## Equações Diferenciais

### Corpo Docente:

Ana Breda, Eugénio Rocha, Paolo Vettori Sandrina Santos, Diana Costa, Rita Guerra

Departamento de Matemática, Universidade de Aveiro, 2017

### Diferencial de uma função real de variável real

Suponha que  $f:D\subset\mathbb{R}\to\mathbb{R}$  é diferenciável em  $x_0\in \mathrm{int}(D)$ .

Uma equação da reta tangente a  $P = (x_0, f(x_0))$  é

$$y = f(x_0) + f'(x_0)(x - x_0).$$

Esta reta representa o gráfico de uma função L definida por

$$L(x) = f(x_0) + f'(x_0)(x - x_0)$$

dita linearização de f em  $x_0$ , que é uma boa aproximação de f para valores de x muito próximos de  $x_0$  ( $L(x) \approx f(x)$ ).

Por outras palavras, para valores de  $\Delta x = x - x_0$  muito pequenos (próximos de zero),

$$\Delta f = f(x_0 + \Delta x) - f(x_0) \approx L(x_0 + \Delta x) - L(x_0) = f'(x_0) \Delta x.$$

Representando para valores próximos de zero  $\Delta x$  por dx definimos o **diferencial (total) de** f, df, em  $x_0$  por

$$df = f'(x_0)dx$$
. Diferencial

## Diferencial de uma função real de duas variáveis reais

Suponha que  $f: D \subset \mathbb{R}^2 \to \mathbb{R}$  uma função diferenciável em  $(x_0, y_0) \in \text{int}(D)$ .

Uma equação do plano tangente a  $P = (x_0, y_0, f(x_0, y_0))$  é

$$z = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0).$$

Este plano representa o gráfico de uma função L definida por

$$L(x,y) = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

dita linearização de f em  $(x_0, y_0)$ , que é uma boa aproximação de f para valores de (x, y) muito próximos de  $(x_0, y_0)$   $(L(x, y) \approx f(x, y))$ .

Por outras palavras, para valores de  $\Delta x = x - x_0$  e  $\Delta y = y - y_0$  muito pequenos (próximos de zero),

$$\Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) \approx L(x_0 + \Delta x, y_0 + \Delta y) - L(x_0, y_0)$$
$$\approx \frac{\partial f}{\partial y}(x_0, y_0) \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \Delta y.$$

Representando para valores próximos de zero  $\Delta x$  por dx e  $\Delta y$  por dy definimos o **diferencial (total) de** f, df, em  $(x_0, y_0)$ , por

$$df = \frac{\partial f}{\partial x}(x_0, y_0) dx + \frac{\partial f}{\partial y}(x_0, y_0) dy.$$

### Diferencial de uma função real de *n* variáveis reais 4

Suponha que  $f: D \subset \mathbb{R}^n \to \mathbb{R}$  uma função diferenciável em  $P = (x_1^0, ..., x_n^0) \in int(D)$ .

Uma equação do hiperplano de  $\mathbb{R}^{n+1}$  tangente a  $P = (x_1^0, ..., x_n^0, f(x_1^0, ..., x_n^0))$  é  $x_{n+1} = f(x_1^0, ..., x_n^0) + \frac{\partial f}{\partial x_n}(x_1^0, ..., x_n^0)(x_1 - x_1^0) + ... + \frac{\partial f}{\partial x_n}(x_1^0, ..., x_n^0)(x_n - x_n^0).$ 

Este hiperplano representa o gráfico de uma função L definida por

$$L(x_1,...,x_n) = f(x_1^0,...,x_n^0) + \frac{\partial f}{\partial x_1}(x_1^0,...,x_n^0)(x_1-x_1^0) + ... + \frac{\partial f}{\partial x_n}(x_1^0,...,x_n^0)(x_n-x_n^0)$$

dita linearização de f em P, que é uma boa aproximação de f para valores de  $(x_1,...,x_n)$  muito próximos de  $(x_1^0,...,x_n^0)$  ( $L(x_1,...,x_n) \approx f(x_1,...,x_n)$ ).

Por outras palavras, para valores de  $\Delta x_1 = x_1 - x_1^0, ..., \Delta x_n = x_n - x_n^0$  muito pequenos (próximos de zero),

$$\Delta f = f(x_1^0 + \Delta x_1, ..., x_n^0 + \Delta x_n) - f(x_1^0, ..., x_n^0) \approx L(x_1^0 + \Delta x_1, ..., x_n^0 + \Delta x_n) - L(x_1^0, ..., x_n^0)$$

$$\approx \frac{\partial f}{\partial x_1}(x_1^0, ..., x_n^0) \Delta x_1 + ... + \frac{\partial f}{\partial x_n}(x_1^0, ..., x_n^0) \Delta x_n.$$

Representando para valores próximos de zero  $\Delta x_1, ..., \Delta x_n$  por  $dx_1, ..., dx_n$  definimos o **diferencial (total) de** f, df, em  $(x_1^0, ..., x_n^0)$ , por

$$df = \frac{\partial f}{\partial x_1}(x_1^0, ..., x_n^0) dx_1 + ... + \frac{\partial f}{\partial x_1}(x_1^0, ..., x_n^0) dx_n.$$

### Exer. 2.1

Para cada uma das funções seguintes determine o diferencial no ponto indicado e a linearização numa vizinhança do mesmo ponto, após garantida a diferenciabilidade ponto em questão:

- (a)  $f(x, y) = \sin(xy)$  no ponto P = (0, 1);
- (b)  $f(x, y, z) = x^2 y^2 z^2 xyz$  no ponto P = (1, 1, 0);
- (c)  $f(x, y, z) = xy^3 + \cos(\pi z)$  no ponto P = (1, 3, 1).

### Exer. 2.2

Obtenha uma aproximação da variação de  $f(x,y) = x^2 - 3x^3y^2 + 4x - 2y^3 + 6$  quando (x,y) varia de (-2,3) a (-2.02,3.01).

### Exer. 2.3

Suponha que as dimensões de um paralelipípedo retângulo variam de 9, 6, e 4 centímetros para 9.02, 5.97 e 4.01 centímetros.

- (a) Obtenha uma aproximação da variação do volume;
- (b) Qual a variação exata do volume.

### Equações Diferenciais Ordinárias

#### Def. 2.4

Uma equação diferencial (ordinária) (EDO) de ordem  $n, n \in N$  é uma equação do tipo  $F(x, y, y', y'', ..., y^{(n)}) = 0$  com y = y(x).

Dizemos que a **equação diferencial** está **escrita na forma normal** quando a derivada de maior ordem está explicitamente expressa em função das restantes variáveis, i.e.,

$$y^{(n)} = f(x, y, y', y'', ..., y^{(n-1)}).$$

### Obs. 2.5

A ordem de uma EDO é a maior ordem da derivada da variável dependente.

### Exemplo 2.6

São exemplos de equações diferenciais:

(a) 
$$x \frac{d^2y}{dx^2} + \sin(2x)\frac{dy}{dx} = 4x^2$$
 (b)  $\frac{d^3x}{dt^3} + \sqrt{1+t^2} \frac{dx}{dt} = 4$ .

Qual é a ordem de cada uma destas equações diferenciais? Identifique a variável independente e a variável dependente em cada uma delas.

### Exemplo 2.7

Lei do arrefecimento de Newton: A taxa de variação da temperatura T de um objecto é proporcional à diferença entre a sua temperatura e a temperatura do meio ambiente  $T_m$ .

Esta lei pode ser modelada pela equação diferencial

$$\frac{dT}{dx} = -k(T - T_m)$$

com k uma constante real positiva.

### Exemplo 2.8

Lei de Hooke: Ao colocarmos um objeto de massa m na extremidade de uma mola vertical, esta exerce sobre o objeto uma força (elástica) (m a) que é proporcional ao seu deslocamento.

O movimento harmónico da mola pode ser modelado pela equação diferencial

$$m\frac{d^2x}{dt^2} = -kx$$

com k > 0 uma constante (constante de mola).

### Equações Diferenciais

#### Def. 2.9

Dizemos que  $\phi:I\subset\mathbb{R}\to\mathbb{R}$  é uma solução da equação diferencial  $F(x,y,y',y'',...,y^{(n)})=0$ , no intervalo I, se  $\phi$  possui derivadas finitas até à ordem n e  $F(x,\phi(x),\phi'(x),\phi''(x),...,\phi^{(n)}(x))=0$ ,  $\forall x\in I$ .

