PREPA - ESMI - ESIGELEC

STRUCTURES ALGEBRIQUES

EXERCICE I:

Soit G un ensemble muni d'une loi de composition interne associative notée \ast

On suppose qu'il existe dans G un élément neutre à droite e et que tout élément x de G admet un symétrique à droite x' dans G.

- 1°) Montrer que x' est aussi le symétrique de x à gauche
- 2°) Montrer que e est aussi l'élément neutre à gauche. Conclure.

EXERCICE II:

Soit (G, \bullet) un groupe et $(H_i)_{i \in I}$ une famille de sous - groupes de G.

- 1°) Montrer que $\bigcap_{i \in I} H_i$ est un sous - groupe de G
- 2°) Montrer par un contre - exemple que en général $\bigcup_{i \in I} H_i$ n'est pas un sous - groupe de G.
- 3°) Montrer que si $(H_i)_{i\in I}$ est une famille totalement ordonnée par l'inclusion, alors $\bigcup_{i\in I} H_i$ est un sous groupe de G
- 4°) Montrer que $H_1 \cup H_2$ est un sous groupe $G \iff H_1 \subset H_2$ ou $H_2 \subset H_1$.

EXERCICE III:

Soit (G, \bullet) un groupe d'éléments neutre e. On suppose qu'il existe $n \in \mathbb{N}^*$ tel que $\forall x,y \in G(x \bullet y)^n = x^n \bullet y^n$ et on pose

$$G_1 = \{ y \in G / y^n = e \}$$

$$G_2 = \{ y^n / y \in G \}$$

Montrer que G_1 et G_2 sont des sous - groupes normaux de G.

EXERCICE IV:

Soit (G, \bullet) un groupe d'éléments neutre e. Montrer que les sous - ensembles suivants sont des sous - groupes de G.

1°) Le normalisateur N(S) d'une partie non vide S de G

$$N(S) = \left\{ x \in G / x \cdot S = S \cdot x \right\}$$

2°) Le centre Z(G) de $G:Z(G)=\left\{a\in G:a\: \boldsymbol{.}\: x=x\: \boldsymbol{.}\: a\ \ \forall x\in G\right\}$

3°) L'ensemble $H = a \cdot G \cdot a^{-1}$ avec $a \in G$.

EXERCICE V:

Soit (G, .) un groupe tel que $\forall x \in G \ x^3 = e$ où e est l'élément neutre de G.

Montrer que $\forall (x,y) \in G^2$

$$\begin{aligned} x^2 \cdot y \cdot x^2 &= y^2 \cdot x \cdot y^2 \\ (x \cdot y)^2 &= y^2 \cdot x^2 \; ; \quad xy^2 \cdot x &= y \cdot x^2 \cdot y \end{aligned}$$

EXERCICE VI:

Soit (G, \bullet) un groupe d'éléments neutre e. Montrer que si l'une des conditions suivantes est vérifiée alors G est abélien

i) $\forall x, y \in G \ (x \cdot y)^2 = x^2 \cdot y^2$

ii) $\forall x \in G$ $x = x^{-1}$.

EXERCICE VII:

1°) Montrer que $\forall n, n \in \mathbb{Z}^*$

$$m \cdot \mathbb{Z} + n \cdot \mathbb{Z} = pgcd(m, n) \cdot \mathbb{Z}$$

2°) En déduire le théorème de Bezout - Bachet.

Deux entiers m et n non nuls sont premiers entre eux si et seulement si il existe un couple u, v d'entiers tels que $m \cdot u + n \cdot v = 1$.

 3°) Soit (G, \bullet) un groupe cyclique à m éléments, a un générateur de G.

i) Soit k un élément de \mathbb{N}^* et notons d le pgcd de m et k.

Montrer que $\langle a^k \rangle = \langle a^d \rangle$

ii) En déduire que $\ \forall k \in \mathbb{N}^* \ a^k \ \text{est un générateur de } G \ \text{si et seulement si} \ pgcd(m,k)=1$

iii) Montrer que l'ordre du sous - groupe engendré par a^k est $\frac{m}{d}$ où d=pgcd(m,k)

PREPA - ESMI - ESIGELEC

STRUCTURES ALGEBRIQUES

EXERCICE I:

On donne les applications de $\mathbb{R}\setminus\{0,1\}$ dans $\mathbb{R}\setminus\{0,1\}$ défini par :

$$f_1(x) = x$$
; $f_2(x) = \frac{1}{1-x}$; $f_3(x) = \frac{x-1}{x}$

$$f_4(x) = \frac{1}{x}$$
; $f_5(x) = 1 - x$; $f_6(x) = \frac{x}{x - 1}$

- 1) En considérant pour la loi de composition des applications des applications $f_i \circ f_j$; $1 \le i, j \le 6$. Montrer ces 6 applications forment un groupe G. Ce groupe est il commutatif ?
- 2) Déterminer tous les sous groupes de G. Lesquels sont normaux ? **EXERCICE II** :

Soient (G, \bullet) un groupe d'éléments neutre e et $a \in G$. On définit l'application

$$f_a: G \longrightarrow G$$
$$x \longmapsto a \cdot x \cdot a^{-1}$$

- 1) Montrer que f est un automorphisme de (G, \bullet) (appelé automorphisme intérieur défini par $a \in G$)
 - 2) On note $I = \{f_a, a \in G\}$

Montrer que (I,0) est un groupe où 0 est la loi de composition des applications de G dans G.

