Duplex Encoding of Staircase At-Most-One Constraints for the Antibandwidth Problem

Katalin Fazekas¹

Markus Sinnl² Armin Biere¹ Sophie Parragh²

¹Institute for Formal Models and Verification ²Institute of Production and Logistics Management Johannes Kepler University, Linz, Austria

Vienna, 23. September, 2020

THE ANTIBANDWIDTH PROBLEM

■ Graph labelling max-min optimization problem

■ Graph labelling max-min optimization problem

G: B 2 3 4 E 5

Graph labelling max-min optimization problem

Antibandwidth: smallest difference of connected labels

Graph labelling max-min optimization problem

Antibandwidth: smallest difference of connected labels

Graph labelling max-min optimization problem

Antibandwidth: smallest difference of connected labels

Graph labelling max-min optimization problem

- Antibandwidth: smallest difference of connected labels
- Goal: Find a labelling with the highest possible antibandwidth

Graph labelling max-min optimization problem

- Antibandwidth: smallest difference of connected labels
- Goal: Find a labelling with the highest possible antibandwidth
- Radio frequency assignment, multiprocessor scheduling

RELATED WORK

 $x_{v}^{\ell} \Leftrightarrow \text{label } \ell \text{ is assigned to vertex } v$

Is there a **labelling** of G with antibandwidth > k?

■ Each label is assigned to exactly one node (Exactly-One constraints)

$$\sum_{i \in V} x_i^{\ell} = 1 \quad \forall \ell \in \{1, \dots, |V|\}$$

Is there a **labelling** of G with antibandwidth > k?

Each label is assigned to exactly one node (Exactly-One constraints)

$$\sum_{i \in V} x_i^\ell \, = \, 1 \quad \forall \ell \in \{1, \dots, |V|\}$$

■ Each node gets exactly one label assigned (Exactly-One constraints)

$$\sum_{\ell \in \{1, \dots, |V|\}} x_i^{\ell} = 1 \quad \forall i \in V$$

Is there a **labelling** of G with **antibandwidth** > k?

■ Each label is assigned to exactly one node (Exactly-One constraints)

$$\sum_{i \in V} x_i^\ell \, = \, 1 \quad \forall \ell \in \{1, \dots, |V|\}$$

■ Each node gets exactly one label assigned (Exactly-One constraints)

$$\sum_{\ell \in \{1, \dots, |V|\}} x_i^{\ell} = 1 \quad \forall i \in V$$

■ No edge connects labels from any *k*-long range (At-Most-One constraints)

$$\sum_{\substack{\lambda \le \ell \le \lambda + k}} (x_i^{\ell} + x_{i'}^{\ell}) \le 1 \qquad \forall \{i, i'\} \in E, \ 1 \le \lambda \le |V| - k$$

ITERATIVE SAT FORMALIZATION OF ABP

$$\forall \{i, i'\} \in E : \forall 1 \le \lambda \le |V| - k : \sum_{\lambda \le \ell \le \lambda + k} (x_i^{\ell} + x_{i'}^{\ell}) \le 1$$

$$\forall \{i, i'\} \in E : \forall 1 \le \lambda \le |V| - k : \sum_{\lambda \le \ell \le \lambda + k} (x_i^{\ell} + x_{i'}^{\ell}) \le 1$$

$$\forall \{i, i'\} \in E: \bigwedge_{\lambda=1}^{(|V|-k)} \left(\sum_{\ell=\lambda}^{(\lambda+k)} x_i^{\ell} + x_{i'}^{\ell} \le 1\right)$$

 \equiv

$$\forall \{i, i'\} \in E : \forall 1 \le \lambda \le |V| - k : \sum_{\lambda \le \ell \le \lambda + k} (x_i^{\ell} + x_{i'}^{\ell}) \le 1$$

$$\forall \{i,i'\} \in E: \bigwedge_{\lambda=1}^{(|V|-k)} \left(\sum_{\ell=\lambda}^{(\lambda+k)} x_i^\ell + x_{i'}^\ell \leq 1 \right) \equiv$$

$$\forall \{i,i'\} \in E: \bigwedge_{\lambda=1}^{(|V|-k)} \left(\sum_{\ell=\lambda}^{(\lambda+k)} x_i^\ell \leq 1 \land \sum_{\ell=\lambda}^{(\lambda+k)} x_{i'}^\ell \leq 1 \land \left(\sum_{\ell=\lambda}^{(\lambda+k)} x_i^\ell \leq 0 \lor \sum_{\ell=\lambda}^{(\lambda+k)} x_{i'}^\ell \leq 0 \right) \right)$$

