

Security for Machine Learning

Neil Gong
ECE Department
Iowa State University
09/05/2018

2018 ISC 互联网安全大会 中国・北京 Internet Security Conference 2018 Beiling-China (原中国互联网安全大会)

Security for Machine Learning

- Integrity
 - Training
 - Deployment/Prediction
- Confidentiality
 - Users: private training and testing data
 - Service providers: confidential algorithms, models, and hyperparameters

Training a Machine Learning Model

Compromising Integrity at Training

Recommender Systems are Vulnerable to

Training Data Poisoning Attacks

- Recommender system is an important component of Internet
 - Videos, products, news, etc.
- Common belief: recommend users items matching their interests
- Our work: injecting fake training data to make recommendations as an attacker desires

Guolei Yang, Neil Zhenqiang Gong, and Ying Cai. "Fake Co-visitation Injection Attacks to Recommender Systems". In *NDSS*, 2017

Minghong Fang, Guolei Yang, Neil Zhenqiang Gong, and Jia Liu. "Poisoning Attacks to Graph-Based Recommender Systems". In *ACSAC*, 2018

Co-visitation Recommender Systems

 Key idea: Items that are frequently visited together in the past are likely to be visited together in the future

Co-visitation Recommender Systems

Autopley @

You Tube

Up next

Our Attacks

Goal: Promoting a target item

- Injecting fake co-visitations between a target item and some carefully selected items
 - The target item will appear in their recommendation lists

Can attack YouTube, Amazon, eBay, LinkedIn, etc.

Security for Machine Learning

- Integrity
 - Training
 - Deployment/Prediction: adversarial examples
- Confidentiality
 - Users: private training and testing data
 - Service providers: confidential algorithms, models, and hyperparameters

Adversarial Examples

Normal example: digit 0

Adversarial example: predicted to be 9

Adversarial Examples

- Normal example x
- Classifier C
- Adversarial example $x'=x+\delta$
- t: target label, C(x')=tMinimize d(x,x')Subject to (1) C(x')=t(2) x' is a legitimate example

Measuring Adversarial Examples

A normal example: digit 0

An adversarial example with a target label 9

Xiaoyu Cao and Neil Zhenqiang Gong. "Mitigating Evasion Attacks to Deep Neural Networks via Region-based Classification". In *ACSAC*, 2017

Observations

- Normal examples are not robust to small carefully crafted noise
 - Existence of adversarial examples
- Normal examples are robust to small *random* noise
- Adversarial examples are not robust to small random noise

Our Region-based Classification

Our Region-based Classification

Evaluations on MNIST for Carlini and Wagner

(CW) Attacks (IEEE S&P'17)

Different versions of CW attacks

Accuracy	on	normal	examples
----------	----	--------	----------

	Classification	Success Rate		
	Accuracy	CW-L ₀	CW-L ₂	CW-L∞
Standard point-based DNN	99.4%	100%	100%	100%
Adversarial training DNN	99.3%	100%	100%	100%
Distillation DNN	99.2%	100%	100%	100%
Our region-based DNN	99.4%	16%	0%	0%

Existing defenses

Mitigate adversarial examples without accuracy loss

Good Use of Adversarial Examples: (99)

Protecting Privacy

- Inference attacks: an attacker infers a user's private attributes using its public data
 - Private attributes: political view, sexual orientation, etc.
 - Public data: page likes on Facebook, rating scores, etc.
- An attacker has a classifier to infer private attributes
- A user's public data is a classification example

Good Use of Adversarial Examples: (99)

Protecting Privacy

- User adds carefully crafted noise to evade the attacker's classifier
 - Making the public data an "adversarial example"
- Key challenge: how to guarantee utility of the public data?

Security for Machine Learning

Integrity

- Training
- Deployment/Prediction: adversarial examples

Confidentiality

- Users: private training and testing data
- Service providers: confidential algorithms, models, and hyperparameters

Machine Learning as a Service (MLaaS)

 MLaaS enables users with limited computing power or limited machine learning expertise to use machine learning techniques

How MLaaS is Used?

Confidentiality for Users

- Training data
- Testing data
- Approaches
 - Trusted processors, e.g., Intel SGX
 - Cryptographic techniques, e.g., secure multi-party computation
 - Statistical methods, e.g., differential privacy

Training a Machine Learning Model

Confidentiality for Service Providers

Stealing Hyperparameters

- We propose a general framework to steal hyperparameters in MLaaS
- Save economical costs without sacrificing model performance
- New defenses are needed

Binghui Wang and Neil Zhenqiang Gong. "Stealing Hyperparameters in Machine Learning". In *IEEE Symposium on Security and Privacy*, 2018.

Conclusion

- Security is a big challenge for machine learning
- Integrity
 - Training
 - Deployment/Prediction
- Confidentiality
 - Users
 - Service providers