ECONOMETRICS 2

M.BEN SALEM and C.DOZ

Exercises: session 2

MA processes

Exercise # 1

Let (X_t) be the moving-average process of order 2 defined by

$$X_t = Z_t + \theta Z_{t-2}$$

where (Z_t) is WN(0,1)

- 1. Compute the autocovariance and autocorrelation functions for this process when $\theta = 0.8$.
- 2. Compute the variance of the sample mean $(X_1 + X_2 + X_3 + X_4)/4$ when $\theta = 0.8$
- 3. Repeat the previous question when $\theta = -0.8$ and compare your answer with the result obtained in 2).

Exercise # 2

Let (y_t) be a time-process defined by:

$$y_t = (1 - \theta_1 L - \theta_2 L^2) u_t$$

where (u_t) is a WN $(0,\sigma_u^2)$.

- 1. What kind of process is (y_t) ?
- 2. We build the quarterly time series x_t in the following way: $x_1 = y_3$, $x_2 = y_6$, $x_3 = y_9$, $x_4 = y_{12}$ and, more generally,

$$x_t = y_{3t}$$

- (a) Compute the autocorrelations of (x_t) .
- (b) Which family does the (x_t) process belong to?
- 3. We build another quarterly time series (z_t) by averaging y_t observations belonging to the same quarter:

$$z_1 = \frac{1}{3}(y_1 + y_2 + y_3), \ z_2 = \frac{1}{3}(y_4 + y_5 + y_6), \ z_3 = \frac{1}{3}(y_7 + y_8 + y_9), \ z_4 = \frac{1}{3}(y_{10} + y_{11} + y_{12})$$

and, more generally:

$$z_t = \frac{1}{3}(y_{3t-2} + y_{3t-1} + y_{3t})$$

Compute the autocorrelations of (z_t) .

Exercise # 3

Let (x_t) be the MA(1) process defined by

$$x_t = u_t - \theta u_{t-1}$$

where (u_t) is WN(0,1) and $\theta = \frac{1}{\sqrt{2}}$.

Suppose that x_t is not observable and that the process which is observed is (y_t) defined by:

$$y_t = x_t + e_t$$

where (e_t) is a measurement error and is WN $(0,\frac{1}{2})$. We suppose that (e_t) is a process which is independent of (u_t) , so that $\forall (t,s), u_t$ is independent of e_s .

- 1. Compute the autocovariances of (y_t) .
- 2. Prove that it is possible to find a white noise (ε_t) with variance σ_{ε}^2 and a real number ψ , $|\psi| < 1$, so that the autocovariance function of (y_t) coincides with the autocovariance function of the MA(1) process $z_t = \varepsilon_t \psi \varepsilon_{t-1}$.

Hint Compute the autovariances of order 0 and 1 for both process and find conditions on ψ and σ_{ε}^2 ensuring equality of the autocovariance functions. Solve the corresponding equations.

Exercise # 4

Let (x_t) be the MA(1) process defined by the following equation (\mathcal{E}) :

$$x_t = \varepsilon_t - \theta \varepsilon_{t-1} \tag{\mathcal{E}}$$

where (ε_t) is WN $(0,\sigma^2)$ and $|\theta| < 1$.

1. Using equation (\mathcal{E}) for different values of t, prove that, for any h > 0:

$$x_t + \theta x_{t-1} + \dots + \theta^h x_{t-h} = \varepsilon_t - \theta^{h+1} \varepsilon_{t-h-1}$$

- 2. Compute the variance of $\theta^{h+1}\varepsilon_{t-h-1}$. What can you say of $\lim_{h\to+\infty}\theta^{h+1}\varepsilon_{t-h-1}$?
- 3. i) Prove that $\sum_{h=0}^{+\infty} \mathbb{E}\left((\theta^h x_{t-h})^2\right) < +\infty$
 - ii) Using (2), prove that $\varepsilon_t = \sum_{h=0}^{+\infty} \theta^h x_{t-h}$ (you will admit that (i) is sufficient to prove that $\sum_{h=0}^{+\infty} \theta^h x_{t-h}$ is well defined).