Introduction to R for microbial ecologists

Daniel Vaulot 25 11 2018

Contents

1	Aim	1										
2	Prerequisites											
3	Ressources	2										
	3.1 Books	2										
	3.2 Web	2										
	3.3 Cheat sheets	3										
	3.4 On line course											
4	Step by step tutorial	4										
	4.1 Some important points before starting	4										
	4.2 Start R Studio											
	4.3 Load necessary libraries											
	4.4 Create simple vectors and data frame											
	4.5 Importing data											
	4.6 Compute derived quantities and Statistics (using dplyr library)											
	4.7 Do simple X-Y plots (using ggplot2 library)											
	4.8 Other types of plots											
	4.9 Tree maps (much better than Pie charts)											
	4.10 Bar graphs											
	4.11 Heat maps											
	4.12 Multivariate analysis (FactoMiner package)											
	4.13 Maps											
	4.14 Manipulate sequences											

1 Aim

This document introduces basic R functions that can be used by microbial ecologists.

2 Prerequisites

- Download from GitHub the whole set of tutorial
- Unzip the files to a folder on your computer
- Install R
- Install R studio
- \bullet Once R and R installed start R Studio and download and install the following libraries by running under R studio the following lines

```
install.packages("dplyr")
                              # To manipulate dataframes
install.packages("tidyr")
                              # To manipulate dataframes
install.packages("readxl")
                              # To read Excel files into R
install.packages("ggplot2")
                              # for high quality graphics
install.packages("maps")
                              # to make maps
install.packages("treemap")
                              # for treemaps
install.packages("FactoMineR") # multivariate analysis
source("https://bioconductor.org/biocLite.R")
biocLite("Biostrings")
                              # manipulate sequences
```

3 Ressources

3.1 Books

- R-intro.pdf: Very good introduction to R, short and clear
- R_in_a_nutshell.pdf : Many many receipes to solve all your questions
- R graphics cook book: very good for ggplot2

3.2 Web

3.2.1 Introductory

- Quick-R, very simple
- Maps
- Minimal R

3.2.2 To go one step beyond

- Modern Dive : An Introduction to Statistical and Data Sciences via R
- R for Data Science
- Fundamentals of data visualization
- From data to visualization

3.3 Cheat sheets

- R basics
- ggplot2
- dplyr

3.4 On line course

• Coursera

4 Step by step tutorial

4.1 Some important points before starting

- R is an interpreted language
- R is case sensitive
- R works with vectors
- Types of variables: character, real, logical, factor
- Special values : TRUE, FALSE, NA
- Types of structures: vector, matrix, list, data frame
- Directory names use the linux convention: use / and not

4.2 Start R Studio

- Go to the tutorial folder
- Switch to the subdirectory \introduction
- Launch R Studio
- Four windows
 - top-left : script files / data tables
 - bottom -left: codetop left: objects
 - bottom right : help / libraries / files / graphics

4.3 Load necessary libraries

```
library("dplyr")  # Needed to filter tables
library("tidyr")  # Needed to reshape tables from wide to long format
library("readxl")  # To read data easily
```

4.4 Create simple vectors and data frame

4.4.1 Enter the data

Our aim here to create a small table and then to compute some simple statistics

station	fraction	diatoms	bolidos
4	Nano	17165	2
4	Pico	59786	1293
72	Nano	6951	3
72	Pico	3815	494

```
# We enter each column as a vector

station <- c("4", "4", "72", "72")

fraction <- c("Nano", "Pico", "Nano", "Pico")

diatoms <- c(17165, 59786, 6951, 3815)

bolidos <- c(2, 1293, 3, 494)
```

4.4.2 Compute new quantities

```
# Add 2 columns
strameno <- diatoms + bolidos
strameno

[1] 17167 61079 6954 4309
# Divide one column by the other
diatoms_pct <- diatoms/strameno
diatoms_pct</pre>
```

[1] 0.9998835 0.9788307 0.9995686 0.8853562

4.4.3 Compute statistics

```
# mean
mean(diatoms_pct)

[1] 0.9659098
# standard deviation
sd(diatoms_pct)
```

[1] 0.05459839

```
# number of observations
length(diatoms_pct)
```

[1] 4

```
# quick summary
summary(diatoms_pct)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.8854 0.9555 0.9892 0.9659 0.9996 0.9999
```

