$$\frac{\text{Следствие}}{\frac{\partial P}{\partial y}} \bigoplus_{i=0}^{n} \frac{\partial Q}{\partial y} \left(-\frac{y}{2}\right) = -\frac{1}{2}, \frac{\partial Q}{\partial x} = \frac{\partial}{\partial x} \left(\frac{x}{2}\right) = \frac{1}{2}$$
Формула Грина:
$$\iint_{D} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) dx dy = \iint_{D} \left(\frac{1}{2} - \left(\frac{1}{2}\right)\right) dx dy = \iint_{D} dx dy = S_{D} \stackrel{\Phi. \ \Gammap.}{=} \oint_{K^{+}} \left(-\frac{y}{2}\right) dx + \frac{x}{2} dy$$

Def. Пусть даны $P,Q:D\subset\mathbb{R}^2\to\mathbb{R}$, непрерывно дифференцируемы по 2-м переменным А также кривая $\stackrel{\frown}{AB}$, соединяющая любые две точки области, $\stackrel{\frown}{AB}:\begin{cases} x=\varphi(t)\\ y=\psi(t) \end{cases}$, φ,ψ – непрерывно дифференцируемы (кусочно)

 $I = \int_{AB} Pdx + Qdy$ называется интегралом, не зависящим от пути интегрирования (НЗП), если $\forall M, N \in D \ \int_{AMB} Pdx + Qdy = \int_{ANB} Pdx + Qdy$

Nota. Обозначают $\int_A^B Pdx + Qdy$ или $\int_{(x_2,y_2)}^{(x_1,y_1)} Pdx + Qdy$

Тh. Об интеграле НЗП. В условиях определения

I.
$$\int_{AB} Pdx + Qdy$$
 — интеграл, не зависящий от пути

II.
$$\oint_K Pdx + Qdy = 0 \quad \forall K \subset D$$

III.
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \ \forall M(x, y) \in D$$

$$\partial y \quad \partial x$$
IV. $\exists \Phi(x,y) \mid d\Phi = P(x,y)dx + Q(x,y)dy$ в области D
Причем $\Phi(x,y) = \int_{(x_0,y_0)}^{(x,y)} Pdx + Qdy$, где $(x_0,y_0), (x,y) \in D$

Тогда $I \Longleftrightarrow II \Longleftrightarrow III \Longleftrightarrow IV$

1. І
$$\iff$$
 II

 \implies По определению \int НЗП \iff $\int_{AMB} = \int_{ANB}$

Рассмотрим $\int_{AMB} - \int_{ANB} = \int_{AMB} + \int_{BNA} = \oint_{K} = 0 \ \forall K \subset D$
 \iff Достаточно разбить $\oint_{K^{+}} = \int_{AMB} + \int_{BNA} = 0$

Поскольку $\int_{AMB} + \int_{BNA} = 0$, то $\int_{AMB} - \int_{ANB} = 0$

2. II \iff III

 \implies $\oint_{K} = 0 \stackrel{?}{\implies} \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \ \forall M(x, y) \in D$

От противного
$$\exists M_0(x_0,y_0) \in D \mid \frac{\partial P}{\partial y} \mid_{M_0} \neq \frac{\partial Q}{\partial x} \mid_{M_0} \Longleftrightarrow \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) \mid_{M_0} \neq 0$$

Для определенности пусть $\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) \mid_{M_0} > 0$

Тогда $\exists \delta > 0 \mid \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) \mid_{M_0} > \delta > 0$

Выберем малую окрестность в точке $M_0\left(U(M_0)\right)$ и обозначим ее контур Γ Так как P и Q пепрерывно дифференцируемы, $\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) \mid_{M_0} > 0$ в $U(M_0)$ Формула Γ рина: $\iint_{U(M_0)} \left(\frac{\partial Q}{\partial y} - \frac{\partial Q}{\partial x}\right) dxdy > \iint_{U(M_0)} \delta dxdy = \delta S_{U(M_0)} > 0$

С другой стороны $\iint_{U(M_0)} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy = \oint_{\Gamma} Pdx + Qdy = 0$

Таким образом, возникает противоречие $\rightleftharpoons \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \forall M \in D$

Тогда $\forall D' \in D$ $\iint_{D'} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy = 0 = \oint_{\Gamma_D} Pdx + Qdy \ \forall \Gamma_{D'} \in D$

3. III $\rightleftharpoons \frac{\partial V}{\partial x} = \frac{\partial P}{\partial y} \implies \exists \Phi(x,y)$

Так как дюказало $I \rightleftharpoons III$, то докажем $I \Longrightarrow IV$

$$\int_{AM} Pdx + Qdy = \int_{A(x_0,y_0)}^{M(x,y)} Pdx + Qdy \quad \int_{A(x_0,y_0)}^{M(x,y)} \forall A, M \in D$$

