ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 29 Homework 12 Information Theory and Coding Dec. 12, 2017

PROBLEM 1. Suppose the alphabet \mathcal{X} has q elements and it forms a finite field when equipped with the operations + and \cdot . Let $\alpha_0, \ldots, \alpha_{m-1}$ be m distinct elements of \mathcal{X} . We will describe the codewords of a block code \mathcal{C} of length n $(n \geq m)$ as follows: a sequence $\mathbf{x} = (x_0, \ldots, x_{n-1}) \in \mathcal{X}^n$ is a codeword if and only if

$$x(\alpha_i) = 0$$
 for every $i = 0, \dots, m-1$

where $x(D) = x_0 + x_1 D + \dots + x_{n-1} D^{n-1}$.

- (a) Show that the code C is linear.
- (b) Let $g(D) = \prod_{i=0}^{m-1} (D \alpha_i)$. Show that (x_0, \dots, x_{n-1}) is a codeword if and only if x(D) = g(D)h(D), for some h(D), and conclude that the code has q^{n-m} codewords.

Suppose now that the α_i are have the form $\alpha_i = \beta^i$, i.e., $\alpha_0 = 1$, $\alpha_1 = \beta$, ..., $\alpha_{m-1} = \beta^{m-1}$.

(c) Let A be the $n \times m$ matrix

$$A = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \beta & \beta^2 & \dots & \beta^{m-1} \\ 1 & \beta^2 & \beta^4 & \dots & \beta^{2(m-1)} \\ 1 & \beta^3 & \beta^6 & \dots & \beta^{3(m-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \beta^{n-1} & \beta^{2(n-1)} & \dots & \beta^{(n-1)(m-1)} \end{bmatrix}$$

Show that the columns of A are linearly independent.

Hint: Suppose they were dependent so that there is a column vector $\mathbf{u} = [u_0 \, u_1 \, \dots \, u_{m-1}]^T$ such that $A\mathbf{u} = \mathbf{0}$. How many roots does u(D) have?

(d) Show that the code has minimum distance d = m + 1.

Hint: Part (c) says that the rank of the matrix A is m.

PROBLEM 2. Let $h_2(p) = -p \log p - (1-p) \log(1-p)$ denote the binary entropy function defined on the interval $[0, \frac{1}{2}]$. Note that on this interval h_2 is a bijection, so its inverse $h_2^{-1}: [0,1] \longrightarrow [0, \frac{1}{2}]$ is well defined. Define p*q = p(1-q) + q(1-p) and let \oplus be the XOR operation. Suppose X_1 and X_2 are two binary independent random variables with $H(X_1) = h_2(p_1)$, $H(X_2) = h_2(p_2)$, where $0 \le p_1, p_2 \le \frac{1}{2}$.

- (a) Show that $H(X_1 \oplus X_2) = h_2(p_1 * p_2)$.
- (b) Suppose that (X_1, Y) is independent of X_2 , where Y is a random variable in \mathcal{Y} . For every $y \in \mathcal{Y}$, let $0 \leq p_1(y) \leq \frac{1}{2}$ be such that $H(X_1|Y=y) = h_2(p_1(y))$. We again assume that $H(X_2) = h_2(p_2)$ and $0 \leq p_2 \leq \frac{1}{2}$. Show that $H(X_1|Y) = \sum_y h_2(p_1(y))q(y)$, $H(X_1 \oplus X_2|Y) = \sum_y h_2(p_2 * p_1(y))q(y)$, where $q(y) = \mathbb{P}_Y(y)$ for every $y \in \mathcal{Y}$.

