Foundations of Computing Lecture 15

Arkady Yerukhimovich

March 9, 2023

Outline

- 1 Lecture 14 Review
- 2 Languages on Machines
- 3 Preliminaries Countable and Uncountable Sets
- 4 Proving L_{TM} Undecidable

Lecture 14 Review

- Decidable and Turing-recognizable languages
- Decidability of regular languages

Outline

- 1 Lecture 14 Review
- 2 Languages on Machines
- 3 Preliminaries Countable and Uncountable Sets
- 4 Proving L_{TM} Undecidable

Characterizing Computability of Languages

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

- M halts on ALL inputs, accepts those in L and rejects those not in L
- Seems to match informal definition we wanted before

Characterizing Computability of Languages

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

- M halts on ALL inputs, accepts those in L and rejects those not in L
- Seems to match informal definition we wanted before

Definition: Turing-recognizable languages

A language L is Turing-recognizable or recursively enumerable if some TM M recognizes it

- M halts and accepts all strings in L
- M may not halt on strings not in L does not necessarily have to reject

Characterizing Computability of Languages

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

- M halts on ALL inputs, accepts those in L and rejects those not in L
- Seems to match informal definition we wanted before

Definition: Turing-recognizable languages

A language L is Turing-recognizable or recursively enumerable if some TM M recognizes it

- M halts and accepts all strings in L
- M may not halt on strings not in L does not necessarily have to reject

Observation

Every Decidable language is also Turing-recognizable, but the reverse direction is not true.

Problems About Regular Languages

Last time, we showed the following languages are decidable:

- **1** $L_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$
- ② $L_{NFA} = \{ \langle B, w \rangle \mid B \text{ is a NFA that accepts input string } w \}$
- **3** $L_{REX} = \{\langle R, w \rangle \mid R \text{ is a reg. exp. that generates the string } w\}$
- $L_{\emptyset-DFA} = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset\}$

$$L_{CFG} = \{\langle G, w \rangle \mid G \text{ is a CFG that generates } w\}$$

$$L_{CFG} = \{\langle G, w \rangle \mid G \text{ is a CFG that generates } w\}$$

Try 1:

- Every CFG has an equivalent PDA
- Use a TM to run the PDA (easy to simulate stack using TM's tape)

$$L_{CFG} = \{\langle G, w \rangle \mid G \text{ is a CFG that generates } w\}$$

Try 1:

- Every CFG has an equivalent PDA
- Use a TM to run the PDA (easy to simulate stack using TM's tape)

But, there is a problem:

$$L_{CFG} = \{\langle G, w \rangle \mid G \text{ is a CFG that generates } w\}$$

Try 1:

- Every CFG has an equivalent PDA
- Use a TM to run the PDA (easy to simulate stack using TM's tape)

But, there is a problem:

- A PDA may have some branches that go on forever keep pushing and popping things on the stack
- This would mean that on such an input the resulting TM would not halt – i.e., not be a decider

$$L_{CFG} = \{\langle G, w \rangle \mid G \text{ is a CFG that generates } w\}$$

Try 2:

• Fortunately, when given a CFG in a certain form (Chomsky Normal Form), can prove that any derivation of $w \in L(G)$ has at most 2n-1 steps (where n = |w|)

$$L_{CFG} = \{\langle G, w \rangle \mid G \text{ is a CFG that generates } w\}$$

Try 2:

- Fortunately, when given a CFG in a certain form (Chomsky Normal Form), can prove that any derivation of $w \in L(G)$ has at most 2n-1 steps (where n = |w|)
- Moreover, any CFG can be converted into Chomsky Normal Form

$$L_{CFG} = \{\langle G, w \rangle \mid G \text{ is a CFG that generates } w\}$$

Try 2:

- Fortunately, when given a CFG in a certain form (Chomsky Normal Form), can prove that any derivation of $w \in L(G)$ has at most 2n-1 steps (where n = |w|)
- Moreover, any CFG can be converted into Chomsky Normal Form
- Use a TM to list all derivations with $\leq 2n-1$ steps Can do this in finite time, since grammar is finite

$$L_{CFG} = \{\langle G, w \rangle \mid G \text{ is a CFG that generates } w\}$$

Try 2:

- Fortunately, when given a CFG in a certain form (Chomsky Normal Form), can prove that any derivation of $w \in L(G)$ has at most 2n-1 steps (where n = |w|)
- Moreover, any CFG can be converted into Chomsky Normal Form
- Use a TM to list all derivations with $\leq 2n-1$ steps Can do this in finite time, since grammar is finite
- If any of these derivations produce w, accept. Otherwise, reject.

$$L_{CFG} = \{\langle G, w \rangle \mid G \text{ is a CFG that generates } w\}$$

Try 2:

- Fortunately, when given a CFG in a certain form (Chomsky Normal Form), can prove that any derivation of $w \in L(G)$ has at most 2n-1 steps (where n = |w|)
- Moreover, any CFG can be converted into Chomsky Normal Form
- Use a TM to list all derivations with $\leq 2n-1$ steps Can do this in finite time, since grammar is finite
- If any of these derivations produce w, accept. Otherwise, reject.

Corollary

Every CFL is decidable

$$L_{\emptyset-CFG} = \{\langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset\}$$

$$L_{\emptyset-CFG} = \{\langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset\}$$

Intuition:

 Need to test if the start variable can ever generate a string of all terminals

$$L_{\emptyset-CFG} = \{\langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset\}$$

Intuition:

- Need to test if the start variable can ever generate a string of all terminals
- Idea: For each variable determine if it can be converted to terminals

$$L_{\emptyset-CFG} = \{\langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset\}$$

Intuition:

- Need to test if the start variable can ever generate a string of all terminals
- Idea: For each variable determine if it can be converted to terminals
- Keep track of which variables can do so, and see if it includes the start variable

$$L_{\emptyset-CFG} = \{\langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset\}$$

Intuition:

- Need to test if the start variable can ever generate a string of all terminals
- Idea: For each variable determine if it can be converted to terminals
- Keep track of which variables can do so, and see if it includes the start variable

On input $\langle G \rangle$

$$L_{\emptyset-CFG} = \{\langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset\}$$

Intuition:

- Need to test if the start variable can ever generate a string of all terminals
- Idea: For each variable determine if it can be converted to terminals
- Keep track of which variables can do so, and see if it includes the start variable

On input $\langle G \rangle$

Mark all terminals in G

$$L_{\emptyset-CFG} = \{\langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset\}$$

Intuition:

- Need to test if the start variable can ever generate a string of all terminals
- Idea: For each variable determine if it can be converted to terminals
- Keep track of which variables can do so, and see if it includes the start variable

On input $\langle G \rangle$

- Mark all terminals in G
- Repeat until no new variable gets marked:
 - Mark any variable A where G has a rule $A \to U_1 U_2 \cdots U_k$ and each symbol U_1, U_2, \ldots, U_k has already been marked

$$L_{\emptyset-CFG} = \{\langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset\}$$

Intuition:

- Need to test if the start variable can ever generate a string of all terminals
- Idea: For each variable determine if it can be converted to terminals
- Keep track of which variables can do so, and see if it includes the start variable

On input $\langle G \rangle$

- Mark all terminals in G
- Repeat until no new variable gets marked:
 - Mark any variable A where G has a rule $A \to U_1 U_2 \cdots U_k$ and each symbol U_1, U_2, \dots, U_k has already been marked
- If starts symbol is not marked, accept. Otherwise, reject

$$L_{EQ-CFG} = \{\langle G, H \rangle \mid G, H \text{ are CFGs and } L(G) = L(H)\}$$

$$L_{EQ-CFG} = \{\langle G, H \rangle \mid G, H \text{ are CFGs and } L(G) = L(H)\}$$

We will prove after spring break that this is undecidable.

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Observation: L_{TM} is Turing-recognizable

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Observation: L_{TM} is Turing-recognizable

On input $\langle M, w \rangle$:

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Observation: L_{TM} is Turing-recognizable On input $\langle M, w \rangle$:

Simulate M on input w

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Observation: L_{TM} is Turing-recognizable On input $\langle M, w \rangle$:

- Simulate M on input w
- ② If M ever enters its accept state, halt and accept. If M ever enters its reject state, halt and reject

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Observation: L_{TM} is Turing-recognizable On input $\langle M, w \rangle$:

- Simulate M on input w
- $oldsymbol{@}$ If M ever enters its accept state, halt and accept. If M ever enters its reject state, halt and reject

Is L_{TM} Decidable?:

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Observation: L_{TM} is Turing-recognizable On input $\langle M, w \rangle$:

- Simulate M on input w
- $fence{2}$ If M ever enters its accept state, halt and accept. If M ever enters its reject state, halt and reject

Is L_{TM} Decidable?:

• The problem: *M* may never halt

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Observation: L_{TM} is Turing-recognizable On input $\langle M, w \rangle$:

- ullet Simulate M on input w
- ② If M ever enters its accept state, halt and accept. If M ever enters its reject state, halt and reject

Is L_{TM} Decidable?:

- The problem: M may never halt
- In this case, above algorithm will never output accept or reject

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Observation: L_{TM} is Turing-recognizable On input $\langle M, w \rangle$:

- ullet Simulate M on input w
- ② If M ever enters its accept state, halt and accept. If M ever enters its reject state, halt and reject

Is L_{TM} Decidable?:

- The problem: M may never halt
- In this case, above algorithm will never output accept or reject
- If could determine that *M* will never halt (i.e, it has entered an infinite loop), could reject.

Problems About Turing Machines

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Observation: L_{TM} is Turing-recognizable On input $\langle M, w \rangle$:

- lacktriangle Simulate M on input w
- ② If M ever enters its accept state, halt and accept. If M ever enters its reject state, halt and reject

Is L_{TM} Decidable?:

- The problem: M may never halt
- In this case, above algorithm will never output accept or reject
- If could determine that M will never halt (i.e, it has entered an infinite loop), could reject.

An Undecidable Problem

• We will prove that L_{TM} is undecidable

Relationships Among Language Classes

Outline

- 1 Lecture 14 Review
- 2 Languages on Machines
- 3 Preliminaries Countable and Uncountable Sets
- 4 Proving L_{TM} Undecidable

ullet Cardinality of a set S is the number of elements in that set (|S|)

- Cardinality of a set S is the number of elements in that set (|S|)
- A set S can be finite $(|S| < \infty)$ or infinite $(|S| = \infty)$

- ullet Cardinality of a set S is the number of elements in that set (|S|)
- A set S can be finite $(|S| < \infty)$ or infinite $(|S| = \infty)$
- ullet $|S_1|=|S_2|$ if there's a one-to-one and onto mapping from S_1 to S_2

- ullet Cardinality of a set S is the number of elements in that set (|S|)
- A set S can be finite $(|S| < \infty)$ or infinite $(|S| = \infty)$
- ullet $|S_1|=|S_2|$ if there's a one-to-one and onto mapping from S_1 to S_2
- Example:

$$A = \{0, 1, 2, 3\}$$

$$B = \{a, b, c, d\}$$

$$f(0) = a f(1) = b f(2) = c$$

$$f(0) = a, f(1) = b, f(2) = c, f(3) = d$$

Intuition: Countable sets are ones where we can arrange elements into a "first element", "second element", and so on.

Intuition: Countable sets are ones where we can arrange elements into a "first element", "second element", and so on.

• An infinite set A is *countably infinite* if it has the same cardinality as the natural numbers: $\mathcal{N}=1,2,3,\ldots$

Intuition: Countable sets are ones where we can arrange elements into a "first element", "second element", and so on.

- An infinite set A is *countably infinite* if it has the same cardinality as the natural numbers: $\mathcal{N} = 1, 2, 3, \dots$
- A set A is countable if it is finite or countably infinite

Intuition: Countable sets are ones where we can arrange elements into a "first element", "second element", and so on.

- An infinite set A is *countably infinite* if it has the same cardinality as the natural numbers: $\mathcal{N} = 1, 2, 3, \dots$
- A set A is countable if it is finite or countably infinite
- A set that is not countable is uncountable

Example 1: Evens

Evens

The set of even numbers is countable

$$N \rightarrow Evm$$

$$f(x) = 2 \times F(x) = 2$$

$$f(x) = 7$$

Example 2: Rationals

Rationals

The set of rational numbers is

Example 2: Rationals

Rationals

The set of rational numbers is countable

Example 2: Rationals

Rationals

The set of rational numbers is countable

Example 3: Strings

Strings

The set of strings in $\{0,1\}^*$ is countable

Real Numbers

The set of real numbers (\mathcal{R}) is uncountable

Real Numbers

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

Real Numbers

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

ullet Assume that ${\cal R}$ is countable

Real Numbers

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

- ullet Assume that ${\mathcal R}$ is countable
- ullet Then there is a one-to-one and onto mapping f from ${\mathcal N}$ to ${\mathcal R}$

