APRAKSTOŠĀ STATISTIKA

Vidējais aritmētiskais: ————

$$\overline{x} = \frac{\sum i = 1nx_i}{0}$$

— Mediānas pozīcija: — — — —

$$\frac{n+1}{2}$$

Ģeometriskais vidējais:

$$\sqrt[n]{x_1 * x_2 * \cdots * x_n}$$

$$range(X) = X_{max} - X_{min}$$

Dispersija (variance) izlasei: -

$$s^{2} = VARIANCE.S(X)$$

$$s^{2} = \frac{\sum_{i=0}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

——— Dispersija (variance) ģenerālkopai: ——

$$\sigma^{2} = VARIANCE.P(X)$$

$$\sigma^{2} = \frac{\sum_{i=0}^{n} (x_{i} - \overline{x})^{2}}{N}$$

Standartnovirze (standartkļūda) izlasei:

$$s = STDEV.S(X)$$
$$s = \sqrt{s^2}$$

— Standartnovirze (standartkļūda) ģenerālkopai: —

$$s = STDEV.P(X)$$
$$\sigma = \sqrt{\sigma^2}$$

— Standartizētā vērtība (Z-score): —

$$Z = \frac{x - \overline{x}}{s}$$
$$Z = \frac{x - \overline{x}}{\sigma}$$

Asimetrijas koeficients: —

Nobīde pa labi	Simetrija	Nobīde pa kreisi
Mediāna – X _{min}	Mediāna – X _{min}	Mediāna – X _{min}
>	≈	<
X _{max} - Mediāna n	X _{max} – Mediāna	X _{max} – Mediāna
$Q_1 - X_{min}$	$Q_1 - X_{min}$	$Q_1 - X_{min}$
>	≈	<
$X_{max} - Q_3$	$X_{max} - Q_3$	$X_{max} - Q_3$
Mediāna − Q ₁	Mediāna – Q ₁	Mediāna – Q₁
>	≈	<
Q ₃ – Mediāna	Q ₃ – Mediāna	Q ₃ – Mediāna

If we have an ordered dataset $x_1, x_2, ..., x_n$, we can interpolate between data points to find the p pth empirical quantile if x_i is in the i/(n+1) quantile. If we denote the integer part of a number a by $\lfloor a \rfloor$, then the empirical quantile function is given by,

$$q(p/4) = x_k + \alpha(x_{k+1} - x_k)$$
$$k = \lfloor p(n+1)/4 \rfloor$$
$$\alpha = p(n+1)/4 - \lfloor p(n+1)/4 \rfloor$$

To find the first, second, and third quartiles of the dataset we would evaluate q(0.25), q(0.5)q(0.5), and q(0.75)q(0.75) respectively.

Starpkvartiļu rangs (IQR):

$$IQR = Q_3 - Q_1$$

— Kastes diagramma (Box plot) ———

— Kovariācijas koeficients —

Example:

$$cov(X,Y) = \frac{\sum_{i=0}^{n} (X_i - \overline{X})(Y_i - \overline{Y_i})}{n-1}$$