# Лекция 9

# 4. Численные методы одномерной оптимизации

#### 4.1. Постановка задачи

Пусть X — некоторое подмножество  $\mathbb{R}$ , f(x) — числовая функция, определённая на  $X, f: X \to \mathbb{R}$ . Будем рассматривать задачу минимизации функции f(x) на множестве X. Напомним некоторые определения из математического анализа.

Точка  $x_* \in X$  называется точкой минимума функции f(x) на множестве X, если  $f(x_*) \leq f(x)$  для всех  $x \in X$ ; величина  $f(x_*)$  называется наименьшим или минимальным значением f(x) на X и обозначают  $\min f(x) = f(x_*)$ . Множество всех точек минимума f(x) на X обозначается через  $X_*$ .

В зависимости от свойств множества X и функции f(x) множество  $X_*$  может содержать одну, несколько или бесконечно много точек, а также возможны случаи, когда  $X_*$  пусто.

Пример 1.

- а) если  $f(x) = \ln x$ , X = (0, 1], то  $X_* = \emptyset$ ;
- б) если  $f(x) = x^2$ , X = [-1, 1], то  $X_* = \{0\}$ ;
- в) если  $f(x) = \sin^2(\pi x), X = \mathbb{R}$ , то  $X_* = \mathbb{Z}$ .

Функция f(x) называется ограниченной снизу на множестве X, если существует такое число M, что  $f(x) \ge M$  для всех  $x \in X$ . Легко видеть, что функция f(x)не ограничена снизу тогда и только тогда, когда существует последовательность  $\{x_n\} \subset X$ , для которой  $\lim f(x_n) = -\infty$ .

Пусть функция f(x) ограничена снизу на множестве X. Тогда число  $f_*$  называется нижней гранью f(x) на X, если:

- 1.  $f(x) \ge f_*$  при всех  $x \in X$ ;
- 2. для всякого  $\varepsilon > 0$  найдётся точка  $x_{\varepsilon} \in X$ , для которой  $f(x_{\varepsilon}) < f_* + \varepsilon$ . Если функция f(x) не ограничена снизу на множестве X, то в качестве нижней

грани f(x) на X принимается  $f_* = -\infty$ . Нижнюю грань f(x) на X обозначают через  $\inf_{x \in X} f(x) = f_*.$ 

Если  $X_* \neq \emptyset$ , то, очевидно, что

$$\inf_{x \in X} f(x) = \min_{x \in X} f(x) = f(x_*).$$

В этом случае говорят, что функция f(x) на X достигает нижней грани. Подчеркнём, что  $\inf_{x \in X} f(x) = f_*$  существует всегда, а  $\min_{x \in X} f(x) = f_*$  может не существовать.

Пример 2. Пусть

$$f(x) = \frac{1}{1+x^2}, \quad x \in \mathbb{R}.$$

В этом случае  $\inf_{x\in X}f(x)=0$ , а  $\min_{x\in X}f(x)$  не существует. Последовательность  $\{x_n\}\subset X$  называется минимизирующей для функции f(x)на множестве X, если

$$\lim_{n \to \infty} f(x_n) = \inf_{x \in X} f(x) = f_*.$$

Из определения и существования нижней грани следует, что минимизирующая последовательность всегда существует.

Последовательность  $\{x_n\}$  сходится к множеству X, если

$$\lim_{n \to \infty} d(x_n, X) = 0, \quad d(x_n, X) = \inf_{x \in X} |x_n - x|.$$

Заметим, что если  $X_* \neq \emptyset$ , то всегда существует минимизирующая последовательность, сходящаяся к  $X_*$ ; например, можно взять стационарную последовательность  $x_n = x_*$  (n = 1, 2, ...), где  $x_*$  — какая-либо точка из  $X_*$ . Следующий пример показывает, что не всякая минимизирующая последовательность сходится к  $X_*$ ,  $X_* \neq \emptyset$ .

