MAthesis

Contents

Time bins (stratigraphic stages)	2
Maps	4
fossil occurences of testudinidae	. 4
body size of testudinidae	. 5
Sampling Accumulation Curves	20
Histograms	29
all	. 29
per time bin	. 32
modern vs. fossil	. 33
modern vs. fossil, continental vs. insular	. 34
continental vs. insular	. 35
continents	. 36
General statistics	. 37
Boxplots	39
genera per time bins	. 39
continental vs. insular per time bin	. 40
fossil vs. modern	. 41
fossil vs. modern, continental vs. insular	. 43
continental vs. insular	. 46
continental vs. insular per time bin	. 48
continents	. 49
continents, continental vs. insular	. 53
paleoTS analysis	54
all (continental and insular)	. 54
continental (excluding insular species)	. 56

$insular \ (excluding \ continental) \ \ \dots $	58
per continent	60

Time bins (stratigraphic stages)

Table 1: Smaller time bins with age range, epoch name, mean age and corresponding sample sizes (on individual, species and genus level)

bin	EpochBins	Stages	MeanBins	nIndividuals	nSpecies	nGenera
(0,0.0117]	Modern	Modern	0.00585	254	66	18
(0.0117, 0.126]	Upper Pleistocene	Upper Pleistocene	0.06885	50	18	8
(0.126, 0.781]	Middle Pleistocene	Middle Pleistocene	0.45350	53	13	7
(0.781, 1.81]	Lower Pleistocene	Lower Pleistocene	1.29350	57	27	12
(1.81, 2.59]	Gelasian	Lower Pleistocene	2.19700	33	15	9
(2.59, 3.6]	Piacencian	Upper Pliocene	3.09400	24	15	10
(3.6, 5.33]	Zanclean	Lower Pliocene	4.46600	31	17	8
(5.33, 7.25]	Messinian	Upper Miocene	6.28900	12	9	6
(7.25, 11.6]	Tortonian	Upper Miocene	9.42700	46	20	9
(11.6, 13.8]	Serravallian	Middle Miocene	12.71400	27	8	6
(13.8,16]	Langhian	Middle Miocene	14.89500	18	14	9
(16,23]	Burdigalian/Aquitanian	Lower Miocene	19.50000	31	15	9

Figure 1: Scatterplot of carapace length over time, indicating insular (triangle) and continental (circles) and colour indicating continents. Lines indicate stratigraphic stages which were used as time bins, the dashed line is the border between the two stages of the Lower Miocene, which were consideres as one time bin.

Maps

fossil occurences of testudinidae

Figure 2: Map displaying all fossil occurrences of testudinids, with color indicating whether relevant literature was available (black if not) and if it was, whether body size data was available or not (yes and no, respectively).

body size of testudinidae

Figure 3: Map displaying all localities for which body size data for testudinids was available in the literature. Size of points denotes sample size, color denotes approximate age.

Table 2: Overview over fossil species per time bin, with sample size and mean CL.

EpochBins	Taxon	n	meanCL
Upper Pleistocene	Centrochelys robusta	1	850.0000
Upper Pleistocene	Chelonoidis denticulata	1	616.0000
Upper Pleistocene	Chelonoidis lutzae	1	830.0000
Upper Pleistocene	Chelonoidis marcanoi	4	672.2500
Upper Pleistocene	Chelonoidis monensis	1	500.0000
Upper Pleistocene	Chelonoidis sombrerensis	1	990.0000
Upper Pleistocene	Chelonoidis sp.	3	666.6667
Upper Pleistocene	Eurotestudo hermanni	1	187.0000

EpochBins	Taxon	n	meanCL
Upper Pleistocene	gen. indet.	1	813.0000
Upper Pleistocene	Geochelone sp.	2	475.0000
Upper Pleistocene	Gopherus agassizi	1	252.0000
Upper Pleistocene	Gopherus polyphemus	20	292.9700
Upper Pleistocene	Gopherus praecedens	1	360.0000
Upper Pleistocene	Hesperotestudo crassiscutata	6	435.1667
Upper Pleistocene	Hesperotestudo incisa	1	232.7600
Upper Pleistocene	Hesperotestudo sp.	2	806.5000
Upper Pleistocene	Hesperotestudo wilsoni	1	226.0000
Upper Pleistocene	Indotestudo elongata	1	270.0000
Middle Pleistocene	Centrochelys burchardi	4	722.5000
Middle Pleistocene	Chelonoidis cubensis	1	1139.0000
Middle Pleistocene	Eurotestudo aff. hermanni	2	187.0000
Middle Pleistocene	Eurotestudo hermanni	2	204.0500
Middle Pleistocene	Geochelone sp.	1	170.0000
Middle Pleistocene	Gopherus agassizi	1	445.0000
Middle Pleistocene	Gopherus laticaudatus	1	375.0000
Middle Pleistocene	Gopherus polyphemus	31	300.4316
Middle Pleistocene	Hesperotestudo bermudae	2	385.0000
Middle Pleistocene	Hesperotestudo equicomes	1	340.0000
Middle Pleistocene	Hesperotestudo sp.	2	1650.0000
Middle Pleistocene	Testudo kenitrensis	1	132.0000
Middle Pleistocene	Testudo lunellensis	4	215.4250
Lower Pleistocene	Centrochelys atlantica	1	400.0000
Lower Pleistocene	Centrochelys robusta	3	883.3333
Lower Pleistocene	Cheirogaster cf. gymnesica	1	789.0000
Lower Pleistocene	Cheirogaster sp.	1	925.0000
Lower Pleistocene	Chelonoidis sp.	3	716.6667
Lower Pleistocene	Eurotestudo globosa	1	263.0000
Lower Pleistocene	Eurotestudo hermanni	2	205.0000
Lower Pleistocene	gen. indet.	1	900.0000

