Let Me In

Tartalomjegyzék	
Követelmény specifikáció	3
Áttekintés	3
Gyakorlati megvalósítás	4
Feature Extractor Library	4
Model Builder Library	6
Beléptető és regisztráló felületek	7
A felhasználó feladata	9
Adatgyűjtő felületek	9
Felhasználói adatok megjelenítése	12
Adminisztrátori mód	12
Felhasználói mód	13
Activity Stack Management	14

Követelmény specifikáció

Áttekintés

Az Android alkalmazás, amellyel a mintavételezést végeztük, három fő komponenesre osztható. Az első komponens a FeatureExtractor névre hallgat. Feladata a nyers adatok feldolgozása. Ez alatt azt értjük, hogy a gyorsulásérzékelő által érkezett jelből 59 jellemzőt von ki, ezekre a következő modulban lesz szükség. A kinyert adatokat képes több féle bájlból meghatározni, illetve beállítható az is, hogy milyen formátumba mentse el a kinyert jellemzőket.

A második komponens, a GaitModelBuilder. Ez a modul foglalkozik azzal, hogy a Feature Extractor által szolgáltatott adatokból felállítson egy bináris osztályozót, mentse le a felhasználó saját modelljét, és validáljon, vagyis ellenőrizze, hogy egy bejelentkezett felhasználónak van-e jogosultsága belépni egy adott helyiségbe.

Az előbbi két komponenst egy, a harmadik komponens egyesíti. Ez maga az alkalmazás, amely képes a nyers adatokat mintavételezni, ezeket pedig feldolgozza a fent említett két modul felhasználásával. Ezen kívül biztosít egy kényelmes felületet a felhasználó számára.

1. ábra Az alkalmazás komponensei közti kapcsolatok

Rendszerkövetelmények

Az alkalmazás futtatásához szükség van Android 5.0-ra vagy magasabb verzióra. Minimális API szint 21.

A készüléknek rendelkeznie kell érintőképernyővel, gyorsulásérzékelővel és internet hozzáféréssel.

Ezen kívül szükség van 80MB tárhelyre és 400MB RAM-ra.

Gyakorlati megvalósítás

Feature Extractor Library

Ahogy az előzőekben taglalva volt már, a Feature Extractor feladata a gyorsulásérzékelőtől vett nyers adatok feldolgozása és jellemzőkké alakítása. A modul felépítése az 2. ábrán található osztálydiagram szemlélteti.

2. ábra A FeatureExtractor Library-t felépítő osztályok diagrammja

A FeatureExtractor osztály fő funkcionalitása a jellemzők kinyerése. Erre képes egy adatokat tartalmazó fájlt kapva mint paraméter, vagy memóriában lévő Accelerometer objektumokból álló listából és a kinyert jellemzőket egy fájlba helyezi be, vagy visszatéríti egy Feature objektumokat tartalmazó listában. A modul tartalmaz egy Settings osztály amely a FeatureExtractor működését határozza meg, például meghatározva a kimeneti fájl típusát és fejlécét, vagy meghatározva, hogy a bemeneti adatokat ablakokra osztva nyerje ki a jellemzőket, vagy minden egyes lépésciklusra nyerjen ki egy sorozat jellemzőt. A modul lehetővé teszi a Weka csomagban lévő osztályozók által használt Intances objektum generálását is egy Feature objektumokból álló listából a Util kényelmi osztály által nyújtott szolgáltatások segítségével.

A Feature Extractor által kinyert jellemzők az alábbi táblázat foglalja össze.

Jellemző	Magyar	Jelentés	Jellemzők
	elnevezés		száma
minimum_for_axis_X	Minimum	A legkisebb érték az ax, ay,	4
minimum_for_axis_Y		az és am jelekre.	
minimum_for_axis_Z			
minimum_for_mag			
average_accel_for_axis_X	Átlag	Az ax, ay, az és am jelek	4
average_accel_for_axis_Y		átlaga.	
average_accel_for_axis_Z			
average_accel_for_mag			
standard_deviation_for_axix_X	Szórás	Az ax, ay, az és am jelek	4
standard_deviation_for_axix_Y		szórása.	
standard_deviation_for_axix_Z			
standard_deviation_for_mag			

