避聚左物理如第一性厚理计标方法 Ab initio calculations in condensed matter physics 34 34 (2002.5)

- 1. 密发泛圣理记
- 2. 麂势
- 3. 支挟相关能(LDA和GGA)
- 4. 总能量及作用力
- 5. 布里洲区波矢的样点
- 6. 自治循环方法
- 7. 结构驰张
- 8应用

1. 宏拨泛出理记

1.1 盆按泛出理论。

Hohenberg & Kohn (1964); Levy (1979)

相互作用电话,在外场作用下,哈瓦量,

$$H = T + V_{e-e} + V_{ext} = \sum_{i=1}^{N} -\frac{f^{2}}{2m} r_{i}^{2} + \sum_{i=1}^{N} \frac{e^{2}}{|r_{i} - r_{i}|} + \sum_{i=1}^{N} U_{ext}(r_{i})$$

 $V(\vec{r}_{i}, \vec{r}_{2}, \dots, \vec{r}_{N})$ 相互作用由3气波出数(关N)电子).

星x电k密发。

$$N(\vec{r}) = N \int d\vec{r}_2 d\vec{r}_3 \cdots d\vec{r}_N \left| \psi(\vec{r}, \vec{r}_2, \vec{r}_3, \cdots \vec{r}_N) \right|^2$$

显然

$$N = \int n(\vec{r}) d\vec{r} \qquad \left[\psi(\vec{r}_i, -\vec{r}_w) / 3 - 4 \omega \right]$$

无相互作用系统(费养子):

$$\mathcal{N}(\vec{r}_{1},\vec{r}_{2},\cdots\vec{r}_{N}) = \frac{1}{|N|} \begin{vmatrix} Q_{i_{1}}(\vec{r}_{1}) & Q_{i_{2}}(\vec{r}_{1}) & \cdots & Q_{i_{N}}(\vec{r}_{1}) \\ \vdots & \vdots & \ddots & \vdots \\ Q_{i_{1}}(\vec{r}_{N}) & Q_{i_{2}}(\vec{r}_{N}) & \cdots & Q_{i_{N}}(\vec{r}_{N}) \end{vmatrix}$$
Slater
$$Q_{i_{1}}(\vec{r}_{N}) = \frac{1}{|N|} \begin{vmatrix} Q_{i_{1}}(\vec{r}_{1}) & Q_{i_{2}}(\vec{r}_{1}) & \cdots & Q_{i_{N}}(\vec{r}_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ Q_{i_{N}}(\vec{r}_{N}) & Q_{i_{N}}(\vec{r}_{N}) & \cdots & Q_{i_{N}}(\vec{r}_{N}) \end{vmatrix}$$

$$\left[-\frac{\hbar^2}{2m}\nabla_{\vec{r}}^2 + V_{\text{ext}}^1(\vec{r})\right] Q_i(\vec{r}) = \epsilon_i Q_i(\vec{r})$$

电经次为:

$$n(r) = \sum_{i=1}^{N} |P_i(r)|^2$$
 (由以上包以可得相同结果)

All:
$$E[n] = F[n] + \int V_{ext}(\vec{r}) n(\vec{r}) d\vec{r} \geqslant E_G$$

经发送出现 加重型估记

且 n= nq(T) 附:

$$E[n_G] = F[n_G] + \int V_{ext}(\vec{r}) N_G(\vec{r}) d\vec{r} = E_G$$

记明, 设 F[n]= < Vmin / T+ Ve-e / Vmin >

$$\langle \Psi_{min}^{n} | V_{ext} | \Psi_{min}^{n} \rangle = \int d\vec{r}_{i} \cdots d\vec{r}_{N} \sum_{i=1}^{N} V_{ext} (\vec{r}_{i}) | V_{min}^{n} (\vec{r}_{i}, \vec{r}_{2}, \cdots \vec{r}_{N}) |^{2}$$

$$=\frac{1}{N}\sum_{i=1}^{N}\int v_{ext}(\vec{r}_{i})\cdot N\left[V_{min}(\vec{r}_{i},\vec{r}_{2},...\vec{r}_{N})\right]^{2}d\vec{r}_{i}\cdots d\vec{r}_{N}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \int V_{\text{ext}}(\vec{r_i}) \, n(\vec{r_i}) d\vec{r_i} = \int V_{\text{ext}}(\vec{r}) \, n(\vec{r}) \, d\vec{r}$$

所以:

$$\bar{E}[n] = \langle \Psi_{min}^{n} | T + V_{e-e} | \Psi_{min}^{n} \rangle + \int V_{ext}(\vec{r}) \, n(\vec{r}) \, d\vec{r}$$

$$= \langle \Psi_{min}^{n} | T + V_{e-e} + V_{ext} | \Psi_{min}^{n} \rangle \geqslant \bar{E}_{G}$$

如星 n=ng(下), 上式依然成立.

