

SDA CURS 3: ARBORI

Definitie. Arbori oarecare. Parcurgeri. Arbori cu etichete si arbori pentru expresii. Arbore ADT. Implementari ale arborilor. Arbori binari de cautare

ARBORI

- Arbori oarecare: colectie de elemente numite noduri - avand un nod radacina si o relatie de paternitate intre noduri – fapt ce impune o structura ierarhica a nodurilor.
- <u>Definitie</u>: *structura recursiva*, colectie ierarhica de noduri, fiecare nod:
 - fie este gol (nil, NULL) fie este o structura care contine o cheie si o colectie de referinte catre noduri *copil*, radacinile n_1 , n_2 , ..., n_k ale sub-arborilor T_1 , T_2 , ..., T_k
- Structura de date pentru colectii non-liniare

TERMINOLOGIA PENTRU ARBORI – RADACINA, NOD, MUCHIE

radacina

e

Se da un arbore oarecare T = (V, E) cu radacina r in V:

Arborele din figura are:

12 noduri: |V| = 12

• 11 muchii: |E| = 11

Intr-un arbore cu n noduri vom avea n-1 muchii.

Legatura dintre 2 noduri se numeste muchie.

- Primul nod este <u>radacina</u>.
- Un arbore are o singura radacina,

TERMINOLOGIA PENTRU ARBORI – PARINTE, COPII

Intr-un arbore nodul care precede un alt nod se numeste <u>parinte</u>.

Intr-un arbore nodul care descende din alt nod se numeste <u>copil</u>.

Intr-un arbore oarecare, un nod parinte poate avea oricate noduri copil.

Intr-un arbore, toate nodurile sunt copii, cu exceptia radacinii.

- Noduri parinte in exemplul din figura:
 - a, b,d,c,f,k
- Copiii lui a sunt b si c
- Copiii lui d sunt h si i

TERMINOLOGIA PENTRU ARBORI – DESCENDENTI, STRAMOSI

Descendent al lui v: Orice nod in care se ajunge parcurgand muchiile de la v in jos (pe relatie copil) Stramos al lui v: orice nod in care se ajunge parcurgand muchiile de la v in sus (pe relatie parinte)

- Descendentii lui c sunt e, f, g, j, k, l
- Stramosii lui k sunt f, c, a

TERMINOLOGIA PENTRU ARBORI – FRATI

Nodurile care au acelasi parinte se numesc <u>frati</u>. Fratii pentru exemplul din figura sunt:

- b, c.
- h,I
- e,f,g
- j,k
- Ordinea fratilor poate sau nu sa conteze

TERMINOLOGIA PENTRU ARBORI – FRUNZE

Intr-un arbore, nodurile care nu au copii se numesc frunze, sau <u>noduri terminale</u>, sau <u>noduri externe</u>.

Frunzele din exemplu sunt:

h,i,e,g,j,l

TERMINOLOGIA PENTRU ARBORI – NODURI INTERNE

Nod <u>intern</u> – nod care are cel putin un copil. Se mai numeste nod <u>non-terminal</u>. Radacina e considerata nod intern.

Nodurile interne din exemplu sunt:

a,b,d,c,f,k

TERMINOLOGIA PENTRU ARBORI – DRUM, CALE

<u>Cale</u>(en. *path*) dintre doua noduri este secventa de noduri si muchii cuprinsa intre cele doua noduri.

 $\langle n_1, n_2, \dots, n_k \rangle$ astfel incat n_i = parintele lui n_{i+1} pentru $1 \le i \le k$. $lungime(cale) = nb_noduri-1 = nb_muchii$

Exemplu:

- Drumul dintre a si h este:
 - a-b-d-h
 - Lungimea drumului este 3
- Drumul dintre f si l:
 - f,k,l
 - Lungime = 2

TERMINOLOGIA PENTRU ARBORI - GRADUL UNUI NOD

Gradele fiecarui nod:

Gradul unui nod este egal cu numarul de copii ai nodului.

<u>Gradul arborelui</u> este maximul dintre gradele nodurilor din arbore.

In exemplu:

- Grad(a) = 2
- Grad(b)=1
- Grad(h) = 0
- Grad(c) = 3
- •

TERMINOLOGIA PENTRU ARBORI – INALTIME

Inaltimea (height) a unui nod v

Inaltimea arborelui T este inaltimea radacinii r (Inaltime(T)=Inaltime(r)). Inaltimea frunzelor este 0.

