MODIFIKASI LEMPUNG BENTONIT TERAKTIVASI ASAM DENGAN BENZALKONIUM KLORIDA SEBAGAI ADSORBEN ZAT WARNA RHODAMINE B

Ni Putu Widya Tironika Dewi^{1*}, I Nengah Simpen¹, dan I Wayan Suarsa¹

¹Jurusan Kimia FMIPA Universitas Udayana, Bukit Jimbaran

*E-mail:putuwidyadewi16@yahoo.com

ABSTRAK

Telah dilakukan penelitian tentang modifikasi lempung bentonit yang teraktivasi asam dan terinterkalasi surfaktan sebagai adsorben dalam penyerapan zat warna *rhodamine B*. Asam yang digunakan untuk aktivasi adalah asam sulfat 1,5 M dan surfaktan untuk interkalasi digunakan surfaktan benzalkonium klorida (BKC) dengan variasi konsentrasi 0,1; 0,5; dan 1% (v/v). Karakterisasi adsorben dilakukan dengan metode difraksi sinar-X untuk menentukan perubahan *basal spacing* d_{001} dan spektrofotometer FTIR untuk menentukan gugus fungsional yang terkandung pada adsorben. Hasil penelitian menunjukkan terjadinya perubahan *basal spacing* d_{001} untuk adsorben A_0 , A_a , $A_{a0,1}$, $A_{a0,5}$, dan A_{a1} secara berturut-turut adalah 17,3312; 17,1642; 16,1432; 16,1680; dan 19,7156 Å. Nilai keasaman permukaan tertinggi dimiliki oleh adsorben $A_{a0,1}$ yaitu sebesar 1,8657 \pm 0,0111 mmol/g. Sementara nilai luas permukaan untuk adsorben A_0 , A_a , $A_{a0,1}$, $A_{a0,5}$ dan A_{a1} secara berturut – turut adalah 89,6888; 90,1982; 90,3896; 90,3110; dan 90,3053 m²/g. Waktu optimum adsorpsi 90 menit dapat mengadsorpsi adsorbat sebanyak 22,0944 mg/g. Kapasitas adsorpsi tertinggi dimiliki oleh adsorben terinterkalasi BKC 0,1% ($A_{a0,1}$) yaitu sebesar 10,6905 mg/g, dengan mengikuti model Freundlich dengan koefisien linier (R^2) 0,980.

Kata Kunci: lempung bentonit, benzalkonium klorida, *rhodamine B*, aktivasi asam.

ABSTRACT

This paper disccusses the modification of acid-activated and surfactant intercalated bentonite clay as an adsorbent in the absorption of rhodamine B. A sulphuric acid of 1.5 M was used as the acid-activator whereas benzalkonium chloride (BKC) of various concentrations namely 0.1; 0.5; and 1% were used for the intercalation. The characterization of the adsorbent was carried out by using X-ray diffraction method for determining the changes of basal spacing d_{001} and FTIR spectrophotometer was applied for determining the functional groups of the adsorbent. The characterization result showed that the changes of basal spacing d_{001} for A_o , A_a , $A_{a0.1}$, $A_{a0.5}$, and A_{a1} were 17.3312; 17.1642; 16.1432; 16.1680; and 19.7156 Å respectively. The $A_{a0.1}$ adsorbent showed the highest surface acidity which was of 1.8657 \pm 0.0111 mmol/g. The specific surface area for A_o , A_a , $A_{a0.1}$, $A_{a0.5}$, and A_{a1} were 89.6888; 90.1982; 90.3896; 90.3110 and 90.3053 m²/g, respectively. The optimum time of adsorption was 90 minutes, which can adsorp adsorbate of 22.0944 mg/g. The highest adsorption capacity was shown by 0.1% BKC intercalated adsorbent ($A_{a0,1}$) was 10.6905 mg/g following the Freundlich model with a linear coefficient (R^2) of 0.980.

Keywords: Bentonit clay, benzalkonium chloride, rhodamine B, acid-activated.

