A multilevel preconditioner for data assimilation with 4D-Var

Alison Ramage*, Kirsty Brown*, Igor Gejadze[†]

* Department of Mathematics and Statistics, University of Strathclyde

† IRSTEA, Montpelier, France

Data assimilation

- Numerical weather prediction is an IVP: given initial conditions, forecast atmospheric evolution. This needs an accurate initial state.
- Data assimilation uses observations and a short range forecast (the background) to update the model state, and determine a "best possible" atmospheric state.
- The update step, which is chosen to minimise a specific cost function, is known as the analysis.
- Other application areas include hydrology, oceanography, environmental science, data analytics, sensor networks...

Physical model

• Evolution equation:

$$\begin{array}{rcl} \displaystyle \frac{\partial \varphi(t)}{\partial t} & = & F(\varphi(t)) + f(t), \\ \varphi(0) & = & u, \\ \\ u \in X, & t \in (0,T), & f, \varphi \in Y = L_2(0,T;X) \end{array}$$

true initial state true state evolution $ar{arphi}$ observation operator observation error background error background function $u_b = \bar{u} + \xi_b$

rue initial state
$$\bar{u}$$
 e state evolution $\bar{\varphi}$ ervation operator $C_{obs}: Y \to Y_{obs}$ exceptation error observations $\varphi_{obs} = C_{obs}\bar{\varphi} + \xi_o$ exceptance error ξ_b kground function $u_b = \bar{u} + \xi_b$

Variational data assimilation problem

represent model in operator form via control-to-state mapping

$$\varphi = R^{cts}(u)$$

• assume errors ξ_o , ξ_b are normal, unbiased and mutually uncorrelated with positive definite covariance operators

$$V_b(\cdot) = E[\langle \cdot, \xi_b \rangle_X \xi_b], \qquad V_o(\cdot) = E[\langle \cdot, \xi_o \rangle_{Y_{obs}} \xi_o]$$

• DA problem: find $v \in X$ which minimises

$$J(v) = \frac{1}{2} \langle V_b^{-1} v, v \rangle_X + \frac{1}{2} \langle V_o^{-1} C_{obs} R^{cts}(u) v, C_{obs} R^{cts}(u) v \rangle_{Y_{obs}}$$

Hessian operator

define associated tangent linear operator

$$R'(u)w = \lim_{\tau \to 0} \frac{R^{cts}(u + \tau w) - R^{cts}(u)}{\tau}, \quad \forall w \in X$$

and adjoint

$$\langle w, R'^*(u)w^* \rangle_X = \langle R'(u)w, w^* \rangle_Y, \quad \forall w \in X, \forall w^* \in Y$$

• Hessian of DA problem:

$$\mathcal{H}(u) = V_b^{-1} + R'^*(u)C_{obs}^*V_o^{-1}C_{obs}R'(u)$$

Incremental 4D-Var

- Represent functions using a finite-dimensional basis.
- Rewrite as an unconstrained minimisation problem using Lagrange's method.
- Incremental approach: linearise evolution operator and solve linearised problem iteratively.
- Require a discrete version of the tangent linear model (TLM) and its adjoint.
- Each iteration requires one forward solution of the TLM equations and one backward solution of the adjoint equations.

Hessian matrix

• Hessian of the cost function:

$$\mathcal{H} = V_b^{-1} + R^T C_{obs}^T V_o^{-1} C_{obs} R$$

- Discrete tangent linear operator R and its adjoint.
- ullet \mathcal{H} is often too large to be stored in memory.
- Action of applying \mathcal{H} to a vector is available, but expensive:
 - involves both forward and backward solves with the linearised evolution operator and its adjoint.

Approximating the inverse Hessian

Why approximate \mathcal{H}^{-1} ?

- \bullet \mathcal{H}^{-1} represents an approximation of the Posterior Covariance Matrix (PCM).
- The PCM can be used to find confidence intervals and carry out a posteriori error analysis.
- \bullet $\mathcal{H}^{-1/2}$ can be used in ensemble forecasting.
- \mathcal{H}^{-1} , $\mathcal{H}^{-1/2}$ can be used for preconditioning in a Gauss-Newton method (focus of this talk).

AIM: construct a limited-memory approximation to \mathcal{H}^{-1} using only matrix-vector multiplication.

