Definitions

Inverse trigonometric functions. The following are examples of what are called inverse trigonometric functions.

- On the restricted domain $[-\pi/2, \pi/2]$ the function $f(x) = \sin x$ is one-to-one, with range [-1,1]. The inverse function of f restricted to this domain is called the **arcsine function**, denoted $f^{-1}(x) = \arcsin x$.
- On the restricted domain $[0, \pi]$ the function $g(x) = \cos x$ is one-to-one, with range [-1, 1]. The inverse function of g restricted to this domain is called the **arccosine function**, denoted $g^{-1}(x) = \arccos x$.
- On the restricted domain $(-\pi/2, \pi/2)$ the function $h(x) = \tan x$ is one-to-one, with range $(-\infty, \infty)$. The inverse function of h restricted to this domain is called the **arctangent** function, denoted $h^{-1}(x) = \arctan x$.

Comment. Occasionally an alternative notation is used to denote inverse trig functions: namely,

$$\arcsin x = \sin^{-1} x$$
 $\arccos x = \cos^{-1} x$ $\arctan x = \tan^{-1} x$.

We will avoid this alternative notation as it misleadingly suggests these inverse trigonometric functions are *reciprocals* of the corresponding trigonometric functions. They are not!

Theory

Properties of inverse trigonometric functions.

• The function arcsin is an increasing function with domain [-1,1] and range $[0,\pi]$. It satisfies the following properties:

$$\arcsin(x) = \theta \iff \sin \theta = x \text{ and } -\pi/2 \le \theta \le \pi/2$$

 $\arcsin(\sin \theta) = \theta \text{ for all } -\pi/2 \le \theta \le \pi/2$
 $\sin(\arcsin x) = x \text{ for all } -1 \le x \le 1.$

• The function arccos is a decreasing function with domain [-1,1] and range $[0,\pi]$. It satisfies the following properties:

$$\arccos(x) = \theta \iff \cos \theta = x \text{ and } 0 \le \theta \le \pi$$

 $\arccos(\cos \theta) = \theta \text{ for all } 0 \le \theta \le \pi$
 $\cos(\arccos x) = x \text{ for all } -1 \le x \le 1.$

• The function arctan is an increasing function with domain $(-\infty, \infty)$ and range $(-\pi/2, \pi/2)$. It satisfies the following properties:

$$\arctan(x) = \theta \iff \tan \theta = x \text{ and } -\pi/2 < \theta < \pi/2$$

$$\arctan(\tan \theta) = \theta \text{ for all } -\pi/2 < \theta < \pi/2$$

$$\tan(\arctan x) = x \text{ for all } x$$

$$\lim_{x \to \infty} \arctan x = \pi/2, \ \lim_{x \to -\infty} \arctan x = -\pi/2$$

Derivative formulas for inverse trigonometric functions. The following derivative/antiderivative formulas hold:

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \iff \int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C \qquad \text{(for all } x \text{ in } (-1,1))$$

$$\frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}} \iff \int \frac{1}{\sqrt{1-x^2}} dx = -\arccos x + C \qquad \text{(for all } x \text{ in } (-1,1)\text{)}$$

$$\frac{d}{dx}\arctan x = \frac{1}{1+x^2} \iff \int \frac{1}{1+x^2} dx = \arctan x + C$$
 (for all x).

Examples

- 1. Compute the following values of trigonometric functions by hand.
 - (a) $\arcsin(-1)$
 - (b) $\arccos(-\sqrt{2}/2)$
 - (c) $\arctan(-1/\sqrt{3})$
 - (d) $\arcsin\left(\sin\left(\frac{10\pi}{11}\right)\right)$

Hint. The answer is not $10\pi/11$.

- 2. Find all solutions to the following trigonometric equations lying within the interval $[0, 2\pi]$. You may express your answer in terms of values of inverse trigonometric functions.
 - (a) $3\sin 2\theta + 4 = 6$
 - (b) $\tan(\theta + \pi) = -10$
- 3. Find the equation of the tangent line to $f(x) = \arccos x$ at x = 1/2.
- 4. Compute $\lim_{x\to 1^-} \frac{\arccos(x^2)}{\sqrt{1-x}}$
- 5. Compute $\int \frac{x+1}{\sqrt{1-(x+2)^2}} dx.$