Electrical Engineering 229A Lecture 7 Notes

Daniel Raban

September 16, 2021

1 Types, Typicality Sets, and Entropy Rate

1.1 Types

Let \mathscr{X} be a finite set (called the alphabet). Given a sequence of symbols $x_1^n := (x_1, \ldots, x_n)$ taking values in \mathscr{X}^n and $x \in \mathscr{X}$, let $N(x \mid x_1^n) = \sum_{i=1}^n \mathbbm{1}_{\{x_i = x\}}$ be the number of times x shows up in x_1^n . Notice that $(\frac{N(x \mid x_1^n)}{n}, x \in \mathscr{X})$ is a probability distribution on \mathscr{X} (which depends on \mathscr{X}).

Definition 1.1. The distribution $P_{x_1^n} = (\frac{N(x|x_1^n)}{n}, x \in \mathcal{X})$ is clied the **type** of x_1^n in information theory and the **empirical distribution** of x_1^n more generally.

A type based on a sample of size n from \mathscr{X} has to be of the form $(\frac{k_x}{n}, x \in \mathscr{X})$ for some integers $0 \le k_x \le n$ with $\sum_x k_x = n$. \mathcal{P}_n denotes the set of all types based on samples of size n from \mathscr{X} .

Proposition 1.1.

$$|\mathcal{P}_n| \le (n+1)^{|\mathcal{X}|}.$$

So $|\mathcal{P}_n|$ grows only polynomially in n. Contrast this with the total number of sequences of length n, whose size is $|\mathcal{X}|^n$, exponential in n.

1.2 The scale of typicality sets

Definition 1.2. For $p \in \mathcal{P}_n$, the set $T(p) = \{x_1^n : P_{x_1^n} = p\} \subseteq \mathcal{X}^n$ is called the **typicality** set of type p.

Now note that given any probability distribution $(q(x), x \in \mathcal{X})$ and any sequence $x_1^n \in \mathcal{X}^n$, $q^n(x_1^n) = \prod_{i=1}^n q(x_i)$ is determined by $P_{x_1^n}$, the type of x_1^n , because

$$q^n(x_1^n) = \prod_{x \in \mathcal{X}} q(x)^{N(x|x_1^n)}$$

$$= \prod_{x \in \mathcal{X}} 2^{nP_{x_1^n}(x)\log q(x)}$$
$$= 2^{n\sum_x P_{x_1^n}(x)\log q(x)},$$

which depends on x_1^n only through its type. But also note that

$$\sum_{x} P_{x_1^n}(x) \log q(x) = \sum_{x} P_{x_1^n}(x) \log \frac{q(x)}{P_{x_1^n}(x)} + \sum_{x} P_{x_1^n}(x) \log P_{x_1^n}(x),$$

SO

$$q^{n}(x_{1}^{n}) = 2^{-n(H(P_{x_{1}^{n}}) + D(p_{x_{1}^{n}}||q))}$$

This calculation implies the following:

Proposition 1.2. For any $p \in \mathcal{P}_n$,

$$|T(p)| \le 2^{nH(p)}.$$

Proof. Take q to be p and consider x_1^n having $P_{x_1^n} = p$. This tells us that for all x_1^n with type $P_{x_1^n} = p$,

$$p^n(x_1^n) = 2^{-nH(p)}$$

because D(p || p) = 0.

But, given $p \in \mathcal{P}_n$,

$$\begin{split} 1 &= \sum_{x_1^n} p^n(x_1^n) \\ &\geq \sum_{x_1^n:P_{x_1^n} = p} p^n(x_1^n) \\ &= \sum_{x_1^n:P_{x_1^n} = p} 2^{-nH(p)} \\ &= |T(p)|2^{-nH(p)}. \end{split}$$

We can also prove a lower bound:

Proposition 1.3. For all $p \in \mathcal{P}_n$,

$$|T(p)| \ge \frac{2^{nH(p)}}{(n+1)^{|\mathcal{X}|}}.$$

Proof. This comes from showing that for $p \in \mathcal{P}_n$, $p^n(T(p)) \ge p^n(T(\widehat{p}))$ for all $\widehat{p} \in \mathcal{P}_n$. The left hand side is

$$p^n(T(p)) = \sum_{x_1^n:P_{x_1^n} = p} p^n(x_1^n) = \sum_{x_1^n:P_{x_1^n} = p} 2^{-nH(p)} = |T(p)|2^{-nH(p)},$$

while the right hand side is $|T(\widehat{p})|2^{-n(H(\widehat{p})+D(\widehat{p}||p))}$.

