Quiz 1 - Solutions

Question 1

We can prove the existence of \boldsymbol{x} like this.

Let
$$x=\frac13(w+(-v))$$
. Then $v+3\left(\frac13w+\frac13(-v)\right)=v+w+(-v)=(v+(-v))+w=0+w=w$, so that x exists.

Since $x-\frac{1}{3}(w+(-v))=0$, we have that x is the inverse of $-\frac{1}{3}(w+(-v))$.

Since scalar multiplication and vector addition are defined in V, then $-\frac{1}{3}(w+(-v))\in V$.

Now to prove the uniqueness of this x, we assume that

$$egin{aligned} v+3x&=w\ v+3x'&=w \end{aligned}$$

where, x and $x^{'}$ belong to V.

Subtracting the second equation from the first, we get

$$3x - 3x' = 0$$
 $3(x - x') = 0$ (distributive law)
$$\frac{1}{3}(3(x - x') = \frac{1}{3}0 \text{ (multiplication by a constant preserves equality)}$$

$$\left(\frac{1}{3}3\right)(x - x') = 0 \text{ (associativity of scalar multiplication)}$$

$$1(x - x') = 0 \text{ (arithmetic)}$$

$$x - x' = 0 \text{ (identity rule for scalar multiplication)}$$

$$x = x' \text{ (add } x' \text{ to both sides; use additive inverses to cancel.)}$$

Since every vector in V has a unique inverse, x must be unique.

Question 2

Question 2.1)

Since A is invertible, we know that A^{-1} exists. Therefore, multiplying A^{-1} on both sides, we get,

$$A^{-1}(AB)=(A^{-1})0$$

 $(A^{-1}A)B=0$ (by commutativity of matrix multiplication)
 $IB=0$
 $B=0$

Question 2.2)

Since A is not invertible, AX=0 must have a non-trivial solution v. Let B be the matrix all of whose columns are equal to v. Then $B\neq 0$, but AB=0.

Question C)

Question C.1)

Need to prove both forward and backward implication.

Reverse implication:

 $W_1 \cup W_2$ is a subspace iff either $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

WLOG, let us assume $W_2\subseteq W_1$. Now, we can say that W_1 is a subspace, as $W_1\cup W_2=W_1$. Similarly, if we assume $W_1\subseteq W_2$, W_2 is a subspace as $W_1\cup W_2=W_2$. Hence, in either case, we have shown that $W_1\cup W_2$ is a subspace.

Forward implication:

Let us assume $W_1 \cup W_2$ is a subspace. Now, let $W_1 \nsubseteq W_2$ and $W_2 \nsubseteq W_1$.

$$\therefore \exists \ w_1 \in W_1 \backslash W_2, ext{ such that } w_1 \notin W_2 \\ \Longrightarrow w_1 \in W_1 \cup W_2$$

$$\therefore \exists \ w_2 \in W_2 \backslash W_1$$
, such that $w_2 \notin W_1$
 $\Longrightarrow w_2 \in W_1 \cup W_2$

Now, since $W_1 \cup W_2$ is assumed as a subspace, all its elements are closed under addition. Therefore, $w_1+w_2 \in W_1 \cup W_2$.

From this, we can deduce that, either $w_1+w_2\in W_1$ or $w_1+w_2\in W_2$.

WLOG, let us take $w_1+w_2\in W_1$. Then, we can write see that,

$$w_1 \in W_1$$
 $w_1 + w_2 \in W_1 ext{(assumed WLOG)}$ $\therefore w_2 = (w_1 + w_2) - w_1 \in W_1 ext{(closure of vectors under addition)}$

However, this contradicts our original assumption that $w_2 \notin W_1$.

Now, let us take $w_1+w_2\in W_2$. Then, we can write see that,

$$w_2 \in W_2$$
 $w_1 + w_2 \in W_2 ext{(assumed WLOG)}$ $\therefore w_1 = (w_1 + w_2) - w_2 \in W_2 ext{(closure of vectors under addition)}$

However, this contradicts our original assumption that $w_1 \notin W_2$.

In either case, we have ended up with a contradiction.

