Decomposition of Graphs: Depth First Search

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Graph Algorithms Data Structures and Algorithms

Outline

1 Graphs

2 Depth First Search in Undirected Graphs

3 Depth-First Search in Directed Graphs

Graphs

Ways to Represent

Ways to Represent

$ \begin{array}{c} B \longrightarrow C \\ A \end{array} $	edge list A,B B,C A,C	adjacency matrix A B C A 0 1 1 B 0 0 1 C 0 0 0	adjacency list A B C B C
space	$\Theta(E)$	$\Theta(V ^2)$	$\Theta(V + E)$
$(u,v)\in E$?	$\Theta(E)$	Θ(1)	deg(u)
neighbors of u	$\Theta(E)$	$\Theta(V)$	$\deg(u)$

Sparse and Dense Graphs

Sparse and Dense Graphs

Outline

1 Graphs

2 Depth First Search in Undirected Graphs

3 Depth-First Search in Directed Graphs

Explore(v)

Postvisit(v)

```
{Input: a node v of a graph
G = (V, E).
{Output: visited[u] = true for all
```

nodes u reachable from v. $visited[v] \leftarrow true$

Previsit(v) for each edge $(v, u) \in E$: if visited[u] = false:

Explore(u)

 Clearly only vertices reachable from v are visited.

- Clearly only vertices reachable from v are visited.
- To show that all of them are visited assume, for the sake of contradiction, that a vertex *u* is reachable from *v* but was not visited.

- Clearly only vertices reachable from v are visited.
- To show that all of them are visited assume, for the sake of contradiction, that a vertex *u* is reachable from *v* but was not visited.
- Take any path from *v* to *u* and denote by *z* the last vertex on this path that was visited and by *w* its subsequent vertex.

- Clearly only vertices reachable from v are visited.
- To show that all of them are visited assume, for the sake of contradiction, that a vertex *u* is reachable from *v* but was not visited.
- Take any path from *v* to *u* and denote by *z* the last vertex on this path that was visited and by *w* its subsequent vertex.

Hence Explore was not called for w while iterating over the neighbors of z

Depth-First Search

DFS(G)

```
for all v \in V:
  visited[v] \leftarrow false

for all v \in V:
  if visited[v] = false:
  Explore(v)
```

Depth-First Search

DFS(G)

```
for all v \in V:
  visited[v] \leftarrow false

for all v \in V:
  if visited[v] = false:
  Explore(v)
```

Running time: O(|V| + |E|) since Explore is called exactly once for each vertex $v \in V$ and each edge is examined either once (for

Connected Components

A connected component of un undirected graph is an inclusion-wise maximal subset of vertices such that there is a path between any two of them.

Connected Components

A connected component of un undirected graph is an inclusion-wise maximal subset of vertices such that there is a path between any two of them.

Finding Connected Components

Previsit(v)

 $ccnum[v] \leftarrow cc$

DFS(G)

```
cc \leftarrow 0
for all v \in V:
  visited[v] \leftarrow false
   ccnum[v] \leftarrow -1
for all v \in V:
   if visited[v] = false:
      cc \leftarrow cc + 1
     Explore(v)
```

Outline

1 Graphs

2 Depth First Search in Undirected Graphs

3 Depth-First Search in Directed Graphs

Previsit and Postvisit Orderings

Previsit(v)

```
pre[v] \leftarrow clock
clock \leftarrow clock + 1
```

Postvisit(v)

```
post[v] \leftarrow clock
clock \leftarrow clock + 1
```

Types of Edges

Types of Edges

Types of edges:

- tree edge: (A, C), (C, E), (C, F), (B, D)
- forward edge: (A, F)
- cross edge: (B, C), (F, E)
- \blacksquare back edge: (E, A)

Types of edges

```
tree/forward edge (u, v):
    back edge (u, v):
      cross (u, v):
```

Directed acyclic graphs

Lemma

A directed graph has a cycle if and only if its depth-first search reveals a back edge.

Proof

 \Rightarrow If (u, v) is a back edge, then there is a path from v to u in DFS tree.

Directed acyclic graphs

Lemma

A directed graph has a cycle if and only if its depth-first search reveals a back edge.

Proof

- \Rightarrow If (u, v) is a back edge, then there is a path from v to u in DFS tree.
- \leftarrow Let $u_1 \rightarrow u_2 \rightarrow \ldots \rightarrow u_k \rightarrow u_1$ be a cycle and assume w.l.o.g. that u_1
 - is the first vertex Explore was

Topological ordering

A topological ordering of a directed graph is a linear ordering of its vertices such that for any edge (u, v), u comes before v.

Lemma

A directed graph can be linearized iff it is a DAG.

Proof

⇒ If there is a cycle the graph cannot be linearized.

_emm

A directed graph can be linearized iff it is a DAG.

Proof

⇒ If there is a cycle the graph cannot be linearized.

⇐ Each DAG contains at least one source (a vertex with no incoming edges) and at least one sink (no outgoing edges). This suggests the following algorithm: find a source

Example

Visualization:

http://www.cs.usfca.edu/~galles/ visualization/TopoSortIndegree.html

Lemma

In a DAG every edge leads to a vertex with a lower post number.

Proof

If post[v] > post[u] for an edge (u, v) then (u, v) is a back edge.

tree/forward edge
$$(u, v)$$
:

back edge (u, v) :

Example