但 $E_G = \langle V_G | T + V_{e-e} + V_{ext} | N_G \rangle =$

=
$$\langle N_G | T + V_{e-e} | N_G \rangle + \int V_{ext}(\vec{r}) N_G(\vec{r}) d\vec{r}$$

 $132:$

但由生义:

必有:

FAW

$$\begin{split} E[n_{G}] &= \langle \psi_{min}^{n_{G}} | T + V_{e-e} | \psi_{min}^{n_{G}} \rangle + \int \mathcal{V}_{ext}(\vec{r}) \, n_{G}(\vec{r}) \, d\vec{r} \\ &= \langle V_{G} | \, T + V_{e-e} | \, V_{G} \rangle + \int \mathcal{V}_{ext}(\vec{r}) \, n_{G}(\vec{r}) \, d\vec{r} = E_{G} \quad \# \end{split}$$

 $n_{i}(\vec{r})$ 可由 E(n) m 极值条件生生, 转移 $N = \int n(\vec{r}) d\vec{r}$ 保持不变 (条件 极值):

$$\frac{\delta E(n)}{\delta n} - \mu \frac{\delta N}{\delta n} = 0 \rightarrow \frac{\delta E(n)}{\delta n} = \mu$$

1.2 Thomas - Fermi
$$\vec{r}$$
 $\frac{4\vec{r}}{2}$ (1927, 1928).

$$F[n] \cong \int t_o[n(\vec{r})] d\vec{r} + \frac{e^2}{2} \int d\vec{r} d\vec{r}' \frac{n(\vec{r}) n(\vec{r}')}{|\vec{r} - \vec{r}'|}$$

花[n] 动能密茂 (单位体铅中电子的动能), 近似用 n=n(r)的无相互作用均匀电子气的动能密技表于下处的花[n]。

$$t_{o}[n] = \frac{T}{V} = \frac{1}{V} 2 \sum_{i,\vec{k} \mid \vec{k} \mid \vec{k}} \frac{\hbar^{2}k^{2}}{2m} = \frac{2}{V} \cdot \frac{V}{(2T)^{3}} \int d\vec{k} \frac{\hbar^{2}k^{2}}{2m} = \frac{\hbar^{2}k^{5}}{10\pi^{2}m}$$

$$N = 2 \sum_{i,\vec{k} \mid \vec{k} \mid \vec{$$

 $E[n] = Q \int d\vec{r} \left[n(\vec{r}) \right]^{\frac{3}{3}} + \frac{e^2}{2} \int d\vec{r} d\vec{r}' \frac{n(\vec{r}) n(\vec{r}')}{|\vec{r} - \vec{r}'|} + \int U_{ext}(\vec{r}) d\vec{r}' n(\vec{r}')$ 弱色ng(f) 的方程的:

$$\frac{5}{3}G_{\kappa}\left[n(\vec{r})\right]^{\frac{1}{15}} + e^{2}\int d\vec{r}' \frac{n(\vec{r}')}{|\vec{r}-\vec{r}'|} + V_{ext}(\vec{r}) = \mu$$

优点:方程简单,求解方便

最大缺点:无法给出原子次出数的危后结构。由于该方法略去了VN(r) 等对动能的贡献,而幼能占整个能量的比价很大,所以误差较大。Thomas & Fermi方法及其改进方法目而用得不多。

Thomas & Fermiste 社密校泛出理论前提出,对后者采用密技术描写条纯的能量有重大启主。

1.3 Kohn & Sham 方程 (1965):

$$E[n] = T_o[n] + \frac{e^2}{2} \int d\vec{r} d\vec{r}' \frac{n(\vec{r}) n(\vec{r}')}{|\vec{r} - \vec{r}'|} + \int V_{\text{ext}}(\vec{r}) n(\vec{r}) d\vec{r} + \underbrace{E_x[n] + E_c[n]}_{E_{xc}[n]}$$

其中To[n]是无互作用,但n(r)分布相同电影的动能(开无假没的多条,与Thomas-Fermi方法不同)。Exc[n]是系统支操和相关能之和。一般 Exc[n]的具体形式很难求为,需采用近似,如LDA,类似于Thomas-Fermi 对 to[n]的近似。但 Exc[n]在整分总能量中的比份较少,所以对 Exc[n]的近似不会引起总能量的很大误差。

与Thomas-Fermi方法比较。对动能项的处理较严格;引入3 Exc[n] 作证项。 Energy (eV)

