Mozilla Firefox is recommended for best experience

Moodle - Learning Management System (LMS)

<u>Dashboard</u> / My courses / <u>2CSDE61</u> / <u>3 February</u> - <u>9 February</u> / <u>2CSDE61-Deep Learning-Quiz 1-3rd Feb 2022-2pm to 2:20pm</u>

Started o	n Thursday, 3 February 2022, 2:00 PM				
State Finished					
Completed o	Thursday, 3 February 2022, 2:20 PM				
Time take	n 19 mins 59 secs				
Grad	e 9.00 out of 15.00 (60%)				
Question 1 Correct Mark 2.00 out of	Ground truth (target) labels (1-hot encoded) for a binary classification problem for some input data is [0 1]. Predicted values are [0.3 0.7]. What would be binary cross-entropy loss?				
2.00	Answer: 0.5145				
	The correct answer is: 0.52				
Question 2 If value of 4 output neurons before softamx is [2.9 1.5 0.4 0.2] (neuron 1 to neuron 4 in sequence), what wo softmax score of the third neuron (select the closest value)? Mark 2.00 out of					
2.00	Select one:				
	a. 0.06 ✓				
	O b. 0.04				
	o. 0.07				
Question 3 Incorrect	The correct answer is: 0.06 Assume spatial extent of the input image and convolution filter to be 600 x 400 and 11 x 11 respectively. Assume valid convolution operation and stride=1. What would be the total number of activation (neurons) in the resultant volume after				
Mark 0.00 out of 2.00	convolution operation and stride=1. What would be the total number of activation (neurons) in the resultant volume after after this convolution?				
	Answer: 59004 ×				
	The correct answer is: 230100				
Question 4 Incorrect	Assume size of the input image and convolution filter to be $600 \times 400 \times 3$ and $11 \times 11 \times 3$ respectively. If we wish to produce 10 feature maps as the output of this valid convolution operation (stride=1), how many connections are involved				
Mark 0.00 out of 2.00	produce 10 reactive maps as the surpus of this valid convention operation (strice 1), new many connections are mix				
	Answer: 238004 *				
	The correct answer is: 837564000				

Question **5**Not answered
Marked out of 2.00

Assume size of the input image and convolution filter to be $600 \times 400 \times 3$ and $11 \times 11 \times 3$ respectively. If we wish to produce 10 feature maps as the output of this convolution operation, how many parameters are involved? Ignore bias parameters in calculation.

nswer:		×
--------	--	---

The correct answer is: 3630

Question **6**Correct
Mark 1.00 out of

1.00

In transfer learning, if the new dataset is large but very different from the original dataset:

Select one:

- a. we can afford to train a ConvNet from scratch
- b. we can fine-tune through the full network
- c. it might work better to train the SVM classifier from activations somewhere earlier in the network
- d. the best idea might be to train a linear classifier on the CNN codes

The correct answer is: we can afford to train a ConvNet from scratch

Question **7**Correct

Mark 1.00 out of 1.00

In transfer learning, if the new dataset is small but very different from the original dataset:

Select one:

- a. it might work better to train the SVM classifier from activations somewhere earlier in the network
- b. the best idea might be to train a linear classifier on the CNN codes
- c. we can afford to train a ConvNet from scratch
- d. we can fine-tune through the full network

The correct answer is: it might work better to train the SVM classifier from activations somewhere earlier in the network

Question **8**

1.00

A Deep Learning Model with high bias exihibits

Correct

Mark 1.00 out of

- Select one:
- a. Underfitting
- b. Perfect fit
- c. Overfitting
- d. None of these

The correct answer is: Underfitting

Question **9**Correct

1.00

A Deep Learning Model with the high variance exihibits

Mark 1.00 out of

- Select one:
- a. None of these
- b. Overfitting
- c. Underfitting
- d. Perfect fit

The correct answer is: Overfitting

	Question 10 Correct The popular choice of a weight function in perceptron/multilayer perceptron is					
	Mark 1.00 out of 1.00	Select one: a. None of these				
		b. Sum of product function	on			
c. Product function ✓d. Sum function						
◆ Practical 2 - CNN MNIST		CNN MNIST	Jump to	Transfer Learning Presentation ▶		