Computational Temporal Logic CTL

- a branching-time logic; it models time as a tree-like structure
- formulas can be used to reason about many paths at once
- atoms (such as p, q, r. . .) for facts like:
 - 'printer Q5 is busy,'
 - 'process 3259 is suspended,'

• syntax:

$$\phi ::= \top \mid \bot \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi)$$

$$|AX \phi \mid EX \phi \mid AG \phi \mid EG \phi \mid AF \phi \mid EF \phi | [A[\phi \cup \phi] \mid E[\phi \cup \phi]]$$

temporal connectives:

AX p	along All paths, p is true in the neXt state
EXp	there Exists one path along which p is true in the neXt state
AG p	along All paths, p is true Globally in the future
EG p	there Exists one path along which p is true Globally in the future
AF p	along All paths, p is true Finally, sometime in the future
EFp	there \underline{E} xists one path along which p is true \underline{F} inally, sometime in the future
A[p U q]	along All paths, p is true Until q is true
E[p U q]	there Exists one path along which p is true Until q is true

Computational Temporal Logic

binding priorities:

¬, AX, EX, AG, EG, and AF, EF bind most tightly, next come \land and \lor , and then \rightarrow , AU and EU

Example WFFs

$$AG(q \rightarrow EG r)$$
 not the same as $AG q \rightarrow EG r$

EF E[r U q]

A[p U EF r]

EF EG $p \rightarrow AF r$ not the same as EF (EG $p \rightarrow AF r$) or EF EG ($p \rightarrow AF r$)

A[p U A[q U r]]

Not WFFs

EF Gr since G can occur only when paired with an A or an E

 $A \neg G \neg p$ since G can occur only when paired with an A or an E

F[r U q] since U can occur only when paired with an A or an E

EF (r U q) since U can occur only when paired with an A or an E

The parse tree for $A[AX \neg p \ U \ E[EX (p \land q) \ U \ \neg p]]$

A **subformula** of a CTL formula ϕ is any formula ψ whose parse tree is a subtree of ϕ 's parse tree.

CTL Semantics

CTL formulas are interpreted over models called transition systems.

Let $M = (S, \rightarrow, L)$ be such a model, $S \in S$ and ϕ a CTL formula.

The definition of whether M, $s \models \phi$ holds is recursive on the structure of ϕ , and can be roughly understood as follows:

- The idea of temporal logic is that a formula is not statically true or false in a model, as it is in propositional and predicate logic.
- Instead, the models of temporal logic contain several states and a formula can be true in some states and false in others.
- Thus, the static notion of truth is replaced by a dynamic one, in which the <u>formulas may change their truth values as the system</u> evolves from state to state.

CTL Semantics

The systems we analyze and verify with CTL are modeled as **transition systems**.

Definition 3.15

A transition system $M = (S, \rightarrow, L)$ is:

- 1. a set of **states** *S*,
- 2. a **transition relation** →, (a binary relation on S)

such that every $s \in S$ has some $s' \in S$ with $s \rightarrow s'$

3. a labeling function $L: S \to \mathcal{P}(atoms)$

L(s) contains all atoms which are true in state s.

the power set of atoms, for example, the power set of $\{p,q\}$ is $\{\emptyset,\{p\},\{q\},\{p,q\}\}$

Example

$$S: \{s_0, s_1, s_2\}$$

R:
$$s_0 \rightarrow s_1$$
, $s_0 \rightarrow s_2$, $s_1 \rightarrow s_0$, $s_1 \rightarrow s_2$ and $s_2 \rightarrow s_2$
 $R(s_0, s_1)$, $R(s_0, s_2)$, $R(s_1, s_0)$, $R(s_1, s_2)$, $R(s_2, s_2)$

L:
$$L(s_0) = \{p, q\}, L(s_1) = \{q, r\} \text{ and } L(s_2) = \{r\}$$

CTL Semantics

It is useful to visualize all possible execution paths from a given state s by unwinding the transition system to obtain an infinite computation tree.

