Identification and Estimation of Dynamic Discrete Demand Using Aggregate Data

Cheng Chou ¹ Tim Derdenger ² Vineet Kumar ³

¹Leicester ²Carnegie Mellon ³Yale

Dec 6 2017, UC Riverside Econometrics Seminar

... dynamic discrete demand

- ▶ Discrete: consumer i considers whether or not to purchase a product from $\mathcal{J}_t \subset \mathcal{J} \equiv \{0, 1, \dots, J\}.$
- ▶ 0 is outside good.
- ▶ for durable goods, "dynamic" reflects the trade-off between buying now and waiting so he can decide whether to purchase in the next period
- ► Some applications: Gordon (2009, CPU market), Schiraldi (2011, car), Gowrisankaran and Rysman (2012, digital camera)

... dynamic discrete demand using aggregate data

- do not observe individual choices.
- ▶ instead we observe market shares s_{jt} and observable product characteristics (including prices) of products (x'_{it}, p_{jt}) ,
- ▶ unobservable product characteristics ξ_{jt} affects price p_{jt} price is endogenous in econometrics sense
- multiple markets (50 states of the US) and time periods (18 months since January of 2007)
- Same data structure as BLP model (Berry, 1994; Berry, Levinsohn and Pakes, 1995)
- ▶ Panel data structure is necessary to us

Identification and estimation ...

- ► Consumer's decisions will be dynamic programming problem
- ► Given the aggregate data, identify and estimate
 - consumer's per period utility function,
 - state transition distribution function $F(\Omega_{i,t+1} \mid \Omega_{it})$
 - ▶ and initial distribution function $F(\Omega_{it})$.
- necessary for counterfactual and welfare analysis
- e.g. Blackberry's market share if iPhone was not invented
- difference from BLP: explicitly model consumer's dynamic decisions.
 Hence, richer analysis, e.g. the price elasticity on future market share.

Dynamic demand literature

- Value function is headache in estimation.
- literature now focuses on simplifying estimation
- relies on approximation approach (inclusive value approach by Gowrisankaran and Rysman, 2012)
- Curse of dimensionality in both approximating value function and state transition law
- ▶ identification is unclear and estimation is complicated
- mostly estimate only consumer's per period utility function
- not discount factor, joint distribution of observable and unobservable product characteristics

Identification literature

- identification does not follow from Berry and Haile (2014) which requires index form (the distribution of utility of product j depends on ξ_{jt} only by $\delta_{jt} = x_{1j}^1 \beta_j + \xi_{jt}$)
- index form may fail because ξ_{jt} enters the value function
- Berry and Haile (2014) cannot separately identify current and expected future payoff of product
- mixture literature does not work well here, Kasahara and Shimotsu (2009), Hu and Shum (2012), Allman, Matias and Rhodes (2009), Bonhomme, Jochmans and Robin (2016)

What we got

- show identification of all structural parameters explicitly
- a simple two step estimation method that estimates per period utility function, discount factor, joint distribution of price and unobservable characteristics, and joint distribution of unobservable characteristics in different periods
 - no approximation of value function
 - no solving dynamic programming
 - no curse of dimensionality in state transition
- ► LIMITATION: NO RANDOM COEFFICIENT (nested logit is allowed)
- hard to include random coefficient

Outline

- Model
- ▶ Identification
- ► Estimation details
- ► Monte Carlo

Model setup

- model follows from the literature; we did not invent it
- ▶ Conclusion is that the market share s_{jt} of product j at time t is

$$s_{jt} = rac{\exp(v_{jt}(m_t))}{\sum_{k \in \mathcal{J}_t} \exp(v_{kt}(m_t))}.$$

- \triangleright v_{jt} is the expected remaining lifetime payoff from purchasing product j.
- Structural parameters (per period utility, discount factor et al) and value functions enter into v_{it}.
- $m_t = (x_t, p_t, \xi_t)$ is the vector of market level state variables, which is partially observable.
- similar to BLP; different payoff

