ANÁLISIS PARA LA OPTIMIZACIÓN

Monte Carlo Needles y Dartboard

Índice

1. Resumen	5
2. Introducción	6
3. Marco conceptual	7
3.1. Teoría de los algoritmos	
3.1.1. Monte Carlo Needles	7
3.1.2. Dartboard	7
3.2 Diferencias entre las O's para los comandos de compilación	8
3.2.1. Nivel de optimización -O1	8
3.2.2. Nivel de optimización -O2	8
3.2.3. Nivel de optimización -O3	9
3.3. Características de las máquinas	10
3.3.1 Máquina de Valentín	10
3.3.2. Máquina de Leidy	10
3.3. Desarrollo	10
3.3.1. Implementación Secuencial	10
3.3.2. Implementación con Hilos (Pthread)	10
3.3.3. Implementación con Forks (Procesos)	11
3.3.4. Optimización por O1, O2 y O3.	11
4. Pruebas	12
4.1. Pruebas Valentin	12
4.1.1. Monte Carlo Needles	12
4.1.1.1. Secuencial	12
4.1.1.2. Hilos	12
4.1.1.2.1 Dos hilos.	12
4.1.1.2.2 Cuatro hilos.	13
4.1.1.2.3. Ocho hilos.	13
4.1.1.2.4. Dieciséis hilos.	14
4.1.1.3. Procesos	14
4.1.1.3.1. Dos procesos.	14
4.1.1.3.2. Cuatro procesos.	15
4.1.1.3.3. Ocho procesos.	15
4.1.1.3.4. Dieciséis procesos.	16
4.1.1.4 Optimización con O3	16
4.1.2. Dartboard	16
4.1.2.1. Secuencial	16
4.1.2.2. Hilos	17
4.1.2.2.1 Dos hilos.	17
4.1.2.2.2 Cuatro hilos.	17
4.1.2.2.3. Ocho hilos.	18
4.1.2.2.4. Dieciséis hilos.	18
4.1.2.3. Procesos	19
4.1.2.3.1. Dos procesos.	19

4.1.2.3.2. Cuatro procesos.	19
4.1.2.3.3. Ocho procesos.	20
4.1.2.3.4. Dieciséis procesos.	20
4.1.2.4. Optimización con O2	21
4.2. Pruebas Leidy	21
4.2.1. Monte Carlo Needles	21
4.2.1.1. Secuencial	21
4.2.1.2. Hilos	22
4.2.1.2.1 Dos hilos.	22
4.2.1.2.2 Cuatro hilos.	22
4.2.1.2.3. Ocho hilos.	23
4.2.1.2.4. Dieciséis hilos.	23
4.2.1.3. Procesos	24
4.2.1.3.1. Dos procesos.	24
4.2.1.3.2. Cuatro procesos.	24
4.2.1.3.3. Ocho procesos.	25
4.2.1.3.4. Dieciséis procesos.	25
4.2.1.4. Optimización con O3	26
4.2.1. Dartboard	26
4.2.2.1. Secuencial	26
4.2.2.2. Hilos	27
4.2.2.2.1 Dos hilos.	27
4.2.2.2.2 Cuatro hilos.	27
4.2.2.2.3. Ocho hilos.	28
4.2.2.2.4. Dieciséis hilos.	28
4.2.2.3. Procesos	29
4.2.2.3.1. Dos procesos.	29
4.2.2.3.2. Cuatro procesos.	29
4.2.2.3.3. Ocho procesos.	30
4.2.2.3.4. Dieciséis procesos.	30
4.2.2.4. Optimización por O3	31
5. Resultados	32
5.1. Máquina Valentin	32
5.1.1. Monte Carlo Needles	32
5.1.1.1. Comparación entre hilos.	32
5.1.1.2. Comparación entre procesos.	33
5.1.1.3 Comparación entre los mejores de hilos y procesos con O3.	33
5.1.2. Dartboard	33
5.1.2.1. Comparación entre hilos.	34
5.1.2.2. Comparación entre procesos.	34
5.1.2.3 Comparación entre los mejores de hilos y procesos con O2.	35
5.2. Máquina Leidy	35
5.2.1. Monte Carlo Needles	35
5.2.1.1. Comparación entre hilos.	35

5.2.1.2. Comparación entre procesos.	36
5.2.1.3 Comparación entre los mejores de hilos y procesos con O3.	36
5.2.2. Dartboard	36
5.2.2.1. Comparación entre hilos.	37
5.2.2.2. Comparación entre procesos.	37
5.2.2.3 Comparación entre los mejores de hilos y procesos con O3.	38
5. Conclusiones	39
7. Bibliografía	40

1. Resumen

El presente informe aborda la implementación y comparación de tres enfoques diferentes para calcular el valor de π (pi) utilizando los algoritmos de Monte Carlo Needles y Dartboard. Se llevaron a cabo implementaciones secuenciales, usando hilos (Pthread), con forks (procesos) y optimizando por compilación en un entorno Linux.o

2. Introducción

En la era actual de la informática y la computación de alto rendimiento, la búsqueda constante de soluciones eficientes es esencial para abordar problemas computacionales complejos. La estimación del valor de π (pi) es un problema clásico en matemáticas y ciencias de la computación que ha sido abordado de diversas formas a lo largo de la historia. En este informe, se explora la aplicación de técnicas de paralelización en el contexto de dos algoritmos de estimación de π , Monte Carlo Needles y Dartboard.

El objetivo principal de este estudio es analizar y comparar cuatro enfoques diferentes para calcular π : una implementación secuencial estándar, una implementación basada en hilos (utilizando la librería Pthread), una implementación con forks (procesos) y una optimización por compilación en un entorno Linux. Estos algoritmos aprovechan la aleatoriedad y la estadística para obtener aproximaciones numéricas del valor de π .

A medida que los sistemas computacionales modernos incorporan múltiples núcleos de CPU y la paralelización se convierte en una estrategia clave para la mejora del rendimiento, es fundamental comprender cómo se pueden aplicar estas técnicas a problemas matemáticos complejos como la estimación de π . Este informe proporcionará una visión detallada de las implementaciones y resultados, permitiendo una evaluación crítica de los beneficios y desafíos asociados con cada enfoque.

