3/4/2015 Class Notes

HW #6 Review

Exercise #1

$$Yi = B_o + B_1 X_i + E_i$$
$$E_{i} \sim N(0, var)$$

A) lm1 = lm(expensive~cheap, data=shocks) summary(lm1)

Multiple R-squared: 0.9344

Cheap model and expensive screen seem to be correlated looking at the plot $R^2 = .93$

.93 > .90, so the company will use the cheap model

- B) Two criteria:
 - a. confint(lm1)

```
2.5 % 97.5 %
(Intercept) -31.7099020 67.306530
cheap 0.8917277 1.076474
```

Slope of "cheap" = 1 is within the 95% confidence interval => test passes

b. new_shocks = data.frame(cheap = c(510, 550, 590)) predict(lm1, new_shocks, interval='prediction', level = 0.95)

```
fit lwr upr
1 519.6896 503.4111 535.9682
2 559.0537 542.8839 575.2234
3 598.4177 581.5288 615.3066
```

Make a data frame for the new x values (510, 550, 590) Predict new shockers using these values The "fit" refers to plug-in-values Colum 3 has a width greater than 33 => test fails Lastly, check the normality assumptions:

hist(resid(lm1))

The histogram has no extreme outliers so it can be assumed to be normally, especially since there aren't too many data points

plot(resid(lm1) ~ cheap, data=shocks)

Plot of the residuals seems random (no clumps, fan shape, identifiable curve) so the residuals can be assumed to be normal

Exercise #2

Even though undercount isn't a given variable, another variable might be a good proxy for undercount

georgia2000\$undercount = 100*(georgia2000\$ballots - georgia2000\$votes)/georgia2000\$ballots

georgia2000\$repshare = georgia2000\$bush/georgia2000\$ballots

These two variables make it easier to calculate undercount percentage and the percent of votes that went towards republicans (and 1 - repshare = votes towards democrats)

Model Building Strategy

- 1) Make plots (box, scatter) to generate ideas/test preconceived ideas
- 2) Start somewhere! Use the exploratory data analysis done in step one to find an initial conclusion
- 3) Play around with the model
 - a. Add/delete variables

```
Step One: Exploratory Analysis
boxplot(undercount ~ equip, data=georgia2000)
boxplot(undercount ~ poor, data=georgia2000)
boxplot(undercount ~ urban, data=georgia2000)
boxplot(undercount ~ atlanta, data=georgia2000)
plot(undercount ~ perAA, data=georgia2000)
plot(undercount ~ repshare, data=georgia2000)

lm1 = lm(undercount ~ poor + urban + atlanta + perAA + repshare + equip, data=georgia2000)
summary(lm1)
anova(lm1)
confint(lm1)
```

Coefficients:

	Estimate	Std. Error	t value
(Intercept)	13.4347	2.7547	4.877
poor	1.9494	0.4499	4.333
urban	-0.7198	0.4792	-1.502
atlanta	-1.0165	0.6838	-1.487
perAA	-8.0727	2.6211	-3.080
repshare	-15.0330	3.9086	-3.846
equipOPTICAL	1.0831	0.3897	2.779
equipPAPER	-1.3812	1.5303	-0.903
equipPUNCH	1.5578	0.6284	2.479

Equipment seems to cause ~1% change either way from the baseline (Lever)

```
Response: undercount
           Df Sum Sq Mean Sq F value
                                          Pr(>F)
            1 160.28 160.283 35.6994 1.607e-08
poor
                               3.0302
urban
               13.61
                       13.605
                                        0.083777
atlanta
                2.54
                        2.536
                               0.5648
                                        0.453525
                0.66
                               0.1473
perAA
            1
                        0.661
                                        0.701683
                       80.888 18.0159
               80.89
            1
                                      3.823e-05
repshare
            3
                53.33
                       17.776
                               3.9592
                                        0.009444
equip
Residuals 150 673.47
                        4.490
```

Equipment seems to have the third largest effect on the sum of squares

Check robustness of the initial conclusion by adding/removing variables Im2 = Im(undercount ~ poor + urban + atlanta + repshare + equip, data=georgia2000) summary(Im2)

