

Analisi II

Università di Verona Imbriani Paolo - VR500437 Professor Zivcovich Franco 11 marzo 2025

Indice

1	Equ	quazioni differenziali			
	1.1	Model	li differenziali	3	
1.2 Equazioni differenziali di primo ordine		Equaz	ioni differenziali di primo ordine	5	
		1.2.1	Generalità	5	
		1.2.2	Equazioni a variabili separabili	7	

1 Equazioni differenziali

1.1 Modelli differenziali

La fisica, per descrivere dei fenomeni fisici usano la matematica e in particolare le equazioni differenziali. Infatti, si denota x(t) lo spostamento nel tempo. Con la derivata prima x'(t) si denota la velocità della particella in quell'istante e con la derivata seconda x''(t) l'accelerazione. Quindi quando andiamo a tradurre matematicamente le leggi che governano modelli naturali può essere naturale dover lavorare con equazioni che coinvolgono una funzione incognita e qualcuna delle sue derivate.

Esempio 1.1

La seconda legge del moto di Newton F = ma, che stabilisce la posizione x(t) al tempo t di un corpo di massa m costante, soggetto a una forza F(t), deve soddisfare l'equazione differenziale:

$$m\frac{d^2x}{dt^2} = F(t)$$
 equazione del moto

Quindi le equazioni differenziali nascono per descrivere fenomeni fisici e naturali. Possono essere classificate in modi diversi. Abbiamo infatti:

1. Equazioni differenziali ordinarie (ODE) se vengono coinvolte solo le derivate rispetto ad una sola variabile oppure equazioni differenziali parziali (PDE) se vengono coinvolte derivate parziali dell'incognita rispetto a più variabili.

Esempio 1.2

L'equazione:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

rappresenta l'equazione delle onde che modellizza lo spostamento trasversale u(x,t) nel punto x al tempo t di una corda tesa che può vibrare.

2. Classificazione in base all'ordine: l'ordine di una ED è l'ordine massimo di derivazione che compare nell'equazione.

Esempio 1.3

L'equazione:

$$\frac{dy^2}{dt^2} + ty^3 - \cos y = \sin t \quad \text{è di ordine 2}$$

$$\frac{d^3y}{dt^3} - 2t\left(\frac{dy}{dt}\right)^2 = y\frac{dy^2}{dt^2} - e^t \quad \text{è di ordine 3}$$

Possiamo dunque formalizzare i concetti finora introdotti attraverso la seguente definizione:

3

☼ Definizione 1.1: Equazione differenziale

Si dice equazione differenziale di ordine n un'equazione del tipo

$$F(t, y', y'', \dots, y^{(n)}) = 0 (1.1.1)$$

dove y(t) è la funzione incognita e F è una funzione assegnata delle n+2 variabili $t, y, y', \ldots, y(n)$ a valori reali.

Si dice **ordine** di un'equazione differenziale il massimo ordine di derivazione che compare nell'equazione.

Si dice soluzione (o curva integrale) di (1.1.1) nell'intervallo $I \subset \mathbb{R}$ una funzione φ , definita almeno in I e a valori reali per cui risulti:

$$F(t, \varphi'(t), \varphi''(t), \dots, \varphi^{(n)}(t)) = 0 \quad \forall t \in I$$

Infine si dice integrale generale dell'equazione (1.1.1) una formula che rappresenti la famiglia di tutte le soluzioni dell'equazione (1.1.1), eventualmente al variare di uno o più parametri in essa contenuti.

Esempio 1.4

Consideriamo una popolazione di individui, animali o vegetali che siano, e sia N(t) il numero degli individui. Osserviamo che N è funzione di del tempo t, assume solo valori interi ed è a priori una funzione discontinua di t; tuttavia può essere approssimata da una funzione continua e derivabile purché il numero degli individui sia abbastanza grande. Supponiamo che la popolazione sia isolata e che la proporzione degli individui in età riproduttiva e la fecondità siano costanti. Se escludiamo i casi di morte, immigrazione, emigrazione, allora il tasso di accrescimento coincide con quello di natalità e se indichiamo con λ il tasso specifico di natalità (i.e. il numero di nati per unità di tempo) l'equazione che descrive il modello diventa:

$$\frac{dN}{dt} = \lambda N(t)$$

Questo processo risulta realistico solo in popolazioni che crescono in situazioni ideali e sono assenti tutti i fattori che ne impediscono la crescita.

La stessa equazione compare anche in altri modelli relativi a sistemi fisiologici ed ecologici.

Esempio 1.5

Studiamo ora il modello di crescita (dovuto a Malthus, 1978) relativo all'evoluzione di una popolazione isolata in presenza di risorse limitate ed in assenza di predatori o antagonisti all'utilizzo delle risorse. In questo caso l'equazione che si ottiene è la seguente:

$$\frac{dN}{dt} = \lambda N(t) - \mu N(t)$$

dove come prima λ è il tasso di natalità mentre μ è il tasso di mortalità (cioè rispettivamente

il numero di nati e morti nell'unità di tempo). Il numero $\varepsilon = \lambda - \mu$ è detto **potenziale** biologico.

