# Информация о составе проектной команды, контакты

**Руководитель проекта:** Писарев Василий Вячеславович, ведущий научный сотрудник, Международная лаборатория САММА, НИУ ВШЭ

Контакт: vpisarev@hse.ru

**Студент-исследователь:** Панов Михаил Федорович, студент 2 курса магистратуры по направлению "Системный анализ и математические технологии", МИЭМ НИУ ВШЭ

Контакт: mfpanov@edu.hse.ru

# Реферат

# Объект и предмет исследования:

Объектом исследования являются бинарные и многокомпонентные смеси, содержащие углекислый газ и н-алканы. Предмет исследования — параметры парного взаимодействия (коэффициенты  $k_{ij}$ ) в уравнении состояния CP-PC-SAFT.

# Цель проекта:

Разработка и проверка методики подбора коэффициентов парного взаимодействия углеводородов с углекислым газом для повышения точности модели CP-PC-SAFT при расчетах фазовых равновесий.

# Задачи проекта:

- Сбор экспериментальных данных по фазовым диаграммам из базы ThermoML.
- Обработка данных с использованием библиотеки ThermoPyL.
- Расчет параметров чистых веществ для CP-PC-SAFT.
- Оптимизация коэффициентов  $k_{ij}$ .
- Сравнение результатов с моделью Брусиловского.
- Поиск корреляций между  $k_{ij}$  и физико-химическими свойствами компонентов.
- Проверка работоспособности модели на трехкомпонентных смесях.

# Используемые методы:

- Термодинамическое моделирование на основе CP-PC-SAFT и CubicEoS библиотек для Julia.
- Численная оптимизация и обработка экспериментальных данных с использованием Python и библиотеки ThermoPyL.

## Результаты проекта:

- Подобраны оптимальные коэффициенты  $k_{ij}$  для  $CO_2$ -алканов (от гексана до додекана).
- Разработан и протестирован код для обработки и анализа данных.
- Модель CP-PC-SAFT с подобранными kij продемонстрировала точность, сопоставимую или превосходящую уравнение Брусиловского.

# Новизна и практическая значимость:

- Модель CP-PC-SAFT использована с расчетными параметрами веществ без подбора, что упрощает параметризацию.
- Автоматизированный pipeline для обработки ThermoML-данных.

**Области применения:** Химическая инженерия, нефтехимия, моделирование энергетических процессов.

**Степень готовности:** Метод протестирован, код написан, база данных создана. Готов к использованию в научных исследованиях и для адаптации в инженерных расчетах.

# Содержание

| 1                                                           | Введ | <b>зедение</b> 5                                     |  |  |  |  |  |  |
|-------------------------------------------------------------|------|------------------------------------------------------|--|--|--|--|--|--|
|                                                             | 1.1  | Аналитический обзор научно-технической информации    |  |  |  |  |  |  |
| 1.2 Используемые базы данных и инструменты обработки данных |      |                                                      |  |  |  |  |  |  |
|                                                             |      | 1.2.1 База данных ThermoML                           |  |  |  |  |  |  |
|                                                             |      | 1.2.2 Библиотека ThermoPyL                           |  |  |  |  |  |  |
|                                                             | 1.3  | Описание модели CP-PC-SAFT         5                 |  |  |  |  |  |  |
|                                                             |      | 1.3.1 Основные положения                             |  |  |  |  |  |  |
|                                                             |      | 1.3.2 Уравнение состояния PC-SAFT                    |  |  |  |  |  |  |
|                                                             |      | 1.3.3 Параметры веществ                              |  |  |  |  |  |  |
|                                                             |      | 1.3.4 Критерии параметризации в CP-PC-SAFT           |  |  |  |  |  |  |
|                                                             |      | 1.3.5 Парное взаимодействие между компонентами смеси |  |  |  |  |  |  |
|                                                             |      | 1.3.6 Применимость модели CP-PC-SAFT                 |  |  |  |  |  |  |
|                                                             |      | 1.3.7 Особенности и область применения               |  |  |  |  |  |  |
|                                                             | 1.4  | Описание уравнения состояния Брусиловского           |  |  |  |  |  |  |
|                                                             |      | 1.4.1 Основные положения                             |  |  |  |  |  |  |
|                                                             |      | 1.4.2 Уравнение состояния                            |  |  |  |  |  |  |
|                                                             |      | 1.4.3 Особенности и область применения               |  |  |  |  |  |  |
|                                                             | 1.5  | Актуальность и новизна                               |  |  |  |  |  |  |
|                                                             |      | овная часть                                          |  |  |  |  |  |  |
| 2 Основная часть                                            |      |                                                      |  |  |  |  |  |  |
|                                                             | 2.1  | писание решения задач разработки/исследований        |  |  |  |  |  |  |
|                                                             | 2.2  | Описание полученных результатов                      |  |  |  |  |  |  |
|                                                             | 2.3  | Выволы                                               |  |  |  |  |  |  |

