This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

INDEX

DETAIL

NFXT

1/3

PATENT ABSTRACTS OF JAPAN

(11)Publication number: 10319954

(43)Date of publication of application: 04.12.1998

(51)Int.CI.

G10H 1/00 G10H 1/18 G10H 1/32

(21)Application number: 09132659

(71)Applicant:

YAMAHA CORP

(22)Date of filing: 22.05.1997

(72)Inventor:

HIRAMATSU MIKISUKE

(54) MUSICAL SOUND GENERATING ALGORITHM SETTING DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To automatically conduct the setting in accordance with the functions of the plug-in boards of an electronic musical instrument.

SOLUTION: A CPU 101, which controls the musical instrument, asks for the information relative to the kinds (an insertion effect, a single part sound source, a system.effect or a multipart sound source) against plug-in boards 191 to 199 when the power supply is turned on. When the answers are obtained from the plug-in boards 191 to 199, the plug-in boards are assigned to the prescribed portions on the musical sound generating algorithm.

LEGAL STATUS

[Dat of requist for xamination]
[Date if sinding the examiner's decision if rejection]
[Kind of final disposal if application ther than the xaminer's decision of rejection or application converted registration]
[Date if final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998 Japanese Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11) 許出顧公開番号

特開平10-319954

(43)公開日 平成10年(1998)12月4日

(51) Int.CL.6		識別記号	FI		
G10H	1/00		.G10H	1/00	Z
	1/18			1/18	Z
	1/32			1/32	Z

審査請求 未請求 請求項の数4 OL (全 20 頁)

(21)出願番号	特顯平9 -132659	(71)出顧人	000004075 ヤマハ株式会社	
(22)出顧日	平成9年(1997)5月22日	静岡県浜松市中沢町10番1号		
		(72)発明者	平松 幹祐 静岡県浜松市中沢町10番1号 ヤマハ株式 会社内	
		(74)代理人	弁理士 川▲崎▼ 研二 (外1名)	

(54) 【発明の名称】 楽音生成アルゴリズム設定装置

(57)【要約】

【課題】 電子楽器において、プラグインボードの機能に応じた設定を自動的に行う。

【解決手段】 電子楽器を制御するCPU101は、電源投入時に各プラグインボード191~199に対して、その種類(インサーションエフェクト、シングルパート音源、システム・エフェクトあるいはマルチパート音源)を問い合わせる。プラグインボード191~199からその回答が得られた場合は、楽音生成アルゴリズム上の所定箇所にこれらプラグインボードが割り当てられる。

【特許請求の範囲】

【請求項1】 増設ボードと接続されるコネクタと、 該コネクタに接続された増設ボードから該増設ボードの 種類を特定する信号を受信し、この受信結果に応じて楽 音生成アルゴリズムを設定するアルゴリズム設定手段と を具備することを特徴とする楽音生成アルゴリズム設定

【請求項2】 前記増設ボードの種類を特定する信号 は、少なくとも前記増設ボードが音源であるかエフェク タであるかを区別することを特徴とする請求項1記載の 楽音生成アルゴリズム設定装置。

【請求項3】 前記増設ボードの種類を特定する信号 は、前記増設ボードが単一パートに対するものであるか 複数パートに対するものであるかを区別することを特徴 とする請求項2記載の楽音生成アルゴリズム設定装置。

【請求項4】 前記アルゴリズムは、楽音信号を発生す る複数のパートと、必要に応じて何れかのパートに対応 して設けられるインサーションエフェクトと、前記複数 のパートの楽音信号をミキシングするグループと、前記 何れかのグループに対応して設けられるシステム・エフ ェクトとを有するシグナルフローを形成することを特徴 とする請求項1記載の楽音生成アルゴリズム設定装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電子楽器に用いて 好適な楽音生成アルゴリズム設定装置に関する。

[0002]

【従来の技術】従来より、本体のマザーボードの拡張ス ロットに各種のプラグインボードを装着できる電子楽器 が知られている。ここにマザーボードとは電子楽器に最 30 初から備えられているメインの基板であり、プラグイン ボードが装着されていない場合であっても基本的な機能 を実現できる。一方、プラグインボードは、後からマザ ーポードに装着可能な追加基板であって、上記基本的な 機能に新たな機能を追加することができる。例えば、音 源ボードによって発音可能な音色数を増加することがで き、エフェクトポードによって選択可能なエフェクトの 種類を増加させることができる。

[0003]

【発明が解決しようとする課題】しかし、従来の電子楽 40 器においては、プラグインボードを装着するための拡張 が音源専用スロット、エフェクト専用スロットのように 区別されており、プラグインボードを任意の位置に挿入 することは不可能であった。なお、一般のパーソナルコ ンピュータにおいては、汎用の拡張スロットに各種ボー ドを装着できるようになっており、CD-ROMドライ ブやフロッピーディスクドライブ等から必要なソフトウ エアをインストールしてプラグインボードを動作させる ことができる。従って、電子楽器にもこのような手法を

Mドライブやフロッピーディスクドライブ等の補助記憶 装置を設けることはコストアップになる。

【0004】また、音源のシステムは、楽音を発生する プロック、発生した楽音をミキシングするプロック、ミ キシングされた楽音に対してエフェクトを付与するプロ ック等で構成されており、その中の任意の位置にプラグ インボードを組み込むことも不可能であった。この発明 は上述した事情に鑑みてなされたものであり、拡張スロ ットの汎用性を高めることを第1の目的としている。ま た、楽音生成アルゴリズムの自由度を高めることを第2 の目的としている。

[0005]

【課題を解決するための手段】上記課題を解決するため 請求項1記載の構成にあっては、増設ボードと接続され るコネクタと、該コネクタに接続された増設ボードから 該増設ボードの種類を特定する信号 (PbTypeMsb) を受 信し、この受信結果に応じて楽音生成アルゴリズムを設 定する(シグナルフローにおける増設ボードの位置を設 定する) アルゴリズム設定手段とを具備することを特徴 とする。

【0006】さらに、請求項2記載の構成にあっては、 請求項1記載の楽音生成アルゴリズム設定装置におい て、前記増設ボードの種類を特定する信号は、少なくと も前記増設ボードが音源であるかエフェクタであるかを 区別することを特徴とする。

【0007】さらに、請求項3記載の構成にあっては、 請求項2記載の楽音生成アルゴリズム設定装置におい て、前記増設ボードの種類を特定する信号は、前記増設 ボードが単一パートに対するものであるか複数パートに 対するものであるかを区別することを特徴とする。

【0008】さらに、請求項4記載の構成にあっては、 請求項1記載の楽音生成アルゴリズム設定装置におい て、前記アルゴリズムは、楽音信号を発生する複数のパ ートと、必要に応じて何れかのパートに対応して設けら れるインサーションエフェクトと、前記複数のパートの 楽音信号をミキシングするグループと、前記何れかのグ ループに対応して設けられるシステム・エフェクトとを 有するシグナルフローを形成することを特徴とする。

[0009]

【発明の実施の形態】

1. 実施形態の概要

1.1.プラグインボード特有のパラメータの編集 次に、本実施形態の電子楽器の概要を図6~図8を参照 し説明する。図6は、プラグインボード特有のパラメー タを編集する場合の概略フローチャートを示す。なお、 ここに言う「パラメータ」とは、音色やエフェクトを設 定するためのパラメータであり、その内容はプラグイン ボードの種別に応じて異なる。なお、図の左側のフロー はマザーボード上のCPUが実行する処理を示し、右側 採用することは可能であると考えられるが、CD-RO 50 のフローはプラグインボード上のCPUが実行する処理

3

を表している。

【0010】図において処理がステップSP101に進 むと、マザーボードにおいて対象となるプラグインボー ドが選択される。すなわち、本実施形態では複数枚数の プラグインボードを装着可能であり、そのうちのどのプ ラグインボードと通信を行うのかを指定する必要があ る。ここでは、ユーザのパネルスイッチの操作等に応じ て、一つのプラグインボードが選択される。次に、ステ ップSP102において、設定すべきパラメータを特定 するアドレス情報およびモデルIDがマザーポードからプ ラグインボードに送信される。プラグインボードにおい ては、ステップSP201においてこのアドレス情報等 が受信され、ステップSP202において、指定された パラメータの現在値がマザーボードに送信される。

【0011】マザーボードにおいて該現在値が受信され ると(ステップSP103)、本体の表示装置に該パラ メータの名称と現在値とが表示される (ステップSP1 . 04)。次に、ユーザによって、該パラメータのインク リメント/デクリメントが指定される。具体的には、ユ ーザが上記表示値を見て、電子楽器のパネル上のインク リメント/デクリメントキーを操作したことを想定して いおり、本処理ではその操作が検出される。この指定が 検出されると、マザーボードからプラグインボードに対 して、インクリメント/デクリメントの指示が送信され る(ステップSP106)。

【0012】次に、プラグインボードのステップSP2 03においてこの指示が受信されると、処理がステップ SP204に進み、プラグインボード内で上記指示に従 って、現在値の更新が行われる。その際、必要に応じて パラメータの値にリミット処理が行われるが、この処理 30 の内容はプラグインボードのみが認識していれば足り る。

