# The Living World

Biodiversity, Microbes

### What is Life??

- ☐ Response to stimuli
- ☐ Growth
- ☐ Metabolism
- ☐ Reproduction, etc.



#### **CELLULAR LEVEL**













Cell (Nerve cell)

### ORGANISMAL LEVEL



## Ecosystem



# What do we get from biodiversity?

- Oxygen
- Food
- Clean Water
- Medicine
- Aesthetics
- Ideas



# Levels of Biodiversity

### **Genetic Diversity:**

Variety of genetic material within a species. Source of biodiversity at all levels

### **Species Diversity:**

Diversity Between Species

### **Ecosystem Diversity:**

Diversity Between Ecosystems



















## Threats to biodiversity

- habitat destruction (slash and burn agric. or felling of old-growth forests)
- overexploitation (fishing, hunting)
- pollution (domestic and industrial emissions)
- global climate change (the greenhouse effect and destruction of the ozone layer)
- invasion by introduced species (displacement of native species
- underlying social conditions

   (increased per-capita
   consumption, poverty, rapid
   population growth, unsound
   economic and social policies )

What is causing these threats to biodiversity?



### The Diversity of Life

- Biology is the study of living things
- Living things can be divided into five kingdoms



Monera



**Protista** 



Fungi



Plantae



**Animalia** 

# Microorganisms

- Invisible to Naked eye
- Cosmopolitan: Microbes thrive in an amazing diversity of habitats in extremes of heat, cold, radiation, pressure, salinity, acidity, and darkness, and often where no other life forms could exist.
- Microbes outnumber all other species and make up most living matter (~60% of the earths biomass).
- Microbial cycling of critical chemical elements such as carbon and nitrogen helps keep the world inhabitable for all life forms.
- Microbes generate at least half the oxygen we breathe.
- Microbes are roots of life's family tree. An understanding of their genomes will help us understand how more complex genomes developed.
- Microbial communities are excellent models for understanding biological interactions and evolution.

# Microorganisms

- Fast Movers: Some bacteria can move by flagella that enable them to obtain speeds as high as 0.00017 km/ hr. This may not seem very fast, but remember that we are talking about very small organisms. They are travelling at about 50-60 body lengths/ sec which is equivalent to a 6 ft tall man running at 100 m/ sec, 9 times faster than the world record. Cheetahs, are the fastest animals on land but even they only move at about 25 body lengths/ sec.
- Without microbes, the whole ecosystem would collapse.
- Aesthetics: interestingly some microbes produce light in by a process called bioluminescence.
- The color of light (orange, yellow, yellow-green, or blue-green) depends on the kind of luciferase and amount of oxidation of the vitamin attached to the luciferin.

# Microorganisms-Bad

- Ever heard of Salmonella or E. Coli, these can make you very sick.
- They are found on raw chicken and other meat, raw eggs, and other foods.
- Cold -virus



Vibrio cholerae















aureus











# Microorganisms- Good

In a way we can not live without microorganisms.

Without algae and other tiny plants floating in the ocean, we would not even have enough oxygen to stay alive!

**Algae and Plankton** 



**Bacteria** 



penicillin



Algae and Bacteria



#### Recombinant DNA Technology

- Genes in microbes, plants, and animals manipulated for practical applications
- Production of human blood-clotting factor by E. coli to aid hemophiliacs



#### Gene Therapy

 Inserting a missing gene or repairing a defective one in humans by inserting desired gene into host cells



#### **Table 1.1 Some Industrial Uses of Microbes**

| Product or Process   | Contribution of<br>Microorganism                                                                                                      |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Foods and Beverages  |                                                                                                                                       |
| Cheese               | Flavoring and ripening produced<br>by bacteria and fungi; flavors<br>dependent on the source of milk<br>and the type of microorganism |
| Alcoholic beverages  | Alcohol produced by bacteria or yeast by fermentation of sugars in fruit juice or grain                                               |
| Soy sauce            | Produced by fungal fermentation of soybeans                                                                                           |
| Vinegar              | Produced by bacterial fermentation of sugar                                                                                           |
| Yogurt               | Produced by bacteria growing in skim milk                                                                                             |
| Sour cream           | Produced by bacteria growing in cream                                                                                                 |
| Artificial sweetener | Amino acids synthesized by bacteria from sugar                                                                                        |
| Bread                | Rising of dough produced by action of yeast; sourdough results from bacteria-produced acids                                           |

Copyright © 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

### **Table 1.1 Some Industrial Uses of Microbes**

| Product or Process                                          | Contribution of<br>Microorganism                                 |
|-------------------------------------------------------------|------------------------------------------------------------------|
| Other Products                                              |                                                                  |
| Antibiotics                                                 | Produced by bacteria<br>and fungi                                |
| Human growth hormone,<br>human insulin                      | Produced by genetically engineered bacteria                      |
| Laundry enzymes                                             | Isolated from bacteria                                           |
| Vitamins                                                    | Isolated from bacteria                                           |
| Diatomaceous earth (used in polishes and buffing compounds) | Composed of cell walls of microscopic algae                      |
| Pest control chemicals                                      | Insect pests killed or inhibited by bacterial pathogens          |
| Drain opener                                                | Protein-digesting and fat-digesting enzymes produced by bacteria |

Copyright © 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

# Thank You







Euplotes



Humans



Orchid