Cryptography III

Public-key systems, digital signatures, hash functions

Weaknesses of symmetric cryptosystems

- Managing and distributing shared secret keys is so difficult in a model environment with too many parties and relationships
 - N parties → n(n-1)/2 relationships → each manages (n-1) keys
- No way for digital signatures
 - No non-repudiation service

Diffie-Hellman new ideas for PKC

- In principle, a PK cryptosystem is designed for a single user, not for a pair of communicating users
 - More uses other than just encryption
- Proposed in Diffie and Hellman (1976) "New Directions in Cryptography"
 - public-key encryption schemes
 - public key distribution systems
 - Diffie-Hellman key agreement protocol
 - digital signature

Diffie-Hellman's proposal

- Each user creates 2 keys: a secret (private) key and a public key → published for everyone to know
 - The PK is for encryption and the SK for decryption
 X = D(z, E(Z, X))
 - The SK is for creating signatures and the PK for verifying these signatures

```
X = E(Z, D(z, X)) \rightarrow D() for creating signatures, E \rightarrow verifying
```

- Also, called asymmetric key cryptosystems
 - Knowing the public-key and the cipher, it is computationally infeasible to compute the private key

RSA Algorithm

- Invented in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman
 - Published as R L Rivest, A Shamir, L Adleman, "On Digital Signatures and Public Key Cryptosystems", Communications of the ACM, vol 21 no 2, pp120-126, Feb 1978
 - Security relies on the difficulty of factoring large composite numbers
- Essentially the same algorithm was discovered in 1973 by Clifford Cocks, who works for the British intelligence

Main idea

- Encryption and decryption functions are modulo exponential in the field $Z_n = \{0,1,2,...n-1\}$
 - Encryption: Y=Xe mod n (or ± n)
 - a = b ±n → a=b+k*n, a ∈ Z_n , k = 1,2,3,... e.g. 7 = 37 ±10
 - Decryption: X= Y^d±n
 - The clue is that e & d must be selected such that
 X^{ed}= X (mod n)

Main idea

- The way to create such e&d is by using this Euler theorem: X^{φ(n)}=1 (mod n)
 - $\phi(n)$: the size of $Z^*_n = \{k: 0 < k < n | (k,n) = 1\}$
 - $\ \ \ \phi(n)$ can be computed easily if knowing n factoralization
 - n=p*q, where p, q are primes $\rightarrow \phi(n)=(p-1)(q-1)$
 - □ First choose e then compute d s.t. $e*d=1\pm \varphi(n)$ or $d \equiv e^{-1} \mod \varphi(n)$, which will assure that $X^{ed}=X^{k.\varphi(n)+1}\equiv (X^{\varphi(n)})^k *X \equiv 1^k *X = X \pmod{n}$
- Note this works because we know n's factorization
 - □ From e we compute $d \equiv e^{-1} \mod \phi(n)$ since we know $\phi(n)$, otherwise it is computational infeasible to compute d s.t. $X^{ed} \equiv 1 \mod n$

RSA PKC

Key generation:

- Select 2 large prime numbers of about the same size, p and q
- □ Compute n = pq, and $\Phi(n) = (q-1)(p-1)$
- Select a random integer e, 1 < e < Φ(n), s.t. gcd(e, Φ(n)) = 1
- □ Compute d, $1 < d < \Phi(n)$ s.t. ed ≡ 1 mod $\Phi(n)$
- Public key: (e, n) and Private key: d
 - Note: p and q must remain secret

RSA PKC (cont)

Encryption

- □ Given a message M, 0 < M < n: $M \in Z_n \{0\}$
- use public key (e, n) compute $C = M^e \mod n$, i.e. $C \in Z_n \{0\}$

Decryption

- Given a ciphertext C, use private key (d) compute
 M = C^d mod n
- Why work?
 - \square (Me mod n)d mod n = Med mod n = M

Example

Parameters:

- □ Select p = 11 vàq = 13
- n=11*13=143; m=(p-1)(q-1)=10*12=120
- □ Choose $e=37 \rightarrow gcd(37,120=1)$
- □ Using the algo gcd: $e^*d = 1 \pm 120 \Rightarrow d = 13$ ($e^*d = 481$)
- To encrypt a binary string
 - Split it into segments of u bit s.t. 2^u≤142 → u = 7. That is each segment present a number from 0 to 127
 - □ Compute Y= Xe±143
 - E.g. For X = (0000010) = 2, we have
 - $Y = E_Z(X) = X^{37} = 12 \pm 143 \implies Y = (00001100)$
- Decryption: $X = D_Z(Y) = 12^{13} = 2 \pm 143$

