Théorème de Toda

Yann Strozecki

25 décembre 2007

- Introduction
- Premier pas dans les classes de comptage
 - Rappel
 - Propriétés de GapP
 - Quelques autres classes de comptage
 - Généralisation de classes
- 3 Le corps de la preuve
 - Le théorème de Valiant-Vazirani
 - Applications
 - Les ingrédients du théorème de Toda
 - Toda himself
- Conclusion
 - Résultat
 - Pour aller plus loin

• La réduction Turing est très forte!

- La réduction Turing est très forte!
- Certains problèmes sont #P complets alors que leurs problèmes de décision sont dans P.

- La réduction Turing est très forte!
- Certains problèmes sont #P complets alors que leurs problèmes de décision sont dans P.
- Si NP était stable par réduction Turing alors PH = NP.

- La réduction Turing est très forte!
- Certains problèmes sont #P complets alors que leurs problèmes de décision sont dans P.
- Si NP était stable par réduction Turing alors PH = NP.
- Si $\sharp P$ était stable par réduction Turing, on aurait grâce à cet exposé PH=UP

Théorème (Toda 91) $PH \subseteq P^{\sharp P}$

Théorème (Toda 91)

 $PH \subseteq P^{\sharp P}$

On a mieux en fait!

Théorème (Toda 91)

 $PH \subseteq P^{\sharp P}$

On a mieux en fait!

Théorème (Toda 91)

 $PH \subseteq P^{\sharp P[1]}$

Définition (Classe $\sharp P$)

La classe $\sharp P$ est l'ensemble des fonctions f telles qu'il existe une machine M telle que pour tout x, f(x) est égal au nombre de chemin acceptant de M sur x.

Définition (Classe GapP)

La classe GapP est l'ensemble des fonctions f telles qu'il existe une machine M telle que pour tout x, f(x) est égal à la différence entre le nombre de chemins acceptants et refusants de M sur x.

Lemme

Les propositions suivantes sont équivalentes :

- \bullet $f \in GapP$.
- 2 f est la différence de deux fonctions de #P.

Lemme

Les propositions suivantes sont équivalentes :

- \bullet $f \in GapP$.
- 2 f est la différence de deux fonctions de #P.

Corollaire

$$GapP \subseteq FP^{\sharp P[1]}$$
.

Lemme (Propriétés de clôture)

La classe GapP est close par somme et produit, c'est à dire si $f \in GapP$ et q un polynôme alors les deux fonctions suivantes sont dans GapP:

$$\bullet \sum_{|y| \le q(|x|)} f(x,y)$$

Definition (Classe $\oplus P$)

La classe $\oplus P$ est l'ensemble des langages L tels qu'il existe une fonction $f \in \sharp P$ vérifiant

- Si $x \in L$ alors f(x) est impair.
- Si $x \notin L$ alors f(x) est pair.

Definition (Classe UP)

La classe UP est l'ensemble des langages L tels qu'il existe une fonction $f \in \sharp P$ vérifiant

- Si $x \in L$ alors f(x) = 1.
- Si $x \notin L$ alors f(x) = 0.

Definition (Opérateur Gap.)

La classe Gap.C est constituée des fonctions différences de deux fonctions de comptage associées à un problème de C.

Definition (Opérateur P.)

La classe $P.\mathcal{C}$ est constituée des langages L tels qu'il existe une fonction de $Gap.\mathcal{C}$ f vérifiant

- Si $x \in L$ alors f(x) > 0.
- Si $x \notin L$ alors $f(x) \leq 0$.

Théorème (Valiant-Vazirani 86)

Soit f une fonction $\sharp P$, alors il existe une fonction g de $\sharp P$ et deux polynômes q et t tels que

- Si f(x) = 0 alors g(x, r) = 0 pour tout $r \in \Sigma^{q(n)}$
- 2 Si f(x) > 0 alors $Pr_{r \in \Sigma^{q(n)}}(g(x,r) = 1) \ge \frac{1}{t(n)}$

Théorème (Valiant-Vazirani 86)

Soit f une fonction $\sharp P$, alors il existe une fonction g de $\sharp P$ et deux polynômes q et t tels que

• Si
$$f(x) = 0$$
 alors $g(x, r) = 0$ pour tout $r \in \Sigma^{q(n)}$

② Si
$$f(x) > 0$$
 alors $Pr_{r \in \Sigma^{q(n)}}(g(x,r) = 1) \ge \frac{1}{t(n)}$

Remarque: Ce théorème signifie qu'on peut associer à une fonction $\sharp P$ une fonction de signe dans $\sharp P$.

