Additional notes for the modified Standard form (the standard equality form)

$$\frac{\text{Matrix notation}}{\text{Matrix}} \qquad A = \begin{bmatrix} a_{11} & a_{12} & a_{1n} & 1 \\ a_{n1} & a_{n2} & a_{nn} & 1 \end{bmatrix} \qquad \underset{\text{matrix}}{\text{matrix}} \\
\vec{c} = \begin{bmatrix} c_1 \\ c_2 \\ c_n \\ o \\ o \end{bmatrix} \in \mathbb{R}^m \qquad \vec{c} = \begin{bmatrix} c_1 \\ c_2 \\ c_n \\ c_n \\ c_n \end{bmatrix} \in \mathbb{R}^m \qquad \vec{c} = \begin{bmatrix} c_1 \\ c_2 \\ c_n \\ c_n \\ c_n \end{bmatrix} \in \mathbb{R}^m \qquad \vec{c} = \begin{bmatrix} c_1 \\ c_2 \\ c_n \\ c_n \\ c_n \end{bmatrix} \in \mathbb{R}^m \qquad \vec{c} = \begin{bmatrix} c_1 \\ c_2 \\ c_n \\ c_n \\ c_n \end{bmatrix} \in \mathbb{R}^m \qquad \vec{c} = \begin{bmatrix} c_1 \\ c_2 \\ c_n \\ c_n \\ c_n \end{bmatrix}$$

Can rewrite the LP

Note $\vec{a} = \begin{bmatrix} a_1 \\ b_2 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ Maximize $\vec{c} \cdot \vec{x}$ Subject $(\vec{A}\vec{x} = \vec{b})$ $\vec{x} \ge \vec{0}$ Means (\vec{a}, \vec{b}) ;

For all \vec{a} Means (\vec{a}, \vec{b}) ;

For all \vec{a} Means (\vec{a}, \vec{b}) ;

Means $(\vec{a},$

Terminology: hyperplane in an n-dimensional space is an (n-1)-dimensional plane

· geometry of the feasible region 3 x = Rntm (Ax=1, x>0} of the modified standard form

(equality form) The teasible set is contained in X := 0 $3\vec{x} \mid A \vec{x} = \vec{b}$ on \vec{n} -dim'l subspace

the hyperplanes of anxi+ xn+1=bi

Re call.

Thunk Let ai, az, am e Rn bi, bm e R Let n≥m

Define hyperplanes:
$$L_k = \{\vec{x} \in \mathbb{R}^n | \vec{a}_k \cdot \vec{x} = b_k\}$$

Suppose ai, ..., am are linearly independent.

(i.e.
$$y_1\vec{a_1} + y_2\vec{a_2} + \cdots + y_m\vec{a_m} = \vec{0} \leftarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
)

[mplies $y_1 = y_2 = \cdots = y_m = 0$

Then the intersection LIALZA... OLm

is an (n-m)-dimensional subspace in IR"