The Notion of Affinity in Semantic Structures

D. Gueorguiev 10/11/2021

Example:

Semantic structure S_1 : "I live in and my name is."

$$ssig(S_1) = [\mathbf{V}_1 \, \mathbf{A}_{1,2} \, \mathbf{V}_2 \, \mathbf{A}_{1,3} \, \mathbf{V}_3 \, \mathbf{A}_{1,4} \, \mathbf{V}_4 \, \mathbf{A}_{4,5} \, \mathbf{V}_5 \, \mathbf{A}_{5,6} \, \mathbf{V}_6 \, \mathbf{A}_{6,7} \, \mathbf{V}_7]$$

 $text(V_1) = "live"$

 $text(V_S)$ = "a car"

 $text(V_T)$ = "Sofia"

 $text(V_P)$ = "Dimitar"

 $text(V_O)$ = "Poison"

We have semantic particles which demonstrate affinity for specific properties. This means the particle attracts unconnected V-particles with specific combination of properties in their signature. It also demonstrates anti-affinity i.e. repels unconnected V-particles which have different combination of properties in their signature.

Affinity field of the semantic structure S – a discrete field which defines affinity / anti-affinity force $F(V_i)$ between the particle V_i of the semantic structure S and a test particle $V_t(\mathfrak{T}_P)$

 $F(V_i, V_t) = F_i(\mathfrak{T}_P), i \in \mathbb{V}(S)$

 $\mathbb{v}(S)$ denotes the set of indices of the V-particles in the semantic structure S

 \mathfrak{T}_P is the property tree $ptree(V_t)$ of the test particle V_t . We will assume general form of \mathfrak{T}_P .

The affinity force $F_i(\mathfrak{T}_P)$ is a function that maps the property tree \mathfrak{T}_P to a signed real number. The function $F_i(\mathfrak{T}_P)$ identifies specific features of the property tree such as the presence of specific subtree of \mathfrak{T}_P or a specific set of properties toward which V_i has strong affinity (attraction). Note that F_i has implicit dependence on the semantic structure S as well which is in a context different than S F_i could have different values for the same \mathfrak{T}_P .

To illustrate how to model the affinity field let us draw an example of a semantic structure S which consists of three particles V_k , V_l and V_m . We would like to estimate the affinity field of the structure S for a test particle V_t .

Affinity Frequency Spectrum