EpochBins	Taxon	n	meanCL
Lower Pleistocene	Geochelone sp.	1	340.0000
Lower Pleistocene	Gopherus berlandieri	2	225.6500
Lower Pleistocene	Gopherus flavomarginatus	1	450.0000
Lower Pleistocene	Gopherus pertenuis	1	1050.0000
Lower Pleistocene	Gopherus polyphemus	3	254.4667
Lower Pleistocene	Gopherus sp.	6	233.9667
Lower Pleistocene	Hesperotestudo crassiscutata	5	285.6000
Lower Pleistocene	Hesperotestudo incisa	7	234.6286
Lower Pleistocene	Hesperotestudo mlynarskii	2	184.2500
Lower Pleistocene	Hesperotestudo sp.	1	1500.0000
Lower Pleistocene	Hesperotestudo turgida	1	230.0000
Lower Pleistocene	Megalochelys sondaari	2	909.0000
Lower Pleistocene	Megalochelys sp.	3	1130.4667
Lower Pleistocene	Psammobates antiquorum	1	107.8000
Lower Pleistocene	Testudo changshanesis	1	330.0000
Lower Pleistocene	Testudo graeca	1	195.0000
Lower Pleistocene	Testudo hermanni	2	176.5500
Lower Pleistocene	Testudo marginata	3	270.0000
Lower Pleistocene	Titanochelon gymnesica	1	1300.0000
Gelasian	Centrochelys marocana	1	2050.0000
Gelasian	Eurotestudo cf. hermanni	1	150.0000
Gelasian	Gopherus sp.	15	185.7467
Gelasian	Hesperotestudo campester	1	1000.0000
Gelasian	Hesperotestudo sp.	1	1000.0000
Gelasian	Manouria punjabiensis	1	900.0000
Gelasian	Megalochelys atlas	3	1683.3333
Gelasian	Testudo aff. kenitrensis	1	142.0000
Gelasian	Testudo oughlamensis	1	120.0000
Gelasian	Testudo ranovi	1	200.0000
Gelasian	Testudo sp.	2	192.0000
Gelasian	Testudo transcaucasia	1	150.0000

EpochBins	Taxon	n	meanCL
Gelasian	Titanochelon aff. schafferi	1	1860.0000
Gelasian	Titanochelon sp.	1	1420.0000
Piacencian	"Aldabrachelys" laetoliensis	1	1000.0000
Piacencian	Aldabrachelys? sp.	2	1500.0000
Piacencian	Centrochelys vulcanica	1	610.0000
Piacencian	Chelonoidis alburyorum	4	442.7500
Piacencian	Gopherus canyonensis	1	885.5000
Piacencian	Hesperotestudo johnstoni	1	235.0000
Piacencian	Hesperotestudo oelrichi	1	283.8000
Piacencian	Hesperotestudo riggsi	2	180.5000
Piacencian	Hesperotestudo sp.	1	176.0000
Piacencian	Homopus fenestratus	1	90.0000
Piacencian	Megalochelys atlas	2	1600.0000
Piacencian	Testudo brevitesta	2	232.5000
Piacencian	Testudo pecorinii	1	225.0000
Piacencian	Titanochelon sp.	1	520.0000
Zanclean	Caudochelys rexroadensis	2	805.5000
Zanclean	Centrochelys robusta	3	913.3333
Zanclean	Cheirogaster gymnesica	1	739.0000
Zanclean	Ergilemys oskarkuhni	2	209.0000
Zanclean	Geochelone crassa	1	865.0000
Zanclean	Geochelone s. l.	1	1750.0000
Zanclean	Geochelone sp.	2	528.0000
Zanclean	Geochelone stromeri	2	387.5000
Zanclean	Hesperotestudo riggsi	1	195.8000
Zanclean	Testudo cf. graeca	1	185.0000
Zanclean	Testudo sp.	4	1675.0000
Zanclean	Titanochelon bacharidisi	4	1040.0000
Zanclean	Titanochelon perpiniana	1	1140.0000
Zanclean	Titanochelon schafferi	1	2500.0000
Messinian	Hesperotestudo orthopygia	2	941.0000

