《计算机网络》

一、概述

ISP 互联网服务供应商

IXP 互联网交换点

C/S 方式 Client Server

P2P方式 Peer-to-Peer

电路交换 报文交换 分组交换

速率

带宽 最高数据率 bit/s

吞吐量 实际数据量

时延 delay/latency

发送时延 数据发送时间

发送时延=数据帧长度 (bit) 发送速率 (bit/s)

传播时延 数据传播时间

传播时延 = 信道长度(m) 电磁波在信道上的传播速率(m/s)

处理时延

排队时延

加起来就是总时延

时延带宽积 以bit为单位我的链路长度

往返时间 RTT

利用率

1. 协议体系结构

应用层 应用进程间通信和交互的规则 DNS HTTP SMTP 报文message 运输层 提供数据传输服务 UDP TCP

网络层 不同主机间通信服务 IP 链路层 组装成帧 控制信息 (同步信息, 地址信息, 差错控制) 物理层 比特 01

图 1-19 数据在各层之间的传递过程

协议水平,服务竖直

二、物理层

- 1. 物理层协议 物理层规程procedure 串行传输
- 2. 数据通信系统

源系统/发送端 传输系统 目的系统/接收方

源系统: 源点 发送器 接收器 终点

- 单向通信/单工通道 双向交替通信/半双工通道 双向同时通信/全双工通道 基带信号 调制 基带调制 编码 载波 带通信号 带通调制
- 4. 编码方式

不归零制 归零制 曼彻斯特编码(自同步能力) 差分曼彻斯特编码

5. 奈奎斯特准则,信道传输频率上限

$$f_s > 2 * f_N$$

信噪比

信噪比(dB) = $10 \log_{10}(S/N)$ (dB)

香农公式

在 1948 年,信息论的创始人香农(Shannon)推导出了著名的**香农公式**。香农公式指出: 信道的极限信息传输速率 C 是

$$C = W \log_2(1+S/N) \quad \text{(bit/s)} \tag{2-2}$$

式中,W为信道的带宽(以 Hz 为单位); S 为信道内所传信号的平均功率; N 为信道内部的高斯噪声功率。香农公式的推导可在通信原理教科书中找到。这里只给出其结果。

信道的带宽或者信噪比越大, 信息的极限传输速率就越高

6. 传输媒介 双绞线 同轴电缆 光缆

7. 信道复用技术

频分复用 FDM

时分复用 TDM 等时信号

统计时分复用 STDM 异步时分复用

波分复用 光的频分复用

码分复用 CDM 码分多址 CDMA 码片序列正交 伪随机码序列

三、链路层

1. 点对点信道

广播信道

2. 帧 网络层交下来的数据构成帧

封装成帧 framing 最大传送单元MTU 控制字符 SOH EOT

透明传输 传输帧中 SOH EOT 进行转义操作

差错检测 误码率 Bit Error Rate 循环冗余检验 CRC 帧检测序列FCS Frame Check

Sequence

无差错接收!=可靠传输

帧丢失 帧重复 帧失序 通过上层,例如运输层的TCP协议完成

3. 点对点协议 PPP

F 标志位 进制

A 规定为0xFF

C 规定为0x03

第四个 两个字节的协议字段

尾部的第一个字段(2字节)是使用CRC的FCS

字节填充 转义字符 信息字段修改出现的标志字段 异步传输

零比特填充 五个连续的1就加个0 转义

4. PPP协议状态图

鉴别 Authenticate

口令鉴别协议 PAP

口令握手鉴别协议 CHAP

5. 广播信道的链路层

CSMA/CD协议 载波监听多点接入/碰撞检测

多点接入 总线型网络

载波监听 发送前发送中都在检测信道

碰撞检测 边发送边监听

不能同时发送或者接收,双向交替通信/半双工通信 截断而二进制指数退避 争用期为512bit

可见当重传次数不超过 10 时,参数 k 等于重传次数; 但当重传次数超过 10 时,k 就不 再增大而一直等于10。

(3) 当重传达 16 次仍不能成功时(这表明同时打算发送数据的站太多,以致连续发生 冲突),则丢弃该帧,并向高层报告。

使重传需要推迟的平均时间随着重传次数而增大 动态退避

人为干扰信号

根据以上所讨论的,可以把 CSMA/CD 协议的要点归纳如下:

- (1) 准备发送:适配器从网络层获得一个分组,加上以太网的首部和尾部(见后面的 3.4.3 节), 组成以太网帧, 放入适配器的缓存中。但在发送之前, 必须先检测信道。
- (2) 检测信道: 若检测到信道忙,则应不停地检测,一直等待信道转为空闲。若检测到 信道空闲,并在96比特时间内信道保持空闲(保证了帧间最小间隔),就发送这个帧。
- (3) 在发送过程中仍不停地检测信道,即网络适配器要边发送边监听。这里只有两种可 能性:
- ①发送成功:在争用期内一直未检测到碰撞。这个帧肯定能够发送成功。发送完毕 后,其他什么也不做。然后回到(1)。
- ②发送失败: 在争用期内检测到碰撞。这时立即停止发送数据,并按规定发送人为干 扰信号。适配器接着就执行指数退避算法,等待 r 倍 512 比特时间后,返回到步骤(2),继 续检测信道。但若重传达 16 次仍不能成功,则停止重传而向上报错。

以太网每发送完一帧,一定要把已发送的帧暂时保留一下。如果在争用期内检测出发 生了碰撞,那么还要在推迟一段时间后再把这个暂时保留的帧重传一次。

6. 集线器工作在物理层

从图 3-21 可看出,要提高以太网的信道利用率,就必须减小 τ 与 T_0 之比。在以太网中 定义了参数 a,它是以太网单程端到端时延 τ 与帧的发送时间 T_0 之比:

$$a = \frac{\tau}{T_0} \tag{3-2}$$

7.

当 $a\rightarrow 0$ 时,表示只要一发生碰撞,就立即可以检测出来,并立即停止发送,因而信道 资源被浪费的时间非常非常少。反之,参数 a 越大,表明争用期所占的比例越大,这就使得 每发生一次碰撞就浪费了不少的信道资源,使得信道利用率明显降低。因此,以太网的参数

使得单程传播时间尽可能的短

极限信道利用率

$$S_{\text{max}} = \frac{T_0}{T_0 + \tau} = \frac{1}{1 + a}$$

8. MAC层 硬件地址/物理地址

无效MAC帧

IEEE 802.3 标准规定凡出现下列情况之一的即为无效的 MAC 帧:

- (1) 帧的长度不是整数个字节;
- (2) 用收到的帧检验序列 FCS 查出有差错;
- (3) 收到的帧的 MAC 客户数据字段的长度不在 46~1500 字节之间。考虑到 MAC 帧首 部和尾部的长度共有 18 字节,可以得出有效的 MAC 帧长度为 64~1518 字节之间。

对于检查出的无效 MAC 帧就简单地丢弃。以太网不负责重传丢弃的帧。

- 交换机工作在链路层
 交换表 生成树协议 STP 记录MAC地址和端口
- 10. VLAN 虚拟局域网 利用VLAN标记 增加了四个字节

四、网络层