- 1. Các biểu thức tính toán cơ bản đối với các sơ đồ chỉnh lưu với tải $R_{d}-L_{d}$ - E_d ($L_d = \infty$, khi chưa có chuyển mạch)
- 1.1 Các sơ đồ chỉnh lưu hình tia
- a.Sơ đồ chỉnh lưu hình tia hai pha không có $\mathbf{D_0}$

Các biểu thức tính toán cơ bản:

$$U_d = U_{do} \cos \alpha$$

$$U_{do} = (2\sqrt{2}/\pi).U_2 \approx 0.9.U_2$$

Trong đó U_2 giá trị hiệu dụng của điện áp một pha bên thứ cấp BA.

$$I_{Ttb} = I_d / 2$$
; $I_T = I_d / \sqrt{2}$

$$U_{Tth \max} = U_{Tng \max} = 2\sqrt{2}U_2$$

$$I_2 = I_d / \sqrt{2}$$
; $I_1 = I_d / (k_{ba} \sqrt{2})$

b. Sơ đồ chỉnh lưu hình tia 2 pha có $D_{\rm 0}$

Các biểu thức tính toán cơ bản:

$$U_d = U_{do}(1 + \cos \alpha)/2$$
; $U_{Tth max} = \sqrt{2}.U_2$;

$$U_{Tth max} = \sqrt{2}.U_2$$

$$U_{Tng \, \text{max}} = 2.\sqrt{2}.U_2$$
;

$$U_{Dong\,\text{max}} = \sqrt{2}.U_2;$$

$$I_{Ttb} = I_d(\pi - \alpha)/2\pi ;$$

$$I_T = I_d \sqrt{(\pi - \alpha)/2\pi}$$
;

$$I_{Dotb} = I_d(\alpha/2)$$
;

$$I_{D\alpha} = I_d \sqrt{\alpha / \pi}$$

c. Sơ đồ chỉnh lưu hình tia 3 pha không có diode không (D_0)

Các biểu thức tính toán cơ bản:

$$U_d = U_{do} \cdot \cos \alpha$$

$$U_{d} = U_{do}.\cos\alpha$$
; $U_{do} = (3\sqrt{6}/2\pi).U_{2} \approx 1,17U_{2}$; $U_{Tth\, max} = U_{Tng\, max} = \sqrt{6}.U_{2}$

$$I_{Tth} = I_d / 3$$

$$I_{Ttb} = I_d/3$$
; $I_T = I_d/\sqrt{3}$

Dòng hiệu dụng cuộn dây sơ và thứ cấp máy biến khi tổ nối dâyY/Y₀

$$I_2 = I_T = I_d / \sqrt{3}$$
; $I_1 = I_d / (k_{ba}.\sqrt{3})$

d. Sơ đồ chỉnh lưu hình tia 3 pha có diode không D_0

Các biểu thức tính toán cơ bản:

$$U_d = U_{do}[1 + \cos(\alpha + 30^\circ)]/\sqrt{3}$$

$$I_{Tth} = I_d (5\pi/6 - \alpha)/2\pi$$
; $I_T = I_d \sqrt{(5\pi/6 - \alpha)/2\pi}$

$$I_{Dotb} = I_d.3.(\alpha - \pi/6)/2\pi$$
; $I_{Do} = I_d\sqrt{3.(\alpha - \pi/6)/2\pi}$

$$U_{Tthmax} = \sqrt{2}.U_2$$
:

$$U_{Tng\,\text{max}} = \sqrt{6}.U_2;$$

$$U_{\rm Dong\,max} = \sqrt{2} U_2$$

1.2 Các sơ đồ chỉnh lưu hình cầu

a. Sơ đồ chỉnh lưu cầu 1 pha điều khiển hoàn toàn

Các biểu thức tính toán cơ bản:

$$U_d = U_{do} \cos \alpha$$
,

$$U_d = U_{do} \cos \alpha$$
, $U_{do} = (2\sqrt{2}/\pi).U_2 \approx 0.9.U_2$

Trong đó U_2 giá trị hiệu dụng của điện áp bên thứ cấp BA.

$$I_{Ttb} = I_d / \sqrt{2}$$
;

$$I_T = I_d / \sqrt{2} ;$$

$$I_{Ttb} = I_d / \sqrt{2}$$
; $I_T = I_d / \sqrt{2}$; $U_{Ttb \max} = U_{Tne \max} = \sqrt{2}.U_2$

$$I_2 = I_d$$
;

$$I_1 = I_d / k_{ba}$$

b. Sơ đồ chỉnh lưu cầu 1 pha có diode không (D_0)

Các biểu thức tính toán cơ bản:

$$\begin{split} U_{d} &= U_{do} (1 + \cos \alpha) / 2 \, ; \; U_{Tth \, \text{max}} = \sqrt{2} . U_{2} \, ; & U_{Tng \, \text{max}} &= \sqrt{2} . U_{2} \, ; & U_{Dong \, \text{max}} &= \sqrt{2} U_{2} \, ; \\ I_{Ttb} &= I_{d} (\pi - \alpha) / 2\pi \, ; \; I_{T} = I_{d} \sqrt{(\pi - \alpha) / 2\pi} \, ; & I_{Dotb} &= I_{d} (\alpha / \pi) \, ; & I_{Do} &= I_{d} \sqrt{\alpha / \pi} \end{split}$$

c. Các sơ đồ chỉnh lưu cầu 1 pha dùng 2 diode và 2 thyristor (2D-2T)

c.1. Sơ đồ thứ nhất T và D đấu chung K và A

Các biểu thức tính toán cơ bản:

$$\begin{split} &U_d = U_{do}(1+\cos\alpha)/2 \\ &I_{Ttb} = I_d(\pi-\alpha)/2\pi \; ; \; I_T = I_d\sqrt{(\pi-\alpha)/2\pi} \\ &U_{Tth\,\mathrm{max}} = \sqrt{2}.U_2 \; ; \; U_{Ttg\,\mathrm{max}} = \sqrt{2}.U_2 \\ &I_{Dtb} = I_d.(\pi+\alpha)/2\pi \; ; \; I_D = I_d.\sqrt{(\pi+\alpha)/2\pi} \\ &U_{Dtg\,\mathrm{max}} = \sqrt{2}.U_2 \end{split}$$

c.2. Sơ đồ thứ hai T đấu chung K và D đấu chung A

Các biểu thức tính toán cơ bản:

$$\begin{split} &U_{d} = U_{do}(1+\cos\alpha)/2\;;\;\; U_{Tth\,\text{max}} = \sqrt{2}U_{2}\;;\;\; U_{Tng\,\text{max}} = \sqrt{2}U_{2}\;;\;\; U_{Dng\,\text{max}} = \sqrt{2}U_{2}\\ &I_{Ttb} = I_{d}/2\;;\;\;\; I_{T} = I_{d}/\sqrt{2}\;;\;\;\; I_{Dtb} = I_{d}/2\;;\;\;\; I_{D} = I_{d}/\sqrt{2} \end{split}$$

d. Sơ đồ chỉnh lưu hình cầu 3 pha 6 tiristo

Các biểu thức tính toán cơ bản:

$$U_d = U_{do}.\cos\alpha$$
; $U_{do} = (3\sqrt{6}/\pi).U_2 \approx 2,34U_2$; $U_{Tth max} = U_{Tng max} = \sqrt{6}U_2$
 $I_{Ttb} = I_d/3$; $I_T = I_d/\sqrt{3}$

Dòng hiệu dụng cuộn dây sơ và thứ cấp máy biến khi tổ nối dâyY/Y

$$I_2 = I_T = I_d \cdot \sqrt{2/3}$$
; $I_1 = \frac{I_d}{k_{ha}} \sqrt{2/3}$

1.3. Chế độ làm việc nghịch lưu của bộ chỉnh lưu: Điều kiện:

- Góc điều khiển: $90^{\circ} < \alpha < 180^{\circ}$

(Bộ chỉnh lưu làm việc ở chế độ dòng liên tục $U_d=U_{do}.cos\alpha$)

- Phải đảo chiều sức điện động của phụ tải và đảm bảo yêu cầu: $|\mathbf{E_d}| > |\mathbf{U_d}|$

2. Các biểu thức tính toán cơ bản đối với các sơ đồ chỉnh lưu với tải R_d-L_d - E_d ($L_d=\infty$) khi có chuyển mạch (trùng dẫn)

2.1 Góc chuyển mạch

Khoảng thời gian chuyển mạch qui ra góc độ điện được gọi là góc chuyển mạch và thường được ký hiệu là γ .

Lưu ý: U_m là biên độ điện áp lớn nhất của hiệu điện áp hai pha Góc chuyển mạch ứng với góc điều khiển $\alpha=0$

$$1 - \cos \gamma_0 = \frac{2\omega L_s}{U_m} I_d \Rightarrow \gamma_0 = \arccos \left[1 - \frac{2\omega L_s}{U_m} I_d \right]$$

Góc chuyển mạch ứng với góc điều khiển α bất kì:

$$\cos \alpha - \cos (\alpha + \gamma) = \frac{2\omega L_s}{U_m} I_d = 1 - \cos \gamma_0$$

$$\Rightarrow \gamma = \arccos \left[\cos \alpha - \frac{2\omega L_s}{U_m} I_d \right] - \alpha$$

$$\Leftrightarrow \gamma = \arccos \left[\cos \alpha + \cos \gamma_0 - 1 \right] - \alpha$$

2.2. Điện áp chỉnh lưu khi có xét đến quá trình chuyển mạch

a. Điện áp chỉnh lưu tức thời:

$$\mathbf{u}_{\mathbf{d}} = (\mathbf{u}_{\mathbf{n}+1} + \mathbf{u}_{\mathbf{n}})/2$$

b. Điện áp chỉnh lưu trung bình.

