Intro to Maths 2: Worksheet 2

Shobhit Singh

January 26, 2020

1. $f: X \to Y$ is a interjection $g: Y \to Z$ is a interjection

Suppose f(g(x)) is not an interjection. That means two or more elements in X have the same preimage in Z. For that either f(x) or g(x) has to be a interjection. Hence the composition of two 1-1 is always 1-1.

- 2. Say f(g(x)) is not a bijection. That means there is a element in Z that doesn't have a pre image in X. For that to happen either
 - (a) an element $z \in Z$ doesn't have a pre-image in Y making g(x) non-onto. (Contradiction)
 - (b) an element $y \in Y$ doesn't have a pre-image in X making f(x) non-onto. (Contradiction) Hence composition of two surjective func is always surjective.

3.

$$(A \cap B) \subseteq A$$

$$\implies f(A \cap B) \subseteq f(A)$$
(1)

$$(A \cap B) \subseteq B$$

$$\implies f(A \cap B) \subseteq f(B)$$
(2)

From 1 and 2

$$f(A \cap B) \subseteq f(A) \cap f(B)$$

4. Let $f(A \cap B) \neq f(A) \cap f(B)$. i.e. $\exists x \in (A \cap B)$ such that $f(x) \notin f(A) \cap f(B)$ So either $f(x) \notin f(a)$ or $f(x) \notin f(b)$ which is impossible since $f(x) \in f(A \cup B)$. So by contradiction, $f(A \cap B) = f(A) \cup f(B)$

5.
$$X = \{1, 2, 3, 4, 5, 6\}$$

 $Y = \{a, b, c, d\}$
 $f: X \to Y$
 $f(1) = a$

```
f(2) = b
```

$$f(3) = c$$

$$f(4) = d$$

$$f(5) = d$$

$$A = \{1, 2, 3, 4\}$$

$$B = \{3, 4, 5, 6\}$$

$$A \cap B = \{3, 4\}$$

$$f(A \cap B) = \{b, c\}$$

$$f(A) \cap f(B) = \{b, c\}$$

 $f(A \cap B) = f(A \cap B)$ and f(x) isn't one-one. So the converse isn't true.

- 6. When f is 1-1, the $cardinality(X) \ge cardinality(f(X))$.
 - (a) cardinality(X) = cardinality(f(X)): When all the elements of set X are mapped to distinct elements in set Y
 - (b) cardinality(X) > cardinality(f(X)): When any element in set Y has more than one pre-image in set X.

When f in onto, the $cardinality(X) \ge cardinality(Y)$.

- (a) cardinality(X) = cardinality(Y): one one function.
- (b) cardinality(X) > cardinality(Y): Mutilple elements on set X can be mapped to a single element in set Y making it onto.

7. $f: X \to Y$ is a bijection

$$g: Z \to Y$$
 is a bijection

$$g^{-1}: Y \to Z$$
 is a bijection

 $f^{-1}: Y \to X$ is a bijection

$$q^{-1}f$$
 is $X \to Y \to Z$

Let $x \in X$. X only has one image in Y i.e. f(x)

f(x) only has one pre-image in Z i.e. $g^{-1}f(x)$

Hence $q^{-1}f(x)$ is a one-one function.

For $g^{-1}f$ to not be an onto function, there needs to be a $z \in Z$ such that it doesn't have a image in Y which is impossible since $g: Z \to Y$ is a bijection. So $g^{-1}f$ is a bijection.

8. X and Y are equivalent i.e. there is a bijection from X to Y.

Let cardinality(X) $\neq cardinality(Y)$.

- (a) cardinality(X) cardinality(Y): Its not a one-one function.
- (b) cardinality(X)cardinality(Y): Its not a onto function.

|x| = |y| = nevery element $k \in has a unique$ $f(x) \in Y$.

9.

$$f(n) = \left\{ \frac{n}{2}, \text{ n is even} \right.$$

$$\left. \frac{1}{2}, \text{ n is odd} \right.$$

$$\left. \frac{1}{2}, \text{ n is odd} \right.$$

10.