# GPU-Accelerated Deep Neural Networks in TMVA

Simon Pfreundschuh

Supervisors: Sergei V. Gleyzer, Lorenzo Moneta





#### **Outline**

Introduction

Implementation

**Verification and Testing** 

**Performance** 

Application to the Higgs Dataset

**Summary and Future Outlook** 

Acknowledgments

### Introduction

#### Motivation

- Deep learning techniques have been revolutionizing the field of machine learning.
- Their success is closely related to the development of massively parallel accelerator devices, which allow for efficient training of machine learning models.
- Deep learning techniques have successfully been applied to problems in HEP<sup>1</sup>.

#### **Motivation**

- Deep learning techniques have been revolutionizing the field of machine learning.
- Their success is closely related to the development of massively parallel accelerator devices, which allow for efficient training of machine learning models.
- Deep learning techniques have successfully been applied to problems in HEP<sup>1</sup>.

#### Aim

Provide an efficient and easy-to-use implementation of deep neural networks for the HEP community.

#### **TMVA**

- Toolkit for Multivariate Data Analysis with ROOT
- Root-integrated machine learning (ML) environment providing a training and test framework for a large number of ML methods.

















- A feed forward neural network is defined by a set of layers  $l=1,\ldots,n$ , each with an associated weight matrix  $\mathbf{W}_{l}$ , bias terms  $\theta_{l}$  and activation function  $f_{l}$ .
- Feed forward: Neurons of a given layer / are only connected to neurons of the layer / + 1
- A neural network may be viewed as a function

$$F(\mathbf{x}, \mathbf{W}, \boldsymbol{\theta}) = f_n \left( f_{n-1}(\cdots) \mathbf{W}_{n-1}^T + \boldsymbol{\theta}_{n-2} \right) \mathbf{W}_n^T + \boldsymbol{\theta}_n \quad (1)$$

- A feed forward neural network is defined by a set of layers  $l=1,\ldots,n$ , each with an associated weight matrix  $\mathbf{W}_{l}$ , bias terms  $\theta_{l}$  and activation function  $f_{l}$ .
- Feed forward: Neurons of a given layer / are only connected to neurons of the layer / + 1
- A neural network may be viewed as a function

$$F(\mathbf{x}, \mathbf{W}, \boldsymbol{\theta}) = f_n \left( f_{n-1}(\cdots) \mathbf{W}_{n-1}^T + \boldsymbol{\theta}_{n-2} \right) \mathbf{W}_n^T + \boldsymbol{\theta}_n \qquad (1)$$

• Machine Learning: Find parameters  $\hat{\mathbf{W}}$ ,  $\hat{\boldsymbol{\theta}}$  so that  $F(\mathbf{x}) = F(\mathbf{x}, \hat{\mathbf{W}}, \hat{\boldsymbol{\theta}})$  approximates either a target function  $G(\mathbf{x})$  (Regression) or a likelihood measure for a given class (Classification).

### **Neural Network Training**

- Supervised learning: The network is trained using a training set consisting of inputs  $\mathcal{X} = \mathbf{x}_0, \dots, \mathbf{x}_n$  and outputs  $\mathcal{Y} = y_0, \dots, y_n$ .
- The **loss function** or **error function**  $J(y, \hat{y})$  quantifies the quality of a prediction  $\hat{y}$  with respect to the expected output y.
- Learning as a minimization problem:

minimize 
$$J_{\mathcal{X}} = \frac{1}{n} \sum_{\mathbf{x}} J(y, \hat{y})$$
 (2)

### **Neural Network Training (Contd.)**

• Use gradient-based minimization methods to minimize the error  $\sum_{\mathbf{x} \in \mathcal{X}} J(y, \hat{y})$  over the training set:

$$\mathbf{W} \leftarrow \mathbf{W} - \alpha \frac{dJ_{\chi}}{d\mathbf{W}} \tag{3}$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \frac{dJ_{\mathcal{X}}}{d\boldsymbol{\theta}} \tag{4}$$

- Batch gradient descent: Instead of the whole training set, compute the gradient only for a small subset of it.
- Crucial for scalable training on large data sets.

