オペレーションズ・リサーチ I(3)

田中 俊二

shunji.tanaka@okayama-u.ac.jp

本文書のライセンスは CC-BY-SA にしたがいます

スケジュール

No.	内容
1	オペレーションズ・リサーチと最適化,線形計画問題の基礎 (1)
2	線形計画問題の基礎 (2),線形計画問題の標準形
3	シンプレックス (単体) 法 1
4	シンプレックス (単体) 法 2, 2 段階シンプレックス法
	双対問題,双対定理,相補性定理
6	双対シンプレックス法,ファルカス補題,感度分析
7	内点法

シンプレックス法の基本方針

- 1. 実行可能領域が多面体 + 目的関数が線形
 - 最適解 (存在するなら) は多面体の端点 ⇒ 端点だけに注目
 - 端点:連立1次方程式の解
- 2. 実行可能領域が凸多面体
 - 目的関数の値が毎回増加するよう、順番に端点を調べる
 - すべての端点を調べるよりはるかに効率的
 - 次の端点への移動:掃き出し法(ガウスの消去法)と同様の操作

対象とする線形計画問題・仮定

線形計画問題 (等式標準形)

$$\max c^{T}x$$

s.t.
$$Ax = b$$

 $x \ge 0$

x: n 次元ベクトル. 第 j 成分 x_j A: $m \times n$ 行列. (i, j) 成分 a_{ij}

b:m 次元ベクトル. 第 i 成分 b_i

c:n 次元ベクトル. 第 j 成分 c_i

仮定

最適解を持つ. また,係数行列 A の各行は 1 次独立

1 次独立ではない例 (その 1)

$$x_1 + 2x_2 - x_3 + 2x_4 = 1$$
 (制約 1)

$$2x_1 - x_2 + 2x_3 + x_4 = 3$$
 (制約 2)

$$3x_1 + x_2 + x_3x + 3x_4 = 4$$
 (制約 3)

$$x_1 + 2x_2 - x_3 + 2x_4 = 1$$
 (制約 1)

$$2x_1 - x_2 + 2x_3 + x_4 = 3$$
 (制約 2)

$$3x_1 + x_2 + x_3x + 3x_4 = 5$$
 (制約 3)

$$a_1' = (1, 2, -1, 2)$$

$$a_2' = (2, -1, 2, 1)$$

$$a_3' = (3, 1, 1, 3)$$

$$\boldsymbol{a}_3' = \boldsymbol{a}_1' + \boldsymbol{a}_2'$$

(制約3)=(制約1)+(制約2)なので(制約3)は不要

$$a_3' = a_1' + a_2'$$

5 \neq 1 + 3

(制約 1), (制約 2), (制約 3) が同時に成り立つことはないので実行不可能

ここからの説明の流れ

- 1. 実行可能領域の端点の求め方
 - 基底変数・非基底変数
 - 実行可能基底解
- 2. 目的関数の増加方向に端点を辿る方法
 - 相対コスト係数
 - 基底変数・非基底変数の入れ替え
- 3. 各端点における計算の簡略化
 - シンプレックスタブロー (単体表)
 - ピボット操作

ここからの説明の流れ

- 1. 実行可能領域の端点の求め方
 - 基底変数・非基底変数
 - 実行可能基底解
- 2. 目的関数の増加方向に端点を辿る方法
 - 相対コスト係数
 - 基底変数・非基底変数の入れ替え
- 3. 各端点における計算の簡略化
 - シンプレックスタブロー (単体表)
 - ピボット操作

線形計画問題 (等式標準形)

 $\max c^{\mathsf{T}} x$

s.t. Ax = b

 $x \ge 0$

x:n 次元ベクトル. 第 j 成分 x_i

 $A: m \times n$ 行列. (i, j) 成分 a_{ij} . 各行は 1 次独立

b:m 次元ベクトル. 第 i 成分 b_i

c:n 次元ベクトル. 第 j 成分 c_j

端点の求め方

線形計画問題 (等式標準形)

 $\max c^{\mathsf{T}} x$

s.t. Ax = b

 $x \ge 0$

x:n 次元ベクトル. 第 j 成分 x_i

 $A: m \times n$ 行列. (i, j) 成分 a_{ii} . 各行は 1 次独立

b:m 次元ベクトル. 第 i 成分 b_i

c:n 次元ベクトル.第j 成分 c_j

端点の求め方

2次元平面 2つの直線の交点: 1次方程式 ×2

線形計画問題 (等式標準形)

 $\max c^{\mathsf{T}} x$

s.t. Ax = b

 $x \ge 0$

x:n 次元ベクトル. 第 j 成分 x_i

 $A: m \times n$ 行列. (i, j) 成分 a_{ii} . 各行は 1 次独立

b:m 次元ベクトル. 第 i 成分 b_i

c:n 次元ベクトル.第j 成分 c_j

端点の求め方

2次元平面 2つの直線の交点: 1次方程式 ×2

3次元空間 3 つの平面の交点: 1次方程式 ×3

線形計画問題 (等式標準形)

 $\max c^{\mathsf{T}} x$

s.t. Ax = b

 $x \ge 0$

x:n 次元ベクトル. 第 j 成分 x_i

 $A: m \times n$ 行列. (i, j) 成分 a_{ij} . 各行は 1 次独立

b:m 次元ベクトル. 第 i 成分 b_i

c:n 次元ベクトル. 第 j 成分 c_j

端点の求め方

2次元平面 2つの直線の交点: 1次方程式 ×2

3次元空間 3つの平面の交点: 1次方程式 x3

n 次元空間 n 個の超平面 (hyperplane) の交点: 1 次方程式 $\times n$

線形計画問題 (等式標準形)

 $\max c^{\mathsf{T}} x$

s.t. Ax = b

 $x \ge 0$

x:n 次元ベクトル. 第 j 成分 x_i

 $A: m \times n$ 行列. (i, j) 成分 a_{ii} . 各行は 1 次独立

b:m 次元ベクトル. 第 i 成分 b_i

c:n 次元ベクトル.第 j 成分 c_j

端点の求め方

2次元平面 2つの直線の交点: 1次方程式×2

3 次元空間 3 つの平面の交点: 1 次方程式 ×3

n 次元空間 n 個の超平面 (hyperplane) の交点: 1 次方程式 $\times n$

等式標準形の場合

- m 個の 1 次方程式 Ax = b
- n-m 個の 1 次方程式 $x_{i_1}=0, x_{i_2}=0, \ldots, x_{i_{n-m}}=0 \ (1 \leq i_1, i_2, \ldots, i_{n-m} \leq n)$

線形計画問題 (等式標準形)

 $\max c^{\mathsf{T}}x$

s.t. Ax = b

 $x \ge 0$

x:n 次元ベクトル. 第 j 成分 x_i

 $A: m \times n$ 行列. (i, j) 成分 a_{ii} . 各行は 1 次独立

b:m 次元ベクトル. 第 i 成分 b_i

c:n 次元ベクトル.第 j 成分 c_j

端点の求め方

- 2次元平面 2つの直線の交点: 1次方程式×2
- 3次元空間 3つの平面の交点: 1次方程式×3
- n 次元空間 n 個の超平面 (hyperplane) の交点: 1 次方程式 $\times n$

等式標準形の場合

- m 個の 1 次方程式 Ax = b
- n-m 個の 1 次方程式 $x_{i_1}=0$, $x_{i_2}=0$, ..., $x_{i_{n-m}}=0$ ($1 \le i_1, i_2, \ldots, i_{n-m} \le n$)
- 式を簡単化するため $i_1 = m+1$, $i_2 = m+2$, ..., $i_{n-m} = n$ と仮定 (決定変数の番号を付け替えればよい)
- \supset \sharp 0 $x_{m+1} = x_{m+2} = \cdots = x_n = 0$

実行可能領域の端点の求め方(続き)

決定変数ベクトルの分割

- 決定変数ベクトル: $\mathbf{x} = \begin{pmatrix} \mathbf{x}_{\mathrm{B}} \\ \mathbf{x}_{\mathrm{N}} \end{pmatrix}$ $(\mathbf{x}_{\mathrm{N}}: \mathbf{x}_{m+1} = \mathbf{x}_{m+2} = \cdots = \mathbf{x}_{n} = 0$ とした部分)
- A も x に合わせて $A = (A_B A_N)$ と分割

$$Ax = b \longrightarrow (A_{B} \quad A_{N}) \begin{pmatrix} x_{B} \\ x_{N} \end{pmatrix} = b$$

$$x_{m+1} = 0$$

$$x_{n} = 0 \longrightarrow x_{N} = \begin{pmatrix} 0 & I \end{pmatrix} \begin{pmatrix} x_{B} \\ x_{N} \end{pmatrix} = 0$$

$$\begin{pmatrix} A_{B} \quad A_{N} \\ x_{N} \end{pmatrix} \begin{pmatrix} x_{B} \\ x_{N} \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}$$

$$x_{N} = \begin{pmatrix} A_{B} \quad A_{N} \\ x_{N} \end{pmatrix} \begin{pmatrix} x_{B} \\ x_{N} \end{pmatrix} = \begin{pmatrix} b \\ x_{N} \end{pmatrix}$$

$$x_{N} = \begin{pmatrix} A_{B} \quad A_{N} \\ x_{N} \end{pmatrix} \begin{pmatrix} x_{B} \\ x_{N} \end{pmatrix} = \begin{pmatrix} b \\ x_{N} \end{pmatrix}$$

$$x_{N} = \begin{pmatrix} A_{B} \quad A_{N} \\ x_{N} \end{pmatrix} \begin{pmatrix} x_{B} \\ x_{N} \end{pmatrix} = \begin{pmatrix} b \\ x_{N} \end{pmatrix}$$

$$x_{N} = \begin{pmatrix} A_{B} \quad A_{N} \\ x_{N} \end{pmatrix} \begin{pmatrix} x_{B} \\ x_{N} \end{pmatrix} \Rightarrow \begin{pmatrix} A_{B} \quad A_{N} \\ x_{N} \end{pmatrix}$$

$$x_{N} = \begin{pmatrix} A_{B} \quad A_{N} \\ x_{N} \end{pmatrix} \begin{pmatrix} x_{B} \\ x_{N} \end{pmatrix} \Rightarrow \begin{pmatrix} A_{B} \quad A_{N} \\ x_{N} \end{pmatrix} \Rightarrow \begin{pmatrix} A_{B}$$

 $A_{\rm B}$ が正則になるよう $x_{\rm B}$, $x_{\rm N}$ を決める必要がある (正則でない \Rightarrow 端点ではない)

基底変数と非基底変数

$$A_{
m B}$$
 が正則 \iff $A_{
m B}$ の列が 1 次独立 \iff $A_{
m B}$ の列が \mathbb{R}^m の基底

基底変数 (basic variable) · 非基底変数 (nonbasic variable)

基底変数 x_1, x_2, \ldots, x_m (ベクトル \mathbf{x}_R)

非基底変数 $x_{m+1}, x_{m+2}, ..., x_n$ (ベクトル x_N)

$$\begin{pmatrix} A_{\rm B} & A_{\rm N} \\ O & I \end{pmatrix} \begin{pmatrix} x_{\rm B} \\ x_{\rm N} \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix} \iff A_{\rm B}x_{\rm B} = b \\ x_{\rm N} = 0 \iff x = \begin{pmatrix} x_{\rm B} \\ x_{\rm N} \end{pmatrix} = \begin{pmatrix} A_{\rm B}^{-1}b \\ 0 \end{pmatrix}$$

基底解 (basic solution) · 実行可能基底解 (basic feasible solution)

基底解 非基底変数 x_N を $\mathbf{0}$ として得られる解 $\mathbf{x} = \begin{pmatrix} x_B \\ x_N \end{pmatrix} = \begin{pmatrix} A_B^{-1} \mathbf{b} \\ \mathbf{0} \end{pmatrix}$

実行可能基底解 x≥0 を満たす基底解 = 実行可能領域の端点

$$\begin{aligned} \max \quad & x_1 + 3x_2 \\ \text{s.t.} \quad & -x_1 + \ x_2 \le 1 \quad \text{(1)} \\ & x_1 + \ x_2 \le 4 \quad \text{(2)} \\ & x_1 + 2x_2 \le 5 \quad \text{(3)} \\ & x_1, \quad x_2 \ge 0 \end{aligned}$$

max	$x_1 + 3x_2$			
s.t.	$-x_1 + x_2 + s_1$		= 1	(1)
	$x_1 + x_2$	+ s2	= 4	(2)
	$x_1 + 2x_2$	+ \$3	= 5	(3)
	$x_1, x_2, s_1,$	s_2 , s_3	≥ 0	

+ >10.0
数
<i>S</i> 3
s_3
s_2

- スラック変数が 0 より大きくなることを想定
- 対応する制約条件の境界は考慮しないことを意味する

$$\max x_1 + 3x_2$$
s.t. $-x_1 + x_2 \le 1$ (1)
$$x_1 + x_2 \le 4$$
 (2)
$$x_1 + 2x_2 \le 5$$
 (3)
$$x_1, x_2 \ge 0$$

max	$x_1 + 3x_2$			
s.t.	$-x_1 + x_2 + s_1$		= 1	(1)
	$x_1 + x_2$	+ s2	= 4	(2)
	$x_1 + 2x_2$	+ \$3	= 5	(3)
	$x_1, x_2, s_1,$	s_2 , s_3	≥ 0	

端点	境界線	基底変数
, ₁₀₁ O	$x_1 = 0 \ \succeq \ x_2 = 0$	s_1, s_2, s_3
疆 A	(1) $\geq x_1 = 0$	x_2, s_2, s_3
実行可能 В В В	(1) と (3)	x_1, x_2, s_2
₩C	(2) と (3)	x_1, x_2, s_1
D	(2) $\geq x_2 = 0$	
λη E	(1) $\geq x_2 = 0$	
⊨ F	(1) と (2)	
⊬ G	(2) $\geq x_1 = 0$	
実行不可能・エ S ヵ π	(3) $\geq x_2 = 0$	
I mit	(3) $\geq x_1 = 0$	

- スラック変数が 0 より大きくなることを想定
- 対応する制約条件の境界は考慮しないことを意味する

$$\max x_1 + 3x_2$$
s.t. $-x_1 + x_2 \le 1$ (1)
$$x_1 + x_2 \le 4$$
 (2)
$$x_1 + 2x_2 \le 5$$
 (3)
$$x_1, x_2 \ge 0$$

max	$x_1 + $	$3x_{2}$				
s.t.	$-x_1 + $	<i>x</i> ₂ +	- s ₁		= 1	(1)
	$x_1 + $	x_2	+	- s ₂	= 4	(2)
	$x_1 + $	$2x_{2}$		+	$-s_3 = 5$	(3)
	x_1 ,	x_2 ,	s_1 ,	s_2 ,	$s_3 \geq 0$	

