Gestió de Processos

Unitat 2.0 - Nel Banqué Torné

1. Processos en Unix/Linux

En els sistemes operatius **Unix/Linux**, la gestió de processos és essencial per controlar l'execució dels programes i assignar els recursos del sistema de manera eficient. A continuació, es presenta una introducció als conceptes bàsics de processos, la seva comunicació, sincronització i monitorització.

1.1 Creació de processos

Per començar a gestionar processos, podem crear tres processos en una terminal executant diverses vegades la mateixa ordre:

ps-e

Comentaris sobre la comanda: ps -e

L'opció -e a l'ordre ps mostra tots els processos en execució en el sistema, no només els de l'usuari de la sessió actual. Aquestes són algunes observacions sobre la sortida de la comanda:

- Els processos poden tenir diferents **PID** (identificadors de procés), per exemple: **1053**, **1054**, **1055**.
- Fins i tot l'ordre ps en si mateixa és un procés, per tant, apareixerà a la llista.
- La tercera columna de la sortida indica el temps de CPU que ha utilitzat cada procés.

2. Monitorització de processos

2.1 Comanda top

Una altra ordre útil per supervisar els processos en temps real és top. Aquesta ordre proporciona una visió contínua de l'activitat del processador i altres recursos del sistema.

• La primera columna de la sortida identifica els **indicadors de procés**, com ara l'estat del procés (actiu, inactiu, etc.).

Observacions

La majoria dels processos del sistema estan **inactius**, a l'espera d'algun esdeveniment, com ara un clic del ratolí o la premsa d'una tecla. A la sortida també s'indica l'**usuari propietari del procés**, el **PID** (identificador de procés) i el **PPID** (identificador del procés pare), que mostra d'on es va originar cada procés.

3. Estats dels processos

3.1 Estats comuns dels processos

- **Dormit o bloquejat en memòria principal**: El procés està esperant que es produeixi un determinat esdeveniment (com la finalització d'una operació d'E/S).
- **Zombi**: Aquest és l'estat final d'un procés després d'executar la crida a sistema exit. Un procés arriba a aquest estat després de completar la seva execució, però encara està registrat fins que el procés pare l'elimina definitivament.

3.2 Transicions d'estat

Un procés pot estar en diversos estats durant la seva execució, com ara:

- Execució en mode usuari: El procés està executant codi d'usuari.
- **Execució en mode nucli**: El procés ha realitzat una crida a sistema i està executant codi del sistema operatiu.
- Intercanvi a memòria secundària: Si el sistema no té prou memòria, el planificador pot moure processos a memòria secundària (swap) fins que es puguin tornar a executar.

Exemple de transició d'estat, comanda fork:

Quan un procés invoca una crida a sistema com fork que, crea processos a partir d'un procés inicial (pare i fill), pot canviar entre diversos estats:

- 1. **Mode usuari** \rightarrow El procés comença l'execució en mode usuari.
- 2. **Mode nucli** → Passa a mode nucli quan invoca una crida a sistema.
- 3. **Bloqueig o espera** → El procés pot quedar bloquejat esperant que es completi una operació.
- 4. **Zombi** → Quan finalitza, entra en estat zombi fins que el procés pare l'allibera.

4. Eina per espiar processos: strace

Una manera útil per analitzar el comportament d'un procés és utilitzar l'ordre **strace**, que permet monitoritzar les crides a sistema fetes per un procés.

Com espiar un procés

En una terminal separada, es pot executar la comanda següent per espiar un procés amb el PID corresponent:

strace -f -p {pid}

• Si el procés està en una crida a sistema com read, això indica que el procés està esperant entrada de dades.

5. El PCB (Process Control Block)

El **PCB** (Bloc de Control de Procés) és una estructura de dades que utilitza el sistema operatiu per controlar i supervisar un procés. Cada procés en execució té el seu PCB corresponent.

Components del PCB

- Punters: Apunten a altres estructures necessàries per a l'execució del procés.
- Estat del procés: El seu estat actual (execució, bloquejat, zombi, etc.).
- Identificadors: Com el PID i PPID.
- Taula de fitxers oberts: Els fitxers que el procés té oberts.
- Recursos assignats: Recursos com la memòria i el temps de CPU.
- Context dels registres de CPU: Els valors dels registres de la CPU quan el procés es va interrompre.
- Informació sobre la memòria: Regions de memòria utilitzades pel procés.
- Informació sobre la planificació: Prioritat i temps d'execució del procés.
- ptrace: Un camp especial per monitoritzar i depurar el procés.

5.1 Taula PCB

El **kernel** manté una estructura de taula coneguda com la **Taula PCB** per gestionar eficientment els processos. Aquesta taula permet accedir de manera ràpida a les dades necessàries per a la planificació i gestió dels processos.

6. Conclusió

La gestió de processos en **Unix/Linux** és crucial per a la utilització eficient dels recursos del sistema i per assegurar una correcta assignació de temps de CPU i memòria. Comprendre com funcionen els estats dels processos, les crides a sistema i com el sistema operatiu gestiona els PCB permet una gestió adequada dels processos i la detecció de possibles problemes o ineficiències en l'execució del sistema.