Your Name:	
	-

Harvard University Computer Science 20

Midterm 2

Wednesday, March 23, 2016

PROBLEM 1

For each of the following, state whether the set is finite, countably infinite, or uncountable. No justification required.

- (A) The set of all total functions with domain $\{0,1\}$ and codomain $\{0,1\}$.
- (B) The set of all total functions with domain \mathbb{N} and codomain $\{1\}$.
- (C) The set of all total functions with domain \mathbb{N} and codomain $\{0,1\}$.
- (D) The set of all total functions with domain $\{0,1\}$ and codomain \mathbb{N} .

Solution.

PROBLEM 2

Draw state machines that only accept strings in the following set. Assume that the alphabet is $\Sigma = \{0, 1\}$; that is, for all possible input strings s we have $s \in \Sigma^*$.

 $\{w: w \text{ starts with } 0 \text{ and contains the substring } 101, \text{ i.e. } w = 0x101y \text{ for some } x \text{ and } y\}$

Solution.

PROBLEM 3

Let G be a directed graph with n vertices. Show that if G has a path of length greater than n, then G has a cycle (a path has length k if it contains k edges).

Solution.

PROBLEM 4

Let G = (V, E) be a directed acyclic graph. Define a relation R on V by (v_1, v_2) which is an element of R iff there is a path from v_1 to v_2 .

- (A) Is R reflexive? Prove your answer.
- (B) Is R symmetric? Prove your answer.
- (C) Is R transitive? Prove your answer.

Solution.

PROBLEM 5

- (A) Using set-builder notation, give a formal description of the union of two sets A and B.
- (B) Using set-builder notation, give a formal description of the complement of a set A.
- (C) Let |A| = n and |B| = m. If $A \subseteq B$, what is $|A \cap B|$?
- (D) Let |A| = n and |B| = m. If $A \subseteq B$, what is |A B|?
- (E) What is the power set of $\{h, a, i\}$?

Solution.

PROBLEM 6

Let S be the set defined as follows:

- Base Case: $(1,2) \in S$
- Constructor Rules: If $(x,y) \in S$, then C1: $(x+2,y) \in S$ and C2: $(y,x) \in S$

Use structural induction to prove that for any pair (x,y) in S, x and y can not both be odd or both be even.

Solution.

PROBLEM 7

Please provide a graph of binary relations over the set $\{1,2,3\}$ that fulfils the following properties, or explain why it would be impossible to construct one.

- (A) Symmetric transitive
- (B) Asymmetric, reflexive.
- (C) Transitive, symmetric, irreflexive.

Solution.