5a Lista de Exercícios de Cálculo Diferencial e Integral I

Exercícios selecionados do livro "Cálculo Vol. 1, do James Stewart, 7a edição"

Fazer os seguintes exercícios.

```
Página 194, Exercício: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 25, 35.
Página 195, Exercícios: 49, 51, 53, 55, 59.
Página 201, Exercícios: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29.
Página 229, Exercícios: 1, 3.
Página 230, Exercícios: 11, 13, 15, 17, 19, 21.
Página 254, Exercícios: 5, 15, 17, 19, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53.
Página 261, Exercícios: 1, 3, 9, 11.
Página 269, Exercício: 9, 11, 13, 15, 17.
Página 270, Exercícios: 19, 21, 33, 35, 37, 39, 45, 47.
Página 278, Exercícios: 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35.
Página 286, Exercícios: 1, 3, 5, 7, 9, 11, 13, 15, 17.
Página 287, Exercícios: 61, 63.
```

Dados Internacionais de Catalogação na Publicação (CIP) (Câmara Brasileira do Livro, SP, Brasil)

```
Stewart, James
   Cálculo, volume I / James Stewart ;
   [tradução EZ2 Translate]. -- São Paulo :
   Cengage Learning, 2013.
Título original: Cauculus : early
   transcendentals
   7. ed. americana.
Bibliografia.
ISBN 978-85-221-1461-0
1. Cálculo 2. Cálculo - Problemas, exercícios
   etc. I. Título.
13-04310
                                CDD-515-515.076
```

Índices para catálogo sistemático:

- 1. Cálculo : Matemática 515
- 2. Exercícios : Cálculo : Matemática 515.076 3. Problemas : Cálculo : Matemática 515.076

3.5 **Exercícios**

(a) Encontre y' derivando implicitamente.

(b) Resolva a equação explicitamente isolando y e derive para obter y' em termos de x.

(c) Verifique que suas soluções para as partes (a) e (b) são consistentes substituindo a expressão por y na sua solução para a parte (a).

1. $xy + 2x + 3x^2 = 4$

2. $4x^2 + 9y^2 = 36$

3. $\frac{1}{x} + \frac{1}{y} = 1$

4. $\cos x + \sqrt{y} = 5$

5–20 Encontre dy/dx por derivação implícita.

5. $x^3 + y^3 = 1$

6. $2\sqrt{x} + \sqrt{y} = 3$

7. $x^2 + xy - y^2 = 4$

8. $2x^3 + x^2y - xy^3 = 2$

9. $x^4(x+y) = y^2(3x-y)$

10. $xe^y = x - y$

11. $x^2y^2 + x \operatorname{sen} y = 4$

12. $1 + x = \text{sen}(xy^2)$

13. $4 \cos x \sin y = 1$

14. $e^y \sin x = x + xy$

15. $e^{x/y} = x - y$

16. $\sqrt{x+y} = 1 + x^2y^2$

17. $tg^{-1}(x^2y) = x + xy^2$

18. $x \sin y + y \sin x = 1$

19. $e^y \cos x = 1 + \sin(xy)$

20. $tg(x - y) = \frac{y}{1 + x^2}$

21. Se $f(x) + x^2 [f(x)]^3 = 10$ e f(1) = 2, encontre f'(1).

22. Se $g(x) + x \operatorname{sen} g(x) = x^2$, encontre g'(0).

23–24 Considere y como a variável independente e x como a variável dependente e use a derivação implícita para encontrar dx/dy.

23. $x^4y^2 - x^3y + 2xy^3 = 0$

24. $y \sec x = x \operatorname{tg} y$

25-32 Use a derivação implícita para encontrar uma equação da reta tangente à curva no ponto dado.

25. $y \sin 2x = x \cos 2y$, $(\pi/2, \pi/4)$

26. sen(x + y) = 2x - 2y, (π, π)

27. $x^2 + xy + y^2 = 3$, (1, 1) (elipse)

28. $x^2 + 2xy - y^2 + x = 2$, (1, 2) (hipérbole)

29. $x^2 + y^2 = (2x^2 + 2y^2 - x)^2$ **30.** $x^{2/3} + y^{2/3} = 4$

 $(0,\frac{1}{2})$ (cardioide) $(-3\sqrt{3},1)$ (astroide)

31. $2(x^2 + y^2)^2 = 25(x^2 - y^2)$ **32.** $y^2(y^2 - 4) = x^2(x^2 - 5)$ (3, 1)

(lemniscata)

(curva do diabo)

33. (a) A curva com equação $y^2 = 5x^4 - x^2$ é chamada **kampyle** (do grego, curvado) de Eudoxo. Encontre uma equação da reta tangente a essa curva no ponto (1, 2).

(b) Ilustre a parte (a) traçando a curva e a reta tangente em uma tela comum. (Se sua ferramenta gráfica puder traçar curvas definidas implicitamente, então use esse recurso. Caso não seja possível, você pode ainda criar o gráfico dessa curva traçando suas metades superior e inferior separadamente.)

34. (a) A curva com equação $y^2 = x^3 + 3x^2$ é denominada **cúbica de** Tschirnhausen. Encontre uma equação da reta tangente a essa curva no ponto (1, -2).

(b) Em que pontos essa curva tem uma tangente horizontal?

(c) Ilustre as partes (a) e (b) traçando a curva e as retas tangentes sobre uma tela comum.

35–38 Encontre y" por derivação implícita.

35. $9x^2 + y^2 = 9$

36. $\sqrt{x} + \sqrt{y} = 1$

37. $x^3 + y^3 = 1$

38. $x^4 + y^4 = a^4$

39. Se $xy + e^y = e$, encontre o valor de y" no ponto onde x = 0.

40. Se $x^2 + xy + y^3 = 1$, encontre o valor de y''' no ponto onde

41. Formas extravagantes podem ser criadas usando-se a capacidade de traçar funções definidas implicitamente de um SCA.

(a) Trace a curva com equação

$$y(y^2 - 1)(y - 2) = x(x - 1)(x - 2)$$

Em quantos pontos essa curva tem tangentes horizontais? Estime as abscissas desses pontos.

(b) Encontre as equações das retas tangentes nos pontos (0, 1) e

(c) Encontre as abscissas exatas dos pontos da parte (a).

(d) Crie curvas ainda mais extravagantes modificando a equação da parte (a).

42. (a) A curva com equação

 $2y^3 + y^2 - y^5 = x^4 - 2x^3 + x^2$

foi comparada com um "vagão sacolejante". Use um SCA para traçar essa curva e descubra o porquê desse nome.

(b) Em quantos pontos essa curva tem retas tangentes horizontais?

É necessário usar uma calculadora gráfica ou computador

SCA Requer sistema de computação algébrica

1. As Homework Hints estão disponíveis em www.stewartcalculus.com

Encontre as coordenadas x desses pontos.

- 43. Encontre os pontos sobre a lemniscata do Exercício 31 onde a tangente é horizontal.
- 44. Mostre, fazendo a derivação implícita, que a tangente à elipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

no ponto (x_0, y_0) é

$$\frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1$$

45. Encontre uma equação da reta tangente à hipérbole

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

no ponto (x_0, y_0) .

- 46. Mostre que a soma das coordenadas das intersecções com os eixos x e y de qualquer reta tangente à curva $\sqrt{x} + \sqrt{y} = \sqrt{c}$ é igual a c.
- 47. Mostre, usando a derivação implícita, que qualquer reta tangente em um ponto P a um círculo com centro O é perpendicular ao raio
- 48. A Regra da Potência pode ser demonstrada usando a derivação implícita para o caso onde n é um número racional, n = p/q, e $y = f(x) = x^n$ é suposta de antemão ser uma função derivável. Se $y = x^{p/q}$, então $y^q = x^p$. Use a derivação implícita para mostrar

