Quantum Information and Computing (QIaC) Prof. Simone Montangero

Tommaso Faorlin

Università degli Studi di Padova - Physics of Data tommaso.faorlin@studenti.unipd.it

December 6, 2021

Theory

We study the solution of a time-dependent Schrödinger 1D equation that obeys the following Hamiltonian

$$H = \frac{\hat{\rho}^2}{2m} + \frac{1}{2}m\omega^2(\hat{q} - q_0(t))^2$$
 (1)

where $q_0(t) = t/T$ is a **time dependent shift** $(t \in (0, T])$. Making use of the work done last week, we solve for the ground state and we let him evolve exploiting the **split operator method**. Starting from the application of the time evolution operator

$$|\psi(x,t+\Delta t)\rangle = e^{-i\Delta t\hat{H}} |\psi(t)\rangle \stackrel{\text{(a)}}{\approx} e^{-\frac{1}{2}i\Delta t\hat{V}} e^{i\Delta t\hat{T}} e^{-\frac{1}{2}i\Delta t\hat{V}} |\psi(x,t)\rangle$$
(2)

we use in (a) the Baker-Campbell-Hausdorff formula. Noticing that \hat{T} is diagonal in the **momentum basis** and \hat{V} is diagonal in the **position basis**, we perform proper Fourier transformations of the wave function.

$$|\psi(x,t+\Delta t)\rangle = e^{-i\Delta t\hat{H}}|\psi(t)\rangle \approx e^{-\frac{1}{2}i\Delta t\hat{V}}\mathscr{F}^{-1}e^{i\Delta t\hat{T}}\mathscr{F}e^{-\frac{1}{2}i\Delta t\hat{V}}|\psi(x,t)\rangle$$
(3)

After the application of each Fourier transform we normalize the wave functions. The last equation propagates the state for dt, so we apply it **iteratively** to reach the T_{max} value.

Code development - Two main functions

• Initialization of the **kinetic part** of the hamiltonian. Given a discretization with width $L=L_{max}-Lmin$, we populate the momentum vector (after reading FFTW3's manual) with **positive frequencies** $\left[0,\frac{2\pi}{L}\cdot aa\right]$ in the first half $aa\in [0,N/2]$, and with **negative frequencies** $\left[-\frac{2\pi}{L}\cdot (aa-N-1),0\right]$ in the second half $aa\in [N/2+1,N+1]$:

```
1     FUNCTION H_kinetic_part(N, Lmin, Lmax, m) RESULT(K)
2     ![...]
3     DO aa=1,INT(N/2)
4          K(aa) = (0.5d0/m) * (4.0d0*ASIN(1.0d0)*(aa)/(Lmax-Lmin))**2
5     ENDDO
6     DO aa=INT(N/2)+1,N+1
7          K(aa) = (0.5d0/m) * (4.0d0*ASIN(1.0d0)*(aa-N-1)/(Lmax-Lmin))**2
8     ENDDO
9     ![...]
```

Initialization of the potential part of the hamiltonian.

```
FUNCTION H_potential_part(N, Lmin, Lmax, m, omega, time, T) RESULT(V)

2     ![...]

3     dx = (Lmax-Lmin)/N

DO aa = 1, N+1

V(aa) = 0.5*m*omega**2*(Lmin*(aa-1)*dx-time/T)**2

ENDDD

![...]
```

Code development - Two main functions

• The delicate myFFTW(input) function (myAFFTW(input) for the inverse is similar):

```
INTEGER(8)
                                                          :: plan
           INTEGER.
                                                          :: FFTW_FORWARD
 3
           PARAMETER (FFTW FORWARD=-1)
           INTEGER
                                                          :: FFTW MEASURE
           PARAMETER (FFTW_MEASURE=64)
           !initialize the array once the plan is created
 7
           temp = input
 8
           CALL dfftw_plan_dft_1d( plan, N, input, output, FFTW_FORWARD, FFTW_MEASURE)
 9
           CALL dfftw_execute_dft( plan, temp, output)
10
           output = output/SQRT(1.0d0*N)
11
           CALL dfftw_destroy_plan(plan)
12
```

• The function evolve_dt(wf, dt, Lmin, Lmax, m, omega, time, T):

```
DO aa = 1, N+1

wf(aa) = EXP(COMPLEX(0.0d0, -1.0d0 / 2.0d0 * dt * V(aa))) * wf(aa)

END DO

wf = myFFTW(wf)

DO aa = 1, N+1

wf(aa) = EXP(COMPLEX(0.0d0, -1.0d0 * dt * K(aa))) * wf(aa)

END DO

wf = myAFFTW(wf)

![...]
```

Time evolution

We report in the following graphs the results obtained by computing the **probability density function** $|\psi(x)|^2$ at each time step and at each point of the discretized space lattice. For this simulations we set the time of the potential equal to T=0.5 and m=1.

The harmonic potential moves to the right at a **constant speed**, and the position expectation value $\langle x \rangle_{\psi_{GS}(x)}$ does the same but with an **oscillatory component**.

The oscillatory behavior is accentuated as the angular frequency increases. We did not investigate further but, at first sight, the fluctuation seems decreased in this case.

Two special cases

We now discuss two special cases achievable with our simulation: where we **extend the time window** (left graph) and where we recover the case in which the harmonic potential is **not practically moving** in a small time window (right graph).

We set $T_{max} = 6$. It is interesting to notice that the wave function hits the right border, goes in the opposite direction and the potential forces it to invert again the direction. The wave function **bounces off the right-hand side** of the interval.

We try to emulate what happens when T=1000. In this case, in a $T_{max}=4$ time window we are still seeing the ground state **oscillating at the bottom of the potential** (contrary to expectations). This may be due to some errors inserted in the code, we did not investigate further.