Math 217 Worksheet 5: Linear transformations and geometry (§2.2)

Definition: A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is a map (a.k.a. mapping or function) such that for all vectors \vec{x} and \vec{y} in the source \mathbb{R}^m and all scalars $c \in \mathbb{R}$, both

$$T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$$
 and $T(a\vec{x}) = aT(\vec{x})$.

Key Theorem. Given a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$, let A be the matrix whose j-th column is $T(\vec{e}_i)$. Then for all $\vec{x} \in \mathbb{R}^n$, we have $T(\vec{x}) = A\vec{x}$.

The matrix A is called the **standard matrix of** T.

Problem 1. Warmup: Finding the standard matrix. Assuming each of the given maps $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation, use the Key Theorem to find a matrix A such that $T\vec{x} = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^2$.

- (a) T is dilation by a factor of three, sending each vector \vec{v} to $3\vec{v}$.
- (b) T is rotation in the clockwise direction by 90° (fixing the origin).
- (c) T is reflection over the line y = x.
- (d) T is projection to the x-axis taking each $\begin{bmatrix} x \\ y \end{bmatrix}$ to $\begin{bmatrix} x \\ 0 \end{bmatrix}$.

Solution: The four matrices, in order are
$$\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$
, $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, and $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

Problem 2. Rotations. For each $\theta \in \mathbb{R}$, let $\text{Rot}_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ be counter-clockwise rotation about the origin through an angle of θ (measured in radians).

- (a) Give an intuitive geometric argument that Rot_{θ} is linear. [Draw some pictures, reasoning physics/Math 215 style with arrows representing vectors, but do not write any equations or try to write out a formal proof.]
- (b) Draw and label a sketch showing where Rot_{θ} sends the vectors \vec{e}_1 and \vec{e}_2 .
- (c) Use the Key Theorem and some trigonometry to find the standard matrix A_{θ} of Rot_{θ} .

 [Hint: Your answer will involve sine and cosine of θ . Do not just repeat a memorized formula from the book.]
- (d) Given a pair of rotations $\operatorname{Rot}_{\theta}$ and $\operatorname{Rot}_{\phi}$, what sort of transformation (geometrically speaking) is the composite transformation $\operatorname{Rot}_{\phi} \circ \operatorname{Rot}_{\theta}$? In general, are $\operatorname{Rot}_{\phi} \circ \operatorname{Rot}_{\theta}$ and $\operatorname{Rot}_{\theta} \circ \operatorname{Rot}_{\phi}$ equal, or different?
- (e) Can you think of two different ways to compute $(\text{Rot}_{\phi} \circ \text{Rot}_{\theta})(\vec{x})$ using matrix-vector products?

Solution: For (c), the first column of R_{θ} is $R_{\theta}(\vec{e}_1)$, which is $\begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$ (by the Key Theorem) and the second is $R_{\theta}(\vec{e}_2) = \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$. So $A_{\theta} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$.

For (d), note that Rot_{θ} and Rot_{ϕ} are rotations, then $Rot_{\phi} \circ Rot_{\theta}$ is also a rotation, namely

$$Rot_{\phi} \circ Rot_{\theta} = Rot_{\phi+\theta}$$
.

Since addition is commutative, it follows that $\operatorname{Rot}_{\phi} \circ \operatorname{Rot}_{\theta} = \operatorname{Rot}_{\theta} \circ \operatorname{Rot}_{\phi}$. For (e), $\operatorname{Rot}_{\phi} \circ \operatorname{Rot}_{\theta}(\vec{x}) = A_{\phi}(A_{\theta}\vec{x})$ but it is also $A_{\phi+\theta}\vec{x}$.

Problem 3: Orthogonal projections. Let L be a line through the origin in \mathbb{R}^2 . Consider the mapping

 $\mathbb{R}^2 \xrightarrow{\pi_L} \mathbb{R}^2$ $\vec{x} \mapsto$ "the projection of \vec{x} onto L."

- (a) Draw a sketch to illustrate π_L . Write a formula for $\pi_L(\vec{x})$ using dot product and a unit vector \vec{u} in the direction of L. [You may assume basic facts about dot product.]
- (b) The textbook writes \vec{x}^{\parallel} for $\pi_L(\vec{x})$. Why? It also writes $\vec{x} = \vec{x}^{\parallel} + \vec{x}^{\perp}$. Draw a picture to explain what this means.
- (c) Using the definition of linear transformation, prove that π_L is a linear transformation. [You may assume basic facts about dot product.]
- (d) Remember that every linear transformation $\mathbb{R}^2 \to \mathbb{R}^2$ can be described by matrix multiplication. Find the matrix of π_L in terms of $\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$, a unit vector parallel to L. Confirm, in the special case where L is the x-axis, that your answer matches the formula in Problem 1(d).
- (e*) Find the matrix for the projection onto line of slope m though $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Solution: For (a), we have $\pi_L(\vec{x}) = (\vec{x} \cdot \vec{u})\vec{u}$. For (b), the notation $\vec{x}^{||}$ means "component of \vec{x} parallel to L" and \vec{x}^{\perp} is the component of \vec{x} perpendicular to \vec{x} .

