Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1 (previously presented): A process for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

with an acyl halide of Formula Q-C(=O)X, wherein:

Q is 2-($R^1CH_2CO_2$)phenyl-, R^1CH_2 -, or $R^1CH_2C(=O)OC(R^2)_2$ -;

X is Cl, Br, or I;

R¹ is H or C₁-C₆ alkyl;

R², at each occurrence, is independently selected from methyl, ethyl, and propyl; in a suitable polar aprotic solvent to form a compound of Formula (II), a compound of Formula (II*), or a mixture of compounds of Formula (II) and (II*):

wherein R^3 is X; and R^4 is $R^1CH_2C(=O)O$ -;

(2) contacting the compound of Formula (II), the compound of Formula (II*), or the mixture of compounds of Formula (II) and (II*); with a suitable reducing agent in a suitable polar solvent, in the absence of an acid catalyst, to form a compound of Formula (III):

(3) contacting the compound of Formula (III) with a suitable base to form the compound of Formula (IV).

Claim 2 (previously presented): The process of Claim 1 for the preparation of a compound of Formula (IV), wherein:

in step (1) the acyl halide of Formula Q-C(=O)X comprises:

2-acetoxy-2-methyl-propionyl bromide, 2-(acetoxy)-2-methyl-butanoyl bromide, 2-(acetoxy)-2-ethyl-butanoyl bromide, or 2-(acetoxy)-2-methyl-pentanoyl bromide;

in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether,

dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

- in step (2), the suitable reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
- in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether; and in step (3) the suitable base is selected from the group consisting of: sodium hydroxide,
- lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.

Claim 3 (previously presented): The process according to Claim 1, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent to form a compound of Formula (II-a), a compound of Formula (II*-a), or a mixture of compounds of Formula (II-a) and (II*-a):

(2) contacting the compound of Formula (II-a), the compound of Formula (II*-a), or the mixture of compounds of Formula (II-a) and (II*-a); with a suitable reducing agent in a suitable polar solvent, in the absence of an acid catalyst, to form a compound of Formula (III-a):

(3) contacting the compound of Formula (III-a) with a suitable base to form the compound of Formula (IV).

Claim 4 (previously presented): The process of Claim 3 for the preparation of a compound of Formula (IV), wherein:

in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate; in step (2), the suitable reducing agent is selected from the group consisting of: Fe, Zn-Cu

couple and Zn;

in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether; and in step (3) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.

Claim 5 (previously presented): The process of Claim 4 for the preparation of a compound of Formula (IV), wherein:

in step (1), the suitable polar aprotic solvent comprises a combination of acetonitrile and ethyl acetate;

in step (2), the suitable reducing agent is Zn-Cu couple;

in step (2), the suitable polar solvent comprises a combination of methanol and ethyl acetate; and

in step (3) the suitable base is sodium methoxide.

Claim 6 (previously presented): The process according to Claim 5, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent comprising a combination of acetonitrile and ethyl acetate, wherein the ratio of acetonitrile to ethyl acetate is 1:4; to form a compound of Formula (II-a), a compound of Formula (II*-a), or a mixture of compounds of Formula (II-a) and (II*-a):

(2) contacting the compound of Formula (II-a), the compound of Formula (II*-a), or the mixture of compounds of Formula (II-a) and (II*-a); with Zn-Cu couple in a suitable polar solvent comprising a combination of methanol and ethyl acetate, wherein the ratio of methanol to ethyl acetate is in the range of 1:2 to 1:4, to form a compound of Formula (III-a):

(III-a); and

(3) contacting the compound of Formula (III-a) with sodium methoxide to form the compound of Formula (IV).

Claim 7 (previously presented): The process of Claim 1 for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

with an acyl halide of Formula Q-C(=O)X, wherein:

Q is $R^1CH_2C(=O)OC(R^2)_2$ -;

X is Cl, Br, or I;

R¹ is H, CH₃, CH₂CH₃, or CH₂CH₂CH₃;

R², at each occurrence, is independently selected from methyl, ethyl, and propyl; in a suitable polar aprotic solvent to form a compound of Formula (II) or a compound of Formula (II*):

wherein R³ is X; and R⁴ is R¹CH₂C(=O)O-;

(2) contacting the compound of Formula (II) or the compound of Formula (II*) with a suitable reducing agent in a suitable polar solvent, in the absence of an acid catalyst, to form a compound of Formula (III):

(3) contacting the compound of Formula (III) with a suitable base to form the compound of Formula (IV).

Claim 8 (previously presented): The process of Claim 7 for the preparation of a compound of Formula (IV), wherein:

in step (1) the acyl halide of Formula Q-C(=O)X comprises:

2-acetoxy-2-methyl-propionyl bromide, 2-(acetoxy)-2-methyl-butanoyl bromide, 2-(acetoxy)-2-ethyl-butanoyl bromide, or 2-(acetoxy)-2-methyl-pentanoyl bromide;

in step (1), the suitable polar aprotic solvent comprises

one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether,

dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

in step (2), the suitable reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;

in step (2), the suitable polar solvent comprises
one polar solvent or a combination of two or more polar solvents; and is selected
from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl
acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy

ethane, and 2-methoxyethyl ether; and

in step (3) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.

Claim 9 (previously presented): The process according to Claim 7, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

(I)

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent to form a compound of Formula (II-a) or a compound of Formula (II*-a):

(2) contacting the compound of Formula (II-a) or the compound of Formula (II*-a) with a suitable reducing agent in a suitable polar solvent, in the absence of an acid catalyst, to form a compound of Formula (III-a):

(3) contacting the compound of Formula (III-a) with a suitable base to form the compound of Formula (IV).

Claim 10 (previously presented): The process of Claim 9 for the preparation of a compound of Formula (IV), wherein:

in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate; in step (2), the suitable reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;

in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether; and in step (3) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.

Claim 11 (previously presented): The process of Claim 10 for the preparation of a compound of Formula (IV), wherein:

in step (1), the suitable polar aprotic solvent comprises a combination of acetonitrile and ethyl acetate;

in step (2), the suitable reducing agent is Zn-Cu couple;

in step (2), the suitable polar solvent comprises a combination of methanol and ethyl acetate; and

in step (3) the suitable base is sodium methoxide.

Claim 12 (previously presented): process according to Claim 11, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent comprising a combination of acetonitrile and ethyl acetate, wherein the ratio of acetonitrile to ethyl acetate is 1:4; to form a compound of Formula (II-a) or a compound of Formula (II*-a):

(2) contacting the compound of Formula (II-a) or the compound of Formula (II*-a); with Zn-Cu couple in a suitable polar solvent comprising a combination of methanol and ethyl acetate, wherein the ratio of methanol to ethyl acetate is in the range of 1:2 to 1:4, to form a compound of Formula (III-a):

(III-a); and

(3) contacting the compound of Formula (III-a) with sodium methoxide to form the compound of Formula (IV).

Claim 13 (previously presented): The process of Claim 1 for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

with an acyl halide of Formula Q-C(=O)X, wherein:

Q is $R^1CH_2C(=O)OC(R^2)_2$ -;

X is Cl, Br, or I;

 R^1 is H, CH_3 , CH_2CH_3 , or $CH_2CH_2CH_3$;

R², at each occurrence, is independently selected from methyl, ethyl, and propyl; in a suitable polar aprotic solvent to form a mixture of compounds of Formula (II) and (II*):

$$(II) (II*)$$

wherein R³ is X; and R⁴ is R¹CH₂C(=O)O-;

(2) contacting the mixture of compounds of Formula (II) and (II*) with a suitable reducing agent in a suitable polar solvent, in the absence of an acid catalyst, to form a compound of Formula (III):

(III); and

(3) contacting the compound of Formula (III) with a suitable base to form the compound of Formula (IV).

Claim 14 (previously presented): The process of Claim 13 for the preparation of a compound of Formula (IV), wherein:

in step (1) the acyl halide of Formula Q-C(=O)X comprises:

2-acetoxy-2-methyl-propionyl bromide, 2-(acetoxy)-2-methyl-butanoyl bromide,

2-(acetoxy)-2-ethyl-butanoyl bromide, or 2-(acetoxy)-2-methyl-pentanoyl bromide;

- in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;
- in step (2), the suitable reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
- in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate,

acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether; and in step (3) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.

Claim 15 (previously presented): The process according to Claim 13, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent to form a mixture of compounds of Formula (II-a) and (II*-a):

$$(II-a) (II*-a)$$

(2) contacting the mixture of compounds of Formula (II-a) and (II*-a) with a suitable reducing agent in a suitable polar solvent, in the absence of an acid catalyst, to form a compound of Formula (III-a):

(3) contacting the compound of Formula (III-a) with a suitable base to form the compound of Formula (IV).

Claim 16 (previously presented): The process of Claim 15 for the preparation of a compound of Formula (IV), wherein:

- in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;
- in step (2), the suitable reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
- in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether; and
- in step (3) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.

Claim 17 (previously presented): The process of Claim 16 for the preparation of a compound of Formula (IV), wherein:

in step (1), the suitable polar aprotic solvent comprises a combination of acetonitrile and ethyl acetate;

in step (2), the suitable reducing agent is Zn-Cu couple;

in step (2), the suitable polar solvent comprises a combination of methanol and ethyl acetate; and

in step (3) the suitable base is sodium methoxide.

Claim 18 (previously presented): The process according to Claim 17, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent comprising a combination of acetonitrile and ethyl acetate, wherein the ratio of acetonitrile to ethyl acetate is 1:4; to form a mixture of compounds of Formula (II-a) and

(II*-a):

(2) contacting the mixture of compounds of Formula (II-a) and (II*-a) with Zn-Cu couple in a suitable polar solvent comprising a combination of methanol and ethyl acetate, wherein the ratio of methanol to ethyl acetate is in the range of 1:2 to 1:4, to form a compound of Formula (III-a):

(3) contacting the compound of Formula (III-a) with sodium methoxide to form the compound of Formula (IV).

Claim 19 (previously presented): A process for the preparation of a compound of Formula (III):

wherein:

Q is 2-($R^1CH_2CO_2$)phenyl-, R^1CH_2 -, or $R^1CH_2C(=O)OC(R^2)_2$ -; R^1 is H or C_1 - C_6 alkyl;

 R^2 , at each occurrence, is independently selected from methyl, ethyl, and propyl; comprising:

(1) contacting a compound of Formula (I):

with an acyl halide of Formula Q-C(=O)X, wherein:

Q is $2-(R^1CH_2CO_2)$ phenyl-, R^1CH_2 -, or $R^1CH_2C(=O)OC(R^2)_2$ -;

X is Cl, Br, or I;

 R^{1} is H or C_{1} - C_{6} alkyl;

R², at each occurrence, is independently selected from methyl, ethyl, and propyl; in a suitable polar aprotic solvent to form a compound of Formula (II), a compound of Formula (II*), or a mixture of compounds of Formula (II) and (II*):

wherein R³ is X; and R⁴ is R¹CH₂C(=O)O-; and

(2) contacting the compound of Formula (II), the compound of Formula (II*), or the mixture of compounds of Formula (II) and (II*); with a suitable reducing agent in a suitable polar solvent, in the absence of an acid catalyst, to form a compound of Formula (III).

Claim 20 (previously presented): The process of Claim 19 for the preparation of a compound of Formula (III), wherein:

in step (1) the acyl halide of Formula Q-C(=O)X comprises:

2-acetoxy-2-methyl-propionyl bromide, 2-(acetoxy)-2-methyl-butanoyl bromide, 2-(acetoxy)-2-ethyl-butanoyl bromide, or 2-(acetoxy)-2-methyl-pentanoyl bromide;

in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

in step (2), the suitable reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;

and

in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether.

Claim 21 (previously presented): The process according to Claim 19, for the preparation of a compound of Formula (III-a):

comprising:

(1) contacting a compound of Formula (I):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent to form a compound of Formula (II-a), a compound of Formula (II*-a), or a mixture of compounds of Formula (II-a) and (II*-a):

(2) contacting the compound of Formula (II-a), the compound of Formula (II*-a), or the mixture of compounds of Formula (II-a) and (II*-a); with a suitable reducing agent in a suitable polar solvent, in the absence of an acid catalyst, to form a compound of Formula (III-a).

Claim 22 (previously presented): The process of Claim 21 for the preparation of a compound of Formula (III-a), wherein:

in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

in step (2), the suitable reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;

and

in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether.

Claim 23 (previously presented): The process of Claim 22 for the preparation of a compound of Formula (III-a), wherein:

in step (1), the suitable polar aprotic solvent comprises a combination of acetonitrile and ethyl acetate;

in step (2), the suitable reducing agent is Zn-Cu couple;

and

in step (2), the suitable polar solvent comprises a combination of methanol and ethyl acetate.

Claim 24 (previously presented): The process according to Claim 23, for the preparation of a compound of Formula (III-a):

comprising:

(1) contacting a compound of Formula (I):

(I)

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent comprising a combination of acetonitrile and ethyl acetate, wherein the ratio of acetonitrile to ethyl acetate is 1:4; to form a compound of Formula (II-a), a compound of Formula (II*-a), or a mixture of compounds of Formula (II-a) and (II*-a):

(2) contacting the compound of Formula (II-a), the compound of Formula (II*-a), or the mixture of compounds of Formula (II-a) and (II*-a); with Zn-Cu couple in a suitable polar solvent comprising a combination of methanol and ethyl acetate, wherein the ratio of methanol to ethyl acetate is in the range of 1:2 to 1:4, to form a compound of Formula (III-a).

Claim 25 (Currently Amended): A compound of Formula (II) or (II*):

or a pharmaceutically acceptable salt thereof, wherein:

in Formula II, Q is R¹CH₂- or R¹CH₂C(=O)OC(R²)₂-;

 R^1 is H or C_1 - C_6 alkyl, provided that when Q is R^1CH_2 -, R^1 is not H;

R² is independently selected from methyl, ethyl, and propyl;

R³ is Cl, Br, or I; and

 R^4 is $R^1CH_2C(=O)O-$;

or in Formula II, Q is R¹CH₂C(=O)OC(R²)₂-;

 R^1 is H or C_1 - C_6 alkyl;

R² is independently selected from methyl, ethyl, and propyl;

R³ is Cl, Br, or I; and

 R^4 is $R^1CH_2C(=0)O-$;

and wherein:

in Formula II*,

Q is $R^1CH_2C(=O)OC(R^2)_2$ -;

 R^1 is H or C_1 - C_6 alkyl;

R² is independently selected from methyl, ethyl, and propyl;

R³ is Cl, Br, or I; and

 R^4 is $R^1CH_2C(=O)O-$;.

Claim 26 (previously presented): A compound of Formula (II-a) or (II*-a):

or a pharmaceutically acceptable salt thereof.

Claim 27 (previously presented): A compound of Formula (III):

or a pharmaceutically acceptable salt thereof, wherein:

Q is $R^{1}CH_{2}C(=O)OC(R^{2})_{2}$ -;

 R^1 is H or C_1 - C_6 alkyl; and

R² is independently selected from methyl, ethyl, and propyl.

Claim 28 (previously presented): A compound of Formula (III-a):

or a pharmaceutically acceptable salt thereof.

Claim 29 (previously presented): A process for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (IV):

(V)

with an acyl halide of Formula Q-C(=O)X, wherein:

Q is 2-($R^1CH_2CO_2$)phenyl-, R^1CH_2 -, or $R^1CH_2C(=O)OC(R^2)_2$ -;

X is Cl, Br, or I;

 R^1 is H or C_1 - C_6 alkyl;

R², at each occurrence, is independently selected from methyl, ethyl, and propyl; in a suitable polar aprotic solvent to form a compound of Formula (VI), a compound of Formula (VI*), or a mixture of compounds of Formula (VI) and (VI*):

wherein R^3 is X; and R^4 is $R^1CH_2C(=O)O$ -;

(2) contacting the compound of Formula (VI), the compound of Formula (VI*), or the mixture of compounds of Formula (VI) and (VI*); with a reducing agent in a suitable polar solvent, in the absence of an acid catalyst, to form a compound of Formula (VII):

(3a) contacting the compound of Formula (VII) with an activating agent in the presence of an amine base, to form a compound of Formula (VIII):

wherein LG is a leaving group derived from the activating agent;

(3b) contacting the compound of Formula (VIII) with an aminating agent to form a compound of Formula (III),

(4) contacting the compound of Formula (III) with a suitable base to form the compound of Formula (IV).

Claim 30 (previously presented): The process of Claim 29 for the preparation of a compound of Formula (IV), wherein:

in step (1) the acyl halide of Formula Q-C(=O)X comprises:

2-acetoxy-2-methyl-propionyl bromide,

2-(acetoxy)-2-methyl-butanoyl bromide,

2-(acetoxy)-2-ethyl-butanoyl bromide, or

2-(acetoxy)-2-methyl-pentanoyl bromide;

in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents, and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

28

- in step (2), the reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
- in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether;
- in step (3a) the activating agent is selected from the group consisting of:
 methanesulfonyl chloride, trifluoromethyl sulfonyl chloride, ethanesulfonyl
 chloride, benzenesulfonyl chloride,
 p-toluene-sulfonyl chloride, triazole/phosphorus oxychloride and
 triazole/diphenyl chloro-phosphate;
- in step (3a) the amine base is selected from the group consisting of: triethylamine, tributylamine,

N-methylmorpholine, N,N-diisopropyl-ethylamine,

N,N-dimethylcyclohexylamine,

N,N-diethylcyclohexylamine,

N,N-dimethyloctylamine, tetramethylethylenediamine,

pyridine, N,N-dimethyl-aminopyridine,

- 1,4-diazabicyclo[2.2.2]octane,
- 1,8-diazabicyclo[5.4.0]undec-7-ene, and
- 1,5-diazabicyclo[4.3.0]non-5-ene;
- in step (3a) the leaving group LG is selected from the group consisting of methanesulfonyloxy, trifluoromethyl-sulfonyloxy, ethanesulfonyloxy, benzenesulfonyloxy, toluenesulfonyloxy, and triazolyl;
- in step (3b) the aminating agent is selected from the group consisting of: NH₃, ammonium hydroxide, and ammonium carbonate; and
- in step (4) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and

ammonium C₁-C₆ alkoxide.

Claim 31 (previously presented): The process according to Claim 29, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (V):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent to form a compound of Formula (VI-a), a compound of Formula (VI*-a), or a mixture of compounds of Formula (VI-a) and (VI*-a):

(2) contacting the compound of Formula (VI-a), the compound of Formula (VI*-a), or the

mixture of compounds of Formula (VI-a) and (VI*-a); with a reducing agent in a suitable polar solvent, in the absence of an acid catalyst, to form a compound of Formula (VII-a):

- (3a) contacting the compound of Formula (VII-a) with an activating agent selected from the group consisting of:
 - i) an aryl sulfonyl halide,
 - ii) an alkyl sulfonyl halide, and
- iii) 1,2,4-triazole in the presence of a phosphorus chloride; in the presence of an amine base, to form a compound of Formula (VIII-a);

wherein LG is a leaving group derived from the activating agent;

(3b) contacting the compound of Formula (VIII-a) with an aminating agent to form a compound of Formula (III-a),

and

(4) contacting the compound of Formula (III-a) with a suitable base to form the compound of Formula (IV).

Claim 32 (previously presented): The process of Claim 31 for the preparation of a compound of Formula (IV), wherein:

- in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;
- in step (2), the reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
- in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether;
- in step (3a) the activating agent is selected from the group consisting of:
 methanesulfonyl chloride, trifluoromethyl sulfonyl chloride, ethanesulfonyl
 chloride, benzenesulfonyl chloride,
 p-toluene-sulfonyl chloride, triazole/phosphorus oxychloride and
 triazole/diphenyl chloro-phosphate;
- in step (3a) the amine base is selected from the group consisting of: triethylamine, tributylamine,

N-methylmorpholine, N,N-diisopropyl-ethylamine, tetramethylethylenediamine, pyridine,

N,N-dimethyl-aminopyridine,

- 1,4-diazabicyclo[2.2.2]octane, and
- 1,8-diazabicyclo[5.4.0]undec-7-ene;
- in step (3a) the leaving group LG is selected from the group consisting of methanesulfonyloxy, trifluoromethyl-sulfonyloxy, ethanesulfonyloxy,

benzenesulfonyloxy, toluenesulfonyloxy, and triazolyl;

in step (3b) the aminating agent is selected

from the group: NH3, ammonium hydroxide, and ammonium carbonate; and in step (4) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.

Claim 33 (previously presented): The process of Claim 32 for the preparation of a compound of Formula (IV), wherein:

in step (1), the suitable polar aprotic solvent comprises one solvent which is acetonitrile; in step (2), the reducing agent is Zn-Cu couple;

in step (2), the suitable polar solvent comprises a combination of methanol and ethyl acetate;

in step (3a) the activating agent is triazole/phosphorus oxychloride;

in step (3a) the amine base is triethylamine;

in step (3a) the leaving group LG is triazolyl;

in step (3b), the aminating agent is NH₃; and

in step (4) the suitable base is sodium methoxide.

Claim 34 (previously presented): The process according to Claim 33, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (V):

with 2-acetoxy-2-methyl-propionyl bromide in acetonitrile to form a compound of Formula (VI-a), a compound of Formula (VI*-a), or a mixture of compounds of Formula (VI-a) and (VI*-a):

(2) contacting the compound of Formula (VI-a), the compound of Formula (VI*-a), or the mixture of compounds of Formula (VI-a) and (VI*-a); with Zn-Cu couple in a suitable polar solvent comprising a combination of methanol and ethyl acetate, wherein the ratio of methanol to ethyl acetate is in the range of 1:2 to 1:4, to form a compound of Formula (VII-a):

(3a) contacting the compound of Formula (VII-a) with 1,2,4-triazole/phosphorus oxychloride, in the presence of triethylamine, to form a compound of Formula (VIII-a):

- (3b) contacting the compound of Formula (VIII-a) with NH₃, to form a compound of Formula (III-a), and
- (4) contacting the compound of Formula (III-a) with sodium methoxide to form the compound of Formula (IV).

Claim 35 (previously presented): The process of Claim 29 for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (V):

with an acyl halide of Formula Q-C(=O)X, wherein:

 $Q \ is \ 2\hbox{-}(R^1CH_2CO_2) phenyl-, \ R^1CH_2\hbox{-}, \ or \ R^1CH_2C(=O)OC(R^2)_2\hbox{--};$

X is Cl, Br, or I;

R¹ is H or C₁-C₆ alkyl;

 R^2 , at each occurrence, is independently selected from methyl, ethyl, and propyl; in a suitable polar aprotic solvent to form a mixture of compounds of Formula (VI) and (VI*):

$$Q = \begin{pmatrix} 0 & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

wherein R^3 is X; and R^4 is $R^1CH_2C(=O)O$ -;

(2) contacting the mixture of compounds of Formula (VI) and (VI*); with a reducing agent in a suitable polar solvent, in the absence of an acid catalyst, to form a compound of Formula (VII):

(3a) contacting the compound of Formula (VII) with an activating agent in the presence of an amine base, to form a compound of Formula (VIII):

(VIII)

wherein LG is a leaving group derived from the activating agent;

(3b) contacting the compound of Formula (VIII) with an aminating agent to form a compound of Formula (III),

(4) contacting the compound of Formula (III) with a suitable base to form the compound of Formula (IV).

Claim 36 (previously presented): The process of Claim 35 for the preparation of a compound of Formula (IV), wherein:

in step (1) the acyl halide of Formula Q-C(=O)X comprises:

2-acetoxy-2-methyl-propionyl bromide,

2-(acetoxy)-2-methyl-butanoyl bromide,

2-(acetoxy)-2-ethyl-butanoyl bromide, or

2-(acetoxy)-2-methyl-pentanoyl bromide;

- in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents, and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;
- in step (2), the reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
- in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate,

acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether;

in step (3a) the activating agent is selected from the group consisting of: methanesulfonyl chloride, trifluoromethyl sulfonyl chloride, ethanesulfonyl

p-toluene-sulfonyl chloride, triazole/phosphorus oxychloride and triazole/diphenyl chloro-phosphate;

in step (3a) the amine base is selected from the group consisting of: triethylamine, tributylamine,

N-methylmorpholine, N,N-diisopropyl-ethylamine,

N,N-dimethylcyclohexylamine,

chloride, benzenesulfonyl chloride,

N,N-diethylcyclohexylamine,

N,N-dimethyloctylamine, tetramethylethylenediamine,

pyridine, N,N-dimethyl-aminopyridine,

1,4-diazabicyclo[2.2.2]octane,

1,8-diazabicyclo[5.4.0]undec-7-ene, and

1,5-diazabicyclo[4.3.0]non-5-ene;

- in step (3a) the leaving group LG is selected from the group consisting of methanesulfonyloxy, trifluoromethyl-sulfonyloxy, ethanesulfonyloxy, benzenesulfonyloxy, toluenesulfonyloxy, and triazolyl;
- in step (3b) the aminating agent is selected from the group consisting of: NH₃, ammonium hydroxide, and ammonium carbonate; and
- in step (4) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.

Claim 37 (previously presented): The process according to Claim 35, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (V):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent to form a mixture of compounds of Formula (VI-a) and (VI*-a):

(2) contacting the mixture of compounds of Formula (VI-a) and (VI*-a); with a reducing agent in a suitable polar solvent, in the absence of an acid catalyst, to form a compound of Formula (VII-a):

- (3a) contacting the compound of Formula (VII-a) with a activating agent selected from the group consisting of:
 - i) an aryl sulfonyl halide,
 - ii) an alkyl sulfonyl halide, and
- iii) 1,2,4-triazole in the presence of a phosphorus chloride; in the presence of an amine base, to form a compound of Formula (VIII-a);

wherein LG is a leaving group derived from the activating agent;

(3b) contacting the compound of Formula (VIII-a) with an aminating agent to form a compound of Formula (III-a),

and

(4) contacting the compound of Formula (III-a) with a suitable base to form the compound of Formula (IV).

Claim 38 (previously presented): The process of Claim 37 for the preparation of a compound of Formula (IV), wherein:

- in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;
- in step (2), the reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
- in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether;
- in step (3a) the activating agent is selected from the group consisting of:
 methanesulfonyl chloride, trifluoromethyl sulfonyl chloride, ethanesulfonyl
 chloride, benzenesulfonyl chloride,
 p-toluene-sulfonyl chloride, triazole/phosphorus oxychloride and
 triazole/diphenyl chloro-phosphate;
- in step (3a) the amine base is selected from the group consisting of: triethylamine, tributylamine,

N-methylmorpholine, N,N-diisopropyl-ethylamine, tetramethylethylenediamine, pyridine,

N,N-dimethyl-aminopyridine,

1,4-diazabicyclo[2.2.2]octane, and

1,8-diazabicyclo[5.4.0]undec-7-ene;

in step (3a) the leaving group LG is selected from the group consisting of methanesulfonyloxy, trifluoromethyl-sulfonyloxy, ethanesulfonyloxy, benzenesulfonyloxy, toluenesulfonyloxy, and triazolyl;

in step (3b) the aminating agent is selected from the group: NH₃, ammonium hydroxide, and ammonium carbonate; and

in step (4) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.

Claim 39 (previously presented): The process of Claim 38 for the preparation of a compound of Formula (IV), wherein:

in step (1), the suitable polar aprotic solvent comprises one solvent which is acetonitrile; in step (2), the reducing agent is Zn-Cu couple;

in step (2), the suitable polar solvent comprises a combination of methanol and ethyl acetate;

in step (3a) the activating agent is triazole/phosphorus oxychloride;

in step (3a) the amine base is triethylamine;

in step (3a) the leaving group LG is triazolyl;

in step (3b), the aminating agent is NH₃; and

in step (4) the suitable base is sodium methoxide.

Claim 40 (previously presented): The process according to Claim 39, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (V):

with 2-acetoxy-2-methyl-propionyl bromide in acetonitrile to form a mixture of compounds of Formula (VI-a) and (VI*-a):

(2) contacting the mixture of compounds of Formula (VI-a) and (VI*-a); with Zn-Cu couple in a suitable polar solvent comprising a combination of methanol and ethyl acetate, wherein the ratio of methanol to ethyl acetate is in the range of 1:2 to 1:4 to form a compound of Formula (VII-a):

(3a) contacting the compound of Formula (VII-a) with 1,2,4-triazole/phosphorus oxychloride, in the presence of triethylamine, to form a compound of Formula (VIII-a):

- (3b) contacting the compound of Formula (VIII-a) with NH₃, to form a compound of Formula (III-a), and
- (4) contacting the compound of Formula (III-a) with sodium methoxide to form the compound of Formula (IV).

Claim 41 (previously presented): A process for the preparation of a compound of Formula (III):

wherein:

Q is 2-($R^1CH_2CO_2$)phenyl-, R^1CH_2 -, or $R^1CH_2C(=O)OC(R^2)_2$ -;

 R^1 is H or C_1 - C_6 alkyl;

R², at each occurrence, is independently selected from methyl, ethyl, and propyl; comprising:

(1) contacting a compound of Formula (V):

with an acyl halide of Formula Q-C(=O)X, wherein:

Q is 2-($R^1CH_2CO_2$)phenyl-, R^1CH_2 -, or $R^1CH_2C(=O)OC(R^2)_2$ -;

X is Cl, Br, or I;

R¹ is H or C₁-C₆ alkyl;

R², at each occurrence, is independently selected from methyl, ethyl, and propyl; in a suitable polar aprotic solvent to form a compound of Formula (VI), a compound of Formula (VI*), or a mixture of compounds of Formula (VI) and (VI*):

wherein R³ is X; and R⁴ is R¹CH₂C(=O)O-;

(2) contacting the compound of Formula (VI), the compound of Formula (VI*), or the mixture of compounds of Formula (VI) and (VI*); with a reducing agent in a suitable polar solvent, in the absence of an acid catalyst, to form a compound of Formula (VII):

45

(VII);

(3a) contacting the compound of Formula (VII) with an activating agent in the presence of an amine base, to form a compound of Formula (VIII):

wherein LG is a leaving group derived from the activating agent;

(3b) contacting the compound of Formula (VIII) with an aminating agent to form a compound of Formula (III).

Claim 42 (previously presented): The process of Claim 41 for the preparation of a compound of Formula (III), wherein:

in step (1) the acyl halide of Formula Q-C(=O)X comprises:

2-acetoxy-2-methyl-propionyl bromide,

2-(acetoxy)-2-methyl-butanoyl bromide,

2-(acetoxy)-2-ethyl-butanoyl bromide, or

2-(acetoxy)-2-methyl-pentanoyl bromide;

in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

in step (2), the reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;

in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate,

acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether;

in step (3a) the activating agent is selected from the group consisting of:

methanesulfonyl chloride, trifluoromethyl sulfonyl chloride, ethanesulfonyl chloride, benzenesulfonyl chloride,

p-toluene-sulfonyl chloride, triazole/phosphorus oxychloride and triazole/diphenyl chloro-phosphate;

in step (3a) the amine base is selected from the group consisting of: triethylamine, tributylamine,

N-methylmorpholine, N,N-diisopropyl-ethylamine,

N,N-dimethylcyclohexylamine,

N,N-diethylcyclohexylamine,

N,N-dimethyloctylamine, tetramethylethylenediamine,

pyridine, N,N-dimethyl-aminopyridine,

1,4-diazabicyclo[2.2.2]octane,

1,8-diazabicyclo[5.4.0]undec-7-ene, and

1,5-diazabicyclo[4.3.0]non-5-ene;

in step (3a) the leaving group LG is selected from the group consisting of methanesulfonyloxy, trifluoromethyl-sulfonyloxy, ethanesulfonyloxy, benzenesulfonyloxy, toluenesulfonyloxy, and triazolyl;

in step (3b) the aminating agent is selected from the group: NH₃, ammonium hydroxide, and ammonium carbonate.

Claim 43 (previously presented): The process according to Claim 41, for the preparation of a compound of Formula (III-a):

comprising:

(1) contacting a compound of Formula (V):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent to form a compound of Formula (VI-a), a compound of Formula (VI*-a), or a mixture of compounds of Formula (VI-a) and (VI*-a):

(2) contacting the compound of Formula (VI-a), the compound of Formula (VI*-a), or the mixture of compounds of Formula (VI-a) and (VI*-a); with a reducing agent in a suitable polar solvent, in the absence of an acid catalyst, to form a compound of Formula (VII-a);

- (3a) contacting the compound of Formula (VII-a) with a activating agent selected from the group consisting of:
 - i) an aryl sulfonyl halide,

- ii) an alkyl sulfonyl halide, and
- iii) 1,2,4-triazole in the presence of a phosphorus chloride; in the presence of an amine base, to form a compound of Formula (VIII-a):

wherein LG is a leaving group derived from the activating agent; and (3b) contacting the compound of Formula (VIII-a) with an aminating agent to form a compound of Formula (III-a).

Claim 44 (previously presented): The process of Claim 43 for the preparation of a compound of Formula (III-a), wherein:

in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

in step (2), the reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;

in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether; and

in step (3a) the activating agent is selected from the group consisting of:
methanesulfonyl chloride, trifluoromethyl sulfonyl chloride, ethanesulfonyl
chloride, benzenesulfonyl chloride,

p-toluene-sulfonyl chloride, triazole/phosphorus oxychloride and

triazole/diphenyl chloro-phosphate;

in step (3a) the amine base is selected from the group consisting of: triethylamine, tributylamine,

N-methylmorpholine, N,N-diisopropyl-ethylamine, tetramethylethylenediamine, pyridine,

N,N-dimethyl-aminopyridine,

1,4-diazabicyclo[2.2.2]octane, and

1,8-diazabicyclo[5.4.0]undec-7-ene;

in step (3a) the leaving group LG is selected from the group consisting of methanesulfonyloxy, trifluoromethyl-sulfonyloxy, ethanesulfonyloxy, benzenesulfonyloxy, toluenesulfonyloxy, and triazolyl; and

in step (3b) the aminating agent is selected from the group: NH₃, ammonium hydroxide, and ammonium carbonate.

Claim 45 (previously presented): The process of Claim 44 for the preparation of a compound of Formula (III-a), wherein:

in step (1), the suitable polar aprotic solvent comprises one solvent which is acetonitrile;

in step (2), the reducing agent is Zn-Cu couple;

in step (2), the suitable polar solvent comprises a combination of methanol and ethyl acetate;

in step (3a) the activating agent is triazole/phosphorus oxychloride;

in step (3a) the amine base is triethylamine;

in step (3a) the leaving group LG is triazolyl; and

in step (3b), the aminating agent is NH₃.

Claim 46 (previously presented): The process according to Claim 45, for the preparation of a compound of Formula (III-a):

comprising:

(1) contacting a compound of Formula (V):

with 2-acetoxy-2-methyl-propionyl bromide in acetonitrile to form a compound of Formula (VI-a), a compound of Formula (VI* -a), or a mixture of compounds of Formula (VI-a) and (VI*-a):

(2) contacting the compound of Formula (VI-a), the compound of Formula (VI*-a), or the mixture of compounds of Formula (VI-a) and (VI*-a); with Zn-Cu couple in a suitable polar solvent comprising a combination of methanol and ethyl acetate, wherein the ratio of methanol to ethyl acetate is in the range of 1:2 to 1:4, to form a compound of Formula (VII-a):

(3a) contacting the compound of Formula (VII-a) with 1,2,4-triazole/phosphorus oxychloride, in the presence of triethylamine, to form a compound of Formula (VIII-a):

and

(3b) contacting the compound of Formula (VIII-a) with NH₃, to form a compound of Formula (III-a).

Claim 47 - 59 (Canceled)

Claim 60 (previously presented): The process of claims 1 or 29 wherein the compound of Formula (IV) is in the form of a β -D-enantiomer.

Claim 61 (previously presented): The process of claims 19 or 41 wherein the compound of Formula (III) is in the form of a β -D-enantiomer.

Claim 62 (previously presented): The compound of claim 25 wherein the compound of Formula (II) or (II*) is in the form of a β -D-enantiomer.

Claim 63 (previously presented): The compound of claim 26 wherein the compound of Formula (II-a) or (II*-a) is in the form of a β -D-enantiomer.

Claim 64 (previously presented): The compound of claim 27 wherein the compound of Formula (III) is in the form of a β -D-enantiomer.

Claim 65 (previously presented): The compound of claim 28 wherein the compound of Formula (III-a) is in the form of a β -D-enantiomer.