Квантово-химические расчеты в термохимии

Лекция 3

- 1. Расчет равновесного состава
- 2. Расчет константы равновесия
- 3. Расчет константы скорости

Химическое равновесие в смеси идеальных газов

$$\Delta G_T^{\circ}(i) = \Delta H_T^{\circ}(i) - T\Delta S_T^{\circ}(i)$$

Равновесный состав смеси конформеров Равновесный состав реагентов и продуктов реакции Константа равновесия

$$H_T^{\circ}(i) = E_e + \text{ZPE} + [H_T^{\circ} - H_0^{\circ}]$$

- Е_е полная электронная энергия, вычисленная данным квантовохимическим методом. Это энергия изучаемой молекулярной системы относительно энергии составляющих ее ядер и электронов. Отвечает минимуму на поверхности потенциальной энергии
- E_0 энергия молекулы в основном состоянии (v = 0) $E_0 = E_{\rm e} + {\sf ZPE}$
- ZPE (zero point vibrational energy, ZPVE) энергия нулевой точки, колебательная энергия, которую молекулы сохраняют даже при абсолютном нуле температуры

$$H_T^{\circ}(i) = E_e + \text{ZPE} + [H_T^{\circ} - H_0^{\circ}]$$

 $H_{\tau}^{\circ} - H_{0}^{\circ}$ – изменение энтальпии вещества при изменении температуры от 0 до T K (в квантово-химических расчетах эту величину также называют термической поправкой)

$$ZPE = \frac{1}{2}Nhc\sum_{i}v_{i}$$

$$H_T^{\circ}-H_0^{\circ}=4RT+Nhc\sum_i rac{v_i}{e^{rac{hcv_i}{kT}}-1}$$
 для нелинейных молекул

$$H_T^\circ - H_0^\circ = 3.5RT + Nhc\sum_i rac{v_i}{e^{rac{hcv_i}{kT}} - 1}$$
 для линейных молекул

 v_i – частоты гармонических колебаний

Распечатка термохимии в Gaussian

. . .

```
Zero-point correction=
                                           0.127048 (Hartree)
Thermal correction to Energy=
                                           0.132971
Thermal correction to Enthalpy=
                                           0.133915
Thermal correction to Gibbs Free Energy=
                                           0.099582
Sum of electronic and zero-point Energies=
                                                 -158.344919
Sum of electronic \and thermal Energies=
                                              -158.338996
Sum of electronic and thermal Enthalpies -158.338052
                                                 -158.372386
Sum of electronic and thermal Free Energies=
         E (Thermal)
                                  CV
                                                     S
         KCal/Mol
                          Cal/Mol-Kelvin Cal/Mol-Kelvin
         83.440
                             20.337
                                                 72.261
 Total
                ZPE + \overline{[H_T^{\circ} - H_0^{\circ}]}
```

Распечатка термохимии в Gaussian

. . .

```
0.127048 (Hartree)
Zero-point correction=
                                                 0.132971
Thermal correction to Energy=
Thermal correction to Enthalpy=
                                                 0.133915
                                                 0.099582
Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
                                                       -158.344919
Sum of electronic and thermal Energies=
                                                    -158.338996
Sum of electronic and thermal Enthalpies -158.338052
Sum of electronic and thermal Free Energies = -158.372386
            H_T^{\circ}(i) = E_e + \text{ZPE} + [H_T^{\circ} - H_0^{\circ}]
                                     G_T^{\circ}(i) = H_T^{\circ}(i) - T \times S_T^{\circ}(i)
```

можно использовать, если энтропия рассчитана правильно, иначе необходимо вводить поправку

$$S_{\rm corr} = R \ln(n/\sigma)$$

Поправка в энтропию $Rln(n/\sigma)$

1. После оптимизации геометрии проверить в GaussView симметрию молекулы: Tools \rightarrow Point Group

Расчет проводился с симметрией Cs (σ = 1), тогда как молекула имеет симметрию D2h (σ = 4). В значение энтропии необходимо внести поправку -Rln4.

