

bestsort 常用算法模板

生命不息,

代码不止

2018年10月

了解更多请点击 bestsort.cn

一,	数论	3
	1.筛选法素数打表	3
	2.欧拉函数	3
	3.快速幂取余	4
	4.快乘取余	4
	5.扩展欧几里德	5
	6.中国剩余定理	5
	7.逆元	6
	8.费马小定理(求逆元)	6
	9.母函数	6
	10.求线性递推式	7
_,	图	10
	1.链式前向星	10
	2.最短路	10
	dijkstra(非负权单源最短路(O(V^2)))	10
	bellman-ford(可判负权回路,O(VE))	11
	floyd(多源最短路,O(V^3))	12
	Dijkstra+堆优化((V+E)logV)	13
	3.k 短路	14
	1.朴素 A*	14
	4.二分图的最大匹配(O(VE))	16
	5.拓扑排序(O(V+E))	16
三.柞	对	17
	1.最小生成树	17
	prim 算法(O(V^2))	17
	kruskal (O(ElogE))	18
	2.最小树形图 (朱刘算法)	19
	3.LCA(最近公共祖先)	20
	Tarjan 离线(O(V+E))	20
	在线 ST+RMQ(VlogV)	22
四、	计算几何	22
	1.两圆相交面积	22
	2.叉积	23
	3.点积	23
	4.pick 定理	24
五、	动态规划	24
	1.背包	24
	2.LCS(最长公共子序列)	25
	3.LIS(最长上升子序列)	25
	4.数位 DP	27
六、	串	
	1.最长回文串(Manacher 算法 O(n))	28
	2.模式匹配(KMP 算法(O(n+m)))	29
	3.字典树(O(logn))	30

了解更多请点击 bestsort.cn

	3.AC 自动机(O(strlen))	31
七、	博弈	32
	1.常用博弈	32
八.纟	组合数	33
	康托展开	34
	平面划分问题	35
	错排	35
	基姆拉尔森公式(计算日期)	35
九.数	数据结构	36
	1.并查集	36
	2.线段树	36
	3.一维树状数组	38
	4.二维树状数组	39
	5.划分树	42
	6.RMQ	43
十.對	数学	43
	1.解方程	43
	2.矩阵快速幂	
+-	一.其他	49
	1.常用函数及语句	49
	2.数据类型取值范围	49
	3.c++大数	

一、数论

1. 筛选法素数打表

```
int a[N]={1,1,0};
void isPrime()
{
    for(int i=2;i<N;i++)
        if(!a[i])
        for(int j=i+i;j<N;j+=i)
        a[j]=1;
}</pre>
```

2. 欧拉函数

朴素算法

3. 快速幂取余

```
1 LL powerMod(LL a,LL b,LL mod)
2 {
3
       LL ans=1;
4
       a%=mod;
5
       while(b){
6
           if(b&1)
7
                ans=ans*a%mod;
8
           a=a*a%mod;
9
           b>>=1;
10
11
       return ans;
12 }
```

4. 快乘取余

```
1 LL mulMod(LL x,LL y,LL mod)
2 {
3
       LL ans=0;
4
       while(y){
5
            if(y&1)
6
                ans=(ans+x)%mod;
7
            x=(x+x)%mod;
8
            y>>=1;
9
       }
10
       return ans;
11 }
```

5. 扩展欧几里德

```
1 //a*x+b*y=gcd(a,b)
   LL exgcd(LL a,LL b,LL &x,LL &y)
3
4
        if(b==0){
5
             x=1;
6
             y=0;
7
             return a;
8
9
        LL d=exgcd(b,a%b,x,y);
10
        LL t=x;
11
        x=y;
12
        y=t-a/b*y;
13
        return d;
14 }
```

定理:设 a,b,c 为任意整数

若方程 ax+by=c 的一组整数解为(x0,y0)则它的任意整数解都可以写成(x0+kb',y0-ka'),其中 a'=a/gcd(a,b),b'=b/gcd(a,b),k 为任意整数

若 ax+by=g (g=gcd(a,b),即 g 是 a,b 的最大公约数),有整数解(x1,y1),则 ax+by=c(c 是 g 的倍数)有整数解(c*x1/g,c*y1/g)

6. 中国剩余定理

```
令 m1,m2,···,mnm1,m2,···,mn 为两两互素的正整数,则同余方程组
x≡a1(modm1)x≡a2(modm2):
x≡an(modmn)[x≡a1(modm1)x≡a2(modm2):
```

x≡an(modmn)

有唯一的模 $m=m1m2\cdots mnm=m1m2\cdots mn$ 解。(即有一个解 x,使 $0\le x\le m$,且所有其他的解均与此解模 m 同余。)

```
1 LL china(int n)
2 {
3
        LL M=1,x=0;
4
        for(int i=0;i<n;i++)
5
             M*=m[i];
6
        for(int i=0;i< n;i++){
7
             LL w=M/m[i];
8
             LL d,y;
9
             d=exgcd(m[i],w,d,y);
10
             x=(x+y*w*a[i])%M;
11
12
        return (x+M)%M;
13 }
```

7. 逆元

对于正整数 a,n,满足 $a*x\equiv 1 \pmod{n}$ 的 x 值就是 a 关于 n 的乘法逆元。当且仅当 a 和 n 互质即 gcd(a,n)=1 时有解

扩展欧几里德求逆元

8. 费马小定理(求逆元)

假如 p 是质数,且 gcd(a,p)=1,那么 a^(p-1)≡1(mod p),即 a^(p-2)≡1/a (mod p)

9. 母函数

```
1 * c1 是保存各项质量砝码可以组合的数目
2 *c2 是中间量,保存每一次的情况
3 const int MAXN = 1e4 + 10;
4 int n;
5 int c1[MAXN];
6 int c2[MAXN];
7 int main() {
8
        while (cin >> n) {
9
             for (int i = 0; i \le n; ++i) {
10
                 c1[i] = 1;
11
                 c2[i] = 0;
12
             for (int i = 2; i \le n; ++i) {
13
14
                 for (int j = 0; j \le n; ++j) {
15
                      for (int k = 0; k + j \le n; k += i) {
16
                           c2[j + k] += c1[j];
17
                      }
18
                 }
19
                 for (int j = 0; j \le n; ++j) {
                      c1[j] = c2[j];
20
```

10. 求线性递推式

Berlekamp-Massey

时间复杂度: (O(n^2log(k)))(n 为前置项,k 为求解的那一项)

```
1
     #define rep(i,a,n) for (int i=a;i<n;i++)
2
     #define per(i,a,n) for (int i=n-1;i>=a;i--)
3
     #define pb push_back
4
     #define mp make_pair
     #define all(x) (x).begin(),(x).end()
5
6
     #define fi first
7
     #define se second
8
     #define SZ(x) ((int)(x).size())
9
     typedef vector<int> VI;
     typedef long long II;
10
11
     typedef pair<int,int> PII;
     const II mod=1000000007;
12
13
     const int maxn=10010;
14
15
     Il powmod(Il a,Il b) {
16
          II res=1;
17
          a%=mod;
18
          assert(b>=0);
19
          for(; b; b>>=1) {
20
               if(b&1)
21
                    res=res*a%mod;
22
               a=a*a%mod;
23
          }
24
          return res;
25
     }
26
     // head
27
28
29
     namespace linear_seq {
```

```
Il res[maxn],base[maxn],_c[maxn],_md[maxn];
30
31
32
     vector<int> Md;
33
     void mul(II *a,II *b,int k) {
34
           rep(i,0,k+k) _c[i]=0;
35
           rep(i,0,k) if (a[i])
36
                rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
37
           for (int i=k+k-1; i>=k; i--)
38
               if ( c[i])
39
                     rep(j,0,SZ(Md))
                                                            _c[i-k+Md[j]]=(_c[i-k+Md[j]]-
40
     _c[i]*_md[Md[j]])%mod;
41
           rep(i,0,k) a[i]=_c[i];
42
     }
     int solve(|| n,V| a,V| b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
43
44
           II ans=0,pnt=0;
           int k=SZ(a);
45
46
          assert(SZ(a)==SZ(b));
47
           rep(i,0,k) _md[k-1-i]=-a[i];
48
           _md[k]=1;
49
           Md.clear();
           rep(i,0,k) if ( md[i]!=0)
50
51
                Md.push_back(i);
52
           rep(i,0,k) res[i]=base[i]=0;
53
           res[0]=1;
54
           while ((1ll<<pnt)<=n)
55
                pnt++;
56
           for (int p=pnt; p>=0; p--) {
57
                mul(res,res,k);
58
                if ((n>>p)&1) {
59
                     for (int i=k-1; i>=0; i--)
60
                          res[i+1]=res[i];
61
                     res[0]=0;
62
                     rep(j,0,SZ(Md))\; res[Md[j]] = (res[Md[j]] - res[k] * \_md[Md[j]]) \% mod;
63
               }
64
65
           rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
66
           if (ans<0)
                ans+=mod;
67
           return ans;
68
69
70
     VI BM(VI s) {
71
          VI C(1,1),B(1,1);
72
           int L=0,m=1,b=1;
73
           rep(n,0,SZ(s)) {
```

```
74
              II d=0;
75
              rep(i,0,L+1) d=(d+(II)C[i]*s[n-i])%mod;
76
              if (d==0)
77
                   ++m;
              else if (2*L<=n) {
78
79
                   VI T=C;
                   II c=mod-d*powmod(b,mod-2)%mod;
80
                   while (SZ(C)<SZ(B)+m)
81
82
                       C.pb(0);
83
                   rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
84
                   L=n+1-L;
85
                   B=T;
86
                   b=d;
87
                   m=1;
              } else {
88
89
                   II c=mod-d*powmod(b,mod-2)%mod;
90
                   while (SZ(C)<SZ(B)+m)
91
                       C.pb(0);
92
                   rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
93
                   ++m;
              }
94
95
         }
96
         return C;
97
    }
98
    int gao(VI a, II n) {
99
         VI c=BM(a);
100
         c.erase(c.begin());
101
         rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
102
         return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
103 }
104 };
105
106 int main() {
107
         /*push_back 进去前 8~10 项左右、最后调用 gao 得第 n 项*/
108
         //这里是 fib 数列,用验证正确性 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,
109
         //233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657,
110 46368......
         vector<int>v;
111
112
         for(int i=1;i<=10;i++)
113
            v.push_back(fib[i]);
114
         int nCase;
115
         scanf("%d", &nCase);
116
         while(nCase--) {
              scanf("%lld", &n);
117
```

```
118 printf("%lld\n",1LL * linear_seq::gao(v,n-1) % mod);
119 }
200 }
```

二、图

1. 链式前向星

```
1 //存储结构
2 struct Edge
3 {
4
       int to; //边的终点
5
             //边的权值
       int w;
6
       int next; //起点相同的下一条边
7 }edge[M]; //M 为边数, N 为顶点数
8 int head[N]; //head[i]是以 i 为起点的第一条边的编号
9 int cnt; //记录边数
10 //初始化
11 cnt=0;
12 memset(head,-1,sizeof(head));
13 //建图
14 void addEdge(int u,int v,int w)
15 {
16
       edge[cnt].to=v;
17
       edge[cnt].w=w;
18
       edge[cnt].next=head[u];
19
      head[u]=cnt++;
20 }
21 //遍历以 u 为起点的邻接边
22 for(int i=head[u];i!=-1;i=edge[i].next){
       int to=edge[i].to; //终点
24
       int w=edge[i].w; //权值
25 }
```

2. 最短路

dijkstra(非负权单源最短路(0(V^2)))

```
///到各点的距离
1 int dis[maxn];
2 bool used[maxn];
                             ///标记该点是否已经使用
                            ///最短路经过的路径
3 int pre[maxn];
4 int map[maxn][maxn];
5
   void dijkstra(int a){
6
        mem(used,0);
7
        for(int i=1;i<=n;i++){
8
            dis[i] = map[a][i];
9
            pre[i] = (dis[i]==INF)?-1:a;
10
        }
        dis[a] = 0;
11
12
        used[a] = true;
13
        for(int i=1;i<=n;i++){
14
            int Min = INF,Np = a;
15
            for(int j=1;j<=n;j++)
16
            if(!used[j] && dis[j] <Min){
17
                 Np = j;
18
                 Min = dis[j];
19
            }
20
            if(Np == a)
21
                 return;
22
            used[Np] = true;
23
            for(int j=1;j<=n;j++)
24
                 if(dis[j] > (dis[Np]+map[Np][j])){
25
                      dis[j] = dis[Np]+map[Np][j];
26
                      pre[j] = Np;
27
                 }
28
        }
29 }
```

bellman-ford(可判负权回路, 0(VE))

```
1 int dis[maxn];
2
   struct edge{
3
                 ///起点,终点
       int s,e;
                  ///权值
4
       int w;
5 }e[maxn];
                  //n 为点,m 为边的总数
  int n,m;
6
                        ///可判负环
7
   bool bellman(int a)
8 {
9
       mem(dis,inf);
10
       dis[a]=0;
11
       fori(n-1)
```

```
12 forj(m)
13 dis[e[j].e]=min(dis[e[j].e],dis[e[j].s]+e[j].w);//判断是否更新
14 for(int i=1;i<=n;i++) ///松弛完后还能再松弛即代表有负环
15 if(dis[e[i].e]>dis[e[i].s]+e[i].w)
16 return true;
17 return false;
}
```

SPFA(可判负权回路,最坏 O(VE))

```
1 //链式前向星实现,也可用邻接矩阵
2 bool SPFA(int pos) //源点
3 {
4
       memset(vis,0,sizeof(vis)); //标记是否在队列
5
       memset(num,0,sizeof(num)); //记录各项点松弛次数(即进队列的次数)
6
       for(int i=1;i<=n;i++)
7
            dis[i]=INF;
8
       dis[pos]=0;
9
       q.push(pos);
10
       vis[pos]=true;
11
       num[pos]++;
12
       while(!q.empty()){
13
           int u=q.front();
14
            q.pop();
15
           vis[u]=false;
16
            for(int i=head[u];i!=-1;i=edge[i].next){
17
                int to=edge[i].to;
18
                if(dis[u]+edge[i].w<dis[to]){</pre>
19
                    dis[to]=dis[u]+edge[i].w;
20
                    if(!vis[to]){
21
                         q.push(to);
                         vis[to]=true;
22
23
                         num[to]++;
                         if(num[to]>=n) //当某项点松弛次数大于或等于 n 时,存在负权回路
24
25
                             return true;
26
                    }
27
                }
28
           }
29
       }
30
       return false;
31 }
```

floyd(多源最短路, 0(V³))

```
1 void Floyd(){
2     for(int k=0;k<len;k++)
3     for(int i=0;i<len;i++)
4     for(int j=0;j<len;j++)
5         map[i][j]=min(map[i][j],map[i][k]+map[k][j]);
6 }</pre>
```

Dijkstra+堆优化((V+E)logV)

```
1 int n, m, s;
2 int fir[maxn], next[maxm], to[maxm], val[maxm], cnt;
3 void add_edge(int u, int v, int w) //前向星加边
4 {
5
       next[++cnt] = fir[u];
6
       fir[u] = cnt;
7
       to[cnt] = v;
       val[cnt] = w;
8
9 }
10 struct Node
11 {
12
       int d, id;
13
       Node(){}
14
       Node(int d, int id): d(d), id(id){}
15
       bool operator < (const Node& rhs) const
16
         {
17
            return d > rhs.d;//重载 < 方便堆
         }
18
19 };
20 int dis[maxn], vis[maxn];
21 void Dijkstra(int s)
22 {
23
       for(int i = 1; i <= n; i++)
24
            dis[i] = INF;
25
       dis[s]=0;
26
       priority_queue<Node> Q;
27
       Q.push(Node(0,s));
28
       while(!Q.empty())
29
         {
30
            Node u = Q.top(); Q.pop();
            if(vis[u.id]) continue; //若某个点已经被更新到最优,就不用再次更新其
31
32 他点
```

```
33
             vis[u.id] = 1;
             for(int e = fir[u.id]; e; e = next[e])
34
35
36
                   int v = to[e], w = val[e];
37
                   if(u.d + w < dis[v])
38
                     {
39
                        dis[v] = u.d + w;
40
                        Q.push(Node(dis[v],v));
41
42
                }
           }
43
44 }
```

3. k 短路

1. 朴素 A*

```
1 int s,t,k;
2 bool vis[maxn];
3 int dis[maxn];
4 struct node{
5
       int v,c;
       node(int _{v=0,int _{c=0}}) : v(_{v}),c(_{c}) {};
6
                                                 //构造
7
       node(){};
8
       bool operator < (const node & buf) const{
9
            return c+ dis[v] > buf.c + dis[buf.v];
10
       }
11 };
12
13 struct edge{
14
       int v,cost;
15
       edge(int _v=0,int _c=0) : v(_v),cost(_c){};
16 };
17
                                            //反向存图(无向图则不需要)
18 vector <edge> e[maxn],reve[maxn];
19 priority_queue<node> q;
                                 //dijkstra+队列优化最短路
20 void dijkstra(int n,int s){
       mem(vis,false);
21
22
       mem(dis,0x3f);
23
       while(!q.empty()) q.pop();
```

```
24
       dis[s] = 0;
25
       q.push(node(s,0));
26
       while(!q.empty()){
27
            node tmp = q.top();
28
            q.pop();
29
            int u = tmp.v;
30
            if(vis[u])
31
                 continue;
32
            vis[u] = true;
33
            fori(e[u].size()){
34
                 int v = e[u][i].v;
35
                 int cost = e[u][i].cost;
36
                 if(!vis[v] \&\& dis[v] > dis[u] + cost){
37
                      dis[v] = dis[u] + cost;
38
                      q.push(node(v,dis[v]));
39
                 }
40
            }
41
       }
42 }
43
44
45 int aStar(int s){
46
       while(!q.empty()) q.pop();
47
       q.push(node(s,0));
48
       k--;
49
       while(!q.empty()){
50
            node pre = q.top();
51
            q.pop();
52
            int u = pre.v;
                                      //终点第 K 次入队代表这为第 K 短路
53
            if(u == t){
54
                 if(k)
                         k--;
55
                  else
                          return pre.c;
56
            }
            fori(reve[u].size()){ //将点 u 连接的所有边入队
57
58
                 int v = reve[u][i].v;
59
                 int c = reve[u][i].cost;
60
                 q.push(node(v,pre.c+c));
61
            }
62
       }
63
       return -1;
64 }
65
66 void addedge(int u,int v,int w){
67
       reve[u].pb(edge(v,w));
```

```
68 e[v].pb(edge(u,w));
69 }
70 //加边->跑一遍 dijkstra->判断是否起点等于终点(==则 K+1)->调用 aStar
```

