Advanced Engineering Mathematics Partial Differential Equations by Dennis G. Zill Notes

Chris Doble

November 2023

Contents

all have a norm of 1.

member by its norm.

Contents
12 Orthogonal Functions and Fourier Series 1 12.1 Orthogonal Functions 1
12 Orthogonal Functions and Fourier Series
12.1 Orthogonal Functions
• The inner product of two functions f_1 and f_2 on an interval $[a, b]$ is the number
$(f_1, f_2) = \int_a^b f_1(x) f_2(x) dx.$
• Two functions f_1 and f_2 are said to be orthogonal on an interval if $(f_1, f_2) = 0$.
• A set of real-valued functions $\{\phi_1(x), \phi_2(x), \dots, \phi_n(x)\}$ is said to be orthogonal on an interval if
$(\phi_i, \phi_j) = 0 \text{ for } i \neq j.$
• The square norm of a function is
$ \phi_n(x) ^2 = (\phi_n, \phi_n)$
and thus its norm is
$ \phi_n(x) = \sqrt{(\phi_n, \phi_n)}.$

1

 \bullet An orthonormal set of functions is an orthogonal set of functions that

• An orthogonal set can be made into an orthonormal set by dividing each

• If $\{\phi_n(x)\}$ is an infinite orthogonal set of functions on an interval [a,b] and f(x) is an arbitrary function, then it's possible to determine a set of coefficients $c_n, n = 0, 1, 2, \ldots$ such that

$$f(x) = \sum_{n=0}^{\infty} c_n \phi_n(x) = c_0 \phi_0(x) + c_1 \phi_1(x) + \dots + c_n \phi_n(x) + \dots$$

This is called an **orthogonal series expansion** of f or a **generalized** Fourier series where the coefficients are given by

$$c_n = \frac{(f, \phi_n)}{||\phi_n||^2}.$$

• A set of real-valued functions $\{\phi_n(x)\}$ is said to be **orthogonal with** respect to a weight function w(x) on the interval [a,b] if

$$\int_{a}^{b} w(x)\phi_{m}(x)\phi_{n}(x) dx = 0, \ m \neq n.$$