

Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar

LATEX dokumentáció tutorial

Tantárgy (BMEGE...) Agócs Norbert (nagocs@mm.bme.hu) 2025/26/1

Tartalomjegyzék

1.	A jelen dokumentum célja	1
2.	Land Text tutorial	1
	2.1. Matematikai szimbólumok	1
	2.2. Vektorok, mátrixok	2
	2.3. Egyenletek	2
	2.4. Mértékegységek és mennyiségek	3
	2.5. Táblázatok	3
		4
		4
	2.8. Hivatkozások és irodalomjegyzék	
	2.9. További források	
3.	A sablon használata	6
	3.1. Dokumentum felépítése	6
	3.2. Dokumentum használata	6
	3.3. Csomagok és beállítások	7
	3.4. Egyéni parancsok	8
4.	Összefoglalás	8

1. A jelen dokumentum célja

A jelen dokumentum egy tutorialként szolgál a dokumentációk, házi feladatok és egyéb beadandók La Tex-ben történő elkészítéséhez. Célja, hogy bemutassa a sablon alkalmazását, valamint azokat az alapvető La Tex parancsokat, amelyek elsajátításával könnyen és egységes formátumban készíthető el a szükséges dokumentáció.

A dokumentum tanulmányozásakor célszerű a generált tutorial.pdf fájlt és a hozzá tartozó tutorial.tex forrásfájlt egymással párhuzamosan áttekinteni, így a kód és annak eredménye közvetlenül összevethető.

2. LaTeX tutorial

A LATEX egy széles körben használt dokumentumszerkesztő keretrendszer, amely különösen alkalmas tudományos és műszaki dokumentumok készítésére. A LATEX lehetővé teszi a felhasználók számára, hogy a dokumentumok tartalmára összpontosítsanak, miközben a formázást és a megjelenést a rendszer globálisan kezeli.

A LªTEX használata kezdetben bonyolultnak tűnhet, de a sablonok és a példák segítségével gyorsan elsajátítható. A következőkben egy rövid útmutatót találhatsz a legfontosabb LªTEX funkciókról és azok használatáról.

2.1. Matematikai szimbólumok

A LATEX egyik legfontosabb és legtöbbet használt funkciója a matematikai képletek és szimbólumok írása. A matematikai képleteket és szimbólumokat matematikai módban érhetjük el. A matematikai módba többféleképpen lehet belépni:

- \$... \$ egy soron belüli (inline) képlet,
- \$\$... \$\$ külön sorba helyezett, középre igazított képlet.

A legalapvetőbb szimbólumok és jelölések a következők:

- Skalár változók: x, y, z, a, b, c
- Vektorok, mátrixok: v, u, w, A, B
- Görög betűk: α , β , γ , π , λ , Ω
- Függvények: $\sin(x)$, $\cos(x)$, $\tan(x)$, $\log(x)$, $\exp(x)$, e^x , \sqrt{x} , $\sqrt[3]{y}$
- Indexek és hatványok: x_i, x^2, a_{ij}
- Törtek: $\frac{a}{b}$
- Szummázás: $\sum_{i=1}^{n} i$
- Határérték: $\lim_{x\to 0} \frac{\sin x}{x}$
- Deriválás: $\frac{dy}{dx}$, $\frac{\partial z}{\partial x}$
- Integrálás: $\int_0^1 x^2 dx$, $\iint_D f(x, y) dx dy$

2.2. Vektorok, mátrixok

A vektorokat nyomtatásban vastagon szedett kis betűvel jelöljük, például **v**, **u**, **w**. A mátrixokat szintén vastagon szedett nagy betűkkel jelöljük, például **A**, **B**. A vektorokat és mátrixokat a bmatrix, pmatrix környezettel lehet definiálni:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, \qquad \mathbf{a} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}. \tag{1}$$

2.3. Egyenletek

Az egyenleteket mindig külön sorban szokás megjeleníteni, balra vagy középre igazítva, és a jobb oldalon számozással ellátva. A LATEX ehhez több környezetet biztosít:

- \begin{equation} ... \end{equation} egy soros, számozott egyenlet,
- \begin{align} ... \end{align} több soros, számozott egyenletek, igazítva,
- \begin{multline} ... \end{multline} hosszabb egyenlet több sorba tördelve,
- \begin{gather} ... \end{gather} több független egyenlet, középre igazítva.

