Quadtrees and Meshing

definition & properties balanced quadtrees meshing with quadtrees

Simulation of heat emission on printed circuit boards

To simulate heat emission, use finite element method:

- partition board into small homogeneous elements (e.g. triangles) \rightarrow mesh
- based on heat emission of each element and influence of neighbors numerically approximate the overall heat emission

To simulate heat emission, use finite element method:

- partition board into small homogeneous elements (e.g. triangles) \rightarrow mesh
- based on heat emission of each element and influence of neighbors numerically approximate the overall heat emission

To simulate heat emission, use finite element method:

- partition board into small homogeneous elements (e.g. triangles) \rightarrow mesh
- based on heat emission of each element and influence of neighbors numerically approximate the overall heat emission

quality criteria:

- finer mesh \rightarrow better approximation
- coarser mesh \rightarrow faster computation
- compact elements \rightarrow faster convergence

To simulate heat emission, use finite element method:

- partition board into small homogeneous elements (e.g. triangles) \rightarrow mesh
- based on heat emission of each element and influence of neighbors numerically approximate the overall heat emission

- quality criteria: finer mesh \rightarrow better approximation
 - coarser mesh \rightarrow faster computation
 - compact elements \rightarrow faster convergence

goal:

- non-uniform mesh \rightarrow small at boundaries, larger otherwise
- well-shaped triangles \rightarrow not too thin

Given: octilinear polygons with integer coordinates within a square $Q=[0,U]\times [0,U]$ with $U=2^j$ a power of two.

Given: octilinear polygons with integer coordinates within a square $Q=[0,U]\times [0,U]$ with $U=2^j$ a power of two.

Goal: triangular mesh of Q with the following properties

• conforming: exactly one triangle on each side of interior edges

Given: octilinear polygons with integer coordinates within a square $Q=[0,U]\times [0,U]$ with $U=2^j$ a power of two.

- conforming: exactly one triangle on each side of interior edges
- respect input: edges of input must be part of union of mesh edges

Given: octilinear polygons with integer coordinates within a square $Q=[0,U]\times [0,U]$ with $U=2^j$ a power of two.

- conforming: exactly one triangle on each side of interior edges
- respect input: edges of input must be part of union of mesh edges
- well-shaped: angles between 45° and 90°

Given: octilinear polygons with integer coordinates within a square $Q=[0,U]\times [0,U]$ with $U=2^j$ a power of two.

- conforming: exactly one triangle on each side of interior edges
- respect input: edges of input must be part of union of mesh edges
- well-shaped: angles between 45° and 90°
- non-uniform: fine near boundaries, coarse otherwise

Given: octilinear polygons with integer coordinates within a square $Q=[0,U]\times [0,U]$ with $U=2^j$ a power of two.

- conforming: exactly one triangle on each side of interior edges
- respect input: edges of input must be part of union of mesh edges
- well-shaped: angles between 45° and 90°
- non-uniform: fine near boundaries, coarse otherwise

maximize smallest angle?

maximize smallest angle?

Exercise:

maximize smallest angle?

Exercise:

- maximize smallest angle?
- without Steiner points: might have very small angles

- maximize smallest angle?
- without Steiner points: might have very small angles
- with Steiner points:

- maximize smallest angle?
- without Steiner points: might have very small angles
- with Steiner points:

well-shaped, but uniform

512 triangles

well-shaped, non-uniform

52 triangles

https://google.github.io/closure-library/source/closure/goog/demos/quadtree.html,

http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection

Definition: A quadtree is a rooted tree, in which every interior node has 4 children. Every node corresponds to a square, and the squares of children are the quadrants of the parent's square.

Definition: A quadtree is a rooted tree, in which every interior node has 4 children. Every node corresponds to a square, and the squares of children are the quadrants of the parent's square.