Consumer i's dynamic programming problem

- ▶ Choose from $\mathcal{J}_t \subset \mathcal{J} \equiv \{0, 1, \dots, J\}$. "0" is outside product.
- ▶ Per period utility *u*_{ijt}: if don't buy any product,

$$u_{i0t}=0+\varepsilon_{i0t}.$$

If buy j in period t,

$$u_{ijt} = x'_{jt}\gamma - \alpha p_{jt} + \xi_{jt} + \varepsilon_{ijt};$$

after purchasing j,

$$u_{ij\tau} = x'_{jt}\gamma + \xi_{jt} + \varepsilon_{ij\tau}, \qquad \tau > t.$$

- Once a consumer purchased a product, he exits the market completely
- ightharpoonup consumers know Ω_{it}

Restrictions

- Standard restrictions:
 - ▶ Ω_{it} is stationary Markov process, $F(\Omega_{i,t+1} | \Omega_{it})$ is time invariant (not essential to our arguments)
 - $\triangleright \ \varepsilon_{ijt} \perp \!\!\! \perp m_t = (x_t, p_t, \xi_t)$
 - $\Omega_{i,t+1} \equiv (m_{t+1}, \varepsilon_{i,t+1}) \perp \!\!\! \perp \varepsilon_{it} \mid m_t \ (\varepsilon_{ijt} \text{ is serially uncorrelated; no feedback effect)}$
 - $ightharpoonup arepsilon_{i,t+1} \perp \!\!\! \perp \Omega_{it} \equiv (m_t,arepsilon_{it}) \mid m_{t+1} \ ext{(no lagged effect)}$
- ► Issues:
 - taste (γ, α) are NOT random. Limitation, hard to relax in dynamic demand
 - Nonparametric extension $u_{ijt} = f(x_{jt}, p_{jt}) + \xi_{jt}$ is easy.
 - ▶ Difficult: "nonadditive" ξ_{jt} ; higher (or unknown) dimension of ξ_{jt}

Expected lifetime payoff for purchasing product j at time t: v_{jt}

- \triangleright β is discount factor
- outside option 0:

$$v_{0t}(\Omega_{it}) = 0 + \beta \, \mathsf{E}(\bar{V}_{t+1}(m_{t+1}) \mid m_t),$$

▶ product $j \neq 0$:

$$v_{jt}(m_t) = x'_{jt}\gamma + \xi_{jt} - \alpha p_{jt} + \beta(x'_{jt}\gamma + \xi_{jt}) + \beta^2(x'_{jt}\gamma + \xi_{jt}) + \cdots$$
$$= \frac{x'_{jt}\gamma + \xi_{jt}}{1 - \beta} - \alpha p_{jt}.$$

 $ightharpoonup V_{it}(\Omega_{it})$ is the value function, and

$$ar{V}_t(m_t) \equiv \int V_{it}(\Omega_{it}) {\sf F}(\, {\sf d}\, arepsilon_{it}).$$

Our starting point: market shares formula

- $ightharpoonup arepsilon_{it} = (arepsilon_{i0t}, \dots, arepsilon_{iJt})$ are independent type 1 evd with mean zero.
- Consumer's choice is logit. The choice probability for product j at time t is the market share s_{jt}

$$s_{jt} = rac{\exp(v_{jt}(m_t))}{\sum_{k \in \mathcal{J}_t} \exp(v_{kt}(m_t))},$$

where

$$v_{jt} = \begin{cases} \beta \, \mathsf{E}(\bar{V}_{t+1}(m_{t+1}) \mid m_t), & j = 0 \\ \frac{x_{jt}' \gamma + \xi_{jt}}{1 - \beta} - \alpha p_{jt}, & j \neq 0. \end{cases}$$

We also did nested logit case

Identification

- ▶ We need $\theta = (\alpha, \beta, \gamma)$, $F(\Omega_{i,t+1} | \Omega_{it})$ and $F(\Omega_{it})$ to simulate consumer's dynamic decisions from period t.
- By the conditional independence assumptions,

$$F(\Omega_{it}) = F(m_t)F(\varepsilon_{it})$$
 and $F(\Omega_{i,t+1} | \Omega_{it}) = F(m_{t+1} | m_t)F(\varepsilon_{i,t+1})$.

- ▶ The target is θ , $F(m_t \equiv (x_t, p_t, \xi_t))$, $F(m_{t+1} \mid m_t)$.
- ▶ The difficulty is that the vector ξ_t is unobservable, serially correlated and at least correlated with p_t
- ▶ It also enters into the market share in unknown nonlinear form through value function.

Recipe (summary of results)

 $\label{eq:different} \mbox{ Different objects (meals) require different ingredients } \dots$

To identify

- preference $\theta = (\alpha, \beta, \gamma)$, we only need some instrumental variables
- ▶ $E(\xi_{jt})$, $E(\xi_{jt} \mid x_t, p_t)$, we further assume $F(\xi_t)$ and $F(\xi_t \mid x_t, p_t)$ are time invariant.
- ▶ $Var(\xi_{jt})$, $Var(\xi_{jt} \mid x_t, p_t)$, we need $\xi_{1t}, \dots, \xi_{Jt}$ are independent and homoscedastic conditional on x_t, p_t (e.g. $Var(\xi_{1t} \mid x_{1t}, x_{2t}, p_{1t}, p_{2t}) = Var(\xi_{2t} \mid x_{1t}, x_{2t}, p_{1t}, p_{2t})$)
- ▶ $F(\xi_t \mid x_t, p_t)$ nonparametrically, we assume qualities (e.g. ξ_{1t} and ξ_{2t}) have identical conditional distribution excepting for conditional mean
- ▶ $F(m_{t+1} | m_t)$, we would require ξ_{t+1} follows autoregressive process and $x_{t+1} \perp \!\!\! \perp (\xi_t, \xi_{t+1}) \mid (x_t, p_t)$

Main cooking method: log shares ratio

► Market share:

$$s_{jt} = \frac{\exp(v_{jt}(m_t))}{\sum_{k \in \mathcal{J}_t} \exp(v_{kt}(m_t))}.$$

▶ Given 0, 1, ..., J, we have at most J independent log shares ratio,

$$\ln(s_{2t}/s_{1t}), \ln(s_{3t}/s_{2t}), \dots, \ln(s_{Jt}/s_{J-1,t}), \ln(s_{Jt}/s_{0t}).$$

• demo with $\mathcal{J} = \{0, 1, 2\}$

Preference

▶ log shares ratio of product 2 to 1:

$$\ln(s_{2t}/s_{1t}) = (x_{2t} - x_{1t})' \frac{\gamma}{1-\beta} - \alpha(p_{2t} - p_{1t}) + \frac{\xi_{2t} - \xi_{1t}}{1-\beta}.$$

- We can identify $\gamma/(1-\beta)$ and α with mean zero IV z_t ,
 - $\blacktriangleright \mathsf{E}(z_t)=0;$
 - \triangleright z_t is uncorrelated with ξ_{1t} and ξ_{2t}
 - similar to BLP-type IV (the third product characteristics)

Identify discount factor

log shares ratio of product 2 to 0:

$$\ln(s_{2t}/s_{0t}) = x'_{2t} \frac{\gamma}{1-\beta} - \alpha p_{2t} + \frac{\xi_{2t}}{1-\beta} - \beta \, \mathsf{E}\big(\bar{V}_{t+1}(m_{t+1}) \mid m_t\big). \tag{1}$$

Define the identified object y_t

$$y_t = \ln(s_{2t}/s_{0t}) - x'_{2t} \frac{\gamma}{1-\beta} + \alpha p_{2t}.$$

Note that y_t is a function of m_t only.

rewrite eq. (1) with y_t

$$y_{t} = \frac{\xi_{2t}}{1 - \beta} - \beta \, \mathsf{E} \big(\bar{V}_{t+1}(m_{t+1}) \, \big| \, m_{t} \big). \tag{2}$$

headache is the last term

It follows from multinomial logit property that

$$ar{V}_t(m_t) = v_2(m_t) - \ln s_{2t}(m_t) = \left(x_{2t}' rac{\gamma}{1-eta} - lpha p_{2t} + rac{\xi_{2t}}{1-eta}
ight) - \ln s_{2t}(m_t).$$

▶ Define another identified term w_t :

$$w_t = x'_{2t} \frac{\gamma}{1-\beta} - \alpha p_{2t} - \ln s_{2t}(m_t).$$

 \triangleright Clearly, w_t is a function of m_t only. Then we have

$$ar{V}_t(m_t) = w_t(m_t) + rac{\xi_{2t}}{1-eta}, \qquad ext{for all } t.$$

▶ Replacing \bar{V}_{t+1} in

$$y_t = \frac{\xi_{2t}}{1-\beta} - \beta \operatorname{E}(\bar{V}_{t+1}(m_{t+1}) \mid m_t).$$

with the above expression,

Useful conditional moment condition

we have

$$y_t(m_t) = \xi_{2t}/(1-\beta) - \beta E(w_{t+1}(m_{t+1}) + \xi_{2,t+1}/(1-\beta) \mid m_t).$$

- ▶ $E(y_t | m_t) = y_t$ and $E(\xi_{2t} | m_t) = \xi_{2t}$
- As a result, the above display implies

$$\mathsf{E}\left(y_t + \beta w_{t+1} - \frac{1}{1-\beta}\xi_{2t} + \frac{\beta}{1-\beta}\xi_{2,t+1} \,\middle|\, m_t\right) = 0. \tag{3}$$

▶ Hence for any integrable $\eta(m_t)$,

$$\mathsf{E}\bigg[\bigg(y_t + \beta w_{t+1} - \frac{1}{1-\beta}\xi_{2t} + \frac{\beta}{1-\beta}\xi_{2,t+1}\bigg)\eta(m_t)\bigg] = 0. \tag{4}$$

Identify discount factor

- ▶ If we have at least one exogenous observed characteristic with mean zero, denoted by $x_{t,IV} \in m_t$, we can identify β .
- Given $Cov(x_{t,IV}, \xi_{2,t}) = Cov(x_{t,IV}, \xi_{2,t+1}) = 0$ (exogenous),

$$\beta = - \mathsf{E}(y_t x_{t,IV}) / \mathsf{E}(w_{t+1} x_{t,IV}).$$

- γ is identified from $\gamma/(1-\beta) \times (1-\beta)$
- We need at least two periods
- ▶ IV z used earlier may not work here:
 - ightharpoonup z is required to be uncorrelated with ξ_{1t} and ξ_{2t}
 - \triangleright z may not be a function of m_t
 - ▶ BLP-type IV may work with additional restriction that it is uncorrelated with next period $\xi_{2,t+1}$

a bit of intuition:

$$\mathsf{E}\left[\left(\underbrace{y_t}_{\text{current market share}} + \beta \underbrace{w_{t+1}}_{\text{value of waiting}} - \frac{1}{1-\beta}\xi_{2t} + \frac{\beta}{1-\beta}\xi_{2,t+1}\right) x_{t,\mathit{IV}}\right] = 0.$$

 β measures the "causality effect" of future value on current market share.

- Conclusion: $\theta = (\alpha, \beta, \gamma)$ is identified
- ▶ The conditions are similar Berry (1993) or Berry and Haile (2014), though we need two periods panel data and BLP IV is uncorrelated with future ξ

Preference is not enough

- ▶ For example, we cannot even identify price elasticity
- It can be shown that the price elasticity

$$e_{jk,t} = \frac{\partial s_{jt}}{\partial p_{kt}} \frac{p_{kt}}{s_{jt}}$$

depends on

$$a = \frac{\partial}{\partial p_{kt}} E(x_{j,t+1} \mid x_t, p_t, \xi_t),$$

$$b = \frac{\partial}{\partial p_{kt}} E(p_{j,t+1} \mid x_t, p_t, \xi_t),$$

$$c = \frac{\partial}{\partial p_{kt}} E(\ln s_{j,t+1} \mid x_t, p_t, \xi_t),$$

$$d = \frac{\partial}{\partial p_{kt}} E(\xi_{j,t+1} \mid x_t, p_t, \xi_t).$$

▶ To determine these terms, we need $F(m_{t+1} | m_t)$.

Identify
$$F(x_t, p_t, \xi_t) = F(x_t, p_t)F(\xi_t \mid x_t, p_t)$$

- ▶ The focus is $F(\xi_t | x_t, p_t)$.
- ▶ Show first $E(\xi_{jt})$ and $E(\xi_{jt} \mid x_t, p_t)$
- ▶ We need
 - (i) $F(\xi_t)$ and $F(\xi_t | x_t, p_t)$ are time invariant (stationary)
 - (ii) $\xi_{t+1} \perp \!\!\! \perp (x_t, p_t) \mid (x_{t+1}, p_{t+1})$ (no direct feedback; x_t, p_t could only affect ξ_{t+1} via x_{t+1}, p_{t+1})

$$\mathsf{E}(\xi_{jt})$$

ightharpoonup $\mathsf{E}(\xi_{2t}) = \mathsf{E}(y_t + \beta w_{t+1})$ follows from

$$\mathsf{E}\bigg(y_t + \beta w_{t+1} - \frac{1}{1-\beta}\xi_{2t} + \frac{\beta}{1-\beta}\xi_{2,t+1}\bigg) = 0.$$

From log shares ratio, we have identified

$$\xi_{2t} - \xi_{1t} = d_t, \tag{5}$$

$$d_t \equiv (1-\beta) \ln(s_{2t}/s_{1t}) - (x_{2t}-x_{1t})'\gamma + (1-\beta)\alpha(p_{2t}-p_{1t}).$$

The variable d_t is an identified object.

- ▶ Obviously, we identify $E(\xi_{1t})$.
- ightharpoonup a bit of intuition: letting $\beta = 0$ (extremely impatient consumers)

$$\mathsf{E}(\xi_{2t})=\mathsf{E}(y_t).$$

Recall

$$y_t = \ln(s_{2t}/s_{0t}) - (x'_{2t}\gamma - \alpha p_{2t}) - 0$$

$$\mathsf{E}(\xi_{jt} \mid x_t, p_t)$$

Applying law of iterated expectation, we have

$$E[(1-\beta)y_t + \beta(1-\beta)w_{t+1} - \xi_{2t} + \beta\xi_{2,t+1} \mid x_t, p_t] = 0.$$
 (6)

We know

$$h(x, p) = E[(1 - \beta)y_t + \beta(1 - \beta)w_{t+1} \mid x_t = x, p_t = p],$$

▶ We are interested in

$$\pi(x, p) = \mathsf{E}(\xi_{2t} \mid x_t = x, p_t = p).$$

▶ We can derive integral equation from eq. (6)

$$\pi(x,p)-\beta\int\pi(x',p')F(dx',dp'\mid x,p)=h(x,p).$$

- ▶ We have unique solution from this integral equation.
- $E(\xi_{1t} \mid x_t, p_t) = E(\xi_{2t} \mid x_t, p_t) E(d_t \mid x_t, p_t).$

$$h(x_{t}, p_{t}) = \pi(x_{t}, p_{t}) - \beta E(\xi_{2,t+1} | x_{t}, p_{t})$$

$$= \pi(x_{t}, p_{t}) - \beta E[E(\xi_{2,t+1} | x_{t+1}, p_{t+1}, x_{t}, p_{t}) | x_{t}, p_{t}]$$

$$= \pi(x_{t}, p_{t}) - \beta E[E(\xi_{2,t+1} | x_{t+1}, p_{t+1}) | x_{t}, p_{t}]$$

$$= \pi(x_{t}, p_{t}) - \beta E(\pi(x_{t+1}, p_{t+1}) | x_{t}, p_{t})$$

$$= \pi(x_{t}, p_{t}) - \beta \int \pi(x, p) F(dx, dp | x_{t}, p_{t}).$$

$Var(\xi_t \mid x_t, p_t)$

- use $d_t = \xi_{2t} \xi_{1t}$ to get $\sigma^2(x_t, p_t)$.
- ▶ We need additional assumptions:
 - (i) $\xi_{1t}, \ldots, \xi_{Jt}$ are independent conditional on x_t, p_t
 - (ii) Assume that $\operatorname{Var}(\xi_{1t} \mid x_t, p_t) = \cdots = \operatorname{Var}(\xi_{Jt} \mid x_t, p_t) = \sigma^2(x_t, p_t)$.
- ▶ So we only need $F(\xi_{jt} | x_t, p_t)$ for each j,
- ightharpoonup and $\sigma^2(x_t, p_t)$.
- ▶ Since we have $d_t = \xi_{2t} \xi_{1t}$, we get $\sigma^2(x_t, p_t)$.
- For location scale family, mean and variance is enough.

$$F(\xi_{jt} \mid x_t, p_t)$$

- ▶ One more assumption: conditional on (x_t, p_t) , ξ_{jt} and ξ_{kt} have identical distribution excepting for their conditional mean.
- ▶ We then can nonparametrically identify $F(\xi_{jt} \mid x_t, p_t)$.
- ▶ Let $\tilde{\xi}_{jt} = \xi_{jt} \mathsf{E}(\xi_{jt} \mid x_t, p_t)$. We have

$$\underbrace{\tilde{\xi}_{2t} - \tilde{\xi}_{1t}}_{\text{iid}} = \underbrace{d_t + \mathsf{E}(\xi_{1t} \mid x_t, p_t) - \mathsf{E}(\xi_{2t} \mid x_t, p_t)}_{\text{known}}$$

- constrained deconvolution problem in statistics (Belomestinyi, 2002)
- statisticians know both existence of the solution and how to solve it

$$F(m_{t+1} \mid m_t)$$

We assume the following decomposition holds

$$F(m_{t+1} \mid m_t) = F(\xi_{t+1} \mid \xi_t) F(x_{t+1} \mid x_t, p_t) F(p_{t+1} \mid x_{t+1}, \xi_{t+1}).$$

- One interpretation: at the beginning of period t+1, manufacturers receive quality ξ_{t+1} , which depends on ξ_t . Meanwhile, x_{t+1} is generated based only on x_t and p_t . Given the quality ξ_{t+1} and x_{t+1} , manufactures determine prices for period t+1.
- ▶ The focus is then $F(\xi_{t+1} | \xi_t)$.
- ▶ The $F(p_{t+1} | x_{t+1}, \xi_{t+1})$ is identified from $F(m_{t+1})$. It is reduced form of supply side. More structural model can be attached to the supply side.

more restrictions:

(i)
$$F(\xi_{t+1} | \xi_t) = F(\xi_{1,t+1} | \xi_{1t}) \cdots F(\xi_{J,t+1} | \xi_{Jt})$$

- (ii) $\xi_{j,t+1}$ and ξ_{kt} are uncorrelated for $j \neq k$
- (iii) Assume that

$$\xi_{j,t+1} = \phi_{j0} + \phi_{j1}\xi_{jt} + \nu_{j,t+1},$$

where $\nu_{j,t+1}$ has mean zero and is independent of ξ_{jt} .

- For stationary ξ_{jt} , $\mathsf{E}(\xi_{jt}) = \phi_{j0}/(1-\phi_{j1})$.
- ▶ only need ϕ_{j1} which corresponds to autocovariance $E(\xi_{j,t+1}\xi_{jt})$.
- ▶ By

$$\mathsf{E}[(\xi_{2t}-\xi_{1t})(\xi_{2,t+1}-\xi_{1,t+1})]=\mathsf{E}(d_td_{t+1}),$$

 $\mathsf{E}(\xi_{2t}\xi_{2,t+1})$ is enough

- ▶ To get $E(\xi_{2t}\xi_{2,t+1})$,
- consider

$$\mathsf{E}\bigg[(y_t + \beta w_{t+1})(\xi_{2t} - \xi_{1t}) - \frac{1}{1-\beta}\xi_{2t}(\xi_{2t} - \xi_{1t}) + \frac{\beta}{1-\beta}\xi_{2,t+1}(\xi_{2t} - \xi_{1t})\bigg] = 0.$$