Inaltimea(a) = 4 Inaltime(b)=2; Inaltime(k)=1; Inaltime(h)=0;

• • • •

TERMINOLOGIA PENTRU ARBORI – ADANCIME

Adancimea unui nod (varf) *v*∈*V*:

adancime(v) = lungimea drumului de la r la v

- numarul de muchii continute de drumul de la radacina pana la acel nod.
- Adancimea radacinii este 0.
- Adancimea arborelui este maximul dintre adancimile frunzelor.

Exemplu:

- Adancime(a)=0
- Adancime(d)=2
- Adancime(k)=3
- Adancime(l)=4

• • • •

TERMINOLOGIA PENTRU ARBORI – EXERCITIU

inaltime(v) = lungimea celui mai lung drum de la v la o frunza.

adancime(v) = lungimea drumului de la r la v

Care este inaltimea si adancimea nodului 10 ? Care este inaltimea si adancimea nodului 4 ?

TERMINOLOGIA PENTRU ARBORI – NIVEL

Nivelul unui varf $v \in V$ este nivel(v) = 1 + adancime(v)

TERMINOLOGIA PENTRU ARBORI – SUBARBORE

Sub-arborele generat de un varf $v \in V$ este un arbore care consta in nodul radacina v si toti descendentii sai din T.

Subarborele generat de b contine nodurile:

b,d,h,i

Subarborele generat de f contine nodurile:

f,j,k,l

TERMINOLOGIA PENTRU ARBORI – DIAMETRU

Diametrul unui arbore: lungimea maxima a unei cai intre 2 noduri (frunze), in arbore

Exemplu: diametrul arborelui din figura este 7

TERMINOLOGIA FOLOSITA PENTRU ARBORI

TERMINOLOGIA PENTRU ARBORI OARECARE

• Un arbore oarecare este:

- *m-ary* daca fiecare varf intern are cel mult *m* fii.
 - $m = 2 \rightarrow$ arbore binar; $m = 3 \rightarrow$ arbore ternar
- m-ary intreg ("full") fiecare nod intern are exact m fii
- complet m-ary daca este arbore full si toate frunzele sunt la acelasi nivel

• Limite:

- Inaltimea maxima a unui arbore cu n varfuri este n-1.
- Inaltimea maxima a unui arbore plin (full) cu n varfuri este (n-1)/m
- Inaltimea minima a unui arbore cu n varfuri este $\lfloor \log_m n \rfloor$

ADT (ABSTRACT DATA TYPE) TREE

• parent (n, T): returneaza parintele nodului n in arborele T. Pentru radacina returneaza un arbore vid (NIL).

Input: nod, arbore; Output: nod sau NIL

• leftmostChild(n, T): returneaza fiul cel mai din stanga al nodului n din arborele T sau NIL pentru o frunza.

• Input: nod, arbore; Output: nod sau NIL

• rightSibling(n, T): returneaza fratele din dreapta al nodului n in arborele T sau NIL pentru cel mai din dreapta frate.

• Input: nod, arbore; Output: nod sau NIL

• label(n, T): returneaza eticheta (valoarea asociata) nodului n in arborele T

• Input: nod, arbore; Output: eticheta

• root (T): returneaza radacina arborelui T

• Input: arbore; Output: nod sau NIL

inord(T), preord(T), postord(T)

IMPLEMENTAREA ARBORILOR CU VECTORI

Structura fizica

0	1	2	3	4	5	6	7	8	idNod
-1	0	0	1	1	2	2	5	6	Indicele parintilor

- fiecare nod are referinta catre indexul nodului parinte stocat in vector
- Indicele radacinii este -1

IMPLEMENTAREA ARBORILOR. LISTE DE COPII

Model logic

Date

Lista de referinte catre noduri copil

Lista de copii – sir sau lista inlantuita

REPREZENTARE DE ARBORE BINAR A ARBORILOR MULTICAI

Model logic

T.U. Cluj-Napoca -SDA

PARCURGERILE UNUI ARBORE

Preordine – se viziteaza radacina, apoi tot in preordine se viziteaza nodurile subarborilor care au ca parinte radacina, incepand cu subarborele cel mai din stanga.

