

Straight Lines

Date Planned ://	CBSE PATTERN
Actual Date of Attempt : / /	Level - 0

- 1. Find the equation of the straight line which passes through the point (1-2) and cuts off equal intercepts from axes.
- 2. Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining the points (2, 3) and (3, -1).
- **3.** Find the angle between the lines $y = (2 \sqrt{3})(x+5)$ and $y = (2 + \sqrt{3})(x-7)$.
- **4.** Find the equation of the lines which passes through the point (3, 4) and cuts off intercepts from the coordinate axes such that their sum is 14.
- **5.** Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.
- **6.** Show that the tangent of an angle between the lines $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{a} \frac{y}{b} = 1$ is $\frac{2ab}{a^2 b^2}$.
- 7. Find the equation of lines passing through (1, 2) and making angle 30° with Y-axis.
- **8.** Find the equation of the line passing through the point of intersection of 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.
- **9.** For what values of a and b the intercept cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x 3y + 6 = 0 on the axes?
- **10.** If the intercept of a line between the coordinate axes is divided by the point (-5, 4) in the ratio 1:2, then find the equation of the line.
- 11. Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of X-axis.
- **12.** Find the equation of one of the sides of an isosceles right-angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).
- 13. If the equation of the base of an equilateral triangle is x + y = 2 and the vertex is (2, -1), then find the length of the side of the triangle.
- **14.** A variable line passes through a fixed-point P. The algebraic sum of the perpendiculars drawn from the points (2, 0), (0, 2) and (1, 1) on the line is zero. Find the coordinates of the point P.
- **15.** Find the equation of the line which passes through the point (-4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point.
- **16.** Find the equations of the lines through the point of intersection of the lines x y + 1 = 0 and 2x 3y + 5 = 0 and whose distance from the point (3, 2) is $\frac{7}{5}$.

- If p is the length of perpendicular from the origin on the line $\frac{x}{a} + \frac{y}{b} = 1$ and a^2 , p^2 and b^2 are in A.P., 17. the show that $a^4 + b^4 = 0$.
- A line cutting off intercept -3 from the Y-axis and the tangent at angle to the X-axis is $\frac{3}{5}$, its equation 18. is:
 - (A) 5y - 3x + 15 = 0

(B) 3y - 5x + 15 = 0

(C) 5y - 3x - 15 = 0

- (D) None of these
- Slope of a line which cuts off intercepts of equal lengths on the axes is: 19.
 - (A)
- **(B)**
- (D)
- The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is: 20.
 - (A) x - y = 5
- **(B)** x + y = 5
- (C) x + y = 1
- x y = 1**(D)**
- The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is: 21.
 - y x + 1 = 0
- **(B)** y - x - 1 = 0
- (C) y - x + 2 = 0
- (D)
- 22. The tangent of angle between the lines whose intercepts on the axes are a, -b and b, -a respectively, is:
 - (A)
- $\frac{a^2-b^2}{ab}$ (B) $\frac{b^2-a^2}{2}$ (C) $\frac{b^2-a^2}{2ab}$
- (D) None of these
- If the line $\frac{x}{a} + \frac{y}{b} = 1$ passes through the points (2, -3) and (4, -5), then (a, b) is: 23.
 - (A)
- **(B)** (-1, 1)
- (1, -1)(C)
- (D)
- The distance of the point of intersection of the lines 2x-3y+5=0 and 3x+4y=0 from the line 24. 5x - 2y = 0 is:
 - (A)
- **(B)**
- (c) $\frac{130}{7}$
- (D) None of these
- The equation of the lines which pass through the point (3, -2) and are inclined at 60° to the line 25. $\sqrt{3}x + y = 1$ is:
 - y + 2 = 0, $\sqrt{3}x y 2 3\sqrt{3} = 0$ (A)
- $x-2=0, \sqrt{3}x-y+2+3\sqrt{3}=0$ **(B)**
- $\sqrt{3}x y 2 3\sqrt{3} = 0$ (C)
- (D) None of these
- The equations of the lines pass through the point (1, 0) and at a distance $\frac{\sqrt{3}}{2}$ from the origin, are: 26.
 - $\sqrt{3}x + u \sqrt{3} = 0$, $\sqrt{3}x u \sqrt{3} = 0$ (A)
- $\sqrt{3}x + y + \sqrt{3} = 0, \sqrt{3}x y + \sqrt{3} = 0$ **(B)**
- $x + \sqrt{3}u \sqrt{3} = 0$, $x \sqrt{3}u \sqrt{3} = 0$ (C)
- (D) None of these

0

27 .	The distance bet	ween the lines	u = mx + c	and u	$= my + c_0$	is:
<i>41</i> .	The distance bet	ween me mies	$y = n\alpha + c_1$	anu y	= 1100 + 69	15.

(A)
$$\frac{c_1-c_2}{\sqrt{m^2+1}}$$
 (B) $\frac{\left|c_1-c_2\right|}{\sqrt{1+m^2}}$ (C) $\frac{c_2-c_1}{\sqrt{1+m^2}}$ (D)

The coordinates of the foot of the perpendiculars from the point (2, 3) on the line y = 3x + 4 is given by: 28.

(A)
$$\left(\frac{37}{10}, \frac{-1}{10}\right)$$
 (B) $\left(-\frac{1}{10}, \frac{37}{10}\right)$ (C) $\left(\frac{10}{37}, -10\right)$ (D) $\left(\frac{2}{3}, -\frac{1}{3}\right)$

If the coordinates of the middle point of the portion of a line intercepted between the coordinate axes is **29**. (3, 2), then the equation of the line will be:

(A)
$$2x + 3y = 12$$
 (B) $3x + 2y = 12$ (C) $4x - 3y = 16$ (D) $5x - 2y = 10$

Equation of the line passing through (1, 2) and parallel to the line y = 3x - 1 is: 30.

(A)
$$y+2=x+1$$
 (B) $y+2=3(x+1)$ (C) $y-2=3(x-1)$ (D) $y-2=x-1$

31. Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are:

(A)
$$y = x, y + x = 1$$
 (B) $y = x, x + y = 2$ (C) $2y = x, y + x = \frac{1}{3}$ (D) $y = 2x, y + 2x = 1$

32. For specifying a straight line, how many geometrical parameters should be known?

The point (4, 1) undergoes the following two successive transformations: 33.

I. Reflection about the line y = x

(B)

(B)

II. Translation through a distance 2 units along the positive X-axis. Then, the final coordinates of the point are:

(1, 1)

3:7

(A) (4, 3) **(B)** (3, 4) **(C)** (1, 4) **(D)**
$$\left(\frac{7}{2}, \frac{7}{2}\right)$$

A point equidistant from the lines 4x + 3y + 10 = 0, 5x - 12y + 26 = 0 and 7x + 24y - 50 = 0 is: 34.

35. A line passes through (2, 2) and is perpendicular to the line
$$3x + y = 3$$
. Its *y*-intercept is:

(A) $\frac{1}{-}$ (B) $\frac{2}{-}$ (C) 1 (D) $\frac{4}{-}$

36. The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and

(C)

(C)

(0, 0)

2:3

$$3x + 4y - 5 = 0$$
 is:

37. One vertex of the equilateral triangle with centroid at the origin and one side as x + y - 2 = 0 is:

(A)
$$(-1, 1)$$
 (B) $(2, 2)$ **(C)** $(-2, -2)$ **(D)** $(2, -2)$

(1, -1)

1:2

(A)

(A)

(0, 1)

2:5

(D)

(D)

Fill in the Blanks

- **38.** If a, b and c are in AP, then the straight lines ax + by + c = 0 will always pass through .
- **39.** The line which cuts off equal-intercept from the axes and pass through the point (1, -2) is _____.
- **40.** Equation of the line through the point (3, 2) and making an angle of 45° with the line x 2y = 3 are .
- **41.** The point (3, 4) and (2, -6) are situated on the _____ of the line 3x 4y 8 = 0.
- **42.** A point moves so that square of its distance from the point (3, -2) is numerically equal to its distance from the line 5x 12y = 3. The equation of its locus is _____.
- **43.** Locus of the mid-points of the portion of the line $x \sin \theta + y \cos \theta = p$ intercepted between the axes is ____.
- **44.** The point A(-2, 1), B(0, 5) and C(-1, 2) are collinear.

True or False

- **45.** Equation of the line passing through the point $\left(a\cos^3\theta, a\sin^3\theta\right)$ and perpendicular to the line $x\sec\theta + y\cos ec\theta = a$ is $x\cos\theta y\sin\theta = a\sin 2\theta$.
- **46.** The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y 10 = 0 and 2x + y + 5 = 0.
- **47.** The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x+y=2. Then, the other two sides are $y-3=\left(2\pm\sqrt{3}\right)\left(x-2\right)$.
- **48.** The equation of the line joining the point (3, 5) to the point of intersection of the lines 4x + y 1 = 0 and 7x 3y 35 = 0 is equidistant from the points (0, 0) and (8, 34).
- **49.** The line $\frac{x}{a} + \frac{y}{b} = 1$ moves in such a way that $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$, where c is a constant. The locus of the foot of the perpendicular from the origin on the given line is $x^2 + y^2 = c^2$.
- **50.** The lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent, if a, b and c are in G.P.
- **51.** Line joining the points (3, -4) and (-2, 6) is perpendicular to the line joining the points (-3, 6) and (9, -18).

Straight Lines

Date Planned ://	Daily Tutorial Sheet - 1	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level - 1	Exact Duration :

Note (A): Questions having asterisk marked against them may have more than one correct

 (,	-	3
		answer.
(B)	:	Questions having (Symbol) marked against them have a video solution.

One of the vertices of a triangle whose midpoint of edges are	(3.1)	(5, 6).	(-3, 2)	is:
One of the vertices of a triangle whose imapoint of edges are	(0, 1)	, (0, 0),	(0, 2)	13.

(-5, -3)(1, 7)(C) (-11, 5)(A) **(B)** (D) None of these

If the point (x, y) be equidistant from the points (a + b, b - a) and (a - b, a + b), then: 2.

(C) ax - by = 0bx + ay = 0**(B)** bx - ay = 0(A) **(D)**

If P, Q are two points whose coordinates are $(at^2, 2at)$ and $\left(\frac{a}{t^2}, -\frac{2a}{t}\right)$ respectively and S is the point 3.

(a, 0), then $\frac{1}{SP} + \frac{1}{SO}$ is:

(C)

1.

(B) (A) 2/a(C) independent of t4/a

If four points (x_1,y_1) , (x_2,y_2) , (x_3,y_3) and (x_4,y_4) taken in order in a parallelogram, then: 4.

 $x_1 - x_2 + x_3 - x_4 = 0$ (A) **(B)** $y_1 - y_2 + y_3 + y_4 = 0$

 $x_1 + x_2 - x_3 - x_4 = 0$ $y_1 + y_2 - y_3 - y_4 = 0$ (C) (D)

5. Select the correct alternative for the following questions:

(i) In what ratio is the line joining the points (4, 5) and (1, 2) is divided by X-axis.

