DAY-5: Section 7.4 Integration by Trogonometric Substitutions

Understanding:

- → Trigonometric Functions [MAT 116]
- → Inverse Trigonometric Functions. [From a different book]

TRIGONOMETRIC SUBSTITUTIONS: $\sqrt{a^2-x^2}$, $\sqrt{a^2+x^2}$, $\sqrt{x^2-a^2}$

Formulas:

$$1 - \sin^2 x = \cos^2 x$$
$$1 + \tan^2 x = \sec^2 x$$
$$\sec^2 x - 1 = \tan^2 x$$

We need this method to integrate type (b) integrals.

Examples: (1) *a*) $\int x (4-x^2)^{44} dx$ and *b*) $\int (4-x^2)^{44} dx$

(2) a)
$$\int 2x \sqrt{1-x^2} dx$$
 and b) $\int \sqrt{1-x^2} dx$

Note:
$$\sqrt{9} = 3$$
 and $-\sqrt{9} = 3$ [Solve $x^2 = 9 \to x = \pm \sqrt{9}$, that is, $x = +\sqrt{9}$, $x = -\sqrt{9}$]

Definition: For any real number x, $\sqrt{x^2} = |x| = \begin{cases} -x, & x < 0 \\ x, & x \ge 0 \end{cases}$

Notes:

- (1) $y = \sqrt{x}$: This is called **positive square root**, and we only get non-negative number y from this equation. Here, y = 0 if x = 0. Example: $\sqrt{4} = 2$.
- (2) $y = -\sqrt{x}$: This is called **negative square root**, and we only get non-positive number y from this equation. Here, y = 0 if x = 0. Example: $-\sqrt{4} = -2$.

Recall: To solve $x^2 = 9 \Rightarrow x = \pm \sqrt{9} \Rightarrow x = \pm 3$. That is, x = 3 or x = -3

There are 3-cases

TRIGONOMETRIC SUBSTITUTIONS

EXPRESSION IN THE INTEGRAND	SUBSTITUTION	RESTRICTION ON $ heta$	SIMPLIFICATION
$\sqrt{a^2-x^2}$	$x = a \sin \theta$	$-\pi/2 \le \theta \le \pi/2$	$a^2 - x^2 = a^2 - a^2 \sin^2 \theta = a^2 \cos^2 \theta$
$\sqrt{a^2 + x^2}$	$x = a \tan \theta$	$-\pi/2 < \theta < \pi/2$	$a^2 + x^2 = a^2 + a^2 \tan^2 \theta = a^2 \sec^2 \theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$	$\begin{cases} 0 \le \theta < \pi/2 & (\text{if } x \ge a) \\ \pi/2 < \theta \le \pi & (\text{if } x \le -a) \end{cases}$	$x^2 - a^2 = a^2 \sec^2 \theta - a^2 = a^2 \tan^2 \theta$

Recall: Consider the circle of radius r and with center at the origin.

For any point (x,y) on the circle, we get $x^2 + y^2 = r^2$, and also, in polar coordinates,

$$x = r \cos \theta$$
 , $y = r \sin \theta$.

In particular, for any point (x,y) on the circle, we get $x^2 + y^2 = 1$, and also, in polar coordinates,

$$x = \cos \theta$$
 , $y = \sin \theta$.

Remember that $(x, y) = (\cos \theta, \sin \theta)$.

Case: 1
$$\sqrt{a^2 - x^2}$$
 ; $a > 0$

Set
$$x = a \sin \theta$$
. Then $\frac{dx}{d\theta} = a \cos \theta \Rightarrow dx = a \cos \theta d\theta$

Also,
$$\sqrt{a^2 - x^2} = \sqrt{a^2 - (a\sin\theta)^2}$$

$$=\sqrt{a^2-a^2\sin^2\theta}=\sqrt{a^2(1-\sin^2\theta)}$$

$$= \sqrt{a^2 \cos^2 \theta} = |a| \sqrt{\cos^2 \theta} = a |\cos \theta|$$

That is,
$$\sqrt{a^2 - x^2} = a \cos \theta$$
 ; when $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

