NOMBRE: Vicente Espinosa

SECCIÓN: 2

Nº LISTA: 36

PUNTAJE:

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC1253 — Matemáticas Discretas — 1' 2020

Tarea 6 – Respuesta Pregunta 2

1

 $f \in \mathbf{O}(g)$ significa que $f(n) \le c * g(n) \ \forall n \ge n_0$. Por lo tanto, si $f \in o(g)$: Sabemos que $(\forall c \in \mathbf{R} \exists n_0 | \forall n \ge n_0. f(n) \le c * g(n))$.

.: A partir de de n_0 , g(n) * c será mayor o igual a f(n), hasta el infinito.

Dado que para todo c existe un n_0 que cumple la afirmación anterior, podemos decir que $f \in \mathbf{O}(g)$, pues sabemos que existe al menos un c y n_0 que cumplen la relación pedida.

Ahora, para demostrar que $g \notin \mathbf{O}(f)$, se puede probar que, como para toda $c \in \mathbf{R}$ hay un n_0 que cumple $\forall n \geq n_0. f(n) \leq c * g(n)$). Podemos decir que para cualquier c que se busque para lograr que $g \in \mathbf{O}(f)$, siempre existirá un n_0 que cumpla que a partir de ese numero, todas las evaluaciones de $f(n) \geq c * g(n)$, por lo tanto, no se puede afirmar lo contrario, quedando demostrado que es falso.

2

Esta afirmación se puede demostrar de la siguiente manera:

El $Lim_{x\to\infty}p(x) \sim x^k$, por propiedades matemáticas, y luego tenemos que dado que $x^k < x^{k+\epsilon}$, en algún momento, el polinomio será sobrepasado por $x^{k+\epsilon}$, independiente de cual sea el c que se use para el $p(x) \in (x^{k+\epsilon})$