INTRODUCTION
TO
LANGUAGE THEORY
AND
COMPILING

Typeset under Latex using the Tufte-Latex document class.
The author would like to thank the following persons for proofreading (part of) those notes and making meaningful suggestions and comments:
Mourad Akandouch
• Zakaria Jamiai
• Franklin Laureles
• Lucas Lefèvre
Benjamin Monmege Maria Many Day Book and B
• Marie Van Den Bogaard.
Second version, September 2021

Contents

1	Introduction 9
	1.1 What is a language? 9
	1.2 Formal languages 11
	1.3 Application: compiler design 15
	1.4 Operations on words and languages 29
2	
2	All things regular 31
	2.1 Regular languages 32
	2.2 Regular expressions 33
	2.3 Finite automata 36
	2.4 Equivalence between automata and regular expressions 41
	2.5 Minimisation of DFAs 55
	2.6 Operations on regular languages 61
3	Grammars 67
,	
	3.1 The limits of regular languages and some intuitions 67
	3.2 Syntax and semantics 70
	3.3 The Chomsky hierarchy 72
1	All things context free 79
	4.1 Context-free grammars 82
	4.2 Pushdown automata 91
	4.3 Operations and closure properties of context-free languages 105
	4.4 Grammar transformations 108
	1.1 3.00.00.000 0.0000000000000000000000

5	Parsers	119	
	5.1 Top-down	n parsers	120
	5.2 Bottom-up parsers		146

- A Some reminders of mathematics 167
- B Bibliography 169

List of Figures

- 1.1 A syntactically correct excerpt of C code that raises an error during semantic analysis. 24
- 1.2 Three syntactically correct assignments with different behaviours of the semantic analyser. The first (line 9) is not problematic. The second (line 10) raises a warning because a pointer is cast to an integer. The last (line 11) is not allowed: no conversion is possible.
- 1.3 A decorated AST with typing information. 25
- 1.4 A C++ program which is syntactically correct, but contains a semantic error: the goto bypasses the definition of the i variable, which exists only in the scope of the for. 25
- 1.5 The construction of the control flow graph of a typical if statement for its AST. B stands for the condition of the if; T for the 'then' block; E for the 'else' block; and N for the statements that follow the if in the program.
 26
- 1.6 An example of control flow optimisation. The second code excerpt guarantees to test the condition x > 2 only once. 27
- 1.7 An example of a C++ function where the parameter x can be safely promoted to a reference to avoid a copy of the whole structure. 27
- 2.1 An illustration of a finite automaton. 36
- 2.2 We can represent finite automata more compactly by focusing on the 'control', i.e., the states and transitions. 37
- 2.3 A non-deterministic finite automaton. 38
- 2.4 An automaton recognising L_2 , i.e., the set of all binary words that contain two 1's separated by exactly 2 characters. 39
- 2.5 A non-deterministic automaton with spontaneous moves that accepts a^*b^* . 39
- 2.6 The run-tree of the automaton in Figure 2.3 on the word ab.
- 2.7 The set of transformations used to prove Theorem 2.2, with the section numbers where they are introduced.42
- 2.8 The ε -NFA built from the regular expression $1 \cdot (1 + d)^*$, using the systematic method. 44
- 2.9 The DFA obtained from the ε -NFA $A_{1\cdot(1+d)^*}$. 48
- 2.10The family of ε -NFAs A_n $(n \ge 1)$ s.t. for all $n \ge 1$: $L(A_n) = L_n$.
- 2.11The ε -NFA A_1 recognising L_1 . 49
- 2.12The DFA D_1 obtained from the NFA A_1 . The gray labels show the values of the memory bits associated to some states. 50
- 2.13The situation before (left) and after (right) deletion of state *q* 52

2.14 The two possible forms for an automaton ${\cal A}_{q_f}$ obtained by eliminating
all states but q_0 and q_f , and their corresponding regular expressions.
We obtain the right automaton whenever $q_0 = q_f$. 53
2.15A DFA which is not minimal. 55
2.16A minimal DFA. 57
2.17Swapping accepting and non-accepting states does not complement
non-deterministic automata. 62
2.1. An automaton that (famous) what bouth a final latter was a real.
3.1 An automaton that 'forgets' whether the first letter was an a or a b. 67
3.2 An automaton that 'remembers' whether the first letter was an a or
a b. 67
3.3 An example of a DFA and its corresponding right-regular grammar. 74
3.4 An example of a right-regular grammar and its corresponding ε -NFA. 75
3.5 Removing rule of the form $V \rightarrow \varepsilon$ in two steps. Observe that in the regularing group are the variable P does not are due any terminal, so we
sulting grammar, the variable <i>B</i> does not produce any terminal, so we
could also remove the rule $S \rightarrow Bb$, but what matters is that the language of the resulting grammer is the same as the original one.
guage of the resulting grammar is the same as the original one. 76 3.6 Removing all occurrences of the start symbol <i>S</i> from right-hand sides
of rules, while preserving the language of the original grammar. 77
of fules, while preserving the language of the original grainmar.
4.1 A finite automaton accepting (01)*. The labels of the nodes represent
the automaton's memory: it remembers the last bit read if any. 79
4.2 Recognising a palindrome using a stack. 80
4.3 An intuition of a pushdown automaton that recognises $L_{pal\#}$. The key-
words Push, Pop and Top have their usual meaning. The edge labelled
by empty can be taken only when the stack is empty. Note that, in-
stead of pushing q_0 or q_1 , one could simply store 0 and 1's on the
stack. 82
4.4 The grammar G_{Exp} to generate expressions. 82
4.5 A derivation tree for the word ld + ld * ld. 84
4.6 Another derivation tree for the word $Id + Id * Id$. 84
4.7 The derivation tree for Id+Id*Id of Figure 4.5 with a top-down traversal
indicated by the position of each node in the sequence 85
4.8 A CFG which is not in CNF. 87
4.9 A CFG in CNF that corresponds to the CFG in Figure 4.8. 87
4.10An example CNF grammar generating a ⁺ b. 89
4.11An example PDA recognising $L_{pal\#}$ (by accepting state). 92
4.12An example PDA recognising $L_{pal\#}$ (by empty stack). 96
4.13An non-deterministic PDA recognising L_{pal} (by accepting state). 96
4.14A PDA accepting (by empty stack) arithmetic expressions with + and
* operators only. 100
4.15An Illustration of the construction that turns a PDA accepting by empty
stack into a PDA accepting the same language by final state. 103
4.16An Illustration of the construction that turns a PDA accepting by final
state into a PDA accepting the same language by empty stack. Transi-
tions labelled by ε , γ/ε represent all possible transitions for all possible
$\gamma \in \Gamma$. 105
4.17A grammar with an unproductive variable (<i>A</i>).
4.18A grammar with an unreachable symbol (<i>B</i>).

- 4.19A simple grammar for arithmetic expressions. 115
- 4.20 The derivation tree of Id * Id + Id taking into account the priority of the operators. 116
- 4.21The derivation tree of ld + ld + ld taking into account the associativity of the operators. 116
- 5.1 A trivial grammar and its corresponding (non-deterministic) parser (where the initial stack symbol is *S*). 121
- 5.2 Illustration of the transformation of a k-LPDA into an equivalent PDA, assuming $\Sigma = \{a, b\}, x \in \Sigma \text{ and } y \in \Sigma \cup \{\varepsilon\}.$ 124
- 5.3 The derivation tree of dd and the notion of Follow¹. 127
- 5.4 The grammar generating expressions (followed by \$ as an end-of-string marker), where we have taken into account the priority of the operators, and removed left-recursion.128
- 5.5 An example showing that Follow(Prod) contains \$ in a case where Exp' generates ε . 129
- 5.6 The family of grammars G_k . 137
- 5.7 The grammar generating expressions (followed by \$ as an end-of-string marker). This is the same grammar as in Figure 5.4, reproduced here for readability.140
- 5.8 A configuration of the bottom-up parser where a Reduce must be performed. 150
- 5.9 An example CFSM 154
- 5.10A run of the LR(0) parser 157
- 5.11A simple grammar for generating arithmetic expressions. This grammar is not LR(0). 161
- 5.12The CFSM for the grammar generating expressions. 162
- 5.13The SLR(1) action table for our simple grammar of expressions. The first column gives the state number, the first row lists the possible look-ahead symbols. 164

What is a language?

THE NOTION OF LANGUAGE is obviously most important to humans. It is beyond the scope of these lecture notes to give an exhaustive definition of this notion, but, we would like to highlight several features of *natural languages*, to help us build intuitions that will be useful when introducing the basic definitions of *formal language theory*, the main topic of these notes.

The Concise Oxford Dictionary¹ defines a language as:

A vocabulary and way of using it prevalent in one or more countries.

The Merriam-Webster Dictionary² is more explicit:

The system of words or signs that people use to express thoughts and feelings to each other

[...]

The words, their pronunciation, and the methods of combining them used and understood by a community.

Both definitions explain that a language is built on top of basic building blocks which are *words* (the set of all words forming a vocabulary), that these words must be combined according to a certain *system of rules* (in order to form sentences), and that the purpose of these combinations of words (or sentences) is to carry a certain *meaning*. Hence, two important concepts pertaining to languages are the *form* and the *meaning*.

The *form* can be loosely defined as the set of rules that govern the making of a sentence in a given language. We will rather refer to form as the *syntax* of the language. For a natural language, such as English, it starts with the alphabet, which is the so-called Latin alphabet, on top of which *spelling rules* indicate which words are correct or not. Then, those words can be used to form sentences according to syntactic and grammatical rules.

Syntax is not only relevant to natural languages, but also for formal languages such as *programming languages*. Syntactically correct programs only can be run by a computer, and the first duty of a *compiler* is a syntax check.

Example 1.1. Listing 1.1 shows a syntactically correct C program³. Deleting the semi-colon from the end of line 5 triggers a compiler syntax error⁴:

¹ H.W. Fowler, J.B. Sykes, and F.G. Fowler. *The Concise Oxford dictionary of current English.* Clarendon Press, 1976

² "Language." Merriam-Webster.com. Accessed August 2, 2014. http://www.merriam-webster.com/dictionary/language.

³ B.W. Kernighan and D.M. Ritchie. *The C Programming Language.* Prentice-Hall software series. Prentice Hall, 1988

⁴ Observe that, although we remove the semi-colon from line 5, the error is reported on line 6. Indeed, the compiler 'realises that the semi-colon is missing only when it reads the return statement on line 6.

Listing 1.1: A syntactically correct C program.

```
#include <stdio.h>
1
   int i = 5;
2
3
4
   int f(int j) {
5
      int i = j ;
6
      return i+1;
7
   }
8
9
   int main() {
10
      printf("Hello_world_!") ;
11
      printf("%d_%d", i, f(i+1));
12
      return 0 ;
13
   }
```

```
C-example.c: In function 'f':
C-example.c:6: error: expected ',' or ';' before 'return'
```

On the other hand, when a sentence is syntactically correct, one can try and make sense out of it, that is, to attach a meaning to this sentence, which we refer to as its semantics.

The difference between syntax and semantics is important. In natural languages, a famous example to illustrate this difference is due to Chomskv⁵:

Example 1.2. Observe that the following sentence is *grammatical* in English:

Colorless green ideas sleep furiously

because it follows the "Subject + Verb + Complement" basic pattern of English, but is clearly nonsensical. In other words, it is syntactically correct, but semantically incoherent.

The contrast between syntax and semantics is perhaps sharper in the setting of programming languages, where the semantics is supposed to be non-ambiguous. Indeed, every programmer knows how easy it is to write a syntactically correct program that, when run, does not perform the task it was intended for... Also, different sentences in different programming languages will produce the same effect:

Example 1.3. The three following statements, respectively in C, Pascal and COBOL, all sum the contents of variables X and Y and store the result in X.

```
X += Y
```

```
X := X+Y
```

```
ADD Y TO X GIVING X
```

⁵ N. Chomsky. Syntactic Structures. Mouton and Co, The Hague, 1957

\$

In the case of programming languages, associating a semantics to a given piece of code amounts to produce machine-executable code that, when run, has the intended effect of the source code. This is, of course, the purpose of a compiler. To carry out this task, the compiler must first analyse the structure (i.e., the syntax) of the code, in order to identify keywords, variable names, and so forth.

Formalising the syntax and the semantics of languages is an old endeavour. Dictionaries and grammars for the English language have existed since the seventeenth century⁶. In France, the Académie Française has been founded in 1635 with a well-defined mission⁷:

La principale fonction de l'Académie sera de travailler, avec tout le soin et toute la diligence possibles, à donner des règles certaines à notre langue et à la rendre pure, éloquente et capable de traiter les arts et les sciences.

The main mission of the Academy will be to labor with all the care and diligence possible, to give exact rules to our language, to render it capable of treating the arts and sciences

To this end, the Academy publishes a famous Dictionary⁸ and provides advices on the good usage of the French language⁹

Of course, a non-ambiguous, comprehensive and unique formalisation of a natural language's syntax and semantics seems impossible. For instance, these notes try to adhere to the so-called *Oxford Spelling*¹⁰ where analyse and behaviour are correct spellings for words that would otherwise be spelled analyze and behavior in the United States. Also, the exact accepted meaning of a single term is subject to local variations.

On the other hand, formal and mathematically precise definitions of the syntax of semantics of programming languages are both desirable, and, hopefully, feasible. Indeed, the syntax of a programming language should:

- 1. be simple enough that a programmer does not need to refer to a set of rules too often when producing code.
- 2. offer a clear structure, so that the code is easily readable and maintainable (for instance, the use of functions, blocks, and so forth).
- 3. be analysable automatically (by means of a program), otherwise no compiler, no syntax highlighting tool,...would be possible.

Finally, the semantics of a programming language should be clearly defined, and non-ambiguous. Otherwise, the program might not have the effect that the programmer had in mind when writing the code, or the machine code produced by different compilers from the same source code might have different effects when run on the same machine.

This short discussion clearly shows the need for a theory of formal languages, at least for compiler design, the main application we target in these notes.

⁸ The writing of the ninth tion is ongoing. The eight ediavailable on-line http: is //atilf.atilf.fr/academie.htm. ⁹ See for instance, the list given on: http://www.academie-francaise. fr/la-langue-francaise/ questions-de-langue. 10 R.M. Ritter. The Oxford Guide to Style.

Language Reference Series. Oxford Univer-

sity Press, 2002

⁶ See http://en.wikipedia.org/wiki/ History_of_English_grammars http://en.wikipedia.org/wiki/ Dictionary#English_Dictionaries. ⁷ Article 24 of the status of the Academy: http://www.academie-francaise.fr/ linstitution/les-missions

Let us start with several basic definitions. We first give the definitions, then comment on them.

Definition 1.4 (Alphabet). An *alphabet* is a *finite* set of symbols. We will usually denote alphabets by Σ .

Intuitively, an alphabet is the set of symbols that we are allowed to use to build words and sentences. Because we expect our formal languages to be processed automatically, it is natural to ask that the alphabet be finite.

Example 1.5. The set

$$\{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$$

is an alphabet. The set $\{\$,\#,!\}$ is an alphabet too. A classical alphabet in the setting of computer science is $\{0,1\}$. On the other hand, the set of natural number $\mathbb N$ for instance, does not qualify as an alphabet because it is not finite.

Definition 1.6 (Word). A *word* on an alphabet Σ is a *finite* (and possibly empty) sequence of symbols from Σ . We use the symbol ε to denote the *empty word*, i.e., the empty sequence (that contains no symbol).

We usually denote words by u, v, or w. We use subscripts to denote the sequence of symbols making up the word, for instance $w = w_1 w_2 \cdots w_n$ indicates that the word w is the sequence of symbols w_1, w_2, \ldots, w_n . In these notes, we will often use the term 'string' instead of 'word', because a sequence of characters is referred to as a 'string' in many programming languages such as C.

Example 1.7. Let Σ_C be the alphabet:

$$\{a, b, ..., z, A, B, ..., Z, 0, 1, ..., 9, _\}$$

of all characters which are allowed in C variable names. Then, all words on Σ_C that do not begin with a number and are not C keywords are valid variable name in C (assuming no limit is imposed on the length of variable names).

We denote by |w| the *length* of a word w, i.e. the number of characters that it contains. By convention, $|\varepsilon| = 0$. For all i s.t. $1 \le i \le n$, the word $w_1 \cdots w_i$ (made up of the i first characters of w) is called a *prefix of* w and the word $w_i \cdots w_n$ is called a *suffix of* w.

Were we dealing with natural languages, the next definition would probably be that of a *sentence*, and would be something like: 'a finite sequence of words, separated by spaces and punctuation marks, and ending by a dot'. However, such a definition would give a special status to certain symbols (the 'space' and the punctuation symbols), which we have tried to avoid by giving a very general notion of alphabet, where 'space' and punctuation marks can be considered as regular symbols. Actually, for our purpose, such a distinction is useless, so we can directly define the notion of *language*:

An intuitive justification to the *finite alphabet* is that, in real computers, each memory cell can hold only a finite amount of information (8, 32, 64 bits, for instance).

Definition 1.8 (Language). A language on an alphabet Σ is a (possibly empty or infinite) set of words on Σ . 8

Since a language is a set, we denote the empty language by the usual empty set symbol Ø.

Example 1.9. Here are some examples of languages showing that this definition allows one to capture several interesting problems:

- 1. The set L_{Cid} of all non-empty words on Σ_C (see example 1.7) that do not begin with a digit, is a language. It contains all valid C identifiers (variable names, function names, etc) and all C keywords (for, while, etc).
- 2. The set L_{odd} of all non-empty words on $\{0,1\}$ that end with a 1 is a language. It contains all the binary encodings of odd numbers.
- 3. Similarly to the previous example, the set L_0 of all words on $\Sigma = \{(,)\}$ which are well-parenthesised, i.e., s.t. each closing parenthesis matches a previously open and still pending parenthesis, and each open parenthesis is eventually closed. For example $(()()) \in L_0$, but neither (() nor

This language is also known as the *Dyck language*, named after the German mathematician Walter VON DYCK (1856-† 1934). It is mainly of theoretical interest: we will rely on it several times later to discuss the kind of formalism we need to recognise languages of expressions that contain parenthesis, such as the language L_{alg} defined in the next item:

- 4. The set L_{alg} of all algebraic expressions that use only the x variable, the + and * operators and parenthesis, and which are well-parenthesised, is a language on the alphabet $\Sigma = \{(,), x, +, *\}$. For instance ((x+x)*x)+xbelongs to this language, while (x + x) does not, although it is a word on Σ .
- 5. The set L_C of all syntactically correct C programs is a language.
- 6. The set L_{Cterm} of syntactically C programs that terminate whatever the input given by the user is a language.

8

All these examples are more or less related to the field of compiler design, but we will provide examples from other fields of application later.

The membership problem

Considering these examples, it is clear that a very natural problem is to test whether a word w belongs to a given language L:

Problem 1.10 (Membership). Given a language L and a word w, say whether $w \in L$.

Being able to answer such a question in general (i.e., for all languages L) seems to solve meaningful questions. Let us come back to our examples

It is easy to confuse ε , $\{\varepsilon\}$ and \emptyset . The first is a *word* that contains no symbol. The second is a language which is not empty since it contains the word ε . The last is a language too (empty).

to illustrate this. In the first case, testing whether $w \in L_{Cid}$ allows one to check that w is a valid C identifier. Testing whether a binary number belongs to L_{odd} allows one to check whether it is odd or even. The membership problem for L_{alg} and L_C amount to checking the syntax of expressions and C programs respectively, a task that is important when compiling. Observe that all these criteria are purely syntactical. On the other hand, the last example, L_{Cterm} seems more complex, because the criterion for a word w to belong to L_{Cterm} is that w is string encoding a terminating C program, i.e., a semantic criterion, yet the definition of L_{Cterm} makes perfectly sense and is mathematically sound.

Of course, we are particularly interested in solving the membership problem *automatically*. What we mean there is that, given a language L, we want to build a program that, reads on its input *any word w*, and returns 'yes' iff $w \in L$.

What we will do mainly in these notes is to develop formal tools to provide an answer to that question. Let us already try and build some intuitions by highlighting characteristics of programs that would recognise each of those languages. In all the cases, we assume that the word for which we want to test membership is read character by character, from left to right, i.e., if $w = w_1 w_2 \cdots w_n$, then the program will first read w_1 , then w_2 , and so forth up to w_n . When w_n is read, the program must output its answer.

- 1. In the case of L_{Cid} , the program must check that $w_1 \in \{a, b, ..., z, A, B, ..., Z\}$, then that all subsequent characters are in Σ_C . Observe that this program needs only one bit of memory to operate, as it only needs to remember whether the character it is currently reading is the first one or not.
- 2. In the case of L_{odd} , the program must only check that all characters it receives are 0's and 1's, and that the last one is 1. This does not even require any memory.
- 3. The case of L_0 is a bit more difficult, because reading a single parenthesis is not sufficient to tell whether it is correct or not. Now, the program needs to *remember* an information about the parenthesis it has met along the prefix read so far.

More concretely, to check whether an expression is well-parenthesised, we can write a program using a counter *c* that:

- increments *c* each time it reads an opening parenthesis.
- checks that c > 0 each time it reads a closing parenthesis, decrements c if it is the case and returns 'no' otherwise.
- returns 'yes' at the end of the word if and only if c = 0.

It is easy to check that, at all times, c contains the number of pending open parenthesis. Observe that, since we have fixed no bound on the *lengths* of the words in L_0 , the values the program needs to store can be arbitrarily large.

Observe that the memory needed to test membership of a word to the languages of cases 1 and 2 is *finite*, while it is *unbounded* in case 3. It seems difficult to make a program to recognise L_0 that uses a bounded memory only. Indeed, we will give, in Chapter 3 formal arguments showing that it is not possible: L_0 is a so-called *context-free language*, while L_{Cid} and L_{odd} belong to the 'easier' class of *regular languages*.

- 4. Checking whether a string is a correct algebraic expression is at least as hard as recognising L_0 . In addition to checking that the expression is well-parenthesised, one must also check each operation + or * has exactly two well-formed operands, which can, in turn, be complex expressions. This suggests that a recursive approach might be needed, where the base cases are simple expressions containing only one variable, or one constant. In Chapter 5 we will develop techniques to generate such recursive programs (called *parsers*) that can answer the membership program for a broad class of languages to which L_{alg} belongs.
- 5. Checking the syntax of a program written in a high-level language, such as C, is part of what a compiler should do, and techniques to do so will be thoroughly presented in these notes. Let us note however, that the membership problem for $w \in L_C$ is at least as hard as the membership for L_{Cid} , L_0 and L_{alg} as a C program can obviously contain C identifiers and arithmetic expressions. Also, we must check that curly brackets ({, }), used to delimit blocks, match; that each else corresponds to an if, etc.
- 6. The last language L_{Cterm} models a very hard question: 'can we write a program that tests whether any program written in a given language terminate?' Obviously, such a termination tester would be an invaluable tool for all developers, who have already struggled with unexpected infinite loops. Unfortunately, the answer to that question is negative: such a program does not exist. This is proved formally in a 'Computability and Complexity' course.

In these notes, we will present the mathematical and practical tools that are necessary to attack those questions.

Application: compiler design

It should now be clear from the previous examples that a first class application to formal language theory is the design of compilers.

A compiler 11 is a program that processes programs and translates a program P_s (the source program, or source code) written in a language L_s (the source language) into an equivalent program P_t (the target program) written in a language L_t (the target language). The compiler, being a program itself, might be written in a third language. As an example, gfortran¹² is a compiler that translates FORTRAN code into (for instance) Intel i386 machine code, and is written in C.

1.3.1 Anatomy of a compiler

In order to perform its translation, a compiler proceeds in several steps that we detail now. Those steps can be split in two successive parts:

1. First, the analysis phase builds an abstract representation of the program structure. This phase consists in first performing a lexical analysis, or scanning; then a syntactic analysis, or parsing (more details below). Syntax errors are detected and reported during this phase. Fi-

When we write 'such a program does not exist', we do not mean 'is not known yet', but rather that there is a provable mathematical impossibility to the existence of such a program. This shows that, as surprising as it may seem, there are (natural, meaningful and well-defined) problems that cannot be solved by a computer!

Remark that here, we are using the term 'language' with the same meaning as in 'programming language', and not in the formal sense of Def-

11 A. Aho, M. Lam, R. Sethi, and Ullman J. Compilers: Principles, Techniques, & Tools. Addison-Wesley series in computer science. Pearson/Addison Wesley, 2007

12 See the gfortran home page at: https://gcc.gnu.org/fortran/.

nally, the analysis part usually contain a *semantic analysis*, that performs, a.o., type checking, and reports typing errors.

2. Second, the *synthesis phase* translates the abstract representation of the program into the target language. Several optimisations can occur during this phase.

Let now detail these different steps, by referring to Listing 1.1.

1.3.2 Scanning

When teaching a new programming language to someone, one usually starts by introducing the basic blocks from which a program is built: identifiers for variable and function names; (reserved) keywords; special signs such as {, } or ;, and so forth. The first task of a compiler is thus to split the input string into a sequence of meaningful sub-strings that will be passed to the next step of analysis. Roughly speaking, this will be the work of the *scanner*. An illustration of the effect of the scanner on the code in Listing 1.1 is shown hereunder 13. Each gray box delineates one of the substrings that the scanner should identify:

```
int i = 5;

int f ( int j ) {
    int i = j;
    return i + 1;
}

int main ( ) {
    printf ( "Hello_World_!" );
    printf ( "%d_%d" , i , f ( i + 1 ) );
    return 0;
}
```

Observe how white spaces are ignored in this example. Here, we use the term 'white space' in a broad sense: it also includes tabulation characters or end-of-line. Those white space symbols are relevant to the compiler only to separate successive sub-strings¹⁴. Indeed, the two following code excerpts have the same effect:

```
int i = 5 ;
```

The scanner is often called 'lexical analyser'. In these notes, we will indifferently use both expressions. Some authors, however, consider that scanning and lexical analysis are different processes: scanning consists only in dividing the input into relevant substrings, while lexical analysis also performs the tokenisation (see hereunder for a definition of token).

13 We have skipped the first line #include <stdio.h> because this line is actually never part of the input of the compiler. Before being compiled, C code is processed by a pre-processor, that handles so-called pragma directives, i.e. those keywords that begin with #. In particular, handling #include directives amounts to replacing them by the content of the file that is included. See https://gcc.gnu.org/onlinedocs/cpp/Pragmas.html for further reference.

¹⁴ This is the case in most programming languages. A notable exception is the (prank) programming language Whitespace, where 'Any non white space characters are ignored; only spaces, tabs and newlines are considered syntax'. See http://compsoc.dur.ac.uk/whitespace/.

5

However, the scanner does not only split the input in a sequence of sub-strings as illustrated above, but also performs a preliminary analysis of those sub-strings and determine their type. For instance, what matters about the j sub-string in lines 4 and 5 is not the j character, but rather (1) the fact that j is identified as a variable identifier and (2) the fact that the same identifier occurs in lines 4 and 5 but not in other lines where variable identifiers appear (indeed, replacing the two occurrences of j in those lines by LukeIAmYourFather, or any other legal variable name will yield a compiled code with exactly the same effect). Also, reserved keywords (while, if,...), operators (=, <=, !=,...) and special symbols ({, ;, ...) can be identified as such.

To sum up the role of the lexical analyser is not only to split the input into a sequence of sub-strings, but to relate each of those sub-strings to its lexical unit. A lexical unit is an abstract family of sub-strings, or, in other words, a language, that corresponds to a peculiar feature of the language. The definition of lexical units is a bit arbitrary and depends on the next steps of the compiling process. For instance, for the C language, we could have as lexical units:

- identifiers
- keywords

or we could refine this list of lexical units and have:

- · identifiers,
- the while keyword,
- the for keyword,

where each keyword is its own lexical unit. It should be clear that each lexical unit in the lists above corresponds to a set of words, i.e., a language. It is common practice to associate a unique symbolic name to each lexical unit, for instance a natural number, or a name such as 'identifier'. As we are about to see, those values will constitute a part of the scanner's return values.

We are now ready to introduce several definitions that somehow formalise the discussion about scanning we have had so far ¹⁵:

Definition 1.11 (Lexeme). A *lexeme* is an element of a lexical unit.

Ş

Recall that a lexical unit is a language, this is why it makes sense to speak about 'an element of a lexical unit'. A lexeme is thus one of the substrings of the input that has been recognised (or *matched*) by the lexical analyser.

¹⁵ A. Aho, M. Lam, R. Sethi, and Ullman J. Compilers: Principles, Techniques, & Tools. Addison-Wesley series in computer science. Pearson/Addison Wesley, 2007

Definition 1.12 (Token). A token is a pair (id, att), where id is the identifier of a lexical unit, and att is an attribute, i.e. an additional piece of information about the token. 3

Tokens are what the scanner actually returns and provides to the next step of the compiling process. The attribute part of the token is optional: it can be used to provide more information about the token, but this is sometimes not needed.

A typical use of the attribute occurs when the matched lexeme is an identifier. In this case, the scanner must check whether this identifier has been matched before, and, if it is the case, to return a piece of information that links all occurrences of the same identifier throughout the code. The scanner achieves this by maintaining, at all times, a so-called symbol table.

Roughly speaking the symbol table records, at all times, all the identifiers that the scanner has met so far. Whenever the scanner matches a new lexeme which is an identifier, it looks it up in the symbol table. If the lexeme is not found, the scanner inserts it in the table. Then, the index of the lexeme in the table can be used as a unique symbolic name for this lexeme, which can be put in the attribute part of the token that the scanner returns.

Example 1.13. Let us consider the simple code excerpt:

```
1
       int i = 5;
2
       int j = 3;
3
```

Initially, the symbol table is empty. When the lexeme i in line 1 is matched, the scanner inserts it into the first entry (index 0) of the symbol table, and returns the token (identifier, 0). Here, identifier denotes the symbolic name for identifiers, and we have used the index of the lexeme in the symbol table as the attribute of the token, which is a unique symbolic name for the identifier i. When j in line 2 is matched, it is inserted into entry number 1 of the symbol table, and the token (identifier, 1) is now returned. So far, the symbol table has the following content:

index	lexeme
0	i
1	j

Then, when i is matched in line 3, it is found in index 0 of the symbol table, and the scanner returns again (identifier, 0), thereby indicating to the parser that this identifier is the same as the one that has been matched in line 1. The symbol table is not altered by this step. 3

Observe that this technique is not completely satisfactory: if we want to apply it to the example of Listing 1.1, we will run into trouble when matching the i in line 5, which will be wrongly identified as the identifier of the same variable as the one declared in line 2. The problem with the way to handle symbol table we have described above is that it does not allow to cope with scoping. This is, however, hard to achieve at the level of the scanner which has no global view on the input code, and cannot tell,

for instance, a variable declaration from a variable use. When the symbol table should accommodate scoping, we will defer its creation to the parser (see next section). The technique we have described so far, however, works well when no scoping is required, in simple programming languages for instance.

Let us mention another possible use of the symbol table: it can also be exploited to match keywords, and avoid that keywords are used as identifiers. This is achieved by initialising the symbol table with all possible keywords in the first entries of the table. This allows one to treat keywords in a similar fashion to identifiers, which often makes the scanner easier to implement.

Example 1.14. For instance, assume we are building a scanner for a language with three keywords: while, for and if. We initialise the symbol table this way:

index	lexeme
0	while
1	for
2	if

Thus, keywords are present in lines 0-2 of the table, and identifiers will be inserted in the following lines. Assume the scanner matches the lexeme abc. It will be compared to all line in the symbol table, and inserted since it is not present:

index	lexeme
0	while
1	for
2	if
3	abc

The scanner returns (identifier, 3), which means that a genuine identifier has been matched, since the index 3 is not among the lines 0-2 that are devoted to keywords. Now, assume the scanner matches for, which could be an identifier since the lexeme contains only letters. The scanner will find this lexeme in line 1 of the symbol table and return: (identifier, 1). Since now the attribute of the token is ≤ 2 , the parser can identify this token as the keyword for. 8

The scanner: summing up

The scanner is the first part of the compiling process. Its role is to split the input into a sequence of lexemes (Definition 1.11) that are associated to lexical units and returns a sequence of tokens (Definition 1.12). It can be responsible for inserting identifiers into the symbol table, that contains all identifier matched so far, and possibly all keywords. The symbol table is thus used as a communication medium between the different compiling phases.

Now that we have a clear view of *what* the scanner should do, it remains to explain *how* to do it. Namely, we need to answer the following questions:

- 1. How to *specify* lexical units? So far, we have used vague English descriptions, like: 'all words starting with a letter and followed by an arbitrary number of letters and digits'. This is clearly not satisfactory. In Chapter 2, we will introduce *regular expressions* to this end.
- 2. How to *build* in a systematic ways, programs that match lexemes against the description of lexical units? In Chapter 2 again, we will introduce the central notion of *finite automaton* to this end.

1.3.3 Parsing

It should now be clear that the duty of the scanner is to perform a *local* analysis of the code: to match a lexeme against a lexical unit, the scanner analyses a sequence of contiguous characters in the code. Such a local analysis is not sufficient to analyse all features of programming language. That for instance the matching of parenthesis in arithmetic expressions, like:

$$((x + y) * 3)$$

Checking that the first (opening) parenthesis matches the last (closing) one clearly requests a *global view* on the piece of code under analysis.

Building (and, to some extent, analysing) such a global and *abstract* representation of the code is the task of the *parser*. To help us build an intuition of what such an abstract representation could be, let us consider the restricted case of arithmetic expressions that can contain: (1) parenthesis (possibly nested); (2) identifiers (i.e., variable names); (3) natural numbers; (4) the +, -, / and * binary operators; (5) the - unary operator. A textual description of what 'a syntactically correct expression' is, could be given in an inductive fashion. For instance, a word is a correct expression if and only if it has one of the following forms:

- 1. an identifier. For instance, BeamMeUpScotty is correct;
- 2. a natural number. For instance 42 is correct;
- 3. '(*E*)', where *E* is a correct expression. For instance, (BeamMeUpScotty) is correct;
- 4. '-E', where *E* is a correct expression. For instance -42 is correct;
- 5. E_1 op E_2 , where E_1 and E_2 are correct expressions, and op is either + or or * or /. For instance, -42+(BeamMeUpScotty) is correct.

The abstract syntax tree In addition to checking whether a program is syntactically correct, the parser must also build some kind of formal object that represents the structure of the input. This object will be exploited by the next steps of the compiling process.

A binary operator is one that has two arguments, such the '-' operator in 5-3, where the two arguments are 5 and 3. A unary operator has only one argument, such as '-' in the expression -5.

The most usual object that parsers build is the abstract syntax tree (AST for short). As the name indicates, this object is a tree that reflects the nesting of the different programming constructs. As an example, the AST of the expression i+y*5 could be:

Similary, the AST of the following C while loop:

```
1
     while(x>5) {
2
      x = x-1 ;
3
      y = 2*y;
4
     }
```

could be:

The parser and the symbol table In the previous section, we have discussed the creation of symbol table entries by the scanner, which is a technique that works fine when the compiler must not handle scoping, as in Example 1.13. However, in a realistic example such as 1.1, the scope of variables must clearly be taken into account. Indeed, the i variable used in line 5 is not the same as the one declared in line 2, because the latter occurs in the global scope, while the former lies in the block containing the code of function f().

To cope with the scoping of identifier names, the compiler can manage several symbol tables, one for each scope, that contains all the identifiers from the scope. Since the scanner has no global view on the code and can hardly detect scopes, we ask the parser the populate these symbol tables. All the scanner does is to return an information indicating that it has recognised an identifier, together with the name of the identifier.

All those symbol tables are arranged in a tree, in order to reflect the nesting of scopes (see example below). When the parser obtains from the scanner a token corresponding to an identifier whose name is v, it looks up ν in several symbol tables: first, the current symbol table, then—if the identifier has not been found—its father, and so forth, up to the root that corresponds to the symbol table of the global scope. This is illustrated in the following example:

Example 1.15. Let us come back once again to the code excerpt of Listing 1.1. Initially, an empty symbol table T_0 is created for the global scope. Then, the parsing goes, a.o. through the following steps (we focus on the handling of identifiers):

1. When the lexeme i is matched on line 2, the scanner returns the name i to the parser, which looks it up in the current (and only) symbol table T_0 . Since T_0 is still empty, i is inserted into T_0 :

	T_0	
$Current \longrightarrow$	index	lexeme
	0	i

In order to identify uniquely each variable 16, the parser can associate it with a pair (T, i), where T is the name of a symbol table, and i is the line in the symbol table. In this case, our variable i would be identified by $(T_0, 0)$.

16 This will clearly be necessary when generating code.

2. Then, when reaching line 4, the parser detects the declaration of a new function, and thus creates a new scope. Concretely, this amounts to creating a new symbol table T_1 , which is inserted in the tree of symbol tables as a son of T_0 :

3. Then, the parser can insert the declaration of j (the parameter of f) as a new variable in T_1 :

4. Next, moving to line 5, the parser first inserts a fresh i variable, but this time in T_1 . As we will see, it will predate variable i in T_0 within the scope of function f:

- 5. On the same line, the parser detects the use of variable j. It first looks up j in T_1 (which is the current symbol table) and finds it. Thus, this occurrence of j will be identified with $(T_1, 1)$.
- 6. Then, the parser finishes parsing f, and detects the use of variable named i in line 6. It first looks up in T_1 , and finds an occurrence of i. Thus, it identifies this i with $(T_1, 1)$, i.e., the same i as in line 5.
- 7. When leaving the scope of f, the parser changes the current symbol table to T_0 . Note however that T_1 is kept in memory for the next steps of compiling.
- 8. In line 9, the parser detects a new scope and inserts a new symbol table T_2 as a child of T_0 , since it is the current table. T_2 becomes the current table:

9. Finally, in line 11, the parser detects the use of a variable called i, and looks it up in the tree, starting from the current symbol table T_2 (which contains no entry), then moving up the tree towards the root. Variable i is eventually found in the root T_0 , so it is correctly identified with $(T_0,0)$, i.e., the one which is declared in line 2.

The parser: summing up

The parser is the second part of the compiling process. It receives a sequence of *tokens* from the scanner. Its role is to check whether this sequence of tokens respects a given *syntax*, and, when it is the case, to produce an abstract representation (such as the *abstract syntax tree*) of the program's structure, that will be used by the next phases of the compiling process. The parser can also populate the symbol table, in particular when scoping must be taken into account.

As for the scanner, we can now identify several questions that we must solve in order to build parsers:

- 1. We have said that the parser must check the *syntax* of the its input, but how do we *specify* this syntax? We will see, in Chapter 3 that *grammars* can be used for that purpose, just as we have used *regular expressions* in the case of scanners.
- 2. How can we build a *parser* from a given grammar, and what kind of machine will it look like? In Chapter 4, we will see that *pushdown automata*—an extension of the finite automata from Chapter 2—are abstract machines that can be used to formalise and build parsers. We will review, in Chapter 5, several techniques to build parsers that are efficient in practice.

1.3.4 Semantic analysis

Now that the parser has checked that the syntax of the input code is correct, and has built an abstract representation of this code, it is time to start analysing *what the code means*, in order to prepare its translation. This is the aim of *semantic analysis*. Of course, semantic analysis is highly dependent on the input language, this is why we will stay very general when introducing it. Yet, we can identify several essential points to deal with: scoping, typing, and control flow.

Scoping During the semantic analysis phase, the compiler can analyse the links that exist between the declaration(s) of a name (if any) and the uses of this name throughout the code. For instance, the—syntactically correct—code in Figure 1.1 could raise an error during semantic analysis, because variable i is used undeclared (although the name i is declared later as an integer variable).

Observe that the control of the scoping can already be performed during parsing, thanks to the symbol table (see previous section).

```
1  int main() {
2   i = 3;
3  int i;
4 }
```

Figure 1.1: A syntactically correct excerpt of C code that raises an error during semantic analysis.

Type checking and type control Each name (variable name, function name, type name,...) in a program is associated with a *data type* (or, simply, a type) that describes uniquely how this name can be manipulated. During semantic analysis, the compiler determines (if possible) the type of each expression, and checks that the operations on those expressions are consistent with their types. Figure 1.2 shows the typical problems that can occur when compiling an assignment in C. The assignment in line 9 is not problematic, because the type of the right-hand side of the assignment is int, which is the same as the type of the variable j. Indeed, the sum of the int variable i and the int constant 4 is an int. The second assignment (line 10) raises a warning (i.e., a non-blocking error): the right-hand side is a pointer, but assigning a pointer to an int is allowed in C, and a conversion is implicitly applied by the compiler. The last assignment (line 11) raises an error: the type of the right-hand side is struct S, and the compiler does not know how to convert such an object to an int.

In order to manage types, the compiler can add information to the AST that has been built during parsing. This operation of adding information to a tree is called 'decoration' 17 . As an example, Figure 1.3 displays the decorated AST of the C statement x = sum * 1.5, where x and sum are integer variables. Since one of the terms of the sum * 1.5 product is a float, the compiler assigns this type to the expression. This allows it to detect that the result will need to be truncated when copying it to x (and perhaps to raise a warning, depending on the compiler and its options). Of course, such information will be crucial when generating the target code for this assignment.

Control flow The term 'control flow' refers to the order in which the instructions of a program are executed. Conditionals (if), jumps (goto), loops (for, while,...) and function calls can be used to alter the control flow of a program, in an intricate way. As a consequence, it is possible to write syntactically correct programs that contain semantic error related to control flow.

For instance, Figure 1.4 shows a C++ program that does not compile 18 because the goto in line 9 jumps inside of the for. However, the i variable exists only inside the scope of the for: it does not exist anymore when reaching the goto, so jumping inside the for and executing std::cout << i makes no sense: what would be the value of i? Other problems can be detected by analysing the control flow of a program, for instance, detecting

```
struct S {int i;} ;
2
    int main() {
3
      int i, j ;
4
      struct S s :
      struct S * p = &s ;
6
      i = 3;
8
9
      j = i + 4;
10
      j = p;
      j = s;
```

Figure 1.2: Three syntactically correct assignments with different behaviours of the semantic analyser. The first (line 9) is not problematic. The second (line 10) raises a warning because a pointer is cast to an integer. The last (line 11) is not allowed: no conversion is possible.

¹⁷ Which suggests that ASTs are most probably Christmas trees...

Figure 1.3: A decorated AST with typing information.

```
#include <iostream>

int main () {
  for(int i=1;i<10;++i) {
    infor: std::cout << i;
    std::cout << std::endl;
}

goto infor;
}</pre>
```

Figure 1.4: A C++ program which is syntactically correct, but contains a semantic error: the goto bypasses the definition of the i variable, which exists only in the scope of the for.

¹⁸ On LLVM 6.0.

dead code (code that can never be executed), etc.

To analyse the control flow of a program, the semantic analyser can build an abstract representation thereof, which is the *control flow graph*, a notion introduced by Allen in the early seventies¹⁹. A control flow graph is a directed graph whose nodes represent the different statements of the program, and whose edges represent the possible jumps in the control flow. So, if a statement s_2 can be executed after a statement s_1 (whether s_2 is on the line next to the line of s_1 or not), there is an edge from s_1 to s_2 . It can thus occur that some node has several input edges. A node can also have more than one output edge in the case where this node corresponds to a conditional. In the case of an if, for instance, there are two output edges: one for the 'then' block, and one for the 'else'.

Thus, each path in the graph corresponds to one *potential* execution of the program. Of course, some path in the graph will be spurious, and do not correspond to an actual execution of the program. For example, in the case of a while, the infinite path that never leaves the while will be present in the CFG, but it might be the case (hopefully!) that the loop always terminates²⁰.

The control flow graph can be built from the AST. Figure 1.5 illustrates this construction for a typical if statement of the form **if** B **then** T **else** E, and which is followed by additional statements represented by N. The edges of the AST are shown in gray. Additional edges (dashed) are first inserted in the AST to represent the control flow of the **if**. Similar treatment is applied recursively in the B, E, T and N sub-trees. Then, the edges of the AST are removed, and one obtains the typical diamond shape of the CFG of an **if** statement.

Semantic analysis: summing up

The semantic analysis phase receives the AST built by the parser and performs a (limited) analysis of the semantics of the input code represented by this AST: checking scoping of variables, checking for type consistency and detecting (potentially implicit) type conversions, checking for control flow inconsistency. The output of the semantic analysis phase is a *decorated AST* (and, potentially, a *control flow graph*) that, together with the symbol table built during parsing,

Figure 1.5: The construction of the control flow graph of a typical **if** statement for its AST. B stands for the condition of the **if**; T for the 'then' block; E for the 'else' block; and N for the statements that follow the **if** in the program.

Frances E. Allen. Control flow analysis.
 SIGPLAN Not., 5(7):1-19, July 1970. ISSN 0362-1340. DOI: 10.1145/390013.808479.
 URL http://doi.acm.org/10.1145/390013.808479

²⁰ Remember from the Computability and Complexity course that the halting problem is undecidable, hence detecting such spurious infinite loops is not possible in general!

contains all the necessary information for the synthesis phase of the compiler.

Synthesis

SYNTHESIS is the phase during which the outcome of the compiler is actually generated. In most cases, this will be an executable program, written in some low-level language such as machine code. However, this is not always the case: these notes, for instance, have been typeset using the $\mathbb{M}_{\mathbb{P}}X_{\mathcal{E}}$ word processing system²¹, where one first describes the document using a markup language, and then compile this source into a PDF file.

Again, the actions that should be performed during the synthesis part is highly dependent on the source and target languages. So, we will only identify several generalities about synthesis in this section.

The input to the synthesis phase is the decorated AST built during the previous phase of the compiling process. It can also be accompanied by a control flow graph, should it have been built during semantic analysis. They should contain all the necessary information to generate the output code.

Code optimisation Before the output code is actually generated, the compiler might perform several optimisations on the code. Typical optimisations include, but are not limited to:

Control flow optimisation Modifies the control flow graph in order to make 4 the resulting code more efficient. Figure 1.6 shows an example. In the first version of the loop, the conditional x>2 is tested at each iteration of the loop. However, the loop does not modify x, so this condition will be either always true along the loop, or always false. The second version of the loop is therefore more efficient.

Loop optimisation Consists in making loops more efficient, for instance by unravelling them when they are executed a constant number of times.

Constant propagation The compiler can try and detect variables that keep a constant value, and replace the occurrences of these variables by those constant values, thereby avoiding unnecessary and costly memory accesses.

Promotion of parameters to references Function parameters that are passed by value and are not modified by the function can be transformed into references, to avoid copies of values when calling the function. For instance, in Figure 1.7, the parameter x can be promoted to a reference (in C++), and the function's signature becomes f(struct S &x). Then, calling f does not request anymore to copy the whole content of the x structure.

²¹ Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley, 1986. ISBN 0-201-15790-X

```
for(int i=0; i<n; ++i) {</pre>
1
2
      if (x > 2)
        printf("%d", i) ;
        printf("%d", i+1) ;
```

Becomes:

1

2

3

5

```
if (x>2) {
  for(int i=0; i<n; ++i) {</pre>
    printf("%d", i);
} else {
  for(int i=0; i<n; ++i) {</pre>
    printf("%d", i+1) ;
}
```

Figure 1.6: An example of control flow optimisation. The second code excerpt guarantees to test the condition x > 2 only once.

```
struct S {
     // lots of fields!
5
    f(struct S x) {
6
     // no modification of x
7
```

Figure 1.7: An example of a C++ function where the parameter x can be safely promoted to a reference to avoid a copy of the whole structure.

Intermediate language Because generating efficient machine code is highly dependent on the target architecture, and might request specialised techniques, it makes sense to introduce an intermediary step in the compiling process: instead of compiling the high-level language (say, C) into machine code (say, x86 machine language), the compiler generates code in an intermediate language, which is close to machine language, but permits the use of some level of abstraction. The intermediate language is afterwards compiled to the target language. This technique allows one to separate cleanly the difficulties that are related to the input language, and those that are linked to the target language.

One of the earliest implementation of this concept is the p-code, introduced by Wirth in 1966²². P-code has been used mainly as an intermediary language for Pascal compilers: the compiler would compile the Pascal program into p-code, which could later be compiled to machine code, or even interpreted at the level of the operating system²³.

This principle is still exploited in the LIVM compiler, which is probably the standard compiler today on Unix-like platforms²⁴. In LIVM, the input code is first translated to the so-called *intermediary representation*, which is later compiled into machine code, after several optimisation steps. This allows one to rapidly develop efficient compilers for new languages: one simply ought to write the translation to the LIVM intermediary representation (which should be easier than performing a direct translation to machine code thanks to the features of the intermediary language, see below), and benefit from all the optimisations of the LIVM code generator.

Example 1.16. For instance, consider the following C code excerpt:

```
1 int a, b, c;
2 if (a > b)
3  c=1;
4 else
5  c=2;
```

Then, a possible LLVM intermediary representation²⁵ would be:

As can be seen from this example, the LLVM intermediate language is pretty close to a classical machine language, with very low-level instruction such as icmp sgt i32 to compare two integers on 32 bits, br i1 for a conditional jump, or br for an unconditional jump. But this language allows one to use as many *virtual registers* (whose name begin with %) as desired. It is thus easier to generate LLVM intermediate language than machine language for a machine with a fixed (and limited) number of registers.

Niklaus Wirth and Helmut Weber. Euler: A generalization of algol, and its formal definition: Part ii. Commun. ACM, 9(2):89–99, February 1966. ISSN 0001-0782. DOI: 10.1145/365170.365202. URL http://doi.acm.org/10.1145/365170.365202
 This was the case with the UCSD psystem in 1978, just like Java bytecode is today interpreted by a virtual machine!
 From the LLVM website (http://www.llvm.org): 'The LLVM Project is a collection of modular and reusable compiler and toolchain technologies'. Note that, on many platforms such as MacOS X, calling gcc actually calls LLVM.

 $^{^{25}}$ This code is not actually LLVM IR since the assignement \$c=1 is not a valid LLVM IR instruction. Furthermore, we are assigning the register \$c twice!. We will see how to fix this later.

Let us close this introduction by giving some technical preliminaries that will be used throughout these notes.

1.4.1 Operations on words

We first describe several operators that can be used to combine different words. They are all variations on the notion of *concatenation*:

Definition 1.17 (Concatenation of two words). Given two words $w = w_1 w_2 \cdots w_n$ and $v = v_1 v_2 \cdots v_\ell$, the *concatenation* of w and v, denoted $w \cdot v$, is the word:

$$w \cdot v = w_1 w_2 \cdots w_n v_1 v_2 \cdots v_\ell$$

By convention, $\varepsilon \cdot w = w \cdot \varepsilon = w$, for all words w. In particular $\varepsilon \cdot \varepsilon = \varepsilon$.

For example, $aa \cdot bb = aabb$ and $aa \cdot \varepsilon = \varepsilon \cdot aa = aa$. Observe that the concatenation is an *operator* on words, which is *non-commutative*, i.e., $w_1 \cdot w_2 \neq w_2 \cdot w_1$ in general; but *associative*, i.e. $w_1 \cdot w_2 \cdot w_3 = (w_1 \cdot w_2) \cdot w_3 = w_1 \cdot (w_2 \cdot w_3)$ for all words w_1 , w_2 , w_3 . The empty word ε is a *neutral* for concatenation.

Based on this notion, we can introduce another notations. For all natural numbers n, w^n denotes the word obtained by concatenating n copies of w:

$$w^n = \underbrace{w \cdot w \cdot w \cdots w}_{n \text{ times}}$$

By convention, $w^0 = \varepsilon$ for all words w.

Operations on languages

1.4.2

We can lift the concatenation operator to sets of words, i.e., languages. Intuitively, the concatenation of two languages is a new language that contains all the words obtained by concatenating one word from the former language with one word from the latter:

Definition 1.18 (Concatenation of languages). Let L_1 and L_2 be two languages. Then, their concatenation, denotes $L_1 \cdot L_2$ is the language:

$$L_1 \cdot L_2 = \{ w_1 \cdot w_2 \mid w_1 \in L_1 \text{ and } w_2 \in L_2 \}$$

For example, if $L_1 = \{I_love_, I_hate_\}$, and $L_2 = \{compilers, chocolate\}$, then $L_1 \cdot L_2 = \{I_love_compilers, I_love_chocolate, I_hate_compilers, I_hate_chocolate\}$.

On top of language concatenation, we can introduce several other notations:

1. For all languages L, for all natural numbers n, L^n is the language containing all words obtained by taking n words from L an concatenating them:

$$L^n = \{w_1 w_2 \cdots w_n \mid \text{for all } 1 \le i \le n : w_i \in L\}$$

Concatenation behaves like a noncommutative product operator, such as *matrix multiplication* for instance. This justifies the 'power notation' w^n to denote the concatenation of n copies of w, just like A^n denotes $\underbrace{A \times A \times \cdots \times A}_{}$ for a matrix A. Observe

n times that, $w^n \cdot w^m = w^{n+m}$, as expected. In particular, for all n, $w^n = w^{n+0} = w^n \cdot w^0$, which explains why $w^0 = \varepsilon$.

By reading this definition carefully, one realises that the empty language \emptyset is *not* a neutral for language concatenation. Indeed, assume $L_1 = \emptyset$, and consider $L_1 \cdot L_2$. For a word w to belong to $L_1 \cdot L_2$, it *must* have a prefix which is a word of L_1 . However, there is no word in L_1 , so, no word belongs to $L_1 \cdot L_2$; that is, $L_1 \cdot L_2 = \emptyset$. However, $\{\varepsilon\}$ is: $L \cdot \{\varepsilon\} = \{\varepsilon\} \cdot L = L$ for all languages L.

3

For example, if $L = \{a, b\}$, then $L^3 = \{aaa, aab, aba, baa, abb, bab,$ bba, bbb}.

2. For all languages L, the *Kleene closure* of L, denote L^* is the language containing all words made up of an arbitrary number of concatenations of words from *L*:

$$L^* = \{w_1 w_2 \cdots w_n \mid n \ge 0 \text{ and for all } 1 \le i \le n : w_i \in L\}$$

For example, $\{a\}^* = \{\varepsilon, a, aa, aaa, aaaa, ...\}$. Observe that $\varepsilon \in L^*$ for all languages L, and that L^* is necessarily an infinite language, except for the cases where $L = \{\varepsilon\}$ and $L = \emptyset$, since then $L^* = \{\varepsilon\}$.

3. A variation on the Kleene closure is L^+ which is the language containing all words made up of an arbitrary and strictly positive number of concatenations of words from *L*:

$$L^{+} = \{w_1 w_2 \cdots w_n \mid n \ge 1 \text{ and for all } 1 \le i \le n : w_i \in L\}$$

For example, $\{a\}^+ = \{a, aa, aaa, ...\}$. Observe that $\{\varepsilon\}^+ = \{\varepsilon\}$, so it is (tempting but) incorrect to write that $L^+ = L^* \setminus \{\varepsilon\}$...

The Σ^* notation

Let Σ be an alphabet. Since any alphabet is a set, we can also regard Σ as a *language*, which contains only words of one character. Then, we can write Σ^* , which contains all the words (including the empty one) that are made up of characters from Σ . This notation will be used very often in the rest of these notes.

The Kleene closure is named after Stephen Cole KLEENE, (1909 - † 1994), a prominent American logician, who is one of the giants on the shoulders of whom computer scientists are standing: he was one of the founders of computability theory, along with Kurt GÖDEL, Alonzo CHURCH, Alan TURING, to name a few...

Picture source: http://math.library. wisc.edu/about.html#kleene.

2 All Things Regular: Languages, Expressions...

THE READER SHOULD NOW BE CONVINCED OF THE IMPORTANCE OF LANGUAGE THEORY IN COMPUTER SCIENCE, and in particular for compiler design. Our main objective for now will be to study formal tools to: (1) define, using a finite syntax, languages that are potentially infinite; and (2) manipulate those languages (for instance, combine them using classical set operations such as union or intersection). In particular, we want to be able to answer the *membership problem*, or, in other words, to be able to tell in an automatic way whether a given word belongs to a given language or not.

In this chapter, we will study the class of *regular languages*¹. Regular languages form one of the most basic classes of languages, yet they contain many useful languages, such as the one we have used to define (most) legal C identifiers and keywords:

 $L_{Cid} = \{\text{all non-empty words on } \Sigma_C \text{ that do not begin with a digit}\}\$

where:
$$\Sigma_C = \{a, b, ..., z, A, B, ..., Z, 0, 1, ..., 9, _\}.$$

Regular languages are equipped with different formal tools that allow us to represent and manipulate them:

• *Regular expressions* can be used to represent those languages. For example, if we let:

$$\ell = a+b+c+d+e+f+g+h+i+j+k+l+m+n+o \\ +p+q+r+s+t+u+v+w+x+y+z+A+B+C \\ +D+E+F+G+H+I+J+K+L+M+N+O+P \\ +Q+R+S+T+U+V+W+X+Y+Z+ \\ -$$

then, ℓ is a regular expression that defines « any possible letter or the _ symbol » (in regular expressions, the + symbol must be interpreted as an « or »). Similarly, let:

$$d = 1+2+3+4+5+6+7+8+9+0$$

then, d is a regular expression that defines « any possible digit ». Combining those two expressions into:

$$\ell \cdot (\ell + d)^*$$

we obtain a new regular expression that denotes exactly L_{Cid} . Here, the \cdot symbol must be interpreted as concatenation, and the * symbol as

¹ In francophone Belgium, regular languages are called « languages réguliers », while in France, they are called « languages rationnels », probably a much better translation.

the Kleene closure (see Section 1.4). In other words, the above regular expression must be interpreted as: « a character matching ℓ (i.e., a nondigit character) followed by any number of characters matching either ℓ or d ».

· Finite automata which are abstract machines designed mainly to answer the membership problem. As such, they can also be used to represent languages, and can be used to perform operations on those languages. We will see that there are several types of finite automata, yet they all correspond to the same class of regular languages.

Regular languages

The formal definition of regular languages is recursive. It starts from the most simple languages, and uses the +, \cdot and * operations to build more complex ones:

Definition 2.1 (Regular languages). Let us fix an alphabet Σ . Then, a language *L* is regular iff:

- 1. either $L = \emptyset$;
- 2. or $L = \{\varepsilon\}$;
- 3. or $L = \{a\}$ for some $a \in \Sigma$;
- 4. or $L = L_1 \cup L_2$;
- 5. or $L = L_1 \cdot L_2$;
- 6. or $L = L_1^*$

where L_1 and L_2 are regular languages on Σ .

Throughout this document, we denote by Reg the set of regular languages. Here are a few examples to illustrate this definition:

3

Example 2.2.

1. The language {abc,def} on the alphabet {a,b,c,d,e,f} is regular. Indeed, {a}, {b} and {c} are all regular, by point 3 of Definition 2.1. Then, {abc} is also regular by point 5. Using similar arguments, we can show that $\{def\}$ is regular. Finally, $\{abc, def\} = \{abc\} \cup \{def\}, hence, \{abc, def\}\}$ is regular by point 4.

Remark that those arguments can be used to show that all finite languages are regular.

2. The language of all binary words (thus on the alphabt $\{0,1\}$) is regular. Indeed, this language can be defined as:

$$\{0,1\}^* = (\{0\} \cup \{1\})^*$$

3. The language of all well-parenthesised words over $\Sigma = \{(,)\}$, on the other hand, is not regular (this can be proved formally). Intuitively, the definition of regular language does not allow to discriminate between words on the basis of *unbounded counting arguments*. However, counting is unavoidable in this case: one must, at all times, keep track of the current number of pending open parenthesis to check whether closing parenthesis are legal or not.

This implies also that the set all syntactically correct C programs is *not* a regular language either, as a C program might contain, for instance, algebraic expressions with an arbitrary depth of parenthesis nesting. Hence, all the tools we will develop in this section will not be sufficient to check the full syntax of C programs (or any other « classical » programming language).

Note however, that the language of all well-parenthesised words that have a *bounded length*, over $\Sigma = \{(,)\}$, (for instance, of words containing at most 10 characters) *is* regular, because it is a finite language.

Lets us now introduce several formal tools to deal with regular languages.

2.2 Regular expressions

The first tool we will consider for regular languages are *regular expressions*. Regular expressions are a kind of algebraic characterisation of regular languages. To define regular expressions, we need to define two things: their syntax (i.e., which regular expressions can we write?), and their semantics (i.e., what is the meaning of a given regular expression, in terms of regular language?). These definitions follow closely that of regular languages:

Definition 2.3 (Regular expressions). Given a finite alphabet Σ , the following are regular expressions on Σ :

- 1. The constant \emptyset . It denotes the language $L(\emptyset) = \emptyset$.
- 2. The constant ε . It denotes the language $L(\varepsilon) = \{\varepsilon\}$.
- 3. All constants $a \in \Sigma$. Each constant $a \in \Sigma$ denotes the language $L(a) = \{a\}$.
- 4. All expressions of the form $r_1 + r_2$, where r_1 and r_2 are regular expressions on Σ . Each expression $r_1 + r_2$ denotes the language $L(r_1 + r_2) = L(r_1) \cup L(r_2)$.
- 5. All expressions of the form $r_1 \cdot r_2$, where r_1 and r_2 are regular expressions on Σ . Each expression $r_1 \cdot r_2$ denotes the language $L(r_1 \cdot r_2) = L(r_1) \cdot L(r_2)$.
- 6. All expressions of the form r^* , where r is a regular expression on Σ . Each expression r^* denotes the language $L(r^*) = (L(r))^*$.

In addition, parenthesis are allowed in regular expressions to group sub-expressions (with their usual semantics).

Sometimes, we will also use the r^+ notation as a shorthand for $r \cdot r^*$. That is, $L(r^+) = (L(r))^+$.

For the more mathematically inclined readers, regular expressions form a so-called Kleene algebra, i.e, an idempotent semi-ring, see:

Dexter Kozen. On Kleene algebras and closed semirings. In Mathematical foundations of computer science, Proc. 15th Symp., MFCS '90, Banská Bystrica/Czech. 1990, volume 452 of Lecture notes in computer science, pages 26–47, 1990

Example 2.4. It is easy to check that the example $r = \ell \cdot (\ell + d)^*$ given in the introduction of the present chapter follows the definition of regular expression, and that $L(r) = L_{Cid}$.

Given that the definition of regular expressions and of their semantics follows closely the definition of regular languages (Definition 2.1), it is easy to prove that:

Theorem 2.1. For all regular languages L, there is a regular expression r s.t. L(r) = L. For all regular expressions r, L(r) is a regular language.

Observe that the language L(r) associated to each regular expression r is *unique*, while there can be several regular expressions to denote the same language. For instance a and a+a both denote the language $\{a\}$, i.e. $L(a) = L(a+a) = \{a\}$.

2.2.1 Extended regular expressions

Regular expressions are widely used in practice, in particular by many Unix applications. They can be used, for instance, to look for specific files using the ls command. As an example the following command lists all the file names in the current directory (thanks to the command find .) and filters them using the grep tool, following the pattern \c^2 . g.*\.tex which is given as an extended regular expression.

find . | grep "^..g.*\.tex"

The pattern asks to select only the filenames that have a g in the third position, and have .tex as extension. As can be seen from this example, the syntax of Unix regular expressions (called *extended regular expressions*) departs significantly from Definition 2.3. This is not surprising, since Definition 2.3 has been introduced mainly for theoretical purpose. On the other hand, the syntax of extended regular expressions (see Table 2.1) is probably better fitted for practical purpose. Still, all languages that are definable by extended regular expressions *are* regular, which means these new constructs do not alter the expressiveness.

Actually, finding a *minimal* regular expression to denote a given regular language L is not an easy problem, since the problem of determining whether two given regular expressions r_1 and r_2 accept the same language (i.e., $L(r_1) = L(r_2)$) is a PSPACE-complete problem, see:

L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time (preliminary report). In *Proceedings of the Fifth Annual ACM Symposium on Theory of Computing*, STOC '73, pages 1–9, New York, NY, USA, 1973. ACM. DOI: 10.1145/800125.804029

The difference between the two syntaxes can be confusing: the + denotes the alternative in 'classical' regular expressions, and thus corresponds to | in extended regular expressions. On the other hand + in extended regular expressions is the repetition, i.e., it corresponds to r^+ in 'classical' regular expressions...

E.R.E.	Semantics
Х	the character x
	any character, except the 'newline' special character
"x"	the character x, even if x is an operator. For instance "." is the character . and not 'any
	character'.
\x	the character x, even if x is an operator (for instance \ . is the . character)
[xy]	either x or y
[a-z]	any character in the range a, b,,z. Other ranges can be used, like 1-5 or D-X, for instance
[^x]	any character but x
^x	an x at the beginning of a line
x\$	an x at the end of a line
x?	an optional x
X*	the concatenation of any number of x's (Kleene closure)
X+	the concatenation of any strictly positive number of x's
x{m,n}	the concatenation of k numbers of x's-, where $m \le k \le n$.
x y	either x or y

Table 2.1: Extended (Unix) regular expressions.

2.3 Finite automata

While regular expressions provide us with a compact and (hopefully) readable way of *specifying* regular languages, it is not clear, at the first sight, how one can use regular expressions to manipulate (automatically) regular languages. In particular, we would like to obtain, for all regular languages, some kind of abstract specification of an algorithm that allows us to answer the *membership problem* on that language (i.e., does a given word belong to that language?) Clearly, such algorithms will be important step stones to build compilers.

Such an abstract model of algorithm² is given by the notion of *finite automaton*. Finite automata have been introduced in the early fifties (1951) by S. Kleene (see Section 1.4), as a model of biological phenomena, namely, the response of neurons to stimuli³. A more systematic study of this model from the computational point of view has been done a few years later, in 1959, by Rabin and Scott⁴. Since then, finite automata have been widely recognised as one of the most fundamental models in computer science.

2.3.1 Intuitions

A finite automaton is an abstract machine with the following features:

- The machine reads a word, letter by letter, from the first to the last. This can be understood by envisioning the input word written on an input tape, that the machine reads cell by cell thanks to a reading head. Each cell contains one letter of the input. Once the machine has read a letter, the reading head moves to the next cell. The tape cannot be rewound.
- At all times, the machine is in a well-defined *discrete* state. There are
 only finitely many such states. The reading of each letter triggers a state
 change.
- The aim of the machine is to discriminate between words that are in a given language, and words that are not. The automaton does so by either accepting or rejecting input words. At all times, the machine produces a binary (yes/no) output, indicating whether the word prefix read so far is *accepted* or not by the machine.

Figure 2.1 is an illustration of those concepts. It displays the input tape (with content 11d1), the reading head, and the output. The content of the rectangular box represents the different possible states of the automaton, by means of circles (in this case, the states are called q_1 , q_2 and q_3) and the possible state changes, by means of labeled arrows between states. In this example, for instance, reading an 1 on the input tape when in state q_1 moves the current state to q_2 , and so forth. In addition, we need to indicate:

- 1. In which state the automaton starts its execution. In our case, it is q_1 , as indicated by the edge without source state pointing to q_1 .
- 2. How is the output of the automaton determined at all times? As we have explained, this output depends only on the current state, so states

- ² At least, a model of algorithm which is sufficient for regular language, but might not be sufficient in general. A general model of algorithm is the Turing machine, as postulated by the Church-Turing thesis (see the computability and complexity course).
- ³ Stephen C. Kleene. Representation of events in nerve nets and finite automata. Technical Report RM-704, The RAND Corporation, 1951. URL http://minicomplexity.org/pubr.php?t=2&id=2
- ⁴ M.O. Rabin and D. Scott. Finite automata and their decision problems. *IBM Journal of Research and Development*, 3(2): 114–125, April 1959. ISSN 0018-8646. DOI: 10.1147/rd.32.0114

Figure 2.1: An illustration of a finite automaton.

should be either accepting (in which case the output is 'yes') or rejecting (the output is 'no'). We will display accepting states as nodes with a double border. In this case, q_2 is the only accepting state.

From the intuitions sketched above, it should be clear that the behaviour of the automaton will depend only on its states and on the possible changes between those states, i.e., what is depicted inside the rectangular box in Figure 2.1. So, in the next illustrations of finite automata, we will restrict ourselves to this part, that is, we will display the automaton of Figure 2.1 as in Figure 2.2.

Since an automaton either accepts or rejects any word, it also implicitly define a language, which contains all the words the automaton accepts. It is easy to check that the language defined by automaton in Fig 2.2. is exactly the language of the regular expression $1 \cdot (1 + d)^*$ (assuming the input alphabet is $\Sigma = \{1, d\}$). Indeed:

- 1. When running with a word starting by an 1 on the input tape, the automaton first moves from q_1 to q_2 , which is accepting and where it will stay up to the end of its execution. So all words starting by an 1 will be accepted.
- 2. When running on a word that does not start by an 1 (i.e., starts by a d) on the input tape, the automaton first moves from q_1 to q_3 , which is *not* accepting and where it will stay up to the end of its execution. So, all words starting by a d will be rejected.

Let us now formalise these notions:

Definition 2.5 (Finite automaton). A finite automaton is a tuple:

$$A = \langle Q, \Sigma, \delta, q_0, F \rangle$$

where:

- 1. *Q* is a finite set of states;
- 2. Σ is the (finite) input alphabet;
- 3. $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^Q$ is the transition function;
- 4. $q_0 \in Q$ is the initial state;
- 5. $F \subseteq Q$ is the set of accepting states.

Let is illustrate this definition with the example of Figure 2.2:

8

Example 2.6. On the example of Figure 2.2, we have:

- 1. $Q = \{q_1, q_2, q_3\};$
- 2. $\Sigma = \{1, d\};$
- 3. $q_0 = q_1$;

Figure 2.2: We can represent finite automata more compactly by focusing on the 'control', i.e., the states and transitions.

- 4. $F = \{q_2\};$
- 5. and, finally, the transition function δ is given by:

$$\begin{split} &\delta(q_1,1) = \{q_2\} & \delta(q_1,\mathtt{d}) = \{q_3\} & \delta(q_1,\varepsilon) = \emptyset \\ &\delta(q_2,1) = \{q_2\} & \delta(q_2,\mathtt{d}) = \{q_2\} & \delta(q_2,\varepsilon) = \emptyset \\ &\delta(q_3,1) = \{q_3\} & \delta(q_3,\mathtt{d}) = \{q_3\} & \delta(q_3,\varepsilon) = \emptyset \end{split}$$

There are two important features to Definition 2.5 that one should observe. First, the co-domain of the transition function is a *set of states*. Observe that in the example of Figure 2.2, the function always returns either a singleton or the empty set. However, we can also build automata like the automaton of Figure 2.3, where $\delta(q_0, \mathbf{a}) = \{q_1, q_2\}$.

In this example, there are several possible executions of the automaton on the input word ab: the word can be read by an execution visiting q_0 , q_1 , then q_3 , or an execution visiting q_0 , q_2 and q_4 . This phenomenon is called *non-determinism*, and the automaton of Figure 2.3 is said to be non-deterministic. Non-determinism raises several natural questions:

- 1. How do we determine the output of the automaton, when there are several possible runs on the same word, that do not all end in an accepting state? This occurs with the word ab and the automaton in Figure 2.3. The rule is that, in non-deterministic automata, *there must exist one run that accepts for the word to be accepted.*
- 2. What is the point of non-determinism anyway? We have introduced finite automata as *abstract machines* that *model algorithms*. Clearly, an algorithm, or, at the very least, a computer program, are *deterministic*, so the existence of non-deterministic automata seems to hurt the intuition. It turns out that non-determinism is a very helpful tool for modeling certain kinds of problems. Also, we will see later that *all non-deterministic automata can be converted into an equivalent deterministic automaton*.

For example, consider the family of languages L_n (where $n \ge 1$) defined as follows: 'all binary words that contain two 1's separated by exactly n characters'. Devising a non-deterministic automaton that recognises this language is quite easy: Figure 2.4 shows a non-deterministic automaton recognising L_2 . This example can be generalised to any n, by inserting more states between q_2 and q_3 for instance. Clearly, if the automaton outputs 'yes' on some word w, then the execution of the automaton has gone through all the states, which guarantees that there are two 1's separated by two characters (the 1's that have been read when moving from q_0 to q_1 and from q_3 to q_4 respectively). Conversely, if a word belongs to L_2 , there is clearly at least one run ending in q_4 that reads it, and so the output of the automaton is 'yes' since q_4 is accepting. We will see later (see the paragraph on the size of deterministic automata in Section 2.4.2) that devising a deterministic automaton for this language is a bit more tricky.

The second important feature of Definition 2.5 is the fact that some transitions can be labeled by the empty word ε . This is called a 'sponta-

8

Figure 2.3: A non-deterministic finite automaton.

A common intuition about nondeterministic automata is that they have the capability to 'guess' something about the future of a word. Assume the automaton in Figure 2.4 is currently in state q_0 , has a word from L_2 on its input tape, and reads a 1. It has thus two 'choices' for its next current state: either stay in q_0 or move to q_1 . Clearly, the latter is a good choice to accept the current word only if the 1 that is read is followed, three characters ahead, by another 1. Since the automaton cannot read ahead of its reading head, nor rewind the tape, it must 'guess' correctly whether each 1 will be followed by another 1 three characters ahead, and any accepting run can be understood as a 'correct guess' from the automaton.

Figure 2.4: An automaton recognising L_2 , i.e., the set of all binary words that contain two 1's separated by exactly 2 characters.

neous move' and allows the automaton to change its current state without reading any character on the input (hence, without moving its reading head). Again, spontaneous moves depart radically from our intuition of algorithm, yet they can be useful for modeling purpose. For instance, suppose we want to build an automaton for the language composed of all words that start with a (possibly empty) sequence of a's, followed by a (possibly empty) sequence of b's. One natural way to do it would be to start by building two automata for those two parts of the words in the language:

then, add spontaneous move between those states, to allow the automaton to move from the 'sequence of a's' part to the 'sequence of b's':

and, finally, add the relevant initial and accepting states:

Figure 2.5: A non-deterministic automaton with spontaneous moves that accepts a*b*.

Because not all automata may use non-determinism and spontaneous moves, we define the following classes of finite automata:

Definition 2.7 (Classes of finite state automata).

- 1. A *non-deterministic finite state automata with* ε *-transitions* (ε -NFA for short) is a finite state automaton, as in Definition 2.5.
- 2. A non-deterministic finite state automaton (NFA for short) is an ε -NFA $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ s.t. for all $q \in Q$: $\delta(q, \varepsilon) = \emptyset$. In this case, we will henceforth assume that the signature of the transition function is δ : $Q \times \Sigma \mapsto 2^Q$.
- 3. A *deterministic finite state automaton* (DFA for short) is an NFA $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ s.t. for all $q \in Q$, for all $a \in \Sigma$: $|\delta(q, a)| = 1$. In this case, we will henceforth assume that the signature of the transition function is $\delta: Q \times \Sigma \mapsto Q$, and that the function is *complete*.

Observe that, in our definition of DFAs, we request that $|\delta(q,a)|=1$, for all q and a, i.e., that each state has exactly one successor for each letter. However, when depicting DFAs, and in order to keep the figures readable, we will sometimes omit some transitions that lead to a *sink state*, i.e., a state from which nothing can be accepted (like state q_3 in Figure 2.2). Note also that some authors do not ask for the transition function to be complete and use the weaker constraint $|\delta(q,a)| \le 1$ in their definition of DFAs.

For instance, the automaton in Figure 2.2 is a DFA, hence also an NFA and an ε -NFA. The automaton in Figure 2.3 is an NFA, hence also an ε -NFA, but is *not* a DFA. The automaton in Figure 2.5 is an ε -NFA, but neither an NFA, nor a DFA.

2.3.3 Semantics

Let us now define formally the notions of 'execution', 'accepting a word', etc that we have discussed informally so far.

Definition 2.8 (Configuration of an ε -NFA). A *configuration* of an ε -NFA $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ is a pair $\langle q, w \rangle \in Q \times \Sigma^*$, where q is the *current state*, and w is the *input word suffix* that remains to be read.

The *initial configuration* of *A* on the input word *w* is $\langle q_0, w \rangle$. A configuration $\langle q, w \rangle$ is *accepting* (or final) iff $q \in F$ and $w = \varepsilon$.

Intuitively, a pair $\langle q,w\rangle$ completely characterises the current 'configuration' of the automaton: its current state is q and the word w remains on the input (in other words, the reading head is currently on the first character of w, if $w\neq \varepsilon$; or at the end of the tape, if $w=\varepsilon$). Then, using the transition relation, we can define how an automaton changes its current configuration:

Definition 2.9 (Configuration change). Let $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ be an ε -NFA, and let (q_1, w_1) and (q_2, w_2) be two configurations of A. Then we say that (q_2, w_2) is a successor of (q_1, w_1) iff there is a letter $a \in \Sigma \cup \{\varepsilon\}$ such that (i) $w_1 = a \cdot w_2$ and (ii) $q_2 \in \delta(q_1, a)$. We denote this successor relation by:

$$(q_1, w_1) \vdash_{A} (q_2, w_2)$$

\$

In the rest of these notes, we will often omit the subscript on the operator, when the ε -NFA is clear from the context, and write $(q_1, w_1) \vdash (q_2, w_2)$ instead. Very often, we will consider sequences of configurations (q_1, w_1) , $(q_2, w_2), \ldots, (q_n, w_n)$ s.t. $(q_i, w_i) \vdash (q_{i+1}, w_{i+1})$ for all $1 \le i \le n-1$. Such sequences are called *runs* of the automaton (on the word w_1 , which is the word in the first configuration of the run). We say that a run (q_1, w_1) , $(q_2, w_2), \ldots, (q_n, w_n)$ is *accepting* iff its last configuration (q_n, w_n) is accepting; and we say that it is *initialised* iff its first configuration is initial.

Since \vdash_A is a binary relation, we use the classical \vdash_A^* notation to denote its reflexive and transitive closure. Then, we can define the accepted language of an automaton:

Definition 2.10 (Accepted language of an ε -NFA). Let $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ be an ε -NFA. Then, its *accepted language* is:

$$L(A) = \{ w \in \Sigma^* \mid \exists q \in F \text{ s.t. } \langle q_0, w \rangle \vdash_A^* \langle q, \varepsilon \rangle \}$$

5

In other words, a word w is accepted iff the automaton admits an initialised and accepting run on w.

Remark that we give these definitions in the most general case of ε -NFAs, but, since NFAs and DFAs are special cases of ε -NFAs, these definitions apply to them too.

Example 2.11. As an example, let us consider again the ε -NFA in Figure 2.5, and let us check whether it accepts w = aab. The only possible run, starting in q_0 , of this automaton on w is:

$$(q_0, aab), (q_0, ab), (q_0, b), (q_1, b), (q_1, \varepsilon)$$

It is easy to check that the first configuration of the run is initial, that the last is accepting. Hence, w = aab is accepted.

On the other hand, the maximal run that can be built on the word w' =ba is:

$$(q_0, ba), (q_1, ba), (q_1, a)$$

because there are no a-labeled transitions from q_1 . Hence, w' is not accepted since (q_1, a) is not accepting. \$

Recall that, with non-deterministic automata, several runs are possible on a single input word. In this case, it is sometimes convenient to represent all the possible runs by means of a tree, whose nodes are labeled by configurations, and whose edges correspond to the ⊢ relation. As an example, the tree of possible runs of the automaton in Figure 2.3 is shown in Figure 2.6.

Equivalence between automata and regular expressions

So far, we have reviewed two families of models for defining and manipulating languages: regular expressions, on the one hand, and finite automata, on the other hand. We know that regular expressions define exactly the class of regular languages (see definition 2.1 and Theorem 2.1), but what about the expressive power of the three different classes of automata we have introduced? Obviously, DFAs cannot be more expressive than NFAs, which cannot be more expressive than ε -NFAs, by definition. We have already seen at least one example of automaton that recognises the same language than a given regular expression (see Figure 2.5), but can this be generalised?

It turns out that the expressive power of all three classes of finite automata is exactly the same, and equals that of regular expressions, that is, the regular languages. This result is due to Stephen Kleene⁵:

Theorem 2.2 (Kleene's theorem). For every regular language L, there is a DFA A such that L(A) = L. Conversely, for all ε -NFAs A, L(A) is regular.

In other words, all finite automata recognise regular languages and all regular languages are recognised by a finite automaton. To establish this result, we will give constructions that convert finite automata into regular expressions and vice-versa. More precisely, we will give algorithms to:

- 1. Convert any regular expression into an ε -NFA defining the same language.
- 2. Convert any ε -NFA into a DFA accepting the same language. This is called 'determinising' the ε -NFA as it somehow turns it into a deterministic version. Observe that this method can be applied, in particular, to any NFA.

Figure 2.6: The run-tree of the automaton in Figure 2.3 on the word ab.

The 'expressive power' of a model is a term often used to speak about the class of languages that the model can define. One can thus speak about the expressive power of regular expressions (i.e., the regular languages), or the expressive power of finite automata and compare them...

⁵ Stephen C. Kleene. Representation of events in nerve nets and finite au-Technical Report RM-704, tomata. The RAND Corporation, 1951. URL http://minicomplexity.org/pubr. php?t=2&id=2

Our formulation of the theorem might seem restrictive, but one must always bear in mind that DFAs are a special case of NFAs, which are, in turn, a special case of ε -NFAs. Hence, 'For every regular language L, there is a DFA A such that L(A) = L' entails that there is also an NFA and an ε -NFA recognising L (actually, the DFA A can serve for that purpose). Conversely, 'for all ε -NFAs A: L(A)is regular' implies that the language of all NFAs and DFAs are also regular!

3. Convert any DFA into a regular expression defining the same language.

This set of transformations is summarised in Figure 2.7. Together with Theorem 2.1, those transformations allow us to conclude that finite automata recognise exactly regular languages.

Figure 2.7: The set of transformations used to prove Theorem 2.2, with the section numbers where they are introduced.

From regular expressions to ε *-NFAs*

To turn a regular expression into a finite automaton, we will once again exploit the recursive definition of the syntax of regular expressions. The construction we are about to describe dates back from the sixties. It is widely attributed to Thompson⁶, who has based his work on a previous construction by McNaughton and Yamada⁷.

The induction hypothesis of the construction is that it builds, for all regular expressions r, an ε -NFA A_r s.t. (i) $L(A_r) = L(r)$; and (ii) the (necessarily unique) initial state of A_r is called q_r^i , and A_r has exactly one final state that we denote q_r^f . Moreover, no transition enter q_r^i , nor leave q_r^f .

⁶ Ken Thompson. Programming techniques: Regular expression search algorithm. Commun. ACM, 11(6):419–422, June 1968. ISSN 0001-0782. DOI: 10.1145/363347.363387. URL http://doi.acm.org/10.1145/363347.363387

⁷ R. McNaughton and H. Yamada. Regular expressions and state graphs for automata. *Electronic Computers, IRE Transactions on*, EC-9(1):39–47, March 1960. ISSN 0367-9950. DOI: 10.1109/TEC.1960.5221603

Base cases Building ε -NFAs that accept the base cases of regular expressions is easy, as shown in the following table:

Regular expression <i>r</i>	$arepsilon$ -NFA A_r				
Ø	$\longrightarrow q_{\varnothing}^{i}$ q_{\varnothing}^{f}				
ε	$\longrightarrow q_{\varepsilon}^{i} \xrightarrow{\mathcal{E}} q_{\varepsilon}^{f}$				
$a \in \Sigma$	$\rightarrow q_{\varepsilon}^{i} \xrightarrow{a} q_{\varepsilon}^{f}$				

Observe that we could have given simpler constructions. For instance, $A_{\mathcal{E}}$ could have been made up of only one (initial and accepting) state. However, the construction we present has the benefit to keep initial and final states separated, and is therefore more systematic.

Inductive case For the inductive case, we assume ε -NFAs A_{r_1} and A_{r_2} are already known for two regular expressions r_1 and r_2 . We treat the disjunction, concatenation and Kleene closure as follows:

Example 2.12. Let us consider the regular expression $1 \cdot (1+d)^*$ on the alphabet Σ = {1,d}. Following the construction, we start with the base cases:

From them, we build the ε -NFA for 1 + d:

Then, let's apply the Kleene closure:

Finally, we apply the construction for the concatenation (with automaton A_1 we have computed above) and obtain the ε -NFA $A_{1\cdot(1+d)^*}$ displayed in Figure 2.8.

Figure 2.8: The ε -NFA built from the regular expression $1 \cdot (1+d)^*$, using the systematic method.

2.4.2 From ε -NFAs to DFAs

For many practical purposes (like the building of a parser), non-deterministic automata are not acceptable, and a deterministic automaton is necessary. We will now review a technique that converts any ε -NFA into a DFA accepting the same language.

Let us first sketch the intuition behind the construction, by considering the ε -NFA in Figure 2.8. Assume the automaton is currently in state q_3 and the next character on the input is an 1. The automaton can read this 1, but must first follow two ε -transitions in order to reach state q_5 . Then, after reading the 1 from q_5 , the automaton can follow several other ε -transitions and end up in any of the following states: q_4 , q_5 , q_6 , q_7 , q_9 or q_{10} . From those states, the automaton might continue its execution, yielding several possible runs on the same word. By definition of ε -NFAs, only one of those runs needs to be accepting for the automaton to accept the word.

Intuitively, the DFA D corresponding to a given ε -NFA A will *simulate* all the possible executions of A on a given input word, by *tracking* the possible states in which A can be at all times. To perform this tracking, the DFA needs some kind of memory, and we will use the states of the DFA to encode this memory. Thus, the states of the DFA D will be *subsets* of A's set of states. Roughly speaking, when the DFA will be in state $S = \{q_1, q_2, ..., q_n\}$

(where $q_1, \ldots q_n$ are states of the ε -NFA) after reading a prefix w', then, $\{q_1, \ldots q_n\}$ is exactly the set of all states that the ε -NFA can reach by reading the same prefix w'.

 ε -closure To formalise this intuition, we need several ancillary definitions. Let us first introduce the ε closure function that takes a state $q \in Q$ and returns the set of states that automaton A can reach by reading only ε 's. The next definition formalises this. In this definition, we extend slightly the definition of the transition function δ by allowing it to be applied to a set of states. That is, for a set of states S, and a letter a, we let:

$$\delta(S,a) = \bigcup_{q \in S} \delta(q,a)$$

In other words, computing $\delta(S, a)$ amounts to computing all the states that the automaton can reach from any state $q \in S$, by reading an a. Then:

Definition 2.13 (ε -closure). Let $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ be an ε -NFA. For all $i \in \mathbb{N}$, let ε -closure i(q) be defined as follows:

$$\varepsilon \mathsf{closure}^i(q) = \left\{ \begin{array}{ll} \{q\} & \text{if } i = 0 \\ \delta(\varepsilon \mathsf{closure}^{i-1}(q), \varepsilon) \cup \varepsilon \mathsf{closure}^{i-1}(q) & \text{otherwise} \end{array} \right.$$

Then, for all $q \in Q$: ε closure $(q) = \varepsilon$ closure(q), where K is the least value s.t. ε closure $(q) = \varepsilon$ closure(q).

Example 2.14. Let us consider the ε -NFA in Figure 2.8, and let us compute ε closure (q_6) . We compute ε closure i(q) for i=0,1,... up to stabilisation:

$$\varepsilon \text{closure}^{0}(q_{6}) = \{q_{6}\}$$

$$\varepsilon \text{closure}^{1}(q_{6}) = \delta(\varepsilon \text{closure}^{0}(q_{6}), \varepsilon) \cup \varepsilon \text{closure}^{0}(q_{6})$$

$$= \delta(\{q_{6}\}, \varepsilon) \cup \{q_{6}\}$$

$$= \{q_{9}\} \cup \{q_{6}\}$$

$$= \{q_{6}, q_{9}\}$$

$$\varepsilon \text{closure}^{2}(q_{6}) = \delta(\{q_{6}, q_{9}\}, \varepsilon) \cup \{q_{6}, q_{9}\}$$

$$= \{q_{4}, q_{9}, q_{10}\} \cup \{q_{6}, q_{9}\}$$

$$= \{q_{4}, q_{6}, q_{9}, q_{10}\}$$

$$\varepsilon \text{closure}^{3}(q_{6}) = \delta(\{q_{4}, q_{6}, q_{9}, q_{10}\}, \varepsilon) \cup \{q_{4}, q_{6}, q_{9}, q_{10}\}$$

$$= \{q_{4}, q_{5}, q_{7}, q_{9}, q_{10}\} \cup \{q_{4}, q_{6}, q_{9}, q_{10}\}$$

$$= \{q_{4}, q_{5}, q_{6}, q_{7}, q_{9}, q_{10}\}$$

$$\begin{split} \varepsilon \mathsf{closure}^4(q_6) &= \delta(\{q_4, q_5, q_6, q_7, q_9, q_{10}\}, \varepsilon) \cup \{q_4, q_5, q_6, q_7, q_9, q_{10}\} \\ &= \{q_4, q_5, q_6, q_7, q_9, q_{10}\} \cup \{q_4, q_5, q_6, q_7, q_9, q_{10}\} \\ &= \{q_4, q_5, q_6, q_7, q_9, q_{10}\} \\ &= \varepsilon \mathsf{closure}^3(q_6) \end{split}$$

So, we let ε closure $(q_6) = \varepsilon$ closure $(q_6) = \{q_4, q_5, q_6, q_7, q_9, q_{10}\}$.

The definition might seem hard to read, but the intuition is really easy: ε closure i(q) is the set of states that A can reach from q by following at most i transitions labeled by ε .

5

5

Again, we extend the ε closure function to set of states S, as we did for the δ function: ε closure(S) = $\cup_{q \in S} \varepsilon$ closure(S). In particular ε closure(\emptyset) = \emptyset

Determinisation We can now give the construction to determinise an ε -NFA.

Determinisation of ε -NFAs

Given an ε -NFA $A=\langle Q^A,\Sigma,\delta^A,q_0^A,F^A\rangle$, we build the DFA $D=\langle Q^D,\Sigma,\delta^D,q_0^D,F^D\rangle$ as follows:

- 1. $Q^D = 2^{Q^A}$
- 2. $q_0^D = \varepsilon \operatorname{closure}(q_0^A)$
- 3. $F^D = \{ S \in Q^D \mid S \cap F^A \neq \emptyset \}$
- 4. for all $S \in Q^D$, for all $a \in \Sigma$: $\delta^D(S, a) = \varepsilon \operatorname{closure}(\delta^A(S, a))$

Let us comment briefly on the items of this definition:

- 1. As expected, the set of states of the DFA is the set of subsets of the ε -NFAs states.
- 2. The initial state of the DFA is the set of states the NFA can reach from its own initial state q_0^A by reading only ε -labeled transitions. Thus, q_0^A is the set of states in which the ε -NFA can be *before reading any letter*.
- 3. A state of the DFA is accepting iff it contains at least one accepting state of the ε -NFA. This is coherent with the intuition that at least one execution of the ε -NFA must accept for the word to be accepted.
- 4. The transition function consists in: first reading a letter, then following as many ε -labeled transitions as possible.

Although we will not present the details here⁸, one can show that the DFA obtained from any ε -NFA by the above construction preserves the accepted language of the ε -NFA:

Theorem 2.3 (Determinisation of ε -NFAs). For all ε -NFA A, the DFA D obtained by determinising A accepts the same language as A: L(A) = L(D).

Proof. (Sketch) Let us assume $A = \langle Q^A, \Sigma, \delta^A, q_0^A, F^A \rangle$. The proof is based on an extension of the transition function which receives a state q, and a (possibly empty) word w, and returns the set of all possible states that the automaton can reach by reading the word w. Formally, given a transition function δ , its extended version is $\hat{\delta}$ defined as:

$$\begin{split} \hat{\delta}(q,\varepsilon) &= \varepsilon \text{closure} \left(q\right) \\ \hat{\delta}(q,wa) &= \varepsilon \text{closure} \left(\delta(\hat{\delta}(q,w),a)\right) \end{split}$$

Recall that, for a finite set S, the notation 2^{S} denotes the set of subsets of S. For example, if $S = \{1,2,3\}$, then $2^{S} = \{\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,2,3\},\emptyset\}$.

⁸ The interested reader can find a proof in: John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. *Introduction to Automata Theory, Languages, and Computation (3rd Edition)*. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006. ISBN 0321455363 Then, clearly, we can define A's language using $\hat{\delta}^A$ instead of δ^A , since a word is accepted iff reading it from q_0^A allows one to reach at least one accepting state. In other words:

$$L(A) = \left\{ w \in \Sigma^* \mid \hat{\delta}^A(q_0^A, w) \cap F^A \neq \emptyset \right\}$$

Then to prove that L(D) = L(A), it is sufficient to check, that, for all words w the set $\hat{\delta}^A(q_0, w)$ is exactly the state which is reached by D when reading w from its initial state. This can be established by induction on the length of w, which is easy because of the inductive definition of $\hat{\delta}^A$.

Example 2.15. Let us consider again the ε -NFA in Figure 2.8, and let us build its deterministic counterpart $D = \langle Q^D, \Sigma, \delta^D, q_0^D, F^D \rangle$.

D's initial state $q_0^D = \varepsilon \operatorname{closure}(q_1) = \{q_1\}$. Let us call this state S_1 . From $S_1 = \{q_1\}$, the automaton A reaches $\{q_2\}$ by reading an 1. From q_2 , it can take several ε -labeled transitions. In other words:

$$\begin{split} \delta^D(S_1, 1) &= \varepsilon \mathsf{closure} \left(\delta^A(S_1, 1) \right) \\ &= \varepsilon \mathsf{closure} \left(\{q_2\} \right) \\ &= \{q_2, q_3, q_4, q_5, q_7, q_{10}\} \end{split}$$

Let us denote this set S_2 . Observe that S_2 is accepting, since $S_2 \cap F^A =$ $\{q_{10}\} \neq \emptyset$.

On the other hand, reading a d from S_1 yields the empty set. Hence:

$$\delta^D(S_1, d) = \varepsilon \operatorname{closure}(\emptyset)$$

$$= \emptyset$$

We continue the construction of the DFA similarly, from S_2 :

$$\varepsilon$$
closure $\left(\delta^A(S_2,1)\right) = \varepsilon$ closure $\left(\left\{q_6\right\}\right)$
= $\left\{q_4,q_5,q_6,q_7,q_9,q_{10}\right\}$

Let us denote this last set by S_3 . Observe that S_3 is accepting too. Reading a d from S_2 yields:

$$\varepsilon$$
closure $\left(\delta^A(S_2, \mathbf{d})\right) = \varepsilon$ closure $\left(\{q_8\}\right)$
= $\{q_4, q_5, q_8, q_7, q_9, q_{10}\}$

Let us denote this state S_4 .

And from Ø:

$$\varepsilon$$
closure $(\delta^A(\emptyset, d)) = \emptyset$
 ε closure $(\delta^A(\emptyset, 1)) = \emptyset$

Now, from S_3 :

$$\begin{split} \varepsilon \mathsf{closure} \left(\delta^A(S_3, \mathsf{d}) \right) &= \varepsilon \mathsf{closure} \left(\{ q_8 \} \right) \\ &= S_4 \\ \varepsilon \mathsf{closure} \left(\delta^A(S_3, 1) \right) &= \varepsilon \mathsf{closure} \left(\{ q_6 \} \right) \\ &= S_3 \end{split}$$

Finally, from S_4 :

$$\begin{split} \varepsilon \text{closure} \left(\delta^A(S_4, \mathbf{d}) \right) &= \varepsilon \text{closure} \left(\{q_8\} \right) \\ &= S_4 \\ \varepsilon \text{closure} \left(\delta^A(S_4, \mathbf{1}) \right) &= \varepsilon \text{closure} \left(\{q_6\} \right) \\ &= S_3 \end{split}$$

The resulting DFA is depicted in Figure 2.9. Actually, this figure shows the part of the DFA which is *reachable* from the initial state (since we have built the states iteratively from the initial state). Indeed, a state like $\{q_1,q_{10}\}$ also exists in the DFA, but is not reachable.

Figure 2.9: The DFA obtained from the $\varepsilon\textsc{-}$ NFA $A_{1\cdot(1+\mathbf{d})^*}.$

Observe that the result on the determination process does not always yield a minimal automaton (in this case, the states S_2 and S_3 could be 'merged'). We will review, in Section 2.5 a technique for minimising DFAs.

Size of the determinised automaton Since the set of states of the DFA D obtained by the above construction is 2^{Q^A} (where Q^A is the set of states of the original ε -NFA A), D could be, in theory, exponentially larger than A. However, on the previous example, $A_{1\cdot(1+\mathbf{r})^*}$ has ten states, while its corresponding DFA (Figure 2.9) has 'only' four states reachable (instead of 1024). So, even if the DFA has many states, most of them are not reachable and their construction can thus easily be avoided.

Is it always going to be the case? The answer, unfortunately, is 'no': we will exhibit an infinite family of languages L_n (for all $n \ge 1$) s.t., (i) for all $n \ge 1$: there is an ε -NFA A_n that recognises L_n , and the size of the A_n 's grows linearly with n; and (ii) letting D_n be any deterministic automaton recognising L_n (for all n), the size of the D_n 's grow exponentially with n. Observe that the above statement is rather strong: whatever the deterministic automaton D_n we chose to recognise L_n , this automaton is bound to a number of states which is exponential in n. Thus, there is no hope to obtain a determinisation procedure that always produces a DFA that is polynomial in the size of the original ε -NFA (and this holds in particular for the determinisation procedure we have given above).

The languages L_n are those of binary words that contain at least two 1's separated by n characters, i.e.:

$$L_n = \{w_1 w_2 \cdots w_\ell \in \{0, 1\}^* \mid \exists 1 \le i \le \ell - n - 1 : w_i = w_{i+n+1} = 1\}$$

Building an NFA accepting L_n (for each n) is easy: we have already given in Figure 2.4 an NFA accepting L_2 , and Figure 2.10 shows the general construction. It is easy to see that, for all $n \geq 1$, A_n accepts L_n . Indeed, if a run of the automaton reaches the accepting state q_a , it has necessarily traversed the sequence of states $q_i, q_0, q_1, \ldots q_n, q_a$, which guarantees that the word contains two 1's (read by the transitions from q_i to q_0 and from q_n to q_a respectively), separated by n characters. On the other hand, if a word w is in L_n , then it can be accepted by the automaton: the automaton stays in q_i , up to the point where it reads the first of the two 1's that are separated by n characters, and moves to q_1 . Then, the accepting states will be reached for sure.

