Convex Optimization for Parallel Energy Minimization

K. S. Sesh Kumar

Data Science Institute Imperial College London

October 1, 2019

Overview

Submodularity and Examples

Notations and Definitions

SFM and the corresponding smooth problems

Active set methods for submodular minimization

Active set methods for parallel submodular minimization

Results

Semi - supervised clustering

Submodular function minimization

Sensor placement

- ► Krause and Guestrin, 2005.
- ► Submodular function maximization

Energy Minimization in Computer Vision

Graph cuts and image segmentation

Total Variation Denoising

► Chambolle, 2005.

Definition: $F: 2^V \to \mathbb{R}$ is **submodular** if and only if

$$\forall A, B \subseteq V, F(A) + F(B) \ge F(A \cup B) + F(A \cap B)$$

▶ **Definition**: $F: 2^V \to \mathbb{R}$ is **submodular** if and only if

$$\forall A, B \subseteq V, F(A) + F(B) \ge F(A \cup B) + F(A \cap B)$$

- Equality for modular functions
- Always assume $F(\emptyset) = 0$.

▶ **Definition**: $F: 2^V \to \mathbb{R}$ is **submodular** if and only if

$$\forall A, B \subseteq V, F(A) + F(B) \ge F(A \cup B) + F(A \cap B)$$

- Equality for modular functions
- Always assume $F(\emptyset) = 0$.
- ► Equivalent definition :

$$\forall k \in V, A \rightarrow F(A \cup \{k\}) - F(A)$$
 is non increasing

▶ **Definition**: $F: 2^V \to \mathbb{R}$ is **submodular** if and only if

$$\forall A, B \subseteq V, F(A) + F(B) \ge F(A \cup B) + F(A \cap B)$$

- Equality for modular functions
- Always assume $F(\emptyset) = 0$.
- ► Equivalent definition :

$$\forall k \in V, A \rightarrow F(A \cup \{k\}) - F(A)$$
 is non increasing

Diminishing returns property

Subsets as pseudo boolean functions

▶ Subsets may be identified with elements of $\{0,1\}^p$.

Lovász extension

lacktriangle Given any set-function F and w such that $w_{j_1}\geqslant \cdots \geqslant w_{j_p}$,

$$f(w) = \sum_{k=1}^{p-1} (w_{j_k} - w_{j_{k+1}}) F(\{j_1, \dots, j_k\}) + w_{j_p} F(\{j_1, \dots, j_p\})$$

Lovász extension

lacksquare Given any set-function F and w such that $w_{j_1}\geqslant \cdots \geqslant w_{j_p}$,

$$f(w) = \sum_{k=1}^{p-1} (w_{j_k} - w_{j_{k+1}}) F(\{j_1, \dots, j_k\}) + w_{j_p} F(\{j_1, \dots, j_p\})$$

- f is piecewise-linear and positively homogeneous
- if $w = 1_A$, f(w) = F(A)
- **Extension from** $\{0,1\}^p$ to \mathbb{R}^p

Lovász extension

lacktriangle Given any set-function F and w such that $w_{j_1}\geqslant \cdots \geqslant w_{j_p}$,

$$f(w) = \sum_{k=1}^{p-1} (w_{j_k} - w_{j_{k+1}}) F(\{j_1, \dots, j_k\}) + w_{j_p} F(\{j_1, \dots, j_p\})$$

- f is piecewise-linear and positively homogeneous
- if $w = 1_A$, f(w) = F(A)
- ightharpoonup Extension from $\{0,1\}^p$ to \mathbb{R}^p
- ► **Theorem**: *F* is submodular if and only if *f* is convex

Cut functions and Lovász extension

▶ Cut function. $F: 2^V \to \mathbb{R}$ such that $F(A) = \sum_{i \in V} \sum_{j \in \mathcal{N}(i)} a_{ij} |1_{i \in A} - 1_{j \in A}|$.

Cut functions and Lovász extension

- ▶ **Cut function.** $F: 2^V \to \mathbb{R}$ such that $F(A) = \sum_{i \in V} \sum_{j \in \mathcal{N}(i)} a_{ij} | 1_{i \in A} 1_{j \in A} |$.
- **Lovász extension.** $f:[0,1]^p \to \mathbb{R}$ such that $f(w) = \sum_{i \in V} \sum_{j \in \mathcal{N}(i)} a_{ij} |w_i w_j|$.

