Random Forest Model for COVID-19 Data of South Korea

Sonjoy Das, PhD

Note: This is the only notebook for this project. All the steps (Data Wrangling, Exploratory Data Analysis, Preprocessing and Training Data Development, and Modeling) are included in this file.

Context in Coronavirus

Coronavirus Disease 2019 (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus (more info). The disease causes respiratory illness (like the flu) with symptoms such as a cough, fever, and in more severe cases, difficulty breathing. There is a detailed guideline of preventive actions against COVID-19 available now (Ref: CDC guidelines). An outbreak of COVID-19 started in December 2019 and is still continuing throughout the world. An excellent spatial dashboard built by Johns Hopkins University (JHU) shows the daily confirmed cases by country.

Objective

This work uses the Random Forest Classifier and a dataset from the South Korean cases of COVID-19. The goal of this work is to build a Random Forest Classifier to predict the state of the patient.

Imports

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# %matplotlib inline

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV

from sklearn.metrics import accuracy_score, fl_score
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.metrics import classification_report

import itertools

from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
```

Load and Explore Data

The input attributes and the target attribute are explained below:

Description of attributes:

Input variables:

patient_id : the ID of the patient

global_num: number of global patinets when this patient's disease is confirmed

sex: the sex of the patient

birth_year: the year of birth of the patient

age: the age of the patient

country: the country of the patient

province: the province of the patient

city: the city of the patient

disease: a label with value True or False

infection_case : the case of infection

infection_order: in which order the patient got infected, or, how many people were in the chain who eventually transmitted the SARS-CoV-2 virus to the patient

infected_by : the ID of who infected the patient

contact_number : the number of contacts with people

symptom_onset_date : the date of symptom onset

confirmed_date : the date of being confirmed

released_date : the date of being released

deceased_date : the date of being deceased

Output variable:

state: isolated / released / deceased

Out[5]:		patient_id	global_num	sex	birth_year	age	country	province	city	disease	infectio
	0	1000000001	2.0	male	1964.0	50s	Korea	Seoul	Gangseo- gu	NaN	0\
	1	1000000002	5.0	male	1987.0	30s	Korea	Seoul	Jungnang- gu	NaN	0\
	2	1000000003	6.0	male	1964.0	50s	Korea	Seoul	Jongno-gu	NaN	conta
	3	1000000004	7.0	male	1991.0	20s	Korea	Seoul	Mapo-gu	NaN	0/
	4	1000000005	9.0	female	1992.0	20s	Korea	Seoul	Seongbuk- gu	NaN	conta

```
In [6]: df.shape
```

Out[6]: (2218, 18)

In [7]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 2218 entries, 0 to 2217
        Data columns (total 18 columns):
                                 Non-Null Count Dtype
         #
             Column
        ---
                                 -----
         0
             patient id
                                2218 non-null int64
                                 1314 non-null float64
         1
             global num
                                 2073 non-null object
         2
             sex
                               1764 non-null float64
         3 birth_year
         4 age
                                1957 non-null object
                                2218 non-null object
         5 country
                               2218 non-null object
2153 non-null object
         6 province
         7
            city
         8 disease 19 non-null object
9 infection_case 1163 non-null object
10 infection_order 42 non-null float64
11 infected_by 469 non-null float64
         12 contact_number
                                411 non-null float64
         13 symptom onset date 193 non-null datetime64[ns]
                                  2077 non-null datetime64[ns]
         14 confirmed date
                                 223 non-null datetime64[ns]
         15 released date
         16 deceased_date
                                 32 non-null
                                                datetime64[ns]
         17 state
                                  2130 non-null
                                                  object
        dtypes: datetime64[ns](4), float64(5), int64(1), object(8)
        memory usage: 312.0+ KB
In [8]: #Counts of null values
        def count null values(data):
            na df=pd.DataFrame(data.isnull().sum().sort values(ascending=False)).reset inde
            na_df.columns = ['VarName', 'NullCount']
            na_df = na_df[(na_df['NullCount']>0)]
            return na df
```

In [9]: # Call the function

count null values(df)

	VarName	NullCount
0	disease	2199
1	deceased_date	2186
2	infection_order	2176
3	symptom_onset_date	2025
4	released_date	1995
5	contact_number	1807
6	infected_by	1749
7	infection_case	1055
8	global_num	904
9	birth_year	454
10	age	261
11	sex	145
12	confirmed_date	141
13	state	88
14	city	65

Out[9]:

```
In [10]: #counts of response variable values
    df.state.value_counts(dropna = False)

Out[10]: isolated    1791
    released    307
    NaN          88
    deceased    32
    Name: state, dtype: int64
```

Since 'state' is our target variable, we have an imbalanced data set.

Data Wrangling

Create a new feature named `n_age` which is calculated using the birth year column.

```
<class 'pandas.core.frame.DataFrame'>
         RangeIndex: 2218 entries, 0 to 2217
         Data columns (total 1 columns):
         #
             Column
                           Non-Null Count Dtype
         ---
                            -----
            confirmed date 2077 non-null datetime64[ns]
         dtypes: datetime64[ns](1)
         memory usage: 17.5 KB
In [13]: df['n age'] = (df['confirmed date'].dt.year.astype('float64')) - df['birth year']
         df.n_age
                56.0
Out[13]:
                33.0
         2
                56.0
                29.0
                28.0
         2213
                30.0
         2214
                22.0
         2215
                22.0
         2216
                48.0
         2217
                46.0
         Name: n_age, Length: 2218, dtype: float64
```

Create a new feature named `initial_sick_days`, which is the difference between `confirmed_date` and `symptom_onset_date`, during which the patient did not receive any treatments.

```
In [14]: df['initial_sick_days'] = (df['confirmed_date'].dt.day.astype('float64')) - (df['sy
         df.initial_sick_days
                 1.0
Out[14]:
                 NaN
         2
                 NaN
         3
                 4.0
                 NaN
         2213
                 NaN
         2214
                 NaN
         2215
                 NaN
         2216
                 NaN
         2217
                 NaN
         Name: initial sick days, Length: 2218, dtype: float64
```

Handle Missing Values

Print the number of missing values by column.

```
In [15]: count_null_values(df)
```

	VarName	NullCount
0	disease	2199
1	deceased_date	2186
2	infection_order	2176
3	symptom_onset_date	2025
4	initial_sick_days	2025
5	released_date	1995
6	contact_number	1807
7	infected_by	1749
8	infection_case	1055
9	global_num	904
10	n_age	455
11	birth_year	454
12	age	261
13	sex	145
14	confirmed_date	141
15	state	88
16	city	65

Out[15]:

Feature disease

```
In [16]: df.disease.value_counts(dropna=False)
                  2199
         NaN
Out[16]:
         True
                    19
          Name: disease, dtype: int64
          Fill the 'disease' missing values with 0 and remap the True values to 1.
In [17]: df.disease = df.disease.map({True:1, np.nan:0})
          df.disease.value_counts()
               2199
Out[17]:
                 19
         Name: disease, dtype: int64
In [18]: df.disease.isnull().sum()
Out[18]: 0
```

Feature birth_year

Since we already have age and n_age column, let's drop the `birth_year` column.

```
In [19]: df.drop(['birth_year'], axis=1, inplace=True)
```

Feature infected_by

```
In [20]: print(f"There are {df.infected_by.isnull().sum()} missing values in 'infected_by'
         There are 1749 missing values in 'infected by' out of 2218 records.
         So, this feature cannot be of too much value because of too many missing values. Let's drop it.
In [21]: df.drop(columns = ['infected_by'], inplace=True)
         Feature infection_order
In [22]: print(f"There are {df.infection_order.isnull().sum()} missing values in 'infection_
         There are 2176 missing values in 'infection order' out of 2218 records.
In [23]: df.infection order.value counts(dropna=False)
                2176
         NaN
Out[23]:
         2.0
                  19
                  11
         1.0
         3.0
                   6
                   3
         5.0
                   2
         4.0
         6.0
         Name: infection_order, dtype: int64
         Most of these values are 1's or 2's. Let us fill its missing values by its mean.
In [24]: df.infection order.fillna(df.infection order.mean(), inplace = True)
In [25]: df.infection order.value counts(dropna=False)
                     2176
         2.285714
Out[25]:
         2.000000
                       19
         1.000000
                       11
         3.000000
                         6
         5.000000
                         3
         4.000000
                         2
         6.000000
         Name: infection_order, dtype: int64
         Feature contact_number
In [26]: print(f"There are {df.contact number.isnull().sum()} missing values in 'contact num
         There are 1807 missing values in 'contact number' out of 2218 records.
In [27]: df.contact number.value counts(dropna=False).sort index(ascending=True)
```

```
47
Out[27]:
         1.0
                      34
         2.0
                      44
         3.0
                      42
         4.0
                      19
         450.0
                       1
         485.0
                       1
         1091.0
                       1
         1160.0
                       1
                    1807
         NaN
         Name: contact number, Length: 73, dtype: int64
```

There are a few outliers with extremely high values here. Let us fill its missing values by its mode.

