Lab2_Part2 & Chapter3 Review

Yuanqing Miao

https://github.com/myuanqing/CMPEN331_Spring2025

Lab2 part2 Hints

UTF-8 Encoding Rules:

Bytes	Bit Pattern	Unicode Range
1 byte	0xxxxxxx	U+0000 to U+007F
2 bytes	110xxxxx 10xxxxxxx	U+0080 to U+07FF
3 bytes	1110xxxx 10xxxxxxx 10xxxxxx	U+0800 to U+FFFF
4 bytes	11110xxx 10xxxxxx 10xxxxxx	U+10000 to U+10FFFF

Smaller than Bound1
JMP HANDLE_1BYTE

Smaller than Bound2
JMP HANDLE_2BYTE

Smaller than Bound3
JMP HANDLE_3BYTE
.....

JMP HANDLE_ERROR

Example: Encoding U+0800 (0x0800) to UTF-8

Step 1: Determine Encoding Size

• - U+0800 falls in the range `0x0800 - 0xFFFF` \rightarrow 3-byte encoding

Step 2: Binary Representation of Code Point

• - U+0800 (hex) = `0000 1000 0000 0000` (binary)

Step 3: UTF-8 Encoding (3 Bytes)

First byte: `1110xxxx`

- Extract top 4 bits: `0000` → `11100000` (`0xE0`)
 Second byte: `10xxxxxx`
- Next 6 bits: 100000 \rightarrow 10100000 (0xA0)

Third byte: `10xxxxxx`

• Last 6 bits: `000000` → `10000000` (`0x80`)

Final UTF-8 Encoding:

- Binary: `11100000 10100000 1000000`
- Hexadecimal: `0xE0 A0 80`

 Assume 185 and 122 are signed 8-bit decimal integers stored in sign-magnitude format. Calculate 185 + 122. Is there overflow, underflow, or neither?

1. Understanding Sign-Magnitude Format

In 8-bit sign-magnitude format, an integer is represented as:

- 1 bit for the sign (Most Significant Bit, MSB)
 - 0 indicates a positive number.
 - 1 indicates a negative number.
- 7 bits for the magnitude, allowing values from 0 to 127.

2. Range of Representable Values

In 8-bit sign-magnitude format, the representable range is:

- Positive Range: +0 to +127
- Negative Range: -0 to -127

1. Interpretation of 185 in Sign-Magnitude Format

Sign-Magnitude Decoding:

- Binary of 185: 10111001
- Sign Bit: 1, indicating a negative number.
- Magnitude: 57, derived from the binary 0111001.

Final Interpretation:

185 in sign-magnitude format = -57

2. Interpretation of 122 in Sign-Magnitude Format

- Binary of 122: 01111010
- Sign Bit: 0, indicating a positive number.
- Magnitude: 122, directly from the binary representation.

Final Interpretation:

122 in sign-magnitude format = +122

3. Perform the Addition

-57 + 122 = 65

Neither Overflow nor Underflow

2. Assume 185 and 122 are signed 8-bit decimal integers stored in sign-magnitude format. Calculate 185 - 122. Is there overflow, underflow, or neither?

Mathematical Operation:

$$-57 - 122 = -179$$

Result Validation:

• The result -179 is outside the representable range for 8-bit sign-magnitude integers, as it is less than -127.

Conclusion:

The operation results in **underflow**.

4. Assuming single precision IEEE 754 format, what decimal number is represent by this word:

1 01111101 0010000000000000000000000

The IEEE 754 single-precision format consists of:

- 1 bit for the sign.
- 8 bits for the exponent.
- 23 bits for the mantissa (fraction).

1. Determine the Sign Bit

• Sign Bit: 1, indicating the number is negative.

Sign =
$$(-1)^1 = -1$$

2. Decode the Exponent

Exponent Bits: 01111101

Convert to Decimal:

$$011111101_2 = 125_{10}$$

Apply the Bias:

• IEEE 754 single-precision uses a bias of 127:

Exponent =
$$125 - 127 = -2$$

3. Decode the Mantissa (Fraction)

Mantissa Bits: 0010000000000000000000

Constructing the Fraction:

The mantissa has an implicit leading 1, so:

Convert to Decimal:

$$1 + 2^{-3} = 1 + 0.125 = 1.125$$

4. Calculate the Final Value

 $Value = Sign \times Mantissa \times 2^{Exponent}$

$$Value = -1 \times 1.125 \times 2^{-2}$$

$$2^{-2} = \frac{1}{4} = 0.25$$

$$Value = -1.125 \times 0.25 = -0.28125$$

5. The floating-point format to be used in this problem is an 8-bit IEEE 754 normalized format with 1 sign bit, 4 exponent bits, and 3 mantissa bits. It is identical to the 32-bit and 64-bit formats in terms of the meaning of fields and special encodings. The exponent field employs an excess- 7coding. The bit fields in a number are (sign, exponent, mantissa). Assume that we use unbiased rounding to the nearest even specified in the IEEE floating point standard.

