

Adaboost

Son Nguyen

Adaboost

Idea Behind Ada Boost

- Examples of high weight are shown more often at later rounds
- Face/nonface classification problem:

Round 1

best weak classifier:

change weights:

1/16

1/4

1/16

1/4 1/16 1/4

Round 2

1/16

best weak classifier:

change weights:

1/8

1/32 11/32

1/2

Adaboost

Idea Behind Ada Boost

Round 3

- out of all available weak classifiers, we choose the one that works best on the data we have at round 3
- we assume there is always a weak classifier better than random (better than 50% error)
- image is half of the data given to the classifier
- chosen weak classifier has to classify this image correctly

Adaboost, Clearly Explained

- Demonstration by StatQuest
- Link

_

Calculation Example

Data

x_1	x_2	у
1	1	1
1	3	1
2	2	-1
2	4	1
3	1	-1
3	2	-1
3	5	1
4	4	1
5	2	-1
5	5	-1

Calculation Example

Data

Adaboost in a nutshell

Make Stump 1

Make Stump 2

Make Stump 3

`

Combine the Stumps

Detail Calculation

Row	х1	x2	у
0	1	1	1
1	1	3	1
2	2	2	-1
3	2	4	1
4	3	1	-1
5	3	2	-1
6	3	5	1
7	4	4	1
8	5	2	-1
9	5	5	-1

- Assign weights for each row
- Every row has the same weight in the first step

Row	х1	х2	у
0	1	1	1
1	1	3	1
2	2	2	-1
3	2	4	1
4	3	1	-1
5	3	2	-1
6	3	5	1
7	4	4	1
8	5	2	-1
9	5	5	-1

- Assign weights for each row
- Every row has the same weight in the first step

Row	х1	x2	у	Weight 1
0	1	1	1	0.1
1	1	3	1	0.1
2	2	2	-1	0.1
3	2	4	1	0.1
4	3	1	-1	0.1
5	3	2	-1	0.1
6	3	5	1	0.1
7	4	4	1	0.1
8	5	2	-1	0.1
9	5	5	-1	0.1

• Use Weighted Gini-Index to calculate the children entropy of all candidate splits

Row	х1	x2	у	Weight 1
0	1	1	1	0.1
1	1	3	1	0.1
2	2	2	-1	0.1
3	2	4	1	0.1
4	3	1	-1	0.1
5	3	2	-1	0.1
6	3	5	1	0.1
7	4	4	1	0.1
8	5	2	-1	0.1
9	5	5	-1	0.1

- Use Weighted Gini-Index to calculate the children entropy of all candidate splits
- The split with the lowest children impurity is the best split

Row	х1	x2	у	Weight 1
0	1	1	1	0.1
1	1	3	1	0.1
2	2	2	-1	0.1
3	2	4	1	0.1
4	3	1	-1	0.1
5	3	2	-1	0.1
6	3	5	1	0.1
7	4	4	1	0.1
8	5	2	-1	0.1
9	5	5	-1	0.1

- Use Weighted Gini-Index to calculate the children entropy of all candidate splits
- The split with the lowest children impurity is the best split
- NOTE: You are not required to make the stump. So the stump will be given to you!

Row	х1	x2	у	Weight 1
0	1	1	1	0.1
1	1	3	1	0.1
2	2	2	-1	0.1
3	2	4	1	0.1
4	3	1	-1	0.1
5	3	2	-1	0.1
6	3	5	1	0.1
7	4	4	1	0.1
8	5	2	-1	0.1
9	5	5	-1	0.1

- Use Weighted Gini-Index to calculate the children entropy of all candidate splits
- The split with the lowest children impurity is the best split
- **NOTE**: You are not required to make the stump. So the stump will be given to you!

Here is the first stump
$$I(x_{2}72.5) = \begin{cases} 1 & \text{if } x_{2}72.5 \\ -1 & \text{if } x_{2} & \text{color} \end{cases}$$

$$(rad)$$

- Stump 1: $I(x_2>2.5)$

Prediction of Stump 1

• Stump 1:

$$I(x_2>2.5)$$

- If $x_2 > 2.5$, predicts y = 1.
- ullet Otherwise, predicts y=-1

Row	х1	x2	у	Stump	1 Predicts
0	1	1 (1	-1	emr 1
1	1	3	1	1	
2	2	2	-1	-1	
3	2	4	1	1	
4	3	1	-1	-1	
5	3	2	-1	-1	
6	3	5	1	1	
7	4	4	1	1	
8	5	2	-1	-1	
9	5	5 (-1	1	erro 2

