- Protocoles à vecteurs de distance : Routing Information Protocol
 - Protocole de type IGP (Interior Gateway Protocol) utilisant
 l'algorithme « Distance vector protocol » ou Bellman-Ford.
 - Protocole ancien mais pas obsolète (recherche initiale 195x)
 - Très répandu notamment via l'implémentation BSD routed
 - RFC de référence:
 - RFC 1058 (RIPv1) 1988.
 - RFC 2453 (RIPv2) 1998
 - Basé sur UDP port 520

- Distance Vector Protocol
 - Initialement chaque routeur connait sa topologie locale
 - Réseaux directement connectés avec un coût de 0
 - Coût pour joindre ses voisins (en fait le cout pour « traverser » le réseau)
 - Chaque routeur diffuse régulièrement sa table de routage (vecteur de distance) à ses voisins
 - Quand un routeur reçoit un vecteur de distance, il considère chaque route de la manière suivante :
 - Si l'entrée n'existe pas dans sa propre table,
 - → alors il ajoute cette route dans sa table (métrique = distance annoncée + coût pour joindre le voisin)

- Distance Vector Protocol
 - Quand un routeur reçoit un vecteur de distance, il considère chaque route de la manière suivante :
 - Si l'entrée existe et que le coût (distance annoncée + coût pour joindre le voisin) est *strictement* inférieur à la métrique de sa table : *c'est une meilleure route*
 - Ou si le voisin qui annonce cette route est le routeur désigné dans sa table comme le prochain saut : c'est une mise à jour
 - → alors il met à jour sa table.

Problème du compte à l'infini.

 R2 ne reçoit plus de message de R1 considère que Network1 n'est plus joignable.

Mais reçoit le message de R3 !!!.

- Split horizon
 - Principe:
 - Ne jamais renvoyer les routes apprises par un voisin à ce voisin
 - Génralement implémenté sur une interface
 - Ne jamais renvoyer les routes apprises par un message venant d'une interface sur cette même interface.
 - Variante : Split horizon with poisoned reverse
 - Renvoyer les routes apprises par un voisin à ce voisin avec la métrique « infinity » »
 - Cela corrige t-il le problème du compte à l'infini ?

- Triggered Updates :
 - Principe réduire la fenêtre de temps de vulnérabilité en envoyant une mise à jour à chaque fois qu'un routeur change la métrique d'une route dans sa table de routage.
 - Permet aussi une convergence plus rapide.

- Les Timers usuels RIP
 - Updates (table de routage): 30s + small random.
 - Timeout : 180s L'entrée est conservée avec une métrique de 'infinity' et envoyée dans chaque réponse.
 - Garbage collection: 120s L'entrée est supprimée de la table de routage.
 - Hold-down timer (non standard) Période de temps pendant laquelle un routeur ne prend pas en compte cette entrée même si elle est reçue dans une annonce.

- Les limites de RIPv1
 - Pas de notion de hiérarchie
 - VLSM non supporté
 - Les coûts sont fixes (non liés à la bande passante)
 - Infinity=16 (diamètre maximum d'une topologie)
 - Pas d'authentification possible entre routeurs

Extension RIPv2

- Support VLSM
- Next hop information
- Utilisation d'envoi en Multicast: 224.0.0.9
- Support de méthodes d'authentification entre routeurs.

Limitations restantes

- Les coûts sont toujours fixes (non liés à la bande passante)
- Pas de notion de hiérarchie
- Infinity=16 (diamètre maximum d'une topologie)

- Format des messages :
 - Deux types de commandes (Requête et réponse)
 - Requête
 - Quand un routeur veut remettre à jour sa table de routage (initialisation) envoi en broadcast/multicast depuis et sur le port 520.
 - Peut contenir:
 - Soit, une liste de n RTE (de 0 à 25) correspondant aux routes demandées.
 - Soit, une seule entrée AF=0 metrique=16. Pour une requête de la table complète.
 - Dans le cas d'une requête spécifique (une ou plusieurs RTE), la réponse ne prend pas en compte le mécanisme de split-horizon.

- Format des messages :
 - Réponse
 - Commande Envoyée:
 - Quand un routeur répond à une requête reçue.
 - Quand un routeur envoi des réponses non sollicitées (envoi régulier des informations de la table de routage)
 - Dans le cas des triggered updates (peut n'être qu'une partie de la table de routage).

Rip v1:

+-+-+	-+-+-+	-+-+-	+-+	+-+-	+-+	-+-+-+	-+-+-+	-+-+-	+-+-+-	+-+-+
co	mmand	(1)	I	version	(1)	1	must	be zero	(2)	- 1
+			+			-+				+
I										1
~				F	RIP E	ntry (20)			~
I										1
+			+			-+		+		+

Rip v1 entry:

+-	-+-+
address family identifier (2) must be zero (2)	- 1
+	+
IPv4 address (4)	1
must be zero (4)	+
· +	+
must be zero (4)	1
+	+
metric (4)	1
+	+

Rip v2:

+-+-+-+	-+-+-+-+-	+-+-+-+-+	-+-+-+-+-+-+-+-+-+-+-	+-+
Command	(1) Vers	ion (1)	unused	I
+		+		+
1	0xFFFF	1	Authentication Type (2)	I
+		+		+
~		Authentic	ation (16)	~
+				+

Rip v2 entry:

Address Family Identifier (2) Route Tag (2)	+-+-+-+-+-+-+-+-+-+-		-+-+-+-+-+
IP Address (4)	Address Family Identifi	er (2) Route Tag	(2)
Subnet Mask (4)	+		+
Subnet Mask (4) +	I	IP Address (4)	1
+	+		+
Next Hop (4)	ı	Subnet Mask (4)	1
· ++	+		+
	ı	Next Hop (4)	1
Metric (4)	+		+
	ı	Metric (4)	I
++	+		+

Router R1 router rip network 192.168.1.0/24 network 10.0.0.0/30

Router R2 router rip network 10.0.0.0/30 network 10.0.0.8/29

Router R3 router rip network 10.0.0.8/29 network 192.168.3.0/24

> Router R4 router rip network 10.0.0.8/29 network 192.168.4.0/24

