File formats Wrapping your data in the right package

Deanna M. Church Senior Director of Genomics and Content Personalis, Inc

@deannachurch

Short Course in Medical Genetics 2013

1

2

```
<Style ss:ID="Default" ss:Name="Normal">
 <Alignment ss:Vertical="Bottom"/>
 <Borders/>
  <Font ss:FontName="Arial"/>
 <Interior/>
 <NumberFormat/>
 <Protection/>
 </Style>
 <Style ss:ID="s16">
 <Alignment ss:Vertical="Bottom" ss:WrapText="1"/>
 <Font ss:FontName="Arial" ss:Bold="1"/>
 </Style>
 <Style ss:ID="s17">
 <Alignment ss:Horizontal="Right" ss:Vertical="Bottom" ss:WrapText="1"/>
 <Font ss:FontName="Arial" ss:Bold="1"/>
 </Style>
 <Style ss:ID="s18">
 <NumberFormat ss:Format="#,##0"/>
 </Style>
 <Style ss:ID="s19">
<Alignment ss:Horizontal="Left" ss:Vertical="Bottom"/>
  <NumberFormat ss:Format="#,##0"/>
 </Style>
<Style ss:ID="s20">
 <Alignment ss:Horizontal="Right" ss:Vertical="Bottom"/>
 </Style>
 <Style ss:ID="s21">
 <Alignment ss:Horizontal="Left" ss:Vertical="Bottom"/>
</Style>
</Styles>
```


Control Characters: invisible to you but not to software

Carriage return (CR): \r or ^M Line feed (LF): \n or ^J

Unix/Linux: uses LF character

Macs: uses CR character

Windows: uses CR followed by LF

http://danielmiessler.com/study/crlf/

Most bioinformatics packages expect:

- A plain text file
 - Not a word or excel document
- A particular field delimiter
 - often tab or comma, sometimes pipe
- Unix style line terminators

Read file specifications!*

^{*} Even though they may not be complete

If I had one thing to tell biologists learning bioinformatics, it would be "write code for humans, write data for computers".

NCBI data representation:

- Uses ASN.1
- Not easily human readable
- Limited flexibility
- Robust validation tools
- Not easily parsed by Perl/Python

```
Seq-entry ::= seq {
  id {
     general {
        db "WGS:AMYH01" ,
tag
           str "chrl_315417" } ,
     genbank {
accession "JH976292" ,
     version 1 } ,
gi 409188728 } ,
  descr {
    title "Homo sapiens chromosome 1 genomic scaffold"
     source {
        genome genomic ,
           taxname "Homo sapiens" ,
           common "human" ,
                 db "taxon" ,
                tag
id 9606 } } ,
           orgname {
 name
binomial {
genus "Homo" ,
species "saplens" } ,
lineage "Eukaryota; Metazoa; Chordata; Craniat
Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Pri
 Catarrhini; Hominidae; Homo",
             gcode 1 ,
mgcode 2 ,
div "PRI" } } ,
        subtype {
              subtype chromosome ,
name "1" } ,
              subtype cell-line ,
name "CHM1htert" } ,
              subtype tissue-type ,
               name "hydatidiform mole"
```

Typical bioinformatics data representation:

Tab delimited file

- Flexible
 - Good: with rapidly changing data/tech (but don't change/add columns!)
 - Poor: validation
- Human Readable
 - Convenient for de-bugging
 - Computer doesn't care!

