

PCT LITORGANISATION FUR GEISTIGES EIGENTUM Internationales Büro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7: (11) Internationale Veröffentlichungsnummer: WO 00/25423 A1 H03H 9/02

(43) Internationales

Veröffentlichungsdatum:

4. Mai 2000 (04.05.00)

(21) Internationales Aktenzeichen:

PCT/EP99/08074

(22) Internationales Anmeldedatum: 26. Oktober 1999 (26.10.99)

(30) Prioritätsdaten:

198 49 782.2

28. Oktober 1998 (28.10.98)

DF

(71) Anmelder (für alle Bestimmungsstaaten ausser US): EPCOS AG [DE/DE]; St.-Martin-Strasse 53, D-81541 München (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): BAUER, Thomas [DE/DE]; Therese-Giehse-Allee 40, D-81739 München (DE). KOVACS, Günter [DE/DE]; Metzstrasse 29a, D-81667 München (DE). RÖSLER, Ulrike [DE/DE]; Brunnenweg 9, D-85435 Erding (DE). RUILE, Werner [DE/DE]; Klarastrasse 5, D-80636 München (DE).
- (74) Anwalt: EPPING, Wilhelm; Epping Hermann & Peter GbR, Postfach 12 10 26, D-80034 München (DE).

(81) Bestimmungsstaaten: CA, CN, JP, KR, RU, SG, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen

- (54) Title: SURFACE ACOUSTIC WAVE ARRANGEMENT WITH AT LEAST TWO SURFACE ACOUSTIC WAVE STRUCTURES
- (54) Bezeichnung: OBERFLÄCHENWELLENANORDNUNG MIT ZUMINDEST ZWEI OBERFLÄCHENWELLEN-STRUKTUREN

(57) Abstract

The aim of the invention is to reduce scattering losses during transmission of a surface acoustic wave signal. To this end, the transition between two surface acoustic wave structures set off from each other is configured in such a way that the finger period in the area of transition is reduced and that the finger period in the area of transition constantly varies.

(57) Zusammenfassung

Zur Verminderung von Streuverlusten bei der Übertragung eines Oberflächenwellensignals wird vorgeschlagen, den Übergang zwischen zwei gegeneinander verschobenen Oberflächenwellen-Strukturen so zu gestalten, daß die Fingerperiode im Bereich des Übergangs abgesenkt ist und daß sich die Fingerperiode im Bereich des Übergangs kontinuierlich ändert.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑÜ	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
ΑZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	ТJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	ΙE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	ΙL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	Ll	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

Beschreibung

91-96 zu entnehmen.

Oberflächenwellenanordnung mit zumindest zwei Oberflächenwellen-Strukturen.

5

10

Die Erfindung bezieht sich auf Oberflächenwellenanordnungen mit mindestens zwei in Richtung der Wellenhauptausbreitung benachbarten Oberflächenwellenstrukturen, bei denen sich die Finger der ersten Oberflächenwellen-Struktur gegenüber den Fingern der zweiten hinsichtlich ihrer Periode unterscheiden und/oder in der Phase gegeneinander verschoben sind.

Am Übergang zwischen zwei unterschiedlichen oder gegeneinander phasenverschobenen Oberflächenwellenstrukturen treten zusätzlich zu den normalen Ausbreitungsverlusten breitbandige Verluste durch teilweise Konversion der Oberflächenwelle in Volumenwellen auf. Die Konversionsverluste nehmen dabei mit steigender Metallisierungshöhe zu. Dies ist zum Beispiel aus einem Artikel von Yasuo Ebata, "SUPPRESSION OF BULK
20 SCATTERING LOSS IN SAW RESONATOR WITH QUASI-CONSTANT ACOUSTIC REFLECTION PERIODICITY" in Ultrasonics Symposium 1988, pp.

Dieser Fall tritt insbesondere dann auf, wenn

25

35

- die beiden Teilgitter (Oberflächenwellenstrukturen) sich hinsichtlich Periodenlänge, Metallisierungsverhältnis und/oder Schichtdicke unterscheiden, oder
- der Abstand der beiden Oberflächenwellenstrukturen so ge wählt ist, daß die beiden Teilgitter gegeneinander phasen verschoben sind.

Bei vielen Filtertechniken sind solche Abweichungen von der perfekten Periodizität für die Funktionsweise des Filters essentiell (z.B.: DMS-Filter). In der DE 42 12 517 wurde daher vorgeschlagen, den Übergang zwischen den beiden Oberflächenwellenstrukturen quasi-periodisch zu gestalten. Diese Technik

erweist sich allerdings nur dann als hinreichend erfolgreich, wenn der relative Unterschied der Geschwindigkeiten der Oberflächenwelle und der störenden Volumenwelle deutlich größer ist als die relative Nutzbandbreite des Filters, wie dies z.B. bei schmalbandigen ZF-Filtern auf Quarz der Fall ist. Nur dann tritt die Störung der Übertragungsfunktion durch die parasitäre Volumenwelle außerhalb des Durchlaßbereichs des Filters auf und stört das Filterverhalten nicht.

