1. Table 1을 완성하여라.

Table 1: Discrete Distributions

Table 1: Discrete Distributions					
Distribution	Probability Function	Mean	Variance		
binomial	$p(y) = \binom{n}{y} p^y (1-p)^{n-y} ; y = 0, 1, \dots, n$	np	np(1-p)		
geometric					
hypergeometric					
poisson					
negative binomial					

2. Table 2를 완성하여라.

Table 2: Continuous Distributions

Table 2: Continuous Distributions				
Distribution	Probability Function	Mean	Variance	
uniform	$f(y) = \frac{1}{\theta_2 - \theta_1} ; \theta_1 \le y \le \theta_2$	$\frac{\theta_1 + \theta_2}{2}$	$\frac{(\theta_2 - \theta_1)^2}{12}$	
normal				
exponential				
gamma				
chi-square				
beta				

3. 다음과 동일한 문서를 작성하시오.

. . .

이산변수 X의 분포의 추정 결과는 이 변수가 가질 수 있는 값들과 더불어 각 값의 도수와 상대도수를 표 3과 같이 정리할 수 있는데, 이를 **도수분포표(frequency distribution table)**라 한다. 표 3에서 f_i 는 값 x_i 의 도수이고, f_i/n 로 계산되는 $\hat{p_i}$ 는 x_i 의 상대도수이다.

Table 3: 이산변수 X의 도수분포표

rabic o.	1001 11-	
X의 값	도수	상대도수
x_1	f_1	$\hat{p_1} = f_1/n$
x_2	f_2	$\hat{p_2} = f_2/n$
:	:	:
x_k	f_k	$\hat{p_k} = f_k/n$
합계	$n = \sum_{i=1}^{k} f_i$	1

4. 다음과 동일한 문서를 작성하시오.

...

토마 피케티(Thomas Piketty)[1][2]가 저서 "21세기 자본"에서 소득과 부의 불평등 심화 문제를 제기한 것을 계기로 경제적 불평등 문제는 최근 세계적인 관심을 받고 있다.

. . .

한국의 경우에는 정부기관인 통계청이 매년 지니계수, $5분위배율^1$, 상대적 빈곤 B^2 등의 소득불평등지수를 작성 발표하고 있다.

...

 $^{^{1}}$ 소득 상위20%(5분위)계층의 평균소득을 소득 하위20%(1분위)계층의 평균소득으로 나눈 값임.

²중위소득 50% 미만 계층의 비율임.

References

- [1] *21세기 자본*. 글항아리, 2014.
- [2] *불평등 경제*. 마로니에북스, 2014.