RV	PMF/PDF	$\mathbb{E}[X]$	Var(X)	MGF
Bin(n,p)	$\left(\begin{array}{c} n\\k \end{array}\right) p^k (1-p)^{n-k}$	np	np(1-p)	$[(1-p)+pe^t]^n$
$Poiss(\lambda)$	$e^{-\lambda} \frac{\lambda^k}{k!}$	λ	λ	$\exp(\lambda(e^t - 1))$
Geom(p)	$(1-p)^{k-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1-p)e^t}, t < -\ln(1-p)$
$\operatorname{Exp}(\lambda)$	$\begin{cases} \lambda e^{-\lambda t} & t \ge 0\\ 0 & t < 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}, t < \lambda$
$\overline{\mathrm{Gamma}(n,\lambda)}$	$\frac{\beta^n}{(n-1)!}x^{n-1}e^{-\beta x}, x \ge 0$	$\frac{n}{\lambda}$	$\frac{n}{\lambda^2}$	$\left(\frac{\lambda}{\lambda - t}\right)^n, t < \lambda$

Counting process \P $\{N_t\}_{t\geq 0}$ \P $N_t \in \mathbb{N} \cup \{0\}$ \P $0 \leq s \leq t \Rightarrow N_s \leq N_t$

MEMORYLESS $\mathbb{P}(X > s + t \mid X > s) = \mathbb{P}(X > t), \quad s, t \ge 0$

Geom(p), $Exp(\lambda)$ are memoryless.

MINIMUM EXP $\longrightarrow X_i \sim \text{Exp}(\lambda_i)_n \longrightarrow \lambda_i > 0 \longrightarrow M = \min\{X_1, X_2, \dots, X_n\} \longrightarrow N \doteq \sum_{i=1}^n i 1_{\{M = X_i\}}$

$$\boxed{\mathbb{P}(M > x, N = i) = \frac{\lambda_i}{\lambda} e^{-\lambda x}} \quad \lambda \doteq \sum_{i=1}^n \lambda_i \implies \text{Corollary} \implies \boxed{\mathbb{P}(N = i) = \frac{\lambda_i}{\lambda}}$$

 $X_i \stackrel{\perp}{\sim} \operatorname{Exp}(\lambda) \implies S \doteq \sum_{i=1}^n X_i \implies S \sim \operatorname{Gamma}(n,\lambda)$

Poisson process $\blacksquare P(N_t = k) = e^{-\lambda t} \frac{(\lambda t)^k}{L!}$

 $\{N_t\}_{t\geq 0} \sim PP(\lambda) \implies \text{shifted} \implies \boxed{N_t^s \doteq N_{t+s} - N_s} \quad N_t^s \doteq \# \text{ of events that occur in the t time-units after s. } N_t \perp \!\!\!\perp N_t^s$

 $\text{STATIONARY} \stackrel{\text{def}}{=} X_{t_2} - X_{t_1} \stackrel{d}{=} X_{s_2} - X_{s_1} \quad \text{INDEPENDENT} \stackrel{\text{def}}{=} X_{t_1} \perp \!\!\!\perp X_{t_4} - X_{t_3} \quad \{N_t\}_{t \geq 0} \sim PP(\lambda) \iff \text{stationary and indep.}$

$$\mathbb{P}(N_{t_1} = k_1, N_{t_2} = k_2, \dots, N_{t_n} = k_n) = e^{-\lambda t_n} \prod_{i=1}^{n} \frac{(\lambda (t_i - t_{i-1}))^{k_i - k_{i-1}}}{(k_i - k_{i-1})!}$$

SUPERPOSITION $\left\{N_{t}^{1}\right\}_{t\geq0}\sim PP\left(\lambda_{1}\right),\left\{N_{t}^{2}\right\}_{t\geq0}\sim PP\left(\lambda_{2}\right),\ldots,\left\{N_{t}^{n}\right\}_{t\geq0}\sim PP\left(\lambda_{n}\right)$ independent PP $\rightarrow N_{t}\doteq\sum_{i=1}^{n}N_{t}^{i}\rightarrow N_{t}\sim PP(\lambda)$ $\rightarrow \lambda\doteq\sum_{i=1}^{n}\lambda_{i}$

$$N_t \doteq \sum_{i=1}^n N_t^i \longrightarrow N_t \sim PP(\lambda) \longrightarrow \lambda \doteq \sum_{i=1}^n \lambda$$

SPLITTING $\{N_t\} \sim PP(\lambda) \implies r \text{ events } \perp \!\!\! \perp \text{ s.t. } \sum_{i=1}^r p_i = 1$.

