# **Computer Organization Lab3**

Name: 陳子祈

ID: 0819823

## **Architecture diagrams:**

| R type             |            |         |         |         |        |            |
|--------------------|------------|---------|---------|---------|--------|------------|
| Instruction set    | Op code    | rs      | rt      | rd      | shamt  | funct      |
| Instr location     | [31:26]    | [25:21] | [20:16] | [15:11] | [10:6] | [5:0]      |
| add \$rd,\$rs,\$rt | 000000(0)  |         |         |         | 00000  | 100000(32) |
| sub \$rd,\$rs,\$rt | 000000(0)  |         |         |         | 00000  | 100010(34) |
| and \$rd,\$rs,\$rt | 000000(0)  |         |         |         | 00000  | 100100(36) |
| or \$rd,\$rs,\$rt  | 000000(0)  |         |         |         | 00000  | 100101(37) |
| slt \$rd,\$rs,\$rt | 000000(0)  |         |         |         | 00000  | 101010(42) |
| jr \$rs            | 000000(0)  |         | 00000   | 00000   | 00000  | 001000(8)  |
|                    |            | ı       | l       |         |        |            |
| I type             |            |         |         |         |        |            |
| Instruction set    | Op code    | rs      | rt      | immedia | ate    |            |
| Instr location     | [31:26]    | [25:21] | [20:16] | [15:0]  |        |            |
| addi \$rt,\$rs,imm | 001000(8)  |         |         |         |        |            |
| slti \$rt,\$rs,imm | 001010(10) |         |         |         |        |            |
| beq \$rt,\$rs,imm  | 000100(4)  |         |         |         |        |            |
| lw \$rt,\$rs,imm   | 100011(35) |         |         |         |        |            |
| sw \$rt,\$rs,imm   | 101011(43) |         |         |         |        |            |
|                    |            | •       | •       | •       |        |            |
| Jump type          |            |         |         |         |        |            |
| Instruction set    | Op code    | Addres  | ss      |         |        |            |
| Instr location     | [31:26]    | [25:0]  |         |         |        |            |
| j addr             | 000010(2)  |         |         |         |        |            |
| jal addr           | 000011(3)  |         |         |         |        |            |
| 2                  |            |         |         |         |        |            |

## Hardware module analysis:

(explain how the design work and its pros and cons)



Single cycle MIPS CPU 每過一段固定的 cycle time 就做 PC 與暫存器的運算。PC 的運算只有分為 Sequential 的運算與 beq 跳行的運算。暫存器的運算流程如下:

- 1. IF: Instruction fetch from memory 從 memory 請求指令
- 2. ID: Instruction decode & register read 解碼指令、產生控制訊號,並把暫存器的資料讀出來
- 3. EX: Execution operation or calculate address 執行指令,這次實驗使用到 lw、sw 存取記憶體的指令,因此需計算地址
- 4. MEM: Access memory operand 存取記憶體資料,若執行 sw 指令,記憶體的資料就要被更改,若執行 lw 指令,則讀取記憶體的資料
- 5. WB: Write result back to register 依據不同指令,將 ALU 計算出來的結果、記憶體的資料、常數或 PC+4 寫回去 Write register,PC 也會依據要做 branch、jump(j、jal)、jr 其中的哪一個 operation 更新 PC

Single cycle MIPS CPU 優點就是不會發生 hazards; 缺點就是以 Longest delay 的指令 當作 clock period,導致執行大部分指令都有很多 CPU idle 的時間。

#### 各module的description:

## 1) Decoder

功能:透過6bit的instruction operation code 决定各種控制訊號。

#### Port description:

instr\_op\_i : 6bit input instruction operation code
RegWrite\_o : 1bit output RegFile Write or not

ALU\_op\_o : 2bit output for ALU\_Ctrl to determine operation type

ALUSrc\_o : 1bit output determine ALU source

RegDst\_o : 1 bit output determine Read reg2 is rt or rd

Branch\_o : 1bit output the instruction is branch type or not

BranchType\_o : 2bit output to determine branch type

Jump\_o : 1bit output to determine jump or not

MemRead\_o : 1bit output for Data memory to determine read memory data or not MemWrite\_o : 1bit output for Data memory to determine write memory data or not

MemtoReg\_o : 2bit output to determine where Register write data is from

| Instr_op<br>[31:26] |         | Instruction | RegDst<br>[1:0] | ALUSrc | Mem<br>toReg<br>[1:0] | Reg<br>Write | Mem<br>Read | Mem<br>Write | Branch | ALU<br>Op<br>[1:0] | Jump | Branch<br>Type<br>[1:0] |
|---------------------|---------|-------------|-----------------|--------|-----------------------|--------------|-------------|--------------|--------|--------------------|------|-------------------------|
| [31:29]             | [28:26] |             |                 |        |                       |              |             |              |        |                    |      |                         |
|                     | 000     | R-type      | 01              | 0      | 00                    | 1            | 0           | 0            | 0      | 00                 | 0    |                         |
|                     | 010     | j           |                 |        |                       | 0            |             |              |        |                    | 1    |                         |
|                     | 011     | jal         | 10              |        | 11                    | 1            |             |              | 1      |                    | 1    |                         |
| 000                 | 100     | beq         |                 | 0      |                       | 0            | 0           | 0            |        | 10                 | 0    | 00                      |
|                     | 101     | bne         |                 | 0      |                       | 0            |             | U            |        | 10                 | 0    | 11                      |
|                     | 001     | bge         |                 |        |                       | 0            |             |              |        |                    | 0    | 10                      |
|                     | 111     | bgt         |                 |        |                       | 0            |             |              |        |                    | 0    | 01                      |
| I-type              |         |             |                 |        |                       |              |             |              |        |                    |      |                         |
| 001                 | 000     | addi        | 00              | 1      | 00                    | 1            | 0           | 0            | 0      | 01                 | 0    |                         |
| 001                 | 010     | slti        | 00              | 1      | UU                    | 1            | U           | U            |        | 11                 | U    |                         |
| 100                 |         | lw          | 00              | 1      | 01                    | 1            | 1           | 0            | 0      | 01                 | 0    |                         |
| 101                 |         | SW          | 00              | 1      |                       | 0            | 0           | 1            | 0      | 01                 | 0    |                         |

#### 2) ALU\_Ctrl

功能:將ALU\_op及function code轉成ALU所需的ALUCtrl,決定ALU的動作及控制其

他MUX、Shifter。 Port description:

funct\_i : 6bit input function code

ALUOp\_i : 2bit input for ALU\_Ctrl to determine operation type

ALUCtrl\_o : 4bit output to ALU control

jr\_o : 1bit output to determine whether use jr or not

| ALUOp_i | funct_i | operation | ALUCtrl | jr_o |
|---------|---------|-----------|---------|------|
| R type  |         |           |         |      |
| 00      | 001000  | jr        | 0000    | 1    |

|        | 100000 | add  | 0010 |   |
|--------|--------|------|------|---|
|        | 100010 | sub  | 0110 |   |
|        | 100100 | and  | 0000 | 0 |
|        | 100101 | or   | 0001 |   |
|        | 101010 | slt  | 0111 |   |
| I type |        |      |      |   |
|        |        | addi |      |   |
| 01     |        | lw   | 0010 |   |
|        |        | SW   |      | 0 |
| 10     |        | beq  | 0110 |   |
| 11     |        | slti | 0111 |   |
| 其他     |        |      |      |   |
| 10     |        | j    | XXXX | 0 |
| 10     |        | jal  | XXXX | U |

#### 3) ALU

功能:32bit運算邏輯單位,參考課本附錄程式,可做add、sub、or、and、slt。

#### Port description:

src1\_i : 32bit input data
src2\_i : 32bit input data
ctrl\_i : 4bit ALU\_Control

result\_o : 32bit result for ALU

zero\_o : 1 bit when the output is 0, zero must be set

#### 4) Adder

功能:輸入兩個data輸出其相加結果。

#### Port description:

src1\_i : 32bit input data
src2\_i : 32bit input data
sum\_o : 32bit output sum

#### 5) Sign\_Extend

功能:將輸入data做Sign Extend,data\_i複製到data\_o低16位,data\_i最高位bit複製到data\_o高16位。

#### Port description:

data\_i : 16bit input data data\_o : 32bit output data

#### 6) Shift\_Left\_Two\_32

功能:將input data左移兩個bit。

Port description:

data\_i : 32bit input datadata\_o : 32bit output data

#### 7) MUX\_2to1

功能:如果 select\_i = 0 則輸出 dataO\_i;select\_i = 1 則輸出data1\_i。

#### Port description:

data0\_i : 32bit input data
data1\_i : 32bit input data
select\_i : 1bit select for MUX
data\_o : 32bit output data

#### 8) MUX\_4to1

功能:如果 select\_i = 00 則輸出 data0\_i; select\_i = 01 則輸出data1\_i; select\_i = 10 則輸出data2\_i; select\_i = 11 則輸出data3\_i

#### Port description:

data0\_i : 32bit input data
data1\_i : 32bit input data
data2\_i : 32bit input data
data3\_i : 32bit input data
select\_i : 2bit select for MUX
data\_o : 32bit output data

