1 Граница на функция

1.1 Дефиниции

1.1.1 Точка на сгъстяване на множество

- Дефиниция 1 (Хайне): a се нарича точка на сгъстяване на множеството $A \subset \mathbb{R}$, ако съществува редица $\{x_n\}_1^{\infty}$, за която 1) $x_n \in A$; 2) $x_n \neq a$; 3) $\lim_{n \to \infty} x_n = a$
- Дефиниция 2 (Коши): a се нарича точка на сгъстяване на множеството $A\subset \mathbb{R},$ ако за всяко $\delta>0$ има $x\in A,$ за което $0<|x-a|<\delta$
- Двете дефиниции са еквивалентни
- Пример: точките на сгъстяване на дефиниционната област на функцията $\sqrt{\frac{x^2}{x^2-1}}$ са $(-\infty, -1] \cup [1, +\infty)$; 0 не е точка на сгъстяване, въпреки че в нея функцията е дефинирана.

1.1.2 Граница на функция — дефиниция 1 (Хайне)

Нека a е точка на сгъстяване за D_f .

• Казваме, че f има граница в a, ако за всяка редица $\{x_n\}_1^\infty$, за която 1) $x_n \in D_f$; 2) $x_n \neq a$; 3) $\lim_{n \to \infty} x_n = a$, редицата $\{f(x_n)\}_1^\infty$ е сходяща.

- Всички такива редици имат една и съща граница.
- Дефиниция 1 (Хайне) уточнение

Казваме, че f има граница l в a, ако за всяка редица $\{x_n\}_1^\infty$, за която 1) $x_n \in D_f$; 2) $x_n \neq a$; 3) $\lim_{n\to\infty} x_n = a$, е изпълнено $\lim_{n\to\infty} f(x_n) = l$.

• Означение: $l = \lim_{x \to a} f(x)$

1.1.3 Примери

- ullet $\chi_{\mathbb{Q}}$ няма граница в никоя точка
- \bullet [x] няма граница в целите числа, а в нецелите има граница
- $\bullet \quad \lim_{x \to 0} \sin x = 0$
- $\bullet \quad \lim_{x \to 0} \cos x = 1$
- $\bullet \quad \lim_{x \to 0} e^x = 1$
- $\bullet \quad \lim_{x \to 0} \ln(1+x) = 0$

1.1.4 Граница на функция — дефиниция 2 (Коши)

Нека a е точка на сгъстяване за D_f .

- Казваме, че f има граница L в a, ако за всяко $\varepsilon>0$ има $\delta>0$ такова, че за всяко $x\in D_f$ с $0<|x-a|<\delta$ е изпълнено $|f(x)-L|<\varepsilon$.
- Еквивалентност на двете дефиниции

1.2 Свойства на границите

- 1. Аритметични действия
- 2. Локална ограниченост
- 3. Локална постоянност на знака
- 4. Граничен преход в неравенства
- 5. Граница на съставна функция
 - ullet Нека $\lim_{x \to a} f(x) = b$ и $\lim_{x \to b} g(x) = L$. Тогава $\lim_{x \to a} \varphi(x) = L$, където $\varphi(x) = g(f(x))$
 - Пример: $\lim_{x \to 0} e^{\sin x} = 1$

- Граница на съставна функция точна формулировка
 - Нека: 1) $\lim_{x \to a} f(x) = b \ (a$ е точка на сгъстяване на D_f)
 - (2.1) b е точка на сгъстяване на D_q
 - $2.2) \quad \lim_{x \to b} g(x) = L \;\; \text{и, когато} \; b \in D_g \,,$ е изпълнено L = g(b)
 - 3) a е точка на сгъстяване на $\{x \in D_f : f(x) \in D_g\}$

Тогава $\lim_{x \to a} \varphi(x) = L$, където $\varphi(x) = g(f(x))$

1.3 Граници в безкрайност. Безкрайни граници.

1.3.1 Точка на сгъстяване на множество

- Дефиниция 1 (Хайне): a (число, $+\infty$ или $-\infty$) се нарича точка на сгъстяване на множеството $A \subset \mathbb{R}$, ако съществува редица $\{x_n\}_1^\infty$, за която
 - 1) $x_n \in A$; 2) $x_n \neq a$; 3) $\lim_{n \to \infty} x_n = a$
- Дефиниция 2 (Коши): a (число, $+\infty$ или $-\infty$) се нарича точка на сгъстяване на множеството $A \subset \mathbb{R}$, ако за всяка околност \mathcal{U} на a е изпълнено $(A \setminus \{a\}) \cap \mathcal{U} \neq \emptyset$
- Двете дефиниции са еквивалентни

1.3.2 Граница на функция

Нека a (число, $+\infty$ или $-\infty$) е точка на сгъстяване за D_f .

