Pochodna funkcji

Zastosowania

Niektóre zastosowania pochodnych

- O Pochodna jako narzędzie do przybliżania wartości
- Pochodna jako narzędzie do obliczania granic
- Opochodna jako narzędzie optymalizacyjne
- Pochodna jako narzędzie do badania funkcji

Pochodna właściwa funkcji y = f(x) w punkcie x_0

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

 $f'(x_0)$ jest współczynnikiem kierunkowym **stycznej do krzywej** w punkcie $(x_0, f(x_0))$.

4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 6 m b

Pochodna właściwa funkcji y = f(x) w punkcie x_0

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

 $f'(x_0)$ jest współczynnikiem kierunkowym **stycznej do krzywej** w punkcie $(x_0, f(x_0))$.

 \bullet Załóżmy, że fjest różniczkowalna w przedziale zawierającym x_0

- \bullet Załóżmy, że fjest różniczkowalna w przedziale zawierającym x_0
- Współczynnik kierunkowy stycznej do f w $(x_0, f(x_0))$ to $f'(x_0)$

- \bullet Załóżmy, że fjest różniczkowalna w przedziale zawierającym x_0
- Współczynnik kierunkowy stycznej do f w $(x_0, f(x_0))$ to $f'(x_0)$

Równanie stycznej
$$y = L(x)$$
 w punkcie $x = x_0$

$$L(x) = f(x_0) + f'(x_0)(x - x_0)$$

- \bullet Załóżmy, że fjest różniczkowalna w przedziale zawierającym x_0
- Współczynnik kierunkowy stycznej do $f \le (x_0, f(x_0))$ to $f'(x_0)$

Równanie stycznej y = L(x) w punkcie $x = x_0$

$$L(x) = f(x_0) + f'(x_0)(x - x_0)$$

Wartość funkcji f w pobliżu x_0 przybliżamy używając L

$$f(x) \approx L(x) = f(x_0) + f'(x_0)(x - x_0)$$

$$L(x) = f(x_0) + f'(x_0)(x - x_0)$$

- 4 ロ ト 4 団 ト 4 珪 ト 4 珪 - り Q ()

 \bullet przyrost x

$$\Delta x = dx = x - x_0$$

$$L(x) = f(x_0) + f'(x_0)(x - x_0)$$

◆□▶ ◆□▶ ◆≧▶ ◆差▶ ○差 ○ から○

 \bullet przyrost x

$$\Delta x = dx = x - x_0$$

 \bullet przyrost f

$$\Delta y = f(x) - f(x_0)$$

$$L(x) = f(x_0) + f'(x_0)(x - x_0)$$

 \bullet przyrost x

$$\Delta x = dx = x - x_0$$

 \bullet przyrost f

$$\Delta y = f(x) - f(x_0)$$

 \bullet przyrost L

$$dy = L(x) - L(x_0)$$

$$L(x) = f(x_0) + f'(x_0)(x - x_0)$$

 \bullet przyrost x

$$\Delta x = dx = x - x_0$$

 \bullet przyrost f

$$\Delta y = f(x) - f(x_0)$$

 \bullet przyrost L

$$dy = L(x) - L(x_0)$$

• różniczka funkcji

$$dy = f'(x_0)dx$$

$$L(x) = f(x_0) + f'(x_0)(x - x_0)$$

Jak używamy różniczki funkcji?

Jak używamy różniczki funkcji?

Przybliżanie wartości przy pomocy różniczki

Przybliżona wartość funkcji f w punkcie x jest dana wzorem

$$f(x) \approx f(x_0) + dy$$
, gdzie $dy = f'(x_0)dx$

$$f(x) \approx f(x_0) + f'(x_0)dx$$

$$f(x) \approx f(x_0) + f'(x_0)dx$$

 \bullet Czy możemy znaleźć lepsze przybliżenie f(x)?

$$f(x) \approx f(x_0) + f'(x_0)dx$$

ullet Czy możemy znaleźć lepsze przybliżenie f(x) ?

Wielomian Taylora

Niech funkcja f ma w punkcie x_0 pochodną właściwą rzędu n. Wielomian

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

nazywamy wielomianem Taylora rzędu n funkcji f w punkcie x_0 .