Ci chiediamo ora come possiamo trovare una soluzione del problema studiato nell'Esempio 1.5. Supponiamo per il momento che sia $N \neq 0$. Allora:

$$N = \varepsilon N = \frac{N}{N} = \varepsilon \Longrightarrow \frac{d}{dt}(\log |N|) = \varepsilon,$$

da cui otteniamo:

$$\log |N(t)| = \varepsilon t + c_1 \Longrightarrow |N(t)| = e^{c_1} e^{\varepsilon t} =: k^2 e^{\varepsilon t}$$

dove abbiamo posto $e^{c_1} =: k^2 > 0$ costante positiva e arbitraria. A questo punto allora:

$$N(t) = \pm k^2 e^{\varepsilon t}$$

Quindi possiamo dire sicuramente che:

$$N(t) = Ce^{\varepsilon t} \quad C \in \mathbb{R} \setminus \{0\}$$

Tutto questo vale se $N \neq 0$; ma è banale verificare che anche N = 0 soddisfa l'equazione di partenza, quindi possiamo dire che l'integrale generale è:

$$N(t) = Ce^{\varepsilon t} = Ce^{(\lambda - \mu)t} \quad C \in \mathbb{R}$$

In particolare dall'ultima riga leggiamo che:

- 1. Se $\lambda > \mu$ allora N(t) è una funzione che cresce in maniera esponenziale.
- 2. Se $\lambda < \mu$ allora N(t) è una funzione che decresce fino ad estinguersi.
- 3. Se $\lambda = \mu$ allora N(t) è una funzione stabile nel tempo.

Osserviamo in particolare che non abbiamo trovato solo una soluzione, ma infinite soluzioni, dipendenti da una costante arbitraria.

1.2 Equazioni differenziali di primo ordine

1.2.1 Generalità

Le equazioni differenziali di primo ordine sono le più semplici da trattare e sono di fondamentale importanza in quanto sono alla base di molte applicazioni pratiche. Esse sono della forma:

$$F(t, y, y') = 0 (1.2.1)$$

con ${\cal F}$ funzione assegnata delle tre variabili t,y,y'a valori reali.

Esempio 1.6

La ricerca delle primitive di una funzione f continua su un intervallo I equivale a risolvere l'equazione differenziale y'(t) = f(t) che ammette infinite soluzioni del tipo

$$y(t) = \int f(t) dt + C \qquad C \in \mathbb{R}$$

Si dimostra che l'insieme delle soluzioni di una EDO del primo ordine è costituito da una famiglia di funzioni dipendenti da un parametro $C: t \mapsto \varphi(t; c)$. Tale famiglia prende il nome di **integrale generale** dell'equazione differenziale. La condizione supplementare $y(t_0) = y_0$ permette di selezionare una soluzione specifica.

♣ Definizione 1.2: Problema di Cauchy

Il problema di risolvere il seguente sistema di equazioni:

$$\begin{cases} F(t, y, y') = 0 \\ y(t_0) = y_0 \end{cases}$$
 (1.2.2)

prende il nome di **problema di Cauchy**.

♦ Definizione 1.3: Forma Normale

Un'equazione differenziale ordinaria del primo ordine si dice in **forma normale** se è scritta nella forma:

$$y'(t) = f(t, y)$$
 (1.2.3)

Per equazioni di questo tipo si può assicurare, sotto larghe ipotesi, che il problema di Cauchy (1.2.2) ammette un'unica soluzione almeno localmente (cioè per valori di t in un intorno di t_0).

Le soluzioni dell'ED espresse dall'integrale generale potrebbero talvolta essere definite su insiemi diversi a seconda del valore della costante o anche su insiemi più complicati di un intervallo (es. $t \neq 0$). Tuttavia quando parleremo di soluzione del problema di Cauchy andremo sempre a intendere una funzione che:

- a) è definita su un intervallo I contenente t_0 in cui è assegnata la condizione iniziale.
- b) è derivabile in ogni punto di I e soddisfa l'equazione in ogni punto di I.

Esempio 1.7

Il problema di Cauchy

$$\begin{cases} N'(t) = 3N(t) \\ N(0) = 7 \end{cases}$$

ammette un'unica soluzione data da $N(t)=ce^{3t}$. Imponendo il dato iniziale otteniamo $N(t)=7e^{3t}, \forall t\in\mathbb{R}$ (o \mathbb{R}^+ se si sta parlando di problema di Cauchy che modellizza un fenomeno fisico).

