# Formale Grundlagen der Informatik I 5. Übungsblatt



Fachbereich Mathematik
Prof. Dr. Ulrich Kohlenbach
Davorin Lešnik, Daniel Günzel, Daniel Körnlein

SoSe 2014 21. Mai 2014

#### Gruppenübung

**Aufgabe G13** (Pumping-Lemma und Abschlusseigenschaften der Typ-2 Sprachklasse) Sei  $\Sigma := \{a, b\}$ . Beweisen oder widerlegen Sie die folgenden Aussagen.

- (a) Die Sprache  $L_1 := \{t \ t \ | \ t \in \Sigma^*\}$  ist kontextfrei. Bemerkung: Zum Vergleich: Die Sprache der Palindrome,  $L_0 := \{t \ t^{-1} \ | \ t \in \Sigma^*\}$ , ist kontextfrei.
- (b) Die Sprache  $L_2 := \{s \ t \ s^{-1} \mid s, t \in \Sigma^*, \ |s| = |t| \}$  ist kontextfrei.
- (c) Der Schnitt einer kontextfreien mit einer regulären Sprache ist wieder kontextfrei.
- (d) Der Schnitt einer kontextsensitiven mit einer regulären Sprache ist kontextfrei.

#### Lösung:

- (a)  $L_1$  ist nicht kontextfrei. Beweis durch Pumping-Lemma mit Wörtern  $x_n := a^n b^n a^n b^n$ .
- (b) Auch  $L_2$  ist nicht kontextfrei. Der Beweis kann wieder mittels Pumping-Lemmas mit Wörtern  $x_n := a^n b^n a^n b^n b^n a^n$  geführt werden.
- (c) Sei L kontextfrei und L' regulär. Die Idee: Konstruiere einen Produktautomaten, der parallel die beiden ursprünglichen Automaten simuliert. Formal: Sei  $\mathscr{P} = (\Sigma, Q, q_0, \Delta, A, \Gamma, \#)$  ein KA für L und  $\mathscr{A}' = (\Sigma, Q', q'_0, \delta', A')$  ein DEA für L'. Ein KA  $\mathscr{P}'' = (\Sigma, Q', q''_0, \Delta'', A'', \Gamma'', \#)$  für  $L'' := L \cap L'$  ist dann wie folgt zu konstruieren:

$$\begin{split} &Q'' := Q \times Q' \\ &q_0'' := (q_0, q_0') \\ &\Delta'' := \left\{ \left( (q, q'), \gamma, x, \beta, \left( p, \delta'(q', x) \right) \right) \, \middle| \, (q, \gamma, x, \beta, p) \in \Delta, \, q' \in Q', \, x \in \Sigma \right\} \\ & \cup \, \left\{ \left( (q, q'), \gamma, \varepsilon, \beta, \left( p, q' \right) \right) \, \middle| \, (q, \gamma, \varepsilon, \beta, p) \in \Delta, \, q' \in Q \right\} \\ &A'' := A \times A' \\ &\Gamma'' := \Gamma \end{split}$$

Beachte die Unterscheidung in der Definition von  $\Delta''$ , ob es sich um einen  $\varepsilon$ -Übergang handelt. Diese ist notwendig, da  $\delta'$  nur auf Zeichen  $x \in \Sigma$  definiert ist!

(d) Nein. Einfaches Gegenbeispiel: Schneide eine Typ-1 Sprache, die nicht Typ-2 ist, mit  $\Sigma^*$ . Etwas schwierigeres Gegenbeispiel: Schneide die Sprache  $L_1$  mit  $L(a^*b^*a^*b^*)$ .

### Aufgabe G14 (Chomsky-Hierarchie)

Welche der folgenden Sprachen über dem Alphabet  $\Sigma = \{a, b, c\}$  sind (i) regulär, (ii) kontextfrei, aber nicht regulär, oder (iii) nicht kontextfrei? Begründen Sie Ihre Antwort!

$$\begin{array}{rcl} L_1 & = & \{x \in \Sigma^* : |x|_a > |x|_b\} \\ L_2 & = & \{x \in \Sigma^* : |x|_a > |x|_b > |x|_c\} \\ L_3 & = & \{x \in \Sigma^* : |x|_a > |x|_b \text{ und } |x|_b \le 17\} \\ L_4 & = & \{x \in \Sigma^* : |x|_a > |x|_b \text{ und } |x|_b \ge 17\} \end{array}$$

#### Lösung:

 $L_1$ :  $L_1$  ist kontextfrei, aber nicht regulär. Eine Grammatik für  $L_1$  wäre

$$\begin{array}{ccc} P: & X_0 & \rightarrow & XX_0 \,|\, aX_0 \,|\, aX \,|\, X_0 \,|\, a \\ & X & \rightarrow & XX \,|\, aX\, b \,|\, bX\, a \,|\, ab \,|\, ba \end{array}$$

 $L_1$  ist nicht regulär. Angenommen  $L_1$  wäre regulär. Sei n die Konstante aus dem Pumping Lemma und setze  $x=a^{n+1}b^n$ . Nach dem Lemma gibt es eine Zerlegung x=uvw mit  $|uv|\leq n,v\neq \varepsilon$  und  $uv^mw\in L_1$  für alle  $m\in \mathbb{N}$ . Da  $|uv|\leq n$  und  $v\neq \varepsilon$ , ist  $v=a^k$  für  $k\geq 1$ . Also ist  $uv^0w=a^{n+1-k}b^n\not\in L_1$ . Widerspruch!

