- => 1st and 2nd order step responses are
 "building blocks" by which we can Understand
 response of more Complex systems
- => each real pole introduces a new decaying exponential into transpent response.
- => each complex pole pair introduces a decaying oscillation into the transient
- => An arbitrary number of poles of different types
 will typically require numerical simulation to quantify
 yp, tc, tp,ts
- => However in some cases we can still accurately predict these features.

Suppose: $G(s) = \frac{K}{(s-p_i)(s^2+2\gamma\omega_n s+\omega_n^2)}$ with {<1 $= \frac{K}{(5-P_1)(5-P_2)(5-P_2)}$ For a unit step input u(t) = II(t) we Know $y_{ss} = G(0) = \frac{K}{-\omega_{n}^{2}P_{i}}$ But what can we say about Yp, tp, tc, ts?

In general, Not much Unless either 1P,1>5/Re [P] or |Re [P] >5/P,1

i.e. if one of the modes is dominant.

Dominant modes revisited

When a single mode is dominant, we can approximate the features of the response using just that made

An arbitrarily complex system can be well approximated in this fashion.

Effect of zeros

Stepresponsed

$$G(s) = \frac{\beta_1 s + \beta_0}{s^2 + \alpha_1 s + \alpha_0}$$
 Zero at
$$Z_1 = -\beta_0/\beta_1$$

3 important effects:

- (1) "Input absorbing" property
- 2. Transient suppression
- 3. Transient amplification Yes

Depending on System

For unit step response of stable system

$$\gamma_{ss}(t) = G(\phi)$$

Suppose
$$2_1 = -\beta_0/\beta_1 = \phi \implies \beta_0 = \phi$$

Zero at origin

$$G(s) = \frac{\beta_1 s}{5^2 + 4_1 s + 4_0}$$

Then $y_{ss}(t) = G(\emptyset) = \emptyset \iff \text{Steady-state is zero}$

response contains only transient terms

In fact, y(t) is the impulse response of $G_1(s) = \frac{B_1}{5^2 + \alpha_1 s + \alpha_0}$

Effect of zeros

Stepresponsed

$$G(s) = \frac{\beta_1 s + \beta_0}{s^2 + \alpha_1 s + \alpha_0}$$
 Zero at
$$Z_1 = -\beta_0/\beta_1$$

3 important effects:

- (1) "Input absorbing" property
- 2. Transient suppression
- 3. Transient amplification Yes

Depending on System

2) Transient Suppression

Suppose
$$5^2 + 4/5 + 4/6 = (5-7/6)(5-7/6)$$
 $P_1/7_2$ real
$$S_0 \qquad G(5) = \frac{\beta_1(5-7/6)}{(5-7/6)(5-7/2)}$$

Suppose
$$2, \approx P_1$$
, i.e. $|2,-P_1| = E < \sqrt{1}$

We know $y(t) = G(\phi) + A_1e^{P_1t} + A_2e^{P_2t}$

where $A_1 = [(s-P_1)Y(s)]_{s=P_1} = \frac{\beta_1(P_1-P_2)}{P_1(P_1-P_2)}$ is small so, for sufficiently small E , the e^{P_1t} term in transmit

is negligible, and response is equivalent to a 1st order system with single pole P2

Pole-zero Cancellation

Algebraically, if Z, xp.

$$G(s) = \frac{\beta_1(s-z_1)}{(s-p_1)(s-p_2)} \approx \frac{\beta_1}{(s-p_2)}$$

Usually, if

$$0.9 \le \frac{21}{51} \le 1.1$$

i.e. Zero location within 10% of pole location

this is a good approximation

Cancellation and Dominance

Pole-zero cancellations can change dominance Calculation

"fast" pole becomes dominant

Znd order poles become clominant

Cancellation is Never exact!