Algorithm for computing modulo inverse

- Computing the inverse of ω by modulo m
 - □ Finding $x = \omega^{-1} \mod m$ such that $x^*\omega = 1 \pmod m$
 - Many applications such as in the Knapsack trapdoor
- Based on the extended GCD algorithm or the extended Euclidean algorithm (GCD: Greatest common divisor)
 - On finding the GCD of 2 numbers n_1 và n_2 , one will also compute a & b such that $GCD(n_1, n_2) = a \times n_1 + b \times n_2$.
 - □ If $gcd(n_1,n_2)=1$ then this e-GCD algorithm will find a, b to meet $a \times n_1 + b \times n_2 = 1$, i.e. n_1 is the inverse of a by modulo n_2

Homework: prove the correctness of this algorithm

- Numeric example: find the inverse of 11 by modulo 39
- Let n₁=39, n₂=11 then run the algo as in the following table:

n_1	n_2	r	q	a_1	b_1	a_2	b_2
39	11	6	3	1	0	0	1
11	6	5	1	0	1	1	-3
6	5	1	1	1	-3	-1	4

General remarks on PKC

- Since 1976,many PKC schemes had been proposed many was broken
- A PKC have two main applications
 - Hiding information (including secrete communication)
 - Authentication with digital signatures
- The two algorithms that are most successful are RSA và El-Gamal.
- In general PKC is very slow, not appropriate for on-line encryption
 - Not used for encrypting large volume of date but for special purposes.
 - PKC and SKC are used in combined:
 - Alice and Bob use a PKC system to create a shared secret key between them and then use a SKC system to encrypt the communicated data by using this secret key

RSA implementation

- n, p, q
 - The security of RSA depends on how large n is, which is often measured in the number of bits for n. Current recommendation is 1024 bits for n.
 - p and q should have the same bit length, so for 1024 bits
 RSA, p and q should be about 512 bits.
 - p-q should not be small
 - Way to select p and q
 - In general, select large numbers (some special forms), then test for primality
 - Many implementations use the Rabin-Mille test, (probabilistic test)

Factorization Prolem

Estimated time using the sieve algorithm

$$L(n) \approx 10^{9.7 + \frac{1}{50} \log_2 n}$$

- □ log₂n: the number of bits in representing n
- By 1996, for n=200, L(n) ≈ 55,000 years.
- Using parallel computing, one can factorize a 129—digit number in 3 months by distributing the workload to the computers throught out the Internet at 1996-7
- Today, for applications requiring high security levels one should values of in 1024-bit or even 2048-bit.

Modulo Exponential

- Fast algorithm to compute exponential in Z_n (modulo n):
 Computing X^α (modul n)
- Determine coefficients α_i in the binary representation of α : $\alpha = \alpha_0 2^0 + \alpha_1 2^1 + \alpha_2 2^2 + ... + \alpha_k 2^k$
- Loop in k rounds to compute these k modulo exponential, với i=1,k :

$$X^{2} = X \times X$$

$$X^{4} = X^{2} \times X^{2}$$

$$\dots$$

$$X^{2^{k}} = X^{2^{k-1}} \times X^{2^{k-1}}$$

Now compute X^{α} mod n by multiplying theses $X^{2^{i}}$ computed in the previous steps but only with corresponding coefficients α_{i} =1:

$$(X^{2^{i}})^{\alpha_{i}} = \begin{cases} 1, \alpha_{i} = 0 \\ X^{2^{i}}, \alpha_{i} = 1 \end{cases}$$

Digital Signatures

- Motivation
 - Diffie-Hellman proposed the idea (1976)
 - Simulation of the real-world into digital worlds
 - Paper contracts need signed to be valid so do electronic versions
- The proofs conveyed in signatures
 - Data integrity: information is original, not modified
 - Authentication: The source of the info is correct, not impersonated

DS: how they work

- Digital Signature: a data string which associates a message with some originating entity.
- Digital Signature Scheme:
 - a signing algorithm: takes a message and a (private) signing key, outputs a signature
 - a verification algorithm: takes a (public) key verification key, a message, and a signature
- A DS is created based on a PK system
 - □ Alice signs message X by creating $Y=D_{z_A}(X)$, so the signed document now is $(X, Y=D_{z_A}(X))$.
 - □ Bob who receives (X,Y), computes $X'=E_{Z_A}(Y)$ then compare if X=X' to confirm the document's validity

Non-repudiation

- We mention more on applications of DS
- Non-repudiation
 - The signer can't deny that his/her created the document
 - Only Alice knows z_A to create $(X, Y=D_{z_A}(X))$ but everyone else can verify
 - So we say the DS scheme provides nonrepudiation

