

Bab 4 Properties of Regular Languages

27-29 September 2021
General Discussion of "Properties"
The Pumping Lemma
Closure Properties
Decision Properties: Emptiness, Membership
Equivalence and Minimization of Automata

Informatika

Properties of Language Classes

- A language class is a set of languages.
 - We have one example: the regular languages.
 - We'll see many more in this class.
- Language classes have two important kinds of properties:
 - Decision properties.
 - 2. Closure properties.

Representation of Languages

- Representations can be formal or informal.
- Example (formal): represent a language by a RE or DFA defining it.
- Example: (informal): a logical or prose statement about its strings:
 - {0ⁿ1ⁿ | n is a nonnegative integer}
 - "The set of strings consisting of some number of 0's followed by the same number of 1's."

What if the Regular Language Is not Represented by a DFA?

 There is a circle of conversions from one form to another:

Pumping Lemma

- If an n-state DFA accepts a string w of length n or more, then there must be a state that appears twice on the path labeled w from the start state to a final state.
- Because there are at least n+1 states along the path.
- Every regular language satisfies the pumping lemma.

Pumping Lemma (2)

Then xy^iz is in the language for all $i \ge 0$.

Since y is not ϵ , we see an infinite number of strings in L.

Pumping Lemma Key Idea

Remember:

- We can choose y to be the first cycle on the path.
- So |xy| ≤ n; in particular, 1 ≤ |y| ≤ n.
- Thus, if w is of length 2n or more, there is a shorter string in L that is still of length at least n.
- Keep shortening to reach [n, 2n-1].

The Pumping Lemma

- Every regular language satisfies the pumping lemma.
- We have, almost accidentally, proved a statement that is quite useful for showing certain languages are not regular.
- Called the pumping lemma for regular languages.

For every regular language L

Number of states of DFA for L

There is an integer n, such that

For every string w in L of length ≥ n

We can write w = xyz such that:

- 1. $|xy| \leq n$.
- 2. |y| > 0.
- 3. For all $i \ge 0$, xy^iz is in L.

Labels along first cycle on path labeled w

Example: Use of Pumping Lemma

- We have claimed {0^k1^k | k ≥ 1} is not a regular language.
- Proof by contradiction
- Suppose it were. Then there would be an associated n for the pumping lemma.
- Let $w = 0^n 1^n$. We can write w = xyz, where x and y consist of 0's, and $y \neq \epsilon$.
- But then xyyz would be in L, and this string has more 0's than 1's.

Contoh Soal $L = \{wtw \mid w, t \in \{0, 1\}^+\}$

To prove that L is not a regular language, we will use a proof by contradiction. Assume that L is a regular language. Then by the Pumping Lemma for Regular Languages, there exists a pumping length p for L such that for any sring $s \in L$ where $|s| \geq p$, s = xyz subject to the following conditions:

- (a) |y| > 0
- (b) $|xy| \le p$, and
- (c) $\forall i > 0, xy^i z \in L$.

Choose $s = 0^p 110^p 1$. Clearly $s \in L$ with $w = 0^p 1$ and t = 1, and $|s| \ge p$. By condition (b), it is obvious that xy is composed only of zeros, and further, by (a) and (b), it follows that $y = 0^k$ for some k > 0. By condition (c), we can take any i and xy^iz will be in L. Taking i = 2, then $xy^2z \in L$. $xy^2z = xyyz = 0^{(p+k)}110^p 1$. There is no way that this string can be divided into wtw as required to be in L, thus $xy^2z \notin L$. This is a contradiction with condition (c) of the pumping lemma. Therefore the assumption that L is a regular language is incorrect and thus L is not a regular language.

Contoh

Perlihatkan dengan Pumping Lemma

$$L_{pr} = \{ 1^p | p = prima \}$$

Jawab: Ide pembuktian dengan kontradiksi.

Bilangan prima adalah bilangan yg merupakan perkalian 1 dan bilangan tersebut.

Suppose $L_{pr} = \{1^p : p \text{ is prime }\}$ were regular.

Let n be given by the pumping lemma.

