# Fraud Detection in Healthcare Insurance Claims

Ashpak Rakeeb *B00913796* 

Shravya Reddy *B00911193* 

Sri Ramya *B00900307*  Venkata Vijaya *B00912916* 

Meagan Sinclair *B00737317* 

Abstract-In terms of the value of our healthcare system and in terms of money, fraudulent claims come with a very high price. Healthcare spending in the United States totals at 3.6 trillion dollars in 2018, which equates to billions in insurance claims. [1]. There is no denying that some of these claims are fraudulent. [1]. In a huge set of Medicare data (more than 550,000 claims), we developed a process to predict potential fraud in medical insurance claims where the doctor files the paperwork and submits the claim on the patient's behalf. We experimented with four distinct approaches: Decision Tree Classifier, XGBoost Classifier, Bagging Classifier, and Stacked Classifier. According to our experiments, the XGBoost classifier had the best generalization and a 78% accuracy rate on the reserved test set. The other models' performances were likewise satisfactory, with the lowest-scoring model, the Stacked Classifier, having an accuracy of 72%.

### I. Introduction

Every year, healthcare fraud costs the industry billions of dollars as fraudsters find the healthcare industry an attractive target [1]. Common healthcare frauds include beneficiaries claiming medical conditions for which they were not treated and submitting multiple claims for the same service. Claiming more than the actual monetary cost spent on treatment is also a common fraud technique [2].

If insurance companies don't have procedures in place to identify and stop fraudulent practices, they are at risk to lose significant profit. Further, if fraud detection techniques are unreliable, healthcare providers could be incorrectly subjected to an inquiry that could harm their reputation and revenue, as well as damaging the reputation and wasting resources of the insurance provider. This can raise health insurance premiums for customers. Insurance companies prefer to make payments without conducting investigations since doing so is expensive and time-consuming. Additionally, incorrectly detecting fraudulent claims could delay reimbursement, which is undesirable for honest customers and degrades the public opinion of the insurance provider [3].

To solve this business problem, insurance providers now use predictive analytical methods to prevent false medical bills before healthcare providers receive payments. The goal of this project is to create a model which can predict whether claim is potentially fraudulent or not based on the claim information. This would allow the insurance providers to assess claim details and determine if further fraud investigation is required. This is a supervised classification problem as we have a specific binary target, potential fraud.

#### II. LITERATURE REVIEW

Several researchers have tackled the problem of fraud detection in healthcare insurance claims. Multiple clustering methods have been employed to identify suspicious claims within databases and provide insight into groups within the data [4]. This is a useful basis for further work toward classification but does not provide conclusive fraud detection. Bayesian coclustering methods have also been employed [5]. This method is beneficial for the problem as co-clustering allows for modeling relationships between entities and potentially better results. There is little work done on ensemble models or boosted learning algorithms [6].

The accompanying notebook on Kaggle.com utilized feature selection methods and showed testing of various models [7]. Model types trialed included logistic regression, Random Forest classifier, and autoencoders with good results, around 90% accuracy on test data. The author noted that increasing the database size, vectoring medical codes, and utilizing further ensemble models could lead to better results. The author of the notebook also noted the hyperparameter tuning was not performed on the models, so careful tuning will also be a focus of the project. While this previous work attempted to predict fraud for each provider from the information of all claims belonging to the provider, this project will attempt to predict fraud based on a single claim. This is more useful for the business problem as fraud could be identified immediately after 1 claim is submitted, as opposed to requiring multiple claims information, which is less timely.

This project is valuable as various new model types will be applied to the problem and evaluated. Ensembled and boosted models will also be tested to determine if performance can be further improved. This work extends current knowledge of fraudulent claim detection methods.

#### III. METHODOLOGY

## A. Data Exploration

The data set chosen for the project contains relevant information on fraudulent and non-fraudulent health-care claims [8]. This data is open source and is hosted on Kaggle.com. The raw data is broken down into 4 sections: inpatient data, outpatient data, beneficiary details data, list of possibly fraudulent providers.

Inpatient data contains information about claims made by beneficiaries who were admitted into the hospital. The data describes the corresponding beneficiary (the person who submitted the claim), claim date range, relevant monetary amounts, provider and physician codes, diagnoses information and procedure information. These values are summarized below in Figure 1a. Outpatient data describes claims made by patients who were not admitted. The data contains the same fields as inpatient data, excluding the admission and discharge dates.

Beneficiary data includes information describing the person who submitted the claim. This includes date of birth and death, gender, race, residential location, the status of various chronic conditions, length of time covered by insurance, and relevant annual monetary values such as deductibles and reimbursements. These values are summarized below in Figure 1b.

Finally, the last data set contains a list of provider codes marked as either potentially fraudulent or not. The domain concepts graph of the entire feature set is shown below in Figure 2. The corresponding Analytic Base Table with all raw features and their descriptions is shown in Figure 3.

Since the data is split in separate subsets, merging the data into one comprehensive set was the first step. The inpatient and outpatient data sets were merged and the corresponding potential fraud indicator based on the provider value was added to each claim. Next, separate categorical and continuous feature reports were created for the combined data set, these are shown in Appendix A and B.

# B. Data Pre-Processing

Several steps were required to prepare the data for model training. First, the binary features such as disease indicators, chronic conditions, and potential fraud indicator were transformed into binary values 0 and 1. Since the claim codes contained alphanumeric strings to indicate the diagnostic claim, these were reencoded into numericals. The procedure codes were strictly numeric so these were left.

