

ENSEMBLES

A $\it randomly$ chosen hyperplane classifier has an $\it expected$ error of 0.5 (i.e. 50%).

ENSEMBLES

A $\it randomly$ chosen hyperplane classifier has an $\it expected$ error of 0.5 (i.e. 50%).

ENSEMBLES

A randomly chosen hyperplane classifier has an expected error of 0.5 (i.e. 50%).

- ▶ Many random hyperplanes combined by majority vote: Still 0.5.
- ▶ A single classifier slightly better than random: $0.5 + \varepsilon$.
- \blacktriangleright What if we use m such classifiers and take a majority vote?

Decision by majority vote

- ▶ *m* individuals (or classifiers) take a vote. *m* is an odd number.
- ▶ They decide between two choices; one is correct, one is wrong.
- ▶ After everyone has voted, a decision is made by simple majority.

Note: For two-class classifiers f_1, \ldots, f_m (with output ± 1):

majority vote =
$$\operatorname{sgn}\left(\sum_{j=1}^{m} f_j\right)$$

Assumptions

Before we discuss ensembles, we try to convince ourselves that voting can be beneficial. We make some simplifying assumptions:

- ▶ Each individual makes the right choice with probability $p \in [0, 1]$.
- ► The votes are *independent*, i.e. stochastically independent when regarded as random outcomes.

DOES THE MAJORITY MAKE THE RIGHT CHOICE?

Condorcet's rule

If the individual votes are independent, the answer is

$$\Pr\{ \text{ majority makes correct decision } \} = \sum_{j=\frac{m+1}{2}}^{m} \frac{m!}{j!(m-j)!} p^{j} (1-p)^{m-j}$$

This formula is known as Condorcet's jury theorem.

Probability as function of the number of votes

ENSEMBLE METHODS

Terminology

- An ensemble method makes a prediction by combining the predictions of many classifiers into a single vote.
- ▶ The individual classifiers are usually required to perform only slightly better than random. For two classes, this means slightly more than 50% of the data are classified correctly. Such a classifier is called a **weak learner**.

Strategy

- We have seen above that if the weak learners are random and independent, the prediction accuracy of the majority vote will increase with the number of weak learners.
- Since the weak learners all have to be trained on the training data, producing random, independent weak learners is difficult.
- ▶ Different ensemble methods (e.g. Boosting, Bagging, etc) use different strategies to train and combine weak learners that behave relatively independently.

METHODS WE WILL DISCUSS

Boosting

- ► After training each weak learner, data is modified using weights.
- ▶ Deterministic algorithm.

Bagging

Each weak learner is trained on a random subset of the data.

Random forests

- ▶ Bagging with tree classifiers as weak learners.
- ▶ Uses an additional step to remove dimensions in \mathbb{R}^d that carry little information.

BOOSTING

Boosting

- ► Arguably the most popular (and historically the first) ensemble method.
- ▶ Weak learners can be trees (decision stumps are popular), Perceptrons, etc.
- Requirement: It must be possible to train the weak learner on a weighted training set.

Overview

- Boosting adds weak learners one at a time.
- ► A weight value is assigned to each training point.
- At each step, data points which are currently classified correctly are weighted down (i.e. the weight is smaller the more of the weak learners already trained classify the point correctly).
- ► The next weak learner is trained on the *weighted* data set: In the training step, the error contributions of misclassified points are multiplied by the weights of the points.
- Roughly speaking, each weak learner tries to get those points right which are currently not classified correctly.

TRAINING WITH WEIGHTS

Example: Decision stump

A decision stump classifier for two classes is defined by

$$f(\mathbf{x}|j,t) := \begin{cases} +1 & x^{(j)} > t \\ -1 & \text{otherwise} \end{cases}$$

where $j \in \{1, ..., d\}$ indexes an axis in \mathbb{R}^d .

