Chapitre X Particules, interactions et phénoménologie

Sommaire

1	Parti	cules du modèle standard	
	1.1	Fermions	
	1.2	Bosons	
2	Form	nalisme théorique et interactions	
	2.1	Introduction au formalisme du lagrangien	
	2.2	Interaction électromagnétique	
	2.3	Interaction électrofaible	
	2.4	Mécanisme de Higgs et brisure spontanée de symétrie	
	2.5	Interaction forte	
	2.6	Formation des jets	
3	Succ	ès et limites du modèle standard	
	3.1	Succès	
	3.2	Limites	
4	Au-d	lelà du modèle standard	
	4.1	Supersymétrie	
	4.2	Modèles à deux doublets de Higgs	
	4.3	Extension supersymétrique minimale du modèle standard	
	4.4	Violation de <i>CP</i> avec les bosons de Higgs	
5	Phér	noménologie des bosons de Higgs du MSSM	
	5.1	Production de bosons de Higgs	
	5.2	Désintégrations des bosons de Higgs	
	5.3	Désintégrations des leptons τ	
6	Cond	clusion	

Ce chapitre présente le contexte dans lequel s'inscrit cette thèse. Le modèle standard est le cadre théorique en place en physique des particules. Il permet de décrire les objets fondamentaux qui composent l'Univers, c'est-à-dire les particules et leurs interactions.

Les particules du modèle standard sont présentées dans la section 1. Le formalisme mathématique permettant de décrire leur comportement, faisant apparaître les forces fondamentales, est introduit dans la section 2. Le modèle standard ainsi construit propose une description de l'Univers à la fois précise et robuste.

Le boson de Higgs, dernière particule découverte à ce jour, a ainsi été postulé près de cinquante ans avant d'être observé. De nombreux succès, dont une présentation non exhaustive est proposée dans la section 3.1, couronnent ainsi le modèle standard. Cependant, malgré plusieurs décennies de prédictions correctement vérifiées, certaines observations montrent que le modèle standard ne saurait prétendre au titre de « théorie du tout ».

Les limites de ce modèle, dont certaines sont présentées dans la section 3.2, mènent à de nouvelles théories « au-delà du modèle standard », dont il est question dans la section 4. Parmi celles-ci se trouvent des modèles dit « à deux doublets de Higgs », c'est-à-dire avec un secteur de Higgs plus complexe, comme la supersymétrie.

Un cas particulier de modèle supersymétrique est l'extension supersymétrique minimale du modèle standard, ou MSSM, présentée dans la section 5. La phénoménologie du MSSM motive le choix du type d'événements d'intérêt pour la recherche de cette nouvelle physique.

1 Particules du modèle standard

Une particule est considérée comme élémentaire si elle ne possède pas de sous-structure observée à ce jour. Celles du modèle standard sont présentées en figure X.1. Leur masse, comme les autres grandeurs physiques de cette thèse, sont exprimées en unités naturelles, différentes des unités du système international comme exposé dans l'annexe A. Ces particules peuvent être classées selon leurs propriétés. La première d'entre elles, le « spin », est une observable quantique intrinsèque aux particules.

Figure X.1 – Particules élémentaires du modèle standard. Les quarks (en vert) et les leptons (en bleu) sont des fermions. Les bosons vecteurs (en orange) sont les médiateurs des forces fondamentales. Le boson de Higgs est quant à lui un boson scalaire (en jaune).

1.1 Fermions

Les fermions sont les particules élémentaires de spin demi-entier et suivent donc la statistique de Fermi-Dirac. Ainsi, deux fermions ne peuvent pas occuper le même état quantique, c'est-à-dire avoir les mêmes nombres quantiques, comme exposé par le principe d'exclusion de Pauli. Le modèle standard comprend douze fermions constituant la matière, accompagnés de douze antifermions correspondants pour l'antimatière.

Les fermions peuvent se diviser d'une part en deux catégories, les quarks et les leptons, et d'autre part en trois catégories correspondant à trois « générations », comme illustré sur la figure X.1. La première génération (quarks u et d, électron e^- et neutrino électronique ν_e) correspond aux particules les plus communes; les deuxièmes et troisièmes générations contiennent des particules analogues, plus massives et instables.

1.1.1 Quarks

Les quarks sont les fermions possédant une charge de couleur. Il existe deux quarks par génération, un quark de type up et un quark de type down, formant un doublet d'isospin faible comme exposé en section 2.3. Il y a donc six quarks au total. Les quarks de type up (u, c et t) portent une charge électrique $+\frac{2}{3}e$ avec e la charge électrique élémentaire, les quarks de type down (d, s et b) une charge $-\frac{1}{3}e$. Les antiquarks possèdent une charge électrique opposée $(-\frac{2}{3}e$ et $+\frac{1}{3}e)$. Ces particules sont donc sensibles à l'interaction électromagnétique.

À l'instar de la charge électrique pour l'interaction électromagnétique, la « couleur »rend les quarks sensibles à l'interaction forte. La charge de couleur peut prendre trois valeurs orthogonales, nommées par convention rouge, verte et bleue. Les particules portant une charge de couleur ne sont pas stables seules et se regroupent pour former des particules composites de charge de couleur nulle, ou de couleur « blanche ». C'est ce que l'on appelle le phénomène de « confinement de couleur », décrit dans la section 2.5.3.

Les particules composées de quarks sont les hadrons. Ces particules sont de couleur blanche, ce qui peut être obtenu de deux manières :

- par association d'un quark rouge, un vert et un bleu; il s'agit d'un « baryon ». Le proton (uud) et le neutron (*udd*) sont deux exemples de baryons.
- par association d'un quark et d'un antiquark; il s'agit d'un « méson ». En effet, un antiquark porte une « anticouleur ». Par exemple, un quark up (u) rouge et un antiquark down (\bar{d}) « antirouge » forment un pion chargé π^+ . Une combinaison $u\bar{s}$ est un kaon K^+ .

Enfin, comme tous les fermions, les quarks sont également sensibles à l'interaction faible. Les quarks sont ainsi les seules particules sensibles à toutes les interactions fondamentales décrites par le modèle standard.

1.1.2 Leptons

Les leptons sont les fermions ne possédant pas de charge de couleur. Ils sont donc insensibles à l'interaction forte. En revanche, ils sont tous sensibles à l'interaction faible. Sur le même principe que pour les quarks, il y a un doublet d'isospin faible de deux leptons par génération, soit six leptons au total. Les leptons d'isospin faible haut sont l'électron (e^-), le muon (μ^-) et le tau (τ^-), ils portent une charge électrique -e (+e pour les antiparticules correspondantes). Les leptons d'isospin faible bas sont les neutrinos. Ces derniers ne portent pas de charge électrique et interagissent donc uniquement par interaction faible, ce qui en fait des particules difficiles à détecter.

1.2 Bosons

Les bosons sont les particules élémentaires de spin entier. Ils suivent la statistique de Bose-Einstein qui n'interdit pas la présence de plusieurs bosons dans le même état quantique, contrairement à la statistique de Fermi-Dirac.

Les bosons de spin 1 sont les bosons de jauge, ou bosons vecteurs, et sont les médiateurs des interaction fondamentales. Ainsi, le photon (γ) est le boson vecteur de l'interaction électromagnétique. Il est de masse nulle et est électriquement neutre. Les bosons W^+ , W^- et Z sont ceux de l'interaction faible. Le boson Z est électriquement neutre et de masse $m_Z = 91,19$ GeV, les bosons W portent une charge électrique de $\pm e$, ont une masse de $m_W = 80,38\,\mathrm{GeV}$ et n'interagissent qu'avec les particules de chiralité gauche et les antiparticules de chiralité droite. La chiralité est définie dans la section 2.3. Enfin, huit gluons (g) sont les médiateurs de l'interaction forte. Ils n'ont ni masse ni charge électrique, mais portent une charge de couleur et une charge d'anticouleur. Un gluon peut donc être

chargé « rouge et antibleu ». Si un tel gluon interagit avec un quark bleu, par conservation, ce quark devient rouge après interaction.

Les bosons de spin 0 sont dits scalaires. Le seul scalaire élémentaire observé à ce jour est le boson de Higgs, le modèle standard n'en prédit pas d'autre. Comme exposé en section 2.3, les forces électromagnétique et faible peuvent être unifiées en une seule force électrofaible. La symétrie associée à la force électrofaible est spontanément brisée par le mécanisme de Higgs, présenté en section 2.4. Les forces électromagnétique et faible sont alors retrouvées, les particules acquièrent une masse et le boson de Higgs émerge de ce mécanisme.

2 Formalisme théorique et interactions

Il ne suffit pas de lister les particules élémentaires pour obtenir un modèle, il faut également décrire leur dynamique, c'est-à-dire la façon dont ces particules interagissent. Pour cela, le modèle standard se base sur la théorie quantique des champs. Une particule n'est pas un « objet ponctuel » comme en mécanique classique, mais une excitation d'un champ quantique relativiste. Il s'agit alors de décrire l'évolution de ces excitations.

Le comportement des particules élémentaires est obtenu par application des équations d'Euler-Lagrange au lagrangien du modèle standard. Afin de comprendre pourquoi ce formalisme mathématique permet effectivement d'obtenir l'évolution des champs quantiques relativistes décrivant les particules, la section suivante consiste en une brève introduction du lagrangien dans le cas de la mécanique classique, suivie d'une généralisation au cas du modèle standard.

2.1 Introduction au formalisme du lagrangien

2.1.1 Lagrangien et principe de moindre action

Soit une particule de masse m, soumise à une force F prise ici constante à des fins d'illustration, se déplaçant dans le temps le long d'une dimension x, d'un point A à t=0 à un point B à $t=\tau$, comme illustré sur la figure X.2a.

La trajectoire de cette particule peut être déterminée à l'aide du principe fondamental de la dynamique, ou seconde loi de Newton, qui s'exprime dans ce cas sous la forme

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = F. \tag{X.1}$$

La position de la particule à tout instant est alors obtenue par double intégration selon le temps,

$$x(t) = x_0 + v_0 t + \frac{1}{2} \frac{F}{m} t^2 \tag{X.2}$$

avec x_0 et v_0 les position et vitesse de la particule à l'instant t = 0.

Or, cette méthode ne permet pas de décrire le comportement des particules élémentaires car à leur échelle la mécanique quantique prévaut. Il n'est alors pas possible, lorsque l'on observe une particule

(b) *Particule quantique.*

Figure X.2 – Trajectoires d'une particule se déplaçant au cours du temps d'un point A à un point B.

à un point A puis à un point B, de déterminer la trajectoire exacte suivie par cette particule. En effet, une particule quantique détectée en A à t=0 puis en B à $t=\tau$ a suivi toutes les trajectoires reliant ces deux points aussi farfelues soient-elles, y compris celles revenant en arrière dans le temps, comme illustré en figure X.2b. Utiliser une loi pouvant donner x(t) n'est donc pas pertinent en mécanique quantique.

Il existe toutefois un autre principe physique toujours en place en mécanique quantique, la conservation de l'énergie. Dans le cas de la particule précédemment décrite, il s'agit de la somme de son énergie cinétique T et de son énergie potentielle V, c'est-à-dire

$$E = T + V = C^{\text{te}} \tag{X.3}$$

où T dépend uniquement de la vitesse de la particule et V uniquement de sa position. Il en va ainsi de même pour les moyennes temporelles de ces grandeurs,

$$E = \langle E \rangle = \langle T \rangle + \langle V \rangle = C^{\text{te}} \tag{X.4}$$

avec, en notant $\dot{x} = \frac{dx}{dt}$

$$\langle T \rangle = \frac{1}{\tau} \int_0^\tau T(\dot{x}(t)) \, \mathrm{d}t \,, \quad \langle V \rangle = \frac{1}{\tau} \int_0^\tau V(x(t)) \, \mathrm{d}t \,.$$
 (X.5)

Lorsque la trajectoire suivie par la particule varie par rapport à la trajectoire déterminée par la mécanique Newtonienne, ce qui est le cas en mécanique quantique, ces grandeurs sont modifiées. La variation de la valeur moyenne de l'énergie potentielle s'exprime à partir de la dérivée fonctionnelle

$$\frac{\delta \langle V \rangle}{\delta x(t)} = \frac{1}{\tau} \int_0^{\tau} \frac{\delta V(x(t'))}{\delta x(t)} dt' = \frac{1}{\tau} \int_0^{\tau} \frac{dV(x(t'))}{dx(t')} \delta(t'-t) dt' = \frac{1}{\tau} \left. \frac{dV}{dx(t')} \right|_{t'-t} = -\frac{1}{\tau} F(x(t)) \quad (X.6)$$

car la force F est reliée à V par $F=-\frac{\mathrm{d}V}{\mathrm{d}x}$. De même, l'énergie cinétique moyenne varie selon

$$\frac{\delta\langle T\rangle}{\delta x(t)} = \frac{1}{\tau} \int_0^{\tau} \frac{\delta T(\dot{x}(t'))}{\delta x(t)} dt' = \frac{1}{\tau} \int_0^{\tau} \frac{dT(\dot{x}(t'))}{dx(t')} \delta'(t'-t) dt' = -\frac{1}{\tau} \int_0^{\tau} \delta(t'-t) \frac{d}{dt'} \left(\frac{dT(\dot{x}(t'))}{d\dot{x}(t')}\right) dt'$$

$$= -\frac{1}{\tau} \frac{d}{dt'} \left(\frac{dT(\dot{x}(t'))}{d\dot{x}(t')}\right) \Big|_{t'-t} = -\frac{1}{\tau} m \frac{d^2 x}{dt'^2} \Big|_{t'-t} = -\frac{1}{\tau} m \frac{d^2 x}{dt^2} (t) \tag{X.7}$$

car pour une particule de masse m, en mécanique newtonienne, $T = \frac{1}{2}m\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2$.

Le long de la trajectoire classique, le principe fondamental de la dynamique est vérifié. Alors, les variations autour de la trajectoire classique sont reliées par

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = F \Leftrightarrow \frac{\delta\langle T\rangle}{\delta x(t)} = \frac{\delta\langle V\rangle}{\delta x(t)} \Leftrightarrow \frac{\delta}{\delta x(t)} (\langle T\rangle - \langle V\rangle) = 0, \tag{X.8}$$

c'est-à-dire que la différence entre l'énergie cinétique et l'énergie potentielle du système étudié est stationnaire le long de la trajectoire classique. Cette différence est le lagrangien L,

$$L = T - V. (X.9)$$

L'intégrale au cours du temps du lagrangien est appelée action et est définie comme

$$S = \int_0^{\tau} dt L. \tag{X.10}$$

Compte-tenu de l'équation (X.8), l'action vérifie pour la trajectoire classique

$$\frac{\delta S}{\delta x(t)} = 0, \tag{X.11}$$

ce qui est connu sous le nom de principe de moindre action.

2.1.2 Cas de la mécanique quantique

En mécanique quantique, la probabilité $P(B,\tau|A,0)$ d'observer la particule en B à $t=\tau$ sachant qu'elle était en A à t=0 s'exprime à partir de l'opérateur \hat{U} d'évolution temporelle,

$$P(B,\tau|A,0) = \left| \left\langle B \right| \hat{U}(\tau,0) \left| A \right\rangle \right|^{2}. \tag{X.12}$$

Or, lors du calcul de l'amplitude $\langle B | \hat{U}(\tau,0) | A \rangle$, chacune des trajectoires possibles apporte une contribution avec un facteur de phase s'exprimant

$$\exp(iS/\hbar)$$
 (X.13)

avec S l'action de la trajectoire et \hbar la constante de Planck réduite. Il est ainsi pertinent de déterminer les variations de S lorsque la trajectoire de la particule est modifiée.

Ces variations s'expriment

$$\frac{\delta S}{\delta x(t)} = \int_0^{\tau} dt' \left[\frac{\delta L}{\delta x(t')} \delta(t'-t) + \frac{\delta L}{\delta \dot{x}(t')} \delta'(t'-t) \right] = \frac{\delta L}{\delta x(t)} - \frac{d}{dt} \frac{\delta L}{\delta \dot{x}(t)}. \tag{X.14}$$

Cette quantité est nulle autour de la trajectoire classique d'après le principe de moindre action (X.11). La phase est alors stationnaire, ce qui permet aux trajectoires quantiques proches de la trajectoire classique de contribuer plus fortement à l'amplitude. Le principe de moindre action peut se ré-exprimer avec le lagrangien L selon

$$\frac{\delta L}{\delta x(t)} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\delta L}{\delta \dot{x}(t)} = 0. \tag{X.15}$$

Cette équation est l'équation d'Euler-Lagrange et permet d'obtenir toutes les équations du mouvement du système, c'est-à-dire de décrire son évolution au cours du temps. Connaître le lagrangien permet donc de décrire l'évolution des particules.

2.1.3 Lagrangien, champs et symétries

Le raisonnement précédent peut se généraliser à un espace à une dimension temporelle et trois dimensions spatiales. À partir du lagrangien, il est possible de définir la densité lagrangienne $\mathcal L$ telle que

$$L = \int d^3x \, \mathcal{L} \,, \quad S = \int d^4x \, \mathcal{L} \tag{X.16}$$

où x désigne la coordonnée dans l'espace-temps de Minkowski, c'est-à-dire l'espace-temps à quatre dimensions. Si la densité lagrangienne dépend d'un champ $\phi(x)$ et de ses dérivées $\partial_{\mu}\phi(x)$, avec ∂_{μ} la dérivée partielle par rapport à la coordonnée μ dans l'espace-temps de Minkowski, alors

$$S = \int d^4x \, \mathcal{L}(\phi(x), \partial_\mu \phi(x)) \tag{X.17}$$

et du principe de moindre action résultent les équations d'Euler-Lagrange pour \mathcal{L} , une pour chaque valeur possible de μ ,

$$\frac{\delta S}{\delta \phi} = \frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} = 0. \tag{X.18}$$

Il s'agit à présent de déterminer la densité lagrangienne \mathcal{L} , communément nommée lagrangien du modèle standard.

Un champ quantique peut subir une transformation de jauge locale. Une telle transformation doit laisser la physique inchangée, ainsi le lagrangien du modèle standard est construit pour être invariant sous les transformations de jauges locales du groupe de symétrie

$$SU(3)_C \times SU(2)_L \times U(1)_Y$$
. (X.19)

De cette construction résultent les interactions fondamentales, discutées ci-après.

