_	40	-	_	тШ
b	ЛΠ	法	Æ	珄

6.1 計算練習

「75° の三角比を求めたい. 」(← 目標)

L. D. L. who with	,	,	
/ 加法定理 ——			

加法定理を使って 75° の三角比を求めてみよう.

計算練習

(1) 15°の三角比を求めよ.

(2) $\frac{11}{12}\pi$ の三角比を求めよ.

- (3) α の動径が第 3 象限, β の動径が第 4 象限にあり, $\sin\alpha = -\frac{3}{5}, \cos\theta = \frac{4}{5}$ のとき, 以下の問いに答えよ. (a) $\cos\alpha$ の値を求めよ.
- (4) α の動径が第 2 象限, β の動径が第 1 象限にあり, $\sin\alpha = \frac{2}{3}, \cos\theta = \frac{3}{5} \text{ のとき}, \sin(\alpha-\beta), \cos(\alpha+\beta) \text{ の値を求めよ}.$

(b) $\sin \beta$ の値を求めよ.

(c) $\sin(\alpha + \beta)$ の値を求めよ.

(d) $\cos(\alpha - \beta)$ の値を求めよ.

0.2 証明			
/ 加法定理	Į ———		_
(`
l .			

< 証明 >

- 6.3 演習 $(1) \sin \alpha = \frac{3}{5} \left(0 < \alpha < \frac{\pi}{2}\right), \cos \beta = -\frac{4}{5} \left(\frac{\pi}{2} < \beta < \pi\right)$ のと き, $\sin(\alpha + \beta), \cos(\alpha \beta), \tan(\alpha \beta)$ の値を求めよ.
- (2) 2 直線 $y = 3x, y = \frac{1}{2}x$ のなす鋭角を求めよ.

(3) 原点を通り、直線 y=-x+1 と $\frac{1}{3}\pi$ の角をなす直線の方程式を求めよ.

7 加法定理の応用

7.1 復習

加法定理を思い出す.

(1) $\sin(\alpha + \beta)$

(2) $\sin(\alpha - \beta)$

(3) $\cos(\alpha + \beta)$

(4) $\cos(\alpha - \beta)$

(5) $\tan(\alpha + \beta)$

(6) $\tan(\alpha - \beta)$

計算練習

 $(1) \sin\left(\frac{1}{3}\pi + \frac{1}{4}\pi\right)$

(2) $\cos\left(\frac{1}{12}\pi\right)$

(3) $\sin\left(\frac{1}{12}\pi\right)$

 $(4) \sin\left(\frac{5}{12}\pi\right)$

 $(5) \cos\left(\frac{5}{12}\pi\right)$

(6) $\tan\left(\frac{5}{12}\pi\right)$

7.2 2 倍角

考える

 $2\alpha = \alpha + \alpha$ と考えることで, 2α の三角比を考える.

(1) $\sin(\alpha + \alpha)$ を α の三角比で表そう.

 $(2) \cos(\alpha + \alpha)$ を α の三角比で表そう.

(3) $\cos(\alpha + \alpha)$ を $\sin \alpha$ で表そう.

 $(4) \cos(\alpha + \alpha)$ を $\cos \alpha$ で表そう.

(5) $\tan(\alpha + \alpha)$ を $\tan \alpha$ で表そう.

練習問題

(1) $0<\alpha<\frac{\pi}{2}$ で, $\sin\alpha=\frac{4}{5}$ のとき, $\sin2\alpha$ の値を求めよ.

(2) $0<\alpha<\frac{\pi}{2}$ で, $\sin\alpha=\frac{3}{5}$ のとき, $\cos2\alpha$ の値を求めよ.

(3) $\frac{\pi}{2} < \alpha < \pi$ で, $\cos \alpha = -\frac{\sqrt{5}}{3}$ のとき, $\sin 2\alpha$, $\cos 2\alpha$, $\tan 2\alpha$ の値を求めよ.

7.3 半角

$$\cos 2\alpha = 1 - 2\sin^2\theta, \quad \cos 2\alpha = 2\cos^2\theta - 1$$

を式変形して,

$$\sin^2 \theta$$

$$\sin^2 \theta =$$
 , $\cos^2 \theta =$

また,

$$\tan^2 \theta =$$

 θ を $\frac{\theta}{2}$ に置き換えて、

$$\sin^2\frac{\theta}{2} =$$

$$\cos^2\frac{\theta}{2} =$$

$$\tan^2\frac{\theta}{2} =$$

$$(1)$$
 $\cos \frac{\pi}{8}$ の値を求めよ.

$$(2)$$
 $\sin \frac{\pi}{8}$ の値を求めよ.

$$(3) \cos \frac{3\pi}{\circ}$$
 の値を求めよ

$$(4) \tan \frac{3\pi}{8}$$
 の値を求めよ.

練習

- $(1) \ \frac{\pi}{2} < \alpha < \pi \ {\tt C}, \ \cos \alpha = -\frac{4}{5} \ {\tt O} {\tt とき}, \ \cos \frac{\alpha}{2} \ {\tt O}値を求めよ.$
- (2) $\pi < \alpha < \frac{3\pi}{2}$ で, $\cos \alpha = -\frac{1}{4}$ のとき, $\sin \frac{\alpha}{2}, \cos \frac{\alpha}{2}, \tan \frac{\alpha}{2}$ の値を求めよ.