Del aunay Tri angul ati ons

Peter Schröder

Di screti zati on

Describe geometry

- 1D, 2D, 3D,...
- need to distinguish
 - topology: who is neighbor to whom
 - datastructures
 - geometry: domain and range
 - embedding, color, texture,...

Setting

Abstract simplicial complex

- 0-dim simplex: vertex {i}
- 1-dim simplex: edge $\{i,j\}$
- \blacksquare 2-dim simplex: triangle, $\{i,j,k\}$
- 3-dim simplex: tetrahedron, $\{i,j,k,l\}$

Simplicial Complex

Definition

- set K of subsets of {1,...,n} each of which is a simplex
- such that every non-empty subset of an element of K is also in K
 - e.g., if a triangle is present, so are its edges and vertices

Generic term

- set of point positions P together with a complex K
- 1D straightforward, {{1},{2},...,{n},{1,2},{2,3},..., {n-1,n}}
- 2D more interesting... (even more so for 3D and beyond)

Different types

based on geometry

CS101.3 2002

Triangulation in 2D

What is a good triangulation?

- question of geometry
 - aspect ratio, minimum angle, size
- in animation (simulation) these will impact error bounds

Today:

planar triangulations ("terrain")

Definition for R²

- given a point set $P=\{p_1,p_2,...,p_n\}$
- a triangulation of P is a maximal planar subdivision
 - no edge connecting two vertices can be added without crossing an existing edge

All triangulations have the same number of triangles

- n points (not all collinear)
- k points on the boundary of the convex hull

Then

 \blacksquare 2*n*-2-*k* triangles and 3*n*-3-*k* edges

Proof

- number of triangles: m
- $\blacksquare n_f = m+1 \text{ (# of faces)}$
- $n_e = (3m+k)/2$ (# of edges)
- Euler characteristic: $n n_e + n_f = 2$
 - = m = 2n 2 k
 - $n_e = 3n 3 k$

Angle-Vector

Sort all angles in a triangulation in lexicographic order

well defined since all triangulations have the same number of triangles

$$(\alpha_1,\ldots,\alpha_{3m})=A(T)$$

triangulation T is angle optimal if

$$\forall T': A(T) \geq A(T')$$

Angle Optimality

Preliminaries

Thale's theorem

$$\angle arb > \angle apb = \angle aqb > \angle asb$$

proof

$$2\angle apb = \angle arb$$

$$\angle arb = 2\pi - \angle arp - \angle brp$$

$$= 2\pi - (\pi - 2\angle apr) - (\pi - 2\angle rpb)$$

$$= 2(\angle apr + \angle rpb)$$

Illegal Edges

How to increase the angle-vector?

edge flip changes 6 angles

$$A = \{a, b, c, d, e + f, g + h\} < A' = \{a + b, c + d, e, f, g, h\}$$

Illegal Edges

Theorem

- empty circumcircle property
- p_ip_j is illegal
 - iff p_I in C
- triangles incident on illegal edge form convex quad (why?)

Al gori thm

Remove all illegal edges for an angle-optimal triangulation

```
LegalTriangulation(T)
while( T contains illegal edge p<sub>i</sub>p<sub>j</sub> )
    flip( p<sub>i</sub>p<sub>j</sub> );
return T
```

- termination? yes!
- too slow

Properties

Delaunay triangulation

- empty circumcircle for every face
- every edge possesses disk not containing any other point

Theorem

Triangulation legal iff Delaunay

- Delaunay > legal (by definition)
- legal > Delaunay
 - by contraction: assume there is a triangle $\{i,j,k\}$ with p_i in C(i,j,k)
 - of all such quads pick the one with largest angle at l

CS101.3 2002

Proof

e is legal > m not in C(i,j,k)

C(i,j,m) contains part
of C(i,j,k) on other side
of e > I lies in C(i,j,m)
> angle at (j,l,m) is larger
than (j,l,i) > contradiction
with assumption that triangle
(i,j,k) was chosen with I
having maximum angle between
all quads (i,j,k,l)

Voronoi Diagram

Dual of Delaunay

- regions which are closest to a given site
- need to argue
 - planar graph
- general position

