Lab 2: Analysis of the degree distribution

Michele Gentili and Simon Van den Eynde

October 13, 2016

1 Introduction

In this lab we will try to select a theoretic model, fitting the degree distribution of syntactic dependency networks in different languages. We will focus on in-degrees.

We considered 5 theoretical models and used the Akaike information criterions (AIC) to decide which model was most favourable. The models we considered were

- 1. a zeta distribution
- 2. a zeta distribution with fixed exponent 2
- 3. a right-truncated zeta distribution
- 4. a geometric distribution
- 5. a geometric displaced distribution
- 6. a displaced poisson distribution

After choosing the statistically best models, we plotted our models to our data to do a visual check of correctness.

And finally recompute the Akaike scores, introducing a better model: the Altmann distribution.

2 Results

In table 1 we find our main result, the difference in AIC from the best (of the 5) model. We notice that except for Hungarian and Turkish the right-truncated zeta always ends up best.

Table 1: Difference in AIC for the 5 different models in different languages

Language	1	2	3	4	5
Arabic	2.91	175.28	0.00	24188.95	240321.25
Basque	0.24	845.41	0.00	8364.11	50164.59
Catalan	13.96	225.90	0.00	61881.73	913880.09
Chinese	14.69	503.99	0.00	48678.82	618348.40
Czech	8.85	147.28	0.00	91099.39	940677.71
English	45.05	1469.66	0.00	45742.18	739581.47
Greek	3.43	164.11	0.00	17133.83	157137.24
Hungarian	0.00	2220.28	1.71	53469.62	468252.20
Italian	0.49	118.37	0.00	22877.90	245803.51
Turkish	0.00	2740.47	1.98	24615.35	193345.03

In table 2 we find the RSS-values for the zeta and right-truncated zeta distribution. We notice that in both table 1 and 2 most values for the zeta and right-truncated zeta are very alike.

Table 2: RSS values for zeta and right-truncated zeta distribution with optimised parameters

	zeta	RT_zeta
Arabic	9.54e-04	9.33e-04
Basque	1.68e-05	1.78e-05
Catalan	1.12e-04	1.03e-04
Chinese	5.21e-04	4.94e-04
Czech	4.12e-05	3.82e-05
English	3.46e-04	2.90e-04
Greek	4.38e-04	4.15e-04
Hungarian	3.93e-04	3.94e-04
Italian	1.82e-04	1.75e-04
Turkish	6.92 e-05	6.92 e- 05

In table 3 we added two more models, the Altmann model and a corrected geometric model (see also Method section). As we expected has the Altmann function best score, so all the other values are shifted of the difference between the previous best model score and the Altmann score.

Table 3: Difference in AIC for the 5 different models + 2 extra models in different languages

	zeta	$zeta_2$	RT_zeta	geom	poisson	$geom_corrected$	Altmann
Arabic	132092	132264	132089	156278	372410	137774	0
Basque	58151	58996	58151	66515	108315	42796	0
Catalan	271389	271601	271375	333256	1185255	318171	0
Chinese	277583	278072	277568	326247	895917	309159	0
Czech	439807	439946	439799	530898	1380476	485598	0
English	251394	252819	251349	297091	990930	287081	0
Greek	78708	78869	78705	95839	235842	85490	0
Hungarian	185034	187254	185036	238504	653286	204135	0
Italian	86617	86735	86617	109495	332420	101040	0
Turkish	91486	94227	91488	116101	284831	80961	0

Hereafter we added a plot for every language, plotting the fit of some distributions on the data.

And we also added some extra plots regarding the Altmann distribution.

Arabic

Basque

Catalan

Chinese

Czech

English

Greek

Hungarian

Italian

Turkish

Arabic Altmann

Basque Altmann

Catalan Altmann

Chinese Altmann

Czech Altmann

English Altmann

Greek Altmann

Hungarian Altmann

Italian Altmann

Turkish Altmann

Figure 1: example caption

3 Discussion

When optimising model 3 we noticed that the value of k_{max} stays its starting value and does not change, while manually changing the starting value of k_{max} and thus the value obtained by optimising, significantly improved the AIC-value and the RSS-value. For the english-in-degree-sequence reduces changing k_{max} manually from max degree to 778 the RSS by over 30%.

On the plots we see that the Altmann distribution and the (right-truncated)-zeta distribution fit the probabilities from the data well. We prefer the Altmann distribution over the the zeta-distributions because the Altmann distribution has a lower AIC.

3.1 Conclusion

The best model is the Altmann model, the zeta function with respect to the previous functions works better because it behaves good on the tails, the geometric distribution, even if shifted to 1, 'loses' too much probability on the tails. Finally as was expected, the difference in AIC has changed as soon as you introduce a better model.

Because the Altmann distribution also gives a reasonable fit on the plot, we think that using the altmann distribution is an appropriate way to model the data.

4 Methods

When using the "L-BFGS-B" optimisation method for the right truncated zeta model (model 3), we often encountered errors. We decided to change the optimisation method to the conjugate gradients method "CG". Here we couldn't set any lower bound, but that didn't seem to give any problem for our data.

We noticed our geometric distribution gave a weight to the value 0. So we decided to make a corrected geometric distribution, by shifting the data for this distribution by 1. We called this distribution geom_corrected.

Calculating the mle-function for the Altmann distribution didn't really work out either. So we calculated the optimised parameters 'manually' with the optim-function, which is used inside the mle-function.