

Potenser

Nikolai Bjørnestøl Hansen

OSLO METROPOLITAN UNIVERSITY
STORBYUNIVERSITETET

1 Rasjonale uttrykk

2 Potenser

- Ganging og deling av potenser
- Potenser med ikke-positiv eksponent

3 Flere potensregler

Hva er potenser?

Definisjon

En potens er et tall på formen

 a^n .

Tallet a kalles grunntallet og tallet n kalles eksponenten.

- Om jeg skriver 2⁵ så mener jeg 2 · 2 · 2 · 2 · 2.
- Snart kommer vi til å lære hva det betyr hvis n ikke er positiv.
- I Kapittel 1.9 kommer vi til å lære hva det betyr hvis *n* er en brøk.

Ganging og deling av potenser

Ganging av potenser

Hvis vi skal gange sammen 2⁵ og 2³ får vi

$$2^5\cdot 2^3=\underbrace{2\cdot 2\cdot 2\cdot 2\cdot 2}_{2^5}\cdot \underbrace{2\cdot 2\cdot 2}_{2^3}=2^8=2^{5+3}.$$

Dette viser oss at dette er en rimelig regel:

Regel

Om vi har to potenser med samme grunntall, og ganger dem sammen, så får vi svaret ved å plusse sammen eksponentene. Matematisk:

$$a^n \cdot a^m = a^{n+m}$$
.

Nikolai Bjørnestøl Hansen

Deling av potenser

Hvis vi skal dele 2⁵ på 2³ får vi

$$\frac{2^5}{2^3} = \frac{2 \cdot 2 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 2} = 2^2 = 2^{5-3}$$

Dette gir oss følgende regel:

Regel

Om vi har to potenser med samme grunntall, og skal dele den ene på den andre, så får vi svaret ved å trekke nevnerens eksponent fra tellerens. Matematisk:

$$\frac{a^n}{a^m}=a^{n-m}.$$

Potenser med ikke-positiv

eksponent

Potenser med ikke-positiv eksponent

Delings-regelen fra forrige side stemmer kun dersom n > m. For hvis m er større enn n ender vi opp med negative eksponenter på høyresiden av likningen.

Eksempel

$$\frac{2^3}{2^5} = 2^{3-5} = 2^{-2}$$

Å skrive 2^{-2} gir ikke mening. Hva vil det si å gange 2 med seg selv -2 ganger?

Hva om vi ikke lar det stoppe oss? Hva om vi gir det mening ved hjelp av denne formelen?

Å opphøye i 0

Hva vil det si å gange et tall med seg selv null ganger? La oss se hva svaret burde bli.

Eksempel

$$2^0 = 2^{1-1} = \frac{2}{2} = 1.$$

Dette kan vi gjøre med alle tall, ikke bare 2. Den generelle regelen er:

$$a^0 = 1$$
.

Å opphøye i negative tall

La oss prøve å finne ut av hva 4^{-2} burde være ved hjelp av delingsregelen for potenser.

Eksempel

$$4^{-2} = 4^{1-3} = \frac{\cancel{4}}{4 \cdot 4 \cdot \cancel{4}} = \frac{1}{4^2}.$$

Dette kan igjen gjøres med alle mulige tall. Den generelle regelen er:

$$a^{-n}=\frac{1}{a^n}.$$

Potensregler for ikke-positive eksponenter

Vi har nettopp fått disse to reglene:

Regel

Om du opphøyer et tall i 0 får du 1. Matematisk:

$$a^0 = 1$$
.

Regel

Om du opphøyer et tall i et negativt tall, så bytt fortegn på eksponenten, og del 1 på dette. Matematisk:

$$a^{-n}=\frac{1}{a^n}$$

Det vanskelige tilfellet 00

Om vi opphøyer 0 i hva som helst, så får vi jo 0. Vi har

$$0^n = 0$$
.

Om vi opphøyer hva som helst i 0, så får vi 1. Vi har

$$a^0 = 1$$
.

- Så har vi $0^0 = 0$ eller $0^0 = 1$?
- Begge deler virker problematisk, så vi løser dette problemet ved å love å aldri regne ut 0⁰.
 - Litt samme som at vi aldri deler på 0.
 - (Jeg mener at svaret burde være 1.)

Ganging og deling av potenser, eksempel

Vi bruker ofte potensreglene når vi skal forenkle rasjonale uttrykk med ubestemte.

Eksempel

Vi vil forenkle uttrykket $\frac{3^4x^3y^{-2}x^{-2}}{3^2y^2x^{-1}}$. Vi får:

$$\frac{3^4 x^3 y^{-2} x^{-2}}{3^2 y^2 x^{-1}} = \frac{3^4}{3^2} \cdot \frac{x^3 x^{-2}}{x^{-1}} \cdot \frac{y^{-2}}{y^2}$$

$$= 3^{4-2} \cdot x^{3+(-2)-(-1)} \cdot y^{-2-2}$$

$$= 3^2 \cdot x^2 \cdot y^{-4}$$

$$= \frac{9x^2}{y^4}$$

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET