Patent Claims

1.	A drive train system (1: 1.5);
1.1	having a driving engine (2, 3; 2.5, 3.5);
1.2	having a cooling system (4; 4.5) for cooling the driving engine (2, 3;
	2.5, 3.5), which comprises a coolant circuit (5; 5.5), a cooling device
	(6), and a fan (7; 7.5) that is associated with the cooling device;
1.3	the fan (7; 7.5) is in driveline connection with the driving engine (2,
	3; 2.5; 3.5);
	characterized by the following feature;
1.5 ³	arranged between the driving engine (2, 3; 2.5, 3.5) and the fan (7;
	7.5) is a controllable or regulatable clutch (37);
	characterized by the following features:
1.6	the clutch (37) takes the form of a hydrodynamic clutch (8; 8.5),
	comprising a primary wheel and a secondary wheel, which jointly
	form a working chamber (11) that can be filled with a working fluid;
1.7	having a working fluid supply system (34; 34.5) that is associated
	with the clutch;
1.8	having means (49) for influencing the transmission behavior of the
	hydrodynamic clutch (8; 8.5).
2.	The drive train system (1; 1.5) according to claim 1, further
	characterized by the following features:
2.1	having a control and/or regulating device, which comprises at least
	one control and/or regulating device;
2.2	having registering devices, coupled to the control and/or regulating
	device, for registering the variables mentioned below:
2.2.1	at least one current operating parameter of the driving engine

-

³ [Translator's Note] "1.4" is missing in the original.

- 2.2.2 at least one variable that characterizes, at least indirectly, the operating state of the drive train system;
- 2.2.3 at least one variable that characterizes, at least indirectly, the temperature in the coolant circuit;
- 2.3 the control and/or regulating device is connected to an adjusting device of the clutch for influencing the transmittable torque.
- 3. The drive train system according to claim 1 or 2, further characterized by the following features:
- the working fluid supply system (34; 34.5) of the hydrodynamic clutch (8; 8.,5) is formed by the cooling system (4; 4.5);
- the clutch (8; 8.5) is disposed in the flow direction after a circulating pump (14.5) that is arranged in the cooling system (4; 4.5);
- the clutch (8; 8.5) is arranged in a bypass (15) to the coolant circuit (4; 4.5);
- having a valve device (24) arranged in the cooling system (4; 4.5) as the adjusting device of the clutch (8; 8.5) for control of the flow of working fluid into the working chamber (11) of the hydrodynamic clutch (8; 8.5).
- 4. The drive train system according to claim 3, further characterized in that the valve device (24) is arranged in the coolant circuit (4; 4.5).
- 5. The drive train system according to claim 4, further characterized in that the valve device (24) is arranged in the bypass (15).
- 6. The drive train system according to one of claims 3 to 5, further characterized in that the valve device (24) takes the form of a proportional valve (25).

⁴ [Translator's Note] "3.4" is missing in the original.

- 7. The drive train system according to one of claims 3 to 6, further characterized by the following features:
- 7.1 having a second circulating pump (46) arranged in the cooling circuit (4);
- the second circulating pump (46) is disposed before the first circulating pump (14);
- 7.3 the second circulating pump (46) is coupled between the driving engine (2, 3) and the clutch (8) by way of a speed/torque converter (47);
- 7.5⁵ the second circulating pump (46) can be adjusted.
- 8. The drive train system according to claim 7, further characterized in that the adjustability of the second circulating pump (46) occurs by way of a controllable and/or regulatable clutch (45) that is arranged in the driveline connection between the driving engine (2, 3) and the second circulating pump (46).
- 9. The drive train system according to claim 8, further characterized in that the controllable and/or regulatable clutch (45) takes the form of a hydrodynamic clutch.
- 10. The drive train system (1; 1.5) according to claim 1 or 2, further characterized by the following features:
- having a separate working fluid supply system (34, 34.5) associated with the clutch (8; 8.5);
- the working fluid supply system (34; 34.5) comprises a circuit (42) that is coupled to the working chamber (11);
- having the means (44) associated with the circuit (42) for changing the filling ratio in the working chamber (11).

⁵ [Translator's Note] "7.4" is missing in the original.

- The drive train system (1; 1.5) according to claim 10, further characterized in that the circuit (42) is constructed as a closed circuit (42), which is coupled in a pressure-tight manner to a pressure-tight closed working fluid reservoir (36.5) and the means (44) for changing the filling ratio comprise means (43) for applying a static superimposed pressure on the working fluid level in the working fluid reservoir (36.5).
- 12. A method for optimizing the power supply of a cooling system (4, 4.5) for cooling at least one assembly of a drive train system (1, 1.5), comprising a driving engine, whereby the cooling system (4, 4.5) comprises at least one cooling circuit (5, 5.5), having a cooling device (6) and a fan (7, 7.5) associated with it, whereby the fan (7; 7.5) is in driveline connection with the driving engine (2, 3; 2.5, 3.5).
- in which the cooling capacity of the cooling system (4, 4.5) is controlled and/or regulated by the volume of air that can be supplied by the fan (7; 7.5) for absorbing heat;
- in which the control and/or regulation of the volume of air that can be supplied by the fan (7; 7.5) for absorbing heat occurs through control and/or regulation of the speed (rpm) of the fan (7; 7.5); characterized by the following features:
- in which the control and/or regulation of the speed (rpm) of the fan (7; 7.5) occurs as a function of the variables mentioned below and the change in the temperature in the cooling circuit (5; 5.5) that can be determined from these variables:
- 12.3.1 at least one current operating parameter of the driving engine (2, 3; 2.5; 3.5)

- at least one variable that characterizes, at least indirectly, the operating state of the drive train system (1; 1.5);
- at least one variable that characterizes, at least indirectly, the temperature in the cooling circuit (5; 5.5);
- in which the torque that is transmittable by way of a clutch (8; 8.5, 37) disposed between the driving engine (2, 3, 2.5, 3.5) and the fan (7; 7.5) or a variable that characterizes said torque at least indirectly functions as a manipulated variable for control and/or regulation of the speed (rpm) of the fan (7; 7.5).
- 13. The method according to claim 12, further characterized in that, when the drive train system (1; 1.5) is used in a mobile application, the variables that characterize, at least indirectly, the operating state of the drive train system (1; 1.5) are determined by the variables that characterize, at least indirectly, the driving state.
- 14. The method according to claim 13, further characterized in that the variables mentioned below function as the variables that characterize, at least indirectly, the driving state:
- a variable that characterizes, at least indirectly, the power that can be output by the driving engine
- a variable that characterizes, at least indirectly, the actuation of a braking device or of a selection device for adjusting the driver's intent or of a food pedal.
- 15. The method according to one of claims 12 to 14, further characterized in that the change in the temperature in the cooling circuit that results is calculated.

-

⁶ [Translator's Note] "12.4" is missing in the original.

- 16. The method according to one of claims 12 to 14, further characterized in that the change in the temperature in the cooling circuit that results is estimated in temperature ranges.
- 17. The method according to one of claims 12 to 16, further characterized in that the control and/or regulation of the speed (rpm) of the fan is a component of a regulation to constant temperature in the coolant circuit.