

Universidade do Minho

Escola de Engenharia

METI - Emulação e Simulação de Redes de Telecomunicações

Relatório de Especificação da fase C

Grupo 2

Alunos:

João Pedro Costa Bastos - pg57564 Bruno Miguel Fernandes Araújo - pg55806

Docentes:

Adriano Jorge Cardoso Moreira Bruno Daniel Mestre Viana Ribeiro José Augusto Afonso

Conteúdo

Li	sta de	Símbolos	iii
Li	sta de	Figuras	iii
1	Intro	odução	1
2	Espe	cificação da Fase C	2
	2.1	Síntese de conceitos	2
	2.2	Arquitetura geral do sistema	3
		2.2.1 Especificação da rede do GNS3	3
		2.2.2 Especificação da rede de sensores	6
		2.2.3 Especificação da ligação (CupCarbon < - > MQTT < - > GNS3)	7
	2.3	Requisitos	8
		2.3.1 Requisitos funcionais	8
		2.3.2 Requisitos não funcionais	8
	2.4	Objetivos	9
	2.5	Planeamento	10
		2.5.1 Planeamento temporal	10
		2.5.2 Ferramentas utilizadas	11
		2.5.2.1 <i>Software</i>	11
		2.5.2.2 <i>Hardware</i>	11
3	Con	elusão	12

Lista de Símbolos

		,			
А	cr	O	nı	ım	OS

DNS	Domain Name System
DNS	Servidor DNS
IoT	Internet of Things
IP	Internet Protocol
LED	Light Emitting Diode
NAT	Network address translation
OS PF	Open Shortest Path First Protocol

Lista de Figuras

1	Arquitetura da Fase C	3
2	Modelo conceitual da base de dados	2
3	Rede de Sensores da Fase B/C	(
4	Diagrama de Gantt da Fase C	1(

1 Introdução

Este projeto visa o desenvolvimento de uma plataforma IoT para um sistema de Smart Parking, integrando sensores e atuadores simulados no CupCarbon com uma infraestrutura de rede configurada no GNS3, utilizando o protocolo MQTT como meio de comunicação. A plataforma será projetada para recolher e processar dados em tempo real, transmitindo informações sobre a ocupação das vagas para uma infraestrutura baseada em clouds.

Para garantir escalabilidade e fiabilidade, serão utilizados load balancers que distribuirão a carga entre duas clouds disponíveis. Além disso, será desenvolvida uma interface de utilizador, permitindo aos condutores interagir com o sistema, acedendo a informações sobre a disponibilidade de vagas e controlando dispositivos associados, como reservas de estacionamento.

Este projeto representa uma solução integrada e moderna para melhorar a gestão de estacionamentos, alinhando-se aos objetivos de cidades inteligentes e à promoção da mobilidade urbana sustentável.

2 Especificação da Fase C

2.1 Síntese de conceitos

- Plataforma IoT É um ambiente integrado que fornece as ferramentas e serviços necessários para conectar, gerenciar e controlar dispositivos inteligentes que fazem parte do ecossistema da Internet das Coisas (IoT). Estas plataformas ajudam a conectar dispositivos físicos (sensores, atuadores, máquinas, etc.) à internet, recolher dados, analisá-los, e permitir que os dispositivos interajam uns com os outros ou com aplicações.
- Sensores São dispositivos que detetam mudanças no ambiente ou em objetos e convertem essas variações em dados digitais, que podem ser transmitidos e analisados. Eles desempenham um papel fundamental na recolha de informações que são utilizadas para monitorizar, controlar e otimizar processos, e são essenciais para aplicações de IoT.
- Atuadores São dispositivos que recebem comandos para executar uma ação física ou mecânica em resposta aos dados processados de sensores ou comandos diretos do sistema. Eles atuam como a "parte de ação" dos sistemas de IoT, enquanto os sensores representam a "parte de coleta de dados".
- Load balancer Load Balancer (Balanceador de Carga) É um componente essencial para escalabilidade e alta disponibilidade em sistemas distribuídos. Ele distribui tráfego de rede ou solicitações de clientes entre vários servidores, otimizando o desempenho, reduzindo o risco de sobrecarga num único servidor e garantindo redundância.
- HTTP É o protocolo principal para comunicação na web, utilizado para transferir dados entre clientes (navegadores, por exemplo) e servidores. Ele segue um modelo request/response, no qual o cliente faz uma solicitação (request) ao servidor, que retorna uma resposta (response). É amplamente utilizado devido à sua simplicidade e suporte global.
- MQTT É um protocolo leve de comunicação projetado para dispositivos com recursos limitados e redes instáveis. Este utiliza um modelo publish/subscribe para troca de mensagens entre dispositivos (clientes) e um broker central, é ideal para aplicações de IoT (Internet das Coisas).