Figure 2.10: The family of ε -NFAs A_n ($n \ge 1$) s.t. for all $n \ge 1$: $L(A_n) = L_n$.

Observe that the only non-deterministic choice of A_n occurs in q_i : when reading a 1, the automaton can either stay in q_i , or move to q_0 . If it decides for the latter, it will accept only if this 1 is followed n+1 characters later by another 1. In some sense, each time the automaton sees a 1 in state q_i , it must guess whether this 1 will be followed n+1 characters later by another 1, in which case it moves to q_0 . The purpose of the states q_0, q_1, \ldots, q_n is to check that this guess was correct.

Finally, it is easy to see that, for all $n \ge 1$, A_n has n + 3 states, so the size of the A_n automata grows indeed *linearly* wrt n.

Now, let us argue that the size of deterministic automata D_n that accept L_n grows *exponentially wrt n*. To support our discussion, we consider the automaton A_1 :

Figure 2.11: The ε -NFA A_1 recognising L_1 .

To check that a word contains indeed two 1's separated by 1 character, the automaton must, at all times, *remember the two last read characters*, that we denote b_0 and b_1 (that is, if the automaton is reading character w_i of the input word, then $b_0 = w_{i-2}$ and $b_1 = w_{i-1}$). Then, the automaton proceeds as follows every time it reads a character:

- If the character is 1, then, the automaton must check whether b_0 is a 1. If yes, it accepts. Otherwise, it needs to update its memory, by copying the value of b_1 to b_0 , and letting $b_1 = 1$.
- If the character is 0, then, the automaton must only update its memory, by, again, copying the value of b_1 to b_0 , and letting $b_1 = 0$.

Thus, the automaton clearly needs those two bits b_0 and b_1 of memory. There are $2^2 = 4$ possible memory values which are encoded in the states of the DFA. Hence, D_1 must have at least 4 states. This reasoning generalises to any n, letting the number of memory bits increase with n: for all $n \ge 1$, the automaton needs n+1 bits of memory. So, any DFA D_n recognising L_n must have at least 2^{n+1} states.

As a matter of fact the automaton D_1 obtained by determinising A_1 (using the procedure of Section 2.4.2) is displayed in Figure 2.12. The four states encoding the memory are the four non-accepting states. The gray labels show the values of the two memory bits associated to those states—of course, this intuition is valid only after D_1 has read at least 2 characters. Clearly, this automaton could be made simpler, but only by 'merging' the accepting states: it is not possible to reduce the number of non-accepting states without changing the language of the automaton.

Figure 2.12: The DFA D_1 obtained from the NFA A_1 . The gray labels show the values of the memory bits associated to some states.

2.4.3 From ε -NFAs to regular expressions

In order to complete the picture in Figure 2.7, we present now a technique for turning an ε -NFA (thus, in particular, a DFA) A into a regular expression defining the same language as A.

Several techniques exist to do so. The original one can be found in Kleene's seminal paper 9 , and has later been rephrased using the (now) standard automata formalism by McNaughton and Yamada 10 . The technique we will now present has been introduced by Brzozowski and McCluskey in 1963^{11} .

This technique is often called the *state elimination technique*. Roughly speaking, it consists in eliminating states of the original ε -NFA one by one, and updating the labels of the remaining transitions to make sure that the accepted language does not change. To do this, one has to allow regular expressions (instead of single characters) to label the transitions, as the next simple example demonstrates. Consider the automaton:

Then, eliminating state q_1 can be done if we re-label the transition from q_0 to q_2 by a regular expression:

It is easy to check that the latter automaton (i.e., without state q_1) accepts the same language as the former.

Let us now generalise the idea sketched in this example. Assume we want to remove some state q of an ε -NFA. Let p_1, p_2, \ldots, p_n denote the *predecessors of q*, i.e., all states p_i s.t. $q \in \delta(p_i, a)$, for some $a \in \Sigma \cup \{\varepsilon\}$. Let us further denote by s_1, s_2, \ldots, s_ℓ the *successors of q*, i.e. all states s_i s.t. $s_i \in \delta(q, a)$ for some $a \in \Sigma \cup \{\varepsilon\}$. Obviously, the removal of q will affect all transitions from some p_i to q, and all transitions from q to some q. But it might also affect some transitions from some q to some q, as in the above example. In this case, q0 is a predecessor of $q = q_1$; q2 is a successor; and we 'report' the information from the two deleted transitions to the direct transition from q0 to q2. So, in general, the states and transitions we need to consider when deleting state q are as depicted in Figure 2.13 (left). Observe that we assumed two important things in this figure:

- 1. first, all transitions are labeled by *regular expressions* $r_{i,j}$. This will be important because we will iteratively remove states and thus replace some characters labeling transitions by more complex regular expressions. Since each character is also a regular expression, this is not a problem: the initial automaton respects this assumption.
- 2. second, we have assumed that there is a transition between each pair of states (p_i, s_j) (with $1 \le i \le n$ and $1 \le j \le \ell$). This assumption is important because the information on the transitions we will delete along

- ⁹ Stephen C. Kleene. Representation of events in nerve nets and finite automata. Technical Report RM-704, The RAND Corporation, 1951. URL http://minicomplexity.org/pubr.php?t=2&id=2
- ¹⁰ R. McNaughton and H. Yamada. Regular expressions and state graphs for automata. *Electronic Computers, IRE Transactions on*, EC-9(1):39–47, March 1960. ISSN 0367-9950. DOI: 10.1109/TEC.1960.5221603
- ¹¹ J.A. Brzozowski and Jr. McCluskey, E.J.
 Signal flow graph techniques for sequential circuit state diagrams. *Electronic Computers, IEEE Transactions on*, EC-12(2):67–76, April 1963. ISSN 0367-7508. DOI: 10.1109/PGEC.1963.263416

Observe that a state could be at the same time a successor and a predecessor of *q*, but this is not a problem for our technique.

with q will be moved to those transitions. If the automaton does not respect this hypothesis, we can always add transitions that are labeled by the regular expression \emptyset without modifying the accepted language of the automaton.

Now, let us observe the right-hand side of Figure 2.13. It shows the automaton one obtains after removing all the part which is now dotted, i.e., q and its incoming and outgoing transitions. To justify this construction, let us consider, for instance, a run fragment from p_1 to s_ℓ . In the original automaton, this can be done at least in two different ways:

- either by following the direct transition from p_1 to s_ℓ , reading a word that matches $r_{1,\ell}$.
- or by following a path that goes from p_1 to q, follows an arbitrary number of times the self-loop on q, then goes from q to s_ℓ . For this path to be taken the automaton thus needs to read a word recognised by $r_{1,q}r_{q,q}^*r_{q,\ell}$.

As we delete state q, the regular expression $r_{1,q}r_{q,q}^*r_{q,\ell}$ corresponding to the latter path must now be reported to the former. Hence, the label from p_1 to s_ℓ now becomes $r_{1,\ell}+r_{1,q}r_{q,q}^*r_{q,\ell}$. The other modified labels are justified in a similar fashion. Since the deletion of q does not affect the rest of the automaton, we conclude that applying this transformation to any state q of any ε -NFA does not modify its accepted language.

Then, the algorithm to convert an ε -NFA $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ into a regular expression accepting the same language is as follows. For each ac-

Figure 2.13: The situation before (left) and after (right) deletion of state q

cepting state $q_f \in F$, we build an equivalent automaton A_{q_f} by *deleting all states except q_0 and q_f* from A, using the state elimination procedure described above. Since all states but q_0 and q_f have been removed, A_{q_f} is necessarily of either forms shown in Figure 2.14. Indeed, only states q_0 and q_f are left, and it could be the case that $q_0 = q_f$. In both cases, computing the regular expression that corresponds to those automata is easy—they are displayed under the automata.

Figure 2.14: The two possible forms for an automaton A_{q_f} obtained by eliminating all states but q_0 and q_f , and their corresponding regular expressions. We obtain the right automaton whenever $q_0 = q_f$.

So, for each accepting state q_f , we can now compute a regular expression r_{q_f} that accepts all the words A accepts by a run ending in q_f . However, the language of A is exactly the set of all words that A accepts by a run ending in either of the accepting states. Then, assuming that the set of accepting states of A is $F = \{q_f^1, q_f^2, \dots q_f^n\}$, we obtain the regular expression corresponding to A as:

$$q_f^1 + q_f^2 + \dots + q_f^n$$

Example 2.16. As an example, consider the following ε -NFA:

Remember that, when no transition is displayed between a pair of states (q_1, q_2) —potentially with $q_1 = q_2$ —we assume that there *is* a transition labeled by the regular expression \emptyset . We do not display such transitions to enhance readability.

Then, we apply iteratively the state elimination procedure to obtain A_{q_2} and A_{q_3} :

1. To obtain A_{q_2} , we first observe that q_2 is not reachable from q_3 (in other words, all outgoing transitions from q_3 are labeled by \emptyset , except the self-loop). It is thus safe to delete q_3 without further modification of the transitions:

From this automaton, we apply the state elimination procedure to delete q_1 and obtain:

This automaton is A_{q_2} . Its corresponding regular expression is:

$$(1 \cdot 1 + 0 \cdot 0 \cdot 1)^* \cdot (1 + 0 \cdot 0)$$

2. To obtain A_{q_3} , we first remove q_1 , as in the previous case, and obtain:

Then, we remove q_2 , which has one predecessor: q_0 ; and two successors: q_0 and q_3 . Displaying q_2 's situation as in Figure 2.13, we obtain:

Observe that we have duplicated q_0 for the sake of clarity, since it is both a predecessor and a successor. Now let us eliminate q_2 , we obtain, using still the same representation:

However, the newly introduced regular expressions can be simplified:

$$\emptyset + ((1+0\cdot0)\cdot1) = ((1+0\cdot0)\cdot1)$$
$$= 1\cdot1 + 0\cdot0\cdot1$$

and:

$$\emptyset + ((1+0\cdot0)\cdot\varepsilon) = ((1+0\cdot0)\cdot\varepsilon)$$
$$= 1+0\cdot0$$

Then, putting everything together (and taking into account that the duplicate q_0 is a single state), we obtain the automaton A_{q_3} :

Its corresponding regular expression is:

$$(1 \cdot 1 + 0 \cdot 0 \cdot 1)^* \cdot (1 + 0 \cdot 0) \cdot 1^*$$

So, we conclude that a regular expression accepting the same language as the original ε -NFA A is:

$$((1 \cdot 1 + 0 \cdot 0 \cdot 1)^* \cdot (1 + 0 \cdot 0)) + ((1 \cdot 1 + 0 \cdot 0 \cdot 1)^* \cdot (1 + 0 \cdot 0) \cdot 1^*)$$

2.5 Minimisation of DFAs

As we have seen in Section 2.4.2 (see Figure 2.9), there can be several DFAs accepting the same language, and some of them might be larger than the others. It is thus natural to look for *a minimal* DFA *accepting a given regular language*, and to wonder whether *there can be several different minimal* DFAs *accepting the same language*.

Answers to those questions are provided by a central theorem of automata theory, which has been established in 1958 by Myhill and Nerode 12 . To avoid technicalities which are out of the scope of those notes, we will not state the theorem, but rather one of its consequence:

Corollary 2.4 (Consequence of the Myhill-Nerode theorem). For all regular languages L, there is a unique minimal DFA accepting L. This DFA can be computed from any DFA accepting L.

Figure 2.15: A DFA which is not minimal.

The aim of this section is to discuss the *minimisation procedure* for DFAs. Let us start with the simple example shown in Figure 2.15. This DFA is clearly *not minimal*. Consider for instance the two accepting states q_5 and q_6 : it is easy to check that 'merging' them (preserving the a-labeled loop on the merged state) retains the language of the automaton, because, both states accept the same language a^* , i.e., any word suffix read from q_5 will eventually be accepted iff it is accepted from q_6 . This characterisation of states that 'can be merged' is the central notion that we need to minimise DFAs:

Definition 2.17 (Language accepted from a state). Given an ε -NFA A= $\langle Q, \Sigma, \delta, q_0, F \rangle$, and a state $q \in Q$, we let L(A, q) be the *language accepted from q* defined as L(A,q) = L(A') where $A' = \langle Q, \Sigma, \delta, q, F \rangle$ is the ε -NFA obtained by replacing the initial state of A by q.

In other words, L(A, q) is the language A would accept if its initial state were q instead of q_0 . Then, we can characterise states that we will be able to merge. Those states are said to be *equivalent*:

Definition 2.18 (Equivalence between states). Let $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ be an ε -NFA, and let $q_1 \in Q$ and $q_2 \in Q$ be two states of A. Then, q_1 and q_2 are *equivalent* (denoted $q_1 \equiv q_2$) iff $L(A, q_1) = L(A, q_2)$. 3

It is easy to check that \equiv is indeed an equivalence relation. For all states q, we denote by [q] its equivalence class, i.e., the set of all states that accept the same language as q. Thanks to these definitions we can present the minimisation procedure for DFAs. As expected, it consists in 'merging' equivalent states and updating the transitions accordingly. Concretely, this amounts to using the set of equivalence classes of \equiv as the states of the minimal automaton:

Minimisation of DFAs

Given a DFA $A = \langle Q^A, \Sigma, \delta^A, q_0^A, F^A \rangle$, the minimal DFA accepting L(A) is $B = \langle Q^B, \Sigma, \delta^B, q_0^B, F^B \rangle$ where:

- 1. $Q^B = \{[q] \mid q \in Q^A\}$
- 2. For all $[q] \in Q^B$, for all $a \in \Sigma$: $\delta^B([q], a) = [\delta^A(q, a)]$
- 3. $q_0^B = [q_0^A]$
- 4. $F^B = \{[q] \mid q \in F^A\}.$

Example 2.19. Let us consider the example in Figure 2.15. Here are the languages accepted by the different states (denoted as regular expressions):

State q	Accepted language $L(A, q)$					
q_0	$a \cdot b \cdot a \cdot a^* + b \cdot a \cdot a \cdot a^*$					
q_1	b·a·a*					
q_2	$\mathtt{a}\!\cdot\!\mathtt{a}\!\cdot\!\mathtt{a}^*$					
q_3	a·a*					
q_4	a·a*					
q_5	a*					
q_6	a*					

Clearly, $q_5 \equiv q_6$, $q_3 \equiv q_4$, but no other pair of states are equivalent. Thus,

We will give, on page 57, arguments explaining why this definition of the transition relation is well-founded and makes sense.

the equivalence classes (and also the states of the minimal DFA) are:

$$[q_0] = \{q_0\}$$

$$[q_1] = \{q_1\}$$

$$[q_2] = \{q_2\}$$

$$[q_3] = [q_4] = \{q_3, q_4\}$$

$$[q_5] = [q_6] = \{q_5, q_6\}$$

The minimal DFA is shown in Figure 2.16.

Figure 2.16: A minimal DFA.

8

As is, this technique is not really practical, since it requests to compute, for each state, its accepted language. A more efficient way of minimising DFAs is to compute directly the equivalence relations by a process called partition refinement. This algorithm is based on the two following observations:

- 1. It is not possible that an accepting state q_1 be equivalent to a nonaccepting state q_2 . Indeed, $\varepsilon \in L(A, q_1)$ (since q_1 is accepting and we are considering a DFA, hence an automaton without ε -transitions), but $\varepsilon \notin L(A, q_2)$ (since q_2 is not accepting). Hence, $L(A, q_1)$ is necessarily different from $L(A, q_2)$.
- 2. If two states q_1 and q_2 are equivalent, then it must be the case that, for all letters a: $\delta(q_1, a) \equiv \delta(q_2, a)$. That is, reading the same letter from two equivalent states yields necessarily equivalent states.

This can be shown by contradiction. Assume $q_1 \equiv q_2$ but $\delta(q_1, a) \not\equiv$ $\delta(q_2, a)$ for some letter a. Since $\delta(q_1, a) \not\equiv \delta(q_2, a)$, the language accepted from $\delta(q_1, a)$ must be different from the language accepted from $\delta(q_2, a)$, by definition of the equivalence relation (Definition 2.17). Hence, there is at least one word w that differentiates these two languages. Without loss of generality, let us assume that w can be accepted from $\delta(q_1, a)$ but not from $\delta(q_2, a)$. Since we consider DFAs, we conclude that $a \cdot w \in L(A, q_1)$, but that $a \cdot w \notin L(A, q_2)$. Hence, it is not possible that $q_1 \equiv q_2$.

Then, the partition refinement procedure consists in refining, iteratively, a symmetrical and reflexive relation ♣ ~ on the states, s.t. two states q_i and q_j are kept in relation $(q_i \sim q_j)$ as long as they are believed to be equivalent (or, in other words, as long as they have not been proved to be non-equivalent). Initially, all final states are in relation with each others, and all non-final states are too. However, no final state is in relation with a non-final one, since we know for sure that final and non-final states cannot be equivalent.

The current state of the relation is stored in a matrix P indexed by the states (in both dimensions). We let $P[q_i,q_j]=1$ iff $q_i\sim q_j$. Since the relation is symmetrical and reflexive, there are only 1's on the diagonal and the matrix is symmetrical , and so we keep only the (strictly) upper triangular part of the matrix. For instance:

$$\begin{array}{c|cccc} & q_2 & q_3 & & \\ P: & 0 & 1 & q_1 \\ & & 0 & q_2 & \end{array}$$

indicates that $q_1 \sim q_3$, but that $q_1 \not\sim q_2$ and that $q_2 \not\sim q_3$.

Then, the *refinement step* consists in finding two states q_i and q_j s.t.:

- $q_i \neq q_j$;
- q_i is currently believed to be equivalent to q_i , i.e., $P[q_i, q_i] = 1$; but
- there is a letter a s.t. $P[\delta(q_i, a), \delta(q_i, a)] = 0$.

Because $P[\delta(q_i,a),\delta(q_j,a)]=0$, we know for sure that $\delta(q_i,a)\not\equiv\delta(q_j,a)$. Hence, as discussed above, it is not possible that $q_i\equiv q_j$, and so we put a 0 in $P[q_i,q_j]$. We go on like that as long as we can update some cells of the matrix. Algorithm 1 presents this algorithm.

Obviously, the algorithm terminates after having updated all cells of the matrix in the worst case. It is easy to check that it runs in polynomial time 13 . One can prove 14 that, upon termination, this algorithm computes exactly the relation \equiv that we are looking for:

Proposition 2.5. The refinement algorithm always terminates. Upon termination, $q_i \equiv q_j$ iff $P[q_i, q_j] = 1$, for all pairs of states (q_i, q_j) .

Example 2.20. Let us apply Algorithm 1 to the example in Figure 2.15. Remember that, following our convention, we have not shown, in the figure, a sink state q_s to which the automaton goes every time a transition is not represented explicitly (for instance, $\delta(q_1, \mathbf{a}) = q_s$). In the algorithm, however, we must take this state explicitly into account. So, we start with:

q_1	q_2	q_3	q_4	q_5	q_6	q_s	
1	1	1	1	0	0	1	q_0
	1	1	1	0	0	1	q_1
		1	1	0	0	1	q_2
			1	0	0	1	q_3
				0	0	1	q_4
					1	0	q_5
				0 0 0 0 0		0	q_6

because q_5 and q_6 are the only accepting states.

Then, the algorithm first treats the q_0 line and discovers that:

Observe that, once the algorithm has declared that $q_i \neq q_j$, then, we are sure that $q_i \neq q_j$. However, $q_i \sim q_j$ does not imply that $q_i \equiv q_j$. The fact that $q_i \sim q_j$ only represents the current belief of the algorithm, but it could be revised later.

¹³ Actually in $\mathcal{O}(n^5)$, which is not very good. A more clever implementation allows one to achieve $\mathcal{O}(n\log(n))$.

¹⁴ John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. *Introduction to Automata Theory, Languages, and Computation (3rd Edition)*. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006. ISBN 0321455363

```
Output: A strictly upper diagonal Boolean matrix P s.t. P[q_i, q_j] = 1
          iff q_i \equiv q_j.
P \leftarrow strictly upper diagonal matrix of Boolean;
foreach 1 \le i \le n do
    foreach i < j \le n do
        if q_i \in F \leftrightarrow q_j \in F then
         P[q_i,q_j] \leftarrow 1;
         else
         Boolean finished \leftarrow 0;
while \neg finished do
    finished \leftarrow 1;
    foreach 1 \le i \le n do
        foreach i < j \le n do
             if P[q_i, q_j] = 1 then
                 foreach a \in \Sigma do
                      if P[\delta(q_i, a), \delta(q_j, a)] = 0 then
                          P[q_i,q_j] \leftarrow 0;
                          finished \leftarrow 0;
```

Input: A DFA $A = \langle Q = \{q_1, ..., q_n\}, \Sigma, \delta, q_0, F \rangle$.

Algorithm 1: The algorithm to compute the matrix encoding the equivalence classes of \equiv .

return P;

- q_0 is not equivalent to q_3 because we have that $\delta(q_0, \mathbf{a}) = q_1$ and $\delta(q_3, \mathbf{a}) = q_6$; but $P[q_1, q_6] = 0$;
- q_0 is not equivalent to q_4 because we have that $\delta(q_0, \mathbf{a}) = q_1$ and $\delta(q_4, \mathbf{a}) = q_5$; but $P[q_1, q_5] = 0$;

and updates the q_0 line accordingly. Then, the algorithm processes the q_1 line, and discovers that:

- q_1 is not equivalent to q_3 because we have that $\delta(q_1, \mathbf{a}) = q_s$ and $\delta(q_3, \mathbf{a}) = q_6$; but $P[q_s, q_6] = 0$;
- q_1 is not equivalent to q_4 because we have that $\delta(q_1, a) = q_s$ and $\delta(q_4, a) = q_5$; but $P[q_s, q_5] = 0$;

and updates the q_1 line too. Then, for similar reasons, it discovers that q_2 is not equivalent neither to q_3 nor to q_4 . It also finds that neither q_3 nor q_4 can be equivalent to q_s . At the end of the first iteration of the **while** loop, the matrix P is thus as follows:

q_1	q_2	q_3	q_4	q_5	q_6	q_s	
1	1	0	0	0	0	1	q_0
	1	0	0	0	0	1	q_1
		0	0	0	0	1	q_2
			1	0	0	0	q_3
				0	0	0	q_4
					1	0	q_5
					0 0 0 0 0 0	0	q_6

At the next step the algorithm discovers that:

- q_0 is not equivalent to q_1 , because: $\delta(q_0, b) = q_2$ and $\delta(q_1, b) = q_3$, but $P[q_2, q_3] = 0$;
- q_0 is not equivalent to q_2 , because: $\delta(q_0, \mathbf{a}) = q_1$ and $\delta(q_2, \mathbf{a}) = q_4$, but $P[q_1, q_4] = 0$;
- q_1 is not equivalent to q_2 , because: $\delta(q_1, b) = q_3$ and $\delta(q_2, b) = q_s$, but $P[q_3, q_s] = 0$;
- q_1 is not equivalent to q_s , because: $\delta(q_1, b) = q_3$ and $\delta(q_s, b) = q_s$, but $P[q_3, q_s] = 0$;
- q_2 is not equivalent to q_s , because: $\delta(q_2, \mathbf{a}) = q_4$ and $\delta(q_s, \mathbf{a}) = q_s$, but $P[q_4, q_s] = 0$.

At the end of the second iteration of the **while** loop, the matrix P is thus as follows:

q_1	q_2	q_3	q_4	q_5	q_6	q_s	
0	0	0	0	0	0	1	q_0
	0	0	0	0	0	0	q_1
		0	0	0	0	0	q_2
			1	0	0	0	q_3
				0	0	0	q_4
					1	0	q_5
				0 0 0 0 0		0	q_6

Finally, during the third and last iteration of the **while** loop, the algorithm discovers that q_0 is not equivalent to q_s because $\delta(q_0, \mathbf{a}) = q_1$, $\delta(q_s, \mathbf{a}) = q_s$, but $P[q_1, q_s] = 0$. Hence, the final matrix is:

q_1	q_2	q_3	q_4	q_5	q_6	q_s	
0	0	0	0	0	0	0	q_0
	0	0	0	0	0	0	q_1
		0	0	0	0	0	q_2
			1	0	0	0	q_3
				0	0	0	q_4
					1	0	q_5
				0 0 0 0 0		0	q_6

which indeed corresponds to the equivalence classes used to build the automaton in Figure 2.16.

2.6 Operations on regular languages

In this section, we consider different operations on sets that also apply to and are particularly relevant for languages, i.e., the union, the complement and the intersection. We also consider the problems of testing emptiness, inclusion and equality of regular languages. Of course, we want to realise all those operations and tests in an algorithmic way. Since regular languages are potentially infinite, we need to fix a finite representation for them. Unsurprisingly, we will rely on finite automata.

Union Given two ε -NFAs $A_1 = \langle Q^1, \Sigma, \delta^1, q_0^1, F^1 \rangle$ and $A_2 = \langle Q^2, \Sigma, \delta^2, q_0^2, F^2 \rangle$, building an ε -NFA that accepts $L(A_1) \cup L(A_2)$ is easy: it amounts to adding a fresh initial state that can, by means of an ε -transition, jump to either q_0^1 or q_0^2 . That is, if we let:

$$A = \langle Q^1 \uplus Q^2 \uplus \{q_0\}, \Sigma, \delta', q_0, F^1 \uplus F^2 \rangle$$

where, for all $q \in Q^1 \uplus Q^2 \uplus \{q_0\}$, all $a \in \Sigma \cup \{\varepsilon\}$:

$$\delta(q, a) = \begin{cases} \{q_0^1, q_0^2\} & \text{if } q = q_0 \text{ and } a = \varepsilon \\ \delta^1(q, a) & \text{if } q \in Q^1 \\ \delta^2(q, a) & \text{if } q \in Q^2 \\ \emptyset & \text{otherwise} \end{cases}$$

then, $L(A) = L(A^1) \cup L(A^2)$.

Observe that the resulting automaton is necessarily an ε -NFA, even if A^1 and A^2 are DFAs. It can of course be determinised, like every ε -NFA, using the procedure discussed in Section 2.4.2.

Complement Given an ε -NFA A, we want to compute an ε -NFA \overline{A} s.t. $L(\overline{A}) = \overline{L(A)} = \Sigma^* \setminus L(A)$. Probably the first idea that comes to one's mind when looking for a technique to complement automata is to 'swap accepting and non-accepting states'. This idea, unfortunately, does not work in general as shown in Figure 2.17: the automaton (on alphabet $\Sigma = \{a\}$) in the figure accepts a^* , so, the complement of its language is $\Sigma^* \setminus a^* = \emptyset$.

Remember that the $\[\]$ symbol denotes the 'disjoint union', i.e.: $A \[\] B \]$ is $A \cup B$ assuming $A \cap B = \emptyset$. We use it to formalise the facts that the set of states of both automata should be disjoint, and that the initial state q_0 is a 'newly created' state.

However, the automaton obtained from the one in Figure 2.17 by having q_2 only as accepting state accepts $a^+ \neq \emptyset$.

From this example, it is clear that the problem comes from the non-determinism. A DFA, however, has exactly one execution on each word w that ends in an accepting state iff w is accepted. So, swapping accepting and non-accepting states of a DFA A, and keeping the rest of the automaton identical yields an automaton \overline{A} accepting the complement of A's language. On each word w, the sequence of states traversed by \overline{A} will be the same as in A. Only the final state will be accepting in \overline{A} iff it is rejecting in A.

To sum up, for a DFA $A = \langle Q, \Sigma, \delta, q_0, F \rangle$, we let:

$$\overline{A} = \langle Q, \Sigma, \delta, q_0, Q \setminus F \rangle$$

If the given automaton is not deterministic, we first determinise it using the procedure of section 2.4.2.

Intersection To compute the intersection of two finite automata languages $L(A_1)$ and $L(A_2)$, we build a new FA A that simulates, at the same time, the executions of A_1 and A_2 on the same word. To do this, A needs to remember the current states of A_1 and A_2 . So A's states are pairs of states (q_1, q_2) , where q_1 is a state of A_1 and a_2 is a state of a_2 . Moreover, the transition function of a_1 must reflect the possible moves of both automata when reading the same letter a_1 .

As an example, consider the automata A_1 and A_2 given hereunder. They accept $a^* \cdot (b + \varepsilon)$ and $a + b^+$ respectively:

Obviously, the initial state of A will be (q_1, q_4) , since they are the respective initial states of A_1 and A_2 . From this state, we can consider several options, for the transition function:

- 1. Either the input word begins with an a. A_1 can read this a, but A_2 cannot since there is not a-labeled transition from q_4 , A_2 's current state. Thus, there is no a-labeled transition from (q_1, q_4) in A.
- 2. Or, the input word begins with a b. Both automata can read this letter: A_1 will move either to q_2 or to q_3 , and A_2 will move to q_6 . Hence, in A, (q_1, q_4) has two b-labeled successors: (q_2, q_6) and (q_3, q_6) . Only (q_2, q_6) is accepting, since q_2 and q_6 are *both* accepting.
- 3. Or, one of the automata (in this case, A_2) makes a spontaneous move, while the other (A_1) is left unchanged. This is possible because there

Figure 2.17: Swapping accepting and non-accepting states does not complement non-deterministic automata.

is an ε -labeled transition from q_4 to q_5 in A_2 . Hence, there is, in A, an ε -labeled transition from (q_1, q_4) to (q_1, q_5) .

Continuing this construction, we obtain the automaton hereunder:

It is easy to check that this automaton accepts a+b which is indeed $L(A_1) \cap L(A_2)$.

Formally, assume $A_1 = \langle Q^1, \Sigma, \delta^1, q_0^1, F^1 \rangle$ and $A_2 = \langle Q^2, \Sigma, \delta^2, q_0^2, F^2 \rangle$ are two ε -NFAs Then, we let $A_1 \cap A_2$ be the ε -NFA $\langle Q, \Sigma, \delta, q_0, F \rangle$ where:

- 1. $Q = Q^1 \times Q^2$;
- 2. For all $(q_1, q_2) \in Q$, for all $a \in \Sigma \cup \{\varepsilon\}$, $\delta((q_1, q_2), a)$ contains (q'_1, q'_2) iff one of the following holds:
 - $q_1' \in \delta(q_1, a)$ and $q_2' \in \delta(q_2, a)$; or
 - $a = \varepsilon$, $q_1' \in \delta(q_1, \varepsilon)$ and $q_2' = q_2$; or
 - $a = \varepsilon$, $q'_1 = q_1$ and $q'_2 \in \delta(q_2, \varepsilon)$.
- 3. $q_0 = (q_0^1, q_0^2);$
- 4. $F = F^1 \times F^2$.

The following can easily be established by induction on the length of the input words:

Theorem 2.6. Let A_1 and A_2 be two ε -NFAs. Then, $L(A_1 \cap A_2) = L(A_1) \cap L(A_2)$.

Finally, observe that the construction for intersection can easily be modified to obtain an alternative algorithm to compute the union of two ε -NFAs, simply by letting the set of final states be $\{(q^1,q^2)\mid q^1\in F^1\text{ or }q^2\in F^2\}$. The advantage of this construction is that it produce a DFA when applied to two DFAs A_1 and A_2 , unlike the previous one that needs ε -transitions.

Emptiness Clearly, an ε -NFA accepts a word iff there exists a path in the automaton from the initial state to any accepting state, whatever the word recognised along the path. Thus, testing for emptiness of ε -NFAs boils down to a graph problem, which can be solved by classical algorithms such as breadth- or depth-first search. Algorithm 2 shows a variation of the breadth-first search to check for emptiness of ε -NFAs. At all times, it maintains a set Passed of states that it has already visited and a set Frontier containing all the states that have been visited for the first time at the previous iteration of the **While** loop. Each iteration of this loop consists in

Remember that the *product* $A \times B$ of two sets A and B is the set of all pairs (a,b) s.t. the former element a belongs to A and the latter b, to B. For instance: $\{1,2\} \times \{3,4\} = \{(1,3),(1,4),(2,3),(2,4)\}.$

computing a new Frontier set: it contains all direct successors of nodes from Frontier that are not in Passed. The loop terminates either when all states have been explored (Frontier = \emptyset) or when an accepting state has been reached (Passed $\cap F \neq \emptyset$).

```
Input: An \varepsilon-NFA A = \langle Q, \Sigma, \delta, q_0, F \rangle
Output: True iff L(A) = \emptyset
Passed \leftarrow \emptyset;
Frontier \leftarrow \{q_0\};
while Frontier \neq \emptyset and Passed \cap F = \emptyset do
      Passed ← Passed \cup Frontier;
      NewFrontier \leftarrow \emptyset;
     foreach q \in \text{Frontier } \mathbf{do}
           foreach a \in \Sigma \cup \{\varepsilon\} do
                 NewFrontier \leftarrow NewFrontier \cup (\delta(q, a) \setminus Passed);
     Frontier \leftarrow NewFrontier;
return Passed \cap F = \emptyset;
            Algorithm 2: Checking for emptiness of \varepsilon-NFAs.
```

Language inclusion Given two ε -NFAs A_1 and A_2 , we would like to check whether $L(A_1) \subseteq L(A_2)$, i.e., whether all words accepted by A_1 are also accepted by A_2 . To do so, we can rely on the machinery we have developed before. Indeed, it is easy to check that:

$$L(A_1) \subseteq L(A_2)$$
iff
$$L(A_1) \cap \overline{L(A_2)} = \emptyset$$

Indeed, if $L(A_1) \subseteq L(A_2)$, then all words $w \in L(A_1)$ do *not* belong to $\overline{L(A_2)}$ (otherwise, they would be rejected by A_2). Hence, there is certainly no intersection between $L(A_1)$ and $\overline{L(A_2)}$. On the other hand, if $L(A_1) \cap$ $\overline{L(A_2)}$ is empty, this means that there is no word w which is (i) accepted by A_1 and (ii) rejected by A_2 . Thus, all words that are accepted by A_1 are also accepted by A_2 , hence $L(A_1) \subseteq L(A_2)$.

Checking whether $L(A_1) \cap \overline{L(A_2)} = \emptyset$ can be done by using the techniques we have described above: by first building the automaton $A = A_1 \cap$ $\overline{A_2}$, then checking whether $L(A) = \emptyset$ using Algorithm 2.

Equality testing To test whether $L(A_1) = L(A_2)$, for two ε -NFAs A_1 and A_2 , one can simply check whether $L(A_1) \subseteq L(A_2)$ and $L(A_2) \subseteq L(A_1)$. Again, an efficient, on-the-fly, version of this algorithm better be implemented in practice.

In practice, however, the operations (determinising and complementing A_2 , computing the intersection and checking whether it is empty) can be carried on-the-fly: this allows to stop the algorithm (and potentially avoid a costly determinisation) as soon as a word accepted by A_1 and rejected by A_2 is found. This on-the-fly algorithm will not be detailed here. It allows to prove that the language inclusion problem belongs to PSPACE.

Appendix

From recognizing to scanning

OF PROGRAMMING LANGUAGES. They are also the basic bulding block of the systematic construction technique of parsers that we will discuss in Chapter 5. Before giving the formal syntax and semantics of grammars, we start with a discussion on the limits of regular languages, to motivate the need for other, more expressive, formalisms.

GRAMMARS ARE THE TOOL WE WILL USE TO SPECIFY THE FULL SYNTAX

The limits of regular languages and some intuitions

In the previous chapter, we have seen several examples of applications of finite automata, and thus, also, several examples of languages that are regular. We have also sketched the intuitions explaining that the language L_0 of well-parenthesised expressions is not regular. Recall that the intuition was the following. To check that an expression is well-parenthesised, one scans the expression from the left to the right, and maintains, at all times, a counter that tracks the number of pending open parenthesis. Then, whenever an opening parenthesis is met, the counter is incremented. Whenever a closing parenthesis is found, the counter must be strictly positive (otherwise the word is rejected) and is decremented. At the end, the counter must be equal to 0 (all opened parenthesis have been closed, and no pending open parenthesis remain) for the word to be accepted. Observe that one cannot bound the value of the counter, because the length of the words in L_0 is not bounded. Intuitively, it seems that this *unbounded* counter is necessary to recognise words from L_0 , and that such an unbounded counter cannot be coded in the *finite* structure of finite automata.

Indeed, the only 'memory' that finite automata have is their set of states. To illustrate how states can be used as a 'memory' consider the language {ab, cd}. This language can be loosely characterised as: 'if the former letter is an a, then the latter should be a b; if the former is a c, the latter should be a d. So, to decide whether we should accept after reading the latter letter, we should *remember* the former one.

A first (and very naive!) attempt at building an automaton recognising {ab, cd} could be the DFA in Figure 3.1. Clearly, this attempt fails because the automaton always ends up in state q_1 after reading the first letter, regardless of the letter. As a consequence the automaton accepts {ab, cd, ad, bc}. Of course, the automaton in Figure 3.2 now accepts the right language, because states q_1 and q_1' act as a memory: when the automaton reaches q_1 , it has recorded that the first letter was an a; and when

¹ see Example 1.9, and the discussion on page 14.

Figure 3.1: An automaton that 'forgets' whether the first letter was an a or a b.

Figure 3.2: An automaton that 'remembers' whether the first letter was an a or a b.

it reaches q_1' , the first letter was surely a c.

Now that we have a good intuition of what 'memory' means for a finite automaton, let us prove formally that L_0 is indeed not regular. Our proof strategy will be by contradiction: we will assume that L_0 is regular, and hence, that there exists an ε -NFA A_0 that recognises it (by Theorem 2.2). Then, we will exploit the fact that this hypothetical A_0 has finitely many *states* to derive a contradiction. Assuming A_0 has n states, we will select a word from L_0 which is 'very long': this means that the word will be long enough to guarantee that, when the automaton accepts it, an accepting run necessarily visits twice the same state. Coming back to our intuition that each state of a finite automaton represents a possible memory content, this means that, after reading two different prefixes w_1 and w_2 —that contain a different number of pending open parenthesis—the automaton has memorised the exact same knowledge about those prefixes². However, since w_1 and w_2 contain a different number of pending open parenthesis, the behaviour of the automaton should be different after reading these two prefixes. Unfortunately, since the automaton is in the same state in both cases, there will be at least one common execution after w_1 and w_2 , i.e., by lack of memory, the automaton gets mixed up, and accepts words that are not part of L_0 . Let us now formalise this intuition.

Theorem 3.1. L_0 is not regular

Proof. The proof is by contradiction. Assume L_0 is regular, and let A_0 be an ε -NFA s.t. $L(A_0) = L_0$. Such an ε -NFA exists by Theorem 2.2. Let n be the number of states of A_0 , and let us consider the word:

$$w = \underbrace{((\cdots ((\underbrace{))\cdots))}_{n}}$$

Clearly, $w \in L_0$, hence w is accepted by A_0 . Thus, there exists an accepting run of A_0 on w. Let us assume this run visits the sequence of states q_0, q_1, \dots, q_{2n} , which we represent as:

$$q_0 \xrightarrow{(} q_1 \xrightarrow{(} \cdots \xrightarrow{(} q_n \xrightarrow{)} q_{n+1} \cdots \xrightarrow{)} q_{2n}$$

where $q_i \xrightarrow{(} q_{i+1}$ means that the automaton moves from state q_i to state q_{i+1} by reading a ((and similarly for the) character).

Then, since A_0 has n states, the run portion that accepts the prefix $\underbrace{(\cdots (n))}_{n}$

must necessarily visit twice the same state³. Formally, we let k and ℓ be two positions s.t. $0 \le k < \ell \le n$ and $q_k = q_\ell$. In other words, the run portion between q_k and q_ℓ is actually a loop in the automaton, that we can repeat as many times as we want, obtaining a word which is not in L_0 . More precisely, the run is of the form:

$$q_0 \xrightarrow{(} \cdots \xrightarrow{(} q_k \xrightarrow{(} \cdots \xrightarrow{(} q_\ell \xrightarrow{)} \cdots \xrightarrow{(} q_n \xrightarrow{)} q_{n+1} \cdots \xrightarrow{)} q_{2n}$$

Hence, the run obtained by repeating the loop twice is also an accepting run:

$$q_0 \xrightarrow{(} \cdots \xrightarrow{(} q_k \xrightarrow{(} \cdots \xrightarrow{(} q_\ell = q_k \xrightarrow{(} \cdots \xrightarrow{(} q_\ell \xrightarrow{)} \cdots \xrightarrow{(} q_n \xrightarrow{)} q_{n+1} \cdots \xrightarrow{)} q_{2n}$$

² Just as in the example of Figure 3.1, where the automaton has the same knowledge when it reads either a or c as the first letter.

³ One can invoke here the (in)famous 'pigeonhole principle' stating that if m pigeons occupy n holes, and there are strictly more pigeons than holes (m > n), then there is necessarily a hole that contains at least two birdies.

However, since $\ell - k > 0$, this run accepts a word of the form:

$$w' = \underbrace{(\cdots \cdots () \cdots \cdots)}_{m \text{ times}}$$
 n times

with m>n, which means that $w'\not\in L_0$, as not all opened parenthesis have been properly closed. Thus, we have just shown that A_0 accepts a word which is not in L_0 . This contradicts our assumption that $L(A_0)=L_0$. Hence, the hypothetical automaton A_0 does not exist. Since there is no ε -NFA that accepts L_0 , we conclude, by Theorem 2.2 that L_0 is not regular.

This Theorem clearly shows that there are interesting and (arguably) simple languages that are not regular (hence, they cannot be specified by means of a regular expression, nor recognised by a finite automaton). This motivates the introduction of *grammars*, which are a much more powerful formalism for *specifying* languages (we will study extensions of automata to handle more languages that finite automata in the next Chapter).

Intuitive example In order to introduce grammars, we start with an intuitive example that somehow 'generalises' the language L_0 . Let us consider a definition of 'expressions', which is inductive:

- 1. The sum of two expressions is an expression;
- 2. The product of two expressions is an expression;
- 3. An expression between matching parenthesis is an expression;
- 4. An identifier ld is an expression;
- 5. A constant Cst is an expression.

As an example, the string (Cst + Id) * Id is an expression but)(CstId) is not, as can be checked with the definition.

This definition is fine, and can easily be applied to check whether a given string is a (syntactically correct) expression. However, we would like to have a more 'generative' way of defining expressions. To achieve this, we will rely on the idea of *rewrite system*. Roughly speaking, a rewrite system is a set of rules that allow one to modify a given string of symbols to obtain a new string. More precisely, each rewrite rule is of the form $\alpha \to \beta$, where α and β are strings of symbols. Such a rewrite rule means, intuitively, that the string of symbols α can be replaced (or 'rewritten') by β . For instance, given the rule $Ab \to Bc$, the string aAbBc can be rewritten as aBcBc, by substituting Bc for Ab in the string.

Using this intuition, we can now set up a set of rewriting rules to generate any syntactically correct grammar (and only those grammars). To achieve this, we need to introduce certain *intermediary symbols* that we call *variables*. In our case, we need only one variable Exp that represents an expression. Then, an expression Exp can be rewritten following one of the five items used in the inductive definition above (i.e., as a sum of expressions, or a product of expressions, or...). This yields the following rules:

$$\begin{array}{ccccc} (1) & \mathsf{Exp} & \to & \mathsf{Exp} + \mathsf{Exp} \\ (2) & \mathsf{Exp} & \to & \mathsf{Exp} * \mathsf{Exp} \\ (3) & \mathsf{Exp} & \to & (\mathsf{Exp}) \\ (4) & \mathsf{Exp} & \to & \mathsf{Id} \\ (5) & \mathsf{Exp} & \to & \mathsf{Cst} \\ \end{array}$$

Since all right-hand sides of the rules share the same variable, we often omit to repeat it, and rather present the rules as:

It is easy to check that this set of rules indeed allows to *generate*, by successive rewriting the string (Cst + ld) * ld, starting from the sequence Exp. Indeed, Exp can be rewritten as Exp * Exp, by rule 2. In this new sequence, the latter occurrence of Exp, can be rewritten as ld, by rule 5, yielding Exp * ld, and so forth. The whole sequence of rewriting is given hereunder:

$$\mathsf{Exp} \overset{2}{\Rightarrow} \mathsf{Exp} * \mathsf{Exp} \overset{4}{\Rightarrow} \mathsf{Exp} * \mathsf{Id} \overset{3}{\Rightarrow} (\mathsf{Exp}) * \mathsf{Id} \overset{1}{\Rightarrow} (\mathsf{Exp} + \mathsf{Exp}) * \mathsf{Id} \overset{4}{\Rightarrow} (\mathsf{Exp} + \mathsf{Id}) * \mathsf{Id} \overset{5}{\Rightarrow} (\mathsf{Cst} + \mathsf{Id}) * \mathsf{Id}$$

Note that the initial sequence of symbols Exp contains only one variable; that the last sequence (Cst + Id) * Id is actually a word (it contains only symbols from the language's alphabet); and that all the intermediary sequences contain symbols from the alphabet, *and* variables (that are eventually eliminated by rewriting). Let us now formalise these notions.

3.2 Syntax and semantics

Syntax The formal definition of grammar follows the intuitions we have sketched above:

Definition 3.1 (Grammar). A *grammar* is a quadruplet $G = \langle V, T, P, S \rangle$ where:

- *V* is a finite set of *variables*;
- *T* is a finite set of *terminals*;
- *P* is a finite set of *production rules* of the form $\alpha \rightarrow \beta$ with:
 - $\alpha \in (V \cup T)^* V (V \cup T)^*$ and
 - $-\beta \in (V \cup T)^*$
- $S \in V$ is a variable called the *start symbol*.

8

Example 3.2. Formally, the grammar that defines expressions is the tuple:

$$G_{\mathsf{Exp}} = \langle \{\mathsf{Exp}\}, \{\mathsf{Cst}, \mathsf{Id}, (,), +, *\}, P, \mathsf{Exp} \rangle$$

with:

$$P = \left\{ \begin{array}{c} \mathsf{Exp} \to \mathsf{Exp} + \mathsf{Exp} \\ \mathsf{Exp} \to \mathsf{Exp}^* \mathsf{Exp} \\ \mathsf{Exp} \to (\mathsf{Exp}) \\ \mathsf{Exp} \to \mathsf{Id} \\ \mathsf{Exp} \to \mathsf{Cst} \end{array} \right\}$$

\$

Observe that our definition of the syntax of grammars is very general. Rules are of the form $\alpha \to \beta$ with: $\alpha \in (V \cup T)^* V(V \cup T)^*$ and $\beta \in (V \cup T)^*$, which means that both left- and right-hand sides of each rules can contain variables and terminals. The only requirement is that the left-hand side contains at least one variable. The next example shows the kind of languages that one can define when left-hand sides of rules are not restricted to a single variable:

Example 3.3. Consider the grammar:

$$G_{ABC} = \langle \{A, B, C, S, S'\}, \{a, b, c\}, P, S \rangle$$

where *P* contains the following set of rules:

We claim that this grammar allows one to generate all words on the alphabet $\{a,b,c\}$ that contains the same number of a's, b's and c's. For instance, consider the word aabcbc. Since this word is not empty, we first apply rule 2. Then, we apply rules 3 and rule 4 to generate 2 A's, 2 B's and 2 C's:

$$S \stackrel{2}{\Rightarrow} S' \stackrel{3}{\Rightarrow} ABCS' \stackrel{4}{\Rightarrow} ABCABC$$

Then, we use rules 6 and 8 to move the latter *A* two positions to the left:

$$ABCABC \stackrel{8}{\Rightarrow} ABACBC \stackrel{6}{\Rightarrow} AABCBC$$

Finally, we use rules 11–13 to obtain the desired word:

$$AABCBC \xrightarrow{11} aABCB \xrightarrow{11} aaBCBC \cdots \xrightarrow{12} aabcbc$$

It is easy to generalise this example to any word on $\{a, b, c\}$ with the same number of a's, b's and c's, and to check that only those words can be generated by the grammar.

Unfortunately, this generality is very powerful and makes many problems on grammars undecidable. In Section 3.3, we will introduce restricted syntactic classes of grammars that are still sufficient in practice, but for which meaningful problems are decidable.

Semantics Let us now formally define the semantics of grammars, i.e., the set of words that a grammar can generate.

Definition 3.4 (Derivation). Let $G = \langle V, T, P, S \rangle$ be a grammar, and let γ and δ be s.t. $\gamma \in (V \cup T)^* V (V \cup T)^*$, and $\delta \in (V \cup T)^*$. Then, we say that δ *can be derived from* γ *(under the rules of G)*, written:

$$\gamma \Rightarrow_G \delta$$

iff there are $\gamma_1, \gamma_2 \in (V \cup T)^*$ and a rule $\alpha \to \beta \in P$ s.t.: $\gamma = \gamma_1 \cdot \alpha \cdot \gamma_2$ and $\delta = \gamma_1 \cdot \beta \cdot \gamma_2$.