2.2 Interaction électromagnétique

Le lagrangien libre d'un fermion, c'est-à-dire le lagrangien décrivant le comportement d'un fermion seul, s'exprime

$$\mathcal{L}_{\text{fermion libre}} = \bar{\psi} \left(i \partial \!\!\!/ - m \right) \psi = \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - m \right) \psi = i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi - m \bar{\psi} \psi \tag{X.20}$$

où la notation « slash » pour un objet k signifie $k = \gamma^{\mu}k_{\mu}$, ψ le spineur de Dirac correspondant au champ fermionique, $\bar{\psi} = \psi^{\dagger} \gamma^0$ son adjoint de Dirac, ψ^{\dagger} étant l'adjoint de ψ , γ^{μ} les matrices de Dirac, définies dans l'annexe B et m la masse de la particule considérée. Le terme $\gamma^{\mu} \partial_{\mu}$, par convention de sommation d'Einstein exposée dans l'annexe B, correspond à une somme sur les différentes valeur

Le lagrangien $\mathcal{L}_{\text{fermion libre}}$ est invariant sous une transformation globale du groupe $U(1)_{em}$, c'està-dire lorsque la transformation suivante est appliquée au spineur ψ

$$\psi \to e^{iQ\alpha}\psi$$
, $\bar{\psi} \to \bar{\psi}e^{-iQ\alpha}$ (X.21)

où $\alpha \in \mathbb{R}$ et Q est l'opérateur de charge électrique. En effet, sous une telle transformation,

$$\bar{\psi}\psi \to \bar{\psi}e^{-iQ\alpha}e^{iQ\alpha}\psi = \bar{\psi}\psi$$
 (X.22)

et

$$i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi \rightarrow i\bar{\psi}e^{-iQ\alpha}\gamma^{\mu}\partial_{\mu}\left(e^{iQ\alpha}\psi\right) = i\bar{\psi}e^{-iQ\alpha}e^{iQ\alpha}\gamma^{\mu}\partial_{\mu}\left(\psi\right) + i\bar{\psi}e^{-iQ\alpha}\gamma^{\mu}\partial_{\mu}\left(e^{iQ\alpha}\right)\psi = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi$$
(X.23)

car α ne dépend pas de l'espace-temps pour une transformation globale.

En revanche, pour une transformation locale,

$$\mathrm{i}\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi\rightarrow\mathrm{i}\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi+\mathrm{i}\mathrm{e}^{-\mathrm{i}Q\alpha}\bar{\psi}\gamma^{\mu}\partial_{\mu}\left(\mathrm{e}^{\mathrm{i}Q\alpha}\right)\psi=\mathrm{i}\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi-\bar{\psi}\gamma^{\mu}Q\partial_{\mu}\alpha\psi\tag{X.24}$$

ce qui fait apparaître un terme supplémentaire, $\bar{\psi}\gamma^{\mu}Q\partial_{\mu}\alpha\psi$, provenant de la transformation du terme $i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi$ de $\mathcal{L}_{\text{fermion libre}}$ qui brise ainsi l'invariance de jauge du lagrangien. Afin de rendre le lagrangien invariant sous les transformations locales du groupe $U(1)_{em}$, il est possible de remplacer la dérivée usuelle ∂_{μ} par la dérivée covariante D_{μ} , telle que

$$\partial_{u} \to D_{u} = \partial_{u} - ieQA_{u} \tag{X.25}$$

où e est la charge électrique élémentaire et A_{μ} un champ de jauge nouvellement introduit, dont la transformation de jauge permet de supprimer le terme supplémentaire qui brise l'invariance de jauge du lagrangien. En effet, le champ A_{μ} se transforme tel que

$$A_{\mu} \to A_{\mu} + \frac{1}{e} \partial_{\mu} \alpha$$
. (X.26)

Ainsi, en réécrivant le lagrangien du fermion de l'équation (X.20) avec la dérivée covariante,

$$\mathcal{L}'_{\text{fermion libre}} = i\bar{\psi}\gamma^{\mu}D_{\mu}\psi - m\bar{\psi}\psi = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\bar{\psi}\psi + \bar{\psi}\gamma^{\mu}eQA_{\mu}\psi = \mathcal{L}_{\text{fermion libre}} + \bar{\psi}\gamma^{\mu}eQA_{\mu}\psi, \tag{X.27}$$

le dernier terme se transforme en

$$\bar{\psi}\gamma^{\mu}eQA_{\mu}\psi \to \bar{\psi}e^{-iQ\alpha}\gamma^{\mu}eQ\left(A_{\mu} + \frac{1}{e}\partial_{\mu}\alpha\right)e^{iQ\alpha}\psi = \bar{\psi}\gamma^{\mu}eQA_{\mu}\psi + \bar{\psi}\gamma^{\mu}Q\partial_{\mu}\alpha\psi \tag{X.28}$$

et le dernier terme obtenu compense exactement celui brisant l'invariance de jauge dans l'équation (X.24).

Le nouveau terme introduit par l'utilisation de la dérivée covariante, $\bar{\psi}\gamma^{\mu}eQA_{\mu}\psi$, correspond à l'interaction entre un fermion et le champ de jauge A_{μ} , dont l'intensité est directement proportionnelle à la charge électrique du fermion. Toutefois, le champ A_{μ} ne représente pas encore le photon en l'état, il faut permettre au photon de se propager librement. Pour cela, un terme cinétique invariant de jauge dans le lagrangien doit être introduit, ce qui peut se faire avec

$$\mathcal{L}_{\text{photon libre}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} , \quad F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} . \tag{X.29}$$

Un terme de masse pour le champ A_{μ} devrait s'écrire sous la forme $\frac{1}{2}m^2A^{\mu}A_{\mu}$, ce qui n'est pas invariant de jauge. Par conséquent, le champ A_{μ} est de masse nulle.

Le lagrangien complet pour l'interaction électromagnétique, aussi nommé QED (électrodynamique quantique, *Quantum Electro-Dynamics*), s'exprime alors

$$\mathcal{L}_{QED} = \underbrace{\bar{\psi}\left(i\not{D} - m\right)\psi}_{\text{fermions}} - \underbrace{\frac{1}{4}F_{\mu\nu}F^{\mu\nu}}_{\text{photons}} = \underbrace{\bar{\psi}\left(i\not{\partial} - m\right)\psi}_{\mathcal{L}_{\text{fermion libre}}} + \underbrace{\bar{\psi}\gamma^{\mu}eQA_{\mu}\psi}_{\text{interaction}} - \underbrace{\frac{1}{4}F_{\mu\nu}F^{\mu\nu}}_{\mathcal{L}_{\text{photon libre}}}.$$
 (X.30)

Le terme d'interaction dans ce lagrangien permet de « connecter » les fermions aux photons dans les diagrammes de Feynman, dont le principe est décrit dans l'annexe C. La « connexion » ainsi obtenue est nommée « vertex ». La structure du terme d'interaction, $\bar{\psi}\gamma^{\mu}eQA_{\mu}\psi$, impose ainsi la présence au vertex d'un photon (A_{μ}) , d'un fermion entrant ou d'un antifermion sortant (ψ) et d'un fermion sortant ou d'un antifermion entrant $(\bar{\psi})$. Ces possibilités donnent les diagrammes de la figure X.3.

Figure X.3 – Diagrammes de Feynman possibles à partir du terme $\bar{\psi}\gamma^{\mu}eQA_{\mu}\psi$ du lagrangien \mathcal{L}_{QED} .

Maintenir l'invariance de jauge locale à l'aide de la dérivée covariante fait émerger l'interaction électromagnétique dans le cas de l'invariance de jauge sous $U(1)_{em}$. Dans les sections suivantes, un raisonnement similaire est appliqué afin d'obtenir les interactions électrofaible et forte.

2.3 Interaction électrofaible

Le modèle standard décrit les interactions électromagnétique et faible comme deux facettes d'une seule et même interaction qui les unifie, l'interaction électrofaible, notée « EW » pour *electroweak*. Celle-ci a été développée à partir des travaux de GLASHOW [1], SALAM & WARD [2] et WEINBERG [3], récompensés par le prix Nobel de physique en 1979.

Une des raisons de l'unification de ces deux forces provient du calcul de la section efficace de production de paire W^+W^- . Le lien entre la section efficace d'un processus physique et le nombre d'événements de ce processus est introduit dans le chapitre 2. La section efficace ne peut pas être infinie, ce ne saurait correspondre à la réalité physique. Or, sans considérer chacun des diagrammes de la figure X.4 pour ce calcul, la section efficace de production de paire W^+W^- est infinie. La prise en compte des interactions électromagnétique, figure X.4a, et faible, figures X.4b et X.4c, pousse à les unifier.

Figure X.4 – Diagrammes de Feynman de production de paire W^+W^- à l'arbre.

L'interaction électromagnétique repose sur l'invariance de jauge sous les transformations locales du groupe $U(1)_{em}$. Dans le cas de l'interaction électrofaible, ce groupe de symétrie est $SU(2)_L \times$ $U(1)_{Y}$.

Dans un premier temps, seul le cas de $SU(2)_L$ avec les leptons est traité et permet de soulever toute la richesse de ce groupe par rapport à U(1). Ensuite, $SU(2)_L \times U(1)_Y$ est abordé, toujours avec les leptons. Puis, le traitement des quarks est présenté, donnant alors une description de l'interaction électrofaible.

2.3.1 Symétrie $SU(2)_L$ et chiralité

Une des propriétés les plus importantes de l'interaction faible est de violer la symétrie de parité, notée P. La symétrie P consiste à remplacer une des trois coordonnées spatiales par son opposé, comme le fait un miroir. La violation de P par l'interaction faible, observée expérimentalement avec les désintégrations β [4], peut être expliquée en considérant que les couplages aux bosons W ne se font qu'avec certains états de chiralité.

La chiralité est une propriété des particules. Pour un fermion décrit par un spineur ψ , elle peut être droite (right) ou gauche (left). La composante de chiralité gauche ψ_L s'obtient à l'aide du projecteur chiral γ^5 selon

$$\psi_L = \frac{1}{2}(1 - \gamma^5)\psi\,, (X.31)$$

celle de chiralité droite ψ_R selon

$$\psi_R = \frac{1}{2}(1 + \gamma^5)\psi. \tag{X.32}$$

Pour les antiparticules décrites par $\bar{\psi} = \psi^{\dagger} \gamma^{0}$,

$$\overline{\psi_L} = (\psi_L)^{\dagger} \gamma^0 = \left(\frac{1}{2} (1 - \gamma^5) \psi\right)^{\dagger} \gamma^0 = \psi^{\dagger} \frac{1}{2} (1 - \gamma^5) \gamma^0 = \psi^{\dagger} \gamma^0 \frac{1}{2} (1 + \gamma^5) = \bar{\psi}_R, \tag{X.33}$$

et de même, $\overline{\psi_R} = \overline{\psi}_L$.

Les expériences montrent que les bosons W ne sont couplés qu'aux fermions de chiralité gauche et aux antifermions de chiralité droite, ce qui correspond à introduire un facteur $\gamma^{\mu}(1-\gamma^5)$ aux termes de couplage correspondants dans le lagrangien. Dans la notation $SU(2)_L$, L signifie ainsi left. Les couplages étant différents selon l'état de parité, la symétrie P est violée. Les couplages du boson Z ne sont pas purement en $(1-\gamma^5)$, il est donc quand même couplé aux fermions de chiralité droite et aux antifermions de chiralité gauche. Ce comportement du Z peut être expliqué dans le cadre de la force électrofaible, la force faible à elle seule ne permet pas d'en rendre compte.

La violation de P par l'interaction faible a également pour conséquence la violation de C, la symétrie de charge. En effet, C change une particule de chiralité gauche en une antiparticule de même chiralité, dont les couplages aux bosons de l'interaction faible ne sont pas les mêmes. En revanche, la symétrie *CP* change une particule de chiralité gauche en une antiparticule de chiralité droite, ce qui semble être conservé par l'interaction faible. L'étude des désintégrations des kaons a toutefois montré que l'interaction faible viole également la symétrie CP [5], ce qui a pu être expliqué théoriquement en postulant l'existence d'une troisième génération de quarks [6] observée depuis.

L'introduction de la symétrie $SU(2)_L$ amène un nouveau nombre quantique, l'« isospin faible », noté I. Il se comporte mathématiquement comme le spin des particules, d'où son nom. Les fermions de chiralité gauche sont rassemblés en doublets d'isospin faible $I=\frac{1}{2}$, les fermions de chiralité droite en singlets d'isospin faible I=0. Ces derniers sont ainsi invariants sous les transformations de $SU(2)_L$, ce qui se traduit physiquement par une insensibilité à l'interaction faible.

Les fermions peuvent être de chiralité droite ou gauche. Dans le cadre actuel du modèle standard, les neutrinos existent toutefois uniquement avec une chiralité gauche. Il n'y a à ce jour aucune raison pour les neutrinos de chiralité droite de ne pas exister. Cependant, ils n'interagissent pas, par construction, avec la matière dans le cadre du modèle standard. Ainsi, il est possible de les retirer du modèle tout en conservant une description cohérente du comportement des particules. Cela mène aux représentations du tableau X.1.

I	Quarks gauches	Quarks droits	Leptons gauches	Leptons droits
$\frac{1}{2}$	$\begin{pmatrix} u_i \\ d_i \end{pmatrix}_I$	-	$\begin{pmatrix} u_i \\ \ell_i \end{pmatrix}_I$	-
0	-	$u_{i,R}, d_{i,R}$	-	$\ell_{i,R}$

Tableau X.1 – Représentation des fermions selon leur chiralité et leur isospin faible. L'indice $i \in \{1,2,3\}$ correspond à la génération des particules. Ainsi, les symboles u_i , d_i , ℓ_i et ν_i correspondent, respectivement, aux quarks d'isospin faible haut (u, c, t), d'isospin faible bas (d, s, b), aux leptons chargés (e, μ, τ) et aux neutrinos (ν_e, ν_u, ν_τ) .

2.3.2 Symétrie SU(2) et interactions entre bosons

Afin d'alléger les notations, le cas plus général d'un groupe de symétrie SU(2) est traité. Pour étendre les résultats à $SU(2)_L$, il suffit de se souvenir que les couplages ont uniquement lieu entre fermions de chiralité gauche et antifermions de chiralité droite. La méthode reste la même que pour l'électromagnétisme. Sous une transformation de SU(2), les spineurs se transforment selon

$$\psi \to e^{\frac{i}{2}\tau \cdot \alpha(x)} \psi$$
, $\bar{\psi} \to \bar{\psi} e^{-\frac{i}{2}\tau \cdot \alpha(x)}$ (X.34)

où $\alpha \in \mathbb{R}^3$ et τ est un vecteur dont les composantes τ_i sont les générateurs de SU(2). Ces générateurs sont des matrices 2×2 s'identifiant aux matrices de Pauli σ_i définies dans l'annexe B. Toutefois, ces générateurs agissent dans le cas de $SU(2)_L$ sur les doublets d'isospin faible alors que les matrices de Pauli agissent sur le spin d'un fermion. Afin d'éviter les confusions, la notation τ est utilisée. L'équation (X.34) est l'analogue directe de l'équation (X.22).

Afin de simplifier les calculs qui suivent, seules les transformations infinitésimales sont considérées. En effet, SU(2) est un groupe non abélien. Cela signifie que deux transformations successives a et b de ce groupe ne donnent pas le même résultat selon que soient appliquées a puis b ou b puis a, c'est-à-dire $ab-ba\neq 0$. Les transformations précédentes sous leurs formes infinitésimales, c'est-à-dire au premier ordre en α , s'expriment

$$\psi \to \left(1 + \frac{\mathrm{i}}{2} \tau \cdot \alpha(x)\right) \psi$$
, $\bar{\psi} \to \bar{\psi} \left(1 - \frac{\mathrm{i}}{2} \tau \cdot \alpha(x)\right)$. (X.35)

Les termes du lagrangien du fermion libre, introduit dans l'équation (X.20), se transforment alors comme

$$-m\bar{\psi}\psi \to -m\bar{\psi}\left(1 - \frac{\mathrm{i}}{2}\boldsymbol{\tau} \cdot \boldsymbol{\alpha}(x)\right)\left(1 + \frac{\mathrm{i}}{2}\boldsymbol{\tau} \cdot \boldsymbol{\alpha}(x)\right)\psi = -m\bar{\psi}\psi + \mathcal{O}(\alpha^2) \tag{X.36}$$

et

$$i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi \to i\bar{\psi}\left(1 - \frac{i}{2}\boldsymbol{\tau}\cdot\boldsymbol{\alpha}(x)\right)\gamma^{\mu}\partial_{\mu}\left(\left(1 + \frac{i}{2}\boldsymbol{\tau}\cdot\boldsymbol{\alpha}(x)\right)\psi\right)$$

$$= i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - \bar{\psi}\frac{1}{2}\boldsymbol{\tau}\cdot\gamma^{\mu}\partial_{\mu}\boldsymbol{\alpha}(x)\psi + \mathcal{O}(\alpha^{2}), \qquad (X.37)$$

ce qui fait apparaître, sur le même principe qu'avec l'interaction électromagnétique, un terme supplémentaire brisant l'invariance de jauge du lagrangien. Une nouvelle dérivée covariante peut être définie afin de rétablir l'invariance de jauge,

$$D_{\mu} = \partial_{\mu} - \frac{\mathrm{i}}{2} g_I \tau \cdot W_{\mu}(x) \,, \tag{X.38}$$

où l'on introduit g_I la constante de couplage d'isospin faible, ainsi que trois champs de jauge vectoriels $W_u^i(x)$, $i \in \{1,2,3\}$ se transformant tels que

$$W_{\mu} \to W_{\mu} + \frac{1}{g_I} \partial_{\mu} \alpha - (\alpha \wedge W_{\mu}).$$
 (X.39)

Dans ce cas, le lagrangien du fermion libre se réécrit sous la forme

$$\mathcal{L}'_{\text{fermion libre}} = i\bar{\psi}\gamma^{\mu}D_{\mu}\psi - m\bar{\psi}\psi = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi + \bar{\psi}\gamma^{\mu}\frac{1}{2}g_{I}\boldsymbol{\tau} \cdot \boldsymbol{W}_{\mu}\psi - m\bar{\psi}\psi$$
$$= \mathcal{L}_{\text{fermion libre}} + \bar{\psi}\gamma^{\mu}\frac{1}{2}g_{I}\boldsymbol{\tau} \cdot \boldsymbol{W}_{\mu}\psi. \tag{X.40}$$

Ainsi, le terme supplémentaire du lagrangien se transforme tel que

$$\bar{\psi}\gamma^{\mu}\frac{1}{2}g_{I}\boldsymbol{\tau}\cdot\boldsymbol{W}_{\mu}\psi\rightarrow\bar{\psi}\left(1-\frac{\mathrm{i}}{2}\boldsymbol{\tau}\cdot\boldsymbol{\alpha}(x)\right)\gamma^{\mu}\frac{g_{I}}{2}\boldsymbol{\tau}\cdot\left(\boldsymbol{W}_{\mu}+\frac{1}{g_{I}}\partial_{\mu}\boldsymbol{\alpha}-(\boldsymbol{\alpha}\wedge\boldsymbol{W}_{\mu})\right)\left(1+\frac{\mathrm{i}}{2}\boldsymbol{\tau}\cdot\boldsymbol{\alpha}(x)\right)\psi$$

$$=\bar{\psi}\gamma^{\mu}\frac{g_{I}}{2}\boldsymbol{\tau}\cdot\boldsymbol{W}_{\mu}\psi-\bar{\psi}\frac{\mathrm{i}}{2}\boldsymbol{\tau}\cdot\boldsymbol{\alpha}(x)\gamma^{\mu}\frac{g_{I}}{2}\boldsymbol{\tau}\cdot\boldsymbol{W}_{\mu}\psi+\bar{\psi}\gamma^{\mu}\frac{g_{I}}{2}\boldsymbol{\tau}\cdot\boldsymbol{W}_{\mu}\frac{\mathrm{i}}{2}\boldsymbol{\tau}\cdot\boldsymbol{\alpha}(x)\psi$$

$$+\bar{\psi}\gamma^{\mu}\frac{1}{2}\boldsymbol{\tau}\cdot\partial_{\mu}\boldsymbol{\alpha}\psi-\bar{\psi}\gamma^{\mu}\frac{g_{I}}{2}\boldsymbol{\tau}\cdot(\boldsymbol{\alpha}\wedge\boldsymbol{W}_{\mu})\psi+\mathcal{O}(\alpha^{2}).$$
(X.41)

Or,

$$(\boldsymbol{\tau} \cdot \boldsymbol{a})(\boldsymbol{\tau} \cdot \boldsymbol{b}) = (\boldsymbol{a} \cdot \boldsymbol{b}) + i\boldsymbol{\tau} \cdot (\boldsymbol{a} \wedge \boldsymbol{b}) \Leftrightarrow \boldsymbol{\tau} \cdot (\boldsymbol{a} \wedge \boldsymbol{b}) = i[(\boldsymbol{a} \cdot \boldsymbol{b}) - (\boldsymbol{\tau} \cdot \boldsymbol{a})(\boldsymbol{\tau} \cdot \boldsymbol{b})]. \tag{X.42}$$

Ainsi,

$$\begin{split} \tau \cdot (\alpha \wedge W_{\mu}) &= \frac{1}{2} \left[\tau \cdot (\alpha \wedge W_{\mu}) - \tau \cdot (W_{\mu} \wedge \alpha) \right] \\ &= \frac{\mathrm{i}}{2} \left[\left[(\alpha \cdot W_{\mu}) - (\tau \cdot \alpha)(\tau \cdot W_{\mu}) \right] - \left[(W_{\mu} \cdot \alpha) - (\tau \cdot W_{\mu})(\tau \cdot \alpha) \right] \right] \\ &= \frac{\mathrm{i}}{2} \left[(\tau \cdot W_{\mu})(\tau \cdot \alpha) - (\tau \cdot \alpha)(\tau \cdot W_{\mu}) \right] \,. \end{split} \tag{X.43}$$

En combinant les équations (X.41) et (X.43), il vient

$$\bar{\psi}\gamma^{\mu}\frac{1}{2}g_{I}\boldsymbol{\tau}\cdot\boldsymbol{W}_{\mu}\psi\rightarrow\bar{\psi}\gamma^{\mu}\frac{g_{I}}{2}\boldsymbol{\tau}\cdot\boldsymbol{W}_{\mu}\psi+\bar{\psi}\gamma^{\mu}\frac{1}{2}\boldsymbol{\tau}\cdot\boldsymbol{\partial}_{\mu}\boldsymbol{\alpha}\psi+\mathcal{O}(\alpha^{2}), \qquad (X.44)$$

où le dernier terme obtenu compense exactement le terme brisant l'invariance de jauge dans l'équation (X.37).

