

MODULE 1: INTRODUCTION TO HUMAN FACTORS IN SOCIAL ROBOTS

Nicholas HO, PhD
Institute of System Science, NUS

About Nicholas Ho

- nicholas.ho@nus.edu.sg
- Lecturer at NUS ISS; Courses covered include:
 - ➤ Robotic Systems
 - ➤ Autonomous Robots and Vehicles
 - ➤ Human-Robot System Engineering
- BEng and PhD degree from School of Mechanical Engineering, NUS
- Specialized in architecture, design & development
 - >Artificial Intelligence
 - Augmented/Virtual Reality
 - ➤Internet-of-Things (IoT) & Cyber-Physical System (CPS)

Course Outline

•	Day 1	Module 1: Introduction to Human Factors in Social Robots
		Module 2: Robot Operating System
•	Day 2	Module 3: Planning under Uncertainty with Markov Decision Process
		Module 4: Human Factors in Autonomous Driving
•	Day 3	Module 5: Controlled Experiment Design Module 6: Heterogeneous Human Robot Interactive Systems
•	Day 4	Module 7: Human-Robot Interaction: Design and Build Workshop
		Final Presentation and Written Assessment

 To acquire the knowledge of designing human-centred interactive systems with robots

- Introduction
- Design rules
- Prototype
- Metaphors
- Simulation
- Mental models
- Design Process for Human Robots Interaction

Human Robot Interaction

https://www.youtube.com/watch?v=SOtPCX7Bs4o

 First humanoid to be granted citizenship in Saudi Arabia

https://www.youtube.com/watch?v=Bg_tJvCA8zw&t=332s

Park Avenue Rochester Hotel Robot

- Bellboy, delivery and taking of orders....
- Right here in SG

https://www.youtube.com/watch?v=I15_EOkePhk

- Human-Robot Interaction (HRI) is a field of study dedicated to understanding, designing, and evaluating robotic systems for use by or with humans
- HRI may take several forms, but are largely influenced by whether the human and the robot are in close proximity or not
- Two general categories:
 - Remote interactions
 - Proximate interactions

What categories are they in?

The Power of Dreams

Human-Computer Interface (HCI)

- HCI is the medium that links man and robot
- HCl design and planning is critical for smooth operability and computing

Source: Human-Computer Interfaces and Wearable Computing. Jeffrey Funk. MT5009 - Analyzing Hi-Technology Opportunities.

Input interfaces and their respective recognition are the main focus of this course.

Remote interaction

Remote interaction
 with mobile robot >
 Teleoperation or
 supervisory control

https://mars.nasa.gov/mars2020/

Remote interaction with physical manipulator

 Telemanipulation

https://www.flushinghospital.org/newsletter/facts-about-robotic-surgery/

Proximate interactions

- Proximate interaction with mobile robots
 - E.g. Robot assistant, receptionist
 - May include physical or social interactions
 - Physical → Collision avoidance
 - Social → Communications or collaborations
- Social interaction types:
 - Social, emotive and/or cognitive
 - More in proximate rather than remote

- Trivial OR serious?
- Why?
 - Mental model: we build our own theories to understand the causal behavior of the systems.
 - Characteristics of mental model
 - Partial
 - Unstable and subject to change
 - Internally inconsistent
 - Unscientific, superstition > evidence
 - Incorrect interpretation of the evidence
- Human errors occur if mental model differs from reality (e.g. emotions, distractions)
- HRI system designers needs to pay attention to
 - importance of a correct mental model
 - dangers of ignoring conventions

Imperfect sensing

https://www.fierceelectronics.com/components/lidar-vs-radar

Imperfect control

https://www.researchgate.net/publication/261058015 Modelling of nonlinear helicopter model and lo opshaping based controller synthesis/figures?lo=1&utm_source=google&utm_medium=organic

Imperfect decision

https://www.fastcompany.com/40568609/humans-were-to-blame-in-google-self-driving-car-crash-police-say

ROBOT ERRORS

https://www.youtube.com/watch?v=vxqBS2-4puw&t=5s

https://www.researchgate.net/publication/253847244_Notes_for_a_Modeling_Theory_of_Science_Cognition_and_Instruction/figures?lo=1&utm_source=qoogle&utm_medium=organic

- Useful accomplish the task;
- Usable do it easily and naturally, without danger of error, etc;
- Used make people want to use it, be attractive, engaging, fun, etc.

USABILITY - ISO Standard 9241

- Usability: the effectiveness, efficiency and satisfaction with which specified user achieve specific goals in particular environments.
- Effectiveness: The accuracy and completeness with which specified users can achieve specific goals in particular environments.
- Efficiency: The resources expanded to achieve the accuracy and complete the goal(s).
- Satisfaction: The comfort and acceptability of the work system to its users and affected parties

A Historical Overview of HCI/HRI

- How can an interactive system be developed to ensure its usability?
- How can the usability of an interactive system be demonstrated or measured?
- Design Paradigms
 - Paradigms are practical examples believed to enhance usability of interactive systems.
- HCI Patterns
 - Patterns are an approach to capturing and reusing the knowledge of what made a system / paradigm successful – to apply again in new situations.