Error of the first stump

Row	х1	x2	у	Stump 1 Predicts	Weight 1	
0	1	1	1	-1	0.1	<-
1	1	3	1	1	0.1	
2	2	2	-1	-1	0.1	
3	2	4	1	1	0.1	
4	3	1	-1	-1	0.1	
5	3	2	-1	-1	0.1	
6	3	5	1	1	0.1	
7	4	4	1	1	0.1	
8	5	2	-1	-1	0.1	
9	5	5	-1	1	0.1	<-

`

Error of the first stump

• Stump 1 has 2 misclassifications at row 0 and 9 (The predictions are NOT the same as the \boldsymbol{y} values). The total weights of these rows are:

$$\epsilon_1 = 0.1 + 0.1 = 0.2$$

Row	х1	x2	у	Stump 1 Predicts	Weight 1	
0	1	1	1	-1	0.1	<-
1	1	3	1	1	0.1	
2	2	2	-1	-1	0.1	
3	2	4	1	1	0.1	
4	3	1	-1	-1	0.1	
5	3	2	-1	-1	0.1	
6	3	5	1	1	0.1	
7	4	4	1	1	0.1	
8	5	2	-1	-1	0.1	
9	5	5	-1	1	0.1	<-

`

Voting Power of the first Stump

• Stump 1 has 2 misclassifications at row 0 and 9 (The predictions are NOT the same as the \boldsymbol{y} values). The total weights of these rows are:

$$\epsilon_1 = 0.1 + 0.1 = 0.2$$

ullet Voting Power: (L is the learning rate. L=1 in this example 1)

$$lpha_1 = L \cdot rac{1}{2} \cdot \ln(rac{1 - \epsilon_1}{\epsilon_1}) = 0.693$$

Row	x1	x2	y	Stump 1 Predicts	Weight 1	
0	1	1	1	-1	0.1	<-
1	1	3	1	1	0.1	
2	2	2	-1	-1	0.1	
3	2	4	1	1	0.1	
4	3	1	-1	-1	0.1	
5	3	2	-1	-1	0.1	
6	3	5	1	1	0.1	
7	4	4	1	1	0.1	
8	5	2	-1	-1	0.1	
9	5	5	-1	1	0.1	<-

• For misclassified rows 0 and 9:

$$w_{new} = w_{old} \cdot e^{lpha} = 0.1 \cdot e^{0.693} = 0.2$$

• For the correctly classified rows:

$$w_{new} = w_{old} \cdot e^{-lpha} = 0.1 \cdot e^{-0.693} = .05$$

Row	х1	x2	у	Stump 1 Predicts	Weight 1	
0	1	1	1	-1	0.1	<-
1	1	3	1	1	0.1	
2	2	2	-1	-1	0.1	
3	2	4	1	1	0.1	
4	3	1	-1	-1	0.1	
5	3	2	-1	-1	0.1	
6	3	5	1	1	0.1	
7	4	4	1	1	0.1	
8	5	2	-1	-1	0.1	
9	5	5	-1	1	0.1	<-

• For misclassified rows 0 and 9:

$$w_{new}=w_{old}\cdot e^{lpha}=0.1\cdot e^{0.693}=0.2$$

• For the correctly classified rows:

$$w_{new} = w_{old} \cdot e^{-lpha} = 0.1 \cdot e^{-0.693} = .05$$

Row	x1	x2	у	Stump 1 Predicts		Weight 2
0	1	1	1	-1	0.1	0.2
1	1	3	1	1	0.1	0.05
2	2	2	-1	-1	0.1	0.05
3	2	4	1	1	0.1	0.05
4	3	1	-1	-1	0.1	0.05
5	3	2	-1	-1	0.1	0.05
6	3	5	1	1	0.1	0.05
7	4	4	1	1	0.1	0.05
8	5	2	-1	-1	0.1	0.05
9	5	5	-1	1	0.1	0.2

• For misclassified rows 0 and 9:

$$w_{new} = w_{old} \cdot e^{lpha} = 0.1 \cdot e^{0.693} = 0.2$$

• For the correctly classified rows:

$$w_{new} = w_{old} \cdot e^{-lpha} = 0.1 \cdot e^{-0.693} = .05$$

 Notice how the weights increase for misclassified rows and decrease otherwise.

