Pré-Processamento

A ideia principal desta etapa é realizar um tratamento da base de dados fornecida no link: https://www.kaggle.com/datasets/argonalyst/sao-paulo-real-estate-sale-rent-april-2019.

O resultado deste arquivo será uma tabela otimizada e pronta para análise exploratória dos dados. As correções feitas incluem a estimativa de variáveis com muitos dados ausentes, a remoção de linhas repetidas e a formatação adequada das colunas que necessitam.

Bibliotecas e Configurações Gerais

Todas as bibliotecas utilizadas no projeto e os ajustes gerais de configuração.

```
In []: # Importando Bibliotecas
# Manipulação de dados
import pandas as pd

# Visualização
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px

# Regressão linear
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

In []: # Código para visualizar os gráficos ao exportar o arquivo para html
import plotly.offline as pyo
pyo.init_notebook_mode(connected=True)
```

Para facilitar a visualização das colunas dos dataframes, será altarado as configurações de display conforme o código abaixo.

```
In []: # Configuração de visualização
# Definindo o valor máximo de colunas a serem exibidas como None
pd.set_option("display.max_columns", None)
```

Importando Base de dados

Realizando a importação da base de dados baixada do kaggle para o pandas e obtendo as principais informações.

O dataframe original sem nenhuma alteração será chamado de df_orginal.

```
In []: # Lendo arquivo csv
df_original = pd.read_csv("../data/sao-paulo-properties-april-2019.csv")
df_original
```

ut[]:		Price	Condo	Size	Rooms	Toilets	Suites	Parking	Elevator	Furnished	Swimming Pool	New	District	Negotiation Type	Property Type	Latitude
	0	930	220	47	2	2	1	1	0	0	0	0	Artur Alvim/São Paulo	rent	apartment	-23.543138
	1	1000	148	45	2	2	1	1	0	0	0	0	Artur Alvim/São Paulo	rent	apartment	-23.550239
	2	1000	100	48	2	2	1	1	0	0	0	0	Artur Alvim/São Paulo	rent	apartment	-23.542818
	3	1000	200	48	2	2	1	1	0	0	0	0	Artur Alvim/São Paulo	rent	apartment	-23.547171
	4	1300	410	55	2	2	1	1	1	0	0	0	Artur Alvim/São Paulo	rent	apartment	-23.525025
	13635	265000	420	51	2	1	0	1	0	0	0	0	Jabaquara/São Paulo	sale	apartment	-23.653004
	13636	545000	630	74	3	2	1	2	0	0	1	0	Jabaquara/São Paulo	sale	apartment	-23.648930
	13637	515000	1100	114	3	3	1	1	0	0	1	0	Jabaquara/São Paulo	sale	apartment	-23.649693
	13638	345000	48	39	1	2	1	1	0	1	1	0	Jabaquara/São Paulo	sale	apartment	-23.652060
	13639	161987	0	44	2	1	0	1	0	0	0	0	Jardim Ângela/São Paulo	sale	apartment	-23.613391

13640 rows × 16 columns

```
In [ ]: # Principais informações
       df_original.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 13640 entries, 0 to 13639
       Data columns (total 16 columns):
                            Non-Null Count Dtype
        # Column
       ---
                             -----
                            13640 non-null int64
        0
            Price
                            13640 non-null int64
        1
            Condo
                             13640 non-null int64
        2
            Size
                            13640 non-null int64
        3
            Rooms
                             13640 non-null int64
        4
            Toilets
        5
            Suites
                             13640 non-null int64
        6
            Parking
                             13640 non-null int64
        7
            Elevator
                             13640 non-null int64
        8
            Furnished
                             13640 non-null int64
        9
            Swimming Pool
                             13640 non-null int64
        10 New
                             13640 non-null int64
        11 District
                             13640 non-null object
        12 Negotiation Type 13640 non-null object
        13 Property Type
                             13640 non-null object
        14 Latitude
                             13640 non-null float64
        15 Longitude
                             13640 non-null float64
       dtypes: float64(2), int64(11), object(3)
       memory usage: 1.7+ MB
```

Inicialmente, a base de dados parece estar completa, sem valores ausentes, e com os formatos de dados das colunas adequadamente configurados.

Tratamentos

Para não interfirir no dataframe original, será criado um dataframe auxiliar chamado de df_main.

```
In []: # Criando cópia do dataframe original
df_main = df_original.copy()

df_main
```

Out[]:		Price	Condo	Size	Rooms	Toilets	Suites	Parking	Elevator	Furnished	Swimming Pool	New	District	Negotiation Type	Property Type	Latitude
	0	930	220	47	2	2	1	1	0	0	0	0	Artur Alvim/São Paulo	rent	apartment	-23.543138
	1	1000	148	45	2	2	1	1	0	0	0	0	Artur Alvim/São Paulo	rent	apartment	-23.550239
	2	1000	100	48	2	2	1	1	0	0	0	0	Artur Alvim/São Paulo	rent	apartment	-23.542818
	3	1000	200	48	2	2	1	1	0	0	0	0	Artur Alvim/São Paulo	rent	apartment	-23.547171
	4	1300	410	55	2	2	1	1	1	0	0	0	Artur Alvim/São Paulo	rent	apartment	-23.525025
	13635	265000	420	51	2	1	0	1	0	0	0	0	Jabaquara/São Paulo	sale	apartment	-23.653004
	13636	545000	630	74	3	2	1	2	0	0	1	0	Jabaquara/São Paulo	sale	apartment	-23.648930
	13637	515000	1100	114	3	3	1	1	0	0	1	0	Jabaquara/São Paulo	sale	apartment	-23.649693
	13638	345000	48	39	1	2	1	1	0	1	1	0	Jabaquara/São Paulo	sale	apartment	-23.652060
	13639	161987	0	44	2	1	0	1	0	0	0	0	Jardim Ângela/São Paulo	sale	apartment	-23.613391

Linhas Duplicadas

13640 rows × 16 columns

O primeiro tratamento será com relação as linhas duplicadas.

In []: # Verificando Linhas duplicadas
 df_main[df_main.duplicated(keep=False)]

]:	Price	Condo	Size	Rooms	Toilets	Suites	Parking	Elevator	Furnished	Swimming Pool	New	District	Negotiation Type	Property Type	Latitude
12	900	130	56	2	2	1	1	0	0	0	0	Artur Alvim/São Paulo	rent	apartment	-23.552073
163	1300	387	50	2	2	1	1	0	0	0	0	Cidade Tiradentes/São Paulo	rent	apartment	-23.582576
165	1300	387	50	2	2	1	1	0	0	0	0	Cidade Tiradentes/São Paulo	rent	apartment	-23.582576
201	999	0	70	2	2	1	1	0	0	0	0	Ermelino Matarazzo/São Paulo	rent	apartment	-23.494694
202	888	0	70	2	2	1	1	0	0	0	0	Ermelino Matarazzo/São Paulo	rent	apartment	-23.494694
13272	233750	100	47	2	2	1	1	1	0	0	0	Vila Jacuí/São Paulo	sale	apartment	-23.501856
13476	660000	450	107	3	2	1	2	0	0	0	0	Cidade Ademar/São Paulo	sale	apartment	-23.660596
13492	690000	450	107	3	2	1	2	0	0	0	0	Cidade Ademar/São Paulo	sale	apartment	-23.660596
13496	660000	450	107	3	2	1	2	0	0	0	0	Cidade Ademar/São Paulo	sale	apartment	-23.660596
13498	690000	450	107	3	2	1	2	0	0	0	0	Cidade Ademar/São Paulo	sale	apartment	-23.660596

559 rows × 16 columns

Observamos que há 559 entradas duplicadas no dataframe. Considerando que estamos avaliando imóveis, linhas repetidas não fazem sentido e podem comprometer a modelagem. Por isso, removeremos essas entradas duplicadas.

```
In []: # Removendo Linhas duplicadas
df_main = df_main.drop_duplicates()

In []: # Visualizando resultados
df_main[df_main.duplicated(keep=False)]

Out[]: Price Condo Size Rooms Toilets Suites Parking Elevator Furnished Swimming Pool New District Type Type Latitude Longitude
```

Coluna *Property Type*

A coluna "property type" indica o tipo de imóvel. No entanto, ela apresenta apenas o valor "apartment", indicando que a base de dados inteira lista exclusivamente apartamentos. Como ela não traz diversidade de informações, optaremos por removê-la da análise.

```
In [ ]: # Visualizando valores da coluna
df_main["Property Type"].value_counts()

Out[ ]: apartment    13321
    Name: Property Type, dtype: int64

In [ ]: # Removendo coluna do dataframe
df_main = df_main.drop(columns=["Property Type"])
```

Coluna *Latitude e Longitude*

A primeira correção nas colunas de latitude e longitude refere-se aos valores nulos. Valores de latitude e longitude zerados indicam locais no Oceano Atlântico, o que é incoerente, já que estamos análisando apartamentos apenas em São Paulo.

```
In [ ]: # Plotando pontos no mapa
df_main[(df_main["Latitude"] == 0) | (df_main["Longitude"] == 0)]
```

