BIN-Hourglass (ATtiny2313a) Modding

- 1. BIN-Hourglass (ATtiny2313a) Modding
- 2. Thema
- 3. Aufgaben
- 4. BIN-Hourglass
- 5. ATtiny2313a Pinout
- 6. Arduino UNO
- 7. ATtiny ISP-Pins
- 8. Arduino an ATtiny2313a
- 9. Arduino-IDE ATtiny2313a
- 10. Boardverwalter
- 11. Arduino als ISP-Programmer
- 12. ISP aktivieren
- 13. Schaltplan
- 14. LED-Ansteuerung
- 15. Taster-Schaltung
- 16. μC-Anschlüsse

- 17. Adapter bauen I
- 18. Adapter bauen II
- 19. HourGlass Quellcode von Pollin
- 20. ATtiny Oszillator vs. CPU-Takt
- 21. ATtiny2313a delay() Problem
- 22. BlinkLED.ino
- 23. Hochladen
- 24. Timer-Calculator
- 25. 16-bit Timer
- 26. Timer_0.ino
- 27. Taster
- 28. ButtonIntLed_0.ino
- 29. Fuses berechnen
- 30. Projekt für wen?
- 31. Liste der Sketche

H39@email.de

Thema	
Frage	Kann man das BIN-Hourglass mit anderen Funktionen versehen (Modding)?
Vorhanden	Aufgebautes BIN-Hourglass mit vorprogrammierten ATtiny2313a.
	Das BIN-Hourglass zeigt die Uhrzeit in binärer Form, in Stunden, Minuten und Sekunden an.
	Stunden und Minuten werden über Taster eingestellt.
Ideen	• Timer
	• Countdown
	BIT-Spielereien
	•
Quelle	Datasheet ATtiny2313a: 8246B—AVR—09/11 https://ww1.microchip.com/downloads/en/DeviceDoc/doc8246.pdf
Pollin: Beschreibung, Software	https://www.pollin.de/p/bausatz-bin-hourglass-810399

Aufgaben	
1.	BIN-Hourglass bauen.
2.	Arduino-ATtiny ISP-Schnittstelle.
3.	Arduino-IDE einrichten mit Boardverwalter.
4.	Arduino in einen ISP-Programmer verwandeln.
5.	BIN-Hourglass Schaltung verstehen.
6.	ATtiny und BIN-Hourglass Pin-Zuordnung verstehen.
7.	Adapter anfertigen oder μC Standalone.
8.	BIN-Hourglass Programm von Pollin verstehen.
9.	ATtiny Oszillator vs. CPU-Takt.
10.	Mit Arduino-IDE programmieren (BlinkLED.ino).
11.	Sketch mit Programmer Hochladen.
12.	16-bit Timer für Sekundentakt einrichten.
13.	Externen Interrupt abfragen (Taster).

Oszillator, CPU-Takt und Fuses verstehen.

14.

BIN-Hourglass

Mikroprozessor: ATtiny2313a

Drei Reihen von LEDs mit je 8 LEDs.

Zwei Taster zum Einstellen von Stunden und Minuten.

Externer Quarz mit 16 MHz.

Stromversorgung 9V-Blockbatterie.

ATtiny2313a Pinout

http://github.com/SpenceKonde/ATTinyCore

Arduino UNO

ATtiny ISP-Pins

ISP

ISP-Pins am zu programmierenden ATtiny2313a:

In-circuit Serial Programmer.

Verbinde den ATtiny2313 mit den Arduino wie folgt:

- 1. ATtiny2313 μC-Pin 1 to Arduino-Pin 10 reset
- 2. ATtiny2313 μC-Pin 17 to Arduino-Pin 11 MOSI
- 3. ATtiny2313 μ C-Pin 18 to Arduino-Pin 12 MISO
- 4. ATtiny2313 μC-Pin 19 to Arduino-Pin 13 SCK
- 5. ATtiny2313 μC-Pin 10 to Arduino-Pin GND
- 6. ATtiny2313 μC-Pin 20 to Arduino-Pin VCC

Quelle:

https://www.arduino.cc/en/pmwiki.php?n=Tutorial/ArduinoISP http://arduinolearning.com/amp/code/program-attiny2313-arduino.php

Arduino an ATtiny2313

Arduino-IDE ATtiny2313a

Arduino-IDE	Arduino-1.8.15
IDE portabel machen	Ordner "portable" erzeugen: " <dein pfad="">\arduino-1.8.15\portable"</dein>
Arduino-IDE	> Datei > Voreinstellungen > Zusätzliche Boardverwalter-URLs:
Boardverwalter hinzufügen:	http://drazzy.com/package_drazzy.com_index.json
	Voreinstellungen Voreinstell
Quelle	https://github.com/SpenceKonde/ATTinyCore/blob/master/Installation.md

Boardverwalter

Boardverwalter starten: Werkzeuge > Boards > Boardverwalter

Nach "Attiny" suchen. "ATTinyCore by Spence Konde" installieren.

