

WHAT YOU WILL LEARN FROM THIS SESSION

- Hands on practice of adopting CNN knowledge.
- Designing & building a model for image classification.
- Training & inferencing workflows in TensorFlow.
- Getting help on TensorFlow modules & functions.
- Tuning hyper-parameter.

AI TRAINING SERIES

CNN hands on

Al Use Case

- Classification
 - Classify the whole that one or identify it in an image
- Detection
 - Track that object in a video or identify it in an image
- Segmentation
 - Highlight the isolated region and groups every pixel in that delineated shape for later processing

Classification

 Classify the whole that one or identify it in an image

Example

Detection

Track that object in a video or identify it in an image

Example

Segmentation

 Highlight the isolated region and groups every pixel in that delineated shape for later processing

Example

Classification Annotation

- Classification
 - Directory name is label name.

Cai

IMG_20201123_14 3155.png

IMG_20201123_14 3206.png

IMG_20201123_14 3217__01.png

IMG_20201123_14 3227.png

IMG_20201123_14 3236.png

IMG_20201123_14 3245.png

IMG_20201123_14 3336.png

IMG_20201123_14 3344.png

IMG_20201123_14 3405.png

IMG_20201123_14 3412.png

IMG_20201123_14 3426.png

IMG_20201123_14 3435.png

IMG_20201123_14 3506.png

IMG_20201123_14 3523.png

Detection / Segmentation Annotation

- Object Detection / Segmentation
 - Dedicated meta-file to contain label info

Data Preparation

Detection / Segmentation Annotation

- Example
 - Segmentation
 - COCO format

IMG 20201123 132631.png


```
... (Snipped) ...
                                                                                instances.json
    "supercategory": ""
                                         Label name
     "name": "car",
     "supercategory": ""
    "id": 1,
    "width": 2666,
    "height": 1540,
                                                Image information
    "file name": "IMG 20201123 132631.png",
    "flickr url": "",
     "coco url": "",
     "date captured": 0
 annotations": [{
  "segmentation": [[395.29, 591.17, 447.18, 578.20, 512.04, 567.08, 608.40, 542.99, 682.53, 537.43, 771.48,
  472.57, 884.53, 383.61, 934.57, 340.99, 990.16, 320.60, 1045.76, 289.10, 1134.71, 268.71, 1203.28,
  265.01, 1269.99, 255.74, 1320.03, 255.74, 1368.21, 253.89, 1436.78, 253.89, 1522.03, 253.89, 1607.27,
  255.74, 1724.02, 253.89, 1814.83, 255.74, 1929.73, 263.16, 2005.71, 268.71, 2111.34, 281.69, 2105.78,
  320.60, 2153.96, 363.23, 2185.47, 420.68, 2209.56, 454.03, 2235.50, 504.07, 2265.16, 518.90, 2305.93,
  559.67, 2317.04, 578.20, 2330.02, 631.94, 2337.43, 689.39, 2346.70, 724.60, 2361.52, 774.64, 2365.23,
  807.99, 2359.67, 878.41, 2357.81, 904.36, 2357.81, 939.57, 2355.96, 976.63, 2341.14, 1011.84, 2330.02,
  1047.05, 2318.90, 1063.73, 2291.10, 1065.59, 2261.45, 1078.56, 2222.53, 1078.56, 2198.44,
   ...(Snipped)..., 1091.53, 686.24, 1091.53, 676.97, 1102.65, 645.47, 1132.30, 623.23, 1145.27, 578.75,
  1167.51, 532.42, 1178.63, 487.95, 1178.63, 449.03, 1178.63, 410.11, 1167.51, 371.20, 1148.98, 360.08,
  1126.74, 339.69, 1095.24, 321.16, 1060.03, 289.66, 1039.64, 252.59, 1037.79, 193.29, 1013.70, 189.58,
  959.95, 187.73, 893.24, 187.73, 832.08, 197.00, 739.42, 230.35, 698.65, 261.86, 663.44, 293.36, 639.35,
  334.13, 626.38, 395.29, 594.88, 402.70, 587.46]],
  "area": 600.4,
  "iscrowd": 1,
                                   All of points info to close contour for object
  "Image id: " 2,
  "bbox": [473.05, 395.45, 38.65, 28.92],
  "category id": 15,
  "id": 934}]
```


MATHEMATICAL OPERATION

Slides one function over another e.g., Photo filters

1 _{×1}	1,0	1 _{×1}	0	0
0,0	1 _{×1}	1 _{×0}	1	0
0 _{×1}	O _{×0}	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

CONVOLVED FEATURE

ORIGINAL

SHARPEN

EMBOSS

EXTRACT HORIZONTAL LINE

EXTRACT VERTICAL LINE

MATHEMATICAL OPERATION

1차 미분 연산자이용한 Edge detect

-1		
0		
1	1	1

IMAGE

1 _{×1}	1 _{×0}	1 _{×1}	0	0
0,0	1,	1,0	1	0
0 _{×1}	O _{×0}	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

CONVOLVED FEATURE

Edge Detection


```
import cv2
import numpy as np

img = cv2.imread('lena.png', cv2.IMREAD_GRAYSCALE)
kernel = np.array([[1, 1, 1],[1, -8, 1], [1, 1, 1]])
print(kernel)
output = cv2.filter2D(img, -1, kernel)
cv2.imshow('edge', output)
cv2.waitKey(0)
```

Homework #1

- 아래 나열된 필터를 적용해 보고, 해당 코드를 github에 upload
- https://en.wikipedia.org/wiki/Kernel_(image_processing)

Operation	Kernel ω	Image result g(x,y)
Identity	$\left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right]$	
	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Ridge or edge detection	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	

Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$	
Gaussian blur 3 × 3 (approximation)	$\frac{1}{16} \left[\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{array} \right]$	
Gaussian blur 5 × 5 (approximation)	$\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$	

VIRTUAL ENVIRONMENT

- Python3 virtual environment.
 - \$mkdir intro && cd intro
 - \$sudo apt install python3-venv
 - \$python3 -m venv .venv
 - \$source .venv\bin\activate

- Download & install python modules.
 - (.venv) \$ pip install tensorflow
 - (.venv) \$ pip install numpy
 - (.venv)\$ pip install matplotlib
 - (.venv)\$ pip install pyQt5==5.14

CONTENTS

Virtual environment

INITIAL SETTING & IMPORT MODULES

Classification (mnist)

- dataset preparation
- training
- detecting
- cnn overview (openvino notebooks ex)flower classification)

OTX & CVAT overview

Detection (yolov5 vs. OTX)

- dataset preparation
- training
- detecting

Open model zoo (OMZ)

- classification model
- detection model
- segmentation model

IMAGE CLASSIFICATION TRAINING WORKFLOW

- 데이터셋 준비
 - 학습용/검증용
- 학습 모델 형성
 - Convolution layer
 - Pooling layer
 - Dense(FC) layer
- 컴파일
- 학습 및 테스트

train.py

```
# Prepare datasets.
# Construct a model.
# Compile the model.
# Train & evaluate
# Save the model.
```

VIRTUAL ENVIRONMENT

- Python3 virtual environment.
 - \$mkdir intro && cd intro
 - \$sudo apt install python3-venv
 - \$python3 -m venv .venv
 - \$source .venv\bin\activate

- Download & install python modules.
 - (.venv) \$ pip install tensorflow
 - (.venv) \$ pip install numpy
 - (.venv)\$ pip install matplotlib
 - (.venv)\$ pip install pyQt5==5.14

INITIAL SETTING & IMPORT MODULES

```
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
```

DATASET PREPARATION (Hand and Fashion)

Model load: MNIST / Fashion MNIST Dataset

mnist = tf.keras.datasets.mnist
fashion_mnist = tf.keras.datasets.fashion_mnist

DATASET PREPARATION

mnist 혹은 fashion_mnist 데이터셋을 준비하고, training할 이미지셋과 test할 이미지 셋을 구분해준다. 그 후 이미지의 색상을 정규화를 시켜주기 위해 255로 색상 값을 나눈다.

```
# Model load: MNIST / Fashion MNIST Dataset
fashion_mnist = tf.keras.datasets.fashion_mnist
(f_image_train, f_label_train), (f_image_test, f_label_test) = fashion_mnist.load_data()
# normalized iamges
f_image_train, f_image_test = f_image_train / 255.0, f_image_test / 255.0
```

DATASET PREPARATION (cont'd)

fashion_mnist 의 레이블은 숫자로 저장이 되어 있기 때문에 레이블과 클래스 이름을 매핑을 해줘야 한다.