境界線	基底変数
$x_1 = 0 \ \succeq \ x_2 = 0$	s_1, s_2, s_3
(1) $\geq x_1 = 0$	x_2, s_2, s_3
(1) と (3)	x_1, x_2, s_2
(2) と (3)	x_1, x_2, s_1
(2) $\geq x_2 = 0$?
(1) $\geq x_2 = 0$	
(1) と (2)	
(2) $\geq x_1 = 0$	
(3) $\geq x_2 = 0$	
(3) $\geq x_1 = 0$	
	$x_1 = 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

- スラック変数が0より大きくなることを想定
- 対応する制約条件の境界は考慮しないことを意味する

$$\max x_1 + 3x_2$$
s.t. $-x_1 + x_2 \le 1$ (1)
$$x_1 + x_2 \le 4$$
 (2)
$$x_1 + 2x_2 \le 5$$
 (3)
$$x_1, x_2 \ge 0$$

max	$x_1 + 3x_2$			
s.t.	$-x_1 + x_2 + s_1$		= 1	(1)
	$x_1 + x_2$	+ s2	= 4	(2)
	$x_1 + 2x_2$	+ \$3	= 5	(3)
	$x_1, x_2, s_1,$	s_2 , s_3	≥ 0	

端点	境界線	基底変数
,,,, O	$x_1 = 0 \ \succeq \ x_2 = 0$	s_1, s_2, s_3
誓 A	(1) $\geq x_1 = 0$	x_2, s_2, s_3
Ë B	(1) と (3)	x_1, x_2, s_2
実行可能 SBBO	(2) と (3)	x_1, x_2, s_1
D	(2) $\geq x_2 = 0$	x_1, s_1, s_3
# E	(1) $\geq x_2 = 0$	
⊨ F	(1) と (2)	
⊬g	(2) $\geq x_1 = 0$	
実行不可・エ D ヵ	(3) $\geq x_2 = 0$	
1 July 1	(3) $\geq x_1 = 0$	

- スラック変数が 0 より大きくなることを想定
- 対応する制約条件の境界は考慮しないことを意味する

$$\begin{aligned} \max \quad & x_1 + 3x_2 \\ \text{s.t.} \quad & -x_1 + \ x_2 \le 1 \quad \text{(1)} \\ & x_1 + \ x_2 \le 4 \quad \text{(2)} \\ & x_1 + 2x_2 \le 5 \quad \text{(3)} \\ & x_1, \quad x_2 \ge 0 \end{aligned}$$

$\max x_1 + 3x_2$		
s.t. $-x_1 + x_2 + s_1$	= 1	(1)
$x_1 + x_2 + s_2$	= 4	(2)
$x_1 + 2x_2 + s$	$s_3 = 5$	(3)
x_1, x_2, s_1, s_2, s_3	$s_3 \ge 0$	

端点	境界線	基底変数
0	$x_1 = 0 \ \ \ \ x_2 = 0$	s ₁ , s ₂ , s ₃
行可能 A B	(1) $\geq x_1 = 0$	x_2, s_2, s_3
اتا B التا	(1) と (3)	x_1, x_2, s_2
₩C	(2) と (3)	x_1, x_2, s_1
D	(2) $\geq x_2 = 0$	x_1, s_1, s_3
<u> </u>	(1) $\geq x_2 = 0$	x_1, s_2, s_3
⊨ F ⊬ G	(1) と (2)	x_1, x_2, s_3
⊬ G	(2) $\geq x_1 = 0$	x_2, s_1, s_3
美 H	(3) $\geq x_2 = 0$	x_1, s_1, s_2
2017	(3) $\geq x_1 = 0$	x_2, s_1, s_2

- スラック変数が 0 より大きくなることを想定
- 対応する制約条件の境界は考慮しないことを意味する

max
$$x_1 + 3x_2$$

s.t. $-x_1 + x_2 \le 1$ (1)
 $x_1 + x_2 \le 4$ (2)
 $x_1 + 2x_2 \le 5$ (3)
 $x_1, x_2 \ge 0$

max .	$x_1 + 3$	$3x_2$			
s.t	$x_1 + $	$x_2 + s_1$		= 1	(1)
	$x_1 + $	x_2	+ s2	= 4	(2)
	$x_1 + 2$	$2x_2$	+ \$3	3 = 5	(3)
	x_1 ,	x_2 , s_1	s_2, s_3	$0 \le 3$	

端点	境界線	基底変数
,,,, O	$x_1 = 0 \ \succeq \ x_2 = 0$	s_1, s_2, s_3
誓 A	(1) $\geq x_1 = 0$	x_2, s_2, s_3
行可能 A B	(1) と (3)	x_1, x_2, s_2
₩ C	(2) と (3)	x_1, x_2, s_1
D	(2) $\geq x_2 = 0$	x_1, s_1, s_3
回 E E	(1) $\geq x_2 = 0$	x_1, s_2, s_3
⊨ F	(1) と (2)	x_1, x_2, s_3
⊬ G	(2) $\geq x_1 = 0$	x_2, s_1, s_3
₩ H	(3) $\geq x_2 = 0$	x_1, s_1, s_2
I VIII	(3) $\geq x_1 = 0$	x_2, s_1, s_2

端点Oに対応する実行可能基底解

$$x_1 = 0$$
 と $x_2 = 0$ を連立して, $(x_1, x_2) = (0, 0)$. (1), (2), (3) に代入して, $\begin{pmatrix} s_1 \end{pmatrix}$ (1)

$$(s_1, s_2, s_3) = (1, 4, 5).$$
 $\mathbf{x}_B = \begin{pmatrix} s_1 \\ s_2 \\ s_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix},$ $\mathbf{x}_N = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$\max_{\mathbf{S}.t.} c^{\mathsf{T}} x$$
s.t. $Ax = b$

$$x \ge 0$$

$$c^{\mathsf{T}} = \begin{pmatrix} 1 & 3 & 0 & 0 & 0 \end{pmatrix}^{\mathsf{T}}$$

$$A = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{bmatrix}, b = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

max
$$x_1 + 3x_2$$

s.t. $-x_1 + x_2 + s_1 = 1$ (1)
 $x_1 + x_2 + s_2 = 4$ (2)
 $x_1 + 2x_2 + s_3 = 5$ (3)
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

端点	境界線	基底変数
O	$x_1 = 0 \ \succeq \ x_2 = 0$	s ₁ , s ₂ , s ₃
誓 A	(1) $\geq x_1 = 0$	x_2, s_2, s_3
行可能 B A O	(1) と (3)	x_1, x_2, s_2
账 C	(2) と (3)	x_1, x_2, s_1
D	(2) $\geq x_2 = 0$	x_1, s_1, s_3
यम E	(1) $\geq x_2 = 0$	x_1, s_2, s_3
后 F	(1) と (2)	x_1, x_2, s_3
実行不 - H D	(2) $\geq x_1 = 0$	x_2, s_1, s_3
₩ H	(3) $\geq x_2 = 0$	x_1, s_1, s_2
1 July 1	(3) $\geq x_1 = 0$	x_2, s_1, s_2

端点 O に対応する実行可能基底解 (行列を用いた計算)

$$A_{\rm B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, A_{\rm N} = \begin{pmatrix} -1 & 1 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}, \boldsymbol{x}_{\rm B} = \begin{pmatrix} s_1 \\ s_2 \\ s_3 \end{pmatrix} = A_{\rm B}^{-1} \boldsymbol{b} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}, \boldsymbol{x}_{\rm N} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\max \quad c^{\mathsf{T}} x$$
s.t. $Ax = b$

$$x \ge 0$$

$$c^{\mathsf{T}} = \begin{pmatrix} 1 & 3 & 0 & 0 & 0 \end{pmatrix}^{\mathsf{T}}$$

$$A = \begin{pmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}, \ b = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

max	$x_1 + 3x_2$	
s.t.	$-x_1 + x_2 + s_1 = 1$	(1)
	$x_1 + x_2 + s_2 = 4$	(2)
	$x_1 + 2x_2 + s_3 = 5$	(3)
	$x_1, x_2, s_1, s_2, s_3 \ge 0$)

端点	境界線	基底変数
, ₁₁₁ O	$x_1 = 0 \ \ \ \ x_2 = 0$	s_1, s_2, s_3
回 A B	(1) $\geq x_1 = 0$	x_2, s_2, s_3
<u></u> ₿	(1) と (3)	x_1, x_2, s_2
₩C	(2) と (3)	x_1, x_2, s_1
D	(2) $\geq x_2 = 0$	x_1, s_1, s_3
λπ E	(1) $\geq x_2 = 0$	x_1, s_2, s_3
F	(1) と (2)	x_1, x_2, s_3
⊬ G	(2) $\geq x_1 = 0$	x_2, s_1, s_3
₩ H	(3) $\geq x_2 = 0$	x_1, s_1, s_2
Total I	(3) $\geq x_1 = 0$	x_2, s_1, s_2

端点 A に対応する実行可能基底解

$$-x_1 + x_2 = 1$$
 と $x_1 = 0$ を連立して、 $(x_1, x_2) = (0, 1)$. (1), (2), (3) に代入して、 $(s_1, s_2, s_3) = (0, 3, 3)$. $\mathbf{x}_B = \begin{pmatrix} x_2 \\ s_2 \\ s_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}$, $\mathbf{x}_N = \begin{pmatrix} x_1 \\ s_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$\max_{\mathbf{s.t.}} c^{\mathsf{T}} \mathbf{x}$$

$$\mathbf{s.t.} \ A \mathbf{x} = \mathbf{b}$$

$$\mathbf{x} \ge \mathbf{0}$$

$$\mathbf{c}^{\mathsf{T}} = \begin{pmatrix} 1 & 3 & 0 & 0 & 0 \end{pmatrix}^{\mathsf{T}}$$

$$A = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{bmatrix}, \ \mathbf{b} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

max	$x_1 + 3x_2$	
s.t.	$-x_1 + x_2 + s_1 = 1$	l (1)
	$x_1 + x_2 + s_2 = 4$	1 (2)
	$x_1 + 2x_2 + s_3 = 5$	5 (3)
	$x_1, x_2, s_1, s_2, s_3 \ge 0$)

端点	境界線	基底変数
, ₁₁₁ O	$x_1 = 0 \ \succeq \ x_2 = 0$	s_1, s_2, s_3
三 A B	(1) $\geq x_1 = 0$	x_2, s_2, s_3
美行 B	(1) と (3)	x_1, x_2, s_2
₩C	(2) と (3)	x_1, x_2, s_1
D	(2) $\geq x_2 = 0$	x_1, s_1, s_3
<u>₩</u> E	(1) $\geq x_2 = 0$	x_1, s_2, s_3
j⊒ F	(1) と (2)	x_1, x_2, s_3
⊬ G	(2) $\geq x_1 = 0$	x_2, s_1, s_3
実行不 G H・	(3) $\geq x_2 = 0$	x_1, s_1, s_2
fill I	(3) $\geq x_1 = 0$	x_2, s_1, s_2

端点 A に対応する実行可能基底解 (行列を用いた計算)

$$A_{\rm B} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}, A_{\rm N} = \begin{pmatrix} -1 & 1 \\ 1 & 0 \\ 1 & 0 \end{pmatrix}, \boldsymbol{x}_{\rm B} = \begin{pmatrix} x_2 \\ s_2 \\ s_3 \end{pmatrix} = A_{\rm B}^{-1} \boldsymbol{b} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}, \boldsymbol{x}_{\rm N} = \begin{pmatrix} x_1 \\ s_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\max \quad c^{\mathsf{T}}x$$
s.t. $Ax = b$

$$x \ge 0$$

$$c^{\mathsf{T}} = \begin{pmatrix} 1 & 3 & 0 & 0 & 0 \end{pmatrix}^{\mathsf{T}}$$

$$A = \begin{pmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}, \ b = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$\max x_1 + 3x_2$		
s.t. $-x_1 + x_2 + s_1$	= 1	(1)
$x_1 + x_2 + s_2$	= 4	(2)
$x_1 + 2x_2 + s_3$	= 5	(3)
x_1, x_2, s_1, s_2, s_3	≥ 0	

境界線	基底変数
$x_1 = 0 \ \succeq \ x_2 = 0$	s ₁ , s ₂ , s ₃
(1) $\geq x_1 = 0$	x_2, s_2, s_3
(1) と (3)	x_1, x_2, s_2
(2) と (3)	x_1, x_2, s_1
(2) $\geq x_2 = 0$	x_1, s_1, s_3
(1) $\geq x_2 = 0$	x_1, s_2, s_3
(1) と (2)	x_1, x_2, s_3
(2) $\geq x_1 = 0$	x_2, s_1, s_3
(3) $\geq x_2 = 0$	x_1, s_1, s_2
(3) $\geq x_1 = 0$	x_2, s_1, s_2
	$x_1 = 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

端点 F に対応する (実行不可能) 基底解

$$-x_1 + x_2 = 1$$
 と $x_1 + x_2 = 4$ を連立して, $(x_1, x_2) = (3/2, 5/2)$. (1), (2), (3) に代入して, $(s_1, s_2, s_3) = (0, 0, -3/2)$. $\mathbf{x}_B = \begin{pmatrix} x_1 \\ x_2 \\ s_3 \end{pmatrix} = \begin{pmatrix} 3/2 \\ 5/2 \\ -3/2 \end{pmatrix}$, $\mathbf{x}_N = \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$\max \quad c^{T}x$$
s.t. $Ax = b$

$$x \ge 0$$

$$c^{T} = \begin{pmatrix} 1 & 3 & 0 & 0 & 0 \end{pmatrix}^{T}$$

$$A = \begin{pmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

max	$x_1 + 3x_2$	
s.t.	$-x_1 + x_2 + s_1 = 1$	l (1)
	$x_1 + x_2 + s_2 = 4$	1 (2)
	$x_1 + 2x_2 + s_3 = 5$	5 (3)
	$x_1, x_2, s_1, s_2, s_3 \ge 0$)

端点	境界線	基底変数
, ₁₁₁ O	$x_1 = 0 \ \succeq \ x_2 = 0$	s_1, s_2, s_3
三 A B	(1) $\geq x_1 = 0$	x_2, s_2, s_3
美行 B	(1) と (3)	x_1, x_2, s_2
₩C	(2) と (3)	x_1, x_2, s_1
D	(2) $\geq x_2 = 0$	x_1, s_1, s_3
<u>₩</u> E	(1) $\geq x_2 = 0$	x_1, s_2, s_3
j⊒ F	(1) と (2)	x_1, x_2, s_3
⊬ G	(2) $\geq x_1 = 0$	x_2, s_1, s_3
実行不 G H ·	(3) $\geq x_2 = 0$	x_1, s_1, s_2
fill I	(3) $\geq x_1 = 0$	x_2, s_1, s_2

