

Oficina de Arduino Link: goo.gl/5HEZcE

Atividades

- Introdução
- Experimentação guiada
- Projeto
- Compartilhamento e reflexão

- Circuito com bateria e LED

- Circuito com bateria e LED

- O que está acontecendo? Como o LED acende?
- O que acontece se invertermos o posicionamento do LED?
- E se quisermos controlar o LED de alguma forma?

- Arduino
 - O que é?

- Arduino

- O que é?
- Para que serve?

- Arduino

- Por que precisamos de um microcontrolador?

- Arduino

- Por que precisamos de um microcontrolador?
- Como fazer com que ele execute o que queremos?

- Arduino

- Por que precisamos de um microcontrolador?
- Como fazer com que ele execute o que queremos?
 - → Programação
 - → Sensores e atuadores
 - → Demais componentes do circuito

- Arduino: começando

Vamos acender o LED!

- Exemplo Blink

- O que está acontecendo?
- Alterações nos valores do programa

- Em qual local do código o intervalo de tempo da piscada é definido?
- O que significa LOW e HIGH para o Arduino?
- E pinMode(13, OUTPUT)?

Protoboard

fritzing

Protoboard - Conexões

fritzing

- LED: pino 13

fritzing

- LED: pino 9

- Alterar as conexões na protoboard

- Alterar o código

- LED + LDR

Exemplo de código:

Arquivo > Exemplos > 03. Analog > **AnalogInput**

LED + LDR: Monitor Serial e Plotter

Exemplo de código:

Arquivo > Exemplos > 01. Basics> **AnalogReadSerial**

- Chave de 2 estados

- Chave de 2 estados

Arquivo > Exemplos > 01. Basics > **DigitalReadSerial**

- Como fazer um botão controlar o LED?

- Botão + LED

Código:

Arquivo > Exemplos > 02. Digital > **Button**

- Análise e modificação do código

- Potenciômetro

- Potenciômetro

Exemplos de código:

```
Arquivo > Exemplos > 1. Basics > ReadAnalogVoltage
```

Arquivo > Exemplos > 03. Analog > **AnalogInput**

Arquivo > Exemplos > 01. Basics>

AnalogReadSerial

Conceitos:

- Sensor x atuador
- Read x Write
- Digital x Analog

Projeto (30')

Acender LEDs ao apagarmos a luz da sala

Ideias:

- Usar múltiplos LEDs
- Usar LED RGB
- Substituir por Buzzer
- Criar sequências de cores
- Outras interações

- Exibição dos projetos ao apagar a luz

Reflexão

Componentes do kit

- 1 Placa Compatível com UNO R3
- 1 Cabo USB A-B
- 1 Módulo Bluetooth HC-05
- 1 Protoboard 400 pontos
- 1 Reed Switch / Sensor Magnético
- 1 Sensor de Temperatura NTC 10K
- 1 Sensor de Luminosidade LDR 5mm
- 5 Chaves Momentânea (4 terminais)
- 5 Chaves SS12F46 (3 terminais)

- 5 LEDs Amarelos / Vermelhos/ Verdes/ Azuis
- 1 LED RGB Alto Brilho Ânodo Comum
- 1 Buzzer 5V
- 1 Micro Servo 9g SG90 TowerPro
- 10 Resistores de 330Ω
- 10 Resistores de $1K\Omega$
- 10 Resistores de $10K\Omega$
- 1 Potenciômetro de 1K
- 65 Jumpers Macho / Macho
- 1 Caixa Organizadora

Reflexão

- Onde encontramos dispositivos similares no nosso dia a dia?

- Que tipo de problemas poderíamos resolver usando Arduino?

Como funcionariam?

O universo da Arduino

- Comunidade

- Fóruns

- Documentação de projetos

Dispositivo para análise de abalos sísmicos

https://hackaday.io/project/20735/gallery#3fb2984bf37804fd1fa101e981c74124

Estação meteorológica para agricultura

Detecta potenciais geadas e alerta o agricultor

Fonte https://hackaday.io/project/25336/gallery#3b02cc7fcad42e550858123254c8ab20

FarmCorder: sensor de deficiencia nutricional em plantações

Monitoramento de pacientes

Monitoramento da qualidade do ar

Medidor de nível de água de baixo custo

Reflexão

Como levar este tipo de atividade para a sala de aula?

Reflexão

_

- Linguagens de programação em blocos para Arduino

- <u>MBlock</u>
- <u>S4A</u>
- Snap 4 Arduino
- Ardublock
- ScratchX
- ...

