Analysis I, Blatt 2

Gruppe 11 Lorenz Bung (Matr.-Nr. 5113060) lorenz.bung@students.uni-freiburg.de Charlotte Rothhaar (Matr.-Nr. 4315016) charlotte.rothhaar97@gmail.com

18. November 2020

Aufgabe 5

(a) Vermutung: $\lim_{n\to\infty} \left(\frac{1}{n^2}\right)_{n>0} = 0$. Zu zeigen: $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \setminus \{0\} : |a_n - a| < \varepsilon, n \ge n_0$. Sei also $\varepsilon > 0$. Dann ist $|a_n - a| = |a_n - 0| = |a_n| \stackrel{n^2 > 0}{=} a_n$. Wähle nun $n_0 = \frac{2}{\sqrt{\varepsilon}}$. Somit ist $a_n = \frac{1}{n^2} \le \frac{1}{n_0^2} = \frac{1}{\left(\frac{2}{\sqrt{\varepsilon}}\right)^2} = \frac{1}{\frac{4}{\varepsilon}} = \frac{\varepsilon}{4} < \varepsilon$. Damit ist a = 0 Grenzwert der Folge a_n .

- (b) Vermutung: $\lim_{n \to \infty} \left(\frac{n^2 + 1}{n^2 + n} \right)_{n > 0} = 1$. Zu zeigen: $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \setminus \{0\} : |b_n - b| < \varepsilon, n \ge n_0$. Sei also $\varepsilon > 0$. Dann ist $|b_n - b| = |\frac{n^2 + 1}{n^2 + n} - 1|$. Da n > 0 ist, folgt $\frac{n^2 + 1}{n^2 + n} \le 1$ und somit $|\frac{n^2 + 1}{n^2 + n} - 1| = -(\frac{n^2 + 1}{n^2 + n} - 1) = 1 - \frac{n^2 + 1}{n^2 + n}$. Wähle nun $n_0 = \frac{2}{\varepsilon} - 1$. Dann ist $|b_n - b| = |\frac{n^2 + 1}{n^2 + n} - 1| = 1 - \frac{n^2 + 1}{n^2 + n} = \frac{n^2 + n}{n^2 + n} - \frac{n^2 + 1}{n^2 + n} = \frac{n - 1}{n^2 + n} < \frac{n}{n^2 + n} = \frac{1}{n + 1} \le \frac{1}{n_0 + 1} = \frac{1}{\frac{2}{\varepsilon} - 1 + 1} = \frac{\varepsilon}{2} < \varepsilon$. Also ist b = 1 Grenzwert der Folge b_n .
- (c) Angenommen, c_n wäre konvergent gegen den Grenzwert c. Dann gäbe es für alle $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$, sodass $|c_n c| < \varepsilon, n \ge n_0$. Es gäbe also auch ein solches n_0 für $\varepsilon = \frac{1}{2}$. Dann wäre $|(-1)^n + \frac{1}{n} c| \le |(-1)^n| + |\frac{1}{n} + c| = 1 + |\frac{1}{n} + c| < \frac{1}{2}$

oder auch $\left|\frac{1}{n} + c\right| < -\frac{1}{2}$. Widerspruch, da $|x| \ge 0$. \Rightarrow Divergenz.

Aufgabe 6

(i) $(\frac{1}{n^p})_{n>0}$, $p \in \mathbb{N}$ ist Teilfolge von $(\frac{1}{n})_{n>0}$, wenn $i : \mathbb{N} \to \mathbb{N}$ mit $i_0 < i_1 < \ldots < i_n$ existiert, sodass $(\frac{1}{n^p})_{n>0} = (\frac{1}{i_n})_{i_n>0}$.

Diese gesuchte Folge $(i_n)_n$ existiert, nämlich $i_n = n^p$. Somit handelt es sich um eine Teilfolge.

