Inferring Model Parameters in a High-Dimensional Logistic Regression

Qian Zhao

Febuaray 25th, 2022

Table of Contents

- 1 Logistic Regression
- 2 Inferring Model Parameters
- Current Theoretical Results
- 4 Non-Gaussian Covariates
- 5 The Resized Bootstrap Procedure
- 6 Future Work
- Appendix

Logistic Model

- Covariates $X \in \mathbb{R}^p$, binary response $Y \in \{0,1\}$
- $\mu(x) = P(Y = 1 | X = x) = 1/(1 + \exp(-x^{\top}\beta))$ Equivalently, the log-odds is a linear function of X,

$$\log\left(\frac{\mu(X)}{1-\mu(x)}\right) = x^{\top}\beta.$$

Qian Zhao GLM estimation Febuaray 25th, 2022 3 / 42

Logistic Model

- Covariates $X \in \mathbb{R}^p$, binary response $Y \in \{0,1\}$
- $\mu(x) = P(Y = 1 | X = x) = 1/(1 + \exp(-x^{\top}\beta))$ Equivalently, the log-odds is a linear function of X,

$$\log\left(\frac{\mu(X)}{1-\mu(x)}\right) = x^{\top}\beta.$$
Model Parameter

• Logistic regression estimates β by minimizing the negative log-likelihood of observing (x_i, y_i) , i = 1, ..., n,

$$\hat{eta} = \mathsf{argmin}_{b \in \mathbb{R}^p} \log(1 + e^{-y_i x_i^ op b})$$

• E.g. X is measurement at each SNP and Y is a binary trait.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

4 / 42

Qian Zhao GLM estimation Febuaray 25th, 2022

An example with synthetic gene expression data

- Model gene expression through a Hidden Markov Model (HMM).
- Generate one sample:
 - ▶ $X_i \in \mathbb{R}^p$ (p = 1454) from a HMM. X_i are standardized to have 0 mean and variance equal to 1/n.
 - ▶ Sample true coefficients β by randomly pick 100 to be non-nulls and sample non-null $\beta_i \sim \mathcal{N}(0, 10)$.
 - $Y_i \in \{0,1\}$ from a logistic model.
- Each data consists of n = 5000 samples generated as above.
- ullet Fit a logistic regression to compute the MLE \hat{eta} for each data.
- ullet We study the distribution of \hat{eta}_j by repeat this process 1000 times.

Table of Contents

- Logistic Regression
- 2 Inferring Model Parameters
- Current Theoretical Results
- 4 Non-Gaussian Covariates
- 5 The Resized Bootstrap Procedure
- 6 Future Work
- Appendix

Classical maximum likelihood theory

Theorem 5.21 (van der Vaart)

If p is fixed and n goes to infinity, then under mild regularity conditions,

$$\sqrt{n}(\hat{\beta} - \beta) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \mathcal{I}_{\beta}^{-1})$$

where \mathcal{I}_{β} is the Fisher information matrix evaluated at β .

Qian Zhao GLM estimation Febuaray 25th, 2022 7/42

Classical maximum likelihood theory

Theorem 5.21 (van der Vaart)

If p is fixed and n goes to infinity, then under mild regularity conditions,

$$\sqrt{n}(\hat{\beta} - \beta) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \mathcal{I}_{\beta}^{-1})$$

where \mathcal{I}_{β} is the Fisher information matrix evaluated at β .

For a logistic regression,

$$\mathcal{I}_{\beta} = \mathbb{E}\left[(X^{\top} W X)^{-1} \right],$$

where $W = \operatorname{diag}(w_1, w_2, \dots, w_n)$, $w_i = 1/\{(1 + e^{-x_i^\top \beta})(1 + e^{x_i^\top \beta})\}$.

→□▶→□▶→□▶→□▶
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

7 / 42

Qian Zhao GLM estimation Febuaray 25th, 2022

An Example When p/n is Small

- Number of observations n = 5000
- Number of variables p = 50
- X is the first 50 variables in the HMM model, standardized to have zero mean and variance equal to 1/n.
- $\beta_i \in \{-20, 20\}.$
- \bullet $Y \mid X$ is from a logistic model

In 1000 simulations, the MLE is centered at 20.2 (the true coefficient is $\beta_i = 20$). The empirical Std. Dev is 2.75 and the estimate by glm function is 2.79 in one data

Qian Zhao Febuaray 25th, 2022

Classical maximum likelihood theory

Theorem 5.21 (van der Vaart)

If p is fixed and n goes to infinity, then under mild regularity conditions,

$$\sqrt{n}(\hat{\beta} - \beta) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \mathcal{I}_{\beta}^{-1})$$

where \mathcal{I}_{β} is the Fisher information matrix evaluated at β .

