Otros modelos de clasificación

Diplomado de Minería de Datos para el soporte a la toma de decisiones

Contenido

- Máquinas de soporte vectorial
 - o Ejercicio 1
- Redes neuronales
 - Ejercicio 2

- Las máquinas de soporte vectorial fueron introducidas por Boser, Guyon y Vapnik en 1992 y se volvieron populares
- Algoritmo teóricamente muy bien sustentado (Teoría de Aprendizaje Estadístico de los 60's)
- Buen desempeño empírico: se ha aplicado exitosamente en muchas y diversas áreas: bioinformática (cadenas de ADN, estructura de proteínas), computer vision (reconocimiento de imágenes y texto), etc.
- Mucha gente trabaja con ellas: machine learning, optimización, estadística, redes neuronales, análisis funcional

- Las máquinas de soporte vectorial se usan en problemas de clasificación y regresión
- Las veremos para clasificación

Clasificador lineal, sencillo

Clasificador no lineal, complicado

Máquina de soporte vectorial

- Las variables de soporte X₁,...,X_k pueden ser tanto cuantitativas como categóricas
- SVM construye un hiperplano o conjunto de hiperplanos en un espacio de dimensionalidad muy alta buscando separar lo más posible las dos clases
- Esta será la separación "óptima": buscar el hiperplano que tenga la máxima distancia a los datos
- Por eso también se les conoce como clasificadores de margen máximo

• Ejemplo en 2 dimensiones: ¿Cuál es la recta separadora óptima?

La recta no debe pasar cerca de los datos porque será pobre al clasificar a nuevas observaciones

La recta óptima debe tener la máxima distancia a los datos

 Ejemplo en 2 dimensiones: ¿Cuál es la recta separadora óptima?

El algoritmo de MSV busca la recta/plano que tenga la máxima distancia a los datos que están más cercanos

A estos datos se les llama vectores de soporte

Son los más difíciles de clasificar y son los que definen cómo será el plano de MSV

Entre más grande el margen, menor el error

Cuando los x's son linealmente separables

- Supongamos que tenemos un hiperplano: $f(x) = \beta_0 + \beta^T x$,
- Queremos que el plano sea único más cercano a los vectores de soporte sea único : $|\beta_0 + \beta^T x| = 1$
- La distancia de un vector $\mathbf{x} = (\mathbf{x}0, \mathbf{x}1, ... \mathbf{x}_n)$ a un plano se puede calcular como: $\frac{|\beta_0 + \beta^T \mathbf{x}|}{||\beta||}$.
- Entonces: distance support vectors = $\frac{|\beta_0 + \beta^T x|}{||\beta||} = \frac{1}{||\beta||}$. y el margen $M = \frac{2}{||\beta||}$
- El problema de Maximizar M equivale a:

$$\min_{\beta,\beta_0} L(\beta) = \frac{1}{2} ||\beta||^2 \text{ subject to } y_i(\beta^T x_i + \beta_0) \ge 1 \ \forall i,$$

• Se resuelve usando multiplicadores de Lagrange para encontrar las betas (ila solución es única!)

Cuando los x's <u>NO</u> son linealmente separables

Si las x's no son linealmente separables, entonces hay que usar primero las funciones kernel

 Idea: mandar los vectores X a una dimensión mucho más alta usando una función φ en donde sí sean linealmente separables

X

Cuando los x's <u>NO</u> son linealmente separables

La formulación dual del problema (créanlo), es así:

Dual problem:

$$\max L_D(a_i) = \sum_{i=1}^{I} a_i - \frac{1}{2} \sum_{i=1}^{I} a_i a_j y_i y_j \left(\mathbf{x}_i \cdot \mathbf{x}_j \right)$$
s.t.
$$\sum_{i=1}^{I} a_i y_i = 0 \ \& \ a_i \ge 0$$
Lo queremos definir así para tener productos puntos

• Conociendo las $\mathbf{a_i}$ podemos obtener los coeficientes buscados $\mathbf{w} = \sum_{i=1}^{l} a_i y_i \mathbf{x}_i$ y la predicción queda así: $f(x) = \mathbf{w} \cdot \mathbf{u} + b = (\sum_{i=1}^{l} a_i y_i \mathbf{x}_i \cdot \mathbf{u}) + b$

