GEL-16120 Systèmes de communications Examen partiel II (Automne 2003)

Enseignant: Jean-Yves Chouinard

Durée: 1 heure 50 minutes

Remarques importantes: Les notes de cours (notes du cours GEL-16120) et le manuel de cours ("Digital and Analog Communications systems", 6^e édition de Leon Couch) sont autorisés. Tous les autres documents sont interdits (devoirs, solutions de devoirs, manuel de laboratoire, etc.). Les calculatrices sont permises.

Question 1: (10 points)

Le signal $m(t) = 8\sin(4\pi t) - 3\cos(12\pi t)$ doit être transmis en utilisant la modulation d'angle avec une porteuse de 5 kHz.

- a) En premier lieu, on utilise la modulation de phase pour moduler m(t) avec $A_c = 4$ et $D_p = 10^{-2}$. Donnez (indiquez clairement le détail de vos calculs) : (5 points)
 - i) l'expression du signal modulé en phase $s_{\rm PM}(t)$,
 - ii) la déviation maximale de phase $\Delta\Theta_{\rm max}$,
 - iii) la déviation maximale de fréquence $\Delta f_{\rm max}$,
 - iv) la fréquence instantanée $f_i(t)$, et
 - v) la largeur de bande de transmission (effective) B_T .
- b) Maintenant, on utilise la modulation de fréquence, avec $A_c = 7$ et $D_f = 12$, pour moduler ce même message m(t). Donnez: (5 points)
 - i) l'expression du signal modulé en fréquence $s_{\rm FM}(t)$,
 - ii) la déviation maximale de phase $\Delta\Theta_{\rm max}$,
 - iii) la déviation maximale de fréquence Δf_{max} ,
 - iv) la fréquence instantanée $f_i(t)$, et
 - v) la largeur de bande de transmission (effective) B_T .

Question 2: (9 points)

Une source d'information binaire génère des bits aléatoires (i.e. source binaire équiprobable) à tous les $T_b = 10^{-5}$ seconde. Calculez la fonction d'autocorrélation R(k) et la densité spectrale de puissance $\mathcal{P}(f)$ pour les codes de ligne suivants :

- a) code de ligne NRZ (non retour à zéro, NRZ-L) unipolaire, (3 points)
- b) code de ligne NRZ (NRZ-L) bipolaire, (3 points)
- c) code de ligne RZ (retour à zéro RZ-L) unipolaire avec une durée d'impulsion $\tau=0.8T_b$.

 (3 points)

Question 3: (9 points)

Un récepteur superhétérodyne est utilisé pour recevoir des signaux modulés en fréquence dans la bande de fréquence : 122 MHz à 170 MHz. Pour des raisons de coût de conception, ce récepteur superhérodyne est réalisé afin de faire une double conversion de fréquence : il doit premièrement ramener les signaux RF (fréquence radio) à une première fréquence intermédiaire $f_{IF_1} = 10.7$ MHz, puis ramener le signal résultant à une seconde fréquence intermédiaire $f_{IF_2} = 455$ kHz. La largeur de bande des messages m(t) en bande de base est de 20 kHz et les signaux modulés ont une déviation maximale de fréquence $\Delta f_{max} = 100$ kHz.

- a) Faites le schéma bloc au complet de ce récepteur superhétérodyne et y identifiant **clairement** les diverses composantes (e.g., filtres passe-bande, oscillateurs, type de détecteur, etc.) et en indiquant la fréquence (ou plage de fréquences) des signaux à chaque point dans le schéma bloc.

 (4 points)
- b) Déterminez la largeur de bande effective B_T d'un signal modulé FM. (2 points)
- c) Considérant leur largeur de bande effective, combien de signaux ainsi modulés peut-on ainsi multiplexer en fréquence? (Justifiez votre réponse). (3 points)

Question 4: (12 points)

On veut transmettre le message $m(t) = 12\cos(2 \times 10^4 \pi t) + 5\sin(6 \times 10^4 \pi t)$ sous forme numérique, en utilisant la modulation par impulsions codées (modulation PCM).

- a) Quelle est la fréquence d'échantillonnage minimale à laquelle doit être échantillonné le message m(t) afin de pouvoir le reconstituer à la réception? (3 points)
- b) Les échantillons sont quantifiés à l'aide d'un quantificateur uniforme avec L niveaux de quantification sur la plage de valeurs allant de $-m_{\text{max}} = -20$ à $+m_{\text{max}} = +20$. Le rapport signal-à-bruit de quantification SQNR (en supposant une distribution uniforme du bruit de quantification) est donné par :

$$SQNR = 3L^2 \frac{P_{\text{signal}}}{m_{\text{max}}^2}$$

Si on suppose que les signaux sont tels que leur puissance $P_{\text{signal}} = \frac{m_{\text{max}}^2}{24}$, déterminez le nombre minimal de niveaux $L = 2^n$ afin que le SQNR soit d'au moins 120 dB. (3 points)

- c) Pour cette valeur du nombre de niveaux L, à quel taux moyen génèrera-t-on les bits (i.e., débit binaire) en PCM? (3 points)
- d) Si on module ce train binaire avec la modulation QAM à 64 niveaux (64-QAM), quel sera le débit de symboles 64-QAM nécessaire pour transmettre ce signal? (3 points)