Definition: For a point set P in a square $Q = [x_Q, x_Q'] \times [y_Q, y_Q']$ the quadtree $\mathcal{T}(P)$ is:

- if $|P| \leq 1$, is a leaf storing P and Q
- otherwise, is a node storing ${\cal Q}$ with four quadtrees as children in four quadrants for:

P_{NE}	:=	$\{p \in P \mid p_x > x_{mid} \text{ and } p_y > y_{mid}\},$
P_{NW}	:=	$\{p \in P \mid p_x \le x_{mid} \text{ and } p_y > y_{mid}\},$
P_{SW}	:=	$\{p \in P \mid p_x \le x_{mid} \text{ and } p_y \le y_{mid}\},$
P_{SE}	:=	$\{p \in P \mid p_x > x_{mid} \text{ and } p_y \leq y_{mid}\},$
where x	$r_{mid} =$	$rac{x_Q+x_Q'}{2}$ and $y_{mid}=rac{y_Q+y_Q'}{2}$.

P_{NW}	$\left P_{NE} \right $
P_{SW}	P_{SE}

Exercise:

Exercise:

The recursive definition of a quadtrees immediately results in an algorithm

The recursive definition of a quadtrees immediately results in an algorithm

Question: What is the depth of a quadtree with n nodes?

The recursive definition of a quadtrees immediately results in an algorithm

Lemma 1: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.

The recursive definition of a quadtrees immediately results in an algorithm

Lemma 1: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.

Proof:

• consider square σ of depth i with side length $s/2^i$

The recursive definition of a quadtrees immediately results in an algorithm

Lemma 1: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.

Proof:

- consider square σ of depth i with side length $s/2^i$
- maximum distance between two points in σ : $\sqrt{2}s/2^i$

The recursive definition of a quadtrees immediately results in an algorithm

Lemma 1: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.

Proof:

- consider square σ of depth i with side length $s/2^i$
- maximum distance between two points in σ : $\sqrt{2}s/2^i$
- \Rightarrow if depth is i, $\sqrt{2}s/2^i \ge c$

The recursive definition of a quadtrees immediately results in an algorithm

Lemma 1: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.

Proof:

- consider square σ of depth i with side length $s/2^i$
- maximum distance between two points in σ : $\sqrt{2}s/2^i$

$$\Rightarrow$$
 if depth is i , $\sqrt{2}s/2^i \ge c$

$$\Rightarrow i \le \log(\sqrt{2}s/c) = \log(s/c) + 1/2$$

The recursive definition of a quadtrees immediately results in an algorithm

Lemma 1: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.

Theorem 1: A quadtree of depth d storing n points has O((d+1)n) nodes and can be constructed in O((d+1)n) time.

The recursive definition of a quadtrees immediately results in an algorithm

Lemma 1: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.

Theorem 1: A quadtree of depth d storing n points has O((d+1)n) nodes and can be constructed in O((d+1)n) time.

Proof:

• Inner nodes have 4 children \Rightarrow #leaves $= 1 + 3 \cdot \text{#inner nodes}$

The recursive definition of a quadtrees immediately results in an algorithm

Lemma 1: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.

Theorem 1: A quadtree of depth d storing n points has O((d+1)n) nodes and can be constructed in O((d+1)n) time.

Proof:

- Inner nodes have 4 children \Rightarrow #leaves $= 1 + 3 \cdot \text{#inner nodes}$
- Inner nodes correspond to disjoint squares with ≥ 2 points
 - $\Rightarrow \leq n$ squares per layer corresponding to inner nodes

The recursive definition of a quadtrees immediately results in an algorithm

Lemma 1: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.

Theorem 1: A quadtree of depth d storing n points has O((d+1)n) nodes and can be constructed in O((d+1)n) time.

Proof:

- Inner nodes have 4 children \Rightarrow #leaves $= 1 + 3 \cdot \text{#inner nodes}$
- Inner nodes correspond to disjoint squares with ≥ 2 points
 - $\Rightarrow \leq n$ squares per layer corresponding to inner nodes
- \Rightarrow for depth d overall O((d+1)n) nodes.