10 Für Telekomunikationsnetze nach dem EGSM Standard oder für PCS/PCN sind jedoch breitbandigere verlustarme Filter erforderlich.

Als verlustarme, breitbandige Filter mit hoher Selektion werden im HF-Bereich häufig DMS-Filter (Double Mode Surface Acoustic Wave-Filter), z.B. auf 42° rot YX-LiTaO3 Substrat oder auf 36° rot YX-LiTaO3 eingesetzt.

Ein Beispiel für einfache einspurige DMS-Filter ist in Fig 1
20 schematisch dargestellt. Dieses besteht hier aus einer Spur
mit zwischen zwei Reflektoren Rl und R2 angeordneten Eingangswandlern El und E2 sowie dem Ausgangswandler A. Die Anschlüsse für Ein- und Ausgangswandler können auch vertauscht
sein, wobei dann A den Ein- und E1,E2 die Ausgangswandler
25 darstellen. Möglich ist auch, den oder auch die Ausgangswandler dieser einen Spur mit dem oder den Eingangswandlern einer
zweiten parallelen Spur zu verbinden. Auf diese Weise kann
die Selektivität des Filters erhöht werden.

DMS-Filter weisen zwei getrennte Resonanzfrequenzen innerhalb einer akustischen Spur auf, die einen Übertragungsbereich definieren. Die linke Kante des Übertragungsbereichs wird durch die Gitterperiode bestimmt, während die rechte Kante durch Resonanz zwischen zwei gegeneinander verschobenen Oberflächenwellenstrukturen (Ein- und Ausgangswandler) zustande kommt. Diese beiden Strukturen sind im Vergleich zu einem periodischen Gitter um ein Δx von ca. λ/4 gegeneinander ver-

setzt. Der Abstand Δx bezieht sich dabei auf die Fingermitten benachbarter (Elektroden-) Finger der Oberflächenwellenstrukturen. In der Praxis wird vorzugsweise einer der beiden Endfinger um ca. $\lambda/4$ verbreitert, wie es in der Figur 1 für den Ausgangswandler A am Übergang zu den beiden Eingangswandlern E1 und E2 dargestellt ist. Dies geschieht, um die Lücke zwischen den beiden Strukturen mit metallisierter Fläche aufzufüllen, da eine Oberflächen-Leckwelle unter metallisierter Oberfläche besser geführt wird.

10

15

20

25

Es entsteht eine Struktur mit einem stark verbreiterten Finger, der eine wesentlich größere lokale Gitterperiode p (definiert durch den Abstand der Mittelpunkte der beiden freien Flächen links und rechts vom Finger) als die übrigen Finger besitzt. Dies stellt eine erhebliche Störung des periodischen Gitters dar. Figur 2 zeigt schematisch den Verlauf der Fingerperiode p im Bereich des Übergangs zweier solcher Wandlerstrukturen (Oberflächenwellenstrukturen) über die Ortskoordinate x, der Ausbreitungsrichtung der Oberflächenwellen.

Bei bisher verwendeten Mobilfunksystemen (z.B. GSM, Nominalbandbreite 25 MHz) sind die akustischen Verluste in Form von Volumenwellenabstrahlung an den Strukturübergängen zwar bereits erkennbar, aber noch nicht so stark ausgeprägt, so daß die Realisierung verlustarmer Filter möglich ist. In zukünftigen Mobilfunksystemen werden jedoch breitere Bänder genutzt werden, um mehr Kanäle zur Verfügung zu stellen (z.B. EGSM, Nominalbandbreite 35 MHz).

30

35

Zur Erhöhung der Bandbreite von Oberflächenwellenfilter werden gewöhnlich die Metallisierungs-Schichtdicken vergrößert und die Fingerzahlen reduziert. Beide Maßnahmen vergrößern die Verluste an den Übergängen zwischen den Strukturen. In der Praxis äußern sich diese Verluste in einer Verringerung der Güte der Wandler/Wandler-Resonanz, die die rechte Band-

30

35

kante definiert, und somit in einem Einbruch im oberen Passbandbereich.

