

CT 216 INTRODUCTION TO COMMUNICATION SYSTEM

PROJECT LDPC CODES

Lab Group 1 – Sub Group 3
Under the Guidance of Prof. Yash Vasavda
Mentor TA: Mr Harshaneel

HONOR CODE:

• We declare that:

- o The work that we are presenting is our own work.
- We have not copied the work (the code, the results, etc.) that someone else has done.
- Concepts, understanding and insights we will be describing are our own.
- We make this pledge truthfully. We know that violation of this solemn pledge can carry grave consequences.

202201006	_	Kavan Patel	Oavor
202201015	-	Meghavi Gohil	Roll
202201020	_	Shriti Choudhary	Rhyllur .
2022 0/024	-	Hitarth Bhate	Britght
2022 01025	-	Vivek Patel	Fatel
2022 0 10 26	-	Tanay Jain	E
202201029	-	Bhavya Kantelia	Payland
2022 0 10 34	-	Harshit kumar	. She
202201038	-	Mahammed Jani	Janis
202201048	-	Sneh Joshi	Forei
202201041	-	Dhriti Yoenka	"Phritis
		U U	

CONTENTS:

- 1. Hard Decision Decoding Code
- 2. Soft Decision Decoding Code
- 3. Results
 - i. Matrix NR_2_6_52
 - ii. Matrix NR_1_5_352
- 4. Analysis with Shannon's Bound
- 5. Appendix A