知因为Mn厚子中介电子总能量的分布。

た、一介東子动能

Ec-v-厚。实与你电子间作用能

Ec-c 一价电子间的作用能

Exc 一支换相关能

确定的的的方程的。

$$\frac{\delta T_{o}[n]}{\delta n} + e^{2} \int d\vec{r} \frac{n(\vec{r}')}{|\vec{r} - \vec{r}'|} + V_{ext}(\vec{r}) + \frac{\delta E_{xc}[n]}{\delta n} = \mathcal{U}$$

$$\frac{V_{coul}(\vec{r})}{V_{xc}(\vec{r})}$$

考虑一个无相互作用电子记,在一个有效外场的。你们作用下。类似的推导给出确定该假想争绕电子密发的方程为。

$$\frac{\delta T_o[n]}{\delta n} + V_{eff}(\vec{r}) = \mu$$

如果取

$$V_{eff}(\vec{r}) = V_{coul}(\vec{r}) + V_{ext}(\vec{r}) + V_{xc}(\vec{r})$$

则该无相互作用多统与厚柔的互作用电子气有相同的电子布内门 (方程相同)。而该无相互作用电子气(酸想)的电子密度可通过从 下本征方程求得(Kohn & Sham方程)。

$$\left\{-\frac{\dot{\hbar}^2}{2m}\nabla_{\vec{r}}^2 + \mathcal{V}_{coul}(\vec{r}) + \mathcal{V}_{ext}(\vec{r}) + \mathcal{V}_{xc}(\vec{r})\right\} \varphi_i(\vec{r}) = \epsilon_i \varphi_i(\vec{r})$$

和

$$N(\vec{r}) = \sum_{i=1}^{N} |Q_i(\vec{r})|^2$$

求解方法: 自治,全电计扩.

2. 赝势

,

2 -/

2.1 廣热的学出

作电子

内层电子被厚子核束缚很累,形成国体的变化很少。可将原子核与内层电子

一起看作星厚的实,不变化。国体正似为由不变的原的实和价电的构成。

魔势. 价电子与厚设(厚子核+内层电子)间的有效势能.

作电子远离厚子实时, 受厘子实影响较少, 被出数类似不面被,而任厚子实随近, 必须与内层电子放出数正交。作电子放出数不没为:

 $V_{nK}(\vec{r}) = f_{nK}(\vec{r}) - \sum_{i} a_{ij}(\vec{k}) \phi_{jK}(\vec{r})$ i表中内层独出数

由发现和发现的如正交性,建士。

 $a_{n_{\vec{k}}}(\vec{k}) = \int \phi_{\vec{k}}^*(\vec{r}) f_{n\vec{k}}(\vec{r}) d\vec{r}$

级(F)心领满足薛定号方程(H=T+V)。

 $HV_{nk}(r) = E_n(k) V_{nk}(r) \implies$

 $Hf_{n\vec{k}}(\vec{r}) - \sum_{j} a_{nj}(\vec{k}) E_{j}(\vec{k}) \phi_{j\vec{k}}(\vec{r}) = E_{n}(\vec{k}) f_{n\vec{k}}(\vec{r}) - E_{n}(\vec{k}) \sum_{j} a_{nj}(\vec{k}) \phi_{j\vec{k}}(\vec{r})$

Hfnk(r) + $\int \sum_{j} [E_{n}(\vec{k}) - E_{j}(\vec{k})] \phi_{jk}^{*}(\vec{r}') f_{nk}(\vec{r}') \phi_{jk}(\vec{r}') d\vec{r}' = E_{n}(\vec{k}) f_{nk}(\vec{r}')$

 $\hat{Z}_{\lambda}:$ $V_{R}f_{n\vec{k}}(\vec{r}) = \int V_{R}(\vec{r}, \vec{r}') f_{n\vec{k}}(\vec{r}') d\vec{r}' = \int \sum_{i} \left[E_{n}(\vec{k}) - E_{i}(\vec{k}) \right] \phi_{i\vec{k}}^{*}(\vec{r}') f_{n\vec{k}}(\vec{r}') d\vec{r}'$

(應枚油水長) 満見六記

则 tu(i) (赝势独立起)满足方程。

(H+ K) fix(r) = (T+ V+ K) fix(r) = (T+ V) fix(r) = 后(成) fix(r)
与你的有相同的能级。而以=V+ 从为多统赝势。由于标的类似于

李面波,所以龙方较为平坦,即从抵消;摩来摩子核势能中的负元宏大 部分。 魔势波且勐的:

$$f_{nk}(r) = V_{nk}(r) + \sum_{j} a_{nj}(k) \phi_{jk}(r)$$

远高厚的实内,发现了一个,大成门二级门,在厚了实内,大成门二级门

但魔势的主好不唯一, 考虑魔势独主教

$$\mathcal{N}_{n\mathcal{K}}(\vec{r}) = \mathcal{N}_{n\mathcal{K}}(\vec{r}) + \sum_{i} b_{nj}(\vec{k}) \phi_{j\mathcal{K}}(\vec{r}) \qquad [3](\vec{k}) \vec{f} \vec{z}$$

起势能.

$$V_{R} \chi_{nK}(\vec{r}) = \int V_{A}(\vec{r}, \vec{r}') \chi_{nK}(\vec{r}') d\vec{r}' = \int \sum_{i} F_{i}(\vec{r}') \chi_{nK}(\vec{r}') \phi_{iK}(\vec{r}') d\vec{r}'$$
 标则如

