

On Node Classification in Dynamic Content-based Networks

Martin Thoma | 28. Februar 2014

INSTITUT FÜR PROGRAMMSTRUKTUREN UND DATENORGANISATION

Social Network

SzenarioÜberblick
000Vokabular
000Sprungtypen
00Zusammenfassung
00Analyse
00Ende
000Martin Thoma − On Node Classification in Dynamic Content-based Networks28. Februar 20142/22

Partially labeled network

Martin Thoma -	On Node Classifica	ation in Dynamic Co	ntent-based Networks	28. Fel	bruar 2014 3	3/22
0000	0000	000	00	00	00	0000
Szenario	Überblick	Vokabular	Sprungtypen	Zusammenfassung	Analyse	Ende

Partially labeled network with content

Ende

4/22

 Szenario
 Überblick
 Vokabular
 Sprungtypen
 Zusammenfassung
 Analyse

 00●0
 000
 000
 00
 00
 00

 Martin Thoma – On Node Classification in Dynamic Content-based Networks
 28. Februar 2014

Beispiel 2: Literaturdatenbanken

The Development of the C Language Interprocess Communication in the Ninth Edition **Unix System**

Computer Science

The C Programming Language digital restoration and typesetter

Computer Science

The Identity Thesis for Language and Music

Linguistics

Sprungtypen

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk

Überblick

Szenario

• $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Vokabular

0000	●000	000	00	
Martin Thoma -	On Node	Classification in Dynamic	Content-based	Networks

Analyse

Sprungtypen

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk

Überblick

Szenario

■ $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Vokabular

0000	●000	000	00	
Martin Thoma	- On Node Classi	fication in Dynami	c Content-base	d Networks

Sprungtypen

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk

Überblick

Szenario

• $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Vokabular

0000	●000	000	00	
Martin Thoma -	On Node	Classification in Dynamic	Content-based	Network

Analyse

Sprungtypen

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk

Überblick

Szenario

• $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$ Vokabular

0000	●000	000	00	
Martin Thoma -	On Node C	lassification in Dynamic	Content-based	Networks

Analyse

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk

Sanaria

• $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$ Vakabular

SECTION	ODCIDICK	VORGDUIGI	Sprungtypen
0000	●000	000	00
Martin Thoma -	On Node Classifica	tion in Dynamic Co	intent-based Netwo

Sprungtypen

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk

Überblick

Szenario

• $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$ Vokabular

0000	●000	000	00	0 , 1	
Martin Thoma -	On Node Classifica	ation in Dynamic Co	ontent-	based	Network

Analyse

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$, $2 \cdot b$ ⇒ Rot mit a klassifizieren

SZCITATIO	ODCIDICK	VORUDUIUI	Sprungtypen
0000	●000	000	00
Martin Thoma -	On Node Classifica	ation in Dynamic Co	intent-based Netwo

Sprungtypen

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk

Überblick

Szenario

• $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$ Vokabular

0000	●000	000	00	
Martin Thoma -	On Node	Classification in Dynamic	Content-bas	ed Networks

Sprungtypen

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk

Überblick

Szenario

• $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$ Vokahular

0000	•000	000	00
Martin Thoma -	On Node Classifica	ition in Dynamic Co	ntent-based Networks

Analyse

Sprungtypen

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk

Überblick

Szenario

■ $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Vokabular

0000	●000	000	00	
Martin Thoma -	On Node	Classification in Dynam	ic Content-based	Networks

Sprungtypen

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$ Vakabular

OLCITATIO	OBCIDITOR	v Oltabalai	ob. a 8 c.) be
0000	●000	000	00
Martin Thoma -	On Node Classifica	ation in Dynamic Co	ntent-based Networks

Überblick

Sanaria

- Neben Struktur können Texte genutzt werden

- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!