端点 F に対応する (実行不可能) 基底解 (行列を用いた計算)

$$A_{\rm B} = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix}, A_{\rm N} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}, \boldsymbol{x}_{\rm B} = \begin{pmatrix} x_1 \\ x_2 \\ s_3 \end{pmatrix} = A_{\rm B}^{-1} \boldsymbol{b} = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} = \begin{pmatrix} 3/2 \\ 5/2 \\ -3/2 \end{pmatrix}, \boldsymbol{x}_{\rm N} = \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\max \quad c^{\mathsf{T}} x$$
s.t. $Ax = b$

$$x \ge 0$$

$$c^{\mathsf{T}} = \begin{pmatrix} 1 & 3 & 0 & 0 & 0 \end{pmatrix}^{\mathsf{T}}$$

$$A = \begin{pmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

max	$x_1 + 3$	x_2			
s.t.	$-x_1 +$	$x_2 + s$	1	= 1	(1)
	$x_1 + $	x_2	$+ s_2$	= 4	(2)
	$x_1 + 2$	x_2	-	$+ s_3 = 5$	(3)
	x_1 ,	x_2 , s	$s_1, s_2,$	$s_3 \ge 0$	

端点	境界線	基底変数
, ₁₁₁ O	$x_1 = 0 \ \ \ \ x_2 = 0$	s_1, s_2, s_3
疆 A	(1) $\geq x_1 = 0$	x_2, s_2, s_3
行可能 B V ((1) と (3)	x_1, x_2, s_2
₩C	(2) と (3)	x_1, x_2, s_1
D	(2) $\geq x_2 = 0$	x_1, s_1, s_3
<u>پې</u> Ε	(1) $\geq x_2 = 0$	x_1, s_2, s_3
⊨F	(1) と (2)	x_1, x_2, s_3
<u>⊬</u> G	(2) $\geq x_1 = 0$	x_2, s_1, s_3
₩ H	(3) $\geq x_2 = 0$	x_1, s_1, s_2
I VIII	(3) $\geq x_1 = 0$	x_2, s_1, s_2

端点 B に対応する実行可能基底解

$$\max \quad c^{\mathsf{T}} x$$
s.t. $Ax = b$

$$x \ge 0$$

$$c^{\mathsf{T}} = \begin{pmatrix} 1 & 3 & 0 & 0 & 0 \end{pmatrix}^{\mathsf{T}}$$

$$A = \begin{pmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}, \ b = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

max	$x_1 + 3x_2$	
s.t.	$-x_1 + x_2 + s_1 = 1$	(1)
	$x_1 + x_2 + s_2 = 4$	(2)
	$x_1 + 2x_2 + s_3 = 5$	(3)
	$x_1, x_2, s_1, s_2, s_3 \ge 0$)

端点	境界線	基底変数
,,,, O	$x_1 = 0 \ \succeq \ x_2 = 0$	s_1, s_2, s_3
行可能 A B	(1) $\geq x_1 = 0$	x_2, s_2, s_3
造 B	(1) と (3)	x_1, x_2, s_2
₩C	(2) と (3)	x_1, x_2, s_1
D	(2) $\geq x_2 = 0$	x_1, s_1, s_3
海 E	(1) $\geq x_2 = 0$	x_1, s_2, s_3
⊟ F	(1) と (2)	x_1, x_2, s_3
⊬ G	(2) $\geq x_1 = 0$	x_2, s_1, s_3
展行 H	(3) $\geq x_2 = 0$	x_1, s_1, s_2
Till I	(3) $\geq x_1 = 0$	x_2, s_1, s_2

端点 B に対応する実行可能基底解

$$-x_1 + x_2 = 1$$
 と $x_1 + 2x_2 = 5$ を連立して、 $(x_1, x_2) = (1, 2)$. (1), (2), (3) に代入して、 $(s_1, s_2, s_3) = (0, 1, 0)$. $\mathbf{x}_B = \begin{pmatrix} x_1 \\ x_2 \\ s_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\mathbf{x}_N = \begin{pmatrix} s_1 \\ s_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$\max c^{T}x$$
s.t. $Ax = b$

$$x \ge 0$$

$$c^{T} = \begin{pmatrix} 1 & 3 & 0 & 0 & 0 \end{pmatrix}^{T}$$

$$A = \begin{pmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$\max x_1 + 3x_2$		
s.t. $-x_1 + x_2 + s_1$	= 1	(1)
$x_1 + x_2 + s_2$	= 4	(2)
$x_1 + 2x_2 + s_3$	= 5	(3)
x_1, x_2, s_1, s_2, s_3	≥ 0	

端点	境界線	基底変数
, ₁₁₁ O	$x_1 = 0 \ \ \ \ x_2 = 0$	s_1, s_2, s_3
后 A	(1) $\geq x_1 = 0$	x_2, s_2, s_3
<u></u> ₽	(1) と (3)	x_1, x_2, s_2
₩ C	(2) と (3)	x_1, x_2, s_1
D	(2) $\geq x_2 = 0$	x_1, s_1, s_3
λπ E	(1) $\geq x_2 = 0$	x_1, s_2, s_3
₩ F	(1) と (2)	x_1, x_2, s_3
⊬ G	(2) $\geq x_1 = 0$	x_2, s_1, s_3
<u></u>	(3) $\geq x_2 = 0$	x_1, s_1, s_2
I Aut	(3) $\geq x_1 = 0$	x_2, s_1, s_2

端点 B に対応する実行可能基底解 (行列を用いた計算)

$$A_{\rm B} = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix}, A_{\rm N} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}, \boldsymbol{x}_{\rm B} = \begin{pmatrix} x_1 \\ x_2 \\ s_2 \end{pmatrix} = A_{\rm B}^{-1} \boldsymbol{b} = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \boldsymbol{x}_{\rm N} = \begin{pmatrix} s_1 \\ s_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

実行可能基底解の関係

- 基底変数・非基底変数を 1 組入れ替えることで実行可能領域の端点間を移動可能
- 目的関数値が増加する方向に移動したい

目的関数の増加方向に端点を辿る方法

- 1. 実行可能領域の端点の求め方
 - 基底変数・非基底変数
 - 実行可能基底解
- 2. 目的関数の増加方向に端点を辿る方法
 - 相対コスト係数
 - 基底変数・非基底変数の入れ替え
- 3. 各端点における計算の簡略化
 - シンプレックスタブロー (単体表)
 - ピボット操作

目的関数と非基底変数の関係

方針

- 目的関数の増加方向に端点を辿る ⇒ 基底変数と非基底変数の入れ替え
- 基底変数と非基底変数を入れ替えると、両方の変数の値が変わる \Rightarrow ややこしいので、目的関数を非基底変数 x_N だけで表す

(a) 基底変数 $x_{\rm B}$ を非基底変数 $x_{\rm N}$ で表す

を非基底変数
$$x_N$$
 で表す
$$Ax = b \qquad \qquad (制約条件)$$

$$(A_B A_N) \begin{pmatrix} x_B \\ x_N \end{pmatrix} = b \qquad \qquad (基底変数・非基底変数に分割)$$

$$A_B x_B + A_N x_N = b \qquad \qquad (行列の積を書き下す)$$

$$x_B + A_B^{-1} A_N x_N = A_B^{-1} b \qquad \qquad (両辺に左から A_B^{-1} をかける)$$

$$x_B = A_B^{-1} b - A_B^{-1} A_N x_N \qquad (移項)$$

目的関数と非基底変数の関係 (続き)

(b) 目的関数 $f = c^{\mathsf{T}} x$ に代入

$$f = c^{\mathsf{T}} x \qquad (目的関数 \ c^{\mathsf{T}} x \ \& f \ \& \& f \)$$

$$f = \left(c_{\mathsf{B}}^{\mathsf{T}} \quad c_{\mathsf{N}}^{\mathsf{T}}\right) \begin{pmatrix} x_{\mathsf{B}} \\ x_{\mathsf{N}} \end{pmatrix} \qquad (c \ \& \ c = \begin{pmatrix} c_{\mathsf{B}} \\ c_{\mathsf{N}} \end{pmatrix} \& \& \& h \)$$

$$f = c_{\mathsf{B}}^{\mathsf{T}} x_{\mathsf{B}} + c_{\mathsf{N}}^{\mathsf{T}} x_{\mathsf{N}} \qquad (行列の積を書き下す)$$

$$f = c_{\mathsf{B}}^{\mathsf{T}} (A_{\mathsf{B}}^{-1} b - A_{\mathsf{B}}^{-1} A_{\mathsf{N}} x_{\mathsf{N}}) + c_{\mathsf{N}}^{\mathsf{T}} x_{\mathsf{N}} \qquad (x_{\mathsf{B}} \ \& h \ \& h \)$$

$$f = c_{\mathsf{B}}^{\mathsf{T}} A_{\mathsf{B}}^{-1} b + (c_{\mathsf{N}} - (A_{\mathsf{B}}^{-1} A_{\mathsf{N}})^{\mathsf{T}} c_{\mathsf{B}})^{\mathsf{T}} x_{\mathsf{N}} \qquad (整理)$$

$$f = \underbrace{c_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \boldsymbol{b}}_{\mathrm{E}} + \underbrace{\left[c_{\mathrm{N}} - (A_{\mathrm{B}}^{-1} A_{\mathrm{N}})^{\mathsf{T}} c_{\mathrm{B}}\right]^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}}_{\mathrm{E} \mathrm{E} \mathrm{O}}$$
現在の値 変化量
$$\boldsymbol{x}_{\mathrm{B}} = A_{\mathrm{B}}^{-1} \boldsymbol{b} - A_{\mathrm{B}}^{-1} A_{\mathrm{N}} \boldsymbol{x}_{\mathrm{N}}$$

- 相対コスト係数 (relative cost coefficient) ベクトル: $\tilde{c}_N = c_N (A_B^{-1}A_N)^{\mathsf{T}}c_B$
- 相対コスト係数が正の非基底変数 ⇒ 0 から増加させると目的関数値増加

目的関数と非基底変数の関係 (続き)

(b) 目的関数 $f = c^{\mathsf{T}} x$ に代入

$$f = c^{\mathsf{T}} x \qquad (目的関数 \ c^{\mathsf{T}} x \ \& f \ \& h \ \& h \)$$

$$f = \left(c_{\mathrm{B}}^{\mathsf{T}} \ c_{\mathrm{N}}^{\mathsf{T}}\right) \begin{pmatrix} x_{\mathrm{B}} \\ x_{\mathrm{N}} \end{pmatrix} \qquad (c \ \& \ c = \begin{pmatrix} c_{\mathrm{B}} \\ c_{\mathrm{N}} \end{pmatrix} \& \& h \ \& h \)$$

$$f = c_{\mathrm{B}}^{\mathsf{T}} x_{\mathrm{B}} + c_{\mathrm{N}}^{\mathsf{T}} x_{\mathrm{N}} \qquad (行列の積を書き下す)$$

$$f = c_{\mathrm{B}}^{\mathsf{T}} (A_{\mathrm{B}}^{-1} b - A_{\mathrm{B}}^{-1} A_{\mathrm{N}} x_{\mathrm{N}}) + c_{\mathrm{N}}^{\mathsf{T}} x_{\mathrm{N}} \qquad (x_{\mathrm{B}} \ \& h \ \& h \)$$

$$f = c_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} b + (c_{\mathrm{N}} - (A_{\mathrm{B}}^{-1} A_{\mathrm{N}})^{\mathsf{T}} c_{\mathrm{B}})^{\mathsf{T}} x_{\mathrm{N}} \qquad (整理)$$

$$f = \underbrace{c_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \boldsymbol{b}}_{\mathrm{E}} + \underbrace{\left[c_{\mathrm{N}} - (A_{\mathrm{B}}^{-1} A_{\mathrm{N}})^{\mathsf{T}} c_{\mathrm{B}}\right]^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}}_{\mathrm{E}}$$
現在の値 変化量
$$\boldsymbol{x}_{\mathrm{B}} = A_{\mathrm{B}}^{-1} \boldsymbol{b} - A_{\mathrm{B}}^{-1} A_{\mathrm{N}} \boldsymbol{x}_{\mathrm{N}}$$

- 相対コスト係数 (relative cost coefficient) ベクトル: $\widetilde{c}_N = c_N (A_R^{-1}A_N)^{\mathsf{T}}c_B$
- 相対コスト係数が正の非基底変数 ⇒ 0 から増加させると目的関数値増加⇒ 基底変数との入れ替え

相対コスト係数

- 相対コスト係数が正の非基底変数 ⇒ 基底変数と入れ替えると目的関数増加
- 相対コスト係数が $\tilde{c}_N \leq 0$ を満たす \Rightarrow 最適解

相対コスト係数

- 相対コスト係数が正の非基底変数 ⇒ 基底変数と入れ替えると目的関数増加
- 相対コスト係数が $\tilde{c}_{N} \leq 0$ を満たす \Rightarrow 最適解

相対コスト係数

- 相対コスト係数が正の非基底変数 ⇒ 基底変数と入れ替えると目的関数増加
- 相対コスト係数が $\tilde{c}_{N} \leq 0$ を満たす \Rightarrow 最適解

$$f = \boldsymbol{c}_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \boldsymbol{b} + \widetilde{\boldsymbol{c}}_{\mathrm{N}}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$$
$$\boldsymbol{x}_{\mathrm{B}} = A_{\mathrm{B}}^{-1} \boldsymbol{b} - A_{\mathrm{B}}^{-1} \boldsymbol{A}_{\mathrm{N}} \boldsymbol{x}_{\mathrm{N}}$$

D
$$x_{B} = \begin{pmatrix} x_{1} \\ s_{1} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix} \qquad x_{1} \leftrightarrow s_{2} \qquad x_{B} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} \qquad x_{2} \leftrightarrow s_{1} \qquad x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}$$

$$f = 0 + (1 \quad 3) \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

$$\begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} - \begin{pmatrix} -1 & 1 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

- 非基底変数 x₁, x₂ の相対コスト係数は正 ⇒ どちらも増やせる
- x_1 を 0 から少しずつ増やす $\Rightarrow x_1$ は基底変数に
 - 目的関数は1ずつ増加
 - s₁ は 1 ずつ増加, s₂ は 1 づつ減少, s₃ は 1 ずつ減少
 - $x_1 = 4$ まで増やすと $s_2 = 0$ となる $\Rightarrow s_2$ は非基底変数に

$$f = \boldsymbol{c}_{\mathrm{B}}^{\mathsf{T}} \boldsymbol{A}_{\mathrm{B}}^{-1} \boldsymbol{b} + \widetilde{\boldsymbol{c}}_{\mathrm{N}}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$$
$$\boldsymbol{x}_{\mathrm{B}} = \boldsymbol{A}_{\mathrm{B}}^{-1} \boldsymbol{b} - \boldsymbol{A}_{\mathrm{B}}^{-1} \boldsymbol{A}_{\mathrm{N}} \boldsymbol{x}_{\mathrm{N}}$$

D
$$x_{B} = \begin{pmatrix} x_{1} \\ s_{1} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix}$$

$$x_{B} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$$x_{B} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$$x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}$$

$$f = 0 + 1 3 \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

$$\begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} - \begin{pmatrix} -1 & 1 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

