Алгебра.

Лектор — В. А. Петров Создатель конспекта — Глеб Минаев *

TODOs

Содержание

1	Основные понятия.	1
2	Теория делимости	3
3	Идеалы и морфизмы	6
4	Многочлены	10
5	Теория категорий	15

Литература:

- Ван дер Варден "Алгебра"
- Лэнг "Алгебра"
- Винберг "Курс Алгебры"

Немного истории

Зарождение — Аль Хорезин, "Китхаб Альджебр валь мукабалт". "Альджебр" значит "перенос из одной части уравнения в другую", а "мукабалт" — "приведение подобных".

1 Основные понятия.

Определение 1. Алгебраическая структура — это множество M + заданные на нём операции + аксиомы на операциях.

Определение 2. Абелева группа — набор $(M, + : M^2 \to M)$ с аксиомами:

- A_1) $\forall a,b,c \in M: (a+b)+c=a+(b+c)$ ассоциативность сложения
- A_2) $\exists 0 \in M : \forall a \in M : a + 0 = a = 0 + a$ нейтральный по сложению элемент

^{*}Оригинал конспекта расположен на GitHub. Также на GitHub доступен репозиторий с другими конспектами.

- A_3) $\forall a,b \in M: a+b=b+a$ коммутативность сложения
- A_4) $\forall a \in M : \exists -a : a + (-a) = 0 = (-a) + a$ существование противоположного

Определение 3. Опишем следующие аксиомы на наборе $(M, +: M^2 \to M, \cdot: M^2 \to M)$ в добавок к A_1, \ldots, A_4 :

- D) $\forall a, b, k \in M : k(a+b) = ka + kb, (a+b)k = ak + bk$ дистрибутивность
- M_1) $\forall a, b, c \in M : (a \cdot b) \cdot c = a \cdot (b \cdot c)$ ассоциативность умножения
- M_2) $\exists 1 \in M : \forall a \in M : a \cdot 1 = a = 1 \cdot a$ нейтральный по умножению элемент
- M_3) $\forall a, b \in M : a \cdot b = b \cdot a$ коммутативность умножения
- M_4) $\forall a \in M \setminus \{0\} : \exists a^{-1} : a \cdot a^{-1} = 1 = a^{-1} \cdot a$ существование обратного

По этим аксиомам определим следующие понятия:

Кольцо — набор $(M, +, \cdot, 0)$, что верны A_1, A_2, A_3, A_4 и D.

Ассоциативное кольцо — кольцо с M_1 .

Кольцо c единицей — кольцо с M_2 .

Тело — кольцо с M_1 , M_2 , M_4 .

Поле — кольцо с M_1, M_2, M_3, M_4 .

 $\mathbf{\Pi}$ олукольцо — кольцо без A_4 .

 $\Pi pumep 1.$ Если взять \mathbb{R}^3 , то векторное произведение в нём неассоциативно и антикоммутативно. Но есть

Пример 2. Если взять $R^4 = R \times R^3$ и рассмотреть $\cdot : ((a;u);(b;v)) \mapsto (ab-u\cdot v;av+bu+u\times v)$ и $+ : ((a;u);(b;v)) \mapsto (a+b,u+v)$, тогда получим \mathbb{H} — ассоциативное некоммутативное тело кватернионов. Ассоциативность доказал Гамильтон.

Пемма 1. $0 \cdot a = 0$

Определение 4. Коммутативное кольцо без делителей нуля называется *областью* (целостности).

Определение 5. Пусть $m \in \mathbb{N}$. Тогда множество остатков при делении на m или $\mathbb{Z}/m\mathbb{Z}$ — это фактор-множество по отношению эквивалентности $a \sim b \Leftrightarrow (a-b) \mid m$.

Определение 6. *Подкольцо* — это подмножество кольца, согласованное с его операциями. Как следствие ноль и обратимость согласуются автоматически.

Утверждение 2. Если R-nodкольцо области целостности S, mo R-oбласть целостности.

Определение 7. Целые Гауссовы числа или $\mathbb{Z}[i]$ — это $\{a+bi \mid a,b\in\mathbb{Z}\}$.

Определение 8. Некоторое подмножество R кольца S замкнуто относительно сложения (умножения), если $\forall a, b \in R : a + b \in R \ (ab \in R \ \text{соответственно}).$

Замечание 1. Замкнутое относительно сложения И умножения подмножество — подкольцо.

Пример 3. Пусть d — целое, не квадрат. Тогда $\mathbb{Z}[\sqrt{d}]$ — область целостности.

2 Теория делимости

Пусть R — область целостности.

Определение 9. "a делит b" или же $a \mid b$ значит, что $\exists c \in R : b = ac$.

Утверждение 3. Отношение "|" рефлексивно и транзитивно.

Определение 10. *a* и *b ассоциированы*, если $a \mid b$ и $b \mid a$. Обозначение: $a \sim b$.

Утверждение 4. " \sim " — отношение эквивалентности.

Утверждение 5. $a \sim b \Leftrightarrow \exists \ \textit{обратимый } \varepsilon : a = \varepsilon b.$

Доказательство. Пусть $a \sim b$. Тогда $\exists c, d : ac = b, bd = a$. Тогда a(1-cd) = a - acd = a - bd = a - a = 0, значит либо a = 0, либо cd = 1. В первом случае b = ac = 0c = 0, значит можно просто взять $\varepsilon = 1$. Во втором случае, cd = 1, значит c и d обратимы, тогда можно взять $\varepsilon = d$. следствие в одну сторону доказано.

