

CISS 2015

A Two-Layer Coalitional Game among Rational Cognitive Radio Users

This research was supported by the NSF grant CNS-1018447.

Yuan Lu ylu8@ncsu.edu Alexandra Duel-Hallen sasha@ncsu.edu

Department of Electrical and Computer Engineering
North Carolina State University

Introduction: Hardware Constrained CR

Overlay Cognitive Radio (CR) Structure

 Secondary users (SUs) are required to sense before accessing the spectrum licensed to primary users (PUs).

Hardware Constraints

- Each SU has limited sensing capability.
- Sensing outcomes are prone to errors:
 - ➤ Miss detection (MD) → Collision with PUs,
 - False alarm (FA) → Missed spectrum opportunities.
- No central control unit → Distributed CR access → SU collision.

Approach: SU Cooperation

Observations and Related Work

Observations

- Traditionally, cooperative sensing is studied assuming
 - ➤ a fixed number of SUs & a single channel; In practice, there are
 - ➤ all participating SUs are fully cooperative. many possible channels!
- How to make rational sensing & cooperation decisions?
- How to share the detected spectrum resources fairly?

Related Work:

- Game theory has been utilized recently for SU cooperation:
 - cognitive access is ignored in [1-3];
 - sensing decision is not studied in [4];
 - > only [5] **jointly** considers **sensing & access** but is **not fair**.
- [1] B. Wang, et al., IEEE Trans Commun. 10
- [2] W. Saad et al., IEEE Trans. Veh. Technol. 11
- [3] W. Wang et al., GLOBECOM 10

- [4] J. Rajasekharan et al., Asilomar 10
- [5] X. Hao et al., IEEE Trans. Wireless Commun. 12

Definition and Assumption

- Set of all SUs $\mathcal{M} = \{1, ..., M\}$; Set of all channels $\mathcal{N} = \{1, ..., N\}$.
- **Top-layer coalition** C = (S, n): a set of SUs S sensing channel n;
 - **→** Top-layer partition $\mathcal{P} = \{C^1, C^2, ..., C^N\}$.
- **Bottom-layer coalition** $\eta \subseteq S$: a set of cooperating SUs;
 - \rightarrow Bottom-layer partition ρ .

$$\mathcal{M} = \{1, ..., 8\}; \mathcal{N} = \{1, 2, 3\}$$
 \Rightarrow Improved successful $\mathcal{P} = \{(\{1, 2, 4\}, 1), (\{3, 6\}, 2), (\{5, 7, 8\}, 3)\}$ \Rightarrow Reduced SU collision

- (1) Cooperative sensing
- → Improved successful tx prob.
- → Reduced SU collisions

$$\rho = \{\{1, 2\}, \{4\}\}$$
 | CH 1 | CH 2 | CH 3 | $\{1, 2\}, \{4\}\}$ | $\{1, 2\}, \{4\}$

Two-Layer Game Formulation

Top-Layer Game Formulation

Each SU $m \in C$ obtains a partially transferable utility (PTU) given by the **expected data rate**:

$$x^{mC} = a^{mC}R^{mn}$$

- \triangleright measures the worth of top-layer coalition C to SU $m \in C(1)$;
- \triangleright data rate R^{mn} is a non-transferable utility (**NTU**);
- \triangleright probability of successful transmission a^{mC} is a transferable utility (**TU**) given by the payoff generated by the bottom-layer game.
- A top-layer partition \mathcal{P} determines SUs' sensing decisions.

Top-Layer Game Formulation

• An SU m prefers to move from channel n to \tilde{n} if

$$C_r^{\tilde{n}} >_m C^n \Leftrightarrow \begin{cases} x^{mC_r^{\tilde{n}}} > x^{mC^n} & \text{(i)} \\ \sum_{i \in C_r^{\tilde{n}}(1)} a^{iC_r^n} + \sum_{i \in C_r^{\tilde{n}}(1)} a^{iC_r^{\tilde{n}}} > \sum_{i \in C^n(1)} a^{iC^n} + \sum_{i \in C_{\tilde{n}}(1)} a^{iC^{\tilde{n}}} & \text{(ii)} \end{cases}$$
After the move

Before the move

- expected data rate of SU m improves (i);
- > sum of the successful tx probabilities on both channels increases (ii).
- \triangleright preference relation \succ_m combines individual & social objectives.
- **Hedonic game** $(\mathcal{M}, \succ_{\mathcal{M}})$ (A. Bogomolnaia & M. O. Jackson, *Game Econ. Behav.* 02)