Théorème (Valiant-Vazirani 86)

Soit f une fonction $\sharp P$, alors il existe une fonction g de $\sharp P$ et deux polynômes q et t tels que

• Si
$$f(x) = 0$$
 alors $g(x, r) = 0$ pour tout $r \in \Sigma^{q(n)}$

② Si
$$f(x) > 0$$
 alors $Pr_{r \in \Sigma^{q(n)}}(g(x,r) = 1) \ge \frac{1}{t(n)}$

Remarque: Ce théorème signifie qu'on peut associer à une fonction $\sharp P$ une fonction de signe dans $\sharp P$.

Remarque : Pour démontrer ce théorème on utilise la technique du universal hashing (hachage universel?) qui sert aussi à démontrer $BPP \subseteq \Sigma_2^p$

Théorème de Toda

Le corps de la preuve
LApplications

Lemme

$$\sharp .P^{NP}=\sharp .coNP$$

Lemme

$$\sharp .P^{NP} = \sharp .coNP$$

Des lemme et théorème précédents on déduit le résultats suivants :

Lemme

Soit $f \in \sharp .P^{NP}$ et p un polynôme. Il existe une fonction g de GapP et un polynôme q tels que

$$Pr_{r \in \Sigma^{q(n)}}(g(x,r) = f(x)) \ge 1 - 2^{-p(n)}$$

On déduit par induction des lemmes précédents le théorème suivant :

Théorème

Soit $f \in Gap.P^{PH}$ et p un polynôme. Il existe une fonction g de GapP et un polynôme q tels que

$$Pr_{r \in \Sigma^{q(n)}}(g(x,r) = f(x)) \ge 1 - 2^{-p(n)}$$

Lemme

 $PH \subseteq P. \oplus P$

<u>Démonstration</u>:

• Soit un langage L de PH, il existe χ fonction indicatrice L dans $GapP^{PH}$.

Démonstration:

- Soit un langage L de PH, il existe χ fonction indicatrice L dans $GapP^{PH}$.
- On applique le théorème d'approximation par une fonction g GapP pour une précision $\frac{3}{4}$.

Démonstration:

- Soit un langage L de PH, il existe χ fonction indicatrice L dans $GapP^{PH}$.
- On applique le théorème d'approximation par une fonction g GapP pour une précision $\frac{3}{4}$.
- $Pr_{r \in \Sigma^{q(n)}}(g(x,r) = \chi(x) \ge \frac{3}{4}$.

Démonstration :

- Soit un langage L de PH, il existe χ fonction indicatrice L dans GapPPH.
- On applique le théorème d'approximation par une fonction g GapP pour une précision $\frac{3}{4}$.
- $Pr_{r \in \Sigma^{q(n)}}(g(x,r) = \chi(x) \geq \frac{3}{4}$.
- Si $x \in L$ alors pour plus de la moitié des r, g(x,r) = 1.

Démonstration:

- Soit un langage L de PH, il existe χ fonction indicatrice L dans $GapP^{PH}$.
- On applique le théorème d'approximation par une fonction g GapP pour une précision $\frac{3}{4}$.
- $Pr_{r \in \Sigma^{q(n)}}(g(x,r) = \chi(x) \ge \frac{3}{4}$.
- Si $x \in L$ alors pour plus de la moitié des r, g(x,r) = 1.
- On pose A le langage constitué des paires (x, r) telles que g(x, r) est impair, comme g est GapP, A est dans $\oplus P$.