【0013】現在値が更新されると、処理はステップS P205に進み、更新結果がマザーボードに送信され る。マザーボードにおいては、ステップSP107にお いてこの更新結果が受信され、ステップSP108にお いて、ユーザに対して更新結果が表示される。この一連 のフローでは、プラグインボード特有のいかなるパラメ ータであっても、電子楽器のパネル上の表示器で値を表 示することができ、かつ、パネル上のスイッチの操作に 40 より設定値のエディットを行うことが可能である。

【0014】1. 2. プラグインボード、マザーボード 共通データのパラメータの編集

次に、プラグインボードおよびマザーボードで共用され ·ているパラメータの編集処理の概要を、図7を参照し説 明する。まず、ステップSP111においては、マザー ボードによってユーザによるエディット指示が検出され る。ここで、ユーザによるエディット指示は、パネル上 のエディット関連のスイッチを操作することによって行 われる。次に、処理がステップSP112に進むと、該 50 で効率的に選択できるとともに、パネルの表示器で選択

エディット指示に基づいてパラメータの値が更新され表

【0015】次に、処理がステップSP113に進む と、更新されたパラメータのアドレス情報、モデルIDお よび設定値がプラグインボードに送信される。プラグイ ンボードにおいては、ステップSP211においてアド レス情報、モデルIDおよび設定値を受信すると、これら に基づいて、内部で記憶している設定値が更新される (ステップSP212)。以上のように、このフローに よれば、マザーボードとプラグインボードとが共通に備 えるパラメータについて、電子楽器パネル上の操作子を 操作することにより同時にエディットすることができ

【0016】1.3.プラグインボードの音色セレクト 次に、プラグインボードが音源である場合に、その音色 選択を行う処理の概要を図8を参照し説明する。図にお いて処理がステップSP121に進むと、マザーボード において対象となるプラグインボードが選択される。次 に、ステップSP122において、マザーボードからプ ラグインボードに対して音色マップ(どの音色をサポー トしているかを示すマップ)の要求が送信される。

【0017】プラグインボードにおいては、ステップS P221においてこの要求が受信され、ステップSP2 22においてマザーボードに音色マップが送信される。 マザーボードにおいては、ステップSP123において 該音色マップが受信され、ステップSP124におい て、どの音色を使用するかが指定される。すなわち、ユ ーザによるパネルのスイッチの操作が検出され、それに 応じて受信した音色マップに含まれる複数音色のうちど の音色を使用するかが指定される。次に、処理がステッ プSP125に進むと、選択された音色の音色名の要求 がプラグインボードに送信される。

【0018】プラグインボードにおいては、ステップS P223において該要求が受信されると、ステップSP 224において該音色名を表すアスキーデータがマザー ボードに送信される。一方、マザーボードにおいてはス テップSP126において該アスキーデータが受信さ れ、ステップSP127において該アスキーデータがデ ィスプレイに表示される。

【0019】また、音色を切換える必要がある場合、マ ザーボードにおいてプログラムチェンジおよびバンクセ レクトと称する信号が発行される(ステップSP12 8)。これらの信号はステップSP129においてプラ グインボードに送信される。そして、プラグインボード においては、ステップSP225においてこれらの信号 を受信し、ステップSP226において指示された音色 に切換えられる。

【0020】この一連のフローでは、プラグインボード の有している音色について、電子楽器のパネルの操作子

した音色の音色名を表示することができる。また、この フローでは、最終的に音色の切換えをプログラムチェン ジとパンクセレクトの信号によって行っている。これに より、外部から入力されるMIDI信号と同一の形態で 選択を行うことができ、パネルにおける選択と外部から の選択との統一性を保つことができる。

【0021】なお、以上の手順は音色を選択する場合に 限られず、プラグインボードの有している全てのエフェ クトデータ、波形データ、リズムデータ、自動演奏デー タ等の音楽データで選択を行う場合に広く適用すること 10 ができる。

【0022】2. 実施形態のハードウエア構成 2.1.全体構成

次に、本実施形態の電子楽器の構成を図1を参照し説明 する。図において100はマザーボードであり、191 ~199はマザーボード100に対して着脱自在のプラ グインボードである。マザーボード100の内部におい てCPU101はROM102に格納された制御プログ ラムに基づいて各部の制御を行う。103はRAMであ り、CPU101のワークメモリやデータメモリとして 用いられる。プラグインボード191~199は、それ ぞれにCPU、RAM、ROM等を具備し、マザーボー ド100のCPU101とは独立に動作しつつ各種のデ ータを交換する。

【0023】108は楽音発生器であり、CPU101 から供給された演奏情報に基づいて楽音信号を合成す る。104はDSPであり、複数チャンネルの楽音信号 に対してフィルタリング等の処理を施す。110はアナ ログ入力端子であり、ここから入力された音声信号はA /Dコンバータ109を介してデジタル信号に変換され 30 る。121~129はコネクタであり、ここにプラグイ ンボード191~199のコネクタ部と嵌合する。

【0024】107はシリアルIOポートであり、供給 されたパラレル信号をシリアル信号に変換してコネクタ 121~129に供給するとともに、コネクタ121~ 129あるいはA/Dコンバータ109を介して受信し たシリアル信号をパラレル信号に変換する。106はミ キサであり、供給された各種楽音信号をミキシングす る。なお、このミキサ106は、時分割複数チャンネル 動作によって、出力の供給先毎に異なる混合比のミキシ ングを行うものである。

【0025】ここで、ミキシングの対象となる楽音信号 は、楽音発生器108で生成された楽音信号、DSP1 04で処理された楽音信号、シリアル IOポート107 を介して供給された楽音信号である。また、ミキシング 結果は、シリアルIOポート107またはDSP104 に供給される。DSP104は複数チャンネルの楽音信 号を処理することが可能であり、そのうちの2チャンネ ルは外部への出力チャンネルになっている。

楽音信号は、フィルタリング処理が施された後、D/A コンパータ105を介してアナログ信号に変換され、サ ウンドシステム200を介して発音されることになる。 【0027】次に、111はタイマであり、CPU10 1に対してタイマ割り込みを発生させる。170はディ スクドライブであり、パス115、IOポート112を 介して供給されたデータをディスク180に記録すると ともに、ディスク180に記録されたデータを読出して IOポート112、パス115を介してCPU101、 RAM103等に出力する。

【0028】160はパネル表示器であり、10ポート 113を介して供給されたデータを表示する。また、1 50はパネルスイッチであり、ユーザによって操作可能 な各種の操作子が設けられている。例えば、ここには、 「0」~「9」の数値を入力するテンキーボード、入力 された数値を確定させるエンターキー、カーソルを上下 左右方向に移動させるカーソルキー、パネル表示器16 0の画面をスクロールさせるスクロールキー、各種パラ メータのインクリメントおよびデクリメントを指定する インクリメント/デクリメントキー等が設けられてい る。これら操作子の操作イベントや操作量はIOポート 114、バス115を介してCPU101に通知され る。

【0029】次に、118はMIDI入力端子であり、 外部MIDI機器(シーケンサ、キーボード等)からM IDI信号を受信する。117はフォトカプラであり、 MIDI入力端子118とマザーボード100内の回路 を電気的に絶縁する。フォトカプラ117から出力され る入力MIDI信号は、シリアルIOポート116を介 してCPU101に供給されるとともに、コネクタ12. 1~129を介してプラグインボード191~199に も直接供給される。すなわち、マザーボード100とプ ラグインボード191に対して同一のMIDI信号が同 一のタイミングで供給されることになる。

【0030】ここに本実施形態の特徴の一つがある。す なわち、本実施形態においては、CPU101を介さず にMIDI信号をプラグインボード191~199に供 給するため、プラグインボード191~199に対して MIDI信号の供給が遅れることを未然に防止すること ができる。換言すれば、入力されたMIDI信号はマザ ーポード100、プラグインボード191~199の双 方に供給され、双方のCPUにおいて予め設定された動 作が各々行われることになる。例えば、プラグインボー ド191でサポートされている音色がセレクトされた場 合は、プラグインボード191側では独自の判断によっ て楽音合成が行われ、マザーボード100側では独自の 判断で楽音合成が禁止されるのである。

【0031】120はドライバであり、バス115、シ リアルIOポート116を介してCPU101から供給 【0026】すなわち、該出力チャンネルに供給された 50 されたMIDI信号を増幅しMIDI出力端子119を

介して出力する。なお、プラグインボード191~199によって生成されたMIDI信号を外部に出力する必要がある場合は、該MIDI信号はシリアルIOポート116を介してCPU101に供給される。CPU101においては、マザーボード100で生成されたMIDI信号と、プラグインボード191~199で生成されたMIDI信号とが、タイミング調整後にマージされ、マージされたMIDI信号がシリアルIOポート116、ドライバ120を介して出力されることになる。【0032】2.2.チャンネル構成

次に、本実施形態のチャンネル構成を図2を参照し説明する。上述した楽音発生器108は、「16」パート (パートは「1」MIDIチャンネルに相当する)、

「64」発音チャンネルの楽音信号を発生するものであり、ミキサ106は多数の入力および出力チャンネルを有するデジタルミキサである。ミキサ106は、プラグインボード191~199に対して、入力「2」チャンネルおよび出力「2」チャンネルを各々割り当てており、A/Dコンバータ109に対して入力「2」チャンネルを割り当てている。

【0033】さらに、ミキサ106は、DSP104に対する入力および出力として、各々「16」チャンネルを割り当てている。この出力チャンネルのうち「2」チャンネルは外部への出力チャンネルになており、該出力チャンネルに係る楽音信号は、DSP104を介してフィルタリング処理等が行われた後、D/Aコンバータ105に供給される。

【0034】2.3. 楽音信号のシグナルフローミキサ106、DSP104、楽音発生器108、プラグインボード191~199およびA/Dコンパータ109相互間における楽音信号の流れは、ミキサ106のセット状態とDSP104に対するマイクロプログラムとによって決定されるが、このような図3に示すようなシグナルフローとして表現することができる。

【0035】図3において201、203は楽音発生器108における第1パートおよび第3パートであり、第2パート202は物理モデル音源のプラグインボードによって実現されている。211はA/Dパートであり、A/Dコンバータ109によって実現される。

【0036】209はインサーションエフェクトであり、第1パートの楽音信号に対して各種の効果を付与する。なお、インサーションエフェクトとは、楽音信号の「1」パートに対して適用されるエフェクトをいう。210はインサーションエフェクトの一種であるハモリ効果部であり、プラグインボード(ハモリボード等)によって実現される。ここでハモリ効果とは、入力される波形あるいは波形データに対して、それと所定の音程関係にある楽音を付加し、ハモリの効果を生じさせるものである。

【0037】204~208はミキサ部であり、ミキサ 50 つである。

106によって実現されている。212はコーラス効果 部、213はリバーブ部であり、各々ミキサ部206、 207のミキシング結果に対してコーラス効果およびリ バーブ効果を付与する。ミキサ部208のミキシング結 果は、外部への出力チャンネルになっており、イコライ ザ214を介してイコライジング処理が施された後、D

/Aコンパータ105に供給される。

【0038】上記インサーションエフェクト209、コーラス効果部212、リバーブ部213およびイコライ10 ザ214は、DSP104の時分割処理によって実現される。このうちコーラス効果部212、リバーブ部213およびイコライザ214は、複数パートの楽音信号のミキシング結果に対して効果を付与するものである。これらをシステム・エフェクトという。また、ミキサ部206~208、254のように複数パートの入力が可能なミキサを「グループ」という。

【0039】次に、他のシグナルフローを図4に示す。 図において252は楽音発生器108の第2パートであり、253は楽音発生器108に対して独立して設けられた16パート音源である。255は3次元定位効果部であり、ミキサ部208のミキシング結果に対して3次;元定位効果を施す。

【0040】また、254は、第1パート201~A/ Dパート211、16パート音源253、3次元定位効 果部255等の楽音信号を合成するミキサ部である。そ して、これらのうちミキサ部254はミキサ106によって実現され、16パート音源253および3次元定位 効果部255はプラグインボードによって実現される。

【0041】2.4.プラグインボードの種類 プラグインボード191~199には、下記の4種類が ある。

(1) シングルパート音源

シングルパート音源は、上記第2パート202のように音源部が単一のパートによって構成されるものである。すなわち、MIDIでは「16チャンネル」のMIDIチャンネルに基づく演奏データを送信可能であるが、シングルパート音源はそのうち何れか一つのMIDIチャンネルの演奏だけに応答して楽音を生成する音源である。シングルパート音源から出力される楽音信号は、楽音発生器108の各パートと同様に扱われ、DSP104における各種エフェクトを使用することができる。

【0042】(2)マルチパート音源

マルチパート音源は、上記16パート音源253のように複数パートの音源を有し、各パートの楽音信号をミキシングした状態で出力するものである。マルチパート音源は、上記「16チャンネル」のMIDIチャンネルのうち、複数のMIDIチャンネルの入力に応じて、対応する複数パートの楽音を生成する音源である。所謂、GM(ジェネラルMIDI)音源もマルチパート音源の一つでちる

【0043】(3)インサーションエフェクト インサーションエフェクトは、上述したように楽音信号 の「1」パートに対して適用されるエフェクトをいい、 ハモリ効果部210を実現するプラグインボードがこれ に該当する。

【0044】(4)システム・エフェクト システム・エフェクトは、上述したように、複数パート の楽音信号のミキシング結果に対して効果を付与するも のであり、3次元定位効果部255を実現するプラグイ ンボードがこれに該当する。他に、リバーブ等の一般の 10 が指定された場合は、バリエーション「1」または エフェクトを付与するシステム・エフェクトもある。

【004.5】3. 実施形態のプロトコル

3. 1. 音色マッピング

本実施形態においてはXG規格の音色マッピングが採用 されている。XG規格においては、音色は「8」パイト のパンク・セレクトMSB、「8」バイトのバンク・セ レクトLSBおよび「8」バイトのプログラムチェンジ によって表現される。

【0046】ここで、バンク・セレクトMSBについ て、「O」はメロディ音色、「64」はSFX音色、 「126」はSFXキット、「127」はドラムボイス に割り当てられている (その他の値については現在のと ころ使用禁止である)。また、メロディ音色でパンク・ セレクトLSB=「0」におけるプログラムチェンジ は、GM規格のプログラムチェンジと互換性があり、

「128」種類の基本音色「Acoustic Grand Piano」 「Bright Acoustic Piano」, ……, 「銃声」が割り当て られている。

【0047】また、バンク・セレクトLSBによって、 これら基本音色のバリエーションがマッピングされる。 すなわち、バンク・セレクトLSBが「0」の場合は基 本音色、「1」~「127」の場合はそのバリエーショ ンになる。このように、XG規格においては、最大「4 ×128×128=65536」種類の音色をマッピン グすることができる。

【0048】3.2.音色選択の一般的方法

次に、XG規格においてバンク・セレクトLSBおよび プログラムチェンジに基づく音色選択の一般的方法につ いて説明する。ここでは、一例として、プログラムチェ ンジが「17」 (ドローバー・オルガン) であって、バ 40 ンク・セレクトLSBとして「0」 (基本音色)、

「1」および「2」 (バリエーション) がマッピングさ れている場合を想定する。

【0049】ここで、パンク・セレクトLSBが指定さ れずにプログラムチェンジ「17」のみが指定された場 合は、GM規格との互換性を確保するために、「0」

(基本音色) が選択される。また、バンク・セレクトレ SBとして「0」、「1」または「2」が指定された場 合は、当然に該パンク・セレクトLSBに対応する音色

10 いパンク・セレクトLSB (例えば「3」) が指定され た場合は、「0」(基本音色)が選択される。

【0050】次に、基本音色「0」がマッピングされて おらず、バリエーション「1」、「2」のみがマッピン グされている場合を想定する。かかる場合には、「1」 または「2」のバンク・セレクトLSBが指定された場 合は、対応するバリエーションの音色が選択される。し かし、プログラムチェンジのみが指定された場合、ある いは「1」または「2」以外のバンク・セレクトLSB 「2」のうち一方が選択されることになる。

【0051】3.3.通信モード

プラグインボード191~199とマザーボード100 とにおいては、楽音信号(波形データ)と、制御信号と がやりとりされる。このうち、楽音信号はシリアルIO ポート107を介して伝送され、制御信号ははシリアル IOポート116を介して伝送される。ここで、制御信 号はMIDI信号と同様のフォーマットを有している。 【0052】すなわち、マザーボード100のCPU1 01からプラグインボード191~199に対して各種 の問合わせや設定を行い、逆にプラグインボード191 ~199からCPU101に対してその応答を行う場合 は、MIDIのシステムエクスクルーシブが使用され る。この際、通信モードとして以下の2つが使用され

【0053】(1)モード1

- モード1においては、マザーボード100と何れか一つ の指定されたプラグインボードとの間で双方向通信が行 われる。このモード1は、例えば、プラグインボードに 30 対する音色のエディット状態の問合わせや、その応答に 使用される。

【0054】(2)モード2

モード2においては、マザーボード100から全てのプ ラグインボードに対して一方向通信が行われる。このモ ード2は、初期設定や音色のエディット時の一方的なデ ータ送信を行う際に使用される。

【0055】3.4.通信内容

(1) 信号のフォーマット

次に、マザーボードおよびプラグインボードは「メッセ ージ」を交換することによって情報のやりとりを行う。 メッセージを送信するにあたっては、MIDIのシステ ムエクスクルーシブと、そのメッセージの種別を示す 「モデルID」と、そのメッセージが如何なるパラメータ に係るものであるかを示す「アドレス」とが予め相手側 に伝送される。

[0056](1-1) モデルIDについて モデルIDとしては、「4C」、「4E」および「4F」の3種 類がある。ここに「4C」とは、マザーボードとプラグイ ンボードとの通信用に使用されるとともに、外部MID が選択されることになる。また、マッピングされていな 50 I信号によってもコントロール可能であることを示す。

また、「4E」はマザーボードとプラグインボードとの通信用に使用される。

【0057】また、「4F」は、マザーボードとプラグインボードとの通信用の特殊コマンドであることを示す。特殊コマンドにおいては、モデルIDの前に、特殊コマンドの分類(第1または第2特殊コマンド群)を示す「特殊コマンド職別子」と、「request(要求)」または「reply(応答)」の何れかを示す「方向識別子」とが付与される。また、「request(要求)」においては引数を付けることができ、「reply(応答)」のデータ長も可変長である。

