10:46 am

Let's compare the behavior of the functions

$$f(x, y) = \frac{\sin(x^2 + y^2)}{x^2 + y^2}$$
 and $g(x, y) = \frac{x^2 - y^2}{x^2 + y^2}$

as x and y both approach 0 [and therefore the point (x, y) approaches the origin].

-1.0-0.20 -0.50.2 0.5 1.0 -1.00.455 0.759 0.829 0.841 0.829 0.759 0.455 0.759 -0.50.959 0.9860.9900.9860.959 0.759 -0.20.829 0.986 0.9991.000 0.9990.9860.829 0 0.990 0.841 1.000 1.000 0.9900.841 0.2 0.829 0.986 0.9991.000 0.9990.986 0.829 0.5 0.959 0.990 0.759 0.986 0.9860.9590.759 1.0 0.455 0.759 0.829 0.841 0.8290.759 0.455

TABLE 1 Values of f(x, y)

TABLE 2 Values of g(x, y)

xy	-1.0	-0.5	-0.2	0	0.2	0.5	1.0
-1.0	0.000	0.600	0.923	1.000	0.923	0.600	0.000
-0.5	-0.600	0.000	0.724	1.000	0.724	0.000	-0.600
-0.2	-0.923	-0.724	0.000	1.000	0.000	-0.724	-0.923
0	-1.000	-1.000	-1.000		-1.000	-1.000	-1.000
0.2	-0.923	-0.724	0.000	1.000	0.000	-0.724	-0.923
0.5	-0.600	0.000	0.724	1.000	0.724	0.000	-0.600
1.0	0.000	0.600	0.923	1.000	0.923	0.600	0.000

$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = 1 \quad \text{and} \quad \lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2} \quad \text{does not exist}$$

1 Definition Let f be a function of two variables whose domain D includes points arbitrarily close to (a, b). Then we say that the **limit of** f(x, y) **as** (x, y) **approaches** (a, b) is L and we write

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

if for every number $\varepsilon > 0$ there is a corresponding number $\delta > 0$ such that

if
$$(x, y) \in D$$
 and $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$ then $|f(x, y) - L| < \varepsilon$

EXAMPLE 1 Show that
$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$$
 does not exist.

SOLUTION Let $f(x, y) = (x^2 - y^2)/(x^2 + y^2)$. First let's approach (0, 0) along the x-axis. Then y = 0 gives $f(x, 0) = x^2/x^2 = 1$ for all $x \neq 0$, so

$$f(x, y) \rightarrow 1$$
 as $(x, y) \rightarrow (0, 0)$ along the *x*-axis

We now approach along the *y*-axis by putting x = 0. Then $f(0, y) = \frac{-y^2}{y^2} = -1$ for all $y \neq 0$, so

$$f(x, y) \rightarrow -1$$
 as $(x, y) \rightarrow (0, 0)$ along the *y*-axis

EXAMPLE 2 If $f(x, y) = xy/(x^2 + y^2)$, does $\lim_{(x, y) \to (0, 0)} f(x, y)$ exist?

SOLUTION If y = 0, then $f(x, 0) = 0/x^2 = 0$. Therefore

$$f(x, y) \rightarrow 0$$
 as $(x, y) \rightarrow (0, 0)$ along the *x*-axis

If x = 0, then $f(0, y) = 0/y^2 = 0$, so

$$f(x, y) \rightarrow 0$$
 as $(x, y) \rightarrow (0, 0)$ along the *y*-axis

$$f(x, x) = \frac{x^2}{x^2 + x^2} = \frac{1}{2}$$

$$f(x, y) \rightarrow \frac{1}{2}$$
 as $(x, y) \rightarrow (0, 0)$ along $y = x$

EXAMPLE 3 If
$$f(x, y) = \frac{xy^2}{x^2 + y^4}$$
, does $\lim_{(x, y) \to (0, 0)} f(x, y)$ exist?

Continuity

4 Definition A function f of two variables is called **continuous at** (a, b) if

$$\lim_{(x, y) \to (a, b)} f(x, y) = f(a, b)$$

We say f is **continuous on** D if f is continuous at every point (a, b) in D.

all polynomials are continuous on \mathbb{R}^2

$$f(x, y) = x^4 + 5x^3y^2 + 6xy^4 - 7y + 6$$

rational function.

$$g(x, y) = \frac{2xy + 1}{x^2 + y^2}$$

EXAMPLE 5 Evaluate
$$\lim_{(x,y)\to(1,2)} (x^2y^3 - x^3y^2 + 3x + 2y)$$
.

SOLUTION Since $f(x, y) = x^2y^3 - x^3y^2 + 3x + 2y$ is a polynomial, it is continuous everywhere, so we can find the limit by direct substitution:

$$\lim_{(x,y)\to(1,2)} (x^2y^3 - x^3y^2 + 3x + 2y) = 1^2 \cdot 2^3 - 1^3 \cdot 2^2 + 3 \cdot 1 + 2 \cdot 2 = 11$$

EXAMPLE 6 Where is the function
$$f(x, y) = \frac{x^2 - y^2}{x^2 + y^2}$$
 continuous?

SOLUTION The function f is discontinuous at (0,0) because it is not defined there. Since f is a rational function, it is continuous on its domain, which is the set $D = \{(x, y) \mid (x, y) \neq (0, 0)\}.$

EXAMPLE 7 Let

$$g(x, y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$$

Here g is defined at (0,0) but g is still discontinuous there because $\lim_{(x,y)\to(0,0)} g(x,y)$ does not exist (see Example 1).

EXAMPLE 8 Let

$$f(x, y) = \begin{cases} \frac{3x^2y}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$$

We know f is continuous for $(x, y) \neq (0, 0)$ since it is equal to a rational function there. Also, from Example 4, we have

$$\lim_{(x, y)\to(0, 0)} f(x, y) = \lim_{(x, y)\to(0, 0)} \frac{3x^2y}{x^2 + y^2} = 0 = f(0, 0)$$

Therefore f is continuous at (0, 0), and so it is continuous on \mathbb{R}^2 .