Finding neighbors

NORTHNEIGHBOR (v, \mathcal{T})

Input: node v in quadtree $\mathcal T$

Output: deepest v' not deeper than v, with v'.Q north neighbor of v.Q

- 1: if $v = \operatorname{root}(\mathcal{T})$ then return NIL
- 2: $\pi \leftarrow \mathsf{parent}(v)$
- 3: **if** v = SW(SE)-child of π **then return** NW(NE)-child of π
- 4: $\mu \leftarrow NorthNeighbor(\pi, \mathcal{T})$
- 5: **if** $\mu = \text{NIL}$ or μ is a leaf **then return** μ
- 6: if v= NW(NE)-child of π then return SW(SE)-child of μ

Finding neighbors

NORTHNEIGHBOR (v,\mathcal{T}) Input: node v in quadtree \mathcal{T} Output: deepest v' not deeper than v, with v'.Q north neighbor of v.Q1: if $v = \operatorname{root}(\mathcal{T})$ then return NIL

2: $\pi \leftarrow \operatorname{parent}(v)$ 3: if $v = \operatorname{SW}(\operatorname{SE})$ -child of π then return NW(NE)-child of π 4: $\mu \leftarrow \operatorname{NORTHNEIGHBOR}(\pi,\mathcal{T})$ 5: if $\mu = \operatorname{NIL}$ or μ is a leaf then return μ 6: if $v = \operatorname{NW}(\operatorname{NE})$ -child of π then return SW(SE)-child of μ

Theorem 2: Let $\mathcal T$ be a quadtree of depth d. The neighbors of a node v in any direction can be found in O(d+1) time.

Finding neighbors

 $\mathsf{NorthNeighbor}(v,\mathcal{T})$

Input: node v in quadtree $\mathcal T$

Output: deepest v' not deeper than v, with v'.Q north neighbor of v.Q

- 1: if $v = \text{root}(\mathcal{T})$ then return NIL
- 2: $\pi \leftarrow \mathsf{parent}(v)$
- 3: **if** v = SW(SE)-child of π **then return** NW(NE)-child of π
- 4: $\mu \leftarrow NorthNeighbor(\pi, \mathcal{T})$
- 5: **if** $\mu = \mathsf{NIL}$ or μ is a leaf **then return** μ
- 6: if v= NW(NE)-child of π then return SW(SE)-child of μ

Theorem 2: Let \mathcal{T} be a quadtree of depth d. The neighbors of a node v in any direction can be found in O(d+1) time.

- **Proof**: depth of recursion is O(d+1)
 - cost per recursive step is O(1)

Balanced quadtrees

Definition: a quadtree is balanced if any two neighboring nodes differ by at most 1 in depth

Balanced quadtrees

Definition: a quadtree is balanced if any two neighboring nodes differ by at most 1 in depth

Balanced quadtrees

Definition: a quadtree is balanced if any two neighboring nodes differ by at most 1 in depth


```
\mathsf{BalanceQuadtree}(\mathcal{T})
Input: Quadtree \mathcal{T}
Output: Balanced quadtree \mathcal{T}
 1: L \leftarrow list of all leafs of \mathcal{T}
 2: while L is not empty do
       \mu \leftarrow \text{extract a leaf from } L
 3:
       if \mu.Q is too large then
 4:
          partition \mu.Q into 4 quadrants and add 4 leaves to \mathcal T
 5:
          insert new leaves into L
 6:
          if any neighbors of \mu.Q are too large then
             insert them into L
9: return \mathcal{T}
```

Exercise:

Exercise:


```
\mathsf{BalanceQuadtree}(\mathcal{T})
Input: Quadtree \mathcal{T}
Output: Balanced quadtree \mathcal{T}
 1: L \leftarrow list of all leafs of \mathcal{T}
 2: while L is not empty do
       \mu \leftarrow \text{extract a leaf from } L
 3:
       if \mu.Q is too large then
 4:
          partition \mu.Q into 4 quadrants and add 4 leaves to \mathcal T
 5:
          insert new leaves into L
 6:
          if any neighbors of \mu.Q are too large then
             insert them into L
9: return \mathcal{T}
```

```
\mathsf{BalanceQuadtree}(\mathcal{T})
Input: Quadtree \mathcal{T}
Output: Balanced quadtree \mathcal{T}
 1: L \leftarrow list of all leafs of \mathcal{T}
 2: while L is not empty do
       \mu \leftarrow \text{extract a leaf from } L \text{How?}
       if \mu.Q is too large then
 4:
          partition \mu.Q into 4 quadrants and add 4 leaves to \mathcal T
 5:
          insert new leaves into L
 6:
          if any neighbors of \mu.Q are too large then
             insert them into L
 9: return \mathcal{T}
                                   How?
```

```
\mathsf{BalanceQuadtree}(\mathcal{T})
Input: Quadtree \mathcal{T}
Output: Balanced quadtree \mathcal{T}
 1: L \leftarrow list of all leafs of \mathcal{T}
 2: while L is not empty do
       \mu \leftarrow \text{extract a leaf from } L \text{ How?}
       if \mu.Q is too large then
 4:
          partition \mu.Q into 4 quadrants and add 4 leaves to \mathcal T
 5:
          insert new leaves into L
 6:
          if any neighbors of \mu.Q are too large then
             insert them into L
 9: return \mathcal{T}
                                    How?
```