À ce stade, l'analogie avec l'électromagnétisme pousse à introduire $W_{\mu\nu}$ l'analogue à $F_{\mu\nu}$ tel que $W_{\mu\nu} = \partial_{\mu}W_{\nu} - \partial_{\nu}W_{\mu}$. Or, les invariances de jauge imposées mènent à utiliser une définition légèrement différente,

$$W_{uv} = \partial_u W_v - \partial_v W_u + g_I(W_u \wedge W_v). \tag{X.45}$$

Le lagrangien pour SU(2) s'écrit alors

$$\mathcal{L}_{SU(2)} = \bar{\psi}(i\mathcal{D} - m)\psi - \frac{1}{4}W_{\mu\nu} \cdot W^{\mu\nu}. \tag{X.46}$$

Une différence notable et importante vis-à-vis de \mathcal{L}_{QCD} est la non linéarité de $W_{\mu\nu}$ par rapport à W_{μ} et W_{ν} . Cette composante non linéaire ouvre la porte aux interactions directes entre les champs W_u^i , c'est-à-dire entre les bosons, ce qui était impossible avec QED. De nouveaux types de vertex, comme celui de la figure X.5, sont donc possibles dans une théorie de jauge avec une symétrie locale SU(2).

Figure X.5 - Diagramme de Feynman correspondant à l'interaction entre trois bosons.

2.3.3 Symétrie $SU(2)_L \times U(1)_Y$ et unification électrofaible

Dans la notation $U(1)_Y$, Y est l'« hypercharge », reliée à Q la charge électrique et à I_3 la projection de l'isospin faible par la relation de Gell-Mann-Nishijima,

$$Q = I_3 + \frac{Y}{2}, \tag{X.47}$$

dont les résultats pour les différents leptons sont présentés dans le tableau X.2.

Les raisonnements réalisés précédemment peuvent ici être mis à profit. En effet, le cas de $U(1)_{em}$ est traité dans la section 2.2. Il est possible d'obtenir directement les mêmes résultats pour $U(1)_{\gamma}$ en procédant à l'analogie $U(1)_{em} \leftrightarrow U(1)_Y$, avec

$$A_{\mu} \leftrightarrow B_{\mu}, \quad F_{\mu\nu} \leftrightarrow F_{\mu\nu}^{(B)}, \quad e \leftrightarrow g_{Y}, \quad Q \leftrightarrow \frac{1}{2}Y.$$
 (X.48)

De plus, sachant que $SU(2)_L$ couple les fermions de chiralité gauche et les antifermions de chiralité droite, les résultats pour SU(2) sont directement utilisables en ajoutant les projections décrites par les équations (X.31) et (X.32).

La dérivée covariante pour $SU(2)_L \times U(1)_Y$ est ainsi

$$D_{\mu} = \partial_{\mu} - ig_{I}I\boldsymbol{\tau} \cdot \boldsymbol{W}_{\mu} - \frac{i}{2}g_{Y}YB_{\mu}, \qquad (X.49)$$

pouvant agir sur un doublet d'isospin faible, noté *L*, ou un singlet d'isospin faible, noté *R*, selon

$$D_{\mu}L = \left[\partial_{\mu} - \frac{\mathrm{i}}{2}g_{I}\boldsymbol{\tau} \cdot \boldsymbol{W}_{\mu} + \frac{\mathrm{i}}{2}g_{Y}B_{\mu}\right]L, \qquad (X.50)$$

$$D_{\mu}R = \left[\partial_{\mu} + \mathrm{i}g_{Y}B_{\mu}\right]R, \qquad (X.51)$$

Champ	ν_e	e_L	e_R
Υ	-1	-1	-2
I	$\frac{1}{2}$	$\frac{1}{2}$	0
I_3	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$-\frac{1}{2}$	0
Q	0	-1	-1

(X.50) **Tableau X.2** – Valeurs des hypercharges, isospins faibles et charges électriques pour les leptons.

compte-tenu des différentes valeurs de Y et I données dans le tableau X.2.

Le lagrangien invariant sous $SU(2)_L \times U(1)_Y$ de l'interaction électrofaible s'écrit alors

$$\mathcal{L}_{EW} = i\bar{\psi}\mathcal{D}\psi - \frac{1}{4}\mathbf{W}_{\mu\nu} \cdot \mathbf{W}^{\mu\nu} - \frac{1}{4}F_{\mu\nu}^{(B)} \cdot F^{(B)\mu\nu}. \tag{X.52}$$

Attention toutefois, les champs B_{μ} et W_{μ}^{i} ne correspondent pas, respectivement, au photon et aux bosons W^{\pm} et Z. Ces quatre bosons sont en fait des combinaisons de ces quatre champs, ce qui est décrit dans la section 2.4.2.

2.3.4 Interaction électrofaible pour les quarks

Le lagrangien électrofaible ainsi construit pour les leptons pourrait facilement être réutilisé dans le cas des quarks, ψ étant un champ décrivant un fermion. Cependant, le lagrangien de l'équation (X.52) ne couple entre eux que des fermions de même génération. Or, il a été observé expérimentalement que l'interaction faible peut également coupler des quarks de générations différentes.

Un mécanisme rendant possible de tels couplages a été introduit par Cabibbo, Kobayashi et Maskawa [6-8]. Le principe est de faire, pour les quarks, la distinction entre les états propres de masse, c'est-à-dire ceux que l'on observe, et les états propres de l'interaction faible. Ces deux ensembles d'états propres diffèrent ainsi pour les quarks d'isospin faible bas et sont reliés entre eux par la matrice CKM \mathcal{M}_{CKM} , matrice 3×3 unitaire complexe,

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} , \qquad (X.53)$$

où d', s' et b' sont les états propres de l'interaction faible et d, s et b ceux de masse. L'élément de matrice V_{ij} ou son conjugué V_{ij}^* est ainsi un facteur appliqué au vertex pour le calcul de la section efficace des processus impliquant des quarks et l'interaction faible. Ces coefficients ne sont pas prédits par le modèle standard et sont donc mesurés expérimentalement. Les valeurs de leurs modules sont les suivantes [9]

$$|\mathcal{M}_{CKM}| = \begin{pmatrix} 0.97370 \pm 0.00014 & 0.2245 \pm 0.0008 & 0.00382 \pm 0.00024 \\ 0.221 \pm 0.004 & 0.987 \pm 0.011 & 0.0410 \pm 0.0014 \\ 0.0080 \pm 0.0003 & 0.0388 \pm 0.0011 & 1.013 \pm 0.030 \end{pmatrix}. \tag{X.54}$$

Cette matrice a une structure très prononcée, presque diagonale. Le couplage entre les quarks de générations différentes est faible, ce qui se traduit expérimentalement par des durées de vie de certains hadrons contenant des quarks de deuxième ou troisième génération suffisamment longs pour qu'ils se propagent sur quelques millimètres, voire quelques mètres.

Le modèle ainsi construit décrit l'interaction électrofaible pour tous les fermions. Cependant, il n'y a aucun terme de masse dans le lagrangien de l'équation (X.52). En effet, un terme de masse pour les fermions serait de la forme

$$-m\bar{\psi}\psi = -m(\bar{\psi}_R + \bar{\psi}_L)(\psi_R + \psi_L) = -m(\bar{\psi}_R\psi_R + \bar{\psi}_R\psi_L + \bar{\psi}_L\psi_R + \bar{\psi}_L\psi_L) = -m(\bar{\psi}_R\psi_L + \bar{\psi}_L\psi_R). \tag{X.55}$$

Or, ce terme n'est pas invariant sous $SU(2)_L \times U(1)_Y$. Pour les champs W^i_μ et B_μ , des termes de masse violeraient également la symétrie de jauge. Dès lors, il semble difficile pour un tel lagrangien de décrire les forces électromagnétique et faible.

En réalité, ce lagrangien décrit l'interaction « électrofaible ». Les interactions électromagnétique et faible résultent d'un mécanisme de brisure spontanée de symétrie, qui se trouve dans ce cas être le mécanisme de Higgs. La section suivante montre comment l'introduction du champ de Higgs amène cette brisure de symétrie et comment sont obtenus des fermions massifs, le photon et les bosons W^{\pm} et Z.

Mécanisme de Higgs et brisure spontanée de symétrie

Champ de Higgs et brisure de symétrie

Soit un champ complexe, scalaire, massif, le champ de Higgs [10-15], noté ϕ . Il comporte quatre composantes et s'écrit sous la forme d'un doublet d'isospin faible,

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_3 + i\phi_4 \\ \phi_1 + i\phi_2 \end{pmatrix} . \tag{X.56}$$

Le champ de Higgs a pour hypercharge Y = +1 et pour isospin faible $I = \frac{1}{2}$. Il se transforme ainsi, respectivement sous $U(1)_Y$ et $SU(2)_L$, selon

$$\begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \rightarrow \begin{pmatrix} e^{i\frac{\beta}{2}} & 0 \\ 0 & e^{i\frac{\beta}{2}} \end{pmatrix} \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix}, \quad \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \rightarrow e^{\frac{i}{2}\tau \cdot \alpha} \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix}$$
(X.57)

La dérivée covariante définie par l'équation (X.49) agit donc sur le champ de Higgs selon

$$D_{\mu}\phi = \left[\partial_{\mu} - \frac{\mathrm{i}}{2}g_{I}\boldsymbol{\tau} \cdot \boldsymbol{W}_{\mu} - \frac{\mathrm{i}}{2}g_{Y}B_{\mu}\right]\phi, \qquad (X.58)$$

et ce dernier apporte les termes \mathcal{L}_h au lagrangien du modèle standard, où

$$\mathcal{L}_h = (D^{\mu}\phi)^{\dagger}(D_{\mu}\phi) - V(\phi) \tag{X.59}$$

avec

$$V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2, \quad \lambda > 0.$$
 (X.60)

Il est possible de déterminer le comportement de ce champ autour du minimum du potentiel V, c'est-à-dire autour de sa position d'équilibre. Soit v tel que $v^2=\phi_1^2+\phi_2^2+\phi_3^2+\phi_4^2$. Alors, à la position d'équilibre,

$$\begin{cases}
\frac{\partial V}{\partial \phi}\Big|_{\acute{e}q} = 0 \\
\frac{\partial^2 V}{\partial \phi^2}\Big|_{\acute{e}q} \geqslant 0
\end{cases} \Rightarrow
\begin{cases}
\left(2\mu^2 + 4\lambda \frac{v^2}{2}\right) \frac{v}{\sqrt{2}} = 0 \\
2\mu^2 + 12\lambda \frac{v^2}{2} \geqslant 0
\end{cases} \Rightarrow
\begin{cases}
\mu^2 \geqslant 0 \Rightarrow v = 0 \\
\mu^2 < 0 \Rightarrow v^2 = \frac{-\mu^2}{\lambda}
\end{cases} .$$
(X.61)

Ainsi, dans le cas où μ^2 < 0, le potentiel possède une infinité de minimums, situés sur un cercle de rayon $\frac{|v|}{\sqrt{2}}$, comme cela est visible sur la figure X.6. La forme de ce potentiel n'est pas sans rappeler

Le condensat de ce champ dans le vide correspond à la position de ce minimum de potentiel,

$$\langle \phi \rangle_0 = \frac{v}{\sqrt{2}} \neq 0, \tag{X.62}$$

ce qui implique le phénomène de brisure spontanée de symétrie.

Le minimum de potentiel pour V est dégénéré, c'est-à-dire qu'il y a une infinité de points correspondant au minimum de V. Il est possible de briser la symétrie avec n'importe lequel de ces points. Les observables physiques s'obtiennent alors en réalisant un développement limité autour du point choisi. Le choix le plus simple est nommé « jauge unitaire ». Dans ce cas,

$$\phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v + h(x) \end{pmatrix} \tag{X.63}$$

où h correspond à un nouveau champ de Higgs, cette fois-ci physiquement réel.

Figure X.6 – Forme du potentiel du Higgs V selon le signe de μ^2 .

2.4.2 Masses des bosons

Lorsque l'expression (X.63) de ϕ est injectée dans \mathcal{L}_h , le terme cinétique devient

$$(D^{\mu}\phi)^{\dagger}(D_{\mu}\phi) = \frac{1}{2}\partial_{\mu}h\partial^{\mu}h + \frac{(v+h)^{2}}{8}g_{I}^{2}\left(W_{\mu}^{1} + iW_{\mu}^{2}\right)\left(W^{\mu 1} - iW^{\mu 2}\right) + \frac{(v+h)^{2}}{8}\left(g_{I}W_{\mu}^{3} - g_{Y}B_{\mu}\right)\left(g_{I}W^{\mu 3} - g_{Y}B^{\mu}\right) + \mathcal{O}(h^{2}).$$
 (X.64)

Il est possible de développer cette expression et d'identifier les termes quadratiques qui correspondent à des termes de masse pour les bosons physiques, tout en obtenant les combinaisons des champs leur correspondant. Trois bosons massifs sont obtenus, W^+ , W^- et Z,

bosons
$$W^{\pm}$$
: $W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} \left(W_{\mu}^{1} \mp i W_{\mu}^{2} \right)$, $m_{W} = \frac{1}{2} v g_{I}$, (X.65)

boson Z:
$$Z_{\mu} = \frac{g_I W_{\mu}^3 - g_Y B_{\mu}}{\sqrt{g_I^2 + g_Y^2}}, \qquad m_Z = \frac{1}{2} v \sqrt{g_I^2 + g_Y^2}. \tag{X.66}$$

Or, il existe quatre champs quantiques, W^i_{μ} ($i \in \{1,2,3\}$) et B_{μ} . Un quatrième boson peut donc être défini. Il correspond au photon γ , sans masse,

photon
$$\gamma$$
: $A_{\mu} = \frac{g_{Y}W_{\mu}^{3} + g_{I}B_{\mu}}{\sqrt{g_{I}^{2} + g_{Y}^{2}}}, \qquad m_{A} = 0.$ (X.67)

Cette combinaison est fixée par la construction d'une matrice unitaire $\mathcal{M}_{\gamma Z}$ reliant les champs A_{μ} et Z_{μ} à B_{μ} et W_{μ}^3 ,

$$\begin{pmatrix} A_{\mu} \\ Z_{\mu} \end{pmatrix} = \mathcal{M}_{\gamma Z} \begin{pmatrix} B_{\mu} \\ W_{\mu}^{3} \end{pmatrix}, \quad \mathcal{M}_{\gamma Z} = \begin{pmatrix} \cos \theta_{W} & \sin \theta_{W} \\ -\sin \theta_{W} & \cos \theta_{W} \end{pmatrix}$$
 (X.68)

avec θ_W l'angle de mélange faible [16], tel que

$$\cos \theta_W = \frac{g_I}{\sqrt{g_I^2 + g_Y^2}}, \quad \sin \theta_W = \frac{g_Y}{\sqrt{g_I^2 + g_Y^2}}.$$
 (X.69)

Alors, les champs A_{μ} et Z_{μ} s'expriment

photon
$$\gamma$$
: $A_{\mu} = B_{\mu} \cos \theta_W + W_{\mu}^3 \sin \theta_W$, $m_A = 0$, (X.70)

photon
$$\gamma$$
: $A_{\mu} = B_{\mu} \cos \theta_W + W_{\mu}^3 \sin \theta_W$, $m_A = 0$, (X.70)
boson Z : $Z_{\mu} = W_{\mu}^3 \cos \theta_W - B_{\mu} \sin \theta_W$, $m_Z = \frac{m_W}{\cos \theta_W}$. (X.71)

Pour le boson de Higgs lui-même, le terme de masse provient de $V(\phi)$ et donne $m_h = \sqrt{-2\mu^2}$.

Les masses des bosons W^{\pm} , γ et Z ainsi prédites [3] sont expérimentalement confirmées [9, 17-21]. Cependant, la masse du boson de Higgs dépendant de μ , paramètre libre de ce modèle, seule une détermination expérimentale permet de l'obtenir. En 2012, les collaborations ATLAS et CMS ont observé un boson [22-24], confirmé comme étant ce boson de Higgs [25, 26]. Sa masse est déterminée à 125,10 \pm 0,14 GeV [9, 27, 28]. Les désintégrations de h en WW [29], ZZ [30, 31] et $\gamma\gamma$ [32] ont été observées, confirmant les propriétés attendues de h.

2.4.3 Masses des fermions

Le champ de Higgs peut également interagir avec les fermions. Une telle interaction, entre un champ scalaire et un champ de Dirac, est une interaction de Yukawa et permet d'introduire des termes de masse invariants de jauge pour ces fermions.

Avant la brisure de symétrie, les termes de Yukawa pour un champ ψ dont la composante d'isospin faible bas correspond à une particule de masse *m* s'expriment

$$\mathcal{L}_{\text{Yukawa}} = -\frac{m\sqrt{2}}{v}\bar{\psi}\phi\psi = -\frac{m\sqrt{2}}{v}\left(\bar{\psi}_L\phi\psi_R + \bar{\psi}_R\phi^{\dagger}\psi_L\right), \qquad (X.72)$$

donnant, après la brisure spontanée de symétrie précédemment décrite, les termes de masse pour les fermions d'isospin faible bas ainsi que le terme d'interaction entre le fermion et le boson de Higgs h,

$$\mathcal{L}_{\text{Yukawa}} = -m\bar{\psi}\psi + \frac{m}{v}\bar{\psi}h\psi. \tag{X.73}$$

En particulier, l'intensité du couplage entre le fermion et le boson de Higgs est proportionnelle à la masse *m* du fermion.

La brisure de symétrie dans le cas de la jauge unitaire (X.63) laisse la composante d'isospin faible haut du champ de Higgs nulle. Ce formalisme permet donc d'obtenir les termes de masse pour les leptons chargés. Les neutrinos étant considérés dans le lagrangien du modèle standard comme des particules de masses nulles, l'ensemble des leptons est donc traité à ce stade.

Dans le cas des quarks, en revanche, il faut obtenir des termes de masse pour les quarks d'isospin faible haut. Pour cela, il est possible d'introduire le conjugué de charge du champ de Higgs,

$$\phi^{C} = i\sigma_{2}\phi^{*} = \begin{pmatrix} \phi^{*} \\ -\phi^{-} \end{pmatrix} \tag{X.74}$$

dont l'expression devient, après brisure de symétrie dans le cas de la jauge unitaire,

$$\phi^{\mathcal{C}} = \frac{-1}{\sqrt{2}} \begin{pmatrix} v + h(x) \\ 0 \end{pmatrix} . \tag{X.75}$$

Cette fois, la composante d'isospin faible haut du champ de Higgs n'est pas nulle et permet d'obtenir des termes de masse pour les quarks d'isospin faible haut.

Ainsi, les termes de Yukawa pour les fermions s'expriment

$$\mathcal{L}_{\text{Yukawa}} = y\bar{\psi}\phi\psi + \text{h.c.} = \sum_{i=1}^{3} y_{i}^{\ell}\bar{\ell}_{i}\phi\ell_{i} + \sum_{i=1}^{3} y_{i}^{d}\bar{d}_{i}\phi d_{i} + \sum_{i=1}^{3} y_{i}^{u}\bar{u}_{i}\phi^{C}u_{i}, \quad y_{i}^{x} = -\frac{\sqrt{2}}{v}m_{i}^{x}$$
 (X.76)

où « h.c. » signifie conjugué hermitien, i correspond à la génération des fermions, ℓ_i , d_i et u_i aux champs listés dans le tableau X.1 et m_i^x à la masse du fermion de type x et de génération i.

Les désintégrations de h en $b\bar{b}$ [33, 34] et $\tau\tau$ [35, 36] ont été observées, conformément aux couplages attendus. Un excès à 3σ est de plus obtenu sur la désintégration en $\mu\mu$ [37], ce qui est insuffisant pour déclarer une observation mais donne une preuve du couplage aux muons. Enfin, le cas du quark t est particulier. Cette particule est trop massive pour que h se désintègre en $t\bar{t}$, toutefois la production de h en association avec une paire de quarks t a été observée [38] et ces résultats sont en accord avec les prédictions du modèle standard.

2.5 Interaction forte

2.5.1 Charge de couleur

L'interaction forte est la troisième force fondamentale décrite par le modèle standard. L'analogue de la charge électrique pour l'interaction électromagnétique est, dans le cas de l'interaction forte, la « couleur », concept né de l'observation des baryons Δ^{++} , Δ^- [39-41] et Ω^- [42]. Dans le modèle des quarks, ces baryons sont composés comme

$$\Delta^{++} = (uuu), \quad \Delta^{-} = (ddd), \quad \Omega^{-} = (sss).$$
 (X.77)

Or, ces baryons sont de spin $\frac{3}{2}$. Les quarks possédant un spin $\frac{1}{2}$, il faudrait alors que pour chacun de ces baryons, les trois quarks les composant aient leurs nombres quantiques égaux, ce qui va à l'encontre du principe de Pauli.

Il est possible de décrire ces baryons sans violer le principe d'exclusion de Pauli en introduisant un nouveau nombre quantique, la couleur. Les quarks portent ainsi une charge de couleur pouvant prendre trois valeurs orthogonales, nommées par convention rouge, verte et bleue. Les antiquarks portent une anticouleur. Chacun des trois quarks des baryons porte alors une couleur différente, c'est-à-dire

$$\Delta^{++} = (uuu), \quad \Delta^{-} = (ddd), \quad \Omega^{-} = (sss). \tag{X.78}$$

Les baryons ainsi formés portent une charge de couleur globale nulle, ils sont « blancs », comme cela est visible sur la figure X.7a. Dans le cas des antibaryons formés de trois antiquarks, sur la figure X.7b, c'est l'association des trois anticouleurs qui permet d'obtenir un baryon blanc. Il est également possible de former une particule composite blanche par association d'un quark avec un antiquark portant l'anticouleur correspondante. Les trois combinaisons possibles sont illustrées sur la figure X.7c. Il s'agit alors de mésons.

(a) *Un baryon est constitué de trois quarks, un de chaque couleur.*

(b) Un antibaryon est constitué de trois antiquarks, un de chaque anticouleur.

(c) Un méson est constitué d'un quark et d'un antiquark de l'anticouleur correspondante.

Figure X.7 – Combinaisons des couleurs des quarks dans les hadrons. La couleur globale est toujours blanche, c'est-à-dire que la charge de couleur globale est nulle.

Les quarks et antiquarks se regroupent ainsi en particules composites, les hadrons (baryons et mésons), dont la neutralité de couleur est confirmée expérimentalement. Ce phénomène est connu sous le nom de « confinement de couleur » et est abordé dans la section 2.5.3.

2.5.2 Symétrie $SU(3)_C$

Afin de décrire l'interaction forte dans le même formalisme que les autres interactions fondamentales, il faut un groupe de symétrie. Étant donné qu'il existe trois dimensions de couleur (rouge, verte, bleue), la théorie quantique des champs associée à l'interaction forte se base sur le groupe $SU(3)_C$, où C signifie « couleur ».

Tout comme SU(2), SU(3) est un groupe non abélien. Il est possible de reprendre exactement les mêmes calculs que ceux de la section 2.3.2, en procédant aux changements

$$au \in \mathcal{M}_2(\mathbb{C})^3 \leftrightarrow \lambda \in \mathcal{M}_3(\mathbb{C})^8$$
, $\alpha \in \mathbb{R}^3 \leftrightarrow \theta \in \mathbb{R}^8$, $g_I \leftrightarrow \alpha_s$, $W_\mu \leftrightarrow G_\mu$, $W_{\mu\nu} \leftrightarrow G_{\mu\nu}$ (X.79)

où λ est un vecteur à huit composantes, chacune étant une matrice de Gell-Mann, définies dans l'annexe B, G_{μ} décrit donc huit gluons, bosons vecteurs de l'interaction forte et α_s est la constante de couplage de l'interaction forte.

Les gluons portent une couleur et une anticouleur. Lors de chaque interaction, la charge de couleur est conservée, ainsi un quark rouge interagissant avec un gluon bleu-antirouge devient un quark bleu. Le flux de couleur ainsi conservé dans cet exemple est représenté sur la figure X.8.

- (a) Diagramme de Feynman de l'interaction.
- **(b)** Représentation du flux de couleur conservé.

Figure X.8 – *Interaction entre un quark rouge et un gluon bleu-antirouge, donnant un quark bleu.*

Figure X.9 – Diagrammes de Feynman correspondant à l'interaction entre trois et quatre gluons.

Le terme non linéaire $G_{\mu} \wedge G_{\nu}$ dans l'expression de $G_{\mu\nu}$, obtenue à partir de l'analogie (X.79) appliquée à l'équation (X.45), est lourd de conséquences. Il permet le couplage entre trois et quatre gluons, comme cela est illustré sur la figure X.9, et donne à l'interaction forte toute sa singularité. En effet, ce terme est responsable du confinement de couleur et de l'initiation de la gerbe partonique qui donne naissance aux jets, discutés dans la section 2.6. Ce phénomène n'est pas présent dans le cas de l'interaction faible à cause de la brisure spontanée de symétrie donnant des bosons W et Z massifs.

2.5.3 Confinement de couleur et liberté asymptotique

Le confinement de couleur force les quarks, particules colorées, à s'associer en formant des particules composites, les hadrons, états liés de charge globale de couleur nulle. Ce phénomène empirique peut s'expliquer par la variation en fonction de l'échelle d'énergie de la constante de couplage de l'interaction forte α_s , représentée sur la figure X.10.

Aux basses énergies, α_s diverge. Ainsi, séparer et isoler des particules colorées mène à une énergie potentielle de couleur suffisamment grande pour créer des paires quark-antiquark. Lorsqu'un quark est issu d'une collision en physique des particules, ce processus se réalise et produit un ensemble collimé de particules, un jet.

De plus, à cause de la valeur élevée de α_s aux basses énergies, il n'est pas possible de réaliser des calculs perturbatifs usuels en théorie quantique des champs. D'autres techniques sont toutefois utilisées, comme la méthode de QCD sur réseau. Son principe est de discrétiser l'espace-temps en un réseau de points. Bien que cette méthode requière d'importantes capacités de calcul et beaucoup de temps, elle permet d'obtenir avec succès les masses des hadrons comme cela se voit sur la figure X.11 pour les hadrons légers.

Les valeurs de α_s à deux échelles d'énergie k et μ sont reliées par la relation

$$\alpha_s(k) = \frac{\alpha_s(\mu)}{1 + \frac{11n_c - 2n_f}{12\pi} \alpha_s(\mu) \ln(\frac{k^2}{\mu^2})}$$
 (X.80)

Figure X.10 – Mesures de α_s en fonction de l'échelle d'énergie k (points) et prédiction théorique (courbe) [9]. Le degré des calculs perturbatifs de QCD utilisés pour extraire α_s est indiqué entre parenthèses (NLO : next-to-leading order, c'est-à-dire jusqu'à l'ordre suivant le premier degré non nul; NNLO : un ordre de plus que NLO; etc.).

Figure X.11 – Spectre de masse des hadrons légers [43]. Les lignes horizontales ainsi que les zones grisées sont les valeurs expérimentales et les largeurs de désintégration. Les résultats obtenus en utilisant des calculs de QCD sur réseau sont représentés par des cercles, avec les erreurs associées. Seules les masses des hadrons π , K et Ξ ne présentent pas de barres d'erreurs, celles-ci sont utilisées pour fixer les paramètres libres du modèle.

avec n_c le nombre de couleurs et n_f le nombre de saveurs de quarks, c'est-à-dire $n_c=3$ et $n_f=6$ [44]. Cette relation peut ainsi se réécrire, en prenant $\mu=\Lambda_{\rm OCD}$ l'échelle d'énergie à laquelle α_s diverge,

$$\alpha_s(k) = \frac{6\pi}{21 \ln\left(\frac{k}{\Lambda_{\rm QCD}}\right)}, \quad \Lambda_{\rm QCD} = 218 \pm 24 \,\mathrm{MeV}.$$
 (X.81)

Il ressort que α_s décroît lorsque l'échelle d'énergie augmente. Cette diminution de α_s aux hautes énergies est la « liberté asymptotique » [45, 46], régime dans lequel les particules colorées ne sont plus confinées et peuvent se propager comme des particules libres. Au LHC, les énergies de collision permettent d'atteindre ce régime.

2.6 Formation des jets

Lorsqu'un parton (quark ou gluon) est issu d'une collision de particules, il possède une haute énergie et émet alors, par interaction forte, d'autres partons. La « gerbe partonique », sujet de la prochaine section, est ainsi créée. Par conservation, l'énergie portée individuellement par chaque parton

de cette gerbe diminue au fur et à mesure des nouvelles émissions de partons et par conséquent, α_s augmente. Tant que l'échelle d'énergie est suffisamment grande pour que $\alpha_s \ll 1$, ce qui correspond à des énergies supérieures à la centaine de MeV, il est possible de réaliser des calculs perturbatifs. En deçà d'une centaine de MeV, ce n'est plus possible. Des modèles paramétriques sont alors utilisés pour caractériser le phénomène d'« hadronisation ».

2.6.1 Gerbe partonique

Chaque parton issu d'une collision au LHC se trouve dans un premier temps dans le régime de liberté asymptotique. Ainsi, pour un événement $Z \to q\bar{q}$ comme celui de la figure X.12a avec deux quarks dans l'état final, il est possible d'obtenir par émission d'un gluon un état $q\bar{q}g$ comme ceux illustrés sur les figures X.12b et X.12c, par exemple.

Figure X.12 – Un boson Z se désintègre en paire quark-antiquark. Dans les cas des figures X.12b et X.12c, un gluon supplémentaire est émis.

Il est légitime de se demander quelle est la probabilité d'obtenir un état $q\bar{q}g$ à partir d'un état $q\bar{q}$. Des calculs de section efficace permettent d'obtenir [44], pour un état initial contenant X partons dont i qui émet j, donnant un état final à X + 1 partons,

$$d\sigma_{X+j} \simeq \sigma_X \sum_{i \in \{X\}} \frac{\alpha_s}{2\pi} \frac{d\theta^2}{\theta^2} dz P_{ij}(z)$$
 (X.82)

où θ est l'angle entre j et i. La grandeur $P_{ij}(z)$ est la probabilité que j émis par i emporte une fraction z de l'énergie initiale de i, qui s'exprime en fonction de la nature de i et j (quark ou gluon) selon

$$P_{qq}(z) = C_F \frac{1+z^2}{1-z}, P_{qg}(z) = C_F \frac{1+(1-z)^2}{z}, (X.83)$$

$$P_{gg}(z) = C_A \frac{z^4+1+(1-z)^4}{z(1-z)}, P_{gq}(z) = T_R(z^2+(1-z)^2), (X.84)$$

$$P_{gg}(z) = C_A \frac{z^4 + 1 + (1 - z)^4}{z(1 - z)},$$
 $P_{gq}(z) = T_R(z^2 + (1 - z)^2),$ (X.84)

et $P_{g\bar{q}}(z) = P_{gq}(z)$, avec $C_F = \frac{4}{3}$, $C_A = 3$ et $T_R = \frac{1}{2}$. La probabilité d'émettre un parton supplémentaire diverge dans deux cas:

- le parton émis a une énergie faible devant celle du parton émetteur, c'est la limite infrarouge;
- l'angle entre le parton émis et le parton émetteur est petit, c'est la limite colinéaire.

Les nouveaux partons ainsi émis et les partons initiaux continuent chacun ces processus jusqu'à ce que le phénomène de confinement de couleur réapparaisse. Pour chaque parton directement issu de la collision ayant lieu au vertex primaire (PV), une gerbe partonique est formée, c'est-à-dire un ensemble collimé de partons, comme illustré sur la figure X.13. Ce sont ces particules qui vont participer au phénomène d'hadronisation dû au confinement de couleur.

2.6.2 Hadronisation

Lorsque des partons en émettent d'autres, la conservation de l'énergie implique que chaque particule possède individuellement une énergie de plus en plus petite. Or α_s augmente lorsque l'échelle d'énergie diminue et en-deçà de quelques centaines de MeV, α_s diverge. Le phénomène de confinement de couleur réapparaît et la gerbe partonique subit alors un phénomène d'hadronisation. Un flux collimé de hadrons est obtenu. Certains d'entre eux peuvent comporter des quarks de deuxième

(a) Deux quarks sont initialement produits, ce qui correspond au diagramme de la figure X.12a.

(b) *Un des quarks peut émettre un* gluon, ce qui correspond au diagramme de la figure X.12c.

(c) Le processus est réitéré, donnant un ensemble de particules colorées.

Figure X.13 – Formation de deux gerbes partoniques à partir d'une paire de quarks formée au vertex primaire (PV).

ou troisième génération. Ces hadrons sont alors instables et peuvent être amenés à se désintégrer. Dans ce cas, leurs produits de désintégration sont observés dans le détecteur.

Le phénomène d'hadronisation ayant lieu lorsque $\alpha_s \gtrsim 1$, il n'est pas possible de réaliser des calculs perturbatifs. Afin de décrire ce phénomène, il faut avoir recours à des modèles paramétriques comme le modèle d'agglomération hadronique [47] ou le modèle des cordes de Lund [48].

Agglomération hadronique Ce modèle [47] repose sur l'hypothèse de conservation des nombres quantiques ainsi que de l'énergie-impulsion entre les partons issus de la gerbe partonique et les hadrons obtenus après hadronisation.

Dans un premier temps, les gluons de la gerbe partonique se désintègrent en paires qq. Les partons, uniquement des quarks à ce stade donc, se rassemblent dans un second temps en agglomérats de charge de couleur nulle, c'est le « pré-confinement ». Deux cas de figure se présentent alors pour chaque agglomérat:

- si la masse de l'agglomérat est proche de celle d'un hadron, il produit ce hadron;
- sinon, il se désintègre en agrégats plus petits et forme plusieurs hadrons.

Ce processus est illustré sur la figure X.14.

Figure X.14 – Schématisation de l'hadronisation dans le cadre du modèle d'agglomération hadronique.

Cordes de Lund Dans le modèle des cordes de Lund [48], les quarks sont reliés en paires $q\bar{q}$ par des « cordes » de couleur, de tension $\kappa \simeq 1 \, \text{GeV} \cdot \text{fm}^{-1}$, comme sur la figure X.15b. Les gluons sont décrits comme des nœuds des cordes de couleur.

Lorsque deux charges colorées s'éloignent, l'énergie potentielle augmente. Une fois que l'énergie potentielle est suffisamment grande, une nouvelle paire $q'\bar{q}'$ est créée (fig. X.15c) avec une probabilité proportionnelle à $\exp\left(-\frac{\pi}{\kappa}m_{q'}\right)$. La probabilité d'obtenir des quarks lourds par ce processus est donc très faible. Le partage de l'énergie entre les paires de quarks est régi par une fonction de partition dont les paramètres sont estimés expérimentalement.

2.6.3 Parton initial et caractéristiques du jet

Un jet présente certaines caractéristiques suivant le type de parton à son origine. Le parton n'est pas visible expérimentalement, mais les caractéristiques du jet obtenu permettent d'en estimer la

- (a) Les deux quarks issus de la collision se séparent à grande vitesse.
- **(b)** *Une* « *corde* » *de flux de couleur* se forme entre les deux quarks.
- (c) L'énergie potentielle de la corde est suffisamment grande pour former de nouvelles paires de quarks.

- (d) Le processus se répète tant qu'il y a suffisamment d'énergie pour générer une paire de quarks.
- (e) Des hadrons non colorés sont formés à partir des quarks de basse énergie.

Figure X.15 – Processus de formation de deux jets dans le cadre du modèle des cordes de Lund.

saveur, comme exposé au chapitre 2.

Le quark *t* possède une durée de vie trop courte pour participer à l'hadronisation. Il se désintègre par interaction faible en un autre quark, généralement un quark b, et un boson W. Le nouveau quark issu de cette désintégration forme alors un jet.