Với các sơ đồ hình tia, bỏ qua điện trở nguồn:

$$U_d = U_{do} \cos \alpha - \frac{q}{2\pi} \omega L_s I_d$$

Với các sơ đồ hình tia, có xét tới điện trở nguồn:

$$U_d = U_{do} \cos \alpha - \frac{q}{2\pi} \omega L_s I_d - R_s I_d$$

Với các sơ đồ cầu ba pha, có xét tới điện trở nguồn:

$$U_d = U_{do} \cos \alpha - \frac{3}{\pi} \omega L_s I_d - 2R_s I_d$$

Với các sơ đồ cầu một pha, có xét tới điện trở nguồn:

$$U_d = U_{do} \cos \alpha - \frac{2}{\pi} \omega L_s I_d - 2R_s I_d$$

3.1. Ví dụ:

a. Ví dụ 1:

Cho sơ đồ chỉnh lưu hình tia hai pha không có điôt Do, phụ tải R_d - L_d - E_d . Biết rằng các thông số của sơ đồ chỉnh lưu như sau: $U_2 = 220 \text{VAC}$; f = 50 Hz; $L_s = 1 \text{mH}$; $R_d = 6\Omega$; $L_d = \infty$; $E_d = 50 \text{VDC}$; $\alpha = 30^0$. Tính P_d , dòng trung bình qua các van, góc chuyển mạch γ .

Lời giải:

Ta có:
$$P_d = U_d * I_d$$

$$V \circ i: \begin{cases} U_d = U_{do}.\cos\alpha - \frac{q}{2\pi}\omega L_s I_d - R_s I_d \\ I_d = \frac{U_d - E_d}{R_d} \end{cases}$$

$$\rightarrow \begin{cases} U_d + \frac{q}{2\pi}\omega L_s I_d + R_s I_d = U_{do}.\cos\alpha \\ U_d - I_d R_d = E_d \end{cases}$$

$$\rightarrow \begin{cases} U_d + 0.1I_d = 171.5 \\ U_d - 6I_d = 50 \end{cases} \Rightarrow \begin{cases} U_d = 169.5V \\ I_d = 19.92A \end{cases}$$

Dòng trung bình qua các van: khoảng thời gian dẫn dòng của T thay đổi (Cộng thêm góc chuyển mạch γ). *Giá trị không đổi:* $I_{Ttb} = \frac{I_d}{2}$

Góc chuyển mạch γ

$$\gamma = \arccos\left[\cos\alpha - \frac{2\omega L_s}{U_m}I_d\right] - \alpha$$

$$\Rightarrow \gamma = \arccos\left[\cos 30^0 - \frac{2.2\pi.50.1.10^{-3}}{2.\sqrt{2}U_2}.19,92\right] - 30^0 = 2,23^0$$

b. Ví dụ 2:

Cho sơ đồ chỉnh lưu hình tia hai pha không có điốt Do, phụ tải R_d - L_d - E_d . Biết rằng các thông số của sơ đồ chỉnh lưu như sau: $U_2=220 VAC$; f=50 Hz; Ls=1 mH; R_d = 6Ω ; $L_d=\infty$; E_d =50 VDC; I_d =15 A. Tính góc điều khiển α và góc chuyển mạch γ .

c. Ví dụ 3:

Cho sơ đồ chỉnh lưu hình tia hai pha không có điôt Do, phụ tải R_d - L_d - E_d . Biết rằng sơ đồ chỉnh lưu trên làm việc ở chế độ nghịch lưu với các thông như sau:

$$\begin{split} &U_2=200\text{VAC};\,E_d\!\!=180\text{VDC};\,f=50\text{Hz};\,Ls=1\text{mH};\,R_d=0,\!2\Omega;\,Ld=\infty;\,I_d\!\!=200\text{A}. \end{split}$$
 Tính góc mở α và góc trùng dẫn $\gamma.$

Lời giải:

Ta có góc mở α:

$$\begin{cases} U_d = U_{do} \cdot \cos \alpha - \frac{q}{2\pi} \omega L_s I_d - R_s I_d \\ I_d = \frac{U_d + E_d}{R_d} \\ \Rightarrow \begin{cases} U_{do} \cdot \cos \alpha = U_d + \frac{q}{2\pi} \omega L_s I_d + R_s I_d \\ U_d = I_d R_d - E_d \end{cases}$$
$$\Rightarrow \begin{cases} \alpha = 131, 8^o \\ U_d = -140V \end{cases}$$

Góc chuyển mạch γ

$$\gamma = \arccos \left[\cos \alpha - \frac{2\omega L_s}{U_m} I_d\right] - \alpha$$

$$\Rightarrow \gamma = \arccos \left[\cos 131.8^0 - \frac{2.2\pi.50.1.10^{-3}}{2.\sqrt{2}U_2}.200\right] - 131.8^0 = 20.9^0$$

d. Ví dụ 4:

Cho sơ đồ chỉnh lưu hình tia hai pha không có điôt Do, phụ tải R_d - L_d - E_d . Biết rằng sơ đồ chỉnh lưu trên làm việc ở chế độ nghịch lưu với các thông như sau:

 $U_2 = 200 \text{VAC}$; $E_d = 180 \text{VDC}$; f = 50 Hz; Ls = 1 mH; $R_d = 0.2 \Omega$; $Ld = \infty$; $\alpha = 145^0$. Tính công suất tải trả về lưới P_d , dòng trung bình qua các van, góc chuyển mạch γ .