28. Februar 2014

- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Idee: Graph erweitern
 - Texte als Wortmengen

- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Idee: Graph erweitern
 - Texte als Wortmengen
 - Strukturknoten verweisen auf Wortknoter
 - vice versa

- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Idee: Graph erweitern
 - Texte als Wortmengen
 - Strukturknoten verweisen auf Wortknoten

Ende

- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Idee: Graph erweitern
 - Texte als Wortmengen
 - Strukturknoten verweisen auf Wortknoten
 - vice versa

Erweiterter, semi-bipartiter Graph

- Füllwörter: und, oder, im, in, . . .
- ⇒ Beschränkung des Vokabulars sinnvoll

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzen

- Füllwörter: und, oder, im, in, . . .
- ⇒ Beschränkung des Vokabulars sinnvoll

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzen

- Füllwörter: und, oder, im, in, . . .
- ⇒ Beschränkung des Vokabulars sinnvoll

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzen

- Füllwörter: und, oder, im, in, . . .
- ⇒ Beschränkung des Vokabulars sinnvoll

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzen

- Füllwörter: und, oder, im, in, . . .
- ⇒ Beschränkung des Vokabulars sinnvoll

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzen

- Füllwörter: und, oder, im, in, . . .
- ⇒ Beschränkung des Vokabulars sinnvoll

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzen

- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$ mit p_i als relative Häufigkeit
- $g \in (0,1]$
- lack q nahe bei $1 \Rightarrow \text{Wort}$ ist stark ungleich verteilt
- \Rightarrow Nehme Top-m Wörter mit höchstem Gini-Koeffizient

28. Februar 2014

- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$ mit p_i als relative Häufigkeit
- $g \in (0,1]$
- lack g nahe bei $1 \Rightarrow \text{Wort}$ ist stark ungleich verteilt
- \Rightarrow Nehme Top-m Wörter mit höchstem Gini-Koeffizient

- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$ mit p_i als relative Häufigkeit
- $g \in (0,1]$
- $lackbox{ } g$ nahe bei $1 \Rightarrow \text{Wort}$ ist stark ungleich verteilt
- \Rightarrow Nehme Top-m Wörter mit höchstem Gini-Koeffizient

- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$ mit p_i als relative Häufigkeit
- $g \in (0,1]$
- g nahe bei $1 \Rightarrow Wort$ ist stark ungleich verteilt
- \Rightarrow Nehme Top-m Wörter mit höchstem Gini-Koeffizient

- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$ mit p_i als relative Häufigkeit
- $g \in (0,1]$
- g nahe bei $1 \Rightarrow Wort$ ist stark ungleich verteilt
- \Rightarrow Nehme Top-m Wörter mit höchstem Gini-Koeffizient

in der Schule in dem Jahr

Mathematik

■ Vorkommen insgesamt: 5×

• Vorkommen in "Informatik" $2 \times \Rightarrow p_1 = \frac{2}{\epsilon}$

Vorkommen in "Mathematik" $1 \times \Rightarrow p_2 = \frac{1}{5}$

• Vorkommen in "Geschichte" $2 \times \Rightarrow p_2 = \frac{2}{5}$

• Gini-Koeffizient: $\left(\frac{2}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2 = \frac{9}{25}$

in der Schule in dem Jahr

(Geschichte)

- Vorkommen insgesamt: 5×
- Vorkommen in "Informatik" $2 \times \Rightarrow p_1 = \frac{2}{\epsilon}$
- Vorkommen in "Mathematik" $1 \times \Rightarrow p_2 = \frac{1}{5}$
- Vorkommen in "Geschichte" $2 \times \Rightarrow p_2 = \frac{2}{5}$
- Gini-Koeffizient: $\left(\frac{2}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2 = \frac{9}{25}$

in der Schule in dem Jahr

Geschichte

- Vorkommen insgesamt: 5×
 - Vorkommen in "Informatik" $2 imes p_1=rac{2}{5}$
 - Vorkommen in "Mathematik" $1 \times \Rightarrow p_2 = \frac{1}{5}$
 - Vorkommen in "Geschichte" $2 \times \Rightarrow p_2 = \frac{2}{5}$
 - Gini-Koeffizient: $\left(\frac{2}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2 = \frac{9}{25}$

in der Schule in dem Jahr

Mathematik

(Geschichte)

