Deep Learning Book

Chapter 7 Regularization for Deep Learning

Botian Shi botianshi@bit.edu.cn March 7, 2017

- How to make an algorithm that will perform well not just on the training data, but also on new inputs?
- Many strategies designed to reduce the test error, possibly at the expense of increased training error.
- · These strategies are known collectively as regularization.
- · Many regularization algorithm have been developed.
- Developing more effective regularization strategies is one of the major research efforts in the field.
- In this chapter, we describe regularization in more detail, focusing on regularization strategies for deep models or models that may be used as building blocks to form deep models.

- How to make an algorithm that will perform well not just on the training data, but also on new inputs?
- Many strategies designed to reduce the test error, possibly at the expense of increased training error.
- · These strategies are known collectively as regularization.
- · Many regularization algorithm have been developed.
- Developing more effective regularization strategies is one of the major research efforts in the field.
- In this chapter, we describe regularization in more detail, focusing on regularization strategies for deep models or models that may be used as building blocks to form deep models.

- How to make an algorithm that will perform well not just on the training data, but also on new inputs?
- Many strategies designed to reduce the test error, possibly at the expense of increased training error.
- These strategies are known collectively as **regularization**.
- · Many regularization algorithm have been developed.
- Developing more effective regularization strategies is one of the major research efforts in the field.
- In this chapter, we describe regularization in more detail, focusing on regularization strategies for deep models or models that may be used as building blocks to form deep models.

- How to make an algorithm that will perform well not just on the training data, but also on new inputs?
- Many strategies designed to reduce the test error, possibly at the expense of increased training error.
- These strategies are known collectively as **regularization**.
- · Many regularization algorithm have been developed.
- Developing more effective regularization strategies is one of the major research efforts in the field.
- In this chapter, we describe regularization in more detail, focusing on regularization strategies for deep models or models that may be used as building blocks to form deep models.

- How to make an algorithm that will perform well not just on the training data, but also on new inputs?
- Many strategies designed to reduce the test error, possibly at the expense of increased training error.
- These strategies are known collectively as regularization.
- · Many regularization algorithm have been developed.
- Developing more effective regularization strategies is one of the major research efforts in the field.
- In this chapter, we describe regularization in more detail, focusing on regularization strategies for deep models or models that may be used as building blocks to form deep models.

- There are many regularization strategies.
 - Put extra constrains on a machine learning model. (Adding restrictions on the parameter values.)
 - 2. Add extra terms in the objective function that can be thought of as corresponding to a soft constraint on the parameter values.
- If chosen carefully, these extra constraints and penalties can lead to improved performance on the test set.
- · Sometimes these constraints and penalties are designed to
 - encode specific kinds of prior knowledge.
 - 2. Express a generic preference for a simpler model class in order to promote generalization.
 - make an under-determined problem determined. (Provide more information)
- Other forms of regularization, known as ensemble methods, combine multiple hypotheses that explain the training data.

- There are many regularization strategies.
 - 1. Put extra constrains on a machine learning model. (Adding restrictions on the parameter values.)
 - 2. Add extra terms in the objective function that can be thought of as corresponding to a soft constraint on the parameter values.
- If chosen carefully, these extra constraints and penalties can lead to improved performance on the test set.
- · Sometimes these constraints and penalties are designed to
 - encode specific kinds of prior knowledge.
 - 2. Express a generic preference for a simpler model class in order to promote generalization.
 - make an under-determined problem determined. (Provide more information)
- Other forms of regularization, known as ensemble methods, combine multiple hypotheses that explain the training data.

- There are many regularization strategies.
 - 1. Put extra constrains on a machine learning model. (Adding restrictions on the parameter values.)
 - 2. Add extra terms in the objective function that can be thought of as corresponding to a soft constraint on the parameter values.
- If chosen carefully, these extra constraints and penalties can lead to improved performance on the test set.
- · Sometimes these constraints and penalties are designed to
 - encode specific kinds of prior knowledge.
 - 2. Express a generic preference for a simpler model class in order to promote generalization.
 - 3. make an under-determined problem determined. (Provide more information)
- Other forms of regularization, known as ensemble methods, combine multiple hypotheses that explain the training data.

- There are many regularization strategies.
 - 1. Put extra constrains on a machine learning model. (Adding restrictions on the parameter values.)
 - 2. Add extra terms in the objective function that can be thought of as corresponding to a soft constraint on the parameter values.
- If chosen carefully, these extra constraints and penalties can lead to improved performance on the test set.
- · Sometimes these constraints and penalties are designed to
 - encode specific kinds of prior knowledge.
 - 2. Express a generic preference for a simpler model class in order to promote generalization.
 - 3. make an under-determined problem determined. (Provide more information)
- Other forms of regularization, known as ensemble methods, combine multiple hypotheses that explain the training data.

- There are many regularization strategies.
 - 1. Put extra constrains on a machine learning model. (Adding restrictions on the parameter values.)
 - 2. Add extra terms in the objective function that can be thought of as corresponding to a soft constraint on the parameter values.
- If chosen carefully, these extra constraints and penalties can lead to improved performance on the test set.
- · Sometimes these constraints and penalties are designed to
 - 1. encode specific kinds of prior knowledge.
 - 2. Express a generic preference for a simpler model class in order to promote generalization.
 - 3. make an under-determined problem determined. (Provide more information)
- Other forms of regularization, known as ensemble methods, combine multiple hypotheses that explain the training data.

- There are many regularization strategies.
 - 1. Put extra constrains on a machine learning model. (Adding restrictions on the parameter values.)
 - 2. Add extra terms in the objective function that can be thought of as corresponding to a soft constraint on the parameter values.
- If chosen carefully, these extra constraints and penalties can lead to improved performance on the test set.
- · Sometimes these constraints and penalties are designed to
 - 1. encode specific kinds of prior knowledge.
 - 2. Express a generic preference for a simpler model class in order to promote generalization.
 - 3. make an under-determined problem determined. (Provide more information)
- Other forms of regularization, known as ensemble methods, combine multiple hypotheses that explain the training data.

- · Treading increased bias for reduced variance.
- An effective regularizer is one that makes a profitable trade, reducing variance significantly while not overly increasing the bias.
- We now review several strategies for how to create such a large, deep, regularized model.

- Treading increased bias for reduced variance.
- An effective regularizer is one that makes a profitable trade, reducing variance significantly while not overly increasing the bias.
- We now review several strategies for how to create such a large, deep, regularized model.

- · Treading increased bias for reduced variance.
- An effective regularizer is one that makes a profitable trade, reducing variance significantly while not overly increasing the bias.
- We now review several strategies for how to create such a large, deep, regularized model.

- Regularization has been used for decades prior to the advent of deep learning.
- Linear models allow simple straightforward and effective regularization strategies.
- Most approaches are based on limiting the capacity of models by adding a parameter norm penalty $\Omega(\theta)$ to the objective function J:

$$J(\boldsymbol{\theta}; X, y) = J(\boldsymbol{\theta}; X, y) + \alpha \Omega(\boldsymbol{\theta})$$

- Setting α to 0 results in no regularization. Larger values of α correspond to more regularization.
- · Optimize both J and norm
- \cdot Different Ω has different result

- Regularization has been used for decades prior to the advent of deep learning.
- Linear models allow simple straightforward and effective regularization strategies.
- Most approaches are based on limiting the capacity of models by adding a parameter norm penalty $\Omega(\theta)$ to the objective function J:

$$\widetilde{J}(\boldsymbol{\theta}; X, y) = J(\boldsymbol{\theta}; X, y) + \alpha \Omega(\boldsymbol{\theta})$$

- Setting α to 0 results in no regularization. Larger values of α correspond to more regularization.
- · Optimize both J and norm
- \cdot Different Ω has different result

- Regularization has been used for decades prior to the advent of deep learning.
- Linear models allow simple straightforward and effective regularization strategies.
- Most approaches are based on limiting the capacity of models by adding a parameter norm penalty $\Omega(\theta)$ to the objective function J:

$$\tilde{J}(\boldsymbol{\theta}; X, y) = J(\boldsymbol{\theta}; X, y) + \alpha \Omega(\boldsymbol{\theta})$$

- Setting α to 0 results in no regularization. Larger values of α correspond to more regularization.
- · Optimize both J and norm
- \cdot Different Ω has different result

- Regularization has been used for decades prior to the advent of deep learning.
- Linear models allow simple straightforward and effective regularization strategies.
- Most approaches are based on limiting the capacity of models by adding a parameter norm penalty $\Omega(\theta)$ to the objective function J:

$$\tilde{J}(\boldsymbol{\theta}; X, y) = J(\boldsymbol{\theta}; X, y) + \alpha \Omega(\boldsymbol{\theta})$$

- Setting α to 0 results in no regularization. Larger values of α correspond to more regularization.
- · Optimize both J and norm
- \cdot Different Ω has different result

- Regularization has been used for decades prior to the advent of deep learning.
- Linear models allow simple straightforward and effective regularization strategies.
- Most approaches are based on limiting the capacity of models by adding a parameter norm penalty $\Omega(\theta)$ to the objective function J:

$$\tilde{J}(\boldsymbol{\theta}; X, y) = J(\boldsymbol{\theta}; X, y) + \alpha \Omega(\boldsymbol{\theta})$$

- Setting α to 0 results in no regularization. Larger values of α correspond to more regularization.
- · Optimize both J and norm
- · Different Ω has different result

- Regularization has been used for decades prior to the advent of deep learning.
- Linear models allow simple straightforward and effective regularization strategies.
- Most approaches are based on limiting the capacity of models by adding a parameter norm penalty $\Omega(\theta)$ to the objective function J:

$$\tilde{J}(\boldsymbol{\theta}; X, y) = J(\boldsymbol{\theta}; X, y) + \alpha \Omega(\boldsymbol{\theta})$$

- Setting α to 0 results in no regularization. Larger values of α correspond to more regularization.
- · Optimize both J and norm
- Different Ω has different result.

- We penalize **only the weights** of the affine transformation at each layer and leaves the biases unregularized.
- We do not induce too much variance by leaving the biases unregularized.
- Regularizing the bias parameters can introduce a significant amount of under-fitting.
- We therefor use the vector \mathbf{w} to indicate all of the weights that should be affected by a norm penalty, while the vector $\mathbf{\theta}$ denotes all of the parameters, including both \mathbf{w} and the unregularized parameters.

- We penalize **only the weights** of the affine transformation at each layer and leaves the biases unregularized.
- We do not induce too much variance by leaving the biases unregularized.
- Regularizing the bias parameters can introduce a significant amount of under-fitting.
- We therefor use the vector w to indicate all of the weights that should be affected by a norm penalty, while the vector θ denotes all of the parameters, including both w and the unregularized parameters.

- We penalize **only the weights** of the affine transformation at each layer and leaves the biases unregularized.
- We do not induce too much variance by leaving the biases unregularized.
- Regularizing the bias parameters can introduce a significant amount of under-fitting.
- We therefor use the vector w to indicate all of the weights that should be affected by a norm penalty, while the vector θ denotes all of the parameters, including both w and the unregularized parameters.

- We penalize **only the weights** of the affine transformation at each layer and leaves the biases unregularized.
- We do not induce too much variance by leaving the biases unregularized.
- Regularizing the bias parameters can introduce a significant amount of under-fitting.
- We therefor use the vector ${\bf w}$ to indicate all of the weights that should be affected by a norm penalty, while the vector ${\boldsymbol \theta}$ denotes all of the parameters, including both ${\bf w}$ and the unregularized parameters.

References i

References