HEC 2011

Exercice avec préparation 1

- 1. Question de cours : Définition d'une série convergente. Pour quels réels x > 0 la série de terme général $(\ln x)^n$ est-elle convergente? Calculer alors sa somme.
- 2. Pour tout entier n supérieur ou égal à 1, on note f_n la fonction définie sur l'intervalle $]0, +\infty[$, à valeurs réelles, par : $f_n(x) = (\ln x)^n x$.
 - a) Calculer les dérivées première et seconde f'_n et f''_n de la fonction f_n .
 - b) Montrer que la fonction f_1 ne s'annule jamais.
 - c) Justifier l'existence d'un réel $a \in]0,1[$ vérifiant l'égalité : $f_2(a) = 0$.
- 3. On suppose désormais que n est un entier supérieur ou égal à 3, et on s'intéresse aux solutions de l'équation $f_n(x) = 0$ sur l'intervalle $]1, +\infty[$. On donne : $\ln 2 \simeq 0,693$.
 - a) Dresser le tableau de variations de f_n sur $]1, +\infty[$ et montrer que l'équation $f_n(x) = 0$ admet deux racines, notées u_n et v_n , sur $]1, +\infty[$. (u_n désigne la plus petite des deux racines).
 - **b)** Calculer $\lim_{n\to+\infty} v_n$.
- 4. Montrer que la suite $(u_n)_{n\geqslant 3}$ est convergente et calculer sa limite.

Exercice sans préparation 1

Soit p un réel de]0,1[et q=1-p. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes définies sur un espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$, de même loi de Bernoulli telle que :

 $\forall k \in \mathbb{N}^*$, $\mathbb{P}([X_k = 1]) = p$ et $\mathbb{P}([X_k = 0]) = q$. Pour n entier de \mathbb{N}^* , on définit pour tout $k \in [1, n]$ la variable aléatoire $Y_k = X_k + X_{k+1}$.

- 1. a) Calculer pour tout $k \in [1, n]$, $Cov(Y_k, Y_{k+1})$.
 - b) Montrer que $0 < Cov(Y_k, Y_{k+1}) \leqslant \frac{1}{4}$.
- 2. Calculer pour tout couple (k, l) tel que $1 \leq k < l \leq n$, $Cov(Y_k, Y_l)$.
- 3. On note ε un réel strictement positif fixé. Montrer que $\lim_{n\to+\infty} \mathbb{P}\left(\left[\left|\frac{1}{n}\sum_{k=1}^n Y_k 2p\right| > \varepsilon\right]\right) = 0.$

Exercice avec préparation 2

- 1. Question de cours : Formule des probabilités totales.
- 2. Pour tout couple (n,p) d'entiers naturels, on pose : $I_{n,p} = \int_0^1 x^n (1-x)^p dx$.
 - a) Calculer $I_{n,0}$.
 - b) Exprimer $I_{n,p+1}$ en fonction de $I_{n+1,p}$.
 - c) En déduire l'expression de $I_{n,p}$ en fonction de n et p. On dispose de N urnes $(N \ge 1)$ notées $U_1, U_2,, U_N$. Pour tout $k \in [\![1,N]\!]$, l'urne U_k contient k boules rouges et N-k boules blanches.

On choisit au hasard une urne avec une probabilité proportionnelle au nombre de boules rouges qu'elle contient; dans l'urne ainsi choisie, on procède à une suite de tirages d'une seule boule avec remise dans l'urne considérée.

on suppose que l'expérience précédente est modélisée par un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

- 3. Pour tout $k \in [1, N]$, calculer la probabilité de choisir l'urne U_k . Soit n un entier fixé de \mathbb{N}^* . On note E_n et R_{2n+1} les évènements suivants : $E_n =$ "au cours des 2n premiers tirages, on a obtenu n boules rouges et n boules blanches"; $R_{2n+1} =$ "on a obtenu une boule rouge au 2n+1-ième tirage".
- 4. a) exprimer $\mathbb{P}(E_n)$ sous forme d'une somme.
 - b) Donner une expression de la probabilité conditionnelle $P_{E_n}(R_{2n+1})$.
- 5. Montrer que $\lim_{N \to +\infty} P_{E_n}(R_{2n+1}) = \frac{I_{n+2,n}}{I_{n+1,n}} = \frac{n+2}{2n+3}$

Exercice sans préparation 2

On note $\mathcal{M}_2(\mathbb{R})$ l'espace vectoriel des matrices carrées réelles d'ordre 2.

- 1. Donner une base de $\mathcal{M}_2(\mathbb{R})$.
- 2. Peut-on trouver une base de $\mathcal{M}_2(\mathbb{R})$ formée de matrices inversibles?
- 3. Peut-on trouver une base de $\mathcal{M}_2(\mathbb{R})$ formée de matrices diagonalisables?

Exercice avec préparation 3

Soit X une variable aléatoire définie sur un espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$, à valeurs dans $[0, \theta]$ où θ est un paramètre réel strictement positif inconnu. Une densité f de X est donnée par $f(x) = \begin{cases} \frac{2x}{\theta^2} & \text{si } x \in]0, \theta] \\ 0 & \text{sinon} \end{cases}$

- 1. Question de cours : Estimateur sans biais ; risque quadratique d'un estimateur.
- 2. Calculer l'espérance et la variance de X. Pour tout entier $n \in \mathbb{N}^*$, soit $(X_1, X_2, ..., X_n)$ un n-échantillon de variables aléatoires indépendantes et de même loi que X. On pose pour tout $n \in \mathbb{N}^*$: $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$.
- 3. a) Déterminer la fonction de répartition F de X.
 - b) Tracer dans un repère orthogonal l'allure de la courbe représentative de F.
- 4. a) Déterminer un estimateur T_n de θ , sans biais et de la forme $c\overline{X_n}$, où c est un réel que l'on précisera.
 - b) Quels sont les risques quadratiques respectifs associés aux estimateurs $\overline{X_n}$ et T_n de θ ?
- 5. On pose pour tout $n \in \mathbb{N}^*$: $M_n = max(X_1, X_2, ..., X_n)$.
 - a) Déterminer la fonction de répartition G_n et une densité g_n de M_n .
 - b) Calculer l'espérance de M_n . En déduire un estimateur sans biais W_n de θ .
 - c) Entre T_n et W_n , quel estimateur doit-on préférer pour estimer θ ?
- 6. Soit α un réel donné vérifiant $0 < \alpha < 1$.
 - a) Établir l'existence de deux réels a et b tels que 0 < a < 1 et 0 < b < 1, vérifiant $\mathbb{P}(M_n \leqslant a\theta) = \frac{\alpha}{2}$ et $\mathbb{P}(b\theta \leqslant M_n \leqslant \theta) = \frac{\alpha}{2}$.
 - b) En déduire un intervalle de confiance pour le paramètre θ au niveau de confiance $1-\alpha$.

Exercice sans préparation 3

Pour $n \in \mathbb{N}^*$, soit A une matrice de $\mathcal{M}_n(\mathbb{R})$ vérifiant : $A^3 + A^2 + A = 0$. On note I la matrice identité de $\mathcal{M}_n(\mathbb{R})$.

- 1. On suppose que A est inversible. Déterminer A^{-1} en fonction de A et I.
- 2. On suppose que A est symétrique. Montrer que A=0.

Exercice avec préparation 4

- 1. Question de cours : Définition de l'indépendance de deux variables aléatoires finies.
 - Une puce fait une suite de sauts de longueur 1 dans un plan muni d'un repère orthonormé (O, \vec{i}, \vec{j}) ; chaque saut est effectué au hasard et avec équiprobabilité dans l'une des quatre directions portées par les axes $O\vec{i}$ et $O\vec{j}$.

Pour tout $n \in \mathbb{N}$, on note M_n la position de la puce après n sauts et X_n (resp Y_n) l'abscisse (resp. l'ordonnée) du point M_n .

On suppose qu'à l'instant initial 0, la puce est à l'origine O du repère; c'est-à-dire que $M_0 = O$. L'expérience est modélisée par un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

- 2. Pour tout $n \ge 1$, on pose $T_n = X_n X_{n-1}$. On suppose que les variables aléatoires $T_1, T_2, ..., T_n$ sont indépendantes.
 - a) Déterminer la loi de T_n . Calculer l'espérance $\mathbb{E}(T_n)$ et la variance $\mathbb{V}(T_n)$ de T_n .
 - **b)** Exprimer pour tout $n \in \mathbb{N}^*$, X_n en fonction de $T_1, T_2, ..., T_n$.
 - c) Que vaut $\mathbb{E}(X_n)$?
 - d) Calculer $\mathbb{E}(X_n^2)$ en fonction de n.
- 3. Pour tout $n \in \mathbb{N}$, on note Z_n la variable aléatoire égale à la distance OM_n .
 - a) Les variables X_n et Y_n sont-elles indépendantes?
 - **b)** Établir l'inégalité : $\mathbb{E}(Z_n) \leqslant \sqrt{n}$.
- 4. Pour tout $n \in \mathbb{N}^*$, on note p_n la probabilité que la puce soit revenue à l'origine O après n sauts.
 - a) Si n est impair, que vaut p_n ?
 - **b**) On suppose que n est pair et on pose : n = 2m $(m \in \mathbb{N}^*)$. On donne la formule : $\sum_{k=0}^{m} {m \choose k}^2 = {2m \choose m}$. Établir la relation : $p_{2m} = {2m \choose m}^2 \times \frac{1}{4^{2m}}$.

