(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 1 May 2003 (01.05.2003)

PCT

(10) International Publication Number WO 03/034938 A2

(51) International Patent Classification7:

A61F

- (21) International Application Number: PCT/US02/34344
- (22) International Filing Date: 25 October 2002 (25.10.2002)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/343,732

25 October 2001 (25.10.2001) U

- (71) Applicant (for all designated States except US): WIS-CONSIN ALUMNI RESEARCH FOUNDATION [US/US]; 614 Walnut Street, Madison, WI 53707-7365 (US).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): WOLFF, Matthew, R. [US/US]; 1332 North High Point Road, Middleton, WI 53562 (US).

- (74) Agents: LEONE, Jos, T. et al.; DeWitt Ross & Stevens S.C., 8000 Excelsior Drive, Madison, WI 53717-1914 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: VASCULAR STENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND METHOD OF USING SAME

(57) Abstract: Disclosed is a device, such as a cardiovascular stent, autologous venous/arterial graft, prosthetic venous/arterial graft, vascular catheter, or vascular shunt, for stenting a blood vessel. The device has coated thereon, adsorbed thereto, impregnated therein, or covalently or ionically bonded thereto an amount of a protein tyrosine kinase inhibitor. The protein tyrosine kinase inhibitor proliferation of vascular smooth muscle cells in an area within a blood vessel immediately adjacent to and/or proximal to the device, while simultaneously not inhibiting the proliferation of vascular intimal cells. A corresponding method of using the device to stent blood vessels is also disclosed.

Published:

 without international search report and to be republished upon receipt of that report For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

VASCULAR STENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND METHOD OF USING SAME

5

Matthew R. Wolff

RELATED APPLICATION

Priority is hereby claimed to provisional application Serial No. 60/343,732, filed October 25, 2001, which provisional application is incorporated herein by reference.

10

FIELD OF THE INVENTION

The invention is directed to methods of selectively inhibiting the proliferation of vascular smooth muscle cells (VSMCs) following vascular injury or surgical interventions such as percutaneous revascularization, without inhibiting the proliferation of endothelial cells. Specifically, the invention is directed to the use of protein tyrosine kinase inhibitors, preferably those that inhibit the Bcr-Abl tyrosine kinase, and most preferably 4-{(4-methyl-1-piperazinyl)methyl}-N-{4-methyl-3-{{4-(3-pyrimidinyl}amino}-phenyl}benzamide methane sulfonate, coated onto vascular stents, native grafts, or prosthetic vascular grafts, to prevent the proliferation of VSMCs selectively, while not adversely affecting the proliferation of endothelial cells.

20

15

BACKGROUND

Arteriosclerosis is a class of diseases characterized by the thickening and hardening of the arterial walls of blood vessels. Although all blood vessels are susceptible to this serious degenerative condition, the aorta and the coronary arteries serving the heart are most often affected. Arteriosclerosis is of profound clinical importance since it can increase the risk of heart attacks, myocardial infarctions, strokes, and aneurysms.

30

25

The traditional treatment for arteriosclerotic vessels currently includes vascular recanalization procedures for less-serious blockages and coronary bypass surgery for major blockages. Where possible, vascular recanalization is much preferred to coronary bypass because it is a far less invasive procedure. Vascular recanalization procedures involve using

intravascular devices threaded through blood vessels to the obstructed site, including for example, percutaneous transluminal coronary balloon angioplasty (PTCA), also known as balloon angioplasty. Balloon angioplasty uses a catheter with a balloon tightly packed onto its tip. When the catheter reaches the obstruction, the balloon is inflated, and the atherosclerotic plaques are compressed against the vessel wall. A serious shortcoming of this and other intravascular procedures, however, is that in a significant number of treated individuals, some or all of the treated vessels restenose (that is, the vessels again narrow). This generally occurs in a relatively brief time period, roughly less than six months, after treatment. The restenosis is thought to be due in part to mechanical injury to the walls of the blood vessels caused by the balloon catheter or other intravascular device.

5

10

15

20

25

The walls of most blood vessels are composed of three distinct layers, or tunics, surrounding a central tubular opening, the vessel lumen. The innermost layer that lines the vessel lumen is called the tunica intima. The middle layer, the tunica media, consists mostly of circularly arranged smooth muscle cells and connective tissue fibers. In a non-injured vessel, the smooth muscle cells are generally not actively dividing. The outmost layer of the blood vessel wall, the tunica adventitia, is composed largely of collagen fibers that protect inner layers and gives the blood vessel structural integrity. Mechanical injury, resulting in damage to the tunica intima, initiates a cascade of events, including the release of chemicals such as platelet-derived growth factors (PDGF). This cascade prompts the migration and proliferation of vascular smooth muscle cells (VSMCs) at the site of injury. The accumulation of VSMCs at the site of injury narrows the diameter of the vessel lumen, thereby again putting the patient in danger of having a heart attack, stroke, etc.

Several methods for inhibiting smooth muscle cell proliferation following the use of an intravascular device have been reported in the patent literature. These include administering anti-proliferative agents such as cell cycle inhibitors and anti-coagulant agents (either by local or systemic delivery systems). Delivery of these agents systemically, however, has required dosages that cause unacceptable side-effects or are prohibitively expensive. Local delivery of agents, for example heparin, as described in U.S. Pat. No. 4,824,436, has proven ineffective in inhibiting restenosis due in part to inadequate residence time of the

active agent at the site of injury. Cell cycle inhibitors such as taxol, which do not react covalently and therefore require prolonged residence time for effectiveness, suffer from similar problems. Moreover, prolonging residence times to increase the effectiveness of such treatments is also likely to present increased risks of toxicity.

5

10

15

20

25

30

Other methods reported for inhibiting VSMC proliferation involve local delivery of active agents contained in a sustained-release formulation. For example, U.S. Pat. No. 5,171,217 describes agents contained within a physiologically compatible, biodegradable polymeric microparticle. This formulation is delivered locally to the site of injury such that the agents are released from the arterial wall for 72 hours or more. In contrast, U.S. Pat. No. 6,281,225 describes the local, but non-sustained-release administration of DNA alkylating agents to prevent VSMC proliferation.

Another method for inhibiting smooth muscle cell proliferation involves administering photochemically-activated agents by local delivery systems. For example, U.S. Pat. No. 5,354,774 describes locally delivering 8-methoxypsoralen to the site of injury and then activating a photodynamic reaction using a visible light source.

Yet another approach to prevent proliferation of VSMCs is the use of radiation-emitting catheters or guide wires. These radioactive devices cause damage to nucleic acid, thus inhibiting replication and thereby inhibiting smooth muscle cell proliferation.

All of the above-described methods suffer from certain drawbacks. For example, sustained release formulations require an added level of complexity, namely incorporation of the agent on or within a sustained release formulation. Photodynamic therapy requires both local delivery of the photo-active agent and the use of a complex intravascular light source. Delivery of a radiation dose requires the presence of a radiologist and presents exposure hazards to the attending personnel, as well as material storage, handling, and disposal complications.

Treated coronary stents now on the market or in clinical trials also suffer from the distinct drawback that they inhibit the proliferation of endothelial cells. This contributes to thrombosis in the vicinity of deployed stent. Thrombosis has been observed in human clinical trials when using stents coated with either taxol or rapamycin. To prevent such thrombosis, the clinical patients have had to undergo a two- to three-month duration anti-coagulation treatment.

1 425 - 141

A need therefore exists for safe, simple, and straightforward method for inhibiting VSMC proliferation at a site of injury following vascular recanalization procedures or other vascular injury, without inhibiting the proliferation of endothelial cells. The ideal solution should be non-radioactive and require little or no retraining of medical personnel to implement.

Cellular signaling has become a major research theme in biology and medicine over the past twenty years. The complex pathways and protein components in signal transduction are emerging only slowly, but with increasing clarity. Over the last 15 years, the protein tyrosine kinases have been identified as key players in cellular regulation. They are involved in immune, endocrine, and nervous system physiology and pathology and thought to be important in the development of many cancers, most notably chronic myeloid leukemia. As such they serve as drug targets for many different diseases. A host of protein tyrosine kinases are known in the art. The attached Sequence List includes a non-exclusive sampling of the amino acid sequences of a number of such kinases.

As used herein, the term protein tyrosine kinases (PTKs) refers to any and all enzymes falling within the enzyme classification EC 2.1.7.112, without limitation. See the Sequence List, attached hereto, for various examples of PTKs. These enzymes catalyze the transfer of the gamma-phosphoryl group from ATP to the tyrosine hydroxyl moiety of a protein substrate. This family of kinases shares amino acid sequence homology with the serine/threonine kinase family. Although the number of tyrosine kinases being discovered is growing exponentially, molecular details pertaining to their substrate recognition, catalytic mechanism, and intra- and intermolecular regulation are still being elucidated.

As described in full below, the present inventors have found that inhibiting the action of PTKs selectively inhibits the proliferation of VSMCs.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a graph depicting porcine coronary vascular smooth muscle cell proliferation following stimulation with platelet-derived growth factor (PDGF) in the presence of increasing concentrations of STI-571.

10

5

15

20

FIG. 2 is a graph depicting porcine aortic endothelial cell proliferation following stimulation with vascular endothelial growth factor (VEGF) in the presence of increasing concentrations of STI-571.

FIG. 3 is a graph depicting inhibition of proliferation of human coronary artery vascular smooth muscle cells (hCASMC) by increasing concentrations of STI-571 ("Glivec"). Cells were counted after stimulation with 10% fetal bovine serum (FBS) for 48 hours, and data for each experiment was normalized to positive control wells containing FBS and no STI-571 ("Glivec"). Each point represents 18 to 21 wells from eight separate experiments,

and is presented as the mean +/- the standard deviation.

5

10

15

20

25

FIG. 4 is a graph depicting inhibition of DNA synthesis in human coronary artery vascular smooth muscle cells (HCAVSMC) by STI-571 ("Glivec"). DNA synthesis was assayed by incorporation of BrdU after stimulation of coronary artery vascular smooth muscle cells by 10% FBS for 48 hours in the presence or absence (positive control) of STI-571 ("Glivec"). Data points represent 14 to 28 wells from two separate experiments, and are presented as the mean +/- the standard deviation.

FIG. 5 is a graph depicting inhibition of migration of human coronary artery vascular smooth muscle cells in response to STI-571 ("Glivec"). Migration was assayed by counting cells that migrated through a porous membrane (20 μ m diameter pores) in 24 hours in response to stimulation with platelet-derived growth factor (PDGF- $\beta\beta$). Data bars represent six membranes, and are presented as means normalized to control membranes (no STI-571) +/- the standard deviation.

FIG. 6 is a graph depicting the lack of any effect of STI-571 ("Glivec") on the proliferation of human coronary artery endothelial cells (hCAEC).

DETAILED DESCRIPTION OF THE INVENTION

Abbreviations and Definitions:

The following abbreviations and definitions are used throughout the specification and claims. Terms not specifically defined herein have their normal and accepted meaning within the field of cardiovascular medicine and/or physiology.

· 17... -

"BrdU" = 5-bromo-2'-deoxy-uridine triphosphate.

"DME" = Dulbecco's modified Eagle's media.

"FBS" = fetal bovine serum.

5

10

15

20

25

"JAK-2" = Janus-activated tyrosine kinases.

"MAPK" = mitogen-activated protein kinases.

"PDGF" = platelet-derived growth factor.

"Pharmaceutically-suitable salt" = any acid or base addition salt whose counter-ions are non-toxic to the patient in pharmaceutical doses of the salts, so that the beneficial inhibitory effects inherent in the free base or free acid PTK inhibitor are not vitiated by side effects ascribable to the counter-ions. A host of pharmaceutically-suitable salts are well known in the pharmaceutical field. For active ingredients that are bases, all acid addition salts are useful as sources of the free base form even if the particular salt, per se, is desired only as an intermediate product as, for example, when the salt is formed only for purposes of purification, and identification, or when it is used as intermediate in preparing a pharmaceutically-suitable salt by ion exchange procedures. Pharmaceutically-suitable acid addition salts include, without limitation, those derived from mineral acids and organic acids. explicitly including hydrohalides, e.g., hydrochlorides and hydrobromides, sulphates, phosphates, nitrates, sulphamates, acetates, citrates, lactates, tartrates, malonates, oxalates, saliculates. propionates, succinates. fumarates, methylene-bis-b-hydroxynaphthoates, gentisates, isethionates, di-p-toluoyltartrates, methane-sulphonates, ethanesulphonates, benzenesulphonates, p-toluenesulphonates, cyclohexylsulphamates, quinates, and the like. In analogous fashion, for active ingredients that are acids, pharmaceutically-suitable base addition salts may be used. Base addition salts include, without limitation, those derived from alkali or alkaline earth metal bases or conventional organic bases, such as triethylamine, pyridine, piperidine, morpholine, N-methylmorpholine, and the like.

"PTCA" = percutaneous transluminal coronary balloon angioplasty.

reg se

"PTK" = protein tyrosine kinase; expressly defined herein as any and all enzymes falling within the enzyme classification EC 2.1.7.112, without limitation.

"PTK Inhibitor" = any compound or composition that selectively inhibits the catalytic activity of one or more protein tyrosine kinase inhibitors.

"STI-571" = 4-{(4-methyl-1-piperazinyl)methyl}-N-{4-methyl-3-{{4-(3-pyrimidinyl}amino}-phenyl}benzamide and pharmaceutically-suitable salts thereof. The methane-sulphonate salt is preferred. This compound has been given the trivial generic name "imatinib." As used herein, the term "STI-571" designates imatinib as either a free base or any pharmaceutically-suitable salt thereof, the mesylate salt being preferred. In the United States, it is marketed commercially by Novartis AG (Basel, Switzerland) under the registered trademark "Glivec" (U.S. T.M. Registration No. 2,478,196); it is also sold elsewhere around the world under the trademark "Gleevec."

"VEGF" = vascular endothelial growth factor.

"VSMC" = vascular smooth muscle cells.

Overview:

15

10

5

Treating arteriosclerosis with intravascular devices, including for example, ablative procedures, balloon catheters, or vascular stents is becoming increasingly popular as technology related to intravascular devices continues to improve. Approximately 1 million balloon angioplasty procedures alone are performed on an annual basis globally. These procedures, however, have a major shortcoming. In a significant number of cases the treated vessels re-occlude, or restenose, by six months post-treatment which requires the individual to undergo additional treatment. "Restenosis" refers to the stage at which the vessel lumen has decreased in diameter by about 50% or more as compared to the diameter of the vessel lumnen immediately following a vascular recanalization procedure.

25

20

The pathogenesis of restenosis is not well understood. It is believed to be due, in part, to recoil of the wall of the treated vessel. Additionally, it is hypothesized that vascular recanalization procedures used to treat diseases, such as arteriosclerosis, can cause mechanical injury at the site of recanalization. Without being limited to any particular mechanism of action, it is hypothesized that once intimal rupture occurs in the blood vessel a number of events begin to take place including the migration of monocytes to the

. ..

5

10

15

20

25

subendothelial layer of the intima and the release of mitogenic growth factors, including, for example, platelet-derived growth factor (PDGF), macrophage-derived growth factor (MDGF), and endothelial cell-derived growth factor (EDGF). These chemicals, and in particular PDGF, apparently play a role in inducing VSMC proliferation. This in turn produces substantial quantities of intercellular substances that accumulate within the vessel lumen, thereby narrowing its diameter.

A first embodiment of the present invention is therefore directed to a cardiovascular stent, autologous venous/arterial graft, prosthetic venous/arterial graft, vascular catheter or vascular shunt (collectively referred to herein as a "vascular device") that is coated with one or more compounds that selectively inhibit the proliferation of VSMCs at the point immediately adjacent to and proximal to the point of vascular injury. Specifically, the invention comprises a vascular device that has coated thereon, adsorbed thereto, impregnated therein, or covalently or ionically bonded thereto an amount of a protein tyrosine kinase (PTK) inhibitor. It is preferred that the compound specifically inhibit the Bcr-Abl tyrosine kinase, the constituitive abnormal tyrosine kinase created by the Philadelphia chromosome abnormality found in chronic myeloid leukemia. Preferred PTK inhibitors for use in the invention are also those that specifically or non-specifically inhibit the activity of one or more PTKs selected from the group consisting of receptor tyrosine kinases for platelet-derived growth factor and stem cell factor (SCF), and c-Kit. The amount of the PTK used in conjunction with the vascular device is an amount sufficient to prevent or inhibit proliferation of vascular smooth muscle cells in an area within a blood vessel immediately adjacent to and/or proximal to the vascular device. In the preferred embodiment, the vascular device is coated with 4-{(4-methyl-1-piperazinyl)methyl}-N-{4-methyl-3-{{4-(3-pyrimidinyl}amino}phenyl}benzamide and/or a pharmaceutically-suitable salt thereof (preferably the methane sulphonate salt).

A second embodiment of the invention is directed to a corresponding method for specifically preventing or inhibiting proliferation of VSMCs. Here, the method comprises coating, adsorbing, impregnating, or covalently or ionically bonding to the vascular device an amount of a PTK inhibitor; the amount being sufficient to prevent or inhibit proliferation of

VSMCs in an area within a blood vessel immediately adjacent to and/or proximal to the vascular device when the device is deployed within the lumen of a blood vessel. The preferred PTK inhibitor is 4-{(4-methyl-1-piperazinyl)methyl}-N-{4-methyl-3-{{4-(3-pyrimidinyl}amino}-phenyl}benzamide and/or a pharmaceutically-suitable salt thereof.

A third embodiment of the invention is directed to a systemic method of preventing or inhibiting restenosis of blood vessels following vascular intervention. The method comprises systemically administering an amount of a PTK inhibitor (preferably orally), the amount administered being sufficient to prevent or inhibit proliferation of VSMCs in an area within a blood vessel immediately adjacent to and/or proximal to the area where the vascular intervention took place. Again, the preferred PTK inhibitor for use in this embodiment of the invention is 4-{(4-methyl-1-piperazinyl)methyl}-N-{4-methyl-3-{{4-(3-pyrimidinyl}amino}-phenyl}benzamide and/or a pharmaceutically-suitable salt thereof.

Compounds For Use In The Invention:

5

10

15

20

25

30

Any compound now known or discovered in the future that inhibits the action of PTKs can be used in the subject invention. Specific compounds whose anti-PTK activity has been documented, and thus can be used in the present invention, include (without limitation): pyridopyrimidines, phtalimides, chinolines, chinazolines, flavonoides, and benzothiazoles.

Among the most extensively studied PTK inhibitors are the tyrophostins and quinazoline derivatives. These compounds are currently under investigation as potential anticancer drugs. For example, tyrophostins and quinazoline have been shown to synergize with antibodies to EGFR and to established anti-cancer drugs like cisplatin to inhibit the growth of squamous cell carcinoma *in vivo* and to block the growth of human cancer cells over expressing HER2-ErbB2 (respectively). Tyrophostins are based on the benzylidenemalonitrile structure. Slight permutations in this structure have provided a range of potent inhibitors that selectively target EGFR, ErB-2 and v-Abl. Thus tyrophostins can be used alone or in combination with other PTK inhibitors to suppress VSMC proliferation into the lumen of blood vessels.

The quinazoline family of compounds includes the brominated quinazoline derivative, an early EGFR inhibitor that was found to be more than 3-fold more potent than any other

tyrosine kinase inhibitor yet described (with an IC₅₀ of 29 pM). In addition, it has little affinity for PDGFR, FGFR, insulin receptor, the CSF receptor and Src, even at micromolar concentrations. Because of this extraordinary inhibitory activity and specificity, the quinazoline derivatives are a major focus of research aimed at developing kinase inhibitors as anti-cancer agents. Thus, these compounds can also be used in the present invention, either alone or in combination with other PTK inhibitors.

Another group of PTK inhibitory compounds, dianilinopthalimides, were rationally designed from the natural product PTK inhibitor staurosporine aglycon (see Appendix C). These compounds have been shown to be competitive inhibitors of ATP and to date more than 250 dianilinpthalimide derivatives have been synthesized and evaluated for their biological activity. The derivative CGP5211 has displayed a good amount of specificity towards EGFR (IC₅₀=3mM), but also shows some inhibitory activity towards PKC. This observation led to the design of CGP53353 derivative, which showed lower specificity towards PKC isozymes. Thus, dianilinopthalimides can also be used as a PTK inhibitor in the present invention.

A large number of other compounds are known to be PTK inhibitors. These compounds, all of which can be used in the present invention, include bryostatins, defensins, genistein, H8, herbimycin A, tyrophostins, K-252a, lavendustin A, phorbol esters, staurosporines, and suramin.

The preferred PTK inhibitor for use in the present invention is 4-{(4-methyl-1-piperazinyl)methyl}-N-{4-methyl-3-{{4-(3-pyrimidinyl}amino}-phenyl}benzamide and pharmaceutically-suitable salts thereof (preferably the mesyl salt):

20

5

10

10

5

This compound, originally designated STI-571, is marketed commercially in the United States by Novartis under the trademark "Glivec." It is approved by the U.S. Food and Drug Administration for the treatment of chronic myeloid leukemia. See EP 0 564 409 A and WO 99/03854.

15

Modes of Administration:

inhibitors. The preferred route is orally. The PTK inhibitor may also be administered intravenously, intra-arterially, intramuscularly, percutaneously, parenterally, or rectally.

following a vascular injury or intervention by systemically administering one or more PTK

One embodiment of the invention is a method of preventing restenosis of blood vessels

25

20

Specifically, systemic or topical administration is accomplished via a pharmaceutical composition comprising an active compound, *i.e.*, a PTK inhibitor or a pharmaceutically-acceptable salt thereof, in combination with an acceptable carrier therefor and optionally in combination with other therapeutically-active ingredients or inactive accessory ingredients. The carrier must be pharmaceutically-acceptable in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient. Suitable pharmaceutical compositions include those suitable for oral, topical (i.e. intra-lumen), rectal or parenteral (including subcutaneous, intramuscular and intravenous) administration.

The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. The term "unit dosage" or "unit dose" is denoted to mean a predetermined amount of the active ingredient sufficient to be effective for treating an indicated activity or condition. Making each type of pharmaceutical composition includes the step of bringing the active compound into association with a carrier and one or more optional accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing the active compound into association with a liquid or solid carrier and then, if necessary, shaping the product into the desired unit dosage form.

10

5

Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets, tablets, boluses or lozenges, each containing a predetermined amount of the active compound; as a powder or granules; or in liquid form, *e.g.*, as an aqueous solution, suspension, syrup, elixir, emulsion, dispersion, or the like.

15

A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active compound in a free-flowing form, e.g., a powder or granules, optionally mixed with accessory ingredients, e.g., binders, lubricants, inert diluents, surface active or dispersing agents. Molded tablets may be made by molding in a suitable machine a mixture of the powdered active compound with any suitable carrier.

20

Formulations suitable for parenteral administration conveniently comprise a sterile preparation of the active compound in, for example, water for injection, saline, a polyethylene glycol solution and the like, which is preferably isotonic with the blood of the recipient.

25

Useful formulations also comprise concentrated solutions or solids containing the PTK-inhibitory compound, which upon dilution with an appropriate solvent give a solution suitable for parenteral administration.

Preparations for topical or local applications comprise aerosol sprays, lotions, gels, ointments, suppositories etc., and pharmaceutically-acceptable vehicles therefore such as water, saline, lower aliphatic alcohols, polyglycerols such as glycerol, polyethylene glycerol,

5

10

15

20

25

30

esters of fatty acids, oils and fats, silicones, and other conventional topical carriers. In topical formulations, the PTK inhibitors are preferably utilized at a concentration of from about 0.1% to 5.0% by weight.

Compositions suitable for rectal administration, comprise a suppository, preferably bullet-shaped, containing the active ingredient and pharmaceutically-acceptable vehicles therefore such as hard fat, hydrogenated cocoglyceride, polyethylene glycol and the like. In suppository formulations, the PTK inhibitors are preferably utilized at concentrations of from about 0.1% to 10% by weight.