• Дефиниция 1 (Хайне)

Казваме, че f има граница l (число, $+\infty$ или $-\infty$) в a, ако за всяка редица $\{x_n\}_1^\infty$, за която 1) $x_n \in D_f$; 2) $x_n \neq a$; 3) $\lim_{n \to \infty} x_n = a$, е изпълнено $\lim_{n \to \infty} f(x_n) = l$.

• Дефиниция 2 (Коши)

Казваме, че f има граница L (число, $+\infty$ или $-\infty$) в a (число, $+\infty$ или $-\infty$), ако за всяка околност $\mathcal V$ на L има околност $\mathcal U$ на a такава, че за всяко $x \in (D_f \setminus \{a\}) \cap \mathcal U$ е изпълнено $f(x) \in \mathcal V$.

1.3.3 Примери

- $\sin x$ няма граница в $+\infty$
- $\bullet \quad \lim_{x \to +\infty} \frac{\sin x}{x} = 0$
- $\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$, $\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}$

- $\lim_{x \to +\infty} \operatorname{arcctg} x = 0$, $\lim_{x \to -\infty} \operatorname{arcctg} x = \pi$
- $\lim_{x \to +\infty} e^x = +\infty$, $\lim_{x \to -\infty} e^x = 0$
- $\lim_{x \to +\infty} \ln x = +\infty$, $\lim_{x \to 0} \ln x = -\infty$

1.3.4 Свойства

- Еквивалентност на двете дефиниции
- Аритметични действия
- Постоянност на знака
- Ограниченост
- ullet Граница на съставна функция Нека $\lim_{x \to a} f(x) = b$ и $\lim_{x \to b} g(x) = L$. Тогава $\lim_{x \to a} \varphi(x) = L$, където $\varphi(x) = g(f(x))$

1.4 Лява и дясна граница, основни граници.

1.4.1 Лява и дясна граница

Нека f е дефинирана в "пробита" околност $(a-\delta_0,\,a+\delta_0)\setminus\{a\}$

• Дефиниция 1 (Хайне)

Казваме, че f има лява граница l (число, $+\infty$ или $-\infty$) в a, ако за всяка редица $\{x_n\}_1^\infty$, за която $a-\delta_0 < x_n < a$ и $\lim_{n\to\infty} x_n = a$, е изпълнено $\lim_{n\to\infty} f(x_n) = l$.

Казваме, че f има дясна граница l (число, $+\infty$ или $-\infty$) в a, ако за всяка редица $\{x_n\}_1^\infty$, за която $a-\delta_0 < x_n < a$ и $\lim_{n\to\infty} x_n = a$, е изпълнено $\lim_{n\to\infty} f(x_n) = l$.

- $\bullet \quad \text{ Означение: } \lim_{x \to a-0} f(x) = \lim_{x \to a^-} f(x) = \lim_{x \to a, x < a} f(x) \; ; \; \lim_{x \to a+0} f(x) = \lim_{x \to a^+} f(x) = \lim_{x \to a, x > a} f(x)$
- Дефиниция 2 (Коши)

Казваме, че f има лява граница L (число, $+\infty$ или $-\infty$) в a, ако за всяка околност $\mathcal V$ на L има $0 < \delta < \delta_0$ такова, че за всяко $a - \delta < x < a$ е изпълнено $f(x) \in \mathcal V$.

Казваме, че f има дясна граница L (число, $+\infty$ или $-\infty$) в a, ако за всяка околност $\mathcal V$ на L има $0 < \delta < \delta_0$ такова, че за всяко $a < x < a + \delta$ е изпълнено $f(x) \in \mathcal V$.

