Park Park Go 最佳Park檔

製作動機

- 全臺灣共有**8,178,242** 台汽車登記, 全台灣車位僅有**5,446,977**格
- 尋找工作場所車位平均需要6.4分鐘尋找居家車位時需要8.9分鐘
 - 停車場通常不會指定停車位給民眾
- SPA論文沒提供停車位的導引

多個出入口易造成混亂

智慧停車場導航與自走車模擬系統之功能

1

感測器辨識有無車位

利用機器學習提升 室內定位精準度

3

利用專家系統分配最小成本停車格及規劃路線

結合電腦視覺及PID演 算法建立道路循線系統

建立自走車模擬停車場導航系統

- 1.管理停車場內停車格狀況
- 2.提供停車位
- 3.規劃路線
- 4.室內定位

- 1.給予自身訊息
- 2. 道路循線系統
- 3. 接收Beacon的訊號
- 4.讀取伺服器給的定位

車位為空

亮著LED燈

(一)利用感測器辨 識車位是否為空位

> 車位有車 LED燈熄滅

(二)利用專家系統進行停車格分配及路線規劃

輸入Working Memory的Facts

160個停車位 24個端點 26個車道路段

																		_	
106	105	104	103	102	101		出入口		62	61		(13,26)	↑	29	15	←	(18,26)	\rightarrow	1
1	1	1	1	1	1				1	1			1	30	16	←		\rightarrow	2
(1,24)							(8,24)					(13,24)	\rightarrow	31	17	←		\rightarrow	3
↓	1	↓	1	1	1														
112	111	110	109	108	107			1	81	63	↓	(13,22)					(18,22)	ı	出入口
118	117	116	115	114	113			1	82	64	←								
1	1	1	1	1	1			†	83	65	←		→	32	18	←		→	4
(1,19)		(3,19)					(8,19)	†	84	66	←		\rightarrow	33	19	←		\rightarrow	5
								\rightarrow	85	67	←		→	34	20	←		\rightarrow	6
147	←		\rightarrow	133	119	←		1	86	68	←		1	35	21	←		→	7
148	←		\rightarrow	134	120	←		†	87	69	←		†	36	22	←		→	8
149	←		→	135	121	←		→	88	70	←		→	37	23	←		→	9
150	←		→	136	122	←		1	89	71	←			38	24	←		→	10
151	←		→	137	123	←		→	90	72	←		→	39	25	←		→	11
152	←		→	138	124	←		→	91	73	←		→	40	26	←		→	12
153	←		→	139	125	←		1	92	74	←		1	41	27	←		→	13
154	←		→	140	126	←		\rightarrow	93	75	←		\rightarrow	42	28	←		→	14
155	←		→	141	127	←		→	94	76	←								
156	+		→	142	128	←		→	95	77	+	(13,8)					(18,8)		(20,8)
								\rightarrow	96	78	←			ļ	ļ	ļ	ļ	ļ	ļ
出入		(3,6)					(8,6)	→	97	79	←			48	47	46	45	44	43
								→	98	80	←			54	53	52	51	50	49
157	←		\rightarrow	143	129	←								1	1	1	1	1	1


```
space (ID 157) (x 3) (y 4) (turn \( \mathbb{W} \)) (occupied 0))
space (ID 158) (x 3) (y 3) (turn \( \mathbb{W} \)) (occupied 1))
space (ID 159) (x 3) (y 2) (turn \( \mathbb{W} \)) (occupied 0))
space (ID 160) (x 3) (y 1) (turn \( \mathbb{W} \)) (occupied 0))
              point (x 3) (y 1))
point (x 3) (y 6))
point (x 3) (y 19))
                oint (x 8) (y 1))
              point (x 8) (y 3))
point (x 8) (y 6))
point (x 8) (y 19))
              point (x 8) (y 24))
point (x 8) (y 26))
point (x 13) (y 1))
(point (x 8) (y 26))
(point (x 13) (y 1))
(point (x 13) (y 3))
(point (x 13) (y 8))
(point (x 13) (y 22))
(point (x 13) (y 24))
(point (x 13) (y 24))
(point (x 13) (y 26))
(point (x 18) (y 26))
(point (x 18) (y 22))
(point (x 18) (y 22))
(point (x 18) (y 22))
(point (x 10) (y 3))
(point (x 20) (y 3))
(point (x 20) (y 2))
(point (x 1) (y 6))
(point (x 1) (y 6))
(point (x 1) (y 24))
(point (x 1) (y 24)
(point (x 1) (y 24)
(point (x 1) (y 24))
(point (x 1) (y 24)
(point (x 1) (y 24)
(point (x 1) (y 24))
(point (x 1) (y 24)
(point (x 1) (point (x 1)
(point (x 1) (point (x 1)
(point (x 1) (point (x 1)
(point (x 1) (point (x 
                   ine (x1 8) (y1 24) (x2 8) (y2 26) (distance 2))
```

