DEEP REINFORCEMENT LEARNING

Markus Hofmarcher, Marius-Constantin Dinu March 2021 LIT AI LAB Institute for Machine Learning

RECAP: IMITATION LEARNING

Imitation Learning (IL)

Given: Demonstrations or demonstrator

Goal: Train a policy to mimic demonstrations

Applied: When it is easier to demonstrate the desired behavior and learn a direct policy, rather than defining a reward function

Imitation Learning (IL)

- Powerful way of overcoming problems when naive exploration is not enough, or when rewards are sparse.
- Provide good initial biases or learning initialization for online methods.
- Transfers part of the learning to a Supervised Learning setting.
 - classifier for discrete actions
 - □ regressor for continuous actions

RECAP: BEHAVIORAL CLONING

Overview

Behavioral Cloning

Notation & Terminology

- State $s \in \mathcal{S}$, actions $a \in \mathcal{A}$, observations $o \in \mathcal{O}$
- State transition p(s'|s, a)
- Trajectory τ
- Data set $\mathcal{D} = \{(s_i, a_i)\}_{1 \leq i \leq N}$ of length N
- Expert policy π*
- Learned policy π_{θ}
- State distribution over the expert dataset, $p_{\text{data}}(s)$
- State distribution over the learned policy, $p_{\pi_{\theta}}(s)$

Behavioral Cloning

Behavioral Cloning

Very Simple. The goal of Behavioral cloning (BC) is to learn a policy that is at least as good as the policy from what the demonstrations were obtained. [Bain and Sammut, 1995]

- The demonstrations must contain state and actions.
- The policy π_{θ} can be learned directly by Supervised Learning.

Learning objective:

$$\underset{\theta}{\operatorname{argmin}} \ \mathrm{E}_{s \sim p_{\mathrm{data}}} \left[\mathcal{L}(\pi^*(s), \pi_{\theta}(s)) \right] \tag{1}$$

Behavioral Cloning Loss function

The loss function depends on the action space, for example:

mean squared error for continuous actions

$$\mathcal{L}_{BC}(\mathcal{D}, \theta) := \frac{1}{N} \sum_{k=1}^{N} (\pi_{\theta}(s_k) - a_k)^2$$
 (2)

cross-entropy loss for discrete actions

$$\mathcal{L}_{\mathrm{BC}}(\mathcal{D}, \theta) := -\frac{1}{N} \sum_{k=1}^{N} \log \pi_{\theta}(a_k | s_k)$$
 (3)

Distribution Shift and Compounding Error

- BC treats Imitation Learning as a standard Supervised Learning problem.
- In Supervised Learning, we assume that training and test data are independent and identically distributed (i.i.d.).
- **Distribution Shift:** this is not the case in Imitation Learning
 - ☐ Training data can be i.i.d (i.e. sampling from a buffer)
 - □ Test data is not i.i.d! Policy prediction of actions affects future states via the state transition p(s' | s, a)
- Compounding errors accumulate and grow quadratically with time [Ross and Bagnell, 2010]

Compounding Error

Intuitively, the reason this grows quadratically in T is because as soon as π_{θ} makes a mistake, it could end up in new states that were not visited by π^* , and always incur maximal cost at each step from then on. [Ross and Bagnell, 2010].

INTERACTIVE EXPERT

One Solution: DAgger

- Data Aggregation, DAgger [Ross et al., 2011]
- Query expert at any state at training time
 - \square Explore with π_{θ} (or start exploring with π^*) and collect states
 - \square Build $\mathcal{D}_i = (s_i, \pi^*(s_i))$
 - \square Aggregate dataset $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2 \cup ... \cup \mathcal{D}_n$
 - \square Estimate π_{θ} with behavioral cloning on \mathcal{D}
 - □ Repeat until convergence

DAgger Algorithm

```
Require: Expert policy \pi^*, \beta
Initialize \hat{\pi}_1 to any policy in \Pi (i.e. random policy)
for i = 1; i < N; i++ do
     \text{Let } \pi_i = \begin{cases} \pi^*, & \text{with probability } \beta \\ \hat{\pi}_i, & \text{with probability } (1-\beta) \end{cases} 
     Sample T-step trajectories using \pi_i
     Get dataset \mathcal{D}_i = \{(s, \pi^*(s))\}, i.e. label states with expert
     Aggregate datasets \mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_i
     Train classifier \hat{\pi}_{i+1} on \mathcal{D}
end for
return best \hat{\pi}_i on validation
```


Problems DAgger doesn't solve

- Non-markovian behaviour
 - \square In real world, we don't have s_t but o_t .
 - □ Human actions are conditioned on history

$$\pi^*(a_t \mid o_t, o_{t-1}, ..., o_0)$$

- ☐ Causal confusion
- Multimodal behaviour
 - Output mixture of Gaussians (n modes)
 - Latent variable models (hard to train)
 - ☐ Autoregressive discretization (discretizise your actions)

EXERCISE

Exercise

- File: 03_ImitationLearning_Exercise.ipynb
- Objective: Given a dataset with expert trajectories, learn a policy that imitates the expert.
- Tasks:
 - 1. Implement neural network architecture
 - 2. Implement the DAgger algorithm
 - 3. Train and submit an agent

Task 1: Neural Network Architecture

- You are free in the design of your network
- Network input is fixed (no pre-processing other than what is already provided)
- Some hyper-parameters you can choose from:
 - □ Network architecture (type, number of layers and units, ...)
 - Activation functions
 - ☐ Learning rate (you can also implement a schedule)
 - Batch size.

Task 2: Implement DAgger

- You can initialize $\hat{\pi}_1$ randomly or with a previously trained BC policy
- Try different values for β
- You can anneal β during training, i.e.
 - \square Start with $\beta = 1$ (use only the export to explore)
 - \square Reduce β during training to let the policy explore
- You could even train (or be) your own expert

Submission

- Submission server: https://apps.ml.jku.at/challenge
- Export your trained agent as ONNX file
- Upload ONNX file to submission server
- Code is provided in 03_ImitationLearning_Exercise
- Submission closes on Friday, April 16th.
- Submit your code, best model and a short report to Moodle
- Moodle submission stays open 24h after the challenge closes
- Please upload a zip file named k<studentid>.zip containing:
 - \square code.ipynb
 - \square model.onnx
 - □ report.pdf

Evaluation

 \blacksquare < 200: 0 pts

■ 200: 10 pts

■ 300: 12 pts

■ 500: 14 pts

■ 600: 16 pts

■ 700: 18 pts

■ 800: **20** pts

BONUS: OFFLINE REINFORCEMENT LEARNING

Offline Reinforcement Learning (ORL)

- Seita's Blog: Offline (Batch) Reinforcement Learning: A Review of Literature and Applications
- Kumar's and Levine's NeurIPS Talk: Offline Reinforcement Learning: From Algorithms to Practical Challenges
- Berkeley Artificial Intelligence Research Blog: Offline Reinforcement Learning: How Conservative Algorithms Can Enable New Applications

ORL Illustration

Why ORL?

- Leverage the collected data
 - ☐ data collection is expensive and time-consuming
- Data-driven learning methods
 - similar to supervised learning setting
 - □ generalize based on existing data
- Avoid exploration in unsafe environments
 - robotics
 - autonomous driving

ORL vs Imitation Learning (IL)

■ IL

- Usually only expert data / expert and non-expert data is labeled
- Does not use the reward
- □ Used for good initialization of online methods
- ☐ May use the environment for evaluation

■ ORL

- May contain suboptimal data as well as expert data
- Considers the reward
- Never interacts with the actual environment
- Is expected to generalize and perform well also to unseen data regions

ORL Challenges

- No exploration available
 - □ no solution
- Extrapolation error
- Distributional shift
 - cannot collect data to correct
- Optimizing the objective
 - simply imitating does not work well
 - policy may exploit maximization of the expected return

Off-policy methods fail if the dataset is uncorrelated to the true distribution under the current policy!

Extrapolation Error I

Invalid values are used for neural network backups!

Extrapolation Error II

- Batch 1 Final Buffer
 - DDPG agent for 1M transitions with large exploration
 - ☐ store all transitions in buffer
- Batch 2 Concurrent
 - train off-policy and behavioral policy DDPG agents for 1M transitions concurrently
 - share the same buffer
- Batch 3 Imitation
 - pre-trained DDPG as an expert to collect 1M transitions

Off-Policy Deep Reinforcement Learning without Exploration, ICML 2019, Fujimoto et al.

Constraining ORL Methods

- Policy constrained
 works well for simpler behavioral policy distribution
 more conservative
 Model constrained
 data distribution has high coverage
 when model is easy to learn
 Value-regularized
 conservative
 can be combined with policy and mode-based constraints
- Uncertainty-based

Batch-Constrained Deep Q-Learning (BCQ)

Algorithm 1 Batch-Constrained Q-Learning Discrete

Input: Batch \mathcal{B} , horizon T, target network update rate τ , mini-batch size N. Initialize Q-network Q_{θ} , policy network π_{ϕ} with random parameters θ and ϕ , and target network $Q_{\theta'}$ with $\theta' \leftarrow \theta$ and policy network $\pi_{\phi'}$ with $\phi' \leftarrow \phi$.

for
$$t = 1$$
 to T do

Sample mini-batch of N transitions (s, a, r, s') from \mathcal{B}

Get next action: $a_i \leftarrow \operatorname{argmax}_{a'} Q_{\theta}(s', a')$

Set
$$y = r + \gamma \max_{a_i} Q_{\theta'}(s', a_i)$$

 $\theta \leftarrow \operatorname{argmin}_{\theta} \sum_{i} (y - Q_{\theta}(s, a))^2$

$$\phi \leftarrow \operatorname{argmax}_{\phi} \sum \ell(\pi_{\phi}(s), a)$$

Update target networks: $\theta' \leftarrow \tau\theta + (1-\tau)\theta'$

$$\phi' \leftarrow \tau \phi + (1 - \tau) \phi'$$

end for

BONUS: CHALLENGE

Bonus Challenge

- Implement BCQ
- Use the file 03_OfflineRL_BCQ
- Submit an ONNX file of your trained agent
- Submission closes at the end of the semester.
- You need to implement:
 - Dataloader
 - BCQ algorithm for discrete action space
 - □ Tune hyperparameters

REFERENCES

References I

[Bain and Sammut, 1995] Bain, M. and Sammut, C. (1995).
A framework for behavioural cloning.
In Machine Intelligence 15.

[Ross and Bagnell, 2010] Ross, S. and Bagnell, D. (2010). Efficient reductions for imitation learning.

In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research, pages 661–668.

References II

[Ross et al., 2011] Ross, S., Gordon, G., and Bagnell, D. (2011).

A reduction of imitation learning and structured prediction to no-regret online learning.

In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research, pages 627–635.

