Integrales de funciones de varias variables Ingeniería

- 1 Integración de funciones de dos variables
 - Integrales dobles en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Aplicaciones: áreas y valor medio
- 2 Integrales múltiples y la fórmula del cambio de variables
 - Integrales triples en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Fórmula del cambio de variables
 - Integrales dobles en coordenadas polares
 - Integrales triples en coordenadas cilíndricas y esféricas
- 3 Ejemplos varios

- Integración de funciones de dos variables
 - Integrales dobles en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Aplicaciones: áreas y valor medio
- Integrales múltiples y la fórmula del cambio de variables
 - Integrales triples en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Fórmula del cambio de variables
 - Integrales dobles en coordenadas polares
 - Integrales triples en coordenadas cilíndricas y esféricas
- 3 Ejemplos varios

Definición de integral doble

Definición de integral doble sobre rectángulos

1 Sea f una función definida y acotada en un rectángulo R. Definimos una partición de R, formada por $n \times n$ subrectángulos y formamos la suma de Riemann $S_n = \sum_{i=1}^n \sum_{j=1}^n f(x_i, y_j) \Delta A_{ij}$. Si el límite $\lim_{\|P\| \to 0} S_n$ existe para cualquier elección de (x_i, y_j) , se dice que f es **integrable** sobre R y que la integral doble de f sobre R es el límite de las sumas S_n . La integral se denota por

$$\iint_R f(x,y)dA = \iint_R f(x,y)dx dy.$$

Interpretación: si $f(x, y) \ge 0$ la integral es un volumen

Definición de integral doble sobre otras regiones

2 Sea f una función definida y acotada en una región acotada, R. Definimos una partición de R, formada por rectángulos; consideramos sólo los rectángulos incluidos en R y formamos la suma de Riemann $S_n = \sum_{i=1}^n \sum_{j=1}^n f(x_i, y_j) \Delta A_{ij}$.

Si el límite lím $_{\|P\|\to 0}$ S_n existe, para cualquier elección de (x_i,y_j) , se dice que f es **integrable** sobre R y que la integral doble de f sobre R es el límite de las sumas S_n . La integral se denota por

$$\iint_R f(x,y)dA = \iint_R f(x,y)dx dy.$$

Propiedades de las integrales dobles

1 Si f es continua en una región cerrada y acotada R, entonces f es integrable en R.

Si f y g son funciones integrables sobre la región cerrada y acotada R, entonces:

$$2 \iint_{R} [f(x,y) + g(x,y)] dA = \iint_{R} f(x,y) dA + \iint_{R} g(x,y) dA.$$

$$3\iint_R cf(x,y)dA = c\iint_R f(x,y)dA.$$

4 Si
$$f(x,y) \le g(x,y)$$
 para todo $(x,y) \in R$,

$$\iint_{R} f(x,y)dA \leq \iint_{R} g(x,y)dA.$$

Propiedades de las integrales dobles

5 Si R_1 y R_2 son dos regiones tales que $R_1 \cap R_2 = \emptyset$ y f es acotada e integrable en cada una de ellas, entonces f es integrable en $R_1 \cup R_2$ y

$$\iint_{R_1 \cup R_2} f(x,y) dA = \iint_{R_1} f(x,y) dA + \iint_{R_2} f(x,y) dA.$$

- 1 Integración de funciones de dos variables
 - Integrales dobles en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Aplicaciones: áreas y valor medio
- 2 Integrales múltiples y la fórmula del cambio de variables
 - Integrales triples en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Fórmula del cambio de variables
 - Integrales dobles en coordenadas polares
 - Integrales triples en coordenadas cilíndricas y esféricas
- 3 Ejemplos varios

Integrales iteradas: Principio de Cavalieri

Teorema de Fubini

Teorema

Si f es una función continua en la región R y

• R es rectangular $(R = [a, b] \times [c, d])$, entonces

$$\iint_R f(x,y)dA = \int_a^b \int_c^d f(x,y)dy dx = \int_c^d \int_a^b f(x,y)dx dy.$$

• R está definida por $a \le x \le b$ y $g_1(x) \le y \le g_2(x)$, con g_1 y g_2 continuas en [a,b], entonces

$$\iint_R f(x,y)dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y)dy dx.$$

• R está definida por $c \le y \le d$ y $h_1(y) \le x \le h_2(y)$, con h_1 y h_2 continuas en [c,d], entonces

$$\iint_R f(x,y)dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y)dx dy.$$

Ejemplo

Halle el volumen del sólido que es la parte del espacio bajo el paraboloide $z = x^2 + y^2$ y sobre la región D en el plano xy, acotada por la recta y = 2x y la parábola $y = x^2$.

