Bellman Expectation Bellman Optimality Iterative Policy Evaluation

Prof. Subrahmanya Swamy

Bellman Expectation Equations: Numerical Example

Bellman Expectation (BE) equation

$$V_{\pi}(s) = R_s^{\pi} + \sum_{s'} P_{ss'}^{\pi} V_{\pi}(s')$$

Immediate reward

Remaining Return

To find the value function V_{π} of a given policy π

Grid Example

Α	В
С	G

- **Deterministic** state transitions
- $R_t = -1$ on all transitions
- Terminal state value $V_{\pi}(G) = 0$
- Discount factor $\gamma = 1$
- Uniform Random Policy π

Policy Dynamics:

$$P_{A,A}^{\pi} = \frac{1}{2}, \qquad P_{A,B}^{\pi} = \frac{1}{4}, \qquad P_{A,C}^{\pi} = \frac{1}{4}$$

$$P_{B,A}^{\pi} = \frac{1}{4}, \qquad P_{B,B}^{\pi} = \frac{1}{2}, \qquad P_{B,G}^{\pi} = \frac{1}{4}$$

$$P_{C,A}^{\pi} = \frac{1}{4}, \qquad P_{C,G}^{\pi} = \frac{1}{4}, \qquad P_{C,C}^{\pi} = \frac{1}{2}$$

Bellman Expectation

Α	В
С	G

$$V_{\pi}(s) = R_s^{\pi} + \sum_{s'} P_{ss'}^{\pi} V_{\pi}(s')$$

A:
$$V_{\pi}(A) = -1 + \frac{1}{4}V_{\pi}(B) + \frac{1}{4}V_{\pi}(C) + \frac{1}{2}V_{\pi}(A)$$

B:
$$V_{\pi}(B) = -1 + \frac{1}{4}V_{\pi}(A) + \frac{1}{4}V_{\pi}(G) + \frac{1}{2}V_{\pi}(B)$$

C:
$$V_{\pi}(C) = -1 + \frac{1}{4}V_{\pi}(A) + \frac{1}{4}V_{\pi}(G) + \frac{1}{2}V_{\pi}(C)$$

Matrix form

A:
$$V_{\pi}(A) = -1 + \frac{1}{4}V_{\pi}(B) + \frac{1}{4}V_{\pi}(C) + \frac{1}{2}V_{\pi}(A)$$

A:
$$V_{\pi}(A) = -1 + \frac{1}{4}V_{\pi}(B) + \frac{1}{4}V_{\pi}(C) + \frac{1}{2}V_{\pi}(A)$$

B: $V_{\pi}(B) = -1 + \frac{1}{4}V_{\pi}(A) + \frac{1}{4}V_{\pi}(G) + \frac{1}{2}V_{\pi}(B)$

C: $V_{\pi}(C) = -1 + \frac{1}{4}V_{\pi}(A) + \frac{1}{4}V_{\pi}(G) + \frac{1}{2}V_{\pi}(C)$

C:
$$V_{\pi}(C) = -1 + \frac{1}{4}V_{\pi}(A) + \frac{1}{4}V_{\pi}(G) + \frac{1}{2}V_{\pi}(C)$$

Solving the matrix equation gives us

$$V_{\pi}$$

$$-8 \qquad -6$$

$$-6 \qquad 0$$

$$\begin{bmatrix} -\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & -\frac{1}{2} & 0 \\ \frac{1}{4} & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} V_{\pi}(A) \\ V_{\pi}(B) \\ V_{\pi}(C) \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Matrix form

Exercise

• Use BE equations and compute the value function for the policy shown in the figure π

Bellman Optimality Equations

Bellman Optimality Equations

• Bellman Expectation : To find V_{π} for a given policy π

• Bellman Optimality: To find optimal policy π^*

Optimal substructure

Optimal solutions of subproblems can be used to find the optimal solution of the original problem

The shortest cost for A -> F

Can be found from the shortest costs of B -> C, C -> F

Optimal Substructure in MDP

Best action to take?

Bellman Optimality (BO) equation

$$V^*(s) = \max_{a} R_s^a + \sum_{s'} P_{ss'}^a V^*(s')$$
Reward for Remaining Reward from next state

Using the definition of Q-function

We can equivalently write it as

$$V^*(s) = \max_{a} Q^*(s, a)$$

Optimal Policy from V^*

$$\pi^*(s) = \underset{a}{\text{arg max}} R_s^a + \sum_{s'} P_{ss'}^a V^*(s')$$

Example: Verify BO equations

Iterative Policy Evaluation

Iterative Policy Evaluation

- Large state spaces:
 - Issue: Solving Bellman expectation equations using matrix inversion is intractable
 - Solution: Use iterative policy evaluation
- Iterative Policy Evaluation: Iteratively apply BE equation

$$V_{k+1}(s) = R_s^{\pi} + \sum_{s'} P_{ss'}^{\pi} V_k(s')$$