EP 3.2

INTEGRALA DUBLĂ. CALCULAREA INTEGRALEI DUBLE. SCHIMBUL DE VARIABILĂ ÎN INTEGRALA DUBLĂ

I. Să se calculeze integralele iterate

1)
$$\int_{2}^{4} dx \int_{0}^{x^{2}} x dy$$
;

2)
$$\int_{2}^{6} dx \int_{0}^{x} \frac{y}{x} dy;$$

$$3)\int_{1}^{3}dy\int_{0}^{\sqrt{y}}\sqrt{y}dx;$$

4)
$$\int_{1}^{2} dy \int_{0}^{y^{3}} \frac{4}{y^{5}} dx$$
;

$$5) \int_1^5 dy \int_0^{\sqrt{y}} xy dx;$$

6)
$$\int_{1}^{\frac{\pi}{2}} dx \int_{0}^{x} \cos(x+y) dy$$
;

7)
$$\int_{-1}^{1} dy \int_{2y}^{y} (x-y)e^{y} dx$$
;

8)
$$\int_0^{\frac{\pi}{2}} d\varphi \int_1^{\cos\varphi} r \sin\varphi \ln r dr;$$

9)
$$\int_0^1 dx \int_0^1 \frac{x^2 dy}{1+y^2}$$
;

$$10) \int_0^{2\pi} d\varphi \int_{a\sin\varphi}^a \rho d\rho.$$

II. Să se schimbe ordinea de integrare în integralele iterate; să se reprezinte domeniul:

1)
$$\int_{0}^{2} dx \int_{0}^{x} f(x, y) dy$$
;

2)
$$\int_0^4 dx \int_{3x^2}^{12x} f(x, y) dy$$
;

3)
$$\int_0^1 dy \int_0^{y^2+y} f(x,y) dx$$
;

4)
$$\int_0^1 dy \int_{-\sqrt{1-y^2}}^{1-y} f(x,y) dx$$
;

5)
$$\int_{3}^{6} dx \int_{0}^{\sqrt{12x-x^2}} f(x,y) dy;$$

6)
$$\int_{0}^{\frac{R\sqrt{2}}{2}} dx \int_{0}^{x} f dy + \int_{\frac{R\sqrt{2}}{2}}^{R} dx \int_{0}^{\sqrt{R^{2}-x^{2}}} f dy 7$$
)

$$\int_{1}^{2} dx \int_{\ln x}^{3x} f(x, y) dy;$$

8)
$$\int_{\frac{\pi}{4}}^{\pi} dx \int_{\cos x}^{\sin x} f(x, y) dy;$$

9)
$$\int_{-1}^{1} dx \int_{x^2}^{2x^2-1} f(x, y) dy$$
;

10)
$$\int_0^2 dx \int_{\sqrt{2x-x^2}}^{2\sqrt{x}} f(x,y)dy$$
.

III. Să se calculeze integralele duble pe domeniul D, mărginit de liniile indicate:

1)
$$\iint_D xydxdy; \quad D: y = x^2, \ y^2 = x$$

2)
$$\iint_D x^2 y dx dy$$
, $D: y = x^2$, $y = 4$

EP 3.2

INTEGRALA DUBLĂ. CALCULAREA INTEGRALEI DUBLE. SCHIMBUL DE VARIABILĂ ÎN INTEGRALA DUBLĂ

3)
$$\iint_D y^2 x dx dy, \ D: x^2 + y^2 = 4, \ x + y - 2 = 0$$

4)
$$\iint_D (xy + y) dxdy$$
, $D: 0 \le y \le 1$, $y \le x \le 2 - y$

5)
$$\iint_{\Omega} e^{x+y} dxdy$$
, $D: y = e^x$, $x = 0$, $y = 2$

6)
$$\iint_{D} \sqrt{xy - y^2} dxdy$$
, $D: 1 \le y \le 2$, $y \le x \le 10y$

7)
$$\iint_D (2x+y) dxdy$$
, D este triunghiul cu vârfurile $A(-2,-2)$, $B(-1,2)$, $C(-1,-\frac{3}{2})$

8)
$$\iint_D (x^2 + y^2) dxdy$$
, a) $D: x = \sqrt{2}$, $y = x$, $x^2 + y^2 = 8$,

b)
$$D: y - x$$
, $y = \sqrt{3}x$, $x^2 + y^2 = 8$ $(x \ge 0, y \ge 0)$.