Cut functions and Lovász extension

- ► Cut function. $F: 2^V \to \mathbb{R}$ such that $F(A) = \sum_{i \in V} \sum_{j \in \mathcal{N}(i)} a_{ij} |1_{i \in A} 1_{j \in A}|$.
- **Lovász extension.** $f:[0,1]^p \to \mathbb{R}$ such that $f(w) = \sum_{i \in V} \sum_{j \in \mathcal{N}(i)} a_{ij} |w_i w_j|$.
- ▶ If *F* is a <u>cut function</u> then *f* is the corresponding <u>total</u> <u>variation</u> problem.

From submodular minimization to smooth problems

Related optimization problems

(D) Discrete
$$\min_{A \subset V} F(A) - u(A)^{1} = \min_{w \in \{0,1\}^{p}} f(w) - u^{\top} w$$
(C) Continuous
$$\min_{A \subset V} f(w) = u^{\top} w$$

(C) Continuous
$$\min_{w \in [0,1]^p} f(w) - u^\top w$$

(S) Smooth
$$\min_{w \in \mathbb{R}^p} f(w) - u^\top w + \frac{1}{2} \|w\|_2^2$$

 $^{^{1}}u(A) = u^{\top}1_{A}$

From submodular minimization to smooth problems

Related optimization problems

(D) Discrete
$$\min_{A \subset V} F(A) - u(A)^{1} = \min_{w \in \{0,1\}^{p}} f(w) - u^{\top}w$$
(C) Continuous
$$\min_{w \in [0,1]^{p}} f(w) - u^{\top}w$$
(S) Smooth
$$\min_{w \in \mathbb{R}^{p}} f(w) - u^{\top}w + \frac{1}{2} \|w\|_{2}^{2}$$

► Solving (S) is equivalent to

$$\min_{A\subset V} F(A) - u(A) + \lambda |A|, \forall \lambda \in \mathbb{R}$$

- $\Rightarrow \arg\min_{A \subset V} F(A) u(A) + \lambda |A| = \{k, w_k \geqslant \lambda\}$
- Consequence of F being submodular.
- $\lambda = 0$ solves **(D)**.

 $^{^{1}}u(A) = u^{\top}1_{A}$

From submodular minimization to smooth problems

Related optimization problems

(D) Discrete
$$\min_{A \subset V} F(A) - u(A)^{1} = \min_{w \in \{0,1\}^{p}} f(w) - u^{\top}w$$
(C) Continuous
$$\min_{w \in [0,1]^{p}} f(w) - u^{\top}w$$
(S) Smooth
$$\min_{w \in \mathbb{R}^{p}} f(w) - u^{\top}w + \frac{1}{2} \|w\|_{2}^{2}$$

Solving (S) is equivalent to

$$\min_{A \subset V} F(A) - u(A) + \lambda |A|, \forall \lambda \in \mathbb{R}$$

- $\Rightarrow \arg\min_{A \subset V} F(A) u(A) + \lambda |A| = \{k, w_k \geqslant \lambda\}$
- Consequence of F being submodular.
- $\lambda = 0$ solves **(D)**.
- ▶ If **(D)** is graph cut \Rightarrow **(S)** is parametric maxflow.

 $^{^{1}}u(A) = u^{\top}1_{A}$

Submodular Functions and base polyhedra

- Submodular polyhedron: $P(F) = \left\{ s \in \mathbb{R}^p, \ \forall A \subset V, \ s(A) \leqslant F(A) \right\}$
- ▶ Base polyhedron: $B(F) = P(F) \cap \{s(V) = F(V)\}$
- ▶ Many facets (up to 2^p), many extreme points (up to p!)

Lovász extension and base polyhedra

- Fundamental property: If F is submodular, maximizing linear functions may be done by a "greedy algorithm"
 - Let $w \in \mathbb{R}^p_+$ such that $w_{i_1} \geqslant \cdots \geqslant w_{i_n}$
 - ▶ Let $s_{j_k} = F(\{j_1, ..., j_k\}) F(\{j_1, ..., j_{k-1}\})$ for $k \in \{1, ..., p\}$ ▶ Then $f(w) = \max_{s \in P(F)} w^{\top} s = \max_{s \in B(F)} w^{\top} s$

