Multivariable Calculus

Day 23

Vector Calculus: Line integrals (cont.)

Recap worksheet

Evaluate

$$\int_C y^2 dx + x dy, \qquad i = 1, 2$$

- where C is the line segment from $(-5, -3) \rightarrow (0, 2)$
- ② where C is the arc of the parabola $x = 4 y^2$ from $(-5, -3) \rightarrow (0, 2)$.
- repeat the above two steps with

$$P = x$$
, $Q = y$.

Question

When is a vector field \boldsymbol{F} in \mathbb{R}^2 conservative?

Definition

Let F be a continuous vector field with domain D, we say that the line integral

$$\int_C \mathbf{F} \cdot d\mathbf{r}$$

is independent of path if

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

Independence of path and conservative vector fields

Theorem

 $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D if and only if $\oint_{\Gamma} \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path Γ in D.

Worksheet

Prove the above theorem.

Definition

A domain D is said to be **open** if around each point, we can draw an open ball around it. A domain D is said to be **connected** if for any two points, there is a path that connect them together. A domain D is said to be **simply connected** if is connected and there's no hole in it.

Theorem

Suppose **F** is a vector field that is continuous on an open connected region D. If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D, then **F** is a conservative vector field on D.

Is there an easier way?

Is there an easier way?

Clairaut's theorem If **F** is conservative then

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \,.$$

Is there an easier way?

Clairaut's theorem If F is conservative then

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \,.$$

Is the converse true?

What happens when ${\bf F}$ is not conservative?

Green's Theorem

Theorem (Green's Theorem)

Let D be an open bounded simply connected domain in \mathbb{R}^2 , Γ be the boundary of D, and $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$ be a vector field. If P and Q have continuous partial derivatives on an open region that contains D, then

$$\int_{\Gamma} \mathbf{F} \cdot d\ell = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA.$$

Theorem

Let $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$ be a vector field on an open simply connected region D. Suppose that P and Q have continuous first-order partial derivatives and

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

through out D. Then **F** is conservative.

Computing the area of any region bounded by a curve

 $\verb|https://www.youtube.com/watch?v=aLSx1eM27P4|\\$