Пусть $a = \varepsilon b$, где ε обратим. Значит:

- 1. $b \mid a;$
- 2. $\exists \delta : \delta \varepsilon = 1$, значит $\delta a = \delta \varepsilon b = b$, значит $a \mid b$.

Таким образом $a \sim b$.

 $\Pi pumep \ 4. \ B \ \mathbb{Z}[i]$ есть только следующие обратимые элементы: $1, \ -1, \ i \ u \ -i.$ Поэтому все ассоциативные элементы получаются друг из друга домножением на один из $1, \ -1, \ i, \ -i \ u$ вместе образуют квадрат (на комплексной плоскоти) с центром в нуле.

Определение 11. Главным идеалом элемента a называется множество $M := \{ak \mid k \in R\} = \{b \mid a$ делит $b\}$. Обозначение: (a) или aR.

Утверждение 6. $a \mid b \Leftrightarrow b \in aR \Leftrightarrow bR \subseteq aR$.

Утверждение 7. $a \sim b \Leftrightarrow aR = bR$.

Утверждение 8. $\forall a \in R$

- 1. $0 \in aR$
- 2. $x \in aR \Rightarrow -x \in aR$
- 3. $x, y \in aR \Rightarrow x + y \in aR$
- 4. $x \in aR, r \in R \Rightarrow xr \in aR$

Замечание 2. То же верно и в некоммутативном R.

 Π ример 5. В поле есть только 0R и 1R.

 $\Pi pumep 6. \ B \ \mathbb{Z} \ ecть только <math>m\mathbb{Z}$ для каждого $m \in \mathbb{N} \cup \{0\}.$

Определение 12. Пусть P — кольцо. $I \subseteq P$ называется *правым идеалом*, если

- 1. $0 \in I$;
- 2. $a, b \in I \Rightarrow a + b \in I$;

- 3. $a \in I \Rightarrow -a \in I$;
- 4. $a \in I, r \in R \Rightarrow ar \in I$.

I называется левым идеалом, если аксиому 4 заменить на " $a \in I, r \in R \Rightarrow ra \in I$ ". Также I называется двухсторонним идеалом, если является левым и правым идеалом, и обозначается как $I \triangleleft P$.

Замечание 3. В коммутативном кольце (и в частности в области целостности) все идеалы двухсторонние.

 $\Pi p u м e p 7.$ Пусть дано кольцо P и фиксированы $a_1, \ldots, a_n \in P$. Тогда $a_1 P + \cdots + a_n P = \{a_1 x_1 + \cdots + a_n x_n \mid x_1, \ldots, x_n \in P\}$ есть правый (конечнопорождённый) идеал, порождённый элементами a_1, \ldots, a_n . Аналогично $Pa_1 + \cdots + Pa_n = \{x_1 a_1 + \cdots + x_n a_n \mid x_1, \ldots, x_n \in P\}$ — левый (конечнопорождённый) идеал, порождённый элементами a_1, \ldots, a_n .

Определение 13. Область главных идеалов $(O\Gamma U)$ — область целостности, где все идеалы главные.

Определение 14. Область целостности R называется $E \epsilon \kappa n u \partial o \delta o \tilde{u}$, если существует функция ("Евклидова норма") $N: R \setminus \{0\} \to \mathbb{N}$, что

$$\forall a, b \neq 0 \ \exists q, r : a = bq + r \land (r = 0 \lor N(r) < N(b))$$

Теорема 9. Евклидово кольцо — область главных идеалов.

Доказательство. Пусть наше кольцо — R. Если $I = \{0\}$, то I = 0R. Иначе возьмём $d \in I \setminus \{0\}$ с минимальной Евклидовой нормой. Тогда $\forall a \in I$ либо $d \mid a$, либо $\exists q, r : a = dq - r$. Во втором случае $dq \in I$, $r = a - dq \in I$, но N(r) < N(d) — противоречие. Значит I = dR.

Определение 15. Общим делителем a и b называется c, что $c \mid a$ и $c \mid b$. Наибольшим общим делителем (НОД) a и b называется общий делитель a и b, делящийся на все другие общие делители a и b.

Теорема 10 (алгоритм Евклида). В Евклидовом кольце у любых двух чисел есть НОД.

Доказательство. Заметим, что (a, b) = (a + bk, b).

Пусть даны a и b. Предположим, что $\varphi(a) \geqslant \varphi(b)$, иначе поменяем их местами. Тем самым по аксиоме Евклида найдутся q и r, что a = bq + r, а $\varphi(r) < \varphi(b) \leqslant \varphi(a)$, значит $\varphi(a) + \varphi(b) > \varphi(r) + \varphi(b)$. При этом (a,b) = (r,b). Значит бесконечно $\varphi(a) + \varphi(b)$ не может бесконечного уменьшаться, так как натурально, значит за конечное кол-во переходов мы получим, что одно из чисел делит другое, а значит НОД стал определён.

Теорема 11 (линейное представление НОД). $\forall a, b \in R \; \exists p, q \in R : ap + bq = (a, b).$

Доказательство. Докажем по индукции по N(a) + N(b).

База. N(a) + N(b) = 0. Значит N(a) = N(b) = 0, а тогда a и b не могут не делиться друг на друга, значит НОД — любой из них. А в этом случае разложение очевидно.

