Contents

Li	st of Code Challenges	xvi
A	bout the Textbook	xix
	Meet the Authors	xix
	Meet the Development Team	XX
	Acknowledgments	xxi
7	Which Animal Gave Us SARS?	2
	The Fastest Outbreak	3
	Trouble at the Metropole Hotel	3
	The evolution of SARS	3
	Transforming Distance Matrices into Evolutionary Trees	5
	Constructing a distance matrix from coronavirus genomes	5
	Evolutionary trees as graphs	7
	Distance-based phylogeny construction	10
	Toward An Algorithm for Distance-Based Phylogeny Construction	12
	A quest for neighboring leaves	12
	Computing limb lengths	14
	Additive Phylogeny	17
	Trimming the tree	17
	Attaching a limb	19
	An algorithm for distance-based phylogeny construction	19
	Constructing an evolutionary tree of coronaviruses	20
	Using Least Squares to Construct Approximate Distance-Based Phylogenies .	22
	Ultrametric Evolutionary Trees	23
	The Neighbor-Joining Algorithm	27
	Transforming a distance matrix into a neighbor-joining matrix	27

	Analyzing coronaviruses with the neighbor-joining algorithm	31
	Limitations of distance-based approaches to evolutionary tree construction	33
	Character-Based Tree Reconstruction	33
	Character tables	33
	From anatomical to genetic characters	34
	How many times has evolution invented insect wings?	35
	The Small Parsimony Problem	37
	The Large Parsimony Problem	43
	Epilogue: Evolutionary Trees Fight Crime	48
	Detours	51
	When did HIV jump from primates to humans?	51
	Searching for a tree fitting a distance matrix	51
	The four point condition	52
	Did bats give us SARS?	54
	Why does the neighbor-joining algorithm find neighboring leaves?	56
	Computing limb lengths in the neighbor-joining algorithm	61
	Giant panda: bear or raccoon?	62
	Where did humans come from?	62
	Bibliography Notes	66
8	How Did Yeast Become a Wine Maker?	68
	An Evolutionary History of Wine Making	69
	How long have we been addicted to alcohol?	69
	The diauxic shift	70
	Identifying Genes Responsible for the Diauxic Shift	70
	Two evolutionary hypotheses with different fates	70
	Which yeast genes drive the diauxic shift?	71
	Introduction to Clustering	72
	Gene expression analysis	72
	Clustering yeast genes	74
	The Good Clustering Principle	76
	Clustering as an Optimization Problem	78
	Farthest First Traversal	79
	<i>k</i> -Means Clustering	82
	Squared error distortion	82
	<i>k</i> -means clustering and the center of gravity	83
	The Lloyd Algorithm	85

From centers to clusters and back again	85
Initializing the Lloyd algorithm	87
k-means++ Initializer	88
Clustering Genes Implicated in the Diauxic Shift	89
Limitations of <i>k</i> -Means Clustering	90
From Coin Flipping to <i>k</i> -Means Clustering	92
Flipping coins with unknown biases	92
Where is the computational problem?	95
From coin flipping to the Lloyd algorithm	95
Return to clustering	96
Making Soft Decisions in Coin Flipping	97
Expectation maximization: the E-step	97
Expectation maximization: the M-step	99
The expectation maximization algorithm	100
Soft <i>k</i> -Means Clustering	100
Applying expectation maximization to clustering	100
Centers to soft clusters	101
Soft clusters to centers	102
Hierarchical Clustering	103
Introduction to distance-based clustering	103
Inferring clusters from a tree	106
Analyzing the diauxic shift with hierarchical clustering	108
Epilogue: Clustering Tumor Samples	109
Detours	111
Whole genome duplication or a series of duplications?	111
Measuring gene expression	111
Microarrays	112
Proof of the Center of Gravity Theorem	113
Transforming an expression matrix into a distance/similarity matrix 1	114
Clustering and corrupted cliques	l 15
Bibliography Notes	118
0	120
What Causes Ohdo Syndrome?	
Introduction to Multiple Pattern Matching	
Herding Patterns into a Trie	123
Constructing a trio	123