- $L_2$ :  $L_2$  ist nicht kontextfrei. Angenommen  $L_2$  wäre kontextfrei. Sei n die Konstante aus dem Pumping Lemma und setze  $x=a^{n+2}b^{n+1}c^n$ . Nach dem Lemma gibt es eine Zerlegung x=yuvwz mit  $|uvw|\leq n, uw\neq \varepsilon$  und  $yu^mvw^mz\in L_2$  für alle  $m\in\mathbb{N}$ . Da  $|uvw|\leq n$  kann uvw nicht sowohl a's als auch c's enthalten. Deshalb gibt es nur die folgenden Möglichkeiten:
  - u und w enthalten nur a. Dann enthält  $yu^0vw^0z$  nicht mehr a's als b's und ist deshalb nicht in  $L_2$  enthalten. Widerspruch!
  - u und w enthalten a und b. Dann enthält  $yu^0vw^0z$  nicht mehr b's als c's und ist deshalb nicht in  $L_2$  enthalten. Widerspruch!
  - u und w enthalten nur b. Dann enthält  $yu^0vw^0z$  nicht mehr b's als c's und ist deshalb nicht in  $L_2$  enthalten. Widerspruch!
  - u und w enthalten b und c. Dann enthält  $yu^2vw^2z$  nicht mehr a's als b's und ist deshalb nicht in  $L_2$  enthalten. Widerspruch!
  - u und w enthalten nur c. Dann enthalt  $yu^2vw^2z$  nicht mehr b's als c's und ist deshalb nicht in  $L_2$  enthalten. Widerspruch!

 $L_3$ :  $L_3$  ist regulär. Für jedes  $n \in \mathbb{N}$  ist

$$L_3^n = \{x \in \Sigma^* : |x|_a > n \text{ und } |x|_b = n\} = \{x \in \Sigma^* : |x|_a > n\} \cap \{x \in \Sigma^* : |x|_b = n\}$$

ein Durchschnitt von zwei regulären Sprachen und deshalb regulär. Es folgt, dass  $L_3 = \bigcup_{n \le 17} L_3^n$  auch regulär ist.

 $L_4$ :  $L_4$  ist kontextfrei, aber nicht regulär.  $L_4 = L_1 \cap \{x \in \Sigma^* : |x|_b \ge 17\}$  ist Durchschnitt einer kontextfreien Sprache mit einer regulären Sprache und deshalb kontextfrei. Wäre  $L_4$  auch noch regulär, dann wäre  $L_1 = L_3 \cup L_4$  das auch. Wir haben aber oben gezeigt, dass  $L_1$  nicht regulär ist.

#### Aufgabe G15 (Kellerautomaten)

Konstruieren Sie einen Kellerautomaten, der die folgende kontextfreie Sprache erkennt:

$$L = \{a^i b^j c^k : i = j + k\}.$$

**Lösung:** Sei  $\mathscr{P}=(\Sigma,Q,q_a,\Delta,A,\Gamma,\#)$  der Kellerautomat mit Eingabealphabet  $\Sigma=\{a,b,c\}$ , Zustandsmenge  $Q=\{q_a,q_b,q_c\}$ ,  $q_a$  als Anfangzustand,  $A=\{q_a,q_b,q_c\}$  als Menge der akzeptierenden Zustände, Kelleralphabet  $\Gamma=\{\#,|\}$  und Übergangsrelation  $\Delta$  gegeben durch

$$\{ (q_a, \#, \varepsilon, \varepsilon, q_a) \\ (q_a, \#, a, |, q_a) \\ (q_a, |, a, ||, q_a) \\ (q_a, |, b, \varepsilon, q_b) \\ (q_a, |, c, \varepsilon, q_c) \\ (q_b, |, b, \varepsilon, q_b) \\ (q_b, |, c, \varepsilon, q_c) \\ (q_c, |, c, \varepsilon, e_c) \} .$$

Dann erkennt  $\mathcal{P}$  die Sprache L.

#### Hausübung

## Aufgabe H13 (Grammatiken)

(12 Punkte)

Sei  $\Sigma = \{a, b\}.$ 

(a) Betrachten Sie den Automaten A:



Geben Sie eine reguläre Grammatik an, die die Sprache  $L(\mathcal{A})$  erzeugt.

