Contrast Based Autofocus

Cristóvão Diniz Trevisan

Focal length

 The distance to focus depends on the distance between the object and camera (u)

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

Types of Autofocus

- Active AF:
 - Sensor to measure distance (laser, infrared, ultrasonic)
- Passive AF:
 - Phase Detection (needs hardware extra sensor):

- Contrast Detection (only computational!)
- Hybrid AF:
 - Complex, using both passive and active AF, may also detect objects (eg. face detection)

Contrast Based Autofocus

• 5 tries:

- Standard deviation of intensity
- Standard deviation of intensity with noise reduction
- Standard deviation of histogram
- Standard deviation along axes
- Contrast Measure based on Squared Laplacian (CMLS)

CMLS

Square Laplacian

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \longrightarrow L = \frac{1}{J * K} \sum_{x=1}^J \sum_{y=1}^K G(x, y)^2$$

$$G(x,y) = \sum_{i=x-1}^{x+1} |I(x,y) - I(i,y)| + \sum_{j=y-1}^{y+1} |I(x,y) - I(x,j)|$$

Considering noise

$$F(x,y) = \frac{1}{J*K} \sum_{x=1}^{J} \sum_{y=1}^{K} G(x,y) (\sqrt[n]{G(x,y)+1} - 1)$$

$$n = \begin{cases} 1 & m \le T_1 \\ 2 & T_1 < m < T_2 \\ 3 & m \ge T_2 \end{cases}$$

References

- Xin Xu, Yinglin Wang, Jinshan Tang, Xiaolong Zhang and Xiaoming Liu. Robust
 Automatic Focus Algorithm for Low Contrast Images Using a New Contrast
 Measure. http://www.mdpi.com/1424-8220/11/9/8281/pdf [access 12/09/2015]
- Laplace Operator. https://en.wikipedia.org/wiki/Laplace_operator [access 12/09/2015]
- Autofocus. https://en.wikipedia.org/wiki/Autofocus [access 12/09/2015]
- A lot of discussion forums ...