MATH-281 Complex Variables

Notes taken by: Turja Roy ID: 2108052

Contents

1	Complex Numbers		
	1.1	Definition	2
	1.2	De Moivre's Theorem	2
2 Ar	Ana	alytic Functions	4
	2.1	Definitions	4
	2.2	Necessary Conditions for Analyticity	5
	2.3	Cauchy-Riemann Equations	
		Cauchy-Riemann Equations in Polar Form	

1 Complex Numbers

1.1 Definition

Definition 1.1.1: Complex Numbers

A complex number is a number that can be expressed in the form a + bi, where a and b are real numbers, and i is a solution of the equation $x^2 = -1$, or simply, $i = \sqrt{-1}$. Because no real number satisfies this equation, i is called an imaginary number. For the complex number a + bi, a is called the real part, and b is called the imaginary part.

- The set of all complex numbers is denoted by \mathbb{C} .
- The set of all real numbers is denoted by \mathbb{R} .

Definition 1.1.2: Modulus and Amplitude

Let z = a + bi be a complex number. The modulus of z is the non-negative real number $|z| = \sqrt{a^2 + b^2}$. The amplitude of z is the angle θ such that $\cos(\theta) = \frac{a}{|z|}$ and $\sin(\theta) = \frac{b}{|z|}$.

If the polar form of the point (a, b) be (r, θ) , then $a = r \cos \theta$ and $b = r \sin \theta$.

$$r = |z| = \sqrt{a^2 + b^2}$$
 and $\theta = \arctan\left(\frac{b}{a}\right)$ (1.1.1)

Here, r is the modulus of z and θ is the amplitude of z. In symbols, we write

$$r = \text{mod}(z) = |a + ib|$$
 and $\theta = \arg(z) = \tan^{-1}\left(\frac{b}{a}\right)$ (1.1.2)

1.2 De Moivre's Theorem

Theorem 1.2.1 (De Moivre's Theorem): Let $z = r(\cos \theta + i \sin \theta)$ be a complex number. Then, for any positive integer n,

$$z^{n} = r^{n}(\cos n\theta + i\sin n\theta) \tag{1.2.1}$$

Proof:

Case 1: $n \in \mathbb{Z}_+$ We have,

$$z_1 z_2 \dots z_n = (\cos \theta_1 + i \sin \theta_1)(\cos \theta_2 + i \sin \theta_2) \dots (\cos \theta_n + i \sin \theta_n)$$

= $\{\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)\} \dots (\cos \theta_n + i \sin \theta_n)$
= $\cos(\theta_1 + \theta_2 + \dots + \theta_n) + i \sin(\theta_1 + \theta_2 + \dots + \theta_n)$

Hence, we get

$$z^n = (\cos n\theta + i\sin n\theta)$$

Case 2: $n \in \mathbb{Z}_{-}$

Let n = -m. We have,

$$z^{n} = (\cos \theta + i \sin \theta)^{-m}$$

$$= \frac{1}{(\cos \theta + i \sin \theta)^{m}}$$

$$= \frac{1}{\cos m\theta + i \sin m\theta}$$

$$= \frac{\cos m\theta - i \sin m\theta}{\cos^{2} m\theta + \sin^{2} m\theta}$$

$$= \cos m\theta - i \sin m\theta$$

$$= \cos m\theta + i \sin m\theta$$

$$= \cos n\theta + i \sin n\theta$$

Hence, we get

$$z^n = (\cos n\theta + i\sin n\theta)$$

Case 3: $n \in \mathbb{Q}$, i.e. $n = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ and $q \neq 0$. Now,

$$\left(\cos\frac{p}{q}\theta + i\sin\frac{p}{q}\theta\right)^q = \cos\left(q \cdot \frac{p}{q}\theta\right) + i\sin\left(q \cdot \frac{p}{q}\theta\right)$$
$$= \cos p\theta + i\sin p\theta$$
$$= (\cos\theta + i\sin\theta)^p$$

Taking the q^{th} root of both sides, we get

$$\cos\frac{p}{q}\theta + i\sin\frac{p}{q}\theta = (\cos\theta + i\sin\theta)^{\frac{p}{q}} \quad \Box$$

Note:-

Some Important Results:

(i)
$$1 = e^{i2n\pi} = \cos 2n\pi + i\sin 2n\pi$$

(ii)
$$-1 = \cos \pi + i \sin \pi = e^{i\pi}$$

(iii)
$$i = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = e^{i\frac{\pi}{2}}$$

(iv)
$$-i = \cos\frac{\pi}{2} - i\sin\frac{\pi}{2} = e^{-i\frac{\pi}{2}}$$

2 Analytic Functions

2.1 Definitions

Definition 2.1.1: Complex variable

A **complex variable** is a variable that can take on complex values. A complex variable is usually denoted by z.

