```
In [20]: # Importing required libraries
       import keras
       from keras.datasets import mnist
       from keras.models import Sequential
       from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
       # Loading the MNIST dataset
       (x_train, x_test), (y_train, y_test) = mnist.load_data()
In [22]: # Reshaping the input data to fit the model
       x train = x train.reshape(x train.shape[0], 28, 28, 1)
       x \text{ test} = x \text{ test.reshape}(x_{\text{test.shape}}[0], 28, 28, 1)
In [24]: # Normalizing the input data
       x train = x train.astype('float32') / 255
       x_test = x_test.astype('float32') / 255
In [25]: # Converting the target variable to categorical
       num classes = 10
       y train = keras.utils.to categorical(y train, num classes)
       y test = keras.utils.to categorical(y test, num classes)
In [26]: # Creating a sequential model
       model = Sequential()
       # Adding the first convolutional layer
       model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)))
       # Adding the second convolutional layer
       model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
       # Adding a pooling layer
       model.add(MaxPooling2D(pool size=(2, 2)))
       # Adding a flattening layer
       model.add(Flatten())
       # Adding a dense layer
       model.add(Dense(128, activation='relu'))
       # Adding an output laver
       model.add(Dense(num_classes, activation='softmax'))
In [27]: # Compiling the model
       model.compile(loss=keras.losses.categorical crossentropy, optimizer=keras.optimizers.Adam(), metrics=['accuracy
In [28]: # Training the model
       \label{eq:history} \mbox{history = model.fit}(\mbox{x\_train, y\_train, batch\_size=128, epochs=10, validation\_data=}(\mbox{x\_test, y test}))
       score = model.evaluate(x_test, y_test, verbose=0)
       print('Test loss:', score[0])
       print('Test accuracy:', score[1])
       Epoch 1/10
       - val accuracy: 0.9133
       Epoch 2/10
       - val accuracy: 0.9269
       Epoch 3/10
       val_accuracy: 0.9451
       Epoch 4/10
       - val accuracy: 0.9525
       Epoch 5/10
       469/469 [===
                       =============== ] - 76s 161ms/step - loss: 0.1536 - accuracy: 0.9545 - val_loss: 0.1414
       - val_accuracy: 0.9579
       Epoch 6/10
       469/469 [==
                          val_accuracy: 0.9603
       Epoch 7/10
                     469/469 [==
       val_accuracy: 0.9608
       Epoch 8/10
       469/469 [==
                          :=========] - 75s 159ms/step - loss: 0.1155 - accuracy: 0.9646 - val_loss: 0.1207
       - val accuracy: 0.9648
       Fnoch 9/10
       469/469 [===
                  - val_accuracy: 0.9656
       Epoch 10/10
       - val accuracy: 0.9653
       Test loss: 0.11059534549713135
       Test accuracy: 0.9653000235557556
In [29]: model.summary()
```

Model: "sequential_1"

Layer (type)	Output Shape	Param #
conv2d_2 (Conv2D)	(None, 26, 26, 32)	320
conv2d_3 (Conv2D)	(None, 24, 24, 64)	18496
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	g (None, 12, 12, 64)	0
<pre>flatten_1 (Flatten)</pre>	(None, 9216)	0
dense_2 (Dense)	(None, 128)	1179776
dense_3 (Dense)	(None, 10)	1290

Total params: 1,199,882 Trainable params: 1,199,882 Non-trainable params: 0

```
import matplotlib.pyplot as plt

# Plot the training and validation loss over each epoch
train_loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(train_loss) + 1)

plt.plot(epochs, train_loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
```

Training and validation loss


```
import matplotlib.pyplot as plt

# get the training and validation accuracy values from the history object
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

# create a range of x-axis values for the chart
epochs = range(1, len(acc) + 1)

# plot the training and validation accuracy values as two separate lines
plt.plot(epochs, acc, 'b', label='Training accuracy')
plt.plot(epochs, val_acc, 'r', label='Validation accuracy')

# set the chart title and axis labels
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')

# add a legend to the chart
plt.legend()
```



```
In [32]:
          import numpy as np
          # Generate predictions on test data using the trained model
          y_pred = model.predict(x_test)
          # Convert predictions to integer labels
          y pred labels = np.argmax(y pred, axis=1)
          # Print sample predictions and actual labels
          print("Sample predictions:", y_pred_labels[:10])
          print("Actual labels:", y_test[:10])
          313/313 [=======] - 6s 18ms/step
          Sample predictions: [7 2 1 0 4 1 4 9 5 9]
          Actual labels: [[0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]
           [\,0.\  \, 0.\  \, 1.\  \, 0.\  \, 0.\  \, 0.\  \, 0.\  \, 0.\  \, 0.\  \, 0.\,\,]
           [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
           [1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
           [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
           [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
           [0.\ 0.\ 0.\ 0.\ 1.\ 0.\ 0.\ 0.\ 0.\ 0.]
           [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
           [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
           [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]]
In [33]:
          import sklearn.metrics
          from sklearn.metrics import confusion_matrix, classification_report
          # Generate integer labels for test data
          y_test_labels = np.argmax(y_test, axis=1)
          # Generate integer labels for predictions
          y_pred_labels = np.argmax(y_pred, axis=1)
          # Compute confusion matrix and classification report
          cm = confusion_matrix(y_test_labels, y_pred_labels)
report = classification_report(y_test_labels, y_pred_labels)
          # Print confusion matrix and classification report
          print("Confusion Matrix:\n", cm)
          print("\nClassification Report:\n", report)
```

Conf	usion	Mat	rix:								
[[967	0	0	2	1	1	5	1	1	. 2]	
[0 11	15	2	4	0	2	3	5	3	1]	
[4	2	987	17	5	1	5	5	4	2]	
[0	0	2	988	1	2	1	5	2	9]	
[0	0	2	0	944	1	8	1	1	25]	
[2	0	0	21	2	853	7	2	1	4]	
[3	1	0	1	9	6	937	0	1	0]	
[0	2	9	6	3	0	0	988	1	19]	
[4	0	2	25	7	6	6	3	902	19]	
[3	1	0	13	12	6	0	2	0	972]]	
Classification Report:											
			pre	ecisio	n	reca	ll f	1-sco	re	support	
		0		0.98	3	0.9	9	0.9	9	980	
1			0.99		0.98		0.99		1135		
2			0.98		0.96		0.97		1032		
3			0.92		0.98		0.95		1010		
4			0.96		0.96		0.96		982		
5		0.97		0.96		0.96		892			
6		0.96		0.98		0.97		958			
	7 0.98		3	0.96		0.97		1028			
		8		0.98	3	0.9	3	0.9	5	974	
		9		0.92	2	0.9	6	0.9	4	1009	
accuracy							0.9	7	10000		
n	nacro	-		0.97	7	0.9	6	0.9		10000	
	hted	_		0.97		0.9		0.9		10000	
	,	9					-		-		

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js