Разные последовательности

- **1.** Дана последовательность натуральных чисел a_1, a_2, \ldots, a_n , в которой a_1 не делится на 5 и для всякого n $a_{n+1} = a_n + b_n$, где b_n последняя цифра числа a_n . Докажите, что последовательность содержит бесконечно много степеней двойки.
- **2.** В числовой последовательности 4, 7, 5, 8, 4, 4, 1, ... каждый член, начиная с пятого, равен последней цифре суммы предшествующих четырёх членов.
 - (a) Докажите, что в этой последовательности еще раз встретится участок 4, 7, 5, 8.
 - (b) Докажите, что это произойдет не позднее, чем через 10000 шагов.
 - (c) Докажите, что в этой последовательности встретится участок 2, 0, 1, 9.

Определение. Последовательностью чисел Фибоначчи называется последовательность $F_0 = 0, F_1 = 1, F_{n+1} = F_n + F_{n-1}$ для всех натуральных n.

- 3. Докажите тождества
 - (a) $F_1 + F_2 + \ldots + F_n = F_{n+2} 1$;
 - (b) $F_{n+m} = F_{n-1}F_m + F_nF_{m+1}$.
- **4.** (а) Докажите, что F_{2n} делится на F_n .
 - (b) Докажите, что F_{kn} делится на F_n .
 - (с) Докажите, что $(F_n, F_m) = F_{(n,m)}$.
 - (d) Докажите, что F_n делится на F_m тогда и только тогда, когда n делится на m (или когда m=2).
- **5.** Вычислите $\frac{1}{1\cdot 2} + \frac{2}{1\cdot 3} + \frac{3}{2\cdot 5} + \cdots + \frac{F_N}{F_{N-1}\cdot F_{N+1}}$.
- **6.** Фирма «ДолгоДорогСтрой» должна построить 146 км дороги. В первый день она строит 1 км дороги. Каждый следующий день она строит $\frac{1}{x^{10}}$ км дороги, где x длина уже построенной дороги. Закончит ли когда-нибудь стройку «ДолгоДорогСтрой»?
- 7. Последовательность натуральных чисел a_n задана первым членом a_1 и правилом $a_{n+1}=a_n/2$, если a_n чётное, $a_{n+1}=3a_n+1$, если a_n нечётное. Докажите, что в этой последовательности встретится число, делящееся на 4.
- 8. Последовательность a_n и b_n заданы условиями

$$a_1 = 1$$
, $b_1 = 2$, $a_{n+1} = \frac{1 + a_n + a_n b_n}{b_n}$, $b_{n+1} = \frac{1 + b_n + a_n b_n}{a_n}$.

Докажите, что $a_{2019} < 5$.