
Assessment / Evaluation	Class Tests, Class Participation, Assignment & Viva				
Attendance Policy	The University expects 100% attendance, but a minimum 80% attendance is mandatory in each course to be eligible to appear for the end-semester examination of the course.				
	 a) Dean/Head of the School can recommend the attendance upto 15% in the course or courses for representing the university at any regional, national or international competition in the field of academics or sports or due to long duration ill-health or other emergency situations. Provost based on the case submitted by Registrar's Office with recommendation of the Dean/School head will take decision. b) For beyond 15% in any genuine cases, the decision to condone the attendance will be taken by the Provost on merits of the case. c) Documentary evidence is required to receive excusable absence and should be 				
	submitted to the Provost with the recommendation of the Dean/Head of the School.				
	d) A student not meeting the attendance requirements in a course will not be allowed to appear for the regular end semester examination and will be awarded 'F' grade in that course. However, she/he may be permitted for re-examination.				
	e) A student with very low attendance i.e. less than 65% in all courses during the current semester may not be allowed to appear for regular end semester examination. She/he will have to re-register all courses during the next academic year.				
	f) Students playing individual sports or team sports at regional/national/international level with authorized sports body of the respective games will be exempted from attendance during match/competition days as well as during practice session/camps on producing relevant documents.				
Project / Assignment Details *	, , , , , , , , , , , , , , , , , , , ,				
Course Material	Reference Books:				

	1.	Computer Organization and Architecture: Designing for Performance (10th				
		Edition), William Stallings, Prentice Hall Pearson.				
	2.	M. Morris Mano, Computer System Architecture, Pearson Andrew S. Tanenbaum and Todd Austin, Structured Computer Organization, Sixtl				
	3.					
		Edition, PHI				
	4.	Murdocca & V. Heuring, Computer Architecture & Organization, WILEY				
	5.	n Hayes, Computer Architecture and Organization, McGrawHill				
Additional Information *						

^{*} These are optional fields.

Session P	lan				
Topic Title	Session No.	Topic & Subtopic Details	Readings, Cases, etc.	Activities*	Important Dates
Unit-I INTRODUCTION TO COMPUTER SYSTEM	L-1	Computer organization and architecture	Textbook – 1		
	L-2	evolution, brief history, embedded systems	Textbook – 1		
	L-3	ARM architecture, Performance issues	Textbook – 1		
	L-4	Ahmdahl's Law, benchmarks and specification	Textbook – 1		
	L-5	computer components, functions	Textbook - 1		
	L-6	interconnection structures, Bus interconnection	Textbook – 1		
	L-7	PCI	Textbook – 1		
	L-8	Computer memory, cache memory	Textbook - 1		
	L-9	Internal memory, external memory	Textbook – 1		
	L-10	I/O modules, DMA, DCA	Textbook – 1		
	L-11	operating systems, Operating system support	Textbook - 1		
	L-12	Number systems, Computer Arithmetic	Textbook – 2		
	L-13	Positional Arithmetic, Binary system, Hexadecimal system	Textbook – 2		
	L-14	Digital Logic: Combinational circuits	Textbook – 2		
	L-15	gates, sequential circuits	Textbook – 2		
Unit-II THE CENTRAL	L-16	Instruction sets: Characteristics and functions	Textbook - 1		
PROCESSING	L-17	types of operands	Textbook - 1		
UNIT	L-18	types of operations, intel x86.	Textbook - 1		
	L-19	Instruction sets: Addressing modes and formats	Textbook - 1		
	L-20	Addressing mode, assembly language.	Textbook - 1		
	L-21	Processor structure and function: processor organization	Textbook - 1		
	L-22	register organization, ARM processor	Textbook - 1		
Unit-III	L-23	Reduced instruction set	Textbook - 1		

PIPELINE AND		computers		
VECTOR	L-24	RISC pipelining, MIPS, SPARC	Textbook - 1	
PROCESSING	. 25	RISC v/s CISC, compiler based	Textbook - 1	
	L-25	register organization.		
	L-26	Instruction Level Parallelism and	Textbook - 1	
	L-27	Superscalar processors: Design	Textbook - 1	
		Issues		
	L-28	intel core microarchitecture,	Textbook - 1	
	L 20	ARM Cortex		
	L-29	Vector Processing, Array	Textbook - 1	
	L 23	Processors		
Unit-IV	L-30	Parallel processing: Multiple	Textbook - 1	
PARALLEL		processor organization		
ORGANIZATION		symmetric multiprocessor,	Textbook - 1	
	L-31	Multithreading and chip		
		microprocessors		
	L-32	clusters, non-uniform memory	Textbook - 1	
		access		
	L-33	cloud computing	Textbook - 1	
	L-34	Multicore computers: Hardware	Textbook - 1	
		and software performance issues	T. 11 1 4	
	L-35	multicore organization,	Textbook - 1	
		heterogeneous multicore		
		organization General purpose graphic	Textbook - 1	
		processing unit: GPU v/s CPU	TEXIDOOK - I	
		CUDA basics, intel generation 8	Textbook - 1	
	L-37	GPU	TEXTBOOK - I	
Unit-V	L-38	Control Unit operation: Micro	Textbook - 1	
THE CONTROL		operations		
UNIT	L-39	hardwired implementation	Textbook - 1	
	L-40	Microprogrammed control	Textbook - 1	
	L-41	Microinstruction sequencing	Textbook - 1	
	L-42	Microinstruction sequencing	Textbook - 1	
	L-43	microinstruction execution	Textbook - 1	
	L-44	microinstruction execution	Textbook - 1	
	L-45	Viva	Textbook - 1	