- In [1]:
- import numpy as np
- import pandas as pd
- 3 import sklearn
- 4 import matplotlib.pyplot as plt
- 5 import seaborn as sns
- 6 import scipy
- import keras 7
- 8 import tensorflow as tf
- from keras.utils import to_categorical
- In [2]:
- 1
- data = pd.read_csv("breast-cancer.data",header=None)
 data.columns = ['Class','age','menopause','tumor-size','inv-nodes','node-caps','deg-mali
- In [3]:

1 data

Out[3]:

	Class	age	menopause	tumor- size	inv- nodes	node- caps	deg- malig	breast	breast- quad	irradiat
0	no- recurrence- events	30- 39	premeno	30-34	0-2	no	3	left	left_low	no
1	no- recurrence- events	40- 49	premeno	20-24	0-2	no	2	right	right_up	no
2	no- recurrence- events	40- 49	premeno	20-24	0-2	no	2	left	left_low	no
3	no- recurrence- events	60 - 69	ge40	15-19	0-2	no	2	right	left_up	no
4	no- recurrence- events	40 - 49	premeno	0-4	0-2	no	2	right	right_low	no
281	recurrence- events	30 - 39	premeno	30-34	0-2	no	2	left	left_up	no
282	recurrence- events	30 - 39	premeno	20-24	0-2	no	3	left	left_up	yes
283	recurrence- events	60 - 69	ge40	20-24	0-2	no	1	right	left_up	no
284	recurrence- events	40- 49	ge40	30-34	3-5	no	3	left	left_low	no
285	recurrence- events	50- 59	ge40	30-34	3-5	no	3	left	left_low	no

286 rows × 10 columns

```
In [4]:

1 from sklearn.preprocessing import LabelEncoder
2 le = LabelEncoder()
3 for i in data:
4 data[i] = le.fit_transform(data[i])

In [5]:
1 x= data.drop("irradiat",axis=1)
2 y = data["irradiat"]

In [6]:
1 x
```

Out[6]:

	Class	age	menopause	tumor- size	inv-nodes	node-caps	deg-malig	breast	breast-quad
0	0	1	2	5	0	1	2	0	2
1	0	2	2	3	0	1	1	1	5
2	0	2	2	3	0	1	1	0	2
3	0	4	0	2	0	1	1	1	3
4	0	2	2	0	0	1	1	1	4
281	1	1	2	5	0	1	1	0	3
282	1	1	2	3	0	1	2	0	3
283	1	4	0	3	0	1	0	1	3
284	1	2	0	5	4	1	2	0	2
285	1	3	0	5	4	1	2	0	2

286 rows × 9 columns

```
In [7]:
          1
            У
Out[7]: 0
             0
        1
            0
        2
             0
        3
             0
             0
        281
             0
        282
             1
        283
             0
        284
             0
        285 0
        Name: irradiat, Length: 286, dtype: int32
            x.shape
In [8]:
          1
```

Out[8]: (286, 9)

```
In [9]:
            1 y.shape
Out[9]: (286,)
In [10]:
               from sklearn.model_selection import train_test_split
              xtrain,xtest,ytrain,ytest = train_test_split(x,y,test_size=0.25,random_state=0)
 In [11]:
              xtrain1 = np.array(xtrain)
           2 \times test1 = np.array(xtest)
           3 | ytrain1 = np.array(ytrain)
           4 ytest1 = np.array(ytest)
In [12]:
              xtrain1 = xtrain1.reshape(xtrain1.shape[0],xtrain1.shape[1],1)
              xtest1 = xtest1.reshape(xtest1.shape[0],xtest1.shape[1],1)
In [13]:
            1 xtrain1.shape
Out[13]: (214, 9, 1)
In [14]:
            1 xtest1.shape
Out[14]: (72, 9, 1)
In [15]:
              ytrain1.shape
Out[15]: (214,)
            1 ytest1.shape
In [16]:
Out[16]: (72,)
In [17]:
            1
              from keras.layers import LSTM, Dense, Activation, Flatten, Dropout
              from keras.models import Sequential
In [18]:
               model = Sequential()
               model.add(LSTM(256,input_shape=(xtrain1.shape[1],1)))
           3
               model.add(Dropout(0.2))
               model.add(Dense(1, activation='softmax'))
               model.compile(loss='categorical_crossentropy', optimizer='adam')
```

In [19]:

1 model.summary()

Model: "sequential"

Layer (type)	Output Shape	Param#	
lstm (LSTM)	(None, 256)	264192	
dropout (Dropout)	(None, 256)	0	
dense (Dense)	(None, 1)	257	

Total params: 264,449 Trainable params: 264,449 Non-trainable params: 0

```
In [20]:
            model.compile(metrics= ["accuracy"],optimizer="adam",loss="categorical_crossentropy
In [21]:
         1
            history = model.fit(xtrain1, ytrain1,batch_size=10,epochs=250)
        0,4303
        Epoch 94/250
        22/22 [================] - Os 17ms/step - loss: 0.0000e+00 - accuracy:
        0.2383
        Epoch 95/250
        22/22 [==========] - Os 19ms/step - loss: 0.0000e+00 - accuracy:
        0.2383
        Epoch 96/250
        22/22 [===============] - Os 19ms/step - loss: 0.0000e+00 - accuracy:
        0.2383
        Epoch 97/250
        22/22 [===========] - Os 20ms/step - loss: 0.0000e+00 - accuracy:
        0.2383
        Epoch 98/250
        22/22 [================] - Os 20ms/step - loss: 0.0000e+00 - accuracy:
        0.2383
        Epoch 99/250
        22/22 [=================] - Os 20ms/step - loss: 0.0000e+00 - accuracy:
        0.2383
        Epoch 100/250
```

In [22]:

1 history = pd.DataFrame(history.history)
2 history

Out[22]:

	loss	accuracy
0	0.0	0.238318
1	0.0	0.238318
2	0.0	0.238318
3	0.0	0.238318
4	0.0	0.238318
245	0.0	0.238318
246	0.0	0.238318
247	0.0	0.238318
248	0.0	0.238318
249	0.0	0.238318

250 rows × 2 columns

In [23]: 1 history.plot(figsize=(15,10))

Out[23]: <AxesSubplot:>


```
In [24]: 1 ypredict = np.argmax(model.predict(xtest1), axis=-1)

In [25]: 1 from sklearn.metrics import accuracy_score
2 accuracy_score(ytest1,ypredict)
```

Out[25]: 0.7638888888888888