Um eine weitere Teilfolge der harmonischen Folge zu erhalten, muss einfach eine entsprechende Folge $(i_n)_n$ gewählt werden, beispielsweise $j_n = 2n$. Somit erhält man die Teilfolge $c_n = (\frac{1}{2n})_{n>0}$.

(ii) zu zeigen: Die Teilfolge b_n von a_n konvergiert gegen den Grenzwert a. Beweis:

 b_n konvergiert genau dann, wenn $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} : |b_n - b| < \varepsilon, n \ge n_0$. Da b_n Teilfolge von a_n ist, gilt $b_n = a_{i_n}$.

Über a_n wissen wir bereits, dass für alle $\varepsilon' > 0$ ein entsprechendes n_1 gefunden werden kann. Wir finden also auch ein n_1 für $\varepsilon' = -|a - b|$. Somit ist $|b_n - b| = |a_{i_n} - a + a - b| \le |a_{i_n} - a| + |a - b| < \varepsilon' + |a - b| = -|a - b| + |a - b| = 0 < \varepsilon$.

Damit ist der Grenzwert von a_n auch der Grenzwert von b_n .

(iii)

Aufgabe 7

(i) Induktionsbehauptung (IB): $(1+x)^n \ge 1+nx$, $n \in \mathbb{N}, x \in \mathbb{R}, x \ge -1$. Induktionsanfang (IA) (n=0): $(1+x)^0 = 1 \ge 1 = 1+0x$.

Induktionsschritt (IS) $(n \Rightarrow n+1)$: $(1+x)^{n+1} = (1+x)^n * (1+x) \stackrel{\text{(IB)}}{\geq} (1+nx)*(1+x) = 1+x+nx+nx^2 = nx^2+(n+1)x+1 \stackrel{x^2 \geq 0}{\geq} 1+(n+1)x$.

(ii) zu zeigen: $\lim_{n\to\infty} q^n = 0$, $q \in \mathbb{R}, |q| < 1$.

Da |q|<1, lässt sich auch schreiben $q=\frac{1}{s}, |s|>1$. Somit ist zu zeigen, dass $\lim_{n\to\infty}(\frac{1}{s})^n=0$.

Das ist genau dann der Fall, wenn: $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} : |g_n - g| < \varepsilon, n \ge n_0$.

Mit
$$g = 0$$
 erhält man $|g_n - 0| = |g_n| = |(\frac{1}{s})^n| = \frac{1}{|s|^n} \stackrel{|s| > 1}{=} \frac{1}{(1+r)^n}$.
Wähle nun $n_0 = \frac{1}{\varepsilon * x}$: Dann ist $\frac{1}{(1+r)^n} \le \frac{1}{1+nx} \le \frac{1}{nx} < \frac{1}{\frac{x}{\varepsilon * x}} = \frac{1}{\frac{1}{\varepsilon}} = \varepsilon$.

П

(iii) Vermutung: $\lim_{n\to\infty}\sum_{i=0}^n q^i=0, \quad q\in\mathbb{R}, |q|<1.$

Beweis:

Formen wir a_n zunächst einmal um:

$$a_n = \sum_{i=0}^n q^i = 1 + q + \dots + q^n$$

$$q * a_n = q + q^2 + \dots + q^{n+1}$$

$$a_n - q * a_n = (1 + q + \dots + q^n) - (q + q^2 + \dots + q^{n+1})$$

$$a_n(1 - q) = 1 - q^{n+1}$$

$$a_n = \frac{1 - q^{n+1}}{1 - q}.$$

Sei $\varepsilon > 0$. Aus |q| < 1 folgt $q^{n+1} < q$. Damit ist $0 < \frac{1-q^{n+1}}{1-q} < 1$ und daher $|\frac{1-q^{n+1}}{1-q}| = \frac{1-q^{n+1}}{1-q}$. Wähle nun $n_0 = \log_q \frac{\varepsilon}{2q}$. Dann ist $|a_n - a| = |\frac{1-q^{n+1}}{1-q}| = \frac{1-q^{n+1}}{1-q} < \frac{-q^{n+1}}{1-q} < \frac{-q^{n+1}}{1} \le q^{n+1} = q^n * q$. Weiterhin $q^n * q \le q^{n_0} * q = q^{\log_q \frac{\varepsilon}{2q}} * q = \frac{\varepsilon}{2q} * q = \frac{\varepsilon}{2} < \varepsilon$. Damit ist 0 der Grenzwert der Folge a_n .