Next, derived features were selected and created. The date of birth and date of death were transformed into an age and a binary feature indicating if the beneficiary was living or not. Time in hospital was derived from the admission and discharge dates and length of claim

| #  | Column                 | Non-Null Count | Dtype   |
|----|------------------------|----------------|---------|
|    |                        |                |         |
| 0  | BeneID                 | 40474 non-null | object  |
| 1  | ClaimID                | 40474 non-null | object  |
| 2  | ClaimStartDt           | 40474 non-null | object  |
| 3  | ClaimEndDt             | 40474 non-null | object  |
| 4  | Provider               | 40474 non-null | object  |
| 5  | InscClaimAmtReimbursed | 40474 non-null | int64   |
| 6  | AttendingPhysician     | 40362 non-null | object  |
| 7  | OperatingPhysician     | 23830 non-null | object  |
| 8  | OtherPhysician         | 4690 non-null  | object  |
| 9  | AdmissionDt            | 40474 non-null | object  |
| 10 | ClmAdmitDiagnosisCode  | 40474 non-null | object  |
| 11 | DeductibleAmtPaid      | 39575 non-null | float64 |
| 12 | DischargeDt            | 40474 non-null | object  |
| 13 | DiagnosisGroupCode     | 40474 non-null | object  |
| 14 | ClmDiagnosisCode_1     | 40474 non-null | object  |
| 15 | ClmDiagnosisCode_2     | 40248 non-null | object  |
| 16 | ClmDiagnosisCode_3     | 39798 non-null | object  |
| 17 | ClmDiagnosisCode_4     | 38940 non-null | object  |
| 18 | ClmDiagnosisCode_5     | 37580 non-null | object  |
| 19 | ClmDiagnosisCode_6     | 35636 non-null | object  |
| 20 | ClmDiagnosisCode_7     | 33216 non-null | object  |
| 21 | ClmDiagnosisCode_8     | 30532 non-null | object  |
| 22 | ClmDiagnosisCode_9     | 26977 non-null | object  |
| 23 | ClmDiagnosisCode_10    | 3927 non-null  | object  |
| 24 | ClmProcedureCode_1     | 23148 non-null | float64 |
| 25 | ClmProcedureCode_2     | 5454 non-null  | float64 |
| 26 | ClmProcedureCode_3     | 965 non-null   | float64 |
| 27 | ClmProcedureCode_4     | 116 non-null   | float64 |
| 28 | ClmProcedureCode_5     | 9 non-null     | float64 |
| 29 | ClmProcedureCode_6     | 0 non-null     | float64 |

#### (a) Inpatient Data Summary

| #  | Column                          | Non-Null Count  | Dtype  |
|----|---------------------------------|-----------------|--------|
|    |                                 |                 |        |
| 0  | BeneID                          | 138556 non-null | object |
| 1  | DOB                             | 138556 non-null | object |
| 2  | DOD                             | 1421 non-null   | object |
| 3  | Gender                          | 138556 non-null | int64  |
| 4  | Race                            | 138556 non-null | int64  |
| 5  | RenalDiseaseIndicator           | 138556 non-null | object |
| 6  | State                           | 138556 non-null | int64  |
| 7  | County                          | 138556 non-null | int64  |
| 8  | NoOfMonths_PartACov             | 138556 non-null | int64  |
| 9  | NoOfMonths_PartBCov             | 138556 non-null | int64  |
| 10 | ChronicCond_Alzheimer           | 138556 non-null | int64  |
| 11 | ChronicCond_Heartfailure        | 138556 non-null | int64  |
| 12 | ChronicCond_KidneyDisease       | 138556 non-null | int64  |
| 13 | ChronicCond_Cancer              | 138556 non-null | int64  |
| 14 | ChronicCond_ObstrPulmonary      | 138556 non-null | int64  |
| 15 | ChronicCond_Depression          | 138556 non-null | int64  |
| 16 | ChronicCond_Diabetes            | 138556 non-null | int64  |
| 17 | ChronicCond_IschemicHeart       | 138556 non-null | int64  |
| 18 | ChronicCond_Osteoporasis        | 138556 non-null | int64  |
| 19 | ChronicCond_rheumatoidarthritis | 138556 non-null | int64  |
| 20 | ChronicCond_stroke              | 138556 non-null | int64  |
| 21 | IPAnnualReimbursementAmt        | 138556 non-null | int64  |
| 22 | IPAnnualDeductibleAmt           | 138556 non-null | int64  |
| 23 | OPAnnualReimbursementAmt        | 138556 non-null | int64  |
| 24 | OPAnnualDeductibleAmt           | 138556 non-null | int64  |
|    |                                 |                 |        |

## (b) Beneficiary Data Summary

Fig. 1: Raw Data Summaries

was derived from the claim start date and claim end date. The features which were used for derivation were dropped.

The features were then assessed for quality. The percent of values missing, the cardinality, and the presence of outliers were determined for each feature. From large portions of missing values as observed in the feature reports, the claim diagnoses codes 8, 9, and 10 were dropped along with all claim procedure codes excluding the first one. While claim procedure code 1 also had a high percentage of missing values (96%) it was decided to retain this feature's information for the time being. The remaining diagnosis codes also had high missing values percentages and we chose the cut-off for retention conservatively at less than 90% missing values. Again, this was to retain more infor-



Fig. 2: Domain Concepts

| Feature Name                             | Domain Concept     | Feature Description                                        | Feature Type | Data Type |
|------------------------------------------|--------------------|------------------------------------------------------------|--------------|-----------|
| ChronicCond_Alzheimer                    | Disease Details    | Do patient has this particular diasease ?                  | Categorical  | Int       |
| ChronicCond Heartfailure                 | Disease Details    | Do patient has this particular diasease ?                  | Categorical  | Int       |
| ChronicCond KidnevDisease                | Disease Details    | Do patient has this particular diasease ?                  | Categorical  | Int       |
| ChronicCond Cancer                       | Disease Details    | Do patient has this particular diasease ?                  | Categorical  | Int       |
| ChronicCond ObstrPulmonary               | Disease Details    | Do patient has this particular diasease ?                  | Categorical  | Int       |
| ChronicCond Depression                   | Disease Details    | Do patient has this particular diasease ?                  | Categorical  | Int       |
| ChronicCond Diabetes                     | Disease Details    | Do patient has this particular diasease ?                  | Categorical  | Int       |
| ChronicCond IschemicHeart                | Disease Details    | Do patient has this particular diasease ?                  | Categorical  | Int       |
| ChronicCond Osteoporasis                 | Disease Details    | Do patient has this particular diasease ?                  | Categorical  | Int       |
| ChronicCond rheumatoidarthritis          | Disease Details    | Do patient has this particular diasease ?                  | Categorical  | Int       |
| ChronicCond stroke                       | Disease Details    | Do patient has this particular diasease ?                  | Categorical  | Int       |
| DOB                                      | Patient Details    | Date of birth of the patient                               | Categorical  | datetime  |
| DOD                                      | Patient Details    | Date of death of the patient                               | Categorical  | datetime  |
| Gender                                   | Patient Details    | Gender of the patient                                      | Categorical  | Int       |
| Race                                     | Patient Details    | Race of the patient                                        | Categorical  | Int       |
| State                                    | Patient Details    | State of the patient                                       | Categorical  | Int       |
| BeneID                                   | Patient Details    | Beneficiary id of the patient                              | Continuous   | String    |
| Life status                              | Patient Details    | is the patient alive?                                      | Categorical  | Int       |
| County                                   | Patient Details    | Origing of the patient                                     | Categorical  | Int       |
| Provider                                 | Claim Details      | Insurance provider                                         | Categorical  | String    |
| ClaimID                                  | Claim Details      | Insurance claimid                                          | Continuous   | String    |
| ClaimStartDt                             | Claim Details      | Insurance claim start date                                 | Continuous   | datetime  |
| ClaimEndDt                               | Claim Details      | Insurance claim start date                                 | Continuous   | datetime  |
| InscClaimAmtReimbursed                   | Claim Details      | Insurance amount reimbursed                                | Continuous   | Int       |
| ClmDiagnosisCode 1                       | Claim Details      | Patient claim diagnosis code                               | Continuous   | Int       |
| ClmDiagnosisCode_2                       | Claim Details      | Patient claim diagnosis code                               | Continuous   | Int       |
| ClmDiagnosisCode_2                       | Claim Details      | Patient claim diagnosis code                               | Continuous   | Int       |
| ClmDiagnosisCode_5                       | Claim Details      | Patient claim diagnosis code  Patient claim diagnosis code | Continuous   | Int       |
| ClmDiagnosisCode_4 ClmDiagnosisCode 5    | Claim Details      | Patient claim diagnosis code  Patient claim diagnosis code | Continuous   | Int       |
| ClmDiagnosisCode_5                       | Claim Details      | Patient claim diagnosis code  Patient claim diagnosis code | Continuous   | Int       |
| ClmDiagnosisCode_6                       | Claim Details      | Patient claim diagnosis code  Patient claim diagnosis code | Continuous   | Int       |
|                                          | Claim Details      | Patient claim diagnosis code Patient claim diagnosis code  | Continuous   | Int       |
| ClmDiagnosisCode_8<br>ClmDiagnosisCode 9 | Claim Details      | Patient claim diagnosis code  Patient claim diagnosis code | Continuous   | Int       |
|                                          | Claim Details      |                                                            | Continuous   | Int       |
| ClmDiagnosisCode_10                      | Claim Details      | Patient claim diagnosis code                               | Continuous   | Float     |
| ClmProcedureCode_1                       | Claim Details      | Patient claim procedure code                               | Continuous   | Float     |
| ClmProcedureCode_2                       |                    | Patient claim procedure code                               |              |           |
| ClmProcedureCode_3                       | Claim Details      | Patient claim procedure code                               | Continuous   | Float     |
| ClmProcedureCode_4                       | Claim Details      | Patient claim procedure code                               | Continuous   | Float     |
| ClmProcedureCode_5                       | Claim Details      | Patient claim procedure code                               | Continuous   | Float     |
| ClmProcedureCode_6                       | Claim Details      | Patient claim procedure code                               | Continuous   | Float     |
| IPAnnualReimbursementAmt                 | Claim Details      | Insurance annual reimbursement amount                      | Continuous   | Int       |
| IPAnnualDeductibleAmt                    | Claim Details      | Insurance annual deductible amount                         | Continuous   | Int       |
| OPAnnualReimbursementAmt                 | Claim Details      | out patient reimbursement annual amount                    | Continuous   | Int       |
| OPAnnualDeductibleAmt                    | Claim Details      | out patient deductable annual amount                       | Continuous   | Int       |
| AttendingPhysicianOper                   |                    | Attending physician for the patient                        | Categorical  | String    |
| OperatingPhysician                       |                    | Operating physician for the patient                        | Categorical  | String    |
| OtherPhysician                           |                    | other physician for the patient                            | Categorical  | String    |
| AdmissionDt                              |                    | admission date of the patient into the hospital            | Continuous   | datetime  |
| DischargeDt                              | Diagnostic Details |                                                            | Continuous   | datetime  |
| DeductibleAmtPaid                        |                    | Total cost for the procedure                               | Continuous   | Int       |
| DiagnosisGroupCode                       | Diagnostic Details | Code for the diagnosis provided to the patient             | Continuous   | Int       |

Fig. 3: Analytical Base Table

mation at this stage. The claim admission diagnosis code, diagnosis group code, operating physician, and other physicians were also dropped for missing values. Attending physician was also dropped as the cardinality was too high to be useful for a categorical feature ( $\sim$ 82,000). No issues with outliers were detected. The

claim and beneficiary IDs were dropped next as they contain identification codes and not useful data.

