

Boosted Imaginary Time Evolution of Matrix Product States

Benjamin C. B. Symons, Dilhan Manawadu, David Galvin, and Stefano Mensa

The Hartree Centre, STFC, Sci-Tech Daresbury, Warrington WA4 4AD, United Kingdom

Imaginary Time Evolution

• Given a Hamiltonian $\hat{H}|\phi_n\rangle=E_n|\phi_n\rangle$, Imaginary Time Evolution (ITE) finds its ground state $|\phi_0\rangle$ by applying the non-unitary operator $\hat{T}=e^{-\hat{H}\tau}$ on some state $|s\rangle=\sum_{i}\alpha_{i}|\phi_{i}\rangle$,

$$|\psi(\tau)\rangle = N(\tau)e^{-H\tau}|s\rangle = N(\tau)\sum_{j}e^{-E_{j}\tau}\alpha_{j}|\varphi_{j}\rangle\,,$$

where $N(\tau)$ is a normalisation constant.

• If $\langle s|\varphi_0\rangle \neq 0$, $\frac{e^{-E_j\emptyset}a_{j\neq 0}}{e^{-E_0\emptyset}a_0}$ decays exponentially with time, and therefore $\tau\to\infty$, $|\psi(\tau)\rangle\to|\varphi_0\rangle$

Boosted Imaginary Time Evolution (BITE) in 2D

Performing ITE for $\Delta \tau$ on $|s\rangle$ gives

$$|t\rangle = N(\Delta \tau) \left(e^{-E_0 \Delta \tau} |\phi_0\rangle + e^{-E_1 \Delta \tau} |\phi_1\rangle \right).$$

BITE Reflection Operator

Defining the BITE reflection operator $\hat{R}(|\nu\rangle)=2\left|\nu\right\rangle\left\langle \nu\right|-\hat{I},$

the n^{th} reflected state, $n\in\mathbb{N},$ is given by

$$|\mathbf{r}_{n}
angle = \hat{R}(|\mathbf{r}_{n-1}
angle)\,|\mathbf{r}_{n-2}
angle$$
 ,

where $|r_0\rangle = |t\rangle$.

Figure 1: The state $|r_1\rangle$ is produced by reflecting $|s\rangle$ about $|t\rangle$. The state $|r_2\rangle$ is produced by reflecting $|t\rangle$ about $|r_1\rangle$.

Efficient boosting

 $|r_n\rangle$ is given by the recurrence relation

$$|r_{n}\rangle = 2 \langle r_{n-1}|r_{n-2}\rangle |r_{n-1}\rangle - |r_{n-2}\rangle = 2 \langle t|s\rangle |r_{n-1}\rangle - |r_{n-2}\rangle.$$

As $|r_n\rangle$ is in the plane spanned by $|s\rangle$ and $|t\rangle$, one can write

$$|\mathbf{r}_{n}\rangle = \alpha_{n} |\mathbf{t}\rangle + \beta_{n} |\mathbf{s}\rangle$$

with the recurrence relations

$$\alpha_n=2\left\langle t|s\right
angle \, lpha_{n-1}-lpha_{n-2}$$
, and $eta_n=-lpha_{n-1}$,

with the initial conditions $\alpha_{-1}=0$ and $\alpha_0=1$. It follows that the homogeneous recurrence relation for $|r_n\rangle$ has the close form expression

$$|\mathbf{r}_{\mathrm{n}}\rangle = \frac{1}{\sin(\theta)} \left(\sin((\mathbf{n}+1)\theta) |\mathbf{t}\rangle - \sin(\mathbf{n}\theta) |\mathbf{s}\rangle \right),$$

where $cos(\theta) = \langle t|s \rangle$.

Stop criterion

Energy of the n^{th} reflected state $|r_n\rangle$ is

$$E_n = \alpha_n^2 E_t + \alpha_{n-1}^2 E_i - 2\alpha_n \alpha_{n-1} E_{it}$$

where $E_t = \langle t | \hat{H} | t \rangle$, $E_s = \langle s | \hat{H} | s \rangle$ and $E_{st} = \langle s | \hat{H} | t \rangle$.

 E_n is calculated until $E_{n+1} > E_n$, and $|r_n\rangle$ is found using the closed form expression.

BITE algorithm

- Imaginary time evolve an initial state $|s\rangle$ by a single step $\Delta \tau$ to produce a state $|t\rangle$.
- Calculate the overlap $\langle t|s\rangle$ and the terms E_t , E_s and E_{st} and the series of energies $E_n < E_{n+1}$. Compute the corresponding state $|r_n\rangle$.
- Imaginary time evolve $|r_n\rangle$ by a single step to produce a new initial state $|s'\rangle$, and by two steps to produce a new evolved state $|t'\rangle$.
- Repeat steps 1-3 using the new states $|s'\rangle$ and $|t'\rangle$ as the initial states until the energy converges.

BITE in 3D

Figure 2: A visualisation of BITE in a norm conserving 3D Hilbert space. The blue vector represents the initial state $|s\rangle$ and the red curve is a trajectory resulting from imaginary time evolution. BITE can access any state on the the black great circle spanned by $|s\rangle$ and $|t\rangle$ (not shown).

Results

As a test case, we use the transverse field Ising model on a 1D spin chain given by

$$\hat{H} = -J \sum_{i,j} X_i X_j - g \sum_i Z_i,$$

with n = 100 sites, open boundary conditions, J = 0.5 and g = 1.5, $\Delta \tau = 0.001$.

Figure 3: The energy per site of the MPS vs run time for ITE and the BITE algorithms. Dashed black line is the DMRG energy.

Figure 4: Average and maximum bond dimension at each point in the BITE and ITE calculations. $\chi_{\alpha\nu}$ is averaged over all matrices in the MPS.

Results

Table 1: Run time, maximum and average (over the entire calculation) bond dimension and fidelity of the final state with the ground state for various time step sizes.

<u> </u>	Method	Δτ	t_r	χ_{max}	Xav	$ \langle \phi_0 \psi \rangle ^2$
	ITE	0.001	1042	6	4.1	0.953
	BITE	0.001	521	17	10.2	0.998
	ITE	0.005	204	7	4.5	0.956
	BITE	0.005	156	16	6.3	0.959
	ITE	0.01	105	7	4.8	0.960
	BITE	0.01	79	16	5.8	0.957

Conclusions

- Here we present a novel quantum-inspired classical algorithm that has the potential to speed-up the convergence of imaginary time evolution of matrix product states.
- to a ground state.
 We have presented a proof-of-concept demonstration of the method applied to the 1D transverse field Ising model with open boundary conditions.
- In this work we have focused on the 1D case where DMRG is typically a better method than ITE. However, it may be possible to extend the BITE method to 2D where the use of imaginary time evolution is more prevalent.

Acknowledgements

This work was supported by the Hartree National Centre for Digital Innovation, a UK Government-funded collaboration between STFC and IBM.