Metamorphic Testing of Cross-Language Sentiment Analysis

Boyang

October 26, 2018

Contents

1	Introduction	1
2	Test Data	2
3	Normalization	2
4	Assessing Machine translation tool quality 4.1 Method	2 2 3
5	Assessing Sentiment analysis tool quality 5.1 Chinese Sentiment analysis quality	4 4 6
6	Method for better compound mode for sentiment analysis tool and machine translation tool	8
	Hello World!	

1 Introduction

The purpose of this research is assessing the quality of translation tool and quality of sentiment analysis tool. Finally, we will achieve a method, finding which translation tool conbining with which sentiment analysis tool together, for getting better sentiment analysis result. Currently, most of sentiment analysis

tool only support English. We want to find a method for let non-English people using English Sentiment Analysis tool with Machine translation tool, analysis their non-English text. In the lit review I will include Metamorphic Testing Method and Machine translated. Currently, I have not found

2 Test Data

Total have 46180 movies reviews.

Ranking	Number of Test Data	Percentage
Ranking 10	7353	15.92 %
Ramking 20	11209	24.27~%
Ranking 30	16223	35.13~%
Ranking 40	7663	16.59 %
Ranking 50	3732	8.08~%

3 Normalization

v = (v-min)/(max-min) * (newmax-newmin) + newmin

4 Assessing Machine translation tool quality

4.1 Method

1. Compare correlation coefficient between Chinese sentiment analysis results and English sentiment analysis results by each

- (a) Using Google, Baidu, Yandex translation tools, translated original Chinese data to English data
- (b) Using same sentiment analysis tool analysis original chinese dataset and translated dataset
- (c) Calculate correlation coefficient between Chinese sentiment analysis results and English sentiment analysis results
- (d) Compare correlation coefficient values. if value is bigger than others, we can say this translation tool, which use in original dataset to English dataset, can achieve better results than others.

4.1.1 Result

• Base on Google sentiment analysis tool

	Google Score for Google translated data	Google Score for Yandex trans
Gooogle Score for origin data	0.512 (Pearson Correlations) p-value: 0.0	0.506 (Pearson Correlations) p
Google Score for origin data	0.381 (Kendall Correlations) p-value: 0.0	0.375 (Kendall Correlations) p
Google Score for origin data	0.504 (Spearman Correlations) p-value: 0.0	0.497 (Spearman Correlations)
Gooogle Score for origin data	0.512 (Point Biserial) p-value: 0.0	0.506 (Point Biserial) p-value:

- Google translation tool quality Yandex translation tool quality Baidu translation tool quality
- Base on Baidu sentiment analysis tool

	Baidu Positive Probability for Google translated data	Baidu I
Baidu Positive Probability for origin data	0.288 (Pearson Correlations) p-value: 0.0	0.280 (1
Baidu Positive Probability for origin data	0.188 (Kendall Correlations) p-value: 0.0	0.174 (I
Baidu Positive Probability for origin data	0.271 (Spearman Correlations) p-value: 0.0	0.249 (8)
Baidu Positive Probability for origin data	0.288 (Point Biserial) p-value: 0.0	0.280 (1

 Google translation tool quality Yandex translation tool quality Baidu translation tool quality

- 1. Compare correlation coefficient between sentiment analysis results and user rating
 - (a) Divide the sentiment analysis scores between [-1,1] into 5 regions, which are 10, 20, 30, 40, 50. Each interval is 0.4.

regions	scope
10	[-1, -0.6]
20	(-0.6, -0.2]
30	(-0.2, 0.2)
40	[0.2, 0.6)
50	[0.6, 1]

- 1. calculate correlation coefficient between regions and user rating
- Base on Google sentiment analysis tool

	Google score for Google Translated data	Google score for Yandex Translated data	(
ranking	0.3639 (pearson Correlation) p-value: 0.0	0.3621 (pearson correlation) p-value: 0.0	(
ranking	0.3645 (spearman correlation) p-value: 0.0	0.3623 (spearman correlation) p-value: 0.0	(
ranking	0.3689 (point biserial correlation) p-value: 0.0	0.3621 (point biserial correlation) p-value: 0.0	C
ranking	0.3009 (kendall correlation) p-value: 0.0	0.2999 (kendall correlation) p-value: 0.0	(

• Base on Baidu sentiment analysis tool

Baidu sentiment score (Google standard) for Google Translated data	Baidu sentiment score (Go
0.1638 (pearson correlation) p-value: 0.0	0.1645 (pearson correlation
0.1687 (spearman correlation) p-value: 0.0	0.1682 (spearman correlati
0.1638 (point biserial correlation) p-value: 0.0	0.1645 (point biserial corre
0.1455 (kendall correlation) p-value: 0.0	0.1447 (kendall correlation
	0.1638 (pearson correlation) p-value: 0.0 0.1687 (spearman correlation) p-value: 0.0 0.1638 (point biserial correlation) p-value: 0.0

- 1. draw heatmap
 - (a) Divide the sentiment analysis scores between [-1, 1] into 20 regions, $0, 1, 2, 3 \dots 18, 19$. Each interval is 0.1

and then calculate the correlation and draw the heatmaps between the user rating (i.e., 10, 20, , 50) and sentiment analysis scores (for heatmap, use higher resolutions by dividing the region [-1,1] into 20 subregions to give a 20x5 heatmap).

