HMMA 307: Advanced Linear Modeling

Linear mixed models with LM and REML

Delage Cindy

Université de Montpellier

- 1 Introduction to the linear mixed models
- Beta estimation
- 3 Estimation of the parameters variances
- Conclusion

- 1 Introduction to the linear mixed models
- 2 Beta estimation
- 3 Estimation of the parameters variances
- 4 Conclusion

Introduction to the linear mixed models

Remark

Fixed effect : can be generalised Random effect : sample-specific

Model

$$\mathsf{Y} = \mathsf{X}\beta + \mathsf{Z}\mathsf{u} + \epsilon$$

$$\begin{pmatrix} u \\ \epsilon \end{pmatrix} \sim (\mathcal{N}(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} G & 0 \\ 0 & R \end{pmatrix}))$$

X and Z are design matrix, β is the fix effect vector and u is the random effect vector.

Meaning of this project

Definition

- ML : maximum likelihood regression
- REML : restrained maximum likelihood regression

Goals

- Compare ML and REML
- Application with Python
- Explain the differences

- Introduction to the linear mixed models
- 2 Beta estimation
- 3 Estimation of the parameters variances
- 4 Conclusion

Manual estimation

Beta

For linear mixed model:

$$\hat{\beta} = (X^{\top} V^{-1} X)^{-1} X^{\top} V^{-1} Y$$

V is the variance of Y, $V = ZGZ^{\top} + R$

Manual estimation: Using these formulas in Python, we obtain the following parameters:

$$\beta = \begin{pmatrix} 70.18571429 \\ 5.71428571 \\ 0.91428571 \end{pmatrix}$$

ML estimation

Mixed Lir	ear Model Re	gression	Results				
		=======		=====			
	xedLM	Dependen Method:	t Varia	pres			
	21			ML			
No. Groups: 7		Scale:		2.3045			
Min. group size: 3		Log-Likelihood:			-52.8621		
Max. group size: 3		Converged:			No		
Mean group size: 3.	0						
	Coet.	Std.Err.	Z	P> Z	[0.025	0.9/5]	
Intercept	70.186	1.036	67.718	0.000	68.154	72.217	
metal[T.i]	5.714	1.865	3.064	0.002	2.059	9.369	
metal[T.n]	0.914	1.379	0.663	0.507	-1.789	3.618	
Group Var	5.215						
Group x df.metal[T.i] Cov	2.267	2.974					
df.metal[T.i] Var	19.736						
Group x df.metal[T.n] Cov							
df.metal[T.i] x df.metal[T.r							
df.metal[T.n] Var	8.712						

REML estimation

Mixed Linear Model Regression Results

Model:	MixedLM		Dependent Variable:			pres					
No. Observations:	21		Method:			REML					
No. Groups:	7		Scale:			0.9865					
Min. group size:	3	Log-Likelihood:			-49.3760						
Max. group size:	3		Converged:			No					
Mean group size:	3.0		-								
		Coef	Std.Err.		D\ -	 [a a25	0 9751				
Intercept		70.186	1.124	62.434	0.000	67.982	72.389				
metal[T.i]		5.714	2.053	2.784	0.005	1.691	9.738				
metal[T.n]		0.914	1.592	0.574	0.566	-2.206	4.035				
Group Var		7.860									
Group x df.metal[T.i] Cov	,	-2.288	5.234								
df.metal[T.i] Var		27.526									
Group x df.metal[T.n] Cov	,	-3.292	3.036								
<pre>df.metal[T.i] x df.metal[</pre>	T.n] Cov	18.563									
df.metal[T.n] Var	-	15.769									

- Introduction to the linear mixed models
- 2 Beta estimation
- 3 Estimation of the parameters variances
- 4 Conclusion

Variances estimated by ML

Likelihood

$$f_Y(y_1,...,y_n) = \frac{e^{\frac{-1}{2}(Y-X\beta)^T V^{-1}(Y-X\beta)}}{\sqrt{2\pi^n |V|}}$$

Optimizing the log likelihood with python gives :

$$\begin{pmatrix} \sigma_Y^2 \\ \sigma_{residuals}^2 \end{pmatrix} = \begin{pmatrix} 9.812383 \\ 8.889932 \end{pmatrix}$$

Variances estimated by REML

Log likelihood

$$-2\log(\beta, Y) = \log(|V|) + \log(\left|X^{T}V^{-1}X\right|) + (Y - X\beta)^{T}V^{-1}(Y - X\beta) + Cste$$

Optimisation

Optimizing the log likelihood with python gives :

$$\begin{pmatrix} \sigma_Y^2 \\ \sigma_{residuals}^2 \end{pmatrix} = \begin{pmatrix} 11.44780323 \\ 10.3715852 \end{pmatrix}$$

Reason of the differences

Main differences

- Variance of the parameters
- Confidence intervals regression

ML has a bias

$$\mathbb{E}[\hat{\sigma}^2] = \sigma^2 - \frac{\sigma^2}{N}$$

- Introduction to the linear mixed models
- 2 Beta estimation
- 3 Estimation of the parameters variances
- Conclusion

Conclusion

Conclusion

REML corrects the bias of ML by adding a term in the log likelihood.

The confidence intervals is larger, so are the variances calculated.