Progetti di Controlli Automatici - T

Tipologia II: Controllo della posizione verticale di un Bell-Boeing V-22 Osprey

Il velivolo in considerazione può funzionare sia come aereoplano sia come elicottero. Si considera un modello approssimato della dinamica verticale

Figure 1: Bell-Boeing V-22 Osprey

del Boeing, per la quale si vuole progettare un controllore che permetta di mantenere fissata una certa posizione verticale desiderata.

Un modello approssimato, linearizzato e già validato della dinamica di interesse del velivolo ha portato alla seguente funzione di trasferimento:

$$G(s) = \frac{\mu}{(\tau_{p1}s + 1)(\tau_{p2}s + 1)(s^2 + 2\delta\omega s + \omega^2)}$$
(1)

in cui l'ingresso u rappresenta la velocità di rotazione dei motori (la quale determina la spinta che l'aereo riceve verso l'alto) e l'uscita y è la posizione verticale del velivolo.

Qui i poli complessi coniugati rappresentano una dinamica secondaria dovuta, ad esempio, alla flessibilità della struttura che è sottoposte a un grande sforzo tra il peso dell'aereo e la spinta dei motori.

Lo schema di controllo considerato è il seguente:

Il controllore deve rispettare alcune specifiche implementative quali avere errore a regime limitato superiormente da ϵ in risposta a un riferimento a gradino, Inoltre deve essere garantito un margine di fase $\geq M_f$. Si richiede poi che la massima sovraelongazione sia del $S_{\%}$ garantendo però un tempo di assestamento al $T_{\%}\%$ inferiore a T_a .

La misura dell'uscita (posizione verticale) fatta tramite GPS è sporcata da un rumore di misura che deve essere attenuato di almeno B_n volte. Il rumore in questione è il disturbo n(t) nel diagramma a blocchi che ha contenuto frequenziale a partire dalla frequenza $\omega_n \left[\frac{rad}{s}\right]$ ed ampiezza A_n .

(Opzionale) Come punto aggiuntivo si richiede di spingere al massimo le performance del sistema riducendo quanto più possibile il tempo di assestamento al $T_{\%}$ e fornire un paragone tra le velocità (azioni di controllo generate dal regolatore) richieste ai motori in questione.

Riassunto delle specifiche:

- Garantire errore a regime limitato superiormente da ϵ con riferimento a gradino.
- Garantire un margine di fase della funzione di trasferimento complessiva $\geq M_f$.
- Garantire un tempo di assestamento a regime dell'uscita (y): tempo di assestamento al $T_{\%}$ inferiore a T_a .

- Garantire massima sovraelongazione sia del $S_{\%}$.
- $\bullet\,$ Abbattere il disturbo sull'uscita n di almeno B_n volte.
- Opzionale: Ridurre il più possibile il tempo di assestamento facendo un paragone sulle azioni di controllo generate.

G	a	b	c
μ	50	30	150
τ_{p1}	15	20	10
$ au_{p2}$	30	40	35
δ	0.8	0.8	0.8
ω	0.5	0.5	0.5
$\overline{M_f}$	40	40	40
$\overline{S_{\%}}$	5	5	5
$\overline{T_a}$	15	10	15
$T_{\%}$	1 %	5 %	1 %
ω_n	100	100	100
$\overline{A_n}$	0.015	0.02	0.03
$\overline{B_n}$	20	20	20
ϵ	3 %	3 %	3 %

Table 1: Parametri per la tipologia $2\,$