Smart Garage System

Design Project

Problem Number 19

Group 49

In partial fulfilment of the requirements of CS/EEE/INSTR F241,

Microprocessors, Programming and Interfacing

19 April 2021

Group members:

Chinmay Bande 2019AAPS0202G
Jathin Narayan 2019A7PS1001G
Kunal Avalakki 2019A7PS1013G
Mihir Thalanki 2019A7PS1014G
Nimish Wadekar 2019A7PS1004G
Omkar Mahesh Garad 2019A7PS1010G

Contents

User Requirements and Technical Specifications	2
Assumptions and Justifications	
Justifications	
Assumptions	
Components Used	
Address Map	
Memory Map	
I/O Map	
Design	
Flow Chart	
Main Program	5
ADC ISR	6
IR Sensors 1 and 2 ISRs	
Timer ISR	8
Delay 1ms and Delay for LCD Procedures	9
Procedures to send command and data respectively to LCD	10
Procedure to rotate motor	11
Procedure to write a number (or string if empty or full) to LCD	12
Variation in Proteus Implementation	13
Firmware	13
List of Attachments	13

User Requirements and Technical Specifications

Design a smart garage system that allows remote handling of the garage door, and automatically senses and displays the number of cars inside the garage.

The technical specifications are as follows

- Door Size is 2.5m * 2.2m
- Distance between IRED and its corresponding sensor should not be more than 2m.
- A thin metal sheet of size 2m * 6m needs to be placed above the strain transducer so that the weight of the car is equally distributed on it.
- The 2 lateral IR LED and sensor are placed at sufficient distance (2m 3m) from each
 other such that the light that gets reflected when a car approaches doesn't reflect onto
 the lateral sensor, and at some point, both sensors must have a line break
 simultaneously when a car passes through.
- Vehicle weight is between 200kg to 5000kg.

Assumptions and Justifications

Justifications

- 2 sensors are used to determine whether the car is entering or exiting the garage.
- Strain transducer is used to measure the weight of the car to determine whether it's a car or a valet walking.

Assumptions

- When the system boots up, the garage is empty.
- A maximum of 1 car/valet can enter/exit at a given point in time.
- Until a vehicle/valet has fully finished entering or exiting the garage, with the garage door in closed state, another vehicle/valet does not appear.
- The vehicle must halt for a few seconds while triggering both sensors for the strain transducer to measure its weight.

Components Used

- 8086
- 8284 with crystal
- 8255 2 nos.
- 8259
- 8253
- 2716 4nos. 2 ROM chips required for storing of IVT and the code, 2 chips for address FFFFE_H
- 6116 2nos. 2 RAM chips which are used for variable storage and stack.
- LS138 2nos.
- LS373 3nos.
- LS244
- LS245 2nos.
- A4988 Microstepping Driver with Overstepping Current Protection to amplify current to drive the stepper motor in the garage door
- ADC 0803 8 bit A/D converter with analog input voltage ranging from 0 to V_{CC}(5V)
- QEE113 Plastic Infrared Light Emitting Diode for detection of car entering/exiting
- TSSP94038 IR Sensor module for detecting IR beams from IRED
- ST-TX01-ASK ASK Transmitter module for transmitting radio frequencies in remote control
- ST-RX02-ASK ASK Receiver module for receiving radio frequencies in remote control
- SLB700A/06VA1 Strain transducer Used as a weight sensor
- HT12D Decodes the data received by the RF Receiver
- HT12E Encodes the data from the button and sends it to the RF Transmitter
- JHD162A LCD panel for displaying the number of cars in the garage
- 34H2A2850 Stepper motor for garage door
- Buttons For the valet's remote control
- Required gates

Address Map

Memory map

- ROM 1 00000_H to 00FFF_H
- RAM 1 01000_H to 01FFF_H
- ROM 2 FF000_H to FFFFF_H

I/O Map

- 8255 00_H to 06_H
- 8255 08_H to 0E_H
- 8259 10_H to 12_H
- 8253 18_H to 1E_H

Design

Complete design attached in separate pdf file.

Flow Chart Main Program

ADC ISR

IR Sensor 1 and 2 ISRs

Timer ISR

Delay 1ms and Delay for LCD procedures

Procedures to send command and data respectively to LCD

Procedure to rotate motor

Procedure to write a number (or string if empty or full) to LCD

Variations in Proteus Implementation

- 8284: No 8284 in proteus, used internal clock available in Proteus.
- ROM: 2732 instead of 2716.
- Memory decoding: Lines A13, A14, A15 instead of A12, A13, A14.
- ROM2 not used because proteus allows changing the starting location.
- Motor driver: L297 instead of A4998.
 - L297 has no sleep mode, always active.
- Strain Transducer: Replaced with a simple DC source.
- IR Sensors replaced with SPDT switches.
- Remote button (along with RF transmitter, encoder, decoder and receiver) replaced with a single SPDT switch.
- Replaced 8259 with a logic circuit making use of NMI to handle interrupts due to faulty 8259 chip in Proteus.
- Reordered 8255 ports due to a bug in Proteus that prevented I/O mode from working after using BSR mode on that chip.
- Replaced 8253 with a delay subroutine to accommodate lesser interrupts into the Proteus design.

Firmware

Implemented using Emu8086, attached.

List of Attachments

- 1. Complete hardware design Design.pdf
- 2. Manuals:
 - a. A4998 Stepper Motor Driver Module
 - b. ADC0803
 - c. HT12D RF Decoder
 - d. HT12E RF Encoder
 - e. JHD162A LCD
 - f. NEMA34 Motor
 - g. QEE113 IRED
 - h. SLB700A Strain Transducer
 - i. ST-RX02-ASK RF Receiver Module
 - j. ST-TX01-ASK RF Transmitter Module
 - k. TSSP940 IR Sensor
- 3. Proteus design file Design.dsn
- 4. Emu8086 ASM file (for hardware design) Code.asm
- 5. Emu8086 ASM file (for Proteus Simulation) Code sim.asm
- 6. Binary file after assembly Code.bin
- 7. Binary simulation file after assembly Code sim.bin