

Task 48

# Determination of the Planck constant using electroluminescent diodes

#### Instruction

# 1. The list of necessary equipment

- Tunable power supply
- Electroluminescent diode
- Digital multimeters
- Monochromator
- Photoresistor

#### 2.Goals

- Measurement of the current-voltage characteristic for different diodes in forward direction (forward bias)
- Determination of the emission wavelength for investigated diodes
- Calculation of Planck constant and related uncertainties.

### 3.Experimental setup



**Fig. 1.**The electrical circuit used to measure the current-voltage characteristic for forward-biased diodes.



**Fig. 2.** The block-diagram of the experimental setup used for determination of the current-voltage characteristic of a LED diode.

#### 4. Measurements

- a) Connect the required elements according to Fig. 2.
- b) Set the power supply potentiometer to the lowest position (turn potentiometer to the left).
- c) Set the power supply to forward bias.
- d) Measure the current-voltage characteristic. Use the potentiometer to increase the applied voltage. Conduct these measurements in as wide range of voltages as possible. Write down the measured voltage U and current I. You should have at least 20 data points measured.
- e) Determine the emission wavelength of a diode using one of the following methods:
  - i. By eye:
    - Set the power supply to maximum.
    - Place the diode at the rear entrance of the monochromator.
    - Change the wavelength of light transmitted to the exit slit of the monochromator (by turning the selection knob) so that its intensity is the highest.
    - Read the wavelength  $\lambda$  from the selection knob.
    - Assume  $\Delta \lambda = 10$  nm for the uncertainty.

#### ii. Photoresistor:

- Set the power supply to maximum.
- Place the diode at the rear entrance of the monochromator.
- Place the photoresistor in front of the monochromator.
- Change the wavelength of light transmitted to the exit slit of the monochromator (by turning the selection knob) so that the resistance magnitude is the lowest.
- Read the wavelength  $\lambda$  from the selection knob.
- Assume  $\Delta \lambda = 5$  nm for the uncertainty.
- f) Repeat the measurements for other diodes.

## 5. Calculations for report

- a) Plot current-voltage characteristics for measured diodes.
- b) Using linear regression method, fit a straight line y = ax + b to the linear part of the measured current-voltage characteristic (forward direction only).
- c) Calculate the potential barrier  $U_b$  of the diode, according to equation:  $U_b = -\frac{b}{a}$ .
- d) Estimate the uncertainty ΔU<sub>b</sub> related to U<sub>b</sub>
- e) Calculate the Planck constant using the following equation

$$h = \frac{e}{c} \lambda U_b$$

where e is the elementary charge and c is the velocity of light in vacuum.

f) Calculate the uncertainty  $\Delta h$  related to the determined Planck constant.

# **6. Table for measurements of the current-voltage characteristic**

Table 1. Results of your experiment.

| lp. | <b>U</b> [V] | <b>u(U)</b> [V] | <b>I</b> [mA] | <b>u(I)</b> [mA] | <b>λ</b> [nm] | <b>u(λ)</b> [nm] | <b>U</b> ь[V] | <b>и</b> с( <b>U</b> ь)[V] | <b>h</b> [J·s] | <b>u</b> c(h)[J·s] |
|-----|--------------|-----------------|---------------|------------------|---------------|------------------|---------------|----------------------------|----------------|--------------------|
| 1   |              |                 |               |                  |               |                  |               |                            |                |                    |
| 2   |              |                 |               |                  |               |                  |               |                            |                |                    |
| 3   |              |                 |               |                  |               |                  |               |                            |                |                    |
| 4   |              |                 |               |                  |               |                  |               |                            |                |                    |
| 5   |              |                 |               |                  |               |                  |               |                            |                |                    |
| 6   |              |                 |               |                  |               |                  |               |                            |                |                    |
| 7   |              |                 |               |                  |               |                  |               |                            |                |                    |
| 8   |              |                 |               |                  |               |                  |               |                            |                |                    |
| 9   |              |                 |               |                  |               |                  |               |                            |                |                    |
| 10  |              |                 |               |                  |               |                  |               |                            |                |                    |
| 11  |              |                 |               |                  |               |                  |               |                            |                |                    |
| 12  |              |                 |               |                  |               |                  |               |                            |                |                    |
| 13  |              |                 |               |                  |               |                  |               |                            |                |                    |
| 14  |              |                 |               |                  |               |                  |               |                            |                |                    |
| 15  |              |                 |               |                  |               |                  |               |                            |                |                    |
| 16  |              |                 |               |                  |               |                  |               |                            |                |                    |
| 17  |              |                 |               |                  |               |                  |               |                            |                |                    |
| 18  |              |                 |               |                  |               |                  |               |                            |                |                    |
| 19  |              |                 |               |                  |               |                  |               |                            |                |                    |
| 20  |              |                 |               |                  |               |                  |               |                            |                |                    |