Lecture 5: Inference and Prediction

The Gaussian/Normal Linear Model

Ailin Zhang

2023-05-19

Recap: Gauss-Markov Model

Under the Gauss-Markov Model,

- $E(\hat{\beta}) = \beta$
- $\operatorname{cov}(\hat{\beta}) = \sigma^2(X^TX)^{-1}$
- $E(\hat{\sigma}^2) = \sigma^2$, where $\hat{\sigma}^2 = \frac{RSS}{n (p+1)} = \frac{\sum_{i=1}^{n} \hat{\epsilon_i}^2}{n (p+1)}$

Statistical Inference

- We would like to further study the distribution of the OLS estimator
 - Enable statistical Inference
- To derive the distribution, we need stronger assumptions
 - The assumption will focus on the Gaussian/Normal linear model:
 - $\epsilon \sim N(0, \sigma^2 I_n)$
 - $Y \sim N(X\beta, \sigma^2 I_n) \iff y_i \stackrel{\text{ind}}{\sim} N(x_i^T \beta, \sigma^2), \qquad i = 1, \dots, n$
 - where X is fixed such that X^TX is non-degenerate, and (β, σ^2) are fixed but unknown parameters.
- The modeling assumption is extremely strong, but it is canonical in statistics.
- It allows us to derive elegant formulas, and also justifies the output of the linear regression function in many statistical packages.

Recap: Normal and χ^2 Distribution

• If Z_1, \ldots, Z_k are independent, standard normal random variables, then the sum of their squares,

$$Q = \sum_{i=1}^{k} Z_i^2$$

is distributed according to the chi-squared distribution with k degrees of freedom

ullet We denote it as $Q\sim\chi_k^2$

Joint Distribution of $(\hat{\beta}, \hat{\sigma}^2)$

Theorem

Under the Gaussian linear model,

$$\begin{pmatrix} \hat{\beta} \\ \hat{\epsilon} \end{pmatrix} \sim \mathrm{N} \left\{ \begin{pmatrix} \beta \\ 0 \end{pmatrix}, \sigma^2 \begin{pmatrix} (X^TX)^{-1} & 0 \\ 0 & I_n - H \end{pmatrix} \right\}$$

so
$$\hat{\beta} \perp \!\!\! \perp \hat{\epsilon};\, \hat{\sigma}^2/\sigma^2 \sim \chi^2_{n-(p+1)}$$
, and $\hat{\beta} \perp \!\!\! \perp \hat{\sigma}^2$

Proof.

$$\begin{pmatrix} \hat{\beta} \\ \hat{\epsilon} \end{pmatrix} = \begin{pmatrix} (X^T X)^{-1} X^T Y \\ (I_n - H) Y \end{pmatrix} = \begin{pmatrix} (X^T X)^{-1} X^T \\ I_n - H \end{pmatrix} Y$$

This is a linear transformation of Y, so they are jointly normal.

Joint Distribution of $(\hat{\beta}, \hat{\sigma}^2)$

Proof. (Continued)

We have verified their means and variances, so we only need to show that their covariance is zero

$$\operatorname{cov}(\hat{\beta},\hat{\epsilon}) = (X^TX)^{-1}X^T\operatorname{cov}(Y)(I_n - H)^T = \sigma^2(X^TX)^{-1}X^T(I_n - H^T) = 0$$

• $\hat{\sigma}^2 = RSS/(n-p-1) = \hat{\epsilon}^T \hat{\epsilon}/(n-p-1)$ is a quadratic function of $\hat{\epsilon}$. We only need to show that it is a scaled chi-squared distribution, which follows from the Normality of $\hat{\epsilon}/\sigma$ with the projection matrix $I_n - H$ as its covariance matrix. (Not required)

Joint distribution of $(\hat{Y}, \hat{\epsilon})$

Theorem

Under the Gaussian linear model,

$$\begin{pmatrix} \hat{Y} \\ \hat{\epsilon} \end{pmatrix} \sim N \left\{ \begin{pmatrix} X\beta \\ 0 \end{pmatrix}, \sigma^2 \begin{pmatrix} H & 0 \\ 0 & I_n - H \end{pmatrix} \right\}$$

so $\hat{Y} \perp \hat{\epsilon}$

- Orthogonal: a linear algebra fact without assumptions.
- Independent: a statistical property under the Gaussian linear model.

