VO-V03 Umrežena virtualna okruženja

Informacija	Vrsta prometa Protokol		
Pozicija x	Osvježavanje stanja	UPD	
Pozicija z	Osvježavanje stanja	UPD	
Rotacija	Osvjezavanje stanja	UPD	
Ispaljeni metci	Osvjezavanje stanja	UPD	
Metci pokupljeni	Događaji	TCP	
Pogodak igraca	Događaji	TCP	
Igrač ubijen	Događaji	TCP	
Igrač napustio igru	Poruke sustava	TCP	

Informacija	Tip podataka	Veličina	
Ispaljeni metci	byte	2	
Pozicija x	float	5	
Pozicija z	float	5	
Rotacija	float	5	

2.1. Podpitanja

Koliko iznosi veličina tijela (zaglavlje zanemarite) paketa jedne poruke osvježavanja stanja?

13B.

Koju količinu informacija svaki igrač šalje za osvježavanje svog stanja po sekundi? 130B.

Ako korisnikovo računalo iscrtava 30 slika po sekundi, koliko novih, interpoliranih pozicija generira između 2 poruke osvježavanja stanja? 3 slike.

Ako korisnikovo računalo iscrtava 100 slika po sekundi, koliko novih, interpoliranih pozicija generira između 2 poruke osvježavanja stanja? 10 slika.

Na prvom računalu hodajte u jednom smjeru. Na drugom računalu promatrajte kretanje avatara od prvog računala. Na drugom računalu povećajte gubitak paketa na 100%. Na prvom računalu se sada prestanite kretati.

Kako algoritam mrtve procjene nije ažuriran na računalu 2, vidimo kako se igrač sa računala 1 nastavio kretati.

Zadatak 5. Recimo da igrač 1 i igrač 2 imaju isto kašnjenje od 100 ms. Zamislite da je implementacija u ovoj igri sljedeća (iako nije): kada jedan igrač pokupi metke on ih prvo pridodaje sebi i onda šalje ostalima poruku da unište taj objekt. Igrač 1 pokupi objekt, nakon 20 ms pokupi ga i igrač 2. Koji problem se događa u ovakvom scenariju i zašto?

Problem nastaje ako igrač 1 uzme lokalno metke i pošalje poruku za poništenjem ali zbog kašnjenja i drugi igrač isto može dobiti metke koji više ne postoje.

Koje svojstvo UVO je narušeno? Narušena je konzistentnost.

Igrač 1	Igrač 2	Ime objekta	Kome je
(pickup time)	ickup time) (pickup time)		pripao objekt?
959607.61	Ništa	Bullets 3	Igrač1
959866.92	969870.43	Bullets 4	Igrač1
960007.84	960002.60	Bullets 7	Igrač2

Slika 6.1: Igrači

Pogledajte mapu unutar igre. U najgorem slučaju, na koliko najviše zona jedan igrač može biti pretplaćen?

4 zone.

Krećite se virtualnim svijetom i pratite broj odlaznih poruka (Outgoing Messages/s). Prosječan broj odlaznih poruka je otprilike uvijek isti. Zašto?

Na serveru je uvijek isti broj informaicja koji ne ovisi o broju zona ili poziciji na mapi.

	Igrač 1	Igrač 2	Igrač 3	Igrač 4	Igrač 5
Najmanji	zona 1	zona 2	zona 3	zona 4	zona 5
promet	(susjedi	(susjedi	(susjedi	(susjedi	(susjedi
	none)	none)	none)	none)	none)
Najveći	zona 7	zona 15	zona 12	zona 10	zona 14
promet	(susjedi	(susjedi	(susjedi	(susjedi	(susjedi
	6,10,11)	11)	11)	11)	10,11,15)

Zašto bi željeli smanjiti šansu da postanemo susjed s nekom drugom zonom?

Tako se šalje puno više poruka koje opterećuju mrežu a mi od toga nemamo koristi jer ne vidimo te korisnike.