MEME16203Linear Models

Assignment 1

UNIVERSITI TUNKU ABDUL RAHMAN

Faculty: FES Unit Code: MEME16203 Course: MAC Unit Title: Linear Models

Year: 1,2 Lecturer: Dr Yong Chin Khian

Session: May 2024 Due by: 12/6/2024

Q1. Suppose $\mathbf{Z} = \mathbf{1}_{4 \times 1}$, $\mathbf{G} = 4$, $\mathbf{R} = 25 \mathbf{I}_{4 \times 4}$. If $\mathbf{\Sigma} = \mathbf{Z} \mathbf{G} \mathbf{Z}^{T} + \mathbf{R}$, find $\mathbf{\Sigma}^{-1}$. (20 marks)

Q2. Let the 3×1 random vector \mathbf{y} follows a multivariate normal distribution with mean vector $\boldsymbol{\mu} = \begin{bmatrix} 7 & 13 & 5 \end{bmatrix}^T$ and covariance matrix $\boldsymbol{\Sigma}$ where

$$\Sigma = \begin{bmatrix} 2 & 1 & -2 \\ 1 & 6 & 0 \\ -2 & 0 & 3 \end{bmatrix}$$

Consider the vector \mathbf{w} where

$$\mathbf{w} = \begin{bmatrix} 3y_1 - 3y_2 + 3y_3 - 24 \\ 3y_1 + 3y_2 - 5y_3 - 16 \end{bmatrix}.$$

Find the mean vector and covariance matrix of **W**.

(20 marks)

Q3. Let **A** be an $n \times n$ symmetric matrix with rank $(\mathbf{A}) = r$. Here r may be smaller than n. Let

$$\mathbf{A} = \mathbf{L} \begin{bmatrix} \mathbf{\Delta}_r & 0 \\ 0 & 0 \end{bmatrix} \mathbf{L}^{\mathbf{T}}$$

represent the spectral decomposition of A. Then, Δ_r is an $r \times r$ diagonal matrix containing the positive eigenvalues of A, and L is an $n \times n$ orthogonal matrix where the columns are eignenvectors of A. Show that

$$\mathbf{G} = \mathbf{L} \begin{bmatrix} \mathbf{\Delta}_r^{-1} & 0 \\ 0 & 0 \end{bmatrix} \mathbf{L}^{\mathbf{T}}$$

satisfies the definition of the Moore-Penrose inverse of A.

(20 marks)

Q4. Suppose **X** and **W** are any two matrices with n rows for which $C(\mathbf{X}) = C(\mathbf{W})$. Show that $\mathbf{P}_{\mathbf{X}} = \mathbf{P}_{\mathbf{W}}$.

(20 marks)

Q5. Suppose **X** is an 30×4 matrix. Prove that $C(\mathbf{X}) = C(\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-}\mathbf{X}^T)$.

(20 marks)