Algebraic Logic

- ► Logic: strings, syntax/semantics, axioms, rules.
- ► Algebra: set, functions, equations.

Group
$$\mathcal{G} = (G, e, ^{-1}, \circ)$$

G is a set,
$$e \in G$$
, $e = G$. Sociative $e = G$ if for all $e = G$.

Associative $e = G$ if $e = G$ if for all $e = G$.

Inverse, $e = G$ is a group if for all $e = G$.

Inverse, $e = G$ is a group if for all $e = G$.

Inverse, $e = G$ is a group if for all $e = G$.

Groups, examples

- ▶ $(\mathbb{Z}, 0, -, +)$
- $(\mathbb{Q} \setminus \{0\}, 1, (q \mapsto \frac{1}{q}), \times)$
- $(GL(n,\mathbb{R}),\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}, -1, \circ)$
- $(\{0,1,\ldots,n-1\},0,-n,+n)$ (integers, modulo n)
- ▶ $\mathcal{P}_n = (Perms_n, Id_n, ^{-1}, \circ)$, permutations of n elements.

Every group is isomorphic to a group of permutations.

Every group is isomorphic to a group of permutations.

Proof. Let $\mathcal{G}=(G,e,{}^{-1},\circ)$ be any group. Define $\theta:G\to\mathcal{P}_G$ by

$$\theta(g) = \{(h, h \circ g) : h \in G\}$$

 \triangleright $\theta(g)$ is a permutation of G.

Every group is isomorphic to a group of permutations.

Proof. Let $\mathcal{G}=(\mathit{G},e,{}^{-1},\circ)$ be any group. Define $\theta:\mathit{G}\to\mathcal{P}_{\mathit{G}}$ by

$$\theta(g) = \{(h, h \circ g) : h \in G\}$$

- \triangleright $\theta(g)$ is a permutation of G.
- $(\theta(g) = \theta(h)) \rightarrow (g = h)$ (injective)

Every group is isomorphic to a group of permutations.

Proof. Let $\mathcal{G}=(G,e,^{-1},\circ)$ be any group. Define $\theta:G\to\mathcal{P}_G$ by

$$\theta(g) = \{(h, h \circ g) : h \in G\}$$

- $\triangleright \theta(g)$ is a permutation of G.
- $(\theta(g) = \theta(h)) \rightarrow (g = h)$ (injective)
- lacksquare $heta(e) = Id_G, \ \ heta(g^{-1}) = (heta(g))^{-1} \ ext{and} \ \ heta(g \circ h) = heta(g) \circ heta(h)$

Boolean Algebra

Boolean Algebra Axioms for $\mathcal{B} = (B, 0, 1, +, \cdot, -)$

Axioms for +.

$$a+(b+c)=(a+b)+c$$
 associativity $a+b=b+a$ commutativity $a+a=a$ idempotency $0+a=a$ zero law

Axioms for -

$$a - a = a$$
 $a + \overline{a} = 1$
 $a + \overline{a} = 1$

Distribution law, and Absorption law

$$a \cdot (b+c) = a \cdot b + a \cdot c, \quad a+(a \cdot b) = a$$

Any $(B, 0, 1, +, \cdot, -)$ obeying these equations is a boolean algebra.

Example of Boolean Algebra

Boolean Algebra, Example 2

Take a non-empty set X.

$$\wp(X) = \{\text{all subsets of } X\}$$

So

$$S \in \wp(X) \iff S \subseteq X$$

Then

$$\mathcal{B}(X) = (\wp(X), \emptyset, X, \cup, \cap, \setminus)$$

is a boolean algebra.

Abstract $0, 1, +, \cdot$ are replaced by concrete \emptyset, X, \cup, \cap and -a is replaced by $X \setminus a$.

A boolean set algebra is any subalgebra of $\mathcal{B}(X)$.