#### 9) Simple\_Single\_CPU

功能:將上述所提到之 Module 依照 Architecture diagram 的附圖做連接,完成 Simplified Single-cycle CPU。

## **Finished part:**

(show the screenshot of the simulation result and waveform, and explain it)

| Inst | truction set     | Op code   | rs      | rt      | rd      | shamt  | funct      |
|------|------------------|-----------|---------|---------|---------|--------|------------|
| Inst | tr location      | [31:26]   | [25:21] | [20:16] | [15:11] | [10:6] | [5:0]      |
| ado  | d \$r0,\$r0,\$r0 | 000000(0) | 00000   | 00000   | 00000   | 00000  | 100000(32) |

## **Description:**

$$r0 = Reg[0] = r0+r0 = 0+0 = 0$$

## PC = 0

| PC =  | 0        |         |          |    |       |          |    |       |            |          |   |
|-------|----------|---------|----------|----|-------|----------|----|-------|------------|----------|---|
| Data  | Memory = | 0,      | 0,       | 0, | 0,    | 0,       | 0, | 0,    | 0          |          |   |
| Data  | Memory = | 0,      | 0,       | 0, | 0,    | 0,       | 0, | 0,    | 0          |          |   |
| Data  | Memory = | 0,      | 0,       | 0, | 0,    | 0,       | 0, | 0,    | 0          |          |   |
| Data  | Memory = | 0,      | 0,       | 0, | 0,    | 0,       | 0, | 0,    | 0          |          |   |
| Regis | ters     |         |          |    |       |          |    |       |            |          |   |
| R0 =  | 0        | , R1 =  | 0, R2 =  | 0, | R3 =  | 0, R4 =  | 0, | R5 =  | 0, R6 =    | 0, R7 =  | 0 |
| R8 =  | 0        | , R9 =  | 0, R10 = | 0, | R11 = | 0, R12 = | 0, | R13 = | 0, R14 =   | 0, R15 = | 0 |
| R16 = | : 0      | , R17 = | 0, R18 = | 0, | R19 = | 0, R20 = | 0, | R21 = | 0, R22 =   | 0, R23 = | 0 |
| R24 = | : 0      | . R25 = | 0. R26 = | 0. | R27 = | 0. R28 = | 0. | R29 = | 128, R30 = | 0. R31 = | 0 |

| Instruction set |             | Op code   | rs      | rt      | immediate       |
|-----------------|-------------|-----------|---------|---------|-----------------|
| Instr location  |             | [31:26]   | [25:21] | [20:16] | [15:0]          |
| addi            | \$a0,zero,4 | 001000(8) | 00000   | 00100   | 000000000000100 |

## Description:

## PC = 4

| PC =  | 4        |       |          |      |       |          |    |       |            |          |   |
|-------|----------|-------|----------|------|-------|----------|----|-------|------------|----------|---|
| Data  | Memory = | 0,    | 0,       | 0,   | 0,    | 0,       | 0, | 0,    | 0          |          |   |
| Data  | Memory = | 0,    | 0,       | 0,   | 0,    | 0,       | 0, | 0,    | 0          |          |   |
| Data  | Memory = | 0,    | 0,       | 0,   | 0,    | 0,       | 0, | 0,    | 0          |          |   |
| Data  | Memory = | 0,    | 0,       | 0,   | 0,    | 0,       | 0, | 0,    | 0          |          |   |
| Regi  | sters    |       |          |      |       |          |    |       |            |          |   |
| R0 =  | 0,       | R1 =  | 0, R2 =  | 0, I | R3 =  | 0, R4 =  | 0, | R5 =  | 0, R6 =    | 0, R7 =  | 0 |
| R8 =  | 0,       | R9 =  | 0, R10 = | 0, I | R11 = | 0, R12 = | 0, | R13 = | 0, R14 =   | 0, R15 = | 0 |
| R16 : | = 0,     | R17 = | 0, R18 = | 0, I | R19 = | 0, R20 = | 0, | R21 = | 0, R22 =   | 0, R23 = | 0 |
| R24 : | = 0.     | R25 = | 0. R26 = | 0. I | 27 =  | 0. R28 = | 0. | R29 = | 128. R30 = | 0. R31 = | 0 |

| Instruction set |             | Op code   | rs      | rt      | immediate        |
|-----------------|-------------|-----------|---------|---------|------------------|
| Instr location  |             | [31:26]   | [25:21] | [20:16] | [15:0]           |
| addi            | \$t1,zero,1 | 001000(8) | 00000   | 01001   | 0000000000000001 |