 \therefore , either $W_1 \subset W_2$ or $W_2 \subset W_1$ for $W_1 \cup W_2$ to be a subspace.

Question C.2)

Let us represent the system of equations as a matrix $\bf A$. Let the solutions to this system of equations be represented as $\bf b$.

$$\mathbf{A} = egin{bmatrix} 1 & 1/2 & 1/3 \ 1/2 & 1/3 & 1/4 \ 1/3 & 1/4 & 1/5 \end{bmatrix}, x = egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix}, b = egin{bmatrix} 0 \ 0 \ 0 \end{bmatrix},$$

Hence, we can say,

$$Ax = b$$

Now, we make use of the fact that a matrix that represents a system of equations, has the same solutions as the row reduced form of the matrix, which also represents a set of equations. Hence, we get the matrix $\bf A$ into it's RREF, to make it easier to find the solutions to the system of equations. If R represents the RREF of matrix A then, we can say Rx=b has the same solutions.

Step 1: Subtract half of the first row from the second row to get a zero in the (2,1) position.

$$\begin{bmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1/3 & 1/4 \\ 1/3 & 1/4 & 1/5 \end{bmatrix} \xrightarrow{R_2 - \frac{1}{2}R_1 \to R_2} \begin{bmatrix} 1 & 1/2 & 1/3 \\ 0 & 1/12 & 1/12 \\ 1/3 & 1/4 & 1/5 \end{bmatrix}$$

Step 2: Subtract one-third of the first row from the third row to get a zero in the (3,1) position.

$$\begin{bmatrix} 1 & 1/2 & 1/3 \\ 0 & 1/12 & 1/12 \\ 1/3 & 1/4 & 1/5 \end{bmatrix} \xrightarrow{R_3 - \frac{1}{3}R_1 \to R_3} \begin{bmatrix} 1 & 1/2 & 1/3 \\ 0 & 1/12 & 1/12 \\ 0 & 1/12 & 2/45 \end{bmatrix}$$

Step 3: Multiply the second row by 12 to get a leading 1 in the (2,2) position.

$$\begin{bmatrix} 1 & 1/2 & 1/3 \\ 0 & 1/12 & 1/12 \\ 0 & 1/12 & 2/45 \end{bmatrix} \xrightarrow{12R_2 \to R_2} \begin{bmatrix} 1 & 1/2 & 1/3 \\ 0 & 1 & 1 \\ 0 & 1/12 & 2/45 \end{bmatrix}$$

Step 4: Subtract one-twelfth of the second row from the third row to get a zero in the (3,2) position.

$$\begin{bmatrix} 1 & 1/2 & 1/3 \\ 0 & 1 & 1 \\ 0 & 1/12 & 2/45 \end{bmatrix} \xrightarrow{R_3 - \frac{1}{12}R_2 \to R_3} \begin{bmatrix} 1 & 1/2 & 1/3 \\ 0 & 1 & 1 \\ 0 & 0 & 1/15 \end{bmatrix}$$

Step 5: Multiply the third row by 15 to get a leading 1 in the (3,3) position.

$$\begin{bmatrix} 1 & 1/2 & 1/3 \\ 0 & 1 & 1 \\ 0 & 0 & 1/15 \end{bmatrix} \xrightarrow{15R_3 \to R_3} \begin{bmatrix} 1 & 1/2 & 1/3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Step 6: Subtract one-half of the second row from the first row to get a zero in the (1,2) position.

$$\begin{bmatrix} 1 & 1/2 & 1/3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 - \frac{1}{2}R_2 \to R_1} \begin{bmatrix} 1 & 0 & -1/6 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Step 7: Add one-sixth of the third row to the first row to get a zero in the (1,3) position.

$$egin{bmatrix} 1 & 0 & -1/6 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 + rac{1}{6}R_3 o R_1} egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{bmatrix}$$

Step 8: Subtract the third row from the second row to get a zero in the (2,3) position.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 - R_3 \to R_2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

We observe that this reduces to an identity matrix, and hence, we can now see that

$$egin{aligned} x_1 &= 0 \ x_2 &= 0 \ x_3 &= 0 \end{aligned}$$

Hence, the trivial solution x=0 is the only solution that exists.