Compositions suitable for rectal administration may also comprise a rectal enema unit containing the active ingredient and pharmaceutically-acceptable vehicles therefore such as 50% aqueous ethanol or an aqueous salt solution which is physiologically compatible with the rectum or colon. The rectal enema unit consists of an applicator tip protected by an inert cover, preferably comprised of polyethylene, lubricated with a lubricant such as white petrolatum and preferably protected by a one-way valve to prevent back-flow of the dispensed formula, and of sufficient length, preferably two inches, to be inserted into the colon via the anus. In rectal formulations, the PTK inhibitors are preferably utilized at concentrations of from about 5.0-10% by weight.

Useful formulations also comprise concentrated solutions or solids containing the active ingredient which upon dilution with an appropriate solvent, preferably saline, give a solution suitable for rectal administration. The rectal compositions include aqueous and non-aqueous formulations which may contain conventional adjuvants such as buffers, bacteriostats, sugars, thickening agents and the like. The compositions may be presented in rectal single dose or multi-dose containers, for example, rectal enema units.

Preparations for topical or local surgical applications for treating a blood vessel within its lumen comprise swabs or catheters suitable for such purposes. In both topical or local surgical applications, the sterile preparations of PTK inhibitor are preferably utilized at concentrations of from about 0.1% to 5.0% by weight applied to a dressing.

Compositions suitable for administration by inhalation include formulations wherein the active ingredient is a solid or liquid admixed in a micronized powder having a particle size in the range of about 5 microns or less to about 500 microns or liquid formulations in a

suitable diluent. These formulations are designed for rapid inhalation through the oral passage from a conventional delivery systems such as inhalers, metered-dose inhalers, nebulizers, and the like. Suitable liquid nasal compositions include conventional nasal sprays, nasal drops and the like, of aqueous solutions of the active ingredient(s).

5

In addition to the aforementioned ingredients, the formulations of this invention may further include one or more optional accessory ingredient(s) utilized in the art of pharmaceutical formulations, i.e., diluents, buffers, flavoring agents, colorants, binders, surface active agents, thickeners, lubricants, suspending agents, preservatives (including antioxidants) and the like.

10

The amount of the PTK inhibitor required to be effective for inhibiting VSMC proliferation will, of course, vary with the individual mammal being treated and is ultimately at the discretion of the medical or veterinary practitioner. The factors to be considered include the condition being treated, the route of administration, the nature of the formulation, the mammal's body weight, surface area, age and general condition, and the particular PTK inhibitor to be administered. In general, a suitable effective dose is in the range of about 0.01 to about 500 mg/kg body weight per day of the selected PTK inhibitor. The total daily dose may be given as a single dose, multiple doses, *e.g.*, two to six times per day, or by intravenous infusion for a selected duration. Dosages above or below the range cited above are within the scope of the present invention and may be administered to the individual patient if desired and necessary.

20

15

The PTK inhibitors may be administered prophylactically (in the preferred embodiment immediately post-surgery), chronically, or acutely.

25

Specifically addressing the preferred embodiment, Novartis sells STI-571 in capsules that provide the equivalent of 100 mg of the free base form of STI-571. When administered orally (the preferred route), the preferred amount of STI-571 for use in the present invention is from 100 to 800 mg daily, taken in from one to four equal doses. Considerably larger doses, up to 1,200 mg/m²/day, may also be given. Doses above 1,200 mg/m²/day are not recommended.

t the sec

The methods of the present invention include the administration, by local delivery to a site of injury, of compounds that have the ability to inhibit PTK activity. Non-limiting examples of local delivery systems for use in the present invention include intravascular drug delivery catheters, wires, pharmacological stents and endoluminal paying.

5

In the preferred embodiment using local delivery, the compounds for use in the present invention are administered to the site of recanalization by direct intravascular deposition using intravascular catheters. Catheter systems for use in the present invention, include, for example, pressure-driven catheters, diffusion catheters and mechanical catheters. Pressure-driven catheter systems that can be used in the present invention include porous catheters; microporous catheters, for example, those made by Cordis Corporation; macroporous catheters; transport catheters, for example, those made by Cardiovascular Dynamics/Boston Scientific; channeled balloon catheters, for example, those made by Boston Scientific; and infusion sleeve catheters, for example, those made by LocalMed. See, for example, U.S. Pat. No. 5,279,565.

15

10

The PTK inhibitors may also be administered locally via diffusion-based catheter systems, including for example, double balloon, dispatch, hydrogel and coated stent catheters. The methods of the invention also include local administration of the compounds used in the methods of the present invention by mechanical device-based catheter systems, such as iontophoretic balloon catheters.

20

The compounds for use in the present invention may be administered by local delivery at a time proximal to the recanalization procedure or at a time after the recanalization procedure. The compounds for use in the invention may be delivered in a single dose or delivered in repeat doses.

25

The ability to deliver the PTK inhibitory compounds used in the present invention may be evaluated *in vivo* using known animal models, including the porcine coronary model described in the Examples. Thus, for example, a PTK inhibitor to be used in the methods of the present invention is administered by local delivery to a porcine at a site of vascular injury. The porcine is sacrificed and then examined by known cytological, histological, and other methods, including, for example, fluorescence microscopy.

Optimum conditions for delivery of the PTK inhibitory compounds for use in the methods of the invention may vary with the different local delivery systems used, as well as the properties and concentrations of the compounds used. Conditions may be optimized for inhibition of VSMC proliferation at the site of injury such that significant arterial blockage due to restenosis does not occur, as measured, for example, by the proliferative ability of the VSMCs, or by changes in the vascular resistance or lumen diameter. Conditions which may be optimized include, for example, the concentrations of the compounds, the delivery volume, the delivery rate, the depth of penetration of the vessel wall, the proximal inflation pressure, the amount and size of perforations and the fit of the drug delivery catheter balloon.

10

5

In a particularly preferred route of administration, the PTK inhibitory compound is coated or adsorbed onto a vascular stent, a prosthetic venous/arterial graft, or an autologous vascular graft. Alternatively, the PTK inhibitor may be impregnated therein, or covalently or ionically bonded thereto.

15

The preferred application of the PTK inhibitor to the stent, graft, or prosthesis is by conventional methods which are known in the art. These methods include, without limitation, dipping, steeping and spraying the article with the PTK inhibitor. Additional coating and impregnation techniques using pressure to force the coating into the substrate interstices are also contemplated. Multiple layers of the bio-active coating may be applied to the article. The stent, graft or prosthesis may first be coated with a polymeric coating to provide sustained release of the PTK inhibitor over a period of days, week, or months. Preferably, from about 1 to about 10 layers of the PTK inhibitory agent are applied to the surface of the stent, graft, or prosthesis.

20

Devices and Autologous Grafts According to the Invention:

25

As noted in the previous paragraph, one preferred route to administer the PTK inhibitory compounds is to adhere them onto a stent, autologous graft, or vascular prosthesis. In the present invention, any such vascular medical device may be used, including catheters, stents, sheets, tubes, balloons, and the like. The term "medical device" as used herein shall generically designate all such vascular medical devices, whether synthetic, semi-synthetic, or autologous tissue or material.

Preferably the medical device of the present invention is an implantable device such as a vascular graft, endoprosthesis or stent, that has been treated, coated, or otherwise manipulated to have coated on at least one surface a compound that inhibits PTK activity. For purposes of this invention, the term "vascular graft" is meant to include all endoprostheses which are generally introduced via catheter. In the preferred embodiment, the medical device is coated with STI-571. Other medical devices may also be coated, such as catheters which are minimally invasive. The vascular graft may include a hollow tubular body having an inner and an outer hydrophobic surface, the outer surface or both surfaces of which are coated with the PTK inhibitory compound.

10

5

Most preferably, the device of the present invention is a small caliber vascular stent or graft, made of metal or polymeric material (such as poly(tetrafluoroethylene)). This includes stents made of polymeric materials and coated with distinct materials, such as the polytetrafluoroethylene stent described in U.S. Pat. No. 6,306,165.

15

Vascular stents, the preferred medical device of the subject invention, are miniature mesh tubes that are implanted in the arteries to keep blocked portions open after angioplasty procedures. Working as scaffolding for the treated artery, stents are flexible yet quite strong, are generally easy (for a skilled physician) to deliver via catheter, and are readily seen on a fluoroscope. Stents are pre-mounted on balloon catheters which are used to deliver the stent to the treatment site and then expand the stent into place after the blockage is cleared.

20

Any stent now known or developed in the future can be coated with a PTK inhibitor according to the present invention. Perhaps the largest commercial supplier of vascular stents is Medtronic, 710 Medtronic Parkway, Minneapolis, Minnesota. Medtronic also has facilities located in Tolochenaz, Switzerland; Ontario, Canada; Causeway Bay, Hong Kong; and Gladesville, NSW, Australia. All of Medtronics stents, catheters, balloons, guide catheters, guidewires, and the like can be used in the present invention. Currently, Medtronic markets a very wide range of stents and other vascular medical devices under the "Discrete Technology," "S7," "S670," "S660," and "BeStent" trademarks.

25

Vascular stents are available from non-US-based manufacturers as well. For example, Biocompatibles Cardiovascular, of Farnham, United Kingdom, manufactures and sells a range of cardiovascular stents under the trademark "BiodivYsio."

30

- · ...

The PTK inhibitor can be adhered or coated onto the medical device, or it can be chemically bonded, either covalently or ionically to the medical device. The PTK inhibitor may be bonded directly to the medical device, or bonded via a spacer group or linker. For covalent attachment, it is preferred that a polymeric medical device, or a polymer-coated medical device be used and that the PTK inhibitor be covalently bonded to the medical device via a spacer group or linker having a chain length of from 1 to 250 atoms. For example, the spacer group may include an alkyls, alkylamines, oxygenated polyolefins, aliphatic polyesters, polyamino acids, polyamines, hydrophilic polysiloxanes, hydrophilic polysiloxanes, hydrophilic methacrylates, linear and lightly branched polysaccharides, and the like.

10

5

In yet another embodiment of the invention, there is provided a surface-modified implantable sheet material whose treated surface when exposed to the intimal layer of a blood vessel exhibits anti-VSMC proliferation activity over extended periods of time. This implantable sheet material includes a hydrophobic substrate material having adhered or bonded thereto a compound that inhibits PTK activity, the preferred compound being STI-571. The sheet can be formed into surgical mesh patches or tubes to repair vascular defects and injuries.

15

EXAMPLES

20

25

The following Examples are included solely to provide a more thorough disclosure of the invention claimed herein. The Examples do not limit the invention in any fashion.

Porcine coronary VSMCs were grown to subconfluence in 96-well plates with DME

Example 1 - Vascular Smooth Muscle Cell Proliferation:

media containing 10% FBS at 37°C for 3 to 5 days. After synchronization in serum-free DME media for 48 hours, the cells were stimulated with PDGF (20 ng/mL) for 24 hours, in the presence of STI-571 (0.01 to 10 M). BrdU was added to the wells for the last 5 hours of the stimulation period. The cells were subsequently dried for 24 hours at 60°C, fixed and denatured, and BrdU incorporation was determined using a colorimetric assay (ELISA) sold

commercially by Roche Molecular Biochemicals (catalog no. 1,647,229), following the

manufacturer's protocol. See "Cell Proliferation ELISA, BrdU (Colorimetric) Instruction Manual," Version 3, September 2000, available from Roche Molecular Biochemicals. Briefly, the BrdU ELISA is a colorimetric immunoassay for quantification of cell proliferation. It is based on the measurement of BrdU incorporation during DNA synthesis. The colorimetric approach is a non-radioactive alternative to the equivalent ³H-thymidine incorporation assay. See also Example 4.

The results of this Example are presented graphically in Fig. 1. DNA synthesis was assayed by incorporation of BrdU (in the same fashion as described in Example 4) after stimulation of the cells with platelet-derived growth factor (PDGF- $\beta\beta$, 20 ng/ml) for 48 in the presence or absence (positive control) of STI-571. Each data point represents 5 to 7 wells, and is expressed as he mean +/- the standard deviation.

As can be seen from the figure, administration of STI-571 inhibited the proliferation of VSMCs in a dose-dependent fashion. This Example demonstrates the utility of the present invention to inhibit the proliferation of VSMCs.

Example 2 - Vascular Endothelial Cell Proliferation:

5

10

15

20

25

Porcine aortic vascular endothelial cells were grown to subconfluence in 96-well plates with DME media containing 10% FBS at 37°C for 3 to 5 days. After synchronization in serum-free DME media for 48 hours, the cells were stimulated with VEGF (20 ng/mL) for 24 hours, in the presence of STI-571 (0.01 to 10 M). BrdU was added to the wells for the last 5 hours of the stimulation period. The cells were subsequently dried for 24 hours at 60°C, fixed and denatured, and BrdU incorporation determined using the Roche ELISA described in Example 1.

The results of this Example are presented graphically in Fig. 2. As can be seen from this figure, STI-571 had a very minimal inhibitory effect on the proliferation of a ortic vascular endothelial cells.

Taken in conjunction with the results of Example 1, this Example demonstrates the utility of the present invention to inhibit the proliferation of VSMCs selectively, while not having an appreciable inhibitory affect on the proliferation of aortic vascular endothelial cells.

Example 3 - Inhibition of Proliferation of Human Coronary Artery Vascular Smooth Muscle Cells by Increasing Concentrations of STI-571:

This Example demonstrates that human coronary artery vascular smooth muscle cells are inhibited in a dose-dependent fashion by STI-571.

Cyropreserved human coronary artery vascular smooth muscle cells (CC-2583) were purchased commercially from Clonetics (now a wholly-owned subsidiary of Cambrex Bio Science Walkersville, Inc., Walkersville, Maryland).

The cells were grown in canted-neck, filtered-cap, 25cm² culture flasks, at an initial seed density of 2500 cells per cm². The cells were grown in "SmGM-2"-brand smooth muscle growth medium (Cambrex, used as delivered from the manufacturer) plus 10% FBS in a humidified 37 °C, 5% CO₂ incubator. Media were changed initially after 24 hours, and then every 48 hrs subsequently. The cells were passed at approximately 80% confluency (~ 4-6 days). The proliferation assays were performed in 24-well culture plates.

On day 5, growth media were replaced with test media (growth media + STI-571), growth media (positive control, media + FBS), and serum-free media (negative control, the "SmGM-2"-brand media without any added FBS).

Cells were counted manually trypsinizing the cells on day 7, with each condition (3 wells) pooled into one micro-centrifuge tube. The cells were spun at $1.5~\rm X~g$ for $10~\rm min$. and then resuspended in $60~\mu l$ trypsin-neutralizing solution. The cells were then counted on a hemacytometer in quadruplicate.

The results are shown in Fig. 3. In the figure, cells were counted after being stimulated with 10% FBS for 48 hours. The data for each experiment was normalized to positive control wells containing FBS and no STI-571. Each point represents 18 to 21 wells from eight separate experiments. The center of each data point is the mean at each concentration of STI-571, and the error bars are the standard deviation at each concentration level.

The significance of this graph is that it clearly indicates that STI-571 inhibits, in a dose-dependent fashion, the proliferation of human coronary artery vascular smooth muscle cells. Because these cells are responsible for restenosis, this graph demonstrates the effectiveness of the present invention for inhibiting such restenosis.

25

5

10

15

Example 4 - Inhibition of DNA Synthesis in Human Coronary Artery Vascular Smooth Muscle Cells by STI-571:

This example demonstrates that STI-571 inhibits DNA synthesis in human coronary artery vascular smooth muscle cells.

5

10

15

20

25

The same cells as described in Example 3 were used. Culture conditions and exposure to the various test concentrations of STI-571 were also the same as in Example 3.

DNA incorporation was measured using a commercially-available BrdU assay (Roche Molecular Biochemicals, catalog no. 1,647,229). The BrDu labeling solution was added on day 6, and the cells then allowed to incubate for another 24 hrs (through day 7). The label solution was then removed and the cells were dried at 60 °C for one hour. The cells were then fixed using "FixDenat" fixing solution for one hour at room temperature. The fixing solution was then removed and anti-BrdU antibody solution added to the cells. The cells were then incubated for 2 hr at 37 °C.

The antibody solution was then removed substrate added to the wells. The plates were incubated at room temperature until sufficient color development occurred. The reactions were stopped by adding $1~\mathrm{M}~\mathrm{H}_2\mathrm{SO}_4$ to the wells. The absorbance was then measured at 450nm (reference, 690 nm).

The results are shown in Fig. 4. Each data point represents 14 to 28 wells from two separate experiments, and are expressed as the means +/- the standard deviations. The significance of this Example is that it shows that STI-571 inhibits DNA synthesis in human coronary artery vascular smooth muscle cells. As in the previous Example, this is notable because these types of cells cause restenosis of stented vessels. By inhibiting the growth of such cells, restenosis is inhibited.

Example 5 - Inhibition of Migration of Human Coronary Artery Vascular Smooth Muscle Cells by STI-571:

This Example was performed to determine if STI-571 has any effect on the migration of human coronary vascular smooth muscle cells.

5

10

15

20

25

The cells described in Example 3 were used. The initial seed density was 4000 cells per filter (0.3 cm²) in test media with 1% BSA and 20 ng/ml PDGF-ββ. The cells were then incubated in a humidified environment at 37 °C, 5% CO₂ for 24 hrs. The cells on the top side of the filter were then scraped away. The cells on bottom side of the filters were then fixed with ice-cold methanol for 10 min. The filters were rinsed with PBS and then stained with HarrisÆ Hematoxylin stain for 5 min. and again rinsed with PBS.

The cells were then counted manually under high-power magnification (400X) in quadruplicate.

The results are shown in Fig. 5. Data bars represent 6 membranes, and the data are presented as means normalized to control membranes (no STI-571) +/- standard deviations.

The significance of this Example is that it demonstrates that STI-571 inhibits the migration of human coronary vascular smooth muscle cells in a dose-dependent fashion. Because migration of these cells is a major contributor to restenosis after deployment of a stent, this Example demonstrates that the present invention can be used to inhibit this migration and hence inhibit restenosis.

Example 6 - Lack of Inhibitory Effect of STI-571 on Proliferation of Human Coronary Artery Endothelial Cells:

This Example demonstrates that the growth of human coronary artery endothelial cells are not inhibited in any fashion by STI-571.

Cyropreserved human coronary artery endothelial cells were purchased commercially from Clonetics (now a wholly-owned subsidiary of Cambrex Bio Science Walkersville, Inc., Walkersville, Maryland).

The cells were grown in canted-neck, filtered-cap, 25cm² culture flasks, at an initial seed density of 2500 cells per cm². The cells were grown in "EGM-MV"-brand smooth muscle growth medium (Cambrex, used as delivered from the manufacturer) plus 10% FBS in a humidified 37 °C, 5% CO₂ incubator. Media were changed initially after 24 hours, and then every 48 hrs subsequently. The cells were passed at approximately 80% confluency (~4-6 days). The proliferation assays were performed in 24-well culture plates.

On day 5, growth media were replaced with test media (growth media + STI-571), growth media (positive control, media + FBS), and serum-free media (negative control, the "EGM-MV"-brand media without any added FBS).

Cells were counted manually trypsinizing the cells on day 7, with each condition (3 wells) pooled into one micro-centrifuge tube. The cells were spun at $1.5~\mathrm{X}$ g for $10~\mathrm{min}$ and then resuspended in $60~\mu l$ trypsin-neutralizing solution. The cells were then counted on a hemacytometer in quadruplicate.

5

10

15

The results are shown in Fig. 6. As can be seen from the figure, STI-571 did not have a significant effect on the proliferation of human coronary artery endothelial cells at any of the STI-571 concentrations tested. This Example, in conjunction with Examples 3-5, are significant because they show that STI-571 has a profound inhibitory effect on human vascular smooth muscle cells (inhibits proliferation, DNA replication, and cell migration), but does not inhibit the proliferation of endothelial cells. This is notable because the proliferation of endothelial cells around an inserted vascular stent is desirable so that the stent becomes firmly implanted within the vessel wall.

.

CLAIMS

What is claimed is:

- 1. A device for stenting a blood vessel, the device comprising:
 - a cardiovascular stent, autologous venous/arterial graft, prosthetic venous/arterial graft, vascular catheter, or vascular shunt having coated thereon, adsorbed thereto, impregnated therein, or covalently or ionically bonded thereto an amount of a protein tyrosine kinase inhibitor; the amount being sufficient to prevent or inhibit proliferation of vascular smooth muscle cells in an area within a blood vessel immediately adjacent to and/or proximal to the cardiovascular stent, autologous venous/arterial graft, prosthetic venous/arterial graft, vascular catheter or vascular shunt, while simultaneously not inhibiting the proliferation of vascular intimal cells.
- 2. The device of Claim 1, comprising a cardiovascular stent,
- 3. The device of Claim 1, comprising an autologous venous/arterial graft.
- 4. The device of Claim 1, comprising a prosthetic venous/arterial graft.
- 5. The device of Claim 1, comprising a vascular catheter.
- 6. The device of Claim 1; comprising a vascular shunt.

.

- 7. The device of Claim 1, wherein the protein tyrosine kinase inhibitor is a plateletderived growth factor inhibitor.
- 8. The device of Claim 7, wherein the protein tyrosine kinase inhibitor is also a Bcr-Abl tyrosine kinase inhibitor.

9. The device of Claim 1, wherein the protein tyrosine kinase inhibitor is STI-571.

- 10. The device of Claim 1, wherein the protein tyrosine kinase inhibitor is 4-{(4-methyl-1-piperazinyl)methyl}-N-{4-methyl-3-{{4-(3-pyrimidinyl}amino}-phenyl}benzamide and/or a pharmaceutically-suitable salt thereof; the amount being sufficient to prevent or inhibit proliferation of vascular smooth muscle cells in an area within a blood vessel immediately adjacent to and/or proximal to the cardiovascular stent, autologous venous/arterial graft, prosthetic venous/arterial graft, vascular catheter or vascular shunt.
- 11. A device for stenting a blood vessel, the device comprising:
 - a cardiovascular stent, autologous venous/arterial graft, prosthetic venous/arterial graft, vascular catheter, or vascular shunt having coated thereon, adsorbed thereto, impregnated therein, or covalently or ionically bonded thereto an amount of 4-{(4-methyl-1-piperazinyl)methyl}-N-{4-methyl-3-{{4-(3-pyrimidinyl}amino}-phenyl}benzamide and/or a pharmaceutically-suitable salt thereof; the amount being sufficient to prevent or inhibit proliferation of vascular smooth muscle cells in an area within a blood vessel immediately adjacent to and/or proximal to the cardiovascular stent, autologous venous/arterial graft, prosthetic venous/arterial graft, vascular catheter or vascular shunt, while simultaneously not inhibiting the proliferation of vascular intimal cells.
- 12. The device of Claim 11, comprising a cardiovascular stent,
- 13. The device of Claim 11, comprising an autologous venous/arterial graft.
- 14. The device of Claim 11, comprising a prosthetic venous/arterial graft.
- 15. The device of Claim 11; comprising a vascular catheter.