HARD DECISION DECODING:

```
colors = [0.0, 0.7, 0.8]
           0.12, 0.34, 0.57;
           0.91, 0.15, 0.76;
           0.31, 0.12, 0.77;
           0.93, 0.13, 0.65;
           0.55, 0.51, 0.87;
           0.61, 0.78, 0.79;
           0.01, 0.31, 0.39;
           0.71, 0.25, 0.81;
           0.83, 0.69, 0.44;
           0.06, 0.40, 0.74;
           0.18, 0.18, 0.53;
           0.34, 0.72, 0.53;
           0.94, 0.38, 0.64;
           0.70, 0.15, 0.88;
           0.60, 0.67, 0.09;
           0.91, 0.29, 0.31;
           0.80, 0.86, 0.31;
           0.19, 0.93, 0.42;
           0.95, 0.79, 0.21;
           0.14, 0.41, 0.05
         ];
%for matrix NR_2_6_52
baseGraph5GNR = 'NR 2 6 52'; % load 5G NR LDPC base H matrix
coderate = [1/4 1/3 1/2 3/5];
eb_no_dbvec = 0:0.5:10;
[B,Hfull,z] = nrldpc Hmatrix(baseGraph5GNR,52); % Convert the base H matrix to binary H matrix
nsim = 1000;
max it = 20;
iterations = 1:1:max_it;
for cr = coderate
    %performing rate matching
    [mb,nb] = size(B); kb = nb - mb; % 5G NR specific details
    kNumInfoBits = kb * z; % Number of information bits
    k_pc = kb-2; nbRM = ceil(k_pc/cr)+2; % Some 5G NR specific details
    nBlockLength = nbRM * z; % Number of encoded bits
   H = Hfull(:,1:nBlockLength);
    nChecksNotPunctured = mb*z - nb*z + nBlockLength;
   H = H(1:nChecksNotPunctured,:); % this is the binary H matrix
    [row,col] = size(H);
    L = zeros(size(H)); %initialising L
    k = col - row;
    cn_to_vn_map = cn_vn(H); %shows ith cn connected to which all vns
    vn to cn map = vn cn(H); %shows ith vn connected to which all cns
    d iter = 1;
    decoding_error = zeros(1,length(eb_no_dbvec));
    bit error = zeros(1,length(eb no dbvec));
    for eb_no_db = eb_no_dbvec
```

```
eb_no_db
        eb no = 10^{(eb no db/10)};
        sigma = sqrt(1/(2*cr*eb_no)); %noise variance
        success = 0;
        error1 = 0;
        itr_success = nsim.*ones(1,max_it);
        vn_sum_vec = zeros(1,col);
        for sim=1:nsim
            org_msg = randi([0 1],[k 1]); % Generate information (or message) bit vector
            encoded_msg = nrldpc_encode(B,z,org_msg'); % Encode using 5G NR LDPC base matrix
            encoded_msg = encoded_msg(1:nBlockLength);
            n = length(encoded_msg);
            %performing bpsk modulation
            bpsk_msg = 1 - 2.*encoded_msg;
            %generating noise
            noise = sigma * randn(1,n);
            received_bpsk = bpsk_msg + noise;
            %changing message back to bits
            received_bits = (received_bpsk<0);</pre>
            prev_msg1 = received_bits;
            c_hat = zeros(1,col);
            %performing hard decision decoding - uses recived bits to decode
            for it = 1:1:max_it
                %message from VN to CN
                %for 1st iteration, load all received bits into respective VNs and send them
directly to CN
                if(it==1)
                    for i=1:col
                        for j=vn_to_cn_map{i,1}
                            L(j,i) = received_bits(1,i);
                        end
                    end
                %for all other iterations, perform majority voting of the bits received by the
VN
                else
                    for i = 1:col
                        for j=vn_to_cn_map{i,1}
                            ele = vn_sum_vec(1,i) - L(j,i);
                            L(j,i) = ele>(length(vn_to_cn_map{i,1})/2);
                        end
                    end
                end
                %message passing from CN to VN using XOR
                for i=1:row
                    xor_val = 0;
                    %computing xor of all the values received by CN
```

```
for j=cn_to_vn_map{i,1}
                    xor_val = mod((xor_val+L(i,j)),2);
                end
                %sending the message to particular VNs connected
                for j=cn_to_vn_map{i,1}
                    L(i,j) = mod((xor_val+L(i,j)),2);
                end
            end
            %finding the sum of values received by each VN and performing
            %majority voting with originally received bit to estimate c_hat
            for i = 1:col
                sum1 = received bits(1,i);
                temp = L(:,i);
                sum1 = sum1 + sum(temp);
                vn_sum_vec(1,i)=sum1;