Az egyenletek a mondat szerves részei, így a megfelelő írásjeleket az egyenlet után is ki kell tenni. Például a nyomaték redukciós képlet a következőképpen írható fel:

$$\mathbf{M}_A = \mathbf{M}_B + \mathbf{r}_{BA} \times \mathbf{F}. \tag{2}$$

Az egyenletben szereplő változókat, mennyiségeket és konstansokat a fő szöveg részeként kell definiálni. Ezt többféleképpen is megtehetjük.

- 1. Az egyenlet után közvetlenül: . . . ahol \mathbf{M}_A az A pontbeli nyomatékvektor, \mathbf{M}_B a B pontbeli nyomatékvektor, \mathbf{r}_{BA} a B-ből A-ba mutató helyvektor, és \mathbf{F} a ható erővektor.
- 2. Hivatkozással: a (2) egyenletben szereplő \mathbf{M}_A az A pontbeli nyomatékvektor, \mathbf{M}_B a B pontbeli nyomatékvektor, \mathbf{r}_{BA} a B-ből A-ba mutató helyvektor, és \mathbf{F} a ható erővektor.
- 3. Felsorolásszerűen: a (2) egyenletben szereplő mennyiségek jelentése a következők:

 \mathbf{M}_A az A pontbeli nyomatékvektor,

 \mathbf{M}_{B} a B pontbeli nyomatékvektor,

 \mathbf{r}_{BA} a B-ből A-ba mutató helyvektor,

F a ható erővektor.

Ha egy egyenlet olyan hosszú, hogy túlnyúlik az oldalszélességen, akkor célszerű több sorban tördelni. (Ugyanakkor érdemes kerülni a túlzottan hosszú kifejezéseket.) Például a következő differenciálegyenlet írható fel egy hajlított gerenda lehajlására:

$$EI\frac{d^{4}w(x)}{dx^{4}} + c_{1}\frac{d^{3}w(x)}{dx^{3}} + c_{2}\frac{d^{2}w(x)}{dx^{2}} + c_{3}\frac{dw(x)}{dx} + c_{4}w(x)$$

$$= q_{0}\sin\left(\frac{\pi x}{L}\right) + q_{1}\cos\left(\frac{2\pi x}{L}\right) + q_{2}e^{-\alpha x}\cos(\beta x) + q_{3}x^{2} + q_{4}\ln(1+x), \quad (3)$$

ahol EI a hajlítómerevség, w(x) a lehajlás, c_i konstans tényezők, q_i terhelési paraméterek, L a gerenda hossza, α és β pedig az exponenciális-ciklikus terhelés paraméterei.

2.4. Mértékegységek és mennyiségek

A fizikai mennyiségek mértékegységeit mindig álló betűvel kell írni, például N, m, s. A mérőszám és a mértékegység közé nem törhető szóközt kell tenni (LaTeX-ben: ~), hogy a szám és a mértékegység ne váljon szét a sor végén. Például:

Kivételt képez a százalék, ahol a szám és a jel közé nem kerül szóköz: 50%.

A LATEX-ben a mértékegységek és számok egységes, szabványos formázására a siunitx csomag a legkényelmesebb megoldás. Ez a csomag automatikusan biztosítja a helyes tipográfiát, a nem törhető szóközt, a tizedesjel formátumát és az SI-egységek helyes megjelenítését. Néhány példa:

- $\qty{5}{m} \rightarrow 5 m$
- $\qty{9.81}{m/s^2} \rightarrow 9.81 \, m/s^2$
- $\qty{1.23e4}{J} \rightarrow 1.23 \cdot 10^4 \, J$
- $\text{num}\{12345.6789\} \rightarrow 12345.6789$

2.5. Táblázatok

A táblázatok létrehozásához a table és tabular környezeteket használjuk. A táblázatok mindig tartalmazzanak sorszámot és címet, hogy hivatkozhassunk rájuk a szövegben. A táblázatok címét mindig a táblázat felett kell elhelyezni. Például:

Jelölés	Mértékegység	Érték
a	mm	6
b	mm	7
c	mm	545
d	mm	545
$\overline{F_1}$	kN	7
F_2	kN	6
M_1	kNm	1

1. táblázat. A számításhoz megadott adatok.

