A New Encryption Standard of Ukraine: The Block Cipher "Kalyna" (DSTU 7624:2014)

Roman Oliynykov, Ivan Gorbenko, Oleksandr Kazymyrov, Victor Ruzhentsev, Yurii Gorbenko and Viktor Dolgov

> JSC Institute of Information Technologies, V.N.Karazin Kharkiv National University, Kharkiv National University of Radio Electronics Ukraine roliynykov@gmail.com

July 8th, 2015 Central European Conference on Cryptology Klagenfurt, Austria

Outline

- The block cipher GOST 28147-89 and its replacements in post-Soviet countries
- The new Ukrainian block cipher "Kalyna"
 - General structure
 - Component properties
 - Key schedule
 - Cryptographic strength
- Performance comparison with other ciphers
- Other components of the Ukrainian national standard DSTU 7624:2014
- Conclusions

Block cipher GOST 28147-89

Advantages

- a well known and researched cipher, adopted as national standard in 1990
- acceptable encryption speed (cf.TripleDES)
- appropriate for lightweight cryptography
- good S-boxes provide practical strength

Disadvantages

- theoretically broken
- huge classes of weak keys
- special S-boxes (non-bijective) allows practical ciphertext-only attacks
- encryption speed significantly slower in comparison to modern block ciphers like AES

GOST 28147-89 is withdrawn in Belarussia (legacy-only application) and will be replaced in Russia (will remain as additional 64-bit algorithm); GOST 28147-89 was refused to be included to ISO/IEC 18033-3

Replacements for GOST 28147-89 in Belarussia

Belarussia: STB 34.101.31-2011 (BelT)

- block length is 128 bits; key length is 128, 192 or 256 bits
- 8-rounds Feistel network with Lai-Massey scheme
- a single byte S-box with good cryptographic properties
- no key schedule like in GOST (encryption key shorter than 256 bits is padded by zeros)
- no cryptanalytical attacks better than exhaustive search are known
- faster than GOST, slower than AES

Replacements for GOST 28147-89 in Russia

Russia: draft standard "Kuznyechik" ("Grasshopper")

- block length is 128 bits; key length is 256 bits
- 9 rounds of Rijndael-like transformation
- single byte S-box (common with the new Russian hash GOST 34.11-2012 "Stribog")
- non-circulant MDS matrix of 16x16 size over $GF(2^8)$ (different from that in "Stribog")
- key schedule based on a Feistel network and involves round transformation (like in CS-cipher)
- no cryptanalytical attacks faster than exhaustive search are known
- faster than GOST, slower than AES

GOST 28147-89 will be used as an additional legacy cipher in the new Russian standard

Block cipher "Kalyna"

- normal, high and ultra high security level (block and key length 128, 256 and 512 bits)
- transparent construction and conservative design
- Rijndael-like SPN structure
- four different S-boxes (not CCZ-equivalent) with optimized cryptographic properties
- 8x8 MDS matrix over $GF(2^8)$
- one set of look-up tables for ECB encryption in software implementation (better performance of encryption and decryption for CTR, CFB, CMAC, OFB, GCM, GMAC, CCM modes of operation)
- a new construction of key schedule based on the round function
- effective in software and software-hardware implementations, common look-up tables with the hash function "Kupyna" (DSTU 7564:2014)

"Kalyna": supported block and key length

#	Block size (1)	Key length (k)	Rounds (t)
1	100	128	10
2	128	256	14
3	256	256	14
4	230	512	18
5	512	512	18

Block cipher "Kalyna": structure

$$T_{l,k}^{(K)} = \eta_l^{(K_t)} \circ \psi_l \circ \tau_l \circ \pi_l' \circ \prod_{\nu=1}^{t-1} (\kappa_l^{(K_{\nu})} \circ \psi_l \circ \tau_l \circ \pi_l') \circ \eta_l^{(K_0)}$$

"Kalyna": characteristics of S-boxes

Characteristic		S-box			
		2	3	4	
Non-linearity of Boolean functions		104			
Min. algebraic degree of Boolean functions			7		
Max. value of difference distribution table			8		
Max. value of linear approximation table		24			
Overdefined system degree		3			
Number of cycles		4	6	4	
Minimal cycle length		8	4	4	

Non-linearity is the best known for S-boxes with 3^{rd} degree of overdefined system (the highest among S-boxes of Crypton, Safer+, Skipjack, SNOW, Twofish, Whirlpool, S, Anubis, Stribog/Kuznyechik, STB)