Representation

Let $\mathcal{B} = (B, 0, 1, +, \cdot, -)$ be a boolean algebra. An injection

$$\theta: B \to \wp(X)$$

for some base set X is called a representation if

- $\theta(0) = \emptyset$
- $\theta(1) = X$
- $\bullet \ \theta(a+b) = \theta(a) \cup \theta(b)$
- $\bullet \ \theta(a \cdot b) = \theta(a) \cap \theta(b)$
- $\bullet \ \theta(-b) = X \setminus \theta(b).$

Representation

Let $\mathcal{B} = (B, 0, 1, +, \cdot, -)$ be a boolean algebra. An injection

$$\theta: B \to \wp(X)$$

for some base set X is called a representation if

- $\theta(0) = \emptyset$
- $\theta(1) = X$
- $\theta(a+b) = \theta(a) \cup \theta(b)$
- $\theta(a \cdot b) = \theta(a) \cap \theta(b)$
- $\theta(-b) = X \setminus \theta(b).$

So θ is an isomorphism from $\mathcal B$ into some set algebra $(\wp(X),\emptyset,X,\cup,\cap,\setminus)$.

Order ≤

Write $a \le b \iff a + b = b$.

Questions:

1. in a BA, is \leq (a) reflexive? (b) symmetric? (c) transitive?

Order ≤

Write $a \le b \iff a + b = b$.

Questions:

- 1. in a BA, is \leq (a) reflexive? (b) symmetric? (c) transitive?
- 2. in a boolean set algebra, what does $a \le b$ mean?

$Order \leq$

Write $a \le b \iff a + b = b$.

Questions:

- 1. in a BA, is \leq (a) reflexive? (b) symmetric? (c) transitive?
- 2. in a boolean set algebra, what does $a \le b$ mean?

Write $a < b \iff (a \le b \land b \not\le a)$.

▶ An atom $a \in \mathcal{B}$ is a minimal non-zero element of \mathcal{B} ,

An atom $a \in \mathcal{B}$ is a minimal non-zero element of \mathcal{B} , i.e. 0 < a and there is no $b \in \mathcal{B}$ with 0 < b < a.

- An atom $a \in \mathcal{B}$ is a minimal non-zero element of \mathcal{B} , i.e. 0 < a and there is no $b \in \mathcal{B}$ with 0 < b < a.
- ▶ In the boolean algebra <u>freely generated</u> by $\{a, b, c\}$ there are eight atoms $a \cdot b \cdot c$, $a \cdot b \cdot \bar{c}$, ..., $\bar{a} \cdot \bar{b} \cdot \bar{c}$ (here \bar{a} denotes (-a))
- ▶ Write $At(\mathcal{B})$ for the set of all atoms of \mathcal{B} .

- An atom $a \in \mathcal{B}$ is a minimal non-zero element of \mathcal{B} , i.e. 0 < a and there is no $b \in \mathcal{B}$ with 0 < b < a.
- ▶ In the boolean algebra <u>freely generated</u> by $\{a, b, c\}$ there are eight atoms $a \cdot b \cdot c$, $a \cdot b \cdot \bar{c}$, ..., $\bar{a} \cdot \bar{b} \cdot \bar{c}$ (here \bar{a} denotes (-a))
- \blacktriangleright Write $At(\mathcal{B})$ for the set of all atoms of \mathcal{B} .
- A boolean algebra \mathcal{B} is <u>atomic</u> if every non-zero element of \mathcal{B} is above an atom.

- An atom $a \in \mathcal{B}$ is a minimal non-zero element of \mathcal{B} , i.e. 0 < a and there is no $b \in \mathcal{B}$ with 0 < b < a.
- ▶ In the boolean algebra <u>freely generated</u> by $\{a, b, c\}$ there are eight atoms $a \cdot b \cdot c$, $a \cdot b \cdot \bar{c}$, ..., $\bar{a} \cdot \bar{b} \cdot \bar{c}$ (here \bar{a} denotes (-a))
- \blacktriangleright Write $At(\mathcal{B})$ for the set of all atoms of \mathcal{B} .
- A boolean algebra \mathcal{B} is <u>atomic</u> if every non-zero element of \mathcal{B} is above an atom.
- Every finite boolean algebra is atomic.

