Loan Prediction

By Adriana Caetano and Torsha Mazumdar

Motivation

Dream Housing Finance company deals in all home loans

Automate loan eligibility

Online application form

Problem Category

Supervised Learning - learning from the data based on sample input-output pairs.

- Input Customer Attributes, Loan Amount, Term
- Output/Label Loan Status

Binary Classification - Loan Status is either Y(Yes) or N(No).

Dataset

The Loan Eligible dataset can be downloaded from Kaggle

It's a short dataset with 13 columns and 614 rows

This dataset has some missing values and some of the features have a wide range of values, so we'll need to preprocess it.

Dataset Features

Features	Values		Datatype	Non-null Count	Missing Values		
Loan_ID	Unique ID			categorical	614	0	
Gender	Male	Female		categorical	601	13	
Married	Yes	No		categorical	611	3	
Dependents	0	1	2	3+	categorical	599	15
Education	Graduate	Not Graduate		categorical	614	0	
Self_Employed	Yes	No		categorical	582	32	
ApplicantIncome	\$150 - \$81000 per month			numerical	614	0	
CoapplicantIncome	\$0 - \$41667 per month			numerical	614	0	
LoanAmount	\$9000 - \$700000			numerical	592	22	
Loan_Amount_Term	12 months - 480 months		numerical	600	14		
Credit_History	1	0		numerical	564	50	
Property_Area	Rural	Urban	Semiur	ban	categorical	614	0
Loan_Status	Υ		N		categorical	614	0

Loan Status

• Yes: 422 (69%)

• No: 192 (31%)

Gender

Married

Dependents

Education

Self-Employed

Applicant Income

Co-Applicant Income

Loan Amount

Loan Amount Term

0-7 years: 9 (Y 66%, N 34%) 10 years: 3 (Y 100%) 15 years: 44 (Y 66%, N 34%)

20 years: 4 (Y 75%, N 25%) 25 years: 13 (Y 62%, N 38%)

30 years: 512 (Y 70%, N 30%) 40 years: 15 (Y 40%, N 60%)

Credit History

0:89 (Y 8%, N 92%)

1: 475 (Y 80%, N 20%)

Property Area

Urban: 202 (Y 66%, N 34%)

Rural: 179 (Y 61%, N 39%)

Fill up the missing values

- Mode for categorical features
- Mean or median for numerical features
- Zero for dependents: dependents can be categorized as missing not at random (if a person "forgot" to fill up the number of dependents, most likely they don't have dependents)
- Zero for credit history: credit history can be categorized as missing not at random (if a person "forgot" to fill up the credit history, most likely they don't have history)

Fill up the missing values

- Gender
 - mode
 - Married
 - mode
 - Dependents
 - Self_Employed
 - LoanAmount
 - Loan_Amount_Term

- 13
 - 3
 - 15 0

mean

mode 32

22

- median 14
- Credit_History 50

Upsampling the dataset

Imbalanced Initial Dataset -

- 422 labels for Y (69%)
- 192 labels for N (31%)

Upsampled Dataset -

- 422 labels for Y
- 422 labels for N

Total Count of Upsampled dataset = 844

Categorical values into numerical with LabelEncoder

-0.8

- 0.6

- 0.4

-0.2

- 0.0

Categorical values into numerical with get_dummies

Splitting the Dataset

Training -

- 70% of dataset
- 590 rows

Test -

- 30% of dataset
- 254 rows

No Validation dataset, since data available is less.

Use of k- fold cross validation to tune hyperparameters

Methods

1. Decision Tree Classifier

- i. simple and easy to interpret
- ii. trees can be visualized

2. Random Forest Classifier

- i. have much higher accuracy than the single decision tree
- ii. doesn't overfit the model, thus gives a good prediction on unseen datasets
- iii. low bias and low variance

3. Logistic Regression

- i. efficient for linear dataset
- ii. it can handle both dense and sparse input

Default

Depth = 14

Experiments: Gini vs Entropy, k-fold Cross Validation

Gini Entropy CV 0.735593220338983 0.7508474576271187 Accuracy without cross-validation using Gini: 1.0 0.7812856106909769 0.7948565212887185 Accuracy without cross-validation using Entropy: 0.7931605074462218 0.7728097995955138 0.7983050847457628 0.7932203389830509 0.789716896859754 0.8134920634920636 **Overfitting??** 0.8219887955182071 0.798219287715086 0.803336727138097 0.7897769344687152 0.8134421134421134 0.8134421134421135 0.8101694915254237 0.8186440677966103

