Cognome	Nome	
Matricola	Numero di CFU	Fila 2
Esame di LOGICA P	di di Bologna, Corso di Laurea in Inform PER L'INFORMATICA (9 CFU), 16/01 poste. Se strettamente necessario, si può allegare un f alto nome, cognome, fila e matricola.	/2024
deve abbreviare uno o più pas	siemi che $\forall A, B.((\forall C.A \subseteq B \cup C) \Rightarrow A \subseteq B)$ ssi di deduzione naturale al prim'ordine.	. Ogni passaggio
Esplicitare l'enunciato di tutt	ı gli assıomı utilizzati.	
Teorema: $\forall A, B.((\forall C.A \subseteq B \cup C) = Dimostrazione: siano A, B insiemi to X \in B \cup C (H). Dobbiamo dimostrazione t.c. Y \in A. Quindi$	$C, X.(X \in A \cup B \iff X \in A \lor X \in B)$ $\Rightarrow A \subseteq B$) $\text{t.c. } \forall C.A \subseteq B \cup C \text{ o, equivalentemente, } \forall C, X.$ $\text{trare } A \subseteq B \text{ o, equivalentemente, } \forall Y.(Y \in A = 1)$ $\text{i, per H, } Y \in B \cup B. \text{ Quindi, per l'assioma of procediamo per casi per dimostrare } Y \in B.$	$\Rightarrow Y \in B$). dell'unione

L2 (5 punti).	Dimostrare in deduzione naturale per la logica al prim'ordine il seguente enunciato.	Preferire
	una prova intuizionista a una classica ove possibile.	

$$\forall m. Q(g(m),g(m)), \quad \forall n, m. (Q(m,g(n)) \Rightarrow \exists z. Q(g(z),n)) \vdash \exists z. Q(z,m)$$

$$\begin{array}{c|c} \forall n, m.Q(m,g(n)) \Rightarrow \exists z.Q(g(z),n) \\ \hline \forall x.Q(x,g(m)) \Rightarrow \exists z.Q(g(z),m) \\ \hline Q(g(m),g(m)) \Rightarrow \exists z.Q(g(z),m) \\ \hline & \exists z.Q(g(z),m) \\ \hline & \exists z.Q(z,m) \\ \hline \end{array} \begin{array}{c|c} \forall m.Q(g(m),g(m)) \\ \hline Q(g(m),g(m)) \Rightarrow_e \\ \hline & \exists z.Q(z,m) \\ \hline \end{array} \begin{array}{c} [Q(g(w),m)] \\ \hline \exists z.Q(z,m) \\ \hline \end{array} \exists_e \\ \end{array}$$

Cognome	Nome	
Matricola	Numero di CFU	Fila 2

Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di LOGICA PER L'INFORMATICA (9 CFU), 16/01/2024

Utilizzare i riquadri bianchi per le risposte. Se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

L3 (5 punti). Si consideri il seguente ragionamento:

Se la Ferragni perderà gli sponsor o l'uovo di Pasqua è stato una truffa, allora il danno economico sarà ingente. La Ferragni è in buona fede se è stata mal consigliata. Se la Ferragni non è in buona fede, allora l'uovo di Pasqua è stato una truffa o è stata mal consigliata. La Ferragni non perderà gli sponsor o l'uovo di Pasqua è stato una truffa. Quindi il danno economico sarà ingente o la Ferragni è in buona fede.

Verificare la correttezza del ragionamento utilizzando la deduzione naturale per la logica proposizionale. Preferire una prova intuizionista se possibile.

$$E \lor C \Rightarrow D$$
, $B \Rightarrow A$, $\neg A \Rightarrow C \lor B$, $\neg E \lor C \vdash D \lor A$

(Cognome	Nome	
I	Matricola	Numero di CFU	Fila 2
	Università degli Studi di Bologna, Con Esame di LOGICA PER L'INFORMA Utilizzare i riquadri bianchi per le risposte. Se strettamente re coda con ulteriore testo, indicando in alto nome, cognome, fila	TICA (9 CFU), 16/01/20: necessario, si può allegare un foglio	24
L4 (5 punti). Considerate la seguente sintassi per liste di nun associativo a destra.	neri naturali: $L ::= [] \mid \mathbb{N} ::$	L dove "::" è
	Considerate il seguente predicato $Only_1$, definito paturali, che è logicamente equivalente a \top sse la l		
	$Only_1([]) = \top$ $Only_1(n::l) = n$	$=1 \wedge Only_1(l)$	
	(a) Definire per ricorsione strutturale una funzi numeri naturali della lista l . Esempio: $mul(2::1::1::3::1::[]) = 6$	one $mul(l)$ che calcola il prode	otto di tutti i
	(b) Dimostrare per induzione strutturale che $\forall l$ prova intuizionista a una classica ove possibi Nello svolgere l'esercizio potete utilizzare conaturali, le proprietà dell'uguaglianza e il ler $\forall n, m. (n*m=1 \iff n=1 \land m=1).$	ile. ome date l'operazione di somn	na fra numeri

(a) Parte di ricorsione strutturale:

```
mul([]) = 1
mul(n :: l) = n * mul(l)
```

(b) Parte di induzione strutturale:

Teorema: $\forall l.(Only_1(l) \iff mul(l) = 1).$

Dimostrazione: procediamo per induzione strutturale su l per dimostrare $Only_1(l) \iff mul(1) = 1$

