Azzolini Riccardo 2020-05-11

Risoluzione – Correttezza e completezza

1 Correttezza della risoluzione

Proposizione: Il risolvente \mathcal{R} di \mathcal{C}_1 e \mathcal{C}_2 (rispetto a L) è conseguenza logica dell'insieme di clausole $\{\mathcal{C}_1, \mathcal{C}_2\}$.

Dimostrazione: Sia v una valutazione che soddisfa le due clausole: $v \models C_1$ e $v \models C_2$. Bisogna dimostrare che allora anche $v \models \mathcal{R}$.

Innanzitutto, si ricorda che una clausola $\mathcal{C} = \{l_1, \dots, l_n\}$ è soddisfatta da una valutazione quando esiste almeno un letterale in \mathcal{C} che è verificato da tale valutazione:

$$v \models \mathcal{C}$$
 se $\widetilde{\exists} j : v \models l_j$

Da ciò, si deduce che esistono due letterali $M \in \mathcal{C}_1$ e $N \in \mathcal{C}_2$ tali che v(M) = v(N) = 1.

Se questi due letterali fossero quelli a cui si è applicata la regola di risoluzione, M=L e $N=\overline{L}$, allora non potrebbero essere entrambi soddisfatti da v, essendo uno la negazione dell'altro. Dunque, $M\neq L$ oppure $N\neq \overline{L}$, e quindi, per la definizione di risolvente, almeno uno tra M e N deve appartenere a \mathcal{R} . Di conseguenza, \mathcal{R} contiene almeno un letterale soddisfatto da v, ovvero $v\models \mathcal{R}$.

2 Equivalenza tra risolti e risolvente

Considerando un'applicazione della regola di risoluzione,

$$\frac{\mathcal{C}_1 = \mathcal{C}', L \quad \mathcal{C}_2 = \mathcal{C}'', \overline{L}}{\mathcal{R} = \mathcal{C}', \mathcal{C}''} \text{ ris}$$

si ottiene che

$$\{\mathcal{C}_1,\mathcal{C}_2\} \equiv \{\mathcal{C}_1,\mathcal{C}_2,\mathcal{R}\}$$

perché:

- \mathcal{R} è conseguenza logica di $\{C_1, C_2\}$, quindi ogni valutazione che rende vero $\{C_1, C_2\}$, soddisfa anche \mathcal{R} , e dunque $\{C_1, C_2, \mathcal{R}\}$;
- viceversa, per definizione, una valutazione soddisfa l'insieme $\{C_1, C_2, \mathcal{R}\}$ se soddisfa tutte le clausole dell'insieme, e allora essa rende vero anche $\{C_1, C_2\}$.

Se $\mathcal{R} = \square$ (la clausola vuota), che è insoddisfacibile, allora $\{\mathcal{C}_1, \mathcal{C}_2, \mathcal{R}\}$ è insoddisfacibile. Così, dall'equivalenza logica appena stabilita, si deduce che è insoddisfacibile anche $\{\mathcal{C}_1, \mathcal{C}_2\}$ (e, per estensione, qualunque insieme \mathcal{S} di clausole contenente sia \mathcal{C}_1 che \mathcal{C}_2). Si ha allora il seguente corollario della proposizione di correttezza della risoluzione:

Corollario: Se il risolvente di una coppia di clausole $C_1, C_2 \in \mathcal{S}$ è \square , allora \mathcal{S} è insoddisfacibile.

2.1 Esempio

Si consideri la formula in CNF

$$S = X \wedge (\neg X \vee Y) \wedge \neg Y$$

che corrisponde all'insieme di clausole

$$S = \{\{X\}, \{\neg X, Y\}, \{\neg Y\}\}\$$

Applicando la risoluzione alla prima e alla seconda clausola, rispetto al letterale X, si ottiene

 $\frac{\{X\} \quad \{\neg X, Y\}}{\{Y\}}$ ris

quindi:

$$\mathcal{S} \equiv \left\{\underbrace{\{X\}, \{\neg X, Y\}, \{\neg Y\}}_{\mathcal{S}}, \{Y\}\right\}$$

