Лабораторная работа №5

«Оптимальное кодирование.

Арифметическое кодирование»

Вариант 1

Цель работы: освоить алгоритм арифметического кодирования и декодирования. Научиться сжимать сообщения с помощью арифметического колирования.

1

Условие: Вычислить кумулятивные вероятности каждого символа.

a	Α	В	C	D	Е	F
Р	0,25	0,05	0,1	0,25	0,05	0,3

Решение:

Вычислим кумулятивные вероятности каждого символа по правилу:

$$q(a_1) = 0$$
; $q(a_2) = p_1$; $q(a_3) = p_1 + p_2$; ...; $q(a_n) = \sum_{i=1}^{n-1} p_i$

a	Α	В	C	D	Е	F
р	0,25	0,05	0,1	0,25	0,05	0,3
q	0	0,25	0,3	0,4	0,65	0,7

2

Условие: Закодировать сообщение (ADADBDCBBDCABFDAFCEB), используя алгоритм арифметического кодирования. Вычислить числа F_{20} и G_{20} . Вычислить Q и k. Перевести число Q в двоичную систему счисления с точностью k знаков после запятой. Закодированное двоичное число перевести в десятичное число Z.

Решение:

Инициализируем $F_i=0$ и $G_i=1$, после чего рассчитаем их пользуясь следующим алгоритмом:

Выполнять с первого символа по п-ный:

$$F_i = F_{i-1} + q(x_i) \times G_{i-1}$$

 $G_i = G_{i-1} \times p(x_i)$

Составим таблицу, демонстрирующую нахождение F и G:

i	X _i	$p(x_i)$	$q(x_i)$	F	G
0				0	1
1	Α	0,25	0	0	0,25
2	D	0,25	0,4	0,1	0,0625
3	Α	0,25	0	0,1	0,015625
4	D	0,25	0,4	0,10625	0,00390625
5	В	0,05	0,25	0,1072265625	0,0001953125
6	D	0,25	0,4	0,1073046875	0,000048828125
7	С	0,1	0,3	0,1073193359375	0,0000048828125
8	В	0,05	0,25	0,107320556640625	0,000000244140625
9	В	0,05	0,25	0,10732061767578125	0,00000001220703125
10	D	0,25	0,4	0,10732062255859375	0,000000030517578125
11	С	0,1	0,3	0,10732062347412109375	0,0000000030517578125
12	Α	0,25	0	0,10732062347412109375	0,000000000762939453125
13	В	0,05	0,25	0,107320623493194580078125	0,00000000003814697265625
14	F	0,3	0,7	0,1073206234958648681640625	0,00000000011444091796875
15	D	0,25	0,4	0,1073206234963226318359375	0,00000000000286102294921875
16	Α	0,25	0	0,1073206234963226318359375	0,0000000000007152557373046875
17	F	0,3	0,7	0,107320623496372699737548828125	0,00000000000021457672119140625
18	С	0,1	0,3	0,1073206234963791370391845703125	0,00000000000021457672119140625
19	E	0,05	0,65	0,107320623496380531787872314453125	0,00000000000000107288360595703125
20	В	0,05	0,25	0,10732062349638055860996246337890625	0,0000000000000000536441802978515625

 $F_{20} = 0,10732062349638055860996246337890625$ $G_{20} = 0,0000000000000000536441802978515625$

Вычислим Q:

$$Q = F + \frac{G}{2} = 0,10732062349638055860996246337890625 +$$

0,107320623496380561292171478271484375

Вычислим k:

$$k = \lceil -\log_2 G \rceil + 1 = \lceil -\log_2(0,00000000000000000536441802978515625) \rceil + 1 = 59$$

Число Q в двоичной системе счисления с точностью до k-го символа (C):

Z = 0,10732062349638056032719024557309239753521978855133056640625

3

Условие: Декодировать полученное число Z в сообщение, используя алгоритм арифметического кодирования. Сравнить декодированное сообщение с изначальным и убедиться в их идентичности.

