Week 3 - Codebook

October 15, 2025

1 Week 3: Clean and Merge Data

In Week 2, we combined individual raw data files into one comprehensive table. Now, we will merge this table with additional data, such as demographics, to prepare for analysis.

Currently, the table is in **long** format: time points are nested within each trial, and trials are nested within each subject (see figure for wide vs long formats).

This lesson will cover: 1. Basic data cleaning 2. Converting between long and wide data formats 3. Merging with a separate demographic table 4. Aggregating the data table 5. Using plots for data validation

Wide Format

Team	Points	Assists	Rebounds
А	88	12	22
В	91	17	28
С	99	24	30
D	94	28	31

Long Format

Team	Variable	Value
Α	Points	88
Α	Assists	12
Α	Rebounds	22
В	Points	91
В	Assists	17
В	Rebounds	28
С	Points	99
С	Assists	24
С	Rebounds	30
D	Points	94
D	Assists	28
D	Rebounds	31

Courtesy of Statology

1.1 Clean the entire workspace

[]: rm(list=ls())

1.2 Load required libraries

1.3 Theme defaults

1.4 Read data

I previously saved the parent data set as a .csv I am now reading it in here.

```
[]: data.all=read.csv("raw.data.all.csv")
head(data.all)
# data.all
```

```
VT
                         Χ
                                          Rf
                                                                  VE
                                                                             VO2
                                                                                        Sub
                                                                                                 trial
                                                                             <dbl>
                         <int>
                                 <int>
                                          <dbl>
                                                     <dbl>
                                                                  <dbl>
                                                                                        < chr >
                                                                                                 <chr>
                                                                 \overline{13.97876}
                                 2
                                          18.51852
                                                     0.7548531
                                                                             408.6987
                                                                                        Sub1
                        1
                                                                                                 rest
                        2
                                 5
                                          20.97902
                                                     0.5538989
                                                                 11.62026
                                                                            304.7868
                                                                                       Sub1
                                                                                                 rest
A data.frame: 6 \times 8
                     3
                        3
                                 8
                                                                            347.7043
                                          18.23708
                                                     0.7058896 \quad 12.87337
                                                                                       Sub1
                                                                                                 rest
                        4
                     4
                                 10
                                          25.53191
                                                     0.7823950 \quad 19.97604
                                                                            614.8135
                                                                                       Sub1
                                                                                                 rest
                     5
                                 13
                                          21.97802
                                                     0.4957548 \quad 10.89571
                                                                             253.6431
                                                                                        Sub1
                                                                                                 rest
                                 16
                                          18.92744 0.7874953 14.90527
                                                                            437.0967
                                                                                       Sub1
                                                                                                 rest
```

1.5 Start by visualizing

Plots across the time series by subject

```
[]: options(repr.plot.width = 12, repr.plot.height = 10)
ggplot(data.all,aes(x=t,y=VO2,color=trial))+
    geom_point()+
    geom_line()+
    facet_wrap(~Sub) + thm
```


1.6 Some initial issues

1.6.1 Issue 1: R naming convention

R still thinks my subjects are listed based on the value of the first integer. We need to change this first so it displays numerically.

```
"Sub13"))

#This is more desireable anyway because a factor class is treated as a categorical variable

# when you run regressions or other statistical analyses.

class(data.all$Sub)

levels(data.all$Sub)
```

Note that at present the Sub variable is of character class. So, when you look for the levels of this variable, you see the output as being NULL, as character class does not have levels.**

'character'

NUI.I.