- 非基底変数 x1, x2 の相対コスト係数は正 ⇒ どちらも増やせる
- x_1 を 0 から少しずつ増やす $\Rightarrow x_1$ は基底変数に
 - 目的関数は1ずつ増加
 - s₁ は 1 ずつ増加, s₂ は 1 づつ減少, s₃ は 1 ずつ減少
 - $x_1 = 4$ まで増やすと $s_2 = 0$ となる $\Rightarrow s_2$ は非基底変数に

$$f = \boldsymbol{c}_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \boldsymbol{b} + \widetilde{\boldsymbol{c}}_{\mathrm{N}}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$$
$$\boldsymbol{x}_{\mathrm{B}} = A_{\mathrm{B}}^{-1} \boldsymbol{b} - A_{\mathrm{B}}^{-1} \boldsymbol{A}_{\mathrm{N}} \boldsymbol{x}_{\mathrm{N}}$$

D
$$x_{B} = \begin{pmatrix} x_{1} \\ s_{1} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix}
\xrightarrow{x_{1} \leftrightarrow s_{2}}
x_{B} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}
\xrightarrow{x_{2} \leftrightarrow s_{1}}
x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}$$

$$f = 0 + (1) 3) \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

$$\begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} - \begin{pmatrix} -1 & 1 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

- 非基底変数 x₁, x₂ の相対コスト係数は正 ⇒ どちらも増やせる
- x_1 を 0 から少しずつ増やす $\Rightarrow x_1$ は基底変数に
 - 目的関数は1ずつ増加
 - s₁ は 1 ずつ増加, s₂ は 1 づつ減少, s₃ は 1 ずつ減少
 - $x_1 = 4$ まで増やすと $s_2 = 0$ となる $\Rightarrow s_2$ は非基底変数に

$$f = \boldsymbol{c}_{\mathrm{B}}^{\mathsf{T}} \boldsymbol{A}_{\mathrm{B}}^{-1} \boldsymbol{b} + \widetilde{\boldsymbol{c}}_{\mathrm{N}}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$$
$$\boldsymbol{x}_{\mathrm{B}} = A_{\mathrm{B}}^{-1} \boldsymbol{b} - A_{\mathrm{B}}^{-1} \boldsymbol{A}_{\mathrm{N}} \boldsymbol{x}_{\mathrm{N}}$$

D
$$\begin{array}{c}
D & O & A \\
\hline
x_{B} = \begin{pmatrix} x_{1} \\ s_{1} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix} & x_{1} \leftrightarrow s_{2} \\
\hline
x_{B} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} & x_{2} \leftrightarrow s_{1} \\
\hline
x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix} \\
\hline
f = 0 + \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \\
\hline
\begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} & \begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \end{pmatrix} & \begin{pmatrix} x_{1} \\ x_{2} \\ x_{2} \end{pmatrix} \\
\hline
\begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} & \begin{pmatrix} x_{1} \\ x_{2} \\ x_{2} \end{pmatrix}$$

- 非基底変数 x1, x2 の相対コスト係数は正 ⇒ どちらも増やせる
- x_1 を 0 から少しずつ増やす $\Rightarrow x_1$ は基底変数に
 - 目的関数は1ずつ増加
 - s_1 は 1 ずつ増加, s_2 は 1 づつ減少, s_3 は 1 ずつ減少
 - $x_1 = 4$ まで増やすと $s_2 = 0$ となる $\Rightarrow s_2$ は非基底変数に

$$f = \boldsymbol{c}_{\mathrm{B}}^{\mathsf{T}} \boldsymbol{A}_{\mathrm{B}}^{-1} \boldsymbol{b} + \widetilde{\boldsymbol{c}}_{\mathrm{N}}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$$
$$\boldsymbol{x}_{\mathrm{B}} = A_{\mathrm{B}}^{-1} \boldsymbol{b} - A_{\mathrm{B}}^{-1} \boldsymbol{A}_{\mathrm{N}} \boldsymbol{x}_{\mathrm{N}}$$

D
$$\begin{bmatrix}
x_{B} = \begin{pmatrix} x_{1} \\ s_{1} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix}
\end{bmatrix}
\xrightarrow{x_{1} \leftrightarrow s_{2}}
\begin{bmatrix}
x_{B} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}
\end{bmatrix}
\xrightarrow{x_{2} \leftrightarrow s_{1}}
\begin{bmatrix}
x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}$$

$$f = 0 + (1 \quad 3)\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

$$\begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}
\xrightarrow{\begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}}
\begin{pmatrix} x_{1} \\ x_{2} \\ x_{2} \end{pmatrix}$$

- 非基底変数 x₁, x₂ の相対コスト係数は正 ⇒ どちらも増やせる
- x_1 を 0 から少しずつ増やす $\Rightarrow x_1$ は基底変数に
 - 目的関数は1ずつ増加
 - s₁ は 1 ずつ増加, s₂ は 1 づつ減少, s₃ は 1 ずつ減少
 - $x_1 = 4$ まで増やすと $s_2 = 0$ となる $\Rightarrow s_2$ は非基底変数に

$$f = \boldsymbol{c}_{\mathrm{B}}^{\mathsf{T}} \boldsymbol{A}_{\mathrm{B}}^{-1} \boldsymbol{b} + \widetilde{\boldsymbol{c}}_{\mathrm{N}}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$$
$$\boldsymbol{x}_{\mathrm{B}} = A_{\mathrm{B}}^{-1} \boldsymbol{b} - A_{\mathrm{B}}^{-1} \boldsymbol{A}_{\mathrm{N}} \boldsymbol{x}_{\mathrm{N}}$$

D
$$x_{B} = \begin{pmatrix} x_{1} \\ s_{1} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix}$$

$$x_{B} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$$x_{B} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$$x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}$$

$$f = 0 + (1 \quad 3)\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

$$\begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$$\begin{pmatrix} s_{1} \\ 1 \\ 1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

- 非基底変数 x₁, x₂ の相対コスト係数は正 ⇒ どちらも増やせる
- x_1 を 0 から少しずつ増やす $\Rightarrow x_1$ は基底変数に
 - 目的関数は1ずつ増加
 - s₁ は 1 ずつ増加, s₂ は 1 づつ減少, s₃ は 1 ずつ減少
 - $x_1 = 4$ まで増やすと $s_2 = 0$ となる $\Rightarrow s_2$ は非基底変数に

$$f = \boldsymbol{c}_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \boldsymbol{b} + \widetilde{\boldsymbol{c}}_{\mathrm{N}}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$$
$$\boldsymbol{x}_{\mathrm{B}} = A_{\mathrm{B}}^{-1} \boldsymbol{b} - A_{\mathrm{B}}^{-1} \boldsymbol{A}_{\mathrm{N}} \boldsymbol{x}_{\mathrm{N}}$$

D
$$\begin{array}{c}
D & O & A \\
\hline
x_{B} = \begin{pmatrix} x_{1} \\ s_{1} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix} & x_{1} \leftrightarrow s_{2} \\
\hline
x_{B} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} & x_{2} \leftrightarrow s_{1} \\
\hline
x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix} \\
f = 0 + \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \\
\begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix}$$

- 非基底変数 x₁, x₂ の相対コスト係数は正 ⇒ どちらも増やせる
- x_1 を 0 から少しずつ増やす $\Rightarrow x_1$ は基底変数に
 - 目的関数は1ずつ増加
 - s₁ は 1 ずつ増加, s₂ は 1 づつ減少, s₃ は 1 ずつ減少
 - $x_1 = 4$ まで増やすと $s_2 = 0$ となる $\Rightarrow s_2$ は非基底変数に

$$f = \boldsymbol{c}_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \boldsymbol{b} + \widetilde{\boldsymbol{c}}_{\mathrm{N}}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$$
$$\boldsymbol{x}_{\mathrm{B}} = A_{\mathrm{B}}^{-1} \boldsymbol{b} - A_{\mathrm{B}}^{-1} \boldsymbol{A}_{\mathrm{N}} \boldsymbol{x}_{\mathrm{N}}$$

$$\begin{array}{c}
D & O & A \\
\hline
x_{B} = \begin{pmatrix} x_{1} \\ s_{1} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix} & x_{1} \leftrightarrow s_{2} \\
\hline
x_{B} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} & x_{2} \leftrightarrow s_{1} \\
\hline
x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix} \\
f = 0 + (1 \quad 3) \begin{pmatrix} x_{1} \\ x_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} - \begin{pmatrix} -1 & 1 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ s_{3} \end{pmatrix}$$

- 非基底変数 x1, x2 の相対コスト係数は正 ⇒ どちらも増やせる
- x_1 を 0 から少しずつ増やす $\Rightarrow x_1$ は基底変数に
 - 目的関数は1ずつ増加
 - s₁ は 1 ずつ増加, s₂ は 1 づつ減少, s₃ は 1 ずつ減少
 - $x_1 = 4$ まで増やすと $s_2 = 0$ となる $\Rightarrow s_2$ は非基底変数に

$$f = \boldsymbol{c}_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \boldsymbol{b} + \widetilde{\boldsymbol{c}}_{\mathrm{N}}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$$
$$\boldsymbol{x}_{\mathrm{B}} = A_{\mathrm{B}}^{-1} \boldsymbol{b} - A_{\mathrm{B}}^{-1} A_{\mathrm{N}} \boldsymbol{x}_{\mathrm{N}}$$

- 非基底変数 x1, x2 の相対コスト係数は正 ⇒ どちらも増やせる
- x_2 を 0 から少しずつ増やす $\Rightarrow x_2$ は基底変数に
 - 目的関数は3ずつ増加
 - s₁ は 1 ずつ減少, s₂ は 1 づつ減少, s₃ は 2 ずつ減少
 - $x_2 = 1$ まで増やすと $s_1 = 0$ となる $\Rightarrow s_1$ は非基底変数に

$$f = \boldsymbol{c}_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \boldsymbol{b} + \widetilde{\boldsymbol{c}}_{\mathrm{N}}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$$
$$\boldsymbol{x}_{\mathrm{B}} = A_{\mathrm{B}}^{-1} \boldsymbol{b} - A_{\mathrm{B}}^{-1} \boldsymbol{A}_{\mathrm{N}} \boldsymbol{x}_{\mathrm{N}}$$

$$\begin{array}{c}
D & O & A \\
\hline
x_{B} = \begin{pmatrix} x_{1} \\ s_{1} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix} & x_{1} \leftrightarrow s_{2} \\
\hline
x_{B} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} & x_{2} \leftrightarrow s_{1} \\
\hline
x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix} \\
f = 0 + \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix} - \begin{pmatrix} -1 & 1 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

- 非基底変数 x1, x2 の相対コスト係数は正 ⇒ どちらも増やせる
 - x_2 を 0 から少しずつ増やす $\Rightarrow x_2$ は基底変数に
 - 目的関数は3ずつ増加
 - s₁ は1ずつ減少, s₂ は1づつ減少, s₃ は2ずつ減少
 - $x_2 = 1$ まで増やすと $s_1 = 0$ となる $\Rightarrow s_1$ は非基底変数に

$$f = \boldsymbol{c}_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \boldsymbol{b} + \widetilde{\boldsymbol{c}}_{\mathrm{N}}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$$
$$\boldsymbol{x}_{\mathrm{B}} = A_{\mathrm{B}}^{-1} \boldsymbol{b} - A_{\mathrm{B}}^{-1} \boldsymbol{A}_{\mathrm{N}} \boldsymbol{x}_{\mathrm{N}}$$

$$\begin{array}{c}
D & O & A \\
\hline
x_{B} = \begin{pmatrix} x_{1} \\ s_{1} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix} & x_{1} \leftrightarrow s_{2} \\
\hline
x_{B} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} & x_{2} \leftrightarrow s_{1} \\
\hline
x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix} \\
f = 0 + \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} - \begin{pmatrix} -1 & 1 \\ 1 & 1 \\ 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} - \begin{pmatrix} -1 & 1 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{$$

- 非基底変数 x₁, x₂ の相対コスト係数は正 ⇒ どちらも増やせる
- x_2 を 0 から少しずつ増やす $\Rightarrow x_2$ は基底変数に
 - 目的関数は3ずつ増加
 - s₁ は 1 ずつ減少, s₂ は 1 づつ減少, s₃ は 2 ずつ減少
 - $x_2 = 1$ まで増やすと $s_1 = 0$ となる $\Rightarrow s_1$ は非基底変数に

$$f = \boldsymbol{c}_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \boldsymbol{b} + \widetilde{\boldsymbol{c}}_{\mathrm{N}}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$$
$$\boldsymbol{x}_{\mathrm{B}} = A_{\mathrm{B}}^{-1} \boldsymbol{b} - A_{\mathrm{B}}^{-1} A_{\mathrm{N}} \boldsymbol{x}_{\mathrm{N}}$$

$$\begin{array}{c}
D & O & A \\
\hline
x_{B} = \begin{pmatrix} x_{1} \\ s_{1} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix} & x_{1} \leftrightarrow s_{2} \\
\hline
x_{B} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} \\
\hline
x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix} \\
f = 0 + \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix} \\
\begin{pmatrix} x_{1} \\ s_{1} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} - \begin{pmatrix} -1 & 1 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

- 非基底変数 x1, x2 の相対コスト係数は正 ⇒ どちらも増やせる
- x_2 を 0 から少しずつ増やす $\Rightarrow x_2$ は基底変数に
 - 目的関数は3ずつ増加
 - s₁ は 1 ずつ減少, s₂ は 1 づつ減少, s₃ は 2 ずつ減少
 - $x_2 = 1$ まで増やすと $s_1 = 0$ となる $\Rightarrow s_1$ は非基底変数に

$$f = \boldsymbol{c}_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \boldsymbol{b} + \widetilde{\boldsymbol{c}}_{\mathrm{N}}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$$
$$\boldsymbol{x}_{\mathrm{B}} = A_{\mathrm{B}}^{-1} \boldsymbol{b} - A_{\mathrm{B}}^{-1} \boldsymbol{A}_{\mathrm{N}} \boldsymbol{x}_{\mathrm{N}}$$

$$\begin{array}{c}
D & O & A \\
\hline
x_{B} = \begin{pmatrix} x_{1} \\ s_{1} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix} & x_{1} \leftrightarrow s_{2} \\
\hline
x_{B} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} & x_{2} \leftrightarrow s_{1} \\
\hline
x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix} \\
f = 0 + \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} - \begin{pmatrix} -1 & 1 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

- 非基底変数 x1, x2 の相対コスト係数は正 ⇒ どちらも増やせる
- x_2 を 0 から少しずつ増やす $\Rightarrow x_2$ は基底変数に
 - 目的関数は3ずつ増加
 - s₁は1ずつ減少, s₂は1づつ減少, s₃は2ずつ減少
 - $x_2 = 1$ まで増やすと $s_1 = 0$ となる $\Rightarrow s_1$ は非基底変数に

$$f = \boldsymbol{c}_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \boldsymbol{b} + \widetilde{\boldsymbol{c}}_{\mathrm{N}}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$$
$$\boldsymbol{x}_{\mathrm{B}} = A_{\mathrm{B}}^{-1} \boldsymbol{b} - A_{\mathrm{B}}^{-1} A_{\mathrm{N}} \boldsymbol{x}_{\mathrm{N}}$$