Α

В

(

$$\iint_{R} (x^{2} + y^{2}) dA = \int_{0}^{2} \int_{x^{2}}^{2x} (x^{2} + y^{2}) dy dx = \int_{0}^{4} \int_{\frac{y}{2}}^{\sqrt{y}} (x^{2} + y^{2}) dx dy$$

Rta: $\frac{216}{35} \approx 6,17$.

- 1 Integración de funciones de dos variables
 - Integrales dobles en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Aplicaciones: áreas y valor medio
- Integrales múltiples y la fórmula del cambio de variables
 - Integrales triples en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Fórmula del cambio de variables
 - Integrales dobles en coordenadas polares
 - Integrales triples en coordenadas cilíndricas y esféricas
- 3 Ejemplos varios

Áreas por doble integración

Definición

El área de una región plana cerrada y acotada R es

$$A=\iint_R dA.$$

¿Y para qué serviría? Para hallar el área de la región sombreada, fuera del círculo r=1 y dentro de la cardioide $r=1+\cos\theta$:

Valor medio de una función integrable en una región acotada R

Definición

Sea f una función integrable sobre una región acotada R. Entonces:

Valor promedio de
$$f$$
 sobre $R = \frac{1}{\text{área de } R} \iint_R f \, dA$.

- Integración de funciones de dos variables
 - Integrales dobles en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Aplicaciones: áreas y valor medio
- 2 Integrales múltiples y la fórmula del cambio de variables
 - Integrales triples en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Fórmula del cambio de variables
 - Integrales dobles en coordenadas polares
 - Integrales triples en coordenadas cilíndricas y esféricas
- 3 Ejemplos varios

- 1 Integración de funciones de dos variables
 - Integrales dobles en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Aplicaciones: áreas y valor medio
- 2 Integrales múltiples y la fórmula del cambio de variables
 - Integrales triples en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Fórmula del cambio de variables
 - Integrales dobles en coordenadas polares
 - Integrales triples en coordenadas cilíndricas y esféricas
- 3 Ejemplos varios

- Integración de funciones de dos variables
 - Integrales dobles en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Aplicaciones: áreas y valor medio
- 2 Integrales múltiples y la fórmula del cambio de variables
 - Integrales triples en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Fórmula del cambio de variables
 - Integrales dobles en coordenadas polares
 - Integrales triples en coordenadas cilíndricas y esféricas
- 3 Ejemplos varios

- 1 Integración de funciones de dos variables
 - Integrales dobles en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Aplicaciones: áreas y valor medio
- 2 Integrales múltiples y la fórmula del cambio de variables
 - Integrales triples en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Fórmula del cambio de variables
 - Integrales dobles en coordenadas polares
 - Integrales triples en coordenadas cilíndricas y esféricas
- 3 Ejemplos varios

- 1 Integración de funciones de dos variables
 - Integrales dobles en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Aplicaciones: áreas y valor medio
- 2 Integrales múltiples y la fórmula del cambio de variables
 - Integrales triples en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Fórmula del cambio de variables
 - Integrales dobles en coordenadas polares
 - Integrales triples en coordenadas cilíndricas y esféricas
- 3 Ejemplos varios

Otros ejemplos

1) Escriba dos integrales iteradas para hallar $\iint_R f(x, y) dA$ sobre la región R dada en el gráfico.

Otros ejemplos

2) ¿Qué calcula la integral $\int_0^1 \int_0^{2-x^2} (4-x^2-y^2) dy dx$? ¿Cuánto vale? SOLUCIÓN:

$$\int_0^1 \int_0^{2-x^2} (4-x^2-y^2) dy \, dx = \frac{158}{35} \simeq 4,5143$$