4. 二分图的最大匹配(0(VE))

```
1 int Find(int x)
2 {
3
        for(int i=1;i<=m;i++){
4
             if(map[x][i] && !used[i]){
5
                  used[i]=1;
                  if(next[i]==-1 || Find(next[i])){
6
7
                       next[i]=x;
8
                       return 1;
9
                  }
10
             }
11
12
        return 0;
13 }
14 int hungarian()
15 {
16
        int sum=0;
17
        memset(next,-1);
        for(int i=1;i<=n;i++){
18
19
             mem(used,0);
20
             sum+=Find(i);
21
```

最小顶点覆盖要求用最少的点(X 或 Y 中都行),让每条边都至少和其中一个点 关联

knoig 定理: 二分图的最小顶点覆盖数 = 二分图的最大匹配数 (m) 最小路径覆盖: 用尽量少的不相交简单路径覆盖有向无环图 (DAG) G 的所有顶点 结论: DAG 图的最小路径覆盖数 = 节点数 (n) - 最大匹配数 (m) 二分图的最大独立集

结论: 二分图的最大独立集数 = 节点数 (n) - 最大匹配数 (m)

5. 拓扑排序(0(V+E))

```
1 int tpSort(int n)2 {
```

```
3
        memset(vis,0,sizeof(vis));
4
        for(int i=1;i<=n;i++){
5
            int pos=-1;
6
            for(int j=1;j<=n;j++){
                 if(!vis[j]&&rd[j]==0){//找到入度为 0 的点
7
8
                      s[i]=j;
9
                      vis[j]=true;
10
                      pos=j;
11
                      break;
12
                 }
13
            }
14
            if(pos==-1) //存在回路
15
                 return 0;
16
            for(int j=1;j<=n;j++){ //与 pos 相连的边入度都减一
                 if(edge[pos][j])
17
18
                      rd[j]--;
19
            }
20
        }
21
        return 1;
22 }
```

三.树

1. 最小生成树

prim 算法(0(V²))

```
1 int map[maxn][maxn];
2 bool Is_Used[maxn];
3 int Low_Cost[maxn];
4 int n,m;
   int prim() {
5
6
        int ans = 0;
7
        mem(Is_Used,0);
8
        Is_Used[0] = true;
9
        for(int i=1; i<n; i++)
             Low_Cost[i] = map[0][i];
10
        for(int i=1; i<n; i++) {
11
12
             int Min = INF;
13
             int New_Point = -1;
```

```
14
             for(int j=0; j<n; j++) {
15
                  if(!Is\_Used[j] \&\& Min > Low\_Cost[j]) \{
16
                       Min = Low_Cost[j];
17
                       New_Point = j;
18
                 }
19
             }
20
             if(Min = INF)
                                 //不存在最小生成树
21
                  return -1;
22
             ans += Min;
23
             Is_Used[New_Point] = true;
24
             for(int j=0; j<n; j++)
25
                  if(!Is_Used[j])
26
                       Low_Cost[j] = min(Low_Cost[j],map[New_Point][j]);
27
28
        return ans;
29 }
```

kruskal (0(ElogE))

```
1 struct edge{
2
        int a,b;
3
        int v;
4 }s[maxn];
5 int pre[maxn];
6 bool cmp(edge a,edge b){return a.v < b.v;}
7
   int Find(int a){
8
        int root = a;
9
        int tmp;
10
        while(root != pre[root])root = pre[root];
11
        while(a != root){
12
             tmp = a;
13
             a = pre[a];
14
             pre[tmp] = root;
15
        }
16
        return root;
17 }
18 void combine(int a,int b){
19
        int x = Find(a);
20
        int y = Find(b);
21
        if(x > y)
22
             swap(x,y);
23
        pre[y] = x;
24 }
```

```
25 int kruscal(int n,int m){
26
         int ans = 0;
27
         For(i,m){
28
              if(Find(s[i].a)!=Find(s[i].b)){
29
                   combine(s[i].a,s[i].b);
30
                   ans += s[i].v;
31
                   n--;
32
              }
33
              if(n == 1)
34
                   break;
35
        }
36
         return ans;
37 }
```

2. 最小树形图 (朱刘算法)

```
1 struct edg {
2
        int u, v, w;
3 } edge[M];
4 int n, m;
5 int in[N],id[N],vis[N],pre[N];
6
  int Directed_MST(int root) {
7
        int ret = 0;
8
        while(true) {
9
            for(int i=0;i<n;i++)
10
                 in[i]=inf;
                                   //找最小入边
11
            for(int i=0;i<m;i++){
12
                 int u = edge[i].u;
13
                 int v = edge[i].v;
14
                 if(edge[i].w < in[v] && u != v) {
15
                      in[v] = edge[i].w;
16
                      pre[v] = u;
17
                 }
18
            }
19
            for(int i=0;i<n;i++) { //如果存在除 root 以外的孤立点,则不存在最小树形图
20
                 if(i == root) continue;
21
                 if(in[i] == inf) return -1;
22
            }
23
            int cnt = 0; //顶点从 0 开始编号
24
             memset(vis,-1,sizeof(vis));
25
            memset(id,-1,sizeof(id));
26
            in[root] = 0;
27
            for(int i=0;i<n;i++) { //找环
```

```
28
                  ret += in[i];
29
                  int v = i;
30
                  while(vis[v] != i && id[v] == -1 && v != root) {
31
                       vis[v] = i;
32
                       v = pre[v];
33
                  }
                  if(v!=root && id[v] == -1) { //重新标号
34
35
                       for(int u = pre[v]; u != v; u = pre[u])
36
                            id[u] = cnt;
37
                       id[v] = cnt++;
                  }
38
39
             }
40
             if(cnt == 0) break;
41
             for(int i=0;i<n;i++)
42
                  if(id[i] == -1)
43
                       id[i] = cnt++;
                                        //重新标号
             for(int i=0;i<m;i++){
                                     //更新其他点到环的距离
44
45
                  int v =edge[i].v;
46
                  edge[i].u = id[edge[i].u];
47
                  edge[i].v = id[edge[i].v];
                  if(edge[i].u != edge[i].v)
48
49
                       edge[i].w -= in[v];
50
             }
51
             n = cnt;
52
             root = id[root];
53
        }
54
        return ret;
55 }
```

3. LCA(最近公共祖先)

Tarjan 离线(0(V+E))

```
//邻接表存图
1 vector <int >a[maxn];
2 vector <int >q[maxn];
                          //邻接表存查询
3 int p[maxn];
                            //并查集中的 father 数组
4 bool v[maxn];
                            //是否被访问
5 bool root[maxn];
                            //根节点
                           //答案数组
6 int res[maxn];
7 int n;
8 int Find(int x){
9
       if(p[x]!=x)
10
            p[x] = Find(p[x]);
11
        return p[x];
12 }
13 void join(int root1, int root2)
14 {
15
       int x, y;
16
       x = Find(root1);
17
       y = Find(root2);
18
       if(x != y)
19
            p[y] = x;
20 }
21 void Tarjan(int u){
22
        fori(a[u].size())
23
            if(!v[a[u][i]]){
24
                 Tarjan(a[u][i]);
25
                join(u,a[u][i]);
26
                v[a[u][i]] = true;
27
            }
28
        fori(q[u].size()){
                                 //对于所有查询,如果i点已被访问过,则能查询其公共祖先
29
            if(v[q[u][i]] == true)
30
                 res[Find(q[u][i])]++;
31
       }
32 }
                                   //初始化
33 void Init(){
34
       fori(n+1){
35
            a[i].clear();
36
            q[i].clear();
37
            p[i] = i;
38
            res[i] = 0;
39
            v[i] = 0;
40
            root[i] = 1;
41
       }
42 }
```

在线 ST+RMQ(VlogV)

```
1 void ST(int n) {
2
        for(int i=1; i<=n; i++)
3
             dp[i][0] = i;
4
        for(int j=1; (1<<j)<=n; j++) {
5
             for(int i=1; i+(1<<j)-1<=n; i++) {
6
                   int a = dp[i][j-1];
7
                   int b = dp[i+(1<<(j-1))][j-1];
8
                   dp[i][j] = R[a] < R[b]?a:b;
9
             }
10
        }
11 }
12 //中间部分是交叉的。
13 int RMQ(int l,int r) {
        int k=0;
15
        while((1 << (k+1)) <= r-l+1)
16
             k++;
17
        int a = dp[l][k]
18
        int b = dp[r-(1<<k)+1][k]; //保存的是编号
19
        return R[a]<R[b]?a:b;
20 }
21
22 int LCA(int u,int v) {
23
        int x = first[u], y = first[v];
24
        if(x > y)
25
             swap(x,y);
26
        int res = RMQ(x,y);
27
        return ver[res];
28 }
```