(A) 2:5 externally (B) 2:5 internally

3:4 externally

(D)

3:4 internally

(ii) In what ratio is the line joining the points (4, 5) and (1, 2) is divided by Y-axis. (A) 1:4 externally **(B)** 3:4 internally

(C) 3:4 externally (D) 1:4 internally

(iii) The coordinates of the point case (i) are:

> (A) (-1, 0) **(B)** (C) (0, -1)(0, 1)**(D)** (1,0)

(iv) The coordinates of the point case (ii) are:

(0, -1)**(D)** (-1, 0) **(B)** (0, 1)(C) (1, 0)

6. Three vertices of a parallelogram (a+b, a-b), (2a+b, 2a-b) and (a-b, a+b) taken in a order. The forth vertex is:

(b, -b)(-b, b)(B) (C) **(D)** $\left(-b,-b\right)$ (A) (b,b)

7.	Two vertices of a triangle are	(-4, 3)	and (2, 6)	. If the centroid is at origin, then the third vertex is:
----	--------------------------------	---------	------------	---

(A) (2, 9)

(2, -9) (C) (-2, 9)

(D) (-2, -9)

For Questions 8 - 9

Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1 (A)

Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1 **(B)**

Statement-1 is True, Statement-2 is False (C)

(D) Statement-1 is False, Statement-2 is True

Statement 1: The vertices of a triangle are (1, 2), (2, 1) and $\left\{\frac{1}{2}(3+\sqrt{3}), \frac{1}{3}(3+\sqrt{3})\right\}$. Its distance 8.

between its orthocentre and circumcentre is zero.

(B)

Statement 2: In an equilateral triangle, orthocentre and circumcentre coincide.

Statement 1: The equations to the sides of a triangle are x - 3y = 0, 4x + 3y = 5 and 3x + y = 0. The 9. line 3x - 3y = 0 passes through the orthocentre of triangle.

Statement 2: If two lines of slopes m_1 and m_2 are perpendicular then $m_1m_2=-1$.

10. The coordinates of ABC are (6, 3), (-3, 5) and (4, -2) respectively P is a point (x, y). If $\frac{\Delta PBC}{\Delta ABC} = \frac{\left| x + y - 2 \right|}{k}, \text{ then value of } k \text{ is:}$

(B)

(C)

(D)

The equation straight line such that the portion of it intercepted between the coordinate axes is bisected 11. at the point (h, k) is:

 $\frac{x}{h} + \frac{y}{k} = -1$ (B) $\frac{x}{h} + \frac{y}{k} = 2$ (C) $\frac{x}{h} + \frac{y}{k} = 1$ (D) $\frac{x}{h} + \frac{y}{k} = -1$

The equation straight line such that it passes through point (-2,6) and the portion of the line 12. intercepted between the axes is divided at this point in the ratio 3:2 is:

(A)

2x - y = 10

(B)

2x - y + 10 = 0 (C) x - 2y = 10 (D)

x + 2y = 10

13. The equation of straight line such that it passes through point (12, -1) and the sum of the intercepted made on the axes is equal to 7 is:

(A)

2x - y + 14 = 0 **(B)**

x - 2y + 14 = 0 (C)

x - 2y = 14

x + 6y + 6 = 0(D)

14. The equation of the sides of a triangle, the coordinates of whose angular points are: (3, 5), (1, 2) and (-7, 4).

2

3x-2y+1=0 **(B)** x-10y+47=0 **(C)** x+4y-9=0 **(D)**

All of these

If the points $A\Big(at_1^2,2at_1\Big)$, $B\Big(at_2^2,2at_2\Big)$ and $C\Big(a,0\Big)$ are collinear, then t_1t_2 equals: 15.

(A)

(B) -1 (C)

(D) None of these

Date Planned :/_/	Daily Tutorial Sheet - 2	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level - 1	Exact Duration :

16.	The m	id-points of the	sides of	a triangles are $(2, 1), (-5)$	(7) and $(-5, -5)$. The eq	uation of the sides are
	(A)	x-2=0	(B)	6x + 7y + 65 = 0 (C)	6x - 7y + 79 = 0 (D)	All of these

The intercept made by a line on Y-axis is double to the intercept made by it on X-axis and it passes 17. through (1, 2), then its equation is:

(A)

2x + y = 4

(B)

2x + y + 4 = 0 (C)

2x - y = 4

2x - y + 4 = 0(D)

The equation of the line which passes through the point (3, 4) and the sum of its intercepts on the axes 18. is 14, is:

(A) x + y = 7 and 4x + 3y = 24 **(B)** x + y = 24 and 4x + 3y = 7

x - y = 7 and 4x - 3y = 24(C)

None of the above **(D)**

The distance of the point (2, 3) from the line 2x - 3y + 9 = 0 measured along a line x - y + 1 = 0 is: 19.

 $4\sqrt{2}$ (A)

 $2\sqrt{2}$ **(B)**

(C)

The equation of the line is passing through P (4, 5) and making 30° angle with x-axis. Then coordinates 20. of point which is at distance 4 units on either side of P, is:

(A) $(4-2\sqrt{3},7)$ $\left(4\pm2\sqrt{3},7\right)$

 $\sqrt{2}$

 $(4+2\sqrt{3},7),(4-2\sqrt{3},3)$ (C)

(D) $(4-2\sqrt{3},7), (4-2\sqrt{3},7)$

The equation of a line in parametric form is given by: 21.

> $(x - x_1) r \cos \theta = (y - y_1) \sin \theta$ (B) (A)

 $\frac{\left(x-x_1\right)}{\cos\theta} = \frac{\left(y-y_1\right)}{\sin\theta} = r$

 $(x_1 - x_1) \cos \theta = (y - y_1) \sin \theta = r$ (C)

None of these

The line joining two points A (2, 0), B (3, 1) is rotated about A in anticlockwise direction through an **22**. angle of 15°. Then the equation of the line in the new position if B goes to C in the new position, is:

(A)

 $\frac{x+2}{1/2} = \frac{y}{\sqrt{3}/2}$ (B) $\frac{x-2}{1/2} = \frac{y}{\sqrt{3}/2}$

(C) $\frac{x}{1/2} = \frac{y}{\sqrt{3}/2}$ (D)

None of these

23. An equation of a line through the point (1, 2) whose distance from the point (3, 1) has the greatest value is:

y = 2x(A)

u = x + 1(B)

(C) x + 2y = 5

(D) y = 3x + 1

Statement 1: Lines 3x + 4y + 6 = 0, $\sqrt{2}x + \sqrt{3}y + 2\sqrt{2} = 0$ and 4x + 7y + 8 = 0 are concurrent. 24.

Statement 2: If three lines are concurrent then determinant of coefficients should be non-zero.

3

Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for (A) Statement-1

Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for **(B)** Statement-1

(C) Statement-1 is True, Statement-2 is False

(D) Statement-1 is False, Statement-2 is True

The equations of the two straight lines through (7, 9) and making an angle of 60° with the line **25**. $x - \sqrt{3}y - 2\sqrt{3} = 0$, are:

x = 7 and $x + \sqrt{3}y = 7 + 9\sqrt{3}$ (A)

x = -7 and $x + \sqrt{3}y = 7 + 9\sqrt{3}$ **(B)**

x = 7 and $x - \sqrt{3}y = 7 + 9\sqrt{3}$ (C)

x = 7 and $x + \sqrt{3}y = 7 + \sqrt{3}$ (D)

26. If (1, 1) and (-3,5) are vertices of a diagonal of a square, then the equations of its sides through (1, 1) are:

2x - y = 1, y - 1 = 0(A)

3x + y = 4, x - 1 = 0**(B)**

(C) x = 1, y = 1

None of these **(D)**

The diagonals of a parallelogram PQRS are the along x + 3y = 4 & 6x - 2y = 7. Then PQRS must be a: **27**.

(A) Rectangle

(C) Cyclic quadrilateral (D) Rhombus

If the family of lines x(a+2b)+y(a+3b)=a+b passes through the point for all values of a and b, 28. then the coordinates of the point are:

(A) (2,1)

(B) (2, -1)

(-2, 1)(C)

(D) None of these

The equation of the straight line through the intersection of line 2x + y = 1 and 3x + 2y = 5 and passing **29**. through the origin, is:

7x + 3y = 0(A)

(B)

7x - y = 0

3x + 2y = 0(C)

(D) x + y = 0

30. The equation of the straight line which passes the point of intersection of the straight line x + 2y = 5 and 3x + 7y = 17 and is perpendicular to the straight line 3x + 4y = 10, is:

4

(A) 4x + 3y + 2 = 0

4x - 3y + 2 = 0**(B)**

(C) 4x - 3y - 2 = 0 **(D)** 4x + 3y - 2 = 0

Date Planned ://	Daily Tutorial Sheet - 3	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level - 1	Exact Duration :

The equations of the bisectors of the angles between the straight line 3x - 4y + 7 = 0 and 31. 12x - 5y - 8 = 0, are:

21x + 27y + 131 = 0(A)

x + 27y - 131 = 0(B)

21x - 27y + 131 = 0(C)

21x + 27y - 131 = 0(D)

32. **Statement 1:** The points (k+1, k+2), (k, k+1), (k+1, k) are collinear for any value of k.

Statement 2: If three points are collinear area of the triangle formed by them is zero.

- (A) Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1
- **(B)** Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True
- x-coordinates of two points B and C are the roots of equation $x^2 + 4x + 3 = 0$ and their y-coordinates 33. are the roots of equation $x^2 - x - 6 = 0$. If x-coordinates of B is less than x-coordinates of C and ycoordinates of B is greater than the y-coordinate of C and coordinates of a third point A be (3, -5), then the length of the bisector of the interior angle at A is:

(A)

(B)

(D) None of these

34. A and B are two fixed points. The locus of a point P such that $\angle APB$ is a right angle, is:

 $x^2 + y^2 = a^2$ **(B)** $x^2 - y^2 = a^2$

(C)

 $2x^2 + y^2 = a^2$ (**D**) None of these

35. The equation of the straight line through the origin making angle ϕ with the line y = mx + b is:

 $\frac{y}{x} = \frac{m - \tan \phi}{1 - m \tan \phi} \quad \text{(B)} \qquad \frac{x}{y} = \frac{m + \tan \phi}{1 - m \tan \phi} \quad \text{(C)} \qquad \frac{y}{x} = \frac{m \pm \tan \phi}{1 \mp m \tan \phi} \quad \text{(D)} \qquad \frac{y}{x} = \frac{m + \tan \phi}{1 + m \tan \phi}$

If P(1,0), Q(-1,0) and R(2,0) are three given points, then locus of the points satisfying the 36. relation $SQ^2 + SR^2 = 2SP^2$ is:

(A) A straight line parallel to X-axis **(B)** A circle passing through origin

(C) A straight line parallel to Y-axis **(D)** None of these

37 .	The image of the point $(1, 3)$ in the line $x + y - 6 = 0$ is:									
	(A)	(3, 5)	(B)	(5, 3)	(C)	(1, -3)	(D)	(-1, 3)		
38.	A and	B are two fixe	d points.	The vertex C of	a ∆ <i>ABC</i>	moves such th	nat cot A -	$\cot B = \text{constan}$	t. Locus	
	of C is	s a straight line	:					lacksquare		
	(A)	\perp to AB			(B)	parallel to A	В			
	(C)	Inclined at a	n angle 3	0° to AB	(D)	None of thes	se			
39.	The n	umber of integ	ger values	of m, for which	the x-co	o-ordinate of th	e point o	f intersection of t	he lines	
	3x + 4	4y = 9 and $y =$	mx+1 a	lso an integer, is	3:			$lackbox{}$		
	(A)	2	(B)	0	(C)	4	(D)	1		
40 .		quadrilateral fo								
		by + c = 0, a'x + c								
		py + c' = 0, a'x + 1								
		perpendicular or $b^2 + c^2 = b'^2$	_	tnen:		$c^2 + a^2 = c'$	2 , 2			
	(A)				(B)					
	(C)	$a^2 + b^2 = a'$	2 + b'^{2}		(D)	None of thes	se			
41.	For a	variable line	$\frac{x}{a} + \frac{y}{b} = 1$	where $\frac{1}{a^2} + \frac{1}{b^2}$	$=\frac{1}{c^2}$, then	he locus of the	foot of p	erpendicular drav	wn from	
	origin	to it is:								
	(A)	$x^2 + y^2 = \frac{c^2}{2}$	- (B)	$x^2 + y^2 = c^2$	(C)	$x^2 + y^2 = 2a$	(D)	None of these		
42 .	Consi	der the family	of line (x)	$(x+y-1)+\lambda(2x+y-1)$	3y-5) =	= 0 and $(3x + 2)$	$(y-4)+\mu$	(x+2y-6)=0. E	quation	
	of a s	traight line tha	t belongs	to both the fami	ilies is:					
	(A)	x - 2y - 8 =	O (B)	x - 2y + 8 = 0	(C)	2x - y - 8 =	O (D)	None of these		
43 .	The s	et of values of	b for whi	ch the origin an	d the po	int (1, 1) lie on	the same	e side of the strai	ight line	
	a^2x +	$-aby+1=0, \forall a$	$a \in R, b >$	0 are:						
	(A)	$b\in ig(2,4ig)$	(B)	$b \in (0, 2)$	(C)	$b \in [0, 2]$	(D)	None of these		
44.	If the	point $(a, 2)$ lie	es between	the lines $x - y$	-1 = 0 a	and $2(x-y)+5$	= 0, then	the set of values	of a is:	
	(A)	$\left(-\infty,3\right)\cup\left(rac{9}{2} ight.$, ∞ (B)	$\left(3, \frac{9}{2}\right)$	(C)	$\left(-\infty,3\right)$	(D)	None of these		
45 .	The n	umber of real v	values of	k for which the	lines x-	2y + 3 = 0, kx +	3y + 1 = 0	and $4x - ky + 2$	= 0 are	
	concu	irrent is:								

(A)

0

(B)

1

(C)

2

(D)

infinite

Date Planned :/_/_	Daily Tutorial Sheet - 4	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level - 1	Exact Duration :

		r	r
46.	The parametric equation of a line is given by $x = -\frac{1}{2}$	-2 + and $y = 1 +$	3
		√10	√10

intercept on the X-axis = $\frac{7}{2}$ (A)

intercept on the Y-axis = -7**(B)**

(C) slope of the line = 3

(D) None of these

47. The length of the perpendicular from the origin to a line is 7 and the makes on angle of 150° with the positive direction of Y-axis. Then the equation of the line is:

 $\sqrt{3} x + y = 14$ **(B)** (A)

 $\sqrt{3} x - y = 14$

3x - y = 14

(D) None of these

The area of the triangle by the lines y = ax, x + y - a = 0 and the Y-axis is equal to: 48.

 $\frac{1}{2|1+a|}$ (B)

 $\frac{a^2}{|1+a|}$ (C) $\frac{1}{2} \left| \frac{1}{1+a} \right|$ (D) $\frac{a^2}{2|1+a|}$

If m_1 and m_2 are the root of the equation $x^2 + (\sqrt{3} + 2)x + (\sqrt{3} - 1) = 0$, then the area of the triangle 49. formed by the lines $y = m_1 x$, $y = m_2 x$ and y = 2 is: (\mathbf{r})

 $\sqrt{33} - \sqrt{11}$ (A)

(B)

 $\sqrt{33} + \sqrt{11}$ (C) $\sqrt{33} + \sqrt{7}$

(D) None of these

Let PS be the median of the triangle with vertices P(2,2), Q(6,-1) and R(7,3). The equation of the **50**. line passing through (1, -1) and parallel to PS is:

2x - 9y - 7 = 0**(B)** (A)

2x - 9y - 11 = 0 (C)

2x + 9y - 11 = 0 **(D)**

2x + 9u + 7 = 0

The incentre of the triangle whose vertices are (-36, 7), (20, 7) and (0, -8) is: **51**.

(A) (0, -1) **(B)**

(-1,0) (C) $\left(\frac{1}{2},1\right)$ (D)

None of these

52. The locus of the mid-point of the portion intercepted between the axes by the line $x\cos\alpha + y\sin\alpha = p$, where p is a constant is:

7

 $x^2 + y^2 = 4p^2$ (B) $\frac{1}{x^2} + \frac{1}{u^2} = \frac{4}{p^2}$ (C) $x^2 + y^2 = \frac{4}{p^2}$ (D) $\frac{1}{x^2} + \frac{1}{u^2} = \frac{2}{p^2}$ (A)

The nearest point on the line 3x - 4y = 25 from the origin is: **53**.

> (A) (-4, 5)

(3, -4)**(B)**

(C) (3, 4) (D) (3, 5)

54. Points (1, 2) and (2, 1) are:

> (A) On the same side of the line 4x + 2y = 1 (B)

On the line 4x + 2y = 1

(C) On the opposite sides of 4x + 2y = 1 (D) None of these

Two lines 2x - 3y = 1 and x + 2y + 3 = 0 divide the x-y plane in four compartments which are named as **55**. shown in the figure. Consider the locations of the points (2, -1), (3, 2) and (-1, -2). The correct option is:

- (A) $(2, -1) \in IV$ **(B)** $(3, 2) \in III$
- (C) $(-1, -2) \in II$ (D)
 - None of these
- If O be the origin and if $P_1(x_1,y_1)$ and $P_2(x_2,y_2)$ two points, then $\mathit{OP}_1\cdot\mathit{OP}_2\cos\left(\angle P_1\mathit{OP}_2\right)$ is equal to: 56.
 - (A) $x_1y_2 + x_2y_1$

- **(B)** $(x_1^2 + y_1^2)(x_2^2 + y_2^2)$

- $(x_1 + x_2)^2 + (y_1 + y_2)^2$
- **(D)** $x_1x_2 + y_1y_2$
- The locus of the point of intersection of lines $x \cos \alpha + y \sin \alpha = a$ and $x \sin \alpha y \cos \alpha = b$ is: (α is a **57**. variable)
 - $2(x^2 + u^2) = a^2 + b^2$ (A)

(B) $x^2 - y^2 = a^2 - b^2$

 $x^2 + u^2 = a^2 + b^2$ (C)

- (D) None of these
- If the equation of the locus of a point equidistant from the points (a_1, b_1) and (a_2, b_2) is **58**. $(a_1 - a_2)x + (b_1 + b_2)y + c = 0$, then the value of *c* is:
 - $a_1^2 a_2^2 + b_1^2 b_2^2$

 $\sqrt{a_1^2 + b_1^2 - a_2^2 - b_2^2}$

- $\frac{\left(a_1^2 + a_2^2 + b_1^2 + b_2^2\right)}{2}$
- (D) $\frac{\left(a_1^2 + b_2^2 a_1^2 b_1^2\right)}{2}$
- Let O be the origin, and let A (1, 0), B (0, 1) be two points. If P (x, y) is a point such that **59**. xy > 0 and x + y < 1, then:
 - (A) *P* lies either inside $\triangle OAB$ or in third quadrant
- **(B)** P cannot be inside $\triangle OAB$

(C) P lies inside the $\triangle OAB$

- None of these (D)
- The equation of a line which passes through $\left(a\cos^3\theta, a\sin^3\theta\right)$ and perpendicular to the line 60. $x \sec \theta + y \csc \theta = a$ is:
 - (A) $x\cos\theta + y\sin\theta = 2a\cos\theta$

(B) $x \sin \theta - y \cos \theta = 2a \sin \theta$

(C) $x\sin\theta + y\cos\theta = 2a\cos\theta$ (D) None of these

Date Planned :/_/	Daily Tutorial Sheet - 5	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level - 1	Exact Duration :

61.	The equation(s) of the bisector(s) of that angle between the lines $x + 2y - 11 = 0$, $3x - 6y - 5 = 0$ which
	ontains the point $(1, -3)$ is:

(A) 3x = 19

3y = 7**(B)**

(C) 3x = 19 and 3y = 7

None of these **(D)**

The vertices of a triangle are A(-1, -7), B(5, 1) and C(1, 4). The equation of the internal bisector of the **62**. angle ∠ABC is:

3x - 7y - 8 = 0 **(B)** (A)

x - 7y + 2 = 0 (C)

3x - 3y - 7 = 0 **(D)**

None of these

If the co-ordinates of points A, B, C, D are (6, 3), (-3, 5), (4, -2) and (x, 3x) respectively and 63. if $\frac{\Delta DBC}{\Delta ABC} = \frac{1}{2}$, then x is:

(B) $\frac{11}{8}$ **(C)** $\frac{7}{9}$

If $(x_1 - x_2)^2 + (y_1 - y_2)^2 = a^2$, $(x_2 - x_3)^2 + (y_2 - x_3)^2 = b^2$, $(x_3 - x_1)^2 + (y_3 - y_1)^2 = c^2$, and

2s = a + b + c then $\frac{1}{4} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}^2$ is equal to:

 $s(s-a)^2$ (A)

(B) $(s-b)(s-c)^2$

s(s-a)(s-b)(s-c)(C)

(D) None of these

The points P(a, b) and Q(b, a) lie on the lines 3x + 2y - 13 = 0 and 4x - y - 5 = 0. Then equation of 65. line PQ is:

(A) x - y = 5 **(B)**

x + y = 5 (C) x - y = -5 (D)

If the lines $x(\sin\alpha + \sin\beta) - y\sin(\alpha - \beta) = 3$ and $x(\cos\alpha + \cos\beta) + y\cos(\alpha - \beta) = 5$ are perpendicular 66. then $\sin 2\alpha + \sin 2\beta$ is equal to: (\mathbf{I})

(A) $\sin(\alpha - \beta) - 2\sin(\alpha + \beta)$

 $\sin 2(\alpha - \beta) - 2\sin(\alpha + \beta)$ **(B)**

(C) $2\sin(\alpha-\beta)-\sin(\alpha+\beta)$

 $\sin 2(\alpha - \beta) - \sin(\alpha + \beta)$ (D)

67. The vertex C of a triangle ABC moves on the line L = 3x + 4y + 5 = 0. The co-ordinates of the points A and B are (2,7) and (5,8). The locus of centroid of $\triangle ABC$ is a line parallel to:

9

(A) AB (B)

BC

(C)

CA

(D) L

- 68. The line L has intercepts a and b on the coordinate axes. When keeping the origin fixed, the coordinate axes are rotated through a fixed angle, then the same line has intercepts p and q on the rotated axes. Then:
 - $a^2 + b^2 = p^2 + a^2$ (A)

- **(B)** $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{a^2}$

 $a^2 + p^2 = b^2 + a^2$ (C)

- **(D)** $\frac{1}{a^2} + \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{a^2}$
- The point $(\lambda^2 + 2\lambda + 5, \lambda^2 + 1)$ lies on the line x + y = 10 for: 69.
 - (A) All real value of λ