$$y' = \frac{p}{q} x^{(p/q)-1}$$

- $y' = \frac{p}{q} \, x^{(p/q)-1}$ 49–60 Encontre a derivada da função. Simplifique quando possível.
- **49.** $y = tg^{-1}\sqrt{x}$
- **50.** $y = \sqrt{tg^{-1}x}$
- **51.** $y = \text{sen}^{-1}(2x + 1)$
- **52.** $q(x) = \sqrt{x^2 1} \sec^{-1} x$
- **53.** $G(x) = \sqrt{1 x^2} \arccos x$
- **54.** $y = tg^{-1}(x \sqrt{1 + x^2})$
- **55.** $h(t) = \cot^{-1}(t) + \cot^{-1}(1/t)$ **56.** $F(\theta) = \arcsin \sqrt{\sin \theta}$
- **57.** $y = x \operatorname{sen}^{-1} x + \sqrt{1 x^2}$ **58.** $y = \cos^{-1} (\operatorname{sen}^{-1} t)$
- **59.** $y = \arccos\left(\frac{b + a\cos x}{a + b\cos x}\right), \quad 0 \le x \le \pi, \ a > b > 0$
- **60.** $y = \arctan \sqrt{\frac{1-x}{1+x}}$
- **61–62** Encontre f'(x). Verifique se sua resposta é razoável comparando \bigcap os gráficos de f e f'.
 - **61.** $f(x) = \sqrt{1 x^2} \arcsin x$
- **62.** $f(x) = arctg(x^2 x)$
- **63.** Demonstre a fórmula para $(d/dx)(\cos^{-1}x)$ pelo mesmo método usado para $(d/dx)(\text{sen}^{-1}x)$.
- **64.** (a) Uma maneira de definir $\sec^{-1}x$ é dizer que $y = \sec^{-1}x$ \iff $\sec y = x \ e \ 0 \le y < \pi/2 \ ou \ \pi \le y < 3\pi/2$. Mostre que, com essa definição,

$$\frac{d}{dx}\left(\sec^{-1}x\right) = \frac{1}{x\sqrt{x^2 - 1}}$$

(b) Outra maneira de definir $\sec^{-1}x$ que é às vezes usada é dizer que $y = \sec^{-1} x \iff \sec y = x e \ 0 \le y \le \pi, y \ne 0$. Mostre que, com essa definição,

$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2 - 1}}$$

- 65-68 Duas curvas são ortogonais se suas retas tangentes forem perpendiculares em cada ponto de intersecção. Mostre que as famílias dadas de curvas são trajetórias ortogonais uma em relação a outra, ou seja, toda curva de uma família é ortogonal a toda curva da outra família. Esboce ambas as famílias de curvas no mesmo sistema de coor-
- **65.** $x^2 + y^2 = r^2$. ax + by = 0
- **66.** $x^2 + y^2 = ax$, $x^2 + y^2 = by$
- **67.** $y = cx^2$, $x^2 + 2y^2 = k$
- **68.** $y = ax^3$, $x^2 + 3y^2 = b$
- **69.** Mostre que a elipse $x^2/a^2 + y^2/b^2 = 1$ e a hipérbole $x^2/A^2 - y^2/B^2 = 1$ são trajetórias ortogonais se $A^2 < a^2$ e $a^2 - b^2 = A^2 + B^2$ (logo, a elipse e a hipérbole possuem os mesmos focos).
- **70.** Encontre o valor do número a de tal modo que as famílias das curvas $y = (x + c)^{-1}$ e $y = a(x + k)^{1/3}$ sejam trajetórias ortogonais.
- 71. (a) A Equação de van der Waals para n mols de um gás é

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

onde P é a pressão, V é o volume e T é a temperatura do gás. A constante R é a constante de gás universal e a e b são constantes positivas que são características de um gás em particular. Se T permanece constante, use a derivação implícita para encontrar dV/dP.

- (b) Encontre a taxa de variação de volume em relação à pressão de 1 mol de dióxido de carbono em um volume de V = 10 L e uma pressão de P = 2.5 atm. Use $a = 3.592 L^2$ -atm/mol² e b = 0.04267 L/mol.
- SCA 72. (a) Use a derivação implícita para encontrar y' se $x^2 + xy + y^2 + 1 = 0.$
 - (b) Trace a curva da parte (a). O que você observa? Demonstre que o que você observa está correto.
 - (c) Em vista da parte (b), o que você pode dizer sobre a expressão para y' que você encontrou na parte (a)?
 - 73. A equação $x^2 xy + y^2 = 3$ representa uma "elipse girada", isto é, uma elipse cujos eixos não são paralelos aos eixos coordenados. Encontre os pontos nos quais essa elipse cruza o eixo \boldsymbol{x} e mostre que as retas tangentes nesses pontos são paralelas.
 - **74.** (a) Onde a reta normal à elipse $x^2 xy + y^2 = 3$ no ponto (-1, 1) intersecta a elipse uma segunda vez?
 - (b) Ilustre a parte (a) fazendo o gráfico da elipse e da reta normal.
 - **75.** Encontre todos os pontos sobre a curva $x^2y^2 + xy = 2$ onde a inclinação da reta tangente é -1.
 - 76. Encontre as equações de ambas as retas tangentes para a elipse $x^2 + 4y^2 = 36$ que passem pelo ponto (12, 3).
 - 77. (a) Suponha que f seja uma função injetora, derivável e que sua função inversa f^{-1} seja também derivável. Use a derivação im-

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$
 desde que o denominador não seja 0.

(b) Se $f(4) = 5 e f'(4) = \frac{2}{3}$, encontre $(f^{-1})'(5)$.

Exercícios 3.6

- 1. Explique por que a função logarítmica natural $y = \ln x$ é usada mais vezes no cálculo do que as outras funções logarítmicas $y = \log_a x$.
- 2-22 Derive a função.
- $2. \quad f(x) = x \ln x x$
- $3. \quad f(x) = \operatorname{sen}(\ln x)$
- **4.** $f(x) = \ln(\sin^2 x)$
- **5.** $f(x) = \sqrt[5]{\ln x}$
- **6.** $f(x) = \ln \sqrt[5]{x}$
- 7. $f(x) = \log_{10}(x^3 + 1)$
- $\mathbf{8.} \quad f(x) = \log_5(xe^x)$
- **9.** $f(x) = \sin x \ln(5x)$
- **10.** $f(u) = \frac{u}{1 + \ln u}$
- **11.** $q(x) = \ln(x\sqrt{x^2 1})$
- **12.** $h(x) = \ln(x + \sqrt{x^2 1})$
- **13.** $G(y) = \ln \frac{(2y+1)^5}{\sqrt{v^2+1}}$
- **14.** $g(r) = r^2 \ln(2r + 1)$
- **15.** $F(s) = \ln \ln s$
- **16.** $v = \ln |1 + t t^3|$
- **17.** $y = tg[\ln(ax + b)]$
- **18.** $y = \ln|\cos(\ln x)|$
- 19. $y = \ln(e^{-x} + xe^{-x})$
- **20.** $H(z) = \ln \sqrt{\frac{a^2 z^2}{a^2 + z^2}}$
- **21.** $y = 2x \log_{10} \sqrt{x}$
- **22.** $y = \log_2(e^{-x}\cos \pi x)$
- **23–26** Encontre y' e y".
- **23.** $y = x^2 \ln(2x)$
- **24.** $y = \frac{\ln x}{x^2}$
- **25.** $y = \ln(x + \sqrt{1 + x^2})$
- **26.** $y = \ln(\sec x + \tan x)$
- **27–30** Derive f e encontre o domínio de f.
- **27.** $f(x) = \frac{x}{1 \ln(x 1)}$
- **28.** $f(x) = \sqrt{2 + \ln x}$
- **29.** $f(x) = \ln(x^2 2x)$
- **30.** $f(x) = \ln \ln \ln x$

- **31.** Se $f(x) = \frac{\ln x}{x^2}$, encontre f'(1).
- **32.** Se $f(x) = \ln(1 + e^{2x})$, encontre f'(0).
- 33-34 Encontre uma equação da reta tangente à curva no ponto dado.
- **33.** $y = \ln(x^2 3x + 1)$, (3, 0) **34.** $y = x^2 \ln x$, (1, 0)
- **35.** Se f(x) = sen x + ln x, encontre f'(x). Verifique se sua resposta é razoável comparando os gráficos de f e f'.
- 136. Encontre as equações das retas tangentes para a curva $y = (\ln x)/x$ nos pontos (1, 0) e (e, 1/e). Ilustre fazendo o gráfico da curva e de suas retas tangentes.
 - 37. Seja $f(x) = cx + \ln(\cos x)$. Para qual valor de c ocorre $f'(\pi/4) = 6$?
 - **38.** Seja $f(x) = \log_a(3x^2 2)$. Para qual valor de a ocorre f'(1) = 3?
 - 39-50 Use a derivação logarítmica para achar a derivada de função.
 - **39.** $y = (2x + 1)^5(x^4 3)^6$
- **40.** $y = \sqrt{x} e^{x^2} (x^2 + 1)^{10}$
- **41.** $y = \sqrt{\frac{x-1}{x^4+1}}$
- **42.** $y = \sqrt{x}e^{x^2-x}(x+1)^{2/3}$
- **43.** $y = x^x$
- **44.** $y = x^{\cos x}$
- **45.** $y = x^{\sin x}$
- **46.** $v = \sqrt{x}^x$
- **47.** $y = (\cos x)^x$
- **48.** $y = (\text{sen } x)^{\ln x}$
- **49.** $y = (\operatorname{tg} x)^{1/x}$
- **50.** $y = (\ln x)^{\cos x}$
- **51.** Encontre y' se $y = \ln(x^2 + y^2)$.
- **52.** Encontre y' se $x^y = y^x$.
- **53.** Encontre uma fórmula para $f^{(n)}(x)$ se $f(x) = \ln(x 1)$. **54.** Encontre $\frac{d^9}{dx^9}(x^8 \ln x)$.
- 55. Use a definição da derivada para demonstrar que

$$\lim_{x\to 0}\frac{\ln(1+x)}{x}=1$$

- **56.** Mostre que $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x$ para qualquer x>0.
- É necessário usar uma calculadora gráfica ou computador
- 1. As Homework Hints estão disponíveis em www.stewartcalculus.com

