

Symbol (LPS) and Value of most robable

```
VON -SCHOPPE & ZIMMERMANN
```

```
preCtxState = max(1, min(126, ( ( m * SliceQP ) >> 4 ) + n ) )
  if( preCtxState <= 63 ) {
      pStateIdx = 63 - preCtxState
      valMPS
  } else (
      pStateIdx = preCtxState - 64
      valMPS
pre Ctx Jak: anxiliary veriable
m,n: 1st, 2 nd table midices (initialitation variables)
Thu al: Shice quantitation para meter
plake Idx: refue to matialisation
             probelikty information table
             mich ding probability uformall
             for the least probe the Symbol (LPS)
           : vælne of most probeble syn bol
           : value of least probable syn bol
             Fig. 3
```

17-JUL-03

Jaitinlisation						ctxIdx					
variables	G	1	2	3	4	5	6	7	8	9	10
m	20	2	3	20	2	3	-28	-23	-6	-1	7
tt	-15	54	74	-15	54	74	127	104	53	54	SI

Table I - Values of variables m and n for ctxIdx from 0 to 10

Value of	Initialisation							ctxldx					ı	
¢abac_init_ide	variables	11	12	13	14	15	16	17	18	19	20	21	22	- 23
G ·	DJ.	23	23	21	1	0	-37	5	-13	-1 t	l	12	-4	17
	л	33	2	0	9	49	118	57	78	65	62	49	73	50
1	m	22	34	16	-2	4 .	-29	2	-6	-13	. 5	9	-3	10
	a	25	0	0	9	41	118	65	71	79	52	50	70	54
2	153	29	25	14	-10	-3	-27	26	4	-24	5	6	-17	14
	n	16	0	0	51	62	99	16	85	102	57	57	73	57

Table 2 - Values of variables m and n for ctxIdx from 11 to 23

Value of cabac_init_ide	loitialisation variables		·						cts	zb L							
	ANISTOICE	24	25	26	77	28	29	30	31	32	33	34	35	36	37	38	3
	m	18	9	29	26	16	9	-46	-20	1 .	-13	-11	1	-6	-17	-6	9
	a	64	43	0	67	90	104	127	104	67	78	65	62	86	95	61	4
I	m	26	19	40	\$7	41	26	-45	-15	-4	-6	-13	5	6	-13	0	
	n	34	22	0	2	36	69	127	101	76	71	79	52	69	90	52	4
2	m	20	20	29	54	37	12	-32	-22	-2	4	-24		-6	-14	-6	4
	Ω	40	10	0	þ	42	97	127	117	74	85	102	57	93	88	44	5

Table 3 - Values of variables m and n for ctxIdx fr m 24 to 39

- 1	: <u> </u>	98	14

Value of	Initialisation	·						ctxl	dr				-		
cabac_init_idc	variables	40	41	42	43	44	45	46	47	48	49	50	- 51	52	53
0	DR .	-3	-6	-11	6	7	-5	2	0	-3	-10	5	4	-3	0
	n	69	81	96	55	67	86	- 88	58	76	94	- 54	69	81	8:
1	m	-2	-5	-10	2	2	-3	-3	1	-3	-6	0	-3	-7	-3
	п	69	82	96	59	75	87	100	56	74	85	59	8 t	86	9:
2	m	-[]	-15	-2l	19	20	4	6	1	-5	-13	- 5	6-	-3	-1
	R	89	103	116	57	58	84	96	63	85	106	63	75.	90	10

Table 4 - Values of variables m and n for ctxIdx from 40 to 53

Value of cabac_init_ide	Initialisation			ct	rla _x		
	variables	54	55	56	57	58	59
0 .	m	-7	-5	4	-5	-7	1
	n	67	74	74	80	72	58
	m	-1	-1	1	-2	-5	0
	п	66	77	- 70	86	72	61
2	m	3	-4	-2	-12	-7	1
	ņ	\$5	79	75	97	50	60

Table 5 - Values of variables m and n for ctxIdx from 54 to 59

Initialisation variables		T			ctr	ldx				
73.20163	60	61	62	63	64	65	66	67	68	69
m	0	0	0	0	-9	4	0	-7	13	3
A	41	63	63	63	83	86	97	72	41	62

Table 6 - Values of variables m and n for cixldx fr m 60 to 69

	I an	4 S1		Value	e of cal	bec_in	it_idc			Inn	d St		Value	e of cal	DAC_ini	it ide	
ctxldx				5	1			2	ctxldx		ces	(,				2
	m	R,	m	n	Œţ	E .	111	n		· m	n,	m	n	m	п	m	n
70	0	11	0	45	13	15	7	34	88	-11	115	-13	801	4	92	5	78
71	₹	55	4	78	7	SI	-9	88	89	-12	63	-3	46	0	39	-6	55
72	0	69	-3	96	2	80	-20	127	90	-2	68	-1	65	0	65	4	61
73	-17	127	-27	126	-39	127	-36	127	91	-15	84	~1	57	-15	84	-14	83
74	-13	102	-28	98	-18	91	-17	91	92	-13	104	-9	93	-35	127	-37	127
75	0	82	-25	101	-17	96	-14	95	93	-3	70	-3	74	-2	73	-5	79
76	-7	74	-23	67	-26	81	-25	84	94	-8	93	-9	92	-12	104	-11	104
77	-2i	107	-28	82	-35	98	-25	86	95	-10	90	-8	87	-9	91	-11	91
78	-27	127	-20	94	-24	102	-12	89	96	-30	127	-23	126	-31	127	-30	127
79	-31	127	-16	83	-23	97	-17	91	97	-1	74	5	54	3	55	0	65
80	-24	127	-22	110	-27	119	-31	127	98	-6	97	6	60	7	56	-2	79
81	-18	95	-21	91	-24	99	-14	76	99	-7	91	6	59	7	55	0	72
82	-27	127	-18	102	-21	110	-18	103	100	-20	127	6	69	8	61	4	92
83	-21	114	-13	93	-18	102	-13	90	101	4	56	-1	48	-3	53	-6	56
84	-30	127	-29	127	-36	127	-37	127	102	-5	82	0	68	0	68	3	68
85	-17	123	-7	92	0	80	11	80	103	-7	76	-4	69	-7	74	-8	71
86	-12	115	-5	89	-5	89	5	76	104	-22	125	-8	88	-9	88	-13	98
87	-16	122	-7	96	-7	94	2	84							-	-	-

Table 7 - Values of variables m and n for ctxIdx from 70 to 104

Tig. 49

	1	d SI		Value	of cat	ac ini	t_id¢			1 an	d St	-	Valu	c of ca	bac_b	uit Ide	
ctxIdx				0	1		2	L	ctridr	sli	ces	0		1			2
	m	D	R1	Ħ	m	•	IU	n		m.	Q	Q	ц	pri .	a	Œ	· ·
105	-7	93	-2	85	-13	103	-4	86	136	-13	101	5	53	0	58	-5	75
106	-11	87	-6	78	-13	91	-12	88	137	-13	91	-2	61	-1	60	-8	80
107	-3	77	-1	75	-9	89	-5	82	138	-12	94	0	56	-3	61	-21	83
108	-5	71	-7	77	-14	92	-3	72	139	-10	88	G	56	-8	67	-21	64
109	-4	63	2	54	-8	76	-4	67	140	-16	84	-13	63	-25	84	-13	31
110	-4	68	5	50	-12	87	-8	72	141	-10	86	-5	60.	-14	74	-25	• 64
111	-12	84	-3	68	-23	110	-16	89	142	-7	83	-1	62	-5	65	-29	• 94
112	-7	62	. 1	50	-24	105	-9	69	143	-13	87	4	57	5	52	9	75 .
113	-7	65	6	42	-10	78	-1	59	144	-19	94	-6	69	2	57	17	63
114	8	61	4	81	-20	112	5	66	145	1	70	4	57	0	61	-8	74
115	5	56	1	63	-17	99	4	57	146	0	72	14	19	-9	69	-5	35
116	-2	66	4	70	-78	127	-4	71	147	-5	74	4	51	-11	70	-2	27
117	1	64	0	67	-70	127	-2	71	148	18	59	13	68	18	55	13	91
118	0	61	2	57	-50	27	2	58	149	-8	102	3	64	4	71	3	65
119	-2	78	-2	76	-46	27	-1	74	-150	-15	100	i	61	0	58	-7	69
120	1	50	11	35	4	66	4	44	151	0	95	9	63	7	61	8	77
121	7	52	4	64	-5	78	-1	69	152	4	75	7	50	9	41	-10	66
122	10	35	1	61	4	71	0	62	153	2	72	16	39	18	25	3	62
123	Q	44	11	35	-8	72	-7	51	154	-11	75	5	44	9	32	-3	68
124	11	38	18	25	2	59	4	47	155	-3	71	4	52	5	43	-20	81
125	1	45	12	24	-1	55	-6	42	156	15	46	11	48	9	47	0	30
126	0	46	13	29	-7	70	-3	41	157	-13	69	-5	60	0	44	1	7
127	5	44	13	36	-6	75	-6	53	158	0	62	-1	59	0	51	-3	23
128	31	17	-10	93	-8	89	8	76	159	0	65	O	59	2	46	-21	74
130	7	51.	-7	73	-34	119	-9	78	160	21	37	22	33	19	38	16	66
130	28	50	-2	73	-3	75	-11	83	161	-15	72	. 5	44	4	66	-23	124
132	16	33	9	46	32	20	9	52	162	9	57	14	43	15	38	17	37
133	14	62	-7	100	30	22	0	67	163	16	54	-1	78	12	42	44	-18
134	-13	108	9	53	-44	127	-5	90	164	0	62	0	60	9	34	50	-34
135	-15	100	2	23	0	54	1	67	165	12	72	9	69	0	89	-22	127
				3.5	-5	61	-15	72			<u> </u>				·	}	

