ЛАБОРАТОРНА РОБОТА №3

Тема: Створення бібліотеки посадкових місць.

У минулій лабораторній Ви створили бібліотеку компонентів, а саме - їх умовно графічні позначення. Тепер потрібно створити посадкові місця (які будуть використовуватись на платі для відповідного компонента) та 3Dмоделі.

1. Створюємо бібліотеку посадкових місць. Для цього File > New > Library > PCB Library та підключаєм її у проект. Або права кнопка миші (ПКМ) на ім'я з проектом у панелі Projects > Add New to Project > PCB Library (Puc.1).

Рис.1. Проект, який містить бібліотеку посадкових місць

2. Відкриваємо **PCB Library Editor** (створена бібліотека посадкових місць).

Зліва знаходиться панель **PCB Library**, яка містить компоненти, примітиви і попередній перегляд посадкового місця.

Рис.2. Панель PCB Library

- 3. Переходимо у метричну систему, для цього ПКМ > Library Options > Unit > Metric
- 4. На робочій області кружком позначено початок координатної сітки, саме ця точка буде точкою прив'язки на платі Вашого компонента. Тому бажано у ній розташовувати перший вивід (раd).
- 5. Для налаштування кроку сітки прив'язок нажимаємо клавішу **G** та обираємо потрібну.

При розробці плати, робота виконується з декількома шарами, топологія провідників на одних шарах, пасти, маски — у інших.

Для перегляду усіх існуючих шарів проекту та керуванні їх відображенням нажимаємо **Tools > Layer&Colors** (Рис.3).

Рис.3. View Configuration

Усі шари об'єднуються у групи:

- Signal Layers (Сигнальні шари) використовуються для створення топології провідників;
- Internal Layers (Екранні шари) використовуються для розташування внутрішніх полігонів землі та живлення;
- Mechanical Layers (Графічні шари) використовуються для допоміжної графічної інформації, наприклад контур плати, контур компонентів і т.п.. Інформація з цих шарів використовується під час створення креслень;
- Mask Layers шари паяльної пасти та захисної маски;
- Other Layers додаткові шари, які містять інформацію про зони заборони, шари з інформацією отворів на платі;

- Silkscreen Layers шари шовкографії, які містять інформацію для маркування плати;
- **System Layers** (Системні шари) тут відображені кольори фону, сітки, з'єднань і т.п..

Щоб зробити активними додатковий шар: прибираємо галочку біля Only show enabled mechanical Layer та ставимо Enable.

6. Розглянемо створення посадкового місця для резистора вручну. Резистор знаходиться у корпусі 0805, відповідні розміри можна подивитись на Рис.4.

Габаритные размеры чип-резисторов

Типоразмер ЕІА	Размеры (мм)				
	L	W	Н	D	T
0402	1.00	0.50	0.20	0.25	0.35
0603	1.60	0.85	0.30	0.30	0.45
0805	2.10	1.30	0.40	0.40	0.50
1206	3.10	1.60	0.50	0.50	0.55
1210	3.10	2.60	0.50	0.40	0.55
2010	5.00	2.50	0.60	0.40	0.55
2512	6.35	3.20	0.60	0.40	0.55

Рис.4. Розміри чип-резисторів

- Tools > New Blank Component створюємо новий компонент
- **2 рази ЛКМ по імені на панелі РСВ Library** змінюємо ім'я футпринта та задаємо висоту компонента
- **ПКМ** > **Place** > **Pad** додаємо контактний майданчик для одного вивода. Двічі нажимаємо по pad й переходимо у його налаштування (Puc.5).
 - *Location* розташування, задаються координати по осі X, Y
 - *Hole Information* якщо для розробляємого вивода, потрібно зробити отвір (тобто штирьовий компонент) тут задаються параметри отвору, а саме: розмір, точність, тип, металізація
 - *Properties* це вікно містить найважливіші параметри:

Designator — унікальне ім'я конт.майданчика. Воно повинно бути ідентично імені піна відповідного компонента.

Layer — тут обираємо шар, на якому буде даний конт.майданчик. Якщо вивід *штирьовий* (тобто ще потрібно робити отвір під нього) — Multi-Layer, для компонентів $nosepxhesoro\ months$ $mosepxhesoro\ mosepxhesoro\ mosep$

Net - iм'я ланцюга, до якого буде підключено пад. Ми цей параметр використовувати не будемо

• Size and Shape – розміри й тип конт.майданчика

Рис.5. Налаштування для Pad

• Створюємо 2 пади, які відповідають пінам УГП. Для резистора у корпусі 0805 кожний пад буде мати такі налаштування (Рис.6, 7):

Рис.6. Налаштування для 1-го конт. майданчика у резисторі 0805 № Рад [mm] ?