- 非基底変数 x₁, x₂ の相対コスト係数は正 ⇒ どちらも増やせる
- x_2 を 0 から少しずつ増やす $\Rightarrow x_2$ は基底変数に
 - 目的関数は3ずつ増加
 - s₁ は1ずつ減少, s₂ は1づつ減少, s₃ は2ずつ減少
 - $x_2 = 1$ まで増やすと $s_1 = 0$ となる $\Rightarrow s_1$ は非基底変数に

$$f = \boldsymbol{c}_{\mathrm{B}}^{\mathsf{T}} \boldsymbol{A}_{\mathrm{B}}^{-1} \boldsymbol{b} + \widetilde{\boldsymbol{c}}_{\mathrm{N}}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$$
$$\boldsymbol{x}_{\mathrm{B}} = A_{\mathrm{B}}^{-1} \boldsymbol{b} - A_{\mathrm{B}}^{-1} \boldsymbol{A}_{\mathrm{N}} \boldsymbol{x}_{\mathrm{N}}$$

D
$$\begin{bmatrix}
x_{B} = \begin{pmatrix} x_{1} \\ s_{1} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix}
\end{bmatrix}
\xrightarrow{x_{1} \leftrightarrow s_{2}}
\begin{bmatrix}
x_{B} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}
\end{bmatrix}
\xrightarrow{x_{2} \leftrightarrow s_{1}}
\begin{bmatrix}
x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}$$

$$f = 4 + (2 - 1)\begin{pmatrix} x_2 \\ s_2 \end{pmatrix} \qquad f = 0 + (1) (3)\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \qquad f = 3 + (4 - 3)\begin{pmatrix} x_1 \\ s_1 \\ s_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} x_2 \\ x_2 \end{pmatrix} \begin{pmatrix} 1 \\ s_1 \\ s_2 \end{pmatrix} \begin{pmatrix} 1 \\ s_1 \\ s_3 \end{pmatrix} \begin{pmatrix} 1 \\ s_1 \\ s_2 \end{pmatrix} \begin{pmatrix} 1 \\ s_1 \\ s_2 \end{pmatrix} \begin{pmatrix} 1 \\ s_1 \\ s_1 \end{pmatrix} \begin{pmatrix} 1 \\ s_1 \\ s_2 \end{pmatrix} \begin{pmatrix} 1 \\ s_1 \\ s_1 \end{pmatrix} \begin{pmatrix} 1 \\ s_1 \\ s_1 \end{pmatrix} \begin{pmatrix} 1 \\ s_1 \\ s_2 \end{pmatrix} \begin{pmatrix} 1 \\ s_1 \\ s_1 \end{pmatrix} \begin{pmatrix} 1 \\ s_1 \\$$

$$\begin{pmatrix} s_1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} f_1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} x_1 \end{pmatrix}$$

$$\begin{pmatrix} x_2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 2 & 1 \end{pmatrix} (x_1)$$

- 最大係数規則 (largest coefficient rule) 相対コスト係数の大きい x_2 :(A) を選択
- 最大改善規則 (largest improvement rule) 目的関数の増加量がもっとも大きい x_1 :(D) を選択
- 他にもあるが、最大係数規則を使うのが標準的

 - $x_2 = 1$ まで増やすと $s_1 = 0$ となる $\Rightarrow s_1$ は非基底変数に

各端点における計算の簡略化

- 1. 実行可能領域の端点の求め方
 - 基底変数・非基底変数
 - 実行可能基底解
- 2. 目的関数の増加方向に端点を辿る方法
 - 相対コスト係数
 - 基底変数・非基底変数の入れ替え
- 3. 各端点における計算の簡略化
 - シンプレックスタブロー (単体表)
 - ピボット操作

掃き出し法による計算の基本方針

• 入れ替える基底変数・非基底変数を決定するには、各端点で

$$f = \boldsymbol{c}_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \boldsymbol{b} + \widetilde{\boldsymbol{c}}_{\mathrm{N}}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$$
$$\boldsymbol{x}_{\mathrm{B}} = A_{\mathrm{B}}^{-1} \boldsymbol{b} - A_{\mathrm{B}}^{-1} A_{\mathrm{N}} \boldsymbol{x}_{\mathrm{N}}$$

が必要 ⇒ 辞書 (dictonary) という

- 逆行列や行列の積を毎回計算するのは大変
- 連立 1 次方程式に対する掃き出し法と同様の計算で簡単化

計算方法 (その 1)

辞書

$$f = \boldsymbol{c}_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \boldsymbol{b} + \widetilde{\boldsymbol{c}}_{\mathrm{N}}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$$
 (b)

$$x_{\rm B} = A_{\rm B}^{-1} b - A_{\rm B}^{-1} A_{\rm N} x_{\rm N} \tag{a}$$

(a) の計算

- (a) は Ax = b を基底変数について解いた式 \Rightarrow 諸々の都合により、左から $A_{\mathbf{p}}^{-1}$ をかけた形 $A_{\mathbf{p}}^{-1}Ax = A_{\mathbf{p}}^{-1}b$ で考える
- 各端点において、拡大係数行列 $\left(A_{\rm B}^{-1}A \mid A_{\rm B}^{-1}b\right)$ を求める \Rightarrow $A_{\rm B}^{-1}b$ や $A_{\rm B}^{-1}A_{\rm N}$ が得られる
- 各端点で $A_{\rm B}$ が変化 \Rightarrow $\left(A_{\rm B}^{-1}A \mid A_{\rm B}^{-1}b\right)$ に対する $\frac{1}{1}$ (左) 基本変形で計算可能

参考: 行(左)基本変形で計算できる理由

端点Xにおける A_B を A_{BX} ,端点Yにおける A_B を A_{BY} とすると,

$$\left(A_{\mathrm{BY}}^{-1}A \mid A_{\mathrm{BY}}^{-1}\boldsymbol{b}\right) = A_{\mathrm{BY}}^{-1}A_{\mathrm{BX}}\left(A_{\mathrm{BX}}^{-1}A \mid A_{\mathrm{BX}}^{-1}\boldsymbol{b}\right)$$

が成り立つ。行列 $A_{\rm BV}^{-1}A_{\rm BX}$ は正則であり,任意の正則行列は基本行列の積で表せるため,この変形は行基本変形で計算可能.

$$A = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$$O \left(\begin{array}{c} \textbf{x}_{\text{B}} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \\ \end{array} \right) \left(A_{\text{B}}^{-1} A \mid A_{\text{B}}^{-1} \textbf{b} \right) = \begin{array}{c} x_{1} & x_{2} & s_{1} & s_{2} & s_{3} \\ -1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 4 \\ 1 & 2 & 0 & 0 & 1 & 5 \\ \end{array} \right), \ A_{\text{B}} = \begin{pmatrix} s_{1} & s_{2} & s_{3} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}, \ A_{\text{B}}^{-1} A_{\text{N}} = \begin{pmatrix} r_{1} & x_{2} \\ -1 & 1 \\ 1 & 1 \\ 1 & 2 \\ \end{pmatrix}$$

$$\mathsf{A} \underbrace{ \begin{pmatrix} x_2 \\ s_2 \\ s_3 \end{pmatrix}} \left(A_\mathrm{B}^{-1} A \, | \, A_\mathrm{B}^{-1} \boldsymbol{b} \right) = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ -1 & 1 & 1 & 0 & 0 \\ 2 & 0 & -1 & 1 & 0 \\ 3 & 0 & -2 & 0 & 1 \\ 3 \end{pmatrix}, \, A_\mathrm{B} = \begin{pmatrix} x_2 & s_2 & s_3 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}, \, A_\mathrm{B}^{-1} A_\mathrm{N} = \begin{pmatrix} x_1 & s_1 \\ -1 & 1 \\ 2 & -1 \\ 3 & -2 \end{pmatrix}$$

- ullet $A_{
 m R}^{-1}$ をかけているので、基底変数の列をまとめると単位行列
- 非基底変数の列をまとめると $A_{\rm B}^{-1}A_{\rm N}$ $\Rightarrow A_{\rm B}^{-1}b$ も計算済なので、方程式 $x_{\rm B}=A_{\rm B}^{-1}b-A_{\rm B}^{-1}A_{\rm N}x_{\rm N}$ の係数がわかる
- 基底の入れ替えで基底変数の $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ が s_1 から s_2 に移動

$$A = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$$O\left(\begin{matrix} x_{\rm B} = \begin{pmatrix} s_1 \\ s_2 \\ s_3 \end{pmatrix}\right) \begin{pmatrix} A_{\rm B}^{-1}A & A_{\rm B}^{-1}b \end{pmatrix} = \begin{matrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ s_1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 4 \\ 1 & 2 & 0 & 0 & 1 & 5 \end{matrix}, A_{\rm B} = \begin{pmatrix} s_1 & s_2 & s_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, A_{\rm B}^{-1}A_{\rm N} = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{matrix}$$

$$A \begin{bmatrix} x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{bmatrix} (A_{B}^{-1}A | A_{B}^{-1}b) = \begin{pmatrix} x_{1} & x_{2} & s_{1} & s_{2} & s_{3} \\ x_{2} \begin{pmatrix} -1 & 1 & 1 & 0 & 0 & 1 \\ 2 & 0 & -1 & 1 & 0 & 0 \\ 3 & 0 & -2 & 0 & 1 & 3 \end{pmatrix}, A_{B} = \begin{pmatrix} x_{2} & s_{2} & s_{3} \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}, A_{B}^{-1}A_{N} = \begin{pmatrix} x_{1} & s_{1} \\ -1 & 1 \\ 2 & -1 \\ 3 & -2 \end{pmatrix}$$

- ullet $A_{
 m R}^{-1}$ をかけているので、基底変数の列をまとめると単位行列
- 非基底変数の列をまとめると $A_{\rm B}^{-1}A_{\rm N}$ $\Rightarrow A_{\rm B}^{-1}b$ も計算済なので、方程式 $x_{\rm B}=A_{\rm B}^{-1}b-A_{\rm B}^{-1}A_{\rm N}x_{\rm N}$ の係数がわかる
- 基底の入れ替えで基底変数の $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ が s_1 から s_2 に移動

$$A = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$$O \left(\begin{array}{c} \textbf{x}_{\text{B}} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \\ \end{array} \right) \left(A_{\text{B}}^{-1} A \mid A_{\text{B}}^{-1} \textbf{b} \right) = \begin{array}{c} x_{1} & x_{2} & s_{1} & s_{2} & s_{3} \\ -1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 4 \\ 1 & 2 & 0 & 0 & 1 & 5 \\ \end{array} \right), \ A_{\text{B}} = \begin{pmatrix} s_{1} & s_{2} & s_{3} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}, \ A_{\text{B}}^{-1} A_{\text{N}} = \begin{pmatrix} r_{1} & x_{2} \\ -1 & 1 \\ 1 & 1 \\ 1 & 2 \\ \end{pmatrix}$$

$$A \begin{bmatrix} x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{bmatrix} (A_{B}^{-1}A | A_{B}^{-1}b) = \begin{pmatrix} x_{1} & x_{2} & s_{1} & s_{2} & s_{3} \\ x_{2} \begin{pmatrix} -1 & 1 & 1 & 0 & 0 \\ 2 & 0 & -1 & 1 & 0 \\ 3 & 0 & -2 & 0 & 1 \end{pmatrix}, A_{B} = \begin{pmatrix} x_{2} & s_{2} & s_{3} \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}, A_{B}^{-1}A_{N} = \begin{pmatrix} x_{1} & s_{1} \\ -1 & 1 \\ 2 & -1 \\ 3 & -2 \end{pmatrix}$$

- ullet $A_{
 m R}^{-1}$ をかけているので、基底変数の列をまとめると単位行列
- 非基底変数の列をまとめると $A_{\rm B}^{-1}A_{\rm N}$ $\Rightarrow A_{\rm B}^{-1}b$ も計算済なので、方程式 $x_{\rm B}=A_{\rm B}^{-1}b-A_{\rm B}^{-1}A_{\rm N}x_{\rm N}$ の係数がわかる
- 基底の入れ替えで基底変数の $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ が s_1 から s_2 に移動

$$A = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$$O\left[\begin{array}{c} x_{B} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \\ \end{array}\right] \begin{pmatrix} A_{B}^{-1}A \mid A_{B}^{-1}b \\ \end{pmatrix} = \begin{pmatrix} x_{1} & x_{2} & s_{1} & s_{2} & s_{3} \\ -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ \end{pmatrix}, A_{B}^{-1}A_{B} = \begin{pmatrix} x_{1} & x_{2} & s_{3} & s_{2} & s_{3} \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}, A_{B}^{-1}A_{B} = \begin{pmatrix} x_{1} & x_{2} & s_{3} & s_{2} & s_{3} \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \end{pmatrix}$$

$$A \begin{bmatrix} x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{bmatrix} \begin{pmatrix} A_{B}^{-1}A & A_{B}^{-1}b \end{pmatrix} = \begin{bmatrix} x_{1} & x_{2} & s_{1} & s_{2} & s_{3} \\ x_{2} & -1 & 1 & 1 & 0 & 0 \\ 2 & 0 & -1 & 1 & 0 & 3 \\ 3 & 0 & -2 & 0 & 1 & 3 \end{bmatrix}, A_{B} = \begin{pmatrix} x_{2} & s_{2} & s_{3} & x_{2} & s_{3} \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 & 0 \end{bmatrix}, A_{B}^{-1}A_{N} = \begin{pmatrix} x_{1} & s_{1} & s_{1}$$

- ullet $A_{
 m R}^{-1}$ をかけているので,基底変数の列をまとめると単位行列
- 非基底変数の列をまとめると $A_{\rm B}^{-1}A_{\rm N}$ $\Rightarrow A_{\rm B}^{-1}b$ も計算済なので、方程式 $x_{\rm B}=A_{\rm B}^{-1}b-A_{\rm B}^{-1}A_{\rm N}x_{\rm N}$ の係数がわかる
- 基底の入れ替えで基底変数の $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ が s_1 から s_2 に移動

$$A = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$$O\left(\begin{matrix} \mathbf{x}_{\mathrm{B}} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix}\right) \begin{pmatrix} A_{\mathrm{B}}^{-1} A \mid A_{\mathrm{B}}^{-1} \mathbf{b} \end{pmatrix} = \begin{matrix} s_{1} \\ s_{2} \\ s_{3} \end{matrix} = \begin{matrix} s_{1} \\ -1 \\ 1 \\ 1 \\ 1 \end{matrix} = \begin{matrix} s_{1} \\ 1 \\ 0 \end{matrix} = \begin{matrix} s_{1} \\ 1 \end{matrix} = \begin{matrix} s_{1} \\ 1 \\ 0 \end{matrix} = \begin{matrix} s_{1} \\ 1 \end{matrix} = \begin{matrix}$$

$$A \begin{bmatrix} x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{bmatrix} (A_{B}^{-1}A | A_{B}^{-1}b) = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} x_{1} & x_{2} & s_{1} \\ -1 & 1 & 1 & 0 & 0 \\ 2 & 0 & -1 & 1 & 0 \\ 3 & 0 & -2 & 0 & 1 \\ 3 \end{pmatrix}, A_{B} = \begin{pmatrix} x_{2} & s_{2} & s_{3} \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}, A_{B}^{-1}A_{N} = \begin{pmatrix} x_{1} & s_{1} \\ -1 & 1 \\ 2 & -1 \\ 3 & -2 \end{pmatrix}$$

