(10.1) Siobepznocmu & Rn

Samemun, muo un meptan I'=(-1,1) nomem for x romeonopono repertoasoban $b R^1$ c nonveyed general $x=tg \frac{R}{a}t$. Anaromeno emperiori a-mepuni my $I^k:=\{t=(t^1,...,t^n)\in \mathbb{R}^k:\ |t^i|<1,\ i=1,...,k\}$ romeonopoen \mathbb{R}^k .

Определение 10.1: Годинотество $S \subset \mathbb{R}^n$ называется $\frac{k}{k}$ -мерной повержностью \Leftrightarrow когда для вачной тегии $p \in S$ найдутая опрежность $\mathcal U$ этой

morms S is resecuopouzed $\varphi\colon I^k o \mathcal{U}$

Отобратение 4 натвается (локамной) картой повержности 5 очрест. ность И натвается областью действия карто на ковержности 5.

локомная карта φ в во дит в W криваличейние координами: тогие $x=\varphi(t)\in U$ со поетавляется исловой набор $t=(t^1,...,t^n)\in I^n$

Евин повержность метно зазат томи одной локамной картой, то ока называется элементарной. Гримором элементарной повержности авлеется градочи непрерывной друмени $f: I^k \to \mathbb{R}$

Onpegenerus 10.2: Hasap $A(S) = \{ \varphi_i \colon I_i^k \to \mathcal{U}_i, i \in \mathbb{N} \}$ revenue S, m.z. $S = \mathcal{V}\mathcal{U}_i$, naznéaemas american holopotocome S.

Onpe generus 10.5: Toborserocmi S paguepuocmu k l R^n magnetosmos $l^{(m)}$ —nagroni, $m \ge 1$, ecus na new nomno l'ecre amnac A(S), $m \ge 1$, bce φ_i b kamgoi morne choero onpegenerus unerom pare k

Пример 10.1 вси $F^i \in C^{(m)}(\mathbb{R}^n, \mathbb{R})$, i=1,...,n-k — такие, гто система $\begin{cases} F^1(x^i,...,x^k,x^{k+1},...,x^n)=0,\\ ...,...,x^k,x^{k+1},...,x^n = 0, \end{cases}$

b urbou mothe unomiciba S beex clown freweren uneem have n-k, mo uno S=0, subo S-k respect $C^{(m)}$ -ragkas roberancos R^n .

D Typing $S\neq\emptyset$ is $x_0\in S$. To meopaus o headron grungen (e mornocono go reprosogramente) cumena sububasermen $\{x_0^{k+1}=f^{k+1}(x_1^1...x_k^k)\}$

 $\begin{cases} x = f^{n}(x_{1}^{1},...,x_{n}^{k}) \\ x^{n} = f^{n}(x_{1}^{1},...,x_{n}^{k}) \end{cases} \quad \text{sge} \quad f^{k+1},...,f^{n} \in C^{(m)}.$

Le" nomno repenucati l'ouge omospamenus $x^1 = t^1, \dots, x^k = t^k, x^{k+1} = f^{k+1}(t^1, \dots, t^k), \dots, x^n = f^{k}(t^1, \dots, t^k)$ romononi rocce konnozumu c $t^1 = t g \stackrel{g}{=} t^1, j = 1, \dots k$ gain nokausuyo

komoporu nocie komnozugus c $T^{i}=tg^{\frac{\pi}{L}}t^{i}$, j=1,...k, gaëm lokalshylo kapmy $Y_{\infty}\colon I_{\infty}^{k}\to U(x_{0})$, rge $U(x_{0})$ — nekomopas okpacirocis m. x_{0} tha S^{i}

Пример 10.2. Рассиотрим уравномия сферт S в \mathbb{R}^n : $(x^1)^2+...+(x^n)^2=r^2$ Очевидно, что в погиах S ранг система равен 1, m.н. градиент

 $(2x_0^1,...,2x_0^n) \neq 0$ gue more $x_0 \in S$. Cregolamerono, apepa serese (n-1)-reproxi zraguon wheperwoenus b \mathbb{R}^n

(102) Opuermayus noteparoame

Ориентированное пространство \mathbb{R}^n — это пространство \mathbb{R}^n с диницио-ванили в нем репервы или с динициованной $\mathbb{C}K$. Напомним, это дик дирореоморфизма $\varphi: \mathbb{D} \to \mathbb{G}$ областей \mathbb{D} и \mathbb{G} , межащих в энземплярах \mathbb{R}^n с коорфинатами $t=(t^1,...,t^n)$ и $\mathbf{z}=(x^1,...,x^n)$, возминает отобратение касательно г пространств

 $\varphi'(\mathfrak{b}): T_{\mathfrak{t}} D \to T_{\mathfrak{x}} G$

 $\varphi'(t): e \mapsto \varphi'(t)e'$

Perep $e_1,...,e_n$ b T_tD repebogumes orum omospamenusm b perep u_3 T_zG : $\dot{\xi}_1:=\varphi'(\dot{t})e_1,...,\dot{\xi}_n:=\varphi'(\dot{t})e_n$. Herpeprobuse beamoprose rock $e(\dot{t})$ rog ero generalizar repezogum b kerpeprobuse

become censism of $f_{\alpha}(t) = f(\phi(t)) = \phi(t)e(t)$ noceously $\phi \in C^{(s)}(D; G)$.

There is object, respective cension $e_{\alpha}(t)$, ..., $e_{\alpha}(t)$ is TD be respective cone cension $f_{\alpha}(t)$, ..., $f_{\alpha}(t)$ hereges $f_{\alpha}(t)$.

Рассмотрим теперь пару дифороморфизмов 4: D: 7 G, i=1,2.

Drebuguo, mo $\left(\det\left(Y_{1}^{-1}\circ Y_{1}\right)'(t_{1})\right)\left(\det\left(Y_{1}^{-1}\circ Y_{2}\right)'(t_{2})\right)>0$ (m.e. suosuaua unecom ogux a mon me grau). B eny chognocom znava cobagazon bo beex moruax D_{1} a D_{2} .

водинкают класся ориентации СКК в области G: l одик класс попадают те СКК, взаимиче преобразования история осуществляются с положительным япобианом. Зодание ориентации в области G- отно финсация l G класса ориентации систем ей привомнеймог координат. Рабионично можно задай ориентацию l G, финсировав непрерывное семий еіво речеров l G. Ориентация G впосме опреденита, всли хотя оп l одной l. Хо l G указай речер, ориентарующий l G: надо факша это l речером l G, индустрования l G

 ξ сии виесто области $G \subset \mathbb{R}^n$ рассиотреть гилигитарную гладкуш k-мериую повержность S в \mathbb{R}^n , то получии, гто СКК повержности S розбиваются на два класса обментнуми в соответствии со знаком ямобиана преобразований их взаимить перехода; задать орментацию поверхности S мотто обментирующим реперам в T_{20} S

Рассмотрим текерь смугай произвольный гладкой повержностности S размерности в.

Spece, $I_{ij} = \varphi'(u_{in}u_{j}), I_{ji} = \varphi''(u_{in}u_{j}).$

Dispegerance 10.4: Dbe ισκαιστοπε καριπα $\varphi_i: I_i^k \to \mathcal{N}_i$, $\varphi_j: I_j^k \to \mathcal{U}_i$ ποδερχισοκις S παγιβαισια **corrocobarva.ru**, λιίδο κοιζα $\mathcal{U}_i \cap \mathcal{U}_j = \emptyset$, λιίδο κοιζα $\mathcal{U}_i \cap \mathcal{U}_j \neq \emptyset$, a det $\varphi_{ij}^i > 0$, det $\varphi_{ji}^i > 0$.

Определение 10.5: Атлас повержности, состолизий из попарно соглаю. Воминя карт, называется ориентирующих атласом.

Определение 10.6: Яговераноеть, обладацирая гриентирующим акласом, назповается гриентируемой. В ином смугае, повераность — негриентируемой.

Утверт вение 10.1: На ориентируемой сводной повержности существует точно две ориентации (противоположнике ориентации).

10.3 Ловержность с краем

 $\begin{array}{l} D_{\text{Fignature}} \\ I_{H}^{k} := \{ t \in \mathbb{R}^{k} \colon \ t' \in \mathcal{O}_{j} \ | \ t^{i} | < 1, \ i = 2, ..., k \}, \\ \partial I_{H}^{k} := \{ t \in \mathbb{R}^{k} \colon \ t' = 0, \ | \ t^{i} | < 1, \ i = 2, ..., k \}. \end{array}$

Определение 10.7: Мюжеово $S \subset \mathbb{R}^n$ назпрается повержностью с краем, если ваекая точка $x \in S$ ниеет окрестность U в S сомеоморорную мью I^k , мьо I^k . Если в посмеднем случае точка x нообержности S. Говоюзприость висх точк крае S незпрается краем повержности S. Говоюзприость висх точк крае S незпрается краем повержности S.

Учвертдения 10.1: Край к-мерной повержности класса С^{Ст)} авлегатая
повержность без праз того те класса гладкости размерности к-1.

Пример 10.3: Замкрурногії n-мермогії шар \overline{B}_n в \mathbb{R}^n — n-мермол повержность с краєм. Еї краї $\mathcal{J}\overline{B}_n$ — (n-i)-мермол c

Определение 10.8: Если $A(S) = \{(I_h^k, \varphi_i, U_i)\} \cup \{(I_h^k, \varphi_i, U_i)\} - ориентирумощий атлас повержности <math>S$, то $A(2S) = \{(I_h^{k-1}, \varphi|_{\mathcal{I}_h^{k-1}}, \partial U_i)\}$ вень ориентирующий атлас края. Заданная таним образан
ориентация края 2S называетая ориентацией края,
сомасованной в ориентацияй повержности.

Заметоние 10.1: Пусть $T_{x_0}S - h$ -мериая насамельная плоскость к гладкой мовериности. S в тогие $x_0 \in \partial S$. Ярекольту локально етруктура S окало x_0 такая те, как и структура I_h^k около точки O с ∂I_h^k , то, направив первый вектор ориентирующего S репера $\tilde{\xi}_1, \tilde{\xi}_2, ..., \tilde{\xi}_h \in T_{x_0}S$ по нормам k ∂S и b оторому внешьного по отношению k локальной проещим S на $T_{x_0}S$, полученори b (k-l)-мериай плосиости $T_{x_0}\partial S$, касательной k ∂S b точке x_0 , репер $\tilde{\xi}_2, ..., \tilde{\xi}_h$, задагаций ориентацию $T_{x_0}\partial S$, а знагий и ∂S , согласованиям C разанной реперан $\tilde{\xi}_1, ..., \tilde{\xi}_h$

Определение 10.9: Тоска — это пульмарная повержност мобого класса гладности

Кусочно гладкая однонерная повержност (кривая) — это подиножество в \mathbb{R}^n , которое после удаления из него конечного им счетного числа некоторых пульмерных повержностий (почек) распадается на гладние одномерите невержности (кривая). Куютно гладкае k-мериая невержност — это подиножество в \mathbb{R}^n , из которыю можно удамы конежное им стётное число кусочно гладких повержностий размериости не выше k-1 так, что остаток распадается на гладкие k-мериае поверхности S_i (с краем им S_i края).