Participez à un concours sur la Smart City

Decembre 1, 2022

Aperçu

L'objectif de ce premier projet est:

- La prise en main et l'utilisation des outils pour effectuer une analyse de données:
 - Python
 - Jupyter notebook
 - Libraries pour la data science: pandas, numpy, matplotlib etc...
- Effectuer une analyse de données à partir d'un dataset portant sur les arbres de Paris.
- Interpréter les résultats et trouver des suggestions pour végétaliser la ville et optimiser les tournées d'entretien des arbres de la ville.

Les phases du projet

Setup l'environnement

L'installation:

- Python
- Ide (editeur)
- Jupyter notebook
- Environnement virtuel python
- Libraries python

Collecte des données

L'utilisation de pandas:

- Charger les données issues du fichier
 CSV
- Creation d'unDataFrame (tableau2D)

Nettoyage des données

Le nettoyage des données consiste à:

- Traitement des données invalides.
- Suppression des doublons.
- Remplacement de valeurs
- Detecte et filtre les outliers

Analyse, visualisations et interpretations.

La finalité du projet consiste

- Analyser les differentes donnees
- Avoir une visualisation à l'aide de graphes
- Interpréter les résultats et en tirer des conclusions et faire des suggestions

Python, Jupyter et les librairies

Python étant déjà installé sur mon poste avec une version récente (3.10.4). J'ai fait le choix d'utiliser PIP pour installer les modules nécessaires:

- Jupyterlab
- Pandas
- Matplotlib
- folium

Jupyterlab

Jupiter Lab et la nouvelle génération d'interface notebook qui offre d'avantage de fonctionnalités que jupyter notebook classique

Vérification de l'environnement

Vérification de l'environnement

Commande bash dans le notebook:

Jupyter offre la possibilité d'utiliser bash en precedent la commande du symbole 'l'

Vérifier python et l'environnement virtuel:

Commande	resultat
!pythonversion	Python 3.10.4
!pip -V	Chemin du virtual env

Verification des dependances

Un script python me permets de vérifier que les dépendances sont bien installés sur mon environnement virtuel

```
# check the requirements
for pkg in requirements:
    try:
        mod = importlib.import_module(pkg)
        print(f"{OK} {mod.__name__}")
    except ImportError:
        print(f"{FAIL} {pkg} not installed.")
```

```
from check_environment import ru
run_checks()
Using Python in /Users/drainasr-
  OK ] Python is version 3.10.4
       jupyterlab
  OK
       matplotlib
  0K
      numpy
  OK
       pandas
       seaborn
  0K
  0K
       statsmodels
       folium
```

Collecte des données

Collecte des données

pd.read_csv(path)

Le fichier de données étant au format CSV, pandas permet de charger les données dans une structure de données appelées DataFrame.

Le dataframe est un tableau a 2 dimensions, comprenant:

- Lignes
- colones

Verification du dataframe

df.empty

L'attribut empty permet un premiere examen du dataframe et vérifier qu'il n'est pas vide.

```
Is it empty?

[6]: df.empty

[6]: False
```

df = pd.read_csv('data/p2_arbres_fr.csv', sep=';')

Presentation des donnees

Vue générale des données (statistiques)

Récupérer les dimensions du tableau df.shape On a 18 colonnes et 200137 lignes Récupérer le type des données df.dtypes On a des floats, integers et objects Récupérer des statistiques sur les données df.describe() Moyenne, écart-type, quartile etc.. Sommaire complet du dataframe df.info() On peut voir une colonne et des valeurs vides

df.describe()

Permet d'obtenir des statistiques les plus courantes du dataframe.

On a notamment les statistiques suivantes:

- moyenne
- Ecart-type
- Mediane
- Quartile
- Min
- max

df.info()

Un résumé exhaustif du jeu de données.