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

레이블	클래스
0	T-shirt/top
1	Trouser
2	Pullover
3	Dress
4	Coat
5	Sandal
6	Shirt
7	Sneaker
8	Bag
9	Ankle boot

DATASET PREPARATION (show)

```
plt.figure(figsize=(10,10))
for i in range(10):
    plt.subplot(3,4,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(f_image_train[i])
    plt.xlabel(class_names[f_label_train[i]])
plt.show()
```


MODEL CONSTRUCTION

- tf.keras.Sequential()
- tf.keras.layers
 - Rescaling
 - Convolution
 - Pooling
 - Flatten
 - Dense(ANN/FC)

CONVOLUTION LAYER

• Image: 5x5, 1 channel

• Kernel: 3x3

• Stride: 1

• Padding: 0

^{*}Animations from <u>A Comprehensive Guide to</u> Convolutional Neural Networks

POOLING LAYER

- Max pooling
- Average pooling

• Feature map: 5x5, 1 channel

• Kernel: 3x3

• Stride: 1

• Padding: 0

MODEL CONSTRUCTION

```
Rescaling
# CNN
model = tf.keras.Sequential()
                                                                              Conv2D
model.add(tf.keras.layers.Conv2D(64, (3, 3), \)
                                                                            Max Pooling
  activation='relu', input_shape=(28, 28, 1)))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
                                                            Feature
                                                                              Conv2D
model.add(tf.keras.layers.Conv2D(64, (3, 3),
                                                            Learning
                                                                            Max Pooling
activation='relu'))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
                                                                              Conv2D
model.add(tf.keras.layers.Conv2D(64, (3, 3),
                                                                            Max Pooling
activation='relu'))
                                                                              Flatten
# ANN
model.add(tf.keras.layers.Flatten())
                                                                               Dense
                                                           Classification -
model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.Dense(64, activation='relu'))
                                                                               Dense
model.add(tf.keras.layers.Dense(10,activation='softmax'))
                                                                   # classes: 10
                                                                   cloths
```

N x (width x height x 3)

MODEL COMPILATION

- <u>tf.keras.Sequential.compile()</u> <u>tf.model.fit()</u>
 - optimizer
 - loss
 - Metrics

- - validation data
 - epochs
 - Hyper parameters
 - Epochs
 - Dataset size
 - Batch size
 - Optimizer / loss function

```
    Save model
```

tf.keras.Model.save()

```
model.compile(
  optimizer='adam',
  loss='sparse categorical crossentropy',
  metrics=['accuracy'],
model.fit(image train, label train, epochs=10, batch size=10)
model.summary()
model.save(fashion mnist.h5')
```

MODEL TRAINING

```
Epoch 1/10
accuracy: 0.6428 - val loss: 0.5764 - val accuracy: 0.6965
Epoch 2/10
accuracy: 0.7293 - val loss: 0.5381 - val accuracy: 0.7275
Epoch 3/10
accuracy: 0.7894 - val loss: 0.5187 - val accuracy: 0.7500
Epoch 4/10
accuracy: 0.8429 - val loss: 0.5366 - val accuracy: 0.7545
Epoch 5/10
accuracy: 0.9046 - val loss: 0.6528 - val accuracy: 0.7575
Epoch 6/10
accuracy: 0.9465 - val loss: 0.8491 - val accuracy: 0.7460
Epoch 7/10
accuracy: 0.9734 - val loss: 1.0140 - val accuracy: 0.7570
Epoch 8/10
accuracy: 0.9801 - val loss: 1.0195 - val accuracy: 0.7415
Epoch 9/10
accuracy: 0.9893 - val loss: 1.2181 - val accuracy: 0.7460
Epoch 10/10
accuracy: 0.9875 - val loss: 1.3117 - val accuracy: 0.7545
```

INFERENCE TRAINED MODELS

- Load model
 - tf.keras.models.load model()

```
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import cv2
model = tf.keras.models.load model('./fashion mnist.h5')
fashion_mnist = tf.keras.datasets.fashion_mnist
(f_image_train, f_label_train), (f_image_test, f_label_test) =
fashion mnist.load data()
f_image_train, f_image_test = f_image_train / 255.0, f_image_test / 255.0
num = 10
predict = model.predict(f image train[:num])
print(f_label_train[:num])
print(" * Prediction, ", np.argmax(predict, axis = 1))
```

cnn overview (openvino notebooks ex)flower classification)

