물리 올림피아드를 위한

수리물리학과 역학

Mathematical Physics and Mechanics

for International Physics Olympiad(IPHO)

학번 : ____ 이름 : ____

저자 : 정동영

운영계획

차수	일시	내용
1	3월 30일(목) 7교시	동아리 활동 계획서 작성
2	4월 26일(수) 5-7교시	동아리별 활동
3	6월 21일(수) 1-4교시	동아리별 활동(1학기 마지막 활동일)
4	9월 26일(화) 5-7교시	동아리별 활동
5	11월 2일(목) 6-7교시	동아리별 활동
6	12월 19일(화) 6-7교시	동아리 발표회 준비(2학기 마지막 활동일)
	12월 28일	동아리 발표회

1. 수리물리학(Mathematical Physics)

목적: 자연현상을 기술할 때 변인 사이의 음함수 꼴의 관계식을 양함수 꼴로 나타내기 위함

예) 운동방정식
$$m\ddot{x}=kx$$
 & 초기조건 $x(0)=0, v(0)=v_0$ \rightarrow $x(t)=v_0\sqrt{\frac{m}{k}}~e^{\sqrt{\frac{k}{m}}t}$

위에서는 시간과 변위라는 함수가 명확하지 않은 형태로 기술되어 있었으나, 미분방정식을 풀어줌으로써 시간에 따른 변위를 일변수 함수의 형태로 서술하였다.

1) 미적분

$(x_{\alpha}) \cdot = ux_{\alpha-1}$
$(\ln X)' = \frac{1}{X}$
$(e^x)'=e^x$
$(a^x)' = a^x \ln a$
$(\cos X)' = -\sin X$
$(\sin X)' = \cos X$
$(\tan X)' = \sec^2 X$
(cot X)'=- csc 2X
$(\sec X)' = \sec X \tan X$
(csc X)'=- csc X cot X
$(\sin^{-1}x)' = \frac{1}{\sqrt{1-x^2}}$
$(\tan^{-1}X)' = \frac{1}{1+X^2}$
$(\cosh X)' = \sinh X$
$(\sinh X)' = \cosh X$
($\tanh X$)' = $\mathrm{sech}^2 X$
(coth X)'=- csch 2X
$(\operatorname{sech}_X)' = -\operatorname{sech}_X \tan X$
$(\operatorname{csch}_X)' = -\operatorname{csch}_X \operatorname{coth}_X$

$$\int x^{z}dx = \frac{1}{n+1} x^{z+1} + c, \quad n \neq -1$$

$$\int \frac{1}{x} dx = \ln|x| + c$$

$$\int e^{x}dx = e^{x} + c$$

$$\int \sin x dx = -\cos x + c$$

$$\int \sin x dx = -\cos x + c$$

$$\int \cos x dx = \sin x + c$$

$$\int \sec^{2}x dx = \tan x + c$$

$$\int \sec^{2}x dx = -\cot x + c$$

$$\int \csc^{2}x dx = -\cot x + c$$

$$\int \csc x \cot x dx = -\csc x + c$$

$$\int \frac{1}{\sqrt{1-x^{2}}} dx = \sin^{-1}x + c$$

$$\int \frac{1}{1+x^{2}} dx = \tan^{-1}x + c$$

$$\int \sinh x dx = \cosh x + c$$

$$\int \operatorname{sech}^{2}x dx = -\coth x + c$$

$$\int \operatorname{csch}^{2}x dx = -\operatorname{csch}^{2}x + c$$

$$\int \operatorname{csch}^{2}x dx = -\operatorname{csch}^{2}x + c$$

$$\int \operatorname{csch}^{2}x dx = -\operatorname{csch}^{2}x + c$$

2) 미분방정식

미분방정식이란?

대수 방정식 : 하나의 물리량에 관한 방정식이 존재하여 그 물리량을 찾는다.

예)
$$2x+6=4$$
 $\therefore x=-1$

미분 방정식 : 하나의 함수에 관한, 미분으로 표현된 방정식이 존재하여 그 함수를 찾는다.

প্রা)
$$m\ddot{x} = kx$$
 $\therefore x(t) = v_0 \sqrt{\frac{m}{k}} e^{\sqrt{\frac{k}{m}}t}$

가. 1계 선형 미분방정식 : 미분을 한 번 한 함수가 원함수에 영향을 미침

가장 대표적인 예시로 저항력을 받는 물체의 운동이 있다.

비례형 저항력을 받을 때 운동방정식은 $mv = -\gamma v$

이때, $v = Ae^{bt}$ 라고 한다면

$$(lhs) = m \frac{d}{dt}(v) = m \frac{d}{dt}(Ae^{bt}) = mA \frac{d}{dt}(e^{bt}) = mAbe^{bt}$$

$$(rhs) = -\gamma v = -\gamma A e^{bt}$$

모든 시간에 대하여 항상 성립해야 하기에 t=0일 때 $mAb=-\gamma A$ $\therefore b=-\frac{\gamma}{m}$ 정리하면 값을 모르는 미지의 상수 A에 대하여 시간에 따른 속력은 $v=Ae^{-\frac{\gamma}{m}t}$

초기조건 : 초기에(t=0) 속력이 v_0 라면, $v=v_0e^{-\frac{t}{m}t}$

유일성 정리 : 하나의 미분방정식에 대하여 초기조건을 만족할 때, 그 해는 유일하다.

해를 찾는 방법?

1계 선형 미분방정식, 줄여서 1계 미방은 항상 Ae^{bt} 와 같이 exponential 함수꼴로 나타내면 성립하는 해를 찾을 수 있다.

예제 1) 총 원자의 수가 N_0 개인 방사성 동위원소가 있다. 이때 방사성 동위원소가 붕괴하는 속도는 총 원자수의 1차에 비례하는데, 시간에 따라 남은 방사성 동위원소의 수를 구하라. 반감기는 τ 로 하자.

풀이 1)

나. 2계 선형 미분방정식 : 미분을 한/두 번 한 함수가 원함수에 영향을 미침

앞으로 다룰 거의 대부분의 미분방정식은 2계 선형 미분방정식이라고 보아도 무방하다. 예시로 뉴턴의 운동방정식, 역학파 / 전자기파의 파동방정식 등이 있다.

운동방정식을 풀어보며 2계 선형 미분방정식에 대한 감을 익히자.

거리에 따른 힘을 오른쪽 운동방정식과 같이 받을 때 $m\ddot{x}=\pm kx$

i) 우변이 +일 때

일계미분에서와 같이 Ae^{bt} 꼴 대입 $b=\pm\sqrt{\frac{k}{m}}$, 초기위치 x_0 , 초기속력 v_0 면

$$x=A_+e^{\sqrt{rac{k}{m}}t}+A_-e^{-\sqrt{rac{k}{m}}t}$$
일 때 초기조건 대입하면 $\therefore A_\pm=rac{x_0\pm v_0\sqrt{rac{k}{m}}}{2}$

i) 우변이 -일 때

이번에는 복소수를 사용, Ae^{ibt} 꼴 대입 $b=\pm\sqrt{\frac{k}{m}}$, 초기위치 x_0 , 초기속력 v_0 면

$$x = A_{+}e^{i\sqrt{\frac{k}{m}}t} + A_{-}e^{-i\sqrt{\frac{k}{m}}t} \quad \therefore A_{\pm} = \frac{x_0 \mp i v_0\sqrt{\frac{k}{m}}}{2}$$

하지만 조금 더 간단하게 표현하는 방법은 삼각함수를 이용하는 것이다.

$$Asin(wt), Acos(wt)$$
꼴을 $(w>0)$ 대입하면 둘 다 $w=\sqrt{\frac{k}{m}}$

$$x = A_+ \sin(wt) + A_- \cos(wt)$$
, 초기조건 대입하면 $\therefore x = \frac{v_0}{w} \sin(wt) + x_0 \cos(wt)$

2. 역학(Mechanics)

모든 역학 문제는 계의 모든 물체가 정지한 정역학 문제와 물체가 움직이는 동역학 문제로 나뉜다. 동역학 문제는 힘 또는 에너지로 풀고, 정역학 문제는 힘평형으로 푸는 것이 일반 적인데, 앞에서 배운 미분방정식을 이용하여 문제를 해결해보자.

가. 동역학

1) 힘

힘으로 해결하는 역학문제는 항상 뉴턴의 운동방정식에서부터 시작한다. 고로 식은 이계미분방정식에서부터 출발하는데, 일계미분방정식으로 풀 때도 존재한다.

가) 일계미분방정식으로 푸는 유형

예제 2) 질량 m의 물체가 다음 두 가지 힘을 받는다. f_1 은 중심 방향으로만 작용하며, f_2 는 속도 벡터의 역방향으로만 작용한다.

$$\overrightarrow{f_1} = \frac{\overrightarrow{r}}{r} f(r), \ \overrightarrow{f_2} = -\lambda \overrightarrow{v} \ (\lambda > 0)$$

만약 물체의 초기 각운동량이 r=0에서 \vec{j} 일 때, 시간에 따른 각운동량을 구하라.

풀이 2)

나) 이계미분방정식으로 푸는 유형

예제 3) 질량이 m인 아들이 그네에 타있고, 아버지는 아들이 탄 그네를 밀어주려고 한다. 우선 아들이 탄 그네를 1라디안만큼 당긴 다음, 아들의 무게와 같은 크기의 힘으로, "접선" 방향으로 아들을 밀어준다. 줄이 1라디안에서 다시 0라디안으로 돌아왔을 때까지 걸린 시간, 즉 아버지가 아들을 밀어준 시간을 계산하여라. 줄의 길이는 l이다.

풀이 3)

2) 에너지

예제 4) 진동하는 진자(질량 m, 길이 l_0)에서 실을 천천히 당긴다. 줄의 길이가 원래 길이의 절반이 되었을 때 각진폭은 몇 배가 되는가?(각진폭은 충분히 작다고 근사한다.)

풀이 4)

이 문제는 단열 불변량이라는 개념을 사용하여 해결할 수도 있다.

For a periodic system with a parameter slowly changing, the action J is an adiabatic invariant. Now

$$J=\oint P_{\theta}d\theta\ ,$$

where $P_{\theta} = ML^2\dot{\theta}$, i.e.

$$\begin{split} J &= \oint ML^2\dot{\theta} \cdot \dot{\theta}dt = ML^2 \langle \dot{\theta}^2 \rangle \frac{2\pi}{\omega} \\ &= ML^2 \cdot \frac{\omega^2\theta_0^2}{2} \cdot \frac{2\pi}{\omega} = \pi ML^2\theta_0^2\omega \\ &= \pi Mg^{1/2}\theta_0^2L^{3/2} \; . \end{split}$$

Here we have used $T=2\pi/\omega$, with $\omega=\sqrt{g/l}$, for the period, and

$$\langle \dot{\theta}^2 \rangle = \langle [-\theta_0 \omega \sin(\omega t + \varphi_0)]^2 \rangle = \frac{\omega^2 \theta_0^2}{2}$$

by taking $\theta=\theta_0\cos(\omega t+arphi_0)$. Then, as J is an adiabatic invariant, $\theta_0\propto L^{-3/4}$.

When

$$L \to L/2$$
, $\theta_0 \to 1.68\theta_0$,

i.e. the amplitude of oscillation is increased by a factor of 1.68.

action으로 표현된 J는 단열불변 량으로 실을 당겨도 변하지 않는 값이다. 정확히는 하나의 변수를 변화시켜도 변하지 않는 값으로, 이 문제에 특화된 물리량으로 할 수 있다.

운동량을 미소 각변위에 대해 적 분한 값으로 계산 가능하며 식을 정리하면 각진폭의 2차에, 줄의 길 이의 1.5차에 비례하기에 각진폭은 줄 길이의 -0.75차에 비례하며, 각 진폭은 1.68배가 된다.

나. 정역학

1) 힘

이 문제는 통신교육 시험에 종종 등장하는 유형이므로 잘 알아두자.

예제 5) 물이 담긴 원기둥 모양의 그릇을 각속도 w로 돌렸더니 가운데에 바닥이 보였다. 물의 경계면의 방정식 z(r)을 구하라.(단, 중력가속도는 g이다.)