Bottom-Layer Game Formulation

- N coalitional games (S, U^n) are played on different channels
 - \triangleright a set of SUs S = C(1) on channel n = C(2) for some $C \in \mathcal{P}$.
- Medium access control (MAC) is needed when multiple bottomlayer coalitions compete for detected spectrum opportunity:
 - O/X-model: All competing SUs fail to transmit successfully.
 - > 1/X-model: All competing SUs gain equal probability for access.
- Define the value U^n of any bottom-layer coalition $\eta \subseteq S$ as the overall successful transmission probability of η on channel n:

$$U_{0/X}^{n}(\eta;\rho) = \beta^{n} \cdot (1 - P_{FA}^{n}(\eta)) \cdot \prod_{\xi \in \rho \setminus \{\eta\}} P_{FA}^{n}(\xi)$$

 \triangleright Bernoulli i.i.d. PU traffic with **availability probability** β^n .

$$\eta = \{5\}
\rho = \{\{5\}, \{6,7\}, \{8\}\}
\rho \setminus \{\eta\} = \{\{6,7\}, \{8\}\}$$

Bottom-Layer Game Formulation

- Transmission opportunity can be transferred within a bottom-layer coalition (if all member SUs agree):
 - **Coalition value** $U^n(\eta) = \Pr[\text{some SU in } \eta \text{ transmits successfully}]$ is a transferable utility (**TU**);
 - \triangleright Allocated payoff probability $a^{mC} = \Pr[SU \ m \text{ transmits successfully}];$
- How to implement?
 - ► If a slot is sensed idle → SU m transmits with probability $a^{mC}/U^n(\eta)$;
 - \triangleright The resulting Pr[SU *m* transmits successfully] = a^{mC} .
- Example: $U^n(\eta) = U^n(\{1,2\}) = 0.8$ for a 2-SU bottom-layer coalition.

	Allocated payoff prob.	Transmission prob. given a slot is sensed idle by η
SU 1	$a^1 = 0.2$	$a^1/U(\eta) = 0.25$
SU 2	$a^2 = 0.6$	$a^2/U(\eta) = 0.75$

Cooperative Sensing

- We regulate $P_{MD}^{n}(m)$ and adjust τ^{mn} to guarantee **PU protection**.
- Individual MD & FA probabilities for SU m on channel n are [1]:

$$P_{\text{MD}}^{n}(m) = 1 - Q\left((\tau^{mn}/2\nu - \lambda^{mn} - 1)\sqrt{\nu/(2\lambda^{mn} + 1)}\right)$$
$$P_{\text{FA}}^{n}(m) = Q((\tau^{mn}/2\nu - 1)\sqrt{\nu})$$

- $\succ \tau^{mn}$ is the detection threshold and ν is the number of samples;
- \triangleright Adaptive threshold control: $P_{FA}^n(m)$ decreases with PU-to-SU SNR λ^{mn} .
- Tight $P_{\mathrm{MD}}^n(m)$ constraint \rightarrow low τ^{mn} \rightarrow large $P_{\mathrm{FA}}^n(m)$.

Cooperative Sensing

- We assume the AND-rule hard decision combining [1].
- SUs in bottom-layer coalition $\eta \in \rho$ cooperate to sense channel n:

$$P_{\text{MD}}^{n}(\eta) = 1 - \prod_{m \in \eta} (1 - P_{\text{MD}}^{n}(m)), \quad P_{\text{FA}}^{n}(\eta) = \prod_{m \in \eta} (P_{\text{FA}}^{n}(m)).$$

• Integrated MD probability is $P_{\text{MD}}^n(\rho) = 1 - \prod_{\eta \in \rho} (1 - P_{\text{MD}}^n(\eta))$.

CH
$$n$$

$$\eta = \{5\}$$

$$\rho = \{\{5\}, \{6,7\}, \{8\}\}$$

Require: (i) $P_{\text{MD}}^{n}(\rho) = P_{\text{MD}}^{\text{Ch}}$ (MD constraint on each channel) (ii) Any 2 equal-sized bottom-layer coalitions maintain the same MD rate.

$$P_{\text{MD}}^{n}(m) = 1 - (1 - P_{\text{MD}}^{n}(\eta))^{\frac{1}{|\eta|}} = 1 - (1 - P_{\text{MD}}^{\text{Ch}})^{\frac{1}{|S|}}.$$

► Large SU population |S| → tight $P_{\text{MD}}^n(m)$ constraint → increased $P_{\text{FA}}^n(m)$ → reduced coalition value.

