

ANN on Wrist Worn Accelerometer Data and Deploying the Model on TinyML Device

Presented By:

Md. Ziaul Hasan – 1911001 Md. Taisirul Muktadi – 1911012 Asadul Islam Hamza - 1911023

TABLE OF CONTENT

Sleep is a critical aspect of human health

Sleep plays a crucial role in physical development, emotional regulation, memory consolidation, and overall cognitive functioning.

The inability to control and regulate one's sleep patterns can lead to a variety of adverse consequences

If we can measure sleep we might control sleep.

Polysomnography (PSG) is the gold standard tool for understanding physiological processes related to sleep.

But it is often cost-prohibitive, collected in clinical settings unfamiliar to participants, and requires trained technicians to operate and process data.

So we need something non-intrusive, easy to use, and affordable, which could accessible to a wide range of users.

Moderated Sleep Deep Sleep

Methodology

Data Analytics

Data collection

Tri-axial acceleration data, one record per 5 seconds.

To optimize data's suitability for training the ANN

Data Preprocessing

Labeling

Wakefulness, REM sleep, Light sleep, Deep sleep

ANN could effectively learn and distinguish between different sleep stages now

Ready data for ANN

Artificial Nural Network (ANN)

TABLE I MODEL ARCHITECTURE

Layer (type)	Output Shape	Param #
dense	(None, 10)	30
dense_1	(None, 20)	220
dense_2	(None, 10)	210
dense_3	(None, 2)	22

Total params	482 ((1.88 KB)
Trainable params	482 ((1.88 KB)
Non-trainable params	0.0)	00 Byte)

TABLE II MODEL SIZES COMPARISON

Model	Size
TensorFlow	4096 bytes
TensorFlow Lite	4424 bytes (reduced by -328 bytes)
TensorFlow Lite Quantized	3952 bytes (reduced by 472 bytes)

Device Development

Hardware Selection

Arduino Nano 33 BLE sense rev2

Accelerometer

Inbuilt 9-axis Inertial Measurement Unit (IMU)

Software Development

Arduino C++
in conjunction
with TensorFlow
Lite Micro

Circuit and PCB Design

Now it is suitable for a variety of applications, including those requiring machine learning inference.

Circuit and PCB Diagram

Final Outlook

Result

Thank you all

Open for Questions...