EpochBins	Taxon	n	meanCL
Messinian	Megalochelys atlas	2	1950.0000
Messinian	Testudo amiatae	1	140.0000
Messinian	Testudo graeca	2	183.5000
Messinian	Testudo sp.	1	200.0000
Messinian	Titanochelon bolivari	1	1150.0000
Messinian	Titanochelon schafferi	1	1850.0000
Tortonian	"Hadrianus sp."	1	1000.0000
Tortonian	Cheirogaster richardi	1	1155.0000
Tortonian	Cheirogaster sp.	2	1355.0000
Tortonian	gen. indet.	3	660.0000
Tortonian	Geochelone hesterna	1	278.0000
Tortonian	Geochelone sp.	2	973.0000
Tortonian	Gopherus? sp.	1	500.0000
Tortonian	Gopherus mohavetus	5	324.8000
Tortonian	Hesperotestudo alleni	1	240.9000
Tortonian	Hesperotestudo riggsi	2	159.5000
Tortonian	Hesperotestudo sp.	1	1200.0000
Tortonian	Paleotestudo sp.	3	233.6667
Tortonian	Testudo burgenlandica	2	193.5000
Tortonian	Testudo catalaunica	4	157.0000
Tortonian	Testudo cf. promarginata	5	250.0000
Tortonian	Testudo graeca	1	210.0000
Tortonian	Testudo s. s.	1	189.0000
Tortonian	Testudo sp.	7	243.1571
Tortonian	Titanochelon bolivari	1	1300.0000
Tortonian	Titanochelon cf. bolivari	1	1500.0000
Serravallian	Cheirogaster sp.	2	1250.0000
Serravallian	gen. indet.	1	270.0000
Serravallian	Gopherus? sp.	1	500.0000
Serravallian	Paleotestudo antiqua	18	203.0556
Serravallian	Paleotestudo cf. sp.	1	270.0000

EpochBins	Taxon	n	meanCL
Serravallian	Testudo catalaunica	1	232.0000
Serravallian	Testudo steinheimensis	2	169.3500
Serravallian	Titanochelon bolivari	1	1353.0000
Langhian	Caudochelys ducateli	1	339.9000
Langhian	Chelonoidis sp.	3	553.3333
Langhian	Ergilemys sp.	1	1000.0000
Langhian	gen. indet.	1	1000.0000
Langhian	Paleotestudo antiqua	1	275.0000
Langhian	Paleotestudo cf. sp.	1	270.0000
Langhian	Testudo kalksburgensis	1	275.0000
Langhian	Testudo sp.	1	400.0000
Langhian	Titanochelon bolivari	2	1175.0000
Langhian	Titanochelon cf. bolivari	2	1450.0000
Burdigalian/Aquitanian	Caudochelys williamsi	1	334.0000
Burdigalian/Aquitanian	gen. indet.	1	270.0000
Burdigalian/Aquitanian	Geochelone sp.	2	900.0000
Burdigalian/Aquitanian	Geochelone tedwhitei	2	405.0000
Burdigalian/Aquitanian	Impregnochelys pachytectis	1	620.0000
Burdigalian/Aquitanian	Mesocherus orangeus	5	180.0000
Burdigalian/Aquitanian	Namibchersus aff. namaquensis	3	696.6667
Burdigalian/Aquitanian	Namibchersus namaquensis	6	428.8333
Burdigalian/Aquitanian	Paleotestudo cf. antiqua	1	113.0000
Burdigalian/Aquitanian	Paleotestudo sp.	1	179.3000
Burdigalian/Aquitanian	Testudo kalksburgensis	2	227.5000
Burdigalian/Aquitanian	Testudo promarginata	3	281.5667
Burdigalian/Aquitanian	Testudo rectogularis	1	213.0000
Burdigalian/Aquitanian	Titanochelon cf. perpiniana	1	1001.0000

Table 3: General overview over fossil species, with sample size and mean ${\rm CL}$

Taxon	n	meanCL
"Aldabrachelys" laetoliensis	1	1000.0000
"Hadrianus sp."	1	1000.0000
Aldabrachelys? sp.	2	1500.0000
Caudochelys ducateli	1	339.9000
Caudochelys rexroadensis	2	805.5000
Caudochelys williamsi	1	334.0000
Centrochelys atlantica	1	400.0000
Centrochelys burchardi	4	722.5000
Centrochelys marocana	1	2050.0000
Centrochelys robusta	7	891.4286
Centrochelys vulcanica	1	610.0000
Cheirogaster cf. gymnesica	1	789.0000
Cheirogaster gymnesica	1	739.0000
Cheirogaster richardi	1	1155.0000
Cheirogaster sp.	5	1227.0000
Chelonoidis alburyorum	4	442.7500
Chelonoidis cubensis	1	1139.0000
Chelonoidis denticulata	1	616.0000
Chelonoidis lutzae	1	830.0000
Chelonoidis marcanoi	4	672.2500
Chelonoidis monensis	1	500.0000
Chelonoidis sombrerensis	1	990.0000
Chelonoidis sp.	9	645.5556
Ergilemys oskarkuhni	2	209.0000
Ergilemys sp.	1	1000.0000
Eurotestudo aff. hermanni	2	187.0000
Eurotestudo cf. hermanni	1	150.0000
Eurotestudo globosa	1	263.0000

-		
Taxon	n	meanCL
Eurotestudo hermanni	5	201.0200
gen. indet.	8	654.1250
Geochelone crassa	1	865.0000
Geochelone hesterna	1	278.0000
Geochelone s. l.	1	1750.0000
Geochelone sp.	10	626.2000
Geochelone stromeri	2	387.5000
Geochelone tedwhitei	2	405.0000
Gopherus? sp.	2	500.0000
Gopherus agassizi	2	348.5000
Gopherus berlandieri	2	225.6500
Gopherus canyonensis	1	885.5000
Gopherus flavomarginatus	1	450.0000
Gopherus laticaudatus	1	375.0000
Gopherus mohavetus	5	324.8000
Gopherus pertenuis	1	1050.0000
Gopherus polyphemus	54	295.1144
Gopherus praecedens	1	360.0000
Gopherus sp.	21	199.5238
Hesperotestudo alleni	1	240.9000
Hesperotestudo bermudae	2	385.0000
Hesperotestudo campester	1	1000.0000
Hesperotestudo crassiscutata	11	367.1818
Hesperotestudo equicomes	1	340.0000
Hesperotestudo incisa	8	234.3950
Hesperotestudo johnstoni	1	235.0000
Hesperotestudo mlynarskii	2	184.2500
Hesperotestudo oelrichi	1	283.8000
Hesperotestudo orthopygia	2	941.0000
Hesperotestudo riggsi	5	175.1600
Hesperotestudo sp.	8	1098.6250