Finally, the provider code was also dropped. Since the original data set tagged potential fraud based on provider code, but the desired model would predict fraud based on one specific claim, this would potentially cause the model to simply learn which providers are fraudulent over the claims. This would not allow the model to predict on new data. The final feature set is summarized below in Figure 4. The final number of instances is 558211.

## C. Feature Selection

The sklearn library tools SelectKBest and mutual\_info\_classif was utilized to determine the most useful 15 features to use for model training [9], [10]. mutual\_info\_classif estimates the mutual information to score each feature for dependency concerning the target feature. It functions based on entropy calculations using k-nearest neighbors' distance. SelectKBest selects the top K features based on the scores from mutual\_info\_classif. The top 15 features and the corresponding mutual information score are shown below in Figure 5.

## D. Model Building, Parameter Tuning, and Training

This section describes the models chosen for testing, the justification of choice, and the hyperparameter tuning performed on each before the final training. Section 4 will describe the chosen evaluation plan and the results of training and evaluation will be shown in Section 5. Hyperparameter tuning was performed with 5 cross-fold shuffle split validation with 20% test size

| #  | Column                          | Non-Null Count  | Dtype   |
|----|---------------------------------|-----------------|---------|
|    |                                 |                 |         |
| 0  | LengthofClaim                   | 558211 non-null | int64   |
| 1  | Provider                        | 558211 non-null | string  |
| 2  | InscClaimAmtReimbursed          | 558211 non-null | int64   |
| 3  | TimeinHosp                      | 558211 non-null | float64 |
| 4  | DeductibleAmtPaid               | 558211 non-null | int64   |
| 5  | ClmDiagnosisCode_1              | 558211 non-null | int64   |
| 6  | ClmDiagnosisCode_2              | 558211 non-null | int64   |
| 7  | ClmDiagnosisCode_3              | 558211 non-null | int64   |
| 8  | ClmDiagnosisCode_4              | 558211 non-null | int64   |
| 9  | ClmDiagnosisCode_5              | 558211 non-null | int64   |
| 10 | ClmDiagnosisCode_6              | 558211 non-null | int64   |
| 11 | ClmDiagnosisCode_7              | 558211 non-null | int64   |
| 12 | ClmProcedureCode_1              | 558211 non-null | int64   |
| 13 | Gender                          | 558211 non-null | int64   |
| 14 | Race                            | 558211 non-null | int64   |
| 15 | RenalDiseaseIndicator           | 558211 non-null | int64   |
| 16 | State                           | 558211 non-null | int64   |
| 17 | County                          | 558211 non-null | int64   |
| 18 | NoOfMonths_PartACov             | 558211 non-null | int64   |
| 19 | NoOfMonths_PartBCov             | 558211 non-null | int64   |
| 20 | ChronicCond_Alzheimer           | 558211 non-null | int64   |
| 21 | ChronicCond_Heartfailure        | 558211 non-null | int64   |
| 22 | ChronicCond_KidneyDisease       | 558211 non-null | int64   |
| 23 | ChronicCond_Cancer              | 558211 non-null | int64   |
| 24 | ChronicCond_ObstrPulmonary      | 558211 non-null | int64   |
| 25 | ChronicCond_Depression          | 558211 non-null |         |
| 26 | ChronicCond_Diabetes            | 558211 non-null | int64   |
| 27 | ChronicCond_IschemicHeart       | 558211 non-null | int64   |
| 28 | ChronicCond_Osteoporasis        | 558211 non-null | int64   |
| 29 | ChronicCond_rheumatoidarthritis | 558211 non-null | int64   |
| 30 | ChronicCond_stroke              | 558211 non-null | int64   |
| 31 | IPAnnualReimbursementAmt        | 558211 non-null | int64   |
| 32 | IPAnnualDeductibleAmt           | 558211 non-null | int64   |
| 33 | OPAnnualReimbursementAmt        | 558211 non-null | int64   |
| 34 | OPAnnualDeductibleAmt           | 558211 non-null | int64   |
| 35 | Life_status                     | 558211 non-null | int64   |
| 36 | Age                             | 558211 non-null | int64   |
| 37 | PotentialFraud                  | 558211 non-null | bool    |

Fig. 4: Final Data Set

| NoOfMonths_PartBCov       | 64.998847 |
|---------------------------|-----------|
| NoOfMonths_PartACov       | 64.869859 |
| State                     | 44.014857 |
| Race                      | 43.493692 |
| ChronicCond_IschemicHeart | 42.577699 |
| County                    | 42.417695 |
| Gender                    | 38.611772 |
| ChronicCond_Diabetes      | 36.021233 |
| ChronicCond_Heartfailure  | 24.956785 |
| ChronicCond_Depression    | 13.519686 |
| DeductibleAmtPaid         | 13.272918 |
| ChronicCond_KidneyDisease | 12.551674 |
| IPAnnualDeductibleAmt     | 12.318085 |
| ChronicCond_Alzheimer     | 10.114031 |
| InscClaimAmtReimbursed    | 8.246388  |
|                           |           |

Fig. 5: Feature Selection Results

using sklearn's GridSearchCV [11]. This parameter selection function was used as it performs an exhaustive search for the given parameter ranges for the ideal combination. All other model input parameters which were not tuned were left as the default values. At this stage, randomly sampled 33% of the data was reserved for final testing.

- 1) Decision Tree Classifier: The decision tree classifier was chosen as the baseline model as this is a powerful but simple model to implement, and the logic within the model can be investigated. The implementation of DecisionTreeClassifier from sklearn was used [12]. The parameters max\_depth and max\_features were tuned with the discussed method. The max\_depth parameter was selected as 18 and the max\_features selected as 15.
- 2) XGBoost Classifier: Next, XGBClassifier was used from the implementation provided by the XGBoost Python library [13]. This classifier uses boosting on multiple decision tree classifiers. This model was chosen because testing ensemble models was a focus of

this project and boosting can potentially reduce bias in the model results. The max\_depth of the model was tuned to be 15.

- 3) Bagging Classifier: The BaggingClassifier implemented in sklearn's ensemble package was used next [14]. A bootstrap aggregating (boosting) model based on decision tree classifiers is a good option as boosting can reduce variance and avoid over fitting our model. The number of estimators, n\_estimators, parameter was tuned to be 10.
- 4) Stacked Classifier: Finally, a stacked classifier was tested using StackingClassifier as implemented by sklearn [15]. The stacked model consisted of a Logistic Regression model, K-Neighbours Classifier, Decision Tree Classifier, and Gaussian Naive Bayes, with the final estimator set to an addition Logistic Regression model. These base models are all implemented by sklearn [16]. This model type was chosen as using multiple types of models and combining the results could give more diverse analysis of the data and utilize the strengths of each. Hyperparameter tuning is not applicable for this model type.

## E. Evaluation

We employed a variety of evaluation criteria to compare and analyze the output quality from our models, including the following:

1) Confusion Matrix: Confusion matrices give you the ability to see the various predictions, errors you might make. By comparing the characteristics of correctly and incorrectly classified data, you can learn more about how to apply machine learning more effectively. The confusion matrix format is shown below in Figure 6 and defines True Positive, False Positive, True Negative, and False Negative values.



Fig. 6: Confusion matrix

2) Accuracy: One parameter for assessing classification models is accuracy. The percentage of predictions that our model correctly predicted is known as accuracy.

$$Accuracy = \frac{Number\ of\ correct\ predictions}{Total\ number\ of\ predictions}$$

Accuracy can also be determined in terms of positives and negatives for binary classification, as seen below:

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

3) Precision: Precision speaks about a model's ability to make a correct estimate. When calculating precision, one divides the total number of positive predictions by the proportion of actual positives.

$$Precision = \frac{TP}{TP + FP}$$

4) Recall: The recall is determined as the proportion of Positive samples that were correctly identified as Positive to all Positive samples. The recall measures how well the model can identify positive samples. The more positive samples that are identified, the higher the recall.

$$Recall = \frac{TP}{TP + FN}$$

5) F1 score: Instead of evaluating a model's overall performance like accuracy does, F1score focuses on how well it performs in each class to determine how predictive it is. The precision and recall scores of a model are combined into one statistic called the F1 score.

$$F1\,Score = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

6) Learning Curve: An improvement in a process over time as a result of learning and growing skill is represented visually by a learning curve. According to the learning curve idea, tasks will demand less time and resources as they are carried out more frequently due to the proficiency that is acquired when the procedure is learned. Training was performed with 5-fold cross validation.

## IV. EXPERIMENTS AND RESULTS

The evaluation was performed on the 33% reserved data. Here we have the confusion matrix, and classification report with accuracy, precision, recall, and f1-score. We also have the learning curve, scalability, and performance of each model. The confusion matrix is giving the number of TP, TN, FP an FN for each model. The classification report gives the values of precision, recall, f1-score, support, and accuracy. Overall, our models have shown acceptable accuracy. Although all the models have shown almost similar results, the highest recorded was for XGBoost at 78% and the lowest for Stacked Classifier at 72%. Close to XGBoost, we have the Decision Tree classification where the accuracy has been recorded at 76%.

From our learning curves of all our models, as the training set increases, the training score curve, and the cross-validation curve are about to converge at some point. In the Decision tree classification and the XGBoost classification, as the instances are increasing,

there is a significant change in the error which explains that the model has a proper learning rate.

The confusion matrix for each model are shown below in Figure 8. The classification report of each model are shown below in Figure 7. The learning curves for each classifier are shown in Figures 9 - 12. The means of the 5-fold cross validation are plotted with the standard deviation shaded.

| Classification Report for Decision Tree       |               |      |      |  |  |  |  |  |
|-----------------------------------------------|---------------|------|------|--|--|--|--|--|
| Provider Class   Precision   Recall   f1-Scor |               |      |      |  |  |  |  |  |
| Non-Fradulent                                 | 0.79          | 0.84 | 0.81 |  |  |  |  |  |
| Fradulent                                     | 0.7 0.63 0.67 |      |      |  |  |  |  |  |
| Accuracy                                      | 76%           |      |      |  |  |  |  |  |

(a) Decision Tree

| Classification Report for XGBoost              |                |  |  |  |  |  |  |  |  |
|------------------------------------------------|----------------|--|--|--|--|--|--|--|--|
| Provider Class   Precision   Recall   f1-Score |                |  |  |  |  |  |  |  |  |
| Non-Fradulent                                  | 0.8 0.86 0.83  |  |  |  |  |  |  |  |  |
| Fradulent                                      | 0.73 0.65 0.69 |  |  |  |  |  |  |  |  |
| Accuracy                                       | 78%            |  |  |  |  |  |  |  |  |