Return to 4D-Var

Linear system (within a Gauss-Newton method):

$$\mathcal{H}(\mathbf{u}_k)\delta\mathbf{u}_k = G(\mathbf{u}_k)$$

Hessian of the cost function $\mathcal{H}(\mathbf{u}_k)$ gradient of the cost function $G(\mathbf{u}_k)$

- Solve using Preconditioned Conjugate Gradient iteration (needs only Hv).
- Convergence depends on eigenvalues of the Hessian

$$\mathcal{H} = V_b^{-1} + R^T C_{obs}^T V_o^{-1} C_{obs} R.$$

 Evaluating Hv is very expensive, so we need a good preconditioner.

First level preconditioning

- Use the background covariance matrix V_b .
- Projected Hessian:

$$H = (V_b^{1/2})^T \mathcal{H} V_b^{1/2} = I + (V_b^{1/2})^T R^T C_{obs}^T V_o^{-1} C_{obs} R V_b^{1/2}$$

- ullet Easy to recover ${\cal H}$ in the original space.
- Eigenvalues of H are usually clustered in a narrow band above one, with few eigenvalues distinct enough to contribute noticeably to the Hessian.

```
[Haben et al., Computers & Fluids 46 (2011)]
```

• This makes H amenable to limited-memory approximation.

Correlation matrix

 \bullet \mathcal{H}^{-1} (scaled to have unit diagonal)

Preconditioned correlation matrix

• H^{-1} (after first level preconditioning)

Limited-memory approximation

- Find n_e leading eigenvalues and orthonormal eigenvectors using the Lanczos method.
- Construct approximation

$$H pprox I + \sum_{i=1}^{n_e} (\lambda_i - 1) \mathbf{u}_i \mathbf{u}_i^T$$

• Easy to evaluate matrix powers:

$$H^p pprox I + \sum_{i=1}^{n_e} (\lambda_i^p - 1) \mathbf{u}_i \mathbf{u}_i^T$$

Second level preconditioning

- IDEA: Construct a multilevel approximation to H^{-1} based on a sequence of nested grids.
- Discretise evolution equation on a grid with m+1 nodes (level 0) to represent Hessian H_0 .
- Grid level k contains $m_k = m/2^k + 1$ nodes.

• Identity matrix I_k on grid level k.

Grid transfers with "correction"

- Grid transfer based on piecewise cubic splines:
 - Restriction matrix R_c^f from k = f to k = c.
 - Prolongation matrix P_f^c from k = c to k = f.
- Construct new operators which transfer a matrix between a coarse grid level c and a fine grid level f.
 - From coarse to fine:

$$M_{c \to f} = P_f^c (M_c - I_c) R_c^f + I_f$$

• From fine to coarse:

$$M_{f\to c} = R_c^f (M_f - I_f) P_f^c + I_c$$

Outline of multilevel concept

Given a symmetric positive definite operator H_0 available on the finest grid level in matrix-vector product form:

- restrict H_0 to the coarsest grid level (denoted by $H_{0\rightarrow k}$);
- use a local preconditioner to improve the eigenvalue distribution;
- build a limited-memory approximation to its inverse square root using the Lanczos method (which will form the basis of the local preconditioner at the next level up);
- move up one grid level and repeat.

Multilevel algorithm to approximate H^{-1}

• Represent H_0 at a given level (k, say):

$$H_{0\to k} = R_k^0 (H_0 - I_0) P_0^k + I_k$$

• Use local preconditioner to improve eigenvalue spectrum:

$$\tilde{H}_{0\to k} = (B_k^{k+1})^T H_{0\to k} B_k^{k+1}$$

- Find n_k eigenvalues/eigenvectors of $\tilde{H}_{0\to k}$ using the Lanczos method.
- Approximate $\tilde{H}_{0\rightarrow k}^{-1/2}$:

$$\tilde{H}_{0 \to k}^{-1/2} pprox I_k + \sum_{i=1}^{n_k} \left(\frac{1}{\sqrt{\lambda_i}} - 1 \right) \mathbf{u}_i \mathbf{u}_i^T$$

Local preconditioners

- B_k^{k+1} , constructed on level k+1 and applied on level k.
- On coarsest grid, level k+1 does not exist so set $B_k^{k+1} = I_k$.
- For other levels, construct preconditioners recursively:

$$B_{k}^{k+1} = \left[B_{k+1}^{k+2} \tilde{H}_{0 \to k+1}^{-1/2} \right]_{\to k}, \quad B_{k}^{k+1}^{T} = \left[\tilde{H}_{0 \to k+1}^{-1/2} B_{k+1}^{k+2}^{T} \right]_{\to k}$$