Решение:

Декодируем полученное число Z в сообщение, используя следующий алфавит и алгорим:

а)	Α	В	С	D	Е	F
þ)	0,25	0,05	0,1	0,25	0,05	0,3
C	1	0	0,25	0,3	0,4	0,65	0,7

Полагая $S=0;\; G=1$ выполняем, пока не раскодируем сообщение: j=1 пока $S+q_j\times G< F$ выполняем:

$$j = j + 1$$
$$S = S + q_i \times G$$

$$G = p_i \times G$$

раскодированный символ это x_i

Составим таблицу декодирования для демонстрации алгоритма декодирования:

Z = 0,10732062349638056032719024557309239753521978855133056640625

i	S	G	x _i ?	$q(x_i)$	$S + q \times G$	X _i	$p(x_i)$
1	0	1	A B C D E F	0 0,25 0,3 0,4 0,65 0,7	0 < Z 0,25 > Z	A	0,25
2	0	0,25	A B C D E F	0 0,25 0,3 0,4 0,65 0,7	0 < Z 0,0625 < Z 0,075 < Z 0,1 < Z 0,1625 > Z	D	0,25
3	0,1	0,0625	A B C D E F	0 0,25 0,3 0,4 0,65 0,7	0,1 < Z 0,115625 > Z	A	0,25
4	0,1	0,015625	A B C D E F	0 0,25 0,3 0,4 0,65 0,7	0,1 < Z 0,10390625 < Z 0,1046875 < Z 0,10625 < Z 0,11015625 > Z	D	0,25

i	S	G	x _i ?	$q(x_i)$	$S + q \times G$	Xi	$p(x_i)$
5	0,10625	0,00390625	A B C D E F	0 0,25 0,3 0,4 0,65 0,7	0,10625 < Z 0,1072265625 < Z 0,107421875 > Z	В	0,05
6	0,1072265625	0,0001953125	A B C D E F	0 0,25 0,3 0,4 0,65 0,7	0,1072265625 < Z 0,107275390625 < Z 0,10728515625 < Z 0,1073046875 < Z 0,107353515625 > Z	D	0,25
7	0,1073046875	0,000048828125	A B C D E	0 0,25 0,3 0,4 0,65 0,7	0,1073046875 < Z 0,10731689453125 < Z 0,1073193359375 < Z 0,10732421875 > Z	С	0,1
8	0,1073193359375	0,0000048828125	A B C D E	0 0,25 0,3 0,4 0,65 0,7	0,1073193359375 < Z 0,107320556640625 < Z 0,10732080078125 > Z	В	0,05
9	0,107320556640625	0,000000244140625	A B C D E F	0 0,25 0,3 0,4 0,65 0,7	0,107320556640625 < Z 0,10732061767578125 < Z 0,1073206298828125 > Z	В	0,05

i	S	G	x _i ?	$q(x_i)$	$S + q \times G$	Xi	$p(x_i)$
10	0,10732061767578125	0,00000001220703125	А В С D Е F	0 0,25 0,3 0,4 0,65 0,7	0,10732061767578125 < Z 0,1073206207275390625 < Z 0,107320621337890625 < Z 0,10732062255859375 < Z 0,1073206256103515625 > Z	D	0,25
11	0,10732062255859375	0,0000000030517578125	A B C D E F	0 0,25 0,3 0,4 0,65 0,7	0,10732062255859375 < Z 0,107320623321533203125 < Z 0,10732062347412109375 < Z 0,107320623779296875 > Z	С	0,1
12	0,10732062347412109375	0,00000000030517578125	A B C D E F	0 0,25 0,3 0,4 0,65 0,7	0,10732062347412109375 < Z 0,1073206235504150390625 > Z	A	0,25
13	0,10732062347412109375	0,0000000000762939453125	A B C D E F	0 0,25 0,3 0,4 0,65 0,7	0,10732062347412109375 < Z 0,107320623493194580078125 < Z 0,10732062349700927734375 > Z	В	0,25