9

Applying the trie to multiple pattern matching	125
Preprocessing the Genome Instead	127
Introduction to suffix tries	127
Using suffix tries for pattern matching	127
Suffix Trees	131
Suffix Arrays	133
Constructing a suffix array	133
Pattern matching with the suffix array	134
The Burrows-Wheeler Transform	
Genome compression	136
Constructing the Burrows-Wheeler transform	136
From repeats to runs	138
Inverting the Burrows-Wheeler Transform	139
A first attempt at inverting the Burrows-Wheeler transform	139
The First-Last Property	141
Using the First-Last property to invert the Burrows-Wheeler transform .	144
Pattern Matching with the Burrows-Wheeler Transform	147
A first attempt at Burrows-Wheeler pattern matching	147
Moving backward through a pattern	148
The Last-to-First mapping	150
Speeding Up Burrows-Wheeler Pattern Matching	153
Substituting the Last-to-First mapping with count arrays	153
Getting rid of the first column of the Burrows-Wheeler matrix	154
Where are the Matched Patterns?	156
Burrows and Wheeler Set Up Checkpoints	157
Epilogue: Mismatch-Tolerant Read Mapping	159
Reducing approximate pattern matching to exact pattern matching	159
BLAST: Comparing a sequence against a database	160
Approximate pattern matching with the Burrows-Wheeler transform	162
Charging Stations	164
Constructing a Suffix Tree	164
Solving the Longest Shared Substring Problem	167
Partial Suffix Array Construction	169
Detours	170
The reference human genome	170
Rearrangements, insertions, and deletions in human genomes	170
The Abo-Coracick algorithm	170

	From suffix trees to suffix arrays	171
	From suffix arrays to suffix trees	173
	Binary search	176
	Bibliography Notes	177
10	Why Have Biologists Still Not Developed an HIV Vaccine?	178
	Classifying the HIV Phenotype	
	How does HIV evade the human immune system?	
	Limitations of sequence alignment	
	Gambling with Yakuza	182
	Two Coins up the Dealer's Sleeve	184
	Finding CG-Islands	185
	Hidden Markov Models	186
	From coin flipping to a Hidden Markov Model	186
	The HMM diagram	188
	Reformulating the Casino Problem	188
	The Decoding Problem	191
	The Viterbi graph	191
	The Viterbi algorithm	
	How fast is the Viterbi algorithm?	195
	Finding the Most Likely Outcome of an HMM	196
	Profile HMMs for Sequence Alignment	
	How do HMMs relate to sequence alignment?	198
	Building a profile HMM	201
	Transition and emission probabilities of a profile HMM	203
	Classifying proteins with profile HMMs	
	Aligning a protein against a profile HMM	207
	The return of pseudocounts	208
	The troublesome silent states	209
	Are profile HMMs really all that useful?	216
	Learning the Parameters of an HMM	217
	Estimating HMM parameters when the hidden path is known	217
	Viterbi learning	219
	Soft Decisions in Parameter Estimation	221
	The Soft Decoding Problem	221
	The forward-backward algorithm	222
	Baum-Welch Learning	

	The Many Faces of HMMs	227
	Epilogue: Nature is a Tinkerer and not an Inventor	227
	Detours	229
	The Red Queen Effect	229
	Glycosylation	229
	DNA methylation	
	Conditional probability	230
	Bibliography Notes	232
11	Was T. rex Just a Big Chicken?	234
	Paleontology Meets Computing	235
	Which Proteins Are Present in This Sample?	236
	Decoding an Ideal Spectrum	237
	From Ideal to Real Spectra	241
	Peptide Sequencing	244
	Scoring peptides against spectra	244
	Where are the suffix peptides?	
	Peptide sequencing algorithm	248
	Peptide Identification	249
	The Peptide Identification Problem	
	Identifying peptides in the unknown <i>T. rex</i> proteome	250
	Searching for peptide-spectrum matches	251
	Peptide Identification and the Infinite Monkey Theorem	252
	False discovery rate	
	The monkey and the typewriter	
	Statistical significance of a peptide-spectrum match	255
	Spectral Dictionaries	
	<i>T. rex</i> Peptides: Contaminants or Treasure Trove of Ancient Proteins?	
	The hemoglobin riddle	
	The dinosaur DNA controversy	
	Epilogue: From Unmodified to Modified Peptides	
	Post-translational modifications	
	Searching for modifications as an alignment problem	
	Building a Manhattan grid for spectral alignment	
	Spectral alignment algorithm	
	Detours	
	Cong production	272