Les autres quarks (d, u, s, c et b) participent à l'hadronisation. Ils se retrouvent donc confinés au sein des hadrons qui en résultent. Ceux-ci sont éventuellement instables.

Le quark b forme un hadron instable qui donne d'autres hadrons lors de la désintégration du quark b en quark c ou u par interaction faible. Dans 70 % des cas, cette désintégration se fait avec émission d'une nouvelle paire de quarks qq̄ selon

$$b \to c q_d \bar{q}_d$$
, $\bar{b} \to \bar{c} q_u \bar{q}_u$, $b \to u q_d \bar{q}_d$, $\bar{b} \to \bar{u} q_u \bar{q}_u$, (X.85)

où q_d et q_u désignent respectivement des quarks d'isospin faible bas et haut. Le nombre de constituants du jet, ainsi que le nombre de traces provenant d'un vertex secondaire (SV), est alors plus important. Dans 30 % des cas, la désintégration du quark b se fait avec émission d'une paire de leptons, l'un étant électriquement chargé et l'autre correspondant au neutrino associé, c'est-à-dire

$$b \to c \, \ell^- \bar{\nu}_\ell$$
, $\bar{b} \to \bar{c} \, \ell^+ \nu_\ell$, $b \to u \, \ell^- \bar{\nu}_\ell$, $\bar{b} \to \bar{u} \, \ell^+ \nu_\ell$. (X.86)

Un lepton chargé au sein d'un jet donne une signature caractéristique de la présence d'un quark b lors des collisions proton-proton du LHC.

Les désintégrations (X.85) font intervenir les modules des coefficients V_{cb} ou V_{ub} de la matrice CKM, introduite dans la section 2.3.4, dont les valeurs sont faibles; elles sont donc fortement supprimées. Les hadrons contenant un quark b ont ainsi une durée de vie de l'ordre de la picoseconde [49, 50] et peuvent voyager sur une distance de l'ordre du millimètre. Les traces des particules chargées issues de cette nouvelle désintégration proviennent donc d'un vertex secondaire (SV), différent du vertex primaire (PV). Ces traces sont « déplacées ». Pour chacune d'entre elles, il est possible de déterminer le paramètre d'impact (IP) au vertex primaire, dont la valeur est typiquement plus grande que pour des traces provenant du vertex primaire, comme cela est illustré sur la figure X.16.

Le quark c possède une phénoménologie similaire au quark b. Cependant, la désintégration du quark c en quark s selon

$$c \to s q_u \bar{q}_u, \quad \bar{c} \to \bar{s} q_d \bar{q}_d, \quad c \to s \ell^+ \nu_\ell, \quad \bar{c} \to \bar{s} \ell^- \bar{\nu}_\ell,$$
 (X.87)

fait intervenir le module du coefficient V_{cs} de la matrice CKM, proche de 1. Les hadrons contenant un quark c ont ainsi une durée de vie inférieure à la picoseconde [50] et il est donc plus difficile d'identifier les jets issus de quarks *c* que ceux issus de quarks *b*.

Figure X.16 – Trois jets, dont un de saveur lourde. Les particules composant ce jet proviennent d'un vertex secondaire (SV), différent du vertex primaire (PV) où a lieu la collision entre les protons et la formation du hadron lourd à l'origine du SV. Le paramètre d'impact (IP) est également indiqué. Réalisé à l'aide de CMSTransverseTikZ [51].

Les quarks d, u et s forment des hadrons :

- très instables, par exemple les π^0 , dont seuls les produits de désintégration sont observés;
- faiblement instables, tels que les K^+ et les K^0 , qui se propagent généralement jusque dans les parties sensibles du détecteur et peuvent donc être observés directement;
- stables, par exemple les protons, qui sont directement observés dans le détecteur.

Dans tous les cas, des traces de particules chargées proviennent du PV, lieu de formation du quark initial. Certains hadrons neutres tels que les Λ^0 ou les K^0 peuvent se désintégrer en particules chargées au sein du trajectographe, mais le nombre de traces déplacées reste limité. Le phénomène décrit précédemment pour les quarks b et c n'est donc pas observable. Les jets issus de ces trois types de quarks, les plus légers, sont ainsi regroupés sous la dénomination de « jets légers ».

Les gluons portent une charge de couleur plus importante que les quarks. Les quarks portent en effet une couleur, les antiquarks une anticouleur et les gluons portent une couleur et une anticouleur. Les jets initiés par des gluons comportent typiquement plus de particules électriquement chargées et sont moins collimés que les jets légers [52].

Succès et limites du modèle standard

3.1 Succès

Le modèle standard a été conçu il y a plus de 50 ans et a évolué avec les nouvelles observations expérimentales. Ses succès sont nombreux, notamment de par son pouvoir prédictif. L'existence de bosons massifs W et Z est ainsi prédite dès la fin des années 60 [3] et leur observation est confirmée expérimentalement en 1983 [17-21]. De même, le quark top postulé en 1973 [6] est observé 22 ans plus tard [53, 54]. Dernier tour de force en date, le boson de Higgs, prédit en 1964 [10-13], est découvert en 2012 [22, 23].

Le lagrangien du modèle standard s'écrit à ce jour sous la forme

$$\mathcal{L}_{SM} = \underbrace{-\frac{1}{4}\mathcal{F}_{\mu\nu}\mathcal{F}^{\mu\nu}}_{\text{bosons}} + \underbrace{i\bar{\psi}\mathcal{D}\psi}_{\text{fermions et}} + \underbrace{(D^{\mu}\phi)^{\dagger}(D_{\mu}\phi) - V(\phi)}_{\text{boson de Higgs et}} + \underbrace{(y\bar{\psi}\phi\psi + \text{h.c.})}_{\text{termes de Yukawa}}$$
(X.88)

où « h.c. » signifie conjugué hermitien. Dans cette forme simplifiée sont compris de nombreux termes,

car

$$\mathcal{F}_{\mu\nu}\mathcal{F}^{\mu\nu} = G_{\mu\nu} \cdot G^{\mu\nu} + W_{\mu\nu} \cdot W^{\mu\nu} + F_{\mu\nu}^{(B)} F^{(B)\mu\nu}, \qquad (X.89)$$

$$\mathcal{D} = \gamma^{\mu} D_{\mu} = \gamma^{\mu} \left[\partial_{\mu} - i g_{I} I \boldsymbol{\tau} \cdot \boldsymbol{W}_{\mu} - i g_{Y} \frac{Y}{2} B_{\mu} - i \alpha_{s} \frac{C}{2} \boldsymbol{\lambda} \cdot \boldsymbol{G}_{\mu} \right], \qquad (X.90)$$

$$V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2. \tag{X.91}$$

Le modèle standard ainsi construit permet d'expliquer la plupart des phénomènes observés avec une grande précision. Cependant, il comporte certaines lacunes discutées dans la section suivante.

3.2 Limites

Certaines observations présentées de manière non exhaustive ci-après laissent à penser que le modèle standard est une théorie effective à basse énergie et qu'il existe une autre plus fondamentale permettant de les expliquer.

Nombre de générations Le modèle standard ne permet pas de prédire le nombre de générations, aujourd'hui égal à trois. Ainsi, il est tout à fait possible qu'il existe une quatrième génération de fermions (quarks t' et b', leptons τ' et ν_{τ}'). Seule contrainte connue à ce jour, les mesures sur la largeur du Z impliquent que seulement trois générations peuvent présenter des neutrinos de masse inférieure à $\frac{1}{2}m_Z$ [55]. Il faudrait ainsi nécessairement $\nu_{\tau}' > \frac{1}{2}m_Z$. Mesurer avec précision les paramètres de la matrice CKM permet de tester la présence d'une génération supplémentaire de fermions, cette matrice devant être unitaire.

Masse des neutrinos Dans le lagrangien du modèle standard (X.88), il n'existe pas de terme de masse pour les neutrinos. Or, des oscillations entre saveurs de neutrinos ont été observées [56, 57]. Celles-ci impliquent, d'une part, que les neutrinos possèdent en réalité une masse et, d'autre part, que les états propres de l'interaction faible ne sont pas les états propres de masse des neutrinos.

Les états propres de l'interaction faible des neutrinos peuvent être reliés à leurs états propres de masse à l'aide de la matrice PMNS [58], pour Pontecorvo, Maki, Nakagawa et Sakata, analogue à la matrice CKM introduite dans la section 2.3.4. Dans ce cas,

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{\mu 2} & U_{\tau 3} \\ U_{e1} & U_{\mu 2} & U_{\tau 3} \\ U_{e1} & U_{\mu 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} , \qquad (X.92)$$

où v_e , v_μ et v_τ sont les états propres de l'interaction faible et v_1 , v_2 et v_3 ceux de masse. La masse des neutrinos peut être obtenue par deux extensions différentes du modèle standard.

La première consiste à introduire directement des neutrinos de chiralité droite. Des telles particules, par construction, n'interagissent ni par interaction forte (pas de charge de couleur), ni par interaction électromagnétique (pas de charge électrique), ni par interaction faible (particules de chiralité droite). Plusieurs hypothèses, comme le mécanisme de Seesaw [59-63], sont avancées afin de décrire de tels neutrinos stériles. Il n'existe à ce jour aucun résultat expérimental permettant de conclure sur la validité de ces hypothèses.

La seconde revient à considérer que les neutrinos sont des particules de Majorana, c'est-à-dire qu'ils sont leurs propres antiparticules [64, 65]. Dans ce cas, les antineutrinos sont des neutrinos. Des neutrinos de chiralité droite sont ainsi naturellement introduits, rendant possible le terme de masse dans le lagrangien. Cependant, des neutrinos de Majorana peuvent violer la conservation du nombre de leptons lors de certains processus physiques. En particulier, la double désintégration β sans neutrinos [66, 67] est alors possible, mais ce phénomène n'a pas été observé.

Ajustement fin Les couplages du boson de Higgs aux particules rendent possible l'existence des diagrammes de la figure X.17. Le calcul de la masse du boson de Higgs doit les prendre en compte.

Figure X.17 – Diagrammes de Feynman des contributions aux corrections radiatives à la masse du boson de Higgs.

Dans ce cas, la masse effective du boson de Higgs m_h s'exprime à partir de la masse « nue » m_{h0} à laquelle sont apportées des corrections [68] :

du top, figure X.17a
$$-\frac{3}{8\pi^2}y_t^2\Lambda^2 \sim -(2\,\mathrm{TeV})^2 \qquad (X.93)$$
 des bosons vecteurs, figure X.17b
$$+\frac{1}{16\pi^2}g^2\Lambda^2 \sim +(0.7\,\mathrm{TeV})^2 \qquad (X.94)$$
 du Higgs, figure X.17c
$$+\frac{1}{16\pi^2}\lambda^2\Lambda^2 \sim +(0.5\,\mathrm{TeV})^2 \qquad (X.95)$$

où y_t^2 est la constante de couplage de Yukawa du quark top défini équation (X.76), g la constante de couplage de l'interaction associée au boson vecteur considéré, λ le paramètre du terme quadratique du potentiel de Higgs (X.60) et Λ l'échelle d'énergie de la « nouvelle physique », c'est-à-dire l'échelle d'énergie où le modèle standard n'est plus valable.

La masse du boson de Higgs s'exprime alors

$$m_h^2 = m_{h0}^2 - \frac{3}{8\pi^2} y_t^2 \Lambda^2 + \frac{1}{16\pi^2} g^2 \Lambda^2 + \frac{1}{16\pi^2} \lambda^2 \Lambda^2 + \dots$$
 (X.96)

Le boson de Higgs a été observé avec une masse de $125,10\pm0,14\,\text{GeV}$. Or, les corrections précédentes sont de l'ordre du TeV. De plus, si d'autres particules plus massives existent, les corrections supplémentaires sont une à une encore plus importantes mais doivent toujours donner une masse de $125\,\text{GeV}$. Les paramètres dont toutes ces corrections dépendent doivent alors être ajustés au moins jusqu'à la 32^e décimale, ce qui semble peu naturel. Une théorie qui ne nécessite pas un tel ajustement est préférable.

Nombre de paramètres libres Le modèle standard tel que décrit dans la section 2 comporte 19 paramètres libres, listés dans le tableau X.3. Une théorie en comportant moins propose plus de prédictions, sur la masse des particules par exemple, ce qui permet de réaliser plus de comparaisons aux données expérimentales. Parmi ces 19 paramètres libres, 15 (les masses des 6 quarks et des 3 leptons chargés, la masse du Higgs, son condensat dans le vide et les quatre paramètres de la matrice CKM) sont reliés au boson de Higgs. C'est pourquoi l'étude du boson de Higgs est un enjeu majeur en physique des particules.

L'introduction de neutrinos massifs, précédemment évoquée, apporte trois nouveaux paramètres libres, les masses des trois neutrinos. De plus, la matrice PMNS permettant de décrire leurs oscillations demande quatre paramètres libres, analogues aux quatre paramètres reliés à la matrice CKM dans le tableau X.3. Il y a donc potentiellement 26 paramètres libres pour un modèle standard incluant les neutrinos massifs.

Gravitation Le modèle standard ne propose aucune description de la gravitation. La relativité générale permet de décrire la gravitation à l'échelle macroscopique avec succès, mais cette théorie n'est pas applicable avec la mécanique quantique. En l'état actuel, l'ajout de la gravitation au modèle standard introduit des infinis qui le rendent non renormalisable. Le modèle standard est donc valide uniquement pour des échelles où la gravitation est négligeable face aux autres interactions (électromagnétique, faible et forte). C'est le cas dans les expériences de physique des particules; aucune d'entre elles n'a observé d'effet gravitationnel dans ses résultats. Toutefois, le modèle standard ne peut pas être une théorie décrivant complètement l'Univers sans prendre en compte la gravitation.

Grandeur	Symbole	Valeur	
Masse du quark up	m_u	$2,16^{+0,49}_{-0,26}$	MeV
Masse du quark down	m_d	$4,67_{-0.17}^{+0.48}$	MeV
Masse du quark strange	m_s	93^{+11}_{-5}	MeV
Masse du quark charm	m_c	$1,27^{+0,02}_{-0,035}$	GeV
Masse du quark bottom	m_b	$4,18_{-0.02}^{+0.03}$	GeV
Masse du quark top	m_t	$172,76 \pm 0,30$	GeV
Masse de l'électron	m_e	$0,5109989461\pm0,0000000031$	MeV
Masse du muon	m_{μ}	$105,\!6583745\pm0,\!0000024$	MeV
Masse du tau	$m_{ au}$	$1776,86 \pm 0,12$	MeV
Angle de mélange CKM I-II	$ heta_{12}$	$13,091 \pm 0,028$	0
Angle de mélange CKM II-III	θ_{23}	$2,323^{+0,048}_{-0.035}$	0
Angle de mélange CKM I-III	$ heta_{13}$	$0,2068^{+0,0063}_{-0,0052}$	0
Phase de violation <i>CP</i> CKM	$\delta_{ m CKM}$	68,53 ^{+2,58} _{-2,46}	0
Phase de violation <i>CP</i> forte	$\theta_{ m QCD}$	$< 10^{-10}$	
Constante de couplage $U(1)_Y$	gy	0.34970 ± 0.00019	
Constante de couplage $SU(2)_L$	g_I	$0,65295 \pm 0,00012$	
Constante de couplage $SU(3)_C$	α_s	$0,1179 \pm 0,0010$	
Condensat du champ de Higgs	v	$246 \pm 6 \times 10^{-5}$	GeV
Masse du boson de Higgs	m_h	$125,10 \pm 0,14$	GeV

Tableau X.3 – Valeurs expérimentales des 19 paramètres libres du modèle standard [9].

Matière noire et énergie noire La matière noire est, par hypothèse, de la matière interagissant gravitationnellement mais pas électromagnétiquement. Son existence est postulée suite à l'observation des galaxies, dont les courbes de vitesses de rotation ne peuvent être expliquées à ce jour avec la relativité générale et la matière ordinaire seulement. Des effets de lentille gravitationnelle vont également en ce sens [69]. Le modèle standard ne propose aucun candidat pour la matière noire. D'autres observations cosmologiques montrent que l'expansion de l'Univers s'accélère. Cette accélération implique l'existence d'une énergie, l'énergie noire, inexpliquée par le modèle standard. Les mesures cosmologiques [70] indiquent que l'Univers est ainsi composé de 68 % d'énergie noire et 27 % de matière noire. Le modèle standard ne décrit donc que 5 % du contenu de l'Univers.

Asymétrie matière-antimatière Pour chaque particule de matière, il existe une antiparticule, dont les nombres quantiques sont opposés. Or, l'Univers est composé presque exclusivement de matière. La force électrofaible propose un mécanisme violant la symétrie *CP* pouvant mener à une asymétrie entre matière et antimatière, lié à la phase complexe de la matrice CKM, δ_{CKM} . Cependant, cet effet est trop faible pour expliquer à lui seul l'asymétrie effectivement observée.

Au-delà du modèle standard

Le modèle standard souffre ainsi de lacunes malgré ses prédictions précises. Des modèles sont développés afin de les combler, ils sont dits « au-delà » du modèle standard (BSM, Beyond Standard Model). Un de ces modèles BSM est la supersymétrie (SUSY). La section 4.1 présente la SUSY et motive l'introduction d'un second doublet de Higgs. La SUSY est en effet un cas particulier de modèle à deux doublets de Higgs (2HDM, 2 Higgs Doublets Model). Les 2HDM sont abordés dans la section 4.2. Puis, le modèle le plus simple de SUSY, l'extension supersymétrique minimale du modèle standard (MSSM, Minimal Supersymmetric extension of Standard Model), est présenté section 4.3.

4.1 Supersymétrie

La supersymétrie (SUSY) [71-73] introduit une nouvelle symétrie entre fermions et bosons. Ces deux types de particules ne sont plus indépendants, ce sont des saveurs, ou manifestations, d'un champ quantique plus complexe. Du fait de cette symétrie, à chaque particule du modèle standard correspond une nouvelle particule ou « superpartenaire ». Les fermions du modèle standard ont des superpartenaires de spin entier, c'est-à-dire des bosons, les « sfermions ». Les bosons du modèle standard ont des superpartenaires de spin demi-entier, c'est-à-dire des fermions, les « bosinos ». Une particule et son superpartenaire ont les mêmes nombres quantiques à l'exception de leurs spins.

De nouvelles interactions sont possibles, dans lesquelles les nombres baryonique B et leptonique L ne sont pas conservés et B-L non plus. Le proton est alors instable, ce qui n'est pas observé expérimentalement. Une nouvelle symétrie est ainsi introduite afin de restaurer la conservation de B-L, la parité R. L'opérateur de parité R est défini comme

$$P_R = (-1)^{3(B-L)-2s} (X.97)$$

où *s* correspond au spin de la particule. La parité *R* est égale à 1 pour les particules du modèle standard, —1 pour leurs superpartenaires. La conservation de cette nouvelle parité permet non seulement de garder le proton stable, mais rend également stable la particule supersymétrique de plus basse masse, notée LSP (*Lightest Supersymmetric Particle*).