<u>openvino</u> <u>notebooks/notebooks/301-tensorflow-training-openvino at 2024.0 · openvinotoolkit/openvino notebooks (github.com)</u>

Training to Deployment with TensorFlow and OpenVINO™

In this directory, you will find two Jupyter notebooks. The first is an end-to-end deep learning training tutorial which borrows the open source code from the TensorFlow <u>image classification tutorial</u>, demonstrating how to train the model and then convert to OpenVINO Intermediate Representation (OpenVINO IR). It leverages the tf_flowers dataset which includes about 3,700 photos of flowers.

The second notebook demonstrates how to quantize the OpenVINO IR model that was created in the first notebook. Post-training quantization speeds up inference on the trained model. The quantization is performed with the <u>Post-training Quantization with NNCF</u> from OpenVINO Toolkit. A custom dataloader and a metric will be defined, and accuracy and performance will be computed for the original OpenVINO IR model and the quantized model on CPU and iGPU (if available).

Transfer learning & Fine tuning

https://keras.io/guides/transfer learning/

https://www.tensorflow.org/tutorials/images/transfer learning?hl=ko

- Transfer learning consists of taking features learned on one problem, and leveraging them on a new, similar problem. For instance, features from a model that has learned to identify racoons may be useful to kick-start a model meant to identify tanukis.
- The most common incarnation of transfer learning in the context of deep learning is the following workflow:
 - 1. Take layers from a previously trained model.
 - 2. Freeze them, so as to avoid destroying any of the information they contain during future training rounds.
 - 3. Add some new, trainable layers on top of the frozen layers.

 They will learn to turn the old features into predictions on a new dataset.
 - 4. Train the new layers on your dataset.

Transfer learning & Fine tuning

https://www.tensorflow.org/api_docs/python/tf/keras/applications/MobileNetV3Small

```
import tensorflow as tf
from tensorflow.keras.models import Sequential
import tensorflow.keras.layers as layers
from tensorflow.keras.layers import
Dense,Flatten,BatchNormalization,Conv2D
import tensorflow_datasets as tfds
import matplotlib.pyplot as plt
import numpy as np
import pickle
```

Transfer learning & Fine tuning: datasets preparing (1)

```
데이터 준비 튜토일얼:
                  https://www.tensorflow.org/tutorials/load_data/images?hl=ko
                 https://www.tensorflow.org/datasets/catalog/overview?hl=ko
Tensorflow 데이터 카탈로그:
AUTOTUNE:
                  https://www.tensorflow.org/guide/data_performance?hl=ko
   img\ height = 255
   img_width = 255
   batch size = 32
   AUTOTUNE = tf.data.AUTOTUNE # 병렬연산을 할 것인지에 대한 인자를 알아서 처리하도록.
   # Dataset 준비 (https://www.tensorflow.org/tutorials/load data/images?hl=ko)
   (train_ds, val_ds, test_ds), metadata = tfds.load(
       'tf flowers',
       split=['train[:80%]', 'train[80%:90%]', 'train[90%:]'],
       with_info=True,
       as supervised=True,
   num_classes = metadata.features['label'].num_classes
   label_name = metadata.features['label'].names
   print(label_name, ", classnum : ", num_classes)
```

Transfer learning & Fine tuning: datasets preparing (2)

```
def prepare(ds, shuffle=False, augment=False):
    preprocess_input = tf.keras.applications.mobilenet_v3.preprocess_input
   # Resize and rescale all datasets.
   ds = ds.map(lambda x, y: (tf.image.resize(x, [img_height, img_width]), y),
               num parallel calls=AUTOTUNE)
   # 전처리 적용
   ds = ds.map(lambda x, y: (preprocess_input(x), y),
               num parallel calls=AUTOTUNE)
   # Batch all datasets
   ds = ds.batch(batch size)
   # Use data augmentation only on the training set.
   if augment:
       data augmentation = tf.keras.Sequential([
           layers.RandomFlip("horizontal_and_vertical"),
           layers.RandomRotation(∅.2),
       1)
       ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y),
           num_parallel_calls=AUTOTUNE)
   # 데이터 로딩과 모델 학습이 병렬로 처리되기 위해
   # prefetch()를 사용해서 현재 배치가 처리되는 동안 다음 배치의 데이터를 미리 로드 하도록 함.
    return ds.prefetch(buffer_size=AUTOTUNE)
```