On top of this definition, we introduce several notations and shorthands. When the grammar *G* is clear from the context, we will often omit it from \Rightarrow_G . That is, we write $\gamma \Rightarrow \delta$ instead of $\gamma \Rightarrow_G \delta$. Clearly, for all grammar G, \Rightarrow_G is a *relation* on words from $(V \cup T)^*$. Thus, we denote by \Rightarrow^* the reflexive and transitive closure of ⇒, similarly to what we did for finite automata in Chapter 2. We also write $\gamma \Rightarrow^i \delta$ for $i \in \mathbb{N}$ iff δ can be derived from γ in i steps, i.e., there are $\gamma_1, \gamma_2, \dots, \gamma_{i-1}$ s.t. $\gamma \Rightarrow \gamma_1 \Rightarrow \gamma_2 \cdots \gamma_{i-1} \Rightarrow \delta$.

Finally, let us introduce the following important vocabulary:

Definition 3.5 (Sentential form). Let $G = \langle V, T, P, S \rangle$ be a grammar. A sentential form is a word from $(V \cup T)^*$ that can be derived from the start symbol. Formally: $\gamma \in (V \cup T)^*$ is a sentential form (of *G*) iff $S \Rightarrow_G^* \gamma$.

Of course, we will be interested in certain sentential forms: those that contain terminals only, because they form the *language of the grammar*:

Definition 3.6 (Language of a grammar). Let $G = \langle V, T, P, S \rangle$ be a grammar. The *language of G* is:

$$L(G) = \{ w \in T^* \mid S \Rightarrow_G^* w \}$$

Actually, it is possible to encode a Turing machine into a grammar.

The rough idea is to use the derivable strings of the grammar to describe the reachable configurations of the machine. A configuration of a Turing machine can be encoded as a word of the form $w_1 q w_2$, where w_1 is the content of the tape to the left of the head, and w_2 is the content of the tape (excluding blank characters) under and to the right of the head. Such a configuration can be encoded by the string $w_1 Q w_2$ where w_1 and w_2 contain only terminals, and Q is a variable. Then, if the machine can move from q to q', reading an a, replacing it by a b, and moving the head to the right, the grammar would contain the rule $Qa \rightarrow bQ'$, and so forth...

Do not confuse $\gamma \Rightarrow^i \delta$, which means: ' δ can be derived from γ in at most *i* steps' and $\gamma \stackrel{i}{\Rightarrow} \delta$, which means: ' δ can be derived from γ by applying rule number i once'.

The Chomsky hierarchy

3.3

As sketched before, the definition of grammar we have given (Definition 3.1) is so general that many problems on grammars⁴ are undecidable. Yet, as the example of grammar G_{Exp} clearly shows, grammars are excellent tools to describe the syntax of programming languages (among other potential applications). The aim of the Chomsky hierarchy we are about to introduce is to identify syntactic classes of grammars that are useful for practical and/or theoretical purposes.

Definition 3.7 (Chomsky hierarchy). The *Chomsky hierarchy* is made up of four classes of grammars, defined according to syntactic criteria:

Class 0: Unrestricted grammars All grammars are in this class.

⁴ including the language membership problem, i.e., does a given word w belong to the language L(G) of a given grammar

Observe that a grammar that contains rules of the form $A \rightarrow wB$ and

of the form $A \rightarrow Bw$ at the same

time is not regular.

Class 2: Context-free grammars A grammar $G = \langle V, T, P, S \rangle$ is context-free iff each rule $\alpha \to \beta \in P$ is s.t.: $\alpha \in V$, i.e., the left-hand side is only one variable.

Class 3: Regular grammars A grammar $G = \langle V, T, P, S \rangle$ is *regular* iff it is *either* left-regular *or* right-regular:

Left-regular grammars G is left-regular iff each rule $\alpha \to \beta \in P$ is s.t. $\alpha \in V$ and either $\beta \in T^*$, or $\beta \in V \cdot T^*$.

Right-regular grammars G is left-regular iff each rule $\alpha \to \beta \in P$ is s.t. $\alpha \in V$ and either $\beta \in T^*$, or $\beta \in T^* \cdot V$.

This definition calls for several comments. First, let us give some examples of grammars:

Example 3.8.

- 1. The grammar $G_{a^*} = \langle \{S\}, \{a\}, P, S \rangle$ where *P* contains the rules:
 - $\begin{array}{cccc}
 (1) & S & \rightarrow & Sa \\
 (2) & \rightarrow & \varepsilon
 \end{array}$

is left-regular and $L(G_{a^*}) = \{a\}^*$. Observe that replacing the first rule by $S \rightarrow aS$ yields a right-regular grammar that accepts the same language.

- 2. To the contrary, the grammar $G = \langle \{S\}, \{a\}, P, S \rangle$ where P contains the rules:
 - $\begin{array}{cccc} (1) & S & \rightarrow & Sa \\ (2) & \rightarrow & aS \end{array}$

$$(3) \rightarrow \varepsilon$$

is *not* regular because it is neither left-regular nor right-regular. In other words, mixing left-recursive and right-recursive rules is not permitted in a regular grammar. Yet, the language accepted by G is still $\{a\}^*$ and thus regular.

- 3. The grammar G_{Exp} of Example 3.2 is context-free but not regular, because, for instance, of rule $\mathsf{Exp} \to \mathsf{Exp} + \mathsf{Exp}$.
- 4. The grammar G_{ABC} of Example 3.3 is context-sensitive but not context-free, because of rule $AB \rightarrow BA$ for instance (two variables on the left-hand side).

Then, let us discuss the name 'hierarchy'. This term seems to imply that the classes of grammars are contained into each other, in other words that each class 3 grammar is a class 2 grammar, each class 2 grammar is a class 1 grammar, and each class 1 grammar is a class 0 grammar. Unfortunately this is not the case, as shown by the next example:

Example 3.9. Consider the grammar with the two following rules:

$$\begin{array}{cccc} (1) & S & \rightarrow & S' \\ (2) & S' & \rightarrow & \varepsilon \end{array}$$

Obviously, this grammar is regular (class 3) because the first rule is of the form $S \rightarrow wS'$, with $w = \varepsilon \in T^*$; and the latter is of the form $S' \rightarrow w$ with $w = \varepsilon \in T^*$ again. It is also context-free (class 2) because the left-hand sides of all its rules are made up of only one variable. Of course, it is also unrestricted (class 0). But it is clearly not context-sensitive (class 1) because of the rule $S' \rightarrow \varepsilon$ where $S' \neq S$.

However, observe that the class 1 grammar

$$\langle \{S\}, \emptyset, \{S \rightarrow \varepsilon\}, S \rangle$$

accepts the same language as G.

So, while the Chomsky hierarchy does not form a hierarchy of *gram-mars*, it defines a *hierarchy of languages*. To establish this, let us begin with a few more definitions:

Definition 3.10 (Context-free language). A language L is *context-free* iff there exists a context-free grammar G s.t. L(G) = L.

And, similarly:

Definition 3.11 (Context-sensitive language). A language L is *context-sensitive* iff there is a context-sensitive grammar G s.t. L(G) = L.

Definition 3.12 (Recursively enumerable language). A language L is *recursively enumerable* (or *recognisable*) iff there is a grammar G s.t. L(G) = L

We denote by CFL and CSL and RE the sets of context-free, context-sensitive, and recursively enumerable languages respectively⁵ Then, the next theorem justifies the name 'Chomsky *hierarchy*':

Theorem 3.2. For i = 0,1,2,3 let us denote by \mathcal{L}^i the class of languages recognised by type i grammars in the Chomsky hierarchy. Then:

$$\mathcal{L}^3 = \operatorname{Reg} \subsetneq \mathcal{L}^2 = \operatorname{CFL} \subsetneq \mathcal{L}^1 = \operatorname{CSL} \subsetneq \mathcal{L}^0 = \operatorname{RE}$$

Proof. (Sketch) We will not prove the theorem with great detail, but we will highlight the main arguments behind each of those relations.

1. $\mathscr{L}^3 = \operatorname{Reg.}$ We first show that each DFA A can be converted into a grammar G_A s.t. $L(A) = L(G_A)$. The intuition of the construction is as follows. The set of variables of G_A is the set of states of A. We will build the set of rules in such a way that all sentential forms are of the form wq, where $w \in \Sigma^*$ is the prefix read so far by the automaton, and q is the current state. Then, for each transition from some q_1 to some q_2 labeled by a, the grammar contains a rule $q_1 \rightarrow aq_2$. Finally, when an accepting state is reached, we must be able to get rid of the variable from the sentential form, so we have rules of the form $q \rightarrow \varepsilon$ for all $q \in F$. Fig. 3.3 shows an example of this transformation.

3

⁵ Note that, by abuse of notation, we often write 'a CFL' or 'a CSL' to mean 'a language belonging to CFL' or 'a language belonging to CSL', etc.

(1)	q_0	\rightarrow	$\mathtt{a}q_1$
(2)		\rightarrow	bq_2
(3)	q_1	\rightarrow	b q_1
(4)		\rightarrow	$\mathtt{a}q_2$
(5)		\rightarrow	ε
(6)	q_2	\rightarrow	$\mathtt{a}q_2$
(7)		\rightarrow	bq_2

Figure 3.3: An example of a DFA and its corresponding right-regular grammar.

Formally, assuming $A = \langle Q, \Sigma, \delta, q_0, F \rangle$, we build the grammar $G_A = \langle Q, \Sigma, P, q_0 \rangle$, where:

$$P = \{q \to aq' \mid \delta(q, a) = q'\} \cup \{q \to \varepsilon \mid q \in F\}$$

Observe that the resulting grammar is right-regular, so all regular languages can be accepted by right-regular grammars. This shows that $\mathcal{L}^3 \supseteq \operatorname{Reg}$. To show $\operatorname{Reg} \subseteq \mathcal{L}^3$, we must show that both right-regular and left-regular grammars define regular languages only. For right-regular grammars, we can adapt the arguments of the proof above and transform all right-regular grammars G into an ε -NFA A_G s.t. $L(G) = L(A_G)$. We turn each variable of the grammar into a state of the automaton. For all rules of the form $A \to wB$, we add transitions from A to B reading word w, adding intermediary states if appropriate. For all rules of the form $A \to w$, we let the automaton read the word w from state A and reach an accepting state. We do not give the details of the construction, but Fig. 3.4 gives an example.

Finally, it is possible to adapt this construction to build, for all *left-regular grammars G*, an ε -NFA A_G s.t. $L(A_G)$ is the mirror image of L(G), i.e., $L(A_G)$ contains all words from G but reversed. Then, it is easy to modify A_G to let it accept L(G), by swapping final and initial states and reversing the directions of the transitions. We omit the details here.

- 2. $\mathcal{L}^2 = CFL$. This equality holds by definition (see Definition 3.10).
- 3. Reg $\subseteq \mathcal{L}^2$. To show that Reg $\subseteq \mathcal{L}^2$, it suffices to observe that all regular grammars are also context-free (check Definition 3.7). Hence, $\mathcal{L}^3 \subseteq \mathcal{L}^2$, but since Reg = \mathcal{L}^3 , we have Reg $\subseteq \mathcal{L}^2$. To show the strict inclusion, it is sufficient to exhibit a language which is a CFL but not regular. This is the case of L_0 (see beginning of the Chapter). We have shown, in Theorem 3.1 that L_0 is not regular. We can show that it is in CFL (hence a in \mathcal{L}^2) by providing a context-free grammar that defines it:

$$\begin{array}{cccc} (1) & S & \rightarrow & SS \\ (2) & \rightarrow & (S) \\ (3) & \rightarrow & \varepsilon \\ \end{array}$$

It is easy to check that this grammar is indeed context-free and defines L_0 , so L_0 is a CFL.

- 4. $\mathcal{L}^1 = \text{CSL}$. Again, this holds by definition (Definition 3.11).
- 5. CFL $\subsetneq \mathscr{L}^1$. To prove this inclusion, we must first show that all context free languages (which can be defined by a context free grammar, since $\mathscr{L}^2 = \mathsf{CFL}$) are also context-sensitive languages. Unfortunately, as shown by Example 3.9 above, not all context-free grammars are context-sensitive, so we cannot use a simple and direct syntactic argument as we did when proving that all regular languages are also context-free. Observe that, in a context-free grammar, a rule of the form $\alpha \to \beta$ that violates the property $|\alpha| \le |\beta|$ is necessarily a rule of the form $A \to \varepsilon$. Indeed, in a context-free grammar, all left-hand sides of rules contain only one variable. Thus $|\alpha| = 1$ in all rule $\alpha \to \beta$ and so, $|\alpha| > |\beta|$ means $|\beta| = 0$, hence $\beta = \varepsilon$.

Figure 3.4: An example of a right-regular grammar and its corresponding ε -NFA. ⁶ Adding a fresh initial state if necessary.

Based on this observation, we propose a technique that turns any context-free grammar into an *equivalent* context-free grammar without rules of the form $A \to \varepsilon$, except when A is the start symbol, because this is the only case where an ε in the right-hand side is allowed in a context-sensitive grammar. The procedure works as follows. If a context-free grammar $G = \langle V, T, P, S \rangle$ contains a rule of the form $A \to \varepsilon$, with $A \neq S$, then:

(a) Remove from *P* the rule $A \rightarrow \varepsilon$:

$$P' = P \setminus \{A \to \varepsilon\}$$

(b) Find in P' all the rules of the form $B \to \beta$ where β contains A, and, for each of those rules, add to P' all the rule $B \to \beta'$, where β' has been obtained by removing all the A symbols⁷ from β :

 7 Or, in other words, replacing all *A*'s by ε .

$$P'' = P' \cup \{B \rightarrow \beta_1 \beta_2 \cdots \beta_n \mid B \rightarrow \beta_1 A \beta_2 A \cdots A \beta_n \in P' \text{ with } \beta_i \in (T \cup V \setminus \{A\})^* \text{ for all } i\}$$

This yields a new grammar $G' = \langle V, T, P'', S \rangle$. Observe that this transformation preserves the language of the grammar: L(G') = L(G). We can iterate this process up to the point where no rule of the form $A \to \varepsilon$, with $A \neq S$ remain. Then, clearly, the resulting grammar \overline{G} has the same language as the original one, and contains no rule of the form $A \to \varepsilon$, with $A \neq S$. Figure 3.5 illustrates this transformation.

However, we are not done yet, because the definition of context-sensitive grammar also asks that *S* does never occur in a right-hand side of rule. Again, we propose a transformation that eliminates such rules while preserving the language of the grammar. It works as follows:

(a) Add a new variable S' to the grammar:

$$V' = V \uplus \{S'\}$$

(b) For each rule of the form $S \rightarrow \beta$ with $\beta \neq \varepsilon$, add to the grammar the rule $S' \rightarrow \beta$:

$$P' = P \cup \{S' \rightarrow \beta \mid S \rightarrow \beta \in P \text{ with } \beta \neq \varepsilon\}$$

(c) *If the rule* $S \rightarrow \varepsilon$ *exists in the grammar*, make a copy of all $A \rightarrow \beta$ where β contains S, replacing all S by ε :

$$P'' = P' \cup \left\{ A \to \beta_1 S' \beta_2 S' \cdots S' \beta_n \middle| A \to \beta_1 \beta_2 \cdots \beta_n \in P' \\ \text{with} \\ \beta_i \in (T \cup V \setminus \{S\})^* \right\}$$

(d) Finally, replace all occurrences of S by S' in right-hand sides of rules:

$$P''' = \left\{ \begin{array}{c|c} A \to \beta_1 S' \beta_2 S' \cdots S' \beta_n & A \to \beta_1 S \beta_2 S \cdots S \beta_n \in P'' \\ \text{with} & \text{with} \\ \beta_i \in (T \cup V \setminus \{S\})^* \end{array} \right\}$$

Original grammar:

(1)	S	\rightarrow	Aa
(2)		\rightarrow	A
(3)		\rightarrow	Bb
(4)	A	\rightarrow	a
(5)		\rightarrow	ε
(6)	B	\rightarrow	ε

After treating $A \rightarrow \varepsilon$:

(1)	S	→	Aa
(2)		\rightarrow	a
(3)		\rightarrow	A
(4)		\rightarrow	ε
(5)		\rightarrow	Bb
(6)	A	\rightarrow	a
(7)	B	\rightarrow	ε

After treating $B \rightarrow \varepsilon$:

(1)	S	\rightarrow	Aa
(2)		\rightarrow	a
(3)		\rightarrow	A
(4)		\rightarrow	ε
(5)		\rightarrow	Bb
(6)		\rightarrow	b
(7)	Α	\rightarrow	a

Figure 3.5: Removing rule of the form $V \to \varepsilon$ in two steps. Observe that in the resulting grammar, the variable B does not produce any terminal, so we could also remove the rule $S \to Bb$, but what matters is that the language of the resulting grammar is the same as the original one.

Figure 3.6 illustrates the construction. It is easy to check that the resulting grammar has the same language as the original one, and that it now respects the syntax of context-sensitive grammars.

This shows that $CFL \subseteq \mathcal{L}^1$. Now, to prove that the inclusion is *strict*, we need to exhibit a language which is context-sensitive but not contextfree. It is the case of the language $L(G_{ABC})$ generated by the grammar given in Example 3.3. Clearly, this language is context-sensitive since it is generated by a context-sensitive grammar. We will not prove here that this language is not context free. Suffice it to say that this can be proved by techniques similar to those we have used to show that L_0 is not regular (proof of Theorem 3.1). The interested reader should refer to the so-called 'pumping lemmata' for regular and context-free languages, which are general techniques allowing one to prove that a language is not regular and not context-free respectively⁸.

- 6. $\mathcal{L}^0 = RE$. This equality holds by Definition 3.12.
- 7. $CSL \subseteq \mathcal{L}^0$. The fact that $CSL \subseteq \mathcal{L}^0$ holds by definition: all grammars belong to class 0, so all CSL, that can be defined by a context-sensitive grammar (by definition) can be defined by a class 0 grammar. Showing that the inclusion is strict requires techniques that are beyond the scope of this course, so we will not prove it here.

Original grammar:

(1)	S	→	ε
(2)		\rightarrow	aS
(3)		\rightarrow	A
(4)	A	\rightarrow	aS

After step (b):

(1)	S	\rightarrow	ε
(2)		\rightarrow	aS
(3)		\rightarrow	A
(4)	S'	\rightarrow	aS
(5)		\rightarrow	A
(6)	A	\rightarrow	aS

After step (c):

(1)	S	\rightarrow	ε
(2)		\rightarrow	aS
(3)		\rightarrow	a
(4)		\rightarrow	A
(5)	S'	\rightarrow	aS
(6)		\rightarrow	a
(7)		\rightarrow	A
(8)	A	\rightarrow	aS
(9)		\rightarrow	a

Final grammar:

(1)	S	\rightarrow	ε
(2)		\rightarrow	aS'
(3)		\rightarrow	a
(4)		\rightarrow	A
(5)	S'	\rightarrow	aS'
(6)		\rightarrow	a
(7)		\rightarrow	A
(8)	A	\rightarrow	aS'
(9)		\rightarrow	a

Figure 3.6: Removing all occurrences of the start symbol S from right-hand sides of rules, while preserving the language of the original grammar.

8 John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006. ISBN 0321455363

It is not easy to exhibit a 'natural' language that strictly separates CSL and RE. The arguments can be found in the Computablity and Complexity course: the class CSL corresponds exactly to the class of languages that can be decided by a non-deterministic Turing machine running in linear space. The space hierarchy theorem tells us that there are languages (which are decidable, and thus recognisable or, in other words, recursively enumerable) that require strictly more than linear space. For instance, the language of any decider that runs in exponential space is a recursively enumerable language that is not context-sensitive.

4 All things context free...

CONTEXT-FREE LANGUAGES ARE THE SECOND IMPORTANT CLASS OF LANGUAGES THAT WE WILL CONSIDER IN THIS COURSE, after regular languages. This chapter will be, in some sense, the 'context-free' analogous to Chapter 2, where we introduced and studied regular languages.

Let us first summarise quickly what we have learned so far about CFLs and their relationship to regular languages. First, recall, from the Chomsky hierarchy (Definition 3.7) that regular languages are all CFLs and that the containment is strict: for instance the Dyck language $^{1}L_{0}$ is a CFL which is not regular (see Theorem 3.1). Moreover, we already know several formal tools to deal with regular languages and CFLs, as summarised in the table below:

	Reg	CFL
Specification	Regular expressions, regular grammars	Context-free grammars
Automaton	DFA, NFA, ε -NFA	??

As can be seen, one cell is still empty in this table: which automaton model allows us to characterise the class of CFLs, just as finite automata correspond to regular languages? We will answer this question in Section 4.2, but let us already try and build some intuitions.

As explained in Chapter 2, finite automata (whether they are deterministic or not) can be regarded as a model of programs that have access to a *finite amount of memory*. This allows them to recognise simple languages such as (01)*, for instance, because the only piece of information the program must 'remember' (in this example) is the last bit that has been read, in order to check that the next one is indeed different. So, one bit of memory is sufficient for (01)*, which explains why the automaton accepting it has two states (see Figure 4.1).

Now, let us consider a typical CFL, which is the language of all *palindromes* on $\{0,1\}$ (where the two parts of the palindromes are separated by #). Formally, we consider the language:

$$L_{pal\#} = \{ w \cdot \# \cdot w^R \mid w \in \{0, 1\}^* \}$$

We will prove later that $L_{pal\#}$ is indeed a CFL (and is not regular). Let us admit this fact for now, and let us understand why this language cannot be recognised by a finite automaton. Continuing the intuition we have sketched above, a program recognising $L_{pal\#}$ must, when reading a word of the form w#w':

Figure 4.1: A finite automaton accepting (01)*. The labels of the nodes represent the automaton's memory: it remembers the last bit read if any.

¹ Recall that this languages contains all well-parenthesised words on {(,)}, i.e., a parenthesis is closed only if it has been opened before, and, at the end of the word, all opened parenthesis are eventually closed.

- 1. store the whole prefix *w* up to the occurrence of #;
- 2. skip the symbol #;
- 3. read the suffix w', letter by letter, checking that w' is indeed w^R , the mirror image of w.

It should be clear that, since the length of the prefix w is not bounded (in the definition of $L_{pal\#}$), such a program needs an unbounded amount of memory, to store this prefix w. Since we are considering automata that read the input word from the left to the right, in one pass, and cannot modify the input, one can hardly imagine that a program (or an automaton) could recognise $L_{pal\#}$ using only a finite amount of memory.

So, to recognise CFLs, we need to extend finite automata with some form of unbounded memory. In the case of $L_{pal\#}$, this memory can be restricted to be a *stack*. Indeed, our program can be rewritten as:

- 1. read the prefix w up to the occurrence of #, letter by letter, *pushing* each letter on the stack;
- 2. skip the symbol #;
- 3. read the suffix w', letter by letter. Compare each letter from the input to the top of the stack. If they differ, or if the stack is empty, reject the word, otherwise pop the letter.
- 4. If the whole suffix has been read and the stack is empty, accept the word, otherwise reject.

As an example, Figure 4.2 illustrates the execution of this program on the word 001#100, which is recognised as a palindrome since the stack is empty after the suffix is read. Each arrow between the stacks is labelled by a letter which is read by the program.

So, in Section 4.2, we will extend finite automata by means of a stack, allowing the automaton to perform one operation on the stack at each transition (in addition to reading an input letter). We will formally study this new model, called $pushdown\ automata^2$ (PDA for short), and show that they recognise exactly the class of CFLs, just as finite automata recognise regular languages.

In order to prove this last result, we will present a formal connection between PDAs and CFLs. Again, let us sketch some intuitions, by considering the grammar:

$$\begin{array}{cccc} (1) & S & \rightarrow & 0S0 \\ (2) & \rightarrow & 1S1 \\ (3) & \rightarrow & \# \end{array}$$

that generates exactly $L_{pal\#}$. We can check against Definition 3.7 that this grammar is indeed context-free. It is easy to turn such a grammar into a recursive program that recognises $L_{pal\#}$, by regarding each variable in the

Recall that a stack is a data structure where elements are stored as a sequence, where only the last inserted symbol can be accessed (it is called the *top* of the stack), and that can be modified only by appending symbols to the end of the sequence (a *push* to the stack); or by deleting the last symbol if it exists (a *pop* from the stack). Therefore, a stack is often referred to as a LIFO (an acronym of 'Last In First Out'), because the first elements that will be read from the stack is the last one that has been written.

Figure 4.2: Recognising a palindrome using a stack.

² Pushdown is a synonymous of stack.

right-hand side of the rule as a recursive call. In a python-like syntax, such a program could be:

```
def S():
 1
2
       n = read_next_character()
3
       if n == '#':
 4
5
          return True
6
7
       if n == '0':
8
          r = S()
9
          if (!r): return False
10
          n = read_next_character()
11
          if (n == '0'): return True
          else: return False
12
13
       if n == '1':
14
15
          r = S()
          if (!r): return False
16
          n = read_next_character()
17
18
          if (n == '1'): return True
19
          else: return False
```

where, as expected read_next_character() reads the next character on the input and returns it. This code matches the semantics of the grammar because, roughly speaking, a rule such as:

 $S \rightarrow 0S0$

can be interpreted as:

Read a 0; then check that it is followed by a palindrome, i.e. a word that can be generated by S; and finally read a matching 0.

Observe that this intuition holds because the grammar *is context-free*, i.e., all the rules are of the form $A \rightarrow \alpha$, where A is a single variable, that can be assimilated to a function name. The mapping of grammar rule to recursive functions is harder to figure out (if any) when the rules are allowed to be context sensitive, such as $aSb \rightarrow cAd$ for instance. Observe also that the recursive functions obtained from CFGs by this construction do not need unbounded memory: they only need to store a finite, bounded portion of the input word (which is a finite word on a finite alphabet). In the case of $L_{pal\#}$, each function call needs to store *locally* the *first character read* (either 0 or 1) to compare it to the first character read after the recursive call, so one bit of *local* memory is sufficient. The unboundedness of the memory needed to recognise words from $L_{pal\#}$ stems from the (unbounded) depth of the recursive calls.

Now we can bridge the gap between context free grammars and pushdown automata easily: a context-free grammar is, roughly speaking, a recursive program where each function call needs only bounded memory. Thus, the behaviour of each function call can be captured by a finite automaton, but the number of recursive calls cannot be bounded. This can be captured by a PDA, as sketched in Figure 4.3. Each time the function performs a recursive call, the PDA pushes information about its current state (that encodes the value of the local variables) to the stack and moves to its initial state. At each return, the PDA pops the top of the stack, to recover the value of the local variables and uses it to move to the state that models the state of the function after the recursive call.

Transitions between q_i , q_0 and q_1 simulate the recursive calls by pushing information on the stack. Once a # is read, the automaton starts popping the content of the stack to simulate the returns of the recursive calls. The accepting state is reached only when the stack is empty, i.e., all pending recursive calls have completed.

This short example shows that, somehow, CFGs can be translated into PDAs that accept the same language. Using the same ideas, the reverse translation (from PDAs to CFGs) can be achieved. This is the outline of the proof we will present in Section 4.2.3. The close connection between CFGs, PDAs and recursive functions we have just sketched will also be central in Chapter 5, where we will discuss the automated construction of *parsers* from CFGs, in a compiler design perspective. Before that, we first take a fresh look at grammars, by specialising the theory we have developed in Chapter 3 to the particular case of CFGs.

4.1 Context-free grammars

Let us start by discussing some formal tools that are useful when dealing with *context-free* grammars (hence, also regular grammars). Some of them (such as the notion of derivation) have already been introduced in Chapter 3, but will be specialised for CFGs.

4.1.1 Derivation

We have already discussed the notion of derivation in the previous chapter, see Definition 3.4 sqq. and the intuition given before. Let us consider again the grammar G_{Exp} , given in Figure 4.4, and let us consider the word Id + Id * Id which can be generated by this grammar. Indeed, the following is a possible derivation of G_{Exp} for this word (where we have underlined the variable which is rewritten at each rule application):

There are many different syntax's for PDAs. The one we are using in this example aims at illustrating easily the intuitions of this introduction. Note that the formal syntax we will use in the rest of the chapter will differ slightly.

Figure 4.3: An intuition of a pushdown automaton that recognises $L_{pal\#}$. The keywords Push, Pop and Top have their usual meaning. The edge labelled by empty can be taken only when the stack is empty. Note that, instead of pushing q_0 or q_1 , one could simply store 0 and 1's on the stack.

(1)	Exp	\rightarrow	Exp + Exp
(2)		\rightarrow	Exp * Exp
(3)		\rightarrow	(Exp)
(4)		\rightarrow	ld
(5)		\rightarrow	Cst

Figure 4.4: The grammar G_{Exp} to generate expressions.

$$\operatorname{\mathsf{Exp}} \overset{2}{\Rightarrow} \operatorname{\mathsf{Exp}} * \operatorname{\mathsf{Exp}} \overset{1}{\Rightarrow} \operatorname{\mathsf{Exp}} + \operatorname{\mathsf{Exp}} * \operatorname{\mathsf{Exp}} \overset{4}{\Rightarrow} \operatorname{\mathsf{Exp}} + \operatorname{\mathsf{Id}} * \operatorname{\mathsf{Exp}} \overset{4}{\Rightarrow} \operatorname{\mathsf{Exp}} + \operatorname{\mathsf{Id}} * \operatorname{\mathsf{Id}} \overset{4}{\Rightarrow} \operatorname{\mathsf{Id}} + \operatorname{\mathsf{Id}} * \operatorname{\mathsf{Id}}$$

We can already observe that, since G_{Exp} is *context-free*, all the derivations it generates have a particular shape: they consist, at each step, in *replacing one variable by a word over* $(\Sigma \cup V)^*$. This peculiarity of CFGs allows us to define new notions: the *leftmost* and *rightmost derivations*, the *derivation trees* and the notion of *ambiguity*.

Leftmost and rightmost derivations Although the sequence (4.1) of derivations above is sufficient to prove that ld + ld * ld is accepted by G_{Exp} , other sequences could be exhibited. Indeed, recall that there is some amount of *non-determinism* in the definition of the language of a grammar (Definition 3.6): there should exist *at least one* derivation producing the word to be accepted. Other sequences of derivations producing ld + ld * ld are:

$$\operatorname{Exp} \stackrel{2}{\Rightarrow} \operatorname{Exp} * \operatorname{Exp} \stackrel{1}{\Rightarrow} \operatorname{Exp} + \operatorname{Exp} * \operatorname{Exp} \stackrel{4}{\Rightarrow} \operatorname{Id} + \operatorname{Exp} * \operatorname{Exp} \stackrel{4}{\Rightarrow} \operatorname{Id} + \operatorname{Id} * \operatorname{Exp} \stackrel{4}{\Rightarrow} \operatorname{Id} + \operatorname{Id} * \operatorname{Id} * \operatorname{Id}$$
 (4.3)

Such sequences are called *rightmost* and *leftmost* respectively, because we have obtained them by always deriving the rightmost and leftmost variable in the all sentential forms. On the other hand, (4.1) is neither leftmost nor rightmost: at the second step, we have derived the leftmost variable; at the third step, we have derived a variable Exp which was neither leftmost nor rightmost; and at the fourth step we have derived the rightmost variable.

Here is the formal definition capturing these intuitions:

Definition 4.1 (Left- and right-most derivation). Let $G = \langle V, T, P, S \rangle$ be a context-free grammar. A derivation $w \ S \ w' \Rightarrow w \ \alpha \ w'$ of G which is obtained by applying $S \rightarrow \alpha$ is *leftmost* iff: $w \in T^*$. It is *rightmost* iff: $w' \in T^*$.

That is, in a leftmost derivation, one can replace variable S by α in w S w', yielding derivation w S w' \Rightarrow w α w' if and only if w contains only terminals (i.e., no variable, otherwise, the derivation would not be leftmost). Symmetrically for a rightmost derivation, where w' must contain only terminals.

Derivation tree Another way to prove that a given word belongs to the language of a grammar is to exhibit a *derivation tree* for this word. The idea behind the derivation tree is similar to the intuition we have given in the introduction that a rule like $S \rightarrow \alpha_1 B \alpha_2$ can be interpreted as 'match α_1 ; then a string that can be generated by B; then α_2 ', which suggests a recursive definition of the acceptance of a word. Such a recursive view can easily be expressed by means of a tree:

This tree can then be completed up to the point where the leaves contain only terminals.

Leftmost and rightmost derivations are important because they are the ones which will be generated by the parsers we will define in Chapter 5. Selecting the left- or right-most derivation allows somehow to get rid of a part of the grammar's non-determinism, which is exactly what we need when we build a program (which must be deterministic).

Example 4.2. Let us illustrate this idea by a more concrete example. Consider again the grammar G_{Exp} in Figure 4.4, and the word $\mathsf{Id} + \mathsf{Id} * \mathsf{Id}$. Then, a derivation tree of this word is given in Figure 4.5.

From this example, it is easy to determine the characteristics of a derivation tree for a word w. Its root must be labelled by the start symbol S of the grammar; the children of each node must correspond to the right-hand side of a rule whose left-hand side is the label of the node; and the sequence of leaves from left to right must be the word w. Here is a more formal definition:

Definition 4.3 (x-tree). Let $G = \langle V, T, P, S \rangle$ be a CFG, and let $x \in V \cup T$ be either a variable or a terminal of G. Then, an *ordered*³, *labelled* tree \mathcal{T} is an x-tree iff:

- 1. either $x \in T$ and \mathcal{T} is a leaf labelled by x; or
- 2. $x \in V$ is the label of \mathcal{T} 's root; and there is a rule $x \to \alpha_1 \alpha_2 \cdots \alpha_k$ in P s.t. the sub-trees of \mathcal{T} are $\mathcal{T}_1, \mathcal{T}_2, \ldots, \mathcal{T}_k$ where \mathcal{T}_i is an α_i -tree for all $1 \le i \le k$.

Then, we can define what is a derivation tree for a given word w:

Definition 4.4 (Derivation tree). Given a CFG $G = \langle V, T, P, S \rangle$, a tree \mathcal{T} is a *derivation tree* of w iff \mathcal{T} is an S-tree and w is obtained by traversing \mathcal{T} 's leaves from the left to the right.

As we will see in the next chapter, derivation trees are a most important tool in compiler construction. Very often, the output of the parser will be a derivation tree (possibly with some extra information as we will see later). Indeed, the structure of the derivation tree provides us with more information on the structure of the input word than a derivation does. For example, the derivation tree in Figure 4.5 reveals a possible structure for the expression Id + Id * Id, and suggests that it should be understood as the sum of Id and Id * Id. In other word, the structure of the tree suggests that the semantics of the expression corresponds to that of Id + (Id * Id) which indeed matches the priority of the arithmetic operators. Such information will clearly be important for the *synthesis phase* of compiling, where the executable code corresponding to the expression will be created.

Ambiguities We have seen before that a given word might be derived using several different derivations (which has prompted us to introduce the notions of leftmost and rightmost derivations). One natural question is thus whether there can be different *derivation trees* for the same word? The answer is yes, as can be seen in Figure 4.6.

Contrary to the tree in Figure 4.5, this tree suggests that the expression Id+Id*Id should rather be understood as (Id+Id)*Id, instead of Id+(Id*Id). This is rather unfortunate: were such a tree returned by the parser, the code generated by the synthesis phase would not correspond to the actual priority of the operators. The question is then: 'how can we decide, based

Figure 4.5: A derivation tree for the word Id + Id * Id.

³ An ordered tree is a tree in which we have fixed a total order on the children of all nodes. So, one can speak of the first, second,..., last child of a node. A particular case of ordered trees are the classical binary trees, where the first and second children are called left child and right children respectively.

⁴ See Section 1.3.1 for the different phases of the compiling process and their relative connections.

Figure 4.6: Another derivation tree for the word Id + Id * Id.

only on the grammar G_{Exp} (Figure 4.4) which derivation tree should be generated for $\mathsf{Id} + \mathsf{Id} * \mathsf{Id}$?' Unfortunately, the answer is 'we can't!', because the grammar does not contain any information about the priority of the operators. In other words, the grammar is intrinsically *ambiguous*:

Definition 4.5 (Ambiguous grammar). A CFG is *ambiguous* iff it generates at least one word which admits two different derivation trees.

Example 4.6. As witnessed by Figure 4.5 and Figure 4.6, grammar G_{Exp} (Figure 4.4) is ambiguous.

For the reason explained above, ambiguous grammars will be a big issue when generating parsers. We will see, in Section 4.4, techniques to turn an ambiguous grammar into a non-ambiguous one, that accepts the same language, by taking into consideration extra information such as the priority and associativity of the operators.

Relationship between derivations and derivation trees So far, we have seen two mathematical tools that allow to show that a given word w belongs to the language of a grammar G: either by exhibiting a derivation of G that generates w, or by giving a derivation tree of w for G. A natural question is thus to understand the relationship between derivations and derivation trees. Roughly speaking, this relationship is a one-to-many one: to each derivation tree of w correspond potentially several derivations producing w, while each derivation of w corresponds to one and only one derivation tree.

To make this intuition more formal, consider again the derivation tree in Figure 4.5. We call a *top-down traversal* of a tree any sequence of the tree's internal nodes s.t. each time a node occurs in the sequence, all its ancestors have occurred before. As an example, consider the tree in Figure 4.7, which is the same derivation tree as in Figure 4.5, with all internal nodes labelled by their index in a top-down traversal: first the root, then the right son of the root, then the left son of this last node, etc.

It is easy to check that this top-down traversal corresponds to the following derivation:

$$Exp \Rightarrow Exp + Exp \Rightarrow Exp + Exp * Exp$$

 $\Rightarrow Exp + Id * Exp \Rightarrow Id + Id * Exp \Rightarrow Id + Id * Id$

This derivation has been obtained by following the sequence of internal nodes corresponding to the top-down traversal, and applying, each time, the derivation which has been used in the tree to generate the sons of this node.

Then, it is clear that all derivations corresponding to a given derivation tree are those that can be obtained by a top-down traversal of this tree. In particular, the leftmost-derivation is obtained by the classical infix traversal, and the rightmost-derivation is obtained by the infix traversal where the left and right sons have been swapped (the right son is visited before the left one).

Figure 4.7: The derivation tree for Id + Id * Id of Figure 4.5 with a top-down traversal indicated by the position of each node in the sequence

The membership problem 4.1.2

We close this section on CFGs by discussing the membership problem, when specialised to such grammars. It is defined as follows:

Problem 4.7. Given a CFG G on the alphabet Σ and a word $w \in \Sigma^*$, determine whether $w \in L(G)$.

Clearly, this problem is central to the construction of compilers: if, as explained in the Introduction, we specify the syntax of a programming language by means of a CFG, then, checking whether the syntax of a given program is correct boils down to check whether this program (actually, the sequence of tokens that compose it) belongs to the language of the grammar.

We will now show that checking whether a word w is in L(G) can always be done in time $\mathcal{O}(n^3)$ and memory $\mathcal{O}(n^2)$ where n = |w|, and when G is a CFG. To achieve this result, we first need a very convenient transformation of CFGs, which is called the *Chomsky normal form*.

The Chomsky normal form The Chomsky normal form is a simple syntactic restriction that can be applied to all CFGs, in the sense that all CFGs can be converted into an equivalent CFG (one that accepts the same language) respecting the normal form. As expected, this special form was introduced⁵ by...Noam CHOMSKY (in 1959). Here is the definition:

Definition 4.8 (Chomsky normal form for CFG). A CFG $G = \langle V, T, P, S \rangle$ is in Chomsky normal form (CNF for short) iff every rule is of one of the following forms

$$A \rightarrow BC$$
$$A \rightarrow a$$
$$S \rightarrow \varepsilon$$

where:

- *A* is any variable (including *S*): $A \in V$;
- *B* and *C* are any variable different from the start symbol: $\{B, C\} \subseteq V \setminus \{S\}$; and
- a is any terminal (i.e., different from ε): $a \in T$.

Roughly speaking, all the rules in the grammar either replace one variable A by a sequence of exactly two variables BC (that are different from the start symbol); or replace a variable A by a single non-empty terminal a. The only exception to this rule is that the start symbol S can generate ε : this is necessary to ensure that the empty word can be accepted by a grammar in CNF (and this also explains why we do not allow S to occur in any right-hand part).

As announced above, we can build, from all CFGs an equivalent one which is in CNF:

news, as it suggests that parsing can actually be carried out efficiently. After all, we have all learned that polynomial-time algorithms are efficient, haven't we? However, assume that we want to check the syntax of a program with $10,000 = 10^4$ tokens (probably a few thousands of lines of code). Then, the syntax check would need 1012 steps. Assume each of these steps can be carried out in 10^{-6} sec, i.e. $1\mu \mathrm{sec}$. Then, checking the syntax of this input would already take more than 11 days! Whereas a quadratic algorithm would run in less than two minutes, and a linear time algorithm would take a few milliseconds. As a matter of fact, we will see how to craft efficient (lineartime) parsers in Section 5, for certain kinds

This complexity sounds like good

⁵ Noam Chomsky. On certain formal properties of grammars. Information and Control, 2(2):137 - 167, 1959. DOI: 10.1016/S0019-9958(59)90362-6

Theorem 4.1. For all CFGs G, we can build, in polynomial time, a CFG G'in CNF s.t. L(G) = L(G').

We will not prove this theorem. A formal proof can be found in CHOM-SKY's original paper⁶, but we recommend the construction that can be found in M. SIPSER's book⁷ on complexity. Let us highlight the main point of the transformation through an example.

Example 4.9. Consider the grammar given in Figure 4.8. It is clearly not in CNF. To turn it into an equivalent CFG in CNF, we first take care of the socalled *unit rules*, i.e. rules like $A \rightarrow B$ where the right-hand side contains just one variable. We can remove rule $A \rightarrow B$ provided we add the rule:

$$S \rightarrow aBB$$
,

since $S \rightarrow aAB$ is the only rule where A occurs in the right-hand side. Then, we get rid of $A \rightarrow \varepsilon$ by deleting A from all right-hand side where it still occurs (since ε is now the only way to derive A). Thus, our grammar has now become:

$$\begin{array}{cccc} (1) & S & \rightarrow & aB \\ (2) & S & \rightarrow & aBB \\ (3) & B & \rightarrow & aBc \\ (4) & B & \rightarrow & d \end{array}$$

This is not yet satisfactory! As a matter of fact, only the last rule complies with the definition of CNF. We can transform the other rules by introducing a limited amount of variables. Then, $S \rightarrow aB$ becomes:

$$S \rightarrow V_1 B$$

 $V_1 \rightarrow a$

where V_1 is a fresh variable. Similarly, $S \rightarrow aBB$ becomes:

$$S \to V_1 V_2$$
$$V_2 \to BB$$

and $B \rightarrow aBc$ becomes:

$$B \rightarrow V_1 V_3$$

 $V_3 \rightarrow BV_4$
 $V_4 \rightarrow c$.

The final grammar, which is now in CNF is given in Figure 4.9.

Checking language membership of CFGs Equipped with the notion of CNF, we can now describe a polynomial-time algorithm to check whether a given word w belongs to the language of a given CFG $G = \langle V, T, P, S \rangle$, that we assume to be in CNF (recall that, if the given CFG is not in CNF, we can obtain an equivalent CFG which is in CNF, in polynomial time—see Theorem 4.1).

Let us first sketch some intuitions. We observe that, thanks to the special syntax of production rules in CNF grammars, checking membership is particularly easy for words of length 0 or 1. Indeed:

⁷ Michael Sipser. Introduction to the Theory of Computation. International Thomson Publishing, 1st edition, 1996. ISBN 053494728X

(1)	S	\rightarrow	a AB
(2)	A	\rightarrow	B
(3)	A	\rightarrow	ε
(4)	B	\rightarrow	$\mathtt{a}B\mathtt{c}$
(5)	B	\rightarrow	d

Figure 4.8: A CFG which is not in CNF.

Figure 4.9: A CFG in CNF that corresponds to the CFG in Figure 4.8.

⁶ Noam Chomsky. On certain formal properties of grammars. Information and Control, 2(2):137 - 167, 1959. DOI: 10.1016/S0019-9958(59)90362-6

- The only word of length 0 is $w = \varepsilon$. Since $S \to \varepsilon$ is the only rule that can appear with an ε on the right-hand side, we conclude that $\varepsilon \in L(G)$ iff $S \to \varepsilon$ appears in P.
- Similarly, a word w of length 1 is a single terminal a. Again, w = a is accepted iff the grammar has a rule S→a. Indeed, if S→a is a rule of G, it is clear that G accepts a = w. On the other hand, if S→a is not a rule of G, then there is no way G can accept a = w, since all other rules with S as the left-hand side are either of the form S→b, with b≠a; or of the form S→AB and will thus generate words of length at most 2.

The second item of the above reasoning can be generalised: we can check whether any variable $A \in V$ can generate a word w = a of length 1 simply by checking whether the grammar has a rule $A \rightarrow a$ or not.

Now, let us turn our attention to the following more general problem: checking whether some given variable A can generate a given word w = $w_1 w_2 \cdots w_n$ for $n \ge 2$? Clearly, if we can answer that question, then we will be able to answer the membership problem, simply by letting A = S. We will base our reasoning on an intuition that we have already given: that a rule $A \rightarrow \alpha$ of a CFG can be regarded as a recursive function A which performs a series of calls as given by α . In the setting of CNF grammars, all 'recursive' rules are of the form $A \rightarrow BC$, hence they correspond to two successive 'recursive' calls. In other words, a variable A can generate w iff we can find a rule $A \rightarrow BC$ and we can split w into two non-empty subwords u and v (i.e., w = uv) s.t.: (i) B generates u; and (ii) C generates v. Observe that this recursive definition is sound since u and v are both nonempty, and thus have necessarily a length which is strictly smaller than n. So eventually, this definition will amount to check whether all characters of the word w can be generated by some variables, which can be done easily as we have observed above.

Clearly, this discussion suggests a recursive procedure for checking membership of a word w to L(G). However, such a procedure could run in exponential time. In order to avoid this, we will rely on the very general idea of *dynamic programming*. In our case, dynamic programming consists in storing in a (quadratic) table the result of the procedure when called on all the possible sub-strings of w. By filling this table following a smart order, we will manage to keep the computing time polynomial. Basically, we will first fill in the table for the shortest substrings of w (i.e., the individual letters), then use this information to deduce whether we can accept longer and longer substrings... up to the whole word w itself.

More precisely, we will build a table Tab of dimension $n \times n$ s.t. each cell Tab(i,j) will contain the list of all variables that can generate the sub-word $w_i \cdots w_j$. Formally, $A \in \mathsf{Tab}(i,j)$ iff $A \Rightarrow^* w_i \cdots w_j$. When this table is complete, checking whether $w \in L(G)$ amounts to checking whether the start symbol can generate $w_1 \cdots w_n$, i.e. whether $S \in \mathsf{Tab}(1,n)$.

As explained above, we start by filling the cells that correspond to the individual letters making up $w = w_1 w_2 \cdots w_n$. For all $1 \le i \le n$, we put variable A in Tab(i,i) iff the rule $A \to w_i$ occurs in the grammar.

Then, we fill the cells corresponding to subwords of length ℓ for increasing values of $\ell=2,3,\ldots$ Assuming all the cells for subwords of length $<\ell$

Dynamic programming is a general algorithmic technique, defined by Wikipedia as 'a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions - ideally, using a memory-based data structure'. It has been introduced by Richard Bellman in the forties. This technique occurs in many classical algorithms such as the Bellman-Ford and Floyd-Warshall algorithms to compute shortest paths in a graph.

```
Input: A CFG G = \langle V, T, P, S \rangle (in CNF), a word
          w = w_1 w_2 \cdots w_n \in T^*.
Output: True iff w \in L(G).
if w = \varepsilon then
     if S \rightarrow \varepsilon \in P then return True;
     else return False;
foreach 1 \le i \le n do
 Tab(i, i) \leftarrow \{A \mid A \rightarrow w_i \in P\};
foreach 1 \le \ell \le n do
     foreach 1 \le i \le n - \ell + 1 do
          j \leftarrow i + \ell - 1;
          foreach i \le k \le j-1 do
               foreach rule A \rightarrow BC \in P do
                    if B \in \mathsf{Tab}(i, k) and C \in \mathsf{Tab}(k + 1, j) then
                         Add A to Tab(i, j);
```

if $S \in \mathsf{Tab}(1, n)$ then return True;

else return False:

Algorithm 3: An $\mathcal{O}(n^3)$ algorithm to check whether $w \in L(G)$ for a CFG grammar in CNF.

have been filled, we fill the cells corresponding to some subword $w_i \cdots w_i$ of length ℓ as follows. We put variable A in Tab(i, j) iff there is a rule $A \rightarrow BC$ in the grammar, and a split position $i \le k < j$ s.t. $B \in \mathsf{Tab}(i, k)$ and $C \in \mathsf{Tab}(k+1,j)$ (i.e., iff B can generate the suffix $w_i \dots w_k$ and C can generate the suffix $w_{k+1} \cdots w_i$, which we can test by querying the corresponding cells of the table). The algorithm that implements this procedure is given in Algorithm 3, following the presentation of Sipser⁸.

