Python Program Development for the Detection of four Antimicrobial Resistance (AMR) Genes in specific Lactiplantibacillus plantarum (L. plantarum) strains

Paner, Tiongco, Vergara

Lactiplantibacillus plantarum (L. plantarum)

L. plantarum is acknowledged as a safe microorganism and belongs to the group of Gram-positive lactic acid bacteria (LAB) species. It has been shown to exhibit numerous essential probiotic traits, is extremely adaptable, and can effectively establish and thrive in the human gastrointestinal tract (Fidanza et al., 2021). Hence, it serves various purposes, including enhancing immunity, promoting nutrient absorption, and preserving the equilibrium of the intestinal flora (Yang et al., 2022).

Figure 1. Lactiplantibacillus plantarum bacteria as seen in a colored scanning electron micrograph (SEM) from SCIENCEphotoLIBRARY.

Antimicrobial Resistance (AMR) genes Present in the Reference Genome (ASM991365v1)

FUNCTION OF AMR GENES

gyrA

Protein: **DNA gyrase subunit A**Confers resistance to? **Ciprofloxacin** (Pell et al., 2021)

msrA_1

Protein: **DNA gyrase subunit A**Confers resistance to? **Macrolides, lincosamides, and streptogramins** (Ammor et al., 2007)

msrB

Protein: Peptide methionine sulfoxide reductase MsrB
Confers resistance to?
Macrolides, lincosamides, and streptogramins (Ammor et al., 2007)

msrA_2

Protein: **DNA gyrase subunit A**Confers resistance to? **Macrolides, lincosamides, and streptogramins** (Ammor et al., 2007)

SIGNIFICANCE

Understand resistance epidemiology

Verification of non-susceptible phenotypes

For identification of resistant strains, when genes are weakly expressed *in vitro*

For understanding the underlying mechanisms and the epidemiology of antimicrobial resistance

Objectives

- 1.To identify highly conserved Antimicrobial Resistance (AMR) genes across five *L. plantarum* strains from an established reference genome
- 2.To develop a program for the detection of the highly conserved AMR genes present in specific *L. plantarum* strains
- 3. To run a sequence of L. plantarum strain in the program for validation of gene detection

Concept of the Program

Concept of the Program

Methods: Selection of Genes

	Genome Assembly	Link to NCBI
Reference Genome	ASM991365v1	https://www.ncbi.nlm.nih.gov/data sets/genome/GCF 009913655.1/
Strain 1	ASM1058694v1	https://www.ncbi.nlm.nih.gov/data sets/genome/GCA 010586945.1/
Strain 2	ASM1413173v1	https://www.ncbi.nlm.nih.gov/data sets/genome/GCF 014131735.1/
Strain 3	ASM473096v1	https://www.ncbi.nlm.nih.gov/data sets/genome/GCF 004730965.1/
Strain 4	ASM170433v1	https://www.ncbi.nlm.nih.gov/data sets/genome/GCF 001704335.1/
Strain 5	ASM170431v1	https://www.ncbi.nlm.nih.gov/data sets/genome/GCF 001704315.1/

Methods: Selection of Genes

Gene	Protein	Location
ddl_1	D-alanineD-alanine ligase	complement(263558264670)
ddl_2	D-alanineD-alanine ligase	24179232418984
dfr:A	Dihydrofolate reductase	complement(3020120302061
folA	Dihydrofolate reductase	601383601922
gyrA	DNA gyrase subunit A	13429801345541
lmrA	Multidrug resistance ABC transporter ATP- binding and permease protein	complement(719708721465)
msrA_l	Peptide methionine sulfoxide reductase MsrA	complement(2988326298884
msrA_2	Peptide methionine sulfoxide reductase MsrA	complement(31230723123602
msrB	Peptide methionine sulfoxide reductase MsrB	complement(29888692989303
гроВ	DNA-directed RNA polymerase subunit beta	22441472247752
tetA	Tetracycline resistance protein, class B	19972631998459
tetO	Tetracycline resistance protein TetO	14192231421241

Thanks

REFERENCES

- Pell, L. G., Horne, R. G., Huntley, S., Rahman, H., Kar, S., Islam, M. S., Evans, K. C., Saha, S. K., Campigotto, A., Morris, S. K., Roth, D. E., & Sherman, P. M. (2021). Antimicrobial susceptibilities and comparative whole genome analysis of two isolates of the probiotic bacterium Lactiplantibacillus plantarum, strain ATCC 202195. *Scientific Reports*, *11*(1), 15893. https://doi.org/10.1038/s41598-021-94997-6
- Yang, S., Deng, C., Li, Y., Li, W., Wu, Q., Sun, Z., Cao, Z., & Lin, Q. (2022). Complete genome sequence of Lactiplantibacillus plantarum ST, a potential probiotic strain with antibacterial properties. *Han'gug Dongmul Jawon Gwahag Hoeji/Hanguk Dongmul Jawon Gwahak Hoeji/Journal of Animal Science and Technology, 64*(1), 183–186. https://doi.org/10.5187/jast.2022.e7
- Fidanza, M., Panigrahi, P., & Kollmann, T. R. (2021). Lactiplantibacillus plantarum–Nomad and ideal probiotic. Frontiers in *Microbiology, 12*. https://doi.org/10.3389/fmicb.2021.712236
- Yilmaz, B., Bangar, S. P., Echegaray, N., Suri, S., Tomasevic, I., Lorenzo, J. M., Melekoglu, E., Rocha, J. M., & Ozogul, F. (2022). The Impacts of Lactiplantibacillus plantarum on the Functional Properties of Fermented Foods: A Review of Current Knowledge. *Microorganisms*, 10(4), 826. https://doi.org/10.3390/microorganisms10040826
- Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O., Aarestrup, F. M., & Larsen, M. V. (2012). Identification of acquired antimicrobial resistance genes. *Journal of Antimicrobial Chemotherapy*, 67(11), 2640–2644. https://doi.org/10.1093/jac/dks261
- Ammor, M. S., Flórez, A. B., Van Hoek, A. H., De Los Reyes-Gavilán, C. G., Aarts, H. J., Margolles, A., & Mayo, B. (2007). Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. *Microbial Physiology*, 14(1–3), 6–15. https://doi.org/10.1159/000106077