A fenti táblázatra a következőképpen hivatkozhatunk a szövegbe: az 1. táblázatban szereplő adatok alapján elmondható, hogy ... A táblázatok készítéséhez a booktabs csomag használata erősen ajánlott, mivel sokkal esztétikusabbá teszi a táblázatokat.

2.6. Ábrák

Az ábrák beillesztéséhez a figure környezetet használjuk. Az ábráknak is legyen sorszámuk és címük, hogy hivatkozhassunk rájuk a szövegben. Az ábrák címét mindig az ábra alatt kell elhelyezni. Például:

1. ábra. Egy minta ábra.

A fenti ábrára a következőképpen hivatkozhatunk a szövegbe: az 1. ábra mutatja be a minta ábrát. Az ábrák készítéséhez használhatunk külső programokat (pl. Python, MATLAB, Excel), vagy LATFX-ben is rajzolhatunk ábrákat a TikZ csomag segítségével.

$2.7. \operatorname{Ti} kZ$

A TikZ egy grafikai csomag ĽTEX-hez, amely lehetővé teszi vektoros ábrák készítését közvetlenül a dokumentumban. A TikZ segítségével bármilyen ábrát létrehozhatunk. Például egy egyszerű mechanikai modell rajzolása a következőképpen történik:

2. ábra. Egy egyszerű mechanikai modell TikZ ábrája.

A fenti ábrára a következőképpen hivatkozhatunk a szövegbe: a 2. ábra mutatja be a $\mathrm{Ti}k\mathrm{Z}$ használatát egy mechanikai modell rajzolására. A $\mathrm{Ti}k\mathrm{Z}$ ábrákat külön fájlban is tárolhatjuk, és a $\mathrm{Ti}\mu\mathrm{U}$ paranccsal illeszthetjük be a dokumentumba.

2.8. Hivatkozások és irodalomjegyzék

A dokumentumban található különféle egyenletekre, táblázatokra és ábrákra a **\label{...}** és **\ref{...}** parancsok segítségével hivatkozhatunk. Például a (2) egyenletben látható a nyomaték redukciós képlete.

Az irodalomjegyzék létrehozásához a biblatex csomagot használjuk. Az irodalomjegyzékhez egy külön .bib fájlt kell létrehozni, amelyben a hivatkozásokat tároljuk a megadott formátumban. Példa egy hivatkozásra a literature.bib fájlban:

```
@book{latex2e,
    author = {Leslie Lamport},
    year = {1994},
    title = {{\LaTeX}: a Document Preparation System},
    publisher = {Addison Wesley},
    address = {Massachusetts},
    edition = {2}
}
```

A hivatkozások beszúrásához a \cite{...} parancsot használjuk, ahol a literature.bib fájlban definiált hivatkozás neve szerepel. Például: \cite{latex2e} [1].

Az irodalomjegyzék automatikusan generálódik a dokumentum végén, és a hivatkozások formátuma a választott stílustól függ. A sablonban a numeric stílus van beállítva, de más stílusok is használhatók, például authoryear, alphabetic, stb.

2.9. További források

A LªTEX használatáról és a különböző csomagokról számos segédlet, online forrás és dokumentáció érhető el. A következő források hasznosak lehetnek a LªTEX elsajátításához:

- https://www.latex-project.org/ A hivatalos LATEX projekt oldala.
- https://ctan.org/ A LATEX csomagok dokumentációi.
- https://www.overleaf.com/learn Overleaf dokumentáció és oktatóanyagok.
- https://tex.stackexchange.com/ Közösségi fórum a LATEX felhasználók számára
- https://wch.github.io/latexsheet/ LATEX cheatsheet
- https://en.wikibooks.org/wiki/LaTeX Wikikönyv LATeX-ről

A L^ATEX használatának elsajátításához sokat kell gyakorolni, de a sablon és a fenti források segítségével gyorsan elindulhatsz a dokumentumkészítés útján.

