Spec2Vec Energy based non-linear Calibration in NIRS

Patrick Michl <patrick.michl@gmail.com>

2022-06-21

Abstract

The success of multivariate calibration depends on the generalizability of the underlying regression models, for which the spectral features are usually decorrelated in a preliminary step. In order to also allow the application of deep neural networks like transformers, this presentation introduces a powerful approach to highly non-linear decorrelation of spectral features using deep energy based modeling.

NIR Spectroscopy

Part 1

NIR Spectroscopy

NIR Spectroscopy

What is NIR?

NIR = Near Infrared

Region in the EM spectrum

Ranging

from ~780nm to ~2500nm

Ranging

No Atomic Spectral Lines

Eigenstates have transitions at typical wavelengths: ~10nm to ~750nm

No Molecule Vibrations

Eigenfrequencies
of bonds are typically at
wavelengths:
~3000nm to ~30000nm

Stretching Vibrations

XY-Bending Vibrations

XZ-Bending Vibrations

Stretching Vibrations

Symmetric Stretching

XY-Bending Vibrations

XZ-Bending Vibrations

What can be concluded about **NIR**?

Deeper Penetration of samples

Weaker absorption allows deeper penetration of samples

 $\mu m \rightarrow mm$

Deeper Penetration of samples

Weaker absorption allows deeper penetration of samples

 $\mu m \rightarrow mm$

Simpler Preparation

Due to deeper penetration the sample surface is less cruzial

Deeper Penetration of samples

Weaker absorption allows deeper penetration of samples

 $\mu m \rightarrow mm$

Simpler Preparation

Due to deeper penetration the sample surface is less cruzial

Condensed Information

Overlapping bands of deeper penetrations provide comprehensive information within the NIR region

provide comprehensive information within the NIR region

Unspecific Features

Due to overlapping, individual spectral features are insufficient for the prediction of chemical features

Multivariate Calibration

Part 2

Multivariate Calibration

Multivariate Calibration

What is the **General Setup**?

1. Spectroscopy

- 1. Spectroscopy
- 2. Quantization

- 1. Spectroscopy
- 2. Quantization
- 3. Normalization

- 1. Spectroscopy
- 2. Quantization
- 3. Normalization
- 4. Modeling & Optimization

- 1. Spectroscopy
- 2. Quantization
- 3. Normalization
- 4. Modeling & Optimization
- 5. Validation

- 1. Spectroscopy
- 2. Quantization
- 3. Normalization
- 4. Modeling & Optimization
- 5. Validation

What are the tools in **Statistical Modeling?**

Linear Superposition!

Model chemical features by superpositions of spectral features

Linear Decorrelation!

Decorrelate spectral features by orthogonal components

Approach 2: Principal Component (PC) Regression

Approach 2: Principal Component (PC) Regression

Approach 2: Principal Component (PC) Regression

Incorporate Chemical Features!

Decorrelate the combined vector of spectral features and chemical features

Approach 3: Partial Least Squares (PLS) Regression

Approach 3: Partial Least Squares (PLS) Regression

What can be concluded about **Multivariate Calibration**?

Multivariate Calibration

Samples are rare!

The requirement to extract chemical features by **wet-lab** experiments makes reference samples rare

Samples are rare!

The requirement to extract chemical features by **wet-lab experiments** makes reference samples rare

Direct Regression is not possible!

Overlapping and scattered bands create multicollinearity in spectral features

Samples are rare!

The requirement to extract chemical features by wetlab experiments makes reference samples rare

Direct Regression is not possible!

Overlapping and scattered bands create multicollinearity in spectral features

Decorrelation in PLS allows efficient linear Regression

A preceded **decorrelation step** in PLS allows allows linear regression

Samples are rare!

The requirement to extract chemical features by wetlab experiments makes reference samples rare

> **Direct Regression** is not possible!

Overlapping and scattered bands create multicollinearity in spectral features

Non-Linear Spectral Dependencies in NIR

Combined vibrational modes in NIR create highly non-linear conditional dependencies between spectral features

> **Decorrelation in PLS** allows efficient linear Regression

A preceded **decorrelation** step in PLS allows allows linear regression

Energy based Calibration

Part 3

Energy based Calibration

What is non-linear Decorrelation?

Linear Correlations

"Multicollinearity"

Generic Correlations

Linear or non-linear

Linear or non-linear

Non-Linear Decorrelation

Orthogonal Projection to k dimensional **Principal Manifold**

Linear or non-linear

Non-Linear Decorrelation

Orthogonal Projection to k dimensional **Principal Manifold**

How to model non-linear Decorrelation?

Directed mapping to latent space

Map features onto itself through a latent bottleneck layer and minimize Error

Undirected mapping to latent space

Regard the mapping between features and the bottleneck layer mutually and minimize Energy

Approach 2: *Undirected Graphical Model*

What is **Energy based Modeling**?