g all paths in a graph	275
nti-Symmetric Path Problem	275
orming spectra into spectral vectors	276
finite monkey theorem	277
obabilistic space of peptides in a spectral dictionary	278
rrestrial dinosaurs really the ancestors of birds?	279
g the Most Likely Peptide Vector Problem	280
ng Parameters for Transforming Spectra into Spectral Vectors	281
y Notes	283
	285
ies	291
	orming spectra into spectral vectors

List of Code Challenges

Chapter 7	2
(7A) Compute Distances Between Leaves	11
(7B) Compute Limb Lengths in a Tree	17
(7C) Implement AdditivePhylogeny	20
(7D) Implement UPGMA	25
(7E) Implement NeighborJoining	30
(7F) Implement SMALLPARSIMONY	40
(7G) Adapt SMALLPARSIMONY to Unrooted Trees	41
(7H) Find the Nearest Neighbors of a Tree	45
(7I) Implement NEARESTNEIGHBORINTERCHANGE	47
Chapter 8	68
(8A) Implement FARTHESTFIRSTTRAVERSAL	80
(8B) Compute the Squared Error Distortion	82
(8C) Implement the Lloyd Algorithm for <i>k</i> -Means Clustering	85
(8D) Implement the Soft k-Means Clustering Algorithm	103
(8E) Implement HIERARCHICALCLUSTERING	106
Chapter 9	120
(9A) Construct a Trie from a Collection of Patterns	124
(9B) Implement TrieMatching	126
(9C) Construct the Suffix Tree of a String	132
(9D) Find the Longest Repeat in a String	132
(9E) Find the Longest Substring Shared by Two Strings	133
(9F) Find the Shortest Non-Shared Substring of Two Strings	133
(9G) Construct the Suffix Array of a String	133
(9H) Implement PATTERNMATCHINGWITHSUFFIXARRAY	135

(9I) Construct the Burrows-Wheeler Transform of a String	38
(9J) Reconstruct a String from its Burrows-Wheeler Transform	47
(9K) Generate the Last-to-First Mapping of a String	51
(9L) Implement BWM ATCHING	51
(9M) Implement BetterBWMATCHING	56
(9N) Find All Occurrences of a Collection of Patterns in a String	58
(90) Find All Approximate Occurrences of a Collection of Patterns in a String 10	62
(9P) Implement TreeColoring	68
(9Q) Construct the Partial Suffix Array of a String	69
(9R) Construct a Suffix Tree from a Suffix Array	72
Chapter 10 1'	78
(10A) Compute the Probability of a Hidden Path	90
(10B) Compute the Probability of an Outcome Given a Hidden Path 1	91
(10C) Implement the Viterbi Algorithm	95
(10D) Compute the Probability of a String Emitted by an HMM	97
(10E) Construct a Profile HMM	06
(10F) Construct a Profile HMM with Pseudocounts	09
(10G) Perform a Multiple Sequence Alignment with a Profile HMM 2	12
(10H) Estimate the Parameters of an HMM	19
(10I) Implement Viterbi Learning	20
(10J) Solve the Soft Decoding Problem	23
(10K) Implement Baum-Welch Learning	26
Chapter 11 22	34
(11A) Construct the Graph of a Spectrum	39
(11B) Implement DECODINGIDEALSPECTRUM 24	40
(11C) Convert a Peptide into a Peptide Vector	45
(11D) Convert a Peptide Vector into a Peptide	45
(11E) Sequence a Peptide	49
(11F) Find a Highest-Scoring Peptide in a Proteome against a Spectrum 2	50
(11G) Implement PSMSEARCH	52
(11H) Compute the Size of a Spectral Dictionary	58
(11I) Compute the Probability of a Spectral Dictionary	60
(11J) Find a Highest-Scoring Modified Peptide against a Spectrum 2	73