考虑私(17)的本征方程。

 $(H+V_R)X_{nK}(\vec{r})=(T+V+V_R)X_{nK}(\vec{r})=(T+V_R)X_{nK}(\vec{r})=\widetilde{E}_n(K)X_{nK}(\vec{r})$ 不同的 $\{F_{i}(\vec{r})\}$ 结也不同的 V_R X V_P,但一些有 $\widetilde{E}_n(K)=E_n(K)$:

左乘岭(17)开铅分得:

$$\left[E_{n}(\vec{k})-\widetilde{E}_{n}(\vec{k})\right]\int V_{n\vec{k}}^{*}(\vec{r}) \, \chi_{n\vec{k}}(\vec{r}) \, d\vec{r}=0$$

一般如何与我们不正定,必有品(式)=完(人)。

用。你(下)左乘上进方程,并给为,有:

$$\left[E_{i}(\vec{K})-E_{n}(\vec{K})\right]b_{ni}(\vec{K})+\int F_{i}(\vec{r}')\chi_{n\vec{K}}(\vec{r}')d\vec{r}'=0$$

 $\sum_{i} \left\{ \left[\tilde{E}_{i} \left(\vec{K} \right) - \tilde{E}_{n} \left(\vec{K} \right) \right] \delta_{ij} + \int F_{i} \left(\vec{r}' \right) \phi_{jk} \left(\vec{r}' \right) d\vec{r}' \right\} b_{nj} \left(\vec{K} \right) = - \int F_{i} \left(\vec{r}' \right) \mathcal{A}_{jk} \left(\vec{r}' \right) d\vec{r}'$

是买了的(下)~~** 水线的结组 适多选取 (下)() 使成色多数行到成不的零, 方维有唯一解 (例 (下) (取不同 (下))) 可得也不同的赝势 6 成赝势放出数 ((下)),但后(的都相同。说明能级相同不能唯一确定 6 成 ((下)), 还可对 6 成 ((())) 提生更强制。

2. 2 第一性原理赝势 (ab initio pseulopotential)

Hamann, Schlüter d Chiang (HSC) (1979); Kerker (1980); Troublier & Mattins (1991).

对单原子,采用密度泛出全电子计标确定赝势(无拟台参数),原子具有球对称,电子价电子独出数为。

 $N(r) = \sum_{n \in m} R_{n,l}(r) Y_{lm}(0,q)$

Rn(1) 商是Kohn-Sham市维(以下附在下标》)。

 $\left\{-\frac{\hbar^{2}}{2m}\frac{d^{2}}{dr^{2}} + \frac{\hbar^{2}(ll+1)}{2mr^{2}} + V_{l}^{PP}(r)\right\}rR_{l}^{AP} = \epsilon_{l}^{PP}\cdot rR_{l}^{PP}(r)$

$$\mathcal{Z}_{\mathcal{X}}: \quad \mathcal{E}_{l}^{PP} = \mathcal{E}_{l}^{AE} \\
R_{l}^{PP}(r) = R_{l}^{AE}(r) \qquad r > r_{c} \\
\int_{0}^{r_{c}} \left| R_{l}^{PP}(r) \right|^{2} r^{2} dr = \int_{0}^{r_{c}} \left| R_{l}^{AE}(r) \right|^{2} r^{2} dr \qquad r < r_{c} \\
\left(\int_{0}^{r_{c}} d\vec{r} \left| N_{l}(\vec{r}) \right|^{2} = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin \theta d\theta | Y_{lm}(\theta, \varphi) |^{2} \cdot \int_{0}^{r_{c}} \left| R_{l}(r) \right|^{2} r^{2} dr \right) \\
|\vec{r}| \leq r_{c}$$

老滑性, 善适性.

由方程可得。

$$V_{l}^{PP}(r) = \epsilon_{l} - \frac{\hbar^{2}l(l+1)}{2mr^{2}} + \frac{\hbar^{2}}{2mrR_{l}^{PP}(r)} \frac{d^{2}}{dr^{2}} [rR_{l}^{PP}(r)]$$

产生 R,(r), 可得 V,(r). 取:

$$R_{l}^{\rho\rho}(r) = \begin{cases} R_{l}^{AE}(r) & r \geq r_{c} \\ r^{l} \exp[\rho(r)] & r < r_{c} \end{cases}$$

 $p(r) = \sum_{l=0}^{n} C_{l} r^{l}, C_{l} \frac{1}{3}$

$$V_{\ell}^{PP}(r) = \begin{cases} V^{AE}(r) & r \ge r_c \\ \varepsilon_{\ell} + \frac{\ell+1}{2} \cdot \frac{P'(r)}{r} + \frac{P'(r) + [P'(r)]^2}{2} & r < r_c \end{cases}$$

由于 p'(r)= C+2C2r+3G12+...., 取 C=0, 否則 U(1)→の (r>0).