Пример 3. Пусть

$$f(x) = \frac{x^2}{1 + x^4}, \quad X = \mathbb{R}.$$

Очевидно, здесь  $f_*=0$  и  $X_*=\{0\}$ . Последовательность  $x_n=n\ (n=1,2,\dots)$  является минимизирующей, так как  $\lim_{n\to\infty}f(n)=0$ , но  $d(x_n,X_*)=n$  не стремится к нулю.

Условимся задачу на минимум записывать в виде:

$$f(x) \to \min, \quad x \in X.$$
 (1.1)

Получить точное решение задачи (1.1) удаётся лишь в редких случаях. Поэтому на практике строят минимизирующую последовательность  $\{x_n\}$ , сходящуюся ко множеству  $X_*$ , и в качестве приближения для  $f_*$  и точки  $x_* \in X_*$  берут соответственно величину  $f(x_n)$  и точку  $x_n$  при достаточно большом n.

Как показывает пример 3, не всякая минимизирующая последовательность может быть использована для получения приближённого решения задачи (1.1). Мы будем рассматривать лишь такие задачи, у которых любая минимизирующая последовательность сходится к  $X_*$ . Один такой класс задач даётся следующей теоремой, называемой  $M_*$ 

Теорема 1.1. Пусть  $X \subset \mathbb{R}$  — замкнутое и ограниченное множество, функция f(x) непрерывна на X. Тогда f(x) ограничена снизу на X, множество  $X_*$  точек минимума f(x) на X непусто, замкнуто и любая минимизирующая последовательность  $\{x_n\}$  сходится  $\kappa$   $X_*$ .

# 4.2. Унимодальные функции

Функция f(x) называется унимодальной на отрезке X = [a, b], если она непрерывна на [a, b] и существуют числа  $\alpha$  и  $\beta$ ,  $a \le \alpha \le \beta \le b$ , такие, что:

- 1) если  $a < \alpha$ , то f(x) строго убывает на  $[a, \alpha]$ ;
- 2) если  $\beta < b$ , то f(x) строго возрастает на  $[\beta, b]$ ;
- 3) при  $x \in [\alpha, \beta]$   $f(x) = f_* = \min_{x \in [a,b]} f(x)$ , так что  $X_* = [\alpha, \beta]$ .

Отметим, что возможно вырождение в точку одного или двух отрезков из  $[a, \alpha]$ ,  $[\alpha, \beta]$  и  $[\beta, b]$ . В частности, если  $\alpha = \beta$ , то f(x) называется *строго унимодальной* на отрезке [a, b].

Из определения вытекают следующие свойства унимодальных функций.

- 1. Любая из точек локального минимума унимодальной функции является и точкой её глобального минимума на отрезке [a,b].
- **2.** Функция, унимодальная на отрезке [a,b], является унимодальной и на любом меньшем отрезке  $[c,d] \subset [a,b]$ .

**3.** Пусть f(x) — унимодальная функция на отрезке [a,b] и  $a \le x_1 < x_2 \le b$ . Тогда:

$$f(x_1) \le f(x_2) \quad \Rightarrow \quad x_* \in [a, x_2];$$
  

$$f(x_1) > f(x_2) \quad \Rightarrow \quad x_* \in [x_1, b],$$

$$(2.1)$$

где  $x^*$  — одна из точек минимума f(x) на отрезке [a,b].

### 4.3. Метод деления отрезка пополам

Пусть функция f(x) — унимодальная на отрезке [a,b]. Поиск минимума f(x) на [a,b] начинается с выбора двух точек  $x_1$  и  $x_2$ :

$$x_1 = \frac{b+a-\delta}{2}, \quad x_2 = \frac{b+a+\delta}{2},$$
 (3.1)

где  $\delta > 0$  — малое число. В качестве нового отрезка берут либо  $[a,x_2]$ , либо  $[x_1,b]$ . При этом отношение длин нового и исходного отрезков

$$\tau = \frac{b - x_1}{b - a} = \frac{x_2 - a}{b - a}$$

близко к 1/2, этим и объясняется название метода. В конце вычислений в качестве приближённого значения  $x_*$  берут середину последнего из найденного отрезка.

