LAPORAN TUGAS BESAR STRATEGI ALGORITMA

"Perbandingan Algoritma backtracking dan Dynamic Programming dalam Menyelesaikan Permainan Rubik's Cube"

Disusun Oleh:

IF-47-EXT

Vitria Anggraeni 103012380501 Fahri Alfiansyah 103012380508 Gid Achmad Ahlul Fadli 103012380509

PROGRAM STUDI S1 INFORMATIKA
FAKULTAS INFORMATIKA
UNIVERSITAS TELKOM
BANDUNG
2024

Pembagian Tugas

Vitria Anggraeni	Dokumentasi dan penyusunan laporan	
Fahri Alfiansyah	Analisis dan perbandingan algoritma	
Gid Achmad Ahlul Fadli	Implementasi algoritma backtracking dan dynamic programming	

1. Deskripsi Studi Kasus

Permainan *Rubik's Cube* adalah teka-teki mekanis yang menantang pemain untuk memutar-mutar sisi-sisinya hingga setiap sisi memiliki satu warna seragam. Menyelesaikan permainan ini membutuhkan strategi yang efektif dan efisien. Dalam tugas besar ini, kami membandingkan dua algoritma, *backtracking* dan *dynamic programming*, untuk menyelesaikan permainan *Rubik's Cube* 2x2x2. Tujuan utama kami adalah untuk mengevaluasi keefektifan dan efisiensi kedua algoritma tersebut dalam menyelesaikan teka-teki ini.

2. Strategi Algoritma yang Dipilih

• Algoritma backtracking

Backtracking adalah teknik algoritma yang mencoba membangun solusi secara incremental. Dalam konteks *Rubik's Cube* 2x2x2, algoritma ini mencoba semua kemungkinan gerakan hingga menemukan solusi. Jika suatu gerakan tidak mengarah ke solusi, algoritma akan mundur (backtrack) dan mencoba gerakan lainnya. Berikut merupakan langkah-langkah penerapan dari algoritma *backtracking*:

- 1. Mulai dari keadaan awal Rubik's Cube.
- 2. Lakukan gerakan satu per satu.
- 3. Setelah setiap gerakan, periksa apakah Rubik's Cube sudah selesai.
- 4. Jika belum selesai, lanjutkan dengan mencoba gerakan berikutnya.
- 5. Jika gerakan tersebut tidak mengarah ke solusi, mundur dan coba gerakan lain.

Pseudocode algoritma backtracking:

Algoritma dynamic programming

Dynamic programming (DP) adalah teknik pemrograman yang menyelesaikan masalah kompleks dengan membaginya menjadi sub-masalah yang lebih kecil dan menyimpan hasil dari sub-masalah tersebut untuk menghindari perhitungan berulang. Untuk *Rubik's Cube*, DP dapat digunakan untuk menyimpan konfigurasi yang sudah ditemukan dan langkah-langkah yang diperlukan untuk mencapainya, sehingga mengurangi perhitungan berulang. Berikut merupakan langkah-langkah penerapan dari algoritma *dynamic programming*:

- 1. Definisikan tabel DP untuk menyimpan solusi sub-masalah.
- 2. Mulai dengan konfigurasi awal *Rubik's Cube* dan tambahkan ke tabel DP.
- 3. Untuk setiap konfigurasi, hitung semua kemungkinan gerakan berikutnya.
- 4. Simpan hasil gerakan dalam tabel DP.
- 5. Lanjutkan hingga menemukan solusi untuk konfigurasi yang diinginkan.

Pseudocode algoritma dynamic programming:

```
Algorithm 1: Solve Rubik's Cube Using Dynamic Programming
 Input: cube: the initial state of the Rubik's Cube
 Output: shortest sequence of moves to solve the cube, or None if no solution is found
 Function solve_rubiks_dynamic(cube):
     if is_solved(cube) then
      return []
     if cube in dp then
      return dp [cube]
     shortest\_solution \leftarrow None;
     for move in all_possible_moves() do
         new\_cube \leftarrow apply\_move(cube, move);
         solution ← solve_rubiks_dynamic (new_cube);
         if solution is not None then
            solution \leftarrow [move] + solution;
            if shortest_solution is None or len(solution); len(shortest_solution) then
              shortest_solution ← solution;
     dp [cube] ← shortest_solution;
     return shortest_solution;
 Function solve_rubiks(cube):
     dp \leftarrow \{\};
     return solve_rubiks_dynamic(cube);
```

3. Analisis Perbandingan Algoritma

Untuk menganalisis perbandingan antara kedua algoritma, kami menguji keduanya dengan lima input *Rubik's Cube* 2x2x2 yang berbeda dan terurut secara ascending berdasarkan kompleksitasnya. Kompleksitas diukur berdasarkan jumlah gerakan yang diperlukan untuk menyelesaikan *Rubik's Cube* dari keadaan awal. Grafik dan tabel perbandingan *running time* dari kedua algoritma:

Input (scramble)	Backtracking (seconds)	Dynamic Programming (seconds)
1 gerakan	0,00020	0,00048
3 gerakan	0,29137	0,00050
5 gerakan	14,78876	0,00047
6 gerakan	282,13754	0,00051
7 gerakan	4899,74933	0,00050

Analisis Running Time:

Backtracking:

Waktu eksekusi untuk menyelesaikan *Rubik's Cube* dengan 1 gerakan termasuk sangat cepat, yaitu 0,00020 detik. Namun seiring dengan meningkatnya gerakan *scramble*, waktu eksekusi pun meningkat secara signifikan hingga sekitar 81 menit untuk 7 gerakan. Hal ini menunjukkan bahwa waktu yang dibutuhkan meningkat eksponensial seiring dengan peningkatan kompleksitas *scramble*.

Dynamic Programming

Untuk semua input (1, 3, 5, 6, dan 7 gerakan scramble), waktu eksekusi tetap konstan sekitar 0,00047 hingga 0,00051 detik. Hal ini menunjukkan bahwa algoritma dynamic programming mampu mengatasi peningkatan kompleksitas tanpa peningkatan signifikan dalam waktu eksekusi.

4. Kesimpulan

Dari analisis dan grafik perbandingan, dapat disimpulkan bahwa algoritma *dynamic programming* umumnya lebih efisien dibandingkan dengan *backtracking* dalam menyelesaikan permainan *Rubik's Cube* 2x2x2, terutama untuk input dengan kompleksitas yang lebih tinggi. Hal ini disebabkan oleh kemampuan *dynamic programming* dalam menghindari perhitungan berulang melalui penyimpanan hasil sub-masalah. *backtracking*, meskipun sederhana dan langsung, cenderung lebih lambat karena harus mencoba semua kemungkinan solusi.

Referensi

- Korf, R. E. (1997, July). Finding optimal solutions to *Rubik's Cube* using pattern databases. In AAAI/IAAI (pp. 700-705).
- Rokicki, T. (2010). Twenty-two moves suffice for *Rubik's Cube®*. The Mathematical Intelligencer, 32(1), 33-40.
- Rokicki, T., Kociemba, H., Davidson, M., & Dethridge, J. (2014). The diameter of the *Rubik's Cube* group
 - is twenty. siam REVIEW, 56(4), 645-670.
- Felgenhauer, B., & Jarvis, F. (2005). God's number is 20. Available at https://www.cube20.org/.
- Ferenc, D. (2024). Herbert Kociemba's optimal cube solver Cube Explorer. Retrieved from https://ruwix.com/the-rubiks-cube/herbert-kociemba-optimal-cube-solver-cube-explorer/.
- Kociemba, H. (2024). Cube Explorer. Retrieved from http://kociemba.org/cube.htm.
- Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intelligence, 27(1), 97–109.
- Korf, R. E. (1997). Finding optimal solutions to *Rubik's Cube* using pattern databases. In AAAI/IAAI (pp. 700–705).
- Roux, G. (2024). Roux method. Retrieved from https://rouxmethod.wordpress.com/.
- Rubik's Cube official site. (2024). Retrieved from https://www.rubiks.com/.
- First versions of *Rubik's Cube*. (2022, November). Retrieved from https://www.firstversions.com/2015/08/rubiks-cube.html.

LAMPIRAN

```
[ ] def rotate(state, indices):
         for i in range(4):
             new_state[indices[i]] = state[indices[(i+1) % 4]]
         for i in range(8):
             new_state[indices[i + 4]] = state[indices[(i+2) % 8 + 4]]
    def apply_move(state, move):
         if move.endswith("2"):
            indices = MOVES[move[:-1]]
         indices = MOVES[move]
     def rotate_x(top, left, front, right, back, bottom):
         # front, left, bottom, right, top, back
return "".join(front) + "".join(left) + "".join(bottom) + "".join(right) + "".join(top) + "".join(back)
                                                                                                                                             Fungsi-fungsi pada
         # top, front, right back, left, bottom
return "".join(top) + "".join(front) + "".join(right) + "".join(back) + "".join(left) + "".join(bottom)
                                                                                                                                                  kode program
     def rotate_z(top, left, front, right, back, bottom):
         # left, bottom, front, top, back, right
return "".join(left) + "".join(bottom) + "".join(front) + "".join(top) + "".join(back) + "".join(right)
     def get_face_to_rotate(state):
          return state[:4], state[4:8], state[8:12], state[12:16], state[16:20], state[20:24]
     def apply_rotations(state):
         # divide cube into 6 faces
rotations = list()
         for _ in range(4):
    state = rotate_x(*get_face_to_rotate(state))
             rotations.append(state)
             for _ in range(4):

state = rotate_y(*get_face_to_rotate(state))
                  rotations.append(state)
                  for _ in range(4):
    state = rotate_z(*get_face_to_rotate(state))
                       rotations.append(state)
```

