SAMPUL

ICSCA 2019

2019 8th International Conference on Software and Computer Applications

USAINS HOLDING SDN BHD Penang, Malaysia February 19-21, 2019

The Association for Computing Machinery 2 Penn Plaza, Suite 701 New York New York 10121-0701

ACM COPYRIGHT NOTICE. Copyright © 2019 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481,
or permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, +1-978-750-8400, +1-978-750-4470 (fax).

ACM ISBN: 978-1-4503-6573-4

2019 8th International Conference on Software and Computer Applications (ICSCA 2019)

Table of Contents

PrefaceXIV
Conference CommitteesXV
Session 1: High Performance Computing and Intelligent
Computing
Geo-spatial-based Emotions: A Mechanism for Event Detection in
Microblogs1
Samer Muthana Sarsam, Hosam Al-Samarraie, Bahiyah Omar
GPU Accelerated Maximum Likelihood Analysis for Phylogenetic
Inference6
Sandun Rajapaksa, Wageesha Rasanjana, Indika Perera, Dulani
Meedeniya
Reinforcing the Decision-making Process in Chemometrics: Feature
Selection and Algorithm Optimization11
Samer Muthana Sarsam

Temporal Sentiment Tracking and Analysis on Large-scale Social
Events17
Hussein Hazimeh, Mohammad Harissa, Elena Mugellini, Omar Abou
Khaled
Multi-Attention Network for Aspect Sentiment
Analysis22
Huiyu Han, Xiaoge Li, Shuting Zhi, Haoyue Wang
Enhancing Simplified General Perturbations-4 Model for Orbit Propagation
Using Deep Learning: A Review27
Nor'asnilawati Salleh, Siti Sophiayati, Sharizal Fadlie Sabri
Performance Analysis of an Fuzzy Logic Based LEACH
Protocol33
Hong-Yi Tan, Wun-She Yap, Bok-Min Goi
Personalized Ranking Point of Interest Recommendation Based on
Spatial-Temporal Distance Metric in LBSNs38
Chang SU, Hao Li, Xianzhong Xie
Cloud-Based IoT Solution for Predictive Modeling of Ship Fuel
Consumption44
Keh-Kim Kee and Boung-Yew Lau Simon
Questionnaire Development Process to Measure the SMEs' Continuous Use

behavior towards Cloud Computing Services50
Mohammed A. Al-Sharafi, Ruzaini Abdullah Arshah, and Emad A.
Abu-Shanab
Session 2: Data Engineering and Big Data Technology
Data Mining Using Clustering Algorithm as Tool for Poverty
Analysis56
Janelyn A. Talingdan
Application of Data Science for Controlling Energy Crises: A Case Study of
Pakistan60
Saif Ullah, Muhammad Asif, Shahbaz Ahmad, Ulfat Imdad, Osama
Sohaib
A Survey on Privacy Preserving Data Mining Approaches and
Techniques65
Maheyzah Md Siraj, Nurul Adibah Rahmat, Mazura Mat Din
Dashboard-based Alumni Tracer Study Report Using Normalized Data Store
Architecture70
Asroni, Juanita Yusanti, Slamet Riyadi
An Improved Over-sampling Algorithm based on iForest and SMOTE75
Yifeng Zheng, Guohe Li, Teng Zhang

Towards the Idea of Agricultural Market Understanding for Automatic
Event Detection81
Mallika Kliangkhlao, Somchai Limsiroratana
Removing Unclassified Elements in Investigating of Financial Wellbeing
Attributes Using Rough-Regression Model
Riswan Efendi, Susnaningsih Mu'at, Nelsy Arisandi, Noor Azah
Samsudin
(In)Security of the AA_{β} Cryptosystem for Transmitting Large Data91
Muhammad Asyraf Asbullah, Muhammad Rezal Kamel Ariffin, Zahari
Mahad, Muhamad Azlan Daud
Missing Data Problem in Predictive Analytics95
Heru Nugroho, Kridanto Surendro
Data Mining the Smartphone Manipulation Skills in a Coffee Farming
Community: A Step for Risk Analysis101
Melidiossa V. Pagudpud, Thelma D. Palaoag
A Novel Efficient Query Strategy on Hibernate105
Shuo Kuai, Yupeng Hu, Xinxiao Zhao, Dong Qin, Wentao Li, Xueqing
Li

Session 3: Algorithm Design and Optimization

Collaborative Filtering Algorithm Based on User Characteristic and Time
Weight
Panpan Wang, Hong Hou, Xiaoqun Guo
An Efficient Algorithm for Recommender System Using Kernel Mapping
Techniques115
Summia Naz, Muazzam Maqsood, Mehr Yahya Durani
Pressure Vessel Design Simulation: Implementing of Multi-Swarm Particle
Swarm Optimization120
Sinan Q. Salih, AbdulRahman A. Alsewari, Zaher M. Yaseen
DCA-Based Algorithm for Cross-Functional Team Selection125
Ngo Tung Son, Tran Thi Thuy, Bui Ngoc Anh, Tran Van Dinh
Enhancing One-Dimensional Chaotic Map Based on Bitstream Dividing
Model130
Moatsum Alawida, Azman Samsudin, Wafa ' Hamdan Alshoura
Solving 0/1 Knapsack Problem using Opposition-based Whale Optimization
Algorithm (OWOA)135
Hammoudeh S. Alamri, Kamal Z. Zamli, Mohd Faizal Ab Razak,
Ahmad Firdaus
Simplifying the Algorithm Selection Using Reduction of Rankings of
Classification Algorithms140

Salisu Mamman Abdulrahman, Pavel Brazdil, Wan Mohd Nazmee Wan
Zainon, Alhassan Adamu
Algorithms of Classification of Mass Problems of Production Subject
Domains
Eugene Malakhov, Denys Shchelkonogov, Vitaliy Mezhuyev
Research on MOOC System Based on Bipartite Graph Context
Collaborative Filtering Algorithm154
Zhang Xiaoyan, Bai Jie
Session 4: Software Design and Development
Precise String Analysis for JavaScript Programs Using Automata159
Nabil Almashfi, Lunjin Lu, Koby Picker, Christian Maldonado
Empirical Investigation of UML Models Matching through Different Weight
Calibration167
Alhassan Adamu, Wan Mohd Nazmee Wan Zainon, Salisu Mamman
Abdulrahman
Adoption Issues in DevOps from the Perspective of Continuous Delivery
Pipeline
M. Zulfahmi Toh, Shamsul Sahibuddin, Mohd Naz'ri Mahrin
Risk Management in Projects Based on Open-Source Software178

N	guven	Duc	Linh,	Phan	Duv	Hung,	Vu Th	ıu Die	p, Ta	Duc	Tung
- '	0^{ii}		,,			,	, ,, ,,	=	-,		

