MCP 743 Introductory Python Programming for Bioscientists

Instructor: Dan Isom, Ph.D.

my personal coding story

my mission

motivations for learning Python

setting expectations

justification

ground rules for class

there are no bad questions, so ask away

foster an open, respectful, and collaborative environment

I encourage collaboration both inside and outside of the classroom

all assignments can be done collaboratively, but each individual must produce a unique end-product/contribution to their GitHub branch

ground rules

poking fun

competition

isolationism

copying code

you will evaluate each other's code

what will not be tolerated

I will ask for help: teaching is the best way to learn

when you get stuck and need help...

current syllabus

Is your Python environment working?

there may be multiple versions of Python on your computer

there may be multiple versions of Python on your computer

my Mac as of this morning:

my default Python from macPorts

```
Dans-iMac:/ danisom$ python

Python 2.7.11 (default, Mar 1 2016, 18:40:10)

[GCC 4.2.1 Compatible Apple LLVM 7.0.2 (clang-700.1.81)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>
```

Apple's latest Python (2.7)

```
Dans-iMac:/ danisom$ /usr/bin/python2.7

Python 2.7.10 (default, Jul 30 2016, 19:40:32)

[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.34)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>
```

Apple's additional Python (2.6)

```
Dans-iMac:/ danisom$ /usr/bin/python2.6 Python 2.6.9 (unknown, Jul 30 2016, 19:40:24)

[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.34)] on darwin Type "help", "copyright", "credits" or "license" for more information.
```

how to identify which Python you are using by default

list the Python binaries on my computer

```
Dans-iMac:/ danisom$ which -a python
/opt/local/bin/python
/usr/bin/python
```

list the default Python binary

Dans-iMac:~ danisom\$ which python
/opt/local/bin/python

Python 3 vs. 2

most code is written in Python 2 (inertia)

the internet is dominated by Python 2

the print function as an example:

Python 3: print("I wish Dan would where a white t-shirt") Python 2: print "Black t-shirts are a substitute for exercise"

throughout the class,

I will try to point out where there are key differences

verify that your **Python** works using our **GitHub** repository

- 1. sign up for a GitHub account
- 2. download and install GitHub for desktop
- 3. goto the UniversityOfMiamiCodingCommunity repository (repo)
- 4. goto the MCP-743-Class1 repo
- 5. clone the master branch
- 6. online, select the link to the helloWorld.py file
- 7. online, create a new branch for the helloWorld.py file (name it something like "Custom-hello-world-for-*YourFirstName*"
- 8. online, view the helloWorld.py file in GitHub desktop
- 9. Run the Python program from your terminal
- 10. Edit the helloWorld.py file to include something new to print
- 11. Name and commit the change as a new version of helloWorld.py
- 12. Sync Github desktop with your online account

Why GitHub? it essentially serves as a computational lab notebook

careful version control

Responsible Research Conduct

promotes transparency in data science

community-based contributions and enforcement

makes your code available to the scientific community

potentially useful when job hunting

why GitHub?

overview of some Python types

#comments are not data types but are important

brief review: creating and assigning variables

examples

```
>>> anIntegerVariable = 1
>>> aFloatVariable = 100.0
>>> aStringVariable = "you're pathological"
>>> aListVariable = [1, 2, 3, 4, 5, 6]
>>> aListVariable = [1, 2, 3, 4, 5, 6]
>>> aTupleVariable= (1, 2, 3, 4, 5, 6)
>>> aDictionaryVariable = {"donald":1, "trump":2, "huge":3, "disaster":4, "wall":5}
```

go beyond your book: Python standard library

go beyond your book: Python tutorial

https://docs.python.org/3.3/tutorial/introduction.html

Python built-in functions

		Built-in Functions		
abs()	dict()	help()	min()	setattr()
all()	dir()	hex()	next()	slice()
any()	divmod()	id()	object()	sorted()
ascii()	enumerate()	input()	oct()	staticmethod()
bin()	eval()	int()	open()	str()
bool()	exec()	isinstance()	ord()	sum()
bytearray()	filter()	issubclass()	pow()	super()
bytes()	float()	iter()	print()	tuple()
callable()	format()	len()	property()	type()
chr()	frozenset()	list()	range()	vars()
<pre>classmethod()</pre>	getattr()	locals()	repr()	zip()
compile()	globals()	map()	reversed()	import()
complex()	hasattr()	max()	round()	
delattr()	hash()	memoryview()	set()	

Python keywords (avoid as variable names)

FALSE	class	finally	is	return
None	continue	for	lambda	try
TRUE	def	from	nonlocal	while
and	del	global	not	with
as	elif	if	or	yield
assert	else	import	pass	
break	except	in	raise	

numbers

https://docs.python.org/3.3/tutorial/introduction.html#numbers

numbers Python 3 vs. 2

In Python 3
$$3 / 2 = 1.5$$

In Python 2
$$3/2 = 1$$

To get equivalent result in Python 2, at least one number must be a float. 3.0 / 2 = 1.5

strings

https://docs.python.org/3.3/tutorial/introduction.html#strings

now I shall riff...

escape characters

Backslash notation	Hexadecimal character	Description
\a	0x07	Bell or alert
\b	0x08	Backspace
\cx		Control-x
\C-x		Control-x
\e	0x1b	Escape
\f	0x0c	Formfeed
\M-\C-x		Meta-Control-x
\n	0x0a	Newline
\nnn		Octal notation, where n is in the range 0.7
\r	0x0d	Carriage return
\s	0x20	Space
\t	0x09	Tab
\v	0x0b	Vertical tab
\x		Character x
\xnn		Hexadecimal notation, where n is in the range 0.9, a.f, or A.F

all you really need to know

preparation for Class 2

· Class 2

Assignment

- Read Chapters 3 & 4
- Write 3 Programs
 - program1.py
 - In a single .py file submit 2 equations of your choice to GitHub
 - See my example on GitHub (pv=nRT)
 - program2.py
 - Create a list of integers
 - Loop over that list of integers
 - Print each integer
 - program3.py
 - Create a list of integers
 - Loop over the list of integers
 - Sum the integers and print the summed result

Topics

- Lists
- For Loops
- Tuples