Рис.7. Налаштування для 2-го конт. майданчика у резисторі 0805

• У шарі **Top Overlay** малюємо контур корпуса. Для переходу у потрібний шар, унизу робочої області (Рис.8) натискаємо на потрібний шар.

Рис.8. Вибір шару

- **ПКМ > Place > Line** створення лінії.
- **Place** > **3D Body** створюємо 3D модель резистора (Рис.9). У цій лабораторній ми будемо розглядати примітивні 3D моделі. А у наступному семестрі більш реалістичні.

3D Model Type > **Extruded** – витягує заданий контур

Extruded > Overall Height – загальна висота компонента

Extruded > Standoff Height – висота, на яку 3D модель віддалена від плати

Задаємо необхідну висоту (усі розміри можна знайти у Datasheet обраного компонента). Натискаємо ОК. Й на платі малюємо контур, який буде перетворено у 3D модель.

Рис.9. Створення 3D-моделі

• Футпринт резистора створено. Зберігаємо РСВ бібліотеку.

• Переходимо у бібліотеку УГП, відкриваємо властивості резистора й додаємо зроблений футпринт (Puc.10). **Models** > **Add** > **Footprint** > **Browse** > **обираємо відповідний футпринт.**

Рис.10. Підключення футпринта

- Зберігаємо.
- 7. Тепер розглянемо створення посадкових місць за допомогою **IPC Footprint Wizard**.
 - Tools > IPC Compliant Footprint Wizard. У відкритому вікні натискаємо Next. Обираємо тип корпуса. Ми зараз розглянемо створення корпуса SOIC-14, тому обираємо його і натискаємо Next (Puc.11).

Рис.11. Створення посадкового місця для SOIC

• Задаємо необхідні розміри (їх беремо з Datasheet) й натискаємо Next (Рис.12)

< <u>B</u>ack <u>N</u>ext >

Рис.12. Задання параметрів для SOIC-14

- Якщо необхідно додати ще якісь додаткові параметри на наступних вкладках вони будуть присутні. Якщо вони не потрібні, тоді залишаємо їх за замовчуванням.
- На вкладці задають параметри для 3D моделі. Першу мітку краще зняти це контур усього посад. місця, ми його не використовуємо. Друга контур корпуса, змінюємо **Layer** на інший, наприклад Mechanical 5. Це робимо для більш зручної роботи під час створення креслень. Й третя показує параметри для 3D моделі. Шар залишаємо за замовчуванням Mechanical 13 (Рис.13). Натискаємо Next

Рис.13. Задання параметрів для SOIC-14

- Задаємо або залишаємо стандартне ім'я. Натискаємо Next. Задаємо розміщення. Натискаємо Finish
- Посадкове місце готове. Підключаємо його до необхідної мікросхеми у бібліотеки УГП.
- 8. Під час створення футпринтів можуть знадобитись наступні команди:
 - Поворот на 90° клавішею **Space**
 - Віддзеркалення по осі X клавіша X, по осі Y клавішою Y
 - Зміна сітки клавіша G й вибір сітки з випадаючого списку
 - Англ. розкладка й 2 рази натиск клавіши **P** додавання **pad**
 - Англ. розкладка й натиск клавіш P, L додавання Line
 - Перегляд у 2D режимі клавіша 2
 - Перегляд у 3D режимі клавіша 3
 - Поворот компонента у 3D режимі **Shift** + **натиснута ПКМ**

Завдання

- створити PCB Library у Вашому проекті
- створити посадкові місця для усіх компонентів
- підключити до відповідного компонента у бібліотеці УГП
- надіслати на перевірку бібліотеку компонентів (у форматі *. Schlib) й бібліотеку посадкових місць (у форматі *. Pcblib)

Кожний футпринт повинен містити:

- ∂ eciгнатор пада, який відповіда ϵ піну на УГП
- коректне налаштування падів (розміри, шар, на якому розміщено і т.п)
- контур компонента у шарі Top Overlay
- *3D модель компонента*
- підключення до відповідного компонента у бібліотеці УГП

Після перевірки потрібно виправити усі зауваження.

Захист лабораторної

- створення заданої бібліотеки посад. місць
- підключення посадкових місць до відповідних компонентів у бібліотеці УГП
- відповідь на питання по лабораторній роботі

Оцінювання

- 1. Виконання завдання лабораторної роботи **5 балів**. Повторна перевірка відіймає від максимальної оцінки **1 бал**.
- 2. Захист лабораторної роботи **5 балів**. Повторний захист відіймає від максимальної оцінки **1 бал**.

Загальна оцінка помножується на коефіцієнт **0,5** та вноситься у рейтинг по дисципліні.