Introduction to Reinforcement Learning

CS 8803 RLR @ Gatech Jan. 19, 2022

Jie Tan

Warm-up Exercise

How to make this cute robot run agilely?

Today's Class

- 1. Definition of Markov Decision Process (MDP)
- 2. Overview of Reinforcement Learning (RL) algorithms

Goals:

- 1. Learn how to formulate a RL problem
- 2. Understand the categories and trade-offs between different RL algorithms

Sequential Decision Problem

- Goal: select actions to maximize total future reward
- Actions may have long-term consequences
- Reward may be sparse and delayed
- It may be better to sacrifice immediate rewards for more long-term reward
- Examples:
 - Financial investment
 - Games
 - O ...
 - Life

• State $\mathbf{s}_t \in \mathbb{S}$: The complete information of the environment

Definition

A state S_t is Markov if and only if

$$\mathbb{P}[S_{t+1} \mid S_t] = \mathbb{P}[S_{t+1} \mid S_1, ..., S_t]$$

- The future is independent of the past, given the present
- The current state capture all the information to determine the future

• State $\mathbf{s}_t \in \mathbb{S}$: The complete information of the environment

Definition

A state S_t is Markov if and only if

$$\mathbb{P}[S_{t+1} \mid S_t] = \mathbb{P}[S_{t+1} \mid S_1, ..., S_t]$$

Quiz: What should a Markovian state be for this basketball?

- State $\mathbf{s}_t \in \mathbb{S}$: The complete state information of the environment
- Observation $\mathbf{o}_t \in \mathbb{O}$: The observed (potentially partial) state of the environment
 - Robotics: sensor limitations
 - Investment: not knowing everyone's portfolio on the market, unknown Monetary Policy, etc.
 - Video game: the image on the screen

- State $\mathbf{s}_t \in \mathbb{S}$: The complete state information of the environment
- Observation $\mathbf{o}_t \in \mathbb{O}$: The observed (potentially partial) state of the environment
- Action $\mathbf{a}_t \in \mathbb{A}$: The action that the agent can execute
 - Robotics: motor torque
 - o Investment: buy or sell
 - Video game: joystick movement and buttons to press

- State $\mathbf{s}_t \in \mathbb{S}$: The complete state information of the environment
- Observation $\mathbf{o}_t \in \mathbb{O}$: The observed (potentially partial) state of the environment
- Action $\mathbf{a}_t \in \mathbb{A}$: The action that the agent can execute
- ullet Reward $r_t: \mathbb{S} imes \mathbb{A} \mapsto \mathbb{R}$: A scalar feedback signal
 - Indicates how good the current state is
 - The goal is to maximize the cumulative reward
 - o Robotics (humanoid robot walking):
 - + reward for moving forward
 - reward for losing balance
 - Investment
 - + reward for \$ in the bank
 - Video game
 - +/- reward based on the score change on the screen

- State $\mathbf{s}_t \in \mathbb{S}$: The complete state information of the environment
- Observation $\mathbf{o}_t \in \mathbb{O}$: The observed (potentially partial) state of the environment
- Action $\mathbf{a}_t \in \mathbb{A}$: The action that the agent can execute
- ullet Reward $r_t: \mathbb{S} imes \mathbb{A} \mapsto \mathbb{R}$: A scalar feedback signal
- Transition function $\mathcal{T}: \mathbb{S} \times \mathbb{A} \times \mathbb{S} \mapsto \mathbb{R}$: A rule that governs how the state evolve in the environment
 - $\circ \quad \mathcal{T}(\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1}) = \mathbb{P}[\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t]$
 - Robotics: Physics
 - Investment: Behavioral economics, macroeconomics, etc.
 - Video game: Game rule