La SUSY permet de résoudre de nombreuses lacunes du modèle standard. Elle permet par exemple d'unifier trois forces fondamentales (électromagnétique, faible et forte). Dans la section 2.3, l'unification des forces électromagnétique et faible est déjà réalisée. Toutefois, la force électrofaible et la force forte ne semblent pas s'unifier à haute énergie. Or, les interactions avec les superpartenaires introduits par la SUSY modifient le comportement des constantes de couplage des trois forces fondamentales de manière à les unifier à haute énergie. La SUSY propose également un candidat pour la matière noire dans le cas où la LSP est de charge électrique nulle, il peut être un neutralino ou un sneutrino. De plus, la SUSY permet de résoudre le problème de l'ajustement fin. La divergence quadratique de la masse du boson de Higgs est naturellement supprimée par les diagrammes à boucles des superpartenaires dont les contributions ont des signes opposés à celles des particules, les fermions ayant des contributions positives et les bosons des contributions négatives [74].

Toutefois, il est impossible de mettre en place la SUSY sans un second doublet de Higgs. Dans le modèle standard, la masse des quarks d'isospin faible haut est obtenue dans la section 2.4.3 à l'aide du conjugué de charge du doublet de Higgs. Cependant, le potentiel supersymétrique contenant les termes de Yukawa, nécessaires à l'obtention des masses des fermions, n'autorise pas l'utilisation de ce conjugué afin de donner une masse aux quarks d'isospin faible haut [68]. Un second doublet de Higgs, couplé aux fermions d'isospin faible haut, doit nécessairement être introduit [68, 74]. La SUSY est donc un cas particulier de modèle à deux doublets de Higgs.

4.2 Modèles à deux doublets de Higgs

Dans les modèles à deux doublets de Higgs (2HDM), le doublet de Higgs du modèle standard ϕ défini par (X.56) est remplacé par deux doublets ϕ_1 et ϕ_2 et le potentiel de Higgs (X.60) par le potentiel scalaire le plus général possible brisant spontanément $SU(2)_L \times U(1)_Y$ [74, 75],

$$V(\phi_{1},\phi_{2}) = \lambda_{1} \left(\phi_{1}^{\dagger}\phi_{1} - \frac{1}{2}v_{1}^{2}\right)^{2} + \lambda_{2} \left(\phi_{2}^{\dagger}\phi_{2} - \frac{1}{2}v_{2}^{2}\right)^{2}$$

$$+ \lambda_{3} \left[\left(\phi_{1}^{\dagger}\phi_{1} - \frac{1}{2}v_{1}^{2}\right) + \left(\phi_{2}^{\dagger}\phi_{2} - \frac{1}{2}v_{2}^{2}\right)\right]^{2} + \lambda_{4} \left[\left(\phi_{1}^{\dagger}\phi_{1}\right)\left(\phi_{2}^{\dagger}\phi_{2}\right) - \left(\phi_{1}^{\dagger}\phi_{2}\right)\left(\phi_{2}^{\dagger}\phi_{1}\right)\right]$$

$$+ \lambda_{5} \left[\Re\left(\phi_{1}^{\dagger}\phi_{2}\right) - \frac{1}{2}v_{1}v_{2}\cos\xi\right]^{2} + \lambda_{6} \left[\Im\left(\phi_{1}^{\dagger}\phi_{2}\right) - \frac{1}{2}v_{1}v_{2}\sin\xi\right]^{2}$$

$$+ \lambda_{7} \left[\Re\left(\phi_{1}^{\dagger}\phi_{2}\right) - \frac{1}{2}v_{1}v_{2}\cos\xi\right] \left[\Im\left(\phi_{1}^{\dagger}\phi_{2}\right) - \frac{1}{2}v_{1}v_{2}\sin\xi\right], \quad (X.98)$$

où λ_i , $i \in \{1, ..., 7\}$ et ξ sont des paramètres du modèle à valeurs réelles. Dans le cas de la SUSY, $\lambda_5 = \lambda_6$. Le dernier terme de (X.98) peut être éliminé en redéfinissant les phases des champs scalaires.

$$\langle \phi_1 \rangle_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}, \quad \langle \phi_2 \rangle_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 e^{i\xi} \end{pmatrix}.$$
 (X.99)

Il est possible de définir, à ce stade, une variable importante dans la suite, le rapport des condensats des doublets de Higgs dans le vide,

$$\tan \beta = \frac{\langle \phi_2 \rangle_0}{\langle \phi_1 \rangle_0} = \frac{v_2}{v_1} \tag{X.100}$$

avec $0 \le \beta \le \pi/2$. Il est aussi possible de définir

$$v^2 = v_1^2 + v_2^2. (X.101)$$

De ce formalisme découle l'existence de cinq bosons de Higgs massifs,

deux Higgs chargés :
$$H^{\pm} = -\phi_1^{\pm} \sin \beta + \phi_2^{\pm} \cos \beta$$
, $m_{H^{\pm}}^2 = \frac{1}{2} \lambda_4 v^2$, (X.102)

un Higgs pseudo-scalaire :
$$A = \sqrt{2} \left(-\Im(\phi_1^0) \sin \beta + \Im(\phi_2^0) \cos \beta \right)$$
, $m_A^2 = \frac{1}{2} \lambda_6 v^2$, (X.103)

ainsi que deux bosons de Higgs scalaires neutres dont les champs quantiques sont mélangés par la matrice

$$\mathcal{M} = \frac{1}{2} \begin{pmatrix} 4v_1^2(\lambda_1 + \lambda_3) + v_2^2\lambda_5 & (4\lambda_3 + \lambda_5)v_1v_2 \\ (4\lambda_3 + \lambda_5)v_1v_2 & 4v_2^2(\lambda_2 + \lambda_3) + v_1^2\lambda_5 \end{pmatrix}. \tag{X.104}$$

Ces deux bosons de Higgs sont

$$h = \sqrt{2} \left(-\Re \left(\phi_1^0 - v_1 / \sqrt{2} \right) \sin \alpha + \Re \left(\phi_2^0 - v_2 / \sqrt{2} \right) \cos \alpha \right) , \tag{X.105}$$

$$H = \sqrt{2} \left(\Re \left(\phi_1^0 - v_1 / \sqrt{2} \right) \cos \alpha + \Re \left(\phi_2^0 - v_2 / \sqrt{2} \right) \sin \alpha \right) , \tag{X.106}$$

où l'angle de mélange α s'obtient par

$$\sin 2\alpha = \frac{2\mathcal{M}_{12}}{\sqrt{(\mathcal{M}_{11} - \mathcal{M}_{22})^2 + 4\mathcal{M}_{12}^2}}, \quad \cos 2\alpha = \frac{\mathcal{M}_{11} - \mathcal{M}_{22}}{\sqrt{(\mathcal{M}_{11} - \mathcal{M}_{22})^2 + 4\mathcal{M}_{12}^2}}$$
(X.107)

avec $-\pi/2 \le \alpha \le 0$ et dont les masses à l'ordre le plus bas s'expriment, avec $m_h \le m_H$,

$$m_{h,H}^2 = \frac{1}{2} \left(\mathcal{M}_{11} + \mathcal{M}_{22} \mp \sqrt{(\mathcal{M}_{11} - \mathcal{M}_{22})^2 + 4\mathcal{M}_{12}^2} \right).$$
 (X.108)

Enfin, v est fixée par la masse du W,

$$m_W = \frac{1}{2} v g_I$$
. (X.109)

Le 2HDM ainsi construit possède 6 paramètres libres :

- m_h , m_H , m_A , $m_{H^{\pm}}$ les masses des bosons de Higgs;
- $\tan \beta$ le rapport des condensats des doublets de Higgs dans le vide;
- α l'angle de mélange des Higgs.

Ce modèle peut être affiné par les observations expérimentales. Par exemple, le changement de saveur par courant neutre (FCNC, *Flavor-Changing Neutral Currents*), n'est pas observé expérimentalement. Afin d'être compatible avec ce fait expérimental [74],

- soit les masses des bosons de Higgs sont élevées, de l'ordre du TeV, supprimant ainsi suffisamment le FCNC pour rester dans les limites observées;
- soit tous les fermions portant une même charge électrique ne sont couplés qu'à un seul doublet de Higgs au plus.

La masse du boson de Higgs du modèle standard n'étant pas de l'ordre du TeV, la seconde option est choisie.

Dans les modèle de type I, les fermions ne sont pas couplés à ϕ_1 , mais le sont à ϕ_2 . Dans le cas des modèles de type II, les fermions d'isospin faible bas sont couplés à ϕ_1 et ceux d'isospin faible haut à ϕ_2 . Les intensités des couplages des fermions et des bosons avec h, H et A ainsi obtenues, par rapport à celles avec le boson de Higgs du modèle standard, sont présentées dans le tableau X.4.

Couplage avec	h	Н	A
Bosons vecteurs	$\sin(\beta - \alpha)$	$\cos(\beta - \alpha)$	0
Fermions hauts	$\frac{\cos \alpha}{\sin \beta} - \sin \alpha$	$\frac{\sin \alpha}{\sin \beta}$ $\cos \alpha$	$\cot \beta$
Fermions bas	$\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\cos \beta}$	tan β

Tableau X.4 – Couplages des bosons de Higgs neutres des modèles de type II par rapport aux couplages du boson de Higgs du modèle standard [74].

Les modèles à deux doublets de Higgs sont donc une extension du modèle standard ajou-

tant une nouvelle physique, en particulier l'existence de nouveaux bosons de Higgs. Ils doivent nécessairement être introduits dans les modèles supersymétriques pour que ceux-ci respectent les observations expérimentales.

4.3 Extension supersymétrique minimale du modèle standard

L'extension supersymétrique minimale du modèle standard ou MSSM [76, 77] est le modèle le plus simple permettant d'introduire la SUSY tout en étant compatible avec les observations expérimentales à ce jour. Dans le MSSM, les deux doublets de Higgs s'expriment en fonction de ϕ_1 et ϕ_2 introduits dans la section 4.2 comme [74]

$$H_d = \begin{pmatrix} {\phi_1^0}^* \\ -{\phi_1^-} \end{pmatrix}, \quad H_u = \begin{pmatrix} {\phi_2^+} \\ {\phi_2^0} \end{pmatrix}.$$
 (X.110)

L'expression du potentiel de Higgs général des 2HDM (X.98) devient

$$V(H_d, H_u) = \mu_d^2 H_d^{\dagger} H_d + \mu_u^2 H_u^{\dagger} H_u - \mu^2 (H_d \wedge H_u + \text{h.c.})$$

$$+ \frac{g_I^2 + g_Y^2}{8} (H_d^{\dagger} H_d - H_u^{\dagger} H_u)^2 + \frac{g_I^2}{2} (H_d^{\dagger} H_u)^2$$
(X.111)

en posant [68, 74, 75]

$$\lambda_{2} = \lambda_{1}, \qquad (X.112a)$$

$$\lambda_{3} = \frac{1}{8}(g_{I}^{2} + g_{Y}^{2}) - \lambda_{1}, \qquad (X.112b)$$

$$\mu_{d}^{2} = \mu^{2} \tan \beta - \frac{1}{2}m_{Z}^{2} \cos(2\beta), \qquad (X.112e)$$

$$\mu_{u}^{2} = \mu^{2} \cot \beta + \frac{1}{2}m_{Z}^{2} \cos(2\beta), \qquad (X.112f)$$

$$\lambda_{4} = 2\lambda_{1} - \frac{1}{2}g_{Y}^{2}, \qquad (X.112c)$$

$$\lambda_{5} = \lambda_{6} = 2\lambda_{1} - \frac{1}{2}(g_{I}^{2} + g_{Y}^{2}), \qquad (X.112d)$$

$$\mu_{u}^{2} = \mu^{2} \cot \beta + \frac{1}{2}m_{Z}^{2} \cos(2\beta), \qquad (X.112f)$$

$$\mu^{2} = -\frac{1}{2}v_{1}v_{2}(g_{I}^{2} + g_{Y}^{2} - 4\lambda_{1}). \qquad (X.112g)$$

Afin d'assurer la stabilité du vide, le potentiel ne doit pas pouvoir être infiniment bas, ce qui implique $\mu_u^2 + \mu_d^2 > 2\mu^2$ si $|\phi_1^0| = |\phi_2^0|$. La brisure spontanée de symétrie donnant leurs masses aux bosons de l'interaction faible est présente si $\mu^4 > \mu_u^2 \mu_d^2$. Alors, les condensats dans le vide des deux doublets de Higgs sont

$$\langle H_d \rangle_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} v_1 \\ 0 \end{pmatrix}, \quad \langle H_u \rangle_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 \end{pmatrix}.$$
 (X.113)

Les masses des bosons de Higgs s'expriment alors à l'ordre le plus bas

$$m_A^2 = \mu^2(\tan \beta + \cot \beta) = \frac{2\mu^2}{\sin 2\beta},$$
 (X.114)

$$m_{H^{\pm}}^2 = m_A^2 + m_W^2$$
, (X.115)

$$m_{h,H}^2 = \frac{1}{2} \left(m_A^2 + m_Z^2 \mp \sqrt{(m_A^2 + m_Z^2)^2 - 4m_A^2 m_Z^2 \cos^2 2\beta} \right),$$
 (X.116)

et l'angle de mélange des Higgs scalaires neutres vérifie

$$\cos 2\alpha = -\frac{m_A^2 - m_Z^2}{m_H^2 - m_h^2} \cos 2\beta \,, \quad \sin 2\alpha = -\frac{m_A^2 + m_Z^2}{m_H^2 - m_h^2} \sin 2\beta \,. \tag{X.117}$$

Enfin, la masse du W vérifie toujours (X.109) et celle du Z peut être exprimée en fonction des paramètres du MSSM. Ainsi,

$$m_W = \frac{1}{2}vg_I \Leftrightarrow m_W^2 = \frac{1}{4}v^2g_I^2, \quad m_Z^2 = \frac{\mu_d^2 - \mu_u^2 \tan^2 \beta}{\tan^2 \beta - 1}.$$
 (X.118)

À l'ordre le plus bas, les masses des bosons de Higgs dépendent donc seulement de deux paramètres libres, m_A et tan β défini par (X.100). Il est à noter que l'équation (X.116) implique l'existence d'un boson de Higgs neutre de masse inférieure à $m_Z = 91,19$ GeV. Toutefois, ceci n'est vrai qu'à l'ordre le plus bas. La prise en compte des corrections radiatives change les expressions de ces masses, en particulier celles dues au quark top et à son superpartenaire le stop. La masse du boson de Higgs léger est ainsi modifiée selon [68]

$$m_h^2 \to m_h^2 + \delta m_h^2 \simeq m_Z^2 + \frac{3m_t^4}{2\pi^2 v^2} \left[\ln \frac{m_S^2}{m_t^2} + \frac{X_t^2}{m_S^2} \left(1 - \frac{X_t^2}{12m_S^2} \right) \right]$$
 (X.119)

où

$$X_t = A_t - \mu \cot \beta \tag{X.120}$$

est le paramètre de mélange du stop, avec A_t sa constante de couplage aux Higgs, et

$$m_S = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}$$
 (X.121)

est l'échelle d'énergie de la SUSY, définie comme la moyenne géométrique des masses des stops. Il existe en effet deux états propres de masse pour ces particules, \tilde{t}_1 et \tilde{t}_2 , mélanges des stops de chiralité droite et gauche. La présence de nombreux paramètres libres du MSSM mène à proposer des scénarios dans lesquels les paramètres intervenant dans les corrections d'ordres supérieurs sont fixés [78, 79]. Il ne reste alors que deux paramètres libres, m_A et tan β . Les valeurs des masses corrigées de h, H et H^{\pm} sont tracées sur la figure X.18 en fonction de m_A pour tan $\beta=3$ et 30 dans le cas de mélange maximal du stop avec $m_{\tilde{t}}=2\,\text{TeV}$ et les autres paramètres de la SUSY fixés à $1\,\text{TeV}$ [68]. Ainsi, pour $m_A \lesssim 125\,\text{GeV}$, H joue le rôle du modèle standard et il existe un Higgs léger. Pour $m_A \gtrsim$ 125 GeV, h joue le rôle du modèle standard et les bosons de Higgs supplémentaires sont de masses plus élevées. Dans ce cas, $m_H \simeq m_A$.

Figure X.18 – Masses des bosons de Higgs du MSSM en fonction de m_A pour $\tan \beta = 3$ et 30 dans le cas de mélange maximal du stop avec $m_{\tilde{t}} = 2 \text{ TeV}$ et les autres paramètres de la SUSY fixés à 1 TeV [68].

Les particules du MSSM et leurs superpartenaires sont résumés dans le tableau X.5. Un test expérimental est possible par la recherche d'un signal correspondant aux bosons de Higgs supplémentaires, ce qui fait l'objet de cette thèse. L'étude de la phénoménologie de ces bosons de Higgs, présentée ciaprès, permet de déterminer les conditions favorables à la recherche d'un tel signal.

Particules				Superpartenaires			
Туре	Spin	Particules	Symboles	Туре	Spin	Particules	Symboles
Fermions	$\frac{1}{2}$	quarks leptons	9 ℓ	Sfermions	0	squarks sleptons	$ ilde{ ilde{q}}$
Bosons	1 0	gluon bosons W [±] photon boson Z Higgs	g $W^+, W^ \gamma$ Z h, H, A, H^\pm	Bosinos	$\frac{1}{2}$	gluino winos photino zino Higgsinos	$ ilde{ ilde{g}} ilde{ ilde{W}}^+, ilde{ ilde{W}}^- ilde{ ilde{\gamma}} ilde{Z} ilde{ ilde{L}} ilde{h}, ilde{H}, ilde{A}, ilde{H}^\pm$

Tableau X.5 – Particules et leurs superpartenaires. La présence de plusieurs bosons de Higgs est justifiée par la nécessité d'un second doublet de Higgs. Ce formalisme est décrit dans la section 4.2.

Violation de CP avec les bosons de Higgs

L'asymétrie matière-antimatière ne peut être expliquée par la seule violation de CP de l'interaction faible. Or, une violation de CP dans les couplages de Yukawa est possible lorsque le paramètre ξ de l'équation (X.98) vérifie sin $\xi \neq 0$.

Les termes de Yukawa s'écrivent en général, pour un boson de Higgs Φ,

$$\mathcal{L}_{\text{Yukawa}} = -\frac{m\sqrt{2}}{v} \left(\cos(\varphi) \bar{\psi} \Phi \psi + \sin(\varphi) \bar{\psi} i \gamma^5 \Phi \psi \right) \tag{X.122}$$

avec φ l'angle de mélange CP de Φ . Lorsque $\varphi=0$, Φ est CP-pair, c'est-à-dire scalaire avec un nombre quantique $J^{CP}=0^{++}$. Pour $\varphi=\frac{\pi}{2}$, Φ est *CP*-impair, c'est-à-dire pseudo-scalaire avec un nombre quantique $J^{CP}=0^{+-}$. Pour toutes les autres valeurs de φ , l'état est mixte et permet une violation de CP.

Dans le MSSM sans violation de *CP*, les états propres de masse des bosons de Higgs neutres sont également des états propres de *CP*. Ainsi *h* et *H* sont *CP*-pairs et *A* est *CP*-impair. Avec violation de CP, les états propres de masse sont des états mixtes de CP. Afin de les distinguer de h, H et A, ils sont notés, par masse croissante, H_1 , H_2 et H_3 .