Скорее всего, расчет проводился с симметрией D2h и поправку вводить не надо. Для полной уверенности необходимо проверить распечатку

2. Если симметрия молекулы C_n (C_1 , C_2 , C_3 , ...) или D_n (D_2 , D_3 , D_4 , ...), то к энтропии необходимо добавить поправку +Rln2.

Расчет равновесного состава

Мольная доля конформера $p_T^{\circ}(i)$ при температуре T рассчитывается на основе распределения Больцмана:

$$p_T^{\circ}(i) = \frac{e^{-\Delta G_T^{\circ}(i)/RT}}{\sum_i e^{-\Delta G_T^{\circ}(i)/RT}}$$

где
$$\Delta G_T^{\circ}(i) = \Delta H_T^{\circ}(i) - T\Delta S_T^{\circ}(i)$$
 $H_T^{\circ}(i) = E_e + ZPE + [H_T^{\circ} - H_0^{\circ}]$

где $E_{\rm e}$, ZPE и $[H_T^\circ - H_0^\circ]$ – определяемые из квантово-химического расчета электронная энергия конформера, поправка на нулевую колебательную энергию и термическая (энтальпийная) поправка.

Расчет конформационного состава бутана

$$p_T^{\circ}(i) = \frac{e^{-\Delta G_T^{\circ}(i)/RT}}{\sum_i e^{-\Delta G_T^{\circ}(i)/RT}}$$

Sum of electronic and thermal Free Energies=

Конфор-	Симметрия	$G_T^{\circ}(i)$	$\Delta G_T^{\circ}(i)$	$e^{-\Delta G_T^{\circ}(i)/RT}$	$p_T^{\circ}(i)$
мер	при оптимизации геометрии	Hartree	kJ/mol		
anti	C_{2h} , $\sigma = 2$	-158.372386	0.00	1.0000	0.815
gauche	C_2 , $\sigma = 2$	-158.370986	3.68	0.2265	0.185

Расчет конформационного состава бутана

$$p_T^{\circ}(i) = \frac{e^{-\Delta G_T^{\circ}(i)/RT}}{\sum_i e^{-\Delta G_T^{\circ}(i)/RT}}$$

где
$$\Delta G_T^{\circ}(i) = \Delta H_T^{\circ}(i) - T\Delta S_T^{\circ}(i)$$

Sum of electronic and thermal Enthalpies=

	$H_T^{\circ}(i)$	$\Delta H_T^{\circ}(i)$	$S_T^{\circ}(i)$	n	$S_T^{\circ}(i)$	$\Delta S_T^{\circ}(i)$	$\Delta G_T^{\circ}(i)$	$p_T^{\circ}(i)$
	$= E_e + ZPE$				$+R\ln(n)$			
	$+[H_T^{\circ}-H_0^{\circ}]$							
	Hartree	kJ/mol	J/(K·mol)		J/(K·mol)	J/(K·mol)	kJ/mol	
anti (<i>C</i> _{2h})*	-158.33805	0.00	302.34	1	302.34	0.00	0.00	0.69
gauche $(C_2)^*$	-158.33668	3.61	302.13	2	307.89	5.55	1.96	0.31

^{*} Термохимия рассчитана для $\sigma = 2$.

Расчет конформационного состава бутана

$$p_T^{\circ}(i) = \frac{e^{-\Delta G_T^{\circ}(i)/RT}}{\sum_i e^{-\Delta G_T^{\circ}(i)/RT}}$$

где
$$\Delta G_T^{\circ}(i) = \Delta H_T^{\circ}(i) - T\Delta S_T^{\circ}(i)$$

Тип расчета	Масштабирование частот колебаний	Конформационный состав
G (без учета	да	82% анти
оптических изомеров)	нет	82% анти
G=H-TS (с учетом	да	69% анти
оптических изомеров)	нет	69% анти

