Алгоритми та структури даних. Основи алгоритмізації

Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних. Основи алгоритмізації»

«Дослідження ітераційних циклічних алгоритмів» Варіант <u>28</u>

Виконав студент	ент <u> </u>		
	(шифр, прізвище, ім'я, по батькові)		
Перевірив			
	(прізвище, ім'я, по батькові)		

Алгоритми та структури даних. Основи алгоритмізації

Лабораторна робота 3

Дослідження ітераційних циклічних алгоритмів

Мета — дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Індивідуальне завдання

Варіант 28

Постановка задачі

Дано дійсне а > 0. Послідовність х0, х1, ... утворена за законом

$$x_0 = \begin{cases} min(2a, 0.95), & a \le 1 \\ a/5, & 1 < a < 25, \\ a/25, & \text{інакше} \end{cases}$$

$$x_n = \frac{4}{5}x_{n-1} + \frac{a}{5x_{n-1}^4}, \quad n = 1, 2, \dots.$$

Розробити алгоритм, псевдокод та блок-схему, щоб Знайти перший член хп, для якого виконується нерівність $\frac{5}{4}a|x_{n+1}-x_n|<10^6$. та обчислити для знайденого значення x_n різницю $a-x_n^5$.

Побудова математичної моделі

Змінна	Тип	Ім'я	Призначення
Задане число	Дійсний, а>0	а	Вхідні дані
Число = 2а	Дійсний	b	Проміжні дані
Число = 10^-6	Дійсний	q	Проміжні дані
xn-1, послідовність	Дійсний	xn0	Проміжні дані
xn, послідовність	Дійсний	xn1	Проміжні дані
xn+1, послідовність	Дійсний	xn2	Проміжні дані
Результат, перший xn, який < 10^-6	Дійсний	xfn	Вихідні дані
результат, різниця a – xn^5	Дійсний	r	Вихідні дані

^{*«^» -} знак піднесення до степеня.

Послідовність xn-1, xn, xn+1, ... це послідовність x0, x1, x2,

Для позначення наступних xn у формулі ми будемо використовувати цикл з передумовою, змінюючи кожне xn на наступне(тобто xn+1) методом присвоєння попередньому значенню наступного.

У роботі потрібно використовувати модуль та піднесення до степеня. Для позначення модуля у псевдокоді будемо використовувати функцію abs() та для позначення піднесення до степеня використовувати функцію pow(). Також у роботі використовуються оператори «<=» - менше або рівно, «<» - менше, «>» - більше,

«^» - знак піднесення до степеня, «&&» - «і», позначення для виконання обох умов одночасно.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію знаходження х0, при введенні а.

Крок 3. Деталізуємо дію знаходження першого члена xn, який менший ніж 10^-6.

Крок 4. Обчислимо для знайденого значення xn різницю $a-xn^5$, та виведення результатів.

Псевдокод

крок 1

початок

введення змінної а

```
знаходження х0
```

знаходження першого члена xn, який менший ніж 10^-6 обчислення для знайденого значення xn різницю а–xn^5 та виведення результатів.

кінець

```
крок 2
```

початок

ввід а

якщо a<=1

TO

b=2*a

якщо b<0.95

TO

xn0=b

інакше

```
xn0=0.95
 інакше
  якщо 1<a && a<25
   TO
    xn0=a/5
  інакше
   xn0=a/25
знаходження першого члена хп, який менший ніж 10^-6
обчислення для знайденого значення xn різницю а – xn^5
та виведення результатів.
кінець
крок 3
початок
ввід а
 якщо a<=1
  TO
   b=2*a
  якщо b<0.95
   TO
    xn0=b
   інакше
    xn0=0.95
 інакше
  якщо 1<a && a<25
   TO
    xn0=a/5
  інакше
   xn0=a/25
q=pow(10,-6)
повторити
 xn1=(4/5)*xn0+a/(5*pow(xn0,4))
```

```
xn2=(4/5)*xn1+a/(5*pow(xn1,4))
 xfn=(5/4)*a*abs(xn2-xn1)
 xn0=xn1
 xn1=xn2
поки xfn>q
все повторити
обчислення для знайденого значення хп різницю а – хп^5
та виведення результатів.
кінець
крок 4
початок
введення а
 якщо a<=1
  то
   b=2*a
  якщо b<0.95
   то
    xn0=b
   інакше
    xn0=0.95
 інакше
  якщо 1<a && a<25
   то
    xn0=a/5
  інакше
   xn0=a/25
q=pow(10,-6)
повторити
 xn1=(4/5)*xn0+a/(5*pow(xn0,4))
 xn2=(4/5)*xn1+a/(5*pow(xn1,4))
 xfn=(5/4)*a*abs(xn2-xn1)
```

xn0=xn1 xn1=xn2 поки xfn>q

все повторити

r=a-pow(xfn,5) виведення xfn та r

кінець

Блок-схема

Випробування

Блок	Дія
	Початок
1	a=90.7
2	xn0=3.628
3	xn1=3.0071
4	xn2=2.62753
5	xfn=43.048
6	xn0=3.00711
7	xn1=2.62753
8	xn2=2.4826
9	xfn=16.4305
10	xn0=2.62753
11	xn1=2.4826
12	xn2=2.46362
13	xfn=2.15218
14	xn0=2.4826
15	xn1=2.46362
16	xn2=2.46332
17	xfn=0.0336803
18	xn0=2. 46362
19	xn1=2.46332
20	xn2=2.46332
21	xfn=0
28	xfn=0
29	r=90.7
	Кінець

Блок	Дія
	Початок
1	a=0.45
2	xn0=0.9
3	xn1=0.857174
4	xn2=0.852451
5	xfn=0.00265676
6	xn0=0.857174
7	xn1=0.852451
8	xn2=0.852398
9	xfn=2.97725*10^-5
10	xn0=0.852451
11	xn1=0.852398
12	xn2=0.852398
13	xfn=0

14	xfn=0
15	r=0.45
	Кінець

Висновки

На цій лабораторній роботі дослідили подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій. В результаті виконання лабораторної роботи МИ отримали алгоритм обчислювання послідовності, для знаходження першого члена послідовності який менший ніж 10^-6 та різницю між а та цим числом, при цьому розділили виконання задачи на 4 кроки: визначення основних дій, деталізування дії знаходження х0, при введенні а, деталізування дії знаходження першого члена хп, який менший ніж 10^-6, обчислення для знайденого значення xn різниці а та xn, та виведення результатів та виведення результату. В процесі випробування ми розглянули два випадки і отримали результати виведення 0 і 90.7 у першому, та 0 і 0.45 у другому. Алгоритм ефективен та результативен, при введенні а він обчислює послідовність і різницю та видає результат.