Déployer un modèle dans le cloud

Pré-traitement pour l'application 'Fruits!'

Introduction des données

- Dimensions des images: 100x100px
- Images prêtes à l'emploi
- 90k images (67k pour l'entraînement)
- 131 fruits/légumes

Besoins

- Traitements à réaliser :
 - Featurisation
 - Réduction de dimension
- Augmentation rapide du volume de données

Réponse

• Traitements à réaliser :

- Featurisation: ResNet50
- Réduction de dimension : SVD

Données volumineuses :

- Serveur EC2
- Serveur S3

Déroulement

- Éléments de l'architecture Big Data
- Chaîne de traitement des données :
 - Featurisation
 - Réduction de dimension
- Démonstration
- Conclusion

I- Éléments de l'architecture Big Data

- Un serveur pour stocker les données
 - Qui soit robuste aux pannes
 - Qui permette un transfert rapide des données
- Un serveur pour faire les calculs
 - Qui permette de s'adapter au volume de données

I- Serveur de stockage : S3 Standard

Avantages:

- Durable
- Scalable
- Pas de frais minimaux + faibles coûts
- Faible latence
- Proximité avec les serveurs de calcul

Inconvénients

Lecture aléatoire

I- S3: Connexion

- Connexion avec un compte IAM
 - Configuration sur terminal: aws configure
- En ligne de commande :
 - aws s3 cp fichier_local s3://bucket/fichier_local
- Sur python:
 - Avec boto

I- Serveur de calcul : EC2

Avantages:

- Instance redimensionnable
- Coût d'exécution bas
- Choix du système d'exploitation (AMI)

• Inconvénients:

- Capacité de calcul non adaptable en temps réel
- Coût du stockage élevé
- Éphémère

I- EC2: Connexion

- Système: Ubuntu
- Groupe de sécurité : Autorise toutes les connections ssh
- Avec Jupyter Notebook :
 - Sur EC2 : Jupyter notebook –no-browser –port=8080
 - En local: ssh -i clé_ec2 -L 8080:localhost:8080 ubuntu@dns_publique
 - Ouvrir la page : http://127.0.0.1:8080/?token=...

I- EC2: Instance choisie

• T2-medium

- 4 Go de RAM
- 8 Go de mémoire système
- 2 vCPU

II- Featurisation: ResNet50

Nombre d'images : 5

Nombre de variables : 32768

III- Réduction de dimension : SVD

$$A = U \Sigma V^{T}$$

U: m×k, Σ: k×k, V: n×k.

- Outils pyspark
 - RowMatrix
 - Compute SVD
- Nombre de composantes
 - 2

IV- Démonstration

```
var atpos=inputs[i].indexOf(
var dotpos=inputs[i].lastIndexOf(
var dotpos=inputs[i].lastIndexOf(
if (atpos<1 || dotpos<atpos=1
if (atpos<1 || dotpos<atpos=1
document.getElementById('errEssil'
document.getElementById(div).</pre>
```

Conclusion

- Utilisation des serveurs S3 et EC2
- Featurisation avec ResNet50
- Réduction de dimension avec SVD
- Parallélisation des calculs avec Pyspark
- Temps d'exécution pour 5 images et 2 composantes : 45 s

Améliorations

- Utiliser un EMR pour traiter encore plus de données
- Calculer le nombre maximal de composantes avec la SVD
 - Permet de connaître le % de la variance conservée
- Utiliser pyspark pour la lecture de fichier
 - Nécessite une bonne maîtrise des versions des logiciels