But I can convert it to a factor. This factor now has levels, and I can set the ordering for this variable as I want them to be.**

'factor'

- 1. 'Sub1' 2. 'Sub2' 3. 'Sub3' 4. 'Sub4' 5. 'Sub5' 6. 'Sub6' 7. 'Sub7' 8. 'Sub8' 9. 'Sub9' 10. 'Sub10' 11. 'Sub11' 12. 'Sub12' 13. 'Sub13'
- 1.6.2 visualize again after fixing this issue

```
[]: #Fixed
ggplot(data.all,aes(x=t,y=V02,color=trial))+
   geom_point()+
   geom_line()+
   facet_wrap(~Sub) + thm
```


1.6.3 Issue 2: Inconsistent number of points across trials

Sub 2 took way more time than everyone else on trial 5. I am going to assume that doesn't warrant throwing that subjects data out, and instead I will just trim the excess away.

To do that, let's first see how much of the extra to remove. Let's look at how long all subject's trial 5 was. The function aggregate will provide some summary stat based on how I want the dataset aggregated. Here I just want the max time for trial 5 across all subjects. To reduce the output I just index the data.all to only include trial 5. Looks like Sub 2 did 873 seconds, and everyone else did ~ 440

```
[]: aggregate(t~Sub,data.all[data.allstrial=="trial 5",],max) #%>% mutate(a = → median(.$t))
```

```
Sub
                              t
                      <fct>
                              <int>
                      Sub1
                              436
                      Sub2
                              873
                      Sub3
                              437
                      Sub4
                              449
                      Sub5
                              443
A data.frame: 12 \times 2
                      Sub6
                              468
                      Sub7
                              441
                      Sub8
                              433
                      Sub9
                              433
                      Sub10
                              436
                      Sub11
                              433
                      Sub13
                              435
```

1.6.4 trim the data

I am going to remove all t for Sub 2 greater than 440. I am going to use a method called negation !(). Here I put in a bunch of boolean arguments into () and then preced it with a !. This removes all the rows in my dataset that match these conditions.

Note that if I removed the !() it would only return the trial 5, for Sub2 with t > 440

using base R

		X	\mathbf{t}	Rf	VT	VE	VO2	Sub	trial
		<int></int>	<int $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<fct $>$	<chr $>$
	1	1	2	18.51852	0.7548531	13.97876	408.6987	Sub1	rest
A data.frame: 6×8	2	2	5	20.97902	0.5538989	11.62026	304.7868	Sub1	rest
A data.name. 0 × 6	3	3	8	18.23708	0.7058896	12.87337	347.7043	Sub1	rest
	4	4	10	25.53191	0.7823950	19.97604	614.8135	Sub1	rest
	5	5	13	21.97802	0.4957548	10.89571	253.6431	Sub1	rest
	6	6	16	18.92744	0.7874953	14.90527	437.0967	Sub1	rest

using dplyr

		X	t	Rf	VT	VE	VO2	Sub	trial
		<int $>$	<int $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl></dbl>	<fct $>$	<chr $>$
A data frame: 6×8	1	1	2	18.51852	0.7548531	13.97876	408.6987	Sub1	rest
	2	2	5	20.97902	0.5538989	11.62026	304.7868	Sub1	rest
A data.name. 0 × 6	3	3	8	18.23708	0.7058896	12.87337	347.7043	Sub1	rest
	4	4	10	25.53191	0.7823950	19.97604	614.8135	Sub1	rest
	5	5	13	21.97802	0.4957548	10.89571	253.6431	Sub1	rest
	6	6	16	18.92744	0.7874953	14.90527	437.0967	Sub1	rest

1.6.5 visualize again after fixing the issue

```
[]: #Fixed
ggplot(data.all2,aes(x=t,y=VO2,color=trial))+
    geom_point()+
    geom_line()+
    facet_wrap(~Sub) + thm

#I could repeat this process again but let's move on.
```


1.7 Pivoting: Converting data tables from long to wide format and vice versa

Now I am going to convert the data from long to wide format using the pivot functions in the tidyr library. This can be useful if I want to look at correlations between my behavioral variables. There are various situations where one format is preferable to others. **Note**: when in doubt, remember the tidy data format; each row is an independent observation and each column is a variable of interest. You should never stack numbers along rows of a column that do not share the same units.

1.7.1 First, I am going to create an aggregate of the data

This creates a summarized data set across our 4 outcome variables average across time for each subject for each trial

```
[]: # using base R:
    display_markdown("**using base R**")
    data.agg = aggregate(cbind(VO2,Rf,VE,VT) ~ trial + Sub, data.all2, mean)
    head(data.agg)

# using dplyr:
    display_markdown("**using dplyr**")
    data.all2 %>%
        group_by(Sub, trial) %>%
        summarize(across(c(VO2, Rf, VE, VT), mean), .groups = "drop") -> data.agg
    head(data.agg)
    dim(data.agg)
```

using base R

		trial	Sub	VO2	Rf	VE	VT
		<chr></chr>	<fct $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$
	1	rest	Sub1	340.4917	18.01353	12.45402	0.6969207
A data.frame: 6×6	2	trial 1	Sub1	1303.5808	30.71848	30.52191	0.9942740
A data.frame: 0×0	3	trial 2	Sub1	995.2381	26.19241	26.57332	1.0231692
	4	trial 3	Sub1	2406.8231	39.76738	54.23449	1.3645677
	5	trial 4	Sub1	1630.8077	32.55784	39.19033	1.2078367
	6	trial 5	Sub1	996.5392	31.26921	25.57869	0.8297402

using dplyr

	Sub	trial	VO2	Rf	VE	VT
	<fct $>$	<chr $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$
	Sub1	rest	340.4917	18.01353	12.45402	0.6969207
A tibble 6 v 6	Sub1	trial 1	1303.5808	30.71848	30.52191	0.9942740
A tibble: 6×6	Sub1	trial 2	995.2381	26.19241	26.57332	1.0231692
	Sub1	trial 3	2406.8231	39.76738	54.23449	1.3645677
	Sub1	trial 4	1630.8077	32.55784	39.19033	1.2078367
	Sub1	trial 5	996.5392	31.26921	25.57869	0.8297402

1.892.6

1.7.2 Next, let's "pivot" the data frame to a wide format

along the trial variable

	Sub	$VO2_rest$	$VO2_trial\ 1$	$VO2_trial~2$	$VO2_trial~3$	$VO2_trial~4$	$VO2_trial~5$
	<fct $>$	<dbl $>$	<dbl></dbl>	<dbl></dbl>	<dbl $>$	<dbl $>$	<dbl $>$
	Sub1	340.4917	1303.5808	995.2381	2406.823	1630.8077	996.5392
A tibble: 6×29	Sub2	425.3084	1323.6394	1020.4479	2078.080	1496.5663	871.1348
A tibble: 0 × 29	Sub3	420.5079	1051.5241	784.2673	1573.928	1092.0823	826.5741
	Sub4	551.1862	1386.2685	1138.2881	2072.835	1515.1282	1045.7354
	Sub5	NA	1240.8729	1010.5470	2211.938	1523.3187	1021.5176
	Sub6	260.5606	859.7148	672.5981	1380.404	905.8012	668.0126

1.7.3 Visualizing correlations across trials using the wider format data

```
[]: #create a correlation matrix with only comlete observations,
#Can only include numeric variables.
cmat=cor(data.agg.wide[,-1],use="complete.obs")

#Let's visualize the correlations.
corrplot(cmat) + theme_minimal() + thm
```

NULL

1.7.4 Now, let's pivot back to the long format

	Sub	trial	VO2	Rf	VE	VT
	<fct $>$	<chr $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$
•	Sub1	rest	340.4917	18.01353	12.45402	0.6969207
A tibble: 6×6	Sub1	trial 1	1303.5808	30.71848	30.52191	0.9942740
A tibble: 0×0	Sub1	trial 2	995.2381	26.19241	26.57332	1.0231692
	Sub1	trial 3	2406.8231	39.76738	54.23449	1.3645677
	Sub1	trial 4	1630.8077	32.55784	39.19033	1.2078367
	Sub1	trial 5	996.5392	31.26921	25.57869	0.8297402

1.8 Merge with Demographics

Now that we have our data in a variety of formats we can now merge it with the demographic data.