Choose a prime $p \ge n + 2$.

$$w = \underbrace{\underbrace{111\cdots\underbrace{\cdots1}_{x}}_{|y|=m}\underbrace{1111\cdots11}_{|y|=m}$$

For i = p-m then xy^iz :

Now
$$xy^{p-m}z \in L_{pr}$$

$$|xy^{p-m}z| = |xz| + (p-m)|y| =$$

 $p-m+(p-m)m=(1+m)(p-m)$
 which is not prime unless one of the factors is 1.

•
$$y \neq \epsilon \Rightarrow 1 + m > 1$$

Decision Properties

- A decision property for a class of languages is an algorithm that takes a formal description of a language (e.g., a DFA) and tells whether or not some property holds.
- Example: Is language L empty?
- Diketahui regular languages L dan M, apakah L = M?
- Diketahui regular languages L dan M, apakah L ⊆ M?

The Membership Question

- Our first decision property is the question: "is string w in regular language L?"
- Assume L is represented by a DFA A.
- Simulate the action of A on the sequence of input symbols forming w.

The Emptiness Problem

- Given a regular language, does the language contain any string at all.
- Assume representation is DFA.
- Construct the transition graph.
- Compute the set of states reachable from the start state.
- If any final state is reachable, then yes, else no.

Teknik Untuk Memeriksa Kesamaan 2 Finite Automata

Teknik Perkalian Finite Automata

- Buatlah sebuah FA baru yang merupakan hasil perkalian 2
 FA lama
- Tetapkan state akhir pada FA baru yaitu state baru merupakan gabungan dari 2 state lama dimana hanya salah satu state pada FA lama merupakan state akhir. State final merepresentasikan status perbedaan string diterima dari 2 FA lama tsb
- Hubungkan setiap state (tetapkan transition function) pada FA baru berdasar transition function FA lama
- Jika pada FA baru, tidak ada string yang bisa diterima, maka dapat dinyatakan bahwa 2 FA tsb adalah sama

Teknik dgn Perkalian FA

Hasil perkalian:

 Karena FA hasil perkalian di atas dapat menerima string (cth: 1,11,0,00,dst; dgn final state berupa ps dan qr) maka 2 FA ini tidak ekuivalen

Product DFA utk Equivalence

[A,C] dan [B,D] tidak boleh tercapai: Ada yg diterima di salah satu FA tp tdk diterima di FA lainnya

Decision Property: Containment

- Diketahui regular languages L dan M, apakah L ⊆ M?
- Menggunakan product automaton

Product DFA utk Containment

[B,D] tidak boleh tercapai: diterima di L, tp tdk diterima di M

Teknik Untuk Memeriksa Kesamaan 2 Finite Automata

- Teknik Minimisasi State pada Finite Automata dgn Distinguishable Table (Table Filling Algorithm)
 - Buatlah sebuah distinguishable table yang jumlah kolom dan barisnya mewakili gabungan semua state pada 2 FA yang lama.
 - Jika state awal dan state akhir pada 2 FA bernilai indistinguishable (tidak bisa dibedakan) maka 2 FA merupakan FA yang sama.
 - Untuk mengisi x pada table filling sbb

```
Basis: If p \in F and q \notin F, then p \not\equiv q.
```

Induction: If $\exists a \in \Sigma : \delta(p, a) \not\equiv \delta(q, a)$, then $p \not\equiv q$.

Teknik dgn Distinguishable Table (Table Filling Algorithm)

 Karena start state tidak bisa dibedakan maka 2 FA ini adalah sama

The Minimum-State DFA for a Regular Language

- In principle, since we can test for equivalence of DFA's we can, given a DFA A find the DFA with the fewest states accepting L(A).
- Test all smaller DFA's for equivalence with A.
- But that's a terrible algorithm.

Efficient State Minimization

- Construct a table with all pairs of states.
- If you find a string that distinguishes two states (takes exactly one to an accepting state), mark that pair.
- Algorithm is a recursion on the length of the shortest distinguishing string.