【0058】 (1-2) アドレスについて

例えば、マザーボードからプラグインボードに対してM I D I 信号を受信しないように指定するためにはMidiRe ceiveEnable/Disable (詳細は後述する) なるメッセージを伝送する必要がある。この場合は、最初にマザーボードからプラグインボードに対してMidiReceiveEnable/Disableのアドレス (例えば、0x001002) を伝送し、MidiReceiveEnable/Disableの値として"0"を指定することになる。以下、本実施形態で用いられる各種のメッセージのうち主要なものについて以下説明する。

【0059】(2)通常コマンド

音源を制御する規格として、「General MIDI System Le vel 1」(いわゆるGM規格)およびXG規格が知られている。本実施形態のマザーボードおよびプラグインボードは、GM規格およびXG規格で規定された全てのコマンドを相互に交換することができ、これによってマザーボード側からプラグインボードで用いられる各種パラメータの編集を行うことができる。GMおよびXG規格で規定されているコマンドは多岐にわたるが、ここでは本実施形態において使用頻度の高いパラメータチェンジについて説明しておく。

【0060】通常コマンドのモデルIDは「4C」であり、アドレスには変更すべきパラメータのアドレスが「3」バイトで設定される。そして、パラメータチェンジのメッセージそのものは一般的に「1」バイトである。この「1」バイトのメッセージは、例えばオンオフの切換え、「 $-64\sim+63$ 」の範囲のデータ設定、あるいは「 $0\sim127$ 」の範囲のデータ設定に用いられる。

【0061】(3)システムセットアップ

以下説明するメッセージは、主としてシステムセットアップ時 (電源投入時) にマザーボードとプラグインボードとの間でやりとりされるものであり、モデルIDは「4 E」である。

(3-1) DeviceNo

DeviceNo は、マザーボードからプラグインボードに対して「 $1\sim16$ 」の何れかのデバイスナンバをセットする「1」バイトのメッセージである。

[0062] (3-2) ForceDamp

ForceDampは、マザーボードからプラグインボードに対

してフォースダンプを指示するメッセージであり、その 値が「00~1F」である場合はフォースダンプを行うべき パートナンバを指定するものであるとみなされ、「7F」 である場合は全パートのフォースダンプが行われること

とみなされる。

【0063】 (3-3) MidiRece iveEnable/Disable MidiRece iveEnable/Disableは、マザーボードからプラグインボードに対して、MIDI信号を受信すべきか否かを指定するメッセージであり、"1"は受信する旨、"0"は受信しない旨を示す。

[$0\ 0\ 6\ 4$] (3-4) SinglePartTgParameterBaseAdd ress

Sing lePart TgParameter Base Address は、プラグインボードがシングルパート音源である場合に、マザーボードからプラグインボードに対して、そのベースアドレスを指定するメッセージである。プラグインボードにおいては、このベースアドレスを基準として、各種パラメータを変更するためのアドレスが決定される。

【0065】(3-5)InsertionEffectParameterBase AddressおよびSystemEffectParameterBaseAddress InsertionEffectParameterBaseAddressは、プラグインボードがインサーション・エフェクトである場合に、そのベースアドレスを指定するメッセージである。同様に、SystemEffectParameterBaseAddressは、は、プラグインボードがシステム・エフェクトである場合に、そのベースアドレスを指定するメッセージである。

【0066】 (3−6) SameTypePbTotalNoおよびSameTypePbSerialNo

SameTypePbTota INoおよびSameTypePbSer ia INoは、複数のプラグインボードのうち同一種類のものが複数存在する場合に、マザーボードからこれらプラグインボードに対して送信されるメッセージである。すなわち、SameTypePbTota INoは、同一種類のボードが合計で何枚存在するのかを通知するものであり、SameTypePbSer ia INoはこれら各ボード毎に割り当てられたシリアルナンバを各ボード毎に通知するものである。

【0067】(3-7)MotherDisplayLevel MotherDisplayLevelは、本体の表示文字数を各プラグインボードに通知するメッセージである。

40 【0068】(4) PBシステム情報 以下説明するメッセージは、主としてシステムセットアップ時(電源投入時)にプラグインボードからマザーボードに対して通知されるものであり、モデルIDは「4E」である。

[0069] (4-1) PbName

PbNameは、各プラグインボードからマザーボードに対して、最大14バイト(28文字)のアスキーコードで、各プラグインボードの型名(例えば「VH10-prg」)を通知するものである。

[0070](4-2) Pbl conData

30

PblconDataは、30H (=48) バイトのデータ長を有し、各プラグインボードから、そのアイコンのビットマップデータをマザーボードに通知するメッセージである。

[0071] (4-3) PbType

PbTypeは「3」バイトのデータであり、各プラグインボードからマザーボードに対して、プラグインボードの種別を通知するメッセージである。PbTypeの各バイトを、PbTypeMsb 、PbTypeLsbおよびVersionNoと呼ぶ。

【0072】ここでPbTypeMsb は「0~3」の値をとり、「0」はシングルパート音源、「1」はマルチパート音源、「2」はインサーションエフェクト、「3」はシステム・エフェクトを示す。また、PbTypeLsbは、各種別毎の細分類を表す。例えば、プラグインボードがシングルパート音源であれば、PbTypeLsbは音源方式(物理モデル音源、PCM音源、FM音源等)を表すことになる。また、VersionNoはプラグインボードのバージョンナンパを表す。

【0073】 (4-4) TotalNativeSystemParameterNo TotalNativeSystemParameterNoは、プラグインボードで用いられ、マザーボード100のROM102に記憶された汎用パラメータエディタ(パラメータを編集するプログラム)によってエディットされるべきシステムパラメータの数をCPU101に通知するものである。なお、システムパラメータとは、プラグインボードのモード設定等に用いられるパラメータを指す。

【0074】 (4-5) TotalNativePartParameterNo TotalNativePartParameterNoは、プラグインボードが出力するパートパラメータの数をマザーボードに通知するメッセージである。なお、パートパラメータとは、プラグインボードの各パート毎に設定されるべきパラメータの数である。

【0075】 (4-6) TotalNativeEffectParameterNo TotalNativeEffectParameterNoは、プラグインボードがエフェクタである場合に、選択可能なエフェクトパラメータの数をマザーボードに通知するメッセージである。

[0076] (4-7) TotalVoiceMapNo

Total VoiceMapNoは、プラグインボードが音源である場合に、選択可能な音色のマップ数をマザーボードに通知するものである。ここに「1」マップは、一のバンク・セレクトMSBおよび一のバンク・セレクトLSBに対応する、プログラムチェンジの内容である。

【0077】 (4-8) TotalInsertionEffectMapNo TotalInsertionEffectMapNoは、プラグインボードがインサーションエフェクトである場合に、選択可能なエフェクトの種類をマザーボードに通知するものである。例えば、インサーションエフェクトとしてボコーダ、デチューン、コーダルおよびクロマチックの効果を選択可能であれば、その合計数「4」がマザーボードに通知されることになる。

【0078】(5)第1特殊コマンド群

上記PBシステム情報のうち「TotalNative……Paramet erNo」なる名称を有するパラメータは、音色数やエフェクト数等の「数」を示すものである。第1特殊コマンド群は、これら音色、エフェクト等の具体的な内容の「re quest(要求)」や「reply(応答)」の前提として、必要な情報をやりとりするためのものである。

[$0\ 0\ 7\ 9$] (5 $-\ 1$) NativeSystemParameterInformation

10 マザーボードからプラグインボードに対するシステムパラメータの具体的内容の「request (要求)」は「1」バイトのメッセージであり、パラメータ番号のみが通知される。ここにパラメータ番号は、最小値が「0」、最大値は「TotalNativeSystemParameterNoの返り値-1」になる。

【0080】上述した例のように、プラグインボードが デチューン等を行うインサーションエフェクトであれ ば、例えばメロディチャンネルのパラメータが必要であ れば「0」、ハーモニーチャンネルのパラメータが必要 であれば「1」に設定しておくとよい。

【0081】プラグインボードは、NativeSystemParame terInformationの「request(要求)」を受信すると、これに対する「5」バイトの「reply(応答)」をマザーボードに供給する。この応答は、各「1」バイトのModelID、AddressHi、AddressHid、AddressLow、およびDataSizeとから成る。

【0082】この「reply」は、後にマザーボードがプラグインボードに対して文字情報等を要求する際に必要となる情報である(詳細は第2特殊コマンド群の解説において詳述する)。まず、Mode IIDとは、後にマザーボードから出力される第2特殊コマンドにおいて付与すべきモデルIDを通知するものであり、AddressHi、Address MidおよびAddressLowは、該第2特殊コマンドにおいて付与すべきアドレスを通知するものである。また、Data Sizeは、該第2特殊コマンドの「reply」としてプラグインボードからマザーボードに伝送される文字情報等のデータサイズを通知するものである。

【0083】なお、上述したように、ヘッダ部の前に「reply (応答)」を示す「方向識別子」と、モデルID (「4F」)と、NativeSystemParameterInformationを表すアドレスとが付加される。これらは、上記「reply」中に含まれるModelID、AddressHi、AddressMid、AddressLowとは別個のものであることは言うまでもない。

【0084】 (5-2) NativePartParameterInformationおよびNativeEffectParameterInformation NativePartParameterInformationおよびNativeEffectParameterInformationおよびNativeEffectParameterInformationは、パートパラメータおよびエフェクトパラメータの情報取得に用いられる。上記NativeSystemParameterInformationと同様に、マザーボードからプラグインボードに対するこれらの具体的内容の「requ

est(要求)」は、「1」バイトのメッセージであり、 プラグインボードからの「reply」もNativeSystemParam eterInformationの「reply」と同様の「5」バイトのメ ッセージになる。