                c_hat(1,i) = sum1>((length(vn_to_cn_map{i,1})+1)/2);
            end
             %if c_hat is equal to the encoded message, decoding is successful, so break
            if(sum(xor(c_hat(1:k),org_msg'))==0)
                success = success+1;
                break;
            else
                itr_success(1,it)=itr_success(1,it)-1;
            end
            %{
             %calculating BER
             for i=1:col
                 if c_hat(1,i)~=encoded_msg(1,i)
                     error1=error1+1;
                 end
             end
            %}
            %if c hat equal to previously computed c hat, then also break
            if(sum(xor(prev_msg1,c_hat))==0)
                for tmp_itr=it+1:max_it
                    itr_success(1,tmp_itr)=itr_success(1,tmp_itr)-1;
                end
                break;
            end
            prev_msg1 = c_hat;
        end
    end
    plot(iterations,itr_success./nsim,'Color',colors(d_iter,:));
    hold on;
    decoding_error(1,d_iter) = (nsim-success)/nsim;
    bit_error(1,d_iter) = error1/(nsim*col);
    d_iter = d_iter+1;
end
hold off;
xlabel("Iteration number");
```

```
ylabel('Success Probability at each iteration');
    title('Success Probability v/s iteration for Hard Decoding');
    grid on;
legend('0.0','0.5','1.0','1.5','2.0','2.5','3.0','3.5','4.0','4.5','5.0','5.5','6.0','6.5','7.
0','7.5','8.0','8.5','9.0','9.5','10.0');
    plot(eb_no_dbvec,decoding_error,'LineWidth',2);
    %plot(eb_no_dbvec,bit_error,'Linewidth',2);
    hold on;
end
xlabel("Eb/No (dB)");
ylabel("Decoding error probability");
title("Hard Decision Decoding error probability");
legend('Coderate = 1/4', 'Coderate = 1/3', 'Coderate = 1/2', 'Coderate = 3/5');
hold off;
%{
xlabel("Eb/No (dB)");
ylabel("BER");
title("Hard decision Bit error rate probability");
legend('Coderate = 1/4', 'Coderate = 1/3', 'Coderate = 1/2', 'Coderate = 3/5');
hold off;
%}
% Add a section break
function [B,H,z] = nrldpc Hmatrix(BG,z)
    load(sprintf('%s.txt',BG),BG);
    B = NR \ 2 \ 6 \ 52;
    [mb,nb] = size(B);
    H = zeros(mb*z,nb*z);
    Iz = eye(z); I0 = zeros(z);
    for kk = 1:mb
        tmpvecR = (kk-1)*z+(1:z);
        for kk1 = 1:nb
            tmpvecC = (kk1-1)*z+(1:z);
            if B(kk,kk1) == -1
                H(tmpvecR, tmpvecC) = I0;
            else
                H(tmpvecR,tmpvecC) = circshift(Iz,-B(kk,kk1));
            end
        end
    end
    [U,N]=size(H); K = N-U; % n = length of codeword, u = number of CNs or parities, k =
length of original message
    P = H(:,1:K);
    G = [eye(K); P];
    Z = H*G;
end
function out=cn_vn(H)
    [row, col]=size(H);
    out=cell(row,1);
    for i = 1:row
```

```
out{i,1} = [];
    end
    for i=1:row
        for j=1:col
            if(H(i,j)==1)
                out{i,1} = [out{i,1} j];
            end
        end
    end
end
function out=vn_cn(H)
    [row, col]=size(H);
    out=cell(col,1);
    for i = 1:col
        out{i,1} = [];
    end
    for i=1:col
        for j=1:row
            if(H(j,i)==1)
                out{i,1} = [out{i,1} j];
            end
        end
    end
end
function cword = nrldpc_encode(B,z,msg)
    %B: base matrix
    %z: expansion factor
    %msg: message vector, length = (#cols(B)-#rows(B))*z
    %cword: codeword vector, length = #cols(B)*z
    [m,n] = size(B);
    cword = zeros(1,n*z);
    cword(1:(n-m)*z) = msg;
    %double-diagonal encoding
    temp = zeros(1,z);
    for i = 1:4 %row 1 to 4
        for j = 1:n-m %message columns
            temp = mod(temp + mul_sh(msg((j-1)*z+1:j*z),B(i,j)),2);
        end
    end
    if B(2,n-m+1) == -1
        p1_{sh} = B(3, n-m+1);
    else
        p1_{sh} = B(2,n-m+1);
    end
    cword((n-m)*z+1:(n-m+1)*z) = mul_sh(temp,z-p1_sh); %p1
    %Find p2, p3, p4
    for i = 1:3
        temp = zeros(1,z);
```

```
for j = 1:n-m+i
            temp = mod(temp + mul\_sh(cword((j-1)*z+1:j*z),B(i,j)),2);
        cword((n-m+i)*z+1:(n-m+i+1)*z) = temp;
    end
    %Remaining parities
    for i = 5:m
        temp = zeros(1,z);
        for j = 1:n-m+4
            temp = mod(temp + mul_sh(cword((j-1)*z+1:j*z),B(i,j)),2);
        end
        cword((n-m+i-1)*z+1:(n-m+i)*z) = temp;
    end
end
function y = mul_sh(x,k)
    if(k==-1)
        y = zeros(1,length(x));
    else
        y = [x(k+1:end) x(1:k)];
    end
end
```

