水子 七文 田県

一、选择趔			
1. 已知非零向量 \vec{a} , \vec{b} 互相平行,但方向相反,且 $ \vec{a} > \vec{b} $,则必有(B).			
	$(A) \vec{a} + \vec{b} = \vec{a} + \vec{b} $	(<i>B</i>)	$ \vec{a} + \vec{b} = \vec{a} - \vec{b} $
	$(C) \vec{a} + \vec{b} < \vec{a} - \vec{b} $	(D)	$\vec{a} + \vec{b} \mid > \mid \vec{a} \mid - \mid \vec{b} \mid$
2	设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 $x=2$ 处条件收敛,则此幂级数(B).		
	(A)收敛半径可能大于	2 (B) 4	枚敛半径一定等于2
	(C)在 $x=-1$ 条件收敛	$(D)^{\frac{1}{4}}$	生 x = -2 处条件收敛
3.		= (C). 💢	ex的展刊力·
	$(A) 0 (B) \frac{1}{6}$	$(C)\frac{1}{3}$	$(D)\frac{1}{2}$
4.	二重极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{2xy}{x^2+y^2}$ (D).	
	(A)等于0 (B)等于	F1 (C)等于2	(D) 不存在
5.	曲面 $3xyz-z^3=a^3$ 在点 $(0,a,$	-a) 处的切平面方程是(A). 加插公村,
	$(A) x + z + a = 0 \qquad (B) x + a = 0$	$-y-a=0 (C) \ y+z=0$	$0 \qquad (D) \ x+y+z=0$
6.	6. 设函数 $f(x,y) = \sqrt[3]{xy}$, $l \neq xOy$ 平面上从点 $(0,0)$ 出发的不平行于坐标轴的任何射线,则偏		
导数 $f_x(0,0)$ 和方向导数 $f_i(0,0)$ (C).			
	(A)两个都不存在	(B) ₽	两个都存在
	(C) 只有偏导数存在	(D)	只有方向导数存在
7.	更换积分次序 $\int_a^1 dx \int_a^x f(x,y)dy + \int_a^2 dx \int_a^{2-x} f(x,y)dy = (A)$.		

分次序 $\int_0^1 dx \int_0^1 f(x,y) dy + \int_1^1 dx \int_0^1 f(x,y) dy = (A)$.

(A) $\int_0^1 dy \int_y^{2-y} f(x,y) dx$ (B) $\int_0^1 dy \int_{2-y}^y f(x,y) dx$

$$(A) \int_0^1 dy \int_v^{2-y} f(x,y) dx$$

$$(B) \int_0^1 dy \int_{2-v}^v f(x,y) dx$$

(C)
$$\int_0^2 dy \int_y^{2-y} f(x,y) dx$$
 (D) $\int_1^2 dy \int_{2-y}^y f(x,y) dx$

$$(D) \int_1^2 dy \int_{2-y}^y f(x,y) dx$$

8. 微分方程 $y' + \frac{1}{x}y = \frac{\sin x}{x}$ 的通解为(A).

(A)
$$y = \frac{1}{x}(-\cos x + C)$$

$$(B) \ y = x(-\cos x + C)$$

(C)
$$y = \frac{1}{x}(-\sin x + C)$$
 (D) $y = \frac{1}{x}(\cos x + C)$

$$(D) y = \frac{1}{x}(\cos x + C)$$

9. 平面曲线 $x = \cos t + t \sin t$, $y = \sin t - t \cos t \ (0 \le t \le 2\pi)$ 的长度等于 (D).

- $(B) \pi^2 \qquad (C) 2\pi$

10. 设 C 是正方形 |x| + |y| = 1 取逆时针方向,则 $\oint_{C} y^2 dx + (2x + \cos^2 y) dy = (D)$.

- (A) 0
- (B) 1
- (C) 2
- (D) 4

二、计算题

1. 求过点 A(0,2,4) ,且同时平行于平面 Π_1 : x+2z=1和平面 Π_2 : y-3z=2的直线的方程.

解: 所求直线过点 A(0,2,4).

由所求直线与两平面平行,可取直线方向向量为

$$\vec{s} = \vec{n_1} \times \vec{n_2} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & 2 \\ 0 & 1 & -3 \end{vmatrix} = (-2, 3, 1).$$

故所求直线方程为 $\frac{x}{-2} = \frac{y-2}{3} = \frac{z-4}{1}$.

2. 判定级数 $\sum_{n=1}^{\infty} 3^n \sin \frac{\pi}{2^n}$ 的敛散性.

解: $u_n = 3^n \sin \frac{\pi}{2^n} > 0$,级数为正项级数.

$$\boxtimes \rho = \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{3\sin\frac{\pi}{2^{n+1}}}{\sin\frac{\pi}{2^n}} = \lim_{n \to \infty} \frac{3\frac{\pi}{2^{n+1}}}{\frac{\pi}{2^n}} = \frac{3}{2} > 1,$$

故级数发散.

