Алгоритм для анализа динамических свойств сети Петри на основе покрывающего дерева с расширенной маркировкой

Данный алгоритм является универсальным и может использоваться для любой сети, в том числе и для СП с неограниченными позициями. Для этого введем понятие расширенной маркировки.

Расширенная маркировка — это такая маркировка (разметка) сети Петри, при которой ёмкость неограниченной позиции p_k можно заменить на w, т.е. если в процессе функционирования сети наблюдается $\mu(p_k) \to \infty$, то считаем, что в векторе маркировки $\mu_k = w$.

Для расширенной маркировки справедливо следующее тождество w+n=w-n=w+w=w, где n-счетное количество маркеров, т.е. $n<<\infty$.

На рисунке 1,а изображена сеть Петри с неограниченной позицией p_2 : каждый раз срабатывание разрешенного перехода t_1 в ней увеличивает ёмкость позиции p_2 на один маркер и опять возбуждает этот переход к срабатыванию (рис. 1,б). Поэтому при построении покрывающего дерева для этой сети мы заменяем всю цепочку (рис. 1,б) на одну дугу t_1 , исток дуги — (1,2,0), а ее сток — (1,w,0). Данный пример иллюстрирует случай бесконечного срабатывания одного перехода, в общем случае в цепочке могут быть несколько переходов, входящих в некоторый простой цикл сети.

Рисунок 1 – Пример моделирования функционирования СП с расширенной маркировкой

Для понимания важности данного алгоритма приведем две теоремы.

- 1. Покрывающее дерево, построенное с помощью описанного выше алгоритма, является конечным графом.
- 2. Процесс построения покрывающего дерева этим алгоритмом заканчивается за конечное число шагов.

Алгоритм содержит следующие два этапа.

- 1. Построение покрывающего дерева СП (с расширенной маркировкой при наличии неограниченных позиций в сети).
- 2. Определение динамических свойств СП (безопасность, ограниченность, сохраняемость и живость) на основе анализа ее покрывающего дерева.

Этап №1 – «Построение покрывающего дерева СП»

Пусть задана сеть Петри со структурой C = < T, P, I, O > и вектором начальной маркировки μ_0 . Введем следующие обозначения и термины.

s - счетчик вершин в покрывающем дереве;

VECTOR - множество векторов маркировок, моделируемых вершинами дерева;

MET - множество меток вершин дерева, используемые в алгоритме метки приведены ниже.

Метка	Определение метки			
Γ	Метка граничной вершины дерева (вершины, не обработанной данным			
	алгоритмом).			
T	Метка терминальной вершины дерева (вершины, моделирующей тупиковую			
	маркировку).			
Д	Метка дублирующей вершины дерева (вершины, моделирующей маркировку,			
	которая уже встречалась).			
В	Метка внутренней вершины дерева (вершины, обработанной данным			
	алгоритмом и не являющейся терминальной или дублирующей).			

Алгоритм на этом этапе состоит из следующих шагов.

Строим корень дерева: s = 1, $VECTOR(s) = \mu_0$, $MET(s) = \Gamma$.

ПОКА в дереве есть граничные вершины ВЫПОЛНЯТЬ:

- 1. Выбрать первую по счету граничную вершину -v.
- 2. ЕСЛИ VECTOR(v) тупиковая маркировка, **ТО** $MET(v) = \mathbf{T}$.
- 3. **ЕСЛИ** VECTOR(v) дублирующая маркировка, **ТО** MET(v) = I.
- 4. **ЕСЛИ** $MET(v) \neq T$ или $MET(v) \neq I$, **ТО ВЫПОЛНЯТЬ:**
 - 4.1. $MET(v) = \mathbf{B}$.
 - 4.2. **ПОКА** для VECTOR(v) есть разрешенные переходы **ВЫПОЛНЯТЬ:**
 - 4.2.1. s = s + 1, $MET(s) = \Gamma$.
 - 4.2.2. Построить новую дугу (v, s) в дереве, пометить ее разрешенным переходом.
 - 4.2.3. Определить VECTOR(s).
 - 4.2.4. **ЕСЛИ** в дальнейшем наблюдается неограниченный рост емкости некоторой позиции при отсутствии тупиковых маркировок в корневом поддереве с корнем v, **TO** в VECTOR(s) заменить ее емкость на w.

Этап №2 – «Определение динамических свойств СП на основе анализа ее покрывающего дерева»

Алгоритм на этом этапе состоит из проверки следующих условий по шагам.

1. **ЕСЛИ** при построении дерева использовалась расширенная маркировка w, **ТО** эта СП *не безопасная*, *не ограниченная и не сохраняющаяся*,

ИНАЧЕ ВЫПОЛНЯТЬ:

1.1. ЕСЛИ в множестве векторов маркировок VECTOR есть только 0 и 1,

ТО эта СП безопасная и ограниченная $c \ k = 1$,

ИНАЧЕ эта СП *не безопасная и ограниченная* (k определяется максимальной емкостью позиций по всем векторам маркировок VECTOR).