SOFT DECISION DECODING

```
colors = [0.0, 0.7, 0.8;
           0.12, 0.34, 0.57;
           0.91, 0.15, 0.76;
           0.31, 0.12, 0.77;
           0.93, 0.13, 0.65;
           0.55, 0.51, 0.87;
           0.61, 0.78, 0.79;
           0.01, 0.31, 0.39;
           0.71, 0.25, 0.81;
           0.83, 0.69, 0.44;
           0.06, 0.40, 0.74;
           0.18, 0.18, 0.53;
           0.34, 0.72, 0.53;
           0.94, 0.38, 0.64;
           0.70, 0.15, 0.88;
           0.60, 0.67, 0.09;
           0.91, 0.29, 0.31;
           0.80, 0.86, 0.31;
           0.19, 0.93, 0.42;
           0.95, 0.79, 0.21;
           0.14, 0.41, 0.05
         ];
%for matrix NR_2_6_52
baseGraph5GNR = 'NR_2_6_52'; % load 5G NR LDPC base H matrix
coderate = [1/4 \ 1/3 \ 1/2 \ 3/5];
eb_no_dbvec = 0:0.5:10;
[B,Hfull,z] = nrldpc_Hmatrix(baseGraph5GNR,52); % Convert the base H matrix to binary H matrix
nsim = 1000;
max_it = 20;
```

```
iterations = 1:1:max_it;
for cr = coderate
   cr
   %performing rate matching
    [mb,nb] = size(B); kb = nb - mb; % 5G NR specific details
    kNumInfoBits = kb * z; % Number of information bits
    k_pc = kb-2; nbRM = ceil(k_pc/cr)+2; % Some 5G NR specific details
   nBlockLength = nbRM * z; % Number of encoded bits
   H = Hfull(:,1:nBlockLength);
   nChecksNotPunctured = mb*z - nb*z + nBlockLength;
   H = H(1:nChecksNotPunctured,:); % this is the binary H matrix
   %rate matching done
    [row,col] = size(H);
   L = zeros(size(H));
   k = col - row;
    cn_to_vn_map = cn_vn(H); %shows ith cn connected to which all vns
   vn_to_cn_map = vn_cn(H); %shows ith vn connected to which all cns
   %performing soft decoding
   %estimates on the basis of original vector received without
   %changing it to bits
   d iter = 1;
   decoding error = zeros(1,length(eb no dbvec));
   bit_error = zeros(1,length(eb_no_dbvec));
   for eb_no_db = eb_no_dbvec
        eb no = 10^(eb_no_db/10);
        sigma = sqrt(1/(2*cr*eb_no));
        success = 0;
        error1 = 0;
        itr_success = nsim.*ones(1,max_it);
        vn sum vec = zeros(1,col);
        for sim=1:nsim
            org_msg = randi([0 1],[k 1]); % Generate information (or message) bit vector
            encoded_msg = nrldpc_encode(B,z,org_msg'); % Encode using 5G NR LDPC base matrix
            encoded msg = encoded msg(1:nBlockLength);
            n = length(encoded_msg);
            %performing bpsk modulation
            bpsk_msg = 1 - 2.*encoded_msg;
            %generating noise
            noise = sigma * randn(1,n);
            received_bpsk = bpsk_msg + noise;
            %changing message back to bits
            received_bits = (received_bpsk<0);</pre>
            prev_msg = received_bits;
            c_hat = zeros(1,col);
```

```
for it =1 :1:max_it
                %message from VN to CN
                %for 1st iteration, load all received values into VN and
                %send them directly to CN
                if(it==1)
                    for i=1:col
                         for j=vn_to_cn_map{i,1}
                             L(j,i) = received_bpsk(1,i);
                         end
                    end
                %otherwise subtract the current value from the total sum vec.
                else
                    for i = 1:col
                        for j=vn_to_cn_map{i,1}
                             L(j,i) = vn_sum_vec(1,i) - L(j,i);
                         end
                    end
                end
                %message from CN to VN using minsum approximation
                for i=1:row
                    min1=1e9;
                                             %first minimum
                    min2=1e9;
                                             %second minimum
                                             %VN number which has minimum1 value
                    pos=-1;
                                             % the sign obtained by multiplying all the non-
                    total_sign=1;
zero elemnts in the row
                    for j=cn_to_vn_map{i,1}
                         ele = abs(L(i,j));
                         %computing the minimums
                         if(ele<=min1)</pre>
                             min2=min1;
                             min1=ele;
                             pos = j;
                         elseif(ele<=min2 && ele>min1)
                             min2=ele;
                         end
                         %computing overall sign