Для реакции

$$aA + bB \rightleftharpoons cC + dD$$

константа равновесия K_p вычисляется из парциальных давлений компонент реакции (p_x) :

$$K_p(T) = \frac{[p_{\rm C}]^{\rm c}[p_{\rm D}]^{\rm d}}{[p_{\rm A}]^{\rm a}[p_{\rm B}]^{\rm b}}$$

Эта константа связана с константой равновесия в терминах

молярной концентрации
$$K_c(T) = \frac{[C]^c[D]^d}{[A]^a[B]^b}$$
 выражением

$$K_p = K_c(RT)^{\Delta n}$$
$$\Delta n = (c+d) - (a+b)$$

Константа равновесия связана с изменением свободной энергии между реагентами и продуктами:

$$\Delta G_T^{\circ} = -RT \ln K_p(T)$$

$$\mathbf{aA} + \mathbf{bB} \rightleftarrows \mathbf{cC} + \mathbf{dD}$$

$$K_p(T)=e^{-\Delta G_T^\circ/RT}$$

где $\Delta G_T^\circ(i)=\Delta H_T^\circ(i)-T\Delta S_T^\circ(i)$

 G_T° : Sum of electronic and thermal Free Energies

Можно брать из термохимической распечатки, если

- 1) при оптимизации геометрии использовалось правильное число симметрии и
- 2) у молекулы нет оптических изомеров

$$aA + bB \rightleftharpoons cC + dD$$

$$K_p(T) = \frac{Q_{\rm C}Q_{\rm D}}{Q_AQ_{\rm B}}e^{-\Delta E_0/RT}$$

где Q_X — молекулярные стандартные суммы по сотояниям $E_0 = E_e + ZPE$

```
Распечатка термохимии в Gaussian
```

```
E_0 = E_e + ZPE
```

• •

Sum of electronic and zero-point Energies = -158.344919

• • •

 Q_X

Q Log10(Q) Ln(Q)
Total Bot 0.204821D-23 -23.688625 -54.545074
Total V=0 0.796606D+15 14.901244 34.311382
Vib (Bot) 0.150072D-36 -36.823701 -84.789705

• • •

$$aA + bB \rightleftharpoons cC + dD$$

$$K_p(T) = \frac{Q_{\rm C}Q_{\rm D}}{Q_AQ_{\rm B}}e^{-\Delta E_0/RT}$$

$$Q(Total v=0)$$

Можно брать из термохимической распечатки, если

- 1) при оптимизации геометрии использовалось правильное число симметрии и
- 2) у молекулы нет оптических изомеров

ИНАЧЕ

$$Q_X = Q(Total \ v=0) \times (n/\sigma)$$

n – количество оптических изомеров

 σ – число симметрии

Расчет константы равновесия между конформерами бутана

Для равновесия между *гош*- и *анти*-конформерами бутана anti-**Butane** \rightleftarrows gauche-**Butane**

константа равновесия может быть вычислена по соотношениям:

$$K_p(T) = e^{-\Delta G_T^{\circ}/RT}$$

$$K_p(T) = \frac{Q_{anti}}{Q_{gauche}} e^{-\Delta E_0/RT}$$

Расчет константы равновесия между конформерами бутана

$$K_p(T) = e^{-\Delta G_T^{\circ}/RT}$$

Sum of electronic and thermal Enthalpies=

 $\Delta G_T^{\circ}(i) = \Delta H_T^{\circ}(i) - T \Delta S_T^{\circ}(i)$

	$H_T^{\circ}(i)$	$\Delta H_T^{\circ}(i)$	$S_T^{\circ}(i)$	n	$S_T^{\circ}(i)$	$\Delta S_T^{\circ}(i)$	$\Delta G_T^{\circ}(i)$	$K_{p}(T)$
	$= E_e + ZPE$				$+R\ln(n)$			•
	$+[H_T^{\circ}-H_0^{\circ}]$							
	Hartree	kJ/mol	J/(K·mol)		J/(K·mol)	J/(K·mol)	kJ/mol	
anti	-158.33805	0.00	302.34	1	302.34	0.00	0.00	
$(C_{2h})^*$								0.45
gauche $(C_2)^*$	-158.33668	3.61	302.13	2	307.89	5.55	1.96	

^{*} Термохимия рассчитана для $\sigma = 2$.