Обозначим $\int_{A(x_0,y_0)}^{M(x,y)} Pdx + Qdy - \Phi(x,y)$

Докажем, что $d\Phi = Pdx + Qdy$

Так как $d\Phi(x,y) = \frac{\partial \Phi}{\partial x} dx - \frac{\partial \Phi}{\partial y} dy$, то нужно доказаль $\frac{\partial \Phi}{\partial x} = P(x,y), \frac{\partial \Phi}{\partial y} = Q(x,y)$

$$\frac{\partial \Phi}{\partial x} = \lim_{\Delta x \to 0} \int_{Ax}^{M(x,y)} Pdx + Qdy = \lim_{\Delta x \to 0} \int_{Ax \to 0}^{M(x,y)} \int_{Ax \to 0}^{M(x,y)} \frac{\partial \Phi}{\partial x} = \lim_{\Delta x \to 0} \int_{Ax \to 0}^{M(x,y)} \frac{\partial \Phi}{\partial x} = \lim_{\Delta x \to 0} \int_{Ax \to 0}^{M(x,y)} \frac{\partial \Phi}{\partial x} = \lim_{\Delta x \to 0} \int_{Ax \to 0}^{M(x,y)} \frac{\partial \Phi}{\partial x} = \lim_{\Delta x \to 0} \int_{Ax \to 0}^{M(x,y)} \frac{\partial \Phi}{\partial x} = \lim_{\Delta x \to 0} \int_{Ax \to 0}^{M(x,y)} \frac{\partial \Phi}{\partial x} = \lim_{\Delta x \to 0} \int_{Ax \to 0}^{M(x,y)} \frac{\partial \Phi}{\partial x} = \lim_{\Delta x \to 0} \int_{Ax \to 0}^{M(x,y)} \frac{\partial \Phi}{\partial x} = \lim_{\Delta x \to 0} \int_{Ax \to 0}^{M(x,y)} \frac{\partial \Phi}{\partial x} = \frac{\partial P}{\partial x}$$

Image: $\frac{\partial \Phi}{\partial x} = \frac{\partial \Phi}{\partial x} = \frac{\partial \Phi}{\partial x} = \frac{\partial \Phi}{\partial y}$

Известно $P = \frac{\partial \Phi}{\partial x} \partial_x Q = \frac{\partial \Phi}{\partial y}$
 $\frac{\partial \Phi}{\partial x} = \frac{\partial \Phi}{\partial x} \partial_x Q = \frac{\partial \Phi}{\partial y}$

Nota. Φ — первообразная для Pdx + Qdy

Th. Ньютона-Лейбница.

Выполнены условия **Th.** об интеграле H3П, тогда $\int_A^B P dx + Q dy = \Phi(B) - \Phi(A)$

$$\int_{A}^{B} P dx + Q dy \stackrel{\exists \Phi \mid d\Phi = P dx + Q dy}{=} \int_{A}^{B} d\Phi(x, y) \stackrel{\text{параметр. } AB}{=} \int_{\alpha}^{\beta} d\Phi(t) = \Phi(t) \Big|_{\alpha}^{\beta} = \Phi(\beta) - \Phi(\alpha) = \Phi(B) - \Phi(A)$$

Применение:

$$Ex.$$
 Дан интеграл $\int_{AB} \left(4 - \frac{y^2}{x^2}\right) dx + \frac{2y}{x} dy$ Проверим НЗП $\left(\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}\right)$: $\frac{\partial P}{\partial y} = -\frac{2y}{x^2}$, $\frac{\partial Q}{\partial x} = -\frac{2y}{x^2} \Longleftrightarrow \int$ НЗП

Найдем первообразную $\Phi(x,y)$ на все случаи жизни: $\Phi(x,y) = \int_{M_0(x_0,y_0)}^{M(x,y)} Pdx + Qdy$

Выберем путь (самый удобный):
$$\Phi(x,y) = \int_{M_0}^{N} + \int_{N}^{M}$$

$$\int_{M_0}^{N} y=0, x_0=1, dy=0 \int_{(1,0)}^{(x,0)} 4dx = 4x \Big|_{(1,0)}^{(x,0)} = 4x - 4$$

$$\int_{N}^{M} dx=0 \int_{(x,0)}^{(x,y)} \frac{2y}{x} dy = \frac{y^2}{x} \Big|_{(x,0)}^{(x,y)} = \frac{y^2}{x}$$

$$\Phi(x,y) = 4x - 4 + \frac{y^2}{x} + C = 4x + \frac{y^2}{x} + C$$

Проверим:
$$\frac{\partial \Phi}{\partial x} = 4 - \frac{y^2}{x^2} = P$$
, $\frac{\partial \Phi}{\partial y} = \frac{2y}{x} = Q$

Теперь можем искать $\int_{AB} \forall A, B \in D$ по N-L

Пусть
$$A(1,1), B(2,2),$$
 тогда
$$\int_{AB} P dx + Q dy = \Phi \Big|_A^B = \frac{y^2}{x} + 4x \Big|_{(1,1)}^{(2,2)} = \frac{4}{2} + 8 - 1 - 4 = 5$$

Nota. Функция Ф ищется в тех случаях, когда $\int_A^B Pdx + Qdy = \int_A^B (P,Q)(dx,dy) = A$ — работа силы, которая не зависит от пути

Ex. Работа силы тяжести не зависит от пути (такие силы называются консервативными), а силы трения – зависит (такие – диссипативными)

$$Ex.$$
 Пусть $\vec{F}=(P,Q)=(0,-mg)$ $\Phi(x,y)=\int_{O}^{M}0dx-mgdy=-\int_{0}^{y}mgdy=-mgy$ — потенциал гравитационного поля (или силы тяжести)