Since most of this column has missing values, we need to use df.contact_number.mode() [0] to use the first element of series (see here).

```
In [28]: df.contact_number.mode()
Out[28]: 0 0.0
         dtype: float64
In [29]: df.contact_number.fillna(df.contact_number.mode()[0], inplace = True)
In [30]: df.contact_number.value_counts(dropna=False)
         0.0
                  1854
Out[30]:
         2.0
                    44
         3.0
                    42
         1.0
                    34
                    27
         5.0
         450.0
                     1
         65.0
                     1
         156.0
                    1
         39.0
         84.0
                     1
         Name: contact_number, Length: 72, dtype: int64
```

Feature global_number

Let us first deal with the duplicated values in 'global_num'.

Before that, let's explore it.

```
In [31]: fig, ax = plt.subplots(dpi = 120)

df.plot(x = 'confirmed_date', y = 'global_num', ax = ax, fontsize = 15)

# Set font size of xlabel and ylabel
ax.xaxis.label.set_size(12)
ax.yaxis.label.set_size(15)
```


The general pattern is that <code>global_num</code> increases with <code>confirmed_date</code> .

How many values of global_num are duplicated?

```
In [32]: df.global_num[df['global_num'].duplicated()].value_counts()
         8476.0
Out[32]:
          1788.0
                    1
          847.0
                    1
         907.0
                    1
          1675.0
          7103.0
          7982.0
          8245.0
          1753.0
         2769.0
         8062.0
         Name: global_num, dtype: int64
```

Ok, the dupliacted values of global_num may have been wrongly included. But, we need to make sure that the entire rows are not duplicates.

```
In [33]: df_g = df[['global_num']][df['global_num'].duplicated(keep=False)].dropna().sort_value
print(f"number of records: {df_g.shape[0]}\n")
df.iloc[df_g.index]
```

number of records: 22

Out[33]:	patient_id	global_num	sex	age	coun

	patient_id	global_num	sex	age	country	province	city	disease	infecti
34	1000000035	847.0	male	30s	Korea	Seoul	etc	0	
629	2000000041	847.0	male	30s	Korea	Gyeonggi-do	Gimpo-si	0	
632	2000000044	907.0	male	60s	Korea	Gyeonggi-do	Pyeongtaek- si	0	
37	1000000038	907.0	male	60s	Korea	Seoul	etc	0	
652	2000000064	1675.0	female	70s	Korea	Gyeonggi-do	Goyang-si	0	
56	1000000057	1675.0	female	70s	Korea	Seoul	etc	0	Eunpy
646	2000000058	1753.0	female	30s	Korea	Gyeonggi-do	Yongin-si	0	con
1067	5000000004	1753.0	female	70s	Korea	Jeollabuk-do	etc	0	
505	1500000010	1788.0	male	30s	Korea	Daejeon	Seo-gu	0	con
60	1000000061	1788.0	male	60s	Korea	Seoul	Seodaemun- gu	0	Eunpy
437	1200002769	2769.0	female	80s	Korea	Daegu	NaN	0	
1197	6001000123	2769.0	female	80s	Korea	Gyeongsangbuk- do	Gyeongsan- si	0	
119	1000000120	7103.0	male	30s	Korea	Seoul	Seongbuk- gu	0	
726	2000000138	7103.0	male	60s	Korea	Gyeonggi-do	Seongnam- si	0	
771	2000000183	7982.0	male	60s	Korea	Gyeonggi-do	Bucheon-si	0	con
777	2000000189	7982.0	female	40s	Korea	Gyeonggi-do	Pyeongtaek- si	0	
1574	6001000500	8062.0	male	80s	Korea	Gyeongsangbuk- do	Gyeongsan- si	0	
1593	6001000519	8062.0	male	60s	Korea	Gyeongsangbuk- do	Gyeongsan- si	0	
841	2000000253	8245.0	male	NaN	Korea	Gyeonggi-do	Seongnam- si	0	con
263	1000000264	8245.0	male	40s	Korea	Seoul	Gangseo-gu	0	con
277	1000000278	8476.0	female	20s	Korea	Seoul	Nowon-gu	0	ı
278	1000000279	8476 0	male	90s	Korea	Seoul	Yongsan-gu	Ω	

The records are not really duplicates except the values of <code>global_num</code> . Each value of <code>global_num</code> s above is only appearing two times. We can check it below.

```
Out[34]: global_num
          847.0
                         2
          907.0
                         2
          1675.0
                         2
                         2
          1753.0
          1788.0
                         2
          2769.0
                         2
          7103.0
                         2
          7982.0
                         2
          8062.0
                         2
          8245.0
                         2
          8476.0
                         2
          dtype: int64
```

We will replace the second instance of <code>global_num</code> by increasing its value by 1 if that value is not there already in the data set. For instance, <code>index = 34</code> and <code>index = 629</code> have duplicates value of <code>global_num = 847</code>. The <code>confirmed_date</code> for both the records are same. So, we will change the second instance of the record (i.e., for <code>index = 629</code>) in our dataframe <code>df</code> by modifying its value of <code>global_num</code> to <code>847 + 1 = 848</code> if <code>848</code> is not there in the dataset. Before, we do it, let's only collect the second occurrences of the duplicate records of <code>global_num</code> and assign them again to the dataframe <code>df_g</code>. This can be done <code>without</code> passing the <code>keep parameter in duplicated()</code>. In this case, the default value of <code>keep = 'first'</code> will be considered, which means that all duplicates will be markedd as <code>True except</code> for the first occurrence. In our case, this means that the second occurence will be marked as <code>True</code>.

```
In [35]: df_g = df[['global_num']][df['global_num'].duplicated()].dropna()
    df_g
```

```
Out[35]:
                  global_num
            278
                      8476.0
            505
                       1788.0
            629
                        847.0
            632
                        907.0
            652
                       1675.0
            726
                       7103.0
             777
                       7982.0
                      8245.0
             841
            1067
                       1753.0
            1197
                       2769.0
           1593
                      8062.0
```

Note, we can also extract the entire record of df using the index of df_g dataframe above.

```
In [36]: df.loc[df_g.index]
```

	patient_id	global_num	sex	age	country	province	city	disease	infecti
278	1000000279	8476.0	male	90s	Korea	Seoul	Yongsan-gu	0	
505	1500000010	1788.0	male	30s	Korea	Daejeon	Seo-gu	0	con
629	2000000041	847.0	male	30s	Korea	Gyeonggi-do	Gimpo-si	0	
632	2000000044	907.0	male	60s	Korea	Gyeonggi-do	Pyeongtaek- si	0	
652	2000000064	1675.0	female	70s	Korea	Gyeonggi-do	Goyang-si	0	
726	2000000138	7103.0	male	60s	Korea	Gyeonggi-do	Seongnam- si	0	
777	2000000189	7982.0	female	40s	Korea	Gyeonggi-do	Pyeongtaek- si	0	
841	2000000253	8245.0	male	NaN	Korea	Gyeonggi-do	Seongnam- si	0	con
1067	500000004	1753.0	female	70s	Korea	Jeollabuk-do	etc	0	
1197	6001000123	2769.0	female	80s	Korea	Gyeongsangbuk- do	Gyeongsan- si	0	
1593	6001000519	8062.0	male	60s	Korea	Gyeongsangbuk- do	Gyeongsan- si	0	

Out[36]:

Check if the next whole number after the duplicated <code>global_num</code> value is already contained or not in the dataset. If not, then increase the second instance (if both <code>confirmed_date</code> s are same) or the latest instance (as per <code>confirmed_date</code>) of the duplicated <code>global_num</code> value by <code>1</code>. Otherwise, do nothing.

```
In [37]: def get_index(this_index,this_global_num):
             this confirmed date = df['confirmed date'][this index]
             both_confirmed_dates = df[['confirmed_date']][df['global_num'] == this_global_r
             day0 = both_confirmed_dates.loc[both_confirmed_dates.index[0]]
             day0 = day0.values
             day1 = both confirmed dates.loc[both confirmed dates.index[1]]
             day1 = day1.values
             if day0 > day1:
                 this_index = both_confirmed_dates.index[0]
             elif day0 <= day1:</pre>
                 this_index = both_confirmed_dates.index[1]
             return this index
         def get_all_indices(increase_global_num_by):
             indices_to_update = []
             new_global_num = []
             for i in range(0,df_g.shape[0]):
```

```
this index = df g.index[i]
                  this global num = df g['global num'][this index]
                  df empty = df[['global num']][df.global num == (this global num+increase g]
                  if df_empty.empty == True:
                       this_index = get_index(this_index,this_global_num)
                       indices_to_update.append(this_index)
                       new_global_num.append(this_global_num+increase_global_num_by)
                   elif df_empty.empty != True:
                       print(f"\n(index, 'global num') = ({this index}, {this global num}): The print(f"\n(index, 'global num') = ({this index}, {this global num}):
                       print(f"{df_empty}\n")
              print(f"indices to update: {indices to update}\n")
              print(f"new_global_num: {new_global_num}\n")
              return indices to update
In [38]: increase_global_num_by = 1
          indices to update = get all indices(increase global num by)
          (index, 'global num') = (841, 8245.0): The next value of 'global num' exists
               global_num
          822
                   8246.0
          (index, 'global num') = (1593, 8062.0): The next value of 'global num' exists
               global num
          215
                   8063.0
          indices_to_update: [278, 60, 629, 632, 652, 726, 777, 646, 437]
          new global num: [8477.0, 1789.0, 848.0, 908.0, 1676.0, 7104.0, 7983.0, 1754.0, 277
          0.0]
In [39]: print('\nBefore updating')
          df.loc[indices_to_update]
```

Before updating

Out[39]:		patient_id	global_num	sex	age	country	province	city	disease	infection_case
	278	1000000279	8476.0	male	90s	Korea	Seoul	Yongsan-gu	0	etc
	60	1000000061	1788.0	male	60s	Korea	Seoul	Seodaemun- gu	0	Eunpyeong St Mary's Hospita
	629	2000000041	847.0	male	30s	Korea	Gyeonggi- do	Gimpo-si	0	etc
	632	2000000044	907.0	male	60s	Korea	Gyeonggi- do	Pyeongtaek- si	0	eto
	652	2000000064	1675.0	female	70s	Korea	Gyeonggi- do	Goyang-si	0	etc
	726	2000000138	7103.0	male	60s	Korea	Gyeonggi- do	Seongnam- si	0	etc
	777	2000000189	7982.0	female	40s	Korea	Gyeonggi- do	Pyeongtaek- si	0	etc
	646	2000000058	1753.0	female	30s	Korea	Gyeonggi- do	Yongin-si	0	contact with patien
	437	1200002769	2769 0	female	208	Korea	Daedii	NaN	Λ	NaN

Now, update the duplicated global_num as identified above by the indices in the variable indices_to_update .

```
In [40]: df.loc[indices_to_update, 'global_num'] += increase_global_num_by
# df['global_num'][indices_to_update] += increase_global_num_by
print('\nAfter updating')
df.loc[indices_to_update]
```

After updating

Out[40]:		patient_id	global_num	sex	age	country	province	city	disease	infection_case
	278	1000000279	8477.0	male	90s	Korea	Seoul	Yongsan-gu	0	etc
	60	1000000061	1789.0	male	60s	Korea	Seoul	Seodaemun- gu	0	Eunpyeong St Mary's Hospita
	629	2000000041	848.0	male	30s	Korea	Gyeonggi- do	Gimpo-si	0	etc
	632	2000000044	908.0	male	60s	Korea	Gyeonggi- do	Pyeongtaek- si	0	etc
	652	2000000064	1676.0	female	70s	Korea	Gyeonggi- do	Goyang-si	0	etc
	726	2000000138	7104.0	male	60s	Korea	Gyeonggi- do	Seongnam- si	0	etc
	777	2000000189	7983.0	female	40s	Korea	Gyeonggi- do	Pyeongtaek- si	0	etc
	646	2000000058	1754.0	female	30s	Korea	Gyeonggi- do	Yongin-si	0	contact with patien
	437	1200002769	2770.0	female	80s	Korea	Daegu	NaN	0	NaN

We already know that two of the occurences (index = 841 and index = 1593) have not been updated. Let's check again the duplicated values of global_num column.

```
In [41]: df_g = df[['global_num']][df['global_num'].duplicated()].dropna()
    df.loc[df_g.index]
```

Out[41]:		patient_id	global_num	sex	age	country	province	city	disease	infection
	841	2000000253	8245.0	male	NaN	Korea	Gyeonggi-do	Seongnam- si	0	contac p
	1593	6001000519	8062.0	male	60s	Korea	Gyeongsangbuk- do	Gyeongsan- si	0	

Let us now try if we can increase the second instance or the latest instance (depending on cases) of the duplicated global_num value by 2. Otherwise, do nothing.

```
new_global_num: [8064.0]
```

```
print('\nBefore updating')
In [43]:
          df.loc[indices to update]
          Before updating
Out[43]:
                 patient_id global_num
                                       sex age country
                                                               province
                                                                               city disease infection_
                                                         Gyeongsangbuk-
                                                                        Gyeongsan-
          1593 6001000519
                                                   Korea
                                                                                         0
                               8062.0 male
                                            60s
                                                                    do
          df.loc[indices_to_update, 'global_num'] += increase_global_num_by
          # df['global num'][indices to update] += increase global num by
          print('\nAfter updating')
          df.loc[indices_to_update]
          After updating
Out[44]:
                 patient_id global_num
                                                               province
                                                                               city disease infection_
                                       sex age country
                                                         Gyeongsangbuk-
                                                                        Gyeongsan-
          1593 6001000519
                                                                                         0
                               8064.0 male 60s
                                                   Korea
                                                                    do
```

We see that one of the occurences (index = 841) has not yet been updated. Let's check again the duplicated values.

```
In [45]:
          df g = df[['global num']][df['global num'].duplicated()].dropna()
          df.loc[df g.index]
                 patient_id global_num
Out [45]:
                                        sex age country
                                                           province
                                                                          city disease infection_case i
                                                          Gyeonggi-
                                                                    Seongnam-
                                                                                          contact with
          841 2000000253
                                                    Korea
                               8245.0 male NaN
                                                                                     0
                                                                do
                                                                                              patient
```

We will now try to increase its <code>global_num</code> vaule by 3 if this value does not already exist in the dataset.

```
In [46]: increase_global_num_by = 3
   indices_to_update = get_all_indices(increase_global_num_by)
   indices_to_update: [841]
   new_global_num: [8248.0]
```

Ok, yes, we now update this value of 8245 to 8245 + 3 = 8248 since our dataset df does not have a value of 8048 in the global num column.

```
In [47]: print('\nBefore updating')
    df.loc[indices_to_update]
```

Before updating

```
Out[47]:
                 patient_id global_num
                                                          province
                                                                         city disease infection_case i
                                       sex age country
                                                         Gyeonggi-
                                                                   Seongnam-
                                                                                        contact with
          841 2000000253
                               8245.0 male
                                           NaN
                                                   Korea
                                                               dο
                                                                                            natient
In [48]: df.loc[indices_to_update, 'global_num'] += increase_global_num_by
          # df['global num'][indices to update] += increase global num by
          print('\nAfter updating')
          df.loc[indices to update]
          After updating
                                                                         city disease infection_case i
Out [48]:
                 patient_id global_num
                                            age country
                                                          province
                                       sex
                                                         Gyeonggi-
                                                                   Seongnam-
                                                                                        contact with
          841 2000000253
                               8248.0 male NaN
                                                   Korea
                                                                                            patient
                                                               do
          df_g = df[['global_num']][df['global_num'].duplicated(keep=False)].dropna().sort_va
In [49]:
          print(f"number of records: {df g.shape[0]}\n")
          df.iloc[df_g.index]
          number of records: 0
Out [49]:
            patient_id global_num sex age country province city disease infection_case infection_order
          Ok, all duplicated values have been taken care of for the 'global_num' column.
          Let's focus on the missing values of `global_num`.
In [50]: print(f"There are {df.global num.isnull().sum()} missing values in 'global num'.")
          There are 904 missing values in 'global num'.
```

```
There are 904 missing values in 'global_num'.

... and for confirmed_date column:

In [51]: print(f"There are {df.confirmed_date.isnull().sum()} missing values in 'confirmed_c
There are 141 missing values in 'confirmed_date'.
```

Why not filling up the missing values by mean/median/mode etc.?