Public notary

Motivation

- □ Alice may lost her secret key or someone stole it → that bad guy can impersonate Alice to create documents with Alice signatures out of Alice's control
- Alice can also deny a document truly signed by her in the past: Alice claims the document was impersonated by someone stealing her SK

Solution: Public notary service

- A third party a public notary can be hired for important documents
- The trusted notary also signs on the same document, that is to create his signature on the concatenation of the document and Alice's signature

Proof of delivery (receipts)

- Motivation
 - The sender need proof that the receiver has already got his message
 - The receiver can't deny that once the sender got a receipt
- Solution: An adjudicated protocol
 - \Box A \rightarrow B: Y=E_{Z_B}(D_{z_A}(X))
 - \Box B computes: X'= $E_{Z_A}(D_{z_B}(Y))$
 - When receiving Y, B computes and checks if X'=X then signs on X' and pass to A as a receipt .
 - \Box B \rightarrow A: Y=E_{ZA}(D_{ZB}(X'))
 - By computing $D_{z_A}(Y)$, A now gets $D_{z_B}(X')$, a B's signature on X
 - Only when A has Y she can consider that B has receive her doc
 - $\hfill \hfill \hfill$

Weakness of the signature scheme mentioned so far

- When using a PKC to sign X, X can be long → splitting into blocks and signs
 - $X = (X_1, X_2, X_3, ... X_t) \rightarrow (SA(X_1), SA(X_2), SA(X_3), ... SA(X_t))$
- This creates vulnerability to attack on manipulating blocks
 - The attacker can change order of blocks, remove/ add in a few
- Slow: PKC is already slow, now is run multiple times
- Signature is long, as long as the message itself.

Hash Functions

- A hash function H maps a message of variable length n bits to a fingerprint of fixed length m bits, with m < n.
 - This hash value is also called a digest (of the original message).
 - Since n>m, there exist many X which are map to the same digest → collision.
- Applications
 - Digital signatures
 - Message authentication

DS schemes with hash functions

Main properties

Given a hash function H: $X \rightarrow Y$

- Long message → short, fixed-length hash
- One-way property: given y ∈ Y
 it is computationally infeasible to find a value x∈X
 s.t. H(x) = y
- Collision resistance (collision-free)
 it is computationally infeasible to find any two distinct values x', x ∈ X s.t. H(x') = H(x)
 - This property prevent against signature forgery

Collisions

- Avoiding collisions is theoretically impossible
 - □ Dirichlet principle: n+1 rabbits into n cages → at least 2 rabbits go to the same cage
 - □ This suggest exhaustive search: try |Y|+1 messages then must find a collision (H:X→Y)
- In practice
 - Choose |Y| large enough so exhaustive search is computational infeasible.
 - |Y| not too large or long signature and slow process
 - However, collision-freeness is still hard

Birthday attack

- Can hash values be of 64 bits?
 - Look good, initially, since a space of size 2⁶⁴ is too large to do exhaustive search or compute that many hash values
 - However a birthday attack can easily break a DS with a 64-bit hash function
 - In fact, the attacker only need to create a bunch of 2³² messages and then launch the attack with reasonably high probability for success.

How is the attack

- Goal: given H, find x, x' such that H(x)=H(x')
- Algorithm:
 - pick a random set S of q values in X
 - for each x∈S, computes h_x=H(x)
 - □ if $h_x = h_{x'}$ for some x'≠x then collision found: (x,x'), else fail
- The average success probability is
 - $\varepsilon = 1 \exp(q(q-1)/2|Y|)$
 - Suppose Y has size 2^m, choose **q** ≈2^{m/2} then ε is almost 0.5!

Birthday paradox

- Given a group of people, the minimum number of people
 - such that two will share the same birthday with probability at least 50%
 - is only 23 → why "paradox"
 - Computing the chance
 - 1 (1 1/365)(1 2/365)...(1 22/365) = 1 0.493 = 0.507

Common techniques to build hash functions

- Using SKC
 - E.g. using SKC in CBC mode
- Using modulo arithmetic operations
- Specific designs
 - MD4, MD5, SHA

$$X = X_1 X_2 X_3 ... X_n$$

$$Y_i = E_z(X_i \oplus Y_{i-1})$$

$$H(X) = Y_n$$

MAC: message authentication code

- Hash function is public and the key shared between the sender and the receiver is secret
 - Sender computes mac1 = MAC(M, H, K) and sends it along with the message M
 - Receiver computes mac2 = MAC(M, H, K) and checks if mac1 = mac2 ? Yes → the message is authentic; no => reject it
- The output of MAC can not be produced without knowing the secret key
 - So, this mechanism provides data integrity and source authentication