Speziell bei EGSM-Filtern ist der Einfluß der Verluste so
groß, daß durch zusätzliche äußere Anpassungselemente der
Einbruch im oberen Durchlaßbereich ausgeglichen werden muß.
Durch die externe Anpassung kann zwar die Welligkeit im
Durchlaßbereich verringert werden, es bleibt aber als wesentlicher Nachteil die erhöhte Einfügedämpfung solcher Filter
durch die Verluste an den Übergängen. Die z.B. für EGSM geforderte Spezifikation kann auch nur teilweise erfüllt werden. Äußere Anpaßnetzwerke sind außerdem immer mit zusätzlichen Kosten, Gewicht, Fläche auf der Schaltung und Fertigungsaufwand verbunden und bei den meisten Anwendern daher
unerwünscht.

Aufgabe der vorliegenden Erfindung ist es daher, verlustarme breitbandige Filter zu schaffen, die die oben angeführten Nachteile vermeiden.

Diese Aufgabe wird erfindungsgemäß mit einer Oberflächenwellenanordnung nach Anspruch 1 gelöst. Weitere Ausgestaltungen der Erfindung gehen aus den Unteransprüchen hervor.

Mit der Erfindung werden die Übertragungsverluste des Filters gesenkt, was sich in der verbesserten Einfügedämpfung und vor allem in der oberen Hälfte des Passbandes bemerkbar macht.

Die nutzbare Bandbreite wird dadurch vergrößert. Auf externe Anpaßnetzwerke kann verzichtet werden.

Beim Entwurf breitbandiger, verlustarmer Oberflächenwellenfilter (z.B. HF-Filter für EGSM oder PCS/PCN auf 42° rot YXLiTaO3) wurde von den Erfindern erkannt, daß auch in einem
quasi-periodischen Gitter zusätzliche Verluste in Form von
Konversion in Volumenwellen auftreten, wenn die lokale Periode am Übergang größer ist als in den beiden Strukturen beiderseits des Übergangs. Im Gegensatz zu einem harten Übergang

mit abrupt erhöhter Fingerperiode tritt diese Konversion jedoch erst ab einer charakteristischen Onsetfrequenz auf, die umgekehrt proportional zur lokalen Periode des Gitters ist.

Die Verluste an den Übergängen zwischen Oberflächenwellen-5 strukturen mit unterschiedlicher Phase und/oder unterschiedlicher Fingerperiode werden daher erheblich reduziert bzw. ganz vermieden, indem an den Übergangsstellen erfindungsgemäß eine Fingerperiode verwendet wird, die unterhalb der Fingerperiode der benachbarten Oberflächenwellenstrukturen liegt. 10 Damit wird erreicht, daß die Onset-frequenz für Volumenwellenabstrahlung oberhalb des gewünschten Übertragungsbereiches des Filters liegt. Der Übergang zwischen den Oberflächenwellenstrukturen ist quasi-periodisch, d.h. im Bereich des Wellenübergangs zwischen zwei Oberflächenwellen-15 Strukturen wird eine quasiperiodische Struktur ausgebildet, die einen stetigen Übergang der Fingerperiode p und/oder der Phase der ersten Oberflächenwellenstruktur in diejenige der zweiten Oberflächenwellenstruktur bildet.

20

25

Je nach Ausmaß der Diskontinuität am Übergang wird ein quasiperiodischer Übergangsbereich mit einer hinreichend großen
Fingerzahl gebildet. Selbst für stärkste Diskontinuitäten erweist sich eine Anzahl von 3-4 endständigen Fingern pro Oberflächenwellenstruktur als ausreichend zur Unterdrückung der
verluste. Der Übergangsbereich sollte nicht größer als zur
Vermeidung von Verlusten notwendig gewählt werden, da sonst
das Übertragungsverhalten des Filters negativ beeinflußt
wird.

30

35

Der gewünschte erfindungsgemäße Übergang wird erreicht, wenn die Fingerperiode der ersten Oberflächenwellenstruktur im Übergangsbereich zunächst kontinuierlich abnimmt und schließlich wieder kontinuierlich ansteigt, bis die Fingerperiode der zweiten Oberflächenwellenstruktur erreicht ist.

25

30

35

ler.

Unter Oberflächenwellenstruktur im Sinne der Erfindung werden sowohl Interdigitalwandler als auch Reflektoren verstanden. Ubergänge können daher sowohl zwischen zwei Interdigitalwandlern als auch zwischen einem Interdigitalwandler und einem Reflektor sowie zwischen zwei Reflektoren auftreten und erfindungsgemäß ausgestaltet sein. Vorteilhaft kann die Erfindung daher insbesondere bei DMS-Filtern und Eintorresonatoren eingesetzt werden. Bei Letzteren weisen die Reflektoren eine andere (größere) Fingerperiode auf, als der Interdigitalwand-

Zur Verringerung der Fingerperiode im Übergangsbereich werden Fingerbreite und Fingerabstand kontinuierlich reduziert.