Расчет константы равновесия между конформерами бутана

$$K_p(T) = \frac{Q_{anti}}{Q_{gauche}} e^{-\Delta E_0/RT}$$

Sum of electronic and zero-point Energies=

Q: Total v=0

	σ	n	$E_0 = E_e + \text{ZPE}$	ΔE_0	Q(i)	$Q(i)\times n$	$K_{p}(T)$
anti	C _{2h} *	1	-158.339625	0.00	3.778E+12	3.778E+12	1
gauche	C ₂ *	2	-158.338186	3.78	3.930E+12	7.860E+12	0.45

^{*} Термохимия рассчитана для $\sigma = 2$.

Расчет конформационного состава и константы равновесия при различных температурах

anti Butane \rightleftharpoons *gauche* Butane

	T = 29	8.15 K	T = 5	500 K
	p_i	K_p	p_i	K_p
anti	69%	0.45	56%	0.70
gauche	31%	0.45	44%	0.79

Связь величины константы равновесия с количеством реагентов и продуктов

Magnitude of K increasing \rightarrow

Composition of equilibrium mixture

Aston, Szasz, 1946

 χ_{A} и χ_{B} – мольные доли конформеров

$$S^{\circ}(T) = \chi_A S_A^{\circ}(T) + \chi_B S_B^{\circ}(T) - R[\chi_A \ln \chi_A + \chi_B \ln \chi_B]$$

$$\begin{split} C_{p}^{\circ}(T) &= \chi_{A} C_{p,A}^{\circ}(T) + \chi_{B} C_{p,B}^{\circ}(T) + \\ &+ \frac{\chi_{A} \chi_{B}}{R} \left[\frac{\Delta H^{\circ}(0)}{T} + \frac{H_{B}^{\circ}(T) - H_{B}^{\circ}(0)}{T} - \frac{H_{A}^{\circ}(T) - H_{A}^{\circ}(0)}{T} \right]^{2} \end{split}$$

$$\frac{H^{\circ}(T) - H^{\circ}(0)}{T} = \chi_{A} \left[\frac{H_{A}^{\circ}(T) - H_{A}^{\circ}(0)}{T} \right] + \chi_{B} \left[\frac{H_{B}^{\circ}(T) - H_{B}^{\circ}(0)}{T} + \frac{\Delta H^{\circ}(0)}{T} \right]$$

$$\Delta H^{\circ}(0) = H_{B}^{\circ}(0) - H_{A}^{\circ}(0) \approx \Delta E_{0}$$

anti Butane \rightleftharpoons *gauche* Butane

<i>T</i> , K	$S^{\circ}(T)_{\mathfrak{I}$	$S^{\circ}(T)_{\mathfrak{s}\kappa cn} - S^{\circ}(T)_{\mathfrak{p}acq}$			
_ ,	Дж·К ⁻¹ ·моль ⁻¹	Ж. р. – г. о.	С учетом внутреннего вращения	Смесь конфор- меров	
298.2	309.6 ± 0.8	7.2	-2.9	2.2	

Диэтиловый эфир

<i>T</i> , K	$S^{\circ}(T)_{\mathfrak{s}\kappa cn}$	$S^{\circ}(T)$	$S^{\circ}(T)_{\mathfrak{s}\kappa cn} - S^{\circ}(T)_{pacq}$			
	Дж·К ⁻¹ ·моль ⁻¹	Ж. р. – г. о.	С учетом внутрен- него вращения	Смесь конфор- меров		
298.2	343.3	9.2	-0.4	1.6		

Кабо Г.Я., Роганов Г.Н., Френкель М.Л. Термодинамика и равновесия изомеров. – Минск: Университетское, 1986.