Example 4.10. Let us consider the grammar in Figure 4.10, which is in CNF. One can check that this grammar accepts the language a⁺b. Observe in particular that the word w = aaab can be accepted by two different derivations:

$$S \Rightarrow XB \Rightarrow XAB \Rightarrow XAAB \Rightarrow aAAB \Rightarrow aaAB \Rightarrow aaaB \Rightarrow aaab$$

and

$$S \Rightarrow X'B \Rightarrow AYB \Rightarrow AAAB \Rightarrow aAAB \Rightarrow aaAB \Rightarrow aaaB \Rightarrow aaab$$
.

So, in particular, the subword $w_1w_2w_3$ = aaa can be generated either by X or by X'.

Let us now apply the above algorithm on word w = aaab, and fill a 4×4 table Tab (since our word w is of length 4). We will actually only fill the cells Tab[i, j] s.t. $i \le j$ because there is no subword starting in i and ending in j with i > j. Observe that we are interested in checking whether $S \in$ Tab[1,4], which is the top right cell of the table. We proceed by increasing length of subwords:

⁸ Michael Sipser. Introduction to the Theory of Computation. International Thomson Publishing, 1st edition, 1996. ISBN 053494728X

(1)	S	\rightarrow	XB
(2)		\rightarrow	X'B
(3)	X	\rightarrow	XA
(4)		\rightarrow	a
(5)	X'	\rightarrow	AY
(6)	Y	\rightarrow	AA
(7)	A	\rightarrow	a
(8)	B	\rightarrow	b

Figure 4.10: An example CNF grammar generating a+b.

1	2	3	4	
A,X				1
	A,X			2
		A,X		3
			В	4

• For the subwords of length 2, we consider the subwords $w_1w_2 = aa$, $w_2w_3 = aa$ and $w_3w_4 = ab$. The only way to split these subwords is 'in the middle', i.e. w_1w_2 is split into w_1 and w_2 for example. So, we will fill in Tab[1,2] using the information of Tab[1,1] = A, X and Tab[2,2] = A, X. To exploit this information, we need to find a variable V_1 in Tab[1,1], and a variable V_2 in Tab[2,2] s.t. the grammar has a rule of the form $V \rightarrow V_1V_2$. In this case, we can add V to Tab[1,2]. There are two such choices for V_1 and V_2 . Either we let $V_1 = X$, $V_2 = A$ and consider the rule $Y \rightarrow AA$. Observe that indeed, X and Y can both generate A. Continuing so for the other cells corresponding to subwords of length 2, we have:

• For the words of length 3, we consider $w_1w_2w_3 = \text{aaa}$ and $w_2w_3w_4 = \text{aab}$. We can recognise $w_1w_2w_3$ by splitting it into w_1 and w_2w_3 ; or into w_1w_2 and w_3 . Let us first consider the case where we split into $w_1 = \text{a}$ and $w_2w_3 = \text{aa}$. By Tab[1, 1], we know that w_1 can be generated either by A or by X. By Tab[2, 3], w_2w_3 can be generated either by X or by Y. The only rule that allows us to fill Tab[1, 3] in this case is $X' \rightarrow AY$, so $w_1w_2w_3 = \text{aaa}$ can be generated by X'. In the latter case (where we split into w_1w_2 and w_3), we use rule $X \rightarrow XA$ and discover that X can generate $w_1w_2w_3 = \text{aaa}$ as well. We proceed similarly for $w_2w_3w_4 = \text{aab}$, and obtain:

• Finally, for the single subword of length 4, which is w itself, we need to consider three possible splits: either into w_1 and $w_2w_3w_4$; or into w_1w_2 and w_3w_4 ; or into $w_1w_2w_3$ and w_4 . Only the last split will yield

a new piece of information into Tab[1,4], since $w_1w_2w_3$ can be generated either by X or by X' and w_4 can be generated by B. Then, both rules $S \rightarrow XB$ and $S \rightarrow X'B$ allow us to conclude that S can generate w:

1	2	3	4	
A, X	X, Y	X, X' X, Y A, X	S	1
	A, X	X, Y	S	2
		A, X	S	3
			B	4

4.2 Pushdown automata

Let us now define formally the notion of *pushdown automaton* (PDA for short) that we have described informally in the introduction of this chapter. Remember that, in essence, a PDA is a finite state automaton augmented with a stack that serves as a memory: at each transition, the automaton can test the value on the top of the stack, and modify (push, pop) this top of stack.

4.2.1 Syntax and semantics

Syntax The formal definition of the syntax of PDA clearly shows that they are an extension of finite automata:

Definition 4.11 (Pushdown automaton). A *Pushdown automaton* (PDA for short) is a tuple $\langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$ s.t.:

- 1. *Q* is a finite set of states;
- 2. Σ is a finite input alphabet;
- 3. Γ is a finite stack alphabet;
- 4. $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to 2^{(Q \times \Gamma^*)}$ is the transition function;
- 5. q_0 is the initial state;
- 6. $Z_0 \in \Gamma$ is the initial symbol on the stack;
- 7. $F \subseteq Q$ is the set of accepting states.

Clearly, the elements Q, Σ , δ and F were already present in the definition of finite automaton. Γ is the stack alphabet: it contains all the symbols that can be pushed on the stack (in practice, we can thus store on the stack symbols that are not taken from the input, i.e., not in Σ). Z_0 is a symbol that we assume will always be present on the stack initially. This will be important to have a clean definition of operations that test whether the stack is empty or not. Finally, observe that δ has a different signature: it takes, as input, the current state and the next symbol on the input (as in a finite automaton), but also a stack symbol, which is meant to be the symbol on the top of the stack. It outputs a set of pairs of the form (q, w),

where q is a destination state (as in a non-deterministic finite automaton) and w is a word from Γ^* that will replace the symbol on the top of the stack after the transition has been fired. So, intuitively:

$$\delta(q, a, b) = \{(q_1, \gamma_1), \dots, (q_n, \gamma_n)\}\$$

means:

When in state q, reading a from the input, and having b on the top of the stack, chose non-deterministically a pair (q_i, γ_i) , move to q_i , and replace bon the top of the stack by γ_i (where the leftmost letter of w_i goes on the top).

Before making this definition of the transition function more formal, let us give an example of PDA following this syntax. Such an example can be found in Figure 4.11. In order to depict the translation relation, we draw an arrow between q and q', labelled by a, b/w iff $(q', w) \in \delta(q, a, b)$, i.e. we can go from q to q' while reading an a on the input, seeing a b on the top of the stack, and replacing this b by w. In other words, in this example, we have:

This syntax might look hard to read and is indeed way less intuitive than the classical 'pop' and 'push'. It allows, however, a very clean definition of the semantics of PDAs, as we will see

- 1. $Q = \{q_0, q_1, q_2\};$
- 2. $\Sigma = \{0, 1, \#\};$
- 3. $\Gamma = \{0, 1, Z_0\};$
- 4. $F = \{q_2\};$
- 5. and the transition function is as follows:

_	i/t		0	1	Z_0
-	0		$\{(q_0,00)\}$	$\{(q_0,01)\}$	$\{(q_0, 0Z_0)\}$
$\delta(q_0, i, t) = \frac{1}{2}$	1		$\{(q_0, 10)\}$	$\{(q_0,11)\}$	$\{(q_0, 1Z_0)\}$
_	#		$\{(q_1,0)\}$	$\{(q_1,1)\}$	$\{(q_1, Z_0)\}$
	ε		Ø	Ø	Ø
	i	/ t	0	1	Z_0
		0	$\{(q_1,\varepsilon)\}$	Ø	Ø
$\delta(q_1,i,t)$ =	=	1	Ø	$\{(q_1,\varepsilon)\}$	Ø
		#	Ø	Ø	Ø
		ε	Ø	Ø	$\{(q_2, Z_0)\}$

and $\delta(q_2, t, i) = \emptyset$ for all $t \in \Gamma$, $i \in \Sigma$.

 $0, Z_0 / 0 Z_0$ $1, Z_0/1Z_0$ 0,0/00 1,0/10 0,1/01 $0.0/\varepsilon$ $\#, Z_0/Z_0$ 1,1/11 $1,1/\varepsilon$ #,0/0 #,1/1 ε , Z_0/Z_0

Figure 4.11: An example PDA recognising $L_{pal\#}$ (by accepting state).

With the intuitive definition of the semantics we have sketched, one can understand that the self-loop on state q_0 consists in pushing all 0 and 1 read from the input. Indeed, whenever a 0 is read, the automaton systematically tests for all possible characters x (that can be either 0 or 1 or Z_0) on the top of the stack, and replaces it by 0x, which amounts to pushing a 0 (and symmetrically when a 1 is read). The PDA moves from state q_0 to q_1 only when a # is read on the input, and does not modify the stack in this case. Then, the self-loop on q_1 consists, when reading a 0, in checking that the top of the stack is indeed a 0 too, and replacing it by ε , i.e., popping the 0 (and, again, symmetrically when a 1 is read). So the self-loop on q_1 pops all the stack content while checking that the characters that are popped correspond to the symbol read on the input. Because of the LIFO properties of the stack, this amounts to checking that the suffix of the input word that occurs after the # is the mirror image of the prefix that occurs before the #. Finally, the PDA moves to the accepting state q_2 only when the stack is empty, which guarantees that the mirror image of the whole prefix had been found in the suffix. Hence, the automaton indeed recognises $L_{pal\#}$. Let us make these notions more precise by formally defining the semantics of PDAs.

Configuration of a PDA As for finite automata, a *configuration* of a PDA describes the situation in which the different components of the automaton are while it is busy reading a word. In the case of a PDA, this configuration contains the following information:

- 1. the current state (an element from *Q*);
- 2. the remaining input word $w \in \Sigma^*$; and
- 3. the current content of the stack (an element from Γ^*).

This is exactly captured by the following definition:

Definition 4.12 (Configuration of a PDA). A *configuration* of a PDA $\langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$ is a triple

$$\langle q, w, \gamma \rangle \in Q \times \Sigma^* \times \Gamma^*$$
.

8

In particular, the *initial configuration* when reading w is $\langle q_0, w, Z_0 \rangle$, i.e., initially, the current state is q_0 , w is on the input and Z_0 is on the stack.

Configuration change Let us now formally define how a PDA can move from one configuration to another. As for finite automata, we use the $c \vdash_P c'$ notation to denote the fact that the PDA P can move from configuration c to configuration c'. Thanks to the syntax introduced in Definition 4.11, the definition of \vdash is very simple:

Definition 4.13 (Configuration change of a PDA). Let us consider a PDA $P = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$. Then, we say that P can move from configuration $\langle q, aw, X\beta \rangle$ to configuration $\langle q', w, \alpha\beta \rangle$ (with $a \in \Sigma \cup \{\epsilon\}$, and $X \in \Gamma$) iff there is $(q', \alpha) \in \delta(q, a, X)$. In this case, we write:

$$\langle q, aw, X\beta \rangle \vdash_{\mathbf{P}} \langle q', w, \alpha\beta \rangle.$$

We have silently assumed that, to accept a word, a PDA must reach an accepting state, as in the case of finite automata. While this is sufficient for the intuitive examples we are discussing for the moment, bear in mind that we will later refine this notion by defining two kinds of acceptance conditions for PDAs.

500

Let us elucidate this definition to ensure that it captures the intuition we have sketched so far. The original configuration is $\langle q, aw, X\beta \rangle$, where a is a single input letter, or ε ; and X is a stack symbol. Let us assume for the moment that $a \neq \varepsilon$. Thus, in the original configuration $\langle q, aw, X\beta \rangle$, the remaining input is non-empty and begins by letter a. Moreover, symbol X is on the top of the stack, and the PDA is in state q. Thus, we should consider $\delta(q, a, X)$, that contains all the possible moves⁹ that the PDA can do in this configuration. All these possible moves are pairs (q', α) , where q' is the destination state and α is the sequence of symbols that should replace *X* on the top of the stack after the transition. Thus, the resulting configuration is obtained from $\langle q, aw, X\beta \rangle$ by: (i) changing the current state from q to q'; (ii) reading the a at the beginning of the input, hence only w remains; and (iii) popping the X from the stack and pushing α instead. Thus, the resulting configuration is indeed $\langle q', w, \alpha \beta \rangle$. We can now check that the intuition still works when $a = \varepsilon$. Indeed, in this case, $aw = \varepsilon \cdot w = w$, and the input word is thus not modified by the transition.

Note that, when the PDA is clear from the context, we might omit the subscript on \vdash . We also denote by \vdash_p^* (or, simply, \vdash^*) the reflexive and transitive closure \bullet of \vdash .

Example 4.14. Consider for instance the PDA in Figure 4.11, and the input word $01\#10 \in L_{pal\#}$. The initial configuration on this input word is $(q_0, 01\#10, Z_0)$. One can check against the definition of \vdash that:

$$(q_0, 01#10, Z_0) \vdash (q_0, 1#10, 0Z_0)$$

because $\delta(q_0, 0, Z_0) = \{(q_0, 0Z_0)\}\$

One can further check that the following sequence of configurations can be visited by the PDA until the input is empty:

$$(q_0,01\#10,Z_0)\vdash (q_0,1\#10,0Z_0)\vdash (q_0,\#10,10Z_0)\vdash (q_1,10,10Z_0)\vdash (q_1,0,0Z_0)\vdash (q_1,\varepsilon,Z_0)\vdash (q_2,\varepsilon,Z_0).$$

Hence, we can write that:

$$(q_0,01#10,Z_0)\vdash^* (q_2,\varepsilon,Z_0)$$

5

Accepted language Equipped with this notion, we can now define which words are accepted by a PDA. As said above, we will actually define two notions of accepted languages. Indeed, one very natural notion of acceptance for PDAs is obtained by adapting the definition we have adopted for finite automata: a word w is accepted iff there is at least one run reading this word and reaching a final state. However, as shown by the example in Figure 4.11, another natural notion of acceptance for PDAs is to accept a word when the stack is empty. Intuitively, in many cases, the stack is used as a memory to store some sort of input that still must be treated, so, it is reasonable to accept a word as soon as this pending input is empty. These two notions are captured by the following definition:

9 Thus, as said above, PDAs can be nondeterministic.

Definition 4.15 (Accepted languages of a PDA). Let us consider a PDA $P = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$. Then:

1. Its *final state accepted language*, denoted L(P) is:

$$L(P) = \{ w \mid \text{there are } q \in F \text{ and } \gamma \in \Gamma^* \text{ s.t. } \langle q_0, w, Z_0 \rangle \vdash_p^* \langle q, \varepsilon, \gamma \rangle \}$$

2. Its *empty stack accepted language*, denoted N(P) is:

$$N(P) = \{w \mid \text{there is } q \in Q \text{ s.t. } \langle q_0, w, Z_0 \rangle \vdash_{\mathbf{p}}^* \langle q, \varepsilon, \varepsilon \rangle \}$$

In other words:

- 1. A word w is in L(P) (i.e., it is accepted by final state) iff, from the initial configuration $\langle q_0, w, Z_0 \rangle$ where w is in the input, one can find an execution reaching a configuration $\langle q, \varepsilon, \gamma \rangle$ where w has been read entirely and the current state q is accepting ($q \in F$). Observe that the stack does not need to be empty for w to be accepted (γ is any word in Γ^*).
- 2. On the other hand, a word w is in N(P) (i.e., it is accepted by empty stack) iff, from the initial configuration $\langle q_0, w, Z_0 \rangle$, one can find an execution reaching a configuration $\langle q, \varepsilon, \varepsilon \rangle$ where w has been read entirely and the stack is empty (observe that, in this case, the current state q does *not* need to be final: $q \in Q$).

Example 4.16. Considering again the sequence of transitions from Example 4.14:

$$(q_0,01#10,Z_0)\vdash^* (q_2,\varepsilon,Z_0)$$

we deduce that $01\#10 \in L(P)$, where P is the PDA in Figure 4.11, because, q_2 is an accepting state, and the input is empty in the last configuration. Observe that the stack is *not* empty, but this is not necessary for a word to be in L(P).

Now consider a PDA P' obtained from P by deleting state q_2 , and adding, on q_1 a self-loop transition labelled by ε , Z_0/ε , i.e. a transition that empties the stack once the Z_0 symbol occurs on the top; and where there are no more accepting states. This PDA is shown in Figure 4.12. Then, we have:

$$(q_0,01\#10,Z_0)\vdash_{\mathbf{p}'}^*(q_1,\varepsilon,\varepsilon)$$

i.e., there is an execution of the PDA that reaches $(q_1, \varepsilon, \varepsilon)$ where the stack is empty (but where q_1 is not accepting). This entails that: $01\#10 \in N(P')$.

Observe, however that $01\#10 \not\in N(P)$, because P never empties its stack; neither that $01\#10 \not\in L(P')$ because P' has no accepting state. That is, we can show that $L(P) = N(P') = L_{pal\#}$, and that $L(P') = N(P) = \emptyset$.

Deterministic PDAs

When considering finite state automata, we have shown that ε -NFAs and DFAs are *equivalent* in the sense that any ε -NFA can always be turned into

Figure 4.12: An example PDA recognising $L_{pal\#}$ (by empty stack).

a DFA that accepts the same language. Is it the case for PDAs? Unfortunately, the answer is 'no': there are some non-deterministic PDAs that cannot be turned into an equivalent deterministic one. Let us give an ex-

Consider the language L_{pal} , which is obtained from $L_{pal\#}$ by *deleting the* # in all words. Formally:

$$L_{val} = \{w w^R \mid w \in \{0, 1\}^*\}$$

Thus, for instance, $010010 \in L_{pal}$, but $0100 \notin L_{pal}$.

Now, let us consider again the PDA in Figure 4.11, which recognises $L_{pal\#}$. Intuitively, the presence of the # symbol in the middle of all words in $L_{pal\#}$ 'makes the life of the PDA easier' because it marks the end of the prefix w, and 'tells' the PDA when to move to state q_1 where it should start popping from the stack. Unfortunately, this feature is not present anymore in the words of L_{pal} , so a PDA recognising this language (whether by accepting state of by empty stack), cannot determine when the prefix of the palindrome has been read. Instead, it must 'guess' it, i.e., by using nondeterminism. This yields the PDA in Figure 4.13 (a similar PDA accepting L_{pal} by empty stack can be obtained from the PDA in Figure 4.12).

Figure 4.13: An non-deterministic PDA recognising L_{pal} (by accepting state).

Clearly, the PDA in Figure 4.13 is non-deterministic, because the transition from q_0 to q_1 does not consume any character on the input, so it can be fired any time. As an example, from the initial configuration $(q_0, 0110, Z_0)$, the two following successors are possible:

$$(q_0,0110,Z_0) \vdash (q_0,110,0Z_0)$$

and
 $(q_0,0110,Z_0) \vdash (q_1,0110,Z_0)$

Moreover, in the latter case, the only possible next configuration change is:

$$(q_1,0110,Z_0)\vdash (q_2,0110,Z_0),$$

i.e., state q_2 is reached without modification of the stack, and the input is not empty. From this configuration (q_2 ,0110, Z_0), no other configuration is reachable, hence, this run of the automaton will not accept the word 0110. Nevertheless, 0110 is accepted by the PDA in Figure 4.13, with the next sequence of transitions (that corresponds, as expected, to pushing the prefix 01 and popping the suffix 10):

$$(q_0,0110,Z_0)\vdash (q_0,110,0Z_0)\vdash (q_0,10,10Z_0)\vdash (q_1,10,10Z_0)\vdash (q_1,0,0Z_0)\vdash (q_1,\varepsilon,Z_0)\vdash (q_2,\varepsilon,Z_0).$$

Now that we have understood why non-determinism is crucial to let the PDA in Figure 4.13 accept L_{pal} , let us try and understand why there is no *deterministic* PDA that accepts it. First, let us define this last notion:

Definition 4.17 (Deterministic Pushdown automaton). A *Deterministic Pushdown automaton* (DPDA) for short is a PDA $\langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$ s.t.:

- 1. for all $q \in Q$, $a \in \Sigma \cup \{\varepsilon\}$ and $\gamma \in \Gamma$: $\delta(q, a, \gamma)$ has at most one element; and
- 2. for all $q \in Q$ and $\gamma \in \Gamma$: if $\delta(q, \varepsilon, \gamma) \neq \emptyset$, then $\delta(q, a, \gamma) = \emptyset$ for all $a \in \Sigma$.

\$

The intuition behind this definition is as follows. The first condition says that, given a state q, an input letter a and a symbol γ on the top of the stack, $\delta(q,a,\gamma)$ returns at most one move, i.e., the DPDA has no 'choice'. The second condition says that if there is a transition labelled by ε from some state q and with some symbol γ on the top of the stack, then, this is the only transition active in this case. Indeed, if there were q and γ s.t. $\delta(q,\varepsilon,\gamma)\neq\emptyset$ and $\delta(q,a,\gamma)\neq\emptyset$ too (for some letter $a\in\Sigma$), then, in a configuration where the PDA is in state q,γ is on the top of the stack, and a is the first character of the input, the PDA would have the choice between taking the 'a-labelled transition' and the ' ε -labelled transition'.

Example 4.18. The PDA accepting $L_{pal\#}$ in Figure 4.11 is a DPDA. The one in Figure 4.13 is not, because $\delta(q_0,0,0) \neq \emptyset$, and $\delta(q_0,\varepsilon,0) \neq \emptyset$, which violates the second condition of Definition 4.17.

Now, we can argue that there is no DPDA for the language L_{pal} , which shows that, unlike finite automata, PDAs cannot be determinised *in general*:

The fact that there is no DPDA for *some* languages accepted by a (non-deterministic) PDA does not mean that no non-deterministic PDA can be determinised. Recall that, in particular, ε -NFAs are PDAs, that all ε -NFAs can be turned into an equivalent DFA, and that DFAs are DPDAs. In general, a PDA that does not use its stack, or stores only a finite amount of data on its stack, whatever the word it accepts, is equivalent to a finite automaton and can thus be determinised.

Theorem 4.2. There is no DPDA that accepts L_{pal} .

Proof. (Sketch) A full proof is beyond the scope of these lecture notes, so we only give the intuition. Consider two words w_1 and w_2 in L_{pal} that share a common prefix. For instance $w_1 = 0110$ and $w_2 = 011110$. If there is a DPDA that accepts L_{pal} , then it reaches the same configuration after reading the common prefix 01, and performs the same configuration change when reading the next 1. However, the behaviour of the PDA should differ when reading w_1 and w_2 , since in the case of w_1 the next 1 belongs to the suffix of the word, and the PDA should check that this suffix is the mirror image of the prefix; while in the case of w_2 the 1 still belongs to the prefix.

Equivalence with context-free grammars

Now that we have characterised pushdown automata, let us study the class of languages they define, exactly as we have done when we have proved that finite automata accept the class of regular languages (Kleene's theorem). As sketched above, PDAs accept the class of context free languages (CFL), that we have defined so far as the class of languages that are defined by context-free grammars (CFGs):

Theorem 4.3. For all PDAs P, L(P) and N(P) are both context-free languages. Conversely, for all CFLs L, there are PDAs P and P' s.t. L(P) =N(P') = L.

We will prove this theorem in several steps:

- 1. First, we will show that all CFLs can be accepted by a PDA that accepts on empty stack, by giving a translation from CFGs to PDAs. Hence, we show that for all CFGs G, there is a PDA P s.t. N(P) = L(G);
- 2. Second, we will show the reverse direction: for all PDAs *P*, we can build a CFG G_P s.t. $L(G_P) = N(P)$, i.e. N(P) is a CFL. Together with point 1, this shows that the class of languages accepted by empty stack by a PDA is the class of CFLs. It remains to show that this holds also for PDAs that accept with final states;
- 3. Third, we will show that we can convert any PDA accepting by empty stack into a PDA accepting the same language by accepting state, i.e. for all PDAs P, there is a PDA P' s.t. N(P) = L(P');
- 4. Finally, we will show that for all PDAs P, there is a PDA P' s.t. L(P) =N(P').

From CFGs to PDAs accepting by empty stack For this first point, we will only show an example that should be sufficient to convince the reader of the validity of the following Lemma:

Lemma 4.4. For all CFG G, there is a PDA P s.t. N(P) = L(G)

The reason why we restrict ourselves to an example is because, in Chapter 5, we will study extensively several techniques to translate CFGs into PDAs. Indeed, as explained in the introduction, this is the key element to build a *parser*, which is the second stage of a compiler, the one that checks that the *syntax* of the input file is correct. This syntax is specified by means of a CFG, and the resulting PDA (the parser) is a device that checks the conformance of the input string to this CFG.

Let us consider again the grammar for arithmetic expressions given in Figure 4.4, and the word Id + Id * Id which is accepted by the grammar according to the following *leftmost* derivation:

$$\operatorname{\mathsf{Exp}} \overset{2}{\Rightarrow} \operatorname{\mathsf{Exp}} * \operatorname{\mathsf{Exp}} \overset{1}{\Rightarrow} \operatorname{\mathsf{Exp}} + \operatorname{\mathsf{Exp}} * \operatorname{\mathsf{Exp}} \overset{4}{\Rightarrow} \operatorname{\mathsf{Id}} + \operatorname{\mathsf{Id}} * \operatorname{\mathsf{Exp}} \overset{4}{\Rightarrow} \operatorname{\mathsf{Id}} + \operatorname{\mathsf{Id}} * \operatorname{\mathsf{Id}}.$$

One way for a device to check that Id + Id * Id is indeed accepted by the grammar is to build this derivation. To do so, the device needs to store, at all times, the current sentential form, and must be able to perform rewriting of variables in this sentential form. If this device is a PDA (as we would like to achieve), it is natural to store the current sentential form on the stack, with the leftmost symbol on the top. For instance, the initial content of the stack would be the start symbol only, i.e., we let $Z_0 = S$, where S is the start symbol (in our example, $Z_0 = Exp$). Then, we should update the stack in order to reflect the derivations of the grammar. Graphically, the expected content of the stack for the three first sentential forms of the derivation should be:

So, now, the question is: how does the PDA update the stack? There are two possibilities to consider:

- 2. Or there is, on the top of the stack, a terminal. In this case, we cannot apply any grammar rule, and we cannot access the other variables that could be deeper in the stack. This is what occurs if we further apply the rule Exp→Id from the third stack above to obtain:

Non-determinism is crucial here: if there are two rules of the form $V \to \alpha_1$ and $V \to \alpha_2$, the PDA must 'guess' which one to apply when seeing V on the top of the stack. The whole point of Chapter 5 will be to build a PDA that can make the 'right choices' deterministically in order to obtain a program that can be implemented.

where the ld on the top of the stack 'hides' the Exp variables. However, in this case, we are sure that the word which will be generated by the derivation we are currently simulating will start by ld+, i.e. the two terminals which are on the top of the stack. So, we can check that these two terminals are indeed the two first letters on the input. If it is not the case, then, clearly, the derivation we are currently simulating will not allow to recognise the input word. So, the PDA will not be able to execute any further step, and will not reach an accepting state. On the other hand, if ld and + are the two next characters on the input, then, they can safely be popped and read from the input. This can be achieved by PDA transitions (still assuming a PDA with a single state q): for all $a \in T$, we have in $\delta(q, a, a)$ an element (q, ε) , i.e. we add a transition that does not change the content of the stack, but reads a character a from the input, provided that it is present on the top of the stack, and pops it. Eventually, if the input word is accepted, this will empty the stack, so we obtain a PDA that accepts the language of the grammar by empty stack.

To finish with our example, let us depict the PDA obtained from the grammar in Figure 4.4, using the technique described above. It is shown in Figure 4.14.

Moreover, one possible execution of this PDA on the input string ld + Id * Id is:

Figure 4.14: A PDA accepting (by empty stack) arithmetic expressions with + and * operators only.

$$(q, \mathsf{Id} + \mathsf{Id} * \mathsf{Id}, \mathsf{Exp}) \vdash (q, \mathsf{Id} + \mathsf{Id} * \mathsf{Id}, \mathsf{Exp} * \mathsf{Exp}) \vdash (q, \mathsf{Id} + \mathsf{Id} * \mathsf{Id}, \mathsf{Exp} + \mathsf{Exp} * \mathsf{Exp}) \vdash (q, \mathsf{Id} + \mathsf{Id} * \mathsf{Id}, \mathsf{Id} + \mathsf{Exp} * \mathsf{Exp}) \vdash (q, \mathsf{Id} * \mathsf{Id}, \mathsf{Exp} * \mathsf{Exp}) \vdash (q, \mathsf{Id} * \mathsf{Id}, \mathsf{Exp} * \mathsf{Exp}) \vdash (q, \mathsf{Id} * \mathsf{Id}, \mathsf{Id} * \mathsf{Exp}) \vdash (q, \mathsf{Id}, \mathsf{Id}, \mathsf{Exp}) \vdash (q, \mathsf{Id}, \mathsf{Exp}) \vdash (q, \mathsf{Id}, \mathsf{Id}) \vdash (q, \varepsilon, \varepsilon)$$

which shows that Id + Id * Id is indeed accepted, as $(q, \varepsilon, \varepsilon)$ is an accepting configuration (the stack is empty).

From PDA with empty stack to CFG In this case, again, we will restrict ourselves to presenting an example of translation from a PDA that accepts with empty stack to a CFG that accepts the same language. The construction is quite technical, but, fortunately, the intuitions behind the construction are quite simple. For our example, we will consider again the PDA in Figure 4.12 recognising $L_{pal\#}$ by empty stack. Recall that, in a PDA, the execution starts with the Z_0 symbol on the top of stack (so, initially, the stack is not empty), and that the ultimate goal of the PDA is to empty its stack to accept a word. This is why the variables in the CFG we will build are of the form:

$[p\gamma q]$

where: q and p are two (possibly equal) states of the PDA; $\gamma \in \Gamma$ is a possible stack symbol; and the intuitive meaning of the variable is that the set of words that can be generated from $[p\gamma q]$ is exactly the set of all words that are accepted by the PDA when: (i) it starts its execution in state p with γ as the content of the stack; and (ii) it ends its execution in state q. In other words:

$$[p\gamma q] \Rightarrow^* w$$
iff
$$(p, w, \gamma) \vdash^* (q, \varepsilon, \varepsilon).$$

In addition to those variables, we will also have an S variable, which is the start symbol of the grammar. So, following the intuition we have given above, the rules of our grammars that have S as the left-hand side must be:

$$S \rightarrow [q_0 Z_0 q_0]$$
$$S \rightarrow [q_0 Z_0 q_1].$$

Indeed, for a word to be accepted by the PDA in Figure 4.12, the PDA must:

- either have an execution that starts in q_0 , eventually removes the symbol Z_0 from the stack (so that it becomes empty), and reaches q_0 . By the intuition above, the sets of all words accepted by such executions is the set of words generated by $[q_0Z_0q_0]$;
- or have an execution that starts in q_0 , eventually removes the symbol Z_0 from the stack and reaches q_1 . Again, these words are those generated by $[q_0 Z_0 q_1]$.

There are no other possibilities since q_0 and q_1 are the only two states in

Now, let us see how we can add to our grammar the rules that have variables of the form $[p\gamma q]$ as the left-hand side. Let us consider the variable $[q_0 \circ q_1]$. So, we need to understand what are the words that the PDA could accept by an execution that: (i) starts in q_0 with 0 as the only content of the stack; and (ii) ends in q_1 with an empty stack. For that purpose, we look at all the possible transitions that can occur from q_0 when 0 is on the top of the stack. There are three possibilities:

• Either the PDA reads a 1 on the input. In that case, it will push this new 1 to the top of the stack, and stay in q_0 . This means that an execution that should empty the stack must, after this transition, pop two symbols from the stack: first the 1, then the 0 that was already on the stack. Inbetween these two pops, the PDA might either stay in q_0 or move to q_1 . Thus, we add to our grammar two rules:

$$[q_0 \circ q_1] \rightarrow 1[q_0 \circ q_0][q_0 \circ q_1]$$

 $[q_0 \circ q_1] \rightarrow 1[q_0 \circ q_1][q_1 \circ q_1].$

Intuitively, the first rule says: 'we want the PDA to read a word from a configuration where q_0 is the current state and 0 is on the top of the stack, and we want that after this word is read, the PDA reaches q_1 and the 0 on the top of the stack has been popped ($[q_0 \circ q_1]$). Then, one way

to do that is to read a 1 from the input (which will push the 1 on the top of the stack), then continue the execution by reaching q_0 again after having removed that 1 from the top of the stack ($[q_01q_0]$), then continue again the execution until reaching q_1 after which the 0 on the top of the stack has been popped ($[q_0 \circ q_1]$). The second rule says essentially the same, except that now the intermediary state is q_1 .

· Another possibility is that the PDA reads a 0 from the input. Symmetrically to the previous case, we have the two following rules in the grammar:

$$[q_0 \circ q_1] \rightarrow 0[q_0 \circ q_0][q_0 \circ q_1]$$

 $[q_0 \circ q_1] \rightarrow 0[q_0 \circ q_1][q_1 \circ q_1].$

• Finally, one possibility is that the PDA reads a # from the input. In this case, it will not modify the stack (so the 0 that we want eventually to pop will remain), and it will move to q_1 . Thus, the only rule we have in this case is:

$$[q_0 \circ q_1] \rightarrow \#[q_1 \circ q_1].$$

Now, let us consider variable $[q_1 \circ q_1]$. For this variable, we must look for all the possible words that the PDA can accept from a configuration where q_1 is the current state, 0 is on the top of the stack, and the run of the PDA ends in q_1 and the 0 has been popped. Since no push can occur from q_1 , the only word that can be accepted this way is 0—the only possible transition from $(q_1, w, 0)$ is the one that pops a 0 and reads a 0 from the input, and thus w is necessarily equal to 0.

If we continue with this intuition, we obtain ¹⁰:

	c commune v	vitii t	ins intuition, we obta
(1)	S	\rightarrow	$[q_0Z_0q_0]$
(2)		\rightarrow	$[q_0Z_0q_1]$
(3)	$[q_0 0 q_0]$	\rightarrow	$0[q_00q_0][q_00q_0]$
(4)		\rightarrow	$1[q_01q_0][q_00q_0]$
(5)	$[q_0 1 q_0]$	\rightarrow	$0[q_00q_0][q_01q_0]$
(6)		\rightarrow	$1[q_01q_0][q_01q_0]$
(7)	$[q_0Z_0q_0]$	\rightarrow	$0[q_00q_0][q_0Z_0q_0]$
(8)		\rightarrow	$1[q_01q_0][q_0Z_0q_0]$
(9)	$[q_0 0 q_1]$	\rightarrow	$0[q_00q_0][q_00q_1]$
(10)		\rightarrow	$0[q_00q_1][q_10q_1]$
(11)		\rightarrow	$1[q_01q_0][q_00q_1]$
(12)		\rightarrow	$1[q_01q_1][q_10q_1]$
(13)		\rightarrow	$\#[q_1 \circ q_1]$
(14)	$[q_0 1 q_1]$	\rightarrow	$0[q_00q_0][q_01q_1]$
(15)		\rightarrow	$0[q_00q_1][q_11q_1]$
(16)		\rightarrow	$1[q_01q_0][q_01q_1]$
(17)		\rightarrow	$1[q_01q_1][q_11q_1]$
(18)		\rightarrow	$\#[q_1 1 q_1]$
(19)	$[q_0Z_0q_1]$	\rightarrow	$0[q_00q_0][q_0Z_0q_1]$
(20)		\rightarrow	$0[q_00q_1][q_1Z_0q_1]$
(21)		\rightarrow	$1[q_01q_0][q_0Z_0q_1]$
(22)		\rightarrow	$1[q_01q_1][q_1Z_0q_1]$
(23)		\rightarrow	$\#[q_1Z_0q_1]$
(24)	$[q_1 0 q_1]$	\rightarrow	0
(25)	$[q_1 1 q_1]$	\rightarrow	1
(26)	$[q_1Z_0q_1]$	\rightarrow	ε

We finish this example by giving a (leftmost) derivation of this grammar that accepts 01#10:

$$S \stackrel{2}{\Rightarrow} [q_0 Z_0 q_1]$$

$$\stackrel{20}{\Rightarrow} 0[q_0 0 q_1][q_1 Z_0 q_1]$$

$$\stackrel{12}{\Rightarrow} 01[q_0 1 q_1][q_1 0 q_1][q_1 Z_0 q_1]$$

$$\stackrel{18}{\Rightarrow} 01 \# [q_1 1 q_1][q_1 0 q_1][q_1 Z_0 q_1]$$

$$\stackrel{25}{\Rightarrow} 01 \# 1[q_1 0 q_1][q_1 Z_0 q_1]$$

$$\stackrel{24}{\Rightarrow} 01 \# 10[q_1 Z_0 q_1]$$

$$\stackrel{26}{\Rightarrow} 01 \# 10.$$

From PDA with empty stack to PDA with accepting states For the third step of our proof, we show how we can transform a PDA P that accepts some language N(P) by empty stack, into a PDA P' that accepts the same language by accepting state.

Lemma 4.5. For all PDA P, there is a PDA P' s.t. N(P) = L(P').

Proof. We sketch the construction of P' from P. It is illustrated in Figure 4.15 Let us assume that $P = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$. Then, we build P' =

10 To keep the grammar as short as possible (!) we have avoided some variables that cannot produce anything for obvious reasons, such as $[q_1 \circ q_0]$, as there is no path in the PDA from q_1 to q_0 .

Figure 4.15: An Illustration of the construction that turns a PDA accepting by empty stack into a PDA accepting the same language by final state.

 $\langle Q', \Sigma, \Gamma \cup \{Z_0\}, \delta', q'_0, X_0, F' \rangle$ where Q', δ' and q'_0 are defined according to the following intuition. The idea behind the construction of P' is that P'should somehow 'simulate' P, detect whenever P empties its stack, and then move to an accepting state. To do so, P' will push, on its stack, the symbol Z_0 which is the symbol that is used to mark the bottom of the stack in P; and then move to the initial state of P. That is, the first move of P' will be: $(q'_0, w, X_0) \vdash (q_0, w, Z_0 X_0)$. From that configuration, P' can act exactly as P. Indeed, the transitions of P cannot test for the X_0 symbol which is at the bottom of the stack, so this has no influence on the execution of P. Eventually, P will empty its stack by popping Z_0 , so we should make sure that P' accepts in this case. When this occurs, the symbol on the top of the stack, in P' will be X_0 . So, we can add, from all states of P, a transition that tests for X_0 on the top of the stack, and moves to an accepting state in this case.

Formally:

- $Q' = Q \cup \{q'_0, q_f\}$, where q'_0 is a new initial state, and q_f is a new accepting state;
- $\delta'(q_0', \varepsilon, X_0) = \{(q_0, Z_0 X_0)\}$, and $\delta'(q_0', a, X_0) = \emptyset$ for all $a \in \Sigma$. That is, P'can only push Z_0 on top of X_0 from its initial state q'_0 and then move to q_0 ;
- for all states $q \in Q$: $\delta'(q, \varepsilon, X_0) = \{(q_f, \varepsilon)\}$, and $\delta'(q, a, X_0) = \emptyset$ for all $a \in \Sigma$. Otherwise, δ' coincide with δ . That is, we add transitions to the accepting state only when X_0 occurs on the top of the stack;
- $\delta'(q_f, a, \gamma) = \emptyset$ for all $a \in \Sigma \cup \{\varepsilon\}$ and $\gamma \in \Gamma$, i.e., there is no transition from the accepting state;
- $F' = \{q_f\}.$

It is easy to check that, we have in P, for some input word w:

$$(q_0, w, Z_0) \vdash_{\mathbf{p}}^* (q, w', \varepsilon)$$

iff we have, in P':

$$(q'_0, w, X_0) \vdash_{P'} (q_0, w, Z_0X_0) \vdash_{P'}^* (q, w', X_0).$$

That is, P' can 'simulate' the execution of P with the additional X_0 at the bottom of the stack. Then, from (q, w', X_0) , P' can move to the accepting state:

$$(q, w', X_0) \vdash_{\mathbf{P}'} (q_f, w', \varepsilon).$$

Hence, P accepts w (by empty stack) iff P' does (by accepting state), i.e., N(P) = L(P').

From PDA with accepting state to PDA with empty stack We close the loop by showing how we can convert a PDA accepting some language L(P) by accepting state into one accepting the same language by empty stack.

Lemma 4.6. For all PDA P, there is a PDA P' s.t. L(P) = N(P').

Proof. The construction is very similar to the one we have used in the previous proof. Given a PDA $P\langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$ that accepts some language L(P) by accepting state, we build a PDA P' that 'simulates' the execution of P, checks when an accepting state is reached, and, in this case, moves, by an ε -transition to a state where it empties its stack.

This can be done as follows¹¹ (the construction is illustrated in Figure 4.16):

- 1. We add to P two fresh states q'_0 and q_f , where q'_0 is the new initial state;
- 2. The bottom of stack symbol of P' is now X_0 ;
- 3. From q'_0 there is a single transition to q_0 (the initial state of P) that pushes Z_0 on the stack. Thus, after this initial transition, the content of the stack is Z_0X_0 , and all transitions of P can be executed, hence P can be 'simulated' by P';
- 4. From all accepting states of P, there are transitions to q_f labelled by $\varepsilon, \gamma/\varepsilon$ (for all $\gamma \in \Gamma$) to q_f . That is, once an accepting state is reached in P, P' moves to q_f and starts popping the symbols from the stack;
- 5. On q_f , there are self-loop transitions labelled by $\varepsilon, \gamma/\varepsilon$ (for all $\gamma \in \Gamma$), to empty the stack.

Again, it is easy to check that, there is an execution

$$(q_0, w, Z_0) \vdash_{\mathbf{p}}^* (q, w', x)$$

in P iff there is an execution of the form

$$(q'_0, w, X_0) \vdash_{\mathbf{P}'} (q_0, w, Z_0 X_0) \vdash_{\mathbf{P}'}^* (q, w', x X_0)$$

in P'. In the case where $q \in F$ (that is, q is accepting in P), then, from (q, w', xX_0) , P' can move to q_f , where it will empty its stack, i.e.: $(q, w', xX_0) \vdash_{p'}^* (q_f, w', \varepsilon)$, where this last configuration is accepting for the 'empty stack' condition. Hence, w is in L(P) iff w is in N(P')

Operations and closure properties of context-free languages

Let us now study the operations we can apply to context-free languages, and what are their effect. The operations we are interested in are the ones we have introduced in Section 1.4, namely: union, intersection, concatenation, complement and Kleene closure.

More precisely, we are interested by the *closure properties* of CFLs, i.e., given two CFLs L_1 and L_2 to which we apply one of the operations listed above, is the resulting language still a CFL?

Union, concatenation and Kleene closure The union, the concatenation and the Kleene closure are three operations that preserve the context-free character of languages. Let us prove this:

Theorem 4.7. Let L_1 and L_2 be two CFLs. Then, $L_1 \cup L_2$, $L_1 \cdot L_2$ and L_1^* are CFLs.

Figure 4.16: An Illustration of the construction that turns a PDA accepting by final state into a PDA accepting the same language by empty stack. Transitions labelled by $\varepsilon, \gamma/\varepsilon$ represent all possible transitions for all possible $\gamma \in \Gamma$.

¹¹ We skip the formal details, they can be found in classical textbooks such as:

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. *Introduction to Automata Theory, Languages, and Computation (3rd Edition)*. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006. ISBN 0321455363

Recall that for the class of *regular languages*, the answer to those questions is always 'yes': the union, the intersection and the concatenation of two regular languages are regular; and the complement and Kleene closure of a regular language are also regular. This is a remarkable property of regular languages.

Proof. As L_1 and L_2 are CFLs, there are CFGs $G_1 = \langle V_1, T_1, P_1, S_1 \rangle$ and $G_2 = \langle V_2, T_2, P_2, S_2 \rangle$ that accept them. Then, let us show how we can combine them to produce grammars G, G' and G'' that accept $L_1 \cup L_2$, $L_1 \cdot L_2$ and L_1^* respectively .

· For the union, we build the grammar

$$G = \langle V_1 \cup V_2 \cup \{S\}, T_1 \cup T_2, P, S \rangle$$

where *S* is fresh variable and:

$$P = P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}.$$

That is, all the rules from both grammars are added to G; and the extra rules allow the grammar G to 'chose' between L_1 or L_2 . More precisely, if a word is generated from S (i.e. $S \Rightarrow^* w$), then it is necessarily generated either from S_1 (i.e., the derivation is actually $S \Rightarrow S_1 \Rightarrow^* w$) or from S_2 (i.e., the derivation is actually $S \Rightarrow S_2 \Rightarrow^* w$). Thus, w belongs either to L_1 or to L_2 , i.e. $w \in L_1 \cup L_2$. We have just shown that $L(G) \subseteq L_1 \cup L_2$.

Symmetrically, if $w \in L_1 \cup L_2$, then either $w \in L_1$ or $w \in L_2$. In the former case, $w \in L_1$ implies $S_1 \Rightarrow_{G_1}^* w$, hence $S \Rightarrow_G S_1 \Rightarrow_G^* w$ and thus $w \in L(G)$. In the latter case, $w \in L_2$ implies $S_2 \Rightarrow_{G_2}^* w$, hence $S \Rightarrow_G S_2 \Rightarrow_G^* w$ and thus $w \in L(G)$, again. This shows that $L_1 \cup L_2 \subseteq L(G)$. Together with $L(G) \subseteq L_1 \cup L_2$, this implies that $L(G) = L_1 \cup L_2$.

· For the concatenation, we build the grammar

$$G' = \langle V_1 \cup V_2 \cup \{S'\}, T_1 \cup T_2, P', S' \rangle,$$

where S' is fresh variable and:

$$P' = P_1 \cup P_2 \cup \{S' \to S_1 S_2\}$$

It is easy to check that a word is generated by G' iff it is generated from the sentential form S_1S_2 , hence w is the concatenation of $w_1 \in L_1$ and $w_2 \in L_2$, and $L(G) = L_1 \cdot L_2$.

• For the Kleene closure, we proceed in a similar fashion, with a recursive rule. We build the grammar

$$G'' = \langle V_1 \cup \{S''\}, T_1, P'', S'' \rangle,$$

where S'' is fresh variable and:

$$P'' = P_1 \cup \{S'' \rightarrow S_1 S'', S'' \rightarrow \varepsilon\}.$$

Again, one can easily check that w is accepted by G'' iff it is generated from a sentential form $S_1S_1\cdots S_1$. In other words, w is a concatenation of an arbitrary number of words generated from S_1 . Hence, $L(G'') = L_1^*$.

Instead of showing how to apply these operations on *grammars* recognising L_1 and L_2 , we could also consider two PDA P_1 and P_2 recognising them and show how to combine them to produce PDA accepting $L_1 \cup L_2$, $L_1 \cdot L_2$ and L_1^* respectively. This construction would be in the spirit of the translation from regular expressions to ε -NFA (see Section 2.4.1).

Intersection and complement Unfortunately, neither intersection, nor complement do preserve the context-free character of languages. That is, one can find two languages L_1 and L_2 that are CFLs, but, s.t. $L_1 \cap L_2$ is not a CFL. From this, we will also be able to deduce that CFLs are not closed under complement either.

To establish those results, we need to admit the following one:

Theorem 4.8. The language $L_{abc} = \{a^n b^n c^n \mid n \ge 0\}$ is not context free.

The intuition behind this result is as follows. Assume we have a PDA accepting $L_{\rm abc}$. Clearly, such a PDA needs to *count* the number of a's that are on the input, then check that this number corresponds to the number of b's *and* to the number of c's. To count this number of a's, the PDA has no other choice than pushing all the a's on its stack. Then, to check that the number of b's is equal to the number of a's, the PDA must necessarily pop all the a's from the stack while reading the b's. However, at that point, the stack is empty, so the count of the number of a's has been lost, and the PDA cannot check anymore that the number of c's is correct.

Now, using this result, let us prove that the intersection of two CFLs might *not* be a CFL.

Theorem 4.9. CFLs are not closed under intersection.

Proof. Consider the two languages:

$$L_1 = \{ \mathbf{a}^n \mathbf{b}^n \mathbf{c}^k \mid k, n \ge 0 \}$$

 $L_2 = \{ \mathbf{a}^k \mathbf{b}^n \mathbf{c}^n \mid k, n \ge 0 \}.$

So, L_1 contains all words of the form $a \cdots ab \cdots bc \cdots c$ s.t. the number of a's is equal to the number of b's, and L_2 all the words of the same form s.t. the number of b's is equal to the number of c's.

It is easy to check that L_1 and L_2 are CFLs. A PDA accepting L_1 would push on the stack all the a's it reads, then check that the number of b's is equal by popping from the stack, and finally read c's without constraint. Symmetrically, a PDA accepting L_2 would read a prefix of a's, push when reading the b's, then pop when reading the c's¹²

So, L_1 and L_2 are both CFLs, but clearly $L_1 \cap L_2 = L_{abc}$, which is not a CFL by Theorem 4.8.

