Create and Configure Azure Kubernetes Service

Michael Teske AUTHOR EVANGELIST-CLOUD ENGINEER, PLURALSIGHT

Course Coverage of Certification Objectives

Create and Configure Azure Kubernetes Service

- Configure storage for AKS
- Configure scaling for AKS
- Configure network connections for AKS
- Upgrade an AKS cluster

Create and Configure Azure Kubernetes Service

What is Azure Kubernetes Service

Open-source system for automating deployment, scaling and management of containerized apps

It's a management platform using declarative configuration to orchestrate containers in different compute environments

A Kubernetes deployment is configured as a cluster consisting of at least one master machine and one or more workers machines

Azure Kubernetes Service (AKS) manages hosted Kubernetes clusters

AKS cluster master is managed by Azure and is free

Nodes of the same configuration are grouped into node pools

When you create your cluster, you create a system node pool

The AKS cluster must use virtual machine scale sets for the nodes for autoscaling and multiple node pools

All node pools must reside in the same virtual network

AKS cluster must use the *Standard SKU* load balancer to use multiple node pools

reat	e Kubern	etes cluste	r			
Basics	Node pools	Authentication	Networking	Integrations	Tags	Review + create
manage operatio	containerized ap ns and maintena	plications without co	ntainer orchestra upgrading, and so	tion expertise. It al	lso elimin	quick and easy to deploy and ates the burden of ongoing f, without taking your applications
Project	details					
Select a	subscription to m	nanage deployed reso	ources and costs.	Use resource grou	ıps like fo	olders to organize and manage all

Primary node pool

The number and size of nodes in the primary node pool in your cluster. For production workloads, at least 3 nodes are recommended for resiliency. For development or test workloads, only one node is required. If you would like to add additional node pools or to see additional configuration options for this node pool, go to the 'Node pools' tab above. You will be able to add additional node pools after creating your cluster. Learn more about node pools in Azure Kubernetes Service

Node size * (i)	Standard DS2 v2 Change size	
Node count * ①		3

Create a AKS Single Node Cluster

```
# Create a basic single-node AKS cluster
az aks create \
    --resource-group ps-course-rg \
    --name PSAKSCluster \
    --vm-set-type VirtualMachineScaleSets \
      node-count 2 \
     -generate-ssh-keys \
     -load-balancer-sku standard
```


Add an AKS Node Pool

```
# Add and AKS Node Pool
az aks nodepool add \
    --resource-group ps-course-rg \
    --cluster-name PSAKSCluster \
    --name mynodepool \
    --node-count 3
```


Demo

Create an AKS Cluster and Node Pool

Configure Storage for Azure Kubernetes Service

Storage Concepts for AKS

Volumes Persistent Volumes Storage classes Persistent volume claims

Storage Types and Capabilities

Use case	Volume plugin	Read/write once	Read-only many	Read/write many	Windows Server container support
Shared configuration	Azure Files	Yes	Yes	Yes	Yes
Structured app data	Azure Disks	Yes	No	Yes	Yes
unstructured data, file system operations	BlobFuse	Yes	Yes	Yes	No

Configure Scaling for Azure Kubernetes Service

Scaling Options

Manual scale pods or nodes

Horizontal pod auto-scaler

Cluster auto-scaler

Scaling

```
# Manual scale pods
kubectl scale --replicas=5 deployment/azure-vote-front
# Manual scale nodes
az aks scale --resource-group ps-course-rg --name myAKSCluster --node-count 3
# Autoscale
kubectl autoscale deployment azure-vote-front --cpu-percent=50 --min=3 --max=10
```


Scaling

```
# Manual scale pods
kubectl scale --replicas=5 deployment/azure-vote-front
# Manual scale nodes
az aks scale --resource-group ps-course-rg --name myAKSCluster --node-count 3
# Autoscale
kubectl autoscale deployment azure-vote-front --cpu-percent=50 --min=3 --max=10
```