- ullet $A_{
 m R}^{-1}$ をかけているので、基底変数の列をまとめると単位行列
- ullet 非基底変数の列をまとめると $A_{
 m B}^{-1}A_{
 m N}$ $\Rightarrow A_{
 m B}^{-1}b$ も計算済なので,方程式 $x_{
 m B}=A_{
 m B}^{-1}b-A_{
 m B}^{-1}A_{
 m N}x_{
 m N}$ の係数がわかる
- 基底の入れ替えで基底変数の $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$ が s_1 から s_2 に移動

$$A = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$$O\left[\begin{array}{c} x_{B} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \\ \end{array}\right] \begin{pmatrix} A_{B}^{-1}A \mid A_{B}^{-1}b \\ \end{pmatrix} = \begin{pmatrix} x_{1} & x_{2} & s_{1} & s_{2} & s_{3} \\ -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ \end{pmatrix}, A_{B}^{-1}A_{B} = \begin{pmatrix} x_{1} & x_{2} & s_{3} & s_{1} & s_{2} & s_{3} \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \end{pmatrix}, A_{B}^{-1}A_{B} = \begin{pmatrix} x_{1} & x_{2} & s_{3} & s_{2} & s_{3} & s_{2} & s_{3} \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ \end{pmatrix}$$

$$A \begin{bmatrix} x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{bmatrix} \begin{pmatrix} A_{B}^{-1}A & A_{B}^{-1}b \end{pmatrix} = \begin{bmatrix} x_{2} \begin{pmatrix} x_{1} & x_{2} & s_{1} & s_{2} & s_{3} \\ x_{2} \begin{pmatrix} -1 & 1 & 1 & 0 & 0 \\ 2 & 0 & -1 & 1 & 0 \\ 3 & 0 & -2 & 0 & 1 & 3 \end{bmatrix}, A_{B} = \begin{pmatrix} x_{2} & s_{2} & s_{3} & s_{3} & s_{3} \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 & 0 \end{bmatrix}, A_{B}^{-1}A_{N} = \begin{pmatrix} x_{1} & s_{1} & s_{1} & s_{2} & s_{3} & s_{3} & s_{3} & s_{3} \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0$$

- ullet $A_{
 m R}^{-1}$ をかけているので、基底変数の列をまとめると単位行列
- 非基底変数の列をまとめると $A_{\rm B}^{-1}A_{\rm N}$ $\Rightarrow A_{\rm R}^{-1}{m b}$ も計算済なので、方程式 ${m x}_{\rm B}=A_{\rm R}^{-1}{m b}-A_{\rm R}^{-1}A_{\rm N}{m x}_{\rm N}$ の係数がわかる
- ullet 基底の入れ替えで基底変数の $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ が s_1 から s_2 に移動

$$A = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$$O\left[\begin{array}{c} x_{\mathrm{B}} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \\ \end{array}\right] \left(A_{\mathrm{B}}^{-1}A \mid A_{\mathrm{B}}^{-1}b\right) = \begin{array}{cccc} x_{1} & x_{2} & s_{1} & s_{2} & s_{3} \\ -1 & 1 & 0 & 0 & 1 \\ s_{2} & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ s_{3} & 1 & 2 & 0 & 0 & 1 & 5 \\ \end{array}\right], \ A_{\mathrm{B}} = \begin{pmatrix} s_{1} & s_{2} & s_{3} & s_{1} & s_{2} & s_{3} \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array}\right], \ A_{\mathrm{B}}^{-1}A_{\mathrm{N}} = \begin{pmatrix} x_{1} & x_{2} & s_{3} & s_{1} & s_{2} & s_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right), \ A_{\mathrm{B}}^{-1}A_{\mathrm{N}} = \begin{pmatrix} x_{1} & x_{2} & s_{3} & s_{1} & s_{2} & s_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right]$$

$$A \begin{bmatrix} x_2 \\ s_2 \\ s_3 \end{bmatrix} (A_B^{-1}A | A_B^{-1}b) = \begin{bmatrix} x_1 \\ x_2 \\ s_2 \\ s_3 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 2 \\ 0 \\ -1 \\ 3 \end{pmatrix} \begin{pmatrix} x_1 \\ s_2 \\ 0 \\ -1 \\ 0 \end{pmatrix} \begin{pmatrix} x_1 \\ s_2 \\ 0 \\ 0 \\ -1 \end{pmatrix} \begin{pmatrix} x_1 \\ s_2 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} x_2 \\ s_3 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} x_2 \\ s_3 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} x_2 \\ s_3 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} x_2 \\ s_3 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} x_2 \\ s_3 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} x_2 \\ s_3 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} x_2 \\ s_3 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} x_2 \\ s_3 \\ 0 \end{pmatrix} \begin{pmatrix} x_2 \\ s_3 \\ 0 \end{pmatrix} \begin{pmatrix} x_3 \\ s_3 \\ s_3 \\ 0 \end{pmatrix} \begin{pmatrix} x_3 \\ s_3 \\ s_3 \\ 0 \end{pmatrix} \begin{pmatrix} x_3 \\ s_3 \\ s_3 \\ s_3 \\ s_3 \\ s_3 \end{pmatrix} \begin{pmatrix} x_3 \\ s_3 \\ s_3$$

- ullet $A_{
 m R}^{-1}$ をかけているので、基底変数の列をまとめると単位行列
- 非基底変数の列をまとめると $A_{\rm B}^{-1}A_{\rm N}$ $\Rightarrow A_{\rm B}^{-1}{m b}$ も計算済なので、方程式 ${m x}_{\rm B}=A_{\rm B}^{-1}{m b}-A_{\rm B}^{-1}A_{\rm N}{m x}_{\rm N}$ の係数がわかる
- ullet 基底の入れ替えで基底変数の $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ が s_1 から x_2 に移動

$$A = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$$O\left(\begin{matrix} x_{\rm B} = \begin{pmatrix} s_1 \\ s_2 \\ s_3 \end{pmatrix}\right) \begin{pmatrix} A_{\rm B}^{-1}A & A_{\rm B}^{-1}b \end{pmatrix} = \begin{matrix} x_1 & x_2 & x_3 \\ s_1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{matrix}\right), \ A_{\rm B}^{-1}A_{\rm N} = \begin{pmatrix} x_1 & x_2 & x_3 & x_1 & x_2 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{matrix}\right), \ A_{\rm B}^{-1}A_{\rm N} = \begin{pmatrix} x_1 & x_2 & x_3 & x_1 & x_2 & x_3 & x_1 & x_2 \\ -1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A \begin{bmatrix} x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{bmatrix} \begin{pmatrix} A_{B}^{-1}A & A_{B}^{-1}b \end{pmatrix} = \begin{bmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} \begin{pmatrix} x_{1} & x_{2} & s_{1} & s_{2} & s_{3} \\ 1 & 1 & 0 & 0 & 1 \\ 2 & 0 & -1 & 1 & 0 & 3 \\ 3 & 0 & -2 & 0 & 1 & 3 \end{pmatrix}, A_{B} = \begin{pmatrix} x_{2} & s_{2} & s_{3} \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}, A_{B}^{-1}A_{N} = \begin{pmatrix} x_{1} & s_{1} \\ -1 & 1 \\ 2 & -1 \\ 3 & -2 \end{pmatrix}$$

- A_B⁻¹ をかけているので、基底変数の列をまとめると単位行列
- 非基底変数の列をまとめると $A_{\rm B}^{-1}A_{\rm N}$ $\Rightarrow A_{\rm B}^{-1}b$ も計算済なので、方程式 $x_{\rm B}=A_{\rm B}^{-1}b-A_{\rm B}^{-1}A_{\rm N}x_{\rm N}$ の係数がわかる
- **基底の入れ替えで基底変数の** $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ が s_1 から x_2 に移動
 - \Rightarrow 1 行目の要素 (ピボット (pivot) 要素という) を使って x_2 の列を掃き出す

$$A = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$$A \begin{bmatrix} x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} \begin{pmatrix} A_{B}^{-1}A & A_{B}^{-1}b \end{pmatrix} = \begin{bmatrix} x_{2} \\ s_{2} \\ s_{3} \\ x_{3} \end{bmatrix} \begin{pmatrix} x_{1} & x_{2} & s_{1} & s_{2} & s_{3} \\ 1 & 1 & 0 & 0 & 1 \\ 2 & 0 & -1 & 1 & 0 & 3 \\ 3 & 0 & -2 & 0 & 1 & 3 \end{pmatrix}, A_{B} = \begin{pmatrix} x_{2} & s_{2} & s_{3} \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}, A_{B}^{-1}A_{N} = \begin{pmatrix} x_{1} & s_{1} \\ -1 & 1 \\ 2 & -1 \\ 3 & -2 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 4 \\ 1 & 2 & 0 & 0 & 1 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 1 & 1 & 0 & 0 & 1 \\ 2 & 0 & -1 & 1 & 0 & 3 \\ 1 & 2 & 0 & 0 & 1 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 1 & 1 & 0 & 0 & 1 \\ 2 & 0 & -1 & 1 & 0 & 3 \\ 3 & 0 & -2 & 0 & 1 & 3 \end{pmatrix}$$

- 1. 1 行目を定数倍して 1 にする ⇒ 今回は不要
- 2. 2 行目から 1 行目を引く
- 3. 3 行目から 1 行目の 2 倍を引く

$$A = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$$O\left[\begin{array}{c} x_{B} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \\ \end{array}\right] \left(A_{B}^{-1}A \mid A_{B}^{-1}b\right) = \begin{array}{c} x_{1} \\ s_{1} \\ s_{2} \\ s_{3} \\ \end{array} \begin{pmatrix} x_{1} \\ 1 \\ 1 \\ 2 \\ \end{array} \begin{pmatrix} x_{1} \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ \end{array} \begin{pmatrix} x_{1} \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ \end{array} \begin{pmatrix} x_{1} \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ \end{array} \begin{pmatrix} x_{1} \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ \end{pmatrix}, A_{B} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ \end{pmatrix}, A_{B}^{-1}A_{N} = \begin{pmatrix} x_{1} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ \end{pmatrix}$$

$$A \begin{bmatrix} x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} \begin{pmatrix} A_{B}^{-1}A & A_{B}^{-1}b \end{pmatrix} = \begin{bmatrix} x_{2} \\ s_{2} \\ s_{3} \\ x_{3} \end{bmatrix} \begin{pmatrix} x_{1} & x_{2} & s_{1} & s_{2} & s_{3} \\ 1 & 1 & 0 & 0 & 1 \\ 2 & 0 & -1 & 1 & 0 & 3 \\ 3 & 0 & -2 & 0 & 1 & 3 \end{pmatrix}, A_{B} = \begin{pmatrix} x_{2} & s_{2} & s_{3} \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}, A_{B}^{-1}A_{N} = \begin{pmatrix} x_{1} & s_{1} \\ -1 & 1 \\ 2 & -1 \\ 3 & -2 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 4 \\ 1 & 2 & 0 & 0 & 1 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 1 & 1 & 0 & 0 & 1 \\ 2 & 0 & -1 & 1 & 0 & 3 \\ 1 & 2 & 0 & 0 & 1 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 1 & 1 & 0 & 0 & 1 \\ 2 & 0 & -1 & 1 & 0 & 3 \\ 3 & 0 & -2 & 0 & 1 & 3 \end{pmatrix}$$

- 1. 1 行目を定数倍して 1 にする ⇒ 今回は不要
- 2. 2 行目から 1 行目を引く
- 3. 3 行目から 1 行目の 2 倍を引く

$$A = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$$O\left(\begin{matrix} \boldsymbol{x}_{\mathrm{B}} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix}\right) \begin{pmatrix} A_{\mathrm{B}}^{-1}A \mid A_{\mathrm{B}}^{-1}\boldsymbol{b} \end{pmatrix} = \begin{matrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{matrix} x_{1} \\ -1 \\ 1 \\ 1 \\ 2 \end{matrix} \begin{matrix} x_{1} \\ s_{2} \\ s_{3} \end{matrix} \begin{matrix} x_{1} & s_{2} & s_{3} \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 5 \end{matrix} , A_{\mathrm{B}}^{-1}A_{\mathrm{N}} = \begin{pmatrix} x_{1} & x_{2} \\ -1 & 1 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}$$

$$A \begin{bmatrix} x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{pmatrix} \begin{pmatrix} A_{B}^{-1}A & A_{B}^{-1}b \end{pmatrix} = \begin{bmatrix} x_{2} \\ s_{2} \\ s_{3} \\ x_{3} \end{bmatrix} \begin{pmatrix} x_{1} & x_{2} & s_{1} & s_{2} & s_{3} \\ 1 & 1 & 0 & 0 & 1 \\ 2 & 0 & -1 & 1 & 0 & 3 \\ 3 & 0 & -2 & 0 & 1 & 3 \end{pmatrix}, A_{B} = \begin{pmatrix} x_{2} & s_{2} & s_{3} \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}, A_{B}^{-1}A_{N} = \begin{pmatrix} x_{1} & s_{1} \\ -1 & 1 \\ 2 & -1 \\ 3 & -2 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 4 \\ 1 & 2 & 0 & 0 & 1 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 1 & 1 & 0 & 0 & 1 \\ 2 & 0 & -1 & 1 & 0 & 3 \\ 1 & 2 & 0 & 0 & 1 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 1 & 1 & 0 & 0 & 1 \\ 2 & 0 & -1 & 1 & 0 & 3 \\ 3 & 0 & -2 & 0 & 1 & 3 \end{pmatrix}$$

