Sieci komputerowe - ćwiczenia 1

Marcin Dąbrowski 315370

Zadanie 1

- Dla każdego z podanych poniżej adresów IP w notacji CIDR określ, czy jest to adres sieci, adres rozgłoszeniowy czy też adres komputera. W każdym przypadku wyznacz odpowiadający mu adres sieci, rozgłoszeniowy i jakiś adres IP innego komputera w tej samej sieci.
 - 10.1.2.3/8 = 00001001.0000001.00000010.00000011/8

 - Przykładowy adres 10.1.2.5 = 00001010.0000001.00000010.00000101
 - 156.17.0.0/16 = 10011100.00010001.00000000.00000000/16
 - Adres sieci 156.17.0.0 = 10011100.00010001.00000000.00000000

 - Przykładowy adres 156.17.1.2 = 10011100.00010001.00000001.00000010
 - 99.99.99.99/27 = 01100011.01100011.01100011.01100011/27
 - Adres sieci 99.99.99.96 = 01100011.01100011.01100011.01100000
 - Adres rozgłoszeniowy 99.99.99.127 = 01100011.01100011.01100011.011111111
 - $\ \operatorname{Przykładowy} \ \operatorname{adres} 99.99.99.111 = 01100011.01100011.01100011.01101111$
 - 156.17.64.4/30 = 10011100.00010001.01000000.00000100/30
 - Adres sieci 156.17.64.4 = 10011100.00010001.01000000.00000100
 - Adres rozgłoszeniowy 156.17.64.7 = 10011100.00010001.01000000.00000111
 - Przykładowy adres 156.17.64.5 = 10011100.00010001.01000000.00000101
 - 123.123.123.123/32 = 01111011.01111011.01111011.01111011/32
 - Adres sieci 123.123.123.123 = 01111011.01111011.01111011.01111011
 - Adres rozgłoszeniowy 123.123.123.123 = 01111011.01111011.01111011.01111011
 - $\ \operatorname{Przykładowy} \ \operatorname{adres} \ \operatorname{sieci} 123.123.123.123 = 01111011.01111011.01111011.01111011$

2. Podziel sieć 10.10.0.0/16 na 5 rozłącznych podsieci, tak aby każdy z adresów IP z sieci 10.10.0.0/16 był w jednej z tych 5 podsieci. Jak zmieniła się liczba adresów IP możliwych do użycia przy adresowaniu komputerów? Jaki jest minimalny rozmiar podsieci, który możesz uzyskać w ten sposób?

10.10.0.0/16 = 00001010.00001010.000000000.00000000/16

Podział sieci:

Jak zmieniła się liczba adresów IP możliwych do użycia przy adresowaniu komputerów?

Każda podsieć potrzebuje swojego adresu podsieci i adresu rozgłoszeniowego. Mając 5 podsieci "tracimy" łącznie 10 adresów. Mając tylko podsieć 10.10.0.0/16 "straciliśmy" już dwa adresy, więc finalnie możemy zaadresować o 8 mniej komputerów.

Jaki jest minimalny rozmiar podsieci, który możesz uzyskać w ten sposób?

Minimalny rozmiar podsieci jaki można uzyskać w ten sposób to 1.

Zadanie 3

- 3. Tablica routingu zawiera następujące wpisy (podsieć \rightarrow dokąd wysłać): Napisz równoważną tablicę routingu zawierającą jak najmniej wpisów.

 - 10.0.2.0/24 = 00001010.000000000.0000010.00000000/24 do routera B

```
-10.0.2.0 - 10.0.2.255
```

- 10.0.3.0/24 = 00001010.00000000.00000011.00000000/24 do routera B -10.0.3.0 10.0.3.255
- 10.0.1.0/24 = 00001010.00000000.00000001.00000000/24 do routera C -10.0.1.0 10.0.1.255
- 10.0.0.128/25 = 00001010.00000000.00000000.10000000/25 do routera B 10.0.0.128 10.0.0.255
- 10.0.1.8/29 = 00001010.000000000.0000001.00001000/29 do routera B 10.0.1.8 10.0.1.15
- 10.0.1.16/29 = 00001010.00000000.0000001.00010000/29 do routera B 10.0.1.16 10.0.1.23
- 10.0.1.24/29 = 00001010.00000000.0000001.00011000/29 do routera B 10.0.1.24 10.0.1.31

Tablica routingu

- - Wiemy, że adres 10.0.0.0/23 = 00001010.00000000.00000000.000000000/23 jest "sumą" adresów: 10.0.0.0/24 = 00001010.00000000.00000000.00000000/24 oraz

10.0.0.1/24 = 00001010.00000000.00000001.00000000/24. Możemy go więc zamienić na nie dwa.