## **Description:**

## t1 = zero+1 = 1

## PC = 8

| PC =          | 8        |          |      |       |          |    |       |            |          |   |
|---------------|----------|----------|------|-------|----------|----|-------|------------|----------|---|
| Data Memory = | = 0,     | 0,       | 0,   | 0,    | 0,       | 0, | 0,    | 0          |          |   |
| Data Memory = | = 0,     | 0,       | 0,   | 0,    | 0,       | 0, | 0,    | 0          |          |   |
| Data Memory = | = 0,     | 0,       | 0,   | 0,    | 0,       | 0, | 0,    | 0          |          |   |
| Data Memory = | = 0,     | 0,       | 0,   | 0,    | 0,       | 0, | 0,    | 0          |          |   |
| Registers     |          |          |      |       |          |    |       |            |          |   |
| R0 =          | 0, R1 =  | 0, R2 =  | 0, 1 | R3 =  | 0, R4 =  | 4, | R5 =  | 0, R6 =    | 0, R7 =  | 0 |
| R8 =          | 0, R9 =  | 0, R10 = | 0, 1 | R11 = | 0, R12 = | 0, | R13 = | 0, R14 =   | 0, R15 = | 0 |
| R16 =         | 0, R17 = | 0, R18 = | 0, 1 | R19 = | 0, R20 = | 0, | R21 = | 0, R22 =   | 0, R23 = | 0 |
| R24 =         | 0, R25 = | 0, R26 = | 0, 1 | R27 = | 0, R28 = | 0, | R29 = | 128, R30 = | 0, R31 = | 0 |

| Instruction set | Op code | Address |
|-----------------|---------|---------|
|-----------------|---------|---------|

| Instr location | [31:26]   | [25:0]                       |
|----------------|-----------|------------------------------|
| jal fib        | 000011(3) | 0000000000000000000000101(5) |

## **Description:**

## Reg[31] = PC+4 = 16

## PC = 12 (pcnext = 5\*4 = 20)

| PC =     | 12    |       |          |    |       |          |    |       |            |          |   |
|----------|-------|-------|----------|----|-------|----------|----|-------|------------|----------|---|
| Data Mem | ory = | 0,    | 0,       | 0, | 0,    | 0,       | 0, | 0,    | 0          |          |   |
| Data Mem | ory = | 0,    | 0,       | 0, | 0,    | 0,       | 0, | 0,    | 0          |          |   |
| Data Mem | ory = | 0,    | 0,       | 0, | 0,    | 0,       | 0, | 0,    | 0          |          |   |
| Data Mem | ory = | 0,    | 0,       | 0, | 0,    | 0,       | 0, | 0,    | 0          |          |   |
| Register | S     |       |          |    |       |          |    |       |            |          |   |
| R0 =     | 0,    | R1 =  | 0, R2 =  | 0, | R3 =  | 0, R4 =  | 4, | R5 =  | 0, R6 =    | 0, R7 =  | 0 |
| R8 =     | 0,    | R9 =  | 1, R10 = | 0, | R11 = | 0, R12 = | 0, | R13 = | 0, R14 =   | 0, R15 = | 0 |
| R16 =    | 0,    | R17 = | 0, R18 = | 0, | R19 = | 0, R20 = | 0, | R21 = | 0, R22 =   | 0, R23 = | 0 |
| R24 =    | 0.    | R25 = | 0. R26 = | 0. | R27 = | 0. R28 = | 0. | R29 = | 128. R30 = | 0. R31 = | 0 |

| Instruction set | Ор со     | ode rs      | rt      | immediate        |
|-----------------|-----------|-------------|---------|------------------|
| Instr location  | [31:26    | [25:21      | [20:16] | [15:0]           |
| addi \$sp,\$sp  | ,-12 0010 | 000(8) 1110 | 1110    | 1111111111110100 |

## **Description:**

#### **PC = 20**

| PC =  | 20       |         |          |    |       |          |    |       |            |          |    |
|-------|----------|---------|----------|----|-------|----------|----|-------|------------|----------|----|
| Data  | Memory = | 0,      | 0,       | 0, | 0,    | 0,       | 0, | 0,    | 0          |          |    |
| Data  | Memory = | 0,      | 0,       | 0, | 0,    | 0,       | 0, | 0,    | 0          |          |    |
| Data  | Memory = | 0,      | 0,       | 0, | 0,    | 0,       | 0, | 0,    | 0          |          |    |
| Data  | Memory = | 0,      | 0,       | 0, | 0,    | 0,       | 0, | 0,    | 0          |          |    |
| Regis | sters    |         |          |    |       |          |    |       |            |          |    |
| R0 =  | 0        | , R1 =  | 0, R2 =  | 0, | R3 =  | 0, R4 =  | 4, | R5 =  | 0, R6 =    | 0, R7 =  | 0  |
| R8 =  | 0        | , R9 =  | 1, R10 = | 0, | R11 = | 0, R12 = | 0, | R13 = | 0, R14 =   | 0, R15 = | 0  |
| R16 = | = 0      | , R17 = | 0, R18 = | 0, | R19 = | 0, R20 = | 0, | R21 = | 0, R22 =   | 0, R23 = | 0  |
| R24 = | = 0      | . R25 = | 0. R26 = | 0. | R27 = | 0. R28 = | 0. | R29 = | 128, R30 = | 0. R31 = | 16 |