- 1. 1 行目を定数倍して 1 にする ⇒ 今回は不要
- 2. 2 行目から 1 行目を引く
- 3. 3 行目から 1 行目の 2 倍を引く

$$A = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$$O\left(\begin{matrix} \boldsymbol{x}_{\mathrm{B}} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix}\right) \begin{pmatrix} A_{\mathrm{B}}^{-1}A \mid A_{\mathrm{B}}^{-1}\boldsymbol{b} \end{pmatrix} = \begin{matrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{matrix} x_{1} \\ -1 \\ 1 \\ 1 \\ 2 \end{matrix} \begin{matrix} x_{1} \\ s_{2} \\ s_{3} \end{matrix} \begin{matrix} x_{1} & s_{2} & s_{3} \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 5 \end{matrix} , A_{\mathrm{B}}^{-1}A_{\mathrm{N}} = \begin{pmatrix} x_{1} & x_{2} \\ -1 & 1 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}$$

$$A \begin{bmatrix} x_{B} = \begin{pmatrix} x_{2} \\ s_{2} \\ s_{3} \end{bmatrix} (A_{B}^{-1}A | A_{B}^{-1}b) = \begin{pmatrix} x_{1} & x_{2} & s_{1} & s_{2} & s_{3} \\ x_{2} & 1 & 1 & 0 & 0 & 1 \\ 2 & 0 & -1 & 1 & 0 & 3 \\ 3 & 0 & -2 & 0 & 1 & 3 \end{pmatrix}, A_{B} = \begin{pmatrix} x_{2} & s_{2} & s_{3} \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}, A_{B}^{-1}A_{N} = \begin{pmatrix} x_{1} & s_{1} \\ -1 & 1 \\ 2 & -1 \\ 3 & -2 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 4 \\ 1 & 2 & 0 & 0 & 1 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 1 & 1 & 0 & 0 & 1 \\ 2 & 0 & -1 & 1 & 0 & 3 \\ 1 & 2 & 0 & 0 & 1 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 1 & 1 & 0 & 0 & 1 \\ 2 & 0 & -1 & 1 & 0 & 3 \\ 3 & 0 & -2 & 0 & 1 & 3 \end{pmatrix}$$

- 1. 1 行目を定数倍して 1 にする ⇒ 今回は不要
- 2. 2 行目から 1 行目を引く
- 3. 3 行目から 1 行目の 2 倍を引く

計算方法 (その3)

辞書

$$f = \boldsymbol{c}_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \boldsymbol{b} + \widetilde{\boldsymbol{c}}_{\mathrm{N}}^{\mathsf{T}} \boldsymbol{x}_{\mathrm{N}}$$
 (b)

$$\boldsymbol{x}_{\mathrm{B}} = A_{\mathrm{B}}^{-1}\boldsymbol{b} - A_{\mathrm{B}}^{-1}A_{\mathrm{N}}\boldsymbol{x}_{\mathrm{N}} \tag{a}$$

(b) の変形

$$\widetilde{c}_{N}^{\mathsf{T}} x_{N} = f - c_{B}^{\mathsf{T}} A_{B}^{-1} \boldsymbol{b}$$

$$\boldsymbol{0}^{\mathsf{T}} x_{B} + \widetilde{c}_{N}^{\mathsf{T}} x_{N} = f - c_{B}^{\mathsf{T}} A_{B}^{-1} \boldsymbol{b}$$

$$\widetilde{c}^{\mathsf{T}} x = f - c_{B}^{\mathsf{T}} A_{B}^{-1} \boldsymbol{b}$$
(b')

ただし

$$\widetilde{c}^{\mathsf{T}} = \begin{pmatrix} \mathbf{0}^{\mathsf{T}} & \widetilde{c}_{\mathrm{N}}^{\mathsf{T}} \end{pmatrix}$$

(b') の計算方法

- \overline{c} における基底変数 x_B の係数は $0 \Rightarrow$ 基底変数・非基底変数の入れ替えで 新たに基底となった変数を (b') から消去すればよい
- Ax = b と連立. より正確には $A_{\rm p}^{-1}Ax = A_{\rm p}^{-1}b$ と連立

$$\Rightarrow$$
 拡大係数行列 $\left(egin{array}{cc} \widetilde{m{c}}^{\intercal} & f - m{c}_{
m B}^{\intercal} A_{
m B}^{-1} m{b} \\ A_{
m B}^{-1} m{b} \end{array}
ight)$ に対する掃き出し

計算方法 (その4)

$$\mathbf{c}^{\mathsf{T}} = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ 1 & 3 & 0 & 0 & 0 \\ -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$$O\left(\begin{matrix} \mathbf{x}_{\mathbf{B}} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix}\right) \begin{pmatrix} \widetilde{\mathbf{c}}^{\mathsf{T}} & f - \mathbf{c}_{\mathbf{B}}^{\mathsf{T}} A_{\mathbf{B}}^{-1} \mathbf{b} \\ A_{\mathbf{B}}^{-1} A & A_{\mathbf{B}}^{-1} \mathbf{b} \end{pmatrix} = \begin{pmatrix} \widetilde{\mathbf{c}}^{\mathsf{T}} & 1 & 3 & 0 & 0 & 0 & f - 0 \\ 1 & 3 & 0 & 0 & 0 & f - 0 \\ -1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 4 \\ 1 & 2 & 0 & 0 & 1 & 5 \end{pmatrix}, \ \widetilde{\mathbf{c}}_{\mathbf{N}}^{\mathsf{T}} = \begin{pmatrix} 1 & 3 \end{pmatrix}, \ \mathbf{c}_{\mathbf{B}}^{\mathsf{T}} A_{\mathbf{B}}^{-1} \mathbf{b} = 0$$

$$\mathsf{A} \underbrace{\left(\begin{matrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{s}_3 \end{matrix}\right)}_{\mathbf{x}_B} \underbrace{\left(\begin{matrix} \mathbf{c}^\mathsf{T} \\ \mathbf{x}_2 \\ \mathbf{s}_3 \end{matrix}\right)}_{\mathbf{x}_B} \underbrace{\left(\begin{matrix} \mathbf{c}^\mathsf{T} \\ \mathbf{c}^\mathsf{T} \\ \mathbf{A}_B^{-1} \mathbf{b} \end{matrix}\right)}_{\mathbf{x}_B^{-1} \mathbf{b}} \underbrace{\left(\begin{matrix} \mathbf{c}^\mathsf{T} \\ \mathbf{c}^\mathsf{T} \\ \mathbf{c}^\mathsf{T} \end{matrix}\right)}_{\mathbf{x}_B^{-1} \mathbf{b}} \underbrace{\left(\begin{matrix} \mathbf{c}^\mathsf{T}$$

計算方法 (その4)

$$c^{\mathsf{T}} = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ 1 & 3 & 0 & 0 & 0 \\ -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$$O\left[\begin{matrix} \mathbf{x}_{\mathrm{B}} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix}\right] \begin{pmatrix} \widetilde{\mathbf{c}}^{\mathsf{T}} & f - \mathbf{c}_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \mathbf{b} \\ A_{\mathrm{B}}^{-1} A & A_{\mathrm{B}}^{-1} \mathbf{b} \end{pmatrix} = \begin{bmatrix} \widetilde{\mathbf{c}}^{\mathsf{T}} & 1 & 2 & s_{1} & s_{2} & s_{3} \\ 1 & 3 & 0 & 0 & 0 & f - \mathbf{0} \\ s_{1} & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 4 \\ 1 & 2 & 0 & 0 & 1 & 5 \end{bmatrix}, \ \widetilde{\mathbf{c}}_{\mathrm{N}}^{\mathsf{T}} = \begin{pmatrix} \mathbf{1} & \mathbf{3} \end{pmatrix}, \ \mathbf{c}_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \mathbf{b} = \mathbf{0}$$

$$A \begin{bmatrix} \mathbf{x}_{\mathrm{B}} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{bmatrix} \begin{pmatrix} \widetilde{\mathbf{c}}^{\mathsf{T}} & f - \mathbf{c}_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \mathbf{b} \\ A_{\mathrm{B}}^{-1} A & A_{\mathrm{B}}^{-1} \mathbf{b} \end{pmatrix} = \begin{bmatrix} \widetilde{\mathbf{c}}^{\mathsf{T}} & s_{1} & s_{2} & s_{3} \\ 4 & 0 & -3 & 0 & 0 & f - 3 \\ s_{2} & -1 & 1 & 1 & 0 & 0 & 1 \\ 2 & 0 & -1 & 1 & 0 & 3 \\ 3 & 0 & -2 & 0 & 1 & 3 \end{bmatrix}, \ \widetilde{\mathbf{c}}_{\mathrm{N}}^{\mathsf{T}} = \begin{pmatrix} \mathbf{4} & -\mathbf{3} \end{pmatrix}, \ \mathbf{c}_{\mathrm{B}}^{\mathsf{T}} A_{\mathrm{B}}^{-1} \mathbf{b} = \mathbf{3}$$

計算方法 (その4)

$$c^{\top} = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ 1 & 3 & 0 & 0 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

$$O\left(\begin{matrix} \mathbf{x}_{\mathbf{B}} = \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix}\right) \begin{pmatrix} \widetilde{\mathbf{c}}^{\mathsf{T}} & f - \mathbf{c}_{\mathbf{B}}^{\mathsf{T}} A_{\mathbf{B}}^{-1} \mathbf{b} \\ A_{\mathbf{B}}^{-1} A & A_{\mathbf{B}}^{-1} \mathbf{b} \end{pmatrix} = \begin{bmatrix} x_{1} & x_{2} & s_{1} & s_{2} & s_{3} \\ \widetilde{\mathbf{c}}^{\mathsf{T}} & 1 & 3 & 0 & 0 & 0 & f - 0 \\ s_{1} & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 2 & 0 & 0 & 1 & 5 \end{bmatrix}, \ \widetilde{\mathbf{c}}_{\mathbf{N}}^{\mathsf{T}} = \begin{pmatrix} 1 & 3 \end{pmatrix}, \ \mathbf{c}_{\mathbf{B}}^{\mathsf{T}} A_{\mathbf{B}}^{-1} \mathbf{b} = 0$$

$$\mathsf{A} \underbrace{ \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} }_{\left(\begin{matrix} \mathbf{c}^\mathsf{T} \\ A_\mathrm{B}^{-1} A \end{matrix}, \begin{matrix} f - \mathbf{c}_\mathrm{B}^\mathsf{T} A_\mathrm{B}^{-1} \mathbf{b} \\ A_\mathrm{B}^{-1} \mathbf{b} \end{matrix} \right) = \begin{matrix} \mathbf{c}^\mathsf{T} \\ \mathbf{c}^\mathsf{T$$

まとめ

計算するもの (シンプレックスタブロー・単体表 (simplex tabuleau))

$$\left(egin{array}{ccc} \widetilde{m{c}}^{\scriptscriptstyle{\intercal}} & f - m{c}_{\mathrm{B}}^{\scriptscriptstyle{\intercal}} A_{\mathrm{B}}^{-1} m{b} \\ A_{\mathrm{B}}^{-1} A & A_{\mathrm{B}}^{-1} m{b} \end{array}
ight)$$
 すな省略 $\left(egin{array}{ccc} \widetilde{m{c}}^{\scriptscriptstyle{\intercal}} & - m{c}_{\mathrm{B}}^{\scriptscriptstyle{\intercal}} A_{\mathrm{B}}^{-1} m{b} \\ A_{\mathrm{B}}^{-1} A & A_{\mathrm{B}}^{-1} m{b} \end{array}
ight)$

計算手順

1. 初期化

実行可能基底解・対応するシンプレックスタブローを求める

2. 入れ替える非基底変数 (ピボット列) の選択

相対コスト係数が正の非基底変数 (で が正の列) を選択 ⇒ ピボット列

- 複数ある場合は相対コスト係数最大の非基底変数
- 存在しなければ、最適解が求まったものとして終了
- 3. 入れ替える基底変数 (ピボット行) の選択

2 の非基底変数を増加させたとき、最初に 0 になる基底変数 (行) を求める

- ⇒ ピボット行
- 4. ピボット操作 (掃き出し)

行基本変形を施して、 ピボット列を

- ピボット行の要素 (ピボット要素) のみ 1
- それ以外は0

に変形する. 基底変数・非基底変数を入れ替え, 2 に戻る

例題に対する計算手順(その1)

(1) 初期実行可能基底解

基底変数を s_1 , s_2 , s_3 , 非基底変数を x_1 , x_2 と選ぶ

				x_2				
~T	$ \frac{-\boldsymbol{c}_{\mathrm{B}}^{T}\boldsymbol{A}_{\mathrm{B}}^{-1}\boldsymbol{b}}{\boldsymbol{A}_{\mathrm{B}}^{-1}\boldsymbol{b}} \Rightarrow s_{1} \\ s_{2} \\ s_{3} $	1	3	0	0	0	0	
A-1 A	$-c_{\rm B}A_{\rm B} b$	$\Rightarrow s_1$	-1	1	1	0	0	1
$A_{\rm B}$ A	$A_{\rm B} \boldsymbol{\nu}$	s_2	1	1	0	1	0	4
		s ₃	1	2	0	0	1	5
			•					

シンプレックスタブロー

(2) 入れ替え候補の非基底変数

	x_1	x_2	s_1	s_2	s_3	
	1	3	0	0	0	0
s_1	-1	1	1	0	0	1
s_2	1	1	0	1	0	4
s_3	1	2	0	0	1	5

(2) 入れ替え候補の非基底変数

相対コスト係数が正の非基底変数: x₁, x₂

	x_1	x_2	s_1	s_2	s_3	
	1	3	0	0	0	0
s_1	-1	1	1	0	0	1
s_2 s_3	1	1	0	1	0	4
s_3	1	2	0	0	1	5

(2) 入れ替え候補の非基底変数

相対コスト係数が正の非基底変数: x1, x2

⇒ 係数の大きい x2 を選択

	x_1	x_2	s_1	s_2	s_3	
	1	3	0	0	0	0
s_1	-1	1	1	0	0	1
s_2	1	1	0	1	0	4
s_3	1	2	0	0	1	5

(2) 入れ替え候補の非基底変数

相対コスト係数が正の非基底変数: x1, x2

⇒ 係数の大きい x2 を選択

	x_1	x_2	s_1	s_2	s_3	
	1	3	0	0	0	0
s_1	-1	1	1	0	0	1
s_2	1	1	0	1	0	4
s_3	1	2	0	0	1	5

(3) ピボット要素の選択

x2 を増加させたとき、最初に 0 になる基底変数を求める

	x_1	x_2	s_1	s_2	s_3	
	1	3	0	0	0	0
s_1	-1	1	1	0	0	1
s_2	1	1	1	1	0	4
s_3	1	2	0	0	1	5

(2) 入れ替え候補の非基底変数

相対コスト係数が正の非基底変数: x1, x2

⇒ 係数の大きい x2 を選択

	x_1	x_2	s_1	s_2	s_3	
	1	3	0	0	0	0
s_1	-1	1	1	0	0	1
s_2	1	1	0	1	0	4
s_3	1	2	0	0	1	5

(3) ピボット要素の選択

x2 を増加させたとき、最初に 0 になる基底変数を求める

⇒ 6 列目/2 列目が 0 以上かつ最小となる行

	x_1	x_2	s_1	s_2	s_3		
	1	3	0	0	0	0	6 列目/2 列目
s_1	-1	1	1	0	0	1	1/1 = 1
s_2	1	1	0		0	4	4/1 = 4
s_3	1	2	0	0	1	5	5/2 = 2.5

