# INF721

2024/2



# Deep Learning

L17: Transformers

# Logistics

#### **Last Lecture**

- Machine Translation
- Decoding
  - Greedy Search
  - Beam Search
- Attention in RNNs



#### Lecture Outline

- Machine Translation
- ▶ Problems with RNNs
- ▶ Transformers
  - Self-Attention
  - Multi-head Attention
  - ▶ Encoder & Decoder
  - Positional Encoding
  - Masked Multi-head Attention



#### **Machine Translation**

Given a dataset of sentence pairs:

$$(x = \{x^{<1>}, x^{<2>}, \dots, x^{}\}, y = \{y^{<1>}, y^{<2>}, \dots, y^{}\}),$$

we want to learn a model that maps x into y.

| Portuguese                            | English                                 |
|---------------------------------------|-----------------------------------------|
| Olá, como vai você?                   | Hello, how are you?                     |
| O livro está em cima da mesa.         | The book is on the table.               |
| Lucas irá viajar ao Rio em Dezembro.  | Lucas is travelling to Rio in December. |
| Em Dezembro, Lucas irá viajar ao Rio. | Lucas is travelling to Rio in December. |
| • • •                                 | • • •                                   |



#### Problems with RNNs

- Struggle to capture long dependencies in sequences
- Hard to parallelize





#### Transformers

**Transformers** are an encoder-decoder architecture to process sequences using only attention (eliminating recurrence).

Initially proposed for machine translation, but proved to be very effective in many other problems in:

- Natural Language Processing
- Computer Vision
- Reinforcement Learning
- ...





#### Attention in RNNs vs. Transformers

#### RNNs Badahnau Attention



#### **Transformers** Scaled Dot-Product Attention



#### Self-Attention

The key idea behing the Transformer is the self-attention mechanism, which learns a context vector  $c^{\langle t \rangle}$  for each input element  $x^{\langle t \rangle}$  based on the input sequence x itself.





#### Self-Attention

The contextal represention  $C = \{c^{<1>}, \ldots, c^{<T_x>}\}$  of the entire input sequence  $x = \{x^{<1>}, \ldots, x^{<T_x>}\}$  can be computed in a vectorized way combining vectors  $q^{<t>}$ ,  $k^{<t>}$ ,  $v^{<t>}$  in matrices Q,  $K \in V$ 







#### Self-Attention

$$C = Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{(d_k)}})V$$







#### Multi-Head Attention

The Multi-Head Attention layers learns *n* independent representations  $C_i$  (called heads) using Self-Attention



 $Multihead(Q, K, V) = Concat(C_1, C_2, ..., C_h)W_o$ 



### Encoder

**Input**: a sequence  $x = \{x^{<1>}, \dots, x^{< T_x>}\}$ 

**Ouput**: a contextual representation  $C = \{c^{<1>}, \dots, c^{<T_x>}\}$  of x

The encoder applies a **Multihead Layer** followed by a **Feed Forward Neural Network** (MLP).

Both are normalized with Layer Norm (*Norm*) and conneced with a residual connection (*Add*)





#### Decoder

**Input**: Input context C and previous  $\{\hat{y}^{<1>}, \dots, \hat{y}^{<t-1>}\}$  ouput tokens

**Output:** The next token  $\hat{y}^{< t>}$ 



 $\hat{\mathbf{y}} < t >$ 

Softmax



13

## Inference Example

At inference time, the model is autoregressive, i.e., it generates one word at a time.



 $\hat{y}$  = Lucas



# Inference Example

At inference time, the model is autoregressive, i.e., it generates one word at a time.



 $\hat{y}$  = Lucas irá



### Inference Example

At inference time, the model is autoregressive, i.e., it generates one word at a time.





<SOS> Lucas irá visitar o Rio em Dezembro

 $\hat{y}$  = Lucas irá visitar o Rio em Dezembro<EOS>

Decoder Nx

Softmax

fc

### Positional Encoding

The self-attention mechanism does not consider the position of the words.

$$C = Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{(d_k)}})V$$

To add this information to the learned contextual representation  $oldsymbol{C}$ , both encoder and decoder add an positional information to each element  $x^{< t>}$  of the input  $x = \{x^{< 1>}, \dots, x^{< T_x>}\}$ 







### Positional Encoding



if 
$$i$$
 is odd
$$PE_{(t,2i+1)} = cos(\frac{t}{10000^{\frac{2i}{d}}})$$



## Training with Masked Multi-head Attention





## Training with Masked Multi-head Attention



Attention weights (normalized by row) of work i to word j after mask application





#### Next Lecture

L17: Transformers (Part II)

Case studies of transformers: BERT and GPT