iBeacon室內定位

id	RSSI_A	RSSI_B	RSSI_C	RSSI_D	RSSI_E	RSSI_F	RSSI_G	RSSI_H	RSSI_I
1	-52	-79	-99	-78	-78	-76	-99	-85	-66
2	-99	-79	-76	-99	-65	-76	-73	-88	-99
3	-52	-66	-99	-68	-81	-76	-91	-83	-92
4	-54	-77	-61	-99	-72	-71	-81	-87	-99
5	-53	-78	-99	-77	-76	-83	-73	-99	-90
6	-53	-79	-96	-78	-82	-70	-99	-82	-99
7	-99	-79	-73	-78	-81	-76	-99	-84	-99
8	-99	-81	-76	-79	-68	-76	-89	-83	-81
9	-54	-78	-76	-80	-69	-61	-99	-88	-89
10	-35	-77	-99	-99	-81	-76	-99	-71	-99
11	-52	-77	-87	-78	-80	-77	-80	-82	-90

運行WKNN

實驗精確度的結果

ID	First in group	Second in group	Training dataset	Test dataset	K value	Accuracy
1	(13,24)	(3,6)	1080	120	6	94.2%
2	(13,3)	(13,24)	1080	120	6	96.7%
3	(8,24)	(8,6)	1080	120	6	87.5%
4	(13,24)	(8,24)	1080	120	6	92.5%
5	(13,3)	(18,8)	1080	120	6	94.2%
6	(13,24)	(3,19)	1080	120	6	93.3%
7	(8,6)	(18,8)	1080	120	6	92.5%
8	(8,3)	(13,3)	1080	120	6	87.5%
9	(8,19)	(13,3)	1080	120	6	90.8%
10	(13,24)	(8,3)	1080	120	6	93:3%

平均正確率:

92.25%

(四)結合電腦視覺及PID演算法建立道路循線系統

(四)結合電腦視覺及PID演算法建立道路循線系統

PID演算法

Outout(t) =
$$K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{d}{dt} e(t)$$

實驗結果

準確循路

id	Car	Space	Route	Direction	FinalFork
4	Car4: (18,22)	Space: No. 144 (3,3)	(18,22),(13,22),(13,24),(8,24),(8,19),(8,6),(3,6),(3,3)	E	2

實驗結果

id	Car	Space	Route	Direction	FinalFork
1	Car 1: (13,3)	Space: No. 47 (16,8)	(13,3),(13,8),(16,8)	S	2
2	Car2: (3,6)	Space: No. 126 (8, 10)	(3,6),(8,6),(8,10)	W	3
3	Car3: (8,24)	Space: No.86 (8,17)	(8,24),(8,19),(8,17)	E	2
4	Car4: (18,22)	Space: No.33 (13,19)	(18,22),(13,22),(13,19)	E	2

四台車同時進入

```
pi@raspberrypi:~/AICarControl $ sudo python3 CarControl.py
 *** Looking for BLE Beacons ***
 *** CTRL-C to Cancel ***
The Car's ID is 1
Please wait until the iBeacon reception is complete...
[13, 3]
(0, -5)
Forward
Please wait until the iBeacon reception is complete...
[13, 8]
(-3, 0)
TurnRight
WalkCount: 1
FinalFork: 2
Corners: 4
WalkCount: 2
FinalFork: 2
Corners: 4
Turn right to find parking lot
Parking Finish!!
  i@raspberrypi:~/AICarControl $
  i@raspberrypi:~/AICarControl $ sudo python3 CarControl.py
 *** Looking for BLE Beacons ***
 *** CTRL-C to Cancel ***
The Car's ID is 2
Please wait until the iBeacon reception is complete...
(-5, 0)
Forward
Please wait until the iBeacon reception is complete...
[8, 6]
(0, -4)
TurnLeft
WalkCount: 1
FinalFork: 3
Corners: 4
WalkCount: 2
FinalFork: 3
Corners: 4
WalkCount: 3
FinalFork: 3
Corners: 4
Turn left to find parking lot
Parking Finish!!
  i@raspberrypi:~/AICarControl $
```

結論

