거리 내 학교 수와 주택 가격의 상관관계 분석

목차

01	주제 선정 이유
02	데이터 수집 방법
03	데이터 전처리
04	데이터 분석
05	결과 및 해석
06	결론 및 활용방안

01 주제 선정 이유

종합주택 매매가격지수

01 주제 선정 이유

01 주제 선정 이유

학교 교육의 효과에 대해 긍정적으로 인식하는 인구의 비율

주변에 <u>학교</u>가 많아지면 <u>주택 가격</u>은 비싸질까?

공교육의 긍정적인 인식이 증가함에 따라 학교 주변을 선호하는 사람들이 증가한다면?

학교랑 가까울수록 주택 가격이 상승할 가능성이 있음.

공공데이터포털

국토교통부에서 제공하는 2023년도 공동주택 공시가격 정보 https://www.data.go.kr/data/3073746/fileData.do

지방교육재정연구원에서 제공하는 전국 초등학교, 중학교, 고등학교의 위치정보(좌표) https://www.data.go.kr/data/15099519/fileData.do#/tab-layer-file

- # CSV 파일 경로
 house_file_path = "<u>/content/data/house.csv</u>"
 school_file_path = "<u>/content/data/school.csv</u>"
- house_data = pd.read_csv(house_file_path, encoding = 'cp949')
- <ipython-input-9-d5c73c4a2990>:1: DtypeWarning: Columns (5,6,11,14) have mixed types. Specify dtype option on import or set low_memory=False. house_data = pd.read_csv(house_file_path, encoding = 'cp949')

[14] school_data = pd.read_csv(school_file_path, encoding = 'cp949')

다운로드 받은 csv 파일의 경로를 지정하고 파이썬 pandas의 read_csv()를 이용해서 파일 불러오기

head()와 tail()을 이용해서 불러온 주택 데이터의 일부를 확인

[15] school_data.head() school_data.tail()

	학교ID	학교명	학교 급구 분	설립일 자	설립 형태	본교분 교구분	운명 상태	소재지지번주소	소재지도로명주소	시도교육청 코드	시도교 육청명	교육지원청 코드	교육지원청 명	생성일 자	변경일 자	위도	경도	테미터기 준일자
11984	B000027484	광주예술 고등학교	고등학 교	1983- 03-15	공립	본교	운영	광주광역시 북구 매 곡동 385	광주광역시 북구 서하 로 72	7380000	광주광역 시교육청	7391000	광주광역시동 부교육지원청	2013- 11-29	2023- 07-03	35.186556	126.888059	2023-09-22
11985	B000023850	양덕중학 교	중학교	2018- 11-12	공립	본교	운영	경상북도 포항시 북 구 양덕동 2027	경상북도 포항시 북구 장량로241번길 22	8750000	경상북도 교육청	8761000	경상북도포항 교육지원청	2013- 11-29	2023- 07-03	36.083986	129.407206	2023-09-22
11986	B000025977	망포초등 학교	초등학 교	2019- 05-01	공립	본교	운영	경기도 수원시 영통 구 망포동 750	경기도 수원시 영통구 동탄지성로 550-10	7530000	경기도교 육청	7541000	경기도수원교 육지원청	2013- 11-29	2023- 07-03	37.240598	127.047323	2023-09-22
11987	B000011074	서포중학 교	중학교	1955- 09-26	공립	본교	운영	경상남도 사천시 서 포면 구평리 916	경상남도 사천시 서포 면 서포로 293-6	9010000	경상남도 교육청	9081000	경상남도사천 교육지원청	2013- 11-29	2023- 07-03	35.008273	127.974528	2023-09-22
11988	B000013326	대아고등 학교	고등학 교	1966- 01-22	사립	본교	운영	경상남도 진주시 이 현동 316	경상남도 진주시 서장 대로185번길 14	9010000	경상남도 교육청	9051000	경상남도진주 교육지원청	2013- 11-29	2023- 07-03	35.189314	128.057571	2023-09-22

