The Container Security in Healthcare Data Exchange System

Bachelor's degree graduation project

Chih-Hsuan Yang

National Sun Yat-sen University

March 24, 2021 v1.0

Outline

- Outcome
- 2 Related works
- 3 Current progress
- 4 Reference

Outcome

Outcome

No outcome.

Related works

Two papers

- A Measurement Study on Linux Container Security: Attacks and Countermeasures[1]
- Container-Based Cloud Platform for Mobile Computation Offloading[2]

Some Golang/Rust

- **1** The next generation of C/C++
- 4 High Concurrency, Memory Safe, Traits

ASLR/KASLR/Finer-grained KASLR

Capabilities

Table 3: Function of Security Mechanisms in Preventing Privilege Escalation Attacks

EDB-ID	CVE-ID	Security Mechanisms				
		Namespace	Cgroup	Capability	Secomp	MAG
Web App	Layer	,				
43002	CVE-2017-15276			•		
40921	CVE-2016-9566			•		
42305	CVE-2017-6970			•		
40938	CVE-2014-6271			•		
Server La	yer					
40768	CVE-2016-1247			•		
40678	CVE-2016-6663			•		
40450	CVE-2016-1240			•		
Kernel L	ayer					
41994	CVE-2007-7508					
43127	CVE-2017-5123					
43029						
40871	CVE-2016-8655					
40489						
40435	CVE-2016-4997			l .		
44300				NET_ADMIN ¹		
40049						
41458	CVE-2007-6074			 NET_ADMIN¹ 		
43418	CVE-2017-1000112			 NET_ADMIN¹ 		
41995	CVE-2016-9793			 NET_ADMIN¹ 		
42887	CVE-2017-1000253			•		
42274	CVE-2017-1000366					
42274	CVE-2017-1000371					
42276	CVE-2017-1000379			•		
46670	CVE-2017-1000370					
40003	CVE-2016-0728					
39277	CVE-2016-0728				•	
39992	CVE-2016-1583			•	•	•
41762	CVE-2017-1575			•	•	•
41763	CVE-2017-1576			•	•	•
39166	CVE-2015-8660					
39230				-	٠.	٠.
40847						
40616	CVE-2006-5195	•		•		
40611						
40839						
40838		-		-	_	
40759	CVE-2816-4557					_
39772		-		-	_	
41999	CVE-2016-2384	•	•			

[•] Security mechanism blocks the exploit.

Exploit can achieve privilege escalation when the 'NET_ADMIN' capability is included in the cop_ber of the caller process. Other exploits marked '* in 'Capability' column can only be successful when all 38 capabilities are included in the cap_ber. The 'cap_ber' defines the highest privilege a process could reach.

Exploit bypasses all 5 security mechanisms.

Userland to kernelland

擋掉kernel exploit 可以從無法執行或可執行但不會成功或可執行但會被限制等想法

Interact with FHIR in docker

Current progress

Map-reduce

Map-reduce

Reference

References I

Xin Lin et al. "A Measurement Study on Linux Container Security: Attacks and Countermeasures". In: ACSAC '18. San Juan, PR, USA: Association for Computing Machinery, 2018, 418–429. ISBN: 9781450365697. DOI: 10.1145/3274694.3274720. URL: https://doi.org/10.1145/3274694.3274720.

S. Wu et al. "Container-Based Cloud Platform for Mobile Computation Offloading". In: 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 2017, pp. 123–132. DOI: 10.1109/IPDPS.2017.47.