$$\begin{aligned} R_{\ell}^{PP}(r_{c}) &= R_{\ell}^{AE}(r_{c}) \\ \left[R_{\ell}^{PP}(r_{c})\right]' &= \left[R_{\ell}^{AE}(r_{c})\right]' \\ \left[R_{\ell}^{PP}(r_{c})\right]'' &= \left[R_{\ell}^{AE}(r_{c})\right]'' \end{aligned}$$

(ii) - (Vi):
$$R_{l}^{PP}(r_{c}) = R_{l}^{AE}(r_{c})$$

$$[R_{l}^{AP}(r_{c})]' = [R_{l}^{AE}(r_{c})]'$$

$$[R_{l}^{PP}(r_{c})]^{(4)} = [R_{l}^{AE}(r_{c})]^{(4)}$$
Vii): $[V_{l}^{PP}(r)]''_{r=0} = 0 \implies C_{2}^{2} + C_{4}(2l+5) = 0$

上世圣件由老清性和普适性考虑得到.

原缤与某作电社间的赝势的。

$$V_{ion,l}(r) = V_{l}(r) - e^{2} \int \frac{\eta_{v}^{PP}(\vec{r}')}{|\vec{r} - \vec{r}'|} - V_{xc} \left[\eta_{v}^{PP}(\vec{r}) \right]$$

总心赝势.

$$V_{im}^{PP}(r) = \sum_{l} V_{im,l}^{PP}(r) \hat{P}_{l} \qquad \hat{P}_{l} \mathcal{U}_{2}^{P} \mathcal{U}_{3}^{P}.$$

$$\hat{P_{l}} \mathcal{L}(\hat{r}) = \hat{P_{l}} \sum_{l'm'} C_{l'm'} Y_{l'm'}(0, q) R_{l'}(r) = \sum_{m} C_{lm} Y_{lm}(0, q) R_{l}(r)$$

2.3 Kleinman - By Lander 赝物 (1982)
$$V_{im,\ell}^{pp}(r) \xrightarrow{r \to \infty} \frac{Z_c e^2}{r} = V_{\ell}^{AE}(r)$$

长维势, 高到埃曼换财对 6=0的分量成散。

$$V_{im,l}^{pp}(\vec{q}) = \int d\vec{r} \ V_{im,l}^{pp}(r) e^{-i\vec{q} \cdot \vec{r}} d\vec{r} \Big|_{\vec{q}=0}^{pp} = 4\pi \int_{0}^{\infty} V_{im,l}^{pp}(\vec{r}) \ r^{2} dr \rightarrow \infty$$

改多

$$V_{ion}^{PP}(\vec{r}) = V(r) + \sum_{l} \left(V_{ion,l}^{PP}(r) - V(r) \right) \hat{P}_{l} = V(r) + \sum_{l} \delta V_{ion,l}^{PP}(r) \hat{P}_{l}$$

$$\delta V_{ion}^{PP}(\vec{r}) = V(r) + \sum_{l} \delta V_{ion,l}^{PP}(r) \hat{P}_{l}$$

$$\delta V_{ion}^{PP}(\vec{r}) = V(r) + \sum_{l} \delta V_{ion,l}^{PP}(r) \hat{P}_{l}$$

以(r) (10) (ロファン(r) (アンドラン(r) - 一般可取以(r) = 以前人(r) / 1-0。
「い前人(r) = 以前人(r) - 以(r) (r) - 以(r) - 以(r) = 0。「いがっていかっていがっていかです。「では、(音) 和日限。
あひ(r) 中山 友敬頃 ひ(音) / (音) を 和日 电背景, 作車を存む物中的 友敬項抵消。

$$\frac{1}{2} \mathcal{L}^{PP}(\vec{r}) = \sum_{l'm'} C_{l'm'} Y_{lm'}(0,0) R_{l'}^{PP}(r), \quad |\vec{r}|.$$

$$\sum_{l'm,l} P_{l}(r) \hat{P}_{l} \mathcal{L}^{PP}(\vec{r}) = \sum_{l'm'} C_{l'm'} \left(\sum_{l'm',l} P_{l}(r) \hat{P}_{l} \right) Y_{l'm'}(0,0) R_{l'}^{PP}(r)$$

