09-12 Nov
CAEPIA'15
Albacete

Algoritmo Memético Equilibrado con Diversificación Voraz

Andrés Herrera-Poyatos, Francisco Herrera andreshp9@gmail.com, herrera@decsai.ugr.es

Research Group on Soft Computing and Information Intelligent Systems (SCI2S)

http://sci2s.ugr.es

University of Granada, Spain

Motivación: Problema de la diversidad de la población

Definición

La diversidad de la población se define como la media de las distancias entre todas las parejas de cromosomas.

$$D(P) = \frac{\sum_{s,s' \in P} d(s,s')}{n(n-1)}$$

Diversidad en la población de un algoritmo genético estándar.

- d es una medida de distancia para cromosomas.
- D(P) = 0 ← Todos los cromosomas son iguales.

Motivación: Propuesta en MAEB2015. Algoritmo Genético Equilibrado con Diversificación Voraz

Diversidad en la población del AGEDV.

- Preservación de la diversidad mediante la diversificación voraz.
- Uso productivo de la diversidad gracias a componentes específicas.

A. Herrera-Poyatos y F. Herrera, Algoritmo genético equilibrado con diversicación voraz. Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados – MAEB 2015, pp. 9-18, 2015.

Motivación: Búsqueda de un algoritmo más eficaz. Algoritmos Meméticos

Problema de la diversidad de la población en algoritmos meméticos.

Objetivo: Búsqueda de un nuevo algoritmo memético con equilibrio entre diversidad y eficacia.

Algoritmo Memético Equilibrado con Diversificación Voraz

Índice

Motivación

- Motivación
- 2 Algoritmo Genético Equilibrado con Diversificación Voraz
- 3 Algoritmos meméticos
- 4 Algoritmo Memético Equilibrado con Diversificación Voraz
- 6 Análisis experimental
- 6 Conclusión

AGEDV

Diversificación voraz: hibridación con algoritmos voraces aleatorizados

Idea: Sustituir los cromosomas de la población que sean similares a otros por nuevos cromosomas voraces.

Algoritmos voraces aleatorizados:

- Producen cromosomas diversos y de calidad.
- Sinergia con la operación de cruce

Soluciona el problema de la diversidad

AGEDV

- Se ordena aleatoriamente la población. Se selecciona las parejas de cromosomas adyacentes. Selección aleatoria adyacente:
- Cada pareja genera un hijo.
- Competición entre padres e hijos. Cada hijo compite con su padre directo.

Buscamos la sinergia entre las componentes.

Hibridación entre algoritmos genéticos y búsquedas locales

Formas de aplicar la búsqueda local:

- A toda la población.
- Al mejor cromosoma de la población no mejorado previamente.

Ejemplo: Algoritmo memético generacional con elitismo

Algoritmo Memético Equilibrado con Diversificación Voraz

Algoritmo genético equilibrado con diversificación voraz Búsqueda local

Diversidad

Diversidad en la población de AMEDV

La diversidad se controla mediante la diversificación voraz.

Tamaño de la población de AMEDV

Problema	Óptimo	Media de la función objetivo					
		TP = 8	TP = 16	TP = 32	TP = 64		
eil51	426	426	426.167	426.867	426.933		
berlin52	7542	7542	7542	7542	7542		
st70	675	675	675	676	677.767		
eil76	538	538	538	538.133	538.333		
pr76	108159	108159	108159	108159	108159		
kroA100	21282	21282	21282	21282	21282.8		
rd100	7910	7910	7910	7910	7916.53		
eil101	629	629	629	629.533	630.267		
lin105	14379	14379	14379	14379	14379		
ch150	6528	6529.73	6541.5	6547.3	6549.63		
rat195	2323	2326.67	2329.4	2331.83	2334.47		
d198	15780	15794.7	15801.4	15805.5	15815.3		
ts225	126643	127036	126794	126791	126895		
a280	2579	2582.8	2582.8	2590.8	2596.33		
lin318	42029	42349.4	42300	42376.4	42444.9		
fl417	11861	11948.8	11940.8	11948.7	11945.6		
pcb442	50778	51438.2	51257.1	51438.3	51593.8		
rat575	6773	6878.73	6874.23	6869.27	6878.77		
		13 / 2	12 / 0	8 / 0	3 / 13		

Experimentación sobre el problema del viajante de comercio.

Componentes:

- Operador de cruce: OX
- Búsqueda local: Lin-Kernighan

Tiempo de ejecución: 0,1N segundos.

Media de 30 ejecuciones.