(B) Some real value of λ

(C) $\lambda = -1$

- $\lambda = 2$ (D)
- 70. The straight line passing through the point of intersection of the straight lines x-3y+1=0 and 2x + 5y - 9 = 0 and having infinite slope and at a distance 2 units from the origin has the equation:
 - (A) x = 2
- 3x + y 1 = 0 (C) (B)
- u = 1
- (D) None of these
- 71. The base BC of a triangle ABC is bisected at the point (a, b) and equation to the sides AB and AC are respectively ax + by = 1 and bx + ay = 1. Equation of the median through A is:
 - (A) ax - by = ab

- **(B)** (2b-1)(ax+by)=ab
- $(2ab-1)(ax+by-1) = (a^2+b^2-1)(bx+ay-1)$ (C)
- (D) bx - ay = 1
- **72**. The image of the point A(1, 2) by the line mirror y = x is the point B and the image of B by the line mirror y = 0 is the point (α, β) , then:

(C)

- $\alpha = 1, \beta = -2$ **(B)** (A)
- $\alpha = 0$, $\beta = 0$
- $\alpha = 2, \beta = -1$ **(D)**
- None of these
- A point equidistant from the lines 4x + 3y + 10 = 0, 5x 12y + 26 = 0 and 7x + 24y 50 = 0 is: 73.
 - (1, -1)(A)
- **(B)** (1, 1)
- (C) (0, 0)
- (0, 1)(D)
- The bisector of the acute angle formed between the lines 4x-3y+7=0 and 3x-4y+14=0 has the 74. equation:
 - x + y 7 = 0(A)
- x y + 3 = 0(B)
- (C)
- 2x + y 11 = 0 **(D)** x + 2y 12 = 0
- A line is drawn from $P(x_1, y_1)$ in the direction θ with the X-axis, to meet ax + by + c = 0 at Q. Then **75**. length PQ is equal to:
 - $\frac{\left|\frac{ax_1+by_1+c}{\sqrt{\left(a^2+b^2\right)}}\right|}{\sqrt{\left(a^2+b^2\right)}} \quad \textbf{(B)} \quad \left|\frac{ax_1+by_1+c}{a\cos\theta+b\sin\theta}\right| \quad \textbf{(C)} \quad \frac{ax_1+by_1+c}{a\cos\theta-b\sin\theta} \quad \textbf{(D)} \quad -\frac{ax_1+by_1+c}{a\sin\theta+b\cos\theta}$

Date Planned://	Daily Tutorial Sheet - 6	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level - 1	Exact Duration :

Actual	Date of	Attempt : /	_/		Level - 1	l	E	xact Duration :
76.		uation of the lir	_	(2, 3) so that	the segr	ment of the lir	ne intercep	ted between the axes is
	(A)	3x - 2y = 12		3x + 2y = 12	(C)	x-2y=12	(D)	3x - y = 12
77.	A strai	ght line througl	h the poin	t (2, 2) interse	cts the l	lines $\sqrt{3}x + y =$	$= 0$ and $\sqrt{3}$.	x - y = 0 at the points A
		The equation of						
	(A)	x-2=0	(B)	y-2=0	(C)	x+y-4=0	(D)	None of these
78.	Consid	er the equation	$y-y_1=m$	$a(x-x_1)$. In the	nis equat	tion, if <i>m</i> and	x_1 are fixed	d and different lines are
		for different valu						
	(A)	The lines will p	oass throu	gh a single poi	nt			
	(B)	There will be o	ne possibl	e line only				
	(C)	There will be a	set of par	allel lines				
	(D)	None of these						
79 .						from the origin	n make 30	° angle with X-axis and
	which	form a triangle o						
	(A)	$x + \sqrt{3}y \pm 10 =$	0 (B)	$\sqrt{3}x + y - 10 = 0$	0 (C)	$x \pm \sqrt{3}y - 10$	= 0 (D)	None of these
80.	If the p	oint A is symme	etric to the	e point $B(4, -1)$) with r	espect to the 1	bisector of	the first quadrant, then
	the len	gth of <i>AB</i> is:						
	(A)	5	(B)	$5\sqrt{2}$	(C)	$3\sqrt{2}$	(D)	3
81.	The st	raight line $x+2$	2y-9=0,	3x + 5y - 5 = 0	and ax	+by-1=0 a	re concur	rent if the straight line
	35 <i>x</i> - 2	22y + 1 = 0 passe	es through	the point:				
	(A)	(a, b)	(B)	(b, a)	(C)	(a, -b)	(D)	(-a, b)
82.	If the a	algebraic sum of	f the perpe	endicular dista	nces fro	m the points	(2, 0), (0, 2)	(2) and $(1, 1)$ to a variable
	straigh	t line be zero, th	nen the line	e passes throug	gh the p	oint:		
	(A)	$\left(-1,1\right)$	(B)	(1, 1)	(C)	(1, -1)	(D)	$\left(-1,-1\right)$
83.	If $u = a$	$a_1 x + b_1 y + c_1 = 0$	and $v = 0$	$a_2 x + b_2 y + c_2 =$	= 0 and	$\frac{a_1}{a_2} \neq \frac{b_1}{b_2} = \frac{c_1}{c_2}$, then $u +$	kv = 0 represents:
	(A)	u = 0			(B)	A family of c	oncurrent	lines
	(C)	A family of par	allel line		(D)	None of the a	above	
84.	The str	raight lines repre	esented by	$(y-mx)^2=a^2$	$2\left(1+m^2\right)$	and $(y-nx)^{-1}$	$^2 = a^2 \left(1 + \frac{1}{2}\right)$	n^2), is:
	(A)	Square	(B)	Rhombus	(C)	Rectangle	(D)	None of these

- In an isosceles $\triangle ABC$, the coordinates of the points B and C on the base BC are respectively 85. (2, 1) and (1, 2). If the equation of the line AB is $y = \frac{1}{2}x$, then the equation of the line AC is:
 - (A) 2u = x + 3
- **(B)**
- (C) $y = \frac{1}{2}(x-1)$ (D) y = x-1
- If two vertices of an equilateral triangle have integral coordinates, then the third vertex will have: 86.

(A) Integral coordinates

- **(B)** Coordinates which are not rational
- (C) Coordinates which are rational
- (D) Nothing can be said
- 87. The point (4, 1) undergoes the following three transformation successively.
 - I. Reflection about the line y = x
 - II. Transformation through a distance 2 unit along the positive direction of X-axis.
 - III. Rotation through an angle of $\pi/4$ about the origin in the anti-clockwise direction. The final position of the point is given by the coordinates.
 - (A)
- $\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$ (B) $\left(-2, 7\sqrt{2}\right)$ (C) $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$ (D) $\left(\sqrt{2}, 7\sqrt{2}\right)$
- $\text{If}\quad A\Bigg(\sin\,\alpha,\,\frac{1}{\sqrt{2}}\,\Bigg)\,\text{and}\,\,B\Bigg(\frac{1}{\sqrt{2}}\,,\,\cos\alpha\Bigg),\,\,-\pi\leq\alpha\leq\pi,\quad\text{are two points on the same side of the line}$ 88.
 - x y = 0, then α belongs to the interval:

(A) $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$

(B) $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$

 $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$ (C)

- **(D)** None of these
- Family of the lines $x \sec^2 \theta + y \tan^2 \theta 2 = 0$, for different real θ , is: 89.

1

(A) Not concurrent

- **(B)** Concurrent at (1, 1)
- Concurrent at (2, -2)(C)
- Concurrent at (-2, 2)**(D)**
- The number of points on the line x + y = 4 which are unit distance apart from the line 2x + 2y = 5 is: 90.

12

- (A)
- **(B)**
- (C)
- (D)

Straight Lines

Date Planned ://	Daily Tutorial Sheet - 7	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level - 2	Exact Duration :

- The incentre of the triangle formed by axes and the line $\frac{x}{a} + \frac{y}{b} = 1$ is: 91.

- $\left[\frac{ab}{a+b+\sqrt{a^2+b^2}}, \frac{ab}{a+b+\sqrt{a^2+b^2}}\right] \quad \textbf{(D)} \quad \left[\frac{ab}{a+b+\sqrt{ab}}, \frac{ab}{a+b+\sqrt{ab}}\right]$
- The equation of a straight line which cut off an intercept of 5 units on negative direction Y-axis and 92. make an angle of 120° with positive direction of X-axis, is:
 - $x + \sqrt{3}y 5 = 0$ (A)

 $u + \sqrt{3}x + 5 = 0$

 $u - \sqrt{3}x + 5 = 0$ (C)

- $u \sqrt{3}x 5 = 0$ (D)
- A line is such that its segments between the straight lines 5x y = 4 and 3x + 4y 4 = 0 is bisected at 93. the points (1, 5). Its equation is:
 - 23x 7y + 6 = 0(A)

7x + 4y + 3 = 0**(B)**

(C) 83x - 35y + 92 = 0

- (D) None of these
- The sides of a quadrilateral are given by xy(x-2)(y-3)=0. The equation of the line parallel to 94. x - 4y = 0, which divides the quadrilateral into two equal regions, is:
 - x 4y 1 = 0(A)
- x 4y + 5 = 0 (C)
- x-4y+1=0 **(D)** x-4y+3=0
- The algebraic sum of the perpendicular distances from $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ to a variable 95. line is zero, then the line passes through:
 - (A) the orthocentre of $\triangle ABC$

(B)

- **(B)** the centroid $\triangle ABC$
- (C) the circumcentre $\triangle ABC$
- None of these (D)
- If $A(\cos\alpha, \sin\alpha)$, $B(\sin\alpha, -\cos\alpha)$, C(1, 2) are the vertices of a $\triangle ABC$, then as α varies the locus of its 96. centroid is
 - $3(x^2 + y^2) 2x + 4y + 1 = 0$ (A)
- **(B)** $3(x^2 + y^2) 2x 4y + 1 = 0$ **(D)** None of these
- $2(x^2 + y^2) 2x 4y + 1 = 0$
- The line joining $A(b\cos\alpha,b\sin\alpha)$ and $B(a\cos\beta,a\sin\beta)$ is produced to point M(x,y) so that 97. $AM: MB = b: \alpha$, then the value of $x\cos\frac{\alpha+\beta}{2} + y\sin\frac{\alpha+\beta}{2}$ is:

(A)	a^2 +	h
(4 2)	u i	$\boldsymbol{\omega}$

- **(B)** 0
- **(C)** 1
- **(D)** –
- **98.** The set of all numbers of 'a' such that $a^2 + 2a$, 2a + 3 and $a^2 + 3a + 8$ are the sides of a triangle is:
 - **(A)** a > 5
- **(B)** a < -5
- (C) $a > \frac{-11}{3}$
- **(D)** $a \in I$
- **(**)
- **99.** P(3,1), Q(6,5) and R(x,y) are three points such that the angle PRQ is a right angle and the area of $\Delta RQP = 7$, then the number of such points R is:
 - **(A)**
- **(B)** 1
- **(C)** 2
- **(D)** 4
- **100.** Let A = (1, 2), B(3, 4) and let C = (x, y) be points such that (x-1)(x-3)+(y-2)(y-4)=0. If $ar(\triangle ABC)=1$ then maximum number of positions of C in the XY plane is:
 - **(A)** 2
- **(B)** 4
- (C) 8
- (D) None of these

Date Planned :/_/_	Daily Tutorial Sheet - 8	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level - 2	Exact Duration :

101.	If a variable line passes through the point of intersection of the line $x + 2y - 1 = 0$ and $2x - y - 1 = 0$
	and meets the coordinate axes in <i>A</i> and <i>B</i> , then the locus of the mid-point of <i>AB</i> is:

x + 3y = 0(A)

(B)

x + 3y = 10

(C)

x + 3y = 10xy **(D)**

None of these

None of these

102. If the vertices of a triangle have integral coordinates, then the triangle cannot be:

equilateral (A)

(B) isosceles (C) scalene (D)

If $25p^2 + 9q^2 - r^2 - 30pq = 0$, then a point on the line px + qy + r = 0 is: 103.

