Final Exam

Warning: The hard deadline has passed. You can attempt it, but you will not get credit for it. You are welcome to try it as a learning exercise.

To specify an array or sequence of values in an answer, you must separate the values by a single space character (with no punctuation and with no leading or trailing whitespace). For example, if the question asks for the first ten powers of two (starting at 1), the only accepted answer is:

1 2 4 8 16 32 64 128 256 512

If you wish to discuss a particular question and answer in the forums, please post the entire question and answer, including the seed (which is used by the course staff to uniquely identify the question) and the explanation (which contains the correct answer).

In accordance with the Coursera Honor Code, I (Atul Gupta) certify that the answers here are my own work.

Question 1

(seed = 885613)
Which of the following id[] array(s) could be the result of running the weighted quick union
algorithm on a set of 10 items?

- 4412448982
- 6541566551
- 8781778838
- 0890670008
- 0 1 9 3 4 9 9 7 8 9

Question 2

(seed = 576529)

Suppose that you binary search for the key 15 in the following sorted array of size 15:

13 14 15 23 24 38 44 52 59 62 66 73 74 76 97

Give the sequence of keys in the array that are compared with 15. $\,$

Question 3

(seed = 676773)

Suppose that you time a program as a function of N and produce the following table.

```
N seconds

216 0.02
1296 4.84
7776 1254.72

Estimate the order of growth of the running time as a function of N. Assume that the running time obeys a power law T(N) ~ a N^b. For your answer, enter the constant b. Your answer will be marked as correct if it is within 1% of the target answer - we recommend using two digits after the decimal separator, e.g., 2.34.
```

```
(seed = 983729)
 What is the order of growth of the worst case running time of the following code fragment
 as a function of N?
 int sum = 0;
 for (int i = 1; i <= N*N*N; i++)
    for (int j = i+1; j <= N; j++)
       sum++;
1
log N
N^1/2
N
N log N
N^2 log N
N^3/2
N^2
N^5/2

    N^3

    N^4

    N^5

N^6
N^7
```

```
(seed = 230905)
Consider an object of type GenericMysteryBox<Boolean> that stores N items of type Boolean.

public class GenericMysteryBox<Item> {
    private int N;
    private Item[] items;
    ...
}

Using the 64-bit memory cost model from the lecture, how many bytes does it use as a function of N?
Include all memory referenced by the object and use tilde notation to simplify your answer.
For example, enter ~1N if the number of bytes is 1N + 32.

Assume that the length of the array equals the number of items stored in the data structure.
```

Hint: An object of type Boolean uses 24 bytes.	
Question 6	
<pre>(seed = 133044) Suppose that you have a data type for a sequence of N items and that it is represe hat the data type is implemented in an efficient and natural manner given the spec</pre>	
Match up each of the following operations with their worst-case running time. You may use each number once, more than once, or not at all.	
return the last item in the sequence	0. 1
insert a specified item immedidately after the ith item in the sequence	1. log N
is a specified item in the sequence?	2. N
insert a specified item at the beginning of the sequence	3. N log N
return the number of items in the sequence	4. N^2
remove and return the first item in the sequence	
Question 7	
<pre>(seed = 706579) Give the array that results immediately after the 4-sorting phase of Shellsort on following array:</pre>	
21 86 43 97 12 80 66 58 17 46	
Question 8	
(seed = 436076)	
Give the array that results immediately after the 7th calls to merge() when bottom-up mergesorting the following array:	
93 22 82 84 94 62 32 60 36 68	
Question 9	
(seed = 929334) Give the array that results after applying quicksort partitioning to the following	g array:

osc the standar	d partitioning algorith	nm. in which the	leftmo	st entry	is the	nartitio	ning item
	u partitioning algorith	iii, iii wiiicii tile	Tel cillo	st entry	15 the p	partition	ming item.
Question '	10						
(seed = 956081)							
,	ce of the 7 keys in the	e array that res	ults af	ter perf	orming 3	successi	ive delete-the-max
operations on t	he following maximum-o	riented binary h	eap of	size 10:			
97 96 84 54	93 33 72 40 49 25						
uestion '	11						
seed = 933038)		e containing N k	evs tha	t is ren	resented	internal	lly using a sorted array (where keys are orde
		_					nd natural manner given the specified represen
n.							
tatah un aaah a	f the fellowing enemate	ions with their		ad nunnis	+:		
	f the following operat: h number once, more tha			eu ruiiiiii	ing crimes	•	
return a ma	ximum kev		0.	1			
	,						
insert an a	rray of N specified key	/S	1.	log N			
delete and	return a minimum key		2.	N			
iterate ove	r the keys in ascending	g order	3.	N log N			
	nimum kov		4.	NA2			
neturn a mi	IIIIIIIII KEY		4.	N 2			
return a mi							
	return a maximum key						
	return a maximum key						
	return a maximum key						
	return a maximum key						
	return a maximum key						
	return a maximum key						
delete and							
delete and							
delete and							
delete and Question ((seed = 65907)		riginal input of	24 str	ings to I	be sorte	d or shut	ffled;
delete and Question ' (seed = 65907) The column on the column of the column on the column of the column on the co	12 he left contains the on he right contains the :	strings in sorte	d order	; the oth	her colu	mns conta	
Question ' (seed = 65907) The column on the	12 he left contains the o	strings in sorte	d order	; the oth	her colu	mns conta	
Question (seed = 65907) The column on the column on the contents at some	12 he left contains the on he right contains the :	strings in sorte ring one of the	d order 9 algor	; the oth	her colum	mns conta ow.	ain the
delete and Question ' (seed = 65907) The column on the column on the column on the contents at some that the peach of the column on the column of the colum	he left contains the or he right contains the se in intermediate step dur olumn with the correspondence and algorithm exactly	strings in sorte ring one of the onding sorting o once. That is,	d order 9 algor r shuff your an	; the oth	her colum sted belo prithm fould be a	mns conta ow. rom the I permutat	ain the list given below. tion of the 11
Question ' (seed = 65907) The column on t the column on t contents at som Match up each c You should use	he left contains the or he right contains the se he intermediate step dur olumn with the correspon	strings in sorte ring one of the onding sorting o once. That is,	d order 9 algor r shuff your an	; the oth	her colum sted belo prithm fould be a	mns conta ow. rom the I permutat	ain the list given below. tion of the 11
Question ' (seed = 65907) The column on tocontents at some tocontents at some to some	he left contains the or he right contains the se in intermediate step dur olumn with the correspondence and algorithm exactly	strings in sorte ring one of the onding sorting o once. That is,	d order 9 algor r shuff your an	; the oth	her colum sted belo prithm fould be a	mns conta ow. rom the I permutat	ain the list given below. tion of the 11

mole boar dove calf frog ibex crab boar deer wolf calf wren worm deer crab dove mole crow calf hare sole crab

