Magnitud	Descripción	Valor	Justificación
D	Duty cycle	0.5	$D = \frac{V_o}{V_d}$
$\hat{I}_{L_{max}}$	Corriente pico máxima en el inductor	1 A	Se consideró que el inductor satura a 1.8 A. Se fija un valor seguro de 1 A como límite de operación.
$\hat{I}_{L_{max}}^{RMS}$	Corriente RMS correspondiente a la corriente pico máxima	0.707 A	$\hat{I}_{RMS} = \frac{\hat{I}}{\sqrt{2}}$
$\Delta I_L = \hat{I}_{L_{boundary}}$	Corriente pico a pico en modo boundary	0.5 A	En modo boundary, se limita la corriente pico a 0.5 A, considerando saturación a 1.8 A.
$ar{I}_{L_{max}}$	Corriente media máxima en el inductor	0.75 A	$\bar{I} = \hat{I} - \frac{\Delta I_L}{2}$
$\hat{I}_{L_{boundary}}^{RMS}$	Corriente RMS en modo boundary	0.35 A	$\hat{I} = 0.5 \mathrm{A} \Rightarrow \hat{I}_{RMS} = \frac{0.5}{\sqrt{2}}$
$ar{I}_{L_{boundary}}$	Corriente media en modo boundary	0.25 A	$ar{I}=rac{\hat{I}}{2}$
$\bar{I}_{o_{max}}$	Corriente media de salida	0.375 A	$\bar{I}_o = \bar{I}_L \cdot (1 - D)$
T_s	Período de conmutación del MOSFET	27.5 ns	$T_s = rac{\Delta I_L \cdot L}{V_d \cdot D}$ $F_s = rac{1}{T_s}$
F_s	Frecuencia de conmutación del MOSFET	36.36 kHz	$F_s = \frac{1}{T_s}$
\hat{V}_L^+	Tensión pico positiva en el inductor (llave cerrada)	12 V	$V_L = V_d$
\hat{V}_L^-	Tensión pico negativa en el inductor (llave abierta, sin caída en diodo)	-12 V	$V_L = V_d - V_o$
\hat{V}_L^- (real)	Tensión pico negativa en el inductor (llave abierta, con caída en diodo)	−11.175 V	$V_L = V_d + V_D - V_o$
$ar{V}_L$	Tensión media en el inductor	0 V	Se considera régimen estacionario
\hat{V}_D^-	Tensión pico negativa en el diodo (llave cerrada)	-12 V	$V_D = V_L - V_o$
\hat{V}_D^+	Tensión pico positiva en el diodo (llave abierta)	0.825 V	Valor medido
	 	0.514	$D' = \frac{V_d + V_D - V_o}{V_d + V_D}$

Tabla I

RESUMEN DE PARÁMETROS ELÉCTRICOS DEL INDUCTOR Y EL DIODO EN EL CONVERTIDOR.

Figura 1. Esquemático base en LTSpice.

Componente	Valor	Justificación	
R_1	1.2 kΩ	Junto con R_2 , establece la corriente de base para Q_1 (NPN). Con $3.3\mathrm{V}$ de entrada, se obtiene una corriente base de aproximadamente $1\mathrm{mA}$, suficiente para saturar Q_1 considerando un h_{FE} mínimo de 100 .	
R_2	$1.2\mathrm{k}\Omega$	Resistencia limitadora entre entrada y base de Q_1 , simétrica a R_1 para diseño balanceado.	
R_3	1.8 kΩ	Permite $I_C \approx 10 \mathrm{mA}$ en Q_1 para excitar el push-pull Q_2/Q_4 .	
R_5	47Ω	Limita el pico de corriente en gate del MOSFET, reduce oscilaciones, permite $t_{SW} \approx 100\mathrm{ns}.$	
L_1	$330\mu\mathrm{H}$	Valor dado en la consigna. Permite operación en modo continuo a la corriente máxima.	
C_1	$22\mu\mathrm{F}$	Limita ripple de salida a menos del 2% de V_o según diseño con margen.	
Q_1	BC547	NPN de propósito general. Soporta $I_C=100\mathrm{mA}$ y $h_{FE}\geq110$, apto para manejar $10\mathrm{mA}$ sin problemas.	
Q_2	BC327	PNP en etapa push-pull. Soporta $I_C=800\mathrm{mA}$, sobredimensionado para la corriente de conmutación del gate.	
Q_4	BC337	Complemento NPN de Q_2 en etapa push-pull. Mismo margen de corriente.	
M_1	IRF540N	MOSFET canal N. Se usa $V_{GG}=18\mathrm{V} < V_{GS,\mathrm{max}}=\pm20\mathrm{V}$, seguro para la compuerta. $P_{SW}\approx30\mathrm{mW}$, sin disipador.	
D_1	MUR460	Diodo ultrarrápido. $P_{cond} \approx 0.1 - 0.3$ W, con $\Delta T \approx 9^{\circ}$ C. No necesita disipador.	

MEMORIA DE CÁLCULO Y JUSTIFICACIÓN DE COMPONENTES.