$$= \sum_{l'm'} C_{l'm'} U_{lm,l'}^{PP}(r) Y_{l'm'}(\theta, \varphi) R_{l'}(r)$$

$$\left\{ \mathcal{V}(r) + \sum_{\ell} \left(\mathcal{V}_{ion,\ell}^{p}(r) \hat{P}_{\ell} - \mathcal{V}(r) \hat{P}_{\ell} \right) \right\} \mathcal{V}_{i\bar{r}}^{p} = \sum_{\ell} \mathcal{V}_{ion,\ell}^{p} \hat{P}_{\ell} \mathcal{V}_{i\bar{r}}^{p} + \sum_{\ell} \mathcal{V}_{ion,\ell}^{p} \hat{P}_{\ell} \mathcal{V}_{i\bar{r}}^{p} \right) + \sum_{\ell} \left(\mathcal{V}_{ion,\ell}^{p}(r) \hat{P}_{\ell} - \mathcal{V}_{\ell}(r) \hat{P}_{\ell} \right) \right\} \mathcal{V}_{i\bar{r}}^{p} = \sum_{\ell} \mathcal{V}_{ion,\ell}^{p} \hat{P}_{\ell} \mathcal{V}_{\ell}^{p} + \sum_{\ell} \mathcal{V}_{ion,\ell}^{p} \hat{P}_{\ell} \mathcal{V}_{\ell}^{p} + \sum_{\ell} \mathcal{V}_{ion,\ell}^{p} \hat{P}_{\ell} \mathcal{V}_{\ell}^{p} \right) + \sum_{\ell} \left(\mathcal{V}_{ion,\ell}^{p}(r) \hat{P}_{\ell} - \mathcal{V}_{\ell}(r) \hat{P}_{\ell} \right) + \sum_{\ell} \mathcal{V}_{ion,\ell}^{p} \hat{P}_{\ell}^{p} + \sum_{\ell} \mathcal{V}_{ion,\ell}^{p} \hat{P}$$

+ $v(r) \psi_{(r)}^{pp} - \sum_{l} v(r) \hat{P}_{l} \sum_{l'm'} C_{l'm'} Y_{l'm'}(0,0) R_{l'}(r) = \sum_{l} v_{lm'}^{pp} I(r) \hat{P}_{l} \psi_{(r)}^{pp}$

FMW.

 $\int_{1}^{\infty} U_{im,l}^{p}(r) \hat{P}_{l} = V(r) + \int_{1}^{\infty} \left(U_{im,l}^{p}(r) - V(r) \right) \hat{P}_{l} = V(r) + \int_{1}^{\infty} \delta U_{im,l}^{p}(r) \hat{P}_{l}$ 写表 1 你因任放主教后给 早相同。

K-B魔势:(排局城)

 $\delta \mathcal{V}_{im}^{P}(\vec{r}, \vec{r}') = \sum_{lm} \delta \mathcal{V}_{ion,l}^{PP}(r) Y_{lm}(\theta, \phi) R_{l}(r) \cdot \delta_{l} \cdot \delta \mathcal{V}_{ion,l}^{PP}(r') Y_{lm}^{*}(\theta, \phi') R_{l}(r')$

姊.

$$\delta_{l}^{-1} = \int_{0}^{\infty} dr \cdot r^{2} |R_{l}^{pp}(r)|^{2} \delta V_{ion,l}^{pp}(r)$$

则。

$$\{v_{im}^{pp}(\vec{r},\vec{r}')\mathcal{N}^{pp}=\int \{v_{im}^{pp}(\vec{r},\vec{r}')\mathcal{N}^{pp}(\vec{r}')d\vec{r}'\}$$

$$= \sum_{l'm'} C_{l'm'} \delta V_{lm,l'}^{PP} (\vec{r}) Y_{l'm'} (0, q) R_{l}^{PP} (r) = \sum_{l} \delta V_{lm,l}^{PP} (1) P_{l} \cdot \mathcal{N}^{PP} (\vec{r})$$

Uimin可取各种不同的形式,但能保证Uimin和的相同。魔势唯一

赝势矩阵之的计算, 国体中价电池超频可用至面被展开

$$V_{n\vec{k}}^{pp}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}} \int_{\vec{q}} C_{\vec{q}}(n\vec{k}) \frac{e^{i\vec{q}\cdot\vec{r}}}{|V|}$$

百倒松

拓降礼:

$$\langle \vec{G} | V(\vec{r}) | \vec{G}' \rangle = \int d\vec{r} \frac{1}{V} e^{-i\vec{G}\cdot\vec{r}} \int_{V} d\vec{r} \frac{e^{-i(\vec{G}-\vec{G})\cdot\vec{r}}}{V} V(r)$$

传教与 G-G'。但(内太=0)。

$$\bar{e}^{i\vec{G}\cdot\vec{r}} = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l'}^{l'} \{i\} [(Gr) Y_{lm}(0, \phi) Y_{lm'}^{*}(\theta_{a}, \theta_{a})]$$

$$e^{i\vec{G}\cdot\vec{r}} = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l'}^{(i)} \int_{l'} (G'_{l}) Y_{lm}(\theta_{q'}, \phi_{q'}) Y_{lm'}(\theta, \phi_{l})$$

$$*\int_{0}^{\infty} \delta v_{im,1}^{pp}(r) j_{i}(Gr) j_{i}(G'r) r^{2} dr$$

$$=\frac{4\pi}{V}(2h)P_{l}\left(\frac{\vec{G}\cdot\vec{G}'}{1\vec{G}11\vec{G}'1}\right)\int_{D}^{\infty}\frac{PP}{\delta v_{ion,l}}(r)j_{l}(Gr)j_{l}(G'r)r'dr$$

