# Analysis

### Brianna Penkala, Kai Hoeger

2025-04-10

### Data structuring

```
## Warning in full_join(drones_dataset[, c(1, 13, 14, 24)], antidrone_aid_df, : Detected an unexpected :
## i Row 1 of `x` matches multiple rows in `y`.
## i Row 1619 of `y` matches multiple rows in `x`.
## i If a many-to-many relationship is expected, set `relationship =
## "many-to-many"` to silence this warning.
```

### Top/bottom analysis

Top/bottom 25 aid and events percent changes (only rows with data in both columns)

## Relationship Between Aid and Events



## Relationship Between Aid and Events



### **Summary stats**

### **Summary Statistics**

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Thu, Apr 10, 2025 - 09:31:42

#### **Summary Statistics**

| Statistic                      | N   | Mean           | St. Dev.         | Min     | Max            |
|--------------------------------|-----|----------------|------------------|---------|----------------|
| Weekly aid total (euro)        | 141 | 834,605,790.00 | 2,474,692,804.00 | 0       | 18,926,299,908 |
| Change in aid (%)              | 141 | 5,636.10       | 47,871.48        | -100.00 | 546,163.60     |
| Weekly event total             | 141 | 466.04         | 76.73            | 268     | 638            |
| Russian missile use            | 141 | 12.63          | 10.92            | 1       | 58             |
| Russian drone use              | 141 | 39.21          | 16.71            | 1       | 75             |
| Change in total events (%)     | 141 | 0.44           | 11.95            | -28.87  | 64.18          |
| Change in Ukrainian events (%) | 141 | 1.07           | 22.57            | -51.19  | 90.83          |
| Change in Russian events (%)   | 141 | 1.30           | 15.82            | -32.14  | 67.57          |
| Search score                   | 141 | 7.38           | 11.33            | 2.71    | 98.86          |

## Correlation matrix



## Visualizations



## Warning: Removed 2 rows containing missing values or values outside the scale range ## (`geom\_bar()`).







```
# Map of missile attacks
ukraine <- st_read("/Users/briannapenkala/Downloads/Capstone/gadm41_UKR_shp")</pre>
## Multiple layers are present in data source /Users/briannapenkala/Downloads/Capstone/gadm41_UKR_shp,
## Use `st_layers' to list all layer names and their type in a data source.
## Set the `layer' argument in `st_read' to read a particular layer.
## Warning in CPL_read_ogr(dsn, layer, query, as.character(options), quiet, :
## automatically selected the first layer in a data source containing more than
## one.
## Reading layer `gadm41_UKR_0' from data source
     `/Users/briannapenkala/Downloads/Capstone/gadm41_UKR_shp' using driver `ESRI Shapefile'
## Simple feature collection with 1 feature and 2 fields
## Geometry type: MULTIPOLYGON
## Dimension:
                  XΥ
## Bounding box:
                  xmin: 22.14045 ymin: 44.38597 xmax: 40.21807 ymax: 52.37503
## Geodetic CRS:
                  WGS 84
missiles_sf <- st_as_sf(missile_events, coords = c("longitude", "latitude"), crs = 4326)
missile_before1 <- missiles_sf %>% filter(date < as.Date("2022-12-21"))
missile_after1 <- missiles_sf %>% filter(date >= as.Date("2022-12-21") & date < as.Date("2023-06-01"))
```

```
missile_map_before1 <- ggplot() +</pre>
  geom_sf(data = ukraine, fill = "white", color = "black") +
  geom_sf(data = missile_before1 , color = "blue", alpha = 0.2) +
  ggtitle("Before Patriot Deployment") +
  theme(plot.title = element_text(size = 9)) +
  theme_minimal(base_family = "Times New Roman") +
  theme(
    text = element text(family = "Times New Roman"),
    axis.title = element text(family = "Times New Roman"),
    axis.text = element_text(family = "Times New Roman"),
    plot.title = element_text(family = "Times New Roman"))
missile_map_after1 <- ggplot() +</pre>
  geom_sf(data = ukraine, fill = "white", color = "black") +
  geom_sf(data = missile_after1 , color = "blue", alpha = 0.2) +
  ggtitle("After Patriot Deployment") +
  theme_minimal(base_family = "Times New Roman") +
  theme(
    text = element_text(family = "Times New Roman"),
    axis.title = element_text(family = "Times New Roman"),
    axis.text = element_text(family = "Times New Roman"),
    plot.title = element_text(family = "Times New Roman"))
(missile_map_before1 + missile_map_after1) +
   plot annotation(
    title = "Missile Attacks in Ukraine Before and After Patriot Deployment",
    theme = theme(plot.title = element_text(family = "Times New Roman")))
```

## Missile Attacks in Ukraine Before and After Patriot Deployment



# caption = "Before = 02/22/2022 - 12/21/2022. After = 12/21/2022 - 06/21/2023"

### T-tests

T-statistic

| T-statistic | Degrees of Freedom | P-value   | 95% Confidence Interval |
|-------------|--------------------|-----------|-------------------------|
| -28.3       | 218                | < 2.2e-16 | -294.746 - (-221.623)   |

Comparison of Mean Ukrainian and Russian-Instigated Events

P-value

95% Confidence Interval

Degrees of Freedom

| -28.3       | 218                | < 2.2e-16 | -294.746 - (-221.623)   |
|-------------|--------------------|-----------|-------------------------|
| T-statistic | Degrees of Freedom | P-value   | 95% Confidence Interval |
| -0.351      | 4                  | 0.743     | -45.597 - 35.363        |

Comparison of Mean Ukrainian Event Percent Changes in High and Low Aid Periods

| T-statistic | Degrees of Freedom | P-value | 95% Confidence Interval |
|-------------|--------------------|---------|-------------------------|
| -0.351      | 4                  | 0.743   | -45.597 - 35.363        |

Percent Change Aid

|                                      | OLS      | OLS      | OLS      | 2SLS     |
|--------------------------------------|----------|----------|----------|----------|
| Aid                                  | -0.000   |          |          | 0.006    |
|                                      | (0.000)  |          |          | (0.083)  |
| Russian-instigated events change (%) | -0.096   | -0.107   | -0.106   | -1.896   |
|                                      | (0.121)  | (0.121)  | (0.122)  | (26.045) |
| Aid lagged one week                  |          | 0.000    |          |          |
|                                      |          | (0.000)  |          |          |
| Aid lagged two weeks                 |          |          | -0.000   |          |
|                                      |          |          | (0.000)  |          |
| N                                    | 141      | 141      | 141      | 141      |
| R2                                   | 0.011    | 0.006    | 0.006    | -145.614 |
| logLik                               | -638.223 | -638.602 | -638.602 |          |
| AIC                                  | 1284.445 | 1285.204 | 1285.203 |          |

<sup>\*\*\*</sup> p < 0.001; \*\* p < 0.01; \* p < 0.05.

## Regressions on Ukraine

First stage:

$$MilitaryAid_W = \beta_0 + \beta_1 SearchScore_W + u_W$$

Second stage:

$$UVE_W = \beta_0 + \beta_1 \text{MilitaryAid}_{W-lag} + \beta_2 \text{RVE}_W + u_W$$

Where UVE shows Ukrainian-instigated events; RVE shows Russian-instigated events

# Regressions on Russia

```
# Russia regressions no lag
basic_reg_russia <- lm(percent_change_russia ~ percent_change_aid + percent_change_ukraine, data = bywe
# Regressions one week lag</pre>
```

Aid as a Dummy Variable

|                                      | OLS      | OLS      | OLS      | 2SLS     |
|--------------------------------------|----------|----------|----------|----------|
| Aid                                  | -2.481   |          |          | -23.808  |
|                                      | (4.504)  |          |          | (30.696) |
| Russian-instigated events change (%) | -0.108   | -0.110   | -0.122   | -0.115   |
|                                      | (0.121)  | (0.122)  | (0.120)  | (0.131)  |
| Aid lagged one week                  |          | 1.275    |          |          |
|                                      |          | (4.539)  |          |          |
| Aid lagged two weeks                 |          |          | 1.691    |          |
|                                      |          |          | (4.470)  |          |
| N                                    | 141      | 140      | 139      | 141      |
| R2                                   | 0.008    | 0.006    | 0.009    | -0.153   |
| logLik                               | -638.452 | -634.534 | -627.990 |          |
| AIC                                  | 1284.903 | 1277.068 | 1263.979 |          |