Шаг. WLOG $N(a) \geqslant N(b)$. Если $b \mid a$, то b - HOД, а тогда разложение очевидно. Иначе по аксиоме Евклида $\exists q, r: a = bq + r$. Заметим, что (a,b) = (b,r) = d, но $N(a) + N(b) \geqslant N(b) + N(b) > N(b) + N(r)$. Таким образом по предположению индукции для b и r получаем, что d = bk + rl для некоторых k и l, значит d = bk + (a - bq)l = al + b(k - ql).

Определение 16. Элемент p области целостности R называется nenpusodumыm, если $\forall d \mid p$ либо $d \sim 1$, либо $d \sim p$.

Определение 17. Элемент p области целостности R называется npocmым, если из условия $p \mid ab$ следует, что $p \mid a$ или $p \mid b$. **Утверждение 12.** Любое простое неприводимо. Доказательство. Предположим противное, т.е. некоторое простое p представляется в виде произведения неделителей единицы a и b. Тогда WLOG $p \mid a$. Значит $p \sim a$, а $b \sim 1$ — противоречие. **Утверждение 13.** В области главных идеалов неприводимые просты. **Доказательство.** Пусть неприводимое p делит ab. Пусть тогда pR + aR = dR. В таком случае $d \sim p$, значит либо $d \sim p$, либо $d \sim 1$. Если $d \sim p$, то $p \mid a$. Иначе px + ay = 1, значит pxb + aby = b. Ho $p \mid pxb$ и $p \mid aby$, значит $p \mid b$. Поскольку рассуждение не зависит от a и b, то p просто. **Определение 18.** Область целостности R удовлетворяет условию обрыва возрастающих цеneŭ главных идеалов (APCC), если не существует последовательности $d_0R \subseteq d_1R \subseteq \ldots$ Такое кольцо область целостности называют нётеровой. **Теорема 14.** ОГИ нётерова. **Доказательство.** Пусть наша область — R. Предположим противное, т.е. существует последовательность $\{a_n\}_{n=0}^{\infty}$, что a_{n+1} — собственный делитель a_n (т.е. $a_{n+1} \mid a_n \wedge a_n \nsim a_{n+1}$). Тогда $a_0R\subsetneq a_1R\subsetneq a_2R\subsetneq\dots$ Тогда $\exists x:xR=\bigcup_{n=0}^\infty a_nR$, так как это объединение — идеал. Но тогда $x \in a_i R$ для некоторого j, а значит $xR \subseteq a_i R$, а тогда $a_{i+1}R \subseteq a_i R$ — противоречие. Определение 19. Область целостности называется факториальной областью, если в нём все неприводимые просты и оно нётерово. Пример 8. ОГИ факториальна. **Теорема 15** (основная теорема арифметики). Пусть R факториально. Тогда любое число представимо единственным образом в виде произведения простых с точностью до перестановки множителей и ассоциированности. Доказательство. **Пемма 15.1.** У каждого числа есть неприводимый делитель. Доказательство. Пусть это не так. Тогда есть подъём идеалов: $a_0 = a_1b_1$, $a_1 = a_2b_2$ и т.д., значит $a_0R \subsetneq a_1R \subsetneq a_2R \subsetneq \dots$ противоречие. Лемма 15.2. Каждое число представимо в виде произведения простых. Доказательство. Пусть это не так. Тогда есть подъём идеалов: $a_0 = p_1 a_1$, где p_1 прост, $a_1 =$ p_2a_2 , где p_2 прост, и т.д., значит $a_0R \subsetneq a_1R \subsetneq a_2R \subsetneq \ldots$ противоречие. Это доказывает существование разложения. **Пемма 15.3.** Если $p_1 \cdot \ldots p_n = q_1 \cdot \cdots \cdot q_m$ для простых $p_1, \ldots, p_n, q_1, \ldots, q_m,$ то эти два набора совпадают с точностью до перестановки и ассоциированности. **Доказательство.** Докажем индукцией по n. **База:** Для n=0 утверждение очевидно, так как тогда $1=q_1 \cdot \dots \cdot q_m$, значит m=0. **Шаг:** Несложно видеть, что $p_n \mid q_1 \cdot \dots \cdot q_m$, значит $p_n \mid q_i$ для некоторого i, значит $p_n \sim q_i$. Переставим q_k , что $q'_m = q_i$. Значит $p_1 \cdot \dots \cdot p_{n-1} = q'_1 \cdot \dots \cdot q'_{m-1}$. По предположению индукции эти два набора совпадают с точностью до перестановки и ассоциированности, значит таковы и начальные наборы.

Это доказывает единственность разложения.

3 Идеалы и морфизмы

Теорема 16. Пусть даны $I \triangleleft R$ и $a \sim b \Leftrightarrow a - b \in I$. Тогда $\sim -$ отношение эквивалентности, $a \ R/I := R/\sim -$ кольцо.

Доказательство. Проверим, что \sim — отношение эквивалентности:

- $a a = 0 \in I$, значит $a \sim a$;
- $a \sim b$, значит $a b \in I$, значит $b a = -(a b) \in I$, значит $a \sim a$;
- $a \sim b, b \sim c$, значит $a-b \in I, b-c \in I$, значит $a-c = (a-b) + (b-c) \in I$, значит $a \sim c$.

