

Context

Language as a Natural Domain for AI:

- Most reasoning tasks can be resolved with language.
- The abundance of text data worldwide permits powerful learning.

Rapid Progress in Deep Learning for LLM:

- Models closer to human-level performance on many tasks (Transformers, BERT ...)
- Models now excel in tasks like composing coherent,
 multi-paragraph prompted text samples.

Why this article?

Goal:

- Empirically investigate how language modeling performance (ie the Loss function) is influenced by various factors
- Based on this analysis, determine the optimal trade-off between model size and dataset size for a given training compute budget.

Results:

- Influence of factors:
 - Training compute (C)
 - Dataset size (D)
 - Model size (N)
 - Model shapes (Width & Depth)
 - o Batch size (B)
 - Number of steps (S)

- Loss follows power laws
- On very large models, it is more efficient to stop training early
- D \propto N^{0.74} (False: Chinchilla) should evolve in tandem
- Existence of optimal batch size
- Transfer incurs only a constant penalty
- Sample efficiency

Main results – Empirical laws

With X as the factor, X_c as the constant (meaningless) and α as the scale factor :

$$L(X) = (\frac{X_c}{X})^{\alpha_X}$$

Power Law	Scale (tokenization-dependent)
$\alpha_N = 0.076$	$N_{\rm c} = 8.8 \times 10^{13} \ {\rm params \ (non-embed)}$
$\alpha_D = 0.095$	$D_{\rm c} = 5.4 \times 10^{13} \text{ tokens}$
$\alpha_C = 0.057$	$C_{\rm c} = 1.6 \times 10^7 { m PF-days}$
$\alpha_C^{\rm min} = 0.050$	$C_{\mathrm{c}}^{\mathrm{min}} = 3.1 \times 10^{8} \mathrm{PF}$ -days
$\alpha_B = 0.21$	$B_* = 2.1 \times 10^8$ tokens
$\alpha_S = 0.76$	$S_{\mathrm{c}} = 2.1 \times 10^{3} \mathrm{\ steps}$

Main results - Model shape dependency & Sample Efficiency

Performances are weakly affected by model shape for a Transformer.

Feed-Forward Width

Depth

Number of Attention heads

dmodel is the dimensionality of the model's hidden states

Smin: Estimated **steps** to obtain a **given compute**

The more the size grows, the more the model is sample efficient

For a **given compute**, you can go with a **big model** with **early stopping**

Experiment

Training on WebText2 (dataset)

- $n_{vocab} = 50257$
- Loss: cross-entropy over 1024 token context

Training factors:

Variation of non-embedding <u>parameters number</u>
 768M → 1500M parameters

Figure 2 – some of the training runs

- Adam optimizer with a <u>fixed number of training tokens</u> (most of runs)
 2.5x10⁵ steps with batches of 512 sequences of 1024 tokens
- Learning rate schedule: linear warmup followed by a cosine decay

Experiment

$$L(N,D) = \left[\left(\frac{N_c}{N} \right)^{\frac{\alpha_N}{\alpha_D}} + \frac{D_c}{D} \right]^{\alpha_D}$$

Vocabulary size changes:

 Changes in vocabulary size or tokenization should scale the loss proportionally, so L(N,D) must support this scaling naturally

Asymptotic behavior of loss:

○ As N \rightarrow ∞ (with fixed D), the loss should approach L(D); as D \rightarrow ∞ (with fixed N), it should approach L(N)

Series expansion at large D:

o L(N,D) should allow a series expansion in 1/D, though this principle has weaker theoretical backing.

Contradiction

Curve of optimal parameters for optimal allocation

To keep underfitting under control:

$$D \propto N^{0.74} \propto C_{\min}^{0.54}$$

While at compute-efficient training: (for C = 2*C_min):

$$D(C_{\min}) = \frac{2C_{\min}}{6N(C_{\min})} \propto C_{\min}^{0.26}$$

Optimal values for the minimal loss theorically reachable

$$C^* \sim 10^4 \text{ PF-Days}$$
 $N^* \sim 10^{12} \text{ parameters},$

$$D^* \sim 10^{12}$$
 tokens, $L^* \sim 1.7$ nats/token

Art2 - Training Compute-Optimal Large Language Models (2022) Goal

• **Goal:** same as in the previous article:

best model size / dataset size trade-off

• <u>Differences</u>:

- More model parameters than before:
 - art1: <100M parameters
 - art2: >500M parameters
- Different dataset size and learning rate
- Approach as an optimization problem: Minimizing L(N,D) under the constraint FLOPs(N,D) = C

$$N_{opt}(C), D_{opt}(C) = \underset{N,D \text{ s.t. FLOPs}(N,D)=C}{\operatorname{argmin}} L(N,D).$$

Art2 - Training Compute-Optimal Large Language Models (2022) Main results – new scaling laws

• A new scaling law:

- Most of the models on market have too much parameters compared to the size of there dataset
- Disagreement with art1: Model size x2 → Dataset x2

Art2 - Training Compute-Optimal Large Language Models (2022)

3 approachs

Approach 1

- Varying training sequences (4 différents sizes for each models)
- Fixed model sizes (from 70M to 10B)

Approach 2 - IsoFLOPS

- Varying model size (up to 16B)
- Fixed FLOPS count (9 différents)

Approach 3 – Fitting law

- Fitting the law:

$$\hat{L}(N,D) \triangleq E + \frac{A}{N^{\alpha}} + \frac{B}{D^{\beta}}$$

Using the loss:

$$\min_{A,B,E,\alpha,\beta} \quad \sum_{\text{Runs } i} \text{Huber}_{\delta} \Big(\log \hat{L}(N_i, D_i) - \log L_i \Big)$$

Art2 - Training Compute-Optimal Large Language Models (2022)

Result: Chinchilla

A small model compare to others (70B)

Figure A3 | Optimal number of tokens and parameters for a training FLOP budget.

Outperform Gopher on most tasks

Figure 6 | MMLU results compared to *Gopher* We find that *Chinchilla* outperforms *Gopher* by 7.6% on average (see Table 6) in addition to performing better on 51/57 individual tasks, the same on

25.0%
34.5%
43.9%
60.0%
67.6%
89.8%
57.1%
63.4%

Table 6 | Massive Multitask Language Understanding (MMLU).

Conclusion

After Kaplan:

- Tendency to increase more the model size than the dataset size
- After Chinchilla:
 - Slowed the model increase pace
 - Allocate more computation on dataset size
 - Tendency to increase the model size as much as the dataset size

The Rise and Rise of A.I. Size = no. of parameters Open-access Large Language Models (LLMs) their associated bots like ChatGPT