"Kalyna" ShiftRows: 128,256 and 512-bit block

Linear transformation of "Kalyna": MDS matrix

```
\begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{bmatrix} = \begin{bmatrix} 01 \cdot a_0 \oplus 01 \cdot a_1 \oplus 05 \cdot a_2 \oplus 01 \cdot a_3 \oplus 08 \cdot a_4 \oplus 06 \cdot a_5 \oplus 07 \cdot a_6 \oplus 04 \cdot a_7 \\ 04 \cdot a_0 \oplus 01 \cdot a_1 \oplus 01 \cdot a_2 \oplus 05 \cdot a_3 \oplus 01 \cdot a_4 \oplus 08 \cdot a_5 \oplus 06 \cdot a_6 \oplus 07 \cdot a_7 \\ 07 \cdot a_0 \oplus 04 \cdot a_1 \oplus 01 \cdot a_2 \oplus 01 \cdot a_3 \oplus 05 \cdot a_4 \oplus 01 \cdot a_5 \oplus 08 \cdot a_6 \oplus 06 \cdot a_7 \\ 06 \cdot a_0 \oplus 07 \cdot a_1 \oplus 04 \cdot a_2 \oplus 01 \cdot a_3 \oplus 01 \cdot a_4 \oplus 05 \cdot a_5 \oplus 01 \cdot a_6 \oplus 08 \cdot a_7 \\ 08 \cdot a_0 \oplus 06 \cdot a_1 \oplus 07 \cdot a_2 \oplus 04 \cdot a_3 \oplus 01 \cdot a_4 \oplus 01 \cdot a_5 \oplus 05 \cdot a_6 \oplus 01 \cdot a_7 \\ 01 \cdot a_0 \oplus 08 \cdot a_1 \oplus 06 \cdot a_2 \oplus 07 \cdot a_3 \oplus 04 \cdot a_4 \oplus 01 \cdot a_5 \oplus 01 \cdot a_6 \oplus 05 \cdot a_7 \\ 05 \cdot a_0 \oplus 01 \cdot a_1 \oplus 08 \cdot a_2 \oplus 06 \cdot a_3 \oplus 07 \cdot a_4 \oplus 04 \cdot a_5 \oplus 01 \cdot a_6 \oplus 01 \cdot a_7 \\ 01 \cdot a_0 \oplus 05 \cdot a_1 \oplus 01 \cdot a_2 \oplus 08 \cdot a_3 \oplus 06 \cdot a_4 \oplus 07 \cdot a_5 \oplus 04 \cdot a_6 \oplus 01 \cdot a_7 \end{bmatrix}
```

Requirements to "Kalyna" key schedule

- each round key depends non-linear on each encryption key bit non-linear dependence of each round key bit on each encryption key bit
- protection from cryptanalytic attacks aimed to key schedule
- high computation complexity of obtaining encryption key having one or several round keys (one-way transformation, additional protection from side-channel attacks)
- key agility is less than three
- possibility to generate round keys in direct and reverse order
- implementation simplicity (application of transformations from the round function only)

"Kalyna" key schedule

Cryptographic strength of "Kalyna"

Block cipher provides strength to considered methods of cryptanalysis:

- for 128-bit block: after 5th round (out of 10 or 14, depending on the key length)
- for 256-bit block: after 6th round (out of 14 or 18)
- for 512-bit block: after 8th round (out of 18)

(Intel Core i5, 64-bit Linux, gcc v4.9.2, best compiler optimization)

https://github.com/Roman-Oliynykov/ciphers-speed/

(Intel Core i5, 64-bit Linux, gcc v4.9.2, best compiler optimization)

#	Block cipher	Performance, Mbit/s	
1	Kalyna-128/128	2611.77	
2	Kalyna-128/256	1809.70	
3	Kalyna-256/256	2017.97	
4	Kalyna-256/512	1560.89	
5	Kalyna-512/512	1386.46	
6	AES-128	2525.89	
7	AES-256	1993.53	
8	GOST 28147-89	639.18	
9	STB 34.101.31-2011 (BelT)	1188.83	
10	Kuznyechik	1081.08	

(iMac 13.2, Intel Core i7, best compiler optimization)

https://github.com/Roman-Oliynykov/ciphers-speed/

(iMac 13.2, Intel Core i7, best compiler optimization)

#	Block cipher	Performance, Mbit/s	
1	Kalyna-128/128	1874.39	
2	Kalyna-128/256	1295.55	
3	Kalyna-256/256	1392.48	
4	Kalyna-256/512	1088.88	
5	Kalyna-512/512	1243.49	
6	AES-128	1747.09	
7	AES-256	1257.43	
8	GOST 28147-89	576.10	
9	STB 34.101.31-2011 (BelT)	1080.02	
10	Kuznyechik	1146.31	

DSTU 7624:2014 also includes

- Ten modes of operation for the new block cipher
 - ISO 10116: ECB, CBC, CFB, OFB, CTR
 - additional modes, simplified/improved comparing to NIST SP 800-38: GCM/GMAC (securing IP-traffic), CCM (confidentiality & integrity), XTS (on-the-fly encryption of information storage), KW (key data protection)
- Test vectors (including not aligned to the block length and, for some modes, byte length)
- Requirements to implementation:
 - general concepts paying developer's attention to take steps for prevention of side-channel attacks, timing attacks, CRIME/BREACH specific vulnerabilities, etc.
 - limits on the total number of invocation of the block cipher during the encryption key lifetime
 - message replay prevention
- etc.

Conclusions

The new block cipher "Kalyna" provides

- normal, high and ultra high security level
- transparent construction and conservative design
- fast and effective software and software-hardware implementations on modern 64-bit platforms
- optimized construction for better performance on encryption and decryption for CTR, CFB, CMAC, OFB, GCM, GMAC, CCM modes of operation
- new construction of key schedule based on the round transformation
- common look-up tables with the hash function "Kupyna" (the new Ukrainian standard DSTU 7564:2014)

Besides the block cipher, the new Ukrainian standard DSTU 7624:2014 defines ten modes of operation, test vectors, requirements for implementation, limits on protected information amount for a single key application, etc.