| 3 | Заключение |                                               |    |  |  |
|---|------------|-----------------------------------------------|----|--|--|
|   | 3.1        | Краткие выводы                                | 15 |  |  |
|   | 3.2        | Оценка полноты решений                        | 15 |  |  |
|   | 3.3        | Рекомендации по использованию                 | 15 |  |  |
|   | 3.4        | Технико-экономическая эффективность внедрения | 16 |  |  |
|   | 3.5        | Оценка научно-технического уровня             | 16 |  |  |
|   |            |                                               |    |  |  |

# 1. Введение

# 1.1. Аналитический обзор научно-технической информации

# 1.2. Используемые базы данных и инструменты обработки данных

### 1.2.1. База данных ThermoML

ТhermoML — это стандартизированный формат представления термодинамических данных, разработанный и поддерживаемый Национальным институтом стандартов и технологий США (NIST) [2]. Он предоставляет машиночитаемый способ хранения экспериментальных данных о фазовых равновесиях, плотностях, давлениях, мольных долях, температурах и других свойствах веществ и смесей [1]. В контексте данного проекта база ThermoML используется как основной источник экспериментальных фазовых диаграмм бинарных систем  $CO_2$ —алкан. Стандартизованный формат позволяет извлекать данные программно, без ручной предобработки.

### 1.2.2. **Библиотека ThermoPyL**

ThermoPyL — это свободно распространяемая Python-библиотека, разработанная для автоматического парсинга и обработки данных ThermoML [6]. Она предоставляет удобные функции для извлечения, фильтрации, группировки и конвертации термодинамических данных из XML-файлов в удобные форматы (например, pandas DataFrame), а также предоставляет доступ к информации о фазах, составах, давлениях и других параметрах.

В рамках проекта ThermoPyL использовалась для:

- автоматического чтения XML-файлов ThermoML;
- фильтрации данных по фазе и составу;
- группировки данных по экспериментам;
- подготовки входных данных для модели CP-PC-SAFT.

Использование библиотеки позволило исключить ручную предобработку, сократить количество ошибок и автоматизировать подготовку данных для моделирования.

### 1.3. Описание модели CP-PC-SAFT

Уравнение состояния PC-SAFT используется для моделирования фазовых равновесий многокомпонентных смесей. В классическом подходе параметры веществ подбираются по экспериментальным данным, однако метод CP-PC-SAFT позволяет вычислять их на основе критической точки и температуры кипения, что избавляет от необходимости ручной подгонки.

Для корректного моделирования фазового равновесия в смесях требуются коэффициенты парных взаимодействий  $k_{ij}$ , которые влияют на предсказание растворимости компонентов. В рамках проекта была проведена оптимизация значений  $k_{ij}$  для систем  $\mathrm{CO}_2$  с алканами, что позволило повысить точность расчётов.

