本节内容

快速排序

王道考研/CSKAOYAN.COM

知识总览

交换排序

冒泡排序

快速排序

基于"交换"的排序:根据序列中两个元素关键字的比较结果来对换这两个记录在序列中的位置

算法思想:在待排序表L[1...n]中任取一个元素pivot作为枢轴(或基准,通常取首元素),通过一趟排序将待排序表划分为独立的两部分L[1...k-1]和L[k+1...n],使得L[1...k-1]中的所有元素小于pivot,L[k+1...n]中的所有元素大于等于pivot,则pivot放在了其最终位置L[k]上,这个过程称为一次"划分"。然后分别递归地对两个子表重复上述过程,直至每部分内只有一个元素或空为止,即所有元素放在了其最终位置上。

算法思想:在待排序表L[1...n]中任取一个元素pivot作为枢轴(或基准,通常取首元素),通过一趟排序将待排序表划分为独立的两部分L[1...k-1]和L[k+1...n],使得L[1...k-1]中的所有元素小于pivot,L[k+1...n]中的所有元素大于等于pivot,则pivot放在了其最终位置L[k]上,这个过程称为一次"划分"。然后分别递归地对两个子表重复上述过程,直至每部分内只有一个元素或空为止,即所有元素放在了其最终位置上。

算法思想:在待排序表L[1...n]中任取一个元素pivot作为枢轴(或基准,通常取首元素),通过一趟排序将待排序表划分为独立的两部分L[1...k-1]和L[k+1...n],使得L[1...k-1]中的所有元素小于pivot,L[k+1...n]中的所有元素大于等于pivot,则pivot放在了其最终位置L(k)上,这个过程称为一次"划分"。然后分别递归地对两个子表重复上述过程,直至每部分内只有一个元素或空为止,即所有元素放在了其最终位置上。

算法效率分析

n个结点的二叉树 最小高度 = $\lfloor log_2 n \rfloor + 1$ 最大高度 = n

时间复杂度=O(n*递归层数)

空间复杂度=O(递归层数)

最好时间复杂度= $O(nlog_2n)$ 最坏时间复杂度= $O(n^2)$

最好空间复杂度= $O(log_2n)$ 最坏空间复杂度=O(n)

王道考研/CSKAOYAN.COM

比较好的情况

若每一次选中的"<mark>枢轴"</mark>将待排序序列 划分为均匀的两个部分,则递归深度 最小,算法<mark>效率最高</mark>

快速排序算法优化思路: 尽量选择可以把 数据中分的枢轴元素。

eg: ①选头、中、尾三个位置的元素,取中间值作为枢轴元素; ②随机选一个元素作为枢轴元素

王道考研/CSKAOYAN.COM

算法效率分析

时间复杂度=O(n*递归层数)

空间复杂度=O(递归层数)

最好时间复杂度=O(nlog₂n) 最坏时间复杂度=O(n²) 每次选的枢轴元素都 能将序列划分成均匀 的两部分

最好空间复杂度=O(log₂n) 最坏空间复杂度=O(n)

若序列原本就有序或逆序,则时、 空复杂度最高(可优化,尽量选择 可以把数据中分的枢轴元素。)

厉害厉害

快速排序是所有内部排序算法中 平均性能最优的排序算法

平均时间复杂度=O(nlog2n)

王道考研/CSKAOYAN.COM

稳定性

不稳定!

王道考研/CSKAOYAN.COM

知识回顾与重要考点

算法思想:在待排序表L[1...n]中任取一个元素pivot作为枢轴(或基准,通常取首元素),通过一趟排序将待排序表划分为独立的两部分L[1...k-1]和L[k+1...n],使得L[1...k-1]中的所有元素小于pivot,L[k+1...n]中的所有元素大于等于pivot,则pivot放在了其最终位置L[k]上,这个过程称为一次"划分"。然后分别递归地对两个子表重复上述过程,直至每部分内只有一个元素或空为止,即所有元素放在了其最终位置上。

算法表现主要取决于递归深度,若每次"划分"越均匀,则递归深度越低。 "划分"越不均匀,递归深度越深

注: 408原题中说,对所有尚未确定最终位置的所有元素进行一遍处理称为"一趟"排序,因此一次"划分"≠一趟排序。 一次划分可以确定一个元素的最终位置,而一趟排序也许可以确定多个元素的最终位置。

王道考研/CSKAOYAN.COM