If x and y are real variables, then z = x + iy is a complex variable, where i is the imaginary unit.

Definition 2.1.2: Complex Function

A **complex function** is a function that takes complex variables as input and returns complex values. A complex function is usually denoted by f(z).

If z = x + iy and w = u + iv are complex variables, then f(z) = u(x, y) + iv(x, y) is a complex function, where u(x, y) and v(x, y) are real functions.

Definition 2.1.3: Single-valued Function

A single-valued function is a function that returns a unique value for each input.

A complex function f(z) is single-valued if and only if $f(z_1) = f(z_2)$ implies $z_1 = z_2$. In other words, if $z_1 \neq z_2$, then $f(z_1) \neq f(z_2)$.

$$\forall z_1, z_2 \in \mathbb{C}$$
 s.t. $z_1 \neq z_2$ implies $f(z_1) \neq f(z_2)$

Definition 2.1.4: Multiple-valued Function

A multiple-valued function is a function that returns multiple values for each input.

A complex function f(z) is multiple-valued if and only if $f(z_1) = f(z_2)$ for some $z_1 \neq z_2$.

$$\exists z_1, z_2 \in \mathbb{C}$$
 s.t. $z_1 \neq z_2$ and $f(z_1) = f(z_2)$

Definition 2.1.5: Derivative

The **derivative** of a complex function f(z) is defined as

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

where Δz is a complex number.

If the limit exists, then f(z) is said to be **differentiable** at z. If f(z) is differentiable at every point in a region R, then f(z) is said to be **analytic** in R.

Definition 2.1.6: Analytic Function

A complex function f(z) is **analytic** in a region R if it is differentiable at every point in R.

If f(z) is analytic in a region R, then f(z) is also said to be **regular** or **holomorphic** in R.

2.2 Necessary Conditions for Analyticity

Let f(z) = u(x, y) + iv(x, y) be an analytic function in a region R.

That means, f(z) is differentiable at every point in R.

$$\implies f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$
 exists at every point in R .

Now, let z = x + iy and $\Delta z = \Delta x + i\Delta y$.

$$z + \Delta z = (x + \Delta x) + i(y + \Delta y)$$

Then,

$$f'(z) = \lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{f(x + \Delta x + i(y + \Delta y)) - f(x + iy)}{\Delta x + i\Delta y}$$

$$= \lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{u(x + \Delta x, y + \Delta y) + iv(x + \Delta x, y + \Delta y) - u(x, y) - iv(x, y)}{\Delta x + i\Delta y}$$

$$= \lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{u(x + \Delta x, y + \Delta y) - u(x, y)}{\Delta x + i\Delta y} + i \lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{v(x + \Delta x, y + \Delta y) - v(x, y)}{\Delta x + i\Delta y}$$

Along the real axis, $\Delta y = 0$. Hence, the limit is

$$f'(z) = \lim_{\Delta x \to 0} \frac{u(x + \Delta x, y) - u(x, y)}{\Delta x} + i \lim_{\Delta x \to 0} \frac{v(x + \Delta x, y) - v(x, y)}{\Delta x}$$
$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$
(2.2.1)

Along the imaginary axis, $\Delta x = 0$. Hence, the limit is

$$f'(z) = \lim_{\Delta y \to 0} \frac{u(x, y + \Delta y) - u(x, y)}{i\Delta y} + i \lim_{\Delta y \to 0} \frac{v(x, y + \Delta y) - v(x, y)}{i\Delta y}$$
$$f'(z) = -i\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$
(2.2.2)

2.3 Cauchy-Riemann Equations

Since f'(z) exists, (2.2.4) and (2.2.5) must be equal.

$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}$$
(2.3.1)

Comparing real and imaginary parts,

$$\left[\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \right] \quad \text{and} \quad \left[\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \right]$$
 (2.3.2)

These are called the Cauchy-Riemann equations.

2.4 Cauchy-Riemann Equations in Polar Form

Let

$$z = re^{i\theta}$$

$$f(z) = u(r, \theta) + iv(r, \theta)$$

Then

$$f(re^{i\theta}) = u(r,\theta) + iv(r,\theta)$$
(2.4.1)

Differentiating (2.4.1) with respect to r, we get

$$\frac{\partial f}{\partial r} = \frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \tag{2.4.2}$$