Exi Show that $L^{+} = L^{+} \star$ $L^{+} \subseteq L^{+} \rightarrow \text{become } L^{+} + \text{has}$ $(L^{+})^{!}$. $L^{*} = \{\chi : \exists k \cdot \chi \in (L^{*})^{k} \}$ show that $\forall k \geq 1 \cdot (L^{+})^{k} = L^{*}$ $\forall \chi \in (L^{+})^{k}$ $\forall \chi \in (L^{+})^{k}$ $\forall \chi \in (L^{+})^{k}$

 $L^{pk} = L^{pk}$ $y \in L^{pk} \Rightarrow y \in L^{*}.$

EX3 Show that

(a)
$$\mathcal{X} \in \mathbb{L}$$

then $L \neq LL$

(b) It
$$\xi \varepsilon$$
, α , $b \xi \in L$ then
$$L = LL \quad \text{iff} \quad L = \xi \alpha, b \xi^*$$