(2) 入れ替え候補の非基底変数

相対コスト係数が正の非基底変数: x1, x2

⇒ 係数の大きい x2 を選択

	x_1	x_2	s_1	s_2	s_3	
	1	3	0	0	0	0
s_1	-1	1	1	0	0	1
s_2	1	1	0	1	0	4
s_3	1	2	0	0	1	5

(3) ピボット要素の選択

x2 を増加させたとき、最初に 0 になる基底変数を求める

⇒ 6 列目/2 列目が 0 以上かつ最小となる行

	x_1	x_2	s_1	s_2	s_3		
	1	3	0	0	0	0	6 列目/2 列目
s_1	-1	1	1	0	0	1	1/1 = 1
s_2	1	1	0	1	0	4	4/1 = 4
s_3	1	2	0	0	1	5	5/2 = 2.5

(2) 入れ替え候補の非基底変数

相対コスト係数が正の非基底変数: x1, x2

⇒ 係数の大きい x2 を選択

	x_1	x_2	s_1	s_2	s_3	
	1	3	0	0	0	0
s_1	-1	1	1	0	0	1
s_2	1	1	0	1	0	4
s_3	1	2	0	0	1	5

(3) ピボット要素の選択

- x_2 を増加させたとき、最初に0になる基底変数を求める
- ⇒ 6 列目/2 列目が 0 以上かつ最小となる行
- $\Rightarrow (s_1, x_2)$ がピボット要素 (増加量 1)

	x_1	x_2	s_1	s_2	s_3		
	1	3	0	0			6 列目/2 列目
s_1	-1	1	1	0	0	1	1/1 = 1
s_2	1	1	0	1	0	4	4/1 = 4
s_3	1	2	0	0	1	5	5/2 = 2.5

(4) ピボット操作 (掃き出し)

	x_1	x_2	s_1	s_2	s_3	
	1	3	0	0	0	0
s_1	-1	1	1	0	0	1
s_2	1	1	0	1	0	4
s_3	1	2	0	0	1	5

(4) ピボット操作 (掃き出し)

行基本変形で、 (s_1, x_2) の要素を 1、 x_2 の列のそれ以外の要素を 0 にする

	x_1	x_2	s_1	s_2	s_3	
	1	3	0	0	0	0
s_1	-1	1	1	0	0	1
s_2	1	1	0	1	0	4
s_3	1	2	0	0	1	5

(4) ピボット操作 (掃き出し)

行基本変形で、 (s_1, x_2) の要素を 1、 x_2 の列のそれ以外の要素を 0 にする

	x_1	x_2	s_1	s_2	s_3	
	4	0	-3	0	0	-3
s_1	-1	1	1	0	0	1
s_2	2	0	-1	1	0	3
s_3	3	0	-2	0	1	3

(4) ピボット操作 (掃き出し)

行基本変形で、 (s_1, x_2) の要素を 1, x_2 の列のそれ以外の要素を 0 にする $\Rightarrow s_1$ の代わりに x_2 が基底変数に

	x_1	x_2	s_1	s_2	s_3	
	4	0	-3	0	0	-3
x_2	-1	1	1	0	0	1
s_2	2	0	-1	1	0	3
s_3	3	0	-2	0	1	3

(4) ピボット操作 (掃き出し)

行基本変形で、 (s_1, x_2) の要素を 1, x_2 の列のそれ以外の要素を 0 にする $\Rightarrow s_1$ の代わりに x_2 が基底変数に

	x_1	x_2	s_1	s_2	s_3	
	4	0	-3	0	0	-3
x_2	-1	1	1	0	0	1
s_2	2	0	-1	1	0	3
s_3	3	0	-2	0	1	3

(4) ピボット操作 (掃き出し)

行基本変形で, (s_1, x_2) の要素を 1, x_2 の列のそれ以外の要素を 0 にする $\Rightarrow s_1$ の代わりに x_2 が基底変数に

	x_1	x_2	s_1	s_2	s_3	
	4	0	-3	0	0	-3
x_2	-1	1	1	0	0	1
s_2	2	0	-1	1	0	3
s_3	3	0	-2	0	1	3

(2) 入れ替え候補の非基底変数

	x_1	x_2	s_1	s_2	s_3	
	4	0	-3	0	0	-3
x_2	-1	1	1	0	0	1
s_2	2	0	-1	1	0	3
s_3	3	0	1 -1 -2	0	1	3

(4) ピボット操作 (掃き出し)

行基本変形で、 (s_1, x_2) の要素を 1, x_2 の列のそれ以外の要素を 0 にする $\Rightarrow s_1$ の代わりに x_2 が基底変数に

	x_1	x_2	s_1	s_2	s_3	
	4	0	-3	0	0	-3
x_2	-1	1	1	0	0	1
s_2	2	0	-1	1	0	3
s_3	3	0	-2	0	1	3

(2) 入れ替え候補の非基底変数

相対コスト係数が正の非基底変数: x1 のみ

	x_1	x_2	s_1	s_2	s_3	
	4	0	-3	0	0	-3
x_2	-1	1	1	0	0	1
	2	0	-1	1	0	3
s_3	3	0	-2	0	1	3

(4) ピボット操作 (掃き出し)

行基本変形で、 (s_1, x_2) の要素を 1, x_2 の列のそれ以外の要素を 0 にする $\Rightarrow s_1$ の代わりに x_2 が基底変数に

	x_1	x_2	s_1	s_2	s_3	
	4	0	-3	0	0	-3
x_2	-1	1	1	0	0	1
s_2	2	0	-1	1	0	3
s_3	3	0	-2	0	1	3

(2) 入れ替え候補の非基底変数

相対コスト係数が正の非基底変数: x1 のみ

⇒ x₁ を選択

	x_1	x_2	s_1	s_2	s_3	
	4	0	-3	0	0	-3
x_2	-1	1	1	0	0	1
s_2	2	0	-1	1	0	3
s_3	3	0	-2	0	1	3

(3) ピボット要素の選択

 x_1 を増加させたとき、最初に0になる基底変数を求める

	x_1	x_2	s_1	s_2	s_3	
	4	0	-3	0	0	-3
x_2	-1	1	1	0	0	1
s_2	2	0	-1	1	0	3
s_3	3	0	-2	0	1	3

(3) ピボット要素の選択

 x_1 を増加させたとき、最初に0になる基底変数を求める

⇒6列目/1列目が0以上かつ最小となる行

	x_1	x_2	s_1	s_2			
	4	0		0	0	-3	6 列目/1 列目
x_2	-1	1	1	0	0	1	1/(-1) = -1
s_2	2		-1		0	3	3/2 = 1.5
s_3	3	0	-2	0	1		3/3 = 1

(3) ピボット要素の選択

 x_1 を増加させたとき、最初に0になる基底変数を求める

⇒6列目/1列目が0以上かつ最小となる行

	x_1	x_2	s_1	s_2			
	4	0	-3	0			6 列目/1 列目
x_2	-1	1	1	0			1/(-1) = -1
s_2	2	0	-1	1	0	3	3/2 = 1.5
s_3	3	0	-2	0	1		3/3 = 1

(3) ピボット要素の選択

- x_1 を増加させたとき、最初に0になる基底変数を求める
- ⇒6列目/1列目が0以上かつ最小となる行
- \Rightarrow (s_3, x_1) がピボット要素 (増加量 1)

	x_1	x_2	s_1	s_2			
	4	0		0		-3	6 列目/1 列目
x_2	-1	1	1	0	0	1	1/(-1) = -1
s_2	2	0	-1	1		3	3/2 = 1.5
s_3	3	0	-2	0	1		3/3 = 1

(3) ピボット要素の選択

- x_1 を増加させたとき、最初に0 になる基底変数を求める
- ⇒ 6 列目/1 列目が 0 以上かつ最小となる行
- $\Rightarrow (s_3, x_1)$ がピボット要素 (増加量 1)

	x_1	x_2	s_1				
	4	0	-3	0	0	-3	6 列目/1 列目
x_2	-1	1	1	0	0	1	1/(-1) = -1
s_2	2	0	-1	1	0	3	3/2 = 1.5
s_3	3	0	-2	0	1	3	3/3 = 1

(4) ピボット操作 (掃き出し)

行基本変形で、 (s_3, x_1) の要素を 1、 x_1 の列のそれ以外の要素を 0 にする

	x_1	x_2	s_1	s_2	s_3	
	4	0	-3	0	0	-3
x_2	-1	1	1	0	0	1
s_2	2	0	-1	1	0	3
s_3	3	0	-2	0	1	3

(3) ピボット要素の選択

- x_1 を増加させたとき、最初に0になる基底変数を求める
- ⇒ 6 列目/1 列目が 0 以上かつ最小となる行
- \Rightarrow (s_3, x_1) がピボット要素 (増加量 1)

	x_1		s_1				
	4	0	-3	0	0	-3	6 列目/1 列目
x_2	-1						1/(-1) = -1
s_2	2	0	-1	1	0	3	3/2 = 1.5
s_3	3	0	-2	0	1	3	3/3 = 1

(4) ピボット操作 (掃き出し)

行基本変形で、 (s_3, x_1) の要素を $1, x_1$ の列のそれ以外の要素を 0 にする

	x_1	x_2	s_1	s_2	s_3	
	4	0	-3	0	0	-3
x_2	-1	1	1	0	0	1
s_2	2	0	-1	1	0	3
s_3	3	0	-2	0	1	3

(3) ピボット要素の選択

- x_1 を増加させたとき、最初に0になる基底変数を求める
- ⇒ 6 列目/1 列目が 0 以上かつ最小となる行
- $\Rightarrow (s_3, x_1)$ がピボット要素 (増加量 1)

	x_1	x_2	s_1				
	4	0	-3	0	0	-3	6 列目/1 列目
x_2	-1	1	1	0	0	1	1/(-1) = -1
s_2	2	0	-1	1	0	3	3/2 = 1.5
s_3	3	0	-2	0	1	3	3/3 = 1

(4) ピボット操作 (掃き出し)

行基本変形で、 (s_3, x_1) の要素を $1, x_1$ の列のそれ以外の要素を 0 にする

	x_1	x_2	s_1	s_2	s_3	
	0	0	-1/3	0	-4/3	-7
x_2	0	1	1/3	0	1/3	2
s_2	0	0	1/3	1	0	1
s_3	1	0	-2/3	0	1/3	1

(3) ピボット要素の選択

- x_1 を増加させたとき、最初に0になる基底変数を求める
- ⇒ 6 列目/1 列目が 0 以上かつ最小となる行
- $\Rightarrow (s_3, x_1)$ がピボット要素 (増加量 1)

	x_1	x_2	s_1				
	4	0	-3	0	0	-3	6 列目/1 列目
x_2	-1	1	1	0	0	1	1/(-1) = -1
s_2	2	0	-1	1	0	3	3/2 = 1.5
s_3	3	0	-2	0	1	3	3/3 = 1

(4) ピボット操作 (掃き出し)

行基本変形で、 (s_3, x_1) の要素を 1、 x_1 の列のそれ以外の要素を 0 にする $\Rightarrow s_3$ の代わりに x_1 が基底変数に

	x_1	x_2	s_1	s_2	s_3	
	0	0	-1/3	0	-4/3	-7
x_2	0	1	1/3	0	1/3	2
s_2	0	0	1/3	1	0	1
<i>S</i> ₃	1	0	-2/3	0	1/3	1

(3) ピボット要素の選択

- x_1 を増加させたとき、最初に0 になる基底変数を求める
- ⇒ 6 列目/1 列目が 0 以上かつ最小となる行
- $\Rightarrow (s_3, x_1)$ がピボット要素 (増加量 1)

	x_1	x_2	s_1	s_2			
	4	0	-3	0	0	-3	6 列目/1 列目
x_2	-1	1	1	0	0	1	1/(-1) = -1
s_2	2	0	-1	1	0	3	3/2 = 1.5
s_3	3	0	-2	0	1	3	3/3 = 1

(4) ピボット操作 (掃き出し)

行基本変形で、 (s_3, x_1) の要素を 1、 x_1 の列のそれ以外の要素を 0 にする $\Rightarrow s_3$ の代わりに x_1 が基底変数に

	x_1	x_2	s_1	s_2	s_3	
	0	0	-1/3	0	-4/3	-7
x_2	0	1	1/3	0	1/3	2
s_2	0	0	1/3	1	0	1
x_1	1	0	-2/3	0	1/3	1

(2) 入れ替え候補の非基底変数

	x_1	x_2	s_1	s_2	s_3	
	0	0	-1/3	0	-4/3	-7
x_2	0	1	1/3	0	1/3	2
s_2	0	0	1/3	1	0	1
x_1	1	0	-2/3	0	1/3	1

(2) 入れ替え候補の非基底変数

相対コスト係数が正の非基底変数: なし

	x_1	x_2	s_1	s_2	<i>S</i> ₃	
	0	0	-1/3	0	-4/3	-7
x_2	0	1	1/3	0	1/3	2
s_2	0	0	1/3	1	0	1
x_1	1	0	1/3 1/3 -2/3	0	1/3	1

(2) 入れ替え候補の非基底変数

相対コスト係数が正の非基底変数: なし ⇒終了

x_1	x_2	s_1	s_2	S3	
0	0	-1/3	0	-4/3	-7
0	1	1/3	0	1/3	2
0	0	1/3	1	0	1
1	0	-2/3	0	1/3	1
	0	0 0 0 1 0 0	0 0 -1/3 0 1 1/3 0 0 1/3	0 0 -1/3 0 0 1 1/3 0 0 0 1/3 1	0 0 -1/3 0 -4/3 0 1 1/3 0 1/3 0 0 1/3 1 0

(2) 入れ替え候補の非基底変数

相対コスト係数が正の非基底変数: なし ⇒終了

	x_1	x_2	s_1	s_2	<i>S</i> ₃	_	
	0	0	-1/3	0	-4/3	-7	最適値の (−1) 倍
x_2	0	1	1/3	0	1/3	2	1
s_2	0	0	1/3	1	0	1	最適解
x_1	1	0	-2/3	0	1/3	1	

最適解 $(x_1, x_2) = (2, 1)$,最適値 7 スラック変数 $(s_1, s_2, s_3) = (0, 1, 0)$

(2) 入れ替え候補の非基底変数

相対コスト係数が正の非基底変数: なし ⇒終了

	x_1	x_2	<i>s</i> ₁	s_2	S ₃	l.	_	
	0	0	-1/3	0	-4/3		- 7	最適値の (-1) 倍
x_2	0	1	1/3	0	1/3	1	2	
s_2	0	0	1/3	1	0	П	1	最適解
x_1	1	0	-2/3	0	1/3		1	
_						_	_	

最適解 $(x_1, x_2) = (2, 1)$,最適値 7 スラック変数 $(s_1, s_2, s_3) = (0, 1, 0)$