Atoms, example

Atoms, example

8 Atoms

 $1 = A \cdot B \cdot C$ $2 = \bar{A} \cdot B \cdot C$

 $8 = \bar{A} \cdot \bar{B} \cdot \bar{C}$

Atoms, example

8 Atoms
$$1 = A \cdot B \cdot C$$

$$2 = \bar{A} \cdot B \cdot C$$
 :

$$8 = \bar{A} \cdot \bar{B} \cdot \bar{C}$$

$$A = 1 + 4 + 5 + 6$$

$$B = 1 + 2 + 3 + 4$$

$$C = 1 + 2 + 6 + 7$$

BA has 2⁸ elements

All finite boolean algebras are atomic

But there are infinite boolean algebras with no atoms at all.

Suprema, infima

- ▶ Let $S \subseteq \mathcal{B}, b \in \mathcal{B}$.
- ▶ b is an upper bound of S if for all $s \in S$ we have $s \le b$. If so, write S < b.
- ▶ b is least upper bound of S if $S \le b$ and for all $u \in \mathcal{B}$ if $S \le u$ then $b \le u$. If so, b is unique and we write $b = \sum S$.
- ▶ If S has no least upper bound $\sum S$ is undefined,
- Similarly $\prod S$ is greatest lower bound if it exists, undefined otherwise.

An atomless boolean algebra

Consider $\wp(\mathbb{N})$. For $S, T \subseteq \mathbb{N}$, let $S \nabla T = (S \setminus T) \cup (T \setminus S)$, the symmetric difference. Define an equivalence relation \sim by

$$S \sim T \iff (S \nabla T)$$
 is finite

Write $[S] = \{ T \subseteq \mathbb{N} : T \sim S \}.$

Q: which sets are in $[\emptyset]$? Which are in $[\mathbb{N}]$?

Write \mathbb{N}/\sim for the set of all equivalence classes. Consider

$$\mathcal{B} = (\wp(\mathbb{N})/\sim, [\emptyset], [\mathbb{N}], +, \cdot, -)$$

where $[S] + [T] = [S \cup T], -[S] = [\mathbb{N} \setminus S].$

 ${\cal B}$ is an atomless BA.

Atomic Boolean Algebra

If $\mathcal B$ is an atomic boolean algebra then for any $b \in \mathcal B$ we have

$$b = \sum \{\alpha \in At(\mathcal{B}) : \alpha \leq b\}.$$

Every atomic boolean algebra is representable

Let \mathcal{B} be a boolean algebra, atomic.

The map
$$\theta:\mathcal{B} o\wp(At(\mathcal{B}))$$
 defined by

$$\theta(b) = \{\alpha \in At(\mathcal{B}) : \alpha \leq b\}$$

is a representation of \mathcal{B} over $At(\mathcal{B})$.

Proof that θ is injective

Let $b \neq c \in \mathcal{B}$. Either $b \nleq c$ or $c \nleq b$, assume the former: $b + c \neq c$.

Proof that θ is injective

Let $b \neq c \in \mathcal{B}$. Either $b \nleq c$ or $c \nleq b$, assume the former: $b + c \neq c$.

Claim: $b \cdot \bar{c} \neq 0$. For contradiction, suppose $b \cdot \bar{c} = 0$.

$$b \cdot \bar{c} = 0 \Rightarrow b + c = (b \cdot 1) + c$$

$$= ((b \cdot c) + (b \cdot \bar{c})) + c$$

$$= (b \cdot c + 0) + c = (b \cdot c) + c = c$$

by BA axioms (exercise: which axioms?), contrary to assumption.