We select **k=7** and **Gini**

Experiments: max_depth

We select max_depth=9

Experiments: max_leaf_nodes

We select max_leaf_nodes=46

+	+	++
max_leaf_nodes	Accuracy	std
+	t	++
2	0.715244353942984	0.04025996640440447
6	0.7032349129951869	0.04091375119836036
10	0.7288735653461681	0.03908437741627181
14	0.7457654572380601	0.030970256955392652
18	0.7626573491299519	0.034381823340946846
22	0.7609681599407626	0.046806212945815585
26	0.7694372454646428	0.0336395668095371
30	0.772815623843021	0.03071189530409793
34	0.7863291373565346	0.03520876692424234
38	0.789730655312847	0.029586889068732247
42	0.7914198445020363	0.027999271770009413
46	0.8050027767493522	0.026854345046490008
50	0.7948445020362829	0.031161615211186936
54	0.7965105516475379	0.038353415901820696
58	0.8050027767493521	0.029229079157122778
62	0.8033135875601629	0.03075708660190856
66	0.8066688263606072	0.03432827161550478
j 70	0.8084505738615327	0.03442232911638383
74	0.8186088485746019	0.0378107713225851
78	0.8067151055164754	0.04515038064252705
82	0.8169427989633469	0.047578432914136076
86	0.8050490559052204	0.03131104693455119
90	0.8068076638282118	0.02919564664481759
94	0.8169659385412811	0.027822780637790888
98	0.8034061458718993	0.030923619750637576
102	0.8186319881525361	0.02959258009311779
106	0.8236301369863013	0.02863774956265964
+	·	++

Experiments: max_features

Random choices

Experiments: feature_importances_

Experiments: feature_importances_

LoanAmount

Credit_History

ApplicantIncome

CoapplicantIncome

Loan_Amount_Term

Experiments: min_impurity

+	Accuracy	++ std		
0.0 0.05 0.1 0.1500000000000000000000000000000000000	0.8236764161421696 0.715244353942984 0.715244353942984 0.5117780451684562 0.5117780451684562 0.5117780451684562 0.5117780451684562 0.5117780451684562 0.5117780451684562	0.024769510417746714 0.04025996640440447 0.04025996640440447 0.045727359939571666 0.045727359939571666 0.045727359939571666 0.045727359939571666 0.045727359939571666 0.045727359939571666 0.045727359939571666 0.045727359939571666 0.045727359939571666 0.045727359939571666		
+	+	++		

No improvement

Experiments: min_smaples_split

+	+	++		
min_samples_split	Accuracy	std		
+	·	++		
2	0.8236532765642355	0.024067285793907368		
4	0.8101166234727878	0.037280294583422		
6	0.800050907071455	0.028387415035331633		
8	0.7932941503146983	0.04023891433763866		
10	0.7797574972232506	0.044902110999025656		
12	0.7695529433543131	0.05498824079836616		
14	0.7475472047389856	0.051614331517467193		
16	0.7491901147723065	0.0541056526760061		
18	0.7576823398741206	0.04974008233845239		
20	0.7508330248056275	0.04890460976153757		
22	0.7542114031840059	0.04818100224550936		
24	0.7541882636060718	0.048278493258157314		
26	0.7491438356164384	0.03768685737971202		
28	0.7508330248056276	0.038879889789241937		
30	0.7525222139948167	0.030207272180801516		
+	+	++		

No improvement

Evaluation: criterion (Gini), cv (8-fold), max depth (9), max_leaf_nodes (46), features ['LoanAmount', 'Credit_History', 'ApplicantIncome', 'CoapplicantIncome', 'Loan_Amount_Term']

Confusion Matrix:

	precision	recall	f1-score	support
0	0.82	0.64	0.72	152
1	0.60	0.78	0.68	102
accuracy			0.70	254
macro avg	0.71	0.71	0.70	254
weighted avg	0.73	0.70	0.70	254

Final Tree

Final Tree

Experiment: Gini vs Entropy, k-fold Cross Validation

Accuracy without cross-validation using Gini: 1.0 Accuracy without cross-validation using Entropy: 1.0

Overfitting??

Gini Entropy 0.7915254237288136 0.7983050847457627 0.8474481163023585 0.8406799267930523 0.8643477661334804 0.8541896488325059 0.8728813559322033 0.8661016949152543 0.8627258984401841 0.8779804851233423 0.8830532212885155 0.8661264505802321 0.8830757126990003 0.8763189559422436 0.866070966070966 0.8677544677544677 0.8745762711864407 0.8677966101694915

We select **k=8** and **Gini**

Experiment : tune n_estimators

Model 1:

n_estimators	Accuracy	std
10	0.8270316549426139	0.02982302021124012
20	0.8490836727138097	0.021299626410377144
30	0.8643557941503146	0.029697771001670082
40	0.857599037393558	0.027260858442597364
50	0.8542206590151795	0.030867329651380546
60	0.8694696408737504	0.03108449842557713
70	0.8660681229174381	0.018743000991772358
80	0.8610005553498705	0.02426748273669653
90	0.8610468345057387	0.02304198923540557
100	0.8711819696408737	0.022485657895571602
110	0.8677341725286931	0.024496147814921383