Finally, we can show that:

Theorem 4.10. CFLs are not closed under complement

Proof. The argument is by contradiction and is based on the previous Theorem. Let L_1 and L_2 be two CFLs, and assume, for the sake of contradiction, that, for all CFLs $L, \overline{L} = \Sigma^* \setminus L$ is a CFL. Then, consider the language:

$$\overline{\left(\overline{L_1}\cup\overline{L_2}\right)}$$
.

Clearly, since L_1 and L_2 are CFLs, this language is a CFL too: by hypothesis, $\overline{L_1}$ and $\overline{L_2}$ are CFLs; so $\overline{L_1} \cup \overline{L_2}$ is a CFL too by Theorem 4.7, hence, its complement is a CFL. However, classical set theory tells us that:

$$L_1 \cap L_2 = \overline{\left(\overline{L_1} \cup \overline{L_2}\right)}.$$

Theorem 4.8 can be proved by invoking the *pumping lemma* for context-free languages, which is remotely related to the arguments we have used to show that L_0 is not regular, at the beginning of the present chapter.

It is not difficult to see that, if we admit PDAs with two stacks, then $L_{\rm abc}$ can be recognised. Indeed, such a PDA would push an a on both stacks when reading the a's, pop from the first when reading the b's and from the second when reading the c's. However, PDA with two stacks can simulate Turing machines, so adding only a second stack to PDA greatly increases its expressive power, so this model cannot be used for practical purposes in a compiler.

 $^{^{12}}$ Another argument to show that L_1 and L_2 are CFLs is to observe that L_1 is the concatenation of $\{\mathbf{a}^n\mathbf{b}^n\mid n\geq 0\}$ with \mathbf{c}^* , while L_2 is the concatenation of \mathbf{a}^* with $\{\mathbf{b}^n\mathbf{c}^n\mid n\geq 0\}$. Clearly, all these languages are CFLs (in particular, \mathbf{a}^* and \mathbf{c}^* are regular), so their concatenation is also a CFL, by Theorem 4.7.

Thus, we conclude that, if the complement of any CFL L were a CFL too, then the intersection of any pair of CFLs would be a CFL, which we know is not the case by Theorem 4.8. Contradiction.

To conclude, CFLs do not enjoy all the nice closure properties of regular languages. This is not very surprising: an increase in the expressive power usually comes at the price of a loss of properties.

4.4 Grammar transformations

Let us close this chapter by considering several techniques that will turn to be useful when we will build parsers for a given grammar, in order to produce syntactic analysers. Those techniques ensure that the grammars we consider have certain important properties for the kind of parsers we will consider (the importance of these properties will thus become clear in the course of Chapter 5). In particular, the transformation that consists in modifying the grammar to take into account priority and associativity of operators allows one to remove (some) ambiguities of grammars.

4.4.1 Factoring

The first transformation is called factoring and can be applied when a grammar contains at least two rules with the same left-hand side, and a common prefix in the right-hand side. A typical example is in the specification of an if in an imperative language:

In this case, if [Cond] then [Code] is the common prefix. Clearly, it is possible to 'factor' this common prefix and transform this grammar into:

This latter grammar accepts the same language as the former, but there are no common prefixes in right-hand sides of rules.

In general, whenever we have, in a grammar, a set of rules of the form:

$$V \to \alpha \beta_1$$

$$V \to \alpha \beta_2$$

$$\vdots$$

$$V \to \alpha \beta_n,$$

we can replace them by:

$$V \to \alpha V'$$

$$V' \to \beta_1$$

$$V' \to \beta_2$$

$$\vdots$$

$$V' \to \beta_n,$$

One can also note that some probelems are *undecidable* for CFLs, such as inclusion for instance. To mitigate these problems, the class of visibly pushdown languages (VPL) has been introduced. They form an intermediary class between regular languages and CFLs, while retaining enough expressive power to have interesting applications. The class of VPL is closed under all classical operations (union, intersection, complement, Kleene star, concatenation), and inclusion is decidable.

Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing, STOC '04, pages 202-211, New York, NY, USA, 2004. ACM. ISBN 1-58113-DOI: 10.1145/1007352.1007390. 852-0 http://doi.acm.org/10.1145/ 1007352,1007390

Why is it so important that no two right-hand sides of rules (with the same left-hand side) share a common prefix? The intuition is as follows: when we write a parser, we want to produce a program that, given a word w and a grammar G, builds, if possible, a derivation of G that produces w. Assume that the parser has already built a prefix of the derivation: obtained the sentential form $x_1 V x_2$; and needs to decide which rule to apply to rewrite V. Assume further that there are in the grammar two rules, say $V \rightarrow a\alpha_1$ and $V \rightarrow b\alpha_2$. To make a choice between the rules, the parser will look at the next symbol in the input: if it is an a, then it will apply the former rule; if it is a b. it will apply the latter. This allows to make sure that the parser is deterministic. Unfortunately, this technique fails when the two rules share a common prefix as in $V \rightarrow a\alpha_1$ and $V \rightarrow a\alpha_2$.

where V' is a fresh variable. This process can be iterated until there are no more rules to factor.

Removing left-recursion

As already explained, recursion in a CFG refers to the occurrence of the left-hand side of a rule in its right-hand side. For instance, in the following grammar that accepts a*, the first rule is recursive (and the second is used to stop the recursion):

S Sa(1) (2) S

One speaks of left-recursion when this recursive variable occurs as the first symbol of the right-hand side, as in the example above. This is actually a case of direct recursion, but it can also be indirect, as in the following example:

- (1)Aa
- Sb (2)A(3) \boldsymbol{A} ε

For reasons akin to the one that have prompted us to factor rules, leftrecursion will be problematic when building parsers, so we need to find a way to remove it. Of course, completely removing recursion will not be possible: recursion is the only way for a grammar to accept an infinite language, and any grammar without recursion necessarily accepts a finite language. So, our technique to remove direct and indirect left-recursion will be as follows:

- 1. First, transform indirect left-recursion into direct left-recursion;
- 2. then, transform left-recursion into right-recursion.

To turn indirect left-recursion into direct left-recursion, we proceed as follows. Every time there is a rule of the form:

$$A \rightarrow B\alpha$$

where A and B are variables, and where all rules with B as left-hand side are:

$$B \to \beta_1$$

$$B \to \beta_2$$

$$\vdots$$

$$B \to \beta_n,$$

we replace $A \rightarrow B\alpha$ by:

$$A \to \beta_1 \alpha$$

$$A \to \beta_2 \alpha$$

$$\vdots$$

$$A \to \beta_n \alpha.$$

Clearly, this preserves the language of the grammar. We repeat this transformation until there is no indirect left-recursion left in the grammar.

Next, we need to remove *direct* left-recursion by turning it into right-recursion. We proceed as follows. Consider a variable V and assume:

$$V \to V \alpha_1$$

$$V \to V \alpha_2$$

$$\vdots$$

$$V \to V \alpha_n$$

is the set of all direct left-recursive rules with ${\cal V}$ as the left-hand side. Further assume that:

$$V \to \beta_1$$

$$V \to \beta_2$$

$$\vdots$$

$$V \to \beta_m$$

is the set of all other (non-left-recursive) rules that have V as the left-hand side. Observe that a word which is generated from A is necessarily of the form:

$$w w_1' w_2' \cdots w_k'$$

where w is generated from one of the β_i 's, and each w'_i is generated from one of the α_i 's. Following this intuition, we replace all those rules by:

$$V \to \beta_1 V'$$

$$V \to \beta_2 V'$$

$$\vdots$$

$$V \to \beta_m V'$$

$$V' \to \alpha_1 V'$$

$$V' \to \alpha_2 V'$$

$$\vdots$$

$$V' \to \alpha_n V'$$

$$V' \to \varepsilon.$$

As can be seen, V' is now the recursive variable, but we have used *right-recursion* to generate the sequence of α_i 's.

4.4.3 Removing useless symbols

Definition of useless symbols The formal definition of CFGs we have given is a *syntactic one* (i.e., there must be exactly one variable, and no terminal, on the left-hand side); but it does not guarantee anything about the possible derivations and the use of the variables and terminals along these derivations. In particular, it is perfectly possible, but rather undesirable,

to build grammars that still satisfy this definition but contain useless symbols (variables or terminals), as shown by the next examples.

Example 4.19. Let us consider the CFG in Figure 4.17.

Clearly, any derivation that starts by $S \Rightarrow A$ will not allow one to produce any word, because all sentential forms derived from one containing an A will also contain an A, that can never be eliminated. In other words, the variable A is recursive, but there is no way to stop the recursion. This means that A is useless in this grammar (it will never allow to produce any word). So, we can safely remove rule 3 from the grammar without modifying its language. But then, we can also remove rule 2, and the grammar becomes:

$$(1) \quad S \quad \rightarrow \quad a$$

This example shows a case where a variable (A) is unproductive. More formally:

Definition 4.20 (Unproductive variable). A variable A in a grammar G = $\langle V, T, P, S \rangle$ is unproductive iff there is no word $w \in T^*$ $A \Rightarrow_G^* w$. 3

Example 4.21. Our second example shows a case of a symbol that is productive but is nonetheless useless because no sentential form obtained from the start symbol will ever contain it. Consider the grammar in Figure 4.18.

In this case, variable *B* is productive because $B \Rightarrow^* b$, but it can never be 'reached' in any sentential form produced from S. Remark that is it also the case with terminal b that occurs only in rule 3 (whereas all terminals are necessarily productive).

Definition 4.22. Let $G = \langle V, T, P, S \rangle$ be a grammar. A symbol $X \in V \cup T$ is *unreachable* iff there is no sentential form of *G* that contains an *X*, i.e. there is no derivation of the form $S \Rightarrow_G^* \alpha_1 X \alpha_2$.

Now, let us devise algorithms to compute symbols that are unproductive or unreachable (i.e., the *useless* symbols). More precisely, we will present algorithms to compute all the productive and reachable symbols, then use this information to remove symbols and rules that are useless.

Unproductive symbols First, for unproductive symbols, remember that all terminals are always productive. Moreover, if we consider a rule of the form $A \rightarrow \alpha$, where α contains *only productive symbols*, then A is clearly also productive.

Example 4.23. If we have $A \rightarrow aBC$, where $B \Rightarrow^* bb$ and $C \Rightarrow^* cc$, we can compose these two derivations and obtain $aBC \Rightarrow^* abbC \Rightarrow^* abbcc$, and thus $aBC \Rightarrow^* abbcc$ Hence, we also have $A \Rightarrow aBC \Rightarrow^* abbcc$, and A is productive.

Based on this observation, we can devise an iterative algorithm that computes the set of productive symbols of a CFG (it is given in Algorithm 4). This algorithm maintains a set of symbols that are productive for sure.

(1)	S	→	a
(2)		\rightarrow	A
(3)	A	\rightarrow	Aa

Figure 4.17: A grammar with an unproductive variable (A).

(1)	S	\rightarrow	A
(2)	A	\rightarrow	a
(3)	B	\rightarrow	b

Figure 4.18: A grammar with an unreachable symbol (B).

Observe that symbols can be become unreachable because some rules have been removed due to the removal of unproductive symbols.

Initially, it contains all the terminals. Then, the algorithm considers iteratively all the rules of the grammar, and, each time it finds a rule of the form $A \rightarrow \alpha$ where all symbols in α are productive, it adds A to the set of productive symbols. The algorithm grows the set of productive symbols this way until it reaches a fixed point. Upon termination, all the productive symbols have been computed, so, all the others are unproductive.

```
Input: A CFG G = \langle V, T, P, S \rangle
Output: The set Prod \subseteq V \cup T of productive symbols
Prod \leftarrow T;
Prec \leftarrow \emptyset;
while Prec \neq Prod do
     Prec \leftarrow Prod;
     foreach A \rightarrow \alpha \in P do
           if \alpha \in Prod^* then
                Prod \leftarrow Prod \cup \{A\};
```

return Prod;

Algorithm 4: The algorithm to compute productive symbols in a CFG.

Once the set Prod of productive symbols has been computed, removing unproductive symbols from $G = \langle V, T, P, S \rangle$ yields $G' = \langle V', T, P', S \rangle$, where $V' = Prod \cap V \cup \{S\}$, and P' contains all the rules of the form $A \rightarrow \alpha \in P$ s.t. $\alpha \in Prod^*$, i.e., α contains only productive symbols.

Unreachable symbols Next, let us devise an algorithm to compute reachable symbols. We follow the same kind of inductive reasoning as in the case of productive symbols: clearly the start symbol *S* is reachable. Then, if a variable *A* is reachable, and there is a rule $A \rightarrow \alpha$, then all symbols in α are reachable too.

Based on this observation, we obtain an algorithm to compute reachable symbols that maintains at all times a set Reach of symbols that are surely reachable. Initially, this set contains only S. Then, each time a rule $A \rightarrow \alpha$ with $A \in Reach$ is found, all the symbols from α are inserted in Reach. The algorithm grows the set Reach until a fixed point is found. Upon termination, the set Reach contains all reachable symbols, and only those. Algorithm 5 presents this algorithm.

Again, removing unreachable symbols from $G = \langle V, T, P, S \rangle$ is easy once the set *Reach* has been computed. We obtain the CFG $G' = \langle V', T', P', S \rangle$, where $V' = Reach \cap V$; $T' = Reach \cap T$; and P' contains all the rules of the form $A \rightarrow \alpha \in P$ s.t. $A \in Reach$.

Removing all useless symbols Finally, let us show how we can combine the two operations described above to obtain a grammar that contains no useless symbols. Consider the following grammar:

```
S
(1)
                       \boldsymbol{a}
(2)
                       Α
                       AB
(3)
        A
(4)
        В
                       h
```

Observe that we keep S in V even when S is not productive, because the syntax of grammars requests that V always contains at least the start symbol. However, if S is unproductive, the set of rules P will not contain any rule of the form $S \rightarrow \alpha$.

This algorithm can be assimilated to a breadth-first search in a graph. Imagine the nodes of the graphs are the terminals and the variables of the grammar, and imagine that a rule of the form $A \rightarrow \alpha$ means that there is an edge between A and each symbol in α . Then, all the reachable symbols are exactly those that are reachable in the graph from node S. This can be computed by a breadth-first search, which is exactly what the algorithm

```
Input: A CFG G = \langle V, T, P, S \rangle
Output: The set Reach \subseteq V \cup T of reachable symbols
Reach \leftarrow T;
Prec \leftarrow \emptyset;
while Prec \neq Reach do
     Prec \leftarrow Reach;
     foreach A \rightarrow \alpha \in P do
          if A \in Reach then
              Add to Reach all symbols occurring in \alpha;
return Reach;
```

Algorithm 5: The algorithm to compute reachable symbols in a CFG.

where, A is *unproductive*; B is productive; and both A and B are reachable. Removing *A* from the grammar as well as rules 2 and 3 yields the grammar:

$$\begin{array}{cccc}
(1) & S & \rightarrow & a \\
(2) & B & \rightarrow & b
\end{array}$$

that indeed contains only productive symbols, but where B is not reachable anymore (indeed, it was reachable 'through' A which has been removed). We conclude that removing unproductive symbols can create unreachable symbols: after removing unproductive symbols, we will need to run the algorithm to remove unreachable symbols.

Does the reverse hold? That is, is it possible that removing unreachable symbols make some symbols unproductive? We will argue that this is not possible, by contradiction. Assume some variable A in a grammar G which is productive (i.e., $A \Rightarrow_G^* w$ for some $w \in T^*$), and assume we remove the unreachable symbols from the grammar, and that, after this removal, the resulting grammar G' still contains A which is now unproductive, i.e. there is no w s.t. $A \Rightarrow_{G'}^* w$. Clearly, if A cannot produce any word in G', while it could in G, it is because all possible derivations that produce a word from *A* in *G* make use of one of the removed unreachable symbols. That is, for all $w \in T^*$: $A \Rightarrow_G^* w$ implies that $A \Rightarrow_G^* \alpha \Rightarrow_G^* w$, where α contains at least one variable B which is not reachable in G. However, since we have assumed that A is still present in G' after removal of unreachable symbols, we conclude that A is reachable, hence, $A \Rightarrow_G^* \alpha$ (with B occurring in α) implies that *B* is reachable too. Contradiction.

The conclusion of this discussion is that removing unproductive symbols can create unreachable ones, but that removing unreachable symbols will not make variables unproductive. Thus, to remove all useless symbols from a grammar, one should:

- 1. First, remove unproductive variables;
- 2. then, remove unreachable symbols.

After that, all variables are guaranteed to be productive, and all symbols to be reachable.

Example 4.24. We close this section by a complete example showing the removal of useless symbols. Consider the grammar $G = \langle V, T, P, S \rangle$, where $V = \{S, A, B, C, D\}, T = \{a, b, c\}$ and P contains the set of rules:

First, we compute the set of productive symbols. Following Algorithm 4, we initialise Prod with T, i.e.:

$$Prod = \{a, b, c\}.$$

Considering rule 6, we discover that C is productive too, because the right-hand side contains only $c \in Prod$, so now:

$$Prod = \{a, b, c, C\}.$$

Similarly, rule 5 tells us that *B* is productive, so:

$$Prod = \{a, b, c, C, B\}.$$

Next, by rule 2, we conclude that *S* is productive, since the right-hand side of the rule contains only elements from *Prod* (*a* and *C*),:

$$Prod = \{a, b, c, C, B, S\}.$$

However, we cannot add A to Prod, because the right-hand sides of rules 3 and 4 both contain a symbol (D and A respectively) that does not belong to Prod. So the set of productive symbols is exactly $\{a, b, c, B, C, S\}$, and removing the unproductive symbols from the grammar yields $G' = \langle V', T, P', S \rangle$, where $V' = \{S, B, C\}$, and P' contains the rules:

$$\begin{array}{cccc} (1) & S & \rightarrow & CCa \\ (2) & B & \rightarrow & b \\ (3) & C & \rightarrow & c \end{array}$$

Now, we compute the *reachable* symbols in G'. We start with:

$$Reach = \{S\}.$$

By rule 1, we discover that *C* and *a* are reachable too, hence:

Reach =
$$\{S, C, a\}$$
.

Now that C is known to be reachable, we deduce, by rule 3, that terminal c is reachable too:

Reach =
$$\{S, C, a, c\}$$
.

At that point, we reach a fixed point: there is no rule of the grammar that allows to reach neither B nor b from either S or C, so $\{S, C, a\}$ is exactly the set of reachable symbols. The resulting grammar is $G'' = \langle V'', T'', P'', S \rangle$, where $V'' = \{S, C\}$, $T'' = \{a, c\}$ and P'' contains the rules:

$$\begin{array}{cccc} (1) & S & \rightarrow & CCa \\ (2) & C & \rightarrow & c \end{array}$$

which contains only useful symbols.

We close this chapter by explaining a technique that allows to remove ambiguities occurring typically in grammars designed for arithmetic or Boolean expressions. We will consider once again the grammar for arithmetic expressions that we recall in Figure 4.19.

As we have already discussed in Section 4.1.1 this grammar is ambiguous. Consider for instance the word Id + Id * Id, the two following tress are derivation trees of this word:

(1)	Exp	\rightarrow	Exp + Exp
(2)		\rightarrow	Exp * Exp
(3)		\rightarrow	ld
(4)		\rightarrow	Cst

Figure 4.19: A simple grammar for arithmetic expressions.

If we want to build a parser for this grammar, which is a deterministic program, we will need to choose which of these trees will be returned by the parser (and then modify the grammar to make sure that only this tree is returned). To guide our choice, we will take into account the natural priority and associativity properties of the arithmetic and Boolean operators. In the example above, the tree we want to be returned by the parser is the one on the left. Indeed, this tree clearly show that the expression is the sum of the first identifier, on the one hand; and of the product of the second and third identifiers, on the other hand. Symbolically, this expression is thus equivalent to Id + (Id * Id), which is indeed the right priority.

However, ambiguities occur even when operator priority doesn't play any role. Consider for instance the word Id + Id + Id. In this case, the two following derivation trees are possible:

Now, the tree that we want to obtain is the one on the right, because it corresponds to the expression (Id + Id) + Id, which is indeed the correct associativity for the + operator (the associativity is on the left).

Modifying the grammar Let us now modify the grammar to lift these ambiguities and make sure that the only derivation trees that will be returned by the parser are those that enforce the priority and associativity of the operators. We discuss priority first. Intuitively, for the priority of the * and + operators to be enforced, an expression must be a sum of products of atoms, where an atom is a basic building block, i.e. either an ld or a Cst.

For instance, an expression like d*d+d*d must be regarded as the sum of the two products d*d, which means that we will compute the values of those products first, then take their sum. This can be reflected in the grammar, by introducing fresh variables corresponding to the concepts of 'products' and 'atoms', and to modify the rules in order to enforce a hierarchy between these concepts. In the case of the grammar of Figure 4.19, we would first introduce rules:

$$Atom \rightarrow Id$$

$$\rightarrow Cst$$

to define the notion of 'atom'. Then, we introduce the notion of 'product' (of atoms), using a recursive rule as there can be as many atoms as we want in a product:

$$Prod \rightarrow Prod * Atom$$

 $\rightarrow Atom.$

Using the same canvas, we define an Exp as a sum of products, and we obtain the grammar:

(1)	Exp	\rightarrow	Exp + Prod
(2)		\rightarrow	Prod
(3)	Prod	\rightarrow	Prod * Atom
(4)		\rightarrow	Atom
(5)	Atom	\rightarrow	Cst
(6)		\rightarrow	ld

Let us check that this new grammar is not ambiguous, and that the derivation trees indeed respect the priority of operators. Consider again the word Id + Id * Id. Its (unique) derivation tree is the one shown in Figure 4.20. Clearly, this tree respects the priority of the operators.

Now, let us consider the word Id + Id + Id. Its derivation tree is given in Figure 4.21. Since we have used *left-recursion* in the rules associated to Exp and Prod, the left associativity of the operator is naturally respected.

Unary minus and parenthesis Let us now consider a more complex, yet typical example, where we allow the use of parenthesis and of the unary minus (in addition to the – and / operators that were missing in the previous grammar):

(1)	Exp	\rightarrow	Exp + Exp
(2)		\rightarrow	Exp - Exp
(3)		\rightarrow	Exp * Exp
(4)		\rightarrow	Exp/Exp
(5)		\rightarrow	(Exp)
(6)		\rightarrow	-Ехр
(7)		\rightarrow	ld
(8)		\rightarrow	Cst

Let us first discuss the case of the unary minus. Clearly, an expression like -Id + Id must be understood as (-Id) + Id, and not as -(Id + Id), i.e., the

Observe that the resulting grammar is left-recursive (and we will see hereinafter that this *left* recursion is crucial). However, we can use the techniques of Section 4.4 to remove this left-recursion, if need be.

Figure 4.20: The derivation tree of Id*Id+Id taking into account the priority of the operators.

Figure 4.21: The derivation tree of Id+Id+Id taking into account the associativity of the operators.

minus always ranges on the next atom. Thus, we should incorporate the unary minus to the definition of atom:

$$\begin{array}{c} \mathsf{Atom} \,{\to}\, -\mathsf{Atom} \\ &{\to}\, \mathsf{Id} \\ &{\to}\, \mathsf{Cst}. \end{array}$$

We handle (Exp) similarly. Indeed, the parentheses mean that the expression must be considered as a basic building block, and the priority of the operators within the parenthesis must not interfere with the operators outside the parenthesis. So, we obtain the grammar:

(1)	Exp	\rightarrow	Exp + Prod
(2)		\rightarrow	Exp – Prod
(3)		\rightarrow	Prod
(4)	Prod	\rightarrow	Prod * Atom
(5)		\rightarrow	Prod/Atom
(6)		\rightarrow	Atom
(7)	Atom	\rightarrow	-Atom
(8)		\rightarrow	Cst
(9)		\rightarrow	ld
(10)		\rightarrow	(Exp)

Finally, after removing left-recursion, we obtain:

(1)	Exp	→	Prod Exp'
(2)	Exp'	\rightarrow	+ Prod Exp'
(3)		\rightarrow	-ProdExp'
(4)		\rightarrow	${m arepsilon}$
(5)	Prod	\rightarrow	AtomProd'
(6)	Prod'	\rightarrow	*Atom Prod'
(7)		\rightarrow	/AtomProd'
(8)		\rightarrow	${m arepsilon}$
(9)	Atom	\rightarrow	-Atom
(10)		\rightarrow	Cst
(11)		\rightarrow	ld
(12)		\rightarrow	(Exp)

which is a grammar that we will be able to exploit when building parsers, as explained in the next chapter.

PARSING IS THE SECOND STEP OF THE COMPILING PROCESS. During this stage, the compiler analyses the syntax of the input program to check its correctness. Just as we have formalised the scanning step using finite automata, we will rely on pushdown automata to define rigorously what a parser does.

More precisely, in this chapter, we will define two families of parsers, namely the *top-down* and the *bottom-up* parsers. As their names indicate, these parsers work in two completely, and actually opposite ways: a top-down parser tries and build a derivation tree for the input string starting from the root, applying the grammar rules one after the other, until the sequence of tree leaves forms the desired string. On the other hand, a bottom-up parser builds a derivation tree starting from the leaves (i.e., the input string), follow *backwards* the derivation rules of the grammar, until it manages to reach the root of the tree. We will see that these two paradigms have their own merits. Top-down parsers are perhaps more intuitive, but bottom-up parsers are more powerful. Historically, compilers such as gcc were written by hacking the code of an automatically generated bottom-up parser. Nowadays, recent versions of gcc or clang use a hand-written top-down parser¹.

For these two main families of parsers, we will present techniques that allow one (when possible) to build *automatically* parsers from grammars, which is exactly what we need in the framework of compiler design. Many of these techniques have been implemented in tools such as $yacc^2$, $bison^3$, cup^4 ...

¹ GCC wiki: new C parser. https://gcc.gnu.org/wiki/New_C_Parser, 2008. Online: accessed on December, 29th, 2015; and CLang: features and goals. http://clang.llvm.org/features.html. Online: accessed on December, 29th, 2015

² Stephen C. Johnson. Yacc: Yet another compiler-compiler. Technical report, AT&T Bell Laboratories, 1975. Readable online at http://dinosaur.compilertools.net/yacc/

³ Gnu bison. https://www.gnu.org/ software/bison/. Online: accessed on December, 29th, 2015

⁴Cup: Construction of useful parsers. http://www2.cs.tum.edu/projects/ cup/. Online: accessed on December, 29th, 2015

5.1 Top-down parsers

Principle of top-down parsing We have already explained the main ideas behind top-down parsing when showing how we can turn any CFG into a PDA that accepts the same language by empty stack: see Section 4.2.3, and, in particular, the discussion of Lemma 4.4, that we recall now. Consider the grammar for arithmetic expressions in Figure 4.4. Then, a PDA that accepts (by empty stack) the language of the grammar in Figure 4.4 is the following (where the initial symbol on the stack is the start symbol of the grammar, namely Exp):

$$\begin{array}{c} \varepsilon, \operatorname{Exp}/\operatorname{Exp} + \operatorname{Exp} \\ \varepsilon, \operatorname{Exp}/\operatorname{Exp} * \operatorname{Exp} \\ \varepsilon, \operatorname{Exp}/\operatorname{(Exp)} \\ \varepsilon, \operatorname{Exp}/\operatorname{Cst} \\ (,(/\varepsilon \\),)/\varepsilon \\ & +,+/\varepsilon \\ \text{id, id/}\varepsilon \\ & \operatorname{Cst, Cst/}\varepsilon \end{array}$$

This PDA *simulates* a leftmost derivation by maintaining, at all times, on its stack, a suffix of the sentential form. For example, if we consider the word Id + Id * Id and its associated *leftmost* derivation:

$$\operatorname{\mathsf{Exp}} \overset{2}{\Rightarrow} \operatorname{\mathsf{Exp}} * \operatorname{\mathsf{Exp}} \overset{1}{\Rightarrow} \operatorname{\mathsf{Exp}} + \operatorname{\mathsf{Exp}} * \operatorname{\mathsf{Exp}} \overset{4}{\Rightarrow} \operatorname{\mathsf{Id}} + \operatorname{\mathsf{Exp}} * \operatorname{\mathsf{Exp}} \overset{4}{\Rightarrow} \operatorname{\mathsf{Id}} + \operatorname{\mathsf{Id}} * \operatorname{\mathsf{Exp}} \overset{4}{\Rightarrow} \operatorname{\mathsf{Id}} + \operatorname{\mathsf{Id}} * \operatorname{\mathsf{Id}}$$

Then, the PDA given above will start its execution with the start symbol Exp of the grammar on the top of its stack, i.e., the execution will start in configuration:

$$(q, Id + Id * Id, Exp)$$
.

The PDA simulates the first step of the derivation by applying the rule $Exp \rightarrow Exp * Exp$, which consists in *popping* the left-hand side of the rule and *pushing* the right-hand side, yielding the new configuration:

$$(q, Id + Id * Id, Exp * Exp).$$

Performing twice the same operations with the rules $Exp \rightarrow Exp + Exp$ and $Exp \rightarrow Id$, the PDA reaches the configuration:

$$(q, Id + Id * Id, Id + Exp * Exp),$$

where a *terminal* (ld) is now on the top of the stack. At this point, the PDA can check that the same terminal is on the input, consume it, and pop the terminal. This can be performed twice, and we obtain the new configuration:

$$(q, Id * Id, Exp * Exp).$$

The simulation of the derivation by the PDA goes on like that up to the point where the stack is empty and the whole input has been read.

Systematic construction of a top-down parser Let us now formalise these ideas, and show how we can build a PDA accepting, by empty stack, the language of a given CFG. Let $G = \langle V, T, P, S \rangle$ be a CFG. We build a PDA P_G with a single state:

$$P_G = \langle \{q\}, T, V \cup T, \delta, q, S, \emptyset \rangle,$$

where δ is such that:

- 1. for all $A \in V$: $\delta(q, \varepsilon, A) = \{(q, \alpha) \mid A \to \alpha \in P\}$. That is, for all symbols A of the grammar, for all rules of the form $A \to \alpha$, the PDA has a transition that pops A and pushes α instead (without reading any character from the input). This operation is called a *produce* (of rule $A \to \alpha$).
- 2. for all $a \in T$: $\delta(q, a, a) = \{(q, \varepsilon)\}$. That is, for all terminals a of the grammar, there is a transition that reads a from the input and pops a from the stack. This operation is called a *match* (of terminal a).
- 3. in all other cases that have not been covered above, $\delta(a, b, c) = \emptyset$.

We can prove that this construction is indeed correct (which establishes Lemma 4.4). We only give the main ideas of the proof, the details can easily be worked out, and are left as an exercise to the reader:

Lemma 5.1. For all CFGs G, the PDA P_G is s.t. $L(G) = N(P_G)$.

Proof. (Sketch) The proof can be done by showing that: (i) for all words $w \in L(G)$, the leftmost derivation producing w can be simulated by an accepting run of P_G ; and that (ii) all accepting runs of P_G (accepting a word w) can be mapped to a leftmost derivation of G that produces w. These two points are easily established by induction (on the lengths of the derivation and of the run, respectively).

Non-determinism in the parser While this construction allows one to derive a PDA from any CFG, this PDA is not (yet) a parser because it is *non-deterministic*. This can be seen in the example above: when the symbol on the top of the stack is Exp, the PDA can replace it either by Exp + Exp, or by Exp * Exp (among other possibilities) independently of the input string. Observe, however, that when a terminal is present on the top of the stack, the behaviour of the PDA is deterministic: it will *match* this symbol with the same symbol on the input.

This example has allowed us to pinpoint the source of potential non-determinism in the top-down parsers that we have built from CFGs. Such non-determinism *can only occur when a produce must be performed with symbol A on the top of the stack and when there are, in the original grammar, at least two rules* $A \rightarrow \alpha_1$ *and* $A \rightarrow \alpha_2$ *to choose from.* Or, put otherwise, resolving non-determinism in such PDAs amounts to answering the following question: assuming some variable A is on the top of the stack, which rule should we produce?

5.1.1 Predictive parsers

The rest of this section is devoted to identifying classes of grammars for which a deterministic parser can be achieved, if we allow this parser to

Figure 5.1: A trivial grammar and its corresponding (non-deterministic) parser (where the initial stack symbol is *S*).

It is important not to confuse a look-ahead and a read on the input. The look-ahead allows the parser to have a view on the future of the input, without modifying it, while a read

make use of some extra information, that we call a *look-ahead*. This lookahead is parametrised by a natural number k and consists of the k next characters on the input, that the parser can now take into account, without actually reading them, to decide which transition to take. Parsers that make use of a look-ahead are called predictive parsers.

The intuition behind the notion of look-ahead is quite simple. Consider for instance the trivial grammar on the top of Figure 5.1. The corresponding parser is displayed below. When running on the input string b, the parser is initially in the configuration (q, b, S), and has two nondeterministic choices: either perform a produce of the former rule, or of the latter. Clearly, knowing that the next symbol on the input is a b allows the parser to make the right choice. So, the grammar above can be parsed deterministically (by a top-down parser) with one character of look-ahead—this is what we will later call an LL(1) grammar.

Pushdown automata with look-ahead In order to formalise these ideas, let us now extend the definition of PDAs by modifying their transition relation so that it can take into account the k next characters on the input (for a look-ahead of k characters). This means that the successors of a configuration will now be computed on the basis of the current state, the current stack content (as in the case of 'regular' PDAs), but also the k first characters on the input.

Definition 5.1 (*k*-look-ahead PDA). A pushdown automaton with *k* characters of look-ahead (k-LPDA for short) is a tuple $\langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$, where all the components are defined as for PDAs (see Definition 4.11), except for the transition function δ that maps $Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \times \Sigma^{\leq k}$ to $2^{(Q \times \Gamma^*)}$; where:

$$\Sigma^{\leq k} = \cup_{i=0}^k \Sigma^i$$

is the set of all words of length at most k on the alphabet Σ .

When
$$k = 1$$
, we note LPDA instead of 1-LPDA.

Let us now define formally the new semantics that takes into account the look-ahead. We lift the notion of configuration from PDAs to k-LPDAs: Definition 4.12 carries on to k-LPDAs. The notion of configuration change, however, must be adapted:

Definition 5.2 (*k*-LPDA configuration change). Let us consider a *k*-LPDA $P = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$. Let $\langle q, auv, X\beta \rangle$ be a configuration of P, where:

- $X \in \Gamma$;
- $a \in \Sigma \cup \{\varepsilon\}$;
- $u \in \Sigma^{\leq k-1}$;
- $v \in \Sigma^*$; and
- if $|auv| \ge k$ then |au| = k, otherwise $v = \varepsilon$ (i.e., au is a prefix of length kof the remaining input word if there are at least *k* characters remaining on the input. Otherwise, au contains all the remaining input).

Observe that the only difference between this definition and that of PDAs, is that the transition function has a fourth parameter, which constitutes the look-ahead. This look-ahead is a word of k characters at most, since we have no guarantee that there are always k characters (or more) remaining on the input.

8

Then, *P* can move from $\langle q, auv, X\beta \rangle$ to $\langle q', uv, \alpha\beta \rangle$ iff there is $(q', \alpha) \in \delta(q, a, X, au)$. In this case, we write:

$$\langle q, auv, X\beta \rangle \vdash_{\mathbf{P}} \langle q', uv, \alpha\beta \rangle.$$

5

The notion of configuration change is the only one we need to adapt for k-LPDAs: all the other notions regarding their semantics (the different notions of accepted language, etc) are lifted from their counterparts on PDAs. Now, let us consider an example that shows how the look-ahead can be used to obtain deterministic automata more easily.

Example 5.3. Let us consider again the trivial grammar in Figure 5.1. We can now extend its corresponding PDA with a look-ahead of one character, to obtain a deterministic LPDA. To this end, we consider the following transition function:

- $\delta(q, \varepsilon, S, a) = \{(q, a)\}\$ for the produce of $S \rightarrow a$. Observe that we perform this produce only when the next character on the input is an a;
- $\delta(q, \varepsilon, S, b) = \{(q, b)\}\$ for the produce of $S \rightarrow b$. Again, the produce is performed only when b is the next character on the input;
- $\delta(q, a, a, a) = \{(q, \varepsilon)\}\$ for the match of a; and
- $\delta(q, b, b, b) = \{(q, \varepsilon)\}\$ for the match of b.

Graphically, we obtain the following LPDA, assuming a label of the form $u: a, X/\beta$ means: 'if the look-ahead is u, the first character on the input is a, and the top of the stack is X, replace it by β ' (in other words, we keep the same convention as for PDAs, prepending the look-ahead followed by a colon).

Observe that this LPDA is now deterministic (and can thus be implemented as a computer program in a straightforward way). Observe further that the look-ahead allows the LPDA to query the next character on the input without reading it: once again, a transition labeled by 'a : ε , S/a' means that the automaton *checks* that the next character on the input is a, but *does not consume it* (as indicated by the ε), hence does not modify the input in the next configuration. On the other hand, a transition labeled by a : a, a/ ε not only checks that there is an a on the input but also reads it.

Expressive power of k-LPDAs It should now be clear to the reader that LPDAs are a natural and useful class of automata to build deterministic parsers from CFGs. While LPDAs seem like a perfect tool on the practical side, it is not (yet) clear how they fit in the theory we have built so far.

In other words: what is the position of k-LPDAs in the Chomsky hierarchy? Clearly, since k-LPDAs extend PDAs they accept all the CFLs. But could it be the case that they accept (thanks to the look-ahead) $more\ languages$ than PDAs? The answer, fortunately is: no. We will establish this by showing that all k-LPDAs can be turned into an equivalent PDA (which, however, might be exponentially bigger and non-deterministic). So, at the end of the day, k-LPDAs are nothing more than a more convenient syntax for PDAs (but a very convenient one, as we will see!).

Proposition 5.2. For all k-LPDAs P, we can build a PDA P' s.t. L(P) = L(P').

Proof. We will present the proof for the case where k=1, the ideas are easy to generalise to k>1. Let us first sketch the intuition of the proof, by explaining how executions of P' correspond to executions of P, and vice versa. First, we let the set of states of P' be pairs of the form (q,a), where q is a state of q and $a \in \Sigma$ is a single-letter that represents the current lookahead. Note that this look-ahead will not be *computed* by P', but rather *guessed* using non-determinism, and then checked afterwards. Thus, intuitively, when P' is in (q,a), this corresponds to P being in state q and having guessed that a is the first character on the input. Following this idea, we have to define the transition function of P' so that it properly updates the look-ahead contained in its states, and checks the validity of the non-deterministic guesses, in order to keep P' synchronised with P.

Initially, P' simply jumps to a state of the form (q_0,x) for some $x \in \Sigma \cup \{\varepsilon\}$ (thus, the x is the first guess performed by P'). Then, Figure 5.2 shows the rest of the construction. If, from state q_1 , P can read some character $x \in \Sigma$ (hence, the look-ahead is necessarily equal to x, otherwise the transition cannot be taken), then, in P', we can 'simulate' this transition from (q_1,x) only (because the look-ahead must be x). Since the corresponding transition of P' does read an x, we are certain that the guess was correct. The different possible successors correspond to the different possible guesses for the next look-ahead. A special case is displayed at the bottom of the figure and occurs when P reads ε from the input. In this case, the look-ahead could be non-empty (otherwise, the look-ahead would have no interest!), and must not be updated in the state of P'.

Let us formalise this. Given an LPDA $P=\langle Q,\Sigma,\Gamma,\delta,q_0,Z_0,F\rangle$, we build a PDA $P'=\langle Q',\Sigma,\Gamma,\delta',q_0',Z_0,F'\rangle$ where:

- $Q' = Q \times (\Sigma \cup \{\varepsilon\}) \uplus \{q'_0\}$ (thus, q'_0 is a fresh initial state);
- $F' = F \times \{\varepsilon\}$; and
- δ' is s.t.:
 - 1. $\delta'(q_0', \varepsilon, Z_0) = \{((q_0, x), Z_0) | x \in \Sigma \cup \{\varepsilon\} \}$: this corresponds to the initial *guess* of the look-ahead;
 - 2. for all $q \in Q$, $x \in \Sigma$ and $X \in \Gamma$:

$$\delta'((q,x),x,X) = \left\{ ((q',z),\gamma) \middle| (q',\gamma) \in \delta(q,x,X,x), z \in \Sigma \cup \{\varepsilon\} \right\},\,$$

which corresponds to the top part of Figure 5.2;

To complement this intuition, recall that a finite automaton can be regarded as a program that uses a finite amount of memory only. This memory is encoded in the states of the automaton. This is the same idea that we use here. Since the look-ahead is bounded by k, and since the alphabet is finite, there are only finitely many possible values for the look-ahead, which can thus be stored in the states, and then queried and updated when need be, using non-determinism.

Figure 5.2: Illustration of the transformation of a k-LPDA into an equivalent PDA, assuming $\Sigma = \{a, b\}, x \in \Sigma$ and $y \in \Sigma \cup \{\varepsilon\}$.

3. for all $q \in Q$, $y \in \Sigma$ and $X \in \Gamma$:

$$\delta'\big((q,y),\varepsilon,X\big)=\Big\{\big((q',y),\gamma\big)\,\Big|\,(q',\gamma)\in\delta(q,\varepsilon,X,y)\Big\},$$

which corresponds to the bottom part of Figure 5.2; and

4. $\delta'(q, x), \gamma, X = \emptyset$ in all the cases that have not been specified above.

We finish by sketching the arguments to show that the construction is correct. First, we consider an execution of the k-LPDA P on some word w:

$$\langle q_0, w_0, Z_0 \rangle \vdash_{\mathbf{P}} \langle q_1, w_1, \gamma_1 \rangle \vdash_{\mathbf{P}} \dots \vdash_{\mathbf{P}} \langle q_k, w_k, \gamma_k \rangle$$

where $w_0 = w$, $w_k \varepsilon$ and $q_k \in F$. Then, one can show by induction on the length of the execution that it corresponds to an accepting execution in P'. Assuming that for all $0 \le i \le k$, a_i denotes the first character of w_i (with $a_i = \varepsilon$ if $w_i = \varepsilon$), this accepting execution in P' is:

$$\langle q'_0, w_0, Z_0 \rangle \vdash_{\mathbf{P}} \langle (q_0, a_0), w_0, Z_0 \rangle \vdash_{\mathbf{P}'} \langle (q_1, a_1), w_1, \gamma_1 \rangle \vdash_{\mathbf{P}'} \ldots \vdash_{\mathbf{P}'} \langle (q_k, a_k), w_k, \gamma_k \rangle.$$

That is, it is the execution obtained when P' always 'guesses' correctly the next character on the input. It is easy to check that this is indeed an execution of P' (see the definition of δ' above), which is accepting because (q_k, a_k) is a final state when q_k is.

On the other hand, if

$$\langle q'_0, w_0, Z_0 \rangle \vdash_{\mathsf{P}} \langle (q_0, a_0), w_0, Z_0 \rangle \vdash_{\mathsf{P}'} \langle (q_1, a_1), w_1, \gamma_1 \rangle \vdash_{\mathsf{P}'} \ldots \vdash_{\mathsf{P}'} \langle (q_\ell, a_\ell), w_\ell, \gamma_\ell \rangle$$

is an accepting execution of P' on some word $w_0 = w$ (thus, with $w_\ell = \varepsilon$ and $q_\ell \in F$), then, one can check that:

$$\langle q_0, w_0, Z_0 \rangle \vdash_{\mathbf{P}} \langle q_1, w_1, \gamma_1 \rangle \vdash_{\mathbf{P}} \ldots \vdash_{\mathbf{P}} \langle q_\ell, w_\ell, \gamma_\ell \rangle$$

is an accepting execution of P. This again can be done by induction on the length of the execution. This part is a bit more difficult that the reverse direction, because one has to check that all the steps are allowed by the look-ahead in P. The key point to prove this is the fact that, at the end of the execution, $w_{\ell} = \varepsilon$, otherwise the execution would not be accepting. Considering the definition of δ' , this means necessarily that, all look-aheads 'guessed' by P' were eventually checked to be correct. Indeed, when P' performs some step $\langle (q_i, a_i), w_i, \gamma_i \rangle \vdash_{P'} \langle (q_{i+1}, a_{i+1}), w_{i+1}, \gamma_{i+1} \rangle$, then:

- 1. either it performs an ε -labeled transition in which case $a_i = a_{i+1}$ and $w_i = w_{i+1}$ (i.e., no check of the look-ahead is performed, but neither the input word nor the guessed look-ahead change. So the check is deferred to a later transition);
- 2. or a transition labeled by a_i is performed. This implies that a_i was indeed the first character of w_i , hence the 'guess' in (q_i, a_i) was correct.

Theorem 5.3. For all k, the class of languages accepted by k-LPDAs is the class of CFLs.

Proof. Since, for all k, we can translate any k-LPDA into an equivalent PDA (see Proposition 5.2), the class of k-LPDAs accepts no more than the CFLs. On the other hand, all PDAs P can trivially be translated into an equivalent k-LPDA P' (for all k): it suffices to define the transition relation of P' in such a way that it ignores the look-ahead (or, in other words, such that it performs the same actions on the input and on the stack for all possible values of the look-ahead).

Now that we have k-LPDAs at our disposal, let us show how to transform, when possible, and in a systematic way, CFGs into deterministic k-LPDAs that we will be able to translate easily into programs. To this end, we need to introduce some extra definitions.

5.1.2 First k and Follow k

In order to introduce these two notions, we start by an extensive example.

Example 5.4. Let us consider the grammar:

\boldsymbol{A}	\rightarrow	aaa
	\rightarrow	$B \mathtt{bb}$
	\rightarrow	$C\mathtt{dd}$
В	\rightarrow	b
C	\rightarrow	С
	\rightarrow	ε
	В	$\begin{array}{ccc} & \rightarrow & \\ & \rightarrow & \\ & B & \rightarrow & \\ \end{array}$

and let us assume we want to build a predictive parser with one character of look-ahead. There are two sources of non-determinism in this grammar: on variable *A*, and on variable *C*.

- 1. In the case of variable A, we need to choose between rule 1, rule 2 and rule 3. Obviously, all words generated from A using rule 1 as the first rule in the derivation will start with an a, so we will apply rule 1 in this case only. What about rules 2 and 3? Clearly, there will never be a B nor a C on the input, as these symbols are variables and not terminals, so we need to examine what *B* and *C* can produce:
 - (a) Similarly to the case of rule 1, it is easy to see that all words produced from B will start by a b, by rule 4. So, rule 2 should be applied only when a b is on the input.
 - (b) The case of *C* is more complicated, as *C* can produce either c or ε . In the former case, we expect c to be the first next character on the input to apply rule 3. In the latter case, the derivation is $A \Rightarrow Cdd \Rightarrow$ dd, so we expect a d as the next character on the input. We conclude that all derivations starting by rule 3 will produce words that start by c or d only.

The case of variable A are thus summarised in Table 5.1, which gives for each look-ahead, the rule to apply when *A* is on the top of the stack.

To obtain this information, we have computed, for each rule of the form $A \rightarrow \alpha$, the set of all the possible first characters of words that can be derived from α . Indeed, in the case of $A \rightarrow aaa$, all words derived from aaa

Look-ahead					
Var	a	b	С	d	
A	1	2	3	3	

Table 5.1: The rules to apply when *A* is on the top of the stack.

start by an a; in the case of $A \rightarrow B$ bb, all words derived from Bbb start by b; in the case of $A \rightarrow C$ dd, all words derived from Cdd start either by c or by d. This captures the intuition behind the First¹, i.e., as we will see hereinafter, First¹(aaa) = {a}, First¹(Baa) = {b} and First¹(Cdd) = {c,d}. We already have the intuition that computing those sets must sometimes be done recursively: for instance First¹(Baa) is equal to First¹(B), because B is the first symbol in Baa.

- 2. Applying this idea to rule 4 allows us to deduce immediately that we will apply this rule only when *B* is on the top of the stack and b is the next character on the input.
- 3. The case of variable C is, once again, interesting, as the computation of the First¹ is not sufficient. Indeed, all words that are derived from C (rule 5) necessarily start by c, but how do we handle the case of ε ? Rule 6 does not give us any clue about the next character that we expect on the input when this rule must be applied.

Instead, we must consider *the context* in which a *C* can occur, and what are the characters that could *follow* it. The only place where a *C* occurs is in rule 3. From this rule we can deduce that *all words generated from C will necessarily be followed by a* d. This is better understood by visualising the derivation tree of dd, i.e. the only word that one can generate from *A* by applying rule 6, as shown in Figure 5.3.

Figure 5.3: The derivation tree of dd and the notion of Follow¹.

This intuition is captured by the notion of Follow¹: the set Follow¹(X), for some variable X will be defined as the set of all possible first characters of some words that are generated immediately after a word derived from X.

We can now complete Table 5.1 and obtain Table 5.2, which tells us exactly which rule to apply for each possible symbol on the top of stack and next character on the input. Since there is at most one rule in each cell of the table, we have now a deterministic parser at our disposal.

Let us now formalise properly the notions of First k and Follow k .