Proof that θ is injective

Let $b \neq c \in \mathcal{B}$. Either $b \nleq c$ or $c \nleq b$, assume the former: $b + c \neq c$.

Claim: $b \cdot \bar{c} \neq 0$. For contradiction, suppose $b \cdot \bar{c} = 0$.

$$b \cdot \bar{c} = 0 \Rightarrow b + c = (b \cdot 1) + c$$

$$= ((b \cdot c) + (b \cdot \bar{c})) + c$$

$$= (b \cdot c + 0) + c = (b \cdot c) + c = c$$

by BA axioms (exercise: which axioms?), contrary to assumption. So $b \cdot \bar{c} \neq 0$ hence there is an atom $\alpha \leq b \cdot \bar{c}$, so $\alpha \leq b$, $\alpha \nleq c$. Hence $\alpha \in \theta(b) \setminus \theta(c)$, so $\theta(b) \neq \theta(c)$.

• Preserves constants: $\theta(0) = \emptyset$, $\theta(1) = At(\mathcal{B})$

- ▶ Preserves constants: $\theta(0) = \emptyset$, $\theta(1) = At(\mathcal{B})$
- ▶ Preserves binary operations: $\theta(a+b) = \theta(a) \cup \theta(b), \ \theta(a \cdot b) = \theta(a) \cap \theta(b)$

- ▶ Preserves constants: $\theta(0) = \emptyset$, $\theta(1) = At(\mathcal{B})$
- Preserves binary operations: $\theta(a+b) = \theta(a) \cup \theta(b), \ \theta(a \cdot b) = \theta(a) \cap \theta(b)$
- ▶ Preserves negation: $\theta(-a) = At(\mathcal{B}) \setminus \theta(a)$.

Stone's Theorem (1936)

Every boolean algebra (finite or not) is isomorphic to a boolean set algebra.

Stone's Theorem (1936)

Every boolean algebra (finite or not) is isomorphic to a boolean set algebra.

To make the argument work, (even when the boolean algebra is not atomic) Stone used ultrafilters instead of atoms.

Sums of Products

Boolean Term::= $Var|0|1|(s+t)|(s\cdot t)|-s$. E.g. $-((x+y)\cdot \bar{z})$.

Every boolean term is equal to a sum of products. Let t be a boolean term. Three alternative methods of finding equivalent sum of products.

- 1. Treat t as if it were a propositional formula (replacing $+, \cdot, -$ by \vee, \wedge, \neg). Use tableau to find a DNF equivalent. This is a sum of products.
- 2. Make a truth table. Then *t* equals the sum of the products of variables/negated variables in rows that evaluate to 1.
- 3. Drive down negations. Replace

$$-(a+b)$$
 by $\bar{a} \cdot \bar{b}$
 $-(a \cdot b)$ by $\bar{a} + \bar{b}$
 $--a$ by a

If \cdot is above + then use distribution law. Replace

$$(a+b)\cdot(c+d)$$
 by $a\cdot c+a\cdot d+b\cdot c+b\cdot d$

Boolean Algebra, Summary

Boolean Algebra is defined by a few axioms.

Every Boolean Algebra is representable as a concrete subalgebra of a boolean set algebra ($\wp(X), \emptyset, X, \cup, \cap, \setminus$).

Binary Relations

$$a \subseteq X \times X$$

a is a binary relation over base X.

$$Rel(X) = \{a : a \subseteq X \times X\} = \wp(X \times X)$$

Note

$$(Rel(X), \emptyset, X \times X, \cup, \cap, (X \times X) \setminus _)$$

is a boolean set algebra.

