Задание 1

Вычислить значения HITS («hubs and authorities») для данного графа.

Рассмотрим матрицу смежности графа ${\bf M}$ и транспонированную ${\bf M^T}$:

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \quad \mathbf{M}^{\mathrm{T}} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Шаг 0. Зададим начальные значения векторов «каталожности» («hubbiness») \mathbf{h} и «авторитетности» («authority») \mathbf{a} таким образом, чтобы $\mathbf{h}_0\left(i\right) = \mathbf{a}_0\left(i\right) = 1$ для любой вершины i.

Шаг 1. Вычислим новые значения **h** и **a**:

$$\begin{cases} \mathbf{h}_k = \phi_k \mathbf{M} \mathbf{a}_{k-1} \\ \mathbf{a}_k = \psi_k \mathbf{M}^T \mathbf{h}_{k-1} \end{cases} \rightarrow \begin{cases} \mathbf{h}_k = \phi_k \psi_{k-1} \mathbf{M} \mathbf{M}^T \mathbf{h}_{k-2} \\ \mathbf{a}_k = \phi_{k-1} \psi_k \mathbf{M}^T \mathbf{M} \mathbf{a}_{k-2} \end{cases}$$

где ϕ_k и ψ_k — такие числа, что для любого k>1 верно $|\phi_k\mathrm{Ma}_{k-1}|=|\psi_k\mathrm{M}^\mathrm{T}\mathrm{h}_{k-1}|=1.$

Мы видим, что $\hat{\mathbf{h}}$ и \mathbf{a} — собственные векторы матриц $\mathbf{M}\mathbf{M}^{\mathbf{T}}$ и $\mathbf{M}^{\mathbf{T}}\mathbf{M}$ соответственно.

 \mathbf{H} аг 2. Рассмотрим $\mathbf{M}\mathbf{M}^{\mathrm{T}}$ и $\mathbf{M}^{\mathrm{T}}\mathbf{M}$:

$$\mathbf{M}\mathbf{M}^{\mathrm{T}} = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix}, \quad \mathbf{M}^{\mathrm{T}}\mathbf{M} = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$

Полученные матрицы симметричны и положительно определены, следовательно их собственные значения положительны. Значит векторы ${\bf h}$ и ${\bf a}$ сходятся к собственным векторам матриц ${\bf MM^T}$ и ${\bf M^TM}$, соответсвующим их наибольшим собственным значениям.

Найдём эти собственные векторы

$$\begin{aligned} |\mathbf{M}\mathbf{M}^{\mathrm{T}} - \lambda \mathbf{E}| &= \begin{vmatrix} 3 - \lambda & 2 & 2 \\ 2 & 2 - \lambda & 1 \\ 2 & 1 & 2 - \lambda \end{vmatrix} = 0, \\ |\mathbf{M}^{\mathrm{T}}\mathbf{M} - \mu \mathbf{E}| &= \begin{vmatrix} 2 - \mu & 1 & 2 \\ 1 & 2 - \mu & 2 \\ 2 & 2 & 3 - \mu \end{vmatrix} = 0 \end{aligned}$$

Не трудно заметить, что решения обоих уравнений получатся одинаковые:

$$\begin{bmatrix} \lambda_1 = \mu_1 = 1 \\ \lambda_2 = \mu_2 = 3 - 2\sqrt{2} \\ \lambda_3 = \mu_3 = 3 + 2\sqrt{2} \end{bmatrix}$$

Шаг 3.1. Решим уравнение (**MM**^T $-\lambda$ **E**) **h** = 0, подставив $\lambda = \lambda_3 = 3 + 2\sqrt{2}$:

$$\begin{pmatrix} -2\sqrt{2} & 2 & 2 \\ 2 & -1 - 2\sqrt{2} & 1 \\ 2 & 1 & -1 - 2\sqrt{2} \end{pmatrix} h = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \longrightarrow$$
$$h = \begin{pmatrix} \sqrt{2}/2 \\ 1/2 \\ 1/2 \end{pmatrix}$$

Шаг 3.2. Решим уравнение $(\mathbf{M^TM} - \mu \mathbf{E}) \mathbf{a} = 0$, подставив $\mu = \mu_3 = 3 + 2\sqrt{2}$:

$$\begin{pmatrix} -1 - 2\sqrt{2} & 1 & 2\\ 1 & -1 - 2\sqrt{2} & 2\\ 2 & 2 & -2\sqrt{2} \end{pmatrix} \mathbf{a} = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix} \longrightarrow$$
$$\mathbf{a} = \begin{pmatrix} 1/2\\ 1/2\\ \sqrt{2}/2 \end{pmatrix}$$

Задание 2

Вычислить значения HITS для данного графа с m вершинами.

Рассмотрим матрицу смежности графа \mathbf{M} $(m \times m)$ и транспонированную $\mathbf{M^T}$:

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}, \quad \mathbf{M}^{\mathrm{T}} = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

Теперь рассмотрим произведения $\mathbf{M}\mathbf{M}^{\mathbf{T}}$ и $\mathbf{M}^{\mathbf{T}}\mathbf{M}$:

$$\mathbf{M}\mathbf{M}^{\mathrm{T}} = \begin{pmatrix} 2 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}, \quad \mathbf{M}^{\mathrm{T}}\mathbf{M} = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

Пользуясь рассмотренным при решении предыдущего задания алгоритмом получаем ответ:

$$\mathbf{h} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \mathbf{a} = \begin{pmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Задание 3

Вычислить значения HITS для данного графа с n уровнями.

Рассмотрим матрицу смежности графа **M** $(k \times k,$ где $k = 2^n - 1)$:

$$m_{ij} = egin{cases} 1, & \text{если } i=j=1, \text{ или } j=2i, \text{ или } j=2i+1 \\ 0 & \text{в остальных случаях} \end{cases}$$

Пользуясь нашим алгоритмом получаем ответ:

$$h = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad a = \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$