

Lecture 3 – Machine Learning Fundamentals

Outline – Lecture 3

- Artificial Neural Networks for Deep Learning
- Neuronal activation functions
- Backpropagation and Gradient descent
- Deep Belief Nets

Motivation

The "atom" of an Artificial Neural network

The Activation function, $\sigma(z)$

• Q: Why do we need an activation function? → Nonlinearity (allows modelling of nonlinear systems)

$$\hat{y} = \sigma \left(b + \sum_{i=1}^{m} x_i w_i \right)$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\sigma(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$\sigma(z) = \max(0, z)$$

Single layer Neural network

Deep Neural Network

Example use case

- Task: Network to predict likelihood of getting the flu
- x_1 : Time of the year (normalized) (i.e. 1st Jan = 0, 31th Dec = 1)
- x_2 : Time spent with other people (0 = never, 1 = 24/7)

Cost functions and training principle

- Cross-entropy cost function: $C(W, b) = -\frac{1}{n} \sum_{i=1}^{n} (t \ln \hat{y} + (1-t) \ln(1-\hat{y}))$
- For *discrete* output

• Mean Squared Error Cost function: $C(W,b) = \frac{1}{n} \sum_{i=1}^{n} (t^i - f(X^i, W, b))^2$

For *continuous* output

• Training means finding the (W,b) that minimizes C for our dataset.

Matrix representation

$$W_l = \begin{bmatrix} w_{11} & \cdots & w_{1,n} \\ \vdots & \ddots & \vdots \\ w_{m,1} & \cdots & w_{m,n} \end{bmatrix}$$

 w^l_{jk} is the weight from the $k^{\rm th}$ neuron in the $(l-1)^{\rm th}$ layer to the $j^{\rm th}$ neuron in the $l^{\rm th}$ layer

$$A_l = \begin{bmatrix} a_1^l \\ \vdots \\ a_m^l \end{bmatrix}$$

$$B_l = \begin{bmatrix} b_1^l \\ \vdots \\ b_m^l \end{bmatrix}$$

The weighted input of the Ith layer:

$$Z_l = W_l A_{l-1} + B_l$$

The activation of the Ith layer is thus:

$$A_l = \sigma(Z_l)$$

Backpropagation algoritm

- A way to calculate ∇C
- **1.** Input X: Set the activation A_1 at the input layer
- **2.** Feed-forward: for each l = 2,3,...,L compute Z_l and A_l
- 3. Output error:

Compute
$$C(W_L, B_L)$$
 and $\frac{\partial C}{\partial Z_L} = \frac{\partial C}{\partial A_L} * \sigma'(Z_L)$ of the layer L

$$\Rightarrow \frac{\partial C}{\partial W_L} = \frac{\partial C}{\partial Z_L} A_{L-1}$$

4. Back-propagate: For each layer l < L, calculate

$$\frac{\partial C}{\partial W_{l}} = \frac{\partial C}{\partial Z_{l}} \frac{\partial Z_{l}}{\partial W_{l}} = \left(W_{l+1}^{T} * \frac{\partial C}{\partial Z_{l+1}}\right) * \sigma'(Z_{l}) * A_{l-1}^{T}$$
Looks forward
Looks backward

5. Update weights according to gradient descent

$$W_{new} = W - \eta \nabla C$$

Improving speed at calculating ∇C

 Need to compute the gradient for each training example x and then average

$$-C = \frac{1}{n} \sum_{\mathcal{X}} C_{\mathcal{X}} \to \nabla C = \frac{1}{n} \sum_{\mathcal{X}} \nabla C_{\mathcal{X}}$$

With typical n > 10⁴ this is extremely slow

→ Stoichastic gradient descent

- Randomly choose sample m $\sim 10^2$ of X (mini-batch)

$$- \nabla C \approx \frac{1}{m} \sum_{j=1}^{m} \nabla C_{x_j}$$

- Train on this mini-batch, then choose a new batch until having trained with all (1 epoch)
- Then start over and redo until training is finished (100-1000 epochs)
- Less straight path, but still can be more time-efficient!

X: Complete data set (n $\sim 10^5$)

m	m	m	m	m	m
m	m	m	m	m	m
m	m	m	m	m	m
m	m	m	m	m	m
m	m	m	m	m	m

The learning rate

- Too small learning rate → can get caught in local minima
- Too large learning rate → Solution can diverge!
- Best solution: Adaptive learning rate based on
 - How large gradient is
 - How fast learning happens
 - Size of some weights
 - Momentum

– ..

Energy use of training by backpropagation

- On average 10 ms time for one layer operation, t_{op} (forward + backwards pass)
- Hardware NVIDIA Tesla V100 GPU: 250W
- Ex: L= 100, m = 100, N = 100 000, 100 epochs $\rightarrow t_{exec} = t_{op} L \frac{N}{m} e = 100 000 s \sim 27 h$.
- → 25 MJ energy consumption! (0.25kW * 27h = 7 kWh)

1kWh

100 days of LED light, (2.5W)

~300 full charges of your cell phone

Vanishing gradient problem

In back-propagation:

$$\frac{\partial C}{\partial W_l} = \frac{\partial C}{\partial Z_l} \frac{\partial Z_l}{\partial W_l} = \left(W_{l+1}^T * \frac{\partial C}{\partial Z_{l+1}}\right) * \sigma'(Z_l) * A_{l-1}^T$$
 i.e. multiplication of numbers smaller than 1

→ Gradients vanish in deep networks

Deep Belief Nets

- A deep network that still avoids the vanishing gradient problem.
- NOT trained by backpropagation → unsupervised training
- Based on principles of Statistical Physics, Boltzmann statistics, probabilities, energies etc...
- Very brief introduction only...

Restricted Boltzmann Machines

- Two layer fully connected network with stochastic binary units
- Trained iteratively without labels by repeated (1) forward pass and
 (2) reconstruction pass
- Change weights as to minimize error between input and "reconstructed" input

visible hidden activation function x +b + = x +b + =

 $W_i \dots W_n$

Multiple Inputs

Training Deep Belief Net

- Each bilayer RBM is trained individually
- Each hidden layer of RBM is visible layer of the next
- Train each RBM separately in sequence until the whole network is trained.
 - Unsupervised learning! No labels needed
- Finally: Finetuning with small labeled dataset

DBM as Autoencoder

- Stacking a "mirrored" DBM on the output → generate new data!
- Trained in the same way
- Useful for tons of things:
 - Data denoising
 - Generate new similar images/video based on data set
 - Anomaly detection
 - DeepFake
 - Find similar documents (Document retrieval)

Summary

- Artificial neural networks abstraction of the learning principles of the brain (matrix math)
- Free parameters: weights of connections and biases of "neurons"
- Optimize parameter values to learn things
 - Backpropagation
 - Gradient descent
- Unsupervised learning → Deep Belief Nets
 - Generation of new data (autoencoder)

Exercise: Make your own Quiz

- Come up with a good quiz question based on the topics of L1-L3
- You have until the end of the lecture → Send it to mattias.borg@eit.lth.se
- Quiz will be posted on Canvas for you to practise on..

What is the chance that you win on the lottery?

- 1. Chance? I always win
- 2. 1 in 100 000
- 3. As good as dying in a plane crash
- 4. I will win when pigs can fly

Lecture 1 – Introduction *Memory cell*

Lecture 2 – Current memories

DRAM

Flash

SRAM

Lecture 3 – Machine Learning Fundamentals

Backpropagation

Gradient descent

Restricted Boltzmann Machines

Deep Belief Networks