THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

U.S Covid-19 Data Mining Analysis

Present by: Yuwen Luo; Yihang Zhao; Runzhe Tang

Content

- 1. Introduction
- 2. Problem of Interest
- 3. Process of Modeling
- 4. Conclusion

- 3.1 Linear
 - 3.1.1 Feature Selection
 - 3.1.2 Model Fitting
 - 3.1.3 Finding the most important variables
- 3.2 Classification
 - 3.2.1 Data Preperation
 - 3.2.2 Features Selection & Model Fitting
 - 3.2.3 Model Accuray Comparison

1. Introduction

- Data Source: The Covid Tracking Project (https://covidtracking.com/data)
- The original data: national-history.csv
- originally data: 17 variables (15 variables which we are using)
- Split the data set into Training set and Test set
- Then, working on the training set

2. Problem of Interest

Which variables are most important in predicting the dependent variable (death Increase/ death Direction)?

Dataset Description

- Two Predictors: deathincrease; death direction
- date (YYYY/MM/DD)
- death
- states(name of state in the United States)
- hospitalized cases (Currently, Increase, Cumulative)
- In ICU (Cumulative, Currently)
- Negative
- Negative (Increased cases)
- Ventilator (Currently, Cumulative)
- Positive
- PositiveIncrease
- TotalTestResults
- TotalTestResultsIncreas

Potential Challenge & Solution

- 1. Many variable columns have empty values at the start of Covid-19, our plan is to set these values as 0.
- 2. Some variables have large values and some have small values, so we standardize the dataset at the beginning.
- Variable 'date' is not helping in predicting the dependent variable and variable 'death' is highly correlated with the dependent variable. So, we delete both of them.

Road Map

3.1.1 Feature selection (BIC)

Based on the pre-selection approach BIC,
the best model contains 9 independent
variables, which include inIcuCumulative, ^a
hospitalizedCurrently, onVentilatorCurrently,
positive, totalTestResults...

3.1.1 Feature selection (Stepwise)

Based on the Stepwise approach, we find the model which contains 8 variables

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	4.495e-04	2.697e-02	0.017	0.986722	
inIcuCumulative	-1.028e+01	1.336e+00	-7.691	6.69e-13	***
hospitalizedIncrease	9.196e-02	3.035e-02	3.030	0.002768	**
hospitalizedCurrently	-1.004e+00	1.954e-01	-5.139	6.60e-07	***
$hospitalized {\tt Cumulative}$	4.955e+00	7.864e-01	6.300	1.88e-09	***
negative	2.238e+00	1.482e+00	1.509	0.132773	
negativeIncrease	1.153e-01	7.760e-02	1.486	0.138968	
$on Ventilator {\tt Cumulative}$	2.697e+00	1.410e+00	1.913	0.057197	
onVentilatorCurrently	8.087e-01	1.312e-01	6.165	3.89e-09	***
positive	4.645e+00	8.257e-01	5.625	6.27e-08	***
positiveIncrease	9.996e-01	1.277e-01	7.830	2.90e-13	***
totalTestResults	-4.073e+00	1.189e+00	-3.426	0.000745	***

3.1.1 Feature selection (Random Forest)

Because this is a linear model, we use the metrics %IncMSE to pick the variables we want. We use variable 'totalTestResults' and above 6 variables as our independent variables.

hospitalizedIncrease totalTestResultsIncrease inIcuCurrently negativeIncrease onVentilatorCurrently totalTestResults positiveIncrease inIcuCumulative positive negative onVentilatorCumulative hospitalizedCumulative hospitalizedCurrently states

3.1.2 Model Fitting (KNN)

Based on the K-Nearest Neighbors, BIC Model has the lowest test error with K = 3

		KNN	
	BIC Model	Stepwise Model	Random Forest Model
K value	K = 3	K = 2	K = 2
Test Error	1.29E-05	0.000126991	0.000480264

3.1.2 Model Fitting (SVM)

Based on Support Vector Machines technique, we found BIC model with epsilon = 0 and cost = 8 has the lowest error.

		SVM	
	BIC Model (Linear)	Stepwise Model	Random Forest Model
Epsilon	epsilon = 0	epsilon = 0	epsilon = 0
Cost	cost = 8	cost = 4	cost = 4
Test Error	8.98E-02	0.09333873	0.09970952

3.1.2 Model Fitting (SVM -- Kernel)

Then, we fitted BIC Model with 3 SVM kernels and found the linear kernel has the lowest test error. So, the decision boundary between classes is more likely to be linear.