- (c) Show that for every $0 \le p_2 \le \frac{1}{2}$, the mapping $f:[0,1] \longrightarrow \mathbb{R}$ defined as $f(h) = h_2(p_2 * h_2^{-1}(h))$ is convex. Hint: The graph of f(h) can be drawn by the parametric curve $p \to (h_2(p), h_2(p_2 * p))$ so it is enough to show that $p \to \frac{\frac{\partial}{\partial p} h_2(p_2 * p)}{\frac{\partial}{\partial p} h_2(p)}$ is increasing in $0 \le p \le \frac{1}{2}$.
- (d) Suppose $H(X_1|Y) = h_2(p_1)$, $H(X_2) = h_2(p_2)$. Show that $H(X_1 \oplus X_2|Y) \ge h(p_1 * p_2)$.
- (e) Suppose (X_1, Y_1) is independent of (X_2, Y_2) and $H(X_1|Y_1) = h_2(p_1)$, $H(X_2|Y_2) = h_2(p_2)$. Show that $H(X_1 \oplus X_2|Y_1, Y_2) \ge h(p_1 * p_2)$.

PROBLEM 3. Suppose C_1 and C_2 are binary linear codes of block-length n. Denote the number of codewords of C_i by M_i and the minimum distance of C_i by d_i . For $\mathbf{u} = (u_1, \dots, u_n)$ and $\mathbf{v} = (v_1, \dots, v_n)$ let $\langle \mathbf{u} | \mathbf{v} \rangle$ denote the concatenation of the two sequences, i.e.,

$$\langle \mathbf{u} | \mathbf{v} \rangle = (u_1, \dots, u_n, v_1, \dots, v_n).$$

Let \mathcal{C} denote the binary code of block-length 2n obtained from \mathcal{C}_1 and \mathcal{C}_2 as follows:

$$C = \{ \langle \mathbf{u} | \mathbf{u} \oplus \mathbf{v} \rangle \colon \mathbf{u} \in C_1, \ \mathbf{v} \in C_2 \}.$$

- (a) Is \mathcal{C} a linear code?
- (b) How many codewords does C have? Carefully justify your answer. What is the rate R of C in terms of the rates R_1 and R_2 of the codes C_1 and C_2 ?
- (c) Show that the Hamming weight of $\langle \mathbf{u} | \mathbf{u} \oplus \mathbf{v} \rangle$ satisfies

$$w_H(\langle \mathbf{u}|\mathbf{u}\oplus\mathbf{v}\rangle)\geq w_H(\mathbf{v}).$$

(d) Show that the Hamming weight of $\langle \mathbf{u} | \mathbf{u} \oplus \mathbf{v} \rangle$ satisfies

$$w_H(\langle \mathbf{u}|\mathbf{u} \oplus \mathbf{v}\rangle) \ge \begin{cases} w_H(\mathbf{v}) & \text{if } \mathbf{v} \ne \mathbf{0} \\ 2w_H(\mathbf{u}) & \text{else.} \end{cases}$$

(e) Show that the minimum distance d of \mathcal{C} satisfies

$$d \ge \min\{2d_1, d_2\}.$$

(f) Show that $d = \min\{2d_1, d_2\}$.

PROBLEM 4. Let $W: \{0,1\} \longrightarrow \mathcal{Y}$ be a channel where the input is binary and where the output alphabet is \mathcal{Y} . The Bhattacharyya parameter of the channel W is defined as

$$Z(W) = \sum_{y \in \mathcal{Y}} \sqrt{W(y|0)W(y|1)}.$$

Let X_1, X_2 be two independent random variables uniformly distributed in $\{0, 1\}$ and let Y_1 and Y_2 be the output of the channel W when the input is X_1 and X_2 respectively, i.e., $\mathbb{P}_{Y_1,Y_2|X_1,X_2}(y_1,y_2|x_1,x_2) = W(y_1|x_1)W(y_2|x_2)$. Define the channels $W^-: \{0,1\} \longrightarrow \mathcal{Y}^2$ and $W^+: \{0,1\} \longrightarrow \mathcal{Y}^2 \times \{0,1\}$ as follows:

• $W^-(y_1, y_2|u_1) = \mathbb{P}[Y_1 = y_1, Y_2 = y_2|X_1 \oplus X_2 = u_1]$ for every $u_1 \in \{0, 1\}$ and every $y_1, y_2 \in \mathcal{Y}$, where \oplus is the XOR operation.

