Durée : 30 minutes. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

BON COURAGE!

* * * * * * * * * * * * * * * * * *

1. Soit f une application de E dans F. Si f est surjective . . .

$$(1)\square \quad \forall (x,x') \in E^2 \ f(x) \neq f(x') \Rightarrow \ x \neq x' \qquad (2)\square \quad \forall (x,x') \in E^2 \ f(x) = f(x') \Rightarrow \ x = x'$$

$$(3)\square \quad \forall y \in F \ \exists x \in E \ y = f(x) \qquad (4)\square \quad Card(E) \geqslant Card(F)$$

$$(5)\square \quad \text{aucune des réponses précédentes n'est correcte.}$$

2. Quelle est la partie réelle de $(2+3i)e^{-i\frac{\pi}{2}}$?

$$_{(1)}\Box \ \ 2\sqrt{2}$$
 $_{(2)}\Box \ \ \frac{\sqrt{3}}{2}$ $_{(3)}\Box \ \ 3$ $_{(4)}\Box \ \ -3$

 $_{(5)}\square$ $\;$ aucune des réponses précédentes n'est correcte.

3. D'après Euler, $\sin \theta$ est égal à

4. Soit r=3 et $\theta=\frac{2\pi}{3}$. Cocher la forme algébrique de ce complexe si présente.

$$z = -\frac{3}{2} + \mathrm{i} \frac{3\sqrt{3}}{2} \qquad {}_{(2)}\square \quad z = \frac{3}{2} - \mathrm{i} \frac{3\sqrt{3}}{2} \qquad {}_{(3)}\square \quad z = -\frac{3\sqrt{2}}{2} + \mathrm{i} \frac{3\sqrt{3}}{2} \qquad {}_{(4)}\square \quad z = \frac{3\sqrt{2}}{2} - \mathrm{i} \frac{3\sqrt{3}}{2}$$
 aucune des réponses précédentes n'est correcte.

5. Les racines carrées de $z=-\mathrm{i}$ dans $\mathbb C$ sont

6. Soient z_0, \ldots, z_{n-1} les n racines n-ièmes de $z \in \mathbb{C}$. Si $n \geqslant 2$ alors $\sum_{k=0}^{n-1} z_k$ vaut $ (1)^{\square} \frac{1 - e^{\mathrm{i}\frac{\theta}{n}}}{1 - e^{\mathrm{i}\frac{2\pi}{n}}} \qquad (2)^{\square} 0 \qquad (3)^{\square} 1 \qquad (4)^{\square} -1 $ (5) \square aucune des réponses précédentes n'est correcte.
7. Soient A , B , C trois points distincts du plan complexe d'affixes respectives z_A , z_B et z_C . On sait que : $\frac{z_C - z_A}{z_B - z_A} = 3i$. On peut déduire :
$_{(1)}\Box$ A,B,C sont alignés $_{(2)}\Box$ ABC est un triangle rectangle en A $_{(3)}\Box$ $\overline{AC}=3\overline{AB}$ $_{(4)}\Box$ ABC est un triangle isocèle en A $_{(5)}\Box$ aucune des réponses précédentes n'est correcte.
8. Soit $f: \mathbb{C} \to \mathbb{C}$ tel que $f(z) = 2z + 5 - \mathrm{i}$. f est une
$_{(1)}\Box$ translation $_{(2)}\Box$ homothétie $_{(3)}\Box$ rotation $_{(4)}\Box$ symétrie $_{(5)}\Box$ aucune des réponses précédentes n'est correcte.
9. L'application du plan complexe qui à tout point M d'affixe z fait correspondre le point M' d'affixe z tel que : $z' = (\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2})z$
rotation de centre O et d'angle de mesure $\frac{3\pi}{4}$ homothétie de centre O et de rapport $\sqrt{2}$ rotation de centre O et d'angle de mesure $-\frac{\pi}{4}$ rotation de centre O et d'angle de mesure $\frac{\pi}{4}$ aucune des réponses précédentes n'est correcte.
10. Soit $f: \mathbb{C} \to \mathbb{C}$ tel que $f(z) = 2iz + 2 + i$. Le point fixe de f est
$_{(1)}\square$ 2+i $_{(2)}\square$ 2i $_{(3)}\square$ i $_{(4)}\square$ -i

 $_{(5)}\square$ $\;$ aucune des réponses précédentes n'est correcte.