Tunnels

1 second, 256 MB

In an underground city, there is a network of M bidirectional tunnels joining N intersections, namely intersections 1, 2,..., and N. Each tunnel i (for $1 \le i \le M$) only allows cars whose height are at $most H_i$. When driving through these tunnels, you have to pay the fee of 1 Baht for each tunnel.

Write a program to find the lowest fee one has to pay to go from intersection S to intersection T with a car of height C.

Consider the following example with N = 5 and M = 7. The height of each tunnel is shown next to it.

If you want you go from intersection 1 to intersection 5 with a car of height 7, you can go from intersection 1 to intersection 4 and finally to intersection 5, passing through 2 tunnels and pay 2 Baht.

If the height of the car is 10, going from intersection 1 to 5 requires you to go through 4 tunnels (i.e., from intersection 1 to 2, to 4, to 3, and finally to 5); thus you have to pay 4 Baht.

If the height of the car is 15, there is no way to reach intersection 5 from intersection 1.

Input

The first line of input contains two integers N and M (2 <= N <= 3,000; 1 <= M <= 30,000).

The next **M** lines contains tunnel information. Specifically, for $1 \le i \le M$, line 1+i contains three integers A_i B_i and H_i , that specifies that tunnel i joins intersections A_i and B_i , and allows cars of height at most H_i ($1 \le A_i \le N$; $1 \le B_i \le N$; $1 \le H_i \le 1,000$).

The last line contains three integers **S T** and **C** ($1 \le S \le N$; $1 \le T \le N$; $1 \le C \le 1,000$)

Output

The output contains one line, specifying the lowest fee you have to pay for a car of height C to go from intersection S to T. If it is impossible to do so, you should output -1.

Example 1

Input	Output
5 7	2
1 2 15	
3 2 3	
4 2 18	
3 4 30	
3 5 13	
4 1 8	
4 5 7	
1 5 7	

(More examples on the next page.)

Example 2

Input	Output
5 7	4
1 2 15	
3 2 3	
4 2 18	
3 4 30	
3 5 13	
4 1 8	
4 5 7	
1 5 10	

Example 3

Input	Output
5 7	-1
1 2 15	
3 2 3	
4 2 18	
3 4 30	
3 5 13	
4 1 8	
4 5 7	
1 5 15	