PENDANTSS: PENALIZED NORM-RATIOS DISENTANGLING ADDITIVE NOISE, TREND AND SPARSE SPIKES [1]

Paul Zheng⁽¹⁾³, Emilie Chouzenoux¹, Laurent Duval²

¹ Univ. Paris-Saclay, CentraleSupélec, CVN, Inria, Gif-sur-Yvette; ² IFP Energies nouvelles, Rueil-Malmaison; ³ RWTH Aachen University, Germany

Background & Inspiration

- BEADS (Baseline Estimation And Denoising using Sparsity) [2]
- SOOT ℓ_1/ℓ_2 , SPOQ ℓ_p/ℓ_q (Smooth One-Over-Two/p-Over-q norm/quasi-norm ratios) [3, 4]
- → **PENDANTSS** (PEnalized Norm-ratios Disentangling Additive Noise, Trend and Sparse Spikes) [1]

https://github.com/paulzhengfr/PENDANTSS

"Sparsity" penalties: ℓ_0 , ℓ_1 , SOOT, SPOQ quasi-norm ratios

Proposed Optimization Method

Block Coordinate Variable Metric Forward-Backward (BC-VMFB) [5] using trust-region (TR):

- Data fidelity $\rho(s, \pi) \triangleq \frac{1}{2} || \boldsymbol{H}(\boldsymbol{y} \boldsymbol{\pi} * \boldsymbol{s}) ||^2$ Lipschitz-smooth w.r.t. \boldsymbol{s} (resp. $\boldsymbol{\pi}$), with constants $\Lambda_1(\boldsymbol{\pi})$ (resp. $\Lambda_2(\boldsymbol{s})$). Denote $f(\boldsymbol{s}, \boldsymbol{\pi}) \triangleq \rho(\boldsymbol{s}, \boldsymbol{\pi}) + \lambda \Psi(\boldsymbol{s})$ the differentiable part.
- **Diagonal MM metric** for f w.r.t. \boldsymbol{s} (for all $\boldsymbol{\pi}$), denoting $\chi_{q,\rho} = (q-1)/(\eta^q + \rho^q)^{2/q}$, $\boldsymbol{A}_{1,\rho}(\boldsymbol{s},\boldsymbol{\pi}) = (\Lambda_1(\boldsymbol{\pi}) + \lambda \chi_{q,\rho}) \mathbf{Id}_N + \frac{\lambda}{\ell_{n,\alpha}^p(\boldsymbol{s}) + \beta^p} \mathrm{Diag}((s_n^2 + \alpha^2)^{p/2 1})_{1 \le n \le N};$
- Local majoration valid only for $\mathbf{s} \in \overline{\mathcal{B}}_{q,\rho} = \{\mathbf{s} = (s_n)_{1 \leq n \leq N} \in \mathbb{R}^N | \sum_{n=1}^N |s_n|^q \geq \rho^q \};$ $\to \mathbf{TR}$ radius backtracking.
- BC-VMFB updates:

$$\forall k \in \mathbb{N}, \ \forall i \in \{1, \dots, \mathcal{I}\}, \ \begin{cases} \boldsymbol{s}_{k,i} = \operatorname{Proj}_{C_1} \left(\boldsymbol{s}_k - \gamma_{s,k} \boldsymbol{A}_{1,\rho_{k,i}} (\boldsymbol{s}_k, \boldsymbol{\pi}_k)^{-1} \nabla_1 f(\boldsymbol{s}_k, \boldsymbol{\pi}_k) \right), \\ \boldsymbol{\pi}_{k+1} = \operatorname{Proj}_{C_2} \left(\boldsymbol{\pi}_k - \gamma_{\pi,k} \Lambda_2 (\boldsymbol{s}_{k+1})^{-1} \nabla_2 f(\boldsymbol{s}_{k+1}, \boldsymbol{\pi}_k) \right). \end{cases}$$

• Theorem: $(s_k, \pi_k)_{k \in \mathbb{N}}$ converges to $(\widehat{s}, \widehat{\pi})$ critical point of [1. Eq.5].

Problem, Hypotheses & Notations

Denoising, detrending, deconvolution: traditionally decoupled, ill-posed problem:

$$oldsymbol{y} = \overline{oldsymbol{s}} * \overline{oldsymbol{\pi}} + \overline{oldsymbol{t}} + oldsymbol{n}$$
 .

- $\mathbf{y} \in \mathbb{R}^N$: observation;
- $\overline{s} \in \mathbb{R}^N$: sparse spikes (impulses, events, "diracs", spectral lines);
- $\overline{\pi} \in \mathbb{R}^L$: peak-shaped, short-support kernel;
- $\overline{x} = \overline{s} * \overline{\pi} \in \mathbb{R}^N$: signal;
- $\bar{t} \in \mathbb{R}^N$: trend (offset, reference, baseline, background, continuum, drift, wander);
- $n \in \mathbb{R}^N$: noise (stochastic residuals).

Trend estimation using a low-pass filter $L = Id_N - H$:

$$\widehat{m{t}} = m{L}(m{y} - \widehat{m{\pi}} * \widehat{m{s}}).$$

• Constraint: $(\widehat{s}, \widehat{\pi}) \in (C_1 \times C_2)$ some closed, non-empty and convex sets;

• Sparsity prior on signal through penalty: $\Psi(\boldsymbol{s}) = \log\left(\frac{(\ell_{p,\alpha}^p(\boldsymbol{s}) + \beta^p)^{1/p}}{\ell_{q,\eta}(\boldsymbol{s})}\right)$ with $\ell_{p,\alpha}^p(\boldsymbol{s}) = \left(\sum_{n=1}^N \left((s_n^2 + \alpha^2)^{p/2} - \alpha^p\right)\right)^{1/p}$, and $\ell_{q,\eta}(\boldsymbol{s}) = \left(\eta^q + \sum_{n=1}^N |s_n|^q\right)^{1/q}$.

Optimization Problem: minimize $\frac{1}{2}||\boldsymbol{H}(\boldsymbol{y}-\boldsymbol{\pi}*\boldsymbol{s})||^2 + \iota_{C_1}(\boldsymbol{s}) + \iota_{C_2}(\boldsymbol{\pi}) + \lambda \Psi(\boldsymbol{s}).$

([1, Eq. 3])

([1, Eq. 5])

Algorithm

Algorithm 1: TR-BC-VMFB to solve [1, Eq. 5]

Settings: $K_{\text{max}} > 0$, $\varepsilon > 0$, $\mathcal{I} > 0$, $\theta \in]0, 1[$, $(\gamma_{s,k})_{k \in \mathbb{N}} \in [\underline{\gamma}, 2 - \overline{\gamma}]$ and $(\gamma_{\pi,k})_{k \in \mathbb{N}} \in [\underline{\gamma}, 2 - \overline{\gamma}]$ for some $(\underline{\gamma}, \overline{\gamma}) \in]0, +\infty[^2, (p, q) \in]0, 2[\times[2, +\infty[\text{ satisfying } [1, \text{ Eq. 9}], \text{ convex sets } (C_1, C_2) \subset \mathbb{R}^N \times \mathbb{R}^L.$

Initialize: $oldsymbol{s}_0 \in C_1, \, oldsymbol{\pi}_0 \in C_2$ for $k=0,1,\ldots$ do

| Update of the signal

for $i = 1, ..., \mathcal{I}$ do

Set TR radius $\rho_{k,i}$ using backtracking [1, Eq.16] with parameter θ ;

Construct diagonal MM metric $A_{1,\rho_{k,i}}(s_k, \pi_k)$ using [1, Eq.15]; BC-VMFB update: Find $s_{k,i} \in C_1$ such that [1, Eq.17] holds.

 $\mathbf{if} \; oldsymbol{s}_{k,i} \in \overline{\mathcal{B}}_{q,
ho_{k,i}} \; \mathbf{then}$

| Stop loop | end

end

 $oldsymbol{s}_{k+1} = oldsymbol{s}_{k,i};$

 $\frac{Update\ of\ the\ kernel}{\text{BC-VMFB update: Find}} \frac{C_2 \text{ such that } [1, \text{ Eq. 19}]}{\text{BC-VMFB update: Find }} \frac{\mathbf{\pi}_{k+1}}{\mathbf{\pi}_{k+1}} \in C_2 \text{ such that } [1, \text{ Eq. 19}]$

Stopping criterion

if $||s_k - s_{k+1}|| \le \varepsilon$ or $k \ge K_{\max}$ then Stop loop

end

 $(\widehat{\boldsymbol{s}}, \widehat{\boldsymbol{\pi}}) = (\boldsymbol{s}_{k+1}, \boldsymbol{\pi}_{k+1}) \text{ and } \widehat{\boldsymbol{t}} \text{ given by } [1, \text{Eq.3}];$

Result: $\widehat{m{s}},\widehat{m{\pi}},\widehat{m{t}}$

Dataset A

Dataset B

Unknown sparse signal \overline{s} . Signal B has 20 spikes (10.0%) of sparsity).