#### Forward Propagation:

$$\mathbf{U}_{n} = f_{n} \left( \mathbf{U}_{n-1} \mathbf{W}_{n} + \boldsymbol{\theta}^{T} \right) \tag{5}$$

$$\mathbf{f}_{n}' = f_{n}' \left( \mathbf{U}_{n-1} \mathbf{W}_{n} + \boldsymbol{\theta}^{T} \right) \tag{6}$$

#### **Backward Propagation:**

$$\frac{dJ_{\mathcal{X}}}{d\mathbf{W}_{n}} = \left(\mathbf{f}_{n}' \odot \frac{dJ_{\mathcal{X}}}{d\mathbf{U}_{n}}\right)^{T} \mathbf{U}_{n-1} \tag{7}$$

$$\frac{dJ_{\mathcal{X}}}{d\theta_n} = \left(\mathbf{f}_n' \odot \frac{dJ_{\mathcal{X}}}{d\mathbf{U}_n}\right)^T \mathbf{1} \tag{8}$$

$$\frac{dJ_{\mathcal{X}}}{d\mathbf{U}_{n-1}} = \left(\mathbf{f}_n' \odot \frac{dJ_{\mathcal{X}}}{d\mathbf{U}_n}\right) \mathbf{W}_n \tag{9}$$

$$x_{0,0} \dots x_{0,m}$$
 $x_{1,0} \dots x_{1,m}$ 
 $\vdots \qquad \vdots$ 
 $x_{n,0} \dots x_{n,m}$ 

















$$\mathbf{U}_{1} = f_{1} \left( \mathbf{X} \mathbf{W}_{1}^{T} + \boldsymbol{\theta}_{1} \right) \quad \mathbf{U}_{2} = f_{2} \left( \mathbf{U}_{1} \mathbf{W}_{2}^{T} + \boldsymbol{\theta}_{2} \right)$$

$$\begin{bmatrix} x_{0,0} & \dots & x_{0,m} \\ x_{1,0} & \dots & x_{1,m} \\ \vdots & & \vdots \\ x_{n,0} & \dots & x_{n,m} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{W}_{1} \\ \frac{J_{X}}{d\mathbf{U}_{1}} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{W}_{2} \\ \frac{J_{X}}{d\mathbf{W}_{2}} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{W}_{2} \\ \frac{J_{X}}{d\mathbf{W}_{2}} \end{bmatrix}$$

$$\begin{bmatrix} \frac{J_{X}}{d\mathbf{W}_{2}} \end{bmatrix}$$

 $J_{\mathcal{X}}(\mathbf{y}, \hat{\mathbf{y}})$ 



 $\frac{dJ_{\mathcal{X}}}{d\mathbf{U}_{1}} = \left(\mathbf{f}_{2}' \odot \frac{dJ_{\mathcal{X}}}{d\mathbf{U}_{2}}\right) \mathbf{W}_{2}$ 





$$\mathbf{U}_1 = f_1 \left( \mathbf{X} \mathbf{W}_1^T + \boldsymbol{\theta}_1 \right) \quad \mathbf{U}_2 = f_2 \left( \mathbf{U}_1 \mathbf{W}_2^T + \boldsymbol{\theta}_2 \right)$$

$$\begin{bmatrix} x_{0,0} & \dots & x_{0,m} \\ x_{1,0} & \dots & x_{1,m} \\ \vdots & & \vdots \\ x_{n,0} & \dots & x_{n,m} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{W}_1 \\ \frac{J_X}{d\mathbf{W}_1} \end{bmatrix}$$

$$\theta_1 \\ \frac{J_X}{d\boldsymbol{\theta}_1}$$

 $\frac{dJ_{\mathcal{X}}}{d\boldsymbol{\theta}_{1}} = \left(\mathbf{f}_{1}^{\prime} \odot \frac{dJ_{\mathcal{X}}}{d\mathbf{U}_{1}}\right)^{T} \mathbf{1}$ 