Cuando los x's <u>NO</u> son linealmente separables

• Sólo los vectores de soporte tendrán $(\mathbf{x}_i \cdot \mathbf{x}_j) \neq 0$ Dual problem:

$$\max L_D(a_i) = \sum_{i=1}^{l} a_i - \frac{1}{2} \sum_{i=1}^{l} a_i a_j y_i y_j \left(\mathbf{x}_i \cdot \mathbf{x}_j \right)$$

s.t.
$$\sum_{i=1}^{l} a_i y_i = 0 \& a_i \ge 0$$

2 dissimilar (orthogonal) vectors don't count at all

2 vectors that are similar but predict the same class are redundant

Insight into inner products, graphically: 2 very very similar x_i , x_j vectors that predict difft classes tend to maximize the margin width

Funciones Kernel

- ullet ϕ será la función que mapee de un espacio a otro
- $\phi(X_i)\phi(X_j)$ puede ser computacionalmente muy costoso (no lo sabemos)
- Funciones Kernel: Reemplazar a todos los productos punto por la función Kernel $K(X_i,X_i)=\phi(X_i)\bullet\phi(X_i)$

$$K(\mathbf{X_i}, \mathbf{X_j}) = \begin{cases} \mathbf{X_i} \cdot \mathbf{X_j} & \text{Linear} \\ (\gamma \mathbf{X_i} \cdot \mathbf{X_j} + \mathbf{C})^{\text{d}} & \text{Polynomial} \\ \exp\left(-\gamma \mid \mathbf{X_i} - \mathbf{X_j} \mid^2\right) & \text{RBF} \\ \tanh\left(\gamma \mathbf{X_i} \cdot \mathbf{X_j} + \mathbf{C}\right) & \text{Sigmoid} \end{cases}$$
Se usa en redes neuronales

• La función kernel K permite calcular rápidamente los productos punto en el espacio transformado

Funciones Kernel

Los Kernels generalizan la noción de similaridad del producto punto

Redes neuronales

 Vimos que las máquinas de soporte vectorial generan un único plano:

- Las redes neuronales datan de antes de los 50's
- Hacen un uso intensivo de la computadora: el problema siempre ha sido entrenarlas
- Su justificación proviene de que, bajo algunos supuestos, pueden aproximar razonablemente bien una función continua (Cybenko)
- El problema es el aprendizaje de los parámetros (no siempre es posible)
- Se dejaron un poco en el olvido y resurgieron con deep learning cuando las computadoras incrementaron su poder

Red neuronal de 1 capa intermedia

g es no lineal y suave:

 $f(t) = \arctan(t)$ $f(t) = \frac{1}{1 + e^{-t}}$

¡La cantidad de parámetros crece considerablemente!

¡Necesitamos muchos datos para entrenarlas!

sinápticos

Redes neuronales

¿Todo esto para qué? ¡Queremos minimizar el error!

$$E = \sum_{i=1}^n (c_i - y_i)^2 = \sum_{i=1}^n (c_i - f(x, w))^2$$
 c_i la etiqueta correcta
$$y_i$$
 la etiqueta que predecimos
$$y_i$$
 Los parámetros son los pesos w

- Dificultad: es una función no lineal (no como en regresión!)
- Mencionamos que el problema de las redes es entrenarlas
- Generalmente se minimiza usando algún algoritmo de descenso en gradiente $w_{ij} o w_{ij} + \eta \frac{\partial E}{w_{ij}}$

Descenso en gradiente

$$w_{ij} \rightarrow w_{ij} + \eta \frac{\partial E}{w_{ij}}$$

- Es un método de optimización
- No es trivial obtener el gradiente del error
- Para obtener el gradiente del error, se usa un método llamado propagación hacia atrás de los errores (backpropagation)
- Es muy difícil

Redes neuronales

- Además no es trivial diseñar bien la estructura de la red neuronal: ¿cuántas neuronas?, ¿cuántas capas?
- Problemas de convergencia de los algoritmos de estimación (mínimos locales o vanishing gradient)

Gracias