Les sections qui suivent traitent du cas sans violation de CP. Le cas avec violation correspond, dans le cadre de ma thèse, au passage $\{h, H, A\} \rightarrow \{H_1, H_2, H_3\}$.

Phénoménologie des bosons de Higgs du MSSM 5

Pour concevoir une analyse de physique des particules à même de tester le MSSM, il faut dans un premier temps déterminer la manifestation de ce modèle à observer. Comme cela a été développé dans la section précédente, le MSSM implique l'existence de quatre bosons de Higgs supplémentaires dont deux neutres, H et A. S'ils existent, un signal leur correspondant doit pouvoir être observé.

Au premier ordre, les masses des bosons de Higgs s'expriment en fonction de deux paramètres uniquement, m_A et tan β . Les couplages des trois bosons de Higgs neutres du MSSM aux autres particules, par rapport aux couplages du boson de Higgs du modèle standard, sont présentés dans le tableau X.4 en fonction de α et β . Or, ces deux paramètres sont reliés par les équations (X.117), donnant

$$\tan 2\alpha = \frac{m_A^2 + m_Z^2}{m_A^2 - m_Z^2} \tan 2\beta. \tag{X.123}$$

Les observations expérimentales semblent favoriser $m_A \gg m_Z$ [25, 26, 80, 81]. Dans ce cas, Het A sont de masses similaires et h prend le rôle du boson de Higgs du modèle standard observé expérimentalement en 2012 [22-24]. Cette situation correspond à la limite découplée, dans laquelle

$$\lim_{m_A \gg m_Z} \tan 2\alpha = \tan 2\beta \tag{X.124}$$

d'après (X.123). Alors, dans cette limite, $\alpha \sim \beta$ ou $\alpha \sim \beta \pm \frac{\pi}{2}$. Or, $\beta \geqslant 0$ et $\alpha \leqslant 0$ et tan β est contraint par [82]

$$1 < \tan \beta \lesssim \frac{m_t}{m_b} \simeq 42. \tag{X.125}$$

Il ne reste donc plus que la possibilité $\alpha \sim \beta - \frac{\pi}{2}$. Les couplages du tableau X.4 deviennent alors ceux du tableau X.6.

Couplage avec	h	Н	A
Bosons vecteurs	~ 1	~ 0	0
Fermions hauts	~ 1	$\sim -\cot \beta$	$\cot \beta$
Fermions bas	~ 1	$\sim \tan \beta$	$\tan \beta$

Tableau X.6 – Couplages des bosons de Higgs neutres dans la limite découplée du MSSM par rapport aux couplages du boson de Higgs du modèle standard.

Les couplages ainsi obtenus dans le tableau X.6 présentent trois caractéristiques d'intérêt :

- h se comporte comme le boson de Higgs du modèle standard, ce qui le rend tout à fait cohérent avec les observations actuelles;
- H et A présentent peu voire aucun couplage aux bosons vecteurs, par exemple la désintégration $A \rightarrow ZZ$ est impossible mais $A \rightarrow Zh$ est possible;
- *H* et *A* sont couplés de manières similaires aux fermions.

Lorsque tan β augmente, les couplages de H et A aux fermions d'isospin faible bas sont augmentés et ceux aux fermions d'isospin faible haut supprimés. La production et les désintégrations de H et A sont donc intrinsèquement liées à la présence de fermions d'isospin faible bas.

5.1 Production de bosons de Higgs

La production de bosons de Higgs au LHC peut être réalisée selon plusieurs modes dont un calcul précis des sections efficaces a pu être fait dans le cadre du modèle standard [83-86]. Ces sections efficaces sont représentées en fonction de l'énergie de collision dans le centre de masse sur la figure X.19. Les processus correspondant à ces différents modes sont présentés dans la section 5.1.1 ci-après. Puis, la production des bosons de Higgs du MSSM est discutée dans la section 5.1.2.

Dans le cadre du modèle standard

Le mode de production principal du boson de Higgs du modèle standard h au LHC est la fusion de gluon. Près de 85 % des bosons de Higgs sont produits ainsi. Ce mode est noté ggh et est représenté figure X.20a. L'interaction entre gluons et Higgs est réalisée par une boucle de quarks. Or, comme cela est vu dans la section 2.4.3 le couplage du Higgs aux fermions est proportionnel à leur masse. Le quark top est donc dominant dans cette boucle.

Le second mode de production de Higgs le plus important au LHC est la fusion de boson vecteur, noté VBF (Vector Boson Fusion) et représenté sur les figures X.20b et X.20c. Deux quarks produisent chacun un boson vecteur (W^+ et W^- ou deux Z). Ces deux bosons fusionnent en un boson de Higgs. Bien que la section efficace du VBF soit dix fois plus faible que celle du ggh, les deux quarks de l'état final donnent deux jets très caractéristiques, dont le processus de formation à partir des quarks est abordé dans la section 2.6. Le calcul de la section efficace de ce processus inclu les corrections QCD (chromodynamique quantique, Quantum ChromoDynamics), abordée dans la section 2.5, au NNLO et les corrections électrofaibles au NLO [86, 87]. Les notations NLO, NNLO, N3LO, etc. signifient nextto-leading order, c'est-à-dire jusqu'à l'ordre suivant le premier degré non nul; next-to-next-to-leading order, un ordre de plus que NLO; etc.

La production d'un boson de Higgs peut également se faire en association avec un boson vecteur, c'est le mode VH. Une paire quark-antiquark produit un boson vecteur de haute énergie (W sur la figure X.21a ou Z sur la figure X.21b). Ce boson émet alors un Higgs, d'où la dénomination « Higgsstrahlung » parfois utilisée pour le mode VH. Les sections efficaces de ces processus sont calculées

Figure X.19 – Sections efficaces des modes de production du boson de Higgs du modèle standard [83-86].

Figure X.20 – Diagrammes de Feynman de production de boson de Higgs dans le cadre du modèle standard par fusion de *gluons (ggh) et fusion de bosons vecteurs (VBF).*

Figure X.21 – Diagrammes de Feynman de production de boson de Higgs dans le cadre du modèle standard en association avec un boson vecteur (VH).

Figure X.22 – Diagrammes de Feynman de production de boson de Higgs dans le cadre du modèle standard en association avec un quark top $(t\bar{t}h)$.

en prenant en compte les corrections QCD NNLO et les corrections électrofaibles au NLO [86]. Une fusion de gluons peut également amener à la production d'un Higgs en association avec un Z, c'est le cas du processus de la figure X.21c.

Enfin, il est possible de produire un Higgs en association avec des fermions lourds, en particulier des quarks top $(t\bar{t}h)$ ou bottom $(b\bar{b}h)$. Dans ces cas, des jets sont également formés. Le mode $t\bar{t}h$ est illustré sur la figure X.22. Ces processus contribuent peu à la production de bosons de Higgs au LHC dans le cadre du modèle standard. Cependant, la phénoménologie du MSSM peut rendre les modes de production en association avec des quarks *b* significatifs voire dominants.

5.1.2 Dans le cadre du MSSM

Dans la limite découplée du MSSM, compte-tenu des couplages des bosons de Higgs h, H et A du tableau X.6, les processus présentés dans la section précédente sont modifiés. Ainsi, la fusion de gluons de la figure X.20a permet, dans le MSSM, de produire h, H et A. Il s'agit toujours du mode dominant si $\tan \beta$ ne prend pas de valeur élevée. Dans le cas de la production de h et H, la boucle peut également contenir des contributions des squarks stop et sbottom [88]. Le mode VBF, dont les processus sont présentés sur les figures X.20b et X.20c, permet de produire h et H, mais pas A. Les corrections aux ordres supérieurs de ces diagrammes dues à la QCD supersymétrique sont faibles et celles dues à la force électrofaible supersymétrique de l'ordre du pourcent [83]. Ces nouveaux processus sont représentés sur la figure X.23.

Figure X.23 – Diagrammes de Feynman de production de boson de Higgs dans le cadre du MSSM par fusion de gluons (ggH) et fusion de bosons vecteurs (VBF).

Dans le mode VH, le Higgs émis peut également être un H. Les processus de la figure X.21 sont ainsi modifiés en ceux de la figure X.24. Les corrections aux ordres supérieurs de ces diagrammes dues à la QCD supersymétrique sont faibles et celles dues à la force électrofaible supersymétrique ne sont pas connues [83].

Figure X.24 – Diagrammes de Feynman de production de boson de Higgs dans le cadre du MSSM en association avec un boson.

Pour de grandes valeurs de tan β , la production de Higgs lourds en association avec des quarks best un mode dominant. Plusieurs processus participent à ce mode. Sur les figures X.25a et X.25b se trouvent les processus analogues à ceux du mode $t\bar{t}h$ du modèle standard présentés figures X.22a et X.22b. Des processus comme ceux des figures X.25c et X.25d sont également envisageables si le quark b est considéré comme présent au sein du proton, c'est le « schéma à cinq saveurs » ou 5fs (5-flavor scheme). Les sections efficaces des processus du mode $b\bar{b}h$ sont calculées au NLO dans le 4fs et au NNLO pour le 5fs.

Les processus des figures X.25a et X.25b présentent deux jets de quarks b associés à la production d'un boson de Higgs, celui de la figure X.25d un jet de quark b. L'identification de ces jets est donc un enjeu dans les analyses testant les cas de hautes valeurs de tan β .

Figure X.25 – Diagrammes de Feynman de production de boson de Higgs dans le cadre du MSSM en association avec un quark b.

5.2 Désintégrations des bosons de Higgs

Les bosons de Higgs ont une durée de vie très courte, de l'ordre de 10^{-22} s pour le boson de Higgs du modèle standard par exemple [9]. Il est donc impossible d'observer directement la présence d'un boson de Higgs, comme cela peut se faire avec d'autres particules plus stables comme les kaons, les muons, les électrons ou les protons par exemple. Pour étudier ces bosons, il faut donc observer leurs produits de désintégration.

La désintégration des bosons de Higgs peut se faire sous différentes formes ayant différents rapports de branchement ou \mathcal{BR} (*Branching Ratio*), c'est-à-dire différentes probabilités de survenir. La topologie des événements correspondants est également fortement affectée par les produits de désintégration des bosons de Higgs.

Dans la limite découplée du MSSM, les couplages des bosons de Higgs supplémentaires H et A aux bosons vecteurs sont supprimés et ceux aux fermions sont proportionnels :

- aux masses de ces derniers;
- à 1/ $\tan \beta = \cot \beta$ pour ceux d'isospin faible haut;
- à tan β pour ceux d'isospin faible bas.

Les rapports de branchement qui en découlent sont représentés sur la figure X.26 pour les trois bosons de Higgs neutres du MSSM et pour tan $\beta=5$ et 30. Pour des masses de H et A suffisamment grandes pour leur permettre de se désintégrer en paire de quarks top, malgré la masse élevée de ce dernier, la suppression des couplages aux fermions d'isospin faible haut par tan β laisse le quark b et le lepton τ avec les rapports de branchement les plus élevés à haut tan β . Les rapports de branchement du boson de Higgs b0 correspondant au boson de Higgs du modèle standard sont peu affectés par tan β 0.

La valeur de $\tan \beta$ est un paramètre libre du MSSM pouvant être grand. À haut $\tan \beta$ le quark b et le lepton τ proposent les rapports de branchement les plus grands à H et A. Pour des valeurs modérées voire basses de $\tan \beta$, le quark top peut éventuellement proposer un rapport de branchement plus grand, mais seulement pour $m_A \gtrsim 350\,\text{GeV}$. Les désintégrations en $b\bar{b}$ et en $\tau^+\tau^-$ sont donc les plus prometteuses pour la recherche de bosons de Higgs supplémentaires de haute masse.

Bien que le canal de désintégration $h, H, A \to bb$ possède un rapport de branchement 5 à 10 fois supérieur à celui du canal $h, H, A \to \tau^+\tau^-$, il est sujet à de nombreuses sources de bruit de fond au LHC où les collisions ont lieu entre protons. C'est pour cette raison que cette thèse s'intéresse

Figure X.26 – Rapports de branchement des bosons de Higgs du MSSM en fonction de m_A pour tan $\beta = 5$ et 30 [84, 85]. L'effet de tan β sur les couplages de H et A aux fermions est bien visible avec l'augmentation des rapports de branchement au bottom (en rouge) et au tau (en bleu) et la diminution du rapport de branchement au top (en vert).

à la recherche de bosons de Higgs supplémentaires de haute masse se désintégrant en paire de τ , dont l'accessibilité expérimentale est meilleure. La présence de deux leptons τ de haute énergie dans l'état final est en effet une signature bien plus claire que la présence de quarks b. Le diagramme de Feynman correspondant à cette désintégration est présenté sur la figure X.27. Toutefois, les τ ne sont pas des particules stables et se désintègrent avant d'entrer dans les parties sensibles du détecteur. Seuls leurs produits de désintégration sont observés.

Figure X.27 – *Diagramme de Feynman d'une désintégration h, H, A* $\rightarrow \tau^+\tau^-$.

5.3 Désintégrations des leptons au

La durée de vie des leptons τ est de 290 fs, ce qui est trop court pour qu'ils puissent se propager jusqu'aux parties sensibles du détecteur. Un τ n'est donc pas directement observé, seuls ses produits de désintégration le peuvent.

Les leptons τ se désintègrent par interaction faible selon $\tau^- \to W^- \nu_\tau$ [9]. Le boson W, virtuel, se désintègre immédiatement :

- leptoniquement selon $W^- \rightarrow e^- \bar{\nu}_e$ dans 17,82 % des cas;
- leptoniquement selon $W^- \to \mu^- \bar{\nu}_\mu$ dans 17,39 % des cas;
- hadroniquement selon $W^- \rightarrow q\bar{q}'$ dans 64,79 % des cas.

Dans ce dernier cas, l'hadronisation présentée dans la section 2.6 a lieu et les deux quarks donnent un ensemble constitué de quelques hadrons, en général trois ou moins, et éventuellement des particules neutres comme des π^0 , ces derniers se désintégrant presque toujours en deux photons. L'ensemble des particules issues de la désintégration du W forme ainsi un petit jet. Il s'agit d'un « tau hadronique », noté τ_h dans la suite.

Les diagrammes de Feynman correspondant aux désintégrations leptonique et hadronique du τ sont représentés figures X.28a et X.28b. Le tableau X.7a résume plus en détail les rapports de branchement des différents modes de désintégration du τ .

- (a) Désintégration leptonique d'un τ^- . Le lepton ℓ peut être un électron ou un muon.
- **(b)** Désintégration hadronique d'un τ^- .

Figure X.28 – Diagrammes de Feynman de désintégration d'un τ^- .

La désintégration d'un τ peut donc se faire selon trois modes différents, $\tau \to \tau_h \nu_\tau$, $\tau \to \mu \nu_\mu \nu_\tau$ et $\tau \to e \nu_e \nu_\tau$. Dans tous les cas, les neutrinos sont invisibles pour le détecteur. Les deux leptons τ issus de la désintégration du boson de Higgs se désintègrent indépendamment l'un de l'autre. Il existe donc six canaux différents pour les événements dans lesquels un boson de Higgs se désintègre en paire de τ , listés avec leurs rapports de branchement dans le tableau X.7b.

Mode de désintégration	BR (%)
$ au^- o e^- ar{ u}_e ar{ u}_ au$	17,82
$ au^- o \mu^- ar{ u}_\mu ar{ u}_ au$	17,39
$ au^- ightarrow ext{h}^- ar{ u}_ au$	11,51
$ au^- o ext{h}^- \pi^0 ar{ u}_ au$	25,93
$ au^- ightarrow ext{h}^- \pi^0 \pi^0 ar{ u}_ au$	9,48
$ au^- ightarrow ext{h}^- ext{h}^- ext{h}^+ ar{ u}_ au$	9,80
$ au^- ightarrow ext{h}^- ext{h}^- ext{h}^+ \pi^0 ar{ u}_ au$	4,76
Autres modes hadroniques	3,31
$ au^- ightarrow au_{ m h}^- ar{ u}_{ au}$	64,79

Canal	BR (%)
$ au_{ m h} au_{ m h}$	41,98
$\mu au_{ m h}$	22,53
$e au_{ m h}$	23,09
μμ	3,02
ee	3,18
еµ	6,20

(a) Rapports de branchement des différents modes de désintégration du τ [9].

(b) Rapports de branchement des six canaux des événe*ments* $h \rightarrow \tau \tau$.

Tableau X.7 – Rapports de branchement des différents modes de désintégration du τ [9] et des différents canaux des *événements* $h \rightarrow \tau \tau$.

Conclusion

Les constituants fondamentaux de la matière usuelle sont les fermions de la première génération, c'est-à-dire les quarks u et d pouvant former les protons (uud) et les neutrons (udd), l'électron et le neutrino électronique. Cependant, la liste des particules élémentaires est bien plus longue. Il existe ainsi trois générations de fermions, portant leur nombre à douze. Chacun de ces fermions est accompagné d'un antifermion correspondant.

Aux fermions s'ajoutent les bosons. Les bosons de jauge sont les vecteurs des forces fondamentales, il s'agit du photon, des bosons W^+ , W^- et Z et des gluons. Le boson de Higgs, quant à lui, est scalaire.

Le modèle standard, reposant sur la théorie quantique des champs, permet de décrire le comportement de ces particules. L'invariance de jauge locale sous les transformations du groupe $SU(3)_C \times$ $SU(2)_L \times U(1)_Y$ fait émerger naturellement les forces électrofaible et forte. Le mécanisme de brisure spontanée de symétrie introduit le champ de Higgs et donne une masse aux particules.

Ce modèle a permis de prédire l'existence de particules comme les bosons W et Z, le quark top ou encore le boson de Higgs de nombreuses années avant leurs observations. Malgré ces prouesses et les décennies de prédictions correctement vérifiées, la communauté scientifique sait que le modèle standard n'est qu'une étape vers une théorie plus complète. En effet, il ne permet pas d'expliquer certains faits expérimentaux comme la présence de la matière noire. D'autres phénomènes, comme l'ajustement fin, laissent à penser qu'il s'agit d'une théorie effective à basse énergie.

De nombreuses extensions au modèle standard sont alors proposées. Par exemple, la supersymétrie introduit les « sparticules », partenaires des particules. Dans sa version la plus simple, l'extension supersymétrique minimale du modèle standard ou MSSM, il n'y a pas un mais cinq bosons de Higgs, ainsi que leurs partenaires. La recherche d'un signal associé à ces bosons de Higgs supplémentaires est un test expérimental du MSSM.

Dans le cas où ces bosons de Higgs supplémentaires sont de haute masse, le canal de désintégration en paire de leptons τ est le plus prometteur. Les leptons τ se désintègrent eux-mêmes en électron, muon ou tau hadronique. Il existe donc six états finaux différents.

Grâce à la collaboration CMS (Compact Muon Solenoid) et au détecteur du même nom installé au LHC (Large Hadron Collider) de l'organisation européenne pour la recherche nucléaire ou CERN (Conseil Européen pour la Recherche Nucléaire), les conditions expérimentales sont réunies pour procéder à la recherche de bosons de Higgs supplémentaires de haute masse se désintégrant en paire de leptons τ . Le chapitre 2 présente ce dispositif expérimental.