四、计算几何

1. 两圆相交面积

```
1 //求两点间的距离2 double Distance(point a,point b)3 {
```

```
4
       return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
5 }
6 double InterArea(point a,double R,point b,double r)
7 {
8
       if(R < r){
9
            double temp=R;
10
            R=r;
11
            r=temp;
12
13
       double dis=Distance(a,b);
14
       if(dis >= R+r)
                      //两圆相离,相交面积为0
15
            return 0;
16
       if(dis<=R-r)
                      //两圆内含,相交面积为小圆的面积
17
            return PI*r*r;
       //两圆相交时
18
       double angle1=acos((R*R+dis*dis-r*r)/(2.0*R*dis));
19
20
       double angle2=acos((r*r+dis*dis-R*R)/(2.0*r*dis));
21
       double s=R*angle1*R+r*angle2*r;
22
       s-=R*dis*sin(angle1);
23
       return s;
24 }
```

2. 叉积

```
|c|=|a\times b|=|a||b|sin 可用来求平行四变形面积
利用叉积判断两向量的顺逆时针关系:
若 P × Q > 0 ,则 P 在 Q 的顺时针方向。
若 P × Q < 0 ,则 P 在 Q 的逆时针方向。
若 P × Q = 0 ,则 P 与 Q 共线,但可能同向也可能反向。
```

```
1 double chaji(point a,point b)
2 {
3     return a.x*b.y-a.y*b.x;
4 }
```

3. 点积

cos=a • b/(|a|*|b|),可用来判断两向量是否垂直(a • b=0)

```
1 double dianji(point a,point b)
```

```
2 {
3 return a.x*b.x+a.y*b.y;
4 }
```

4. pick 定理

Pick 定理: 设平面上以格子点为顶点的多边形的内部点个数为 a, 边上点个数为 b, 面积为 S, 则 S = a + b/2 -1.

以格子点为顶点的线段,覆盖的点的个数为 gcd(|dx|,|dy|),其中,|dx|,|dy| 分别为线段横向增量和纵向增量。

五、动态规划

1. 背包

初始化:若没有要求必须将背包装满,而是只希望价值尽量大,初始化时应该将 $f[0\cdots V]$ 全设为0

若要求背包恰好装满,则要将 f[0]=0,其他赋为负无穷,因为背包为 0 可由 0 件物品恰好装满,得到的价值为 0

```
1 int dp[maxn];
2 int volume[maxn], value[maxn], c[maxn];
   int n, v; // 总物品数,背包容量量
4
5 //val 最大容量,val 总价值,amount 数量
6 //01背包
7 void ZeroOnepark(int val, int vol) {
8
        for (int j = v; j \ge vol; j--)
9
            dp[j] = max(dp[j], dp[j - vol] + val);
10 }
11 //完全背包
12 void Completepark(int val, int vol) {
13
        for (int j = vol; j \le v; j++)
14
            dp[j] = max(dp[j], dp[j - vol] + val);
15 }
16
```

```
17 // 多重背包
18 void Multiplepark(int val, int vol, int amount) {
        if (vol * amount >= v)
20
             Completepark(val, vol);
21
        else {
22
             int k = 1;
23
             while (k < amount) {
24
                  ZeroOnepark(k * val, k * vol);
25
                  amount -= k;
26
                  k <<= 1;
27
             }
28
             if (amount > 0)
29
                  ZeroOnepark(amount * val, amount * vol);
30
        }
31 }
32
33 for (int i = 1; i <= n; i++)
        Multiplepark(value[i], volume[i], c[i]);
```

2. LCS (最长公共子序列)

```
1 void LCS() //s[1-m],t[1-n]
2
  {
3
         memset(dp,0,sizeof(dp));
4
        for(int i=1;i<=m;i++)
5
              for(int j=1;j<=n;j++){
6
                   if(s[i]==t[j])
7
                        dp[i][j]=dp[i-1][j-1]+1;
8
                   else
9
                        dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
             }
10
11 }
```

3. LIS(最长上升子序列)

```
O(n^2)
```

```
void back_path(int pos)

{
    if(pos!=path[pos])
        back_path(path[pos]);
    printf("%d\n",pos);

}

int LIS(int n)
```

```
8 {
9
        for(int i=1;i<=n;i++){
10
            dp[i]=1;
            path[i]=i; //记录路径
11
12
            for(int j=1;j<i;j++){
13
                 if(a[j]< a[i] & dp[j] + 1> dp[i]){
14
                      dp[i]=dp[j]+1;
15
                      path[i]=j; //记录路径
16
                 }
17
            }
18
        }
19
        int k=1;
20
        for(int i=2;i<=n;i++){ //求最大值
21
            if(dp[i]>dp[k]){
22
                 k=i;
23
            }
24
25
        back_path(k); //回溯路径
26
        return dp[k];
27 }
```

O(n*log n)

```
1 int bin_find(int x)
2 {
3
        int I=0,r=n;
4
        while(I<=r){
5
             int mid=(l+r)/2;
             if(x>c[mid])
6
7
                  I=mid+1;
8
             else if(x<c[mid])
9
                  r=mid-1;
10
             else
11
                  return mid;
12
        }
13
        return I;
14 }
15 int LIS()
16 {
17
        for(int i=0;i<=n;i++)
18
             c[i]=INF;
19
        c[0]=-1;
20
        c[1]=a[0];
21
        int len=1;
22
        for(int i=1;i<n;i++){
23
             int j=bin_find(a[i]);
```

```
24 c[j]=a[i];
25 if(j>len)
26 len=j;
27 }
28 return len;
29 }
```

4. 数位 DP

```
1 typedef long long II;
2 int a[20];
3 II dp[20][state];//不同题目状态不同
4 II dfs(int pos,/*state 变量*/,bool lead/*前导零*/,bool limit/*数位上界变量*/)//不是每个题都要判断前导零
5 {
6
   //递归边界, 既然是按位枚举, 最低位是 0, 那么 pos==-1 说明这个数我枚举完了
   if(pos==-1) return 1;/*这里一般返回 1,表示你枚举的这个数是合法的,那么这里就需要你在枚举时必须每一
8 位都要满足题目条件,也就是说当前枚举到 pos 位,一定要保证前面已经枚举的数位是合法的。不过具体题目
9 不同或者写法不同的话不一定要返回 1 */
10 //第二个就是记忆化(在此前可能不同题目还能有一些剪枝)
   if(!limit && !lead && dp[pos][state]!=-1) return dp[pos][state];
12 /*常规写法都是在没有限制的条件记忆化,这里与下面记录状态是对应,具体为什么是有条件的记忆化后面
13 会讲*/
  int up=limit?a[pos]:9;//根据 limit 判断枚举的上界 up;这个的例子前面用 213 讲过了
15
   II ans=0:
   //开始计数
   for(int i=0;i<=up;i++)//枚举,然后把不同情况的个数加到 ans 就可以了
17
18
  {
    if() ...
19
20
    else if()...
    ans+=dfs(pos-1,/*状态转移*/,lead && i==0,limit && i==a[pos]) //最后两个变量传参都是这样写的
21
    /*这里还算比较灵活,不过做几个题就觉得这里也是套路了
22
    大概就是说,我当前数位枚举的数是i,然后根据题目的约束条件分类讨论
23
24
    去计算不同情况下的个数,还有要根据 state 变量来保证 i 的合法性,比如题目
25
    要求数位上不能有 62 连续出现,那么就是 state 就是要保存前一位 pre,然后分类,
26
    前一位如果是6那么这意味就不能是2,这里一定要保存枚举的这个数是合法*/
27
  }
  //计算完,记录状态
28
   if(!limit && !lead) dp[pos][state]=ans;
   /*这里对应上面的记忆化,在一定条件下时记录,保证一致性,当然如果约束条件不需要考虑 lead,这里就
31 是 lead 就完全不用考虑了*/
   return ans;
33 }
```

```
34 II solve(II x)
35 {
36
   int pos=0;
    while(x)//把数位都分解出来
37
38
39
     a[pos++]=x%10;//个人老是喜欢编号为[0,pos),看不惯的就按自己习惯来,反正注意数位边界就行
40
   }
41
    return dfs(pos-1/*从最高位开始枚举*/,/*一系列状态 */,true,true);//刚开始最高位都是有限制并且有前导零
43 的,显然比最高位还要高的一位视为 0 嘛
44 }
45 int main()
46 {
47
   Il le,ri;
48
    while(~scanf("%lld%lld",&le,&ri))
49
50
     //初始化 dp 数组为-1,这里还有更加优美的优化,后面讲
51
     printf("%lld\n",solve(ri)-solve(le-1));
52
   }
53 }
```

