3. 量子テレポーテーション

2025/07/16

Translated and modified by Shizuka Shima

Created by Kifumi Numata

自己紹介

- **名前**: 志摩 靜香

- **所属**:日本IBM (2023年入社)

- Technology Expert Labs

- Infrastructure/Power server

- 背景:東京大学 修士課程修了

- 専攻:物理学/素粒子実験

トピック

- 密度行列
- 量子状態トモグラフィー
- 量子テレポーテーション

密度行列

量子状態:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = {\alpha \choose \beta}$$

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad |\alpha|^2 + |\beta|^2 = 1$$

 (α, β) :確率振幅)

$$|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + exp(i\varphi)\sin\left(\frac{\theta}{2}\right)|1\rangle = \begin{pmatrix} \cos\frac{\theta}{2} \\ e^{i\varphi}\sin\frac{\theta}{2} \end{pmatrix}$$

状態ベクトル

密度行列 p を用いて量子状態を記述できる

$$\rho \equiv |\psi\rangle\langle\psi| = \begin{pmatrix} \cos\frac{\theta}{2} \\ e^{i\varphi}\sin\frac{\theta}{2} \end{pmatrix} \left(\cos\frac{\theta}{2} - e^{-i\varphi}\sin\frac{\theta}{2}\right) = \frac{1}{2} \begin{pmatrix} 1 + \cos\theta & e^{-i\varphi}\sin\theta \\ e^{i\varphi}\sin\theta & 1 - \cos\theta \end{pmatrix}$$
 (倍角の公式)

密度行列とブロッホベクトル

$$\rho = |\psi\rangle\langle\psi| = \begin{pmatrix} \cos\frac{\theta}{2} \\ \mathrm{e}^{i\varphi}\sin\frac{\theta}{2} \end{pmatrix} \cdot \left(\cos\frac{\theta}{2} - \mathrm{e}^{-i\varphi}\sin\frac{\theta}{2}\right) = \frac{1}{2} \begin{pmatrix} 1 + \cos\theta & \mathrm{e}^{-i\varphi}\sin\theta \\ \mathrm{e}^{i\varphi}\sin\theta & 1 - \cos\theta \end{pmatrix}$$

密度行列 ρ はパウリ行列X, Y, Z の線形和である:

$$\rho = \frac{1}{2} (I + (\sin\theta \cos\varphi)X + (\sin\theta \sin\varphi)Y + (\cos\theta)Z)$$
$$= \frac{1}{2} (I + r_x X + r_y Y + r_z Z)$$

Note:
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
$$X = |+\rangle\langle +|-|-\rangle\langle -| \quad Y = |+'\rangle\langle +'|-|-'\rangle\langle -'| \quad Z = |0\rangle\langle 0|-|1\rangle\langle 1|$$

ブロッホベクトル: $\mathbf{r} = (r_x, r_y, r_z)$

このブロッホベクトルはブロッホ球面上の点に写像される。

$$|+\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right)$$

$$|-\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle \right)$$

$$|+'\rangle = \frac{1}{\sqrt{2}} (|0\rangle + i |1\rangle)$$

$$|-'\rangle = \frac{1}{\sqrt{2}} (|0\rangle - i |1\rangle)$$

密度行列とグローバル位相

 $|\psi\rangle$ と $|\phi\rangle$ が量子状態を表す単位ベクトルであるとする:

$$|\phi\rangle = \alpha |\psi\rangle$$
 s.t. $|\alpha| = 1$

その時、 $|\psi\rangle$ と $|\phi\rangle$ はグローバル位相を除いて等しい

Example:
$$\frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$
 and $-\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$

密度行列の記述では, ρ_{ψ} と ρ_{ϕ} は等しい:

$$\rho_{\phi} = |\phi\rangle\langle\phi| = \alpha\alpha^*|\psi\rangle\langle\psi| = |\psi\rangle\langle\psi| = \rho_{\psi}$$

密度行列は量子状態を一意に表現することができる

量子状態トモグラフィ

計算基底(|0), |1))で量子状態を測定するだけでは、 位相情報(複素数情報)は失われる

しかし実験を繰り返すことで $|\psi\rangle$ のコピーを多数得ることができると、ブロッホベクトル (r_x,r_y,r_z) の成分を推定することで密度行列 ρ を推定することができる

$$\rho = \frac{1}{2} (\mathbf{I} + (\sin\theta \cos\varphi)\mathbf{X} + (\sin\theta \sin\varphi)\mathbf{Y} + (\cos\theta)\mathbf{Z})$$
$$= \frac{1}{2} (\mathbf{I} + r_x \mathbf{X} + r_y \mathbf{Y} + r_z \mathbf{Z})$$

$$\operatorname{Tr}(\mathbf{X}\,\rho) = r_x$$
, $\operatorname{Tr}(\mathbf{Y}\,\rho) = r_y$, $\operatorname{Tr}(\mathbf{Z}\,\rho) = r_z$

Note: $\operatorname{Tr}(\mathbf{A}\rho)$ …量子状態 ρ における観測量 \mathbf{A} の期待値 $\operatorname{Tr}(\mathbf{A}\rho) = \operatorname{Tr}(\mathbf{A}|\psi\rangle\langle\psi|) = \operatorname{Tr}(\langle\psi|\mathbf{A}|\psi\rangle) = \langle\psi|\mathbf{A}|\psi\rangle$

量子状態トモグラフィ

$$\rho = \frac{1}{2} (\mathbf{I} + (\sin\theta \cos\varphi)\mathbf{X} + (\sin\theta \sin\varphi)\mathbf{Y} + (\cos\theta)\mathbf{Z})$$
$$= \frac{1}{2} (\mathbf{I} + r_x \mathbf{X} + r_y \mathbf{Y} + r_z \mathbf{Z})$$

$$\operatorname{Tr}(\mathbf{X}\,\rho) = r_{\chi}, \quad \operatorname{Tr}(\mathbf{Y}\,\rho) = r_{\chi}, \quad \operatorname{Tr}(\mathbf{Z}\,\rho) = r_{\chi}$$

Note: $\operatorname{Tr}(\mathbf{A}\rho)$ …量子状態 ρ における観測量 \mathbf{A} の期待値

$$Tr(\mathbf{Z}\,\rho) = \langle 0|\mathbf{Z}\rho|0\rangle + \langle 1|\mathbf{Z}\rho|1\rangle$$

$$= \langle 0|(|0\rangle\langle 0| - |1\rangle\langle 1|)\rho|0\rangle + \langle 1|(|0\rangle\langle 0| - |1\rangle\langle 1|)\rho|1\rangle$$

$$= \langle 0|\rho|0\rangle - \langle 1|\rho|1\rangle$$

$$= \langle 0|\psi\rangle\langle\psi|0\rangle - \langle 1|\psi\rangle\langle\psi|1\rangle$$

$$= |\alpha|^2 - |\beta|^2 \quad (|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

場合

 $r_z = 0$ を測定する確率 -1を測定する確率

Note: $\mathbf{Z} = |0\rangle\langle 0| - |1\rangle\langle 1|$

量子状態トモグラフィ

 r_z を推定するために、量子状態を作り出してそれを測定し、それを何度も繰り返して、測定の統計を取得する

 $r_z = |0>$ の確率 -|1>の確率

$$r_z = 0.632 - 0.367 = 0.265$$

X軸とY軸上の測定

IBM Quantum Systems は、計算基礎測定 (Z 軸測定) のみをサポート 軸の回転によりX軸測定、Y軸測定を実現できる

量子テレポーテーションとは?

量子テレポーテーションとは? (予想される例)

量子テレポーテーションとは?

量子テレポーテーションとは?

量子テレポーテーション

Aliceが遠くにいるBobに向けて未知の量子状態 $|\psi\rangle$ を送信したいが2人が通信できるのは古典的な通信(電子メールまたは電話)のみであるという状況を考える

Aliceが沢山の $|\psi\rangle$ を持っている場合、Aliceは量子情報トモグラフィーによって α , β を知ることができ、Bobに情報を知らせることができる

しかし、未知の量子状態は複製できないというNo-cloning定理のため、この方法は一般には使用できない

量子複製不可能定理(No-cloning theorem)

未知の量子状態のコピーを作成することはできない

ユニタリ演算子Uが量子状態 $|\psi\rangle$ のコピーを作成できると仮定する

ユニタリ演算子 U は未知の量子状態 $|\psi\rangle$ だけでなく $|0\rangle$ や $|1\rangle$ にも適用できる $U|0\rangle|0\rangle = |00\rangle$, $U|1\rangle|0\rangle = |11\rangle$

 $|\psi\rangle|0\rangle$ に U を適用 $U|\psi\rangle|0\rangle = \alpha U|0\rangle|0\rangle + \beta U|1\rangle|0\rangle = \alpha|00\rangle + \beta|11\rangle$ U は $|\psi\rangle$ をコピーするので $U|\psi\rangle|0\rangle = |\psi\rangle|\psi\rangle = \alpha^2|00\rangle + \alpha\beta|01\rangle + \alpha\beta|10\rangle + \beta^2|11\rangle$

これら2つの状態を満たす α , β は(0,0), (0,1), (1,0)以外存在しない α , β は任意であるため矛盾する

量子テレポーテーション

Aliceは遠くにいるBobに未知の量子状態 $|\psi\rangle$ を送りたいが、二人は古典的な通信でしか通信できない

Aliceが沢山の $|\psi\rangle$ を持っている場合、Aliceは量子状態トモグラフィーによって α , β を知ることができ、Bobに情報を知らせることができる

しかし、未知の量子状態は複製できないという非複製定理のため、この方法は一般には使用 できない

EPR ペアを共有すると、Aliceは局所的演算と古典的通信によって 未知の量子状態をBobにテレポートできる

EPRペア (Einstein-Podolsky-Rosen Pair)

EPRペア:
$$|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

2つの量子もつれ状態は、EPRパラドックスにちなんで EPR (Einstein-Podolsky-Rosen) ペアと呼ばれる

EPRパラドックス:量子もつれ対が一定の距離だけ離れており、 そのうちの1つが観測されたとします。何が起こるでしょうか?

₹ 「量子もつれ」1週間限定で体感

京都大が8月、大阪・関西万博の会場に実験機器を持ち 込んだ展示スペースを開設。

https://www.yomiuri.co.jp/expo2025/20250312-OYO1T50008/

物理的現実の量子力 学的記述は完全である と言えるか?」

量子テレポーテーションのプロトコル

前提:

AliceはBobに送るべき未知の量子状態 $|\psi\rangle$ を持っている。 EveはEPRペアを作成し、その一方をAliceに、もう一方をボブに渡す。

- 1. Aliceは、CNOTゲートを使って状態 $|\psi\rangle$ を自分のEPRペアの一部とエンタングルさせる。
- 2. Aliceは $|\psi\rangle$ にアダマール(H) ゲートを適用し、計算基底で測定を行う。
- 3. Aliceは測定結果 ("00"、"01"、"10"、"11"のいずれか) をBobに送信する。
- 4. Bobは、Aliceから受け取った2つのビット情報に基づいて、自分のEPRペアの部分に補 正操作を行う。
 - "00"の場合:何もしない
 - "01"の場合:Xゲートを適用
 - "10"の場合:Zゲートを適用
 - "11"の場合: ZゲートとXゲート(ZX)を適用
- 5. BobのEPRペアの部分は、状態 $|\psi\rangle$ になる。

© 2024 International Business Machines Corporation

LOCC (局所的演算と古典通信)

LOCCは、各参加者が自分の量子系に対して局所的な操作を行い、古典的な通信を 通じて情報をやり取りできる量子操作のクラス

- 局所的演算(LO: Local Operations)
 - 各量子系に対して独立に適用される操作。
 - 量子系同士の間で直接的な情報のやり取りは行われない。
- 古典通信(CC: Classical Communication):
 - 各自が持つ量子系に関する情報を、古典的な手段(電話、インターネットなど)で共有すること。この共有された情報に基づいて、次に行う操作を決定することができる。

量子系AとBがもともと量子もつれ状態にない場合、LOCC(局所的演算と古典通信)だけでは、それらを量子もつれ状態に変換することはできない

© 2024 International Business Machines Corporation

量子テレポーテーションのプロトコル

前提:

AliceはBobに送るべき未知の量子状態 $|\psi\rangle$ を持っている。 EveはEPRペアを作成し、その一方をAliceに、もう一方をボブに渡す。