Table 8 - Values of variables m and n for ctxIdx from 105 to 165

10:53

Table 9 - Values of variables m and a for ctxldx from 166 to 226

	l'and slic	- 1		Vala	e of ca	bac_in	it_ide			1 an	d SI		Valu	c of cal	bac_ii	uit_ide	,
ctxldx		·		0				2	ctulds	sti	ces	0		1			2
	मा	a	ta	п	m	1	m	ц		ti)	п	m	π	m	n	R	ц
227	-3	71	-6	76	-23	1 7	-24	115	252	-12	73	-6	55	-16	72	-14	75
228	-6	42	-2	44	-15	71	-22	82	253	-8	76	0	58	-7	69	-10	79
229	-5	50	0	45	-7	61	-9	62	254	-7	80	0	64	4	69	-9	83
230	-3	54	a	52	0	\$3	0	53	255	-9	88	-3	74	-5	74	-12	92
231	-2	62	£.	64	-5	66	0	59	256	-17	110	-10	90	-9	86	-18	- 108
232	0	58	-2	59	-11	77	-14	85	257	-11	97	0	70	2	66	-4	79
233	1	63	-4	70	-9	80	-13	89	258	-20	84	-4	29	-9	34	-22	69
234	-2	72	-4	75	-9	84	-13	94	259	-11	79	5	31	1	32	-16	75
235	-1	74	-8	82	-10	87	-11	92	260	-6	73	7	42	11	31	-2	58
236	-9	91	-17	102	-34	127	-29	127	261	4	74	1	59	5	52	1	58
237	-5	67	-9	77	-21	101	-21	100	262	-13	86	-2	58	-2	55	-13	78
238	-5	27	3	24	-3	39	-14	57	263	-13	96	-3	72	-2	67	-9	83
239	-3	39	0	42	-5	53	-12	67	264	-11	97	-3	81	0	73	4	81
240	-2	44	0	48	-7	61	-11	71	265	-19	117	-11	97	-8	89	-13	99
241	0	46	0	55	-11	75	-10	77	266	-8	78	0	58	3	52	-13	81
242	-16	64	-6	59	-15	77	-21	85	267	-5	33	8	5	7	4	-6	38
243	-8	68	-7	71	-17	91	-16	88	268	4	48	10	14	10	8	-13	62
244	-10	78	-12	83	-25	107	-23	104	269	-2	53	14	18	17	8	-6	58
245	-6	77	-11	87	-25	111	-15	98	270	-3	62	13	27	16	19	-2	59
246	-10	86	-30	119	-28	22	-37	127	271	-13	71	. 2	40	3	37	-16	73
247	-12	92	1	58	-11	76	-10	82	272	-10	79	O	58	-1	61	-10	76
248	-15	55	-3	29	-10	44	-8	48	273	-12	86	-3	70	-5	73	-13	86
249	-10	60	-1	36	-10	52	-8	61	274	-13	90	-6	79	-1	70	-9	83
250	-6	62	1	38	-10	57	-8	66	275	-14	97	-8	85	4	78	-10	87
251	4	65	2	43	-9	58	-7	70									

