FTML Exercices 2

Pour le 9 mars 2023

TABLE DES MATIÈRES

1	Ordinary least squares	
	1.0.1 Enoncé	
2	Expected value as a minimization	
	2.0.1 Enoncé	

1 ORDINARY LEAST SQUARES

1.0.1 Enoncé

On veut étudier quelques propriétés de la fonction objectif du problème OLS. Les question 1 et 2 peuvent être traitées indépendamment.

Soit n et $d \in \mathbb{N}^*$.

1) Soit $X \in \mathbb{R}^{n,d}$, et $y \in \mathbb{R}^n$. Calculer le gradient de

$$g = \left\{ \begin{array}{l} \mathbb{R}^d \to \mathbb{R} \\ \theta \mapsto \| X\theta - y \|^2 \end{array} \right.$$

- 2) On veut montrer que la fonction g est convexe. Il y a de nombreuses méthodes pour cela mais ici utiliser les étapes suivantes :
 - a) montrer que si $r: \mathbb{R}^d \to \mathbb{R}^n$ est linéaire et $f: \mathbb{R}^n \to \mathbb{R}$ est convexe, alors $f \circ r: \mathbb{R}^d \to \mathbb{R}$ est convexe.
 - b) montrer que toute norme sur \mathbb{R}^n est convexe.
 - c) montrer que si $w : \mathbb{R} \to \mathbb{R}$ est convexe croissante et $a : \mathbb{R}^n \to \mathbb{R}$ est convexe, alors $f = w \circ a : \mathbb{R}^n \to \mathbb{R}$ est convexe.
 - d) conclure.

2 EXPECTED VALUE AS A MINIMIZATION

2.0.1 Enoncé

Soit X une variable aléatoire réelle ayant un moment d'ordre 2. Montrer que son espérance E(X) est la quantité minimisant la fonction de variable réelle $t\mapsto E\big((X-t)^2\big)$