2.2 Arquitetura geral do sistema

2.2.1 Especificação da rede do GNS3

A arquitetura geral do sistema da Fase C encontra-se ilustrada esquemáticamente na Figura 2, como é possível observar, as clouds deixaram de ser representadas por computadores e passaram a ter a sua estrutura pretendida, um dispositivo dedicado à gestão de utilizadores (User Management), outro destinado à base de dados, um terceiro para o balanceamento de carga (Load Balancer) e, por fim, um dispositivo específico para o serviço de Internet das Coisas (IoT Service).

Figura 1: Arquitetura da Fase C

A **Base de Dados** será programada em SQL e será colocada num computador, virtual machine do gns3, esta vai ter três tabelas:

Variável	Tipo	Descrição
Id	Inteiro	Identificador do lugar no parque de estacionamento (chave primaria)
Estado	Inteiro	Se o lugar se encontra livre (0), ocupado (1) ou reservado (2)

Tabela 1: Tabela na base de dados que representa o estacionamento.

Variável	Tipo	Descrição
Nif	Inteiro	Nif do utilizador (chave primária)
Nome	String	Nome do utilizador
Email	String	Email do utilizador
Password	String	Palavra-passe da conta do utilizador

Tabela 2: Tabela na base de dados que representa os utilizadores.

Variável	Tipo	Descrição	
IdReserva	Inteiro	Identificador da reserva (chave primaria).	
NifUtilizador Inteiro		Nif do utilizador que fez a reserva (chave estrangeira).	
Idlugar	Inteiro	Id do lugar reservado (chave estrangeira).	
Tinicio	DATETIME	Dia e hora do início da reserva.	
Tfim	DATETIME	Dia e hora do fim da reserva.	

Tabela 3: Tabela na base de dados que representa as reservas dos lugares no estacionamento.

Figura 2: Modelo conceitual da base de dados.

O **User Management** será um webserver que além do papel de gestão de utilizadores, este terá o papel de intermediário entre a base de dados e o lot service, ele comunicará com o dispositivo onde se encontra base de dados para obter conhecimento dos dados que se encontram nesta e receberá pedidos de consulta do IoT service.

O **IoT Service** será uma aplicação que permitirá aos utilizadores, após efetuarem o login, consultar o estado do estacionamento e realizar reservas dos lugares deste.

Ainda estamos incertos sobre a metodologia para desenvolver o **Load balancer**, mas ele será responsável por distribuir a carga.

2.2.2 Especificação da rede de sensores

Para esta Fase C, a rede de sensores será a mesma da Fase B, 10 sensores direcionais, agrupados 5 a 5 e associados a um dispositivo multihop encarregado de redirecionar a informação de ocupação ou desocupação de um lugar para o gateway. Um placar (atuador) que receberá e dará display da informação do número de lugares vazios.

Por fim, um gateway que tem conhecimento do estado de todos os lugares do estacionamento e que está encarregue de enviar a informação do número de lugares livres para o placar. A arquitetura geral da rede de sensores encontra-se ilustrada esquemáticamente na Figura 3.

Figura 3: Rede de Sensores da Fase B/C.

2.2.3 Especificação da ligação (CupCarbon < - > MQTT < - > GNS3)

A informação necessária para enviar para o GNS3 encontra-se no gateway do nosso projeto do Cup-Carbon, logo nós pensamos em dois planos para a enviar esta informação:

- Como o Cupcarbon suporta o uso de programas escritos em python, colocariamos um código python com MQTT no gateway, dessa forma era possivel ser enviada logo diretamente a informação para o gns3.
- Acrescentarmos ao código Senscripts do dispositivo do gateway a escrita da informação deste num ficheiro, através da função printfile desta linguagem, para este depois ser lido por um programa escrito em python com o MQTT.

Por fim, o GNS3 irá comunicar com o MQTT para obter os dados necessários para povoar a sua base de dados, fazendo então com que informações apresentadas na interface gráfica da aplicação consultada pelos utilizadores esteja atualizada em tempo quase real.

2.3 Requisitos

Definição de vários requisitos funcionais e requisitos não funcionais que serão pontos obrigatórios na realização desta fase.

2.3.1 Requisitos funcionais

- Receber e armazenar dados dos dispositivos sensores, com suporte para os protocolos de comunicação MQTT e HTTP e armazenamento transparente de dados numa base de dados.
- Gestão de utilizadores como permitir a adição, exclusão e gerenciamento de utilizadores.
- Visualização dos dados recebidos, oferecendo uma interface gráfica para exibir os dados recebidos dos sensores.
- Autenticação de utilizadores e dispositivos ,implementando um serviço de autenticação para garantir o acesso seguro à plataforma.

