Measurement of the branching fraction of $\eta_c o K_S^0 K \pi$

Ma Xuning ¹ Wang Zhiyong² Yu Chunxu ¹

¹Nankai Univ.

²IHEP

April 8, 2015

Overview

- Exclusive Process
 - Event Selections
 - Optimized Selection
 - Results
- 2 Inclusive Process
 - Event Selections
 - sideband
- Summary

Event Selections

Good Charged tracks selections

- $\bullet~V_{xy} < 1 \text{cm},~|V_z| < 10 \text{cm}$ (except for the two tracks from K_S^0)
- $|\cos \theta < 0.93|$

Good phton selections ($1 \le N_{\gamma} \le 20$)

- $E_{\gamma} > 25 MeV$ for $|\cos \theta| < 0.8$
- $E_{\gamma} > 50 MeV$ for $0.86 < |\cos \theta| < 0.92$
- $0 \le TDC \le 14$ (in unit of 50ns)

Event Selections

To improve the efficiency of selections, we assume the following charged tracks as pions

K_S^0 Reconstruction $(N_{K_S^0} \ge 1)$

- $L/\sigma_L > 2(L: decay length; \sigma_L: error of decay length)$
- $\bullet |m_{\pi^+\pi^-}^{invariant} m_{K_S^0}| \le 20 MeV$

$\gamma \pi^+ \pi^-$ list

- $3.45 < m_{\pi^+\pi^-}^{recoil} < 3.65 GeV$
- $2.8 < m_{\pi^+\pi^-\gamma}^{recoil} < 3.2 GeV$

Another π^+K^- or π^-K^+ pair is required Combination with the minimum $\chi^2=\chi^2_{4C}+\sum_{i=1}^N\chi^2_{PID}(i)$ is kept

Optimized Selections

The χ^2_{4C} cut is optimized with the figure of merit(FOM) $\frac{S}{\sqrt{S+B}}$, and the optimized selections are presented below:

$$\chi^2 \ {
m Cut} \ (\ 3.515 < M_{\pi^+\pi^-}^{recoil} < 3.535 \)$$

- $\sqrt{s} = 4.23 \, GeV$: $\chi^2_{4C} < 65$;
- $\sqrt{s} = 4.26 \, GeV$: $\chi^2_{4C} < 50$;
- $\sqrt{s} = 4.36 \, GeV$: $\chi^2_{4C} < 25$;
- $\sqrt{s} = 4.42 \, GeV$: $\chi^2_{4C} < 30$;

Results of $M_{\pi^+\pi^-\gamma}^{recoil}$

Event Selections

Good Charged tracks selections

- $V_{xy} < 1$ cm, $|V_z| < 10$ cm
- $|\cos \theta < 0.93|$

Good phton selections ($1 \le N_{\gamma} \le 20$)

- $E_{\gamma} > 25 MeV$ for $|\cos \theta| < 0.8$
- $E_{\gamma} > 50 MeV$ for $0.86 < |\cos \theta| < 0.92$
- $0 \le TDC \le 14$ (in unit of 50ns)

We use the $\gamma\pi^+\pi^-$ list to recoil the η_c and h_c signal

$\gamma\pi^+\pi^-$ list

- $3.45 < m_{\pi^+\pi^-}^{recoil} < 3.65 GeV$
- \bullet 2.8 < $m_{\pi^+\pi^-\gamma}^{recoil}$ < 3.2GeV

sideband

We use the sideband method to analyze the results

results of sideband $M^{recoil}_{\pi^+\pi^-\gamma}$

The upper ones draw the sideband and signal regions together, while the lower ones draw net events

results of sideband $M_{\pi^+\pi^-}^{recoil}$

The upper ones draw the sideband and signal regions together, while the lower ones draw net events

 $M_{\gamma\pi^*\pi^*}^{recoil}$

3 3.05 M^{recoil}_{γπ⁺π}

summary of the exclusive process

• The signal of the exclusive process is clear

summary of the exclusive process

 The signal of the inclusive process is observable, but the background is somehow too thick

We have been working on results fitting yet the results are not ready And we will get the efficiency afterwards