We have seen earlier in the plot that <code>global_num</code> typically increases with <code>confirmed_date</code>. So, it does not make sense to fill up the missing values of <code>global_num</code> with their mean/median/mode values. We will need to consider each day of the 2-month period (see the code block below) for which our data is available and explore the <code>global_num</code> values and fill the missing values appropriately for each day.

```
In [52]: min(pd.concat([df.symptom_onset_date, df.confirmed_date, df.released_date, df.decea

Out[52]: (Timestamp('2020-01-19 00:00:00'), Timestamp('2020-03-19 00:00:00'))
```

Note that the maximum value of <code>global_num</code> in our data set is 8717 while we have 2218 samples in our dataset. This means that there will be lot of whole numbers between the minimum value of <code>global_num</code> and maximum value of <code>global_num</code>. We will use these numbers that are not available in this set to fill up the missing values. We will only consider a subset of these whole numbers in the same range that is consistent with each day.

```
In [53]: df.shape[0]
Out[53]: 2218
In [54]: (df.global_num.min(), df.global_num.max())
Out[54]: (1.0, 8717.0)
```

How to fill up the missing values of global_num?

To fill up the missing values of global_num, we will follow the following steps:

- Collect the records/rows of non-missing values of confirmed_date and the corresponding values of global_num in a dataframe df1.
- Sort the dataframe first by confirmed_date, then by index of each record, finally by global_num. Re-assign this sorted dataframe to df1.
- Then, run a for loop over the unique values of the confirmed_date. For each day, do the following:
 - Find out the minimum value of global_num and assign this value to a variable min_value_this_day.
 - Gather the indices for which global_num values are missing.
 - For each record or row associated with those indices, replace the missing value of global_num by a value given by min_value_this_day + 1 if this value does not exist in the dataset. If min_value_this_day + 1 already exists, then increase min_value_this_day by 1, and try it again until successful. Do this step in a while loop.

Let's find out how many values of confirmed_date are there in the dataset.

```
In [55]: print(f"\nThere are {len(df.confirmed_date.unique())} days of 'confirmed_date' in of df.confirmed_date.unique()
There are 46 days of 'confirmed_date' in our data set.
```

```
Out[55]: array(['2020-01-23T00:00:00.000000000', '2020-01-30T00:00:00.000000000',
                 '2020-01-31T00:00:00.000000000', '2020-02-02T00:00:00.000000000',
                 '2020-02-05T00:00:00.000000000', '2020-02-06T00:00:00.00000000',
                 '2020-02-07T00:00:00.000000000', '2020-02-16T00:00:00.00000000',
                 '2020-02-19T00:00:00.000000000', '2020-02-20T00:00:00.000000000', '2020-02-21T00:00:00.00000000', '2020-02-22T00:00:00.000000000',
                 '2020-02-23T00:00:00.000000000', '2020-02-26T00:00:00.000000000',
                 '2020-02-24T00:00:00.000000000', '2020-02-25T00:00:00.000000000'
                 '2020-02-27T00:00:00.000000000', '2020-02-28T00:00:00.000000000',
                 '2020-02-29T00:00:00.000000000', '2020-03-01T00:00:00.000000000',
                 '2020-03-02T00:00:00.000000000', '2020-03-04T00:00:00.000000000',
                 '2020-03-05T00:00:00.000000000', '2020-03-06T00:00:00.000000000',
                 '2020-03-07T00:00:00.000000000', '2020-03-08T00:00:00.000000000',
                 '2020-03-09T00:00:00.000000000', '2020-03-10T00:00:00.000000000',
                 '2020-03-11T00:00:00.000000000', '2020-03-12T00:00:00.00000000',
                 '2020-03-13T00:00:00.000000000', '2020-03-14T00:00:00.000000000',
                 '2020-03-15T00:00:00.000000000', '2020-03-16T00:00:00.00000000',
                 '2020-03-17T00:00:00.000000000', '2020-03-18T00:00:00.000000000',
                 '2020-03-03T00:00:00.000000000', '2020-02-18T00:00:00.000000000',
                 '2020-02-04T00:00:00.000000000', '2020-01-20T00:00:00.000000000',
                 '2020-01-26T00:00:00.000000000', '2020-01-27T00:00:00.000000000',
                 '2020-02-01T00:00:00.000000000', '2020-02-09T00:00:00.000000000',
                 '2020-02-10T00:00:00.000000000',
                                                                                'NaT'],
                dtype='datetime64[ns]')
```

The value of 'NaT' represents that there are some misssing values of confirmed_date, and we know that there 141 missing values. Let's only focus on the non-missing values of confirmed_date and corresponding missing values (if any) of global_num.

```
In [56]: # Collect the records/rows of non-missing values of 'confirmed_date' and correspond
    df1 = df[['global_num','confirmed_date']][df.confirmed_date.notna()]

# Sort them by 'confirmed_date', then 'index' of each record, finally by 'global_nu
    df1 = df1.rename_axis('missingIdx').sort_values(by=['confirmed_date', 'missingIdx',

# Let's create an array of all the individual dates in 'df1' over which we will run
    # to fill up the missing values of 'global_num' (if any)
    unique_confirmed_date = df1.confirmed_date.unique()
In [57]: # Let's check for a few dates to see how the 'df1' looks
```

Consider a day at the end of the 2-month period.

```
In [58]: # Call the function
    this_day = unique_confirmed_date[-1]
    df1_day = explore_global_num(this_day)
    df1_day
```

For confirmed_date: 2020-03-18T00:00:00.000000000

There are 4 missing values of 'global_num'.

missingldx		
271	8517.0	2020-03-18
272	8508.0	2020-03-18
273	8529.0	2020-03-18
274	8485.0	2020-03-18
275	8461.0	2020-03-18
276	8446.0	2020-03-18
277	8476.0	2020-03-18
278	8477.0	2020-03-18
279	8547.0	2020-03-18
280	8456.0	2020-03-18
281	8557.0	2020-03-18
868	NaN	2020-03-18
869	NaN	2020-03-18
870	8565.0	2020-03-18
871	8471.0	2020-03-18
872	8541.0	2020-03-18
873	8432.0	2020-03-18
874	8524.0	2020-03-18
875	8458.0	2020-03-18
876	8463.0	2020-03-18
877	8498.0	2020-03-18
878	8427.0	2020-03-18
879	8516.0	2020-03-18
880	8521.0	2020-03-18
881	8531.0	2020-03-18
882	8537.0	2020-03-18
883	8493.0	2020-03-18
884	8512.0	2020-03-18
885	8473.0	2020-03-18
886	8503.0	2020-03-18
887	NaN	2020-03-18
888	NaN	2020-03-18

The 4 missing values of $\mbox{global_num}$ should be replaced by the values in the same ranges as shown above for the day of 2020-03-18.

Let's check another date at the beginning of the 2-month period.

```
In [59]: # Call the function
         this day = unique confirmed date[9]
         df1 day = explore global num(this day)
         df1_day
```

For confirmed date: 2020-02-05T00:00:00.000000000

There are 0 missing values of 'global num'.