- литературные ссылки на оригинальные работы
- формулы и таблицы для расчета конформационных вкладов без ограничения числа конформеров

Термодинамика и кинетика

Координата реакции

Термодинамика и кинетика

Использование катализаторов

Расчет константы скорости

$$\Delta G^{\#}$$
A + B \rightarrow AB $^{\#}$ \rightarrow C + D

$$k(T) = \frac{k_B T}{h} (RT)^{n-1} e^{-\Delta G^{\#}/RT} \qquad k(T) = \frac{k_B T}{h} (RT)^{n-1} \frac{Q_{AB}^{\#}}{Q_A Q_B} e^{-\Delta E_0^{\#}/RT}$$

$$\Delta G^{\#} = \Delta H^{\#} - T\Delta S^{\#}$$

$$\Delta E_0^{\#} = \Delta (E_e^{\#} + \text{ZPE})$$

 $Q_{AB}^{\#}$, Q_A и Q_B — статистические суммы

активированного комплекса и реагентов

n – порядок реакции

Расчет константы скорости

$$\Delta G^{\#} = \Delta H^{\#} - T \Delta S^{\#}$$

 G_T° : Sum of electronic and thermal Free Energies

$$Q_{AB}^{\#}$$
, Q_A и Q_B

$$Q(Total v=0)$$

Можно брать из термохимической распечатки, если

- 1) при оптимизации геометрии использовалось правильное число симметрии и
- 2) у молекулы нет оптических изомеров

Если оптимизация геометрии реагентов и активированного комплекса проводилась без учета симметрии и/или у молекулы есть оптические изомеры, то необходимо внести поправки в значения энтропии и статистических сумм по состояниям:

$$S_{\rm corr} = S + R \ln(n/\sigma)$$

$$Q_{\rm corr} = Q \cdot (n/\sigma)$$

σ – число симметрии

n – число оптических изомеров

$$\Delta E_0^{\#} = \Delta (E_e^{\#} + \text{ZPE})$$

Sum of electronic and zero-point Energies

Проблемы с определением переходных состояний

- TS не наблюдаются экспериментально и поэтому нет данных об их структуре, которые могли бы использоваться при их моделировании. Благодаря наличию «слабых» связей, выбор начальной геометрии ее оптимизация для TS сложнее, чем для стабильных структур
- Седловым точкам уделялось меньше внимания математически меньше алгоритмов разработано для их локализации
- □ Поверхность потенциальной энергии часто более плоская вблизи TS и, следовательно, может быть сложно предсказать точно структуру TS
- □ Некоторые реакции не имеют переходных состояний (CH₃ + CH₃ \rightarrow CH₃CH₃, CH₃ + H₂C=CH₂ \rightarrow CH₃CH₂CH₂ и др.)
- □ Переходных состояний может быть не одно, когда реакция проходит в несколько стадий с образованием нескольких переходных состояний

Моделирование переходного состояния

Диссоциация формальдегида

Моделирование структуры с помощью GaussView

GaussView: полезные сочетания клавиш при моделировании структур

молекул и молекул относительно друг друга

Alt + Ctrl

Alt + Shift

Определение переходных состояний

Для поиска переходных состояний (одна отрицательная частота) используются три метода

```
Opt=(TS,CalcFC)
TS
```

Opt=QST2
R (reagent), P (product)

Opt=QST3 R, P, TS

Поиск переходного состояния: Opt=(TS,CalcFC)

Berny algorithm

работает по тому же алгоритму,
 что и при поиске минимума:
 идет поиск седловой точки,
 двигаясь «вверх по долине»

□ требует хорошего задания начальной геометрии, в противном случае, как правило, не приводит к определению переходного состояния

Opt=(TS,CalcFC)

INPUT файл

# B3L3	YP/6-31G(d,p) Or	pt=(TS,CalcFC)	Freq
TS for	r H2C=O> HO-	-СН	
0 1			
0	0.23399014	0.51724137	0.0000000
С	1.66399014	0.51724137	0.0000000
H	2.19899014	1.44388855	0.0000000
H	0.92586564	-1.19330304	0.00883150

OUTPUT файл

Search for a saddle point of order 1.