16. The device of Claim 11, comprising a vascular shunt.

- 17. A method of preventing restenosis following vascular intervention, the method comprising coating, adsorbing, impregnating, or covalently or ionically bonding to a cardiovascular stent, autologous venous/arterial graft, prosthetic venous/arterial graft, vascular catheter or vascular shunt used in the vascular intervention an amount of a protein tyrosine kinase inhibitor; the amount being sufficient to prevent or inhibit proliferation of vascular smooth muscle cells in an area within a blood vessel immediately adjacent to and/or proximal to the cardiovascular stent, autologous venous/arterial graft, prosthetic venous/arterial graft, vascular catheter or vascular shunt, while simultaneously not inhibiting the proliferation of vascular intimal cells.
- 18. The method of Claim 17, wherein the cardiovascular stent, autologous venous/arterial graft, prosthetic venous/arterial graft, vascular catheter or vascular shunt is coated with a platelet-derived growth factor inhibitor.
- 19. The method of Claim 17, wherein the cardiovascular stent, autologous venous/arterial graft, prosthetic venous/arterial graft, vascular catheter or vascular shunt is coated with a Bcr-Abl tyrosine kinase inhibitor.
- 20. The device of Claim 17, wherein the cardiovascular stent, autologous venous/arterial graft, prosthetic venous/arterial graft, vascular catheter or vascular shunt is coated with STI-571.
- 21. The device of Claim 17, wherein the cardiovascular stent, autologous venous/arterial graft, prosthetic venous/arterial graft, vascular catheter or vascular shunt is coated with 4-{(4-methyl-1-piperazinyl)methyl}-N-{4-methyl-3-{{4-(3-pyrimidinyl}amino}-phenyl}benzamide and/or a pharmaceutically-suitable salt thereof.

... . .

A method of preventing restenosis following vascular intervention, the method comprising coating, adsorbing, impregnating, or covalently or ionically bonding to a cardiovascular stent, autologous venous/arterial graft, prosthetic venous/arterial graft, vascular catheter or vascular shunt used in the vascular intervention an amount of 4-{(4-methyl-1-piperazinyl)methyl}-N-{4-methyl-3-{{4-(3-pyrimidinyl}amino}-phenyl}benzamide and/or a pharmaceutically-suitable salt thereof, the amount being sufficient to prevent or inhibit proliferation of vascular smooth muscle cells in an area within a blood vessel immediately adjacent to and/or proximal to the cardiovascular stent, autologous venous/arterial graft, prosthetic venous/arterial graft, vascular catheter or vascular shunt, while simultaneously not inhibiting the proliferation of vascular intimal cells.

FIG. 1

Porcine Aortic Endothelial Cells

FIG. 2

FIG. 3

Inhibition of DNA Synthesis in HCAVSMC by Glivec

FIG. 5

6/6

FIG. 6

ENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND SEQUENCE LISTING

<110>	Wolf	f, Ma	atthew	R.												
<120>	VASC	ULAR	STENT	OR	GRAFT	CO	ATED	OR	IMP:	REGNA	TED	WITH	PR	OTEIN	1	
<130>	09820.189															
<150> <151>	60/343,732 2001-10-25															
<160>	25															
<170>	PatentIn version 3.1															
<210> <211> <212> <213>	1 3000 DNA Homo	sap:	iens													
<400> atggggd 60	1 ccgg	cccc	gctgcc	gct	getge	tg	ggccł	tctt	cc	tacco	gege	t ct	ggc	gtaga	a	
gctatca 20	actg	aggc	aaggga	aga	agcca	ag	cctta	accc	gc	tatto	ccgg	g ac	ctt	ttcca	Э	1
gggagco 80	ctgc	aaac'	tgacca	cad	caccgc	tg	ttato	ccct	tc	ctcac	:gcca	g tg	rggt	accaç	g	1
cctgcct 40	ttga	tgtt	ttcacc	aad	ccage	ct	ggaa	gacc	ac	ataca	ıggaa	a cg	rtag	gccati	t	2
cccago	gtga	cctc	tgtcga	ato	caaagc	cc	ctac	cgcc	tc	ttgcc	ttca	a ac	caca	cagti	t	3
ggacaca 60	ataa	tact	ttctga	aca	ataaag	gt	gtca	aatt	ta	attgo	ctcaa	ıt ca	atg	jtacc [†]	t	3
aatatat 20	tacc	agga	caccac	aat	cttctt	gg	tgga	aaga	tg	ggaag	ggaat	t gc	ettg	ggggg	a	4
catcato 80	cgaa	ttac	acagtt	tta	atccag	at	gatg	aagt	ta	cagca	ataa	ıt cç	gctt	cctt	С	4
agcata:	acca	gtgt	gcagcg	tto	cagaca	at	gggt	cgta	ıta	tctgt	aaga	ıt ga	aaaa	ataaa	С	5

ENT	OR GRAFT Co aatgaagaga 00	DATED OR IM tcgtgtctga	PREGNATED W. tcccatctac	ITH PROTEIN atcgaagtac	TYROSINE K	INASE INHIBI tcactttact	TORS 6	AND
		agagcatgaa	tgtcaccaga	aacacagcct	tcaacctcac	ctgtcaggct	6	
	gtgggcccgc 20	ctgagcccgt	caacattttc	tgggttcaaa	acagtagccg	tgttaacgaa	7	
	cagcctgaaa 80	aatcccccgg	cgtgctaact	gttccaggcc	tgacggagat	ggcggtcttc	7	
	agttgtgagg 40	cccacaatga	caaagggctg	accgtgtccc	agggagtgca	gatcaacatc	8	
	aaagcaattc 00	cctccccacc	aactgaagtc	agcatccgta	acagcactgc	acacagcatt	9	
	ctgatctcct 60	gggttcctgg	ttttgatgga	tactccccgt	tcaggaattg	cagcattcag	9	
	gtcaaggaag 20	ctgatccgct	gggtaatggc	tcagtcatga	tttttaacac	ctctgcctta	10	
	ccacatctgt 80	accaaatcaa	gcagctgcaa	gccctggcta	attacagcat	tggtgtttcc	10	
	tgcatgaatg 40	aaataggctg	gtctgcagtg	agcccttgga	ttctagcaag	cacgactgaa	11	
	ggagccccat 00	cagtagcacc	tttaaatgtc	actgtgtttc	tgaatgaatc	tagtgataat	12	
	gtggacatca 60	gatggatgaa	gcctccgact	aagcagcagg	atggagaact	ggtgggctac	12	
	cggatatccc 20	acgtgtggca	gagtgcaggg	atttccaaag	agctcttgga	ggaagttggc	13	
	cagaatggca 80	geegageteg	gatctctgtt	caagtccaca	atgctacgtg	cacagtgagg	13	
	attgcagccg 40	tcaccagagg	gggagttggg	cccttcagtg	atccagtgaa	aatatttatc	14	
	cctgcacacg	gttgggtaga	ttatgcccc	tcttcaactc	cggcgcctgg	caacgcagat	15	

ENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND cctgtgctca tcatctttgg ctgcttttgt ggatttattt tgattgggtt gattttatac atctccttgg ccatcagaaa aagagtccag gagacaaagt ttgggaatgc attcacagag 16 gaggattctg aattagtggt gaattatata gcaaagaaat ccttctgtcg gcgagccatt 16 gaacttacct tacatagctt gggagtcagt gaggaactac aaaataaact agaagatgtt 17 gtgattgaca ggaatcttct aattcttgga aaaattctgg gtgaaggaga gtttgggtct 18 gtaatggaag gaaatcttaa gcaggaagat gggacctctc tgaaagtggc agtgaagacc 18 atgaagttgg acaactcttc acatcgggag atcgaggagt ttctcagtga ggcagcgtgc 19 atgaaagact tcagccaccc aaatgtcatt cgacttctag gtgtgtgtat agaaatgagc 19 tctcaaggca tcccaaagcc catggtaatt ttacccttca tgaaatacgg ggacctgcat 20 acttacttac tttattcccg attggagaca ggaccaaagc atattcctct gcagacacta 21 ttgaagttca tggtggatat tgccctggga atggagtatc tgagcaacag gaattttctt 21 catcgagatt tagctgctcg aaactgcatg ttgcgagatg acatgactgt ctgtgttgcg 22 22 gacttcggcc tctctaagaa gatttacagt ggcgattatt accgccaagg ccgcattgct 80 aagatgcctg ttaaatggat cgccatagaa agtcttgcag accgagtcta cacaagtaaa 23 agtgatgtgt gggcatttgg cgtgaccatg tgggaaatac gtacgcgggg aatgactccc 24 tatcctgggg tccagaacca tgagatgtat gactatcttc tccatggcca caggttgaag 24

RNT	OR GRAFT C	OATED OR IM	PREGNATED W	ITH PROTEIN	TYROSINE K	INASE INHIBI	TORS AND
J. (L	cagcccgaag 20	actgcctgga	tgaactgtat	gaaataatgt	actcttgctg	gagaaccgat	25
	cccttagacc 80	gcccacctt	ttcagtattg	aggctgcagc	tagaaaaact	cttagaaagt	25
	ttgcctgacg 40	ttcggaacca	agcagacgtt	atttacgtca	atacacagtt	gctggagagc	26
	tctgagggcc 00	tggcccaggg	cccaccctt	gctccactgg	acttgaacat	cgaccctgac	27
	tctataattg	cctcctgcac	tccccgcgct	gccatcagtg	tggtcacagc	agaagttcat	27
	gacagcaaac 20	ctcatgaagg	acggtacatc	ctgaatgggg	gcagtgagga	atgggaagat	28
	ctgacttctg	cccctctgc	tgcagtcaca	gctgaaaaga	acagtgtttt	accgggggag	28
	agacttgtta	ggaatggggt	ctcctggtcc	cattcgagca	tgctgccctt	gggaagctca	29
	ttgcccgatg	aacttttgtt	tgctgacgac	tcctcagaag	gctcagaagt	cctgatgtga	30
						•	
	<210> 2 <211> 1353 <212> DNA						
		o sapiens					
	<400> 2 atgtcagcaa 60	tacaggccgc	ctggccatcc	ggtacagaat	gtattgccaa	gtacaacttc	
	cacggcactg 20	ccgagcagga	cctgcccttc	tgcaaaggag	acgtgctcac	cattgtggcc	1
	gtcaccaagg 80	accccaactg	gtacaaagcc	aaaaacaagg	tgggccgtga	gggcatcatc	1
	ccagccaact 40	acgtccagaa	gcgggagggc	gtgaaggcgg	gtaccaaact	cagcctcatg	2
	ccttggttcc	acggcaagat	cacacgggag	caggctgagc	ggcttctgta	cccgccggag	3

ENT	OR GRAFT C	DATED OR IM	PREGNATED W	ITH PROTEIN	TYROSINE F	(INASE IN	HIBITORS	AND
	acaggcctgt 60	tcctggtgcg	ggagagcacc	aactaccccg	gagactacac	gctgtgcg	rtg 3	
	agctgcgacg 20	gcaaggtgga	gcactaccgc	atcatgtacc	atgccagcaa	gctcagca	itc 4	
	gacgaggagg 80	tgtactttga	gaacctcatg	cagctggtgg	agcactacac	ctcagacg	jca 4	
	gatggactct 40	gtacgcgcct	cattaaacca	aaggtcatgg	agggcacagt	ggeggeee	ag 5	
	gatgagttct 00	accgcagcgg	ctgggccctg	aacatgaagg	agctgaagct	gctgcaga	acc 6	
	atcgggaagg 60	gggagttcgg	agacgtgatg	ctgggcgatt	accgagggaa	caaagtcg	jcc 6	
	gtcaagtgca 20	ttaagaacga	cgccactgcc	caggccttcc	tggctgaagc	ctcagtca	atg 7	
	acgcaactgc 80	ggcatagcaa	cctggtgcag	ctcctgggcg	tgatcgtgga	ggagaagg	ggc 7	
	gggctctaca 40	tcgtcactga	gtacatggcc	aaggggagcc	ttgtggacta	. cctgcggt	ect 8	
	aggggtcggt 00	cagtgctggg	cggagactgt	ctcctcaagt	tctcgctaga	tgtctgc	gag 9	
	gccatggaat 60	acctggaggg	caacaatttc	gtgcatcgag	acctggctgc	: ccgcaatq	gtg 9	
	ctggtgtctg 20	aggacaacgt	ggccaaggtc	agcgactttg	gtctcaccaa	ı ggaggcg [†]	tcc 10	
	agcacccagg 80	acacgggcaa	gctgccagtc	aagtggacag	ccctgaggo	cctgaga	gag 10	
	aagaaattct 40	ccactaagtc	tgacgtgtgg	agtttcggaa	tccttctctç	g ggaaatc	tac 11	
	tcctttgggc 00	gagtgcctta	tccaagaatt	cccctgaagg	acgtcgtcc	c tagggtg	gag 12	
	aagggctaca 60	agatggatgc	ccccgacggc	tgcccgcccg	cagtctatga	a agtcatg	aag 12	

ENT (OR GRAFT CO	DATED OR IM	PREGNATED W	ITH PROTEIN	TYROSINE K	INASE INHIB	ITORS AND
	actgctggc 0	acctggacgc	cgccatgcgg	ccctccttcc	tacageteeg	agagcagctt	13
	agcacatca 3	aaacccacga	gctgcacctg	tga			13
<	210> 3 211> 3768 212> DNA 213> Homo	sapiens			1		
a	400> 3 tggagctgg	cggccttgtg	ccgctggggg	ctcctcctcg	ccctcttgcc	ccccggagcc	
	rcgagcaccc 0	aagtgtgcac	cggcacagac	atgaagctgc	ggatacatga	cagtcccgag	1
	cccacctgg	acatgctccg	ccacctctac	cagggctgcc	aggtggtgca	gggaaacctg	1
	aactcacct 0	acctgcccac	caatgccagc	ctgtccttcc	tgcaggatat	ccaggaggtg	2
	agggctacg 0	tgctcatcgc	tcacaaccaa	gtgaggcagg	tcccactgca	gaggctgcgg	3
	ttgtgcgag i0	gcacccagct	ctttgaggac	aactatgccc	tggccgtgct	agacaatgga	3
	acccgctga 0	acaataccac	ccctgtcaca	ggggcctccc	caggaggcct	gcgggagctg	4
	agcttcgaa 10	gcctcacaga	gatcttgaaa	ggaggggtct	tgatccagcg	gaacccccag	4
	tctgctacc	aggacacgat	tttgtggaag	gacatcttcc	acaagaacaa	ccagctggct	5
	tcacactga 00	tagacaccaa	ccgctctcgg	gcctgccacc	cctgttctcc	gatgtgtaag	6
	geteceget 0	gctggggaga	gagttctgag	gattgtcaga	gcctgacgcg	cactgtctgt	6
Ğ	sccggtggct	gtgcccgctg		ctgcccactg	actgctgcca	tgagcagtgt	7

ENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND 7 getgeegget geaegggeee caageactet gaetgeetgg eetgeeteea etteaaceae agtggcatct gtgagctgca ctgcccagcc ctggtcacct acaacacaga cacgtttgag 8 tccatgccca atcccgaggg ccggtataca ttcggcgcca gctgtgtgac tgcctgtccc 9 tacaactacc tttctacgga cgtgggatcc tgcaccctcg tctgccccct gcacaaccaa 9 gaggtgacag cagaggatgg aacacagcgg tgtgagaagt gcagcaagcc ctgtgcccga 10 20 10 gtgtgctatg gtctgggcat ggagcacttg cgagaggtga gggcagttac cagtgccaat atccaggagt ttgctggctg caagaagatc tttgggagcc tggcatttct gccggagagc 11 tttgatgggg acccagcctc caacactgcc ccgctccagc cagagcagct ccaagtgttt 12 gagactetgg aagagateae aggttaeeta tacateteag catggeegga cageetgeet 12 13 gacctcagcg tcttccagaa cctgcaagta atccggggac gaattctgca caatggcgcc tactcgctga ccctgcaagg gctgggcatc agctggctgg ggctgcgctc actgagggaa 13 ctgggcagtg gactggccct catccaccat aacacccacc tctgcttcgt gcacacggtg 14 ccctgggacc agctctttcg gaacccgcac caagctctgc tccacactgc caaccggcca 15 gaggacgagt gtgtgggcga gggcctggcc tgccaccagc tgtgcgcccg agggcactgc 15 tggggtccag ggcccaccca gtgtgtcaac tgcagccagt tccttcgggg ccaggagtgc 16 gtggaggaat gccgagtact gcaggggctc cccagggagt atgtgaatgc caggcactgt 16 Page 7

'ENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND ttgccgtgcc accctgagtg tcagccccag aatggctcag tgacctgttt tggaccggag 17 gctgaccagt gtgtggcctg tgcccactat aaggaccctc ccttctgcgt ggcccgctgc 18 cccagcggtg tgaaacctga cctctcctac atgcccatct ggaagtttcc agatgaggag 18 ggcgcatgcc agccttgccc catcaactgc acccactcct gtgtggacct ggatgacaag 19 ggctgccccg ccgagcagag agccagccct ctgacgtcca tcgtctctgc ggtggttggc 19 20 attctqctqq tcqtqgtctt gggggtggtc ttttgggatcc tcatcaagcg acggcagcag aagatccgga agtacacgat gcggagactg ctgcaggaaa cggagctggt ggagccgctg 21 00 acacctagcg gagcgatgcc caaccaggcg cagatgcgga tcctgaaaga gacggagctg 21 aggaaggtga aggtgcttgg atctggcgct tttggcacag tctacaaggg catctggatc 22 22 cctgatgggg agaatgtgaa aattccagtg gccatcaaag tgttgaggga aaacacatcc cccaaagcca acaaagaaat cttagacgaa gcatacgtga tggctggtgt gggctcccca 23 tatgtctccc gccttctggg catctgcctg acatccacgg tgcagctggt gacacagctt 24 atgccctatg gctgcctctt agaccatgtc cgggaaaacc gcggacgcct gggctcccag 24 gacctgctga actggtgtat gcagattgcc aaggggatga gctacctgga ggatgtgcgg 25 25 ctcgtacaca gggacttggc cgctcggaac gtgctggtca agagtcccaa ccatgtcaaa 80 attacagact tcgggctggc tcggctgctg gacattgacg agacagagta ccatgcagat 26 Page 8

	- · · · - ·	*			·		
ENT	OR GRAFT C	OATED OR IM	PREGNATED W	ITH PROTEIN	TYROSINE K	INASE INHIB	ITORS AND
	gggggcaagg 00	tgcccatcaa	gtggatggcg	ctggagtcca	ttctccgccg	gcggttcacc	27
	caccagagtg 60	atgtgtggag	ttatggtgtg	actgtgtggg	agctgatgac	ttttggggcc	27
	aaaccttacg 20	atgggatccc	agcccgggag	atccctgacc	tgctggaaaa	gggggagcgg	28
	ctgccccagc 80	ccccatctg	caccattgat	gtctacatga	tcatggtcaa	atgttggatg	28
	attgactctg	aatgtcggcc	aagattccgg	gagttggtgt	ctgaattctc	ccgcatggcc	29
	agggaccccc	agcgctttgt	ggtcatccag	aatgaggact	tgggcccagc	cagtcccttg	30
	gacagcacct 60	tctaccgctc	actgctggag	gacgatgaca	tgggggacct	ggtggatgct	30
	gaggagtatc 20	tggtacccca	gcagggcttc	ttctgtccag	accctgcccc	gggcgctggg	31
	ggcatggtcc 80	accacaggca	ccgcagctca	tctaccagga	gtggcggtgg	ggacctgaca	31
	ctagggctgg 40	agccctctga	agaggaggcc	cccaggtctc	cactggcacc	ctccgaaggg	32
	gctggctccg 00	atgtatttga	tggtgacctg	ggaatggggg	cagccaaggg	gctgcaaagc	33
	ctccccacac	atgaccccag	ccctctacag	cggtacagtg	aggaccccac	agtacccctg	33
	ccctctgaga 20	ctgatggcta	cgttgccccc	ctgacctgca	gcccccagcc	tgaatatgtg	34
	aaccagccag 80	atgttcggcc	ccagccccct	tegeceegag	agggccctct	gcctgctgcc	34
	cgacctgctg 40	gtgccactct	ggaaagggcc	aagactctct	ccccagggaa	gaatggggtc	35
	gtcaaagacg	tttttgcctt			ccgagtactt	gacaccccag	36
				Page 9			

ENT	OR GRAFT CO	DATED OR IM	PREGNATED W	VITH PROTEIN	TYROSINE K	INASE INHIBI	TORS AND
	ggaggagctg 60	cccctcagcc	ccaccctcct	cctgccttca	gcccagcctt	cgacaacctc	36
	tattactggg 20	accaggaccc	accagagcgg	ggggctccac	ccagcacctt	caaagggaca	37
	cctacggcag 68	agaacccaga	gtacctgggt	ctggacgtgc	cagtgtga		37
	<210> 4 <211> 3429 <212> DNA <213> Homo	sapiens					
	<400> 4 atggctttct 60	gtgctaaaat	gaggagetee	aagaagactg	aggtgaacct	ggaggcccct	
	gagccagggg 20	tggaagtgat	cttctatctg	tcggacaggg	agcccctccg	gctgggcagt	1
	ggagagtaca 80	cagcagagga	actgtgcatc	agggctgcac	aggcatgccg	tatctctcct	1
	ctttgtcaca 40	acctctttgc	cctgtatgac	gagaacacca	agctctggta	tgctccaaat	2
	cgcaccatca 00	ccgttgatga	caagatgtcc	ctccggctcc	actaccggat	gaggttctat	3
	ttcaccaatt 60	ggcatggaac	caacgacaat	gagcagtcag	tgtggcgtca	ttctccaaag	3
	aagcagaaaa 20	atggctacga	gaaaaaaaag	ı attccagatg	caacccctct	ccttgatgcc	4
	agctcactgg 80	agtatctgtt	tgctcaggga	ı cagtatgatt	tggtgaaatg	cctggctcct	4
	attcgagacc 40	ccaagaccga	gcaggatgga	a catgatattg	agaacgagtg	tctagggatg	5
	gctgtcctgg	ccatctcaca	ctatgccatg	g atgaagaaga	tgcagttgcc	agaactgccc	6

ENT	OR GRAFT C	OATED OR IM	PREGNATED W	ITH PROTEIN	TYROSINE K	INASE INHIB	ITORS AND
	aaggacatca 60	gctacaagcg	atatattcca	gaaacattga	ataagtccat	cagacagagg	6
	aaccttctca 20	ccaggatgcg	gataaataat	gttttcaagg	atttcctaaa	ggaatttaac	7
	aacaagacca 80	tttgtgacag	cagcgtgtcc	acgcatgacc	tgaaggtgaa	atacttggct	7
	accttggaaa 40	ctttgacaaa	acattacggt	gctgaaatat	ttgagacttc	catgttactg	8
	atttcatcag 00	aaaatgagat	gaattggttt	cattcgaatg	acggtggaaa	cgttctctac	9
	tacgaagtga 60	tggtgactgg	gaatcttgga	atccagtgga	ggcataaacc	aaatgttgtt	9
	tctgttgaaa 20	aggaaaaaaa	taaactgaag	cggaaaaaaac	tggaaaataa	agacaagaag	10
	gatgaggaga 80	aaaacaagat	ccgggaagag	tggaacaatt	tttcattctt	ccctgaaatc	10
	actcacattg	taataaagga	gtctgtggtc	agcattaaca	agcaggacaa	caagaaaatg	11
	gaactgaagc 00	tctcttccca	cgaggaggcc	ttgtcctttg	tgtccctggt	agatggctac	12
	ttccggctca 60	cagcagatgc	ccatcattac	ctctgcaccg	acgtggcccc	cccgttgatc	12
	gtccacaaca 20	tacagaatgg	ctgtcatggt	ccaatctgta	cagaatacgc	catcaataaa	13
	ttgcggcaag 80	aaggaagcga	ggaggggatg	tacgtgctga	ggtggagctg	caccgacttt	13
	gacaacatcc 40	tcatgaccgt	cacctgcttt	gagaagtctg	agcaggtgca	gggtgcccag	14
	aagcagttca 00	agaactttca	gatcgaggtg	cagaagggcc	gctacagtct	gcacggttcg	15
	gaccgcagct 60	tccccagctt	gggagacctc	atgagccacc	tcaagaagca	gatcctgcgc	15

FENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND acqqataaca tcaqcttcat qctaaaacgc tgctgccaqc ccaagccccg agaaatctcc 20 aacctgctgg tggctactaa gaaagcccag gagtggcagc ccgtctaccc catgagccag 16 ctgagtttcg atcggatcct caagaaggat ctggtgcagg gcgagcacct tgggagaggc 17 acgagaacac acatctattc tgggaccctg atggattaca aggatgacga aggaacttct 18 gaagagaaga agataaaagt gatcctcaaa gtcttagacc ccagccacag ggatatttcc 18 60 ctqqccttct tcqaqqcaqc cagcatgatg agacaggtct cccacaaaca catcgtgtac 19 ctctatgqcq tctgtgtccg cgacgtggag aatatcatgg tggaagagtt tgtggaaggg 19 ggtcctctgg atctcttcat gcaccggaaa agtgatgtcc ttaccacacc atggaaattc 20 aaagttgcca aacagctggc cagtgccctg agctacttgg aggataaaga cctggtccat 21 21 qqaaatqtqt qtactaaaaa cctcctcctg gcccgtgagg gaatcgacag tgagtgtggc ccattcatca agetcagtga ecceggeate eccattacgg tgetgtetag geaagaatge 22 attgaacgaa tcccatggat tgctcctgag tgtgttgagg actccaagaa cctgagtgtg 22 gctgctgaca agtggagctt tggaaccacg ctctgggaaa tctgctacaa tggcgagatc 23 cccttgaaag acaagacgct gattgagaaa gagagattct atgaaagccg gtgcaggcca 24 gtgacaccat catgtaagga gctggctgac ctcatgaccc gctgcatgaa ctatgacccc 24 25 aatcagaggc ctttcttccg agccatcatg agagacatta ataagcttga agagcagaat

ENT	OR GRAFT C	OATED OR IM	PREGNATED W	ITH PROTEIN	TYROSINE K	INASE INHIB:	ITORS	AN
	ccagatattg 80	tttccagaaa	aaaaaaccag	ccaactgaag	tggaccccac	acattttgag	25	
	aagcgcttcc 40	taaagaggat	ccgtgacttg	ggagagggcc	actttgggaa	ggttgagctc	26	
	tgcaggtatg 00	accccgaaga	caatacaggg	gagcaggtgg	ctgttaaatc	tctgaagcct	27	
	gagagtggag 60	gtaaccacat	agctgatctg	aaaaaggaaa	tcgagatctt	aaggaacctc	27	
	tatcatgaga 20	acattgtgaa	gtacaaagga	atctgcacag	aagacggagg	aaatggtatt	28	
	aagctcatca 80	tggaatttct	gccttcggga	agccttaagg	aatatcttcc	aaagaataag	28	
	aacaaaataa 40	acctcaaaca	gcagctaaaa	tatgccgttc	agatttgtaa	ggggatggac	29	
	tatttgggtt 00	ctcggcaata	cgttcaccgg	gacttggcag	caagaaatgt	ccttgttgag	30	
	agtgaacacc 60	aagtgaaaat	tggagacttc	ggtttaacca	aagcaattga	aaccgataag	30	
	gagtattaca 20	ccgtcaagga	tgaccgggac	agccctgtgt	tttggtatgc	tccagaatgt	31	
	ttaatgcaat 80	ctaaatttta	tattgcctct	gacgtctggt	cttttggagt	cactctgcat	31	
	gagctgctga 40	cttactgtga	ttcagattct	agtcccatgg	ctttgttcct	gaaaatgata	32	
	ggcccaaccc	atggccagat	gacagtcaca	agacttgtga	atacgttaaa	agaaggaaaa	33	
	cgcctgccgt	gcccacctaa	ctgtccagat	gaggtttatc	agcttatgag	aaaatgctgg	33	
	gaattccaac 20	catccaatcg	gacaagcttt	cagaacctta	ttgaaggatt	tgaagcactt	34	
	ttaaaataa 29						34	

FENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND

<210> 5 <211> 3399 <212> DNA <213> Homo sapiens <400> 5 atgggaatgg cctgccttac gatgacagaa atggagggaa catccacctc ttctatatat cagaatggtg atatttctgg aaatgccaat tctatgaagc aaatagatcc agttcttcag 1 gtgtatettt accattecet tgggaaatet gaggeagatt atetgaeett tecatetggg 1 gagtatgttg cagaagaaat ctgtattgct gcttctaaag cttgtggtat cacacctgtg 2 tatcataata tgtttgcttt aatgagtgaa acagaaagga tctggtatcc acccaaccat 3 gtcttccata tagatgagtc aaccaggcat aatgtactct acagaataag attttacttt 3 cctcgttggt attgcagtgg cagcaacaga gcctatcggc atggaatatc tcgaggtgct gaagctcctc ttcttgatga ctttgtcatg tcttacctct ttgctcagtg gcggcatgat 4 tttgtgcacg gatggataaa agtacctgtg actcatgaaa cacaggaaga atgtcttggg 5 atggcagtgt tagatatgat gagaatagcc aaagaaaacg atcaaacccc actggccatc 6 tataactcta tcagctacaa gacattctta ccaaaatgta ttcgagcaaa gatccaagac 6 tatcatattt tgacaaggaa gcgaataagg tacagatttc gcagatttat tcagcaattc 7 agccaatgca aagccactgc cagaaacttg aaacttaagt atcttataaa tctggaaact ctgcagtctg ccttctacac agagaaattt gaagtaaaag aacctggaag tggtccttca

- - -

TK	OR GRAFT CO	DATED OR IMI	PREGNATED W	ITH PROTEIN	TYROSINE H	KINASE INHI	BITORS AND
	ggtgaggaga 00	tttttgcaac	cattataata	actggaaacg	gtggaattca	gtggtcaaga	a 9
	gggaaacata 60	aagaaagtga	gacactgaca	gaacaggatt	tacagttata	ttgcgattt	t 9
	cctaatatta 20	ttgatgtcag	tattaagcaa	gcaaaccaag	agggttcaaa	. tgaaagccg	a 10
	gttgtaacta 80	tccataagca	agatggtaaa	aatctggaaa	ttgaacttag	ctcattaag	g 10
	gaagctttgt 40	ctttcgtgtc	attaattgat	ggatattata	gattaactgo	: agatgcaca	t 11
	cattacctct 00	gtaaagaagt	agcacctcca	gccgtgcttg	aaaatataca	aagcaactg	t 12
	catggcccaa 60	tttcgatgga	ttttgccatt	agtaaactga	agaaagcag	g taatcagac	t 12
	ggactgtatg 20	tacttcgatg	cagtcctaag	gactttaata	aatattttt	gacttttgc	t 13
	gtcgagcgag 80	aaaatgtcat	tgaatataaa	cactgtttga	ttacaaaaaa	a tgagaatga	a 13
	gagtacaacc 40	tcagtgggac	aaagaagaac	ttcagcagtc	ttaaagatc	t tttgaattg	rt 14
	taccagatgg	aaactgttcg	ctcagacaat	ataattttcc	agtttacta	a atgctgtco	cc 15
	ccaaagccaa 60	aagataaatc	aaaccttcta	. gtcttcagaa	cgaatggtg	t ttctgatgt	a 15
	ccaacctcac 20	caacattaca	gaggcctact	: catatgaacc	aaatggtgt	t tcacaaaat	c 16
	agaaatgaag 80	atttgatatt	taatgaaago	: cttggccaag	gcactttta	c aaagattti	t 16
		gaagagaagt	aggagactac	ggtcaactgc	atgaaacag	a agttcttt	ta 17
		ataaagcaca	. cagaaactat	tcagagtctt	tctttgaag	c agcaagta	tg 18

NT	OR GRAFT C	OATED OR IM	PREGNATED W	ITH PROTEIN	TYROSINE	KINASE INHIB	ITORS AND
	atgagcaagc 60	tttctcacaa	gcatttggtt	ttaaattatg	gagtatgtgt	ctgtggagac	18
	gagaatattc 20	tggttcagga	gtttgtaaaa	tttggatcac	tagatacata	a tctgaaaaag	19
	aataaaaatt 80	gtataaatat	attatggaaa	cttgaagttg	ctaaacagt	t ggcatgggcc	19
	atgcattttc 40	tagaagaaaa	cacccttatt	catgggaatg	tatgtgcda	a aaatattctg	20
	cttatcagag 00	aagaagacag	gaagacagga	aatcctcctt	tcatcaaac	t tagtgatcct	21
	ggcattagta 60	ttacagtttt	gccaaaggac	attcttcagg	agagaatac	c atgggtacca	21
	cctgaatgca 20	ttgaaaatcc	taaaaattta	aatttggcaa	cagacaaat	g gagttttggt	22
	accactttgt 80	gggaaatctg	cagtggagga	gataaacctc	taagtgctc	t ggattctcaa	22
	agaaagctac 40	aattttatga	agataggcat	cagcttcctg	caccaaagt	g ggcagaatta	23
	gcaaacctta 00	taaataattg	tatggattat	gaaccagatt	tcaggcctt	c tttcagagcc	24
	atcatacgag 60	atcttaacag	tttgtttact	ccagattatg	aactattaa	c agaaaatgac	24
	atgttaccaa 20	atatgaggat	aggtgcccta	a gggttttctg	gtgcctttg	a agaccgggat	25
	cctacacagt 80	ttgaagagag	acatttgaaa	a tttctacago	aacttggca	a gggtaatttt	25
	gggagtgtgg 40	agatgtgccg	gtatgaccct	ctacaggaca	acactgggg	ga ggtggtcgct	26
	gtaaaaaagc 00	ttcagcatag	tactgaaga	g cacctaagag	g actttgaaa	ag ggaaattgaa	27
	atcctgaaat 60	ccctacagca	tgacaacat	t gtaaagtaca	agggagtgt	g ctacagtgct	27

INT	OR GRAFT C	OATED OR IMI	PREGNATED W	ITH PROTEIN	TYROSINE F	KINASE INHIBI	TORS AND
	ggtcggcgta 20	atctaaaatt	aattatggaa	tatttaccat	atggaagttt	acgagactat	28
	cttcaaaaac 80	ataaagaacg	gatagatcac	ataaaacttc	tgcagtacac	atctcagata	28
	tgcaagggta 40	tggagtatct	tggtacaaaa	aggtatatcc	acagggatct	ggcaacgaga	29
	aatatattgg 00	tggagaacga	gaacagagtt	aaaattggag	attttgggtt	aaccaaagtc	3,0
	ttgccacaag 60	acaaagaata	ctataaagta	aaagaacctg	gtgaaagtcc	catattctgg	30
	tatgctccag 20	aatcactgac	agagagcaag	ttttctgtgg	cctcagatgt	ttggagcttt	31
	ggagtggttc 80	tgtatgaact	tttcacatac	attgagaaga	gtaaaagtco	accageggaa	31
	tttatgcgta 40	tgattggcaa	tgacaaacaa	ggacagatga	tcgtgttcca	ı tttgatagaa	32
	cttttgaaga 00	ataatggaag	attaccaaga	ccagatggat	gcccagatga	gatctatatg	33
	atcatgacag 60	aatgctggaa	caataatgta	aatcaacgcc	cctcctttag	g ggatctagct	33
	cttcgagtgg 99	atcaaataag	ggataacatg	gctggatga			33
	<210> 6 <211> 158 <212> DNA <213> Hom						
	<400> 6 atggcggggc 60	gaggctctct	ggtttcctgg	cgggcatttc	acggctgtg	a ttctgctgag	
	gaacttcccc 20	gggtgagccc	ccgcttcctc	cgagcctggc	accccctc	c cgtctcagcc	1
	aggatgccaa	cgaggcgctg	ggccccgggc	acccagtgta	tcaccaaat	g cgagcacacc	1

Page 17

ENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND cgccccaagc caggggagct ggccttccgc aagggcgacg tggtcaccat cctggaggcc 3 gcagctgggg cgctgcggga cggggaggcc ctctccgcag accccaagct cagcctcatg 3 4 ccgtggttcc acgggaagat ctcgggccag gaggctgtcc agcagctgca gcctcccgag gatgggctgt tectggtgeg ggagteegeg egecaceeeg gegaetaegt eetgtgegtg 80 agetttggcc gcgacgtcat ccactaccgc gtgctgcacc gcgacggcca cctcacaatc 5 gatgaggccg tgttcttctg caacctcatg gacatggtgg agcattacag caaggacaag 6 ggcgctatct gcaccaagct ggtgagacca aagcggaaac acgggaccaa gtcggccgag 6 gaggagctgg ccagggcggg ctggttactg aacctgcagc atttgacatt gggagcacag 7 atcggagagg gagagtttgg agctgtcctg cagggtgagt acctggggca aaaggtggcc 7 gtgaagaata tcaagtgtga tgtgacagcc caggccttcc tggacgagac ggccgtcatg 8 acgaagatgc aacacgagaa cctggtgcgt ctcctgggcg tgatcctgca ccaggggctg 9 tacattgtca tggagcacgt gagcaagggc aacctggtga actttctgcg gacccggggt 9 cgagccctcg tgaacaccgc tcagctcctg cagttttctc tgcacgtggc cgagggcatg 10 gagtacctgg agagcaagaa gcttgtgcac cgcgacctgg ccgcccgcaa catcctggtc 10 tcagaggacc tggtggccaa ggtcagcgac tttggcctgg ccaaagccga gcggaagggg 11 Page 18

ENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBI 40	TORS AND
ctagactcaa gccggctgcc cgtcaagtgg acggcgcccg aggctctcaa acacgggttc	12
accagcaagt cggatgtctg gagttttggg gtgctgctct gggaggtctt ctcatatgga 60	12
cgggctccgt accctaaaat gtcactgaaa gaggtgtcgg aggccgtgga gaaggggtac 20	13
cgcatggaac cccccgaggg ctgtccaggc cccgtgcacg tcctcatgag cagetgctgg	13
gaggcagage egecegeegg ceaceettee geaaactgge egagaagetg gecegggage	14
tacgcagtgc aggtgcccca gcctccgtct cagggcagga cgccgacggt ccacctcgcc	15
ccgaagccag gagccctgac cccacccggt ggcccttggc cccagaggac cgagagagtg	15
gagagtgcgg cgtgggggca ctga 84	15
<210> 7 <211> 2544 <212> DNA <213> Homo sapiens	
<400> 7 atggagccct tgaagagcct cttcctcaag agccctctag ggtcatggaa tggcagtggc 60	
agcgggggtg gtgggggcgg tggaggaggc cggcctgagg ggtctccaaa ggcagcgggt 20	1
tatgccaacc cggtgtggac agccctgttc gactacgagc ccagtgggca ggatgagctg	1
gccctgagga agggtgaccg tgtggaggtg ctgtcccggg acgcagccat ctcaggagac	2
gagggetggt gggegggeea ggtgggtgge caggtgggea tettecegte caactatgtg	3

ENT	OR GRAFT C	OATED OR IM	PREGNATED W	ITH PROTEIN	TYROSINE K	INASE INHIBI	TORS	AN
	tctcggggtg 60	geggeeegee	ccctgcgag	gtggccagct	tccaggagct	gcggctggag	3	
	gaggtgatcg 20	gcattggagg	ctttggcaag	gtgtacaggg	gcagctggcg	aggtgagctg	4	
	gtggctgtga 80	aggcagctcg	ccaggacccc	gatgaggaca	tcagtgtgac	agccgagagc	4	
	gttcgccagg 40	aggcccggct	cttcgccatg	ctggcacacc	ccaacatcat	tgccctcaag	5	
	gctgtgtgcc 00	tggaggagcc	caacctgtgc	ctggtgatgg	agtatgcagc	cggtgggccc	6	
	ctcagccgag	ctctggccgg	gcggcgcgtg	cctccccatg	tgctggtcaa	ctgggctgtg	6	
	cagattgccc 20	gtgggatgca	ctacctgcac	tgcgaggccc	tggtgcccgt	catccaccgt	7	
	gatctcaagt 80	ccaacaacat	tttgctgctg	cagcccattg	agagtgacga	catggagcac	7	
	aagaccctga 40	agatcaccga	ctttggcctg	gcccgagagt	ggcacaaaac	cacacaaatg	8	
	agtgccgcgg	gcacctacgc	ctggatggct	cctgaggtta	tcaaggcctc	caccttctct	9	
		acgtctggag	ttttggggtg	ctgctgtggg	aactgctgac	cggggaggtg	9	
		gcattgactg	ccttgctgtg	gcctatggcg	tagctgttaa	caagctcaca	10	
		catccacctg	ccccgagccc	ttcgcacagc	ttatggccga	ctgctgggcg	10	
		accgcaggcc	cgacttcgcc	tccatcctgc	agcagttgga	ggcgctggag	11	
,	gcacaggtcc	tacgggaaat	gccgcgggac	tccttccatt	ccatgcagga	aggctggaag	12	
	00 cgcgagatcc 60	agggtctctt	cgacgagctg	cgagccaagg	aaaaggaact	actgagccgc	12	

ENT	OR GRAFT CO	DATED OR IM	PREGNATED W	ITH PROTEIN	TYROSINE K	INASE INHIBI	TORS AN	1I
	gaggaggagc 20	tgacgcgagc	ggcgcgcgag	cagcggtcac	aggcggagca	gctgcggcgg	13	
	cgcgagcacc 80	tgctggccca	gtgggagcta	gaggtgttcg	agcgcgagct	gacgctgctg	13	
	ctgcagcagg 40	tggaccgcga	gcgaccgcac	gtgcgccgcc	gccgcgggac	attcaagcgc	14	
	agcaagctcc 00	gggcgcgcga	cggcggcgag	cgtatcagca	tgccactcga	cttcaagcac	15	
	cgcatcaccg 60	tgcaggcctc	acceggeett	gaccggagga	gaaacgtctt	cgaggtcggg	15	
	cctggggatt 20	cgcccacctt	tccccggttc	cgagccatcc	agttggagcc	tgcagagcca	16	
	ggccaggcat 80	ggggccgcca	gtccccccga	cgtctggagg	actcaagcaa	tggagagcgg	16	
	cgagcatgct 40	gggcttgggg	tcccagttcc	cccaagcctg	gggaagccca	gaatgggagg	17	
	agaaggtccc	gcatggacga	agccacatgg	tacctggatt	cagatgactc	atcccctta	18	
	ggatctcctt	ccacaccccc	agcactcaat	ggtaaccccc	cgcggcctag	cctggagccc	18	
	gaggagccca 20	agaggcctgt	ccccgcagag	cgcggtagca	gctctgggac	gcccaagctg	19	
	atccagcggg 80	cgctgctgcg	cggcaccgcc	ctgctcgcct	cgctgggcct	tggccgcgac	19	
		cgggaggccc	aggacgcgag	cgcggggagt	ccccgacaac	acccccacg	20	
		cgccctgccc	gaccgagccg	ccccttccc	cgctcatctg	cttctcgctc	21	
		actccccgcc	cactcctgca	cccctgttgc	tggacctggg	tatccctgtg	21	
		cagccaagag	cccccgacgt	gaggaggagc	cccgcggagg	cactgtctca	22	

ENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND ccccaccgg ggacatcacg ctctgctcct ggcaccccag gcaccccacg ttcaccaccc ctgggcctca tcagccgacc tcggccctcg ccccttcgca gccgcattga tccctggagc 23 tttgtgtcag ctgggccacg gccttctccc ctgccatcac cacagcctgc accccgccga 24 gcaccctgga ccttgttccc ggactcagac cccttctggg actccccacc tgccaacccc 24 ttccaggggg gccccagga ctgcagggca cagaccaaag acatgggtgc ccaggccccg 25 25 tgggtgccgg aagcggggcc ttga 44 <210> 8 <211> 2640 <212> DNA <213> Homo sapiens <400> 8 atgagtgatt actgggttgt tggaaagaag tctaactatg aagtattaga aaaagatgtt ggtttaaagc gatttttcc taagagttta ctggattctg tcaaggccaa aacactaaga 1 aaactgatcc aacaaacatt tagacaattt gccaacctta atagagaaga aagtattctg 1 aaattotttg agatootgto tocagtotac agatttgata aggaatgott caagtgtgot 2 cttggttcaa gctggattat ttcagtggaa ctggcaatcg gcccagaaga aggaatcagt 3 tacctaacgg acaagggctg caatcccaca catcttgctg acttcactca agtgcaaacc 3 attcagtatt caaacagtga agacaaggac agaaaaggaa tgctacaact aaaaatagca 4 ggtgcacccg agcctctgac agtgacggca ccatccctaa ccattgcgga gaatatggct

ENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND gacctaatag atgggtactg ccggctggtg aatggaacct cgcagtcatt tatcatcaga 5 cctcagaaag aaggtgaacg ggctttgcca tcaataccaa agttggccaa cagcgaaaag 6 caaggcatgc ggacacacgc cgtctctgtg tcagaaacag atgattatgc tgagattata 6 gatgaagaag atacttacac catgccctca accagggatt atgagattca aagagaaaga 7 atagaacttg gacgatgtat tggagaaggc caatttggag atgtacatca aggcatttat 7 atgagtccag agaatccagc tttggcggtt gcaattaaaa catgtaaaaa ctgtacttcg 8 gacagcgtga gagagaaatt tcttcaagaa gcctgccatt acacatcttt gcactggaat 9 tggtgcagat atataagtga tcctaatgtt gatgcctgcc cagaccccag gaatgcagag 9 ttaacaatgc gtcagtttga ccatcctcat attgtgaagc tgattggagt catcacagag 10 aatcctgtct ggataatcat ggagctgtgc acacttggag agctgaggtc atttttgcaa 10 gtaaggaaat acagtttgga tctagcatct ttgatcctgt atgcctatca gcttagtaca 11 gctcttgcat atctagagag caaaagattt gtacacaggg acattgctgc tcggaatgtt 12 ctggtgtcct caaatgattg tgtaaaatta ggagactttg gattatcccg atatatggaa 12 gatagtactt actacaaagc ttccaaagga aaattgccta ttaaatggat ggctccagag 13 20 tcaatcaatt ttcgacgttt tacctcagct agtgacgtat ggatgtttgg tgtgtgtatg 13 tgggagatac tgatgcatgg tgtgaagcct tttcaaggag tgaagaacaa tgatgtaatc 14

ENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND ggtcgaattg aaaatgggga aagattacca atgcctccaa attgtcctcc taccctctac 15 agccttatga cgaaatgctg ggcctatgac cccagcaggc ggcccaggtt tactgaactt 15 aaagctcagc tcagcacaat cetggaggaa gagaaggctc agcaagaaga gcgcatgagg 16 atggagtcca gaagacaggc cacagtgtcc tgggactccg gagggtctga tgaagcaccg 16 cccaagccca gcagaccggg ttatcccagt ccgaggtcca gcgaaggatt ttatcccagc 17 ccacagcaca tggtacaaac caatcattac caggtttctg gctaccctgg ttcacatgga 18 atcacagcca tggctggcag catctatcca ggtcaggcat ctcttttgga ccaaacagat 18 tcatggaatc atagatctca ggagatagca atgtggcagc ccaatgtgga ggactctaca 19 gtattggacc tgcgagggat tgggcaagtg ttgccaaccc atctgatgga agagcgtcta 19 atccgacagc aacaggaaat ggaagaagat cagcgctggc tggaaaaaga ggaaagattt 20 ctgattggaa accaacatat atatcagcct gtgggtaaac cagatcctgc agctccacca 21 aagaaaccgc ctcgccctgg agctcccggt catctgggaa gccttgccag cctcagcagc 21 cctgctgaca gctacaacga gggtgtcaag cttcagcccc aggaaatcag ccccctcct 22 actgccaacc tggaccggtc gaatgataag gtgtacgaga atgtgacggg cctggtgaaa 22 gctgtcatcg agatgtccag taaaatccag ccagccccac cagaggagta tgtccctatg 23 gtgaaggaag teggettgge eetgaggaca ttattggeea etgtggatga gaccatteee 24

ENT	OR GRAFT CC	ATED OR IM	PREGNATED WI	TH PROTEIN	TYROSINE K	INASE INHIBI	TORS AND
	ctcctaccag (ccagcaccca	ccgagagatt	gagatggcac	agaagctatt	gaactctgac	24
	ctgggtgagc '	tcatcaacaa	gatgaaactg	gcccagcagt	atgtcatgac	cagcctccag	25
	caagagtaca :	aaaagcaaat	gctgactgcc	gctcacgccc	tggctgtgga	tgccaaaaac	25
	ttactcgatg 40	tcattgacca	agcaagactg	aaaatgcttg	ggcagacgag	accacactga	26
	<210> 9 <211> 3213 <212> DNA <213> Homo	sapiens					
	<400> 9 atgggagctg 60	cgcggggatc	cccggccaga	ccccgccggt	tgcctctgct	cagcgtcctg	
	ctgctgccgc 20	tgctgggcgg	tacccagaca	gccattgtct	tcatcaagca	gccgtcctcc	1
	caggatgcac 80	tgcaggggcg	ccgggcgctg	cttcgctgtg	aggttgaggc	tccgggcccg	1
	gtacatgtgt 40	actggctgct	cgatggggcc	cctgtccagg	acacggagcg	gcgtttcgcc	2
	cagggcagca 00	gcctgagctt	tgcagctgtg	gaccggctgc	aggactctgg	caccttccag	3
	tgtgtggctc 60	gggatgatgt	cactggagaa	gaagcccgca	gtgccaacgc	ctccttcaac	3
	atcaaatgga 20	ttgaggcagg	tcctgtggtc	ctgaagcatc	cagcctcgga	agctgagatc	4
	cagccacaga 80	cccaggtcac	acttcgttgc	cacattgatg	ggcaccctcg	geceaectae	4
	caatggttcc	gagatgggac	cccctttct	gatggtcaga	gcaaccacac	: agtcagcagc	5
	aaggagcgga	acctgacgct			atagtgggct	gtattcctgc	6
			j	Page 25			

PCT/US02/34344 WO 03/034938

ENT	OR GRAFT CO	OATED OR IM	PREGNATED WI	TH PROTEIN	TYROSINE I	KINASE INHIB	ITORS	AND
	tgcgcccaca 60	gtgcttttgg	ccaggcttgc	agcagccaga	acttcacctt	gagcattgct	6	
	gatgaaagct 20	ttgccagggt	ggtgctggca	ccccaggacg	tggtagtago	gaggtatgag	7	
	gaggccatgt 80	tccattgcca	gttctcagcc	cagecaeece	cgagcctgca	gtggctcttt	7	
	gaggatgaga 40	ctcccatcac	taaccgcagt	cgccccccac	acctccgcac	g agccacagtg	8	
	tttgccaacg 00	ggtctctgct	gctgacccag	gtccggccac	gcaatgcagg	gatctaccgc	9	
	tgcattggcc 60	aggggcagag	gggcccaccc	atcatcctgg	aagccacact	tcacctagca	9	
	gagattgaag 20	acatgccgct	atttgagcca	cgggtgttta	cagctggcag	g cgaggagcgt	10	
	gtgacctgcc 80	ttccccccaa	gggtctgcca	gagcccagcg	tgtggtggg	a gcacgcggga	10	
	gtccggctgc 40	ccacccatgg	cagggtctac	cagaagggcc	acgagctgg	gttggccaat	11	
	attgctgaaa 00	gtgatgctgg	tgtctacacc	tgccacgcgg	ccaacctgg	c tggtcagcgg	12	
	agacaggatg 60	tcaacatcac	tgtggccact	gtgccctcct	ggctgaaga	a gccccaagac	12	
	agccagctgg 20	aggagggcaa	acccggctac	ttggattgcc	tgacccagg	c cacaccaaaa	13	
	cctacagttg 80	tctggtacag	aaaccagatg	ctcatctcag	aggactcac	g gttcgaggtc	: 13	
	ttcaagaatg	ggaccttgcg	catcaacagc	gtggaggtgt	atgatggga	c atggtaccgt	14	
		gcaccccagc	cggcagcatc	gaggcgcaag	cccgtgtcc	a agtgctggaa	a 15	
		tcacaccacc			tggagtttg	a caaggaggco	c 15	
			Ţ	Page 26				

PCT/US02/34344 WO 03/034938

ENT	OR GRAFT CO	OATED OR IM	PREGNATED W	ITH PROTEIN	TYROSINE K	INASE INHII	BITORS AND
	acggtgccct 20	gttcagccac	aggccgagag	aagcccacta	ttaagtggga	acgggcagat	16
	gggagcagcc 80	tcccagagtg	ggtgacagac	aacgctggga	ccctgcattt	tgcccgggtg	16
	actcgagatg 40	acgctggcaa	ctacacttgc	attgcctcca	acgggccgca	gggccagatt	17
	cgtgcccatg 00	tccagctcac	tgtggcagtt	tttatcacct	tcaaagtgga	accagagcgt	18
	acgactgtgt 60	accagggcca	cacageceta	ctgcagtgcg	aggcccaggg	ggaccccaag	18
	ccgctgattc 20	agtggaaagg	caaggaccgc	atcctggacc	ccaccaagct	gggacccagg	19
	atgcacatct 80	tccagaatgg	ctccctggtg	atccatgacg	tggcccctga	ggactcaggo	2 19
	cgctacacct 40	gcattgcagg	caacagctgc	aacatcaagc	acacggaggc	cccctctat	20
	gtcgtggaca 00	agcctgtgcc	ggaggagtcg	gagggccctg	gcagccctcc	cccctacaaq	g 21
	atgatccaga 60	ccattgggtt	gtcggtgggt	gccgctgtgg	cctacatcat	tgccgtgctg	g 21
	ggcctcatgt 20	tctactgcaa	gaagcgctgc	aaagccaagc	ggctgcagaa	gcagcccga	g 22
	ggcgaggagc 80	cagagatgga	atgcctcaac	ggtgggcctt	tgcagaacgg	gcagccctc	a 22
	gcagagatcc 40	aagaagaagt	ggccttgacc	agcttgggct	ccggccccgc	ggccaccaa	c 23
	aaacgccaca 00	gcacaagtga	taagatgcac	ttcccacggt	ctagcctgca	gcccatcac	c 24
	acgctgggga 60	agagtgagtt	tggggaggtg	ttcctggcaa	aggctcaggg	r cttggagga	g 24
	ggagtggcag	agaccctggt			gcaaggatga	ı gcagcagca	g 25
			I	Page 27			

ENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE 20	INHIBITORS AND
ctggacttcc ggagggagtt ggagatgttt gggaagctga accacgccaa cgtggt 80	gegg 25
ctcctggggc tgtgccggga ggctgagccc cactacatgg tgctggaata tgtgga	atctg 26
ggagacetea ageagtteet gaggatttee aagageaagg atgaaaaatt gaagte	cacag 27
ccctcagca ccaagcagaa ggtggcccta tgcacccagg tagccctggg catgga	agcac 27
ctgtccaaca accgctttgt gcataaggac ttggctgcgc gtaactgcct ggtcag	gtgcc 28
cagagacaag tgaaggtgtc tgccctgggc ctcagcaagg atgtgtacaa cagtga	agtac 28
taccactice gecaggeetg ggtgeegetg egetggatgt eeeeegagge catee 40	tggag 29
ggtgacttct ctaccaagtc tgatgtctgg gccttcggtg tgctgatgtg ggaag	tgttt 30
acacatggag agatgcccca tggtgggcag gcagatgatg aagtactggc agatt	tgcag 30
gctgggaagg ctagacttcc tcagcccgag ggctgccctt ccaaactcta tcggc	tgatg 31
cagegetget gggeeeteag ceecaaggae eggeeeteet teagtgagat tgeea	gcgcc 31
ctgggagaca gcaccgtgga cagcaagccg tga 13	32
<210> 10 <211> 3645 <212> DNA <213> Caenorhabditis elegans	
<400> 10 atgggtcatt cacatagtac tgggaaagaa atcaatgaca atgaactctt cacat	gtgaa

ENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND gatcctgtat tcgatcaacc ggtggcgagt ccgaaatcgg agatttcgag caagttagcc 20 gaagaaatag aacggagcaa aagtccactc atactcgaga tgttccgtcc aacatttgac 1 acatttcgac cgccgaacag tgacagctcg actttccgtg gcagccagag cagagaggat 2 3 ctagtagcat gtagctcaat gaattcggta aacaacgtgc acgatatgaa tacagtttcc tcttcatcat catcatctgc accacttttt gtagctctct atgatttcca cggtgtcggc 3 gaagagcagc tttcgttacg aaagggtgat caggtgcgaa ttctgggtta caacaaaaac 4 aatgagtggt gtgaggcacg attatactca acgagaaaaa atgatgcgag caatcagcga 4 aggttaggcg aaattggatg ggtgccaagt aattttattg ctccgtacaa ctctttggat 5 aagtacacgt ggtatcatgg caaaatctca aggagcgatt ctgaggctat actaggcagt 6 6 ggaatcactg gctcattttt ggtacgagaa agtgaaacaa gtataggaca gtatacaatc tctgttcgcc atgatggtcg agtgtttcac taccggatca atgtagataa tacagaaaag 7 atgttcatca cacaagaagt caaattccgc acacttggag agttagtgca ccatcatagt 7 gttcacgctg atgggctgat atgtctttta atgtacccag cgagtaaaaa ggacaaggga 8 9 cgtggactgt tctcactgtc gcctaacgcg ccagacgaat gggaactaga tagatccgaa atcatcatgc ataacaaatt gggcggtgga cagtacggag acgtgtacga gggatactgg 9 10 aaacgacatg actgcacaat tgcagtgaaa gcgttgaagg aagatgcaat gccacttcat

NT	OR GRAFT CO	DATED OR IM	PREGNATED WI	TH PROTEIN	TYROSINE K	INASE INHIBI	TORS AND
	gaatttttag 80	cagaagctgc	tatcatgaaa	gatttgcacc	acaaaaacct	tgttcgactg	10
	cttggagtat 40	gcactcacga	ggcaccgttc	tatattatca	ccgagtttat	gtgcaatgga	11
	aatttgctcg 00	agtacctgag	gaggaccgat	aaaagcttgc	tgccacctat	aatccttgtt	12
	caaatggcta 60	gtcagattgc	gtccggcatg	tcgtacctgg	aagccagaca '	cttcattcat	12
	agggatttgg 20	ccgcaaggaa	ttgcttagta	tccgagcata	atattgtaaa	aattgccgac	13
	tttgggttgg 80	caagattcat	gaaggaagac	acctatacag	cacatgctgg	agccaagttt	13
	cctatcaaat 40	ggactgcccc	agaggggctt	gcattcaaca	ccttcagctc	taaatctgat	14
	gtttgggcgt 00	ttggagttct	gctctgggaa	attgccacgt	atggaatggc	tccctatcca	15
	ggcgtcgagc 60	tgtcaaatgt	ttatgggctt	ttggaaaacg	ggttccgtat	ggatggcccg	15
	caagggtgcc 20	ctccatcggt	gtatcgcctt	atgcttcagt	gctggaactg	gtctccgtcg	16
	gatcgtcctc 80	gtttccgaga	tattcatttc	aacttggaaa	atctaatttc	aagcaattcc	16
	ttgaacgacg	aggtgcaaaa	acaattgaaa	aagaataatg	ataagaaact	ggaaagtgac	17
		ctaacgttag	agaacgaagt	gactctaaat	ccagacattc	ttcacatcac	18
		gtgaccggga	atctcttcat	tctcggaact	caaatcctga	aattcccaat	18
		taagaaccga	cgacagtgta	tcattcttca	atccatcaac	cacaagtaaa	19
		ttcgtgctca	aggaccaccg	ttcccaccac	cgccacaaca	aaacacaaaa	19

ENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND ccgaaactat tgaagtcagt tctgaatagt aacgctcgtc atgcatcaga ggagtttgag agaaacgaac aagatgacgt ggttcctttg gccgagaaaa atgtgcggaa agcggttacc 21 aggctgggtg gaactatgcc gaaaggacaa aggatagatg catatttaga ctcgatgaga 21 agggttgaca gttggaaaga aagcactgac gctgacaatg aaggggcggg atcatcatcg 22 ctgagcagaa ctgtatcgaa tgattctctt gacacacttc ctctgccaga ttctatgaac 22 tcgagtacgt atgttaaaat gcatcctgca tccggcgaga acgttttcct gagacaaatt 23 cgttcaaaac tgaagaaacg aagtgagaca ccagagttgg atcatattga ttcagatact 24 gccgatgaaa caacaaaatc ggaaaagtca ccctttggat ctttgaataa atcttctatc 24 aaatatccaa ttaaaaacgc gcccgaattt agtgagaatc actctagagt cagccctgtc 25 25 ccggtgccac catctcgtaa cgcttctgta agtgtaagac ccgattcgaa agcagaagac tcatcggatg agacaacaaa agatgttgga atgtggggtc ctaagcatgc cgtgacgcgg 26 aaaattgaaa ttgtcaagaa tgattcgtat ccaaatgtag aaggcgagtt gaaagcaaaa 27 attogaaatt tacgtoatgt accoaaagaa gagagcaaca caagtagtoa agaagatttg 27 60 ccacttgatg cgacagacaa cacaaatgac agcatcattg tgattccaag agatgaaaaa 28 gcaaaagttc gtcaactggt gacacaaaaa gtatctcctc ttcaacatca tcggccattc 28 tcactgcaat gtccaaacaa ttctacaagc tctgcaatat cgcattctga acacgcggat 29

ENT	OR GRAFT CO agctcagaaa 00	OATED OR IMP catcttcact	PREGNATED W ttccggtgtc	ITH PROTEIN tatgaggaac	TYROSINE K gtatgaaacc	INASE INHIBI? tgaacttcca	IORS AND 30
	agaaaacgga 60	gtaatggcga	tacaaaagtg	gtgccagtaa	catggattat	caatggagaa	30
	aaggaaccca 20	atggtatggc	tcgaacaaaa	tctctacgtg	atațtacatc	aaagttcgaa	31
	cagcttggaa 80	cagcttccac	gattgaaagt	aagattgaag	aagccgtccc	atatcgtgag	31
	catgcattgg 40	aaaagaaagg	aacttcaaaa	cgattttcaa	tgctggaagg	aagtaatgag	32
	ttgaagcatg 00	ttgtcccacc	gcgtaaaaac	cgaaaccaag	acgaatctgg	ctcaattgat	33
	gaagaaccag 60	tgagcaagga	catgattgta	tcgttgctca	aagtaatcca	aaaggaattt	33
	gtgaatcttt 20	tcaatttggc	gagctcagag	atcactgatg	aaaaactaca	acaatttgta	. 34
	ataatggctg 80	ataatgtaca	aaaacttcat	tccacgtgtt	ccgtctatgc	agaacaaatc	34
	tcaccgcata	gtaaatttcg	gttcaaagaa	cttctttctc	aacttgaaat	ctacaatcga	35
	caaattaaat 00	tttcccacaa	ccctcgagcg	aagccagttg	atgacaaact	taaaatggcg	36
	ttccaggact 45	gtttcgacca	aatcatgagg	ctggtggatc	gctga.		36
	<210> 11 <211> 367						
	<212> DNA <213> Cae	norhabditis	elegans				
	<400> 11 atggcaagca 60	cgtcaggggc	gcttgtcgac	gacaacgtcc	tcgaagtgct	ccgcaaagca	
	cagttggacg 20	catttattag	tcagtttgtc	: ttcttattca	. acgtcagaag	gtttgatcac	. 1

. . .

ENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND ttttcacatg ttcgagataa agatatgctg gaaattggta tgcaacaagt tcaaattcgg cagctccgag agcagattct caaaatgtcc agagaaatgt ggaatcggag tgatccgaag caagtgtaca ttcaagccga tcagtcgatg ccagcacaaa attcgattga cgagaaagca 3 ctgattccaa atgagcagat taaactgtac gagttgattg gcgagggdtc ttttgctgtg gtgaagcgtg gtacgtggac acagagcaat gggacgcatg tgaatgtcgc tgtcaaaatt 4 ctccgcgaca tttctccaaa tattatggat gatttgagag tggaagccag tcatttgctc 4 aagetecage acceptettt gattegeett taeggaattg ttegeeagee agegatgatg gtgtttgaac tctgtgaagg tggttcactg ctcgacagac tacgagatga caaaaaggca 6 attettetgg tgtcacggct tcatgactat tgtatgcaaa ttgcgaaggc tttgcagttt 6 ttggagtcaa aacactgtgt acacagagat gtggcagcaa ggaatatttt gttggctaga 7 20 gacgaaagga cagtcaagat ctgtgatttt ggactcatgc gagcactaaa agaaaatgag 7 caaatgtaca ctatggctcc acaaaagaaa gtcccatttg cctggtgccc tccggaagca 8 cttcgtcatc gcaagttctc tcatgcttcc gacgtctggt cgtacggagt caccatctgg 9 gaggtgttca catttggcga ggagccatgg gtcggctgtc gagccatcga tgtgctcaaa 9 aacattgacg ccggcgagag gctggagaag cccaagtact gctcggagcg aatttatcaa 10 atcatgaaga attgttggaa attcaatccg gcagagcgat gcaaatttgg tgcaattcga 10

ENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND qaggacttgg tggcggccat gtttttggat gcagtggcaa gggagacgta caactctatt 11 caaccgggcg cactacaatt gacaaaaggg gatgaagttg ttgtggtgga gaacacaggc 12 caagactggt ttggtcagaa caagaagaac caaaagtttg gcacattccc ccgatcagtt 12 gtgtttgcgc agacgaacaa cgcggttgcg gcagcgacgg cggttacccc acagaaagtt 13 ccaacggcgc caacgatcag aattccaccg tcacacccac ccccagcccc gctgaaacca 13 ttgaacaata atacgaaaac ttcgctgaac gaccgcacgt caaaaatttc aatgcctgtg 14 gcaggttett teatecatae eggteaegga gacceaetag gaggeeaate atggggtaae 15 ccagctacga ttgcggacat gtatctcaag aatccagtga acggcgctcc attgtctagt 15 atgtcgagtg gtgcggaaat tatcgccagt aaggagttgc tcaccaatgg cggccggagc 16 acacaccaac ctgctgctcc atcgcctgcc gtcatgtcca agattcgagg tctttcgctt 16 gatttgccag aatatgatga tttcgatcga gcattcgatg atgggttttc tccgtcgaag 17 atcgagctgc ccagagagtt ttgtggcaat gacagcgtaa tcagtggtgg gtcgaacagc 18 atcggcttgg ctaacactta tgtcatggaa ccgcccaagc aggcatttga tattcgagga 18 aatcgagtgc tcccgccaac gaacaaggcg cctgtgctca ttccaactaa cccggcgcca 19 agtgtcatct cgagcacagc ttctgcagga atcacacttt ctacgaacag ttctcagatg 19 tttaccagtc aagaccgcca ttcgaatatg cccgcaaatc ttttccccga gcttcaacac 20

ENT	OR GRAFT CO	DATED OR IM	PREGNATED W	ITH PROTEIN	TYROSINE K	INASE INHIBIT	ORS AND
	cgcctcaatc 00	aaggaagttc	aacgggaaat	ggcgtccgac	ctcggccagc	ttcctcgatt	21
	ggaattcaaa 60	acaatgattt	gagcatgctc	aaccctcaac	aaccagcgaa	tattccgtgc	21
	ctggttccaa 20	ctccggctcc	accagctcca	gcacactttt	ctcaaccggt	gtcttcccag	22
	agagttgcac 80	aacaacaaca	gaacactttg	caaaaagcgc	tgaacgatga	actcaaagga	22
	aatctgaaca 40	aaagacctac	tggcacgacg	gcaccaccgt	caaatgggtt	caatgctcca	23
	cgagcagacg 00	ttgcaccggt	ccaacagcga	ccgatctcat	cggcatctat	tccagcgctc	24
	caaccacaac 60	ccattcaaca	cattcagaag	cctatccaac	cgcaacaagt	tcgtataccg	24
	ccatcaacag 20	ctcccgttca	gaaaccagtt	caagtctcag	ctcctaccca	tagtaatgtg	25
	gcacccacaa 80	cttcatctca	agcgtctgca	gatgcacgca	atccgctacc	tccaaaaaca	25
	agcccaccag 40	ttagcaacac	gcctatcaca	gttgctcctg	ttcacgcggc	accaactact	26
	tcggcaccat	caacttcggt	ggtaacgaga	aggccaactt	caaccacagc	tcaaatgtcg	27
	gacgaggaga 60	gacggtcaag	aattgccatg	gacatcagct	ctgcacttcc	agctcccagt	27
	gctttgctct 20	atggatctaa	ctccacatca	tcacttccgt	cagcggcagt	gtctacagcg	28
	tcttctgtgc 80	catcaactgc	aagagacaat	ccagtggaaa	caagaccatc	tcaacctcat	28
	gttaccatgc 40	cacccaaaaa	atcttctgag	ccgattctct	cgtctgaggt	gctccaacca	29
	actcgtctgc 00	catctgccac	aacttcgcag	gcaaaaccag	tgactcaacc	aatccgtcac	30

ENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBIT	ORS AND
ccatcacctc cggtagccac tgttataccg actgcagtgg ttgacaaaaa gccagtttca 60	30
caaaatcaag gaagcaacgt teetttgttt aacattaeca aeteeagcaa egggtaeeet 20	31
cagttaaatg gatatccaaa ctatggaaac ggttttcagg cgtatggtta tggaatgaac 80	31
tatcatcaag gatatcctgg atatcaagga tacaattcat atggcaacgg aatggggcag	32
cttgcactga cccacaacgc cgtcacttct ttgccaccgt tggttccatc agagaacaga	33
ttctccggaa cagcccaacc acttggcgag tctgacatta tggagttttt gggaacacag	33
caacgtcaag cgggttcttc atcgcgagca gttccacctg catctgcatc cacgtcagca 20	34
gcttctggaa tcacggattt gagtatggca gataagatgg aggtgttgta tagagaagct 80	34
gattttacgc ataaaggaaa ttgtgatacc atggtttctc agtgcaacgg aaacaccgaa 40	35
caggcgttga agcttctcaa acaacaacac ttggtggata tggaacttgc aatgtcaacg	36
gagacegeee gacaageaet egaggeeaga eagtatgate teeetgeage egeeaaeatg	36
ttgctcggct ga 72	36
<210> 12 <211> 1335 <212> DNA	
<213> Caenorhabditis elegans	
<400> 12 atgtcaatta attctctttc gaacgaaacg cccactccaa caatcgagaa agaagcctac 60	
ttccatggat tgatccaacg agaagatgtc ttccagctcc ttgacaataa tggcgactac	1

ENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND gtggtcagac tgtcggatcc aaagcccggc gagcctcgct cctacattct gagcgtcatg ttcaacaata agctcgatga gaacagttcg gtgaagcact ttgttatcaa ttctgtagag aacaaatatt ttgtgaacaa caatatgtcg ttcaacacga ttcaacaaat gctcagccac 3 tatcagaaga gtcgcacgga gattctcgaa gcgtgcaaga ttttgcatcc tgtgcgcaga 3 caattotggg agttagatca tggcaatato gtgattgaga agaaactagg cgaaggtgct 4 tttggtgaag tttcctccgg agttatgaag ttcaagagag gtggaaggct ggtgaaggtt 4 gctgtgaagc aggtaaaaac cgatggtatc gggaaagatc aaatcaagga tttcctgatg 5 gaagctcgta ccatgcgaaa cctcggtcat ccaaacatcg taagattcct cggaatcgcc б qtgctgcagg agccgctgtt cctggtgatg gagctcgcga cgggcggcgc tttggatagc 6 7 tacttgaagc ataatgagtt gctgccgatt gacaagagac acgagatgct tcttcaagca gcatggggtc tcgagtacat ccatggaaaa cccatgctgc atagggacat cgccgcgcga 7 aattgccttt atggagatgg gaaggttaaa atttcggatt tcggcctaac ccgtagagga 8 accatctacc aattgcatcc ggagacgaag tcaccaattc gatggctggc agttgaaact 9 atcaggacta tggtttgctc tcagaagact gacgtctggg cttacgggat tctctgctgg 9 gagatettea acaaeggage egageegtat eegggaetga etgeeaatga ggttgetaag 10 20 caggtgactg atggataccg tatgccacca caccagttgg ctgcgccaga ggttcaagcg 10 Page 37

