Assignment 4: Data Wrangling

Katryna Niva

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics on Data Wrangling

Directions

- 1. Rename this file <FirstLast>_A03_DataExploration.Rmd (replacing <FirstLast> with your first and last name).
- 2. Change "Student Name" on line 3 (above) with your name.
- 3. Work through the steps, creating code and output that fulfill each instruction.
- 4. Be sure to **answer the questions** in this assignment document.
- 5. When you have completed the assignment, **Knit** the text and code into a single PDF file.

The completed exercise is due on Friday, Oct7th @ 5:00pm.

Set up your session

- 1. Check your working directory, load the tidyverse and lubridate packages, and upload all four raw data files associated with the EPA Air dataset, being sure to set string columns to be read in a factors. See the README file for the EPA air datasets for more information (especially if you have not worked with air quality data previously).
- 2. Explore the dimensions, column names, and structure of the datasets.

```
# 1
getwd()
```

[1] "/home/guest/R/EDA-Fall2022"

```
library(tidyverse)
library(lubridate)
library(dplyr)

03_2018 <- read.csv("Data/Raw/EPAair_03_NC2018_raw.csv", stringsAsFactors = TRUE)
PM25_2018 <- read.csv("Data/Raw/EPAair_PM25_NC2018_raw.csv", stringsAsFactors = TRUE)
PM25_2019 <- read.csv("Data/Raw/EPAair_PM25_NC2019_raw.csv", stringsAsFactors = TRUE)

03_2019 <- read.csv("Data/Raw/EPAair_03_NC2019_raw.csv", stringsAsFactors = TRUE)

# 2

dim(03_2018)</pre>
```

[1] 9737 20

```
dim(03_2019)
## [1] 10592
                20
dim(PM25_2018)
## [1] 8983
              20
dim(PM25_2019)
## [1] 8581
colnames(03_2018)
##
    [1] "Date"
    [2] "Source"
##
   [3] "Site.ID"
##
   [4] "POC"
##
##
   [5] "Daily.Max.8.hour.Ozone.Concentration"
##
   [6] "UNITS"
  [7] "DAILY_AQI_VALUE"
##
  [8] "Site.Name"
##
   [9] "DAILY OBS COUNT"
##
## [10] "PERCENT_COMPLETE"
## [11] "AQS_PARAMETER_CODE"
## [12] "AQS_PARAMETER_DESC"
## [13] "CBSA_CODE"
## [14] "CBSA_NAME"
## [15] "STATE_CODE"
## [16] "STATE"
## [17] "COUNTY_CODE"
## [18] "COUNTY"
## [19] "SITE_LATITUDE"
## [20] "SITE_LONGITUDE"
colnames (03_2019)
    [1] "Date"
##
    [2] "Source"
##
##
   [3] "Site.ID"
    [4] "POC"
##
##
   [5] "Daily.Max.8.hour.Ozone.Concentration"
##
   [6] "UNITS"
##
   [7] "DAILY_AQI_VALUE"
##
    [8] "Site.Name"
##
  [9] "DAILY_OBS_COUNT"
## [10] "PERCENT_COMPLETE"
## [11] "AQS_PARAMETER_CODE"
## [12] "AQS_PARAMETER_DESC"
## [13] "CBSA_CODE"
## [14] "CBSA_NAME"
## [15] "STATE_CODE"
## [16] "STATE"
## [17] "COUNTY_CODE"
## [18] "COUNTY"
## [19] "SITE_LATITUDE"
## [20] "SITE_LONGITUDE"
```

```
colnames (PM25_2018)
   [1] "Date"
                                        "Source"
                                        "POC"
##
   [3] "Site.ID"
## [5] "Daily.Mean.PM2.5.Concentration" "UNITS"
## [7] "DAILY_AQI_VALUE"
                                        "Site.Name"
## [9] "DAILY_OBS_COUNT"
                                        "PERCENT_COMPLETE"
## [11] "AQS_PARAMETER_CODE"
                                        "AQS_PARAMETER_DESC"
## [13] "CBSA_CODE"
                                        "CBSA_NAME"
## [15] "STATE_CODE"
                                        "STATE"
## [17] "COUNTY_CODE"
                                        "COUNTY"
## [19] "SITE_LATITUDE"
                                        "SITE_LONGITUDE"
colnames (PM25_2019)
  [1] "Date"
                                        "Source"
   [3] "Site.ID"
                                        "POC"
##
## [5] "Daily.Mean.PM2.5.Concentration" "UNITS"
## [7] "DAILY AQI VALUE"
                                        "Site.Name"
## [9] "DAILY_OBS_COUNT"
                                        "PERCENT_COMPLETE"
## [11] "AQS_PARAMETER_CODE"
                                        "AQS_PARAMETER_DESC"
                                        "CBSA_NAME"
## [13] "CBSA_CODE"
## [15] "STATE_CODE"
                                        "STATE"
## [17] "COUNTY_CODE"
                                        "COUNTY"
## [19] "SITE LATITUDE"
                                        "SITE LONGITUDE"
str(03_2018)
                   9737 obs. of 20 variables:
## 'data.frame':
## $ Date
                                         : Factor w/ 364 levels "01/01/2018", "01/02/2018", ...: 60 61 62
                                         : Factor w/ 1 level "AQS": 1 1 1 1 1 1 1 1 1 1 ...
## $ Source
## $ Site.ID
                                         : int 370030005 370030005 370030005 370030005 370030005 3700
## $ POC
                                         : int 111111111...
## $ Daily.Max.8.hour.Ozone.Concentration: num 0.043 0.046 0.047 0.049 0.047 0.03 0.036 0.044 0.049 0
## $ UNITS
                                         : Factor w/ 1 level "ppm": 1 1 1 1 1 1 1 1 1 1 ...
## $ DAILY_AQI_VALUE
                                         : int 40 43 44 45 44 28 33 41 45 40 ...
                                        : Factor w/ 40 levels "", "Beaufort", ...: 35 35 35 35 35 35 35
## $ Site.Name
## $ DAILY_OBS_COUNT
                                         : int 17 17 17 17 17 17 17 17 17 17 ...
## $ PERCENT_COMPLETE
                                         : num 100 100 100 100 100 100 100 100 100 ...
                                        : int 44201 44201 44201 44201 44201 44201 44201 44201 44201 -
## $ AQS_PARAMETER_CODE
                                        : Factor w/ 1 level "Ozone": 1 1 1 1 1 1 1 1 1 ...
## $ AQS_PARAMETER_DESC
## $ CBSA_CODE
                                        : int 25860 25860 25860 25860 25860 25860 25860 25860 25860 :
                                        : Factor w/ 17 levels "", "Asheville, NC", ...: 9 9 9 9 9 9 9 9
## $ CBSA_NAME
                                        : int 37 37 37 37 37 37 37 37 37 37 ...
## $ STATE_CODE
## $ STATE
                                        : Factor w/ 1 level "North Carolina": 1 1 1 1 1 1 1 1 1 1 ...
                                        : int 3 3 3 3 3 3 3 3 3 3 ...
## $ COUNTY_CODE
                                        : Factor w/ 32 levels "Alexander", "Avery", ...: 1 1 1 1 1 1 1 1
## $ COUNTY
## $ SITE LATITUDE
                                        : num 35.9 35.9 35.9 35.9 35.9 ...
## $ SITE_LONGITUDE
                                         : num -81.2 -81.2 -81.2 -81.2 ...
str(03_2019)
## 'data.frame': 10592 obs. of 20 variables:
                                         : Factor w/ 365 levels "01/01/2019","01/02/2019",..: 1 2 3 4
## $ Date
```

: Factor w/ 2 levels "AirNow", "AQS": 1 1 1 1 1 1 1 1 1 1 1 ... : int 370030005 370030005 370030005 370030005 370030005

\$ Source

\$ Site.ID

```
## $ POC
                                        : int 1 1 1 1 1 1 1 1 1 ...
## $ Daily.Max.8.hour.Ozone.Concentration: num 0.029 0.018 0.016 0.022 0.037 0.037 0.029 0.038 0.038
                       : Factor w/ 1 level "ppm": 1 1 1 1 1 1 1 1 1 1 ...
: int. 27 17 15 20 34 34 27 35 35 28
## $ DAILY_AQI_VALUE
                                        : int 27 17 15 20 34 34 27 35 35 28 ...
                                        : Factor w/ 38 levels "", "Beaufort", ...: 33 33 33 33 33 33
## $ Site.Name
## $ DAILY OBS COUNT
                                       : int 24 24 24 24 24 24 24 24 24 24 ...
## $ PERCENT COMPLETE
                                       : num 100 100 100 100 100 100 100 100 100 ...
## $ AQS_PARAMETER_CODE
## $ AQS_PARAMETER_DESC
                                        : int 44201 44201 44201 44201 44201 44201 44201 44201 44201 -
                                       : Factor w/ 1 level "Ozone": 1 1 1 1 1 1 1 1 1 ...
                               : int 25860 25860 25860 25860 25860 25860 25860 25860 25860
## $ CBSA_CODE
## $ CBSA_NAME
## $ STATE_CODE
## $ STATE
## $ COUNTY_CODE
## $ COUNTY
## $ SITE_LATITUDE
## $ SITE_LONGITUDE
str(PM25_2018)
                   8983 obs. of 20 variables:
## 'data.frame':
## $ Date
                                   : Factor w/ 365 levels "01/01/2018","01/02/2018",...: 2 5 8 11 14 17
                                   : Factor w/ 1 level "AQS": 1 1 1 1 1 1 1 1 1 1 ...
## $ Source
## $ Site.ID
                                   : int 370110002 370110002 370110002 370110002 370110002 370110002
                                   : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Daily.Mean.PM2.5.Concentration: num 2.9 3.7 5.3 0.8 2.5 4.5 1.8 2.5 4.2 1.7 ...
## $ UNITS : Factor w/ 1 level "ug/m3 LC": 1 1 1 1 1 1 1 1 1 1 1 1 ...
## $ DAILY_AQI_VALUE : int 12 15 22 3 10 19 8 10 18 7 ...
## $ Site.Name : Factor w/ 25 levels "" "Blackstone" : 15 15 15 15
## $ Site.Name
                                 : Factor w/ 25 levels "", "Blackstone",..: 15 15 15 15 15 15 15 15 1
## $ DAILY_OBS_COUNT
                                  : int 1 1 1 1 1 1 1 1 1 1 ...
## $ PERCENT_COMPLETE
                                 : num 100 100 100 100 100 100 100 100 100 ...
## $ PERCENI_COMPLETE
## $ AQS_PARAMETER_CODE
## $ AQS_PARAMETER_DESC
                                 : int 88502 88502 88502 88502 88502 88502 88502 88502 88502 88502
                                  : Factor w/ 2 levels "Acceptable PM2.5 AQI & Speciation Mass",..: 1
## $ CBSA CODE
                                  : int NA NA NA NA NA NA NA NA NA ...
## $ CBSA NAME
                                 : Factor w/ 14 levels "", "Asheville, NC", ...: 1 1 1 1 1 1 1 1 1 1 ...
## $ STATE_CODE
## $ STATE
                                 : int 37 37 37 37 37 37 37 37 37 ...
                                 : Factor w/ 1 level "North Carolina": 1 1 1 1 1 1 1 1 1 ...
## $ COUNTY_CODE
                                 : int 11 11 11 11 11 11 11 11 11 11 ...
## $ COUNTY
                                 : Factor w/ 21 levels "Avery", "Buncombe", ...: 1 1 1 1 1 1 1 1 1 1 ...
## $ SITE_LATITUDE
                                  : num 36 36 36 36 36 ...
                                  : num -81.9 -81.9 -81.9 -81.9 -81.9 ...
## $ SITE_LONGITUDE
str(PM25_2019)
## 'data.frame':
                   8581 obs. of 20 variables:
## $ Date
                                   : Factor w/ 365 levels "01/01/2019", "01/02/2019",...: 3 6 9 12 15 18
## $ Source
                                   : Factor w/ 2 levels "AirNow", "AQS": 2 2 2 2 2 2 2 2 2 ...
## $ Site.ID
                                   : int 370110002 370110002 370110002 370110002 370110002 370110002
                                   : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Daily.Mean.PM2.5.Concentration: num 1.6 1 1.3 6.3 2.6 1.2 1.5 1.5 3.7 1.6 ...
## $ UNITS
## $ DAILY_AQI_VALUE
                                  : Factor w/ 1 level "ug/m3 LC": 1 1 1 1 1 1 1 1 1 1 ...
                                 : int 7 4 5 26 11 5 6 6 15 7 ...
                                 : Factor w/ 25 levels "", "Board Of Ed. Bldg.", ..: 14 14 14 14 14
## $ Site.Name
## $ DAILY_OBS_COUNT
                                 : int 1 1 1 1 1 1 1 1 1 1 ...
## $ PERCENT_COMPLETE
                                 : num 100 100 100 100 100 100 100 100 100 ...
```

```
## $ AQS PARAMETER CODE
                                 : int 88502 88502 88502 88502 88502 88502 88502 88502 88502 88502
## $ AQS_PARAMETER_DESC
                                  : Factor w/ 2 levels "Acceptable PM2.5 AQI & Speciation Mass",..: 1
                                 : int NA NA NA NA NA NA NA NA NA ...
## $ CBSA CODE
                                  : Factor w/ 14 levels "", "Asheville, NC",...: 1 1 1 1 1 1 1 1 1 1 ...
## $ CBSA_NAME
## $ STATE CODE
                                  : int 37 37 37 37 37 37 37 37 37 ...
## $ STATE
                                  : Factor w/ 1 level "North Carolina": 1 1 1 1 1 1 1 1 1 1 ...
## $ COUNTY CODE
                                  : int 11 11 11 11 11 11 11 11 11 11 ...
## $ COUNTY
                                  : Factor w/ 21 levels "Avery", "Buncombe", ...: 1 1 1 1 1 1 1 1 1 1 ...
## $ SITE LATITUDE
                                  : num 36 36 36 36 36 ...
## $ SITE_LONGITUDE
                                  : num -81.9 -81.9 -81.9 -81.9 ...
```

