تمرین شبیه سازی سری ششم علی قبله ۹۹۱۰۹۹۷۱

۱. تحقیق قضیه حد مرکزی

در این تمرین میخواهیم قضیه حد مرکزی را که ادعا میکند توزیع مجموع اعداد رندوم گاوسی است تحقیق کنیم. در این برنامه برای f عدد f عدد f عدد f در بازنامه یک حلقه تو در تو داریم که در حلقه بیرونی آرایه رندوم را میسازیم f و میانگین میگیریم و در حلقه درونی جمع دو خانه f و f را محاسبه میکنیم f شمارنده هستند). در حقیقت تمام بخش تشکیل نمودار و نشان دادن نمودار گاوسی در این یک حلقه تو در تو رخ میدهد.

لازم به ذکر است که برچسب محور های هر ۴ نمودار با یکدیگر برابر هستند به همین علت برای شلوغ نشدن تنها برای یک نمودار این برچسب ها نوشته شده اند.

The Number

برای مقایسه با تمرین ولگشت و ولنشست، میدانیم که در ولنشست با میانگین گیری از ارتفاع ها و رسم آن، نتیجه گاوسی میشود. و در ولگشت هم مجموع کاهش و افزایش موقعیت X به علت تصادفی بودن این عبارت، نتیجه گاوسی میشود.

۲. ساخت مولد با توزیع گاوسی

برای این برنامه کافیست طبق کتاب عمل کنیم. از کتاب داریم:

$$g(y_1, y_2) = g(y_1)g(y_2) = \frac{1}{2\pi\sigma^2} e^{-\frac{y_1^2 + y_2^2}{2\sigma^2}}$$
$$g(y_1, y_2)dy_1dy_2 = \frac{1}{2\pi\sigma^2} e^{-\frac{\rho^2}{2\sigma^2}\rho}d\rho d\theta$$

از این دو رابطه می توان تابع توزیع ρ و θ را خواند.

$$g_{
ho}(
ho)=rac{1}{\sigma^2}\,e^{-rac{
ho^2}{2\sigma^2}}
ho$$
 و $g_{ heta}(heta)=rac{1}{2\pi}$ حال طبق توضیحات بالا (کتاب) می توانیم متغیر های "تتا" و "رو" را تعریف کنیم.

لازم به ذکر است که میتوانیم با تعیین متغیر های X و y ، دو توزیع گاوسی در صفحه مختصات X-y برای تولید توزیع گاوسی ۲ بعدی مشخص کنیم.

برای دو متغیر "تتا" و "رو" داریم:

 $\rho = \sigma * (-2 * np.log(np.random.random()))$

 $\theta = 2 * \pi * np.random.random()$

و برای متغیر های x و y داریم:

$$x = \rho * cos(\theta)$$
 $y = \rho * sin(\theta)$

برای ۳ تعداد متفاوت N که تعداد داده های این برنامه را مشخص می کند، داریم:

برای ۲۰۰:

برای ۲۰۰۰۰

در توضیح خوب کار کردن مدل: مشاهده می کنیم که تمرکز اکثر داده ها در خط مرکز است (۰،۰) است. در هر ۳ نمودار کاملا تقارن مشخص است و می توان آن را مشاهده نمود. حتی مشاهده می کنیم که توزیع در دوایر درونی نسبت به توزیع در دوایر بیرونی، رشد نمایی دارد.