- Vorkommen insgesamt: 5×
 - Vorkommen in "Informatik" $2 \times \Rightarrow p_1 = \frac{2}{5}$

 - Vorkommen in "Geschichte" $2 \times \Rightarrow p_2 = \frac{2}{5}$
 - Gini-Koeffizient: $\left(\frac{2}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2 = \frac{9}{25}$

Mathematik Informatik

Beispiel: "in"

Vorkommen insgesamt: 5×

• Vorkommen in "Informatik" $2 \times \Rightarrow p_1 = \frac{2}{5}$

• Vorkommen in "Mathematik" $1 \times \Rightarrow p_2 = \frac{1}{\epsilon}$

• Vorkommen in "Geschichte" $2 \times \Rightarrow p_2 = \frac{2}{5}$

- Vorkommen insgesamt: $5 \times$
- Vorkommen in "Informatik" $2 \times \Rightarrow p_1 = \frac{2}{5}$
- Vorkommen in "Mathematik" $1 \times \Rightarrow p_2 = \frac{1}{5}$
- Vorkommen in "Geschichte" $2 imes\Rightarrow p_2=rac{2}{5}$

in der Schule in dem Jahr

Mathematik)

(Geschichte)

Beispiel: "in"

Vorkommen insgesamt: 5×

• Vorkommen in "Informatik" $2 \times \Rightarrow p_1 = \frac{2}{5}$

• Vorkommen in "Mathematik" $1 \times \Rightarrow p_2 = \frac{1}{5}$

• Vorkommen in "Geschichte" $2 \times \Rightarrow p_2 = \frac{2}{5}$

• Gini-Koeffizient: $\left(\frac{2}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2 = \frac{9}{25}$

Szenario

Überblick

Vokabular

Sprungtypen

Zusammenfassung

Analyse

Ende

Sprungtypen

Ende

14/22

- ullet Struktursprung: von Strukturknoten v zu Strukturknoten v'
- Inhaltlicher Zweifachsprung: von Strukturknoten v über Wortknoten zu Strukturknoten v^\prime
 - Finde alle Knoten v', die über Wortknoten erreichbar sind (Pfadlänge 2)
 - Nehme Top-*q*-Knoten (Anzahl der Pfade)
 - Wähle zufällig einen davon

- ullet Struktursprung: von Strukturknoten v zu Strukturknoten v'
- **Inhaltlicher Zweifachsprung**: von Strukturknoten v über Wortknoten zu Strukturknoten v'
 - Finde alle Knoten v', die über Wortknoten erreichbar sind (Pfadlänge 2)
 - Nehme Top-*q*-Knoten (Anzahl der Pfade)
 - Wähle zufällig einen davon

- ullet Struktursprung: von Strukturknoten v zu Strukturknoten v'
- Inhaltlicher Zweifachsprung: von Strukturknoten v über Wortknoten zu Strukturknoten v'
 - Finde alle Knoten v', die über Wortknoten erreichbar sind (Pfadlänge 2)
 - Nehme Top-*q*-Knoten (Anzahl der Pfade)
 - Wähle zufällig einen davon

- ullet Struktursprung: von Strukturknoten v zu Strukturknoten v'
- Inhaltlicher Zweifachsprung: von Strukturknoten v über Wortknoten zu Strukturknoten v'
 - Finde alle Knoten v', die über Wortknoten erreichbar sind (Pfadlänge 2)
 - Nehme Top-q-Knoten (Anzahl der Pfade)
 - Wähle zufällig einen davor

- ullet Struktursprung: von Strukturknoten v zu Strukturknoten v'
- Inhaltlicher Zweifachsprung: von Strukturknoten v über Wortknoten zu Strukturknoten v'
 - Finde alle Knoten v', die über Wortknoten erreichbar sind (Pfadlänge 2)
 - Nehme Top-q-Knoten (Anzahl der Pfade)
 - Wähle zufällig einen davon

Wichtige Ideen

- Random Walk
- Gini-Koeffizient
- Inhaltlicher Zweifachsprung

Wichtige Ideen

- Random Walk
- Gini-Koeffizient
- Inhaltlicher Zweifachsprung

Wichtige Ideen

- Random Walk
- Gini-Koeffizient
- Inhaltlicher Zweifachsprung

Dynamisch?

