Exercice 1:

Soit $a \in \left[\frac{1}{2}, +\infty\right[$ et $(u_n)_{n \in \mathbb{N}}$ la suite définie par $u_0 = a$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n^2 - u_n + 1$.

Pour tout réel x, on posera $f(x) = x^2 - x + 1$.

- 1. Étudier les variations de f sur $\left[\frac{1}{2}, +\infty\right[$ et montrer que f admet, sur \mathbb{R} , un unique point fixe β que l'on déterminera (on constatera que $\beta \in \left[\frac{1}{2}, +\infty\right[$).
- 2. Que pouvons-nous dire des intervalles $\left[\frac{1}{2},\beta\right]$ et $\left[\beta,+\infty\right[$?
- 3. Écrire une fonction Python prenant a en entrée et représentant sur un graphique les 10 points de coordonnées (k, u_k) pour $k \in [0, 10]$.

Tester cette fonction pour $a \in \left[\frac{1}{2}, \beta\right]$ et pour $a \in [\beta, +\infty[$. Que conjecturer ?

4. Étudier le comportement asymptotique de (u_n) suivant que $a \in \left[\frac{1}{2}, \beta\right]$ ou $a \in [\beta, +\infty[$.

Exercice 2:

Pour tout entier naturel n non nul, on pose

$$u_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$$
 et $v_n = \sum_{k=1}^n \frac{1}{k} - \ln(n+1)$

- 1. Montrer que les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes. On notera désormais γ leur limite commune.
- 2. En déduire que $\sum_{k=1}^{n} \frac{1}{k} \sim \ln(n)$.
- 3. Écrire une fonction Python prenant en entrée un réel $\varepsilon > 0$ et donnant en sortie une valeur approchée de γ à ε près.

Exercice 3:

Soit n un entier naturel non nul et (E_n) l'équation d'inconnue x (où $x \in \mathbb{R}$):

$$x^n + x^2 + 2x - 1 = 0.$$

- 1. Montrer que (E_n) admet une unique solution x_n sur \mathbb{R}_+ .
- 2. Montrer que : $\forall n \in \mathbb{N}^*, x_n \in \left[0, \frac{1}{2}\right]$.
- 3. Étudier la monotonie de $(x_n)_{n\geqslant 1}$ et en déduire que cette suite converge.
- 4. Justifier $\lim_{n\to+\infty} (x_n)^n = 0$. En déduire la valeur de la limite de $(x_n)_{n\geqslant 1}$.