פרויקט – מתמטיקה בדידה – שחר פרץ – שיעורי בית 7, תרגיל 1.ב

מידע כללי

תאריך הגשה: 20.1.2024

ת.ז.: 334558962

השאלה

תהי פונקציה $A \to B$, ויהי $A \subseteq A$, נגדיר את הצמצום של $A \in X$ בתור פונקציה $f: A \to B$, ויהי $A \subseteq X$, נגדיר את הצמצום של $A \subseteq X$. כחלק מתרגיל בית 6, גם ניתנו ההגדרות השקולות הבאות:

$$f|_X := f \cap (X \times B) = \{ \langle a, b \rangle \in f \mid a \in X \}$$

יהיו $A,B,C \neq \emptyset$ קבוצות. נגדיר:

$$H: ((B \cup C) \to A) \to ((B \to A) \times (C \to A)) \tag{1}$$

$$H = \lambda h \in (B \cup C) \to A.\langle h|_B, h|_C \rangle \tag{2}$$

(B o A) imes (C o A) על על H^- ש לכך שA, B, C צ.ל. תנאי הכרחי ומספיק על

מה לא נכון בהוכחה שנתתי בשיעורי הבית

על. $B \cap C = \emptyset$ ניסיתי להוכיח ש

במהלך הגרירה השנייה, הייתי צריך להוכיח ש־H על גורר $\emptyset = C = \emptyset$ (שבדיעבד אינו נכון). שיטת ה"הוכחה" שנקטתי בה הייתה הנחה בשלילה; הנחתי בשלילה ש־H על, ו"הוכחתי" שנגרר $\emptyset = C = \emptyset$, אך זו אינה אפילו שיטה להוכחת גרירה – סה"כ כל *מה שהוכחתי באמת הוא ש־H לא על*. גישה נכונה, הייתה, לדוגמה, להניח ש־H על ולהוכיח את אשר נדרש ממני, ואז, דוגמה, להניח בשלילה ש־ $H = \emptyset$ (ולא ההפך) ולהראות שתחת ההנחה, זאת מוביל לסתירה (אבל כמובן שזה אינו אפשרי).

הוכחה מתוקנת

. נוכיח שתי גרירות שקול לכך ש־H על. נוכיח שתי גרירות ($B \cap C = \emptyset \lor |A| = 1$

- נניח $\langle f_1,f_2\rangle\in (B o A) imes (C o A)$ נוכיח על, כלומר, יהי $B\cap C=\emptyset\lor |A|=1$, נוכיח קיום . $B\cap C=\emptyset\lor |A|=1$ נוכיח $A\cap C=\emptyset\lor |A|=1$ נפלג למקרים. $A\cap C=\emptyset\lor |A|=1$
 - $:H(h)=\langle f_1,f_2
 angle$ נניח ש־h פונ', המקיימת $:H(h)=f_1\cup f_2$ נבחר $:B\cap C=\emptyset$ נניח $:B\cap C=\emptyset$
 - פונ': נוכיח מליאות וחד ערכיות: h
- $x\in B$ מליאות ב־ $B\cup C$ יהי $B\cup C$ יהי $x\in B\cup C$, נוכיח קיום $y\in A$ כך ש־ $x\in B\cup C$ מליאות ב־ $y=f_2(x)$ יהי $y=f_2(x)$, ואם $x\in C$ באופן דומה נבחר $y=f_1(x)$

- נניח . $y_1=y_2$ נוכיח . $\langle x,y_1 \rangle \in h \land \langle x,y_2 \rangle \in h$ כך ש־ y_1,y_2 ווהי . $x \in B \cup C$ בשלילה שלא כן. נפצל למקרים:
 - $y_1=y_2$ אם f_1 ח"ע אז f_1 ולכן הם ב־ f_1 , ומשום ש־ f_1 אם $(x,y_1),(x,y_2)
 ot\in S$ אז אז $x\in B\setminus C$ אם
 - $y_1=y_2$ אם f_1 "אם f_1 "א או f_1 אם $(x,y_1),(x,y_2)
 ot\in f_1$ אם או $x\in C\setminus B$ אם $(x,y_1),(x,y_2)$
 - . אם $x \in \emptyset$ אז אז $x \in C \cap B$ אם אם $x \in \emptyset$
 - :. נשתמש בכלל eta וכלל lpha של תחשיב למדא, נקבל שצ.ל:: $H(h) = \langle f_1, f_2 \rangle$ של מקיימת h

$$\langle (f_1 \cup f_2)|_B, (f_1 \cup f_2)|_C \rangle = \langle f_1, f_2 \rangle$$

ובהתחשב בזה שהתחומים של f_1 ו־ f_2 הם A,B בהתאמה שהן קבוצות זרות, ובהתאם להגדרה השקולה של הצמצום המופיע לעיל, זהו פסוק אמת.

- $h = \lambda x \in B \cup C.a$ נביח $f_1 \colon C \to A$ נביח $f_1 \colon B \to A$ ידוע $A = \{a\}$ נחיק, $a \in A$ יהי |A| = 1, וידוע $A = \{a\}$, וידוע $A \in B \cup C.a$, ונשאר להוכיח $A \in B \cup C.a$. משום שאין שום הגבלה על $A \in B \cup C.a$, ונשאר להוכיח $A \in B \cup C.a$. משום שאין שום הגבלה על $A \in B \cup C.a$, ונשאר להוכיח $A \in B \cup C.a$. משום שי $A \in B \cup C.a$ משום שאין שום הגבלה על פיכך קיים $A \in B \cup C.a$ משום שיו שום הגבלה על פיכך קיים $A \in B \cup C.a$ משום שאין שום הגבלה על פיכך קיים $A \in B \cup C.a$ משום שאין שום הגבלה על פיכף קיים $A \in B \cup C.a$ משום שאין שום הגבלה על פיים הגדרת הפונקציה הקבועה שניתנה בשיעור $A \in B \cup C.a$ מעתה ואילר, נוכיח $A \in B \cup C.a$ באמצעות הכלה דו כיוונית.
- ניהי $(x,y)\in h$: יהי $(x,y)\in h$: יהי $(x,y)\in h$: ולפי כלל $(x,y)\in h$: ולפי עקרון $(x,y)\in h$: ולפי עקרון $(x,y)\in h$: הטענה $(x,y)\in h$: הטענה $(x,y)\in h$: באופן שקול, לפי עקרון $(x,y)\in h$: בונה כי $(x,y)\in h$: שזה שקול לכך ש $(x,y)\in h$: עפר כלל $(x,y)\in h$: שזה שקול לכך ש $(x,y)\in h$: עפר כלל $(x,y)\in h$:
- נוכיח $(x,y) \in h \land x \in B$ יהי, ידוע $(x,y) \in h \land x \in B$, ולפי $(x,y) \in h \land x \in B$ יהי ידוע $(x,y) \in h \land x \in B \land x \in$

 $\mathscr{Q}.\mathscr{E}.\mathscr{F}.$ סה"כ $B\cap C=\emptyset \lor |A|=1$ סה"כ

Q.E.D. ■