Memory Management - Segmentation

Kartik Gopalan

Chapter 3 Tanenbaum's book

Separate Instruction and Data Spaces

One address space

Separate I and D spaces

Example: Compiler program without segmentation

One-dimensional address space with growing tables

Example: Compiler program with segmentation

- One process has multiple address spaces.
- Each address space grows or shrink, independently

Comparison of paging and segmentation

Consideration	Paging	Segmentation
Need the programmer be aware that this technique is being used?	No	Yes
How many linear address spaces are there?	1	Many
Can the total address space exceed the size of physical memory?	Yes	Yes
Can procedures and data be distinguished and separately protected?	No	Yes
Can tables whose size fluctuates be accommodated easily?	No	Yes
Is sharing of procedures between users facilitated?	No	Yes
Why was this technique invented?	To get a large linear address space without having to buy more physical memory	To allow programs and data to be broken up into logically independent address spaces and to aid sharing and protection

Implementation of Pure Segmentation

- (a)-(d) Development of checkerboarding (external fragmentation)
- (e) Removal of the checkerboarding by compaction

MULTICS — Paged Segmentation

- Every process can have multiple virtual address spaces (or segments)
- Each Segment has its own page table
- Advantage
 - Each segment can have the full virtual address space allowed by number of address bits
- Disadvantage
 - Switching from one segment to another has a high context switch penalty, even within the same process.

Translation of a Multics Virtual Address

Segmentation with Paging: MULTICS

- Segment descriptor table has one descriptor for each segment
- Each segment descriptor points to a page table

Pentium — Paged Segmentation

- Each process can have multiple segments
- Multiple segments map to one <u>linear</u> address space
- Linear address space has one page table

Translation of a Pentium Virtual Address

Step 1: Convert (selector, offset) pair to a linear address using segment descriptor

Step 2: Convert linear address onto a physical address using page table entry

Segmentation with Paging: Pentium

Similar to MULTICS, but addresses a number of different design goals

A Pentium selector

(equivalent to Segment Number in Multics)
GDT = Global Descriptor Table
LDT = Local Descriptor Table

References

- Chapter 3: Modern Operating Systems, Andrew S. Tanenbaum
- Segmentation
 - http://en.wikipedia.org/wiki/Memory_segment
- x86
 - http://en.wikipedia.org/wiki/X86
- Intel Memory model
 - http://en.wikipedia.org/wiki/Intel_Memory_Model