#### 1.3.1. Основные положения

СР-PC-SAFT (Critical Point Perturbation Chain SAFT) — это модифицированная версия уравнения состояния PC-SAFT, предназначенная для точного расчёта параметров чистого вещества на основе данных о его критической точке и температуре кипения. В отличие от классического PC-SAFT, где параметры веществ подбираются эмпирически по экспериментальным данным, CP-PC-SAFT позволяет вычислять их, снижая зависимость от ручной подгонки.

### 1.3.2. Уравнение состояния PC-SAFT

Основное уравнение состояния PC-SAFT выражается через вклад свободной энергии Гельмгольца a:

$$a(v,T) = a^{id} + a^{hs} + a^{chain} + a^{disp} + a^{assoc}$$
(1)

Гле:

- $a^{id}$  вклад идеального газа;
- *a*<sup>hs</sup> вклад жёстких сфер;
- $a^{\text{chain}}$  вклад цепных взаимодействий;
- $a^{\text{disp}}$  вклад дисперсионных сил;
- $a^{assoc}$  вклад ассоциативных взаимодействий (учитывает водородные связи).

#### 1.3.3. Параметры веществ

В рамках CP-PC-SAFT каждое вещество описывается тремя основными параметрами:

- m число сегментов в молекуле;
- $\sigma$  эффективный диаметр сегмента молекулы;
- $\varepsilon$  энергия взаимодействия между сегментами.

Эти параметры определяются через критическую точку и температуру кипения вещества, а не через эмпирическую подгонку, что делает модель более универсальной.

### 1.3.4. Критерии параметризации в CP-PC-SAFT

В модели CP-PC-SAFT параметры вещества корректируются так, чтобы соответствовать следующим условиям [8]:

$$\left(\frac{\partial P}{\partial v}\right)_{T_c} = 0, \quad \left(\frac{\partial^2 P}{\partial v^2}\right)_{T_c} = 0 \tag{2}$$

$$P_c = P_{c, exp} \tag{3}$$

$$\rho_{\text{liq, triple}} = \rho_{\text{liq, triple, exp}} \tag{4}$$

Здесь:

- $P_c$  давление в критической точке;
- $T_c$  критическая температура;
- $\rho_{\text{liq, triple}}$  жидкостная плотность в тройной точке.

## 1.3.5. Парное взаимодействие между компонентами смеси

При описании смесей используется коэффициент парного взаимодействия  $k_{ij}$ , который учитывает отклонение от идеального поведения и корректирует дисперсионный параметр:

$$(\varepsilon/k)_{ij} = (1 - k_{ij})\sqrt{(\varepsilon/k)_i(\varepsilon/k)_j}$$
(5)

Оптимизация коэффициента  $k_{ij}$  является ключевой задачей данной работы, поскольку он напрямую влияет на точность предсказания фазового равновесия в смесях алкан– $CO_2$ .

### 1.3.6. Применимость модели CP-PC-SAFT

 ${\sf CP-PC-SAFT}$  широко применяется для моделирования фазовых равновесий в системах углеводородов,  ${\sf CO}_2$  и других полярных компонентов. Данный подход позволяет:

- Уменьшить зависимость модели от эмпирической подгонки;
- Улучшить предсказание фазовых диаграмм за счёт учёта критической точки;
- Использовать универсальные параметры, применимые к широкому классу веществ.

#### 1.3.7. Особенности и область применения

Модель SAFT применяется в:

- расчётах фазовых диаграмм (VLE, LLE, SLE);
- прогнозировании растворимости газов и жидкостей;
- описании поведения полимеров, водородно-связанных систем и смесей высокой сложности.

#### Преимущества:

- физическая интерпретация параметров;
- высокая точность при наличии ассоциации или сложной структуры компонентов;
- применимость к широкому классу веществ.

#### Недостатки:

- необходимость подбора большого количества параметров;
- более высокая вычислительная стоимость по сравнению с кубическими моделями.