- $W^+(y_1, y_2, u_1|u_2) = \mathbb{P}[Y_1 = y_1, Y_2 = y_2, X_1 \oplus X_2 = u_1|X_2 = u_2]$ for every $u_1, u_2 \in \{0, 1\}$ and every $y_1, y_2 \in \mathcal{Y}$.
- (a) Show that $W^-(y_1, y_2|u_1) = \frac{1}{2} \sum_{u_2 \in \{0,1\}} W(y_1|u_1 \oplus u_2)W(y_2|u_2).$
- (b) Show that $W^+(y_1, y_2, u_1|u_2) = \frac{1}{2}W(y_1|u_1 \oplus u_2)W(y_2|u_2).$
- (c) Show that $Z(W^+) = Z(W)^2$. For every $y \in \mathcal{Y}$ define $\alpha(y) = W(y|0)$, $\beta(y) = W(y|1)$ and $\gamma(y) = \sqrt{\alpha(y)\beta(y)}$.
- (d) Show that

$$Z(W^{-}) = \sum_{y_1, y_2 \in \mathcal{Y}} \frac{1}{2} \sqrt{\left(\alpha(y_1)\alpha(y_2) + \beta(y_1)\beta(y_2)\right) \left(\alpha(y_1)\beta(y_2) + \beta(y_1)\alpha(y_2)\right)}.$$

(e) Show that for every $x, y, z, t \ge 0$ we have $\sqrt{x+y+z+t} \le \sqrt{x} + \sqrt{y} + \sqrt{z} + \sqrt{t}$. Deduce that

$$Z(W^{-}) \leq \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \alpha(y_1) \gamma(y_2) \right) + \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \alpha(y_2) \gamma(y_1) \right) + \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \beta(y_2) \gamma(y_1) \right) + \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \beta(y_1) \gamma(y_2) \right).$$

$$(1)$$

(f) Show that every sum in (1) is equal to Z(W). Deduce that $Z(W^{-}) \leq 2Z(W)$.

PROBLEM 5. For a given value $0 \le z_0 \le 1$, define the following random process:

$$Z_0 = z_0, \quad Z_{i+1} = \begin{cases} Z_i^2 & \text{with probability } 1/2 \\ 2Z_i - Z_i^2 & \text{with probability } 1/2 \end{cases}$$
 $i \ge 0,$

with the sequence of random choices made independently. Observe that the Z process keeps track of the polarization of a Binary Erasure Channel with erasure probability z_0 as it is transformed by the polar transform: $\mathbb{P}(Z_i = z)$ is exactly the fraction of Binary Erasure Channels having an erasure probability z among the 2^i BEC channels which are synthesized by the polar transform at the ith level. The aim of this problem is to prove that for any $\delta > 0$, $\mathbb{P}[Z_i \in (\delta, 1 - \delta)] \to 0$ as i gets large.

(a) Define $Q_i = \sqrt{Z_i(1-Z_i)}$. Find $f_1(z)$ and $f_2(z)$ so that

$$Q_{i+1} = Q_i \times \begin{cases} f_1(Z_i) & \text{with probability } 1/2, \\ f_2(Z_i) & \text{with probability } 1/2. \end{cases}$$

- (b) Show that $f_1(z) + f_2(z) \le \sqrt{3}$. Based on this, find a $\rho < 1$ so that $\mathbb{E}[Q_{i+1} \mid Z_0, \dots, Z_i] < \rho Q_i$.
- (c) Show that, for the ρ you found in (b), $\mathbb{E}[Q_i] \leq \frac{1}{2}\rho^i$.
- (d) Show that

$$\mathbb{P}\big[Z_i \in (\delta, 1 - \delta)\big] = \mathbb{P}\big[Q_i > \sqrt{\delta(1 - \delta)}\big] \le \frac{\rho^i}{2\sqrt{\delta(1 - \delta)}}.$$

Deduce that $\mathbb{P}[Z_i \in (\delta, 1 - \delta)] \to 0$ as i gets large.