Natural Language Processing Assignment-2

TYPE OF QUESTION: MCQ

Total mark: $10 \times 1 = 10$

Number of questions: 10

QUESTION 1:

According to Zipf's law which statement(s) is/are correct?

- (i) A small number of words occur with high frequency.
- (ii) A large number of words occur with low frequency.
- a. Both (i) and (ii) are correct
- b. Only (ii) is correct
- c. Only (i) is correct
- d. Neither (i) nor (ii) is correct

Correct Answer: a

Solution:

QUESTION 2:

Consider the following corpus C₁ of 4 sentences. What is the total count of unique bi-grams for which the likelihood will be estimated? Assume we do not perform any pre-processing.

today is Nayan's birthday she loves ice cream she is also fond of cream cake we will celebrate her birthday with ice cream cake

- a. 24
- b. 28
- c. 27
- d. 23

Correct Answer: a

Detailed Solution:

Unique bi-grams are:								
<s> today</s>	•	is Nayan's	Nayan's birthday	birthday <\s>				
	she loves		ice cream	cream <\s>				
	is also <s> we</s>		fond of will celebrate	of cream celebrate her				
-	birthday with			celebrate nei				
	Sirenaay Wien	With ite	oream care					
QUESTION	<u>3:</u>							
A 4-gram model is a order Markov Model.								
a.	Constant							
b.	Five							
C.	Four							
d.	Three							
Correct Answer: d								
Detailed Solution:								
QUESTION 4:								
Which one of these is a valid Markov assumption?								
a. The probability of a word depends only on the current word.								
b. The probability of a word depends only on the previous word.								
c. The probability of a word depends only on the next word.								
d. The probability of a word depends only on the current and the previous word.								
Correct Answer: b								
Solution:								

QUESTION 5:

For the string 'mash', identify which of the following set of strings have a Levenshtein distance of 1.

- a. smash, mas, lash, mushy, hash
- b. bash, stash, lush, flash, dash
- c. smash, mas, lash, mush, ash
- d. None of the above

Correct Answer: c

Detailed Solution:

QUESTION 6:

Assume that we modify the costs incurred for operations in calculating Levenshtein distance, such that both the insertion and deletion operations incur a cost of 1 each, while substitution incurs a cost of 2. Now, for the string **'lash'** which of the following set of strings will have an edit distance of 1?

- a. ash, slash, clash, flush
- b. flash, stash, lush, blush,
- c. slash, last, bash, ash
- d. None of the above

Correct Answer: d

Detailed Solution:

QUESTION 7:

Given a corpus C_2 , the Maximum Likelihood Estimation (MLE) for the bigram "dried berries" is 0.3 and the count of occurrence of the word "dried" is 580. for the same corpus C_2 , the likelihood of "dried berries" after applying add-one smoothing is 0.04. What is the vocabulary size of C_2 ?

- a. 3585
- b. 3795
- c. 4955
- d. 3995

Correct Answer: b

Detailed Solution:

$$P_{MLE}(berries | dried) = \frac{C(dried, berries)}{C(dried)}$$

$$0.3 = \frac{C(dried, berries)}{580}$$

$$C(dried, berries) = 174$$

$$P_{Add-1}(berries | dried) = \frac{C(dried, berries) + 1}{C(dried) + V}$$

$$0.04 = \frac{174 + 1}{580 + V}$$

$$V = 3795$$

For Question 8 to 10, consider the following corpus C₃ of 3 sentences.

there is a big garden children play in a garden they play inside beautiful garden

QUESTION 8:

Calculate P(they play in a big garden) assuming a bi-gram language model.

- a. 1/8
- b. 1/12
- c. 1/24
- d. None of the above

Correct Answer: b

Detailed Solution:

```
P(they | <s> ) = 1/3

P(play | they) = 1/1

P(in | play) = 1/2

P(a | in) = 1/1

P(big | a) = 1/2

P(garden | big) = 1/1

P(<\s>|garden) = 3/3

P(they play in a big garden) = 1/3 x 1/1 x 1/2 x 1/1 x 1/2 x 1/1 x 3/3 = 1/12
```

QUESTION 9:

Considering the same model as in Question 7, calculate the perplexity of **<s> they play in a big** garden **<\s>.**

- a. 2.289
- b. 1.426
- c. 1.574
- d. 2.178

Correct Answer: b

Detailed Solution:

```
perplexity = \sqrt[7]{12} = 1.426
```

QUESTION 10:

Assume that you are using a bi-gram language model with add one smoothing. Calculate **P(they play in a beautiful garden).**

- a. 4.472 x 10^-6
- b. 2.236 x 10⁻⁶
- c. 3.135 x 10⁻⁶
- d. None of the above

Correct Answer: b

Detailed Solution:

```
|V|=11 \\ P(they | <s>) = (1+1)/(3+11) \\ P(play | they) = (1+1)/(1+11) \\ P(in | play) = (1+1)/(2+11) \\ P(a | in) = (1+1)/(1+11) \\ P(beautiful | a) = (0+1)/(2+11) \\ P(garden | beautiful) = (1+1)/(1+11) \\ P(<\s>|garden) = (3+1)/(3+11) \\ P(they play in a beautiful garden) = 2/14 x 2/12 x 2/13 x 2/12 x 1/13 x 2/12 x 4/14 \\ = 2.236 x 10^{-6} \\
```

**********END*****