head()와 tail()을 이용해서 불러온 학교 데이터의 일부를 확인

```
house_data.info()
                                                            [16] school_data.info()
<class 'pandas.core.frame.DataFrame'>
                                                                 <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 14863981 entries, 0 to 14863980
                                                                 RangeIndex: 11989 entries, 0 to 11988
   Data columns (total 20 columns):
                                                                 Data columns (total 18 columns):
    # Column Dtype
                                                                  # Column Non-Null Count Dtype
    0 기준연도 int64
                                                                      학교ID
                                                                                11989 non-null object
                                                                      학교명
                                                                                 11989 non-null object
       법정동코드 int64
                                                                      학교급구분
                                                                                 11989 non-null object
       도로명주소 object
                                                                      설립일자
                                                                                  11989 non-null object
       시도
               object
       시군구
                                                                                  11989 non-null object
                object
                                                                                 11989 non-null object
               object
                                                                                  11989 non-null object
               object
       특수지코드 int 64
                                                                      소재지지번주소 11989 non-null object
                                                                      소재지도로명주소 11989 non-null object
    10 부번
               int64
                                                                      시도교육청코드 11989 non-null int64
    11 특수지명
               object
                                                                                 11989 non-null object
    12 단지명
               object
                                                                     교육지원청코드 11989 non-null int64
    13 동명
               object
                                                                                  11989 non-null object
    14 호명
               object
                                                                                  11989 non-null object
    15 전용면적
               float64
                                                                                  11989 non-null object
    16 공시가격
                int64
                                                                  15 위도
                                                                                11989 non-null float64
    17 단지코드
                int64
                                                                                11989 non-null float64
    18 동코드
                int64
                                                                  17 데이터기준일자 11989 non-null object
    19 호코드
                int64
                                                                 dtypes: float64(2), int64(2), object(14)
   dtypes: float64(1), int64(10), object(9)
                                                                 memory usage: 1.6+ MB
   memory usage: 2.2+ GB
```

info()를 이용해서 결측치가 있는지 확인

 # 사용할 컬럼만 따로 지정 house_columns = ['도로명주소','전용면적', '공시가격'] school_columns = ['소재지도로명주소', '학교명']

```
[19] # 데이터를 건너뛰면서 불러오기 위함

def skip_logic(index, skip_num):

    if index % skip_num == 0:

        return False

    return True
```

```
# 읽어올 행의 수
num_rows_to_read = 14000
```

```
[] #필요한 컬럼만 선택하여 로드
house_data = pd.read_csv(house_file_path, encoding='cp949', usecols=house_columns, skiprows = lambda x: skip_logic(x, 1000), nrows = num_rows_to_read)
school_data = pd.read_csv(school_file_path, encoding='cp949', usecols=school_columns)
```

체계적 표본추출 방법을 이용해서 주택 데이터 중 14000개 데이터만 사용

```
# 주소를 이용하여 위도와 경도를 반환하는 함수 정의

def get_lat_lon(address):
    try:
        location = geolocator.geocode(address, timeout=10)
        return (location.latitude, location.longitude) if location else (None, None)
    except Exception as e:
        print(f"Error during geocoding: {e}")
        return (None, None)
```

geopy를 이용해서 주소를 위도, 경도 값으로 변환하는 함수 정의

```
● # 주택 데이터에 대한 위도, 경도 계산
house_data['주택 좌표'] = house_data['도로명주소'].apply(lambda x: get_lat_lon(x))
house_data[['주택 위도', '주택 경도']] = pd.DataFrame(house_data['주택 좌표'].tolist(), index=house_data.index)
house_data['단위 면적당 가격'] = house_data['공시가격'] / house_data['전용면적']
house_data = house_data[['주택 위도', '주택 경도','도로명주소', '단위 면적당 가격']]
```

```
[] #학교 데이터에 대한 위도, 경도 계산
school_data['학교 좌표'] = school_data['소재지도로명주소'].apply(lambda x: get_lat_lon(x))
school_data[['학교 위도', '학교 경도']] = pd.DataFrame(school_data['학교 좌표'].tolist(), index=school_data.index)
school_data = school_data[['학교 위도', '학교 경도', '학교명']]
```

주택과 학교의 도로명주소를 위도, 경도 값으로 변환 이때, 주택의 공시가격을 전용면적으로 나누어 단위 면적당 가격을 계산

```
[] #결측치 유무 확인
house_data.info()
school_data.info()

#결측치가 있는 행 제거
house_data = house_data.dropna()
school_data = school_data.dropna()
```

새로 생성된 데이터에 결측치가 있는지 확인 후 결측치 제거

```
[] #동일한 주소의 주택에 대한 단위 면적당 평균가격 계산 house_data['단위 면적당 평균가격'] = house_data.groupby('도로명주소')['단위 면적당 가격'].transform('mean')

[] # 중복된 도로명 주소 제거 unique_house_data = house_data.drop_duplicates(subset='도로명주소')
```

주소가 동일한 주택에 대한 단위 면적당 평균가격을 계산 후 중복 제거

```
[] # 반경 내에 있는 학교의 수를 세는 함수

def count_schools_within_radius(house_coords, school_data, radius_km):
        count = 0
        for _, school_row in school_data.iterrows():
            school_coords = (school_row['학교 위도'], school_row['학교 경도'])
        distance = geodesic(house_coords, school_coords).km
        if distance <= radius_km:
            count += 1
        return count
```

