Applied Machine Learning

- Image Denoising as a Boltzmann Machine
- Optimization Problem
- Mean Field Inference

Binary Image

- Binary image
 - True pixel values [on,off]
 - Hidden nodes
 - Connections to adjacent nodes
 - local dependencies around each node
 - Noisy pixel values [on,off]
 - Observed nodes
 - Connections to associated true pixel node
 - Noise may flip the true pixel value

Boltzmann Machine for Denoising Images

- *U*: Set of nodes
 - Values {off, on} \mapsto {-1,1}
 - *H*: hidden nodes
 - H_i : true value of pixel i
 - Local connections to adjacent nodes
 - X: observed nodes
 - X_i : value of pixel i affected by noise
 - Only connected to H_i
- θ : Weights in the connections

Boltzmann Machine for Denoising Images

- U: Set of nodes $\{-1,1\}$
 - *H*: hidden nodes *X*: observed nodes
- θ : Weights in the connections
- Goal: find the values in hidden nodes that maximize
 - Maximum A Posteriori Inference
 - MAP Inference

$$\log P(H|X,\theta) = -E(H,X|\theta) - \log \sum_{H} e^{-E(H,X|\theta)}$$

- Variational Inference
 - tractable distribution $Q(H; \theta)$
 - close to P(H|X)

Mean Field Inference

- U: Set of nodes $\{-1,1\}$
 - *H*: hidden nodes, *X*: observed nodes
- θ : Weights in the connections
- Goal: find the values in hidden nodes that maximize

$$p_i = \sum_{j \in N(i) \cap H} \theta_{i,j} (2\pi_j - 1) + \theta_i^X X_j$$

- $\theta_{i,j} = k$: positive constant to favor agreement between adjacent nodes
- θ_i^X : based on noise. Probability of flipped pixel value:

$$p_{flip} = \frac{e^{-\theta_i^X}}{e^{-\theta_i^X} + e^{\theta_i^X}}$$

Mean Field Inference for Denoising Images

- U: Set of nodes $\{-1,1\}$
 - *H*: hidden nodes, *X*: observed nodes
- θ : Weights in the connections
- Variational Inference. Mean Field Algorithm
 - Initialize π_i to random uniform distribution [0,1]
 - While $(\pi_i$'s change more than some ϵ)

$$\text{update each } \pi_i = \frac{e^{p_i}}{e^{p_i} + e^{-p_i}}$$

with
$$p_i = \sum_{j \in N(i) \cap H} \theta_{i,j} (2\pi_j - 1) + \theta_i^X X_j$$

. Estimated
$$H_i = \begin{cases} 1 & \pi_i > = 0.5 \\ -1 & \pi_i < 0.5 \end{cases}$$

- Image Denoising as a Boltzmann Machine
- Optimization Problem
- Mean Field Inference

Applied Machine Learning