Die Wahl eines Metallisierungsverhältnisses η (η = Verhältnis der metallisierten zur unmetallisierten Fäche innerhalb einer Periode der Oberflächenwellenstruktur) zwischen 0,7 und 0,8 reduziert die Geschwindigkeit der Oberflächen-Leckwelle, wodurch sich der Abstand der Onset-frequenz für Volumenwellenkonversion zum Passband weiter vergrößert. Somit verringert sich auch der Einfluß der Volumenwellenverluste.

Ebenfalls geringere Übertragungsverluste werden erzielt, wenn die Reflektoren der Oberflächenwellenanordnung mit Masse verbunden werden, da dadurch der verlustbehaftete Ladungsaustausch innerhalb des Reflektors deutlich verringert wird.

Im folgenden wird die Erfindung anhand von Ausführungsbeispielen und der dazugehörigen fünf Figuren näher erläutert.

Figur 1 zeigt ein bekanntes Einspur-DMS-Filter.

Figur 2 gibt den Verlauf der Fingerperiode des bekannten Filters (siehe Figur 1) entlang der Ortskoordinate wieder.

Figur 3 zeigt den Verlauf der Fingerperiode bei einer erfindungsgemäßen Oberflächenwellenanordnung.

Figur 4a zeigt zwei Oberflächenwellenstrukturen mit hartem Übergang, denen in

Figur 4b eine Oberflächenwellenanordnung mit erfindungsgemäßem Übergang zwischen zwei Oberflächenwellenstrukturen gegenübergestellt ist.

10

15

20

25

30

35

5

Figur 5 zeigt das Durchlaßverhalten erfindungsgemäßer und bekannter Filter im Vergleich anhand von Meßkurven.

Figur 1 zeigt ein bekanntes Einspur-DMS-Filter, bei dem zwischen zwei Reflektoren R1 und R2 zwei parallel geschaltene Eingangswandler E1, E2 und dazwischen ein Ausgangswandler A angeordnet ist. Mit In und Out sind die elektrischen Anschlüsse für Ein- und Ausgang bezeichnet. Die Fingerperiode p, die ein Maß für die Abstände der Finger darstellt, wird im folgenden als die Entfernung definiert, die von der Mitte des Freiraums zwischen zwei Fingern zur Mitte des nächsten Freiraums zwischen zwei benachbarten Fingern reicht. Im dargestellten DMS-Filter ist der Ausgangswandler A gegenüber den beiden Eingangswandlern E1 und E2 verschoben, wobei die Fingerperiode jeweils am Übergang E1/A bzw. A/E2 zwischen zwei gegeneinander verschobenen Wandlern eine Unstetigkeit aufweist.

Figur 2 zeigt den Verlauf der Fingerperiode für diesen Wandler im Bereich des Übergangs vom Wandler El zum Wandler A.

Die Verschiebung der beiden Wandler gegeneinander äußert sich in einer abrupt ansteigenden Fingerperiode, die anschließend ebenso abrupt wieder auf einen konstanten Wert abfällt. Der gleiche harte Übergang ist zwischen den beiden gegeneinander verschobenen Wandlern A und E2 zu beobachten. Die beiden äußeren Endfinger des Wandlers A sind verbreitert, um die Lücke zwischen den beiden Strukturen mit metallisierter Fläche aus-

zufüllen. Die Nachteile, die aus einem solchen unstetigen Verlauf der Fingerperiode am Übergang zwischen zwei Oberflächenwellenstrukturen (hier zwei Wandlern) entstehen, wurden eingangs bereits erläutert.

5

10

15

Figur 3 zeigt den Verlauf der Fingerperiode p bei einer erfindungsgemäßen Oberflächenwellenanordnung im Bereich des Übergangs einer ersten Oberflächenwellenstruktur Stl zu einer zweiten Oberflächenwellenstruktur St2. Die Fingerperiode p verändert sich im Bereich des Übergangs stetig und weist dort auch einen niedrigeren Wert auf als in jeder der beiden Strukturen Stl und St2. Außerhalb des Übergangsbereichs, also innerhalb der beiden Strukturen St1 und St2 nimmt die Fingerperiode einen konstanten Wert an, der von Oberflächenwellenstruktur zu Oberflächenwellenstruktur unterschiedlich sein kann. Die Oberflächenwellenstruktur kann dabei ein Interdigitalwandler oder ein Reflektor sein, wobei der Übergang zwischen Wandler und Wandler oder zwischen Wandler und Reflektor stattfinden kann.

