Machine Learning for Physicists - First Assignment

Guilherme Simplício

October 31, 2022

1 Theory Part

1)You are training a ridge regression model with zero regularization. How does the training loss behave for n < d? Explain your answer.

If we are training ridge regression model with $\lambda=0$, we are in the domain of linear regression, where $\hat{w}=(X^TX)^{-1}X^Ty$. In this case there is only a general solution for \hat{w} if X^TX exists, ie, if $n \ge d$. Thinking in terms of rank(or non trivial eigenvalues), they are a increasing function for n < d. For this reasons, if we plot the train error(loss) we would see that it would decrease until $\alpha=\frac{n}{d}=1$

2)Let $X \in \mathbb{R}^{n \times d}$ be the training data matrix and $y \in \mathbb{R}^n$ be the labels. Under what condition on X and y is ridge regression with zero regularization able to exactly fit the training points?

As it was explained on 1), there is only a general solution for \hat{w} , in the zero regularization regime, if there are at least as many parameters as equations (ie $n \ge d$) provided they are linearly independent, this means that the matrix X^TX is full rank, hence invertible. Furthermore, the augmented matrix [X|y] has to be the same rank as X, in order to avoid fits that the same X has two different y's.

3)You train ridge regression several times with fixed n and increasing regularization λ . How do you expect the training error to depend on λ ? Express the training error at $\lambda = \infty$ in terms of the labels of the training set $y = (y_1, y_2, ..., y_n)$. Explain your reasoning.

Regarding the **training** error, as $\lambda \to \infty$, tending to a horizontal asymptote to the variance($=\sigma^2 = \frac{\sum (y - \bar{y})^2}{n}$) of the training set y. As the regularization strength approaches high values, the training does not depend on the input, hence the output tends to a mean value, this means that the mean squared error is actually the variance!

Bonus for 3: I slightly modified the code done in main.py and created main2.py (committed in Github) in order to produced this plots who illustrate the aforementioned behaviour.

Figure 1: Optimal λ for Ridge Regression, considering training data set.

2 Acknowledgments

I would like to thank Francisco Simões and Arianna Alonso Bizzi for having very useful debates with me regarding this assignment and the course, in general.