杭州电子科技大学学生考试卷(

考试课程	高等数学甲		考试日期	考试日期 07年1月			成绩	
课程号		教师号		任课教师	姓名			
考生姓名		学号 (8 位)		年级			专业	

题		三			四	五.	六	七	八	九
号		1	2	3						
得										
分										

选择题(本题共8小题,每小题3分,共24分)

- _____ 1. [3 分] 函数 $f(x) = \arctan \frac{1}{1-x}$ 当 $x \to 1$ 时的极限是()
- (A) $\frac{\pi}{2}$; (B) $-\frac{\pi}{2}$; (C) 0; (D) 不存在.
- 2. [3分] 对于任意的x, 都有f(-x) = -f(x), $f'(-x_0) = -k \neq 0$, 则 $f'(x_0) = ($
 - (A) k; (B) -k; (C) $\frac{1}{k}$; (D) $-\frac{1}{k}$.
- 3. [3分] 使函数 $f(x) = \sqrt[3]{x^2(1-x^2)}$ 适合罗尔定理条件的区间是()
 - (A) [0,1]; (B) [-1,1]; (C) [-2,2]; (D) [-3/5, 4/5].
- 4. [3分] 若 $\int f(x)dx = F(x) + c$,则 $\int f(ax^2 + b)xdx = ($
 - (A) $F(ax^2 + b) + c$; (B) $\frac{1}{2a}F(ax^2 + b)$;
 - (C) $\frac{1}{2a}F(ax^2+b)+c$; (D) $2aF(ax^2+b)+c$.
- 5. [3 分] 定积分 $\int_{0}^{3\pi/4} |\sin 2x| dx$ 的值是()
 - (A) 1/2; (B) 3/2; (C) -1/2; (D) -3/2.

6. [3分] 如果曲线弧 \overrightarrow{AB} 的方程可以表示为 x = x(t), y = y(t),且 A 点对应参数 $t = \alpha$, B 点对应参数 $t = \beta$, $\Delta(\alpha, \beta)$ 内 $\Delta(t)$, $\Delta(t)$ 具有连续导数,

则曲线弧 $\stackrel{\cap}{AB}$ 的长s=()

(A)
$$\int_{-\pi}^{\beta} \sqrt{1 + {y'}^2} dx;$$

(A)
$$\int_{\alpha}^{\beta} \sqrt{1 + {y'}^2} dx$$
; (B) $\int_{\alpha}^{\beta} \sqrt{1 + {y'}^2(t)} dt$;

(C)
$$\int_{\alpha}^{\beta} \sqrt{x'^2(t) + y'^2(t)} dt$$
; (D) $\int_{\alpha}^{\beta} \sqrt{1 + x'^2(t)} dt$.

(D)
$$\int_{\alpha}^{\beta} \sqrt{1 + {x'}^2(t)} dt$$

- 7. [3分] 已知 $y = \sin x$,则 $y^{(10)} = ($)
 - (A) $\sin x$; (B) $\cos x$; (C) $-\sin x$; (D) $-\cos x$.
- 8. [3分] 设 $f(x) = \int_0^{\sqrt{\ln x}} e^{t^2} dt$,则f'(x) = ()

(A)
$$\frac{1}{2\sqrt{\ln x}}$$
; (B) $\frac{1}{\sqrt{\ln x}}$; (C) $\frac{e^{x^2}}{2\sqrt{\ln x}}$; (D) $\frac{e^{x^2}}{\sqrt{\ln x}}$.

二、 填空题 (每小题 4 分, 共 16 分)

[得分] 1. [4分] 若
$$f(x) = \begin{cases} \frac{\ln(1+2x)}{x}, & x \neq 0 \\ a, & x = 0 \end{cases}$$
 在 $x = 0$ 处连续,则 $a =$ ______;

- 2. [4分] 设 $y = \arcsin \sqrt{1-x^2}$, 则 dy =______;
- 3. $[4 \, \text{分}]$ 设 $f(x) = e^{2x} 2x$ 在区间 上单调增加;
- 4. $[4 \, \mathcal{G}]$ 已知 $\bar{a} = 2\bar{i} + \bar{j} 3\bar{k}$, $\bar{b} = 3\bar{j} + \bar{k}$, 则 \bar{a} , \bar{b} 夹角的正弦等于____

得分

3. [5分] 求极限: $\lim_{x\to 0} \frac{\int_0^{x^2} t^{3/2} dt}{\int_0^x t(t-\sin t) dt}$.

三、试解下列各题(本题共3小题,每小题5分,共15分)

得分

1. [5分] 设 $y = \sin^2 x - \ln(x + \sqrt{a^2 + x^2})$, 求 y'.

得分 2. [5分] 设 $\begin{cases} x = e^{-t}(1+\cos t) \\ y = e^{-t}(1+\sin t) \end{cases}$, 求 $\frac{d^2y}{dx^2}$.

得分

四、[本题6分]

设函数 $f(x) = 3 - (x - 1)^{\frac{2}{3}}$,求 f(x) 的单调区间与极值.

五、[本题共 2 小题,每小题 5 分,共 10 分] 求积分: $1. \int \frac{x^4 - 2}{x^2(1 + x^2)} dx$;	得分
$2. \int_0^{+\infty} \frac{xe^{-x}}{(1+e^{-x})^2} dx$	有分 七、 [本题 7 分] 求 $y = \frac{1}{2}x^2$ 和 $y = \sqrt{8-x^2}$ 所围成的面积.

得分

九、[本题5分]

得分

八、[本题 9 分] 设函数 f(x) 在区间 $(-\infty, +\infty)$ 上二阶导数连续,且 f(0) = 0,

设函数 f(x) 在区间 [0,1] 上具有一阶连续导数, 且 $|f'(x)| \le M$, $x \in [0,1]$.

对于函数

$$g(x) = \begin{cases} \frac{f(x)}{x}, & x \neq 0 \\ a, & x = 0 \end{cases}$$

- (1) 确定a的值,使g(x)在 $(-\infty, +\infty)$ 上连续;
- (2) 证明对于所确定的a的值,g(x)在 $(-\infty, +\infty)$ 上的一阶导数是连续的.

证明: $\left| \int_0^1 f(x) dx - \frac{1}{n} \sum_{k=1}^n f(\frac{k}{n}) \right| \leq \frac{M}{n}.$