Lovász extension and base polyhedra

- Fundamental property: If F is submodular, maximizing linear functions may be done by a "greedy algorithm"
 - Let $w \in \mathbb{R}^p_+$ such that $w_{i_1} \geqslant \cdots \geqslant w_{i_n}$
 - ▶ Let $s_{j_k} = F(\{j_1, \dots, j_k\}) F(\{j_1, \dots, j_{k-1}\})$ for $k \in \{1, \dots, p\}$ ▶ Then $f(w) = \max_{s \in P(F)} w^\top s = \max_{s \in B(F)} w^\top s$
- Representation of f(w) as a support function:

$$f(w) = \max_{s \in B(F)} w^{\top} s$$

Lovász extension and base polyhedra

- Fundamental property: If F is submodular, maximizing linear functions may be done by a "greedy algorithm"
 - Let $w \in \mathbb{R}^p_+$ such that $w_{i_1} \geqslant \cdots \geqslant w_{i_n}$
 - ▶ Let $s_{j_k} = F(\{j_1, \dots, j_k\}) F(\{j_1, \dots, j_{k-1}\})$ for $k \in \{1, \dots, p\}$ ▶ Then $f(w) = \max_{s \in P(F)} w^\top s = \max_{s \in B(F)} w^\top s$
- Representation of f(w) as a support function:

$$f(w) = \max_{s \in B(F)} w^{\top} s$$

- Primal Dual
 - **Primal**: $\min_{w \in \mathbb{R}^p} f(w) u^\top w + \frac{1}{2} ||w||_2^2$
 - ▶ **Dual** : $\max_{s \in B(F)} -\frac{1}{2} \|u s\|_2^2$
 - At optimal, $w^* = u s^*$

Faces of the Base Polyhedon and Ordered Partitions

$$B(F) = \{ s \in \mathbb{R}^p, \ \forall A \subset V, \ s(A) \leqslant F(A), s(V) = F(V) \}$$

Faces of the Base Polyhedon and Ordered Partitions

$$B(F) = \{ s \in \mathbb{R}^p, \ \forall A \subset V, \ s(A) \leqslant F(A), s(V) = F(V) \}$$

- ▶ Given an Ordered Partition $\mathcal{A} = (A_1, \dots, A_m)$
- ▶ Let $B_i = A_1 \cup ... \cup A_i, \forall i = 1,..., m$. $B_m = V$

Faces of the Base Polyhedon and Ordered Partitions

$$B(F) = \{ s \in \mathbb{R}^p, \ \forall A \subset V, \ s(A) \leqslant F(A), s(V) = F(V) \}$$

- ▶ Given an Ordered Partition $\mathcal{A} = (A_1, \dots, A_m)$
- ▶ Let $B_i = A_1 \cup ... \cup A_i, \forall i = 1,..., m$. $B_m = V$
- lacktriangle Outer approximation of B(F) by the ordered partition $\mathcal A$

$$\widehat{B}^{\mathcal{A}}(F) = \{s \in \mathbb{R}^n, s(V) = F(V), \forall i = \{1, \dots, m-1\}, s(B_i) \leq F(B_i)\}$$

$$\widehat{B}^{\mathcal{A}}(F) = \{s \in \mathbb{R}^n, s(V) = F(V), \forall i = \{1, \dots, m-1\}, s(B_i) \leq F(B_i)\}$$

$$\widehat{B}^{\mathcal{A}}(F) = \{s \in \mathbb{R}^n, s(V) = F(V), \forall i = \{1, \dots, m-1\}, s(B_i) \leq F(B_i)\}$$

$$\widehat{B}^{\mathcal{A}}(F) = \{s \in \mathbb{R}^n, s(V) = F(V), \forall i = \{1, \dots, m-1\}, s(B_i) \leq F(B_i)\}$$

- $\max_{s \in \widehat{B}^{\mathcal{A}}(F)} -\frac{1}{2} \|u s\|_2^2$
- $ightharpoonup \min_{w \in \mathbb{R}^p} f(w) u^\top w + \frac{1}{2} \|w\|_2^2$, s.t. w is compatible with \mathcal{A}

$$\widehat{B}^{\mathcal{A}}(F) = \{s \in \mathbb{R}^n, s(V) = F(V), \forall i = \{1, \dots, m-1\}, s(B_i) \leq F(B_i)\}$$

- $ightharpoonup \min_{w \in \mathbb{R}^p} f(w) u^\top w + \frac{1}{2} ||w||_2^2$, s.t. w is compatible with \mathcal{A}

 - $w = \sum_{i=1}^{m} v_i 1_{A_i}$ $f(w) = \sum_{i=1}^{m} v_i [F(B_i) F(B_{i-1})]$

$$\widehat{B}^{\mathcal{A}}(F) = \{s \in \mathbb{R}^n, s(V) = F(V), \forall i = \{1, \dots, m-1\}, s(B_i) \leq F(B_i)\}$$