Taxas de Variação nas Ciências Naturais e Sociais 3.7

Sabemos que se y = f(x), então a derivada dy/dx pode ser interpretada como a taxa de variação de y em relação a x. Nesta seção examinaremos algumas das aplicações dessa ideia na física, química, biologia, economia e em outras ciências.

Vamos nos recordar da Seção 2.7, que apresentou a ideia básica das taxas de variação. Se x variar de x₁ a x₂, então a variação em x será

$$\Delta x = x_2 - x_1$$

e a variação correspondente em v será

$$\Delta y = f(x_2) - f(x_1)$$

complicadas pode ser impossível calcular exatamente Δy . Nesses casos, a aproximação por diferenciais é especialmente útil.

Na notação de diferenciais, a aproximação linear 1 pode ser escrita como

$$f(a + dx) \approx f(a) + dy$$

Por exemplo, para a função $f(x) = \sqrt{x+3}$ do Exemplo 1, temos

$$dy = f'(x) dx = \frac{dx}{2\sqrt{x+3}}$$

Se a = 1 e $dx = \Delta x = 0.05$, então

$$dy = \frac{0.05}{2\sqrt{1+3}} = 0.0125$$

e
$$\sqrt{4,05} = f(1,05) \approx f(1) + dy = 2,0125$$

exatamente como encontramos no Exemplo 1.

Nosso exemplo final ilustra o uso de diferenciais na estimativa de erros que ocorrem em virtude de medidas aproximadas.

EXEMPLO 4 O raio de uma esfera foi medido e descobriu-se que possui 21 cm com uma possibilidade de erro na medida de no máximo 0,05 cm. Qual é o erro máximo usando esse valor de raio para computar o volume da esfera?

SOLUÇÃO Se o raio da esfera for r, então seu volume é $V = \frac{4}{3}\pi r^3$. Se o erro na medida do valor de r for denotado por $dr = \Delta r$, então o erro correspondente no cálculo do valor de V é ΔV , que pode ser aproximado pela diferencial

$$dV = 4\pi r^2 dr$$

Quando r = 21 e dr = 0.05, temos

$$dV = 4\pi(21)^2 0.05 \approx 277$$

O erro máximo no volume calculado é de cerca de 277 cm³.

OBSERVAÇÃO Embora o erro possível no Exemplo 4 possa parecer muito grande, uma ideia melhor é dada pelo erro relativo, que é calculado dividindo-se o erro pelo volume total:

$$\frac{\Delta V}{V} \approx \frac{dV}{V} = \frac{4\pi r^2 dr}{\frac{4}{3}\pi r^3} = 3\frac{dr}{r}$$

Assim, o erro relativo no volume é cerca de três vezes o erro relativo no raio. No Exemplo 4, o erro relativo no raio é de aproximadamente $dr/r = 0.05/21 \approx 0.0024$ e produz um erro relativo de cerca de 0,007 no volume. Os erros também poderiam ser expressos como erros percentuais de 0.24% no raio e 0.7% no volume.

3.10 Exercícios

1–4 Encontre a linearização L(x) da função em a.

1.
$$f(x) = x^4 + 3x^2$$
, $a = -1$ **2.** $f(x) = \sin x$, $a = \pi/6$

3
$$f(x) = \sqrt{x}$$
 $a = 4$

3.
$$f(x) = \sqrt{x}$$
, $a = 4$ **4.** $f(x) = x^{3/4}$, $a = 16$

5. Encontre a aproximação linear da função $f(x) = \sqrt{1-x}$ em a = 0 e use-a para aproximar os números $\sqrt{0.9}$ e $\sqrt{0.99}$. Ilustre fazendo os gráficos de f e da reta tangente.

- **6.** Encontre a aproximação linear da função $g(x) = \sqrt[3]{1+x}$ em a = 0 e use-a para aproximar os números $\sqrt[3]{0.95}$ e $\sqrt[3]{1.1}$. Ilustre, fazendo os gráficos de g e da reta tangente.
 - **7–10** Verifique a aproximação linear dada em a=0. A seguir, determine os valores de x para os quais a aproximação linear tem precisão de 0,1.
 - 7. $ln(1 + x) \approx x$
- **8.** $\operatorname{tg} x \approx x$
- **9.** $1/(1+2x)^4 \approx 1-8x$
- **10.** $e^x \cos x \approx 1 + x$
- 11-14 Encontre a diferencial da função.
- **11.** (a) $y = x^2 \sin 2x$
- (b) $y = \ln \sqrt{1 + t^2}$
- **12.** (a) y = s/(1 + 2s)
- (b) $y = e^{-u} \cos u$
- **13.** (a) $y = tg \sqrt{t}$
- (b) $y = \frac{1 v^2}{1 + v^2}$
- **14.** (a) $y = e^{tg\pi t}$
- (b) $y = \sqrt{1 + \ln z}$
- 15-18 (a) Encontre a diferencial dy e (b) avalie dy para os valores dados de x e dx.
- **15.** $y = e^{x/10}$, x = 0, dx = 0,1
- **16.** $y = \cos \pi x$, $x = \frac{1}{3}$, dx = -0.02
- **17.** $y = \sqrt{3 + x^2}$, x = 1, dx = -0.1
- **18.** $y = \frac{x+1}{x-1}$, x = 2, dx = 0.05
- **19–22** Compute Δy e dy para os valores dados de x e $dx = \Delta x$. A seguir, esboce um diagrama como o da Figura 5, mostrando os segmentos de reta com comprimentos dx, dy e Δy .
- **19.** $y = 2x x^2$, x = 2, $\Delta x = -0.4$
- **20.** $y = \sqrt{x}, x = 1, \Delta x = 1$
- **21.** y = 2/x, x = 4, $\Delta x = 1$
- **22.** $y = e^x$, x = 0, $\Delta x = 0.5$
- 23-28 Use uma aproximação linear (ou diferencial) para estimar o número dado.
- **23.** $(1,999)^4$
- **25.** $\sqrt[3]{1001}$
- **26.** 1/4,002
- **27**. tg 44°
- **28.** $\sqrt{99.8}$
- 29-31 Explique, em termos de aproximações lineares ou de diferenciais, por que a aproximação é razoável.
- **29.** $\sec 0.08 \approx 1$
- **30.** $(1.01)^6 \approx 1.06$
- **31.** $\ln 1.05 \approx 0.05$
- 32. Sejam
 - $f(x) = (x-1)^2,$ $q(x) = e^{-2x}$
 - $h(x) = 1 + \ln(1 2x).$ e
 - (a) Encontre as linearizações de f, g e h em a = 0. O que você percebe? Como explicar o que aconteceu?
 - (b) Faça os gráficos de f, g e h, e de suas aproximações lineares. Para qual função a aproximação é melhor? Para qual é pior? Explique.