 $N_t \doteq \sum_{i=1}^r N_t^i \implies \{N_t^i\} \sim PP(\lambda p_i)$, and the r processes $\{N_t^1\}, \dots, \{N_t^r\}$ are independent.

NON HOMOGENOUS Let $\lambda: \mathbb{R}_+ \to \mathbb{R}_+ \implies \Lambda(t) \doteq \int_0^t \lambda(s) ds < \infty \implies \text{Poisson process with rate function } \lambda(\cdot)$

- (1) $\{N_t\}$ has independent increments, (2) $N_t \sim \text{Poisson}(\Lambda(t))$
- $\{N_t\} \sim NPP(\lambda(\cdot))$
- (1) $\mathbb{P}(N_0 = 0) = 1$, (2) $N_{s+t} N_s \sim \text{Poisson}(\Lambda(s+t) \Lambda(s))$

COMPOUND
$$\Longrightarrow \{N_t\} \sim PP(\lambda) \Longrightarrow \{X_n\}$$
 iid RV that are $\perp \!\!\!\perp \{N_t\} \Longrightarrow Z_t = \sum_{n=1}^{N_t} X_n \Longrightarrow \mathbb{E}(X_n) = \mu$, and $\mathbb{E}(X_n^2) = \theta^2$

 $\mathbb{E}(Z_t) = \lambda \mu t$, $\operatorname{Var}(Z_t) = \lambda \theta^2 t$ t > 0 Wald's Identity

SPATIAL Let $\{N_A\}_{A\subset\mathbb{R}^d}$ be a spatial Poisson process with parameter $\lambda>0$. Then for each $A\subseteq\mathbb{R}^d$, and each $B\subseteq A$,

$$\mathbb{P}\left(N_B = k \mid N_A = n\right) = \binom{n}{k} p^k (1-p)^{n-k} \quad p = \frac{|B|}{|A|}$$

CTMC MARKOV PROPERTY $(X_t)_{t>0} \neq w/$ discrete state space $S \neq w$ is CTMC if

$$P(X_{t+s} = j \mid X_s = i, X_u = x_u, 0 \le u < s) = P(X_{t+s} = j \mid X_s = i) \quad \forall s, t, \ge 0, i, j, x_u \in S, 0 \le u < s$$

TIME-HOMOGENEOUS
$$ightharpoonup P\left(X_{t+s}=j\mid X_s=i\right)=P\left(X_t=j\mid X_0=i\right), \text{ for } s\geq 0$$

C-K EQUATIONS ightharpoonup CTMC $(X_t)_{t>0}$ with transition function P(t),

$$\mathbf{P}(s+t) = \mathbf{P}(s)\mathbf{P}(t),$$

for $s, t \geq 0$. That is,

$$P_{ij}(s+t) = [P(s)P(t)]_{ij} = \sum_{k} P_{ik}(s)P_{kj}(t), \text{ for states } i, j, \text{ and } s, t \ge 0.$$

PP ARE CTMCS $\{N_t\} \sim PP(\lambda)$ is a CMTC on $S = \{0, 1, 2, ...\}$ with transition function $P_{x,y}(t) = e^{-\lambda t} \frac{(\lambda t)^{y-x}}{(y-x)!}$

HOLDING TIMES The length of time that a CTMC started in i stays in i before transitioning to a new state $\longrightarrow T_i \sim \text{Exp}(q_i)$

