Exterior Angle Inequality Theorem

Jonathan R. Bacolod

Sauyo High School

What is the Exterior Angle?

It is the angle between a side of a polygon and an extended adjacent side.

What is a Remote Interior Angle?

It is an interior angle that is not adjacent to the exterior angle.

Determine the remote interior angles in relation to each exterior angle.

1. ∠4

Determine the remote interior angles in relation to each exterior angle.

∠4
 ∠2, ∠3

Determine the remote interior angles in relation to each exterior angle.

2. ∠5

Determine the remote interior angles in relation to each exterior angle.

2. ∠5 ∠1,∠3

Determine the remote interior angles in relation to each exterior angle.

3. ∠6

Determine the remote interior angles in relation to each exterior angle.

3. ∠6 ∠1,∠2

Determine the exterior angle in relation to each pair of remote interior angles.

 $1. \angle 1, \angle 2$

Determine the exterior angle in relation to each pair of remote interior angles.

1. ∠1, ∠2 ∕6

Determine the exterior angle in relation to each pair of remote interior angles.

2. ∠1, ∠3

Determine the exterior angle in relation to each pair of remote interior angles.

2. ∠1,∠3 ∠5

Determine the exterior angle in relation to each pair of remote interior angles.

3. $\angle 2, \angle 3$

Determine the exterior angle in relation to each pair of remote interior angles.

3. ∠2, ∠3 ∕4

What is the Exterior Angle Inequality Theorem?

The measure of an exterior angle of a triangle is greater than the measure of either remote interior angle.

$$m \angle 4 > m \angle 1$$

 $m \angle 4 > m \angle 2$

measures greater than $m\angle 7$

measures greater than $m\angle 7$ $\angle 5$, $\angle 9$

measures less than $m \angle 7$

measures greater than $m\angle 6$

measures greater than $m\angle 6$ $\angle 2, \angle 9$

measures less than $m \angle 2$

measures greater than $m\angle 2$

measures greater than $m\angle 2$

measures less than $m \angle 5$

measures greater than $m \angle 1$

measures greater than $m \angle 1$ $\angle 4, \angle 7$

measures less than $m \angle 4$

measures greater than $m \angle 8$

measures greater than $m \angle 8$ $\angle 2, \angle 5$

measures less than $m \angle 9$

Thank you for attending the virtual class.