ontanie	May 14
	Today's plan
1.	Recall last time
	One simple example
2.	See 3-unif version hypergraph container
	Container
3 •	see graph containers 800
	See graph containers - Alg. (Kleitman - Winston)

(a(W / 173) (+ Supersaturation) 4 CEB, eLC) = \$\frac{n^2}{4} + o(n^2) Phrase this in terms of indep. in hypergraphs (more obstract/general) Consider \mathcal{H} 3-unit $\{V(\mathcal{H}) = E(K_n)\}$ $e_1e_2e_3 \in E(\mathcal{H})$ $|\mathcal{X}| = \binom{2}{2}$, $e(\mathcal{X}) = \binom{2}{3}$. Graph G (E(G)) > VG = V(11) D-free FEF_(K3) (-> indep set VF > 2(18) family of oull indep sets Fn (K3) Container for FEG_(K3) Containers for indep sets in #

In this language, Len Containe for I(H) for H enoding => => G family of subsets of 4,2 IEX(K) JCEC SHIEC (ii) | C| ≤ n0(n3/2) (few (iii) & CEE, almost indep Set. (iv) 4 CEG, [C] = 1 +0(n2) = Count -max. D-free graphs _ast time - max. Sun free sets form (informal) BMS/ST 7 Small family hypergraph 1 of containers for IM)

(clustering) Yet, another simple example (1906) => e(G) = \frac{1}{2} (\frac{1}{2})_ G(u,p) Frankl-Rödl (86) D-free GE (g(n,p) Pe(6) = (= + o(1) P(2) ex (G(n,p), K3) = (\frac{1}{2} +o(1)) p(\frac{n}{2}) $P \ll \frac{1}{5n}$, $\mathbb{E}[e(G(n,p))] \approx p(\frac{n}{2})$ $\mathbb{E}(\#\Delta s) = \binom{n}{3} p^3 \approx n^3 p^3$

Deletion => 7GEG(nip) D-fre
e (6) 7 (1-643) p(2)
Naive apposant 1st moment.
$\times_{m} = \#$ of m -edge \triangle -free growths in $G(n,p)$
in 6 (0,p)
$\mathbb{E}(X_m) \rightarrow 0$ (1)
But # m-edge D-free graphs
But # m-edge D-free graphs [1 1020 hours de marks]
Umon bound
Umon bound $\Rightarrow \mathbb{E}(X_m) > \binom{n^2/4}{m} p^m = \left(\frac{\binom{2}{2} + o(1)}{\binom{2}{2}}\right) > \infty$ belows up
blows up
Problem too wasteful!
~ 1

Pf (P>) - logn true vin continier · Recall of container GEG e(6) E 12 +0(12) · Take d= SUN>0 Let $m = (\frac{1}{2} + \alpha) P(\frac{2}{2})$ G(n,p) = F m- edge A-free 3 GEG St. FEG => e(G(n,p) ∩G) ≥ m Bin (eco), P) => E() = e(6).p < (n2 + o(n2)) p = (= + 0 (1) P (2) Chernoff P(e(G(n,p)NG)>m) < Ppn2

B ≈ B(X)

Over all => P(ex(G(n,p), k3)) container Basic form 7 Co containers $\triangle_{l}(\mathcal{X})=O(d) \stackrel{\sim}{\longrightarrow}$ for I(81) ··e. VIET(X) $\Delta z(H) = O(5a)$ acele st. ISC (= K70, D,(18) < K.d.)

(indep other) · 16/5/ 5 = N(1)20 · Acel 1C/E/1-8 V(X)= E(Kn) eieze3 GE(H) eigez

Ruk () Final form, HCEG is almost indep, to get that, we iterate the busic form, i.e if N[C] Still hous lots of edges, apply Basis form to \$1[[] 9,=15] 2) Key idea Input JEI(H

Ja 1 # contains (=((s)) = # fingerprints < / lfl (Graph Container) G 1) Take max-deg ordering

remaining UXS depends . Finish KN Alg · Applications of

Basic form

Comosticles

Colonial Comments

Colonial Colo H[ci] 01,2 C1,2 C2,2