### Obs. 2.10

Não iremos fazer referência ao intervalo I a menos que a sua não especificação conduza a qualquer tipo de ambiguidade.

#### Def. 2.11

Resolver ou integrar uma equação diferencial de ordem n consiste em determinar o conjunto das suas soluções, ou seja, determinar o conjunto das funções que satisfaçam a equação.

### Exer. 2.12

Resolva as seguintes equações diferenciais:

(a) 
$$y'(x) = \ln(x)$$
; (b)  $y''(x) = 3x^2$ .

### Equações Diferenciais

Em geral, integrar uma equação diferencial de ordem n consiste em determinar uma família de soluções que dependem de n constantes reais arbitrárias.

A uma tal família obtida por técnicas de integração chamamos integral geral da EDO.

Uma solução particular de uma EDO é uma solução obtida do integral geral por concretização das constantes.

Uma solução particular de uma EDO que não se possa obter desta forma diz-se solução singular.

O conjunto de todas as soluções de uma EDO diz-se solução geral.

### Exemplo 2.13

Consideremos a equação diferencial  $(y')^2 - 4y = 0$ .

Um integral geral desta equação é  $y = (x + C)^2$ , com C uma constante real arbitrária.

Uma solução particular é, por exemplo,  $y=x^2$  sendo y=0 uma solução singular (justifique).

### Exer. 2.14

Determine uma equação diferencial para a qual a família de curvas

- (a)  $y = e^{cx}, c \in \mathbb{R}$ , é um integral geral;
- (b)  $y = Ae^{Bx}$ ,  $A, B \in \mathbb{R}$ , é um integral geral;
- (c)  $y = a \operatorname{sen}(x + B) + C$ ,  $a, B, C \in \mathbb{R}$ , é um integral geral.

### Soluções:

2.23 (a) 
$$xy' - y \ln(y) = 0$$
, (b)  $yy'' - (y')^2 = 0$ , (c)  $y''' + y' = 0$ .

### Exer. 2.15

A equação diferencial  $(y')^2=1$  tem dois integrais gerais:  $y=x+c,\ c\in\mathbb{R}$  e  $y=-x+c,\ c\in\mathbb{R}$ . Mostre que qualquer solução particular duma é solução singular da outra.

### Obs. 2.16

Não será feito um estudo aprofundado das soluções singulares de uma EDO.

#### Def. 2.17

Chamamos problema de valores iniciais (PVI) (ou problema de Cauchy) a todo o problema que consiste em encontrar a solução (ou soluções) de uma equação diferencial satisfazendo certas condições num dado ponto  $x_0$ , ditas condições iniciais:

$$\begin{cases} F(x, y, y', y'', ..., y^{(n)}) = 0 \\ y(\mathbf{x}_0) = y_0, y'(\mathbf{x}_0) = y_1, ..., y^{(n-1)}(\mathbf{x}_0) = y_{n-1}. \end{cases}$$

Chamamos problema de valores na fronteira (ou simplesmente, problema de fronteira) a todo o problema que consiste em encontrar a solução (ou soluções) de uma equação diferencial satisfazendo condições especiais em dois ou mais pontos.

### Exemplo 2.18

PVI
 Prob. de val. na fronteira

 
$$F(x, y, y', y'') = 0$$
 $F(x, y, y', y'') = 0$ 

$$\begin{cases} y(x_0) = y_0 \\ y'(x_0) = y_1 \end{cases}$$

$$\begin{cases} y(x_0) + y'(x_1) = y_0 \\ y(x_1) + y'(x_0) = y_1 \end{cases}$$

### Exer. 2.19

Determine a solução do PVI

$$\begin{cases} y'' + x = 0 \\ y(0) = 1, y'(0) = 0. \end{cases}$$

### Exer. 2.20

Determine a solução do problema de fronteira

$$\begin{cases} y'' + x = 0 \\ y(0) + y'(1) = 1 \\ y'(0) = 0 \end{cases}$$

### Obs. 2.21

Nem todo o PVI admite solução. Por exemplo, a equação diferencial de valores iniciais  $\left\{ \begin{array}{l} |y'|+|y|=0\\ y(0)=1 \end{array} \right.$  não tem solução, pois a única solução de  $|y'|+|y|=0 \quad \text{\'e} \quad y=0.$ 

Que condições devem ser satisfeitas para que se possa garantir a existência e unicidade de um PVI?

### EDOs de Variáveis Separáveis

As equações diferenciais de 1.ª ordem que vamos estudar são equações do tipo

$$y'=f(x,y) \; ext{com} \; f:D\subset \mathbb{R}^2 o \mathbb{R} \; ext{continua em } D.$$

### EDOs de Variáveis Separáveis

A equação diferencial y'=f(x,y) diz-se de variáveis separáveis se puder ser escrita na forma  $y'=f(x,y)=\frac{p(x)}{a(y)}$  com  $q(y)\neq 0$ .

Sendo  $y' = \frac{p(x)}{q(y)}$  então q(y)y' = p(x) ou, usando a noção de diferenciais,

$$q(y)dy = p(x)dx.$$

O integral geral desta equação obtém-se primitivando "membro a membro",

$$\int q(y)dy = \int p(x)dx + C.$$

## Equações Diferenciais de 1.<sup>a</sup> ordem EDOs de Variáveis Separáveis

### Exemplo 2.22

Determinar o integral geral da equação diferencial  $\frac{dy}{dx} = y^2$ 

A equação  $\frac{dy}{dx} = y^2$  é uma equação diferencial de variáveis separáveis (porquê?).

Usando a forma diferencial, obtemos  $\frac{1}{v^2} = dx \ (y \neq 0)$ .

Primitivando ambos os membros,  $\int \frac{1}{y^2} = \int dx$ , ou seja,

$$-\frac{1}{v} = x + C, \ C \in \mathbb{R}. \longleftarrow$$
 Integral geral.

A função y = 0 é uma **solução singular** desta equação.

### Exer. 2.23

Determine um integral geral para cada uma das seguintes EDOs:

(a) 
$$xy' - y = 0$$
;

(b) 
$$x + yy' = 0$$
;

(c) 
$$(t^2 - xt^2) \frac{dx}{dt} + x^2 = -tx^2$$
.

### Exer. 2.24

Resolva os seguintes problemas de valor inicial:

(a) 
$$xy' + y = y^2$$
;  $y(1) = 1/2$ ;

(b) 
$$x(y+1) + y'\sqrt{4+x^2} = 0$$
;  $y(0) = 1$ ;

(c) 
$$(1+x^3)y'=x^2y$$
;  $y(1)=2$ .

### Soluções:

2.23 (a) 
$$y = cx$$
,  $c \in \mathbb{R}$  (b)  $y^2 + x^2 = c$ ,  $c \in \mathbb{R}_0^+$  (c)  $x e^{\frac{1}{x}} = c t e^{-\frac{1}{t}}$ ,  $c \neq 0$ ;

2.24 (a) I.G. 
$$y = \frac{1}{1-cx}$$
; S.PVI  $y = \frac{1}{x+1}$ ,  $x \neq -1$ ;

(b) I.G. 
$$y = \frac{c}{\sqrt{x^2+4}} - 1$$
; S.PVI  $y = 2e^{2-\sqrt{x^2+4}} - 1$ ;

(c) I.G. 
$$y = c\sqrt[3]{x^3 + 1}$$
; S.PVI  $y = \sqrt[3]{4(x^3 + 1)}$ 

### EDOs Homogéneas

### EDOs de Homogéneas

A equação diferencial y' = f(x, y) diz-se de **homogénea** se f for uma função homogénea de grau 0, isto é, se

$$f(\lambda x, \lambda y) = f(x, y) \ \forall (x, y) \in D, \ \forall \lambda \in \mathbb{R}, \ \text{tais que} \ (\lambda x, \lambda y) \in D.$$

Neste caso,  $f(x,y) = f(1,\frac{y}{x})$  (justifique) e por conseguinte a EDO y' = f(x,y) pode ser escrita na forma  $y' = g(\frac{y}{x})$ .

$$\boxed{y' = g(\frac{y}{x})}$$
 mudança de variável dependente  $y = zx$  
$$\boxed{z + xz' = g(z).}$$

EDO homogénea

EDO v. separáveis

### Exer. 2.25

Determine o integral geral da EDO  $x^2 dy = (x^2 + xy + y^2) dx$ 

Esta EDO pode ser escrita na forma  $y'=(1+\frac{y}{x}+(\frac{y}{x})^2)$  e é, portanto, uma EDO homogénea. Efetuando a M.V. y=zx transforma-se em  $\frac{1}{1+z^2}dz=\frac{1}{x}dx$  cujo IG é arctg  $z=\ln x+C, C\in\mathbb{R}$ . Voltando à variável inicial obtemos para IG da EDO dada y=x tg( $\ln |x|+C$ ),  $C\in\mathbb{R}$ .