Question: How large can a balanced quadtree get?

Theorem 3: Let $\mathcal T$ be a quadtree with m nodes. Then the balanced version of $\mathcal T$ has O(m) nodes and can be constructed in O((d+1)m) time.

Theorem 3: Let $\mathcal T$ be a quadtree with m nodes. Then the balanced version of $\mathcal T$ has O(m) nodes and can be constructed in O((d+1)m) time.

Proof: At most 8m splits occur. Why?

Theorem 3: Let $\mathcal T$ be a quadtree with m nodes. Then the balanced version of $\mathcal T$ has O(m) nodes and can be constructed in O((d+1)m) time.

Proof: At most 8m splits occur. Why?

Theorem 3: Let $\mathcal T$ be a quadtree with m nodes. Then the balanced version of $\mathcal T$ has O(m) nodes and can be constructed in O((d+1)m) time.

Proof: At most 8m splits occur. Why?

- assume square σ is split $\Rightarrow \sigma$ has "old" nbr (among 8 nbrs)
 - suppose not ightarrow consider smallest σ violating the claim
 - let σ' be the reason for splitting σ
 - then σ' contradicts the minimality of σ

Theorem 3: Let $\mathcal T$ be a quadtree with m nodes. Then the balanced version of $\mathcal T$ has O(m) nodes and can be constructed in O((d+1)m) time.

Proof: At most 8m splits occur. Why?

- assume square σ is split $\Rightarrow \sigma$ has "old" nbr (among 8 nbrs)
 - suppose not ightarrow consider smallest σ violating the claim
 - let σ' be the reason for splitting σ
 - then σ' contradicts the minimality of σ
- charge the split to the "old" nbr \rightarrow at most 8 per "old" nbr

Theorem 3: Let $\mathcal T$ be a quadtree with m nodes. Then the balanced version of $\mathcal T$ has O(m) nodes and can be constructed in O((d+1)m) time.

Proof: At most 8m splits occur. Why?

- assume square σ is split $\Rightarrow \sigma$ has "old" nbr (among 8 nbrs)
 - suppose not ightarrow consider smallest σ violating the claim
 - let σ' be the reason for splitting σ
 - then σ' contradicts the minimality of σ
- charge the split to the "old" nbr \rightarrow at most 8 per "old" nbr
- each split needs O(1) searches for nbrs $\to O(d+1)$ time per split

Theorem 3: Let $\mathcal T$ be a quadtree with m nodes. Then the balanced version of $\mathcal T$ has O(m) nodes and can be constructed in O((d+1)m) time.

Proof: At most 8m splits occur. Why?

- assume square σ is split $\Rightarrow \sigma$ has "old" nbr (among 8 nbrs)
 - suppose not ightarrow consider smallest σ violating the claim
 - let σ' be the reason for splitting σ
 - then σ' contradicts the minimality of σ
- charge the split to the "old" nbr \rightarrow at most 8 per "old" nbr
- each split needs O(1) searches for nbrs $\to O(d+1)$ time per split

$$\Rightarrow O(m)$$
 nodes and $O((d+1)m)$ time

Compressed quadtrees

Paths of nodes with only one non-empty child can be compressed to an edge

Compressed quadtrees

Paths of nodes with only one non-empty child can be compressed to an edge \rightarrow size O(n)