Again,
$$x = a \sin \theta$$
 $\Rightarrow \frac{x}{a} = \sin \theta$. Hence $\theta = \sin^{-1} \left(\frac{x}{a}\right)$

Now,
$$\sin \theta = \frac{x}{a} = \frac{Opposite}{Hypotenuse} = \frac{x \text{ is the opposite}}{a \text{ is the hypotenuse}}$$

$$cos\theta = \frac{\sqrt{a^2 - x^2}}{a}$$
, $sec\theta = \frac{a}{\sqrt{a^2 - x^2}}$, $tan\theta = \frac{x}{\sqrt{a^2 - x^2}}$, $cot\theta = \frac{\sqrt{a^2 - x^2}}{x}$, $csc\theta = \frac{a}{x}$

Case: 2
$$\sqrt{a^2 + x^2}$$
; $a > 0$

Set
$$x = a \tan \theta$$
. Then $\frac{dx}{d\theta} = a \sec^2 \theta \implies dx = a \sec^2 \theta d\theta$

$$\sqrt{a^2 + x^2} = \sqrt{a^2 + (a \tan \theta)^2}$$

$$=\sqrt{a^2(1+tan^2\theta)} = \sqrt{a^2sec^2\theta} = a\sqrt{sec^2\theta} = a|\sec\theta|$$

$$\sqrt{a^2 + x^2} = a \sec \theta$$
 ; when $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$

Again,
$$x = a \tan \theta$$
 $\Rightarrow \frac{x}{a} = \tan \theta$. Hence $\theta = \tan^{-1} \left(\frac{x}{a}\right)$

Now,
$$\tan \theta = \frac{x}{a} = \frac{Opposite}{Adjecent} = \frac{x \text{ is the opposite}}{a \text{ is the Adjecent}}$$

 $x = a \tan \theta$

$$cos\theta = \frac{a}{\sqrt{a^2 + x^2}}$$
 , $sec\theta = \frac{\sqrt{a^2 + x^2}}{a}$, $sin\theta = \frac{x}{\sqrt{a^2 + x^2}}$, $cot\theta = \frac{a}{x}$, $csc\theta = \frac{\sqrt{a^2 + x^2}}{x}$

Case: 3
$$\sqrt{x^2 - a^2}$$
; $a > 0$

Set $x = a \sec \theta$. Then $\frac{dx}{d\theta} = a \sec \theta \tan \theta \Rightarrow dx = a \sec \theta \tan \theta d\theta$

$$\sqrt{x^2 - a^2} = \sqrt{(a \sec \theta)^2 - a^2} = \sqrt{a^2 (\sec^2 \theta - 1)} = \sqrt{a^2 \tan^2 \theta} = a \sqrt{\tan^2 \theta} = a |\tan \theta|$$

$$\sqrt{x^2 - a^2} = a \tan \theta$$
 ; when $0 \le \theta < \frac{\pi}{2}$ or $\pi \le \theta < \frac{3\pi}{2}$

Again,
$$x = a \sec \theta$$
 $\Rightarrow \frac{x}{a} = \sec \theta$. Hence $\theta = \sec^{-1} \left(\frac{x}{a}\right)$

Now,
$$\sec \theta = \frac{x}{a} = \frac{Hypotenuse}{Adjecent} = \frac{x \text{ is the Hypotenuse}}{a \text{ is the Adjecent}}$$

$$cos\theta = \frac{a}{x}$$
, $cot\theta = \frac{a}{\sqrt{x^2 - a^2}}$, $sin\theta = \frac{\sqrt{x^2 - a^2}}{x}$, $tan\theta = \frac{\sqrt{x^2 - a^2}}{a}$, $csc\theta = \frac{x}{\sqrt{x^2 - a^2}}$