- 33. A aresta de um cubo tem 30 cm, com um possível erro de medida de 0,1 cm. Use diferenciais para estimar o erro máximo possível no cálculo (a) do volume do cubo e (b) da área da superfície do cubo.
- 34. O raio de um disco circular é 24 cm, com um erro possível de 0.2 cm.
 - (a) Use diferenciais para estimar o erro máximo na área calculada do disco.
 - (b) Qual o erro relativo? Qual o erro percentual?
- 35. A circunferência de uma esfera mede 84 cm, com erro possível
 - (a) Use diferenciais para estimar o erro máximo na área calculada da superfície. Qual o erro relativo?
 - (b) Utilize as diferenciais para estimar o erro máximo no volume calculado. Oual o erro relativo?
- 36. Use as diferenciais para estimar a quantidade de tinta necessária para aplicar uma camada de 0,05 cm de tinta a um domo com diâmetro de 50 m.
- 37. (a) Use as diferenciais para encontrar uma fórmula para o volume aproximado de uma fina camada cilíndrica com altura h, raio interno r e espessura Δr .
 - (b) Qual é o erro envolvido no uso da fórmula da parte (a)?
- 38. Sabe-se que um lado de um triângulo retângulo mede 20 cm de comprimento e o ângulo oposto foi medido como 30°, com um erro possível de ±1°.
 - (a) Use diferenciais para estimar o erro no cálculo da hipotenusa.
 - (b) Qual é o erro percentual?
- **39.** Se uma corrente *I* passar por um resistor com resistência *R*, a Lei de Ohm afirma que a queda de voltagem é V=RI. Se V for constante e R for medida com um certo erro, use diferenciais para mostrar que o erro relativo no cálculo de I é aproximadamente o mesmo (em módulo) que o erro relativo em R.
- Quando o sangue flui ao longo de um vaso sanguíneo, o fluxo F (o volume de sangue por unidade de tempo que passa por um ponto dado) é proporcional à quarta potência do raio R do vaso:

$$F = kR^4$$

(Esta equação é conhecida como a Lei de Poiseuille; mostraremos porque isso é verdadeiro na Seção 8.4.) Uma artéria parcialmente obstruída pode ser alargada por uma operação chamada angioplastia, na qual um cateter-balão é inflado dentro da artéria a fim de aumentá-la e restaurar o fluxo normal do sangue.

Mostre que uma variação relativa em F é cerca de quatro vezes a variação relativa em R. Como um aumento de 5% no raio afeta o fluxo do sangue?

- 41. Estabeleça as seguintes regras para trabalhar com as diferenciais (onde c denota uma constante e u e v são funções de x).
 - (a) dc = 0
- (b) d(cu) = c du
- (c) d(u + v) = du + dv
- (d) d(uv) = u dv + v du
- (e) $d\left(\frac{u}{v}\right) = \frac{v du u dv}{v^2}$ (f) $d(x^n) = nx^{n-1} dx$
- 42. Na página 431 de Physics: Calculus, 2. ed., por Eugene Hecht (Pacific Grove, CA, 2000), durante a dedução da Fórmula $T = 2\pi\sqrt{L/g}$ para o período de um pêndulo de comprimento L, o autor obtém a equação $a_T = -g \operatorname{sen} \theta$ para a aceleração tangencial do peso do pêndulo. Ele então afirma: "para ângulos pe-

5-6 Use o gráfico para dizer quais os valores máximos e mínimos locais e absolutos da função.

7–10 Esboce o gráfico de uma função f que seja contínua em [1, 5] e tenha as propriedades dadas.

- 7. Máximo absoluto em 3, mínimo absoluto em 2, mínimo local em 4.
- Máximo absoluto em 5, mínimo absoluto em 1, máximo local em 2 e mínimo local em 4.
- Máximo absoluto em 5, mínimo absoluto em 2, máximo local em 3 e mínimo local em 2 e 4.
- 10. f não tem máximos ou mínimos locais, mas 2 e 4 são números críticos.
- 11. (a) Esboce o gráfico de uma função que tenha um máximo local em 2 e seja derivável em 2.
 - (b) Esboce o gráfico de uma função que tenha um máximo local em 2 e seja contínua, mas não derivável em 2.
 - (c) Esboce o gráfico de uma função que tenha um máximo local em 2 e não seja contínua em 2.
- 12. (a) Esboce o gráfico de uma função em [-1, 2] que tenha máximo absoluto, mas não tenha máximo local.
 - (b) Esboce o gráfico de uma função em [−1, 2] que tenha um máximo local, mas não tenha máximo absoluto.
- 13. (a) Esboce o gráfico de uma função em [-1, 2] que tenha um máximo absoluto, mas não tenha mínimo absoluto.
 - (b) Esboce o gráfico de uma função em [−1, 2] que seja descontínua, mas tenha tanto máximo absoluto como mínimo absoluto.
- 14. (a) Esboce o gráfico de uma função que tenha dois máximos locais e um mínimo local, mas nenhum mínimo absoluto.
 - (b) Esboce o gráfico de uma função que tenha três mínimos locais, dois máximos locais e sete números críticos.

15–28 Esboce o gráfico de f à mão e use seu esboço para encontrar os valores máximos e mínimos locais e absolutos de f. (Use os gráficos e as transformações das Seções 1.2 e 1.3.)

15.
$$f(x) = \frac{1}{2}(3x - 1), \quad x \le 3$$

16.
$$f(x) = 2 - \frac{1}{3}x$$
, $x \ge -2$

17.
$$f(x) = 1/x, x \ge 1$$

18.
$$f(x) = 1/x$$
, $1 < x < 3$

19.
$$f(x) = \sin x$$
, $0 \le x < \pi/2$

20.
$$f(x) = \sin x$$
, $0 < x \le \pi/2$

21.
$$f(x) = \sin x$$
, $-\pi/2 \le x \le \pi/2$

22.
$$f(t) = \cos t$$
, $-3\pi/2 \le t \le 3\pi/2$

23.
$$f(x) = \ln x$$
, $0 < x \le 2$

24.
$$f(x) = |x|$$

25.
$$f(x) = 1 - \sqrt{x}$$

26.
$$f(x) = e^x$$

27.
$$f(x) = \begin{cases} 1 - x & \text{se } 0 \le x < 2 \\ 2x - 4 & \text{se } 2 \le x \le 3 \end{cases}$$

28.
$$f(x) = \begin{cases} 4 - x^2 & \text{se } -2 \le x < 0 \\ 2x - 1 & \text{se } 0 \le x \le 2 \end{cases}$$

29-44 Encontre os números críticos da função.

29.
$$f(x) = 5x^2 + 4x$$

30.
$$f(x) = x^3 + x^2 - x$$

31.
$$f(x) = 2x^3 - 3x^2 - 36x$$

32.
$$f(x) = 2x^3 + x^2 + 2x$$

33.
$$g(t) = t^4 + t^3 + t^2 + 1$$
 34. $g(t) = |3t - 4|$

34.
$$g(t) = |3t - 4|$$

35.
$$g(y) = \frac{y-1}{y^2 - y + 1}$$
 36. $h(p) = \frac{p-1}{p^2 + 4}$

36.
$$h(p) = \frac{p-1}{p^2+4}$$

37.
$$h(t) = t^{3/4} - 2t^{1/4}$$

39. $F(x) = x^{4/5}(x-4)^2$

38.
$$g(x) = x^{1/3} - x^{-2/3}$$

41.
$$f(\theta) = 2\cos\theta + \sin^2\theta$$

40.
$$g(\theta) = 4\theta - \operatorname{tg} \theta$$

41.
$$f(0) = 2 \cos 0 + \sin 0$$

42.
$$h(t) = 3t - \arcsin t$$

43.
$$f(x) = x^2 e^{-3x}$$

44.
$$f(x) = x^{-2} \ln x$$

45-46 É dada uma fórmula para a derivada de uma função f. Quantos números críticos f tem?

45.
$$f'(x) = 5e^{-0.1|x|} \operatorname{sen} x -$$

45.
$$f'(x) = 5e^{-0.1|x|} \operatorname{sen} x - 1$$
 46. $f'(x) = \frac{100 \cos^2 x}{10 + x^2} - 1$

47-62 Encontre os valores máximo e mínimo absolutos de f no intervalo dado.

