$a \sim b$ si y solo si 3 divide a a - b; demostrar que \sim es de equivalencia.

Para demostrar que es una relación de equivalencia, hay que ver que sea transitiva, reflexiva y simétrica.

(1: Transtividad) Asuma $a \sim b$ y $b \sim c$: queremos probar que entonces $a \sim c$. Puesto que $a \sim b$, por definición, tenemos que

$$a - b = 3q \tag{1}$$

para algún $q \in \mathbb{Z}$. Y puesto que $b \sim c$, tenemos que

$$b - c = 3q' \tag{2}$$

para algún $q' \in \mathbb{Z}$. Por definición,

$$a \sim c \iff 3 \mid (a - c)$$
 (3)

Usando la ecuación (1) vemos que a = 3q + b, y que c = b - 3q'. Por lo tanto, podemos sutituir a y c en (3) y obtenemos

$$a \sim c \iff 3|(3q+b-(b-3q))$$

 $\iff 3|(3q-3q')$
 $\iff 3|3(q-q')$

lo cual es obviamente cierto.

Hemos visto que asumir $a \sim b$ y $b \sim c$ conduce a $a \sim c$. Luego la relación es transitiva.

(2 : Reflexividad) Queremos ver que $a \sim a$. Pero $a \sim a$ si y solo si

$$3 \mid (a-a) \iff 3 \mid 0$$

Cualquier número divide a 0. La relación es reflexiva.

(3: Simétrica) Asuma que $a \sim b$. Queremos ver que entonces $b \sim a$. Nuestro supuesto nos dice que

$$a - b = 3q$$

para algún $q \in \mathbb{Z}$. Multiplicando ambos lados por -1, tenemos

$$-(a-b) = -3q \iff b-a = 3(-q)$$

(pongo el paréntesis in el (q) para que se vea claro que tres por (-q) da lo de la izquierda). Entonces, por definición, 3 divide a b-a. Entonces $b \sim a$.

Sea A el conjunto de todos los subconjuntos finitos de \mathbb{N} . Decimos que dos conjuntos X,Y que pertenezcan a A están relacionados si tienen la misma cardinalidad. Es decir, $X \sim Y \iff |X| = |Y|$.

Sea $\mathbb{N}_k = \{1, 2, \dots, k\}$; es decir, el conjunto de los primeros k números naturales. Para ser rigurosos, hagamos $\mathbb{N}_0 = \emptyset$; o sea que \emptyset es el conjunto de los 0 primeros números naturales.

Claramente, $[\mathbb{N}_1]$ es la clase de equivalencia de todos los elementos de A con cardinalidad 1; $[\mathbb{N}_2]$, la de los elementos de A con cardinalidad 2; etc. (Si no entendés por qué, revisá la definición de clase de equivalencia. Si después de revisarla sigue sin ser claro, escribime y te lo aclaro).

Por lo tanto, para cada $i \in \mathbb{N}$, los conjuntos de cardinalidad i están en la clase de equivalencia de \mathbb{N}_i , y este último conjunto puede tomarse como su representante.

La cantidad de clases de equivalencia es infinita, porque hay una por cada cardinalidad (es decir, una por cada número natural, y hay infinitos naturales).

 $u_1 = 3, u_2 = 5, u_n = 3u_{n-1} - 2u_{n-2}$. Probar que $u_n = 2^n + 1$.

El caso base es n = 3, donde $u_3 = 3u_2 - 2u_1 = 3 \times 5 - 2 \times 3 = 15 - 6 = 9$. Efectivamente se cumple que $2^3 + 1 = 8 + 1 = 9$.

Usaremos inducción fuerte. Nuestra hipótesis inductiva será

$$u_i = 2^j + 1, \quad 1 \le j \le k$$

con $k \in \mathbb{Z}$ arbitrario. (Acordate que inducción "normal" es asumir que vale para algún k, pero inducción fuerte es asumir que vale para todos los números naturales menores o iguales a algún k, que es lo que dice nuestra HI).

Nuestra tesis es

$$u_{k+1} = 2^{k+1} + 1$$

Usemos la definición recursiva de u_n ; nos dice que, si $j \geq 3$,

$$u_{k+1} = 3u_k - 2u_{k-1}$$

Como k y k-1 son menores o iguales a k, nuestra hipótesis inductiva vale. (Fijate que por esto teníamos que usar inducción fuerte, porque nos queda u_{k-1} , entonces hay que asumir algo no sólo respecto de k sino de los números menores a k). Aplicando la HI,

$$u_{k+1} = 3(2^{k} + 1) - 2(2^{k-1} + 1)$$

$$= 3 \times 2^{k} + 3 - 2^{k} - 2$$

$$= 3 \times 2^{k} - 2^{k} + 1$$

$$= 2^{k}(3 - 1) + 1$$

$$= 2^{k} \times 2 + 1$$

$$= 2^{k+1} + 1$$

que es lo que queríamos demostrar.

 $n^2 \le 2^n$ para todo n > 3.

Caso base con n=4 es fácil.

 $HI: k^2 \le 2^k.$

Tesis: $(k+1)^2 \le 2^{k+1}$

Fijate que

$$(k+1)^2 \le 2^{k+1} \iff k^2 + 2k + 1 \le 2^k \times 2$$

Si multiplicamos ambos lados de nuestra HI por 2k, tenemos

$$2k^2 < 2^{k+1}$$

Si pudiéramos demostrar que $k^2+2k+1\leq 2k^2,$ por transitividad, tendríamos nuestra tesis. Pero

$$k^{2} + 2k + 1 \le 2k^{2} \iff 2k + 1 \le 2k^{2} - k^{2}$$
$$\iff 2k + 1 \le k^{2}(2 - 1)$$
$$\iff 2k - 1 \le k^{2}$$

Esto es lo que demostraste en el inciso (a), o sea que sabemos que es verdad. Entonces, efectivamente $k^2+2k+1\leq 2k^2\leq 2^{k+1}$. O sea que, por transitividad,

$$k^2 + 2k + 1 \le 2^{k+1}$$

HI: $8 \mid 3^k - 1$

Tesis: $8 \mid 3^{2k+2} - 1$

De la HI se sigue que 8 | $(3^k - 1) \times 3^{2+k}$, es decir

$$8 \mid 3^{2k+2} - 9 \times 3^k$$

De esto se sigue que $8q = 3^{2k+2} - 9 \times 3^k$ para algún $q \in \mathbb{Z}$, lo cual implica que $8q + 9 \times 3^k = 3^{2k+2}$. Ahora bien, 9 divide a 3^2 y por lo tanto divide a $3^2 \times c$ para cualquier c; es decir que 9 divide a 3^m para cualquier $m \geq 2$. Entonces podemos escribir 3^k como 9q', y nos queda

$$8q + 9 \times 9q' = 3^{2k+2} \Rightarrow 8q + 9q'' = 3^{2k+2}$$

donde q'' = 9q'.

Ahora, el truco inteligente es ver que 8x + 9y siempre tiene resto 1.

$$\Sigma = \{1, 2, 3, 4, 5, 6\}$$

Si Om

 ϕ_i