การสกัดข้อมูล Multispectral Index จากดาวเทียม Sentinel-2

ในโครงการข้าวๆ จะมีการใช้งานข้อมูล 2 level คือ 1C และ 2A โดยส่วนใหญ่จะเป็น 2A ยกเว้น ไฟล์ข้อมูลมีปัญหา จึงจะใช้งาน 1C มาทำการประมวลผลเป็น 2A ดังนั้น การสกัดข้อมูลจะใช้ข้อมูลที่ประมวลผล มาจาก level 2A เช่นกัน (ส่วนใหญ่จะเป็นข้อมูลปี 2019 จังหวัดน่าน (QPA) และอุบลราชธานี (PWB) ที่จะมีการ ดาวน์โหลดข้อมูล 1C มาใช้)

h	o ~ ⊕ ₹	100% → \$ % .0 .0 123 → Calibri → 11 → B I S	A 🌺 🖽 🖽 -
1	- fx		
	A	В	С
1		น่าน (NN)	
2	เดือน	ไฟล์ 52	Sen2Cor
3	มกราคม	S2B_MSIL1C_20190102T034139_N0207_R061_T47QPA_20190102T063407	ตำเนินการเสร็จสิ้น "
4		S2A_MSIL1C_20190107T034131_N0207_R061_T47QPA_20190107T064635	ดำเนินการเสร็จสิ้น "
5		S2A MSIL2A 20190110T035121 N0211 R104 T47QPA 20190110T075703	
6		S2B MSIL2A 20190125T035039 N0211 R104 T47QPA 20190125T075358	
7		S2A_MSIL1C_20190127T034021_N0207_R061_T47QPA_20190127T081333	ดำเนินการเสร็จสิ้น "
8		S2A_MSIL2A_20190130T035011_N0211_R104_T47QPA_20190130T080615	
9			
10	กุมภาพันธ์	S2B_MSIL1C_20190201T033959_N0207_R061_T47QPA_20190201T071434	ดำเนินการเสร็จสิ้น "
1		S2B_MSIL2A_20190204T034949_N0211_R104_T47QPA_20190204T075521	
12		S2A_MSIL1C_20190206T033931_N0207_R061_T47QPA_20190206T064858	ตำเนินการเสร็จสิ้น ·
3		S2A_MSIL1C_20190209T034911_N0207_R104_T47QPA_20190209T064349	ตำเนินการเสร็จสิ้น ·
4		S2B_MSIL1C_20190211T033859_N0207_R061_T47QPA_20190211T071353	ดำเนินการเสร็จสิ้น
5		S2B_MSIL2A_20190214T034849_N0211_R104_T47QPA_20190214T075729	
6		S2A_MSIL1C_20190216T033821_N0207_R061_T47QPA_20190216T063504	ตำเนินการเสร็จสิ้น ·
17		S2A_MSIL1C_20190219T034811_N0207_R104_T47QPA_20190219T082441	ตำเนินการเสร็จสิ้น ·
8		S2B_MSIL1C_20190221T033749_N0207_R061_T47QPA_20190221T075759	ตำเนินการเสร็จสิ้น ·
9		S2B_MSIL1C_20190224T034739_N0207_R104_T47QPA_20190224T072453	ตำเนินการเสร็จสิ้น ·
20		S2A_MSIL1C_20190226T033711_N0207_R061_T47QPA_20190226T085745	ดำเนินการเสร็จสิ้น
21			
2	มีนาคม	S2A_MSIL1C_20190301T034701_N0207_R104_T47QPA_20190301T072232	ดำเนินการเสร็จสิ้น
3		S2B_MSIL1C_20190303T033639_N0207_R061_T47QPA_20190303T085712	ดำเนินการเสร็จสิ้น
4		S2B_MSIL2A_20190306T034619_N0211_R104_T47QPA_20190306T090435	
5		S2A_MSIL2A_20190308T033601_N0211_R061_T47QPA_20190308T090818	
26	*	S2A_MSIL2A_20190311T034541_N0211_R104_T47QPA_20190311T073559	
7		S2B_MSIL1C_20190313T033529_N0207_R061_T47QPA_20190313T085804	ดำเนินการเสร็จสิ้น ·
8.		S2B_MSIL2A_20190316T034529_N0211_R104_T47QPA_20190316T095139	
9		S2A_MSIL1C_20190318T033531_N0207_R061_T47QPA_20190318T081651	ตำเนินการเสร็จสั้น ·
0		S2A_MSIL2A_20190321T034531_N0211_R104_T47QPA_20190321T094919	
31		S2B_MSIL1C_20190323T033719_N0207_R061_T47QPA_20190323T085835	ตำเนินการเสร็จสิ้น ·
2		S2B_MSIL2A_20190326T034539_N0211_R104_T47QPA_20190326T084720	
3		S2A_MSIL1C_20190328T033701_N0207_R061_T47QPA_20190328T085819	ตำเนินการเสร็จสิ้น ·
34		S2A_MSIL2A_20190331T034531_N0211_R104_T47QPA_20190331T075403	