IV. Să se calculeze integralele duble, folosind schimbul de variabilă:

1)
$$\iint_{D} \frac{xdxdy}{\sqrt{x^2 + y^2}}, \ D: x^2 + y^2 = 4, \ x^2 + y^2 = 16, \ x \ge 0, \ y \ge 0$$

2)
$$\iint_D e^{x^2+y^2} dxdy$$
, $D: x^2 + y^2 \le 1$

3)
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
, $D: x^2 + y^2 \le 6x$, $y \ge 0$

4)
$$\iint_{D} \cos \sqrt{x^2 + y^2} dx dy, \ D: \frac{\pi^2}{4} \le x^2 + y^2 \le 4\pi^2$$

5)
$$\iint_{D} \sqrt{25 - x^2 - y^2} dx dy, \ D: x^2 + y^2 \le 9$$

6)
$$\iint_{D} (x^2 + y^2) dx dy, \ D: (x^2 + y^2)^2 = a^2 (x^2 - y^2), \ y = 0, \ (x > 0, \ y > 0)$$

INTEGRALA DUBLĂ. CALCULAREA INTEGRALEI DUBLE. SCHIMBUL DE VARIABILĂ ÎN INTEGRALA DUBLĂ

7)
$$\iint_D xy dx dy$$
, $D: (x^2 + y^2)^2 = 2a^2 xy$

8)
$$\iint_{D} \sqrt{25 - \frac{x^2}{16} - \frac{4^2}{25}} dx dy, D : \frac{x^2}{16} + \frac{4^2}{25} = 1$$

9)
$$\iint_D dxdy$$
, $D: x^2 + y^2 - 4x = 0$, $x^2 + y^2 - 6x = 0$, $y = 0$, $y = x$

10)
$$\iint_D xydxdy$$
, $D: y = x^3$, $y = 2x^3$, $y^2 = 2x$, $y^2 = 3x$

11)
$$\iint_D (x^2 + y^2) dxdy$$
, $D: xy = 1$, $xy = 2$, $y = 2x$, $y = 5x$, $x \ge 0$, $y \ge 0$

12)
$$\iint_D \sqrt{xy} dxdy$$
, $D: xy = 1$, $xy = 3$, $y^2 = x$, $y^2 = 2x$

V. Să se calculeze ariile domeniilor, mărginite de liniile:

1)
$$y = x$$
, $y = x^2$

2)
$$y = x^2 + 1$$
, $x - y + 3 = 0$

3)
$$y = x$$
, $y = 3x$, $x = 2$

4)
$$y = 2x^2 - 2x$$
, $y = -x^2 + 1$

5)
$$x = 4 - y^2$$
, $x + y - 4 = 0$

6)
$$x^2 + y^2 + 4y = 0$$
, $x^2 + y^2 + 2y = 0$

7)
$$x^2 + y^2 = 16$$
, $x^2 + y^2 - 8x = 0$, $y = 0$

8)
$$x^2 + y^2 + 4x = 0$$
, $x^2 + y^2 + 4y = 0$

9)
$$x^4 + y^4 = 2a^2xy$$

10)
$$xy = 2$$
, $xy = 3$, $y = 3x$, $y = 5x$

VI. Să se calculeze volumul corpurilor mărginite de suprafețele:

1)
$$x + 2y - z = 0$$
, $x - 2y + 5 = 0$, $2x + 3y - 18 = 0$, $z = 0$

2)
$$z = 16 - x^2 - y^2$$
, $x = \pm 3$, $y = \pm 3$, $z = 0$

3)
$$y = x^2$$
, $x = y^2$, $z = 12 + y - x^2$

4)
$$z = \sqrt{x^2 + y^2}$$
, $x^2 + y^2 = 4$, $z = 0$

5)
$$z = x^2 + y^2$$
, $x^2 + y^2 = a^2$, $z = 0$