Row	x1	x2	y	Stump 1 Predicts	Weight 1	Weight 2
0	1	1	1	-1	0.1	0.2
1	1	3	1	1	0.1	0.05
2	2	2	-1	-1	0.1	0.05
3	2	4	1	1	0.1	0.05
4	3	1	-1	-1	0.1	0.05
5	3	2	-1	-1	0.1	0.05
6	3	5	1	1	0.1	0.05
7	4	4	1	1	0.1	0.05
8	5	2	-1	-1	0.1	0.05
9	5	5	-1	1	0.1	0.2

• The total weights has to be 1. We divide the weights by the total (.2*2+.05*8=.8) to achieve this.

Row	х1	x2	у	Stump 1 Predicts	_	Weight 2
0	1	1	1	-1	0.1	0.2
1	1	3	1	1	0.1	0.05
2	2	2	-1	-1	0.1	0.05
3	2	4	1	1	0.1	0.05
4	3	1	-1	-1	0.1	0.05
5	3	2	-1	-1	0.1	0.05
6	3	5	1	1	0.1	0.05
7	4	4	1	1	0.1	0.05
8	5	2	-1	-1	0.1	0.05
9	5	5	-1	1	0.1	0.2

- The total weights has to be 1. We divide the weights by the total (.2*2+.05*8=.8) to achieve this.
- Divide Weight 2 by 0.8

Row	х1	х2	у	Stump 1 Predicts		Weight 2
0	1	1	1	-1	0.1	0.2
1	1	3	1	1	0.1	0.05
2	2	2	-1	-1	0.1	0.05
3	2	4	1	1	0.1	0.05
4	3	1	-1	-1	0.1	0.05
5	3	2	-1	-1	0.1	0.05
6	3	5	1	1	0.1	0.05
7	4	4	1	1	0.1	0.05
8	5	2	-1	-1	0.1	0.05
9	5	5	-1	1	0.1	0.2

- The total weights has to be 1. We divide the weights by the total (.2*2+.05*8=.8) to achieve this.
- Divide Weight 2 by 0.8

Row	х1	x2	у	Stump 1 Predicts	Weight 1	Weight 2
0	1	1	1	-1	0.1	0.25
1	1	3	1	1	0.1	0.0625
2	2	2	-1	-1	0.1	0.0625
3	2	4	1	1	0.1	0.0625
4	3	1	-1	-1	0.1	0.0625
5	3	2	-1	-1	0.1	0.0625
6	3	5	1	1	0.1	0.0625
7	4	4	1	1	0.1	0.0625
8	5	2	-1	-1	0.1	0.0625
9	5	5	-1	1	0.1	0.25

Repeat the process to make the second Stump

Data to make the second Stump

Row	х1	x2	у	Weight 2
0	1	1	1	0.25
1	1	3	1	0.0625
2	2	2	-1	0.0625
3	2	4	1	0.0625
4	3	1	-1	0.0625
5	3	2	-1	0.0625
6	3	5	1	0.0625
7	4	4	1	0.0625
8	5	2	-1	0.0625
9	5	5	-1	0.25

Make the second stump

 Use Weighted Gini-Index to calculate the children entropy of all candidate splits

Row	х1	x2	у	Weight 2
0	1	1	1	0.25
1	1	3	1	0.0625
2	2	2	-1	0.0625
3	2	4	1	0.0625
4	3	1	-1	0.0625
5	3	2	-1	0.0625
6	3	5	1	0.0625
7	4	4	1	0.0625
8	5	2	-1	0.0625
9	5	5	-1	0.25

Make the second stump

- Use Weighted Gini-Index to calculate the children entropy of all candidate splits
- The split with the lowest children impurity is the best split

Row	х1	x2	у	Weight 2
0	1	1	1	0.25
1	1	3	1	0.0625
2	2	2	-1	0.0625
3	2	4	1	0.0625
4	3	1	-1	0.0625
5	3	2	-1	0.0625
6	3	5	1	0.0625
7	4	4	1	0.0625
8	5	2	-1	0.0625
9	5	5	-1	0.25

Make the second stump

- Use Weighted Gini-Index to calculate the children entropy of all candidate splits
- The split with the lowest children impurity is the best split

Error of the second stump

Row	х1	x2	у	Stump 2 Predicts	Weight 2	
0	1	1	1	1	0.25	
1	1	3	1	1	0.0625	
2	2	2	-1	-1	0.0625	
3	2	4	1	-1	0.0625	<-
4	3	1	-1	-1	0.0625	
5	3	2	-1	-1	0.0625	
6	3	5	1	-1	0.0625	<-
7	4	4	1	-1	0.0625	<-
8	5	2	-1	-1	0.0625	
9	5	5	-1	-1	0.25	