Direct Manipulation (since 1980s)

- What You See Is What You Get (WYSIWTG)
 - Visibility of the objects of interest;
 - Incremental action at the interface with rapid feedback on all actions;
 - Reversibility of all actions, so that users are encouraged to explore without severe penalties;
 - Syntactic correctness of all actions, so that every user action is a legal operation;
 - Replacement of complex command languages with actions to manipulate directly the visible objects.

https://www.youtube.com/watch?v=Y2GsRP7khes

https://www.youtube.com/watch?v=61SKrflTrB4

Multi-modality

- Simultaneous use of multiple communication channels for both input and output. E.g.
 - Visual
 - Auditory
 - Tactile
 - o Smell
 - Taste
 - Kinesthetic (body language)

Comparison of Input Interfaces

Source: Human-Computer Interfaces and Wearable Computing. Jeffrey Funk. MT5009 - Analyzing Hi-Technology Opportunities.

Key Components of Input Interfaces

Source: Human-Computer Interfaces and Wearable Computing. Jeffrey Funk. MT5009 - Analyzing Hi-Technology Opportunities.

Our NUS-ISS Stroke Rehab System

- Funded by SG Enable (>\$500 K)
- Uses 3D cameras and speech for interaction

https://www.youtube.com/watch?v=ogl6IRPEXFU

Neural Interface: Brain Computer Synchronization

- Tools and Hardware: Brain scanning device
- Critical factors are Accuracy, Throughput and Affordability
- Currently limited accuracy – plasticity of brain
- Costs a deterrent factor

Our NUS-ISS EEG System for LIS Patients

https://www.youtube.com/watch?v=e0-nev_pEQs

Effects of Design in HRI

- Design can affect 5 attributes of HRI:
 - Level and behavior of autonomy
 - Nature of information exchange
 - Structure of the teams
 - Adaptation, learning and training of people and the robot
 - Shape of the task

- Autonomy is not an end in itself in HRI, but a mean to supporting productive interaction
- Continuum of autonomy:
 - Computer offers no assistance; human does it all
 - Computer offers a complete set of action alternatives
 - Computer narrows the selection down to a few choices
 - Computer suggests a single action
 - Computer executes that action if human approves
 - Computer allows the human limited time to veto before automatic execution
 - Computer executes automatically then necessarily informs the human
 - Computer informs human after automatic execution only if human asks
 - Computer informs human after automatic execution only if it decides to
 - Computer decides everything and acts autonomously, ignoring the human

Information Exchange

- Efficient interactions are characterized by productive exchanges between human and robot
- Measures of the efficiency:
 - Time required for intent and/or instructions to be communicated
 - Cognitive or mental workload of an interaction
 - Amount of situation awareness produced by the interaction

Amount of shared understanding or common ground

Structure of Teams

- How many remote robots a single human can manage?
- Dependent on:
 - Level of autonomy of the robot (teleoperation requires vastly more direct attention from the human)
 - The task (which defines the load)
 - The available modes of communication
- Need for design of intelligent control interface between humans and multiple robots

Adaptation, Learning, and Training

- Minimizing Operator Training
- Efforts to Train Humans
- Training Designers
- Training Robots

- Introducing technology fundamentally changes the way that humans do the task
- Task-shaping emphasizes the importance of considering how the task should be done and will be done when new technology is introduced

Examples of explicit task-shaping include:

- Designing space or underwater equipment and tools so that handles and connectors can be manipulated by a robotic arm
- "Pre-cleaning" a room so that a robot vacuum can accomplish its task most efficiently

5 Solution Themes of HRI

- Dynamic Autonomy, Mixed-Initiative Interaction, and Dialog
 - Interactions that accommodate complexity
- Telepresence and Information Fusion in Remote Interaction
 - Use information to provide humans an operational presence with robot
- 3. Cognitive Modelling
 - Robot to adjust information exchange according to human's cognitive state (e.g. voice, visual, mixture of both)
 - Generate robot's behaviour with models that are interpretable by humans (e.g. natural body languages)
- 4. Team Organizations and Dynamics
 - Cooperation between humans and robots in teams
- 5. Interactive Learning
 - Human and robots can learn from one another via actions and/or feedback to incrementally improve ability, autonomy and interaction

HRI Design Consideration

- Who is the design for?
- Why do they want it?
- What are the materials required?
- What is the cost?
- What are the safety/ethical issues?