Constructing the Minimum-State DFA

- Suppose q₁,...,q_k are indistinguishable states.
- Replace them by one state q.
- Then $\delta(q_1, a),..., \delta(q_k, a)$ are all indistinguishable states.
 - Key point: otherwise, we should have marked at least one more pair.
- Let $\delta(q, a)$ = the representative state for that group.

Example: State Minimization

	r	b	r	b	
→ {1}	{2,4}	{5 }	$\rightarrow AB$	C	
{2,4}	• • • • •	{1,3,5,7}	C D	E	Here it is
{5}		{1,3,7,9}	D D		with more
• • • • •		{1,3,5,7,9}	E D		convenient
	{2,4,6,8} {2,4,6,8}	{1,3,5,7,9}	* F D	C	state names
* {1,3,5,7,9}			* G D	G	

Remember this DFA? It was constructed for the chessboard NFA by the subset construction.

Example – Continued

		r	b
→	Α	В	С
	В	D	Ε
	C	D	F
	D	D	G
	Ε	D	G
*	F	D	C
*	G	D	G

Start with marks for the pairs with one of the final states F or G.

Example – Continued

		r	b
→	Α	В	С
	В	D	Ε
	C	D	F
	D	D	G
	Ε	D	G
*	F	D	C
*	G	D	G

Input r gives no help, because the pair [B, D] is not marked.

Example – Continued

		r	b
→ ¯	Α	В	C
	В	D	Ε
	C	D	F
	D	D	G
	Е	D	G
*	F	D	C
*	G	D	G

But input b distinguishes {A,B,F} from {C,D,E,G}. For example, [A, C] gets marked because [C, F] is marked.

Example – Continued

	r	b
$\rightarrow \overline{A}$	В	С
В	D	Ε
C	D	F
	D	G
Е	D	G
* F	D	C
* C	D	G

[C, D] and [C, E] are marked because of transitions on b to marked pair [F, G].

Example – Continued

[A, B] is marked because of transitions on r to marked pair [B, D].

[D, E] can never be marked, because on both inputs they go to the same state.

Example – Concluded

Replace D and E by H. Result is the minimum-state DFA.

ABCDEFG

· Combine H and B

Combine E and A

Combine D and F

What about A and E?

$$\widehat{\delta}(A,\epsilon) = A \notin F, \widehat{\delta}(E,\epsilon) = E \notin F$$

$$\widehat{\delta}(A,1) = F = \widehat{\delta}(E,1)$$

Therefore $\widehat{\delta}(A,1x) = \widehat{\delta}(E,1x) = \widehat{\delta}(F,x)$

$$\hat{\delta}(A,00) = G = \hat{\delta}(E,00)$$

$$\widehat{\delta}(A,01) = C = \widehat{\delta}(E,01)$$

Conclusion: A = E

Soal Latihan

Minimalkan state pada FA

Apakah dua FA di bawah ini ekuivalen?
 Bagaimanakah bentuk FA dgn minimal statenya?

Closure Properties of Regular Languages

Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism

Informatika

Closure Properties

- Recall a closure property is a statement that a certain operation on languages, when applied to languages in a class (e.g., the regular languages), produces a result that is also in that class.
- For regular languages, we can use any of its representations to prove a closure property.

Closure Under Union

- If L and M are regular languages, so is L \cup M.
- Proof: Let L and M be the languages of regular expressions R and S, respectively.
- Then R+S is a regular expression whose language is L ∪ M.

Closure Under Concatenation and Kleene Closure

Same idea:

- RS is a regular expression whose language is LM.
- R* is a regular expression whose language is L*.

Closure Under Intersection

- If L and M are regular languages, then so is L

 ∩ M.
- Proof: Let A and B be DFA's whose languages are L and M, respectively.
- Construct C, the product automaton of A and B.
- Make the final states of C be the pairs consisting of final states of both A and B.

Example: Product DFA for Intersection

Closure Under Difference

- If L and M are regular languages, then so is L –
 M = strings in L but not M.
- Proof: Let A and B be DFA's whose languages are L and M, respectively.
- Construct C, the product automaton of A and B.
- Make the final states of C be the pairs where A-state is final but B-state is not.