Mejor tamaño de la población: 16

Comparación entre AMEDV y AGEDV

Problema	Óptimo	Media función		Número de soluciones evaluadas		
		AMEDV	AGEDV	AMEDV	AGEDV	
eil51	426	426.167	427.267	128759	1692820	
berlin52	7542	7542	7572.57	46387.8	1731320	
st70	675	675	682.067	114622	1674870	
eil76	538	538	<u>549.5</u>	127619	1740730	
pr76	108159	108159	109395	60987.1	1377370	
kroA100	21282	21282	21352.5	51970.3	14260	
rd100	7910	7910	7919.47	54622.7	1473510	
eil101	629	629	633.3	92876.7	1407060	
lin105	14379	14379	14430.5	34887.5	538391	
ch150	6528	6541.5	6578.67	50950	1270930	
rat195	2323	2329.4	2386.83	47671	379744	
d198	15780	15801.4	16053.9	16071.4	362111	
ts225	126643	126794	127427	53980.6	724328	
a280	2579	2582.8	2704.5	45372.8	612916	
lin318	42029	42300	43739.5	10964.5	485157	
fl417	11861	11940.8	12303.9	5499.87	422658	
pcb442	50778	51257.1	55502	16309	231215	
rat575	6773	6874.23	7670.97	3522.03	125132	

Tamaño de población

 AMEDV: 16 AGEDV: 64

AMEDV evalúa entre 10 y 100 veces menos soluciones que AGEDV.

Comparación con otras heurísticas basadas en búsqueda local

Problema	Óptimo	Media de la función objetivo				
		AMEDV	AM	GRASP	IG	
eil51	426	426.167	433.8	432.133	432.1	
berlin52	7542	7542	7628.8	7670.43	7665.73	
st70	675	675	689.567	692.433	692.133	
eil76	538	538	548	551.867	550.733	
pr76	108159	108159	109382	110083	110544	
kroA100	21282	21282	21408	21469.2	21475.8	
rd100	7910	7910	7951.87	8033.37	8061.1	
eil101	629	629	641.533	647.833	648.267	
lin105	14379	14379	14482.7	14551.6	14569.7	
ch150	6528	6541.5	6575.73	6642.1	6671.73	
rat195	2323	2329.4	2349.37	2373.23	2369.23	
d198	15780	15801.4	15883.3	16015	15981.3	
ts225	126643	126794	129022	129865	130035	
a280	2579	2582.8	2637.43	2659.3	2660.7	
lin318	42029	42300	42827.2	43068.8	43157.7	
fl417	11861	11940.8	12041.1	12156.8	12130.5	
pcb442	50778	51257.1	52319.9	52589.2	52585	
rat575	6773	6874.23	6924.53	6944.6	6951.93	

Tamaño de población

AMEDV: 16

• AM: 64

AMEDV combina lo mejor de los tres modelos: Esquema evolutivo + Soluciones voraces.

AMEDV es el único modelo que alcanza el óptimo con asiduidad.

Comparación con otras heurísticas basadas en búsqueda local

Problema	Número total de llamadas a la búsqueda local				Porcentaje de iteraciones en las que se aplica la búsqueda local		
	AMEDV	AM	GRASP	IG	AMEDV	AM	
eil51 berlin52 st70 eil76 pr76 kroA100 rd100	7709.63 2759 6869.37 7682.43 3653.83 3096.7 3268.77	7478.47 4054.87 6690.73 7756.63 4940.3 4161.97 4268.37	3309.6 1863.37 2269.07 2514.67 722.633 942.133 854.7	3256.13 1825.3 2247.83 2479.27 712.6 931.267 843.933	100 100 100 100 100 100 100	100 100 100 100 100 100 100	A ve gr
eil101	5543.07	5605.2	1390.47	1363.07	100	100	
lin105 ch150 rat195 d198 ts225 a280 lin318 fl417	2085.3 3067.7 2871.6 968.467 3284.07 2729.97 663.267 331.533	3203.63 3762.7 4212.27 1381.4 4003.83 3423.83 1093.1 586.8	392.1 765.433 394.133 119.9 746.9 240.3 56.4 33.0667	394.8 760 393.533 119.567 736.4 239.733 56.0333 33.4333	100 100 100 100 99.9918 100 99.7588 100	100 100 100 100 100 100 100	E di ci la e
pcb442 rat575	992.133 216.3	1765.13 1059.77	74.1 28.9667	74.9333 27.8333	97.6112 85.2672	100 100 100	

AM y AMEDV llaman más veces a la búsqueda local gracias a la evolución de la población.

El operador de cruce introduce soluciones en la población de AMEDV a pesar de la competición entre padres e hijos. • La diversificación voraz permite resolver el problema de la

diversidad en la población de los algoritmos meméticos.

- El buen comportamiento del algoritmo pone de manifiesto la necesidad de mantener la diversidad de la población en los algoritmos meméticos así como como conseguir el
 - aprovechamiento de la misma mediante el resto de operadores del algoritmo.

El equilibrio entre exploración y explotación es esencial para el buen funcionamiento del algoritmo.

Andrés Herrera-Poyatos, Francisco Herrera

Algoritmo Memético Equilibrado con Diversificación Voraz