

Student name: _____

PAPER 4

YEAR 12 YEARLY EXAMINATION

Mathematics Extension 2

General Instructions

- Working time 180 minutes
- Write using black pen
- NESA approved calculators may be used
- · A reference sheet is provided at the back of this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total marks: 100

Section I - 10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II – 90 marks

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section

Section I

10 marks

Attempt questions 1 - 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for questions 1-10

1. Let z = 3 - 4i and $w = \sqrt{3} + i$. What is the value of $z \div w$?

(A)
$$\frac{3\sqrt{3}-4}{4} + \frac{(-4\sqrt{3}-3)i}{4}$$

(B)
$$\frac{3\sqrt{3}+4}{4} + \frac{(-4\sqrt{3}-3)i}{4}$$

(C)
$$\frac{3\sqrt{3}-4}{4} + \frac{(-4\sqrt{3}+3)i}{4}$$

(D)
$$\frac{3\sqrt{3}+4}{4} + \frac{(-4\sqrt{3}+3)i}{4}$$

- 2. A particle is moving under SHM in a straight line with an acceleration of $\ddot{x}=25-5x$, where x is the displacement after t seconds. What is the centre of motion?
 - (A) x = 0
 - (B) x = 5
 - (C) x = 10
 - (D) x = 15

3.

The diagram above shows a rhombus, spanned by two vectors \underline{u} and \underline{v} . Which of the following statements is correct?

- (A) $u \cdot v = 0$
- (B) u = v
- (C) $(\underline{u} + \underline{v}) \cdot (\underline{u} \underline{v}) = 0$
- (D) |u + v| = |u v|

- 4. The contrapositive of $A \Rightarrow B$ is:
 - (A) $B \Rightarrow A$
 - (B) $B \Leftrightarrow A$
 - (C) $(not B) \Rightarrow (not A)$
 - (D) $(not A) \Rightarrow (not B)$
- 5. The velocity of a body moving in a straight line is given by $v = 2\sqrt{1 x^2}$ where x metres is the displacement from fixed point O and v is the velocity in metres per second. Initially the particle is at O. Let a be the acceleration in metres per second squared. Which of the following is the correct expression for a in terms of x?
 - $(A) \quad a = \frac{-2x}{\sqrt{1 x^2}}$
 - (B) $a = \frac{2}{\sqrt{1 x^2}}$
 - (C) a = -2x
 - (D) a = -4x
- 6. What is the value of the indefinite integral $\int \frac{x^2}{(1-x^2)^{\frac{3}{2}}} dx$?
 - (A) $\frac{x}{(1-x^2)^{\frac{1}{2}}} \cos^{-1}x + C$
 - (B) $\frac{x}{(1-x^2)^{\frac{3}{2}}} \cos^{-1}x + C$
 - (C) $\frac{x}{(1-x^2)^{\frac{1}{2}}} \sin^{-1}x + C$
 - (D) $\frac{x}{(1-x^2)^{\frac{3}{2}}} \sin^{-1}x + C$
- 7. What is the definite integral of $\int \frac{\sec^2(\ln x)}{x} dx$?
 - (A) tan(lnx) + C
 - (B) $\tan(\cos x) + C$
 - (C) sec(lnx) + C
 - (D) sec(cos x) + C

- 8. What is the square root of 8 + 6i?
 - (A) -3 i
 - (B) -3 + i
 - (C) 3 i
 - (D) 5 3i
- 9. A particle is projected with a speed of 20 m/s and passes through a point *P* whose horizontal distance from the point of projection is 30 m and whose vertical height above the point of projection is 8.75 m. What is the angle of projection?
 - (A) $\tan^{-1}\left(\frac{2}{3}\right)$
 - (B) $\tan^{-1}\left(\frac{3}{2}\right)$
 - (C) $\tan^{-1}\left(\frac{3}{4}\right)$
 - (D) $\tan^{-1}\left(\frac{4}{3}\right)$
- 10. $(2+2i)z^2 + 8iz 4(1-i)$

What is the value of the discriminant for the above quadratic expression?

- (A) -32
- (B) 0
- (C) 32
- (D) 64

Marks

Section II

90 marks

Attempt questions 11-16

Allow about 2 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available. Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) If $z_1 = 2i$ and $z_2 = 1 + 3i$, express in the form a + ib (where a and b are real) (i) $z_1 + \overline{z_2}$ 1 (ii) $z_1 z_2$ 1 (iii) $\frac{1}{z_2}$ 1

(b) Find
$$\int \frac{1}{\sqrt{5+4x-x^2}} dx$$
.