Wrangle individual datasets to create processed files.

- 3. Change date to date
- 4. Select the following columns: Date, DAILY_AQI_VALUE, Site.Name, AQS_PARAMETER_DESC, COUNTY, SITE_LATITUDE, SITE_LONGITUDE
- 5. For the PM2.5 datasets, fill all cells in AQS_PARAMETER_DESC with "PM2.5" (all cells in this column should be identical).
- 6. Save all four processed datasets in the Processed folder. Use the same file names as the raw files but replace "raw" with "processed".

```
# 3
03_{2018}Date <- as.Date(03_{2018}Date, format = "\%m/\%d/\%Y")
03_{2019}Date <- as.Date(03_{2019}Date, format = "\m/\%d/\%Y")
PM25_2018Date <- as.Date(PM25_2018Date, format = "\%m/\%d/\%Y")
PM25_2019$Date <- as.Date(PM25_2019$Date, format = "%m/%d/%Y")
# 4
O3_2018 <- select(O3_2018, Date, DAILY_AQI_VALUE, Site.Name, AQS_PARAMETER_DESC,
   COUNTY, SITE_LATITUDE, SITE_LONGITUDE)
O3_2019 <- select(O3_2019, Date, DAILY_AQI_VALUE, Site.Name, AQS_PARAMETER_DESC,
   COUNTY, SITE LATITUDE, SITE LONGITUDE)
PM25_2018 <- select(PM25_2018, Date, DAILY_AQI_VALUE, Site.Name, AQS_PARAMETER_DESC,
   COUNTY, SITE_LATITUDE, SITE_LONGITUDE)
PM25 2019 <- select(PM25 2019, Date, DAILY AQI VALUE, Site.Name, AQS PARAMETER DESC,
   COUNTY, SITE LATITUDE, SITE LONGITUDE)
# 5
PM25_2018$AQS_PARAMETER_DESC <- "PM2.5"
PM25_2019$AQS_PARAMETER_DESC <- "PM2.5"
# 6
write.csv(03_2018, row.names = FALSE, file = "./Data/Processed/EPAair_03_NC2018_processed.csv")
write.csv(03 2019, row.names = FALSE, file = "./Data/Processed/EPAair 03 NC2019 processed.csv")
write.csv(PM25_2018, row.names = FALSE, file = "./Data/Processed/EPAair_PM25_NC2018_processed.csv")
```

