1. Let F^{alg} be an algebraic closure of F containing both K and L. Now let σ an extension of an embedding $F \to F^{\text{alg}}$ to KL. Then for any $x \in KL$, $x = \frac{\sum_{1}^{n} k_{i} \ell_{i}}{\sum_{1}^{m} k'_{j} \ell'_{j}}$. For $k_{i}, k'_{j} \in K$ and $\ell_{i}, \ell'_{j} \in L$. Then by the homomorphism property,

$$\sigma(x) = \sigma(\frac{\sum_{1}^{n} k_i \ell_i}{\sum_{1}^{m} k_j' \ell_j'}) = \frac{\sum_{1}^{n} \sigma(k_i) \sigma(\ell_i)}{\sum_{1}^{m} \sigma(k_j') \sigma(\ell_j')} \in \sigma(K) \sigma(L)$$

Furthermore, any $y \in \sigma(K)\sigma(L)$ is of the form $\frac{\sum_{1}^{n}\sigma(k_{i})\sigma(\ell_{i})}{\sum_{1}^{m}\sigma(k'_{j})\sigma(\ell'_{j})}$, so the σ is onto with range $\sigma(K)\sigma(L)$. In other words we have proven $\sigma(KL) = \sigma(K)\sigma(L)$. But since K, L are normal we have $K = \sigma(K)$ and $L = \sigma(L)$.

The converse is **not** true, since taking $F = \mathbb{Q}, K = \mathbb{Q}(\sqrt[3]{2}), L = \mathbb{Q}(\zeta_3)$ we have $KL = \mathbb{Q}(\sqrt[3]{2}, \zeta)$ is normal over \mathbb{Q} (it is the splitting field of $x^3 - 2$ as shown in the previous homework), whereas K is not normal over \mathbb{Q} (Take the extension of the identity on \mathbb{Q} mapping $\sqrt[3]{2} \mapsto \zeta_3 \sqrt[3]{2}$ which is not in $\operatorname{Aut} K$).

- **2.** Consider the polynomial $f := x^k n$ in $\mathbf{F_p}$. Since k = 2 or 3, f either has a factor of degree one, hence a root or f is irreducible over $\mathbf{F_p}$. If f has a root we are done, so assume not. Then we can consider the extension $\mathbf{F_p}(\alpha)$, where α is a root of f. This extension has degree k, hence $\mathbf{F_p}(\alpha)$ is a finite field of cardinality p^k . Since all finite fields of equal cardinality p^k are $\mathbf{F_p}$ isomorphic, we have an isomorphism $\sigma: \mathbf{F_p} \to F$, so that $0 = \sigma(0) = \sigma(f(\alpha)) = f(\sigma(\alpha))$ so that $\sigma(\alpha) \in F$ is a root of $x^k n$, hence $x^k = n$ and $x^k = n$.
- 3. 1. True Firstly, F is finite, hence perfect and since K is a finite field, K/F is a finite extension so it is algebraic over a perfect field, hence seperable. Secondly, since K, F are finite, they must have characteristic p. It follows that $\#K = p^n, \#F = p^m, n \ge m$. Then we have that K is the splitting field of $x^{p^n} x$, so that $K/\mathbf{F_p}$ is normal. Then any extension of a map from $\mathbf{F_p}$ to an algebraic closure extends to an automorphism of K, and since any extension of a map σ from F into an algebraic closure to K is just an extension of $\sigma|_{\mathbf{F_p}}$ to K this extension must also be in $\mathrm{Aut}K$, proving that K/F is normal. This proves the extension is Galois.
 - 2. **True** First let u denote $t^4 + t^{-4}$, then K is the splitting field of the polynomial $f = X^8 uX^4 + 1$ in F[X]. This is easily seen, since $t \in \{t\zeta_4^n, t^{-1}\zeta_4^n\}_{n=1}^4 \subset \mathbb{C}(t)$ are the roots of f.
 - 3. False Since K/F is finite, it is algebraic. K/F admits a normal closure M/K/F, so that M/F is normal.
 - 4. False Consider $K = \mathbf{F_3}$, then $f(K) = \{0, 1\} \neq K$
 - 5. **True** For every element x of K not equal to zero, $p \neq 2 \implies 2x \neq 0 \implies x \neq -x$, so that f(x) = f(-x). Now we need only show that $y \notin \{x, -x\}$ implies that $f(y) \neq f(x)$. As proof note that the polynomial $T^2 x^2 \in K[T]$ can have at most two roots in K by the factor theorem. Hence f is 1-1 on 0 and 2-1 on each other element. This implies that $\#f(K) = 1 + \frac{\#K-1}{2} = \frac{p^n+1}{2}$.
 - 6. True $\mathbb{Q}(S)$ is the splitting field of the collection of polynomials $\{x^2 p\}_{p \text{ prime}}$, so K/\mathbb{Q} is normal. Furthermore, \mathbb{Q} has characteristic zero, so is perfect hence K/\mathbb{Q} is separable making it Galois.