### Источники данных:

- Модель SAFT и её модификации реализованы с использованием библиотеки cp\_pc\_saft (Julia). Теоретическая база изложена в фундаментальных публикациях и документации к используемому коду. [10]
- Gross J., Sadowski G. (2001) Уравнение состояния PC-SAFT Эта работа представляет собой фундаментальное исследование, в котором предлагается уравнение состояния PC-SAFT (Perturbed-Chain SAFT). Авторы применили теорию возмущения для моделирования поведения цепных молекул, что позволило существенно повысить точность термодинамических расчетов, особенно для сложных смесей. [3]
- Held C. et al. (2014) Модифицированное уравнение PC-SAFT Авторы предлагают модифицированную версию уравнения состояния PC-SAFT, основанную на данных о критической точке. Это исследование направлено на улучшение предсказательных способностей модели, особенно для сложных многокомпонентных систем. Данная работа играет ключевую роль в моделировании фазового равновесия для углеводородных смесей. [4]

# 1.4. Описание уравнения состояния Брусиловского

#### 1.4.1. Основные положения

Уравнение состояния Брусиловского представляет собой модифицированное кубическое уравнение состояния, применяемое для описания фазовых равновесий в многокомпонентных смесях. Оно является одной из версий уравнений Ван-дер-Ваальсовского типа, адаптированных для инженерных задач, особенно в нефтехимии и переработке углеводородов.

Главная особенность модели заключается в её эмпирической точности при относительно низкой вычислительной стоимости. В отличие от моделей типа SAFT, уравнение Брусиловского не включает явного микроскопического описания структуры молекул, но хорошо справляется с задачами расчета равновесия жидкость—пар в практических условиях.

### 1.4.2. Уравнение состояния

Уравнение Брусиловского использует следующую формулу для давления:

$$P = \frac{RT}{v - b} - \frac{a(T)}{v(v + b)} \tag{6}$$

где:

- *P* давление,
- *T* температура,
- v молярный объем,
- *R* универсальная газовая постоянная,
- a(T), b параметры вещества, зависящие от критических свойств.

Функция a(T) обычно задаётся через температурную зависимость с использованием редуцированных температур и дополнительных эмпирических коэффициентов. Параметры a и b рассчитываются на основе критической температуры, давления и температуры кипения вещества.

### 1.4.3. Особенности и область применения

Модель применяется для:

- расчета фазовых равновесий (VLE vapor-liquid equilibrium);
- оценки растворимости газов в жидкостях;
- моделирования термодинамических свойств смесей углеводородов.

#### Преимущества:

- простота реализации и высокая скорость расчета;
- хорошая согласованность с экспериментальными данными для систем на основе алканов;
- устойчивая работа при умеренных давлениях и температурах.

#### Недостатки:

- отсутствие физической интерпретации параметров;
- снижение точности для сложных полярных соединений и водородно-связанных систем;
- необходимость подбора бинарных коэффициентов для смесей.

#### Источники данных:

Модель реализована и протестирована с использованием библиотеки CubicEoS (Python). Теоретическая база приведена в учебной и справочной литературе по термодинамике углеводородов, например:

- Брусиловский Г. Я., Термодинамика углеводородов и их смесей, М.: Недра, 1987. [13]
- Документация к библиотеке CubicEoS. [7] [11]

### 1.5. Актуальность и новизна

Оптимизация коэффициентов парного взаимодействия  $k_{ij}$  необходима для повышения точности фазового моделирования, особенно для систем углеводородов с  $\mathrm{CO}_2$ , которые широко используются в нефтехимической и газовой промышленности.

В рамках работы были проведены:

- сбор и предварительная обработка экспериментальных данных по фазовым диаграммам из базы ThermoML;
- расчет параметров веществ для CP-PC-SAFT;
- численная оптимизация коэффициента  $k_{ij}$  для улучшения точности прогнозирования фазовых равновесий.

Результаты показали, что использование оптимизированного коэффициента  $k_{ij}$  в CP-PC-SAFT улучшает предсказание давления насыщения и фазового состава, а также позволяет конкурировать с промышленными моделями, такими как уравнение состояния Брусиловского.