Exercice sans préparation 4

On définit la suite $(v_n)_{n\in\mathbb{N}^*}$ par : $\forall n\in\mathbb{N}^*, v_n=\sum_{k=n}^{+\infty}\frac{1}{k^3}$.

- 1. Montrer que la suite $(v_n)_{n\in\mathbb{N}^*}$ est convergente et calculer sa limite.
- **2.** a) Montrer que pour tout entier $m \ge 1$, on a : $\sum_{k=n}^{n+m} \frac{1}{(k+1)^3} \le \int_n^{n+m+1} \frac{dx}{x^3} \le \sum_{k=n}^{n+m} \frac{1}{k^3}$.
 - b) En déduire un équivalent de v_n lorsque n tend vers $+\infty$.

Exercice avec préparation 5

1. Question de cours : Définition de deux matrices semblables. Soit E un espace vectoriel réel de dimension 3 muni d'une base $\mathcal{B} = (i, j, k)$. Soit f l'endomorphisme de E défini par f(i) = i - j + k, f(j) = i + 2j et f(k) = j + k.

On note Id l'application identité de E, $f^0 = Id$ et pour tout $k \in \mathbb{N}^*$, $f^k = f \circ f^{k-1}$.

- 2. a) Montrer que $(2Id f) \circ (f^2 2f + 2Id) = 0$ (endomorphisme nul de E)
 - b) L'endomorphisme f est-il un automorphisme?
 - c) Déterminer les valeurs propres de f ainsi que les sous-espaces propres associés.
 - d) L'endomorphisme f est-il diagonalisable?
- 3. Soit P un sous-espace vectoriel de E défini par $P = \{(x, y, z) \in E | ax + by + cz = 0 \text{ dans la base } \mathcal{B}\}$, où $(a, b, c) \neq (0, 0, 0)$.

Soit U, V et W trois vecteurs de E dont les composantes dans la base \mathcal{B} sont : (-b, a, 0) pour U, (0, c, -b) pour V et (-c, 0, a) pour W.

- a) Montrer que les sous-espace vectoriel engendré par (U, V, W) est de dimension 2.
- b) En déduire tous les sous-espace vectoriels P qui vérifient $f(P) \subset P$.

Exercice sans préparation 5

Soit X une variable aléatoire qui suit la loi normale centrée réduite, de fonction de répartition Φ .

1. Montrer pour tout réel a > 1 et pour tout réel x > 0, l'encadrement suivant :

$$0 \leqslant x(1 - \Phi(ax)) \leqslant \sqrt{\frac{2}{\pi}}e^{-ax^2/2}$$

2. En déduire que $\lim_{a\to +\infty} \int_0^{+\infty} x(1-\Phi(ax))dx = 0.$

Exercice avec préparation 6

1. Question de cours : Convexité d'une fonction définie sur un intervalle \mathbb{R} .

- **2.** a) Justifier que $\forall x \in \mathbb{R}$, l'intégrale $\int_0^x e^{t^2} dt$ est convergente. On pose : $f(x) = \int_0^x e^{t^2} dt = \int_0^x \exp(t^2) dt$.
 - b) Montrer que f est de classe \mathcal{C}^2 sur \mathbb{R} . Étudier la parité et la convexité de f.
 - c) Étudier les variations de f sur $\mathbb R$ et tracer l'allure de la courbe représentative de f dans un repère orthogonal du plan.
- 3. a) Établir pour tout $n \in \mathbb{N}^*$ l'existence d'un unique réel u_n vérifiant $f(u_n) = \frac{1}{n}$
 - b) Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est décroissante et convergente.
 - c) Déterminer $\lim_{n\to+\infty} u_n$.
- **4.** a) Établir pour tout $u \in [0, \ln 2]$, l'encadrement : $1 + u \le e^u \le 1 + 2u$.
 - b) En interprétant le résultat de la question 3.c), en déduire qu'il existe un entier naturel n_0 tel que pour tout $n \ge n_0$, on a : $\int_0^{u_n} (1+t^2)dt \le \frac{1}{n} \le \int_0^{u_n} (1+2t^2)dt.$
 - c) Montrer que $\lim_{n\to+\infty} nu_n^3 = 0$ et en déduire un équivalent de u_n lorsque n tend vers $+\infty$.