5	deer	bull	hare	crow	deer	puma	deer	crow	ibex	seal	crow
6	hare	wren	boar	deer	hare	seal	duck	frog	mole	hare	deer
7	boar	seal	bull	dove	boar	wren	hare	dove	puma	lion	dove
8	bull	hare	crow	duck	bull	bull	ibex	duck	seal	slug	duck
9	crow	deer	crab	frog	crow	calf	lion	deer	wasp	kiwi	frog
10	worm	wasp	duck	hake	crab	crab	mole	hake	worm	puma	hake
11	wasp	ibex	calf	hare	duck	crow	puma	hare	wren	deer	hare
12	calf	calf	ibex	mole	ibex	duck	seal	kiwi	calf	calf	ibex
13	duck	duck	wasp	seal	wasp	lion	wasp	ibex	crab	duck	kiwi
14	crab	crab	lion	wren	worm	wasp	worm	lion	dove	crab	lion
15	lion	lion	worm	lion	lion	worm	wren	seal	duck	boar	mole
16	dove	dove	slug	puma	wren	bear	dove	mole	lion	dove	puma
17	slug	slug	wolf	slug	slug	dove	slug	sole	slug	mole	seal
18	wolf	wolf	wren	wolf	wolf	frog	wolf	puma	bear	bull	slug
19	frog	frog	kiwi	wasp	mole	hake	frog	wasp	frog	frog	sole
20	kiwi	kiwi	sole	kiwi	kiwi	kiwi	kiwi	slug	hake	crow	wasp
21	sole	sole	mole	sole	sole	slug	sole	wren	kiwi	ibex	wolf
22	hake	hake	seal	worm	seal	sole	hake	wolf	sole	hake	worm
23	bear	bear	puma	ibex	puma	wolf	bear	worm	wolf	bear	wren
0.	Origina										
1.	Selecti										
2.	Inserti										
3.			3x + 1	incremen	it sequer	ice)					
4.	-	rt (top-									
5.	-	rt (bott									
6.			ndard, no)						
7.	•	•	y, no sh	uffle)							
8.	Heapsor										
9.	Knuth s	huffle									
10.	Sorted										

```
(seed = 966001)
Give the level order traversal of the BST that results after inserting
the following sequence of keys into an initially empty BST:

89 24 95 22 66 81 90 87 25 36
```

Question 16

```
(seed = 720863)

Suppose that you insert the following sequence of points into an initially empty kd-tree.

Give the level order traversal of the resulting kd-tree.

A (0.53, 0.35)
B (0.79, 0.67)
C (0.35, 0.08)
D (0.77, 0.63)
E (0.20, 0.06)
F (0.81, 0.65)
G (0.29, 0.14)
H (0.84, 0.91)

Recall that our convention is to subdivide the region using the x-coordinate at even levels (including the root) and using the y-coordinate at odd levels. Also, we use the left subtree for points with smaller x- or y-coordinates.
```

Max height of a BST with N keys	5. ~ lg N
	6. ~ 2 lg N
	7. ~ 2 ln N
	8. ~ N

```
(seed = 157148)
Suppose that you have a data type for a set of N items (no duplicate keys) and that it is represented internally using an ordered arra
y (with the ith smallest key at array entry i). Assume that the data type is implemented in an efficient and natural manner given the
specified representation.
\label{eq:match_problem} \mbox{Match up each of the following operations with their amortized running times.}
You may use each number once, more than once, or not at all.
___ remove a specified key from the set
                                                  0.1
                                                   1. log N
___ minimum key
___ delete the minimum key
                                                   2. N
___ is a specified key in the set?
                                                  3. N log N
                                                  4. N^2
___ number of keys <= a specified key
___ kth largest key
```

Question 20
(seed = 821051)
You are applying for a job at a new software technology company. Your interviewer asks you
to identify the following tasks as either possible (with algorithms and data structures learned
in this course), impossible, or an open research problem.
You may use each number once, more than once, or not at all.
0. Possible
1. Impossible
2. Open
Implement a union-find data type so that all operations (except construction) take constant time in the worst case Given an array of N distinct numbers, determine whether there are three entries that sum to exactly 0 in N^1.5 time.
Prove that every compare-based sorting algorithm uses at least ~ 9/8 N lg N compares in the worst case.
Design a compare-based sorting algorithm that guarantees to sort any array of N comparable keys using $\sim 9/10$ N \lg N compares in the worst case.
Find the smallest key greater than or equal to a given key in a left-leaning red-black BST in logarithmic time.
Find the kth largest key in a left-leaning red-black BST in logarithmic time.
Determine how many keys in an ordered array are less than a given key in logarithmic time.
Return a list of all intersections among a set of N orthogonal line segments in linearithmic time.

In accordance with the Coursera Honor Code, I (Atul Gupta) certify that the answers here are my own work.

Submit Answers Save Answers

You cannot submit your work until you agree to the Honor Code. Thanks!