Curso de Álgebra Linear Prof" Mara Freire

1.4- SUBESPAÇOS VETORIAIS

Def.: Um *subespaço vetorial S* é um subconjunto não vazio de *V*, se forem satisfeitas as seguintes condições: soma e a multiplicação por escalar, isto é:

I)
$$\forall u, v \in S, u + v \in S$$

II) $\forall \alpha \in IR \ e \ \forall u \in S, \alpha u \in S$

ou seja, S é um subespaço de V se S é um espaço vetorial.

Sendo válidas essas duas condições em S, então as dez propriedades de espaço vetorial também se verificam em S, pelo fato de S ser um subconjunto não-vazio de V.

Observação: Todo espaço vetorial admite pelo menos dois subespaços: o conjunto {0}, chamado de subespaço zero ou nulo, e o próprio espaço vetorial *V*. Esses dois subespaços são denominados subespaços *triviais* de *V* e os demais são denominados subespaços *próprios* de *V*.

Por exemplo, para $V = IR^2$, os subespaços triviais são: $\{0, 0\}$ e IR^2 , enquanto os subespaços próprios são as retas que passam pela origem.

Exemplos:

1- Sejam $V = IR^2$ e $S = \{(x, y) \in IR^2/y = 2x\}$ ou $S = \{(x, 2x)/x \in IR^2\}$. Verifique as condições I e II:

2- Sejam $V = IR^3$ e $S = \{(x, y, z) \in IR^3 | ax + by + cz = 0\}$. Verifique as condições I e II:

3- Sejam $V = IR^4$ e $S = \{(x, y, z, 0) \in IR^4/x, y, z \in IR\}$. Verifique se S é um subespaço vetorial de IR^4 :

4- Seja $V = M(2, 2) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} / a, b, c, d \in IR \right\}$ e $S = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} / a, b \in IR \right\}$ Verifique se S é um subespaço vetorial de M(2, 2):

5- Sejam V = M(3, 1) e S o conjunto-solução do sistema linear homogêneo a três variáveis. Considere o sistema homogêneo

$$\begin{cases} 3x + 4y - 2z = 0 \\ 2x + y - z = 0 \\ x - y + 3z = 0 \end{cases}$$

Fazendo A =
$$\begin{bmatrix} 3 & 4 & -2 \\ 2 & 1 & -1 \\ 1 & -1 & 3 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} e \ 0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Se
$$u = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$
 e $v = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$. Verifique se o conjunto-solução S do sistema linear homogêneo é um subespaço vetorial de M(3, 1).

Curso de Álgebra Linear Prof^a Mara Freire

1.4.1- Interseção de dois Subespaços Vetoriais

Def.: Sejam S_1 e S_2 dois subespaços vetoriais de V. A interseção S de S_1 e S_2 , representada por $S = S_1 \cap S_2$, é o conjunto de todos os vetores $v \in V$ tais que $v \in S_1$ e $v \in S_2$.

Teorema: A interseção S de dois subespaços vetoriais S_1 e S_2 de V é um subespaço vetorial de V.

Dem: I) Se
$$u, v \in S_1$$
, então $u + v \in S_1$ e se $u, v \in S_2$, então $u + v \in S_2$.
Logo $u + v \in S_1 \cap S_2 = S$.

II)
$$\forall \alpha \in IR$$
, se $u \in S_1$, então $\alpha u \in S_1$ e se $u \in S_2$, então $\alpha u \in S_2$.
Logo $\alpha u \in S_1 \cap S_2 = S$.

Observação: $S_1 \cap S_2$ nunca é vazio, pois ambos os subespaços contém o vetor nulo de V.

Exemplos:

1- Seja V o espaço vetorial das matrizes quadradas de ordem 2:

$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} / a, b, c, d \in IR \right\}. \text{ Sejam } S_1 = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} / a, b \in IR \right\} \text{ e } S_2 = \left\{ \begin{bmatrix} a & 0 \\ c & 0 \end{bmatrix} / a, c \in IR \right\}. \text{ Verifique se } S_1 \cap S_2 \text{ \'e um subespaço vetorial de } V:$$

²⁻ Seja o espaço vetorial $IR^3 = \{(a, b, c) \in IR^3/a, b, c \in IR\}$ e os subespaços vetoriais $S_1 = \{(a, b, 0) \in IR^3/a, b \in IR\}$ e $S_2 = \{(0, 0, c) \in IR^3/c \in IR\}$. Verifique se $S_1 \cap S_2$ é um subespaço vetorial de V:

Curso de Álgebra Linear Prof^a Mara Freire

1.4.2- Soma de dois Subespaços Vetoriais

Def.: Sejam S_1 e S_2 dois subespaços vetoriais de V. A soma S de S_1 e S_2 , representada por $S = S_1 + S_2$, é o conjunto de todos os vetores $u + v \in V$ tais que $u \in S_1$ e $v \in S_2$.

Teorema: A soma S de dois subespaços vetoriais S_1 e S_2 de V é um subespaço vetorial de V.

Dem: I) Se
$$u_1$$
, $v_1 \in S_1$, então $u_1 + v_1 \in S_1$ e se u_2 , $v_2 \in S_2$, então $u_2 + v_2 \in S_2$.
Por outro lado, $u_1 + u_2 \in S$ e $v_1 + v_2 \in S$
Logo $(u_1 + u_2) + (v_1 + v_2) = (u_1 + v_1) + (u_2 + v_2) \in S_1 + S_2 = S$.

II)
$$\forall \alpha \in IR$$
, se $u \in S_1$, então $\alpha u \in S_1$ e se $v \in S_2$, então $\alpha v \in S_2$.
Por outro lado, $u + v \in S$
Logo $\alpha(u + v) = \alpha u + \alpha v \in S_1 + S_2 = S$.

Exemplos:

1- Seja *V* o espaço vetorial das matrizes quadradas de ordem 2:

$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} / a, b, c, d \in IR \right\}. \text{ Sejam } S_1 = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} / a, b \in IR \right\} \text{ e } S_2 = \left\{ \begin{bmatrix} a & 0 \\ c & 0 \end{bmatrix} / a, c \in IR \right\}. \text{ Verifique se } S_1 + S_2 \text{ é um subespaço vetorial de } V:$$

2- Seja o espaço vetorial $IR^3 = \{(a, b, c) \in IR^3/a, b, c \in IR\}$ e os subespaços vetoriais $S_1 = \{(a, b, 0) \in IR^3/a, b \in IR\}$ e $S_2 = \{(0, 0, c) \in IR^3/c \in IR\}$. Verifique se $S_1 + S_2$ é um subespaço vetorial de V:

1.4.3- Soma Direta de dois Subespaços Vetoriais

Def.: Sejam S_1 e S_2 dois subespaços vetoriais de V. Se $V = S_1 + S_2$ e $S_1 \cap S_2 = \{0\}$, diz-se que V é a soma direta de S_1 e S_2 e se representa por $V = S_1 \oplus S_2$.

O espaço vetorial IR^3 do exemplo 2 acima é um exemplo de soma direta dos subespaços vetoriais, pois qualquer vetor $(a, b, c) \in IR^3$ pode ser escrito como soma de um vetor de S_1 e de S_2 e $S_1 \cap S_2 = \{0\}$.