- \blacktriangleright min_{$w \in \mathbb{R}^p$} $f(w) u^\top w + \frac{1}{2} ||w||_2^2$, s.t. w is compatible with \mathcal{A}
 - $\mathbf{w} = \sum_{i=1}^{m} v_i 1_{A_i}$
 - $f(w) = \sum_{i=1}^{m} v_i [F(B_i) F(B_{i-1})]$
- ▶ $\min_{v \in \mathbb{R}^m} \sum_{i=1}^m v_i [F(B_i) F(B_i 1) u(A_i)] + \frac{1}{2} \sum_{i=1}^m |A_i| v_i^2$ such that $v_1 \ge \ldots \ge v_m$

$$\widehat{B}^{\mathcal{A}}(F) = \{s \in \mathbb{R}^n, s(V) = F(V), \forall i = \{1, \dots, m-1\}, s(B_i) \leq F(B_i)\}$$

- $ightharpoonup \max_{s \in \widehat{B}^{\mathcal{A}}(F)} -\frac{1}{2} \|u s\|_{2}^{2}$
- $ightharpoonup \min_{w \in \mathbb{R}^p} f(w) u^\top w + \frac{1}{2} \|w\|_2^2$, s.t. w is compatible with A

 - $f(w) = \sum_{i=1}^{m} v_i [F(B_i) F(B_{i-1})]$
- ▶ $\min_{v \in \mathbb{R}^m} \sum_{i=1}^m v_i [F(B_i) F(B_i 1) u(A_i)] + \frac{1}{2} \sum_{i=1}^m |A_i| v_i^2$ such that $v_1 > \ldots > v_m$
- lsotonic regression solved using wpav, s = u w
- ▶ Refines A by merging partitions and ensuring $v_1 > ... > v_{m'}$

Optimality test and Splitting partitions

▶
$$s \in B(F)$$
, i.e., $\forall A \subset V, s(A) \leq F(A)$

Optimality test and Splitting partitions

- ▶ $s \in B(F)$, i.e., $\forall A \subset V, s(A) \leq F(A)$
- SFM oracle which solves

$$C = \min_{A \subset V} F(A) - s(A)$$

Optimality test and Splitting partitions

- ▶ $s \in B(F)$, i.e., $\forall A \subset V, s(A) \leq F(A)$
- SFM oracle which solves

$$C = \min_{A \subset V} F(A) - s(A)$$

▶ If F(C) - s(C) < 0 then split all the ordered partitions of A that intersect with C

- Input : Submodular function F with SFM oracle, $u \in \mathbb{R}^p$, ordered partition \mathcal{A}
- Algorithm : iterate until convergence
 - (a) Project u onto outer-approximation $\widehat{B}^{\mathcal{A}}(F)$ (using isotonic regression)

- Input : Submodular function F with SFM oracle, $u \in \mathbb{R}^p$, ordered partition \mathcal{A}
- Algorithm : iterate until convergence
 - (a) Project u onto outer-approximation $\widehat{B}^{\mathcal{A}}(F)$ (using isotonic regression)
 - (b) Refine partitions by merging partitions with equal values

- Input : Submodular function F with SFM oracle, $u \in \mathbb{R}^p$, ordered partition \mathcal{A}
- Algorithm : iterate until convergence
 - (a) Project u onto outer-approximation $\widehat{B}^{\mathcal{A}}(F)$ (using isotonic regression)
 - (b) Refine partitions by merging partitions with equal values
 - (c) Check for optimality of s by SFM oracle to solve $C = \min_{A \in V} F(C) s(C)$

- Input : Submodular function F with SFM oracle, $u \in \mathbb{R}^p$, ordered partition \mathcal{A}
- Algorithm : iterate until convergence
 - (a) Project u onto outer-approximation $\widehat{B}^{\mathcal{A}}(F)$ (using isotonic regression)
 - (b) Refine partitions by merging partitions with equal values
 - (c) Check for optimality of s by SFM oracle to solve $C = \min_{A \in V} F(C) s(C)$
 - (d) If not optimal then split the ordered partitions of A that intersect with C and goto (a).