Examples

1.
$$\int_{\frac{2\pi}{3}}^{\pi} |\tan \theta| \ d\theta = \int_{\frac{2\pi}{3}}^{\pi} (-\tan \theta) \ d\theta; \quad \text{Here} \quad \frac{2\pi}{3} \le \theta \le \pi, \text{hence} \quad \theta \le 0.$$

$$[x = -2, |x| = |-2| = -(-2)]$$

$$2. \int_{0}^{\pi} |\cos \theta| \ d\theta = \int_{0}^{\frac{\pi}{2}} |\cos \theta| \ d\theta + \int_{\frac{\pi}{2}}^{\pi} |\cos \theta| \ d\theta = \int_{0}^{\frac{\pi}{2}} |\cos \theta| \ d\theta + \int_{\frac{\pi}{2}}^{\pi} |\cos \theta| \ d\theta = \int_{0}^{\pi} |\cos \theta| \ d\theta + \int_{\frac{\pi}{2}}^{\pi} |\cos \theta| \ d\theta = \int_{0}^{\pi} |\cos \theta| \ d\theta + \int_{\frac{\pi}{2}}^{\pi} |\cos \theta| \ d\theta = \int_{0}^{\pi} |\cos \theta| \ d\theta + \int_{\frac{\pi}{2}}^{\pi} |\cos \theta| \ d\theta = \int_{0}^{\pi} |\cos \theta| \ d\theta + \int_{\frac{\pi}{2}}^{\pi} |\cos \theta| \ d\theta = \int_{0}^{\pi} |\cos \theta| \ d\theta + \int_{\frac{\pi}{2}}^{\pi} |\cos \theta| \ d\theta = \int_{0}^{\pi} |\cos \theta| \ d\theta + \int_{\frac{\pi}{2}}^{\pi} |\cos \theta| \ d\theta = \int_{0}^{\pi} |\cos \theta| \ d\theta + \int_{\frac{\pi}{2}}^{\pi} |\cos \theta| \ d\theta = \int_{0}^{\pi} |\cos \theta| \ d\theta + \int_{\frac{\pi}{2}}^{\pi} |\cos \theta| \ d\theta = \int_{0}^{\pi} |\cos \theta| \ d\theta + \int_{\frac{\pi}{2}}^{\pi} |\cos \theta| \ d\theta = \int_{0}^{\pi} |\cos \theta| \ d\theta + \int_{\frac{\pi}{2}}^{\pi} |\cos \theta| \ d\theta = \int_{0}^{\pi} |\cos \theta| \ d\theta + \int_{\frac{\pi}{2}}^{\pi} |\cos \theta| \ d\theta = \int_{0}^{\pi} |\cos \theta| \ d\theta + \int_{\frac{\pi}{2}}^{\pi} |\cos \theta| \ d\theta = \int_{0}^{\pi} |\cos \theta| \ d\theta + \int_{\frac{\pi}{2}}^{\pi} |\cos \theta| \ d\theta = \int_{0}^{\pi} |\cos \theta| \ d\theta + \int_{\frac{\pi}{2}}^{\pi} |\cos \theta| \ d\theta = \int_{0}^{\pi} |\cos \theta| \ d\theta + \int_{0}^{\pi} |\cos \theta| \ d\theta = \int_{0}^{\pi} |\cos \theta| \ d\theta + \int_{0}^{\pi} |\cos \theta| \ d\theta = \int_{0}^{\pi} |\cos \theta| \ d\theta = \int_{0}^{\pi} |\cos \theta| \ d\theta + \int_{0}^{\pi} |\cos \theta| \ d\theta = \int$$

Section 7.4 Integration by Trogonometric Substitutions

EXERCISES

TRIGONOMETRIC SUBSTITUTIONS: $\sqrt{a^2-x^2}$, $\sqrt{a^2+x^2}$, $\sqrt{x^2-a^2}$

Exercise: 1 (a)
$$\int \frac{\sqrt{1+t^2}}{t} dt$$

Set
$$t = \tan \theta$$
. Then $\frac{dt}{d\theta} = \sec^2 \theta$, that is, $dt = \sec^2 \theta$ $d\theta$

Now.