3. A sablon használata

A sablon célja, hogy egységes keretet adjon a BME Gépészmérnöki Karán készítendő dokumentációk, házi feladatok és beadandók elkészítéséhez. Előre definiált formázási és szerkezeti elemeket tartalmaz, valamint példákat a gyakran használt LATEX funkciókra.

A sablon használata nem kötelező, ugyanakkor jelentősen megkönnyíti a dokumentumkészítést azáltal, hogy egy kész struktúrát és stílust biztosít.

3.1. Dokumentum felépítése

A dokumentum fő részei külön .tex fájlokra vannak bontva annak érdekében, hogy a sablon átláthatóbb és a szövegszerkesztés egyszerűbb legyen. A központi szerepet a main.tex fájl tölti be, amely tartalmazza a dokumentum alapszerkezetét, és innen hivatkozunk a további részekre.

A szövegszerkesztés során mindig a main.tex fájlt kell megnyitni és szerkeszteni, mivel ez a fájl tartalmazza a dokumentum teljes lényegi tartalmát.

A fájlok logikusan elkülönítve, külön mappákban találhatók:

- settings a dokumentum beállításait és az egyéni parancsokat tartalmazó fájlok,
- contents a dokumentum tartalmi elemeit tartalmazó fájlok,
- figures a dokumentumban használt ábrák és képek gyűjtőhelye.

A legfontosabb fájlok és feladataik a következők:

- settings/00_preambulum.tex azokat a csomagokat és beállításokat tartalmazza, amelyek az egész dokumentumra érvényesek. Nem szükséges módosítani.
- settings/01_commands.tex az egyéni parancsok gyűjteménye, ahová a gyakran használt, saját definiálású parancsokat célszerű beírni.
- contents/01_title.tex a címlap összeállítására szolgál. Ezt a fájlt általában nem szükséges módosítani, a dokumentum adatai a preambulumban adhatók meg.
- contents/02_contentpage.tex a tartalomjegyzék létrehozásáért felel. Ezt a fájlt sem kell szerkeszteni, mivel a tartalomjegyzék automatikusan generálódik.
- contents/03_bib.tex az irodalomjegyzék előállítását végzi. Szintén nem igényel kézi módosítást, az irodalomjegyzék automatikusan épül fel a hivatkozások alapján.
- contents/literature.bib a hivatkozások tárolására szolgáló fájl, amit a biblatex csomag használ az irodalomjegyzék összeállításához.

3.2. Dokumentum használata

A sablon használatához elegendő a main.tex fájlt szerkeszteni, a többi fájl előre definiált szerkezeti és formázási elemeket tartalmaz, amelyek módosítására általában nincs szükség. A szövegszerkesztéskor a következő lépéseket érdemes követni:

- 1. **Dokumentum adatok kitöltése.** A main.tex elején található parancsokban kell megadni az alapvető adatokat:
 - \CIM a dokumentum címe,
 - \DATUM a beadás dátuma vagy félév megjelölése,
 - \NEV és \NEPTUN a hallgató neve és Neptun-kódja,
 - \EMAIL e-mail cím,
 - \TANTARGY és \TANTARGYKOD a tantárgy neve és kódja,
 - \LOGO a címlapon megjelenő logó fájlneve a figures mappában.
- 2. **Fejezetek létrehozása.** A tartalmi részeket érdemes fejezetekbe és alfejezetekbe osztani a \section{Fejezet címe} és \subsection{Alfejezet címe} parancsokkal.
- 3. **Szöveg létrehozása.** A dokumentáció fő részét, a szöveges tartalmat a main. tex fájlban kell megírni.
- 4. Ábrák és képletek beszúrása. Az ábrákat a figures mappába kell elhelyezni, majd a \includegraphics paranccsal lehet beilleszteni.
- 5. **Képletek beszúrása.** A matematikai képletek, egyenletek, szimbólumokat a \\$... \\$ vagy a \begin{equation} ... \end{equation} környezetekben lehet megadni.
- 6. Irodalomjegyzék. A hivatkozásokat a contents/literature.bib fájlban kell megadni. Az irodalomjegyzék megjelenítéséhez aktiválni kell a \input{contents/03_bib.tex}-t.
- 7. **Függelék (opcionális).** Kiegészítő anyagok (pl. programkód, mérési jegyzőkönyv) a \includepdf paranccsal illeszthetők be a dokumentum végére.