- Input : Submodular function F with SFM oracle, $u \in \mathbb{R}^p$, ordered partition \mathcal{A}
- Algorithm : iterate until convergence
 - (a) Project u onto outer-approximation $\widehat{B}^{\mathcal{A}}(F)$ (using isotonic regression)
 - (b) Refine partitions by merging partitions with equal values
 - (c) Check for optimality of s by SFM oracle to solve $C = \min_{A \in V} F(C) s(C)$
 - (d) If not optimal then split the ordered partitions of A that intersect with C and goto (a).

Decomposable functions

► **Goal:** Use simpler SFM oracles to solve (S) and as a consequence solve (D)

Decomposable functions

- ➤ **Goal:** Use simpler SFM oracles to solve (S) and as a consequence solve (D)
- **(D)** : $\min_{A \subset V} F_1(A) + F_2(A) u(A)$
- **(S)** : $\min_{w \in \mathbb{R}^p} f_1(w) + f_2(w) u^\top w + \frac{1}{2} ||w||_2^2$
- ▶ **Dual**: $\min_{s_1 \in B(F_1) u/2, -s_2 \in u/2 B(F_2)} ||s_1 (-s_2)||_2$

Closest points between two polytopes

Dual: $\min_{s_1 \in B(F_1) - u/2, s_2 \in u/2 - B(F_2)} \|s_1 - s_2\|_2$

Closest points between two polytopes

Dual: $\min_{s_1 \in B(F_1) - u/2, s_2 \in u/2 - B(F_2)} \|s_1 - s_2\|_2$

- Reflection methods for user-friendly submodular optimization. S.Jegelka, F. Bach and S. Sra, NIPS-2013.
- Uses expensive TV oracles.

Translated intersecting polytopes

- ▶ **Input**: Submodular function F_1 and F_2 with SFM oracles, $u \in \mathbb{R}^n$, ordered partitions A_1, A_2
- ▶ **Algorithm**: iterate until convergence (i.e., $\varepsilon_1 + \varepsilon_2$ small enough)

- ▶ **Input**: Submodular function F_1 and F_2 with SFM oracles, $u \in \mathbb{R}^n$, ordered partitions A_1, A_2
- ▶ **Algorithm**: iterate until convergence (i.e., $\varepsilon_1 + \varepsilon_2$ small enough)
 - (a) Find $\mathcal{A} = \operatorname{coalesce}(\mathcal{A}_1, \mathcal{A}_2)$ and run isotonic regression to minimize $f(w) u^\top w + \frac{1}{2} \|w\|_2^2$ such that w is compatible with \mathcal{A} .

- ▶ **Input**: Submodular function F_1 and F_2 with SFM oracles, $u \in \mathbb{R}^n$, ordered partitions A_1, A_2
- ▶ **Algorithm**: iterate until convergence (i.e., $\varepsilon_1 + \varepsilon_2$ small enough)
 - (a) Find $\mathcal{A} = \operatorname{coalesce}(\mathcal{A}_1, \mathcal{A}_2)$ and run isotonic regression to minimize $f(w) u^\top w + \frac{1}{2} \|w\|_2^2$ such that w is compatible with \mathcal{A} .
 - (b) Run accelerated Dykstra's algorithm to find the projection of 0 onto the intersection of $\widehat{B}^{\mathcal{A}_1}(F_1) u/2 + w/2$ and $u/2 w/2 \widehat{B}^{\mathcal{A}_2}(F_2)$.

- ▶ **Input**: Submodular function F_1 and F_2 with SFM oracles, $u \in \mathbb{R}^n$, ordered partitions A_1, A_2
- ▶ **Algorithm**: iterate until convergence (i.e., $\varepsilon_1 + \varepsilon_2$ small enough)
 - (a) Find $\mathcal{A} = \operatorname{coalesce}(\mathcal{A}_1, \mathcal{A}_2)$ and run isotonic regression to minimize $f(w) u^\top w + \frac{1}{2} ||w||_2^2$ such that w is compatible with \mathcal{A} .
 - (b) Run accelerated Dykstra's algorithm to find the projection of 0 onto the intersection of $\widehat{B}^{\mathcal{A}_1}(F_1) u/2 + w/2$ and $u/2 w/2 \widehat{B}^{\mathcal{A}_2}(F_2)$.
 - (c) Merge the sets in A_j which are tight for s_j , $j \in \{1, 2\}$.