PENDAHULUAN

Perkembangan sektor industri tekstil saat ini semakin pesat dan hal tersebut juga dapat negatif bagi kehidupan berdampak lingkungan manusia yang dapat menyebab-kan pencemaran ekosistem air diakibatkan oleh zat warna dari industri tekstil tersebut. Salah satu pewarna sintetik yang berbahaya adalah Rhodamine B karena sifatnya yang toksik terhadap lingkungan. Oleh karena sifatnya yang beracun ini, maka diperlukan upaya untuk menghilangkan zat-zat warna dari air limbah industri benar-benar agar aman lingkungan perairan (Sunardi, 2012).

Proses adsorpsi merupakan salah satu metode alternatif yang digunakan menghilangkan warna tersebut. Selain itu kita ketahui wilayah indonesia mempunyai cadangan tanah lempung yang cukup besar namun, pemanfataannya masih belum optimal. Lempung tersusun dari mineral alumina silikat yang mempunyai struktur kristal berlapis dan berpori. Lempung bentonit merupakan mineral dengan kandungan utama monmorillonit kurang lebih Lempung bentonit 85%. mempunyai kemampuan mengembang (swellability) karena ruang antar lapis (interlayer) yang dimilikinya, dan dapat mengadsorpsi ion-ion atau molekul terhidrat dengan ukuran tertentu (Suarya, 2010).

Pemanfaatan sifat khas montorillonit yang mudah mengembang dan memiliki kapasitas pertukaran ion yang tinggi, maka lempung ini dapat disisipi dengan suatu bahan lain untuk memperoleh sifat fisiko-kimianya lebih baik dibandingkan dengan lempung sebelum Metode untuk memodifikasi dimodifikasi. lempung yang sering digunakan interkalasi. Interkalasi merupakan suatu proses penyisipan spesies kimia secara reversible ke dalam antarlapis suatu struktur yang mudah mengembang (antarlapis silikat montmorillonit) tanpa merusak strukturnya (Tan, 1991).

Interkalasi ke dalam struktur lempung mengakibatkan peningkatan luas permukaan, basal spacing (jarak dasar antarlapis silikat montmorillonit), dan keasaman permukaan yang berpengaruh terhadap daya adsorpsinya. Simpen (2001) menyatakan lempung montmorillonit teraktivasi asam sulfat 1,5 M terpilar TiO₂ memiliki luas permukaan dan

keasaman permukaan yang relatif lebih tinggi daripada lempung tanpa dimodifikasi. Penelitian Esati (2008), dinyatakan bahwa lempung yang terinterkalasi BKC ke dalam montmorillonit teraktivasi asam sulfat 1,5 M memiliki luas permukaan dan keasaman permukaan yang tinggi yaitu sebesar 27,7885 m²/g dan 1,0135 mmol/g, dibandingkan dengan lempung tanpa terinterkalasi BKC dan aktivasi asam sulfat 1,5 M memiliki luas permukaan dan keasaman permukaan sebesar 26,2239 m²/g dan 0,5000 mmol/g.

Cadangan lempung yang cukup besar dan dapat mengadsorpsi tersebut, maka dilakukannya modifikasi terhadap lempung sehingga dapat menyerap zat warna *rhodamine B*. Penelitian ini dilakukan modifikasi lempung bentonit teraktivasi asam sulfat 1,5 M dengan BKC.

MATERI DAN METODE

Bahan

Bahan-bahan yang digunakan dalam penelitian ini meliputi lempung bentonit, benzalkonium klorida (BKC) 50%, zat pewarna *rhodamin B*, Asam sulfat (H₂SO₄), BaCl₂, AgNO₃, NaOH, HCl, indikator pp, asam palmitat, larutan metilen biru, dan aquades.

Peralatan

Alat yang digunakan meliputi labu ukur, pipet ukur, pipet volume, erlenmeyer, gelas ukur, gelas beker, pipet tetes, penggerus porselin, lumpang, ayakan 250 μ m, oven, pengaduk magnet, pemanas, corong, stopwatch, bola hisap, kertas saring Whatman no.42, timbangan analitik, XRD-6000, Spektrofotometer Inframerah, dan Spektrofotometer uv-vis.

