

Machine Learning

Lab2

Fall 2022

Instructor: Xiaodong Gu

任务

三选一

- 实现基于GPT2的程序生成系统
- 实现基于卷积神经网络的图像分割系统
- 阅读AI论文, 写文献阅读报告(文献综述+创新点+思路)

团队任务:

- 1-3名组员
- 其中一位组员提交
- 文件名SID1_NAME1_SID2_NAME2_SID3_NAME3.zip

截止日期:

2022年12月24日

有问题请联系助教石雨凌。yuling.shi@sjtu.edu.cn

基于GPT2的程序生成

• 任务:

参考课堂讲解的 GPT2 finetuning 实现程序自动生成系统。使用 Canvas 上传的数据集,调试代码并进行调参实验。最后对生成的程序样例进行展示。

AI编程

注意事项:

- 1. 需要配置开发环境,如:PyCharm+Anaconda, python=3.7, torch=1.10.1
- 2. 如果使用 gpt2 训练较慢, 可以适当减小 seq_len、使用 distilgpt2 (https://huggingface.co/distilgpt2)
- 3. 读取示例数据的代码已经给出,可以参考此代码构建自己的 Dataset 类
- 4. DataLoader 中可以设置如 num_workers=4 提高计算效率
- 5. 在架构较新的GPU上 (18 年后发布的NIVDIA GPU), 可 以使用混合精度训练提高效率
- 6. 为了减轻工作量,可以参考开源代码(报告中注明来源),但要有自己的发挥。

Machine Learning: Lab 2

AI编程

• 提交:

- 代码及运行说明
- 实验报告。包括但不仅限于系统设计、训练过程(如loss曲线)、 调参实验及结果(不同参数下的perplexity等指标)、样例展示等。
 - 训练结果指标仅作为一项参考,不是主要的评价标准!

系统设计

模型设计 训练方法

实验结果

训练过程 (如loss曲线) 调参实验及结果 (如模型在不同超参数下的精确度) 生成代码展示

AI编程

• 评分: 综合评价功能、质量和工作量

功能:

代码无法运行

能完成功能、鼓励举一反三、尝试新方法

质量:

生成内容无意义、报告质量低

生成可读程序、报告完整思路清晰

工作量:

直接提交示例代码或 完全照搬开源代码

显示出对代码有理解、重构、或改进

• 任务:

参考 https://www.kaggle.com/code/gokulkarthik/image-segmentation-with-unet-pytorch

在所提供数据集上完成基于CNN的图像分割任务。

- 数据集简介:
- 共有 715 张图片 (data/images) 和对应的分割标注 (data/masks), 标注共有 9 个类别

注意事项及建议:

- 1. 需要配置开发环境,如:PyCharm+Anaconda, python=3.7, torch=1.10.1
- 2. 读取示例数据的代码已经给出,可以参考此代码构建自己的 Dataset 类
- 3. DataLoader 中可以设置如 num_workers=4 提高计算 效率
- 4. 在架构较新的GPU上 (18 年后发布的NIVDIA GPU), 可以使用混合精度训练提高效率
- 5. 为了减轻工作量,可以参考开源代码(报告中注明来源),但要有自己的发挥。

• 提交:

- 代码及运行说明
- 运行结果:所能调试出的最高 IOU 及对应的 epoch 数
 - 准确率仅作为一项参考,不是主要的评价标准!
- 实验报告。包括但不限于以下:

数据处理

图片预处理(可以弱化)

系统设计

模型设计

训练方法

实验结果

预测准确率

训练过程 (如loss曲线, tensor board)

<mark>调参实验及结果分析</mark> (如模型在不同训练参数下的准确率及分析) 参数量

• 评分: 综合评价功能、质量和工作量

功能:

代码无法运行

完成分割功能,鼓励使用所学的知识综合设计网络

质量:

设计不合理、准确率低

模型合理、运行效率高、准确率高

工作量:

直接调试示例代码或完 全照搬开源代码

有详细的参数调试及分析报告

精读自己感兴趣的AI论文,提交一个论文汇报(Research Statement)。 要求:

- 来自顶级会议(ICML, NeurlPS, ICLR, AAAI, IJCAI, EMNLP, ACL, ICCV, CVPR, ECCV, NAACL等)
- 发表于近3年(2019及以后)
- 除了汇报的论文,可能还需要阅读若干相关文献。

Machine Learning: Lab 2

提交: 文献汇报ppt,

内容包括:

Background
Related Works
Approach
Implementation Details
Evaluation
New Thoughts (Limitations,
Improvement, Applications, etc)
References

根据报告内容和质量评分,特别是New Thoughts

Background

No strict requirement. You may consider:

- Investigate the technical trend of the same topic in the industry.
- What you have known about this topic.
- Your understanding about this topic.
- **...**

Related Work

Important technologies (papers) for this research topic.

List 2-3 papers and briefly describe the key ideas.

Motivation

- what is the main problem of existing approaches?
- how do the authors address the problem?
- what is the key idea of the new approach?

Approach

Describe the approach using diagrams and descriptions (like how we introduced the Seq2Seq, Attention, Transformer, etc in the class).

For example:

Implementation Details

key components and algorithms (e.g., encoder, decoder, etc).

Evaluation

Show the experimental setup and results such as:

- data sets, baseline models, performance metrics, etc
- Tables and curves of results and the comparison of various models.
- brief descriptions about the results and comparisons.

• ...

New Thoughts

Provide your thoughts after reading this paper, such as:

- Limitations of this paper
- Application of the technology to an interesting task?
- Your new ideas with some details

Machine Learning: Lab 2

Tips

- Your programs should be written in such a way that the TA can easily verify the results reported by you.
- Your presentation should be clear and comprehensive so that customers (TAs) will buy (give high score to) your product.