Опишем алгоритм метода деления отрезка пополам.

- **1.** Определить  $x_1$  и  $x_2$  по формулам (3.1). Вычислить  $f(x_1)$  и  $f(x_2)$ .
- **2.** Сравнить  $f(x_1)$  и  $f(x_2)$ . Если  $f(x_1) \leq f(x_2)$ , то перейти к отрезку  $[a,x_2]$ , положив  $b=x_2$ , иначе к отрезку  $[x_1,b]$ , положив  $a=x_1$ .
- 3. Найти достигнутую точность  $\varepsilon_n = \frac{b-a}{2}$ . Если  $\varepsilon_n > \varepsilon$ , то возвращаемся к 1. если  $\varepsilon_n \le \varepsilon$ , то завершить поиск  $x_*$ , перейдя к 4.
  - **4.** Положить  $x_* \approx \overline{x} = \frac{a+b}{2}$ ,  $f_* \approx f(\overline{x})$ .

После n итераций длина отрезка поиска станет

$$\Delta_n = \frac{b-a}{2^n} + \left(1 - \frac{1}{2^n}\right)\delta. \tag{3.2}$$

При этом будет достигнута точность определения точки минимума

$$\varepsilon_n = \frac{\Delta_n}{2} = \frac{b-a}{2^{n+1}} + \left(1 - \frac{1}{2^n}\right) \frac{\delta}{2}.$$
(3.3)

Исходя из условия  $\varepsilon_n \leq \varepsilon$ , получим число итераций, необходимое для определения  $x_*$  с точностью  $\varepsilon$ :

$$n \ge \log_2 \frac{b - a - \delta}{2\varepsilon - \delta}.\tag{3.4}$$

Величина  $\delta$  выбирается пользователем и должна находиться в интервале  $(0, 2\epsilon)$ .

#### 4.4. Метод золотого сечения

Золотым сечением отрезка называют деление отрезка на две части так, чтобы отношение длины большей части отрезка к длине всего отрезка было равно отношению длины меньшей части к большей. Пусть отрезок имеет длину l и точка деления делит его на две части  $l_1$ ,  $l_2$ :  $l_1 > l_2$ ,  $l_1 + l_2 = l$ . По условию

$$\frac{l_1}{l} = \frac{l_2}{l_1}.$$

Следовательно,

$$l_1^2 = l_2 l = l_2 (l_1 + l_2).$$

Разделив обе части этого равенства на  $l_1^2$ , получим квадратное уравнение для определения  $\tau = l_2/l_1$ :

$$\tau^2 + \tau - 1 = 0.$$

Отбрасывая отрицательный корень, находим

$$\tau = \frac{\sqrt{5} - 1}{2} \approx 0,618033988.$$

Золотое сечение отрезка [a,b] производят две симметрично расположенные точки (рис. 4.1):

$$x' = a + (1 - \tau)(b - a), \quad x'' = a + \tau(b - a). \tag{4.1}$$



Рис. 1. Золотое сечение отрезка

Легко проверяется, что

$$\frac{x'-a}{x''-a} = \frac{x''-x'}{x'-a}, \quad \frac{b-x''}{b-x'} = \frac{x''-x'}{b-x''}.$$

Таким образом, точка x', в свою очередь, производит золотое сечение отрезка [a, x''], а точка x'' — золотое сечение отрезка [x', b].

Рассмотрим метод золотого сечения. Пусть на отрезке [a, b] задана унимодальная функция F. Необходимо найти минимум F на [a, b].