- The classical theory also holds when $p^2/n \to 0$
- ullet But, the classical theory does not hold if $p/n
 ightarrow \kappa > 0!$ (Huber ,1973)
- We will study the high-dimensional setting when $p,n \to \infty$ while $p/n \to \kappa \in (0,1)$

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

An example with synthetic gene expression data (Cont'd)

Figure: Histogram of a non-null MLE; the black line shows the estimated density by classical theory in one data.pval

Figure: Histogram of a null P-value for testing \mathcal{H}_0 : $\beta_j=0$. The P-values are far from $\mathrm{Unif}(0,1)!$ We falsely reject a true null hypothesis more often than we should.

Table of Contents

- Logistic Regression
- 2 Inferring Model Parameters
- 3 Current Theoretical Results
- 4 Non-Gaussian Covariates
- 5 The Resized Bootstrap Procedure
- Future Work
- Appendix

Distribution of the MLE

Suppose $X \sim \mathcal{N}(0, \Sigma)$ and $Y \mid X$ is from a logistic model with coefficients β . Let

$$p/n \to \kappa$$
, and $Var(X^{\top}\beta) = \gamma^2$

and assume (κ, γ) are in the region where the MLE exists asymptotically.

Theorem 1 MLE distribution

Let
$$au_{i}^{2} = \operatorname{Var}(X_{j} \mid X_{-j})$$
. If $\sqrt{n} au_{j} eta_{j} = \mathit{O}(1)$, then

$$\sqrt{n}(\hat{\beta}_j - \alpha_{\star}\beta_j) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \sigma_*^2/\tau_j^2)$$

The parameters α_{\star} and σ_{\star} depends on the ratio κ and the signal strength γ .

◆ロト ◆個ト ◆園ト ◆園ト ■ りへ○

Empirical Acuracy

Testing \mathcal{H}_0 : $\beta_i = 0$

Corollary 1 Null distribution of the MLE

If $\beta_i = 0$, then

$$\sqrt{n}\hat{\beta}_j \stackrel{d}{\longrightarrow} \mathcal{N}(0, \sigma_*^2/\tau_j^2),$$

where $\tau_i^2 = \operatorname{Var}(X_j \mid X_{-j})$.

A two-sided p-value for testing \mathcal{H}_0 : $\beta_j=0$ is given by

$$p_j = 2 \times \Phi(-\sqrt{n}\tau_j|\hat{\beta}_j|/\sigma_{\star}),$$

where Φ is the normal cdf.

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

14 / 42

Qian Zhao GLM estimation Febuaray 25th, 2022

Histogram of a Null P-Value

Previous research

Previous studies have proved the null distribution of $\hat{\beta}_j$ when $\Sigma = I$.

Theorem 3 (Sur and Candès, 2019)

If $\beta_j=0$, then as $n,p o \infty$ while $p/n o \kappa$,

$$\sqrt{n}\hat{\beta}_j \stackrel{d}{\longrightarrow} \mathcal{N}(0, \sigma_*^2)$$

 σ_{\star} is larger than classical theory unless $\kappa \to 0$.

16 / 42

Qian Zhao GLM estimation Febuaray 25th, 2022

Deriving the Null Distribution of the MLE

The MLE minimizes the negative log-likelihood

Qian Zhao

$$\hat{\beta} = \operatorname{argmin}_{b \in \mathbb{R}^p} \sum_{i=1}^n \log(1 + e^{-y_i x_i^\top b}),$$

where $X_i \sim \mathcal{N}(0, \Sigma)$. WLOG, we let j = p. Let $L^\top L = \Sigma$ be the Cholesky decomposition of Σ , i.e. L is a lower triangular matrix. Then,

$$\sum_{i=1}^{n} \log(1 + e^{-y_{i}x_{i}^{\top}b}) = \sum_{i=1}^{n} \log(1 + e^{-y_{i}x_{i}^{\top}L^{-\top}}L^{\top}b).$$