Cara Kerja

Lempung yang sudah bersih dimasukkan sebanyak 100 g ke dalam 500 mL larutan 1,5 M dan diaduk dengan pengaduk magnet selama 24 jam. Kemudian disaring dan dicuci dengan air panas sampai terbebas dari ion sulfat (tes negatif terhadap BaCl₂), selanjutnya dikeringkan dalam oven pada suhu 110 – 120°C sampai mendapatkan berat lempung yang konstan dan diayak menggunakan ayakan ukuran 250 µm

kemudian diberi kode (A_a) sedangkan lempung yang tanpa aktivasi diberikan kode (A₀).

Lempung hasil aktivasi dimasukkan sebanyak 8 g ke dalam 400 mL akuades dan diaduk dengan pengaduk magnet selama 5 jam. Selanjutnya suspensi ditambahkan sedikit demi sedikit larutan surfaktan BKC dengan konsentrasi 0.1%; 0.5%; dan 1% (v/v), kemudian diaduk dengan pengaduk magnet selama 24 jam, dan lempung diberi kode A_{a0.1}, A_{a0.5}, A_{a1}. Setalah ditambahkan BKC selanjutnya ditambahkan 2 g asam palmitat dan diaduk kembali dengan pengaduk magnet selama 48 jam. Kemudian campuran disaring dan dicuci dengan aquades hingga bebas dari ion klorida (uji negatif terhadap AgNO₃). Padatan hasil pencucian (A_{a0,1}, A_{a0,5}, A_{a1}) dikeringkan dalam oven pada suhu 100–120°C. Selanjutnya lempung digerus, dan diayak dengan ayakan 250 μm.

Karakterisasi Ao, Aa, Aao,1, Aao,5 dan Aa1 dilakukan dengan menggunakan XRD untuk mengetahui basal spasing d_{001} , Spektrofotometer Inframerah (FTIR) untuk mengetahui gugus fungsional, metode metilen biru untuk mengukur permukaan, metode titrasi luas untuk menentukan keasaman permukaan dan spektrofotometer UV-vis menentukan konsentrasi sisa adsorbat setelah diadsorpsi.

HASIL DAN PEMBAHASAN

Penentuan basal spacing d₀₀₁

Interkalasi BKC ke dalam ruang antarlapis lempung bentonit ternyata tidak menyebabkan peningkatan jarak antarlapis atau basal spacing dikarenakan d_{001} lempung, hasil difraktogram puncak tidak begeser ke arah 20 yang lebih kecil. Kemungkinan keadaan ini disebabkan oleh surfaktan **BKC** yang terinterkalasi terdistribusi ke dalam ruang lempung cenderung antarlapis posisinya horizontal atau dengan kata lain oligomer BKC tidak membentuk struktur pillar (tiang) sehingga secara signifikan tidak meningkatkan jarak antarlapis (*basal spacing* d_{001}) lempung. Berikut ini hasil dari pengukuran *basal spacing* d_{001} yang dirangkum dalam Tabel 1.

Tabel 1. Nilai pergeseran *basal spacing* d₀₀₁ adsorben

No.	Adsorben	$2\theta (^{0})$	d (Å)
1	A_{o}	5,0948	17,3312
2	\mathbf{A}_{a}	5,1444	17,1642
3	$A_{a0,1}$	5,4700	16,1432
4	$A_{a0,5}$	5,4616	16,1680
5	A_{a1}	4,4783	19,7156

Tabel 1 menunjukkan bahwa interkalasi BKC 1% menghasilkan peningkatan jarak antarlapis (*basal spacing* d₀₀₁) yang paling besar tetapi tidak berkontribusi terhadap besarnya luas permukaan.

Analisis Spektra Inframerah

Karakterisasi dari adsorben yang terinterkalasi BKC ke dalam antar lapis lempung dengan FTIR dilakukan untuk mengetahui dan mengidentifikasi gugus fungsi yang terdapat dalam adsorben tersebut. Gambar 1 dapat dijelaskan bahwa terjadi perubahan spektra adsorben A_{a0,1}, A_{a0,5} dan A_{a1} dibandingkan dengan adsorben Ao. Pita serapan adsorben A_{a0,1} pada bilangan gelombang 2918,30; 2848,86 dan 1465,90 cm⁻¹, yang menunjukkan adanya BKC.

Sedangkan adsorben A_{a0,5} pada bilangan gelombang 2920,23; 2850,79 dan 1465,90 cm⁻¹ menunjukkan adanya benzalkonium klorida, dan adsorben A_{a1} pada bilangan gelombang 2924,09; 2850,79 dan 1463,97 cm⁻¹ menunjukkan adanya benzalkonium klorida (Farías *et al.*, 2011).

