

SALICON: Reducing the Semantic Gap in Saliency Prediction by Adapting Deep Neural Networks

Xun Huang^{1,2}, Chengyao Shen¹, Xavier Boix^{1,3}, and Qi Zhao¹

¹Department of Electrical and Computer Engineering, National University of Singapore ²School of Computer Science and Engineering, Beihang University ³CBMM, Massachusetts Institute of Technology

Introduction

Saliency in Context (SALICON) is an ongoing effort that aims at understanding and predicting visual attention.

Motivation

Semantic Gap: Conventional saliency models typically rely on low-level image statistics to predict human fixations. While these models perform significantly better than chance, there is still a large gap between model prediction and human behavior. This gap is largely due to the limited capability of models in predicting eye fixations with strong semantic content, the so-called **semantic gap**.

Contributions

This poster presents a focused study to narrow the semantic gap with an architecture based on Deep Neural Network (DNN). Two key components of our architecture are:

- Saliency Objective: Objective functions based on the saliency evaluation metrics
- Extension to Multi-scale: Feature integration at different image scales

Compared with 14 saliency models on 6 public eye tracking benchmark datasets, results demonstrate that our DNNs can automatically learn features for saliency prediction that surpass by a big margin the state-of-the-art. In addition, our model **ranks top** under all seven metrics on the MIT300 challenge set.

Methods

Saliency Objective

Four saliency evaluation metrics as objective functions of the back-propagation:

- Kullback-Leibler divergence (KLD)
- Normalized Scanpath Saliency (NSS)Similarity (Sim)
- Linear Correlation Coefficient (CC)

Extension to Multi-scale

We use the input image at different scales obtained by downsampling the image. Each scale is processed by a DNN. The neural responses of all DNNs are concatenated to predict the saliency map. The effect of multi-scale is qualitatively illustrated below:

Architecture of the DNN Input images 800 Concatenation 50 Saliency Map 50 Saliency Objectives (KLD, NSS, CC, SIM) DNNs with shared weights Human Fixation Maps

Results

Quantitative comparison (in sAUC) to the state-of-the-art models in 6 datasets.

Qualitative comparison to the state-of-the-art

Results

Results on MIT300 Online Benchmark

(in 7 evaluation metrics)

Evaluation Metric	Gauss	State-of-the-art	Ours	Infinite Humans	Relative Advances
AUC-Judd	0.78	0.84 Deep Gaze	0.87	0.91	42.9%
AUC-Borji	0.77	0.83 Deep Gaze	0.85	0.87	50.0%
sAUC	0.51	0.68 AWS	0.74	0.80	50.0%
NSS	0.92	1.41 BMS	2.12	3.18	40.1%
CC	0.38	0.55 BMS	0.74	1	42.2%
Similarity	0.39	0.51 BMS	0.6	1	18.4%
EMD	4.81	3.33OS	2.62	0	21.3%

Histogram of the weights of the convolutional filter

Visualization

Top 3 salient features

Top 3 non-salient features

Scan the QR code to try our demo!

