TUTORIAL 2

1 Alternative FFT algorithm

Let P be a polynomial of degree at most $2^k - 1$, and write $P = P_h X^{2^{k-1}} + P_l$. Let ω be a primitive 2^k -th root of 1.

- 1. Prove that $P(\omega^{2i}) = P_h(\omega^{2i}) + P_l(\omega^{2i})$ and $P(\omega^{2i+1}) = -P_h(\omega^{2i+1}) + P_l(\omega^{2i+1})$.
- 2. Deduce an alternative FFT algorithm. You will need to introduce the polynomial

$$Q(X) = P_l(\omega X) - P_h(\omega X).$$

2 Is squaring easier than multiplying?

Show that computing the square of a n-digit number is not (asymptotically) easier than multiplying two n-digit numbers. We assume we work in a ring where we can divide by 2.

3 The "binary splitting" method computation of n!

We want to compute n! and assume that n is a "small" integer (i.e. it fits into one machine word). We denote with M(k) the cost (in terms of elementary operations) of the multiplication of two k-bit numbers, and we assume $2M(k/2) \leq M(k)$ (we recall some typical values: $M(k) = O(k^2)$ with naive multiplication, $O(k^{\log(3)/\log(2)})$ with Karatsuba multiplication and $O(k \log k \log \log k)$ with the FFT-in finite ring variant of the Schönhage & Strassen algorithm). Use the fact that $\log n! \sim n \log n$.

- 1. What is the cost of multiplying O(n)-digit integer by a O(1)-digit integer by the naive algorithm. Argue that it is essentially optimal.
- 2. We first consider the simplest approach: $x_1 = 1$, $x_2 = 2x_1$, $x_3 = 3x_2$, ..., $x_n = nx_{n-1}$. Show that the cost of this approach is $O(n^2(\log n)^2)$.
- 3. We define

$$p(a,b) = (a+1)(a+2)\cdots(b-1)b = \frac{b!}{a!}$$

Suggest a recursive method to compute n! with cost $O(\log nM(n\log n))$. Conclude on the complexity of your method under different values of M(k).

4 Logarithm and exponential

For polynomials $S, T \in \mathbb{K}[X]$ such that S(0) = 0 and T(0) = 0, we define

$$\exp_n(S(X)) = \sum_{k=0}^{n-1} \frac{S(X)^k}{k!} \bmod X^n$$

$$\log_n(1+T(X)) = \sum_{k=1}^{n-1} (-1)^{k+1} \frac{T(X)^k}{k} \mod X^n$$

- 1. Assume A(0) = 0, prove that $(A(X) + 1)^{-1} = \sum_{k=0}^{n-1} (-1)^k A(X)^k \mod X^n$
- 2. Recall that S(0)=0. Let $U_n(X)=S'(X)/(S(X)+1)=\sum_{k=0}^{n-2}u_kX^k \mod X^{n-1}$ (note that S(X)+1 is invertible modulo X^n because $S(0)+1\neq 0$). Prove that

$$\log_n(1 + S(X)) = \sum_{k=1}^{n-1} u_{k-1} \frac{X^k}{k} \mod X^n$$

- 3. Deduce a quasi-linear time (in the degree of S(X)) algorithm to compute $\log_n(S(X)+1)$.
- 4. Prove that if T(0) = 0, then $\log_n(\exp_n(T(X))) = T(X)$ (remark that this is well defined because $\exp_n(T(0)) = 1$). (Hint: take the derivative).
- 5. Let $Y = \exp_N(T(X)) 1 \mod X^N$. Using the above, we have that

$$f(Y) = \log_N(1+Y) - T(X) = 0 \mod X^N.$$

Using Hensel lifting, deduce an algorithm for computing $Y=\exp_N(T(X))-1 \mod X^N$ using O(M(N)) operations in K. (Hint: remember that as M is super-linear, we have that $M(N)+M(N/2)+\cdots+M(N/n^k)+\cdots \leq 2M(N)$).