Taxon	n	meanCL
Hesperotestudo turgida	1	230.0000
Hesperotestudo wilsoni	1	226.0000
Homopus fenestratus	1	90.0000
Impregnochelys pachytectis	1	620.0000
Indotestudo elongata	1	270.0000
Manouria punjabiensis	1	900.0000
Megalochelys atlas	7	1735.7143
Megalochelys sondaari	2	909.0000
Megalochelys sp.	3	1130.4667
Mesocherus orangeus	5	180.0000
Namibchersus aff. namaquensis	3	696.6667
Namibchersus namaquensis	6	428.8333
Paleotestudo antiqua	19	206.8421
Paleotestudo cf. antiqua	1	113.0000
Paleotestudo cf. sp.	2	270.0000
Paleotestudo sp.	4	220.0750
Psammobates antiquorum	1	107.8000
Testudo aff. kenitrensis	1	142.0000
Testudo amiatae	1	140.0000
Testudo brevitesta	2	232.5000
Testudo burgenlandica	2	193.5000
Testudo catalaunica	5	172.0000
Testudo cf. graeca	1	185.0000
Testudo cf. promarginata	5	250.0000
Testudo changshanesis	1	330.0000
Testudo graeca	4	193.0000
Testudo hermanni	2	176.5500
Testudo kalksburgensis	3	243.3333
Testudo kenitrensis	1	132.0000
Testudo lunellensis	4	215.4250
Testudo marginata	3	270.0000

Taxon	n	meanCL
Testudo oughlamensis	1	120.0000
Testudo pecorinii	1	225.0000
Testudo promarginata	3	281.5667
Testudo ranovi	1	200.0000
Testudo rectogularis	1	213.0000
Testudo s. s.	1	189.0000
Testudo sp.	15	625.7400
Testudo steinheimensis	2	169.3500
Testudo transcaucasia	1	150.0000
Titanochelon aff. schafferi	1	1860.0000
Titanochelon bacharidisi	4	1040.0000
Titanochelon bolivari	5	1230.6000
Titanochelon cf. bolivari	3	1466.6667
Titanochelon cf. perpiniana	1	1001.0000
Titanochelon gymnesica	1	1300.0000
Titanochelon perpiniana	1	1140.0000
Titanochelon schafferi	2	2175.0000
Titanochelon sp.	2	970.0000

Table 4: Overview over genera (modern and fossil) per time bin, with sample sizes and mean CL.

EpochBins	Genus	n	meanCL
Modern	Aldabrachelys	12	974.5833
Modern	Astrochelys	14	366.2143
Modern	Centrochelys	3	493.3333
Modern	Chelonoidis	45	531.5178
Modern	Chersina	15	176.2667
Modern	Cylindraspis	5	724.0000
Modern	Geochelone	8	252.1250
Modern	Gopherus	23	302.4839

EpochBins	Genus	n	meanCL
Modern	Hesperotestudo	1	250.0000
Modern	Homopus	7	139.2857
Modern	Indotestudo	16	242.9875
Modern	Kinixys	15	213.0667
Modern	Malacochersus	2	166.5000
Modern	Manouria	9	380.7778
Modern	Psammobates	17	113.4118
Modern	Pyxis	16	124.1875
Modern	Stigmochelys	6	405.3333
Modern	Testudo	39	197.5436
Upper Pleistocene	Centrochelys	1	850.0000
Upper Pleistocene	Chelonoidis	11	693.1818
Upper Pleistocene	Eurotestudo	1	187.0000
Upper Pleistocene	gen.	1	813.0000
Upper Pleistocene	Geochelone	2	475.0000
Upper Pleistocene	Gopherus	22	294.1545
Upper Pleistocene	Hesperotestudo	10	468.2760
Upper Pleistocene	Indotestudo	1	270.0000
Middle Pleistocene	Centrochelys	4	722.5000
Middle Pleistocene	Chelonoidis	1	1139.0000
Middle Pleistocene	Eurotestudo	4	195.5250
Middle Pleistocene	Geochelone	1	170.0000
Middle Pleistocene	Gopherus	33	307.0721
Middle Pleistocene	Hesperotestudo	5	882.0000
Middle Pleistocene	Testudo	5	198.7400
Lower Pleistocene	Centrochelys	4	762.5000
Lower Pleistocene	Cheirogaster	2	857.0000
Lower Pleistocene	Chelonoidis	3	716.6667
Lower Pleistocene	Eurotestudo	4	201.5250
Lower Pleistocene	gen.	1	900.0000
Lower Pleistocene	Geochelone	1	340.0000