3. Marco conceptual

3.1. Teoría de los algoritmos

3.1.1. Monte Carlo Needles

Durante la Guerra Civil Americana, el Capitán C.O. Fox se encontraba recuperándose de una herida en un hospital militar. Para pasar el tiempo, arrojó una serie de agujas idénticas de manera aleatoria sobre un tablero en el que previamente había dibujado una serie de líneas paralelas, separadas por la longitud de una aguja. Contó el número de lanzamientos y el número de aciertos, es decir, las instancias en las que una aguja tocó o intersectó una línea. Después de 1100 lanzamientos, el Capitán había determinado con dos decimales. ¿Cómo es posible? En primer lugar, parece que fue el Conde de Buffon (1707-1788) quien examinó este tipo de experimento y en cuyo honor ahora se conoce como el problema de la aguja de Buffon. En 1777, Buffon demostró que la relación entre los aciertos y los lanzamientos era de 2:pi, o dicho de otra manera, que la probabilidad de que una aguja lanzada al azar sobre el área terminara descansando sobre una de las líneas era de aproximadamente 2/pi ≈ 63.7%. Con este conocimiento, Fox pudo calcular pi al duplicar el número de lanzamientos y dividirlo por el número de aciertos.

Lo interesante del problema de la aguja es que establece una conexión entre el "pi geométrico" y el área muy diferente de las probabilidades. Existes otras relaciones similares entre π y la probabilidad, a partir de las cuales se derivan otros métodos para calcular pi. Estos métodos se conocen de manera informativa como métodos de Monte Carlo.

3.1.2. Dartboard

Consideremos el área del tablero de dardos circular. Tiene un radio de uno, por lo que su área es π . El área del trozo cuadrado de madera es 4 (2 x 2). La proporción del área del círculo al área del cuadrado es π /4. Si lanzamos un montón de dardos y los dejamos caer al azar sobre

el trozo cuadrado de madera, algunos también caerán en el tablero de dardos. La cantidad de dardos que caen en el tablero de dardos, dividida por la cantidad total que lanzamos, estará en la proporción descrita anteriormente ($\pi/4$). Multiplicamos por 4 y obtenemos π .

3.2 Diferencias entre las O's para los comandos de compilación

3.2.1. Nivel de optimización -O1

El nivel -O1 habilita las optimizaciones fundamentales en el compilador. Este nivel de optimización proporciona una buena experiencia de depuración con una mejor calidad de código que -O0. Además, se mejora el uso de la pila en comparación con -O0. Arm recomienda esta opción para una buena experiencia de depuración.

Las diferencias al utilizar -O1, en comparación con -O0, son las siguientes:

- Se habilitan optimizaciones que pueden reducir la fidelidad de la información de depuración.
- Se habilita la inserción de código (inlining), lo que significa que las trazas de retroceso (backtraces) pueden no proporcionar la pila de activaciones de funciones abiertas que podría esperar al leer el código fuente.
- Si el resultado no es necesario, una función sin efectos secundarios podría no llamarse en el lugar esperado o podría omitirse.
- Los valores de las variables pueden no estar disponibles dentro de su alcance después de que ya no se utilicen. Por ejemplo, su ubicación en la pila podría haber sido reutilizada.

3.2.2. Nivel de optimización -O2

El nivel -O2 es una optimización superior en términos de rendimiento en comparación con -O1. Agrega algunas nuevas optimizaciones y cambia las heurísticas para las optimizaciones en comparación con -O1. Este nivel es el primer nivel de optimización en el que el compilador podría generar automáticamente instrucciones vectoriales. También degrada la

experiencia de depuración y podría resultar en un aumento en el tamaño del código en comparación con -O1.

Las diferencias al utilizar -O2 en comparación con -O1 son las siguientes:

- El umbral en el que el compilador considera rentable insertar código en línea en un punto de llamada podría aumentar.
- La cantidad de desenrollado de bucles que se realiza podría aumentar.
- Se podrían generar instrucciones vectoriales para bucles simples y para secuencias correlacionadas de operaciones escalares independientes.
- La creación de instrucciones vectoriales se puede inhibir con la opción de línea de comandos de armclang -fno-vectorize.

3.2.3. Nivel de optimización -03

El nivel -O3 es una optimización superior en términos de rendimiento en comparación con -O2. Este nivel de optimización habilita optimizaciones que requieren un análisis y recursos de tiempo de compilación significativos y cambia las heurísticas para las optimizaciones en comparación con -O2. -O3 instruye al compilador a optimizar el rendimiento del código generado sin tener en cuenta el tamaño del código generado, lo que podría resultar en un aumento en el tamaño del código. También degrada la experiencia de depuración en comparación con -O2.

Las diferencias al utilizar -O3 en comparación con -O2 son las siguientes:

- El umbral en el que el compilador considera rentable insertar código en línea en un punto de llamada aumenta.
- La cantidad de desenrollado de bucles que se realiza aumenta.
- Se habilitan optimizaciones de instrucciones más agresivas en etapas avanzadas del proceso de compilación.

3.3. Características de las máquinas

3.3.1 Máquina de Valentín

Característica	Especificación
Procesador	Procesador Intel(R) Core(TM) i5-1035G1 CPU @ 1.00GHz, 1190 Mhz,
Sistema Operativo	ubuntu-22.04.3-live-server-amd64
Número de núcleos	4 procesadores principales, 8 procesadores lógicos

3.3.2. Máquina de Leidy

Característica	Especificación
Procesador	AMD® Ryzen 5 3450u with radeon vega mobile gfx \times 8
Sistema Operativo	Ubuntu 20.04.6 LTS
Número de núcleos	N.° de núcleos de CPU: 4 N.° de subprocesos: 8

3.3. Desarrollo

3.3.1. Implementación Secuencial

- Se desarrollaron versiones secuenciales de los algoritmos de Monte Carlo Needles y Dartboard.
- Estas implementaciones se ejecutaron sin paralelismo y se utilizaron como punto de referencia para la comparación.

3.3.2. Implementación con Hilos (Pthread)

- Se diseñaron versiones paralelizadas de los algoritmos utilizando la librería Pthread para gestionar hilos.
- Se analizó y se aplicó paralelismo en las partes adecuadas de los algoritmos para mejorar el rendimiento.

• Se llevaron a cabo pruebas para evaluar el impacto del paralelismo en el cálculo de π .

3.3.3. Implementación con Forks (Procesos)

- Se realizaron implementaciones utilizando forks para crear procesos independientes.
- Se estudió cómo dividir el trabajo entre procesos y se gestionó la comunicación entre ellos.
- Se ejecutaron pruebas para comparar el rendimiento con las implementaciones secuenciales y basadas en hilos.

3.3.4. Optimización por O1, O2 y O3.

- Se determinó la ventaja de cada O para la optimización de la compilación, teniendo en cuenta las características de cada máquina y el análisis de cada algoritmo.
- Se compiló la versión secuencial de cada algoritmo con las O determinadas como se verá en las tablas en la sección de pruebas.