Local operation

- 1. Aliceは、CNOTゲートを使って状態 $|\psi\rangle$ を自分のEPRペアの一部とエンタングルさせる。
- 2. Aliceは $|\psi\rangle$ にアダマール(H)ゲートを適用し、計算基底で測定を行う。
- 3. Aliceは測定結果 ("00"、"01"、"10"、"11"のいずれか) をBobに送信する。
- 4. Bobは、Aliceから受け取った2つのビット情報に基づいて、自分のEPRペアの部分に補 正操作を行う。 Classical

- "00"の場合:何もしない

- "01"の場合:Xゲートを適用

- "10"の場合:Zゲートを適用

- "11" の場合: ZゲートとXゲート(ZX) を適用

5. BobのEPRペアの部分は、状態 $|\psi\rangle$ になる。

communication

Local operation

© 2024 International Business Machines Corporation

量子テレポーテーションのプロトコルの詳細

Note: Qiskitのビット順は |q2 q1 q0>

$$|\psi_0\rangle = |00\rangle \otimes (\alpha|0\rangle + \beta|1\rangle)$$

$$|\psi_1\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \otimes (\alpha|0\rangle + \beta|1\rangle)$$

$$|\psi_2\rangle = \frac{1}{\sqrt{2}}(\alpha|000\rangle + \alpha|110\rangle + \beta|0\underline{1}1\rangle + \beta|1\underline{0}1\rangle)$$
$$= \frac{1}{\sqrt{2}}(\alpha(|00\rangle + |11\rangle)|0\rangle + \beta(|01\rangle + |10\rangle)|1\rangle)$$

$$|\psi_3\rangle = \frac{1}{2}(\alpha(|00\rangle + |11\rangle)(|0\rangle + |1\rangle) + \beta(|01\rangle + |10\rangle)(|0\rangle - |1\rangle))$$

$$=\frac{1}{2}((\alpha|0\rangle+\beta|1\rangle)|00\rangle+(\alpha|1\rangle+\beta|0\rangle)|10\rangle+(\alpha|0\rangle-\beta|1\rangle)|01\rangle+(\alpha|1\rangle-\beta|0\rangle)|11\rangle)$$
 X ゲートの適用 ZX ゲートの適用 ZX ゲートの適用

Alice (q[0] |0) - U3 - q[1] |0) -

 $|\psi_0\rangle$

Bob q[2] |0)

 $|\psi_1\rangle$ $|\psi_2\rangle$ $|\psi_3\rangle$

もっと勉強したい方へ

https://quantum-tokyo.github.io/introduction/courses/utility-scale-quantum-computing/overview-ja.html

Quantum Tokyo へようこそ

学習コンテンツ

Qiskit の始め方

IBM Quantum Plaform 教材 日本語訳

IBM Research Blog 日本語版

(旧) Qiskitテキストブック 日本語版

(旧)Qiskitテキストブック(Qiskitコース) 日本語版

(旧) Qiskitドキュメント・チュートリアル 日本語版リンク集

IBM Quantum Challenge 🗗

Qiskit Global Summer School (Qiskit夏の学校) 資料 日本語版

Quantum Tokyo 過去イベント資料

Qiskitコミュニティー関連イベント案内

その他: IBM Quantum の便利なツ ール \equiv

ユーティリティー・スケール量子コンピュ ーティング

概要

このイベント・リプレイ・コースは、IBM Quantum®が東京大学と共同で開発し実施した14のLessonとLabで構成されています。このコースでは、量子コンピューティングにおける幅広い重要なトピックを網羅しつつ、実用規模(ユーティリティー・スケール)の量子計算を構築することに重点を置いています。最終的な結果として、2023年6月にNature誌の表紙を飾った論文と非常によく似た課題を扱います。

- 1. はじめに
- 2. 量子ビット・量子ゲート・量子回路
- 3. 量子テレポーテーション
- 4. グローバーのアルゴリズム
- 5. 量子位相推定
- 6. 量子変分アルゴリズム
- 7. 量子系のシミュレーション
- 8. 古典計算によるシミュレーション
- 9. 量子ハードウェア
- 10. 量子回路の最適化
- 11 量子エラー緩和

Thank you