<sup>\*\*\*</sup> p < 0.001; \*\* p < 0.01; \* p < 0.05.

```
basic_reg_lag1_russia <- lm(percent_change_russia ~ week_lag_percent_aid + percent_change_ukraine, data
# Regressions two week lag
basic_reg_lag2_russia <- lm(percent_change_russia ~ twoweek_lag_percent_aid + percent_change_ukraine, d
# Instrument
inst_basic_russia <- ivreg(formula = percent_change_russia ~ percent_change_aid + percent_change_ukrain</pre>
output_russia <- huxreg(basic_reg_russia,</pre>
                basic_reg_lag1_russia,
                basic_reg_lag2_russia,
                inst_basic_russia,
                 coefs = c("Aid" = "percent_change_aid",
                           "Ukrainian-instigated events change (%)" = "percent_change_ukraine",
                           "Aid lagged one week" = "week_lag_percent_aid",
                           "Aid lagged two weeks" = "twoweek_lag_percent_aid")) %>%
  set_caption("Percent Change Aid Russia") %>%
  set_markdown_contents(1, 2, "OLS") %>%
  set_markdown_contents(1, 3, "OLS") %>%
  set_markdown_contents(1, 4, "OLS") %>%
  set_markdown_contents(1, 5, "2SLS")
output russia
```

#### Percent Change Aid Russia

|                                        | OLS      | OLS      | OLS      | 2SLS    |
|----------------------------------------|----------|----------|----------|---------|
| Aid                                    | 0.000    |          |          | 0.001   |
|                                        | (0.000)  |          |          | (0.006) |
| Ukrainian-instigated events change (%) | -0.047   | -0.053   | -0.051   | 0.188   |
|                                        | (0.059)  | (0.059)  | (0.059)  | (1.107) |
| Aid lagged one week                    |          | 0.000    |          |         |
|                                        |          | (0.000)  |          |         |
| Aid lagged two weeks                   |          |          | 0.000    |         |
|                                        |          |          | (0.000)  |         |
| N                                      | 141      | 141      | 141      | 141     |
| R2                                     | 0.015    | 0.006    | 0.018    | -17.080 |
| logLik                                 | -587.836 | -588.494 | -587.655 |         |
| AIC                                    | 1183.673 | 1184.987 | 1183.310 |         |

<sup>\*\*\*</sup> p < 0.001; \*\* p < 0.01; \* p < 0.05.

```
# Russia dummy variable regressions
# Regressions dummy no lag
basic_dummy_russia <- lm(percent_change_russia ~ aidgiven + percent_change_ukraine, data = byweek_data)
# Regressions one week lag
basic_dummy_lag1_russia <- lm(percent_change_russia ~ aidgiven_week_lag + percent_change_ukraine, data
# Regressions two week lag
basic_dummy_lag2_russia <- lm(percent_change_russia ~ aidgiven_twoweek_lag + percent_change_ukraine, da
# Instrument
inst_dummy_russia <- ivreg(formula = percent_change_russia ~ aidgiven + percent_change_ukraine | search
output_dummy_russia <- huxreg(basic_dummy_russia,</pre>
                       basic_dummy_lag1_russia,
                       basic_dummy_lag2_russia,
                       inst_dummy_russia,
                 coefs = c("Aid" = "aidgiven",
                           "Ukrainian-instigated events change (%)" = "percent_change_ukraine",
                           "Aid lagged one week" = "aidgiven_week_lag",
                           "Aid lagged two weeks" = "aidgiven_twoweek_lag")) %>%
  set_caption("Aid as a Dummy Variable Russia") %>%
  set_markdown_contents(1, 2, "OLS") %>%
  set_markdown_contents(1, 3, "OLS") %>%
```

```
set_markdown_contents(1, 4, "OLS") %>%
set_markdown_contents(1, 5, "2SLS")
output_dummy_russia
```

Aid as a Dummy Variable Russia

|                                        | OLS      | OLS      | OLS      | 2SLS     |
|----------------------------------------|----------|----------|----------|----------|
| Aid                                    | -0.591   |          |          | -19.304  |
|                                        | (3.164)  |          |          | (22.677) |
| Ukrainian-instigated events change (%) | -0.053   | -0.054   | -0.062   | -0.069   |
|                                        | (0.060)  | (0.060)  | (0.061)  | (0.069)  |
| Aid lagged one week                    |          | 2.542    |          |          |
|                                        |          | (3.169)  |          |          |
| Aid lagged two weeks                   |          |          | -0.639   |          |
|                                        |          |          | (3.183)  |          |
| N                                      | 141      | 140      | 139      | 141      |
| R2                                     | 0.006    | 0.010    | 0.008    | -0.246   |
| logLik                                 | -588.506 | -584.516 | -580.760 |          |
| AIC                                    | 1185.012 | 1177.033 | 1169.520 |          |

<sup>\*\*\*</sup> p < 0.001; \*\* p < 0.01; \* p < 0.05.