In addition, $Y_i \mid L^{-1}X_i$ is from a logistic model with coefficients $L^{\top}\beta$. In particular, the last coefficient is $L_{i,j}\beta_i$! This means

$$\sqrt{n}L_{j,j}\hat{\beta}_j \stackrel{d}{\longrightarrow} \mathcal{N}(0,\sigma_{\star}^2)$$

4 마 > 4 를 > 4 를 > 1 를 - 9Q@

17 / 42

Previous Research

- Logistic regression (Sur and Candès (2019))
 - Precisely characterized of the condition when the MLE exists
 - Derived the exact MLE distribution of a null variable
 - Established the "bulk" distribution of the MLE
- Robust regression (El Karoui (2013), Donoho and Montanari (2016))
 - Derived the exact MLE distribution
- The LASSO regression
 - Studies the distribution of LASSO coefficients and how to construct CI for model coefficients when the model is sparse $s_0 = o(n/\log p)$ (Zhang and Zhang, van der Geer, Javanmard and Montanari) and when the model is not sparse (Bellec and Zhang, Celentano et.al)

Summary and Extensions

• We derived the asymptotic distribution of the MLE of a logistic regression model when $X \sim \mathcal{N}(0, \Sigma)$,

$$\sqrt{n}(\hat{\beta}_j - \alpha_*\beta_j) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \sigma_*^2/\tau_j^2),$$

where $au_j^2 = \operatorname{Var}(X_j \,|\, X_{-j})$ and this holds when $\sqrt{n} au_j eta_j = O(1)$

- We are able to construct valid confidence intervals.
- Extensions:
 - ▶ We developed procedures to esimate the signal strength in practice.
 - We extended the theory to include the case when there is a non-zero intercept.

<ロト < 個 ト < 重 ト < 重 ト 三 重 の < @

Table of Contents

- Logistic Regression
- 2 Inferring Model Parameters
- Current Theoretical Results
- 4 Non-Gaussian Covariates
- 5 The Resized Bootstrap Procedure
- 6 Future Work
- Appendix

An Example With Non-Gaussian Covariates

The asymptotic distribution of the M-estimators of robust regression depends on the covariate distribution (El Karoui, 2018).

- n = 2000, p = 200
- $X \sim \text{MVT}(0, \Sigma)$ with $\nu = 8$ degrees of freedom. Σ is a circular matrix $\Sigma_{ii} = 0.5^{\min(|i-j|,p+1-|i-j|)}$. Standardize X to have variance equal to 1/p.
- Sample 20 variables to be non-nulls. The non-null β_i are i.i.d. from $\mathcal{N}(\pm 5,1)$.
- Y | X is sampled from a logistic model.

An Example With Non-Gaussian Covariates (Result)

- The high-dimensional theory slightly under-estimates the Std. Dev.
 - The empirical bias is 1.16 and the theoretical prediction is 1.14.
 - The empirical Std. Dev is 1.27 while the theoretical prediction is 1.19.
- The CI slightly undercovers β_j
 - ► Theoretical 95% CI covers approximately 93.3% times.

Can We Use the Bootstrap Method?

- The bootstrap is a resampling method to estimate the sampling distribution of a statistics.
- Two standard sampling methods:
 - The parametric bootstrap
 - The nonparametric (pairs) bootstrap
- Bootstrap confidence intervals: percentile, bootstrap-t, ...

Figure: Figure 8.1 in *An Introduction to the Bootstrap*, by Efron and Tibshirani

Parametric Bootstrap

- Given observed data (X_i, Y_i) , i = 1, ..., n.
- ② Fit a logistic regression to obtain the MLE $\hat{\beta}$.
- Onstruct B bootstrap samples. The bth bootstrap sample:
 - Fix the covariates at observed X_i .
 - **2** Sample Y_i^b using X_i as the covariates and $\hat{\beta}$ as the model coefficient.
 - **3** Compute the MLE for the bootstrap sample $\hat{\beta}^b$.
- The percentile bootstrap (1-c)-CI for β_j is $[\hat{\beta}^b_j[c/2], \hat{\beta}^b_j[1-c/2]]$ where $\hat{\beta}^b_j[c/2]$ is the c/2 quantile of the bootstrap samples $(\hat{\beta}^1_j, \dots, \hat{\beta}^B_j)$.

Can We Use the Parametric Bootstrap?

The standard parametric bootstrap do not work in high-dimensions!

Why Does Parametric Bootstrap Fail in High-Dimensions?

When $X \sim \mathcal{N}(0, \Sigma)$, the MLE is approximately

$$\sqrt{n}(\hat{\beta}_j - \alpha_{\star}\beta_j) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \sigma_{\star}/\tau_j)$$

variance depends on the ratio $\kappa = p/n$ and the signal strength $\gamma = \text{Var}(X^{\top}\beta)^{1/2}$.

We can compute that

$$\operatorname{Var}(X^{\top}\hat{\beta}) \approx \alpha_{\star}^2 \gamma^2 + \kappa \sigma_{\star}^2 > \gamma$$

Both α_{\star} and σ_{\star} increases as γ increases.

This suggests that we can apply the parametric bootstrap at a coefficient different from the MLE.

Table of Contents

- Logistic Regression
- 2 Inferring Model Parameters
- Current Theoretical Results
- 4 Non-Gaussian Covariates
- 5 The Resized Bootstrap Procedure
- 6 Future Work
- Appendix

The Resized Bootstrap Method

• We generate new responses using the parametric bootstrap, but choosing β^s that satisfies

$$Var(X^{\top}\beta^s) = \gamma^2.$$

- We set $\beta^s = s \times \hat{\beta}$ by "resizing" the MLE.
- After B repetitions, we obtain B bootstrap MLE

$$(\hat{\beta}^1,\ldots,\hat{\beta})^B$$

Estimating Bias and Std.Dev using the resized bootstrap

- Estimate $\hat{\sigma}_j$ by the standard deviation of the bootstrap MLE.
- Estimate $\hat{\alpha}_j$ by the regression coefficient of average bootstrap MLE onto β^s , and weight jth variable proportional to $1/\hat{\sigma}_i^2$.

Constructing CI for β_j

Method 1 (Gaussian approximation): Suppose

$$\frac{\hat{\beta}_j - \alpha_j \beta_j}{\sigma_j} \approx \mathcal{N}(0, 1),$$

and use the bootstrap MLE $\hat{\beta}^1, \dots, \hat{\beta}^B$ to estimate α_j and σ_j . Method 2 (Bootstrap-t):

Suppose the MLE are not gaussian, we use the bootstrap MLE to estimate the distribution of the MLE, i.e. assuming

$$\frac{\hat{\beta}_j - \hat{\alpha}_j \beta_j}{\hat{\sigma}_j} \stackrel{d}{\approx} \frac{\hat{\beta}_j^b - \hat{\alpha} \beta_j^s}{\hat{\sigma}_j}$$

and estimate the RHS by the quantiles of the bootstrap MLE.

→□▶→□▶→□▶→□▶
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

30 / 42

Coverage Probability of a Null Variable

	Theoretical CI	Resized bootstrap	
Nominal	High-Dim	I. Boot-g	II. Boot-t
95%	93.4%	95.2 %	94.8%
		(0.87%)	(0.92%)
90%	87.5%	89.3%	89.8%
		(1.26%)	(1.24%)
80%	77.5%	79.3%	78.7%
		(1.66%)	(1.68%)

Table: Coverage probability of a single **null** variable in N = 600 samples. The standard deviations are shown in the parentheses.

Coverage Probability of a Non-Null Variable

	Theoretical CI	Resized bootstrap	
Nominal	High-Dim	I. Boot-g	II. Boot-t
95%	92.7 %	95.4 %	94.6%
		(0.86%)	(0.93%)
90%	87.0%	90.2%	90.5%
		(1.22%)	(1.20%)
80%	76.1%	82.9%	82.6%
		(1.55%)	(1.56%)

Table: Coverage probability of a single **non-null** variable in N=600 samples. The standard deviations are shown in the parentheses.

Conclusion

- We develop a resized bootstrap method which combines the high-dimensional theory with parametric bootstrap to infer parameters in a high-dimensional GLM.
- The resized bootstrap can be used to construct CI and the CI achieve reasonable coverage for moderate *n*.
- The resized bootstrap applies to other GLM and different covariate distributions.

33 / 42

Table of Contents

- Logistic Regression
- 2 Inferring Model Parameters
- 3 Current Theoretical Results
- 4 Non-Gaussian Covariates
- 5 The Resized Bootstrap Procedure
- 6 Future Work
- 7 Appendix

Future Work

We derived the theoretical distribution of the logistic MLE when the covariates are multivariate Gaussian.

$\tau_j \beta_j / \gamma$	Std. Dev
0.15	2.91
0.3	3.28
0.5	4.11

The variance of the MLE increase with the magnitude of β . Can we characterize the variance as a function of β ?

Future Work (Cont'd)

- We developed a resized bootstrap method to estimate the MEL distribution. Can we analyze the procedure to justify or improve it?
- Can the idea of resized bootstrap be applied to other high-dimensional problems?

36 / 42

References I

Huber, P.

Robust Regression: Asymptotics, Conjectures and Monte Carlo, Ann. Statist., 1973

Vaart, A. W. van der

Asymptotic Statistics, Cambridge Series in Statistical and Probabilistic Mathematics, 1998

Donoho, D., Montanari, A.

High Dimensional Robust M-Estimation: Asymptotic Variance via Approximate Message Passing, *Probab. Theory Relat. Fields*, 2016

El Karoui, N.

On the impact of predictor geometry on the performance on high-dimensional ridge-regularized generalized robust regression estimators *Probab. Theory Relat. Fields*, 2018

El Karoui, N. and Purdom, E.

Can We Trust the Bootstrap in High-Dimensions? The Case of Linear Models, *J. Mach. Learn. Res.*, 2018

37 / 42

References II

Sur, P. and Candès

A modern maximum-likelihood theory for high-dimensional logistic regression, PNAS, 2019

Candès, E. and Sur, P.

The phase transition for the existence of the maximum likelihood estimate in high-dimensional logistic regression *Ann. Statist.*, 2020

Table of Contents

- Logistic Regression
- 2 Inferring Model Parameters
- 3 Current Theoretical Results
- 4 Non-Gaussian Covariates
- 5 The Resized Bootstrap Procedure
- 6 Future Work
- Appendix

Estimating τ_j

We estimate $\tau_j^2 = \text{Var}(X_j \mid X_{-j})$ by the residual sum of squares of regressing X_j onto X_{-j} :

$$\hat{\tau}_j^2 = \frac{\mathrm{RSS}_j}{n-p},$$

is an unbiased estimator of τ_j^2 .

Qian Zhao GLM estimation Febuaray 25th, 2022 40 / 42

Main results: distribution of a single MLE coordinate

Theorem

Let
$$\tau_j^2 = \operatorname{Var}(x_{i,j} \mid \boldsymbol{x}_{i,-j})$$
. If $\sqrt{n}\tau_j\beta_j = O(1)$, then

$$\frac{\sqrt{n}(\hat{\beta}_j - \alpha_{\star}\beta_j)}{\sigma_{\star}/\tau_j} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1).$$

Proof: wlog, assume i = p,

$$\begin{split} \frac{\sqrt{n}(\hat{\beta}_{j} - \alpha_{\star}\beta_{j})}{\sigma_{\star}/\tau_{j}} &= \frac{\sqrt{n}(\hat{\theta}_{j} - \alpha_{\star}\theta_{j})}{\sigma_{\star}} \quad \text{from previous Lemma} \\ &= \left(\sqrt{n}\frac{\hat{\theta}_{j} - \alpha(n)\theta_{j}}{\sigma(n)} + \sqrt{n}\theta_{j}\frac{(\alpha(n) - \alpha_{\star})}{\sigma(n)}\right)\frac{\sigma(n)}{\sigma_{\star}} \\ &= \mathcal{N}(0, 1) + o_{P}(1) \end{split}$$

Conjecture: $\sqrt{n}(\alpha(n) - \alpha_{\star}) = O_P(1)$, so only need $\tau_i \beta_i = O(1)$.

41 / 42

Estimating γ

- Use the one-to-one correspondence between $\operatorname{Var}(X_{\mathrm{new}}^{\top}\hat{\beta})$ with γ .
- Use the SLOE estimator to estimate $Var(X_{\text{new}}^{\top} \hat{\beta})$ from the MLE.
- Apply the parametric bootstrap to compute $Var(X_{\text{new}}^{\top}\hat{\beta})$ when $\beta = s \times \hat{\beta}$.