

«Анализ данных NGS»

Лекция #3 Анализ bulk RNA-Seq

Серёжа Исаев

аспирант MedUni Vienna

Дорожная карта анализа RNA-Seq

Распределение каунтов генов

Экспрессии генов TP53 и EGFR в образцах рака лёгкого

Какое это распределение?

Распределение Пуассона

$$p(k) \equiv \mathbb{P}(Y=k) = rac{\lambda^k}{k!}\,e^{-\lambda}$$
 ,

Распределение Пуассона отражает число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга

Распределение Пуассона

Представим, что у нас есть бесконечно большая шляпа, в которой есть несколько типов шариков — красные, синие, зелёные, ... Сфокусируемся на красном шарике, доля красных шариков 0.01 (то есть вероятность вытащить красный шарик — 1 из 100).

Мы забираем из шляпы 300 шариков, то есть в среднем мы увидим красный шарик 3 раза

Какое будет распределение вероятности различного количества красных шариков, которые мы увидим? Это как раз Пуассон

- Шарики = прочтения
- Цвет шарика = ген

Среднее и дисперсия распределения Пуассона

В распределении Пуассона среднее равно дисперсии, а потому достаточно легко понять, если несколько случайных величин распределены по Пуассону

$$NB(K=k) = {k+r-1 \choose r-1} p^r (1-p)^k$$

Отрицательное биномиальное распределение определяется как количество произошедших неудач в последовательности испытаний Бернулли с вероятностью успеха р, проводимой до r-го успеха.

Несложно заметить, что можно таким же образом подсчитать число удач до n-ой неудачи, только теперь в вероятность мы подставим не p, a 1 — p

- Допустим, я беру по одному прочтению из образца X
- Если прочтение будет из гена **g**, то это успех (число удач = число каунтов гена)
- Если нет, то неудача (число неудач = глубина секвенирования)
- р вероятность успеха (= экспрессия гена)

- Допустим ген имеет не очень высокую экспрессию, например, р = 10e-6, а мы секвенируем прочтения по штучке за раз
- Сколько прочтений из этого гена я получу пока не отсеквенирую r = 1e7 прочтений не из этого гена?

Для этого воспользуемся формулой NB(r, 1 — p), которое будет показывать число удач до r-ой неудачи

- Допустим ген имеет не очень высокую экспрессию, например, р = 10e-6, а мы секвенируем прочтения по штучке за раз
- Сколько прочтений из этого гена я получу пока не отсеквенирую r = 1e6 прочтений не из этого гена?

Для этого воспользуемся формулой NB(r, 1 — p), которое будет показывать число удач до r-ой неудачи

- Допустим ген имеет не очень высокую экспрессию, например, р = 10e-6, а мы секвенируем прочтения по штучке за раз
- Сколько прочтений из этого гена я получу пока не отсеквенирую r = 1e5 прочтений не из этого гена?

Для этого воспользуемся формулой NB(r, 1 — p), которое будет показывать число удач до r-ой неудачи

Среднее и дисперсия NB-распределения

Среднее и дисперсия отрицательного биномиального распределения связаны, благодаря чему мы можем инспектировать наши распределения даже без каких-либо тестов на Goodness of Fit

Это свойство называют овердисперсией

$$\mathbb{E}[X] = rac{r(1-p)}{p}, \ ext{Var}[X] = rac{r(1-p)}{p^2} = rac{r(1-p)(p+(1-p))}{p^2} = rac{r(1-p)p+r(1-p)^2}{p^2} = rac{r(1-p)}{p^2} = rac{r(1-p)^2}{p^2} = \mathbb{E}[X] + rac{1}{r}rac{r^2(1-p)^2}{p^2} = \mathbb{E}[X] + rac{1}{r}\mathbb{E}[X]^2,$$

Среднее и дисперсия NB-распределения

Среднее и дисперсия отрицательного биномиального распределения связаны, благодаря чему мы можем инспектировать наши распределения даже без каких-либо тестов на Goodness of Fit

Это свойство называют овердисперсией

Как понять распределение наших данных?