i	S	G	x _i ?	$q(x_i)$	$S + q \times G$	Xi	$p(x_i)$
14	0,107320623493194580078125	0,000000000003814697265625	Α	0	0,107320623493194580078125 < Z	F	0,3
			В	0,25	0,10732062349414825439453125 <		
			_	0.2	Z		
			C D	0,3 0,4	0,1073206234943389892578125 < Z 0,107320623494720458984375 < Z		
			E	0,65	·		
			_	5,55	Z		
			F	0,7	0,1073206234958648681640625 < Z		
15	0,107320623495864868164062	0,000000000001144409179687	Α	0	0,1073206234958648681640625 < Z	D	0,25
	5	5	В	0,25	·		
			_	0.2	< Z		
			С	0,3	0,10732062349620819091796875 <		
			D	0,4	0,1073206234963226318359375 < Z		
			Ε	0,65	1 -		
					> Z		
			F	0,7			
16	0,107320623496322631835937	0,000000000000286102294921	Α	0	0,1073206234963226318359375 < Z	Α	0,25
	5	875	В	0,25	•		
			_	0.2	5 > Z		
			C D	0,3 0,4			
			E	0,4			
			F	0,7			

i	S	G	x _i ?	$q(x_i)$	$S + q \times G$	X _i	$p(x_i)$
17	0,107320623496322631835937	0,000000000000071525573730	Α	0	0,1073206234963226318359375 < Z	F	0,3
	5	46875	В	0,25	0,1073206234963405132293701171		
				0.2	875 < Z		
			С	0,3	0,1073206234963440895080566406 25 < Z		
			D	0,4	0,1073206234963512420654296875		
				", "	< Z		
			E	0,65	0,1073206234963691234588623046		
					875 < Z		
			F	0,7	0,1073206234963726997375488281 25 < Z		
10	0.40722062240627262727540	0.0000000000000000000000000000000000000			_	_	0.4
18	0,107320623496372699737548 828125	140625	Α	0	0,1073206234963726997375488281 25 < Z	С	0,1
			В	0,25	0,1073206234963780641555786132		
					8125 < Z		
			С	0,3	0,1073206234963791370391845703		
				0.4	125 < Z		
			D	0,4	0,1073206234963812828063964843 75 > Z		
			E	0,65	13 - 2		
			F	0,7			

i	S	G	x _i ?	$q(x_i)$	$S + q \times G$	Xi	$p(x_i)$
19	0,107320623496379137039184	0,000000000000002145767211	Α	0	0,1073206234963791370391845703	Е	0,05
	5703125	9140625			125 < Z		
			В	0,25	0,1073206234963796734809875488		
					28125 < Z		
			C	0,3	0,1073206234963797807693481445		
			_		3125 < Z		
			D	0,4	0,1073206234963799953460693359		
			_	0.65	375 < Z		
			E	0,65	0,1073206234963805317878723144 53125 < Z		
			F	0,7	0,1073206234963806390762329101		
			'	0,7	5625 > Z		
20	0.407222422242222		_			_	0.05
20	0,107320623496380531787872 314453125	595703125	Α	0	0,1073206234963805317878723144 53125 < Z	В	0,05
	314433123	393703123	В	0,25	0,1073206234963805586099624633		
				0,23	7890625 < Z		
			C	0,3	0,1073206234963805639743804931		
					640625 > Z		
			D	0,4			
			Е	0,65			
			F	0,7			

Полученное сообщение – ADADBDCBBDCABFDAFCEB – идентично исходному (ADADBDCBBDCABFDAFCEB).

Условие: Создать подпрограмму для реализации алгоритма арифметического кодирования. На вход подпрограммы передаются символы и их вероятности, а также сообщение, которое нужно закодировать. Для лучшей реализации алгоритма использовать числа повышенной точности. Подпрограмма возвращает число Z.

5

Условие: Создать подпрограмму для реализации алгоритма арифметического декодирования. На вход подпрограмме передаются символы и их вероятности, а также число Z, которое нужно декодировать. Для лучшей реализации алгоритма использовать числа повышенной точности. Подпрограмма возвращает декодированное сообщение.

6

Условие: Создать демонстрационную программу, показывающую работу подпрограмм из п. 4 и п. 5. Данные из п. 1 и п. 2 использовать как тестовые.