Example: The Auto Data

Auto data of 9 variables about 392 car models in the 1980s. The variables include

- acceleration: Time to accelerate from 0 to 60 mph (in seconds)
- horsepower: Engine horsepower
- weight: Vehicle weight (lbs.)
- Description of all 9 variables: https://rdrr.io/cran/ISLR/man/Auto.html

```
Auto = read.table("auto.txt", header=T)
```

How to run regression in R?

```
lm(acceleration ~ weight + horsepower, data=Auto)
##
## Call:
## lm(formula = acceleration ~ weight + horsepower, data = Au
##
## Coefficients:
## (Intercept) weight horsepower
## 18.435791 0.002302 -0.093313
The lm() command above asks R to fit the model
acceleration = \beta_0 + \beta_1 weight + \beta_2 horsepower + \epsilon
and R gives us the regression equation
acceleration = 18.4358 + 0.0023weight -0.0933horsepower
```

```
lm1 = lm(acceleration ~ weight + horsepower, data=Auto)
lm1$coef # show the estimated beta's
## (Intercept) weight horsepower
## 18.43579116 0.00230182 -0.09331277
lm1$fit # show the fitted values
##
## 14.370709 11.539806 12.347930 12.341024 13.310981 9.952064
##
                   10
                            11
                                      12
                                                13
## 7.625972 9.568373 10.774006 11.813017 13.096021 4.543836
         17
                            19
##
                   18
                                      20
                                               21
## 15.769702 16.459014 15.127144 18.367244 16.468044 15.63106
##
         25
                   26
                            27
                                      28
                                               29
                                                         30
## 16.132862 8.996446 9.846002 8.926686 11.318640 15.12714
```

33

##

36

34

37

38

lm1\$res # show the residuals

##	1	2	3	4	
##	-2.370708958	-0.039806159	-1.347929897	-0.341024437	-2.8109
##	7	8	9	10	
##	1.070892905	0.201005520	2.374027511	-1.068372771	-0.7740
##	13	14	15	16	
##	-3.596021395	5.456164483	-0.030995504	-0.592134521	-0.2697
##	19	20	21	22	
##	-0.627144421	2.132756343	1.031956377	-1.131064889	2.4620
##	25	26	27	28	
##	-1.132861648	5.003554062	5.153997564	4.573314295	7.1813
##	31	32	33	34	
##	0.251037230	-0.699533425	-2.167508517	-1.053909786	-1.2672
##	37	38	39	40	
##	-1.172898793	-0.727545276	-0.881381723	-0.220698357	-0.8671

```
plot(lm1$fit,lm1$res,
xlab="Fitted Values",
ylab="Residuals")
```



```
summary(lm1)
```

```
##
## Call:
## lm(formula = acceleration ~ weight + horsepower, data = Auto)
##
## Residuals:
      Min 1Q Median 3Q Max
## -4.2802 -1.1236 -0.2544 0.9128 7.1814
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18.4357912 0.3264888 56.47 <2e-16 ***
## weight 0.0023018 0.0002068 11.13 <2e-16 ***
## horsepower -0.0933128 0.0045628 -20.45 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.745 on 389 degrees of freedom
## Multiple R-squared: 0.6018, Adjusted R-squared: 0.5998
## F-statistic: 294 on 2 and 389 DF. p-value: < 2.2e-16
```

Interpreting the intercept β_0

- β_0 = intercept = the mean value of Y when all X_j 's are 0.
- may have no practical meaning e.g., β_0 is meaningless in the Auto model as no car has 0 weight

Interpreting the coefficient β_i

- β_j = the regression coefficient for X_j , is the mean change in the response Y when X_j is increased by one unit holding other X_i 's constant.
- Also called the partial regression coefficients because they are adjusted for the other covariates.
- Interpretation of β_j depends on the presence of other predictors in the model. (Let's explore through an exercise!)