4.4.4 Accessing subsets

```
diatoms_pct[1]
[1] 0.9998835
diatoms_pct[1:2]
```

[1] 0.9998835 0.9788307

4.4.5 Data frames

```
tara <- data.frame(station, fraction, diatoms, bolidos, diatoms_pct)
tara</pre>
```

```
station fraction diatoms bolidos diatoms_pct
            Nano
                  17165
                         2
                                 0.9998835
2
      4
            Pico
                  59786
                           1293
                                0.9788307
3
      72
            Nano
                 6951
                                 0.9995686
4
      72
            Pico
                   3815
                            494
                                0.8853562
```

4.4.6 Access individual columns

tara\$diatoms

[1] 17165 59786 6951 3815

4.4.7 Access specific lines

```
tara$diatoms[tara$station == 4]
```

[1] 17165 59786

4.4.8 Compute statistics of a specific group

```
mean(tara$diatoms[tara$station == 4])
```

[1] 38475.5

4.4.9 Computing statistics according to a factor

This can be done at least two different ways, but you will see later that it is much easier to do with the dplyr package

```
# Using the tapply function
tapply(tara$diatoms, tara$station, mean)

4     72
38475.5    5383.0
# Using the aggregate functions
aggregate(data = tara, diatoms ~ station, FUN = "mean")

station diatoms
1     4    38475.5
2     72    5383.0
```

4.5 Importing data

4	Α	В	С	D	E	F	G	н	1	J	K	L	M	N	0
1	Sample	Bacillariophyta	Bolidophyceae	Chrysophyceae	Dictyochophyceae	Pelagophyceae	Phaeophyceae	Pinguiophyceae	Raphidophyceae	Strameno_all	Photo_all	depth_lev	station	template	fraction
2	TV9_237	17165	12	26	155	233	0	11		0 17602	22708	DCM		4 WGA/D	5-20
3	TV9_234	6159	42	223	487	138	12	2		0 7063	8817	SUR		4 D	5-20
4	TV9_254	59786	1293	8758	21967	73474	1835	19		0 167132	427846	DCM		4 D	0.8-5
5	TV9_235	4689	1036	7494	21293	4774	526	40		0 39852	93006	SUR		4 D	0.8-5
6	TV9_236	6280	2	21	14	13	0	6		0 6336	8976	DCM		4 WGA/D	180-2000
7	TV9_233	1000	188	670	1026	722	11	5		0 3622	5392	SUR		4 D	180-2000
8	TV9_20	12517	24	296	265	40	12	50	1	8 13222	14299	DCM		7 WGA/D	5-20
9	TV9_16	64721	163	593	1658	31	25	229	2	1 67441	70406	SUR		7 WGA/D	5-20
10	TV9_21	8126	2991	10069	19440	1687	382	20	4	8 42763	81891	DCM		7 D	0.8-5
11	TV9_17	13584	2261	25834	48876	871	2738	32	2	3 94219	144725	SUR		7 D	0.8-5
12	TV9_19	661	0	14	13	41	. 1	4		0 734	892	DCM		7 D	180-2000
13	TV9_15	227	0	5	2	4	. 0	5		0 243	342	SUR		7 D	180-2000
14	TV9_22	10354	58	226	510	54	5	40		1 11248	12400	DCM		7 D	20-180
15	TV9_18	10192	1	51	33	19	3	117		0 10416	11464	SUR		7 D	20-180
16	TV9_265	46	0	4	11	7	0	3		0 71	85	DCM		9 WGA/D	5-20
17	TV9_266	53108	866	4821	5586	2591	142	2429		0 69543	104023	SUR		9 WGA/D	5-20
18	TV9_87	17753	265	3870	15548	37127	1478	1	. 1	6 76058	180809	DCM		9 D	0.8-5
19	TV9_85	7466	2242	18754	39977	970	4516	90	5	6 74071	159650	SUR		9 D	0.8-5
20	TV9_86	32	0	2	4	16	0	0		0 54	383	DCM		9 D	180-2000
21	TV9_84	2262	65	816	2460	3914	276	4		1 9798	23658	SUR		9 D	180-2000
22	TV9_268	617858	0	1147	0	1	. 0	521		0 619527	625534	SUR	1	1 WGA/D	5-20
23	TV9_267	23786	490	5509	8066	1785	898	151		0 40685	67697	SUR	1	1 D	0.8-5
24	TV9_270	655	11	404	920	865	118	1		1 2975	6012	SUR	1	1 D	180-2000
25	TV9_269	560	13	106	154	37	16	5		0 891	1477	SUR	1	1 D	20-180

A few important points:

- Your data must be formatted in a clean table form
 - No blank line
 - Each column must contain data of the same type (e.g. dates)
 - Missing data can be represented by empty cells
 - Each line must contain data in ALL columns
- Column titles (the first line)
 - No space (use __)
 - Always begin by letter (not a number)
- Only import primary data, all derived data can (and must) be computed with R which makes data changes much more easy