4. Pruebas

4.1. Pruebas Valentin

4.1.1. Monte Carlo Needles

4.1.1.1. Secuencial

Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,000232	0,004203	0,826938	13,810869	22,837602
2	0,000235	0,005992	0,882839	14,140601	23,161637
3	0,000342	0,005799	0,820258	14,089547	22,159448
4	0,000485	0,005318	0,843579	13,397275	22,346419
5	0,000331	0,005201	0,841217	14,046221	22,619379
6	0,000240	0,005159	0,837215	13,838018	22,431387
7	0,000234	0,004606	0,833834	13,719032	21,841383
8	0,000232	0,003865	0,862915	13,864778	22,231288
9	0,000340	0,004376	0,817767	14,129715	22,399374
10	0,000330	0,006505	0,830583	13,867679	21,611876
Promedio	0,0003001	0,0051024	0,8397145	13,8903735	22,363979

4.1.1.2. Hilos

4.1.1.2.1 Dos hilos.

2 Hilos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,001689	0,001965	0,263531	4,048886	6,927718
2	0,000709	0,001727	0,269507	4,315522	6,369438
3	0,000554	0,001772	0,272408	4,058051	6,902382
4	0,000735	0,002438	0,269554	4,412254	6,84988
5	0,000851	0,004171	0,256743	4,347781	6,997555
6	0,000558	0,002252	0,265719	4,299843	6,319669
7	0,000862	0,001875	0,26699	4,235162	6,417974
8	0,000533	0,001795	0,255959	4,112227	6,631796
9	0,000557	0,001941	0,27026	4,379516	6,34506

10	0,000576	0,001774	0,272229	4,225576	6,439239
Promedio	0,0007624	0,002171	0,26629	4,2434818	6,6200711
Speedup	0,3936253935	2,350253339	3,153383529	3,273343484	3,378208325

4.1.1.2.2 Cuatro hilos.

4 Hilos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,001157	0,001729	0,234781	4,052309	6,962227
2	0,000817	0,001896	0,26432	4,187259	6,391955
3	0,00058	0,00239	0,249073	4,174011	6,251042
4	0,000598	0,001773	0,262407	4,076809	6,217483
5	0,00066	0,001818	0,246003	4,116253	6,390405
6	0,000587	0,001763	0,249787	4,012401	5,926186
7	0,000629	0,0018	0,259702	3,976417	6,408109
8	0,000556	0,001863	0,270488	3,705159	6,14823
9	0,000584	0,002169	0,248701	3,984224	6,087858
10	0,000582	0,001809	0,261135	4,337172	6,080856
Promedio	0,000675	0,001901	0,2546397	4,0622014	6,2864351
Speedup	0,4445925926	2,684061021	3,297657435	3,419420194	3,557497842

4.1.1.2.3. Ocho hilos.

8 Hilos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,002547	0,003087	0,233152	4,076145	5,839545
2	0,00119	0,002824	0,229451	3,626677	6,018597
3	0,002156	0,003973	0,229335	4,004115	6,123874
4	0,001492	0,002559	0,231489	3,590219	5,918459
5	0,001952	0,002191	0,243618	3,78546	6,028154
6	0,001228	0,002215	0,337472	3,845635	5,84325
7	0,001072	0,001975	0,239136	3,836068	5,814001
8	0,001714	0,002317	0,248995	3,832993	5,828688
9	0,001099	0,002405	0,253765	3,586829	5,923141
10	0,001066	0,002429	0,194597	3,780063	5,891293
Promedio	0,0015516	0,0025975	0,244101	3,7964204	5,9229002

Speedup 0	0,1934132508	1,964350337	3,440028922	3,658808045	3,775849423	ı
-----------	--------------	-------------	-------------	-------------	-------------	---

4.1.1.2.4. Dieciséis hilos.

16 Hilos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,002552	0,004368	0,233601	4,105833	5,538748
2	0,002098	0,002346	0,229824	3,579286	5,977885
3	0,001566	0,004325	0,221951	3,73441	5,646214
4	0,00162	0,00289	0,227719	3,741586	5,50369
5	0,001585	0,005578	0,200341	3,350157	5,478501
6	0,002058	0,003423	0,223686	3,518645	5,697726
7	0,004756	0,004102	0,223506	3,852384	5,725535
8	0,00162	0,003261	0,23432	3,498075	6,013066
9	0,001797	0,002573	0,240828	3,517439	5,868509
10	0,002358	0,00276	0,218147	3,561181	5,642951
Promedio	0,002201	0,0035626	0,2253923	3,6458996	5,7092825
Speedup	0,1363471149	1,432212429	3,725568708	3,809861769	3,917126066

4.1.1.3. Procesos

4.1.1.3.1. Dos procesos.

2 Procesos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,000443	0,000468	0,000358	0,000178	0,000233
2	0,000249	0,000213	0,000441	0,000251	0,000502
3	0,000276	0,000271	0,000278	0,000265	0,000534
4	0,000224	0,000243	0,000236	0,000232	0,000229
5	0,00024	0,000212	0,001207	0,000207	0,000217
6	0,000196	0,000224	0,000198	0,000427	0,000241
7	0,00028	0,000559	0,000427	0,000392	0,000189
8	0,000192	0,000207	0,000199	0,000296	0,000182
9	0,000269	0,000255	0,000239	0,000276	0,00021
10	0,00021	0,000198	0,000559	0,000581	0,000231
Promedio	0,0002579	0,000285	0,0004142	0,0003105	0,0002768

Speedup	1,163629314	17,90315789	2027,316514	44735,50242	80794,7229

4.1.1.3.2. Cuatro procesos.

4 Procesos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,00066	0,00056	0,000441	0,00043	0,000694
2	0,000821	0,000774	0,000491	0,000405	0,000911
3	0,000534	0,000829	0,000758	0,001373	0,000368
4	0,000614	0,000391	0,000532	0,000528	0,000508
5	0,000696	0,000709	0,000541	0,000536	0,000529
6	0,000592	0,000515	0,00087	0,000488	0,000415
7	0,000388	0,000375	0,000535	0,000434	0,000362
8	0,000483	0,000399	0,000489	0,000389	0,000366
9	0,000458	0,001047	0,000413	0,000466	0,000389
10	0,000625	0,000441	0,000564	0,000586	0,000381
Promedio	0,0005871	0,000604	0,0005634	0,0005635	0,0004923
Speedup	0,5111565321	8,447682119	1490,441072	24650,1748	45427,54276

4.1.1.3.3. Ocho procesos.

8 Procesos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,001038	0,001981	0,00071	0,001067	0,000848
2	0,000837	0,001581	0,000887	0,000954	0,001299
3	0,001273	0,000905	0,000928	0,000785	0,000759
4	0,000741	0,000796	0,00077	0,001193	0,000937
5	0,000791	0,002048	0,000915	0,000943	0,000945
6	0,001179	0,001201	0,001424	0,000703	0,000815
7	0,00112	0,000791	0,001021	0,002508	0,001029
8	0,000735	0,000736	0,000984	0,001082	0,000734
9	0,000736	0,000701	0,000949	0,002906	0,001012
10	0,000739	0,000744	0,00073	0,001063	0,000748
Promedio	0,0009189	0,0011484	0,0009318	0,0013204	0,0009126
Speedup	0,3265861356	4,443051202	901,1746083	10519,8224	24505,7849