- DYCOS ist nur von der lokalen Situation abhängig
- Klassifizierung von einzelnen Knoten möglich
- Klassifizierung ist einfach

Dynamisch?

- DYCOS ist nur von der lokalen Situation abhängig
- Klassifizierung von einzelnen Knoten möglich
- Klassifizierung ist einfach

28. Februar 2014

Dynamisch?

- DYCOS ist nur von der lokalen Situation abhängig
- Klassifizierung von einzelnen Knoten möglich
- Klassifizierung ist einfach

Datensätze

Alle folgenden Daten sind der Analyse von Aggarwall und Li entnommen.

Name	Knoten	davon beschriftet	Kanten	Beschriftungen
CORA	19 396	14814	75 021	5
DBLP	806 635	18 999	4 414 135	5

Performance:

- Klassifizierung aller Knoten
- Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern
- DBLP: < 25 s
- CORA: < 5s
- Klassifikationsgüte:
 - CORA: 82% 84%
 - DBLP: 61% 66%

- Performance:
 - Klassifizierung aller Knoten
 - Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern
 - DBLP: < 25 s
 - CORA: < 5 s
- Klassifikationsgüte:
 - CORA: 82% 84%
 - DBLP: 61% 66%

- Performance:
 - Klassifizierung aller Knoten
 - Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern
 - DBLP: < 25 s
 - CORA: < 5 s
- Klassifikationsgüte:
 - CORA: 82% 84%
 - DBLP: 61% 66%

- Performance:
 - Klassifizierung aller Knoten
 - Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern
 - DBLP: < 25 s
 - CORA: < 5 s
- Klassifikationsgüte:
 - CORA: 82% 84%
 - DBLP: 61% 66%

- Performance:
 - Klassifizierung aller Knoten
 - Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern
 - DBLP: < 25 s
 - CORA: < 5 s
- Klassifikationsgüte:
 - CORA: 82% 84%
 - DBLP: 61% 66%

- Performance:
 - Klassifizierung aller Knoten
 - Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern
 - DBLP: < 25 s</p>
 - CORA: < 5 s</p>
- Klassifikationsgüte:
 - CORA: 82% 84%
 - DBLP: 61% 66%

- Performance:
 - Klassifizierung aller Knoten
 - Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern
 - DBLP: < 25 s
 - CORA: < 5 s</p>
- Klassifikationsgüte:
 - CORA: 82% 84%
 - DBLP: 61% 66%

- Performance:
 - Klassifizierung aller Knoten
 - Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern
 - DBLP: < 25 s</p>
 - CORA: < 5 s
- Klassifikationsgüte:
 - CORA: 82% 84%
 - DBLP: 61% 66%

Danke!

Gibt es Fragen?

Martin Thoma - On Node Classification in Dynamic Content-based Networks

Bildquellen

Crystal_Clear_app_personal.png von Wikipedia Commons

Literatur

- Charu C. Aggarwal, Nan Li: On Node Classification in Dynamic Content-based Networks.
- Smriti Bhagat, Graham Cormode und S. Muthukrishnan. Node Classification in Social Networks.
- M. F. Porter. Readings in Information Retrieval. Kapitel An Algorithm for Suffix Stripping.
- Jeffrey S. Vitter. Random Sampling with a Reservoir.

Folien, LaTeXund Material

Der Foliensatz und die LATEX und TikZ-Quellen sind unter github.com/MartinThoma/LaTeXexamples/tree/master/presentations/Datamining-Proseminar Kurz-URL: tinyurl.com/Info-Proseminar

28. Februar 2014

Ende