Out[59]: global_num confirmed_date

missingldx

8	19.0	2020-02-05
9	21.0	2020-02-05
447	18.0	2020-02-05
594	17.0	2020-02-05
595	20.0	2020-02-05

Let's now fill up missing values by running a for loop over the array of days unique_confirmed_date by considering each day. As explained earlier, we will use the values of global num in the same range of values for each day while filling the missing values for that day.

```
In [60]: for this_day in unique_confirmed_date:
             df1 day = explore global num(this day, print results = 0)
             all_global_numbers_this_day = df1_day.global_num
             n_missing_values_this_day = all_global_numbers_this_day.isnull().sum()
             if n missing values this day > 0:
                 min_value_this_day = all_global_numbers_this_day.min()
                 # max value = all global numbers this day.max()
                 index_missing_global_num = df1_day[df1_day.global_num.isnull()].index
                 for this index in index missing global num:
                     df_empty = df[['global_num']][df.global_num == min_value_this_day+1]
                     while df empty.empty != True:
                         min value this day += 1
                         df_empty = df[['global_num']][df.global_num == min_value_this_day+1
                     else:
                         if df_empty.empty == True:
                             df.loc[this index,'global num'] = min value this day+1
                             min value this day += 1
```

```
In [61]: # Check how it fills up the holes for one of the days
         this day = unique confirmed date[-1]
         df1 day = explore global num(this day)
         index_missing_global_num = df1_day[df1_day.global_num.isnull()].index
         print(f"Before filling")
```

```
print(df1.loc[index missing global num,['global num', 'confirmed date']])
          print(f"\nAfter filling")
          print(df.loc[index_missing_global_num,['global_num', 'confirmed_date']])
         For confirmed date: 2020-03-18T00:00:00.000000000
                  There are 4 missing values of 'global_num'.
         Before filling
                      global_num confirmed_date
         missingIdx
                                     2020-03-18
          868
                             NaN
                                     2020-03-18
          869
                             NaN
          887
                             NaN
                                     2020-03-18
                                     2020-03-18
          888
                             NaN
         After filling
                      global_num confirmed_date
         missingIdx
                          8428.0
                                     2020-03-18
          868
                                     2020-03-18
          869
                          8429.0
          887
                          8430.0
                                    2020-03-18
                          8431.0
          888
                                     2020-03-18
In [62]: (df.global_num.min(), df.global_num.max())
Out[62]: (1.0, 8717.0)
In [63]: print(f"Now... there are {df.global num.isnull().sum()} missing values in 'global num.isnull().sum()
         Now... there are 141 missing values in 'global num'.
```

The number of missing values for both the columns global_num and confirmed_date are same now.

Let's check if the missing values are for the same set of records.

```
In [64]: set(df[df.global_num.isnull()].index) - set(df[df.confirmed_date.isnull()].index)
Out[64]: set()
```

Yes, 141 missing values of global_num and confirmed_date are for the same set of records.

Before moving forward, let's check the if there are any duplicated values, which we should not have. But, let's ensure it.

```
In [65]: df.global_num[df['global_num'].duplicated()].value_counts()
Out[65]: Series([], Name: global_num, dtype: int64)
```

Great! No duplicated values exist.

Next question is: How do we replace the remaining missing values of <code>global_num</code> ? Let's see if we have any other datetime features available for the missing values of <code>global_num</code> .

In [66]:	df[[ˈ	global_num	', 'symptom_onset_	date', 'rele	ased_date', '
Out[66]:		global_num	symptom_onset_date	released_date	deceased_date
	1726	NaN	NaT	NaT	NaT
	1727	NaN	NaT	NaT	NaT
	1728	NaN	NaT	NaT	NaT
	1729	NaN	NaT	NaT	NaT
	1730	NaN	NaT	NaT	NaT
	1944	NaN	NaT	NaT	NaT
	1945	NaN	NaT	NaT	NaT
	1946	NaN	NaT	NaT	NaT
	1947	NaN	NaT	NaT	NaT
	2136	NaN	NaT	NaT	NaT

141 rows × 4 columns

```
In [67]: set(df[df.global_num.isnull()].index) - set(df[df.symptom_onset_date.isnull()].index
Out[67]: set()

In [68]: set(df[df.global_num.isnull()].index) - set(df[df.released_date.isnull()].index)
Out[68]: set()

In [69]: set(df[df.global_num.isnull()].index) - set(df[df.deceased_date.isnull()].index)
Out[69]: set()
```

All the datetime features in our data has missing values corresponding to records for which we have 141 missing global_num features. **We will drop these rows**.

But, we will not do it right now. There are other columns with existing values in these rows and those values may be useful. We will see what happens until we clean and fill missing values of all the other columns.

Feature initial_sick_days

```
In [70]: df.initial_sick_days.value_counts(dropna=False).sort_index(ascending=True)
```

```
Out[70]: -28.0
         -26.0
         -24.0
                    2
         -23.0
                    3
         -22.0
                   1
         -21.0
                    2
         -20.0
                    2
         -19.0
                    2
         -18.0
                    3
         -14.0
                    3
         -6.0
                   1
         -2.0
                    1
         -1.0
                    1
          0.0
                   8
          1.0
                   35
          2.0
                   28
          3.0
                   29
          4.0
                   18
          5.0
                   19
          6.0
                   9
          7.0
                    6
          8.0
                    8
          9.0
                    2
          10.0
          11.0
                   1
          12.0
                    2
          15.0
                    1
          NaN
                 2025
         Name: initial_sick_days, dtype: int64
```

The negative values of initial_sick_days indicates that those patients' symptom did not show up before their COVID test results were confirmed. In this case, confirmed_date was before symptom_onset_date. They are possibly asymptomatic patients.

Let us fill its missing values by its mode.

```
In [71]: df.initial_sick_days.fillna(df.initial_sick_days.mode()[0], inplace = True)
    df.initial_sick_days.value_counts(dropna=False)
```

```
Out[71]: 1.0 2060
          3.0
                   29
          2.0
                   28
          5.0
                   19
          4.0
                   18
          6.0
                    9
          0.0
                    8
          8.0
                    8
          7.0
                    6
          10.0
                    3
         -14.0
                    3
         -23.0
                    3
         -18.0
                    3
                    2
         -28.0
         9.0
                    2
         -21.0
         -19.0
                    2
         -20.0
                    2
                    2
         -24.0
         12.0
         -2.0
                    1
         -6.0
         -1.0
                    1
         11.0
         -26.0
                    1
         15.0
                    1
         -22.0
                    1
         Name: initial_sick_days, dtype: int64
```

All the Date Features

Remove date columns from the data.

```
In [72]: df = df.drop(['symptom_onset_date','confirmed_date','released_date','deceased_date'
```

Check for any remaining null values.

```
In [73]: count_null_values(df)
```

Out[73]:		VarName	NullCount
	0	infection_case	1055
	1	n_age	455
	2	age	261
	3	sex	145
	4	global_num	141
	5	state	88
	6	city	65

Features age and n_age

```
In [74]: df[['age']].info()
```

```
<class 'pandas.core.frame.DataFrame'>
         RangeIndex: 2218 entries, 0 to 2217
         Data columns (total 1 columns):
          # Column Non-Null Count Dtype
         --- ----- -----
          0
                    1957 non-null object
            age
         dtypes: object(1)
         memory usage: 17.5+ KB
In [75]: age keys = list(df.age.value counts().index)
         age_keys
Out[75]: ['20s', '50s', '40s', '30s', '60s', '70s', '80s', '10s', '0s', '90s', '100s']
         Remove the 's' from the end and convert the datatype from object to int for the age
         column.
In [76]: age values = [x[:-1]] for x in age keys]
         age_values = [int(i) for i in age_values]
         age values
         [20, 50, 40, 30, 60, 70, 80, 10, 0, 90, 100]
Out[76]:
In [77]: # using zip() to create a dictionary to use in `.replace` function
         age_dict = dict(zip(age_keys, age_values))
         age_dict
         {'20s': 20,
Out[77]:
          '50s': 50,
          '40s': 40,
          '30s': 30,
          '60s': 60,
          '70s': 70,
          '80s': 80,
          '10s': 10,
          '0s': 0,
          '90s': 90,
          '100s': 100}
In [78]: df["age"].replace(age dict, inplace=True)
         df["age"] = df["age"].astype('Int64')
         df[['age']].info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 2218 entries, 0 to 2217
         Data columns (total 1 columns):
            Column Non-Null Count Dtype
                     -----
                  1957 non-null Int64
          0
            age
         dtypes: Int64(1)
         memory usage: 19.6 KB
In [79]: df[['n_age']].info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2218 entries, 0 to 2217
Data columns (total 1 columns):
# Column Non-Null Count Dtype
--- 0 n_age 1763 non-null float64
dtypes: float64(1)
memory usage: 17.5 KB
```

Note: We see that the age column has 1957 entries while the newly created n_age column has 1763 entries. We need to get some of the missing values of n_age from age column.

