

Library Indian Institute of Science Education and Research Mohali

DSpace@IISERMohali (/jspui/)

- / Publications of IISER Mohali (/jspui/handle/123456789/4)
- / Research Articles (/jspui/handle/123456789/9)

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2594

Title: When is $R[\theta]$ integrally closed?

Authors: Khanduja, S.K. (/jspui/browse?type=author&value=Khanduja%2C+S.K.)

Jhorar, B. (/jspui/browse?type=author&value=Jhorar%2C+B.)

Keywords: Valued fields

Irreducible polynomials
Non-Archimedean valued fields

Issue Date:

2016

Publisher: World Scientific

Citation: Journal of Algebra and its Applications, 15(5).

Abstract:

Let R be an integrally closed domain with quotient field K and θ be an element of an integral domain containing R with θ integral over R. Let F(x) be the minimal polynomial of θ over K and p be a maximal ideal of R. Kummer proved that if $R[\theta]$ is an integrally closed domain, then the maximal ideals of $R[\theta]$ which lie over p can be explicitly determined from the irreducible factors of F(x) modulo p. In 1878, Dedekind gave a criterion known as Dedekind Criterion to be satisfied by F(x) for $R[\theta]$ to be integrally closed in case R is the localization Z(p) of Z at a nonzero prime ideal pZ of Z. Indeed he proved that if $g1(x)e1\cdots gr(x)er$ is the factorization of F(x) into irreducible polynomials modulo p with $gi(x)\in Z[x]$ monic, then $Z(p)[\theta]$ is integrally closed if and only if for each i, either ei=1 or gi(x) does not divide H(x) modulo p, where $H(x)=1p(F(x)-g1(x)e1\cdots gr(x)er)$. In 2006, a similar necessary and sufficient condition was given by Ershov for $R[\theta]$ to be integrally closed when R is the valuation ring of a Krull valuation of arbitrary rank (see [Comm. Algebra.38 (2010) 684–696]). In this paper, we deal with the above problem for more general rings besides giving some equivalent versions of Dedekind Criterion. The well-known result of Uchida in this direction proved for Dedekind domains has also been deduced (cf. [Osaka J. Math.14 (1977) 155–157]).

URI:

https://www.worldscientific.com/doi/abs/10.1142/S0219498816500912 (https://www.worldscientific.com/doi/abs/10.1142/S0219498816500912) http://hdl.handle.net/123456789/2594 (http://hdl.handle.net/123456789/2594)

Appears in

Research Articles (/jspui/handle/123456789/9)

Collections:

Files in This Item:

File	Description	Size	Format	
Need to add pdf.odt (/jspui/bitstream/123456789/2594/1/Need%20to%20add%20pdf.odt)		8.63 kB	OpenDocument Text	View/Open (/jspui/bitstream/12345

Show full item record (/jspui/handle/123456789/2594?mode=full)

II (/jspui/handle/123456789/2594/statistics)

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.