The Political Economy of Conservation

Robin Burgess, LSE Francisco Costa, FGV EPGE Allan Hsiao, Stanford Benjamin Olken, MIT Veronica Salazar Restrepo, GSEM

May 13, 2025

Forest conservation protects major carbon stocks (Spawn et al. 2020)

But conservation policy faces political challenges

View from Brazil: Agribusiness lobby scuppers climate gains

Lula wants Brazil to be a beacon in the fight against global warming, Leonardo Sakamoto. The powerful lobby that represents agribusiness in...

Sep 4, 2023

Mother Jones

Brazil's Lula Made Progress on Deforestation, but "Agribusiness Is Winning"

When Brazilian president Luiz Inácio Lula da Silva took office in January 2023, he inherited environmental protection agencies in shambles and deforestation at...

Nov 29, 2024

But conservation policy faces political challenges

Indonesia palm oil lobby pushes 1 million hectares of new Sulawesi plantations

A state-owned palm oil company and an industry association have begun early work to push a vast new plantation strategy in Sulawesi,...

Aug 8, 2024

Malaysia's palm oil lobby welcomes 'sensible' reprieve from EU deforestation law

The delay gives producers more time to comply with the complex regulations, which were originally set to come into effect on December 30.

Oct 4, 2024

Question

How can environmental regulation navigate political considerations?

This paper

- Producers resist environmental regulation
 - In Brazil, PPCDAm increased enforcement
 - Producers increased pro-agricultural campaign donations
- Regulation can account for producer losses
 - Taxes minimize welfare losses from abatement
 - Bans minimize producer losses from abatement
- Regulatory design matters quantitatively
 - In Indonesia, bans as effective as taxes
 - But half as costly for producers

This paper

- Producers resist environmental regulation
 - In Brazil, PPCDAm increased enforcement
 - Producers increased pro-agricultural campaign donations
- ② Regulation can account for producer losses
 - Taxes minimize welfare losses from abatement
 - Bans minimize producer losses from abatement
- Regulatory design matters quantitatively
 - In Indonesia, bans as effective as taxes
 - But half as costly for producers

This paper

- Producers resist environmental regulation
 - In Brazil, PPCDAm increased enforcement
 - Producers increased pro-agricultural campaign donations
- ② Regulation can account for producer losses
 - Taxes minimize welfare losses from abatement
 - Bans minimize producer losses from abatement
- Regulatory design matters quantitatively
 - In Indonesia, bans as effective as taxes
 - But half as costly for producers

Producers resist environmental regulation

The Brazilian Amazon

- PPCDAm increased environmental enforcement between 2005-2011
 - Enforcing Forest Code for private land (80% rule)
 - Criminalizing deforestation of unclaimed land
- We measure political resistance via campaign donations

Data

- Universe of (formal) donations
 - Every state and federal election from 2002 to 2018
 - For donors and candidates in Brazil
- We identify donors and candidates who likely oppose forest regulation
 - Agricultural firm owners: universe of firm registries (Receita Federal)
 - Environmental infractors: universe of environmental violations (IBAMA)

Donors and candidates

Group	Total	Ag firm owners	Infractors
Individual donors	57,667	2,763	2,306
Firm donors	33,171	436	1,107
Candidates	10,956	261	452

Campaign donations over time

Difference-in-differences

$$y_{it} = \sum_{\tau} \beta_{\tau} A g_i \times \mathbb{1}\{t = \tau\} + \alpha_i + \gamma_t + \varepsilon_{it}$$

- Agriculture vs. non-agriculture, before vs. after the program
- Individuals i, election years t, fixed effects (α_i, γ_t)
- Errors ε_{it} clustered by i

Regulation increased enforcement

DD estimate: 0.31***(0.12); pre-program mean: 0.1

Regulation increased agricultural donations

Especially for agricultural firm owners

Donations from donors	Total	To ag firm owner
$Ag \times Post \ 2006$	2,439.66*** (372.70)	1,388.16*** (218.41)
Pre-program mean Observations	1,113 282,628	313.3 282,628

Donations to candidates	Total	From ag firm owner	
Ag × Post 2006	112,202.57*** (25,717.67)	32,603.64*** (3,466.17)	
Pre-program mean Observations	201,784 2,851	16,241 2,851	