- => Z, P, come from different coefs. in diff'l eg'n.
- => These coefs come from Physical Properties
 of system whose values are Not known
 Precisely.
- => Cancellation should always be considered opprox.
- => If P, is stable, it is a good approximation to cancel it

A, ePit ~ EePit

this term starts small, and gets smaller as t increases

<u>But</u>

Suppose P. Not stable: P.>0

Then A, ePit & E ePit

May start small, but increases who bound as t increases

Term will diverge to 00, regardess how small E is!

Pole-zero cancellation can Never be Performed in RHP

Marcauer...

Generally, if ICs on y(t) are not all zero

 $Y(s)=G(s)U(s)+\frac{C(s)}{r(s)}$

Will contribute terms to y(t) which contain unstable mode even if this mode "cancels" in G(s)

Moral: Can never "cancel" an unstable mode

Effects of zeros on step response

$$G(s) = \frac{\beta_1 s + \beta_0}{5^2 + \alpha_1 s + \alpha_0}, \quad \text{Zero od } Z_1 = \frac{-\beta_0}{\beta_1}$$

1) Input absorbtion (if
$$\beta_0 = \phi \Rightarrow 2, = \phi$$
)

2) Transient <u>suppression</u> via pole-zero cancellation

=> if
$$S^2 + \alpha_1 S + \alpha_0 = (s - p_1)(s - p_2)$$
; p_1, p_2 real and $z_1 \approx p_1$ (or p_2)

3) Transient amplification => examine this Now.

(3) Transient Amplification

Now suppose 52+0,5+0, = (5-p,)(5-p,) $P_i = \sigma + j\omega_a, \omega_a \neq \emptyset$

Pole-zero cancellation cannot occur here what is the effect of the zero?

$$Y(s) = \frac{\beta_{1}s + \beta_{0}}{s(s-p_{1})(s-\overline{p_{1}})} = \frac{\beta_{1}s}{s(s-p_{1})(s-\overline{p_{1}})} + \frac{\beta_{0}}{s(s-p_{1})(s-\overline{p_{1}})}$$

$$= \left[\frac{\beta_{1}}{\beta_{0}}\right] = \frac{\beta_{0}}{s(s-p_{1})(s-\overline{p_{1}})} + \left[\frac{\beta_{0}}{s(s-p_{1})(s-\overline{p_{1}})}\right]$$

$$= \frac{\beta_{0}}{s(s-p_{1})(s-\overline{p_{1}})} = \frac{\beta_{0}}{s(s-p_{1})(s-\overline{p_{1}})}$$

$$= \frac{\beta_{0}}{s(s-p_{1})(s-\overline{p_{1}})} = \frac{\beta_{0}}{s(s-p_{1})(s-\overline{p_{1}})}$$

$$Y(s) = \left(\frac{\beta_1}{\beta_0}\right) \left[SY_1(s)\right] + Y_1(s)$$

$$= \left(\frac{\beta_1}{\beta_0}\right) \dot{Y}_1(t) + Y_1(t), \quad y_1(t) = \vec{J}^{-1} \left[Y_1(s)\right]$$
Note: $Y_1(t)$ is ideal Z^{n_0} order step response

$$y(t) = \left(\frac{\beta_1}{\beta_0}\right)\dot{y}_1(t) + \dot{y}_1(t)$$

or equivalently:

$$y(t) = y_1(t) - (\frac{1}{2!})\dot{y}_1(t)$$
 (2,= -\beta_\beta_\beta_\)

Where y, (t) is the "ideal" (no zero) step response

The total response y(H is the sum of the

ideal response, and a fraction of the derivative

of this response.

Suppose
$$1^{st}$$
 $2.<0$ (LHP zero)

then $2.<0$ and $(-\frac{1}{21})>0$ so we can write

 $y(t) = y_1(t) + (\frac{1}{1211})y_1(t)$

Derivative adds to total response. To understand

effect of this, must examine behavior of $y_1(t)$

Note that $y_1(t) \to \emptyset$ As $t \to \infty$, so the

steady-state of the New response will be the

Same as the ideal response

 $y_{ss} = G(\phi)$