4.5.1 The hard way - exporting from Excel to a tab-delimited file

- Open Excel file in /data directory : R_Tara.xlsx
- Copy and Paste into text file using Notepad++
- Save as R_Tara.txt

Note: you can also export from Excel but then it must be TAB-delimited (tsv file)

```
tara <- read.delim("../data/R_Tara.txt")</pre>
```

Get the name and type of all the columns - Note that strings are of type "factor" Note that empty cells are labelled as \mathbf{NA} (not available) which is a R constant

```
str(tara)
```

```
'data.frame':
               293 obs. of 28 variables:
$ Sample
                  : Factor w/ 293 levels "TV9_1","TV9_10",...: 124 121 141 122 123 120 93 58 101 68 ...
$ Bacillariophyta : int 17165 6159 59786 4689 6280 1000 12517 64721 8126 13584 ...
$ Bolidophyceae
                 : int
                         12 42 1293 1036 2 188 24 163 2991 2261 ...
$ Chrysophyceae
                         26 223 8758 7494 21 670 296 593 10069 25834 ...
                  : int
$ Dictyochophyceae: int
                         155 487 21967 21293 14 1026 265 1658 19440 48876 ...
$ Pelagophyceae
                 : int
                         233 138 73474 4774 13 722 40 31 1687 871 ...
$ Phaeophyceae
                  : int
                         0 12 1835 526 0 11 12 25 382 2738 ...
$ Pinguiophyceae : int 11 2 19 40 6 5 50 229 20 32 ...
$ Raphidophyceae : int 0 0 0 0 0 18 21 48 23 ...
$ Strameno all
                  : int 17602 7063 167132 39852 6336 3622 13222 67441 42763 94219 ...
```

```
$ Photo all
                  : int 22708 8817 427846 93006 8976 5392 14299 70406 81891 144725 ...
$ depth level
                 : Factor w/ 2 levels "DCM", "SUR": 1 2 1 2 1 2 1 2 1 2 ...
$ station
                 : int 4444447777...
                 : Factor w/ 2 levels "D", "WGA/D": 2 1 1 1 2 1 2 2 1 1 ...
$ template
                 : Factor w/ 4 levels "0.8-5", "180-2000", ...: 4 4 1 1 2 2 4 4 1 1 ...
$ fraction
                 : int 1796545 2128487 2122955 976685 1857697 3150580 2549282 1606212 1625284 133474
$ ntags
                 : Factor w/ 10 levels "apr", "aug", "dec", ...: 10 10 10 10 10 10 10 10 10 10 ...
$ Month
                        36.6 36.6 36.6 36.6 36.6 ...
$ Latitude
                 : num
$ Longitude
                 : num
                        -6.57 -6.57 -6.57 -6.57 -6.57 ...
$ sampling_depth : num 40 3 40 3 40 3 42 3 42 3 ...
$ date
                  : Factor w/ 77 levels "01-Aug-2011 20:13:34",..: 44 44 44 44 44 44 65 64 65 64 ...
$ chloro_hplc
                  : num NA 0.0984 NA 0.0984 NA ...
                 : num NA NA NA NA NA NA O.005 0.076 0.005 0.076 ...
$ tara_NO2
$ tara_PO4
                  : num NA NA NA NA NA NA O.026 0.041 0.026 0.041 ...
$ NO2NO3
                  : num NA NA NA NA NA NA O.4 O.23 O.4 O.23 ...
$ tara_SI
                        NA NA NA NA NA NA O.652 O.998 O.652 O.998 ...
                  : num
                  : num NA NA NA NA ...
$ tara_temp
$ tara_salinity
                  : num NA NA NA NA NA ...
```

4.5.2 The easy way - Read directly Excel (readxl library)

\$ tara_SI

```
tara <- read_excel("../data/R_Tara.xlsx", sheet = "R Tara")</pre>
```