$$\int \frac{\sqrt{1+t^2}}{t} dt = \int \frac{\sqrt{1+\tan^2 \theta}}{\tan \theta} \sec^2 \theta \ d\theta = \int \frac{\sqrt{\sec^2 \theta}}{\tan \theta} \sec^2 \theta \ d\theta$$

$$=\int \frac{|\sec \theta|}{\tan \theta} \sec^2 \theta \ d\theta$$

$$= \int \frac{\sec \theta}{\tan \theta} \sec^2 \theta \ d\theta \ ; \quad \text{when} \quad -\frac{\pi}{2} < \theta < \frac{\pi}{2}$$

$$= \int \frac{\sec^3 \theta}{\tan \theta} \ d\theta = \int \frac{\frac{1}{\cos^3 \theta}}{\frac{(\sin \theta)}{\cos \theta}} d\theta$$

$$= \int \frac{\sin \theta}{\cos^2 \theta} d\theta \; ; \; Set \; u = \cos \theta, \quad then \; -du = \sin \theta \; d\theta$$

$$= \int \frac{1}{u^2} (-1) du = - \int u^{-2} du$$

$$=-\frac{u^{-2+1}}{-2+1}+C$$

$$=\frac{1}{u} + C = \frac{1}{\cos \theta} + C = \sec \theta + C = \sqrt{1 + t^2} + C$$
; if $t = \tan \theta$, then $\sec \theta = \sqrt{1 + t^2}$

$$\int \frac{\sqrt{1+t^2}}{t} dt = \sqrt{1+t^2} + C$$

$$(b) \int \frac{1}{x^2 \sqrt{x^2 + 5}} \, dx$$

Set
$$x = \sqrt{5} \tan \theta$$
. $dx = \sqrt{5} \sec^2 \theta \ d\theta$

$$\int \frac{1}{x^2 \sqrt{x^2 + 5}} \, dx$$

$$= \int \frac{1}{(\sqrt{5} \tan \theta)^2 \sqrt{(\sqrt{5} \tan \theta)^2 + 5}} \sqrt{5} \sec^2 \theta \ d\theta$$

$$= \int \frac{\sqrt{5} \sec^2 \theta}{5 \tan^2 \theta \sqrt{5 (\tan^2 \theta + 1)}} d\theta$$

$$= \int \frac{\sqrt{5} \sec^2 \theta}{5 \tan^2 \theta \sqrt{5} \sec^2 \theta} d\theta$$

$$= \int \frac{\sqrt{5} \sec^2 \theta}{5 \tan^2 \theta |\sqrt{5} \sec \theta|} d\theta$$

$$= \int \frac{\sqrt{5} \sec^2 \theta}{5 \tan^2 \theta \sqrt{5} \sec \theta} d\theta ; \text{ when } -\frac{\pi}{2} < \theta < \frac{\pi}{2}$$

$$= \frac{1}{5} \int \frac{\sec \theta}{\tan^2 \theta} d\theta$$

$$= \frac{1}{5} \int \frac{\sec \theta}{\tan^2 \theta} \ d\theta$$

$$=\frac{1}{5}\int \frac{\frac{1}{\cos \theta}}{\frac{\sin^2 \theta}{\cos^2 \theta}} d\theta$$

$$=\frac{1}{5}\int \frac{\cos \theta}{\sin^2 \theta} d\theta \quad ; \quad set \ u = \sin \theta \, , \ du = \cos \theta \ d\theta$$

$$=\frac{1}{5}\int \frac{1}{u^2} \ du = =\frac{1}{5}\int u^{-2} \ du = \frac{1}{5} \ \frac{u^{-2+1}}{-2+1} = \ -\frac{1}{5}\frac{1}{u} + C$$

$$= -\frac{1}{5\sin\theta} + C = -\frac{\sqrt{x^2+5}}{5x} + C$$

Now,
$$x = \sqrt{5} \tan \theta \Rightarrow \tan \theta = \frac{x}{\sqrt{5}}$$
. Hence, $\sin \theta = \frac{x}{\sqrt{x^2 + 5}}$, that is, $\frac{1}{\sin \theta} = \frac{x}{\sqrt{x^2 + 5}}$