2.3.2 Requisitos não funcionais

- A tabelagem de informação será feita de maneira a permitir a utilização eficiente da base de dados.
- O webserver deve servir como "middle-man" entre a base de dados e a interface gráfica para assegurar que não haja contacto direto entre os dois garantindo a segurança dos dados.
- Implementação de um load balancer para distribuir equilibradamente os dados entre as clouds.
- A interface gráfica deve ser intuitiva e acessível para a visualização de dados.

2.4 Objetivos

Para esta fase os objetivos principais a realizar são:

- Conexão da topologia simulada no GNS3 ao sistema sensor simulado no cupcarbon por meio de internet.
- Definição da área de aplicação do sistema IoT a desenvolver pelo grupo.
- Criação de um serviço de aquisição de dados de IoT com base num protocolo de aplicação adequado (e.g., HTTP, MQTT)
- Criação de uma base de dados para armazenamento dos dados
- Criação de uma plataforma de gestão de utilizadores.
- Criação de um serviço de autenticação.
- Elaboração de uma interface gráfica para a visualização dos dados de IoT.
- Replicação do serviço de IoT.
- Criação de um serviço de load balancing.
- Configuração do serviço de load balancing para encaminhamento dos dados de IoT com os diversos protocolos para o servidor

Objetivos extra:

- Replicação da plataforma: replicar a plataforma de IoT uma ou mais vezes, sendo acessível
 pelos clientes de forma completamente transparente. Neste ponto poder-se-á utilizar a mesma
 base de dados acessível por todas as replicas.
- Replicação da base de dados: Replicação da base de dados de forma a que cada servidor tenha a sua própria base de dados. Para tal, deverá ser utilizado um mecanismo de sincronização das bases de dados.
- Permitir aos utilizadores partilhar os dispositivos com outros utilizadores. dispositivos da rede entrarem em modo sleep nos períodos de inatividade.
- Utilizar autenticação por third-party providers (Google, Facebook, etc).

2.5 Planeamento

Primeiramente apresentamos a planificação temporal da Fase C do projeto, acompanhando-a pelo seu diagrama de Gantt respetivo e de seguida indicamos o conjunto de ferramentas que serão utilizadas neste projeto.

2.5.1 Planeamento temporal

Na Figura 4 está o Diagrama de *Gantt* correspondente a esta fase.

Figura 4: Diagrama de Gantt da Fase C.

2.5.2 Ferramentas utilizadas

Apresentamos as ferramentas utilizadas, listadas conforme a sua categoria: Software ou Hardware.

2.5.2.1 *Software*

As ferramentas a nível de software serão as seguintes:

- Programa *GNS3*, para a simulação de redes, permite o teste de cenários e de configurações antes da implementação prática.
- Programa *Oracle VM Virtualbox*, para a utilização da virtual machine como servidor local para estabelecer ligação á internet.
- Plataforma *Discord*, para a comunicação e partilha de ficheiros entre o grupo.
- Plataforma *OverLeaf*, para a elaboração de relatórios em LATEX.
- Programa *Microsoft Excel*, para o desenvolvimento do diagrama de Gantt usado no planeamento temporal das tarefas do grupo.
- Programa *CupCarbon*, para a simulação e monitorização da rede de sensores.
- Programa Visual Studio Code, para a programação de códigos complementares .
- Programa *mySQL*, para a criação de bases de dados.
- Programa *brModelo*, para a criação do modelo conceptual da base de dados.

2.5.2.2 Hardware

Ao nível de hardware temos apenas presentes 2 computadores, um para cada estudante.

3 Conclusão

Nesta fase C do projeto, será desenvolvido um sistema que integra sensores e atuadores simulados no CupCarbon com uma topologia de rede configurada no GNS3, utilizando o protocolo MQTT para a comunicação. O objetivo é estabelecer uma ligação eficiente e escalável entre os sensores e uma infraestrutura baseada em clouds.

A topologia incluirá load balancers para distribuir a carga de forma equilibrada entre duas clouds, garantindo redundância e eficiência no processamento dos dados recebidos. Os sensores enviarão os seus dados para esta infraestrutura, que será projetada para lidar de forma confiável com o fluxo de informações típico de sistemas IoT.

Adicionalmente, será desenvolvida uma interface de utilizador, que permitirá aos utilizadores interagir com o sistema, monitorizando os dados recebidos pelos sensores e controlando os dispositivos associados. Esta interação será projetada para ser intuitiva, garantindo a acessibilidade dos dados.

O desenvolvimento desta solução visa criar uma plataforma IoT robusta e escalável, capaz de atender às exigências modernas de sistemas inteligentes e conectados.