$$\forall \{i, i'\} \in E : \forall 1 \le \lambda \le |V| - k : \sum_{\lambda \le \ell \le \lambda + k} (x_i^{\ell} + x_{i'}^{\ell}) \le 1$$

$$\forall \{i, i'\} \in E: \bigwedge_{\lambda=1}^{(|V|-k)} \left(\sum_{\ell=\lambda}^{(\lambda+k)} x_i^{\ell} + x_{i'}^{\ell} \le 1 \right) \equiv$$

$$\forall \{i,i'\} \in E: \bigwedge_{\lambda=1}^{(|V|-k)} \left(\sum_{\ell=\lambda}^{(\lambda+k)} x_i^\ell \leq 1 \right) \wedge \left(\sum_{\ell=\lambda}^{(\lambda+k)} x_{i'}^\ell \leq 1 \right) \wedge \left(\sum_{\ell=\lambda}^{(\lambda+k)} x_i^\ell \leq 0 \right) \vee \left(\sum_{\ell=\lambda}^{(\lambda+k)} x_{i'}^\ell \leq 0 \right) \rangle$$

Decomposed into "staircase" at-most-one and at-most-zero constraint sets

SAT ENCODING OF STAIRCASE AT-MOST-ONE CONSTRAINT SETS

$$\mathrm{SCAMO}(X,w) = \bigwedge_{i=0}^{(|X|-w)} \left(\sum_{\ell=i+1}^{(i+w)} x^\ell \leq 1 \right)$$

$$SCAMO(X, w) = \bigwedge_{i=0}^{(|X|-w)} \left(\sum_{\ell=i+1}^{(i+w)} x^{\ell} \le 1 \right) = SEQ(0, 1, w, X, \{1\})$$

$$\begin{array}{c} x^1+x^2+x^3+x^4+x^5 \leq 1 \\ x^2+x^3+x^4+x^5+x^6 \leq 1 \\ x^3+x^4+x^5+x^6+x^7 \leq 1 \\ x^4+x^5+x^6+x^7+x^8 \leq 1 \\ x^5+x^6+x^7+x^8+x^9 \leq 1 \\ x^6+x^7+x^8+x^9+x^{10} \leq 1 \\ x^7+x^8+x^9+x^{10}+x^{11} \leq 1 \\ x^8+x^9+x^{10}+x^{11}+x^{12} \leq 1 \\ x^9+x^{10}+x^{11}+x^{12}+x^{13} \leq 1 \\ x^{10}+x^{11}+x^{12}+x^{13}+x^{14} \leq 1 \\ x^{11}+x^{12}+x^{13}+x^{14}+x^{15} \leq 1 \end{array}$$

$$\begin{aligned} \text{SCAMO}(X, w) \\ X &= \langle x^1 \cdots x^{15} \rangle \\ w &= 5 \end{aligned}$$

Is there a truth assignment to the variables of X such that each at-most-one constraint of SCAMO(X, w) is satisfied?

$$\begin{array}{c} x^{1} + x^{2} + x^{3} + x^{4} + x^{5} \leq 1 \\ x^{2} + x^{3} + x^{4} + x^{5} + x^{6} \leq 1 \\ x^{3} + x^{4} + x^{5} + x^{6} + x^{7} \leq 1 \\ x^{4} + x^{5} + x^{6} + x^{7} + x^{8} \leq 1 \\ x^{5} + x^{6} + x^{7} + x^{8} + x^{9} \leq 1 \\ x^{6} + x^{7} + x^{8} + x^{9} + x^{10} \leq 1 \\ x^{7} + x^{8} + x^{9} + x^{10} + x^{11} \leq 1 \\ x^{8} + x^{9} + x^{10} + x^{11} + x^{12} \leq 1 \\ x^{9} + x^{10} + x^{11} + x^{12} + x^{13} \leq 1 \\ x^{10} + x^{11} + x^{12} + x^{13} + x^{14} \leq 1 \\ x^{11} + x^{12} + x^{13} + x^{14} + x^{15} \leq 1 \end{array}$$

Is there a truth assignment to the variables of X such that each at-most-one constraint of SCAMO(X, w) is satisfied?