| Instruction set | Op code    | rs      | rt      | immediate      |
|-----------------|------------|---------|---------|----------------|
| Instr location  | [31:26]    | [25:21] | [20:16] | [15:0]         |
| sw \$ra,\$sp,0  | 101011(43) | 11101   | 11111   | 00000000000000 |

## **Description:**

$$Mem[Rs+imm] = Mem[116] = Reg[rt] = Reg[31] = 16$$
 (ra = Reg[31])

## PC = 24

| PC = 2        | 24       |          |    |       |          |    |       |            |          |    |
|---------------|----------|----------|----|-------|----------|----|-------|------------|----------|----|
| Data Memory = | 0,       | 0,       | 0, | 0,    | 0,       | 0, | 0,    | 0          |          |    |
| Data Memory = | 0,       | 0,       | 0, | 0,    | 0,       | 0, | 0,    | 0          |          |    |
| Data Memory = | 0,       | 0,       | 0, | 0,    | 0,       | 0, | 0,    | 0          |          |    |
| Data Memory = | 0,       | 0,       | 0, | 0,    | 0,       | 0, | 0,    | 0          |          |    |
| Registers     |          |          |    |       |          |    |       |            |          |    |
| RO =          | 0, R1 =  | 0, R2 =  | 0, | R3 =  | 0, R4 =  | 4, | R5 =  | 0, R6 =    | 0, R7 =  | 0  |
| R8 =          | 0, R9 =  | 1, R10 = | 0, | R11 = | 0, R12 = | 0, | R13 = | 0, R14 =   | 0, R15 = | 0  |
| R16 =         | 0, R17 = | 0, R18 = | 0, | R19 = | 0, R20 = | 0, | R21 = | 0, R22 =   | 0, R23 = | 0  |
| R24 =         | 0, R25 = | 0, R26 = | 0, | R27 = | 0, R28 = | 0, | R29 = | 116, R30 = | 0, R31 = | 16 |

| Instruction set | Op code | rs rt   |         | immediate |
|-----------------|---------|---------|---------|-----------|
| Instr location  | [31:26] | [25:21] | [20:16] | [15:0]    |

| SW | \$s0,\$sp,4 | 101011(43) | 11101 | 10000 | 000000000000100 |
|----|-------------|------------|-------|-------|-----------------|
|----|-------------|------------|-------|-------|-----------------|

## **Description:**

## Mem[Rs+imm] = Mem[120] = Reg[rt] = Reg[16] = 0 (s0 = Reg[16])

#### **PC = 28**

| PC =    | 28      |       |          |    |       |          |     |       |           |          |    |
|---------|---------|-------|----------|----|-------|----------|-----|-------|-----------|----------|----|
| Data Mo | emory = | 0,    | 0,       | 0, | 0,    | 0,       | 0,  | 0,    | 0         |          |    |
| Data Mo | emory = | 0,    | 0,       | 0, | 0,    | 0,       | 0,  | 0,    | 0         |          |    |
| Data Mo | emory = | 0,    | 0,       | 0, | 0,    | 0,       | 0,  | 0,    | 0         |          |    |
| Data Mo | emory = | 0,    | 0,       | 0, | 0,    | 0,       | 16, | 0,    | 0         |          |    |
| Regist  | ers     |       |          |    |       |          |     |       |           |          |    |
| R0 =    | 0,      | R1 =  | 0, R2 =  | 0, | R3 =  | 0, R4 =  | 4,  | R5 =  | 0, R6 =   | 0, R7 =  | 0  |
| R8 =    | 0,      | R9 =  | 1, R10 = | 0, | R11 = | 0, R12 = | 0,  | R13 = | 0, R14 =  | 0, R15 = | 0  |
| R16 =   | 0,      | R17 = | 0, R18 = | 0, | R19 = | 0, R20 = | 0,  | R21 = | 0, R22 =  | 0, R23 = | 0  |
| R24 -   | 0       | R25 - | 0 R26 -  | 0  | R27 - | 0 R28 -  | 0   | P20 - | 116 R30 - | 0 P31 -  | 16 |

| Instruction set | Op code    | rs              | rt    | immediate       |
|-----------------|------------|-----------------|-------|-----------------|
| Instr location  | [31:26]    | [25:21] [20:16] |       | [15:0]          |
| sw \$s1,\$sp,8  | 101011(43) | 11101           | 10001 | 000000000001000 |