20

Figur 4 zeigt anhand eines Ausführungsbeispiels, wie der Übergang zwischen zwei gegeneinander verschobenen Oberflächenwellenstrukturen St1 und St2 erfindungsgemäß ausgestaltet werden kann. Figur 4a zeigt zum Vergleich einen bekannten harten Übergang, wie er bereits anhand von Figur 1 darge-25 stellt wurde. Dabei ist einer der beiden Grenzfinger verbreitert. Figur 4b zeigt den erfindungsgemäß ausgestalteten Übergang. Die Fingerperiode p wird hier über die letzten drei Finger der Struktur St1 kontinuierlich abgesenkt und steigt in der benachbarten Struktur St2 über die äußersten drei Fin-30 ger ebenso kontinuierlich wieder an. Durch diese Anordnung werden die Streuverluste am Übergang der beiden Strukturen gegenüber einer bekannten Anordnung mit hartem Übergang deut-.lich reduziert.

35

Außerdem ist ein beispielsweise gemäß Figur 4b erfindungsgemäß ausgestalteter Übergang herstellerfreundlich, da sowohl

Fingerbreiten als auch Fingerabstände nicht zu stark von "normalen" Fingerbreiten und Fingerabständen abweichen.

Figur 5 zeigt die Durchlaßkurven dreier Oberflächenwellenfil-5 ter, die gegeneinander verschobene Oberflächenwellenstrukturen aufweisen. Als Beispiel dient das in Figur 1 dargestellte DMS-Filter, dessen Durchlaßverhalten durch die Durchlaßkurve 1 in Figur 5 dargestellt ist. Die Durchlaßkurve 2 wird bei einem DMS-Filter gemäß Figur 1 erhalten, das jedoch einen stetigen Verlauf der Fingerperiode aufweist. Bei dieser 10 Struktur ist der endständige Finger nicht verbreitert, der höhere Abstand zwischen den beiden Strukturen beiderseits des Übergangs ist jedoch über die jeweils äußersten drei Finger verteilt, so daß eine lokal erhöhte Fingerperiode am Übergang entsteht. Wie aus der Meßkurve 2 klar zu erkennen ist, weist 15 ein so ausgestaltetes DMS-Filter ein noch schlechteres Durchlaßverhalten als das in Figur 1 dargestellte Filter auf. Die Durchlaßkurve 3 dagegen wird mit einem erfindungsgemäß ausgestalteten DMS-Filter gemessen, bei dem die Fingerperiode im Bereich des Übergangs der beiden gegeneinander verschobenen 20 Wandler (Oberflächenwellenstrukturen) erniedrigt ist, wobei gegenüber dem aus Figur 1 bekannten OFW-Filter ein zusätzlicher Finger eingefügt ist. Zum Übergang hin nehmen dabei in beiden Wandlern sowohl Fingerbreite als auch Fingerabstand kontinuierlich ab. Wie Figur 5 zeigt, besitzt ein solches er-25 findungsgemäß ausgestaltetes Filter ein besseres Übertragungsverhalten, das durch eine geringere Dämpfung und eine gleichmäßigere Durchlaßkurve gekennzeichnet ist. Die geringere Dampfung insbesondere im Bereich der rechten Kante der 30 Durchlaßkurve wird durch die geringeren Streuverluste im Bereich des Übergangs erzielt.

Als Ausführungsbeispiel werden im folgenden weitere Parameter zur Realisierung von DMS-Filtern angegeben, die für das EGSM-35 System geeignet sind, das bei einer Mittenfrequenz von 942,5 MHz eine Nominalbandbreite von 35 MHz aufweist.

35

Als Substrat wird Lithiumtantalat LiTaO3 mit 42° Rot YX-Kristallschnitt verwendet. Die Metallisierung für die Oberflächenwellenstrukturen wird in einer Höhe aufgebracht, die 9 bis 11 Prozent der dazugehörigen Wellenlänge, beispielsweise 420 nm beträgt. Damit wird die geforderte Bandbreite von 35 MHz realisiert. Die rechte Flanke der Durchlaßkurve des Filters, die durch die Resonanz zwischen zwei um einen Wert Δx gegeneinander verschobenen Wandlern erzeugt wird, kann den EGSM-Spezifikationen entsprechend eingestellt werden, wenn Δx = $(0.25 \pm 0.05)\lambda$ gewählt wird. Der quasi-periodische Übergang 10 der Fingerperiode zwischen den beiden verschobenen Wandlern kann auf insgesamt fünf bis acht Finger verteilt werden. Die Gesamtzahl der Elektrodenfinger im Wandler A (siehe Figur 1) wird vorzugsweise im Bereich von 27 bis 35, und die Anzahl der Finger in den Wandlern El und E2 im Bereich von 20 bis 24 15 gewählt. Damit wird ein bezüglich Welligkeit und Flankensteilheit optimiertes Filter erhalten.