Определим на R/I операции сложения и умножения, нуля, противоположного, единицы и обратного:

- [a] + [b] := [a + b];
- $\bullet \ [a] \cdot [b] := [a \cdot b];$
- 0 := [0] = I:
- -[a] := [-a];
- 1 := [1];
- $[a]^{-1} := [a^{-1}].$

Покажем, что R/I — кольцо:

A₁)
$$\forall a, b, c \in R : ([a] + [b]) + [c] = [a + b] + [c] = [(a + b) + c] = [a + (b + c)] = [a] + [b + c] = [a] + ([b] + [c])$$

$$A_2$$
) $\forall a \in R : [a] + [0] = [a+0] = a = [0+a] = [0] + [a]$

A₃)
$$\forall a, b \in R : [a] + [b] = [a+b] = [b+a] = [b] + [a]$$

$$\mathbf{A}_4) \ \forall a \in R : [a] + -[a] = [a] + [-a] = [a + (-a)] = [0] = [(-a) + a] = [-a] + [a] = -[a] + [a]$$

D)
$$\forall a, b, k \in R : [k]([a] + [b]) = [k][a + b] = [k(a + b)] = [ka + kb] = [ka] + [kb] = [k][a] + [k][b],$$
 $([a] + [b])[k] = [a + b][k] = [(a + b)k] = [ak + bk] = [ak] + [bk] = [a][k] + [b][k]$

$$\mathbf{M_1}) \ \forall a,b,c \in R : ([a] \cdot [b]) \cdot [c] = [a \cdot b] \cdot [c] = [(a \cdot b) \cdot c] = [a \cdot (b \cdot c)] = [a] \cdot [b \cdot c] = [a] \cdot ([b] \cdot [c])$$

$$M_2$$
) $\forall a \in R : [a] \cdot [1] = [a \cdot 1] = [a] = [1 \cdot a] = [1] \cdot [a]$

$$M_3$$
) $\forall a, b \in R : [a] \cdot [b] = [a \cdot b] = [b \cdot a] = [b] \cdot [a]$

$$M_4$$
) $\forall a \in R \setminus \{0\} : [a] \cdot [a]^{-1} = [a] \cdot [a^{-1}] = [a \cdot a^{-1}] = [1] = [a^{-1} \cdot a] = [a^{-1}] \cdot [a] = [a]^{-1} \cdot [a]$

Замечание 4. Доказательство для классов эквивалентности каждой аксиомы основывалось только на соответствующей аксиоме и определениях ранее.

Определение 20. Гомоморфизм — такое отображение $\varphi: R \to S$ — это отображение, сохраняющее операции:

•
$$\varphi(a+b) = \varphi(a) + \varphi(b)$$
;

- $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b);$
- $\varphi(0) = 0$;
- $\varphi(-a) = -\varphi(a)$.

Гомоморфизм кольца с 1 — гомоморфизм, что $\varphi(1) = 1$.

Утверждение 17. Композиция гомоморфизмов — гомоморфизм.

Определение 21. Пусть $f: X \to Y$. Несложно видеть, что f раскладывается в композицию сюръекции $f: X \to f(X)$ и инъекции $id: f(X) \to Y$. Тогда $\mathrm{Im}(f) = \{f(x) \mid x \in X\} -$ множеество значений f, а классы значений X, переходящих в один $y \in Y$ суть слои — $f^{-1}(y) = \{x \mid f(x) = y\}$ для некоторого y.

Определение 22. Пусть $\varphi: R \to S$ — гомоморфизм. Тогда ядром φ называется $\mathrm{Ker}(\varphi) := \{r \in R \mid \varphi(r) = 0\}.$

Утверждение 18. Ядро гомоморфизма — двусторонний идеал.

Определение 23. $\varphi: S \to R - uзомор \phi uз M$, если это биективный гомомор физм.

Определение 24. Два кольца называются изоморфными, если между ними есть изоморфизм. Обозначение: $R \cong S$.

Утверждение 19. Пусть $R \cong S$. Тогда

- \bullet Если R коммутативно, то и S коммутативно.
- ullet Если R область целостности, то и S область целостности.
- $Ecnu R O\Gamma M$, mo $u S O\Gamma M$.

Утверждение 20.

- 1. $R \cong R$.
- 2. $R \cong S \Leftrightarrow S \cong R$.
- 3. $R \cong S \cong T \Rightarrow R \cong T$.

Теорема 21 (о гомоморфизме). Пусть $\varphi: R \to S$ — гомоморфизм. (Вспомним, что $\operatorname{Ker}(\varphi) \triangleleft R$, $a \operatorname{Im}(\varphi) = \varphi(R)$.) Тогда $R/\operatorname{Ker}(\varphi) \cong \operatorname{Im}(\varphi)$, где изоморфизм переводит $[a] \mapsto \varphi(a)$.

$$R \xrightarrow{\varphi} S$$

$$r \mapsto [r] \downarrow \qquad \qquad \downarrow id$$

$$R / \operatorname{Ker}(\varphi) \xrightarrow{[r] \mapsto \varphi(r)} \operatorname{Im}(\varphi)$$

Доказательство.

- 1. Корректность. $[a] = [a'] \Leftrightarrow a a' \in \mathrm{Ker}(\varphi) \Leftrightarrow \varphi(a a') = 0 \Leftrightarrow \varphi(a) = \varphi(a')$. Замечание 5. Классы эквивалентности по $\mathrm{Ker}(\varphi)$ как раз слои φ .
- 2. Заметим, что работают следующие операции:
 - $[a] + [b] = [a+b] \mapsto \varphi(a) + \varphi(b) = \varphi(a+b);$
 - $[a] \cdot [b] = [a \cdot b] \mapsto \varphi(a) \cdot \varphi(b) = \varphi(a \cdot b).$
- 3. Сюръективность следует из того, что $\varphi(a) = \varphi(b) \Leftrightarrow [a] = [b]$.
- 4. Инъективность следует из того, что каждый элемент в $\text{Im}(\varphi)$ имеет прообраз.