1.2.2 Equazioni a variabili separabili

Le equazioni a variabili separabili sono una particolare clase di ED ordinarie del primo ordine del tipo (1.2.3) che sono caratterizzate dalla presenza di una funzione f prodotto di due funzioni, una della sola variabile t e l'altra solo dell'incognita y. Più nel dettaglio, sono equazioni del tipo:

$$y'(t) = a(t)b(y) \tag{1.2.4}$$

con a funzione continua su un intervallo $I \subset \mathbb{R}$ e b funzione continua su un intervallo $J \subset \mathbb{R}$. Cerchiamo di capire come determinare l'integrale generale di questo tipo di equazioni. Distinguiamo due casi:

- Se \overline{y} è soluzione dell'equazione $b'(\overline{y}) = 0$ allora $y(t) = \overline{y}$ è soluzione dell'ED (1.2.4). Infatti in tal caso si annulla il secondo membro della (1.2.4) e di conseguenza anche il primo membro (perchè la derivata della funzione costante è zero).
- Supponiamo ora che $b(y) \neq 0$. Allora la (1.2.4) può essere riscritta come:

$$\frac{y'}{b(y)} = a(t)$$

Quindi un'ipotetica soluzione soddisfa l'identità:

$$\int \frac{y'(t)}{b(y(t))} dt = \int a(t) dt + C$$

Con C costante arbitraria. Ora si può effettuare il cambio di variabile dove y'(t)dt = dy:

$$\int \frac{dy}{b(y)} = \int a(t) \ dt + C$$

Quindi questo è l'integrale generale dell'equazione (1.2.4). Se B(y) è una primitiva di $\frac{1}{b(y)}$ e A(t) è una primitiva di a(t), allora l'integrale generale della ED è assegnato dall'equazione (in forma implicita):

$$B(y) = A(t) + C$$
 con C costante arbitraria

Osserviamo che non è detto che si riesca a ricavare y esplicitamente o a ridurre la precedente equazione in forma normale. In generale, per le equazioni a variabili separabili, vale il seguente:

Teorema 1.2.1

Si consideri il seguente problema di Cauchy:

$$\begin{cases} y' = a(t)b(y) \\ y(t_0) = y_0 \end{cases}$$

con a continua in un intorno I di t_0 e b continua in un intorno J di y_0 . Allora esiste un intorno di t_0 che denoteremo con $I' \subset I$ e una funzione continua y definita su I' con derivata anch'essa continua su I' tale che y sia soluzione del problema di Cauchy. Inoltre se anche b' è

continua su J (o b ha un rapporto incrementale limitato in J anche se non è derivabile) allora tale soluzione è anche unica.

Esempio 1.8

Consideriamo il problema di Cauchy:

$$\begin{cases} y' = ty^3 \\ y(0) = 1 \end{cases}$$

Prima di tutto si osserva che y=0 è integrale singolare per l'equazione data. Quindi se $y \neq 0$, separando le variabili e integrando si ottiene:

$$\int \frac{dy}{y^3} = \int tdt + C$$
$$-\frac{1}{2y^2} = \frac{t^2}{2} + C$$
$$y = \pm \frac{1}{\sqrt{C - t^2}}$$

Imponendo il dato di Cauchy si osserva che l'unica soluzione è quella che si ottiene per k=1 e considerando il segno positivo davanti alla radice, cioè

$$y = \frac{1}{\sqrt{1 - t^2}}$$

Esempio 1.9

Risolvere il problema di Cauchy:

$$\begin{cases} yy' = 2\\ y(0) = 1 \end{cases}$$

Integrando ambo i membri della ED proposta si ottiene:

$$\int y \, dy = \int 2 \, dt \Longrightarrow \frac{y^2}{2} = 2t + C \Longrightarrow y = \pm \sqrt{4t + 2C}$$

quindi per ogni $C \in \mathbb{R}$ esistono due soluzioni (corrispondenti ai due segni davanti alla radice) definite solo per $t \geq -\frac{C}{2}$. Imponendo il dato di Cauchy si ottiene $y(0) = \pm \sqrt{2C = 1}$, quindi per compatibilità occorre scegliere il segno positivo davanti alla radice. La soluzione del problema proposto è dunque y = 4t + 1, definita solo per $t \geq -\frac{1}{4}$. Andiamo a controllare se sono soddisfatte le condizioni del teorema: a(t) = 2 che è dunque una funzione continua e derivabile ovunque; b(t) = 1/y che è continua e derivabile se $y \neq 0$. Quindi il problema di Cauchy per questa equazione ha una e una sola soluzione purché la condizione iniziale non sia del tipo $y(t_0) = 0$. Infatti l'equazione non è soddisfatta in questo punto perché si otterrebbe

0=2. Quindi il problema di Cauchy:

$$\begin{cases} yy' = 2\\ y(0) = 1 \end{cases}$$

non ha soluzione. Quindi abbiamo trovato un esempio di problema di Cauchy in cui viene a mancare l'esistenza di soluzioni. In altre situazioni potrebbe venire a mancare l'unicità delle soluzioni, come mostra l'esempio successivo.