Given: octilinear polygons with integer coordinates within a square $Q=[0,U]\times[0,U]$ with $U=2^j$ a power of two

Goal: triangular mesh of Q with the following properties

- well-shaped: angles between 45° and 90°
- non-uniform: fine near boundaries, coarse otherwise

Given: octilinear polygons with integer coordinates within a square $Q=[0,U]\times[0,U]$ with $U=2^j$ a power of two

Goal: triangular mesh of Q with the following properties

- conforming: exactly one triangle on each side of interior edges
- respect input: edges of input must be part of union of mesh edges
- well-shaped: angles between 45° and 90°
- non-uniform: fine near boundaries, coarse otherwise

Idea: use quadtree as a base!

Given: octilinear polygons with integer coordinates within a square $Q=[0,U]\times[0,U]$ with $U=2^j$ a power of two

Goal: triangular mesh of Q with the following properties

• well-shaped: angles between 45° and 90°

non-uniform: fine near boundaries, coarse otherwise

Idea: use quadtree as a base!

Question: What do we need to adapt?

Given: octilinear polygons with integer coordinates within a square $Q=[0,U]\times[0,U]$ with $U=2^j$ a power of two

Goal: triangular mesh of Q with the following properties

- conforming: exactly one triangle on each side of interior edges
- respect input: edges of input must be part of union of mesh edges
- well-shaped: angles between 45° and 90°
- non-uniform: fine near boundaries, coarse otherwise

Idea: use quadtree as a base!

Question: What do we need to adapt?

Adaptation: partition squares until they no longer

intersect a polygon or size is 1

Given: octilinear polygons with integer coordinates within a square $Q=[0,U]\times[0,U]$ with $U=2^j$ a power of two

Goal: triangular mesh of Q with the following properties

respect input: edges of input must be part of union of mesh edges

• $_{
m W}$ intersections also include: and 90°

polygon boundary in square es, coarse otherwise

• common edge, or even just

common point

t

Adaptat on: partition squares until they no longer intersect a polygon or size is 1

Observation: the interior of a square in the quadtree can be intersected only by a diagonal

Observation: the interior of a square in the quadtree can be intersected only by a diagonal

Question: How can we get a valid mesh?

Observation: the interior of a square in the quadtree can be intersected only by a diagonal **Question**: How can we get a valid mesh?

Add diagonals for remaining squares?

Observation: the interior of a square in the quadtree can be intersected only by a diagonal

Question: How can we get a valid mesh?

Add diagonals for remaining squares? no!

non-conforming

Observation: the interior of a square in the quadtree can be intersected only by a diagonal

Question: How can we get a valid mesh?

- Add diagonals for remaining squares? no!
- Add a Steiner point per cell?

Observation: the interior of a square in the quadtree can be intersected only by a diagonal

Question: How can we get a valid mesh?

- Add diagonals for remaining squares? no!
- Add a Steiner point per cell?

angles too small

Observation: the interior of a square in the quadtree can be intersected only by a diagonal **Question**: How can we get a valid mesh?

- Add diagonals for remaining squares? no!
- Add a Steiner point per cell?
- Balanced quadtree and add Steiner points if necessary!

Observation: the interior of a square in the quadtree can be intersected only by a diagonal **Question**: How can we get a valid mesh?

- Add diagonals for remaining squares? no!
- Add a Steiner point per cell?
- Balanced quadtree and add Steiner points if necessary!

Observation: the interior of a square in the quadtree can be intersected only by a diagonal

Question: How can we get a valid mesh?

- Add diagonals for remaining squares? no!
- Add a Steiner point per cell?
- Balanced quadtree and add Steiner points if necessary!