EpochBins	Genus	n	meanCL
Lower Pleistocene	Gopherus	13	316.8077
Lower Pleistocene	Hesperotestudo	16	323.0562
Lower Pleistocene	Megalochelys	5	1041.8800
Lower Pleistocene	Psammobates	1	107.8000
Lower Pleistocene	Testudo	6	259.1667
Lower Pleistocene	Titanochelon	1	1300.0000
Gelasian	Centrochelys	1	2050.0000
Gelasian	Eurotestudo	1	150.0000
Gelasian	Gopherus	15	185.7467
Gelasian	Hesperotestudo	2	1000.0000
Gelasian	Manouria	1	900.0000
Gelasian	Megalochelys	3	1683.3333
Gelasian	Testudo	6	166.0000
Gelasian	Titanochelon	2	1640.0000
Piacencian	Aldabrachelys	3	1333.3333
Piacencian	Centrochelys	1	610.0000
Piacencian	Chelonoidis	4	442.7500
Piacencian	Gopherus	1	885.5000
Piacencian	Hesperotestudo	5	211.1600
Piacencian	Homopus	1	90.0000
Piacencian	Megalochelys	2	1600.0000
Piacencian	Testudo	3	230.0000
Piacencian	Titanochelon	1	520.0000
Zanclean	Caudochelys	2	805.5000
Zanclean	Centrochelys	3	913.3333
Zanclean	Cheirogaster	1	739.0000
Zanclean	Ergilemys	2	209.0000
Zanclean	Geochelone	6	741.0000
Zanclean	Hesperotestudo	1	195.8000
Zanclean	Testudo	5	1377.0000
Zanclean	Titanochelon	6	1300.0000

EpochBins	Genus	n	meanCL
Messinian	Hesperotestudo	2	941.0000
Messinian	Megalochelys	2	1950.0000
Messinian	Testudo	4	176.7500
Messinian	Titanochelon	2	1500.0000
Tortonian	"Hadrianus"	1	1000.0000
Tortonian	Cheirogaster	3	1288.3333
Tortonian	gen.	3	660.0000
Tortonian	Geochelone	3	741.3333
Tortonian	Gopherus	6	354.0000
Tortonian	Hesperotestudo	4	439.9750
Tortonian	Paleotestudo	3	233.6667
Tortonian	Testudo	20	218.3050
Tortonian	Titanochelon	2	1400.0000
Serravallian	Cheirogaster	2	1250.0000
Serravallian	gen.	1	270.0000
Serravallian	Gopherus	1	500.0000
Serravallian	Paleotestudo	19	206.5789
Serravallian	Testudo	3	190.2333
Serravallian	Titanochelon	1	1353.0000
Langhian	Caudochelys	1	339.9000
Langhian	Chelonoidis	3	553.3333
Langhian	Ergilemys	1	1000.0000
Langhian	gen.	1	1000.0000
Langhian	Paleotestudo	2	272.5000
Langhian	Testudo	2	337.5000
Langhian	Titanochelon	4	1312.5000
Burdigalian/Aquitanian	Caudochelys	1	334.0000
Burdigalian/Aquitanian	gen.	1	270.0000
Burdigalian/Aquitanian	Geochelone	4	652.5000
Burdigalian/Aquitanian	Impregnochelys	1	620.0000
${\bf Burdigalian/Aquitanian}$	Mesocherus	5	180.0000

EpochBins	Genus	n	meanCL
Burdigalian/Aquitanian	Namibchersus	9	518.1111
Burdigalian/Aquitanian	Paleotestudo	2	146.1500
Burdigalian/Aquitanian	Testudo	6	252.1167
Burdigalian/Aquitanian	Titanochelon	1	1001.0000

Table 5: General overview over genera, with sample sizes and mean ${\rm CL}$.

Genus	n	meanCL
"Hadrianus"	1	1000.0000
Aldabrachelys	15	1046.3333
Astrochelys	14	366.2143
Caudochelys	4	571.2250
Centrochelys	17	804.1176
Cheirogaster	8	1102.2500
Chelonoidis	67	571.0940
Chersina	15	176.2667
Cylindraspis	5	724.0000
Ergilemys	3	472.6667
Eurotestudo	10	192.5200
gen.	8	654.1250
Geochelone	25	510.2800
Gopherus	114	298.0361
Hesperotestudo	46	465.3296
Homopus	8	133.1250
Impregnochelys	1	620.0000
Indotestudo	17	244.5765
Kinixys	15	213.0667
Malacochersus	2	166.5000
Manouria	10	432.7000
Megalochelys	12	1446.6167

Genus	n	meanCL
Mesocherus	5	180.0000
Namibchersus	9	518.1111
Paleotestudo	26	210.1269
Psammobates	18	113.1000
Pyxis	16	124.1875
Stigmochelys	6	405.3333
Testudo	99	269.2465
Titanochelon	20	1315.2000

Sampling Accumulation Curves

Fossil species, CL, per Locality

Fossil species, CL, per Reference

Figure 4: Sampling Accumulation Curve of fossil genera per reference

Figure 5: Sampling Accumulation Curve of fossil genera per reference, Eurasia

Figure 6: Sampling Accumulation Curve of fossil genera per reference, Europe

Figure 7: Sampling Accumulation Curve of fossil genera per reference, Africa

Figure 8: Sampling Accumulation Curve of fossil genera per reference, America

Figure 9: Sampling Accumulation Curve of fossil genera per reference, N-America

Figure 10: Sampling Accumulation Curve of fossil genera per reference, S-America

Figure 11: Sampling Accumulation Curve of fossil genera per reference, Asia

Histograms

all

Normal Q-Q Plot

Normal Q-Q Plot

per time bin

Figure 12: Distribution of body size data per time bin, logtransformed.

modern vs. fossil

Figure 13: Distribution of body size data modern vs. fossil, logtransformed.

modern vs. fossil, continental vs. insular

Figure 14: Distribution of body size data modern vs. fossil, continental vs. insular logtransformed.

continental vs. insular

Figure 15: Distribution of body site data of continental (n) and insular(y) species, logtransformed.

continents

Figure 16: Distribution of body site data per continent, logtransformed.

