09/02/2021 Fondamenti di Elettronica – esame sulla terza parte del programma: 3 esercizi da risolvere in un'ora e 30 minuti.

Esercizio 1

Nel circuito in figura, i transistor MOS hanno i seguenti parametri: $k_n = 2.5 \text{ mA/V}^2$, $V_T = 0.7 \text{ V}$, lambda = 0 V^{-1} . La resistenza R_{SS} è attraversata da una corrente pari a 1 mA.

Si osservi che questo amplificatore ha una tensione di alimentazione singola di +5V e che, di conseguenza, la tensione di modo comune V_{CM} a riposo NON PUO' essere nulla : è necessario polarizzare i gate dei transistor in modo che questi siano in conduzione.

- 1.1 Con vid =0, trovare il valore di V_{CM} = V_G
- 1.2 Trovare il valore di R_D necessario per avere un guadagno differenziale di modo differenziale pari a 8 V/V
- 1.3 Trovare il valore a riposo (DC, con vid = 0 V) della tensione V_D sui due drain
- 1.4 Si determini il guadagno di modo comune single-ended dato dal rapporto variazione della tensione di drain diviso variazione della tensione di modo comune = v_{D1}/v_{cm}
- 1.5 Si utilizzi il guadagno di modo comune trovato nel punto precedente per determinare il valore dell'incremento di V_{CM} che porta Q_1 e Q_2 nella regione lineare

.model NMOS NMOS KP=2.5m VTO=0.7V LAMBDA=0

1.1 Se la resistenza è attraversata da una corrente pari a 1mA, Q1 e Q2 sono attraversati da 0.5 mA. Quindi

$$V_{OV} = (2I_D/k_n)^{1/2} = (2*0.5/2.5)^{1/2} = (1/2.5)^{1/2} = 0.632455 \text{ V}$$

$$V_{GS} = V_{OV} + V_{T} = 0.632 \text{ V} + 0.7 \text{ V} = 1.332455 \text{ V}$$

$$V_S = 1mA*1k\Omega = 1V;$$

$$V_G = V_S + 1.332 V = 2.332455 V$$

1.2 Il guadagno differenziale è il doppio del guadagno single-ended ed è pari a gmR_D. Impongo gmR_D = 8;

$$g_m = k_n V_{OV} = 2.5*0.632 = 1.58 \text{ mA/V}$$

$$R_D = 8/1.58 \text{ [V/mA]} = 5063 \Omega$$

```
Calcolo V_{DS}; V_D = V_{DD} - I_D R_D = 5 - 0.5*5.063 = 5 - 2.5315 = 2.4685 V > 0.632 V = <math>V_{OV} saturazione OK
```

1.3 Acm single ended

$$Acm = -g_mR_D/(1 + 2g_mR_S) = -8/(1+2*1.58*1) = -8/4.16 = -1.92 \text{ V/V}$$

La tensione di drain a riposo per Q1, Q2 è V_{DQ} 5V – I_DR_D = 5 – 0.5 mA*5.063 = 2.4685 V

Perchè V_D raggiunga il limite della saturazione deve essere

$$V_{DQ} + \Delta V_{D} = V_{GQ} + \Delta V_{cm} - V_{T}$$

 $\Delta V_D = A_{cm} \Delta V_{cm}$

$$2.4685 - 1.92\Delta V_{cm} = 2.3324 + \Delta V_{cm} - 0.7V$$

$$2.4685 - 2.3324 + 0.7 = 2.92 \Delta V_{cm}$$

 ΔV_{cm} = 0.286 V

--- Operating Point ---

```
V(v01):
2.4685
voltage

V(v11):
2.33245
voltage

V(n002):
0.999999
voltage

V(v02):
2.4685
voltage

V(v12):
2.33245
voltage

V(n001):
5
voltage

Id(M2):
0.0005
device_current

Ig(M2):
0
device_current

Ig(M2):
-1.4785e-012
device_current

Id(M1):
0.0005
device_current

Ig(M1):
0
device_current

Ig(M1):
0
device_current

Is(M1):
-1.4785e-012
device_current

Ig(M1):
0
device_current

Ig(M1):
-0.0005
device_current

Ig(M2):
0.0005
device_current
```

Punto operativo per l'amplificatore differenziale con singola alimentazione e carico resistivo

Guadagno differenziale di modo differenziale

Valore assoluto del guadagno di modo comune single-ended

Grafico di $V_D - (V_G - V_T)$ in funzione della tensione $V_{CM} = V_{CMQ} + \Delta V_{CM}$. per $V_D - (V_G - V_T) = 0$ V, i transistor escono dalla saturazione. Questo avviene per $V_{CM} = 2.62$ V circa, ovvero $\Delta V_{CM} = 2.62 - V_{CMQ} = 2.62$ V – 2.33V =0.29 V, in buon accordo con i calcoli analitici (benchè nei calcoli sia stato considerato un valore di g_m costante, mentre questo vari come $k_n(V_{GS} - V_T)$).

Esercizio 2

Dato il circuito in figura, nel quale la tensione di soglia dei transistor è Vtn = 0.4 V e kn' = 0.4 mA/V², (W/L)1=(W/L)2=44.4, (W/L)3=88.8, (W/L)4=22.2. Le resistenze di drain R_D valgono 4 k Ω .

