میان ترم سوم جبر خطی ۳۰ آذرماه ۹۸

$$A = egin{bmatrix} \Delta & -A & \mathbf{f} \\ \mathbf{f} & -\mathbf{N} & \mathbf{f} \\ \mathbf{f} & -\mathbf{A} & \mathbf{\Delta} \end{bmatrix}$$
 د فرض کنید

آ. مقادیر ویژهی A را بیابید.

ب. فضای بردارهای ویژه هر مقدار ویژه و بعد هر یک را بیابید.

 $A = QDQ^{-1}$ و ماتریس قطری D را چنان بیابید که $A = QDQ^{-1}$ در غیر این صورت نشان دهید A قطری شدنی نیست.

. را به صورت زیر تعریف می کنیم $\Delta:M_{\mathsf{T} imes \mathsf{T}}(\mathbb{R}) o \mathbb{R}$ تابع $\Delta(A)=(tr(A))^{\mathsf{T}}-\mathsf{F} det(A)$

فرض کنید $A \in M_{\mathsf{T} \times \mathsf{T}}(\mathbb{R})$. درستی هر یک از موارد زیر را اثبات یا رد کنید.

 $\Delta(A) > \circ$ مقدار ویژه حقیقی متمایز است اگر و تنها اگر ه $\Delta(A) > \circ$.

 $\Delta(A) = \circ$ مقدار ویژه حقیقی با تکرر ۲ است اگر و تنها اگر مقدار ویژه حقیقی با تکرر ۲ است اگر و تنها اگر

 $\Delta(A) < \circ$ دارای هیچ مقدار ویژه حقیقی نیست اگر و تنها اگر مقدار ویژه حقیقی نیست اگر و تنها اگر

سطری هرض کنید A و B دو ماتریس وارونپذیر باشند. نشان دهید میتوان A را با تعدادی اعمال سطری مقدماتی به B تبدیل کرد. به بیان دقیق تر دنباله E_1,\dots,E_k از ماتریسهای سطری مقدماتی موجود است به طوری که

$$E_1 \dots E_k A = B.$$

 $A \in M_{n \times n}(\mathbb{R})$ فرض کنید •۴

آ. برای هر \mathbb{Z} نشان دهید اگر λ یک مقدارویژه A باشد، λ یک مقدار ویژه $k\in\mathbb{Z}$ است. (دقت کنید اگر A وارونپذیر باشد k میتواند منفی باشد.)

 $oldsymbol{\psi}$ برای A^k برای A^k را بر حسب بردار ویژه مقدار ویژه λ برای A بیابید

 $m{\psi}$ ، بررسی کنید عکس «آ» برقرار است یا نه. به بیان دقیق تر اگر λ^k یک مقدار ویژه A^k باشد آیا می توان نتیجه گرفت λ یک مقدارویژه A است؟

 $\det(A^T-\lambda I)=\circ$ نشان دهید λ ریشه معادله $\det(A-\lambda I)=\det(A-\lambda I)=0$ است اگر و تنها اگر ریشه معادله $\det(A^T-\lambda I)=0$ باشد.

ث. اگر A پوچتوان باشد، نشان دهید تنها مقدار ویژه A برابر با صفر است.

راهنمایی: ماتریس مربعی A را پوچتوان گوییم هرگاه عدد صحیح مثبتی مانند r موجود باشد به طوری که $A^r = O$

که اگر A یک ماتریس $n \times n$ با n مقدار ویژه متمایز $\lambda_1, \ldots, \lambda_n$ باشد موارد زیر را ثابت کنید.

آ. ماتریس A قطری شدنی است.

 $.det(A) = \lambda_1 \dots \lambda_k$ ب.

 $tr(A) = \lambda_1 + \dots + \lambda_k$ پ.