Ü

## All Contests > ALCoding Summer Weekly Contest 2 > Even Tree

# **Fven Tree**

**≜** locked



Problem

Submissions

Leaderboard

Discussions

**Editorial** 

You are given a tree (a simple connected graph with no cycles).

Find the maximum number of edges you can remove from the tree to get a forest such that each connected component of the forest contains an even number of nodes.

As an example, the following tree with  ${f 4}$  nodes can be cut at most  ${f 1}$  time to create an even forest.



### **Function Description**

Complete the evenForest function in the editor below. It should return an integer as described.

evenForest has the following parameter(s):

- t\_nodes: the number of nodes in the tree
- t\_edges: the number of undirected edges in the tree
- *t\_from*: start nodes for each edge
- *t\_to*: end nodes for each edge, (Match by index to *t\_from*.)

# Input Format

The first line of input contains two integers  $t_nodes$  and  $t_edges$ , the number of nodes and edges.

The next  $t_e dges$  lines contain two integers  $t_f rom[i]$  and  $t_t o[i]$  which specify nodes connected by an edge of the tree. The root of the tree is node 1.

### **Constraints**

- $2 \le n \le 100$
- $n \in \mathbb{Z}_{\text{even}}^+$

Note: The tree in the input will be such that it can always be decomposed into components containing an even number of nodes.  $\mathbb{Z}_{\text{even}}^+$  is the set of positive even integers.

## **Output Format**

Print the number of removed edges.