Weighted data

- ► Training data $(\tilde{\mathbf{x}}_1, \tilde{y}_1), \dots, (\tilde{\mathbf{x}}_n, \tilde{y}_n)$.
- With each data point $\tilde{\mathbf{x}}_i$ we associate a weight $w_i \geq 0$.

Training on weighted data

Minimize the weighted misclassification error:

$$(j^*, t^*) := \arg\min_{j,t} \frac{\sum_{i=1}^n w_i \mathbb{I}\{\tilde{y}_i \neq f(\tilde{\mathbf{x}}_i|j, t)\}}{\sum_{i=1}^n w_i}$$

ADABOOST

Input

- ► Training data $(\tilde{\mathbf{x}}_1, \tilde{\mathbf{y}}_1), \dots, (\tilde{\mathbf{x}}_n, \tilde{\mathbf{y}}_n)$
- ▶ Algorithm parameter: Number *M* of weak learners

Training algorithm

- 1. Initialize the observation weights $w_i = \frac{1}{n}$ for i = 1, 2, ..., n.
- 2. For m = 1 to M:
 - 2.1 Fit a classifier $g_m(x)$ to the training data using weights w_i .
 - 2.2 Compute

$$\operatorname{err}_m := \frac{\sum_{i=1}^n w_i \mathbb{I}\{y_i \neq g_m(x_i)\}}{\sum_i w_i}$$

- 2.3 Compute $\alpha_m = \log(\frac{1 \operatorname{err}_m}{\operatorname{err}_m})$
- 2.4 Set $w_i \leftarrow w_i \cdot \exp(\alpha_m \cdot \mathbb{I}(y_i \neq g_m(x_i)))$ for i = 1, 2, ..., n.
- 3. Output

$$f(x) := \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_m g_m(x)\right)$$

ADABOOST

Weight updates

$$\alpha_m = \log\left(\frac{1 - \operatorname{err}_m}{\operatorname{err}_m}\right)$$

$$w_i^{(m)} = w_i^{(m-1)} \cdot \exp(\alpha_m \cdot \mathbb{I}(y_i \neq g_m(x_i)))$$

Hence:

$$w_i^{(m)} = \begin{cases} w_i^{(m-1)} & \text{if } g_m \text{ classifies } x_i \text{ correctly} \\ w_i^{(m-1)} \cdot \frac{1 - \text{err}_m}{\text{err}_m} & \text{if } g_m \text{ misclassifies } x_i \end{cases}$$

Weighted classifier

$$f(x) = \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_m g_m(x)\right)$$

EXAMPLE

AdaBoost test error (simulated data)

- Weak learners used are decision stumps.
- Combining many trees of depth 1 yields much better results than a single large tree.

BOOSTING: PROPERTIES

Properties

- ► AdaBoost is one of most widely used classifiers in applications.
- Decision boundary is non-linear.
- ► Can handle multiple classes if weak learner can do so.

Test vs training error

- Most training algorithms (e.g. Perceptron) terminate when training error reaches minimum.
- ► AdaBoost weights keep changing even if training error is minimal.
- Interestingly, the test error typically keeps decreasing even after training error has stabilized at minimal value.
- ▶ It can be shown that this behavior can be interpreted in terms of a margin:
 - Adding additional classifiers slowly pushes overall f towards a maximum-margin solution.
 - ▶ May not improve training error, but improves generalization properties.
- ► This does *not* imply that boosting magically outperforms SVMs, only that minimal test error does not imply an optimal solution.

BOOSTING AND FEATURE SELECTION

AdaBoost with Decision Stumps

- ▶ Once AdaBoost has trained a classifier, the weights α_m tell us which of the weak learners are important (i.e. classify large subsets of the data well).
- ▶ If we use Decision Stumps as weak learners, each f_m corresponds to one axis.
- From the weights α, we can read off which axis are important to separate the classes.

Terminology

The dimensions of \mathbb{R}^d (= the measurements) are often called the **features** of the data. The process of selecting features which contain important information for the problem is called **feature selection**. Thus, AdaBoost with Decision Stumps can be used to perform feature selection.