(A)

(5, -3)

(B)

(1, 2)

(C)

(D)

(5, 3)

104. The side AB of an isosceles triangle is along the axis of x with vertices A (-1, 0) and AB = AC. The equation of the side BC when $\angle A = 120^{\circ}$ and BC = $4\sqrt{3}$ is:

(B)

 $x + u = \sqrt{3}$

(C)

 $x + \sqrt{3}u = 3$

(0,0)

(D) None of these

105. The line ax + by + c = 0 intersects the line $x \cos \alpha + y \sin \alpha = c$ at the point *P* and angle between them is $\pi/4$. If the line $x \sin \alpha - y \cos \alpha = 0$ also passes through the point *P*, then:

(A)

 $a^2 + b^2 = c^2$

(B) $a^2 + b^2 = 2c^2$ **(C)** $a^2 + b^2 = 2$

 $a^2 + b^2 = 4$ (D)

The circumcentre of the triangle formed by the lines xy + 2x + 2y + 4 = 0 and x + y + 2 = 0 is: 106.

(A)

(0, 0)

(B)

(-1, -1)

(C) (-1, -2) (-2, -2)

The equation (1+2k)x+(1-k)y+k=0, k being parameter represents a family of lines. The line which 107. belongs to this family and is at a maximum distance from the point (1, 4) is:

(A)

33x + 12y + 7 = 0

(B)

12x + 33y - 7 = 0

(C)

4x - y + 7 = 0

12x - 33y + 7 = 0(D)

The diagonal of the rectangle formed by the lines $x^2 - 7x + 6 = 0$ and $y^2 - 14y + 40 = 0$ is: 108.

(A)

5x + 6y = 0

(B)

5x - 6y = 0

(C)

6x - 5y + 14 = 0 **(D)**

6x - 5y - 14 = 0

The image of the pair of lines represented by $ax^2 + 2hxy + by^2 = 0$ by the line mirror y = 0 is: 109.

(A)

 $ax^2 - 2hxy - by^2 = 0$

(B)

 $bx^2 - 2hxu + au^2 = 0$

(C)

 $bx^2 + 2hxu + au^2 = 0$

(D)

 $ax^2 - 2hxu + bu^2 = 0$

A line is drawn through the point (1, 2) to meet the coordinate axes at P and Q such that it forms a 110. $\triangle OPQ$, where O is the origin, if the area of the $\triangle OPQ$ is least, then the slope of the line PQ is:

15

(A)

(B)

(C)

-2

DTS - 8

Date Planned ://	Daily Tutorial Sheet - 9	Expected Duration : 90 Min
Actual Date of Attempt ://	Level - 2	Exact Duration :

111.	If the pair of lines $ax^2 + 2(a+b)xy + by^2 = 0$ lie along diameters of a circle and divide into four	sectors
	such that area of one sector is thrice the area of another sector, then:	(

 $3a^2 + 2ab + 3b^2 = 0$ (A)

 $3a^2 + 10ab + 3b^2 = 0$ (B)

 $3a^2 - 2ab + 3b^2 = 0$ (C)

 $3a^2 - 10ab + 3b^2 = 0$ (D)

112. Locus of centroid of the triangle whose vertices are $(a\cos t, a\sin t), (b\sin t, -b\cos t)$ and (1, 0), where t is a parameter, is:

 $(3x-1)^2 + (3y)^2 = a^2 - b^2$ (A)

 $(3x-1)^2 + (3y)^2 = a^2 + b^2$ **(B)**

 $(3x+1)^2 + (3y)^2 = a^2 + b^2$ (C)

(D) $(3x-1)^2 + (3y)^2 = a^2 - b^2$

Two sides of a rhombus are along the lines, x-y+1=0 and 7x-y-5=0. If its diagonals intersect at 113. (-1, -2), then which one of the following is a vertex of this rhombus?

(-3, -8) **(B)** $\left(\frac{1}{3}, -\frac{8}{3}\right)$ **(C)** $\left(-\frac{10}{3}, -\frac{7}{3}\right)$ **(D)** $\left(-3, -9\right)$

The larger of the two angles made with X-axis of a straight line drawn through (1, 2) so that it intersects 114. x + y = 4 at a distance $\frac{\sqrt{6}}{3}$ from (1, 2) is:

105° (A)

75°

60° (C)

(D) 15°

Through the point $P(\alpha, \beta)$, where $\alpha\beta > 0$ the straight line $\frac{x}{a} + \frac{y}{b} = 1$ is drawn so as to form with 115. (E) coordinate axes a triangle of area S. If ab > 0, then the least value of S is:

(A) αβ **(B)** 2αβ (C) 4αβ **(D)** None of these

If the equal sides AB and AC (each equal to a) of a right angled isosceles \triangle ABC be produced to P and Q 116. so that $BP.CQ = AB^2$, then the line PQ always passes through the fixed point: (▶)

(A)

(0, a)

(C) (a, a) None of these

117. A variable line is drawn through the origin O. Two points A and B same side of O are taken on the line such that OA = 1 and OB = 2 unit. Through points A and B two lines are drawn making equal angle α with the line AB. Then the locus of the point of intersection of the lines, is:

 $x^2 + y^2 = \frac{9 + \tan^2 \alpha}{4}$ (A)

(B) $x^2 + y^2 = \frac{9 - \tan^2 \alpha}{4}$

 $x^2 + y^2 = \frac{9 + \tan^2 \alpha}{2}$ (C)

(D) $x^2 + y^2 = \frac{9 + 2\tan^2\alpha}{4}$

- **118.** If the line $y = \tan \theta x$ cuts the curve $x^3 + xy^2 + 2x^2 + 2y^2 + 3x + 1 = 0$ at the points A, B and C. If OA, OB, OC are in H.P., then $\tan \theta$ is equal to:
 - **(A)** ± 1 **(B)** 0 **(C)** 2 **(D)** -2
- **119.** If the distance of any point (x, y) from origin is defined as $d(x, y) = \max\{|x|, |y|\}$, then the locus of the point (x, y), where d(x, y) = 1 is:
 - (A) A circle (B) A square (C) A triangle (D) None of these
- **120.** Let A = (a, b) and B = (c, d) where c > a > 0 and d > b > 0. Then, point C on the X-axis such that AC + BC is the minimum, is:
 - (A) $\frac{bc-ad}{b-d}$ (B) $\frac{ac+bd}{b+d}$ (C) $\frac{ac-bd}{b-a}$ (D) $\frac{ad+bc}{b+d}$

17

Date Planned ://	Daily Tutorial Sheet - 10	Expected Duration : 90 Min
Actual Date of Attempt ://	Level - 2	Exact Duration :

- **121.** A straight-line L with negative slope passes through the point (8, 2) and cuts the positive coordinate axes at points P and Q. As L varies, the absolute minimum value of OP + OQ is (O is origin):
 - **(A)** 10
- (B)
- **(C)** 16
- **וח**
- **122.** If $f(x+y) = f(x)f(y) \forall x, y \in R$ and f(1) = 2 then area enclosed by $3|x| + 2|y| \le 8$ is:
 - (A) f(4) square units

- **(B)** $\frac{1}{2}f(6)$ square units
- lacksquare

(C) $\frac{1}{3}f(6)$ square units

- **(D)** $\frac{1}{3}f(5)$ square units
- **123.** The equation of image of pair of lines y = |x-1| in Y-axis is:
 - (A) y = |x+1|

(B) y = |x-1| + 3

(C) $x^2 + y^2 + 2x + 1 = 0$

- **(D)** $x^2 y^2 + 2x 1 = 0$
- **124.** *ABCD* is square whose vertices A, B, C and D are (0, 0), (2, 0), (2, 2) and (0, 2) respectively. This square is rotated in the xy plane with an angle of 30° in anticlockwise direction about an axis passing through the vertex A, then the equation of the diagonal BD of this rotated square is:
 - $(\mathbf{A}) \qquad \sqrt{3x} + \left(1 \sqrt{3}\right)y = \sqrt{3}$
- **(B)** $(1+\sqrt{3})x-(1-\sqrt{2})y=2$
- (C) $(2-\sqrt{3})x+y=2(\sqrt{3}-1)$
- (**D**) None of these
- **125.** The Cartesian co-ordinates (x, y) of a point on a curve are given by $x:y:1=t^3:t^2-3:t-1$ where t is a parameter, then the points given by t=a, b, c are collinear, if:
 - (A) abc + 3(a + b + c) = ab + bc + ca
- **(B)** 3abc + 2(a + b + c) = ab + bc + ca
- (C) abc + 2(a+b+c) = 3(ab+bc+ca)
- (D) None of these
- **126.** The points (α, β) , (γ, δ) , (α, δ) and (γ, β) where $\alpha, \beta, \gamma, \delta$ are different real numbers are:
 - (A) Collinear

- **(B)** Vertices of a square
- **(C)** Vertices of a rhombus
- (D) Concyclic
- **127.** If $A\left(\frac{\sin\alpha}{3}-1, \frac{\cos\alpha}{2}-1\right)$ and B(1, 1), $\alpha \in [-\pi, \pi]$ are two points on the same side of the line 3x-2y+1=0, then α belongs to the interval:
 - (A) $\left[-\pi, -\frac{3\pi}{4} \right] \cup \left(\frac{\pi}{4}, \pi \right]$

(B) $\left[-\pi, \pi\right]$

(C)

(**D**) None of these

- 128. If p_1 , p_2 , p_3 be the length of perpendiculars from the points $(m^2, 2m)$, (mm', m+m') and $(m'^2, 2m')$ respectively on the line $x\cos\alpha + y\sin\alpha + \frac{\sin^2\alpha}{\cos\alpha} = 0$, then p_1 , p_2 , p_3 are in:
 - (A) A.P.
- **(B)** *G.P.*
- (C) H.P.
- (D) None of these
- **129.** The vertices of a triangle are $A(x_1, x_1 \tan \alpha)$, $B(x_2, x_2 \tan \beta)$ and $C(x_3, x_3 \tan \gamma)$. If the circumcentre of $\triangle ABC$ coincides with the origin and B(a, b) be its orthocentre, then B(a, b) is equal to:
 - (A) $\frac{\cos\alpha + \cos\beta + \cos\gamma}{\cos\alpha \cos\beta \cos\gamma}$

- **(B)** $\frac{\sin \alpha + \sin \beta + \sin \gamma}{\sin \alpha \sin \beta \sin \gamma}$
- **(**