avg_abs_difference_for_axis_X	Abszolút	Átlagos abszolút különbség az	4
1 1100 0 1 17	különbségek	egyes iránymenti gyorsulások	
avg_abs_difference_for_axis_Y	átlaga	és az ennek megfelelő átlag	
avg_abs_difference_for_axis_Z		értéke között	
avg_abs_difference_for_mag			
zero_crossing_rate_for_axis_X	Zéró átmenet	Előjelváltások száma	3
zero_crossing_rate_for_axis_Y			
zero_crossing_rate_for_axis_Z			
bin0_X bin9_X	Hisztogram	10 szakaszos hisztogram	40
bin0_Y bin9_Y			
bin0_Z bin9_Z			
bin0_M bin9_M			
Összesen			59

^{3.} ábra A nyers adatokból kinyert jellemzők

Model Builder Library

Ahhoz, hogy az embereket azonosítani lehessen a járás minta alapján, mindenkiről szükséges készítenünk egy modellt. Ezeket a modelleket később arra fogjuk használni, hogy az újonnan érkezett adatokból meg tudjuk állapítani, hogy az a bejelentkezett felhasználóhoz tartozik-e vagy inkább egy impostorhoz.

A modell elkészítéséhez szükség van nagyobb mennyiségű jellemzőkre a felhasználótól. Ezeket a Feature Extractor segítségével nyertük ki a felhasználó által generált nyers adatból. Egy bináris osztályozó betanításához ez sajnos nem elég, ezért szükség volt olyan mintákra, ami nem az aktuális felhasználótól vannak. Erre a célra létrehoztunk egy imposztor felhasználót. Az ő mintáit véletlenszerűen kiválasztott emberek biztosították, így az ő mintái változatosak.

Amikor megvannak a pozitív és negatív minták, már be lehet tanítani egy osztályozót

(mi esetünkben Random Forest), és el lehet menteni, mint modell, hogy a későbbiekben felhasználható legyen.

Ahhoz, hogy egy felhasználót validálni tudjunk elég a már létező modelljét előszedni (a gépet nem kell újra betanítani), és összehasonlítani az új mintáival. Az összehasonlítás végeredménye egy érték, ami azt adja meg, hogy mekkora a valószínűsége annak, hogy a minták tényleg a felhasználóé és nem egy imposztoré.

4. ábra A GaitModelBuilder Library osztálydiagrammja

Beléptető és regisztráló felületek

Az alkalmazás indításakor egy bejelentkezést szolgáló felület látható (5. ábra). Ezt a továbbiakban Login felületnek nevezzük. Ahhoz, hogy a kliensnek lehetősége legyen használni az alkalmazást, rendelkeznie kell egy felhasználóval a rendszerben. A regisztrálást az alkalmazás megfelelő felületén kell elvégezni (6. ábra). Erre a felületre a Login felület "Create new account." gombjára kattintva lehet elnavigálni.

A regisztrált felhasználókat a Firebase Authentication nevű szolgáltatása segítségével kezeljük. Ha a felhasználó elfelejtette a jelszavát, lehetősége van új jelszót kérni a Login felület "Forgot password." gombjára kattintva. A rendszer küld egy e-mailt a felhasználónak egy linkkel, amelyen beállíthatja az új jelszavát.

Úgy a Login, mint a regisztrációs felület rendelkezik egy úgynevezett "Offline validation" nevű gombbal. Amennyiben a készülék nem rendelkezik internetes hozzáféréssel,

akkor is lehet kérni az azonosítást, viszont ezt csak a legutoljára bejelentkezett felhasználó modelljével fogja összehasonlítani.

5. ábra A bejelentkezésért felelős felület

6. ábra Regisztráciüs felület

7. ábra Mintavételezés a felhasználó szemszögéből

A fenti ábra magyarázza a felhasználó által elvégezendő lépéseket. Első lépésben elindítja az adatgyűjtést. Ehhez előzőleg be kellett jelentkezzen az alkalmazásban. Ez után zsebre kell rakja a készüléket (a készülék legyen a test mellett, nem jó, ha túl bő nadrágban, vagy akár térdközelben helyezkedik el a készülék). Madj pár lépés után állítsa le az adatgyűjtést. Ekkor kezdődik a rendszer feladata, vagyis a feldolgozás és a kiértékelés.

