LICEUM OGÓLNOKSZTAŁCĄCE PRZYMIERZA RODZIN im. JANA PAWŁA II

TO MIEJSCE POZOSTAW WOLNE!

EGZAMIN WSTĘPNY Z MATEMATYKI — 1997 r.

Rozwiąż 10 zadań. Odpowiedź (wynik) wpisz do ramki znajdującej się po prawej stronie. Wolne miejsce znajdujące się pod tekstem każdego zadania przeznaczone jest na jego rozwiązanie. Oto przykład:

XX. Znajdź takie trzy kolejne liczby całkowite, których suma wynosi 60.

19, 20, 21

Te liczby to: x, x+1, x+2. Zatem x+(x+1)+(x+2)=60. Stąd wynika, że 3x+3=60, czyli 3x=57, a więc x=19. Tymi trzema liczbami są: 19, 20 i 21.

ZADANIA

1. Oblicz	$\frac{2^{-4} \cdot 2^{\frac{7}{2}}}{\sqrt[4]{64} \cdot \frac{1}{8}} =$	

2. Dwóch hazardzistów gra w karty. Po każdej partii przegrywający płaci wygrywającemu 10 zł. Ile rozegrano partii, jeśli jeden z graczy wygrał 15 partii, ale łącznie przegrał 150 zł?	
3. Wyznacz wszystkie liczby całkowite spełniające jednocześnie następujące dwie nierówności: $(x-1)^2+(2x+1)^2<5\cdot(x-1)(x+1),\\ (-2)\cdot(2x+1)-(-3)\cdot(5-x)\leq 41.$	
4. W pewnym państwie podatki płaci się w następujący sposób: – jeśli dochód nie był większy od 1000 dukatów, to płaci się 10% od całej zarobionej kwoty; – jeśli dochód był większy od 1000 dukatów, ale nie większy od 2000 dukatów, to płaci się 10% od pierwszych zarobionych 1000 dukatów i 20% od nadwyżki powyżej 1000 dukatów; – jeśli dochód był większy od 2000 dukatów, to płaci się 10% od pierwszych 1000 dukatów, 20% od następnych 1000 dukatów i 30% od nadwyżki powyżej 2000 dukatów. Od jakiej kwoty zapłaci się 318 dukatów podatku?	

5. Trapez równoramienny $ABCD$ ma podstawy AB i CD długości odpowiednio 7 cm i 5 cm oraz wysokość $h=4$ cm. Przedłużenia ramion BC i AD przecinają się w punkcie E . Ile cm ma wysokość trójkąta DCE opuszczona z wierzchołka E na podstawę DC ?	
6. W trójkącie ABC poprowadzono wysokość CD . Oblicz długość boku BC , jeśli $ AB =21$ cm, $ AC =20$ cm, $ CD =12$ cm.	
7. Oblicz $\cos \alpha$ i t g α , jeśli wiesz, że $\sin \alpha = \frac{7}{25}$.	
8. Wyznacz współczynniki a i b , jeśli wiesz, że wykres funkcji liniowej $y=ax+b$ jest prostą przechodzącą przez punkt $A=(1,2)$ i równoległą do wykresu funkcji $y=5x+1$.	

9. He stopni ma kąt ostry między przekątnymi AE i BH dziewięciokąta foremnego ABCDEFGHI?	
10. Na pewnej wyspie droga biegnąca wokół wyspy wzdłuż wybrzeża łączy kolejno pięć miast A, B, C, D, E. Odległości między tymi miastami wynoszą: – z A do B: 80 km, – z B do C: 50 km, – z C do D: 60 km, – z D do E: 140 km, – z E do A: 70 km. Do każdego miasta codziennie musi dojechać pewna liczba ciężarówek z lodami: – do A: 3 ciężarówki, – do B: 2 ciężarówki, – do C: 4 ciężarówki, – do D: 3 ciężarówki, – do E: 4 ciężarówki, W którym mieście należy zbudować fabrykę lodów, by łączny koszt transportu był jak najmniejszy? Uwaga: koszt transportu z miasta X do miasta Y obliczamy mnożąc liczbę ciężarówek przez liczbę kilometrów na najkrótszej drodze z X do Y.	