DevOps Foundations Intro – Why DevOps

Feedback Round, Slido

Join at slido.com #3473187

Please download and install the Slido app on all computers you use

Did you have any experience operating an application?

⁽i) Start presenting to display the poll results on this slide.

Please download and install the Slido app on all computers you use

How much of a developer are you?

⁽i) Start presenting to display the poll results on this slide.

Please download and install the Slido app on all computers you use

Have you hands-on experience (= can solve problems with it) with

⁽i) Start presenting to display the poll results on this slide.

Please download and install the Slido app on all computers you use

What Programming Languages do you use?

⁽i) Start presenting to display the poll results on this slide.

Please download and install the Slido app on all computers you use

What (Web)Frameworks are you using (e.g. for providing a web service)?

⁽i) Start presenting to display the poll results on this slide.

Developer vs. Operations

Developer		IT Operations
I want change		I want Stability
I want to add / modify features	4	I want to create / enhance services
Doesn't deploy consistent software		Motivation to resist change
Development Process is Agile		Operations Process is static

Learn DevOps - Edward Viaene - Copyright 2015

Credits for this fabulous comics to Zühlke

Hardly measurable

→ cultural impact

Motivation 2: Handle Complexity

Modules for Softwaredevelopment	Modules for Softwareoperations
>20	<10
Programming Languages, Technologies, etc.	Processes, System Engineering, - management

Motivation 2: Handle Complexity

500+ microservices

500+ microservices

500+ microservices

Motivation 3 Technology over processes

"We are uncovering better ways of developing software by doing it and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more."

Motivation 3: Technology over processes

- (Not only) microservices are distributed systems
 - Errors are seldomly isolated
 - One failed services affects other «healthy» services

Mean Time to Repair (MTTR) is crucial to prohibit escalating errors.

Mean time to repair =

Network running normally

average(incident resolved timestamp - incident created timestamp)

	1970s-1980s	1990s	2000s–Present
Era	Mainframes	Client/Server	Commoditization and Cloud
Representative technology of era	COBOL, DB2 on MVS, etc.	C++, Oracle, Solaris, etc.	Java, MySQL, Red Hat, Ruby on Rails, PHP, etc.
Cycle time	1–5 years	3–12 months	2–12 weeks
Cost	\$1M-\$100M	\$100k-\$10M	\$10k-\$1M
At risk	The whole company	A product line or division	A product feature
Cost of failure	Bankruptcy, sell the compa- ny, massive layoffs	Revenue miss, CIO's job	Negligible

Company	Deploy Frequency	Deploy Lead Time	Reliability	Customer Responsiveness
Amazon	23,000 / day	minutes	high	high
Google	5,500 / day	minutes	high	high
Netflix	500 / day	minutes	high	high
Facebook	1/day	hours	high	high
Twitter ²	3 / week	hours	high	high
typical enterprise	once every 9 months	months or quarters	low/medium	low/medium

Economic Batch Size

Deployment Frequency =

number of deployments per day

Batch Size

From "The Principles of Product Development Flow," by Donald G. Reinertsen. Celeritas Publishing: 2009. Copyright 2009, Donald G. Reinertsen

Percentage of failed deployement in need of hotfix/rollback/etc.

Motivation 5: Reliability is the most important feature

- If a system isn't reliable, users won't trust it.
- If users don't trust a system, when given a choice, they won't use it.
- Since all software systems are governed by network effects, if a system has no users, it's worth nothing.
- You are what you measure, so choose your metrics carefully.

→ https://sre.google/workbook/reaching-beyond/

"HTTP GET / ..."

Dora Metrics

Dora Metrics

Software delivery performance metric	Low	Medium	High
Deployment frequency For the primary application or service you work on, how often does your organization deploy code to production or release it to end users?	Between once per month and once every 6 months	Between once per week and once per month	On-demand (multiple deploys per day)
Lead time for changes For the primary application or service you work on, what is your lead time for changes (i.e., how long does it take to go from code committed to code successfully running in production)?	Between one month and six months	Between one week and one month	Between one day and one week
Time to restore service For the primary application or service you work on, how long does it generally take to restore service when a service incident or a defect that impacts users occurs (e.g., unplanned outage or service impairment)?	Between one week and one month	Between one day and one week	Less than one day
Change failure rate For the primary application or service you work on, what percentage of changes to production or released to users result in degraded service (e.g., lead to service impairment or service outage) and subsequently require remediation (e.g., require a hotfix, rollback, fix forward, patch)?	46%-60%	16%-30%	0%-15%

Report in Literature

How Devops?

Driver 1: Cloud

- Cloud is sourcecode
- Cloud is automation
- Cloud is shared responsibility
- Cloud is transparent
- Cloud is scalable

Driver 2: Isolation

Driver 2: Architecture

Monolithic / Layered

Micro-services

Driver 3: Automate everything / Remove Toil

https://www.oreilly.com/content/wp-content/uploads/sites/2/2020/01/7328405210_59fd7fc7c0_o_crop-a5fff67019a264aec040b2129d60bd4d.jpg

Driver 4: Take responsibility

Credits for this fabulous comic to Zühlke

WHY AREN'T THERE ANY FOREIGN MILITARY BASES IN AMERICA

Ď#.

Recap Questions

- Name and describe the 5 DORA metrics
- 2. Why is Cloud important for DevOps and why is DevOps important for Cloud?
- 3. Name and explain different targets classical Developer- and Operationsteams have. Why do they have them?
- 4. Explain why containerization is important for DevOps.
- 5. Automation is the key for successful DevOps-Workflows. Why is scalability, ongoing with automation so important when it comes especially to deploying microservice architectures? Why is it important with respect to the lead time?

32