Periodic Task Scheduling

CPEN 432 Real-Time System Design

Arpan Gujarati
University of British Columbia

Assignment 1

• Deadline is 11:59 PM, 7 February, 2022

Recap: Aperiodic Job vs. Periodic Task

Recap: Assumptions

A1: All jobs of τ_i are regularly activated at a constant frequency of $1/T_i$

A2: All jobs of au_i have the same worst-case execution time C_i

A3. All jobs of τ_i have the same relative deadline $D_i = T_i$

A4. All tasks in τ are **independent** (no dependencies, no shared resources)

Recap: Assumptions

- The tasks need not be released synchronously
 - ► E.g., it is possible that $r_{1,0} \neq r_{2,0} \neq \dots \neq r_{n,0}$

• The tasks can be preempted in between

Rate Monotonic Scheduling

Recap: Overview

- RM is a fixed-priority scheduling algorithm
 - Each task is assigned a priority beforehand
- RM assigns priorities based on task frequency
 - Higher frequency (smaller time period) \(\bigcup \) Higher priority
- Famous result by Liu and Layland [1973]
 - RM is optimal among all fixed-priority algorithms
 - i.e., no fixed-priority algorithm can schedule a task set that cannot be scheduled by RM
 - i.e., if any fixed-priority algorithm can schedule a task set, RM can also schedule the task set

- Processor utilization factor
 - Fraction of processor time spent executing tasks in $\tau = \{\tau_1, \tau_2, ..., \tau_n\}$

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i}$$

- Processor utilization factor
 - Fraction of processor time spent executing tasks in $\tau = \{\tau_1, \tau_2, \dots, \tau_n\}$

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i}$$

- By simply checking the utilization, can we say if RM can schedule it?
 - I.e., can we find U_{uh} such that
 - if $U \leq U_{ub}$, irrespective of the task parameters, τ is schedulable by R

- Example
 - $U_{ub} = 1.0$?

- Example
 - $U_{ub} = 1.0$?

- Example
 - $U_{ub} = 1.0?$
 - $U_{ub} = 0.9$?

- Example
 - $U_{ub} = 1.0$?
 - $U_{ub} = 0.9?$

8 10

12 14 16 18 20

- For simplicity
 - Let $\tau = \{\tau_1, \, \tau_2\}$ such that $T_1 < T_2$

- For simplicity
 - Let $\tau = \{\tau_1, \tau_2\}$ such that $T_1 < T_2$
- Only two fixed-priority assignments possible
 - RM: τ_1 is assigned the higher priority
 - Algorithm A: τ_2 is assigned the higher priority (we only care about RM!)

- For simplicity
 - Let $\tau = \{\tau_1, \tau_2\}$ such that $T_1 < T_2$
- Only two fixed-priority assignments possible
 - RM: τ_1 is assigned the higher priority
 - Algorithm A: τ_2 is assigned the higher priority (we only care about RM!)
- Recall the critical instant theorem
 - It suffices to check for a task's schedulability when it is released simultaneously with all higher-priority tasks

- For simplicity
 - Let $\tau = \{\tau_1, \tau_2\}$ such that $T_1 < T_2$
- Only two fixed-priority assignments possible
 - RM: τ_1 is assigned the higher priority
 - Algorithm A: τ_2 is assigned the higher priority (we only care about RM!)
- Recall the critical instant theorem
 - It suffices to check for a task's schedulability when it is released simultaneously with all higher-priority tasks
- Proof sketch
 - Step 1: Given T_1 , T_2 , and C_1 , find the maximum value for C_2 such that RM can schedule τ
 - This gives us $U_{ub} = f(T_1, T_2, C_1)$, such that for any C_2 , task set utilization $U \le U_{ub}$ guarantees that τ is schedulable using RM

- For simplicity
 - Let $\tau = \{\tau_1, \tau_2\}$ such that $T_1 < T_2$
- Only two fixed-priority assignments possible
 - RM: τ_1 is assigned the higher priority
 - Algorithm A: τ_2 is assigned the higher priority (we only care about RM!)
- Recall the critical instant theorem
 - It suffices to check for a task's schedulability when it is released simultaneously with all higher-priority tasks
- Proof sketch
 - Step 1: Given T_1 , T_2 , and C_1 , find the maximum value for C_2 such that RM can schedule τ
 - This gives us $U_{ub} = f(T_1, T_2, C_1)$, such that for any C_2 , task set utilization $U \le U_{ub}$ guarantees that τ is schedulable using RM
 - Step 2: Minimize U_{ub} with respect to C_1
 - This gives us $U'_{ub}=g(T_1,T_2)$, such that for any C_1 and C_2 , task set utilization $U\leq U'_{ub}$ guarantees that τ is schedulable using RM

- For simplicity
 - Let $\tau = \{\tau_1, \tau_2\}$ such that $T_1 < T_2$
- Only two fixed-priority assignments possible
 - RM: τ_1 is assigned the higher priority
 - Algorithm A: τ_2 is assigned the higher priority (we only care about RM!)
- Recall the critical instant theorem
 - It suffices to check for a task's schedulability when it is released simultaneously with all higher-priority tasks
- Proof sketch
 - Step 1: Given T_1 , T_2 , and C_1 , find the maximum value for C_2 such that RM can schedule τ
 - This gives us $U_{ub} = f(T_1, T_2, C_1)$, such that for any C_2 , task set utilization $U \le U_{ub}$ guarantees that τ is schedulable using RM
 - Step 2: Minimize U_{ub} with respect to C_1
 - This gives us $U'_{ub} = g(T_1, T_2)$, such that for any C_1 and C_2 , task set utilization $U \le U'_{ub}$ guarantees that τ is schedulable using RM
 - Step 3: Minimize U_{ub}^{\prime} with respect to T1 and T2
 - This gives us U''_{ub} (constant), such that for any C_1, C_2, T_1 , and T_2 , task set utilization $U \leq U''_{ub}$ guarantees that τ is schedulable using RM

Equation 4.5 from the textbook:
$$U = \frac{T_1}{T_2} \left[F + \left(\frac{T_2}{T_1} - F \right) \left(\frac{T_2}{T_1} - F \right) \right]$$

Earliest Deadline First

Example

Task ID	Time Period T	Computation Time C
1	5 ms	2 ms
2	7 ms	4 ms

EDF Utilization Bound

- What?
- Intuition?

RM and EDF's Utilization Bounds

What if $D_i \leq T_i$?

Recap: Assumptions

A1: All jobs of τ_i are regularly activated at a constant frequency of $1/T_i$

A2: All jobs of au_i have the same worst-case execution time C_i

A3. All jobs of τ_i have the same relative deadline $D_i = T_i$ $C_i \leq D_i \leq T_i$

A4. All tasks in τ are independent (no dependencies, no shared resources)

Is RM still optimal?