Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\tau_{1^{}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha} \ t_{1}^{\#1}{}_{\alpha} \ t_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#1}{}_{\alpha}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	0	0	0
$\tau_{1}^{\#1}_{+}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#2}_{+}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 (2 r_3 + r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)} \ .$	0	0	0	0
	$r_{1}^{#1} + \alpha \beta$	$_{1}^{\#2}$ $+^{\alpha\beta}$	$\frac{1}{1} + \alpha \beta$	$\sigma_{1}^{\#1} \dagger^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} + ^{\alpha}$

~ l							
$f_{1}^{\#2}$	0	0	0	0	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{lpha}$)	0	0	0	0	0	0	0
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{2}k^{2}(r_{3}+2r_{5})$	0	0	0
$f_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{3}\vec{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#2}{}_+\alpha\beta$	$\frac{\sqrt{2} t_2}{3}$	1	$-\frac{1}{3}\bar{l}kt_2$	0	0	0	0
$\omega_1^{\#1}{}_+\alpha_\beta$	$k^2 (2 r_3 + r_5) + \frac{2 t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}$ \vec{l} $\sqrt{2}$ kt_2	0	0	0	0
	$\omega_1^{\#1} + ^{lphaeta}$	$\omega_1^{\#2} + \alpha \beta$	$f_{1}^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$\omega_1^{\#2} \dagger^{\alpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_{1}^{#2} \dagger^{\alpha}$

Source constraints/gauge generators				
SO(3) irreps	Multiplicities			
$\tau_{0+}^{\#2} == 0$	1			
$\tau_{0+}^{\#1} == 0$	1			
$\sigma_{0^{+}}^{\#1} == 0$	1			
$\tau_{1^{-}}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3			
$\sigma_1^{\#2\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + ik \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
$\sigma_{2}^{\#1}{}^{\alpha\beta\chi} == 0$	5			
$\tau_{2+}^{\#1\alpha\beta} == 0$	5			
Total constraints:	25			

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2^{+}\alpha\beta}^{\#1}$	$\sigma_{2}^{\#1}_{\alpha\beta}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
$ au_2^{\#1} \dagger^{lphaeta}$	0	0	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

Massive and massless spectra

Massive particle				
Pole residue:	$-\frac{1}{r_2} > 0$			
Polarisations:	1			
Square mass:	$-\frac{t_2}{r_2} > 0$			
Spin:	0			
Parity:	Odd			

	Quadratic pole	2
?	Pole residue:	$-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$
	Polarisations:	2

Unitarity conditions

 $r_2 < 0 \& \& r_3 < 0 \& \& r_5 < -\frac{r_3}{2} \& \& t_2 > 0 \mid |r_2| < 0 \& \& r_3 < 0 \& \& r_5 > -2 \cdot r_3 \& \& t_2 > 0 \mid |r_2| < 0 \& \& -2 \cdot r_3 < r_5 < -\frac{r_3}{2} \& \& t_2 > 0$