$$\begin{array}{|c|c|c|c|c|}\hline x^1+x^2+x^3+x^4+x^5 \leq 1 \\ \hline & x^2+x^3+x^4+x^5+x^6 \leq 1 \\ \hline & x^3+x^4+x^5+x^6+x^7 \leq 1 \\ \hline & x^3+x^4+x^5+x^6+x^7+x^8 \leq 1 \\ \hline & x^5+x^6+x^7+x^8+x^9 \leq 1 \\ \hline & x^5+x^6+x^7+x^8+x^9+x^{10} \leq 1 \\ \hline & x^7+x^8+x^9+x^{10}+x^{11} \leq 1 \\ \hline & x^8+x^9+x^{10}+x^{11}+x^{12} \leq 1 \\ \hline & x^9+x^{10}+x^{11}+x^{12}+x^{13} \leq 1 \\ \hline & x^{10}+x^{11}+x^{12}+x^{13}+x^{14} \leq 1 \\ \hline & x^{11}+x^{12}+x^{13}+x^{14}+x^{15} \leq 1 \\ \hline \end{array}$$

Is there a truth assignment to the variables of X such that each at-most-one constraint of SCAMO(X, w) is satisfied?

$$x^{1} + x^{2} + x^{3} + x^{4} + x^{5} \le 1$$

$$x^{2} + x^{3} + x^{4} + x^{5} + x^{6} \le 1$$

$$x^{3} + x^{4} + x^{5} + x^{6} + x^{7} \le 1$$

$$x^{4} + x^{5} + x^{6} + x^{7} + x^{8} \le 1$$

$$x^{5} + x^{6} + x^{7} + x^{8} + x^{9} \le 1$$

$$x^{6} + x^{7} + x^{8} + x^{9} + x^{10} \le 1$$

$$x^{7} + x^{8} + x^{9} + x^{10} + x^{11} \le 1$$

$$x^{8} + x^{9} + x^{10} + x^{11} + x^{12} \le 1$$

$$x^{9} + x^{10} + x^{11} + x^{12} + x^{13} \le 1$$
of 3 constraints
$$x^{10} + x^{11} + x^{12} + x^{13} + x^{14} \le 1$$

$$x^{11} + x^{12} + x^{13} + x^{14} \le 1$$

$$\boxed{x^1 + x^2 + x^3 + x^4 + x^5 \leq 1} \quad \boxed{x^6 + x^7 + x^8 + x^9 + x^{10} \leq 1} \quad \boxed{x^{11} + x^{12} + x^{13} + x^{14} + x^{15} \leq 1}$$

Every other constraints of the SCAMO are decomposed:

$$x_1 + \dots + x_n \le 1 \equiv$$

$$(x_1 + \ldots + x_i \le 1) \land (x_{i+1} + \ldots + x_n \le 1) \land (x_1 + \ldots + x_i \le 0 \lor x_{i+1} + \ldots + x_n \le 0)$$

$$x^{4} + x^{5} + x^{6} + x^{7} + x^{8} \le 1 \equiv$$

$$x^{4} + x^{5} \le 1 \land x^{6} + x^{7} + x^{8} \le 1 \land ((x^{4} + x^{5} \le 0) \lor (x^{6} + x^{7} + x^{8} \le 0))$$

$$x^{1} + x^{2} + x^{3} + x^{4} + x^{5} \le 1 \quad x^{6} + x^{7} + x^{8} + x^{9} + x^{10} \le 1 \quad x^{11} + x^{12} + x^{13} + x^{14} + x^{15} \le 1$$

■ Every other constraints of the SCAMO are decomposed:

$$x_1 + \cdots + x_n \le 1 \equiv$$

$$(x_1 + \ldots + x_i \le 1) \land (x_{i+1} + \ldots + x_n \le 1) \land (x_1 + \ldots + x_i \le 0 \lor x_{i+1} + \ldots + x_n \le 0)$$

$$x^{4} + x^{5} + x^{6} + x^{7} + x^{8} \le 1 \equiv$$

$$x^{4} + x^{5} \le 1 \land x^{6} + x^{7} + x^{8} \le 1 \land ((x^{4} + x^{5} \le 0) \lor (x^{6} + x^{7} + x^{8} \le 0))$$

$$\boxed{x^{1} + x^{2} + x^{3} + x^{4} + x^{5} \le 1} \quad \boxed{x^{6} + x^{7} + x^{8} + x^{9} + x^{10} \le 1} \quad \boxed{x^{11} + x^{12} + x^{13} + x^{14} + x^{15} \le 1}$$