▶ We have formula,

$$E(\xi_{2,t+1}\xi_{2t}) = E(\xi_{2,t+1})E(\xi_{1t}) + \frac{E(\xi_{2t}^2) - E(\xi_{2t}\xi_{1t})}{\beta} - \frac{1-\beta}{\beta}E[(y_t + \beta w_{t+1})d_t].$$

$$E(\xi_{2t}\xi_{1t}) = E[E(\xi_{2t} \mid x_t, p_t)E(\xi_{1t} \mid x_t, p_t)].$$

- ▶ We have identified $F(\xi_{jt} \mid x_t, p_t)$, hence $F(\xi_{jt})$.
- ▶ Under the assumption $\nu_{j,t+1} \perp \!\!\! \perp \xi_{jt}$, we identify $F(\nu)$ by deconvolution.

Estimation

- ▶ Data: panel data $(s_{j,r,t}, x_{j,r,t}, p_{j,r,t})$ for market r = 1, ..., n and t = 1, 2, ..., T
- ▶ I explicitly show T = 2 case.
- ightharpoonup Asymptotic results can be derived either using big n or big T or both.
- ▶ Estimand: $\theta = (\alpha, \beta, \gamma)$, $F(m_t)$ and $F(m_{t+1} \mid m_t)$.
- ▶ not going to pursue full nonparametric estimator of $F(m_t)$ and $F(m_{t+1} \mid m_t)$ (cross-sectionally, we have only 50 states)

- two step procedure:
 - (i) estimate θ (only standard GMM involved)
 - (ii) estimate $F(m_t)$ and $F(m_{t+1} \mid m_t)$ using generated $\hat{y}_{rt}(\hat{\theta}), \hat{w}_{rt}(\hat{\theta}), \hat{d}_{rt}(\hat{\theta})$ (only sample average formulas involved)
- ▶ I calculated the influence functions of the second step estimators.
- Conclusion from the calculation: the first step estimation error does not affect the asymptotic variance of the second step estimators
- hardly surprising because the sample average formulas in the second step are linear in the generated regressors (Newey, 1994, Hahn and Ridder, 2013)

GMM first step

▶ The moments are from

$$\mathsf{E}(g_{2,1,t}(\theta_o)) = 0$$
 and $\mathsf{E}(g_{2,0,t}(\theta_o)) = 0$,

where

$$g_{2,1,t}(\theta) = [\ln(s_{2t}/s_{1t}) - (x_{2t} - x_{1t})'\gamma/(1-\beta) + \alpha(p_{2t} - p_{1t})]z_t,$$

$$g_{2,0,t}(\theta) = (y_t + \beta w_{t+1})x_{t,N}$$

- ▶ Consistent initial estimate of θ is readily available from IV regression and closed-form expression of β .
- ▶ free from dirty work about value function approximation
- ▶ free from specification about state transition

Closed form second step

- ▶ We made bivariate normal specification:
 - (i) $x_t \perp \!\!\!\perp \xi_t \mid p_t$ and $\xi_{t+1} \perp \!\!\!\perp p_t \mid p_{t+1}$.
 - (ii) Assume

$$F(\xi_{1t},\ldots,\xi_{Jt}\mid p_{1t},\ldots,p_{Jt})=F(\xi_{1t}\mid p_{1t})\cdots F(\xi_{Jt}\mid p_{Jt}).$$

(iii) For each product j,

$$\begin{pmatrix} p_{jt} \\ \xi_{jt} \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \mu_{pjt} \\ \mu_j \end{pmatrix}, \begin{pmatrix} \sigma_{pjt}^2 & \rho_j \sigma_{pjt} \sigma \\ & \sigma^2 \end{pmatrix} \right).$$

▶ By bivariate normal,

$$\mathsf{E}(\xi_{jt} \mid p_{jt}) = \mu_j + \rho_j \sigma \tilde{p}_{jt},$$

where $\tilde{p}_{jt} = (p_{jt} - \mu_{pjt})/\sigma_{pjt}$.

