

Variational autoencoder for image generation

1. Autoencoder

A deep neural network architecture, composed of an encoder network and decoder, aims to find optimal compression for input data.

- The encoder component learns to map any input vector X to a low latent space vector Y.
- The decoder component learns to map back the compressed vector Y from latent space to the original space (reconstructing original data vector X) and generate X'.
- The loss function to optimize is the reconstruction error (minimize the difference between X' and X).

Vanilla AE

Figure: Autoencoder architecture (authors).

Is it possible to use Autoencoders architecture to generate new data samples?

Figure: Is generating new data possible using
AE? (authors).

Data science project - IASD | 15 Nov 2022 | Page 4

1. Autoencoder (3/3)

No, the generated latent space is not regular; it is possible to sample a point that is meaningless to the decoder!

Figure: problem with AE's latent space*.

^{*}Inspired from illustrations in: Towards data science

2. Variational autoencoder

2. Variational Autoencoder (1/6)

Variational AutoEncoders (VAE) are **AutoEncoders** adapted to the task of content generation.

- Generates new data by decoding points that are randomly sampled from the latent space. The quality and relevance of generated data depend on the regularity of the latent space.
- Overcomes the problem of the latent space irregularity by making the encoder return parameters of a distribution over the latent space variables instead of a single point.

Figure: encoder from AE to VAE (authors).

distribution over the latent space
 variables instead of a single point.
 Adds to the loss function a regularization term.
 *Lei et al, Oct 2019. Modeling tabular data using conditional GAN.

2. Variational Autoencoder (2/6)

Variational AutoEncoders (VAE) **AutoEncoders** adapted to the task of content generation.

- Generates new data by decoding points that are randomly sampled from the latent space. The quality and relevance of generated data depend on the regularity of the latent space.
- Overcomes the problem of the latent space **irregularity** by making the encoder return parameters distribution over the latent space variables instead of a single point.

Figure: encoder from AE to VAE

Adds to the loss function a regularization (authors). term.
*Lei et al, Oct 2019. Modeling tabular data using conditional GAN.

2. VARIATIONAL AUTOENCODER (3/6)

- VAE adds a regulation term: The KL-divergence distance between sample distribution and a normal N(0,I) distribution.
- The idea is to construct for each input X
 a distribution and then make all these
 distributions near to each other (since
 we try to make them near the N(0,I)
 distribution).
- Sampling is then done from the N(0,I) distribution.

Loss = reconstruction_loss (X,X') + KL (N(μ , σ) || N(0,I))

VAE with latent dimension = 2

VAE with latent dimension = 8

VAE with latent dimension = 32

Latent projection using t-SNE

There is no variation in the generated images

3. BETA-VARIATIONAL AUTOENCODERS

3.BETA-VARIATIONAL AUTOENCODERS (1/6)

- The latent space generated by the VAE is very entangled*.
- If we assume that the real images are created from some independent generative factors then we can learn a disentangled latent representation where each <u>latent unit</u> is sensitive to changes in a single <u>generative factor</u> while being relatively invariant to changes in other factors.

3.BETA-VARIATIONAL AUTOENCODERS (2/6)

• The beta VAE is able to learn a disentangled representation by introducing a beta factor in the total loss.

$$\mathcal{L}(\theta, \phi; \mathbf{x}, \mathbf{z}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p(\mathbf{z}))$$
Loss for the VAE *

$$\mathcal{L}(\theta, \phi; \mathbf{x}, \mathbf{z}, \beta) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \beta D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$
Loss for the Beta-VAE *

Latent projection using t-SNE beta=2, latent dimension=2

Latent projection using t-SNE beta=10, latent dimension=2

Latent projection using t-SNE beta=2, latent dimension=8

beta-VAE with latent dimension = 2, beta=10

beta-VAE with latent dimension = 8 , beta=2 4. Vector Quantized Variational Autoencoder (VQ-VAE)

04

4. Vector Qauntized-VAE (1/4)

The main idea behind **vector quantized***VAE is to learn a dictionary-based discrete latent space where the output of the encoder is mapped to an embedding dictionary then passed to the decoder.

- The posterior distribution q(Z|X) is a one-hot distribution*.
- If we define a uniform categorical prior over Z, the KL-divergence term will be constant.
- Then, No need for KL divergence in the loss function.

Given that:

$$Z_e = Encoder(X)$$

The input of the decoder will be:

$$Z_q = e_i$$
, where $i = argmin_{j \in [1..k]}(\|Z_e - e_j\|)$

The posterior will become:

$$q(Z_q = e_i | X) = \begin{cases} 1 & \text{if } i = argmin(||Z_e - e_j||) \\ 0 & \text{otherwise} \end{cases}$$

4. Vector Qauntized-VAE (2/4)

$$L = log[p(X|Z_q)] + \|sg(Z_q) - e\|_2^2 + \beta \|Z_q - sg(e)\|_2^2$$
 Reconstruction quantization loss

- Reconstruction loss: how reconstructed image is similar to the input.
- Quantization loss = embedding_loss + commitment loss.
- embedding loss pushes embeddings vectors towards encoder output, the commitment loss forces the encoder to commit to the embedding dictionary.

^{*} sg means stop gradients, we don't compute gradients for what is inside.

4. Vector Qauntized-VAE (3/4)

4. Vector Qauntized-VAE (4/4)

Comparison between original and reconstructed images with corresponding codebook.

Samples generated during training of VQ-VAE with 16 latent dimension

5. EVALUATION

05

5.EVALUATION INCEPTION SCORE (1/2)

5.EVALUATION RECONSTRUCTION LOSS (2/2)

REFERENCES

- Van den Oord et al, May 2018. Neural Discrete Representation Learning https://arxiv.org/pdf/1711.00937.pdf
- Higgins et al, β-VAE: LEARNING BASIC VISUAL CONCEPTS WITH A CONSTRAINED VARIATIONAL FRAMEWORK <u>beta-VAE</u>: <u>Learning Basic Visual Concepts with a Constrained Variational Framework | OpenReview</u>
- Oord, Aaron V., Kalchbrenner, Nal, Vinyals, Oriol, Espeholt, Lasse, Graves, Alex, and Koray Kavukcuoglu. "Conditional Image Generation with PixelCNN Decoders."
 arXiv, (2016). https://doi.org/10.48550/arXiv.1606.05328.
- Kingma, Diederik P., and Max Welling. "Auto-Encoding Variational Bayes." arXiv, (2013). https://doi.org/10.48550/arXiv.1312.6114.

Data science project - IASD | 15 Nov 2022 | Page 29

THANK YOU FOR YOUR ATTENTION!

5.Losses curves during training

REFERENCES

- https://research.aimultiple.com/synthetic-data/ (a blog article about synthetic data from AI multiple)
- https://www.statice.ai/post/ai-data-agility-synthetic-data-insurance (statice blog article about synthetic data in insurance)
- https://www.gartner.com/en/information-technology/glossary/synthetic-data (Gartner glossary definition for synthetic data)
- https://www.nvidia.com/en-us/deep-learning-ai/resources/accelerating-ai-with-synthetic-data-ebook/ (NVidia eBook about synthetic data in AI)
- https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73 (medium TDS blog about VAE)
- https://towardsdatascience.com/art-of-generative-adversarial-networks-gan-62e96a21bc35 (medium TDS blog about GANs and implementation)
- https://github.com/Baukebrenninkmeijer/table-evaluator (synthetic data evaluation library on GitHub)
- https://blogs.nvidia.com/blog/2021/06/08/what-is-synthetic-data/ (the future of IA and synthetic data, nvidia blog article)
- <u>tps://towardsdatascience.com/synthetic-data-vault-sdv-a-python-library-for-dataset-modeling-b48c406e7398</u> (
 blog article from medium about synthetic data and SDV)
- <u>https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29</u> (
 Understanding Generative adversarial nets)
- https://github.com/Team-TUD/CTAB-GAN (CTAB-GAN GitHub repository)
- https://medium.com/octavian-ai/a-simple-explanation-of-the-inception-score-372dff6a8c7a

Images variety

Each image distinctly looks like something

• We calculate this score using a statistics formula called the Kullback-Leibler (KL) divergence, which is a measure of how similar/different two probability distributions are.

2. VARIATIONAL AUTOENCODER (4/7)

The marginal log-likelihood *

$$\max_{p \in \mathcal{P}_{\mathbf{x}, \mathbf{z}}} \sum_{\mathbf{x} \in \mathcal{D}} \log p(\mathbf{x}) = \sum_{\mathbf{x} \in \mathcal{D}} \log \int p(\mathbf{x}, \mathbf{z}) \, d\mathbf{z}.$$

intractable for high-dimensional

The Evidence Lower Bound *

ELBO(
$$\mathbf{x}; \theta, \phi$$
) = $\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\phi}(\mathbf{z} \mid \mathbf{x})} \right]$

3.BETA-VARIATIONAL AUTOENCODERS (2/6)

- The beta VAE is able to learn a disentangled representation by introducing a beta factor in the total loss.
- These constraint impose a limit on the capacity of the latent information channel and control the emphasis on learning statistically independent latent factors. With $\beta>1$ the model is pushed to learn a more efficient latent representation of the data, which is disentangled if the data contains at least some underlying factors of variation that are independent.

$$\mathcal{L}(\theta, \phi; \mathbf{x}, \mathbf{z}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p(\mathbf{z}))$$
Loss for the VAE *

$$\mathcal{L}(\theta, \phi; \mathbf{x}, \mathbf{z}, \beta) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \beta D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$
Loss for the Beta-VAE *