- State $\mathbf{s}_t \in \mathbb{S}$: The complete state information of the environment
- Observation $\mathbf{o}_t \in \mathbb{O}$: The observed (potentially partial) state of the environment
- Action $\mathbf{a}_t \in \mathbb{A}$: The action that the agent can execute
- ullet Reward $r_t: \mathbb{S} imes \mathbb{A} \mapsto \mathbb{R}$: A scalar feedback signal
- Transition function $\mathcal{T}: \mathbb{S} \times \mathbb{A} \times \mathbb{S} \mapsto \mathbb{R}$: A rule that governs how the state evolve in the environment
- Policy $\pi_{\theta}: \mathbb{S} \mapsto \mathbb{A}:$ The feedback decision function
 - Chooses proper actions based on the current situation (state/observation)
 - \circ θ is the parameter of the policy: e.g. weight of a neural network

$$J(\theta) = \sum_{t} r_t$$

Example 1. Maze

Goal: Traverse the maze as fast as possible

State: agent's location

• Action: N,W,E,S

Reward: -1 for each step

Transition: move to the adjacent location

Policy: lookup table

Example 2. Robot Locomotion

Goal: Run as fast as possible

Observation: joint angles, roll, pitch, yaw

Action: motor torques

Reward: $r = (\mathbf{p}_n - \mathbf{p}_{n-1}) \cdot \mathbf{d}$

Transition: equation of motion

Policy: neural network

Reinforcement Learning: Agent and Environment

For each time step t

- Agent
 - receives observation o,
 - executes action a,
 - o receives reward r,
- Environment
 - receives action a,
 - \circ emits observation \mathbf{o}_{t+1}
 - emits reward r_{t+1}

Inside an Agent

Inside an Agent

An agent consists one or more of the following components:

- Policy: What to do in the current situation?
- Value function: How good is each state / action?
- Model: What's going to happen if this action is taken?

Policy

Mapping from state to action

- Deterministic: $a = \pi(s)$
- Stochastic: $\pi(a|s) = \mathbb{P}(a_t = a|s_t = s)$
- Representation
 - Look-up table
 - Neural network
 - 0 ..

Value Function

Prediction of accumulated future reward

$$V_{\pi}(s) = \mathbb{E}_{\pi}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + ... | s_t = s]$$
 Start $[$ -16 $]$

- Used to evaluate states
- And select actions

Goal

Model

Prediction of the environment

Predicts the next state

$$\mathbb{P}[s_{t+1} = s' | s_t = s, a_t = a]$$

Predicts the reward

$$\mathbb{E}[r_{t+1}|s_t = s, a_t = a]$$

Used to "imagine" the potential consequences to choose the optimal action

RL Algorithms Taxonomy

Example of RL Algorithms

- Policy-based
 - REINFORCE
 - Natural policy gradient
 - Proximal Policy Optimization (PPO)
- Value-based
 - Q-learning, Deep Q network (DQN)
 - QT-OPT
- Actor-critic
 - Asynchronous advantage actor-critic (A3C)
 - Soft actor-critic (SAC)
- Model-based
 - Dyna
 - Probabilistic ensembles with trajectory sampling (PETS)

RL Algorithms in Nutshell

Three Components of RL Algorithms

Example 1: Policy Gradient

Example 1: Policy Gradient

Example 1: Policy Gradient

learn f_{ϕ} such that $\mathbf{s}_{t+1} \approx f_{\phi}(\mathbf{s}_t, \mathbf{a}_t)$

backprop through f_{ϕ} and r to train $\pi_{\theta}(\mathbf{s}_t) = \mathbf{a}_t$

Which component is more expensive?

Which component is more expensive?

Data collection

- Real world (robot / power grid): expensive
- Simulator: fast

Computation

Policy gradient: fast

$$J(\theta) = E_{\pi} \left[\sum_{t} r_{t} \right] \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t} r_{t}^{i}$$

Model-based: expensive

learn
$$\mathbf{s}_{t+1} \approx f_{\phi}(\mathbf{s}_t, \mathbf{a}_t)$$

Sample efficiency

Quiz: Why do we care about *less* efficient algorithms?

Answer: Less efficient algorithms are often more parallel and take less training time!

- Sample efficiency
- Stability and ease-of-use
 - Converge? Hopefully.
 - o Converge to what? Not sure.
 - Converge everytime? Probably not.

Fixed target: dataset

Supervised learning

Moving target: policy rollouts

Reinforcement learning

Additional Resources

- (Book) Reinforcement Learning: An Introduction, 2nd Edition, Sutton R. & Barto A. (pdf), Chapter 1 & 3
- (Online class) Introduction to Reinforcement Learning with David Silver (website), Lecture 1 & 2
- (Online class) Deep Reinforcement Learning @ UC Berkeley, Lecture 4
 (video)