Error of the second stump

- Stump 2 has misclassifications at row 3, 6, and 7 (The predictions are NOT the same as the \boldsymbol{y} values). The total weights of these rows are: 0.0625 + 0.0625 + 0.0625 = 0.1875
- Error of Stump 2:

$$\epsilon_2=0.1875$$

• Voting Power:

$$lpha_2 = L \cdot rac{1}{2} \cdot \ln(rac{1 - \epsilon_2}{\epsilon_2}) = 0.733$$

Row	x1	х2	у	Stump 2 Predicts	Weight 2	
0	1	1	1	1	0.25	
1	1	3	1	1	0.0625	
2	2	2	-1	-1	0.0625	
3	2	4	1	-1	0.0625	<-
4	3	1	-1	-1	0.0625	
5	3	2	-1	-1	0.0625	
6	3	5	1	-1	0.0625	<-
7	4	4	1	-1	0.0625	<-
8	5	2	-1	-1	0.0625	
9	5	5	-1	-1	0.25	

Calculating the new weights

• For misclassified rows 3, 6 and 7:

$$w_{new} = w_{old} \cdot e^{lpha}$$

• For the correctly classified rows:

$$w_{new} = w_{old} \cdot e^{-\alpha}$$

Row	x1	x2	у	Stump 2 Predicts	Weight 2	
0	1	1	1	1	0.25	
1	1	3	1	1	0.0625	
2	2	2	-1	-1	0.0625	
3	2	4	1	-1	0.0625	<-
4	3	1	-1	-1	0.0625	
5	3	2	-1	-1	0.0625	
6	3	5	1	-1	0.0625	<-
7	4	4	1	-1	0.0625	<-
8	5	2	-1	-1	0.0625	
9	5	5	-1	-1	0.25	

`

Calculating the new weights

• For misclassified rows 3, 6 and 7:

$$w_{new} = w_{old} \cdot e^{lpha}$$

• For the correctly classified rows:

$$w_{new} = w_{old} \cdot e^{-\alpha}$$

Row	х1	x2	у	Weight 2	Stump 2 Predicts	Weight 3
0	1	1	1	0.25	1	0.12012
1	1	3	1	0.0625	1	0.03003
2	2	2	-1	0.0625	-1	0.03003
3	2	4	1	0.0625	-1	0.13008
4	3	1	-1	0.0625	-1	0.03003
5	3	2	-1	0.0625	-1	0.03003
6	3	5	1	0.0625	-1	0.13008
7	4	4	1	0.0625	-1	0.13008
8	5	2	-1	0.0625	-1	0.03003
9	5	5	-1	0.25	-1	0.12012

Normalize the new weights

• The total weights has to be 1. We divide Weight 3 by the total of current Weight 3, which is 0.780624761 to achieve this.

Row	х1	x2	у	Weight 2	Stump 2 Predicts	Weight 3
0	1	1	1	0.25	1	0.15387
1	1	3	1	0.0625	1	0.03847
2	2	2	-1	0.0625	-1	0.03847
3	2	4	1	0.0625	-1	0.16664
4	3	1	-1	0.0625	-1	0.03847
5	3	2	-1	0.0625	-1	0.03847
6	3	5	1	0.0625	-1	0.16664
7	4	4	1	0.0625	-1	0.16664
8	5	2	-1	0.0625	-1	0.03847
9	5	5	-1	0.25	-1	0.15387

Repeat the process to make the third Stump

Data to Make the third stump

Row	х1	x2	у	Weight 3
0	1	1	1	0.15387
1	1	3	1	0.03847
2	2	2	-1	0.03847
3	2	4	1	0.16664
4	3	1	-1	0.03847
5	3	2	-1	0.03847
6	3	5	1	0.16664
7	4	4	1	0.16664
8	5	2	-1	0.03847
9	5	5	-1	0.15387

Make the third stump

 Use Weighted Gini-Index to calculate the children entropy of all candidate splits

Row	х1	x2	у	Weight 3
0	1	1	1	0.15387
1	1	3	1	0.03847
2	2	2	-1	0.03847
3	2	4	1	0.16664
4	3	1	-1	0.03847
5	3	2	-1	0.03847
6	3	5	1	0.16664
7	4	4	1	0.16664
8	5	2	-1	0.03847
9	5	5	-1	0.15387