Nguyen Duc Linh, Phan Duy Hung, Vu Thu Diep, Ta Duc Tung
Visualizing Test-Defect Coverage Information to Support Analytical
Reasoning and Testing
Sharifah Mashita Syed-Mohamad, Mohd Heikal Husin, Wan Mohd
Nazmee Wan Zainon
ML Polymorphism of Linear Lambda Calculus with First-class
Continuations
Shin-ya NISHIZAKI
Managing Quality Assurance Challenges of DevOps through
Analytics
Mahmoud Mohammad Ahmad Ibrahim, Sharifah Mashita
Syed-Mohamad, Mohd Heikal Husin
Acceptance of the Methods of Decision-making: A Case Study from
Software Development Companies in Ukraine and Malaysia199
Vitaliy Mezhuyev, Oleg M. Lytvyn, Iuliia Pershyna, Olesia Nechuiviter,
Oleg O. Lytvyn, Vladimir Lavrik, Oksana Kovalska, Yurii Gunchenko
Automating Business Process Model Generation from Ontology-based
Requirements
Amarilis Putri Yanuarifiani, Fang-Fang Chua, Gaik-Yee Chan
Verifying Cloud Application for the Interaction Correctness Using SoaML

and SPIN210
Chunling Hu, Guoqing Geng, Bixin Li, Chao Tang, Xiaofeng Wang
Session 5: Application Development and Application
Model-Based Book Recommender Systems using Naïve Bayes enhanced
with Optimal Feature Selection217
Thi Thanh Sang Nguyen
Development Support of User Interfaces Adaptive to Use Environment223
Seika Tanaka, Hajime Iwata, Junko Shirogane, Yoshiaki Fukazawa
Proposing a Development of Geolocation Mobile Application for Airport
Pickup of International Students PickUp229
Zafeera Rashid, Chit Su Mon, Raenu Kolandaisamy
Using a Hypertext Pre-processor Code in Converting .csv File into a Civil
Service Commission Daily Time Record Format Applying Agile
Model233
Joel M. Gumiran and Cherry R. Gumiran
SGApps: Designing and Developing Expert System Apps for Diagnosing
Sugar Glider Diseases238
Mimi Rosnida Osman, Munirah Mohd Yusof, Hanayanti Hafit

Applying Design Science Research in the Development of Human Resource
Record Management System with Predictive Analysis through Pointing
System
Cherry R. Gumiran, Joel M. Gumiran
Smart City Bus Application with Quick Response (QR) Code
Payment248
Sim Liew Fong, David Chin Wui Yung, Falah Y. H. Ahmed, Arshad
Jamal
BookCeption: A Proposed Framework for an Artificially Intelligent
Recommendation Platform253
Aniqa Zaida Khanom, Sheikh Mastura Farzana, Tahsinur Rahman, and
Iftekharul Mobin
A Genre-Based Item-Item Collaborative Filtering: Facing the Cold-Start
Problem258
Surajit Das Barman, Mahamudul Hasan, Falguni Roy

Session 6: Image Processing Technology and Application

A review of Convolutional Neural Networks in Remote Sensing Image...263

Xinni Liu, Fengrong Han, Kamarul Hawari Ghazali, Izzeldin Ibrahim

Mohamed, Yue Zhao

Segmentation of Microscopic Breast Cancer Images for Cancer
Detection
Hamit Altıparmak, Fatih Veysel Nurçin
Analyzing the Color Image of Taiwan Town by Using Data Mining272
Yu-Wei Su, Tzren Ru Chou
Defects Detection Technique of Use Case Views during Requirements
Engineering277
Poranat Tianual, Amnart Pohthong
3D Coordinate Calculation and Pose Estimation of Power Meter based on
Binocular Stereo Vision282
Qingdan Huang, Wenxiong Mo, Liqiang Pei, Lian Zeng
Brain Aneurysm Extraction in MRI Images286
Rose Hafsah Ab. Rauf, Najwa Abd Ghafar, Noor Elaiza Abd. Khalid
Cooperative Hierarchical Framework for Group Activity Recognition: From
Group Detection to Multi-activity Recognition291
Mohammed Al-Habib, Dongjun Huang, Majjed Al-Qatf, and Kamal
Al-Sabahi
Combination of Facial Recognition and Interaction with Academic Portal in
Automatic Attendance System299
Ngo Tung Son, Le Phuong Chi, Phan Truong Lam, Tran Van Dinh

Reconstruct the Back of 3D Face Model Using 2D Gradient Based
Interpolation306
Wenbo Luo
Low-Level Human Action Change Detection Using the Motion History
Image311
Yohwan Noh, DoHoon Lee
Session 7: Computer Theory and Engineering
A Model Driven Approach for State Management in Mobile
Applications315
Mehreen Khan, Farooque Azam, Muhammad Waseem Anwar, Fatima
Samea, Mudassar Adeel Ahmed
Modelling of the Prophet Mosque in Virtual
Reality320
Mohamad Izani Zainal Abidin, Aishah Abdul Razak
Assessing Classcraft as an Effective Gamification App based on
Behaviorism Learning Theory325
Francisco C. Eugenio, Jr. and Ardhee Joy T. Ocampo
Towards Smart Healthcare Management Based on Knowledge Graph
Technology330
Lan Huang, Congcong Yu, Yang Chi, Xiaohui Qi, Hao Xu

An Artificial Cell Simulator based on Artificial Chemistry338
Chien-Le Goh, Hong Tat Ewe, Yong Kheng Goh
Artificial Intelligence Legal Policy: Limits of Use of Some Kinds of
AI343
Dremliuga Roman, Prisekina Natalia
Towards Efficient Implementation of Realizability Checking for Reactive
System Specifications347
Masaya Shimakawa, Atsushi Ueno, Shohei Mochizuki, Takashi Tomita,
Shigeki Hagihara, Naoki Yonezaki
Electric Power Meter Classification Based on BOW353
Wenxiong Mo, Liqiang Pei, Qingdan Huang, Weijie Liao
Determining the Neural Network Topology: A Review357
Muh. Ibnu Choldun R., Judhi Santoso, Kridanto Surendro
Verification of Verifiability of Voting Protocols by Strand Space
Analysis363
Shigeki Hagihara, Masaya Shimakawa, Naoki Yonezaki
Meta-Analysis of Acoustic Feature Extraction for Machine Listening
Systems
Ricardo A. Catanghal Jr, Thelma D. Palaoag, Carlwin Dayagdag
An Ensemble Filter Feature Selection Method and Outlier Detection Method

for Multiclass Classification
Dalton Ndirangu, Waweru Mwangi, Lawrence Nderu
Session 8: Modern Information Theory and Technology
Applying Formal Logic Validation to Enhance Natural Language
Understanding
Worawan Marurngsith, Pakorn Weawsawangwong
Privacy Enhancement for Delivery Route Optimization through Occupancy
Prediction
Shimpei Ohsugi, Kenji Tanaka, Noboru Koshizuka
Hybrid Approach for Forecasting Tourist Arrivals392
Mei-Li Shen, Hsiou-Hsiang Liu, Yi-Hsiang Lien, Cheng-Feng Lee,
Cheng-Hong Yang
Development of Assessment System for Spine Curvature Angle
Measurement397
Chua Shanyu, Lim Chee Chin, Shafriza Nisha Basah, Asrul Fahmi
Azizan
Reservoir Parameter Prediction Using Optimized Seismic Attributes Based
on Gamma Test403
Ying Li. Guohe Li. Yifeng Zheng