Table 10 - Values of variables m and n for ctxldx from 227 to 275

Fig. 4j

	1	ed SI		Value	e of ca	bac_in	it_idc	•		I un	1 St		Value	of cal	bac in	it_ide	
ctxldx				9			;	2	ctildx	stic				1		2	
	TN.	•	m	a	m		m	п		m	n	m	a	m	п	m	
277	-6	93	-13	106	-21	126	-22	127	308	-16	96	-1	51	-16	77	-10	67
278	-6	84	-16	106	-23	124	-25	127	309	-7	88	7	49	-2	64	1	68
279	-8	79	-10	87	-20	110	-25	120	310	-8	85	8	52	2	61	0	77
280	0	66	-21	114	-26	126	-27	127	311	-7	85	9	41	-6	67	. 2	64
281	-1	71	-18	110	-25	124	-19	114	312	-9	85	6	47	-3	64	0	68
282	0	62	-14	98	-17	105	-23	117	313	-13	88	2	55	2	57	-5	78
283	-2	60	-22	110	-27	121	-25	118	314	4	66	13	41	-3	65	7	55
284	-2	59 -	-21	106	-27	117	-26	117	315	-3	77	10	44	-3	66	5	59
285	-5	75	-18	103	-17	102	-24	113	316	-3	76	6	50	0	62	2	65
286	-3	62	-21	107	-26	117	-28	118	317	-6	76	S	.53	9	51	14	54
287	-4	58	-23	108	-27	116	-31	120	318	10	58	13	49	-1	66	15	44
288	-9	66	-26	112	-33	122	-37	124	319	-1	76	4	63	-2	71	5	60
289	-1	79	-10	96	-10	-95	-10	94	320	-l	83	6	64	-2	75	2	70
290	0	71	- i 2	95	-14	100	-15	102	321	-7	99	-2	69	-1	70	-2	76
291	3	68	-\$	91	-8	95	-10	99	322	-14	95	-2	59	.9	72	-18	86
292	10	44	-9	.93	-17	111	-13	106	323	2	95	6	70	14	60	12	70
293	-7	62	-22	94	-28	114	-50	127	324	0	76	10	44	16	37	5	64
294	15	36	-5	86	-6	89	-5	92	325	-5	74	9	31	0	47	-12	70
295	14	40	9	67	-2	80	17	57	326	0	70	12	43	18	35	11	55
296	16	27	-4	80	-4	82	-5	86	327	-11	75	3	53	11	37	5	56
297	12	29	-10	85	-9	85	-13	94	328	1	68	14	34	12	41	0	69
298	1	44	-1	70	-8	81	-12	91	329	0	65	10	38	10	41	2	65
299	20	36	7	60	-1	72	•	77	330	-14	73	-3	52	2	48	-6	74
300	18	32	9	58	5	64	0	71	331	3	62	13	40	12	41	5	54
301	\$:	42	5	61	1	67	-1	73	332	4	62	17	32	13	41	7	54
302	1	48	12	50	9	56	4	64	333	-1	68	7	44	a	59	-6	76
303	10	62	15	SO	0	69	-7	81	334	-13	75	7	38	3	50	-11	82
304	17	46	18	49	1	69	S	64	335	11	55	13	50	19	40	-2	77
305	9	64	17	54	7	69	15	57	336	5	64	10	57	3	66	-2	77
306	-12	104	10	41	-7	69	1	67	337	12	70	26	43	18	50	25	42
307	-11	97	7	46	-6	67	0	86									

