Краткая теория множеств

Салимли Айзек

MathLang

28 июля 2025 г.

- Универсум
 - Парадокс Рассела
- Операции над множествами
 - Дополнение множесвта
 - Свойства дополнения
 - Объединение множеств
- Пересечение множеств
- Разность множеств
- 5 Симметрическая разность

Универсум

Определение

Универсум Универсум \mathbb{U} - множество, содержащее все возможные множества рассматриваемой теории:

$$\mathbb{U} = \{ x \mid x \text{ - множество} \}$$

Пример

Примеры универсумов

- ullet В теории чисел: $\mathbb{U}=\mathbb{Z}$
- В теории множеств: U содержит все множества

Проблема

Наивное определение универсума приводит к парадоксам, таким как парадокс Рассела

Парадокс Рассела

Определение

Формулировка Рассмотрим множество R всех множеств, которые не содержат себя в качестве элемента:

$$R = \{x \mid x \notin x\}$$

Пример

Иллюстрация

- Множество всех книг ∉ самому себе
- Множество всех множеств ∈ самому себе

Парадокс

Если $R \in R$, то по определению $R \notin R$.

Если $R \notin R$, то по определению $R \in R$.

Получаем противоречие.

Разрешение парадокса

Определение

Аксиоматическое решение Теория множеств Цермело-Френкеля (ZFC) запрещает:

- Создание множества всех множеств
- Использование неограниченного принципа свертки

Пример

Альтернативы

- Теория типов (Рассел)
- NBG-теория (классы вместо множеств)

Значение

Парадокс показал необходимость строгой аксиоматизации теории множеств

- Универсум
 - Парадокс Рассела
- 2 Операции над множествами
 - Дополнение множесвта
 - Свойства дополнения
 - Объединение множеств
- Пересечение множеств
- Разность множеств
- 5 Симметрическая разность

Операции над множествами

Обычно говорят о бинарных и унарных операциях над множествами. Пусть даны множестав X, Y.

- ullet Дополнение $ar{X}$
- ullet Объединение $X \cup Y$
- Пересечение $X \cap Y$
- ullet Разность $X\setminus Y$
- ullet Симметрическая разность $X \oplus Y$

Дополнение множества

Определение

Дополнение \overline{X} - множество элементов, не принадлежащих X в рамках универсального множества U.

Пример

Пусть
$$U=\{1,2,3,4,5\}$$
, $X=\{1,2\}$ Тогда $\overline{X}=\{3,4,5\}$

Свойства дополнения

Основные свойства

- \bullet $\overline{\overline{X}} = X$ (инволютивность)
- $X \cap \overline{X} = \emptyset$ (непересекаемость)
- $X \cup \overline{X} = U$ (полнота)

Важное следствие

Законы де Моргана:

- $\bullet \ \overline{A \cup B} = \overline{A} \cap \overline{B}$
- $\bullet \ \overline{A \cap B} = \overline{A} \cup \overline{B}$

Объединение множеств

Определение

 $X \cup Y$ - множество всех элементов, принадлежащих хотя бы одному из множеств X или Y.

Пример

$$X = \{1, 2, 3\}, Y = \{3, 4, 5\}$$

 $X \cup Y = \{1, 2, 3, 4, 5\}$

Свойства объединения

- Коммутативность: $X \cup Y = Y \cup X$
- Ассоциативность: $(X \cup Y) \cup Z = X \cup (Y \cup Z)$

- 🕕 Универсум
 - Парадокс Рассела
- Операции над множествами
 - Дополнение множесвта
 - Свойства дополнения
 - Объединение множеств
- Пересечение множеств
- Разность множеств
- 5 Симметрическая разность

Пересечение множеств

Определение

 $X\cap Y$ — множество элементов, принадлежащих **одновременно** и X, и Y.

Пример

$$X = \{1, 2, 3\}, Y = \{2, 3, 4\}$$

 $X \cap Y = \{2, 3\}$

Свойства пересечения

- $X \cap \emptyset = \emptyset$
- Дистрибутивность: $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$

- 1 Универсум
 - Парадокс Рассела
- Операции над множествами
 - Дополнение множесвта
 - Свойства дополнения
 - Объединение множеств
- Пересечение множеств
- Разность множеств
- 5 Симметрическая разность

Разность множеств

Определение

Разность $X \setminus Y$ — множество элементов, принадлежащих X, но не принадлежащих Y.

Пример

$$X = \{1, 2, 3, 4\}, Y = \{3, 4, 5\}$$

 $X \setminus Y = \{1, 2\}$

Ключевые свойства

- ullet Не коммутативна: $X\setminus Y
 eq Y\setminus X$
- ullet Связь с дополнением: $X\setminus Y=X\cap \overline{Y}$

- Универсум
 - Парадокс Рассела
- Операции над множествами
 - Дополнение множесвта
 - Свойства дополнения
 - Объединение множеств
- Пересечение множеств
- Разность множеств
- 5 Симметрическая разность

Симметрическая разность

Определение

Симметрическая разность $X \oplus Y = (X \setminus Y) \cup (Y \setminus X)$ — множество элементов, принадлежащих **ровно одному** из множеств X или Y.

Наглядный пример

- $X = \{1, 2, 3\}$
- $Y = \{3, 4, 5\}$
- $X \oplus Y = \{1, 2, 4, 5\}$

Характеристики

- Коммутативность: $X \oplus Y = Y \oplus X$
- Самообратимость: $X \oplus X = \emptyset$
- Ассоциативность: $(X \oplus Y) \oplus Z = X \oplus (Y \oplus Z)$

Спасибо за внимание!

Пишите вопросы в комментариях!!!