Identity relation $Id_X = \{(x, x) : x \in X\}.$

Converse operator $a^{\smile} = \{(x, y) : (y, x) \in a\}.$

Composition operator denoted ;,

$$a;b=\{(x,y):\exists z((x,z)\in a\wedge(z,y)\in b)\}$$

Proper Relation Algebra

A set of relations $A \subseteq Rel(X)$ is called a <u>proper relation algebra</u> if

- ▶ A contains a biggest relation $U \in Rel(X)$ and a smallest relation \emptyset , and $(A, \emptyset, U, \cup, \cap, U \setminus _)$ is a boolean set algebra, and
- ▶ A includes Id_X , and if $a, b \in A$ then $a^{\smile} \in A$ and $a; b \in A$.

Abstract Relation Algebra

A relation algebra ${\cal A}$ has the form

$$A = (A, 0, 1, +, \cdot, -, 1', {}^{\smile}, ;)$$

(constants 0,1,1' unary operations -, $\check{}$, binary operations $+,\cdot,$;) satisfying these axioms

- 1. $(A, 0, 1, +, \cdot, -)$ is a boolean algebra
- 2. (A, 1', y) is a monoid (; is associative and 1'; a = a; 1' = a)
- 3. Additivity: (a + b); (c + d) = a; c + a; d + b; c + b; d, $(a + b)^{\smile} = a^{\smile} + b^{\smile}$
- 4. Zero: $0^{\smile} = 0$; a = a; 0 = 0 (all $a \in A$)
- 5. Convolution: $(a^{\smile})^{\smile} = a$, $(a; b)^{\smile} = b^{\smile}$; a^{\smile}
- 6. Triangle law:

$$(a; b) \cdot c^{\smile} = 0 \iff (b; c) \cdot a^{\smile} = 0$$

Representation

An isomorphism θ from abstract $\mathcal{A}=(A,0,1,+,\cdot,-,1',\stackrel{\smile}{,};)$ into a proper relation algebra Rel(X) (some non-empty set X) is called a representation of \mathcal{A} .

RRA denotes the class of all representable relation algebras. I.e. the closure under isomorphism of the class of proper relation algebras.

RA example \mathcal{P}

Three atoms 1', <, > (so 8 elements) Identity 1' Converses $< \smile = >$, $> \smile = <$, $(1') \smile = 1'$, and composition defined for atoms by

Converse and composition defined on sums of atoms by additivity.

Representation of \mathcal{P}

Base \mathbb{Q} , the rational numbers.

Representation θ

$$\theta(1') = Id_{\mathbb{Q}} = \{(q, q) : q \in \mathbb{Q}\}$$

$$\theta(<) = \{(q, r) : q < r, q, r \in \mathbb{Q}\}$$

$$\theta(>) = \{(q, r) : q > r, q, r \in \mathbb{Q}\}$$

${\cal P}$ has no representation over a finite base

Let $\theta : \mathcal{P} \to Rel(X)$ be a representation, we have to prove that X is infinite.

- ▶ There are $x, y \in X$ where $(x, y) \in <^{\theta}$ (since θ is injective)
- $(x,y) \in <^{\theta}$ implies $(x,y) \notin (1')^{\theta}$ hence $x \neq y$ (since $< \cdot 1' = 0$)
- ▶ There is z such that $(x,z) \in <^{\theta}$ and $(z,y) \in <^{\theta}$ (since <=<:<)
- ► For any $n \in \mathbb{N}$ there are z_0, z_1, \dots, z_{n-1} where $(x, z_0), (z_i, z_{i+1}), (z_{n-1}, y) \in <^{\theta}$ (for i < n-1), all distinct
- So X is infinite.

Monk Algebra Mon

Atoms: 1', r, b, self-converse.

Composition:

Monk Algebra Mon

Atoms: 1', r, b, self-converse.

Composition:

Forbidden:

Representation of Mon

Mon has no representation with six or more points

Reason:

Mon has no representation with six or more points

Reason:

▶ Between six points there are 15 edges.

Mon has no representation with six or more points

Reason:

- Between six points there are 15 edges.
- ▶ If all edges are coloured red or blue then there is a monochrome triangle (forbidden).

