• Weitek Business: Solutions To Floating Point Intensive Problems

 500 Man-years Experience In Floating Point Chip Design & Marketing

Weitek Makes Chips (Apples)

• IEEE 754 Is A System Level Spec (Oranges)

All Generalizations Are False

ALL WEITEK CHIPS

- Conform To IEEE Format (Except 2364/2365) By formert
- Allow Control Of Overflow Trap
- Do Not Support 80-bit Arithmetic
- Do Not Support De-Norms In Hardware
 Have Multiplier Arrays

WEITEK SINGLE CHIP SOLUTIONS

- Attack System Cost
- Reduce Time To Market
- ansi C
- fortran 77
- CMOS
- 32 Registers
- 3132, 1167/3167, 3164/3364

3132

- 32-bits Only
- Graphics/DSP
- No Denorm, NaN or Infinity Support

mullily aremulate

- MAC Operations Does Not Obey IEEE Rounding 14 444
- Ignores Underflow, Invalid, Inexact.
 Divide By Zero Gives Overflow
- Divide, and SQRT In Software (not IEEE)
- No Remainder Operation
- All Four Rounding Modes

1167/3167

- ADD, SUB, MUL, DIV On Chip
- SQRT On 3167
- Remainder In Software
- Transcendental Library

WEITEK 3164/3364

First Single Chip To Make Possible Complete
 Compliance To The IEEE 754 Spec In A Pipelined
 Environment.

• Trap Handler Supplied To OEM's.

WTL 3164 SINGLE-PORT

AND WTL 3364 THREE-PORT

64-BIT FLOATING-POINT

DATA PATH UNITS

OUTLINE

ARCHITECTURE AND FEATURES

IEEE COMPLIANCE

PERFORMANCE

STATUS AND SCHEDULE

FUTURES

WEITEK

3X64 PRODUCT UPDATE

WTL 3164 / 3364 BLOCK DIAGRAM

ARCHITECTURE

- 64-BIT IEEE FLOATING-POINT DATA PATH
- THREE INDEPENDENT ARITHMETIC UNITS CAN OPERATE IN PARALLEL
 - 64-BIT ALU
 - 64-BIT MULTIPLIER
 - 64-BIT DIVIDE/SQRT UNIT
- REGISTER FILE: SIX-PORT, 32-DEEP BY 64-BIT-WIDE
 - THREE READ PORTS
 - THREE WRITE PORTS
 - CAN BE BYPASSED ON LOADS, STORES, AND REGISTER-TO-REGISTER OPERATIONS
- INDEPENDENT LOAD/STORE
- SIX MAJOR INTERNAL 64-BIT BUSES
- EXTENSIVE STATUS AND CONTROL LOGIC

ARCHITECTURE CONT'D

- FLEXIBLE I/O STRUCTURE
 - X PORT: I/O
 - Y PORT: INPUT ONLY
 - Z PORT: OUTPUT ONLY

- THREE 32-BIT PORTS
- SINGLE 64-BIT I/O PORT

SINGLE 32-BIT I/O PORT

WEITEK

ARCHITECTURE CONT'D

- TWO-CYCLE REGISTER-TO-REGISTER LATENCY
- SINGLE-CYCLE THROUGHPUT FOR

•
$$\sum$$
 (Xi + Yi) (requires 3364)

• DIVIDE/SQRT LATENCY		DIVIDE	<u>SQRT</u>
	64-BIT	17	30
	32-BIT	10	16

• DIV/SQRT CAN OVERLAP WITH MULTIPLIER AND/OR ALU OPERATION

FULL FUNCTION

- 64- AND 32-BIT FLOATING-POINT AND 32-BIT INTEGER INSTRUCTIONS
 - MULTIPLY, ADD, MULTIPLY-ADD, DIV, SQRT, ETC.
- 64-BIT LOGICAL
- ABSOLUTE VALUE
- COMPARE
- MIN/MAX
- FORMAT CONVERSION

FULLY INTERRUPTIBLE

• NEUT, STALL, ABORT

IEEE COMPLIANCE

- FULL IEEE SUPPORT IN PIPELINED ENVIRONMENT
 INCLUDING DIVIDE AND SQUARE ROOT
- ALL FOUR ROUNDING MODES
- DENORMALIZED NUMBER SUPPORT • FAST MODE IF DNRM SUPPORT NOT REQUIRED
- FULL STATUS AND CONDITION SUPPORT
 - FPEX PIN SIGNALS OCCURENCE OF ENABLED EXCEPTION
 - EXCEPTIONS
 - SOURCE: NAN, DNRM, DVZ, INV
 - RESULT: OVF, IOVF, UNF, INX
 - FLOATING-POINT CONDITION PIN REPORTS RESULTS OF COMPARE OPERATIONS: EQ, LT, GT, UNORDERED