Event-driven Serverless Applications.......431

Khan, Muhammad Rashid

Fatima Samea, Farooque Azam, Muhammad Waseem Anwar, Mehreen

Implicit Recommendation with Interest Change and User Influence436
Qiaoqiao Tan, Fangai Liu, Shuning Xing
An Information Source Identification Algorithm Based on Shortest
Arborescence of Network
Zhong Li, Chunhe Xia, Tianbo Wang, Xiaochen Liu
CDAS: A Continuous Dynamic Authentication System447
Qi Li, Hao Chen
A User Attribute Recommendation Algorithm and Peer3D Technology
based WebVR P2P Transmission Scheme453
Huijuan Zhang, Lei Qiao, Dongqing Wang
An Enhanced Key Security of Playfair Cipher Algorithm457
Richard M. Marzan, Ariel M. Sison
Shellfier: A Shellcode Detection Method based on Dynamic Binary
Instrumentation and Convolutional Neural Network462
Yue Pan, Jing An, Wenqing Fan, Wei Huang
Role-Based ABAC Model for Implementing Least Privileges467
Muhammad Umar Aftab, Zhiguang Qin, Syed Falahuddin Quadri,
Zakria, Arslan Javed, Xuyun Nie
Survey of Hyperledger Blockchain Frameworks: Case Study in FPT
University's Cryptocurrency Wallets472

Tran Quy Ban, Bui Ngoc Anh, Ngo Tung Son, Tran Van Dinh
Domain Specific Classification of Malay Based Complaints using the
Complaint Concept Ontologies
Shaiful Bakhtiar bin Rodzman, Siti Suhaima binti Suhaili, Normaly
Kamal Ismail, Nurazzah Abd Rahman, Syed Ahmad Aljunid, Aslida binti
Omar

Session 10: Digital Multimedia Technology and Application
Problematic Use of Live Video Streaming Services: Impact of Personality
Traits, Psychological Factors, and Motivations487
Shuhui Sophy Cheng, Shao-Liang Chang, Chi-Ying Chen
Detection of Random Correction from Source Code Snapshots491
Yu Ohno, Hidetake Uwano, Shinji Uchida
Reliable User Profile Analytics and Discovery on Social Networks496
Hussein Hazimeh, Elena Mugellini, Omar Abou Khaled
IPv6 QoS for Multimedia Applications: A Performance Analysis501
Farooq Haider, Muhammad Hasanain Chaudary, Muhammad Sajjad
Naveed, Muhammad Asif
Social Media Application Usage and Women Entrepreneurship Achievement
through E-Business Model: Case of Setiu Wetland

Masita @ Masila Abdul Jalil, Fatihah Mohd, Mustafa Man, Noraida
Ali, Suriyani Muhamad
A Model Integrating Information of Multiple Social Networks510
Xiangling Fu, Chenwei Yan, Pengya Zhao
Session 11: Wireless Communication Technology and
Internet of Things Applications
Real-Time Carbon Dioxide Monitoring Based on IoT & Cloud
Technologies517
Fan Xiu Ming, Riyaz Ahamed Ariyaluran Habeeb, Fariza Hanum Binti
Md Nasaruddin, Abdullah Bin Gani
A 3-Tier Architecture for Network Latency Reduction in Healthcare
Internet-of-Things Using Fog Computing and Machine Learning522
Saurabh Shukla, Mohd Fadzil Hassan, Low Tang Jung, Azlan Awang,
Muhammad Khalid Khan
DC programming and DCA for Secure Guarantee with Null Space
Beamforming in Two-Way Relay Networks
Nguyen The Duy, Tran Thi Thuy, Luong Thuy Chung, Ngo Tung Son,
Tran Van Dinh
Portable TOR Router with Raspberry Pi533

Arshad Jamal, Deperkdharrshan Kumar, Rabab Alayham Abbas Helmi,
Sim Liew Fong
An Automated Software-Agents System for Detecting Road Speed Limit
Offences538
Maythem K. Abbas, Low Tang Jung, Raed Abdulla
A Survey on Deployment and Coverage Strategies in Three-Dimensional
Wireless Sensor Networks544
Fengrong Han, Xinni Liu, Izzeldin Ibrahim Mohamed, Kamarul Hawari
Ghazali, Yue Zhao
Internet of Things Attacks Detection and Classification Using Tiered Hidden
Markov Model550
Ahmad Alshammari, Mohamed A. Zohdy
Minimizing Flow Rules for Rerouting Multi-Flows in Multi-Failure
Recovery over SDN555
Meng Sun, Kuoyi Shao, Lu Wang
Anomaly Event Detection for Sensor Networks on Apriori Algorithms and
Subjective Logic560
Yuan Jinhui, Zhou Hongwei, Zhang Laishun
DC Programming and DCA for Power Minimization Problem in Multi-User
Beamforming Networks564

Tran Thi Thuy, Nguyen Van Nam, Ngo Tung Son, Tran Van Dinh
Privacy Preserving of IP Address through Truncation Method in
Network-based Intrusion Detection System569
Yee Jian Chew, Shih Yin Ooi, Kok-Seng Wong, Ying Han Pang
Research on Ultrasonic Positioning Algorithm574
Jingxuan HE, Jian ZHANG, Zeji HUI
Smart Transportation System Using RFID579
Sim Liew Fong, Amir Ariff Azham bin Abu Bakar, Falah Y. H. Ahmed,
Arshad Jamal

PANITIA PELAKSANA/PANITIA PENGARAH

Conference Committee

Advisory Committee Chair

Prof. Dr. Kamal Zuhairi Zamli, Universiti Malaysia Pahang, Malaysia

Conference Chairs

Prof. Dr. Vitaliy Mezhuyev, Universiti Malaysia Pahang, Malaysia Assoc. Prof. Dr. Rozmie Razif Bin Othman, Universiti Malaysia Perlis, Malaysia

Program Chairs

Prof. Luigi Benedicenti, University of New Brunswick, Canada

Prof. Masahiro Fujita, The University of Tokyo, Japan

Prof. Dr. Habil. Sergei Gorlatch, University of Muenster, Germany

Prof. Dr. Eugene Malakhov, Odessa I. Mechnikov National University, Ukraine

Local Arrangement Chairs

Assoc. Prof. Ruzaini Abdullah Arshah, Universiti Malaysia Pahang, Malaysia

Assoc. Prof. Dr. Shahrul Nizam Bin Yaakob, Universiti Malaysia Perlis, Malaysia

Dr. Abdulrahman Ahmed Mohammed Al-Sewari, Universiti Malaysia Pahang, Malaysia

Dr. Mohamad Fadli Zolkipli, Universiti Malaysia Pahang, Malaysia

Dr. Mohd Nizam Mohmad Kahar, Universiti Malaysia Pahang, Malaysia

Dr. Shuhaizar Bin Daud, Universiti Malaysia Perlis, Malaysia

Dr. Zahereel Ishwar Bin Abdul Khalib, Universiti Malaysia Perlis, Malaysia

Technical Committees

Prof. Dr. Horst Lichter, RWTH Aachen University, Germany

Prof. Dr. N. Ch. SrimanNarayanalyengar, Sreenidhi Institute of Science and Technology (SNIST), India

Prof. Dr. Nazri Kama, Advanced Informatics School, Universiti Teknologi Malaysia, Malaysia

Prof. Dr. Ravil Kudermetov, Zaporizhzhya National Technical University, Ukraine

Prof. Harumi Watanabe, Tokai University, Japan

Prof. Dr. Ismail Rakip Karas, Karabük University, Turkey

Prof. Kazuhiro Ogata, Japan Advanced Institute of Science and Technology, Japan

Prof. Mohamed Bahaj, University Hassan 1st Faculty of Sciences & Technologies Settat