K-B赝势.

$$= \frac{1}{V} \int_{e}^{-i\vec{G}\cdot\vec{r}} \int_{e}^{\infty} \left\{ \delta U_{im,l}^{PP}(r) \right\}_{lm}^{PP}(\theta,\phi) R_{l}^{PP}(r) \int_{e}^{\infty} \left\{ \delta U_{im,l}^{PP}(r') \right\}_{lm}^{PP}(\theta',\phi') R_{l}^{PP}(r') \right\} e^{i\vec{G}\cdot\vec{r}'} d\vec{r} d\vec{r}'$$

$$= \frac{(4\pi)^{2}}{V} \int_{lm}^{\infty} \left\{ \theta_{d}, \theta_{d} \right\}_{lm}^{PP}(\theta_{d}, \theta_{d'}) \int_{e}^{\infty} \left\{ \delta U_{im,l}^{PP}(r) \right\}_{lm}^{PP}(r') r' dr'$$

$$* \int_{e}^{\infty} \left\{ \delta U_{im,l}^{PP}(r') \right\}_{lm}^{PP}(r') R_{l}^{PP}(r') r'^{2} dr'$$

2.4 魔势(以高,111)的数值计算。

有各种魔势计算结序,对同一类型的魔势(如TM魔势),各软件输出到成不尽相同。企频保证魔势的可成与从头计算结序变成相通。 本软件:建立输入文件 atom. ini , 执行: psgen -o atom atom. ini , Al. ini 文件:

```
建说:
            厚好麸 (厚6枝虫量)
            厚海电话数目
  nc
            价电子电子系数目
      整
  nv
         ≥ 0
            沙块相关能参数
  iexc
            GGA: Perdow-Burke-Ernzerhof (PBE)
            LDA: Perdow-Wang '92
 rnle $
           partial core 12 5
            无修正
            电烙的主要量数
            电烙山角烟量量3数
 (11) 登
 fii) 家
           占据该电话的电报
 Imax 智 0.11.4 最大應势自动量(多数)
       t TM 赝势为默认值
S-pp-det Fl
        h HSC -
选择考查
          魔势自治量(引起
           厚子实本经(健议)
          因默认值
           考考能量 (程2)
 re实
                              绮子: 号* B, C,
            用默诚值
         TM應势
                              N, O, Na, Mg,
s_pp_type 34
       t
            HSC膜势
                              Si, K, Ca Ge
            用默认值
                              茅n * ini 文件
```

表 7.1 元素周期系

	第一周期	1 H		61 - yil .	سوس م	د. دو تا پي				,	;		;š	لي	•				2 He
	第二 周期	3 Li	4 Be	5	. 19	. S.			, %,			and for	3	5 B	6 O	7 N	8	9 F	10 Ne
	第三周期	11 Na	12 Mg			٠.			i.	• ? .		<i>j</i> :	,	13 A1	14 Si	15 P	16 8	17 Cl	18 Ar
			+	``\		\\ ===	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	× × ×							-	7			
	第四 周期	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
	第五周期	87 Rb	38 Sr	89 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
	第六周期	55 Cs	56 Ba	57 -71 *	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
	第七周期	87 Fr	88 Ra	89- 103 **								,							
*	稀土 元素	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Ть	66 Dy	67 Ho	68 Er	69 Tm	70 ¥Ь	71 Lu		ŧ	
**	锕系 元素	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm		102 No	103 Lw			

i	æ		è		
			7	1	
	į	į	į	į	
		į	ij	į	
	í	r	ł	,	

.	1		1.0																													
5	4f		;		· ·						- -								-				·									
7	4p 4d																													~	3	
	48			_													-	7	2	7	7		7	2	7	2	-	2			7	
	3d																		1	2	က	2	သ	9	۷ (×	10	10	10	10	10	10
₽	₩ dg										-	2	က	4	2	9	9	9	9								9		9			
	38		-	_						2	2	2	~	2	7	2	2	~	.2								73		2			
	L 2p			-	63	က	44 ת	မ	9	9	9	9	9	9	9	9	9	9	9								9		9			
2	28		7 8	2	7	2 0	2 6	2 02	2	-2	67	2	~	87	2	2	2	2	2								.7		2			
	TS Is	1 2	2 2	2	2	63.6	N 6	. ~	2	2	2	2	2	2	~	2	2	2	2								7		7			
iK.	**	1 H 2 He	3 Li 4 Be	5 B		Z (» б С П		11 Na	12 Mg	13 A1	14 Si				18 A		20 Ca		22 Ti		24 Cr	25 Mn	26 Fe				30 Zn	Ga	32 Ge		o c