Preordine (n)

- proceseaza n
- pentru fiecare fiu c al lui n, in ordine de la cel mai din stanga fiu executa
 Preordine(c)

Sursa foto: *

^{*}http://techfinite.blogspot.ro/2013/12/binary-tree-traversals-and-tree-iterations.html

PARCURGERILE UNUI ARBORE

Inordine – se viziteaza in inordine primul copil, dupa care se proceseaza radacina, dupa care se viziteaza, in inordine, restul copiilor

Inordine (n)

- Inordine(fiul cel mai din stanga a lui n)
- proceseaza n
- pentru fiecare fiu c al lui n, exceptie facand nodul cel mai din stanga, in ordine de la stanga la dreapta se executa Inordine (c)

Sursa foto: *

Complexitate: O(n)

Inorder traversal: CBDAFEIHG

PARCURGERILE UNUI ARBORE

Postordine- pentru un nod se viziteaza in postordine toti sub-arborii care au ca radacini pe fii nodului dat, apoi se viziteaza nodul. Se incepe parcurgerea de la radacina.

Postordine(n)

- pentru fiecare fiu c al lui n, executa Postordine(c)
- proceseaza n

Sursa foto: *

^{*}http://techfinite.blogspot.ro/2013/12/binary-tree-traversals-and-tree-iterations.html

EXEMPLU DE PARCURGERI

- preordine: 1, 2, 5, 3, 6, 10, 7, 11, 12, 4, 8, 9.
- postordine: 5, 2, 10, 6, 11, 12, 7, 3, 8, 9, 4, 1.
- inordine: 5, 2, 1, 10, 6, 3, 11, 7, 12, 8, 4, 9.

ARBORE BINAR

• Tip de data recursiv (ADT):

- NIL (NULL)
- nod, denumit radacina, impreuna cu doi arbori binari - subarborele stang (*left*) si subarborele drept (*right*)

Structura: reprezentare inlantuita:

campurile cheie, left (stang), right(drept),
 optional si p(parinte)

ARBORI ETICHETATI SI ARBORI PENTRU EXPRESII

- Arborii binari se pot folosi pentru a reprezenta expresii precum:
 - Propozitii compuse
 - Combinatii de multimi
 - Expresii aritmetice

- Arbore etichetat: fiecare nod are asociata o eticheta sau o valoare
- Arbore pentru expresii aritmetice: nodurile interne reprezinta operatori si frunzele sunt operanzi

Operator binar: primul operand este pe frunza stanga iar al doilea operand este pe frunza dreapta Operatori unari: un singur operand pe frunza dreapta

$$(a-b)*(a+c)$$

FORME PREFIX, POSTFIX, INFIX

- Folosind arborii binari se pot obtine expresii aritmetice in trei reprezentari:
 - Forma infixata:
 - Parcurgere in inordine
 - Se folosesc parantezele pentru a evita ambiguitatile
 - Forma prefixata:
 - Parcurgere in preordine
 - Nu sunt necesare parantezele
 - Forma postfixa:
 - Se foloseste parcurgerea in postordine
 - Nu sunt necesare parantezele
- Expresiile in forma prefixata si postfixa sunt folosite in stiinta calculatoarelor.
 T.U. Cluj-Napoca -SDA

EXEMPLU DE ARBORE PENTRU EXPRESII:

infix:
$$(2 \times (x + y)) + ((x - 4)/3)$$

prefix:
$$+\times 2 + x y / - x 43$$

postfix:
$$2xy + \times x4 - 3/+$$

infix:
$$(\neg(p \land q)) \leftrightarrow (\neg p \lor \neg q)$$

prefix:
$$\leftrightarrow \neg \land p \ q \lor \neg p \neg q$$

postfix:
$$p q \land \neg p \neg q \neg \lor \leftrightarrow$$

Fisierele unui system de operare

e operare Evaluarea expresiilor:

Sursa foto https://dvanderboom.wordpress.com

Compresia datelor (e.g. Huffman coding) – later in course

Natural language processing (e.g. syntax, dependency trees)

ARBORI BINARI DE CAUTARE

• Definitie:

- arbore binar, chei care pot fi comparate (relatie de ordine)
- nodurile cu <u>chei mai mici decat valoarea x</u> a cheii asociate unui anumit nod se gasesc in <u>subarborele</u> <u>stang</u> al acestuia
- nodurile ale caror chei au <u>valori mai mari decat x</u> se gasesc in <u>subarborele său drept</u>
- Subarborele stâng şi subarborele drept al oricărui nod sunt şi ei arbori binari de căutare.

Operatii:

Tree-search (T, key)

Tree-insert(T, key)

Tree-delete(T, node)

traverse - inorder, preorder, portorder (T)

height(T), diameter(T), Tree-successor(node), Tree-predecessor(node), etc...

IMPLEMENTARE ARBORE BINAR DE CAUTARE


```
typedef struct treeNode{
   int key;
   struct treeNode *left;
   struct treeNode *right;
   struct treeNode *parent; //optional
} TreeNode;
```


PAUSE AND EVALUATE ...