$$((x^{8} + x^{9} + x^{10} \le 0) \lor (x^{11} + x^{12} \le 0)) \land x^{8} + x^{9} + x^{10} \le 1 \land x^{11} + x^{12} \le 1$$

$$\equiv x^{8} + x^{9} + x^{10} + x^{11} + x^{12} \le 1$$

Every other constraints of the SCAMO are decomposed:

$$x_1 + \cdots + x_n \le 1 \equiv$$

$$(x_1 + \ldots + x_i \le 1) \land (x_{i+1} + \ldots + x_n \le 1) \land (x_1 + \ldots + x_i \le 0 \lor x_{i+1} + \ldots + x_n \le 0)$$

$$x^{4} + x^{5} + x^{6} + x^{7} + x^{8} \le 1 \equiv$$

$$x^{4} + x^{5} \le 1 \land x^{6} + x^{7} + x^{8} \le 1 \land ((x^{4} + x^{5} \le 0) \lor (x^{6} + x^{7} + x^{8} \le 0))$$

$$\xrightarrow{x^{1} + x^{2} + x^{3} + x^{4} + x^{5} \le 1} \xrightarrow{x^{6} + x^{7} + x^{8} + x^{9} + x^{10} \le 1} \xrightarrow{x^{11} + x^{12} + x^{13} + x^{14} + x^{15} \le 1} \xrightarrow{((x^{8} + x^{9} + x^{10} \le 0) \lor (x^{11} + x^{12} \le 0)) \land x^{8} + x^{9} + x^{10} \le 1 \land x^{11} + x^{12} \le 1}$$

$$\equiv x^{8} + x^{9} + x^{10} + x^{11} + x^{12} \le 1$$

■ Every other constraints of the SCAMO are decomposed:

$$x_1 + \dots + x_n \le 1 \equiv$$

 $(x_1 + \dots + x_i \le 1) \land (x_{i+1} + \dots + x_n \le 1) \land (x_1 + \dots + x_i \le 0 \lor x_{i+1} + \dots + x_n \le 0)$

Duplex: consider both left-associative and right-associative addition

$$x^{4} + x^{5} + x^{6} + x^{7} + x^{8} \le 1 \equiv$$

$$x^{4} + x^{5} \le 1 \land x^{6} + x^{7} + x^{8} \le 1 \land ((x^{4} + x^{5} \le 0) \lor (x^{6} + x^{7} + x^{8} \le 0))$$

$$\xrightarrow{x^{1} + x^{2} + x^{3} + x^{4} + x^{5} \le 1} \xrightarrow{x^{6} + x^{7} + x^{8} + x^{9} + x^{10} \le 1} \xrightarrow{x^{11} + x^{12} + x^{13} + x^{14} + x^{15} \le 1} \xrightarrow{((x^{8} + x^{9} + x^{10} \le 0) \lor (x^{11} + x^{12} \le 0)) \land x^{8} + x^{9} + x^{10} \le 1 \land x^{11} + x^{12} \le 1}$$

$$\equiv x^{8} + x^{9} + x^{10} + x^{11} + x^{12} \le 1$$

Every other constraints of the SCAMO are decomposed:

$$x_1 + \dots + x_n \le 1 \equiv$$

 $(x_1 + \dots + x_i \le 1) \land (x_{i+1} + \dots + x_n \le 1) \land (x_1 + \dots + x_i \le 0 \lor x_{i+1} + \dots + x_n \le 0)$

- Duplex: consider both left-associative and right-associative addition
- At-most-one and at-most-zero constraints over the necessary sub-sums

Considered associativity of addition determines variable order in BDD

Considered associativity of addition determines variable order in BDD

$$x^8 + x^9 + x^{10} + x^{11} + x^{12} \le 1 \equiv x^8 + x^9 + x^{10} \le 1 \land x^{11} + x^{12} \le 1 \land \left((x^8 + x^9 + x^{10} \le 0) \lor (x^{11} + x^{12} \le 0) \right)$$

Considered associativity of addition determines variable order in BDD

$$x^8 + x^9 + x^{10} + x^{11} + x^{12} \le 1 \equiv x^8 + x^9 + x^{10} \le 1 \land x^{11} + x^{12} \le 1 \land \left((x^8 + x^9 + x^{10} \le 0) \lor (x^{11} + x^{12} \le 0) \right)$$