Result: Comparative Table

		Dataset A		Dataset B	
Noise level σ (% of x_{max})		0.5%	1.0 %	0.5%	1.0%
	backcor[6]+SOOT	29.2 ± 0.7	28.5±1.9	14.9±4.0	11.5 ± 4.7
SNR_s	backcor[6]+SPOQ	29.2±0.7	29.3±1.3	12.9±3.5	11.3±4.4
$\frac{1}{2}$	PENDANTSS (1, 2)	32.9 ± 1.5	30.9 ± 2.2	22.3±8.2	17.5±8.4
	PENDANTSS (0.75, 2)	33.2±2.3	31.0±4.2	15.9 ± 4.5	12.9 ± 4.6
	backcor[6]+SOOT	29.2 ± 0.7	29.3±1.3	16.6 ± 3.5	13.4±4.3
TSNRs	backcor[6]+SPOQ	29.2±0.7	29.3±1.3	15.1±3.0	13.7±3.7
TSI	PENDANTSS (1, 2)	34.1±1.4	32.2±2.1	24.9±8.0	19.2 ± 7.7
	PENDANTSS (0.75, 2)	35.4 ± 1.7	32.6±3.8	17.7 ± 4.0	14.5 ± 4.1
	backcor[6]+SOOT	20.5 ± 0.2	20.3±0.4	15.5 ± 0.5	14.8±0.8
SNR_t	backcor[6]+SPOQ	20.5 ± 0.2	20.3±0.4	15.5 ± 0.5	14.8±0.8
SN	PENDANTSS (1, 2)	26.9 ± 0.5	26.0 ± 0.8	22.0 ± 0.4	21.6 ± 1.0
	PENDANTSS (0.75, 2)	26.9 ± 0.6	26.0 ± 1.0	24.6 ± 0.6	19.6 ± 3.9
	backcor[6]+SOOT	36.3 ± 1.3	33.9±1.7	30.3±1.3	28.5 ± 1.8
SNR_{π}	backcor[6]+SPOQ	36.3±1.3	34.0±1.7	33.1±1.9	31.2±2.1
$\frac{1}{2}$	PENDANTSS (1, 2)	41.3±2.0	34.4±2.4	38.3 ± 1.9	33.6 ± 2.2
	PENDANTSS (0.75, 2)	41.3 ± 2.0	34.2 ± 2.5	35.7 ± 1.5	25.4 ± 5.5

Numerical results on datasets A and B. SNR quantities in dB, averaged over 30 random realizations. Best, second best performing method.

Dataset A (result)

Ground truth \overline{s} (black line with circle marker) and proposed estimation \widehat{s} (blue line with cross marker).

Ground truth (black line) and proposed estimation results (blue line), for the baseline \boldsymbol{t} (dashed dot) and the signal $\boldsymbol{s}*\boldsymbol{\pi}$ (continuous).

Dataset B (result)

Ground truth \overline{s} (black line with circle marker) and proposed estimation \widehat{s} (blue line with cross marker).

Ground truth (black line) and proposed estimation results (blue line), for the baseline \boldsymbol{t} (dashed dot) and the signal $\boldsymbol{s} * \boldsymbol{\pi}$ (continuous).

Conclusions

- Ill-posed joint blind deconvolution problem with additive trend,
- New block alternating algorithm: TR acceleration, convergence,
- Appropriate parameters to investigate (sparsity, separability),
- PENDANTSS Matlab code available.

References

- [1] P. Zheng, E. Chouzenoux, and L. Duval. PENDANTSS: PEnalized Norm-ratios Disentangling
- Additive Noise, Trend and Sparse Spikes. *IEEE Signal Process. Lett.*, 30, 215–219, 2023.

 [2] X. Ning, I. W. Selesnick, and L. Duval. Chromatogram baseline estimation and denoising using sparsity (BEADS). *Chemometr. Intell. Lab. Syst.*, 139:156–167, Dec. 2014.
- [3] A. Repetti, M. Q. Pham, L. Duval, E. Chouzenoux, and J.-C. Pesquet. Euclid in a taxicab: Sparse blind deconvolution with smoothed ℓ_1/ℓ_2 regularization. *IEEE Signal Process. Lett.*, 22(5):539–543, May 2015.
- [4] A. Cherni, E. Chouzenoux, L. Duval, and J.-C. Pesquet. SPOQ ℓ_p -over- ℓ_q regularization for sparse signal recovery applied to mass spectrometry. *IEEE Trans. Signal Process.*, 68, 6070–6084, 2020.
- [5] E. Chouzenoux, J.-C. Pesquet, and A. Repetti, A block coordinate variable metric forward-backward algorithm. *J. Glob. Optim.*, 66, 457-485, 2016.
- [6] V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert. Background removal from spectra by designing and minimising a non-quadratic cost function, *Chemometr. Intell. Lab. Syst.*, vol. 76, no. 2, pp. 121-133, 2005

Support: European Research Council Starting Grant MAJORIS ERC-2019-STG-850925.

Github code

PENDANTSS Tunes (YouTube)