HOLDING TIME
$$q_i = \sum_k q_{ik}$$
 \blacktriangleright TRANSITION $p_{ij} = \frac{q_{ij}}{\sum_k q_{ik}} = \frac{q_{ij}}{q_i}$ \blacktriangleright GENERATOR $q_{ij} = q_i p_{ij}$

$$\mathbb{P}\left(X_{\text{holding time}} = \text{ new } S \mid X_0 = \text{old } S\right) = \frac{Q_{\text{old,new}}}{\left|Q_{\text{old,old}}\right|}$$

If $\{X_t\}$ is a stochastic process that has the stationary increments property and the independent increments property, then it is time homogeneous and has the Markov property.

If $\{X_t\}$ is a stochastic process that has the independent increments property, then it also has the Markov property.

If $\{X_t\}$ has the Markov property, then it does not necessarily have the independent increments property.

If $\{X_t\}$ has the Markov property and the stationary increments property, then it is not necessarily time-homogeneous.

If $\{X_t\}$ has the Markov property and is time-homogeneous, it does not necessarily have the stationary increments property.

law of total expectation
$$E(Y) = \sum_{i=1}^{k} E\left(Y \mid A_i\right) P\left(A_i\right)$$
 joint $E(Y) = \sum_{x} E(Y \mid X = x) P(X = x)$ special cases $P(B) = \sum_{i=1}^{\infty} P\left(B \mid A_i\right) P\left(A_i\right)$ $E[Y] = \sum_{i=1}^{\infty} E\left[Y \mid X = x_i\right] P\left(X = x_i\right)$

CONDITIONAL EXPECTATION LINEARITY
$$\mathbb{E}[a \cdot Y + b \cdot Z \mid X = x] = a \cdot \mathbb{E}[Y \mid X = x] + b \cdot E[Z \mid X = x]$$

INDEPENDENT $\mathbb{E}[Y \mid X = x] = \mathbb{E}[Y] \spadesuit$ Taking out $\mathbb{E}[Y \mid X = x] = \mathbb{E}[g(X) \mid X = x] = \mathbb{E}[g(x) \mid X = x] = g(x)$

$$\text{RV} \implies \text{Linearity } \mathbb{E}[a \cdot Y + b \cdot Z \mid X] = a \cdot \mathbb{E}[Y \mid X] + b \cdot \mathbb{E}[Z \mid X]$$

INDEPENDENCE $\mathbb{E}[Y \mid X] = \mathbb{E}[Y] \blacklozenge \text{Taking out } \mathbb{E}[g(X)Y \mid X] = g(X)\mathbb{E}[Y \mid X]$

TO A DIAMOND THE $V_{\rm C}(V \mid V)$. TE $V_{\rm C}^{\rm C}(V \mid V)$.

CONDITIONAL VARIANCE $\operatorname{Par}(Y \mid X) = \mathbb{E}[Y^2 \mid X] - (\mathbb{E}[Y \mid X])^2$ TOTAL VARIANCE $\operatorname{Par}(Y) = \mathbb{E}[\operatorname{Var}(Y \mid X)] + \operatorname{Var}(\mathbb{E}[Y \mid X])$

$$\text{TOTAL EXPECTATION} \stackrel{\longrightarrow}{\longrightarrow} \mathbb{E}[\mathbb{E}[X \mid Y]] = \mathbb{E}[X] \ \mathbb{E}[\underbrace{\mathbb{E}[X \mid Y]]}_{=h(Y)} = \left\{ \begin{array}{c} \sum_{y} \mathbb{E}[X \mid Y = y] \cdot \mathbb{P}[Y = y] & Y \text{ DISCRETE} \\ \int_{-\infty}^{\infty} \mathbb{E}[X \mid Y = y] \cdot f_{Y}(y) dy & Y \text{ CNTS} \end{array} \right.$$

BAYES
$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A \mid B)P(B) + P(A \mid B^c)P(B^c)} \begin{bmatrix} \frac{P(A \mid B_i)P(B_i)}{\sum_{k=1}^{n} P(A \mid B_k)P(B_k)} \end{bmatrix}$$