8.2	Significance Levels
	- the objective of a statistical test of Ho is not to explicitly determine whether or not Ho is true but rather to determine if its
	validity is consistent with the resultant data
	Simple Hypothesis: A hypothesis that completely specifies the population distribution
	Type I Error: False Negative
	Type II Error: False Positive
8.3	Tests Concerning the Mean of a Normal Population
8,3.1	Case of Known Variance
	P[Type II Error] = Probability of accepting the null hypothesis when the true mean M is unequal to Mo
	- It depends on the value of M . Suppose $\beta(A) = P_A \left\{ \text{acceptance of } H_0 \right\} = P_A \left\{ -Z_{N/A} \le \frac{\overline{X} - M_0}{T/\overline{JN}} \le Z_{N/A} \right\}$
	$= \overline{\Phi} \left\{ \frac{N_0 - N}{\overline{V} / \sqrt{n}} + \overline{Z}_{\alpha / a} \right\} - \overline{\Phi} \left\{ \frac{N_0 - N}{\overline{V} / \sqrt{n}} - \overline{Z}_{\alpha / a} \right\}$
	The function 1-B(A) is called the power-function of the test. The power of the test is equal to the probability of rejection
	When M is the true value. The operating characteristic function is useful in determining how large the random sample need to be
	to meet certain specifications concerning Type II Errors,
	$= > = \boxed{\left\{\frac{M_0 - M}{\nabla / Sn} + \cancel{Z}_{\alpha / s}\right\} - \boxed{\left\{\frac{M_0 - M}{\nabla / Sn} - \cancel{Z}_{\alpha / s}\right\}}} \approx \beta \text{, from here , suppose } M_1 > M_0 \text{Then the equation implies}$
	$\frac{\sqrt{n}(\mathcal{M}_0 - \mathcal{M}_1)}{\sqrt{1}} - \mathcal{Z}_{\alpha/\alpha} \leq -\mathcal{Z}_{\alpha/\alpha}$
	$\Rightarrow \Phi\left\{\frac{\int n\left(\mathcal{M}_{0}-\mathcal{M}_{1}\right)}{\nabla}-\mathcal{Z}_{\alpha/a}\right\} \leq \Phi\left\{-\mathcal{Z}_{\alpha/2}\right\} = P(\mathcal{Z} \leq -\mathcal{Z}_{\alpha/a}) = P(\mathcal{Z} \geq \mathcal{Z}_{\alpha/a}) = \alpha/d , \text{so we can assume}$
	$\Rightarrow \Phi\left\{\frac{\int n\left(\mathcal{M}_0-\mathcal{M}_1\right)}{\sqrt{\Gamma}}-\mathcal{E}_{\alpha ra}\right\}\approx 0$, then it only remains,
	$\mathbb{E}\left\{\frac{N_0-N_0}{\sqrt{N_0}}+\mathbb{E}_{\alpha/a}\right\}\approx\beta$, from here, since $\beta=P[Z>Z_{\beta}]=P[Z<-Z_{\beta}]=\mathbb{E}\left(-Z_{\beta}\right)$, and $-Z_{\beta}$ can be assumed
	$\Rightarrow - \overline{\xi}_{\beta} \approx (A_0 - M_1) \frac{\overline{n}}{\nabla} + \overline{\xi}_{\alpha/2} , so$
	$=>n\approx\frac{(Z_{\alpha/2}+Z_{p})^{2}\nabla^{2}}{(A_{1}-A_{0})^{2}}$ the same approximation would result when $M_{1}-M_{0}$
	EXAMPLE 8.3d For the problem of Example 8.3a, how many signals need be sent so that the .05 level test of $H_0: \mu = 8$ has at least a 75 percent probability of rejection when
	$\mu = 9.2$? SOLUTION Since $z_{.025} = 1.96, z_{.25} = .67$, the approximation 8.3.7 yields
	$n \approx \frac{(1.96 + .67)^2}{(1.2)^2} 4 = 19.21$
	Hence a sample of size 20 is needed. From Equation 8.3.4, we see that with $n = 20$
	$\beta(9.2) = \Phi\left(-\frac{1.2\sqrt{20}}{2} + 1.96\right) - \Phi\left(-\frac{1.2\sqrt{20}}{2} - 1.96\right)$
	$= \Phi(723) - \Phi(-4.643)$
	$\approx 1 - \Phi(.723)$ $\approx .235$
	Therefore, if the message is sent 20 times, then there is a 76.5 percent chance that the null hypothesis $\mu = 8$ will be rejected when the true mean is 9.2.
	71

8,3.1.1	One-Sided Tests
8.3.2	Case of Unknown Variance: The t-Test
8.4	Testing the Equality of Means of Two Normal Populations
8,4.	
8.4.2	Case of Unknown Variances
8.4.3	Case of Unknown and Unequal Variances
8.4,4	The Paired t-Test
8.5	Hypothesis Tests Concerning the Variance of a Normal Population
8.5.1	Testing for the Equality of Variances of Two Normal Populations
8.6	Hypothesis Tests in Bernoulli Populations
8.6.1	Testing the Equality of Parameters in Two Bernoulli Populations
	Fisher-Irwin Test:
	- Let P(x) be a pmf of hypergeometric distribution, then
	p -value = $\lambda \cdot min[P(X \leq x_1), P(X \geq x_1)]$
8.7	Tests Concerning the Mean of a Poisson Distribution
	$P-value = L \cdot min(P_{\lambda_0}\{X \ge x\}, P_{\lambda_0}\{X \le x\})$

