

Obliczanie grafu widoczności

Algorytmy geometryczne 2022/2023 grupa nr 2

Dominik Adamczyk Szymon Nowak-Trzos

Opis problemu

Dane - zbiór S rozłącznych wielokątów zadanych na płaszczyźnie.

Cel - dla powyższego zbioru danych wyznaczenie grafu widoczności.

Graf widoczności - graf złożony z wierzchołków i krawędzi łączących wierzchołki "widzące się wzajemnie". Dwa wierzchołki "widzą się" kiedy odcinek przez nie wyznaczony nie przecina żadnej z przeszkód zadanych w danych wejściowych.

Przykładowe dane i odpowiadający im graf widoczności r

Zastosowania grafów widoczności

- Znajdowanie najkrótszej ścieżki pomiędzy punktami na płaszczyźnie z przeszkodami
- Wyznaczanie położeń anten radiowych
- Planowanie miejskie
- Analiza danych

Naiwny algorytm

Prosty algorytm tworzący graf widoczności ma złożoność O(n^3), gdzie n to liczba krawędzi zbioru wejściowego. Jego działanie polega na sprawdzeniu, czy dla każdej pary wierzchołków istnieje krawędź przecinająca odcinek tworzony przez te wierzchołki.

Prezentowany w tej pracy algorytm osiąga złożoność O(n^2 * log(n)). Istnieją również algorytmy o lepszej złożoności obliczeniowej.

Zamysł działania algorytmu - główna pętla

Główna część algorytmu (**grafWidoczności**) polega na znalezieniu widocznych wierzchołków dla każdego z wierzchołków.

grafWidoczności(S):

wejście: zbiór S rozłącznych wielokątów

wyjście: graf widoczności G(S)

- 1. Zainicjuj graf G = (V, E), gdzie zbiór V to zbiór wierzchołków z S, a $E = \emptyset$
- 2. dla każdego wierzchołka $v \in V$
- 3. W = widoczneWierzchołki(v, S)
- 4. dla każdego $w \in W$ dodaj (v,w) do E
- 5. zwróć G

Zamysł działania algorytmu - określanie widocznych wierzchołków

Znajdowanie widocznych wierzchołków z wierzchołka P jest realizowane poprzez algorytm zamiatania (widoczneWierzchołki), w którym miotła jest półprosta wychodząca z P i obraca się po kolejnych zdarzeniach, którymi sa posortowane po kacie pozostałe punkty (więc struktura zdarzeń nie zmienia się w trakcie działania algorytmu). Miotła będąca strukturą stanu implementowana jest jako drzewo poszukiwań binarnych, na którym przechowywane są krawędzie aktualnie przecinające się z miotłą (posortowane po odległości pomiędzy punktem P, a punktem przecięcia) na danej pozycji. W każdym kroku oceniane jest czy punkt aktywny jest widoczny z punktu P.

Ilustracje zaczerpnięte z książki:

"Geometria obliczeniowa. Algorytmy i zastosowania" - de Berg M.

widoczneWierzchołki(p, S):

Wejście: Zbiór S rozłącznych wielokątów i punkt p

Wyjście: Wszystkie widoczne z punktu p wierzchołki należące do S

- 1. Posortuj wierzchołki ze zbioru S po ich kącie jaki tworzą z półprostą wychodzącą z punktu p, skierowaną pionowo w dół, przeciwnie do ruchu wskazówek zegara. Dla tych samych kątów posortuj rosnąco po odległości między wierzchołkiem a p. Niech W zawiera posortowane wierzchołki.
- 2. Niech B będzie półprostą mającą swój początek w p i przechodzącą przez pierwszy z posortowanych punktów. Znajdź wszystkie krawędzie przecinające się z B i umieść je w drzewie BST T w kolejności w jakiej przecinają B.
- 3. $O = \emptyset$
- 4. dla $i \in \{0..len(W)-1\}$
- 5. jeżeli czyWidoczny(W[i]): dodaj W[i] do O
- 6. dodaj do T krawędzie wychodzące z W[i] i leżące po lewej stronie półprostej B
- 7. usuń z T krawędzie wychodzące z W[i] i leżące po prawej stronie półprostej B
- 8. Zwróć O

1. Posortuj wierzchołki ze zbioru S po ich kącie jaki tworzą z półprostą wychodzącą z punktu p, skierowaną pionowo w dół, przeciwnie do ruchu wskazówek zegara. Dla tych samych kątów posortuj rosnąco po odległości między wierzchołkiem a p. Niech W zawiera posortowane wierzchołki.