Combine datasets

- 7. Combine the four datasets with rbind. Make sure your column names are identical prior to running this code.
- 8. Wrangle your new dataset with a pipe function (%>%) so that it fills the following conditions:
- Include all sites that the four data frames have in common: "Linville Falls", "Durham Armory", "Leggett", "Hattie Avenue", "Clemmons Middle", "Mendenhall School", "Frying Pan Mountain", "West Johnston Co.", "Garinger High School", "Castle Hayne", "Pitt Agri. Center", "Bryson City", "Millbrook School" (the function intersect can figure out common factor levels)
- Some sites have multiple measurements per day. Use the split-apply-combine strategy to generate daily means: group by date, site, aqs parameter, and county. Take the mean of the AQI value, latitude, and longitude.
- Add columns for "Month" and "Year" by parsing your "Date" column (hint: lubridate package)
- Hint: the dimensions of this dataset should be 14,752 x 9.
- 9. Spread your datasets such that AQI values for ozone and PM2.5 are in separate columns. Each location on a specific date should now occupy only one row.
- 10. Call up the dimensions of your new tidy dataset.
- 11. Save your processed dataset with the following file name: "EPAair_O3_PM25_NC1718_Processed.csv"

```
colnames (03_2018)
## [1] "Date"
                             "DAILY_AQI_VALUE"
                                                  "Site.Name"
## [4] "AQS_PARAMETER_DESC" "COUNTY"
                                                  "SITE LATITUDE"
## [7] "SITE LONGITUDE"
colnames(03 2019)
## [1] "Date"
                             "DAILY_AQI_VALUE"
                                                  "Site.Name"
## [4] "AQS_PARAMETER_DESC" "COUNTY"
                                                  "SITE_LATITUDE"
## [7] "SITE_LONGITUDE"
colnames (PM25_2018)
## [1] "Date"
                             "DAILY_AQI_VALUE"
                                                  "Site.Name"
## [4] "AQS_PARAMETER_DESC" "COUNTY"
                                                  "SITE_LATITUDE"
## [7] "SITE_LONGITUDE"
colnames(PM25_2019)
## [1] "Date"
                             "DAILY_AQI_VALUE"
                                                  "Site.Name"
## [4] "AQS_PARAMETER_DESC" "COUNTY"
                                                  "SITE_LATITUDE"
## [7] "SITE_LONGITUDE"
EPAairData <- rbind(03 2018, 03 2019, PM25 2018, PM25 2019)
# 8
EPAairData.2 <- EPAairData %>%
    filter(Site.Name %in% c("Linville Falls", "Durham Armory", "Leggett", "Hattie Avenue",
        "Clemmons Middle", "Mendenhall School", "Frying Pan Mountain", "West Johnston Co.",
        "Garinger High School", "Castle Hayne", "Pitt Agri. Center", "Bryson City",
        "Millbrook School")) %>%
    group_by(Date, Site.Name, AQS_PARAMETER_DESC, COUNTY) %>%
```

```
dplyr::summarise(DAILY_AQI_VALUE = mean(DAILY_AQI_VALUE), SITE_LATITUDE = mean(SITE_LATITUDE),
        SITE_LONGITUDE = mean(SITE_LONGITUDE)) %>%
   mutate(Month = month(Date)) %>%
   mutate(Year = year(Date))
## `summarise()` has grouped output by 'Date', 'Site.Name', 'AQS_PARAMETER_DESC'.
## You can override using the `.groups` argument.
dim(EPAairData.2)
## [1] 14752
# 9
EPAairData.3 <- pivot_wider(EPAairData.2, names_from = AQS_PARAMETER_DESC, values_from = DAILY_AQI_VALU
# 10
dim(EPAairData.3)
## [1] 8976
               9
# 11
write.csv(EPAairData.3, row.names = FALSE, file = "./Data/Processed/EPAair_03_PM25_NC1718_Processed.csv
```

Generate summary tables

- 12. Use the split-apply-combine strategy to generate a summary data frame. Data should be grouped by site, month, and year. Generate the mean AQI values for ozone and PM2.5 for each group. Then, add a pipe to remove instances where O3 and PM2.5 are not available (use the function drop_na in your pipe).
- 13. Call up the dimensions of the summary dataset.

```
# 12
EPAairData.4 <- EPAairData.3 %>%
    group_by(Site.Name, Month, Year) %>%
    dplyr::summarise(PM2.5 = mean(PM2.5), Ozone = mean(Ozone)) %>%
    drop_na(Ozone) %>%
    drop_na(PM2.5)

## `summarise()` has grouped output by 'Site.Name', 'Month'. You can override
## using the `.groups` argument.
# 13
dim(EPAairData.4)
## [1] 101 5
```

14. Why did we use the function drop_na rather than na.omit?

Answer: The na.omit function removes the NA values from an entire dataset. In this exercise we only wanted to remove the NA values from specific columns. With the drop.na function you can drop the NAs from specific columns and so it is the better option in this situation.