- 1. Допустим, мы считаем, что наши значения описываются некоторым распределением X(a, b)
- 2. При помощи MLE мы можем оценить наиболее правдоподобные значения параметров этого распределения а и b
- 3. После этого мы можем посчитать правдоподобие того, что наши данные порождены данной моделью
- 4. В итоге, используя информацию о правдоподобии данных в контексте данного распределения и числе параметров распределения, мы можем сравнить Goodness of Fitness наших данных различными распределениями

Нормализации

Количество каунтов гена, которые мы видим, зависит от нескольких параметров:

- от длины гена,
- от глубины библиотеки,
- от экспрессии гена,
- от дополнительных факторов, которые сложно оценить.

Для того, чтобы убрать влияние глубины секвенирования и длины (а в особенности чтобы суммировать информацию по экспрессии транскриптов в экспрессию гена, отнормировав на длину каждого из транскриптов), придумали ряд метрик

RPKM u TPM

$$RPKM_{i} = \frac{r_{i}}{l_{i} \sum_{j} r_{j}} \cdot 10^{9} \quad TPM_{i} = \frac{r_{i}}{l_{i} \sum_{j} \frac{r_{j}}{l_{j}}} \cdot 10^{6}$$

 \mathbf{RPKM}_i is gene's i RPKM metrics, \mathbf{r}_i is a number of reads mapped on the gene i, \mathbf{l}_i is an effective length of the gene i \mathbf{TPM}_i is gene's i TPM metrics, \mathbf{r}_i is a number of reads mapped on the gene i, \mathbf{l}_i is an effective length of the gene i

В чём разница?

Связь ТРМ и RPKM

$$\sum_{i} \text{RPKM}_{i} = \sum_{i} \frac{r_{i}}{l_{i} \sum_{j} r_{j}} \cdot 10^{9} = \frac{10^{9}}{\sum_{j} r_{j}} \sum_{i} \frac{r_{i}}{l_{i}},$$

$$TPM_{i} = \frac{r_{i}}{l_{i} \sum_{j} \frac{r_{j}}{l_{j}}} \cdot 10^{6} =$$

$$= \frac{r_{i}}{l_{i} \sum_{j} r_{j}} \cdot 10^{9} \cdot \frac{1}{\sum_{j} RPKM_{j}} \cdot 10^{6} =$$

$$= \frac{RPKM_{i}}{\sum_{j} RPKM_{j}} \cdot 10^{6}$$

Распределение СРМ / ТРМ

Проблемы TPM и RPKM

Нормализация на глубину библиотеки предполагает, что суммарное "истинное" количество РНК в клетке константно

Это не работает в случае, когда, например, экспрессия одного набора генов увеличилась, а других — не поменялась

Корректная нормализация

При корректной нормализации (которую, например, выполняет DESeq2 или edgeR) мы принимаем во внимание, что большая часть генов не меняет свою экспрессию между образцами

gene	sampleA	sampleB	pseudo-reference sample
EF2A	1489	906	sqrt(1489 * 906) = 1161.5
ABCD1	22	13	sqrt(22 * 13) = 17.7

gene	sampleA	sampleB	pseudo-reference sample	ratio of sampleA/ref	ratio of sampleB/ref
EF2A	1489	906	1161.5	1489/1161.5 = 1.28	906/1161.5 = 0.78
ABCD1	22	13	16.9	22/16.9 = 1.30	13/16.9 = 0.77
MEFV	793	410	570.2	793/570.2 = 1.39	410/570.2 = 0.72
BAG1	76	42	56.5	76/56.5 = 1.35	42/56.5 = 0.74
MOV10	521	1196	883.7	521/883.7 = 0.590	1196/883.7 = 1.35

```
normalization_factor_sampleA <- median(c(1.28, 1.3, 1.39, 1.35, 0.59))
normalization_factor_sampleB <- median(c(0.78, 0.77, 0.72, 0.74, 1.35))
```