Care dintre arborii de mai jos NU este ABC?

PAUSE AND EVALUATE ...

Care dintre arborii de mai jos NU este ABC?

T.U. Cluj-Napoca -SDA

EXEMPLU PSEUDOCOD: PREORDINE

Varianta recursiva

preorder(node)
 if node = NIL then
 return
 visit(node)
 preorder(node.left)
 preorder(node.right)

Varianta iterativa

preorder(node)
s ← empty stack
if node ≠ NIL then
s.push(node)
while not s.isEmpty()
node ← s.pop()
visit(node)
if node.right ≠ null then
s.push(node.right)
if node.left ≠ null then
s.push(node.left)

- ? Care sunt secventele generate de parcurgerile in:
- preordine
- inordine
- postordine
- ? Care este complexitatea unei parcurgeri?

OPERATIA DE CAUTARE

- E.g.
 - Tree-search(T, 22)

return n->item;

OPERATIA DE CAUTARE - ALGORITM

Varianta recursiva

```
Tree-search(node, key)
   if node = NIL then
     return NIL
   if node.key = key then
     return node
   else if key < node.key then
     return Tree-search(node.left, key)
   else
     return Tree-search(node.right, key)</pre>
```

Varianta iterativa

```
Tree-search(node, key)
crt ← node
while crt != NIL and crt.key != key do
if key < crt.key then
crt ← crt.left
else
crt ← crt.right
return crt
```

Performanta?

PERFORMANTA OPERATIEI DE CAUTARE

- Inaltime h
 - Noduri parcurse pe un drum de la radacina la o frunza
 - Avem nevoie de cel mult h+1 comparatii, deci O(h)
- caz favorabil
- caz mediu:
 - pp. arborele aproximativ echilibrat: O(log n)
- cazul defavorabil: O(n)

ALTE OPERATII DE CAUTARE

- cautarea nodului minim
- cautarea nodului maxim
- cautarea predecesorului
- cautarea succesorului

E.g.

- succesorul nodului cu cheia 14 este nodul cu cheia 15
- succesorul nodului cu cheia 13 este nodul cu cheia 14

Inordine: 4, 6, 8, 13, 14, 15, 17, 20, 31

SUCCESORUL UNUI NOD

Procedure Tree-successor(x)

1: **if** x.right != NIL **then** return *Tree-minimum*(x.right)

2: y ← x.parent

3: while y!= NIL and x == y.right do

4: x ← y

5: y ← y.parent

6: **return** y

Procedure Tree-minimum(x)

1: while x.left != NIL do

2: $x \leftarrow x.left$

3: return x

Pentru pseudocodul tuturor operatiilor de cautare: see Th. Cormen, *Introduction to Algorithms*, 3rd edition, *pp. 295-298*

SUCCESORUL UNUI NOD

Procedure Tree-successor(x)

1: <u>if</u> x.right != NIL <u>then</u> return *Tree-minimum*(x.right)

2: y ← x.parent

3: **while** y != NIL and x == y.right **do**

4: x ← y

5: $y \leftarrow y.parent$

6: return y

Procedure Tree-minimum(x)

1: while x.left != NIL do

2: $x \leftarrow x.left$

3: **return** x

Care este succesorul nodului cu cheia 10? Care este succesorul nodului cu cheia 19? Care este succesorul nodului cu cheia 30?

INSERAREA UNUI NOD

- Intotdeauna ca frunza !!!
- Se insereaza nodul cu cheia 21 in arbore

- Cautam pozitia corecta (<u>intotdeauna</u> frunza!)
- Cream nodul
- Il legam in arbore

EXEMPLU INSERARE

OPERATIA DE INSERARE - ALGORITM

Varianta recursiva

```
Tree-insert(node, key)
    if node = NIL then
        return createNode(key)
    else if key < node.key then
        node.left ← Tree-insert(node.left, key)
    else
        node.right ← Tree-insert(node.right, key)
    return node</pre>
```

Codul aproape identic cu codul de cautare! Complexitate?