	Subject No	Age	Reported Weight (kg)	Reported Length (cm)	Gender	Level Slow	L
	<chr $>$	<dbl $>$	<dbl></dbl>	<dbl></dbl>	<chr $>$	<dbl></dbl>	<
_	Sub1	26	86	185	M	885.5529	89
A tibble: 6×8	$\mathrm{Sub2}$	28	77	178	\mathbf{F}	767.7686	76
A tipple: 0×6	Sub3	21	52	170	M	530.6408	55
Sub_4	Sub4	25	73	168	M	NA	Ν
	Sub5	34	86	173	M	878.6303	89
	Sub6	19	54	160	\mathbf{F}	553.4936	55

1.8.1 merging the demo data to the aggregate data in the long format

Note that if the names of the reference variable (in this case subject ID) by which the two data frames are being merged are different then we have to call that explicitly.

		Sub	trial	VO2	Rf	VE	VT	Age	Reported We
		<fct></fct>	<chr $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$
-	1	Sub1	rest	340.4917	18.01353	12.45402	0.6969207	26	86
A data.frame: 6×13	2	Sub1	trial 1	1303.5808	30.71848	30.52191	0.9942740	26	86
A data. Hallie: 0×15	3	Sub1	trial 2	995.2381	26.19241	26.57332	1.0231692	26	86
	4	Sub1	trial 3	2406.8231	39.76738	54.23449	1.3645677	26	86
	5	Sub1	trial 4	1630.8077	32.55784	39.19033	1.2078367	26	86
	6	Sub1	trial 5	996.5392	31.26921	25.57869	0.8297402	26	86

1.8.2 merging the demo data to the aggregate data in the wide format

See how the demographic variables in the table above repeat themselves over the different trials for each subject. This is because the merge() function identifies that each subject has only 1 number for weight or height but it has 7 rows of trial-wise data. So it repeats them over these 7 rows. What type of table would be ideal to merge with the demographic table?...where all of the trials for one subject are in a single row? The wide format!

So, let's combine the demographic data with our previously created data.agg.wide dataframe.

```
[]: demo.data_wide = merge(data.agg.wide,demo,by.x = "Sub",by.y = "Subject No") head(demo.data_wide)
```

	Sub	$VO2_rest$	$VO2_trial\ 1$	$VO2_trial~2$	$VO2_trial~3$	$VO2_trial~4$	$VO2_{_}$
	<fct></fct>	<dbl $>$	<dbl $>$	<dbl $>$	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	Sub1	340.4917	1303.5808	995.2381	2406.823	1630.808	996.53
2	Sub10	430.0402	1181.1066	879.9850	1776.831	1350.246	929.54
3	Sub11	299.8132	1441.6617	1114.7714	1836.072	1502.942	1039.9
4	Sub12	318.8275	1100.9149	795.6721	1901.475	1332.632	NA
5	Sub13	289.7562	986.0555	732.9015	1458.078	1126.762	733.74
6	Sub2	425.3084	1323.6394	1020.4479	2078.080	1496.566	871.13
	5	<pre> <fct> 1 Sub1 2 Sub10 3 Sub11 4 Sub12 5 Sub13</fct></pre>	<fct>< dbl> 1 Sub1 340.4917 2 Sub10 430.0402 3 Sub11 299.8132 4 Sub12 318.8275 5 Sub13 289.7562</fct>	<fct> <dbl> 1 Sub1 340.4917 1303.5808 2 Sub10 430.0402 1181.1066 3 Sub11 299.8132 1441.6617 4 Sub12 318.8275 1100.9149 5 Sub13 289.7562 986.0555</dbl></fct>	<fct> <dbl> <dbl> 1 Sub1 340.4917 1303.5808 995.2381 2 Sub10 430.0402 1181.1066 879.9850 3 Sub11 299.8132 1441.6617 1114.7714 4 Sub12 318.8275 1100.9149 795.6721 5 Sub13 289.7562 986.0555 732.9015</dbl></dbl></fct>	<fct> <dbl> <dbl> <dbl> 1 Sub1 340.4917 1303.5808 995.2381 2406.823 2 Sub10 430.0402 1181.1066 879.9850 1776.831 3 Sub11 299.8132 1441.6617 1114.7714 1836.072 4 Sub12 318.8275 1100.9149 795.6721 1901.475 5 Sub13 289.7562 986.0555 732.9015 1458.078</dbl></dbl></dbl></fct>	<fct>< dbl> <dbl> <dbl> <dbl> 1 Sub1 340.4917 1303.5808 995.2381 2406.823 1630.808 2 Sub10 430.0402 1181.1066 879.9850 1776.831 1350.246 3 Sub11 299.8132 1441.6617 1114.7714 1836.072 1502.942 4 Sub12 318.8275 1100.9149 795.6721 1901.475 1332.632 5 Sub13 289.7562 986.0555 732.9015 1458.078 1126.762</dbl></dbl></dbl></fct>