- Пример: $\lim_{x\to 0+0} \operatorname{arcctg} \frac{1}{x} = 0$; $\lim_{x\to 0-0} \operatorname{arcctg} \frac{1}{x} = \pi$
- f има граница в a тогава и само тогава, когато $\lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x)$

1.4.2 Граница на монотонна функция

• Нека f е дефинирана и монотонна в (a, b) (a – число или $-\infty$, b – число или $+\infty$). Тогава съществуват границите

$$\lim_{x \to a+0} f(x)$$
 и $\lim_{x \to b-0} f(x)$

(крайни или безкрайни)

ullet Пример: f е намаляваща в (a, b), ограничена отгоре и неограничена отдолу. Тогава

$$\lim_{x \to a+0} f(x) = l$$
 и
$$\lim_{x \to b-0} f(x) = -\infty$$

1.4.3 Първа основна граница

- $\bullet \quad \lim_{x \to 0} \frac{\sin x}{x} = 1$
- $\bullet \quad \lim_{x \to 0} \frac{1 \cos x}{x^2} = \frac{1}{2}$
- $\bullet \quad \lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1$

1.4.4 Втора основна граница

$$\bullet \quad \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\bullet \quad \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

$$\bullet \quad \lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

Пример:
$$\lim_{x\to 0} \frac{1 - (\cos x)^{\sin x}}{x^3} = \frac{1}{2}$$

1.5 Асимптоти

1.5.1 Вертикални асимптоти

Правата $x=x_0$ е вертикална асимптота, ако е изпълнено поне едно от следните

- $\lim_{x \to x_0 0} f(x) = -\infty$
- $\lim_{x \to x_0 + 0} f(x) = -\infty$
- $\lim_{x \to x_0 0} f(x) = +\infty$ $\lim_{x \to x_0 + 0} f(x) = +\infty$

1.5.2 Наклонени асимптоти

$$\lim_{x \to +\infty} \left(f(x) - kx - b \right) = 0$$

тогава и само тогава, когато

$$\lim_{x\to +\infty}\frac{f(x)}{x}=k \quad \text{if} \quad \lim_{x\to +\infty}\left(f(x)-kx\right)=b$$

1.5.3 Пример

$$f(x) = x + 5 + \frac{1}{|x - 1|}$$

1.5.4 Символът о малко

1.5.5 Дефиниция

Нека f(x) е дефинирана в околност $(a-\delta\,,\,a+\delta)$ (евентуално без a) на точката a и f(x) е безкрайно малка в точката a , т.е. $\lim_{x\to a} f(x) = 0$.

Казваме, че
$$g(x) = o(f(x))$$
 (по-точно $g(x) \in o(f(x))$), ако $\lim_{x \to a} \frac{g(x)}{f(x)} = 0$.

1.5.6 Основно свойство

Ако
$$\lim_{x\to a} \frac{g(x)}{f(x)} = L \neq 0$$
, то $o(g(x)) = o(f(x))$.

1.5.7 Скали за сравняване

- Основна: $|x a|^p$, p > 0
- $p > q \implies |x a|^p = o(|x a|^q)$
- Допълнителна: $|x-a|^p |\ln |x-a||^q$, p>0

- $\bullet \quad \mathbf{B} + \infty : \quad x^p, \ x^p (\ln x)^q, \ p < 0$
- $f(x) = o(1) \Leftrightarrow \lim_{x \to a} f(x) = 0$

1.5.8 Аритметични действия

- Събиране: $o((x-a)^p) + o((x-a)^q) = o((x-a)^{\min(p,q)})$
- Умножаване с константа: $b \neq 0 \implies o(b(x-a)^p) = o((x-a)^p)$
- Умножение: $o((x-a)^p).o((x-a)^q) = o((x-a)^{p+q})$ $(x-a)^p.o((x-a)^q) = o((x-a)^{p+q})$
- Деление: $p \le q \Rightarrow \frac{o\left((x-a)^q\right)}{(x-a)^p} = o\left((x-a)^{q-p}\right)$

1.5.9 Примери

• $\sin x = x + o(x)$, $\cos x = 1 - \frac{x^2}{2} + o(x^2)$

- $e^x = 1 + x + o(x)$, $\ln(1+x) = x + o(x)$
- $\sqrt{1+x} = 1 + \frac{x}{2} + o(x)$, $\sqrt{1+x} = 1 + \frac{x}{2} \frac{x^2}{8} + o(x^2)$
- $\sqrt[k]{1+x} = 1 + \frac{x}{k} + o(x)$, $\sqrt[k]{1+x} = 1 + \frac{x}{2} \frac{(k-1)x^2}{2k^2} + o(x^2)$
- $(\cos x)^{\sin x} = 1 \frac{x^3}{2} + o(x^3)$