Examples:

 $\overline{X} - \overline{Y} \sim N(\mu_X - \mu_Y, \sigma_X^2 + \sigma_Y^2) \leftarrow \text{properties } g \text{ the normal } 8 \text{ linear combinations } g$

(5) $x_1, - - x_n \sim Bernoulli(px)$ iid $(n, m large. Y_1, - - Y_m \sim Bernoulli(px))$ $E(x_1) = px$

 $\overline{X} \approx N(p_x, p_x q_x), \overline{Y} \approx N(p_x, p_y q_x)$ V_{approx} by CLT V_{approx} V_{approx} V_{approx} V_{approx}

Uniform

f(x) 70

Exponential

Sport = 1

Normal

F(x), $(0 \subseteq F(x) \subseteq D)$ for f(x)- continuous 8 vicreasing

on $(-\infty, \infty)$ $P(x < X < b) = \int_{-\infty}^{\infty} f(x) dx$ E(X), Van(X), SD(X) = F(b) - F(x)

Example 1 2 vidependent samples: Sample 1 from Fresno, size 400 Sample 2 from Irvine size 500, We have average uncome from sample 1 is $\frac{470,000}{x}$ sample 5D = 440,000 Comple 2: mem 7 = \$80,000 Sample SD = \$50,000 $Van(\overline{X})$ can be estimated as $(40,000)^{\kappa}$ v (50,060)² Van (Y) $\bar{x} - \bar{y} = \frac{5}{4}(0.000)$ $SD(\bar{X}-\bar{Y}) \approx \sqrt{\frac{(40000)^2}{400} + \frac{50000^2}{500}} = $3,000$ 95% CI for the true difference in mean incomes b/w Irvines Fresno $= (\overline{X} - \overline{Y}) \pm 2 \times 5D(\overline{X} - \overline{Y})$ $=(-10,000 \pm 2\times3000) = -10,000 \pm 6000$

Example 2. Perform a hypothesis test

on the true mean difference in uncomes beig 0.

Ho: $\mu_x = \mu_y$ $\mu_x = \mu_y = \mu_y$ $\mu_x = \mu_y$

= (\$16,000, \$ -4,000)

$$\overline{Y} - \overline{X} \sim N(0, Van(\overline{Y} - \overline{X}))$$

$$SD(\overline{Y}-\overline{X}) \approx 3000 \text{ (estimated above)}$$

$$\frac{1}{2} = \frac{(\overline{Y}-\overline{X}) - E(\overline{Y}-\overline{X})}{SD(\overline{Y}-\overline{X})} = \frac{10,000 - 0}{3000} = \frac{10}{3}$$

P-value =
$$P(Z > 10/3) = 1 - \overline{P}(\frac{10}{3}) \approx 0.00043$$

 $\approx 0.04\%$
 Reject the null hypothesis.

C.I. for proportions

2 videp samples from Fresno & Irvine Size 500

proportion in Fresho sample that want GOV. Newson recalled = 49 %

proportion in Irvine sample that want and recalled is 48%

$$\bar{X} = 0.49$$
 $Van(\bar{X}) \approx (0.49)(0.51)$
 $\bar{Y} = 0.48$
 $Van(\bar{Y}) \approx (0.48)(0.52)$
 $\bar{SD}(\bar{X} - \bar{Y}) = Van(\bar{X}) + Var(\bar{Y}) \approx 0.0335$
 $\bar{X} - \bar{Y} = 0.49 - 0.48 = -0.01$

95% C.I. for true difference in means (proportions) (by CLT) 0.01 ± 2× 0.0335 =(-0.057,0.077)=(-5.7%,7.7%)Duality blw C.I & 2-sided typo There fests

tells us that we would not reject a hull hyp offinean difference being Oat 5% Significance level since 0 10 m. this 95% C.I.

Test for equality of proportions

Freeno
Ho: prop. opprobers favoring recall = prop. of Irvine voters favoring recall.

Px = PY = P

Hy: $p_x = p_y = p$ $T = \overline{\chi} - \overline{y}$ Hy: $p_x > p_y = p_y > 0$ $P_x \neq p_y \longrightarrow P_x > p_y \longrightarrow P_x \longrightarrow P_x \longrightarrow P_x > p_y \longrightarrow P_x \longrightarrow P_x$

T= X-Y

I need a value for the common value of Estimate this using total sample $\hat{p} = \frac{total\ count}{total\ sample}$ (weighted average of \hat{p}) \hat{p})

 $(0.46)(400) + (0.48)(500) \approx 0.4844$

Under Ho,
$$x - 7 \sim N(0, \sigma^2)$$

$$\sigma = \sqrt{\frac{pq}{400} + \frac{pq}{500}} \approx 0.0335$$

$$\mathcal{Z} = \underbrace{(\overline{X} - \overline{Y}) - (0)}_{SD(\overline{X} - \overline{Y})} = \underbrace{0.01 - 0}_{0.0335}$$

$$P-value = P(Z > \frac{0.01-0}{0.0335}) \approx 0.382$$

Fail to reject the Null.

Section II. 1 Bras & Vanance

Data to estimate a population parameter O: truevalue, T: estimale

unbiased high variance

below varance

Biased Low rariance Precise (bw Vanane)

Litt LOW BI'AS LOW WITMILE

unbrased ECT) = 0

brased E(T) \$ 0