## 2. Основная часть

# 2.1. Описание решения задач разработки/исследований

В рамках проекта была проведена параметризация коэффициентов парного взаимодействия  $k_{ij}$  для модели CP-PC-SAFT с целью повышения точности предсказания фазовых равновесий в смесях алкан— $\mathrm{CO}_2$ .

Работа включала несколько этапов:

- Сбор и обработка экспериментальных данных:
  - Были получены фазовые диаграммы углеводородов с  $\mathrm{CO}_2$  из базы данных ThermoML.
  - Данные прошли предварительную фильтрацию и обработку с использованием библиотеки ThermoPyL.
- Расчет параметров веществ:
  - Для каждого компонента смеси были определены параметры модели SAFT (число сегментов m, эффективный диаметр  $\sigma$  и энергия взаимодействия  $\varepsilon$ ).

Таблица 1: Параметры веществ в CP-PC-SAFT

| Вещество | m     | $\varepsilon/k$ | $\sigma$ | δ     | $T_{\rm rp}$ (K) | Молекулярная масса |
|----------|-------|-----------------|----------|-------|------------------|--------------------|
| Гексан   | 3.511 | 218.238         | 3.656    | 1.161 | 178.0            | 86.18              |
| Гептан   | 4.070 | 220.494         | 3.635    | 1.166 | 182.6            | 100.21             |
| Октан    | 4.455 | 225.287         | 3.679    | 1.179 | 216.4            | 114.23             |
| Нонан    | 4.851 | 229.271         | 3.705    | 1.187 | 219.9            | 128.26             |
| Декан    | 5.270 | 232.262         | 3.722    | 1.203 | 243.5            | 142.28             |
| Додекан  | 6.012 | 238.240         | 3.770    | 1.225 | 263.6            | 170.34             |

\_

- Оптимизация коэффициента  $k_{ij}$ :
  - Выполнена численная оптимизация коэффициента парного взаимодействия, обеспечивающая минимальное отклонение расчетных данных от экспериментальных.
- Сравнение с альтернативной моделью:
  - Проведено сопоставление точности СР-РС-SAFT с кубическими уравнениями состояния, в частности, с моделью Брусиловского.
- Оценка точности на тройных системах:
  - Данные для тройных систем не удалось найти в скачанных частях архива ThermoML, поэтому они были вручную собраны из работ [9, 5].
  - Проведен анализ точности предсказания мольных долей в тройной системе  $CO_2$ бутан-декан.
  - Выполнено сравнение точности вычисления точки кипения в тройных системах  $\mathrm{CO}_2$ -гексан-декан и  $\mathrm{CO}_2$ -октан-декан.

# 2.2. Описание полученных результатов

Результаты исследования показали:

- Оптимальные значения коэффициента  $k_{ij}$ :
  - Для нахождения оптимального значения коэффициента парного взаимодействия  $k_{ij}$  была реализована процедура оценки точности модели CP-PC-SAFT на экспериментальных данных.

Для каждого фиксированного значения  $k_{ij}$  рассчитывались мольные доли  $\mathrm{CO}_2$  в жидкой и газовой фазе при различных температурах. Затем вычислялось среднеквадратичное отклонение (MSE) между расчетными и экспериментальными мольными долями по формуле:

$$MSE(k_{ij}, T) = \frac{1}{n} \sum_{i=1}^{n} (x_i^{exp}(T) - x_i^{calc}(T, k_{ij}))^2$$

где:

- \*  $x_i^{\exp}(T)$  экспериментальная мольная доля  $\mathrm{CO}_2$  при температуре T и i-ом давлении,
- \*  $x_i^{\text{calc}}(T, k_{ij})$  расчетная мольная доля по модели CP-PC-SAFT с параметром  $k_{ij}$  при той же температуре и давлении,
- \* n число экспериментальных точек по давлению при данной температуре.

