Matemática Discreta

Profa Dra Aline Guedes

Departamento de Matemática Aplicada

AULA 1

Conjuntos

Definição:

Um conjunto é uma coleção de zero ou mais objetos distintos, chamados elementos de um conjunto, os quais não possuem qualquer ordem associada.

Exemplo:

- a) Pessoas
- b) Os números pares: 0,2,4...
- c) As letras do alfabeto: a,b,c...

Notação:

Conjuntos -> letras maiúsculas: A, B, C...

Elementos -> letras minúsculas: a, b, c...

Representação:

• Explícita:

$$A = \{ 0,1,2 \}, B = \{ a,b,c \}, C = \{ a,e,i,o,u \}$$

• Implícita:

$$B = \{x \mid 3 < x < 9 \text{ e x \'e par}\}$$

$$C = \{x \mid x \in vogal\}$$

Exemplo:

Dê a representação implícita do conjunto

$$A = \{ 1,3,5,7,9,... \}$$

 $A = ?$

Exemplo:

Dê a representação implícita do conjunto

A = { 1,3,5,7,9,...}
A = {
$$x \in N \mid x=2k+1, k \in Z_+$$
}

Para refletir: $y = x^2 + 41x + 41$ gera números primos?

Cardinalidade de um conjunto

A cardinalidade é o número de elementos de um conjunto. Denota-se por |A| ou n(A), onde A é o conjunto.

Exemplo:

$$A = \{a,b,c,d\}$$

$$n(A) = 4$$

Conjuntos finitos e infinitos

• Conjunto finito: possui um número finito de elementos

Exemplo: $A = \{1,2,3\}$

Conjunto infinito: possui infinitos elementos

Exemplo: $B = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

Conjunto vazio

É aquele que não possui nenhum elemento.

Denota-se por: Ø ou { }

Conjunto unitário

É aquele que só possui um elemento.

Exemplo: $A = \{a\}$

Relação entre elemento e conjunto

Um elemento pertence (∈), isto é, ele é elemento do conjunto ou não pertence (∉), ou seja, não pertence a um determinado conjunto.

Exemplo: $A = \{1,2,3\}. \ 2 \in A \in S \notin A.$

Relação entre conjuntos

• Está contido ⊂ e não está contido ⊄

Dados dois conjuntos A e B, diz-se que A é subconjunto de B ou B está contido em A, quando todo elemento de A também é elemento de B.

Exemplo: A = $\{1, 2, 3\}$, B= $\{1,2,3,4,5\}$ e C = $\{4,5,6\}$

 $A \subset B. C \not\subset B.$

Relação entre conjuntos

• Contém ⊃ e não contém ⊅

Dados dois conjuntos A e B, diz-se que B contém A, quando o conjunto B contém todos os elementos do conjunto A.

Exemplo: A = $\{1, 2, 3\}$, B= $\{1,2,3,4,5\}$ e C = $\{4,5,6\}$

 $B \supset A. B \not\supset C.$

Exemplos:

$$A = \{0,1,2,3\}, B = \{1,2,3\}, C = \{0,2,4\}$$

Use os operadores corretamente: \in , \notin , \subset , \supset

- a) 2 ____ A
- b) {2} ____ A
- c) A ____ B
- d) B A
- e) A C
- f) 1____C

Exemplos:

$$A = \{0,1,2,3\}, B = \{1,2,3\}, C = \{0,2,4\}$$

Use os operadores corretamente: \in , \notin , \subset , \supset

- a) $2 \in A$
- b) {2} _ ⊂ _ A
- c) $A \supset B$
- d) $B \subset A$
- e) A_ \(\sigma \) __ C
- f) 1_ ∉ __ C

Exemplos:

Dado $A = \{1,2,3,4,5,6,7,8,9\}$, represente os subconjuntos:

a) Implicitamente:

$$B = \{2,4,6,8\}$$

$$B = \{x \in A \mid x=2k \in 1 < = 4\}$$

$$D = \{2,4,6,8,...\}$$

$$B = \{x \in R(ou\ N\ ou\ Z) | x=2k\ e\ k>=1\}$$

b) Explicitamente:

$$C = \{x \in A \mid x+1=6\} = \{5\}$$

Igualdade de conjuntos

Dois conjuntos A e B são iguais, quando possuem os mesmos elementos.

OBS: Isso equivale a dizer que $A \subset B \in B \subset A$.

Exemplo:

• A = $\{1,2,2,4,6,8,8,8\}$ e B = $\{1,2,4,6,8\}$

A e B são iguais -> a repetição não deve ser considerada.

•
$$A = \{1,2,3\} e B = \{3,1,2\}$$

A e B são iguais -> a ordem não importa

Conjunto Universo

É aquele que contém todos os elementos que estão sendo representados numa determinada situação.

Detona-se por $\mathbb U$

Conjunto Complementar em relação ao conjunto $\mathbb U$

É aquele que contém todos os elementos que faltam num contem num contem no Universo.