Representations of Mon are base isomorphic to each other

Representations of Mon are base isomorphic to each other

Monk Algebra Mon'

Atoms: 1', r_1 , r_2 , b, all self-converse.

Composition:

;	1'	<i>r</i> ₁	r ₂	b
1'	1'	<i>r</i> ₁	r ₂	Ь
<i>r</i> ₁	<i>r</i> ₁	(1'+b)	b	$r_1 + r_2 + b$
<i>r</i> ₂	<i>r</i> ₂	b		$r_1 + r_2 + b$
b	Ь	(r_1+r_2+b)	(r_1+r_2+b)	$(1'+\textcolor{red}{r_1}+\textcolor{red}{r_2})$

Monk Algebra Mon'

Atoms: 1', r_1 , r_2 , b, all self-converse.

Composition:

;	1'	<i>r</i> ₁	r ₂	Ь
1'	1'	<i>r</i> ₁	r ₂	Ь
<i>r</i> ₁	<i>r</i> ₁	(1'+b)	b	$r_1 + r_2 + b$
<i>r</i> ₂	<i>r</i> ₂	b		$r_1 + r_2 + b$
Ь	Ь	(r_1+r_2+b)	(r_1+r_2+b)	$(1'+r_1+r_2)$

Forbidden:

Mon' has no representation

Hence $Mon' \in RA \setminus RRA$, and so $RRA \subsetneq RA$.

Problem: is a finite RA \mathcal{A} representable?

▶ This problem is undecidable.

Problem: is a finite RA A representable?

- ▶ This problem is undecidable.
- We devise a two-player game, to test representability of atomic RAs.

Characterising representability by games

Two players Abelarde and Héloïse written \forall , \exists . Fix some finite RA \mathcal{A} . \exists claims that \mathcal{A} is representable, \forall tries to show that it is not.

 \exists has a winning strategy in $G(\mathcal{A}) \iff \mathcal{A}$ is representable

Networks

Let At be the set of atoms of an atomic relation algebra A. Let $G = (X, X \times X)$ be the complete directed graph with nodes X. A map $N : (X \times X) \to At$ is called a network if

$$N(x,y) \le 1' \iff (x = y)$$

 $N(y,x) = (N(x,y))^{\smile}$
 $N(x,y); N(y,z) \ge N(x,z)$

A play of the game $G_n(A)$

There are n rounds. If n is finite, then \forall and \exists play a sequence of networks

$$N_0 \subseteq N_1 \subseteq N_n$$

A play of $G_{\omega}(A)$ is

$$N_0 \subseteq N_1 \subseteq \cdots$$

Initial round of $G_n(A)$

 \forall picks atom a_0

Initial round of $G_n(A)$

∀ picks atom a₀

∃ completes labelling (forced)

Later round of $G_n(A)$, current network N_k

 \forall picks $x, y \in N$ and atoms a, b such that $a; b \geq N_k(x, y)$

Later round of $G_n(A)$, current network N_k

 \exists chooses atoms c_0, c_1, \ldots to complete the labelling of N_{k+1}

Who wins?

In any round, if \exists cannot play, or if she plays a labelled graph that fails to be an atomic network, then \forall wins.

If \exists plays a legitimate atomic network in each round then she wins.

Characterising representability for finite RAs, by games

Theorem

Let A be a finite relation algebra.

- 1. $A \in RRA$ iff \exists has a winning strategy in $G_{\omega}(A)$.
- 2. \exists has a winning strategy in $G_{\omega}(A)$ iff she has one in $G_n(A)$ for all finite n.
- 3. One can construct first-order sentences σ_n for $n < \omega$ such that $\mathcal{A} \models \sigma_n$ iff \exists has a winning strategy in $G_n(\mathcal{A})$.