Morocco, Morocco

Prof. Rusli Abdullah, University Putra Malaysia, Malaysia

- Prof. Saleem Abuleil, Chicago State University, USA
- Prof. Sheng-Uei Guan, Xi'an Jiaotong-Liverpool University, China
- Prof. Shian-Chang Huang, National Changhua University of Education, Taiwan
- Prof. Youngtaek Jin, Hanbat National University, Korea
- Prof. Dr. Christoph Wunck, Jade University of Applied Sciences, Germany
- Prof. Dr. Thanh van Do, Telenor and Oslo Metropolitan University, Norway
- Prof. Jeongah Kim, Catholic kwandong University, South Korea
- Prof. Josephine Dela Cruz, University of the Cordilleras, Philippines
- Prof. Dr. Tanvir Ahmad, Jamia Millia Islamia, New Delhi, India
- Prof. Dr. Abdullah Gani, Taylors University, Malaysia
- Prof. Tzren Ru Chou, National Taiwan Normal University, Taiwan
- Prof. Kwang Sik Chung, Korea National Open University, South Korea
- Prof. Xiaoge Li, Xi'an University of Posts & Telecommunications, China
- Prof. Dr. Ajay Gurjar, Sipna College of Engineering & Technology, Amravati(M.S), India
- Prof. Dr. Ashwani Kush, Kurukshetra University, India
- Prof. Lunjin Lu, Oakland University, United States
- Assoc. Prof. Chunling Hu, Hefei Universtiy, China
- Assoc. Prof. Muhammad Khalid Khan, PAF Karachi Institute of Economics and Technology,
- Pakistan
- Assoc. Prof. Nurazzah Abd Rahman, UiTM Malaysia, Malaysia
- Assoc. Prof. Kridanto Surendro, ITB, Indonesia
- Assoc. Prof. Suriyani Muhamad, UMT, Malaysia
- Assoc. Prof. Thian-Song Ong, Multimedia University, Malaysia
- Assoc. Prof. Ts. Dr. Noraida Haji Ali, UMT, Malaysia
- Assoc. Prof. Zaidah Ibrahim, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Assoc. Prof. Shuhui Sophy Cheng,? Chaoyang University of Technology, Taiwan
- Assoc. Prof. Xiangling Fu, Beijing University of Posts and Telecommunications, China
- Assoc. Prof. Turgay IBRIKCI, Cukurova University, Turkey
- Assoc. Prof. Arun Sharma, IGDTUW, India
- Assoc. Prof. Bakhtiar Affendi Rosdi, Universiti Sains Malaysia, Malaysia
- Assoc. Prof. Dr. Sunny Joseph, K. E. College, India
- Assoc. Prof. Dr. Tanmay De, National Institute of Technology, Durgapur, India
- Assoc. Prof. Hsien-Tang Lin, Tahwa University of Science and Technology, Taiwan
- Assoc. Prof. Mohammad Ghasemzadeh, Yazd University, Iran
- Assoc. Prof. Mustafa Man, Universiti Malaysia Terengganu, Malaysia
- Assoc. Prof. Dr. Abdeslem Dennai, University of BECHAR, Algeria
- Assoc. Prof. Dr. Shamim Akhter, East West University Bangladesh, Bangladesh
- Assoc. Prof. Boudjelal MEFTAH, University Mustapha Stambouli, Algeria
- Assoc. Prof. Olesia Nechuiviter, Ukrainian Engineering and Pedagogical Academy, Kharkiv, Ukraine
- Assoc. Prof. Thumrongrat Amornraksa, King Mongkut's University of Technology Thonburi,

Thailand

Assoc. Prof. Iuliia Pershyna, Ukrainian Engineering and Pedagogical Academy, Kharkiv, Ukraine

Assoc. Prof. Jiujiu Yu, Anhui SanLian University, China

Assoc. Prof. Normaziah Ab Aziz, International Islamic University Malaysia, Malaysia

Assoc. Prof. Nasser Alzeidi, Sultan Qaboos University, Oman

Asst. Prof. Dr. Aashish Bardekar, Sipna College of Engineering and Technology, India

Asst. Prof. Dr. Aishah Razak, Effat University, Saudi Arabia

Asst. Prof. Thelma Palaoag, University of the Cordilleras, Philippines

Asst. Prof. Yong Su Ting, University of Nottingham Malaysia, Malaysia

Asst. Prof. Wilson Nieto Bernal, Universidad del Norte, Colombia

Asst. Prof. Mangal Sain, Dongseo University, S. Korea

Asst. Prof. Angelo C. Arguson, Christ the King College of Science and Technology, Philippines

Asst. Prof. Dr. Debasis Das, BITS Pilani- K. K. Birla Goa Campus, India

Asst. Prof. Dr. Feng Yu, Youngstown State University, USA

Asst. Prof. Dr. Muhammad Asif, National Textile University, Faisalabad, Pakistan

Asst. Prof. Dr. WONG Ka Chun, City University of Hong Kong, Hong Kong

Asst. Prof. Marwan Abdul Hameed Ashour, University of Baghdad, Iraq

Asst. Prof. Muhammad Mostafa Monowar, King Abdul-Aziz University, Saudi Arabia

Asst. Prof. Ricardo Luis De Azevedo Da Rocha, Escola Politécnica da USP, Brazil

Asst. Prof. Sofiane Grira, Abu Dhabi University, UAE

Asst. Prof. Dr. Asmaa Shaker Ashoor Alzubaydi, University of Babylon, Iraq

Asst. Prof. Dr. Muazzam Magsood, COMSATS University, Pakistan

Asst. Prof. Yong Kheng Goh, Universiti Tunku Abdul Rahman, Malaysia

Asst. Prof. Cherry Gumiran, Isabela State University, Philippines

Asst. Prof. Meng Sun, Qilu University of Technology (Shandong Academy of Sciences), China

Asst. Prof. Mohammad Imrul Jubair, Ahsanullah University Of Science & Technology, Bangladesh

Asst. Prof. Cheng-Hui Tsai, National Taichung University of Science and Technology, Taiwan

Asst. Prof. Dr. Iftekharul Mobin, BRAC University, Bangladesh

Asst. Prof. Dr. Mohamad Abidin, Effat University, Saudi Arabia

Asst. Prof. Tamim Al Mahmud, Green University of Bangladesh, Bangladesh

Dr. Masita Abd Jalil, UMT, Malaysia

Dr. Kalaimagal Ramakrishnan, Nottingham University Malaysia, Malaysia

Dr. Azrina Kamaruddin, Universiti Putra Malaysia, Malaysia

Dr. Azrul Hazri Jantan, Universiti Putra Malaysia, Malaysia

Dr. Adidah binti Lajis, UNIVERSITI KUALA LUMPUR, MALAYSIA

Dr. Bayani Ramayah, University of Nottingham (Malaysia Campus), Malaysia

Dr. C Balarengadurai, Marri Laxman Reddy Institute of Technology and Management, India