Arduino als ISP-Programmer

ISP	In-circuit Serial Programmer.
Bootloader	Der ATtiny2313a kommt ohne Bootloader.
ISP-Programmer	Der Sketch "ArduinolSP.ino" macht aus dem Arduino einen ISP-Programmer.
Arduino UNO Pins als ISP-Programmierer	TX Arduino" Arduino" ANALOGIN
Arduino ISP-Sketch laden	> Datei > Beispiele > 11.ArduinoISP > ArduinoISP.ino
Werkzeuge	Als Board "Arduino UNO" (noch nicht der ATtiny2313a) wählen. Als Programmer noch "AVRISP mkII".
	Sketch "ArduinoISP.ino" auf Arduino (später ISP-Programmer) hochladen.
Quellen:	https://www.arduino.cc/en/pmwiki.php?n=Tutorial/ArduinoISP

http://arduinolearning.com/amp/code/program-attiny2313-arduino.php

ISP aktivieren

Schaltplan

LED-Ansteuerung

Taster-Schaltung

μC-Anschlüsse

Die μC-Pins sind die Kontakte am Prozessor!

ые μс-ы	ns sina die K	ontakte am Proz	essor!	
μC-Pin	Port-Pin	Arduino-IDE	Funktion	23678911131131131131
6	PD2 INT0	4	Taster Stunden	
7	PD3 INT1	5	Taster Minuten	000000 000000 000000000000000000000000
				000 BB
8	PD4	6	H Stunden	(SCK) (MISO) (OCI) (AIN1) (TO) (TO) (TXD) (TXD) (TXD)
9	PD5	7	M Minuten	
11	PD6	8	S Sekunden	O O O
				XTAL2 XTAL2 UCC GND
12	PB0	9	LED 1 (H1 / M1 / S1)	
			~	4 10 0 0
19	PB7	15	LED 128 (H128 / M128 / S128)	

Die Arduino-IDE Pin-Bezeichnungen werden für "digitalWrite()" etc benötigt.

Adapter bauen I

Ziel

Der Programmieradapter soll das Programmieren direkt am BIN-Hourglass ermöglichen.

BIN-Hourglass ohne μC

Adapter Oberseite

Adapter Unterseite

Adapter bauen II

Adapter mit μC

Adapter und Verkabelung

HourGlass Quellcode von Pollin

Besonderheit:	Nicht mit Arduino-IDE Funktionen geschrieben, sondern in AVR C++.
	Die "OurGlass.ino" ist nur ein Dummy, damit man mit der Arduino-IDE programmieren kann.
Tab: Main.c c	Ein AVR C++ Programm, das die "main()-Funktion" enthält.
Tab: binTime.h	Ein AVR C++ Programm mit der Erweiterung "*.h", und damit als Header gekennzeichnet. Der Header enthält –ausgelagerte- Definitionen und Funktionen, die beim Kompilieren vor der main()-Funktion eingefügt werden.
Tab: setTime.h	siehe oben
Nachteile:	Die Funktionen der Arduino-IDE stehen (zunächst) nicht zur Verfügung. Also pinMode(), digitalWrite(), digitalRead() sind nicht nutzbar. (man könnte die "Arduino.h" einbinden).
Vorteile:	Die Arduino-IDE setzt z.B. ungewollt Timer. Hier erlangt man vollkommene Kontrolle über das was der μC ausführen soll.
Download Pollin:	https://www.pollin.de/p/bausatz-bin-hourglass-810399
Autor:	Leonhard Hesse

ATtiny Oszillator vs. CPU-Takt

Lieferzustand ATtiny2313a	clock source setting is the Ir clock prescaling of 8 , result	CKSEL = "0100", SUT = "10", and CKDIV8 programmed. The default nternal RC Oscillator with longest start-up time and an initial systeming in 1.0 MHz system clock. This default setting ensures that all d clock source setting using an In-System or Parallel programmer.
	Interner Oszillator-Takt: Takt-Vorteiler: System Clock:	8 MHz 8 8/8 => 1 MHz
BIN-Hourglass		
Externer Oszillator	Externer Oszillator-Takt Takt-Vorteiler: System Clock:	: 16 MHz 8 16/8 => 2 MHz
System Clock Frequency für Timer-Berechnungen	System Clock:	2 MHz
Ändern der System Clock	Der μC kann mit Hilfe so	ogenannter Fuses umkonfiguriert werden.
Fuses berechnen mit:	http://elektronik-kompe	endium.de/public/arnerossius/programme/web/avrfuse/