3. 设 \sum 是整个球面 $x^2 + y^2 + z^2 = 2z$ 取外侧,求曲面积分

$$\oint_{\Sigma} (x^3 + y^3) dy dz + (y^3 + z^3) dz dx + (z^3 + x^3) dx dy.$$

解: Σ 是闭曲面,取外侧,在 Σ 围成的立体 Ω 上, $P=x^3+y^3$, $Q=y^3+z^3$, $R=z^3+x^3$ 偏

导存在连续,且

$$P_{x} + Q_{y} + R_{z} = 3(x^{2} + y^{2} + z^{2})$$
,

利用高斯公式,得

$$\bigoplus_{\Sigma} (x^3 + y^3) dy dz + (y^3 + z^3) dz dx + (z^3 + x^3) dx dy = 3 \iiint_{\Omega} (x^2 + y^2 + z^2) dV$$

$$=3\int_0^{2\pi}d\theta\int_0^{\pi/2}d\varphi\int_0^{2\cos\varphi}\rho^2\cdot\rho^2\sin\varphi d\rho=\frac{32}{5}\pi$$

4. 求二阶微分方程 $y'' - 2y' + y = x^2$ 的通解.

解: 对应其次方程 y'' - 2y' + y = 0,特征方程 $r^2 - 2r + 1 = 0$,特征根 $r_{1,2} = 1$,

齐次方程通解为 $y = C_1 e^x + C_2 x e^x$.

因 $\lambda = 0$ 不是特征根,设原方程一个特解为 $v^* = ax^2 + bx + c$,代入方程得

$$ax^{2} + (b-4a)x + (2a-2b+c) = x^{2} \Rightarrow a = 1, b = 4, c = 6$$

于是

$$y^* = x^2 + 4x + 6.$$

故所求通解为

$$y = C_1 e^x + C_2 x e^x + x^2 + 4x + 6$$
.

三、计算题

1. 设
$$z = z(x, y)$$
 由 $e^z = xyz$ 所确定,(1)求 dz ;(2)验证 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = \frac{2z}{z-1}$.

解: (1) 设
$$F(x, y, z) = e^z - xyz$$
, 则 $F_x = -yz$, $F_y = -xz$, $F_z = e^z - xy$

于是
$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{yz}{e^z - xy}$$
, $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = \frac{xz}{e^z - xy}$.

所以
$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = \frac{z}{e^z - xy} (ydx + xdy).$$

(2) 由 (1) 得
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = \frac{2xyz}{e^z - xy} = \frac{2xyz}{xyz - xy} = \frac{2z}{z-1}$$
.

2. 求函数 $f(x,y) = x^2 - xy + y^2 - x - y$ 的极值.

解: 定义域为
$$R^2$$
, 且 $f_x = 2x - y - 1$, $f_y = -x + 2y - 1$

令
$$\begin{cases} f_x = 2x - y - 1 = 0 \\ f_y = -x + 2y - 1 = 0 \end{cases}$$
, 得驻点为(1,1).

$$A = f_{xx} = 2$$
, $B = f_{xy} = -1$, $C = f_{yy} = 2$, $\Delta = B^2 - AC = -3$

在(1,1)点处, $\Delta = -3 < 0$,A = 2 > 0,故函数极小值为f(1,1) = -1,无极大值.

3. 设
$$D$$
为正方形区域: $0 \le x \le 1$, $0 \le y \le 1$, 求二重积分 $\iint_{\Omega} |y-x| d\sigma$.

解:如图,直线把D分为 D_1 , D_2 ,则 $D=D_1+D_2$,于是

$$\iint_{D} |y-x| d\sigma = \iint_{D_{1}} (y-x) d\sigma + \iint_{D_{2}} (x-y) d\sigma$$

$$= 2 \iint_{D_{1}} (y-x) d\sigma = 2 \int_{0}^{1} dx \int_{x}^{1} (y-x) dy$$

$$= 2 \left[\frac{1}{2} x - \frac{1}{2} x^{2} + \frac{1}{6} x^{3} \right]_{0}^{1} = \frac{1}{3}.$$

四、计算题

(1) 求幂级数 $\sum_{n=1}^{\infty} (n+2)x^n$ (其中|x|<1) 的和函数; (2) 求常数项级数 $\sum_{n=1}^{\infty} \frac{n+2}{2^n}$ 的和.

解: (1) 由
$$\sum_{n=1}^{\infty} (n+2)x^n = \sum_{n=1}^{\infty} (n+1)x^n + \sum_{n=1}^{\infty} x^n$$

$$= (\sum_{n=1}^{\infty} x^{n+1})' + \sum_{n=1}^{\infty} x^n = (\frac{x^2}{1-x})' + \frac{x}{1-x} = \frac{3x - 2x^2}{(1-x)^2}, |x| < 1.$$

得所求和函数为 $s(x) = \frac{3x - 2x^2}{(1 - x)^2}$, |x| < 1 .

(2)
$$\Leftrightarrow x = \frac{1}{2}$$
, $\Re \sum_{n=1}^{\infty} \frac{n+2}{2^n} = \sum_{n=1}^{\infty} (n+2)x^n \big|_{x=1/2} = s(\frac{1}{2}) = 4$.