Chapitre 6 : Fonctions dérivées

Table des matières

1	Fon	actions dérivées		
	1.1	Exemple		
	1.2	Définition		
	1.3	Fonctions dérivées des fonctions de réference		
2 Opérations sur les fonctions dérivées				
	2.1	Dérivée de (u+v) \dots		
		Dérivée de (u-v)		
	2.3	Dérivée de (ku)		
	2.4	Dérivée de (uv)		
	2.5	Dérivée de $\frac{1}{n}$		
		Dérivée de $\frac{u}{v}$		
		Dérivée de $g(ax+b)$		
3	Liei	n entre les variations de f et le signe de f'		

1 Fonctions dérivées

1.1 Exemple

On sait que la fonction définie sur \mathbb{R} par $f(x) = x^2$ est dérivable en tout nombre réel a, et que f'(a) = 2a.

 $lue{}$ On dit alors que f est dérivable sur \mathbb{R} !

1.2 Définition

Définition 6.1

Soit f une fonction définie sur un intervalle I. Si f est dérivable en tout réel a de I, on dit que f est dérivable sur I.

La fonction qui à tout x de I associe le nombre dérivé f'(x) est appelée fonction dérivée de f sur I On la note f'.

Mathématiques, seconde 2020-2021

1.3 Fonctions dérivées des fonctions de réference

Propriété 6.1

Fonction usuelle	Ensemble de dé-	Ensemble de <i>déri</i> -	fonction dérivée
	finition	vabilité	
f(x) = mx + p	\mathbb{R}	\mathbb{R}	f'(x) = m
$f(x) = x^2$	\mathbb{R}	\mathbb{R}	f'(x) = 2x
$f(x) = x^3$	\mathbb{R}	\mathbb{R}	$f'(x) = 3x^2$
$f(x) = \frac{1}{x}$	R*	R*	$f'(x) = -\frac{1}{x^2}$
$f(x) = x^4$	\mathbb{R}	\mathbb{R}	$f'(x) = 4x^3$
$f(x) = \sqrt{x}$	$[0; +\infty[$	$]0;+\infty[$	$f'(x) = \frac{1}{2\sqrt{x}}$

2 Opérations sur les fonctions dérivées

2.1 Dérivée de (u+v)

Propriété 6.2 (admise)

Soient u et v deux fonctions définies et dérivables sur un intervalle I. Alors la fonction (u+v) est dérivable sur I et (u+v)'=u'+v'

Exemple

Soit f définie sur \mathbb{R} par $f(x) = x^2 + x^3$. Donner f'(x)

2.2 Dérivée de (u-v)

Propriété 6.3 (admise)

Soient u et v deux fonctions définies et dérivables sur un intervalle I. Alors la fonction (u-v) est dérivable sur I et (u-v)'=u'-v'.

Exemple

Soit f définie sur \mathbb{R} par $f(x) = x^2 - x^3$. Donner f'(x) Mathématiques, seconde 2020-2021

2.3 Dérivée de (ku)

Propriété 6.4 (admise)

Soient u une fonctions définie et dérivable sur un intervalle I, et soit $k \in \mathbb{R}$. Alors la fonction (ku) est dérivable sur I et $(ku)' = k \times u'$.

Exemple

Soit f définie sur \mathbb{R} par $f(x) = 5x^3$. Donner f'(x)

2.4 Dérivée de (uv)

Propriété 6.5

Soient u et v deux fonctions définies et dérivables sur un intervalle I. Alors la fonction (uv) est dérivable sur I et (uv)' = u'v + uv'.

♪Démonstration 6.1

- Soient u et v deux fonctions définies et dérivables sur un intervalle I.

 Montrer que la fonction (uv) est dérivable sur I et que (uv)' = u'v + uv'.

Exemple

Soit f définie sur \mathbb{R} par $f(x) = (x^2 + 1) \times x^3$. Donner f'(x)

Dérivée de $\frac{1}{n}$ 2.5

Propriété 6.6 (admise)

Soit v une fonction définie et dérivable sur un intervalle I, avec pour tout $x \in I$, $v(x) \neq 0$. Alors la fonction $\left(\frac{1}{v}\right)$ est dérivable sur I et $\left(\frac{1}{v}\right)' = \frac{-v'}{v^2}$.

Exemple

Soit f définie sur $\mathbb{R} - \left\{ -\frac{3}{2} \right\}$ par $f(x) = \frac{1}{2x+3}$. Donner f'(x)

Mathématiques, seconde 2020-2021

2.6 Dérivée de $\frac{u}{v}$

Propriété 6.7 (admise)

Soient u et v deux fonctions définies et dérivables sur un intervalle I, avec, pour tout $x \in I$, $v(x) \neq 0$.

Alors la fonction $\left(\frac{u}{v}\right)$ est dérivable sur I et $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$.

Exemple

Soit f définie sur $\mathbb{R} - \left\{-\frac{3}{2}\right\}$ par $f(x) = \frac{x^2}{2x+3}$. Donner f'(x)

2.7 Dérivée de g(ax + b)

Propriété 6.8 (admise)

Soient a et b deux réels, et I un intervalle.

Soit J l'intervalle constitué de l'ensemble des valeurs de ax + b lorsque x décrit I. Si g st une fonction dérivable sur J, alors la fonction f définie sur I par f(x) = g(ax + b) est dérivable sur I et $f'(x) = a \times g'(ax + b)$.

Savoir-Faire 6.1

SAVOIR CALCULER UNE FONCTION DÉRIVÉE

Calculer la fonction dérivée de chacune des fonctions suivantes :

1.
$$f(x) = 8x^3 + 12x^2 - 5x + 7$$

2.
$$f(x) = (x^2 + 3x)(x^3 - 3x^2 + 7)$$

$$3. \ f(x) = x\sqrt{x}$$

4.
$$f(x) = \frac{2x+3}{x^2+3}$$

$$5. \ f(x) = \frac{1}{3x^2 + 9}$$

6.
$$f(x) = \frac{17}{2x^2 + 1}$$

7.
$$f(x) = \sqrt{2x+3}$$

8.
$$f(x) = \sqrt{-2x + 1}$$

9.
$$f(x) = (2x - 3)^{15}$$

Mathématiques, seconde 2020-2021

3 Lien entre les variations de f et le signe de f'

Propriété 6.9 (admise)

Soit f une fonction définie et dérivable sur un intervalle I.

- f est croissante sur I si et seulement si la fonction f' est positive sur I.
- f est décroissante sur I si et seulement si la fonction f' est négative sur I.
- f est constante sur I si et seulement si la fonction f' est nulle sur I.

Savoir-Faire 6.2

SAVOIR ÉTUDIER LES VARIATIONS D'UNE FONCTION GRÂCE À LA DÉRIVATION

1.
$$f(x) = 18x^3 + 12x^2 - 5x + 7$$
, $I = \mathbb{R}$

- On calcule f'(x)
- On étudie le signe de f'(x) (au besoin, penser à factoriser)
- On dresse le tableau de variations (avec le signe de f' et les variations de f.

2.
$$f(x) = \frac{2x+3}{x^2+1}$$
, $I = \mathbb{R}$

3.
$$f(x) = (x-1)\sqrt{x}, I =]0; +\infty[$$