Opt=(TS,CalcFC)

OUTPUT файл

Item	Value	Threshold Co	nverged?
Maximum Force	0.137017	0.000450	NO
RMS Force	0.070317	0.000300	NO
Maximum Displacement	0.108261	0.001800	NO
RMS Displacement	0.073569	0.001200	NO
Predicted change in Energy=	-1.209556	0-02	

Optimization stopped.

- -- Wrong number of Negative eigenvalues: Desired= 1 Actual= 3
- -- Flag reset to prevent archiving.

! Non-Optimized Parameters!

.....

Convergence failure -- run terminated.

Error termination via Lnk1e in C:\G09W\I502.exe

Opt=(TS,CalcFC)

Использование Opt=ModRedundant при локализации TS

$$CH_4 + OH \rightarrow CH_3 + H_2O$$

F freeze the coordinate in the optimization

Поиск переходного состояния: Opt=QST2

- □ Opt=QST2 проводит поиск переходного состояния, используя метод STQN (Synchronous Transit-Guided Quasi-Newton
- □ Опция Opt=QST2 требует последовательного задания геометрии реагентов и продуктов во входном файле
- ☐ Геометрия переходного состояния интерполируется автоматически как промежуточная между реагентами и продуктами
- □ Атомы в двух структурах должны быть определены в одинаковом порядке

$H_2C=O \rightarrow trans-HOCH$

INPUT файл

```
# B3LYP/6-31G(d,p) Opt=QST2 Freq
Reactants: H2C=0
0 1
C, 0, -0.0233311423, 0., -0.0134702413
Products: HOCH
0 1
C,0,-0.2948608752,0.,-0.0105892644
```

$H_2C=O \rightarrow trans-HOCH$

INPUT файл в GaussView

Результат оптимизации с помощью Opt=QST2

Принципиально важно, чтобы порядок нумерации атомов сохранялся одинаковым в обеих структурах

$$CH_4 + OH \rightarrow CH_3 + H_2O$$

INPUT файл в GaussView

QST2: геометрия переходного состояния интерполируется автоматически как промежуточная между реагентами и продуктами.

Полезный совет: посмотрите на интерполированную структуру в GaussView сразу после запуска расчета в Gaussian

Структура TS сразу после запуска расчета

Optimization stopped. Number of steps exceeded, Nstep = 38 Можно уменьшить расстояние между CH_4 и OH, а также CH_3 и H_2O в INPUT файле, или выполнить новый расчет: # Opt=(QST2,MaxCycle=80)

Оптимизированная структура TS

Поиск переходного состояния: Opt=QST3

- □ Opt=QST3, как и QST2 проводит поиск переходного состояния, используя метод STQN (Synchronous Transit-Guided Quasi-Newton
- □ Во входном файле следует последовательно задать геометрию реагентов, продуктов и предполагаемого переходного состояния
- Атомы в трех структурах должны быть определены в одинаковом порядке

trans-HOCH → cis-HOCH

INPUT файл

```
# B3LYP/6-31G(d,p) Opt=QST3 Freq
trans-HOCH
0 1
C,0,-0.2948608752,0.,-0.0105892644
cis-HOCH
0 1
C, 0, -0.2654564458, 0., -0.0511239379
TS
0 1
0 1 1.20
```

trans-HOCH → cis-HOCH

INPUT файл в GaussView

Результат оптимизации с помощью Opt=QST2

Визуализация мнимых частот с помощью GaussView

Анимация частот из файлов TS.out

Расчет пути реакции (intrinsic reaction coordinate, IRC)