Varianta iterativa


```
Tree-insert(node, key)
   crt ← node
   parent ← NIL
   dir ← NONE
   while crt != NIL do
        parent ← node
        if key < crt.key then</pre>
          crt ← crt.left
          dir ← LEFT
    else
          crt ← crt.right
          dir ← RIGHT
    if parent != NIL then
         <u>if</u> dir = LEFT <u>then</u>
           parent.left ← createNode(key)
         else
           parent.right ← createNode(key
    else
          node ← createNode(key)
```

STERGEREA UNUI NOD

- Mai dificila decat inserarea!
- Idee:
 - se cauta nodul de sters
 - se elimina din structura
 - se reface proprietatea de arbore binar de cautare
- Cazuri pentru stergere:
 - 1. Nod terminal (frunza)
 - 2. Nod cu un singur fiu
 - 3. Nod cu doi fii
- Exemplu:
 - 1. Stergeti 8, 13, 21 sau 37
 - 2. Stergeti 22
 - 3. Stergeti12, 20 sau 29

EXEMPLU STERGERE: CAZURI 1&2

EXEMPLU STERGERE: CAZURI 1&2

EXEMPLU STERGERE: CAZUL 3

Cum putem pastra proprietatea de ABC?

Inlocuim cu o valoare intre cei 2 copii! - succesorul: findMin(node.right)

EXEMPLU STERGERE: CAZUL 3

FUNCTIA DE STERGERE: CAZURI REVIZITATE

Caz 1 – nodul de sters (p) nu are copii – il eliminam, si inlocuim legatura parintelui spre el sa pointeze NIL.

Caz 2 – nodul *p* are 1 copil – "urcam" acel copil in arbore, modificand legatura parintelui lui *p* sa pointeze catre copilul lui p.

Caz 3 – nodul p are 2 copii – gasim r, successorul lui p (care sigur se gaseste in subarborele drept al lui p), si inlocuim pe p cu r in arbore. Apelam recursiv stergerea pt nodul r.

FUNCTIA DE STERGERE: PSEUDOCOD

```
BSTNode delete(Key x, BSTNode p) {
    if (p == null)
                                                    // fell out of tree?
       throw KeyNotFoundException;
                                                    // ...error - no such key
    else {
                                                    // look in left subtree
       if (x < p.data)
            p.left = delete(x, p.left);
        else if (x > p.data)
                                                    // look in right subtree
            p.right = delete(x, p.right);
                                                    // found it!
        else if (p.left == null || p.right == null) { // either child empty?
            if (p.left == null) return p.right;
                                                    // return replacement node
            else
                             return p.left;
       else {
                                                    // both children present
           r = findReplacement(p);
                                                    // find replacement node
            copy r's contents to p;
                                                    // copy its contents to p
            p.right = delete(r.key, p.right);
                                                    // delete the replacement
   return p;
```

```
BSTNode findReplacement(BSTNode p) {
    BSTNode r = p.right;
    while (r.left != null) r = r.left;
    return r;
}
```

PERFORMANTA OPERATIILOR

- Cautare ch
- Inserare ch
- Stergere ch
- h = log n? (cazul mediu, da)
- Aparent eficient!
- Sa se construiasca un arbore cu caracterele:

ABCDEF

Dezechilibrat - cazul defavorabil O(n)

COMPARAREA PERFORMANTEI

	Arrays Simplu	Linked List Simplu	Trees Relativ simplu,
Insert	Inflexibil O(1)	Flexibil O(1)	Flexibil
Delete	O(n) inc sort	sort -> no adv	
	O(n)	O(1) - any	
Search		O(n) - specific	
	O(n) O(logn) binary search	O(n) (no bin search)	O(log n)

PERFORMANTA OPERATIILOR

- Cum putem obtine garantia h ~ log n
 - constructia initiala
 - cheile ordonate (crescator, descrescator)?
 - mediane?
 - inserari/stergeri ulterioare nu garanteaza mentinerea proprietatii
 - noduri inserate in ordine aleatoare
 - conditie de echilibru, care
 - asigura inaltimea e O(log n)
 - usor de intretinut la inserari/stergeri
- in curand....

- Randare 3D
- Indexarea bazelor de date

... dar cu garantii asupra timpilor operatiilor (i.e. ABC echilibrati)

1. Determinati parcurgerea in inordine si postordinepentru un arbore care are parcurgerea in preordine: A, B, C,-,-, D,-,-, E,-, F,-,- Literele corespund nodurilor, - corespund la NULL

EXERCITII ARBORILOR BINARI DE CAUTARE UN

- 2. Se dau următoarele parcurgeri ale unui arbore binar:
- Preordine (Root-Left-Right): 10, 5, 1, 7, 40, 50
- Inordine (Left-Root-Right): 1, 5, 7, 10, 40, 50
 Reconstruiti arborele binar

REFERINTE

- Th. Cormen et al "Introduction to Algorithms", 3rd ed: sect. 10.4, ch.
 12
- S. Skiena "The Algorithm Design Manual": sect 3.4