Introduction to Quantum Information Science Recitation 2 (9/8 and 9/12)

1. More on Unitaries

a) Show that the product of two unitary matrices is also a unitary matrix.

Solution: Let A and B be unitary matrices. In order to have that the product AB is unitary we want to show that $AB(AB)^{\dagger} = I$. $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$ and so $AB(AB)^{\dagger} = ABB^{\dagger}A^{\dagger} = I$.

b) Generalize this to the product of an arbitrary number of unitary matrices.

Solution: Let A_1, \dots, A_n be unitary matrices. Similar to above, we have $(A_1 \dots A_n)(A_1 \dots A_n)^{\dagger} = (A_1 \dots A_n)(A_n^{\dagger} \dots A_n^{\dagger}) = I$.

a)

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \quad X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$|0\rangle \quad \boxed{H} \quad \boxed{X} \quad \boxed{H}$$

Solution:

$$|0\rangle \mapsto |+\rangle \mapsto |+\rangle \mapsto |0\rangle$$

We measure $|0\rangle$ with probability 1.

b)

$$T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}, \quad U = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{-3}{5} \end{bmatrix}$$

$$|0\rangle \qquad \qquad H \qquad U \qquad T$$

Solution:

$$|0\rangle \mapsto |+\rangle$$

The effect of U on the standard basis is the following

$$|0\rangle \mapsto \frac{3}{5}|0\rangle + \frac{4}{5}|1\rangle \quad |1\rangle \mapsto \frac{4}{5}|0\rangle - \frac{3}{5}|1\rangle$$

So U applied to the $|+\rangle$ state gives:

$$U \mid + \rangle = U \frac{\mid 0 \rangle + \mid 1 \rangle}{\sqrt{2}}$$

$$= \frac{\left(\frac{3}{5} \mid 0 \rangle + \frac{4}{5} \mid 1 \rangle\right) + \left(\frac{4}{5} \mid 0 \rangle - \frac{3}{5} \mid 1 \rangle\right)}{\sqrt{2}}$$

$$= \frac{\frac{7}{5} \mid 0 \rangle + \frac{1}{5} \mid 1 \rangle}{\sqrt{2}}$$

Since we'll be measuring immediately afterwards in the standard basis, we can ignore the T gate; the relative phase it adds will drop out when we measure (note this is not true in general).

$$\Pr[|0\rangle] = \left|\frac{7}{5\sqrt{2}}\right|^2 = \frac{49}{50}$$
$$\Pr[|1\rangle] = \left|\frac{1}{5\sqrt{2}}\right|^2 = \frac{1}{50}$$

3. Give the probability for measuring $|i\rangle$ and $|-i\rangle$ for the following circuits:

a)

$$\sqrt{\text{NOT}} = \frac{1}{2} \begin{bmatrix} 1+i & 1-i \\ 1-i & 1+i \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
$$|i\rangle \qquad \boxed{Y} \qquad \boxed{\sqrt{NOT}} \qquad \boxed{Y} \qquad \boxed{Y}$$

Solution:

$$|i\rangle = \frac{|0\rangle + i|1\rangle}{\sqrt{2}} \mapsto \frac{i|1\rangle + i(-i)|0\rangle}{\sqrt{2}} = |i\rangle$$

$$\mapsto \frac{\left((1+i)|0\rangle + (1-i)|1\rangle\right) + i\left((1-i)|0\rangle + (1+i)|1\rangle\right)}{2\sqrt{2}} = \frac{1+i}{\sqrt{2}}|0\rangle$$

$$\mapsto \frac{-1+i}{\sqrt{2}}|1\rangle \equiv |1\rangle.$$

To get the measurement probabilities we want to take the magnitude squared of the inner products $\langle i|1\rangle$ and $\langle -i|1\rangle$

$$\Pr[|i\rangle] = |\langle i|1\rangle|^2 = \frac{1}{2}$$

$$\Pr[|-i\rangle] = |\langle -i|1\rangle|^2 = \frac{1}{2}$$

b)

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

$$|-i\rangle - Z - Y - S - Z$$

Solution:

$$|-i\rangle = \frac{|0\rangle - i|1\rangle}{\sqrt{2}} \mapsto \frac{|0\rangle + i|1\rangle}{\sqrt{2}} = |i\rangle.$$

From the previous problem we saw that $|i\rangle$ is an eigenstate of Y, so we can ignore this gate. Finally for S we have:

$$|i\rangle \mapsto |-\rangle$$

Now again to get our measurement probabilities we take the inner products of the measurement basis elements with our state.

$$\Pr[|i\rangle] = |\langle i| - \rangle|^2 = \left| \frac{(\langle 0| - i\langle 1|)(|0\rangle - |1\rangle)}{2} \right|^2 = \frac{1}{4}|(1+i)|^2 = \frac{1}{2}$$
$$\Pr[|-i\rangle] = \frac{1}{2}$$

4. Give the probability of measuring $|+\rangle$ and $|-\rangle$ for the following circuits:

 $\mathbf{a})$

$$|0\rangle$$
 — H — X — X

Solution:

$$|0\rangle \mapsto |+\rangle \mapsto |+\rangle$$

 $\Pr[|+\rangle] = 1$

b)

$$|0\rangle$$
 — \sqrt{NOT} — Y — T — \sqrt{NOT}

Solution:

$$\begin{split} |0\rangle &\mapsto \frac{\left(1+i\right)|0\rangle + \left(1-i\right)|1\rangle}{2} \\ &\mapsto \frac{i(1+i)|1\rangle - i(1-i)|0\rangle}{2} = \frac{-(1+i)|0\rangle - (1-i)|1\rangle}{2} \\ &\mapsto \frac{-(1+i)|0\rangle - e^{i\pi/4}(1-i)|1\rangle}{2}. \end{split}$$