Human Factors Design Principles

Type of Human Factor Engineering (HFE)	Examples of Principles	Examples of Design
Physical HFE - concerned with human anatomical, anthropometric, physiological and biomechanical characteristics as they relate to physical activity	 Minimize time required for perception, decision, and manipulation Reduce or mitigate need for physical intervention Optimize opportunities for physical movement 	 ML to learn user preference Auto-suggest based on initial few inputs Voice or gesture inputs Auto-highlight important information Hardware repair/repositioning Replacement of traditional keyboard and mouse with touchpad input devices to compensate limited workspace
Cognitive HFE - concerned with mental processes, such as perception, memory, reasoning, and motor response, as they affect interactions among humans and other elements of a system	 Consistency of interface design Match technology and user's mental model Minimize cognitive load Allow for error detection and recovery Provide feedback to users 	 Active feedback on user's action based on sensors Gamification elements to reduce boredom ML to learn preference or gestures NLP Information overlay or AI guide Adjustment of alarm parameter to reduce false alarms
Organizational HFE - concerned with the optimization of sociotechnical systems, including their organizational structures, policies, and processes - attainment of a fully harmonized work system that ensures employee job satisfaction and commitment - Include employee's communication, participation and cooperation with the system	 Provide opportunities to users to learn and develop new skills (<i>Meaningfulness of tasks</i>) Allow user control over work systems Support user access to social support Involve user in system design 	 Feedback from users to improve systems Settings to configure layout/functions Live help-desk operator (the user is human after all!) Increase user awareness and understanding of the system; Virtual or augmented reality technologies can be utilized to enhance this

Design Process for Human-Robot Interaction

- Knowledge of Situation: Broad theme of what do you want the system to understand and do in the situation (based on various scenarios and contexts)
- Sensors: Types of hardware sensors to be used
- Recognized entities: 1st layer of feature groupings to yield specific recognized entities
- Semantic Relationships: 2nd layer of recognized entities groupings to yield specific semantic relationships
- Contextual Relationships: 3rd layer of Semantic Relationship groupings to yield specific contextual relationships
- Decision/Actuation

Applied Example

Robotic nurse, Tommy, in Italian hospital that cares for Covid-19 patients under quarantine

https://www.pri.org/stories/2020-04-08/tommy-robot-nurse-helps-italian-doctors-care-covid-19-patients

Case Study Example: HRI Design Considerations for Covid-19 Robot

- Who is the design for?
 - Covid-19 patients and hospital staff
- Why do they want it?
 - To reduce interaction between staff and patients and to automate as much of the monitoring and caregiving as possible
- What are the materials required?
 - Mobile robot with on-board sensors and medication
- What is the cost?
 - Approx 100,000 Euros a piece
- What are the safety/ethical issues?
 - Wrong diagnostics, wrong administration of medication

Case Study Example: HFE Design for Covid-19 Robot

Type of HFE	Design
Physical HFE	 Voice and gesture inputs and outputs for easier interaction between robots and patients Distance sensors required to do SLAM and to avoid collision IMU, heart rate, SpO2, infrared thermometer sensors to monitor patients' activities and vitals
Cognitive HFE	 Very simple instructions provided to patients Alarm parameter changed to IoT-based as on-site alarms can disturb patients' rest (too noisy or too bright) Active feedback on user's actions based on sensors (due to e.g. patients not resting enough or not drinking enough water or eating too much heaty food)
Organizational HFE	 Feedback from users to improve robot services (can come in touch screen with 3 emoticons to choose from, similar to feedback systems for some toilets) Live help-desk operator available to address patients' concerns (e.g. suspected wrong medicine given by robot) Increase user awareness and understanding of the system (e.g. via emails/apps, or providing a leaflet with summarized info on the service robot)

Case Study Example: HRI Design Process for Covid-19 Robot

Knowledge of Situation

<u>Sensors</u>

Level of Activity and Vitals in Patients

4 Inertia Measurement Units

Heart Rate Sensor

SpO2 sensor

Infrared Thermometer

Case Study Example: Covid-19 Robot

Case Study Example: Covid-19 Robot

Semantic Relationships

Recognized Entities

- Fast Repetitive Motion of Legs
- Slow Repetitive Motion of Legs
- Slow Non-Repetitive Motion of Legs
- Static
- Fast Repetitive Motion of Hands
- Slow Repetitive Motion of Hands -
- Slow Non-Repetitive Motion of Hands
- Static
- **Above Resting**
- At Resting
- **Above Resting**
- At Resting
- High temperature
- Low temperature

Static Exercises (Pushups/situps)

Sleeping

Walking

Not moving with

Case Study Example: Covid-19 Robot

Semantic Relationships

- Vigorous Activity
- Static Exercises (Pushups/situps)

- Sleeping
- Walking
- Not moving with poor vitals

Contextual

- Patient is over exerting
 - Patient is healthy
 - Patient is too sedentary
 - Patient is in distress

Case Study Example: Covid-19 Robot

Contextual	Decision/Response
 Patient is over exerting 	Broadcast advice to patient to reduce activity
 Patient is healthy 	• No action
Patient is too sedentary	 Broadcast advice to patient to be more active
 Patient is in distress 	Perform emergency intervention

Application Project

- Think of a robotic system application in your company or future business that requires HRI design
- Apply a detailed design consideration and HRI design process for your application
- To be presented and submitted on the 4th day
- 10 minutes presentation (around 10 slides) and 5 minutes Q&A per person
- Have more graphics/charts/figures than wordy
- PowerPoint-based (use provided template: "HRSE M1 Presentation template")

Module 1 Quiz Exercise

End of Module 1