(b) Sei

$$L = \{ x \in \Sigma^* : |x|_a = |x|_b \}.$$

Zeigen Sie, dass die Sprache *L* kontextfrei ist, indem Sie eine kontextfreie Grammatik angeben, die diese Sprache erzeugt. (Und begründen Sie Ihre Antwort!)

#### Lösung:

(a)

$$\begin{array}{ccc} X_0 & \rightarrow & aX_1 \\ X_1 & \rightarrow & aX_3 \mid bX_2 \\ X_2 & \rightarrow & aX_3 \mid bX_3 \\ X_3 & \rightarrow & aX_3 \mid bX_3 \mid \varepsilon \end{array}$$

(b)

$$X_0 \rightarrow \varepsilon | X_0 X_0 | a X_0 b | b X_0 a$$

#### Aufgabe H14 (Chomsky-Normalform)

(12 Punkte)

Betrachten Sie die kontextfreie Grammatik  $G = (\{a,b\},\{X_0\},P,X_0)$  mit

$$\begin{array}{ccc} P: & X_0 & \rightarrow & aXY \mid bXb \mid a \\ & X & \rightarrow & aXa \mid bY \mid \varepsilon \\ & Y & \rightarrow & bX_0a \mid aX_0 \end{array}$$

Konstruieren Sie eine zu G äquivalente Grammatik in Chomsky-Normalform.

**Lösung:** 1. Schritt (elimiere  $\varepsilon$ -Produktionen):

$$\begin{array}{ccc} X_0 & \rightarrow & aXY \mid bXb \mid a \mid aY \mid bb \\ X & \rightarrow & aXa \mid bY \mid aa \\ Y & \rightarrow & bX_0a \mid aX_0 \end{array}$$

2. Schritt (Variablen vor Buchstaben):

$$\begin{array}{rcl} X_{0} & \rightarrow & Z_{a}XY \, | \, Z_{b}XZ_{b} \, | \, Z_{a} \, | \, Z_{a}Y \, | \, Z_{b}Z_{b} \\ X & \rightarrow & Z_{a}XZ_{a} \, | \, Z_{b}Y \, | \, Z_{a}Z_{a} \\ Y & \rightarrow & Z_{b}X_{0}Z_{a} \, | \, Z_{a}X_{0} \\ Z_{a} & \rightarrow & a \\ Z_{b} & \rightarrow & b \end{array}$$

3. Schritt (eliminiere  $X \to X_0 \dots X_k$  mit  $k \ge 3$ ):

$$\begin{array}{lll} X_0 & \rightarrow & Z_a U \, | \, Z_b V \, | \, Z_a \, | \, Z_a Y \, | \, Z_b Z_b \\ X & \rightarrow & Z_a W \, | \, Z_b Y \, | \, Z_a Z_a \\ Y & \rightarrow & Z_b T \, | \, Z_a X_0 \\ U & \rightarrow & XY \\ V & \rightarrow & XZ_b \\ W & \rightarrow & XZ_a \\ T & \rightarrow & X_0 Z_a \\ Z_a & \rightarrow & a \\ Z_b & \rightarrow & b \end{array}$$

# Aufgabe H15 (Kellerautomaten)

(12 Punkte)

Konstruieren Sie einen PDA für die Sprache L der Palindrome über dem Alphabet  $\Sigma = \{a, b\}$ .

**Lösung:** Ein PDA für L ist  $\mathscr{P}=(\Sigma,Q,q_0,\Delta,A,\Gamma,\#)$  mit  $Q=\{q_0,q_1\},\ \Gamma=\{\#,A,B\},\ A=\{q_1\}$  und Transitionen

```
\{ (q_0,
             \#, \varepsilon,
                        \varepsilon,
                                 q_1)
             #,
    (q_0,
                   а,
                         \varepsilon,
                                  q_1)
             #,
                   b,
    (q_0,
                         \varepsilon,
                                  q_1)
    (q_0,
             #,
                   а,
                         Α,
                                  q_0)
             #,
                   Ь,
                         B,
    (q_0,
                                  q_0)
    (q_{0},
            Α,
                   а,
                         AA,
                                 q_0
            В,
                         AB,
    (q_0,
                   а,
                                 q_0)
    (q_0,
            Α,
                   b,
                         BA,
                                 q_0)
            В,
                   b,
                         BB,
    (q_0,
                                 q_0
            Α,
    (q_0,
                   а,
                         Α,
                                  q_1)
            В,
                         В,
    (q_0,
                   а,
                                  q_1)
    (q_{0},
            Α,
                   Ь,
                         Α,
                                  q_1)
    (q_0,
            В,
                   Ь,
                         В,
                                  q_1)
            Α,
    (q_{0},
                   Α,
                         \varepsilon,
                                 q_1)
            В,
                   b,
    (q_{0},
                         \varepsilon,
                                  q_1)
    (q_1,
            Α,
                   а,
                         \varepsilon,
                                  q_1)
    (q_{1},
            В,
                   b,
                         \varepsilon,
                                  q_1) }.
```