                         if(L(i,j)\sim=0)
                             total_sign = total_sign*(sign(L(i,j)));
                         end
                    end
                    %sending the message
                    for j=cn_to_vn_map{i,1}
                         if(j~=pos)
                             L(i,j) = total\_sign * sign(L(i,j)) * min1;
                         else
                             L(i,j) = total_sign * sign(L(i,j)) * min2;
                         end
```

```
end
            end
            %finding sum of values received by each vn
            for i = 1:col
                sum1 = received_bpsk(1,i);
                temp = L(:,i);
                sum1 = sum1 + sum(temp);
                vn_sum_vec(1,i)=sum1;
            end
            c_hat = (vn_sum_vec<0);</pre>
            if(sum(xor(c_hat(1:k),org_msg'))==0)
                success = success+1;
                break;
            else
                itr_success(1,it)=itr_success(1,it)-1;
            end
             %{
             %calculating BER
             for i=1:col
                 if c_hat(1,i)~=encoded_msg(1,i)
                     error1=error1+1;
                 end
             end
            %}
            if(sum(xor(prev_msg,c_hat))==0)
                for tmp_itr=it+1:max_it
                    itr_success(1,tmp_itr)=itr_success(1,tmp_itr)-1;
                end
                break;
            end
            prev_received = c_hat;
        end
    plot(iterations,itr_success./nsim,'Color',colors(d_iter,:));
    grid on;
    hold on;
    decoding_error(1,d_iter) = (nsim-success)/nsim;
    bit_error(1,d_iter) = error1/(nsim*col);
    d_iter = d_iter+1;
end
hold off;
xlabel("Iteration number");
ylabel('Success Probability at each iteration');
title('Success Probability v/s iteration for Soft Decoding');
grid on;
```

```
legend('0.0','0.5','1.0','1.5','2.0','2.5','3.0','3.5','4.0','4.5','5.0','5.5','6.0','6.5','7.
0','7.5','8.0','8.5','9.0','9.5','10.0');
    plot(eb_no_dbvec, decoding_error, 'LineWidth', 2);
    %plot(eb no dbvec,bit error,'Linewidth',2);
    hold on;
end
xlabel("Eb/No (dB)");
ylabel("Decoding error probability");
title("Soft Decision Decoding error probability");
legend('Coderate = 1/4', 'Coderate = 1/3', 'Coderate = 1/2', 'Coderate = 3/5');
hold off;
%{
%for matrix NR 1 5 352
baseGraph5GNR = 'NR_1_5_352'; % load 5G NR LDPC base H matrix
coderate = [1/3 \ 1/2 \ 3/5 \ 4/5];
[B,Hfull,z] = nrldpc_Hmatrix(baseGraph5GNR,352); % Convert the base H matrix to binary H
matrix
%}
%{
xlabel("Eb/No (dB)");
ylabel("BER");
title("Soft decision Bit error rate probability");
legend('Coderate = 1/4', 'Coderate = 1/3', 'Coderate = 1/2', 'Coderate = 3/5');
hold off;
%}
% Add a section break
function [B,H,z] = nrldpc_Hmatrix(BG,z)
    load(sprintf('%s.txt',BG),BG);
    B = NR \ 2 \ 6 \ 52;
    [mb,nb] = size(B);
    H = zeros(mb*z,nb*z);
    Iz = eye(z); I0 = zeros(z);
    for kk = 1:mb
        tmpvecR = (kk-1)*z+(1:z);
        for kk1 = 1:nb
            tmpvecC = (kk1-1)*z+(1:z);
            if B(kk,kk1) == -1
                H(tmpvecR, tmpvecC) = I0;
            else
                H(tmpvecR,tmpvecC) = circshift(Iz,-B(kk,kk1));
            end
        end
    end
    [U,N]=size(H); K = N-U; % n = length of codeword, u = number of CNs or parities, k =
length of original message
    P = H(:,1:K);
    G = [eye(K); P];
    Z = H*G;
```

```
end
function out=cn_vn(H)
    [row, col]=size(H);
    out=cell(row,1);
    for i = 1:row
        out{i,1} = [];
    end
    for i=1:row
        for j=1:col
            if(H(i,j)==1)
                out{i,1} = [out{i,1} j];
            end
        end
    end
end
function out=vn_cn(H)
    [row, col]=size(H);
    out=cell(col,1);
    for i = 1:col
        out{i,1} = [];
    end
    for i=1:col
        for j=1:row
            if(H(j,i)==1)
                out{i,1} = [out{i,1} j];
            end
        end
    end
end
function cword = nrldpc_encode(B,z,msg)
    %B: base matrix
    %z: expansion factor
    %msg: message vector, length = (#cols(B)-#rows(B))*z
    %cword: codeword vector, length = #cols(B)*z
    [m,n] = size(B);
    cword = zeros(1,n*z);
    cword(1:(n-m)*z) = msg;
    %double-diagonal encoding
    temp = zeros(1,z);
    for i = 1:4 %row 1 to 4
        for j = 1:n-m %message columns
            temp = mod(temp + mul_sh(msg((j-1)*z+1:j*z),B(i,j)),2);
        end
    end
    if B(2,n-m+1) == -1
        p1_sh = B(3,n-m+1);
```