## **Description:**

## Mem[Rs+imm] = Mem[124] = Reg[rt] = Reg[17] = 0 (s1 = Reg[17])

## PC = 32

| PC =        | 32      |    |          |       |     |          |     |         |      |       |    |       |    |
|-------------|---------|----|----------|-------|-----|----------|-----|---------|------|-------|----|-------|----|
| Data Memory | =       | 0, | 0,       | 0,    | 0,  | 0,       | 0,  | 0,      | (    | )     |    |       |    |
| Data Memory | =       | 0, | 0,       | 0,    | 0,  | 0,       | 0,  | 0,      | (    | )     |    |       |    |
| Data Memory | =       | 0, | 0,       | 0,    | 0,  | 0,       | 0,  | 0,      | (    | )     |    |       |    |
| Data Memory | =       | 0, | 0,       | 0,    | 0,  | 0,       | 16, | 0,      | (    | )     |    |       |    |
| Registers   |         |    |          |       |     |          |     |         |      |       |    |       |    |
| RO =        | 0, R1 = | =  | 0, R2 =  | 0, R3 | =   | 0, R4 =  | 4   | , R5 =  | 0,   | R6 =  | 0, | R7 =  | 0  |
| R8 =        | 0, R9 = | =  | 1, R10 = | 0, R1 | 1 = | 0, R12 = | 0   | , R13 = | 0,   | R14 = | 0, | R15 = | 0  |
| R16 =       | 0, R17  | =  | 0, R18 = | 0, R1 | 9 = | 0, R20 = | 0   | , R21 = | 0,   | R22 = | 0, | R23 = | 0  |
| R24 =       | 0, R25  | =  | 0. R26 = | 0, R2 | 7 = | 0. R28 = | 0   | . R29 = | 116. | R30 = | 0. | R31 = | 16 |

| Instruction set    | Op code   | rs      | rs rt   |         | shamt  | funct      |  |
|--------------------|-----------|---------|---------|---------|--------|------------|--|
| Instr location     | [31:26]   | [25:21] | [20:16] | [15:11] | [10:6] | [5:0]      |  |
| add \$s0,\$a0,zero | 000000(0) | 00100   | 00000   | 10000   | 00000  | 100000(32) |  |

## **Description:**

## **PC = 36**

| PC =          | 36       |          |      |       |          |     |       |            |          |    |
|---------------|----------|----------|------|-------|----------|-----|-------|------------|----------|----|
| Data Memory = | = 0,     | 0,       | 0,   | 0,    | 0,       | 0,  | 0,    | 0          |          |    |
| Data Memory = | 0,       | 0,       | 0,   | 0,    | 0,       | 0,  | 0,    | 0          |          |    |
| Data Memory = | 0,       | 0,       | 0,   | 0,    | 0,       | 0,  | 0,    | 0          |          |    |
| Data Memory = | = 0,     | 0,       | 0,   | 0,    | 0,       | 16, | 0,    | 0          |          |    |
| Registers     |          |          |      |       |          |     |       |            |          |    |
| RO =          | 0, R1 =  | 0, R2 =  | 0, 1 | R3 =  | 0, R4 =  | 4,  | R5 =  | 0, R6 =    | 0, R7 =  | 0  |
| R8 =          | 0, R9 =  | 1, R10 = | 0, 1 | R11 = | 0, R12 = | 0,  | R13 = | 0, R14 =   | 0, R15 = | 0  |
| R16 =         | 0, R17 = | 0, R18 = | 0, 1 | R19 = | 0, R20 = | 0,  | R21 = | 0, R22 =   | 0, R23 = | 0  |
| R24 =         | 0, R25 = | 0, R26 = | 0, 1 | R27 = | 0, R28 = | 0,  | R29 = | 116, R30 = | 0, R31 = | 16 |

| Instruction set     | Op code   | rs              | rt    | immediate           |  |  |
|---------------------|-----------|-----------------|-------|---------------------|--|--|
| Instr location      | [31:26]   | [25:21] [20:16] |       | [15:0]              |  |  |
| beq \$s0, zero, re1 | 000100(4) | 10000           | 00000 | 000000000001100(12) |  |  |

