

PO-202 - Programação Linear

Atividade 5

Grupo:

Gabriel Telles Missailidis Rafael Silva de Oliveira Samir Nunes da Silva

Professor:

Luiz Leduino Salles Neto

23/11/2022

Instituto Tecnológico de Aeronáutica – ITA

a)

Modelaremos o problema com 6 variáveis de decisão. Seja x_{ij} a quantidade de toneladas do ingrediente j usado na receita do doce i. Temos $i \in \{1,2\}$ e $j \in \{1,2,3\}$, representando, respectivamente, açúcar, amêndoas e chocolate. As restrições do problema envolvem a quantidade limitada de quilos de ingredientes em estoque, e também restrições envolvendo a composição de cada doce. Por exemplo, a mistura do doce 1 deve conter pelo menos 20% de amêndoas,ou seja,

$$x_{11} >= 0, 2(x_{11} + x_{12} + x_{13})$$

 $-0, 2x_{11} + 0, 8x_{12} - 0, 2x_{13} >= 0$
 $-x_{11} + 4x_{12} - x_{13} >= 0$

Desenvolvimentos semelhantes foram feitos para as restrições de composição da mistura do doce 2. Note que, para a função objetivo, \$0,50 por kg é equivalente a \$500 por ton. Assim, chega-se na formulação do problema:

Maximizar
$$z = 500(x_{11} + x_{12} + x_{13}) + 400(x_{21} + x_{22} + x_{23})$$
sujeito a : $x_{11} + x_{21} \le 10$

$$x_{12} + x_{22} \le 2$$

$$x_{13} + x_{23} \le 3$$

$$-x_{11} + 4x_{12} - x_{13} \ge 0$$

$$-x_{21} + 9x_{22} - x_{23} \ge 0$$

$$-x_{21} - x_{22} + 9x_{23} \ge 0$$

$$x_{ij} >= 0, \forall i, j$$

```
In [3]:
    probl = LpProblem('P1', LpMaximize)

In [3]:
    xi1 + pulp.LpVariable('xi1', lomBound = 0, cat = 'Continuous') # Massa de oxicar no doce 1
    xi2 + pulp.LpVariable('xi2', lomBound = 0, cat = 'Continuous') # Massa de oxicar no doce 1
    xi3 + pulp.LpVariable('xi2', lomBound = 0, cat = 'Continuous') # Massa de oxicar no doce 2
    xi3 + pulp.LpVariable('xi2', lomBound = 0, cat = 'Continuous') # Massa de oxicar no doce 2
    xi3 + pulp.LpVariable('xi2', lomBound = 0, cat = 'Continuous') # Massa de oxicar no doce 2
    xi3 + pulp.LpVariable('xi2', lomBound = 0, cat = 'Continuous') # Massa de oxicar no doce 2

In [4]:
    rest1 = xi3 + xi2 + xi3 +
```

Figura 1: Modelagem e obtenção da solução ótima do problema 2 através do PuLP Python.

A resolução do problema de otimização linear foi feita através do PuLP em Python, conforme a Figura 1, da qual é possível extrair a solução ótima, com $x_{11}=4$, $x_{12}=1$, $x_{13}=0$, $x_{21}=6$, $x_{22}=1$, $x_{23}=3$, com lucro máximo $z_{max}=\$6500$. Interpretando as variáveis de decisão, percebe-se que a mistura do doce 1 foi de 80% açúcar, 20% amêndoas e 0% chocolate, enquanto a do doce 2 foi de 60% açúcar, 10% amêndoas e 30% chocolate. A solução ótima produz 5 toneladas de doce 1 e 10 toneladas de doce 2.

b)

Variando ligeiramente a quantidade de açúcar de 10 toneladas, foi obtida a Tabela 1. Note que para cada aumento (diminuição) de 0,1 ton de açúcar no estoque, o lucro total aumenta (diminui) em \$30. Adicionalmente, a cada 0,1 ton a mais no estoque, 0,08 ton deixavam de ir para a receita do doce 1 e 0,18 ton a mais iam para a receita do doce 2. Para respeitar as restrições de ingredientes, há semelhante movimento nos estoques de amêndoas, de modo que a cada 0,1 ton de açúcar adicionada, havia 0,02 ton de amêndoas que passavam da linha de produção do doce 1 e iam para o doce 2. Em todas as situações analisada, a distribuição do estoque de chocolate permaneceu a mesma, indo inteiramente para a receita do doce 2.