Get the name and type of all the columns - Note that strings are now of type "char", which is better str(tara)

```
str(tara)
                                           293 obs. of 28 variables:
Classes 'tbl df', 'tbl' and 'data.frame':
                         "TV9_237" "TV9_234" "TV9_254" "TV9_235" ...
                  : chr
$ Bacillariophyta : num
                         17165 6159 59786 4689 6280 ...
$ Bolidophyceae
                  : num
                         12 42 1293 1036 2 ...
 $ Chrysophyceae
                         26 223 8758 7494 21 ...
                  : num
 $ Dictyochophyceae: num 155 487 21967 21293 14 ...
$ Pelagophyceae
                         233 138 73474 4774 13 ...
                  : num
                  : num 0 12 1835 526 0 ...
$ Phaeophyceae
 $ Pinguiophyceae : num 11 2 19 40 6 5 50 229 20 32 ...
 $ Raphidophyceae
                  : num
                         0 0 0 0 0 0 18 21 48 23 ...
 $ Strameno_all
                         17602 7063 167132 39852 6336 ...
                  : num
 $ Photo_all
                         22708 8817 427846 93006 8976 ...
                  : num
                         "DCM" "SUR" "DCM" "SUR" ...
 $ depth level
                  : chr
$ station
                  : num 4 4 4 4 4 4 7 7 7 7 ...
$ template
                  : chr
                         "WGA/D" "D" "D" "D" ...
$ fraction
                  : chr "5-20" "5-20" "0.8-5" "0.8-5" ...
$ ntags
                  : num 1796545 2128487 2122955 976685 1857697 ...
 $ Month
                         "sep" "sep" "sep" "sep" ...
                  : chr
$ Latitude
                  : num
                         36.6 36.6 36.6 36.6 ...
$ Longitude
                  : num -6.57 -6.57 -6.57 -6.57 ...
 $ sampling_depth : num 40 3 40 3 40 3 42 3 42 3 ...
                         "15-Sep-2009 16:45:02" "15-Sep-2009 16:45:02" "15-Sep-2009 16:45:02" "15-Sep-
$ date
                  : chr
                  : num NA 0.0984 NA 0.0984 NA ...
 $ chloro_hplc
 $ tara_NO2
                  : num NA NA NA NA ...
 $ tara_PO4
                  : num NA NA NA NA ...
 $ NO2NO3
                  : num NA NA NA NA ...
```

: num NA NA NA NA NA ...

4.6 Compute derived quantities and Statistics (using dplyr library)

```
Compute \% of Bacilliarophyta and Pelagophyceae vs Total photosynthetic
```

Mean and SD as a function of size fraction and depth_level

```
# A tibble: 8 x 5
# Groups:
           fraction [?]
  fraction depth_level Baci_pct_mean Baci_pct_SD
  <chr>
                                <dbl>
           <chr>
                                            <dbl> <int>
1 0.8-5
                                14.5
           DCM
                                             15.6
                                                     33
2 0.8-5
                                12.5
                                             15.0
           SUR
                                                     40
3 180-2000 DCM
                                59.0
                                             30.2
                                                     31
4 180-2000 SUR
                                53.7
                                             29.9
                                                     45
5 20-180
           DCM
                                84.7
                                             20.6
                                                     28
6 20-180
           SUR
                                81.7
                                             19.6
                                                     42
7 5-20
           DCM
                                73.8
                                             26.5
                                                     33
8 5-20
           SUR
                                74.6
                                             27.7
                                                     41
```

4.7 Do simple X-Y plots (using ggplot2 library)

Load the ggplot2 library

library("ggplot2") # To do graphics

X vs Y

qplot(tara_salinity, tara_temp, data = tara)

X vs Y with variation in color of points with size fraction

qplot(Baci_pct, Pela_pct, data = tara, color = fraction)

X vs Y with variation in color of points with size fraction and shape with depth level qplot(Baci_pct, Pela_pct, data = tara, color = fraction, shape = depth_level)

X vs Y with variation in color of points with size fraction and shape with depth level qplot(Baci_pct, Pela_pct, data = tara, color = fraction, shape = depth_level)

X vs Y with variation sampling_depth for color of points and shape with with size fraction.

Note that sampling_depth is a continuous variable

Categorical data vs y with variation in color of points with depth level

qplot(fraction, Baci_pct, data = tara, color = depth_level)

4.8 Other types of plots

Boxplot for the same data

qplot(fraction, Baci_pct, data = tara, color = depth_level, geom = "boxplot")

Histogram for all the data

qplot(Baci_pct, data = tara, geom = "histogram")

Histogram with different color for each size fraction

4.9 Tree maps (much better than Pie charts...)

Read numbers


```
treemap(tara_tree, index = c("fraction", "Class"), vSize = "n_seq", title = "Read numbers")
```

Read numbers

4.10 Bar graphs

4.10.1 Absolute abundance

```
Only keep surface samples
```

```
tara_bar <- tara_tree %>% filter((depth_level == "SUR") & (fraction == "0.8-5"))

Do the bar plot for absolute read numbers

* Note: rotation of labels: theme(axis.text.x = element_text(angle = 90, hjust = 1))

ggplot(tara_bar, aes(x = Sample, y = n_seq, fill = Class)) + geom_bar(stat = "identity") +
    theme_bw() + ggtitle("Tara - Surface - Fraction 0.8-5 \( \mu\mathrm{m}\mu\) + xlab("Samples") +
    ylab("Number of metabarcodes") + theme(axis.text.x = element_text(angle = 90,
    hjust = 1))
```

