HM50256-12,HM50256-15, HM50256-20,HM50256P-12, HM50256P-15,HM50256P-20

262144-word×1-bit Dynamic Random Access Memory

■ FEATURES

- Industry Standard 16-Pin DIP
- Single 5V (±10%)
- On chip substrate bias generator
- Low Power: 350mW active, 20mW standby
- High speed: Access Time 120ns/150ns/200ns(max.)
- Common I/O capability using early write operation.
- Page mode capability
- TTL compatible
- 256 refresh cycles · · · (4ms)
- 3 variations of refresh · · · RAS only refresh, CAS before RAS refresh, Hidden refresh

■BLOCK DIAGRAM

■ABSOLUTE MAXIMUM RATINGS

Voltage on any pin relative to V_{SS} -1V to +7V Operating temperature, Ta (Ambient) 0°C to +70°C Storage temperature (Cerdip) -65°C to +150°C

(Plastic DIP) -55°C to +125°C

(DG-16B) HM50256P Series (DP-16A)

PIN ARRANGEMENT

A ₀ ~A ₈	Address Inputs
CAS	Column Address Strobe
Din	Data In
Dout	Data Out
RAS	Row Address Strobe
WE	Read/Write Input
Vcc	Power (+5V)
Vss	Ground
A0~A7	Refresh Address Inputs

RECOMMENDED DC OPERATING CONDITIONS (Ta=0 to $+70^{\circ}$ C)

Parameter	Symbol	min	typ	max	Unit	Note
Supply Voltage	V _{cc}	4.5	5.0	5.5	v	1
Input High Voltage	VIH	2.4	_	6.5	v	1
Input Low Voltage	V _{IL}	-1.0		0.8	v	1

Note) 1. All voltages referenced to Vss

DC ELECTRICAL CHARACTERISTICS (Ta=0 to $+70^{\circ}$ C, $V_{cc}=5V\pm10\%$, $V_{ss}=0V$)

ъ.	Symbol	HM50256/P-12		HM50256/P-15		HM50256/P-20		Unit	Notes
Parameter	Symbol	min	max	min	max	mín	max	Unit	Notes
Operating Current(RAS, CAS Cycling: tRC-min)	I_{cc1}		83	_	70	_	55	mA	1
Standby Current(RAS - VIN, Dout - High Impedance)	Iccz	_	4.5	_	4.5	_	4.5	mA	
Refresh Current(RAS only Refresh, tRC-min)	Iccs	_	62	_	53	_	42	mA.	
Standby Current(RAS - VIH, Dout Enable)	Iccs	_	10	_	10	_	10	mA	1
Refresh Current(CAS before RAS Refresh, tRC-min)	Icce	_	69	_	58		45	mA	
Input leakage(0< V _{out} < 7V)	Iu	10	10	-10	10	-10	10	μA	
Output leakage(0 < Vout < 7V)	ILO	-10	10	-10	10	10	10	μA	
Output levels High(I _{set} = -5mA)	V_{OH}	2.4	Vcc	2.4	Vcc	2.4	Vcc	v	
Output levels Low(I = 4.2mA)	V_{oL}	0	0.4	0	0.4	0	0.4	v	

Notes) 1. Icc depends on output loading condition when the device is selected. Icc max is specified at the output open condition.

ECAPACITANCE ($V_{cc} = 5V \pm 10\%$, $T_a = 25^{\circ}C$)

Par	ameter	Symbol	typ	max	Unit	Notes
Input Capacitance	Address, Data-in	Cn	_	5	ρF	1
	Clocks, Data-out	Cn	_	7	pr pr	1, 2

Notes) 1. Capacitance measured with Boonton Meter or effective capacitance measuring method.

2. CAS - VIH to disable Dout.

■ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

 $(T_a=0 \text{ to } +70^{\circ}\text{C}, V_{cc}=5\text{V}\pm10\%, V_{ss}=0\text{V})^{-1}, 10, 11)$

