

TABLE DES MATIÈRES

Croissance du nombre de services

Nature du constat

- Multiplication des flux
- Evolution du SI vers le temps réel

Monitoring en deçà de nos ambitions

Complexité du SI

- Rôles et responsabilités imprécis
- Cartographie incomplète du SI

- Monitoring en best effort
- Faible automatisation
- Acteurs du monitoring avec visions et objectifs différents
- Difficultés à surveiller l'ensemble du SI
- Des composants / flux / processus non décrits dans les référentiels

Cause du constat

- Ouverture du SI amène de nouvelles exigences de surveillance
- Monitoring **peu pris en compte** lors de l'instruction des projets informatiques
- Absence de gouvernance et de cadre associés au monitoring
- Référentiels pas systématiquement mis à jour lors des changements
- Absence de référentiel des processus et activités métier portés par les applications

Comment assurer la surveillance permettant le maintien en condition opérationnel du SI?

MONITORING – CONSTAT

MONITORING – CONSTAT

- Le métier d'administrateur devient de plus en plus complexe.
- Un défi majeur pour l'équipe est de gagner en temps et en efficacité grâce à un bon outil de supervision.
- Les systèmes d'information étant par nature complexes, leur supervision est indispensable.
- Déclin des serveurs d'application

MONITORING – DÉFINITION

Une définition?

Supervision d'un système actif afin de diagnostiquer les problèmes et de recueillir des statistiques d'administration et d'ajustement.

PC MAGAZINE

- Le monitoring ou monitorage est une activité de surveillance et de mesure d'une activité informatique. On parle aussi de supervision.
- La supervision, domaine vaste de l'informatique, inclut donc plusieurs activités :
 - Surveiller
 - Visualiser
 - Analyser
 - Piloter
 - Agir
 - Alerter

MONITORING – LES ATTENTES

- Nous allons superviser les systèmes afin de vérifier qu'ils sont en service et fonctionnent.
- Les contraintes de fonctionnement des systèmes sont définis par les clients dans un contrat de niveau de service (SLA, Service Level Agreements)
- Ces SLA prennent en comptes :
 - attentes de la direction ?
 - attentes des usagers ?
 - attentes des clients?
 - exigences à l'échelle d'internet ?
- Aucun réseau ne fonctionne à 100%, il faut alors définir le niveau acceptable d'interruption de services

MONITORING – TEMPS UTILISABLE

- Conditions d'un fonctionnement à 99,9 % ?
 - (732 (732 x 0,999)) x 60 = 45 minutes seulement 45 minutes d'arrêt par mois!
- Besoin d'un arrêt d'1 heure/ semaine ?
 - (732 4) / 732 x 100 = 99,4 % N'oubliez pas d'inclure dans vos calculs vos plannings de maintenance et de préciser à vos utilisateurs/ clients s'ils font partie du SLA
- Comment mesure-t-on la disponibilité ?
 - Au coeur du système ? De bout en bout ? Depuis l'internet ? Démarrage

Que veut dire 99.99%

 $30.5 \times 24 = 732$ heures par mois

Si disponible	A.K.A	Indisponiblité annuelle
90%	n/a	876 hours
95%	n/a	438 hours
99%	two 9's	87 hours, 36 minutes
99.9%	three 9's	8 hours, 45 minutes, 36 seconds
99.99%	four 9's	52 minutes, 33.6 seconds
99.999%	five 9's	5 minutes, 15.36 seconds
99.9999%	six 9's	31.68 seconds

MONITORING - LES "TROIS GRANDS"

Disponibilité

Services, serveurs, routeurs, commutateurs

Fiabilité

• La santé de connexion, rtt, temps de réponse du services, temps de latence

Performance

L'ensemble du trafic, l'utilisation des ports, CPU, RAM, disque les processus

Prévention

 Les tendances et l'automatisation vous informent des attaques. Les outils peuvent vous aider à atténuer l'incidence des attaques.

FORMALISER

Décrire les exigences structurelles <u>informatiques</u> (besoins et exigences)

Identifier les fonctions métiers portées par les applications

Mettre en place une gouvernance et des procédures

MESURER

Mesurer la performance de nos composants

Connaître et exploiter le volume d'activité

SURVEILLER

Déterminer si une application fonctionne d'un point de vue utilisateur

Tracer les transactions sur l'ensemble des composants du SI

DÉTECTER

Détecter en automatique les incohérences

Dégager des tendances reconnaître les écarts significatifs de volume

Identifier un comportement usage / anormal

ALERTER

Alerter le bon interlocuteur, au bon moment. à travers le bon canal et avec un niveau d'information suffisant

RESTITUER

Restituer des indicateurs techniques et

Partager l'impact des performances sur les processus / activités métier

PRÉVENIR

Prévoir les montées en charge

Constater le d'obsolescence

Identifier les besoins

SUPERVISION

MONITORING – LES POINTS D'ATTENTION

MONITORING – OUTILLER

Pourquoi un outil de supervision?

- L'administrateur est prévenu rapidement d'une situation anormale.
- Il dispose de plus d'informations pertinentes et peut immédiatement s'atteler à la résolution du problème.
- Les systèmes étant de plus en plus imbriqués, une simple erreur peut en produire un nombre incalculable d'autres (effet domino).
- Eviter l'effet domino
- Remonter à la source du problème
- **Etre proactif face aux problèmes**
- Améliorer la disponibilité effective

MONITORING – MAIS AUSSI HYPERVISER

- Les outils de supervision ne doivent pas se contenter d'un rôle de supervision.
- Ils doivent également être à l'écoute des autres outils afin de centraliser les informations.
- Une seule console de supervision.
- La modularité : réduire si possible le nombre de superviseurs.

TIMESERIES DATABASE

- Une time series est un ensemble de point pour une clé au cours du temps.
- Un point de donnée :

```
Metric + Tags
```

+ Value: 42

+ Timestamp: 1234567890

sys.cpu.user 1234567890 42 host=web01 cpu=0

- Grande quantité de données immuables
- Première clé de tri temporelle
- Résolution des données et statistiques

MONITORING – NOTRE MONDE IDÉAL

MONITORING – LES OUTILS

Pour docker

- Cadvisor
- Prometheus

Pour les applications

- Prometheus
- Grafana

sshd

MONITORING – APPLICATIF

Il existe plusieurs méthodes

- Exporter les métrics actuator (composant de spring boot)
- Exporter ses propres métrics
- Dans tous les cas il faut faire du développement pour avoir ses données

Container Advisor

resource usage

performance characteristics

Aggregate

API REST

Monitoring system

TSDB

Alert manager

Query DSL

Clients

MONITORER – EXTERNAL STORAGE NEEDED

Key-Value store (with BigTable semantics) seems suitable. **KEY VALUE** Sample Metric name Dimensions aka Labels Timestamp Value http_requests_total{status="200",method="GET"}@1434317560938 \Rightarrow 94355 http requests total{status="200",method="GET"}@1434317561287 \Rightarrow 94934 http requests total{status="200",method="GET"}@1434317562344 ⇒ 96483 http_requests_total{status="404",method="GET"}@1434317560938 ⇒ 38473 http requests total{status="404",method="GET"}@1434317561249 ⇒ http requests total{status="404",method="GET"}@1434317562588 \Rightarrow 38663 http requests total{status="200",method="POST"}@1434317560885 \Rightarrow 4748 http_requests_total{status="200",method="POST"}@ $1434317561483 \Rightarrow 4795$ http_requests_total{status="200",method="POST"}@1434317562589 \Rightarrow 4833 http requests total{status="404",method="POST"}@1434317560939 \Rightarrow 122

CONFIGURATION

global :

 configuration qui s'applique a tous scrape interval : intervalle entre deux récupérations scrape timeout : timeout de récupération des données

rules files :

- configuration des alerts

scrape configs :

- configuration des différents jobs. Un job est un processus qui va récupérer les données a intervalle régulier

Grafana

Tableaux Graphiques **Informations**