Triangulating quadtrees

```
TriangulateQuadtree(\mathcal{T})
Input: quadtree \mathcal{T}
Output: triangulation of \mathcal{T}
 1: \mathcal{D} \leftarrow \mathsf{DCEL} for partition of Q by \mathcal{T}
2: for each facet f in \mathcal{D} do
       if int(f) is intersected by a polygon then
 3:
           add corresponding diagonal in f to \mathcal{D}
 4:
       else
 5:
           if vertices only add corners of f then
 6:
              add a diagonal in f to \mathcal{D}
          else
              create Steiner point in the middle of f and
 9:
              connect in \mathcal D to all vertices on \partial f
10: return \mathcal{D}
```


Algorithm

$\mathsf{CREATEMESH}(S)$

Input: set S of octilinear polygons with integer coordinates in $Q=[0,2^j]\times [0,2^j]$ *Output:* valid, non-uniform triangular mesh S

- 1: $\mathcal{T} \leftarrow \mathsf{CREATEQUADTREE}$
- 2: $\mathcal{T} \leftarrow \mathsf{BALANCEQUADTREE}(\mathcal{T})$
- 3: $\mathcal{D} \leftarrow \mathsf{TriangulateQuadtree}(\mathcal{T})$
- 4: return \mathcal{D}

Exercise

Exercise:

Exercise

Exercise:

Summary

Theorem 4: Let S be a set of disjoint polygonal objects with vertices on a (integer) grid $[0,U]\times[0,U]$. Then

- there exists a non-uniform triangular mesh for S that is conforming, well-shaped and respects the input
- the number of triangles is $O(p(S)\log U)$, where p(S) is the sum of (lengths of) perimeters of the objects
- the mesh can be constructed in $O(p(S)\log^2 U)$ time

Summary

Theorem 4: Let S be a set of disjoint polygonal objects with vertices on a (integer) grid $[0,U]\times[0,U]$. Then

- there exists a non-uniform triangular mesh for S that is conforming, well-shaped and respects the input
- the number of triangles is $O(p(S)\log U)$, where p(S) is the sum of (lengths
 - of) perimeters of the objects
- the mesh can be constructed in $O(p(S)\log^2 U)$ time

Proof: size of mesh: # squares intersected in a layer is O(p(S)), depth is $O(\log U)$

Summary

Theorem 4: Let S be a set of disjoint polygonal objects with vertices on a (integer) grid $[0,U]\times[0,U]$. Then

- there exists a non-uniform triangular mesh for S that is conforming, well-shaped and respects the input
- the number of triangles is $O(p(S)\log U)$, where p(S) is the sum of (lengths
 - of) perimeters of the objects
- the mesh can be constructed in $O(p(S)\log^2 U)$ time

Proof: size of mesh: # squares intersected in a layer is O(p(S)), depth is $O(\log U)$

construction time:

- 1. quadtree: linear in size
- 2. balancing: extra log-factor (by Thm 3)
- 3. triangulating: linear in size

Can we compute/update compressed quadtrees efficiently?

Can we compute/update compressed quadtrees efficiently?

Yes, skip quadtrees have complexity O(n) and we can insert, delete and search in $O(\log n)$ time in a suitable model of computation

[Eppstein et al., '05]

Can we compute/update compressed quadtrees efficiently?

Yes, skip quadtrees have complexity O(n) and we can insert, delete and search in $O(\log n)$ time in a suitable model of computation

[Eppstein et al., '05]

Other applications?

Can we compute/update compressed quadtrees efficiently?

Yes, skip quadtrees have complexity O(n) and we can insert, delete and search in $O(\log n)$ time in a suitable model of computation

[Eppstein et al., '05]

Other applications?

Quadtrees are used in many applications including computer graphics, image processing, GIS etc. In geometry used for approximation algorithms, but also connections to Delaunay triangulations.

Can we compute/update compressed quadtrees efficiently?

Yes, skip quadtrees have complexity O(n) and we can insert, delete and search in $O(\log n)$ time in a suitable model of computation

[Eppstein et al., '05]

Other applications?

Quadtrees are used in many applications including computer graphics, image processing, GIS etc. In geometry used for approximation algorithms, but also connections to Delaunay triangulations.

As always: higher dimensions?

Can we compute/update compressed quadtrees efficiently?

Yes, skip quadtrees have complexity O(n) and we can insert, delete and search in $O(\log n)$ time in a suitable model of computation

[Eppstein et al., '05]

Other applications?

Quadtrees are used in many applications including computer graphics, image processing, GIS etc. In geometry used for approximation algorithms, but also connections to Delaunay triangulations.

As always: higher dimensions?

Directly generalize. In 3D quadtrees \rightarrow octtrees