TAIS

Técnicas Algorítmicas en Ingeniería del Software

Rubén Rubio

Curso 2024-25

Facultad de Informática — Universidad Complutense de Madrid

- Conocer estructuras de datos avanzadas y distintos métodos de análisis y diseño de algoritmos y ser capaz de aplicarlos en el desarrollo de soluciones para problemas variados
- Valorar cuál de los métodos aplicables es el mejor desde el punto de vista de la complejidad
- Continuación de FAL y ED

Rubén Rubio

™ rubenrub@ucm.es

(b) Tutorías: M 15:30-17 y X 11-12:30

 Consultas por correo electrónico, foros del CV o aclaraciones del juez (no correo CV)

Desdobles: Alberto Verdejo e Isabel Pita

Material Alberto Verdejo

Problemas Alberto Verdejo

Pedro Pablo Gómez Martín Marco Antonio Gómez Martín

Isabel Pita

Cuestionarios Alberto Verdejo

Clara Segura

Ignacio Fábregas

Horario

		1 2 3
		4 5 6 7 8 9 10
Viernes	Miércoles	9 10 11 12 13 14 15 11 12 13 14 15 16 17
	IVIICIOOICS	16 17 18 19 20 21 22
		23 24 25 26 27 28 29
11:00-12:50		30
	9:00-10:50	1
		1 2 3 4 5 6 2 3 4 5 6 7 8
Aula 5		7 8 9 10 11 12 13 9 10 11 12 13 14 15
	Labs 1 y 2	14 15 16 17 18 19 20 16 17 18 19 20
	,	21 22 23 24 25 26 27
		28 29 30 31

Temario

- 1. Árboles de búsqueda avanzados
- 2. Colas de prioridad y montículos
- 3. Grafos y estructuras de partición
- 4. Análisis amortizado
- 5. Algoritmos voraces Lo opuesto a vuelta atras. Si se pueden aplicar, sabemos cual es la mejor decisión en cada paso. Problemas de optimización.
- 6. Programación dinámica Cuando hay solapamiento entre subproblemas, hay muchos repetidos. En programación dinamica evitamos repetir subproblemas
- 7. Ramificación y acotación para no resolverlos varias veces.
- El árbol se recorren según la prioridad que tengan. Se elige, de los nodos generados, cual es el mejor para seguir recorriendo el árbol.
- 9. Complejidad de problemas
- 8. Se representan partidas de un juego. Cada nodo es un estado.
- 9. Lo veremos muy general. Se busca la complejidad del problema completo.

- No se impartirán clases de teoría (clase invertida)
 - > Debéis estudiar la teoría antes de venir a clase
- En clase realizaremos exclusivamente ejercicios
 - de forma colectiva (los viernes)
 - por parejas en el laboratorio (los miércoles)

Teoría

- Estudio individual del material que se publique en el campus virtual
- El material se publicará los viernes de cada semana, y tendrá que estudiarse antes del viernes de la semana siguiente
- El material consiste en
 - → Videos
 - Ejercicios propuestos de autoevaluación
 - Cuestionarios de autoevaluación

- Test de control a la mitad de la clase (individual)
 - > Dificultad similar a los cuestionarios de autoevaluación
- Resolución de dudas y realización de ejercicios
 - Ejercicios propuestos de autoevaluación
 - Nuevos ejercicios propuestos en clase

- Un problema para resolver en parejas, con ayuda del profesor si es necesaria
 - Usando el juez automático, pero solo con los casos de prueba del enunciado durante parte del tiempo
 - > No contará para la nota, pero se corregirá una muestra de los envíos
 - Quien acabe puede continuar con los otros problemas

- Un problema para resolver en parejas, con ayuda del profesor si es necesaria
 - Usando el juez automático, pero solo con los casos de prueba del enunciado durante parte del tiempo
 - > No contará para la nota, pero se corregirá una muestra de los envíos
 - Quien acabe puede continuar con los otros problemas
- Sí contará para la evaluación continua algunos días (~2)
 - Mismas condiciones, pero sin acceso a la red
 - Se avisará con antelación

Funcionamiento de la asignatura

Funcionamiento de la asignatura

Resolución de problemas

GOOD CODERS ...

evaluación continua

- Se calculan las medias aritméticas de cuestionarios y problemas de laboratorio y se ponderan como en el examen final
- Para obtener el 20% de la nota final es suficiente tener un 8,5 sobre 10 como nota de evaluación continua

- Examen en el laboratorio con problemas como los propuestos durante el curso (juez online) y cuestionario (~70 y 30% de la nota)
- Nota ≥ 5 en el examen para aprobar la asignatura

¿?