Metodi Numerici A.A. 2021-2022

Esercitazione N. 8 Approssimazione ai minimi quadrati ed Interpolazione polinomiale

Obiettivi

- 1. Sperimentazione numerica relativa alla soluzione di sistemi sovradeterminati nell'ambito dell'approssimazione di dati sperimentali nel senso dei minimi quadrati.
- 2. Interpolazione di dati sperimentali mediante il polinomio interpolatore nella base di Lagrange

Function per l'approssimazione ai minimi quadrati

• Metodo EN (Equazioni normali)

```
function [a,p]=metodoEN(A,b)
\% input A \rightarrow matrice m \times n, m > n
\% input b \rightarrow vettore termine noto di m
\% output \rightarrow a vettore soluzione nel senso dei minimi quadrati del sistema lineare
sovraderterminato Ax=b
% output \rightarrow p > 0 se la matrice non é definita positiva
% Risolve il sistema delle equazioni normali A'*Aa = A'*b
% con fattorizzazione di Cholesky
G = A' * A;
z = A' * b;
[L, p] = chol(G, "lower");
if p > 0
disp('A non definita positiva')
a = G \setminus z;
else
b1 = Lsolve(L, z);
a = Usolve(L', b1);
end
```

• Metodo QR

```
function [a]=metodoQR(A,b) % input A = matrice \ m \times n, \quad m > n % input b = vettore termine noto di <math>m % output a = vettore soluzione nel senso dei minimi quadrati del sistema lineare sovraderterminato <math>Ax=b
```

```
[Q, R] = qr(A);

h = Q' * b;

a = Usolve(R(1:n, 1:n), h(1:n));
```

Sperimentazione numerica

1. Si confrontino le due function metodoEN.m e metodoQR.m per l'approssimazione ai minimi quadrati delle seguenti configurazioni di dati:

```
 \begin{aligned} x_1 &= [-3.5, \, -3, \, -2, \, -1.5, \, -0.5, \, 0.5, \, 1.7, \, 2.5, \, 3]'; \\ y_1 &= [-3.9, \, -4.8, \, -3.3, \, -2.5, \, 0.3, \, 1.8, \, 4, \, 6.9, \, 7.1]'; \\ x_2 &= [-3.14, \, -2.4, \, -1.57, \, -0.7, \, -0.3, \, 0, \, 0.4, \, 0.7, \, 1.57]'; \\ y_2 &= [0.02, \, -1, \, -0.9, \, -0.72, \, -0.2, \, -0.04, \, 0.65, \, 0.67, \, 1.1]'; \\ x_3 &= linspace(0, 3, 12)'; \\ y_3 &= exp(x_3). * cos(4*x_3) + randn(12, 1); \\ x_4 &= [1.001, \, 1.0012, \, 1.0013, \, 1.0014, \, 1.0015, \, 1.0016]'; \\ y_4 &= [-1.2, \, -0.95, \, -0.9, \, -1.15, \, -1.1, \, -1]'; \end{aligned}
```

al variare del grado n tra 1 e 3.

2. Scrivere uno script MATLAB per approssimare la seguente configurazione di punti

$$x = [10 : .5/5 : 10.5]';$$

 $y = [11.0320, 11.1263, 11.1339, 11.1339, 11.1993, 11.1844]';$

mediante un polinomio ai minimi quadrati di grado 4 costruito con il metodo delle equazioni normali e con il metodo QRLS. Perturbare poi il secondo punto nel seguente modo

$$x(2) = x(2) + 0.013;$$
 $y(2) = y(2) - 0.001;$

e calcolare i polinomi ai minimi quadrati relativi alla configurazione perturbata. Commentare e motivare i risultati ottenuti.

Interpolazione polinomiale

Scrivere la function interpL.m che calcoli il polinomio interpolante in forma di Lagrange (valutato con il metodo di Horner).

Tali function devono assumere come dati in input:

- x vettore dei nodi di interpolazione,
- y vettore dei valori della funzione nei nodi di interpolazione,
- xx vettore dei punti in cui si vuole valutare il polinomio interpolante.

In output deve essere restituito yy vettore contenente i valori assunti dal polinomio interpolante.

Funzioni matlab utili:

- poly.m restituisce i coefficienti di un polinomio di zeri assegnati,

Sperimentazione numerica

Scrivere uno script che calcoli il polinomio interpolante un insieme di punti $P_i = (x_i, y_i), i = 1, ..., n + 1$, nella forma di Newton con x_i scelti dall'utente come:

- punti equidistanti in un intervallo [a, b],
- \bullet punti definiti dai nodi di Chebyshev nell'intervallo [a, b], ossia

$$x_i = \frac{(a+b)}{2} + \frac{(b-a)}{2} \cos\left(\frac{(2i-1)\pi}{2(n+1)}\right), \quad i = 1, ..., n+1$$

e $y_i = f(x_i)$ ottenuti dalla valutazione nei punti x_i di una funzione test $f: [a, b] \to R$. Testare lo script sulle funzioni

- $f(x) = \sin(x) 2\sin(2x), \quad x \in [-\pi, \pi],$
- $f(x) = \sinh(x), \quad x \in [-2, 2],$
- $f(x) = |x|, x \in [-1, 1],$
- $f(x) = 1/(1+x^2)$, $x \in [-5, 5]$ (funzione di Runge).

Calcolare l'errore di interpolazione r(x) = f(x) - p(x), tra la funzione test f(x) e il polinomio di interpolazione p(x). Visualizzare il grafico di f(x) e p(x), ed il grafico di |r(x)|. Cosa si osserva? Cosa accade all'aumentare del grado n di p(x)? (Si costruisca una tabella che riporti i valori di $||r(x)||_{\infty}$ al variare di n).