ECON 710 QUARTER 1: PROBLEM SET 2

EMILY CASE

Exercise 1

Suppose (Y, X, Z)' is a vector of random variables such that

$$Y = \beta_0 + X\beta_1 + U, \qquad \mathbb{E}[U|Z] = 2$$

where $Cov(Z, X) \neq 0$ and $\mathbb{E}[Y^2 + X^2 + Z^2] < \infty$. Additionally, let $\{(Y_i, X_i, Z_i)'\}_{i=1}^n$ be a random sample from the model with $\widehat{Cov}(Z, X) \neq 0$.

$$\hat{\beta}_{1}^{IV} = \frac{\widehat{Cov}(Z, Y)}{\widehat{Cov}(Z, X)} = \frac{\frac{1}{n} \sum_{i=1}^{n} (Z_{i} - \bar{Z}_{n})(Y_{i} - \bar{Y}_{n})}{\frac{1}{n} \sum_{i=1}^{n} (Z_{i} - \bar{Z}_{n})(X_{i} - \bar{X}_{n})}$$

$$\hat{\beta}_{0}^{IV} = \bar{Y} - \bar{X}\hat{\beta}_{1}^{IV}$$

(i) Does $\hat{\beta}_1^{IV} \to^p \beta_1$? Note that by LLN and CMT,

$$\widehat{Cov}(Z,Y) = \frac{1}{n} \sum_{i=1}^{n} (Z_i - \bar{Z}_n)(Y_i - \bar{Y}_n) \to^p \mathbb{E}[(Z_i - \bar{Z}_n)(Y_i - \bar{Y}_n) = Cov(Z,Y)]$$

and by similar logic $\widehat{Cov}(Z,X) \to^p Cov(Z,X)$. Then, by CMT,

$$\hat{\beta}_{1}^{IV} \to^{p} \frac{Cov(Z, Y)}{Cov(Z, X)}$$

$$= \frac{Cov(Z, \beta_{0} + X\beta_{1} + U)}{Cov(Z, X)}$$

$$= \frac{\beta_{1}Cov(Z, X) + Cov(Z, U)}{Cov(Z, X)}$$

$$= \beta_{1}$$

I worked on this Problem set with Sarah Bass, Michael Nattinger, Alex von Hafften, and Danny Edgel.

Since Cov(Z, U) = 0. ¹

(ii) Does $\hat{\beta}_0^{IV} \rightarrow^p \beta_0$?

$$\hat{\beta}_0^{IV} = \bar{Y} - \bar{X}\hat{\beta}_1^{IV}$$

$$\to^2 \bar{Y} - \bar{X}\beta_1$$

Exercise 2

Consider the simultaneous model

$$Y = \beta_0 + X\beta_1 + U,$$

$$X = \pi_0 + Z\pi_1 + V,$$

$$\mathbb{E}[U|Z] = 0$$

$$\mathbb{E}[V|Z] = 0$$

where $\mathbb{E}[Y^2 + X^2 + Z^2] < \infty$. Additionally, let $\{(Y_i, X_i, Z_i)'\}_{i=1}^n$ be a random sample from the model with $\frac{1}{n} \sum_{i=1}^n (Z_i - \bar{Z}_n)^2 > 0$.

- (i) Under what conditions (on β_0 , β_1 , π_0 , π_1) is Z a valid instrument for X?
- (ii) Show that

$$Y = \gamma_0 + Z\gamma_1 + \epsilon,$$
 $\mathbb{E}[\epsilon|Z] = 0$

where γ_0 , γ_1 and ϵ are some functions of β_0 , β_1 , π_0 , π_1 , U, and V. In particular show that $\gamma_1 = \pi_1 \beta_1$.

Exercise 3

The paper "Children and Their Parents' Labor Supply: Evidence from Exogenous Variation in Family Size" by J. Angrist and W. Evans (AE98) considers labor supply responses to the number of children in the household.

They consider models of the form

$$Y = \beta_0 + X_1\beta_1 + X_2'\beta_2 + U$$

where Y is some measure of the parents' labor supply, X_1 is a binary variable indicating "more than 2 children in the household", and X_2 is a vector of (assumed) exogenous variables that control for race, age, and whether any of the children is a

$$\begin{split} Cov(Z,U) &= \mathbb{E}[(Z - \mathbb{E}[Z])(U - \mathbb{E}[U])] \\ &= \mathbb{E}[ZU] - \mathbb{E}[\mathbb{E}[Z]U] - \mathbb{E}[Z\mathbb{E}[U]] + \mathbb{E}[\mathbb{E}[Z]\mathbb{E}[U]] \\ &= \mathbb{E}[ZU] - \mathbb{E}[Z]\mathbb{E}[U] \\ &= \mathbb{E}[Z\mathbb{E}[U|Z]] - E[Z]\mathbb{E}[\mathbb{E}[U|Z]] \\ &= 2\mathbb{E}[Z] - 2E[Z] \end{split}$$

¹check this

boy. For the next two questions we will focus on the case where Y is a binary variable indicating whether the mother worked during the year.

- (i) Provide a causal interpretation of β_1 .
- (ii) Discuss why or why not you think that X_1 could be endogenous. If you think it is, discuss the direction of the (conditional) bias in OLS relative to the causal parameter.
- (iii) Repeat the previous two questions when Y is a binary variable indicating whether the husband worked during the year.
- (iv) Discuss why or why not you think that the binary variable Z_1 which indicates whether the two first children are of the same sex is a valid instrument for X_1 .
- (v) Estimate the reduced form regression of X_1 on Z_1 and X_2 , do the results suggest that Z_1 is relevant?
- (vi) (Attempt to) replicate the first three rows of Table 7 columns 1, 2, 5, 7, and 8 in AE98. Interpret the empirical results in relation to your discussion of the previous questions.