- ▶ **Input**: Submodular function F_1 and F_2 with SFM oracles, $u \in \mathbb{R}^n$, ordered partitions A_1, A_2
- ▶ **Algorithm**: iterate until convergence (i.e., $\varepsilon_1 + \varepsilon_2$ small enough)
 - (a) Find $\mathcal{A} = \operatorname{coalesce}(\mathcal{A}_1, \mathcal{A}_2)$ and run isotonic regression to minimize $f(w) u^\top w + \frac{1}{2} \|w\|_2^2$ such that w is compatible with \mathcal{A} .
 - (b) Run accelerated Dykstra's algorithm to find the projection of 0 onto the intersection of $\widehat{B}^{\mathcal{A}_1}(F_1) u/2 + w/2$ and $u/2 w/2 \widehat{B}^{\mathcal{A}_2}(F_2)$.
 - (c) Merge the sets in A_j which are tight for s_j , $j \in \{1, 2\}$.
 - (d) Check optimality by solving $\min_{C_{j,i_j} \subseteq A_{j,i_j}} F_j(B_{j,i_j-1} \cup C_{j,i_j}) F_j(B_{j,i+j-1}) s_j(C_{j,i_j})$ for $i_j \in \{1, \ldots, m_j\}$, Monitor ε_1 and ε_2 such that $F_j(C_j) s_j(C_j) \geqslant -\varepsilon_j$, j = 1, 2.

- ▶ **Input**: Submodular function F_1 and F_2 with SFM oracles, $u \in \mathbb{R}^n$, ordered partitions A_1, A_2
- ▶ **Algorithm**: iterate until convergence (i.e., $\varepsilon_1 + \varepsilon_2$ small enough)
 - (a) Find $\mathcal{A} = \operatorname{coalesce}(\mathcal{A}_1, \mathcal{A}_2)$ and run isotonic regression to minimize $f(w) u^\top w + \frac{1}{2} \|w\|_2^2$ such that w is compatible with \mathcal{A} .
 - (b) Run accelerated Dykstra's algorithm to find the projection of 0 onto the intersection of $\widehat{B}^{\mathcal{A}_1}(F_1) u/2 + w/2$ and $u/2 w/2 \widehat{B}^{\mathcal{A}_2}(F_2)$.
 - (c) Merge the sets in A_j which are tight for s_j , $j \in \{1, 2\}$.
 - (d) Check optimality by solving $\min_{C_{j,i_j} \subseteq A_{j,i_j}} F_j(B_{j,i_j-1} \cup C_{j,i_j}) F_j(B_{j,i+j-1}) s_j(C_{j,i_j})$ for $i_j \in \{1,\ldots,m_j\}$, Monitor ε_1 and ε_2 such that $F_j(C_j) s_j(C_j) \geqslant -\varepsilon_j$, j = 1,2.
 - (e) If both s_1 and s_2 not optimal, for all C_{j,i_j} which are different from \emptyset and A_{j,i_j} , split partitions.

- ▶ **Input**: Submodular function F_1 and F_2 with SFM oracles, $u \in \mathbb{R}^n$, ordered partitions A_1, A_2
- ▶ **Algorithm**: iterate until convergence (i.e., $\varepsilon_1 + \varepsilon_2$ small enough)
 - (a) Find $\mathcal{A} = \operatorname{coalesce}(\mathcal{A}_1, \mathcal{A}_2)$ and run isotonic regression to minimize $f(w) u^\top w + \frac{1}{2} \|w\|_2^2$ such that w is compatible with \mathcal{A} .
 - (b) Run accelerated Dykstra's algorithm to find the projection of 0 onto the intersection of $\widehat{B}^{\mathcal{A}_1}(F_1) u/2 + w/2$ and $u/2 w/2 \widehat{B}^{\mathcal{A}_2}(F_2)$.
 - (c) Merge the sets in A_j which are tight for s_j , $j \in \{1, 2\}$.
 - (d) Check optimality by solving $\min_{C_{j,i_j} \subseteq A_{j,i_j}} F_j(B_{j,i_j-1} \cup C_{j,i_j}) F_j(B_{j,i+j-1}) s_j(C_{j,i_j})$ for $i_j \in \{1, \ldots, m_j\}$, Monitor ε_1 and ε_2 such that $F_i(C_i) s_i(C_i) \geqslant -\varepsilon_i$, j = 1, 2.
 - (e) If both s_1 and s_2 not optimal, for all C_{j,i_j} which are different from \emptyset and A_{i,i_j} , split partitions.
- **Output**: $w \in \mathbb{R}^n$ and $s_1 \in B(F_1)$, $s_2 \in B(F_2)$.

Results for 2D TV without decomposition

Results for 2D TV without decomposition (Warm Start)

Results for 2D TV with decomposition into 1D

Thank You. Questions?