شبکه های کامپیوتری ۲

درس ۳ فصل ۴

مسیریاب های شبکه

دانشگاه صنعتی اصفهان دانشکده مهندسی برق و کامپیوتر

Chapter 4 Network Layer: The Data Plane

A note on the use of these Powerpoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

© All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top Down Approach

7th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016

Network Layer: Data Plane 4-2

Chapter 4: outline

- 4.1 Overview of Network layer
 - data plane
 - control plane
- 4.2 What's inside a router
- 4.3 IP: Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing
 - network address translation
 - IPv6

4.4 Generalized Forward and SDN

- match
- action
- OpenFlow examples of matchplus-action in action

Chapter 4: network layer

chapter goals:

- understand principles behind network layer services, focusing on data plane:
 - network layer service models
 - forwarding versus routing
 - how a router works
 - generalized forwarding
- instantiation, implementation in the Internet

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it

Two key network-layer functions

network-layer functions:

- •forwarding: move packets from router's input to appropriate router output
- •routing: determine route taken by packets from source to destination
 - routing algorithms

analogy: taking a trip

- forwarding: process of getting through single interchange
- routing: process of planning trip from source to destination

Network layer: data plane, control plane

Data plane

- local, per-router function
- determines how datagram arriving on router input port is forwarded to router output port
- forwarding function

Control plane

- network-wide logic
- determines how datagram is routed among routers along end-end path from source host to destination host
- two control-plane approaches:
 - traditional routing algorithms: implemented in routers
 - software-defined networking (SDN): implemented in (remote) servers

Router architecture overview

high-level view of generic router architecture:

Input port functions

data link layer:

e.g., Ethernet see chapter 5

decentralizéd switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- goal: complete input port processing at 'line speed'
- queuing: if datagrams arrive faster than forwarding rate into switch fabric

Input port functions

data link layer: e.g., Ethernet see chapter 5

 using header field values, lookup output port using forwarding table in input port

memory ("match plus action")

 destination-based forwarding: forward based only on destination IP address (traditional)

generalized forwarding: forward based on any set of header field values

Longest prefix matching

- we'll see why longest prefix matching is used shortly, when we study addressing
- longest prefix matching: often performed using ternary content addressable memories (TCAMs)
 - content addressable: present address to TCAM: retrieve address in one clock cycle, regardless of table size
 - Cisco Catalyst: can up ~IM routing table entries in TCAM

Switching fabrics

- transfer packet from input buffer to appropriate output buffer
- switching rate: rate at which packets can be transfered from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable
- three types of switching fabrics

Output ports

This slide in HUGELY important!

buffering required whe due to congestion, lack of buffers

Datagram (packets) can be lost due to congestion, lack of buffers

scheduling discipline chooses among queued datagrams for transmission

Priority scheduling – who gets best performance, network neutrality

Router architecture overview

high-level view of generic router architecture:

Per-router control plane

Individual routing algorithm components in each and every router interact in the control plane

Logically centralized control plane

A distinct (typically remote) controller interacts with local control agents (CAs)

16

Chapter 4: outline

- 4.1 Overview of Network layer
 - data plane
 - control plane
- 4.2 What's inside a router
- 4.3 IP: Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing
 - network address translation
 - IPv6

4.4 Generalized Forward and SDN

- match
- action
- OpenFlow examples of matchplus-action in action

Generalized Forwarding and SDN

Each router contains a *flow table* that is computed and distributed by a *logically centralized* routing controller

OpenFlow data plane abstraction

- flow: defined by header fields
- generalized forwarding: simple packet-handling rules
 - Pattern: match values in packet header fields
 - Actions: for matched packet: drop, forward, modify, matched packet or send matched packet to controller
 - Priority: disambiguate overlapping patterns
 - *Counters:* #bytes and #packets

Flow table in a router (computed and distributed by controller) define router's match+action rules

OpenFlow data plane abstraction

- flow: defined by header fields
- generalized forwarding: simple packet-handling rules
 - Pattern: match values in packet header fields
 - Actions: for matched packet: drop, forward, modify, matched packet or send matched packet to controller
 - *Priority*: disambiguate overlapping patterns
 - Counters: #bytes and #packets

*: wildcard

- 1. src=1.2.*.*, $dest=3.4.5.* \rightarrow drop$
- 2. $src = *.*.*.*, dest=3.4.*.* \rightarrow forward(2)$
- 3. src=10.1.2.3, $dest=*.*.*.* \rightarrow send to controller$

OpenFlow: Flow Table Entries

Examples

Destination-based forwarding:

Switch Port			MAC dst			IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
*	*	*		*	*	*	51.6.0.8	*	*	*	port6

IP datagrams destined to IP address 51.6.0.8 should be forwarded to router output port 6

Firewall:

Switch Port			MAC dst			IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Forward
*	*	*		*	*	*	*	*	*	22	drop

do not forward (block) all datagrams destined to TCP port 22

Switch Port	MA(src)		VLAN ID	IP Src	IP Dst	IP Prot	' C '	TCP dport	Forward
*	*	*	*	*	128.119.1.1	*	*	*	*	drop

do not forward (block) all datagrams sent by host 128.119.1.1

Examples

Destination-based layer 2 (switch) forwarding:

Switch	MAC	MAC	Eth	VLAN	IP	IP	IP	TCP	TCP	Action
Port	src	dst	type	ID	Src	Dst	Prot	sport	dport	
*	22:A7:23: 11:E1:02	*	*	*	*	*	*	*	*	port3

layer 2 frames from MAC address 22:A7:23:11:E1:02 should be forwarded to output port 6

OpenFlow abstraction

- match+action: unifies different kinds of devices
- Router
 - match: longest destination IP prefix
 - action: forward out a link
- Switch
 - match: destination MAC address
 - action: forward or flood

- Firewall
 - match: IP addresses and TCP/UDP port numbers
 - action: permit or deny
- NAT
 - match: IP address and port
 - action: rewrite address and port

OpenFlow example

Example: datagrams from hosts h5 and h6 should be sent to h3 or h4, via s1 and from there to s2

Chapter 4: done!

- 4.1 Overview of Network layer: data plane and control plane
- 4.2 What's inside a router
- 4.3 IP: Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing
 - NAT
 - IPv6

- 4.4 Generalized Forward and SDN
 - match plus action
 - OpenFlow example

Question: how do forwarding tables (destination-based forwarding) or flow tables (generalized forwarding) computed?

Answer: by the control plane (next chapter)