Bottom-Layer: Coalition Formation

- **0/X-model:** $(S, U_{0/X}^n)$ reduces to a **superadditive** coalitional game in **characteristic form** [1]:
 - ➤ The value of any bottom-layer coalition η is independent of $\rho \setminus \{\eta\}$.
 - SUs obtain larger coalition values from forming larger coalitions.
- 1/X-model: $(S, U_{1/X}^n)$ exhibits nonpositive externalities and all bottom-layer partitions of S are equally efficient:
 - > A merger between two coalitions cannot benefit the other coalitions.
 - For any partitions ρ and $\tilde{\rho}$ of S, $\sum_{\eta \in \rho} U_{1/X}^n(\eta; \rho) = \sum_{\eta \in \tilde{\rho}} U_{1/X}^n(\eta; \tilde{\rho})$.
- Grand coalition $\rho = \{S\}$ forms for both 0/X & 1/X models [2,3].
 - All SUs in S are willing to cooperate.
 - > Successful transmission probability for some SU on channel n = grand coalition value $U^n(S)$.

[1] W. Saad et al., *IEEE Signal Process. Mag.* 09 [2] E. Maskin, *Presidential Address to the Econometric Society* 03 [2] I. E. Hafalir, *Games Econ.Behav.* 07

Bottom-Layer: Payoff Allocation

- How to allocate the value $U^n(S)$ to every SU in S?
 - Individual payoff that an SU could have obtained by leaving $U^n(S)$ (disagreement point) \rightarrow Nash Bargaining Solution (NBS) [1,2].
- 0/X-model: $a_{\text{NBS},0/X}^{mC} = U_{0/X}^n(\{m\}) + \frac{1}{|S|} [U_{0/X}^n(S) \sum_{i \in S} U_{0/X}^n(\{i\})]$
 - ≥ hypothetical individual payoff (guaranteed);
 - \triangleright the 2nd term allocates the **surplus due to cooperation** equally to all SUs on channel n.
- 1/X-model: $a_{fNBS,1/X}^{mC} = U_{1/X}^n(\{m\}; \{\{j\}_{j \in S}\})$
 - = hypothetical individual payoff (assume other SUs are also alone);
 - ➤ SUs should deviate from the grand coalition → may end up with a much worse payoff if other SUs collude.

Top-Layer: Coalition Formation

- SUs evolve to different top-layer coalitions in a distributed manner.
- An SU m switches to another channel if the newly formed coalition is strictly preferable (\succ_m) to its current coalition.

$$m = 4, n = 1, \tilde{n} = 2$$

Current coalition = $(\{1,2,4\},1)$
New coalition = $(\{4,3,6\},2)$
 $(\{4,3,6\},2) >_4 (\{1,2,4\},1)$?

- We prove convergence to a final top-layer partition \mathcal{P}^* :
 - > Overall successful tx prob. of the CR network increases in each transition;
 - > SUs **cannot revisit** the same top-layer partition;
 - \triangleright Only a **finite number** of N^M possible **top-layer partitions**.

Simulation Setup

- Only consider the pass loss effects with the path loss exponent = 2.
- All users randomly placed in a square region of $100 \text{m} \times 100 \text{m}$.
- Each PU uses one channel with bandwidth = 10 MHz exclusively.

Parameter	Value
Sensing/Slot duration	5 ms/100ms
Sensing/Noise power	10mW/0.1mW
PU/SU transmission power	100mW/10mW
Number of samples ν	5
Channel availability probability eta^n	0.2

Simulation Result: Throughput

- Better network throughput under both 0/X and 1/X models
- All SUs are satisfied with their individual throughputs.

(i) Two-Layer Game (0/X)
(ii) Hedonic Game [5] (0/X)

Simulation Result: Energy Efficiency

- One exception: more dissatisfied SUs under the 1/X-model (d).
 - Negligible energy efficiency loss for these individuals in (e).
 - Significantly improved overall energy efficiency (f).

Conclusion

- A comprehensive two-layer coalitional game framework for SU cooperation in multichannel multi-SU CR networks.
- An efficient, stable, and distributed coalition formation algorithm that improves the SU throughput.
- A fair payoff allocation scheme to promote individual incentives for cooperation.
- A novel distributed threshold adaptation approach for cooperative sensing with guaranteed PU protection.

Thank you!