Tara - Surface - Fraction 0.8-5 µm

4.10.2 Relative abundance

Compute the relative abundance of each sequence by dividing by the total number of barcodes

```
tara_bar <- tara_bar %>% mutate(n_seq_rel = n_seq/Strameno_all)
```

Do the bar plot for relative read numbers

```
ggplot(tara_bar, aes(x = Sample, y = n_seq_rel, fill = Class)) + geom_bar(stat = "identity") + theme_bw() + ggtitle("Tara - Surface - Fraction 0.8-5 \mu") + xlab("Samples") + ylab("Fraction of metabarcodes") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
```


4.11 Heat maps

Note: for metabarcoding data use phyloseq package.

Select the fraction and columns (from Bacillariophyta to Raphidophyceae) to be plotted and transform to a matrix

```
tara_heat <- tara %>% filter(fraction == "0.8-5") %>% select(Bacillariophyta:Raphidophyceae)
tara_heat.matrix <- data.matrix(tara_heat)

# It is necessary to give names to the row for heatmap labels
row.names(tara_heat.matrix) <- tara$station[fraction == "0.8-5"]</pre>
```

Draw heatmap

heatmap(tara_heat.matrix, margins = c(20, 6))

4.12 Multivariate analysis (FactoMiner package)

```
library("FactoMineR") # For PCA

Principal component analysis (PCA)

# Select only the 0.8-5 \( \mu\) fraction and only the colums with phytplankon

# data and metadata
tara_multi <- tara %>% filter(fraction == "0.8-5")

# Define row names as 'Station_Depth level' (points with be labelled by row
# names)
row.names(tara_multi) <- paste(tara_multi$station, tara_multi$depth_level, sep = "_")

# Select only with phytoplankon data and metadata
tara_multi <- tara_multi %>% select(Bacillariophyta:Raphidophyceae, chloro_hplc:tara_salinity)

# Scale the matrix
tara_multi <- scale(tara_multi)

# Do the PCA
tara_pca <- PCA(tara_multi)
```

Individuals factor map (PCA)

Variables factor map (PCA)

4.13 Maps

Add title

```
library("maps") # Maps

Select only surface and small fraction
tara_map <- tara %>% filter((fraction == "0.8-5") & (depth_level == "SUR"))

Draw the world map and add the stations
# Draw the world map
map(database = "world", fill = TRUE)

# Add stations
points(tara_map$Longitude, tara_map$Latitude, pch = 3, col = "red", cex = 1)

# Add data - circle size is proprotional to proportion of
points(tara_map$Longitude, tara_map$Latitude, pch = 19, col = "blue", cex = tara_map$Baci_pct *
3/100)
```

Bacilliorophyta as % of Photosynthetic – 0.8–5 μm – surface

title("Bacilliorophyta as % of Photosynthetic - 0.8-5 μm - surface", cex.main = 1)

4.14 Manipulate sequences

In BioConductor there are many packages that can process sequences either GenBank or short reads

```
library("Biostrings") # To manipulate sequences
```

Read sequences from metagenome (454)

```
seq <- readDNAStringSet("../data/BIOSOPE_T142_reads_random.fasta", format = "fasta")</pre>
```

Compute length of sequence (discard N), compute statistics and plot histogram

```
Length_seq <- letterFrequency(seq, letters = "ATCG")
range(Length_seq)</pre>
```

[1] 41 581

```
mean(Length_seq)
```

[1] 185.89

```
qplot(Length_seq, geom = "histogram", xlab = "Sequence length", ylab = "Frequency")
```


Compute GC% and do simple plots

```
# Compute number of 'GC'
GC_seq <- letterFrequency(seq, letters = "CG")

# Compute GC % in sequence
GC_percent <- GC_seq/Length_seq

# Do histogram
qplot(GC_percent, geom = "histogram", xlab = "GC %", ylab = "Frequency")</pre>
```


Plot GC % vs Length of sequence
qplot(GC_percent, Length_seq)

Exercice : Load sequence from Bathycoccus and compare GC% to that of the whole metagenome
seq <- readDNAStringSet("../data/BIOSOPE_T142_reads_Bathy.fasta", format = "fasta")</pre>

Your turn now. These are just a few of the things you can do, possibilities are endless...