5 Assessing Sentiment analysis tool quality

5.1 Chinese Sentiment analysis quality

	Baidu Chinese sentiment analysis tool's score (Google Standard)	Google Chinese sentiment anal
ranking	0.3552 (pearson Correlation) p-value: 0.0	0.3897 (pearson correlation) p-
ranking	0.3419 (spearman correlation) p-value: 0.0	0.3982 (spearman correlation)
ranking	0.3552 (point biserial) p-value: 0.0	0.3897 (point biserial correlation
ranking	0.2842 (kendall correlation) p-value: 0.0	0.3281 (kendall correlation) p-

linear regression

liner regression

slope

slope

5.2 Google Chinese sentiment analysis boxplot

 $\label{language} $$ \ \ = Python, label=\ , caption=\ , captionpos=b, numbers=none\ import\ numpy as\ np\ from\ open$ $pyxl\ import\ load_workbookimportmatplotlibasmpl$

```
agg backend is used to create plot as a .png file mpl.use('agg')
        import matplotlib.pyplot as plt
        def drawBoxPlots(title, data_to_nlot, ax):
        Create the boxplot bp = ax.boxplot(data<sub>t</sub>o_nlot, patch<sub>a</sub>rtist = True, showmeans =
True) change out line color, fill color and line width of the boxes for box in bp ['boxes']:
change out line color box. set (color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face color = '7570b3', line width = 2) change fill color box. set (face co
1b9e77')
        change color and linewidth of the whiskers for whisker in bp['whiskers']:
whisker.set(color='7570b3', linewidth=2)
        change color and linewidth of the caps for cap in bp['caps']: cap.set(color='7570b3',
linewidth=2)
        change color and linewidth of the medians for median in bp['medians']: me-
dian.set(color='b2df8a', linewidth=2)
        change the style of fliers and their fill for flier in bp['fliers']: flier.set(marker='o',
markerfacecolor='red', markersize=5, markeredgewidth=0.0, alpha=0.5)
        for mean in bp['means']: mean.set(marker = 's', markerfacecolor='red')
        Custom x-axis labels ax.set<sub>x</sub>ticklabels(['Ranking10','Ranking20','Ranking30','Ranking40','Ranking50']
        Create data "'np.random.seed(10) ranking10 = np.random.normal(100, 10,
200) ranking 20 = \text{np.random.normal}(80, 30, 200) ranking 30 = \text{np.random.normal}(90, 30, 200)
20, 200) ranking40 = np.random.normal(70, 25, 200) ranking50 = np.random.normal(70,
25, 200) "' ranking10 = np.array([]) ranking20 = np.array([]) ranking30 =
\operatorname{np.array}([]) \operatorname{ranking} 40 = \operatorname{np.array}([]) \operatorname{ranking} 50 = \operatorname{np.array}([]) \operatorname{wb} = \operatorname{load}_w \operatorname{orkbook}(filename = '
good.xlsx', read_only = True)ws = wb['Sheet1']
        for row in range(1, 46181): for row in range(1, 10): ranking = ws.cell(row=row,
column=20).value) value = ws.cell(row=row, column=17) if ranking == 10:
ranking10 = np.append( ranking10 , value) elif ranking == 20: ranking20
= np.append (ranking20, value) elif ranking == 30: ranking30 = np.append
(ranking30, value) elif ranking == 40: ranking40 = np.append (ranking40,
value) elif ranking == 50: ranking50 = np.append (ranking50, value) "' rank-
ing20.append([0]) ranking30.append([1]) ranking40.append([3]) ranking50.append([4])
" combine these different collections into a list data_t o_p lot = [ranking 10, ranking 20, ranking 30, ranking 40, ranking 
        fig, axes = plt.subplots(nrows=2, ncols=4, figsize=(9, 4)) Create a fig-
ure instance fig = plt.figure(1, figsize=(9, 6)) Create an axes instance ax =
fig.add_subplot(111)addpatch_artist = Trueoptiontoax.boxplot()togetfillcolor
        drawBoxPlots("google chinese sentiment analysis", <math>data_to_nlot, ax)Savethe figure fig. savefig("google Chine
tight'
        File "<stdin>", line 1, in <module> File "/tmp/babel-MzHCZL/python-
Me3jED", line 64 ranking = ws.cell(row=row, column=20).value) ^ Syntax-
Error: invalid syntax]] File "<stdin>", line 1, in <module> File "/tmp/babel-
```

MzHCZL/python-foVeeD", line 64 ranking = ws.cell(row=row, column=3).value) ^ SyntaxError: invalid syntax]] [[Python 3.6.4 (default, Jan 5 2018, 02:35:40) [GCC 7.2.1 20171224] on linux Type "help", "copyright", "credits" or "license" for more information. Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/tmp/babel-MzHCZL/python-kKjo78", line 64 ranking = ws.cell(row=row, column=3).value) ^ SyntaxError: invalid syntax python.el: native completion setup loaded]] File "<stdin>", line 1, in <module> File

"/tmp/babel-Xbwqve/python-4683rz", line 63, in <module> print (ws.cell(row=row, column=7).value) File "/usr/lib/python3.6/site-packages/openpyxl/worksheet/worksheet.py", line 307, in cell raise ValueError("Row or column values must be at least 1") ValueError: Row or column values must be at least 1]] [[Python 3.6.4 (default, Jan 5 2018, 02:35:40) [GCC 7.2.1 20171224] on linux Type "help", "copyright", "credits" or "license" for more information. Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/tmp/babel-Xbwqve/python-3h66Xh", line 63, in <module> print (ws.cell(row=row, column=7).value) File "/usr/lib/python3.6/site-packages/openpyxl/worksheet/worksheet.py", line 306, in cell if row < 1 or column < 1: TypeError: '<' not supported between instances of 'tuple' and 'int' python.el: native completion setup loaded]]

chinese origin data

Google translated data baidu tra

Linear regression slope

6 Method for better compound mode for sentiment analysis tool and machine translation tool