Adatgyűjtő felületek

A következő három ábrán láthatóak azok a felületek, amelyek a felhasználó adatait gyűjtik. A felugró ablakok rendelkeznek a megfelelő instrukciókkal a felhasználók számára, ezek szemléltetve voltak a 7. ábrán.

Amikor a felhasználó először megnyomja az Ok gombot, a telefon elkezdi a mintavételezést. A felhasználó feladata ekkor a készüléket a zsebébe rakni, illetve megtannie legalább 10 lépést, egyenes vonalban, egyenletes felületen.

Miután ez megvan, és kiveszi a telefont a zsebéből, megint megnyomja az Ok gombot. Ennek hatására a mintavételezés megáll. Ezt követi a minták feldolgozása a Feature extractor segítségével, majd a felhasználó azonosítása, a hozzá tartozó modellel. A végeredményt egy harmadik felugró ablak adja meg. A százalék azt jelenti, hogy mekkora a valószínűsége annak, hogy tényleg az a felhasználó adta a friss járás mintákat, mint aki be van jelentkezve. Amennyiben ez az érték 80% alatt van, a rendszer automatikusan kijelentkezteti a felhasználót.

8. ábra Adatgyűjtés első lépése

9. ábra Adatgyűjtés második lépése

10. ábra Az adatgyűjtés harmadik lépése

11. ábra Navigation menu

Felhasználói adatok megjelenítése

Adminisztrátori mód

A ListDataFromFirebaseActivity megjelenít egy listát statisztikákkal a rendszer felhasználóiról. Az Activity egy RecyclerView-t használ fel az adatok megjelenítéséhez. Ennek az adaptere jeleníti meg az Activity-től kapott sajátos objektumokban (UserStatsObject) tárolt adatokat. Ezek az adatok tartalmazzák a felhasználók azonosítóját, e-mail címét, az eszközöket, amelyekről történt a mintavételezés, a szessziók számát és a felhasználó által feltöltött fájlok számát.

Mivel ezek a statisztikák érzékenyebb adatokat is tartalmaz, mint például a felhasználó e-mail címe, illetve olyan adatokat, amelyek az adatbázisban fontos szerepet töltenek be (userID), az Activity indítása menüből csak adminisztrátori jogokkal rendelkező felhasználók számára elérhető.

Az adatok Firebase Cloud Firestore-ban vannak tárolva. Ezek az adatok az Acivity-n belűl vannak lekérdezve, feldolgozva és továbbítva a RecyclerView adapterébe. A megjelenített adatok két oszlop formájába vannak rendezve, az első oszlop tartalmazza a másodikban levő adatok jelentését. A különböző felhasználókhoz tartozó adatok egy sajátos dekorátorral vannak elválasztva (ItemDividerDecoration), ami egy vízszintes zöld vonalat húz.

12. ábra ListDataFromFirebase

Felhasználói mód

A felhasználói mód minden regisztrált felhasználó számára elérhető. Viszont minden felhasználó csak a saját adatait és statisztikáit láthatja, ellentétben az adminisztrátori módban létező listával. A megjelenített adatai az e-mail címe, felhasználói név, egy fénykép, a szolgáltatott fájlok száma és szessziók száma. Ezen kívül biztosítva van egy felület, ahol megváltoztathatja a profilképét, felhasználói nevét és jelszavát. A e-mail cím szerkesztésére nem adunk lehetőséget, mert az adatbázisba ennek segítségével azonosítjuk a felhasználót. A változtatásokat Firebase-ben tároljuk.

13. ábra UserProfile

14. ábra EditUserProfile

Activity Stack Management

15. ábra Az Activity Stack Management állapotai

Androidban a felületek úgynevezett "Activity"-k segítségével tudnak létezni. Ezek egymás utáni gyors váltogatását az Activity Stack Management vezérli. A 10. ábrán látható, hogy a felhasználó melyik cselekedete után az alkalmazás melyik állapotába kerül.