▶ Moreover, $F(\xi_{j,t+1} | \xi_{jt})$ is normal

- ▶ In the paper, we derived formulas for the parameters related to $F(\xi_t \mid x_t, p_t)$ and $F(\xi_{t+1} \mid \xi_t)$.
- ▶ They all have sample average form, e.g. for $\rho_2 = \text{Corr}(p_{2t}, \xi_{2t})$,

$$\hat{\rho}_2 = n^{-1} \sum_{r=1}^n \frac{(1-\beta)(\hat{y}_{r1} + \beta \hat{w}_{r2})\tilde{p}_{2,r1}}{\hat{\sigma}(1-\beta \operatorname{Corr}(p_{2,t=1}, p_{2,t=2}))}.$$

 $ightharpoonup \hat{y}$ and \hat{w} are "generated regressors",

$$\hat{y}_t = \ln(s_{2t}/s_{0t}) - x'_{2t} \frac{\hat{\gamma}}{1-\hat{\beta}} + \hat{\alpha}p_{2t},$$

$$\hat{\mathbf{w}}_t = \mathbf{x}'_{2t} \frac{\hat{\gamma}}{1 - \hat{\beta}} - \hat{\alpha} \mathbf{p}_{2t} - \ln \mathbf{s}_{2t}.$$

A few numerical exercises

- ► At most 10 products
- Per period utility during the purchasing period t is

$$u_{ijt} = \gamma x_{jt} - \alpha p_{jt} + \xi_{jt} + \varepsilon_{ijt}$$
$$= 0.25 x_{jt} - 0.5 p_{jt} + \xi_{jt} + \varepsilon_{ijt}.$$

 $E(\xi_{jt}) = 0.5$ for all j.

► Transition:

$$p_{jt} = \theta_p + \rho_j^p p_{j,t-1} + \xi_{jt} + \omega_{jt}^p$$

$$x_{jt} = \theta_x + \rho_j^x x_{j,t-1} + \omega_{jt}^x.$$

 p_{jt} is correlated with ξ_{jt} ; x_{jt} is uncorrelated with ξ_{jt} .

- ▶ Instrument z is $p_{j,t-1}$; $x_{t,IV}$ is just x_{jt} .
- $\xi_{j,t+1} = 0.25 + 0.5\xi_{jt} + \eta_{j,t+1}$
- $\beta = 0.9$

Table: Estimation with Known Discount Factor

	5 markets per period				
	$E(\xi_{jt}) = 0.5$	$\gamma =$ 0.25	$\alpha = 0.5$		
T = 50, J = 2	0.47(0.037)	0.25(0.022)	0.49(0.024)		
T = 50, J = 3	0.47(0.035)	0.25(0.018)	0.49(0.021)		
T = 50, J = 4	0.46(0.025)	0.26(0.015)	0.49(0.017)		
T = 50, J = 5	0.46(0.023)	0.25(0.010)	0.49(0.014)		
T = 50, J = 10	0.47(0.018)	0.25(0.010)	0.49(0.009)		

Table: Estimation with Unknown Discount Factor

	5 markets per period				
	$\beta=0.9$	$E(\xi_{jt}) = 0.5$	$\gamma = 0.25$	$\alpha = 0.5$	
T = 50, J = 2	0.92(0.047)	0.43(0.104)	0.20(0.109)	0.49(0.024)	
T = 50, J = 3	0.92(0.036)	0.45(0.068)	0.20(0.091)	0.49(0.021)	
T = 50, J = 4	0.92(0.035)	0.45(0.042)	0.22(0.092)	0.49(0.017)	
T = 50, J = 5	0.91(0.025)	0.46(0.025)	0.22(0.065)	0.49(0.014)	
T = 50, J = 10	0.91(0.026)	0.48(0.019)	0.23(0.016)	0.49(0.009)	

Cheers!

takeaway