- (C) $\frac{\tan \alpha + \tan \beta + \tan \gamma}{\tan \alpha \tan \beta \tan \gamma}$
- **(D)** $\frac{\cos \alpha + \cos \beta + \cos \gamma}{\sin \alpha + \sin \beta + \sin \gamma}$
- **130.** Let *n* be the number of points having rational coordinates equidistant from the point $(0, \sqrt{3})$, then:
 - **(A)** $n \le 1$
- **(B)** n = 1
- (C) $n \le 2$
- **(D)** n > 2

Date Planned ://	Daily Tutorial Sheet - 11	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level - 2	Exact Duration :

- Let ABC be a given right isosceles triangle with AB = AC. Sides AB and AC are extended up to E and F, 131. respectively, such that $BE \times CF = AB^2$. Prove that the line EF always passes through a fixed point.
- Let $L_1 = 0$ and $L_2 = 0$ be two fixed lines. A variable line is drawn through the origin to cut the two **132**. lines at R and S. P is a point on the line RS such that (m+n)/OP = m/OR + n/OS. Show that the locus of P is a straight line passing through the point of intersection of the given lines (R, S, P are on the same side of O).
- A variable line cuts n given concurrent straight lines at A_1, A_2, \dots, A_n such that $\sum_{i=1}^n \frac{1}{OA_i}$ is a 133. constant. Show that it always passes through a fixed point, O being the point of intersection of the
- Consider two lines L_1 and L_2 given by x y = 0 and x + y = 0, respectively, and a moving point P(x, y). 134. Let $d(P, L_i)$, i = 1, 2, represents the distance of point P from the line L_i . If point P moves in a certain region R in such a way that $2 \le d(P, L_1) + d(P, L_2) \le 4$, find the area of region R.
- 135. A right-angled triangle ABC having C as right angle is of given magnitude and the angular points A and B slide along two given perpendicular axes. Show that the locus of C is the pair of straight lines whose equations are $y = \pm (b/a)x$. (\blacktriangleright)

Passage for Q. 136 -138

A variable line L is drawn through O (0, 0) to meet the lines L_1 and L_2 given by y-x-10=0 and y - x - 20 = 0 at points A and B, respectively.

- 136. A point *P* is taken on *L* such that 2/OP = 1/OA + 1/OB. Then the locus of *P* is:

- 3x + 3y = 40(A)
- 3x + 3y + 40 = 0 (C)
- 3x 3y = 40
- 3y 3x = 40

Locus of P, if $OP^2 = OA \times OB$, is: 137.

- (A)
- $(y-x)^2 = 100$ **(B)** $(y+x)^2 = 50$ **(C)** $(y-x)^2 = 200$ **(D)**
- None of these

Locus of P, if $1/(OP^2) = 1/(OB^2) + (1/OA^2)$, is: 138.

(|

- $(y-x)^2 = 80$ **(B)** $(y-x)^2 = 100$ **(C)** $(y-x)^2 = 64$ (A)
- None of these

Passage for Q. 139 - 140

Let ABCD be a parallelogram whose equations for the diagonals AC and BD are x + 2y = 3 and 2x + y = 3,

- 139. If length of diagonal AC is 4 units and the area of parallelogram ABCD is 8 sq. units, then the length of other diagonal BD is:
 - 10/3 (A)
- 2 **(B)**
- (C) 20/3
- (D) None of these

- The length of side AB is equal to: 140.
 - (A)
- **(B)**
- (C)
- **(D)**

Date Planned ://	Daily Tutorial Sheet – 12	Expected Duration : 90 Min
Actual Date of Attempt : / /	Numerical Value Type for JEE Main	Exact Duration :

- **141.** If lines x-2y-6=0, 3x-y-4=0 and $\lambda x+4y+\lambda^2=0$ are concurrent, then the value of λ , where $\lambda>0$.
- **142.** If the line $y-x-1+\lambda=0$ is equidistant from the points (1,-2) and (3,4), then the value of $|\lambda|$ is:
- **143.** If the line $x+y-1-\frac{\lambda}{2}=0$ passing through the intersection of x-y+1=0 and 3x+y-5=0 is perpendicular to one of them, then the value of λ is:
- **144.** Two mutually perpendicular lines are drawn from origin forming an isosceles triangle together with the straight line 2x + y = 5, then area of triangle is:
- **145.** A ray of light coming from the point (1, 2) is reflected at a point 'A' on the X-axis and then passes through the point (5, 3). Then the *x*-coordinate of the point A is $\frac{13}{K}$. Find K.
- **146.** The line x + y = a meets the axes of x and y at A and B respectively. A triangle AMN is inscribed in the triangle OAB, O being the origin, with right angle at N, M and N lie respectively on OB and AB. If the area of the triangle AMN is $\frac{3}{8}$ of the area of the triangle OAB, then $\frac{AN}{BN}$ is equal to:
- **147.** The line x = c cuts the triangle with corners (0,0); (1,1) and (9,1) into two regions. For the area of the two regions to be the same, then c must be equal to:
- **148.** Consider the family of lines $5x+3y-2+\lambda(3x-y-4)=0$ and $x-y+1+\mu(2x-y-2)=0$. Equation of straight line that belong to both families is ax+by-7=0, then a+b is:
- **149.** The number of possible straight lines passing through (2, 3) and forming a triangle with the coordinate axes, whose area is $12 \, sq$ units, is:
- **150.** The portion of the line ax + 3y 1 = 0, intercepted between the line ax + y + 1 = 0 and x + 3y = 0 subtend a right angle at origin, then the value of |a| is:
- **151.** Let *ABC* be a triangle and A = (1, 2), y = x be the perpendicular bisector of *AB* and x 2y + 1 = 0 be the angle bisector of $\angle C$. If the equation of *BC* is given by ax + by 5 = 0 then the value of a 2b is:
- **152.** A lattice point in a plane is a point for which both coordinates are integers. If n be the number of lattice points inside the triangle whose sides are x = 0, y = 0 and 9x + 223y = 2007 then tens place digit in n is:
- **153.** The number of triangles that the four lines y = x + 3, y = 2x + 3, y = 3x + 2 and y + x = 3 form is
- **154.** If $(\lambda, \lambda + 1)$ is an interior point of $\triangle ABC$, where A = (0, 3), B = (-2, 0) and C = (6, 1) then the number of integral values of λ is:
- **155.** If from point (4, 4) perpendiculars to the straight lines 3x + 4y + 5 = 0 and y = mx + 7 meet at Q and R and area of triangle PQR is maximum, then the value of 3m is:

Straight Lines

Date Planned : / /	Daily Tutorial Sheet - 1	Expected Duration : 90 Min
Actual Date of Attempt : / /	JEE Main Archive	Exact Duration :

Actua	l Date of	· Attempt : / _	_/	JEE M	ain Arch	ive		Exact Duration :_	
1.				numbers. If th	-				- <i>c</i> = 0 and
	5bx + 2	2by + d = 0 lies in	the four	th quadrant and	l is equi	distant from the	two axe	s, then:	[2014]
	(A)	2bc - 3ad = 0	(B)	2bc + 3ad = 0	(C)	2ad - 3bc = 0	(D)	3bc + 2ad = 0	
2.	If PS i	s the median of	f the tria	ngle with vertice	es P(2, 2	2), Q(6, –1) and	R(7, 3),	then equation of	of the line
	passing	g through (1, –1)	and par	allel to PS is:					[2014]
	(A)	4x - 7y - 11 = 0	(B)	2x + 9y + 7 = 0	(C)	4x + 7y + 3 = 0	(D)	2x - 9y - 11 = 0	0
3.	The x-o	coordinate of th	e incent	re of the triangl	e that h	as the coordin	ates of r	nid-points of its	sides as
	(0, 1), (1, 1) and (1, 0) is	s:						[2013]
	(A)	$2+\sqrt{2}$	(B)	$2-\sqrt{2}$	(C)	$1+\sqrt{2}$	(D)	$1-\sqrt{2}$	
4.	A strai	ght-line L throu	gh the p	ooint (3, –2) is ir	nclined a	at an angle 60°	to the	line $\sqrt{3}x + y = 1$. If L also
		cts the <i>X</i> -axis, th							[2011]
	(A)	$y + \sqrt{3}x + 2 - 3x$	$\sqrt{3}=0$		(B)	$y - \sqrt{3}x + 2 + 3$	$3\sqrt{3}=0$		
	(C)	$\sqrt{3}y - x + 3 + 2x$	$\sqrt{3}=0$		(D)	$\sqrt{3}y + x - 3 + 2$	$2\sqrt{3}=0$		
5.	Orthoc	entre of triangle	with ver	tices (0, 0), (3, 4)	and (4,	0) is:			[2003]
	(A)	$\left(3,\frac{5}{4}\right)$	(B)	(3, 12)	(C)	$\left(3, \frac{3}{4}\right)$	(D)	(3, 9)	
6.	The nu	mber of integer	values	of m, for which	the x-co	ordinate of the	point of	f intersection of	the lines
	3x + 4y	y = 9 and $y = mx$	+1 is als	so an integer, is:					[2001]
	(A)	2	(B)	0	(C)	4	(D)	1	
7.	A straig	ght line through	the orig	in O meets the p	arallel li	nes 4x + 2y = 9	and $2x$	+y+6=0 at poi	nts P and
	Q respe	ectively. Then, th	ne point	O divides the seg	gments F	Q in the ratio:			[2000]
	(A)	1:2	(B)	3:4	(C)	2:1	(D)	4:3	
8.	The inc	entre of the tria	ngle with	n vertices $(1, \sqrt{3})$, (0,0) ar	nd (2, 0) is:			[2000]
	(A)	$\left(1, \frac{\sqrt{3}}{2}\right)$	(B)	$\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$	(C)	$\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$	(D)	$\left(1, \frac{1}{\sqrt{3}}\right)$	

- 9. If A_0 , A_1 , A_2 , A_3 , A_4 , and A_5 be a regular hexagon inscribed in a circle of unit radius. Then, the product of the lengths of the line segments A_0A_1 , A_0A_2 and A_0A_4 is: [1998]
 - (A)
- $3\sqrt{3}$ **(B)**
- 3 (C)
- (D)
- 10. If P (1, 2), Q(4, 6), R(5, 7) and S(a, b) are the vertices of a parallelogram PQRS, then:

[1998]

- a = 2, b = 4(A)
- **(B)** a = 3, b = 4
- (C)
- a = 2, b = 3
- a = 3, b = 5
- 11. The diagonals of a parallelogram PQRS are along the lines x + 3y = 4 and 6x - 2y = 7. Then, PQRS must be a: [1998]
 - (A) rectangle

(B) square

(C) cyclic quadrilateral

- (D) rhombus
- **12**. The orthocentre of the triangle formed by the lines xy = 0 and x + y = 1, is:

[1995]

- $\left(\frac{1}{2}, \frac{1}{2}\right)$ **(B)** $\left(\frac{1}{3}, \frac{1}{3}\right)$ **(C)** (0, 0)

Date Planned : / /	Daily Tutorial Sheet - 2	Expected Duration : 90 Min	
Actual Date of Attempt : / /	JEE Main Archive	Exact Duration :	

