МОДИФИКАЦИЯ МАГНИТНЫХ СВОЙСТВ СОЕДИНЕНИЯ Fe₇S₄Se₄

Селезнев Д.А.⁽¹⁾, Акрамов Д.Ф.⁽¹⁾, Шишкин Д.А.⁽²⁾, Селезнева Н.В.⁽¹⁾, Баранов Н.В.^(1,2)
⁽¹⁾ Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19
⁽²⁾ Институт физики металлов УрО РАН 620137, г. Екатеринбург, ул. С. Ковалевской, д. 18

Халькогениды переходных металлов представляют значительный интерес как с точки зрения практического применения, так и с точки зрения фундаментальных исследований. Например, в ферримагнитных материалах Fe_7S_8 и Fe_7S_8 магнитные моменты железа внутри слоев обладают ферромагнитным порядком, а между слоями антиферромагнитным. Существование вакансий в каждом втором катионном слое приводит к отсутствию компенсации магнитных моментов Fe в соседних слоях, из-за чего наблюдается результирующая намагниченность и ферримагнитное упорядочение. Магнитные свойства таких соединений зависят не только от наличия вакансий и их распределения, но также от сорта атомов в катионной или анионной подрешетках, размера кристаллитов, условий синтеза и термических обработок.

Целью данного исследования является изменение магнитного состояния соединения $Fe_7S_4Se_4$ с помощью уменьшения размеров кристаллитов и за счет композиционного эффекта.

Поликристаллический образец $Fe_7S_4Se_4$ был получен методом твердофазного ампульного синтеза при температуре $T=900\,^{\circ}\mathrm{C}$. Композит приготовлен путем перемешивания в агатовой ступке порошков $Fe_7S_4Se_4$ и $MoSe_2$ с последующим таблетированием. Измельчение осуществлялась в латунной шаровой вибрационной мельнице. Рентгенографическая аттестация выполнялась на дифрактометре Bruker D8 ADVANCE. Магнитные измерения на полученных соединениях были проведены на вибрационном магнитометре Lake Shore VSM 7407 в интервале температур от 300 К до 1000 К и полях до 17 кЭ.

Рентгеновская аттестация показала, что соединение $Fe_7S_4Se_4$ получено однофазным и кристаллизуется в гексагональной симметрии со структурой типа NiAs. Рентгенограмма полученного композита представляет наложение дифракционных картин от $Fe_7S_4Se_4$ и $MoSe_2$. По данным магнитных измерений как в исходном соединении, так и в композите наблюдается переход при $T\approx 520$ К. В случае композита происходит незначительное уменьшение результирующей намагниченности и незначительный рост коэрцитивной силы. Значительное увеличение коэрцитивной силы наблюдается при измельчении $Fe_7S_4Se_4$.

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации (проект FEUZ-2023-0017).