- □ Исследование пути реакции от переходного состояния вниз по поверхности потенциальной энергии. Путь реакции соединяет реагенты и продукты через переходное состояние
- □ Используется внутренняя координата реакции в массвзвешенных декартовых координатах
- □ Ключевое слово IRC
- □ Процедура подразумевает, что предварительно было оптимизировано переходное состояние и информация о нем содержится в *.chk файле

$$H_2C=O \rightarrow trans-HOCH$$
 INPUT файл

```
%chk=TS
# B3LYP/6-311+G(d,p) IRC=RCFC Guess=Read
Geom=AllCheck
```

Опции IRC

RCFC: чтение силовых постоянных (read cartesian force constants) из файла *.chk

CalcFC: расчет силовых постоянных в начальной точке

Forward: расчет в прямом направлении

Reverse: расчет в обратном направлении

Опции IRC

MaxPoint=N: число точек вдоль пути реакции в каждом направлении; по умолчанию N=6

StepSize=N: размер шага вдоль пути реакции в единицах 0.01 а.е.; по умолчанию N=10 и др.

OUTPUT файл

und.		TS
1 Found.		
	_	6 точек в прямом направлении
6 Found.		
	_	6 точек в обратном
12 Found.		направлении
	1 Found. 6 Found.	1 Found. 6 Found.

OUTPUT файл: $H_2C=O \rightarrow TS^\# \rightarrow trans-HOCH$

Summary of reaction path following:								
(Int. Coord: Angstroms, and Degrees)								
								
	ENERGY R	X.COORD	X1	Y1	Z1			
1	-113.74296	-0.59953	0.10383	0.00000	-0.33347			
2	-113.73160	-0.49953	0.10698	0.00000	-0.33661			
3	-113.72123	-0.39953	0.11008	0.00000	-0.33963			
4	-113.71236	-0.29953	0.11316	0.00000	-0.34254			
5	-113.70553	-0.19953	0.11622	0.00000	-0.34538			
6	-113.70120	-0.09953	0.11928	0.00000	-0.34814			
7	-113.69964	0.00000	0.12251	0.00000	-0.35092			
8	-113.70114	0.09955	0.12573	0.00000	-0.35363			
9	-113.70506	0.19955	0.12879	0.00000	-0.35611			
10	-113.71089	0.29954	0.13186	0.00000	-0.35858			
11	-113.71800	0.39953	0.13496	0.00000	-0.36101			
12	-113.72580	0.49952	0.13806	0.00000	-0.36341			
13	-113.73378	0.59950	0.14114	0.00000	-0.36580			
	1 2 3 4 5 6 7 8 9 10 11 12	ENERGY R 1 -113.74296 2 -113.73160 3 -113.72123 4 -113.71236 5 -113.70553 6 -113.70120 7 -113.69964 8 -113.70114 9 -113.70506 10 -113.71089 11 -113.71800 12 -113.72580	ENERGY RX.COORD 1 -113.74296 -0.59953 2 -113.73160 -0.49953 3 -113.72123 -0.39953 4 -113.71236 -0.29953 5 -113.70553 -0.19953 6 -113.70120 -0.09953 7 -113.69964 0.00000 8 -113.70114 0.09955 9 -113.70506 0.19955 10 -113.71089 0.29954 11 -113.71800 0.39953 12 -113.72580 0.49952	ENERGY RX.COORD X1 1 -113.74296 -0.59953 0.10383 2 -113.73160 -0.49953 0.10698 3 -113.72123 -0.39953 0.11008 4 -113.71236 -0.29953 0.11316 5 -113.70553 -0.19953 0.11622 6 -113.70120 -0.09953 0.11928 7 -113.69964 0.00000 0.12251 8 -113.70114 0.09955 0.12573 9 -113.70506 0.19955 0.12879 10 -113.71089 0.29954 0.13186 11 -113.71800 0.39953 0.13496 12 -113.72580 0.49952 0.13806	ENERGY RX.COORD X1 Y1 1 -113.74296 -0.59953 0.10383 0.00000 2 -113.73160 -0.49953 0.10698 0.00000 3 -113.72123 -0.39953 0.11008 0.00000 4 -113.71236 -0.29953 0.11316 0.00000 5 -113.70553 -0.19953 0.11622 0.00000 6 -113.70120 -0.09953 0.11928 0.00000 7 -113.69964 0.00000 0.12251 0.00000 8 -113.70114 0.09955 0.12573 0.00000 9 -113.70506 0.19955 0.12573 0.00000 10 -113.71089 0.29954 0.13186 0.00000 11 -113.71800 0.39953 0.13496 0.00000 12 -113.72580 0.49952 0.13806 0.00000			

