Wireless Communication in Internet of Things (IoT)

DEPT. OF COMPUTER ENGINEERING

IoTs based TCP/IP Architecture

Application layer

- Transport layer
- Internet layer
- Network access layer
- Physical layer

Medium Access Control (MAC) Protocol

- Protocol is the combination of framing, flow control, and error control to achieve the delivery of data from one node to another
- The protocols are normally implemented in software by using one of the common programming languages
- Flow control: Refers to a set of procedures used to restrict the amount of data that the sender can send before waiting for acknowledgment
- Error control: is both error detection and error correction

Simplest Protocol Design

message

Implementation

```
pwhile(true) {
       WaitForEvent();
       if (Event (RequestToSend)) {
            GetData();
            MakeFrame();
            SendFrame();
6
                pwhile(true) {
                     WaitForEvent();
                     if (Event (ArrivalNotification)) {
                         ReceiveFrame();
                         ExtractData();
                         DeliverData();
              6
```

Example

- The sender sends a sequence of frames without even thinking about the receiver
- There is no error handler
- There is no synchronization (the receiver processing time is slower than the transmission speed)

MAC Protocol in IoTs

- Synchronous protocols
 - The stream of data to be transferred is encoded as fluctuating voltage levels in one wire (the 'DATA'), and a periodic pulse of voltage on a separate wire (called the "CLOCK") which tells the receiver that the current DATA bit is **available** at this moment in time
- Asynchronous protocols
 - Data is transmitted at a random time. Normally, a start and stop conditions are used to begin a "rendez-vous" to initiate a comunication

Advantage and Disadvantage

	Advantage	Disadvantage
Asynchronous transmission	 Simple, doesn't require synchronization of both communication sides Cheap, asynchronous requires less hardware Suitable for low data rate applications 	Large relative overhead, a high proportion of the transmitted bits are uniquely for control purposes and thus carry no useful information
Synchronous transmission	Lower overhead and thus, greater throughput	Slightly more complexHardware is more expensive

Synchronous Protocols: S-MAC

- Communication are synchronized in time with two state:
 - Active: Carrier sensing, Request To Send, Clear To Send and
 Sync Packet
 - Sleep: Low power mode for energy reservation

- Drawback: Energy wasted for active period:
 - When there is no packet to send?????

Synchronous Protocols: T-MAC

- An extended version from S-MAC:
 - Active period is adapted: if there is no RTS or CTS after a period, the node go to sleep mode

- Drawback: Energy wasted due to SYNC packet
 - High impact on low data rate networks

Asynchronous Protocols

RICER (Receiver Initiated Cycled Receiver):

- Receiver sends a BEACON
- Transmitter waits for a BEACON, before sending its DATA
- ACK is used to confirm a communication

Asynchronous Protocols

- Extended version of RICER:
 - RICER3, RICER3b, RICE5
 - ODMAC: ACK plays the role of a new BEACON
 - SymMAC: RICER + TICER

Routing Protocol in IoTs

• Energy efficient routing for sending a packet???

Neighbor Discovery Process

- Base station nodes send neighbor discovery packet:
 - Node (1) (6) (7) are discovered

Neighbor Discovery Process

- Node (7) sends neighbor discovery packet:
 - Node (8) and (9) response
 - (8) and (9) are added to the forward table of node (7)

Data Request Process

- Node (0) send data request packet to Node 8.
- Node (7) forwards this packet
- Node (8) response to Node (7) and then, forward to Node (0)