Die für das EGSM geforderte Selektion wird bei einem Filter mit zwei am Übergang erfindungsgemäß ausgestalteten Spuren 20 erhalten. Die Apertur wird zwischen 50 x λ und 70 x λ gewählt, um Ein- und Ausgangsimpedanzen von 50 Ω zu erhalten.

Ein Gesamtfilter mit erfindungsgemäßer Oberflächenwellenanordnung kann auch Ausführungsformen betreffen, die symmetrisch/unsymmetrisch betreibbar sind. Darunter versteht man einen Filter, bei dem entweder am Ein- oder am Ausgang ein unsymmetrisches Signal anliegt, das heißt, bei dem einer der beiden Anschlüsse signalführend ist, während der andere auf Masse liegt. Am anderen Ende des Filters liegt an den beiden 30 Anschlüssen ein symmetrisches Signal vor, welches an beiden Anschlüssen zwar die gleiche absolute Amplitude jedoch entge- : gengesetztes Vorzeichen bzw. einen Phasenunterschied von 180° aufweist.

Eine weitere Anwendung findet die Erfindung bei symmetrisch unsymmetrisch betreibbaren DMS-Filtern, bei denen Ein- und

Ausgangsimpedanz unterschiedlich sind. Die Einstellung der Ein- oder Ausgangsimpdedanz kann durch Wichtung erfolgen oder durch vertikale oder horizontale Aufteilung der Wandler in Teilwandlerstrukturen vorgenommen werden, wie es beispielsweise in den beiden älteren deutschen Patentanmeldungen 197 24 258.8 und 197 24 259.6 vorgeschlagen wird.

Möglich ist es auch, wenn die Abstände zwischen dem mittleren Interdigitalwandler (A) und den beiden äußeren Interdigitalwandlern (E1,E2) unterschiedlich groß sind.

Eine weitere Ausgestaltung betrifft ein Filter, das als Zweispuranordnung ausgebildet ist, wobei die Fingerperioden p der Reflektoren (R) in den beiden Spuren unterschiedlich groß sind.

Ebenso kann die Erfindung in einem Resonatorfilter verwirklicht werden, bei dem der Übergang zwischen gegeneinander
verschobenem Wandler und Reflektor erfindungsgemäß ausgestaltet ist. Zum Beispiel kann ein Reaktanzfilter aus mehreren
seriell und/oder parallel verschalteten Eintorresonatoren
mit einem Übergang zwischen den unterschiedlichen Fingerperioden (p) von Interdigitalwandler und Reflektor in zumindest
einem Eintorresonator ausgebildet sein

Patentansprüche

- 1. Oberflächenwellenanordnung mit folgenden Merkmalen
- einem piezoelektrischen Substrat
- auf dem Substrat aufgebrachten, in Ausbreitungsrichtung der Oberflächenwellen hintereinander angeordneten, aus metallischen Fingern bestehenden ersten und zweiten Oberflächenwellenstrukturen (A,E,R) mit einer ersten bzw. zweiten Fingerperiode (p)
- 10 die Fingerperiode (p) weist im Bereich des Übergangs von der ersten auf die zweite Oberflächenwellenstruktur einen kontinuierlich stetigen Verlauf auf und ist im Übergangsbereich kleiner als in beiden benachbarten Oberflächenwellenstrukturen.

15

- 2. Oberflächenwellenanordnung nach Anspruch 1, bei der der Übergangsbereich von 5 bis 8 endständigen Fingern der beiden Oberflächenwellenstrukturen gebildet wird.
- 3. Oberflächenwellenanordnung nach Anspruch 1 oder 2, bei der die Fingerperiode (p) der ersten Oberflächenwellenstruktur im Übergangsbereich zunächst kontinuierlich abnimmt und schließlich wieder kontinuierlich ansteigt, bis die Fingerperiode der zweiten Oberflächenwellenstruktur erreicht
- 25 ist.
 - 4. Oberflächenwellenanordnung nach einem der Ansprüche 1-3, bei dem zumindest eine der beiden Oberflächenwellenstrukturen als Interdigitalwandler (A,E) ausgebildet ist.

- 5. Oberflächenwellenanordnung nach Anspruch 4, bei der die zweite Oberflächenwellenstrukturen als Reflektor ausgebildet (R) ist.
- 35 6. Oberflächenwellenanordnung nach einem der Ansprüche 1 3, bei dem die beiden Oberflächenwellenstrukturen als Reflektoren (R) ausgebildet sind.

7. Oberflächenwellenanordnung nach einem der Ansprüche 1 - 6, bei der die Breite der Finger der Oberflächenwellenstrukturen im Übergangsbereich zunächst ab- und dann wieder zunimmt.