3.3. Csomagok és beállítások

A sablon a leggyakrabban használt csomagokat tartalmazza a magyar nyelv, az ékezetes betűk, a matematikai környezetek, az ábrák és táblázatok, valamint az irodalomjegyzék kezelésére.

A legfontosabbak:

- babel, inputenc, fontenc, lmodern magyar nyelv és ékezetes karakterek kezelése,
- geometry, fancyhdr, hyperref oldalbeállítások, fej- és lábléc, hivatkozások,
- amsmath, amssymb, mathtools matematikai környezetek és szimbólumok,
- siunitx SI mértékegységek és számformátumok,
- graphicx, tikz, pdfpages képek, vektoros ábrák, PDF-oldalak beillesztése,
- booktabs, caption, float tipográfiailag helyes táblázatok és ábrakezelés,
- biblatex hivatkozások és irodalomjegyzék kezelése.

A csomagok és a dokumentum általános beállításai a settings/00_preambulum.tex fájlban találhatók, ahol szinte minden testre szabható a megfelelő paraméterek módosításával.

3.4. Egyéni parancsok

A sablon tartalmaz egy külön fájlt (settings/01_commands.tex), amelyben a különféle egyéni parancsok vannak összegyűjtve. A fájl bővíthető további parancsokkal. A fájl jelenlegi tartalma elsősorban matematikai parancsokat foglal magában:

- Differenciál jelölés: $\d{x} \rightarrow dx$
- Vektorok félkövérrel: $\vec{v} \rightarrow \mathbf{v}$
- Norma és abszolút érték: $\operatorname{norm}\{v\} \to ||v||, \operatorname{abs}\{x\} \to |x|$
- Lineáris algebrai operátorok: $\operatorname{A}}, \operatorname{A}, \operatorname{A}, \operatorname{A}$
- Vektoranalízis operátorok: \grad , \rot , \diverg , $\laplace \rightarrow \grad$, \rot , \div , \div
- Kiértékelés adott pontban: $\{f(x)\}\{x=0\} \rightarrow f(x)|_{x=0}$
- Karikázott szám/karakter: $\circled{1} \rightarrow (1)$

Új parancs létrehozása. Új parancsokat a **\newcommand** utasítással lehet definiálni. Az általános szintaxis a következő:

\newcommand{\parancsnév}[argumentumszám]{definíció}

Példa:

 $\label{eq:local_$

Ez a parancs a \mathbb{R}_n használatával az n-dimenziós valós számok halmazát adja vissza: \mathbb{R}^n .

4. Összefoglalás

A jelen dokumentum bemutatta a IATEX alapvető használatát a BME Gépészmérnöki Karán készítendő dokumentációk, házi feladatok és beadandók elkészítéséhez.

A sablon célja, hogy egységes, átlátható és tipográfiailag helyes keretet biztosítson a hallgatók számára. Használatával a tartalomra lehet összpontosítani, mivel a formázás és a szerkezet előre definiált.

A LªTEX használata kezdetben több odafigyelést igényel, de gyakorlattal gyorsan rutinná válik. A sablon jó kiindulópontot biztosít, és bátorítást adhat arra, hogy bárki bátran belevágjon a LªTEX világának felfedezésébe.

"LATEX is not about making things look pretty. It's about making things look right."

Hivatkozások

[1] Leslie Lamport. La TeX: a Document Preparation System. 2. kiad. Massachusetts: Addison Wesley, 1994.