Kode program backtracking

```
[ ] def canonical_form(state):
        rotations = apply_rotations(state)
        return min(rotations)
    def precompute_states():
        dp = \{\}
        queue = deque([(SOLVED_STATE, [])])
        dp[canonical_form(SOLVED_STATE)] = []
        # Correct upper limit for progress tracking
        total_states = 3_674_160
        visited = set()
        visited.add(canonical_form(SOLVED_STATE))
        with tqdm(total=total_states, desc="Precomputing states") as pbar:
            while queue and len(dp) < total_states:
                current_state, path = queue.popleft()
                 for move in MOVES:
                    new_state = apply_move(current_state, move)
                    canonical_new = canonical_form(new_state)
                    if canonical_new not in visited:
                        dp[canonical_new] = path + [move]
                        visited.add(canonical_new)
                        queue.append((new_state, path + [move]))
                        pbar.update(1)
        return dp
    def solve_dp(state, dp):
        canonical_state = canonical_form(state)
        return dp.get(canonical_state, None)
    # Check if dp file exist
    if os.path.exists("/content/drive/MyDrive/Colab Notebooks/Tubes SA/dp.json"):
        with open("/content/drive/MyDrive/Colab Notebooks/Tubes SA/dp.json") as f:
            dp = json.load(f)
        start_dp = time.time()
        dp = precompute_states()
        end_dp = time.time()
        print("DP Time: ", (end_dp - start_dp))
        with open("/content/drive/MyDrive/Colab Notebooks/Tubes SA/dp.json", "w") as f:
            json.dump(dp, f)
```

Kode program dynamic programming

```
[ ] # Example usage
    initial_state = "YYYYBBBBRRRRGGGGOOOOWWWW"
    scrambled_state = apply_move(initial_state, "U2")
    scrambled_state = apply_move(scrambled_state, "R")
    scrambled_state = apply_move(scrambled_state, "B'
    scrambled_state = apply_move(scrambled_state, "L'")
    scrambled_state = apply_move(scrambled_state, "F2")
    scrambled_state = apply_move(scrambled_state, "R")
    print("Scrambled state:", scrambled_state)
    scrambled_state_backtrack = scrambled_state
    scrambled_state_dp = scrambled_state
   print("----")
    max_depth = 6 # Adjust based on the complexity of the scramble
    start_backtrack = time.time()
    solution_backtrack = solve_cube_backtrack(scrambled_state_backtrack, 0, max_depth, [])
    end_backtrack = time.time()
    print("Solution backtrack:", solution_backtrack)
    print("Backtrack Time: ", (end_backtrack - start_backtrack))
    # print final state after applying moves in solution_backtrack
                                                                                    Contoh implementasi
   print("initial state backtrack:", scrambled_state_backtrack)
                                                                                       kedua algoritma
    for move in solution_backtrack:
       scrambled_state_backtrack = apply_move(scrambled_state_backtrack, move)
    print("final state backtrack:", scrambled_state_backtrack)
   print("-----")
    # Solve the scrambled cube using the precomputed DP table
    start_dp = time.time()
    solution_dp = solve_dp(scrambled_state_dp, dp)
    end_dp = time.time()
   # change the order of moves, and change move in solution_dp to reverse move
    solution_dp = solution_dp[::-1]
    for move in solution_dp:
       solution_dp[solution_dp.index(move)] = REVERSE_MOVES[move]
   print("Solution DP:", solution_dp)
    print("DP Time: ", (end_dp - start_dp))
    print("initial state DP:", scrambled_state_dp)
    for move in solution_dp:
       scrambled_state_dp = apply_move(scrambled_state_dp, move)
    print("final state DP:", scrambled_state_dp)
→ Scrambled state: OBOWGGWGWRWBBROYYYGBRYOR
     ----- Backtrack ------
     Solution backtrack: ["R'", 'F2', 'L', 'B', "R'", 'U2']
     Backtrack Time: 200.49397134780884
     initial state backtrack: OBOWGGWGWRWBBROYYYGBRYOR
                                                                                       Tampilan output
     final state backtrack: YYYYBBBBRRRRGGGGOOOOWWWW
                                                                                           program
     ----- Dynamic Programming
     Solution DP: ["R'", 'F2', 'L', 'B', "R'", 'U2']
     DP Time: 0.0005853176116943359
     initial state DP: OBOWGGWGWRWBBROYYYGBRYOR
     final state DP: YYYYBBBBRRRRGGGGOOOOWWWW
```