Substituting the exact values of |T(p)| and $|T(\widehat{p})|$ using combinatorics, the left hand side is $\binom{n}{np(x_1),\dots,np(x_d)}2^{-nH(p)}$ (with $\mathscr{X}=\{a_1,\dots,a_d\}$), while the right hand side is $\binom{n}{n\widehat{p}(a_1),\dots,n\widehat{p}(a_d)}2^{-n(H(\widehat{p})+D(\widehat{p}||p))}$. So

$$\frac{p^n(T(p))}{p^n(T(\widehat{p}))} = \frac{n!}{np(a_1)! \cdots np(a_d)!} \frac{2^{n \sum_{i=1}^d p(a_i) \log p(a_i)}}{n!} \frac{n\widehat{p}(a_1)! \cdots n\widehat{p}(a_d)!}{2^{n \sum_{i=1}^d \widehat{p}(a_i) \log \widehat{p}(a_i)}}$$

Now observe that $\frac{m!}{\ell!} \geq \ell^{m-\ell}$ for all ℓ, m .

$$\geq \frac{\prod_{i=1}^{n} p(a_i)^{np(a_i)} (np(a_i))^{n\widehat{p}(a_i)}}{\prod_{i=1}^{n} \widehat{p}(a_i)^{n\widehat{p}(a_i)} (np(a_i))^{np(a_i)}} = 1.$$

Finally, we have

$$1 = \sum_{\widehat{p} \in \mathcal{P}_n} p^n(T(\widehat{p}))$$

$$\leq |\mathcal{P}_n| P^n(T(p))$$

$$\leq (n+1)^{|\mathcal{X}|} p^n$$

$$= (n+1)^{|\mathcal{X}|} |T(p)| 2^{-nH(p)}.$$

1.3 ε -typical sets in terms of types

For a probability distribution q on \mathscr{X} ,

$$A_{\varepsilon}^{(n)} := \{x_1^n : \frac{1}{n} \sum_{i=1}^n \log q(x_i) - H(q) | < \varepsilon\}.$$

Proposition 1.4.

$$A_{\varepsilon}^{(n)} = \{x_1^n : |D(P_{x_1^n} \mid \mid q) + H(P_{x_1^n}) - H(q)| < \varepsilon\}.$$

Proof.

$$-\frac{1}{n}\sum_{i=1}^{n}\log q(x_i) = -\frac{1}{n}\sum_{x}N(x\mid x_1^n)\log q(x)$$

$$= -\sum_{x} p_{x_1^n}(x) \log q(x)$$
$$= D(P_{x_1^n} \mid\mid q) + H(P_{x_1^n}).$$

So

$$A_{\varepsilon}^{(n)} = \{x_1^n : |D(P_{x_1^n} \mid | q) + H(P_{x_1^n})| < \varepsilon\},\$$

as claimed. \Box

1.4 Stationary sequences and entropy rate

Beyond iid sequences, we consider stationary random sequences.

Definition 1.3. As sequence of random variables $(X_k)_{k=-\infty}^{\infty}$ with $X_k \in \mathscr{X}$ is called **stationary** if

$$\mathbb{P}(X_{\ell} = x_0, X_{\ell+1} = x_1, \dots, X_{\ell+L} = x_L) = \mathbb{P}(X_{\ell+m} = x_0, X_{\ell+m+1} = x_1, \dots, X_{\ell+m+L} = x_L)$$

for all $\ell, m \in \mathbb{Z}$, $L \ge 0$, and $x_0, \dots, x_L \in \mathcal{X}$.

For a stationary sequence,

$$H(X_2 \mid X_1) \leq H(X_2),$$

but $H(X_2) = H(X_1)$ by stationarity, so

$$H(X_2 \mid X_1) \le H(X_1).$$

Similarly,

$$H(X_{L+2} \mid X_1, \dots, X_{L+1}) \le H(X_{L+1} \mid X_1, \dots, X_L)$$

because the left hand side equals $H(X_{L+1} \mid X_0, \dots, X_L)$ by stationarity.

This implies that for a stationary process,

$$\lim_{L\to\infty} H(X_{L+1}\mid X_1,\ldots,X_L)$$

exists and is called the **entropy rate** of the process. In fact, the chain rule says that this equals

$$\lim_{L\to\infty}\frac{1}{L}H(X_1,\ldots,X_L).$$

Definition 1.4. A stationary process is a **stationary Markov chain** if

$$\mathbb{P}(X_{L+1} = x_{L+1} \mid X_1 = x_1, \dots, X_L = x_L) = \mathbb{P}(X_{L+1} = x_{L+1} \mid X_L = x_L)$$

for all $L \geq 1$ and x_1, \ldots, x_{L+1} .

So all that matters is the matrix $[p(j \mid i) : 1 \leq i, j \leq |\mathcal{X}|]$, where the **transition probabilities** $p(j \mid i) = \mathbb{P}(X_2 = j \mid X_1 = i)$. If we let $\pi(i) := \mathbb{P}(X_1 = i)$ for $i \in \mathcal{X}$ in a stationary Markov chain, then

$$\sum_{i} \pi(i) p(j, i) = \pi(j)$$

for all j. The entropy rate for a stationary markov chain will be $H(X_2 \mid X_1)$ because $H(X_2 \mid X_1, X_0) = H(X_2, X_1)$. So the entropy rate is

$$\sum_{i} \pi(i) \sum_{j} p(j \mid i) \log \frac{1}{p(j \mid i)}.$$