Açúcar	x_{11}	x_{12}	x_{13}	x_{21}	x_{22}	x_{23}	z
10,2	3,84	0,96	0	6,36	1,04	3	6560
10,1	3,92	0,98	0	6,18	1,02	3	6530
10	4,00	1,00	0	6,00	1,00	3	6500
9,9	4,08	1,02	0	5,82	0,98	3	6470
9,9	4,16	1,04	0	5,64	0,96	3	6440

Tabela 1: Análise de Sensibilidade para mudanças na quantidade estocada de açúcar afetando a solução ótima.

a)

Nutriente		2	3	4	5	NMD por nutriente
Vit. A		0	1	1	2	21
Vit. K		1	2	1	1	12
Custo (Centavos/Unid.)		20	31	11	12	

Figura 2: Cálculo do valor esperado do custo de 1 unidade de vitamina K no Júpiter Notebook.

Através da tabela de dieta disposta na Figura 2, modelou-se o problema de otimização linear através da biblioteca PuLP do Python, no Júpiter Notebook, conforme mostra a Figura 3. Nela, o conjunto de variáveis $\{x_1, x_2, x_3, x_4, x_5 \text{ são números inteiros positivos que representam as quantidades de unidades de cada um dos alimentos, de 1 a 5. Por sua vez, as restrições foram obtidas da coluna "NMD por nutriente", que representa as necessidades mínimas diárias das vitaminas A e K. Por fim, pretende-se minimizar a função-objetivo <math>z$, que representa o custo total devido à compra dos alimentos de 1 a 5. O problema foi então modelado como segue:

Minimizar
$$z = 20x_1 + 20x_2 + 31x_3 + 11x_4 + 12x_5$$

sujeito a: $x_1 + x_3 + x_4 + 2x_5 \ge 21$
 $x_2 + 2x_3 + x_4 + x_5 \ge 12$
 $x_1, x_2, x_3 \ge 0$

Problema 2 In [9]: prob2 = LpProblem('P2', LpMinimize) pulp.LpVariable('x1', lowBound = 0, cat = 'Integer') pulp.LpVariable('x2', lowBound = 0, cat = 'Integer') pulp.LpVariable('x3', lowBound = 0, cat = 'Integer') pulp.LpVariable('x4', lowBound = 0, cat = 'Integer') In [10]: x1 = x5 = pulp.LpVariable('x5', lowBound = 0, cat = 'Integer') In [11]: z = 20*x1 + 20*x2 + 31*x3 + 11*x4 + 12*x5prob2 += z In [12]: rest1 = 1*x1 + 1*x3 + 1*x4 + 2*x5 rest2 = 1*x2 + 2*x3 + 1*x4 + 1*x5 prob2 += (rest1 >= 21) prob2 += (rest1 >= 12) In [13]: optimization_result = prob2.solve() In [14]: assert optimization_result == LpStatusOptimal In [15]: for var in [x1, x2, x3, x4, x5]: print(f'{var.name}:{var.value()}') x1:0.0 x2:0.0 x3:0.0 x4:1.0 x5:10.0

Figura 3: Modelagem e obtenção da solução ótima do problema 2 através do PuLP Python.

Da Figura 3, nota-se que a solução ótima foi: $x_1=x_2=x_3=0, x_4=1$ e $x_5=10,$ de tal forma que o custo mínimo é $z_{min}=131$ centavos.

∴ **Resposta:** $(x_1,x_2,x_3,x_4,x_5) = (0,0,0,1,10)$, ou seja, deve-se comprar 1 unidade do alimento 4 e 10 unidades do alimento 5 para cumprir as necessidades diárias das vitaminas A e K com custo mínimo.

Figura 4: Cálculo do valor esperado do custo de 1 unidade de vitamina K no Júpiter Notebook.

Considere a Figura 4, que indica o cálculo do valor esperado E_k do custo de 1 unidade de vitamina K. A partir dela, vemos que $E_k = 21$ centavos/unidade. Logo, concluímos que sim, o preço de p = 12 centavos/unidade proposto é competitivo com os alimentos disponíveis para satisfazer a necessidade dessa vitamina por dois motivos:

- 1^{0}) Como $p < E_{k}$, o valor proposto está abaixo do valor esperado para uma unidade de vitamina K, dados os valores disponíveis no mercado.
- 2^{0}) Dado que a otimização para satisfazer as necessidades mínimas diárias dos nutrientes foi de 1 unidade do alimento 4 (que vale 11 centavos/unidade) e de 10 unidades do alimento 5 (que vale 12 centavos/unidade), espera-se que as pessoas que buscam menor preço na satisfação das necessidades mínimas diárias comprem uma unidade de vitamina K por (1 * 11 + 1 * 12 * 10)/ $11 \approx 11,91$ centavos/unidade, que é muito próximo do valor proposto pelo farmacêutico.

```
Minimizar z=-x_1-x_2
s. a: -x_1+x_2>=1
-x_1+x_2>=1
x_1,x_2>=0
```

Figura 5: Problema original proposto.