4.1.1.3.4. Dieciséis procesos.

16 Procesos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,005007	0,003422	0,001901	0,001599	0,001465
2	0,001852	0,001429	0,001407	0,00153	0,00265
3	0,002122	0,002112	0,001667	0,002813	0,001416
4	0,001678	0,002172	0,001622	0,001633	0,001715
5	0,00148	0,00227	0,00195	0,003801	0,001891
6	0,002168	0,001773	0,00818	0,00183	0,00156
7	0,001466	0,001767	0,002266	0,007539	0,001537
8	0,001928	0,004546	0,001637	0,002673	0,002671
9	0,001493	0,001498	0,002625	0,006658	0,001786
10	0,002592	0,002233	0,004034	0,005047	0,001849
Promedio	0,0021786	0,0023222	0,0027289	0,0035123	0,001854
Speedup	0,1377490131	2,197226768	307,7117153	3954,779916	12062,55626

4.1.1.4 Optimización con O3

Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,000000	0,000000	0,171513	2,868822	4,755857
2	0,000000	0,000000	0,159755	3,026149	4,827992
3	0,000000	0,000000	0,190516	2,960446	4,648255
4	0,000000	0,000000	0,183066	2,951639	4,720474
5	0,000000	0,000000	0,163588	3,056285	4,799889
6	0,000000	0,000000	0,170836	2,949559	5,148260
7	0,000000	0,000000	0,163638	2,886319	4,734701
8	0,000000	0,000000	0,185298	3,204779	4,945381
9	0,000000	0,000000	0,167135	2,972110	4,772358
10	0,000000	0,000000	0,163832	2,990912	4,423994
Promedio	0,0000000	0,0000000	0,1719177	2,9867020	4,7777161

4.1.2. Dartboard

4.1.2.1. Secuencial

Tamaño (N) 1000	20000	3000000	50000000	80000000
-----------------	-------	---------	----------	----------

Promedio	0,0001261	0,0025076	0,4426054	7,3104159	11,637172 4
10	0,000135	0,002345	0,44983	7,290369	11,744993
9	0,000143	0,002767	0,483627	7,753275	11,75775
8	0,000126	0,002453	0,429893	7,265385	10,408419
7	0,000123	0,002214	0,414732	7,259655	12,101326
6	0,000125	0,00365	0,431842	7,245642	12,27856
5	0,000116	0,002238	0,446407	7,244616	11,608809
4	0,000116	0,002882	0,45411	7,235294	11,631635
3	0,000221	0,002332	0,432985	7,328805	11,619777
2	0,000116	0,002019	0,430674	7,28403	11,647116
1	0,00004	0,002176	0,451954	7,197088	11,573339

4.1.2.2. Hilos

4.1.2.2.1 Dos hilos.

2 Hilos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,000886	0,001799	0,103762	2,050194	3,437564
2	0,000798	0,00119	0,127106	1,830843	3,126434
3	0,001083	0,001305	0,11878	1,928925	3,189746
4	0,000581	0,001725	0,128725	1,871776	3,444433
5	0,000571	0,001282	0,129955	2,030071	3,188299
6	0,000615	0,001193	0,130053	1,886679	3,241697
7	0,000579	0,001256	0,121708	2,190513	3,278036
8	0,000782	0,001272	0,1087	1,981818	3,183791
9	0,001877	0,003943	0,125971	1,825581	3,3985
10	0,000933	0,001251	0,111609	1,977801	2,929281
Promedio	0,0008705	0,0016216	0,1206369	1,9574201	3,2417781
Speedup	0,1448592763	1,546373952	3,668905617	3,734719951	3,589749835

4.1.2.2.2 Cuatro hilos.

4 Hilos						
Tamaño (N)	1000	20000	3000000	50000000	80000000	

Speedup	0,13440631	1,352097487	4,020892762	3,581824602	3,599513044
Promedio	0,0009382	0,0018546	0,1100764	2,0409754	3,2329852
10	0,001305	0,00251	0,110658	2,342902	3,337943
9	0,001724	0,0014	0,104987	1,864532	3,033121
8	0,000771	0,001625	0,110409	1,846089	3,073549
7	0,000716	0,001342	0,108014	1,800319	3,473904
6	0,000718	0,001383	0,096579	2,338162	3,258377
5	0,000913	0,003369	0,145884	1,961942	3,190061
4	0,000757	0,001613	0,105106	2,136041	3,168187
3	0,000767	0,001386	0,094155	2,041541	3,066588
2	0,000744	0,002514	0,112796	2,201064	3,077185
1	0,000967	0,001404	0,112176	1,877162	3,650937

4.1.2.2.3. Ocho hilos.

8 Hilos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,001971	0,001695	0,109887	1,908741	3,335324
2	0,001335	0,001593	0,135131	1,915161	3,718406
3	0,001233	0,00162	0,12855	1,902832	3,206278
4	0,001027	0,001626	0,106985	1,940719	3,167734
5	0,001025	0,001954	0,128379	1,873497	3,264671
6	0,001645	0,002624	0,109734	1,926137	3,248555
7	0,001003	0,001992	0,115265	2,022919	3,229949
8	0,002608	0,002348	0,115733	2,1651	3,103129
9	0,000968	0,00169	0,114125	2,041815	3,16302
10	0,00174	0,001598	0,157604	2,049239	3,089316
Promedio	0,0014555	0,001874	0,1221393	1,974616	3,2526382
Speedup	0,08663689454	1,33810032	3,623775476	3,702196224	3,577764167

4.1.2.2.4. Dieciséis hilos.

16 Hilos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,003919	0,003032	0,106196	2,339634	3,675773

Speedup	0,05025105603	1,002278269	4,030159356	3,551344098	3,606334994
Promedio	0,0025094	0,0025019	0,1098233	2,0584927	3,2268695
10	0,001764	0,002106	0,11273	1,894819	3,034216
9	0,002398	0,002059	0,105217	2,186032	3,088368
8	0,001779	0,002107	0,100078	1,97952	3,064451
7	0,001823	0,00351	0,122328	2,088174	3,040244
6	0,001973	0,002494	0,099057	2,093505	3,161756
5	0,001512	0,001891	0,097603	2,106421	3,155888
4	0,002145	0,002567	0,125682	1,899095	3,212228
3	0,001834	0,002495	0,113218	2,039166	3,670805
2	0,005947	0,002758	0,116124	1,958561	3,164966