ъ .	6 1 1	HM502	56/P-12	HM502	56/P-15	HM50256/P-20		Unit	Notes
Parameter	Symbol	min	max	min	max	min	max	Onic	Notes
Access Time from RAS	t RAC		120	_	150		200	ns	2, 3
Access Time from CAS	t CAC	_	60		75	_	100	ns	3, 4
Output Buffer Turn-off Delay	t off	_	30	_	40		50	ns	5
Transition Time(Rise and Fall)	t r	3	50	3	50	3	50	ns	•
Random Read or Write Cycle Time	t RC	220	_	260	_	330	-	ns	
RAS Precharge Time	t _{RP}	90	_	100		120	_	ns	
RAS Pulse Width	t ras	120	10000	150	10000	200	10000	ns	
CAS Pulse Width	tcas	60	10000	75	10000	100	10000	ns	
RAS to CAS Delay Time	t RCD	25	60	25	75	30	100	ns	7
RAS Hold Time	t _{RSH}	60	_	75	Γ –	100	_	ns	
CAS Hold Time	t _{CSH}	120	_	150	_	200	_	ns	
CAS to RAS Precharge Time	t _{CRP}	10	_	10	_	10	_	ns	
Row Address Set-up Time	tasa	0	_	0	_	0	_	ns	
Row Address Hold Time	t rah	15	_	15	_	20	_	ns	
Column Address Set-up Time	tasc	0	_	0	_	0	-	ns	
Column Address Hold Time	t cah	20	_	25	_	30	_	ns	
Column Address Hold Time referenced to RAS	t _{AR}	80	_	100	T -	130	_	ns	
WE Command Set-up Time	t wcs	0	_	0	_	0	-	ns	8
Write Command Hold Time	t wcn	40	_	45	_	55	_	ns	
Write Command Hold Time referenced to RAS	t wcr	100	_	120	T -	155	_	ns	
Write Command Pulse Width	t wp	40	_	45	_	55	_	ns	
Write Command to RAS Lead Time	t RWL	40	_	45		55	-	ns	
Write Command to CAS Lead Time	t cwl	40	_	45	_	55	_	ns	
Data-in Set-up Time	t _{DS}	0		0	_	0	_	ns	
Data-in Hold Time	t _{DH}	40		45	_	55	_	ns	8, 9
Data-in Hold Time referenced to RAS	t DHR	100	_	120	_	155	_	ns	
Read Command Set-up Time	t RCS	0	_	0	_	0	_	ns	
Read Command Hold Time referenced to CAS	t RCH	0	_	0	_	0	_	ns	
Read Command Hold Time referenced to RAS	t RRH	10	_	10	_	10		ns	
Refresh Period	t _{REF}	T -	4	_	4		4	ms	

P	Symbol	HM50256/P-12		HM50256/P-15		HM50256/P-20		Unit	Notes
Parameter	Symbol	min	max	min	max	min	max	Unit	Notes
Read-Write Cycle Time	t RWC	265	_	310		390		ns	
CAS to WE Delay	t _{CWD}	60	_	75		100		ns	8
RAS to WE Delay	t RWD	120		150		200		ns	
CAS Precharge Time	t _{CPN}	50	-	60		80	_	ns	
CAS Setup Time	tcsR	10	_	10		10	_	ns	
CAS Hold Time (CAS before RAS Refresh)	t _{CHR}	120	_	150		200	_	ns	
RAS Precharge to CAS Hold Time	1 RPC	0	-	0	_	0	_	ns	

Notes

- 1. AC measurements assume $t_T = 5$ ns.
- Assumes that $t_{RCD} \leq t_{RCD}$ (max). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} exceeds the value shown.
- 3. Measured with a load circuit equivalent to 2TTL loads and 100pF.
- 4. Assumes that $t_{RCD} \ge t_{RCD}$ (max). 5. t_{OFF} (max) defines the time at which the output achieves the open circuit condition and output voltage levels are not referred.
- 6. V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} and V_{IL} .
- 7. Operation with the t_{RCD} (max) limit insures that t_{RAC} (max) can be met, t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, access time is controlled exclusively by tCAC.

- 8. t_{WCS} , t_{CWD} and t_{RWD} are not restrictive operating parameters.
 - They are included in the data sheet as electrical characteristics only; if $t_{WCS} \ge t_{WCS}$ (min), the cycle is an early write cycle and the data output pin will remain open circuit (high impedance) throughout the entire cycle; if $t_{CWD} \ge t_{CWD}$ (min) and $t_{RWD} \ge$ tRWD (min), the cycle is a read-write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied the condition of the data out (at access time) is indeterminate.
- These parameters are referenced to CAS leading edge in early write cycles and to WE leading edge in delayed write or read-modify-write cycles.
- 10. An initial pause of 100 µs is required after power-up then execute at least 8 initialization cycles.
- At least, 8 CAS before RAS refesh cycle are required before using internal refresh counter.

TIMING WAVEFORMS

● READ CYCLE

• WRITE CYCLE

• READ MODIFY WRITE CYCLE

● RAS ONLY REFRESH CYCLE

* REFRESH ADDRESS A0 - A7 (AX0 - AX1)

• HIDDEN REFRESH CYCLE

• CAS BEFORE RAS REFRESH CYCLE

COUNTER TEST

PAGE MODE CHARACTERISTICS (Ta=0 to $+70^{\circ}$ C, $V_{cc}=5V\pm10\%$, $V_{ss}=0V$)

Parameter	Symbol	HM50256/P-12		HM502	256/P-15	HM502			
rarameter	Symbol	min	max	min	max	min max		Unit	
Page Mode Supply Current	Icct	_	57		48	_	37	mA	
Page Mode Read or Write Cycle	t _{PC}	120	_	145		190	_	ns	
CAS Precharge Time, Page Cycle	t _{CP}	50		60	_	80	_	ns	
Page Mode Read Modify Write Cycle	t PCM	165		195		250	-	ns	

● PAGE MODE READ CYCLE

● PAGE MODE WRITE CYCLE