On peut notamment visualiser les colonnes pour lesquelles il y a des valeurs nulles ou colonnes nulles

[13]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 200137 entries, 0 to 200136

Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	id	200137 non-null	int64
1	type_emplacement	200137 non-null	object
2	domanialite	200136 non-null	object
3	arrondissement	200137 non-null	object
4	complement_addresse	30902 non-null	object
5	numero	0 non-null	float64
6	lieu	200137 non-null	object
7	id_emplacement	200137 non-null	object
8	libelle_francais	198640 non-null	object
9	genre	200121 non-null	object
10	espece	198385 non-null	object
11	variete	36777 non-null	object
12	circonference_cm	200137 non-null	int64
13	hauteur_m	200137 non-null	int64
14	stade_developpement	132932 non-null	object
15	remarquable	137039 non-null	float64
16	geo_point_2d_a	200137 non-null	float64
17	geo_point_2d_b	200137 non-null	float64
<pre>dtypes: float64(4), int64(3), object(11)</pre>			
memory usage: 27.5+ MB			

Le nettoyage des données

Suppression des colonnes et lignes non pertinentes

On a notamment les cas suivantes:

- Colonne vide
- Colonne content 1 valeur unique
- Colonne contenant peu de valeurs
- Les lignes en doublon
- Filtrer les données hors périmètre

Colonne 'numero' est vide

```
We have a column numero empty. We can drop empty column

[15]: print("column is empty ?:", df.numero.isnull().values.all()) df.drop('numero', axis=1, inplace=True)

column is empty ?: True
```

Le dataframe ne contient pas de doublons

Rows That Contain Duplicate Data

```
[26]: # calculate duplicates
dups = df.duplicated()
# report if there are any duplicates
print(dups.any())
False
```

Traitement des valeurs invalides

On a notamment les cas suivantes:

- Une hauteur ou circonférence égale à 0
- Une hauteur ou circonférence qui atteint des valeurs non possible

<u>1 étape:</u> on les remplace par Nan

<u>2 étape:</u> On calcule la valeur moyenne selon le genre d'arbre puis on lui impute.

On remplace 0 par Nan

```
df[['hauteur_m','circonference_cm']].replace(0, np.nan)
```

On remplace Nan par la valeur moyenne selon le type d'arbre qu'il s'agit.

```
df['hauteur_m'].fillna(df.groupby('genre')['hauteur_m'].transform('mean'),
```

Traitement des outliers

J'ai utilisé 3 méthodes pour les identifier

- Boxplot de Seaborn
- ecart-type
- interquartile

Ensuite les valeurs sont remplacés par la limite max

Représentation graphique des outliers

$$\sigma = \sqrt{rac{\sum (x_i - \mu)^2}{N}}$$

2: Interquartile

$$IQR = Q_3 - Q_1$$

Analyse exploratoire

Exemple d'analyse univariée

On constate nettement d'après ce graphique:

 Les arrondissements au centre de Paris ont une plus faible proportion d'arbre que les arrondissements périphériques

Exemple d'analyse bivariée

On constate en comparant la hauteur moyenne des arbres au stade de développement:

- Les données fournis sont bien cohérente
- La hauteur des arbres est bien croissantes du stade le plus jeune au plus mature

Diagramme circulaire

On constate d'après ce diagramme:

- Les Alignements sont les espaces qui dominent nettement en nombre d'arbres
- Puis en second, ce sont les jardins

Trees distributions by estate (domanialite) in paris

Carte

On constate d'après cette carte réalisé avec folium:

 Une concentration importante d'arbres au niveau des grands axes (routes, boulevards). Ce qui confirme notre précédente analyse qui a révélé que les alignements sont les endroits ou on trouve le plus d'arbre

Conclusion

Conclusion de l'analyse de données

Points important

Cette analyse a avant tout une portée pédagogique pour permettre à l'étudiant une prise en main des outils et méthodologies d'un data analyst.

Mais elle m'a permit de mettre en évidence les points suivants::

- Le centre de Paris est nettement moins boisé que les arrondissements plus périphériques. Donc il faut davantage planter des arbres dans le cœur de Paris.
- Les Alignements sont les espaces qui contiennent le plus grand nombre d'arbre, donc à prioriser pour les tournées
- La catégorie d'arbre la plus répandue est le Platane, quasiment sur tous les arrondissements. Cet arbre nécessite un entretien comme l'élagage plus particulièrement en automne. Donc recruter davantage de saisonniers par exemple en Octobre, Novembre.

L'auteur

Nasr-edine Drai, etudiant ingénieur IA

J'ai obtenu un diplôme de développeur d'applications python OpenClassrooms et je poursuis mes études pour devenir ingénieur IA