1.8.3 now let's plot one of the demographic variables against one of the metabolic variables

We're plotting weight against VO2 from trial 3. You see how a wide data format can be useful for correlations and scatterplots of this type where 1 row has data unique to 1 subject.

```
[]: options(repr.plot.width = 6, repr.plot.height = 6)
ggplot(data = demo.data_wide, aes(x = `Weight from force plates(kg)`,y = 

→ `VO2_trial 3`)) +
geom_point(size = 4) + geom_smooth(method = "lm", formula = y~x) + 

→ theme_minimal() + thm
```

```
Warning message:
```

"Removed 1 row containing non-finite outside the scale range (`stat_smooth()`)."

Warning message:

"Removed 1 row containing missing values or values outside the scale range

(`geom_point()`)."

1.8.4 Let's pivot the aggregate data again to look at all variables in one column

Sub	trial	Age	Reported Weight (kg)	Reported Length (cm)	Gender	Level Slov
<fct $>$	<chr $>$	<dbl $>$	<dbl></dbl>	<dbl></dbl>	<chr $>$	<dbl></dbl>
Sub1	rest	26	86	185	M	885.5529
Sub1	rest	26	86	185	M	885.5529
Sub1	rest	26	86	185	M	885.5529
Sub1	rest	26	86	185	M	885.5529
Sub1	trial 1	26	86	185	M	885.5529
Sub1	trial 1	26	86	185	M	885.5529
	<fct>Sub1 Sub1 Sub1 Sub1 Sub1 Sub1</fct>	<fct><chr>Sub1restSub1restSub1restSub1restSub1trial 1</chr></fct>	<fct> <chr> <dbl> Sub1 rest 26 Sub1 rest 26 Sub1 rest 26 Sub1 rest 26 Sub1 trial 1 26</dbl></chr></fct>	<fct> <chr> <dbl> Sub1 rest 26 86 Sub1 rest 26 86 Sub1 rest 26 86 Sub1 rest 26 86 Sub1 trial 1 26 86</dbl></chr></fct>	<fct> <dbl> <dbl> Sub1 rest 26 86 185 Sub1 trial 1 26 86 185 Sub1 trial 1 26 86 185</dbl></dbl></fct>	<fct> <chr> <dbl> <th< td=""></th<></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></chr></fct>

1. 356 2. 11

```
[]: options(repr.plot.width = 16, repr.plot.height = 8)
    ggplot(demo.data.var.long,aes(x=trial,Value,color=Gender))+
        geom_boxplot()+
        facet_wrap(~Variable,scales = "free") + thm
```


1.9 The End