Example - Haar Wavelets

• Suppose we are given a 1D "image" with a resolution of 4 pixels:

• The Haar wavelet transform is the following:

$$[6 \ 2 \ 1 \ -1]$$

$$L_0 D_1 D_2 D_3$$

Example - Haar Wavelets (cont' d)

• Start by averaging the pixels together (pairwise) to get a new lower resolution image:

[8 4] (averaged and subsampled)

• To recover the original four pixels from the two averaged pixels, store some *detail coefficients*.

Resolution	Averages	Detail Coefficients
4 2	[9 7 3 5] [8 4]	[1 - 1]

Example - Haar Wavelets (cont' d)

• Repeating this process on the averages gives the full decomposition:

Resolution	Averages	Detail Coefficients
4	[9 7 3 5]	[]
2	[8 4]	[1 -1]
4	[6]	[2]

Example - Haar Wavelets (cont'd)

• The Harr decomposition of the original four-pixel image is:

$$[6 \ 2 \ 1 \ -1]$$

• We can reconstruct the original image to a resolution by adding or subtracting the detail coefficients from the lower-resolution versions.

Example - Haar Wavelets (cont' d)

How to compute D_i?

How to compute D_i? (cont' d)

• If $f(t) \in V_{j+1}$, then f(t) can be represented using basis functions $\phi(t)$ from V_{j+1} :

$$f(t) = \sum_{k} c_k \varphi(2^{j+1}t - k)$$

 V_{j+1}

Alternatively, f(t) can be represented using **two** basis functions, $\varphi(t)$ from V_i and $\psi(t)$ from W_i :

$$V_{j+1} = V_j + W_j$$

$$f(t) = \sum_{k} c_{k} \varphi(2^{j} t - k) + \sum_{k} d_{jk} \psi(2^{j} t - k)$$

How to compute D_i? (cont' d)

Think of W_j as a means to represent the parts of a function in V_{j+1} that cannot be represented in V_j

$$f(t) = \sum_{k} c_k \varphi(2^{j+1}t - k)$$

$$f(t) = \sum_{k} c_k \varphi(2^j t - k) + \sum_{k} d_{j,k} \psi(2^j t - k)$$

differences between V_j and V_{j+1}

How to compute D_i? (cont' d)

•
$$V_{j+1} = V_j + y_j \sin g$$
 recursion on V_j :

$$V_{j+1} = V_{j-1} + W_{j-1} + W_j = \dots = V_0 + W_0 + W_1 + W_2 + \dots + W_j$$

if $f(t) \in V_{i+1}$, then:

$$f(t) = \sum_{k} c_k \varphi(t - k) + \sum_{k} \sum_{j} d_{j,k} \psi(2^j t - k)$$

V₀ basis functions

W₀, W₁, W₂, ... basis functions

Wavelet expansion (cont' d)

f(t) is written as a linear combination of φ(t-k) and ψ
 (2jt-k):

$$f(t) = \sum_{k} c_k \varphi(t - k) + \sum_{k} \sum_{j} d_{jk} \psi(2^j t - k)$$

scaling function

wavelet function

<u>Note:</u> in Fourier analysis, there are only two possible values of k (i.e., 0 and π /2); the values j correspond to different scales (i.e., frequencies).

1D Haar Wavelets (cont' d)

1D Haar Wavelets (cont'd)

• Mother wavelet function:

$$\psi(x) = \begin{cases} 1 & \text{if } 0 \le x < 1/2 \\ -1 & \text{if } 1/2 \le x < 1 \\ 0 & \text{otherwise} \end{cases}$$

• Note that $\varphi(x)$. $\psi(x) = 0$ (i.e., orthogonal)

1D Haar Wavelets (cont' d)

basis for V_I :

basis W_I :

Note that inner product is zero!

1D Haar Wavelets (cont'd)

Basis functions ψ_{i}^{j} of W_{j} Basis functions φ_{i}^{j} of V_{j}

form a basis in V $_{j+1}$

1D Haar Wavelets (cont' d)

Example - Haar basis (revisited)

Resolution	Averages	Detail Coefficients
4	[9 7 3 5]	[]
2	[8 4]	[1 -1]
4	[6]	[2]

Decomposition of f(x)

$$f(x) = [9 \ 7 \ 3 \ 5]$$

using the basis functions in V_2

$$f(x) = c_0^2 \phi_0^2(x) + c_1^2 \phi_1^2(x) + c_2^2 \phi_2^2(x) + c_3^2 \phi_3^2(x)$$

Decomposition of f(x) (cont' d)

using the basis functions in V_1 and W_1

$$V_2 = V_1 + W_1$$

$$f(x) = c_0^1 \phi_0^1(x) + c_1^1 \phi_1^1(x) + d_0^1 \psi_0^1(x) + d_1^1 \psi_1^1(x)$$

Example - Haar basis (revisited)

Resolution	Averages	Detail Coefficients
4	[9 7 3 5]	[]
2	[8 4]	[1 -1]

Decomposition of f(x) (cont' d)

using the basis functions in V_0 , W_0 and W_1

$$V_2 = V_1 + W_1 = V_0 + W_0 + W_1$$

$$f(x) = c_0^0 \phi_0^0(x) + d_0^0 \psi_0^0(x) + d_0^1 \psi_0^1(x) + d_1^1 \psi_1^1(x)$$

Example - Haar basis (revisited)

$$[6 \ 2 \ 1 \ -1]$$

Example

Example (cont' d)

Convention for illustrating 1D Haar wavelet decomposition (cont' d)

2D Haar Wavelet Transform

- The 2D Haar wavelet decomposition can be computed using 1D Haar wavelet decompositions (i.e., 2D Haar wavelet basis is separable).
- Two decompositions
 - Standard decomposition
 - Non-standard decomposition
- Each decomposition corresponds to a different set of 2D basis functions.

Standard Haar wavelet decomposition

Steps

- (1) Compute 1D Haar wavelet decomposition of each row of the original pixel values.
- (2) Compute 1D Haar wavelet decomposition of each column of the row-transformed pixels.

Standard Haar wavelet decomposition (cont'd)

average

detail

(1) row-wise Haar decomposition:

Standard Haar wavelet decomposition (cont'd)

(1) row-wise Haar decomposition:

average

detail

from previous slide:

row-transformed result

Standard Haar wavelet decomposition (cont' d)

average

detail

(2) column-wise Haar decomposition:

row-transformed result

column-transformed result

Example

Example (cont' d)

transform rows

transform columns

column-transformed result

Non-standard Haar wavelet decomposition

- Alternates between operations on rows and columns.
 - (1) Perform <u>one level</u> decomposition in each <u>row</u> (i.e., one step of horizontal <u>pairwise</u> averaging and differencing).
 - (2) Perform <u>one level</u> decomposition in each <u>column</u> from step 1 (i.e., one step of vertical <u>pairwise</u> averaging and differencing).
 - (3) Repeat the process on the quadrant containing <u>averages</u> only (i.e., in both directions).

Non-standard Haar wavelet decomposition (cont'd)

Note: averaging/differencing

of detail coefficients shown

Non-standard Haar wavelet decomposition (cont' d)

re-arrange terms

one level, horizontal
Haar decomposition
on "green" quadrant

one level, vertical
Haar decomposition
on "green" quadrant

Example

Example (cont' d)

