Supervised Learning (II)

This Lecture: Supervised Learning Methods

- Linear Model (detail)
- II. Decision Tree (detail)
- III. Neural Network (brief)
- IV. k-Nearest Neighbours (brief)
- V. Support Vector Machine (brief)

I. Linear Model (线性模型)

- I.1 Univariate Linear Regression (ULR) 单元/一元线性回归
- I.2 Multivariate Linear Regression (MLR) 多元线性回归
- I.3 Multivariate Linear Classification (MLC) 多元线性分类

Example: House Price

- [Question] How to predict the price of a new house?
- [Answer] Fit a straight line using the training data
 - \Rightarrow linear regression.

- One variable (house size)
 - \Rightarrow univariate.

Image source: Figure 18.13.a of the AI book by S. Russell & P. Novig.

Model Formulation

- Linear model: $h_{\mathbf{w}}(x) = w_0 + w_1 x$,
 - $\mathbf{w} = [w_0, w_1]^T \in \mathbb{R}^{2 \times 1}$: model parameters,
 - $x \in \mathbb{R}^1$: input feature (特征), e.g. house size.
- Training data: $\mathcal{D} = \{(x^{(n)}, y^{(n)}) | \mathbf{y}^{(n)} \in \mathbb{R}^1\}_{n=1}^N$.
- Aim: find the optimal w fitting the observations in \mathcal{D} .
- Optimization: minimize empirical square loss regarding w as

$$min_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} [y^{(n)} - (w_1 x^{(n)} + w_0)]^2.$$

Model Formulation

- Aim: find the optimal w fitting the observations in \mathcal{D} .
- Optimization: minimize empirical square loss regarding w as

$$min_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} [y^{(n)} - (w_1 x^{(n)} + w_0)]^2.$$

- Remarks:
 - Square loss -> Euclidean distance (欧式距离) -> least square method (最小二乘法)
 - Finding optimal w: parameter estimation (参数估计)

Model Parameter Space

• Plot 3D graph for $\mathcal{L}(w_0, w_1) = \frac{1}{2} \sum_{n=1}^{N} [y^{(n)} - (w_1 x^{(n)} + w_0)]^2$

Image source: Figure 18.13.b of the AI book by S. Russell & P. Novig.

1. Closed-form Solution (闭式解)

- Optimization: $\mathcal{L}(w_0, w_1) = \frac{1}{2} \sum_{n=1}^{N} [y^{(n)} (w_1 x^{(n)} + w_0)]^2$.
- First-order equations:

$$\frac{\partial}{\partial w_0} \mathcal{L}(w_0, w_1) = 0, \ \frac{\partial}{\partial w_1} \mathcal{L}(w_0, w_1) = 0.$$

Solution:

$$w_1 = \frac{N(\sum_n x^{(n)} y^{(n)}) - (\sum_n x^{(n)})(\sum_n y^{(n)})}{N(\sum_n (x^{(n)})^2) - (\sum_n x^{(n)})^2}$$

$$w_0 = \frac{\sum_n y^{(n)} - w_1 \sum_n x^{(n)}}{N}.$$

2. Iterative Solution

- Sometimes there is no closed-form solution.
- Gradient Descent (GD, 梯度下降法):
 - 1. $w \leftarrow$ any point in the parameter space
 - 2. LOOP until convergence DO
 - **3. FOR** each w_i in w **DO**

4.
$$w_i \leftarrow w_i - \alpha \frac{\partial}{\partial w_i} \mathcal{L}(\boldsymbol{w}),$$

• α : learning rate, positive.

Image source: https://commons.wikimedia.org/wiki/File:Gradient_descent.svg

2. Iterative Solution: Advanced

- Batch GD: update w once with all training samples.
 - Guarantee global optimum but slow.
- Stochastic GD: update *w N* times with one training data for one update.
 - Fast but do not guarantee global optimum with a fixed α .
 - Online/offline settings
- Mini-batch SGD: update w several times with a subset of \mathcal{D} for one update.

Zigzag problem of SGD. Image source: Figure 4.10 of "Fundamentals of Deep Learning" by Nikhil Buduma.

I. Linear Model (线性模型)

- I.1 Univariate Linear Regression (ULR) 单元/一元线性回归
- I.2 Multivariate Linear Regression (MLR) 多元线性回归
- I.3 Multivariate Linear Classification (MLC) 多元线性分类

Example: House Price Revisit

 One more feature: distance to High Street.

- [Question] How to predict the price of a new house with the two features?
- [Answer] Fit a plane using \mathcal{D}
 - \Rightarrow linear regression.

 \Rightarrow multivariate.

Model Formulation

- Linear model: $h_{\boldsymbol{w}}(\boldsymbol{x}) = w_0 + w_1 x + \dots + w_m x_m = \boldsymbol{w}^T \boldsymbol{x} \in \mathbb{R}^1$,
 - $\mathbf{w} = [w_0, w_1, \cdots, w_m]^T \in \mathbb{R}^{(m+1)}$: model parameters.
 - $\mathbf{x} = [1, x_1, \dots, x_m]^T \in \mathbb{R}^{(m+1)}$: input features; e.g. size, distance to High Street, etc.
- Training data: $\mathcal{D} = \{(\boldsymbol{x}^{(n)}, \boldsymbol{y}^{(n)}) \mid \boldsymbol{y}^{(n)} \in \mathbb{R}^1\}_{n=1}^N$.
- Aim: find the optimal w fitting the observations in \mathcal{D} .
- Optimization: minimize empirical loss regarding ${m w}$ as

$$min_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} [y^{(n)} - \mathbf{w}^T \mathbf{x}^{(n)}]^2.$$

1. Closed-form Solution

- Optimization: $min_{w} \mathcal{L}(w) = \frac{1}{2} \sum_{n=1}^{N} [y^{(n)} w^{T} x^{(n)}]^{2}$.
- First-order equations: $\frac{\partial}{\partial w_i} \mathcal{L}(\mathbf{w}) = 0, \forall i = 0, 1, \cdots, m$
- Solution: solve the system of linear equations to have

$$w = \left(X^T X\right)^{-1} X^T y,$$

•
$$X = \left[x^{\prime(1)}, \cdots, x^{\prime(N)}\right]^T \in \mathbb{R}^{N \times (m+1)}$$
,

•
$$\mathbf{y} = \begin{bmatrix} y^{(1)}, \cdots, y^{(N)} \end{bmatrix}^T \in \mathbb{R}^{N \times 1}$$
.

2. Iterative Solution

- Optimization: $min_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left[y^{(n)} \mathbf{w}^T \mathbf{x}^{(n)} \right]^2$.
- Gradient descent (GD):

$$w_i \leftarrow w_i + \alpha \sum_{n} \left(y_i^{(n)} - \mathbf{w}^T \mathbf{x}^{(n)} \right) \cdot x_i^{(n)}$$

• α : learning rate, positive.

Overfitting for MLR

- MLR in a high-dimensional space may encounter overfitting.
- MLR: common to use regularization.

ULR does not have this problem – only 1 feature.

Regularized Objective for MLR

Regularized Objective:

$$min_{\mathbf{w}} \mathcal{L}_{tr}(\mathbf{w}) + \lambda \cdot \Omega(\mathbf{w}).$$

- $\mathcal{L}_{tr}(w)$: training loss; measures how well the model fits the training data.
 - Square loss: $l(y^{(n)}, \widehat{y^{(n)}}) = (y^{(n)} \widehat{y^{(n)}})^2 = (y^{(n)} \pmb{w}^T \pmb{x}^{(n)})^2$.
 - Logistic loss: $l\left(y^{(n)}, \widehat{y^{(n)}}\right) = y^{(n)} \ln\left(1 + e^{-\widehat{y^{(n)}}}\right) + \left(1 y^{(n)}\right) \ln\left(1 + e^{\widehat{y^{(n)}}}\right)$
- λ : trade-off & manually tuning parameter.

Regularization

- $\Omega(\mathbf{w})$: regularization; how complex the model is?
- $\Omega(\mathbf{w}) \triangleq \ell_p(\mathbf{w}) = \sum_i |w_i|^p$, in particular:
 - ℓ_0 regularization: p = 0, penalize #(non-zero parameters);
 - ℓ_1 regularization: p=1, penalize the sum of the absolute parameters;
 - ℓ_2 regularization: p=2, penalize the sum of square parameters.
- [Question] Which ℓ_p (p范数) should we use?
- [Answer] Depend on the specific problem.

Illustration: ℓ_1 vs ℓ_2

- Let $w = [w_1, w_2]^T$, we have:
 - $\ell_1 = |w_1| + |w_2|$,
 - $\ell_2 = w_1^2 + w_2^2$.
- Plot contours for $\ell_1 = \ell_2 = c$.
- Goodness of ℓ_1 : sparse model.

Image source: Figure 18.14 of the AI book by S. Russell & P. Novig.

Exercise: Closed-form Solution of MLR

- [Question] Derive the closed-form solution of MLR?
- [Hint] At variable-level:
 - 1) Compute and write the i^{th} equation $\frac{\partial}{\partial w_i} \mathcal{L}(\mathbf{w}) = 0$.
 - 2) Re-write the i^{th} equation into 'vector-vector' form.
 - 3) Align the m equations about $x_i^{(n)}$ into a matrix-vector form. Note to check the match of dimensionality.
 - 4) Obtain the representation of w.
- [Hint] The solution is much easier to characterize in matrix notation.

I. Linear Model (线性模型)

- 1. Univariate Linear Regression (ULR) 单元/一元线性回归
- 2. Multivariate Linear Regression (MLR) 多元线性回归
- 3. Multivariate Linear Classification (MLC) 多元线性分类

Example: Earthquakes or Explosions

- [Question] How to distinguish earthquakes (°) from explosions (•) using two features?
- [Answer] Learn a linear decision boundary that can separate the two-class points.
- [Denote] the classifier as $h_{\mathbf{w}}(\mathbf{x})$.
 - Classifier: linear decision boundary.

Classification Problem Formulation

- Training data: $\mathcal{D} = \{(x^{(n)}, y^{(n)}) \mid y^{(n)} \in \{0, 1\}\}_{n=1}^{N}$.
- Aim: find the optimal w fitting the observations in \mathcal{D} .
- Optimization: minimize square-error regarding w as

$$min_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} [y^{(n)} - h_{\mathbf{w}}(\mathbf{x}^{(n)})]^{2}.$$

• Remaining Question: How to formulate $h_w(x)$?

Problem of MLR Model in Classification

- MLR model: $h_{\boldsymbol{w}}(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} \in \mathbb{R}^1$.
- Problem: $h_{\mathbf{w}}(\mathbf{x}) \in \mathbb{R}^1$ cannot constrain 0/1 output.

=> Hard-threshold Linear Classifier (带硬阈值的线性分类器)

Hard-threshold Classifier

Hard-threshold function:

$$\sigma(z) = \mathbb{1}_{z \ge 0} = \begin{cases} 1, z \ge 0 \\ 0, z < 0 \end{cases}.$$

Hard-threshold classification model:

$$h_{\boldsymbol{w}}(\boldsymbol{x}) = \sigma(\boldsymbol{w}^T \boldsymbol{x}) \in \{0,1\},$$

• $h_w(x)$ has 0/1 output.

Image source: Figure 18.17.a of the AI book by S. Russell & P. Novig.

Problem in Learning Method

Problem: The below derivative does NOT exist (either 0 or undefined)

$$\frac{\partial}{\partial w_i} h_{\mathbf{w}}(\mathbf{x}) = \frac{\partial}{\partial z} \sigma(z) \frac{\partial (\mathbf{w}^T \mathbf{x})}{\partial w_i}.$$

- Closed-form solution: Cannot proceed.
- Iterative solution: $w_i \leftarrow w_i \alpha \frac{\partial}{\partial w_i} \mathcal{L}(\boldsymbol{w})$ needs the above derivative.

Classification optimization:

$$min_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} [y^{(n)} - h_{\mathbf{w}}(\mathbf{x}^{(n)})]^{2}.$$

Proposed Learning Method

• Perceptron learning rule: For a training point (x, y), update as $w_i \leftarrow w_i + \alpha (y - h_w(x)) \cdot x_i$, for $i \in \{1, \dots, m\}$.

Identical to the MLR case in form.

• Implementation:

- $y \cdot h_w(x) = 1$:
- $y = 1 \& h_w(x) = 0$:
- $y = 0 \& h_w(x) = 1$:

keep w_i unchanged;

increase w_i if $x_i > 0$ and decrease w_i if $x_i < 0$;

decrease w_i if $x_i > 0$ and increase w_i if $x_i < 0$.

From Hard-threshold to Soft-threshold

Hard threshold: $\sigma(z) = \mathbb{1}_{z \ge 0}$

- $\mathbb{1}_{z\geq 0}$: indicator function.
- Not differentiable.

Image source: Figure 18.17.a of the AI book by S. Russell & P. Novig.

Soft threshold function:
$$\sigma(z) = s(z) = \frac{1}{1 + e^{-z}}$$

- s(z): sigmoid function.
- Differentiable: s'(z) = s(z)[1 s(z)].

Image source: Figure 18.17.b of the AI book by S. Russell & P. Novig.

Logistic Regression (对数几率回归)

- Logistic regression model: $h_{w}(x) = \sigma(w^{T}x)$, where $\sigma(z) = \frac{1}{1+e^{-z}}$.
- Closed-form solution: Does not exist.
- Iterative solution: $w_i \leftarrow w_i \alpha \frac{\partial \mathcal{L}(w)}{\partial w_i}$

•
$$\frac{\partial \mathcal{L}(w)}{\partial w_i} = -\frac{1}{N} \sum_{n=1}^{N} [y^{(n)} - h_w(x^{(n)})] \cdot h_w(x^{(n)}) \cdot [1 - h_w(x^{(n)})] \cdot x_i^{(n)}$$

• α : learning rate, positive.

Classification optimization:

$$min_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} [y^{(n)} - h_{\mathbf{w}}(\mathbf{x}^{(n)})]^{2}.$$

II. Decision Tree (决策树)

1. Tree Representation

- 2. Decision Tree Construction with Heuristics
 - Information Gain: Good Feature Heuristics
 - Information Gain: Continuous Feature
 - Overall: Decision Tree Construction
- 3. Tree Overfitting
- 4. Decision Tree for Regression

Example: Tree-shape Model

- [Question] How to judge an animal to be a mammal by two features?
- [Answer] Learn a decision tree that can separate the training samples.
- Goodness: Natural for humans, easy to interpret the results.

Image source: Figure 5.6 of "Introduction to Data Mining" by P. Tan, M. Steinbach and V. Kumar.

Tree Representation

• Tree model: a function mapping feature vector x to a decision y via a sequence of tests.

- Discrete y: a decision tree for classification.
- Continuous y: a decision tree for regression.
- Two types of nodes:
 - Decision nodes: a test on some feature.
 - Leaf nodes: a decision of the tree model.

Image source: Figure 5.6 of "Introduction to Data Mining" by P. Tan, M. Steinbach and V. Kumar.

[Example] Waiting at a Restaurant

- Prediction: Should we wait for a table?
- # Input features: 10
 - Alternate: is there an alternative restaurant nearby?
 - Bar: is there a comfortable bar area to wait in?
 - Fri/Sat: is today Friday or Saturday?
 - Hungry: are we hungry?
 - Patrons: # people in the restaurant (None, Some, Full)
 - Price: price range.
 - Raining: is it raining outside?
 - Reservation: have we made a reservation?
 - Type: kind of restaurant (French, Italian, Thai, Burger)
 - Wait-Estimate: estimated waiting time (0-10, 10-30, 30-60, >60)

True Decision Tree f

Fig. The decision tree f for deciding whether to wait for a table. Image source: Figure 18.4 of the AI book by S. Russell & P. Novig.

12 Training Examples (6+ 6-)

• Generate 12 training examples from the true decision tree.

Example	Input Attributes										Goal
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = No$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4 = Yes$
X 5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
x ₆	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	$y_6 = Yes$
X 7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	$y_7 = No$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	$y_8 = Yes$
X 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
X ₁₀	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = No$
X ₁₁	No	No	No	No	None	\$	No	No	Thai	0–10	$y_{11} = No$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	$y_{12} = Yes$

Image source: Figure 18.3 of the AI book by S. Russell & P. Novig.

True Decision Tree f

Fig. The decision tree f for deciding whether to wait for a table. Image source: Figure 18.4 of the AI book by S. Russell & P. Novig.

Question

Question:

How to induce the decision tree from the training examples?

II. Decision Tree (决策树)

- 1. Tree Representation
- 2. Decision Tree Construction with Heuristics
 - Information Gain: Good Feature Heuristics
 - Information Gain: Continuous Feature
 - Overall: Decision Tree Construction
- 3. Tree Overfitting
- 4. Decision Tree for Regression

Learning Decision Tree is Hard

- Resources: The 12 training examples.
- Aim: Build the smallest tree that classifies the training data correctly.
 - Ockham's razor.
- Challenge: Finding the smallest tree is NP-hard [Hyafil & Rivest'76].

Learning Decision Tree is Hard

[Question] How many decision trees can be expressed (at least)?

- [Answer] $2^{2^{10}}$, super huge search space!
- ➤ Need talented heuristics to guide the search in such a huge space!

Greedy Divide-and-conquer Strategy

- Approach: Greedy divide-and-conquer strategy heuristic search.
 - (1) Start from empty tree.
 - (2) Decide the best feature based on heuristics.
 - (3) Divide the problem into smaller subproblems;
 - (4) Repeat (2) \sim (3) until stopping criteria.
- ➤ Heuristics: Pick the feature that maximizes information gain (信息增益).
 - The most informative feature.

Good Feature: Type vs Patrons?

Image source: Figure 18.4 of the AI book by S. Russell & P. Novig.

- [Question] Split the tree based on 'type' or 'patrons'?
- [Answer] 'patrons'.
- Reason: Divides the 12 data into more distinguishable sub-sets.

Heuristics for Good Feature

- Intuition: More certain about the classification after split regarding this feature.
 - Deterministic (all true or false): perfect
 - Uniform distribution: bad
 - What about in between?

- [Question] How to measure the goodness of a feature formally?
- [Answer] *Information gain*.

Image source: Figure 18.13 of the AI book by S. Russell & P. Novig.

Preliminary: Entropy (熵)

• Entropy: $\mathcal{H}(Y) \triangleq -\sum_{k} p(y_k) \log_2 p(y_k)$.

- Larger entropy, more uncertainty.
 - High entropy: $Y \sim \text{uniform or flat distribution} \rightarrow \text{less predictable}$
 - Low entropy: $Y \sim \text{peak/valley distribution} \rightarrow \text{more predictable}$

• Example 1: $\mathcal{H}(Y = 'label') = -(0.5 \log_2 0.5 + 0.5 \log_2 0.5) = 1.$

Goal
WillWait
$y_1 = Yes$
$y_2 = No$
$y_3 = Yes$
$y_4 = Yes$
$y_5 = No$
$y_6 = Yes$
$y_7 = No$
$y_8 = Yes$
$y_9 = No$
$y_{10} = No$
$y_{11} = No$
$y_{12} = Yes$

Image source: Figure 18.3 of the AI book by S. Russell & P. Novig.

Preliminary: Conditional Entropy

Conditional entropy:

$$\mathcal{H}(Y|X) \triangleq \sum_{j} p(X = x_{j}) \cdot \mathcal{H}(Y|X = x_{j}).$$

•
$$p(X = French) = p(X = Italian) = \frac{2}{12}$$
;

•
$$p(X = Thai) = p(X = Burger) = \frac{4}{12}$$
;

•
$$\mathcal{H}(Y|X = French \ or \ Italian)$$
: $-\frac{1}{2}\log\left(\frac{1}{2}\right) - \frac{1}{2}\log\left(\frac{1}{2}\right) = -\log\left(\frac{1}{2}\right)$;

•
$$\mathcal{H}(Y|X = Thai\ or\ Burger)$$
:
$$-\frac{2}{4}\log\left(\frac{2}{4}\right) - \frac{2}{4}\log\left(\frac{2}{4}\right) = -\log\left(\frac{1}{2}\right);$$

•
$$\mathcal{H}(Y|X) = -\left[\frac{2}{12} \cdot \log\left(\frac{1}{2}\right) \cdot 2 + \frac{4}{12} \cdot \log\left(\frac{1}{2}\right) \cdot 2\right] = -\log\left(\frac{1}{2}\right) = 1.$$

Image source: Figure 18.13 of the AI book by S. Russell & P. Novig.

Preliminary: Conditional Entropy

Conditional entropy:

$$\mathcal{H}(Y|X) \triangleq \sum_{j} p(X = x_{j}) \cdot \mathcal{H}(Y|X = x_{j}).$$

- Example 3: $Y \sim label \& X \sim Patrons$
 - $p(X = None) = \frac{2}{12}$; $p(X = Some) = \frac{4}{12}$; $p(X = Full) = \frac{6}{12}$;
 - $\mathcal{H}(Y|X = None)$: $\frac{2}{2}\log\left(\frac{2}{2}\right) = 0$;
 - $\mathcal{H}(Y|X = Some)$: $\frac{4}{4}\log\left(\frac{4}{4}\right) = 0$;
 - $\mathcal{H}(Y|X = Full)$: $\frac{2}{6}\log\left(\frac{2}{6}\right) + \frac{4}{6}\log\left(\frac{4}{6}\right) = -0.9183$;
 - $\mathcal{H}(Y|X) = -\left[\frac{2}{12} \cdot 0 + \frac{4}{12} \cdot 0 + \frac{6}{12} \cdot (-0.9183)\right] = 0.4591.$

Image source: Figure 18.4(b) of the AI book by S. Russell & P. Novig.

Information Gain (信息增益)

Information gain: Decrease in entropy after splitting

$$IG(X) = \mathcal{H}(Y) - \mathcal{H}(Y|X)$$

- *X*: input feature,
- Y: classification label.

- Example 4: $Y \sim label \& X \sim type/patrons$
 - $IG(Type) = \mathcal{H}(Y) \mathcal{H}(label|Type) = 1 1 = 0.$
 - $IG(Patrons) = \mathcal{H}(Y) \mathcal{H}(label|Patrons) = 1 0.4591 = 0.541.$

Information Gain: Type vs Patrons?

Image source: Figure 18.4 of the AI book by S. Russell & P. Novig.

• [Answer] $IG(Patrons) > IG(Type) \Rightarrow$ Patrons is better.

Continuous Feature *Est*

- [Question] What should we do for $Est \in \mathbb{R}^1$?
 - *Est*: estimated waiting time.

- Binary tree: Split on Est at value t,
 - One branch: Est < t,
 - Other branch: Est $\geq t$.
- Note: Allow repeated features along a path.

Figure generated by Liyan Song.

Possible $\{t\}$ for Est

- [Question] How to decide the possible $\{t\}$ for Est?
- [Concern] Search through $\mathbb{R}^1 \Rightarrow$ Too hard!
- [Answer] Only a finite number of values are useful:
 - Sort values of *Est* into $\{x_1, \dots, x_m\}$ with non-duplicated values;
 - Consider candidates $\left\{t_i=x_i+\frac{x_{i+1}-x_i}{2}\middle|\ i=1,\cdots,m-1\right\}$.

Best t^* for Est and its Information Gain

- Take the best t from $\{t\}$: Denote $X \sim Est$,
 - (1) Define $\mathcal{H}(Y|X;t) = p(X < t) \cdot \mathcal{H}(Y|X < t) + p(X \ge t) \cdot \mathcal{H}(Y|X \ge t)$;
 - (2) Compute $IG(Y|X:t_i) = \mathcal{H}(Y) \mathcal{H}(Y|X:t_i) \ \forall t_i$;
 - (3) Choose $t^* = \arg \max_{t_i} IG(Y|X:t_i)$
- Use: $IG^*(Est) = IG(Y|X:t^*) = \max_{t_i} IG(Y|X:t_i)$.

When to Stop?

- Criterion 1: all records in current subset have the same label.
- Criterion 2: there are no remaining features to help partitioning.
- Criterion 3: The associated dataset is empty.

Image source: Figure 18.4 of the AI book by S. Russell & P. Novig.

Learning Decision Trees

- Start from empty tree.
- Split on next best feature based on information gain.
- Repeat

An Example of Induced Decision Tree

Fig. An estimated decision tree g induced from 12 examples. Image source: Figure 18.6 of the AI book by S. Russell & P. Novig.

II. Decision Tree (决策树)

- 1. Tree Representation
- 2. Decision Tree Construction with Heuristics
 - Information Gain: Good Feature Heuristics
 - Information Gain: Continuous Feature
 - Overall: Decision Tree Construction
- 3. Tree Overfitting
- 4. Decision Tree for Regression

Decision Tree May Overfit

More #feature, more likely overfitting; more #(train data), less likely overfitting.

Dealing with Overfitting

- Decision tree pruning:
 - (1) Build a fully grown tree.
 - (2) Choose a node that has only leaf nodes as children.
 - (3) Testing the feature 'relevance' for this node:
 - (a) relevant→reserve this node.
 - (b) irrelevant: replace it based on its leaf nodes.
 - Repeat $(2)\sim(3)$ until no such irrelevant nodes.
- Other strategies:
 - Fixed depth
 - Fixed #leaves

A testing node at step (2). Edited from Figure 18.6 of the AI book by S. Russell & P. Novig.

Measure Feature Relevance

- [Question] How to detect that a node is testing an irrelevant feature?
- [Answer] the node splits the examples evenly & information gain is close to 0 → irrelevant feature.

- [Question] How large a gain should be required to split on the feature?
- [Answer] Using \mathcal{X}^2 statistical test, namely \mathcal{X}^2 pruning.

II. Decision Tree (决策树)

- 1. Tree Representation
- 2. Decision Tree Construction with Heuristics
 - Information Gain: Good Feature Heuristics
 - Information Gain: Continuous Feature
 - Overall: Decision Tree Construction
- 3. Tree Overfitting
- 4. Decision Tree for Regression

Example: Predict Car Price

Image source: http://www.stat.cmu.edu/~cshalizi/350-2006/lecture-10.pdf

Regression Tree (RT)

- Construction: Similar to classification trees except:
 - Output: continuous value.
 - Leaf node: (a) mean/median: piecewise constant RT; or (b) a regression model: piecewise linear RT.

Piecewise Constant RT

Leaf node: Mean of the examples in leaf node C

$$\widehat{y_C} = \frac{1}{||C||} \sum_{i=1}^{||C||} y_i$$

Algorithms examples: AID, CART.

Piecewise Linear RT

- Leaf node: Linear regression model on the examples in each leaf node.
- Algorithms examples:
 - M5': (1) Construct a constant regression tree. (2) Fit a linear regression model for each leaf node.
 - GUIDE: (1) Fit a regression model (linear or nonlinear) and compute the residuals. (2) Label the examples with 1 for positive and 2 for negative residuals. (3) Apply the GUIDE for classification tree to split the node.

RT Construction

- Problem: No labels to split features by $IG(X_i)$.
- Feature splitting criteria: Sum of squared error

$$SSE = \sum_{C \in L} \sum_{i \in C} (y_i - \widehat{y_C})^2$$

- *L*: a set of leaf nodes.
- $\widehat{y_C}$: the estimation on leaf node C from its examples.
- y_i for $i \in C$: output of the i^{th} example of leaf node C.
- Learning: Search all binary splits that reduce SSE to the full.
- When to stop: $SSE \leq \delta$ or fixed #leaves.

III. Neural Network (神经网络)

Artificial Neural Network: Formulation

Fig.(1) A brain neuron. Image source: Figure 1.2 of the AI book by S. Russell & P. Novig.

Fig.(2) An artificial neuron. Image source: Figure 18.9 of the AI book by S. Russell & P. Novig.

•
$$in_j = \sum_{i=0}^n w_{i,j} a_i$$

•
$$a_j = g(in_j)$$

Activation Function (激活函数)

- Physics: Simulate the activation process of real neuron.
- Math: Nonlinear activation functions encodes the ability to estimate a nonlinear function from inputs to outputs.
- Popular activation function:
 - hard threshold,
 - logistic function,
 - sigmoid
 - tanh, ReLU, Leaky ReLU, etc.

Image source: Figure 18.17 of the AI book by S. Russell & P. Novig.

Single-layer Neural Network

• Single-layer neural network: All input neurons connect directly with the output neurons.

Image source: Figure 18.20.a of the AI book by S. Russell & P. Novig.

Multilayer Neural Network

Multilayer Neural Network

- Notation system:
 - Output index: $1 \cdots i \cdots n$
 - Hidden index: $1 \cdots j \cdots h$
 - Input index: $1 \cdots k \cdots l$
 - Weights between output and hidden: $w_{j,i}$
 - Weight between hidden and input: $w_{k,j}$
 - Activation function of output units: $\sigma()$
 - Activation function of hidden units: g()
 - h_w : the (non-linear) function the NN represents.
- Exercise: express o_i with the above notation system.

Learning Multilayer Networks

- Loss function for an example: $\ell_2(\mathbf{w}) = \frac{1}{2}||y o(\mathbf{x})||^2$
 - (x, y): a training example;
 - o(x): estimated output for input x.
- Partial derivative for any w: 'chain rule'

$$\frac{\partial}{\partial w} \ell_2(\mathbf{w}) = \frac{\partial}{\partial w} \frac{1}{2} \sum_i (y_i - o_i)^2 = -\sum_i (y_i - o_i) \frac{\partial o_i}{\partial w} = \cdots$$

- Back propagation (反向传播/逆传播) to train ANN:
 - Gradient descent for $w_{j,i}$ from hidden to output: $w_{j,i} \leftarrow w_{j,i} \alpha \cdot \frac{\partial}{\partial w_{j,i}} \ell_2(\mathbf{w})$
 - Gradient descent for $w_{k,j}$ from input to hidden: $w_{k,j} \leftarrow w_{k,j} \alpha \cdot \frac{\partial}{\partial w_{k,j}} \ell_2(\mathbf{w})$

Learning ANN Structures

- Fully connected networks: decide #hidden layers and their sizes using cross-validation.
- Not fully connected networks: optimal brain damage algorithm begins with a fully connected network and removes connections from it.
- Grow a larger network from a smaller one: Subsequent units are added to cater for the examples that the first unit got wrong in the tiling algorithm.

IV. k-Nearest Neighbor (k-近邻)

k-NN

- *k*-Nearest neighbor method:
 - For classification: find k nearest neighbors of the testing point and take a vote.

• For regression: take mean or median of the *k* nearest neighbors, or do a local

regression on them.

Example of k-NN classification. Image source: https://en.wikipedia.org/wiki/File:KnnClassification.svg#filelinks.

k-NN Issues

- Distance metric: e.g. $\ell_p(\mathbf{x}_j, \mathbf{x}_q) = \left(\sum_i |x_{j,i} x_{q,i}|^p\right)^{1/p}$
 - ℓ_1 : Manhattan distance,
 - ℓ_2 , Euclidean distance.
- Model parameter k: increasing k reduces variance and increases bias.
- Memory-based method: must store all training samples.

k-NN Issues

Advantage:

- Training is very fast.
- Learn complex target functions.
- Do not lose information.
- Disadvantage:
 - Slow at query time.
 - Easily fooled by irrelevant attributes.

V. Support Vector Machine (支持向量机)

Geometry and SVM Formulation

- Input: *x*
- Output: y (-1 or 1)
- Model: $\{ w^T x + b = 0 \}$
- Two Boundaries:

$$\{\boldsymbol{w}\cdot\boldsymbol{x}+b=\pm 1\}$$

• Margin: $d = \frac{2}{||w||^2}$

Image source: Figure 5.25 of "Introduction to Data Mining" by P. Tan, M. Steinbach and V. Kumar.

Maximize the Margin

- Training Data: $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}$.
- Optimization: maximize the margin with the constraints as

$$\max_{\mathbf{w}} \frac{2}{||\mathbf{w}||^2},$$

s.t. $[\mathbf{w} \cdot \mathbf{x}^{(n)} + b] \cdot y_i^{(n)} \ge 1$

- Learning algorithm [3]:
 - Lagrange multiplier with KKT condition ⇒ Dual representation.
 - Gradient descent.

Kernel Trick

Image source: Figure 18.31 of the AI book by S. Russell & P. Novig.

Kernel trick: nonlinear-separable feature space \Rightarrow linear-separable one.

Reading Materials for This Lecture

- [1] AI book (P693-748).
- [2] P. Tan, M. Steinbach and V. Kumar. *Introduction to Data Mining* (pages 223-225, 256-276).
- [3] Laurent H, Rivest R L. Constructing optimal binary decision trees is NP-complete. Information processing letters, 1976, 5(1): 15-17.
- [4] Gradient Descent: http://ruder.io/optimizing-gradient-descent/
- [5] Classification and Regression Trees: http://www.stat.wisc.edu/~loh/treeprogs/guide/wires11.pdf
- [6] http://scikit-learn.org/stable/modules/ensemble.html