General statistics

Table 6: General statistics of body size data: all, per time bin, insular and continental, per continent (all referring to CL: min, max, variance, mean, logmean, median, logmedian, skewness, logskewness, kurosis, logkurtosis

nCL	min	max	var	mean	logm	med	logmed	skew	logsk	kurt	logku	Variable
616	80.00	2500	164537.80	437.2	2.5	270.5	2.4	2.14	0.69	8.00	2.73	all
253	80.00	1300	67485.50	330.3	2.4	242.0	2.4	1.83	0.58	5.87	2.69	Modern
49	102.44	1250	69690.66	445.9	2.6	334.7	2.5	1.20	0.24	3.61	2.56	Upper Pleistocene
53	132.00	1800	97910.83	387.1	2.5	292.9	2.5	3.03	1.52	12.24	5.55	Middle Pleistocene
57	107.80	2000	161948.82	463.5	2.5	263.0	2.4	1.74	0.73	5.76	2.40	Lower Pleistocene
31	118.90	2050	411224.51	555.2	2.5	194.9	2.3	1.31	0.93	3.12	2.11	Gelasian
21	90.00	1600	270535.82	610.6	2.6	428.0	2.6	1.00	0.14	2.50	1.99	Piacencian
26	176.00	2500	476162.71	955.2	2.9	857.5	2.9	1.11	-0.40	3.56	2.30	Zanclean
10	140.00	2100	602611.21	948.9	2.8	916.0	2.9	0.26	-0.22	1.49	1.29	Messinian
45	107.00	1540	175470.12	462.7	2.5	250.0	2.4	1.49	0.81	3.74	2.54	Tortonian
27	111.00	1500	126060.40	337.7	2.4	220.0	2.3	2.49	1.77	7.77	5.30	Serravallian
14	270.00	1600	230451.33	747.9	2.8	700.0	2.8	0.30	0.03	1.55	1.18	Langhian
30	113.00	1100	76288.76	406.8	2.5	302.4	2.5	1.27	0.45	3.45	2.26	Burdigalian/Aquitania
253	80.00	1300	67485.50	330.3	2.4	242.0	2.4	1.83	0.58	5.87	2.69	Modern
363	90.00	2500	219004.66	511.7	2.6	285.6	2.5	1.83	0.68	6.11	2.42	Fossil
469	81.00	2500	157808.79	392.9	2.5	250.0	2.4	2.65	1.07	10.57	3.74	continental
147	80.00	2000	160834.35	578.5	2.6	500.0	2.7	1.02	-0.27	3.95	2.05	insular
157	81.00	830	17009.02	244.0	2.3	221.0	2.3	1.92	0.29	8.09	2.98	modern-con
96	80.00	1300	118641.09	471.5	2.6	353.0	2.5	0.82	0.01	2.47	1.77	modern-ins
312	90.00	2500	212116.79	467.9	2.5	270.0	2.4	2.11	0.96	7.25	2.96	fossil-con
51	150.00	2000	180825.40	780.0	2.8	750.0	2.9	1.11	-0.40	4.02	3.18	fossil-ins
142	80.00	2050	112417.26	347.7	2.4	193.5	2.3	2.10	0.68	7.97	2.48	Africa
242	102.44	1800	82209.71	415.0	2.5	302.2	2.5	1.92	0.75	6.79	2.91	America
59	150.00	2100	323123.20	585.5	2.6	280.0	2.4	1.43	0.85	3.61	2.24	Asia
173	107.00	2500	254222.84	491.2	2.5	245.0	2.4	1.86	0.81	6.30	2.34	Europe

nCL min max var mean logm med logmed skew logsk kurt logku Variable

Boxplots

genera per time bins

Figure 17: Boxplots of mean CL per time bin, including mean and sd CL for each genus (as pointrange).

continental vs. insular per time bin

Figure 18: Boxplots of each genus per time bin, continental vs. insular species.

fossil vs. modern

Figure 19: Boxplots fossil vs. modern.

Fossil, random sampling


```
## [1] 330.3495
```

[1] 516.1724

##

Wilcoxon rank sum test with continuity correction

##

data: Modern and Fossil

W = 23372, p-value = 1.485e-07

 $\mbox{\tt \#\#}$ alternative hypothesis: true location shift is less than 0

Wilcoxon Rank Sum Test (unpaired data):

 $modern < fossil (P = 1.4850249 \times 10^{-7})$

fossil vs. modern, continental vs. insular

Figure 20: Boxplots fossil vs. modern, continental vs. insular species.