Consideremos inicialmente o problema primal disposto na Figura 5, retirada diretamente do enunciado do problema 3. Nota-se que duas das restrições são idênticas, de tal forma que pode-se resumir o problema proposto conforme segue:

```
Minimizar z = -x_1 - x_2

sujeito a: -x_1 + x_2 \ge 1

x_1, x_2 \ge 0
```

Problema 3

Figura 6: Tentativa de resolução do primal no PuLP.

Resolvendo-se tal problema de minimização no PuLP, de acordo com a Figura 6, nota-se que a solução é ilimitada, ou seja, pode-se fazer x_2 tender ao infinito enquanto se mantém $x_1=0$, por exemplo. Dessa forma, o problema primal é de fato inviável. Utilizando-se o método Simplex, pode-se achar a tabela Simplex ótima, que é descrita pelo sistema a seguir, no qual x_3 é variável de excesso.

Maximizar
$$z = -1 + 2x_1 + x_2$$

sujeito a: $-x_1 + x_2 - x_3 = 1$
 $x_1, x_2 \ge 0$

Assim, o problema dual pode ser escrito como:

$$Minimizar$$
 $w = y_1 - 1$
 $sujeito\ a: -y_1 \ge 2$
 $y_1 \ge 1$
 $-y_1 \ge 0$

Simplificando-se o dual, vem:

Minimizar
$$w = y_1 - 1$$

sujeito $a: y_1 \le -2$
 $y_1 \ge 1$

Nota-se, pelas restrições, que o dual é de fato inviável, tal como o primal, pois não há y_1 que satisfaz o sistema, conforme queríamos demonstrar.

4 Problema 4

O problema foi modelado com duas variáveis de decisão: x_1 se refere à quantidade de cargas frágeis na seção pressurizada (tarifa R\$3000 por tonelada) e x_2 , à quantidade de cargas ordinárias na seção comum (tarifa R\$1000 por tonelada). O objetivo é maximizar a receita, identificado como função z.

Entre as restrições, a primeira seção pode levar no máximo 6 toneladas, e a segunda, até 12. A carga total não pode super 16 toneladas, e a primeira seção deve ser menos de 2 toneladas mais pesada que metade da seção 2. Além disso, os valores das cargas devem ser, claro, positivos.

Portanto, o problema deve ser modelado como segue:

Maximizar
$$z = 3000x_1 + 1000x_2$$

sujeito a : $x_1 \le 6$
 $x_2 \le 12$
 $x_1 + x_2 \le 16$
 $2x_1 - x_2 \le 4$
 $x_i \ge 0, \forall i$

Portanto, devemos resolver pelo método gráfico. Impostas as condições, a região na qual a solução do problema se localiza é a entre os pontos pretos:

Figura 7: Modelagem da solução ótima do problema 4 através do Método Gráfico.

Para descobrir o frete máximo, devemos maximizar a função $z = 3000x_1 + 1000x_2$ de forma que ela passe pelo ponto mais distante da origem. Isso resulta no seguinte gráfico:

Figura 8: Obtenção da solução ótima do problema 4 através do Método Gráfico.

Portanto, a função que leva ao máximo frete é 3000x + 1000y = 28000, ou seja, frete de R\$28.000,00, que é obtido carregando 6 toneladas de cargas frágeis mais 10 de cargas ordinárias.

Com respeito aos preços-sombra, é possível encontrar 4, cada um associado a uma das quatro restrições descritas (a quinta e última é associada com a modelagem das variáveis, e não com as limitações do problema em si), ao aumentar uma unidade em cada restrição, isto é, equivalente ao ganho adicional com uma unidade a mais de esforço. Dessa forma, obtem-se como preços-sombra:

- Primeira restrição: novo máximo de R\$29.333,33; custo-sombra de c_1 =R\$1.333,33.
- \bullet Segunda restrição: novo máximo de R\$28.000,00; custo-sombra de c_2 =R\$0,00.
- \bullet Terceira restrição: novo máximo de R\$29.000,00; custo-sombra de c_3 =R\$1.000,00.
- $\bullet\,$ Quarta restrição: novo máximo de R\$28.000,00; custo-sombra de c_4 =R\$0,00.

É possível ver que um acréscimo de esforço a mais nas segunda e quarta restrição não acarreta em aumento de receita. De fato, a solução ótima, que é de $x_1=6$ e $x_2=10$, já atende a $x_2\leq 13$ e $x_1-x_2/2\leq 3$, ou seja, não é necessário modificar tais restrições para mais receita.

Agora, um acréscimo nas primeira e terceira restrições modificaria a solução ótima, sugerindo que há um custo escondido nessas variáveis.