Regulation increased agricultural votes

	State Congress		Federal Congress	
	Votes	Elected	Votes	Elected
$Ag \times Post \ 2006$	2,728.26*	0.08*	14,066.34***	0.07
	(1,447.26)	(0.04)	(4,874.77)	(0.06)
Pre-program mean	18,757	0.4	71,741	0.5
Observations	1,784	1,784	483	483

Regulation can account for producer losses

Forest regulation

- Land use model
 - Development (and emissions) for agricultural production
 - Spatial heterogeneity in carbon emissions
- Three regulatory policies
 - Pigouvian taxes
 - Uniform taxes
 - Bans

Plots i of two types

$$L = \{i \mid e_i \le \pi\}, \quad H = \{i \mid e_i > \pi\}$$

- Low (L) and high (H) conservation value
 - Common private profits $\pi > 0$
 - ullet Heterogeneous carbon stocks e_i
- Social planner develops L but not H

Pigouvian taxes e_i

$$L = \{i \mid e_i \le \pi\}, \quad H = \{i \mid e_i > \pi\}$$

- Plots L: profits fall to πe_i , so lose e_i
- Plots H: profits fall to 0, so lose π (for $\pi < e_i$)
- Achieves first best, but with large losses for producers
 - Salient for producers, especially if transfers are costly

Uniform taxes *u*

$$L = \{i \mid e_i \le \pi\}, \quad H = \{i \mid e_i > \pi\}$$

- Cannot achieve the first best
 - If $\pi < u$, then no plots develop
 - If $\pi \geq u$, then all plots develop
- Targeting principle applies
 - Worse targeting on emissions, so allocative inefficiency

Bans on H

$$L = \{i \mid e_i \le \pi\}, \quad H = \{i \mid e_i > \pi\}$$

- Plots L: profits still π , so lose 0
- Plots H: profits fall to 0, so lose π
- Targeting principle applies differently
 - Worse targeting on emissions, but no allocative inefficiency
 - ullet Better targeting on marginality by leaving L alone
 - Minimizes producer profit losses

Regulatory design matters quantitatively

Indonesian palm oil

- Slash-and-burn agriculture on carbon-rich peatlands
 - Significant spatial heterogeneity in carbon stocks
- Ban on deforesting peatlands
 - With peat depth greater than 3 meters

Spatial data

- Plantation acreage from satellite imagery
- Yields from agronomic model
- Distance to market
- Above and belowground carbon stocks

Empirical land use model for plots i

• Revenues r_i per hectare of palm production

$$r_i = \alpha \left(\frac{P}{1-\beta}\right) y_i$$

• Costs c_i per hectare of plantation development

$$c_i = \gamma_{g(i)}^0 + \gamma_{g(i)}^1 t + \delta^d d_i + \delta^e e_i + \frac{1}{2} \psi n_i + \varepsilon_{it}$$

Plantations n_i

• Profits π_i net of regulation τ_i

$$\pi(n_i) = (r_i - c_i - \tau_i)n_i$$

Estimating equation from first order condition

$$n_i = \frac{1}{\psi} \left[\alpha \left(\frac{P}{1-\beta} \right) y_i - \gamma_{g(i)}^0 - \gamma_{g(i)}^1 t - \delta^d d_i - \delta^e e_i - \tau_i - \varepsilon_{it} \right]$$

• Production $q_i = y_i n_i$ given yields y_i

Welfare

- Perfectly elastic demand (CS = 0)
- Producer surplus $\pi_i = \frac{1}{2} \psi n_i^2$
- Government revenue $g_i = \tau_i n_i$
- Domestic welfare $W = \frac{1}{\alpha} \sum_i \pi_i + \sum_i g_i$
- Global emissions $E = \sum_i \delta e_i n_i$

Regulation

- $\ \, \textbf{1} \ \, \mathsf{Bans} \,\, \tau_i^{\mathsf{ban}}(b) = B \cdot \mathbb{1}(e_i^{\mathsf{peat}} > b) \,\, \mathsf{for} \,\, \mathsf{cutoff} \,\, b, \, \mathsf{big} \,\, B$
- 2 Taxes $au_i^{ ext{tax}}(t) = te_i$ for tax rate t

Taxes are more efficient

But bans minimize producer surplus losses

Even though production is similar

At the cost of government revenue

Summary

- Environmental regulation induces political resistance
 - Regulation should account for producer losses
- Quantitatively important in Brazil and Indonesia
 - And perhaps in other high-priority conservation zones