47.
$$f(x) = 3x^2 - 12x + 5$$
, [0, 3]

48.
$$f(x) = x^3 - 3x + 1$$
, [0, 3]

49.
$$f(x) = 2x^3 - 3x^2 - 12x + 1$$
, [-2, 3]

50.
$$f(x) = x^3 - 6x^2 + 5$$
, [-3, 5]

51.
$$f(x) = 3x^4 - 4x^3 - 12x^2 + 1$$
, [-2, 3]

52.
$$f(x) = (x^2 - 1)^3$$
, [-1, 2]

53.
$$f(x) = x + \frac{1}{x}$$
, [0,2; 4]

54.
$$f(x) = \frac{x}{x^2 - x + 1}$$
, [0, 3]

55.
$$f(t) = t\sqrt{4 - t^2}$$
, $[-1, 2]$

56.
$$f(t) = \sqrt[3]{t}(8-t)$$
, [0, 8]

57.
$$f(t) = 2\cos t + \sin 2t$$
, $[0, \pi/2]$

58.
$$f(t) = t + \cot(t/2), \quad [\pi/4, 7\pi/4]$$

59.
$$f(x) = xe^{-x^2/8}$$
, [-1, 4]

60.
$$f(x) = x - \ln x$$
, $\left[\frac{1}{2}, 2\right]$

61.
$$f(x) = \ln(x^2 + x + 1)$$
, [-1, 1]

62.
$$f(x) = x - 2 \text{ tg}^{-1} x$$
, $[0, 4]$

EXEMPLO 6 Demonstre a identidade $tg^{-1}x + cotg^{-1}x = \pi/2$.

SOLUÇÃO Embora não seja necessário o cálculo para demonstrar essa identidade, a demonstração usando cálculo é bem simples. Se $f(x) = tg^{-1}x + \cot g^{-1}x$, então

$$f'(x) = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0$$

para todos os valores de x. Portanto f(x) = C, uma constante. Para determinar o valor de C, fazemos x = 1 (porque podemos calcular f(1) exatamente). Então

$$C = f(1) = tg^{-1}1 + cotg^{-1}1 = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$

Assim, $tg^{-1}x + \cot g^{-1}x = \pi/2$.

4.2 **Exercícios**

1-4 Verifique que a função satisfaz as três hipóteses do Teorema de Rolle no intervalo dado. Então, encontre todos os números c que satisfazem à conclusão do Teorema de Rolle.

1.
$$f(x) = 5 - 12x + 3x^2$$
, [1, 3]

2.
$$f(x) = x^3 - x^2 - 6x + 2$$
, [0, 3]

3.
$$f(x) = \sqrt{x} - \frac{1}{3}x$$
, [0, 9]

4.
$$f(x) = \cos 2x$$
, $[\pi/8, 7\pi/8]$

- 5. Seja $f(x) = 1 x^{2/3}$. Mostre que f(-1) = f(1), mas não existe um número c em (-1, 1) tal que f'(c) = 0. Por que isso não contradiz o Teorema de Rolle?
- **6.** Seja $f(x) = \operatorname{tg} x$. Mostre que $f(0) = f(\pi)$, mas não existe um número c em $(0, \pi)$ tal que f'(c) = 0. Por que isso não contradiz o Teorema de Rolle?
- 7. Use o gráfico de f para estimar os valores de c que satisfaçam à conclusão do Teorema do Valor Médio para o intervalo [0, 8].

- 8. Use o gráfico de f dado no Exercício 7 para estimar os valores de c que satisfaçam à conclusão do Teorema do Valor Médio para o intervalo [1, 7].
- 9-12 Verifique se a função satisfaz as hipóteses do Teorema do Valor Médio no intervalo dado. Então, encontre todos os números c que satisfaçam a conclusão do Teorema do Valor Médio.

9.
$$f(x) = 2x^2 - 3x + 1$$
, [0, 2]

10.
$$f(x) = x^3 + x - 1$$
, $[0, 2]$

11.
$$f(x) = e^{-2x}$$
, $[0, 3]$

12.
$$f(x) = \frac{x}{x+2}$$
, [1, 4]

13-14 Encontre o número c que satisfaça à conclusão do Teorema do Valor Médio para o intervalo dado. Desenhe o gráfico da função, a reta secante passando pelas extremidades, e a reta tangente em (c, f(c)). A reta secante e a reta tangente são paralelas?

13.
$$f(x) = \sqrt{x}$$
, [0, 4]

14.
$$f(x) = e^{-x}$$
, $[0, 2]$

- **15.** Seja $f(x) = (x-3)^{-2}$. Mostre que não existe um valor c em (1, 4) tal que f(4) - f(1) = f'(c)(4 - 1). Por que isso não contradiz o Teorema do Valor Médio?
- **16.** Seja f(x) = 2 |2x 1|. Mostre que não existe um valor c tal que f(3) - f(0) = f'(c)(3 - 0). Por que isso não contradiz o Teorema do Valor Médio?

17-18 Mostre que a equação tem exatamente uma raiz real.

17.
$$2x + \cos x = 0$$

18.
$$x^3 + e^x = 0$$

- 19. Mostre que a equação $x^3 15x + c = 0$ tem no máximo uma raiz no intervalo [-2, 2].
- **20.** Mostre que a equação $x^4 + 4x + c = 0$ tem no máximo duas raí-
- 21. (a) Mostre que um polinômio de grau 3 tem, no máximo, três raí-
 - (b) Mostre que um polinômio de grau n tem, no máximo, n raízes reais.
- **22.** (a) Suponha que f seja derivável em \mathbb{R} e tenha duas raízes. Mostre que f' tem pelo menos uma raiz.
 - (b) Suponha que f seja duas vezes derivável em \mathbb{R} e tenha três raízes. Mostre que f'' tem pelo menos uma raiz real.
 - (c) Você pode generalizar os itens (a) e (b)?
- **23.** Se f(1) = 10 e $f'(x) \ge 2$ para $1 \le x \le 4$, quão pequeno f(4)pode ser?
- **24.** Suponha que $3 \le f'(x) \le 5$ para todos os valores de x. Mostre que $18 \le f(8) - f(2) \le 30$.

8. O gráfico da primeira derivada f' de uma função f está mostrado. (a) Em que intervalos f está crescendo? Explique.

(b) Em que valores de x a função f tem um mínimo ou máximo

(c) Em que intervalos f é côncava para cima ou para baixo? Ex-

(d) Quais são as coordenadas dos pontos de inflexão de f? Por

(a) Encontre os intervalos nos quais f é crescente ou decrescente.

(c) Encontre os intervalos de concavidade e os pontos de inflexão.

y = f'(x)

(b) Encontre os valores máximo e mínimo locais de f.

FIGURA 13

4.3

Exercícios

- 1-2 Usar o gráfico dado de f para encontrar o seguinte:
 - (a) Os intervalos abertos nos quais f é crescente.
 - (b) Os intervalos abertos nos quais f é decrescente.
 - (c) Os intervalos abertos nos quais f é côncava para cima.
 - (d) Os intervalos abertos nos quais f é côncava para baixo.
 - (e) As coordenadas dos pontos de inflexão.

- Suponha que lhe foi dada uma fórmula para uma função f.
 - (a) Como você determina onde f é crescente ou decrescente?
 - (b) Como você determina onde o gráfico de f é côncavo para cima ou para baixo?
 - (c) Como você localiza os pontos de inflexão?
- (a) Enuncie o Teste da Primeira Derivada.
 - (b) Enuncie o Teste da Segunda Derivada. Em que circunstância ele é inconclusivo? O que você faz se ele falha?
- **5-6** O gráfico da *derivada f'* de uma função *f* está mostrado.
 - (a) Em quais intervalos f é crescente ou decrescente?
 - (b) Em que valores de x a função f tem um mínimo ou máximo local?

- 7. Em cada item, indique as coordenadas x dos pontos de inflexão de f. Dê razões para suas escolhas.
 - (a) Esta curva é o gráfico de f.
 - (b) Esta curva é o gráfico de f'.
 - (c) Esta curva é o gráfico de f''.

- - SCA É necessário usar um sistema de computação algébrica
- 19-21 Encontre os valores máximo e mínimo locais de fusando os Testes da Primeira e da Segunda Derivadas. Qual método você prefere?

 $9. \quad f(x) = 2x^3 + 3x^2 - 36x$

10. $f(x) = 4x^3 + 3x^2 - 6x + 1$

local? Explique.

quê?

- **13.** $f(x) = \sin x + \cos x$, $0 \le x \le 2\pi$ **14.** $f(x) = \cos^2 x - 2 \sin x$, $0 \le x \le 2\pi$
- **15.** $f(x) = e^{2x} + e^{-x}$ **16.** $f(x) = x^2 \ln x$
- 17. $f(x) = x^2 x \ln x$ **18.** $f(x) = \sqrt{x} e^{-x}$

11. $f(x) = x^4 - 2x^2 + 3$ **12.** $f(x) = \frac{x^2}{x^2 + 3}$

- É necessário o uso de uma calculadora gráfica ou computador 1. As Homework Hints estão disponíveis em www.stewartcalculus.com

19.
$$f(x) = x^5 - 5x + 3$$

20.
$$f(x) = \frac{x^2}{x-1}$$

21.
$$f(x) = \sqrt{x} - \sqrt[4]{x}$$

- **22.** (a) Encontre os números críticos de $f(x) = x^4(x-1)^3$.
 - (b) O que o Teste da Segunda Derivada mostra para você sobre o comportamento de f nesses números críticos?
 - (c) O que mostra o Teste da Primeira Derivada?
- **23.** Suponha que f'' seja contínua em $(-\infty, \infty)$.