- ## [1] 51
- ## [1] 51

Modern, insular, random sampling


```
##
## Wilcoxon rank sum test with continuity correction
##
## data: ModernIsland and FossilIsland
## W = 730.5, p-value = 6.894e-05
## alternative hypothesis: true location shift is less than 0
## [1] 157
## [1] 157
```

Fossil, continental, random sampling


```
##
## Wilcoxon rank sum test with continuity correction
##
## data: ModernCon and FossilCon
## W = 8407, p-value = 5.589e-07
## alternative hypothesis: true location shift is less than 0
Wilcoxon Rank Sum Test (unpaired data):
modern continental < fossil continental (P = 5.5894383 \times 10^{-7})
modern insular < fossil insular (P = 6.8940531 \times 10^{-5})
```

continental vs. insular

Figure 21: Boxplot continental vs. insular, genera summarised

- ## [1] 147
- ## [1] 147

Continental, random sampling


```
##
## Wilcoxon rank sum test with continuity correction
##
## data: Insular and Continental
## W = 13942, p-value = 8.407e-06
## alternative hypothesis: true location shift is greater than 0
Wilcoxon Rank Sum Test (unpaired data):
continental < insular (P = 8.4067298 \times 10^{-6})
```

continental vs. insular per time bin

Figure 22: Boxplot continental vs. insular, genera summarised

continents

Figure 23: Boxplot: body size on different continents, genera summarised

- ## [1] 142
- ## [1] 347.6887
- ## [1] 142
- ## [1] 399.0842
- ## [1] 59
- ## [1] 173
- ## [1] 142
- ## [1] 545.462

America, random sampling

Europe, random sampling

Eurasia, random sampling


```
##
## Kruskal-Wallis rank sum test
##
## data: list(Africa, America, Eurasia, Europe)
## Kruskal-Wallis chi-squared = 27.699, df = 3, p-value = 4.201e-06
Kruskal-Wallis-Test:
```

Continent means differ (P = 4.2009248×10^{-6}) (still have to look into the details...)

continents, continental vs. insular

Figure 24: Boxplot: body size on different continents, genera summarised

paleoTS analysis

all (continental and insular)

genera (all)

Table 7: paleoTS object, all data

tt	mm	vv	nn
0.0000005	401.9641	102306.64	4
0.0058500	314.1859	42607.58	18
0.0688500	506.3265	64620.11	8
0.4535000	516.4053	155241.85	7
1.2935000	593.8669	147507.20	12
2.1970000	971.8850	580540.76	8
3.0940000	658.0826	271043.73	9
4.4660000	785.0792	187937.61	8
6.2890000	1141.9375	584378.85	4
9.4270000	703.9570	195766.19	9
12.7140000	628.3020	285258.36	6
14.8950000	687.9619	169914.58	7
19.5000000	441.5420	78467.65	9

Table 8: Model-fitting results for testudinidae, genera, all

	$\log L$	K	AICc	Akaike.wt
GRW	-81.31790	2	167.9691	0.161
URW	-82.05721	1	166.5144	0.332
Stasis	-80.16802	2	165.6694	0.507

Figure 25: paleoTS plot with genus mean, all

continental (excluding insular species)

genera (continental)

Table 9: paleoTS object, continental

			·
nn	vv	mm	tt
3	8331.753	233.1680	0.0000005
15	13004.928	241.7917	0.0058500
6	50619.392	397.4606	0.0688500
5	200982.124	416.9341	0.4535000
7	66240.066	346.8484	1.2935000
7	595507.933	1103.1067	2.1970000
6	414253.291	725.4156	3.0940000
6	259173.082	771.3833	4.4660000
4	531455.932	1054.4375	6.2890000
9	195766.185	703.9570	9.4270000
6	285258.362	628.3020	12.7140000
7	169914.577	687.9619	14.8950000
9	78467.646	441.5420	19.5000000

Table 10: Model-fitting results for testudinidae, genera, continental

	$\log L$	K	AICc	Akaike.wt
GRW	-82.26287	2	169.8591	0.300
URW	-83.12577	1	168.6515	0.548
Stasis	-82.93984	2	171.2130	0.152

Figure 26: paleoTS plot with genus mean, continental

insular (excluding continental)

genera (insular)

Table 11: paleoTS object, insular

nn	VV	mm	tt
1	0.00	860.9268	0.0000005
12	68570.44	379.5354	0.0058500
4	14997.58	727.5938	0.0688500
3	142649.08	748.8333	0.4535000
6	112964.44	829.6744	1.2935000
3	821158.33	1178.3333	2.1970000
4	27058.77	449.4375	3.0940000
2	15196.06	826.1667	4.4660000
1	0.00	1850.0000	6.2890000

Table 12: Model-fitting results for testudinidae, genera, insular

	$\log L$	K	AICc	Akaike.wt
GRW	-68.57344	2	143.5469	0
URW	-75.76576	1	154.1982	0
Stasis	-60.41581	2	127.2316	1

Figure 27: paleoTS plot with genus mean, insular

per continent

Europe, genera

Table 13: paleoTS object, Europe

tt	vv	nn	mm
0.00585	3338.406	2	148.8559
0.06885	138802.333	3	616.6667
0.45350	89203.953	3	377.8167
1.29350	218431.974	5	697.3717
2.19700	1110050.000	2	895.0000
3.09400	39433.333	3	453.3333
4.46600	159317.256	5	1215.8667
6.28900	875495.281	2	838.3750
9.42700	263434.389	6	800.0508
12.71400	351634.528	5	653.9625
14.89500	223154.375	5	772.0000
19.50000	183706.682	5	533.8533

Table 14: Model-fitting results for testudinidae, genera, Europe

	$\log L$	K	AICc	Akaike.wt
GRW	-84.14010	2	173.7802	0.006
URW	-85.90727	1	174.2590	0.005
Stasis	-79.01365	2	163.5273	0.990