SIMPLE PROGRAMMING MODEL

- REGISTER-BASED PROGRAMMING MODEL
- MATCHED LATENCY FOR ALL OPERATIONS
 - EXCEPT DIVIDE AND SQRT
- BOTH SOURCES AND DESTINATIONS SPECIFIED ONLY ONCE -- WHEN INSTRUCTION IS ISSUED
 - DESTINATION ADDRESSES ARE DELAYED AUTOMATICALLY
- ALL INFORMATION NECESSARY FOR EXCEPTION HANDLING INCLUDED ON-CHIP
 - DEDICATED STATUS REGISTERS STORE THE STATUS AND REG FILE DESTINATION ADDRESSES

HIGH-LEVEL LANGUAGE SUPPORT

- AVAILABLE FOR BOTH 3164 AND 3364 WHEN USED IN XL SYSTEM
 - HLL COMPILERS (C, FORTRAN)DEVELOPMENT SYSTEM

 - OTHER SUPPORT: DEBUGGERS, SIMULATORS
- PERFORMANCE OF XL-3164 IN XL8164 SYSTEM

	-100	-080
• LINPACK (MFLOPS) (HAND-CODED BL	AS)	_
SINGLE OR DOUBLE PRECISION	4.7	5.8
· WHETSTONES (MWHETS)		
SINGLE OR DOUBLE PRECISION	8.7	10.9
• DHRYSTONES	11,834	14,793

WEITEK

WEITEK 3164/3364

Pipe 15 ? desep on ran do mult & 171 11

- 32 + 64-Bit IEEE Formats
- Denorms Handled In Software
- User Controlled Traps On All Five IEEE Exceptions
- Status Regs Allow Recovery From Exceptions
- · ADD, SUB, MUL, DIV, SQRT On Chip
- DREM In Software

3164/3364 EXCEPTION HANDLING

Source Exceptions:

(Invalid, Divide-By-Zero)

∞ / ග

- Stop Current Operation

- Denovn In, to behindled in software

(4) muiltiply

(urop denorm

mult

V 10 117 . T

1 17. miles flows

3. William atter innut

Destination Exceptions

(Underflow, Overflow, Inexact)

User Trap Handler

- Operation Completes Before Trapping

and line

warm the denem

Ring ou part 4.c. other D. 114 1146

un bia 5

Icahan says that denoun rould be done in more una

Correctly Rounded Result Supplied To Do hadwar will hill HUD 10, KI, RJ. ingert Noy hone

Operations' destination/status information and their storage in the status register

Non letter fly he some

	BIT#						COMMENTS		
SR# 7	7	6	5	4	3	2	1	0	COMMENTS
SR0	Multiplier Latency	FPEX- Sticky	0	0	Internal Rounding Mode Fast Mode			Modes	
SR1	0 XL Soft- ware Underliow	Bypass on	FPEX- Delay		I/O Mode				Modes
SR2	NaN EN	INV EN	DVZ EN	DNRM EN	OVF EN	UNF EN	INX EN	IOVF EN	Trap Enables
SR3	NaN	INV	DVZ	DNRM	OVF	UNF	INX	IOVF	Sticky Bits
SR4	0	TDE	ST0	MDEST0			Destination		
SR5	0	0	0	ADEST0				Destination	
SR6		_ ASTATO				MSTAT0			Status
SR7	0	0	0	DIVDEST				Destination	
SR8	,	TDE	ST1	MDEST1			Destination		
SR9	0	0	0	ADEST1				Destination	
SR10		<u></u> AS1	TAT1	MSTAT1			Status		
SR11	FPEX- Taken	DSR In progres	FPCN	Carry DIVSTAT				Status	

Status register structure

Refore your
get in Profler
mus, I fille
denovar

Two, I find I

"an't go to do no.

the denovar

with chopping

System top heally.
ofways tops

System types

Source exception on C1

Result exception on C1

Source exception on C1, undelayed FPEX

Result exception on C1, undelayed FPEX