]:		Price	Condo	Size	Rooms	Toilets	Suites	Parking	Elevator	Furnished	Swimming Pool	New	District	Negotiation Type	Latitude	Longitude
	2117	1700	320	43	2	1	0	1	1	0	0	0	Barra Funda/São Paulo	rent	0.0	0.0
	2133	1400	120	70	2	1	0	0	0	0	0	0	Barra Funda/São Paulo	rent	0.0	0.0
	2138	1600	810	67	2	2	1	1	0	0	1	0	Barra Funda/São Paulo	rent	0.0	0.0
	2148	2500	415	63	2	1	0	1	0	0	1	0	Barra Funda/São Paulo	rent	0.0	0.0
	2149	2250	470	51	2	1	0	1	0	0	1	0	Barra Funda/São Paulo	rent	0.0	0.0
	13598	1200000	1200	100	2	1	0	1	0	0	1	0	Itaim Bibi/São Paulo	sale	0.0	0.0
	13615	725000	625	86	3	2	1	3	0	0	1	0	Jabaquara/São Paulo	sale	0.0	0.0
	13622	290000	470	40	1	1	0	1	0	0	0	0	Jabaquara/São Paulo	sale	0.0	0.0
	13623	230000	528	52	2	1	0	0	0	0	0	0	Jabaquara/São Paulo	sale	0.0	0.0
	13627	530000	580	73	3	2	1	2	0	0	0	0	Jabaquara/São Paulo	sale	0.0	0.0

865 rows × 15 columns

Out[

Para preservar os dados dessas 865 entradas, utilizaremos a coluna "distritos" como referência, que representa outra informação de localização disponível. Assim, atribuiremos a essas linhas os valores medianos de latitude e longitude com base no respectivo bairro.

```
In []: # Criando dataframe com a mediana de Latitude e Longitude por Bairro
df_districts_median = df_main[["District", "Latitude", "Longitude"]].groupby("District").median()
df_districts_median
```

```
Out[ ]: Latitude Longitude
```

District Alto de Pinheiros/São Paulo -23.543300 -46.715186 Anhanguera/São Paulo -23.660558 -46.684751 Aricanduva/São Paulo -23.538054 -46.522015 Artur Alvim/São Paulo -23.539632 -46.480033 Barra Funda/São Paulo -23.523164 -46.657965 Vila Matilde/São Paulo -23.535553 -46.524037 Vila Olimpia/São Paulo -23.598742 -46.681889 Vila Prudente/São Paulo -23.598625 -46.577985 Vila Sônia/São Paulo -23.598599 -46.732406 Água Rasa/São Paulo -23.563710 -46.569714

96 rows × 2 columns

Out[]:		Price	Condo	Size	Rooms	Toilets	Suites	Parking	Elevator	Furnished	Swimming Pool	New	District	Negotiation Type	Latitude	Longitude
	2117	1700	320	43	2	1	0	1	1	0	0	0	Barra Funda/São Paulo	rent	-23.523164	-46.657965
	2133	1400	120	70	2	1	0	0	0	0	0	0	Barra Funda/São Paulo	rent	-23.523164	-46.657965
	2138	1600	810	67	2	2	1	1	0	0	1	0	Barra Funda/São Paulo	rent	-23.523164	-46.657965
	2148	2500	415	63	2	1	0	1	0	0	1	0	Barra Funda/São Paulo	rent	-23.523164	-46.657965
	2149	2250	470	51	2	1	0	1	0	0	1	0	Barra Funda/São Paulo	rent	-23.523164	-46.657965
	13598	1200000	1200	100	2	1	0	1	0	0	1	0	Itaim Bibi/São Paulo	sale	-23.583597	-46.675920
	13615	725000	625	86	3	2	1	3	0	0	1	0	Jabaquara/São Paulo	sale	-23.648640	-46.643198
	13622	290000	470	40	1	1	0	1	0	0	0	0	Jabaquara/São Paulo	sale	-23.648640	-46.643198
	13623	230000	528	52	2	1	0	0	0	0	0	0	Jabaquara/São Paulo	sale	-23.648640	-46.643198
	13627	530000	580	73	3	2	1	2	0	0	0	0	Jabaquara/São Paulo	sale	-23.648640	-46.643198
4	# Obse		Latitude		_					nda/São Pa /São Paulo						-
Out[]:				Latit	ude Loi	ngitude										
		D	istrict													
	Barra F	unda/São	Paulo -	-23.523	164 -46	.657965										
In []:		ficando n[(df_ma					f_main	"Longit	ude"] ==	0)]						
Out[]:	Price	Condo	Size R	ooms	Toilets	Suites	Parking	Elevato	r Furnishe	ed Swimmi	ing Pool Ne	w Dis	trict Negotiati	on Type Lati	tude Longit	ude
	Podem	os notar	que os v	valore	s nulos o	de latitu	de e lor	igitude fo	oram corre	etamente e	stimados co	om bas	se na mediana	dos respectiv	os bairros.	
In []:		<i>ndo o gr</i> px.scatt	-	box(d l l		itude", gitude"										

Como podemos ver, existem diversos pontos que estão fora do Brasil. Para observar melhor estes pontos, iremos considerar os limites geográficos do país de acordo com as coordenadas que delimitam a cidade de São Paulo:

- Latitude Minima = -24.0
- Latitude Maxima = -23.3
- Longitude Minima = -47.2
- Longitude Maxima = -46.3

```
In [ ]: # Definindo Limites
         lat_min, lat_max = -24.0, -23.3
lon_min, lon_max = -47.2, -46.3
         # Filtrando pontos
         outside_sp_df = df_main[~((df_main['Latitude'] >= lat_min) &
                                  (df_main['Latitude'] <= lat_max) &
(df_main['Longitude'] >= lon_min) &
                                  (df_main['Longitude'] <= lon_max))]</pre>
         # Plotando pontos selecionados
         # Criando o gráfico de dispersão no mapa
         fig = px.scatter_mapbox(outside_sp_df,
                                     lat="Latitude"
                                     lon="Longitude",
                                     zoom=2,
                                     height=600,
                                     mapbox_style="carto-positron",
                                     color_discrete_sequence=["red"])
         fig.show()
```


Como podemos observar, muitos pontos estão fora de São Paulo.

In []: # Visualizando dataframe

outside_sp_df

ut[]:		Price	Condo	Size	Rooms	Toilets	Suites	Parking	Elevator	Furnished	Swimming Pool	New	District	Negotiation Type	Latitude	Longitude
	1113	1300	637	50	2	2	1	1	1	0	0	0	Jabaquara/São Paulo	rent	-46.648904	-23.652027
	1211	2200	500	30	1	2	1	1	1	0	1	0	Moema/São Paulo	rent	-46.655399	-23.607013
	1583	2600	974	76	2	2	1	2	1	1	1	0	Alto de Pinheiros/São Paulo	rent	-46.715115	-23.540783
	1792	1400	580	60	3	2	1	1	1	0	1	0	Jaguaré/São Paulo	rent	-46.749039	-23.545329
	1937	4200	800	97	2	3	1	2	1	1	1	0	Perdizes/São Paulo	rent	-46.678478	-23.534683

	13299	303000	350	53	3	2	1	1	0	0	1	0	Vila Prudente/São Paulo	sale	-26.922571	-49.060645
	13461	189000	100	50	2	1	0	1	0	0	0	0	Capão Redondo/São Paulo	sale	-22.460514	-49.337815
	13522	275000	220	63	2	1	0	1	0	0	0	0	Cidade Dutra/São Paulo	sale	-26.922512	-49.060707
	13525	296800	245	62	3	1	0	1	0	0	0	0	Cidade Dutra/São Paulo	sale	-26.922512	-49.060707
	13534	860000	1200	180	3	4	3	2	0	0	1	0	Cidade Dutra/São Paulo	sale	-26.922512	-49.060707

106 rows × 15 columns

4

Ao examinar os pontos situados fora da cidade de São Paulo, identificamos que vários podem ter os valores de latitude e longitude trocados, conforme ilustrado no mapa a seguir.

```
In [ ]: # Pontos com Latitude e Longitude possivelmente invertidos
outside_sp_df[(outside_sp_df["Latitude"] < -40) & (outside_sp_df["Longitude"] < -20)].head(5)</pre>
```

```
Out[ ]:
                                                                                                                     Negotiation
                                                                                      Swimming
               Price Condo Size Rooms Toilets Suites Parking Elevator Furnished
                                                                                                             District
                                                                                                                                    Latitude Longitude
                                                                                           Pool
                                                                                                                            Type
                                                                                                       Jabaquara/São
         1113 1300
                         637
                               50
                                                2
                                                                                   0
                                                                                              0
                                                                                                    0
                                                                                                                            rent -46.648904 -23.652027
                                                                                                              Paulo
                                                                                                         Moema/São
          1211 2200
                         500
                               30
                                                                                   0
                                                                                                    0
                                                                                                                             rent -46.655399 -23.607013
                                                                                                              Paulo
                                                                                                             Alto de
         1583 2600
                         974
                               76
                                                                                                    0
                                                                                                        Pinheiros/São
                                                                                                                             rent -46.715115 -23.540783
                                                                                                              Paulo
                                                                                                         Jaguaré/São
         1792 1400
                         580
                               60
                                                                                                                             rent -46.749039 -23.545329
                                                                                                               Paulo
                                                                                                         Perdizes/São
         1937 4200
                         800
                                                                                                                            rent -46.678478 -23.534683
                                                                                                              Paulo
```

4

Os pontos cujas latitudes e longitudes estão invertidas indicam o oceano. O código a seguir troca essas coordenadas para verificar se elas correspondem corretamente a São Paulo.

Percebe-se que ao alterar estes pontos eles voltam para a cidade de São Paulo.