A word w is thus in First $^k(\alpha)$ iff: (i) it is the prefix of some sentential form generated from α (i.e., $\alpha \Rightarrow^* wx$ for some w); and (ii) it has the *right size*: either it contains exactly k characters (|w| = k), or it contains less than k character, but this can occur only if cannot make this prefix any longer, which implies that $x = \varepsilon$ (after all, there is no reason that all sentential forms generated from α contain

	Look-ahead			
Var	a	b	С	d
\overline{A}	1	2	3	3
B		4		
C			5	6

Definition 5.5 (First^k). Let $G = \langle V, T, P, S \rangle$ be a CFG, and let α be a sentential form of G (i.e., $\alpha \in (T \cup V)^*$). Then,

$$\operatorname{First}^{k}(\alpha) = \left\{ w \in T^{*} \middle| \begin{array}{c} \alpha \Rightarrow^{*} wx \\ \text{and} \\ \text{either } |w| = k \text{ or } (|w| < k \text{ and } x = \varepsilon) \end{array} \right\}$$

In the case where k = 1, we write First(α) instead of First¹(α).

Definition 5.6 (Follow^k). Let $G = \langle V, T, P, S \rangle$ be a CFG, and let α be a sentential form of G (i.e., $\alpha \in (T \cup V)^*$). Then,

$$\operatorname{Follow}^k(\alpha) = \left\{ w \in T^* \middle| \text{there are } \beta, \gamma \text{ s.t. } S \Rightarrow^* \beta \alpha \gamma \text{ and } w \in \operatorname{First}^k(\gamma) \right\}.$$

In the case where k = 1, we write Follow(α) instead of Follow¹(α).

Example 5.7. Let us consider the grammar in Figure 5.4, which generates expressions. Remember that this is the grammar that we have obtained after taking into account the priority of the operators and removing leftrecursion (see the last pages of Chapter 4). Observe that we have added a rule $S \rightarrow \text{Exp}$ \$ to the grammar to make sure that all strings end with the marker \$. This will actually make our life easier when computing Follow sets. Let us start by considering some values of First sets:

- First(Atom) = {-, Cst, Id, (};
- $First^2(Atom) = \{--, -Cst, -Id, -(, (-, ((, (Cst, (Id, Cst, Id);$
- First(Prod') = $\{*, /, \varepsilon\}$;
- What is the value of First²(Prod')? We see that Prod' produces either a string starting with * and followed by some string generated by Atom; or a string starting with / and followed by some string generated by Atom; or ε . So, we can rely on First (Atom) to characterise First² (Prod'), and we find:

$$\begin{aligned} \operatorname{First}^2 \left(\operatorname{Prod}' \right) &= \left\{ * \right\} \cdot \operatorname{First}^1 (\operatorname{Atom}) \ \cup \ \left\{ / \right\} \cdot \operatorname{First}^1 (\operatorname{Atom}) \ \cup \ \left\{ \varepsilon \right\} \\ &= \left\{ * - , *\operatorname{Cst}, *\operatorname{Id}, *(, / - , /\operatorname{Cst}, /\operatorname{Id}, /(, \varepsilon) \right\}. \end{aligned}$$

Now, let us consider some values of Follow sets:

- What is Follow(Exp')? All strings generated by Exp' necessarily appear at the end of a string generated by Exp, and all strings generated by Exp are followed by a \$ or by a) in the final output, so Follow $(Exp') = \{\$, \}$.
- What is Follow(Prod)? All strings generated by Prod are followed by a string generated by Exp'. Such a string can: (i) either start by + or -, so

Table 5.2: An action table for our example grammar, and a look-ahead of one character: it tells us which rule to produce for each possible symbol on the top of the stack, and each possible first character on the input.

The intuition behind the definition of Follow k is easier: w is in the Follow^k(α) iff there is some derivation allowed by the grammar that produces α , followed by γ , and w is in the First^k of γ .

\$

(1)	S	\rightarrow	Exp\$
(2)	Exp	\rightarrow	Prod Exp'
(3)	Exp'	\rightarrow	+ Prod Exp'
(4)		\rightarrow	-ProdExp'
(5)		\rightarrow	ε
(6)	Prod	\rightarrow	AtomProd'
(7)	Prod'	\rightarrow	*Atom Prod'
(8)		\rightarrow	/Atom Prod [/]
(9)		\rightarrow	ε
(10)	Atom	\rightarrow	-Atom
(11)		\rightarrow	Cst
(12)		\rightarrow	ld
(13)		\rightarrow	(Exp)

Figure 5.4: The grammar generating expressions (followed by \$ as an end-ofstring marker), where we have taken into account the priority of the operators, and removed left-recursion.

these two symbols are in Follow(Prod); (ii) or be the empty word. In this latter case, the Follow of Prod will be the Follow of Exp'. This is sketched in Figure 5.5. Here, Prod eventually generates some string α , and Exp' generates ε . Then, clearly, the generated word is $\alpha \cdot \varepsilon \cdot \$ = \alpha \$$ (this can be seen by inspecting the tree's leaves). This show that \$ can indeed immediately follow a string (α) generated by Prod. This reasoning holds for all symbols in Follow(Exp') = Follow(Exp) = $\{\$,\}$. We conclude that: Follow(Prod) = $\{+,-,\$,\}$.

Figure 5.5: An example showing that Follow(Prod) contains \$ in a case where $\mathsf{Exp'}$ generates ε .

Computation of First^k While the discussion above provides us with a clean definition of First^k, it does not provide us with an algorithm to compute those sets⁵. The algorithm we are about to present is based on the following observation. Assume we want to compute First^k(α) for some sentential form $\alpha = X_1 X_2 \cdots X_n$ (with all X_i 's individual terminals or variables of the grammar). Then, we can first compute First^k(X_1). If all words in First^k(X_1) are of length k, then, we are done. Otherwise (in particular if $\varepsilon \in \text{First}^k(X_1)$), we need to complete those elements of First^k(X_1) that are not 'long enough' by elements from First^k(X_2). Again, this might not be sufficient, so we compute First^k(X_3), etc. This suggests Algorithm 6, a greedy algorithm that computes First^k(X), for all variables X.

Initially, the algorithm computes $\operatorname{First}^k(a)$ for all terminal a—this is actually trivial since a terminal a can only generate the word a, hence $\operatorname{First}^k(a) = \{a\}$. Then, it initialises the sets $\operatorname{First}^k(A)$ to \emptyset for all variable $A \in V$ and grows those sets in the **repeat** loop. As long as some of the $\operatorname{First}^k(X)$ sets have been updated, the information computed during one iteration of the loop is used to try and enrich other $\operatorname{First}^k(A)$ sets during the next iteration, based on the rules of the grammar: for all rules $A \to X_1 X_2 \cdots X_n$, we re-compute the set $\operatorname{First}^k(A)$ by concatenating $\operatorname{First}^k(X_1)$, $\operatorname{First}^k(X_2)$,..., $\operatorname{First}^k(X_n)$, and truncating the resulting words to k characters k. This follows exactly the intuition given hereinbefore.

only.

⁵ Observe that First^k(α) is finite for all α since it contains words of length at most k

⁶ Remark that we could restrict ourselves to rules of the form $A \rightarrow X_1 X_2 \cdots X_n$ where at least one of the X_i 's has been updated in the previous iteration of the loop.

Example 5.8. Let us close the discussion of Algorithm 6 by an example execution. Consider again the grammar in Figure 5.4. Here are the first

Input: A CFG $G = \langle V, T, P, S \rangle$ Output: The sets First^k(X) for all $X \in V \cup T$. foreach $a \in T$ do $\begin{bmatrix} \text{First}^k(a) \leftarrow \{a\}; \\ \text{foreach } A \in V \text{ do} \end{bmatrix}$ $\begin{bmatrix} \text{First}^k(A) \leftarrow \emptyset; \\ \text{repeat} \end{bmatrix}$ $\begin{bmatrix} \text{foreach } A \rightarrow X_1 X_2 \cdots X_n \in P \text{ do} \\ \end{bmatrix}$ $\begin{bmatrix} \text{First}^k(A) \leftarrow \\ \text{First}^k(A) \cup (\text{First}^k(X_1) \odot^k \text{First}^k(X_2) \odot^k \cdots \odot^k \text{First}^k(X_n)); \\ \end{bmatrix}$ until no First^k(A) has been updated, for any $A \in V$; Algorithm 6: Computation of First^k(X) for all $X \in V \cup T$.

few steps of execution of the algorithm (we only detail the computation of $First^1(X)$ for the variables):

- 0. Initially, we have: First¹(X) = \emptyset for all variables $X \in V$.
- 1. During the first iteration, we go through all rules, and update the First of their left-hand side:
 - (a) For the rule $S \rightarrow \text{Exp}$, we get the opportunity to update First(S). We compute:

First¹(
$$Exp$$
) \circ ¹ First¹($\$$) = \emptyset \circ ¹{ $\$$ }
= \emptyset

So, this first rule does not allow us to infer more information on First(S) at that point, because we have not computed any word from First(Exp) yet.

- (b) Actually, at this step of computations, all rules that contain at least one variable in the right-hand side will yield a similar result, because all the First's are still empty.
- (c) However, rules $Exp' \to \varepsilon$, $Prod' \to \varepsilon$, $Atom \to Cst$ and $Atom \to Id$ allow us to update the First(Exp'), First(Prod') and First(Atom) respectively.

So, at the end of the first iteration, we have:

$First^1(X)$
ε
${\cal E}$
Cst, Id

and $First^1(X) = \emptyset$ for all other variables.

2. During the second iteration, we will discover new values of First¹ sets. Thanks to Prod → AtomProd′, we add to First¹ (Prod) the elements from:

$$\begin{aligned} & \operatorname{First}^1(\mathsf{Atom}) \odot^1 \operatorname{First}^1(\mathsf{Prod}') = \{\mathsf{Cst}, \mathsf{Id}\} \odot^1 \{\epsilon\} \\ & = \{\mathsf{Cst}, \mathsf{Id}\}; \end{aligned}$$

to First¹(Prod') the elements from:

$$First^{1}\{*\} \odot^{1} First^{1}(Atom) \odot^{1} First^{1}(Prod') = \{*\} \odot^{1}\{Cst, Id\} \odot^{1}\{\varepsilon\}$$
$$= \{*\},$$

and from:

$$\begin{aligned} & \operatorname{First}^1\{/\} \odot^1 \operatorname{First}^1(\operatorname{Atom}) \odot^1 \operatorname{First}^1\big(\operatorname{Prod}'\big) = \{/\} \odot^1\{\operatorname{Cst},\operatorname{Id}\} \odot^1\{\epsilon\} \\ & = \{/\}; \end{aligned}$$

and, finally, to First¹ (Atom), the elements from:

$$\begin{aligned} & \operatorname{First}^1 \{-\} \odot^1 \operatorname{First}^1(\mathsf{Atom}) = \{-\} \odot^1 \{\mathsf{Cst}, \mathsf{Id}\} \\ &= \{-\}. \end{aligned}$$

So, at the end of this iteration, we have:

X	$First^1(X)$
Exp'	$oldsymbol{arepsilon}$
Prod	Cst, Id
Prod'	*,/,arepsilon
Atom	-, Cst, Id

and $First^1(X) = \emptyset$ for all other variables.

3. The algorithm goes on similarly up to stabilisation, and computes the following values for the First¹ sets:

X	$First^1(X)$
S	-, Cst, ld, (
Exp	-, Cst, Id, (
Exp'	+, -, <i>\varepsilon</i>
Prod	-, Cst, Id, (
Prod'	*,/,arepsilon
Atom	-, Cst, ld, (

Q

Computation of Follow Let us now turn our attention to the computation of Follow K(X) for all variables K(X) for all variables K(X) for all variables K(X) and is, again, a greedy algorithm that grows the sets Follow K(X) up to stabilisation. To do so, we rely on the following intuition: every time we have a rule of the form:

$$A \rightarrow \alpha B \beta$$
,

(i.e., a rule that contains variable B in its right-hand side), we can potentially add more information to $\operatorname{Follow}^k(B)$. Indeed, a string generated by B can be followed by a string generated by β , so we can use $\operatorname{First}^k(\beta)$. Observe however, that the words in $\operatorname{First}^k(\beta)$ might be shorter than k, so we might need to complete them with $\operatorname{Follow}^k(A)$.

Example 5.9. Let us consider again the grammar from Figure 5.4, and let us apply Algorithm 7 to it, for k = 1.

- 0. Initially, we have $Follow^1(X) = \emptyset$ for all variables X, except $Follow^1(S)$, which is equal to $\{\varepsilon\}$.
- 1. During the first iteration, the algorithm adds \$ to Follow¹ (Exp), thanks to the rule $S \rightarrow \text{Exp}$ \$. Indeed, this corresponds, in the algorithm, to having A = S, B = Exp, $\alpha = \varepsilon$ and $\beta = \$$. So the string:

$$First^{1}(\$) \odot^{1} Follow^{1}(S) = \{\$\} \odot^{1} \{\varepsilon\}$$
$$= \{\$\}$$

is indeed added to Follow¹(Exp).

Then, the rule $Exp \rightarrow ProdExp'$ allows us to grow the sets $Follow^1(Prod)$ and $Follow^1(Exp')$. We add to $Follow^1(Prod)$ the elements from:

First¹(Exp')
$$\odot$$
¹ Follow¹(Exp) = {+, -, ε } \odot ¹{\$}
= {+, -, \$};

and to Follow¹(Exp') the elements from:

First¹(
$$\varepsilon$$
) \odot ¹ Follow¹(Exp) = { ε } \odot ¹{\$}
= {\$}.

Etc...

2. The algorithm goes on up to stabilisation, and returns:

X	$Follow^1(X)$
S	ε
Exp	\$,)
Exp'	\$,)
Prod	+,-,\$,)
Prod'	+,-,\$,)
Atom	*,/,+,-,\$,)

Ş

5.1.3 LL(k) grammars

Using the tools we have just defined (First and Follow sets), we can now identify classes of CFGs for which the predictive parsers using k characters of look-ahead (as sketched above) will be deterministic. Those grammars are called LL(k) grammars, where 'LL' stands for 'Left scanning, Left Parsing', because the input string is read (scanned) from the left to the right; and the parser builds a leftmost derivation when successfully recognising the input word. This class of grammars has first been introduced by Lewis and Stearns in 1968^7 , with further important refinements by Rosenkrantz and Stearns in 1970^8 (and many others afterwards...)

What are the conditions we need to impose on the *derivations* of a grammar to make sure that its corresponding parser will be deterministic when it has access to k characters of look-ahead? As we have seen already, the only possible source of non-determinism in the parser stems from the produces, more specifically, when the grammar contains at least two rules of

Observe that initialising Follow¹(S) to $\{\varepsilon\}$ is crucial here. Otherwise, if we initialise Follow(X) to \emptyset for all variables X, then the algorithm would terminate after one iteration with Follow^k(X) = \emptyset for all X, since the expression First^k(β) \odot ^k Follow^k(A) = First^k(β) \odot ^k \emptyset would always evaluate to \emptyset .

⁷ P. M. Lewis, II and R. E. Stearns. Syntax-directed transduction. *J. ACM*, 15(3):465–488, July 1968. ISSN 0004-5411. DOI: 10.1145/321466.321477. URL http://doi.acm.org/10.1145/321466.321477

⁸ D.J. Rosenkrantz and R.E. Stearns. Properties of deterministic top-down grammars. *Information and Control*, 17(3):226 – 256, 1970. ISSN 0019-9958. DOI: http://dx.doi.org/10.1016/S0019-9958(70)90446-8. URL http://www.sciencedirect.com/science/article/pii/S0019995870904468

the from $A \rightarrow \alpha_1$ and $A \rightarrow \alpha_2$. Given that these two rules exist, let us now pinpoint a situation that will confuse a parser that has access to k characters of look-ahead only. Such a situation occur if, at some point in a derivation of the grammar, A is the leftmost symbol (hence, it is on the top of the stack), and the parser must decide whether to apply $A \rightarrow \alpha_1$ or $A \rightarrow \alpha_2$, but the k characters of look-ahead dot not allow it to discriminate between these two choices. To obtain such a pathological situation, we thus need to expose two different derivations that the parser cannot distinguish. For the first derivation, we can hold the following reasoning:

1. First, since we want to have *A* as the leftmost symbol at some point, the derivation prefix is:

$$S \Rightarrow^* wA\gamma$$

with $w \in T^*$ and $\gamma \in (V \cup T)^*$.

2. Then, let us assume that in this first derivation, the right choice is to apply $A \rightarrow \alpha_1$, i.e.,

$$wA\gamma \Rightarrow w\alpha_1\gamma$$
.

3. Eventually, this derivation will produce a word, which will necessary be of the form wx_1 , since w is already a string of terminals (in other words, to finish the derivation, we just need to derive the variables that potentially remain in $\alpha_1 \gamma$). So, this first derivation is of the form:

$$S \Rightarrow^* w A \gamma \Rightarrow w \alpha_1 \gamma \Rightarrow^* w x_1.$$

Thus, this first derivation generates the word wx_1 . Let us consider again the moment in the derivation when the sentential form was $wA\gamma$ and the parser had to decide to apply $A \rightarrow \alpha_1$. As we have already remarked, A is, at that point, on the top of the stack, and w has already been read from the input. Hence, at that point, the string that remains on the input is x_1 , and all the parser 'sees' is First^k(x_1).

Then, it is easy to build a second derivation that will confuse the parser. Assume that, in the grammar we have a derivation of the form:

$$S \Rightarrow^* wA\gamma \Rightarrow w\alpha_2\gamma \Rightarrow^* wx_2.$$

Observe that, now, the right choice to derive A is $A \rightarrow \alpha_2$, and, when the parser must take this choice, he 'sees' a look-ahead of First^k(x_2). So, the parser will be able to make the right decision regarding the derivation of A iff the look-ahead it has at its disposal is sufficient to tell those two situations apart, i.e.:

$$\operatorname{First}^k(x_1) \neq \operatorname{First}^k(x_2)$$
.

The definition⁹ of LL(k) grammar is based on these intuitions: it says that, whenever a pathological situation such as the one described above occurs (the two derivations and First $^k(x_1) = \text{First}^k(x_2)$), then, we must have $\alpha_1 = \alpha_2$; which means that there is actually no choice to be made in the grammar. Otherwise, the parser would not be able to take a decision and the grammar would not be LL(k):

Remember that x_1 and x_2 are words, so their First^k is a singleton containing one string of length at most k. This is why we can write First^k $(x_1) \neq \text{First}^k(x_2)$ instead of First^k $(x_1) \cap \text{First}^k(x_2) = \emptyset$, for instance.

⁹ P. M. Lewis, II and R. E. Stearns. Syntax-directed transduction. *J. ACM*, 15(3):465–488, July 1968. ISSN 0004-5411. DOI: 10.1145/321466.321477. URL http://doi.acm.org/10.1145/321466.321477

Observe that, if a grammar is LL(k) for some k, then it is also LL(k') for all $k' \ge k$. This is coherent with our intuition that LL(k) means 'k characters of look-ahead are sufficient'

Definition 5.10 (LL(k) CFGs). A CFG $\langle P, T, V, S \rangle$ is LL(k) iff for all pairs of derivations:

$$S \Rightarrow^* wA\gamma \Rightarrow w\alpha_1\gamma \Rightarrow^* wx_1$$

 $S \Rightarrow^* wA\gamma \Rightarrow w\alpha_2\gamma \Rightarrow^* wx_2$

with $w, x_1, x_2 \in T^*$, $A \in V$ and $\gamma \in (V \cup T)^*$, and First $^k(x_1) = \text{First}^k(x_2)$, we have: $\alpha_1 = \alpha_2$.

Example 5.11. Let us consider the following grammar:

- aAa
- S (2)bABa
- (3)b
- (4)
- (5) $B \rightarrow$
- B(6)

This grammar is actually quite simple, since it can generate only 6 words through 10 different derivations:

$$S \Rightarrow aAa \Rightarrow aba$$

$$S \Rightarrow aAa \Rightarrow aa$$

$$S \Rightarrow bABa \Rightarrow bbBa \Rightarrow bbba$$

$$S \Rightarrow bABa \Rightarrow bbBa \Rightarrow bbca$$

$$S \Rightarrow bABa \Rightarrow bBa \Rightarrow bba$$

$$S \Rightarrow bABa \Rightarrow bBa \Rightarrow bca$$

$$S \Rightarrow bABa \Rightarrow bAba \Rightarrow bbba$$

$$S \Rightarrow bABa \Rightarrow bAca \Rightarrow bbca$$

$$S \Rightarrow bABa \Rightarrow bAba \Rightarrow bba$$

$$S \Rightarrow bABa \Rightarrow bAca \Rightarrow bca$$
.

One can then check that:

1. this grammar is *not* LL(1). Indeed, consider the pair of derivations:

$$S \Rightarrow bABa \Rightarrow bbBa \Rightarrow bbba$$

and

$$S \Rightarrow bABa \Rightarrow bBa \Rightarrow bba$$

which both read the sentential form bABa after one step, corresponding to

$$w = b$$
 and $\gamma = Ba$

in the definition. In the former derivation, one applies $A \rightarrow b$, while in the latter derivation, $A \rightarrow \varepsilon$ is used, corresponding to:

$$\alpha_1$$
 = b and α_2 = ε

in the definition. The resulting words are respectively bbba and bba, corresponding to:

$$x_1$$
 = bba and x_2 = ba

in the definition (since w = b), so we have:

$$First^{1}(x_{1}) = First^{1}(x_{2}) = \{b\}.$$

We are thus in the conditions of the definition, yet $\alpha_1 \neq \alpha_2$, hence the definition is not satisfied, and the grammar is not LL(1).

2. this grammar, however, *is* LL(2). Proving this is a painstaking procedure as it requires to check the conditions given by the definition for many pairs of rules, but it can be done on this simple grammar. For instance, the case that we have identified in the previous item is not problematic anymore with a look-ahead of k = 2, since now:

$$\{bb\} = First^2(x_1) \neq First^1(x_2) = \{ba\}$$

Bear in mind that, to prove that the grammar *is* LL(2) one needs to check *all* the pairs of derivations. This is just an example!

This example shows well that, while the definition of $\mathrm{LL}(k)$ grammar makes perfect sense and captures our intuition of what an $\mathrm{LL}(k)$ grammar should be, it is of limited use in practice when one wants to check whether a grammar is $\mathrm{LL}(k)$ or not. Indeed, Definition 5.10 requires to check *all possible pairs of derivations* in the grammar, and there can be infinitely many such pairs. Instead, we will now identify a stronger condition that we will be able to test, and that will still be relevant in practice.

Strong LL(k) grammars Instead of relying on a semantic condition, as in Definition 5.10, the condition we will present now is a syntactic one as it concerned only with the rules of grammars. Since there are always finitely many rules (contrary to the number of derivations which can be infinite), this will allow us to derive a practical test to check whether a grammar is LL(k) or not. The definition k0 is as follows:

Definition 5.12 (Strong LL(k) CFG). A CFG $G = \langle V, T, P, S \rangle$ is strong LL(k) iff, for all pairs of rules $A \rightarrow \alpha_1$ and $A \rightarrow \alpha_2$ in P (with $\alpha_1 \neq \alpha_2$):

$$\operatorname{First}^k \Big(\alpha_1 \operatorname{Follow}^k(A) \Big) \cap \operatorname{First}^k \Big(\alpha_2 \operatorname{Follow}^k(A) \Big) = \emptyset$$

S

500

Example 5.13. Let us consider the grammar for arithmetic expression from Figure 5.4, and let us check that it is a *strong* LL(1) grammar. To this end, we can rely on the computation of the First and Follow sets from Example 5.8 and Example 5.9. To apply Definition 5.12, we need to consider all the group of rules that have the same left-hand side. There are three such groups:

1. The three rules that have Exp' as left-hand side are: $\mathsf{Exp}' \to +\mathsf{ProdExp}'$, $\mathsf{Exp}' \to -\mathsf{ProdExp}'$, and $\mathsf{Exp}' \to \varepsilon$. Hence, we check that there is no common element between the three following sets:

$$\begin{aligned} & \operatorname{First} \big(+ \operatorname{ProdExp'Follow} \big(\operatorname{Exp'} \big) \big) = \{ + \} \\ & \operatorname{First} \big(- \operatorname{ProdExp'Follow} \big(\operatorname{Exp'} \big) \big) = \{ - \} \\ & \operatorname{First} \big(\varepsilon \operatorname{Follow} \big(\operatorname{Exp'} \big) \big) = \operatorname{Follow} \big(\operatorname{Exp'} \big) \\ & = \{ \$, \} \}. \end{aligned}$$

This is indeed the case. Intuitively, this means that, when Exp' is on the top of the parser's stack, it can determine which rule to apply basing its decision on a single character look-ahead: when the look-ahed is +, apply the first rule; when the look-ahead is -, apply the second; and apply the last only when the look-ahead is \$.

10 D.J. Rosenkrantz and R.E. Stearns.
Properties of deterministic top-down
grammars. Information and Control,
17(3):226 - 256, 1970. ISSN 0019-9958.
DOI: http://dx.doi.org/10.1016/S00199958(70)90446-8. URL http:
//www.sciencedirect.com/science/
article/pii/S0019995870904468

Observe that this definition does not mention derivations, only the (finitely many) rules of the grammar.

2. For the three rules that have Prod' as the left-hand side, we check that there is no common element between the three following sets:

$$\begin{aligned} & \operatorname{First} \big(*\operatorname{AtomProd'Follow} \big(\operatorname{Prod'} \big) \big) = \{ * \} \\ & \operatorname{First} \big(/\operatorname{AtomProd'Follow} \big(\operatorname{Prod'} \big) \big) = \{ / \} \\ & \operatorname{First} \big(\varepsilon \operatorname{Follow} \big(\operatorname{Prod'} \big) \big) = \operatorname{Follow} \big(\operatorname{Prod'} \big) \\ & = \{ \$, +, -, \} \}. \end{aligned}$$

3. Finally, for the four rules that have Atom as the left-hand side, we consider the four sets:

```
\begin{aligned} & First(-AtomFollow(Atom)) = \{-\} \\ & First(CstFollow(Atom)) = \{Cst\} \\ & First(IdFollow(Atom)) = \{Id\} \\ & First((Exp)Follow(Atom)) = \{(\}, \} \end{aligned}
```

which have no element in common. We conclude that the grammar is indeed *strong* LL(1).

The name *strong* LL(k) suggests that the conditions of Definition 5.12 are stronger than those of Definition 5.10. This is indeed the case: all strong LL(k) grammars *are* LL(k) grammars; however, the converse is, in general, not true, as shown by the next example:

Example 5.14. Let us consider again the grammar given in Example 5.11, which is LL(2), and let us show that it is *not* strong LL(2). Indeed, if we consider the two rules $A \rightarrow b$ and $A \rightarrow \varepsilon$, we have:

$$First^{2}(bFollow^{2}(A)) = First^{2}(\{ba, bba, bca\})$$
$$= \{ba, bb, bc\}$$

and:

First²(
$$\varepsilon$$
Follow²(A)) = First²({a,ba,ca})
= {a,ba,ca}.

Since these two sets both contain ba, the grammar is *not* strong LL(2).

Nevertheless, in the case where the look-ahead is only one character, it turns out that $strong\ LL(1)$ grammars are not more restrictive than LL(1) grammars. All these results are summarised in the following theorem:

Theorem 5.4.

- 1. For all $k \ge 1$, for all CFG G: if G is strong LL(k), then it is also LL(k).
- 2. For all $k \ge 2$, there is a CFG G which is LL(k) but not strong LL(k).
- 3. However, all LL(1) grammars are also strong LL(1), i.e. the classes of LL(1) and strong LL(1) grammars coincide.

Proof. (Sketch) Points 1. and 3. can be derived from Definition 5.10 and Definition 5.12. Point 2 stems from Example 5.14 that can be generalised to any $k \ge 2$.

 $\mathrm{LL}(k)$ languages Observe that the definitions we have given so far $(\mathrm{LL}(k))$ strong $\mathrm{LL}(k)$) are *concerned by grammars*¹¹, but do not speak explicitly about the *languages* those grammars define. We have already seen, in Example 5.11 that there is at least one grammar which is $\mathrm{LL}(2)$ but not $\mathrm{LL}(1)$ (hence, not strong $\mathrm{LL}(1)$). However, we also know that there are potentially several different grammars to define the same language. So, instead of considering classes of $\mathrm{LL}(k)$ grammars, one could naturally define $\mathrm{LL}(k)$ languages:

Definition 5.15 (LL(k) language). A language L is LL(k) iff there is an LL(k) grammar G_L that accepts it, i.e.: $L(G_L) = L$.

Now, we can compare classes of LL(k) languages. Obviously, all LL(k) languages are also LL(k+1) for all k. Is the converse true? Let us consider again the grammar from Example 5.11, which is LL(2) but not LL(1), and let us check whether there is *another grammar* that generates the same language. For this grammar, the answer is trivially 'yes' since the language generated by the grammar generates the finite language:

{aba, aa, bbba, bbca, bba, bca}.

So, an equivalent grammar (which is not yet LL(1)) is:

We can now use the factoring techniques from Section 4.4, and obtain:

```
(1)
                       \mathtt{a}A
(2)
         S
                       bB
(3)
                       ba
(4)
                       a
                       \mathtt{b} B'
         В
(5)
(6)
                       ca
(7)
        B'
                       ba
(8)
                       ca
(9)
```

which one can check is indeed (strong) LL(1), using Definition 5.12.

So, we have been able to turn our 'non-LL(1)' grammar into an equivalent LL(1). Is it always the case? As a matter of fact, no, as shown by the next example:

Example 5.16. This example has been proposed by Kurki-Suonio in 1969^{12} . We only present here the grammars whose languages allow to separate LL(k) languages and LL(k+1) languages, but do not present the formal proof, which is quite involved. For all $k \ge 1$, let us consider the grammar G_k as in Figure 5.6 (where the third rule is parameterised by k). Then, we claim that $L(G_k)$ is LL(k+1) but not LL(k).

Although we refer the reader to the cited article for the full proof, we can observe that, in G_k :

The intuition is always the same: if a parser can recognise a language with k characters of look-ahead, it can also do so with k+1 characters of lookahead.

 ¹² R. Kurki-Suonio. Notes on top-down languages. *BIT Numerical Mathematics*, 9(3):
 225–238, 1969. ISSN 1572-9125. DOI:
 10.1007/BF01946814. URL http://dx.doi.org/10.1007/BF01946814

(1)	S	→	aSA
(2)		\rightarrow	ε
(3)	A	\rightarrow	$\mathtt{a}^k\mathtt{b}S$
(4)		\rightarrow	С

Figure 5.6: The family of grammars G_k .

 $^{^{11}}$ Actually, the definition of strong LL(k) is a purely syntactical condition on grammars.

- 1. First^{k+1}(A) = { $a^k b, c$ };
- 2. hence Follow^{k+1}(S) = { a^kb , c} as well, by the first rule of the grammar.
- 3. However, First^{k+1}(S) = { ε , a^{k+1} }. Indeed, the recursion in the first rule of the grammar will produce an arbitrarily long prefix of a's, containing at least one a, which will be followed by k more a's produced by A.

So, we can already conclude that G_k is *strong* LL(k+1), hence, it is also LL(k+1). Using similar arguments, we can show that G_k is not *strong* LL(k). Unfortunately, this does not imply that G_k is not LL(k), and this is the most involved part of the proof from the original article.

Hence:

Theorem 5.5. The families of LL(k) languages (for all $k \ge 1$) form a strict hierarchy:

$$LL(1)$$
 lang. $\subseteq LL(2)$ lang. $\subseteq \cdots LL(k)$ lang. $\subseteq LL(K+1)$ lang. $\subseteq \cdots$

5.1.4 LL(1) parsers

Equipped with this general theory, we are now ready to discuss the construction of *deterministic top-down parsers* for a large and practical class of grammars, namely the LL(1) grammars. Those parser will thus be called LL(1) *parsers*.

Obtaining an LL(1) *grammar* As we have seen before, not all grammars are LL(1), and some languages cannot be defined by an LL(1) grammar. However, for practical matters, when one wants to generate a parser for a typical programming language, obtaining an LL(1) grammar for that language is feasible. Here are the typical obstacles to the LL(1) that can easily be alleviated with the techniques we have seen so far:

Ambiguity First of all, if a grammar is LL(k) for some k, then it is necessarily unambiguous¹³. Thus, to obtain an LL(1) grammar, one must first make sure that it is unambiguous. Consider for example the grammar for arithmetic expression from Figure 4.19. As we have already argued, this grammar is ambiguous. However, setting the priority and associativity of operators with the techniques from Section 4.4 yields an unambiguous and equivalent grammar.

Left recursion It is easy to check that no grammar that contains a left-recursive rule can be LL(1). Consider a grammar of the form:

$$\begin{array}{cccc}
(1) & S & \rightarrow & S\alpha \\
(2) & \rightarrow & \beta
\end{array}$$

where β is a string of terminals. Then, this grammar is obviously *not* LL(1), since the parser cannot decide which rule to apply when S on the top of the stack, and First(β) is seen on the input, i.e.:

$$First(\beta) \in First(S) \subseteq First(S\alpha)$$
.

However, we have seen in Section 4.4 a technique to turn left-recursion into right-recursion. On the above example, we obtain:

13 D.J. Rosenkrantz and R.E. Stearns. Properties of deterministic top-down grammars. *Information and Control*, 17(3):226 – 256, 1970. ISSN 0019-9958. DOI: http://dx.doi.org/10.1016/S0019-9958(70)90446-8. URL http://www.sciencedirect.com/science/article/pii/S0019995870904468

$$\begin{array}{cccc} (1) & S & \rightarrow & \beta S' \\ (2) & S' & \rightarrow & \alpha S' \\ (3) & \rightarrow & \varepsilon \end{array}$$

which is now LL(1).

Common prefixes Another source of trouble is when two rules share the same left-hand side, and a common prefix on their right-hand side, such as in:

Here, if the parser sees variable [if] on the top of the stack, and symbol if on the input, it cannot decide which rule to apply, so the grammar is not LL(1). However, factoring (see Section 4.4) solves this issue:

```
(1) [if] → if [Cond] then [Code] [ifSeq]
(2) [ifSeq] → fi
(3) [ifSeq] → else [Code] fi
...
```

Now, let us assume that we have a proper LL(1) grammar to describe the language we are interested to parse, and let us describe the construction of its associated LL(1) parser.

Action table The core of the construction will be the building of the so-called 'action table', which describes what actions the parser must perform (either produce or match), depending on the look-ahead and the top of the stack. We have already sketched an example of such a table at the beginning of Section 5.1.2. This table describes completely the behaviour of the parser, so, from now on, we will describe a parser with look-ahead by this means only, hiding the fact that the parser is actually a PDA 14. Here is a more formal definition of the action table:

Definition 5.17 (LL(1) action table). Let $G = \langle P, T, V, S \rangle$ be a CFG. Let us assume that:

- 1. G's rules (elements of P) are indexed from 1 to n; and
- 2. P contains a rule of the form $S \to \alpha$ \$, where $\$ \in T$ is a terminal that does not occur elsewhere in the grammar (it is an end-of-string marker) and this rule is the only one that has S on the left-hand side.

Then, the LL(1)-*action table* of *G* is a two-dimensional table *M* s.t.:

- the lines of M are indexed by elements from $T \cup V$ (the potential tops of stack);
- the rows of *M* are indexed by elements from *T* (the potential look-aheads); and
- each cell $M[\alpha, \ell]$ contains a *set of actions* that the parser must perform in configurations where α is the character on the top of the stack, and ℓ is the next character on the input. These actions can be either:

In this definition, we state that each cell of the table can potentially contain *several actions*. Of course, if the grammar is LL(1), then, each cell should contain only one action and the parser will be deterministic.

 $^{^{14}}$ Actually, a PDA with a single state, which is thus irrelevant. Also, we will hide the fact that there is always a transition that can pop the Z_0 symbol to reach an accepting configuration.

- an integer i s.t. $1 \le i \le n$, denoting that a produce of rule number i must be performed (i.e., if rule number *i* is $\alpha \rightarrow \beta$, then pop α from the stack and push β); or
- Accept, denoting that the string read so far is accepted. This occurs only in cell M[\$,\$], i.e., when \$ is on the top of the stack and also the next symbol on the input. In terms of PDA, this consists in reading \$, and popping it, to reach an accepting configuration (provided that no characters are left on the input); or
- Match, denoting that a match action must be performed. This action occurs only in the cases where $\alpha = \ell \in T$. Then, the action consists in popping α and reading α from the input.
- Error, denoting the fact that the parser has discovered an error and cannot go on with the construction of a derivation. The input should be rejected.

Before explaining how to build such a table in a systematic way, we present a complete example of such a table, and the execution of the parser on example input strings.

Example 5.18. Let us consider once again the grammar for artihmetic expressions (Figure 5.4), which we reproduce in Figure 5.7 to enhance readability. Its action table is as follows (where M, A and empty cells denote 'Match', 'Accept' and 'Error', respectively):

M	\$	+	_	*	/	Cst	ld	()
S			1			1	1	1	
Exp			2			2	2	2	
Exp'	5	3	4						5
Prod			6			6	6	6	
Prod'	9	9	9	7	8				9
Atom			10			11	12	13	
\$	Α								
+		Μ							
_			M						
*				M					
1					Μ				
Cst						М			
ld							М		
(М	
)									М

Note that the bottom half of the table is not very informative: it just tells us that we should match terminals when they occur at the top of the stack. This is not surprising: non-determinism can occur only because of the 'Produce' actions. So, in the rest of these notes, we will not show that part of the table anymore.

Now, let us consider the input word Id + Id * Id which is accepted by the grammar, and let us build the corresponding run.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	S	\rightarrow	Exp\$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(2)	Exp	\rightarrow	ProdExp'
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(3)	Exp'	\rightarrow	+ Prod Exp'
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(4)		\rightarrow	-ProdExp'
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(5)		\rightarrow	ε
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(6)	Prod	\rightarrow	AtomProd'
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(7)	Prod'	\rightarrow	*Atom Prod'
$ \begin{array}{cccc} (10) & Atom & \to & -Atom \\ (11) & \to & Cst \\ (12) & \to & Id \\ \end{array} $	(8)		\rightarrow	/Atom Prod [/]
$ \begin{array}{ccc} (11) & \rightarrow & Cst \\ (12) & \rightarrow & Id \\ \end{array} $	(9)		\rightarrow	ε
(12) → Id	(10)	Atom	\rightarrow	-Atom
' '	(11)		\rightarrow	Cst
(13) → (Exp)	(12)		\rightarrow	ld
	(13)		\rightarrow	(Exp)

Figure 5.7: The grammar generating expressions (followed by \$ as an end-ofstring marker). This is the same grammar as in Figure 5.4, reproduced here for read-

- 1. Initially, we are in a configuration where the stack contains only S and the input contains only Id+Id*Id. Thus, we look at M[S,Id], and see that rule (1) must be produced. This is not a surprise, since rule (1) is the only one that has S as the left-hand side; but at least M[S,Id] does not raise an error. Had the first character of the input been I for instance, we would have been able to reject the input string immediately. The Produce replaces I by I be I by I on the the stack but does not modify the input.
- 2. Then, we look up $M[\mathsf{Exp},\mathsf{Id}]$, and Produce rule (2). This replaces Exp by $\mathsf{ProdExp}'$ on the stack (with Prod on top, thus) and does not modify the input. The parsing continues accordingly, for a couple of steps (the remaining inputs are drawn below the stacks):

3. At that point, the terminal ld is present both on the top of the stack and on the input, so a Match occurs, which modifies the input:

4. Then, the parsing goes on... Observe that the next produce consists in popping the Prod' variable from the top of the stack (i.e., applying rule $Prod' \rightarrow \varepsilon$):

So, the word Id + Id * Id\$ is accepted.

Now, let us consider the word Id(Id)\$ which is not syntactically correct (it is not accepted by the grammar).

1. The corresponding run starts as in the case of Id+Id*Id\$, until the moment where the Id symbol on the top of the stack has to be matched:

2. At this point, the action table returns an error (i.e., M[Prod', (] = Error, indicated by a blank cell in the table above), and the parsing stops

So the word Id(Id)\$ is not accepted by the parser and by the grammar.

Observe that when the error is detected, the information in row Prod' of the action table could be used to give some feedback to the user, by telling him which symbol could have been correct at that point of the parsing (without guarantee that the parsing could have continued even if that symbol were present). For example, an error message in the case could have been:

Error, unexpected symbol (. I was expecting \$, +, -, *, / or).

Algorithm to build the action table Let us now formalise these ideas. Algorithm 8 presents the construction of the LL(1) table. The algorithm starts by initialising all the cells M[A,a] (where A is a variable and a a terminal) to the empty set. These are all the cells that can potentially contain one or several 'Produce' actions. Then all cells M[a,b], where a and b are terminals, are populated: they are all initialised to the empty set, except for the cells M[a,a] (with $a \neq \$$) that are initialised to a 'Match', and M[\$,\$] that contains the 'Accept' action.

After this initialisation, all rules $A \to \alpha$ are taken into account: all symbols a from First(α Follow(A)) are computed, and the number i of the rule $A \to \alpha$ is added to the corresponding cell M[A,a]. Since the algorithm adds the rule number to the cell, each cell can contain several rule numbers, thereby allowing to detect potential conflicts.

Algorithm of the parser Next, we formalise, by means of an algorithm, the execution of the parser, using the action table computed before. We use the syntax of pseudo-code that we have used to describe our algorithms so far instead of the syntax of PDA, because it is more readable, and closer to implementation. Note, however, that we propose, in the next subsection, another way of implementation such parsers, which is probably more practical.

The algorithm of the parser behaves as illustrated in Example 5.18: it starts by pushing the start symbol of the grammar on the stack, then, at all times, it reads the symbol x on the top of the stack (it can be a variable of a terminal), checks the look-ahead a, and applies the action which is given by the action table in cell M[x,a]. It proceeds this way until the 'Accept'

One could also imagine that the compiler skips the error at that point and tries and *re-synchronise*, i.e., tries and compile the remainder of the input (in this case (ld)\$, which is correct) in order to inform the user of potential further errors in the input. Error reporting and re-synchronisation are beyond the scope of these notes. The interested reader can refer to the 'Dragon book'.

A. Aho, M. Lam, R. Sethi, and Ullman J. *Compilers: Principles, Techniques, & Tools.* Addison-Wesley series in computer science. Pearson/Addison Wesley, 2007

It is useful to compare the way the algorithm fills in the table with the definition of *strong* LL(1) grammars. One can then see that there will be no conflict in the table built by the algorithm iff the grammar is strong LL(1), i.e. LL(1) since these two notions are equivalent.

```
Input: A CFG G = \langle P, T, V, S \rangle.
Output: The LL(1) action M table of G
/* Initialisation of the table
                                                                                    */
foreach a \in T do
    foreach A \in V do
      \mid M[A,a] \leftarrow \emptyset;
    \mathbf{foreach}\ b\in T\setminus \{a\}\ \mathbf{do}
     \bigsqcup M[b,a] \leftarrow \emptyset;
    M[a,a] \leftarrow \{M\};
M[\$,\$] \leftarrow \{A\};
/* Adding the 'Produce' actions
                                                                                    */
foreach rule A \rightarrow \alpha \in P with number i do
    foreach a \in First(\alpha \cdot Follow(A)) do
        M[A, a] \leftarrow M[A, a] \cup \{i\};
return M;
Algorithm 8: Systematic construction of the LL(1) table of a CFG.
```

action is executed, or until an error is encountered (which is the case when the cell is empty).

5.1.5 Implementation using recursive descent

To close the section on top-down parsers, let us describe a straightforward way to implement those parsers using recursive functions. To do this, we will build on the intuition we have already given in the introduction of Section 4: consider a rule like $S \rightarrow 0S0$, for instance. Such a rule can be interpreted by saying that 'to recognise an S, one should first read a 0 from the input, then recognise an S, then read another 0'. In terms of functions, this could mean that: 'to return true the S function should first read a 0 on the input, then make a successful call (one that returns true) to S, then read a 0 from the input'.

While this intuition seems to hold for a *single* rule, and seems to provide an easy way to turn a CFG into a recursive code that implements a parser, it fails when there are at least two rules with the same left-hand side, for instance:

$$S \rightarrow Ab$$

and:

$$S \rightarrow Bc$$
,

because this would yield two (or more) different implementations for the same function corresponding to *S*.

However, in order to resolve this non-determinism, we can rely on the LL(1) techniques we have presented throughout this chapter. In the exam-

```
Input: An LL(1) CFG G = \langle P, T, V, S \rangle with its action table M and an
       input word w = w_1 w_2 \cdots w_n \in T^*.
Output: True iff w \in L(G). In this case, the sequence of rule
        numbers in a left-most derivation is printed on the output.
/* Position of the 'reading head' in the input word:
    w_i is the look-ahead.
j \leftarrow 1;
/* Pushing the start symbol.
                                                                   */
Push(S);
while the stack is not empty do
   x \leftarrow \mathsf{Top}();
   if M[x, w_i] = \{i\} then
       Assume rule number i is A \rightarrow \alpha; /* Produce i */
       Pop();
      Push(\alpha);
     Print(i);
   else if M[x, w_j] = \{M\} then
                                                        /* Match */
       Pop();
     j \leftarrow j + 1;
   else if M[x, w_i] = \{A\} then
    return True ;
                                                      /* Accept */
   else
       return False;
                                                       /* Error */
```

ple above, let us assume that:

```
First^{1}(AbFollow^{1}(S)) = \{a1, a2, ... an\},First^{1}(BcFollow^{1}(S)) = \{b1, b2, ... bk\}.
```

Then, we would obtain the code (using the python syntax):

```
def S():
 1
 2
       n = get_next_character() # This is a look-ahead
 3
 4
       # If the look-ahead is in First(A b Follow(S))
       if n == 'a1' or n == 'a2' or ... or n == 'an' :
 5
          read_next_character() # Discard the look-ahead
 6
 7
          r = A()
 8
          if (!r): return False
          n = read_next_character()
 9
          if (n == 'b'): return True
10
11
          else: return False
12
13
       # If the look-ahead is in First(B c Follow(S))
14
       if n == 'b1' or n == 'b2' or ... or n == 'bn' :
15
          read_next_character() # Discard the look-ahead
16
          if (!r): return False
17
18
          n = read_next_character()
          if (n == 'c'): return True
19
          else: return False
20
21
22
       # Otherwise, the input cannot be valid.
23
       return False
```

where we rely on two auxiliary functions:

- get_next_character() that returns the next character on the input but does not *consume* it from the input (i.e., several subsequent calls to get_next_character() always return the same value); and
- read_next_character() that returns the next character on the input and also *consume* it (the read pointer moves in the input stream).

5.2 Bottom-up parsers

Let us now consider a completely different family of parsers, which are called the *bottom-up parsers*. Those parsers are generally regarded as *more powerful* than their top-down counterparts. As such, automatic parse generators such as yacc¹⁵, bison¹⁶ and cup¹⁷ implement bottom-up parsers.

Principle of bottom-up parsing Recall the two main actions that a top-down parser can perform are:

- 1. the *Produce*, which consists in replacing, on the top of the stack, the left-hand side A by the right-hand side α of some production rule $A \rightarrow \alpha$ of the grammar; and
- 2. the *Match*, that consists in reading from the input some character a, which is at the same time popped from the top of the stack.

Such top-down parsers start their execution with the start symbol *S* on the stack and accept with the empty stack. Doing so, they unravel a parse tree for the input string from the top to the bottom, and produce a *leftmost* derivation.

Bottom-up parsers, on the other hand, work in a complete reverse way.

• First, they rely on the *Shift* action to *move* terminals from the input to the top of the stack. The picture hereunder illustrates a shift, where the terminal a is read from the input and pushed on the top of the stack:

		a
A	\xrightarrow{Shift}	A
b		b
abc		bo

• Second, they apply the grammar rules *in reverse*. The parser looks for a so-called *handle* on the top of the stack, i.e. the right-hand side α of some grammar rule $A \rightarrow \alpha$. When such a handle is present (in mirror image) on the top of the stack, the parser can perform a *Reduce*. A Reduce amounts to popping the handle α , and pushing A instead. This way, the parser unravels a parse tree from the bottom to the top (hence the name *bottom-up parser*). The picture hereunder illustrates a Reduce of the rule $B \rightarrow Aa$:

a		
A	Reduce	B
b		b
bc		bc

• Finally, the aim of the parser is not to *empty* the stack (by matching all the terminals), but rather to end up with only the stack symbol *S* on the stack (and, of course, an empty input), which means that a derivation has been produced for the whole string, but in the *reverse order* (since rules have been applied in the reverse order too when doing the *Reduces*). Actually, the bottom-up parser builds a *right-most derivation in reverse order*.

15 Stephen C. Johnson. Yacc: Yet another compiler-compiler. Technical report, AT&T Bell Laboratories, 1975. Readable online at http://dinosaur.compilertools.net/yacc/
 16 Gnu bison. https://www.gnu.org/software/bison/. Online: accessed on December, 29th, 2015
 17 Cup: Construction of useful parsers. http://www2.cs.tum.edu/projects/cup/. Online: accessed on December,

29th, 2015

Observe that the handle Aa appears with the rightmost character on the top of the stack. That is, the handle is *reversed* wrt to what would have been pushed to the stack by a Produce of the same rule in a top-down parser. This is because the characters that have produced the variable A (through other Reduces, presumably) have been read on the input *before* the a, so the A has been pushed to the stack before the a and is thus *under* the a in the stack.