• Example: 4 levels (k = 0, 1, 2, 3)

$$\begin{split} B_4^5 &= I_4, \\ B_3^4 &= [\tilde{H}_{0 \to 4}^{-1/2}]_{\to 3}, \\ B_2^3 &= [[\tilde{H}_{0 \to 4}^{-1/2}]_{\to 3} \tilde{H}_{0 \to 3}^{-1/2}]_{\to 2}, \\ B_1^2 &= [[[\tilde{H}_{0 \to 4}^{-1/2}]_{\to 3} \tilde{H}_{0 \to 3}^{-1/2}]_{\to 2} \tilde{H}_{0 \to 2}^{-1/2}]_{\to 1}, \\ B_0^1 &= [[[[\tilde{H}_{0 \to 4}^{-1/2}]_{\to 3} \tilde{H}_{0 \to 3}^{-1/2}]_{\to 2} \tilde{H}_{0 \to 2}^{-1/2}]_{\to 1} \tilde{H}_{0 \to 1}^{-1/2}]_{\to 0}. \end{split}$$

Finest level

• We already have H_0 , so precondition to obtain

$$\tilde{H}_0 = {B_0^1}^T H_0 B_0^1.$$

- Find n_0 eigenvalues/eigenvectors of \tilde{H}_0 using the Lanczos method.
- Approximate \tilde{H}_0^{-1} :

$$ilde{H}_0^{-1} pprox I_k + \sum_{i=1}^{n_0} \left(rac{1}{\lambda_i} - 1
ight) \mathbf{u}_i \mathbf{u}_i^T$$

Recover projected inverse Hessian using

$$H_0^{-1} = B_0^1 \tilde{H}_0^{-1} B_0^{1T}$$

Notes

- The main cost comes from using the Lanczos method, which involves the Hessian vector product $H_0\mathbf{v}$.
- All matrices involved are in limited-memory form, and are never actually constructed: instead they are applied using multiplication with eigenvalues and eigenvectors only.
- The remaining problem is how to choose the number of eigenvalues used in the limited-memory approximation on each level

$$N_e = (n_0, n_1, \ldots, n_c)$$

to balance accuracy and cost.

Summary of algorithm

• use $N_e = (n_0, n_1, \dots, n_c)$ eigenvalues at each level

$$\begin{split} [\Lambda,\mathcal{U}] &= \textit{mlevd}(H_0,N_e) \\ \text{for} \quad k = k_c, k_c - 1, \dots, 0 \\ \text{compute by the Lanczos method} \\ \text{and store in memory} \\ \{\lambda_k^i, U_k^i\}, \ i = 1, \dots, n_k \text{ of } \tilde{H}_{0 \to k} \\ \text{using preconditioner } B_k^{k+1} \\ \text{end} \end{split}$$

storage:

$$\begin{array}{lcl} \Lambda & = & \left[\lambda_{k_c}^1, \dots, \lambda_{k_c}^{n_{k_c}}, \lambda_{k_c-1}^1, \dots, \lambda_{k_c-1}^{n_{k_c-1}}, \dots, \lambda_0^1, \dots, \lambda_0^{n_0} \right], \\ \mathcal{U} & = & \left[U_{k_c}^1, \dots, U_{k_c}^{n_{k_c}}, U_{k_c-1}^1, \dots, U_{k_c-1}^{n_{k_c-1}}, \dots, U_0^1, \dots, U_0^{n_0} \right]. \end{array}$$

Example

• Test using 1D Burgers' equation with initial condition

$$f(x) = 0.1 + 0.35 \left[1 + \sin \left(4\pi x + \frac{3\pi}{2} \right) \right], \qquad 0 < x < 1$$

- 1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, and 0.7 in [0,1].
- Multilevel preconditioning with four grid levels:

k	0	1	2	3
grid points	401	201	101	51

Diagonal of H^{-1}

Assessing approximation accuracy

Riemannian distance:

$$\delta(A,B) = \|\ln(B^{-1}A)\|_F = \left(\sum_{i=1}^n \ln^2 \lambda_i\right)^{1/2}$$

ullet Compare eigenvalues of H^{-1} and \tilde{H}^{-1} on the finest grid level k=0 using

$$D = \frac{\delta(H^{-1}, \tilde{H}^{-1})}{\delta(H^{-1}, I)}$$

• Vary number of eigenvalues chosen on each grid level

$$N_e = (n_0, n_1, n_2, n_3)$$

Fixed memory ratio

• Fixed memory ratio $R = \sum_{k=0}^{k_c} \frac{n_k}{2^k}$

PCG iteration for one Newton step

- measurement units
 - memory: length of vector on finest grid
 - cost: cost of HVP on finest grid M