Удобно обозначить  $[a_0,b_0]=[a,b]$ . Пусть точки  $x_0'$  и  $x_0''$  осуществляют золотое сечение отрезка  $[a_0,b_0]$  (по формулам (4.1)). Вычислим значения  $F(x_0')$ ,  $F(x_0'')$ . Если  $F(x_0') < F(x_0'')$ , то, ввиду унимодальности функции F, её минимум  $x_*$  находится на отрезке  $[a_0,x_0'']$ . Положим  $a_1=a_0$  и  $b_1=x_0''$ . Если же  $F(x_0') \ge F(x_0'')$ , то  $x_* \in [x_0',b_0]$  и мы полагаем  $[a_1,b_1]=[x_0',b_0]$ .

После k шагов получим интервал  $[a_k,b_k]$ . Точки  $x_k'$  и  $x_k''$  осуществляют золотое сечение отрезка  $[a_k,b_k]$ . Сравнивая значения  $F(x_k')$  и  $F(x_k'')$ , положим  $[a_{k+1},b_{k+1}]$  равным отрезку  $[a_k,x_k'']$ , если  $F(x_k') < F(x_k'')$ , и равным  $[x_k',b_k]$  в противном случае. В качестве очередного приближения к  $x_*$  можно взять любую точку  $x_{k+1} \in [a_{k+1},b_{k+1}]$ .

При использовании метода золотого сечения после сужения интервала  $[a_k, b_k]$ значение функции в одной из внутренних точек нового интервала  $[a_{k+1},b_{k+1}]$  оказывается известным: в точке  $x''_{k+1} = x'_k$  при интервале  $[a_{k+1}, b_{k+1}] = [a_k, x''_k]$  или в точке  $x'_{k+1} = x''_k$  при интервале  $[a_{k+1}, b_{k+1}] = [x'_k, b_k]$ . Так как из формул (4.1) следует

$$x_k'' - a_k = b_k - x_k' = \tau (b_k - a_k),$$

то получаем

$$b_{k+1} - a_{k+1} = \tau (b_k - a_k), \quad k = 0, 1, \dots$$
 (4.2)

Из соотношения (4.2) легко получить равенство

$$b_k - a_k = \tau^k (b - a), \quad k = 0, 1, \dots$$
 (4.3)

Отсюда видно, что  $b_k - a_k \to 0$  при  $k \to \infty$ . Процесс останавливают при достаточно малом отрезке  $[a_k, b_k]$ . Приведём оценку погрешности после N шагов

$$|x_N - x_*| \le \tau^N (b - a).$$
 (4.4)

# Лекция 10

### 4.5. Выпуклые функции

Функция f(x), заданная на отрезке [a,b], называется выпуклой на этом отрезке, если для всех x',  $x'' \in [a,b]$  и произвольного числа  $\alpha \in [0,1]$  выполняется неравенство

$$f[\alpha x' + (1 - \alpha)x''] \le \alpha f(x') + (1 - \alpha)f(x''). \tag{5.1}$$

Перечислим основные свойства выпуклых функций.

- **1.** Если функция f(x) выпукла на [a,b], то на любом отрезке  $[x',x''] \subset \subset [a,b]$  её график расположен не выше хорды, проведённой через точки графика с абсциссами x' и x''.
- **2.** Дифференцируемая на отрезке [a,b] функция f(x) выпукла на этом отрезке тогда и только тогда, когда производная f'(x) является возрастающей функцией на отрезке [a,b].
- **3.** Дважды дифференцируемая на отрезке [a,b] функция f(x) выпукла на этом отрезке тогда и только тогда, когда для всякого  $x \in [a,b]$  выполняется неравенство  $f''(x) \ge 0$ .
- **4.** Условие выпуклости для дифференцируемой на отрезке [a,b] функции f(x) означает, что на этом отрезке любая касательная к графику f(x) лежит не выше этого графика.
- **5.** Если f(x) выпуклая дифференцируемая на отрезке [a,b] функция и в точке  $x_* \in [a,b]$  выполняется равенство

$$f'(x_*) = 0, (5.2)$$

то  $x_*$  является точкой глобального минимума f(x) на [a, b].