For (c), we need to check both linearity conditions. Let \vec{x} and \vec{y} be arbitrary vectors in \mathbb{R}^2 and $c \in \mathbb{R}$ an arbitrary scalar. We have

1.
$$\pi_L(\vec{x} + \vec{y}) = [(\vec{x} + \vec{y}) \cdot \vec{u}]\vec{u} = (\vec{x} \cdot \vec{u})\vec{u} + (\vec{y} \cdot \vec{u})\vec{u} = \pi_L(\vec{x}) + \pi_L(\vec{y});$$
 and

2.
$$\pi_L(c\vec{x}) = (c\vec{x} \cdot \vec{u})\vec{u} = c(\vec{x} \cdot \vec{u})\vec{u} = c\pi_L(\vec{x}).$$

So π_L is linear.

For (d), we use the Key Theorem. We need to compute $\pi_L(\vec{e}_1)$ and $\pi_L(\vec{e}_2)$. Using the formula from (a), these are $u_1\vec{u}$ and $u_2\vec{u}$, respectively, so the matrix is $\begin{bmatrix} u_1^2 & u_1u_2 \\ u_1u_2 & u_2^2 \end{bmatrix}$. When L

is the x-axis, we can take $\vec{u} = \vec{e}_1$, and we get $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

For (e), we compute that $\vec{u} = \frac{1}{\sqrt{m^2+1}} \begin{bmatrix} 1 \\ m \end{bmatrix}$. So the matrix is $\begin{bmatrix} \frac{1}{m^2+1} & \frac{m}{m^2+1} \\ \frac{m}{m^2+1} & \frac{m^2}{m^2+1} \end{bmatrix}$.

Problem 4. Reflection. Let L be a line through the origin in \mathbb{R}^2 . Consider the mapping

$$\mathbb{R}^2 \xrightarrow{\rho_L} \mathbb{R}^2 \quad \vec{x} \mapsto \text{"the reflection of } \vec{x} \text{ over } L.$$
"

- (a) Draw a picture illustrating $\rho_L(\vec{x})$. Include vectors $\vec{x}, \vec{x}^{||}, \vec{x}^{\perp}$, as well as the line L.
- (b) Write down a formula for ρ_L using the dot product and a unit vector \vec{u} in the direction of L.
- (c) Prove that ρ_L is linear.
- (d) Find the matrix of ρ_L .
- (e*) Write the matrix for the linear transformation "reflection over the line through the origin of slope m." Does your formula give the correct answer when m = 0? Why?

Solution: For (b), if you draw the picture, you see that $\rho_L(\vec{x}) = \vec{x}^{||} - \vec{x}^{\perp}$. From above, this is

$$\rho_L(\vec{x}) = (\vec{x} \cdot \vec{u})\vec{u} - (\vec{x} - (\vec{x} \cdot \vec{u})\vec{u})$$
$$= 2(\vec{x} \cdot \vec{u})\vec{u} - \vec{x}$$

For (c), we check both linearity conditions.

1.
$$\rho_L(\vec{x} + \vec{y}) = 2[(\vec{x} + \vec{y}) \cdot \vec{u}]\vec{u} - (\vec{x} + \vec{y}) = 2(\vec{x} \cdot \vec{u})\vec{u} - \vec{x} + 2(\vec{y} \cdot \vec{u})\vec{u} - \vec{y} = \rho_L(\vec{x}) + \rho_L(\vec{y});$$

2.
$$\rho_L(c\vec{x}) = (c\vec{x} \cdot \vec{u})\vec{u} - c\vec{x} = c[(\vec{x} \cdot \vec{u})\vec{u} - \vec{x}] = c\rho_L(\vec{x}).$$