Now take inner products with $\{|+\rangle, |-\rangle\}$ to get measurement probabilities.

$$\begin{split} \Pr[|+\rangle] &= |\langle +|\psi\rangle|^2 \\ &= \left| \frac{\left(\langle 0|+\langle 1|\right)\left(-(1+i)\left|0\right\rangle - e^{i\pi/4}(1-i)\left|1\right\rangle\right)}{2\sqrt{2}} \right|^2 \\ &= \frac{\left|(i+1) + e^{i\pi/4}(i-1)\right|^2}{8} \\ &= \frac{2+\sqrt{2}}{4} \\ &= \cos(\pi/8)^2. \end{split}$$

5. Distinguishability of Quantum States What is the best measurement basis to distinguish the state $|i\rangle$ and $\frac{4}{5}|i\rangle + \frac{3}{5}|-i\rangle$? Using this basis, give a protocol to distinguish the two states. With what probability does this protocol succeed, supposing that we are equally likely to be given either state?

Solution: See section 5.2 of the textbook for more details.

The best basis is $|\phi\rangle$, $|\psi\rangle$ as shown. Note that this is not the usual Bloch circle with $|0\rangle$ and $|1\rangle$ as the axes.

By requiring $|\phi\rangle$ and $|\psi\rangle$ to be orthogonal, the angle between $|\phi\rangle$ and $|i\rangle$ must be equal to the angle between $|\psi\rangle$ and $|-i\rangle$. For the optimal measurement, we want the angle between $|\phi\rangle$ and $|i\rangle$ to be the same as the angle between $|\psi\rangle$ and $\frac{4}{5}|i\rangle + \frac{3}{5}|-i\rangle$. Combining the previous two statements means that $|\psi\rangle$ must be an equal combination of (halfway between) $\frac{4}{5}|i\rangle + \frac{3}{5}|-i\rangle$ and $|-i\rangle$:

$$\begin{split} |\psi\rangle \propto |\alpha\rangle &= (\frac{4}{5}\,|i\rangle + \frac{3}{5}\,|-i\rangle) + |-i\rangle \quad \rightarrow \quad \langle\alpha|\alpha\rangle = \left(\frac{4}{5}\,\langle i| + \frac{8}{5}\,\langle -i|\right) \left(\frac{4}{5}\,|i\rangle + \frac{8}{5}\,|-i\rangle\right) \\ &= \frac{16}{25}\,\langle i|i\rangle + \frac{64}{25}\,\langle -i| - i\rangle = \frac{80}{25} \end{split}$$

Therefore
$$|\psi\rangle = \frac{4}{\sqrt{80/25}}(\frac{1}{5}|i\rangle + \frac{2}{5}|-i\rangle).$$

Call
$$|\lambda\rangle = \frac{4}{5}|i\rangle + \frac{3}{5}|-i\rangle$$
.

Call $|\lambda\rangle = \frac{4}{5}|i\rangle + \frac{3}{5}|-i\rangle$. To find $|\phi\rangle$ we flip the amplitudes and change signs: $|\phi\rangle = \frac{4}{\sqrt{80/25}}(\frac{2}{5}|i\rangle - \frac{1}{5}|-i\rangle)$.

But, we don't actually require $|\phi\rangle$; we could have left it implicit since we know its overlap with any state of interest is the complement of the overlap with $|\psi\rangle$. Calculate probabilities of measuring the two states of interest and find

$$|\langle \lambda | \psi \rangle|^2 = \left| (\frac{4}{5} \langle i| + \frac{3}{5} \langle -i|) (\frac{1}{\sqrt{80/25}} (\frac{4}{5} |i\rangle + \frac{8}{5} |-i\rangle)) \right|^2 = \left| \frac{1}{\sqrt{80/25}} (\frac{16}{25} + \frac{24}{25}) \right|^2 = .8,$$
$$|\langle i|\psi\rangle|^2 = \left| \langle i| (\frac{1}{\sqrt{80/25}} (\frac{4}{5} |i\rangle + \frac{8}{5} |-i\rangle)) \right|^2 = \frac{1}{\sqrt{80/25}} \frac{4}{5} = .2,$$

where the probabilities of observing $|\phi\rangle$ would be 0.2 and 0.8 respectively.

Protocol: Measure in the basis. Assume that observing $|\psi\rangle$ means we were given $\frac{4}{5}|i\rangle + \frac{3}{5}|-i\rangle$. Assume that observing $|\phi\rangle$ means we were given $|i\rangle$. Protocol success probability assuming 50-50 chance of $|-\rangle$ or $|i\rangle$ is:

[Chance of given
$$\frac{4}{5} |i\rangle + \frac{3}{5} |-i\rangle$$
] × [chance to get $|\psi\rangle$] = $0.5 \times 0.8 = 0.4$ plus [Chance of given $|i\rangle$] × [chance to get $|\phi\rangle$] = $0.5 \times (1-.2) = 0.4$ equals Total success probability: 0.8 .