ENT	OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBIT	ORS AND
	ttgatgacga gatgctgcgc ggagaacccc aacgatcgtc caacaatgtc ggatgtcgct 40	11
	cagatottgo aacgogtoac tggtoaagga ogtoccaact ttgcagogat tgccaagaaa	12
	gaggctgaag agcttctcat catgaattct cgtagtgcaa ggagaacttc acgacgtaag	12
	ggcagtaata agaagtcggc aattccaaac ggagttttaa cacctgtcaa tagagctcaa 20	13
	gaaattaagc attga 35	13
	<210> 13 <211> 1689 <212> DNA <213> Caenorhabditis elegans	
	<400> 13 atgttcatca gcaaagagga aatgaatcgt acttttggtg tcaaagctga gctgaattac 60	
	attgaaatgg ggaatgttag ctcgtactct acaaagtttc actacagagt tatggcaaac 20	1
	atcgactacc tctcgttcac atggaatgct gttggaattg tacactatga agtttacgtc 80	1
	gaatctgatg actcttctgt gcttcctatt gttcgaattc cattgaaagg aacggtgcca 40	2
	gaatctttgc aggacttcac cgttgaatac agatgtgccg gacaccgatc cggacaattt 00	3
	gctgtcagtc tatatttcac attcaaatat ggtaataagg agccgttgaa agtgaaattg	3
	cgacaggaga agatctgcgc ttcaagggac ggacgtcgag gtctgaacgg aggctacgag 20	4
	ggtcatgaag tcgacgacac tgactcaata gacaaggcat tttttgttat catttgcatt	4

ENT	OR GRAFT CO	DATED OR IM	PREGNATED W	ITH PROTEIN	TYROSINE K	INASE INHIB	ITORS	AND
	gctgcggcat 40	tcctacttat	tgtggcagca	acgttgatct	gttatttcaa	gcgctctaaa	5	
	aaagaagaca 00	tgattccgac	tegaetteca	acgtcttttc	ggaattcttt	gaaatctaca	6	
	aaaagcgcgc 60	agccttttct	tctgagcaca	ccgcgagatg	gacctccgac	tctttccgct	6	
	atttcaagcg 20	ctccttgttc	ttcgtcgtct	gcgtcgggaa	attcgataat	cccgagcaag	7	
	ccaagaaaca 80	ttgacgtgag	acgtgcattg	ttacaactct	atcaagatcg	agatgctttt	7	
	caatctctac	ctctagatat	ggagggaaca	tttggagaag	tgagatatgc	aatttggcgt	8	
	caagtagatg	acgtactgaa	cggagatgtt	gacgacgaag	aagacacatt	ctgtaaccag	9	
	gaagctgttt	acaccaaaac	gttgaaaaat	aatgcctcac	caattcagct	ggatcggttt	9	
	ttgtccgacg 20	cccttctatt	ttacaacatc	acacctcacc	aaaacttgtc	tcaagtggca	10	
	tgtgtggctt 80	ccttcggaag	attcgaccgc	ccggaaactg	tcacagattt	tccacttgtt	10	
	tgttacagac	accaaggett	tggaaacctg	aagaagttcc	tcaccatctg	ccgacatggt	11	
		aaggagctca	aactctccga	actcatcaac	tcgtctctct	ggccacacaa	12	
		cagtagctca	tatacacaaa	tatagaatag	tgcataacga	cattgccgct	12	
	• •	tgatcgcaga	agtgaatggg	cgactccaag	tgcaattatg	cgactcggcg	13	
	ctgtcccgcg	atctgttccc	agctgattat	cactgcttgg	gtgacaatga	. gaacagacca	13	
	80 ttgaaatgga 40	tgtctccaga	agctattgca	aatgagctgt	actcatcggc	: cgctgatgtt	14	

ENT	OR GRAFT COL tggtcactgg g	ATED OR IMP gagttctact	REGNATED WIgtgggagctc	TH PROTEIN atgtcgctag	TYROSINE KI gaggatetee	NASE INHIBI acacgctgaa	TORS AND 15
	atagaccctg a	aggaagtgta	cacaatgatt	ctcaaaggaa	agcgtctgca	acagccgaac	15
	aattgtccgg a	atcaattata	cgaagtcatg	ctgtgctgtt	ggagggtact	cagcgaagat	16
	cgtcctagca ç 80	gtgagcaggt	agttcatgga	cttcgagact	ttaacattca	actcagtcaa	16
	tacatctaa 89						16
	<210> 14 <211> 3603 <212> DNA <213> Drose	ophila mela	nogaster				
	<400> 14 atgaacaccg 0	cgggagccac	cagtcaaccg	ccgcccacta	aaaatgagat	taactccgag	
	gagtatetea 20	tccacgtgca	tatgccgaac	aagagcttca	aggctgttcg	gtttaatgtc	1
	aaggagaccg	ttttccatgt	gatccggcgc	actgtcgagg	atctgggcac	ggatggacgg	1
	acgcccagca 40	ttcagcgata	tgcctgccgc	atgcttaaca	tgatcaccaa	ggaggtgatt	2
	tggctggcta 00	gaagcacttc	aatgcagaag	gttctctcgc	acatectgae	gcccggctgc	3
	tccaacgttg 60	actgtcccaa	caaccagtcg	gagttggatg	aggttctatt	ggagcacgga	3
	agaaggatca 20	ccgataatag	ggtgtggcga	gtggagctca	gagtgcgcta	cgtgccaaat	4
	aatattcaag 80	agctcttcga	ggaggacaag	gccacatgct	tctattattt	caatcaggtg	4
	aaagaggact 40	ttatccaagc	caatgtcaca	gccatcgaca	ctgaagtggc	ggtgcaactg	5

ENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND tgctgtctgg gcattcgtca ttatttcaag aacatcaccg tgaaagcacc tgacaaaaag cagcacattg actacattga aaaggaaatc ggatttaaaa gttttcttcc acaatctgtg atagccacat caaagccaaa gaatcttaag aaactgatcc aagtcggtta caaaaaggtc tacaattaca acgacattga gtacttgacg cggttctttg atcttctgaa gaatatttat 7 ttaacgaact tcgagcagtt ctcggtaacc ctgagctcgg cgtggaatat ttctggaatt 8 ctacacgtcg gccctcacat tggaatctcg taccagactc atcctcaggc cagcttgaag 9 aacgtggctc agtttaaaga tgtggtctct attaaaacgt gcactttacc aaaggaaaaa 9 ctgtccaagt ctggggagaa taccacagaa ccagagcttc agaattttaa ttgcaactgc 10 cagaagatta aaacccaaat aaaaatatcc gcttccaaca atgtggaaga tttggttata 10 acgtgcaatg gtattaatac cgctgagagt attgctgacc taattgacgg ttactgccgg 11 ctgttatcaa aagacctaga gttcacgatt tggcatcgag agacaaacgc gtcgaacgaa 12 gatagcgcaa aagcattgcc caatgatgcg acgctggggt ccaataaatc aacttcaagt 12 cagggaaaac cgatgctgac cgatgattat gccgagattg gtttattgga gggcgagggc 13 gactactcta cgcccaccgt tcgaaattat gagttggaca gagccctcat aacgccgagc 13 gccaaaattg gtgtgggaca gtttggtgat gtgtatgtag gcacgtatac gcttccgaaa ctgggcaagg gcaagaactt agcaggaaat ggaaaaaata gtaatagtga ccaaagaaat 15 00

Page 41

INT	OR GRAFT CO	DATED OR IM	PREGNATED I	WITH PROTEIN	TYROSINE 1	KINASE INHIB	ITORS AND
	gccgattcaa 60	ggccagatgt	tatacaagtg	gcgataaaga	catgtaaagc	: taacgacgat	15
	cctgaaaaaa 20	ccgaaaattt	tcttgccgaa	gcttatatta	tgcaaaaatt	: cgatcatccc	16
	catattatac 80	gcttaatcgg	catttgcago	: gtaatgccca	tttggatagt	tatggaattg	16
	gccaaactgg 40	gtgaattgcg	tgcgtactta	a aagacaaaca	gcgaaagatt	aagccacggt	17
	actttactga 00	agtattgcta	tcagctatcg	g actgetetta	gttatttgga	a atccaaaaag	18
	tttgttcacc 60	gagatatagc	ggcgcgtaat	gtactagtca	gctcaccaa	gtgtgttaag	18
	ttggctgatt 20	ttggattatc	acgttgggtt	tccgatcagt	cgtattatca	a ctcaacaccc	19
	acagttgccc	tacccattaa	atggatgtco	c cccgagtcaa	taaacttta	g aagatttacc	19
	actgctagtg	atgtttggat	gtttggtgt	c tgcatttggg	aaatactca [,]	t gctcggtgta	20
	aagcctttcc	aaggcgtcaa	gaacagcga	t gttatattga	agctcgaaa	a cggagagcgt	21
	ctgccattgc	ctcccaactg	cccacctag	g ttatattcgt	taatgtccc	a atgctgggcg	21
	tacgagccac	ttaaacgacc	: gaatttcaa	g cggatcaagg	aaactctgc	a tgaaattctg	22
	attgaagaca 80	gcattaatto	: atcggagac	a ctgaagcggg	agcaacgaa	a agtggcttcc	22
	atgtcctgga	ttggcagtga	ı tgacatcga	c attccgccat	cgaaacctt	c aagggtgatg	23
	cacgatcctg 00	acatcactg	g cttaatgcc	t gaaacaacgg	ggctacctc	a gacctatatt	24
	attgcacaaa 60	atcccgcggt	gctggccaa	a ctgatgatgg	g agaaccaaa	a acgaggcata	24

PCT/US02/34344 WO 03/034938

CNT	OR GRAFT C	OATED OR IM	PREGNATED W	ITH PROTEIN	TYROSINE F	KINASE INHIE	BITORS AND
	aatccagcgg 20	cgtacaccac	accagcttcg	ggcattcaca	atgttttggg	cgaaaaacta	25
	cgacaacagc 80	aaaaggatag	caacagcgac	agcgaatggt	taattcaaga	agaattgcta	25
	cggcagagat 40	cctgctcaat	acctcaagga	tcgctcaatg	atcatcaggc	tcaaatgttt	26
	aagcttgact 00	tcatgtcagc	tggtccttcc	agtttgccgg	actgctcgaa	ctccagttct	27
	cgacctatga 60	caccaaatgc	caatctttct	tcactgaagt	cgaaccactc	atcggcggat	27
	catttgtcca 20	gcttgacatc	tgcagaagaa	cagatgggtt	caaatgcacg	aaacctgggc	28
,	agtgcagttc 80	caagtcgacc	acctaaccgc	gcagatgacg	aagtttattg	cgccaccaca	28
	ctggtggtca 40	aatcaataat	ggcgctgtca	caaggtgtgg	agaaagcgaa	taccgagggt	29
	tacttggaat 00	tggttaagaa	cgtgggcgtc	aagttgagaa	acttgctaac	: atcggtggac	: 30
	aaaatatcta 60	taatatttcc	agcacaggcc	ctcaaggaag	tgcaaatggo	acatcaggta	30
	ctttcaaaag 20	acatgcacga	attggtctca	gcgatgcgat	tggctcaaca	a atatagtgac	: 31
	acaacgctgg 80	attgtgaata	tcgcaagagt	atgctgtctg	ctgcccacgt	tttggctatg	g 31
	gacgccaaaa 40	acctgtttga	tgttgtcgat	tcgatacgtc	aacgttatca	a gcatctatto	32
	ccgccatccg	ccacaaaaga	aacaagttgt	tcgtcaagtt	tcgagtcgad	: ttctggatct	33
	attgtcgcag	agccagttaa	tgaccttggt	ggttatatca	agactagca	c ttctggagat	33
	ttgcttcaaa 20	acacaggaat	atatgataat	gatttgcatc	atagcttca	a ctcgcaattq	g 34
			1	Page 43			

PCT/US02/34344 WO 03/034938

ENT	OR GRAFT CO	DATED OR IM	PREGNATED W	ITH PROTEIN	TYROSINE K	INASE INHIB	ITORS AND
	cagttgcaaa 80	acccaaaagc	cagcatcgac	ttaagcggcg	gtggtagtct	acagcgaggg	34
	atgagccttg 40	gcttggacac	aaccaggtcg	acaaacgaac	cgttgcgaat	tgttgaggag	35
	accetgggca 00	gcccgggtga	acatatgtac	tgcaatacgt	ccgccttgca	cggccacgcg	36
	taa 03				,		36
	<210> 15 <211> 2772 <212> DNA <213> Dros	ophila mela	anogaster				
	<400> 15 atgcttattt 60	tctacgcgaa	gtacgcattt	atcttctggt	ttttcgtggg	aagcaatcaa	
	ggtgaaatgt 20	tgctaatgga	caaaatctct	cacgataaga	cgcttctcaa	cgtcaccgct	1
	tgcacccaga 80	attgtctgga	aaagggccag	atggatttcc	gaagctgttt	aaaggactgc	1
	aggattaatg 40	gaacatttcc	cggggctctg	cgcaaggtgc	aggaaaacta	ccagatgaac	2
	atgatctgcc	gcacggagtc	ggaaatcgtt	ttccaaatag	attgggtgca	gcacagcagg	3
	ggaaccgagc 60	cggctccaaa	tgccacctac	ataatccggg	tggatgctgt	caaggacgac	3
	aacaaagaaa 20	ctgcgcttta	cctgtctgat	gacaactttc	tcatcctgcc	: gggattggag	4
	tccaactcta 80	cccacaacat	caccgccctg	gcgatgcacg	gagatggcag	ctactccttg	4
	atagcaaagg 40	accagacctt	cgccaccctc	atccgaggct	atcagcccag	g caaaatggga	5
×	gcggtgaatc	tgctgcggtt			tgcatcacat	tgctgccgaa	6
]	Page 44			

ENT	OR GRAFT CO	DATED OR IM	PREGNATED W	ITH PROTEIN	TYROSINE F	KINASE IN	HIBITORS	AND
	atcgagtgga 60	agccatcggc	ggagagcaac	tgctatttcg	acatggtgtc	gtattcaa	icc 6	
	aacagcgtga 20	atatggacga	gccactggag	gtgcagttcc	gggatcgcaa	aaagctgt	ac 7	
	aggcacacgg 80	tggacaactt	ggagtttgac	aaacagtatc	acgttggcgt	aagaacgg	ıtg 7	
	aacataatga 40	atcgactgga	gagcgatctg	cagtggctgc	caatcgctgt	tccaagct	gc 8	
	ttggattggt 00.	atccctataa	ctacacactc	tgcccacccc	ataagccaga	. gaatctta	act 9	
	gtgacccaga 60	agcagtatct	gccaaatatt	ttggccctga	acatcacctg	ggagagta	ccc 9	
	agatacctgc 20	cggataacta	tacacttcac	atctttgatc	tattcaaagg	g aggtacgo	gag 10	
	ctaaactata 80	cacttgacca	aaacaggagc	cacttctatg	tacccaagat	: cacggtad	ctg 10	
	ggttcccatt	tcgaagtaca	tttggtggcc	cagtcggcag	gcggaaaaaa	cgtatecg	ggt 11	
	ttgacgttgg	acaaggttca	tcgaggtgtg	ttgctgagcg	agggcaacat	ggtcaagt	ttg 12	
	gtactcttta 60	ttatcgtgcc	catatgctgc	attttgatgc	tgtgctccct	gacgttc	tgc 12	
	agacgaaatc 20	gttcggaggt	tcaggcgctg	caaatggacg	ctaaggacg	c gaaggcca	agt 13	
	gaatttcatc 80	tctccctgat	ggacagcagt	ggcctgctgg	tcaccctctc	c ggccaac	gag 13	
		taatggacga	gctggaggtg	gagccacact	cggtgctccl	t tcaggat	gtc 14	
		gagcctttgg	cttggtgcga	cgtggagttt	acaagaaac	g ccaagtg	gcc 15	
		tgaaagatga	accaaacgac	gaggacgtat	atgcgttca	a gtgcgaa	att 15	
			I	2age 45				

ENT	OR GRAFT CO	DATED OR IM	PREGNATED W	ITH PROTEIN	TYROSINE K	INASE INHIBIT	FORS AND
	cagatgetea 20	aggccgtggg	caagcatcca	aatattgtgg	gtatcgtggg	atactccact	16
	cgttttagca 80	accagatgat	gttgctaatt	gaatactgca	gccttggaag	cctgcagaac	16
	tttttacgtg 40	aggagtggaa	gttcaggcag	gagcaaaatg	caattggact	taagaagaac	17
	cttgaacaga 00	acgtggacaa	ccgacggttt	aaccgactcc	ctagaaattc	catccatgat	18
	cgcatagagg 60	atatcaacaa	ctcgatgctg	tccactgtgg	aagaggagag	tgaatcggat	18
	cagacacact 20	caagtcgatg	tgagacctac	accctcactc	gaataaccaa	tgcagccgac	19
	aacaagggct 80	atggcctgga	ggacattgaa	aacatcggtg	ggagttacat	tcccaaaacc	19
	gctgaagctc 40	caaaggatcg	gccaaaacgg	aagctgaagc	cgcagcccaa	gaaagactcg	20
	aagcaggatt 00	tcaaatcgga	caacaagaag	cgaatctttg	agaacaagga	atactttgat	21
	tgcctcgact	catcggatac	caagccccga	ataccactga	aatatgcaga	tttgctagac	21
	atcgcccaac	aggtggcggt	gggaatggaa	tttctggccc	aaaacaaagt	agtgcatagg	22
	gatctggctg 80	cccggaatgt	tctaatctcc	gtagatcgca	gcatcaagat	agcagatttt	22
	gggctgagtc 40	gagatgtgta	tcatgagaac	gtgtaccgaa	agtccggagg	aagtggcaag	23
	ctgcccatca 00	agtggctcgc	gctggagtcc	ctcacccacc	aggtgtacac	cagtcagagc	24
	gatgtttggt 60	cctttggtgt	gctgctctat	gagatcacca	ctctcggtgg	aatgccatat	24
	ccgtcggtgt	ctcccagtga			aaggtcatcg	gatgaagcga	25
			F	age 46			

ENT	OR GRAFT CO	OATED OR IM	PREGNATED W	ITH PROTEIN	TYROSINE K	INASE INHIB	ITORS AND
	ccggagggat 80	gtacgcaaga	aatgttttcc	ctgatggaaa	gctgctggag	ctccgtgcca	25
	tcacacaggc 40	caacattttc	cgcccttaaa	cacagacttg	gtggcatgat	tttggccact	26
	aacgatgttc 00	cagaaaggct	gaaacaactg	caagctgcaa	ccgagtcaaa	attaaagtca	27
	tgtgacggtc 60	taaacagtaa	agtggagcaa	gtgccatgcg	aggaagagct	atacctagaa	27
	cctttgaatt 72	aa					27
	<210> 16 <211> 5229 <212> DNA <213> Dros	o Sophila mela	anogaster				
	<400> 16 atgttcaata 60	tgccacgggg	agtgacaaaa	agtaaatcca	agcgtgggaa	aattaagatg	
	gaaaacgata 20	tggcagcagc	agcaacaaca	acagcctgca	cgcttggaca	catttgtgtt	1
	ttgtgccggc 80	aagaaatgtt	gctggataca	tgttgctgcc	ggcaagcagt	agaagcagtt	1
	gacagccccg 40	caagcagtga	agaagcgtat	agcagtagca	acagcagcag	ctgtcaagca	2
	agcagtgaaa 00	tcagtgcgga	ggaggtctgg	tttctcagtc	atgatgatat	cgtactgtgc	3
	cgcagaccaa 60	aatttgacga	agtggagacg	acgggtaaaa	agagggacgt	taaatgcagc	3
	gggcatcagt 20	gcagcaatga	atgcgacgat	ggcagcacga	aaaacaatcg	acaacagcgc	4
	gaaaacttca 80 ·	atatctttag	caactgtcac	aatattttgc	gaacattgca	atcgctgctg	4

ENT	OR GRAFT Coctgetcatgt	OATED OR IM tcaattgcgg	PREGNATED Wi cattttcaac	ITH PROTEIN aagcgacgca	TYROSINE K ggcggcagca	INASE INHIB tcagcagcag	ITORS 5	AND
	catcatcatc 00	attatcagca	tcatcatcag	cagcatcatc	agcagcatca	tcagcggcag	6	
	caagccaatg 60	ttagttacac	aaaattccta	ttgctgctac	aaacactggc	agcagcaacc	6	
	acaagactga 20	gtttaagccc	taaaaactac	aaacaacaac	aacaactaca	gcataaccaa	7	
	cagctgccac 80	gtgccacacc	gcaacaaaag	caacaagaga	aagataggca	taagtgcttt	7	
	cactacaagc 40	acaattactc	ttactcgcct	ggcattagcc	ttctactctt	tatcctactg	8	
	gccaacacat 00	tggccatcca	agcggtcgtg	ttgccagcac	atcagcagca	cctgctgcac	9	
	aatgatatag 60	ccgatggact	ggataaaaca	gcgctttcgg	tgtcggggac	gcaatcgcga	9	
	tggacaagga 20	gcgaatcaaa	cccaacaatg	cgactgtcac	aaaatgtaaa	accttgcaaa	10	
	tccatggaca 80	tcaggaacat	ggtgtcgcac	ttcaatcagc	tggagaactg	cacggtcatc	10	
	gagggcttcc 40	tgctgatcga	tttgataaac	gacgccagcc	ctctgaacag	aagctttcca	11	
	aaactgaccg 00	aggtcacaga	ttatatcata	atctaccgtg	tgactggatt	gcactcgctg	12	
	tcaaagatct 60	ttcccaatct	gagcgtcatt	aggggaaaca	agctgttcga	cggatatgcc	12	
	ttggtcgtct 20	actcgaattt	cgacctcatg	gatttgggac	ttcacaagct	acgatccata	13	
	accagaggcg 80	gtgtgcggat	tgagaagaat	cataagctgt	gctatgatag	gaccatcgat	13	
	tggctggaaa 40	ttctggcgga	aaacgaaacc	caactggtgg	tgctgacaga	gaacggcaag	14	

ENT	OR GRAFT Cogagaggt	DATED OR IM gcaggctttc	PREGNATED W caagtgcccg	ITH PROTEIN ggggagatca	TYROSINE K gaattgagga	INASE INHIBI! ggggcacgat	TORS AND 15
		ttgagggaga	gcttaatgcc	agttgtcagc	tgcacaataa	taggcgcctg	15
	tgctggaaca 20	gcaaactctg	ccagacgaaa	tgccctgaaa	agtgcagaaa	taactgcatc	16
	gatgagcaca 80	cctgctgcag	ccaggattgt	ttgggtggat	gcgtgatcga	taagaatggg	16
	aatgagagct 40	gcatctcctg	tcgaaatgtg	tctttcaaca	acatctgtat	ggactcctgt	17
	ccgaaaggct 00	attatcagtt	cgacagccgc	tgcgtaacgg	cgaacgagtg	catcacactg	18
	acaaagtttg 60	aaacgaacag	tgtgtattcc	ggtattccat	acaacggaca	atgtatcacc	18
	cactgtccaa 20	cggggtacca	gaagtcagag	aacaagcgca	tgtgcgaacc	ttgtccgggc	19
	ggcaagtgtg 80	acaaggagtg	ctcctccggt	cttatcgaca	gtttggagcg	tgctcgggag	19
	ttccacggct	gcaccattat	aaccggaacc	gagcccctta	ccatcagcat	taaacgtgaa	20
	agcggcgctc	acgtcatgga	tgaattaaaa	tatggcctgg	ctgccgtcca	taaaattcag	21
	tcgtccctaa 60	tggttcattt	gacctacgga	ttgaagtcct	tgaaattctt	tcaatcccta	21
	actgaaatta 20	gcggcgatcc	gccgatggac	gcggataaat	atgctttgta	tgtgcttgat	22
	aatcgcgatc	tagatgagct	ctggggaccc	aaccaaacgg	tgttcattag	gaagggcggc	22
	gtcttctttc	atttcaaccc	aaaactatgt	gtgtccacca	ttaaccagtt	gctgcccatg	23
	ctggcctcca	agccaaagtt	ttttgaaaag	tcagatgtgg	gcgcagactc	gaatggaaac	24