Definition 3.15 Let $\mathcal{M} = (S, \to, L)$ be a model for CTL, s in S, ϕ a CTL formula. The relation $\mathcal{M}, s \vDash \phi$ is defined by structural induction on ϕ :

- 1. $\mathcal{M}, s \vDash \top$ and $\mathcal{M}, s \not\vDash \bot$
- 2. $\mathcal{M}, s \vDash p \text{ iff } p \in L(s)$
- 3. $\mathcal{M}, s \vDash \neg \phi \text{ iff } \mathcal{M}, s \not\vDash \phi$
- 4. $\mathcal{M}, s \vDash \phi_1 \land \phi_2 \text{ iff } \mathcal{M}, s \vDash \phi_1 \text{ and } \mathcal{M}, s \vDash \phi_2$
- 5. $\mathcal{M}, s \vDash \phi_1 \lor \phi_2 \text{ iff } \mathcal{M}, s \vDash \phi_1 \text{ or } \mathcal{M}, s \vDash \phi_2$
- 6. $\mathcal{M}, s \vDash \phi_1 \rightarrow \phi_2 \text{ iff } \mathcal{M}, s \not\vDash \phi_1 \text{ or } \mathcal{M}, s \vDash \phi_2.$
- 7. $\mathcal{M}, s \models AX \phi$ iff for all s_1 such that $s \to s_1$ we have $\mathcal{M}, s_1 \models \phi$. Thus, AX says: 'in every next state.'
- 8. $\mathcal{M}, s \models \operatorname{EX} \phi$ iff for some s_1 such that $s \to s_1$ we have $\mathcal{M}, s_1 \models \phi$. Thus, EX says: 'in some next state.' E is dual to A in exactly the same way that \exists is dual to \forall in predicate logic.
- 9. $\mathcal{M}, s \vDash AG \phi$ holds iff for all paths $s_1 \to s_2 \to s_3 \to \ldots$, where s_1 equals s_1 , and all s_i along the path, we have $\mathcal{M}, s_i \vDash \phi$. Mnemonically: for All computation paths beginning in s the property ϕ holds Globally. Note that 'along the path' includes the path's initial state s.
- 10. $\mathcal{M}, s \models \text{EG } \phi$ holds iff there is a path $s_1 \to s_2 \to s_3 \to \ldots$, where s_1 equals s_1 and for all s_i along the path, we have $\mathcal{M}, s_i \models \phi$. Mnemonically: there Exists a path beginning in s such that ϕ holds Globally along the path.

- 11. $\mathcal{M}, s \vDash AF \phi$ holds iff for all paths $s_1 \to s_2 \to \ldots$, where s_1 equals s, there is some s_i such that $\mathcal{M}, s_i \vDash \phi$. Mnemonically: for All computation paths beginning in s there will be some Future state where ϕ holds.
- 12. $\mathcal{M}, s \vDash \text{EF } \phi$ holds iff there is a path $s_1 \to s_2 \to s_3 \to \ldots$, where s_1 equals s_1 and for some s_i along the path, we have $\mathcal{M}, s_i \vDash \phi$. Mnemonically: there Exists a computation path beginning in s such that ϕ holds in some Future state;
- 13. $\mathcal{M}, s \vDash A[\phi_1 \cup \phi_2]$ holds iff for all paths $s_1 \to s_2 \to s_3 \to \ldots$, where s_1 equals s, that path satisfies $\phi_1 \cup \phi_2$, i.e., there is some s_i along the path, such that $\mathcal{M}, s_i \vDash \phi_2$, and, for each j < i, we have $\mathcal{M}, s_j \vDash \phi_1$. Mnemonically: All computation paths beginning in s satisfy that $\phi_1 \cup \phi_2 = 0$ holds on it.
- 14. $\mathcal{M}, s \models \mathrm{E}[\phi_1 \cup \phi_2]$ holds iff there is a path $s_1 \to s_2 \to s_3 \to \ldots$, where s_1 equals s, and that path satisfies $\phi_1 \cup \phi_2$ as specified in 13. Mnemonically: there Exists a computation path beginning in s such that ϕ_1 Until ϕ_2 holds on it.

If p is true everywhere there is a filled circle then M, $s \models \phi$ if ϕ is AG p

If p is true everywhere there is a filled circle then M, $S \models \phi$

if ϕ is...

If p is true everywhere there is a filled circle then M, $S \models \phi$ if ϕ is AF p

If p is true everywhere there is a filled circle then \bowtie , $s \models \phi$

if ϕ is...

If p is true everywhere there is a filled circle then $M, s \models \phi$

if ϕ is AX p

If p is true everywhere there is a filled circle then $M, S \models \phi$

if ϕ is...

If p is true everywhere there is a filled circle then \bowtie , $s \models \phi$

if ϕ is EG p

If p is true everywhere there is a filled circle then $M, S \models \phi$ if ϕ is... S

If p is true everywhere there is a filled circle then M, $s \models \phi$ if ϕ is EF p

If p is true everywhere there is a filled circle then $M, s \models \phi$ if ϕ is... s

If p is true everywhere there is a filled circle then $M, s \models \phi$ if ϕ is EX p s

if *φ* is...

if ϕ is $A[p \cup q]$

if ϕ is...

if ϕ is E[p U q]

Let's look at some example checks for this system:

- 1. $\mathcal{M}, s_0 \vDash p \land q$ holds since the atomic symbols p and q are contained in the node of s_0 .
- 2. $\mathcal{M}, s_0 \vDash \neg r$ holds since the atomic symbol r is not contained in node s_0 .