Os apartamentos que tinham coordenadas de latitude e longitude indicando o oceano já foram ajustados. No entanto, ainda existem alguns pontos que não estão corretamente localizados em São Paulo. Como dispomos das informações sobre os distritos onde esses pontos deveriam estar, faremos as correções com base nas medianas de latitude e longitude de cada distrito.

```
In [ ]: # Criando lista com o index dos apartamentos que necessitam de tratamento
                               apt_correction_index = outside_sp_df.index.to_list()
In [ ]: # Alterando no df_main
                               # Realizando alterações no outside_sp_df para testar
                               # Para Latitude
                               df_main.loc[df_main.index.isin(apt_correction_index), "Latitude"] = outside_sp_df["District"].map(df_districts_median["Latitude"]
                               # Para Longitude
                               \label{eq:df_main.loc} $$ df_{main.index.isin(apt\_correction\_index), $$ "Longitude"] = outside\_sp\_df["District"]. $$ map(df_districts\_median["Longitude"] = outside\_sp\_df["Districts\_median["Longitude"] = outside\_sp\_df["Districts\_median["Lo
                               # Visualizando as mudanças
                               # Criando o gráfico de dispersão no mapa
                               fig = px.scatter_mapbox(df_main,
                                                                                                                         lat="Latitude",
                                                                                                                         lon="Longitude",
                                                                                                                         zoom=2,
                                                                                                                         height=600,
                                                                                                                         mapbox_style="carto-positron",
                                                                                                                         color_discrete_sequence=["blue"])
                               fig.show()
```


Com isso temos todos os apartamentos com os valores de latitude e longitude corrigidos.

Coluna *Negociation Type*

Esta coluna especifica se o apartamento está à venda ou para aluguel. Dado o grande contraste nos valores, com apartamentos à venda geralmente sendo muito mais caros do que aqueles para alugar, vamos tratar estas análises separadamente. Faremos um modelo para os apartamentos à venda e outro para os disponíveis para aluguel.

De fato existe uma grande disparidade de escala de preço entre apartamentos para alugar e vender. Por conta disso, serão criados dois dataframes separados, um para a os imóveis a venda e outro para os imóveis para alugar.

```
In []: # Criando dataframe de apartamentos para alugar
    df_main_rent = df_main[df_main["Negotiation Type"] == "rent"]
# Criando dataframe de apartamentos a venda
    df_main_sale = df_main[df_main["Negotiation Type"] == "sale"]
```

Como os dataframes foram separados pela coluna Negotiation Type, podemos retira-la destas novas tabelas.

```
In []: # Retirando coluna Negotiation Type
# Rent

df_main_rent = df_main_rent.drop(columns=["Negotiation Type"])
# Sale

df_main_sale = df_main_sale.drop(columns=["Negotiation Type"])
```

Coluna *Price e Condo*

O propósito principal do algoritmo é conduzir uma análise de predição de preços, tanto para aluguel quanto para venda. Assim, não é lógico ter registros com o valor 'price' igual a zero. Além disso, uma vez que nossa base de dados contém apenas apartamentos, também não é coerente encontrar valores de condomínio zerados.

```
In [ ]: # Apartamentos com Price Zerados
df_main[df_main['Price'] == 0]
```

Out[]: Price Condo Size Rooms Toilets Suites Parking Elevator Furnished Swimming Pool New District Negotiation Type Latitude Longitude

Como o código acima demonstra, não temos valores da coluna "Price" zerados.

```
In [ ]: # Apartamentos com Condo zerados
df_main[df_main["Condo"] == 0]
```

]:		Price	Condo	Size	Rooms	Toilets	Suites	Parking	Elevator	Furnished	Swimming Pool	New	District	Negotiation Type	Latitude	Longitude
	5	1170	0	50	2	2	1	1	0	0	0	0	Artur Alvim/São Paulo	rent	-23.548751	-46.477195
	8	1000	0	65	2	2	1	1	0	0	0	0	Artur Alvim/São Paulo	rent	-23.548751	-46.477195
	9	1000	0	100	2	2	1	1	0	0	0	0	Artur Alvim/São Paulo	rent	-23.548751	-46.477195
	49	1200	0	48	2	2	1	1	0	0	0	0	Cangaíba/São Paulo	rent	-23.502336	-46.523243
	50	1450	0	65	2	2	1	1	1	0	0	0	Cangaíba/São Paulo	rent	-23.506197	-46.522358
	13558	400000	0	60	2	1	0	1	0	0	0	0	Cursino/São Paulo	sale	-23.627452	-46.619960
	13563	330000	0	49	2	1	0	1	0	0	0	0	Cursino/São Paulo	sale	-23.615080	-46.605059
	13575	909717	0	85	3	2	1	2	0	0	1	0	Ipiranga/São Paulo	sale	-23.575564	-46.606447
	13603	559000	0	90	3	2	1	2	0	0	1	0	Jabaquara/São Paulo	sale	-23.505391	-46.622783
	13639	161987	0	44	2	1	0	1	0	0	0	0	Jardim Ângela/São Paulo	sale	-23.613391	-46.523109

1907 rows × 15 columns

```
In []: # Discriminiando por aluguel e venda
df_main.loc[df_main["Condo"] == 0, "Negotiation Type"].value_counts()

Out[]: sale    1289
    rent    618
    Name: Negotiation Type, dtype: int64

In []: # Porcentagem de valores zerados
    print("Porcentagem de valores zerados:")
    print(round((df_main[df_main["Condo"] == 0].shape[0] / df_main.shape[0]) * 100, 2))

Porcentagem de valores zerados:
```

Existem 14% de linhas de apartamentos com o preço de condominio zerado, no qual 1289 estão a venda e 618 para alugar. Primeiramente iremos explorar se o tamanho e o preço de venda do apartamento afeta no preço do condominio.

Para isso, será plotado um gráfico de duas dimenções, no eixo x estara o tamanho do apartamento e no eixo y o preço do condominio.

```
In []: # Plotando gráficos de dispersão
fig, axs = plt.subplots(ncols=2, figsize=(12,5))

# Plotando para rent
sns.scatterplot(x="Size", y="Condo", data=df_main_rent[df_main_rent["Condo"] != 0], ax=axs[0])
axs[0].set_title("Rent")

# Plotando para sale
sns.scatterplot(x="Size", y="Condo", data=df_main_sale[df_main_sale["Condo"] != 0], ax=axs[1], color="orange")
axs[1].set_title("Sale")

# Adicionando um titulo geral
fig.suptitle('Dispersão Condo x Size', fontsize=16, y=1)
plt.show()
```

Dispersão Condo x Size

A principio parace haver uma relação crescente entre o tamanho do apartamento e o preço do condominio, iremos analisar se existe uma relação do condominio com o preço anunciado de venda ou aluquel.

```
In []: # Plotando gráficos de dispersão
    fig, axs = plt.subplots(ncols=2, figsize=(12,5))

# Plotando para rent
sns.scatterplot(x="Price", y="Condo", data=df_main_rent[df_main_rent["Condo"] != 0], ax=axs[0])
axs[0].set_title("Rent")

# Plotando para sale
sns.scatterplot(x="Price", y="Condo", data=df_main_sale[df_main_sale["Condo"] != 0], ax=axs[1], color="orange")
axs[1].set_title("Sale")

# Adicionando um titulo geral
fig.suptitle('Dispersão Condo x Price', fontsize=16, y=1)
plt.show()
```

Dispersão Condo x Price

Assim como observado com o tamanho, parece haver uma relação linear crescente entre o valor do condomínio e o preço anunciado do imóvel. Devido a essa forte correlação, utilizaremos essas duas variáveis para estimar o valor de condomínio dos apartamentos que foram registrados como zero.

A tecnica para estimar estes valores será a regressão linear. O objetivo é obter duas equações que estimam o preço de condominio, uma para os imóveis a venda e outra para os imóveis de aluquel.

```
In []: # Criando dataframe exclusivo para regressão
    df_condo_reg_rent = df_main_rent[["Price", "Condo", "Size"]].copy()
    df_condo_reg_sale = df_main_sale[["Price", "Condo", "Size"]].copy()
```

Para realizar a modelagem das regressões, será retirados os valores zerados, que serão depois estimados com base nessa regressão.

```
In []: # Retirando os valores zerados
df_condo_reg_rent = df_condo_reg_rent[df_condo_reg_rent["Condo"] != 0]
df_condo_reg_sale = df_condo_reg_sale[df_condo_reg_sale["Condo"] != 0]
```

Assim, podemos realizar a modelagem de regressão.

```
In [ ]: # Separando conjuntos de teste e treinamento
        X_rent = df_condo_reg_rent[["Price", "Size"]]
        y_rent = df_condo_reg_rent["Condo"]
        X\_train\_rent, \ X\_test\_rent, \ y\_train\_rent, \ y\_test\_rent = train\_test\_split(X\_rent, \ y\_rent, \ test\_size=0.2, \ random\_state=42)
        X_sale = df_condo_reg_sale[["Price", "Size"]]
        y_sale = df_condo_reg_sale["Condo"]
        X_train_sale, X_test_sale, y_train_sale, y_test_sale = train_test_split(X_sale, y_sale, test_size=0.2, random_state=42)
In [ ]: # Treinando o modelo para Aluguel
        # Rent
        model rent = LinearRegression()
        {\tt model\_rent.fit}({\tt X\_train\_rent},\ {\tt y\_train\_rent})
        # Avaliando o Desempenho
        y_pred_rent = model_rent.predict(X_test_rent)
        mse_rent = mean_squared_error(y_test_rent, y_pred_rent)
        r2_score_rent =r2_score(y_test_rent, y_pred_rent)
        print(f"Erro \ quadrático \ m\'edio \ (MSE) \ para \ o \ modelo \ de \ regress\~ao \ para \ rent: \ \{mse\_rent:.2f\}")
        print(f"Coeficiente de determinação (R^2) para o modelo de regressão para rent: {r2_score_rent:.2f}")
        Erro quadrático médio (MSE) para o modelo de regressão para rent: 143672.28
        Coeficiente de determinação (R^2) para o modelo de regressão para rent: 0.80 \,
```

```
In []: # Treinando o modelo para Venda
# Rent
model_sale = LinearRegression()
model_sale.fit(X_train_sale, y_train_sale)

# Avaliando o Desempenho
y_pred_sale = model_sale.predict(X_test_sale)
mse_sale = mean_squared_error(y_test_sale, y_pred_sale)
r2_score_sale = r2_score(y_test_sale, y_pred_sale)
print(f"Erro quadrático médio (MSE) para o modelo de regressão para sale: {mse_sale:.2f}")
print(f"Coeficiente de determinação (R^2) para o modelo de regressão para sale: {r2_score_sale:.2f}")
```

```
Erro quadrático médio (MSE) para o modelo de regressão para sale: 93117.43
Coeficiente de determinação (R^2) para o modelo de regressão para sale: 0.72
```