Для получения единственной метрики ошибки на каждом  $k_{ij}$ , еассчитывались MSE в жидкой и газовой фазе отдельно, их сумма усреднялась по всем доступным температурам:

$$Score(k_{ij}) = \frac{1}{T} \sum_{t \in T} \left( MSE_{liq}^{(j)}(k_{ij}, t) + MSE_{vap}^{(j)}(k_{ij}, t) \right)$$

Зависимость  $Score(k_{ij})$  аппроксимировалась с помощью полинома третьей степени, чтобы определить минимум — оптимальное значение коэффициента  $k_{ij}$ .



Рис. 1: Пример нахождения оптимального значения  $k_{ij}$  по минимуму средней ошибки для смеси гептан- $\mathrm{CO}_2$ 

Ниже представлены оптимальные значения  $k_{ij}$ , полученные для бинарных смесей  $\mathrm{CO}_2$  с различными н-алканами:

Таблица 2: Оптимальные значения коэффициента парного взаимодействия  $k_{ij}$  с  $\mathrm{CO}_2$ , а также средние значения лучших коэффициентов по температурам с отклонением

| Вещество | Опт. $k_{ij}$ | Среднее $k_{ij}\pm$ std |
|----------|---------------|-------------------------|
| Гексан   | 0.087         | $0.086 \pm 0.007$       |
| Гептан   | 0.083         | $0.084 \pm 0.006$       |
| Октан    | 0.074         | $0.069 \pm 0.027$       |
| Нонан    | 0.069         | $0.069 \pm 0.010$       |
| Декан    | 0.085         | $0.086 \pm 0.010$       |
| Додекан  | 0.073         | $0.073 \pm 0.009$       |

— Для систем алкан— $\mathrm{CO}_2$  предложены статичные значения  $k_{ij}$ , обеспечивающие хорошее согласование с экспериментальными данными. Использование полученных коэффициентов парного взаимодействия увеличивает точность предсказания мольной доли во всех случаях. В некоторых случаях модель значительно превосходит модель на основе уравнения Брусиловского.



Рис. 2: Сравнение MSE мольной доли углекислого газа, предсказанной моделями Брусиловского и SAFT с оптимальным параметром  $k_{ij}$  и без него для различных систем  $\mathrm{CO}_2$ -алкан.

### • Анализ корреляций:

- Не выявлено устойчивой зависимости коэффициента  $k_{ij}$  от молекулярных параметров компонентов (длины цепи, размеров молекулы, глубины потенциальной ямы).
- Наблюдается слабая корреляция оптимальных значений  $k_{ij}$  с температурой и давлением.

### • Точность модели:

- Использование оптимизированных значений  $k_{ij}$  в CP-PC-SAFT позволило значительно улучшить точность предсказания фазового равновесия по сравнению с базовой версией модели.
- Сравнение с уравнением состояния Брусиловского:
  - В отдельных случаях CP-PC-SAFT с подобранными коэффициентами  $k_{ij}$  показала сопоставимую или лучшую точность предсказаний давления насыщения и состава фаз.
- Оценка точности на тройных системах:
  - В тройной системе  $CO_2$ -бутан-декан точность улучшилась при использовании коэффициента парного взаимодействия  $k_{ij}=0$  между бутаном и  $CO_2$ , поскольку данный случай не был параметризован. В похожем случае для уравнения Пенга-Робинсона [12] упомянуто, что коэффициенты для алканов тяжелее пентана можно считать равными, тогда как для алканов легче коэффициент относительно мал.
  - Для системы  $CO_2$ -декан бутан включение коэффициента  $k_{ij}=0.08$  между  $CO_2$  и деканом привело к минимальным значениям MAE и RMSE, подтверждая правильность подхода.



