オペレーティングシステム 第4章 スケジューリング

November 12, 2017

```
評価基準
システムごとの目標
プロセスの振舞
スケジューリング方式
 FCFS
 SJF
 SRTF
 RR
 優先度順
 FB
```

TacOSのスケジューラ

評価基準

- ▶ スループット (Throughput)
- ▶ ターンアラウンド時間(Turnaround time)
- ▶ レスポンス時間(Response time)
- ▶ 締め切り (Deadline)
- ▶ その他(公平性,省エネ,予測性など)

スケジューリングの目標

コンピュータの種類	重視する性能
メインフレーム(バッチ処理)	スループット,ターンアラウンド時間
ネットワークサーバ	レスポンス時間,スループット
デスクトップパソコン	レスポンス時間
モバイルデバイス	レスポンス時間,省エネルギー
組込み制御	締め切り

CPUバウンドプロセス

(a) CPUバウンド (CPU-bound) プロセス

- ▶ 動画圧縮の例
- ▶ I/O バウンドプロセス (エクセル)

1/0バウンドプロセス

(b) I/Oバウンド(I/O-bound)プロセス

▶ スプレッドシートの例

FCFS スケジューリング(1)

プロセス	到着時刻	CPU バースト時間 (ms)
P_1	0	100
P_2	0	20
P_3	0	10

	P_1	P_2	I	9	
C	10	00	120	13	30

- ▶ *P*₁, *P*₂, *P*₃ の順に実行
- ▶ 平均ターンアラウンド時間 ((100 + 120 + 130)/3 = 117 ms)

FCFS スケジューリング(2)

プロセス	到着時刻	CPU バースト時間 (ms)
$\overline{P_1}$	0	100
P_2	0	20
P_3	0	10

	P_2	P_3	P_1	
0	2	0 3		130

- ▶ *P*₂, *P*₃, *P*₁ の順に実行
- ▶ 平均ターンアラウンド時間 ((20+30+130)/3 = 60 ms)

SJFスケジューリング

プ	ロセン	ス 到着	時刻	CPU バースト時間 (ms)	
	P_1	0		100	-
	P_2	0		20	
	P_3	0		10	
			•		
	P_3	P_{2}		P_1	
	- 3	+ 2		- 1	
(0 10	0 3	30		130

▶ 平均ターンアラウンド時間 ((10+30+130)/3 = 57 ms)

SJF スケジューリング (比較のため)

プロセス	到着時刻	CPU バースト時間 (ms)
P_1	0	60
P_2	10	40
P_3	60	30

	P_1	P_3		P_2	
0	6	30	90		130

- ▶ SJF はプリエンプションなし
- ▶ 平均ターンアラウンド時間 (((60-0)+(90-10)+(130-60))/3=70 ms)

SRTFスケジューリング

プロセス	到着時刻	CPU バースト時間 (ms)
P_1	0	60
P_2	10	40
P_3	60	30

	P_1	P	-	P_1	P_3	P_1	
C	1	0	50	60	9	0	130

- ▶ SRTF はプリエンプションあり
- ▶ 平均ターンアラウンド時間 (((130-0)+(50-10)+(90-60))/3=67 ms)

RR スケジューリング(1)

到着時刻	CPU バースト時間 (ms)
0	60
10	40
60	30
	0 10

P_1	P_2	P_1	P_2	P_1	P_2	P_1	P_3	P_2	P_1	P_3	P_1	P_3	
							0 8						

- ▶ クォンタムタイム= 10ms
- ▶ 平均ターンアラウンド時間 (((120 - 0) + (90 - 10) + (130 - 60))/3 = 90)

RR スケジューリング(2)

プロセス	到着時刻	CPU バースト時間 (ms)
$\overline{P_1}$	0	60
P_2	10	40
P_3	60	30

	P_1	P_2	P_1	P_3	
0	5	0	90	100	130

- ▶ クォンタムタイム= 50ms
- ▶ 平均ターンアラウンド時間 (((100-0)+(90-10)+(130-60))/3 = 83 ms)

優先度順スケジューリング

- ▶ 静的・動的
- ▶ スタベーション
- ▶ エージング

FBスケジューリング

▶ エージング

TacOSのスケジューラ

```
// プロセスキューで p1 の前に p2 を挿入する p2 -> p1
   void insProc(PCB p1, PCB p2) {
3
     p2.next=p1;
     p2.prev=p1.prev;
5
    p1.prev=p2;
6
7
     p2.prev.next=p2;
8
   // プロセススケジューラ:プロセスを優先度順で readyQueue に登録する
9
   // (カーネル外部からも呼び出されるのでここで割込み禁止にする)
10
11
   public void schProc(PCB proc) {
12
     int r = setPri(DI|KERN):
                                             // 割り込み禁止、カーネル
13
     int enice = proc.enice;
14
     PCB head = readyQueue.next;
                                             // 実行可能列から
                                             // 優先度がより低い
15
     while (head.enice <= enice)
16
       head = head.next:
                                                   プロセスを探す
                                             // 見つけたプロセスの
17
     insProc(head,proc);
18
     setPri(r):
                                                 直前に挿入する
                                             // 割り込み状態を復元する
19
   }
```