Verifying Parallel Programs with MPI-Spin Part 4: Numerical Computation

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware

EuroPVM/MPI 2007 Paris, France 30 September 2007

Overview

- 1. Goal: prove that program computes correct result
- 2. Symbolic execution
 - ullet Performing symbolic arithmetic in MPI-SPIN
- 3. Functional equivalence
- 4. Three types of numerical equivalence
- 5. Diffusion revisited
- 6. Dealing with branches: the path condition

• what does it mean to say program computes correct result?

- what does it mean to say program computes correct result?
- verification requires specification
 - definition of correct

Goal

- what does it mean to say program computes correct result?
- verification requires specification
 - definition of correct
- our specification
 - a trusted sequential version of program

Goal

- what does it mean to say program computes correct result?
- verification requires specification
 - definition of correct
- our specification
 - a trusted sequential version of program
- our method

Goal

- use MPI-SPIN to prove the sequential and parallel program are functionally equivalent
 - i.e., produce same output for any given input
- reduces the problem of verifying the correctness of a parallel numerical program to the problem of verifying the correctness of a sequential numerical program
- uses symbolic execution to model floating-point computation

How do we model floating-point computation?

- one double-precision floating-point variable has 2⁶⁴ possible states
- abstraction?

How do we model floating-point computation?

- one double-precision floating-point variable has 2⁶⁴ possible states
- abstraction?

Input: symbolic constants $x_0, x_1, ...$ Output: symbolic expressions in the x_i

Performing symbolic arithmetic in MPI-SPIN

- type
 - MPI_Symbolic

Performing symbolic arithmetic in MPI-Spin

- type
 - MPI_Symbolic
- constants of type MPI_Symbolic
 - 1. SYM_ZERO: zero (0)
 - 2. SYM_ONE: one (1)
 - 3. SYM_FALSE: the boolean value false
 - 4. SYM_TRUE: the boolean value true

Performing symbolic arithmetic in MPI-Spin

- type
 - MPI_Symbolic
- constants of type MPI_Symbolic
 - 1. SYM_ZERO: zero (0)
 - 2. SYM_ONE: one (1)
 - 3. SYM_FALSE: the boolean value false
 - 4. SYM_TRUE: the boolean value true
- basic functions
 - 1. MPI_Symbolic SYM_intConstant(int n)
 - returns symbolic expression with single node containing n
 - e.g., 4
 - 2. MPI_Symbolic SYM_symbolicConstant(int i)
 - returns symbolic expression with single node containing xi
 - e.g., x₄
 - usually used to model input
 - also used to represent floating-point constants $(\pi, e, ...)$

Forming new symbolic expressions from old

- the following return an MPI_Symbolic of numeric type
 - SYM_add(MPI_Symbolic x, MPI_Symbolic y)
 - 2. SYM_subtract(MPI_Symbolic x, MPI_Symbolic y)
 - 3. SYM_multiply(MPI_Symbolic x, MPI_Symbolic y)
 - 4. SYM_divide(MPI_Symbolic x, MPI_Symbolic y)
 - 5. SYM_sqrt(MPI_Symbolic x)
 - 6. SYM_abs(MPI_Symbolic x)
 - 7. SYM_if(MPI_Symbolic b, MPI_Symbolic x,
 MPI_Symbolic y)
 - (b ? x : y)

Forming new symbolic expressions from old

- the following return an MPI_Symbolic of boolean type
 - 1. SYM_equals(MPI_Symbolic x, MPI_Symbolic y)
 - /* x == y */
 - 2. SYM_nequals(MPI_Symbolic x, MPI_Symbolic y)
 - /* x != y */
 - SYM_lessThan(MPI_Symbolic x, MPI_Symbolic y)
 - 4. SYM_greaterThan(MPI_Symbolic x, MPI_Symbolic y)
 - SYM_lessThanOrEquals(MPI_Symbolic x, MPI_Symbolic y)
 - SYM_greaterThanOrEquals(MPI_Symbolic x, MPI_Symbolic y)
 - 7. SYM_conjunct(MPI_Symbolic p, MPI_Symbolic q)
 - /* p && q */
 - 8. SYM_negate(MPI_Symbolic p)
 - /* !p */

Problem

- symbolic expressions can get big
- there can be millions of states
- storing all symbolic expressions in every state would quickly consume all memory

Problem

- symbolic expressions can get big
- there can be millions of states
- storing all symbolic expressions in every state would quickly consume all memory

Solution: Value numbering

- place all symbolic expressions in a shared expression table
 - every expression has a unique ID number

Problem

- symbolic expressions can get big
- there can be millions of states
- storing all symbolic expressions in every state would quickly consume all memory

Solution: Value numbering

- place all symbolic expressions in a shared expression table
 - every expression has a unique ID number
- in the model...
 - replace all floating-point values with ID numbers

Problem

- symbolic expressions can get big
- there can be millions of states
- storing all symbolic expressions in every state would quickly consume all memory

Solution: Value numbering

- place all symbolic expressions in a shared expression table
 - every expression has a unique ID number
- in the model...
 - replace all floating-point values with ID numbers
 - replace all floating-point operations with symbolic operations
 - to evaluate x + y:
 - is x + y already in the table?
 - if yes, return its ID number
- if no, create new table entry and return new ID number S.F.Siegel \diamond Verifying Programs with MPI-Spin, 4: Numerical Computation

i e_i interpretation

i	ei	interpretation
	(-, -, -,	0.0
1	(L, 1.0)	1.0

i	ei	interpretation
0	(L, 0.0)	0.0
1	(L, 1.0)	1.0
2	(X,0)	<i>x</i> ₀
3	(X,1)	x_1
4	(X,2)	<i>x</i> ₂
5	(X,3)	<i>X</i> 3
6	(X,4)	<i>X</i> ₄
7	(X,5)	<i>X</i> ₅
8	(X,6)	<i>x</i> ₆
9	(X,7)	<i>X</i> ₇

i	ei	interpretation
0	(L, 0.0)	0.0
1	(L, 1.0)	1.0
2	(X,0)	<i>x</i> ₀
3	(X, 1)	<i>x</i> ₁
4	(X, 2)	<i>x</i> ₂
5	(X,3)	<i>X</i> 3
6	(X,4)	<i>X</i> ₄
7	(X,5)	<i>X</i> ₅
8	(X,6)	<i>x</i> ₆
9	(X,7)	<i>X</i> ₇
10	(*, 2, 6)	<i>x</i> ₀ <i>x</i> ₄

i	ei	interpretation
0	(L, 0.0)	0.0
1	(L, 1.0)	1.0
2	(X,0)	<i>x</i> ₀
3	(X, 1)	<i>x</i> ₁
4	(X, 2)	<i>x</i> ₂
5	(X,3)	<i>X</i> 3
6	(X,4)	<i>X</i> ₄
7	(X,5)	<i>x</i> ₅
8	(X,6)	<i>x</i> ₆
9	(X,7)	<i>X</i> ₇
10	(*, 2, 6)	<i>X</i> ₀ <i>X</i> ₄
11	(+,0,10)	$0.0 + x_0 x_4$

i	ei	interpretation
0	(L, 0.0)	0.0
1	(L, 1.0)	1.0
2	(X,0)	<i>x</i> ₀
3	(X, 1)	<i>x</i> ₁
4	(X, 2)	<i>x</i> ₂
5	(X,3)	<i>X</i> 3
6	(X,4)	<i>X</i> ₄
7	(X,5)	<i>x</i> ₅
8	(X,6)	<i>x</i> ₆
9	(X,7)	<i>X</i> ₇
10	(*, 2, 6)	<i>X</i> ₀ <i>X</i> ₄
11	(+,0,10)	$0.0 + x_0 x_4$
12	(*,3,8)	<i>X</i> ₁ <i>X</i> ₆

i	e _i	interpretation
0	(L, 0.0)	0.0
1	(L, 1.0)	1.0
2	(X,0)	<i>x</i> ₀
3	(X, 1)	<i>x</i> ₁
4	(X, 2)	<i>X</i> ₂
5	(X,3)	<i>X</i> ₃
6	(X,4)	<i>X</i> ₄
7	(X,5)	<i>X</i> ₅
8	(X,6)	<i>x</i> ₆
9	(X,7)	<i>X</i> ₇
10	(*, 2, 6)	<i>X</i> ₀ <i>X</i> ₄
11	(+,0,10)	$0.0 + x_0 x_4$
12	(*,3,8)	<i>x</i> ₁ <i>x</i> ₆

		interpretation
13	(+, 11, 12)	$(0.0+x_0x_4)+x_1x_6$

i	e _i	interpretation
0	(L, 0.0)	0.0
1	(L, 1.0)	1.0
2	(X,0)	<i>x</i> ₀
3	(X, 1)	<i>x</i> ₁
4	(X, 2)	<i>X</i> ₂
5	(X,3)	<i>X</i> ₃
6	(X,4)	<i>X</i> ₄
7	(X,5)	<i>X</i> ₅
8	(X,6)	<i>x</i> ₆
9	(X,7)	<i>X</i> ₇
10	(*, 2, 6)	<i>X</i> ₀ <i>X</i> ₄
11	(+,0,10)	$0.0 + x_0 x_4$
12	(*,3,8)	x_1x_6

	l	
	e _i	interpretation
13	(+, 11, 12)	$(0.0+x_0x_4)+x_1x_6$
14	(*, 2, 7)	x_0x_5

i	ei	interpretation
0	(L, 0.0)	0.0
1	(L, 1.0)	1.0
2	(X,0)	<i>x</i> ₀
	(X, 1)	<i>x</i> ₁
4	(X, 2)	<i>x</i> ₂
5	(X,3)	<i>x</i> ₃
6	(X,4)	<i>X</i> ₄
7	(X,5)	<i>X</i> ₅
8	(X,6)	<i>x</i> ₆
9	(X,7)	<i>x</i> ₇
10	(*, 2, 6)	<i>X</i> ₀ <i>X</i> ₄
11	(+,0,10)	$0.0 + x_0 x_4$
12	(*,3,8)	x_1x_6

	ei	interpretation
13	(+, 11, 12)	$(0.0+x_0x_4)+x_1x_6$
14	(*, 2, 7)	x_0x_5
15	(+,0,14)	$(0.0+x_0x_4)+x_1x_6$ x_0x_5 $0.0+x_0x_5$

i	ei	interpretation
0	(L, 0.0)	0.0
1	(L, 1.0)	1.0
2	(X,0)	<i>x</i> ₀
3	(X,1)	<i>x</i> ₁
4	(X, 2)	<i>x</i> ₂
5	(X,3)	<i>X</i> ₃
6	(X,4)	<i>X</i> ₄
7	(X,5)	<i>X</i> ₅
8	(X,6)	<i>x</i> ₆
9	(X, 7)	<i>X</i> ₇
10	(*, 2, 6)	<i>X</i> ₀ <i>X</i> ₄
11	(+,0,10)	$0.0 + x_0 x_4$
12	(*,3,8)	x_1x_6

	ei	interpretation
13	(+, 11, 12)	$(0.0+x_0x_4)+x_1x_6$
14	(*, 2, 7)	x_0x_5
15	(+,0,14)	$0.0 + x_0 x_5$
16	(*, 3, 9)	$(0.0+x_0x_4)+x_1x_0$ x_0x_5 $0.0+x_0x_5$ x_1x_7

i	ei	interpretation
0	(L, 0.0)	0.0
1	(L, 1.0)	1.0
2	(X,0)	<i>x</i> ₀
3	(X, 1)	<i>x</i> ₁
4	(X, 2)	<i>x</i> ₂
5	(X,3)	<i>X</i> ₃
6	(X,4)	<i>X</i> ₄
7	(X,5)	<i>x</i> ₅
8	(X,6)	<i>x</i> ₆
9	(X,7)	<i>x</i> ₇
10	(*, 2, 6)	<i>X</i> ₀ <i>X</i> ₄
11	(+,0,10)	$0.0 + x_0 x_4$
12	(*,3,8)	x_1x_6

		•
i	9	interpretation
13	(+, 11, 12)	$ \begin{array}{c} (0.0+x_0x_4)+x_1x_6 \\ x_0x_5 \\ 0.0+x_0x_5 \end{array} $
14	(*, 2, 7)	x_0x_5
15	(+,0,14)	$0.0 + x_0 x_5$
16	(*,3,9)	<i>x</i> ₁ <i>x</i> ₇
17	(+, 15, 16)	$(0.0+x_0x_5)+x_1x_7$
	'	

i	e _i	interpretation
0	(L, 0.0)	0.0
1	(L, 1.0)	1.0
2	(X,0)	<i>x</i> ₀
3	(X, 1)	<i>x</i> ₁
4	(X, 2)	<i>x</i> ₂
5	(X,3)	<i>X</i> ₃
6	(X,4)	<i>X</i> ₄
7	(X,5)	<i>X</i> ₅
8	(X,6)	<i>x</i> ₆
9	(X,7)	<i>X</i> ₇
10	(*, 2, 6)	<i>X</i> ₀ <i>X</i> ₄
11	(+,0,10)	$0.0 + x_0 x_4$
12	(*,3,8)	<i>x</i> ₁ <i>x</i> ₆

i	e _i	interpretation
13	(+, 11, 12)	$(0.0+x_0x_4)+x_1x_6$
14	(*, 2, 7)	x_0x_5
15	(+,0,14)	$0.0 + x_0 x_5$
16	(*,3,9)	<i>X</i> ₁ <i>X</i> ₇
17	(+, 15, 16)	$(0.0+x_0x_5)+x_1x_7$
18	(*, 4, 6)	<i>X</i> ₂ <i>X</i> ₄

i	ei	interpretation
0	(L, 0.0)	0.0
1	(L, 1.0)	1.0
2	(X,0)	<i>x</i> ₀
3	(X, 1)	<i>x</i> ₁
4	(X, 2)	<i>x</i> ₂
5	(X,3)	<i>X</i> ₃
6	(X,4)	<i>X</i> ₄
7	(X,5)	<i>x</i> ₅
8	(X,6)	<i>x</i> ₆
9	(X,7)	<i>x</i> ₇
10	(*, 2, 6)	<i>X</i> ₀ <i>X</i> ₄
11	(+,0,10)	$0.0 + x_0 x_4$
12	(*,3,8)	x_1x_6

i	ei	interpretation
13	(+, 11, 12)	$(0.0+x_0x_4)+x_1x_6$
14	(*, 2, 7)	x_0x_5
15	(+,0,14)	$0.0 + x_0 x_5$
16	(*,3,9)	<i>X</i> ₁ <i>X</i> ₇
17	(+, 15, 16)	$(0.0+x_0x_5)+x_1x_7$
18	(*, 4, 6)	<i>X</i> ₂ <i>X</i> ₄
19	(+,0,12)	$0.0 + x_2x_4$

i	ei	interpretation
0	(L, 0.0)	0.0
1	(L, 1.0)	1.0
2	(X,0)	<i>x</i> ₀
	(X, 1)	<i>x</i> ₁
4	(X,2)	<i>x</i> ₂
5	(X,3)	<i>x</i> ₃
6	(X,4)	<i>X</i> ₄
7	(X,5)	<i>X</i> ₅
8	(X,6)	<i>x</i> ₆
9	(X,7)	<i>x</i> ₇
10	(*, 2, 6)	<i>X</i> ₀ <i>X</i> ₄
11	(+,0,10)	$0.0 + x_0 x_4$
12	(*,3,8)	x_1x_6

i	e _i	interpretation
13	(+, 11, 12)	$(0.0+x_0x_4)+x_1x_6$
14	(*, 2, 7)	<i>x</i> ₀ <i>x</i> ₅
15	(+,0,14)	$0.0 + x_0 x_5$
16	(*, 3, 9)	<i>x</i> ₁ <i>x</i> ₇
17	(+, 15, 16)	$(0.0+x_0x_5)+x_1x_7$
18	(*, 4, 6)	<i>X</i> ₂ <i>X</i> ₄
19	(+,0,12)	$0.0+x_2x_4$
20	(*,5,8)	<i>X</i> ₃ <i>X</i> ₆

i	ei	interpretation
0	(L, 0.0)	0.0
1	(L, 1.0)	1.0
2	(X,0)	<i>x</i> ₀
3	(X, 1)	<i>x</i> ₁
4	(X, 2)	<i>X</i> ₂
5	(X,3)	<i>X</i> ₃
6	(X,4)	<i>X</i> ₄
7	(X,5)	<i>X</i> ₅
8	(X,6)	<i>x</i> ₆
9	(X,7)	<i>x</i> ₇
10	(*, 2, 6)	<i>X</i> ₀ <i>X</i> ₄
11	(+,0,10)	$0.0 + x_0 x_4$
12	(*,3,8)	x_1x_6

i	ei	interpretation
13	(+, 11, 12)	$(0.0+x_0x_4)+x_1x_6$
14	(*, 2, 7)	x_0x_5
15	(+,0,14)	$0.0 + x_0 x_5$
16	(*, 3, 9)	<i>x</i> ₁ <i>x</i> ₇
17	(+, 15, 16)	$(0.0+x_0x_5)+x_1x_7$
18	(*, 4, 6)	X2X4
19	(+,0,12)	$0.0+x_2x_4$
20	(*,5,8)	<i>X</i> ₃ <i>X</i> ₆
21	(+, 19, 20)	$(0.0+x_2x_4)+x_3x_6$
	•	

i	eį	interpretation
0	(L, 0.0)	0.0
1	(L, 1.0)	1.0
2	(X,0)	<i>x</i> ₀
	(X, 1)	<i>x</i> ₁
4	(X,2)	<i>x</i> ₂
5	(X,3)	<i>x</i> ₃
6	(X,4)	<i>X</i> ₄
7	(X,5)	<i>X</i> ₅
8	(X,6)	<i>x</i> ₆
9	(X,7)	<i>x</i> ₇
10	(*, 2, 6)	<i>X</i> ₀ <i>X</i> ₄
11	(+,0,10)	$0.0 + x_0 x_4$
12	(*,3,8)	x_1x_6

i	ei	interpretation
13	(+, 11, 12)	$(0.0+x_0x_4)+x_1x_6$
14	(*, 2, 7)	x_0x_5
15	(+,0,14)	$0.0 + x_0 x_5$
16	(*,3,9)	<i>x</i> ₁ <i>x</i> ₇
17	(+, 15, 16)	$(0.0+x_0x_5)+x_1x_7$
18	(*, 4, 6)	<i>X</i> ₂ <i>X</i> ₄
19	(+,0,12)	$0.0 + x_2x_4$
20	(*,5,8)	<i>x</i> ₃ <i>x</i> ₆
21	(+, 19, 20)	$(0.0+x_2x_4)+x_3x_6$
22	(*, 4, 7)	<i>X</i> ₂ <i>X</i> ₅

i	e _i	interpretation
0	(L, 0.0)	0.0
1	(L, 1.0)	1.0
2	(X,0)	<i>x</i> ₀
3	(X, 1)	<i>x</i> ₁
4	(X, 2)	<i>x</i> ₂
5	(X,3)	<i>X</i> 3
6	(X,4)	<i>X</i> ₄
7	(X,5)	<i>X</i> ₅
8	(X,6)	<i>x</i> ₆
9	(X,7)	<i>X</i> ₇
10	(*, 2, 6)	<i>X</i> ₀ <i>X</i> ₄
11	(+,0,10)	$0.0 + x_0 x_4$
12	(*,3,8)	x_1x_6

i	e _i	interpretation
13	(+, 11, 12)	$(0.0+x_0x_4)+x_1x_6$
14	(*, 2, 7)	x_0x_5
15	(+,0,14)	$0.0 + x_0 x_5$
16	(*,3,9)	<i>x</i> ₁ <i>x</i> ₇
17	(+, 15, 16)	$(0.0+x_0x_5)+x_1x_7$
18	(*, 4, 6)	<i>X</i> ₂ <i>X</i> ₄
19	(+,0,12)	$0.0+x_2x_4$
20	(*,5,8)	<i>x</i> ₃ <i>x</i> ₆
21	(+, 19, 20)	$(0.0+x_2x_4)+x_3x_6$
22	(*, 4, 7)	<i>X</i> ₂ <i>X</i> ₅
23	(+,0,22)	$0.0 + x_2 x_5$
,	,	

i l	e _i	interpretation	<i>i</i>	ei	interpretation
0	(L, 0.0)	0.0	13	<u> </u>	$(0.0+x_0x_4)+x_1x_6$
1	(L, 0.0) $(L, 1.0)$	1.0	14	(*, 2, 7)	X_0X_5
2	(X,0)		15	(+, 0, 14)	$0.0+x_0x_5$
3	()	<i>x</i> ₀	16		
	(X,1)	x_1		(*,3,9)	<i>X</i> ₁ <i>X</i> ₇
4	(X,2)	<i>X</i> ₂	17	(+, 15, 16)	$(0.0+x_0x_5)+x_1x_7$
5	(X,3)	<i>X</i> 3	18	(*, 4, 6)	<i>X</i> ₂ <i>X</i> ₄
6	(X,4)	<i>X</i> ₄	19	(+,0,12)	$0.0 + x_2 x_4$
7	(X,5)	<i>X</i> ₅	20	(*, 5, 8)	<i>x</i> ₃ <i>x</i> ₆
8	(X,6)	<i>x</i> ₆	21	(+, 19, 20)	$(0.0+x_2x_4)+x_3x_6$
9	(X, 7)	<i>x</i> ₇	22	(*, 4, 7)	x_2x_5
10	(*, 2, 6)	<i>X</i> ₀ <i>X</i> ₄	23	(+,0,22)	$0.0 + x_2x_5$
11	(+,0,10)	$0.0 + x_0 x_4$	24	(*, 5, 9)	X3X7
12	(*,3,8)	x_1x_6			

i	ei	interpretation	i	ei	interpretation
0	(L, 0.0)	0.0	13	(+, 11, 12)	$(0.0+x_0x_4)+x_1x_6$
1	(L, 1.0)	1.0	14	(*, 2, 7)	x_0x_5
2	(X,0)	<i>x</i> ₀	15	(+,0,14)	$0.0 + x_0 x_5$
3	(X,1)	<i>x</i> ₁	16	(*,3,9)	<i>X</i> ₁ <i>X</i> ₇
4	(X, 2)	<i>x</i> ₂	17	(+, 15, 16)	$(0.0+x_0x_5)+x_1x_7$
5	(X,3)	<i>X</i> ₃	18	(*, 4, 6)	<i>x</i> ₂ <i>x</i> ₄
6	(X,4)	<i>X</i> ₄	19	(+,0,12)	$0.0 + x_2x_4$
7	(X,5)	<i>X</i> ₅	20	(*,5,8)	x_3x_6
8	(X,6)	<i>x</i> ₆	21	(+, 19, 20)	$(0.0+x_2x_4)+x_3x_6$
9	(X,7)	<i>x</i> ₇	22	(*, 4, 7)	x_2x_5
10	(*, 2, 6)	<i>x</i> ₀ <i>x</i> ₄	23	(+,0,22)	$0.0 + x_2x_5$
11	(+,0,10)	$0.0 + x_0 x_4$	24	(*, 5, 9)	X3X7
12	(*, 3, 8)	x_1x_6	25	(+, 23, 24)	$(0.0+x_2x_5)+x_3x_7$

- Goal
 - prove sequential and parallel programs are functionally equivalent

- Goal
 - prove sequential and parallel programs are functionally equivalent
- Method
 - 1. construct symbolic model M_{seq} of sequential program
 - input: $\mathbf{x} = (x_1, \dots, x_n)$, output: \mathbf{y}

S.F.Siegel & Verifying Programs with MPI-Spin, 4: Numerical Computation

- Goal
 - prove sequential and parallel programs are functionally equivalent
- Method
 - 1. construct symbolic model M_{seq} of sequential program
 - input: $\mathbf{x} = (x_1, \dots, x_n)$, output: \mathbf{y}
 - 2. construct symbolic model M_{par} of parallel program
 - input: $\mathbf{x} = (x_1, \dots, x_n)$, output: \mathbf{y}'
 - using same symbolic table

- Goal
 - prove sequential and parallel programs are functionally equivalent
- Method
 - 1. construct symbolic model M_{seq} of sequential program
 - input: $\mathbf{x} = (x_1, \dots, x_n)$, output: \mathbf{y}
 - 2. construct symbolic model M_{par} of parallel program
 - input: $\mathbf{x} = (x_1, \dots, x_n)$, output: \mathbf{y}'
 - using same symbolic table
 - 3. create composite model *M*:
 - M_{seq} ; M_{par} ; assert($\mathbf{y} = \mathbf{y}'$);

- Goal
 - prove sequential and parallel programs are functionally equivalent
- Method
 - 1. construct symbolic model M_{seq} of sequential program
 - input: $\mathbf{x} = (x_1, \dots, x_n)$, output: \mathbf{y}
 - 2. construct symbolic model M_{par} of parallel program
 - input: $\mathbf{x} = (x_1, \dots, x_n)$, output: \mathbf{y}'
 - using same symbolic table
 - 3. create composite model *M*:
 - M_{seq} ; M_{par} ; assert($\mathbf{y} = \mathbf{y}'$);
 - 4. use MPI-SPIN to verify the assertion in *M* can never be violated

- Goal
 - prove sequential and parallel programs are functionally equivalent
- Method
 - 1. construct symbolic model M_{seq} of sequential program
 - input: $\mathbf{x} = (x_1, \dots, x_n)$, output: \mathbf{y}
 - 2. construct symbolic model M_{par} of parallel program
 - input: $\mathbf{x} = (x_1, \dots, x_n)$, output: \mathbf{y}'
 - using same symbolic table
 - 3. create composite model *M*:
 - M_{seq} ; M_{par} ; assert($\mathbf{y} = \mathbf{y}'$);
 - 4. use MPI-SPIN to verify the assertion in M can never be violated

MPI-SPIN returns either

• Yes: the property holds, or

- Goal
 - prove sequential and parallel programs are functionally equivalent
- Method
 - 1. construct symbolic model M_{seq} of sequential program
 - input: $\mathbf{x} = (x_1, \dots, x_n)$, output: \mathbf{y}
 - 2. construct symbolic model M_{par} of parallel program
 - input: $\mathbf{x} = (x_1, \dots, x_n)$, output: \mathbf{y}'
 - using same symbolic table
 - 3. create composite model *M*:
 - M_{seq} ; M_{par} ; assert($\mathbf{y} = \mathbf{y}'$);
 - use MPI-SPIN to verify the assertion in M can never be violated

MPI-SPIN returns either

- Yes: the property holds, or
- No + counterexample:
 - a trace through M_{seq}
 - ullet a trace through $M_{
 m par}$

Numerical Issues

Problem: distinct symbolic expressions should be considered "equivalent" in some cases

Example: real equivalence

•
$$((x_3 + x_1) + x_2) + x_0$$
 and $((x_0 + x_1) + x_2) + x_3$

Numerical Issues

Problem: distinct symbolic expressions should be considered "equivalent" in some cases

Example: real equivalence

• $((x_3 + x_1) + x_2) + x_0$ and $((x_0 + x_1) + x_2) + x_3$

S.F.Siegel \(\phi\) Verifying Programs with MPI-Spin, 4: Numerical Computation

• if computer arithmetic were real arithmetic then evaluating these expressions would yield identical results for any values of x_0, x_1, \ldots

Numerical Issues

Problem: distinct symbolic expressions should be considered "equivalent" in some cases

Example: real equivalence

- $((x_3 + x_1) + x_2) + x_0$ and $((x_0 + x_1) + x_2) + x_3$
- if computer arithmetic were real arithmetic then evaluating these expressions would yield identical results for any values of x_0, x_1, \ldots
- computer arithmetic is not real arithmetic
 - e.g., floating-point addition can never be associative
 - What every computer scientist should know about floating-point arithmetic
 - David Goldberg
 - ACM Computing Surveys 23(1), 1991

Numerical Issues, cont.

- in some cases, knowing the sequential and parallel programs are "real equivalent" is good enough
- if testing yields slightly different results...
 - ...but you know programs are real equivalent
 - then you know the only reason results differ is due to vagaries of floating-point arithmetic
 - and not to some error in your parallel program

- MPI-SPIN supports three different equivalence relations on the set of symbolic expressions
 - 0. Herbrand
 - 1. IEEE
 - 2. Real

- MPI-SPIN supports three different equivalence relations on the set of symbolic expressions
 - 0. Herbrand
 - 1. IEEE
 - 2. Real
- user specifies which numeric mode to use at command-line
 - ms -sym=0 ... for Herbrand, etc.

- MPI-SPIN supports three different equivalence relations on the set of symbolic expressions
 - 0. Herbrand
 - 1. IEEE
 - 2. Real
- user specifies which numeric mode to use at command-line
 - ms -sym=0 ... for Herbrand, etc.
- when a new expression is formed it is reduced to a canonical form before being inserted into table
 - goal is for each equivalence class to have at most one representative in table

- MPI-Spin supports three different equivalence relations on the set of symbolic expressions
 - Herbrand
 - 1. IFFF
 - Real
- user specifies which numeric mode to use at command-line
 - ms -sym=0 ... for Herbrand, etc.
- when a new expression is formed it is reduced to a canonical form before being inserted into table
 - goal is for each equivalence class to have at most one representative in table
 - this is not always achievable with 100% precision
 - estimation is always conservative
 - if MPI-SPIN says two expressions are equivalent then they are equivalent
 - if MPI-Spin says they are not equivalent then they might be equivalent

Herbrand equivalence

 two symbolic expressions are Herbrand equivalent iff they are identical

Herbrand equivalence

- two symbolic expressions are Herbrand equivalent iff they are identical
- numeric operations are treated as uninterpreted functions
- example: x and x + 0 are not Herbrand equivalent

Herbrand equivalence

- two symbolic expressions are Herbrand equivalent iff they are identical
- numeric operations are treated as uninterpreted functions
- example: x and x + 0 are not Herbrand equivalent
- Herbrand equivalence is the strongest form of equivalence
 - if two programs are Herbrand equivalent then they will produce the same result no matter how numeric operations are implemented
 - as long as the numeric operations are deterministic functions!
- in many complex examples, sequential and parallel versions are Herbrand equivalent
 - complexity lies elsewhere (e.g., in distribution of data, coordination of processes)

IEEE equivalence

- two expressions are IEEE equivalent if one can be reduced to the other using the following identities:
 - x + y = y + x
 - x + 0 = x = 0 + x
 - x x = 0
 - xy = yx
 - 1x = x = x1
 - x/x = 1 (if $x \neq 0$)

:

IEEE equivalence

- two expressions are IEEE equivalent if one can be reduced to the other using the following identities:
 - x + y = y + x
 - x + 0 = x = 0 + x
 - x x = 0
 - xy = yx
 - 1x = x = x1
 - x/x = 1 (if $x \neq 0$)
- rationale
 - all of these identities are guaranteed to hold on any platform conforming to the IEEE-754 standard

IEEE equivalence

- two expressions are IEEE equivalent if one can be reduced to the other using the following identities:
 - x + y = y + x
 - x + 0 = x = 0 + x
 - x x = 0
 - xy = yx
 - 1x = x = x1
 - x/x = 1 (if $x \neq 0$)
- rationale
 - all of these identities are guaranteed to hold on any platform conforming to the IEEE-754 standard
- IEEE equivalence is weaker than Herbrand equivalence
- two IEEE equivalent programs are guaranteed to produce the exact same results if executed on an IEEE-754-compliant platform

- two expressions are real equivalent if one can be reduced to the other using any of the field identities
 - all of the IEEE identities
 - associativity of addition and multiplication
 - x(1/x) = 1

- two expressions are real equivalent if one can be reduced to the other using any of the field identities
 - all of the IEEE identities
 - associativity of addition and multiplication

•
$$x(1/x) = 1$$
:

- real equivalence is weaker than IEEE equivalence
 - two real-equivalent programs may produce different results, even when executed on IEEE-compliant platforms

- two expressions are real equivalent if one can be reduced to the other using any of the field identities
 - all of the IEEE identities

S.F.Siegel & Verifying Programs with MPI-Spin, 4: Numerical Computation

associativity of addition and multiplication

•
$$x(1/x) = 1$$
:

- real equivalence is weaker than IEEE equivalence
 - two real-equivalent programs may produce different results, even when executed on IEEE-compliant platforms
- if arithmetic were infinite-precision, results would be identical

- two expressions are real equivalent if one can be reduced to the other using any of the field identities
 - all of the IEEE identities
 - associativity of addition and multiplication
 - x(1/x) = 1:
- real equivalence is weaker than IEEE equivalence
 - two real-equivalent programs may produce different results, even when executed on IEEE-compliant platforms
- if arithmetic were infinite-precision, results would be identical
- sometime real equivalence is the best that can be expected
 - suppose program uses MPI_Reduce or MPI_Allreduce
 - reduction operations is floating-point addition

- two expressions are real equivalent if one can be reduced to the other using any of the field identities
 - all of the IEEE identities
 - associativity of addition and multiplication
 - x(1/x) = 1
- real equivalence is weaker than IEEE equivalence
 - two real-equivalent programs may produce different results, even when executed on IEEE-compliant platforms
- if arithmetic were infinite-precision, results would be identical
- sometime real equivalence is the best that can be expected
 - suppose program uses MPI_Reduce or MPI_Allreduce
 - reduction operations is floating-point addition
 - MPI Standard permits MPI implementation to perform additions in any order
 - order used on one execution could be different than order used on another execution

Numerical model of diffusion2d

Composite model:

- diffusion/diffusion_sym.prom
- diffusion/diffusion_sym.c

The path correspondence problem

- the programs may contain branches on expressions that involve the symbolic variables
 - if $(x_0 \neq 0) \{...\}$ else $\{...\}$

The path correspondence problem

- the programs may contain branches on expressions that involve the symbolic variables
 - if $(x_0 \neq 0) \{...\}$ else $\{...\}$
- only want to compare the result of an execution path in the parallel program to the result of a corresponding path in the sequential program

Path conditions and domains

• enumerate all paths through the sequential program

S.F.Siegel \(\phi\) Verifying Programs with MPI-Spin, 4: Numerical Computation

• keeping track of the path condition for each path

$$\mathbf{y} = \begin{cases} f_1(\mathbf{x}) & \text{if } p_1(\mathbf{x}) \\ f_2(\mathbf{x}) & \text{if } p_2(\mathbf{x}) \\ \vdots & \vdots \\ f_n(\mathbf{x}) & \text{if } p_n(\mathbf{x}) \end{cases}$$

Path conditions and domains

- enumerate all paths through the sequential program
 - keeping track of the path condition for each path

$$\mathbf{y} = \begin{cases} f_1(\mathbf{x}) & \text{if } p_1(\mathbf{x}) \\ f_2(\mathbf{x}) & \text{if } p_2(\mathbf{x}) \\ \vdots & \vdots \\ f_n(\mathbf{x}) & \text{if } p_n(\mathbf{x}) \end{cases}$$

- each p_i determines a path domain $D_i = \{ \mathbf{x} \mid p_i(\mathbf{x}) \}$
- $D_i \cap D_j = \emptyset$ if $i \neq j$
- $\cup_i D_i$ is the whole input space

Path conditions and domains

- enumerate all paths through the sequential program
 - keeping track of the path condition for each path

$$\mathbf{y} = \begin{cases} f_1(\mathbf{x}) & \text{if } p_1(\mathbf{x}) \\ f_2(\mathbf{x}) & \text{if } p_2(\mathbf{x}) \\ \vdots & \vdots \\ f_n(\mathbf{x}) & \text{if } p_n(\mathbf{x}) \end{cases}$$

- each p_i determines a path domain $D_i = \{\mathbf{x} \mid p_i(\mathbf{x})\}$
- $D_i \cap D_j = \emptyset$ if $i \neq j$
- $\cup_i D_i$ is the whole input space

Solution to path correspondence problem:

- 1. discover path conditions/domains automatically
- 2. for each domain D_i : compare symbolic results of sequential and parallel programs for all inputs in D_i S.F.Siegel \land Verifying Programs with MPI-Spin, 4: Numerical Computation

Modeling conditional statements

To model the statement if $(x_0 \neq 0) \{...\}$ else $\{...\}$

```
p \leftarrow \text{true}; /* path condition */
b \leftarrow \mu(p, x_0 \neq 0);
if (b = -1) {
  if (choose()) {
    b \leftarrow 1; p \leftarrow p \land (x_0 \neq 0);
  } else {
    b \leftarrow 0; p \leftarrow p \land (x_0 = 0);
} if (b=1) \{ \dots \} else \{ \dots \}
```

$$\mu(p,q) = egin{cases} 1 & ext{if } p \Rightarrow q \ 0 & ext{if } p \Rightarrow
eg q \ -1 & ext{if don't know} \end{cases}$$

for boolean-valued symbolic expressions p, q

The method: incorporating path condition

- 1. construct symbolic model M_{seq} of sequential program
 - input: **x**, output: **y**, path condition: *p*
- 2. construct symbolic model M_{par} of parallel program
 - input: x, output: y', path condition: p
 - using same symbolic table

S.F.Siegel & Verifying Programs with MPI-Spin, 4: Numerical Computation

- 3. create composite model *M*:
 - $p \leftarrow \text{true}; \ M_{\text{seq}}; \ M_{\text{par}}; \ \text{assert}(\mathbf{y} = \mathbf{y}');$
- 4. use model checker to verify the assertion in *M* can never be violated

The method: incorporating path condition

- 1. construct symbolic model M_{seq} of sequential program
 - input: **x**, output: **y**, path condition: p
- 2. construct symbolic model M_{par} of parallel program
 - input: **x**, output: **y**', path condition: *p*
 - using same symbolic table
- 3. create composite model *M*:
 - $p \leftarrow \text{true}; \ M_{\text{seq}}; \ M_{\text{par}}; \ \text{assert}(\mathbf{y} = \mathbf{y}');$
- 4. use model checker to verify the assertion in *M* can never be violated

The model checker returns either

• Yes: the property holds, or

The method: incorporating path condition

- 1. construct symbolic model M_{seq} of sequential program
 - input: **x**, output: **y**, path condition: p
- 2. construct symbolic model M_{par} of parallel program
 - input: **x**, output: **y**', path condition: *p*
 - using same symbolic table
- 3. create composite model *M*:
 - $p \leftarrow \text{true}; \ M_{\text{seq}}; \ M_{\text{par}}; \ \text{assert}(\mathbf{y} = \mathbf{y}');$
- 4. use model checker to verify the assertion in *M* can never be violated

The model checker returns either

- Yes: the property holds, or
- No + counterexample:
 - a trace through M_{seq}
 - a trace through M_{par}
 - the values of p, \mathbf{y} , and \mathbf{y}'

Example: Gaussian elimination

- Step 1 Locate the leftmost column of A that does not consist entirely of zeros, if one exists. The top nonzero entry of this column is the pivot.
- Step 2 Interchange the top row with the pivot row, if necessary, so that the entry at the top of the column found in Step 1 is nonzero.
- Step 3 Divide the top row by pivot in order to introduce a leading 1.
- Step 4 Add suitable multiples of the top row to all other rows so that all entries above and below the leading 1 become zero.

 Repeat.

Gaussian elimination

transforms a matrix to its reduced row-echelon form:

S.F.Siegel & Verifying Programs with MPI-Spin, 4: Numerical Computation

$$\mathbf{x} = \begin{pmatrix} x_0 & x_1 \\ x_2 & x_3 \end{pmatrix} \quad \rightarrow \quad \mathbf{y} = \begin{pmatrix} y_0 & y_1 \\ y_2 & y_3 \end{pmatrix}$$

Gaussian elimination

transforms a matrix to its reduced row-echelon form:

$$\mathbf{x} = \begin{pmatrix} x_0 & x_1 \\ x_2 & x_3 \end{pmatrix} \quad \rightarrow \quad \mathbf{y} = \begin{pmatrix} y_0 & y_1 \\ y_2 & y_3 \end{pmatrix}$$

$$\mathbf{y} = \begin{cases} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & \text{if } x_0 = 0 \land x_2 = 0 \land x_1 = 0 \land x_3 = 0 \\ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} & \text{if } x_0 = 0 \land x_2 = 0 \land x_1 = 0 \land x_3 \neq 0 \\ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} & \text{if } x_0 = 0 \land x_2 = 0 \land x_1 \neq 0 \\ \begin{pmatrix} 1 & x_3/x_2 \\ 0 & 0 \end{pmatrix} & \text{if } x_0 = 0 \land x_2 \neq 0 \land x_1 = 0 \\ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \text{if } x_0 = 0 \land x_2 \neq 0 \land x_1 \neq 0 \\ \begin{pmatrix} 1 & x_1/x_0 \\ 0 & 0 \end{pmatrix} & \text{if } x_0 \neq 0 \land x_3 - x_2(x_1/x_0) = 0 \\ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \text{if } x_0 \neq 0 \land x_3 - x_2(x_1/x_0) \neq 0 \end{cases}$$

Numerical model of Gaussian Elimination

See

- mpi-spin/examples/gausselim/source/
- mpi-spin/examples/gausselim/model/