- Zakres [10.0.0.0 10.0.4.255]
- 10.0.1.0/24 = 00001010.000000000.00000001.00000000/24 do routera C Zakres [10.0.1.0 10.0.1.255]
- 10.0.1.0/27 = 00001010.00000000.00000001.00000000/27 do routera B Zakres [10.0.1.0 10.0.1.31]
- 10.0.1.0/29 = 00001010.00000000.00000001.00000000/29 do routera C Zakres [10.0.1.0 10.0.1.7]

4. Wykonaj powyższe zadanie dla tablicy

- 10.0.0.0/8 = 00001010.00000000.00000000.00000000 do routera B Zakres: [10.0.0.0 10.255.255.255]
- 10.3.0.0/24 = 00001010.00000011.00000000.00000000 do routera C Zakres: [10.3.0.0 10.3.0.255]
- 10.3.0.32/27 = 00001010.00000011.00000000.00100000 do routera B Zakres: [10.3.0.32 10.3.0.63]
- 10.3.0.96/27 = 00001010.00000011.00000000.01100000 do routera B Zakres: [10.3.0.96 10.3.0.127]

Zakresy, które trzeba pokryć

- [0.0.0.0 10.0.0.0) do routera A
- [10.0.0.0 10.3.0.0) do routera B
- [10.3.0.0 10.3.0.31] do routera C
- [10.3.0.32 10.3.0.127] do routera B
- [10.3.0.128 10.3.0.255] do routera C

Tablica routingu:

- 10.0.0.0/8 = 00001010.000000000.00000000000000000/8 do routera B
- 10.3.0.0/27 = 00001010.00000011.00000000.00000000/27 do routera C
- 10.3.0.0/25 = 00001010.00000011.00000000.00000000/25 do routera B
- 10.3.0.0/24 = 00001010.00000011.00000000.00000000/24 do routera C

6. W podanej niżej sieci tablice routingu budowane są za pomocą algorytmu wektora odległości. Pokaż (krok po kroku), jak będzie się to odbywać. W ilu krokach zostanie osiągnięty stan stabilny?

T0

	Α	В	С	D	E	F	
Α		0 INF	INF	INF	INF	INF	
В	INF		0 INF	INF	INF	INF	
С	INF	INF		0 <mark>INF</mark>	INF	INF	
D	INF	INF	INF		0 <mark>INF</mark>	INF	
E	INF	INF	INF	INF		0 INF	
F	INF	INF	INF	INF	INF		0

T1

	Α	В	С	D	E	F
Α	(1	INF	INF	INF	INF
В	1	L 0	1	INF	INF	INF
С	INF	1	C	INF	1	1
D	INF	INF	INF	C) 1	INF
E	INF	INF	1	և 1	0	1
F	INF	INF	1	INF	1	0

T2

	A	В	С	D	E	F
А	0	1	2	INF	INF	INF
В	1	0	1	INF	2	2
С	2	1	0	2	1	. 1
D	INF	INF	2	0	1	2
E	INF	2	1	1	0	1
F	INF	2	1	2	1	0

T3

	A	В	С	D	E	F
Α	0	1	2	INF	3	3
В	1	0	1	3	2	2
С	2	1	0	2	1	1
D	INF	3	2	0	1	2
E	3	2	1	1	0	1
F	3	2	1	2	1	0

T4

	Α	В	С	D	E	F
Α	C	1	2	4	3	3
В	1	. 0	1	3	2	2
С	2	1	0	2	1	1
D	4	3	2	0	1	2
E	3	2	1	1	0	1
F	3	2	1	2	1	0

7. Załóżmy, że w powyższej sieci tablice routingu zostały już zbudowane. Co będzie się działo, jeśli zostanie dodane połączenie między routerami A i D?

T0

T1

	Α	В	С	D	E	F
Α	0	1	2	1	3	3
В	1	. 0	1	3	2	2
С	2	1	0	2	1	1
D	1	. 3	2	0	1	2
E	3	2	1	1	0	1
F	3	2	1	2	1	0

T2

	Α	В	С	D	E	F
Α	0	1	2	1	2	3
В	1	0	1	2	2	2
С	2	1	0	2	1	1
D	1	2	2	0	1	2
E	2	2	1	1	0	1
F	3	2	1	2	1	0