- I will be having office hours on Saturday and Sunday this weekend, 10am – 11am
 - If there are people dong work, I will stay until 11:30am or so
- We are getting towards the end of microcontrollers
 - 2 3 projects left
 - Quiz
- · I'm getting caught up with the grading
 - Majority of the grades made it in to blackboard this past weekend
 - I will post my solutions to the questions once I've got all the submissions
- Austin Thompson will have room open when?

Labs 6 and 7

- Lab 6 (6 7 boards)
 - Advanced PWM with piezo buzzer on DEM 2 board
 - One of the boards LCD is pretty much non functional
 - Another one is functional, but the bottom line of the LCD only shows about 70% of the line
 - We also have my board to use
- Lab 7 (6 7 boards)
 - Simple PWM with brushed DC motor on Mechatronics board
- We will be starting both tonight
 - We need at least 5 groups starting lab 6 tonight

Using the DEM 2 board

- Read
 - Frequency (Hz) and duty cycle (%) from pot
 - Display frequency, duty cycle, and PWM info on LCD
- Compute
 - PWM settings and apply
 - Observe sound generated by piezo buzzer
 - · Be considerate of others hearing
 - Pull jumper J9 or setting the output pin for PWM to input should disable the sound while you are developing
- Mode
 - Use pushbutton(s) to toggle between
 - Reading frequency/reading duty cycle
- This lab is by far is the most difficult of the two
- Get credit via demo and answering questions

Lab 6 Display

- Using the Mechatronics board
 - Read
 - Duty cycle (%) from pot
 - Compute
 - Set PWM duty cycle value
 - Compute motor rotations per second (RPS) via optical interrupter
 - Display
 - Toggle every second between RPS & duty cycle on LCD
 - This lab is the easiest of the two labs
 - Get credit via demo and answering questions
- Although the motor is not very power full, keep your hair clear of motor axis

Lab 7 Display

Interface

- void mech_clearLCD();
- void mech_initLCD();
- void mech_writeToLCD(unsigned char position, unsigned char value);

First Day on a Lab

- Get the input and output working
- Input
 - Potentiometer for both labs
 - One pushbutton for DEM 2 (use polling)
- Output
 - LCD for both

- Some background on lab 6
 - Using the brushed DC motor
 - Drive 1 provides VDD
 - Drive 2 provides ground (GDN)
 - Provide constant VDD and oscillate GDN
- You can touch one of the motor's wires to VDD and the other to GDN and it will run a full speed
 - Likewise connecting an output port to each of drive 1 & drive 2 and outputting a 1 to each will cause the motor to run at full speed (constant power)
 - Rapidly changing port to drive 2 between 0 & 1 will change the speed of the motor, approximately proportional to percent of time with 1

- Given we can already control the speed of the motor just by changing how often we provide a 1/0 to an output port, why use PWM
 - With PWM you only compute and set the values when things change (requested speed, on/off)
 - Then setup the values for PWM
 - The microcontroller does all of the work via hardware
 - Leaving your code and processor available for other things
 - Each instruction cycle the microcontroller does this "for free" versus via code would take many instruction cycles

- We will use pulse width modulation (PWM) to oscillate power to drive 2 to control the speed of the motor
- For lab 7, duty cycle only
- For lab 6, duty cycle and frequency/period
- The mechatronics board also has a stepper motor that has precise angular control, whereas the brushed doesn't have this kind of control
 - We won't be programming the stepper moters

- Connect
 - One wire from the motor to each of drive 1 & drive 2
 - Pot1 \rightarrow AN0
 - Read duty cycle from potentiometer
 - RD7 → P1
 - Constant power to VDD
 - RD2 \rightarrow N2
 - PWM output to GND (completes circuit)
 - Optical interrupter (J7) → RC5
 - Generate input to RC5 twice per motor shaft rotation
 - Use interrupt to count inputs on RC5
 - $RD6 \rightarrow RD0$
 - Toggle LED and duty cycle/RPS to display every second

From PICDEM Mechatronics Demonstration Board Users Guide

- AN0 is analog input from pot 1
 - Controls duty cycle
- Motor
 - RD7 is always set
 - Connected to P1 positive for drive 1
 - RD2/CCP2 is output from PWM
 - Connected to N2 negative for drive
 - Output from RD2 completes circuit and motor runs, with speed proportional to duty cycle
- Set internal oscillator to 8MHz
- A to D conversion clock Fosc/16
- A to D VCFG of 0b00

- RC5 is output from optical interrupter
 - Optical interrupter generates a signal every half rotation of the motor
 - I've been able to have the motor going between 1 and 30 RPS
- Connecting the output of PWM (RD2/CCP2) to an LED will adjust the brightness
- Connecting RD5 to N2 and setting RD5 to 1 will run the motor at full speed (to test working)
 - I toggle RD5 each time my ISR is called, so that when I connect RD5 to N2 the motor doesn't run at full speed all of the time

Pragmas and PWM for Lab 7

- #pragma config WDTE = OFF
- #pragma config FOSC = HS
- #pragma config BOREN = OFF
- #pragma config DEBUG = ON
- Use CCP2
 - Period of 20kHz (outside of hearing range)
 - With a lower value you may hear the motor
- You may need to push the CLR FAULT button on the Mechatronics board if the amber light is on