5

- 8. Oberflächenwellenanordnung nach einem der Ansprüche 1 6, bei dem die Oberflächenwellenstrukturen ein Metallisierungsverhältnis η von 0,7 bis 0,8 aufweisen.
- 9. Oberflächenwellenanordnung nach einem der Ansprüche 1 8, welches als Dual-Mode-Oberflächenwellen-Filter (DMS-Filter) ausgebildet ist, wobei in einer akustischen Spur als Einbzw- Ausgangswandler dienende Interdigitalwandler zwischen zwei Reflektoren angeordnet sind und die Oberflächenwellenstrukturen aus Interdigitalwandler und Reflektoren ausgewählt sind.
 - 10. Oberflächenwellenanordnung nach Anspruch 9, bei der die Reflektoren mit Masse verbunden sind.

20

- 11. Oberflächenwellenanordnung nach Anspruch 9 oder 10, bei der die Metallisierungshöhe der Oberflächenwellenstrukturen im Bereich von 9-11% der der Oberflächenwellenstrukturen zugehörigen Wellenlänge der akustischen Oberflächenwellen liegt.
- 12. Oberflächenwellenanordnung nach einem der Ansprüche 1-11, angeordnet auf 42° rot YX-LiTaO3 Substrat oder auf 36° rot YX-LiTaO3.

30

35

25

13. Oberflächenwellenanordnung nach einem der Ansprüche 1-12, mit drei Interdigitalwandlern (A,E1,E2) die hintereinander zwischen zwei Reflektoren (R1,R2) angeordnet sind, wobei der mit einem ersten Anschluß (OUT) verbundene mittlere Interdigitalwandler eine Anzahl von 27 bis 35 Elektrodenfinger, die beiden äußeren, mit einem zweiten Anschluß (IN) verbundenen

Interdigitalwandler (E1,E2) dagegen eine Anzahl 20 bis 24 Elektrodenfinger aufweisen.

- 14. Oberflächenwellenanordnung nach Anspruch 13, bei der die Abstände zwischen dem mittleren Interdigitalwandler (A) und den beiden äußeren Interdigitalwandlern (E1,E2) unterschiedlich groß sind.
- 15. Oberflächenwellenanordnung nach einem der Ansprüche 1-14, 10 die als Zweispuranordnung ausgebildet ist, wobei die Fingerperioden p der Reflektoren (R) in den beiden Spuren unterschiedlich groß sind.
- 16. Oberflächenwellenanordnung nach einem der Ansprüche 1-8, die als Reaktanzfilter mit Eintorresonatoren ausgebildet ist, mit einem Übergang zwischen den unterschiedlichen Fingerperioden (p) von Interdigitalwandler und Reflektor in zumindest einem Eintorresonator.

FIG 1 In

Out

R1 E1 A E2 R2

THIS PAGE BLANK (USPTO)

2/3

FIG 3

a)

b)

St1

St2

THIS PAGE BLANK (USPTO)

3/3

FIG 5

THIS PAGE BLANK (USPTO)

According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 H03H Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the International search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to data and the search of the search (name of data base and the search terms used) A. DE 42 12 517 A (SIEMENS AG) 21 October 1993 (1993—10—21) cited in the application page 3, line 39 —page 4, line 68; figure 7 A. EBATA Y: "SUPPRESSION OF BULK—SCATTERING 1—3						
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 H03H Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to data are the property of the relevant passages are citated in the application page 3, line 39 -page 4, line 68; figure 7 A EBATA Y: "SUPPRESSION OF BULK-SCATTERING 1-3						
Minimum documentation searched (classification system followed by classification symbols) IPC 7 H03H Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ** Citation of document, with indication, where appropriate, of the relevant passages Relevant to data and the search terms used) A DE 42 12 517 A (SIEMENS AG) 21 October 1993 (1993–10–21) cited in the application page 3, line 39 -page 4, line 68; figure 7 A EBATA Y: "SUPPRESSION OF BULK-SCATTERING 1–3						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to data and the property of the passages of the relevant passages of the rel						
C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages A DE 42 12 517 A (SIEMENS AG) 21 October 1993 (1993–10–21) cited in the application page 3, line 39 -page 4, line 68; figure 7 A EBATA Y: "SUPPRESSION OF BULK-SCATTERING 1–3						
C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with Indication, where appropriate, of the relevant passages Relevant to de A DE 42 12 517 A (SIEMENS AG) 21 October 1993 (1993–10–21) cited in the application page 3, line 39 -page 4, line 68; figure 7 A EBATA Y: "SUPPRESSION OF BULK-SCATTERING 1-3						
Category Citation of document, with indication, where appropriate, of the relevant passages A DE 42 12 517 A (SIEMENS AG) 21 October 1993 (1993-10-21) cited in the application page 3, line 39 -page 4, line 68; figure 7 A EBATA Y: "SUPPRESSION OF BULK-SCATTERING 1-3						
A DE 42 12 517 A (SIEMENS AG) 21 October 1993 (1993-10-21) cited in the application page 3, line 39 -page 4, line 68; figure 7 A EBATA Y: "SUPPRESSION OF BULK-SCATTERING 1-3						
21 October 1993 (1993-10-21) cited in the application page 3, line 39 -page 4, line 68; figure 7 EBATA Y: "SUPPRESSION OF BULK-SCATTERING 1-3	alm No.					
A EDAIN . SUITINGSSION OF BUCK SUMITENAME - "						
LOSS IN SAW RESONATOR WITH QUASI-CONSTANT ACOUSTIC REFLECTION PERIODICITY" PROCEEDINGS OF THE ULTRASONICS SYMPOSIUM,US,NEW YORK, IEEE, vol, 1988, pages 91-96, XP000076935 cited in the application paragraph '0002!; figure 1 -/						
Further documents are listed in the continuation of box C. Patent family members are listed in annex.						
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the certain or earlier document but published on or after the international filing date. "E" earlier document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken along counter the or particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken along counter the or particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such documents, such combination being obvious to a person addled in the art. "C" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person addled in the art. "C" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken along the priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered to invention and invention cannot be considered to invention and invention and invention and invention and inventive step when the document is taken along the priority date and not in conflict with the application but cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principl	•					
Date of the actual completion of the international search 24 February 2000 06/03/2000	22/22/222					
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3018 Authorized officer D/L PINTA BALLE, L						

