

© BHI + v2 salts media V.2

Matthew Haines¹

¹Imperial College London

In Development dx.doi.org/10.17504/protocols.io.bmb8k2rw

ABSTRACT

Vibrio natriegens grows exceptionally well in BHI + v2 salts media (link). Furthermore, this media is routinely used for culturing this organism (Weinstock et al., 2016). However, care must be taken during preperation not to autoclave v2 salts and BHI together. This protocol utilises a 10x v2 salts buffer to achieve this.

Weinstock MT, Hesek ED, Wilson CM, Gibson DG (2016). Vibrio natriegens as a fast-growing host for molecular biology.. Nature methods.

https://doi.org/10.1038/nmeth.3970

DOI

dx.doi.org/10.17504/protocols.io.bmb8k2rw

PROTOCOL CITATION

Matthew Haines 2020. BHI + v2 salts media. protocols.io https://dx.doi.org/10.17504/protocols.io.bmb8k2rw Version created by Matthew Haines

KEYWORDS

Vibrio natriegens, Model prokaryotes, Synthetic biology

LICENSE

 $_{\!\scriptscriptstyle \Box}$ This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Sep 14, 2020

LAST MODIFIED

Oct 14, 2020

PROTOCOL INTEGER ID

42080

MATERIALS

NAME	CATALOG #	VENDOR
MgCl2		
Sodium chloride		
Potassium Chloride		
Brain Heart Infusion Broth Dry Medium	B9500	Teknova

mprotocols.io

10/14/2020

Citation: Matthew Haines (10/14/2020). BHI + v2 salts media. https://dx.doi.org/10.17504/protocols.io.bmb8k2rw

ABSTRACT

Vibrio natriegens grows exceptionally well in BHI + v2 salts media (<u>link</u>). Furthermore, this media is routinely used for culturing this organism (Weinstock et al., 2016). However, care must be taken during preparation not to autoclave v2 salts and BHI together. This protocol utilises a 10x v2 salts buffer to achieve this.

Weinstock MT, Hesek ED, Wilson CM, Gibson DG (2016). Vibrio natriegens as a fast-growing host for molecular biology.. Nature methods.

https://doi.org/10.1038/nmeth.3970

Prepare 10x v2 salts buffer

Dissolve the following salts in $\blacksquare 800 \text{ mL}$ of ddH₂O:

Component	Target concentration (mM)	Component (g/900 mL)	Final concentration (mM)
NaCl	2040.0	107.30	2040.08
MgCl2	231.4	19.83	231.42
KCI	42.0	2.82	42.03

2 Adjust the volume to $\square 900$ mL using ddH₂0.

Prepare BHI media

3 Dissolve \square 37 g of BHI dry medium in \square 900 mL ddH₂0.

Sterilise and combine

- 4 Sterilise both BHI media and 10x v2 salts buffer by autoclaving.
- 5 Add 100 mL 10x v2 salts buffer to the sterilised 900 mL BHI media under sterile conditions.
 - The remaining 10x v2 salts buffer can be used for making further BHI + v2 salts media.