Dr. Ahmad Tajuddin Samsudin, Telekom Research & Development, Malaysia

Dr. Dulani Meedeniya, University of Moratuwa, Sri Lanka

Dr. Hoshang Kolivand, Liverpool John Moores University, UK

Dr. Mamata Dalui, National Institute of Technology, India

Dr. R. VENKADESHAN, Shinas College of Technology, Sultanate of Oman

Dr. Satyabrata Aich, Inje University, Busan, South Korea

Dr. Tan Tse Guan, Universiti Malaysia Kelantan, Malaysia

Dr. Phan Duy Hung, FPT University, Viet Nam

Dr. Fang-Fang Chua, Multimedia University, Malaysia

Dr. Azlan Awang, Universiti Teknologi PETRONAS, Malaysia

Senior Lecturer Rose Hafsah Ab Rauf, Universiti Teknologi Mara, Malaysia

Senior Lecturer Slamet Riyadi, Universitas Muhammadiyah Yogyakarta, Indonesia

Senior Lecturer Thi Thanh Sang Nguyen, Vietnam National University, HCMC, Viet Nam

Senior Lecturer Zalilah Abd Aziz, Universiti Teknologi Mara, Malaysia

Lecturer Sim Liew Fong, Management and Science University, Malaysia

Lecturer Chit Su Mon, UCSI University, Malaysia

Lecturer Dr. Muhammad Asyraf Asbullah, Universiti Putra Malaysia, Malaysia

Lecturer Raenu Kolandaisamy, UCSI University, Malaysia

Lecturer Somchai Limsiroratana, Prince of Songkla University, Thailand

Lecturer Tung Son Ngo, FPT University, Viet Nam

Lecturer Chee Chin Lim, Universiti Malaysia Perlis(UniMAP), Malaysia

Lecturer Arshad Jamal, Management and Science University, Malaysia

Lecturer Alhassan Adamu, Kano University of Science and Techology, Nigeria

Senior Lecturer Kee Keh Kim, University College of Technology Sarawak, Malaysia

Senior Lecturer Dr. Samer Sarsam, Universiti Sains Malaysia, Malaysia

Senior Lecturer Dr. Md. Manjur Ahmed, Universiti Malaysia Pahang (UMP), Malaysia

Senior Lecturer Dr. Rabab Alayham Abbas, Management & Science University, Malaysia

Senior Lecturer Sumaiya Kabir, Green University of Bangladesh, Bangladesh

Syibrah Naim, Univeristi Sains Malaysia, Malaysia

Asst. Prof. Carlwin Dayagdag, Romblon State University, Philippines

Lecturer Munirah Mohd Yusof, Universiti Tun Hussein Onn Malaysia, Malaysia

Determining the Neural Network Topology: A Review

Muh. Ibnu Choldun R.
School of Electrical Engineering and
Informatics, Institut Teknologi
Bandung
Jl. Ganecha 10, Bandung
Indonesia
+6281321859867
ibnucholdun@poltekpos.ac.id

Judhi Santoso
School of Electrical Engineering and
Informatics, Institut Teknologi
Bandung
Jl. Ganecha 10, Bandung
Indonesia
+6281572283045
judhi@stei.itb.ac.id

Kridanto Surendro
School of Electrical Engineering and
Informatics, Institut Teknologi
Bandung
Jl. Ganecha 10, Bandung
Indonesia
+628122107224
endro@informatika.org

ABSTRACT

One of the challenges in the successful implementation of deep neural network (DNN) is setting the value for various hyperparameters, one of which is the network topology, which is closely related to the number of hidden layers and the number of hidden neurons. Determining the number of hidden layers and the number of neurons is very important and has a large influence on DNN performance. Determining these two numbers manually (usually through trial and error methods) to find fairly optimal arrangement is a time-consuming process, while the automatic approach is divided into two, they are a model-based approach and a non-model based approach. The non-model-based approach, for example, is grid search and random search, whereas modelbased approaches, for example, are using particle swarm optimization (PSO) algorithms. In some researches, how to determine the number of hidden layers or number of neurons, often the guidelines are unclear, even the roles and functions of both are explained minimally. Although it is still a difficult area of research, research to determine the number of hidden layers and the number of neurons must continue to be carried out, because these two numbers will greatly determine the performance of DNN.

CCS Concepts

Computing methodologies→ Neural networks

Keywords

Neural network; number; hidden layer; hidden neuron

1. INTRODUCTION

Neural networks have been successfully applied in a variety of problem areas as diverse as computer science, finance, medicine, engineering, physics, etc. The main reason is that neural networks have the ability to approach arbitrary functions. Over the past 30 years, a number of results have been published which show that artificial neural networks called feedforward networks with one hidden layer can approach all functions arbitrarily. One important aspect for designing neural networks is architecture or topology because it is closely related to generalization capabilities. In some cases using a fully connected network, and given a set of

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

ICSCA '19, February 19–21, 2019, Penang, Malaysia © 2019 Association for Computing Machinery. ACM ISBN 978-1-4503-6573-4/19/02...\$15.00 https://doi.org/10.1145/3316615.3316697

predetermined inputs and outputs, the topology will be determined by how many hidden layers and how many neurons for each hidden layer. The majority of the literature discusses how to determine the number of hidden neurons (assuming only using one hidden layer), but very rarely discusses how to determine the optimal number of hidden layers. This is due to the opinion that networks with only one hidden layer are sufficient to approximate universally almost all functions [1][2]. However, several researches show that the use of two hidden layers provides better performance than if only using one hidden layer in some cases [2][3]. Since the increase in computer capabilities, the use of a neural network that has more than one hidden layer has become one of the attractions for researchers, especially since the use of deep neural networks to solve problems in the real world. Deep neural network learning can be interpreted as a technique that uses neural networks for learning that utilize many hidden layers between input and output layers [4]. One of the challenges in the successful implementation of deep neural networks is setting values for various hyperparameters, one of which is the network topology, which is closely related to the number of hidden layers and the number of hidden neurons. The determination of the number of hidden layers and the number of neurons is very important and has a large influence on the performance of deep neural networks [5][6]. The determination of these two numbers manually (usually through the 'trial and error' method) to find a fairly optimal topology is a time-consuming process.

Some researches on neural network topology have focused on determining the number of neurons because they only use one hidden layer, some focuses on the number of hidden layers (two or one hidden layer), some also determine the number of hidden layers and the number of neurons in each hidden layer. Research on determining the number of neurons hidden has been going on since the 1990s and is still an interesting topic for researchers [7][8][9]. Research comparing the performance of one or two hidden layers is still an interesting topic to date [3][10], while research which also calculates the number of hidden layers and the number of new neurons has been done in recent years, since the emergence of deep learning [4][5][10]. The determination of the right number of neurons is important to avoid under-fitting or over-fitting, while increasing the level of accuracy of the neural network. The choice of the number of hidden layers and the right number of neurons together aims to reduce the complexity of processing time while simultaneously maintaining the accuracy of the neural network [5]. Hidden layers in deep neural networks represent increasingly complex features progressively [11]. Some approaches to calculating optimal number of hidden neurons are: 'trial and error' [7], rule of thumb method, simple method, and two phase method [12]. Madhiarasan and Deepa (2017) propose a new method for calculating the number of neurons by registering as many as 151 functions of convergent functions and then simulating each of these functions to get the number of neurons that will produce a minimum error. Of the 151 functions, a function is finally chosen which produces a minimum error [13]. The hyper-parameter search approach for searching the number of hidden layers and the number of neurons on the deep neural network can be done manually or automatically. The manual approach is done by trial and error or rule of thumb, while the automatic approach is divided into two, they are a model-based approach and a non-model based approach [14]. Non-model based approaches, for example, are grid search and random search, whereas approaches that are model based, for example, are using particle swarm optimization (PSO) algorithms.

Deep neural networks have achieved great success in practice and have a great influence on the machine learning literature and artificial intelligence. Although it has achieved success on a practical level, the theoretical characteristics of determining the topology of a neural network are still being investigated. For example, methods for finding the number of hidden layers and the number of neurons in deep learning have been done, but until now it has not been based on established theories [5][15][16][17]. Many methods have been conducted to calculate the number of hidden layers and the number of neurons, for example: model-based automatic methods using PSO [4][14][18], automatic methods without models using grid search (GS) or random search [19][20]. Some manual methods are also proposed, for example: the number of hidden neurons is 2/3 of the number of inputs plus

the number of outputs, the number of hidden neurons per hidden layer follows the rules of the pyramid geometry, mathematical approach [21][22], trial and error/rule of thumb[23], the relationship between the number of hidden layers and the number of hidden layers is logarithmic [24]. In some of the above literature, how to determine the number of hidden layers or optimal number of neurons, often the guidelines are not clear, even the roles and functions of both are explained minimally. Some literature proposes methods or ways to determine the number of hidden layers or the number of neurons, but it does not generally apply, it depends on the type of input data and also depends on the output. Research in this area still leaves difficult research tasks [17]. Some of the methods mentioned, apparently cannot be applied to different types of data. Each researcher determines the number of hidden layers or the number of neurons based on past experience, while for beginner researchers even do it with 'trial and error'. Although it is still a difficult area of research, research to determine the number of hidden layers and the number of neurons must continue to be carried out, because these two numbers will greatly determine the deep neural network learning performance.

2. LITERATURE REVIEW

2.1 Determining the Number of Hidden Neurons

Summary and critics from researches calculating hidden neuron can be seen in table 1, which was presented chronologically from the 1990s to the present.

Table 1. Research determines the number of hidden neurons

No	Researcher	Function	Method	Critics
1	Sartori and Antsaklis(1991)[25]	Classification	the number of neurons is p-1, where p is the number of input features	No correlation checks were carried out between input features
2	Arai(1993)[26]	Classification of two categories	the number of neurons between I-1 to I / 3, where I is the number of input features	Only for classification of two categories
3	Ji Yan Li(1995)[27]	Time Series	m hidden neurons where the amount of data is $(m + 1)m/2$	Just pay attention to the amount of data, variations in data are not noticed
4	Hagiwara(1994)[28]	Classification: Determines a 4x4 pixel image whether symmetry	Reducing the number of neurons and weights gradually	There is no guarantee that the number of neurons will get the right weight
5	Tamura and Tateishi(1997)[29]	Is not explained specifically	For one hidden layer: the number of neurons is N-1, for two hidden layers the number of neurons is N/2 + 3 where N is the number of inputs minus output	There is no empirical test Ignoring correlation, variations between input features, and between input features and output features
6	Fujita(1998)[30]	Not specifically explained	Add one by one the number of neurons, where the number of neurons is proportional to the number of data sets	Ignoring correlation, variations between input features
7	Keeni et al.(1999)[31]	Classification	Reducing the number of neurons little by little	Ignoring correlation, variations between input features

No	Researcher	Function	Method	Critics
8	Onoda(2001)[32]	Prediction	Using the Neural Network Information Criterion(NNIC)	Less practical
9	Islam and Murase(2001)[33]	Not specifically explained	Cascade Neural Network Design Algorithm(CNNDA)	Less practical
10	Zhang et al.(2003)[34]	Not specifically explained	Set Covering Algoritm(SCA)	Less practical
11	Choi(2008)[35]	Not specifically explained	An algorithm that separates training for input and output	Less practical
12	Shibata and Ikeda(2009)[36]	Not specifically explained	$N^{(h)} = N^{(i)}N^{(o)}$ and $\eta = 32/$ $(N^{(i)}N^{(o)})^{1/2}$	Do not see variations and correlations
13	Doukim et al.(2010) [37]	Pre-processing for feature extraction	Searching algorithm	Ignoring correlation, variations between input features
14	Panchal et al.(2011) [38]	Not specifically explained	The number of hidden neurons is inversely proportional to MSE	The number of neurons is known after learning
15	Hunter et al.(2012)[39]	Not specifically explained	N ^h =2 ⁿ -1	Do not see variations and correlations
16	Sheela and Deepa(2013)[7]	Predictive	$(4n^2+3)/(n^2-8)$	Do not see variations and correlations
17	Madhiarasan and Deepa(2016)[8]	Predictive	(8n-4) / (n-4)	Do not see variations and correlations
18	Madhiarasan and Deepa(2017)[13]	Predictive	$u_n = (4n - 2) / (n - 3)$	Do not see variations and correlations

2.2 Comparison Using One or Two Hidden Layers

Research that compares the use of one or two hidden layers is performed on univariate and multivariate functions, which can be briefly read in table 2.

Table 2. Research compares one or two hidden layer

No	Researcher	Function	Method	Critics
1	Nakama (2011) [40]	Linear and quadratic	Comparing one and two hidden layers with other parameters together: one hidden layer reaches convergence faster	More than two hidden layers are not compared
2	Thomas et.al (2016) [10], Thomas et.al (2017) [2]	Predictive	Compare one and two hidden layers: two better hidden layers	More than two hidden layers are not compared
3	Guliyev and	Multivariate functions	Comparing one and two hidden	More than two hidden

	Ismailov		layers: one	layers are
	(2018)	18)	hidden layer is less able	not compared
	[1]		to approach	compared
			multivariate	
			functions	

2.3 Determining The Number of Hidden Layers and The Number of Neurons

To determine the number of hidden layers and the number of neurons together broadly divided into two, they are the determination of automatically and manually determination [18]. Determination automatically can use the model, or non-model. There are manual determinations that use certain formulas; some are done by trial and error. Automatic determination without a model consists of grid search (GS) and random search (RS). GS is generally used to optimize DNN parameters only if the number is very low. First, users choose a range of values to explore. Then, DNN is trained for each specification along with other parameters. Usually, GS is carried out for the steps of a logarithmic scale, where the best combination is estimated, progressively in conducting a search [19]. The obvious disadvantage of GS is its time complexity - for parameters k to take different values for each (assuming that n is the same for all parameters), complexity grows exponentially at level O(nk). Random search (RS) is an alternative to GS, which integrates faster into parametricization. RS is not adaptive, meaning it is not dynamically updated during the experiment (solutions that have been found do not affect search). There is also a hybrid algorithm that combines RS with other techniques to improve its performance, for example, manual updates provided by experts [19][20].Model-based algorithms build replacement models of hyper-parameter spaces. Then, the hyper-parameter is set using this model. Most of these techniques use the Bayesian regression model that turns this problem into a trade-off between exploration, and exploitation. One model-based algorithm is using particle swarm optimization (PSO), an optimization technique by continuously calculating potential solutions using a quality reference. This algorithm optimizes

problems by moving particles/prospective solutions in the problem space using certain functions for the position and velocity of the particles. The movement of particles is affected by the best solution of the particle, and the best solution is generally obtained from other particles. The use of more than one hidden layer is usually accompanied by feature selection or feature extraction [41]. Summary and research criticism that calculates hidden layers and hidden neurons can be seen in table 3.