ไฟล์ข้อมูลที่ใช้ในโครงการจะเช็คได้จาก google sheet เช็คลิสต์รายการดัชนีข้าวจังหวัดปี 2019 2020 2021 โดยเปิดได้จากลิงค์ที่ให้ และชื่อโฟลเดอร์ใน NAS จะตัดชื่อดาวเทียมข้างหน้าออก เช่น ใน google sheet จะชื่อ S2B_MSIL2A_20210315T034539_N0214_R104_T47QNA_20210315T071445

ส่วนใน NAS จะตัดเหลือชื่อ MSIL2A_20210315T034539_N0214_R104_T47QNA_20210315T071445 เพื่อให้เรียงตามลำดับวันที่ ซึ่งวันที่ของภาพดาวเทียม Sentinel-2 จะเป็นวันที่ในส่วนที่อยู่หลัง MSIL2A_ จากตัวอย่างจะเป็นวันที่ 15 เดือน 3 ปี 2021(MSIL2A_20210315T034539_N0214_R104_T47QNA_20210315T071445)

โดยโครงสร้างของไฟล์ข้อมูลที่ประมวลผลดัชนีจากโปรแกรม SNAP จะเป็นข้อมูลในรูปแบบ DIMAP จะ ประกอบด้วยชื่อไฟล์นามสกุล .dim และโฟลเดอร์ที่เก็บข้อมูลชื่อเดียวกับชื่อไฟล์

จากรูป โครงสร้างไฟล์ DIMAP จะประกอบด้วยชื่อไฟล์ เช่น

S2B_MSIL2A_20210315T034539_N0214_R104_T47QNA_20210315T071445_s2resampled.dim และโฟลเดอร์เก็บข้อมูล เช่น

S2B_MSIL2A_20210315T034539_N0214_R104_T47QNA_20210315T071445_s2resampled.data ส่วนโฟลเดอร์ S2B_MSIL2A_20210315T034539_N0214_R104_T47QNA_20210315T071445.SAFE จะ เป็นไฟล์ข้อมูลต้นฉบับโหลดจาก ESA

ในการสกัดข้อมูลจะใช้ไฟล์ที่ชื่อต่อท้ายด้วย _s2resampled , _biophysical10m และ _biophysical และนำไฟล์ excel ที่ได้ไปคำนวณต่อโดยใช้โปรแกรมคำสั่งจากภาษา python (อยู่ในคู่มือการวิเคราะห์ดัชนีผ่าน-Jupyter-Notebook.pdf)

การสกัดดัชนีในคู่มือนี้ จะใช้ ArcMap และ ArcCatalog ซึ่งสามารถใช้โปรแกรมอื่น ที่สามารถเปิดใช้งาน ข้อมูล shapefile ข้อมูลไฟล์ .img และมีคำสั่ง Extract ข้อมูลได้ ใน ArcCatalog จะมองเห็นไฟล์รูปแบบ DIMAP แต่เฉพาะโฟลเดอร์ส่วนที่เก็บข้อมูลภาพ โดยเรียง ตามลำดับอักษร โดยข้อมูลที่ได้ประมวลผลจะมีอยู่ 4 กลุ่มข้อมูลคือ

1) กลุ่มข้อมูลที่ประมวลผลจากข้อมูล level 2A โดยใช้โปรแกรม SNAP version 8 จะประกอบไปด้วย ไฟล์ที่ต่อท้ายด้วย _s2resampled , _biophysical10m และ _biophysical ซึ่งในโฟลเดอร์ _biophysical10m จะมีข้อมูลดัชนี fAPAR, FCOVER และ LAI ส่วนโฟลเดอร์ _biophysical จะ ประกอบด้วยข้อมูลดัชนี LAI_Cab และ LAI_CW ส่วน _s2resampled จะประกอบด้วยข้อมูล ดาวเทียม Sentinel-2 ที่ผ่านการ resampling ให้เป็นข้อมูลรายละเอียด 10 เมตร

2) กลุ่มข้อมูลที่ประมวลผลจากข้อมูล level 2A โดยใช้โปรแกรม SNAP version 6 – 7 จะประกอบไป ด้วยไฟล์ที่ต่อท้ายด้วย _s2resampled และ _biophysical ซึ่งในโฟลเดอร์ _biophysical จะ ประกอบไปด้วยข้อมูลดัชนีทั้ง 5 ตัว ได้แก่ fAPAR, FCOVER, LAI, LAI_Cab และ LAI_CW