A principio temos resultados satisfatórios para a regressão utilizada para estimar os valores faltantes.

Para obter um entendimento maior sobre a regressão realizada, iremos analisar os coeficientes β gerados para cada um dos casos.

```
In [ ]: # Coeficientes para o modelo de Rent
        betas_rent = model_rent.coef_
        intercept_rent = model_rent.intercept_
        # Printando os coeficientes
        print(f"beta price: {betas_rent[0]}")
        print(f"beta size: {betas_rent[1]}")
        print(f"Intercepto beta zero: {intercept_rent}")
        beta price: 0.060489168026343354
        beta size: 8.792268271379994
        Intercepto beta zero: -81.29407457579555
In [ ]: # Coeficientes para o modelo de Sale
        betas_sale = model_sale.coef_
        intercept_sale = model_sale.intercept_
        # Printando os coeficientes
        print(f"beta price: {betas_sale[0]}")
        print(f"beta size: {betas_sale[1]}")
        print(f"Intercepto beta zero: {intercept_sale}")
        beta price: 0.0005772555330589681
        beta size: 4.322190509215531
        Intercepto beta zero: -9.958196244476653
```

Em ambos os cenários, o tamanho do imóvel influencia significativamente mais no valor do condomínio do que o preço listado para aluguel ou venda. Isso é evidenciado pelos coeficientes, onde os valores associados à venda são consideravelmente menores do que os relacionados ao tamanho do imóvel.

Para os apartamentos disponíveis para aluguel, um incremento de 1 unidade em sua dimensão resulta em um acréscimo aproximado de 9 no preço estipulado para aluguel. Já no caso dos apartamentos à venda, o mesmo aumento de 1 unidade na dimensão leva a um acréscimo de aproximadamente 4 no preço de venda proposto.

Com isso, temos as seguintes equações que serão utilizadas para estimar os preços de condominio igual a zero:

```
condo-rent = -81.29 + 0.06*Price + 8.79*Size condo-sale = -9.96 + 0.006*Price + 4.32*Size
```

Para verificar se estes valores estão dentro da normalidade dos dados reais, iremos comparar os histogramas de antes e depois destas estipulações.

```
In [ ]: # Obtendo index de valores diferentes de zero
        condo_zero_index_rent = df_main_rent[df_main_rent["Condo"] != 0].index.to_list()
        condo_zero_index_sale = df_main_sale[df_main_sale["Condo"] != 0].index.to_list()
In [ ]: # Estimando os valores igual a zero
        df_main_rent.loc[df_main_rent["Condo"] == 0, "Condo"] = intercept_rent + betas_rent[0]*df_main_rent["Price"] + betas_rent[1]*df_n
        # Sale
        df_main_sale.loc[df_main_sale["Condo"] == 0, "Condo"] = intercept_sale + betas_sale[0]*df_main_sale["Price"] + betas_sale[1]*df_m
In [ ]: # Comparação de histograma
        fig, axs = plt.subplots(ncols=2, figsize=(12,5))
        # Plotando Histograma para os valores Reais
        sns.histplot(x=df\_main\_rent.loc[df\_main\_rent.index.isin(condo\_zero\_index\_rent), \\ \ "Condo"], \ bins=30, \ kde=True, \ ax=axs[0])
        axs[0].set title("Valores Reais")
        axs[0].text(0.5, 0.9, f'Nº de linhas: {df_main_rent.loc[df_main_rent.index.isin(condo_zero_index_rent), "Condo"].shape[0]}', trar
        # Plotando Histograma para os valores estimados
        sns.histplot(x=df\_main\_rent["Condo"], \ bins=30, \ kde=True, \ ax=axs[1])
        axs[1].set_title("Valores Estimados")
        axs[1].text(0.5,\ 0.9,\ f'N^0\ de\ linhas:\ \{df\_main\_rent["Condo"].shape[0]\}',\ transform=axs[1].transAxes,\ ha="center")
        # Titulo aeral
        fig.suptitle("Comparação antes/depois valores estimados - Rent")
        plt.show()
```