Рис. 3: График ошибки в предсказании мольной доли бутана в смеси СО<sub>2</sub>-бутан-декан

- В системах  $\mathrm{CO}_2$ -гексан-декан и  $\mathrm{CO}_2$ -октан-декан использование оптимизированных коэффициентов  $k_{ij}$  значительно улучшило точность предсказания давления в точке кипения.
- Для системы  $\mathrm{CO}_2$ -октан-декан модель CP-PC-SAFT с подобранными коэффициентами обеспечила более точные предсказания, чем уравнение состояния Брусиловского.

### 2.3. Выводы

Проведённый анализ и расчет коэффициентов парного взаимодействия  $k_{ij}$  для CP-PC-SAFT позволил улучшить качество предсказания фазового равновесия в смесях алкан— $CO_2$ . Основные выводы исследования:

• Оптимизированные коэффициенты  $k_{ij}$  обеспечивают точность, сопоставимую с промышленными моделями.



Рис. 4: Сравнение точности вычисления давления кипения в тройных системах

- Универсальная зависимость  $k_{ij}$  от параметров компонентов не выявлена, но предложенные значения позволяют значительно улучшить предсказания фазового состава.
- Разработанный подход может быть масштабирован на более сложные системы, включая трёхкомпонентные смеси.

В ходе работы освоен формат базы данных ThermoML и протестирована автоматизированная обработка экспериментальных данных, что открывает возможности дальнейшего применения данного метода в моделировании фазовых равновесий.

# 3. Заключение

# 3.1. Краткие выводы

В рамках проекта проведена параметризация коэффициентов парного взаимодействия  $k_{ij}$  для модели CP-PC-SAFT, что позволило повысить точность предсказания фазовых равновесий в смесях алкан— $CO_2$ .

- Разработан рабочий подход к подбору коэффициентов  $k_{ij}$  на основе экспериментальных фазовых диаграмм.
- Оптимизированы значения  $k_{ij}$  для систем  $\mathrm{CO}_2$  с алканами: гексан, гептан, октан, нонан, декан и додекан.
- Достигнута точность, сопоставимая с промышленными моделями, такими как уравнение состояния Брусиловского.
- Освоен формат базы данных ThermoML и разработан код для автоматизированной загрузки и предобработки экспериментальных данных.
- Разработанная методика позволяет адаптировать подход к другим веществам и типам смесей.

# 3.2. Оценка полноты решений

Проведённая работа позволила добиться существенного улучшения качества моделирования фазовых равновесий, однако остаются нерешённые вопросы:

- Не обнаружена устойчивая зависимость коэффициента  $k_{ij}$  от параметров компонентов (длины цепи, размеров молекулы, глубины потенциальной ямы).
- Зафиксирована слабая корреляция оптимальных значений  $k_{ij}$  с температурой и давлением, но разброс данных не позволил предложить универсальную зависимость, превосходящую по точности использование константного значения  $k_{ij} \approx 0.08$ .
- Проверена обобщающая способность модели на трёхкомпонентных системах, однако метод требует дальнейшего тестирования для расширения применимости.

## 3.3. Рекомендации по использованию

Использование подобранных коэффициентов парного взаимодействия  $k_{ij}$  для CP-PC-SAFT рекомендуется в следующих случаях:

- Предсказание фазового равновесия в смесях углеводородов с CO<sub>2</sub>, где предложенные коэффициенты обеспечивают более точные результаты.
- Расчёт давления насыщения при заданной температуре и составе жидкой фазы, с применением оптимизированных значений  $k_{ij}$ .
- Расширение модели на системы с большим числом компонентов, с последующей корректировкой коэффициентов в зависимости от новых экспериментальных данных.

# 3.4. Технико-экономическая эффективность внедрения

Оптимизация коэффициентов парного взаимодействия  $k_{ij}$  в CP-PC-SAFT имеет ряд пре-имуществ:

- Снижение потребности в трудоёмкой экспериментальной подгонке параметров модели, что сокращает время и затраты на анализ фазовых равновесий.
- Повышение точности предсказаний фазового состава позволяет оптимизировать процессы газоразделения и нефтехимической переработки, что ведёт к снижению расходов на технологические расчёты.
- Разработанный метод является гибким и может быть адаптирован к новым веществам и условиям, что увеличивает его ценность для практического применения.

