Statistics MDI220

1. Point Estimation

Thomas Bonald Institut Polytechnique de Paris

$$2023 - 2024$$

The task of point estimation is to determine the parameter θ of a statistical model based on the observation x. We denote by $\hat{\theta}(x)$ this estimation.

1 Maximum likelihood

Assume that the statistical model is dominated. The probability density function p_{θ} gives the likelihood of each observation x. It is then natural to select the parameter θ that maximizes the likelihood of the observation. If several values of the parameter θ reach the maximum, one of them is selected arbitrarily.

The Maximum Likelihood Estimator (MLE) is $\hat{\theta}(x) = \arg \max_{\theta \in \Theta} p_{\theta}(x)$.

Example. For the Bernoulli model $\mathcal{P} = \{P_{\theta} \sim \mathcal{B}(\theta), \theta \in [0, 1]\}$, we have $p_{\theta}(x) = \theta^{x}(1 - \theta)^{1 - x}$:

- If x = 1 then $p_{\theta}(x) = \theta$ and $\hat{\theta}(x) = 1$.
- If x = 0 then $p_{\theta}(x) = 1 \theta$ and $\hat{\theta}(x) = 0$.

Thus $\hat{\theta}(x) = x$.

When n independent observations are available, say $x = (x_1, \ldots, x_n)$, the probability density function is a product and it is generally more convenient to use the log-likelihood.

For *n* observations, the MLE is $\hat{\theta}(x) = \arg\max_{\theta \in \Theta} \log p_{\theta}(x) = \arg\max_{\theta \in \Theta} \sum_{i=1}^{n} \log p_{\theta}(x_i)$.

Example. For the Bernoulli model with n observations, the log-likelihood is:

$$\log p_{\theta}(x) = \sum_{i=1}^{n} (x_i \log \theta + (1 - x_i) \log(1 - \theta)) = S \log \theta + (n - S) \log(1 - \theta),$$

with $S = \sum_{i=1}^{n} x_i$. The maximum is reached for:

$$\hat{\theta}(x) = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

2 Method of moments

Another approach relies on the Strong Law of Large Numbers (SLLN). For simplicity, we assume that $\theta \in \mathbb{R}$. Let x_1, \ldots, x_n be n observations, supposed to be i.i.d. samples of some random variable $X \sim P_{\theta}$. By the SLLN, the following approximation holds true for large values of n:

$$E_{\theta}(X) \approx \frac{1}{n} \sum_{i=1}^{n} x_i.$$

The method of moments consists in finding the unique value of θ (if any) for which this approximation is exact.

The estimation of a real parameter θ by the method of moments is $\hat{\theta}(x) = f^{-1}(\frac{1}{n}\sum_{i=1}^{n}x_i)$, where the function $f: \theta \mapsto \mathcal{E}_{\theta}(X)$ is supposed to be injective.

Example. For the Bernoulli model with n observations, we have $X \sim \mathcal{B}(\theta)$ so that $E_{\theta}(X) = \theta$ and

$$\hat{\theta}(x) = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

3 Bias

The bias of an estimator $\hat{\theta}$ is the difference between its expected value (average over the observations) and the true parameter θ .

The bias of an estimator $\hat{\theta}$ is $b(\theta, \hat{\theta}) = E_{\theta}(\hat{\theta}(X)) - \theta$. It depends on the parameter θ .

An estimator $\hat{\theta}$ is said to be *unbiased* if $b(\theta, \hat{\theta}) = 0$ for all $\theta \in \Theta$.

Example. The estimator $\hat{\theta}(x) = \frac{1}{n} \sum_{i=1}^{n} x_i$ for the Bernoulli model is unbiased since

$$\forall \theta \in [0,1], \quad \mathcal{E}_{\theta}(\hat{\theta}(X)) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{E}_{\theta}(X_i) = \theta.$$