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 釣Q⊙

Pochodna jako narzędzie do przybliżania wartości Wielomian Taylora

Twierdzenie Taylora

Jeżeli f ma ciągłą pochodną rzędu n+1 na przedziałe otwartym zawierającym x_0 , to dla każedgo x z tego przedziału istnieje punkt $c \in (x_0, x)$ (lub $c \in (x, x_0)$) taki, że

$$f(x) = P_n(x) + R_n(x)$$
 (czyli $f(x) \approx P_n(x)$)

Twierdzenie Taylora

Jeżeli f ma ciągłą pochodną rzędu n+1 na przedziałe otwartym zawierającym x_0 , to dla każedgo x z tego przedziału istnieje punkt $c \in (x_0, x)$ (lub $c \in (x, x_0)$) taki, że

$$f(x) = P_n(x) + R_n(x)$$
 (czyli $f(x) \approx P_n(x)$)

gdzie $P_n(x)$ jest wielomianem Taylora rzędu n funkcji f w punkcie x_0 ,

Twierdzenie Taylora

Jeżeli f ma ciągłą pochodną rzędu n+1 na przedziałe otwartym zawierającym x_0 , to dla każedgo x z tego przedziału istnieje punkt $c \in (x_0, x)$ (lub $c \in (x, x_0)$) taki, że

$$f(x) = P_n(x) + R_n(x)$$
 (czyli $f(x) \approx P_n(x)$)

gdzie $P_n(x)$ jest wielomianem Taylora rzędu n funkcji f w punkcie x_0 , a R_n jest $n-\mathbf{t}$ ą resztą

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

Twierdzenie Taylora

Jeżeli f ma ciagła pochodna rzedu n+1 na przedziale otwartym zawierającym x_0 , to dla każedgo x z tego przedziału istnieje punkt $c \in (x_0, x)$ (lub $c \in (x, x_0)$) taki, że

$$f(x) = P_n(x) + R_n(x)$$
 (czyli $f(x) \approx P_n(x)$)

gdzie $P_n(x)$ jest wielomianem Taylora rzędu n funkcji f w punkcie x_0 , a R_n jest n-ta reszta

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

Dla $x_0 = 0$ wielomian $P_n(x)$ nazywamy wielomianem McLaurina.

9/28

4日 × 4周 × 4 至 × 4 至 × 至

Pochodna jako narzędzie do obliczania granic

$$\lim_{x\to 0}\frac{\sin x}{x} = \begin{bmatrix} 0\\0 \end{bmatrix} \quad , \quad \lim_{x\to \infty}\frac{\ln x}{x} = \begin{bmatrix} \infty\\\infty \end{bmatrix} \quad , \quad \lim_{x\to 0}\frac{\cos x - 1}{x} = \begin{bmatrix} 0\\0 \end{bmatrix}$$

Pochodna jako narzędzie do obliczania granic

$$\lim_{x\to 0}\frac{\sin x}{x}=\begin{bmatrix}0\\0\end{bmatrix}\quad,\quad \lim_{x\to \infty}\frac{\ln x}{x}=\begin{bmatrix}\infty\\\infty\end{bmatrix}\quad,\quad \lim_{x\to 0}\frac{\cos x-1}{x}=\begin{bmatrix}0\\0\end{bmatrix}$$

Regula de l'Hopitala

Jeżeli dziedziny funkcji $\frac{f}{g}$ i $\frac{f'}{g'}$ zawierają sąsiedztwo $S(x_0)$ punktu x_0 oraz $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$ lub $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = \pm \infty$, to

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Pochodna jako narzędzie do obliczania granic

$$\lim_{x\to 0}\frac{\sin x}{x}=\begin{bmatrix}0\\0\end{bmatrix}\quad,\quad \lim_{x\to \infty}\frac{\ln x}{x}=\begin{bmatrix}\infty\\\infty\end{bmatrix}\quad,\quad \lim_{x\to 0}\frac{\cos x-1}{x}=\begin{bmatrix}0\\0\end{bmatrix}$$

Regula de l'Hopitala

Jeżeli dziedziny funkcji $\frac{f}{g}$ i $\frac{f'}{g'}$ zawierają sąsiedztwo $S(x_0)$ punktu x_0 oraz $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$ lub $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = \pm \infty$, to

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

o ile granica (właściwa lub niewłaściwa) po prawej stronie równości istnieje.

$$\lim_{x\to 0}\frac{\sin x}{x}=\begin{bmatrix}0\\0\end{bmatrix}\quad,\quad \lim_{x\to \infty}\frac{\ln x}{x}=\begin{bmatrix}\infty\\\infty\end{bmatrix}\quad,\quad \lim_{x\to 0}\frac{\cos x-1}{x}=\begin{bmatrix}0\\0\end{bmatrix}$$

Regula de l'Hopitala

Jeżeli dziedziny funkcji $\frac{f}{g}$ i $\frac{f'}{g'}$ zawierają sąsiedztwo $S(x_0)$ punktu x_0 oraz $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$ lub $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = \pm \infty$, to

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

o ile granica (właściwa lub niewłaściwa) po prawej stronie równości istnieje. Twierdzenie jest również prawdziwe dla $x\to x_0^+,\, x\to x_0^-$ i $x\to\pm\infty.$

$$f(x)g(x) \to [0 \cdot \infty]$$

$$f(x)g(x) \to [0 \cdot \infty]$$
 stosujemy $\frac{f(x)}{\frac{1}{g(x)}} \to \left[\frac{0}{0}\right]$

$$f(x)g(x) \to [0 \cdot \infty]$$
 stosujemy $\frac{f(x)}{\frac{1}{g(x)}} \to \begin{bmatrix} 0\\0 \end{bmatrix}$ lub $\frac{g(x)}{\frac{1}{f(x)}} \to \begin{bmatrix} \infty\\\infty \end{bmatrix}$

$$f(x)g(x) \to [0 \cdot \infty]$$
 stosujemy $\frac{f(x)}{\frac{1}{g(x)}} \to \begin{bmatrix} 0\\ 0 \end{bmatrix}$ lub $\frac{g(x)}{\frac{1}{f(x)}} \to \begin{bmatrix} \infty\\ \infty \end{bmatrix}$

$$f(x) - g(x) \to [\infty - \infty]$$

$$f(x)g(x) \to [0 \cdot \infty]$$
 stosujemy $\frac{f(x)}{\frac{1}{g(x)}} \to \begin{bmatrix} 0\\ 0 \end{bmatrix}$ lub $\frac{g(x)}{\frac{1}{f(x)}} \to \begin{bmatrix} \infty\\ \infty \end{bmatrix}$

$$f(x) - g(x) \to [\infty - \infty]$$
 stosujemy $\frac{\frac{1}{g(x)} - \frac{1}{f(x)}}{\frac{1}{f(x)g(x)}} \to \begin{bmatrix} 0\\ 0 \end{bmatrix}$

$$f(x)g(x) \to [0 \cdot \infty] \qquad \text{stosujemy} \qquad \frac{f(x)}{\frac{1}{g(x)}} \to \begin{bmatrix} \frac{0}{0} \end{bmatrix} \quad \text{lub} \quad \frac{g(x)}{\frac{1}{f(x)}} \to \begin{bmatrix} \frac{\infty}{\infty} \end{bmatrix}$$

$$f(x) - g(x) \to [\infty - \infty] \qquad \text{stosujemy} \qquad \frac{\frac{1}{g(x)} - \frac{1}{f(x)}}{\frac{1}{f(x)g(x)}} \to \begin{bmatrix} \frac{0}{0} \end{bmatrix}$$

$$f(x)^{g(x)} \to \begin{bmatrix} 0^0, \infty^0, 1^\infty \end{bmatrix}$$

$$f(x)g(x) \to [0 \cdot \infty]$$
 stosujemy $\frac{f(x)}{\frac{1}{g(x)}} \to \begin{bmatrix} 0\\ 0 \end{bmatrix}$ lub $\frac{g(x)}{\frac{1}{f(x)}} \to \begin{bmatrix} \frac{\infty}{\infty} \end{bmatrix}$

$$f(x) - g(x) \to [\infty - \infty] \quad \text{stosujemy} \quad \frac{\frac{1}{g(x)} - \frac{1}{f(x)}}{\frac{1}{f(x)}} \to \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

$$f(x)^{g(x)} \to \left[0^0, \infty^0, 1^\infty\right] \qquad \text{stosujemy} \qquad f^g = e^{g \ln f} \to \left[e^{0 \cdot \infty}\right]$$

• Oblicz iloraz pochodnych nie pochodną ilorazu

$$\lim_{x \to a} \frac{f(x)}{g(x)} \neq \lim_{x \to a} \left[\frac{f(x)}{g(x)} \right]'$$

Unikaj błędów w stosowaniu reguły de l'Hopitala

• Oblicz iloraz pochodnych nie pochodną ilorazu

$$\lim_{x \to a} \frac{f(x)}{g(x)} \neq \lim_{x \to a} \left[\frac{f(x)}{g(x)} \right]'$$