Fast Algorithm

Randomized incremental construction

insert points one at a time

need initial triangle

CS101.3 2002

Al gori thm

```
DelaunayTriangulation(P)
Initialize T to {p<sub>-1</sub>,p<sub>-2</sub>,p<sub>-3</sub>}
for( r = 1; r <= n; ++r ){
        Find triangle containing p<sub>r</sub>
        if( p<sub>r</sub> in interior of p<sub>i</sub>p<sub>j</sub>p<sub>k</sub> ){
            Add three edges
            LegalizeEdge( p<sub>r</sub>, p<sub>i</sub>p<sub>j</sub>, T )
            LegalizeEdge( p<sub>r</sub>, p<sub>j</sub>p<sub>k</sub>, T )
            LegalizeEdge( p<sub>r</sub>, p<sub>k</sub>p<sub>i</sub>, T )
        }else{
            Add two edges
            Call LegalizeEdge for the 4 possibilities
        }
}
remove p<sub>-1</sub>, p<sub>-2</sub>, p<sub>-3</sub> and all incident edges
return T
```

CS101. 3 2002

Al gori thm

Test for legality

- p₋₁, p₋₂, p₋₃ are "infinitely" far away
- modify legality test accordingly

```
\label{eq:legalizeEdge} \begin{tabular}{ll} LegalizeEdge(&p_r, p_ip_j, T) \\ if(&!legal(&p_ip_j)) \\ let &p_ip_jp_k be adjacent to &p_rp_ip_j \\ flip(&p_ip_j) \\ legalizeEdge(&p_r, p_ip_k, T) \\ legalizeEdge(&p_r, p_kp_j, T) \\ \end{tabular}
```

CS101. 3 2002

Correctness

Show no illegal edges left

- any edge created is incident on p_r
- any new edge is legal (needs proof)
- edge can only become illegal when one of its incident triangles changes > algorithm tests all edges which may become illegal

CS101. 3 2002

Termination & Legaility

Follows from

increasing angle vector

Any new edge is legal

- initial new edges are legal
 - each edge has empty circle
- any flipped edge has empty circle as well

Anal ysi s

The expected number of triangles created in DelaunayTriangulation is at most 9n+1

- insertion of p_r causes at most 2(k-3)+3=2k-3 new triangles
- expected valence is 6
- \blacksquare expected number of triangles 9n+1

CS101.3 2002

Anal ysi s

Complexity

- the Delaunay triangulation of a set P of n points can be computed in O(n log n) expected time and O(n) expected storage
- search for new point: O(log n)

Minimum Roughness

Remarkable property

define roughness of a piecewise linear interpolating surface

$$R(g,T) = |g|_{T,1}^2 = \sum_{i=1}^n |g|_{T_i,1}^2$$

$$|g|_{T_i,1}^2 = \int_{T_i} \left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2 dx dy$$

Minimum Roughness

Interpolating surface

- **given locations in the plane and** sample values $\{(x_i, y_i, g_i)\}$
 - sample values arbitrary but fixed
 - no four coplanar

Theorem

■ T^* Delaunay iff $\forall T : R(g, T^*) \leq R(g, T)$

Roughness Reduction

Edge flip

- illegal edges are locally more rough
- If v_1, v_3 iff $r_2r_4 < r_1r_3$

$$r_i = d(v_0, v_i)$$

Roughness Minimization

Rippa, CAGD 1990

Lemma:

$$|g_T|_{T,1}^2 - |g_{T'}|_{T',1}^2 = A(r_1r_3 - r_2r_4)$$

$$A = (g_T(x_0, y_0) - g_{T'}(x_0, y_0))^2$$
$$\left(\frac{(r_1 + r_3)(r_2 + r_4)}{2r_1r_2r_3r_4\sin\angle v_1v_0, v_2}\right)$$

Implementation

Geometric conditionals

- great care required
 - arbitrary precision...
 - when are points collinear...
 - when are 4 points on a circle...
- exact methods
- symbolic perturbation methods

Higher D?

Ouch

- may need Steiner points
 - additional points not in original set
- slivers
 - in 3D can have thin tets with large circumsphere
- active area of research

Other Methods

Edge split

- Rivara's algorithm
 - works in 2D and 3D
 - bi-section
- unrefine
 - edge collapse (Hoppe)