六、串

1. 最长回文串 (Manacher 算法 0(n))

```
1 void Manacher(char s[],int len) {//原字符串和串长
2
        int I = 0;
3
        String[I++] = '$'; // 0 下标存储为其他字符,防止越界
4
        String[l++] = '#';
5
        for (int i = 0; i < len; i++) {
6
             String[l++] = s[i];
7
             String[l++] = '#';
8
9
        String[l] = 0; // 空字符
10
        int MaxR = 0;
11
        int flag = 0;
12
        for (int i = 0; i < l; i++) {
13
             cnt[i] = MaxR > i ? min(cnt[2 * flag - i], MaxR - i) : 1;//2*flag-i 是 i 点关于 flag 的对称点
14
             while (String[i + cnt[i]] == String[i - cnt[i]])
15
                  cnt[i]++;
             if (i + cnt[i] > MaxR) {
16
```

2. 模式匹配(KMP 算法(0(n+m)))

```
void Find Next(char s2[]){
2
         Next[0] = -1;
3
         Next[1] = 0;
4
         int cnt = 0;
5
         int leng = strlen(s2);
6
        int i = 2;
7
        while(i<=leng){
8
              if(s2[i-1]==s2[cnt])
9
                   Next[i++] = ++ cnt;
10
              else if(cnt>0)
11
                   cnt = Next[cnt];
12
              else
13
                   Next[i++] = 0;
14
        }
15 }
17 int kmp(char s1[],char s2[],int x,int y){
18
         int i,j;//i,x->s1
                          y,j->s2
19
        i = j = 0;
        if(x < y)
20
21
              return -1;
22
         Find_Next(s2);
23
         while(i < x & j < y){
24
              if(j==-1||s1[i]==s2[j])
25
                   i++,j++;
26
              else
27
                   j = Next[j];
28
29
         if(j==y)
30
              return i-j+1;
31
         else
```

```
32 return -1;
33 }
```

3. 字典树(0(logn))

```
1 Int Tire[maxn][26];
2 char str[2000005];
3 bool v[maxn];
4 string s;
5 int cnt = 1;
6 //建树,每输入一个单词到 s 里面就调用_insert()就好
7 void _insert(){
8
       int root = 0;
9
       fori(s.size()){
10
            int next = s[i] - 'A';
11
            if(!Tire[root][next])
12
                Tire[root][next] = ++cnt;
13
            root = Tire[root][next];
14
15
       v[root] = true;//这里用了一个标记数组表示该点存在一个完整的单词,比如说`app`和`apple`
16 }
17 //查找最长公共前缀
18 int _find(char bufs[],int leng){
       int root = 0;
20
       int cns = 0;
21
       int next;
22
       int res = 0;
23
       fori(leng){
24
            next = bufs[i] - 'A';
25
            if(Tire[root][next] == 0)
26
                 break;
27
            root = Tire[root][next];
28
            cns++;
29
            if(v[root])
30
                res = cns;
31
32
       return res;
33 }
```

3. AC 自动机(0(strlen))

```
1 int trie[maxn][26]; //字典树
   int cntword[maxn]; //记录该单词出现次数
                     //失败时的回溯指针
  int fail[maxn];
  int cnt = 0;
4
5
6
   void insertWords(string s){
7
        int root = 0;
        for(int i=0;i<s.size();i++){
8
9
            int next = s[i] - 'a';
10
            if(!trie[root][next])
11
                 trie[root][next] = ++cnt;
12
            root = trie[root][next];
13
       }
14
        cntword[root]++;
                              //当前节点单词数+1
15 }
16 void getFail(){
17
       queue <int>q;
18
        for(int i=0;i<26;i++){
                                //将第二层所有出现了的字母扔进队列
19
            if(trie[0][i]){
20
                 fail[trie[0][i]] = 0;
21
                 q.push(trie[0][i]);
22
            }
23
24
        while(!q.empty()){
25
            int now = q.front();
26
            q.pop();
27
                                     //查询 26 个字母
            for(int i=0;i<26;i++){}
28
29
                 if(trie[now][i]){
30
                     fail[trie[now][i]] = trie[fail[now]][i];
31
                     q.push(trie[now][i]);
32
                 else//否则就让当前节点的这个子节点
33
                     //指向当前节点 fail 指针的这个子节点
34
35
                     trie[now][i] = trie[fail[now]][i];
36
            }
37
       }
38 }
39 int query(string s){
40
        int now = 0,ans = 0;
41
        for(int i=0;i<s.size();i++){
                                 //遍历文本串
```

```
42
           now = trie[now][s[i]-'a'];
43
           for(int j=now;j && cntword[j]!=-1;j=fail[j]){
                //一直向下寻找,直到匹配失败(失败指针指向根或者当前节点已找过).
44
45
                ans += cntword[j];
46
                cntword[j] = -1;
                               //将遍历过后的节点标记,防止重复计算
47
           }
48
49
       return ans;
50 }
51 int main() {
       int n;
53
       string s;
54
       cin >> n;
55
       for(int i=0;i<n;i++){
56
           cin >> s;
57
           insertWords(s);
58
59
       fail[0] = 0;
60
       getFail();
61
       cin >> s;
62
       cout << query(s) << endl;
63
       return 0;
64 }
```

七、博弈

1. 常用博弈

巴什博弈

问题模型: 只有一堆 n 个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取 m 个,最后取光者得胜。

结论: n%(m+1)!=0时, 先手赢, 否则后手赢

威佐夫博奕

问题模型:有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

尼姆博弈

问题模型:有任意堆石子,每堆石子个数也是任意的,双方轮流从中取出石子,规则如下:

- 1)每一步应取走至少一枚石子,每一步只能从某一堆中取走部分或全部石子;
- 2) 如果谁取到最后一枚石子就胜

斐波那契博弈

每次至少取 1,至多取上次的 2 倍,若 n 为斐波那契数列,则后手胜;

八.组合数

卡特兰数(h(n) = h(n-1) * (4n-2)/(n+1)) 前 5 项:1,1,2,5,14.

(1).矩阵连乘: P=a1×a2×a3×......×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?

- (2).一个栈(无穷大)的进栈序列为 1, 2, 3, ..., n, 有多少个不同的出栈序列?
- (3).在一个凸多边形中,通过若干条互不相交的对角线,把这个多边形划分成了若干个三角形。任务是键盘上输入凸多边形的边数 n,求不同划分的方案数
 - (4).给定 N 个节点,能构成多少种不同的二叉搜索树?
 - (5).给定 n 对括号, 求括号正确配对的字符串数

第一类 Stirling 数(
$$s[n][k] = (n-1) * s[n-1][k] + s[n-1][k-1]$$
) $s[n][0] = 0,s[n][n] = 1$

(1).将 n 个物体排成 k 个非空循环排列(非空的)的方法数

第二类 Stirling 数
$$(s[n][k] = s[n-1][k-1] + s[n-1][k] * k)$$

(1). n 个元素划分成 k 个无序集合的方案数

Bell 数(B[n]=
$$\sum_{k=1}^{n} S[n][k]$$
) (其中 S 为第二类 Stirling 数)

包含n个元素的集合的划分方法的数目。

那罗延数(
$$N(n)(k) = \frac{1}{n} c_n^k c_n^{k-1} C_n^k$$
)

(1).在由 n 对"("和")"组成的字符串中,共有 k 对"("与")"相邻,这样的字符串一共有 N (n,k)个

莫慈金数 (M (n+1) =(2n+3)M(n)+3nM(n-1)) /(n+3))

前五项: 1, 2, 4, 9, 21

(1).在一个圆上的 n 个点间,画出彼此不相交的弦的全部方法的总数

卢卡斯定理 (大组合数求模)

$$C_n^m\%p = C_{\frac{n}{p}}^{\frac{m}{p}}*C_{n\%p}^{m\%p}$$

康托展开

已知一个排列,求这个排列在全排列中是第几个 x = a[n]*(n-1)! + ... + a[1]*0!中 a[i]为当前未出现的元素中是排在第几个(从 0 开始)

```
1 LL Work(char str[])
2 {
3
       int len = strlen(str);
4
       LL ans = 0;
       for(int i=0; i<len; i++)
5
6
7
            int tmp = 0;
8
            for(int j=i+1; j<len; j++)
9
                if(str[j] < str[i]) tmp++;</pre>
            ans += tmp * f[len-i-1]; //f[]为阶乘
10
11
       return ans; //返回该字符串是全排列中第几大,从1开始
12
13 }
```

平面划分问题

```
平面分割空间 f(n) = (n^3 + 5n)/6 + 1 封闭曲线分平面 f(n) = n^2 - n + 2 三角形划分区域 f(n) = 3n(n-1) + 2 折线分平面 f(n) = 2n^2 - n + 1 f(n) = n (n+1)/2 + 1 错非 (s[n] = (n-1)(s[n-1] + s[n-2])) (s[1]=0, s[2]=1)
```

基姆拉尔森公式(计算日期)

```
1 void CalculateWeekDay(int y, int m,int d) {
2          if(m==1||m==2)
3          m+=12,y--;
4          int iWeek = (d+2*m+3*(m+1)/5+y+y/4-y/100+y/400)%7;
5          //iWeek0-6 分别代表星期一,星期二....星期天
}
```