- 3. $\mathcal{M}, s_0 \vDash \top$ holds by definition.
- 4. $\mathcal{M}, s_0 \models \mathrm{EX}\ (q \land r)$
- 5. $\mathcal{M}, s_0 \vDash \neg AX \ (q \land r)$
- 6. $\mathcal{M}, s_0 \vDash \neg \mathrm{EF}(p \wedge r)$

7.
$$\mathcal{M}, s_2 \vDash \operatorname{EG} r$$

- 8. $\mathcal{M}, s_0 \models AFr$
- 9. $\mathcal{M}, s_0 \models \mathrm{E}[(p \land q) \ \mathrm{U} \ r]$
- 10. $\mathcal{M}, s_0 \vDash A[p \cup r]$
- 11. $\mathcal{M}, s_0 \vDash AG \ (p \lor q \lor r \to EF \ EG \ r)$

- 3. $\mathcal{M}, s_0 \vDash \top$ holds by definition.
- 4. $\mathcal{M}, s_0 \models \text{EX } (q \land r)$ holds since we have the leftmost computation path $s_0 \rightarrow s_1 \rightarrow s_0 \rightarrow s_1 \rightarrow \ldots$ in Figure 3.5, whose second node s_1 contains q and r.
- 5. $\mathcal{M}, s_0 \vDash \neg AX \ (q \land r)$ holds since we have the rightmost computation path $s_0 \rightarrow s_2 \rightarrow s_2 \rightarrow s_2 \rightarrow \ldots$ in Figure 3.5, whose second node s_2 only contains r, but not q.
- 6. $\mathcal{M}, s_0 \vDash \neg \text{EF}(p \land r)$ holds since there is no computation path beginning in s_0 such that we could reach a state where $p \land r$ would hold. This is so because there is simply no state whatsoever in this system where p and r hold at the same time.
- 7. $\mathcal{M}, s_2 \models \operatorname{EG} r$ holds since there is a computation path $s_2 \to s_2 \to s_2 \to \ldots$ beginning in s_2 such that r holds in all future states of that path; this is the only computation path beginning at s_2 and so $\mathcal{M}, s_2 \models \operatorname{AG} r$ holds as well.
- 8. $\mathcal{M}, s_0 \models AF r$ holds since, for all computation paths beginning in s_0 , the system reaches a state $(s_1 \text{ or } s_2)$ such that r holds.
- 9. $\mathcal{M}, s_0 \models \mathrm{E}[(p \land q) \ \mathrm{U} \ r]$ holds since we have the rightmost computation path $s_0 \to s_2 \to s_2 \to s_2 \to \ldots$ in Figure 3.5, whose second node $s_2 \ (i=1)$ satisfies r, but all previous nodes (only j=0, i.e., node s_0) satisfy $p \land q$.
- 10. $\mathcal{M}, s_0 \models A[p \cup r]$ holds since p holds at s_0 and r holds in any possible successor state of s_0 , so $p \cup r$ is true for all computation paths beginning in s_0 (so we may choose i = 1 independently of the path).
- 11. $\mathcal{M}, s_0 \models AG \ (p \lor q \lor r \to EF \ EG \ r)$ holds since in all states reachable from s_0 and satisfying $p \lor q \lor r$ (all states in this case) the system can reach a state satisfying EG r (in this case state s_2).

Practical Patterns of Specifications

Suppose the atoms for a system use words such as busy and requested. We may require some of the following **properties** of the system:

It is impossible to get to a state where started holds, but ready does not hold: $G\neg(started \land \neg ready)$

It is possible to get to a state where started holds, but ready does not hold:

EF (started ∧ ¬ready)

For any state, if a request (of a resource) occurs, then it will eventually be acknowledged:

G (requested → F acknowledged)

For any state, if a request (of a resource) occurs, then it will eventually be acknowledged:

AG (requested → AF acknowledged)

Whatever happens, a certain process will eventually be permanently deadlocked: F G deadlock

Whatever happens, a certain process will eventually be permanently deadlocked: AF (AG deadlock)

Practical Patterns of Specifications

An upwards travelling elevator at the second floor does not change its direction when it still has passengers who want to go to the fifth floor:

G (floor2 ∧ directionup ∧ ButtonPressed5 → (directionup U floor5))

An upwards travelling elevator at the second floor does not change its direction when it still has passengers who want to go to the fifth floor:

AG (floor2 ∧ directionup ∧ ButtonPressed5 → A[directionup U floor5])

The elevator can remain idle on the third floor with its doors closed:

AG (floor3 \land idle \land doorclosed \rightarrow EG (floor3 \land idle \land doorclosed))

A process can always request to enter its critical section.

