Exercice a

Une matrice $P \in O(n)$ si $P^T = P^{-1}$. Donc la matrice $P^{-1} \in O(n)$ si on arrive à montrer que $(P^{-1})^T = (P^{-1})^{-1}$. On a $(P^{-1})^{-1} = Id$ (par définition) et comme $P \in O(n)$ on a $P^T = P^{-1}$. Donc $(P^{-1})^T = (P^T)^T = Id$. Par conséquent $p \in O(n) \implies P^{-1} \in O(n)$.

Exercice b

Soit λ la valeur propre de u, et x un vecteur propre non nul, alors $u(x) = \lambda x$, et comme u est une isométrie, elle conserve la norme, $||x|| = ||u(x)|| = |\lambda|||x||$, d'où $|\lambda| = 1$ et $\lambda = 1$ ou -1.

Exercice c

Exercice c-2

C'est une symétrie axiale car elle est de la forme $\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$. Comme $P\begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ l'axe de la symétrie est $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

Exercice d

Exercice d-1

Exercice d-1

$$\begin{cases} x' = \\ y' = \\ \text{QED} \end{cases}$$