No	Researcher	Function	Method	Critics
1	Karisma and Widyantoro	Predictive	Rule of thumb	Difficult to apply to other cases
	(2016)[23]			
2	Koutsoukas et al. (2017)[6]	Predictive	Trial and error	Difficult to apply to other cases
3	Qolomany et al. (2017)[4]	Predictive	Particle Swarm	Need a long time.
			Optimization	Architecture exists through a training process
4	Tej and Holban	Classification	Clustering and	Clustering is more related to variation and regression
	(2018)[42]		Regression	with correlation

3. CONCLUSION

Research that counts only the number of neurons is carried out assuming that the use of one hidden layer is able to approach almost all functions. Using more than one hidden layer will add to the burden of computer computing. But with the advancement of computer computing capabilities, the use of more than one hidden layer is worth considering. In addition, the majority of researches in this group do not consider the characteristics of the input feature, but only pay attention to the number of features or amount of data. By pre-processing processing input features, for example by looking at variations and correlations between or intra input features, it is hoped that better results will be obtained. Research that compares the use of one or two hidden layers, in addition to not paying attention to the characteristics of the data also does not compare the possibility of using more than two hidden layers. Research only focuses on performance comparisons between the use of one and two hidden layers. The research focuses on determining the number of hidden layers and the number of hidden neurons at once, the majority of research is conducted by trial and error or using rule of thumb for experienced researchers. The trial and error method can consume a lot of research resources with results that are not necessarily as expected. While using references from the results of experienced researchers also cannot be used as a handle, because basically the rule of thumb only applies to certain datasets or certain functions. So this group does not pay attention to the characteristics of the input feature to determine the network topology. The input feature character that can be considered is by calculating the correlation or variation between or input features. In future research the purpose of determining neural network topology is to minimize errors, should pay attention to the correlation and variance of features to achieve better performance. Besides minimizing errors, time complexity must also be considered due to the chosen neural network topology.

4. REFERENCES

 Guliyev, N.J. and Ismailov, V.E. 2018. On the approximation by single hidden layer feedforward neural networks with fixed weights. *Neural Networks*, vol. 98, pp. 296–304.

- [2] Thomas, A. J., Petridis, M., Walters, S.D., Gheytassi, S. M., and Morgan, R. E. 2017. Two Hidden Layers are Usually Better than One. In *Engineering Applications of Neural Networks(EANN)*, Boracchi G., Iliadis L., Jayne C., and Likas A. (eds). Communications in Computer and Information Science, vol 744. Springer, Cham.
- [3] Thomas, A. J., Walters, S. D., Gheytassi, S. M., Morgan, R. E, and Petridis, M. 2016. On the Optimal Node Ratio between Hidden Layers: A Probabilistic Study. *International Journal of Machine Learning and Computing*, vol. 6, no. 5, pp. 241–247.
- [4] Qolomany, B., Maabreh, M., Al-Fuqaha, A., Gupta, A., and Benhaddou, D. 2017. Parameters optimization of deep learning models using particle swarm optimization. In 13th Int. Wirel. Commun. Mob. Comput. Conf., pp. 1285–1290.
- [5] Nitta, T. 2017. Resolution of Singularities Introduced by Hierarchical Structure in Deep Neural Networks. *IEEE Trans. Neural Networks Learn. Syst.*, vol. 28, no. 10, pp. 2282–2293.
- [6] Koutsoukas, A., Monaghan, K.J., Li, X., and Huan, J. 2017. Deep-learning: Investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data. *J. Cheminform.*, vol. 9, no. 1, pp. 1–13.
- [7] Sheela, K.G. and Deepa,S.N. 2013. Review on methods to fix number of hidden neurons in neural networks. *Math. Probl. Eng.*, vol. 2013, no. 4, pp. 449–471.
- [8] Madhiarasan, M., and Deepa, S. N. 2016. A novel criterion to select hidden neuron numbers in improved back propagation networks for wind speed forecasting. *Applied Intelligence*, 44(4), 878–893. https://doi.org/10.1007/s10489-015-0737-z.
- [9] Vujičić, T. and Matijevi, T. 2016. Comparative Analysis of Methods for Determining Number of Hidden Neurons in Artificial Neural Network. In *Cent. Eur. Conf. Inf. Intell.* Syst., p. 219.
- [10] Thomas, L., Manoj Kumar, M. V., and B. Annappa, B. 2016. Discovery of optimal neurons and hidden layers in

- feed-forward Neural Network. In IEEE Int. Conf. Emerg. Technol. Innov. Bus. Pract. Transform. Soc. EmergiTech 2016
- [11] Gao, T., Jojic, V., and Hill, C. 2017. Sample Importance in Deep Neural Network. In *ICLR 2017*.
- [12] Karsoliya, S. 2012. Approximating Number of Hidden layer neurons in Multiple Hidden Layer BPNN Architecture. *Int. J. Eng. Trends Technol.*, vol. 3, no. 6, pp. 714–717.
- [13] Madhiarasan, M. and Deepa, S.N. 2017. Comparative analysis on hidden neurons estimation in multi layer perceptron neural networks for wind speed forecasting. *Artif. Intell. Rev.*, vol. 48, no. 4, pp. 449–471..
- [14] Lorenzo, P.R., Nalepa, J., Kawulok, M., Ramos, L.S., and Pastor, J.R. 2017. Particle swarm optimization for hyperparameter selection in deep neural networks. In *Proc.* 2017 Genet. Evol. Comput. Conf. - GECCO '17, vol. 8, pp. 481– 488.
- [15] Kawaguchi, K., Kaelbling, L.P., and Bengio, Y. 2017. Generalization in Deep Learning. https://arxiv.org/abs/1710.05468
- [16] Lee, S., Zokhirova, M., Nguyen, T.T. and Lee, J. 2017. Effect of Hyper-Parameters on Deep Learning Networks in Structural Engineering. In *Proceedings of the International Conference on Advances in Computational Mechanics* 2017 pp 537-544
- [17] Lee, S., Ha ,J., Zokhirova, M., Moon, H., and Lee, J. 2018. Background Information of Deep Learning for Structural Engineering. Arch. Comput. Methods Eng., vol. 25, no. 1, pp. 121–129.
- [18] Lorenzo, P.R. and Ramos, L.S. 2017. Hyper-Parameter Selection in Deep Neural Networks Using Parallel Particle Swarm Optimization. In GECCO '17 Proceedings of the Genetic and Evolutionary Computation Conference Companion, Pages 1864-1871.
- [19] Bergstra, J. and Bengio, Y. 2012. Random Search for Hyper-Parameter Optimization. *Journal of Machine Learning Research*, vol. 13, pp. 281–305.
- [20] Larochelle, H., Courville, A., and Bergstra, J. 2007. An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation. In *ICML '07 Proceedings of* the 24th international conference on Machine learning, Pages 473-480.
- [21] Tang, X., Ding, Y., and Hao, K. 2018. A Novel Method Based on Line-Segment Visualizations for Hyper-Parameter Optimization in Deep Networks. *Int. J. Pattern Recognit.* Artif. Intell., vol. 32, no. 3.
- [22] Diaz, G., Fokoue, A., Nannicini, G., and Samulowitz, H. 2017. An effective algorithm for hyperparameter optimization of neural networks. *IBM Journal of Research* and Development, vol. 61, no. 4, pp. 1–11.
- [23] Karisma, H. and Widyantoro, D.H. 2016. Comparison study of neural network and deep neural network on repricing GAP prediction in Indonesian conventional public bank. In *Proc.* 2016 6th Int. Conf. Syst. Eng. Technol. ICSET 2016, pp. 116–122.
- [24] Grabusts, P. and Zorins, A. 2015. The Influence of Hidden Neurons Factor on Neural Network Training Quality