For (d), we use the Key Theorem, plugging in $\rho_L(\vec{e}_1) = 2(\vec{e}_1 \cdot \vec{u})\vec{u} - \vec{e}_1 = \begin{vmatrix} 2u_1^2 - 1\\ 2u_1u_2 \end{vmatrix}$ and

$$\rho_L(\vec{e}_2) = 2(\vec{e}_2 \cdot \vec{u})\vec{u} - \vec{e}_2 = \begin{bmatrix} 2u_1u_2 \\ 2u_2^2 - 1 \end{bmatrix}, \text{ we see the matrix of } \rho_L \text{ is } \begin{bmatrix} 2u_1^2 - 1 & 2u_1u_2 \\ 2u_1u_2 & 2u_2^2 - 1 \end{bmatrix}.$$

$$\rho_L(\vec{e}_2) = 2(\vec{e}_2 \cdot \vec{u})\vec{u} - \vec{e}_2 = \begin{bmatrix} 2u_1u_2 \\ 2u_2^2 - 1 \end{bmatrix}, \text{ we see the matrix of } \rho_L \text{ is } \begin{bmatrix} 2u_1^2 - 1 & 2u_1u_2 \\ 2u_1u_2 & 2u_2^2 - 1 \end{bmatrix}.$$
For (e), we substitute $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{m^2+1}} \\ \frac{m}{\sqrt{1+m^2}} \end{bmatrix}$. We get $\begin{bmatrix} \frac{2}{m^2+1} - 1 & \frac{2m}{m^2+1} \\ \frac{2m}{m^2+1} & \frac{2m^2}{m^2+1} - 1 \end{bmatrix}$. This can be

simplified. When m = 0, it is $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, which indeed is the matrix of reflection over the x axis.

Rotations, projections, and reflections are important examples of linear transformations: they respect vector addition and scalar multiplication. This is true also in higher dimension. Like any linear transformation $\mathbb{R}^n \to \mathbb{R}^m$, you can describe these geometric transformations by matrix multiplication. Be sure you know how to find the matrix of given linear transformation.

Problem 5. Geometric meaning of Determinant. Let Q be the unit square in \mathbb{R}^2 , that is $Q = \{c_1\vec{e}_1 + c_2\vec{e}_2 \mid 0 \le c_i \le 1\}$. In this problem, we consider what happens to Q under a linear transformation $\mathbb{R}^2 \xrightarrow{T} \mathbb{R}^2$.

- (a) Sketch \vec{e}_1 , \vec{e}_2 and Q, which we will view in the source \mathbb{R}^2 .
- (b) Let $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation which stretches each vector by 2 in the horizontal direction and by 3 in the vertical direction. Find the matrix A such that $T_1 = T_A$.
- (c) Describe $T_1(Q)$ in set-builder notation, and sketch the image of Q under T_1 in the target \mathbb{R}^2 .

- (d) Compute the area of $T_1(Q)$, comparing to the determinant of the matrix A.
- (e) Now repeat (c) and (d) for the linear transformation $T_2 = T_B$ where $B = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$.
- (f) Repeat (b), (c) and (d) for projection T_3 onto the x-axis (See Problem 1 (d)).
- (g) Let A be any 2×2 matrix. What kind of shape can $T_A(Q)$ be? Conjecture a formula for the area of T(Q)? We will prove your conjecture in Chapter 6 (if it's correct).

Solution: For (b),
$$T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} 2x \\ 3y \end{bmatrix}$$
 so $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$.

For (c), The image T(Q) is a rectangle of height 3 and width 2, squared up against the x and y axis in the first quadrant. In set builder notation, $T(Q) = \{\{c_1T(\vec{e}_1) + c_2T(\vec{e}_2) \mid 0 \le c_i \le c_i \le c_i\}$

$$1\} = \{\{c_1(\begin{bmatrix} 2\\0 \end{bmatrix}) + c_2 \begin{bmatrix} 0\\3 \end{bmatrix} \mid 0 \le c_i \le 1\} \text{ or alternatively, } T(Q) = \{\begin{bmatrix} 2c_1\\3c_2 \end{bmatrix} \mid 0 \le c_i \le 1\}.$$
 For (d), the area of $T(Q)$ is 6, same as the determinant of A .

For (e), the unit square is stretched and pulled into a parallelogram with vertices $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$,

 $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, and $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$. Its area is 4, same as the determinant of the matrix.

In (f), the unit square is squashed onto a line segment whose endpoints are $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

The "area" of the line segment is zero, same as the determinant of the matrix!

Conjecture: A linear map $T: \mathbb{R}^2 \to \mathbb{R}^2$ takes the unit square to a parallelogram (possibly degenerated to a segment) of area |detA|, where A is the matrix of T. This is in fact a theorem, and it will work in higher dimension too (suitably generalized). You will eventually be able to prove this.