

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN IIC2223 - Teoría de Autómatas y Lenguajes Formales

Segundo semestre de 2024 Profesor: Cristian Riveros AYUDANTE: AMARANTA SALAS

Ayudantia 10 Gramáticas Libre de Contexto (CFG)

Problema 1

Para cada uno de los siguientes lenguajes, muestre una gramática libre de contexto que lo defina y explique su correctitud. No es necesario demostrar su correctitud, pero si explicar de manera precisa porque la gramática propuesta cumple con lo solicitado.

- 1. Todas las palabras de paréntesis {(,)} bien balanceadas, tal que el número de paréntesis abiertos es par. Por ejemplo, (()) y (()())() están en el lenguaje, pero (()) y ()(()) no lo están.
- 2. Todas las palabras de letras en $\{a,b\}$ de largo par, tal que el número de ocurrencias de b-letras en posiciones pares es igual al número de b-letras en posiciones impares. Por ejemplo, baab y ababbaba están en el lenguaje, pero bba y baba no lo están.

Problema 2

Sea $\Sigma = \{a, b\}$. Una palabra $w \in \Sigma^*$ es un palíndromo si $w = w^r$, donde w^r es el reverso de w. Decimos que w es un casi-palíndromo si al eliminar o cambiar exactamente una letra en cualquier posición de w, entonces el resultado es un palíndromo. Por ejemplo, la palabra aabba es un casi palíndromo debido a que podemos eliminar el segundo símbolo se obtiene abba que sí es un palíndromo. Sea L el lenguaje de todos los casi-palíndromos. Construya una gramática libre de contexto \mathcal{G} tal que $\mathcal{L}(\mathcal{G}) = L$ y demuestre que su gramática \mathcal{G} es correcta, esto es, demuestre que $\mathcal{L}(\mathcal{G}) = L$.

Problema 3

Sea Σ un alfabeto. Considere $u=a_1\ldots a_n$ y $v=b_1\ldots b_m$ dos palabras sobre Σ tal que $u\neq v$ y $1\leq n\leq m$. Considere el autómata finito no-determinista $A_{u,v} = (Q, \Sigma, \Delta, I, F)$ tal que:

- $Q = (\{u\} \times \{1, \dots, n\}) \cup (\{v\} \times \{1, \dots, m\}) \cup \{0\}$
- $\Delta = \{(0, a, 0) \mid a \in \Sigma\} \cup$ $\{(0, a_1, (u, 1)), (0, b_1, (v, 1))\} \cup$ $\{((u,i), a_{i+1}, (u,i+1)) \mid 1 \le i < n\} \cup$ $\{((v,i), b_{i+1}, (v,i+1)) \mid 1 \le i < m\}$
- $I = \{0\}$
- $F = \{(u, n), (v, m)\}$

Sea $\mathcal{A}_{u,v}^{det} = (Q^{det}, \Sigma, \delta^{det}, \{0\}, F^{det})$ la determinización de $\mathcal{A}_{u,v}$ tal que Q^{det} contiene solo los estados alcanzables desde $\{0\}$. Demuestre que $|Q^{det}| \leq n+m+1$.

IIC2223 - Ayudantia 10 Página 1 de 1