九.数据结构

1. 并查集

```
1 void init() { //初始化
2
        for(int i=1; i<=n; i++) {
3
            pre[i]=i;
4
            rank[i]=0; ///权值
5
       }
6 }
7 //递归法压缩路径
  int find(int x) {
8
9
        if(x!=pre[x])
10
            pre[x]=find(pre[x]);
11
        return pre[x];
12 }
13 //普通合并
14 void combine(int x,int y) {
        int fx=find(x);
15
16
        int fy=find(y);
17
        if(x > y)
            swap(x,y);//默认合并到小的中
18
19
        if(fx!=fy)
20
            pre[fx]=fy;
21 }
22 //考虑 rank 合并
23 void combine(int a,int b) {
24
        int fa=find(a);
25
        int fb=find(b);
26
        if(rank[fa]>rank[fb])
27
            pre[fb]=fa;
28
        else
29
            pre[fa]=fb;
30
        if(rank[fa]==rank[fb])
31
            rank[fb]++;
32 }
```

2. 线段树

```
1 struct Node
2 {
```

```
3
        int l,r,w,flag;
4
         Node() {};
5
         Node(int _l,int _r,int _v,int _f){flag=_f,l=_l,r=_r,w=_v;}
6
         int mid(){return (l+r)/2;}
7 };
8 Node a[maxn<<2];
9 void build(int k,int l,int r) {
                                              //建树
10
         a[k] = Node(I,r,0,0);
11
         if(a[k].l == a[k].r){
12
              cin >> a[k].w;
13
              return;
14
15
        build(k<<1,l,(l+r)/2);
16
        build(k < 1 | 1, (l+r)/2 + 1, r);
17
        a[k].w = a[k << 1].w + a[k << 1|1].w;
18 }
19
20 void down(int k) {
                                                     //延迟标记下传
21
         a[k << 1].flag += a[k].flag;
22
        a[k<<1|1].flag += a[k].flag;
23
         a[k<<1].w += a[k].flag*(a[k<<1].r-a[k<<1].l+1);
24
         a[k << 1|1].w += a[k].flag *(a[k << 1|1].r-a[k << 1|1].l+1);
25
        a[k].flag = 0;
26 }
27 int res;
28
29 void update(int k,int x,int y,int z) {
                                                 //区间更新
30
         if(a[k].l>=x &&a[k].r<=y) {
31
              a[k].w += z*(a[k].r-a[k].l+1);
32
              a[k].flag += z;
33
             return;
34
        }
35
        if(a[k].flag)
36
              down(k);
37
         if(x \le a[k].mid())
38
              update(k<<1,x,y,z);
39
         if(y > a[k].mid())
40
              update(k<<1|1,x,y,z);
41
         a[k].w = a[k << 1].w + a[k << 1|1].w;
42 }
43 int ans;
                                                //区间查询
44 void query(int k,int x,int y) {
45
         if(a[k].l>=x && a[k].r<=y) {
46
              res += a[k].w;
```

```
47
             return;
48
        }
49
        if(a[k].flag)
50
              down(k);
51
        if(x \le a[k].mid())
52
              query(k<<1,x,y);
53
        if(y > a[k].mid())
54
              query(k<<1|1,x,y);
        a[k].w = a[k << 1].w + a[k << 1|1].w;
55
56 }
```

3. 一维树状数组

单点更新+区间查询

```
1 void update(int x,int y,int n){
2
         for(int i=x;i<=n;i+=lowbit(i))</pre>
3
              c[i] += y;
4 }
5
   int getsum(int x){
6
         int ans = 0;
7
         for(int i=x;i;i-=lowbit(i))
8
              ans += c[i];
9
         return ans;
10 }
```

区间更新+单点查询

```
1 void add(int p, int x){ //这个函数用来在树状数组中直接修改
2
        while(p <= n) sum[p] += x, p += p & -p;
3 }
4 void range_add(int l, int r, int x){ //给区间[l, r]加上 x
5
       add(l, x), add(r + 1, -x);
6 }
7 int ask(int p){ //单点查询
8
        int res = 0;
9
        while(p) res += sum[p], p = p \& -p;
10
        return res;
11 }
```

区间更新+区间查询

```
1 void add(II p, II x){
2     for(int i = p; i <= n; i += i & -i)
3         sum1[i] += x, sum2[i] += x * p;</pre>
```

```
4 }
5 void range_add(II I, II r, II x){
6
         add(l, x), add(r + 1, -x);
7 }
8 | Il ask(II p){
9
         II res = 0;
10
         for(int i = p; i; i -= i \& -i)
11
              res += (p + 1) * sum1[i] - sum2[i];
12
         return res;
13 }
14 || range_ask(|| |, || r){
15
         return ask(r) - ask(I - 1);
16 }
```

4. 二维树状数组

单点更新+区间查询

```
1 void add(int x, int y, int z){ //将点(x, y)加上 z
2
        int memo_y = y;
3
        while(x \le n){
4
            y = memo_y;
5
            while(y \le n)
6
                 tree[x][y] += z, y += y & -y;
7
            x += x \& -x;
8
       }
9 }
10 void ask(int x, int y){//求左上角为(1,1)右下角为(x,y) 的矩阵和
11
        int res = 0, memo_y = y;
12
        while(x){
13
            y = memo_y;
14
            while(y)
15
                 res += tree[x][y], y = y \& -y;
16
            x -= x & -x;
17
       }
18 }
```

区间更新+单点查询

1 void add(int x, int y, int z){

```
2
         int memo_y = y;
3
         while(x \le n){
4
             y = memo_y;
5
              while(y \le n)
6
                   tree[x][y] += z, y += y \& -y;
7
             x += x \& -x;
8
        }
9 }
10 void range_add(int xa, int ya, int xb, int yb, int z){
11
         add(xa, ya, z);
12
         add(xa, yb + 1, -z);
13
         add(xb + 1, ya, -z);
14
        add(xb + 1, yb + 1, z);
15 }
16 void ask(int x, int y){
17
         int res = 0, memo_y = y;
18
        while(x){
19
             y = memo_y;
20
              while(y)
21
                   res += tree[x][y], y -= y & -y;
22
             x = x \& -x;
23
        }
24 }
```

区间更新+区间查询

```
1 #include <cstdio>
2 #include <cmath>
3 #include <cstring>
4 #include <algorithm>
5 #include <iostream>
6 using namespace std;
7 typedef long long II;
8 II read(){
9
        char c; bool op = 0;
10
        while((c = getchar()) < '0' | | c > '9')
11
             if(c == '-') op = 1;
12
        II res = c - '0';
13
        while((c = getchar()) >= '0' && c <= '9')
14
             res = res * 10 + c - '0';
15
        return op ? -res : res;
16 }
17 const int N = 205;
18 II n, m, Q;
19 || t1[N][N], t2[N][N], t3[N][N], t4[N][N];
```

```
20 void add(II x, II y, II z){
21
         for(int X = x; X \le n; X += X \& -X)
22
               for(int Y = y; Y \leq m; Y += Y & -Y){
23
                    t1[X][Y] += z;
24
                    t2[X][Y] += z * x;
25
                    t3[X][Y] += z * y;
26
                    t4[X][Y] += z * x * y;
27
              }
28 }
29 void range_add(ll xa, ll ya, ll xb, ll yb, ll z){ //(xa, ya) 到 (xb, yb) 的矩形
         add(xa, ya, z);
31
         add(xa, yb + 1, -z);
32
         add(xb + 1, ya, -z);
33
         add(xb + 1, yb + 1, z);
34 }
35 || ask(|| x, || y){
36
         II res = 0;
37
         for(int i = x; i; i -= i \& -i)
38
               for(int j = y; j; j -= j \& -j)
39
                    res += (x + 1) * (y + 1) * t1[i][j]
40
                          -(y + 1) * t2[i][j]
41
                         -(x + 1) * t3[i][j]
42
                          + t4[i][j];
43
         return res;
44 }
45 | Il range_ask(Il xa, Il ya, Il xb, Il yb){
46
         return ask(xb, yb) - ask(xb, ya - 1) - ask(xa - 1, yb) + ask(xa - 1, ya - 1);
47 }
48 int main(){
49
         n = read(), m = read(), Q = read();
50
         for(int i = 1; i \le n; i++){
51
               for(int j = 1; j \le m; j++){
52
                    II z = read();
53
                    range_add(i, j, i, j, z);
54
              }
55
         }
         while(Q--){
56
57
               II ya = read(), xa = read(), yb = read(), xb = read(), z = read(), a = read();
58
               if(range_ask(xa, ya, xb, yb) < z * (xb - xa + 1) * (yb - ya + 1))
59
                    range_add(xa, ya, xb, yb, a);
60
61
         for(int i = 1; i \le n; i++){
62
               for(int j = 1; j <= m; j++)
63
                    printf("%lld ", range_ask(i, j, i, j));
```

```
64 putchar('\n');
65 }
66 return 0;
67 }
```