sample 1 / pseudo-reference sample

SampleA median ratio = 1.3

SampleB median ratio = 0.77

gene	sampleA	sampleB
EF2A	1489	906
ABCD1	22	13

gene	sampleA	sampleB
EF2A	1489 / 1.3 = 1145.39	906 / 0.77 = 1176.62
ABCD1	22 / 1.3 = 16.92	13 / 0.77 = 16.88

Итого по нормализациям

- **СРМ** простое сравнение одинаковых генов каунтов между разными образцами, грубая нормировка только на глубину библиотеки. Не для DE
- **RPKM** сравнение генов внутри одного образца (например, для ранговых методов, о которых поговорим дальше). Не для DE
- **TMP** сравнение генов как внутри одного образца (для ранговых методов), так и грубого между образцами (но не для DE!)
- **RLE** и **TMM** сравнение генов между разными образцами (в том числе и для DE), но не внутри одного образца (отсутствует нормировка на длину)

Дорожная карта анализа RNA-Seq

Суть задачи

Нам необходимо статистически сравнить среднее экспрессий между двумя выборками образцов

Что бы мы сделали в классическом случае?

- 1. Тест Манна-Уитни,
- 2. t-test

Проблема в том, что тест Манна-Уитни будет слишком слабый, так как чаще всего у нас мало точек в каждой из выборок, а t-test просто не подойдёт потому, что наши данные распределены не нормально

Что делать?

Причём тут регрессия?

С одной стороны, регрессионные модели могут позволить нам оценить статистическую достоверность разниц в средних

С другой стороны, GLM позволяют обобщить регрессию на ненормальные распределения

Причём тут регрессия?

Статистический вопрос, который мы будем извлекать из регрессии, — значимо ли различаются параметры β1 и β2?

Это можно сказать, сравнив правдоподобия моделей или при помощи других подходов (будет оговорено дальше)

Причём тут регрессия?

Линейную модель можно обобщить и добавить более двух уровней фактора, чтобы сравнивать сразу несколько категорий

Intercept

Вместо того, чтобы сравнивать значимость разницы между β1 и β2, обычно используют модель со свободным членом β0 и после этого вычисляют значимость β1

Свободный член в данном случае называют словом **intercept**

Intercept

Эту же логику можно обобщить и на модели с несколькими категориями в таргетной переменной

Линейные модели

$$y \sim 0 + feature1 + feature2 + ...$$

$$\textit{6e3 intercept}$$

$$y \sim 1 + feature1 + feature 2 + ...$$

$$\textit{c intercept}$$

Какие переменные включают в модель?

Таргет:

• экспериментальные условия,

сопутствующие факторы:

- пациент,
- пол,
- возраст,
- ... (всё, что может иметь влияние на экспрессию)

Что не включают:

• техническую повторность

Обобщённые линейные модели (GLM)

В обобщённой линейной модели нет требования к нормальности и гомоскедамтичности остатков

Коэффициенты определяются при помощи MLE

Модель DESeq2

Модель, которая вшита в DESeq2, может описываться следующим образом:

$$K_{i,j} \sim NB(\mu_{i,j}, lpha_i)$$
 $\mu_{i,j} = s_j \ p_{i,j}$ $log2(p_{i,j}) = x_{j,A} eta_{i,A} + x_{j,B} \ eta_{i,B}$

- Where, K_{i,j} is matrix of observed counts (known),
- μ_{i,j} is a mean for NB distribuion,
- p_{i,j} is a probability to get read i from sample j
- s_i is a scaling factor (will be calculated), α_i are gene dispersions (will be calculated),
- matrix x is model coefficients (zero or one depending on conditions) and most importantly
- β_{i,j} (log-)probability to get read from gene i if a sample is from condition

