

Sincronização de semáforos baseado em NTP

Estudante 1 - André de Azevedo Barata Estudante 2 — Diogo Vilela

Docentes – Luís Almeida, Pedro Souto Sistemas Distribuídos -FEUP

1 0 PROBLEMA Descrição do objetivo do projeto 4 IMPLEMENTAÇÃO
Métodos e tecnologias
utilizados

2. SOLUÇÃO Atuais soluções e solução proposta

5 RESULTADOS
Resultados da solução proposta

3. SISTEMA
Descrição da arquitetura do sistema

6. CONCLUSÕES

Análise global do projeto

O Problema

- O tráfico horizontal ou vertical.
- Garantir que as transições estão sincronizadas.
- Garantir a durabilidade da sincronização
- Intervalo Mínimo entre início do trafico horizontal e fim do vertical

SOLUÇÃO

Solução atuais:

- Tempo Fixo
 - Mudança da cores baseada em ciclos de tempo.
 - Sincronização for feita é através de GPS.
 - Semáforos partilham o seu estado.
- Smart/Sensor Traffic Lights
 - Alterações no campo magnético, ou através de câmaras.
 - Controlam o fluxo do trânsito.
 - Semáforos partilham o seu estado

SOLUÇÃO (cont.)

Offset:
$$\theta = \frac{((t_1 - t_0) + (t_2 - t_3))}{2}$$

Delay:
$$\delta = \frac{(t_3 - t_0) - (t_2 - t_1)}{2}$$

Rate:
$$\rho = \left| \frac{t'_1 - t_1}{t'_3 - t_3} \right|$$

Sistema

Material:

- 2x Raspberry Pi 4.
- 1x Computador com Hotspot.
- 4x Leds.
- 4x Resistências.
- Python3.
- Matlab.

Servidor NTP

IMPLEMENTAÇÃO

Metodologia e Experiências

- Influência do Jitter na correção:
 - o 1º caso Correção sem considerar o delay da rede
 - o 2º caso Correção considerando o delay da rede.
- Três experiências para cada caso:
 - Correção de offset e rate.
 - o Correção de rate.
 - Sem correção.

_						
<u> </u>	Experiência/C aso	Servidor 1; T = 5 s	Servidor 2; T = 5 s	Servidor 3; T = 5 s	Servidor 2 T = 5 s	Servidor 2 T = 15 s
_	Correção offset	30 min	2 H	2 H	X	X
	Correção Rate + offset	30 min	3 H	8 H	x	X
_	Sem corrreção	X	10 H	X	X	X
	Correção Rate + offset + delay	Х	5 H	X	X	X

RESULTADOS

1° Caso – não considerando o delay da rede, em pool.ntp.org

	Correção Rate (s)	Correção Rate + Offset (s)
Diferença média entre slots	0.556742	0.024378
Differença máxima entre slots	7.454000	0.359000
Jitter	1.349493	1.124017

1° Caso – Não considerando o delay da rede, em ntp0.ntp-server.net:

	Correção Rate (s)	Correção Rate + Offset (s)	Sem Correção (s)
Diferença média entre slots	0.028485	0.025226	0.002969
Differença máxima entre slots	0.265000	0.828000	0.062000
Jitter	0.128130	0.098250	-

1° Caso – Não considerando o delay da rede, em ponto de acesso

	Correção Rate (s)	Correção Rate + Offset (s)	Sem Correção (s)
Diferença média entre slots	-	0.734000	-
Differença máxima entre slots	-	0.828000	-
Jitter	-	0.183597	-

2° Caso – Considerando o delay da rede, em ntp0.ntp-server.net

	Correção Rate (s)	Correção Rate + Offset (s)	Sem Correção (s)
Diferença média entre slots	-	0.011757	0.002969
Differença máxima entre slots	-	0.188000	0.062000
Jitter	-	0.210220	-

Influência da compensação de delay

Analise dos servidores

- Pool.ntp.org
 - o Baixo delay (50ms).
 - Baixa disponibilidade.
 - o Alto Jitter.
- Ntp0.ntp-servers.net
 - o Alto delay (100 ms)
 - Alta disponibilidade
 - o Baixo Jitter

Analise dos servidores

- PC como servidor NTP:
 - o Baixo delay (10ms).
 - Alta disponibilidade.
 - o Alto Jitter

CONCLUSÕES

- Relógios das raspberry Pi muito semelhantes.
- Para baixos periodos de tempo (dias), a sincronização não se justifica.
- Compensar as variações do delay melhor a sincronização.
- Jitter degrada a sincronização.
- + 34 horas de simulações
- Divisão do trabalho 50% para cada elemento.

1 - Imagem da capa

https://www.reddit.com/ media?url=https%3A%2 F%2Fi.redd.it%2Fsuql1q3 heoq11.jpg 2 - Video da interseção

https://www.youtube.co m/watch?v=ZaX9Q6nvU K8 3- Template apresentação

https://slidesgo.com/theme/cu stal-project-proposal#search-Dark&position-18&results-1556

OBRIGADO!

Alguma questão?

up201907705@edu.fe.up.pt +351 961800713 M.EEC - FEUP

up201907804@edu.fe.up.pt +351 965735958 M.EEC - FEUP