Références

- [1] S. L. Glashow. « The renormalizability of vector meson interactions ». *Nuclear Physics* **10** (1959), p. 107-117. doi: 10.1016/0029-5582(59)90196-8.
- [2] A. Salam & J. Ward. « Weak and electromagnetic interactions ». *Nuovo Cim* **11** (fév. 1959), p. 568-577. doi: 10.1007/BF02726525.
- [3] S. Weinberg. « A model of leptons ». *Physical Review Letters* **19** (21 nov. 1967), p. 1264-1266. doi: 10.1103/PhysRevLett.19.1264.
- [4] C. S. Wu & coll. « Experimental Test of Parity Conservation in Beta Decay ». *Physical Review* **105** (4 fév. 1957), p. 1413-1415. DOI: 10.1103/PhysRev.105.1413.
- [5] J. H. Christenson & coll. « Evidence for the 2π Decay of the K_2^0 Meson ». *Physical Review Letters* 13 (4 juil. 1964), p. 138-140. DOI: 10.1103/PhysRevLett.13.138.
- [6] M. Kobayashi & T. Maskawa. « CP-Violation in the Renormalizable Theory of Weak Interaction ». *Progress of Theoretical Physics* **49**.2 (fév. 1973), p. 652-657. doi: 10.1143/PTP.49.652.
- [7] N. Cabibbo. « Unitary Symmetry and Leptonic Decays ». *Physical Review Letters* **10** (12 juin 1963), p. 531-533. doi: 10.1103/PhysRevLett.10.531.
- [8] N. Cabibbo. « Unitary Symmetry and Nonleptonic Decays ». *Physical Review Letters* **12** (2 jan. 1964), p. 62-63. doi: 10.1103/PhysRevLett.12.62.
- [9] Particle Data Group. « Review of Particle Physics ». *Progress of Theoretical and Experimental Physics* 8 (août 2020). DOI: 10.1093/ptep/ptaa104.
- [10] F. ENGLERT & R. BROUT. « Broken symmetry and the mass of gauge vector mesons ». *Physical Review Letters* **13**.9 (9 août 1964), p. 321-323. doi: 10.1103/PhysRevLett.13.321.
- [11] P. W. Higgs. « Broken symmetries, massless particles and gauge fields ». *Physics Letters* **12**.2 (sept. 1964). DOI: 10.1016/0031-9163(64)91136-9.
- [12] P. W. Higgs. « Broken symmetries and the masses of gauge bosons ». *Physics Letters* **13**.16 (oct. 1964). DOI: 10.1103/physrevlett.13.508.
- [13] G. S. Guralnik, C. R. Hagen & T. W. B. Kibble. «Global Conservation Laws and Massless Particles ». *Physical Review Letters* **13**.20 (20 nov. 1964), p. 585-587. doi: 10.1103/PhysRevLett. 13.585.
- [14] T. W. B. Kibble. «Symmetry Breaking in Non-Abelian Gauge Theories ». *Physical Review* **155** (5 mar. 1967), p. 1554-1561. doi: 10.1103/PhysRev.155.1554.
- [15] P. W. Higgs. « Spontaneous symmetry breakdown without massless bosons ». *Physical Review* **145** (4 mai 1966), p. 1156-1163. DOI: 10.1103/PhysRev.145.1156.
- [16] S. L. Glashow. « Partial symmetries of weak interactions ». *Nuclear Physics* **22**.4 (1961), p. 579-588. doi: 10.1016/0029-5582(61)90469-2.
- [17] G. Arnison & coll. « Experimental observation of isolated large transverse energy electrons with associated missing energy at $\sqrt{s} = 540\,\text{GeV}$ ». *Physics Letters* **B122**.1 (1983), p. 103-116. Doi: 10.1016/0370-2693(83)91177-2.
- [18] M. Banner & coll. « Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN *pp* collider ». *Physics Letters* **B122**.5 (1983), p. 476-485. doi: 10.1016/0370-2693(83)91605-2.
- [19] G. Arnison & coll. « Further evidence for charged intermediate vector bosons at the SPS collider ». *Physics Letters* **B129**.3 (1983), p. 273-282. DOI: 10.1016/0370-2693(83)90860-2.
- [20] G. Arnison & coll. « Experimental observation of lepton pairs of invariant mass around $95 \,\text{GeV} \cdot c^{-2}$ at the CERN SPS collider ». *Physics Letters* **B126**.5 (1983), p. 398-410. Doi: 10.1016/0370-2693(83)90188-0.
- [21] P. Bagnaia & coll. « Evidence for $Z^0 \to e^+e^-$ at the CERN pp collider ». Physics Letters **B129**.1 (1983), p. 130-140. doi: 10.1016/0370-2693(83)90744-X.

- The ATLAS Collaboration. « Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC ». Physics Letters B716.1 (2012), p. 1-29. DOI: 10.1016/j.physletb.2012.08.020.
- The CMS Collaboration. « Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC ». Physics Letters **B716**.1 (2012), p. 30-61. DOI: 10.1016/j.physletb. 2012.08.021.
- The CMS Collaboration. « Observation of a new boson with mass near 125 GeV in pp collisions at $\sqrt{s} = 7$ and 8 TeV ». Journal of High Energy Physics **06** (juin 2013). DOI: 10.1007/jhep06(2013)
- G. AAD & coll. « Combined measurement of the Higgs boson mass in pp collisions at $\sqrt{s} = 7$ [25] and 8 TeV with the ATLAS and CMS Experiments ». Physical Review Letters 114.19 (mai 2015). DOI: 10.1103/physrevlett.114.191803.
- G. AAD & coll. « Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $\sqrt{s} = 7$ and 8 TeV ». Journal of High Energy Physics **08** (août 2016). DOI: 10.1007/jhep08(2016) 045.
- [27] The CMS Collaboration. « A measurement of the Higgs boson mass in the diphoton decay channel ». Physics Letters B805 (2020), p. 135425. DOI: 10.1016/j.physletb.2020.135425.
- The CMS Collaboration. « Measurements of the Higgs boson width and anomalous HVV [28] couplings from on-shell and off-shell production in the four-lepton final state ». Physical Review **D99** (11 juin 2019), p. 112003. DOI: 10.1103/PhysRevD.99.112003.
- The CMS Collaboration. « Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states ». Journal of High Energy Physics 96 (jan. 2014). DOI: 10.1007/JHEP01(2014)096.
- The CMS Collaboration. Properties of the Higgs-like boson in the decay $H \to ZZ \to 4\ell$ in pp collisions at $\sqrt{s} = 7$ and 8 TeV. Rapp. tech. CMS-PAS-HIG-13-002. Geneva: CERN, 2013. URL: https://cds.cern.ch/record/1523767.
- The CMS Collaboration. « Measurement of the properties of a Higgs boson in the four-lepton final state ». Physical Review **D89** (9 mai 2014), p. 092007. DOI: 10.1103/PhysRevD.89.092007.
- The CMS Collaboration. « Observation of the diphoton decay of the Higgs boson and measurement of its properties ». The European Physical Journal C74 (oct. 2014). DOI: 10.1140/epjc/ s10052-014-3076-z.
- The CMS Collaboration. « Search for a Higgs boson decaying into a b-quark pair and produced in association with b quarks in proton-proton collisions at 7 TeV ». Physics Letters **B722** (2013), p. 207-232. DOI: 10.1016/j.physletb.2013.04.017. arXiv: 1302.2892 [hep-ex].
- The CMS Collaboration. « Search for the standard model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks ». Physical Review **D89** (jan. 2014), p. 012003. DOI: 10.1103/PhysRevD.89.012003.
- The CMS Collaboration. « Evidence for the 125 GeV Higgs boson decaying to a pair of τ leptons ». Journal of High Energy Physics 05 (20 jan. 2014). DOI: 10.1007/JHEP05(2014)104. arXiv: 1401.5041v2 [hep-ex].
- The CMS Collaboration. « Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector ». Physics Letters B779 (avr. 2018), p. 283-316. DOI: 10.1016/j.physletb.2018. 02.004.
- The CMS Collaboration. Measurement of Higgs boson decay to a pair of muons in proton-proton collisions at $\sqrt{s}=13\,\mathrm{TeV}$. Rapp. tech. CMS-PAS-HIG-19-006. Geneva: CERN, 2020. URL: https://cds.cern.ch/record/2725423.
- [38] The CMS Collaboration. « Observation of tth Production ». Physical Review Letters 120 (23 juin 2018), p. 231801. DOI: 10.1103/PhysRevLett.120.231801.

- [39] T. M. Hahn & coll. « Neutrons and Gamma-Rays from the Proton Bombardment of Beryllium ». *Physical Review* **85**.5 (mar. 1952), p. 934. DOI: 10.1103/PhysRev.85.934.
- [40] H. L. Anderson & coll. « Total Cross Sections of Negative Pions in Hydrogen ». *Physical Review* **85**.5 (mar. 1952), p. 934-935. doi: 10.1103/PhysRev.85.934.2.
- [41] H. L. Anderson & coll. « Total Cross Sections of Positive Pions in Hydrogen ». *Physical Review* **85**.5 (mar. 1952), p. 936. DOI: 10.1103/PhysRev.85.936.
- [42] V. E. Barnes & coll. « Observation of a Hyperon with Strangeness Minus Three ». *Physical Review Letters* **12**.8 (fév. 1964), p. 204-206. DOI: 10.1103/PhysRevLett.12.204.
- [43] S. Dürr & coll. « Ab Initio Determination of Light Hadron Masses ». *Science* **322**.5905 (nov. 2008), p. 1224-1227. DOI: 10.1126/science.1163233.
- [44] G. P. SALAM. Elements of QCD for hadron colliders. 2010. arXiv: 1011.5131 [hep-ph]. URL: https://arxiv.org/pdf/1011.5131.pdf.
- [45] D. J. Gross & F. Wilczek. « Ultraviolet Behavior of Non-Abelian Gauge Theories ». *Physical Review Letters* **30** (26 juin 1973), p. 1343-1346. DOI: 10.1103/PhysRevLett.30.1343.
- [46] H. D. Politzer. « Reliable Perturbative Results for Strong Interactions? » *Physical Review Letters* **30** (26 juin 1973), p. 1346-1349. doi: 10.1103/PhysRevLett.30.1346.
- [47] J.-C. Winter, F. Krauss & G. Soff. « A modified cluster-hadronisation model ». *European Physical Journal* C36.3 (août 2004), p. 381-395. DOI: 10.1140/epjc/s2004-01960-8.
- [48] B. Andersson & coll. « Parton fragmentation and string dynamics » (avr. 1983). url: http://cds.cern.ch/record/143980.
- [49] The DØ Collaboration. « Measurement of the B^0_s lifetime in the exclusive decay channel $B^0_s \to J/\Psi \phi$ ». Physical Review Letters **94** (fév. 2005). DOI: 10.1103/physrevlett.94.042001.
- [50] G. Bellini, I. Bigi & P. Dornan. « Lifetimes of charm and beauty hadrons ». *Physics Reports* **289**.1 (1997), p. 1-155. doi: 10.1016/S0370-1573(97)00005-7.
- [51] L. TORTEROTOT. CMSTransverseTikZ: event displays in the CMS transverse plane with TikZ. url: https://gitlab.com/lucastorterotot/cmstransversetikz.
- [52] The CMS Collaboration. *Performance of quark/gluon discrimination in* 8 TeV *pp data*. Rapp. tech. CMS-PAS-JME-13-002. Geneva: CERN, 2013. URL: http://cds.cern.ch/record/1599732.
- [53] The CDF Collaboration. « Observation of top quark production in $p\bar{p}$ collisions with the collider detector at Fermilab ». *Physical Review Letters* **74**.14 (avr. 1995), p. 2626-2631. DOI: 10.1103/physrevlett.74.2626.
- [54] The DØ Collaboration. « Observation of the top quark ». *Physical Review Letters* **74**.14 (avr. 1995), p. 2632-2637. DOI: 10.1103/physrevlett.74.2632.
- [55] S. Mele. « The Measurement of the Number of Light Neutrino Species at LEP ». Advanced Series on Directions in High Energy Physics 23 (2015), p. 89-106. URL: http://cds.cern.ch/record/2103251.
- [56] The Super-Kamiokande Collaboration. « Evidence for oscillation of atmospheric neutrinos ». *Physical Review Letters* **81** (8 août 1998), p. 1562-1567. poi : 10.1103/PhysRevLett.81.1562.
- [57] The SNO Collaboration. « Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory ». *Physical Review Letters* **89** (1 juin 2002). DOI: 10.1103/PhysRevLett.89.011301.
- [58] Z. Maki, M. Nakagawa & S. Sakata. « Remarks on the Unified Model of Elementary Particles ». *Progress of Theoretical Physics* **28**.5 (nov. 1962), p. 870-880. doi: 10.1143/PTP.28.870.
- [59] J. Schechter & J. W. F. Valle. « Neutrino masses in $SU(2) \times U(1)$ theories ». *Physical Review* **D22** (9 nov. 1980), p. 2227-2235. doi: 10.1103/PhysRevD.22.2227.
- [60] A. DAVIDSON & K. C. Wali. « Family mass hierarchy from universal seesaw mechanism ». *Physical Review Letters* **60** (18 mai 1988), p. 1813-1816. DOI: 10.1103/PhysRevLett.60.1813.

- [61] R. N. Mohapatra & G. Senjanović. « Neutrino masses and mixings in gauge models with spontaneous parity violation ». Physical Review D23 (jan. 1981), p. 165-180. doi: 10.1103/ PhysRevD.23.165.
- R. N. Mohapatra & G. Senjanović. « Neutrino Mass and Spontaneous Parity Nonconservation ». Physical Review Letters 44 (14 avr. 1980), p. 912-915. DOI: 10.1103/PhysRevLett.44.912.
- M. Gell-Mann, P. Ramond & R. Slansky. « Complex Spinors and Unified Theories » (1979). arXiv: 1306.4669 [hep-th]. URL: http://cds.cern.ch/record/133618.
- [64] E. MAJORANA. « Teoria simmetrica dell'elettrone e del positrone ». Il Nuovo Cimento 14.171 (1937). DOI: 10.1007/BF02961314.
- [65] E. MAJORANA & L. MAIANI. « A symmetric theory of electrons and positrons ». Ettore Majorana Scientific Papers (2006). DOI: 10.1007/978-3-540-48095-2_10.
- [66] W. Rodejohann. « Neutrino-less double beta decay and particle physics ». International Journal of Modern Physics **E20**.9 (2011). DOI: 10.1142/S0218301311020186.
- [67] J. Schechter & J. W. F. Valle. « Neutrinoless double- β decay in $SU(2) \times U(1)$ theories ». Physical Review D25 (11 juin 1982), p. 2951-2954. DOI: 10.1103/PhysRevD.25.2951.
- [68] Y. NAGASHIMA. Beyond the Standard Model of Elementary Particle Physics. Weinheim: Wiley-VCH, juin 2014. URL: http://cds.cern.ch/record/1620277.
- [69] D. CLOWE & coll. « A Direct Empirical Proof of the Existence of Dark Matter ». Astrophysical Journal 648.2 (août 2006). DOI: 10.1086/508162.
- [70] P. A. R. Ade & coll. « Planck 2013 results. I. Overview of products and scientific results ». Astronomy & Astrophysics 571 (oct. 2014). DOI: 10.1051/0004-6361/201321529.
- [71] Y. A. Gol'fand & E. P. Likhtman. « Extension of the algebra of Poincare group generators and violation of *P* invariance ». *Journal of Experimental and Theoretical Physics Letters* **13**.8 (1971), p. 323-325. URL: http://cds.cern.ch/record/433516.
- [72] J. Wess & B. Zumino. «Supergauge transformations in four dimensions ». Nuclear Physics B70.1 (1974), p. 39-50. DOI: 10.1016/0550-3213(74)90355-1.
- [73] S. P. Martin. « A Supersymmetry primer ». Advanced Series on Directions in High Energy Physics (juil. 1998), p. 1-98. doi: 10.1142/9789812839657_0001.
- [74] J. F. Gunion & coll. The Higgs hunter's guide. T. 80. Upton, NY: Brookhaven Nat. Lab., 1989. URL: https://cds.cern.ch/record/425736.
- [75] J. F. Gunion & coll. Errata for "The Higgs Hunter's Guide". Rapp. tech. hep-ph/9302272. Fév. 1993. URL: https://cds.cern.ch/record/559892.
- P. FAYET. « Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino ». Nuclear Physics B90 (1975), p. 104-124. DOI: 10.1016/0550-3213(75)90636-7.
- [77] P. FAYET. « Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions ». Physics Letters **B69**.4 (1977), p. 489-494. DOI: 10.1016/0370-2693(77)90852-8.
- [78] M. CARENA & coll. « MSSM Higgs boson searches at the LHC: benchmark scenarios after the discovery of a Higgs-like particle ». European Physical Journal C73.9 (sept. 2013). DOI: 10.1140/epjc/s10052-013-2552-1.
- E. BAGNASCHI & coll. « MSSM Higgs boson searches at the LHC: benchmark scenarios for Run 2 and beyond ». The European Physical Journal C79.7 (juil. 2019). DOI: 10.1140/epjc/s10052-019-7114-8.
- The CMS Collaboration. « Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions ». Journal of High Energy Physics 10 (oct. 2014). DOI: 10.1007/ jhep10(2014)160.

- [81] The CMS Collaboration. « Search for additional neutral MSSM Higgs bosons in the $\tau\tau$ final state in pp collisions at $\sqrt{s}=13\,\text{TeV}$ ». Journal of High Energy Physics **09**.007 (sept. 2018). DOI: 10.1007/JHEP09(2018)007.
- [82] G. Ridolfi, G. Ross & F. Zwirner. «Supersymmetry ». Large Hadron Collider Workshop Proceedings. II. CERN. Geneva: CERN, oct. 1990, p. 606-683.
- [83] LHC Higgs Cross Section Working Group. « Inclusive Observables ». Handbook of LHC Higgs Cross Sections. 1. CERN Yellow Reports: Monographs. Geneva: CERN, 2011. URL: https://cds.cern.ch/record/1318996.
- [84] LHC Higgs Cross Section Working Group. « Differential Distributions ». *Handbook of LHC Higgs Cross Sections*. **2**. CERN Yellow Reports : Monographs. Geneva : CERN, 2012. URL : https://cds.cern.ch/record/1416519.
- [85] LHC Higgs Cross Section Working Group. « Higgs Properties ». Handbook of LHC Higgs Cross Sections. 3. CERN Yellow Reports: Monographs. Geneva: CERN, 2013. URL: https://cds.cern.ch/record/1559921.
- [86] LHC Higgs Cross Section Working Group. « Deciphering the Nature of the Higgs Sector ». Handbook of LHC Higgs Cross Sections. 4. CERN Yellow Reports: Monographs. Geneva: CERN, oct. 2016. URL: http://cds.cern.ch/record/2227475.
- [87] P. Bolzoni & coll. « Vector boson fusion at next-to-next-to-leading order in QCD: Standard model Higgs boson and beyond ». *Physical Review* **D85** (3 fév. 2012). DOI: 10.1103/PhysRevD. 85.035002.
- [88] S. Dawson, A. Djouadi & M. Spira. « QCD Corrections to Supersymmetric Higgs Boson Production: The Role of Squark Loops ». *Physical Review Letters* 77.1 (juil. 1996), p. 16-19. doi: 10.1103/physrevlett.77.16.