 $AG(n_1 \rightarrow EX t_1)$

non-critical state (n), critical state (t)

Expressive Powers of LTL and CTL

- CTL allows <u>quantification over paths</u> so it is more expressive than LTL.
- But it does not allow one to select a range of paths with a formula, as LTL does.
- In that respect, LTL is more expressive.

For example, in LTL we can say:

'all paths which have a p along them also have a q along them'

$$Fp \rightarrow Fq$$

We cannot write this in CTL because of the constraint that every F has an A or E.

The formula AF $p \rightarrow$ AF q says:

'if all paths have a p along them, then all paths have a q along them'

One might write AG ($p \rightarrow AF q$), which is closer:

'every way of extending every path to a p eventually meets a q' but that still does not capture the meaning of $Fp \rightarrow Fq$.

CTL* is a logic which combines the expressive powers of LTL and CTL, by dropping the constraint that (X, U, F, G) is associated with a unique path quantifier (A, E).

Equivalences Between CTL Formulas

Definition 3.16

We say that two CTL formulas ϕ and ψ are semantically equivalent if <u>any state</u> in <u>any model</u> which satisfies one of them also satisfies the other; we denote this by

$$\phi = \psi$$

G and F: universal and existential quantifiers over the states along a specific path

A and E: universal and existential quantifiers on paths

Not surprisingly, de Morgan rules exist:

$$\neg AF \ \phi \equiv EG \ \neg \phi$$

$$\neg EF \ \phi \equiv AG \ \neg \phi$$

$$\neg AX \ \phi \equiv EX \ \neg \phi$$

We also have the equivalences:

$$AF \phi = A[\top U \phi] \qquad EF \phi = E[\top U \phi]$$

Adequate Sets of Connectives for CTL

In propositional logic, the set $\{\bot, \land, \neg\}$ forms an <u>adequate set of connectives</u>, since the other connectives \lor, \rightarrow, \top , can be written in terms of those three.

Adequate sets of connectives also exist in CTL:

Theorem 3.17

A set of temporal connectives in CTL is adequate if, and only if, it contains at least one of {AX,EX}, at least one of {EG,AF,AU} and EU.

Therefore EX, AU, and EU form an adequate set of temporal connectives.

The temporal connectives AR, ER, AW and EW are all definable in CTL:

- $A[\phi R \psi] = \neg E[\neg \phi U \neg \psi]$
- $E[\phi R \psi] = \neg A[\neg \phi U \neg \psi]$
- $A[\phi W \psi] = A[\psi R (\phi \vee \psi)]$, and then use the first equation above
- $E[\phi W \psi] = E[\psi R (\phi \vee \psi)]$, and then use the second one.

Model Checking in CTL

We use a model *M* to describe a system of interest.

We use an CTL formula ϕ to describe a property of the system.

We can <u>check</u> that the model satisfies the property: M, $s_0 \models \phi$

There are two main ways to consider this problem:

- 1. The inputs could be the model M, the formula ϕ , and a state s_0 as input; the output is 'yes' (M, $s_0 \models \phi$ holds), or 'no' (M, $s_0 \models \phi$ does not hold).
- 2. Or, the inputs could be just M and ϕ , and the output would be all states s of the model M which satisfy ϕ .

It is easier to design an algorithm to solve number 2.

This will also solve number 1, since we can check if s_0 is an element of the output set.

The Labeling Algorithm

INPUT: a CTL model $M = (S, \rightarrow, L)$ and a CTL formula ϕ .

OUTPUT: the set of states of M which satisfy ϕ .

// write ϕ in terms of AF, EU, EX, \wedge , \neg and \bot using the equivalences

$$\phi = TRANSLATE(\phi)$$

// label the states of \bowtie with the subformulas of φ that are satisfied there,

// starting with the smallest subformulas and working outwards towards ф

If ψ is AF ψ_1

Repeat: label any state with AF ψ 1 if all successor states are labeled with AF ψ 1, until there is no change.

If ψ is $E[\psi_1 U \psi_2]$

Repeat: label any state with $E[\psi_1 U \psi_2]$ if it is labelled with ψ_1 and at least one of its successors is labelled with $E[\psi_1 U \psi_2]$, until there is no change.

If ψ is EX ψ_1

label any state with EX ψ_1 if one of its successors is labelled with ψ_1

Having performed the labeling for all the subformulas of ϕ (including ϕ itself), we output the states which are labelled ϕ .