0.1 利用留数定理计算定积分

0.1.1 $\int_{-\infty}^{\infty} f(x) dx$ 型积分

定理 0.1

设 f 在上半平面 $\{z: Imz > 0\}$ 中除去 a_1, \dots, a_n 外是全纯的, 在 $\{z: Imz \geq 0\}$ 中除去 a_1, \dots, a_n 外是连续的. 如果 $\lim_{z \to \infty} z f(z) = 0$, 那么

$$\int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum_{k=1}^{n} \text{Res}(f, a_k).$$
 (1)

 \Diamond

证明 图 1所示, 取充分大的 R, 使得 a_1, \dots, a_n 包含在半圆盘 $\{z: |z| < R, \text{Im} z > 0\}$ 中, 记 $\gamma_R = \{z: z = Re^{i\theta}, 0 \le \theta \le \pi\}$, 由留数定理得

$$\int_{-R}^{R} f(x)dx + \int_{\gamma_R} f(z)dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res}(f, a_k).$$
 (2)

记 $M(R) = \max\{|f(z)| : z \in \gamma_R\}$, 由假定, $\lim_{R \to \infty} RM(R) = 0$, 因而

$$\left| \int_{\gamma_R} f(z) dz \right| = \left| \int_0^{\pi} f(Re^{i\theta}) Re^{i\theta} id\theta \right| \leqslant \pi R M(R) \to 0 \, (R \to \infty).$$

在 (2) 式中令 $R \to \infty$, 即得公式 (1).

推论 0.1

设 $P \rightarrow Q$ 是两个既约多项式,Q没有实的零点,且 $\deg Q - \deg P \ge 2$,那么

$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} dx = 2\pi i \sum_{k=1}^{n} \text{Res}\left(\frac{P(z)}{Q(z)}, a_k\right),\,$$

这里, $a_k(k=1,\cdots,n)$ 为 Q 在上半平面中的全部零点, $\deg P$, $\deg Q$ 分别为 P 和 Q 的次数.

例题 0.1 计算积分

$$\int_{-\infty}^{\infty} \frac{x^2 - x + 2}{x^4 + 10x^2 + 9} dx.$$

解 令 $f(z) = \frac{z^2 - z + 2}{z^4 + 10z^2 + 9}$, 它满足推论 0.1的条件. 容易看出, 分母 $Q(z) = z^4 + 10z^2 + 9$ 有 4 个零点 ±i 和 ±3i, 但在上半平面中的零点只有 $a_1 = i$ 和 $a_2 = 3i$ 两个. 容易算得

$$Res(f, i) = \frac{-1 - i}{16}, \quad Res(f, 3i) = \frac{3 - 7i}{48},$$

故得

$$\int_{-\infty}^{\infty} \frac{x^2 - x + 2}{x^4 + 10x^2 + 9} dx = \frac{5}{12}\pi.$$

例题 0.2 计算积分

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{(1+x^2)^{n+1}}.$$

解 令 $f(z) = \frac{1}{(1+z^2)^{n+1}}$,它显然满足推论 0.1的条件,且在上半平面中只有一个 n+1 阶极点 z=i. 应命题??,通过直接计算得

Res
$$(f, i) = \frac{1}{2i} \frac{(2n)!}{2^{2n} (n!)^2},$$

于是得

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{(1+x^2)^{n+1}} = \frac{(2n)!\pi}{2^{2n}(n!)^2}.$$