Aufgabe 8

(i) Annahme: x ist der Grenzwert von a_n und b_n . Dann ist $\lim_{n\to\infty} a_n = x = \lim_{n\to\infty} b_n$.

Wähle a_n und b_n mit $a_n < b_n$ so, dass a_n eine monoton wachsende Folge ist und b_n eine monoton fallende Folge ist.

Dann ist $\lim_{n\to\infty} (a_n - b_n) = 0$. Damit sind beide Folgen konvergent und sie müssen denselben Grenzwert haben. Wenn es einen Grenzwert x gibt, ist $x \in I_n$ für alle $n \in \mathbb{N}$.

(ii) Jedes $x \in \mathbb{R}$ besitzt eine Folge $a_n \in \mathbb{Q}$, deren Grenzwert x ist. Annahme: Jede Folge a_n besitzt eine "Umkehrfolge" b_n , welche sich aus entgegengesetzter Richtung dem Grenzwert x nähert, wobei das 0-Element $(\frac{1}{n})$ von n in b_n negativ ist. Deshalb gibt es zu jedem $x \in \mathbb{R}$ eine Intervallschachtelung.

(iii)
$$a_n = \lim_{n \to \infty} \sum_{i=1}^n \frac{9}{10^i} = 1$$

 $b_n = 2 - \lim_{n \to \infty} \sum_{i=1}^n \frac{9}{10^i} = 1$

Beide Folgen a_n und b_n konvergieren zum Grenzwert x=1, sodass diese eine Intervallschachtelung $I_n:=[a_n;b_n]=\{x\in\mathbb{R}|a_n\leq x\leq b_n\}$ bilden.

Zusatzaufgabe

- (i) Die Zahl $(a, bc9)^2$ mit $a, b, c \in \{0, \dots, 9\}$ lässt sich auch darstellen als $(a*10^0+b*10^{-1}+c*10^{-2}+9*10^{-3})^2$ = $(a*10^0)^2+(b*10^{-1})^2+(c*10^{-2})^2+(9*10^{-3})^2$ = $a^2*10^0+b^2*10^{-2}+c^2*10^{-4}+81*10^{-6}$. Die Zahl hat also aufgrund des Summanden $81*10^{-6}$ in jedem Fall 6 Nachkommastellen mit der letzten Ziffer 1. Tauscht man die 9 gegen eine andere Ziffer i, endet das Quadrat der Zahl auf die letzte Ziffer von i^2 .
- (ii) Angenommen, $\sqrt{2}$ wäre eine Dezimalzahl mit endlich vielen Nachkommastellen. Dann wäre $\sqrt{2}$ darstellbar als

mastellen. Dann wäre
$$\sqrt{2}$$
 darstellbar als $a_0 * 10^0 + a_1 * 10^{-1} + \dots + a_n * 10^{-n} = \sum_{i=0}^{n} a_i * 10^{-i}$.

Die Zahl $2=(\sqrt{2})^2$ wäre dann darstellbar als

$$2 = a_0^2 * 10^0 + a_1^2 * 10^{-2} + \dots + a_n^2 * 10^{-2n} = \sum_{i=0}^n a_i^2 * 10^{-2i}.$$

Da die 2 keine Nachkommastellen ungleich 0 hat, müssen die entsprechenden Summanden 0 sein und damit $2 = a_0^2$.

Diese (abzählbaren) Fälle können manuell überprüft werden.