else

```
p1_sh = B(2,n-m+1);
    end
    cword((n-m)*z+1:(n-m+1)*z) = mul_sh(temp,z-p1_sh); %p1
    %Find p2, p3, p4
    for i = 1:3
        temp = zeros(1,z);
        for j = 1:n-m+i
            temp = mod(temp + mul_sh(cword((j-1)*z+1:j*z),B(i,j)),2);
        end
        cword((n-m+i)*z+1:(n-m+i+1)*z) = temp;
    end
    %Remaining parities
    for i = 5:m
        temp = zeros(1,z);
        for j = 1:n-m+4
            temp = mod(temp + mul\_sh(cword((j-1)*z+1:j*z),B(i,j)),2);
        end
        cword((n-m+i-1)*z+1:(n-m+i)*z) = temp;
    end
end
function y = mul_sh(x,k)
    if(k==-1)
        y = zeros(1, length(x));
    else
        y = [x(k+1:end) x(1:k)];
    end
end
```

RESULTS:

1. For Matrix NR_2_6_52:

a. Code rate = 1/4

b. Code rate = 1/3

c.Code rate = 1/2

d.Code rate = 3/5

Comparison of all graphs obtained by Hard Decision decoding:

Comparison of all graphs obtained by Soft Decision decoding:

Bit Error Rate:

Hard Decision Decoding:

Soft Decision Decoding:

2. For Matrix NR_1_5_352:

a.Code rate = 1/3

Soft Decision Decoding error probability of Coderate = 1/3

b. Code rate = 1/2

Soft Decision Decoding:

Soft Decision Decoding error probability of Coderate = 1/2

c. Code rate = 3/5

Soft Decision Decoding error probability of Coderate = 3/5

d.Code rate = 4/5

Soft Decision Decoding error probability of Coderate = 4/5

ANALYSIS:

Compare the simulation results with the Shannon channel capacity bound.

Bit Error Rate (BER) is the number of bits received in error divided by the total number of bits transferred.

According to Shannon's Bound, for Eb/No greater than equal to 2dB, the BER is approximately 1e^-5. If we perform BPSK modulation, for an error rate of 1e^-5, we need Eb/No as high as 9.5dB which is not efficient.

From the graphs we obtained, we can see that there is a significant drop in BER after 2.8 dB.

The BER becomes closer to 0 as we move ahead. We can say that the channel turns on after 2.8 dB since it efficiently decodes and the BER is also less. Thus, LDPC codes are quite close to Shannon's capacity bound.

APPENDIX A:

Derivation for results of Soft Decision Decoding:

PAGE
1) Calculation of the intrinsic LLR.
$P(c_{1}=0 n_{1}) = f(n_{1} c_{1}=0)$
$\frac{P(c_{1}=0 n_{1})}{P(c_{1}=1 n_{1})} = \frac{f(n_{1} c_{1}=0)}{f(n_{1} c_{1}=1)}$
= 1 e-(n ₁ -1) ² /252 (ni = normal distri-)
$\frac{1}{\sqrt{2\pi\sigma^2}} = \frac{e^{-(n_1-1)^2/2\sigma^2}}{\sqrt{2\pi\sigma^2}} = \frac{e^{-(n_1-1)^2/2\sigma^2}}{\sqrt{2\sigma^2}} = \frac{e^{-(n_1-1)^2/2\sigma^2}}{2\sigma$
Likelihood => e ²⁹¹ / ₁ / ₅ ² taking loge on both sides)
natio. (taking loge on both sides).
LLR = 271, 2 us a +ve factor which we have 6^2 ignored in our implementation)
1 4 4 4 4 5 1 6 3 5
2) Calculation of Output LLR for reputation codes (n=3)
$\frac{1}{P(c_{1}=1 \mid n_{1}, n_{2}, n_{3})}{P(c_{1}=1 \mid n_{1}, n_{2}, n_{3})}$
$P(c_1=1 \mid h_1, h_2, h_3)$
$L_{1} = log_{1} + \frac{f(h_{1}, h_{2}, h_{3} c_{1}=0)}{f(h_{1}, h_{2}, h_{3} c_{1}=1)} $ here $h_{1}=1+N_{1}(o_{1}e^{2})$
+ (h, h2, h3 C =1)
9, 2 where Ny Nz & Nz are
= log (e-(n_1-1)^2/2022-(n_2-1)^2/2022-(n_3-1)/2022 independent.
$\frac{e^{-(h_1+1)^2/26^2-(h_2+1)^2}26^2-(h_3+1)/26^2}{e}$
- log (e = 2 (h 1+ h 2 + h 3))
1 2 (n. + h. + h.)
$L_1 = \frac{2}{6^2} \left(n_1 + n_2 + n_3 \right)$
here L1, L2 & L3 will be equal and thus $L_i^2 = (n_1 + n_2 + n_3)$ (we ignore the factor of
$\left(\frac{2}{2}\right)$