## **Description:**

### If sO(Reg[16]) == 0, branch to re1. Now sO == 4 => sequential

#### PC = 40

| PC =          | 40      |    |          |    |       |          |     |         |            |          |    |
|---------------|---------|----|----------|----|-------|----------|-----|---------|------------|----------|----|
| Data Memory : | =       | 0, | 0,       | 0, | 0,    | 0,       | 0,  | 0,      | 0          |          |    |
| Data Memory : | =       | 0, | 0,       | 0, | 0,    | 0,       | 0,  | 0,      | 0          |          |    |
| Data Memory : | =       | 0, | 0,       | 0, | 0,    | 0,       | 0,  | 0,      | 0          |          |    |
| Data Memory : | =       | 0, | 0,       | 0, | 0,    | 0,       | 16, | 0,      | 0          |          |    |
| Registers     |         |    |          |    |       |          |     |         |            |          |    |
| RO =          | 0, R1 = |    | 0, R2 =  | 0, | R3 =  | 0, R4 =  | 4,  | , R5 =  | 0, R6 =    | 0, R7 =  | 0  |
| R8 =          | 0, R9 = |    | 1, R10 = | 0, | R11 = | 0, R12 = | 0,  | , R13 = | 0, R14 =   | 0, R15 = | 0  |
| R16 =         | 4, R17  | =  | 0, R18 = | 0, | R19 = | 0, R20 = | 0,  | , R21 = | 0, R22 =   | 0, R23 = | 0  |
| R24 =         | 0, R25  | =  | 0, R26 = | 0, | R27 = | 0, R28 = | 0,  | , R29 = | 116, R30 = | 0, R31 = | 16 |

| Instruction set     | Op code   | rs rt   |         | immediate           |
|---------------------|-----------|---------|---------|---------------------|
| Instr location      | [31:26]   | [25:21] | [20:16] | [15:0]              |
| beq \$s0, \$t1, re1 | 000100(4) | 10000   | 01001   | 000000000001100(12) |

# If s0(Reg[16]) == t1(Reg[9]), branch to re1. Now s0 != t1 => sequential PC = 44

| Registers                                              |                                 |
|--------------------------------------------------------|---------------------------------|
| R0 = 0, $R1 = 0$ , $R2 = 0$ , $R3 = 0$ , $R4 = 0$      | 4, R5 = 0, R6 = 0, R7 = 0       |
| R8 = 0, $R9 = 1$ , $R10 = 0$ , $R11 = 0$ , $R12 = 0$   | 0, R13 = 0, R14 = 0, R15 = 0    |
| R16 = 4, R17 = 0, R18 = 0, R19 = 0, R20 =              | 0, R21 = 0, R22 = 0, R23 = 0    |
| R24 = 0, $R25 = 0$ , $R26 = 0$ , $R27 = 0$ , $R28 = 0$ | 0, R29 = 116, R30 = 0, R31 = 16 |

| Instruction set   | Op code   | rs rt   |         | immediate       |  |  |
|-------------------|-----------|---------|---------|-----------------|--|--|
| Instr location    | [31:26]   | [25:21] | [20:16] | [15:0]          |  |  |
| addi \$a0,\$s0,-1 | 001000(8) | 10000   | 00100   | 111111111111111 |  |  |

## **Description:**

$$a0 = Reg[4] = s0-1 = Reg[16]-1 = 4-1 = 3$$

| PC =          | 48       |          |    |       |          |     |       |            |          |    |
|---------------|----------|----------|----|-------|----------|-----|-------|------------|----------|----|
| Data Memory = | = 0,     | 0,       | 0, | 0,    | 0,       | 0,  | 0,    | 0          |          |    |
| Data Memory = | = 0,     | 0,       | 0, | 0,    | 0,       | 0,  | 0,    | 0          |          |    |
| Data Memory = | = 0,     | 0,       | 0, | 0,    | 0,       | 0,  | 0,    | 0          |          |    |
| Data Memory = | = 0,     | 0,       | 0, | 0,    | 0,       | 16, | 0,    | 0          |          |    |
| Registers     |          |          |    |       |          |     |       |            |          |    |
| RO =          | 0, R1 =  | 0, R2 =  | 0, | R3 =  | 0, R4 =  | 4,  | R5 =  | 0, R6 =    | 0, R7 =  | 0  |
| R8 =          | 0, R9 =  | 1, R10 = | 0, | R11 = | 0, R12 = | 0,  | R13 = | 0, R14 =   | 0, R15 = | 0  |
| R16 =         | 4, R17 = | 0, R18 = | 0, | R19 = | 0, R20 = | 0,  | R21 = | 0, R22 =   | 0, R23 = | 0  |
| R24 =         | 0, R25 = | 0, R26 = | 0, | R27 = | 0, R28 = | 0,  | R29 = | 116, R30 = | 0, R31 = | 16 |

| Instruction set Op code |           | Address                                 |  |  |  |  |  |  |
|-------------------------|-----------|-----------------------------------------|--|--|--|--|--|--|
| Instr location          | [31:26]   | [25:0]                                  |  |  |  |  |  |  |
| jal fib                 | 000011(3) | 000000000000000000000000000000000000000 |  |  |  |  |  |  |