Démonstration :

- Soit un langage L de PH, il existe χ fonction indicatrice L dans GapPPH.
- On applique le théorème d'approximation par une fonction g GapP pour une précision $\frac{3}{4}$.
- $Pr_{r \in \Sigma^{q(n)}}(g(x,r) = \chi(x) \ge \frac{3}{4}$.
- Si $x \in L$ alors pour plus de la moitié des r, g(x,r) = 1.
- On pose A le langage constitué des paires (x, r) telles que g(x,r) est impair, comme g est GapP, A est dans $\oplus P$.
- La fonction $f = \sharp A \sharp \overline{A}$ est par définition dans $Gap \oplus P$.

Démonstration:

- Soit un langage L de PH, il existe χ fonction indicatrice L dans $GapP^{PH}$.
- On applique le théorème d'approximation par une fonction g GapP pour une précision $\frac{3}{4}$.
- $Pr_{r \in \Sigma^{q(n)}}(g(x,r) = \chi(x) \geq \frac{3}{4}$.
- Si $x \in L$ alors pour plus de la moitié des r, g(x,r) = 1.
- On pose A le langage constitué des paires (x, r) telles que g(x, r) est impair, comme g est GapP, A est dans $\oplus P$.
- La fonction $f = \sharp A \sharp \overline{A}$ est par définition dans $Gap. \oplus P$.
- Quand f est positive sur x, $x \in L$ et quand f est négative $x \notin L$ donc $L \in P$. $\oplus P$.

Lemme (Lemme technique d'amplification)

Pour toute constante k et toute fonction g de GapP, il existe \hat{g} de GapP telle que

- **1** Si $g(x,r) \mod 2 = 1$ alors $\hat{g}(x,r) \mod 2^k = 1$
- ② Si g(x,r) mod 2 = 0 alors $\hat{g}(x,r)$ mod $2^k = 0$

<u>Démonstration</u>: On construit un polynôme en g qui grâce aux propriétés de clôture par produit de GapP reste dans GapP.

• GapP est stable par produit.

- GapP est stable par produit.
- ② Valiant-Vazirani : on peut approximer le signe d'une fonction de décision de $\sharp P$ par une fonction de $\sharp P$.

- GapP est stable par produit.
- ② Valiant-Vazirani : on peut approximer le signe d'une fonction de décision de $\sharp P$ par une fonction de $\sharp P$.
- **3** On peut approximer une fonction de $GapP^{PH}$ par une fonction de GapP.

- GapP est stable par produit.
- ② Valiant-Vazirani : on peut approximer le signe d'une fonction de décision de $\sharp P$ par une fonction de $\sharp P$.
- **3** On peut approximer une fonction de $GapP^{PH}$ par une fonction de GapP.
- \bigcirc PH \subset P. \oplus P

- GapP est stable par produit.
- ② Valiant-Vazirani : on peut approximer le signe d'une fonction de décision de $\sharp P$ par une fonction de $\sharp P$.
- **3** On peut approximer une fonction de $GapP^{PH}$ par une fonction de GapP.
- \bullet $PH \subseteq P. \oplus P$

- GapP est stable par produit.
- ② Valiant-Vazirani : on peut approximer le signe d'une fonction de décision de $\sharp P$ par une fonction de $\sharp P$.
- **3** On peut approximer une fonction de $GapP^{PH}$ par une fonction de GapP.
- \bullet $PH \subseteq P. \oplus P$
- **6** Caractérisation des fonctions $GapP: P^{GapP[1]} = P^{\sharp P[1]}$

On a donc démontré le théorème de Toda

Théorème (Toda 91)

 $PH \subseteq P^{\sharp P[1]}$

On a donc démontré le théorème de Toda

Théorème (Toda 91)

 $PH \subseteq P^{\sharp P[1]}$

Corollaire

 $PH \subset MP$

Remarque: Si $\sharp P$ est clos par réduction Turing avec un appel à l'oracle, alors $P^{\sharp P[1]} = \sharp P$.

On en déduit que $PH \subseteq \sharp P$ en voyant $\sharp P$ comme des fonctions indicatrices.

Donc comme annoncé PH = UP ce qui paraît improbable.

Remarque: Si on pouvait avoir une fonction signe dans $\sharp P$ pour toute fonction $\sharp P$, alors on aurait UP = NP et on déduirait en refaisant Toda $PH \subseteq SPP$.