Scaling

```
# Manual scale pods
kubectl scale --replicas=5 deployment/azure-vote-front
# Manual scale nodes
az aks scale --resource-group ps-course-rg --name myAKSCluster --node-count 3
# Autoscale
kubectl autoscale deployment azure-vote-front --cpu-percent=50 --min=3 --max=10
```


Configure Networking for Azure Kubernetes Service

Kubenet and Azure CLI

Capabilities	Kubenet	Azure CNI
Deploy cluster in existing or new VNet	Supported-UDRs manually applied	Supported
Pod->Pod connectivity	Supported	Supported
Pod->VM, VM in same vNet	Works when initiated by pod	Works both ways
Pod->VM, VM in peered vNet	Works when initiated by pod	Works both ways
On-prem access using VPN	Works when initiated by pod	Works both ways
Access to resources secured by service endpoints	Supported	Supported
Expose Kubernetes service using a load balancer, App Gateway, or ingress controller	Supported	Supported

Link: https://bit.ly/2QZvpHz

Kubenet

Kubenet

Azure CNI

Upgrade an Azure Kubernetes Cluster


```
az aks show --resource-group ps-course-rg --name myAKSCluster --output table

# Get available upgrades for the cluster

az aks get-upgrades --resource-group ps-course-rg --name myAKSCluster

# Upgrade cluster

az aks upgrade --resource-group ps-course-rg --name myAKSCluster --kubernetes-version KUBERNETES_VERSION
```

Upgrading a cluster

Show current version of AKS

You can only upgrade one minor version at a time.

- You can upgrade from 1.14.x to 1.15.x
- You cannot upgrade from 1.14.x to 1.16.x


```
az aks show --resource-group ps-course-rg --name myAKSCluster --output table

# Get available upgrades for the cluster

az aks get-upgrades --resource-group ps-course-rg --name myAKSCluster

# Upgrade cluster

az aks upgrade --resource-group ps-course-rg --name myAKSCluster --kubernetes-version KUBERNETES_VERSION
```

Upgrading a cluster

Show current version of AKS

You can only upgrade one minor version at a time.

- You can upgrade from 1.14.x to 1.15.x
- You cannot upgrade from 1.14.x to 1.16.x


```
az aks show --resource-group ps-course-rg --name myAKSCluster --output table

# Get available upgrades for the cluster

az aks get-upgrades --resource-group ps-course-rg --name myAKSCluster

# Upgrade cluster

az aks upgrade --resource-group ps-course-rg --name myAKSCluster --kubernetes-version KUBERNETES_VERSION
```

Upgrading a cluster

Show current version of AKS

You can only upgrade one minor version at a time.

- You can upgrade from 1.14.x to 1.15.x
- You cannot upgrade from 1.14.x to 1.16.x

Overview

Create and Configure Azure Container

- Registries are the locations of our images
- Image source is the image pulled from the registry
- Restart policies include:
 - Always
 - On failure
 - Never
- Container groups are co-located containers on the same host

Overview

Create and Configure Azure Kubernetes Service

- Kubernetes is a container management platform
- A Kubernetes deployment is configured as a cluster consisting of at least one master machine and one or more worker machines
- Standard Load balancer is required for additional features such as autoscaling
- Clusters can be configured using VM scale sets
- Node pools reside in the same Vnet

Overview

Create and Configure Azure Kubernetes Service

- Scaling can include the number of nodes and or the number of pods
- Kubenet uses a routing table for interpod comms
- Kubnet assigns a CIDR block of unique, reusable IPs
- Azure CNI assigns IPs from the subnet to the worker nodes and pods
- You cannot skip minor versions when you're upgrading a cluster

For Further Learning

Remember the course exercise files

- Links to the Azure Docs sites for additional studying and deeper dives
- Any code used in the demos.
- PowerPoint slides for review purposes

Questions?

- Join the conversation in the discussion tab in the Pluralsight player
- Hit me up on LinkedIn