SPAM DATA

- ► Tree classifier: 9.3% overall error rate
- ▶ Boosting with decision stumps: 4.5%
- ► Figure shows feature selection results of Boosting.

CYCLES

- ► An odd property of AdaBoost is that it can go into a cycle, i.e. the same sequence of weight configurations occurs over and over.
- ▶ The figure shows weights (called d_t by the authors of the paper, with t=iteration number) for two weak learners.
- \triangleright Circle size indicates iteration number, i.e. larger circle indicates larger t.

APPLICATION: FACE DETECTION

FACE DETECTION

Searching for faces in images

Two problems:

- ▶ **Face detection** Find locations of all faces in image. Two classes.
- ► Face recognition Identify a person depicted in an image by recognizing the face. One class per person to be identified + background class (all other people).

Face detection can be regarded as a solved problem. Face recognition is not solved.

Face detection as a classification problem

- ▶ Divide image into patches.
- ► Classify each patch as "face" or "not face"

CLASSIFIER CASCADES

Unbalanced Classes

- ▶ Our assumption so far was that both classes are roughly of the same size.
- ▶ Some problems: One class is much larger.
- ► Example: Face detection.
 - Image subdivided into small quadratic patches.
 - Even in pictures with several people, only small fraction of patches usually represent faces.

Standard classifier training

Suppose positive class is very small.

- Training algorithm can achieve good error rate by classifiying all data as negative.
- ▶ The error rate will be precisely the proportion of points in positive class.

CLASSIFIER CASCADES

Addressing class imbalance

- We have to change cost function: False negatives (= classify face as background) expensive.
- Consequence: Training algorithm will focus on keeping proportion of false negatives small.
- ▶ Problem: Will result in many false positives (= background classified as face).

Cascade approach

- ▶ Use many classifiers linked in a chain structure ("cascade").
- ► Each classifier eliminates part of the negative class.
- ▶ With each step down the cascade, class sizes become more even.

CLASSIFIER CASCADES

Training a cascade

Use imbalanced loss (very low false negative rate for each f_j).

- 1. Train classifier f_1 on entire training data set.
- 2. Remove all $\tilde{\mathbf{x}}_i$ in negative class which f_1 classifies correctly from training set.
- 3. On smaller training set, train f_2 .
- 4. ...
- 5. On remaining data at final stage, train f_k .

Classifying with a cascade

- ► If any f_j classifies **x** as negative, $f(\mathbf{x}) = -1$.
- ► Only if all f_j classify **x** as positive, $f(\mathbf{x}) = +1$.

WHY DOES A CASCADE WORK?

We have to consider two rates

false positive rate
$$FPR(f_j) = \frac{\text{\#negative points classified as "+1"}}{\text{\#negative training points at stage } j}$$
$$detection rate \qquad DR(f_j) = \frac{\text{\#correctly classified positive points}}{\text{\#positive training points at stage } j}$$

We want to achieve a low value of FPR(f) and a high value of DR(f).

Class imbalance

In face detection example:

- ▶ Number of faces classified as background is (size of face class) \times (1 − DR(f))
- ▶ We would like to see a decently high detection rate, say 90%
- Number of background patches classified as faces is (size of background class) × (FPR(f))
- ightharpoonup Since background class is huge, FPR(f) has to be *very* small to yield roughly the same amount of errors in both classes.

WHY DOES A CASCADE WORK?

Cascade detection rate

The rates of the overall cascade classifier f are

$$FPR(f) = \prod_{j=1}^{k} FPR(f_j) \qquad DR(f) = \prod_{j=1}^{k} DR(f_j)$$

- ▶ Suppose we use a 10-stage cascade (k = 10)
- ▶ Each $DR(f_j)$ is 99% and we permit $FPR(f_j)$ of 30%.
- ► We obtain $DR(f) = 0.99^{10} \approx 0.90$ and $FPR(f) = 0.3^{10} \approx 6 \times 10^{-6}$