Adesso, ragionando su questo nuovo insieme di clausole, si applica ancora la risoluzione,

$$\frac{\{Y\} \quad \{\neg Y\}}{\Box}$$
 ris

deducendo così l'equivalenza logica

$$\mathcal{S} \equiv \left\{\underbrace{\{X\}, \{\neg X, Y\}, \{\neg Y\}, \{Y\}\}}_{\mathcal{S}} \right\} \equiv \left\{\underbrace{\{X\}, \{\neg X, Y\}, \{\neg Y\}, \{Y\}, \Box\}}_{\mathcal{S}}\right\}$$

Siccome quest'ultimo insieme è insoddisfacibile, lo è anche l'insieme di partenza \mathcal{S} , e quindi la formula S:

$$\widetilde{\forall} v \colon v \not\models X \wedge (\neg X \vee Y) \wedge \neg Y$$

3 Derivazione per risoluzione

Definizione: Una clausola C è **derivabile per risoluzione** da un insieme di clausole S se esiste una sequenza C_1, \ldots, C_n di clausole tale che:

- $C_n = C$
- $\widetilde{\forall} i = 1, \dots, n \text{ si ha che:}$
 - $C_i \in \mathcal{S},$
 - oppure C_i è la conclusione della regola di risoluzione applicata a due clausole C_j , C_k della sequenza, con j < i e k < i.

Per indicare che \mathcal{C} è derivabile per risoluzione da \mathcal{S} , si scrive $\mathcal{S} \vdash_{\mathcal{R}} \mathcal{C}$.

4 Refutazione

Definizione: Una **refutazione** di \mathcal{S} è una derivazione della clausola vuota \square da \mathcal{S} . \mathcal{S} è **refutabile** se $\mathcal{S} \vdash_{R} \square$.

4.1 Esempio

Come nell'esempio precedente, si considera la formula

$$S = X \wedge (\neg X \vee Y) \wedge \neg Y$$

che corrisponde all'insieme di clausole

$$S = \{\{X\}_1, \{\neg X, Y\}_2, \{\neg Y\}_3\}$$

(qui numerate per potervisi riferire facilmente nella derivazione).

Si ha $\mathcal{S} \vdash_{\mathbf{R}} \Box$, cioè esiste una refutazione (derivazione di \Box da \mathcal{S}), data (ad esempio) dalla sequenza:

- (1) $\{X\}$ clausola 1 in \mathcal{S}
- (2) $\{\neg X, Y\}$ clausola 2 in \mathcal{S}
- (3) $\{Y\}$ $\frac{\{X\} \quad \{\neg X, Y\}}{\{Y\}}$ ris
- (4) $\{\neg Y\}$ clausola 3 in \mathcal{S}
- (5) \Box $\frac{\{Y\} \quad \{\neg Y\}}{\Box}$ ris

5 Teorema di validità e completezza

Teorema: $S \vdash_R \square$ se e solo se S è insoddisfacibile (in altre parole, S è refutabile se e solo se è insoddisfacibile).

Da questo teorema seguono immediatamente due corollari, che permettono di usare il metodo di risoluzione per determinare anche

• se vale una conseguenza logica:

Corollario: Siano Γ un insieme di formule, H una formula e \mathcal{S} l'insieme di clausole corrispondente all'insieme di formule $\Gamma \cup \{\neg H\}$.

$$\Gamma \models H \quad \text{sse} \quad \mathcal{S} \vdash_{\mathbf{R}} \square$$

• se una formula è una tautologia:

Corollario: Siano H una formula e S l'insieme di clausole corrispondente a $\neg H$.

$$\models H$$
 sse $\mathcal{S} \vdash_{\mathbf{R}} \square$

5.1 Verifica di una tautologia

Il procedimento completo per verificare se una formula A è una tautologia usando il metodo di risoluzione è il seguente:

- 1. si considera la sua negazione $\neg A$ (perché A è una tautologia se e solo se $\neg A$ è insoddisfacibile);
- 2. si trasforma $\neg A$ in una CNF C_A ;
- 3. si considera l'insieme di clausole S_A corrispondente a C_A ;
- 4. si applica la risoluzione per verificare se $\mathcal{S}_A \vdash_{\mathbf{R}} \square$: se si riesce a derivare la clausola vuota, allora \mathcal{S}_A è insoddisfacibile, e quindi $\neg A$ è insoddisfacibile, ovvero A è una tautologia.