where $x_i = (x_{i1}, x_{i2}, \cdots, x_{iM})$ is a feature vector with Mfeatures, and y_i is the target, i.e., the response, variable. Let x_i denote the jth variable in feature space. A typical linear regression model can then be expressed mathematically as:

Consider a dataset $D = \{(x_i, y_i)\}^N$ of N data points,

This model assumes that the relationships between the target variable
$$u$$
, and features x ; are linear and can be captured in

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_M x_M$

variable y_i and features x_i are linear and can be captured in slope terms $\beta_1, \beta_2, \ldots, \beta_M$.