	etion) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category °	Citation of document, with indication, where appropriate, of the relevant passages	National in Case in the
A	US 4 837 476 A (MOCHIZUKI MASAMI) 6 June 1989 (1989-06-06) column 2, line 63 column 3, line 41 - line 49 figure 4	1,3

INTERNATIONAL SEARCH REPORT

Application No PCT/EP 99/08074

information patent family members	

Patent document cited in search repor	t	Publication date	Patent family member(s)	Publication —— date
DE 4212517	Α	21-10-1993	NONE	
US 4837476	Α	06-06-1989	JP 61251223 A	08-11-1986

			•
			ç

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 H03H9/02 Nach der Internationalen Patentidassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 H03H Recherchlerte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchlerten Gebiete fallen Während der Internationalen Recherche konsuttierte elektronische Datenbank (Name der Datenbank und evit. verwendete Suchbegriffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Telle Betr. Anapruch Nr. 1-3 DE 42 12 517 A (SIEMENS AG) A 21. Oktober 1993 (1993-10-21) in der Anmeldung erwähnt Seite 3, Zeile 39 -Seite 4, Zeile 68; Abbildung 7 1-3 EBATA Y: "SUPPRESSION OF BULK-SCATTERING A LOSS IN SAW RESONATOR WITH QUASI-CONSTANT ACOUSTIC REFLECTION PERIODICITY" PROCEEDINGS OF THE ULTRASONICS SYMPOSIUM, US, NEW YORK, IEEE, Bd. -, 1988, Seiten 91-96, XP000076935 in der Anmeldung erwähnt Absatz '0002!; Abbildung 1 Siehe Anhang Patentfamilie Weltere Veröffentlichungen sind der Fortsetzung von Feld C zu T Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondem nur zum Verständnis des der Erfindung zugnundellegenden Prinztpe oder der ihr zugnundellegenden Theorie angegeben ist Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" ätteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffertilchung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "L" Veröffertlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffertlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wern die Veröffentlichung mit einer oder mehneren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist ausacführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Absendedatum des internationalen Recherchenberichts Datum des Abschlusses der Internationalen Recherche 06/03/2000 24. Februar 2000 Bevollmächtigter Bedlensteter Name und Postanechrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL - 2280 HV Riswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3018 D/L PINTA BALLE.., L

	ng) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
		1,3
•	US 4 837 476 A (MOCHIZUKI MASAMI) 6. Juni 1989 (1989-06-06) 5.0140 2 70410 63	1,3
	Spalte 2, Zeile 63 Spalte 3, Zeile 41 - Zeile 49 Abbildung 4	
	Applicating 4	
		i.
	·	

INTERNATIONALER REPERCHENBERICHT

Angaben zu Veröffentlichur gen, die zur seiben Patentfamilie gehören

PCT/EP 99/08074

Γ	im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung			Datum der Veröffentlichung	_
r	DE 4212517	A	21-10-1993	KEINE			
	US 4837476	Α	06-06-1989	JP 61251223	A	08-11-1986	

THIS PAGE BLANK (USPTO)