2.1 Determinare il punto di lavoro di Q4 e la corrente di drain di Q1 e Q2.

 $I_D = 0.1 mA$

$$V_{OV} = (2I_D/k_n)^{1/2} = (2I_D/(k'_n*(W/L))^{1/2} (2*0.1/(0.4*22.2)^{1/2} = (0.2/8.88)^{1/2} = (0.0225)^{1/2} = 0.150V$$

$$V_{GS} = V_{DS} = V_{OV} + V_{T} = 0.150 + 0.4 = 0.55 V$$

quindi R è data da $1.8V - I_DR = V_{DS} = 0.55 V$; (1.8 - 0.55)/0.1 = R; $R = 12500 \Omega$

- 2.2 Verificare che i transistor si trovino in saturazione.
- 2.2 Q1 e Q2 sono attraversati da una corrente di drain pari a 0.2 mA. La corrente di drain di Q1 e Q2 è quindi metà della corrente di Q3; così come $(W/L)_3 = 2(W/L)_{1,2}$. Di conseguenza, essendo λ =0, la tensione di gate di Q1 e Q2 è la stessa di Q3, e quindi la stessa di Q4.

Perciò $V_{GS1} = V_{GS2} = 0.55 \text{ V}$, ovvero $V_S = -0.55 \text{ V}$

 $V_{DS1,2} = V_{DD} - I_D R_D - V_S --> V_{DS1,2} = 0.9 - 0.2*4 - (-0.55) = 0.9 - 0.8 + 0.55 = 0.65 \ V > 0.15 \ V = V_{OV} \ saturazione \ OK$

2.3 Calcolare la transconduttanza g_m di Q1 e Q2

$$g_m = k_n V_{OV} = k'_n (W/L) V_{OV} = 0.4*44.4*0.15 = 2.664 \text{ mA/V}$$

2.4 Calcolare il guadagno differenziale single-ended dell'amplificatore,

$$A_v = g_m R_D/2 = 2.664*4/2 = 5.328 \text{ V/V}$$

2.5 Calcolare il guadagno di modo comune single-ended e il CMRR

 $A_{cm} = 0$ (la resistenza $R_{SS} = r_o$ equivalente di Q3 con $\lambda = 0$ è infinita.

CMRR = infinito

2.6 Calcolare il guadagno di modo comune single-ended e il CMRR nell'ipotesi che lambda per il transistor Q3 valga $0.1 \, V^{-1}$ (trascurando la variazione di I_{DQ}).

In questo caso $r_0 = 1/\lambda I_D = 1/(0.1*0.4) = 25k\Omega$

$$A_{cm} = -g_m R_D/(1+2g_m r_o) = -1.664*4/(1+2*1.664*25) = -6.656/84.2 = -0.079 \text{ V/V}$$

Name:	m§q3	m§q4	m§q2	m§q1
Model:	nmos3	nmos4	nmos12	nmos12
<pre>Id:</pre>	4.00e-04	1.00e-04	2.00e-04	2.00e-04
Vgs:	5.50e-01	5.50e-01	5.50e-01	5.50e-01
Vds:	3.50e-01	5.50e-01	6.50e-01	6.50e-01
Vbs:	0.00e+00	0.00e+00	0.00e+00	0.00e+00
Vth:	4.00e-01	4.00e-01	4.00e-01	4.00e-01
Vdsat:	1.50e-01	1.50e-01	1.50e-01	1.50e-01
Gm:	5.33e-03	1.33e-03	2.67e-03	2.67e-03

Punto a riposo dei transistor dell'amplificatore differenziale con current mirror

Guadagno differenziale con uscita single-ended dell'amplificatore, con lambda = 0 V^{-1} per tutti i transistor.

Modulo del guadagno di modo comune con uscita single-ended e relativa fase, con lambda = $0.1 \, V^{-1}$ per il transistor Q3 e lambda = $0 \, V^{-1}$ per tutti gli altri transistor

Esercizio 3

- 3.1 Si disegni una porta logica in grado di realizzare la funzione $\overline{Y} = (A + B)(C + D) + CE$;
- 3.2 Per la porta logica disegnata calcolare i rapporti dimensionali (W/L) dei MOSFET di tipo n e di tipo p affinché la porta presenti nei casi peggiori un comportamento al nodo di uscita corrispondente a quello di un inverter con rapporti di dimensioni $n = W_n / L_n$ e $p = W_p / L_p$; nel calcolo si cerchi di minimizzare l'area della porta stessa.

Trovo l'espressione booleana per la rete di pull-up

$$Y = ((A+B)(C+B))'*(CE)'$$

$$Y = ((A+B)'+(C+B)')*(C'+E')$$

$$Y=((A'B')+(C'D'))(C'+E')$$

Le espressioni per le reti di pull-down e di pull-up, rispettivamente

$$Y'=(A+B)(C+D) + CE$$

$$Y=((A'B')+(C'D'))(C'+E')$$

corrispondono al circuito mostrato qui sotto. Per ottenere il bilanciamento, i transistor PMOS devono avere tutti dimensioni pari a 3p (dove $p = W_p/L_p$ del transistor pMOS dell'inverter di riferimento). I transistor NMOS devono avere invece dimensioni pari a 2n (dove $n = W_n/L_n$ del transistor nMOS dell'inverter di riferimento.