[0085] (5-3) VoiceName

VoiceNameは、プラグインボードがシングルパート音源である場合に、音色名の問合わせに用いられるパラメータである。マザーボードからプラグインボードに対する「request(要求)」は、MsbNo、LsbNo、およびPgmNoから成る計「3」パイトの音色番号と、「1」バイトのAsciiDataSizeとから成る。ここに、AsciiDataSizeは、本体側で表示可能な文字数(例えば「8」)を示す。

【0086】一方、プラグインボードの「reply」は、「1」バイトのAsciiDataSizeと可変長のVoiceNameとから成る。AsciiDataSizeは「request」に含まれていた通りの文字数であり、VoiceNameはAsciiDataSizeの範囲内で音色名を表示するアスキーコードである。

[0087] (5-4) VoiceMapInfo

VoiceMapInfoは、プラグインボードがシングルパート音源である場合に、マザーボードからプラグインボードに 20 対して音色マップの問合わせに用いられるメッセージである。VoiceMapInfoの「request」は「1」バイトのメッセージであり、マップナンバを指定する。このマップナンバは、「0」~「TotalVoiceMapNoの返り値-1」の範囲で指定される。

【0088】また、VoiceMapInfoの「reply」は「3 4」パイトのメッセージであり、「1」パイトのBankMs bNoと、「1」パイトのBankLsbNoと、各々「1」パイト のピットマップPgmOto3AssignBitMap、Pgm4to7AssignBitMap、……、Pgm124to127AssignBitMapとから成る。

【0089】また、ビットマップPgmOto3AssignBitMap、……Pgm124to127AssignBitMapは、BankMsbNoおよびBankLsbNoによって指定されたマップにおいて音色が存在する場合は"1"、存在しない場合は"0"を、対応するビット位置に表したものである。

[0090] (5-5) BankMsblconData

BankMsblconDataは、プラグインボードがシングルバート音源である場合に、マザーボードからプラグインボードに対してバンクの分類のアイコンデータの問合わせに用いられるメッセージである。

【0091】BankMsblconDataの「request」は、「1」 バイトのメッセージであり、上記BankMsbNoを指定す る。また、その「reply」は、アイコンを表す「48」 バイトのピットマップデータである。例えば、管楽器を シミュレートするバンクの分類にあっては、管楽器をあ しらったアイコンを返すようにすると好適である。

[0092] (5-6) InsEffectMapInfo

InsEffectMapInfoは、は、プラグインボードがインサーション・エフェクトである場合に、マザーボードからプラグインボードに対してエフェクト・マップの問合わせ

に用いられるメッセージである。InsEffectMapInfoの「request」は「1」バイトのメッセージであり、マップナンバを指定する。このマップナンバは、「O」~「TotalInsertionEffectMapNoの返り値<math>-1」の範囲で指定される。

【0093】また、InsEffectMapInfoの「reply」は「7」バイトのメッセージであり、「1」バイトのType Msbと、「1」バイトのTypeLsbと、「1」バイトのPrm1 to10Typeと、各「1」バイトのPrm1to4SupportMap、Prm5to8SupportMap、Prm9to12SupportMap、およびPrm13to16SupportMapとから成る。

【0094】ここに、TypeMsbおよびTypeLsbは、上記BankMsbNoおよびBankLsbNoと同様に、エフェクトの種別および種別内のシリアルナンバを示すものである。また、PrmIto4SupportMap、Prm5to8SupportMap、Prm9to12SupportMap、およびPrm13to16SupportMapは、「1~16」番のエフェクトについて、存在する場合は"1"、存在しない場合は"0"を、対応するビット位置に表したものである。

20 【0095】(6)第2特殊コマンド群

第2特殊コマンド群は、主としてマザーボードが認識していない各種のパラメータについて、上記第1特殊コマンド群の「reply」の結果を用いて、プラグインボードから情報を得るためのコマンドである。

【0096】第2特殊コマンド群においては、「方向職別子」の「reply」および「request」は、コマンド毎に異なる値になる。すなわち、以下に述べるParameterName、ParameterInfo、ParameterSupportInfo、RelativeParameter、およびAbsoluteParameterの「request」は各30 々「00」、「01」、「02」、「03」および「04」なるコードによって表現され、「reply」は各々「40」、「41」、「42」、「43」および「44」なるコードによって表現される。

[0097] (6-1) ParameterName

ParameterNameは、プラグインボードからマザーボードに対してバラメータの名称を通知するためのコマンドである。ParameterNameの「request」においてはメッセージは「0」バイトになる。これは、第2特殊コマンド群を示す「特殊コマンド識別子」と、「request(00)」を40 示す「方向識別子」と、モデルID(これは、NativeSystemParameterInformationの「reply」に含まれてたModelIDに等しい)と、アドレス情報(同「reply」に含まれていたAddressHi、AddressMid、AddressLowに等しい)とによって、対応するバラメータの名称が特定されるからである。

【0098】ParameterNameの「reply」は、「1」バイトのDataSizeと、可変長のアスキーデータであるパラメータ名とから成る。DataSizeは該アスキーデータのデータサイズ(文字数)を示す。例えば、プラグインボード50 がインサーションエフェクトであってアドレス情報とし

て「デチューン」が指定された場合は、「Detune Type」のような文字列を返すとよい。

[0099] (6-2) Parameter Info

Parameter Infoは、マザーボードからプラグインボード に対してパラメータの値を問い合わせるためのコマンド である。Parameter Infoの「request (01)」においてはメッセージは「0」バイトになる。この理由はParameter Nameの場合と同様である。

【0100】ParameterInfoの「reply」は、「1」パイトのDataSizeと、数値データMaxValue、MinValueおよび 10 DefaultValueとから構成される。DataSizeはこれら数値データ1個あたりのデータサイズを示すものである。そして、MaxValue、MinValueおよびDefaultValueは、各々パラメータの最大値、最小値およびデフォルト値を示す。

[0 1 0 1] (6-3) ParameterSupportInfo

Parameter Support Infoは、マザーボードがサポートしているパラメータについてプラグインボードがサポートしているか否かを知るためのコマンドである。すなわち、ダンプリクエスト、またはパラメータリクエストを受信 20したときにプラグインボードが対応できるか否かを確認するために用いられる。

【0102】ParameterSupportInfoの「request」のメッセージは「1」バイトであり、"0"の場合はパラメータリクエスト、"1"の場合はダンプリクエストを示す。これに対するプラグインボードの「reply」も「1」バイトであり、"0"の場合は対応不可、"1"の場合は対応可能であることを示す。

[0103] (6-4) RelativeParameter

RelativeParameterは、プラグインボードにおけるバラメータが現在値に対して相対変化した時の情報を得るためのコマンドである。RelativeParameterの「request」のメッセージは「3」バイトであり、各「1」バイトのRelativeData、ReplyDataSizeおよびDisplayDataSizeから成る。

【0104】ここにRelativeDataは、パラメータの現在値に対する変化値(例えば+1, -1等)であり、ReplyDataSizeは、変化されたパラメータ(数値)の表示データサイズである。また、DisplayDataSizeは、変化されたパラメータ(文字)の表示データサイズである。

【0105】RelativeParameterの「reply」は、「1」 バイトのDataSizeと、該DataSizeで示されたデータ長さ のData(数値データ)と、「1」バイトのDisplayDataSiz eと、該DisplayDataSizeで示されたデータ長のDisplayD ata(文字データ)とから成る。

[0106] (6-5) AbsoluteParameter

AbsoluteParameterは、プラグインボードにおけるパラメータが絶対変化した時の情報を得るためのコマンドである。AbsoluteParameterの「request」のメッセージは「3」バイトであり、各「1」バイトのAbsoluteData、

18
ReplyDataSizeおよびDisplayDataSizeから成る。ここに

AbsoluteDataは、パラメータの現在変化値であり、ReplyDataSizeおよびDisplayDataSizeは、上記RelativeParameterの場合と同様である。

【0107】AbsoluteParameterの「reply」は、「1」バイトのDataSizeと、該DataSizeで示されたデータ長さのData(数値データ)と、「1」バイトのDisplayDataSizeと、該DisplayDataSizeで示されたデータ長のDisplayData(文字データ)とから成る。

) 【0108】4. 実施形態の動作

4. 1. 初期設定

(1) 全般の初期設定

次に、本実施形態の動作を説明する。まず、電子楽器の 電源が投入されると、マザーボード100 (CPU10 1)において図5に示すプログラムが起動される。図に おいて処理がステップSP1に進むと、初期設定が行わ れる。ここでは、まず、通信モードがモード2に設定さ れ全プラグインボードに対して、MotherDisplayLevelが 通知される。これにより、各プラグインボードは、Moth erDisplayLevelを記憶し、マザーボードに送信する文字 列を長さを必要に応じて制限することになる。

【0109】次に、通信モードがモード1に切換えられ、コネクタ121に挿入されているプラグインボード191に対して、デバイスナンバ「1」をセットするDeviceNoが伝送される。プラグインボード191は、このDeviceNoに基づいてデバイスナンバ「1」を記憶するとともに、PbTypeおよびPbIconDataを出力することにより、プラグインボード191の種別等をCPU101に通知する。

30 【0110】すなわち、CPU101は、PbTypeMsb によってプラグインボード191の種別を認識し、PbType Lsbによって細分類(音源方式等)を認識し、VersionNo によってプラグインボード191のバージョンナンバを認識し、認識した内容がRAM103に記憶されることになる。また、PbIconDataで指定されたアイコンデータもRAM103に記憶される。

【0111】次に、プラグインボード191は、CPU 101に対して、システムパラメータが存在する場合は TotalNativeSystemParameterNoを通知し、パートパラメ 40 ータが存在する場合はTotalNativePartParameterNoを通 知し、エフェクトパラメータが存在する場合はTotalNat iveEffectParameterNoを通知する。

【0112】また、プラグインボード191がシングルパート音源である場合はSinglePartTgParameterBaseAdd ressとTotalVoiceMapNoとを通知する一方、インサーション・エフェクトである場合はTotalInsertionEffectMapNoとInsertionEffectParameterBaseAddressとを通知する。また、プラグインボードがシステム・エフェクトである場合は、SystemEffectParameterBaseAddressが通知される。これにより、CPU101にあっては、プラグ

こととしている。

インボード191における各種パラメータの数やベース アドレスが認識され、認識された情報はRAM103に 記憶される。

【0113】そして、プラグインボード192~199 に対しても同様にデバイスナンバ「2」, 「3」, …… が通知され、各プラグインボードのPbTypeおよび編集可 能な各種パラメータの数やベースアドレスがRAM10 3に記憶されることになる。従って、RAM103に は、各プラグインボードの種別、細分類、バージョンナ ンパおよび編集可能な各種パラメータの数が記憶される ことになる。

【0114】次に、パネル表示器160において、下表 のような文字列を表示した初期メニュー画面が表示され る。なお、初期状態では、「1:パート設定」の箇所に カーソル位置がセットされる(「1:パート設定」が白 黒反転表示される)。

【表 1 】

<<初期面面>>

1:パート設定

2:インサーションエフェクト設定

3:システム・エフェクト設定

4:シグナルフローの細集

【0115】 (2) 本体音色マップの修正

上述したように、XG規格の音色マッピングでは、最大 「4×128×128=65536」種類の音色をマッ ピングすることができる。しかし、バンク・セレクトL SBによって表現されるバリエーションのうち発音させ るものを一つに限定すれば、選択可能なメロディ音色 (バンク・セレクトMSB=0) の数はプログラムチェ 30ンジの数と等しく「128」種類になる。

【0116】マザーボード100がどのプログラムチェ ンジをサポートしているかについては、予めROM10 2に記憶されており、初期設定においては、この内容が RAM103に転送される。このRAM103に転送さ れた内容を本体音色マップと呼ぶ。

【0117】本体音色マップにおいては、各プログラム チェンジが「1」バイトに対応付けられ、マザーボード 100でサポートされているプログラムチェンジについ て「127」、サポートされていない選択可能音色につ いて「0」が記憶されている。また、プラグインボード によってサポートされているプログラムチェンジについ ては当該プラグインボードのデバイスナンバ「1~1 6」とマップナンバ「1~16」とが記憶される。但 し、初期状態においては、どのプラグインボードがどの プログラムチェンジをサポートしているか判別していな いため、全てのバイトが「127」または「0」になっ

【0118】ここで、マザーボード100およびプラグ

色をサポートしている場合、何れの音色を採用するかが 問題となる。一般的に、電子楽器の本体価格を抑制する ためにマザーボード100は標準的な性能で楽音合成を 行うのに対して、プラグインボードはオプションとして 販売されより高性能な楽音合成を行うものである。そこ で、両者のサポートするプログラムチェンジが重複する 場合は、プラグインボード側の音色を優先的に採用する

20

【0119】具体的には、プラグインボードでサポート 10 しているプログラムチェンジについては、本体音色マッ プの対応箇所にプラグインボードのデバイスナンバを書 込むことにより、マザーボード100側での発音を禁止 するのである。そこで、かかる処理の詳細について以下 説明する。

【0120】まず、上述したように、プラグインボード がシングルパート音源である場合は、TotalVoiceMapNo がCPU101に通知されている。CPU101は、

「0」~「Tota I Voi ceMapNo-1」の各マップナンバを 指定して、VoiceMapInfoの「request」をプラグインボ 20 ードに送信する。

【0121】これに対して、上述したように、プラグイ ンボードよりVoiceMapInfoの「reply」がCPU101 に返信される。CPU101は、この「reply」中のBan kMsbNoが「O」であるか否かを判定する。そして、

「0」以外であれば、本体音色マップの編集は行われな

【0122】一方、「reply」中のBankMsbNoが「0」で あれば、BankLsbNoで指定された128バイトの記憶位 置の中のビットマップPgmOto3AssignBitMap、……、Pgm 124to127AssignBitMapのうち「1」が設定されているプ ログラムチェンジに対応する箇所に、ブラグインボード のデバイスナンバとマップナンバとが書込まれる。

【0123】かかる処理が全てのシングルパート音源に ついて行われることにより、本体音色マップには、各プ ログラムチェンジがサポートされているのか否か、およ び、サポートされている場合は対応するボード (マザー ボード100あるいは何れかのプラグインボード) が記 憶されることになる。

【0124】4.2.パート設定

(1) 「パート設定」の指定

図5に戻り、処理がステップSP2に進むと、処理を行 うための「要因」が発生したか否かが判定される。ここ で「要因」とは、例えば、MIDI入力端子118を介 するMIDI信号の入力や、パネルスイッチ150にお けるイベント等をいう。次に、処理がステップSP3に 進むと、「要因」が発生したか否かが判定される。そし で、何れの要因も発生しない状態では、ステップSP 2、3において処理が待機する。

【0125】ここで、パネルスイッチ150のテンキー インボードにおいて同一のプログラムチェンジに係る音 50 ボードにおいてエンターキーが押下されると、ステップ

SP2において当該イベントが検出され、ステップSP3において「YES」と判定され処理はステップSP4に進む。ステップSP4にあっては、「要因」毎に処理が分岐される。

【0126】ここでは、パネルスイッチ150におけるイベントが「要因」であるから処理はステップSP6に進み、該イベントに応じた処理が行われる。上記例にあっては、初期画面の「1:パート設定」にカーソルが位置する際にエンターキーが押下されたのであるから、

「1:パート設定が指定された」と判定される。なお、 1:パート設定とは、楽音発生器108あるいはマルチパート音源(プラグインボード)において何れかのパートの内容を変更することをいう。

【0127】(2)パートの表示

ところで、パートの編集を行うにあたっては、ユーザが 編集対象となるパートを指定する必要がある。さらに、 それに先立って、指定可能なパートを表示しておき、ユ ーザが選択できるようにしておく必要がある。まず、マ ザーボード100のみによって指定可能なパートは、楽 音発生器108で実現される第1パート〜第16パート と、A/Dコンパータ109から入力されるパートであ り、合計「17」パートである。

【0128】また、マルチパート音源の各パートも指定できるようにしておくと便利である。そこで、CPU101は、マザーボード100上の各パートのデフォルト状態とマルチパート音源のアイコンおよび名称等を下表のようにパネル表示器160に表示する。

【表 2】

<<パート選択>>

0: 初期画面に戻る

1: (内蔵) アコースティック・グランド・ピアノ

2: (内蔵) ホンキートンク・ピアノ

3: (内蔵) セレスタ

4: (内蔵) マリンパ :

15: (内蔵) シタール

16: (内蔵) アゴゴ

【0129】 (3) 編集対象パートの指定

ここで、ユーザがテンキーボードの「2」を押下すると、処理はステップSP3、SP4を介してSP6に進む。ここでは、入力された「2」がパネル表示器160に表示される。さらに、ユーザがエンターキーを押下すると、再び処理はステップSP6に進み、ここで編集対象として「第2パート」が指定されたものと判定される。なお、パート番号が2桁以上である場合は、例えば「1」、「5」のように続けてテンキーボードを押下してエンターキーを押下するとよい。

【0130】(4) 音色グループの表示

22

次に、編集対象パートに対して音色を指定する必要がある。ここで音色の種類は膨大であるため、音色を複数のグループに分類し、最初にこのグループを指定するようにしている。このため、パネル表示器160には、下表のような表示が行われる。

【表3】

<くグループ選択>>

0: パート遊択面面に戻る

1: ピアノ系

2: クロマチック・パーカッション系

3: オルガン系

4: ギター系

:

19: パーカッシブ系

20: 効果音

【0131】ここで、カーソル位置は、以前に選択されていた音色に対応するグループにセットされる。上記例においては第2パートは「ホンキートンク・ピアノ」に設定されていたから、「1:(内蔵)ピアノ系」にカーソルがセットされる。

【0132】 (5) 音色名等の表示

ユーザが「1」~「20」のグループ番号を指定した場合は、当該グループに属するプログラムチェンジについて本体音色マップが参照される。ここで、本体音色マップの対応箇所に「127」が記憶されている場合は、該プログラムチェンジについてROM102内に音色名等が記憶されているから、その内容が読み出される。

【0133】一方、本体音色マップにプラグインボード 30 のデバイスナンバとマップナンバが記憶されている場合 は、このマップナンバを伴って該プラグインボードに対 してVoiceMapInfoの「request」が送信される。この「r eply」が返信されると、ここに含まれるBankMsbNoおよ びBankLsbNoに基づいてバンク・セレクトMSBおよび バンク・セレクトLSBがCPU101に認識される。 【0134】次に、認識されたバンク・セレクトMSB をMsbNoとし、バンク・セレクトLSBをLsbNoとし、プ ログラムチェンジをPgmNoとし、パネル表示器160に 40 おける音色名の最大表示文字数(例えば20)をAsciiD ataSizeとして、CPU101からプラグインボードに 対してVoiceNameの「request」が送信される。これに対 して、プラグインボードより、「20」以下のAsci iDat aSizeと、AsciiDataSizeで示された文字数を有する音色 名のアスキーデータとが返されることになる。

【0135】以上のように、マザーボード100に内蔵され、あるいはプラグインボードで実現される音色名が得られると、その内容が下表のようにパネル表示器160に表示される。

50 【表4】

23 <<音色選択>>

0: 音色グループ選択面面に戻る

★1: Acoustic Grand Piano

☆2: Bright Acoustic Piano

3: Klectric Grand Piano

4: Honky-tonk Piano

5: Klectric Piano 1

6: Electric Piano 2

7: Harpsichord

8: Clavi

【0136】衷4において、「☆」の箇所は、実際に は、PblconDataに基づいて、シングルパート音源である プラグインボードのアイコンが表示される。すなわち、 上記例においては、「Acoustic Grand Piano」と「Brig ht Acoustic Piano」とがプラグインボードによって実 現されていることになり、ユーザはパネル表示器160 の表示画面に基づいて、どのプログラムチェンジにプラ グインボードが使用されているのか、直ちに認識するこ 20 とができる。

*【0137】ここで、カーソル位置は、以前に選択され ていた音色に対応する音色名にセットされる。上記例に おいては音色として「ホンキートンク・ピアノ」に設定 されていたから、「4: Honky-tonk Piano」にカーソ ルがセットされる。ここでユーザが「1」~「8」の音 色名を指定すると、その音色が設定対象のパート (第2 パート)の音色として設定される。以上のようにして、 ユーザは、所望のパートに対する音色を設定することが できる。なお、上記表2~4においてユーザがテンキー 10 ボードの「0」を押下した場合には、一段上位のメニュ ーが再表示される。

24

【0138】4. 3. 2:インサーションエフェクト設

表1において「2:インサーションエフェクト設定」が 選択されると、下表のように、インサーションエフェク トのリストがパネル表示器160に表示される。インサ ーションエフェクトのリストは、内蔵のものの他、PbTy peとして「2」 (インサーションエフェクト) が返され たプラグインボードも含まれる。

[0139] 【表5】

<<2:インサーションエフェクト設定>>

〇: 初期画面に戻る

1: 内蔵インサーションエフェクト

☆2: (シングルIE) HM21P ハモリボード Ver. 1.00

【0140】なお、上記表示例においても、「☆」の箇 所には初期設定時に得たプラグインボードのアイコンが 表示される。また、「(シングルIE)」なる文字列 は、PbTypeMsb で示された種類に基づいて表示されたも 30 のであり、「HM21P」はPbName、「ハモリボード」 はPbTypeLsb、「Ver. 1.00」はVersionNoに基づ いて、各々示された内容に基づくものである。かかる表 示が行われた後、カーソル位置は「内蔵インサーション エフェクト」にセットされる。

【0141】ここで、ユーザがテンキーボードの「1」 とエンターキーを押下すると、「1: 内蔵インサーシ ョンエフェクト」が選択される(なお、以下の説明にお いては、このような操作を単に「選択する」と表現す る)。そして、内蔵インサーションエフェクトに関する 40 る。 各種パラメータのリストがパネル表示器160に表示さ れ、ユーザはこれらパラメータを編集することができ る。なお、このような動作は周知の電子楽器のものと同 様である。

【0142】一方、ユーザがプラグインボードを選択し た場合の動作は本実施形態の特徴の一つでもあるため、 この点について詳述する。まず、上述したように、プラ グインボードがインサーションエフェクトである場合 は、初期設定時にTotalInsertionEffectMapNoがマザー

1 は、「0」 \sim 「TotalInsertionEffectMapNo-1」 σ 各マップナンバを指定して、InsEffectMapInfoの「requ est」をプラグインボードに送信する。

【0143】これに対して、上述したように、プラグイ ンボードよりInsEffectMapInfoの「reply」がCPU1 01に返信される。上述したように、この「reply」中 のPrm1to4SupportMap、……、Prm13to16SupportMapによ って、「1~16」番のエフェクトが存在するか否かが 表示されている。また、各エフェクトに対応するアドレ スは、該プラグインボードのベースアドレス (Insertio nEffectParameterBaseAddress) と、InsEffectMapInfo の「reply」中のTypeMsbおよびTypeLsbと、「1~1 6」番のエフェクト番号とに基づいて一意に決定され

【0144】そこで、この決定されたアドレスととも に、CPU101からプラグインボードに対してParame terNameの「request」が送信される。これに対して返さ れる「reply」の中にはパラメータ名を示すアスキーデ ータが含まれる。同様に、先に決定されたアドレスとと もに、CPU101からプラグインボードに対して、Pa rameterInfoの「request」が送信される。これに対して 返される「reply」の中には、パラメータの最大値、最 小値およびデフォルト値を示すMaxValue、MinValueおよ ボード100側に通知されている。そこで、CPU10 50 びDefaultValueが含まれている。このようにして得られ

た情報に基づいて、パネル表示器160には下表のよう な表示が行われる。

[0145]

【表6】

<< 対 HM21P ハモリボード 設定>>

0: インサーションエフェクト設定面面に戻る

1: ハモリの強さ $(0 \sim + 127)$ 現在值:10

2: ハモリの深さ $(0 \sim + 127)$ 現在値:10

3: ボードにセット

【0146】表6において「ハモリの強さ」、「ハモリ の深さ」なる文字列はParameterNameの「reply」中のア スキーデータをそのまま表示したものである。また、双 方とも「 (0~+127) 現在値:10」と表示さ れているが、ここで「O」はMinValue、「+127」は MaxValue、「10」はDefaultValueとしてプラグインボ ードから返された値である。

【0147】ここでユーザが「2: ハモリの深さ… …」を選択すると、その位置にカーソルが移動する。こ こでユーザがパネルスイッチ150上でインクリメント 20 キーを押下すると、プラグインボードに対してRelative Parameterの「request」が送信される。なお、その際、 RelativeDataとして「+1」が指定される。これに対し て、プラグインボードにおいては、「ハモリの深さ」の 現在値「10」を「1」だけインクリメントした結果で ある「11」が求められる。

【0148】そして、RelativeDataの「reply」におい て、Dataとして該計算結果「11」が返されることにな る。これにより、パネル表示器160のカーソル行のう ち「現在値:10」の部分は「現在値:11」に変更さ 30 ナルフロー編集選択画面が表示される。 れる。逆に、パネルスイッチ150においてデクリメン トキーが押下された場合は、RelativeDataとして「-1」が指定され、プラグインボードからは現在値を

「1」だけ減算した結果が返される。

【0149】なお、この段階においては、プラグインボ ードは現在値をインクリメント/デクリメントした結果 を返しているだけであって、プラグインボード内のパラ メータそのものが変更されているわけではない。変更結 果をプラグインボードにセットするためには、ユーザは 「3: ボードにセット」を選択する。

【0150】かかる操作が行われると、変更後の値 (パ ネル表示器160に表示されている値)を伴って、変更 対象のパラメータに係るパラメータチェンジがプラグイ ンボードに送信される。そして、プラグインボードにお いては、このパラメータチェンジに基づいて、その内部 のパラメータが変更されるのである。

【0151】4.4.その他のパラメータの設定 以上、インサーションエフェクトのプラグインボードに おけるパラメータの設定方法について詳述したが、シン

グルパート音源、マルチパート音源、またはシステム・ エフェクトのプラグインボードに対しても同様にしてバ ラメータ設定が行われる。

26

【0152】すなわち、ブラグインボード側から設定対 象となるパラメータ等のアスキーデータがマザーボード 100に通知されるから、マザーボード100の設計時 に想定していなかったパラメータについても、マザーボ ード100側のソフトウエアをなんら変更することなく パラメータ名を表示させることが可能になる。

【0153】また、パラメータの値を変更する場合にお いても、マザーボード100からRelativeDataとして 「+1」または「-1」が送信され、現在値を変更する 計算処理自体はプラグインボード側で実行され、その計 算結果がマザーボード100に返されて表示される。こ のことは、RelativeDataに対する計算方法をプラグイン ボードが自由に決定できることを意味する。

【0154】例えば、指数関数的にパラメータを設定す ることが好適である場合は、現在値が大となるほど一回 あたりのインクリメント/デクリメント幅を大とすると よい。また、パラメータの値に対してリミット処理を施 す場合であっても、パラメータの性質に応じて適切な処 理を設定することができる。このような計算方法はプラ グインボード側のプログラムで自在に決定することがで き、しかもマザーボード100側では一切関知する必要 はない。