Теорема 22 (китайская теорема об остатках (КТО) для двух чисел). Пусть m u n взаимно npocmы. $Tor\partial a$ $\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

Доказательство. Рассмотрим $\varphi: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}, [a]_{mn} \mapsto ([a]_m; [a]_n)$. Несложно заметить, что ядро φ тривиально, поэтому $\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/mn\mathbb{Z}/\ker(\varphi) \cong \operatorname{Im}(\varphi)$. Но в последнем элементов не менее mn, так как $\operatorname{Im}(\varphi) \cong \mathbb{Z}/mn\mathbb{Z}$, но и не более, так как $|\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}| = mn$, поэтому $\operatorname{Im}(\varphi) = \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$, поэтому $\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

Теорема 23 (КТО). Пусть m_1, \ldots, m_k — попарно взаимно простые числа. Тогда

$$\mathbb{Z}/m_1 \dots m_k \cong \mathbb{Z}/m_1\mathbb{Z} \times \dots \times \mathbb{Z}/m_k\mathbb{Z}$$

Доказательство. По индукции по k с помощью КТО для двух чисел.

Теорема 24 (Универсальное свойтсво фактор-кольца). Пусть есть $I \triangleleft R$ и гомоморфизмы $\pi: R \to R/I$ — нативный гомоморфизм, $u \varphi: R \to S$, что $\pi(I) = \{0\}$. Тогда существует и единственен гомоморфизм $\varphi': R/I \to S$, что $\varphi' \circ \pi = \varphi$.

Доказательство. $\varphi'([a]) = (\varphi' \circ \pi)(a) = \varphi(a)$ — это означает единственность; так функцию и определим. Осталось показать корректность.

Несложно заметить, что если [a]=[b], то $a-b\in I$, значит $\varphi(a-b)=0$, значит $\varphi(a)=\varphi(b)$. Теперь проверим операции:

- $\bullet \ \varphi'([a]+[b])=\varphi'([a+b])=\varphi(a+b)=\varphi(a)+\varphi(b)=\varphi'([a])+\varphi'([b]).$
- $\bullet \ \varphi'([a] \cdot [b]) = \varphi'([a \cdot b]) = \varphi(a \cdot b) = \varphi(a) \cdot \varphi(b) = \varphi'([a]) \cdot \varphi'([b])$

Определение 25. Пусть R — область целостности. Тогда рассмотрим $Q = R \times (R \setminus \{0\})$ и отношение \sim на Q, что $(a;b) \sim (c;d) \Leftrightarrow ad = bc$. Несложно видеть, что \sim — отношение эквивалентности. Тогда *полем частных* области целостности R называется $\operatorname{Frac}(R) = Q/\sim$, где операции:

• [(a;b)] + [(c;d)] := [(ad + bc;bd)];

- $[(a;b)] \cdot [(c;d)] := [(ac;bd)];$
- 0 := [(0;1)];
- -[(a;b)] := [(-a;b)];
- 1 := [(1;1)];
- $[(a;b)]^{-1} = [(b;a)].$

Несложно видеть, что все операции корректны, а поле частных — поле.

3амечание 6. Есть нативный инъективный гомоморфизм из R в Frac(R):

$$\varphi: R \to \operatorname{Frac}(R), r \mapsto [(r; 1)]$$

Теорема 25 (Уникальное свойтсво поля частных). Пусть R — область целостности, F — поле, $\varphi: R \to F$ — интективный гомоморфизм, сохраняющий $1, \pi: R \to \operatorname{Frac}(R)$ — нативный гомоморфизм. Тогда существует единственный гомоморфизм $\varphi': \operatorname{Frac}(R) \to F$, что $\varphi' \circ \pi = \varphi$.

Замечание 7. Если $\varphi: E \to F$ — гомоморфизм полей, сохраняющий 1, то он инъективен. Действительно, $\mathrm{Ker}(\varphi)$ — идеал, значит 0 или E, так как E поле, но случай E не подходит, так как не сохраняется 0, значит $\mathrm{Ker}(\varphi)=0$, значит φ инъективно.

Доказательство.

Лемма 25.1. $\varphi'(1/b) = 1/\varphi'(b)$

Доказательство. По замечанию 7 φ' — инъективен, но $\varphi'(0) = 0$, а тогда для всякого $a \neq 0$ верно, что $\varphi'(a) \neq 0$, значит $\varphi'(a) \cdot \varphi'(a^{-1}) = \varphi'(1) = 1$, значит $\varphi'(a)^{-1} = \varphi'(a^{-1})$.

Лемма **25.2.** $\varphi'(a/b) = \varphi'(a)/\varphi'(b)$.

Доказательство.
$$\varphi'(a/b) = \varphi'(a) \cdot \varphi'(b^{-1}) = \varphi'(a) \cdot \varphi'(b)^{-1} = \varphi'(a)/\varphi'(b)$$
. \square

Заметим, что $\varphi'(a)=\varphi'(\pi(a))=\varphi(a)$, поэтому $\varphi'(a/b)=\varphi(a)/\varphi(b)$ — это означает единственность φ' .