(a) Se
$$f'(2) = 0$$
 e $f''(2) = -5$, o que podemos dizer sobre f ?

(b) Se
$$f'(6) = 0$$
 e $f'''(6) = 0$, o que podemos dizer sobre f ?

- 24-29 Esboce o gráfico de uma função que satisfaça a todas as condições dadas.
- **24.** Assíntota vertical x = 0, f'(x) > 0 se x < -2, $f'(x) < 0 \text{ se } x > -2 \ (x \neq 0),$ f''(x) < 0 se x < 0, f''(x) > 0 se x > 0
- **25.** f'(0) = f'(2) = f'(4) = 0,
 - f'(x) > 0 se x < 0 ou 2 < x < 4.
 - f'(x) < 0 se 0 < x < 2 ou x > 4,
 - f''(x) > 0 se 1 < x < 3, f''(x) < 0 se x < 1 ou x > 3
- **26.** f'(1) = f'(-1) = 0, f'(x) < 0 se |x| < 1,

$$f'(x) > 0$$
 se $1 < |x| < 2$, $f'(x) = -1$ se $|x| > 2$,

$$f''(x) < 0$$
 se $-2 < x < 0$, ponto de inflexão $(0, 1)$

27. f'(x) > 0 se |x| < 2, f'(x) < 0 se |x| > 2,

$$f'(-2) = 0$$
, $\lim_{x \to 2} |f'(x)| = \infty$, $f''(x) > 0$ se $x \ne 2$

28. f'(x) > 0 se |x| < 2, f'(x) < 0 se |x| > 2,

$$f'(2) = 0$$
, $\lim f(x) = 1$, $f(-x) = -f(x)$,

$$f''(x) < 0 \text{ se } 0 < x < 3, \quad f''(x) > 0 \text{ se } x > 3$$

29.
$$f'(x) < 0$$
 e $f''(x) < 0$ para todo x

- **30.** Suponha que f(3) = 2, $f'(3) = \frac{1}{2} e f'(x) > 0 e f''(x) < 0$ para todo x.
 - (a) Esboce um gráfico possível de f.
 - (b) Quantas soluções a equação f(x) = 0 tem? Por quê?
 - (c) É possível que $f'(2) = \frac{1}{3}$? Por quê?
- 31–32 O gráfico da derivada f' de uma função contínua f está mostrado.
 - (a) Em que intervalos f está crescendo? E decrescendo?
 - (b) Em que valores de x a função f tem um máximo local? E no mínimo local?
 - (c) Em que intervalos fé côncava para cima? E côncava para baixo?
 - (d) Diga as coordenadas x dos pontos de inflexão.
 - (e) Supondo que f(0) = 0, esboce o gráfico de f.

32.

33-44

- (a) Encontre os intervalos em que a função é crescente ou de-
- (b) Encontre os valores máximos ou mínimos locais.
- (c) Encontre os intervalos de concavidade e os pontos de inflexão.
- (d) Use as informações das partes (a)-(c) para esboçar o gráfico. Verifique seu trabalho com uma ferramenta gráfica, se você tiver uma.

33.
$$f(x) = 2x^3 - 3x^2 - 12x$$
 34. $f(x) = 2 + 3x - x^3$

34.
$$f(x) = 2 + 3x - x^2$$

35.
$$f(x) = 2 + 2x^2 - x^4$$

35.
$$f(x) = 2 + 2x^2 - x^4$$
 36. $g(x) = 200 + 8x^3 + x^4$

37.
$$h(x) = (x+1)^5 - 5x - 2$$
 38. $h(x) = 5x^3 - 3x^5$

38.
$$h(x) = 5x^3 - 3x^5$$

39.
$$F(x) = x\sqrt{6-x}$$

40.
$$G(x) = 5x^{2/3} - 2x^{5/3}$$

41.
$$C(x) = x^{1/3}(x+4)$$

42.
$$f(x) = \ln(x^4 + 27)$$

43.
$$f(\theta) = 2 \cos \theta + \cos^2 \theta$$
, $0 \le \theta \le 2\pi$

44.
$$S(x) = x - \sin x$$
, $0 \le x \le 4\pi$

45-52

- (a) Encontre as assíntotas verticais e horizontais.
- (b) Encontre os intervalos nos quais a função é crescente ou decrescente.
- (c) Encontre os valores máximos e mínimos locais.
- (d) Encontre os intervalos de concavidade e os pontos de inflexão.
- (e) Use a informação das partes (a)–(d) para esboçar o gráfico de f.

45.
$$f(x) = 1 + \frac{1}{x} - \frac{1}{x^2}$$
 46. $f(x) = \frac{x^2 - 4}{x^2 + 4}$

46.
$$f(x) = \frac{x^2 - 4}{x^2 + 4}$$

47.
$$f(x) = \sqrt{x^2 + 1} - x$$

48.
$$f(x) = \frac{e^x}{1 - e^x}$$

49.
$$f(x) = e^{-x^2}$$

50.
$$f(x) = x - \frac{1}{6}x^2 - \frac{2}{3}\ln x$$

51.
$$f(x) = \ln(1 - \ln x)$$

52.
$$f(x) = e^{\arctan x}$$

- **53.** Suponha que a derivada da função f seja $f'(x) = (x + 1)^2(x - 3)^5(x - 6)^4$. Em qual intervalo f está crescendo?
- 54. Use os métodos desta seção para esboçar a curva $y = x^3 - 3a^2x + 2a^3$, onde a é uma constante positiva. O que os membros desta família de curvas têm em comum? Como eles di-

55-56

- (a) Use um gráfico de f para estimar os valores máximo e mínimo. Então, encontre os valores exatos.
- (b) Estime o valor de x em que f cresce mais rapidamente. Então, encontre o valor exato.

Exercícios

1-4 Dado que

$$\lim_{x \to a} f(x) = 0 \quad \lim_{x \to a} g(x) = 0 \quad \lim_{x \to a} h(x) = 1$$
$$\lim_{x \to a} p(x) = \infty \quad \lim_{x \to a} g(x) = \infty$$

quais dos limites a seguir são formas indeterminadas? Para aqueles que não são formas indeterminadas, calcule o limite quando possível.

1. (a)
$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

(b)
$$\lim_{x \to a} \frac{f(x)}{p(x)}$$

(c)
$$\lim_{x \to a} \frac{h(x)}{p(x)}$$

(d)
$$\lim_{x \to a} \frac{p(x)}{f(x)}$$
 (e) $\lim_{x \to a} \frac{p(x)}{q(x)}$

(e)
$$\lim_{x \to a} \frac{p(x)}{q(x)}$$

2. (a)
$$\lim_{x \to a} [f(x)p(x)]$$
 (b) $\lim_{x \to a} [h(x)p(x)]$

(c)
$$\lim_{x \to a} [p(x)q(x)]$$

3. (a)
$$\lim_{x \to a} [f(x) - p(x)]$$

(b)
$$\lim_{x \to a} [p(x) - q(x)]$$

(c)
$$\lim_{x \to a} [p(x) + q(x)]$$

4. (a)
$$\lim_{x \to a} [f(x)]^{g(x)}$$
 (b) $\lim_{x \to a} [f(x)]^{p(x)}$ (c) $\lim_{x \to a} [h(x)]^{p(x)}$

(b)
$$\lim [f(x)]^{p(x)}$$

(c)
$$\lim [h(x)]^{p(x)}$$

(d)
$$\lim_{x \to a} [p(x)]^{f(x)}$$

(d)
$$\lim_{x \to a} [p(x)]^{f(x)}$$
 (e) $\lim_{x \to a} [p(x)]^{q(x)}$ (f) $\lim_{x \to a} q^{q(x)} \sqrt{p(x)}$

(f)
$$\lim_{x \to a} \sqrt[q(x)]{p(x)}$$

5-6 Use os gráficos de f e g e suas retas tangentes em (2,0) para encontrar $\lim_{x\to 2} \frac{f(x)}{g(x)}$

7-66 Encontre o limite. Use a Regra de l'Hôspital quando for apropriado. Se houver um método mais elementar, considere utilizá-lo. Se a Regra de l'Hôspital não se aplicar, explique o porquê.