ATtiny2313a delay() Problem

Problem	Ein delay(1000) führt zu einem zu schnellem Blinkintervall.
Ursache	Der ATtiny2313a taktet nicht mit dem Oszillator-Takt, sondern wegen der "Divide clock by 8" Konfiguration mit einer "System clock".
ATtiny2313a	Entsprechend der Fuses wird der Oszillator-Takt mit 8 geteilt, so dass die System clock = 16 MHz/8 => 2 MHz beträgt (externer Oszillator 16 MHz)
Arduino-Funktion	
8-bit Timer	Die delay()-Funktion basiert auf dem automatisch gestarteten 8-bit Timer0.
	Mit einem voreingestellten Timer0-Prescaler von 64.
Folge	Nun erzeugt ein "delay(1000)" ein Blinkinterval von 1000/8 = 125 ms.
Abhilfe	Den voreingestellten Timer0-Prescaler von 64 auf 8 ändern.
In setup() ergänzen:	// Patch for 8-bit Timer, sets prescaler $clk_{l/O}$ devided by 8, leads to clk_{Tn}
	TCCR0B = (0 << CS02) (1 << CS01) (0 << CS00);
Quelle:	ATtiny2313A/4313 Data Sheet (microchip.com)

BlinkLED.ino

```
// BIN-Hourglass Modding
// Blinking LED M1 (BlinkLED.ino)
// In order to select column "M", set the Pin to LOW or "0"
// LOW drives the PNP-transistor, so we get C
// Column Minute Arduino-IDE-Pin => 7
                 Port-Pin => PD5 set to LOW or binary "0"
                 uP-Pin => 9
// In order to select LED "1", set the Pin to LOW or "0", so we get (GND)
// LED
                   1 1 1
// Arduino-IDE-Pin | 9
// Port.-Pin
                   I PBO I
// µP-Pin
                   I 12 I
#define Column 7
                              // column minutes
#define PinLED 9
                              // LED 1 (H1 / M1 / S1)
void setup() {
  // initialize digital Pins as an output
  PinMode(PinLED, OUTPUT);
                               // sets ATtiny-Pins as OUTPUT
  PinMode (Column, OUTPUT);
  digitalWrite(Column, LOW);
                               // because of PNP-transistor, the base needs to be LOW
                                // in order to get led on, thus we get positive voltage
  // Patch for 8-bit Timer, sets prescaler clkI/O devided by 8
  TCCR0B = (0 << CS02) | (1 << CS01) | (0 << CS00);
void loop() {
  digitalWrite(PinLED, LOW);
                              // connects LED to GND, means LED on
                              // wait for 1/100 second
  delay(100);
  digitalWrite(PinLED, HIGH);
                              // disconnects LED from GND, that means LED off
  delay(100);
                              // wait for 1/100 second
```

				- 1		
н	OC	n	l a	М	Δn	١.
	\mathbf{U}		a	u	c_{\perp}	

Einstellungen	> Werkzeuge
Board:	> Werkzeuge > Board > ATtinyCore > ATtiny2313(a)/4313 (No bootloader)
Chip:	> Werkzeuge > Chip > ATtiny2313/ATtiny2313A
Clocksource:	> Werkzeuge > Clock Source > 8 MHz
Port:	> Werkzeuge > Port > COMx (Dein USB-Anschluss)

Programmer	> Werkzeuge > Programmer > Arduino as ISP
------------	---

Hochladen Symbol "Hochladen". Nicht "Hochladen mit Programmer"!	Sketch	Sketch schreiben.
	Hochladen	•

Timer-Calculator

Probieren!

Prescaler so wählen, dass kein Overflow Count eintritt. Overflow Count muss 0 sein.

Timer berechnen mit:

https://eleccelerator.com/avr-timer-calculator/

16-bit Timer		
Ziel	In einem Takt von 1 Sekunde soll eine Funktion ausgeführt werden, die z.B. eine LED umschaltet.	
CTC Clear Timer on Compare Match:	Timer im CTC-Modus. Der Timer soll den Interrupt auslösen und wieder bei 0 anfangen zu zählen. Gewünschten Endwert in das OCROA Register speichern.	
16-bit Timer/Counter1		
TCNT1	Zählerwert (am Anfang 0, wird hochgezählt)	
OCR1A	Endwert (Vergleichswert), bis zu dem gezählt werden soll.	
TCCR1B	Vorteiler (Prescaler), geht jetzt von der "System Clock" aus (Hier 2 MHz).	
TIMSK	Interrupt aktivieren.	
Timer berechnen mit:	https://eleccelerator.com/avr-timer-calculator/	
Quellen:	ATtiny2313A/4313 Data Sheet (microchip.com) Timer Interrupts - Arduino - www.simsso.de	