1				颐		A Company of the Comp	通	电离能
58	o dg	5f	es es	. P . 6p	p9	Q 7p	子基态	(电子伏特)
1							2S1/2	13.599 24.588
							2S _{1/2}	5.392
							² P ₁ / ₂	8.298
			-				³P,	11.260
							*S _{3/2} *P ₂	14.53 13.618
							² P _{3/2} 1S ₀	17.423 21.565
							² S _{1/2}	5.139
							2P,/,	5.986
							³P.	8, 152
							4S3/2	10.487
							$^{3}P_{2}$	10.360
							1.S.	15.760
							2S1/2	4.341
							² D _{3/2}	6.54
							F ₂	6.82
							*F3/2	6.74
							.S _{5/2}	7.435
							ů,	7.87
							4Fe/2 3F4	7.864
							2S1/2	7.726
- 1							¹Sº	9.394
							2P1/2	5,999
							ูนี้ เ	8.126
							4S3/2	9.81
							202	9.750
								Z X

表 7.3 原子在基法

时的电子组态(线)

ĸ)				•		
級	7 S S	2s	L 2p	38	3p M	3d	48	4p	Z 4d	4f
37 Rb 38 Sr		67	*ô	2	9	10	01 02	မ ၁		
39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd	0	W	9	04	σ	10	0	9	1 2 4 5 5 7 7 8 8	
	2	23	9	2	9	10	2	9	10	
49 In 50 Sn 51 Sb 52 Te 53 I	0 0	N N	9 9	0 0	9	10	N N	9 9	10	
54 Xe 55 Cs	2 2	2 2	9 9	2 2	9 9	10	2 2	9 9	10	
1					,	2	1		0	
55 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm	2	N	φ	N	ဖ	10	69	o	10	1 3 4 4 4 4 7 7 7 7 7 7 7 7 10 110 111

3			呵			属 片	电离器
pg 0	5 £	ęs	Р 6р	p9	Q 7p	- 基板	(电子伏棒)
						2S1/2	4.177
						1S.	5.696
						2D3/2	6.370
						*F2	6.837
						*D1/2	6.883
						'Ss	7.10
						S/2	7.28
		·				δF _s	7.346
						4F9/2	7.464
						.S	8.330
						2/1S2	7.576
						1S ₀	8.994
						2P1/2	5.786
						³P.	7.344
						4Ss/2	8.642
						3P2	9.01
						2P3/2	10.451
						.S.	12.130
		1				2S1/2	3.894
		7				ıS.	5.212
		2				2Ds/2	5.614
		2		····		Ď,	5.65
		61				418/2	5.42
		7				, I.	5.49
		7				6H6/2	5.55
		87				'F。	5.63
		7				8S7/2	5.68
		7				°D,	6.16
		7				•H15/2	5.98
		7				sI.	5.93
		7				4I15/2	6.02
		7				3H°	6.10
		2				2F7/2	6.18
		2				1S	6.25

•
松
놲
在
ዙ
壓
1.
က
~
퐞

时的电子组态(集)。 1000年,1

·		ļ										-1						ł		L							
	4f	14								14		14						14		14							
	4 4	10								10		10						10		10							
۱ ۲	V db	9								9		9						9		9							
	48	- 2								2		2						2		2							
	3đ	10								10		10				·····		10		10	 		 	 		 	
	M 3p	9								9		9						9		9							
Ð	. 3s	2								2		7						2		2							
	2p	9								9		9						9		9	 		 	 	-		
	L 2s	7								23		2						2		2							
	K ls	2				·				2		2			-			2		2			 	 		 	
 К	**	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Ti	82 Pb	83 Bi	84 Po	85 At	86 Rn	87 Fr	88 Ra			92 O Z6			98 Cf		°Z

原电离能	基 (电子伏特)	*D _{3/2} 6.15	*Fr 7.0	4Fs/2 7.88	5D ₀ 7.98	8Ss/2 7.87	5D4 8.7	4F8/2 9.2	3D3 9.0	2S1/2 9.22	1S ₀ 10.437	² P _{1/2} 6.108	3Po 7.415	4Ss/2 7.287	3P ₂ 8.43	² P _{3/2} 9.4	1S ₀ 10.746	² S ₁ / ₂ 4.0	¹ S ₀ 5.278	² D _{3/2} 6.9	3F ₂				¹F₀ 5.8	⁸ S _{7/2} 6.05	D2	8H17/2	81s	*115/2 3U	2F7/2	18.
	7s 7p		·														,	1	2	2	2	2	2	2	2	2	2	2	~	87 6	v 6	
mi.	P 6d											1	7	က	4	വ	9	9	9	6 1	6 2	6 1	6 1	6 1	9	9	6 1	9	9	9 (ש מ	s (
	5f 6s	7	- 5	7	7	-2	- 5	2			. 23	2	7	73				2		2	2	2 2	3	4 2	6 2	7 2	7 2	9	10 2		12 - 2	
紙	O 5d	6 1	2	က	4	ហ	9	2	6	6 10	10	6 10						6 10		6 10												
	. 25 E	67				-				2		2						2		2												