Make the third stump

- Use Weighted Gini-Index to calculate the children entropy of all candidate splits
- The split with the lowest children impurity is the best split

Row	х1	x2	у	Weight 3
0	1	1	1	0.15387
1	1	3	1	0.03847
2	2	2	-1	0.03847
3	2	4	1	0.16664
4	3	1	-1	0.03847
5	3	2	-1	0.03847
6	3	5	1	0.16664
7	4	4	1	0.16664
8	5	2	-1	0.03847
9	5	5	-1	0.15387

Make the third stump

- Use Weighted Gini-Index to calculate the children entropy of all candidate splits
- The split with the lowest children impurity is the best split

Error of the third stump

Row	х1	x2	у	Stump 3 Predicts	Weight 3	
0	1	1	1	1	0.15385	
1	1	3	1	1	0.03846	
2	2	2	-1	1	0.03846	<-
3	2	4	1	1	0.16667	
4	3	1	-1	1	0.03846	<-
5	3	2	-1	1	0.03846	<-
6	3	5	1	1	0.16667	
7	4	4	1	1	0.16667	
8	5	2	-1	-1	0.03846	
9	5	5	-1	-1	0.15385	

Error of the third stump

Stump 3 has misclassifications at row
 2, 4, and 5 (The predictions are NOT the same as the y values). The total weights of these rows are:

$$\epsilon_3 = 0.03846 \cdot 3 = 0.11538$$

• Voting Power:

$$lpha_3 = L \cdot rac{1}{2} \cdot \ln(rac{1 - \epsilon_3}{\epsilon_3}) = 1.018$$

Row	х1	x2	у	Stump 3 Predicts	Weight 3	
0	1	1	1	1	0.15385	
1	1	3	1	1	0.03846	
2	2	2	-1	1	0.03846	<-
3	2	4	1	1	0.16667	
4	3	1	-1	1	0.03846	<-
5	3	2	-1	1	0.03846	<-
6	3	5	1	1	0.16667	
7	4	4	1	1	0.16667	
8	5	2	-1	-1	0.03846	
9	5	5	-1	-1	0.15385	

Summarise the results

Row	x1	х2	y	Stump 1 Predicts	Weight 1	Weight 2	Stump 2 Predicts	Weight 3	Stump 3 Predicts
0	1	1	1	-1	0.1	0.25	1	0.153846	1
1	1	3	1	1	0.1	0.0625	1	0.0384615	1
2	2	2	-1	-1	0.1	0.0625	-1	0.0384615	1
3	2	4	1	1	0.1	0.0625	-1	0.166667	1
4	3	1	-1	-1	0.1	0.0625	-1	0.0384615	1
5	3	2	-1	-1	0.1	0.0625	-1	0.0384615	1
6	3	5	1	1	0.1	0.0625	-1	0.166667	1
7	4	4	1	1	0.1	0.0625	-1	0.166667	1
8	5	2	-1	-1	0.1	0.0625	-1	0.0384615	-1
9	5	5	-1	1	0.1	0.25	-1	0.153846	-1

Combining three Stumps

- Let say we stop making new stumps here.
- We will combine the three stumps to make the final model

$$H = sign \left[x_{1} \cdot Stump + x_{2} \cdot Stump + x_{3} \cdot Stump \right]$$

$$= sign \left[\cdot 693 \cdot \underline{I(x_{2} > 7.5)} + \cdot .733 \cdot \underline{I(x_{1} < 1.5)} + 1.615 \cdot \underline{I(x_{1} < 4.5)} \right]$$

$$\text{Respire D} : H = sign \left[\cdot 693 \cdot (-1) + \cdot .733 \cdot (1) + 1.618 \cdot (1) \right]$$

$$= sign \left[\cdot 1.058 \right] = 1 \cdot \left(\cdot 1.058 \cdot 7.6 \right)$$

Region (2)
$$H = Sign \left[.693 *1 + .733 *1 + 1.018 *1 \right] = 1$$

$$H = SIGN \left[.93 *1 + .733 * (-1) + 1.016 * 1 \right]$$

$$= SIGN \left[.98 \right] = 1$$

$$Right G: SIGN \left[.693 *1 + .733(-1) + 1.016 * (+1) \right]$$

$$= SIGN \left[-1.058 \right] = -1$$

Combining three Stumps

Learning rate