Example 5.19. Let us consider once again the grammar for arithmetic expressions of Figure 4.4, and let us consider the string Id + Id * Id, which is accepted by the grammar. One possible *rightmost* derivation for this string is as follows:

$$\operatorname{\mathsf{Exp}} \overset{2}{\Rightarrow} \operatorname{\mathsf{Exp}} * \operatorname{\mathsf{Exp}} \overset{4}{\Rightarrow} \operatorname{\mathsf{Exp}} * \operatorname{\mathsf{Id}} \overset{1}{\Rightarrow} \operatorname{\mathsf{Exp}} + \operatorname{\mathsf{Exp}} * \operatorname{\mathsf{Id}} \overset{4}{\Rightarrow} \operatorname{\mathsf{Exp}} + \operatorname{\mathsf{Id}} * \operatorname{\mathsf{Id}} * \operatorname{\mathsf{Id}}. \tag{5.1}$$

The parser starts its execution in a configuration where: the stack is empty (formally, it contains only the empty stack symbol Z_0 , but we will not display it, or the sake of readability); and the input contains Id + Id * Id:

From this configuration, the parser can only *shift* the first character on the input:

Now, the top of the stack constitutes a *handle* for the rule $Exp \rightarrow Id$. Remark that, at this point, the parser can decide either to *Reduce* $Exp \rightarrow Id$ or to *Shift* another character. The former choice is the good one. Indeed, if we shift a + on top of the Id, it means we will need to find a rule whose right-hand part contains Id *and* some other symbols, but there is no such rule in our grammar. The Reduce of $Exp \rightarrow Id$ yields:

Observe that, in the rightmost derivation (5.1), the *last* rule to be applied is indeed $Exp \rightarrow Id$. So, this is coherent with our claim that the parser builds the rightmost derivation in a *reverse* manner. Now, the parser can shift two more symbols, and reduce the Id that ends up on the top of the stack:

Next, following the rightmost derivation, Exp + Exp froms a handle of the rule $Exp \rightarrow Exp + Exp$, which can be reduced¹⁹. Then, the parser can shift twice, and finally reduce $Exp \rightarrow Id$, then $Exp \rightarrow Exp * Exp$:

¹⁸ Recall that this grammar is *ambiguous*, so several rightmost derivations are possible.

¹⁹ Formally, this must be performed, in the PDA, by three transitions in a row: one to pop the first Exp, one to pop the +, and one to replace the last Exp by another Exp. This last transition can be skipped however, since we are in the special case where the last symbol that must be popped is also the one than has to be pushed.

The last configuration is an *accepting configuration*²⁰ for this parser, because: (i) the start symbol Exp of the grammar is on the top of the stack; and (ii) the input is empty. Thus, the string Id + Id * Id is accepted. One can check that the sequence of reductions performed by the parser corresponds to the mirror image sequence of rules that have been applied in the rightmost derivation.

²⁰ Formally, the PDA that corresponds to the parser should contain a transition that pops Exp from the stack and moves to an accepting state.

Systematic construction of a bottom-up parser Following these intuitions, we can now explain how to systematically build a bottom-up parser from a given CFG. We are giving this construction for the sake of completeness. Actually, when we will make those parsers deterministic (as we did for top-down parsers using look-ahead), we will need to slightly alter the behaviour of the basic parser that we are presenting now. Nevertheless, we believe it is a good exercise to show that the actions we have described above can actually be implemented in a PDA.

The parser we are about to describe is unfortunately not as simple as the one-state top-down parser we had obtained in Section 5.1. This is due to the fact that a *Reduce* entails a sequence of *pops* from the stack, which cannot be performed by a single transition. Hence, we will need to introduce intermediary states. More precisely, for each rule of the form $A \rightarrow \alpha_1 \cdots \alpha_n$ (where the α_i 's are individual variables or terminals), we will have n states, that we call $(A,\alpha_1\cdots\alpha_j)$ for $1\leq j\leq n-1$ and (A,ε) . Intuitively, the PDA reaches $(A,\alpha_1\cdots\alpha_j)$ iff: (i) it is in the middle of the reduction of $A \rightarrow \alpha_1 \cdots \alpha_n$; and (ii) it has already popped characters $\alpha_n,\alpha_{n-1},\ldots,\alpha_{j+1}$ from the stack. Thus, to finish the reduction from this state, the PDA must still: (i) pop $\alpha_j,\alpha_{j-1},\ldots,\alpha_1$ (in this order); and (ii) push A. For example, if the grammar contains rule $A \rightarrow bc$, then, the parser can, from its initial state:

- 1. take a transition that pops c and move to (A,b); then,
- 2. from (A, b), take a transition that pops b and move to (A, ε) ; and finally,
- 3. from (A, ε) , take a transition that pushes A, and move back to the initial state of the PDA.

In addition to these transitions, we also need transitions to perform *Shifts*, and one transition to move to the a dedicated state called q_a when the start symbol occurs on the top of the stack. Note that this state is not *accepting* (we build again a PDA that accepts on empty stack), but its aim is to check that, at this point, the only symbol left on the stack is Z_0 , which means that all the symbols on the stack have indeed been reduced to S.

Formally, from a CFG $G = \langle V, T, P, S \rangle$, we build a PDA P'_G as follows:

$$P'_G = \langle Q, T, V \cup T, \delta, q_i, Z_0, \emptyset \rangle,$$

where:

Recall that a PDA with accepting states accepts only when the accepting state is reached *and* the input is empty. There is thus no problem in jumping non-deterministically to the accepting state whenever the start symbol occurs on the top of the stack.

1. The set of states *Q* is defined as follows:

$$\begin{split} Q &= \big\{q_i, q_a\big\} \cup \big\{(A, \varepsilon) \mid A \in V\big\} \\ &\qquad \qquad \cup \big\{(A, \alpha_1 \cdots \alpha_i) \mid A \rightarrow \alpha_1 \cdots \alpha_n \in P \land 1 \leq j \leq n-1\big\}. \end{split}$$

That is, we have one initial state q_i , one accepting state q_a , and the intermediary states for the reductions, as announced;

- 2. For the transitions function, we start by describing it from the initial state q_i , then we consider the intermediary states:
 - (a) For all $a \in T$, for all $s \in V \cup T \cup \{Z_0\}$:

$$\begin{split} \delta(q_i,a,s) &= \{(q_i,as)\} \\ \delta(q_i,\varepsilon,S) &= \{(q_a,\varepsilon)\} \\ \delta(q_i,\varepsilon,s) &= \left\{ \left((A,\alpha),\varepsilon\right) \middle| A \rightarrow \alpha s \in P \right\} \end{split} \tag{Shift)},$$

That is, there are self-loops on the initial state that *Shift* any symbol on the input to the stack; when the start symbol *S* occurs on the top of the stack, the parser can move to the accepting state (*Accept* action); and the parser can decide at any moment to start a *Reduce*, provided that the top of the stack is the right-most character in the handle.

(b) For all states of the form (A, α) with $\alpha \neq \varepsilon$:

$$\delta((A, \alpha s), \varepsilon, s) = \{((A, \alpha), \varepsilon)\}$$

$$\delta((A, \alpha), a, s) = \emptyset$$
 in all other cases.

(c) For all states of the form (A, ε) , we have, for all $a \in T$, for all $s \in T \cup V \cup \{Z_0\}$:

$$\delta((A,\varepsilon),\varepsilon,s) = \{(q_i,As)\}$$

$$\delta((A,\varepsilon),a,s) = \emptyset.$$

(d) Finally, the only transition on q_a is a self-loop that removes Z_0 , so that the PDA accepts only when all the symbols on the stack have been reduced to S:

$$\delta(q_a, \varepsilon, Z_0) = (q_a, \varepsilon)$$

$$\delta(q_a, a, s) = \emptyset$$
 in all other cases.

The correctness of this construction is given by the following Lemma:

Lemma 5.6. For all CFGs
$$G$$
, the PDA P'_G is s.t. $L(G) = N(P'_G)$.

Sketch. The proof is done in two steps. First, one shows that all words w accepted by the grammar G correspond to an accepting run of P'_G , by induction on the length of a (reversed) rightmost derivation producing w in G. Second, one shows that all accepting runs of P'_G on some word w can be translated to a rightmost derivation in G (by induction on the length of the run).

Non-determinism in the parser As in the case of top-down parsers, the main limitation to the bottom-up parser we have just defined is that it is *non-deterministic*. There are two sources of non-determinism in this parser:

Reduce-Reduce conflict: such conflicts occur when the top of the stack is the handle to two different rules, and the parser cannot decide which rule to reduce:

Shift-Reduce conflicts: such conflicts occur when the top of the stack constitutes a handle to some rule, but the parser cannot determine whether it should continue shifting or whether it should reduce now.

Let us first focus on *Shift-Reduce* conflicts. One (but not the only one) of the difficulties we need to overcome to get rid of such conflicts is to determine when *shifting new symbols might still produce a handle*. This has been illustrated in Example 5.19. After the first *Shift*, the configuration reached by the parser is as shown in Figure 5.8. In this configuration, the non-deterministic parser can either *Reduce* rule $\text{Exp} \rightarrow \text{Id}$, or *Shift* the +. However, as we have already argued, shifting a + in this configuration will not yield an accepting run, as there is no other handle than the one of $\text{Exp} \rightarrow \text{Id}$ to contain an Id.

Viable prefixes This example shows that there is a fundamental difference between the two stack contents Id and Id+. This is captured by the notion of *viable prefix*. To define this notion, we must first observe a relationship between the stack contents during an accepting run of the bottom-up parser on input w and a rightmost derivation of w. Looking again at Example 5.19, one can check that **all stack contents are prefixes of some** *sentential form* **obtained along the right-most derivation** (5.1). As a matter of fact, one can prove the following more precise result:

Proposition 5.7. Let $G = \langle V, T, P, S \rangle$ be a CFG, and let P'_G be its corresponding bottom-up parser. Let $\langle q_i, w, \gamma Z_0 \rangle$ be a configuration reached along an accepting run of P'_G (i.e., a configuration where P'_G is neither in one of the intermediate states introduced for the Reduce, nor in q_a). Then:

$$S \Rightarrow^* \gamma^R \cdot w$$

along a rightmost derivation.

Sketch. The proof is by induction on the length of the run. Clearly, the property holds in the initial configuration, since in this case $\gamma = \varepsilon$, hence $\gamma^R w = w$, and w is an accepted word of the grammar (as the run is accepting).

Next, if the property holds on some configuration $\langle q_i, w_1, \gamma_1 Z_0 \rangle$, then moving to the next configuration $\langle q_i, w_2, \gamma_2 Z_0 \rangle$ where the parser is in q_i can be done either by a Shift or by a Reduce. In the case of a Shift, we have $\gamma_1^R \cdot w_1 = \gamma_2^R \cdot w_2$, because the first letter of w_1 has been transferred to the stack, so the property still holds. In the case of a Reduce, only the top of the stack is modified by the reduction of some handle α into some variable A

+ Id * Id

Figure 5.8: A configuration of the bottomup parser where a Reduce must be performed

Recall that a sentential form is a word over $T \cup V$ (i.e., a string containing terminal and variables) that occurs along some derivation of the grammar. When a sentential form has been extracted from a rightmost (leftmost) derivation, we call it a right (respectively left) sentential form.

Recall that w^R is the mirror image of w. In this case, γ^R is a word representing the content of the stack with the top on the right-hand side.

(because the grammar contains the rule $A \rightarrow \alpha$). That is:

$$w_1 = w_2$$
$$\gamma_1^R = \beta \alpha$$
$$\gamma_2^R = \beta A$$

for some stack content β . Since $w_1 = w_2$ is a word of terminals (they contain no grammar variable), A is indeed the rightmost variable in the sentential form $\gamma_2^R w_2$. Since $\gamma_1^R w_1$ can be derived from S (by induction hypothesis) we conclude that $\gamma_2^R w_2$ precedes $\gamma_1^R w_1$ in the rightmost derivation that yields $\gamma_1^R w_1$, hence, $S \Rightarrow^* \gamma_2^R \cdot w_2$.

Example 5.20. To illustrate Proposition 5.7, we can check that it holds at all times along the run shown in Example 5.19. For example, when the configuration is $\langle q_i, \gamma, w \rangle = \langle q_i, \operatorname{Id} + \operatorname{Exp}, *\operatorname{Id} \rangle$, we have $\gamma^R = \operatorname{Exp} + \operatorname{Id}$, which is indeed a prefix of the sentential form $\operatorname{Exp} + \operatorname{Id} * \operatorname{Id}$ obtained after 4 derivations in (5.1). Observe that this sentential form is exactly $\gamma^R \cdot w$.

Thus, the content of the stack in a successful run of the bottom up parser should always be a prefix of a right-sentential form. Unfortunately, not all such prefixes allow to build a successful run. Continuing Example 5.19, ld+ is a prefix of a right-sentential form in (5.1), but, as we have already argued, it does not allow to build a successful run because the parser has shifted past the handle ld that should have been reduced to Exp.

This discussion brings us to a central concept of bottom-up parsers, that of *viable prefix*. A prefix is *viable* iff it can lead to a successful run. Formally:

Definition 5.21 (Viable prefix). A *viable prefix* of a CFG $G = \langle V, T, P, S \rangle$ is a prefix of a right-sentential form that can occur (in reverse) on the stack during an accepting run of the associated bottom-up parser P'_G .

That is, $p \in (V \cup T)^*$ is a viable prefix iff there is a word $w \in L(G)$ and an accepting run

$$(q_i, w, Z_0) = (q_1, w_1, \gamma_1 Z_0) \vdash_{\operatorname{P'_G}} \cdots \vdash_{\operatorname{P'_G}} (q_j, w_j, \gamma_j Z_0) \vdash_{\operatorname{P'_G}} \cdots \vdash_{\operatorname{P'_G}} (q_n, w_n, \gamma_n Z_0) = (q_a, \varepsilon, \varepsilon)$$
 of P'_G s.t. $p = \gamma^R_j$ for some j s.t. $q_j = q_i$ (i.e. P'_G is in the initial state at step

Obviously, we are interested in building, on the stack, prefixes that are *viable* only, so, identifying viable prefixes will be central to our construc-

j and not in one of the intermediary states used for the Reduce).

tion of deterministic bottom-up parsers

Observe that the set of viable prefixes of a grammar can be infinite, and actually constitutes a language on $V \cup T$. If we consider once again the grammar of Example 5.19, we can see that all words of the form Exp+Exp+ \cdots + Exp are viable prefixes of the grammar. Indeed, for every such word of the form:

$$\exp \underbrace{+ \exp + \cdots + \exp}_{n \text{ times}}$$

one can build a derivation obtained by applying n times the first grammar rule on the rightmost Exp of the sentential form:

$$\text{Exp} \Rightarrow \text{Exp} + \text{Exp} \Rightarrow \cdots \Rightarrow \text{Exp} \underbrace{+\text{Exp} + \cdots + \text{Exp}}_{n \text{ times}}$$

which can then yield the word:

$$ld \underbrace{+ld + \cdots + ld}_{n \text{ times}}$$
.

Then, an accepting run of the bottom-up parser consists in systematically shifting all the Id and + tokens on the stack and reducing the Id to Exp as soon as they are shifted. Finally, the parser reduces the rule Exp→Exp+ Exp n times and accepts. Along this run all the prefixes Exp, Exp + Exp, Exp + Exp + Exp have been present on the stack.

From this discussion, it should be clear that identifying viable prefixes will be a central condition to build deterministic bottom-up parsers. The point of the next section is to introduce a tool to do so.

The canonical finite state machine

In this section, we explain how to build, from a CFG G, a finite automaton recognising exactly the viable prefixes of G. As explained, this automaton will be instrumental in building deterministic bottom-up parsers, and it is called the canonical finite state machine, or CFSM.

In order to introduce the construction of the CFSM, we will consider an example grammar.

Example 5.22. Consider the grammar:

(1)	S	\rightarrow	A\$
(2)	A	\rightarrow	a CD
(3)		\rightarrow	ab
(4)	C	\rightarrow	С
(5)	D	\rightarrow	d

The set of viable prefixes of this grammar is:

$$\{\varepsilon, A, A\$, a, aC, ac, aCD, aCd, ab\}.$$

In particular, observe that acD is *not* a viable prefix, because the parser has missed the handle c of $C \rightarrow c$. Hence, we cannot reduce the rule $A \rightarrow aCD$. Instead, the parser had to reduce the c into C before shifting and reducing the d. 8

Now, let's see how to build the CFSM. If we consider the first rule of the grammar $S \rightarrow A$ \$, we see immediately that A and A\$ are viable prefixes. So, we could start building our CFSM by having a three-state automaton of the form:

However, to track the progress of the automataon along the rule $S \rightarrow A$ \$, we will associate each state with so-called items. An item is simply a grammar rule where we have inserted a • at some point in the right-hand part, in order to symbolise the current progress of the CFSM (and, as we will see later, of the bottom-up parser):

Definition 5.23 (CFSM item). Given a grammar $G = \langle V, T, P, S \rangle$, an *item* of *G* is a rule of the form $A \rightarrow \alpha_1 \bullet \alpha_2$, where $A \rightarrow \alpha_1 \alpha_2 \in P$ is a rule of *G*. We denote by Items (G) the set of items of G. Š

Observe that this grammar is not LL(1), because of the two rules having A as the left-hand side. Nevertheless, we will manage to parse it with a bottom-up parser without any symbol of prevision.

So, intuitively the item $S \rightarrow A \bullet \$$ means that the automaton is trying to recognise the recognise the *handle* A\$ of the rule $S \rightarrow A\$$, that it has read an A so far, and that it still expects to read a \$ to complete the handle (and hence, complete the viable prefix). Using this notation, our automaton becomes:

Observe that we have slightly altered our conventions for depicting automata in this figure (in order to reflect common practice of the literature). First, we do not mark explicitly the states as 'accepting' since they are all accepting anyway. Indeed, the prefix of a viable prefix is itself a viable prefix. Second, our states are now divided into two parts: we will understand why in a moment. Finally, we are now numbering the states, to be able to refer to them easily (see the bold numbers on top left of states).

Note that, for the moment, our automaton contains only one item per state. In general states of the CFSM will be *sets* of prefixes. Observe that, for a given grammar, there are finitely many items, because there are finitely many rules, which have all a finite right-hand side. So the CFSM is guaranteed to be finite.

Clearly, this automaton is not sufficient to accept all *viable prefixes*. Indeed, $S \Rightarrow A\$ \Rightarrow aCD\$$, for instance, is a possible prefix of derivation in our grammar, so we should also accept the viable prefixes a, a*C*, *etc*.

How can we obtain this? We need to incorporate in our CFSM the fact that A can be derived as $\mathbf{a}CD$, but where to add this information? If we observe the initial state, it contains the item $S \to \bullet A\$$, in which the \bullet symbol is immediately followed by the $variable\ A$. This is a sign that we need to add more information to the initial state: when the automaton tries to recognise a viable prefix generated using rule $S \to A\$$, it might need to read an a, because the rule $A \to aCD$ might be applied next. Thus, we will add to the initial states two new items: $A \to \bullet aCD$ and $A \to \bullet ab$.

The fact that states of the CFSM are sets of items should not be surprising, since we are building a deterministic automaton, but there can be non-determinism in the grammar. This is reminiscent of the subset construction technique to determinise finite automata from Section 2.4.2.

The operation that consists in looking, in a state, for all the items of the form $A \rightarrow \alpha_1 \bullet B \alpha_2$, where B is a variable; and adding to the state all the items of the form $B \rightarrow \bullet \alpha$ is called the *closure* operation. It needs to be applied to all states²¹ of the CFSM (possibly several times until no more items can be added).

In our depiction, the items that result from the closure operation appear in the lower part of the states. The items from the top part of the states are called the *kernel* of the state. The kernels will play an important role in the LALR(1) parsers (Section 5.2.5), and this is why we need to keep them distinct from the closure.

This new information in the initial state allows us to complete our automaton. Since the state now contains items $A \rightarrow \bullet aCD$ and $A \rightarrow \bullet ab$, the

²¹ The closure operation does not add items to states 1 and 2, because the • is not followed by a variable in the corresponding items.

automaton can progress in the recognition of a valid prefix by reading an a from the initial state. This will yield a new state where the automaton has progressed in both items, so the kernel of the new state will contain both $A \rightarrow a \bullet CD$ and $A \rightarrow a \bullet b$. This means that we don't know, at this point, whether the handle that will be read will be aCD or ab, but both are still possible so far. In addition, the closure operation will add the item $C \rightarrow \bullet c$ to the state, because the \bullet is directly followed by a C in $A \rightarrow a \bullet CD$:

Continuing this systematic construction, we obtain the automaton which is shown in Figure 5.9.

With these intuitions in mind, we can now describe formally the construction of the CFSM for a given CFL G.

Figure 5.9: The CFSM for our example grammar. All states shown on the figure are accepting.

The Closure operation We start by giving an algorithm to compute the closure that we have informally discussed above. It is given in Algorithm 9. As can be seen, it is a fixed point algorithm, to adds items of the form $B \rightarrow \bullet \beta$ for every item of the form $A \rightarrow \alpha_1 \bullet B \alpha_2$ where the \bullet is followed by some variable B. This operation is carried on up to stabilisation, i.e. until no more items can be added to the set, which is then returned.

Computing the successors of items The next step in the construction is to define formally the notion of successor in a CFSM. For that, we define

a function that receives a set of items $I \subseteq \operatorname{Items}(G)$ and a terminal $a \in T$, and returns the set CFSMSucc (I,a) of all the items obtained from I after reading a. This is obtained by selecting, from I, all the items of the form $A \to \alpha_1 \bullet a\alpha_2$, where the \bullet is immediately followed by a; and by moving the \bullet one position of the right, in order to reflect the progress of the automaton. Formally:

Algorithm 9: Computing the Closure of a set *I* of items.

CFSMSucc
$$(I, a) = \{A \rightarrow \alpha_1 a \bullet \alpha_2 | A \rightarrow \alpha_1 \bullet a \alpha_2 \in I\}.$$

Construction of the CFSM $\,$ Then, the construction of the CFSM associated to a CFL G is rather straightforward.

Definition 5.24 (Canonical Finite State Machine). Let $G = \langle V, T, P, S \rangle$ be a CFG. Its *Canonical Finite State Machine* (or CFSM for short) is the DFA

$$CFSM(G) = \langle Q, V \cup T, \delta, q_0, F \rangle,$$

where:

- 1. the set of states Q is the set of all sets of G's items: $Q = 2^{\text{Items}(G)}$;
- 2. the initial state $q_0 = \text{Closure}(\{S \to \bullet \alpha \mid S \to \alpha \in P\})$ is obtained by taking the closure of all the items obtained from the rules where S is the left-hand side, and where the \bullet appears at the initial position (on the left of the right-hand side);
- 3. for all $q \in Q$, for all $a \in V \cup T$:

$$\delta(q, a) = \text{Closure}(\text{CFSMSucc}(q, a)).$$

That is, the transition function is obtained by first computing the successors of q by a (hence by advancing the \bullet one position to the right in the relevant items), and then taking the closure of the resulting set.

4. all the states are accepting but the empty set, which is considered as an error state: $F = Q \setminus \{\emptyset\}$.

The main property of the CFSM is given by the following theorem (which we will not prove here):

Observe that the automaton is indeed *deterministic*: the Closure function returns a *set* of items, which is indeed a *state* of the CFSM.

Observe that the automaton is actually complete: there are transitions labelled by all alphabet symbols from all states. However, these transitions can lead to \emptyset , which is the error state, and which we usually do *not* depict (see for instance Figure 5.9) to keep figures compact and readable.

Theorem 5.8. For all CFG G: CFSM (G) accepts the set of all viables prefixes of G.

Now that we have the CFSM in our toolbox, how can we exploit it to make our bottom-up parsers deterministic? In the next sections, we will introduce the LR(k) parsers, which are a family of deterministic bottom-up parsers that use k characters of look-ahead. Similarly to the case of LL(k), the 'LR' in LR(k) stands for *Left scanning, Right parsing*.

5.2.2 The LR(0) parsers

We start with the LR(0) parsers, which use *no look-ahead*. This might sound surprising, since it is hard to imagine that a *top-down* parser would be able to parse anything meaningful without look-ahead. As a matter of fact, a grammar is LL(0) iff it does not contain two rules with the same left-hand side, which is a very strong restriction, since such grammars would accept only one word at most! Nevertheless, LR parsers are usually regarded as *more powerful* than LL parsers, and there are non-trivial grammars (such as the one in Example 5.22) that can be parsed by an LR(0) parser, as shown by the next example, which will help us build our intuition.

Example 5.25. Let us consider again the grammar G of Example 5.22, and the word acd\$ which is accepted by this grammar. Let us check how CFSM(G), as given in Figure 5.9, helps us parse acd\$ in a deterministic fashion.

Let us observe the run of the bottom-up parser on acd\$. Initially, the stack is empty²², and the only thing the parser can do is to shift a (since there is no rule which has ε as its right-hand side, no Reduce is possible):

Now, let us consider the associated CFSM. Remember that its goal is to accept viable prefixes, which are *stack contents*, so let us run it on the stack contents reached so far. In the initial configuration of the parser, the stack was empty, so the CFSM reaches state $\mathbf{0}$. Observe that in this state, there are no items of the form $A \rightarrow \alpha \bullet$, which indicates that no handle has been read completely. This is coherent with our decision of *Shifting* and not *Reducing* at this point. In the second configuration, the CFSM reaches state $\mathbf{1}$. Again, the items contained in this state indicate that a *Shift* must occur, and the parser reaches a configuration where the stack contains (from the bottom to the top) ac, which moves the CFSM to state $\mathbf{7}$. We depict this as follows, indicating the current CFSM state under the input:

 22 It contains only the Z_0 character, that we will *not* depict in this example in order to keep it readable.

As usual, we represent the sequence of stack contents, with the current input under the stack.

Don't forget that the viable prefixes are *mirror images* of the stack contents, see Definition 5.21. So, the stack content must be read from the bottom to the top by the CFSM!

Now, the parser is in a situation of Shift/Reduce conflict: indeed, it could reduce the c on the top of the stack to C, or it could shift the d. The CFSM helps us lift this conflict: in state 7, the only item is $C \rightarrow c \bullet$, which indicates that the handle for the $C \rightarrow c$ has been read completely and must be reduced. This yields:

Following the same reasoning, we now *Shift* the d, and the CFSM reaches state **8** from which rule 5 must be reduced (item $D \rightarrow d \bullet$). After this reduce, the CFSM is in state **5**, where a *Reduce* of rule 2 occurs, which moves the CFMS to state **1**, as the stack now contains *A* only:

Finally, the parser shifts the remaining character \$, which moves the CFSM to state **2**. In this state, the parser reduces rule 1 which leaves only the start symbol *S* on the top of the stack. This amounts to accepting the input string, and is denoted by the *Accept* action. The full run is displayed in Figure 5.10 (top of the figure).

Ğ

Let us summarise what we have learned from this example. First, we can always associate a state of the CFSM to the current stack content, and this state is sufficient to determine the action that the parser must perform. These actions are to:

- *Accept* in all states containing an item of the form $S \rightarrow \alpha \bullet$;
- Shift whenever the current state does not contain an item of the form
 A→α• because we have not yet shifted a complete handle on the stack;
 and

Figure 5.10: Two versions of the run of the LR(0) parser on acd\$. On the top: the run where we push grammar symbols on the stack. Bottom: the same run where we push CFSM states instead (which is the actual run of the LR(0) parser).

• *Reduce* rule $A \rightarrow \alpha$ whenever the current state contains the item $A \rightarrow \alpha$ • (except if this is a state where an *Accept* is performed).

As in the case of top-down parsers, this can be summed up in an *action table*, as follows, where an 'A' stands for *Accept*, an 'S' stands for *Shift*, a number i stands for '*Reduce* rule number i', and states are identified by their numbers:

State	Action
0	S
1	S
2	A
3	S
4	S
5	2
6	3
7	4
8	5

Now, since the CFSM state is the only meaningful information for determining the behaviour of the parser, one could wonder what is the point of actually pushing symbols on the stack? It turns out that we can, instead, push the sequence of CFMS states. To better understand this, consider the excerpt of the run above:

		d		D
C	Shift	C	$\xrightarrow{\text{Red. 5}}$	C
a		a		a
d\$		\$		\$
4		8		5

In this example, the CFSM state is **4** when the stack content is *C*a, then a *Shift* occurs, which moves the CFSM to state **8**. To obtain this state **8**, we only need to know that we were previously in state **4** and that we have read a d. Then, a *Reduce* occurs that pops one character (because the right-hand side of rule 5 has length 1), pushes a *D* instead, and moves the CFSM to state **5**. It is here crucial to observe that, in order to determine that the CFSM ends up in state **5**, all we need to know is:

- 1. the current state of the CFSM *before* the reduced handle (here: d) was on the stack (here this state was 4); and
- 2. the fact that we are pushing a *D* into the stack.

Indeed, in the CFSM: $\delta(\mathbf{4}, D) = \mathbf{5}$. In other words, to determine that the CFSM reaches state $\mathbf{5}$ when the stack contains DCa, one does not need to re-run the CFSM on the whole stack content from scratch: instead, we can *remember* on the stack the state reached with stack content Ca (here, state $\mathbf{4}$), then look for the (unique) successor of $\mathbf{4}$ by letter D. This holds because the CFSM is *deterministic*.

So, in practice, the run of the LR(0) parser on acd is the one displayed in Figure 5.10 (bottom). Let us now formalise these ideas.

Observe that in our example, each line of the table contains one and only one action. This need not be the case in general: one could imagine a single state of the CFSM containing both $A\rightarrow\alpha\bullet$ and $B\rightarrow\beta\bullet$ (a Reduce/Reduce conflict) or both $A\rightarrow\alpha1\bullet\alpha2$ and $B\rightarrow\beta\bullet$ (a Shift/Reduce conflict). We will see such examples later and how to solve them using look-ahead.

Note that since, now, the stack contains the initial state of the CFSM from the beginning, we do not even need the Z_0 symbol anymore. Or, in other words, we let $Z_0 = \mathbf{0}$, and the *Accept* will pop $\mathbf{0}$ to empty the stack.

Action table of the LR(0) parser The action table of the LR(0) parser associates one or several actions to each state:

Definition 5.26. LR(0) action table Given a CFG $G = \langle V, T, P, S \rangle$, and its associated canonical finite state machine CFSM $(G) = \langle Q, q_0, V \cup T, \delta, F \rangle$, and let us assume that:

- *G*'s rules (i.e. the elements of *P*) are indexed from 1 to *n*; and
- The non-empty states of CFSM(G) (i.e. the elements of $Q \setminus \emptyset$) are indexed from **0** to k-1, so that $Q = \{0, 1, \dots, k-1, \emptyset\}$.

Then, the LR(0) *action table* is a table M with |Q| = k + 1 lines s.t., for all $0 \le i \le K$, M[i] contains a *set of actions*. The actions can be:

- either an integer $1 \le j \le n$ denoting a *Reduce* of rule number j;
- or Shift denoting that the parser must *Shift* the next character of the input to the stack;
- or Accept denoting that the string read so far is accepted and belongs to L(G);
- or Error denoting that the string must be rejected. The only state which
 is associated with this action is φ.

8

To build this action table, we look for items of the form $A \rightarrow \alpha \bullet$ in the states of the CFSM and we associate a *Reduce* of the corresponding rule to those states. When the state contains $A \rightarrow \alpha_1 \bullet \alpha_2$, we associate a *Shift* to the state. This is detailed in Algorithm 10. Observe that after the execution of this algorithm, no cell will be empty, because each state of the CFSM always contains at least one item that either will satisfy one of the two **If**'s of the main loop, or will allow for at least one execution of the innermost **foreach** loop.

Running the LR(0) parser Now that we have described the construction of the action table of the LR(0) parser let us formalise how it runs on a given input string. For the sake of clarity, we will not describe this parser as a PDA, but rather as an algorithm that can access a stack $\mathscr S$ from which it can push and pop. The parser is given in Algorithm 11 and assumes that the action table contains exactly one action per cell. The NextSymbol() function reads and returns the next symbol on the input (i.e. in the word w).

It is easy to check that the algorithm follows exactly the intuitions that we have described so far. Namely, in the main **while** loop, the parser checks the content of the LR(0) table in the cell given by the top of the stack, to obtain the action that must be executed. Then:

- if this action is an Error or an Accept, the execution finishes immediately;
- if the action is a Shift, the next character is read and stored in variable
 c; and

As in the case of LL(1) our definition allows for *several* actions in a given cell, but the parser will be deterministic only when there is exactly one action per cell.

```
Input: A CFG G = \langle V, T, P, S \rangle whose rules are indexed from 1 to n;
            and CFSM (G) = \langle Q, \mathbf{0}, V \cup T, \delta, F \rangle where
            Q = \{0, 1, \dots, k-1, \emptyset\}.
  Output: LR(0) action table of G.
  /* Initialisation
                                                                                             */
  M[\emptyset] \leftarrow \mathsf{Error};
  foreach q \in \{0, 1, ..., k-1\} do
   M[q] \leftarrow \emptyset;
  /* Populating the table
                                                                                             */
  foreach q \in \{0, 1, ..., k-1\} do
       if q contains an item of the form S \rightarrow \alpha \bullet then
        M[q] \leftarrow M[q] \cup \{Accept\};
       foreach item in q that is of the form A \rightarrow \alpha \bullet with A \neq S do
        M[q] \leftarrow M[q] \cup \{j\} where rule number j is A \rightarrow \alpha;
       if q contains an item of the form A \rightarrow \alpha_1 \bullet \alpha_2 with \alpha_2 \neq \varepsilon then
        M[q] \leftarrow M[q] \cup \{\text{Shift}\};
  return M;
Algorithm 10: The algorithm to compute the LR(0) action table of a
CFG G using CFSM (G).
  Input: The LR(0) action table M of some CFG G and its associated
            CFSM (G) = \langle Q, \mathbf{0}, V \cup T, \delta, F \rangle; and an input word w.
  Output: True iff w \in L(G)
  Let \mathcal{S} be an empty stack;
  Push (\mathcal{S}, \mathbf{0});
                                       // Push of the initial CFSM state
  while M[\mathsf{Top}(\mathscr{S})] \neq \mathsf{Error} \ and \ M[\mathsf{Top}(\mathscr{S})] \neq \mathsf{Accept} \ \mathbf{do}
       if M[\mathsf{Top}(\mathscr{S})] = \{\mathsf{Shift}\}\ then
            c \leftarrow \mathsf{NextSymbol}();
       else if M[\mathsf{Top}(\mathscr{S})] = \{i\} then
            Let A \rightarrow \alpha be rule number i in G;
            Pop() |\alpha| times from \mathscr{S};
       /* Compute the next CFSM state and push it
                                                                                             */
       nextState \leftarrow \delta(\mathsf{Top}(\mathscr{S}), c);
```

Algorithm 11: The LR(0) top-down parser. This algorithm assumes that each cell of action table M contains exactly one action.

Push $(\mathcal{S}, nextState)$;

• if the action is a rule number i (meaning that a *Reduce* of rule number i must be performed), and if rule number i is $A \rightarrow \alpha$, then $|\alpha|$ state numbers are popped from the stack, and grammar variable A is stored in c.

Finally, the parser computes the next state based on the current state (which is now on top of stack) and the symbol c that the CFSM must read. This new state is pushed onto the stack. After all these actions have been performed, the state of the parser has been correctly updated, and it can continue its execution the same way.

5.2.3 SLR(1) parsers

One thing which is remarkable about LR(0) parsers is their ability to parse grammars that are not entirely trivial, *without using any look-ahead*, as the previous examples have clearly shown. However, as it often happens with life and computing, *there is no free lunch*, and there are grammars of practical interest that we cannot parse *deterministically* with LR(0) parsers! Let us have a look at such an example...

Example 5.27. Consider the grammer in Figure 5.11. It is a simplification of the grammar to generate arithmetic expressions that we have considered several times before (the point of the simplification here is to keep the example short, but everything we are about to discuss extends to the grammar with all operators). Notice that this grammar implements the priority of operator as discussed at the end of Chapter 4.

We claim that this grammar is not LR(0). Let us build its CFSM to check this. It is given in Figure 5.12. We can immediately spot conflicts in state 1 and in state 12. In state 1 the parser cannot decide between performing a shift (which will necessarily be of symbol *), or to reduce $\text{Exp} \rightarrow \text{Prod}$. Similarly, in state 12, there is conflict between a shift (of * again) and a reduce of $\text{Exp} \rightarrow \text{Exp} + \text{Prod}$.

While this example shows that some grammars cannot be parsed by a deterministic bottom-up parser without any symbol of look-ahead, it also suggests an easy way to lift this conflict. Let us again consider state 1. Clearly, in this state, the *Shift* action should occur only when a * symbol is the next character on the input (all other shifts lead to the error state that is not shown). But how can we find a subset of symbols that contain at least all the symbols for which a *Reduce* of Exp \rightarrow Prod should occur?

Another way to express this question is the following: 'what are the next symbols that we expect on the input when the top-down parser is supposed to reduce $A \rightarrow \alpha$?' Clearly, if the top-down parser is to reduce $A \rightarrow \alpha$, this means that is has already read (i.e., shifted on the stack) *a string of symbols that have been derived from A*. So, the next symbol on the input (i.e., the first one that we have not shifted yet), must be a symbol that we expect *after* a word which is derived from *A*; and this is exactly the definition of Follow(A).

We have thus found a practical way to lift the conflicts, at least in our example:

(1)	S	→	Exp\$
(2)	Exp	\rightarrow	Exp + Prod
(3)		\rightarrow	Prod
(4)	Prod	\rightarrow	Prod * Atom
(5)		\rightarrow	Atom
(6)	Atom	\rightarrow	ld
(7)		\rightarrow	(Exp)

Figure 5.11: A simple grammar for generating arithmetic expressions. This grammar is not LR(0).

We will later introduce formally the notion of LR(k) grammar, and we will see that the grammar of the previous example is *not* LR(0).

3

Figure 5.12: The CFSM for the grammar generating expressions.

- 1. whenever a state contains an item of the form $A \rightarrow \alpha \bullet$, perform a *Reduce* of $A \rightarrow \alpha$ if and only if the look-ahead is a symbol from Follow(*A*);
- 2. whenever a state contains an item of the form $A \rightarrow \alpha_1 \bullet \alpha_2$, perform a *Shift* if and only if the look-ahead is a symbol from First(α_2).

The technique we have just sketched is called *Simple* LR(1) or SLR(1) for short, because it uses one character of look-ahead and it can be regarded as a simplification of the more general LR(1) technique that we will introduce next. In order to formalise it, we have to modify the algorithm building the action table, and the parsing algorithm of LR(0). The construction of the CFSM stays the same. Those new algorithms are given in Algorithm 12 (for the construction of the action table) and in Algorithm 13 (for the actual parser).

```
Input: A CFG G = \langle V, T, P, S \rangle whose rules are indexed from 1 to n;
          and CFSM (G) = \langle Q, \mathbf{0}, V \cup T, \delta, F \rangle where
          Q = \{0, 1, \dots, k-1, \emptyset\}.
Output: SLR(1) action table of G.
/* Initialisation
                                                                                             */
foreach a \in T do
     M[\emptyset, a] \leftarrow \text{Error};
     foreach q \in \{0, 1, ..., k-1\} do
         M[q,a] \leftarrow \emptyset;
/* Populating the table
foreach q ∈ {0, 1, ..., k − 1} do
     if q contains an item of the form S \rightarrow \alpha \bullet then
         M[q,\varepsilon] \leftarrow M[q] \cup \{Accept\};
     foreach item in q that is of the form A \rightarrow \alpha \bullet with A \neq S do
          foreach a \in \text{Follow}(A) do
               M[q, a] \leftarrow M[q, a] \cup \{j\} where rule number j is A \rightarrow \alpha;
     foreach item in q that is of the form A \rightarrow \alpha_1 \bullet \alpha_2 with \alpha_2 \neq \varepsilon do
          foreach a \in First(\alpha_2) do
               M[q, a] \leftarrow M[q, a] \cup \{Shift\};
return M:
```

Observe that the action table M is not computed as a two-dimensional table. For all states q of the CFSM, and for all symbols $a \in T \cup \{\epsilon\}$: M[q,a] provides the parser with the action(s) that it should perform when the current state of the CFSM is q and the next symbol on the input (i.e. the lookahead) is a.

Algorithm 12: The algorithm to compute the SLR(1) action table of a

CFG G using CFSM(G).

If this 'simple', what will come next? You have no idea...

```
Input: The SLR(1) or LR(1) action table M of some CFG G and its
          associated CFSM (G) = \langle Q, \mathbf{0}, V \cup T, \delta, F \rangle; and an input word
Output: True iff w \in L(G)
Let \mathcal{S} be an empty stack;
/* Push of the initial CFSM state
Push (\mathcal{S}, \mathbf{0});
/* Initialisation of the look-ahead
\ell \leftarrow first symbol on the input;
while M[\mathsf{Top}(\mathcal{S}), \ell] \neq \mathsf{Error} \ and \ M[\mathsf{Top}(\mathcal{S}), \ell] \neq \mathsf{Accept} \ \mathbf{do}
     if M[\mathsf{Top}(\mathscr{S}), \ell] = \{\mathsf{Shift}\}\ then
          c \leftarrow \mathsf{NextSymbol}();
     else if M[\mathsf{Top}(\mathcal{S}, \ell)] = \{i\} then
          Let A \rightarrow \alpha be rule number i in G;
          Pop() |\alpha| times from \mathcal{S};
          c \leftarrow A;
     /* Compute the next CFSM state and push it
                                                                                              */
     nextState \leftarrow \delta(\mathsf{Top}(\mathscr{S}), c);
     Push (\mathcal{S}, nextState);
```

Algorithm 13: The SLR(1) and LR(1) top-down parser. This algorithm assumes that each cell of action table M contains exactly one action.

Example 5.28. We continue Example 5.27, and build the action table of the grammar in Figure 5.11. To this end, we first compute:

```
1. Follow(Exp) = \{\$, +, \};
```

- 2. Follow(Prod) = $\{*\} \cup Follow(Exp) = \{*,\$,+,\};$
- 3. Follow(Atom) = Follow(Prod) = $\{*,\$,+,\}$.

/* Update the look-ahead

 $\ell \leftarrow$ first symbol on the remaining input;

Then, we obtain the table given in Figure 5.13. Observe that this table contains no conflict now.

Now, let us consider the word Id + Id * Id *, which is in the language of the grammar, and let us observe the corresponding run of the SLR(1) parser. The run starts as usual with:

	0	
+	ld *	ld\$

When the CFSM is in state **0** and the look-ahead is ld, the action table says to perform a *Shift*, which leads to state **7**. In this new state, and with a new

M	+	*	ld	()	\$	ε
0	<u> </u>		S	S			
	3	S			3	3	
1 2 3			S	S			
	4	4			4	4	
4	S					S	
5	5	5			5	5	
6			S	S			
7	6	6			6	6	
8			S	S			
9							A
10	S				S		
11	7	7			7	7	
12	2	S			2	2	

*/

Figure 5.13: The SLR(1) action table for our simple grammar of expressions. The first column gives the state number, the first row lists the possible look-ahead symbols.

look-ahead equal to +, the parser must *Reduce* rule 6, which leads to sate 5, and so on... The full run is then:

5.2.4 LR(k) parsers

The lecture notes are not ready yet for this part, please refer to the slides on the UV for support material.

5.2.5 LALR(1) parsers

The lecture notes are not ready yet for this part, please refer to the slides on the UV for support material.

A Some reminders of mathematics

Complete function
Equivalence relation, binary relations
Transitive closure
blah

B Bibliography

- Gnu bison. https://www.gnu.org/software/bison/. Online: accessed on December, 29th, 2015.
- CLang: features and goals. http://clang.llvm.org/features.html. Online: accessed on December, 29th, 2015.
- Cup: Construction of useful parsers. http://www2.cs.tum.edu/projects/cup/. Online: accessed on December, 29th, 2015.
- GCC wiki: new C parser. https://gcc.gnu.org/wiki/New_C_Parser, 2008. Online: accessed on December, 29th, 2015.
- A. Aho, M. Lam, R. Sethi, and Ullman J. Compilers: Principles, Techniques, & Tools. Addison-Wesley series in computer science. Pearson/Addison Wesley, 2007.
- Frances E. Allen. Control flow analysis. *SIGPLAN Not.*, 5(7):1–19, July 1970. ISSN 0362-1340. DOI: 10.1145/390013.808479. URL http://doi.acm.org/10.1145/390013.808479.
- Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In *Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing*, STOC '04, pages 202–211, New York, NY, USA, 2004. ACM. ISBN 1-58113-852-0. DOI: 10.1145/1007352.1007390. URL http://doi.acm.org/10.1145/1007352.1007390.
- J.A. Brzozowski and Jr. McCluskey, E.J. Signal flow graph techniques for sequential circuit state diagrams. *Electronic Computers, IEEE Transactions on*, EC-12(2):67–76, April 1963. ISSN 0367-7508. DOI: 10.1109/PGEC.1963.263416.
- N. Chomsky. Syntactic Structures. Mouton and Co, The Hague, 1957.
- Noam Chomsky. On certain formal properties of grammars. *Information and Control*, 2(2):137 167, 1959. DOI: 10.1016/S0019-9958(59)90362-6.
- H.W. Fowler, J.B. Sykes, and F.G. Fowler. *The Concise Oxford dictionary of current English*. Clarendon Press, 1976.
- John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. *Introduction to Automata Theory, Languages, and Computation (3rd Edition)*. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006. ISBN 0321455363.

- Stephen C. Johnson. Yacc: Yet another compiler-compiler. Technical report, AT&T Bell Laboratories, 1975. Readable online at http: //dinosaur.compilertools.net/yacc/.
- B.W. Kernighan and D.M. Ritchie. The C Programming Language. Prentice-Hall software series. Prentice Hall, 1988.
- Stephen C. Kleene. Representation of events in nerve nets and finite automata. Technical Report RM-704, The RAND Corporation, 1951. URL http://minicomplexity.org/pubr.php?t=2&id=2.
- Dexter Kozen. On Kleene algebras and closed semirings. In Mathematical foundations of computer science, Proc. 15th Symp., MFCS '90, Banská Bystrica/Czech. 1990, volume 452 of Lecture notes in computer science, pages 26-47, 1990.
- R. Kurki-Suonio. Notes on top-down languages. BIT Numerical Mathematics, 9(3):225-238, 1969. ISSN 1572-9125. DOI: 10.1007/BF01946814. URL http://dx.doi.org/10.1007/BF01946814.
- Leslie Lamport. Lambort. Lambort. Lambort. Leslie Lambort. Lambort 1986. ISBN 0-201-15790-X.
- P. M. Lewis, II and R. E. Stearns. Syntax-directed transduction. J. ACM, 15 (3):465-488, July 1968. ISSN 0004-5411. DOI: 10.1145/321466.321477. URL http://doi.acm.org/10.1145/321466.321477.
- R. McNaughton and H. Yamada. Regular expressions and state graphs for automata. Electronic Computers, IRE Transactions on, EC-9(1):39-47, March 1960. ISSN 0367-9950. DOI: 10.1109/TEC.1960.5221603.
- A. Nerode. Linear automaton transformations. Proceedings of the American Mathematical Society, 9(4):pp. 541-544, 1958. ISSN 00029939. URL http://www.jstor.org/stable/2033204.
- M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of Research and Development, 3(2):114-125, April 1959. ISSN 0018-8646. DOI: 10.1147/rd.32.0114.
- R.M. Ritter. The Oxford Guide to Style. Language Reference Series. Oxford University Press, 2002.
- D.J. Rosenkrantz and R.E. Stearns. Properties of deterministic topdown grammars. Information and Control, 17(3):226 - 256, 1970. ISSN 0019-9958. DOI: http://dx.doi.org/10.1016/S0019-9958(70)90446-8. URL http://www.sciencedirect.com/science/article/pii/ S0019995870904468.
- Michael Sipser. Introduction to the Theory of Computation. International Thomson Publishing, 1st edition, 1996. ISBN 053494728X.
- L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time (preliminary report). In Proceedings of the Fifth Annual ACM Symposium on Theory of Computing, STOC '73, pages 1-9, New York, NY, USA, 1973. ACM. DOI: 10.1145/800125.804029.

Ken Thompson. Programming techniques: Regular expression search algorithm. *Commun. ACM*, 11(6):419–422, June 1968. ISSN 0001-0782. DOI: 10.1145/363347.363387. URL http://doi.acm.org/10.1145/363347.363387.

Niklaus Wirth and Helmut Weber. Euler: A generalization of algol, and its formal definition: Part ii. *Commun. ACM*, 9(2):89–99, February 1966. ISSN 0001-0782. DOI: 10.1145/365170.365202. URL http://doi.acm.org/10.1145/365170.365202.