Field	Bits	Description
Sign	1	0 for positive, 1 for negative
Exponent	4	Excess-7 encoding (bias = 7)
Mantissa	3	Normalized form with an implicit leading 1

a) Encode the following numbers to the 8 bit IEEE format 1) 0.0011011)_{binary}

Normalize the Binary Number

$$0.0011011 = 1.1011 \times 2^{-3}$$

Components of the Normalized Form:

- Sign Bit: 0 (since the number is positive)
- Mantissa: The 3 bits after the leading 1:
 - 1.1011 → 101
- Exponent: -3 (due to shifting the binary point 3 places to the right)

Calculate the Biased Exponent:

Biased Exponent =
$$-3 + 7 = 4$$

Convert 4 to 4-bit Binary:

$$4 = 0100_2$$

Final 8-bit Representation:

 $0\ 0100\ 101$

i) Decode the following 8-bit IEEE number into their decimal value: 1 1010 101

- Binary Exponent: 1010
- Convert to Decimal:

$$1010_2 = 10_{10}$$

Apply Excess-7 Bias:

Exponent
$$= 10 - 7 = 3$$

• The IEEE 754 format uses an implicit leading 1, giving us:

1.101

Convert to Decimal:

$$1 + 0.5 + 0.125 = 1.625$$

$$Value = Sign \times Mantissa \times 2^{Exponent}$$

$$Value = -1 \times 1.625 \times 2^{3}$$

$$2^{3} = 8$$

$$Value = -1.625 \times 8 = -13.0$$

- j) Decide which number in the following pairs are greater in value (the numbers are in 8-bit IEEE 754 format):
 - 1) 0 1000 100 and 0 1000 111

The second number is greater in value

b) Perform the computation 1.011binary + 0.0011011binary showing the correct state of the guard, round bits and sticky bits. There are three mantissa bits.

1. What are Guard, Round, and Sticky Bits?

Guard Bit (G):

- The first bit beyond the mantissa bits.
- Helps in rounding decisions.

Round Bit (R):

- · The second bit beyond the mantissa bits.
- Assists in rounding by indicating whether the truncated portion is closer to 0 or 1.

Sticky Bit (S):

- Represents whether any bits beyond the round bit are non-zero.
- If any bits shifted out during normalization are 1, the sticky bit is set to 1, otherwise, it remains 0.
- Captures information about whether the discarded bits are non-zero, contributing to correct rounding.

2. Problem Recap: Adding 1.0112 + 0.00110112

1. Normalize the Numbers:

Binary	Normalized Form	Exponent	Mantissa
1.0112	1.011 × 2°	0	011
0.00110112	1.1011 × 2 ⁻³	-3	101

2. Align the Exponents:

The higher exponent is 0, so shift the second number right by 3 places to align:

$$1.1011 \times 2^{-3} = 0.0011011 \times 2^{0}$$

0.0011011×2^0

3. Bit Representation (Including Guard, Round, and Sticky Bits)

After Shifting to Align Exponents:

Mantissa (3 bits) = 001

 $Guard\;Bit\;(G)=1$

Round Bit (R) = 0

Sticky Bit (S) = 1

Binary Addition:

$$1.011 + 0.001 = 1.100$$

Bit Values After Addition:

Bit Type	Bit Value
Mantissa	100
Guard Bit (G)	1
Round Bit (R)	0
Sticky Bit (S)	1

GRS	Action	Easy Rule
11X	Round Up	If round bit is 1, always round up
101	Round Up	Sticky bit 1? Round up!
100	Round to Nearest Even	Mantissa odd? Round up
0 X X	Do Not Round Up	Guard bit 0 means no rounding

$$1.101_2 = 1.625$$

6. Using 32-bit IEEE 754 single precision floating point with one(1) sign bit, eight (8) exponent bits and twenty three (23) mantissa bits, show the representation of -11/16 (-0.6875).

Field	Bits	Description
Sign Bit	1	0 for positive, 1 for negative
Exponent	8	Excess-127 encoding (bias = 127)
Mantissa	23	Normalized with an implicit leading 1

Fractional Conversion:

$$-0.6875 = -\left(\frac{11}{16}\right)$$

Convert the **fractional part** to **binary**:

$$0.6875\times 2=1.375\rightarrow 1$$

$$0.375 imes 2 = 0.75
ightarrow 0$$

$$0.75 \times 2 = 1.5 \rightarrow 1$$

$$0.5 \times 2 = 1.0 \rightarrow 1$$

Combine the bits:

$$0.6875_{10} = 0.1011_2$$

Normalized Binary Form:

$$0.1011 = 1.011 \times 2^{-1}$$

Mantissa: 011

• Exponent: -1

The exponent in excess-127 format:

Biased Exponent =
$$-1 + 127 = 126$$

Convert 126 to 8-bit binary:

$$126 = 011111110_2$$

The normalized mantissa is 1.011, but we store only the fractional part:

The remaining bits are padded with zeros to complete 23 bits.

Sign Bit
$$= 1$$

$$Exponent = 011111110$$

Combined Binary Representation:

Feedback Survey