Таким образом, равенство (5.2) для выпуклой дифференцируемой функции является не только необходимым условием глобального минимума, но и его достаточным условием.

**6.** Всякая выпуклая непрерывная на отрезке [a,b] функция является и унимодальной на этом отрезке.

# 4.6. Метод средней точки

Если определение значений производной f'(x) не представляет затруднений, то в процедуре исключения отрезков метода деления отрезка пополам вычисление двух значений f(x) вблизи середины очередного отрезка можно заменить вычислением одного значения f'(x) в его средней точке  $\overline{x} = (a+b)/2$ .

В самом деле, если  $f'(\overline{x}) > 0$ , то точка  $\overline{x}$  лежит на участке строгого возрастания f(x), поэтому  $x_* < \overline{x}$ , и точку минимума следует искать на отрезке  $[a, \overline{x}]$ . При  $f'(\overline{x}) < 0$  точка  $\overline{x}$  лежит на участке строгого убывания f(x), поэтому  $x_* > \overline{x}$ , и точку минимума следует искать на отрезке  $[\overline{x}, b]$ . Равенство  $f'(\overline{x}) = 0$  означает, что точка минимума найдена точно:  $x_* = \overline{x}$ .

Такое исключение отрезков требует на каждой итерации только одного вычисления f'(x) и уменьшает отрезок поиска ровно в два раза.

Опишем алгоритм метода средней точки.

1. Положить  $\overline{x} = \frac{a+b}{2}$ . Вычислить  $f'(\overline{x})$ .

- **2.** Проверка на окончание поиска: если  $|f'(\overline{x})| \le \varepsilon$ , то положить  $x_* = \overline{x}, f_* \approx f(\overline{x})$  и завершить поиск, иначе перейти к **3**.
- **3.** Сравнить  $f'(\overline{x})$  с нулём. Если  $f'(\overline{x}) > 0$ , то продолжить поиск на отрезке  $[a, \overline{x}]$ , положив  $b = \overline{x}$ , иначе перейти к отрезку  $[\overline{x}, b]$ , положив  $a = \overline{x}$ . Перейти к 1.

#### 4.7. Метод хорд

Как уже отмечалось, равенство f'(x) = 0 является необходимым и достаточным условием глобального минимума выпуклой дифференцируемой функции f(x). Поэтому если на концах отрезка [a,b] производная f'(x) имеет разные знаки, т.е. f'(a)f'(b) < 0, то на интервале (a,b) f'(x) обращается в нуль.

Рассмотрим метод хорд для поиска корня уравнения F(x)=0 на отрезке [a,b], F(a)F(b)<0. Построим прямую, проходящую через точки (a,F(a)) и (b,F(b)), т. е. построим хорду. Хорда

$$y = F(a) + \frac{F(b) - F(a)}{b - a}(x - a).$$

пересекает ось абсцисс в точке

$$\widetilde{x} = a - \frac{F(a)}{F(b) - F(a)} (b - a).$$

Далее вычисляется  $F(\overline{x})$ . В зависимости от знака  $F(\overline{x})$  выбирается интервал  $[a, \overline{x}]$  или  $[\overline{x}, b]$ .

Опишем алгоритм метода хорд.

**1.** Найти  $\widetilde{x}$  по формуле:

$$\widetilde{x} = a - \frac{f'(a)}{f'(b) - f'(a)} (b - a).$$
 (7.1)

Вычислить  $f'(\widetilde{x})$ . Перейти к 2.

- **2.** Проверка на окончание поиска: если  $|f'(\widetilde{x})| \le \varepsilon$ , то положить  $x_* = \widetilde{x}, f_* \approx f(\widetilde{x})$  и завершить поиск, иначе перейти к **3**.
- **3.** Сравнить  $f'(\widetilde{x})$  с нулём. Если  $f'(\widetilde{x}) > 0$ , то продолжить поиск на отрезке  $[a,\widetilde{x}]$ , положив  $b = \widetilde{x}$ , иначе перейти к отрезку  $[\widetilde{x},b]$ , положив  $a = \widetilde{x}$ . Перейти к 1.