SAT Encoding of Staircase At-Most-One Constraint Sets

Is there a truth assignment to the variables of X such that each at-most-one constraint of SCAMO(X, w) is satisfied?

$$\begin{array}{c} x^{1} + x^{2} + x^{3} + x^{4} + x^{5} \leq 1 \\ x^{2} + x^{3} + x^{4} + x^{5} + x^{6} \leq 1 \\ x^{3} + x^{4} + x^{5} + x^{6} + x^{7} \leq 1 \\ x^{4} + x^{5} + x^{6} + x^{7} + x^{8} \leq 1 \\ x^{5} + x^{6} + x^{7} + x^{8} + x^{9} \leq 1 \\ \hline x^{6} + x^{7} + x^{8} + x^{9} + x^{10} \leq 1 \\ x^{7} + x^{8} + x^{9} + x^{10} + x^{11} \leq 1 \\ x^{8} + x^{9} + x^{10} + x^{11} + x^{12} \leq 1 \\ x^{9} + x^{10} + x^{11} + x^{12} + x^{13} \leq 1 \\ \hline x^{10} + x^{11} + x^{12} + x^{13} + x^{14} \leq 1 \\ \hline x^{11} + x^{12} + x^{13} + x^{14} + x^{15} \leq 1 \\ \end{array}$$

SAT Encoding of Staircase At-Most-One Constraint Sets

Is there a truth assignment to the variables of X such that each at-most-one constraint of SCAMO(X, w) is satisfied?

$$\begin{array}{c} x^{1} + x^{2} + x^{3} + x^{4} + x^{5} \leq 1 \\ x^{2} + x^{3} + x^{4} + x^{5} + x^{6} \leq 1 \\ x^{3} + x^{4} + x^{5} + x^{6} + x^{7} \leq 1 \\ x^{3} + x^{4} + x^{5} + x^{6} + x^{7} \leq 1 \\ x^{4} + x^{5} + x^{6} + x^{7} + x^{8} \leq 1 \\ x^{5} + x^{6} + x^{7} + x^{8} + x^{9} \leq 1 \\ x^{5} + x^{6} + x^{7} + x^{8} + x^{9} \leq 1 \\ x^{5} + x^{6} + x^{7} + x^{8} + x^{9} + x^{10} \leq 1 \\ x^{7} + x^{8} + x^{9} + x^{10} + x^{11} \leq 1 \\ x^{7} + x^{8} + x^{9} + x^{10} + x^{11} + x^{12} \leq 1 \\ x^{9} + x^{10} + x^{11} + x^{12} + x^{13} \leq 1 \\ x^{10} + x^{11} + x^{12} + x^{13} + x^{14} \leq 1 \\ x^{10} + x^{11} + x^{12} + x^{13} + x^{14} \leq 1 \\ x^{10} + x^{11} + x^{12} + x^{13} + x^{14} + x^{15} \leq 1 \\ x^{10} + x^{11} + x^{11}$$

EXPERIMENTS

Duplex Encoding of SCAMOs – SAT Experiments

■ Linear sized SAT encoding of staircase at-most-one constraint sets

Duplex Encoding of SCAMOs – SAT Experiments

■ Linear sized SAT encoding of staircase at-most-one constraint sets

Duplex Encoding of SCAMOs – ABP Experiments

■ Harwell-Boeing Sparse Matrix Collection (smaller instances)

Instance	V	E	LB	UB	SAT - Duplex			$MIP - F_e(k)$			CP - CPLEX			CP - MZ-Chuffed		
					Obj.	Time	MB	Obj.	Time	MB	Obj.	Time	MB	Obj.	Time	MB
A-pores_1	30	103	6	8	6	185.52	52	6	23.71	29	6-8	TO	57	6	5.97	11
B-ibm32	32	90	9	9	9	1.30	11	9	28.57	29	9	7.35	20	9	17.4	11
C-bcspwr01	39	46	16	17	17	3.85	13	17	6.64	28	17	18.78	21	17	TO	11
D-bcsstk01	48	176	8	9	9	0.25	14	9	62.28	36	9	20.15	21	9	6.35	12
E-bcspwr02	49	59	21	22	21	3.37	13	21	774.02	205	21	22.84	19	21	673.44	11
F-curtis54	54	124	12	13	13	1.33	18	13	12.56	32	13	34.66	21	13	2.14	11
G-will57	57	127	12	14	13	0.57	19	13	15.4	33	13	44.75	21	13	2.69	11
H-impcol_b	59	281	8	8	8	0.54	22	8	0.47	24	8-22	TO	63	8	23.3	12
I-ash85	85	219	19	27	23	TO	331	20	TO	133	22-31	TO	37	21	TO	12
J-nos4	100	247	32	40	35	585.33	190	-	TO	106	34-47	TO	31	-	TO	12
K-dwt234	117	162	46	58	49	TO	477	48	TO	264	51-57	TO	33	-	TO	11
L-bcspwr03	118	179	39	39	39	0.99	58	39	0.52	21	39	110.92	22	39	26.42	12