Directed Connections

Weights model one direction:

 w_{ij}

Energy based Model

Undirected Connections

Weights model both directions:

$$w_{ij} = w_{ji}$$

Directed Connections

Weights model one direction:

 w_{ij}

Minimizes Error

Parameters minimize the error between targets and predictions

Energy based Model

Undirected Connections

Weights model both directions:

$$w_{ij} = w_{ji}$$

Minimizes Energy

Parameters minimize the pairwise energies of connected vertices:

Pos. Corr.: $w_{ij} > 0$ Neg. Corr.: $w_{ij} < 0$

Directed Connections

Weights model one direction:

 w_{ij}

Minimizes Error

Parameters minimize the error between targets and predictions

Calculates Predictions

Predictions **of targets** are directly calculated

Energy based Model

Undirected Connections

Weights model both directions:

 $w_{ij} = w_{ji}$

Minimizes Energy

Parameters minimize the pairwise energies of connected vertices:

Pos. Corr.: $w_{ij} > 0$ Neg. Corr.: $w_{ij} < 0$

Approximates **Predictions**

Predictions of **all variables** are approximated by a Markov Chain using Gibbs Sampling

Directed Connections

Weights model one direction:

 w_{ij}

Minimizes Error

Parameters minimize the error between targets and predictions

Calculates Predictions

Predictions **of targets** are directly calculated

Optimizes Prediction Function

Gradient Descent in the Errorlandscape approximates the prediction function

Energy based Model

Undirected Connections

Weights model both directions:

 $w_{ij} = w_{ji}$

Minimizes Energy

Parameters minimize the pairwise energies of connected vertices:

Pos. Corr.: $w_{ij} > 0$ Neg. Corr.: $w_{ij} < 0$

Approximates Predictions

Predictions of **all variables** are approximated by a Markov Chain using Gibbs Sampling

Optimizes Joint Distribution

Gradient Descent in the Energylandscape approximates the joint distributon

Non-linear **Regression** in Energy based Calibration

Consists of two Parts

What can be concluded about **Energy based Calibration**?

Non-Linear Decorrelation

Energy based modeling allows non-linear decorrelation of spectral features

Non-Linear Decorrelation

Energy based modeling allows non-linear decorrelation of spectral features

Increases Signal-to-Noise ratio

Non-linear decorrelation allows the separation of skewed noise (non-Gaussian)

Non-linear feature selection

Part 4

Non-linear feature selection

Differential Geometric feature selection for *Principal Components*

Feature Selection for **Principal Component**

Feature Selection for **Principal Component**

Approach 1: Statistical

Calculate empirical correlations:

 $corr(\hat{X}, X)$

Feature Selection for **Principal Component**

Approach 1: Statistical

Calculate empirical correlations:

 $\operatorname{corr}(\hat{X}, X) > \operatorname{corr}(\hat{X}, Y)$

Feature Selection for **Principal Component**

Approach 2: Geometrical

Calculate partial derivatives:

$$\left| \frac{\partial}{\partial X} \widehat{X} \right|$$

Feature Selection for **Principal Component**

Approach 2: Geometrical

Calculate partial derivatives:

$$\left| \frac{\partial}{\partial X} \hat{X} \right| > \left| \frac{\partial}{\partial Y} \hat{X} \right|$$

Differential Geometric feature selection for *Principal Manifolds*

Example (Curve)

Feature Selection for **Principal Curve**

Example (Curve)

Feature Selection for **Principal Curve**

Feature Selection for **Principal Curve**

Approach 2: Monte Carlo Integration

Approximate integrals of partial derivatives along curve

Feature Selection for **Principal Curve**

Approach 2: Monte Carlo Integration

Approximate integrals of partial derivatives along curve

What can be concluded about non-linear feature selection?

Feature Selection

for non-linear models works!

2022-06-21

Bayesian sample selection

Part 5

Bayesian sample selection

Bayesian Experimental Design

Initial Selection of calibration samples

Conclusions about **Bayesian** sample selection

Iteratively increases Confidence in Validation Predictions

by Bayesian Optimization

#1

Neural networks are by themselves **not suitable** for multivariate calibration in NIR due to missing generalizability

#1

Neural networks are by themselves **not suitable** for multivariate calibration in NIR due to missing generalizability

#2

A preceded embedding step with deep **non-linear decorrelation** using energy based modeling fixes this issue

#1

Neural networks are by themselves **not suitable** for multivariate calibration in NIR due to missing generalizability

#3

The incorporation of non-linearity increases the **accuracy** and the **efficiency** of predictions

#2

A preceded embedding step with deep non-linear decorrelation using energy based modeling fixes this issue

#1

Neural networks are by themselves **not suitable** for multivariate calibration in NIR due to missing generalizability

#3

The incorporation of non-linearity increases the **accuracy** and the **efficiency** of predictions

#2

A preceded embedding step with deep **non-linear decorrelation** using energy based modeling fixes this issue

#4

The incorporation of non-linearity intricates **feature selection** and the **design of experiments**

Thank you for your attention!

