MTH1102D Calcul II

Chapitre 10, section 3: Le rotationnel et la divergence

Un critère en trois dimension pour les champs conservatifs

Introduction

 Généralisation du critère pour les champs conservatifs aux champs en trois dimensions.

Critère pour les champs conservatifs

Théorème

Soit $\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k}$ un champ vectoriel dont les dérivées partielles sont continues sur un domaine simplement connexe D de l'espace. Alors

$$\vec{F}$$
 est conservatif sur $D \Leftrightarrow \operatorname{rot} \vec{F} = \vec{0}$.

Remarques

- L'implication \vec{F} conservatif \Rightarrow rot $\vec{F} = \vec{0}$ ne nécessite pas l'hypothèse sur le domaine et est facile à prouver.
- La réciproque exige l'hypothèse sur le domaine et est plus difficile à démontrer.

Critère pour les champs conservatifs

Exemple

Le champ $\vec{F}(x, y, z) = \vec{i} + xy\vec{j} + xz^2\vec{k}$ est-il conservatif?

On a déjà calculé que rot $\vec{F} = -z^2 \vec{j} + y \vec{k}$.

Puisque le rotationnel est non nul, le champ n'est PAS conservatif.

Critère pour les champs conservatifs

Le critère en deux dimensions

Si $\vec{F}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j}$ est un champ vectoriel en deux dimensions alors on a vu que

$$\operatorname{rot} \vec{F} = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \vec{k}.$$

Le critère devient

$$\operatorname{rot} \vec{F} = \vec{0} \Leftrightarrow \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \vec{k} = \vec{0}$$

$$\Leftrightarrow \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 0$$

$$\Leftrightarrow \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$

Résumé

- Critère pour déterminer si un champ vectoriel en trois dimensions est conservatif.
- Ce critère généralise celui vu pour les champs en deux dimensions.