MAT0236 - Funções Diferenciáveis e Séries - IMEUSP

Período: Primeiro Semestre de 2022

Professor Oswaldo Rio Branco de Oliveira

$7^{\underline{a}}$ LISTA DE EXERCÍCIOS

 $1^{\underline{a}}$ Parte (Capítulos 6 e 7 de "Cálculo - Vol. 4, $5^{\underline{a}}$ ed., H. Guidorizzi").

1. Determine o domínio de convergência da série e esboce o gráfico de f.

(a)
$$f(x) = \sum_{n=1}^{+\infty} x^n$$

(b)
$$f(x) = \sum_{n=1}^{+\infty} nx^n$$

- 2. Determine o limite $f(x) = \lim_{n \to \infty} f_n(x)$, onde $x \in X$, e mostre que a sequência (f_n) não converge uniformemente a f, nos casos abaixo.
 - (a) $f_n(x) = \frac{\sin(nx)}{1+n^2x^2}$, $X = \mathbb{R}$. Dica: analise o que ocorre nos pontos $x_n = \frac{\pi}{2n}$.
 - (b) $\frac{n}{x+n}$, $X = [0, +\infty)$. Dica: analise o que ocorre nos pontos $x_n = n$.
 - (c) $f_n(x) = \left(\frac{\text{sen}x}{x}\right)^n$, se $x \neq 0$ e $f_n(0) = 1$, onde $X = \mathbb{R}$.
 - (d) $f_n(x) = (1 2nx^2)e^{-nx^2}$, com $X = \mathbb{R}$
 - (e) $f_n(x) = \frac{x^{2n}}{1+x^{2n}}$, com $X = \mathbb{R}$.

(f)
$$X = [0,1] e f_n(x) = \begin{cases} (n-1)x, & 0 \le x \le \frac{1}{n} \\ 1-x, & \frac{1}{n} \le x \le 1. \end{cases}$$

- **3.** Mostre a convergência uniforme de (f_n) em $X \subset \mathbb{R}$ nos casos abaixo.
 - (a) $f_n(x) = \frac{\operatorname{sen} nx}{n^7} \in X = \mathbb{R}$.
- (b) $f_n(x) = e^{-nx} \sin x \in X = [0, +\infty).$
- (c) $f_n(x) = xe^{-nx^2} \in X = \mathbb{R}$.
- **4.** Determine o limite $f(x) = \lim_{n \to +\infty} f_n(x)$, onde $x \in [0,1]$, e mostre que

$$\lim_{n\to+\infty} \int_0^1 f_n(x) dx \neq \int_0^1 \Big(\lim_{n\to+\infty} f_n(x)\Big) dx, \quad \text{supondo}$$

$$f_n(x) = \begin{cases} n^2 x, & 0 \le x \le \frac{1}{2^n}, \\ n^2 (\frac{1}{n} - x), & \frac{1}{2^n n} \le x \le \frac{1}{n}, \\ 0, & \frac{1}{n} \le x \le 1. \end{cases}$$

5. Sendo $f_n(x) = \frac{n^2 x^2}{1 + n^2 x^2}$, $x \in [-1, 1]$, mostre que f_n converge simplesmente a f (determine f) mas não converge uniformemente. Ainda assim,

$$\lim_{n\to+\infty}\int_{-1}^1 f_n(x)dx = \int_{-1}^1 \lim_{n\to+\infty} f_n(x) dx.$$

- **6.** Para cada $n \ge 1$, seja $f_n(x) = \frac{nx}{nx^2+1}, x \in \mathbb{R}$. Consideremos $f(x) = \lim_{n \to +\infty} f_n(x)$.
 - (a) Determine o domínio de convergência da sequência (f_n) . Esboce os gráficos de f e das funções f_n .
 - (b) A convergência da sequência (f_n) à função f é uniforme sobre \mathbb{R} ? E sobre o intervalo $[r, +\infty), r > 0$?
- 7. Para cada $n \ge 1$, seja $f_n(x) = \frac{nx}{1+n^2x^4}, x \in \mathbb{R}$. Consideremos $f(x) = \lim_{n \to +\infty} f_n(x)$.
 - (a) Determine o domínio de convergência. Esboce os gráficos de f e das funções f_n .
 - (b) A convergência é uniforme sobre [0,1]? Justifique.
 - (d) Mostre que $\int_0^1 \left[\lim_{n \to +\infty} f_n(x) \right] dx \neq \lim_{n \to +\infty} \int_0^1 f_n(x) dx$.
- 8. Mostre que a série dada converge uniformemente no intervalo dado.

