wedge is $\frac{\pi}{6}$

MATH 221

me:
Volumes) Find the volume of the solid obtained by rotating the area bounded by $y = \sqrt{2x}$ and $y = 4x^2$ around the y-axis.
) Find the volume of the solid obtained by rotating the area bounded by $x = (y-2)^2$ and $y = x$ around the line $y = -1$.
) Find the volume of a torus (donut) obtained by rotating the circle centered at $(R,0)$ of radius r around the y -axis.
.

(d) Find the volume of a wedge cut out of a cylinder of radius r if the angle between the top and bottom of the

Some extra practice

(a) Compute

$$\lim_{x \to \infty} \log(x^2) - \log(x)$$

(b) Compute

$$\lim_{x\to\infty}e^{\sqrt[3]{x}}\sqrt[3]{e^x}$$

(c) Integrate

$$\int (7-x)^{10} dx$$

(d) Compute

$$\int_{1}^{2} \frac{\sin(\ln x)}{x} dx$$

(e) Integrate

$$\int x\sqrt{4-x}dx$$

(f) Integrate

$$\int \sqrt{4 - \sqrt{x}} dx$$

(g) Compute the area of the region bounded between $x=y^2$ and x=4