2. Niech B będzie półprostą mającą swój początek w p i przechodzącą przez pierwszy z posortowanych punktów. Znajdź wszystkie krawędzie przecinające się z B i umieść je w drzewie BST T w kolejności w jakiej przecinają B.

- 4. dla $i \in \{0..len(W)-1\}$
- 5. jeżeli czyWidoczny(W[i]): dodaj W[i] do O
- 6. dodaj do T krawędzie wychodzące z W[i] i leżące po lewej stronie półprostej B
- 7. usuń z T krawędzie wychodzące z W[i] i leżące po prawej stronie półprostej B

- 4. dla $i \in \{0..len(W)-1\}$
- 5. jeżeli czyWidoczny(W[i]): dodaj W[i] do O
- 6. dodaj do T krawędzie wychodzące z W[i] i leżące po lewej stronie półprostej B
- 7. usuń z T krawędzie wychodzące z W[i] i leżące po prawej stronie półprostej B

- 4. dla $i \in \{0..len(W)-1\}$
- 5. jeżeli czyWidoczny(W[i]): dodaj W[i] do O
- 6. dodaj do T krawędzie wychodzące z W[i] i leżące po lewej stronie półprostej B
- 7. usuń z T krawędzie wychodzące z W[i] i leżące po prawej stronie półprostej B

- 4. dla $i \in \{0..len(W)-1\}$
- 5. jeżeli czyWidoczny(W[i]): dodaj W[i] do O
- 6. dodaj do T krawędzie wychodzące z W[i] i leżące po lewej stronie półprostej B
- 7. usuń z T krawędzie wychodzące z W[i] i leżące po prawej stronie półprostej B

- 4. dla $i \in \{0..len(W)-1\}$
- 5. jeżeli czyWidoczny(W[i]): dodaj W[i] do O
- 6. dodaj do T krawędzie wychodzące z W[i] i leżące po lewej stronie półprostej B
- 7. usuń z T krawędzie wychodzące z W[i] i leżące po prawej stronie półprostej B

- 4. dla $i \in \{0..len(W)-1\}$
- 5. jeżeli czyWidoczny(W[i]): dodaj W[i] do O
- 6. dodaj do T krawędzie wychodzące z W[i] i leżące po lewej stronie półprostej B
- 7. usuń z T krawędzie wychodzące z W[i] i leżące po prawej stronie półprostej B

Algorytm widoczneWierzchołki

Zamysł działania algorytmu - widoczność pojedynczego wierzchołka

Sprawdzanie widoczności punktu W (**czyWidoczny**) w większości przypadków sprowadza się do sprawdzenia czy istnieje przecięcie pomiędzy odcinkiem PW, a najbliższą do punktu P krawędzią na miotle. Do pełnego i poprawnego działania algorytmu konieczne będzie również rozpatrywanie sytuacji, gdy napotkane zostaną współliniowe punkty, a także sprawdzanie, czy dwa punkty należące do tego samego wielokąta tworzą odcinek przechodzący przez jego wnętrze.

Ilustracje zaczerpnięte z książki:

"Geometria obliczeniowa. Algorytmy i zastosowania" - de Berg M.

- 1. jeżeli prosta pW[i] przechodzi przez wnętrze wielokąta, którego W[i] jest wierzchołkiem: zwróć fałsz
- 2. w przeciwnym wypadku, jeżeli i = 0 lub W[i-1] nie leży na prostej pW[i]:
- 3. e = liść w T, najbardziej po lewej stronie
- 4. jeżeli e istnieje i pW[i] przecina e: zwróć fałsz
- 5. w przeciwnym wypadku: zwróć prawdę
- 6. w przeciwnym wypadku, jeżeli W[i-1] nie jest widoczne: zwróć fałsz
- 7. w przeciwnym wypadku:
- 8. znajdź w T krawędź e, która przecina prostą W[i-1]W[i]
- 9. jeżeli e istnieje: zwróć fałsz
- 10. w przeciwnym wypadku: zwróć prawdę

- 1. jeżeli prosta pW[i] przechodzi przez wnętrze wielokąta, którego W[i] jest wierzchołkiem: zwróć fałsz
- 2. w przeciwnym wypadku, jeżeli i = 0 lub W[i-1] nie leży na prostej pW[i]:
- 3. e = liść w T, najbardziej po lewej stronie
- 4. jeżeli e istnieje i pW[i] przecina e: zwróć fałsz
- 5. w przeciwnym wypadku: zwróć prawdę
- 6. w przeciwnym wypadku, jeżeli W[i-1] nie jest widoczne: zwróć fałsz
- 7. w przeciwnym wypadku:
- 8. znajdź w T krawędź e, która przecina prostą W[i-1]W[i]
- 9. jeżeli e istnieje: zwróć fałsz
- 10. w przeciwnym wypadku: zwróć prawdę

- 1. jeżeli prosta pW[i] przechodzi przez wnętrze wielokąta, którego W[i] jest wierzchołkiem: zwróć fałsz
- 2. w przeciwnym wypadku, jeżeli i = 0 lub W[i-1] nie leży na prostej pW[i]:
- 3. e = liść w T, najbardziej po lewej stronie
- 4. jeżeli e istnieje i pW[i] przecina e: zwróć fałsz
- 5. w przeciwnym wypadku: zwróć prawdę
- 6. w przeciwnym wypadku, jeżeli W[i-1] nie jest widoczne: zwróć fałsz
- 7. w przeciwnym wypadku:
- 8. znajdź w T krawędź e, która przecina prostą W[i-1]W[i]
- 9. jeżeli e istnieje: zwróć fałsz
- 10. w przeciwnym wypadku: zwróć prawdę

- 1. jeżeli prosta pW[i] przechodzi przez wnętrze wielokąta, którego W[i] jest wierzchołkiem: zwróć fałsz
- 2. w przeciwnym wypadku, jeżeli i = 0 lub W[i-1] nie leży na prostej pW[i]:
- 3. e = liść w T, najbardziej po lewej stronie
- 4. jeżeli e istnieje i pW[i] przecina e: zwróć fałsz
- 5. w przeciwnym wypadku: zwróć prawdę
- 6. w przeciwnym wypadku, jeżeli W[i-1] nie jest widoczne: zwróć fałsz
- 7. w przeciwnym wypadku:
- 8. znajdź w T krawędź e, która przecina prostą W[i-1]W[i]
- 9. jeżeli e istnieje: zwróć fałsz
- 10. w przeciwnym wypadku: zwróć prawdę

- 1. jeżeli prosta pW[i] przechodzi przez wnętrze wielokąta, którego W[i] jest wierzchołkiem: zwróć fałsz
- 2. w przeciwnym wypadku, jeżeli i = 0 lub W[i-1] nie leży na prostej pW[i]:
- 3. e = liść w T, najbardziej po lewej stronie
- 4. jeżeli e istnieje i pW[i] przecina e: zwróć fałsz
- 5. w przeciwnym wypadku: zwróć prawdę
- 6. w przeciwnym wypadku, jeżeli W[i-1] nie jest widoczne: zwróć fałsz
- 7. w przeciwnym wypadku:
- 8. znajdź w T krawędź e, która przecina prostą W[i-1]W[i]
- 9. jeżeli e istnieje: zwróć fałsz
- 10. w przeciwnym wypadku: zwróć prawdę

- 1. jeżeli prosta pW[i] przechodzi przez wnętrze wielokąta, którego W[i] jest wierzchołkiem: zwróć fałsz
- 2. w przeciwnym wypadku, jeżeli i = 0 lub W[i-1] nie leży na prostej pW[i]:
- 3. e = liść w T, najbardziej po lewej stronie
- 4. jeżeli e istnieje i pW[i] przecina e: zwróć fałsz
- 5. w przeciwnym wypadku: zwróć prawdę
- 6. w przeciwnym wypadku, jeżeli W[i-1] nie jest widoczne: zwróć fałsz
- 7. w przeciwnym wypadku:
- 8. znajdź w T krawędź e, która przecina prostą W[i-1]W[i]
- 9. jeżeli e istnieje: zwróć fałsz
- 10. w przeciwnym wypadku: zwróć prawdę

Przykładowe działanie programu - kwadraty

Przykładowe działanie programu - krajobraz świąteczny AGH

Przykładowe działanie programu

Przykładowe działanie programu

Koniec

Materialy:

- de Berg M., Van Kreveld M., Overmars M. "Geometria obliczeniowa. Algorytmy i zastosowania"

Dziękujemy za uwagę.