Gambar 1. Spektra ik Masing - masing Adsorben Lempung

Luas permukaan spesifik adsorben

Luas permukaan adsorben ditentukan secara metode metilen biru (*methylen blue method*). Hasil pengukuran luas permukaan spesifik masing-masing adsorben disajikan dalam Tabel 2.

Tabel 2. Nilai Luas Permukaan Adsorben

Adsorben	Luas permukaan spesifik		
	$S(m^2/g)$		
$\mathbf{A_o}$	89,6888		
$\mathbf{A_a}$	90,1982		
$A_{a0,1}$	90,3896		
$A_{a0,5}$	90,3110		
$\mathbf{A_{a1}}$	90,3053		

Tabel 2. menunjukkan bahwa terjadi peningkatan luas permukaan spesifik lempung pada interkalasi BKC konsentrasi 0,1% (A_{a0.1}) mencapai luas permukaan spesifik tertinggi dan nilai luas permukaan menurun pada lempung A_{a0.5} dan A_{a1}. BKC dengan konsentrasi 0,1% kemungkinan membuat pori-pori dalam struktur lebih teratur. lempung menjadi Namun. penambahan BKC sebesar 0,5% dan 1% ke dalam antar lapis lempung silikat diduga telah menutupi pori lempung sehingga membuat pori lempung menjadi tidak teratur, sehingga luas permukaan spesifik lempung menjadi berkurang.

Keasaman permukaan adsorben

Penentuan keasaman permukaan dengan metode titrasi asam – basa. Berikut hasil pengukuran keasaman permukaan adsorben disajikan pada Tabel 3 sebagai berikut.

Tabel 3. Nilai Keasaman Permukaan

	Kal Keasaman	Jumlah Situs
Adsorben	Permukaan	aktif
	(mmol/g)	(10^{20} atom/g)
A_{o}	$0,8105 \pm 0,0001$	4,8808
\mathbf{A}_{a}	$1,1733 \pm 0,0053$	7,0656
$A_{a0,1}$	$1,8657 \pm 0,0111$	11,2352
$A_{a0,5}$	$1,7029 \pm 0,0212$	10,2547
A_{a1}	$1,4816 \pm 0,0212$	8,9222

Tabel 3 menunjukkan adsorben $A_{a0,1}$ memiliki keasaman permukaan dan jumlah situs aktif yang tinggi yaitu sebesar $1,8657 \pm 0,01114$ mmol/g dan dengan jumlah situs aktif $11,2352 \cdot 10^{20}$ atom/g. Peningkatan keasaman permukaan yang terjadi pada adsorben tersebut disebabkan oleh pengaktifan lempung dengan asam sulfat. Selain itu, diduga lempung juga mendapatkan sumbangan situs aktif dari surfaktan kationik yang diinterkalasi ke dalam antarlapis lempung, sehingga keasaman permukaan lempung menjadi bertambah.

Waktu setimbang adsorpsi

Variasi waktu yang digunakan untuk penentuan waktu adsorpsi optimum yaitu 15, 30, 60, 90 dan 120 menit. Hasil analisis adsorbat dengan spektrofotometer UV-vis didapatkan data adsorbansi dan jumlah adsorbat yang terjerap dengan variasi waktu pada Gambar 2.

Gambar 2 menunnjukkan bahwa waktu adsorpsi optimum yaitu 90 menit yang dapat

mengadsorpsi adsorbat terbanyak yaitu sebesar 22.094 mg/g.

Gambar 2. Berat adsorbat yang teradsorpsi dengan variasi pengadukan 15; 30; 60; 90; dan 120 menit.

Penentuan isoterm adsorpsi dan kapasitas adsorpsi

Isoterm adsorpsi menggunakan model Langmuir dan Freundlich untuk menyatakan pola adsorpsi yang terjadi. Isoterm Langmuir menunjukkan bahwa proses adsorpsi terjadi secara kimia yang mana situs aktif lempung akan berinteraksi dengan *rhodamine B*. Sedangkan isoterm Freundlich merupakan isoterm yang menggambarkan proses adsorpsi secara fisika. Penentuan pola isoterm adsorpsi ditentuan berdasarkan 2 persamaan isoterm adsorpsi yaitu Langmuir dan Freundlich. Hasil dari penentuan persamaan isoterm adsorpsi Langmuir dan Freundlich pada Tabel 4.