Example: Product DFA for Difference

Notice: difference is the empty language

Closure Under Complementation

- The complement of a language L (with respect to an alphabet Σ such that Σ^* contains L) is Σ^* L.
- Since Σ* is surely regular, the complement of a regular language is always regular.

Example:

Let L be recognized by the DFA below

Then \overline{L} is recognized by

Question: What are the regex's for L and \overline{L}

Closure Under Reversal

- Recall example of a DFA that accepted the binary strings that, as integers were divisible by 23.
- We said that the language of binary strings whose reversal was divisible by 23 was also regular, but the DFA construction was very tricky.
- Good application of reversal-closure.

Closure Under Reversal – (2)

- Given language L, L^R is the set of strings whose reversal is in L.
- Example: L = {0, 01, 100};
 L^R = {0, 10, 100}.
- Proof: Let E be a regular expression for L.
- We show how to reverse E, to provide a regular expression E^R for L^R.

Reversal of a Regular Expression

- Basis: If E is a symbol a, ϵ , or \emptyset , then $E^R = E$.
- Induction: If E is
 - F+G, then E^R = F^R + G^R.
 - FG, then E^R = G^RF^R
 - F*, then E^R = (F^R)*.

Example: Reversal of a RE

- Let $E = 01^* + 10^*$.
- $E^{R} = (01^* + 10^*)^{R} = (01^*)^{R} + (10^*)^{R}$
- = $(1^*)^R 0^R + (0^*)^R 1^R$
- \bullet = $(1^R)^*0 + (0^R)^*1$
- \bullet = 1*0 + 0*1.

Homomorphisms

- A homomorphism on an alphabet is a function that gives a string for each symbol in that alphabet.
- Example: h(0) = ab; $h(1) = \epsilon$.
- Extend to strings by h(a₁...a_n) = h(a₁)...h(a_n).
- Example: h(01010) = ababab.

Closure Under Homomorphism

- If L is a regular language, and h is a homomorphism on its alphabet, then h(L) = {h(w) | w is in L} is also a regular language.
- Proof: Let E be a regular expression for L.
- Apply h to each symbol in E.
- Language of resulting RE is h(L).

Example: Closure under Homomorphis

- Let h(0) = ab; $h(1) = \epsilon$.
- Let L be the language of regular expression 01* + 10*.
- Then h(L) is the language of regular expression ab∈* + ∈(ab)*.

Note: use parentheses to enforce the proper grouping.

Example – Continued

- $ab \in * + \epsilon(ab) * can be simplified.$
- $\epsilon^* = \epsilon$, so $ab\epsilon^* = ab\epsilon$.
- ϵ is the identity under concatenation.
 - That is, $\epsilon E = E \epsilon = E$ for any RE E.
- Thus, $abe^* + \epsilon(ab)^* = abe + \epsilon(ab)^* = ab + (ab)^*$.
- Finally, L(ab) is contained in L((ab)*), so a RE for h(L) is (ab)*.

Inverse Homomorphisms

- Let h be a homomorphism and L a language whose alphabet is the output language of h.
- $h^{-1}(L) = \{w \mid h(w) \text{ is in } L\}.$

Let $h: \Sigma^* \to \Theta^*$ be a homom. Let $L \subseteq \Theta^*$, and define

$$h^{-1}(L) = \{ w \in \Sigma^* : h(w) \in L \}$$

Example: Inverse Homomorphism

- Let h(0) = ab; $h(1) = \epsilon$.
- Let L = {abab, baba}.
- $h^{-1}(L)$ = the language with two 0's and any number of 1's = L(1*01*01*).

Notice: no string maps to baba; any string with exactly two 0's maps to abab.

Closure Proof for Inverse Homomorphism

- Start with a DFA A for L.
- Construct a DFA B for h⁻¹(L) with:
 - The same set of states.
 - The same start state.
 - The same final states.
 - Input alphabet = the symbols to which homomorphism h applies.

Proof – (2)

- The transitions for B are computed by applying h
 to an input symbol a and seeing where A would
 go on sequence of input symbols h(a).
- Formally, $\delta_B(q, a) = \delta_A(q, h(a))$.

Example: Inverse Homomorphism Construction