BIC Model (SVM)							
	Linear Kernel		Radial Kernel		Polynomial Kernel		
Epsilon	0	Gamma	0.5	Degree	2		
Cost	8	Cost	10	Cost	5		
Test Error	0.08980813	Test Error	0.08987863	Test Error	0.1071624		

3.1.2 Model Fitting

	Test error
	KNN
Full model	3.06E-03
BIC model	1.29E-05

3.1.3 Finding most important variables

We use 3 methods: Ridge, Lasso and Elastic Net to find the coefficients of variables within the BIC model.

	Ridge	Lasso	Elastic Net
Best_lamda	0.0804617	0.000106366	0.000160923
Test Error	0.2744617	0.1969197	0.2020113

3.1.3 Finding most important variables

Lasso and Elastic Net give similar results which indicate variables

'inlcuCumulative', 'hospitalizedCumulative', 'onVentilatorCumulative' and 'positive' are the most important varibles in predicting 'deathincrease'.

Lasso Elastic Net

(Intercept)	inIcuCumulative	hospitalizedIncrease	hospitalizedCurrently
0.002399336	-9.740818357	0.090069788	-0.748414966
hospitalizedCumulative	onVentilatorCumulative	onVentilatorCurrently	positive
5.135366588	3.381048660	0.609301088	3.630977597
positiveIncrease			
0.968815059			

(Interc	ept) in	IcuCumulative	hospitalizedIncrease	hospitalizedCurrently
0.00347	9313	-7.763770724	0.099781111	-0.631721424
hospitalizedCumula	tive onVentila	itorCumulative	onVentilatorCurrently	positive
4.29119	8511	2.428861047	0.574974601	2.978116143
positiveIncr	ease			
0.85055	7145			

3.1.3 Finding most important variables

3.2.1 Data Preparation

Origin Dataset

3/7/21	515151	842	45475	8134	726
3/6/21	514309	1680	45453	8409	503
3/5/21	512629	2221	45373	8634	2781
3/4/21	510408	1743	45293	8970	1530
3/3/21	508665	2449	45214	9359	2172

Time Series Dataset

			Yt		12-1	16-2	18-3	Yey		
date	death	deathIncrease	deathDirect	ion	deathDirection1	deathDirection2	deathDirection3	deathDirection4	inIcuCumulative	inlcuCurrently
3/7/21	515151	842	Down	1	Down /	Up /	Down /	Up	45475	8134
3/6/21	514309	1680	Down	,	Up	. Down	Up 💆	Up	45453	8409
3/5/21	512629	2221	Up b	1	Down	Up V	Up 🗸	Up	45373	8634
3/4/21	510408	1743	Down	4	Up 🗸	Up 💆	Up 🖳	Down	45293	8970
3/3/21	508665	2449	Up		Up 🐇	Up	Down	Down	45214	9359

3.2.2 Feature Selection & Model Fitting

Classification - BIC

ytest
qda.class Down Up
Down 44 29
Up 79 58
[1] 0.4857143

3.2.2 Feature Selection & Model Fitting

Classification - Stepwise

ytest glm.pred Down Up Down 75 47 Up 48 40 [1] 0.547619

ytest
qda.class Down Up
Down 44 26
Up 79 61
[1] 0.5

3.2.2 Feature Selection & Model Fitting

3.2.3 Model Accuray Comparison

Model Accuracy Comparison

Variables Selected

Accuracy	BIC	Stepwise	Random Forest	Full Dataset
Logistic	0.5476	0.5416	0.5762	0.4952
LDA	0.5619	0.5667	0.5714	0.4905
QDA	0.4857	0.5	0.5809	0.4667

onVentilatorCurrently	
totalTestResultsIncrease	
positiveIncrease	
negativeIncrease	

4. Conclusion:Respond to Problem of Interest

Which variables are most important in predicting the dependent variable (death Increase/ death Direction)?

Variable Seleted by Classification deathDirection ~

onVentilatorCurrently
total Test Results Increase
positiveIncrease
negativelncrease

Variable Seleted by Linear Regression deathIncrease ~

	Coefficients
inIcuCumulative	-9.7408
hospitalizedCumulative	5.1354
onVentilatorCumulative	3.381
positive	3.6309

Q&A

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC