Teoria dos Números: Equações de congruência (1.7)

Prof. Rafael Alves Bonfim de Queiroz rafael.queiroz@ufop.edu.br

Contéudo programático

• 1.7) Equações de congruência

- Uma equação de congruência polinomial ou, simplesmente, uma equação de congruência (em uma incógnita x) é uma equação de a forma $a_nx_n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0 \equiv 0 \pmod{m}$
- Diz-se que tal equação é de grau n se $a_n \not\equiv 0 \pmod{m}$.
- Suponha s ≡ t (mod m). Então s é uma solução da equação de congruência se e somente se t é uma solução da equação de congruência

- O número de soluções da equação de congruência é definido como sendo o número de soluções incongruentes ou, equivalentemente, o número de soluções no conjunto 0, 1, 2, ..., m - 1
- Essas soluções sempre podem ser encontradas por meio de testes, ou seja, substituindo cada um dos m números em a equação de congruência para ver se ela realmente satisfaz a equação.
- O conjunto completo de soluções da equação de congruência é um conjunto máximo de soluções incongruentes enquanto que o conjunto geral solução da equação de congruência é o conjunto de todas as soluções integrais da equação de congruência

Equações de congruência: exemplos

Considere as equações:

- (a) $x^2 + x + 1 \equiv 0 \pmod{4}$
 - ▶ Não há soluções, pois 0, 1, 2 e 3 não satisfazem a equação.
- (b) $x^2 + 3 \equiv 0 \pmod{6}$
 - ► Existe apenas uma solução entre 0, 1, ..., 5 que é 3.
 - Assim, a solução geral consiste nos inteiros 3 + 6k onde $k \in \mathbf{Z}$.
- (c) $x^2 1 \equiv 0 \pmod{8}$
 - ▶ Existem quatro soluções, 1, 3, 5 e 7.
 - ▶ Isso mostra que uma equação de congruência de grau n pode ter mais de n soluções.

- Ressaltamos que não estamos interessados apenas em estudar equações de congruência para encontrar suas soluções; isso sempre pode ser encontrado testando
- Estamos interessados principalmente em desenvolver técnicas que nos ajudem a encontrar tais soluções, e uma teoria que nos diz as condições sob as quais existem soluções e o número de tais soluções.
- Tal teoria é válida para equações de congruência linear que investigamos a seguir
- Também discutiremos o chinês Teorema do resto, que é essencialmente um sistema de equações de congruência linear.

- Observação 1: Os coeficientes de uma equação de congruência sempre podem ser reduzidos módulo m desde que um equivalente resultaria em uma equação, isto é, uma equação com as mesmas soluções.
- Por exemplo, os seguintes são equivalentes equações já que os coeficientes são congruentes módulo m=6:
 - ► $15x^2 + 28x + 14 \equiv 0 \pmod{6}$,
 - ► $3x^2 + 4x + 2 \equiv 0 \pmod{6}$,
 - $3x^2 2x + 2 \equiv 0 \pmod{6},$
 - Normalmente escolhemos coeficientes entre 0 e m-1 ou entre -m/2 e m/2

- **Observação 2**: Como estamos realmente procurando soluções da equação de congruência entre as classes de resíduos módulo m em vez de entre os inteiros, podemos ver a equação de congruência como uma equação sobre os inteiros módulo m, em vez de uma equação sobre **Z**, os inteiros.
- Neste contexto, o número de soluções da equação de congruência é simplesmente o número de soluções em Z_m.

Equação de Congruência Linear: $ax \equiv 1 \pmod{m}$

- Primeiro consideramos a equação de congruência linear especial $ax \equiv 1 \pmod{m}$, onde $a \not\equiv 0 \pmod{m}$.
- A história completa desta equação é dada no seguinte teorema
- **Teorema**: Se $a \in m$ são relativamente primos, então $ax \equiv 1 \pmod{m}$ tem solução única; senão tem nenhuma solução.

Equação de Congruência Linear: $ax \equiv 1 \pmod{m}$ - Exemplo

Teorema: Se $a \in m$ são relativamente primos, então $ax \equiv 1 \pmod{m}$ tem solução única; senão tem nenhuma solução.

- (a) Considere a equação de congruência $6x \equiv 1 \pmod{33}$. Como mdc(6, 33) = 3, esta equação não tem solução
- (b) Considere a equação de congruência $7x \equiv 1 \pmod{9}$. Como mdc(7, 9) = 1, a equação tem uma solução única. Testando os números $0, 1, \ldots, 8$, descobrimos que
 - ▶ $7(4) = 28 \equiv 1 \pmod{9}$
 - Portanto, x=4 é nossa única solução. (A solução geral é 4+9k para $k\in \mathbf{Z}$.)

Equação de Congruência Linear: $ax \equiv 1 \pmod{m}$

- Suponha que exista uma solução da equação de congruência linear, ou seja, suponha que mdc(a, m) = 1.
- Além disso, suponha que o módulo *m* é grande.
- Então o algoritmo euclidiano pode ser usado para encontrar uma solução da equação de congruência linear
- Especificamente, usamos o Algoritmo euclidiano para encontrar x_0 e y_0 tal que $ax_0 + my_0 = 1$
- Disto segue que $ax_0 \equiv 1 \pmod{m}$; ou seja, x_0 é uma solução para a equação de congruência linear.

Equação de Congruência Linear: $ax \equiv 1 \pmod{m}$ – Exemplo

- Considere a seguinte equação de congruência: $81 \equiv 1 \pmod{256}$
 - ► Por observação ou aplicando o algoritmo euclidiano a 81 e 256, descobrimos que mdc(81, 256) = 1
 - Assim a equação tem uma única solução.
 - ▶ O teste pode não ser uma maneira eficiente de encontrar essa solução, pois o módulo m = 256 é relativamente grande.
 - Assim, aplicamos o algoritmo euclidiano para a=81 e m=256.
 - Especificamente, encontramos $x_0 = -25$ e $y_0 = 7$ tal que $81x_0 + 256y_0 = 1$
 - ► Isso significa que x₀ = −25 é uma solução da equação de congruência dada.
 - Somando m = 256 a -25, obtemos a seguinte solução única entre 0 e 256:

```
x = 231
```

Equação de Congruência Linear: $ax \equiv b \pmod{m}$

- Agora consideramos a equação de congruência linear mais geral $ax \equiv b \pmod{m}$, onde $\not\equiv 0 \pmod{m}$.
- Primeiro consideramos o caso em que a e m são coprimos.
- Teorema: Suponha que a e m são relativamente primos.
 - ▶ Então $ax \equiv b \pmod{m}$ tem uma solução única.
 - Além disso, se s é a solução única para $ax \equiv 1 \pmod{m}$, então a solução única para $ax \equiv b \pmod{m}$ é x = bs.

Equação de Congruência Linear: $ax \equiv b \pmod{m} - Exemplo$

- Considere a equação de congruência $3x \equiv 5 \pmod{8}$.
- Como 3 e 8 são primos entre si, a equação tem um único solução.
- Testando os inteiros 0, 1, ..., 7, descobrimos que $3(7)=21\equiv 5\pmod 8$
- Assim x = 7 é a única solução da equação.

Equação de Congruência Linear: $ax \equiv b \pmod{m} - Exemplo$

- Considere a equação de congruência linear $33x \equiv 38 \pmod{280}$
- Como mdc(33, 280) = 1, a equação tem solução única.
- O teste pode não ser uma maneira eficiente de encontrar isso solução, pois o módulo m = 280 é relativamente grande.
- Aplicamos o algoritmo euclidiano para primeiro encontrar um solução para $33x \equiv 1 \pmod{280}$
- Ou seja, encontramos $x_0=17$ e $y_0=-2$ como uma solução de $33x_0+280y_0=1$
- Isso significa que s=17 é uma solução de $33x\equiv 1 \pmod{280}$
- Então sb = 17(38) = 646 é uma solução de $33x \equiv 38 \pmod{280}$
- Dividindo 646 por m=280, obtemos o restante x=86 que é a única solução de $33x\equiv38\pmod{280}$ entre 0 e 280.
- A solução geral é 86 + 280k com $k \in \mathbf{Z}$.

Equação de Congruência Linear: $ax \equiv b \pmod{m}$ – Exemplo

Teorema*: Considere a equação $ax \equiv b \pmod{m}$ onde d = mdc(a, m).

- (i) Suponha que d não divida b. Então $ax \equiv b \pmod{m}$ não tem solução.
- (ii) Suponha que d divida b. Então $ax \equiv b \pmod{m}$ tem d soluções que são todas congruentes módulo M para a solução única de $Ax \equiv B \pmod{M}$ onde A = a/d, B = b/d, M = m/d.

Teorema**: Suponha que a e m são relativamente primos.

- Então $ax \equiv b \pmod{m}$ tem uma solução única.
- Além disso, se s é a solução única para $ax \equiv 1 \pmod{m}$, então a solução única para $ax \equiv b \pmod{m}$ é x = bs.

Ressaltamos que o Teorema** se aplica à equação $Ax \equiv B \pmod{M}$ no Teorema* já que mdc(A, M) = 1.

Equação de Congruência Linear: $ax \equiv b \pmod{m}$ – Exemplo

Resolva cada equação de congruência:

- (a) $4x \equiv 9 \pmod{14}$
 - Nota mdc(4, 14) = 2.
 - ▶ No entanto, 2 não divide 9.
 - Portanto, a equação não tem solução.

Equação de Congruência Linear: $ax \equiv b \pmod{m}$ – Exemplo

Resolva cada equação de congruência:

- (b) $8x \equiv 12 \pmod{28}$
 - ▶ Observe que d = mdc(8, 28) = 4 e d = 4 divide 12.
 - Assim a equação tem d = 4 soluções.
 - ▶ Dividindo cada termo na equação por d = 4 obtemos a equação de congruência $2x \equiv 3 \pmod{7}$ que tem uma única solução.
 - ► Testando os inteiros 0, 1, ..., 6, descobrimos que 5 é a única solução de $2x \equiv 3 \pmod{7}$
 - Agora adicionamos d-1=3 múltiplos de 7 à solução 5 de $2x\equiv 3$ obtendo: 5+7=12, 5+2(7)=19, 5+3(7)=26
 - Portanto, 5, 12, 19, 26 são as soluções d=4 necessárias da equação original $8x \equiv 12 \pmod{28}$.
- Observação: A solução da equação 2x ≡ 3 (mod 7) foi obtida por inspeção.
 - ▶ No entanto, caso o módulo *m* é grande, sempre podemos usar o algoritmo euclidiano para encontrar sua solução única

Teorema do Resto Chinês

Um velho enigma chinês faz a seguinte pergunta.

 Existe um inteiro positivo x tal que, quando x é dividido por 3, produz um resto 2, quando x é dividido por 5 resulta em resto 4, e quando x é dividido por 7 dá um resto 6?

Em outras palavras, buscamos uma solução comum das três equações de congruência a seguir: $x \equiv 2 \pmod{3}$, $x \equiv 4 \pmod{5}$, $x \equiv 6 \pmod{7}$

- Observe que os módulos 3, 5 e 7 são pares relativamente primos. (Módulos é o plural de módulo.)
- Assim, aplica-se o seguinte teorema; ela nos diz que existe uma solução única módulo M=3*5*7=105.

Teorema do Resto Chinês

- Teorema: Considere o sistema $x \equiv r_1 \pmod{m_1}$, $x \equiv r_2 \pmod{m_2}$, ..., $x \equiv r_k \pmod{m_k}$, onde os m_i são pares relativamente primos.
- Então o sistema tem um único módulo de solução $M=m_1m_2\dots m_k$.
- Na verdade, pode-se fornecer uma fórmula explícita para a solução do sistema no teorema que afirmamos como uma proposição.

Teorema do Resto Chinês

- Proposição: Considere o sistema de equações de congruência. Seja $M=m_1m_2\dots m_k$, e $M_1=\frac{M}{m1}$, $M_2=\frac{M}{m2}$, (Então cada par M_i e m_i são co-primos.)
- Sejam s_1 , s_2 , ..., s_k as soluções respectivamente, das equações de congruência $M_1x\equiv 1\ (\text{mod }m_1),\ M_2x\equiv 1\ (\text{mod }m_2\),\ \ldots,\ M_kx\equiv 1\ (\text{mod }m_k)$
- Então segue a solução do sistema: $x_0 = M_1 s_1 r_1 + M_2 s_2 r_2 + ... + M_k s_k r_k$
- Agora resolvemos o enigma original de duas maneiras.

- Método 1: Primeiro aplicamos o Teorema Chinês do Resto (TRC) às duas primeiras equações, (a) $x \equiv 2 \pmod{3}$ (b) $x \equiv 4 \pmod{5}$
- CRT nos diz que existe uma solução única módulo M=3*5=15.
- Somando múltiplos do módulo m = 5 ao dada solução x = 4 da segunda equação (b), obtemos as seguintes três soluções de (b) que são menos de 15:
 4. 9. 14
- Testando cada uma dessas soluções na equação (a), descobrimos que 14 é a única solução de ambas as equações.

- Agora aplicamos o mesmo processo às duas equações (c) $x \equiv 14 \pmod{15}$ e (d) $x \equiv 6 \pmod{7}$
- CRT nos diz que existe uma solução única módulo M=15*7=105.
- Somando múltiplos do módulo m=15 a Dada a solução x=14 da primeira equação (c), obtemos as seguintes sete soluções de (b) que são menos de 105:
 - 14, 29, 44, 59, 74, 89, 104
- Testando cada uma dessas soluções de (c) na segunda equação (d), descobrimos que 104 é a única solução de ambas equações
- Assim, o menor inteiro positivo que satisfaz todas as três equações é
 x = 104 Esta é a solução do enigma.

- Método 2: Usando a notação acima, obtemos M=3*5*7=105, $M_1=105/3=35$, $M_2=105/5=21$, $M_3=105/7=15$
- Agora buscamos soluções para as equações $35x \equiv 1 \pmod{3}$, $21x \equiv 1 \pmod{5}$, $15x \equiv 1 \pmod{7}$
- Reduzindo 35 módulo 3, reduzindo 21 módulo 5 e reduzindo 15 módulo 7, produz o sistema $2x \equiv 1 \pmod 3$, $x \equiv 1 \pmod 5$, $x \equiv 1 \pmod 7$
- As soluções dessas três equações são, respectivamente, $s_1=2$, $s_2=1$, $s_3=1$

- Agora substituímos na fórmula $x_0 = M_1 s_1 r_1 + M_2 s_2 r_2 + \ldots + M_k s_k r_k$ para obter a seguinte solução do nosso sistema original: $x_0 = 35 * 2 * 2 + 21 * 1 * 4 + 15 * 1 * 6 = 314$
- Dividindo esta solução pelo módulo M=105, obtemos o restante x=104 que é a única solução do enigma entre 0 e 105.
- **Observação**: As soluções acima $s_1 = 2$, $s_2 = 1$, $s_3 = 1$ foram obtidas por inspeção.
- Se os módulos forem grandes, nós sempre pode usar o algoritmo euclidiano para encontrar tais soluções