The Topos Approach
in the Qubit case Isham/Butterfield
show also there Vickers
School of Computer Science Spiters
University of Birmingham

Talk given 18 bec 2008, QNET Workshop, Edinburgh

Describe quantum system by Ishan/Butterfield/
A von Neumann algebra 20 (Ishan/Butterfield)

A c*-algebra 00 (Heunen/Landsman)

Spitlers Observable = self-adjoint element of A

Classical case - A commutative

A has a (Gelfand-Naimark) spectrum Σ , $A \cong C(\Sigma, \mathbb{C})$ $A_{sa} \cong C(\Sigma, \mathbb{R})$ Element $\phi \in \Sigma$ is classically pure state specifies value of every observable Also - Dist (2) = space of distributions (probability measures φ ∈ Dist (ε) is mixed state - specifies
probabilistic distribution of values of observables

Quantum case - A non-commutative

The topos approach to quantum formalism

e.g. A = bad linear operators on Hilbert space N. φ ε « gives probabilistic distribution of ralues of observables » Torn rule BUT no spectrum of classically pure states Kochen-Specker:

Cannot assign values to all observables

consistent with their functional relationships

Topos approach

- · Define a topos J(A)
- · Define spectrum in internal mathematics of M(A)
- . Do internal mathematics, but extract external information.

What does this mean?

Let E(A) = posets of commutative subalgebras of A

— "classical viewpoints" of system

Each (EG(A) has spectrum E(C)

I dea: classical treatment

indexed by classical viewpoint

— quantum treatment

Topos internal as bundles

Suppose topos $\mathcal{I} = Sh(X)$ Object of $\mathcal{I} = local$ homeomorphism over XInternal space in \mathcal{I} use point-free topology

= bundle over XTopos-valid, point-free reasoning internally

= bundles externally geometricity

often - internal reasoning of geometricity

= fibrewise, indexed by base point

Kochen-Specker

E has no cross-sections

(continuous choice of point
from every fibre = external point of bundle)

However — Dist (Z) does have cross-sections

Each quantum state produces one

Internally: quantum states are distributions
over classical states

Externally: this is impossible

Does topos support "neo realist" reasoning?

**O I sham

I sham/Döring: J(A) = Set = Sh(Filt(G(A)))

Filter completion

Heunen/Landsman/Spiters: ideal completion

J(A) = Set G(A) = Sh(Ul(G(A)))

Both: - include classical viewpoints as base points (principal filters/ideals)

- respect order on G(A) but not topology

Idea: use topology on B(A)

Case $A = M_2(C)$ Let $G_2(A) = \{C \in G(A) | dim C = 2\}$ Ce $G_2(A) \Rightarrow C \cong C^2$, spectrum = 2

Ce termined by two projectors E, I - Econ- to (I,O), (O,I)Spectrum = $\{E, I - E\}$ Projector has - eigenvalues O or Itrace O, I or IWe seek projectors E with trace I^0 . E, I - E both describe same C

Projectors via unitaries

E idempotent (=> U = 2E-I has U² = I

E a projector (=> U s.a. unitary

tr E = 1 (=> tr U = 0)

S.a. unitaries, trace 0:

U = (c a+ib), a²+b²+c² = 1

(a-ib) -c), [E,I-E con. to U,-u]

B₂(A) = sphere s² with antipodes identified

= real projective plane RP²

Take $J(A) = Sh(b_2(A)) = Sh(RP^2)$ Spectral bundle is obvious cover S^2 - A local homeomorphism RP^2 (object of J(A))

- Each fibre has two points

continuous alobal sections

- No alobal sections

- cf. Kochen-specker (doesn't apply to $M_2(A)$, but doesn't require continuity)

$$S^2 \supseteq S'$$
 \downarrow
 $RP^2 \supseteq S'$

Global section would give continuous choice of edge of Möbius strip.

Distributions point-free ie. water

Internally: space X > space Dist (X)

of distributions (regular probability measures)

Externally: bundle > distribution bundle

Externally: bundle > distribution bundle

Logical argument of Distr
big result!

=> construction works fibrewise

Global distributions

General feature of topos approach

Internally: have spectrum E

element = classically pure state

BUT no global elements - can't specify

results of all observables simultaneously

Also have Dist (E)

element = classically mixed state

DES have global elements - each quantum

pure state provides one.