Real Numbers

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

- Assume that \mathcal{R} is countable
- ullet Then there is a one-to-one and onto mapping f from ${\mathcal N}$ to ${\mathcal R}$

n	f(n)
1	1.234
2	3.141
3	5.556
:	:

Real Numbers

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

- Assume that \mathcal{R} is countable
- ullet Then there is a one-to-one and onto mapping f from ${\mathcal N}$ to ${\mathcal R}$

• We construct a value $x \in \mathcal{R}$ s.t $x \neq f(n)$ for any n Idea: For all $i \in \mathcal{N}$, make $x_i \neq f(i)_i$ x = 0.314.

Real Numbers

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

- Assume that \mathcal{R} is countable
- ullet Then there is a one-to-one and onto mapping f from ${\mathcal N}$ to ${\mathcal R}$

n	f(n)
1	1.234
2	3.141
3	5.556
:	:

- We construct a value $x \in \mathcal{R}$ s.t $x \neq f(n)$ for any n Idea: For all $i \in \mathcal{N}$, make $x_i \neq f(i)_i$
- ullet Contradiction f is not mapping between ${\mathcal R}$ and ${\mathcal N}$

Outline

- 1 Lecture 14 Review
- 2 Languages on Machines
- 3 Preliminaries Countable and Uncountable Sets
- 4 Proving L_{TM} Undecidable

Turing Machines

Turing Machines

The set of Turing Machines is countable

ullet We already showed that the set of strings $\{0,1\}^*$ is countable

Turing Machines

- We already showed that the set of strings $\{0,1\}^*$ is countable
- \bullet Can similarly show that for any finite alphabet $\Sigma, \, \Sigma^*$ is countable

Turing Machines

- We already showed that the set of strings $\{0,1\}^*$ is countable
- Can similarly show that for any finite alphabet Σ , Σ^* is countable
- ullet But, a TM M can be written as a string $\langle M
 angle \in \Sigma^*$

Turing Machines

- We already showed that the set of strings $\{0,1\}^*$ is countable
- Can similarly show that for any finite alphabet Σ , Σ^* is countable
- But, a TM M can be written as a string $\langle M \rangle \in \Sigma^*$
- \bullet Hence, by omitting all strings that are not encodings of valid TMs we get a mapping of TMs to ${\cal N}$

Languages over alphabet Σ

The set of all languages (\mathcal{L}) over alphabet Σ is uncountable

Languages over alphabet Σ

The set of all languages (\mathcal{L}) over alphabet Σ is uncountable

- The set *B* of infinite binary sequences
 - An infinite binary sequence is an infinite length strings of 0's and 1's
 - ullet B is uncountable can prove similar to ${\cal R}$

```
D: 2 010,100..., 1100...., 7
```

Languages over alphabet Σ

The set of all languages (\mathcal{L}) over alphabet Σ is uncountable

- The set *B* of infinite binary sequences
 - An infinite binary sequence is an infinite length strings of 0's and 1's
 - ullet B is uncountable can prove similar to ${\cal R}$
- ② Set of languages (\mathcal{L}) has same cardinality as B

Languages over alphabet Σ

The set of all languages (\mathcal{L}) over alphabet Σ is uncountable

- The set B of infinite binary sequences
 - An infinite binary sequence is an infinite length strings of 0's and 1's
 - ullet B is uncountable can prove similar to ${\mathcal R}$
- ② Set of languages (\mathcal{L}) has same cardinality as B
 - Define the characteristic sequence χ_A of language $A \in \mathcal{L}$

Languages over alphabet Σ

The set of all languages (\mathcal{L}) over alphabet Σ is uncountable

Proof:

- The set B of infinite binary sequences
 - An infinite binary sequence is an infinite length strings of 0's and 1's
 - ullet B is uncountable can prove similar to ${\cal R}$
- ② Set of languages (\mathcal{L}) has same cardinality as B
 - ullet Define the characteristic sequence χ_A of language $A\in\mathcal{L}$

ullet This is a one-to-one and onto mapping from ${\cal L}$ to B, so $|{\cal L}|=|B|$

Languages over alphabet Σ

The set of all languages (\mathcal{L}) over alphabet Σ is uncountable

- The set B of infinite binary sequences
 - An infinite binary sequence is an infinite length strings of 0's and 1's
 - ullet B is uncountable can prove similar to ${\mathcal R}$
- ② Set of languages (\mathcal{L}) has same cardinality as B
 - Define the characteristic sequence χ_A of language $A \in \mathcal{L}$