Comparação antes/depois valores estimados - Rent


```
In []: # Comparação de histograma
fig, axs = plt.subplots(ncols=2, figsize=(12,5))

# Plotando Histograma para os valores Reais
sns.histplot(x=df_main_sale.loc[df_main_sale.index.isin(condo_zero_index_sale), "Condo"], bins=30, kde=True, ax=axs[0], color="or
axs[0].set_title("Valores Reais")
axs[0].text(0.5, 0.9, f'Nº de linhas: {df_main_sale.loc[df_main_sale.index.isin(condo_zero_index_sale), "Condo"].shape[0]}', tran

# Plotando Histograma para os valores estimados
sns.histplot(x=df_main_sale["Condo"], bins=30, kde=True, ax=axs[1], color="orange")
axs[1].set_title("Valores Estimados")
axs[1].text(0.5, 0.9, f'Nº de linhas: {df_main_sale["Condo"].shape[0]}', transform=axs[1].transAxes, ha="center")

# Titulo geral
fig.suptitle("Comparação antes/depois valores estimados - Sale")
plt.show()
```


Analisando os histograma, percebemos que o método de estimação dos valores zerados de condominio através da regressão linear, não alterou a natureza da distribuição, o que é um resultado positivo.

Para avaliar a eficácia da imputação desses valores, conduziremos uma análise usando métricas descritivas, como média, mediana, moda e desvio padrão. Essa comparação será feita considerando os dados antes e após a imputação através da regressão.

```
In [ ]: # Visualizando métricas de descritivas
describe_rent_real = df_main_rent.loc[df_main_rent.index.isin(condo_zero_index_rent), "Condo"].describe().to_frame(name="Valores
describe_rent_estimade = df_main_rent["Condo"].describe().to_frame(name="Valores Estimados")

comparison_rent = pd.concat([describe_rent_real, describe_rent_estimade], axis=1)

print("Para os imóveis Rent")
comparison_rent
```

Para os imóveis Rent

	Valores Reais	Valores Estimados
count	6401.000000	7019.000000
mean	912.251055	894.526245
std	838.586641	824.102591
min	1.000000	1.000000
25%	450.000000	446.000000
50%	641.000000	618.000000
75%	1060.000000	1020.000000
max	9500.000000	9500.000000

```
In []: # Visualizando métricas de descritivas Sale
  describe_sale_real = df_main_sale.loc[df_main_sale.index.isin(condo_zero_index_sale), "Condo"].describe().to_frame(name="Valores
  describe_sale_estimade = df_main_sale["Condo"].describe().to_frame(name="Valores Estimados")
  comparison_sale = pd.concat([describe_sale_real, describe_sale_estimade], axis=1)
  print("Para os imóveis Sale")
  comparison_sale
```

Para os imóveis Sale

t[]:		Valores Reais	Valores Estimados
	count	5013.000000	6302.000000
	mean	681.833832	684.798007
	std	631.830161	666.144571
	min	1.000000	1.000000
	25%	345.000000	339.000000
	50%	500.000000	490.000000
	75%	800.000000	778.750000
	max	8920.000000	8920.000000

Como podemos observar, não ocorreu nenhuma mudança siginificativa nos dados após a imputação dos valores faltantes utilizando a regressão linear

Contudo, é importante destacar algumas particularidades dessa abordagem. Em primeiro lugar, não estamos levando em conta todos os fatores que podem influenciar o preço do condomínio. Por exemplo, as colunas "Swimming Pool" e "Elevator" podem impactar o valor devido aos custos de manutenção. Além disso, a localização é outro elemento que pode influenciar. No entanto, o propósito desta regressão é estimar de forma mais acurada o preço do condomínio para os 14% dos apartamentos que apresentam esse valor como zero. O principal objetivo é evitar a perda de informações de outras variáveis preditivas devido à ausência deste dado. Dada essa perspectiva, é essencial uma análise mais cuidadosa na interpretação dos modelos, especialmente se essa variável tiver grande influência no desempenho preditivo.

Conclusão

Após todas estas etapas de tratamento, obtemos dois dataframes destinados à análise exploratória e posteriormente à modelagem preditiva:

df_main_rent e df_main_sale . O primeiro diz respeito aos apartamentos cuja coluna 'price' indica o valor do aluguel, enquanto o segundo refere-se ao valor de venda. A seguir, apresentamos um resumo de todos os procedimentos executados para a elaboração destes dataframes:

- Exclusão de linhas duplicadas, mantendo apenas uma observação.
- Remoção da coluna Property Type, que possuía um único valor categórico.
- Correção de valores de Latitude e Longitude.
- Separação em dois dataframes distintos, um para venda e outro para aluguel.
- Imputação de valores de condomínio iguais a zero, utilizando uma regressão linear.

E com isso, temos os dois dataframes finais abaixo.

```
In [ ]: # df_main_rent
df_main_rent.to_csv("../data/df_main_rent.csv")
# df_main_sale
df_main_sale.to_csv("../data/df_main_sale.csv")
```