(a)
$$e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!} \text{ em } [-r, r], r > 0.$$

(b)
$$\sum_{n=1}^{+\infty} \frac{x^n}{2n+1}$$
, em $[-r, r]$, $0 < r < 1$.

9. Mostre que a função dada é contínua.

(a)
$$f(x) = \sum_{n=1}^{+\infty} \frac{\cos nx^3}{n^4}, x \in \mathbb{R}.$$

(b)
$$f(x) = \sum_{n=1}^{+\infty} \frac{1}{2^{nx}}, x \in [1, +\infty).$$

10. Sejam $(a_n)_{n\geq 0}$ e $(b_n)_{n\geq 1}$ duas sequências em \mathbb{R} . Suponhamos que

$$F(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} [a_n \cos nx + b_n \sin nx], \quad x \in [-\pi, +\pi],$$

a convergência sendo uniforme. Mostre que:

- (i) $a_n = \frac{1}{\pi} \int_{-\pi}^{+\pi} F(x) \cos nx \, dx, \forall n \ge 0.$
- (ii) $b_n = \frac{1}{\pi} \int_{-\pi}^{+\pi} F(x) \operatorname{sen} nx \, dx, \forall n \ge 1,$

A série é acima é a série de Fourier de F e os números $a_n, n \ge 0$, e $b_n, n \ge 1$, são os coeficientes de Fourier de F.

2

2ª Parte – Exercícios sobre convergências absoluta, condicional, somas (não ordenadas) e trigonometria.

- 1. Suponha que a série $\sum_{n=0}^{+\infty} a_n$ converge absolutamente. Mostre que também convergem absolutamente as séries
 - (a) $\sum_{n=0}^{+\infty} a_n^2$ (b) $\sum_{n=0}^{+\infty} \frac{a_n}{1+a_n}$, se $a_n \neq -1$, $\forall n \in \mathbb{N}$, (c) $\sum_{n=0}^{+\infty} \frac{a_n^2}{1+a_n^2}$.
- 2. Mostre que converge condicionalmente a série

$$\sum_{n=1}^{+\infty} \left[\frac{(-1)^n}{\sqrt{n}} + i \frac{1}{n^2} \right] .$$

- 3. Compute, para |z| < 1, a série de potências $1 + 2z + 3z^2 + 4z^3 + \cdots$. [Sugestão: compute a soma da sequência de termos positivos $((n+1)r^n)_{\mathbb{N}}$, $r \ge 0$, dispondo os termos da sequência em uma tabela triangular infinita.]
- 4. Seja $a_{mn} = \frac{(-1)^{m+n}}{mn}$, com $m, n \in \{1, 2, ...\}$. Mostre que não existe a soma

$$\sum_{\mathbb{N}\times\mathbb{N}} a_{mn} .$$

Porém, existem o limite e as séries iteradas:

$$\lim_{N \to +\infty} \sum_{m=1}^{N} \sum_{n=1}^{N} a_{mn} , \quad \sum_{m=1}^{+\infty} \sum_{n=1}^{+\infty} a_{mn} \quad \text{e} \quad \sum_{n=1}^{+\infty} \sum_{m=1}^{+\infty} a_{mn} .$$

- 5. Verifique, de duas formas, a identidade $\mathrm{sen}^2z+\cos^2z=1,$ onde $z\in\mathbb{C}.$
 - Dicas: (1) Utilize as expressões em séries para sen z e $\cos z$.
 - (2) Utilize as fórmulas exponenciais para senz e $\cos z$;
- 6. Verifique a fórmula, onde N é impar e $z, w \in \mathbb{C}$.

$$(z+w)^N = \sum_{2n+1+2m=N} \left[\binom{N}{2m} z^{2n+1} w^{2m} + \binom{N}{2n+1} z^{2m} w^{2n+1} \right].$$

Dicas: (1) Teste N = 5. (2) Troque N impar por 2N + 1, se preferir.

7. Verifique de duas formas a identidade

 $\operatorname{sen} z \operatorname{cos} w + \operatorname{cos} z \operatorname{sen} w = \operatorname{sen} (z + w), \text{ onde } z \in \mathbb{C} \operatorname{e} w \in \mathbb{C}.$

Dicas: (1) Use expressões em séries para as funções envolvidas.

Use também o Exercício 6.

(2) Use as fórmulas exponenciais para as funções envolvidas.