5. 划分树

```
1 #define _mid(a,b) ((a+b)/2)
2 using namespace std;
3 typedef long long II;
4 const int maxn = 1e5+10;
5 const int INF = 0x3f3f3f3f;
6 int sorted[maxn];
7 int cnt[20][maxn];
8 int tree[20][maxn];
9 void build(int l,int r,int k){
                                                             //如果区间内只有一个数,返回
10
        if(r==1)
11
             return;
12
        int mid = _mid(l,r),flag = mid-l+1;
                                                             //求出 flag
13
        for(int i=l;i<=r;i++)
14
             if(tree[k][i] < sorted[mid]) //sorted 代表排序好了的数组
15
                 flag -- ;
        int bufl = I,bufr = mid+1;
16
17
        for(int i=1;i<=r;i++){
18
             cnt[k][i] = (i==l)?0:cnt[k][i-1];
                                                             //初始化
19
             if(tree[k][i]<sorted[mid] | | tree[k][i]==sorted[mid]&&flag>0){//如果有多个中值
20
                 tree[k+1][bufl++] = tree[k][i];
21
                 cnt[k][i]++;
                                                            //进入左子树
22
                 if(tree[k][i] == sorted[mid])
23
                      flag--;
24
            }
                                                             //进入右子树
25
             else
26
                 tree[k+1][bufr++] = tree[k][i];
27
28
        build(l,mid,k+1);
29
        build(mid+1,r,k+1);
30 }
31
32 int ask(int k,int sl,int sr,int l,int r,int x){
33
        if(sl==sr)
34
             return tree[k][sl];
```

```
35
       int cntl;
                              //是否和查询区间重合
36
       cntl = (l==sl)?0:cnt[k][l-1];
                                 //计算 I 到 r 有 cntl2r 个数进入左子树
37
       int cntl2r = cnt[k][r]-cntl;
38
       if(cntl2r >= x)
                       //如果大于当前查询的 k 则进入左子树(因为左子树中最大的数大于第 k 大的数)
39
           return ask(k+1,sl,_mid(sl,sr),sl+cntl,sl+cnt[k][r]-1,x);
40
       else{
                                        //否则进入右子树
41
           int Ir = _mid(sl,sr) + 1 + (l-sl-cntl);
42
           return ask(k+1,_mid(sl,sr)+1,sr,lr,lr+r-l-cntl2r,x-cntl2r);
43
       }
44 }
```

6. RMQ

```
1 void ST(int n) {
2
         for (int i = 1; i <= n; i++)
3
              dp[i][0] = A[i];
4
         for (int j = 1; (1 << j) <= n; j++) {
5
              for (int i = 1; i + (1 << j) - 1 <= n; i++) {
6
                    dp[i][j] = max(dp[i][j-1], dp[i+(1 << (j-1))][j-1]);
7
              }
8
         }
9 }
10 int RMQ(int I, int r) {
         int k = 0;
11
12
         while ((1 << (k + 1)) <= r - l + 1) k++;
13
         return max(dp[l][k], dp[r - (1 << k) + 1][k]);
14 }
```

十.数学

1. 解方程

- **1.牛顿迭代:** $X_0 = X_0 F(X_0)/F'(X_0)$ (其中 F'(x) 为 F(x)的导数)
- 2.二分迭代。
- 3.高斯消元
- 1 #include<stdio.h>
- 2 #include<algorithm>
- 3 #include<iostream>
- 4 #include<string.h>

```
5
    #include<math.h>
6
    using namespace std;
7
    const int MAXN=50;
8
    int a[MAXN][MAXN];//增广矩阵
9
    int x[MAXN];//解集
10
    bool free_x[MAXN];//标记是否是不确定的变元
    inline int gcd(int a,int b)
12
   {
13
        int t;
14
        while(b!=0)
15
16
            t=b;
17
            b=a%b;
18
            a=t;
19
        }
20
        return a;
21
   }
22
    inline int lcm(int a,int b)
23
24
        return a/gcd(a,b)*b;//先除后乘防溢出
   }
25
26
   // 高斯消元法解方程组(Gauss-Jordan elimination).(-2 表示有浮点数解,但无整数解,
27
28
    //-1 表示无解, 0表示唯一解,大于 0表示无穷解,并返回自由变元的个数)
    //有 equ 个方程,var 个变元。增广矩阵行数为 equ,分别为 0 到 equ-1,列数为 var+1,分别为 0 到 var.
29
   int Gauss(int equ,int var)
30
31
   {
32
        int i,j,k;
33
        int max_r;// 当前这列绝对值最大的行.
        int col;//当前处理的列
34
35
        int ta,tb;
36
        int LCM;
37
        int temp;
38
        int free_x_num;
39
        int free_index;
40
41
        for(int i=0; i<=var; i++)
42
        {
43
            x[i]=0;
44
            free_x[i]=true;
45
        }
46
47
        //转换为阶梯阵.
        col=0; // 当前处理的列
48
```

```
for(k = 0; k < equ && col < var; k++,col++)
49
50
        {
             // 枚举当前处理的行.
51
    // 找到该 col 列元素绝对值最大的那行与第 k 行交换.(为了在除法时减小误差)
52
             max r=k;
53
54
             for(i=k+1; i<equ; i++)
55
             {
                 if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
56
57
             }
58
             if(max_r!=k)
59
                 // 与第 k 行交换.
60
61
                 for(j=k; j<var+1; j++) swap(a[k][j],a[max_r][j]);
62
             }
             if(a[k][col]==0)
63
64
                 // 说明该 col 列第 k 行以下全是 0 了,则处理当前行的下一列.
65
66
                 k--;
                 continue;
67
68
             }
69
             for(i=k+1; i<equ; i++)
70
             {
                 // 枚举要删去的行.
71
72
                 if(a[i][col]!=0)
73
                 {
74
                     LCM = lcm(abs(a[i][col]),abs(a[k][col]));
75
                     ta = LCM/abs(a[i][col]);
76
                     tb = LCM/abs(a[k][col]);
77
                     if(a[i][col]*a[k][col]<0)tb=-tb;</pre>
                                                  //异号的情况是相加
78
                     for(j=col; j<var+1; j++)</pre>
79
                     {
80
                         a[i][j] = a[i][j]*ta-a[k][j]*tb;
81
                     }
82
                 }
             }
83
84
        }
85
        // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a!=0).
86
87
        for (i = k; i < equ; i++)
88
             // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交
89
90
    换.
             if (a[i][col] != 0) return -1;
91
92
```

```
//2. 无穷解的情况: 在 var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角
93
94
    阵.
        // 且出现的行数即为自由变元的个数.
95
        if (k < var)
96
97
        {
98
            // 首先,自由变元有 var - k 个,即不确定的变元至少有 var - k 个.
            for (i = k - 1; i >= 0; i--)
99
100
            {
                // 第 i 行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第 k 行到第 equ 行.
101
                // 同样, 第 i 行一定不会是(0, 0, ..., a), a != 0 的情况, 这样的无解的.
102
                free x num = 0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们
103
104 仍然为不确定的变元.
105
                for (j = 0; j < var; j++)
106
                    if (a[i][j] != 0 && free_x[j]) free_x_num++, free_index = j;
107
108
                }
109
                if (free_x_num > 1) continue; // 无法求解出确定的变元.
110
                // 说明就只有一个不确定的变元 free index,那么可以求解出该变元,且该变元是确定的.
                temp = a[i][var];
111
                for (j = 0; j < var; j++)
112
113
114
                    if (a[i][j] != 0 && j != free_index) temp -= a[i][j] * x[j];
115
116
                x[free_index] = temp / a[i][free_index]; // 求出该变元.
                free x[free index] = 0; // 该变元是确定的.
117
            }
118
119
            return var - k; // 自由变元有 var - k 个.
120
121
        // 3. 唯一解的情况: 在 var * (var + 1)的增广阵中形成严格的上三角阵.
122
        // 计算出 Xn-1, Xn-2 ... X0.
        for (i = var - 1; i >= 0; i--)
123
124
        {
125
            temp = a[i][var];
126
            for (j = i + 1; j < var; j++)
127
            {
                if (a[i][j] != 0) temp -= a[i][j] * x[j]; //--因为 x[i]存的是 temp/a[i][i]的值,即是 a[i][i]=1 时 x[i]对
128
129 应的值
130
            }
            if (temp % a[i][i] != 0) return -2; // 说明有浮点数解, 但无整数解.
131
132
            x[i] = temp / a[i][i];
133
        }
134
        return 0;
135 }
136 int main(void)
```

```
137 {
138
         freopen("in.txt", "r", stdin);
         freopen("out.txt","w",stdout);
139
140
         int i, j;
141
         int equ, var;
142
         while (scanf("%d %d", &equ, &var) != EOF)
143
144
              memset(a, 0, sizeof(a));
              for (i = 0; i < equ; i++)
145
146
147
                   for (j = 0; j < var + 1; j++)
148
                        scanf("%d", &a[i][j]);
149
150
                   }
151
              }
              int free_num = Gauss(equ,var);
152
153
              if (free_num == -1) printf("无解!\n");
154
              else if (free_num == -2) printf("有浮点数解, 无整数解!\n");
              else if (free_num > 0)
155
156
              {
                   printf("无穷多解! 自由变元个数为%d\n", free_num);
157
                   for (i = 0; i < var; i++)
158
159
                   {
160
                        if (free_x[i]) printf("x%d 是不确定的\n", i + 1);
                        else printf("x%d: %d\n", i + 1, x[i]);
161
                   }
162
163
              }
              else
164
165
166
                   for (i = 0; i < var; i++)
167
                   {
168
                        printf("x%d: %d\n", i + 1, x[i]);
169
                   }
170
              }
              printf("\n");
171
172
         }
173
         return 0;
174 }
```