Conclude that for a finite relation algebra A,

$$A \in RRA \iff A \models \{\sigma_n : n \in \mathbb{N}\}.$$

For infinite atomic relation algebras ${\cal A}$

$$\mathcal{A} \models \{\sigma_n : n \in \mathbb{N}\} \Rightarrow (\mathcal{A} \in RRA)$$

Ramsay Numbers

Let K_n be the complete irreflexive undirected graph on n nodes $nodes = \{0, 1, ..., n-1\}$.

$$E(K_n) = \{\{x,y\} : x \neq y \in nodes\}.$$

Given n colours $Col_k = \{C_0, C_1, \ldots, C_{k-1}\}$, a k colour edge colouring of K_n is a map $f: E(K_n) \to Col_k$ such that for all $x, y, z \in nodes$, we have $|\{f\{x, y\}, f\{x, z\}, f\{y, z\}\}| > 1$.

n	M(n)
0	2
1	3
2	6
3	17
:	
n	$2+n\cdot (M(n-1)-1)$

 K_{M_n} has no n colour edge colouring.

$Mon_n : n > 0$

- ightharpoonup n+1 atoms $At = \{1', a_i : i < n\}$ all self-converse.
- ▶ 1'; x = x; 1' = x (all $x \in At$)

$$a_i; a_j = \begin{cases} -a_i &= 1' + \sum_{j \neq i < n} a_j & \text{if } i = j \\ -1' &= \sum_{k < n} a_k & \text{if } i \neq j < n \end{cases}$$

► Forbid

$$a_i$$
 a_i
 a_i
 \vdots
 i

▶ No representation can have M(n) points or more.

Mon'_n is not representable

Split atom a_0 into M_n parts, so atoms of Mon'_n are $\{a_0^i: i < M_n\} \cup \{1', a_i: 1 \le i < n\}.$

The maximum possible size of a representation of Mon'_n is at most M(n)-1, not big enough to witness all the atoms. Hence Mon'_n has no representation at all.

\exists has a w.s. in $G_n(Mon'_n)$

 \forall picks $x, y \in N$ and atoms a, b such that $a; b \ge N_k(x, y)$

Note: $|N_k| \leq n$

 \exists chooses atoms c_0, c_1, \ldots with distinct colours (distinct from colours of a, b too)

► A finite set of axioms is equivalent to a single axiom (the conjunction of all of them).

- ► A finite set of axioms is equivalent to a single axiom (the conjunction of all of them).
- ▶ So suppose, for contradiction, that $A \models \phi \iff A \in RRA$.

- ▶ A finite set of axioms is equivalent to a single axiom (the conjunction of all of them).
- ▶ So suppose, for contradiction, that $\mathcal{A} \models \phi \iff \mathcal{A} \in RRA$.
- ► Take the theory

$$\Sigma = \{\neg \phi\} \cup \{\sigma_i : i \in \mathbb{N}\} \cup \{\forall x (x \neq 0 \to \exists y \in At(y \leq x))\}$$

- ► A finite set of axioms is equivalent to a single axiom (the conjunction of all of them).
- ▶ So suppose, for contradiction, that $\mathcal{A} \models \phi \iff \mathcal{A} \in RRA$.
- ► Take the theory

$$\Sigma = \{\neg \phi\} \cup \{\sigma_i : i \in \mathbb{N}\} \cup \{\forall x (x \neq 0 \rightarrow \exists y \in At(y \leq x))\}$$

▶ A finite subset *S* is contained in $\{\neg \phi\} \cup \{\sigma_i : i < n\} \cup \{\forall x (x \neq 0 \rightarrow \exists y \in At(y \leq x))\}$ (some finite *n*).

- ► A finite set of axioms is equivalent to a single axiom (the conjunction of all of them).
- ▶ So suppose, for contradiction, that $A \models \phi \iff A \in RRA$.
- ► Take the theory

$$\Sigma = \{\neg \phi\} \cup \{\sigma_i : i \in \mathbb{N}\} \cup \{\forall x (x \neq 0 \rightarrow \exists y \in At(y \leq x))\}$$

- ▶ A finite subset *S* is contained in $\{\neg \phi\} \cup \{\sigma_i : i < n\} \cup \{\forall x (x \neq 0 \rightarrow \exists y \in At(y \leq x))\}$ (some finite *n*).
- ▶ Mon'_n is atomic, \exists has a w.s. in $G_n(Mon'_n)$ but $Mon'_n \notin RRA$, so $Mon'_n \models S$.