7.
$$\lim_{x \to -1} \frac{x^2 - 1}{x + 1}$$

8.
$$\lim_{x \to 1} \frac{x^a - 1}{x^b - 1}$$

$$9. \quad \lim_{x \to 1} \frac{x^3 - 2x^2 + 1}{x^3 - 1}$$

9.
$$\lim_{x \to 1} \frac{x^3 - 2x^2 + 1}{x^3 - 1}$$
 10. $\lim_{x \to 1/2} \frac{6x^2 + 5x - 4}{4x^2 + 16x - 9}$

11.
$$\lim_{x \to (\pi/2)^+} \frac{\cos x}{1 - \sin x}$$

12.
$$\lim_{x\to 0} \frac{\sin 4x}{\tan 5x}$$

13.
$$\lim_{t \to 0} \frac{e^{2t} - 1}{\sin t}$$

14.
$$\lim_{x \to 0} \frac{x^2}{1 - \cos x}$$

15.
$$\lim_{\theta \to \pi/2} \frac{1 - \sin \theta}{1 + \cos 2\theta}$$

16.
$$\lim_{\theta \to \pi/2} \frac{1 - \sin \theta}{\operatorname{cossec} \theta}$$

$$17. \lim_{x\to\infty}\frac{\ln x}{\sqrt{x}}$$

19.
$$\lim_{x \to 0^{\pm}} \frac{\ln x}{x}$$

21.
$$\lim_{t\to 1} \frac{t^8-1}{t^5-1}$$

23.
$$\lim_{x\to 0} \frac{\sqrt{1+2x}-\sqrt{1-4x}}{x}$$
 24. $\lim_{u\to \infty} \frac{e^{u/10}}{u^3}$

25.
$$\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$$

$$27. \lim_{x\to 0} \frac{\tanh x}{\tan x}$$

29.
$$\lim_{x\to 0} \frac{\sin^{-1}x}{x}$$

31.
$$\lim_{x\to 0} \frac{x3^x}{3^x-1}$$

$$33. \lim_{x \to 0} \frac{x + \sin x}{x + \cos x}$$

35.
$$\lim_{x \to 1} \frac{1 - x + \ln x}{1 + \cos \pi x}$$

37.
$$\lim_{x \to 1} \frac{x^a - ax + a - 1}{(x - 1)^2}$$

39.
$$\lim_{x\to 0} \frac{\cos x - 1 + \frac{1}{2}x^2}{x^4}$$

41.
$$\lim x \operatorname{sen}(\pi/x)$$

43.
$$\lim_{x \to 0} \cot 2x \sec 6x$$

45.
$$\lim x^3 e^{-x^2}$$

47.
$$\lim_{x \to 1^1} \ln x \ \text{tg}(\pi x/2)$$

49.
$$\lim_{x \to 1} \left(x - 1 - \ln x \right)$$

49.
$$\lim_{x \to 1} \left(\frac{x}{x - 1} - \frac{1}{\ln x} \right)$$
 50. $\lim_{x \to 0} (\operatorname{cossec} x - \operatorname{cotg} x)$

51.
$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right)$$
 52. $\lim_{x \to 0} \left(\cot x - \frac{1}{x} \right)$

52.
$$\lim_{x\to 0} \left(\cot x - \frac{1}{x} \right)$$

48. $\lim_{x \to (\pi/2)^{-}} \cos x \sec 5x$

18. $\lim_{x \to 1} \frac{\ln x}{\sin \pi x}$

20. $\lim_{x \to \infty} \frac{\ln \ln x}{x}$

22. $\lim_{t\to 0} \frac{8^t - 5^t}{t}$

26. $\lim_{x\to 0} \frac{\sinh x - x}{x^3}$

 $28. \lim_{x \to 0} \frac{x - \sin x}{x - \tan x}$

30. $\lim_{x \to \infty} \frac{(\ln x)^2}{x}$

34. $\lim_{x\to 0} \frac{x}{tg^{-1}(4x)}$

32. $\lim_{x \to 0} \frac{\cos mx - \cos nx}{x^2}$

38. $\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$

40. $\lim_{x \to a^+} \frac{\cos x \ln(x-a)}{\ln(e^x - e^a)}$

42. $\lim \sqrt{x} e^{-x/2}$

44. $\lim_{x \to 0^+} \sin x \ln x$

46. $\lim x \operatorname{tg}(1/x)$

53.
$$\lim (x - \ln x)$$

54.
$$\lim_{x \to 0} \left[\ln(x^7 - 1) - \ln(x^5 - 1) \right]$$

55.
$$\lim_{x \to 0^+} x^{\sqrt{x}}$$

56.
$$\lim_{x\to 0^+} (\operatorname{tg} 2x)^x$$

57.
$$\lim_{x\to 0} (1-2x)^{1/x}$$

58.
$$\lim_{x\to\infty}\left(1+\frac{a}{x}\right)^{bx}$$

59.
$$\lim_{x \to 1^+} x^{1/(1-x)}$$

60.
$$\lim_{x\to\infty} x^{(\ln 2)/(1+\ln x)}$$

$$\mathbf{61.} \ \lim_{x \to \infty} x^{1/x}$$

62.
$$\lim_{x \to \infty} (e^x + x)^{1/x}$$

 $f''(x) = \frac{(4x^3 + 6x)(x^2 + 1)^2 - (x^4 + 3x^2) \cdot 2(x^2 + 1)2x}{(x^2 + 1)^4} = \frac{2x(3 - x^2)}{(x^2 + 1)^3}$

Visto que f''(x) = 0 quando x = 0 ou $x = \pm \sqrt{3}$, montamos a seguinte tabela:

Intervalo	x	$3 - x^2$	$(x^2 + 1)^3$	f"(x)	f
$x < -\sqrt{3}$	-	_	+	+	CC em $\left(-\infty, -\sqrt{3}\right)$
$-\sqrt{3} < x < 0$	_	+	+	_	CB em $\left(-\sqrt{3},0\right)$
$0 < x < \sqrt{3}$	+	+	+	+	CC em $(0, \sqrt{3})$
$x > \sqrt{3}$	+	_	+	_	CB em $(\sqrt{3}, \infty)$

Os pontos de inflexão são $\left(-\sqrt{3}, -\frac{3}{4}\sqrt{3}\right)$, (0, 0) e $\left(\sqrt{3}, \frac{3}{4}\sqrt{3}\right)$.

H. O gráfico de f está esboçado na Figura 13.

FIGURA 13

Exercícios

1–54 Use o roteiro desta seção para esboçar a curva.