### **Implementation**

- The backpropagation algorithm can be decomposed into primitive operations on matrices:
  - Matrix multiplication and addition
  - Application of activation functions
  - Computing of loss and regularization functionals
- General formulation of the backpropagation algorithm using those primitive matrix operations
- Optimized matrix operations provided by specialized low-level implementations

Low-level Interface





14/39



14/39







#### The Low-Level Interface:

- Implemented by architecture classes: TCuda, TCpu, TOpenCL
- Architecture classes provide matrix and scalar types as well as host and device buffer types

#### The Object Oriented Model:

- Generic neural network implementation: Classes are templated by architecture class.
- The TNet class provides a general implementation of the backpropagation algorithm.
- The TDataLoader takes care of the streaming of data to the device.

## **Dependencies**

#### **CPU Implementation**:

- BLAS: quasi-standard, various optimized open source implementations available, possibility to link against vendor provided implementations when available
- TBB: Considered using Root's ThreadPool, but lacks block range functionality

## **Dependencies**

#### **CPU** Implementation:

- BLAS: quasi-standard, various optimized open source implementations available, possibility to link against vendor provided implementations when available
- TBB: Considered using Root's ThreadPool, but lacks block range functionality

#### **CUDA** Implementation:

 cuBLAS and cuRAND freely available as part of the CUDA Toolkit

## **Dependencies**

#### **OpenCL Implementation:**

- clBLAS: Part of the open-source clMath
- clRNG: Also part of the clMath libraries
- Encountered portability problems with the cIRNG library.

# **Verification and Testing**

### Verification

- The code includes a reference low-level implementation based on Root's TMatrix class.
- Backpropagation algorithm verified using numerical differentiation.
- Generic unit test for all routines in the low-level interface based on the reference implementation.
- Training routines verified by learning full-rank linear mappings.

### **Performance**

### **Performance Model**

Consider a layer l with  $n_l$  neurons,  $n_{l-1}$  input neurons and a batch size of  $n_b$ .

#### Forward Propagation:

• Multiplication of weight matrix  $\mathbf{W}_I$  with activation gradients:

$$n_{l}n_{b}(2n_{l-1}-1)$$
 FLOP

• Addition of bias terms  $\theta_I$ :

• Application of activation function  $f_l$  and its derivatives:

$$2n_In_bc_f$$
 FLOP,  $c_f\approx 1$ 

### **Performance Model**

Consider a layer l with  $n_l$  neurons,  $n_{l-1}$  input neurons and a batch size of  $n_b$ .

#### **Backward Propagation**

• Hadamard product:

Computation of previous layer activations:

$$n_{l-1}n_b(2n_l-1)$$
 FLOP

• Computation of weight and bias gradients:

$$n_{l-1}n_l(2n_b-1)+n_l(n_b-1)$$
 FLOP

### **Performance Model**

Consider a layer l with  $n_l$  neurons,  $n_{l-1}$  input neurons and a batch size of  $n_b$ .

#### Total:

$$\sum_{l} 6n_{l}n_{b}n_{l-1} + 4n_{l}n_{b} - n_{l}(n_{l-1}+1) - n_{b}n_{l-1}$$

• Terms involving  $n_l n_b n_{l-1}$  dominate complexity for the *hidden* layers.

#### **Benchmarks**

- Training Data:
  - Randomly generated data from a linear mapping  $\mathbb{R}^{20} \to \mathbb{R}$
  - 10<sup>5</sup> input samples
- Network structure:
  - 5 hidden layers with 256 neurons
  - tanh activation functions
  - Squared error loss
- Computation of the numerical throughput based on the time elapsed for performing 10 training epochs.

**Implementation**: Multithreaded OpenBLAS and TBB **Hardware**: Intel Xeon E5-2650,  $8 \times 4$  cores, 2 *GHz*, estimated peak performance per core: 16 GFLOP/s



**Network**: 20 input nodes, 5 hidden layers with  $n_h$  nodes each, squared error loss

Hardware: NVIDIA Tesla K20, 1.17 TFLOP/s peak performance

(double)



### **Optimization:**

- Use compute streams to expose more parallelism to the device.
- Compute gradients for multiple batches in parallel.