Exemplo: A = $\{1,2,3,4,5\}$. Complementar de A em relação a $\mathbb{U} = \mathbb{U} - A$, Ou seja, os elementos de \mathbb{U} que não estão em A.

Conjunto Diferença

Sejam A e B dois subconjuntos de $\mathbb U$. O conjunto diferença A – B é aquele que contém todos os elementos de $\mathbb U$ que estão em A, mas

que não estão em B.

Detona-se por A - B

Exemplo:

$$A - B = \{x \in \mathbb{U} | x \in A \in x \notin B\}.$$
 (parte riscada)

União de conjuntos

Dados dois conjuntos A e B, a união desses conjuntos forma um conjunto que possui elementos que pertencem a pelo menos um desses conjuntos.

Detona-se por $A \cup B$ $A \cup B = \{x \in \mathbb{U} | x \in A \ ou \ x \in B\}$

União de conjuntos

GENERALIZAÇÃO

Dados n conjuntos $A_1, A_2, ..., A_n$

a união desses conjuntos é dada por:

$$\bigcup_{i=1}^{n} A_i = \{ x \in \mathbb{U} | x \in A_1 \text{ ou } x \in A_2 \text{ ou ... } x \in A_n \}$$

Interseção de conjuntos

Dados dois conjuntos A e B, a interseção desses conjuntos forma um conjunto que possui elementos que pertencem aos dois conjuntos ao mesmo tempo, ou seja, pertence a A e a B.

Interseção de conjuntos

GENERALIZAÇÃO

Dados n conjuntos $A_1, A_2, ..., A_n$

a interseção desses conjuntos é dada p<mark>or</mark>

$$\bigcap_{i=1}^{n} A_i = \{x \in \mathbb{U} | x \in A_1 \ e \ x \in A_2 \ e \dots \ x \in A_n \}$$

Com 3 conjuntos:

$$A_1 \cap A_2 \cap A_3 = \{x \in \mathbb{U} | x \in A_1 \ e \ x \in A_2 e \ x \in A_3 \}$$

Partição de conjuntos

Seja A um conjunto não-vazio. Uma partição de A é uma família de

subconjuntos não-vazios $A_1, A_2, ..., A_n$ tais que:

1)
$$\bigcup_{i=1}^{n} A_i = A$$

2)
$$A_i \cap A_j = \emptyset$$
, se $i \neq j$

Sendo 3 subconjuntos de A, para serem uma Partição, deveriam:

$$A_1 \cap A_2 = \emptyset$$

$$A_1 \cap A_3 = \emptyset$$

$$A_2 \cap A_3 = \emptyset$$

$$A_1 \cup A_2 \cup A_3 = A$$

Partição de conjuntos

Exemplo:

$$A_1 = \{1, 2, 3\}, A_2 = \{4, 5, 6, 7\}, A_3 = \{8, 9, 10\},$$

 $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

1)
$$A_1 \cup A_2 \cup A_3 = A$$

2)
$$A_1 \cap A_2 = \emptyset$$

$$A_2 \cap A_3 = \emptyset$$

$$A_1 \cap A_3 = \emptyset$$

Propriedades

- 1) Para todo $A \subset \mathbb{U}, A \cup \emptyset = A e A \cap \emptyset = \emptyset$
- 2) $A \subset B \leftrightarrow A \cup B = B$
- 3) $A \subset B \leftrightarrow A \cap B = A$
- 4) $A \cup (B \cup C) = (A \cup B) \cup C \ e \ A \cap (B \cap C) = (A \cap B) \cap C \rightarrow associativa$
- 5) $A \cup B = B \cup A \ e \ A \cap B = B \cap A \rightarrow comutativa$
- 6) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C) e$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \rightarrow distributiva$
- 7) $A \cup \overline{A} = \mathbb{U}$; $A \cap \overline{A} = \emptyset$; $\overline{\emptyset} = \mathbb{U}$; $\overline{\mathbb{U}} = \emptyset$
- 8) $\overline{(A \cup D)} = \overline{A} \cap \overline{D} \ e^{\overline{(A \cap D)}} = \overline{A} \cup \overline{D} \rightarrow Leis \ de \ De \ Morgan$

Exercícios:

1) Escreva os conjuntos abaixo, explicitando seus elementos:

a)
$$A = \{x \in \mathbb{R} | 2x^2 - 50 = 0\}$$

$$A = \{-5, 5\}$$

a)
$$B = \{x \in \mathbb{N} | 3x + 7 = 1\}$$

a)
$$C = \{x \in \mathbb{Z} | -2 < x \le 2\}$$

$$C = \{-1,0,1,2\}$$

a)
$$D = \{x \in \mathbb{R} | x^2 + 4 = 0\}$$

(UFJF-MG) A parte colorida no diagrama que melhor representa o conjunto D = A - (B ∩ C) é:

