ANALISA PENGARUH PENGOPERASIAN FILTER AKTIF TERHADAP RUGI-RUGI DAYA DAN DERATING TRAFO PADA SISTEM KELISTRIKAN DI RS BIMC NUSA DUA

A.A. Gede Marta Pratama¹, I Wayan Rinas², Anak Agung Maharta Pemayun²

¹Mahasiswa Program Studi Teknik Elektro, Fakultas Teknik, Universitas Udayana ²Dosen Program Studi Teknik Elektro, Fakultas Teknik, Universitas Udayana Bali - Indonesia

marta.pratama12@gmail.com¹, rinas@ee.unud.ac.id², maharta.pemayun@unud.ac.id

ABSTRAK

Beban nonlinier adalah sumber arus harmonisa untuk utilitas. Tingkat harmonisa tinggi sangat meningkatkan hilangnya energi listrik. Kualitas daya listrik ditentukan oleh parameter rugi-rugi daya yang muncul pada sistem kelistrikan Rumah Sakit BIMC Nusa Dua akibat distorsi harmonisa. Pada penelitian ini dilakukan analisis THD berdasarkan hasil pengukuran dan simulasi sesuai standar IEEE 519-2014, analisis rugi daya akibat arus THD akibat beban non linier, dan analisis rugi daya setelah instalasi dilakukan. Filter aktif, perhitungan kapasitas kerja transformator sebelum dan sesudah memasang filter aktif.

Kata kunci: Beban non linier, Harmonisa, THD, Filter Aktif, Rugi-Rugi, Derating

ABSTRACT

Nonlinear loads are harmonic current sources for utilities. High harmonic levels greatly increase the loss of electrical energy. The quality of electric power is determined by the parameters of power losses that appear in the electrical system of BIMC Nusa Dua Hospital due to harmonic distortion. In this study, THD analysis was carried out based on the results of measurements and simulations according to the IEEE 519-2014 standard, analysis of power loss due to THD current due to non-linear loads, and analysis of power loss after installation was carried out. Active filter, calculation of the working capacity of the transformer before and after installing an active filter.

Key Words: Active Filter, Derating, Harmonics, Losses, Non-linier load, THD

1. PENDAHULUAN

Jaringan listrik dirancang untuk beroperasi dengan frekuensi 50 Hz. Pada frekuensi yang lebih tinggi, beban nonlinier dapat menyebabkan pembentukan gelombang yang merupakan kelipatan dari frekuensi utama dan disebut sebagai Harmonisa [1]. Hal ini dapat mengganggu sistem kelistrikan pada frekuensi aslinya, sehingga kurva arus dan tegangan yang seharusnya sinusoidal murni terdistorsi oleh distorsi Harmonisa yang terjadi.

Penggunaan alat listrik elektronik di RS BIMC Nusa Dua dapat menimbulkan distorsi listrik. Beban nonlinier adalah sumber arus Harmonisa untuk utilitas. Trafo dirancang untuk menyediakan daya listrik dengan kerugian minimal pada frekuensi utama. Harmonisa yang tinggi berpengaruh kuat pada transformator, sehingga terdapat rugi-rugi tambahan yang dapat menurunkan kapasitas kerja transformator [2].

IEEE 519 2014 merupakan standar yang digunakan sebagai batas untuk analisis distorsi Harmonisa total (THD). Berdasarkan hasil rasio hubung singkat, menurut standar IEEE 519 2014, arus THD maksimum yang diijinkan pada tegangan suplai adalah 12%, sedangkan arus THD maksimum adalah 5%. Data pengukuran

trafo daya RS BIMC Nusa Dua menunjukkan bahwa kandungan THD saat ini masih di atas standar yaitu 12,64%, sedangkan kandungan tegangan THD sesuai standar adalah 2,29%.

Kandungan THD arus pada feeder trafo di RS BIMC Nusa Dua isaat iini tidak sesuai dengan standar IEEE 519 tahun 2014, sehingga menyebabkan rugi-rugi daya listrik semakin tinggi. Pada penelitian ini dilakukan analisa rugi-rugi daya listrik dan derating trafo yang diakibatkan oleh munculnya arus harmonisa pada trafo daya 800kVA.

2. TINJAUAN PUSTAKA

2.1 Harmonisa Pada Sistem Tenaga Listrik

Harmonisa adalah fenomena yang disebabkan oleh aksi muatan listrik nonlinier, yang merupakan sumber terbentuknya gelombang frekuensi tinggi (multiple main frequency). Harmonisa tegangan atau arus diukur dengan ukuran masing-masing komponen Harmonisa dari komponen dasar yang dinyatakan dalam proses. THD digunakan untuk parameter nilai Harmonisa.

THD dinyatakan dengan persamaan sebagai berikut, yaitu:

$$THD = \frac{\sqrt{\sum_{h>1}^{hmax} M_h^2}}{M_1} \tag{1}$$

Dimana M_h adalah nilai rms komponen harmonic h dalam jumlah M.

2.2 Beban linier dan non-linier 2.2.1 Beban Linier

Beban linieri adalah beban yang komponen arusnya sebanding dengan tegangannya. Terdapat hubungan linier antara arus dan tegangan, sehingga bentuk gelombang arus sama dengan gelombang bentuk tegangan, seperti terlihat pada Gambar 1. Sebuah beban linier menarik arus sinusoidal ketika disuplai oleh tegangan sinusoidal. Contoh beban linier adalah motor listrik, pemanas, lampu, dll.

Gambar 1. Bentuk gelombang arus dan tegangan pada beban searah [1]

2.2.2 Beban non-linier

Alat kelistrikan yang komponen arusnya tidak sebanding dengan komponen tegangan sehingga bentuk gelombang arus tidak sesuai dengan bentuk gelombang tegangan. Tidak ada hubungan linier antara arus dan tegangan. Beban nonlinier menyerap arus non-sinusoidal dan arus Harmonisa meskipun diberikan persedian oleh sinusoidal, tegangan seperti yang ditunjukkan pada Gambar 2. Contoh beban non-linier adalah penyearah, UPS. komputer, pengontrol kecepatan motor, lampu pelepasan, dan motor DC., Tungku busur, api, dan sebagainya

Gambar 2. Bentuk gelombang arus dan tegangan beban tidak searah [1]

2.3 Standar Harmonisa IEEE 519 tahun 2014

2.3.1 Batas distorsi tegangan harmonisa utiliti

Tabel 1 dari IEEE standard 519-2014 menyarankan nilai-nilai berikut sebagai batas maksimum yang direkomendasikan untuk distorsi tegangan [6].

Tabel 1. IEEE Standard 519-2014, standar batas distorsi tegangan harmonisa maksimum

Voltage at PCC	Individual Component Voltage Distortion	Total Voltage Distortion (THD	
V ≤ 69 kV	3.00%	5.00%	
69 kV < V ≤ 161 kV	1.50%	2.50%	
V ≤ 161 kV	1.00%	1.50%	

Nilai-nilai ini hanya berlaku untuk skenario terburuk, yang dapat digunakan setidaknya selama 1 jam kondisi pengoperasian. Dalam kasus kondisi transien seperti start beban, switching dan kondisi tidak stabil lainnya, batas ini dapat dilampaui hingga 50%.

2.3.2 Batas distorsi arus harmonisa utiliti

Tabel 2 dari IEEE standard 519-2014 menyarankan nilai-nilai berikut sebagai batas maksimum yang direkomendasikan untuk distorsi arus.

Tabel 2. IEEE Standard 519-2014, standar batas distorsi arus harmonisa maksimum

furth.	1	Harmon	ic order (Odd)	Harmseic)		THDC50
Surfa.	< 11	11 ≤h≤17	17 ≤ b ≤ 23	23 ≤ 6 ≤ 25	35≤h	X 2111.04.74-0
<20*	4.0	2.0	1.5	0.6	0.3	5.0
20-50	7.0	3.5	2.5	1.0	0.5	8.0
50-100	10.0	4.5	4.0	1.5	0.7	12.0
100 -1000	12,0	5.5	5.0	2.0	0.1	15.0
>1000	15.0	7.0	6.0	2.5	14	20.0
		littled to 25% of our property in 1			of Autorition	populities o
actual facility		o colonia con con	and a deal	and the second		College
		in short circuit a				
		(138 kV, the lin				

2.4 Filter Harmonisa

Filter Harmonisa adalah perangkat elektronik yang dapat meningkatkan kualitas arus yang dikirim dari sumber ke beban. Filter sistem aliran biasanya terdiri dari filter aktif dan filter pasif. Penggunaan filter aktif dalam jaringan energi listrik lebih fleksibel daripada filter pasif, karena filter aktif lebih ekonomis dari segi penggunaan dan kinerja [5].

Gambar 3. Rangkaian filter aktif high pass [4]

Daya reaktif untuk memperbaiki faktor daya:

$$\theta_1 = Arc \cos \varphi_{sistem} \tag{2}$$

$$\theta_2 = Arc \cos \varphi_{normal} \tag{3}$$

$$\theta_C = P \left(\tan \theta_1 - \tan \theta_2 \right) \tag{4}$$

Perhitungan nilai kapasitor:

$$Q_c = \frac{V^2}{X_C} \tag{5}$$

$$X_C = \frac{V^2}{kVar} \tag{6}$$

$$C = \frac{1}{2\pi F X_C} \tag{7}$$

Perhitungan induktor:

$$L = \frac{1}{(C)(2\pi f n)^2} \tag{8}$$

$$X_L = 2\pi f L \tag{9}$$

2.5 Perhitungan *losses* pada trafo akibat harmonisa

Load loss (P_{LL}) trafo dalam per unit, dapat dicari dengan rumus sebagai berikut; $P_{LL} = \sum {I_h}^2 + (\sum {I_h}^2 + h^2). P_{EC-R} (p.u)$

Dimana $P_{\text{EC-R}}$ adalah faktor *eddy current loss*, h adalah angka harmonisa I_h adalah arus harmonisa.

 ΣI_h^2 merupakan komponen rugi I^2R dalam p.u, sedangkan ($\Sigma I_h^2 \times h^2$) P_{EC-R} merupakan *eddy current loss* dibawah kondisi dasar dalam p.u. Faktor *eddy current loss* terdapat pada Tabel 3 [5].

Tabel 3. Nilai dari P_{EC-R}

Type	MVA	Voltage	%PEC-R
	≤ 1		3 -8
Dry	≥ 1.5	5 kV HV	12 = 20
	≤ 1.5	15 kV HV	9 – 15
Oil	≤ 2.5	480 V LV	1
Oil - filled	2.5 – 5	481 V LV	1 – 5
	> 5	482 V LV	9 - 15

2.6 Perhitungan *Derating* Pada Trafo Akibat Harmonisa

Harmonisa arus menyebabkan memanasnya komponen transformator, mengakibatkan peningkatan rugi-rugi dan penurunan efisiensi transformator. Ketika efisiensi transformator menurun, daya pengenal transformator menurun.

Untuk menghitung penurunan daya yang terpasang pada trafo idigunakan metode perhitungan inilai **THDF** (Transformator Harmonic Derating Factor). THDF adalah nilai atau koefisien yang digunakan untuk menghitung kapasitansi baru (kVA baru) dari sebuah trafo. Pada dasarnya THDF pada trafo dipengaruhi oleh adanya THD pada trafo akibat penggunaan beban non linier pada isisi beban. Tingkat THD ditentukan terlebih dahulu dengan pengukuran. Sedangkan nilai THDF dapat ditentukan dengan rumus [5]:

kVA baru = THDF × kVA pengenal
(11)

$$THDF = \frac{1,414 \times (arus\ phase\ rms)}{(arus\ puncak\ phase\ sesaat)} \times 100\%$$

$$= \frac{1,414 \times (\frac{1}{3} \times (Ir+Is+It)rms)}{\frac{1}{3} \times (Ir+Is+It)puncak} \times 100\%$$

(12)

Dimana THDF adalah faktor derating pada trafo akibat harmonisa.

Pada kondisi ideal (gelombang sinus murni), dimana tidak terjadi gangguan harmonisa pada sistem, nilai THDF = 1 sehingga tidak terjadi penurunan daya trafo..

3. METODE PENELITIAN

Penelitian ini dilaksanakan di RS BIMC Nusa Dua. Waktu pelaksanaan dimulai dari bulan April 2021. Dalam penelitian ini data-data yang diperoleh dianalisis dengan prosedur sebagai berikut:

- Mencari data THD arus dan tegangan pada MDP di RS BIMC Nusa Dua.
- Hitung SC_{ratio} dan tentukan THD_I maksimum yang digunakan menurut standar IEEE 519-2014.
- 3. Membuat model sistem.

- 4. Melakukan simulasi pada kondisi *existing*.
- 5. Melakukan simulasi dengan mengoperasikan filter aktif.
- 6. Analisa THD_I, rugi-rugi daya dan *derating* trafo.
- 7. Membuat kesimpulan.

4. HASIL DAN PEMBAHASAN

4.1 Hasil Pengukuran

Sistem kelistrikan rumah sakit BIMC Nusa Dua dipasok idari ijaringan PLN melalui penyulang Nusa Dua. Trafo yang terpasang memiliki tegangan 880 kVA, tegangan primer 20 kV dan tegangan sekunder 400 V, dengan faktor daya 0,91% dan impedansi 4%. Pada saat beban puncak, pengukuran dilakukan langsung pada MDP dengan alat Power Logic PM800 yang sudah terpasang pada MDP. Berdasarkan hasil pengukuran, data MDP ditunjukkan pada Tabel 4.

Tabel 4. Hasil Pengukuran di MDP

Phasa	Daya Aktif (W)	Daya Semu (VA)	Arus Beban (A)
R	59029	64867	294
S	67629	74311	346
Т	67623	74321	344

4.2 Batas maksimum THD_I di RS BIMC Nusa Dua

Untuk menentukan nilai maksimum THD_I, pertama-tama harus diketahui rasio hubungan pendek (SC_{ratio}) menurut IEEE 519-2014. Untuk menentukan nilai SC_{ratio} , harus terlebih dahulu menentukan arus hubung singkat (I_{SC}) dan arus beban penuh (I_L). Hasil perhitungan nilai SC_{ratio} untuk masing-masing SDP ditunjukkan pada Tabel 5.

Tabel 5. I_{SC}, I_L, dan SC_{ratio} masing-masing phasa

Phasa	I _{SC} (A)	I _L (A)	SC _{ratio}
R	25690	294	12
S	25690	346	12
Т	25690	344	12

4.3 Pemodelan dan Simulai THD_I

Pemodalan dan simulasi THD₁ dilakukan dengan bantuan software *Matlab* dengan menggunakan metode FFT.

Gambar 4. Pemodelan Sistem

Dimana hasil simulasi pada kondisi *existing* ditunjukkan pada Gambar 5.

Gambar 5. Sinyal arus dan orde harmonisa

4.4 Pengoperasian Filter Aktif

Persamaan (2) hingga (9)digunakan untuk untuk menentukan parameter filter isesuai dengan data pengukuran dan perhitungan awal yang dilakukan. Hasil perhitungan parameter filter aktif dapat dilihat pada Tabel 6.

Tabel 6. Parameter input filter aktif

Spesifikasi	Nilai	
Q _C	222,62 kVar	
V	0,38 kV	
С	4,9 x 10 ⁻³ F	
X _C	0,65 Ω	
L	2,5 x 10 ⁻⁴ H	
X_L	0,079 Ω	
R	1,58 Ω	

Input parameter spesifikasi filter aktif pada simulasi Matlab dapat dilihat pada gambar 6.

Gambar 6. Block parameter: series RLC branch

4.5 Simulasi sistem setelah penambahan filter aktif

Dengan penambahan filter aktif pada simulasi bentuk gelombangnya mengalami perubahan, dimana nilai harmonisa dapat diturunkan oleh filter aktif yang terpasang. Berikut ini adalah tampilan bentuk gelombang dan orde harmonisa hasil running setelah penambahan filter aktif.

Gambar 7. Sinyal arus, THD_I dan Orde harmonisa setelah pemasangan filter

Penurunan THD_I akan memperbaiki bentuk gelombang dengan cacat lebih sedikit daripada bentuk gelombang sebelum filter aktif ditambahkan.

4.6 Rugi-Rugi Daya Listrik

Berdasarkan data dari sistem kelistrikan yang diketahui bahwa :

S = 800 kVA

 $\cos \varphi = 0.91$

Sehingga nilai $P_{\text{Base satu phasa}}$ dapat dengan persamaan berikut :

$$P_{base 1\Phi} = \frac{800 \times 0.91}{\sqrt{3}} = 420.31 \, kW$$

4.6.1 Rugi-Rugi Daya Listrik pada Kondisi *Exiting*

Losses pada phasa R orde pertama setelah terpengaruh harmonisa dapat dicari dengan cara berikut:

$$I_{h1}(p.u) = \frac{I_{h1}}{I_1} = \frac{210.7}{210.7} = 1,00 (p.u)$$

Tabel 7 perhitungan losses pada phasa R

Orde	Ja (%)	<u>la</u> (A)	Ja (pu)	In ² (pm)	I _h ² x h ² (pu)
1	100	210,7	1,000	- 1	1
3	2,61	5,5	0,026	0,00068	0,00613
5	9,61	20,2	0,096	0,00924	0,23088
7	5,11	10.8	0,051	0,00924	0,12795
9	0,32	0.7	0,003	0,00261	0,00083
11	3,07	6,5	0,031	0,00001	0,11404
13	1,61	3,4	0,016	0,00094	0,04381
15	0,25	0,5	0,003	0.00026	0.00141
17	1,14	2,4	0.011	0,00001	0,03756
19	0,53	1,1	0,005	0,00003	0,01014
	Jun	ılah		1,01390	1,57274

Berdasarkan Tabel 7 diatas, maka perhitungan rugi-rugi beban (P_{LL}) dalam per unit pada phasa R adalah sebagai berikut:

$$P_{LL\ phasa\ R}(p.u) = 1,01390 + 0,57274 \times 0,01$$

= 1,02963 (p.u)
 $P_{LL\ phasa\ R}(kW) = 0,02963 \times 420,31$
= 7.70 kW

Demikian pula dengan cara yang sama, kerugian diperoleh pada phasa S dan T seperti yang ditunjukkan pada Tabel 8.

Tabel 8 *load losses* untuk masing-masing phasa

vvvvvv						
Phasa	Losses (p.u)	Phase 1 phasa (kW)	Losses (kW)			
R	0,02963	420,31	12,45			
S	0,03116	420,31	13,10			
Т	0,03019	420,31	12,69			

4.6.2 Rugi-Rugi Daya Listrik setelah pengoperasian filter aktif

Losses pada phasa R orde pertama setelah pengoperasian filter aktif dapat dicari dengan cara berikut:

$$I_{h1}(p.u) = \frac{I_{h1}}{I_1} = \frac{676.8}{676.8} = 1,00 (p.u)$$

Tabel 9 perhitungan losses pada phasa R

Orde	In (%)	I _k (A)	In (pu)	$I_{h^2}(pu)$	$Ih^2 \times h^2$ (pu)
1	100	957,20	1,000	1	1
3	3.95	37,809	0,0395	0,00156025	0,01404225
5	0,33	3,159	0,0033	0,00001089	0,00027225
7	0.05	0,479	0,0005	0,00000025	0,00001225
9	0,02	0,191	0.0002	0,00000004	0,00000324
11	0,01	0,096	0,0001	0,00000001	0,00000121
13	0	0	0	0	11/0/2004
15	0	0	0	0	
17	0	0	0	0	
19	0	0	0	0	
	Jun	nlah		1,00157144	1,0143312

Berdasarkan Tabel 9 diatas, maka perhitungan rugi-rugi beban (P_{LL}) dalam per unit pada phasa R adalah sebagai berikut:

$$P_{LL\ phasa\ R}(p.u) = 1,00157 + 1,01433 \times 0,01$$

= 1,01172 (p.u)
 $P_{LL\ phasa\ R}(kW) = 0,01172 \times 420,31$
= 4.92 kW

Demikian pula dengan cara yang sama, kerugian diperoleh pada phasa S dan T seperti yang ditunjukkan pada Tabel 10.

Tabel 10 *load losses* untuk masing-masing phasa

Phasa	Losses (p.u)	PBase 1 phasa (kW)	Losses (kW)
R	0,01172	420,31	4,92
S	0,01164	420,31	4,89
T	0,01110	420.31	4,66

4.7 Kapasitas kerja trafo

4.7.1 Kapasitas kerja trafo pada kondisi existing

Nilai THDF pada kondisi *existing* ditentukan dengan menggunakan persamaan (11) dan (12).

$$= \frac{1,414x(\frac{1}{3}x(210,7+223,5+215,7)}{\frac{1}{3}x(298+316,1+305,1)}x100\%$$

= 99,96%

$$kVA \ baru = THDF \times kVA \ pengenal$$

= 99,96% × 800 kVA
= 799,68 kVA

Derating trafo (kVA) = 800 - 799,68

$$= 0.32 \, kVA$$

Derating Trafo (%) =
$$\frac{0.32}{800} \times 100\%$$

= 0.04%

4.7.2 Kapasitas kerja trafo setelah pengoperasian filter aktif

Nilai THDF pada kondisi setelah pengoperasian filter aktif ditentukan dengan menggunakan persamaan (11) dan (12).

THDF

$$= \frac{1,414x(\frac{1}{3}x(676,8+678,7+689,3)}{\frac{1}{3}x(957,2+959,8+974,8)}x100\%$$

= 99,98%

$$kVA \ baru = THDF \times kVA \ pengenal$$

= 99,98% × 800 kVA
= 799,84 kVA

Derating trafo (
$$kVA$$
) = 800 - 799,68
= 0,16 kVA

Derating Trafo (%) =
$$\frac{0.16}{800} \times 100\%$$

= 0.02%

5. KESIMPULAN

Berdasarkan analisis hasil simulasi, diperoleh hasil sebagai berikut.

- Pada kondisi *existing* presentase THD_I pada sistem kelistrikan RS BIMC Nusa Dua sebesar phasa R = 11,85%, phasa S = 12,41% dan phasa T = 12,02%, sedangkan THD_I setelah pengoperasian filter aktif adalah phasa R = 3,96%, phasa S = 3,88%, dan phasa T = 3,17%.
- Pada kondisi existing total rugi-rugi daya akibat pengaruh harmonisa sebesar 38,24 kW, sedangkan rugi-rugi setelah dioperasikannya filter aktif adalah 14,47 kW.
- Penurunan kapasitas kerja trafo pada kondisi existing adalah 0,32 kVA (0,04%), setelah pengoperasian filter aktif penurunan kapasitas kerja trafo menjadi 0,16 kVA (0,02%).

6. DAFTAR PUSTAKA

- [1] Dugan, R.C; McGranaghan, S. Santoso, and H. W. Beaty, Electrical Power System Quality, Third Edition. McGraw Hill Professional, 2012.
- [2] Duffey, C.K. 1989. Update of Harmonic Standard IEEE-51. IEEE Transaction on Industry Application, Vol.25. No.6, November 1989.
- [3] Dugan, R.C; Rizy. 2001. Harmonic Considerations for Electrical Distribution Feeders. National Technical Information Service, Report No. ORNL/Sub/81-95011/4 (Cooper Power System as Bulletin 87011, "Electrical Power System Harmonics, Design Guide").
- [4] "Filter Aktif High Pass (HPF)", 9-Sept-2021.
- [5] Rinas, I.W. Studi Analisis Losses dan Derating Akibat Pengaruh THD pada Gardu Transformator Daya di Fakultas Teknik Universitas Udayana. Teknologi Elektro, 2012.
- [6]. IEEE standard 519-2014.