Figure 28: Genera, Europe

Europe, smaller original bins (see Table 2), genera, continental

Table 15: paleoTs object, Europe, continental

mm	nn	vv	tt
149.5381	2	3450.8267	0.00585
187.0000	1	0.0000	0.06885
205.4750	2	198.0050	0.45350
204.9292	2	23.1767	1.29350
1420.0000	1	0.0000	2.19700
232.5000	1	0.0000	3.09400
1475.6667	3	57926.3333	4.46600
663.3750	2	473607.7812	6.28900
800.0508	6	263434.3893	9.42700
653.9625	5	351634.5281	12.71400
772.0000	5	223154.3750	14.89500
533.8533	5	183706.6821	19.50000

Table 16: Model-fitting results for testudinidae, genera, Europe, continental

	$\log L$	K	AICc	Akaike.wt
GRW	-87.93137	2	181.3627	0.009
URW	-92.56882	1	187.5821	0.000
Stasis	-83.21073	2	171.9215	0.991

Figure 29: paleoTS, genera, Europe, continental

Europe, smaller original bins (see Table 2), genera, insular

Table 17: paleoTs object, Europe, insular

mm	nn	vv	tt
187.5077	1	0.00	0.00585
831.5000	2	684.50	0.06885
722.5000	1	0.00	0.45350
835.0833	4	168423.36	1.29350
1005.0000	2	1462050.00	2.19700
451.6667	3	40558.33	3.09400
826.1667	2	15196.06	4.46600
1850.0000	1	0.00	6.28900

Figure 30: paleoTS, genera, Europe, insular

 $\label{thm:eq:table 18: Model-fitting results for testudinidae, genera, Europe, insular$

	$\log L$	K	AICc	Akaike.wt
GRW	-67.12192	2	141.2438	0.000
URW	-57.51634	1	117.8327	0.074
Stasis	-52.89638	2	112.7928	0.926

Eurasia, smaller original bins (See Table 2), genera

Table 19: paleoTS object, Eurasia

nn	vv	mm	tt
1	0.000	137.2637	0.0000005
5	9760.467	236.8217	0.0058500
4	122579.333	530.0000	0.0688500
3	89203.953	377.8167	0.4535000
7	162641.142	777.5579	1.2935000
5	562217.222	909.6667	2.1970000
5	381770.000	892.0000	3.0940000
6	296417.219	1048.0556	4.4660000
3	849651.021	1208.9167	6.2890000
6	263434.389	800.0508	9.4270000
5	351634.528	653.9625	12.7140000
5	223154.375	772.0000	14.8950000
5	162399.349	513.8533	19.5000000

Table 20: Model-fitting results for testudinidae, genera, Eurasia

	$\log L$	K	AICc	Akaike.wt
GRW	-85.25195	2	175.8372	0.149
URW	-85.39072	1	173.1814	0.562
Stasis	-84.58890	2	174.5111	0.289

Figure 31: paleoTS, genera, Eurasia

Eurasia, smaller original bins (See Table 2), genera, continental

Table 21: paleoTS object, Eurasia, continental

tt	mm	VV	nn
0.0000005	137.2637	0.000	1
0.0058500	238.0120	9654.865	5
0.0688500	228.5000	3444.500	2
0.4535000	205.4750	198.005	2
1.2935000	595.5388	191487.404	4
2.1970000	1044.5833	442006.250	4
3.0940000	1110.8333	581102.083	3
4.4660000	1159.0000	439728.667	4
6.2890000	1092.2500	788605.188	3
9.4270000	800.0508	263434.389	6
12.7140000	653.9625	351634.528	5
14.8950000	772.0000	223154.375	5
19.5000000	513.8533	162399.349	5

Table 22: Model-fitting results for testudinidae, genera, Eurasia, continental

	$\log L$	K	AICc	Akaike.wt
GRW	-82.20698	2	169.7473	0.222
URW	-82.42344	1	167.2469	0.776
Stasis	-87.19538	2	179.7241	0.002

Figure 32: paleoTS, genera, Eurasia, continental

Eurasia, smaller original bins (See Table 2), genera, insular

Table 23: paleoTS object, Eurasia, insular

VV	mm	tt
0.000	137.2637	0.0000005
5668.485	271.4596	0.0058500
105436.333	644.3333	0.0688500
0.000	722.5000	0.4535000
105684.077	882.0356	1.2935000
652233.889	953.6667	2.1970000
383430.000	891.0000	3.0940000
134562.926	620.4444	4.4660000
5000.000	1900.0000	6.2890000
0.000	800.0000	19.5000000
	0.000 5668.485 105436.333 0.000 105684.077 652233.889 383430.000 134562.926 5000.000	137.2637 0.000 271.4596 5668.485 644.3333 105436.333 722.5000 0.000 882.0356 105684.077 953.6667 652233.889 891.0000 383430.000 620.4444 134562.926 1900.0000 5000.000

 $\label{eq:table 24: Model-fitting results for testudinidae, genera, Eurasia, insular$

	$\log L$	K	AICc	Akaike.wt
GRW	-69.56419	2	145.1284	0.193
URW	-71.67437	1	145.9202	0.130
Stasis	-68.31026	2	142.6205	0.677

Figure 33: paleoTS, genera, Eurasia, insular