3) กลุ่มข้อมูลที่ประมวลผลจากข้อมูล level 1C โดยใช้โปรแกรม SNAP version 8 ข้อมูลในแต่ละชุด จะประกอบด้วยไฟล์ดาวเทียม level 1C และ level 2A และไฟล์ที่ต่อท้ายด้วย _s2resampled , _biophysical10m และ _biophysical ** โดยมีข้อสังเกตชื่อไฟล์ดาวเทียมระหว่าง 1C และ 2A จะมีส่วนต่างกันจากการประมวลผลโดยใช้โปรแกรม SNAP หลังจากตัวอักษรประจำซีนจะเป็น _ปี เดือน วัน T เวลา ในการประมวลผล

โดยภายในโฟลเดอร์ของไฟล์ _s2resampled จะประกอบไปด้วย

ไฟล์ที่ใช้คือ B1 - B8, B8A, B9 -12 และ quality_cloud_confidence.img (ไฟล์ประเมินความเป็นเมฆ)

ภายในโฟลเดอร์ของไฟล์ _biophysical10m ประกอบด้วย

ไฟล์ที่ใช้คือ fapar.img , fcover.img และ lai.img

ภายในโฟลเดอร์ของไฟล์ _biophysical ประกอบด้วย

ไฟล์ที่ใช้คือ lai_cab.img และ lai_cw.img

4) กลุ่มข้อมูลที่มีการ mosaic ข้อมูลภาพดาวเทียม Sentinel-2 โดยใช้โปรแกรม SNAP ซึ่งจะมีไฟล์ วันที่ตรงกัน 2 วัน ไฟล์ข้อมูลหลักจะเก็บอยู่ในโฟลเดอร์ใดโฟลเดอร์หนึ่ง สังเกตได้จากในตาราง google sheet จะมีเครื่องหมาย "**mosaic " ส่วนอีกไฟล์จะมีแค่ "** " โดยข้อมูลในโฟลเดอร์ หลักจะประกอบไปด้วยไฟล์ที่ต่อท้ายด้วย _s2resampled , _mosaic , _mosaic_biophysic และ _mosaic_biophysical10m (ในกรณีใช้ SNAP version 8 ส่วนใช้ version 6 -7 จะมีแต่ _mosaic_biophysic) ในการสกัดข้อมูลจะใช้ข้อมูลที่อยู่ไฟล์หลัก คือที่มี **mosaic

ตารางตัวอักษรย่อชื่อจังหวัดที่ใช้ในโครงการ

จังหวัด	ตัวอักษรย่อที่ใช้ในโครงการข้าวฯ	
อำนาจเจริญ	AC	
ร้อยเอ็ด	RE	
ยโสธร	YST	
อุบลราชธานี	UN	
สุรินทร์	SR	
เชียงราย	CR	
เชียงใหม่	CM	
ลำปาง	LP	
น่าน	NN	
พะเถา	PY	
พิจิตร	PC	
กำแพงเพชร	KP	
นครสวรรค์	NW	
ชัยนาท	CN	
สุพรรณบุรี + นครปฐม	SB	
นครศรีธรรมราช	NR	
สงขลา-พัทลุง	SP	
ปัตตานี	PN	

ขั้นตอนการสกัดข้อมูล multispectral index จากข้อมูลดาวเทียม Sentinel-2 : ส่วนแรก

1. นำเข้าข้อมูล shape file แปลงเก็บข้อมูลนาข้าว โดยในโครงการข้าวฯ นี้จะใช้ไฟล์ที่มีตัวอักษรประจำซีน ของข้อมูลดาวเทียม Sentinel-2 เช่น ซีนจังหวัดร้อยเอ็ดจะเป็น _PUC

2. Export ไฟล์ สร้างเป็นข้อมูล shape file ใหม่ โดยให้มีการใส่วันที่ของภาพดาวเทียมที่ต้องการสกัดข้อมูล ดัชนี เพิ่มเติมในชื่อไฟล์ เช่น RE_20201124_PUC โดย RE คือตัวอักษรย่อชื่อจังหวัด

3. ใช้คำสั่ง Extract Multi Values to Points ใน ArcToolbox

4. เลือก Shape file ที่สร้างใหม่ ในช่อง Input point features ในส่วน Bilinear interpolation of values of point locations (optional) ไม่ต้องเลือก เพราะต้องการสกัดเฉพาะจุด pixel

5. เปิด ArcCatalog และไปที่โฟลเดอร์ไฟล์ข้อมูลดาวเทียมที่ต้องการสกัด

เลือกโฟลเดอร์ ***_resampled เลือกไฟล์ไล่ตามลำดับอักษร B1 B2 B3 B4 B5 B6 B7 B8 B8A B9
B11 B12 และ quality cloud confidence.img