2. 矩阵快速幂

```
1 #include<iostream>
```

```
3 #include<cstring>
4
   using namespace std;
5
6 const int maxn = 2;
7 const int mod = 10000;
8 //矩阵结构体
9 struct Matrix{
10
        int a[maxn][maxn];
        void init(){
                       //初始化为单位矩阵
11
12
             memset(a, 0, sizeof(a));
13
             for(int i=0;i<maxn;++i){</pre>
14
                  a[i][i] = 1;
15
             }
16
        }
17 };
18 //矩阵乘法
19 Matrix mul(Matrix a, Matrix b){
20
        Matrix ans;
21
        for(int i=0;i<maxn;++i){</pre>
22
             for(int j=0;j<maxn;++j){</pre>
23
                  ans.a[i][j] = 0;
24
                  for(int k=0;k<maxn;++k){</pre>
25
                       ans.a[i][j] += a.a[i][k] * b.a[k][j];
26
                       ans.a[i][j] %= mod;
27
                  }
28
             }
29
        }
30
        return ans;
31 }
32
33 //矩阵快速幂
34 Matrix qpow(Matrix a, int n){
35
        Matrix ans;
36
        ans.init();
37
        while(n){
38
             if(n&1) ans = mul(ans, a);
39
             a = mul(a, a);
40
             n /= 2;
41
42
        return ans;
43 }
44
45 int main(){
46
        Matrix a;
```

十一.其他

1. 常用函数及语句

```
1 string sub2 = s.substr(5, 3); //从下标为 5 开始截取长度为 3 位: sub2 = "567"
2 string sub1 = s.substr(5);
3 //只有一个数字 5 表示从下标为 5 开始一直到结尾: sub1 = "56789"
                                      //求数组 a 的上一个排列
4 prev permutation(a,a+a.size())
5 next_permutation(a,a+a.size())
                                      //求数组 a 的下一个排列
6 lower_bound(a,a+a.size(),x)
                                      //二分(查不到时偏小)
7 upper_bound(a,a+a.size(),x)
                                      //二分(偏大)
                                      //a[0]~a[n-1]填充 x
8 fill(a,a+n,x)
                                      //反转区间(x,y)
9 reverse(a+x,a+y)
10 __builtin_popcount(x)
                                      //x 二进制中'1'的个数
11 freopen("input.txt","r",stdin);
12 freopen("output.txt", "w", stdout);
13 #define IO do{\
14 ios::sync_with_stdio(false);\
15 cin.tie(0);\
16 cout.tie(0);}while(0)
17 struct cmp{
      bool operator ()(DateType &a,DateType &b) { //重载
19
20
      }
21 }
```

2. 数据类型取值范围

	取值范围
Char	-128~127(大约 3 位)

Short	-32768~32767(大约 5 位)
unsigned short	0~65536 (2 Bytes·大大约五位)
Int	2147483648~2147483647(4 Bytes·大约十位)
unsigned int	0~4294967295 (4 Bytes·大大约十十位)
long	相当于 int
long long	-9223372036854775808 ~ 9223372036854775807 (8
	Bytes·大大约十十九位)
unsigned long long	0~18446744073709551615(大大约二二十十位)
double	1.7 * 10^308 (8 Bytes)

3. c++大数

```
1
    #include <iostream>
2
    #include <string>
3
    #include <cstring>
    #include <cstdio>
5
    using namespace std;
6
7
    const int maxn = 1000;
8
9
    struct bign {
10
         int d[maxn], len;
    // 去掉大数的前导 0
11
12
         void clean() {
13
             while(len > 1 && !d[len-1])
14
                  len--;
15
         }
    //默认构造为0
16
17
         bign(){
18
              memset(d, 0, sizeof(d));
19
             len = 1;
20
    // 初始化: 可以用 "bign [bign] = [int];"或 "bign [bign]([int]);"
21
22
         bign(int num) {
              *this = num;
23
24
    // 初始化: 可以用 "bign [bign] = [char*];"或 "bign [bign](char*);"
25
26
27
         bign(char* num) {
28
              *this = num;
29
```

```
// 赋值: 可以用 "[bign] = [char*];"
30
31
           bign operator = (const char* num) {
32
                memset(d, 0, sizeof(d));
33
                len = strlen(num);
                for(int i = 0; i < len; i++)
34
35
                     d[i] = num[len-1-i] - '0';
                clean();
36
37
                return *this;
38
          }
     // 赋值: 可以用 "[bign] = [int];"
39
40
           bign operator = (int num) {
                char s[20];
41
42
                sprintf(s, "%d", num);
43
                *this = s;
                return *this;
44
          }
45
46
47
          bign operator + (const bign& b) {
                bign c = *this;
48
49
                int i;
                for (i = 0; i < b.len; i++) {
50
                     c.d[i] += b.d[i];
51
52
                     if (c.d[i] > 9)
                          c.d[i]%=10, c.d[i+1]++;
53
54
                }
                while (c.d[i] > 9)
55
56
                     c.d[i++]%=10, c.d[i]++;
                c.len = max(len, b.len);
57
58
                if (c.d[i] && c.len <= i)
59
                     c.len = i+1;
60
                return c;
61
62
          bign operator - (const bign& b) {
                bign c = *this;
63
                int i;
64
                for (i = 0; i < b.len; i++) {
65
66
                     c.d[i] = b.d[i];
                     if (c.d[i] < 0)
67
                          c.d[i]+=10, c.d[i+1]--;
68
69
                }
70
                while (c.d[i] < 0)
71
                     c.d[i++]+=10, c.d[i]--;
72
                c.clean();
73
                return c;
```

```
74
75
           bign operator * (const bign& b)const {
76
                int i, j;
77
                bign c;
78
                c.len = len + b.len;
79
                for(j = 0; j < b.len; j++)
80
                     for(i = 0; i < len; i++)
81
                           c.d[i+j] += d[i] * b.d[j];
                for(i = 0; i < c.len-1; i++)
82
                     c.d[i+1] += c.d[i]/10, c.d[i] %= 10;
83
84
                c.clean();
85
                return c;
86
           bign operator / (const bign& b) {
87
88
                int i, j;
                bign c = *this, a = 0;
89
90
                for (i = len - 1; i >= 0; i--) {
91
                     a = a*10 + d[i];
                     for (j = 0; j < 10; j++)
92
93
                           if (a < b*(j+1))
94
                                break;
95
                     c.d[i] = j;
96
                     a = a - b*j;
97
                }
                c.clean();
98
99
                return c;
100
           bign operator % (const bign& b) {
101
102
                int i, j;
103
                bign a = 0;
104
                for (i = len - 1; i >= 0; i--) {
105
                     a = a*10 + d[i];
106
                     for (j = 0; j < 10; j++)
107
                           if (a < b*(j+1))
108
                                break;
109
                     a = a - b*j;
                }
110
111
                return a;
112
          }
113
114
           bign operator += (const bign& b) {
115
                *this = *this + b;
116
                return *this;
117
```

```
118
119
          bool operator <(const bign& b) const {
120
               if(len != b.len)
121
                    return len < b.len;
122
               for(int i = len-1; i >= 0; i--)
123
                    if(d[i] != b.d[i])
124
                         return d[i] < b.d[i];
125
               return false;
126
          }
127
          bool operator >(const bign& b) const {
128
               return b < *this;
129
          }
130
          bool operator<=(const bign& b) const {</pre>
131
               return !(b < *this);
132
          }
133
          bool operator>=(const bign& b) const {
134
               return !(*this < b);
135
          }
136
          bool operator!=(const bign& b) const {
137
               return b < *this || *this < b;
138
          bool operator==(const bign& b) const {
139
140
               return !(b < *this) && !(b > *this);
141
          }
142 // 将 int 数组存储的值转换为高精度的字符串形式
143
          string str() const {
144
               char s[maxn]= {};
145
               for(int i = 0; i < len; i++)
146
                    s[len-1-i] = d[i]+'0';
147
               return s;
148
          }
149 };
150
151 istream& operator >> (istream& in, bign& x) {
152
          string s;
153
          in >> s;
154
          x = s.c_str();
155
          return in;
156 }
157
158 ostream& operator << (ostream& out, const bign& x) {
159
          out << x.str();
160
          return out;
161 }
```

了解更多请点击 bestsort.cn

```
162
163 int main() {
164 bign a,b;
165 cin >>a >> b;
166 cout << (a/b) << endl;
167 }
```