The graphical user interface of OpenTURNS, a UQ software in simulation

Michaël Baudin ¹ Anne Dutfoy ¹ Anthony Geay ¹ Anne-Laure Popelin ¹ Aurélie Ladier ² Julien Schueller ² Thierry Yalamas ²

¹EDF R&D. 6, quai Watier, 78401, Chatou Cedex - France, michael.baudin@edf.fr

²Phimeca Engineering. 18/20 boulevard de Reuilly, 75012 Paris - France, yalamas@phimeca.com

15 June 2017, UNCECOMP 2017, Rhodes, Greece

Contents

Introduction

Demo

Background

What's next?

Extra slides

Demo backup

OpenTURNS

- Uncertainty quantification, uncertainty propagation, sensitivity analysis and metamodeling
- ▶ Partners : EDF, Phiméca, Airbus, IMACS
- www.openturns.org
- ► Licence LGPL
- ► Linux, Windows

Programming:

- ► Python module
- ► C++ Library

SALOME

- Integration platform for pre and post processing, and 2D/3D numerical simulation
- Features : geometry, mesh, distributed computing
- Visualization, data assimilation, uncertainty treatment
- Partners : EDF, CEA, Open Cascade
- Licence : LGPL
- Linux, Windows
- www.salome-platform.org

The graphical user interface of OpenTURNS

- Main goal : provide a graphical interface of OpenTURNS in SALOME
- Features
 - Uncertainty quantification (distribution fitting), central tendency, sensitivity analysis, probability estimate, meta-modeling
 - Generic (not dedicated to a specific application)
 - ▶ GUI language : English, French
- Partners : EDF, Phiméca
- ► Licence : LGPL
- Schedule :
 - ▶ Since summer 2016, one EDF release per year
 - On the internet : 2018

GUI: the demo

Demo time.

GUI: outline

- ► From scratch : 3 inputs, 2 outputs, sum, central dispersion study with default parameters
- ▶ Open axialStressedBeam-python.xml : central dispersion with sample size 1000, Threshold P(G<0) with CV=0.05
- ► Import crue-4vars-analytique.py : S.A. with sample size 1000, sort by size

UQ, the easy way

Main goal: make UQ easy to use

- classical user-friendly algorithms with a state-of-the-art implementation,
- default parameters of the algorithms whenever possible,
- an easy access to the HPC resources,
- ▶ an automated connection to the computer code.

Produce standard results:

- numerical results e.g. tables,
- classical graphics.

Overview (1/2)

Inputs from the user:

- ▶ Physical model : symbolic, Python code or SALOME component
- ▶ Probabilistic model : joint probability distribution function of the input.

Then:

- Central dispersion: estimates the central dispersion of the output Y (e.g. mean).
- ► Threshold probability: estimates the probability that the output exceeds a given threshold S.
- ► Sensitivity analysis: estimates the importance of the inputs to the variability of the output.

Overview (2/2)

Probabilistic modeling:

- ▶ Distribution fitting from a sample
- ► Dependence modeling (Gaussian copula)

Meta-modeling:

- Polynomial chaos (full or sparse)
- Kriging

Fields

Field example:

- Input: 4 independent random variables
- Output : height of the river Garonne on a 100 km segment
- ► Computer code : TELEMAC2D
- Quantity of interest : pointwise average over 70 000 random simulations

Roadmap:

- Now : massive Python/OpenTURNS scripting
- ▶ 2017-2018 : in the gui

The end

Thanks!

Questions?

Interactive uncertainty visualization with Paraview

Methodology

Software architecture

Two entry points:

- interactive,
- Python.

Advantages of the Python programming of the GUI:

- unit tests,
- going beyond the GUI

Symbolic physical model

Probabilistic model

Limit state study: definition of the threshold

Definition of the failure event :

Output Operator Threshold

H

-10

Limit state study: algorithm parameters

Limit state study: summary

	Summary	Histogram	Convergence graph	
--	---------	-----------	-------------------	--

Output H

Number of simulations: 26

Estimate	Value	Confidence in	nterval at 95%
Estimate	value	Lower bound	Upper bound
Failure probability	0.807692	0.656203	0.959182
Coefficient of variation	0.0956949		

Limit state study: histogram

Central tendency: algorithm parameters

Central tendency: summary results

Estimate	Value	Confidence interval at 95%		
Estimate		Lower bound	Upper bound	
Mean	-11.0178	-11.0417	-10.9938	
Standard deviation	1.22309	1.20637	1.24028	
Skewness	0.20005			
Kurtosis	3.01907			
First quartile	-11.8721			
Third quartile	-10.2129			

Central tendency: summary results

Central tendency: scatter plots

Sensitivity analysis: Sobol' indices

