Devin Hardy

CS 472

1.

O(n) is O(c^n) because it enumerates r by checking the pairing of i and j and the subset of k

2.

 $O(n^3)$: $n^2 + 3n^3$ the largest exponent or n is 3 so $3n^3 >= cn^3$ if $c = 1 \cdot 1n^3 = n^3$

 $\Omega(n^3)$: $n^2 + 3n^3$ the largest exponent for n is 3 so $3n^3 \le cn^3$ if $c = 1.1n^3 = n^3$

3.

 $2^{n+1} -> \Theta(2^n)$:

For $2^{n+1} - 0(2^n)$ to exist $2^{n+1} = 2^2^n$ so that $2^2^n < c^2$ for any c > 2

For $2^{n+1} - \Omega(2^n)$, $\Omega(n)$ requires there exist a constant c > 0 s.t., $f(n) >= c^*g(n)$. This is satisfied for any constant 0 < c <= 2. As $2^{n+1} - \Omega(2^n)$ and $2^{n+1} - \Omega(2^n)$, then $2^{n+1} - \Omega(2^n)$.

 $A^n+1 \rightarrow \Theta(A^n)$:

A^n+1 -> O(A^n)? f(n) -> O(g(n)) iff $\exists c$ s.t. for, $f(n) \le c^* g(n)$. With the definition of exponents, $A^n(n+1) = A^*A^n$ so $A^*A^n \le C^*A^n$ for any C >= A;

A^n+1 -> $\Omega(A^n)$? $\Omega(n)$ requires there exist a constant c > 0 s.t., f(n) >= c*g(n). If A = 0, O^n would still be 0 so A > 0. As $A^n+1 -> O(A^n)$ and $A^n+1 -> \Omega(A^n)$, then $A^n+1 -> O(A^n)$.

4.

Worst case the order is n^2; The function has to check if the matrix is complete which requires checking every pair of the matrix.

5. Algorithm for Gray Code to solve Tower of Hanoi.

2ⁿ – 1 algorithm for Tower of Hanoi for nth disks [1]

6.

Cited

[1] A. Mishra, "Tower of Hanoi Recursion Game Algorithm explained," *HackerEarth Blog*, 13-Sep-2021. [Online]. Available: https://www.hackerearth.com/blog/developers/tower-hanoi-recursion-game-algorithm-explained/. [Accessed: 31-Jan-2022].