## EDOs transformáveis em homogéneas/variáveis separáveis

### EDOs transformáveis em homogéneas/var. separáveis

As equações diferenciais  $y'=f(\frac{a_1x+b_1y+c_1}{a_2x+b_2y+c_2})$  com  $a_1,a_2,b_1,b_2,c_1,c_2$  constantes reais, podem transformar-se em EDO de variáveis separáveis por uma mudança de variável (m.v) adequada.

- Se  $c_1 = c_2 = 0$  a EDO é homogénea.
- Se  $a_1b_2 b_1a_2 = 0$  a EDO ou já é de v. separáveis ou pode transformar-se numa de v. separáveis utilizando uma das m.v.  $z = a_1x + b_1y$  ou  $z = a_2x + b_2y$ .
- Se a<sub>1</sub>b<sub>2</sub> − b<sub>1</sub>a<sub>2</sub> ≠ 0 a EDO transforma-se numa EDO homogénea/v. separáveis através da m.v. independente x = u + α e da m.v. dependente y = z + β com α e β soluções do sistema de equações

$$\begin{cases} a_1\alpha + b_1\beta + c_1 = 0 \\ a_2\alpha + b_2\beta + c_2 = 0 \end{cases}$$

### Exer. 2.26

Determine o integral geral da equação diferencial  $y' = \frac{x+y+4}{x-y-6}$ .

### Exercícios

### Exer. 2.27

Verifique que as seguintes equações diferenciais são homogéneas e determine um seu integral geral.

- (a)  $(x^2 + y^2)y' = xy$ ;
- (b)  $y'\left(1 \ln\frac{y}{x}\right) = \frac{y}{x}, \quad x > 0.$

### Exer. 2.28

Considere a equação diferencial  $y' = \frac{y}{x} (1 + \ln y - \ln x), \quad x > 0.$ 

- (a) Verifique que se trata de uma equação diferencial homogénea.
- (b) Determine um integral geral desta EDO.

### Exer. 2.29

Resolva as seguintes equações diferenciais:

- (a)  $\frac{dy}{dx} = \frac{x+y-3}{x-y-1};$
- (b)  $y' = \frac{y-x}{y-x+2}$ .

(Sugestão: Efetue a mudança de variável dada por z = y - x.)

Sejam M e N funções continuas num aberto de  $\mathbb{R}^2$ . A equação diferencial,

$$M(x,y) + N(x,y)y' = 0$$
 ou, equivalentemente,  $M(x,y)dx + N(x,y)dy = 0$ 

é uma equação diferencial **exata** se existir uma função **F** com derivadas parciais de primeira ordem contínuas cujo diferencial satisfaz a

$$\boxed{dF = M(x,y)dx + N(x,y)dy.}$$

O que significa que 
$$\frac{\partial F}{\partial x}(x,y) = M(x,y)$$
 e  $\frac{\partial F}{\partial y}(x,y) = N(x,y)$ .

### Teo. 2.30

A família F(x,y) = C,  $C \in \mathbb{R}$  constitui o conjunto de soluções da equação diferencial exata M(x,y)dx + N(x,y)dy = 0.

### Critério

Supondo D aberto e simplesmente conexo ("sem buracos"), a equação diferencial M(x,y)dx + N(x,y)dy = 0 é exata se e somente se

$$\frac{\partial M}{\partial y}(x,y) = \frac{\partial N}{\partial x}(x,y)$$

### Exer. 2.32

Mostre que a equação diferencial  $(y + 2xe^y)dx + (x^2e^y + x - 2y)dy = 0$  é uma equação diferencial exata e determine as suas soluções.

### Exer. 2.33

Para cada uma das equações diferenciais seguintes determinar o valor da constante A de forma a serem exatas e determinar uma família de soluções das equações diferenciais resultantes.

(a) 
$$(x^2 + 3xy)dx + (Ax^2 + 4y)dy = 0$$
;

(b) 
$$\left(\frac{Ay}{x^3} + \frac{y}{x^2}\right)dx + \left(\frac{1}{x^2} - \frac{1}{x}\right)dy = 0.$$

### Exer. 2.34

Sabendo que o PVI,  $\frac{dy}{dx} = -\frac{2x\cos(y) + 3x^2y}{x^3 - x^2\sin(y) - y}$ ,  $y(0) = \frac{3}{4}$ , admite solução única da forma G(x,y) = 0 na vizinhança de  $(0,\frac{3}{4})$ , determine uma expressão para G(x,y).

### Fatores Integrantes

#### Def. 2.35

Chamamos fator integrante da equação diferencial não exata

$$M(x,y)dx + N(x,y)dy = 0$$

a toda a função não nula  $\mu$  tal que

$$\mu(x,y)M(x,y)dx + \mu(x,y)N(x,y)dy = 0$$

é uma equação diferencial exata.

### Exer. 2.36

Mostre que a equação diferencial  $3y + 4xy^2 + (2x + 3yx^2)y' = 0$  não é exata e que a função  $\mu$  definida por  $\mu(x,y) = yx^2$  é um fator integrante para esta EDO.

### Como determinar um fator integrante para uma ODE?

#### **CASOS PARTICULARES**

• Se  $\left| \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N} = g(x) \right|$  (depende apenas de x)

podemos considerar um fator integrante dependente apenas de x e escrever  $\mu(x)g(x)=\mu'(x)$ . Assim um fator integrante para a ODE é

$$\mu(x) = e^{\int g(x)dx}$$

• Se  $\left| \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{M} = h(y) \right|$  (depende apenas de y)

podemos considerar um fator integrante dependente apenas de y e escrever  $\mu(y)h(y)=\mu'(y)$ . Assim um fator integrante para a ODE é

$$\mu(y) = e^{\int -h(y)dy}$$

### Exer. 2.37

Mostre que  $2\cos(y)dx-\sin(y)dy=0$  não é uma equação diferencial exata, mas que é possível integrá-la recorrendo a fatores integrantes que só dependem de uma das variáveis. Verifique, em particular, que  $\mu_1(x)=e^{2x}$  e

$$\mu_2(y) = \frac{1}{\cos(y)}$$
 são dois de tais fatores.

### Exer. 2.38

Considere a EDO  $x^2y'+2xy=1$  em  $]0,+\infty[$ . Mostre que qualquer solução desta EDO tende para zero quando  $x\to +\infty$ .

### EDOs lineares de 1.<sup>a</sup> ordem

Uma EDO linear de 1.<sup>a</sup> ordem é uma equação do tipo

$$\boxed{a_0(x)y'+a_1(x)y=b(x),}$$

ondem  $a_0, a_1, b$  são funções definidas num certo intervalo I, com  $a_0(x) \neq 0$  para todo  $x \in I$ .

Dividindo ambos os membros por  $a_0(x)$ , a equação linear pode ainda escrever-se na forma

$$y'+p(x)y=q(x).$$

### Exer. 2.39

Determine, caso exista, uma função  $\mu$  tal que  $\mu(x)[y' + p(x)y] = [\mu(x)y]'$ .

$$\mu(y'+p(x)y) = (\mu y)' \iff \mu y' + \mu p(x)y = \mu y' + \mu' y$$

$$\iff \mu' = \mu p(x) \text{ (eq. dif. de var. sep.)}$$

$$\iff \frac{1}{\mu} d\mu = p(x) dx$$

$$\iff \mu(x) = k e^{\int p(x) dx}, k \in \mathbb{R}.$$

Uma função que satisfaça a condição pedida é, por exemplo,  $\mu(x) = e^{\int p(x) dx}$ .

#### Exer. 2.40

Mostre que a solução geral da equação y' + p(x)y = q(x) é  $y = \frac{1}{u(x)} \left( \int (\mu(x)q(x))dx + c \right)$ , com  $\mu(x) = e^{\int p(x) dx}$ .

### Exemplo 2.41

Determinar as soluções da equação diferencial linear  $y' - \frac{2}{y}y = x$ .