On a cluster with Intel Xeon E5-2620 v4 @ 2.10GHz CPUs, TO = 1800 seconds. Used SAT solver in Duplex is CaDiCaL 1.2.1. Solvers $F_e(k)$ and CP-CPLEX are as-is from [Markus Sinnl - CEJOR'20] and CP-MZ-Chuffed is via MiniZincIDE-2.3.2.

Duplex Encoding of SCAMOs – ABP Experiments

■ Harwell-Boeing Sparse Matrix Collection (larger instances)

Instance	1871	E	LB	UB	SAT – Duplex			$MIP - F_e(k)$			CP - CPLEX			CP - MZ-Chuffed		
	V				Obj.	Time	MB	Obj.	Time	MB	Obj.	Time	MB	Obj.	Time	MB
M-bcsstk06	420	3720	28	72	34	TO	1621	33	TO	625	-	TO	20	-	TO	35
N-bcsstk07	420	3720	28	72	34	TO	1621	33	TO	634	-	TO	20	-	TO	35
O-impcol_d	425	1267	91	173	99	TO	1043	95	TO	691	-	TO	18	-	TO	24
P-can445	445	1682	78	120	-	TO	1581	-	TO	644	-	TO	18	-	TO	24
Q-494_bus	494	586	219	246	-	TO	1167	220	TO	905	-	TO	18	-	TO	21
R-dwt503	503	2762	46	71	62	TO	1680	52	TO	911	-	TO	19	-	TO	31
S-sherman4	546	1341	256	272	-	TO	1129	-	TO	1033	-	TO	19	-	TO	24
T-dwt592	592	2256	103	150	-	TO	2253	-	TO	1068	-	TO	20	-	TO	37
U-662_bus	662	906	219	220	220	319.73	1564	-	TO	1320	-	ТО	19	-	TO	28
V-nos6	675	1290	326	337	-	TO	1571	-	TO	1434	-	ТО	20	-	TO	28
W-685_bus	685	1282	136	136	136	14.33	1428	136	9.24	37	-	ТО	20	-	TO	29
X-can715	715	2975	112	142	-	TO	3312	-	TO	1468	-	ТО	21	-	TO	39

On a cluster with Intel Xeon E5-2620 v4 @ 2.10GHz CPUs, TO = 1800 seconds. Used SAT solver in Duplex is CaDiCaL 1.2.1. Solvers $F_e(k)$ and CP-CPLEX are as-is from [Markus Sinnl - CEJOR'20] and CP-MZ-Chuffed is via MiniZincIDE-2.3.2.

■ Linear encoding of sequence at-most-one constraints

- Linear encoding of sequence at-most-one constraints
 - Unit propagation can establish arc consistency

- Linear encoding of sequence at-most-one constraints
 - Unit propagation can establish arc consistency
- Iterative SAT-based solution method for ABP
 - Improved results compared to state-of-the-art MIP approach
 - Found and proved two new optimal solutions

- Linear encoding of sequence at-most-one constraints
 - Unit propagation can establish arc consistency
- Iterative SAT-based solution method for ABP
 - □ Improved results compared to state-of-the-art MIP approach
 - □ Found and proved two new optimal solutions

Future Work:

- Linear encoding of sequence at-most-one constraints
 - Unit propagation can establish arc consistency
- Iterative SAT-based solution method for ABP
 - Improved results compared to state-of-the-art MIP approach
 - Found and proved two new optimal solutions

Future Work:

Hybrid SAT & MIP approach

- Linear encoding of sequence at-most-one constraints
 - Unit propagation can establish arc consistency
- Iterative SAT-based solution method for ABP
 - Improved results compared to state-of-the-art MIP approach
 - Found and proved two new optimal solutions

Future Work:

- Hybrid SAT & MIP approach
- Duplex encoding of sequence at-most-k constraints