Последовательность действий DESeq2

- 1. Сначала происходит оценка size factor'a,
- 2. потом происходит оценка дисперсии и затем
- 3. происходит оценка параметров β модели при помощи GLM

$$K_{i,j} \sim NB(\mu_{i,j}, lpha_i)$$
 $\mu_{i,j} = s_j \ p_{i,j}$ $log2(p_{i,j}) = x_{j,A} eta_{i,A} + x_{j,B} \ eta_{i,B}$

Подрезание дисперсии

При малых размерах выборки оценка дисперсии становится достаточно неточной, поэтому используют процедуру подрезание дисперсии

Взаимодействие переменных

Удобным способом понимания и отображения того, что с чем сравнивается в дизайне экспериментов по секвенированию РНК могут служить модельные матрицы

Модельные матрицы содержат 0 или 1 для каждого из элементов линейной модели

```
model.matrix(~1+condition+time+condition:time, samples)
```

Рассмотрим примеры модельных матриц для разных дизайнов (по материалам Hugo Tavares)

Condition:

colData

	condition
	<factor></factor>
sample1	shade
sample2	shade
sample3	shade
sample4	sun
sample5	sun
sample6	sun

Condition:

colData

	condition
	<factor></factor>
sample1	shade
sample2	shade
sample3	shade
sample4	sun
sample5	sun
sample6	sun

Design:

Expr =
$$\beta_0 + \beta_1$$
 CondSun

Condition:

colData

condition
<factor></factor>
shade
shade
shade
sun
sun
sun

Коэффициенты из DESeq:

 $eta_{\scriptscriptstyle 0}$ = Intercept $eta_{\scriptscriptstyle 1}$ = condition_sun_vs_shade

Null hypothesis:

 $\beta_1 = 0$

Иногда можно немного переписать модель для упрощенной интерпретации

Design: \sim 0 + condition

Expr = β_{Ω} + β_{1} CondSun

Кодируется переменной со значениями 0/1

Model matrix

	(Intercept)	conditionsun
sample1	1	0
sample2	1	0
sample3	1	0
sample4	1	1
sample5	1	1
sample6	1	1

Condition:

colData

	condition
	<factor></factor>
sample1	shade
sample2	shade
sample3	shade
sample4	sun
sample5	sun
sample6	sun

Иногда можно немного переписать модель для упрощенной интерпретации

Design: \sim 0 + condition

Expr = β_0 Shade + β_1 Sun

Null hypothesis:

$$\beta_1 - \beta_0 = 0$$

Кодируется переменной со значениями O/1

Model matrix

	(Intercept)	conditionsun
sample1	1	0
sample2	1	0
sample3	1	0
sample4	1	1
sample5	1	1
sample6	1	1

Один фактор, три уровня

Colour:

Коэффициенты из DESeq:

 β_0 = Intercept

 β_1 = colour_pink_vs_white

 β_2 = colour_yellow_vs_white

	colour
	<factor></factor>
sample1	pink
sample2	pink
sample3	pink
sample4	yellow
sample5	yellow
sample6	yellow
sample7	white
sample8	white
sample9	white

Design: ~ 1 + colour

Expr = β_0 + β_1 ColPink + β_2 ColYellow

Нулевая гипотеза:

Pink vs White

 $\beta_1 = 0$

Yellow vs White

 $\beta_2 = 0$

Pink vs Yellow

 β_1 - β_2 = 0

			Modelmathx
	(Intercept)	colourpink	colouryellow
sample1	1	1	0
sample2	1	1	0
sample3	1	1	0
sample4	1	0	1
sample5	1	0	1
sample6	1	0	1
sample7	1	0	0
sample8	1	0	0
sample9	1	0	0

Model matrix

Два фактора и взаимодействие

Colour:

Condition:

Design:

~ 1 + colour + condition + colour:condition

Нулевая гипотеза:

Pink vs White (Shade)

 $\beta_1 = 0$

Pink vs White (Sun)

 $\beta_1 + \beta_3 = 0$

Sun vs Shade (White):

 $\beta_2 = 0$

Sun vs Shade (Pink):

 $\beta_2 + \beta_3 = 0$

Interaction:

 $\beta_3 = 0$

Коэффициенты из DESeq:

 β_{\circ} = Intercept

 β_1 = colour_pink_vs_white

 $\beta_2^- = \text{condition_sun_vs_shade}$

 $\beta_3 =$

colourpink.conditionsun

Три фактора с вложенностью

Species вложен в colour.

Species полностью входит в colour, поэтому в дизайн colour не включаем (но это есть смысл учесть про создании контрастов).

Design:

```
~ 1 + species + condition + species:condition
```

Contrasts (example):

Три фактора с вложенностью

Species вложен в colour.

Species полностью входит в colour, поэтому в дизайн colour не включаем (но это есть смысл учесть про создании контрастов).

Design:

```
~ 1 + species + condition + species:condition
```

Почему не?

```
~ 1 + colour + condition + colour:condition
```

Можно переоценить или недооценить ошибку (либо тест теряет мощность, либо больше ошибок I рода (по сравнению с использованием вложенного фактора))

P-value

Способы определения достоверности коэффициентов линейной модели

Likelihood-Ratio Test (LRT)

Тест Вальда

Рассматривает отношение правдоподобий H_0 и H_a , логарифм их отношения распределён как χ^2

Похож на LRT, но в явном виде сравнивает не правдоподобия моделей, а коэффициенты

p-value = NA?

Если в строке все значения = 0, что изменение экспрессии и дисперсию не посчитать

Если в строке есть очень большой выброс, то p-value назначается NA

Строка не прошла фильтрацию по средней экспрессии

Проблема множественного сравнения

Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon: An argument for multiple comparisons correction

Craig M. Bennett¹, Abigail A. Baird², Michael B. Miller¹, and George L. Wolford³

- 1 Psychology Department, University of California Santa Barbara, Santa Barbara, CA; 2 Department of Psychology, Vassar College, Poughkeepsie, NY;
- ³ Department of Psychological & Brain Sciences, Dartmouth College, Hanover, NH

GLM RESULTS

A *t*-contrast was used to test for regions with significant BOLD signal change during the photo condition compared to rest. The parameters for this comparison were t(131) > 3.15, p(uncorrected) < 0.001, 3 voxel extent threshold.

Several active voxels were discovered in a cluster located within the salmon's brain cavity (Figure 1, see above). The size of this cluster was 81 mm^3 with a cluster-level significance of p=0.001. Due to the coarse resolution of the echo-planar image acquisition and the relatively small size of the salmon brain further discrimination between brain regions could not be completed. Out of a search volume of 8064 voxels a total of 16 voxels were significant.

Identical *t*-contrasts controlling the false discovery rate (FDR) and familywise error rate (FWER) were completed. These contrasts indicated no active voxels, even at relaxed statistical thresholds (p = 0.25).

Принципы принятия решений

Некоторые обобщения ошибки первого рода:

- FWER family-wise error rate, групповая вероятность ошибки первого рода. Используется при поправке методом Бонферрони
- **FDR false discovery rate**, средняя доля ложных отклонений гипотез (среди всех отклонений). Используется при поправке методом Бенджамини Хохберга

Поправка Бонферрони

The original p value

Bonferroni-corrected p value = $\frac{\alpha}{n}$

The number of tests performed

Поправка Бенджамини-Хохберга

Volcano plot

От генов к транскриптам: tximport

Как мы уже говорили ранее, самой правильной стратегией будет проводить анализ дифференциальной экспрессии на уровне транскриптов, а потом уже агрегировать информацию до уровня генов