Exercice sans préparation 6

Soit X une variable aléatoire définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, suivant la loi géométrique de paramètre $p \in]0,1[$ (d'espérance $\frac{1}{n}$) et Y une variable aléatoire telle que :

$$Y = \left\{ \begin{array}{ll} 0 & \text{ si } X \text{ est impair} \\ \frac{X}{2} & \text{ si } X \text{ est pair} \end{array} \right.$$

Déterminer la loi de Y, puis calculer l'espérance de Y.

Exercice avec préparation 7

1. Question de cours : Loi d'un couple de variables aléatoires discrètes ; lois marginales et lois conditionnelles.

Soit X et Y deux variables aléatoires définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

Soit p un réel de]0,1[. On pose : q=1-p.

On suppose que :

- X suit une loi de Poisson de paramètre $\lambda > 0$;
- $--Y(\Omega) = \mathbb{N};$
- pour tout $n \in \mathbb{N}$, la loi conditionnelle de Y sachant [X = n] est une loi binomiale de paramètres n et p.
- 2. Déterminer la loi du couple (X, Y).
- 3. Montrer que Y suit une loi de Poisson de paramètre λp .
- 4. Déterminer la loi de X Y.
- 5. a) Établir l'indépendance des variables aléatoires Y et X Y.
 - b) Calculer le coefficient de corrélation linéaire de X et Y.

Exercice sans préparation 7

Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$ diagonalisable $(n \ge 1)$. On suppose qu'il existe $k \in \mathbb{N}^*$ tel que $A^k = I_n$. (matrice identité de $\mathcal{M}_n(\mathbb{R})$).

Montrer que $A^2 = I_n$.

Exercice avec préparation 8

- 1. Question de cours : Définition et propriétés des fonctions de classe \mathcal{C}^p $(p \in \mathbb{N})$.
 - Soit α un réel non nul et soit f_1 et f_2 les fonctions définies sur \mathbb{R} par : $\forall x \in \mathbb{R}$, $f_1(x) = e^{\alpha x}$ et $f_2(x) = xe^{\alpha x}$.
 - On note E le sous-espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} engendré par f_1 et f_2 .
 - Soit Δ l'application qui, à toute fonction de E, associe sa fonction dérivée.
- **2.** a) Montrer que (f_1, f_2) est une base de E.
 - b) Montrer que Δ est un endomorphisme de E. Donner la matrice A de Δ dans la base (f_1, f_2) .
 - c) L'endomorphisme Δ est-il bijectif? diagonalisable?
- 3. Calculer A^{-1} . En déduire l'ensemble des primitives sur \mathbb{R} de la fonction f définie par : $f(x) = (2x-3)e^{\alpha x}$.
- **4.** a) Calculer pour tout $n \in \mathbb{N}$ la matrice A^n .
 - b) En déduire la dérivée n-ième $f^{(n)}$ de la fonction f définie dans la question 3.

Exercice sans préparation 8

Soit X une variable aléatoire définie sur un espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$ qui suit une loi de Poisson de paramètre $\lambda > 0$. On pose : $Y = (-1)^X$.

- 1. Déterminer $Y(\Omega)$. Calculer l'espérance $\mathbb{E}(Y)$ de Y.
- 2. Trouver la loi de Y.

Exercice avec préparation 9

- 1. Question de cours : Critères de convergence d'une intégrale impropre. Soit f la fonction définie pour x réel par : $f(x) = \int_0^1 t^{-x} \sqrt{1+t} dt$.
- 2. Montrer que le domaine de définition de f est $D =]-\infty,1[$.
- 3. Déterminer le sens de variation de f sur D.
- 4. a) Établir pour tout $x \in D$, l'encadrement : $0 \leqslant \frac{1}{1-x} \leqslant f(x) \leqslant \frac{\sqrt{2}}{1-x}$.
 - **b)** En déduire $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to 1^-} f(x)$.
- 5. a) Calculer f(0).
 - b) Établir pour tout x < 0, une relation entre f(x) et f(x + 1).
 - c) En déduire un équivalent de f(x) lorsque x tend vers 1 par valeurs inférieures.
- 6. Tracer la courbe représentative de f dans le plan rapporté à un repère orthogonal.

Exercice sans préparation 9

Soit n un entier supérieur ou égal à 1. On considère n boules numérotées de 1 à n que l'on place au hasard dans n urnes, chaque urne pouvant recevoir de 0 à n boules.

- 1. Calculer la probabilité p_n que chaque urne reçoive exactement 1 boule.
- 2. Montrer que la suite $(p_n)_{n\in\mathbb{N}^*}$ est décroissante et convergente.
- 3. Déterminer la limite de la suite $(p_n)_{n\in\mathbb{N}^*}$.