Теперь рассмотрим соответствующую $\varphi': a/b \mapsto \varphi(a)/\varphi(b)$. Проверим корректность:

$$\frac{a}{b} = \frac{c}{d} \qquad \Rightarrow \qquad ad = bc \qquad \Rightarrow \qquad \varphi(ad) = \varphi(bc) \qquad \Rightarrow$$

$$\varphi(a)\varphi(d) = \varphi(b)\varphi(c) \qquad \Rightarrow \qquad \frac{\varphi(a)}{\varphi(b)} = \frac{\varphi(c)}{\varphi(d)} \qquad \Rightarrow \qquad \varphi'\left(\frac{a}{b}\right) = \varphi'\left(\frac{c}{d}\right)$$

Теперь проверим согласованность с операциями:

$$\varphi'\left(\frac{a}{b}\cdot\frac{c}{d}\right) = \frac{\varphi(ac)}{\varphi(bd)} = \frac{\varphi(a)}{\varphi(b)}\cdot\frac{\varphi(c)}{\varphi(d)} = \varphi'\left(\frac{a}{b}\right)\cdot\varphi'\left(\frac{c}{d}\right);$$

$$\varphi'\left(\frac{a}{b} + \frac{c}{d}\right) = \varphi'\left(\frac{ad + bc}{bd}\right) = \frac{\varphi(ad + bc)}{\varphi(bd)} = \frac{\varphi(a)\varphi(d) + \varphi(b)\varphi(c)}{\varphi(b)\varphi(d)} = \frac{\varphi(a)}{\varphi(b)} + \frac{\varphi(c)}{\varphi(d)} = \varphi'\left(\frac{a}{b}\right) + \varphi'\left(\frac{c}{d}\right)$$

4 Многочлены

Теорема 26. Пусть дано кольцо R. Рассмотрим множество S финитных бесконечных последовательностей элементов из R; т.е. все такие последовательности $(a_n)_{n=0}^{\infty}$, что всякое $a_n \in R$ и есть такое N, что для всякого n > N верно, что $a_n = 0_R$. Также рассмотрим операции сложения и умножения на S:

$$+: S^{2} \to S, ((a_{n})_{n=0}^{\infty}, (b_{n})_{n=0}^{\infty}) \mapsto (a_{n} + b_{n})_{n=0}^{\infty} \cdot : S^{2} \to S, ((a_{n})_{n=0}^{\infty}, (b_{n})_{n=0}^{\infty}) \mapsto \left(\sum_{k=0}^{n} a_{k} \cdot b_{n-k}\right)_{n=0}^{\infty}$$

Tог ∂a

- 1. S является кольцом, sde + операция сложения, $\cdot -$ операция умножения, $(0_R)_{n=0}^{\infty} -$ нейтральный по сложению элемент.
- 2. S наследует от R аксиомы M_1 , M_2 u M_3 .
- 3. R изоморфно подкольцу S, состоящему из элементов вида $(a,0,0,\dots)$, где $a\in R$.

Определение 26. Множество S из прошлой теоремы называется кольцом многочленов над R и обозначается R[x]. При этом всякий его элемент $(a_n)_{n=0}^{\infty}$ обозначается как $a_0 + \cdots + a_n x^n + \cdots = \sum_{n=0}^{\infty} a_n x^n$.

Доказательство.

1. Важно сказать, что из A₁ следует корректность определения умножения. Проверим аксиомы:

A₁)
$$\forall (a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty}, (c_n)_{n=0}^{\infty} \in S$$
:

$$((a_n)_{n=0}^{\infty} + (b_n)_{n=0}^{\infty}) + (c_n)_{n=0}^{\infty} = (a_n + b_n)_{n=0}^{\infty} + (c_n)_{n=0}^{\infty}$$

$$= ((a_n + b_n) + c_n)_{n=0}^{\infty}$$

$$= (a_n + (b_n + c_n))_{n=0}^{\infty}$$

$$= (a_n)_{n=0}^{\infty} + (b_n + c_n)_{n=0}^{\infty}$$

$$= (a_n)_{n=0}^{\infty} + ((b_n)_{n=0}^{\infty} + (c_n)_{n=0}^{\infty})$$

$$A_2$$
) $\forall (a_n)_{n=0}^{\infty} \in R$:

$$(a_n)_{n=0}^{\infty} + (0)_{n=0}^{\infty} = (a_n + 0)_{n=0}^{\infty}$$

$$= (a_n)_{n=0}^{\infty}$$

$$= (0 + a_n)_{n=0}^{\infty}$$

$$= (0)_{n=0}^{\infty} + (a_n)_{n=0}^{\infty}$$

A₃)
$$\forall (a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty} \in R$$
:

$$(a_n)_{n=0}^{\infty} + (b_n)_{n=0}^{\infty} = (a_n + b_n)_{n=0}^{\infty}$$
$$= (b_n + a_n)_{n=0}^{\infty}$$
$$= (b_n)_{n=0}^{\infty} + (a_n)_{n=0}^{\infty}$$