1.
$$y = x^3 + x$$

$$2. \quad y = x^3 + 6x^2 + 9x$$

3.
$$y = 2 - 15x + 9x^2 - x^3$$
 4. $y = 8x^2 - x^4$

$$v = 8r^2 - r^4$$

5.
$$y = x(x-4)^3$$

6.
$$v = x^5 - 5x$$

7.
$$y = \frac{1}{5}x^5 - \frac{8}{3}x^3 + 16x$$
 8. $y = (4 - x^2)^5$

8.
$$v = (4 - x^2)^5$$

9.
$$y = \frac{x}{x^2 + 1}$$

10.
$$y = \frac{x^2 - 4}{x^2 - 2x}$$

11.
$$y = \frac{x - x^2}{2 - 3x + x^2}$$

12.
$$y = \frac{x^2 - 2x}{x^2 - 9}$$

13.
$$y = \frac{1}{x^2 - 9}$$

$$x^{2} - 9$$
14. $y = \frac{x^{2}}{x^{2} + 9}$

15.
$$y = \frac{x}{x^2 + 9}$$

16.
$$y = 1 + \frac{1}{r} + \frac{1}{r^2}$$

17.
$$y = \frac{x-1}{x^2}$$

18.
$$y = \frac{x}{x^3 - 1}$$

19.
$$y = \frac{x^2}{x^2 + 3}$$

20.
$$y = \frac{x^3}{x-2}$$

21.
$$y = (x - 3)\sqrt{x}$$

20.
$$y = \frac{1}{x-2}$$

21.
$$y = (x - 3)\sqrt{x}$$

22.
$$y = 2\sqrt{x} - x$$

23.
$$y = \sqrt{x^2 + x - 2}$$

24.
$$y = \sqrt{x^2 + x} - x$$

25.
$$y = \frac{x}{\sqrt{x^2 + 1}}$$

26.
$$y = x\sqrt{2 - x^2}$$

27.
$$y = \frac{\sqrt{1 - x^2}}{x}$$

28.
$$y = \frac{x}{\sqrt{x^2 - 1}}$$

29.
$$v = x - 3x^{1/3}$$

30.
$$y = x^{5/3} - 5x^{2/3}$$

31.
$$y = \sqrt[3]{x^2 - 1}$$

32.
$$y = \sqrt[3]{x^3 + 1}$$

33.
$$y = \sin^3 x$$

34.
$$y = x + \cos x$$

35.
$$y = x \operatorname{tg} x$$
, $-\pi/2 < x < \pi/2$

36.
$$y = 2x - \operatorname{tg} x$$
, $-\pi/2 < x < \pi/2$

37.
$$y = \frac{1}{2}x - \sin x$$
, $0 < x < 3\pi$

38.
$$y = \sec x + \operatorname{tg} x$$
, $0 < x < \pi/2$

39.
$$y = \frac{\sin x}{1 + \cos x}$$

40.
$$y = \frac{\sin x}{2 + \cos x}$$

41.
$$y = \operatorname{arctg}(e^x)$$

42.
$$y = (1 - x)e^x$$

43.
$$y = 1/(1 + e^{-x})$$

44.
$$y = e^{-x} \sin x$$
, $0 \le x \le 2\pi$

45.
$$y = x - \ln x$$

46.
$$y = e^{2x} - e^x$$

47.
$$y = (1 + e^x)^{-2}$$

48.
$$y = e^x/x^2$$

49.
$$y = \ln(\sin x)$$

50.
$$y = \ln(x^2 - 3x + 2)$$

51.
$$y = xe^{-1/x}$$

52.
$$y = \frac{\ln x}{x^2}$$

53.
$$y = e^{3x} + e^{-2x}$$

54.
$$y = tg^{-1} \left(\frac{x-1}{x+1} \right)$$

55. Na teoria da relatividade, a massa de uma partícula é

$$m = \frac{m_0}{\sqrt{1 - v^2/c^2}}$$

onde m_0 é a massa de repouso da partícula, m é a massa quando a partícula se move com velocidade v em relação ao observador e c é a velocidade da luz. Esboce o gráfico de m como uma fun-

56. Na teoria da relatividade, a energia de uma partícula é

$$E = \sqrt{m_0^2 c^4 + h^2 c^2 / \lambda^2}$$

em que m_0 é a massa de repouso da partícula, λ é seu comprimento de onda e h é a constante de Planck. Esboce o gráfico de E como uma função de λ. O que o gráfico mostra sobre a força?

57. Um modelo para dispersão de um rumor é dado pela equação

$$p(t) = \frac{1}{1 + ae^{-kt}}$$

onde p(t) é a proporção da população que já ouviu o boato no tempo t e a e k são constantes positivas.

- (a) Quando a metade da população terá ouvido um rumor?
- (b) Quando ocorre a maior taxa de dispersão do boato?
- (c) Esboce o gráfico de p.

58. Um modelo para a concentração no instante *t* de uma droga injetada na corrente sanguínea é

$$C(t) = K(e^{-at} - e^{-bt})$$

onde a, b e K são constantes positivas e b > a. Esboce o gráfico da função concentração. O que o gráfico nos diz sobre como a concentração varia conforme o tempo passa?

59. A figura mostra uma viga de comprimento L embutida entre paredes de concreto. Se uma carga constante W for distribuída uniformemente ao longo de seu comprimento, a viga assumirá a forma da curva de deflexão

$$y = -\frac{W}{24EI}x^4 + \frac{WL}{12EI}x^3 - \frac{WL^2}{24EI}x^2$$

onde E e I são constantes positivas. (E é o módulo de elasticidade de Young, e I é o momento de inércia de uma secção transversal da viga.) Esboce o gráfico da curva de deflexão.

60. A Lei de Coulomb afirma que a força de atração entre duas partículas carregadas é diretamente proporcional ao produto das cargas e inversamente proporcional ao quadrado da distância entre elas. A figura mostra partículas com carga 1 localizadas nas posições 0 e 2 sobre o eixo das coordenadas, e uma partícula com a carga –1 em uma posição *x* entre elas. Segue da Lei de Coulomb que a força resultante agindo sobre a partícula do meio é

$$F(x) = -\frac{k}{x^2} + \frac{k}{(x-2)^2} \quad 0 < x < 2$$

onde k é uma constante positiva. Esboce o gráfico da função força resultante. O que o gráfico mostra sobre a força?

61-64 Ache a equação da assíntota oblíqua. Não desenhe a curva.

61.
$$y = \frac{x^2 + 1}{x + 1}$$

62.
$$y = \frac{2x^3 + x^2 + x + 3}{x^2 + 2x}$$

63.
$$y = \frac{4x^3 - 2x^2 + 5}{2x^2 + x - 3}$$

64.
$$y = \frac{5x^4 + x^2 + x}{x^3 - x^2 + 2}$$

65–70 Use o roteiro desta seção para esboçar o gráfico da curva. No passo D, ache uma equação para a assíntota oblíqua.

65.
$$y = \frac{x^2}{x-1}$$

66.
$$y = \frac{1 + 5x - 2x^2}{x - 2}$$

67.
$$y = \frac{x^3 + 4}{x^2}$$

68.
$$y = \frac{x^3}{(x+1)^2}$$

69.
$$y = 1 + \frac{1}{2}x + e^{-x}$$

70.
$$y = 1 - x + e^{1+x/3}$$

- **71.** Mostre que a curva $y = x tg^{-1}x$ tem duas assíntotas oblíquas: $y = x + \pi/2$ e $y = x \pi/2$. Use esse fato para esboçar a curva.
- **72.** Mostre que a curva $y = \sqrt{x^2 + 4x}$ tem duas assíntotas oblíquas: y = x + 2 e y = -x 2. Use esse fato para esboçar a curva.
- **73.** Mostre que as retas y = (b/a)x e y = -(b/a)x são assíntotas oblíquas da hipérbole $(x^2/a^2) (y^2/b^2) = 1$.
- **74.** Seja $f(x) = (x^3 + 1)/x$. Mostre que

$$\lim_{x \to +\infty} \left[f(x) - x^2 \right] = 0$$

Isso mostra que o gráfico de f tende ao gráfico de $y=x^2$, e dizemos que a curva y=f(x) é assintótica à parábola $y=x^2$. Use esse fato para ajudá-lo no esboço do gráfico de f.

- **75.** Discuta o comportamento assintótico de $f(x) = (x^4 + 1)/x$ da mesma forma que no Exercício 74. Use então seus resultados para auxiliá-lo no esboço do gráfico de f.
- **76.** Use o comportamento assintótico de $f(x) = \cos x + 1/x^2$ para esboçar seu gráfico sem seguir o roteiro de esboço de curvas desta seção.

4.6

Representação Gráfica com Cálculo e Calculadoras

O método usado para esboçar as curvas na seção precedente foi um auge dentro de nosso estudo de cálculo diferencial. O gráfico foi o objetivo final obtido por nós. Nesta seção, nosso ponto de vista é completamente diferente. *Começamos* aqui com um gráfico produzido por uma calculadora gráfica ou computador e então o refinamos. Usamos o cálculo para nos assegurar de que estão aparentes todos os aspectos importantes da curva. E com o uso de ferramentas gráficas podemos nos dedicar a curvas complicadas demais para tratar sem essa tecnologia. O objetivo aqui é a *interação* entre o cálculo e calculadoras.

EXEMPLO 1 Faça o gráfico do polinômio $f(x) = 2x^6 + 3x^5 + 3x^3 - 2x^2$. Use os gráficos de f' e f'' para estimar todos os pontos de máximo e de mínimo e os intervalos de concavidade.

SOLUÇÃO Se especificarmos um domínio, mas não uma imagem, muitas ferramentas gráficas deduzirão uma imagem adequada a partir dos valores calculados. A Figura 1 mostra o gráfico obtido a partir de uma dessas ferramentas se especificarmos que $-5 \le x \le 5$. Embora essa janela retangular seja útil para mostrar que o comportamento assintótico (o comportamento nas extremidades) é o mesmo que o de $y = 2x^6$, é óbvio que estão omitidos os deta-

Se você ainda não leu a Seção 1.4, deve fazê-lo agora. Ela explica como evitar algumas das armadilhas das ferramentas gráficas através da escolha de janelas retangulares apropriadas.