

BIG GEODATA ANALYTICAL METHODS AND DISTRIBUTED COMPUTING

INTRODUCTION

Mahdi KHODADADZADEH Mahdi FARNAGHI Serkan GIRGIN February 2022

LEARNING OBJECTIVES

- LO1 Explain to peers the fundamentals of big geodata processing.
- LO2 Compare various big geodata solutions.
- LO3 Design workflows that run on the cloud and consider options for efficient computing.
- LO4 Prepare and maintain a code repository.
- LO5 Interpret the analytical results and demonstrate their reproducibility.

TOPICS

- Introduction to Jupyter Notebook and JupyterLab
- Introduction to big geodata (including the seven Vs: Volume, Velocity, Variety, Variability, Veracity, Value and Visualization)
- Principles of big geodata modelling and analysis (clustering, classification and regression tasks).
- Big geodata solutions (e.g. Google Earth Engine vs. HADOOP/SPARK or DASK-based solutions).
- Code versioning

COURSE SCHEDULE

- Ten days of lectures, tutorials and practicals (February 17 March 3)
- About 4 days for project work and evaluation/exam
- Materials (including recordings) and announcements will be published in Moodle

Slot	Time (BD)	Time (NL)	Content
1	8:30-12:30	3:30-07:30	Work on exercises / reading materials / tutorials
2	12.30-13.30	07.30-08.30	Lunch break
3	13.30-14.00	08.30-09.00	Online feedback sessions
4	14.00-16.30	09.00-11.30	Online lectures

TIMETABLE

- Mix of online lectures and practicals (exercises and guided discussions)
- Plan and use well the self-study slots

Day	Content		
#1 (17 Feb)	Introduction to the course, project and CRIB		
	Introduction to Jupyter Notebook and JupyterLab		
#2 (20 Feb)	Review Phase I and II on CRIB		
#3 (22 Feb)	Big geodata and Machine Learning		
#4 (23 Feb)	b) Git and GitHub		
	Distributed computing		
#5 (24 Feb)	Google Earth Engine		
#6 (27 Feb)	Project group work		
#7 (28 Feb)	Cloud computing		
#8 (1 Mar)	How to setup cloud VRE		
#9 (2 Mar)	Project group work		
#10 (3 Mar)	Projects presentation and assessment		

GROUP PROJECT

Big Spatio-temporal Data Analytics: Advanced Machine Learning Modeling with Python

- Each group will have 3 participants (i.e., 3 groups).
- Four days of work
- We will schedule "question hours" during the project work
- We will monitor the discussion forum

From: R. Zurita-Milla, R. Goncalves, E. Izquierdo-Verdiguier and F. O. Ostermann, "Exploring Spring Onset at Continental Scales: Mapping Phenoregions and Correlating Temperature and Satellite-Based Phenometrics," in *IEEE Transactions on Big Data*, vol. 6, no. 3, pp. 583-593, 1 Sept. 2020

PROJECT QUESTION HOURS

- Bring in your questions to the meeting
- Use the discussion forum
- Be active, help others
- Teamwork is very appreciated

Slot	Date	Time (BD)	Time (NL)
1	Monday, 28 February 2022	13.30-14.00	08.30-09.00
2	Tuesday, 29 February 2022	13.30-14.00	08.30-09.00

ASSESSMENT

The assessment will be based on group projects (50%) and individual oral examinations (50%)

- The project assessment will be done based on 15 mins presentation and preparation of a well-documented Jupyter notebook
- The oral examination will be done after the project presentation (±10 mins per participant)

MOODLE

Materials will be added on the go ... check regularly

QUESTIONS?

UNIVERSITY OF TWENTE.

GROUP PROJECTS

Mahdi KHODADADZADEH Mahdi FARNAGHI Serkan GIRGIN February 2022

TOPICS

- Big Spatio-temporal Data Analytics: Advanced Machine Learning Modeling with Python
 - Data management
 - Data exploration
 - Data analysis / modelling
 - Machine Learning
 - Distributed Computing
 - Big data solutions

INPUT DATA, METHOD AND RESULTS

- The input data should be explored sufficiently
- Proper tools need to be applied to identify outliers, missing data or other relevant features
- The workflow should rely on advanced and/or distributed processing solutions that operates on a big dataset
- A reasonable and justified choice of methods should be made
- The methods should be used correctly

Results need to be discussed and sufficiently interpreted

PROJECT ASSESSMENT

- The project assessment will be done based on 15 mins presentation and preparation of a well-documented Jupyter notebook → A code repository with all the code (one or more scripts) developed during the project.
- The main notebook must explain the overall workflow of the project and any operation or task that was done manually.
- It should have the following sections: introduction, methods, results, and conclusions.
- It should provide a compact but informative background to the research problem.
- It should clearly state the objective of the project work and the contribution of each group member.

PROJECT PROPOSALS

- 1) A comparative study of decision tree, random forest, supervised and unsupervised classification for monitoring crop and fallow of Indian Sundarban region (Debolina Sarkar)
- 2) Crop type mapping in Godagari Upazila using sentinel-2 time series data and machine learning algorithms (Shakhawat Hossain)
- 3) Rice production area estimation (Hasan Md. Hamidur Rahman)
- 4) Prediction of soil fertility and crop productivity through machine learning algorithms (Mustafa Kamal Shahadat)
- 5) Hyperparameter optimization and performance assessment of supervised algorithms for land cover classification (Suman Biswas)
- 6) Crop land classification (Istiak Ahmed)
- 7) Prediction of the crop condition (healthy or damaged) throughout the harvesting season (Afroza Begum)

GROUPS

Group 1	Group 2	Group 3
Afroza Begum	Ummy Kulsum	Debolina Sarkar
Md Golam Mahboob	Istiak Ahmed	Shakhawat Hossain
Hasan Md. Hamidur Rahman	Mustafa Kamal Shahadat	Suman Biswas

Discuss these points:

- Which project do you select?
- What is the dataset? Is it Big?
- Does your project need data preparation?
- What are the possible machine learning algorithms?
- Which distributed processing solution will you use?
- Will you use GEE?
- · What is the expected outcome?

ASSIGNMENT

- Send in a one-page description of your project, by February 27.
 - One paragraph introduction
 - One paragraph dataset
 - One paragraph method
 - One paragraph expected outcomes

Start working on your projects!

UNIVERSITY OF TWENTE.

17

QUESTIONS?