(External) quantum pure = classically mixed

- but only internally.

e.g. for A = M2(C)

On fibres:

Dist (2) = {(po,p) & [0,1] | po+p, = 1] = [0,1]

probabilities of two points of spectrum

Show how quantum pure state $\in \mathbb{C}^2$ gives global section of distr($\sup_{\mathbb{R}^2}$)

States $\phi \in \mathbb{C}^2$

Scale invariant, : in complex projective line CP'

If 3' = (a,b,c) on sphere

then $z = \frac{a}{1-c} + i \frac{b}{1-c}$ on plane

 $(a_1b_1c) = c(0,0,1) + (1-c)(\frac{a}{1-c},\frac{b}{1-c},0)$

- corresponds to 1-dim subspace C (a+ib) in C^2 [1/1+c a+ib) (a+ib)

= eigenspace for E(a,b,c) = $\frac{1}{2} (a+ib)(1+c+1-c)$ with eigenvalue 1 = $\frac{1}{2} (a+ib)(1+c+1-c)$

Consider: projector (100) - North Pole E(0,0,1)

state
$$\phi = \begin{pmatrix} a+ib \\ 1-c \end{pmatrix}$$

Born rule: probability of going to (6)

= expected value of E

$$\frac{(a-ib, 1-c)(10)(a+ib)}{(a-ib, 1-c)(a+ib)} = \frac{(a-ib, 1-c)(a+ib)}{a^2+b^2+1-2c+c^2} = \frac{a^2+b^2}{2(1-c)} = \frac{1+c}{2}$$

In general (projector) (state)

Let P = equatorial plane taking Eas North pole Expected value pe of E at $\phi = \frac{1+c}{2}$ where c = distance of of from P, taking E to be on positive side.

Continuous, & coordinate independent

Fix state of

For each CE RP2 -

- · let E, E' be antipodal points in its fibre in S
- · PE + PE' = 1 (both calculated for \$)
- · Get point in fibre over C of distribution bundle
- · Gives continuous global section of distribution bundle.

Product distributions

Dist (X) x dist (Y) -> dist(XxY) Conjecture: e.g. X,7 finite discrete (Pa) rex (93) yet (Px93) rex $\Sigma_{n} = 1$, $\Sigma_{q_y} = 1 \implies \Sigma_{n} \rho_{nq_y} = 1$

Not all distributions on product are product distributions

Distributions on — \times — \times 1 column rector p) with elementy \times — \times 1 row rector p in [0,1] and \times 2 — \times 2 matrix \times \times 3 summing to 1 \times 4 Product distribution for p,q has matrix pq — rank = 1 ... ($\frac{1}{2}$ $\frac{1}{2}$) not product distributions— exhibit "entanglement" between \times 1 components.

Product spaces

For 90 % With A&A':

-don't know all commutative subalgebras

-if C, C' & G(A), G(A') then C&C'&G(A&A')

- what can we get from

- can we get from

- can we get from

Product states
$$\phi \phi' = \phi \phi'$$
, $\phi' = \phi \phi'$, $\phi' = \phi \phi'$
If C given by projectors $E, I - E'$
 $C' = C' = C' = C'$
 $\phi \phi'$ gives distribution matrix
 $(\langle \phi \phi', (E \otimes E') \phi \phi' \rangle \langle \phi \phi', (E \otimes (I - E')) \phi \phi' \rangle$
 $(\langle \phi \phi', ((I - E) \otimes E') \phi \phi' \rangle \langle \phi \phi', ((I - E) \otimes (I - E')) \phi \phi' \rangle$
 $= (\langle \phi, (E - E) \phi \rangle) = (\langle \phi', E' \phi' \rangle, \langle \phi', (I - E') \phi' \rangle)$
 $= (\langle \phi, (I - E) \phi \rangle) = Product distribution$

Entangled state? e.g.
$$\psi = (\uparrow \uparrow + \downarrow \downarrow)/12$$
 $(\uparrow = (b))/12$ $(\downarrow = ($

 $(\psi, (E\otimes E')\psi)$ = $\frac{1+cc'+aa'-bb'}{4}$ coordinate dependent?

Four projector pairs - take antipodes

Distribution $\frac{1}{4}(1+cc'+aa'-bb')$ (-cc'-aa'+bb')e.g. for $c, c' = \pm 1$ Distribution (0, 2)Not a

Product - rank = 2

Conclusions

- · Illustrated external bundle view of topos internal reasoning
- . Example using topology of G(A)
- · "Kochen-Specker" even in dimension 2, if require continuity
- · Global distributions
- · Some manifestation of entanglement.