(b) XGBoost Classifier

| Classification Report for Bagging Classifier |           |        |          |  |  |  |  |  |
|----------------------------------------------|-----------|--------|----------|--|--|--|--|--|
| <b>Provider Class</b>                        | Precision | Recall | f1-Score |  |  |  |  |  |
| Non-Fradulent                                | 0.77      | 0.81   | 0.79     |  |  |  |  |  |
| Fradulent                                    | 0.66      | 0.61   | 0.63     |  |  |  |  |  |
| Accuracy 73%                                 |           |        |          |  |  |  |  |  |

(c) Bagging Classifier

| Classification Report for Stacked Classifier  |      |      |      |  |  |  |  |  |
|-----------------------------------------------|------|------|------|--|--|--|--|--|
| Provider Class   Precision   Recall   f1-Scor |      |      |      |  |  |  |  |  |
| Non-Fradulent                                 | 0.75 | 0.82 | 0.78 |  |  |  |  |  |
| Fradulent                                     | 0.65 | 0.55 | 0.6  |  |  |  |  |  |
| Accuracy 72%                                  |      |      |      |  |  |  |  |  |

(d) Stacked Classifier

Fig. 7: Classification Reports



Fig. 8: Confusion Matrices



Fig. 9: Decision Tree Classifier Learning Curves



Fig. 10: XGBoost Classifier Learning Curves



Fig. 11: Bagging Classifier Learning Curves



Fig. 12: Stacked Classifier Learning Curves

Our results show that fraudulent claims can predicted with moderate accuracy. While improvements to accuracy would likely be needed before final deployment, the model output solves the business problem. In deployment, the submitted claim details would be automatically input to the fraud detection model and the output potential fraud prediction would flag suspicious claims for further review by the insurance company.

#### V. CONCLUSION

From a vast data set of both potentially fraudulent and non-fraudulent claims, we identified the potentially fraudulent claims in this paper, employing the Decision Tree Classifier, XGBoost Classifier, Bagging Classifier, and Stacked Classifier supervised methods. In order to approach our solution, we used the CRISP-DM paradigm, beginning with business understanding, where we attempted to comprehend fraudulent claims and identify the problem statement. We derived new features and identified key features that are useful in spotting possibly fraudulent providers' actions. Our experiments revealed that each algorithm can produce predictions with a good degree of accuracy and usability. Despite the similar accuracies of all models, the stacking classifier model under performed than other models, with a performance of 72% accuracy. According to our investigation, XGBoost was the bestperforming model, with an accuracy of 78%, while Decision Tree Classifier and Bagging Classifier were at 76% and 73% respectively.

In future work, we aim to investigate how well unsupervised models perform with the data we have. We would also analyze the K-nearest neighbor algorithm in combination with a genetic algorithm in order to find the ideal weighting of the features. These insights could assist with increasing performance of the prediction models. Gathering more data for training would also be attempted to improve model results.

#### REFERENCES

- [1] T. L. Leap, "The major health care fraud laws," in *Phantom Billing, Fake Prescriptions, and the High Cost of Medicine: Health Care Fraud and What to Do about It*, T. L. Leap, Ed. Cornell University Press, p. 0. [Online]. Available: https://doi.org/10.7591/cornell/9780801449796.003.0002
- [2] https://revcycleintelligence.com/features/ how-providers-can-detect-prevent-healthcare-fraud-and-abuse, accessed: 2022-12-20.
- [3] G. Brooks, M. Button, and J. Gee, "The scale of health-care fraud: A global evaluation," vol. 25, no. 1, pp. 76–87. [Online]. Available: https://doi.org/10.1057/sj.2011.7
- [4] Y. Peng, G. Kou, A. Sabatka, Z. Chen, D. Khazanchi, and Y. Shi, "Application of clustering methods to health insurance fraud detection," in 2006 International Conference on Service Systems and Service Management, vol. 1, pp. 116–120, ISSN: 2161-1904.
- [5] T. Ekin, "Application of bayesian methods in detection of healthcare fraud," vol. 33.

- [6] R. Bauder, T. M. Khoshgoftaar, and N. Seliya, "A survey on the state of healthcare upcoding fraud analysis and detection," vol. 17, no. 1, pp. 31–55. [Online]. Available: https://doi.org/10.1007/s10742-016-0154-8
- [7] R. Anand Gupta. Medical provider fraud detection. [Online]. Available: https://kaggle.com/code/rohitrox/ medical-provider-fraud-detection
- [8] —. Healthcare provider fraud detection analysis. [Online]. Available: https://www.kaggle.com/datasets/rohitrox/healthcare-provider-fraud-detection-analysis
- [9] sklearn.feature\_selection.SelectKBest. [Online]. Available: https://scikit-learn/stable/modules/generated/sklearn.feature\_selection.SelectKBest.html
- [10] sklearn.feature\_selection.mutual\_info\_classif. [Online]. Available: https://scikit-learn/stable/modules/generated/sklearn.feature\_selection.mutual\_info\_classif.html
- [11] sklearn.model\_selection.GridSearchCV. [Online]. Available: https://scikit-learn/stable/modules/generated/sklearn. model\_selection.GridSearchCV.html
- [12] sklearn.tree.DecisionTreeClassifier. [Online]. Available: https://scikit-learn/stable/modules/generated/sklearn.tree. DecisionTreeClassifier.html
- [13] Python API reference xgboost 1.7.2 documentation. [Online]. Available: https://xgboost.readthedocs.io/en/stable/ python/python\_api.html
- [14] sklearn.ensemble.BaggingClassifier. [Online]. Available: https://scikit-learn/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html
- [15] sklearn.ensemble.StackingClassifier. [Online]. Available: https://scikit-learn/stable/modules/generated/sklearn.ensemble.StackingClassifier.html
- [16] scikit-learn: machine learning in python scikit-learn 1.2.0 documentation. [Online]. Available: https://scikit-learn.org/ stable/

APPENDIX A: CATEGORICAL FEATURE REPORT

|                       | Count  | Miss %    | Card.  | Mode                                           | Mode Freq | Mode %     | 2nd Mode                          | 2nd Mode Freq | 2nd Mode % |
|-----------------------|--------|-----------|--------|------------------------------------------------|-----------|------------|-----------------------------------|---------------|------------|
| BeneID                | 558211 | 0.000000  | 138556 | [BENE118316, BENE42721, BENE59303]             | 87        | 0.015586   | [BENE36330, BENE44241, BENE80977] | 84            | 0.015048   |
| ClaimID               | 558211 | 0.000000  | 558211 | [CLM110011, CLM110012, CLM110013, CLM110014, C | 558211    | 100.000000 | 0                                 | 0             | 0.000000   |
| ClaimStartDt          | 558211 | 0.000000  | 398    | [2009-01-31]                                   | 1709      | 0.306157   | [2009-03-03]                      | 1706          | 0.305619   |
| ClaimEndDt            | 558211 | 0.000000  | 366    | [2009-03-03]                                   | 1707      | 0.305798   | [2009-02-11]                      | 1682          | 0.301320   |
| Provider              | 558211 | 0.000000  | 5410   | [PRV51459]                                     | 8240      | 1.476144   | [PRV53797]                        | 4739          | 0.848962   |
| AttendingPhysician    | 558211 | 0.270149  | 82063  | [PHY330576]                                    | 2534      | 0.453950   | [PHY350277]                       | 1628          | 0.291646   |
| OperatingPhysician    | 558211 | 79.497538 | 35315  | [PHY330576]                                    | 424       | 0.075957   | [PHY424897]                       | 293           | 0.052489   |
| OtherPhysician        | 558211 | 64.218548 | 46457  | [PHY412132]                                    | 1247      | 0.223392   | [PHY341578]                       | 1098          | 0.196700   |
| AdmissionDt           | 558211 | 92.749337 | 398    | [2009-02-10]                                   | 144       | 0.025797   | [2009-01-31, 2009-02-26]          | 286           | 0.051235   |
| ClmAdmitDiagnosisCode | 558211 | 73.863109 | 4098   | [V7612]                                        | 4074      | 0.729832   | [42731]                           | 3634          | 0.651008   |
| DischargeDt           | 558211 | 92.749337 | 365    | [2009-02-11]                                   | 153       | 0.027409   | [2009-01-10]                      | 147           | 0.026334   |
| DiagnosisGroupCode    | 558211 | 92.749337 | 736    | [882]                                          | 179       | 0.032067   | [884]                             | 174           | 0.031171   |
| CImDiagnosisCode_1    | 558211 | 1.872589  | 10450  | [4019]                                         | 13886     | 2.487590   | [4011]                            | 12512         | 2.241446   |
| CImDiagnosisCode_2    | 558211 | 35.041588 | 5300   | [4019]                                         | 22378     | 4.008878   | [25000]                           | 11744         | 2.103864   |
| CImDiagnosisCode_3    | 558211 | 56.458221 | 4756   | [4019]                                         | 14408     | 2.581103   | [25000]                           | 7946          | 1.423476   |
| CImDiagnosisCode_4    | 558211 | 70.524407 | 4359   | [4019]                                         | 9188      | 1.645973   | [25000]                           | 5250          | 0.940505   |
| CImDiagnosisCode_5    | 558211 | 79.949517 | 3970   | [4019]                                         | 6005      | 1.075758   | [25000]                           | 3451          | 0.618225   |
| ClmDiagnosisCode_6    | 558211 | 84.881702 | 3607   | [4019]                                         | 4170      | 0.747029   | [25000]                           | 2506          | 0.448934   |
| CImDiagnosisCode_7    | 558211 | 88.144805 | 3388   | [4019]                                         | 3014      | 0.539939   | [25000]                           | 1822          | 0.326400   |
| CImDiagnosisCode_8    | 558211 | 90.425843 | 3070   | [4019]                                         | 2257      | 0.404327   | [25000]                           | 1399          | 0.250622   |
| CImDiagnosisCode_9    | 558211 | 92.509105 | 2774   | [4019]                                         | 1581      | 0.283226   | [25000]                           | 1100          | 0.197058   |
| ClmDiagnosisCode_10   | 558211 | 99.102490 | 1158   | [4019]                                         | 169       | 0.030275   | [25000]                           | 125           | 0.022393   |
| DOB                   | 558211 | 0.000000  | 900    | [1943-12-01 00:00:00]                          | 2072      | 0.371186   | [1939-03-01 00:00:00]             | 2030          | 0.363662   |
| DOD                   | 558211 | 99.259957 | 11     | [2009-12-01 00:00:00]                          | 710       | 0.127192   | [2009-10-01 00:00:00]             | 572           | 0.102470   |
| RenalDiseaseIndicator | 558211 | 0.000000  | 2      | [0]                                            | 448363    | 80.321420  | [1]                               | 109848        | 19.678580  |
| PotentialFraud        | 558211 | 0.000000  | 2      | [No]                                           | 345415    | 61.878931  | [Yes]                             | 212796        | 38.121069  |