Tabel 4 menunjukan bahwa adsorpsi *rhodamine B* oleh masing-masing adsorben (A_o , A_a , $A_{a0,1}$, $A_{a0,5}$ dan A_{a1}) mengikuti persamaan Freundlich kerena memiliki koefisien liniernya (R^2) mendekati 1 yaitu 0,980. Hasil dari penelitian untuk kapasitas adsordpsi maksimum didapatkan dari persamaan Freundlich dengan adsorben teraktivasi asam sulfat 1,5 dan terinterkalasi

benzalkonium klorida 0,1 % $(A_{a0,1})$ yaitu sebesar 10,6905 mg/g.

Tabel 4.	Hasil	Persamaan	Isoterm	Adsorpsi	Langmuir	dan Freundlich
----------	-------	-----------	---------	----------	----------	----------------

Tipe -	Model Langmuir		Model Freundlich			
Adsorben	b (mg/g)	\mathbb{R}^2	n	$K_{\rm F}$ (mg/g)	\mathbb{R}^2	
A _o	43,4783	0,646	0,7236	0,5333	0,976	
$\mathbf{A_a}$	166,6667	0,344	1,1481	6,8865	0,948	
$\mathbf{A_{a0,1}}$	55,5556	0,872	1,7953	10,6905	0,980	
$A_{a0,5}$	142,8571	0,649	1,1521	5,6105	0,973	
A_{a1}	62,5	0,612	0,7937	3,3884	0,958	

Kapasitas adsorpsi tiap—tiap adsorben dipengaruhi oleh sifat fisiko-kimianya, antara lain *basal spacing*, luas permukaan dan keasaman permukaan. Pernyataan tersebut mendukung bahwa kapasitas

adsorpsi adsorben A_a dan $A_{a0,1}$ lebih tinggi daripada adsorben A_o dan adsorben lainnya. Hal ini dikarenakan A_a dan $A_{a0,1}$ memiliki sifat fisiko-kimia yang relatif lebih baik daripada adsorben yang lain.

Tabel 5	Perbandingan	Karakter	Sifat F	∃isiko-	Kimia	Adsorben
Tabel 5.	1 Croananigan	ixaranter	DHati	ISIKO-	ixiiiia	1 1u 301 0011

Adsorben	Basal Spacing d ₀₀₁	Luas Permukaan Spesifik	Keasaman Permukaan	Kapasitas Adsorpsi (mg/g)
	(Å)	$(\mathbf{m}^2/\mathbf{g})$	(mmol/g)	(0 b)
A_{o}	17,3312	89,6888	$0,8105 \pm 0,0001$	0,5333
A_a	17,1642	90,1982	$1,1733 \pm 0,0053$	6,8865
$A_{a0,1}$	16,1432	90,3896	$1,8657 \pm 0,0111$	10,6905
$A_{a0,5}$	16,1680	90,3110	$1,7029 \pm 0,0212$	5,6105
A_{a1}	19,7156	90,3053	$1,4816 \pm 0,0212$	3,3884

Dalam Tabel 5 dapat dilihat adsorben A_{a0,1} memiliki basal spacing d₀₀₁ yang paling rendah tetapi A_{a0,1} memiliki nilai luas permukaan dan keasaman permukaan paling tinggi, sehingga tersedia situs aktif dalam jumlah yang cukup banyak, yang dapat mengikat molekul zat warna dalam jumlah yang relatif lebih banyak dibandingkan adsorben lainnya. Adsorben Aa0,1 juga efektif digunakan sebagai adsorben untuk menyerap zat warna *rhodamine B* karena memiliki kapasitas adsorpsi lebih tinggi dibandingkan dengan dengan Ao, Aa, Aa0,5 dan Aal. Fenomena ini sejalan dengan penelitian Esati (2008), bahwa lempung yang teraktivasi asam sulfat 1,5 dan terinterkalasi BKC 0,1% memiliki tingkat kejernihan minyak daun cengkeh hasil adsorpsi yang tinggi, sehingga adsorben tersebut sangat baik digunakan untuk mengadsorpsi minyak daun cengkeh yang kotor.

