Конспект по курсу Сети 1

Александра Лисицына 2 3 ноября 2019 г.

 $^{^{1}}$ Читаемый в 2019-2020 годах $^{2}\mathrm{C}$ тудентка группы МЗ435

Оглавление

1	Вве	едение	
	1.1	Модел	ъ OSI
		1.1.1	Прикладной уровень (application layer)
		1.1.2	Уровень представления данных (presentation layer)
		1.1.3	Сеансовый уровень (session layer)
		1.1.4	Транспртный уровень (transport layer)
		1.1.5	Сетевой уровень (network layer)
		1.1.6	Канальный уровень (data link layer)
		1.1.7	Физичиеский уровень (physical layer)
		1.1.8	Взаимодествие сетевого канального уровня
2	Lec	ture 2	
	2.1	Физич	еский и канальный уровни корпоративных сетей
	2.2		нение IP сетей
		2.2.1	Виды маршрутизации
		2.2.2	NAT (Network Address Translation)

Глава 1

Введение

1.1 Модель OSI

Рис. 1.1:

1.1.1 Прикладной уровень (application layer)

Основные функции:

- Передача служебной информации приложений
- Предоставляет приложениям информацию об ошибках

Примеры протоколов: **FTP** (File Transfer Protocol), **Telnet** (TErminaL NETwork), **HTTP** (HyperText Transfer Protocol), **POP3** (Post Office Protocol Version 3), **SMTP** (Simple Mail Transfer Protocol).

1.1.2 Уровень представления данных (presentation layer)

Основные функции:

- Сжатие данных
- Шифрование данных
- Перекодировка данных

Примеры протоколов: SSI (Secure Socket Layer), RDP (Remote Desktop Protocol).

1.1.3 Сеансовый уровень (session layer)

Основные функции:

• Обеспечивает установление, поддержание и завершение сеанса связи, позволяя приложениям взаимодействовать между собой длительное время

Примеры протоколов: **L2TP** (Layer 2 Tunneling Protocol), **NetBIOS** (Network Basic Input Output System), **PAP** (Password Authentication Protocol), **PPTP** (Point-to-Point Tunneling Protocol), **RPC** (Remote Procedure Call Protocol).

1.1.4 Транспртный уровень (transport layer)

Основные функции:

 Обеспечивает надёжную доставку данных, подтверждение приёма и сегментацию потока, получаемого от транспортного уровня

Примеры протоколов: **TCP** (Transmission Control Protocol), **UDP** (User Datagramm Protocol).

1.1.5 Сетевой уровень (network layer)

Основные задачи:

• Решает задачу доставки данных по составной сети, межсетевую адресацию, трансляцию физических адресов в сетевые.

Примеры протоколов: **IP/IPv4/IPv6** (Internet Protocol), **IPX** (Internetwork Packet Exchange), **IPsec** (Internet Protocol Security), **ICMP** (Internet Control Message Protocol), **RIP** (Routing Information Protocol), **OSPF** (Open Shortest Path First), **ARP** (Address Resolution Protocol).

1.1.6 Канальный уровень (data link layer)

Основные задачи:

- Обеспечивает формирование фреймов (frames) кадров
- Обеспечиват контроль ошибок и управление потоком данных (data flow control)
- Логическое кодирование данных

Примеры протоколов: **ATM**, **Ethernet**, **EAPS** (Ethernet Automatic Protection Switching), **FDDI** (Fiber Distributed Data Interface), **MPLS** (Multiprotocol Label Switching), **PPP** (Point-to-Point Protocol), **SLIP** (Serial Line Internet Protocol).

1.1.7 Физичиеский уровень (physical layer)

Основные функции:

- Обеспечивает физическое кодирование бит кадра в электрические (оптические) сигналы и передачу их по линии связи
- Определяет тип кабалей и разъёмов, назначение контактов и формат физических сигналов

Примеры протоколов: IEEE 802.15 (Bluetooth), IRDA, EIA-RS-232, EIA-422, Ethernet, DSL, ISDN, IEEE 802.11.

1.1.8 Взаимодествие сетевого канального уровня

Рис. 1.2:

Замечания:

• В сетях 1 и 3 есть узлы с одинаковыми адресами канального уровня. Это возможно, так как область действия адресации канального уровня — локальная сеть.

- В составной сети адреса сетевого уровня из одной локальной сети должны иметь одинаковую сетевую часть. Это нужно для решения задачи маршрутизации.
- В составной сети адреса сетевого уровня должны быть уникальными.
- За счет процедуры инкапсуляции межсетвое взаимодействие не зависит от природы канальных протоколов в локальных сетях.

Глава 2

Lecture 2

2.1 Физический и канальный уровни корпоративных сетей

Стркутурированные кабельные системы

2.2 Соединение ІР сетей

2.2.1 Виды маршрутизации

Маршрутизацию можно классифицировать двумя способами:

- Статическая и динамическая
- Внешняя и внутренняя

Внешняя необходима для маршрутизации между автономными системами (EGP, BGP). Внутрення— внутри одной системы (RIP, OSPF).

OSPF – открытие кратчайшего пути первым. Информации включения/отключения сетей пересылается сразу, по мере появления. По этой информации строится нагруженный граф сети (веса назначаются по таблице в зависимости от скорости линии связи). Маршрут считается по алгоритму Дириха. Быстрее получаем маршрутную информацию, понимаем скорости и быстро перестраиваем при ищменении конфигурации. Но его гораздо сложнее настраивать.

Сеть в маршрутизации описывается в виде табоицы маршрутизации.

В TCP/IP мы занимаемся каждым отдельным пакетом. В этом есть минус, так как обычно все пакеты дают один и тот же пакет.

Таблицы маршрутизации строит либо админ, либо протокол маршрутизации.

2.2.2 NAT (Network Address Translation)

Основная причина появления — постоянная нехватка ІР адресов.

Не всем хостам нужен IP адрес, а использовать маршуртизацию нельзя.

Цель: обеспечить связь хостов из немаршуртизуемой сети во внешнюю IP сеть. Виды:

- Публикация адреса
- Клиентский NAT
- Публикация порта

Публикация адреса

Когда: Вы - провайдер домашнего интернета. И один из пользователей вашей сети захотел себе NAS (Network Attached Storage — компьютер с диском, к которому мы ходим из разных мест по разным протоколам), ему нужен реальный IP адрес. Вариант с разделением всей сети масками очень сложен и плох. Поэтому мы делаем подстановку: маршуртизатор провайдера, когда получает пакет на реальный адрес, то меняет его на локальный и посылает по сети, обратно наоборот. Но эта схема работает только, если используется один алрес, для большего количества не работает.

Клиентский NAT

Плюсы: любое количество хостов можем выпустить наружу в интернет через один IP адрес.

Публикация порта

Теперь можно из интернета попасть на устройство. Нам нужен лишь один IP адрес. И обратившись на опубликованный сокет мы попадем на нужное кстройство.