• Najpierw upewnij się, że granica z lewej daje symbol nieoznaczony

Unikaj błędów w stosowaniu reguły de l'Hopitala

• Oblicz iloraz pochodnych nie pochodną ilorazu

$$\lim_{x \to a} \frac{f(x)}{g(x)} \neq \lim_{x \to a} \left[\frac{f(x)}{g(x)} \right]'$$

- Najpierw upewnij się, że granica z lewej daje symbol nieoznaczony
- Upewnij się, że granica ilorazu pochodnych istnieje (właściwa lub niewłaściwa)

Unikaj błędów w stosowaniu reguły de l'Hopitala

• Oblicz iloraz pochodnych nie pochodną ilorazu

$$\lim_{x \to a} \frac{f(x)}{g(x)} \neq \lim_{x \to a} \left[\frac{f(x)}{g(x)} \right]'$$

- Najpierw upewnij się, że granica z lewej daje symbol nieoznaczony
- Upewnij się, że granica ilorazu pochodnych istnieje (właściwa lub niewłaściwa)
- \bullet Wielokrotne używanie reguły czasem prowadzi do niekończącego się cyklu \to użyj innych metod

Pochodna jako narzędzie optymalizacyjne

- Jak zmaksymalizować/zminimalizować:
 - zyski i koszty
 - ▶ ilość materiału użytego do produkcji ... czegokolwiek
 - prędkość promu kosmicznego ...
 - ⇒ problemy optymalizacyjne

Pochodna jako narzędzie optymalizacyjne

- Jak zmaksymalizować/zminimalizować:
 - zyski i koszty
 - ilość materiału użytego do produkcji ... czegokolwiek
 - prędkość promu kosmicznego ...
 - ⇒ problemy optymalizacyjne
- W języku matematyki: gdzie dana funkcja osiąga maksymalną/minimalną wartość?

Wartość największa i najmniejsza

Liczba $m \in \mathbb{R}$ jest **minimum absolutnym** funkcji f w zbiorze $A \subset D_f$, jeżeli istnieje taki punkt $x_0 \in A$, że $f(x_0) = m$ oraz dla dowolnego $x \in A$

$$f(x) \ge m$$

Liczba $M \in \mathbb{R}$ jest **maksimum absolutnym** funkcji f w zbiorze $A \subset D_f$, jeżeli istnieje taki punkt $x_0 \in A$, że $f(x_0) = M$ oraz dla dowolnego $x \in A$

$$f(x) \le M$$

Wartość największa i najmniejsza

Liczba $m \in \mathbb{R}$ jest **minimum absolutnym** funkcji f w zbiorze $A \subset D_f$, jeżeli istnieje taki punkt $x_0 \in A$, że $f(x_0) = m$ oraz dla dowolnego $x \in A$

$$f(x) \ge m$$

Liczba $M \in \mathbb{R}$ jest **maksimum absolutnym** funkcji f w zbiorze $A \subset D_f$, jeżeli istnieje taki punkt $x_0 \in A$, że $f(x_0) = M$ oraz dla dowolnego $x \in A$

$$f(x) \le M$$

Wartość największa i najmniejsza

Liczba $m \in \mathbb{R}$ jest **minimum absolutnym** funkcji f w zbiorze $A \subset D_f$, jeżeli istnieje taki punkt $x_0 \in A$, że $f(x_0) = m$ oraz dla dowolnego $x \in A$

$$f(x) \ge m$$

Liczba $M \in \mathbb{R}$ jest maksimum absolutnym funkcji f w zbiorze $A \subset D_f$, jeżeli istnieje taki punkt $x_0 \in A$, że $f(x_0) = M$ oraz dla dowolnego $x \in A$

$$f(x) \le M$$

• Czy funkcja zawsze posiada wartość największą i najmniejszą w dowolnym przedziale $A \subset D_f$?

$$f(x) = x^4$$
, $f(x) = \sin x$, $f(x) = \arctan x$, $f(x) = \begin{cases} x^3, & 0 \le x < 1 \\ -\frac{1}{2}x + 1, & 1 \le x \le 2 \end{cases}$

dowolnym przedziałe $A \subset D_f$?

$$f(x) = x^4$$
, $f(x) = \sin x$, $f(x) = \arctan x$, $f(x) = \begin{cases} x^3, & 0 \le x < 1 \\ -\frac{1}{2}x + 1, & 1 \le x \le 2 \end{cases}$

Twierdzenie (Weierstrassa)

Jeżeli funkcja jest ciągła na przedziale domkniętym [a,b] to osiąga na tym przedziale ekstrema absolutne.

Ekstrema lokalne

Funkcja f ma w punkcie x_0

• maksimum lokalne, jeżeli $\exists r > 0$ takie, że $\forall x \in S(x_0, r)$

$$f(x) \le f(x_0)$$

• minimum lokalne, jeżeli $\exists r > 0$ takie, że $\forall x \in S(x_0, r)$

$$f(x) \ge f(x_0)$$

ullet Jak znaleźć ekstrema lokalne funkcji f ?

• Jak znaleźć ekstrema lokalne funkcji f?

Warunek konieczny istnienia ekstremum

Jeżeli f osiąga ekstermum w punkcie x_0 to $f'(x_0) = 0$ albo $f'(x_0)$ nie istnieje.

Warunek konieczny istnienia ekstremum

Jeżeli f osiąga ekstermum w punkcie x_0 to $f'(x_0) = 0$ albo $f'(x_0)$ nie istnieje.

Jeżeli $f'(x_0) = 0$, to punkt x_0 nazywa się **punktem stacjonarnym** funkcji f.

• Twierdzenie odwrotne (jak to zwykle bywa) nie jest prawdziwe. $f'(x_0) = 0$ lub $f'(x_0) \in \emptyset$ nie gwarantuje ekstremum.

• Twierdzenie odwrotne (jak to zwykle bywa) nie jest prawdziwe. $f'(x_0) = 0$ lub $f'(x_0) \in \emptyset$ nie gwarantuje ekstremum.

Optymalizacja. Maksima i minima

 \bullet Po zlokalizowaniu punktów które mog a być ekstremami, jak stwierdzić czy są to wartości lokalnie największe/najmniejsze ?

- Po zlokalizowaniu punktów które *mogą* być ekstremami, jak stwierdzić czy są to wartości lokalnie największe/najmniejsze?
- Funkcja f musi zmieniać monotonicznośc w punkcie x_0 .

- Po zlokalizowaniu punktów które mogą być ekstremami, jak stwierdzić czy są to wartości lokalnie największe/najmniejsze?
- Funkcja f musi zmieniać monotonicznośc w punkcie x_0 .
- Jeżeli f'(x) > 0 dla każdego $x \in I$ to funkcja f jest **rosnąca** na I.
- Jeżeli f'(x) < 0 dla każdego $x \in I$ to funkcja f jest **malejąca** na I.
- Jeżeli f'(x) = 0 dla każdego $x \in I$ to funkcja f jest **stała** na I.

Warunek wystarczający istnienia ekstremum na podstawie f'

Jeżeli:

- (a) f jest ciagła w otoczeniu i różniczkowalna w sasiedztwie x_0 .
- (b) $f'(x_0) = 0$ lub $f'(x_0)$ nie istnieje.

oraz

- $\xrightarrow{+} \xrightarrow{f} f$ ma w punkcie x_0 maksimum lokalne.
- $\xrightarrow{-} f' \implies f$ ma w punkcie x_0 minimum lokalne.
- $+ + f' f' \implies f$ nie ma ekstremum lok. w x_0 .

Warunek wystarczający istnienia ekstremum na podstawie f''

Jeżeli funkcja f ma w pewnym otoczeniu punktu x_0 drugą pochodną, która jest ciągła w punkcie x_0 , a ponadto

$$f'(x_0) = 0$$
 oraz $f''(x_0) \neq 0$

to funkcja ma w punkcie x_0

- maksimum lokalne gdy $f''(x_0) < 0$
- minimum lokalne gdy $f''(x_0) > 0$

Notka

Powyższe twierdzenie w ogólnej postaci mówi o n-tej pochodnej i jej znaku.

Jak znaleźć maksimum i minimum absolutne

Niech f będzie ciągła na przedziale [a, b].

Jak znaleźć maksimum i minimum absolutne

Niech f będzie ciągła na przedziale [a, b].

• Znajdź punkty $x_0 \in (a,b)$ w których $f'(x_0)$ nie istnieje lub $f'(x_0) = 0$. To sa kandydaci na ekstrema absolutne.

Jak znaleźć maksimum i minimum absolutne

Niech f będzie ciągła na przedziale [a, b].