$$H_2C=O \rightarrow TS^\# \rightarrow trans-HOCH$$

OUTPUT файл

Results → IRC/Path...

Квантово-химические модели для расчета констант равновесия констант скорости

- □ DFT и MP2 расчеты, даже с большими базисами, могут не дать хорошего согласия с экспериментом
- В этом случае часто можно достичь хорошего результата при использовании композитных методов или проведя оптимизацию геометрии и расчет частот колебаний на более низком уровне, а затем рассчитав энергию для оптимизированной структуры на более высоком уровне:

DSD-PBEP86-D3(BJ)/def2-TZVP//B3LYP/6-311++G(d,p)

SP (single point) Opt Freq

$$E_{e}$$
 ZPE, [H(T) - H(0)]

Оптимизация геометрии и расчет частот колебаний проводятся методом B3LYP/6-311++G(d,p). Далее энергия для этой оптимизированной структуры рассчитывается на более высоком уровне DSD-PBEP86-D3(BJ)/def2-TZVP

Экспериментальные данные по константам скорости

- 1. Оригинальные работы
- 2. База данных NIST Chemical Kinetics Database

https://kinetics.nist.gov/kinetics/

Задача 2

Рассчитать для предложенной реакции константу равновесия и константу скорости:

- 1. Указанным методом провести оптимизацию геометрии и расчет частот колебаний реагентов и продуктов реакции. Использовать соответствующий масштабирующий множитель для частот колебаний и не забывать об учете симметрии молекулы и оптической изомерии.
- 2. Определить переходное состояние используя метод QST2 или QST3.
- 3. Рассчитать константы равновесия и константы скорости при указанных температурах.

Результаты представить в Excel файле:

Лист1. Для всех найденных структур должны быть приведены

- рисунок структуры
- значение самой низкой частоты (для TS должна быть одна отрицательная частота)
- симметрия и число симметрии
- количество оптических изомеров
- энергия конформера в Хартри
- относительная энергия в кДж/моль (если конформеров несколько)

Задача 2

Лист2. Результаты расчета констант равновесия

Лист3. Результаты расчета констант скорости

Предлагаемый вариант представления результатов на Лист2:

1	Α	В	С	D	E	F	G	Н	I	J	K	L	M
1													
2								R	8.3144626	J K-1 mol-1			
3													
4									H(T) = Ee + ZPE + H(T) - H(0)				
5							Scorr		Sum of electronic and			$\Delta G = \Delta H - T \Delta S$	
6		T, K	σ	n _{opt}	S	S	$S + RIn(n/\sigma)$	ΔrS	thermal Enthalpies=	H(T)	ΔrH	ΔrG	Кр
7					cal K-1 mol-1	J K-1 mol-1	J K-1 mol-1	J K-1 mol-1	Hartree	kJ mol-1	kJ/mol	kJ/mol	
8													
9	$A \rightarrow B$												
LO	Кр												
1	Α	298.2	1	2	66.884	279.843	285.606						
.2	В	298.2											
.2													
.4	Α	500											
.5	В	500											

12 и 19 марта — практические занятия, комн. 150а 26 марта — лекция 4, комн. 152