4.1.2.3. Procesos

4.1.2.3.1. Dos procesos.

2 Procesos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,000836	0,000439	0,000474	0,000261	0,000278
2	0,000193	0,000199	0,000222	0,000174	0,000251
3	0,000189	0,00039	0,000235	0,000168	0,000189
4	0,000188	0,000203	0,000183	0,000248	0,000233
5	0,000316	0,000359	0,000233	0,000206	0,000257
6	0,000337	0,000199	0,00021	0,000161	0,000237
7	0,000187	0,000391	0,000505	0,000218	0,000225
8	0,000196	0,000184	0,00017	0,000213	0,000249
9	0,000182	0,000197	0,000163	0,000199	0,00019
10	0,000236	0,000177	0,000159	0,00038	0,000311
Promedio	0,000286	0,0002738	0,0002554	0,0002228	0,000242
Speedup	0,4409090909	9,158509861	1732,989037	32811,56149	48087,48926

4.1.2.3.2. Cuatro procesos.

4 Procesos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,000519	0,001358	0,000688	0,001175	0,00044

Speedup	0,2449970857	4,175158175	904,1989785	14294,9079	23358,43517
Promedio	0,0005147	0,0006006	0,0004895	0,0005114	0,0004982
10	0,000615	0,000349	0,000382	0,000398	0,000499
9	0,000863	0,000458	0,000456	0,000682	0,000483
8	0,0004	0,000466	0,000336	0,000391	0,00038
7	0,000439	0,000525	0,00042	0,000333	0,000374
6	0,00037	0,001199	0,000378	0,000581	0,000329
5	0,000359	0,000372	0,000371	0,000379	0,000524
4	0,000598	0,00035	0,000405	0,00046	0,000814
3	0,000567	0,000487	0,000359	0,000375	0,000768
2	0,000417	0,000442	0,0011	0,00034	0,000371

4.1.2.3.3. Ocho procesos.

8 Procesos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,000872	0,001448	0,000711	0,001942	0,000879
2	0,001386	0,001301	0,00071	0,000795	0,000706
3	0,000963	0,000751	0,001053	0,00079	0,0016
4	0,001932	0,000845	0,000722	0,000706	0,002238
5	0,000776	0,000686	0,002278	0,000733	0,000795
6	0,00074	0,001365	0,001044	0,000728	0,00098
7	0,000702	0,000766	0,001563	0,000758	0,00068
8	0,000787	0,000723	0,000665	0,000983	0,00739
9	0,000695	0,000716	0,000793	0,000746	0,000942
10	0,000846	0,000771	0,00069	0,000922	0,000703
Promedio	0,0009699	0,0009372	0,0010229	0,0009103	0,0016913
Speedup	0,1300134034	2,675629535	432,6966468	8030,776557	6880,608053

4.1.2.3.4. Dieciséis procesos.

16 Procesos								
Tamaño (N)	1000	20000	3000000	50000000	80000000			
1	0,001449	0,001394	0,011801	0,010762	0,002275			
2	0,001639	0,002672	0,001914	0,004029	0,00323			

Speedup	0,07592726397	1,464120979	146,8936975	2255,32668	5022,300462
Promedio	0,0016608	0,0017127	0,0030131	0,0032414	0,0023171
10	0,001422	0,001412	0,001525	0,001638	0,001312
9	0,002887	0,001689	0,002156	0,001825	0,005645
8	0,001595	0,001771	0,001859	0,00148	0,002545
7	0,001422	0,001823	0,002226	0,002217	0,001851
6	0,00148	0,001367	0,001355	0,001406	0,001653
5	0,001691	0,001733	0,003601	0,001714	0,001492
4	0,001385	0,001877	0,001784	0,001695	0,001731
3	0,001638	0,001389	0,00191	0,005648	0,001437

4.1.2.4. Optimización con O2

Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,000000	0,000027	0,101454	1,925726	3,276755
2	0,000000	0,000000	0,096724	1,989637	3,018853
3	0,000180	0,001567	0,098694	1,864946	3,063655
4	0,000000	0,000000	0,122557	1,876268	3,151960
5	0,000106	0,000000	0,102435	1,923563	3,044317
6	0,000000	0,000000	0,096578	1,906819	3,198911
7	0,000000	0,000000	0,104498	1,966391	2,969375
8	0,000000	0,000000	0,115092	1,917742	3,399609
9	0,000000	0,000000	0,093926	2,154712	3,173769
10	0,000000	0,000000	0,116163	2,014094	3,208912
Promedio	0,0000286	0,0001594	0,1048121	1,9539898	3,1506116

4.2. Pruebas Leidy

4.2.1. Monte Carlo Needles

4.2.1.1. Secuencial

Tamaño (N)	1000	20000	3000000	5000000	8000000
1	0,000195	0,00326	0,293816	4,876181	7,576355
2	0,000223	0,003024	0,286638	4,877722	7,360792
3	0,000086	0,001299	0,191949	3,199597	7,562691
4	0,000116	0,00191	0,283523	4,508053	5,117677

Promedio	0,000127	0,0021536	0,2400067	3,984186 2	6,3578275
10	0,000225	0,003514	0,285398	4,73119	5,697768
9	0,000084	0,001295	0,197412	3,196643	7,487965
8	0,000088	0,001302	0,19185	3,197267	5,119091
7	0,000087	0,001289	0,192067	3,198718	5,116504
6	0,000083	0,001286	0,191771	3,199916	5,114075
5	0,000083	0,003357	0,285643	4,856575	7,425357

4.2.1.2. Hilos

4.2.1.2.1 Dos hilos.

2 hilos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,002835	0,052137	7,546005	115,532752	109,164875
2	0,003046	0,022249	2,849781	35,149139	73,793039
3	0,002311	0,062408	5,595036	88,477876	166,892152
4	0,001767	0,029548	6,895681	111,177967	184,732919
5	0,001994	0,062958	7,119616	120,224247	193,474417
6	0,00187	0,067533	6,884177	122,246122	193,559546
7	0,002346	0,06124	7,002121	120,661371	195,71654
8	0,001746	0,058403	7,547245	120,553124	193,652942
9	0,002111	0,074693	7,648755	124,46402	196,980598
10	0,001898	0,061768	7,398234	121,651465	201,10889
Promedio	0,0021924	0,0552937	6,6486651	108,0138083	170,9075918
Speedup	0,05792738551	0,03894837929	0,03609847938	0,03688589693	0,03720038082

4.2.1.2.2 Cuatro hilos.

4 hilos							
Tamaño (N)	1000	20000	3000000	50000000	80000000		
1	0,002812	0,0637	8,372649	124,488017	167,195044		
2	0,001682	0,065815	6,391117	106,846131	176,361152		
3	0,001737	0,051921	6,725429	110,121201	147,385386		
4	0,002617	0,01138	3,458392	53,474215	133,728612		