Preconditioner	# CG iterations	storage	cost
none	57	0L	57M
MG(400,0,0,0)	1	400L	402M
MG(4,8,16,32)	4	16L	34M
MG(0,8,16,32)	5	12L	14M
MG(0,0,16,32)	8	8L	10M

Practical versions

- Algorithm 1: apply mlevd to H.
 - Still needs a lot of resources for realistic problems.
- Algorithm 2: assemble local Hessians for each sensor to form H_g , then apply mlevd to H_g .
 - Local Hessians could be computed at a coarser grid level / (including discretisation of the tangent linear model). ✓
 - Local Hessians cheaper to compute (use n_l eigenvalues), and can be computed in parallel. \checkmark
 - Need to store additional local Hessians. X
- Algorithm 3: apply mlevd to local inverse Hessians and assemble to form H_g^{rm} , then apply mlevd to H_g^{rm} .
 - Needs less storage than Algorithm 2. ✓
 - Can use N_e^l eigenvalues for local Hessians. \checkmark
 - Introduces an additional layer of approximation.

Iteration counts

Preconditioner	Algorithm	N_e	1	n _l	N_e^I
P2a	2	(200,0,0,0)	1	8	-
P2b	2	(0,8,16,32)	1	8	-
P2c	2	(0,4,8,16)	1	8	-
P3a	3	(0,8,16,32)	1	8	(0,8,0,0)
P3b	3	(0,8,16,32)	2	8	(8,0,0,0)

Number of Hessian vector products

Conclusions and next steps

- Similar results with other configurations (e.g. moving sensors, different initial conditions).
- Multilevel preconditioning looks promising for constructing a good limited-memory approximation to H^{-1} .
- The balance between restrictions on memory/cost limitations may vary between particular applications.
- Identifying globally appropriate values for (n_0, n_1, n_2, n_3) and other parameters is tricky.
- Next steps:
 - extension to higher dimensions;
 - applying the evolution model on coarser grids;
 - application to other sensor networks.

Please join us in June!

27th Biennial Numerical Analysis Conference University of Strathclyde, Glasgow, Scotland June 27th-30th 2017

http://numericalanalysisconference.org.uk/

Hessian decomposition

partition domain into subregions and compute local Hessians
 H^I such that

$$H(u) = I + \sum_{l=1}^{L} (H^{l}(u) - I)$$

- fewer eigenvalues required for limited-memory representation of each H^I
- local Hessians can be computed in parallel
- H^I need not be computed at finest grid level:

$$H_k(u_k) = I_k + \sum_{l=1}^{L} (H_k^l(u_k) - I_k)$$

• could run local rather than global model

Practical approach: version 1

- Compute limited-memory approximations to local sensor-based Hessians on level I using n_I eigenpairs.
- Assemble these to form H_a , then apply mleved to H_a based on a fixed N_e .
- Local Hessians cheaper to compute.
- Additional user-specified parameter(s) I, n_I needed.
- More memory required as local Hessians must also be stored.

Numerical results

Preconditioner	N_e	1	n _I
P1	(200,0,0,0)	1	8
P2	(0,8,16,32)	1	8
P3	(0,4,8,16)	1	8

log₁₀(error) vs number of HVP

Practical approach: version 2

- Can reduce memory requirements further by using a multilevel approximation of each limited-memory local Hessian on level I using n_I eigenpairs.
- Approximate local Hessians by applying mlevd to local inverse Hessians based on N_e^I .
- Assemble these to form a reduced-memory assembled Hessian H_a^{rm} .
- Use mlevd again on H_a^{rm} based on N_e .

Numerical results

Preconditioner	N_e	1	n _l	N_e^I
P1	(200,0,0,0)	1	8	_
P2	(0,8,16,32)	1	8	-
P3	(0,4,8,16)	1	8	-
P4	(0,8,16,32)	1	8	(0,8,0,0)
P5	(0.8.16.32)	2	8	(0.0.0,8)

 $log_{10}(error)$ vs number of HVP