We select **n_estimators=100**

Experiment : tune max_features

Model 2:

max_features	Accuracy	std
+ auto sqrt log2	0.8677804516845613 0.8711588300629396 0.864425212884117	0.023350345183609934 0.028808393512302383 0.021307505863981932

We select max_features=sqrt

Experiment : tune min_samples_leaf

Model 3:		
min_samples_leaf	Accuracy	std
1	0.8712051092188078	0.01787472111673374
2	0.8525777489818586	0.02265220495971451
] 3	0.8373056275453536	0.02619799819529852
4	0.8118752313957793	0.024670349755966187
5	0.8102786005183266	0.03776406767136412
6	0.8102323213624583	0.02832230459701961
7	0.7864679748241392	0.03557527807973347
8	0.7830664568678267	0.03302081011202703
9	0.7831358756016289	0.03329925964528661
10	0.7780914476119956	0.04536204860013788
+	L	L

We select min_samples_leaf=1

Experiment : tune max_depth

Model 4:

max_depth	Accuracy	std
2	0.7508330248056275	0.03459923289733157
3	0.764346538319141	0.02679655042068158
4	0.7627730470196223	0.03910103941969463
5	0.7864911144020734	0.03597303970266889
6	0.8084968530174009	0.028188223166753363
7	0.8305025916327287	0.03640436626442366
8	0.8491762310255462	0.03260099651190076
9	0.8576221769714921	0.02535142209468115
10	0.8541975194372455	0.03310935627623877
11	0.874537208441318	0.02340330094374288
12	0.8643789337282488	0.023621043911394555
13	0.8627128841169938	0.022940823102555106
14	0.8677573121066271	0.027894307713888046
15	0.8677573121066271	0.0253205670794937
16	0.8694696408737503	0.0214540578140225
17	0.8626666049611256	0.030754919145733892
18	0.857599037393558	0.031106995150041335
19	0.8626897445390597	0.024938711652906183
20	0.8626897445390596	0.022980711588021473

We select max_depth=14

Experiment : select k Best Features

+	·+
KBest features	Accuracy
+	++
1	0.7779661016949152
2	0.9694915254237289
3	0.9898305084745763
4	0.9983050847457627
5	0.9983050847457627
6	1.0
7	0.9966101694915255
8	0.9983050847457627
9	1.0
10	1.0
11	1.0
+	++

We select **k=8**

Test: select k Best Features

Accuracy: 0.709

F1 score: [0.68376068 0.72992701]

precision_score: 0.714

recall_score: 0.746

	precision	recall	f1-score	support
0 1	0.67 0.75	0.70 0.71	0.68 0.73	114 140
accuracy macro avg weighted avg	0.71 0.71	0.71 0.71	0.71 0.71 0.71	254 254 254

Evaluation: criterion(Gini), n_estimators(100), min_samples_leaf(1), max_depth(14), max_features(sqrt)

Confusion Matrix:

Accuracy: 0.819

F1 score:	[0.8	82307692 0.81	L451613]		
		precision	recall	f1-score	support
	0	0.89	0.76	0.82	140
	1	0.75	0.89	0.81	114
accur	acy			0.82	254
macro	avg	0.82	0.83	0.82	254
weighted	avg	0.83	0.82	0.82	254

Experiment - different solvers

Model 1:		
solver	LR acc	LRCV acc
lbfgs newton-cg liblinear sag saga	0.7508474576271187 0.7508474576271187 0.7508474576271187 0.7508474576271187 0.7508474576271187	0.7508474576271187 0.7508474576271187 0.7389830508474576 0.7508474576271187 0.7508474576271187
T		T

Since our data set is small, 'newton-cg' and 'lbfgs' are appropriate to use. We decided to choose **'lbfgs'**, the default solver, because it only stores the last few updates and saves memory.

Model 2:

500

1000

2000

10000

Experiment - max_iterations parameter

+	+	+
max_iterations	Accuracy	۰
100	0.7508474576271187	۰

No difference was found.

0.7508474576271187

0.7508474576271187

0.7508474576271187 0.7508474576271187

Experiment : k-best features

KBest features	Accuracy
1 1 2 3 4 5 6 7 8 9 10	0.511864406779661 0.511864406779661 0.7152542372881356 0.7152542372881356 0.7152542372881356 0.7135593220338983 0.7169491525423729 0.735593220338983 0.7372881355932204 0.747457627118644
11	0.7440677966101695

No improvement was found

Evaluation

Since no improvement was found, we keep the default model.

Confusion Matrix:

Accuracy: 0.665

F1 score: [0.57711443 0.72312704]

precision_score: 0.6416184971098265

recall_score: 0.8283582089552238

Best Model

Model	Accuracy	Recall
Decision Tree	0.7	0.7
Random Forest	0.82	0.82
Logistic Regression	0.67	0.82