1.2. **ЕСЛИ** сумма емкостей позиций во всех векторах маркировок *VECTOR* одинакова,

ТО эта СП строго сохраняющаяся,

ИНАЧЕ ВЫПОЛНЯТЬ:

1.2.1. **ЕСЛИ** система линейных уравнений, построенная на множестве VECTOR, имеет решение (найден хотя бы один ненулевой вектор $c = (c_1, ..., c_n)$),

ТО эта СП сохраняющаяся,

ИНАЧЕ эта СП не сохраняющаяся.

2. ЕСЛИ в дереве есть терминальные вершины,

ТО эта СП не живая,

ИНАЧЕ ВЫПОЛНЯТЬ:

2.1. ЕСЛИ для разметки дуг дерева были использованы все перехода сети,

ТО эта СП живая,

ИНАЧЕ эта СП не живая.

Приведем далее два примера. Первый пример — для СП с неограниченными позициями, а второй пример — для СП без использования расширенной маркировки (решение на стенде).

Пример №1

На рисунке 2,а представлена сеть Петри с количеством переходов m=4, количеством позиций n=3 и вектором начальной маркировки $\mu_0=(1,2,0)$, а на рисунке 2,б – ее покрывающее дерево с расширенной маркировкой w, построенное на 1-ом этапе алгоритма. В этом дереве пять листьев (две терминальные вершины и три дублирующие вершины). Дуги в этом дереве размечены разрешенными переходами.

Рисунок 2 – Пример построения покрывающего дерева СП

На 2-ом этапе проводится анализ покрывающего дерева (рис. 2,б). В таблице ниже описан процесс определения динамических свойств сети Петри (рис. 2,а).

№	Условие	?	Свойства СП
1.	При построении дерева использовалась	+	не безопасная, не ограниченная, не
	расширенная маркировка w?		сохраняющаяся
2.	В дереве есть терминальные вершины?	+	не живая

Пример №2

Построить покрывающее дерево для данной сети Петри определить ее свойства.

Решение

Этап №1 – «Построение покрывающего дерева СП»

1. При начальной разметке СП (0,2,2) разрешенными для срабатывания являются переходы t_1 и t_3 . Построим в покрывающем дереве соответствующие им дуги и определим ёмкости позиций после их срабатывания:

$$(0,2,2)$$
 [$t_1 > (1,2,1)$

$$(0,2,2) [t_3 > (0,4,0)$$

Маркировка (0,4,0) — тупиковая, поэтому отметим эту вершину в дереве как терминальную (T). На рисунке ниже результат построения 1-го уровня вершин покрывающего дерева.

2. При разметке СП (1,2,1) разрешенными для срабатывания являются переходы t_1 и t_2 . Построим в покрывающем дереве соответствующие им дуги и определим ёмкости позиций после их срабатывания:

$$(1,2,1) [t_1 > (2,2,0)$$

$$(1,2,1) [t_2 > (0,4,1)$$

Обе маркировки новые (не являются дублирующими) и не тупиковые. На рисунке ниже результат построения 2-го уровня вершин покрывающего дерева.

3. При разметке СП (2,2,0) разрешенным для срабатывания является только переход t_2 . Построим в покрывающем дереве соответствующую ему дугу и определим ёмкости позиций после его срабатывания:

$$(2,2,0) [t_2 > (1,4,0)$$

Эта маркировка новая (не является дублирующей) и не тупиковая.

При разметке СП (0,4,1) разрешенным для срабатывания является только переход t_1 . Построим в покрывающем дереве соответствующую ему дугу и определим ёмкости позиций после его срабатывания:

$$(0,4,1)$$
 [$t_1 > (1,4,0)$

Эта маркировка является дублирующей (Д). На рисунке ниже результат построения 3-го уровня вершин покрывающего дерева.

4. При разметке СП (1,4,0) разрешенным для срабатывания является только переход t_2 . Построим в покрывающем дереве соответствующую ему дугу и определим ёмкости позиций после его срабатывания:

$$(1,4,0)$$
 [$t_2 > (0,6,0)$

Маркировка (0,6,0) — тупиковая, поэтому отметим эту вершину в дереве как терминальную (Т). На рисунке ниже результат построения последнего 4-го уровня вершин покрывающего дерева.

Этап №2 – «Определение динамических свойств СП на основе анализа ее покрывающего дерева»

В таблице ниже описан процесс определения динамических свойств сети Петри.

№	Условие	?	Свойства СП
1.	При построении дерева использовалась		
	расширенная маркировка w?		
2.	Ёмкости позиций только 0 или 1?	-	не безопасная, ограниченная с k=6
3.	Сумма емкостей позиций во всех	-	не строго сохраняющаяся
	вершинах дерева одинакова?		
4.	В дереве есть терминальные вершины?	+	не живая

Результаты проведенного анализа представлены на рисунке ниже.