Timer_0.ino

```
// vollständiger Sketch sign Timer 0.ino
#define OCRIA
                                 // external oszillator with 16 MHz and a predifined devider of 8
                  31250
                                 // the System Clock runs with 16/8 = 2 MHz.
// ...
void setup() {
  // ...
                        // init Timer 1
  initTimer();
void loop() {
  if (int1 occured) {
    PORTB ~= (1 << PB0);
                                               // toggle PB0
    int1 occured = false;
// timer interrupt service routine
ISR(TIMER1 COMPA vect) { int1 occured = true;
void initTimer(){
                                         // for Timer1
cli();
                                          // deactivate all interrupts
  TCNT1 = 0;
                                          // set counter to 0
                                         // set Output Compare Register 1A
  OCR1A = OCRIA ;
  TCCR1B = (1 << CS10) | (1 << CS11);
                                         // prescale 64
  TCCR1B \mid = (1 \ll WGM12);
                                         // CTC mode; resets TCNT1 at overflow
  TIMSK
         = (1 << OCIE1A);
                                         // Compare A Match Interrupt Enable
                                         // activate all interrupts
  sei();
```

Taster		
Ziel	Ein Taster soll eine LED an- bzw. ausschalten.	
Arduino-IDE Funktion	attachInterrupt()	
Syntax	attachInterrupt(digitalPinToInterrupt(Pin), ISR, mode);	
digitalPinToInterrupt(Pin)	Der externe Interrupt-Pin. Hier: Arduino-Pin 5, was dem externem Interrupt INT1 (Minute) entspricht.	
ISR	Name der Funktion, die beim Auftreten des Interrupt ausgeführt wird. Hier: int1_routine()	
mode	Fallende Flanke des Signals. Hier: FALLING	
Befehl	attachInterrupt(digitalPinToInterrupt(5), int1_routine, FALLING);	
Externer Interrupt	http://shelvin.de/eine-taste-per-interrupt-einlesen-und-entprellen/ Arduino - AttachInterrupt	
Quellen:	len: ATtiny2313A/4313 Data Sheet (microchip.com)	

ButtonIntLed_0.ino

```
// vollständiger Sketch siehe ButtonIntLED.ino
volatile boolean int1 occured = false;
                                           //we got an interrupt, do something in loop()
volatile unsigned long lastTime = 0;
volatile unsigned long debounceTime = 20;
void setup() {
// ...
                                        // defining ISR for PinButton and falling edge
  attachInterrupt(digitalPinToInterrupt(PinButton), int1 routine, FALLING);
void loop() {
  if (int1 occured) {
    digitalWrite(PinLED, !digitalRead(PinLED));
                                                 // get status of LED and toggle it
    int1 occured = false;
// Interrupt service routine (ISR) for interrupt "INT1"
void int1 routine() {
  if((millis() - lastTime) > debounceTime) {
                                             // do nothing during debouncing time
    lastTime = millis();
                                                   // store last buttontick
    int1 occured = true;
                                                   // set message for loop()
```

Fuses berechnen

D	· _ I ·	. r·	•		\neg
Proj	ek:	ГΤΙ	$\operatorname{Ir} \mathbf{V}$	Men	1 7
1 I O J	CIV		AI V	VCI	•

Anfänger:	Bedingt geeignet! Das Schalten der LEDs auf "an" geschieht durch Setzen des Pin auf LOW, anstelle von erwarteter Weise, HIGH. Es kann mit der Arduino-IDE programmiert werden. Man kann in Sketchen (*.ino) programmieren.
	Übungen auf der Ebene der Arduino-IDE mit Arduino-IDE Funktionen sind machbar.
Anwender mit Erfahrungen:	Geeignet! Es kann mit der Arduino-IDE programmiert werden. Man kann in Sketchen (*.ino) programmieren. Port-Manipulationen sind auch in Sketchen möglich.
	Ideen zur Erzeugung von Bitmustern
Fortgeschrittene:	Gut geeignet! Es kann mit der Arduino-IDE programmiert werden. Man kann in Sketchen (*.ino) programmieren. Port-Manipulationen um Interrupts (Taster) und Timer zu programmieren.
	Ideen, die Tasten und Timer erfordern.

	• •		\sim 1		1
	iste	a c	٠ 🖊	KOTC	n 🕰
ᆫ	.13にこ	uci	J	<i>'C'L'</i>	

BlinkLED.ino	Blinken einer LED mit Arduino-Funtionen:	PinMode(PinLED, OUTPUT);	
Muster_0.ino	Bit-Muster mit Port-Manipulation:	DDRD = 0b01110000	
Muster_1.ino	Bit-Muster mit Port-Manipulation:	DDRD = 0b01110000	
ButtonIntLED_0.ino	Taste abfragen mit Arduino Funktionen	attachInterrupt()	
ButtonIntLED_1.ino	Taste abfragen mit AVR-Registern MCUCR = (1 << ISC11) (0 << ISC10),		
Timer_0.ino	Erzeugt einen sekündlichen Funktionsaufruf.		