Replace the missing values of n_age by the available values of the age column.

```
In [80]: index_missing_nage = df[['age', 'n_age']].loc[df.n_age.isnull()].index
df[['age', 'n_age']].iloc[index_missing_nage]
```

Out[80]:		age	n_age
	446	40	NaN
	447	20	NaN
	448	30	NaN
	449	30	NaN
	450	30	NaN
	•••		
	2128	0	NaN
	2136	70	NaN
	2159	<na></na>	NaN
	2160	<na></na>	NaN
	2161	<na></na>	NaN

455 rows × 2 columns

```
In [81]: df.n_age.fillna(df.age, inplace=True)
df[['age', 'n_age']].iloc[index_missing_nage]
```

```
Out[81]:
                age n_age
          446
                 40
                     40.0
          447
                 20
                     20.0
          448
                 30
                     30.0
          449
                 30
                     30.0
          450
                 30
                     30.0
         2128
                  0
                     0.0
                 70
         2136
                    70.0
         2159 <NA> <NA>
         2160 <NA> <NA>
         2161 <NA> <NA>
        455 rows × 2 columns
In [82]: df[['age', 'n_age']].isnull().sum()
                  261
         age
Out[82]:
         n_age
                  151
         dtype: int64
         We can now drop the age column.
In [83]: df.drop(['age'], axis=1, inplace=True)
         Fill null values of n_age column by its mean.
In [84]: df['n_age'] = df['n_age'].fillna(df['n_age'].mean())
In [85]: df.n_age.isnull().sum()
Out[85]:
         Feature sex
In [86]: df[['sex']].info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 2218 entries, 0 to 2217
         Data columns (total 1 columns):
              Column Non-Null Count Dtype
                      -----
          0
              sex
                      2073 non-null object
         dtypes: object(1)
         memory usage: 17.5+ KB
In [87]: | df.sex.value_counts(dropna = False)
```

```
Out[87]: female 1171
                   902
         male
         NaN
                    145
         Name: sex, dtype: int64
         Since there are more females than males, we will assign male to the patients with missing
         gender to have a balanced feature of sex column.
In [88]: df.sex = df.sex.fillna('male')
In [89]: df.sex.isnull().sum()
Out[89]:
         Feature city
In [90]: df[['city']].info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 2218 entries, 0 to 2217
         Data columns (total 1 columns):
              Column Non-Null Count Dtype
             _____
            city
                    2153 non-null object
         dtypes: object(1)
         memory usage: 17.5+ KB
         Note that there is no missing values for province.
In [91]: df.province.isnull().sum()
Out[91]:
         Replace the missing values of city by the corresponding values of the province column.
In [92]: | df.city.fillna(df.province, inplace=True)
In [93]: df.city.isnull().sum()
Out[93]:
         Feature infection_case
In [94]: df[['infection case']].info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 2218 entries, 0 to 2217
         Data columns (total 1 columns):
              Column
                            Non-Null Count Dtype
             -----
                             -----
          0
             infection_case 1163 non-null
                                             object
         dtypes: object(1)
         memory usage: 17.5+ KB
```

In [95]: df.infection case.value counts(dropna = False)

```
1055
Out[95]:
         contact with patient
                                               530
                                               220
         Guro-gu Call Center
                                               102
         Shincheonji Church
                                                86
         overseas inflow
                                                61
         Onchun Church
                                                33
         gym facility in Cheonan
                                                30
         Ministry of Oceans and Fisheries
                                                27
         Cheongdo Daenam Hospital
                                                2.1
         Dongan Church
                                                17
         Eunpyeong St. Mary's Hospital
                                                14
         Seongdong-gu APT
                                                13
         gym facility in Sejong
                                                 4
         Suyeong-gu Kindergarten
                                                 3
         River of Grace Community Church
                                                 1
         Pilgrimage to Israel
                                                 1
         Name: infection case, dtype: int64
In [96]: df.infection_case.mode()
         0 contact with patient
Out[96]:
         dtype: object
         We will use mode value to impute the infection_case column.
In [97]: df.infection_case = df.infection_case.fillna('contact with patient')
In [98]: df.infection_case.isnull().sum()
Out[98]:
In [99]: df.infection_case.value_counts(dropna = False)
Out[99]: contact with patient
                                              1585
                                               220
         etc
         Guro-gu Call Center
                                               102
         Shincheonji Church
                                                86
         overseas inflow
                                                61
         Onchun Church
                                                33
         gym facility in Cheonan
                                                30
                                                27
         Ministry of Oceans and Fisheries
         Cheongdo Daenam Hospital
                                                21
                                                17
         Dongan Church
         Eunpyeong St. Mary's Hospital
                                                14
         Seongdong-gu APT
                                                13
         gym facility in Sejong
                                                 4
         Suyeong-gu Kindergarten
                                                 3
         River of Grace Community Church
                                                 1
         Pilgrimage to Israel
                                                 1
         Name: infection_case, dtype: int64
         Feature state
```

Replace null values in the `state` column with `missing`.

```
In [100... df.state = df.state.fillna('missing')
In [101... df.state.value_counts(dropna=False)
```

```
Out[101]: isolated released 307 missing 88 deceased 32
```

Name: state, dtype: int64

As mentioned earlier, we have an imbalanced data set.

Check for any remaining null values.

Let's drop all the records for which `global_num` is `NaN`.

Actually, don't drop, just take the rows where global_num is not NaN.

We see that all the rows of missing values of <code>global_num</code> were associated with <code>state = 'isolated'</code> except one which was associated with the <code>state = 'deceased'</code>.

In [105... count_null_values(df)

Out[105]: VarName NullCount

In [106... df.head()

city disease infection_case infection Out[106]: patient_id global_num sex country province Gangseooverseas 0 100000001 2.0 male Korea Seoul 0 inflow Jungnangoverseas **1** 1000000002 5.0 male Korea Seoul 0 inflow contact with **2** 1000000003 6.0 male Korea Seoul Jongno-gu patient overseas 3 1000000004 7.0 male Korea Seoul Mapo-gu 0 inflow Seongbukcontact with 4 1000000005 Seoul 9.0 female Korea patient gu

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 2077 entries, 0 to 2217
Data columns (total 13 columns):
```

#	Column	Non-Null Count	Dtype		
0	patient_id	2077 non-null	int64		
1	global_num	2077 non-null	float64		
2	sex	2077 non-null	object		
3	country	2077 non-null	object		
4	province	2077 non-null	object		
5	city	2077 non-null	object		
6	disease	2077 non-null	int64		
7	infection_case	2077 non-null	object		
8	infection_order	2077 non-null	float64		
9	contact_number	2077 non-null	float64		
10	state	2077 non-null	object		
11	n_age	2077 non-null	Float64		
12	initial_sick_days	2077 non-null	float64		
<pre>dtypes: Float64(1), float64(4), int64(2), object(6)</pre>					
memory usage: 229.2+ KB					

Review the count of unique values by column.

In [108... print(df.nunique())

```
patient id
                   2077
                  2077
global_num
sex
                      2
                      4
country
                    17
province
                   135
city
disease
                     2
infection_case
                     16
infection_order
                     7
contact_number
                    72
state
                     4
                     97
n age
initial_sick_days
                     27
dtype: int64
```

Review the percent of unique values by column.

In [109... print(df.nunique()/df.shape[0])

```
patient_id 1.000000
                   1.000000
global_num
                   0.000963
sex
               0.001926
0.008185
0.064998
country
province
city
disease 0.000963 infection_case 0.007703
infection_order
                   0.003370
contact_number
                   0.034665
state
                    0.001926
n age
                    0.046702
initial_sick_days 0.013000
dtype: float64
```

Review the range of values per column.

In [110... df.describe().T Out[110]: count mean std min 25% 50% 2.200900e+09 1.000000e+09 1.600000e+09 patient_id 2077.0 3.879120e+09 4.100000e+09 global_num 2077.0 4.164744e+03 2.901079e+03 1.000000e+00 1.249000e+03 4.199000e+03 0.000000e+00 0.000000e+00 0.000000e+00 disease 2077.0 9.147809e-03 9.522864e-02 infection_order 2077.0 2.285852e+00 1.762510e-01 1.000000e+00 2.285714e+00 2.285714e+00 contact_number 2077.0 4.774675e+00 4.160612e+01 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 2.700000e+01 4.420416e+01 **n_age** 2077.0 4.419174e+01 1.939087e+01 2.477974e+00 -2.800000e+01 1.000000e+00 1.000000e+00 initial_sick_days 2077.0 9.826673e-01 In [111... df.describe(include=[object]).T

Out [111]: count unique top freq sex 2077 2 female 1171 2077 2065 country Korea province 2077 Gyeongsangbuk-do 914 17 2077 135 Gyeongsan-si 535 city contact with patient infection_case 2077 16 1444 state 2077 isolated 1651

Check for duplicated rows

```
In [112... duplicateRowsDF = df[df.duplicated()]
    duplicateRowsDF
```

Out [112]: patient_id global_num sex country province city disease infection_case infection_order con

Print the categorical columns and their associated levels.

```
In [113... dfo = df.select_dtypes(include=['object'], exclude=['datetime'])
    print(f"dfo.shape: {dfo.shape}")

#get levels for all variables
    vn = pd.DataFrame(dfo.nunique()).reset_index()
    vn.columns = ['VarName', 'LevelsCount']
    vn.sort_values(by='LevelsCount', ascending =False)
    vn

dfo.shape: (2077, 6)
```

Out[113]:		VarName	LevelsCount
	0	sex	2
	1	country	4
	2	province	17
	3	city	135
	4	infection_case	16
	5	state	4

Exploratory Data Analysis

Plot the correlation heat map for the features.

```
In [114...
          # Make a heatmap of the data
          plt.figure(dpi = 100)
          ax = sns.heatmap(df.corr(), cmap="coolwarm", annot=True, annot kws={"fontsize": 10]
          ax.set_xticklabels(ax.get_xmajorticklabels(), fontsize = 10, rotation=90);
          ax.set yticklabels(ax.get ymajorticklabels(), fontsize = 10);
          ax.collections[0].colorbar.ax.tick_params(labelsize=10)
                                                                                      1.0
                 patient_id -
                                     -0.17
                                           -0.033 -0.027 -0.094
                                                                         0.017
                                                                                     - 0.8
               global num -
                             -0.17
                                           -0.069 -0.001
                                                          -0.11
                                                                  0.049
                                                                         -0.021
                                                                                     - 0.6
                   disease - -0.033 -0.069
                                                  7.5e-05-0.011
                                                                  0.11 0.00067
            infection_order - -0.027 -0.001 -7.5e-05
                                                          -0.029
                                                                         0.023
                                                                                     - 0.4
           contact number - -0.094
                                           -0.011 -0.029
                                    -0.11
                                                                  -0.02
                                                                         -0.047
                                                                                     - 0.2
                    n age - 0.037
                                    0.049
                                            0.11
                                                                         0.012
                                                                                     - 0.0
          initial sick days - 0.017
                                   -0.021 0.00067 0.023
                                                          -0.047
```

We see that the **numerical features are only weakly correlated** to each other. So, we need to consider all these features as input variables for our Random Forest Classifier.

Plot the boxplots to check for outliers.

Let's count the number of outliers of each numerical columns. See this stackoverflow response.

```
In [117... Q1 = df1.quantile(0.25)
    Q3 = df1.quantile(0.75)
    IQR = Q3 - Q1

In [118... print(f"\nNumber of outliers:")
    ((df1 < (Q1 - 1.5 * IQR)) | (df1 > (Q3 + 1.5 * IQR))).sum()
```

Number of outliers:

```
Out[118]: patient_id 0
global_num 0
disease 19
infection_order 41
contact_number 364
n_age 0
initial_sick_days 158
dtype: int64
```

Preprocessing and Training Data Development

Create dummy features for object type features.

7.0

9.0

0

0

Note: A random forest classifier is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting (re: sklearn.ensemble.RandomForestClassifier).

Decision tree classifier can handle both numerical and categorical data. However, the scikit-learn implementation does not support categorical variables for now (re:Decision Trees).

Therefore, we will convert our categorical variables into dummy/indicator variables (re:pandas.get_dummies) using one-hot-encoding.

```
In [119... X = pd.get_dummies(df.drop('state', axis=1))
           print(f"X.shape: {X.shape}")
           X.head()
          X.shape: (2077, 181)
Out[119]:
                 patient_id global_num disease infection_order contact_number n_age initial_sick_days sex_
            0 1000000001
                                   2.0
                                             0
                                                                          75.0
                                                                                                  1.0
                                                           1.0
                                                                                 56.0
            1 1000000002
                                   5.0
                                             0
                                                           1.0
                                                                          31.0
                                                                                 33.0
                                                                                                  1.0
            2 1000000003
                                   6.0
                                             0
                                                           2.0
                                                                          17.0
                                                                                 56.0
                                                                                                  1.0
```

1.0

2.0

9.0

2.0

29.0

28.0

4.0

1.0

5 rows × 181 columns

3 1000000004

1000000005

```
In [120... y = df['state']
    print(f"\ny.shape: {y.shape}\n")
    y.value_counts()

    y.shape: (2077,)

Out[120]: isolated    1651
    released    307
    missing     88
    deceased    31
    Name: state, dtype: int64
```

Split the data into test and train subsamples

Make sure you also pass stratify = y to split the data in a stratified fashion.

```
In [121... X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_stat
```

Scaling of Data

The random forest classification algorithm is based on multiple decision tree classifiers, and the decision tree classifier requires little data preparation (re: Decision Trees). The decision tree classifier uses partitioning, i.e., a set of if-then-else decision rules; see Decision Trees. Even if you apply feature scaling, the result would still be the same. Hence, we will **not apply any scaling on our data**.

Side Note: Note that the feature scaling slightly affects the results of the random forest regressors (see this article). But, the results are practically same.

```
In [122... #scale data
    # from sklearn import preprocessing
    # import numpy as np
    # build scaler based on training data and apply it to test data to then also scal
    # scaler = preprocessing.StandardScaler().fit(X_train)
    # X_train_scaled=scaler.transform(X_train)
    # X_test_scaled=scaler.transform(X_test)
```

Modeling

Random Forest Classifier and Hyperparameter optimization

Pass class_weight='balanced' because we have imbalance data set.

```
In [123... # Classifier
          clf = RandomForestClassifier(random state=42, class weight='balanced')
          # GridSearchCV to tune number of trees
          params = {'n estimators': [10, 50, 100, 200, 300]}
          rf grid cv = GridSearchCV(clf, params)
          rf_grid_cv.fit(X_train, y_train)
Out[123]: GridSearchCV(estimator=RandomForestClassifier(class_weight='balanced',
                                                          random state=42),
                       param grid={'n estimators': [10, 50, 100, 200, 300]})
In [124...  # Print best parameters and results
          print(rf_grid_cv.best_params_)
          print(rf grid cv.best score )
          {'n estimators': 50}
          0.8518940627374363
In [125... # Train score
          y train pred = rf grid cv.predict(X train)
```

```
train_accuracy = accuracy_score(y_train, y_train_pred)
print(f"Train set accuracy: {train_accuracy}")

Train set accuracy: 1.0

In [126... # Test score
    y_test_pred = rf_grid_cv.predict(X_test)
    test_accuracy = accuracy_score(y_test, y_test_pred)
    print(f"Test set accuracy: {test_accuracy}")

Test set accuracy: 0.8653846153846154
```

The fit model shows an overall test accuracy of 86.5%. This is great and indicates our model was effectively able to identify the status of a patients in the South Korea dataset. But, training accuraccy 100% means that this model is also overfitting.

Create Confusion Matrix Plots

Confusion matrices are great ways to review your model performance for a multi-class classification problem. Being able to identify which class the misclassified observations end up in is a great way to determine if you need to build additional features to improve your overall model. In the example below we plot a regular counts confusion matrix as well as a weighted percent confusion matrix. The percent confusion matrix is particularly helpful when you have unbalanced class sizes.

```
In [127... | y train.value counts(dropna = False).sort index()
Out[127]: deceased
                        2.5
          isolated 1320
          missing
                        70
          released
                       246
          Name: state, dtype: int64
In [128... y_test.value_counts(dropna = False).sort_index()
Out[128]: deceased
                        6
          isolated
                      331
                       18
          missing
          released
                       61
          Name: state, dtype: int64
In [129... # class names = ['isolated', 'released', 'missing', 'deceased'] # name of classes
          class names = list(y train.value counts(dropna = False).sort index().index)
          class names
Out[129]: ['deceased', 'isolated', 'missing', 'released']
In [130... y_train.value_counts(dropna = False)
Out[130]: isolated
                    1320
          released
                       246
                        70
          missing
                        25
          deceased
          Name: state, dtype: int64
In [131... y_test.value_counts(dropna = False)
```

```
isolated
                     331
Out[131]:
          released
                      61
                       18
          missing
          deceased
                        6
          Name: state, dtype: int64
In [132... def plot confusion matrix(cm, classes,
                                    normalize=False,
                                    title='Confusion matrix',
                                    cmap=plt.cm.Blues):
             This function prints and plots the confusion matrix.
             Normalization can be applied by setting `normalize=True`.
             if normalize:
                 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
                 print("Normalized confusion matrix")
             else:
                 print('Confusion matrix, without normalization')
             print(cm)
             plt.imshow(cm, interpolation='nearest', cmap=cmap)
             plt.title(title)
             plt.colorbar()
             tick marks = np.arange(len(classes))
             plt.xticks(tick marks, classes, rotation=45)
             plt.yticks(tick_marks, classes)
             fmt = '.2f' if normalize else 'd'
             thresh = cm.max() / 2.
             for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
                 plt.text(j, i, format(cm[i, j], fmt),
                           horizontalalignment="center",
                           color="white" if cm[i, j] > thresh else "black")
             plt.ylabel('True label')
             plt.xlabel('Predicted label')
             plt.tight_layout()
          # Compute confusion matrix
          cnf matrix = confusion matrix(y test, y test pred)
         np.set printoptions(precision=2)
          # Plot non-normalized confusion matrix
         plt.figure(dpi = 100)
         plot_confusion_matrix(cnf_matrix, classes=class_names,
                                title='Confusion matrix, without normalization')
         #plt.savefig('figures/RF cm multi class.png')
          # Plot normalized confusion matrix
         plt.figure(dpi = 100)
         plot confusion matrix(cnf matrix, classes=class names, normalize=True,
                                title='Normalized confusion matrix')
          #plt.savefig('figures/RF cm proportion multi class.png', bbox inches="tight")
         plt.show()
```

```
Confusion matrix, without normalization
             0
                  0]
    6
         0
] ]
    0 315
             2
                14]
            18
                  0 ]
    0
         0
        40
             0
                21]]
Normalized confusion matrix
[[1.
             0.
                   0. ]
 [0.
        0.95 0.01 0.04]
 [0.
        0.
             1.
                   0. ]
 [0.
        0.66 0.
                   0.34]]
         Confusion matrix, without normalization
                                                           - 300
                  6
                            0
                                      0
                                               0
   deceased
                                                           - 250
                           315
                                      2
                   0
                                               14
                                                           - 200
     isolated
True label
                                                           - 150
                            0
                                               0
                  0
                                     18
     missing
                                                           - 100
                                                            50
                                      0
                   0
                            40
                                               21
    released -
                          Predicted label
                Normalized confusion matrix
                                                            1.0
                 1.00
                          0.00
                                    0.00
                                              0.00
   deceased -
                                                           - 0.8
                 0.00
                          0.95
                                    0.01
                                              0.04
     isolated
True label
                                                            0.6
                 0.00
                          0.00
                                    1.00
                                              0.00
                                                            0.4
     missing
                                                            0.2
                 0.00
                          0.66
                                    0.00
                                              0.34
    released
                                                            0.0
```

Our model has a fairly good overall test accuracy of 86.5% and could classify deceased, isolated and missing state very well. But, it could not classify the released state

Predicted label

well. It has a very low recall score for the **released** state (only 34%). Recall though that this model has overfitting issue.

```
In [133... print(classification_report(y_test, y_test_pred, target_names = class_names))
                   precision recall f1-score support
          deceased
                       1.00
                               1.00
                                       1.00
                                                 6
                                       0.92
          isolated
                              0.95
                       0.89
                                                331
                       0.90
           missing
                              1.00
                                       0.95
                                                18
          released
                      0.60
                              0.34
                                       0.44
                                                61
                                            416
          accuracy
                                       0.87
          macro avg 0.85 0.82
                                     0.83
                                               416
       weighted avg
                     0.85
                              0.87
                                      0.85
                                                416
```

Plot feature importances

The random forest algorithm can be used as a regression or classification model. In either case it tends to be a bit of a black box, where understanding what's happening under the hood can be difficult. Plotting the feature importances is one way that you can gain a perspective on which features are driving the model predictions.

Feature importance relative to max. importance

We can also print the numerical values of the relative feature importances.

```
In [136... | # Print relative feature importances
         imp = pd.Series(feature importance[sorted idx], index=X.columns[sorted idx])
         imp = imp.sort_values(ascending=False)
         print(imp)
         global num
                              100.000000
                              40.655144
         n_age
         patient id
                               35.513051
                               22.959339
         disease
         contact_number
                               11.747807
         sex_female
                                4.098108
         sex male
                               3.331691
         initial_sick_days
                               2.896737
         infection order
                                2.858868
         country China
                                0.342295
         dtype: float64
```

We will try another ML model, namely, support vector classification, to see if we can get better predictive performance.

Support vector classification and Hyperparameter optimization

```
print(rf grid cv.best params )
         print(rf grid cv.best score )
         {'C': 100}
         0.7435417345055899
In [138... # Train score
         y_train_pred = rf_grid_cv.predict(modelStandardScaler.transform(X train))
         train accuracy = accuracy score(y train, y train pred)
         print(f"Train set accuracy: {train_accuracy}")
         Train set accuracy: 0.7904876580373269
In [139... # Test score
         y_test_pred = rf_grid_cv.predict(modelStandardScaler.transform(X test))
         test_accuracy = accuracy_score(y_test, y_test_pred)
         print(f"Test set accuracy: {test_accuracy}")
         Test set accuracy: 0.7139423076923077
In [140... # Compute confusion matrix
         cnf_matrix = confusion_matrix(y_test, y_test_pred)
         np.set_printoptions(precision=2)
         # Plot non-normalized confusion matrix
         plt.figure(dpi = 100)
         plot confusion matrix(cnf matrix, classes=class names,
                               title='Confusion matrix, without normalization')
         #plt.savefig('figures/RF_cm_multi_class.png')
         # Plot normalized confusion matrix
         plt.figure(dpi = 100)
         plot confusion matrix(cnf matrix, classes=class names, normalize=True,
                               title='Normalized confusion matrix')
         #plt.savefig('figures/RF_cm_proportion_multi_class.png', bbox_inches="tight")
         plt.show()
         Confusion matrix, without normalization
         [[ 6 0 0 0]
          [ 6 232 8 85]
          [ 0 1 17 0]
          [ 1 18 0 42]]
         Normalized confusion matrix
         [[1. 0. 0. 0.]
          [0.02 0.7 0.02 0.26]
          [0. 0.06 0.94 0. ]
          [0.02 0.3 0. 0.69]]
```


This model shows better performance than the random forest classifier even though both the training accuracy (79.04%) and test accuracy (71.39%) reduced. This model could classify deceased and missing states very well, while isolated and released states are classified reasonably well (not poor at all).

	precision	recall	f1-score	support
deceased isolated	0.46 0.92	1.00	0.63	6 331
missing released	0.68	0.94	0.79	18 61
	0.33	0.03		-
accuracy macro avg	0.60	0.83	0.71 0.67	416 416
weighted avg	0.82	0.71	0.74	416

Conclusions

- We did an **exhaustive Data Wrangling** to fill all of missing values using practical sense.
- Two models (Random Forest Classifier and Support Vector Classifier) are built using GridSearchCV. Random forest model has overfitting issue, while the Support Vector Classifier model showed much better predictive performance.