Exercise 1.3.2.

- a) Let $A = \{0\}$. Then inf $A = \sup A = 0$.
- b) Impossible. Let the set in question be $\{a_1, a_2, \ldots, a_n\}$ and suppose $a_s \ge a_i$ for all i (such an s must exist because the set is finite). Then a_s is the maximum of the set and hence the set has a supremum.
- c) The set $\{\frac{1}{n} \mid n \in \mathbb{Z}\}$ does the trick.

Exercise 1.3.3.

- a) Since A is bounded below, $B \neq \emptyset$. Furthermore, since A is nonempty, B must have an upper bound. By the Axiom of Completeness, sup B exists.
 - Each $a \in A$ must be an upper bound for B since $b \le a$. Hence, by part ii) of the definition, $\sup B \le a$ for each a, establishing $\sup B$ as a lower bound of A. Part i) of the definition says that for all lower bounds $b \in B$, $b \le \sup B$. So, we conclude that $\sup B = \inf A$.
- b) Part a) shows that any nonempty set that is bounded below has an infimum.

Exercise 1.3.4.

a) By the Axiom of Completeness, $\sup A_i$ exists for each i. Let $s_1 = \sup A_2$ and $s_2 = \sup A_2$ and suppose $s_1 \geq s_2$. For each $a_1 \in A_1$ and $a_2 \in A_2$, $s_1 \geq a_1$ and $s_2 \geq a_2$. Hence, $s_1 \geq a_2$ and we conclude that s_1 is an upper bound of $A_1 \cup A_2$. Let b be an upper bound of $A_1 \cup A_2$. Then, $a_1 \leq b$ and $a_2 \leq b$. So, b is also an upper bound of A_1 and A_2 . But $s_1 \leq b$ so $\sup A_1 \cup A_2 = s_1$.

Similarly, if $s_2 \ge s_1$, we have sup $A_1 \cup A_2 = s_2$. We conclude

$$\sup(A_1 \cup A_2) = \max(\sup A_1, \sup A_2)$$

In general,

$$\sup\left(\bigcup_{k=1}^n A_k\right) = \max(\sup A_1, \dots, \sup A_n)$$

This can be proved by induction on k, with the base case (k = 1) being trivial to prove and the inductive step following directly from part a) (where you have to use the fact that $\max(\max(x_1, ..., x_n), x_{n+1}) = \max(x_1, ..., x_n, x_{n+1})$).

b) No, because an infinite union of bounded sets can result in an unbounded set, which has no supremum. For example,

$$\bigcup_{k=1}^{\infty} \{ x \mid x \le k \} = \mathbb{R}$$

Exercise 1.3.7.

Part i) of the definition is satisfied by assumption. For part ii), let b be an upper bound of A. Then, for all $a' \in A$, $a' \le b$ and, crucially, $a \le b$. Hence, $a = \sup A$.

Exercise 1.3.10.

- a) By the Axiom of Completeness, $c = \sup A$ exists. Furthermore, since a < b for all $a \in A$, $b \in B$, we have that $c \le b$. But $a \le c$ by definition, so we're done.
- b)