RNDr. Jaroslav Janáček, PhD. KI FMFI UK

- adresácia
 - dĺžka adries
 - 32 bitov cca 4 miliardy adries
 - 0-32 bitov určuje sieť, 32-0 bitov zariadenie
 - broadcasting
 - multicasting
- zapĺňanie adresného priestoru
 - NAT
- 2011 globálne zásoby vyčerpané

- sieťová vrstva IP, ICMP
- transportná vrstva TCP, UDP
- medzi linkovou a sieťovou vrstvou ARP
- konfigurácia
 - statická
 - DHCP
- fragmentácia paketov na ceste

- adresácia
 - dĺžka adries
 - 128 bitov
 - zväčša 64 bitov určuje sieť, 64 bitov interface
 - unicast
 - multicast
 - anycast
 - nemá broadcast
- povinná podpora IPSec

- sieťová vrstva IP (v. 6), ICMP (v. 6)
- transportná vrstva TCP, UDP
- ARP nahradené Neighbour Discovery
- konfigurácia
 - statická
 - automatická
 - DHCPv6
- fragmentácia paketov len u zdroja

- textová reprezentácia adries
 - 16-ková sústava, 8 blokov po 4 číslice, odd. :
 - počiatočné 0 sa môžu vynechať
 - 1 súvislý úsek blokov 0000 sa môže vynechať
 - ::1 = 0000:0000:0000:0000:0000:0000:0000
 - 1234::abcd = 1234:0000:0000:0000:0000:0000:0000:abcd
- textová reprezentácia prefixu
 - IPv6 adresa / dĺžka prefixu (masky)
 - 1234::/64

- rozdelenie adresného priestoru
 - ::/128 nešpecifikovaná adresa (analógia 0.0.0.0)
 - ::1/128 loopback (analógia 127.0.0.1)
 - FF00::/8 multicast
 - FE80::/10 link-local unicast
 - iné global unicast
 - anycast-ové adresy sú podmnožinou unicast-ových

Interface identifier

- každá "normálna" IPv6 adresa má 64 bit IID
- ak je linková vrstva Ethernet
 - IID je odvodený z linkovej adresy
 - cccccugCCDDD -> cccccvgCC FFFE DDD
 - v = NOT u (u=0 pri normálnej linkovej adrese)
- ak nie je k dispozícii globálne jedinečný identifikátor

$$- v = 0$$

Link-local IPv6 adresy

- Link-local unicast
 - každý interface má aspoň 1 link-local adresu
 - použiteľné na komunikáciu medzi "susedmi"
 - nesmú sa routovať
 - FE80:0000:0000:0000:IID
- Link-local multicast
 - All hosts multicast ("broadcast"): FF02::1
 - Solicited-node address
 - FF02::1:FFxx:xxxx, kde xxxxxx je spodných 24 bit unicastovej adresy

Globálne IPv6 adresy

- 3 časti
 - globálny prefix (pre bežné siete 48 bitov)
 - subnet (16 bitov)
 - 64 bit IID
- v súčasnosti používané prefixy
 - 2000::/3
 - ::FFFF:0000:0000/96 na reprezentáciu IPv4
 - ::FFFF:1.2.3.4

Lokálne použiteľné IPv6 adresy

- prefix FD00::/8
- 40 bitov náhodne určených
- 16 bitov pre subnet
- 64 bitov IID
- nesmú sa objaviť v Internete
- analógia súkromných adries z IPv4
 - výhodou je malá pravdepodobnosť kolízie adries z viacerých sietí

Neighbor Discovery Protocol

slúži na

- mapovanie IPv6 adresy na linkovú adresu
- hľadanie routera
- zisťovanie existencie uzla s danou adresou
- zisťovanie sieťových parametrov
- detekciu duplicitných adries
- detekciu nedostupnosti suseda
- redirect

Neighbor Discovery Protocol

- používa ICMP
 - Router Solicitation
 - Router Advertisement
 - pravidelne aj na vyžiadanie
 - informácie o prefixoch, routeri, MTU, ...
 - Neighbor Solicitation
 - Neighbor Advertisement
 - informácia o linkovej adrese
 - Redirect

IPv6 -> linková adresa

- Neighbor Solicitation
 - multicast na Solicited-node address pre požadovanú unicast adresu
- Neighbor Advertisemet
 - obsahuje hľadanú linkovú adresu
- Pre multicast
 - 3333xxxxxxxx, kde xxxxxxxx je posledných 32 bitov multicastovej adresy

IPv6 Autokonfigurácia

- vygenerovanie link-local adresy a overenie jej jedinečnosti
- vyslanie Router Solicitation na FF02::2
- router pošle Router Advertisement na FF02:1
 - odtiaľ získame informáciu o prefixe
 - skombinujeme prefix s IID
 - získame default router
 - môžeme tiež získať konfiguráciu pre DNS

DNS a IPv6

- AAAA záznamy pre mapovanie na IPv6 adresy
- ip6.arpa pre reverzné vyhľadávanie
 - IPv6 adresa sa odzadu rozdelí po 4 bitoch (1 číslici)
 - 1234:5678:90ab:cdef:1234:5678:90ab:cedf
 - f.d.e.c.b.a.0.9.8.7.6.5.4.3.2.1.f.e.d.c.b.a.0.9.8.7.6.5.4.3.2.1.ip6.arpa
 - umožňuje jemnejšiu granularitu delegácie ako v IPv4

Prepojenie IPv6 sietí cez IPv4

- 6to4
- pre každú verejnú IPv4 adresu existuje IPv6 sieť
 - 2002:aabb:ccdd::/48 pre aa.bb.cc.dd
- pakety medzi 6to4 sieťami sú zabalené do IPv4 paketov priamo medzi nimi
- pakety do inej IPv6 siete sa smerujú zabalené do IPv4 cez relay 192.88.99.1

Prechod z IPv4 na IPv6

- podpora zo strany OS
 - dnešné bežné OS sú pripravené
- problémy v aplikačných protokoloch
 - používanie IP adries na aplikačnej úrovni
- podpora zo strany aplikácií
 - user interface
 - použitie dvoch separátnych socket-ov
 - použitie len IPv6 socket-u na obojakú komunikáciu
 - IPv4 adresy mapované do ::FFFF:ipv4

Prechod z IPv4 na IPv6

- priama komunikácia medzi IPv4 a IPv6 nie je možná
- proxy servery na aplikačnej úrovni
 - overené riešenie napr. pre web, mail
- IPv6/IPv4 translátory
 - IPv6 klient -> IPv4 server
 - DNS64 kovertuje A záznamy na AAAA
 - NAT64 priradí IPv4 adresu IPv6 adrese klienta a prepisuje IPv6 hlavičku na IPv4 a naopak