Physics 714 (Quantum Mechanics B) Handed out: 28/02/22 Due: 7/03/22 Total:22

Problem 1 [12]

Consider an arbitrary state $|\psi\rangle$ in the Hilbert space of some quantum system. Let A and B be two hermitian observables (operators) on the Hilbert space and denote the expectation values of these observables in the state $|\psi\rangle$ by $\langle A \rangle = \langle \psi | A | \psi \rangle$ and $\langle B \rangle = \langle \psi | B | \psi \rangle$. Set $U = A - \langle A \rangle$, $V = B - \langle B \rangle$ and define the state $|\phi\rangle = U |\psi\rangle + i\lambda V | \psi\rangle$, with λ real.

1) Show that

$$\langle \phi | \phi \rangle = (\Delta A)^2 + \lambda^2 (\Delta B)^2 + i\lambda \langle [A, B] \rangle$$

where
$$(\Delta A)^2 = \langle \psi | A^2 | \psi \rangle - \langle A \rangle^2$$
, $(\Delta B)^2 = \langle \psi | B^2 | \psi \rangle - \langle B \rangle^2$ and $\langle [A, B] \rangle = \langle \psi | [A, B] | \psi \rangle$.

[6]

2) Find the value of λ that minimizes $\langle \phi | \phi \rangle$. Using $\langle \phi | \phi \rangle \geq 0 \ \forall \lambda$, derive the generalized uncertainty relation

$$(\Delta A)^2 (\Delta B)^2 \ge \frac{1}{4} \langle i [A, B] \rangle^2$$

[3]

3) Discuss the implications of the generalized uncertainty relations in terms of the simultaneous measurement of two non-commuting observables (operators). Use position and momentum as an example to demonstrate your conclusion.

[3]

Problem 2 [10]

Proof the following identities:

1)
$$[A, BC] = [A, B]C + B[A, C]$$

[1]

2) Use (1) to show that if [A, B] = cI, then $[A, B^n] = ncB^{n-1}$. Here c is a complex number and I the identity operator.

[3]

3) Use (2) to show that if [A, B] = cI, then [A, f(B)] = cf'(B). Here c is a complex number and f' is the derivative of the function f

[2]

4) $e^{-A}Be^A = B + [B, A] + \frac{1}{2}[[B, A], A] + \frac{1}{3!}[[B, A], A], A] + \dots$ Use the hint provided on p.22 under point 6 of the notes.

[4]