

Software System Design and Implementation

More on the Curry Howard Isomorphism

Curtis Millar CSE, UNSW 30 July 2021

- Evaluate terms.
- Satisfiability.
- Enumerating solutions.

What is Intuitionistic Logic?

- Classical logic is the logic that most people know about.
- Intuitionistic logic does not contain the axiom of excluded middle $p \vee \neg p$ or equivalently $\neg \neg p \rightarrow p$.
- In classical logic more can be proven but less can be expressed.
- Intuitionistic proof of an existence statement gives a witness for the statement.

Example of Existence in the Classical Sense

- ullet Let $\mathbb O$ be the set of rational numbers and $\mathbb I$ be the set of irrational numbers.
- Consider the statement $\exists x, y.(x \in \mathbb{I}) \land (y \in \mathbb{I}) \land (x^y \in \mathbb{Q})$.
- Proof:

- Consider the number $\sqrt{2}^{\sqrt{2}}$.
- Otherwise if $\sqrt{2}^{\sqrt{2}} \in \mathbb{I}$

Example of Existence in the Classical Sense

- Let Q be the set of rational numbers and I be the set of irrational numbers.
- Consider the statement $\exists x, y.(x \in \mathbb{I}) \land (y \in \mathbb{I}) \land (x^y \in \mathbb{Q})$.
- Proof:

- Consider the number $\sqrt{2}^{\sqrt{2}}$.
- - Pick $x = \sqrt{2}$ and $y = \sqrt{2}$
 - Then $x^y = \sqrt{2}^{\sqrt{2}}$ so $x^y \in \mathbb{Q}$
- 2 Otherwise if $\sqrt{2}^{\sqrt{2}} \in \mathbb{I}$

Example of Existence in the Classical Sense

- Let $\mathbb O$ be the set of rational numbers and $\mathbb I$ be the set of irrational numbers.
- Consider the statement $\exists x, y.(x \in \mathbb{I}) \land (y \in \mathbb{I}) \land (x^y \in \mathbb{Q})$.
- Proof:

- Consider the number $\sqrt{2}^{\sqrt{2}}$
- - Pick $x = \sqrt{2}$ and $v = \sqrt{2}$
 - Then $x^y = \sqrt{2}^{\sqrt{2}}$ so $x^y \in \mathbb{O}$
- **2** Otherwise if $\sqrt{2}^{\sqrt{2}} \in \mathbb{I}$
 - Pick $x = \sqrt{2}^{\sqrt{2}}$ and $y = \sqrt{2}$
 - Then $x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^2 = 2$ so $x^y \in \mathbb{O}$

Recall: The Curry-Howard Isomorphism

This correspondence goes by many names, but is usually attributed to Haskell Curry and William Howard.

It is a *very deep* result:

Logic	Programming
Propositions	Types
Proofs	Programs
Proof Simplification	Evaluation

It turns out, no matter what logic you want to define, there is always a corresponding λ -calculus, and vice versa.

Constructive Logic	Typed λ -Calculus
Classical Logic	Continuations
Modal Logic	Monads
Linear Logic	Linear Types, Session Types
Separation Logic	Region Types

We can translate logical connectives to types and back:

Conjunction (\land)	Tuples
Disjunction (\lor)	Either
Implication	Functions
True	()
False	Void

We can also translate our *equational reasoning* on programs into *proof simplification* on proofs!

Constructors and Eliminators for Sums

Correction

•000

```
data TrafficLight = Red | Amber | Green
```

```
Example (Traffic Lights)
                  TrafficLight \simeq Either () (Either () ())
                                  \simeq Left ()
                  Red
                                  \simeq Right (Left ())
                  Amber

  ≃ Right (Right (Left ()))

                  Green
```

Type Correctness

Correction

0000

$$\frac{\frac{???}{\text{Left () :: ()}}}{\frac{\text{Right (Left ()) :: Either () ()}}{\text{Right (Right (Left ())) :: Either () (Either () ())}}} S_R$$

Type Correctness

$$\frac{\frac{}{\text{()}::()}\text{()}}{\frac{\text{Right ()}:: Either () ()}{\text{S}_{R}}} S_{R}$$
Right (Right ()):: Either () (Either () ())

Correction

000

Administrivia

prop or false :: a -> (Either a Void)

```
prop_or_false a = Left a
prop_or_true :: a -> (Either a ())
prop_or_true a = Right ()
prop and true :: a \rightarrow (a, ())
prop and true a = (a, ())
prop double neg intro :: a -> (a -> Void) -> Void
prop double neg intro a f = f a
prop triple neg elim ::
  (((a\rightarrow Void) \rightarrow Void) \rightarrow Void) \rightarrow a \rightarrow Void
prop triple neg elim f a = f (\g \rightarrow \g a)
```

Intuitionistic Logic

Wrap-up

- Assignment 2 is due Wednesday evening (4th August 6pm).
- There is a quiz for this week, but no exercise.
- Next week's lectures consist of an extension or guest lecture and a revision lecture on Friday.
- Revision topics can be posted in the forum
- If you enjoyed the course and want to do more in this direction, ask us for thesis topics, taste of research projects, and consider attending COMP3161 and COMP4161.
- Fill in the myExperience reports, it is important for us to receive your feedback. Everyone gets bonus mark if we get over 50% response rate.

Consultations

- Consultations will be made on request. Ask on forum or email cs3141@cse.unsw.edu.au.
- If there is a consultation it will be announced on Piazza with a link a room number for Hopper.
- Will be on the Tuesday, 4pm to 5:30pm on Blackboard Collaborate.
- Make sure to join the queue on Hopper. Be ready to share your screen with REPL (ghci or stack repl) and editor set up.