Speedup	0,0641803113	0,04012655067	0,03910637837	0,03903021146	0,04022029805
Promedio	0,0019788	0,0536702	6,1372776	102,0795443	158,0750966
10	0,001541	0,062666	7,179013	118,965515	192,155537
9	0,002052	0,050987	6,738461	118,868477	193,595676
8	0,002061	0,06907	6,221035	102,748139	177,379882
7	0,001704	0,065924	6,107459	102,813173	160,883433
6	0,001826	0,042419	4,8218	86,931637	148,699916
5	0,001756	0,05282	5,357421	95,538938	83,366328

4.2.1.2.3. Ocho hilos.

8 hilos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,002499	0,070567	8,088583	123,232147	166,19583
2	0,002234	0,056407	6,608901	107,150928	173,389859
3	0,001529	0,064474	5,297577	101,490117	166,597887
4	0,001632	0,065659	6,636643	99,106998	177,072271
5	0,001987	0,06591	7,311578	108,284717	180,12687
6	0,002082	0,066112	6,135222	102,459848	191,152426
7	0,002482	0,064484	6,728594	113,460088	183,841304
8	0,00178	0,060737	7,28322	119,196046	197,219713
9	0,001929	0,053562	7,290411	120,245723	199,578645
10	0,002007	0,053909	7,346358	118,981273	189,675354
Promedio	0,0020161	0,0621821	6,8727087	111,3607885	182,4850159
Speedup	0,0629929071	0,03463376116	0,03492170416	0,0357772808	0,03484027151

4.2.1.2.4. Dieciséis hilos.

16 hilos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,002852	0,067183	7,507795	121,378192	167,753712
2	0,00175	0,054502	6,158839	106,255373	173,152193
3	0,002161	0,055547	6,241379	117,664815	197,533159
4	0,001852	0,071268	6,923177	121,604281	195,520638
5	0,002065	0,064761	7,274749	122,262131	197,709817

9	0,00251 0,002025	0,072407 0,069552	7,673159 7,467512	124,70735 127,915514	204,422819 198,847244
10	0,001963	0,071926	7,221442	126,852821	202,203758
Promedio	0,0021222	0,0659395	7,1007011	120,3485268	192,529547
Speedup	0,05984355857	0,03266024159	0,03380042289	0,03310540067	0,03302260665

4.2.1.3. Procesos

4.2.1.3.1. Dos procesos.

2 procesos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,001749	0,002211	0,001776	0,001576	0,001515
2	0,001392	0,001408	0,001482	0,001417	0,001591
3	0,001309	0,001466	0,001469	0,001889	0,001537
4	0,001801	0,001795	0,001866	0,00149	0,001562
5	0,001356	0,001702	0,002124	0,001352	0,001911
6	0,001497	0,002228	0,001696	0,001497	0,002236
7	0,001757	0,001431	0,001484	0,001507	0,001693
8	0,001374	0,001156	0,00191	0,001241	0,002043
9	0,001607	0,001988	0,002	0,001201	0,001397
10	0,001111	0,001209	0,002016	0,001505	0,001278
Promedio	0,0014953	0,0016594	0,0017823	0,0014675	0,0016763
Speedup	0,08493278941	1,297818489	134,6612243	2714,948007	3792,774265

4.2.1.3.2. Cuatro procesos.

4 procesos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,001806	0,001616	0,001768	0,001477	0,001531
2	0,001296	0,001792	0,001671	0,002246	0,002118
3	0,001368	0,001452	0,002239	0,001764	0,001503
4	0,001971	0,001763	0,002255	0,001516	0,001606
5	0,001453	0,001371	0,001812	0,001463	0,001533

Speedup	0,08125919765	1,455725294	123,6319477	2407,072378	3800,255529
Promedio	0,0015629	0,0014794	0,0019413	0,0016552	0,001673
10	0,001402	0,001421	0,002016	0,001578	0,001387
9	0,001832	0,001217	0,001898	0,001437	0,001409
8	0,001574	0,001368	0,002032	0,001253	0,001574
7	0,001727	0,001386	0,001849	0,001568	0,001912
6	0,0012	0,001408	0,001873	0,00225	0,002157

4.2.1.3.3. Ocho procesos.

8 procesos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,00183	0,001762	0,001775	0,001677	0,00156
2	0,00139	0,001354	0,001808	0,001749	0,001711
3	0,00162	0,002294	0,001716	0,00226	0,00275
4	0,001404	0,001487	0,001459	0,001571	0,001524
5	0,001471	0,001782	0,00182	0,002074	0,001481
6	0,001295	0,001328	0,002057	0,001915	0,001754
7	0,001719	0,001412	0,001866	0,001717	0,001903
8	0,001803	0,0012	0,002047	0,001843	0,002459
9	0,002046	0,002719	0,002121	0,002274	0,003574
10	0,002054	0,00209	0,002455	0,001958	0,002306
Promedio	0,0016632	0,0017428	0,0019124	0,0019038	0,0021022
Speedup	0,07635882636	1,235712646	125,5002615	2092,754596	3024,368519

4.2.1.3.4. Dieciséis procesos.

16 procesos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,001905	0,001697	0,002102	0,001591	0,002305
2	0,002138	0,002196	0,002061	0,0016	0,001657
3	0,001967	0,002209	0,001812	0,001602	0,001647
4	0,001491	0,00212	0,001942	0,001859	0,002652
5	0,002455	0,001991	0,002435	0,002237	0,001632
6	0,001859	0,001363	0,001779	0,001898	0,002809

7	0,002759	0,002324	0,001727	0,001948	0,002469
8	0,002426	0,002664	0,00242	0,002672	0,002895
9	0,002504	0,001466	0,001535	0,002304	0,003486
10	0,001821	0,002145	0,003645	0,002567	0,00253
Promedio	0,0021325	0,0020175	0,0021458	0,0020278	0,0024082
Speedup	0,05955451348	1,067459727	111,84952	1964,782622	2640,074537

4.2.1.4. Optimización con O3

Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,000056	0,001013	0,091968	1,525921	2,578703
2	0,00005	0,001235	0,105889	1,527137	2,550473
3	0,000034	0,00059	0,088954	1,508066	2,43569
4	0,000064	0,001014	0,10427	1,595972	2,425636
5	0,000065	0,000591	0,1059	1,500586	2,384988
6	0,000069	0,001337	0,106226	1,573776	2,449542
7	0,000033	0,000593	0,087961	1,519397	2,394749
8	0,000063	0,000589	0,092345	1,542065	2,014969
9	0,000022	0,000406	0,060501	1,039135	1,656312
10	0,000022	0,000415	0,061767	1,021145	1,719532
Promedio	0,0000478	0,0007783	0,0905781	1,43532	2,2610594