## Regressions on missiles

```
set_markdown_contents(1, 3, "OLS")
output_missile
```

Russian Missile Use on Patriot Aid

|                | OLS      | OLS      |
|----------------|----------|----------|
| Patriot aid    | -4.603 * | -4.598 * |
|                | (1.794)  | (1.808)  |
| Russian drones |          | 0.002    |
|                |          | (0.055)  |
| N              | 141      | 141      |
| R2             | 0.045    | 0.045    |
| logLik         | -533.392 | -533.392 |
| AIC            | 1072.784 | 1074.783 |
|                | ·        | ·        |

<sup>\*\*\*</sup> p < 0.001; \*\* p < 0.01; \* p < 0.05.

 $Russian Missile Use_W = \beta_0 + \beta_1 Patriot Aid_W + \beta_2 Russian Drone Use_W + u_W$ 

```
# Patriot aid on drone use (expect to increase)
missile_reg_drone <- lm(russian_drones ~ patriot_aid, data = byweek_data)
summary(missile_reg_drone)</pre>
```

```
##
## Call:
## lm(formula = russian_drones ~ patriot_aid, data = byweek_data)
##
## Residuals:
##
      Min
               1Q Median
                              3Q
                                     Max
## -38.848 -10.848 2.152 12.139 35.152
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.848
                         1.527 26.088
                                           <2e-16 ***
## patriot aid
               -2.987
                            2.799 - 1.067
                                            0.288
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 16.7 on 139 degrees of freedom
## Multiple R-squared: 0.008128, Adjusted R-squared:
## F-statistic: 1.139 on 1 and 139 DF, p-value: 0.2877
```

```
ex <- lm(russian_missiles ~ russian_drones, data = byweek_data)
summary(ex)
##
## Call:
## lm(formula = russian_missiles ~ russian_drones, data = byweek_data)
## Residuals:
##
      Min
               1Q Median
                               3Q
## -11.742 -7.685 -3.500
                            3.514 44.988
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 12.07448
                             2.36086
                                       5.114 1.02e-06 ***
## russian_drones 0.01420
                             0.05542
                                       0.256
                                                0.798
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 10.96 on 139 degrees of freedom
## Multiple R-squared: 0.000472, Adjusted R-squared: -0.006719
## F-statistic: 0.06564 on 1 and 139 DF, p-value: 0.7982
# Drone regressions (russian drone activity on anti drone aid)
antidrone_reg <- lm(russian_drones ~ week_lag_aid, data = drones_dataset)
summary(antidrone_reg)
##
## lm(formula = russian drones ~ week lag aid, data = drones dataset)
##
## Residuals:
##
         Min
                     1Q
                            Median
                                           30
                                                     Max
## -9.000e-16 -9.000e-16 -9.000e-16 -9.000e-16 1.384e-11
##
## Coefficients:
                 Estimate Std. Error
                                        t value Pr(>|t|)
## (Intercept) 1.000e+00 8.383e-16 1.193e+15
                                                  <2e-16 ***
## week_lag_aid -8.637e-16 3.482e-15 -2.480e-01
                                                   0.804
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.061e-13 on 17006 degrees of freedom
    (707 observations deleted due to missingness)
## Multiple R-squared: 0.5, Adjusted R-squared:
## F-statistic: 1.701e+04 on 1 and 17006 DF, p-value: < 2.2e-16
ggplot(aes(x = week), data = byweek_data) +
 geom_smooth(aes(y = rescale(russian_missiles), color = "Russian missile use")) +
 geom_smooth(aes(y = rescale(russian_drones), color = "Russian drone use")) +
 geom_smooth(aes(y = rescale(patriot_aid), color = "Patriot aid provided")) +
 scale color manual(values = c("Russian missile use" = "blue", "Russian drone use" = "orange", "Patrio
 labs(title = "Russian Missile and Drone Use Compared with Patriot Aid",
```

```
x = "Week",
y = "Rescaled Amounts",
color = "Legend") +
theme_minimal(base_family = "Times New Roman") +
theme(
  text = element_text(family = "Times New Roman"),
  axis.title = element_text(family = "Times New Roman"),
  axis.text = element_text(family = "Times New Roman"),
  plot.title = element_text(family = "Times New Roman"))
```

```
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
```

## Russian Missile and Drone Use Compared with Patriot Aid