Actua	I Date of	Attempt : /	/	JEE /	Main Arc	hive		Exact Duration :	
13.	If P(1, 0	O), Q = (-1, 0) a	and R = (2, 0) are three g	given poir	nts, then locu	s of the po	ints satisfying th	ne relation
	$SQ^2 + S$	$SR^2 = 2SP^2$, is:					-		[1988]
	(A)	a straight line	e parallel	to X-axis	(B)	a circle pas	sing throug	gh the origin	
	(C)	a circle with t	he centre	at the origin	(D)	a straight li	ne parallel	to Y-axis	
14.	The poi	ints $(-a, -b), (0, -a, -b)$	(0,0)(a,b)	and (a^2,ab) are	e:				[1979]
	(A)	collinear			(B)	vertices of a	rectangle		
	(C)	vertices of a p	arallelog	ram	(D)	None of the	se		
15.	$y = 10^{x}$	is the reflection	on of $y =$	$log_{10} x$ in the lin	ne whose	equation is_	.		[1984]
State t	rue or fa	alse: Q. 16 to	<u>18</u>						
16.	The line	es $2x + 3y + 19$	= 0 and	9x + 6y - 17 = 0	cut the c	oordinate axe	s in concyc	elic points.	[1988]
17.	No tan	gent can be	drawn fr	om the point	(5/2,1) t	o the circum	circle of	the triangle wit	h vertices
	$(1,\sqrt{3}),$	$(1,-\sqrt{3})$ and (3)	$3,\sqrt{3}$).						[1985]
18.	The st	traight line 5	5x + 4y =	0 passes thre	ough th	e point of	intersectio	n of the stra	ight lines
	x + 2y -	-10 = 0 and $2x$	c + y + 5 =	0.					[1983]
19.	_		_	ed by the lines	y = mx, y	=mx+1, y=nx	x and $y = n$	x + 1 equals:	[2001]
	(A)	$\frac{\left m+n\right }{\left(m-n\right)^2}$	(B)	$\frac{2}{ m+n }$	(C)	$\frac{1}{\left m+n\right }$	(D)	$\frac{1}{\left m-n \right }$	
20.	The poi	ints $\left(0, \frac{8}{3}\right)$, $\left(1, 3\right)$	3) and (82	, 30) are vertice	es of :				[1986]
	(A)	an obtuse ang	gled trian	gle	(B)	an acute an	gled triang	gle	
	(C)	a right-angled	l triangle		(D)	None of the	se		
21.	The str	aight lines $x +$	y=0,3x	+y-4=0, x+3	y-4=0	form a triangl	e which is:		[1983]
	(A)	isosceles	(B)	equilateral	(C)	right angled	(D)	None of the al	oove
22 .	Given	the four lines	with th	e equations x	+ 2 <i>y</i> – 3 =	= 0,3x + 4y - 7	=0, $2x +$	3y-4=0, 4x+3	5y-6=0,
	then:								[1980]
	(A)	they are all co			(B)	they are all	sides of a	quadrilateral	
	(C)	only three line			(D)	None of the			
23.			_	where $3a + 2b$			_		[1982]
24.	Let the	orthocentre ar	nd centro	id of a triangle	be $A(-3,$	5) & B(3,3) res	spectively.	If C is the circui	mcentre of
	thic twice	angle than the	moding o	f the circle herri	ng line co	ormant AC oc	diameter i	io:	(2018)

(A)

 $\frac{3\sqrt{5}}{2}$

(B)

 $\sqrt{10}$

(D)

(C)

 $2\sqrt{\!10}$

(2018)

Date Planned : / /	Daily Tutorial Sheet - 3	Expected Duration : 90 Min
Actual Date of Attempt : / /	JEE Main Archive	Exact Duration :

the origin and the rectangle OPRQ is completed, then the locus of R is:

A straight line through a fixed point (2,3) intersects the coordinate axes at distinct points P and Q. If O is

	(A)	3x + 2y = 6xy	(B)	3x + 2y = 6	(C)	2x + 3y = xy	(D)	3x + 2y = xy
26.	In a tı	riangle ABC, coo	ordinate	of A are (1,2) a	and the	equations of th	e media	ns through B and C are
	respec	tively, $x + y = 5 &$	x = 4. T	Then area of ΔAB	BC (in so	q. units) is:		(Online 2018)
	(A)	12	(B)	9	(C)	4	(D)	5
27.	The sid	des of a rhombus	s ABCD	are parallel to th	ne lines,	x-y+2=0 & 7	x - y + 3 =	= 0. If the diagonals of the
	rhomb	us intersect at P	(1,2) an	d the vertex A (d	lifferent	from the origin)	is on the	e y-axis then the ordinate
	of 8 is:							(Online 2018)
	(A)	2	(B)	$\frac{5}{2}$	(C)	$\frac{7}{4}$	(D)	$\frac{7}{2}$
28.	The fo	ot of the perpen	dicular	drawn from the	origin o	on the line, $3x +$	$y = \lambda(\lambda \neq$	(40) is P. If the line meets
	<i>x</i> -axis	at A and y-axis a	at B, the	n the ratio BP : l	PA is:			
	(A)	9:1	(B)	1:3	(C)	3:1	(D)	1:9
29.	Let k b	e an integer suc	h that tr	iangle with verti	ices (k, -	-3k), $(5,k) & (-k,k)$	2) has a	rea 28 sq. units. Then the
	orthoc	enter of this tria	ngle is a	t the point.				(2017)
	(A)	$\left(1,\frac{3}{4}\right)$	(B)	$\left(1,-\frac{3}{4}\right)$	(C)	$\left(2,\frac{1}{2}\right)$	(D)	$\left(2,-\frac{1}{2}\right)$
30.	A squa	are of each side 2	2, lies ab	ove the <i>x</i> -axis a	nd has o	one vertex at the	origin. l	If one of the sides passing
	throug	th the origin ma	kes an	angle 30° with	the posi	tive direction of	the x-a	xis, then the sum of the
	x-coord	dinates of the ver	rtices of	the square is:				(Online 2017)
	(A)	$\sqrt{3}-2$	(B)	$2\sqrt{3}-1$	(C)	$\sqrt{3}-1$	(D)	$2\sqrt{3}-2$
31.	Two si	ides of a rhomb	ous are	along the lines	x-y+	-1 = 0 & 7x - y - 5	= 0. If i	ts diagonals intersect at
	(-1, -2)	, then which one	of the f	ollowing is a ver	tex of th	is rhombus?		(2016)
	(A)	(-3, -9)	(B)	(-3, -8)	(C)	$\left(\frac{1}{3}, -\frac{8}{3}\right)$	(D)	$\left(-\frac{10}{3},-\frac{7}{3}\right)$
32 .	If a vai	riable line drawn	through	n the intersection	n of the l	line $\frac{x}{3} + \frac{y}{4} = 1 & \frac{x}{4}$	$\frac{x}{4} + \frac{y}{3} = 1,$	meets the coordinate axes
	at A ar	and B, $(A \neq B)$, th	en the l	ocus of the midp	oint of A	B is:		(Online 2016)
	(A)	7xy = 6(x+y)			(B)	$4(x+y)^2-28(x+y)^2$	(x + y) + 4	9 = 0

(C)

6xy = 7(x+y)

25.

 $14(x+y)^2 - 97(x+y) + 168 = 0$

(D)

The point (2,1) is translated parallel to the line L: x-y=4 by $2\sqrt{3}$ units. If the new point Q lies in the 33. third quadrant, then the equation of the line passing through Q and perpendicular to L is:

 $x + y = 2 - \sqrt{6}$ (A)

 $2x+2y=1-\sqrt{6}$ **(B)**

(Online 2016)

 $x + y = 3 - 3\sqrt{6}$ (C)

 $x + y = 3 - 2\sqrt{6}$ (D)

34. A straight line through origin O meets the lines 3y=10-4x & 8x+6y+5=0 at points A and B respectively. Then O divides the segment AB in the ratio: (Online 2016)

2:3 (A)

(B) 1:2 4:1

(D) 3:4

35. A ray of light is incident along a line which meets another line, 7x-y+1=0, at the point (0,1). The ray is then reflected from this point along the line, y+2x=1. Then the equation of the line of incidence of the (Online 2016) ray of light is:

(A) 41x - 25y + 25 = 0 **(B)** 41x + 25y - 25 = 0

(C) 41x - 38y + 38 = 0 (D) 41x + 38y - 38 = 0

Straight Lines

Date Planned : / /	Daily Tutorial Sheet - 1	Expected Duration : 90 Min
Actual Date of Attempt : / /	JEE Advanced Archive	Exact Duration :

- The locus of the orthocentre of the triangle formed by the lines (1+p)x py + p(1+p) = 0, (1+q)x qy + q(1+q) = 0 and y = 0, where $p \neq q$, is:
 - (A) a hyperbola (B) a parabola (C) an ellipse (D) a straight line
- 2. The O(0, 0), P(3, 4) and Q(6, 0) be the vertices of a $\triangle OPQ$. The point R inside the $\triangle OPQ$ is such that the triangles OPR, PQR and OQR are of equal area. The coordinates of R are: [2007]
 - **(A)** $\left(\frac{4}{3}, 3\right)$ **(B)** $\left(3, \frac{2}{3}\right)$ **(C)** $\left(3, \frac{4}{3}\right)$ **(D)** $\left(\frac{4}{3}, \frac{2}{3}\right)$
- *3. If the vertices P, Q, R of a $\triangle PQR$ are rational points, which of the following points of the $\triangle PQR$ is/are always rational point(s): [1998]
- (A) Centroid (B) incentre (C) circumcentre (D) orthocentre

 4. The graph of the function $\cos x \cos(x+2) \cos^2(x+1)$ is: [1997]
 - (A) a straight line passing through $(0,-\sin^2 1)$ with slope 2
 - **(B)** a straight line passing through (0, 0)
 - (C) a parabola with vertex $(1, -\sin^2 1)$
 - **(D)** a straight line passing through the point $\left(\frac{\pi}{2}, -\sin^2 1\right)$ and parallel to the X-axis
- **5.** If the sum of the distances of a point from two perpendicular lines in a plane is 1, then its locus is: [1992]
 - (A) square (B) circle (C) straight line (D) two intersecting lines
- Line L has intercepts a and b on the coordinate axes. When, the axes are rotated through a given angle, keeping the origin fixed, the same line L has intercepts p and q, then: [1990]
 - (A) $a^2 + b^2 = p^2 + q^2$ (B) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$
 - (C) $a^2 + p^2 = b^2 + q^2$ (D) $\frac{1}{a^2} + \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{q^2}$
- 7. The point (4, 1) undergoes the following three transformations successively: [1980]
 - **I.** Reflection about the line y = x
 - **II.** Translation through a distance 2 units along the positive direction of X-axis.
 - III. Rotation through an angle $\pi/4$ about the origin in the counterclockwise direction. Then, the final position of the point is given by the coordinates
 - (A) $\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$ (B) $\left(-\sqrt{2}, 7\sqrt{2}\right)$ (C) $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$ (D) $\left(\sqrt{2}, 7\sqrt{2}\right)$

- *8. For a > b > c > 0, the distance between (1, 1) and the point of intersection of the lines ax + by + c = 0 and bx + ay + c = 0 is less than $2\sqrt{2}$. Then:
 - **(A)** a+b-c>0
- **(B)** a b + c < 0
- (C)
- a-b+c>0
- **(D)** a+b-c<0
- *9. All points lying inside the triangle formed by the points (1, 3), (5, 0) and (-1, 2) satisfy:

[1986]

- **(A)** $3x + 2y \ge 0$
- **(B)**
- $2x + y 13 \ge 0$ (C)
- (C)
 - $2x 3y 12 \le 0$ **(D)**
- $-2x + y \ge 0$
- 10. Let the algebraic sum of the perpendicular distances from the points (2, 0), (0, 2) and (1, 1) to a variable straight line be zero, then the line passes through a fixed point whose coordinates are_____. [1991]
- 11. The orthocentre of the triangle formed by the lines x + y = 1,2x + 3y = 6 and 4x y + 4 = 0 lies in quadrant number_____. [1985]
- 12. If a, b and c are in AP, then the straight line ax + by + c = 0 will always pass through a fixed point whose coordinates are _____. [1984]

Date Planned : / /	Daily Tutorial Sheet - 2	Expected Duration : 90 Min		
Actual Date of Attempt : / /	JEE Advanced Archive	Exact Duration :		

- A straight-line L through the origin meets the lines x + y = 1 and x + y = 3 at P and Q respectively. Through P and Q two straight lines L_1 and L_2 are drawn, parallel to 2x y = 5 and 3x + y = 5, respectively. Lines L_1 and L_2 intersect at R, show that the locus of R as L varies, is a straight line.
- 14. A straight-line L with negative slope passes through the point (8, 2) and cuts the positive coordinate axes at points P and Q. Find the absolute minimum value of OP + OQ, as L varies, where O is the origin.

