ATRIAS Parameters for Planar Model

21 April 2011 J. Grizzle

ATRIAS Coordinate System in y-z (sagittal) plane)

Link Name	Length (m)	Mass (kg)	Inertia about CoM (kg m^2)	Y-CoM (m)	Z-Com (m)
Torso		44.0	1.37	0.0	0.01
1	0.45	0.66149	0.01910	0.04566	0.16957
2	0.5	0.68292	0.02116	-0.02624	0.18626
3	0.5	0.19126	0.00633	0.0	0.24997
4	0.5	0.42493	0.01243	0.0	0.23832

Nominal Model

Mass of motors and gearing is included in the torso mass and inertia calculation

Rotor inertia of motor (same for each motor): J=2.86e-3 kg m^2

Gear inertia* (same for each gear): J= 2.5e-3; % kg m^2

*Remark: SHOULD be the Harmonic Drive Inertia, but currently, it is the nominal value from MABEL step down pulley

Gear ratios: R=20:1 and R=50:1

Springs are modeled as linear elements between gearing and links 1 and 2 of the 4-bar linkage

Stiffness: K = 1200 N-m/rad. (from Jonathan)

Damping: Zeta=0.5; Kd = 2*Zeta*sqrt(K) (made up by Jessy)

Torso Modification

 The battery pack has mass 7 kg and is mounted 9 cm below the hip location

 Moving it to 9 cm ABOVE the hip changes the torso CoM to 0.0374 m = 3.74 cm above the hip.

There is a small change to the inertia, but I have neglected it.