- Znajdź punkty $x_0 \in (a, b)$ w których $f'(x_0)$ nie istnieje lub $f'(x_0) = 0$. To są kandydaci na ekstrema absolutne.
- $oldsymbol{2}$ Oblicz wartości f w tych punktach i na krańcach przedziału [a,b].

Jak znaleźć maksimum i minimum absolutne

Niech f bedzie ciagła na przedziale [a, b].

- Znajdź punkty $x_0 \in (a,b)$ w których $f'(x_0)$ nie istnieje lub $f'(x_0) = 0$. To sa kandydaci na ekstrema absolutne.
- Oblicz wartości f w tych punktach i na krańcach przedziału [a, b].
- 3 Wybierz nawiększą i najmniejszą z wyliczonych wartości.

Dlaczego puszka 0,331 ma takie a nie inne wymiary?

115mm

(ロ) (部) (注) (注) 注 り(()

Wklęsłość, wypukłość

O czym mówi nam druga pochodna?

Wklęsłość, wypukłość

Niech fbędzie różniczkowalna w przedziale(a,b). Mówimy, że krzyway=f(x)jest

- wypukła (wypukła w dół) w przedziale $(a, b) \iff$ styczna w każdym punkcie $x_0 \in (a, b)$ jest położona pod krzywą y = f(x)
- wklęsła (wypukła w górę) w przedziale $(a, b) \iff$ styczna w każdym punkcie $x_0 \in (a, b)$ jest położona nad krzywą y = f(x)

O czym mówi nam druga pochodna?

Wklęsłość, wypukłość

Niech f będzie różniczkowalna w przedziale(a,b). Mówimy, że krzywa y=f(x) jest

- wypukła (wypukła w dół) w przedziale $(a, b) \iff$ styczna w każdym punkcie $x_0 \in (a, b)$ jest położona pod krzywą y = f(x)
- wklęsła (wypukła w górę) w przedziale $(a,b) \iff$ styczna w każdym punkcie $x_0 \in (a,b)$ jest położona nad krzywą y=f(x)

Warunki wklęsłości/wypukłości

Jeżeli dla każdego $x \in (a, b)$ zachodzi

- f''(x) < 0, to krzywa y = f(x) jest wklęsła na (a, b)
- f''(x) > 0, to krzywa y = f(x) jest wypukła na (a, b)

Punkt przegięcia

Jeżeli w punkcie $(x_0, f(x_0))$ istnieje styczna do krzywej y = f(x) i funkcja zmienia się z wklęsłej na wypukłą (lub odwrotnie) wokół tego punktu, to $(x_0, f(x_0))$ nazywamy **punktem przegięcia krzywej**.

A skoro mowa o wykresach funkcji ...

Asymptoty pionowe, $x = x_0$

• asymptota lewostronna wykresu funkcji y = f(x)

$$\lim_{x \to x_0^-} f(x) = \pm \infty$$

ullet asymptota prawostronna wykresu funkcji y=f(x)

$$\lim_{x \to x_0^+} f(x) = \pm \infty$$

• aysmptota obustronna = lewo- + prawostronna

Asymptoty ukośne, y = ax + b

• asymptota lewostronna wykresu funkcji y = f(x)

$$\lim_{x \to -\infty} \left[f(x) - (ax + b) \right] = 0$$

ullet asymptota prawostronna wykresu funkcji y=f(x)

$$\lim_{x \to \infty} \left[f(x) - (ax + b) \right] = 0$$

• aysmptota obustronna = lewo- + prawostronna

$$a = \lim_{x \to \pm \infty} \frac{f(x)}{x}, \qquad b = \lim_{x \to \pm \infty} [f(x) - ax]$$

Jeżeli a = 0 to mamy **asymptotę poziomą** y = b.

4 D > 4 B > 4 E > 4 E > E 9040

Badanie przebiegu zmienności funkcji

- Analiza funkcji:
 - dziedzina
 - punkty przecięcia wykresu z osiami układu
 - parzystość, nieparzystość, okresowość
 - granice w nieskończoności lub na krańcach przedziału
 - asymptoty pionowe i ukośne
- Analiza pierwszej pochodnej:
 - ▶ pochodna i jej dziedzina
 - ightharpoonup znak pochodnej \longrightarrow monotoniczność funkcji
 - ekstrema funkcji
- Analiza drugiej pochodnej:
 - pochodna i jej dziedzina
 - ▶ znak pochodnej → wklęsłość/wypukłość funkcji
 - punkty przegięcia
- (Tabelka zmienności funkcji)
- Wykres funkcji