4.2.1. Dartboard

4.2.2.1. Secuencial

Tamaño (N)	1000	20000	3000000	5000000	8000000
1	0,00007	0,001429	0,101316	1,568735	2,4018
2	0,000062	0,001175	0,097456	2,26679	2,403445
3	0,000067	0,00059	0,089277	1,487938	2,391263
4	0,000049	0,001178	0,090135	1,494203	2,391035
5	0,000064	0,001044	0,092414	1,483861	2,465374
6	0,000035	0,000621	0,094879	1,540358	2,398982
7	0,000066	0,000598	0,09307	1,491483	2,376267
8	0,000065	0,000612	0,093948	2,220726	2,422257
9	0,000034	0,000614	0,095607	1,528848	2,3659

10	0,000034	0,0006	0,088783	1,48269	2,356509
Promedio	0,0000546	0,0008461	0,0936885	1,656563 2	2,3972832

4.2.2.2. Hilos

4.2.2.2.1 Dos hilos.

Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,002253	0,044117	5,84347	96,116131	121,650796
2	0,001847	0,044002	4,591251	78,816302	127,88327
3	0,001572	0,053264	4,78478	78,07534	124,276976
4	0,001456	0,035287	4,395512	78,453598	126,70188
5	0,002142	0,04238	4,556383	79,29998	129,818145
6	0,001792	0,051181	5,362131	86,259491	132,355152
7	0,001764	0,038834	5,525098	91,272575	142,619551
8	0,001952	0,039758	5,661821	88,938536	143,803157
9	0,001933	0,044754	5,612092	88,413029	129,003154
10	0,001978	0,046113	5,320332	88,912692	139,809263
Promedio	0,0018689	0,043969	5,165287	85,4557674	131,7921344
Speedup	0,02921504628	0,0192431031	0,01813810152	0,01938503685	0,01818988069

4.2.2.2.2 Cuatro hilos.

4 hilos								
Tamaño (N)	1000	20000	3000000	50000000	80000000			
1	0,002189	0,045767	5,850668	97,409257	122,201445			
2	0,001594	0,041273	4,711858	73,335999	125,555261			
3	0,001721	0,035239	4,874732	84,440388	132,588853			
4	0,001703	0,048544	5,199548	86,062323	145,603557			
5	0,001964	0,048329	4,537836	84,048682	144,968243			
6	0,001468	0,04408	5,215541	90,736299	147,917535			
7	0,00159	0,046133	4,799218	89,728069	149,002179			
8	0,001939	0,043924	5,250685	91,193996	134,129421			
9	0,001663	0,042852	5,430672	88,783032	139,467446			
10	0,00172	0,056354	5,584898	91,656342	147,441592			

	Promedio	0,0017551	0,0452495	5,1455656	87,7394387	138,8875532
I	Speedup	0,0311093385	0,01869854916	0,01820761939	0,0188804855	0,01726060503

4.2.2.2.3. Ocho hilos.

8 hilos	hilos									
Tamaño (N)	1000	20000	3000000	50000000	80000000					
1	0,002434	0,04709	5,961798	96,577514	115,39197					
2	0,001903	0,005883	1,9162	51,718839	120,903186					
3	0,001916	0,045737	5,145628	84,290659	140,535395					
4	0,002151	0,043521	5,407517	89,899328	144,554644					
5	0,001409	0,038823	5,428868	91,694632	148,651106					
6	0,001761	0,041246	5,54957	91,543469	148,095873					
7	0,001227	0,038248	5,569194	90,473004	144,864373					
8	0,001636	0,042482	5,235499	90,160529	148,684862					
9	0,001695	0,046655	5,471562	90,550227	146,631949					
10	0,001682	0,039459	5,468126	92,275304	145,387626					
Promedio	0,0017814	0,0389144	5,1153962	86,9183505	140,3700984					
Speedup	0,03065005052	0,021742594	0,01831500364	0,01905884305	0,01707830391					

4.2.2.2.4. Dieciséis hilos.

16 hilos	l6 hilos								
Tamaño (N)	1000	20000	3000000	50000000	80000000				
1	0,002232	0,047513	5,909619	97,302019	124,265219				
2	0,001635	0,044724	4,73106	77,05635	120,108784				
3	0,001928	0,042574	4,783727	78,866945	128,322998				
4	0,001458	0,042112	5,198921	85,479125	139,082341				
5	0,001772	0,048164	5,471236	88,820436	146,155957				
6	0,001879	0,038512	5,507181	91,43121	144,592795				
7	0,001717	0,040846	5,491725	87,92453	145,093748				
8	0,002485	0,047065	5,480531	90,150534	146,21121				
9	0,001575	0,040356	5,369666	90,243535	143,626751				
10	0,001733	0,039424	5,420288	90,623723	145,07237				
Promedio	0,0018414	0,043129	5,3363954	87,7898407	138,2532173				
Speedup	0,02965135223	0,01961789051	0,0175565139	0,01886964581	0,01733980045				

4.2.2.3. Procesos

4.2.2.3.1. Dos procesos.

2 procesos	2 procesos									
Tamaño (N)	1000	20000	3000000	50000000	80000000					
1	0,001512	0,001425	0,001591	0,001634	0,001438					
2	0,001129	0,001172	0,001462	0,001665	0,001291					
3	0,001619	0,001402	0,001809	0,001179	0,00132					
4	0,001371	0,001531	0,00181	0,001254	0,00158					
5	0,001265	0,001152	0,001867	0,001255	0,001857					
6	0,001132	0,00143	0,001554	0,00132	0,001978					
7	0,001108	0,001092	0,001872	0,001284	0,001422					
8	0,000977	0,001135	0,00126	0,001373	0,001845					
9	0,000939	0,001091	0,00122	0,001307	0,002008					
10	0,00112	0,001395	0,001461	0,001286	0,001367					
Promedio	0,0012172	0,0012825	0,0015906	0,0013557	0,0016106					
Speedup	0,04485704896	0,6597270955	58,90135798	1221,924615	1488,441078					

4.2.2.3.2. Cuatro procesos.

1 procesos									
Tamaño (N)	1000	20000	3000000	50000000	80000000				
1	0,001512	0,001425	0,001591	0,001634	0,001438				
2	0,001129	0,001172	0,001462	0,001458	0,001365				
3	0,001344	0,001073	0,00098	0,001462	0,001007				
4	0,001736	0,001236	0,001704	0,00072	0,000897				
5	0,000792	0,000988	0,001665	0,000826	0,000819				
6	0,001634	0,001165	0,001547	0,000728	0,001118				
7	0,00081	0,001107	0,001266	0,00116	0,000797				
8	0,00149	0,000986	0,001328	0,001361	0,00139				
9	0,001643	0,001068	0,001572	0,000944	0,000904				
10	0,001095	0,001141	0,000901	0,000751	0,001277				
Promedio	0,0013185	0,0011361	0,0014016	0,0011044	0,0011012				
Speedup	0,04141069397	0,7447407799	66,84396404	1499,966679	2176,973483				

