Segunda Lista de Preparação para a LI IMO e XXV Olimpíada Iberoamericana de Matemática

Nível III

▶ PROBLEMA 1

Seja F_n o n-ésimo número de Fibonacci (como usual, $F_0 = 0$, $F_1 = 1$ e $F_n = F_{n-1} + F_{n-2}$ para $n \ge 2$). Prove que existe um inteiro positivo n, com pelo menos 2010 fatores primos distintos, tal que n divide F_n .

▶PROBLEMA 2

Prove que, para todo inteiro positivo n, $\left| \left(\sqrt[3]{28} - 3 \right)^{-n} \right|$ não é múltiplo de 6.

▶PROBLEMA 3

Sejam A_1 , B_1 e C_1 os pontos de tangência do incírculo do triângulo acutângulo ABC sobre os lados BC, CA e AB, respectivamente. Denote por ω_A , ω_B e ω_C os incírculos dos triângulos AB_1C_1 , A_1BC_1 e A_1B_1C . A reta t_A tangencia ω_B e ω_C , corta os segmentos AB e AC e não corta o segmento BC. Defina t_B e t_C de modo análogo. Prove que as retas t_A , t_B e t_C passam por um mesmo ponto.

▶PROBLEMA 4

64 pessoas participam de um torneio de xadrez (em xadrez, pode ocorrer empates). Sabe-se que, para toda partida que terminou em empate, cada um dos demais 62 participantes venceu um dos dois participantes que empataram e que houve pelo menos dois empates no torneio. Prove que podemos colocar os 64 participantes do torneio em fila de modo que cada participante venceu quem está imediatamente à sua frente na fila.

▶PROBLEMA 5

É possível particionar os números $1, 2, 3, \ldots, 2n$ em dois conjuntos $A = \{a_1, a_2, \ldots, a_n\}$ e $B = \{b_1, b_2, \ldots, b_n\}$, tal que $(a_1 + b_1)(a_2 + b_2) \ldots (a_n + b_n)$ tenha no máximo 2^n divisores positivos?

▶PROBLEMA 6

Sejam a, b, c reais positivos tais que

$$(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) < 5+3\sqrt{2}.$$

Prove que a, b, c são as medidas dos lados de um triângulo acutângulo.

▶ PROBLEMA 7

Sejam z_1, z_2, \ldots, z_n números complexos arbitrários. Prove que existe um inteiro positivo $k \le 2n+1$ tal que a parte real de $z_1^k + z_2^k + \cdots + z_n^k$ é não-negativa (ou seja, $\Re(z_1^k + z_2^k + \cdots + z_n^k) \ge 0$).

▶PROBLEMA 8

Sejam M e N os respectivos pontos médios dos lados AD e BC do quadrilátero convexo ABCD, K a interseção de AN e BM e L a interseção de CM e DN. Encontre a menor constante real c tal que

área
$$MKNL < c \cdot$$
área $ABCD$

para todo quadrilátero convexo ABCD.