Consider 3 weight vectors with 3 dimensions:

$$W_1 = <1.0, -2.0, 0.5>$$

$$W_2 = \langle 0.1, -0.2, 0.05 \rangle$$

$$W_3 = <100.0, -200.0, 50.0>$$

On a training dataset, they give the following errors:

$$L(\mathbf{w_1}) = 10.0$$

$$L(\mathbf{w_2}) = 100.0$$

$$L(w_3) = 8.0$$

1. Calculate the L2 norm of each weight vector.

```
||\mathbf{w_1}|| = ?
||\mathbf{w_2}|| = ?
||\mathbf{w_3}|| = ?
```

Assume you apply L2 regularization, where you minimize the combined function:

 $L(\mathbf{w}) + \lambda R(\mathbf{w})$, where $R(\mathbf{w}) = II\mathbf{w}II$.

(Note: more often, the *squared* L2 norm is used for L2 regularization, but here let's use the L2 norm without squaring it).

2. For each of the 3 weight vectors, and each of the following values of λ , calculate the value of the function, $L(\mathbf{w}) + \lambda R(\mathbf{w})$.

	λ=0.001	λ=0.1	λ=100.0
W ₁	?	?	?
W ₂	?	?	?
W ₃	?	?	?

3. Based on your answer to Question 2, for each value of λ , say which weight vector is optimal.

For each one, say whether you think it is overfitting, underfitting, or neither. (There is no single best answer here.)

 $\lambda = .001$: ?

 $\lambda = 0.1$: ?

 $\lambda = 100$: ?

3. Assume you are using an SVM. Calculate the margin for each weight vector.

Margin with $\mathbf{w_1}$: ?

Margin with $\mathbf{w_2}$: ?

Margin with $\mathbf{w_3}$: ?

5. Discuss how adjusting λ adjusts the tradeoff of bias and variance.