주택에서 일정 거리 안에 있는 학교 수를 계산하는 함수 선언

```
# 반경 내에 있는 학교의 수 계산
for radius in [1, 3, 5, 10]:
    column_name = f'{radius}KM 내 학교 수'
    house_coordinate_data[column_name] = house_coordinate_data[['주택 위도', '주택 경도']].apply(
    lambda coords: count_schools_within_radius(coords, school_data, radius), axis=1
)
```

for문으로 1, 3, 5, 10km 내에 있는 학교 수를 각각 계산

완성된 데이터 파일 저장하고 읽어온 후 일부 정보 확인

```
[] #데이터 전처리(결측치 없으므로 패스)
    df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 9989 entries, O to 9988
    Data columns (total 8 columns):
        Column
                    Non-Null Count Dtype
        Unnamed: O 9989 non-null int64
                       9989 non-null
                                    float64
        주택 경도
                        9989 non-null
                                    float64
        단위 면적당 평균가격 9989 non-null float64
        1KM 내 학교 수 9989 non-null
                                     int64
        3KM 내 학교 수 9989 non-null
                                     int64
        -5KM 내 학교 수 - 9989 non-null
                                      int64
        10KM 내 학교 수 9989 non-null
                                      int64
    dtypes: float64(3), int64(5)
    memory usage: 624.4 KB
```

결측치를 확인했지만 없으므로 넘어감

```
[] #산점도 분석
  data_for_analysis = df[['단위 면적당 평균가격','1KM 내 학교 수', '3KM 내 학교 수', '5KM 내 학교 수', '10KM 내 학교 수']]

plt.figure(figsize=(20, 5))

for i, distance_range in enumerate(['1KM', '3KM', '5KM', '10KM']):
    plt.subplot(1, 4, i+1)
    plt.scatter(data_for_analysis[f'{distance_range} 내 학교 수'], data_for_analysis['단위 면적당 평균가격'])
    plt.title(f'{distance_range} 내 학교 수와 주택 가격의 관계')
    plt.xlabel(f'{distance_range} 내 학교 수')
    plt.ylabel('단위 면적당 평균가격')

plt.tight_layout()
    print("산점도 분석이 완료되었습니다.")
    plt.show()
```

거리별 산점도 분석

```
[] # 상관 관계 분석
correlation_matrix = data_for_analysis.corr()

# 시각화
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f', linewidths=.5)
plt.title('단위 면적당 평균가격과 범위 내 학교 수의 상관 관계')

print("상관 관계 분석이 완료되었습니다.")
plt.show()
```

상관관계 분석

```
[81] # 독립변수(X)와 종속변수(y) 설정
school_1km = df[["1KM 내 학교 수"]]
school_3km = df[["3KM 내 학교 수"]]
school_5km = df[["5KM 내 학교 수"]]
school_10km = df[["10KM 내 학교 수"]]

X = np.column_stack((school_1km, school_3km, school_5km, school_10km))
y = df['단위 면적당 평균가격']

# 데이터를 학습용과 테스트용으로 분할
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

선형회귀분석을 위한 독립변수, 종속변수 설정

04 데이터 분석

```
# 4개의 독립 변수에 대해 각각 모델을 학습하고 예측
    for i, km in enumerate([1, 3, 5, 10]):
       # i번째 독립 변수만 선택
       X_train_single = X_train[:, i].reshape(-1, 1)
       X_test_single = X_test[:, i].reshape(-1, 1)
       # 선형 회귀 모델 초기화
       model = LinearRegression()
       #모델 학습
       model.fit(X_train_single, y_train)
       # 학습된 모델을 사용하여 테스트 데이터에 대한 예측 수행
       _y_pred_single = model.predict(X_test_single)
       # 모델 평가 (예측값과 실제값 비교)
       mse_single = mean_squared_error(y_test, y_pred_single)
       print(f"MSE for {km}KM school distance: {mse_single}")
       # 산점도와 회귀 직선 시각화
       plt.scatter(X_test_single, y_test, label='Actual Data')
       plt.plot(X_test_single, y_pred_single, color='red', linewidth=2, label='Regression Line')
       plt.xlabel(f'Schools within {km}KM')
       plt.ylabel('House Price')
       plt.title(f'Regression Analysis for Schools within {km}KM')
       plt.legend()
       plt.show()
```

선형회귀분석 모델을 학습하고 모델 평가

산점도 분석 결과 그래프

05 결과 및 해석

상관관계 분석 히트맵 - 양의 상관관계

05 결과 및 해석

선형회귀분석 결과

주택 가격이 거리 내 학교 수의 영향을 받지만 그 영향이 크지 않은 것으로 보임.

학교별 학업 성취도, 교육 품질, 지역 인프라 등 다른 데이터를 추가

더 정확한 분석 결과

부동산 시장 예측 및 투자 전략 개발

도시 계획 수립 시 적절한 학교 시설의 배치

마케팅 및 광고 전략 수립

부동산 관련 정책 수립

召外官しに。