Al volume = r. [a(Rly) - r (y.)) dy = T [a (b+ Ja-y) - (b-Ja-y) dy = T. (a (46)a-y2)dy = . 4 br = 12 dy let t= y , It = ady 4br Ja Ja-y dy = 46 x 5 1 Ji-t adt = 4br. (at) = 2 a br Az. S= 21 5 / 1(2) JI+y(x) dx $f(x) = \sqrt{R^2 - x^2}$, $(f'(x))^2 = (\frac{1}{2} \frac{-2x}{R^2 - x^2})^2 = \frac{x}{R^2 - x}$ $2\pi \int_0^h f(x) \int_{\mathbb{R}^2 - \chi^2}^h dx = 2\pi R \int_0^h dx = 2\pi R \int$ A3. (a) $f'(x)=e^{x}>0$, $f''(x)=e^{x}>0$, so the graph of $y=e^{x}$ is always concave (b) Area of ABCD < Sind exdx < Area of AEFD => = (ABtCD) Unb-Ina) < Sind exdx < - (elmetelab) Unb-Ina because M is the mid point of BC, so e lastlab = = (AB+CD)

= e lastlab (ha +lnb) < Sinb e x dx < = (e lna + e lnb) (lnb · lna)

清華大学 Tsinghua University

(c)
$$\int hab e^{x} dx = e^{lnb} - e^{lna} = b-a$$

$$\int ha = \frac{hat lab}{2} (lnb - lna) < b-a < \left(\frac{e^{lna} t e^{lnb}}{2}\right) (lnb - lna)$$

$$\int \frac{hat lab}{2} (lnb - lna) < b-a < \left(\frac{e^{lna} t e^{lnb}}{2}\right) (lnb - lna)$$

$$\Rightarrow \int e^{ha} \cdot \int e^{hb} < \frac{b-a}{lnb-lna} < \frac{e^{ha}}{2} + \frac{e^{hb}}{2}$$

$$\Rightarrow \int ab < \frac{b-a}{lnb-lna} < \frac{a+b}{2}$$

A4 let
$$y = \log x^{x} = x \log x$$
, $x^{x} = e^{y}$

when $0 \le x \le \theta$: $0 \le \log x \le 1 \implies 0 \le x \log x \le x \implies \lim_{x \to 0^+} x \log x = \lim_{x \to 0^+} x = 0 \text{ (Dambrich)}$

20 lim
$$x^{\alpha} = \lim_{\alpha \to 0^+} e^{\alpha/\log x} = e^{\alpha} = 1$$

As
$$\sec^{-1}(x) \in [0, \pi]$$
 and let $\sec^{-1}(x) = \theta$
we know that $\sec(\pi - \theta) = \frac{1}{\cos(\pi - \theta)} = -\sec\theta = -\pi$
then $\sec^{-1}(-x) = \pi - \theta = \pi - \sec^{-1}(\pi)$

BI loopt of
$$c' = \int_{c}^{d} \int \frac{dt \cdot y}{du} \cdot j + \left(\frac{dg \cdot y}{du} - j\right)^{2} du$$

Let $t = y(u)$

$$= \int_{c}^{d} \int \frac{dt \cdot y}{du} \cdot j + \left(\frac{dg}{dy} \times \frac{dy}{du}\right)^{2} du$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot \frac{dy}{du} \cdot j + \left(\frac{dg}{dy} \times \frac{dy}{du}\right)^{2} du$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot x \cdot \left(\frac{dt}{dy}\right)^{2} + \left(\frac{dg}{dy}\right)^{2} du$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} \times \frac{dy}{du} du$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

$$= \int_{c}^{d} \int \frac{dt}{dy} \cdot t \cdot \left(\frac{dg}{dy}\right)^{2} dy$$

so the curve is independent of the parametrization.