Table 11 - Values of variables m and n for ctxIdx from 277 to 337

		d SI ces		Value	of cal	sec_in	il_ide			Lan	ન ટા		Valu	e of c	abac_î	nit_kde	
ctridx		,		0		1		2	ctzldx	झं	CCS				1	:	2
<u>-</u> -	щ	R	m	a	to to	R	103	n		m	R	u	a	m.	п	m	ū
338	15	6	14	11	19	-6	17	-13	369	32	-26	31-	4	40	-37	37	-17
339	6	19	11	14	18	4	16	-9	370	37	-30	27	6	38	-30	32	1
340	7	16	9	11	14	q	17	-12	371	44	-32	34	8	46	-33	34	15
341	12	14	18	11	26	-12	27	-21	372	34	-18	30	10	42	-30	29	15
342	18	13	21	9	31	-16	37	-30	373	34	-15	24	22	40	-24	24	25
343	13	11	23	-2	33	-25	41	4 0	374	40	-15	33	19	49	-29	34	22
344	13	15	32	-15	33	-22	42	41	375	33	-7	22	32	38	-12	31	-16
345	15	16	32	-15	37	-28	48	4 7	376	35	-5	26	31	40	-10	35	18
346	12	23	34	-21	39	-30	39	-32	377	33	0	21	41	. 38	-3	31	28
347	13	23	39	-23	42	30	46	-40	378	38	2	26	44	46	-5	33	41
348	1.5	20	42	-33	47	42	52	-51	379	33	13	23	47	31	20	36	28
349	14	26	41	-31	45	36	46	-41	380	23	35	16	65	29	30	27	47
350	14	44	46	-28	:49	34	52	-39	381	13	58	14	71	25	44	21	62
351	17	40	38	-12	41	-17	43	-19	382	29	-3	8	60	12	48	18	31
352	17	47	21	29	32	9	32	11	383	26	0	6	63	11	49	19	26
353	24	17	45	-24	69	-71	61	-55	384	22	30	17	65	26	45	. 36	24
354	21	21	53	-45	63	-63	56	-46	385	31	-7	21	24	22	22	24	23
355	25	22	48	-26	66	-64	62	-50	386	35	-15	23	20	23	22	27	16
356	31	27	65	-43	77	-74	81	-67	387	34	-3	26	23	27	21	24	30
357	22	29	43	-19	54	-39	45	-20	388	34	3	27	32	33	20	31	29
358	19	35	39	-10	52	-35	35	-2	389	36	-1	28	23	26	28	22	41
359	14	50	30	9	41	-10	28	15	390	34	5	28	24	30	24	22	42
361	7	57	18	26	36	0	34	1	391	32	11	23	40	27	34	16	60
362	-2	77	20	27	40	-1	39	1	392	35	5	24	32	18	42	15	52
363	4	82	-14	57 82	30	14	30	17	393	34	12	28	29	25	39	14	60
364	-3	94	-5	75	28	26 37	20	38	394	39	11	23	42	18	50	3	78
365	9	69	-19	97	12	55	15	45	395	30	29	19	57	12	70	-16	123
366	-12	109	-35	125	11	65	0	79	396 397	34	26	22	53	21	54	21	53
367	36	-35	27	0	31	-33	36	-16	397	19	39	22	61	14	71	22	56
368	36	-34	28	0	39	-36	37	-14	376	""	66	11	86	111	83	25	61

Table 12 - Values of variables m and n for ctxIdx from 338 to 398

VON -SCHOPPE & ZIMMERMANN -

date types	Tafle-No.	Stice type			
		SI	1	P, SP	В
Stice data	2,3		•	11-13	24-26
	7	70-72	70-72	70-72	70-72
harrollock Control data	1,2,3	0-10	3-10	14-20	27-35
	7	73.76	73-76	73-76	73-76
	7	77-84	77-84	77-84	77-84
	6	60-63	60-63	60-63	60-63
prediction data	6	68	68	68	68
	6	69	69	69	69
	6	64-67	64-67	64-67	64-67
additional prediction dala	5			54-59	54-59
	5				54-59
	4			40-46	40-46
	4				40-46
	4			47-53	47-53
	4				47-\$3
	2,3		-	21-23	36-39
tesideal	7	85-104	85-104	85-104	85–104
	8,11	105-165, 277-337	105-165, 277-337	105-165, 277-337	105-165, 277-337
	9,12	166-226, 338-398	166-226, 338-398	166-226, 338-398	166-226, 338-398
	10	227-275	227-275	227-275	227-275

Tig. 5

ctx Idx values

entroly wooded in J. Symbols ENTROly DECODER 260 inf. Symbol segnence havking start 1. Symbol

