OOPython

Задача 6. Численное решение УрЧП

Введение

Будем рассматривать следующие методы численного решения системы ОДУ:

- (1) явный метод Эйлера 1-го порядка точности (реализован в lecture_9_scalar_ode.ipynb)
- (2) явный метод Эйлера с пересчетом 2-го порядка точности (реализован в lecture 9 scalar ode.ipynb)
- (3) любой явный метод Рунге-Кутты 3-го порядка точности
- (4) явный метод Рунге-Кутты 4-го порядка точности (реализован в lecture 9 scalar ode.ipynb)

Задание

Определение классов

Для каждого из методов (1)-(4) реализовать соответствующий класс *MethodName*, минимизировав суммарное число строк кода с помощью наследования. В качестве заготовки можно использовать иерархию классов, реализованную в **task_5_scalar_ode**. Каждый класс должен включать в себя как минимум следующее:

Поля:

- вектор-функция правой части ОДУ
- функцию-начальное условие
- множество точек сетки по времени и ее параметры: кол-во точек, отрезков, шаг сетки
- множество точек сетки по пространству и ее параметры: кол-во точек, отрезков, шаг сетки
- 2 массива для хранения значений численного решения (на явном и неявном временных слоях)

Методы:

- конструктор
- сеттеры для вектор-функции правой части, функции-начального условия, параметров сеток по времени и пространству
- решить ОДУ (timestepping цикл по точкам сетки по времени)

• построить график численного решения в конечный момент времени T

Использование классов

Каждым из методов (1)-(4) провести численное решение системы ОДУ, полученной путем применения метода прямых к уравнению теплопроводности, для которого поставлена смешанная задача (см. lecture 10 pde.ipynb).

Параметры смешанной задачи:

- коэффициент температуропроводности: $\kappa = 0.1$
- начальное условие: $u_0(x) = \begin{cases} 1, \text{ если } 0.4 \le x \le 0.6 \\ 0, \text{ если } 0 < x < 0.4, 0.6 < x < 1 \end{cases}$
- граничные условия: $b_l(t) \equiv 0, b_r(t) \equiv 0.$

Параметры расчетных сеток:

- значения шага по пространству: $h_i = \frac{1}{25 \cdot 2^i}$, i = 0,...,3
- соответствующие значения шага по времени: $\Delta t_i = \frac{h_i^2}{200\kappa}$, i = 0,...,3.

Построить графики:

- численных решений, полученных каждым из методов, при значениях шагов $h_3, \Delta t_3$ в момент времени T = 0.04
- норм погрешностей численных решений для каждого из методов в логарифмическом масштабе. $\| \boldsymbol{u}_h(T) \boldsymbol{U}(T) \| = \max_i (\| \boldsymbol{u}(x_i, T) \boldsymbol{U}_i(T) \|)$, $\boldsymbol{u}_h(T)$ проекция аналитического решения на сетку по пространству в момент времени Т.

Примечание: в качестве «аналитического» решения можно взять численное, полученное при помощи явного метода Эйлера при значениях шагов h_4 , Δt_4 .