# 3.5. Оценка научно-технического уровня

- Разработанный подход к параметризации  $k_{ij}$  в CP-PC-SAFT соответствует современным тенденциям моделирования фазовых равновесий и конкурирует с промышленными моделями.
- Достигнутая точность сопоставима с уравнением состояния Брусиловского, что подтверждает эффективность предложенной параметризации.
- Созданная основа для масштабирования метода позволяет применять его для прогнозирования фазового равновесия в более сложных системах.

# Список использованных источников

# Список литературы

- [1] Robert D. Chirico, Michael Frenkel, Vladimir Diky и др. «ThermoML—An XML-based approach for storage and exchange of experimental and critically evaluated thermophysical and thermochemical property data». B: *Journal of Chemical Information and Modeling* 60 (2020), c. 567—580. DOI: 10.1021/je0256450.
- [2] Michael Frenkel, Robert D. Chirico, Vladimir Diky и др. «XML-based IUPAC standard for experimental, predicted, and critically evaluated thermodynamic property data storage and capture (ThermoML)». B: *Journal of Chemical and Engineering Data* 49 (2004), c. 123—135. DOI: 10.1351/pac200678030541.
- [3] Joachim Gross и Gabriele Sadowski. «Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules». B: *Industrial & Engineering Chemistry Research* 40.4 (2001), c. 1244—1260. DOI: 10.1021/IE0003887.
- [4] С. Held и др. «A modified PC-SAFT equation of state based on critical point data». В: *Fluid Phase Equilibria* 375 (2014), с. 187—196. DOI: 10.1016/j.fluid.2014.05.001.
- [5] Narayana Nagarajan, Khaied A. M. Gasem и Jr. Robert L. Robinson. «Equilibrium Phase Compositions, Phase Densities, and Interfacial Tensions for CO□ + Hydrocarbon Systems. 6. CO□ + n-Butane + n-Decane». B: *Journal of Chemical and Engineering Data* 35.3 (1990). DOI: 10.1021/je00061a002.
- [6] R. C. Picard и др. *ThermoPyL: A Python library for automated analysis of ThermoML archives*. 2015. URL: https://github.com/choderalab/thermopyl.
- [7] Vasily Pisarev. CubicEoS.jl: Extensible, Open-Source Isothermal Phase Equilibrium Calculations. 2025. URL: https://github.com/vvpisarev/CubicEoS.jl.
- [8] Ilya Polishuk. «Standardized critical point-based numerical solution of statistical association fluid theory parameters: the perturbed chain-statistical association fluid theory equation of state revisited». B: *Industrial & Engineering Chemistry Research* 53.36 (2014), c. 14127—14141.
- [9] Carmen Sánchez-García и др. «Vapor-Liquid Equilibrium Measurements for the Ternary Systems of CO□ + n-Hexane + n-Decane and CO□ + n-Octane + n-Decane». B: *Journal of Chemical & Engineering Data* (2023). DOI: 10.1021/acs.jced.3c00712.
- [10] Stepan Zakharov. cp\_pc\_saft: Julia Library for SAFT Equations of State. 2024. URL: https://github.com/zmeri/PC-SAFT.
- [11] Stepan Zakharov и Vasily Pisarev. «CubicEoS.jl: Extensible, Open-Source Isothermal Phase Equilibrium Calculations for Fluids». B: *Russian Supercomputing Days*. Springer, 2024. DOI: 10.1007/978-3-031-49432-1 5.
- [12] А.И. Брусиловский. Фазовые превращения при разработке месторождений нефти и газа. Грааль, Москва, 2002. ISBN: 5-94688-031-4.
- [13] Г. Я. Брусиловский. Термодинамика углеводородов и их смесей. Недра, Москва, 1987.