- ► A finite set of axioms is equivalent to a single axiom (the conjunction of all of them).
- ▶ So suppose, for contradiction, that $A \models \phi \iff A \in RRA$.
- ► Take the theory

$$\Sigma = \{\neg \phi\} \cup \{\sigma_i : i \in \mathbb{N}\} \cup \{\forall x (x \neq 0 \rightarrow \exists y \in At(y \leq x))\}$$

- ▶ A finite subset *S* is contained in $\{\neg \phi\} \cup \{\sigma_i : i < n\} \cup \{\forall x (x \neq 0 \rightarrow \exists y \in At(y \leq x))\}$ (some finite *n*).
- ▶ Mon'_n is atomic, \exists has a w.s. in $G_n(Mon'_n)$ but $Mon'_n \notin RRA$, so $Mon'_n \models S$.
- ▶ By compactness, Σ has a model A.

- ▶ A finite set of axioms is equivalent to a single axiom (the conjunction of all of them).
- ▶ So suppose, for contradiction, that $\mathcal{A} \models \phi \iff \mathcal{A} \in RRA$.
- ► Take the theory

$$\Sigma = \{\neg \phi\} \cup \{\sigma_i : i \in \mathbb{N}\} \cup \{\forall x (x \neq 0 \to \exists y \in At(y \leq x))\}$$

- ▶ A finite subset *S* is contained in $\{\neg \phi\} \cup \{\sigma_i : i < n\} \cup \{\forall x (x \neq 0 \rightarrow \exists y \in At(y \leq x))\}$ (some finite *n*).
- ▶ Mon'_n is atomic, \exists has a w.s. in $G_n(Mon'_n)$ but $Mon'_n \notin RRA$, so $Mon'_n \models S$.
- **b** By compactness, Σ has a model \mathcal{A} .
- ▶ But $\mathcal{A} \models \forall x (x \neq 0 \rightarrow \exists y (y \in At \land y \leq x))$ implies \mathcal{A} is atomic, $\mathcal{A} \models \neg \phi$ implies \mathcal{A} is not representable, yet $\mathcal{A} \models \{\sigma_i : i \in \mathbb{N}\}$ implies that it is representable.

- ► A finite set of axioms is equivalent to a single axiom (the conjunction of all of them).
- ▶ So suppose, for contradiction, that $A \models \phi \iff A \in RRA$.
- ► Take the theory

$$\Sigma = \{\neg \phi\} \cup \{\sigma_i : i \in \mathbb{N}\} \cup \{\forall x (x \neq 0 \to \exists y \in At(y \leq x))\}$$

- ▶ A finite subset *S* is contained in $\{\neg \phi\} \cup \{\sigma_i : i < n\} \cup \{\forall x (x \neq 0 \rightarrow \exists y \in At(y \leq x))\}$ (some finite *n*).
- ▶ Mon'_n is atomic, \exists has a w.s. in $G_n(Mon'_n)$ but $Mon'_n \notin RRA$, so $Mon'_n \models S$.
- ▶ By compactness, Σ has a model A.
- ▶ But $\mathcal{A} \models \forall x (x \neq 0 \rightarrow \exists y (y \in At \land y \leq x))$ implies \mathcal{A} is atomic, $\mathcal{A} \models \neg \phi$ implies \mathcal{A} is not representable, yet $\mathcal{A} \models \{\sigma_i : i \in \mathbb{N}\}$ implies that it is representable.
- ▶ Hence *RRA* cannot be defined by finitely many axioms.