4.2.2.3.3. Ocho procesos.

8 procesos	8 procesos									
Tamaño (N)	1000	20000	3000000	50000000	80000000					
1	0,001363	0,001297	0,001792	0,001045	0,001477					
2	0,001019	0,000918	0,001015	0,001108	0,001742					
3	0,000738	0,00122	0,000988	0,000878	0,001675					
4	0,000833	0,000764	0,000961	0,000927	0,000902					
5	0,000764	0,001117	0,000862	0,000944	0,001537					
6	0,000856	0,000877	0,001528	0,001497	0,001359					
7	0,000829	0,001195	0,001527	0,001418	0,001142					
8	0,001321	0,001201	0,001488	0,001051	0,001063					
9	0,000923	0,00084	0,000837	0,000926	0,001166					
10	0,000973	0,001022	0,000956	0,001037	0,001201					
Promedio	0,0009619	0,0010451	0,0011954	0,0010831	0,0013264					
Speedup	0,05676265724	0,8095875993	78,37418437	1529,464685	1807,360676					

4.2.2.3.4. Dieciséis procesos.

16 procesos					
Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,001351	0,001609	0,00138	0,000991	0,001187
2	0,000731	0,001025	0,000783	0,001139	0,001482
3	0,001223	0,001286	0,001454	0,001332	0,001
4	0,001315	0,000771	0,001547	0,001003	0,00156
5	0,001146	0,000824	0,001531	0,000998	0,001459
6	0,000721	0,001151	0,000795	0,001408	0,000982
7	0,001113	0,000781	0,00152	0,00109	0,000841
8	0,001017	0,000824	0,001512	0,001134	0,000821
9	0,001158	0,001208	0,001531	0,00114	0,001104
10	0,000697	0,000759	0,00083	0,001114	0,001074
Promedio	0,0010472	0,0010238	0,0012883	0,0011349	0,001151
Speedup	0,05213903743	0,8264309435	72,72258014	1459,655652	2082,782971

4.2.2.4. Optimización por O3

Tamaño (N)	1000	20000	3000000	50000000	80000000
1	0,000143	0,001945	0,183226	3,030339	5,031918
2	0,000157	0,002415	0,197238	3,128232	4,889722
3	0,000088	0,002478	0,199775	3,028471	4,829244
4	0,000155	0,001222	0,205619	3,061393	4,892207
5	0,000172	0,002243	0,200406	3,041299	4,853335
6	0,000085	0,001234	0,189198	2,421383	4,602682
7	0,000084	0,001218	0,189242	3,134517	4,84501
8	0,000087	0,001232	0,194197	3,017822	4,845465
9	0,000087	0,00238	0,202966	3,069986	4,769634
10	0,000071	0,002414	0,15754	2,629613	4,840353
Promedio	0,0001129	0,0018781	0,1919407	2,9563055	4,839957

5. Resultados

5.1. Máquina Valentin

5.1.1. Monte Carlo Needles

5.1.1.1. Comparación entre hilos.

5.1.1.2. Comparación entre procesos.

5.1.1.3 Comparación entre los mejores de hilos y procesos con O3.

Comparación entre los mejores

5.1.2. Dartboard

5.1.2.1. Comparación entre hilos.

5.1.2.2. Comparación entre procesos.

5.1.2.3 Comparación entre los mejores de hilos y procesos con O2.

Comparación entre los mejores

5.2. Máquina Leidy

5.2.1. Monte Carlo Needles

5.2.1.1. Comparación entre hilos.

5.2.1.2. Comparación entre procesos.

5.2.1.3 Comparación entre los mejores de hilos y procesos con O3.

Comparación entre los mejores

5.2.2. Dartboard

5.2.2.1. Comparación entre hilos.

5.2.2.2. Comparación entre procesos.

5.2.2.3 Comparación entre los mejores de hilos y procesos con O3.

Comparación entre los mejores

5. Conclusiones

- El tiempo de ejecución mayor está dado por la programación secuencial.
- Para ambos algoritmos en ambas máquinas, la mejor optimización dada por el Speed
 Up la tienen los procesos.
- Antes de iniciar este reto se tenía como hipótesis que la compilación por O daba mejores resultados que la programación por hilos o procesos. Se pudo comprobar que los procesos siguen siendo mejores para optimizar este tipo de algoritmos.
- El mejor método de programación para resolver este tipo de problemas es el paralelo por medio del aumento de procesos. Sin embargo, se debe advertir que los procesos consumen mucha más memoria que los hilos.
- Los hilos, para ambos algoritmos, dieron tiempos de ejecución muy altos y Speed Up muy bajos.
- No se calculó Speed Up para la tabla de tiempos de ejecución de las O's debido a que algunos eran cero (0).
- Existe una diferencia notable entre las máquinas utilizadas. Al principio, se tenían pensados valores de prueba en el orden de 10^10, pero la máquina con Intel no daba una respuesta positiva ante esto. En cambio, la AMD lo ejecutaba sin problema, es decir, sin lanzar un tiempo de ejecución -inf.

7. Bibliografía

[1] Cortéz, A. (2004). TEORÍA DE LA COMPLEJIDAD COMPUTACIONAL Y TEORÍA DE.

Revista De Investigación De Sistemas E Informática, 1(1), 102-105. Recuperado de: https://revistasinvestigacion.unmsm.edu.pe/index.php/sistem/article/view/3216

[2] Montero, L. H., & Antunez, R. R. (2011, 07). Parallel programming: definitions, mechanisms

and trouble. From

https://www.researchgate.net/publication/274960405_Parallel_programming_definitions_mechanisms_and_trouble

[3] Qaz Wiki. (2020). Qaz Wiki. From

https://es.qaz.wiki/wiki/Matrix multiplication algorithm

- [4] Arm. (2023). Arm Compiler for embedded User Guide. *developer.arm.com*.

 https://developer.arm.com/documentation/100748/0620/Using-Common-Compiler-Options/Selecting-optimization-options
- [5] Wikipedia contributors. (2023). Inline expansion. *Wikipedia*. https://en.wikipedia.org/wiki/Inline expansion
- [6] PI unleashed. (n.d.). Google Books.

https://books.google.com.co/books?id=JIG5rFH7Ge0C&pg=PA39&lpg=PA39&dq=D artboard+Method+algorithm&source=bl&ots=t76R30Q342&sig=NjguOYMc0ILqZs8 Bcz6uIpfejdc&hl=en&ei=-YzTSuutFMefkQXj9_H7Aw&sa=X&oi=book_result&ct= result&redir_esc=y#v=onepage&q&f=false