(Intercept) 1.2104 5.7651 4.763 1.5587 0.4436 poor -0.8420 -0.9857 0.4908 0.7027 urban 1.9271 -4.4705 repshare equipOPTICAL 1.3058 0.3936

anova(lm2)

```
3.514
                                    -1.716
                                    -1.403
atlanta
                                    -2.320
                                    3.318
               -1.3389
                            1.5726
                                    -0.851
equipPAPER
equipPUNCH
               1.5302
                            0.6458
                                     2.370
```

Response: undercount Df Sum Sq Mean Sq F value Pr(>F) 1 160.28 160.283 33.7999 3.512e-08 poor 2.8690 0.092363 urban 13.61 13.605 2.54 0.5347 0.465765 atlanta 1 2.536 25.34 25.345 5.3446 0.022139 repshare 1 66.94 22.314 4.7056 0.003604 equip Residuals 151 716.06 4.742

Model seems to stay consistent. But, taking out equipment reduces R^2 by 7%. Main question is, is 7% significant? (come back to this later)

Exercise #3

Scale for this question is the deviation from the average

First, make plots and do an exploratory analysis...

plot(eval ~ beauty, data=profs)

boxplot(eval ~ minority, data=profs)

plot(eval ~ age, data=profs)

boxplot(eval ~ gender, data=profs)

boxplot(eval ~ division, data=profs)

plot(eval ~ log(students), data=profs)

boxplot(eval ~ credits, data=profs)

boxplot(eval ~ tenure, data=profs)

boxplot(eval ~ native, data=profs)

Second, create a model and start somewhere...

```
lm1 = lm(eval ~ native + tenure + credits + log(students) + gender + minority + beauty, data=profs)
summary(lm1)
anova(lm1)
```

Coefficients:

		C+-1 F	±7
	ESTIMATE	Std. Error	t value
(Intercept)	3.82598	0.15043	25.433
nativeyes	0.25356	0.10604	2.391
tenureyes	-0.04420	0.06198	-0.713
creditssingle	0.60035	0.11215	5.353
log(students)	-0.04583	0.03182	-1.440
gendermale	0.18003	0.04933	3.649
minorityyes	-0.16074	0.07628	-2.107
beauty	0.17052	0.03087	5.523

One added point in beauty increases the evaluation by ~.17

Response: eval Df Sum Sq Mean Sq F value native 2.845 2.8453 10.8350 1 1.767 tenure 1.7674 1 6.1832 23.5459 credits 6.183 1 log(students) 0.111 0.1111 gender 1 2.954 2.9543 minority 1 0.882 0.8815 8.0110 30.5061 beauty 8.011 Residuals 455 119.485 0.2626

And beauty seems to be the biggest contributor to the sum of squares in the model

Q: Why do we add the variable being studied last?

A: Because the analysis of variance is order-dependent so adding the variable to be studied last accounts for every other variable beforehand

In a sense, we're playing devil's advocate for the beauty variable by saying that everything else might be more significant

Q: Why not add every variable given into a model from the get-go?

A: Because sometimes the relationship between highly correlated variables can skew the model

Permutation Test

Main question to answer is: "How significant is this value? Could this have happened due to chance?"

To test, shuffle the cards!

Values far from the median and outside of a few standard deviations are either absurd miracles or prove that the H_0 is wrong.

Steps for a Permutation Test:

- 1) Identify H₀ nothing special is happening, everything is due to chance
- 2) Choose a test statistic
 - a. E.g. relative risk, odds ratio, anything that is sensitive to departures from the mean
- 3) Simulate (calculate the test statistic) $P(T|H_0)$
 - a. Get a sampling distribution of the test statistic under the assumption that the null hypothesis is true.
- 4) Check whether your test statistic is consistent with $P(T|H_0)$

R^2 is a great test statistic to use because a small deviation often means the null could be true while a large deviation gives credibility to the idea of the null being false.

Back to Exercise 3

```
perm_test = do(1000)*{
    Im_perm = Im(undercount ~ poor + urban + atlanta + repshare + shuffle(equip), data=georgia2000)
    Im_perm
}
hist(perm_test$r.squared)
```

Histogram of perm_test\$r.squared

This histogram of the shuffled model for undercount shows that the mean R^2 is near 21-22%. A value of 27%, as seen in the model with equip not being shuffled, is far from the norm, meaning that equipment is a significant variable in the model.