(c) The points
$$P$$
 and Q have position vectors of $p = \overrightarrow{OP}$ and $q = \overrightarrow{OQ}$. Express \overrightarrow{OR} in terms of p and q , where R is:

(i) the midpoint of PQ .

(ii) the point such that $\overrightarrow{PR} = -2\overrightarrow{PQ}$.

(iii) the trisection of PQ and closer to P .

(d) Find the exact value of
$$\int_2^3 \frac{x+1}{\sqrt{x^2+2x+5}} dx.$$

(e) Show that
$$z^n + \frac{1}{z^n} = 2\cos n\theta$$
 for positive integers $n \ge 1$.
Let $z = (\cos \theta + i\sin \theta)$ where $z \ne 0$.

Question 12 (15 marks)

Marks

(a) If |a| < 1 and |b| < 1 prove that |a + b| < |1 + ab|

2

- (b) $z_1 = 1 + i \text{ and } z_2 = \sqrt{3} i$
 - (i) Find $z_1 \div z_2$ in the form a + ib where a and b are real.

1

(ii) Write z_1 and z_2 in modulus-argument form.

2

(ii) Write z_1 and z_2 in modulus-argument form.

(iii) Write $\cos \frac{5\pi}{12}$ as a surd by equating equivalent expressions for $z_1 \div z_2$.

2

(c) Evaluate the integral $\int \frac{\ln x}{x^2} dx$.

2

(d) Let z = 1 - i be a root of the polynomial $z^3 + pz + q = 0$ where p and q are real numbers. Find the value of p and q.

2

(e) (i) Find the values of *A*, *B*, and *C* such that:

2

$$\frac{1}{(x+1)(x^2+2)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+2}$$

(ii) Hence evaluate $\int \frac{dx}{(x+1)(x^2+2)}.$

2

Question 13 (14 marks)

Marks

- (a) Prove by induction that $7^n + 15^n$ is divisible by 11 for odd $n \ge 1$.
- 4

(b) Find $\int \frac{e^{3x} + 1}{e^x + 1} dx.$

- 2
- (c) A particle is moving in a straight line under SHM. At any time (*t* seconds) its displacement (*x* metres) from a fixed point *O* is given by:

$$x = A\cos\left(\frac{\pi}{4}t + \alpha\right)$$
 where $A > 0$ and $0 < \alpha < \frac{\pi}{2}$

After 1 second the particle is 2 metres to the right of *O* and after 3 seconds the particle is 4 metres to the left of *O*.

- (i) Show that $A\sin\alpha A\cos\alpha = -2\sqrt{2}$ and $A\sin\alpha + A\cos\alpha = 4\sqrt{2}$.
- (ii) Show that $A = 2\sqrt{5}$ and $\alpha = \tan^{-1}\frac{1}{3}$
- (iii) When does the particle first pass through *O*?
- (d) If a > 0, b > 0 and a + b = t show that: $\frac{1}{a} + \frac{1}{b} \ge \frac{4}{t}$

Question 14 (15 marks)

Marks

- (a) On an Argand diagram shade the region that satisfies $|z| \ge 1$ and $-\frac{\pi}{4} \le \arg z \le \frac{\pi}{4}$.
- (b) A particle of mass m moves in a horizontal straight line. The particle is resisted by a constant force mk and a variable force mv^2 , where k is a positive constant and v is the speed. Initially v = u and x = 0.
 - (i) Show that the distance travelled is $-\frac{1}{2}\ln\frac{(k+v^2)}{(k+u^2)}$
 - (ii) Show that the time taken for the particle to be brought to rest is: $t = \frac{1}{\sqrt{k}} \tan^{-1} \frac{u}{\sqrt{k}}$
- (c) $I_n = \int_0^1 \frac{1}{(1+x^2)^n} dx$ n = 1,2,3,...
 - (i) Show that $I_{n+1} = \frac{2n-1}{2n}I_n + \frac{1}{n \times 2^{n+1}}$ n = 1,2,3,... 3
 - (ii) Hence evaluate $\int_0^1 \frac{1}{(1+x^2)^3} dx$.
- (d) (i) If $z = \frac{1 + i\sqrt{3}}{2}$ show that $z^3 = -1$.

 (ii) Hence or otherwise find the value of z^{10} .

Question 15 (17 marks)

Marks

(a) The point P has position vector $\overrightarrow{OP} = \underline{\imath} + 3\underline{\jmath} - \underline{k}$, point Q has position vector $\overrightarrow{OQ} = 2\underline{\imath} + \underline{\jmath}$ and point R has position vector $\overrightarrow{OR} = 3\underline{\imath} - 2\underline{\jmath} - 2\underline{k}$. Find the magnitude of $\angle PQR$. Answer correct to one decimal place.

(b) (i) Show that
$$(1-3i)^2 = -8-6i$$
.

(ii) Hence or otherwise solve the equation:
$$2z^2 - 8z + (12 + 3i) = 0$$
.

(c) If
$$T_1 = 8$$
, $T_2 = 20$ and $T_n = 4T_{n-1} - 4T_{n-2}$ for $n \ge 3$ show that:
 $T_n = (n+3)2^n$ for $n \ge 1$

(d) Find
$$|u + v|$$
 if $|u| = 6$, $|v| = 5$ and $|u \cdot v| = -4$.

(e) Use the substitution
$$t = \tan \frac{x}{2}$$
 to evaluate the following definite integral.
$$\int_0^{\frac{\pi}{2}} \frac{1}{3 - \cos x - 2\sin x} dx$$

Question 16 (14 marks)

Marks

- (a) The point *A* has position vector $\overrightarrow{OA} = 3\underline{\imath} + 2\underline{\jmath} 4\underline{k}$ relative to an origin *O*. **2** Find a unit vector parallel to \overrightarrow{OA} .
- (b) A particle of mass 30 kg is projected vertically upwards with an initial velocity of *u* metres per second. It experiences air resistance which is proportional to the square of its speed. Find the time taken for the particle to reach its maximum height.
- (c) Show that the inequality $x \ge \ln(1+x)$ is true for $x \ge -1$ using calculus.
- (d) Given vector u = 3i + mj + k where m is a real number. Find the value(s) of m:
 - (i) if the length of vector \underline{u} is 10.
 - (ii) if the vector \underline{u} makes an angle of $\cos^{-1}\left(\frac{1}{3}\right)$ with y axis.

End of paper

NSW Education Standards Authority

2020 HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Advanced Mathematics Extension 1 Mathematics Extension 2

REFERENCE SHEET

Measurement

Length

$$l = \frac{\theta}{360} \times 2\pi r$$

Area

$$A = \frac{\theta}{360} \times \pi r^2$$

$$A = \frac{h}{2} (a + b)$$

Surface area

$$A = 2\pi r^2 + 2\pi r h$$

$$A = 4\pi r^2$$

Volume

$$V = \frac{1}{3}Ah$$

$$V = \frac{4}{3}\pi r^3$$

Functions

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For
$$ax^3 + bx^2 + cx + d = 0$$
:

$$\alpha + \beta + \gamma = -\frac{b}{a}$$

$$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$$
and $\alpha\beta\gamma = -\frac{d}{a}$

Relations

$$(x-h)^2 + (y-k)^2 = r^2$$

Financial Mathematics

$$A = P(1+r)^n$$

Sequences and series

$$T_n = a + (n-1)d$$

$$S_n = \frac{n}{2} [2a + (n-1)d] = \frac{n}{2} (a+l)$$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r} = \frac{a(r^n-1)}{r-1}, r \neq 1$$

$$S = \frac{a}{1 - r}, |r| < 1$$

Logarithmic and Exponential Functions

$$\log_a a^x = x = a^{\log_a x}$$

$$\log_a x = \frac{\log_b x}{\log_b a}$$

$$a^x = e^{x \ln a}$$

Trigonometric Functions

$$\sin A = \frac{\text{opp}}{\text{hyp}}, \quad \cos A = \frac{\text{adj}}{\text{hyp}}, \quad \tan A = \frac{\text{opp}}{\text{adj}}$$

$$A = \frac{1}{2}ab\sin C$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$c^{2} = a^{2} + b^{2} - 2ab\cos C$$
$$\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$$

$$l = r\theta$$

$$A = \frac{1}{2}r^2\theta$$

Trigonometric identities

$$\sec A = \frac{1}{\cos A}, \cos A \neq 0$$

$$\csc A = \frac{1}{\sin A}, \sin A \neq 0$$

$$\cot A = \frac{\cos A}{\sin A}, \sin A \neq 0$$

$$\cos^2 x + \sin^2 x = 1$$

Compound angles

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$
If $t = \tan \frac{A}{2}$ then $\sin A = \frac{2t}{1+t^2}$

$$\cos A = \frac{1-t^2}{1+t^2}$$

$$\tan A = \frac{2t}{1-t^2}$$

$$\tan A = \frac{2t}{1 - t^2}$$

$$\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$$

$$\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$$

$$\sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)]$$

$$\cos A \sin B = \frac{1}{2} [\sin(A + B) - \sin(A - B)]$$

$$\sin^2 nx = \frac{1}{2} (1 - \cos 2nx)$$

$$\cos^2 nx = \frac{1}{2} (1 + \cos 2nx)$$

Statistical Analysis

$$z = \frac{x - \mu}{\sigma}$$
 An outlier is a score less than $Q_1 - 1.5 \times IQR$ or more than $Q_3 + 1.5 \times IQR$