 A_4) $\forall (a_n)_{n=0}^{\infty} \in R$:

$$(a_n)_{n=0}^{\infty} + (-a_n)_{n=0}^{\infty} = (a_n + -a_n)_{n=0}^{\infty}$$

$$= (0)_{n=0}^{\infty}$$

$$= (-a_n + a_n)_{n=0}^{\infty}$$

$$= (-a_n)_{n=0}^{\infty} + (a_n)_{n=0}^{\infty}$$

D) $\forall (a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty}, (k_n)_{n=0}^{\infty} \in R$:

$$(k_n)_{n=0}^{\infty}((a_n)_{n=0}^{\infty} + (b_n)_{n=0}^{\infty}) = (k_n)_{n=0}^{\infty} \cdot (a_n + b_n)_{n=0}^{\infty}$$

$$= \left(\sum_{t=0}^{n} k_t (a_{n-t} + b_{n-t})\right)_{n=0}^{\infty}$$

$$= \left(\sum_{t=0}^{n} k_t \cdot a_{n-t} + \sum_{t=0}^{n} k_t \cdot b_{n-t}\right)_{n=0}^{\infty}$$

$$= \left(\sum_{t=0}^{n} k_t \cdot a_{n-t}\right)_{n=0}^{\infty} + \left(\sum_{t=0}^{n} k_t \cdot b_{n-t}\right)_{n=0}^{\infty}$$

$$= (k_n)_{n=0}^{\infty}(a_n)_{n=0}^{\infty} + (k_n)_{n=0}^{\infty}(b_n)_{n=0}^{\infty}$$

И

$$((a_n)_{n=0}^{\infty} + (b_n)_{n=0}^{\infty})(k_n)_{n=0}^{\infty} = (a_n + b_n)_{n=0}^{\infty} \cdot (k_n)_{n=0}^{\infty}$$

$$= \left(\sum_{t=0}^{n} (a_{n-t} + b_{n-t})k_t\right)_{n=0}^{\infty}$$

$$= \left(\sum_{t=0}^{n} a_{n-t} \cdot k_t + \sum_{t=0}^{n} b_{n-t} \cdot k_t\right)_{n=0}^{\infty}$$

$$= \left(\sum_{t=0}^{n} a_{n-t} \cdot k_t\right)_{n=0}^{\infty} + \left(\sum_{t=0}^{n} b_{n-t} \cdot k_t\right)_{n=0}^{\infty}$$

$$= (a_n)_{n=0}^{\infty} (k_n)_{n=0}^{\infty} + (b_n)_{n=0}^{\infty} (k_n)_{n=0}^{\infty}$$

2. Проверим наследственность для каждой аксиомы:

 M_1) $\forall (a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty}, (c_n)_{n=0}^{\infty} \in R$:

$$((a_{n})_{n=0}^{\infty} \cdot (b_{n})_{n=0}^{\infty}) \cdot (c_{n})_{n=0}^{\infty} = \left(\sum_{k=0}^{n} a_{k} \cdot b_{n-k}\right)_{n=0}^{\infty} \cdot (c_{n})_{n=0}^{\infty}$$

$$= \left(\sum_{k=0}^{n} \left(\sum_{l=0}^{k} a_{l} \cdot b_{k-l}\right) \cdot c_{n-k}\right)_{n=0}^{\infty}$$

$$= \left(\sum_{\substack{0 \le k \\ l \le 0 \\ k+l \le n}} (a_{k} \cdot b_{l}) \cdot c_{n-k-l}\right)_{n=0}^{\infty}$$

$$= \left(\sum_{\substack{0 \le k \\ l \le 0 \\ k+l \le n}} a_{k} \cdot (b_{l} \cdot c_{n-k-l})\right)_{n=0}^{\infty}$$

$$= \left(\sum_{k=0}^{n} a_{n-k} \cdot \left(\sum_{l=0}^{k} b_{l} \cdot c_{k-l}\right)\right)_{n=0}^{\infty}$$

$$= (a_{n})_{n=0}^{\infty} \cdot \left(\sum_{k=0}^{n} b_{k} \cdot c_{n-k}\right)_{n=0}^{\infty}$$

$$= (a_{n})_{n=0}^{\infty} \cdot ((b_{n})_{n=0}^{\infty} \cdot (c_{n})_{n=0}^{\infty})$$

 M_2) Обозначим за 1 в S последовательность $(t_n)_{n=0}^{\infty}$, где $t_0=1$, а все остальные члены равны 0. Тогда $\forall (a_n)_{n=0}^{\infty} \in R$:

$$(a_n)_{n=0}^{\infty} \cdot 1 = \left(\sum_{k=0}^n a_k \cdot t_{n-k}\right)_{n=0}^{\infty}$$

$$= (a_n)_{n=0}^{\infty}$$

$$= \left(\sum_{k=0}^n t_{n-k} \cdot a_k\right)_{n=0}^{\infty}$$

$$= 1 \cdot (a_n)_{n=0}^{\infty}$$

 M_3) $\forall (a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty} \in R$:

$$(a_n)_{n=0}^{\infty} \cdot (b_n)_{n=0}^{\infty} = \left(\sum_{k=0}^{n} a_k \cdot b_{n-k}\right)_{n=0}^{\infty}$$
$$= \left(\sum_{k=0}^{n} b_k \cdot a_{n-k}\right)_{n=0}^{\infty}$$
$$= (b_n)_{n=0}^{\infty} \cdot (a_n)_{n=0}^{\infty}$$

3. Рассмотрим отображение $\varphi:R \to S, a \mapsto (a,0,0,\dots)$. Тогда

•
$$\varphi(a) + \varphi(b) = (a+b,0,\dots) = \varphi(a+b)$$

- $\varphi(a) \cdot \varphi(b) = (ab, 0, \dots) = \varphi(a \cdot b)$
- $\varphi(0) = (0, 0, \dots) = 0$
- (в случае M_2) $\varphi(1) = (1,0,\dots) = 1$

Значит $\mathrm{Ker}(\varphi)=\{0\},\,R\cong\mathrm{Im}(\phi).$ При этом несложно видеть, что $\mathrm{Im}(\phi)$ и есть множество всех последовательностей вида $(a,0,0,\dots).$

5 Теория категорий

Определение 27. *Категория* C есть совокупность семейства (не обязательно множества) объектов Ob(C) и семейства *морфизмов* (также "arrows"), что выполнены следующие условия.