## **Description:**

$$Reg[31] = PC+4 = 56$$

$$PC = 52 (pcnext = 5*4 = 20)$$

| PC =        | 52       |          |    |       |          |     |       |            |          |    |
|-------------|----------|----------|----|-------|----------|-----|-------|------------|----------|----|
| Data Memory | y = 0,   | 0,       | 0, | 0,    | 0,       | 0,  | 0,    | 0          |          |    |
| Data Memory | y = 0,   | 0,       | 0, | 0,    | 0,       | 0,  | 0,    | 0          |          |    |
| Data Memory | y = 0,   | 0,       | 0, | 0,    | 0,       | 0,  | 0,    | 0          |          |    |
| Data Memory | y = 0,   | 0,       | 0, | 0,    | 0,       | 16, | 0,    | 0          |          |    |
| Registers   |          |          |    |       |          |     |       |            |          |    |
| R0 =        | 0, R1 =  | 0, R2 =  | 0, | R3 =  | 0, R4 =  | 3,  | R5 =  | 0, R6 =    | 0, R7 =  | 0  |
| R8 =        | 0, R9 =  | 1, R10 = | 0, | R11 = | 0, R12 = | 0,  | R13 = | 0, R14 =   | 0, R15 = | 0  |
| R16 =       | 4, R17 = | 0, R18 = | 0, | R19 = | 0, R20 = | 0,  | R21 = | 0, R22 =   | 0, R23 = | 0  |
| R24 =       | 0, R25 = | 0, R26 = | 0, | R27 = | 0, R28 = | 0,  | R29 = | 116, R30 = | 0, R31 = | 16 |

#### 礙於篇幅,中間過程就不詳細追蹤,直接看 final 結果:

| PC = 12       | 20       |          |      |      |          |     |       |            |          |    |
|---------------|----------|----------|------|------|----------|-----|-------|------------|----------|----|
| Data Memory = | 0,       | 0,       | 0,   | 0,   | 0,       | 0,  | 0,    | 0          |          |    |
| Data Memory = | 0,       | 0,       | 0,   | 0,   | 0,       | 0,  | 0,    | 0          |          |    |
| Data Memory = | 0,       | 0,       | 0,   | 0,   | 68,      | 2,  | 1,    | 68         |          |    |
| Data Memory = | 2,       | 1,       | 68,  | 4,   | 3,       | 16, | 0,    | 0          |          |    |
| Registers     |          |          |      |      |          |     |       |            |          |    |
| RO =          | 0, R1 =  | 0, R2 =  | 5, R | 3 =  | 0, R4 =  | 0,  | R5 =  | 0, R6 =    | 0, R7 =  | 0  |
| R8 =          | 0, R9 =  | 1, R10 = | 0, R | 11 = | 0, R12 = | 0,  | R13 = | 0, R14 =   | 0, R15 = | 0  |
| R16 =         | 0, R17 = | 0, R18 = | 0, R | 19 = | 0, R20 = | 0,  | R21 = | 0, R22 =   | 0, R23 = | 0  |
| R24 =         | 0, R25 = | 0, R26 = | 0, R | 27 = | 0, R28 = | 0,  | R29 = | 128, R30 = | 0, R31 = | 16 |

#### r2=2

波形圖也顯示當 PC 到 120 之後 r2 都是 2:



## Problems you met and solutions:

#### 1. j、jal、jr 不知道要如何設計

雖然助教有提供參考設計圖,不過上面沒有列出 jal 改變 Reg[31]及 jr 改變 PC 的部分,所以我另外加了多工器或輸入進去,整個 module 就比較完整了。

#### 2. 控制訊號寫錯

這次又與上次犯同樣的錯,但有鑑於上次的經驗,檢查接線都沒問題之後,就確定 應該是控制訊號寫錯,改回來就好了。

## **Summary:**

雖然這次只是修改上一次 Lab 的內容,但是因為控制訊號變多,模組設計變複雜,建模組的過程中仍然遇到不少問題,當我把所有的控制訊號整理成表格之後,就很好設計所有控制訊號。感覺這次 Lab 讓我更了解 single cycle MIPS CPU 的 jump、load、store 等指令的運作流程。希望以後可以更快發現問題並解決問題,我也希望可以出多一點作業複習上課內容並增進寫 verilog 程式的能力。