- Assurance. In *Proceedings of the 10th International Scientific and Practical Conference*, vol. 3, pp. 76–81.
- [25] Sartori, M.A. and Antsaklis, P.J. 1991. A simple method to derive bounds on the size and to train multilayer neural networks. *IEEE Transactions on Neural Networks*,vol.2,no. 4, pp.467–471.
- [26] Arai, M. 1993. Bounds on the Number of Hidden Units in Binary-Valued Three-Layer Neural Networks. *Neural Networks*, vol 6, 855–860.
- [27] Li, J-Y, Chow T.W.S, and Yu, Y-L. 1995. The estimation theory and optimization algorithm for the number of hidden units in the higher-order feed forward neural network. In *Proceeding IEEE international conference on neural networks*, vol 3, pp 1229–1233.
- [28] Hagiwara, M. 1994. A simple and effective method for removal of hidden units and weights. *Neurocomputing*, vol 6, 207–218.
- [29] Tamura, S., and Tateishi, M. 1997. Capabilities of a Four-Layered Feedforward Neural Network: Four Layers Versus Three. *IEEE Transactions on Neural Networks*, vol 8(2), 251–255...
- [30] Fujita, O. 1998. Statistical estimation of the number of hidden units for feedforward neural networks. Neural Networks: The Official Journal of the International Neural Network Society, 11, 851–859. https://doi.org/10.1016/S0893-6080(98)00043-4.
- [31] Keeni, K. 1999. Estimation of Initial Weights and Hidden Units for Fast Learning of Multi-layer Neural Networks for Pattern Classification. In IJCNN'99. International Joint Conference on Neural Networks.
- [32] Onoda, T. 1995. Neural network information criterion for the optimal number of hidden units. In *Proceeding IEEE* international conference on neural networks, vol 1, pp 275– 280.
- [33] Islam, M., and Murase, K. 2001. A new algorithm to design compact two-hidden-layer artificial neural networks. *Neural Network*, vol 14(9).
- [34] Zhang, Z., Ma, X., and Yang, Y. 2003. Bounds on the number of hidden neurons in three-layer binary neural networks. *Neural Networks*, vol 16(7), 995–1002. https://doi.org/10.1016/S0893-6080(03)00006-6.
- [35] Choi, B., Lee, J., and Kim, D. 2008. Solving local minima problem with large number of hidden nodes on two-layered feed-forward artificial neural networks. *Neurocomputing*, vol 71, 3640–3643.
- [36] Shibata, K. and Ikeda. 2009. Effect of number of hidden neurons on learning in large-scale layered neural networks. In 2009 ICCAS-SICE.
- [37] Doukim, C. A., Dargham, J. A., and Chekima, A. 2010. Finding the Number of Hidden Neurons for an MLP Neural Network Using Coarse to Fine Search Technique. In 10th International Conference on Information Science, Signal Processing and their Applications.
- [38] Panchal G, Ganatra A, Kosta Y.P., Panchal, G., Ganatra, A., Kosta, Y. P., and Panchal, D. 2011. Behaviour Analysis of Multilayer Perceptrons with Multiple Hidden Neurons and Hidden Layers. *International Journal of Computer Theory* and Engineering, Vol 3(2), 332–337.

- [39] Hunter, D., Yu, H., Pukish, M. S., Kolbusz, J., and Wilamowski, B. M. 2012 . Selection of Proper Neural Network Sizes and Architectures — A Comparative Study. *IEEE Transactions on Industrial Informatics*, 8(2), 228–240 https://doi.org/10.1109/TII.2012.2187914.
- [40] Nakama, T. 2011. Comparisons of Single- and Multiple-Hidden-Layer Neural Networks. In *International Symposium* on Neural Networks 2011, 270–279.
- [41] Abroudi, A., Shokouhifar, M., and Farokhi, F. 2013. Improving the Performance of Artificial Neural Networks via Instance Selection and Feature Dimensionality Reduction. *International Journal of Machine Learning and Computing* vol. 3, no. 2, pp. 176-180.
- [42] Tej, M. L., and Holban, S. 2018. Determining Optimal Neural Network Architecture Using Regression Methods. In 2018 International Conference on Development and Application Systems (DAS), 180–189.

This author profile is generated by Scopus. Learn more

Rachmatullah, Muhammad Ibnu Choldun

- 1 Institut Teknologi Bandung, Bandung, Indonesia S 57224844807 1
- https://orcid.org/0000-0003-4071-887X

23 5 3
Citations by 20 documents Documents h-index View h-graph

Document & citation trends

Scopus Preview

Scopus Preview users can only view a limited set of features. Check your institution's access to view all documents and features.

Check access

Beta
Documents 1 Preprint 4 Co-Authors Topics 0 Awarded Grants

Documents (5)

Cited by (20)

Note:

Scopus Preview users can only view an author's last 10 documents, while most other features are disabled. Do you have access through your institution? Check your institution's access to view all documents and features.

5 documents

Export all Add all to list

Sort by Date (...

 \vee

Article • Open access

Determining the number of hidden layer and hidden neuron of neural network for wind speed prediction

Citations

Rachmatullah, M.I.C., Santoso, J., Surendro, K.

PeerJ Computer Science, 2021, 7, pp. 1-19

Show abstract V Related documents

Article • Open access

A novel approach in determining neural networks architecture to classify data with large number of attributes

3

Citations

Rachmatullah, M.I.C., Santoso, J., Surendro, K.

IEEE Access, 2020, 8, pp. 204728-204743

Show abstract

Related documents

Conference Paper

Determining the number of hidden layers in neural network by using principal component analysis

13

Citations

Ibnu Choldun R., M., Santoso, J., Surendro, K.

Advances in Intelligent Systems and Computing, 2020, 1038, pp. 490-500

Show abstract V Related documents

Conference Paper

Determining the Neural Network Topology from the Viewpoint of Kuhn's Philosophy and Popper's Philosophy

0

Citations

Rachmatullah, M.I.C., Surendro, K., Santoso, J., Mahayana, D.

 $\label{lem:condition} \textit{Proceeding - 2019 International Conference of Artificial Intelligence and Information}$

Technology, ICAIIT 2019, 2019, pp. 115-118, 8834664

Show abstract V Related documents

Conference Paper

Determining the neural network topology: A review

5

Muh Ibnu Choldun, R., Santoso, J., Surendro, K.

Citations

ACM International Conference Proceeding Series, 2019, Part F147956, pp. 357–362

Show abstract \vee

Related documents

Back to top

- > View list in search results format
- > View references
- \bigcirc Set document alert

About Scopus

What is Scopus

Content coverage

Scopus blog

Scopus API

Privacy matters

Language

日本語版を表示する

查看简体中文版本

查看繁體中文版本

Просмотр версии на русском языке

Customer Service

Help

Tutorials

Contact us

ELSEVIER

Terms and conditions *¬* Privacy policy *¬*

Copyright © Elsevier B.V \supset . All rights reserved. Scopus® is a registered trademark of Elsevier B.V. We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies \supset .