หมายเหตุ : อาจจะต้องแบ่งการนำเข้าแบนด์ไปใส่ในช่อง Raster ใน ArcMap เป็น 2 ชุด เพื่อให้เรียงลำดับตาม ที่ตั้งไว้ ชุดแรกมี B1, B2, B3, B4, B5, B6, B7, B8, B8A, B9 ชุดที่สองมี B11, B12, quality_cloud_confidence 7. ลากไฟล์ .img ที่เลือกจากข้อ 6 จาก ArcCatalog ไปใส่ในช่อง Input rasters ในส่วน Raster ใน ArcMap

8. เลือกโฟลเดอร์ ***_biophysical10m เลือกไฟล์ไล่ตามลำดับอักษร fapar , fcover และ lai และลากไป ใส่ในช่อง Input rasters ในส่วน Raster ใน ArcMap

9. เลือกโฟลเดอร์ ***_biophysical เลือกไฟล์ไล่ตามลำดับอักษร fapar , fcover และ lai และลากไปใส่ใน ช่อง Input rasters ในส่วน Raster ใน ArcMap

หมายเหตุ: ในกรณีเป็นข้อมูลที่ประมวลผลจาก SNAP version 6 – 7 ที่จะมีเฉพาะโฟลเดอร์ _biophysical จะมี ไฟล์ fapar, fcover, lai, lai cover และ lai cw อยู่ในโฟลเดอร์เดียวกัน

ส่วนในข้อมูลที่มีการ Mosaic จะใช้ไฟล์จาก _mosaic , _mosaic_biophysical10m และ _mosaic_biophysicl ในการสกัดข้อมูล

- 10. เสร็จแล้ว กด OK
- 11. เปิด Table ของ shape file แปลงนาจะได้ข้อมูลที่สกัดเรียงลำดับตามในรูป ** ตรวจสอบ table เรียงลำดับ field ก่อนแปลงเป็น excel เพื่อคำนวนดัชนีในขั้นต่อไป

** หมายเหตุ : ข้อมูลของ B1 – B12 เป็นข้อมูลของแต่ละแบนด์ดาวเทียม Sentinel-2 จะเป็นข้อมูลรูปแบบ จำนวนเต็ม Integer type

12. ขั้นตอนการ export table เป็น excel โดยใช้คำสั่ง **Table To Excel** ใน ArcToolbox

13. ตั้งชื่อไฟล์ excel ตามรูปแบบดังนี้ **ชื่อย่อจังหวัด_ปีเดือนวัน_ตัวอักษรประจำซีนภาพ Sentinel-2** โดยชื่อย่อจังหวัดให้ตั้งตามตาราง google sheet เช่น จากภาพตัวอย่าง เป็นการสกัดข้อมูลจังหวัด ร้อยเอ็ดวันที่ 24 พฤศจิกายน 2020 การตั้งชื่อจะเป็น RE_20201124_PUC.xls

- 14. เสร็จแล้ว กด OK
- 15. เปิดไฟล์ excel ที่ export มาเพื่อทำการแปลงให้อยู่ในรูปแบบไฟล์ .xlsx

16. คลิกที่เมนู File ในโปรแกรม excel เลือก Info จากนั้นเลือก ไอคอน Convert

17. โปรแกรม excel จะขึ้นกล่องข้อความให้ยืนยันการแปลงข้อมูล ให้กด OK และ Yes

18. นำข้อมูลไฟล์ excel ที่ได้ไปทำการคำนวน Multispectral index ต่อโดยใช้ **Jupyter-Notebook** ตาม คู่มือในส่วนที่ 2 โดยใช้โปรแกรมชื่อ **Index_Formulas_A-Z.ipynb**

19. สำหรับในกลุ่มข้อมูลที่มีการ **Mosaic** ภาพดาวเทียม ซึ่งเมื่อทำการ Extract ข้อมูลออกมาแล้ว ข้อมูลใน แต่ละแบนด์ของดาวเทียม Sentinel-2 จะเป็นข้อมูลที่อยู่ในรูปแบบทศนิยม (Float type) แล้ว

20. เมื่อทำการ Export table เป็น excel และ convert ให้อยู่ในรูปแบบ .xlsx แล้ว นำไปคำนวน Multispectral index ต่อโดยใช้ Jupyter-Notebook ตามคู่มือในส่วนที่ 2 โดยใช้โปรแกรมชื่อ Index Formulas Decimal.ipynb

21. การจัดเก็บข้อมูลที่ประมวลผลเสร็จแล้ว ให้เก็บแยกโฟลเดอร์ shape file 1 โฟลเดอร์ และไฟล์ excel ที่ วิเคราะห์เสร็จทั้งหมดแล้ว ให้นำไปเก็บไว้ใน NAS ภายใต้โฟลเดอร์ Excel และแยกตามโครงการ Rice_eddy หรือ Rice_yield จากนั้นแยกเก็บตามปีของข้อมูล และแยกตามจังหวัด