【0155】4.5.3:4:シグナルフローの編集

(1) インサーションエフェクトの割当

初期画面(表1)において「4:シグナルフローの編 集」を選択すると、下表のような文字列を表示したシグ

【表7】

<<シグナルフロー編集選択面面>>

0: 初期西面に戻る

1: インサーションエフェクトの割当

2: グループの割当

3: システム・エフェクトの割当

【0156】ここで、ユーザが「インサーションエフェ クトの割当」を選択すると、下表8のような画面が表示 40 される。ここでは、各インサーションエフェクトの名称 と、該インサーションエフェクトが割り当てられている パート番号とが表示される。なお、下表の例にあって は、全てのインサーションエフェクトが何れかのパート に割り当てられているが、仮にインサーションエフェク トが何れのパートにも割り当てられていない場合は、

「パート番号: (なし)」と表示される。

[0157]

【表8】

<<インサーションエフェクトの割当面面>>

0: シグナルフロー編集選択画面に戻る

1: 内蔵インサーションエフェクト

パート番号:1

(シングルIE) HM21P ハモリボード Ver. 1.00

パート番号:3

【0158】ここで、ユーザが「1: 内蔵インサーシ *下表9の画面が表示される。

ョンエフェクト」を選択すると、パネル表示器160に* 【表9】

内蔵インサーションエフェクトを割り当てるパートを指定して下さい。

0: 何れのパートにも割り当てない

1~16: 割り当てるパート番号 (現在は第1パートに割り当てられています)

【0159】ここで、ユーザがパート番号を指定する と、その指定内容に応じてインサーションエフェクトを 割り当てるパート番号が設定され、その設定内容を反映 して表8の画面が再び表示される。すなわち、ユーザが 「5」を選択すると、表8において「パート番号:1」 れることになる。このようにして、ユーザは、内蔵ある いはプラグインボードのインサーションエフェクトを割 り当てるパートを自在に設定することができる。

【0160】(2) グループの割当

表7の画面においてユーザが「2: グループの割当」 を選択すると、下表10のような画面がパネル表示器1 60に表示される。

【表10】

<<グループの割当面面>>

0: シグナルフロー編集選択に戻る

	G 1	G 2	G3	G4
パート1 :	99	0	127	0
☆パート2 :	90	0	10	0
パート3 :	. 0	64	64	0
パート4 :	0	0	0	0
:				
パート16:	0	0	0	0
ADM-1:	0	64	64	0
グループ1:	-	64	64	0
グループ2:	0	_	64	0
グループ3:	0	0	_	0
グループ4:	0	0	0	_

【0161】表10において、横軸「G1」~「G4」 は「1」~「4」のグループ番号(図3,4参照)に対 応する欄、縦軸は各グループに対する入力信号を指す。 そして、両者の交差点に記される「0」~「127」の

数字はボリューム値を表す。表10の内容は、図3のシ グナルフローに対応している。例えば、図3によれば、 第1グループ(ミキサ部206)には、内蔵インサーシ ョン・エフェクトを介した第1パートの楽音信号と、第 2パートの楽音信号とが入力されるから、「パート1」 の部分を「パート番号:5」に変更した文字列が表示さ 20 および「パート2」と記された行に「1」以上の値が表 示され、他の行には「O」が記されている。

28

【0162】また、図3に示す例にあっては、「第4グ ループ」なるものはそもそも存在しないから、縦軸「G 4」および横軸の「グループ4」に係る部分は全て 「0」になっている。図3および表10に示すように、 各グループには、他のグループから出力された楽音信号 (システム・エフェクトが存在する場合はシステム・エ フェクトを介した後の楽音信号)も入力可能になってい る。

【0163】ここで、カーソルは横軸「G1」、縦軸 「パート1」の交差点に位置している。ここで、ユーザ がカーソルキーを操作すると、上下左右方向の欄にカー ソルが移動する。そして、インクリメント/デクリメン トキーを操作すると、ボリューム値が変更される。

【0164】なお、プラグインボード中にマルチパート 音源(例えば、図4の16パート音源253)が存在す る場合は、表10中の「ADパート:」と「グルー プ1:……」との間に、「☆マルチ音源: 0 87」 (☆はアイコン) のような行が挿

40 入されることになる。

【0165】(3)システム・エフェクトの割当 表7の画面においてユーザが「3: システム・エフェ クトの割当」を選択すると、下表11のような画面がパ ネル表示器160に表示される。ここでは、インサーシ ョンエフェクトをパートに割り当てる処理と同様にし て、システム・エフェクトが各グループに割り当てられ る。

[0166]

【表11】

<<システム・エフェクトの割当面面>>

0: シグナルフロー編集選択面面に戻る

1: 内蔵システムエフェクト (コーラス)

グループ番号:1

2: 内蔵システムエフェクト (リバープ)

グループ番号:2

☆3: 3次元定位効果ボード DBT0023P (コンサートホール) グループ番号:3

4: 内蔵最終段イコライザ (スルー)

グループ番号:4

【0167】このように、ユーザは、各パートに対して内臓の(楽音発生器108)の音源を割り当てるかシングルパート音源のプラグインボードを割り当てるかを自由に設定でき、これらパートに対してインサーションエフェクトを自在に割り当てることができる。 さらに、各グループを構成するミキサの接続関係や、各グループに挿入されるシステム・エフェクトについても任意に決定することができるから、図3、4に示すようなシグナルフローを自在に設定することができる。

20

【0168】4. 6. MIDI処理

図5に戻り、ステップSP2,3のループ中にMIDI信号が入力されると、処理はステップSP4を介してステップSP5に進む。ここでは、MIDI信号に基づいて発音/消音等の処理が行われる。但し、ノートオン/ノートオフに係る音色(プログラムチェンジ)について、本体音色マップの対応箇所に「127」が設定されていない場合は、発音処理は行われない。すなわち、元々マザーボード100で対応可能な音色であったとしても、シングルパート音源のプラグインボードでサポートされている場合は、マザーボード100における発音処理は禁止される。

【0169】かかる場合は、フォトカプラ117、コネクタ121~129を介して該MIDI信号がプラグインボードに直接供給されるから、該プラグインボードにおいて楽音信号が合成され、シリアルIOポート107を介してミキサ106に該楽音信号が供給されることになる。

【0170】このように本実施形態によれば、本体音色マップに基づいてマザーボード100における発音の可否が判定されるから、マザーボード100とプラグインボード191~199とが重複して楽音信号を生成し発音するような事態を防止できる。

【0171】5. 変形例

本発明は上述した実施形態に限定されるわけではなく、種々の変形が可能である。例えば、上記実施形態においては、電源投入直後(ステップSP1)においてプラグインボードの種別(PbType)を検出した。しかし、PbTypeの検出は、新たなボードが装着された際に行ってもよく、所定時間毎に定期的に行ってもよい。

【発明の効果】以上説明したようにこの発明によれば、コネクタに接続された増設ボードから該増設ボードの種類を特定する信号を受信し、この受信結果に応じて楽音生成アルゴリズムを設定するから、プラグインボードの機能に応じた設定を自動的に行うことができ、拡張スロットの汎用性やアルゴリズムの自由度を高めることができる。

30

【図面の簡単な説明】

20 【図1】 本発明の一実施形態のハードウエア構成を示すブロック図である。

【図2】 上記実施形態のチャンネル構成を示すブロック図である。

【図3】 上記実施形態のシグナルフローの設定例を示すプロック図である。

【図4】 上記実施形態のシグナルフローの設定例を示すプロック図である。

【図5】 上記実施形態の制御プログラムのフローチャートである。

30 【図6】 マザーボード100とプラグインボードとの 通信状態を示すフローチャートである。

【図7】 マザーボード100とプラグインボードとの 通信状態を示すフローチャートである。

【図8】 マザーボード100とプラグインボードとの 通信状態を示すフローチャートである。

【符号の説明】

100……マザーボード、101……CPU (アルゴリズム設定手段)、102……ROM、103……RAM、104……DSP、105……D/Aコンパータ、40 106……ミキサ、107……シリアルIOポート、108……楽音発生器、109……A/Dコンパータ、110……アナログ入力端子、111……タイマ、112……IOポート、113……IOポート、1114……IOポート、115……パス、116……シリアルIOポート、117……フォトカプラ、118……MIDI入力端子、119……MIDI出力端子、120……ドライバ、121~129……コネクタ、150……パネルスイッチ、160……パネル表示器、170……ディスクドライブ、180……ディスク、191~199……50 プラグインボード(増設ボード)、200……サウンド

システム、201~203……パート、204~208 ……ミキサ部(グループ)209……インサーションエ フェクト、210……ハモリ効果部(インサーションエ

フェクト)、212……コーラス効果部(システム・エフェクト)、213……リバーブ部(システム・エフェクト)。

32

【図1】

【図2】

チャンネル構成

【図3】

【図4】

プラグインボード特有の ・パラメータ編集

【図5】 【図6】 本体ボード CPU メイン 本体 ブラグインボード -SP101 プラグインボードの選択 SP1 SP102 初期設定 SP201 数定したい -バラメータの アドレス SP103 5^{SP2} 要因チェック SP202 指定された パラメータの 名称設定値 - SP3 有? SP104 SP4 表示器にパラメータ名と 現在値を表示 YES SP105 要因? + 1, - 1のエアットを 検出 SW 入力 MIDI入力 その他 SP6 SP7 SP106 SP203 +1, -1 の指示 (相対値) MID! 処理 SW その他 処理 SP107 変更後の バラメータ链 (名称) SP205 SP108 バラメータ値表示を 更新

【図8】

