Tutorial

Q1. Let A be a regular set over $\{0,1\}$.

Show that $L_1 = \{ \text{reg} \mid \text{2Dy } \in A \}$ is also regular.

Soln: Let M be a DFA for A

Create NFA N for L1:

Transition Δ_N : $\Delta_N(P,a) = \{\delta_M(P,a)\}$ $\forall a \neq 1$. $P \in Gpy 1 \text{ of } M$ $\Delta_N(P,1) = \{\delta_M(P,1), \delta_M(P,1)'\}$ where if $q = \delta_M(P,1)$ $\delta_M(P,1)' = q' \text{ in }$ Gpy 2 of M

Rys.t 21yEA ⇔ F path labelled 28y starting at s and ending in FN.

- Q2. Let A be regular. DFA M Show that
 - (a) L2 = {W| ww EA} is negular
 - (b) L3 = {w | ∃n, z=w" ∈ A} is regular
 - (a) Fin a $q = Q_M$. $L_2^9 = \frac{1}{2} \omega | \omega \omega \in A$, $\hat{\delta}(s, \omega) = \frac{1}{2} \cdot \hat{\delta}(q, \omega) \in F$ DFA for $L_2^9 : Q' = Q_M \times Q_M$ S' = (s, q) $F' = \{(q, f) | f \in F\}$

 $\delta' : \delta'((p_1,p_2),a) = (\delta(p_1,a),\delta(p_2,a)).$

L2 = UL2. Regular sets closed under finite unions.

- (b) OLC = { w| w EA} is regular, ca constant.

 [Similar arguments as L2 being regular]
 - $L_3' = \{ \omega \mid \exists n \leq k^2, \omega^n \in A \}$ is regular where $|Q_M| = k$. $[L_3' = \bigcup_{c=1}^{k^2} L_{c}, k \text{ is a constant }]$
 - O Claim: Lz = Lz'.

To show if $\exists n : \omega^n \in A$ then $\exists n_0 \leq k^2 \text{ s.t. } \omega^{n_0} \in A$. Hint: (i) Consider path $\sup_{P \in P} Z_2 = \sum_{P \in P} Z_2$ Q4. Prove or disprove:

 $(a) (0+1)^* = 0^* + 1^*$

(b) $(0^*1^*)^* \equiv (0^*1)^*$.

- (a) False. 01 E LHS, not RHS
- (b) False, 0000 FLHS.

 Any string in LHS that ends with D

 cannot belong to RHS.

Q5. $\alpha = (a+b)^* ab(a+b)^*$

Give a regular expression equivalent to $\sim \alpha$ if

(a) $\Sigma = \{a,b\}$

(b) Z = {a,b,c}

(a) $Z'^* - L(x)$: all strings where b's appear before a's Reg. emp = b^*a^*

(b) Z*-L(x): all strings with at least one c strings where b's appear before a's Reg. exp = (a+b+c)*c(a+b+c)* + b*a*.