3) Soit

$$\begin{array}{ccc} h:G & \longrightarrow I \\ a & \longmapsto f_a \end{array}$$

Montrer que h est un homomorphisme de groupes et Ker(h) est le centre de G

PREPA - ESMI - ESIGELEC

STRUCTURES ALGEBRIQUES

EXERCICE I:

On considère la loi * définie sur]-c,c[(c>0)] par

$$\forall x, y \in]-c, c[\ x * y = \frac{x+y}{1+xy/c^2}.$$

Montrer (]-c,c[,*) est un groupe.

EXERCICE II:

Soit (G, \bullet) un groupe d'élément neutre e, H un sous - groupe de G et A une partie non vide de G.

On pose $AH = \{ah/a \in A, h \in H\}$. Montrer que AH = H si et seulement si $A \subset H$.

EXERCICE III

Soit (G, \bullet) un groupe d'élément neutre e. On suppose qu'il existe $n \in \mathbb{N}^*$ tel que

$$\forall (x,y) \in G^2 \ (x \cdot y)^n = x^n \cdot y^n$$

et on pose

$$H = \{ y \in G / y^n = e \}$$
$$K = \{ x^n / x \in G \}$$

Montrer que H et K sont des sous - groupes normaux de G.

EXERCICE IV

Soit (G, \bullet) un groupe d'élément neutre e tel que $\forall x \in G$ $x^3 = e$.

- 1°) Comparer le carré d'un élément à son inverse
- 2°) Montrer que $\forall (x,y) \in G^2$

$$(x \cdot y)^2 = y^2 \cdot x^2 ; \quad x \cdot y^2 \cdot x = y \cdot x^2 \cdot y$$
$$x^2 \cdot y \cdot x^2 = y^2 \cdot x \cdot y^2.$$

PREPA - ESMI - ESIGELEC

ALGEBRE

EXERCICE I :

Pour chacune des permutations suivantes, déterminer sa décomposition canonique en produits de cycles disjoints, son ordre, sa signature, une décomposition en produit de transpositins et le nombre d'inversions.

$$\sigma_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 4 & 6 & 2 & 1 \end{pmatrix} \quad \sigma_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 6 & 9 & 7 & 2 & 5 & 8 & 1 & 3 \end{pmatrix}$$

$$\sigma_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 3 & 4 & 2 & 1 & 8 & 7 & 9 & 11 & 12 & 10 & 5 & 6 \end{pmatrix}$$

En déduire σ_1^{45} σ_2^{1432} σ_3^{2011}

EXERCICE II:

Dans S_q , on considère les permutations suivantes :

$$\pi = (1, 2, 3)(4, 5, 6)(7, 8, 9) \qquad \sigma = (4, 5, 6)(7, 8, 9)$$
$$\tau = (1, 4, 7)(2, 5, 8)(3, 6, 9)$$

- 1°) Vérifier que π commute avec σ et τ ?
- 2°) Quels sont les ordres de π, σ, τ et $\sigma \circ \tau$.
- 3°) Calculer $\tau \circ \sigma \circ \tau^{-1}$ et $\tau^{-1} \circ \sigma \circ \tau$.

En déduire que π est une puissance de $\sigma \circ \tau$.

EXERCICE III:

Soit $n \geq 4(n \in \mathbb{N})$. Pour i, j, k, ℓ distincts dans \mathbb{N}^* .

1°) Vérifier les relations suivantes

$$(i, j)(j, k) = (i, j, k)$$

 $(i, j)(k, \ell) = (i, j, k)(j, k, \ell)$

- $2^\circ)$ En déduire que le groupe alterné $\,S_n\,$ est engendré par :
- a) l'ensemble des 3 cycles de S_n
- b) l'ensemble des 3 cycles de la forme

$$(1, i, j) \ (2 \le j \le n) \ (2 \le i \le n)$$

c) l'ensemble des 3 - cycles (1,2,i) $((3 \le i \le n).$

EXERCICE IV:

Soit S_4 le groupe des permutations de $E = \{1, 2, 3, 4\}$. On considère le 4 - cycle C = (1, 2, 3, 4) et l'on note t_{ij} la transposition (i, j) pour $i \neq j$ et $(i, j) \in E^2$.

- $1^{\circ})$ Ecrire $\,C\,$ et $\,t_{1,4}\,$ sous forme de produits de transpositions de la forme $t_i, i+1 (1\leq i\leq 4)\,$
 - 2°) Calculer les puissances $t_{1,4}$ et C
 - 3°) Exprimer $t_{i,i+1}$ $(1 \le i \le 4)$ en fonction de C et $t_{1,4}$
 - 4°) En déduire que S_4 est engendré par C et $t_{1,4}$.

EXERCICE V:

Dans le groupe symétrique S_4 . Vérifier que

$$H = \left\{ I_d, (1,2)(3,4) \right\}$$

$$K = \left\{ I_d, (1,2)(3,4); (1,3)(2,4); (1,4)(2,3) \right\}$$

sont des sous-groupes de S_4 et H normal dans K et K est normal dans A_4 . Mais que H n'est pas normal dans S_4 .