Université d'Évry Val d'Essonne 2011-2012 M63 algèbre et géométrie

Feuille 3 — Dualité et orthogonalité

Exercice 1. Dans \mathbb{R}^3 , on considère les sous-espaces suivants.

$$F_{1} = \{(x, y, z) \text{ tels que } z = 0\}$$

$$F_{1} = \{(x, y, z) \text{ tels que } x + y = 2x - z = 0\}$$

$$F_{3} = \text{Vect}(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix})$$

Donner une base de chacun d'entre eux ainsi que de leurs orthogonaux dans $(R^3)^*$.

Exercice 2. Soient $\varphi_1, \ldots, \varphi_p$ des formes linéraires sur un espace vectoriel E.

- 1. Montrer que $\operatorname{Vect}(\varphi_1,\ldots,\varphi_p)^o = \ker \varphi_1 \cap \cdots \cap \ker \varphi_p$.
- 2. Soit $\psi \in E^*$. Déduire de la question précédente que $\psi \in \text{Vect}(\varphi_1, \dots, \varphi_p)$ si et seulement si $\ker \psi \supset \ker \varphi_1 \cap \dots \cap \ker \varphi_p$.

Exercice 3. 1. Soient E un espace vectoriel de dimension finie, et F_1 et F_2 deux sousespaces vectoriels de E. Montrer que $F_1^o + F_2^o = (F_1 \cap F_2)^o$ et $F_1^o \cap F_2^o = (F_1 + F_2)^o$.

- 2. En déduire que, si G_1 et G_2 sont des sous-espaces vectoriels de E^* , on a $G_1^o + G_2^o = (G_1 \cap G_2)^o$ et $G_1^o \cap G_2^o = (G_1 + G_2)^o$.
- 3. Déduire également de la première question que $F_1 \oplus F_2 = E$ si et seulement si $F_1^o \oplus F_2^o = E^*$.

Exercice 4. Soit $f: E \to F$ un morphisme entre espaces de dimensions finies.

- 1. Montrer que $Im(^tf) = Ker(f)^{\perp}$ et que $Ker(^tf) = Im(f)^{\perp}$.
- 2. En déduire que f est injective si et seulement si tf est surjective et que f est surjective si et seulement si tf est injective.

Exercice 5. Soient $f: E \to F$ un morphisme et V un sous-espace de E. Montrer que $f(V)^o = ({}^tf)^{-1}(V^o)$.