- 1. У всякого морфизма f есть прообраз (также "начало", "source", "domain"; обозначение: s(f) или dom(f)) и образ (также "конец", "target", "codomain"; обозначение: t(f) или cod(f)), являющиеся объектами из рассмотренного семейства. Семейства всех морфизмов из X в Y (т.е. с прообразом X и образом Y) обозначается Hom(X,Y) или Mor(X,Y).
- 2. На семействе морфизмов введён не полностью определённый бинарный оператор \circ (можно считать, функциональное отношение из $M \times M$ в M, где M семейство морфизмов), что для всяких $X,Y,Z \in \mathrm{Ob}(C)$ и $f \in \mathrm{Hom}(X,Y), g \in \mathrm{Mor}(Y,Z)$ значение $g \circ f$ определено и лежит в $\mathrm{Hom}(X,Z)$. Данный оператор называется композицией, а $g \circ f$ композицией g и f.
- 3. Операция композиции морфизмов ассоциативна: для всяких $X,Y,Z,T\in \mathrm{Ob}(C)$ и $f\in \mathrm{Hom}(X,Y),\,g\in \mathrm{Hom}(Y,Z),\,h\in \mathrm{Hom}(Z,T)$

$$(f \circ g) \circ h = f \circ (g \circ h).$$

- 4. Для всякого $X \in \mathrm{Ob}(C)$ есть выделенный морфизм $\mathrm{id}_X \in \mathrm{Hom}(X,X)$ (также 1_X). Он называется тождественным морфизмом X.
- 5. Для всяких $X, Y \in Ob(C)$ для всякого $f \in Hom(X, Y)$ верно, что

$$f \circ \mathrm{id}_X = f = \mathrm{id}_Y \circ f.$$

 Π ример 9.

- 1. Sets (Ens):
 - Ob(Sets) все множества,
 - $\operatorname{Hom}(X,Y)$ все отображения из X в Y,
 - о обычная композиция отображений,
 - id_X тождественное отображение $X \to X$.
- 2. Groups:
 - Ob(Groups) все группы,
 - $\operatorname{Hom}(G,H)$ все гомоморфизмы $G \to H$,
 - о обычная композиция гомоморфизмов,
 - id_G тождественный гомоморфизм $G \to G$.
- 3. Аналогично описываются категории Rings колец, CommRings коммутативных колец (если в случаях Rings и CommRings рассматриваются кольца с единицей, то надо требовать, чтобы гомоморфизмы переводили единицу в единицу), Vect_F векторных пространств над полем F, R $\operatorname{Mod} R$ -модулей, и т.д. для всякой алгебраической структуры.
- 4. Top:
 - Ob(Top) все топологические пространства,

- Hom(G, H) все непрерывные отображения,
- о обычная композиция отображений,
- id_G тождественное отображение $G \to G$.
- 5. HTop:
 - Ob(HTop) все "хорошие" (компактно порождённые) топологические пространства,
 - Hom(G, H) все непрерывные отображения по модулю гомотопии,
 - о обычная композиция отображений,
 - id_G тождественное отображение $G \to G$.
- 6. $Ob(C) = \{X\}$. В таком случае мы получаем *моноид* некоторых отображений X на себя: у нас есть множество морфизмов X на себя с операцией композиции (произведение в моноиде), которая ассоциативна и имеет нейтральный элемент (но не обязательно обратима).
- 7. Частичный предпорядок задаёт категорию:
 - Ob(C) = M,
 - Hom $(x,y) = \begin{cases} \{\star_{x \to y}\} \text{ если } x \leqslant y, \\ \emptyset \text{ иначе,} \end{cases}$
 - $\bullet \ \star_{y\to z} \circ \star_{x\to y} := \star_{x\to z},$
 - $id_x := \star_{x \to x}$.
- 8. Rels категория отношений:
 - Ob(Rels) все множества;
 - $\operatorname{Hom}(X,Y)$ все подмножества $X \times Y$;
 - для всяких $S \in \text{Hom}(X,Y)$ и $R \in \text{Hom}(Y,Z)$

$$R \circ S := \{(x, z) \in X \times Z \mid \exists y \in Y : (x, y) \in S \land (y, z) \in R\};$$

- $id_X := \{(x, x)\}_{x \in X}$.
- 9. Пустая категория: нет объектов, нет морфизмов.
- 10. Категория с единственным объектом и единственным тождественным морфизмом на нём.
- 11. Дискретная категория: нет нетождественных морфизмов.

Определение 28. $X,Y \in \mathrm{Ob}(C)$ называются *изоморфными*, если есть $f \in \mathrm{Hom}(X,Y)$ и $g \in \mathrm{Hom}(Y,X)$, что

$$f \circ g = \mathrm{id}_Y$$
 и $g \circ f = \mathrm{id}_X$.

Определение 29. Π оdкаmегория S категории C — категория, семейства объектов и морфизмов которой суть подсемейства объектов и морфизмов категории C соответственно.