







### Introduction to NLP

Hidden Markov Models (cont'd)



#### **Observation Likelihood**

- Given multiple HMMs
  - e.g., for different languages
  - Which one is the most likely to have generated the observation sequence
- Naïve solution
  - try all possible state sequences



## Forward Algorithm

- Dynamic programming method
  - Computing a forward trellis that encodes all possible state paths.
  - Based on the Markov assumption that the probability of being in any state at a given time point only depends on the probabilities of being in all states at the previous time point



## **HMM Learning**

- Supervised
  - Training sequences are labeled
- Unsupervised
  - Training sequences are unlabeled
  - Known number of states
- Semi-supervised
  - Some training sequences are labeled



# Supervised HMM Learning

 Estimate the static transition probabilities using MLE

$$a_{ij} = \frac{Count(q_t = s_i, q_{t+1} = s_j)}{Count(q_t = s_i)}$$

Estimate the observation probabilities using MLE

$$b_{j}(k) = \frac{Count(q_{i} = s_{j}, o_{i} = v_{k})}{Count(q_{i} = s_{j})}$$

Use smoothing



## **Unsupervised HMM Training**

- Given:
  - observation sequences
- Goal:
  - build the HMM
- Use EM (Expectation Maximization) methods
  - forward-backward (Baum-Welch) algorithm
  - Baum–Welch finds an approximate solution for  $P(O|\mu)$



#### **Outline of Baum-Welch**

#### Algorithm

- Randomly set the parameters of the HMM
- Until the parameters converge repeat:
  - E step determine the probability of the various state sequences for generating the observations
  - M step reestimate the parameters based on these probabilities

#### Notes

- the algorithm guarantees that at each iteration the likelihood of the data  $P(O|\mu)$  increases
- it can be stopped at any point and give a partial solution
- it converges to a local maximum