- Caso []: dobbiamo dimostrare $Only_1([]) \iff mul([]) = 1$ o, equivalentemente, $\top \iff 1 = 1$. Ovvio per la proprietà riflessiva dell'uguaglianza.
- Caso n::l: per ipotesi induttiva $Only_1(l) \iff mul(l)=1$ (II). Dobbiamo dimostrare $Only_1(n::l) \iff mul(n::l)=1$ o, equivalentemente, $n=1 \land Only_1(l) \iff n*mul(l)=1$. Dimostriamo entrambe le direzioni:
 - Dimostriamo $n=1 \wedge Only_1(l) \Rightarrow n*mul(l)=1$. Supponiamo n=1 (H1) e $Only_1(l)$ (H2). Da II e H2 si ha mul(l)=1. Quindi, per L e H1, si ha n*mul(l)=1
 - Dimostriamo $n*mul(l) = 1 \Rightarrow n = 1 \land Only_1(l)$. Supponiamo n*mul(l) = 1 da cui, per il lemma L, n = 1 (H1) e mul(l) = 1 (H2). Da II e H2 si ha $Only_1(l)$. Quindi, per L, si ha $n = 1 \land Only_1(l)$

Qed.

Co	ognome	Nome
\mathbf{M}	atricola	Numero di CFU Fila 2
	Università degli Studi di Bologna, Co Esame di LOGICA PER L'INFORMA ilizzare i riquadri bianchi per le risposte. Se strettamente la con ulteriore testo, indicando in alto nome, cognome, filo	ATICA (9 CFU), 16/01/2024 necessario, si può allegare un foglio protocollo in
A5 (2 punti).	Sia $(X, \circ, e, ^{-1})$ un gruppo, con operazione binari $^{-1}$. Dimostra che $a \circ b = a \circ c$ implica $b = c$. Esp teoria dei gruppi che vengono utilizzati nella dim	plicitare l'enunciato di tutti gli assiomi della
(a^{-1})	o che $a \circ b = a \circ c$, abbiamo $a^{-1} \circ (a \circ b) = a$ $(a \circ a) \circ b = (a^{-1} \circ a) \circ c$. Usando l'assioma $a^{-1} \circ c$ de, usando l'assioma per l'elemento neutro c , abbia	$a = e$, ne consegue che $e \circ b = e \circ c$.
A6 (2 punti).	Considera il gruppo $(\mathbb{Z}_3, +, 0,^{-1})$ degli interi modesempio $1+2=0$ e $2+2=1$. Il teorema di Cay sottogruppo \mathbb{X} di $(Perm(\mathbb{Z}_3), \circ, id,^{-1})$, il gruppo	ley dice che questo gruppo é isomorfo ad un
(a)	Scrivi la definizione della permutazione che l'ison	norfismo associa all'elemento 1 di \mathbb{Z}_3 .
(b)	Scrivi la definizione di una permutazione (un eler	mento di $Perm(\mathbb{Z}_3)$) che non fa parte di \mathbb{X} .
•	La permutazione definita come segue $0\mapsto 1 1\mapsto 2 2$	
		$a \mapsto 0$
•	Ad esempio la permutazione π definita come	

 $0\mapsto 0 \quad 1\mapsto 2 \quad 2\mapsto 1$

A7 (6 punti). Per ciascuno dei seguenti enunciati, indica se é vero o falso. Se falso, scrivi un controesempio.

	Linguaggio	V	· F (scrivi controesempio)
(a)	$(\mathbb{N}, min, 0, ^*)$, dove $min(n, m)$ é il piú piccolo tra n ed m , e $n^* = n$, forma un gruppo.		
(b)	Considera il monoide $(\mathbb{L}, ++, [])$ dove \mathbb{L} é l'insieme di liste di numeri naturali, $++$ é la concatenazione di liste, e $[]$ é la lista vuota. La funzione $f: \mathbb{L} \to \mathbb{L}$ definita come $f(l) = 0 :: l$ é un morfismo di monoidi da $(\mathbb{L}, ++, [])$ a $(\mathbb{L}, ++, [])$.		
(c)	$(5\mathbb{N}\cap 3\mathbb{N},+,0)$, dove $5\mathbb{N}$ é l'insieme dei multipli di 5 in \mathbb{N} , $3\mathbb{N}$ é l'insieme dei multipli di 3 in \mathbb{N} , e $5\mathbb{N}\cap 3\mathbb{N}$ é la loro intersezione, forma un monoide.		
(d)	$(\mathcal{P}(X), \cup, \emptyset, \cap)$, dove $\mathcal{P}(X)$ é l'insieme dei sottoinsiemi di un dato insieme X , é un semianello.		
(e)	$(\mathbb{R}, \times, 0)$ forma un monoide.		
(f)	Il magma $(\mathbb{R}_+, +)$, dove \mathbb{R}_+ é l'insieme dei numeri reali positivi (maggiori di 0) e + é l'addizione, puó essere esteso ad un monoide.		

- (a) No perché $min(n,n^\star) = min(n,n) = n$ é diverso da 0 per $n \neq 0$.
- (b) No, ad esempio f([1,2] + +[1]) = [0,1,2,1] ma f([1,2]) + +f([1]) = [0,1,2,0,1].
- (c) Si.
- (d) Si
- (e) No, 0 non é l'elemento neutro per ×.
- (f) No perché per ogni coppia di reali $r_1, r_2 > 0, \, r_1 + r_2 > r_1,$ quindi non c'é elemento neutro.