Putting the data in the right package

- Sequences
 - ***** FASTA
 - FASTQ
 - SAM/BAM
- Alignments
 - SAM/BAM
 - MAF

- Annotations
 - Genes
 - **₩** GFF3
 - **%** GTF
 - Variation
 - **W** VCF
 - GVF
 - HGVS
 - **6** General
 - **%** GFF3
 - BED

http://www.ncbi.nlm.nih.gov/staff/church/GenomeAnalysis/index.shtml#FILES

FASTA

FASTQ

```
@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCCC65
```

FASTQ Details

Sequence data format

- Text based
 - Encodes sequence calls and quality scores with ASCII characters
 - Stores minimal information about the sequence read
 - 4 lines per sequence
 - Line 1: begins with @; followed by sequence identifier and optional description
 - W Line 2: the sequence
 - W Line 3: begins with the "+" and is followed by sequence identifiers and description (both are optional)
 - W Line 4: encoding of quality scores for the sequence in line 2

References

http://maq.sourceforge.net/fastq.shtml

Cock et al. (2009) Nuc Acids Res 38: 1767-1771

FASTQ Example

For analysis, it may be necessary to convert to the Sanger form of FASTQ.

@SRR014849.1 EIXKN4201CFU84 length=93
GGGGGGGGGGGGGGGGGGCTTTTTTTGTTTGGAACCGAAAGG
GTTTTGAATTTCAAACCCTTTTCGGTTTCCAACCTTCCAA
AGCAATGCCAATA
+SRR014849.1 EIXKN4201CFU84 length=93
3+&\$#""""""""""7F@71,'";C?,B;?6B;:EA1EA
1EA5'9B:?:#9EA0D@2EA5':>5?:%A;A8A;?9B;D@
/=<?7=9<2A8==</pre>

Qtitle and optional description sequence line(s) +optional repeat of title line quality line(s)

FASTQ example from Cock et al., 2009

Quality Scores

Phred Quality Score	Probability of incorrect base call	Base call accuracy	
10	1 in 10	90 %	
20	1 in 100	99 %	
30	1 in 1000	99.9 %	
40	1 in 10000	99.99 %	
50	1 in 100000	99.999 %	

Q = Phred Quality Scores

P = Base-calling error probabilities

Quality Scores

Not always directly comparable between to programs/pipelines

```
@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCCC65
```

Format/Platform	QualityScoreType	ASCII encoding
Sanger	Phred: 0-93	33-126
Solexa	Solexa:-5-62	64-126
Illumina 1.3	Phred: 0-62	64-126
Illumina 1.5	Phred: 0-62	64-126
Illumina 1.8	Phred: 0-62	33-126 *** Sanger format!

Need to know what your program is expecting Likely to change again (to improve compressing data)

SAM (Sequence Alignment/Map)

Alignment data format

- Standard output of aligners that map reads to a reference genome
 - Tab delimited w/ header section and alignment section
 - Header sections begin with @ (are optional)
 - Alignment section has 11 mandatory fields
 - BAM is the binary format of SAM

http://samtools.sourceforge.net/

Mandatory Alignment Fields

Col	Field	Type	Regexp/Range	Brief description
1	QNAME	String	[!-?A-~]{1,255}	Query template NAME
2	FLAG	Int	[0,2 ¹⁶ -1]	bitwise FLAG
3	RNAME	String	* [!-()+-<>-~][!-~]*	Reference sequence NAME
4	POS	Int	[0,2 ²⁹ -1]	1-based leftmost mapping POSition
5	MAPQ	Int	[0,2 ⁸ -1]	MAPping Quality
6	CIGAR	String	* ([0-9]+[MIDNSHPX=])+	CIGAR string
7	RNEXT	String	* = [!-()+-<>-~][!-~]*	Ref. name of the mate/next fragment
8	PNEXT	Int	[0,2 ²⁹ -1]	Position of the mate/next fragment
9	TLEN	Int	$[-2^{29}+1,2^{29}-1]$	observed Template LENgth
10	SEQ	String	* [A-Za-z=.]+	fragment SEQuence
11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity+33

http://samtools.sourceforge.net/SAM1.pdf

```
Alignments example
         12345678901234 5678901234567890123456789012345
 Coor
         AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
 ref
              TTAGATAAAGGATA*CTG CIGAR string -> 8M2I4M1D3M
 +r001/1
 +r002
             aaaAGATAA*GGATA
            gcctaAGCTAA
 +r003
 +r004
                        ATAGCT.....TCAGC
 -r003
                              ttagctTAGGC
                                          CAGCGCCAT
 -r001/2
                                              Alignments in SAM format
 QHD VN:1.3 SO:coordinate
@SQ SN:ref LN:45
r001 163 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r003 16 ref 29 30 6H5M
                     * 0 0 TAGGC * NM:i:0
r001 83 ref 37 30 9M
                     = 7 -39 CAGCGCCAT
http://samtools.sourceforge.net/SAM1.pdf
```

Annotation Formats

- Mostly tab delimited files that describe the location of genome features (i.e., genes, etc.)
- Also used for displaying annotations on standard genome browsers
- Important for associating alignments with specific genome features
- Descriptions
- Knowing format details can be important to translating results!
 - **M** BED is zero based/exclusive
 - GTF/GFF are one based/inclusive

BED: zero based, start inclusive, stop exclusive

- First base on the chromosome is 0
- Length = stop start

GTF/GFF: one based, inclusive

```
chr1 snp135Com exon 10492 10492 0.000 chr1 snp135Com exon 10583 10583 0.000
```

- First base on the chromosome is 1
- Second Length = stop start+1

BED format Annotation data format								format
	Required (1-3)				Optional	(4-12)		→
	chr1 chr2 chr16 chr17 chr17 chr17	86114265 1841774 2950446 1435038 32831694 32831694 61880550	184 295 7 143 4 328 4 328	16346 6089 5264 51933 32761 32761 81930	nsv4331 nsv4331 nsv4331 nsv4331 nsv4331 nsv4331	66 67 68 69		
chr1 chr1 chr1 chr1 chr1 chr1 chr1	1676 1676 1676 1676 1676	9829 53194 53194 53194 53194 53194 53194 53411	16778548 16784844 16784844 16779513 16779513 16778548 16778548	chrl chrl chrl chrl chrl	:2166770 :1466918 :1440046 :1428571 :1435220 :1468441 :1470062 :1447475	04 64 41 82 75	66 - 40727' 40892' 29141' 29347' 28455' 28494' 40536'	5 - 6 - 3 - 5 - 8 -

Annotation data format GFF₃ 0 ##gff-version 3 ##sequence-region ctg123 1 1497228 ctg123 . gene 1000 9000 . + . ID=gene00001; Name=EDEN 3 ctg123 . TF_binding_site 1000 1012 . + . ID=tfbs00001;Parent=gene00001 ctg123 . mRNA 1050 9000 ID=mRNA00001;Parent=gene00001;Name=EDE ID=mRNA00002; Parent=gene00001; Name=EDE ID=mRNA00003; Parent=gene00001; Name=EDE ctg123 . mRNA ctg123 . mRNA 9000 1050 1300 9000 ctg123 . exon 1300 1500 ID=exon00001;Parent=mRNA00003 8 ctg123 . exon 9 ctg123 . exon ID=exon00002;Parent=mRNA00001,mRNA0000 1050 1500 ID=exon00003; Parent=mRNA00001, mRNA0000 3000 3902 10 ctg123 . exon 5000 5500 ID=exon00004; Parent=mRNA00001, mRNA0000 7000 9000 ID=exon00005; Parent=mRNA00001, mRNA0000 Fixed columns: 1201 1500 . + 0 ID=cds00001;Parent=mRNA00001;Name=eden Column 1: Sequence Id Flexible column: Column 2: Source Column 9: attributes Column 3: Feature type Column 4: Start (1-based) Column 5: End Semi-colon delimited tag=value pairs. Some tags Column 6: Score are reserved (ID, Name, etc). Column 7: Strand Column 8: Phase (0,1,2) http://www.sequenceontology.org/resources/gff3.html

Take home messages

- Understand how your tools work
 - What is the tool expecting?
 - What type of data am I representing?
 - What type of data will it produce
- Output of programs/pipelines are not always comparable
 - Score values
- Know how to count (starting at 0 or 1)
- Just because 2 files are of the same type (BED, GFF3) it does not mean they are identical or 'standard'.