Consideremos a função 
$$\mu$$
 dada por  $\mu(x) = e^{\int p(x) dx} = e^{\int -\frac{2}{x} dx} = \frac{1}{x^2}$ .

Então,

$$\frac{d}{dx}\left(\frac{1}{x^2}y\right) = \frac{1}{x^2}x \iff \left(\frac{1}{x^2}y\right) = \int \frac{1}{x}$$

$$\iff y = x^2(\ln|x| + c), c \in \mathbb{R} \text{ solução geral.}$$

### Obs. 2.42

Consideremos a equação diferencial (linear) y' + p(x)y = q(x).

 Se q = 0 ou se p = p(x) e q = q(x) são (funções) constantes a ODE é de variáveis separáveis.

### Exer. 2.43

Determine a solução geral das seguintes EDOs:

(a) 
$$xy' - y = x - 1$$
,  $x > 0$ ; (b)  $xy' + y - e^x = 0$ ,  $x > 0$ ;

(c) 
$$y' - y = -e^{-x}$$
; (d)  $y' + 2y = \cos x$ .

### Existência e Unicidade de Soluções

### Teo. 2.44

Se p e q são funções contínuas em I, então o problema de Cauchy

$$\begin{cases} y' + p(x)y = q(x) \\ y(x_0) = y_0 \end{cases}$$

tem nesse intervalo uma e uma só solução.

### Exer. 2.45

Justifique a existência e unicidade de solução dos seguintes problemas de Cauchy e resolva-os.

(a) 
$$\begin{cases} y' - y = -e^x \\ y(0) = 0 \end{cases}$$

(b) 
$$\begin{cases} 3y' - 4y = x \\ y(0) = \frac{13}{16}. \end{cases}$$

#### Def. 2.46

Uma equação diferencial de Bernoulli é uma equação diferencial nda forma

$$y' + a(x)y = b(x)y^{\alpha} \quad \text{com } \alpha \in \mathbb{R}.$$

Ora, 
$$y' + a(x)y = b(x)y^{\alpha} \iff y^{-\alpha}y' + a(x)y^{1-\alpha} = b(x).$$

Fazendo a mudança de variável  $z=y^{1-\alpha}$  temos,  $z'=(1-\alpha)y^{-\alpha}y'$  e a equação diferencial anterior transforma-se na equação diferencial

$$z' + (1 - \alpha)a(x)z = (1 - \alpha)b(x)$$

que é uma equação diferencial linear nas variáveis z e x.

#### Obs. 2.47

Se  $\alpha=0$  ou  $\alpha=1$  a equação de Bernoulli é uma EDO linear.

#### Exer. 2.48

Determine a solução geral da equação de Bernoulli  $y' + y = y^2 e^x$ .

$$v' + v = v^2 e^x \iff v^{-2} v' + v^{-1} = e^x$$
.

A mudança de variável  $z=y^{-1}$  converte esta EDO na EDO linear  $z'-z=-e^x$  que tem  $z=(C-x)e^x$ ,  $C\in\mathbb{R}$  por solução geral.

Assim, a solução geral de  $y' + y = y^2 e^x$  é  $y = \frac{e^{-x}}{C - x}$ ,  $C \in \mathbb{R}$ .

### Exercícios

### Exer. 2.49

Resolva as seguintes equações diferenciais:

(a) 
$$y' + \frac{1}{x}y = xy^2$$
  
(b)  $y' + y\sin(x) = y^2\sin(x)$   
(c)  $\begin{cases} x^2y' - 2xy = 3y^4 \\ y(1) = \frac{1}{2} \end{cases}$   
(d)  $\begin{cases} xy' + x = -\frac{(xy)^4}{3(1+x^2)} \\ y(1) = 1. \end{cases}$ 

(b)  $y' + y \sin(x) = y^2 \sin(x)$ 

Soluções:

(a) 
$$y = \frac{1}{x(c-x)}$$
; (b)  $y = \frac{e^{\cos(x)}}{e^{\cos(x)} + c}$  (c)  $y = \sqrt[3]{\frac{5x^6}{49 - 9x^5}}$ .

(d) 
$$y = \frac{1}{x\sqrt[3]{\arctan(x) + 1 - \pi/4}}$$

### Exercícios

### Exer. 2.50

Determine o integral geral das seguintes EDO's de primeira ordem.

(a) 
$$x^2 + y^2 + xyy' = 0$$
   
 (b)  $(2y - 3x) + (3x - 2y + 1)y' = 0$ 

(c) 
$$x^2y dx + (\frac{1}{3}x^3 + y^3)dy = 0$$
 (d)  $(t^2 + 4)dt + t dx = x dt$ 

(e) 
$$x^2y' - y^3 = xy$$
. (f)  $y ds - 3s dy = y^4 dy$  (g)  $y' = \frac{3 - 2y}{2x + y + 1}$ .

(e) 
$$x^2y' - y^3 = xy$$
. (f)  $y ds - 3s dy = y^4 dy$  (g)  $y' = \frac{3}{2x + y + 1}$ 

### Equação diferencial linear de ordem n

Uma equação diferencial de ordem  $n, n \in \mathbb{N}$  é uma equação da forma:

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + ... + a_{n-1}(x)y' + a_n(x)y = b(x).$$

- As funções  $a_0(x), a_1(x), ..., a_{n-1}(x), a_n(x)$ , contínuas em  $I \subset \mathbb{R}$ , dizem-se os coeficientes da equação.
- Se todos os coeficientes da equação são funções constantes, a equação diferencial diz-se linear de coeficientes constantes.
- Se b = b(x) = 0 (função identicamente nula) a equação linear diz-se homogénea;
- Se existir pelo menos um x ∈ I tal que b(x) ≠ 0 equação linear diz-se completa.

### Exemplo 2.51

A equação diferencial  $y'' + x^2y' + y = 4x$  é exemplo de uma equação diferencial linear de ordem 2 completa.

#### Teo. 2.52

### Existência e unicidade de solução

Se  $a_0, a_1, ... a_n, b$  são funções contínuas em I,  $a_0(x) \neq 0$ , pata todo  $x \in I$  e  $x_0 \in I$ , então, nesse intervalo, existe uma e uma sós solução para o problema de Cauchy

$$\begin{cases} a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = b(x) \\ y(x_0) = \beta_0, \ y'(x_0) = \beta_1, \ \dots, \ y^{n-1}(x_0) = \beta_{n-1} \end{cases}$$

### Exer. 2.53

Mostre que o problema de Cauchy

$$\begin{cases} x'' + x = 0 \\ x(0) = 2, \ x'(0) = 2 \end{cases}$$

tem uma única solução em qualquer intervalo que contenha a origem.

À equação diferencial linear de ordem n completa

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = b(x)$$
 (A)

associamos a equação diferencial linear de ordem *n* homogénea,

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + ... + a_{n-1}(x)y' + a_n(x)y = 0,$$

dita equação diferencial linear homogénea associada à EDO linear completa (A)

### Exer. 2.54

### Mostre que:

- (i) Dadas duas soluções  $y_1$  e  $y_2$  duma equação diferencial linear de ordem n completa, a sua diferença,  $y_1-y_2$  é solução da equação homogénea associada:
- (ii) A soma de uma solução duma equação diferencial linear de ordem n completa com uma solução da homogénea associada é solução da EDO linear completa.
- (iii) Uma qualquer combinação linear de soluções particulares da linear homogénea (associada) é também solução dessa EDO linear e homogénea.

### Teo. 2.55

### Solução Geral de um EDO Linear Completa

A solução geral de uma equação diferencial linear completa obtém-se adicionando uma qualquer sua solução à solução geral da equação homogénea associada.

$$y_G^C = y_G^H + y_p^C$$

### EDOs lineares de ordem n homogéneas

### Teo. 2.56

### Sistema Fundamental de Soluções

Toda a equação linear homogénea de ordem n,

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + ... + a_{n-1}(x)y' + a_n(x)y = 0,$$

nas condições anteriormente descritas, admite n soluções  $\phi_1, \phi_2, ..., \phi_n$  linearmente independentes e qualquer outra solução  $y_H$  se escreve como

combinação linear desta, isto é,

$$y_H = c_1\phi_1 + c_2\phi_2 + ... + c_n\phi_n,$$

com  $c_1, c_2, ..., c_n \in \mathbb{R}$ .

#### Def 2.57

Um qualquer conjunto de *n* soluções linearmente independente de uma equação linear homogénea de ordem *n* designa-se por sistema fundamental de soluções - SFS.

### Sistema Fundamental de Soluções

### Teo. 2.58

### Critério

Um sistema de *n* soluções  $\phi_1, \phi_2, ..., \phi_n$  da EDO linear de ordem *n* 

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + ... + a_{n-1}(x)y' + a_n(x)y = 0, x \in I$$

é linearmente independente se e só se o Wronskiano (determinante), como funções de x em I,

$$\begin{vmatrix} \phi_1 & \phi_2 & \dots & \phi_n \\ \phi'_1 & \phi'_2 & \dots & \phi'_n \\ \vdots & \vdots & & \vdots \\ \phi_1^{n-1} & \phi_2^{n-1} & \dots & \phi_n^{n-1} \end{vmatrix} \neq 0$$

### Obs. 2.59

Para que o Wronskiano seja não nulo, basta que exista  $x \in I$  que torne a determinante não nulo

### Exer. 2.60

Mostre que:

- 1  $y = e^{-x}$  constitui um SFS para a equação diferencial y' + y = 0;
- 2  $\{y_1 = \sin(x), y_2 = \cos(x)\}$  constitui um SFS para a equação diferencial y'' + y = 0.

# Solução Geral das EDOs lineares de ordem *n* homogéneas

Nesta secção vamos apenas considerar EDOs lineares de ordem *n* homogéneas e de coeficientes constantes.

$$\boxed{a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0,}$$
 (1)

A esta equação vamos associar um polinómio algébrico

$$P(D) = a_0 D^n + a_1 D^{n-1} + ... + a_{n-1} D + a_n$$

que designamos por polinómio característico associada a EDO (1).

O sistema fundamental de soluções (SFS) da EDO (1) está intimamente relacionado com as raízes de P(D).

# Solução Geral das EDOs lineares de ordem *n* homogéneas

De facto, podemos construir um SFS do modo seguinte:

1 Se P(D) tem n raízes reais simples  $r_1, r_2, ..., r_n$  então

$$\textbf{SFS} {=} \{e^{r_1x}, e^{r_2x}, ..., e^{r_nx}\}$$

2 Se P(D) tem uma raiz real r de multiplicidade m,  $1 < m \le n$  então

$$\textbf{SFS} \supset \{e^{rx}, xe^{rx}, ..., x^{m-1}e^{rx}\}$$

3 Se P(D) tem um par de **raízes complexa**  $\alpha \pm \beta i$  **simples** então

$$\mathsf{SFS} \supset \{e^{\alpha x} \cos(\beta x), e^{\alpha x} \sin(\beta x)\}\$$

4 Se P(D) tem um par de raízes complexas  $\alpha \pm \beta i$  de multiplicidade  $m,\ 1 < m \leq \frac{n}{2}$  então

```
\mathsf{SFS} \supset \{\mathsf{e}^{\alpha x} \cos(\beta x), \mathsf{e}^{\alpha x} \sin(\beta x); \mathsf{x} \mathsf{e}^{\alpha x} \cos(\beta x), \mathsf{x} \mathsf{e}^{\alpha x} \sin(\beta x), ..., \mathsf{x}^{m-1} \mathsf{e}^{\alpha x} \cos(\beta x), \mathsf{x}^{m-1} \mathsf{e}^{\alpha x} \sin(\beta x)\}
```

# Solução Geral das EDOs lineares de ordem *n* homogéneas

### Exer. 2.61

Determine a solução geral das equações diferenciais lineares de coeficientes constantes e homogéneas:

- (a) y'' + 4y' + 3y = 0;
- (b)  $y^{(4)} + y'' = 0$ ;
- (c)  $y^{(4)} 3y''' y'' + 3y' = 0$
- (d) y'' + 2y' + 5y = 0;
- (e) y''' + y' = 0;
- (f)  $y^{(4)} + 2y'' + y = 0$ .

Consideremos a EDL de ordem n completa (não necessariamente de coeficientes constantes)

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + ... + a_{n-1}(x)y' + a_n(x)y = b(x), x \in I$$
 (A)

e suponhamos que

$$y_H = C_1 \phi_1(x) + C_2 \phi_2(x) + ... + C_n \phi_n(x), C_1, C_2, ..., C_n \in \mathbb{R}$$
 (B)

é a solução geral da EDL homogénea associada .

Como determinar uma solução particular para a EDL completa (A)?

**Método da variação das constantes:** Consideremos que as constantes  $C_1, C_2, ..., C_n$  são funções diferenciáveis de x. A função  $y_P$  dada por

$$y_P = C_1(x)\phi_1(x) + C_2(x)\phi_2(x) + ... + C_n(x)\phi_n(x)$$

com  $C'_1(x), C'_2(x), ..., C'_n(x)$  soluções do sistema:

$$\begin{cases} C_1'(x)\phi_1(x) + C_2'(x)\phi_2(x) + \dots + C_n'(x)\phi_n(x) = 0 \\ C_1'(x)\phi_1'(x) + C_2'(x)\phi_2'(x) + \dots + C_n'(x)\phi_n'(x) = 0 \\ \vdots \\ C_1'(x)\phi_1^{(n-2)}(x) + C_2'(x)\phi_2^{(n-2)}(x) + \dots + C_n'(x)\phi_n^{(n-2)}(x) = 0 \\ C_1'(x)\phi_1^{(n-1)}(x) + C_2'(x)\phi_2^{(n-1)}(x) + \dots + C_n'(x)\phi_n^{(n-1)}(x) = \frac{b(x)}{a_0(x)} \end{cases}$$

é uma solução particular para a EDL completa (A).

### Exer. 2.62

Determine a solução geral das EDO's utilizando o MVCs:

(a) 
$$y'' - 2y' + y = \frac{e^x}{x}$$
;

(b) 
$$y''' - 3y'' + 4y' - 2y = \frac{e^x}{\cos(x)}$$
;

(c) 
$$y'' - 3y' + 2y = \frac{e^{2x}}{e^x + 1}$$
;

(d) 
$$y' + y \cos(x) = \sin(x) \cos(x)$$
.

### Teo. 2.63

### Princípio da Sobreposição

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + ... + a_{n-1}(x)y' + a_n(x)y = b_1(x)$$
 e

e  $y_2$  é uma solução da EDL  $a_0(x)v^{(n)} + a_1(x)v^{(n-1)} + ... + a_{n-1}(x)v' + a_n(x)v = b_2(x)$  então

$$y_1 + y_2$$
 é uma solução da EDL  
 $a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + ... + a_{n-1}(x)y' + a_n(x)y = b_1(x) + b_2(x).$ 

Método dos Coeficientes Indeterminados: A EDL de coeficientes constantes completa e de ordem n

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = b(x)$$
  
 $b(x) = P_m(x) e^{\alpha x} \cos(\beta x)$  ou  $b(x) = P_m(x) e^{\alpha x} \sin(\beta x)$ 

onde  $P_m(x)$  é um polinómio de grau  $m \in \mathbb{N}_0$ ; e  $\alpha, \beta \in \mathbb{R}$ , possui uma solução particular  $y_P$  da forma

$$y_P(x) = x^k (P_m^1(x)e^{\alpha x}\cos(\beta x) + P_m^2(x)e^{\alpha x}\sin(\beta x))$$

onde:

com

- $k \in \mathbb{N}_0$  é a multiplicidade de  $\alpha + \beta i$  como raiz do polinómio característico P(D) (k=0 se  $\alpha + \beta i$  não for raiz de P(D).
- $lackbr{P}_m^1(x)$  e  $P_m^2(x)$  são polinómios de grau m cujos coeficientes terão que ser determinados.

#### Obs. 2.64

Este método **só** é **aplicável a EDL's de coeficientes constantes** e que tenham o termo independente da forma acima descrita.

### Exercícios

### Exer. 2.65

Determine a solução geral das EDO's:

(a) 
$$y'' - 3y' - 4y = 4x^2$$
;

(b) 
$$y'' - 3y' - 4y = 2\cos(x)$$
;

(c) 
$$y' + 2y = x^3 + 3x + 1$$
;

(d) 
$$y' - y = (x^2 + 1)e^{3x}$$
;

(e) 
$$y'' - y = x \sin(x)$$
;

(f) 
$$y'' + y' = x^2 + 4$$
;

(f) 
$$y'' + y' = x^2 + 4$$
;

(g) 
$$y''' + y' = \sin(x)$$
;

(h) 
$$y^{(4)} - y'' = x^2 + e^x$$
.

#### Def. 3.1

Chamamos transformada de Laplace da função  $f:[0,+\infty[\longrightarrow \mathbb{R}$  à função  $\mathcal{L}\{f\}$  ou  $\mathcal{L}\{f(t)\}$  definida por

$$\mathcal{L}{f}(s) = \int_0^{+\infty} e^{-st} f(t) dt$$

para os valores de s em que o integral converge.

### Exer. 3.2

Mostre que:

1. 
$$\mathcal{L}\{1\}(s) = \frac{1}{s}, \ s > 0.$$

2. Sendo 
$$g(t) = \begin{cases} 1 & t \neq 2, 3 \\ 0 & t = 2 \\ 6 & t = 3 \end{cases}$$
  $\mathcal{L}\{g\}(s) = \mathcal{L}\{1\}(s) = \frac{1}{s}, \ s > 0.$ 

3. 
$$\mathcal{L}\lbrace e^{at}\rbrace(s)=\frac{1}{s-a},\ s>a\ (a\in\mathbb{R}).$$

### Exer. 3.3

Mostre que:

4. 
$$\mathcal{L}\lbrace t^n \rbrace (s) = \frac{n}{s} \mathcal{L}\lbrace t^{n-1} \rbrace (s) = \frac{n!}{s^{n+1}}, \ s > 0 \ (n \in \mathbb{N}_0).$$

5. 
$$\mathcal{L}\{\sin(at)\}(s) = \frac{a}{s^2 + a^2}, \ s > 0.$$
 6.  $\mathcal{L}\{\cos(at)\}(s) = \frac{s}{s^2 + a^2}, \ s > 0.$ 

### Teo. 3.4

Sejam  $f,g:[0,+\infty[\longrightarrow \mathbb{R}\ \text{e}\ \alpha\in\mathbb{R}.$  Se existem  $\mathcal{L}\{f\}(s)$  para  $s>s_f$  e  $\mathcal{L}\{g\}(s)$  para  $s>s_g$  então

- lacksquare  $\mathcal{L}\{f+g\}(s)=\mathcal{L}\{f\}(s)+\mathcal{L}\{g\}(s) \; \mathsf{para} \; s> \mathit{max}\{s_f,s_g\} \; \mathsf{e}$
- $\mathcal{L}\{\alpha f\}(s) = \alpha \mathcal{L}\{f\}(s)$  para  $s > s_f$ . O operador  $\mathcal{L}$  é um operador linear.

Demonstração: Exercício.

## Transformadas de Laplace - Exemplos/Exercícios 44

### Exemplo 3.5

**1** 
$$\mathcal{L}\{c\}(s) = c\mathcal{L}\{1\}(s) = \frac{c}{s} \text{ para } s > 0;$$

$$2 \mathcal{L}\{\sinh(at)\}(s) = \mathcal{L}\{\frac{e^{at} - e^{-at}}{2}\}(s) = \frac{a}{s^2 - a^2} \text{ para } s > |a|, \ a \in \mathbb{R};$$

### Exer. 3.6

**1** 
$$\mathcal{L}\{\sin^2(at)\}(s)$$
  $(\sin^2(x) = \frac{1}{2}(1 - \cos(2x));$ 

$$\sum_{i=1}^{n} (ai)_{i}(s) \quad (sin (x) = \frac{1}{2} (1 + cos(2x))$$

**2** 
$$\mathcal{L}\{\cos^2(at)\}(s)$$
  $(\cos^2(x) = \frac{1}{2}(1 + \cos(2x));$ 

3 
$$\mathcal{L}\{\sin^3(at)\}(s)$$
  $(\sin^3(x) = \frac{1}{4}(3\sin(x) - \sin(3x));$   
4  $\mathcal{L}\{\cos^3(at)\}(s)$   $(\cos^3(x) = \frac{1}{4}(3\cos(x) - \cos(3x));$ 

5 
$$\mathcal{L}\{at^3 + bt^2 + ct + d\}(s), a, b, c, d \in \mathbb{R}.$$

Obs. 3.7

Nem toda a função admite transformada de Laplace.

### Exer. 3.8

Mostre que a função f definida por  $f(t) = e^{t^2}$ ,  $t \ge 0$  não admite transformada de Laplace.

**Questão**: Em que condições podemos garantir que uma determinada função admite transformada de Laplace?

### Def. 3.9

Uma função real de variável real diz-se **seccionalmente contínua** em I = [a, b] se existir uma partição  $\{a = a_0, a_1, ..., a_n = b\}$  de I tal que f é contínua em cada um dos subintervalos  $]a_i, a_{i+1}[, i = 0, ..., n-1]$  e existem e são finitos os limites laterais  $\lim_{x \to a_i^+} f(x), \lim_{x \to a_i^-} f(x)$ .

A função f é seccionalmente contínua em  $[0, +\infty[$  se o for em qualquer intervalo [0, b] de  $\mathbb{R}$ .

#### Teo. 3.10

Se  $f:[0,+\infty[\longrightarrow \mathbb{R}$  é uma função que verifica as condições

- (i) f é seccionalmente contínua em  $[0, +\infty[$ ;
- (ii) f é de ordem exponencial (à direita), isto é, existem constantes  $M>0, \ T>0, \ \underline{a}\in\mathbb{R}$  tais que

$$|f(t)| \leq Me^{at}$$
, para todo  $t \geq T$ ,

então  $\mathcal{L}{f}(s)$  existe para s > a.

### Demonstração:

Sendo f seccionalmente contínua em  $[0,+\infty[$ , f é seccionalmente contínua e portanto integrável em [0,b],  $b\in\mathbb{R}^+$  sendo também integrável a função g definida por  $g(t)=f(t)e^{-st}$ .

Vejamos que o integral impróprio (de  $1.^a$  espécie)  $\int_0^{+\infty} f(t)e^{-st}dt$  é convergente para s>a.

Para isso basta observar (justifique) que  $\forall_{t>T} |f(t)e^{-st}| < Me^{(-s+a)t}$ .

### Como identificar se f é de ordem exponencial ( 'a direita)?

#### Teo. 3.11

f é de ordem exponencial (à direita), isto é, existem constantes M > 0,

 $T>0,\ a\in\mathbb{R}$  tais que

$$|f(t)| \le Me^{at}$$
, para todo  $t \ge T$ , (1)

se e somente se

$$\lim_{t \to +\infty} \frac{|f(t)|}{e^{bt}} = 0 \text{ para algum } b \in \mathbb{R}^+$$
 (2)

**Demonstração**:  $(2) \Longrightarrow (1)$  imediato. Vejamos que  $(1) \Longrightarrow (2)$ .

Tendo em conta que

$$0 \le \frac{|f(t)|}{e^{bt}} = \frac{|f(t)|}{e^{(b-a+a)t}} = \frac{1}{e^{(b-a)t}} \frac{|f(t)|}{e^{at}} \le \frac{M}{e^{(b-a)t}}$$

e que

$$\lim_{t \to +\infty} \frac{M}{e^{(b-a)t}} = 0$$
, para  $b > a$ ,

obtemos o que pretendemos mostrar.

### Transformadas de Laplace-Exercícios

#### Exer. 3.12

Seja  $f:[0,+\infty[\longrightarrow\mathbb{R}$  uma função de ordem exponencial (à direita), isto é,  $|f(t)|\leq Me^{at}$  para  $t\geq T$ . Mostre que  $\lim_{t\to +\infty}e^{-st}f(t)=0$  para todo o s>a.

### Exer. 3.13

Mostre que as funções seguintes são de ordem exponencial à direita,

- 1 Qualquer função limitada;
- 2 As funções exponenciais definidas por e<sup>at</sup>, a constante real;
- 3 As potencias  $t^n$ ,  $n \in \mathbb{N}$ .
- 4 As funções polinomiais;

## 5 As funções do tipo $t^n e^{at} \cos(bt)$ e $t^n e^{at} \sin(bt)$ .

### Exer. 3.14

Em cada uma das alíneas que se seguem mostre que a função considerada admite transformada de Laplace para os valores de s indicados.

- (a) f definida por  $f(t) = \frac{1}{1+t}$ , para s > 0;
- (b) f definida por  $f(t) = \frac{e^{at}}{1+t}$ , a constante real, para s > a.

### Teo. 3.15

### Deslocamento na Transformada

Sejam f uma função cujo domínio contém  $\mathbb{R}^+_0$  e integrável em  $[0,b],\ b>0$ , e  $\lambda\in\mathbb{R}$ 

Se 
$$\mathcal{L}\{f(t)\}(s) = F(s)$$
 existe para  $s > s_f$ , então  $\mathcal{L}\{e^{\lambda t}f(t)\}(s)$  existe para

$$|s>s_f+\lambda|$$
 e  $\mathcal{L}\{e^{\lambda t}f(t)\}(s)=F(s-\lambda)=\mathcal{L}\{f(t)\}(s-\lambda).$ 

### Demonstração:

Considere-se a função h definida por  $h(t) = e^{\lambda t} f(t)$ , que é integrável em [0, b], b > 0 (justifique).

Par todo o 
$$s \in \mathbb{R}$$
,  $\int_0^{+\infty} e^{-st} e^{\lambda t} f(t) dt = \int_0^{+\infty} e^{-(s-\lambda)t} f(t) dt$ , pelo que  $\mathcal{L}\{e^{\lambda t} f(t)\}(s)$  existe para  $s > s_f + \lambda$ .

### Exemplo 3.16

Consideremos a função f definida por  $f(t) = e^{3t} \cosh(-\sqrt{2} t)$ .

Como visto anteriormente,

$$F(s) = \mathcal{L}\{\cosh(-\sqrt{2} t)\}(s) = \frac{s}{s^2-2}, \text{ para } s > |-\sqrt{2}|.$$

Estando f nas condições da propriedade do deslocamento na transformada podemos concluir que

$$\mathcal{L}\{e^{3t}\cosh(-\sqrt{2}\ t)\}(s) = F(s-3) = \frac{s-3}{(s-3)^2-2}, \text{ para } s > 5.$$

### Função de Heaviside

Chamamos função de Heaviside à função  $H: \mathbb{R} \longrightarrow \mathbb{R}$  definida por

$$H(t) = \begin{cases} 0 & \text{se } t < 0. \\ 1 & \text{se } t > 0 \end{cases}$$

À custa da função H, definem-se as funções  $H_a: \mathbb{R} \longrightarrow \mathbb{R}, \ a \in \mathbb{R}$  por

$$H_a(t) = H(t-a) = \begin{cases} 0 & \text{se } t < a. \\ 1 & \text{se } t > a \end{cases}$$





#### Teo. 3.17

Transformada do deslocamento

Seja  $f: \mathbb{R} \longrightarrow \mathbb{R}$  uma função integrável em [0, b] para qualquer  $b \in \mathbb{R}^+$ .

Se  $F(s) = \mathcal{L}\{f(t)\}(s)$  existe para  $s > s_f$ , então

$$orall a \in \mathbb{R}^+$$
  $\mathcal{L}\{H_a(t)f(t-a)\}(s)$  existe para  $s>s_f$ 

е

$$\forall a \in \mathbb{R}^+ \ \mathcal{L}\{H_a(t)f(t-a)\}(s) = e^{-as}F(s) = e^{-as}\mathcal{L}\{f(t)\}(s).$$

Demonstração: Exercício.

#### Obs. 3.18

1.  $\mathcal{L}{H(t)f(t)}(s) = \mathcal{L}{f(t)}(s)$ ,  $s > s_f$  (Justifique).

### Exercícios

#### Exer. 3.19

Mostre que:

**1** 
$$\mathcal{L}\{H_a(t)f(t)\}(s) = e^{-as}\mathcal{L}\{f(t+a)\}(s), \ s > s_f;$$

**2** 
$$\mathcal{L}\{H_a(t)e^t\}(s) = \frac{e^{a(1-s)}}{s-1}, \ s>1;$$

3 
$$\mathcal{L}\{H_{\frac{\pi}{2}}(t)\cos(t)\}(s) = -\frac{e^{\frac{-\pi}{2}s}}{s^2+1}, \ s>0;$$

$$5^{-}+1$$

**4** 
$$\mathcal{L}{H_{\pi}(t)\cos(t)}(s) = \frac{se^{-\pi s}}{s^2+1}, \ s>0;$$

**5** 
$$\mathcal{L}\{t^2H_a(t)\}(s) = e^{-as}(\frac{a^2}{s} + \frac{2a}{s^2} + \frac{2}{s^3}), \ s > 0.$$

### Teo. 3.20

Sejam  $f: \mathbb{R}_0^+ \longrightarrow \mathbb{R}$  uma função integrável em [0,b] para todo b>0, e  $a\in \mathbb{R}^+$ .

Se  $\mathcal{L}{f(t)}(s)$  existe para  $s > s_f$  então

$$orall a \in \mathbb{R}^+$$
  $\mathcal{L}\{f(at)\}(s)$  existe para  $s>as_f$  e

$$\forall a \in \mathbb{R}^+ \ \mathcal{L}\lbrace f(at)\rbrace(s) = \frac{1}{a}\mathcal{L}\lbrace f(t)\rbrace(\frac{s}{a}).$$

Demonstração: Exercício.

### Exemplo 3.21

Para  $a \in \mathbb{R}^+$ ,  $\mathcal{L}\{(at)^n\}(s) = \mathcal{L}\{f(at)\}(s)$  com f a função definida por  $f(t) = t^n$ .

Assim, 
$$\mathcal{L}\{(at)^n\}(s) = \frac{1}{a}\mathcal{L}\{t^n\}(\frac{s}{a}) = \frac{n!a^{n+1}}{as^{n+1}} = a^n\frac{n!}{s^{n+1}}$$
, para  $s > 0$ .

### Teo. 3.22

#### Derivada da Transformada

Se  $f:[0,+\infty[\longrightarrow \mathbb{R}$  é uma função seccionalmente contínua e de ordem exponencial  $(|f(t)| < Me^{at})$ , para todo o  $n \in \mathbb{N}_0$  existe  $\mathcal{L}\{t^n f(t)\}(s)$ 

para 
$$s>s_f$$
 e  $\mathcal{L}\{t^nf(t)\}(s)=(-1)^n(\mathcal{L}\{f(t)\})^{(n)}(s)$ 

### Exer. 3.23

Mostre que:

**1** 
$$\mathcal{L}\{t^2e^{2t}\}(s) = \frac{2}{(s-2)^3}, \ s>2;$$

2 
$$\mathcal{L}\{t\sin(2t)\}(s) = \frac{4s}{(s^2+4)^2}, \ s>0;$$

3 
$$\mathcal{L}\{t^2\cos(3t)\}(s) = \frac{2s(s^2-27)}{(s^2+9)^3}, \ s>0.$$

### Exer. 3.24

Utilize transformadas de Laplace para calcular o integral impróprio  $\int_0^{+\infty} \ t^{10} e^{-2t}$ 

### Teo. 3.25

#### Transformada da Derivada

Se  $f, f', f'', ..., f^{(n-1)}, n \in \mathbb{N}$  são todas de ordem exponencial  $s_f \in \mathbb{R}$  e  $f^{(n)}$  existe e é seccionalmente contínua em  $[0, +\infty[$  então existe  $\mathcal{L}\{f^{(n)}(t)\}(s)$  para  $s > s_f$  e

$$\mathcal{L}\{f^{(n)}(t)\}(s) = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0).$$

### Exer. 3.26

Determine:

- **1**  $\mathcal{L}\{f'(t)\}(s)$  em que  $f(t) = \sinh(-\frac{3}{2}t)$ ;
- 2  $\mathcal{L}\{f''(t)\}(s)$  em que  $f(t) = t^2 e^{2t}$ ;
- 3  $\mathcal{L}\{f'''(t)\}(s)$  em que  $f(t) = e^{-t} \sin(2t)$ .

### Exer. 3.27

Determine a transformada de Laplace de cada uma das seguintes funções e indique o respetivo domínio.

- $f(t) = 24\cos(8t) + t^2 48e^{-2t}$ ;
- $f(t) = e^{6t} \sin(3t)$ ;
- $f(t) = t^2 e^{4t} \cosh(6t)$ ;
- $f(t) = 4 + t + 5t^2 \pi e^{-3t}t^{30}$ ;
- $f(t) = (10 H_{\pi})(\sin(t);$
- $f(t) = (t-8)^3 e^{4(t-8)} H_8$ .

### Tabela das transformadas de Laplace

1 
$$\mathcal{L}\{1\}(t) = \frac{1}{s}, \ s > 0;$$

2 
$$\mathcal{L}\{e^{at}\}(t) = \frac{1}{s-a}, \ s>a;$$

3 
$$\mathcal{L}\{t^n\}(t) = \frac{n!}{s^{n+1}}, \ s > 0;$$

4 
$$\mathcal{L}\{\sin(at)\}(t) = \frac{a}{s^2 + a^2}, \ s > 0;$$

**5** 
$$\mathcal{L}\{\cos(at)\}(t) = \frac{s}{s^2+s^2}, \ s>0;$$

6 
$$\mathcal{L}\{\sinh(at)\}(t) = \frac{a}{s^2 - a^2}, \ s > |a|;$$

7 
$$\mathcal{L}\{\cosh(at)\}(t) = \frac{s}{s^2 + a^2}, \ s > |a|.$$

$$(F(s) = \mathcal{L}\lbrace f(t)\rbrace(s), \ G = \mathcal{L}\lbrace f(t)\rbrace(s)).$$

- $\mathcal{L}\{(f+g)(t)\}(s) = F(s) + G(s)$ , para  $s > \max\{s_f, s_g\}$ ;
- $\mathcal{L}\{(\lambda f)(t)\}(s) = \lambda F(s)$ , para  $s > s_f$ ,  $\lambda \in \mathbb{R}$ ;
- $\mathcal{L}\lbrace e^{\lambda t}f(t)\rbrace(s)=F(s-\lambda), \text{ para } s>s_f+\lambda;$
- **4**  $\mathcal{L}\{H_a(t)f(t-a)\}(s) = e^{-as}F(s)$ , para  $s > s_f$ ,  $a \in \mathbb{R}^+$ ;
- **5**  $\mathcal{L}\{H_a(t)f(t)\}(s) = e^{-as}\mathcal{L}\{f(t+a)\}(s), \text{ para } s > s_f, \ a \in \mathbb{R}^+;$
- $\mathcal{L}{f(at)}(s) = \frac{1}{a}F(\frac{s}{a})$ , para  $s > as_f$ ,  $a \in \mathbb{R}^+$ ;
- $\mathcal{L}\{t^n f(t)\}(s) = (-1)^n (\mathcal{L}\{f(t)\})^{(n)}(s)$ , para  $s > s_f$ ;
- $\mathcal{L}\{f^{(n)}(t)\}(s) = s^n F(s) s^{n-1} f(0) s^{n-2} f'(0) \dots s f^{(n-2)}(0) f^{(n-1)}(0),$  para  $s > s_f$ .

### Transformada de Laplace inversa

#### Def. 4.1

Dada uma função F(s) definida para  $s>\alpha$ , chamamos **transformada** de **Laplace inversa** de F à função  $f:\mathbb{R}^+_0\longrightarrow\mathbb{R}$ , caso exista, tal que

$$\mathcal{L}{f(t)}(s) = F(s), \ s > \alpha$$

e escrevemos

$$\mathcal{L}^{-1}\{F\} = f$$
 ou  $\mathcal{L}^{-1}\{F(s)\}(t) = f(t)$ .

### Obs. 4<u>.2</u>

- **1** Dada uma função F definida para  $s > \alpha$  nem sempre existe  $\mathcal{L}^{-1}\{F\}$ .
- 2 Como vimos, podemos ter diferentes funções com a mesma transformada de Laplace F o que significa que, sem condições suplementares, a unicidade da transformada de Laplace inversa não pode ser garantida.

### Teo. 4.3

Sejam f e g duas funções cujo domínio contém  $\mathbb{R}^+_0$  e seccionalmente contínuas em  $\mathbb{R}^+_0$  tais que  $\mathcal{L}\{f(t)\}(s)=\mathcal{L}\{g(t)\}(s)=F(s),$  para  $s>\alpha.$ 

Se f e g são contínuas em  $t \in \mathbb{R}_0^+$ , então f(t) = g(t).

Em particular se f e g são **contínuas** em  $\mathbb{R}^+_0$ , f(t)=g(t) para todo  $t\in\mathbb{R}^+_0$ .

### Propriedades da transformada de Laplace inversa 61

#### Teo. 4.4

Se F e G (definidas num mesmo domínio) admitem transformada de Laplace inversa. Então as funções F+G e  $\alpha F$  ( $\alpha \in \mathbb{R}$ ) também admitem transformada inversa e

(1) 
$$\mathcal{L}^{-1}{F+G} = \mathcal{L}^{-1}{F} + \mathcal{L}^{-1}{G},$$

(2) 
$$\mathcal{L}^{-1}\{\alpha F\} = \alpha \mathcal{L}^{-1}\{F\}.$$

Demonstração: Exercício.

#### Teo. 4.5

Se F admite transformada de Laplace inversa então, para todo o  $\lambda \in \mathbb{R}$ ,

 $F(s-\lambda)$  também admite transformada de Laplace inversa e

$$\mathcal{L}^{-1}\{F(s-\lambda)\}=e^{\lambda t}\mathcal{L}^{-1}\{F(s)\}.$$

Demonstração: Exercício.

#### Def. 4.6

Define-se o produto de convolução de duas funções f e g por

$$(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau, \ t \geq 0,$$

desde que este integral exista.

### Teo. 4.7

Transformada da convolução

Se f e g são funções seccionalmente contínuas em  $[0, +\infty[$  e ambas de ordem exponencial  $s_0 \in \mathbb{R}$ , então, para  $s > s_0$ , tem-se

$$\mathcal{L}\{(f*g)(t)\}(s)=F(s)G(s),$$

onde F e G denotam, respetivamente, as transformadas de Laplace de f e g.

#### Obs. 4.8

Nas condições do Teorema anterior, tem-se:

(1) 
$$\mathcal{L}\{\int_0^t f(\tau)d\tau\}(s) = \frac{F(s)}{s}$$
. (2)  $\mathcal{L}^{-1}\{F(s)G(s)\}(t) = (f*g)(t)$ .

- $\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}(t) = 1, \ t \ge 0, \ s > 0;$
- $\mathcal{L}^{-1}\left\{\frac{1}{s-a}\right\}(t)=e^{at}, \ t\geq 0, \ s>a;$
- $\mathcal{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\}(t)=t^n,\ t\geq 0,\ s>0;$
- $\mathcal{L}^{-1}\left\{\frac{a}{s^2+a^2}\right\}(t)=\sin(at), \ t\geq 0, \ s>0;$
- $\mathcal{L}^{-1}\left\{\frac{s}{s^2+a^2}\right\}(t)=\cos(at), \ t\geq 0, \ s>0;$
- $\mathcal{L}^{-1}\left\{\frac{a}{c^2-a^2}\right\}(t) = \sinh(at), \ t \geq 0, \ s > |a|;$
- $\mathcal{L}^{-1}\left\{\frac{s}{s^2+s^2}\right\}(t) = \cosh(at), \ t \geq 0, \ s > |a|.$

### Propriedades das transformadas de Laplace inversas

- $\mathcal{L}^{-1}\{F(s-\lambda)\}=e^{\lambda t}\mathcal{L}^{-1}\{F(s)\};$ 
  - $\mathcal{L}^{-1}\{\alpha F\} = \alpha \mathcal{L}^{-1}\{F\}:$
  - $\mathcal{L}^{-1}\{F(s-\lambda)\}=e^{\lambda t}\mathcal{L}^{-1}\{F(s)\};$
  - $\mathcal{L}^{-1}{F(s)G(s)}(t) = (f*g)(t), ((f*g)(t) = \int_0^t f(u)g(t-u)du, t \ge 0).$

#### Exer. 4.9

Para cada uma das funções seguintes, determine  $\mathcal{L}^{-1}\{F(s)\}$ :

1 
$$F(s) = \frac{5}{s^2 + 25}$$
;

2 
$$F(s) = \frac{3}{s-4}$$
;

3 
$$F(s) = \frac{s+2}{s^2+4s+40}$$
;

4 
$$F(s) = \frac{1}{s^2 + 4s + 6}$$
;

5 
$$F(s) = \frac{3s-1}{s^2-4s+13}$$
;

6 
$$F(s) = \frac{4s + e^{-s}}{s^2 + s - 2}$$
;

7 
$$F(s) = \frac{s}{(s^2+4)^2}$$

### Exer. 4.10

Utilize transformadas de Laplace para resolver o problema de Cauchy  $y' + 2y = e^t$ ; y(0) = 2.