Transfer learning & Fine tuning: datasets preparing (3)

```
train_ds = prepare(train_ds, shuffle=True, augment=True)
val_ds = prepare(val_ds)
test_ds = prepare(test_ds)
```

Transfer learning & Fine tuning: model build

https://www.tensorflow.org/api_docs/python/tf/keras/applications/MobileNetV3Small

https://www.tensorflow.org/tutorials/images/transfer_learning?hl=ko

```
# include_top -> ANN 부분 직접 수정
base_model = tf.keras.applications.MobileNetV3Small(
   weights='imagenet', # Load weights pre-trained on ImageNet.
    input shape = (img height, img width, 3),
    include_top = False)
# 기본 모델의 가중치 동결
base model.trainable = False
inputs = tf.keras.Input(shape=(img_height, img_width, 3))
# 추론, 학습에서 다르게 동작하는 layer들을 추론/학습 중 하나로만
동작하게 함.
x = base_model(inputs, training=False)
x = tf.keras.layers.GlobalAveragePooling2D()(x)
x = tf.keras.layers.Dropout(0.2)(x)
outputs = tf.keras.layers.Dense(num_classes,
activation='softmax')(x)
model = tf.keras.Model(inputs, outputs)
```

Transfer learning & Fine tuning: model compile & training

Transfer learning & Fine tuning: Inference (1)

```
import tensorflow as tf
# Helper libraires
import numpy as np
import matplotlib.pyplot as plt
import tensorflow datasets as tfds
img_height = 255
img_width = 255
batch_size = 32
AUTOTUNE = tf.data.AUTOTUNE # 병렬연산을 할 것인지에 대한 인자를
알아서 처리하도록.
# Dataset 준비
(https://www.tensorflow.org/tutorials/load data/images?hl=ko)
(train ds, val ds, test ds), metadata = tfds.load(
    'tf flowers',
    split=['train[:80%]', 'train[80%:90%]', 'train[90%:]'],
   with info=True,
    as supervised=True,
```

Transfer learning & Fine tuning: Inference (2)

```
num = 20
def prepare(ds, batch = 1, shuffle=False, augment=False):
   preprocess_input = tf.keras.applications.mobilenet_v3.preprocess_input
   # Resize and rescale all datasets.
   # x: image, y: label
   # 이미지 크기 조정
   ds = ds.map(lambda x, y: (tf.image.resize(x, [img_height, img_width]), y),
              num parallel_calls=AUTOTUNE)
   # Batch all datasets
   ds = ds.batch(batch size)
   # 데이터 로딩과 모델 학습이 병렬로 처리되기 위해
   # prefetch()를 사용해서 현재 배치가 처리되는 동안 다음 배치의 데이터를 미리 로드
하도록 함.
   return ds.prefetch(buffer size=AUTOTUNE)
```

Transfer learning & Fine tuning: Inference (3)

```
num classes = metadata.features['label'].num classes
label name = metadata.features['label'].names
print(label_name, ", classnum : ", num_classes, ", type: ", type(label_name))
test ds = prepare(test ds, num)
image_test, label_test = next(iter(test_ds))
image test = np.array(image test)
label test = np.array(label test, dtype='int')
# 모델 불러오기
model = tf.keras.models.load_model('transfer_learning_flower.keras')
model.summary()
predict = model.predict(image_test)
predicted_classes = np.argmax(predict, axis=1)
```

Transfer learning & Fine tuning: Inference (4)

```
print("실제 레이블 | 예측 레이블");
print("-----")

for ll in range((label_test.size)):
    print(label_name[label_test[l1]], "|",
label_name[predicted_classes[l1]])
print("-----")

# print("실제 레이블:", [label_name[idx] for idx in label_test])
# print("예측 레이블:", [label_name[idx] for idx in predicted_classes])

accuracy = np.mean(predicted_classes == label_test)
print(f"정확도: {accuracy:.2%}")
```


THANK YOU