Math 523 Homework 6

Theo Koss

December 2023

Problems

1. Use definition of derivative to determine whether f is differentiable at 0, and if so find the value f'(0), do the same for g.

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{f(h)}{h} = \lim_{h \to 0} \frac{h \sin\left(\frac{1}{h}\right)}{h} = \lim_{h \to 0} \sin\left(\frac{1}{h}\right)$$

This does not exist. So f is not differentiable at 0. g(x) = xf(x) so same calculation as above but:

$$g'(0) = \dots = \lim_{h \to 0} h \sin\left(\frac{1}{h}\right) = 0$$

Does exist and equals 0 via the squeeze theorem.

2. Show that if f is even then f' is odd, and if f odd, f' even.

Proof. Suppose f is even, so f(-x) = f(x). Then by definition of derivative,

$$f'(-x) = \lim_{h \to 0} \frac{f(-x+h) - f(-x)}{h} = \lim_{h \to 0} \frac{f(-(x-h)) - f(x)}{h} =$$

$$= \lim_{h \to 0} \frac{f(x-h) - f(x)}{h} = -\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = -f'(x)$$

Suppose f is odd, so that f(-x) = -f(x). Then

$$f'(-x) = \lim_{h \to 0} \frac{f(-x+h) - f(-x)}{h} = \lim_{h \to 0} \frac{f(-(x-h)) + f(x)}{h} =$$

$$=\lim_{h\to 0}\frac{-f\left(x-h\right)+f\left(x\right)}{h}=-\lim_{h\to 0}\frac{f\left(x-h\right)-f\left(x\right)}{h}=$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x)$$

So f' is even.

QED

3. Show that the function $f(x) = x^3 + 2x + 1$ is strictly increasing on \mathbb{R} and thus, has an inverse function f^{-1} on \mathbb{R} . Find the value of $(f^{-1})'(y)$ at the points corresponding to x = 0, 1, -1.

Proof. $f'(x) = 3x^2 + 2$ which is never negative for $x \in \mathbb{R}$, so f is strictly increasing on \mathbb{R} . By the inverse function theorem,

$$(f^{-1})'(y) = \frac{1}{f'(x)}$$

- At x = 0, $(f^{-1})'(y) = \frac{1}{2}$
- At x = 1, $(f^{-1})'(y) = \frac{1}{5}$
- At x = -1, $(f^{-1})'(y) = \frac{1}{5}$

QED

- 4. (a) Use definition of derivative to prove: If f is an increasing function that is differentiable on an interval I, then $f'(x) \ge 0$ for all $x \in I$.
 - (b) Is the following true or false? If f is strictly increasing and differentiable on I, then f'(x) > 0 on I. Explain

Proof. (a): Let f be an increasing function which is differentiable on I. Then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

But $f(x+h) \ge f(x)$ since f is increasing, so numerator is nonnegative $\implies f'(x) \ge 0$ for x in the interval.

(b): True, by f being strictly increasing, the statement goes from: $[f(x+h) \ge f(x)] \to [f(x+h) > f(x)]$ so instead of the numerator being nonnegative, it becomes strictly positive. QED

(WLOG assuming $h \to 0$ from the right, if from the left, denominator is negative as is numerator so still $f'(x) \ge 0$.)

5. Show that if f'(c) = 0 for some $c \in I$ and f''(x) > 0 for all $x \in I$, then f has a minimum value at c. Similarly, if f'(c) = 0 for some $c \in I$ and f''(x) < 0 then f has a maximum value at c.

Proof. Let f be twice differentiable, $f''(x) > 0 \ \forall x \in I$ and f'(c) = 0 for some $c \in I$. Then

$$f''(c) = \lim_{h \to 0} \frac{f'(c+h) - f'(c)}{h} = \lim_{h \to 0} \frac{f'(c+h)}{h} > 0$$

So for small h: $\frac{f'(c+h)}{h} > 0$, which means if $h \to 0$ from the left, f'(c+h) < 0, so f is decreasing, and if $h \to 0$ from the right, f'(c+h) > 0, so that f is increasing. By the first derivative test, f has a local minimum at c.

Similarly, let f be twice diff., $f''(x) < 0 \ \forall x \in I$ and f'(c) = 0 for some $c \in I$. Then follow the same argument but: $\frac{f'(c+h)}{h} < 0$ for small h. So if $h \to 0$ from left, f'(c+h) > 0 so f is increasing, and if $h \to 0$ from right, f'(c+h) < 0 so f is decreasing. Again apply first derivative test, $\implies f$ has a local maximum at c. QED

6. Evaluate the following limits:

(b)

(a)
$$\lim_{x \to 0^+} \frac{\sin x}{\sqrt{x}} \quad (0, \infty)$$

$$\lim_{x \to 0^+} \frac{\sin x}{\sqrt{x}} = \lim_{x \to 0^+} \frac{2\sqrt{x} \cos x}{1} = 0$$

$$\lim_{x \to 0^+} \frac{\tan x - x}{x^3} \left(0, \frac{\pi}{2} \right)$$

$$\lim_{x \to 0^+} \frac{\tan x - x}{x^3} = \lim_{x \to 0^+} \frac{\sec^2 x - 1}{3x^2} = \lim_{x \to 0^+} \frac{2 \sec^2 x \tan x}{6x} =$$

$$= \lim_{x \to 0^+} \frac{-4 \sec^2 x + 6 \sec^4 x}{6} = \frac{1}{3}$$

(c)
$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{\sin x} \right) \ \left(0, \frac{\pi}{2} \right)$$

$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{\sin x} \right) = \lim_{x \to 0^+} \left(1 - \frac{1}{\cos x} \right) = 1 - 1 = 0$$

7. If $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = \infty$ and $\lim_{x\to\infty} \frac{f'(x)}{g'(x)} = L \in \mathbb{R}$, then $\lim_{x\to\infty} \frac{f(x)}{g(x)} = L$.

Use result above to conclude the following: If $\lim_{x\to 0} f(x) = \lim_{x\to 0} g(x) = \infty$ and $\lim_{x\to 0} \frac{f'(x)}{g'(x)} = L \in \mathbb{R}$ then $\lim_{x\to 0} \frac{f(x)}{g(x)} = L$.

(a) Proof. Consider $\lim_{x\to 0^+} \frac{f(x)}{g(x)}$ where $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} g(x) = \infty$, and $\lim_{x\to 0^+} \frac{f'(x)}{g'(x)} = L \in \mathbb{R}$. QED