#### 4.8. Метод Ньютона

Будем считать, что f(x) является дважды непрерывно дифференцируемой выпуклой функцией. Пусть  $x_k$  — приближённое значение точки минимума, полученное на k-й итерации. Аппроксимируем f(x) рядом Тейлора:

$$f(x) \approx f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2.$$
 (8.1)

Как известно, парабола  $y = A + Bx + Cx^2$ , C > 0, достигает минимума в точке x = -B/2C. Используем этот факт, находим следующее приближение к точки минимума:

$$x_{k+1} = x_k - \frac{f'(x_k)}{f'(x_k)}. (8.2)$$

#### 4.9. Метод парабол

Пусть на плоскости (x, y) даны три точки

$$(x_1, y_1), (x_2, y_2), (x_3, y_3),$$

где  $x_1, x_2, x_3$  различны. Соответствующий полином Лагранжа:

$$L(x) = \frac{(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)}y_3.$$
(9.1)

Обозначим

$$\Delta = (x_2 - x_1)(x_3 - x_1)(x_3 - x_2).$$

Запишем L(x) в виде:

$$L(x) = \frac{1}{\Delta}((x-x_2)(x-x_3)(x_3-x_2)y_1 - (x-x_1)(x-x_3)(x_3-x_1)y_2 + (x-x_1)(x-x_2)(x_2-x_1)y_3).$$

Пусть  $L(x) = Ax^2 + Bx + C$ . Тогда

$$A = \frac{1}{\Delta} \left\{ (x_3 - x_2)y_1 - (x_3 - x_1)y_2 + (x_2 - x_1)y_3 \right\}$$

$$B = \frac{1}{\Delta} \left\{ -(x_3^2 - x_2^2)y_1 + (x_3^2 - x_1^2)y_2 - (x_2^2 - x_1^2)y_3 \right\}$$

$$C = \frac{1}{\Delta} \left\{ x_2 x_3 (x_3 - x_2)y_1 - x_1 x_3 (x_3 - x_1)y_2 + x_1 x_2 (x_2 - x_1)y_3 \right\}.$$

$$(9.2)$$

Предполагая, что A > 0, найдём

$$x_{min} = -\frac{B}{2A}, \quad y_{min} = -\frac{B^2}{4A} + C.$$
 (9.3)

Опишем метод парабол. Рассмотрим унимодальную на отрезке [a,b] функцию f(x). Выберем три точки  $x_1,\ x_2$  и  $x_3$  отрезка [a,b], для которых выполняются неравенства

$$x_1 < x_2 < x_3, \quad f(x_1) \ge f(x_2) \le f(x_3).$$
 (9.4)

Построим интерполяционный трёхчлен Лагранжа, проходящий через точки  $(x_1, f(x_1))$ ,  $(x_2, f(x_2))$ ,  $(x_3, f(x_3))$  графика функции f(x). Будем считать, хотя бы одно из неравенств (9.4) для f(x) является строгим. Если  $f(x_1) = f(x_2) = f(x_3)$ , то из унимодальности f(x) следует, что она достигает минимума в каждой точке отрезка  $[x_1, x_3]$ . Тогда из (9.4) следует, что ветви искомой параболы направлены вверх, а точка минимума трёхчлена принадлежит отрезку  $[x_1, x_3]$ .

Определяя коэффициенты трёхчлена по формулам (9.2), найдём точку минимума  $\overline{x}$  по формуле (9.3). Выберем новые точки  $x_1$ ,  $x_2$  и  $x_3$ , удовлетворяющие (9.4). Далее описанная процедура повторяется с новыми точками.