[2002]

- For points $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ of the coordinate plane, a new distance d(P, Q) is defined by $d(P,Q) = |x_1 x_2| + |y_1 y_2|$. Let O = (0, 0) and A = (3, 2). Prove that the set of points in the first quadrant which are equidistant (with respect to the new distance) from O and A consists of the union of a line segment of finite length and an infinite ray. Sketch this set in a labelled diagram. [2000]
- 16. A rectangle PQRS has its side PQ parallel to the line y = mx and vertices P, Q and S on the lines y = a, x = b and x = -b, respectively. Find the locus of the vertex R. [1996]
- 17. A line through A(-5, -4) meets the line x + 3y + 2 = 0, 2x + y + 4 = 0 and x y 5 = 0 at the points B, C and D respectively. If $(15/AB)^2 + (10/AC)^2 = (6/AD)^2$, find the equation of the line. [1993]
- 18. Determine all values of α for which the point (α, α^2) lies inside the triangles formed by the lines 2x + 3y 1 = 0, x + 2y 3 = 0, 5x 6y 1 = 0
- **19.** Find the equations of the line passing through the point (2, 3) and making intercept of lengths 3 unit between the lines y + 2x = 2 and y + 2x = 5. **[1991]**
- Straight lines 3x + 4y = 5 and 4x 3y = 15 intersect at the point A. Points B and C are chosen on these two lines such that AB = AC. Determine the possible equations of the line BC passing through the point (1, 2).
- **21.** A line cuts the X-axis at A(7, 0) and the Y-axis at B(0,–5). A variable line PQ is drawn perpendicular to AB cutting the X-axis in P and the Y-axis in Q. IF AQ and BP intersect at R, find the locus of R. **[1990]**
- **22.** Let ABC be a triangle with AB = AC. If D is midpoint of BC, the foot of the perpendicular drawn from D to AC is E and F the mid-point of DE. Prove that AF is perpendicular to BE. [1989]
- **23.** The equations of the perpendicular bisectors of the sides AB and AC of a $\triangle ABC$ are x-y+5=0 and x+2y=0, respectively. If the point A is (1,-2), find the equation of the line BC. [1986]
- 24. One of the diameters of the circle circumscribing the rectangle ABCD 4y = x + 7. If A and B are the points (-3, 4) and (5, 4) respectively, then find the area of rectangle. [1985]

Date Planned : / /	Daily Tutorial Sheet - 3	Expected Duration : 90 Min
Actual Date of Attempt ://	JEE Advanced Archive	Exact Duration :

25. Two sides of a rhombus ABCD are parallel to the lines y = x + 2 and y = 7x + 3. If the diagonals of the rhombus intersect at the point (1, 2) and the vertex A is on the Y-axis, find possible coordinates of A.

- Two equal sides of an isosceles triangle are given by the equations 7x y + 3 = 0 and x + y 3 = 0 and its 26. third side passes through the point (1, -10). Determine the equation of the third side.
- The vertices of a triangle are $[at_1t_2, a(t_1+t_2)], [at_2t_3, a(t_2+t_3)], [at_3t_1, a(t_3+t_1)]$. Find the orthocentre **27**. of the triangle. [1983]
- 28. The ends A and B of a straight-line segment of constant length c slide upon the fixed rectangular axes OX, OY respectively. If the rectangle OAPB be completed, then show that the locus of the foot of the perpendicular drawn from P to AB is $x^{2/3} + y^{2/3} = c^{2/3}$ [1983]
- The points (1, 3) and (5, 1) are two opposite vertices of a rectangle. The other two vertices lie on the line 29. y = 2x + c. Find c and the remaining vertices. [1981]
- 30. Two vertices of a triangle are (5, -1) and (-2, 3). If the orthocentre of the triangle is the origin, find the coordinates of the third vertex. [1978]
- One side of a rectangle lies along the line 4x + 7y + 5 = 0. Two of its vertices are (-3,1) and 31. (1,1). Find the equations of the other three sides. [1978]
- For a point P in the plane, let $d_1(P)$ and $d_2(P)$ be the distances of the point P from the lines **32**. x-y=0 and x+y=0, respectively. The area of the region R consisting of all points P lying in the first quadrant of the plane and satisfying $2 \le d_1(P) + d_2(P) \le 4$, is $| \cdot |$. [2014]
- A ray of light along $x + \sqrt{3}y = \sqrt{3}$ gets reflected upon reaching X-axis, the equation of the reflected ray is: 33.
 - $u = x + \sqrt{3}$ **(B)** (A)

- $\sqrt{3}y = x \sqrt{3}$ (C) $y = \sqrt{3}x \sqrt{3}$ (D) $\sqrt{3}y = x 1$
- $\text{Consider three points} \ \ P = \left\{ -\sin\left(\beta \alpha\right), -\cos\beta\right\}, \\ Q = \left\{\cos\left(\beta \alpha\right), \sin\beta\right\} \text{ and } \ \ R = \left\{\cos\left(\beta \alpha + \theta\right), \sin\left(\beta \theta\right)\right\}, \\ Q = \left\{\cos\left(\beta \alpha\right), \sin\beta\right\}, \\ Q = \left\{\cos\left(\beta \alpha\right), \cos\beta\right\}, \\ Q = \left\{\cos\left(\beta$ 34. where $0 < \alpha, \beta, \theta < \frac{\pi}{4}$. Then: [2008]
 - (A) P lies on the line segment RQ
- **(B)** Q lies on the line segment PR
- R lies on the line segment QP
- (D) P, Q, R are non-collinear
- Let P = (-1, 0), Q(0, 0) and $R = (3, 3\sqrt{3})$ be three points. Then, the equation of the bisector of the angle 35. PQR is: [2001]
 - $\frac{\sqrt{3}}{2}x + y = 0$ **(B)** $x + \sqrt{3}y = 0$ **(C)** $\sqrt{3}x + y = 0$ **(D)** $x + \frac{\sqrt{3}}{2}y = 0$
- The vertices of a triangle are A(-1, -7), B(5,1) and C(1, 4). The equation of the bisector of the angle ABC 36.

Date Planned : / /	Daily Tutorial Sheet - 4	Expected Duration : 90 Min
Actual Date of Attempt ://	JEE Advanced Archive	Exact Duration :

Analytical and Descriptive Questions:

- **37**. The area of the triangle formed by the intersection of the line parallel to X-axis and passing through (h, k)with the lines y = x and x + y = 2 is $4h^2$. Find the locus of point P.
- Find the equation of the line which bisects the obtuse angle between the lines x-2y+4=0 and 38. 4x-3y+2=0.[1993]
- Lines $L_1 \equiv ax + by + c = 0$ and $L_2 \equiv bx + my + n = 0$ intersect at the point P and makes an angle θ with each 39. other. Find the equation of a line L different from L_2 which passes through P and makes the same angle θ with L_1 . [1988]
- Three lines px + qy + r = 0, qx + ry + p = 0 and rx + py + q = 0 are concurrent, if: *40. [1985]
 - (A) p+q+r=0

 $p^2 + q^2 + r^2 = pq + qr + rp$ **(B)**

 $p^3 + q^3 + r^3 = 3pqr$ (C)

(D) None of these

Match the column:

Consider the lines given by 41.

[2016]

$$L_1: x + 3y - 5 = 0$$
,

$$L_0: 3x - ky - 1 = 0$$

$$L_1: x + 3y - 5 = 0$$
, $L_2: 3x - ky - 1 = 0$ $L_3: 5x + 2y - 12 = 0$

	Column-I		Column-II
(A)	L_1, L_2, L_3 are concurrent, if	(p)	<i>k</i> = −9
(B)	One of L_1 , L_2 , L_3 is parallel to at least one of the other two, if	(g)	$k = -\frac{6}{5}$
(C)	L_1 , L_2 , L_3 form a triangle, if	(r)	$k = \frac{5}{6}$
(D)	L ₁ , L ₂ , L ₃ do not form a triangle, if	(s)	k = 5

State true or false: Q. 42

42. $(a_1,b_1),(a_2,b_2)$ (a_3,b_3) must be congruent. [1985]

Coordinates of A, B, C are (6, 3), (-3,5), (4,-2) respectively and P is any point (x, y). Show that the ratio 43. of the areas of the triangles $\triangle PBC$ and $\triangle ABC$ is $\left| \frac{x+y-2}{7} \right|$ [1983]

- *44. A straight-line L is perpendicular to the line in 5x - y = 1. The area of the triangle formed by the line L and the coordinate axes is 5. The equation of the line L is:
 - $x + 5y = 5\sqrt{2}$ (A)
- $x 5y = 5\sqrt{2}$ (C) **(B)**
- $x 5y = -5\sqrt{2}$ **(D)** $x + 5y = -5\sqrt{2}$

- **45.** Let a and b be non-zero and real numbers. Then, the equation $(ax^2 + by^2 + c)(x^2 5xy + 6y^2) = 0$ represents.
 - (A) four straight lines, when c = 0, a and b are of the same sign
 - **(B)** two straight lines and a circle, when a = b and c is of sign opposite to that of a
 - (C) two straight lines and a hyperbola, when a and b are of the same sign and c is of sign opposite to that of a
 - (D) a circle and an ellipse, when a and b are of the same sign and c is of sign opposite to that of a
- 46. Let PQR be a right angled isosceles triangle, right angled at P(2, 1). If the equation of the line QR is 2x + y = 3, then find the equation representing the pair of lines PQ and PR is. [1999]
- **47.** Area of triangle formed by the lines x + y = 3 and angle bisectors of the pair of straight lines $x^2 y^2 + 2y = 1$ is: [2004]
 - (A) 2 sq units (B) 4 sq units (C) 6 sq units (D) 8 sq units
- **48.** Show that all chords of curve $3x^2 y^2 2x + 4y = 0$, which subtend a right angle at the origin pass through a fixed point. Find the coordinates of the point. [1991]