APPENDIX B: CONTINUOUS FEATURE REPORT

|                                 | Count  | Miss %     | Card. | Min       | 1st Qrt.  | Mean        | Median    | 3rd Qrt   | Max       | Std. Dev.    |
|---------------------------------|--------|------------|-------|-----------|-----------|-------------|-----------|-----------|-----------|--------------|
| InscClaimAmtReimbursed          | 558211 | 0.000000   | 438   | 0         | 40.0      | 997.012133  | 80.0      | 300.0     | 125000    | 3821.534891  |
| DeductibleAmtPaid               | 558211 | 0.161050   | 17    | 0         | 0.0       | 78.421085   | 0.0       | 0.0       | 1068      | 274.016812   |
| CImProcedureCode_1              | 558211 | 95.824160  | 1117  | 11.0      | 3848.0    | 5896.154612 | 5363.0    | 8669.0    | 9999.0    | 3050.489933  |
| CImProcedureCode_2              | 558211 | 99.016501  | 300   | 42.0      | 2724.0    | 4106.358106 | 4019.0    | 4439.0    | 9999.0    | 2031.640878  |
| CImProcedureCode_3              | 558211 | 99.826410  | 154   | 42.0      | 2724.0    | 4221.123839 | 4019.0    | 5185.0    | 9999.0    | 2281.849885  |
| CImProcedureCode_4              | 558211 | 99.978861  | 48    | 42.0      | 2754.25   | 4070.262712 | 4019.0    | 4439.0    | 9986.0    | 2037.62699   |
| CImProcedureCode_5              | 558211 | 99.998388  | 6     | 2724      | 4139.0    | 5269.444444 | 4139.0    | 5185.0    | 9982      | 2780.071632  |
| CImProcedureCode_6              | 558211 | 100.000000 | 0     | <na></na> | <na></na> | <na></na>   | <na></na> | <na></na> | <na></na> | <na></na>    |
| Gender                          | 558211 | 0.000000   | 2     | 1         | 1.0       | 1.578838    | 2.0       | 2.0       | 2         | 0.493746     |
| Race                            | 558211 | 0.000000   | 4     | 1         | 1.0       | 1.255011    | 1.0       | 1.0       | 5         | 0.717437     |
| State                           | 558211 | 0.000000   | 52    | 1         | 11.0      | 25.446969   | 24.0      | 38.0      | 54        | 15.192784    |
| County                          | 558211 | 0.000000   | 314   | 0         | 150.0     | 378.588195  | 350.0     | 570.0     | 999       | 265.215531   |
| NoOfMonths_PartACov             | 558211 | 0.000000   | 13    | 0         | 12.0      | 11.931472   | 12.0      | 12.0      | 12        | 0.889712     |
| NoOfMonths_PartBCov             | 558211 | 0.000000   | 13    | 0         | 12.0      | 11.93877    | 12.0      | 12.0      | 12        | 0.7859       |
| ChronicCond_Alzheimer           | 558211 | 0.000000   | 2     | 0         | 0.0       | 0.401868    | 0.0       | 1.0       | 1         | 0.490276     |
| ChronicCond_Heartfailure        | 558211 | 0.000000   | 2     | 0         | 0.0       | 0.590427    | 1.0       | 1.0       | 1         | 0.491755     |
| ChronicCond_KidneyDisease       | 558211 | 0.000000   | 2     | 0         | 0.0       | 0.412002    | 0.0       | 1.0       | 1         | 0.492196     |
| ChronicCond_Cancer              | 558211 | 0.000000   | 2     | 0         | 0.0       | 0.151385    | 0.0       | 0.0       | 1         | 0.358424     |
| ChronicCond_ObstrPulmonary      | 558211 | 0.000000   | 2     | 0         | 0.0       | 0.31293     | 0.0       | 1.0       | 1         | 0.463687     |
| ChronicCond_Depression          | 558211 | 0.000000   | 2     | 0         | 0.0       | 0.434807    | 0.0       | 1.0       | 1         | 0.495732     |
| ChronicCond_Diabetes            | 558211 | 0.000000   | 2     | 0         | 0.0       | 0.705395    | 1.0       | 1.0       | 1         | 0.455866     |
| ChronicCond_IschemicHeart       | 558211 | 0.000000   | 2     | 0         | 1.0       | 0.759265    | 1.0       | 1.0       | 1         | 0.42753      |
| ChronicCond_Osteoporasis        | 558211 | 0.000000   | 2     | 0         | 0.0       | 0.317647    | 0.0       | 1.0       | 1         | 0.465562     |
| ChronicCond_rheumatoidarthritis | 558211 | 0.000000   | 2     | 0         | 0.0       | 0.311171    | 0.0       | 1.0       | 1         | 0.462973     |
| ChronicCond_stroke              | 558211 | 0.000000   | 2     | 0         | 0.0       | 0.10172     | 0.0       | 0.0       | 1         | 0.302279     |
| IPAnnualReimbursementAmt        | 558211 | 0.000000   | 3004  | -8000     | 0.0       | 5227.971466 | 0.0       | 6000.0    | 161470    | 11786.274732 |
| IPAnnualDeductibleAmt           | 558211 | 0.000000   | 147   | 0         | 0.0       | 568.756807  | 0.0       | 1068.0    | 38272     | 1179.172616  |
| OPAnnualReimbursementAmt        | 558211 | 0.000000   | 2078  | -70       | 460.0     | 2278.225348 | 1170.0    | 2590.0    | 102960    | 3881.846386  |
| OPAnnualDeductibleAmt           | 558211 | 0.000000   | 789   | 0         | 120.0     | 649.698745  | 340.0     | 790.0     | 13840     | 1002.020811  |
| Life_status                     | 558211 | 0.000000   | 2     | 0         | 0.0       | 0.0074      | 0.0       | 0.0       | 1         | 0.085707     |
| Age                             | 558211 | 0.000000   | 76    | 26        | 68.0      | 73.852368   | 75.0      | 83.0      | 101       | 13.020485    |