#### **Optimization:**

- Use compute streams to expose more parallelism to the device.
- Compute gradients for multiple batches in parallel.
- Using 2 streams:



#### **Optimization:**

- Use compute streams to expose more parallelism to the device.
- Compute gradients for multiple batches in parallel.
- Using 4 streams:



**Network**: 20 input nodes, 5 hidden layers with 256 nodes each, squared error loss

Hardware: NVIDIA Tesla K20, 1.17 TFLOP/s peak performance

(double)



### **OpenCL Performance**

**Network**: 20 input nodes, 5 hidden layers with 256 nodes each,

squared error loss

Hardware: AMD FirePro W8100, 2.1 TFLOP/s peak performance

(double)



## **Summary**

**Network**: 20 input nodes, 5 hidden layers with 256 nodes each, squared error loss



# **Application to the Higgs Dataset**

## The Higgs Dataset

Signal Process:

$$gg \rightarrow H^0 \rightarrow W^{\pm}H^{\mp} \rightarrow W^{\pm}W^{\mp}h^0 \rightarrow W^{\pm}W^{\mp}b\bar{b}$$

• Background Process:

$$gg 
ightarrow t ar{t} 
ightarrow W^{\pm} W^{\mp} b ar{b}$$

<sup>&</sup>lt;sup>1</sup>See http://arxiv.org/pdf/1402.4735v2.pdf

## The Higgs Dataset

Signal Process:

$$gg 
ightarrow H^0 
ightarrow W^\pm H^\mp 
ightarrow W^\pm W^\mp h^0 
ightarrow W^\pm W^\mp b ar{b}$$

• Background Process:

$$gg o t ar t o W^\pm W^\mp b ar b$$

- 21 **low-level features**: Momenta of one lepton and the four jets, jet b-tagging information, missing transverse momentum
- 7 high-level features: Derived invariant masses of intermediate decay products
- Dataset consisting of 11 million simulated collision events

<sup>&</sup>lt;sup>1</sup>See http://arxiv.org/pdf/1402.4735v2.pdf

## Shallow vs. Deep Networks

- **Shallow Network**: 1 hidden layer with 256 neurons and *tanh* activation function and cross entropy loss
- **Deep Network**: 5 hidden layers with 256 neurons and *tanh* activation function and cross entropy loss
- Both networks trained once using only low-level features and once using both high-level and low-level features.

### **Shallow vs. Deep Networks**





## Deep Networks vs. BDT

- **Deep Network**: 5 hidden layers with 256 neurons and *tanh* activation function and cross entropy loss
- Boosted Decision Trees: 1000 Trees, maximum depth 3
- Both classifiers trained on low- and high-level features

| Method | Training Time [h] | Area under ROC Curve |
|--------|-------------------|----------------------|
| BDT    | 4.78 h            | 0.806                |
| DNN    | 1.46 h            | 0.876                |

## Deep Networks vs. BDT





# **Summary and Future Outlook**

#### Results

- Testing and debugging of the prototype implementation of deep neural networks in TMVA.
- Production-ready implementation of parallel training of deep neural networks on CPUs and CUDA-capable GPUs.
- Reproduced Higgs benchmark results.

#### **Future Outlook**

- Near Future:
  - Integration of the CPU and CUDA
  - Finish OpenCL implementation
- Analyze performance on different architectures
- Extend neural network functionality: batch normalization, activation functions, AdaGrad, ...

# Acknowledgments

## Acknowledgments

- Project carried out at CERN within the Google Summer of Code program
- Supervisors: Sergei V. Gleyzer, Lorenzo Moneta





# Acknowledgments

- Project carried out at CERN within the Google Summer of Code program
- Supervisors: Sergei V. Gleyzer, Lorenzo Moneta

# Thank You!



