Динамическое программирование

С. Лагутин 🖸

2018 год

Содержание

1.	Динамическое программирование	3
2.	Виды задач динамического программирования	4
3.	Стандартные задачи динамического программирования	5
	3.1. Числа Фибоначчи	5
	3.9 Saliana o nioksake	E

1. Динамическое программирование

Динамическое программирование — способ решения сложных задач путём разбиения на простые подзадачи.

Чтобы успешно решить задачу методом динамического программирования в общем случае нужно продумать пять пунктов:

- 1. Что храниться в качестве значения динамики и какие параметры однозначно определяют её состояние;
- 2. Начальные значения динамики;
- 3. Зависимости между состояниями формула пересчёта значений динамики;
- 4. Порядок пересчёта;
- 5. Как вычисляется итоговый ответ это могут быть какие-то значения посчитанной динамики или функция, использующая их.

Существует три основных порядка пересчёта:

- 1. Прямой порядок состояние динамики пересчитывается из уже посчитанных;
- 2. Обратный порядок из текущего состояния динамики обновляются зависящие от него;
- 3. «Ленивая динамика» состояние пересчитывается рекурсивно с запоминанием значений динамики.

2. Виды задач динамического программирования

Задачи динамического программирования можно условно разделить по параметрам, которые требуются для определения значения динамики на следующие категории:

- Одномерная динамика;
- Многомерная динамика;
- Динамика по последовательностям;
- Динамика по подстрокам;
- Динамика по поддеревьям;
- Динамика по подмножествам;
- Динамика по профилю (прямому и изломанному).

3. Стандартные задачи динамического программирования

- Числа Фибоначчи;
- Задача о рюкзаке;
- Поиск наибольшей общей подпоследовательности двух последовательностей;
- Поиск наибольшей возрастающей подпоследовательности;
- Кратчайший путь во взвешенном графе между двумя заданными вершинами (алгоритм Форда-Беллмана);
- Задача о коммивояжере динамика по подмножествам;
- Максимальное независимое множество в дереве;
- Задача о замощении динамика по профилю.

3.1. Числа Фибоначчи

Вычисление *п*-ого числа Фибоначчи.

- 1. F_k значение k-ого числа Фибоначчи;
- 2. Начальные значения: $F_1 = F_2 = 1$;
- 3. Формула пересчёта: $F_k = F_{k-1} + F_{k-2};$
- 4. Порядок пересчёта прямой;
- 5. Ответ: F_n .

3.2. Задача о рюкзаке

Имеется N предметов, i-й предмет имеет массу $w_i > 0$ и стоимость $p_i > 0$. Необходимо выбрать из этих предметов набор, имеющий суммарную массу не больше W (вместимость рюкзака), и при этом максимальную суммарную стоимость. В общем случае задача является NP-трудной. В данном варианте предполагается, что все $W, w_i, p_i \in \mathbb{N}$.

- 1. d[k,t] максимальная стоимость из k первых предметов, которые имеют суммарную массу не больше w;
- 2. Начальные значения:
 - $d[0,t] = 0, \forall t \in [0,W]$ не берём ни одного предмета;
 - $d[k,0] = 0, \forall k \in [0,N]$ ни один предмет не поместится в рюкзак, вместимостью 0;

3. Пересчёт:

возможно две ситуации — либо берём k предмет, либо нет. Если не берём, то в рюкзаке будут предметы с номерами не больше k-1. Если предмет с номером k взять, то суммарная масса оставшихся предметов не превышает $t-w_k$, а общая стоимость увеличится на p_k . Необходимо выбрать максимальный из этих вариантов:

$$d[k,t] := \max(d[k-1,t], d[k-1,t-w_k] + p_k)$$

- 4. Порядок пересчёта: внешний цикл $k=1,\dots,N;$ внутренний цикл $t=0,\dots,W;$
- 5. Ответ: d[N, W].