- This is a one-to-one and onto mapping from $\mathcal L$ to B, so $|\mathcal L|=|B|$
- \bullet Therefore, \mathcal{L} is uncountable

Some Languages are not Turing-recognizable

We have proven:

- The set of Turing Machines is countable
- The set of languages is uncountable

We have proven:

- The set of Turing Machines is countable
- The set of languages is uncountable

Therefore:

We have proven:

- The set of Turing Machines is countable
- The set of languages is uncountable

Therefore:

 There is no one-to-one and onto mapping from languages to Turing Machines

We have proven:

- The set of Turing Machines is countable
- The set of languages is uncountable

Therefore:

- There is no one-to-one and onto mapping from languages to Turing Machines
- Thus, there exist languages that have no corresponding TM that recognizes them

We have proven:

- The set of Turing Machines is countable
- The set of languages is uncountable

Therefore:

- There is no one-to-one and onto mapping from languages to Turing Machines
- Thus, there exist languages that have no corresponding TM that recognizes them
- Note, that such languages are also undecidable

Where are we now?

• We have proven that some languages are not Turing-recognizable

We have proven:

- The set of Turing Machines is countable
- The set of languages is uncountable

Therefore:

- There is no one-to-one and onto mapping from languages to Turing Machines
- Thus, there exist languages that have no corresponding TM that recognizes them
- Note, that such languages are also undecidable

Where are we now?

- We have proven that some languages are not Turing-recognizable
- But, we have not given any examples of such a language

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

$$L_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1\}$$

Proof: By contradiction

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

• Assume that L_{TM} is decided by TM H

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

• Assume that L_{TM} is decided by TM H

$$H(\langle M, w \rangle) = \left\{ egin{array}{ll} \textit{accept} & \textit{if } M \textit{ accepts } w \\ \textit{reject} & \textit{if } M \textit{ does not accept } w \end{array}
ight.$$

 Use H to build a TM D that checks whether a TM M accepts its own description, and then does the opposite:

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

• Assume that L_{TM} is decided by TM H

$$H(\langle M, w \rangle) = \left\{ egin{array}{ll} \textit{accept} & \textit{if } M \textit{ accepts } w \\ \textit{reject} & \textit{if } M \textit{ does not accept } w \end{array}
ight.$$

- Use H to build a TM D that checks whether a TM M accepts its own description, and then does the opposite:
 On Input (M), where M is a TM
 - 1 Run H on input $\langle M, \langle M \rangle \rangle$
 - Output the same its of what
 - Output the opposite of what H outputs

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

• Assume that L_{TM} is decided by TM H

$$H(\langle M, w \rangle) = \left\{ egin{array}{ll} \textit{accept} & \textit{if } M \textit{ accepts } w \\ \textit{reject} & \textit{if } M \textit{ does not accept } w \end{array}
ight.$$

- Use H to build a TM D that checks whether a TM M accepts its own description, and then does the opposite:
 - On Input $\langle M \rangle$, where M is a TM
 - **1** Run *H* on input $\langle M, \langle M \rangle \rangle$
 - Output the opposite of what H outputs

$$D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$$

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

• Assume that L_{TM} is decided by TM H

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

- Use H to build a TM D that checks whether a TM M accepts its own description, and then does the opposite:
 On Input (M), where M is a TM
 - **1** Run H on input $\langle M, \langle M \rangle \rangle$
 - 2 Output the opposite of what H outputs

$$D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$$

• Now consider what happens if we run D on $\langle D \rangle$

$$D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \\ reject & \text{if } D \text{ accepts} \langle D \rangle \end{cases}$$

How Is This a Diagonalization?

	$\langle \mathcal{M}_1 angle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$		$\langle D angle$	• • •
M_1		reject			accept	
M_2	reject	reject	reject		accept	
M_3	accept	accept	accept		reject	
:		:		٠		
D	reject	accept	reject		?	

- ullet We have defined D to do the opposite of what M_i does on input $\langle M_i \rangle$
- But what does D do on input $\langle D \rangle$??

A Turing-unrecognizable Language

$\overline{L_{TM}}$

The language

$$\overline{L_{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM and } M(w) \neq 1\}$$

is not Turing-recognizable