Exercise: 2
$$\int \frac{1}{(1-x^2)^{\frac{3}{2}}} dx.$$

Solution: Set $x = \sin \theta$. Then, $dx = \cos \theta \ d\theta$. Now,

$$\int \frac{1}{(1-x^2)^{\frac{3}{2}}} dx$$

$$= \int \frac{1}{(1 - (\sin \theta)^2)^{\frac{3}{2}}} dx$$

$$= \int \frac{1}{(1-\sin^2\theta)^{\frac{3}{2}}} dx$$

$$= \int \frac{1}{(\cos^2 \theta)^{\frac{3}{2}}} dx$$

$$= \int \frac{1}{(\cos^2 \theta)^{\frac{3}{2}}} dx$$

$$= \int \frac{1}{\left(\sqrt{\cos^2\theta}\right)^3} dx$$

$$= \int \frac{1}{(|\cos\theta|)^3} dx$$

$$= \int \frac{1}{\cos^3 \theta} dx \; ; \quad \text{for } -\frac{\pi}{2} < \theta < \frac{\pi}{2}.$$

$$=\int \sec^3\theta \ dx$$

$$= \frac{1}{2} \sec \theta \tan \theta + \frac{1}{2} \int \sec \theta \ d\theta \ ; \int \sec^n x \ dx = \frac{1}{n-1} \sec^{n-2} x \ \tan x + \frac{n-2}{n-1} \int \sec^{n-2} x \ dx$$

$$= \frac{1}{2}\sec\theta\tan\theta + \frac{1}{2}\ln|\sec\theta + \tan\theta| + C$$

$$= \frac{1}{2} \sqrt{1 - x^2} \frac{x}{\sqrt{1 - x^2}} + \frac{1}{2} \ln \left| \sqrt{1 - x^2} + \frac{x}{\sqrt{1 - x^2}} \right| + C$$

; [since
$$\frac{x}{1} = \sin \theta$$
, $\sec \theta = \sqrt{1 - x^2}$, $\tan \theta = \frac{x}{\sqrt{1 - x^2}}$]

$$= \frac{1}{2}x + \frac{1}{2}\ln\left|\frac{1+x-x^2}{\sqrt{1-x^2}}\right| + C.$$

Exercise: 3
$$\int_{1}^{\sqrt{2}} \frac{1}{x^2 \sqrt{4-x^2}} dx$$

Given
$$\int_{1}^{\sqrt{2}} \frac{1}{x^2 \sqrt{4-x^2}} dx = \int_{1}^{\sqrt{2}} \frac{1}{x^2 \sqrt{2^2-x^2}} dx$$

Set $x = 2 \sin y$. Then $dx = 2 \cos y \, dy$.

Also,

x	1	$\sqrt{2}$
ν	π	π
y	- 6	$\frac{\overline{4}}{4}$

From, $x = 2 \sin y$; If x = 1, then $1 = 2 \sin y \Rightarrow \sin y = \frac{1}{2}$, that is, $y = \frac{\pi}{6}$

If
$$x = \sqrt{2}$$
, then $y = \frac{\pi}{4}$

Hence,
$$\int_{1}^{\sqrt{2}} \frac{dx}{x^2 \sqrt{4-x^2}} = \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1}{(2\sin y)^2 \sqrt{4-4\sin^2 y}} 2\cos y \ dy$$

$$= \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1}{4 \sin^2 y \sqrt{4 \cos^2 y}} \ 2 \cos y \ dy = \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1}{\sin^2 y \sqrt{(2 \cos y)^2}} \ 2 \cos y \ dy$$

$$= \frac{1}{4} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1}{\sin^2 y \ |2\cos y|} \ 2\cos y \ dy$$

$$= \frac{1}{4} \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{\sin^2 y \ 2\cos y} \ 2\cos y \ dy$$

$$=\frac{1}{4}\int_{\frac{\pi}{4}}^{\frac{\pi}{4}}\frac{1}{\sin^2 y} \ dy$$

$$= \frac{1}{4} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \csc^2 y \ dy = \frac{1}{4} \left[-\cot y \right]_{\frac{\pi}{6}}^{\frac{\pi}{4}} = \frac{1}{4} \left[-\cot \frac{\pi}{4} + \cot \frac{\pi}{6} \right] = \frac{-1 + \sqrt{3}}{4}$$

$$\int_{1}^{\sqrt{2}} \frac{dx}{x^2 \sqrt{4 - x^2}} = \frac{\sqrt{3} - 1}{4}$$

Exercise: 4 $\int \frac{x^2}{(x^2-1)^{\frac{3}{2}}} dx$ Homework