Normal distribution

- approximately 68% of scores have z-scores between -1 and 1
- approximately 95% of scores have z-scores between –2 and 2
- approximately 99.7% of scores have z-scores between –3 and 3

$$E(X) = \mu$$

 $Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$

Probability

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$$

Continuous random variables

$$P(X \le x) = \int_{a}^{x} f(x) dx$$
$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

Binomial distribution

$$P(X = r) = {}^{n}C_{r}p^{r}(1 - p)^{n - r}$$

$$X \sim \text{Bin}(n, p)$$

$$\Rightarrow P(X = x)$$

$$= {n \choose x}p^{x}(1 - p)^{n - x}, x = 0, 1, ..., n$$

$$E(X) = np$$

$$Var(X) = np(1 - p)$$

Differential Calculus

Function

Derivative

$$y = f(x)^n$$

$$\frac{dy}{dx} = nf'(x)[f(x)]^{n-1}$$

$$y = uv$$

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$y = g(u)$$
 where $u = f(x)$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$y = \frac{u}{v}$$

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$y = \sin f(x)$$

$$\frac{dy}{dx} = f'(x)\cos f(x)$$

$$y = \cos f(x)$$

$$\frac{dy}{dx} = -f'(x)\sin f(x)$$

$$y = \tan f(x)$$

$$\frac{dy}{dx} = f'(x)\sec^2 f(x)$$

$$y = e^{f(x)}$$

$$\frac{dy}{dx} = f'(x)e^{f(x)}$$

$$y = \ln f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{f(x)}$$

$$y = a^{f(x)}$$

$$\frac{dy}{dx} = (\ln a)f'(x)a^{f(x)}$$

$$y = \log_a f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{(\ln a) f(x)}$$

$$y = \sin^{-1} f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$$

$$y = \cos^{-1} f(x)$$

$$\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}} \qquad \int_a^b f(x) dx$$

$$y = \tan^{-1} f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2}$$

Integral Calculus

$$\int f'(x)[f(x)]^n dx = \frac{1}{n+1}[f(x)]^{n+1} + c$$

where
$$n \neq -1$$

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\int f'(x)\sin f(x)dx = -\cos f(x) + c$$

$$\int f'(x)\cos f(x)dx = \sin f(x) + c$$

$$\int f'(x)\sec^2 f(x)dx = \tan f(x) + c$$

$$\int f'(x)e^{f(x)}dx = e^{f(x)} + c$$

$$\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + c$$

$$\frac{dy}{dx} = f'(x)e^{f(x)}$$

$$\int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$$

$$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} + c$$

$$\int \frac{f'(x)}{a^2 + [f(x)]^2} dx = \frac{1}{a} \tan^{-1} \frac{f(x)}{a} + c$$

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

$$\int_{a}^{b} f(x) dx$$

$$\approx \frac{b-a}{2n} \Big\{ f(a) + f(b) + 2 \Big[f(x_1) + \dots + f(x_{n-1}) \Big] \Big\}$$

where $a = x_0$ and $b = x_n$

Combinatorics

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

$${\binom{n}{r}} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(x+a)^{n} = x^{n} + {\binom{n}{1}}x^{n-1}a + \dots + {\binom{n}{r}}x^{n-r}a^{r} + \dots + a^{n}$$

Vectors

$$\begin{split} \left| \stackrel{\cdot}{u} \right| &= \left| x \stackrel{\cdot}{i} + y \stackrel{\cdot}{j} \right| = \sqrt{x^2 + y^2} \\ \underbrace{u \cdot y} &= \left| \stackrel{\cdot}{u} \right| \left| \stackrel{\cdot}{y} \right| \cos \theta = x_1 x_2 + y_1 y_2 \,, \\ \text{where } \stackrel{\cdot}{u} &= x_1 \stackrel{\cdot}{i} + y_1 \stackrel{\cdot}{j} \\ \text{and } y &= x_2 \stackrel{\cdot}{i} + y_2 \stackrel{\cdot}{j} \\ \underbrace{r} &= \stackrel{\cdot}{a} + \lambda \stackrel{\cdot}{b} \end{split}$$

Complex Numbers

$$z = a + ib = r(\cos\theta + i\sin\theta)$$

$$= re^{i\theta}$$

$$[r(\cos\theta + i\sin\theta)]^n = r^n(\cos n\theta + i\sin n\theta)$$

$$= r^n e^{in\theta}$$

Mechanics

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$
$$x = a\cos(nt + \alpha) + c$$
$$x = a\sin(nt + \alpha) + c$$
$$\ddot{x} = -n^2(x - c)$$