SIMPULAN DAN SARAN

Simpulan

Dari data yang didapatkan penelitian dan hasil pembahasan dapat diambil beberapa kesimpulan sebagai berikut : (a) Lempung yang memiliki basal spacing d₀₀₁ tertinggi pada lempung yang teraktivasi asam sulfat 1,5 M terinterkalasi BKC 1% (Aa1), dan lempung teraktivasi asam sulfat 1,5 M terinterkalasi BKC 0,1% mempunyai nilai keasaman permukaan tertinggi dan nilai luas permukaan sfesifik tertinggi yaitu $1,8657 \pm 0,01114 \text{ mmol/g dan } 90,3896 \text{ m}^2/\text{g dan}$ (b) Adsorben Aa0,1 memiliki kapasitas adsorpsi tertinggi terhadap waktu adsorpsi optimum selama 90 menit dan kapasitas adsordpsi tertinggi dimiliki oleh adsorben teraktivasi asam sulfat 1,5 dan terinterkalasi BKC 0,1 % (A_{20.1}) yaitu 10,6905 mg/g dengen mengikuti isoterm

adsorpsi Freundlich dengan nilai koefisien liniernya (R²) 0,980.

Saran

Dari hasil penenlitian dan kesimpulan diatas, maka dapat disarankan beberapa hal sebagai berikut (a) perlu dilakukan analisis luas permukaan spesifik adsorben dengan *Gas Sorption Analyzer* dan analisis morfologi permukaan dengan *Scanning Electron Microscopy* (SEM), dan (b) perlu dilakukan penelitian lebih lanjut mengenai jenis interaksi yang terjadi antara adsorben dengan adsorbat.

UCAPAN TERIMA KASIH

Terima kasih penulis sampaikan kepada Dr. Drs. I Made Oka Adi Parwata, M. Si., Dra. Emmy Sahara, M.Sc.(Hons) dan Ir. Wahyu Dwijani Sulihingtyas, M.Kes. serta Jurusan Kimia FMIPA Universitas Udayana dan semua staf yang membantu sehingga terselesaikannya penelitian dan laporan ini.

DAFTAR PUSTAKA

Esati, N. K., 2008, Interkalasi Benzalkonium Klorida ke dalam Montmorillonit Teraktivasi Asam Sulfat dan Pemanfaatannya untuk Meningkatkan Kualitas Minyak Daun Cengkeh, *Skripsi*, Universitas Udayana, Bukit Jimbaran.

Farías, T., de Ménorval L. C., Zajac J., and Rivera A., 2011, Benzalkonium chloride and sulfamethoxazole adsorption onto natural clinoptilolite: Effect of time, ionic strength, pH and temperature, *Journal of Colloid and Interface Science*, 363: 465-475.

- Simpen, I. N., 2001, Preparasi dan Karakterisasi Lempung Montmorillonit Teraktivasi Asam Terpilar TiO₂, *Tesis*, Program Pasca Sarjana Universitas Gajah Mada, Yogykarta.
- Suarya, P., Bawa, A. A. P., dan Wisudawan, D., 2010, Interkalasi Tetraetil Ortosilikat (Teos) Pada Lempung Teraktifasi Asam Sulfat dan Pemanfaatannya sebagai Adsorben Warna Limbah Garmen, *Jurnal Kimia*, 4(1):43-48.
- Suarya, P., Simpen, I. N., 2009, Interkalasi Benzalkonium Klorida Ke dalam Montmorillonit Teraktivasi Asam dan Pemanfaatannya untuk Meningkatkan Kualitas Minyak Daun Cengkeh, *Jurnal Kimia*, 3(1):41-46
- Sunardi, Irawati U., Sybianti, N. R., 2012, Sintesis dan Karakterisasi Komposit Kaolin-Tio2 sebagai Fotokatalis untuk Degradasi Zat Warna Rhodamine B, *Sain* dan Terapan Kimia, Vol.6, No.2, 118-129
- Tan, K. H., 1991, Dasar Dasar Kimia Tanah, Gadjah Mada University Press, Yogyakarta, Hal. 105 – 108.