'ENT	OR GRAFT Cocceptations of the cocceptation of	OATED OR IM gtggaacagc	PREGNATED W cgttctcaat	ITH PROTEIN gtcacattac	TYROSINE K aatcagtggg	INASE INHIBI agcaaactcc	TORS AND 24	
	gctatgctga 20	acgtcacgac	aaaagttgaa	ataggagagc	cccaaaagcc	gagcaatgct	25	
	acaattgttt 80	ttaaggatcc	gegegeette	atcggtttcg	tgttttatca	tatgatcgat	25	
	ccgtacggga 40	actcaactaa	aagcagtgac	gatccatgcg	atgatcgctg	gaaggttagc	26	
	tctccggaaa 00	agagcggggt	catggtatta	agcaatttga	ttccgtacac	taactactcc	27	
	tactacgttc 60	ggaccatggc	tatatcctcg	gaattgacaa	acgcggagag	cgacgtgaag	27	
	aactttagga 20	cgaatcccgg	acgaccgtca	aaggttacgg	aggtggtagc	aaccgccatt	28	
	tcagattcga 80	aaattaacgt	aacatggagc	tacctagata	agccttatgg	cgtgctaacg	28	
	cgctatttta 40	taạaagccaa	acttataaat	cggcctactc	gaaacaataa	ccgggattac	29	
	tgtactgaac 00	ctctcgtcaa	ggccatggaa	aatgacctgc	cagccacaac	gcctaccaag	30	
	aaaatatcag 60	atcctttagc	aggcgactgt	aagtgcgtgg	agggttcgaa	gaagactagc	30	
	agtcaggaat 20	acgatgatcg	taaagttcaa	gcgggcatgg	agtttgagaa	cgcgttgcaa	31	
	aactttatat 80	ttgttccaaa	cattcggaaa	agcaagaatg	gatcgtctga	caaatcagac	31	
	ggagcggaag 40	gtgcagctct	cgattctaat	gctattccaa	atggaggagc	tactaaccct	32	
	tcacgtagaa 00	ggagagacgt	tgcgctcgag	ccagagctcg	acgatgtaga	gggcagtgta	33	
	cttctacgcc	atgtgcgctc	catcacagac	gataccgatg	catttttcga	aaaggacgac	33	

ENT	OR GRAFT C	OATED OR IM	PREGNATED W	ITH PROTEIN	TYROSINE K	INASE INHIBI	TORS	AND
	gaaaatacct 20	ataaagacga	agaagacttg	tcctccaaca	aacaattcta	tgaggtgttt	34	
	gccaaggaat 80	tgccaccaaa	tcaaacacat	tttgtctttg	aaaaactgcg	ccacttcacc	34	
	cgctacgcta 40	tcttcgtggt	agcctgtaga	gaagaaatcc	ccagcgaaaa	attaagggac	35	
	accagtttta 00	agaagtcgct	ctgcagcgat	tatgacaccg	ttttccaaac	tacaaagaga	36	
	aagaaatttg 60	ccgacatagt	catggaccta	aaagtagatt	tagaacacgc	caacaacacc	36	
	gagtccccag 20	tacgggttcg	ctggacgcca	ccagtagatc	ccaacggaga	aattgtcacc	37	
	tatgaagtgg 80	cctacaagtt	gcaaaaaccc	gatcaagtgg	aagaaaagaa	gtgcattccg	37	
	gctgctgact 40	tcaaccagac	tgccggttat	ttaataaagc	tcaacgaggg	cctttacagc	38	
	ttcagggtgc 00	gagccaattc	aatagcggga	tacggcgatt	tcacggaagt	cgaacatata	39	
	aaagttgagc 60	ctccgccgag	ctatgctaag	gtcttttct	ggctactggg	aatcggccta	39	
	gcgttcctga 20	tcgtttccct	gttcggctat	gtctgttacc	tgcacaagag	gaaggttccc	40	
	tctaatgacc 80	ttcatatgaa	cacagaggtg	aatccgttct	atgcgagcat	gcaatacatc	40	
	ccagacgatt	gggaggtgct	gcgagagaac	atcattcagt	tggctccact	aggccaggga	41	
	tcctttggca 00	tggtgtatga	gggtatcctg	aagtcctttc	cacccaatgg	cgtggatcgc	42	
	gagtgtgcca 60	ttaagactgt	caacgaaaat	gctacggatc	gcgagcgaac	caatttcctg	42	
	agcgaggcga 20	gcgtcatgaa	ggagttcgat	acgtatcatg	tcgtaagatt	gctcggtgtt	43	

ENT	OR GRAFT C	OATED OR IM	PREGNATED W	ITH PROTEIN	TYROSINE K	INASE INHIB	ITORS .	AND
	tgctccaggg 80	gtcagccggc	tctggtggtc	atggagctaa	tgaagaaggg	tgatcttaag	43	
	tcctatttgc 40	gtgcccatcg	tecegaggag	cgggatgagg	ccatgatgac	gtatcttaat	44	
	cgcatcggag 00	tgactggtaa	tgtgcagcct	cctacttatg	gaagaatcta	ccagatggcc	45	
	attgagattg 60	cggatggcat	ggcatatttg	gccgccaaga	agttcgtcca	tcgtgatctt	45	
	gcagctcgaa 20	attgcatggt	tgctgatgat	ttgacggtga	aaattggtga	ctttggaatg	46	
	acccgtgaca 80	tctatgagac	ggattactat	cggaagggca	ctaaagggct	gctgccagtt	46	
	cgctggatgc 40	caccggagag	cttgcgagat	ggtgtctact	ctagtgccag	tgatgtattc	47	
	agctttggag 00	tggttctctg	ggaaatggcc	accttagcgg	ctcagccata	ccagggactt	48	
	tccaacgagc	aagtcctgcg	ttacgtcatc	gatggcggtg	ttatggagag	gccggaaaat	48	
	tgtcctgatt	ttctgcataa	actaatgcaa	aggtgctggc	atcataggtc	ttcggcgaga	49	
	cccagttttc	tggatatcat	tgcgtatctc	gaaccacaat	gccccaattc	acaatttaag	49	
	gaagtatcct 40	tctatcactc	agaggcaggt	ctgcagcatc	gggaaaagga	gcgcaaggaa	50	
	cgcaatcagc	tagatgcatt	cgcggcagtc	cccttggatc	aagatctgca	ggatcgggaa	51	
	cagcaggagg 60	atgctaccac	acctttacga	atgggcgatt	atcagcagaa	ctcctcgttg	51	
	gatcaaccgc 20	ccgaaagccc	catcgccatg	gttcctgcca	tccggattca	ttgcgagcag	52	
	tactcctga 29						52	

'ENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND

<210> 17 <211> 2058 <212> DNA <213> Drosophila melanogaster	
<400> 17 atgaacaaat actcggcatt tatagtctgc atttcgctcg tgcttttatt tacaaaaaag 60	
gatgtgggga gccataatgt ggactcaaga atatatggtt tccagcaatc atcaggtatt 20	1
tgccatattt acaatggcac catttgtcgc gatgtcttga gcaatgccca tgttttcgta 80	1
tcccccaatc tcaccatgaa cgatttggag gagcgattaa aggcagctta tggagtaatc 40	2
aaggaatcca aggatatgaa cgcaaattgc cgcatgtacg ctttgcccag cttgtgtttc 00 .	3
agttcaatgc caatttgccg gactccagag cgcacgaatc tettgtactt cgccaacgtg 60	3
gccacaaatg ccaagcaact gaagaacgtc agcattcgac ggaagagaac caagtccaag 20	4
gacattaaga acataagcat attcaagaag aagtccacca tctacgagga tgtgttcagc 80	4
acagacatat cgagtaaata cccaccaacc agagagtctg agaacctaaa acgcatttgc 40	5
cgcgaagagt gcgaacttct ggagaacgag ctgtgccaga aggaatatgc cattgccaag	6
cgacatcccg tcatcgggat ggtgggtgtg gaggattgcc aaaagttgcc gcagcacaag 60	6
gactgcctat ccttgggcat caccatcgag gtggataaga cggagaattg ttactgggag 20	7
gatggatcga catatagagg agtggccaac gtctccgcat ccggaaagcc atgtttgcga	7
tggtcatggc tgatgaagga aatctccgat ttccctgaac tcatcggtca gaattattgc	8

ENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND agaaatcctg gaagcgttga aaatagtcct tggtgttttg tggactcctc acgtgaacgc 9 ataatcgaac tttgtgatat tccaaaatgt gcggacaaaa tatggattgc cattgtcgga 9 acgactgcag ccattattct aatattcata attatatttg cgataatact tttcaaaagg 10 agaacaatca tgcactatgg aatgaggaat attcataata tcaacacacc cagcgccgat 10 aaaaatatct acggaaattc gcagcttaat aacgcacaag atgctggcag gggaaatctg 11 ggaaatctat ccgatcacgt tgctttgaac tccaaactta tcgaaagaaa tactctgctg 12 12 aggataaacc attttacgct gcaggatgtt gagtttctgg aggagctggg cgaaggagct tttggaaaag tctacaaggg acagctcctg cagccgaaca aaaccaccat aacagttgcc 13 atcaaggcqt tgaaggaaaa cgcctcggtg aaaacgcagc aggactttaa gcgcgaaatc 13 gaactaatct cggatctaaa gcatcagaat atagtgtgca tattgggcgt agtgctcaat 14 aaggagccct actgcatgct gttcgagtac atggccaatg gtgatctgca cgaattccta 15 15 atctcaaact cacccaccga aggcaagtcg ctgtcgcagt tggaattcct gcaaatagct 60 ctacaaatca gcgaaggaat gcagtatctg tcggcccatc attacgtaca tcgcgacttg 16 gcagctcgga attgcctggt aaacgagggt ctggttgtga agatatccga ttttggacta 16 80 tccagagaca tttacagctc agattattat cgagttcagt caaagtcgct attgcctgta 17 aggtggatgc cctcggaatc gatattgtat ggaaagttta cgaccgagag cgatgtttgg 18

TENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INH	IBITORS AND
tcctttggag tcgttctttg ggaaatatac agctatggaa tgcagccata ctacggttt	it 18
agcaatcagg aagtaatcaa teteateegt teaeggeaae tgeteteege teeggaaaa	ac 19
tgtcccactg ctgtctactc gctaatgatc gagtgctggc atgagcagtc agtaaaacc	gt 19
ccaacattca cagatatttc gaaccgtctc aaaacttggc acgagggcca ctttaaggc	cc 20
agtaatccag aaatgtaa 58	20
<210> 18 <211> 1554 <212> DNA <213> Drosophila melanogaster	
<400> 18 atgggtaact gcctcaccac acagaagggc gaacccgaca agcccgcaga tcgaatcaa 60	g
ctggacgacc cgcccaccat cggagtcgga gtgggcgtgc cacaaatccc catgccctc 20	a 1
cacgeeggae ageeaeegga geagataegt eeggtteeee agateeegga gagegaaae 80	g 1
gcaggtgcca acgccaagat ttttgtcgcc ctctacgact acgacgcccg caccgacga	g 2
gatttgaget teegeaaggg agageaettg gagataetga atgaeaegea gggtgaetg	g 3
tggctggcgc ggagcaagaa gacacgttcg gaaggctaca ttccatccaa ttatgtggc	с 3
aagttgaaat caatcgaagc agaaccgtgg tacttccgca aaatcaaacg cattgaggc 20	t 4
gagaaaaaac ttctactgcc agagaacgag cacggtgcat ttttaattcg cgattccga	a. 4
agccgtcaca acgactactc gctatcagtg cgcgatggcg atacggttaa gcattatcg	c 5

Page 55

TENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND atcagacaat tggacgaagg cggettette atcgccagge gcacgacatt cagaaccett caqqaqctqq tqqaacacta ttcqaaqqac tctqatqqcc tatqcqtcaa cctctqcaaq 6 7 tqqqaqatcq acagaacgtc tttgaaattc gtgcgcaaac tgggctccgg acagtttggc 7 gatgtctggg agggattgtg gaacaacaca acacctgtgg caattaaaac tctgaaatct 8 ggtacaatgg accccaagga tttcttagcg gaagcccaga tcatgaagaa actgcgccac 9 9 accaagetta tacagttgta egetgtetge actgttgagg ageetateta tattateaca gagttaatga agcacggttc actgttggaa tatctccaag ccattgcagg caagggtcgt 10 agccttaaaa tgcaaactct gattgatatg gcagcgcaaa tagctgctgg catggcttac 10 ttggagtccc agaattatat tcatagggat ttagcggcgc gcaatgtact ggtaggcgat 11 ggaaacatcg tcaaaatcgc cgactttggt ttagctaggc tcatcaagga ggacgaatac 12 0.0 gaggegeggg taggegeeag attteceata aaatggaeeg etecagagge tgetaactae 12 agcaaattct caataaaatc ggatgtttgg agctttggca ttcttctcac agaactggtc 13 20 acctacqqac qcataccata tccaggcatg accaacgctg aggtgctaac gcaagtggag 13 cacqqctatc qaatqccqca acctcccaac tgcgagccgc gcctgtatga gattatgctg 14 40 15 qaatqttqqc acaaqqaccc catqcqcaga cccacqtttg agacqctaca atggaaactg

Page 56

MENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND

gaagacttct atacatctga tcagagcgac tacaaagagg cgcaggccta ctga 15 <210> 19 <211> 1779 <212> DNA <213> Drosophila melanogaster <400> 19 atgatcaagt gcgccctgaa cgaggtggga tgcgaggagc tgccctccgg ttgcgacgat gacctcaccc tggagcagaa cttcatcgag aatggctata acaacgaaca gcagagcaat 1 agcaatcaca gtgcctcaca gtccacgata ataacgagca cgatcaccac caccataacg 1 actacaacta ccacgacgcc gtccaaggaa aactcaagac tgaaattcaa agtgcccaag 2 atccagaaga aatcaaaggc catccgcaat acattccgct ccaagttgct caatttccag 3

ttgaagcgct ccaagccgtg caaacagtgc accaagagac gtcgcatcca tcccagcaaa

agtgtctttg attttgccaa agagttcgag gtggaacaac cggctggttc ggcggcggat

gagcaattet gcaactgtee geeagetggt caaaageetg ttaageeate egteeaaata

tccggccaca aagatcaccc gttcgagtcc agttctggag agctggacga gaactcggat

cgggacatcg acaacgacga ggaggaggag gatagcgcca gtgacgacgt gctcagcatg

aaggatcact gctattgcgt gcccagcctg gcggccagta tatcgctctc cacaaatcgt

ccgctttacg aggaggaatg gttccatggc gttctgccgc gcgaggaagt ggttcgattg

20

20

3

4

4

7

CENT	OR GRAFT C	COATED OR IM	IPREGNATED W	ITH PROTEIN	TYROSINE F	CINASE INHIB	ITORS	AND
	ctgaataacg 80	atggtgactt	cctggtccgc	gaaacgattc	gaaacgagga	gagccagatt	7	<u>-</u>
	gtgctcagtg 40	tctgttggaa	tggccataag	cacttcattg	tccagaccac	cggagagggt	8	
	aatttccggt 00	tcgagggacc	accatttgcc	agcatccagg	agctgatcat	gcatcagtat	9	
	cactcggaat 60	tgccagtgac	cgtgaaatcg	ggagccatac	tccgacgacc	cgtttgccgg	9	
	gagegetggg 20	agctgagcaa	cgatgatgtg	gtacttctgg	agaggattgg	tcggggaaac	10	
	tttggggatg 80	tctacaaggc	caaactgaag	tccaccaaac	tggatgtggc	tgtcaaaacc	10	
	tgtcgaatga 40	ccctgcccga	cgaacagaag	cgtaaattcc	tacaggaagg	gcgcatcctc	11	
	aagcaatacg 00	atcatccaaa	tatcgtaaaa	ttgattggca	tttgtgtgca	gaagcagccc	12	
	atcatgattg 60	tcatggaatt	ggtgctcggt	ggttcgcttt	taacttattt	acgcaagaac	12	
	tccaatggcc 20	tcaccactcg	ccaacaaatg	ggcatgtgca	gagatgcggc	ggcaggcatg	13	
	cgatatctgg 80	agtccaaaaa	ctgcattcat	cgcgatctgg	cggcgcgtaa	ttgtctcgtt	13	
	gacttggagc 40	acagtgtgaa	gatctccgat	ttcggaatgt	ctcgcgagga	agaggaatat	14	
	atagtttccg 00	atggcatgaa	acaaatacct	gtgaagtgga	cagctcccga	ggccttgaat	15	
	ttcggcaagt 60	acacttcgtt	gtgcgatgtg	tggtcctatg	gcatactgat	gtgggagatc	15	
	ttctccaagg 20	gcgacacacc	ctactccggc	atgaccaact	ccagagccag	agagcgcatc	16	
	gatacgggat 80	atcgtatgcc	aacgccgaag	agcacgcccg	aggagatgta	ccgactgatg	16	

FENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND ctccaqtqct gggcagccga cgccgaatcc cgaccgcatt tcgatgagat ctacaatgtg gtggatgcac tgattctgcg cctggacaac agccactaa 17 <210> 20 <211> 2685 <212> DNA <213> Caenorhabditis elegans <400> 20 atgcaccatc ccaaagaaac gcttcttatc gattcatcta atccttctta ctcccacctc accgagtacc gttttgataa cctgaaacgt gaagagtctc gatcgacctc actttttggc 1 gacaggagaa gagtgatgaa aatcctgagt ggattttccc tcattattat tgtcgttttc 1 atatttgcta caagtcatga acaggcgctc tctaccactg gagacctcac ttcgagtact 2 cagagtacta cacatggagg tgttgtcttt acatatccaa ctacaagaaa atctcccggt 3 aaaggatgtg tootgaatto goagagatoa acgootaaaa acttgaaaca gtacactgga 60 aacatttcag acgcttgttt agccggaata aaatcaagta actgtaagac atggctaatg 4 acaaatgcgg tgattttgaa atactcagac gatgttgtca gcaattgccc ttcgattttg 4 80 gaatttgtga ataaaacatc gttatcatgt tcgggtaaaa gtcagattca atatatgtat 5 cctcagagtg attctgcgtc aagtgattgc aatcactctt atgacttcaa ctcaaatgct б 6 ctgaacagag caatatataa cttcaactac agcaagacct taatctccac gtcatatgcc aatactcctg gattcgctat gtatacattt ttgctgaaga ttatgaactg tgtcaacaaa 7

FENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND

aacggaataa aacttgacgc cggaattctc aacattttta cggacatgac ctatattgat 7 ttatgtgaaa gtgatgtttt catgagctcg tttccagata ctctgaacaa gcttattgag gcggggtata ttgtcaaatt ttatttcctg aatcaaaatt tgcaagatac tcaaaaaaac 9 qttgaaaacg tactagctgg atgtaaatac atgaattcaa gatcgtactg cgaaattgta 9 gactggagct atcattcgga aaatcctaat gagtttgaaa tttgcatccc agattcacag 10 cccagtggga agaaagaaga ctttaattgg caacttcttc taattattgg tataccttgt 10 ataagtttga caatttgctg cattgcattt ttcgtttgtt gcttgaaatg tgctaaactg 11 12 aaaatggcaa tgatgagaat gaatgtattc tcaaatgata ctcaccaaaa tcctgatgaa 12 atggagctga aaaagagatg gatcgggatg agaaagaaat tcaataaaga tgttgagaat qqaaqttqta aaqaqttaaa cacccaaaaa tggtctcact tcgcatcggc gaacaattac 13 20 atggacatac aagcattggc aaatgctaat aaaaaagata tatgggaaat tgacacaaaa 13 14 aatctqctcg tccaggaaga ccatctcctt ggaaacggtg catttgcaaa cgtctataag ggaatcgtaa aaggaaaaat accactacta gttgtaaata atagtctcaa catgaccgta 15 15 qaatcaqaaa acaatggtca ctatgaagct gccatcaaga agttaccagc ccatgctgac

16

16

gagcagaacc atttggattt tttccatgaa attgatttta tgaagcgttt gggccatcat

ccacatgtca tcagcatgtt gggatgtgtg tcaaatccat atgagccatt gatcgtggtg

80

YENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND qaqtattgcg cacgtggtga cctgttgaag tttttgagaa gacataaaga ttatgtgctg 17 atgaatcgtg tacatattga attatgtata agtatataca agttcaaatt aaaacttaga 18 ccgaacattg agatttcaaa aatcagtttc cagaacaaaa cagacgattg tccaattgaa 18 gcagacatgt gtctcagaat caaagatttg gtttctattg cttggcaagt tgccgatgga 19 atgtcatacc tggcatcaaa aaactttatt caccgtgatt tagctgcccg taacattctg 19 20 ctcacaaaaa gtttaactgc aaaggttagt gacttcggtc tatgtcggta tatggattca gcactttata ccgcaaaggg gggccgtctc cccatcaaat ggatgtctgt agaagcattg 21 aaactgtacg aattctccac aaaaactgat gtttggtcgt ttggagtgtt gttgttcgag 21 22 attttctcca tgggagatgt tccgtatcca acaatacaac aagtagatat gctggaacac cttctcgctg gtggccgctt gtcacagcca ttgaaatgtc cgaatgagat atttaatatc 22 atgcagaaat gttgggccga aaagcctgaa gacagaccag agtttaatga aatgagagga 23 gaaatcacag tgatgttgaa cttggacgat gaaagttatg gatatcttag cgtcgagtca 24 cagggtggtc caaagtatac acaattaaca atgcaagatt caaaggaaac agctccatgc 24 25 tccactcctg gaggatcaca agatatggac gaagacgggg attatgatag tggctcagaa 25 ggccactcgc aaggaacttg tgctcagctc gaccaggttt tgactgagag atttggtgaa gaacagaaga aggaaatcaa gcaaatcttt tgtgagatca cttcgaaatc aatgcgaggc 26 40

FENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND

aaacgcc 85	gtc	aatcgaattc	tacagtcagc	acgtatcaat	cttga		26
<211> <212>	21 2376 DNA Caer	5 Norhabditis	elegans				
	21 agg	agaatgcagt	caccaattgg	gaatgtcaaa	tcgaaagatt	cgtgatgagc	
aaatctc 20	ggc	gtcttcgagt	ttcgacttgc	aaagcactgg	acctcaacat	gctcggtaag	1
tggtttg 80	gga	actactcatt	tgaaattcgt	actacagctc	atcaagaatc	tggaagtggt	1
gcctggt 40	gtc	cgaagaatca	aataaactct	ctcagcaaag	aatggttgca	gatttcgttt	2
tccgtgg 00	ata	cagtaataac	ttctgtggag	acccagggac	gatttgacga	cggacgtgga	3
atggagt 60	atg	cgaccgcatt	caaaattcag	tactggcgac	cttcgctaaa	cgcatgggca	3
tcttata 20	aag	acgattttga	gctagagaca	attcctgcta	ataatgacac	ggagcacgca	4
atccggc 80	gac	atcttgaccg	ggcaatcata	gcaagaagaa	tcagaattgt	tccagtttca	4
aattcca 40	cca	gaactgtttg	catgagagtt	gaagttttcg	gatgcccatt	tgatgatagt	5
ctcgtgt 00	ttt	acaatgtcga	tcaaggcgat	ttgcaatctg	gcatctctta	tcacgacttt	6
tcctacg	atg	gtaatctcgc	caactctcca	cacttaaccg	gcggtattgg	gaagttatac	6
gacggcg 20	aag	tgggaaaaaa	caatgtattt	gttaatcacc	acaaatgggt	tggatggaga	7
cgtaaaa	gaa	atggcaatgt			ccgaattgag	aaatatatca	7
			Ъ	age 62			

'ENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND gggattttga ttcatacgtc gaacgagttc aaaaagagcg caaaggcatt ttcctcggct actgtgctat tttcgataaa tggaaaagac ttctcagaca ccatcgtaca cttcaataat 9 9 ccggaagata ccgaatcaga ggtacctcga tggataagga ttccagtgaa caatcggatt gccaaagttg caaagattcg tcttaacttt ggaactgact ccgactggct gttcatttct 10 gaagtgaatt ttgaatcaaa tcacacaaat attgagcttc tcaatgatga cgtggttatt 10 cccgattcgg tttcatattt ctccgtaacc gagcacgatg acggaactag catgtttgct 11 ttcattatct tcttcttcat gttcctcatc gtggcagtca ttattctgac agttctctac 12 cgtaaacgcg agtatcgtgt gaaagcatcg tctccatctc caaatgcgaa acgggaaatt 12 ctgttgacaa ttgacggaaa caccatcaag catcacgttt ctccgtcaac ctatcaaatg 13 20 gctcgcgata atcttcagaa tgcgttgatt gagaaaatgc ccatgtcacc gattataagc 13 gattacgctg aaccggacat tagtgtttgc tccgatgtca ccgccaacac tccattgctc 14 tatggaattg atggtccata tgatacacag aagagaagca accetttgtc atctatggta 15 aaatactccg attatggaga ggtttattgc acaacacttc cggaaattgc tcgagacaag 15 ttgatttgcg tgagcagaat tgggcaagga gagtttggtg aagtcgattt gtgtcagctt 16 16 gaaaaccgaa aagttgcggt caaaaaactt catggaatca gtcaagccga cgagttttct 80 tttcatagag aaattcgagt attaggaagt ctcaaacatc cgaacgtagt tgaagtcgtc 17

Page 63

ENT	OR GRAFT CO	OATED OR IMP	PREGNATED W	ITH PROTEIN	TYROSINE K	INASE INHIB	ITORS AND
	ggagtatgca 00	ctatacaaaa	accaatactc	tgtatcatgg	aatatatgga	aaatggcgac	18
	ttgaaatcct 60	acattttgaa	aaaccctact	atacaaacct	cccaatgcat	ctcaatttgc	18
	acacagcttg 20	ccgcaggact	tgcctatttg	gaatcatgta	attttgtgca	tagagatatt	19
	gctgctcgaa 80	attgccttgt	tgacggagaa	ggcaatgtaa	aaattgccga	tttcggaatg	19
	gcccgatctc 40	tttattctca	agaatattac	aaagttgagg	gaaagtttgt	gctcccgatt	20
	cgctggatgg 00	catgggaagc	tttgctactc	ggcaaatttt	ccactgccag	tgatgtttgg	21
	ggattcggag 60	ttaccatgtg	ggagatcttc	tcgctgtgct	ccgaaaaacc	atactccgat	21
	atgacagatg 20	atgatgtggt	ggagaatctt	cagagcatga	gctctactgg	atcattaaag	22
	caagttcttt 80	cccgaccaag	gatgtgtcca	tcaaagttgt	acaacgagca	aattcttccg	22
	tgctggaact 40	atgagagcag	tegeegaeee	agtttcgaga	acgtccatct	tcacctccag	23
	tcattggtgc 76	acacttctcc	tcatattcat	tttaa			23
	<210> 22 <211> 339 <212> DNA <213> Mus		÷				
	<400> 22 atgggaatgg 60	cctgccttac	aatgacagaa	a atggaggcaa	cctccacato	tcctgtacat	
	cagaatggtg 20	atattcctgg	aagtgctaat	tctgtgaagc	agatagagco	agtccttcaa	1

TENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND gtgtatctgt accattctct tgggcaagct gaaggagagt atctgaagtt tccaagtgga gagtatgttg cagaagaaat ttgtgtggct gcttctaaag cttgtggtat tacgcctgtg 2 tatcataata tgtttgcgtt aatgagtgaa accgaaagga tctggtaccc acccaatcat 3 3 gtcttccaca tagacgagtc aaccaggcat gacatactct acaggataag gttctacttc cctcattggt actgtagtgg cagcagcaga acctacagat acggagtgtc ccgtggggct 4 gaageteete tgettgatga etttgteatg tettacettt ttgtteagtg geggeatgat 4 tttgtccacg gatggataaa agtacctgtg actcatgaaa ctcaggaaga gtgtcttggg 5 atggcggtgt tagacatgat gagaatagct aaggagaaag accagactcc actggctgtc 6 tataactctg tcagctacaa gacattctta ccaaagtgcg ttcgagcgaa gatccaagac 6 60 tatcacattt taacccggaa gcgaatcagg tacagatttc gcagattcat tcagcaattc 7 7 agtcaatgta aagccactgc caggaaccta aaacttaagt atcttataaa cctggaaacc 80 ctgcagtctg ccttctacac agaacagttt gaagtaaaag aatctgcaag aggtccttca 8 ggtgaggaga tttttgcaac cattataata actggaaacg gtggaattca gtggtcaaga 9 gggaaacata aggaaagtga gacactgaca gaacaggacg tacagttata ttgtgatttc cctgatatta ttgatgtcag tattaagcaa gcaaaccagg aatgctcaaa tgaaagtaga 10 20 attgtaactg tccataaaca agatggtaaa gttttggaga tagaacttag ctcattaaaa 10 80

FENT				ITH PROTEIN gggtattaca		INASE INHIBIT ggatgcgcac	TORS AI 11	711
	cattacctct 00	gcaaagaggt	ggetececca	gctgtgctcg	agaacataca	cagcaactgc	12	
	cacggcccaa 60	tatcaatgga	ttttgccatt	agcaaactaa	agaaggcggg	taaccagact	12	
	ggactatatg 20	tgctacgatg	cagccctaag	gacttcaaca	aatactttct	gacctttgct	13	
	gttgagcgag 80	aaaatgtcat	tgaatataaa	cactgtttga	ttacgaagaa	tgagaatgga	13	
	gaatacaacc 40	tcagcgggac	taataggaac	ttcagtaacc	ttaaggacct	tttgaattgc	14	
	taccagatgg 00	aaactgtgcg	ctcagacagt	atcatcttcc	agtttaccaa	atgctgcccc	15	
	ccaaagccaa 60	aagataaatc	aaaccttctc	gtcttcagaa	caaatggtat	ttctgatgtt	15	
	cagateteae 20	caacattaca	gaggcataat	aatgtgaatc	aaatggtgtt	tcacaaaatc	16	
	aggaatgaag 80	atttaatatt	taatgaaagt	cttggccaag	gtacttttac	aaaaattttt	16	
	aaaggtgtaa 40	gaagagaagt	tggagattat	ggtcaactgc	acaaaacgga	agttcttttg	17	
	aaagtcctag 00	ataaagcaca	taggaactat	tcagagtctt	tcttcgaagc	agcaagcatg	18	
	atgagtcagc 60	tttctcacaa	gcatttggtt	ttgaattatg	gtgtctgtgt	ctgtggagag	18	
	gagaacattc 20	tggttcaaga	atttgtaaaa	tttggatcac	tggatacata	cctgaagaag	19	
	aacaaaaatt 80	ccataaatat	attatggaaa	cttggagtgg	ctaagcagtt	ggcatgggcc	19	
	atgcattttc	tagaagaaaa	atcccttatt	catgggaatg	tgtgtgctaa	aaatatcctg	20	

TENT	OR GRAFT Cocttatcagag	OATED OR IM aagaagacag	PREGNATED W gagaacgggg	ITH PROTEIN aacccacctt	TYROSINE K tcatcaaact	INASE INHIBI tagtgatcct	TORS AND 21
	ggcattagca 60	ttacagttct	accgaaggac	attcttcagg	agagaatacc	atgggtacct	21
	cctgaatgca 20	ttgagaatcc	taaaaatctc	aatctggcaa	cagacaagtg	gagcttcggg	22
	accactctgt 80	gggagatctg	cagtggagga	gataagcccc	tgagtgctct	ggattctcaa	22
	agaaagctgc 40	agttctatga	agataagcat	cagetteetg	cacccaagtg	gacagagtta	23
	gcaaacctta 00	taaataattg	catggactat	gagccagatt	tcaggcctgc	tttcagagct	24
	gtcatccgtg 60	atcttaacag	cctgtttact	ccagattatg	aactactaac	agaaaatgac	24
	atgctaccaa 20	acatgagaat	aggtgcccta	gggttttctg	gtgcttttga	agacagggac	25
	cctacacagt 80	ttgaagagag	acacttgaag	tttctacagc	agcttggcaa	aggtaacttc	25
	gggagtgtgg 40	agatgtgccg	ctatgacccg	ctgcaggaca	acactggcga	ggtggtcgct	26
	gtgaagaaac 00	tccagcacag	cactgaagag	cacctccgag	actttgagag	ggagatcgag	27
	atcctgaaat	ccttgcagca	tgacaacatc	gtcaagtaca	agggagtgtg	ctacagtgcg	27
	ggtcggcgca 20	acctaagatt	aattatggaa	tatttaccat	atggaagttt	acgagactat	28
	ctccaaaaac 80	ataaagaacg	gatagatcac	aaaaaacttc	ttcaatacac	atctcagata	28
	tgcaagggca 40	tggaatatct	tggtacaaaa	aggtatatcc	acagggacct	ggcaacaagg	29
	aacatattgg	tggaaaatga	gaacagggtt	aaaataggag	acttcggatt	aaccaaagtc	30

TENT	OR GRAFT C	OATED OR IM	PREGNATED W	ITH PROTEIN	TYROSINE K	INASE INHIB	ITORS AND)
	ttgccgcagg 60	acaaagaata	ctacaaagta	aaggagccag	gggaaagccc	catattctgg	30	
	tacgcacctc 20	aatccttgac	ggagagcaag	ttttctgtgg	cctcagatgt	gtggagcttt	31	
	ggagtggttc 80	tatacgaact	tttcacatac	atcgagaaga	gtaaaagtcc	acccgtggaa	31	
	tttatgcgaa 40	tgattggcaa	tgataaacaa	gggcaaatga	ttgtgttcca '	tttgatagag	32	
	ctactgaaga 00	gcaacggaag	attgccaagg	ccagaaggat	gcccagatga	gatttatgtg	33	
	atcatgacag 60	agtgctggaa	caacaatgtg	agccagcgtc	cctccttcag	ggacctttcg	33	
	ttcgggtgga 90	tcaaatgcgg	gacagtatag				33	
	<210> 23 <211> 3246 <212> DNA <213> Mus	o musculus						
	<400> 23 atggcacctc 60	caagtgagga	gacacctctg	atccctcagc	gctcttgcag	cctctcatcc		
	tcagaggcag 20	gagccctgca	tgtgctcctt	cctccccggg	gacctgggcc	tececagega	1	
	ttgtcattct 80	cttttgggga	ctacttggct	gaggatttat	gtgtgcgagc	tgccaaggcc	1	
	tgtggcatcc 40	tgcctgttta	tcattcgctt	ttcgctctgg	ccactgagga	cttctcttgc	2	
	tggtttcccc	caagccacat	cttctgcata	gaggacgtgg	acactcaagt	cttggtctac	3	
	aggctacgct 60	tttatttccc	tgactggttt	gggctggaga	catgtcaccg	ctttgggctg	3	
	cgcaaagatt 20	tgaccagtgc	catccttgac	ttacatgttt	tagaacatct	ctttgctcag	4	

ENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND caccgcagtg acctggtgag tgggcgcctc ccggtgggcc ttagcatgaa ggagcaggga 4 qaqttcctqa qcctqqccqt qctggacttg qcccagatgg ctcgtgagca ggcccagcgc 5 ccaggagagc tgctgaagac ggtcagttac aaagcctgtc tgccgcccag cctgcgcgat 6 gtgatccagg gccagaactt cgtgacacgc aggcgcatcc gcaggaccgt ggtcttggcg 6 ctgcgcgtgt ggtcgcctgc caggccgacc gctacggctc atggccaagt atatctggac 7 7 ctggagcggc tacatccagc ggccaccacc gagaccttcc gtgtggggct cccgggcgcc caqqaqqaqc cqqqqcttct qcgtqtgqcq ggggacaacq gcatctcctg gagctccggg 8 gaccaggage ttttccagac cttctgtgac tttccggaaa tcgtggatgt cagcatcaag 9 0.0 9 caqcccacgt gtgggtccgg cagggagcac cggctggtca ctgtcaccag gatggacggc cacatcctgg aagcggagtt tccggggctg cctgaggcgc tgtctttcgt ggccctcgtg 10 10 gatgggtact tccgcctgat ctgcgactcc aggcattatt tctgcaagga ggtggcggcg ccacggctgc tggaggagga ggcggagctg tgccatggac ccatcacgtt agactttgcc 11 atccacaage tgaaggeege tgegteeete ceaggeacet atatteteeg eegeageeeg 12 caggactatg acagctttct tcttaccgcc tgcgtccaga ctcctcttgg ccccgactac 12 60 13 aagggctgcc tcatccgcca ggaccccagc ggggctttct ccctggttgg cctcagcagc 13 cccacagaag cctgcgggac gtgcttgcag tgctggaatt ctgggctgcg agtagacggt 80

TENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND getgeeetga acctaacate etgetgeget eccagaceca aggaaaagte caatttgate 14 gtggtgcgaa ggggctgcac ccccgcgcct gcccctggct gctccccgtc ctqctqtqcq 15 ctgacacage tgagetteca cacaatteca aeggacagee tgggacaega gaacetgggt 15 cacggttctt ttaccaagat cttccgtggc cgcaggcggg aggtcgtgga tggtgagaca 16 catgactcgg aagtcctcct gaaggtcatg gactccagac atcggaactg catggagtct 16 tttctggaag ccgcaagctt gatgagccaa gtatcctacc cgcacctggt gttactgcac 17 ggcgtctgca tggctggaga cagcatcatg gtgcaggaat ttgtgtatct aggagcaatt 18 gacatgtacc tgcgcaagcg tggccacctg gtgtcagcca gctggaaact gcaggtgacc 18 60 aagcagctgg catatgccct taactacttg gaggacaaag gccttcctca cggcaacgtc 19 tcagcacgga aggtgctcct ggctcgtgag gggggtgatg ggaatccacc tttcattaag 19 ctgagtgatc ctggtgtcag tcccactgtg ctgagcctgg aaatgctcac cgacagaata 20 ccctgggtgg cccccgaatg tctccaggag gctcagacac tctgcttgga ggctgacaag 21 tggggctttg gagccaccac gtgggaggtg ttcagcgggg gacccgccca catcacctcg 21 ctggagcccg ccaaaaagct gaagttctat gaggaccagg gacagctgcc cgctctcaaa 22 tggacagaac tggcgggact tatcacacag tgcatggcgt atgatcctgg ccggcgcccc 22 tectteegag etateeteag agaceteaac ggeeteatta cateagatta egageteete 23 40

LENT	OR GRAFT	COATED OR IN	IPREGNATED V	VITH PROTEIN	TYROSINE	KINASE INF	HIBITORS	AND
	tcagacccca 00	cacctggcat	cccgagtcct	cgagatgagc	tgtgcggtgg	g cgcccagc	tc 24	
	tatgcctgcc 60	aggaccccgc	catattcgag	gagagacacc	ttaagtacat	: ctctttgc	tg 24	
	ggcaagggca 20	actttggcag	cgtggagctg	tgccgctatg	acccctgga	caatacgg	ga 25	
	cccctggtgg 80	cagtgaaaca	gctacagcac	agcgggccag	accagcagag	ggacttcc	ag 25	
	cgggagattc 40	agatccttaa	ggctctgcac	agcgacttca	tcgtcaagta	ccggggag	tc 26	
	agctatgggc 00	caggtcgcca	gagcctgcgg	ttggtgatgg	agtacctgcc	cagcggct	gc 27	
	ctgcgagact 60	tcctgcagcg	ccatcgcgcg	gccctgcaca	ccgaccgcct	actgctgt	tc 27	
	gcttggcaga 20	tctgcaaggg	catggagtac	ctgggtgcgc	gccgctgcgt	acaccgtga	ac 28	
	ctggçtgcgc 80	gcaacatctt	ggtggagagc	gaggctcatg	tgaagatcgc	ggactttg	gc 28	
	ctcgctaagc 40	tgctgcccct	gggaaaggac	tactacgtgg	tccgcgagcc	tggccaaag	jc 29	
	cccatctttt 00	ggtatgcccc	ggagtcccta	tctgacaaca	tcttctcccg	ccaatctga	ac 30	
,	gtgtggagct 60	tcggagtggt	gttgtacgag	ctcttcacct	actgcgacaa	gagctgcaç	ıc 30	
	ccatccgctg 20	agttcctgcg	catgatgggg	cctgagcgtg	aaggaccccc	gatatgaag	rc 31	
(ctcctggagc 30	tgctggcaga	gggccgacgc	ctcccaccac	ctcccacctg	ccccaccga	ıg 31	
Ç	gttcaggagc 10	tcatgcagct	gtgcgtggcg	cccagccgca	cgaccggcca	gccttcggc	a 32	
	ccctga 16						32	

TENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND

<210> 24 <211> 1518 <212> DNA <213> Mus musculus <400> 24 atggcaaggc gaagctcccg ggtctcctgg ctggcctttg aaggctggga atctagggac ctgcctcggg tgagccctag attgttcgga gcttggcacc ccgcgcctgc tgcagctagg 1 atgccaacgc gctgggcccc tgggactcaa tgcatgacca agtgtgagaa ctctcgcccc 1 80 aagcccggtg agctagcctt tcgaaagggt gacatggtga ccatcttgga ggcctgtgag 2 gacaagaget ggtacegage caageaceat ggeagtggge aggaaggget getggegqee 3 00 getgetetge gacageggga ggecetetee acagaceeca ageteageet catgecatgg 3 tttcatggca agatctccgg ccaggaagcc atacagcagc tgcagccacc cgaggacggg ctgttccttg tgagggaatc agctcgtcac cctggagact atgtcttgtg tgtcagtttc 4 ggccgtgacg tcatccacta ccgtgttttg catcgagatg qqcacctcac catcgatgaq 5 gccgtgtgtt tctgtaacct gatggacatg gtggagcact acaccaagga caagggggcc 6 atctgcacca agctggtgaa gccaaggagg aaacagggcg caaagtctgc agaggaggag 6 ctcgccaagg ctggctggct actcgacctg cagcatctga ctctgggagc acaqattgga 7 gagggggagt ttggagccgt cctacagggt gagtacctgg gacagaaggt ggctgtgaag 7 80 aatatcaagt gtgatgtgac agcccaggcc ttcctggatg agacggctgt gatgacgaag 8

Page 72

CENT	OR GRAFT C	COATED OR IM	PREGNATED W	ITH PROTEIN	TYROSINE I	KINASE INHIB	ITORS AND
	ctgcagcaca 00	ggaacctagt	gcgactcctg	ggtgtgatcc	tgcaccacgg	cttgtacatt	9
	gtcatggagc 60	acgtgagcaa	gggcaacctg	gtgaacttcc	tgcgcacgcg	gggccgtgct	9
	cttgtgagca 20	cctctcagct	tctgcagttt	gctcttcatg	ttgctgaagg	catggaatac	10
	ctggagagca 80	agaagctggt	gcaccgggac	ctggctgctc	ggaacatcct	ggtctctgag	10
	gacttggtgg 40	ccaaggtcag	tgactttggc	ttagccaagg	cagagcgcaa	ggggctggac	11
	tcaagccggc 00	tgccagtcaa	gtggacggca	cctgaggctc	tcaaaaacgg	gcggttctcc	12
	agcaagtcgg 60	atgtctggag	ttttggggtg	ctgttgtggg	aagtcttctc	ttatggaaga	12
	gccccatacc 20	ccaagatgtc	gctaaaggag	gtttcagagg	ctgtggagaa	gggttaccgc	13
	atggagcccc 80	ccgatggctg	cccaggctct	gtgcacaccc	tcatgggtag	ctgctgggag	13
	gcagagcctg 40	cgcgccgacc	accetteege	aaaatagtgg	agaagctggg	ccgtgagctc	14
	cgcagtgtgg 00	gtgtctcggc	cccgctggg	ggacaggagg	ctgagggctc	agctcccaca	15
	cggagccagg 18	acccctga					15
	<210> 25 <211> 1490 <212> DNA <213> Mus) musculus					
	<400> 25 tggagccctt 60	cctcaggaag	cggctcactt	tcttgtcctt	tttctgggat	aagatatggc	

Page 73

TENT OR GRAFT COATED OR IMPREGNATED WITH PROTEIN TYROSINE KINASE INHIBITORS AND cagcggatga atcggaggaa gacatcccca ggatccaggg acacgacgac aacccagtqc cggagcaagc cgctgccgtt gaaccttgta gcttcccagc cccacgcgcc cgactcttcc 1 gcgcgctcta cgacttcact gctcgatgtg cagaggaact gagcgtcagc ggtggggaca 2 40 gactetacge ceteaaggag gagggggaet acatetttge ceaaaggete tetggtecae 3 ccagcaccgg actagttcct gtcacctacc ttgccaaggc taccccqqaq ccqcctcaq 3 accaaccttg gtacttcagt gggatcagca gggctcaggc ccagcagttg ctcttgtctc 4 ctgccaatgc accaggggcc ttcctcatcc ggcccagcga aagcagcatc gggggctatt 4 80 ctctatcagt cagggcccag gccaaagtct gccactaccg catctgcatg gcacccagtg 5 gcagcctcta tctgcaggag ggccaactct tccccagcct ggatgcactg ctggcttact 0.0 acaagaccaa ctggaagetg atccagaacc ctctgctgca gccctgcata ccccagatac 6 cettggttca ggacgagtgg gaacgaccac gttcagaatt tgtcttcgga agaaagctgg 7 gtgaaggttt cttcggggag gtgtgggaag gcctgtggct gggctctatc cctgtggcag 7 tgaaggttat caaatcagct gacatgaagc tggcagacct caccaaggag attgaggcac 8 tgaagagett gaggeatgag aggetgatee ggetgeaege tatatgttee eteggtgaae 9 ctgtgtacat cgttactgaa ctcatgggca agggcaactt gcaagtctac ctgggcagct 9 60 ctgagggaaa ggccctgagc ctgccccatc tactgggatt tgcctgccag gtagctgagg 10 20

FENT		OATED OR IM cctggaggag				INASE INHIBI1 aggaacgtgc	ORS AND
	tggtgggtga 40	tgacctcacc	tgcaaggtag	ctgattttgg	cctggccaga	ctgctcaagg	11
	atgatgtcta 00	ctccccaagc	agtggctcca	agatccctgt	caagtggacg	gcacctgagg	12
	ctgctaatta 60	ccgtgtcttt	tcccaaaagt	cagatgtctg	gtcctttggc	atcctgctgt	12
	atgaggtctt 20	cacttatggc	cagtgtccct	atgaaggaat	gaccaaccat	gagacgctac	13
	agcagattag 80	tcgtggatac	cggctgccac	gcccagctgt	ctgcccagca	gaggtctatg	13
	tgctcatggt 40	agagtgctgg	aagggcagcc	ctgaggagcg	tcccaccttt	gccatactga	14
	gggagaagct 90	gaatgccata	aacagacgcc	tccatctggg	cctcacgtga		14