Thema 2: Aussagenlogik Freitag, 22. Dezember 2023 Definition: - Aussagen honnen nur woder & sein

a) Alle Schafe sind weiß

VX & Schafe: X ist weiß

b) Hunde, die Bellen, beißen nicht

Vxe Hunde: x bellt => 7 (x beißt)

c) Franzen sind entweder schan oder scholan

Vx = frunen: (x ist schon 1 7 (x ist schou)) v (x ist schou 1 7 (x ist schou))

d) Es gibt eine Fran die schön und Schlau ist Ix efranen: x ist schön 1 x ist schlau

Wahrheitstabelle

	Konjughtion	Disjuntation	Subjunktion	Bijuntation	Montravalens
ab	alb	avb	a'-> b	a<->b	a⊕b
ww	w	w	ω	ω	4
wf	-¢	w	4	f	w
f w	f	LW LW	w	f	w
£ €	€	f	W	W	f

if a then b:

- -If I guessed RIGHT then answered RIGHT, it make sense(it is RIGHT)
- -If I guessed RIGHT then answered WRONG, it doesn't make sense (it is WRONG)
- -If I guessed WRONG then answered RIGHT, it still make sense (It is RIGHT)
- -If I guessed WRONG then answered WRONG, it still make sense (It is RIGHT)

Verlinapfung	formal	
Konjunktion	W/0	Ich bin hranh und gehe zum Artzt
Disjunktion	bvc	Ich gehe zum Artzt oder der Artzt hommt vorbei (oder beides)
Subjunktion	a ->b	Wenn ich brunh bin, dann gebe ich zum Artzt
Bijunktion	ac->b	Wenn ich krank bin, dann gehe ich zum Artzt und ungebehrt. (Ich gehe genau denn zum Artzt, wem ich bin

Implihation und Aquivalenz als Tautologien (p v q) $(\rho \rightarrow q)$ ω ω Ŧ wf W fw W w ω W

De Morgan'sche Regeln:	Negierung von Existenzoussagen :
7 (A,B)<=> 7 A v 1B 7 (Av B)<=> 7 A x 1B	7 (= X & IN: x < 10) = X = 10
7 (AVB) <=> 7 A A 7 B	= Vx = IN: 7(x = 10) => x = 10
Doppette Verneinung:	Extremelgesetze:
7(7A) = 77 A = A	$A_{\Lambda}O \equiv O$ $A \cup \Lambda \equiv \Lambda$
	AUN = 1
Ment rulit ats gesetze:	
	Dualitatsgesetze:
$A \wedge A = A$	
$A \wedge A \equiv A$ $A \vee O \equiv A$	70 = 1
	70 = 1 71 = 0

Commutation gesetze:	Assoziutivgesetze:
ANB = BNA AVB = BVA	(ANB) NC = AN (BNC) (ANB) NC = AN (BNC)
dempotent gesette:	Distributivgesetze:
$A_{\Lambda}A = A$	An (Buc) = (AnB) v (AnC) Av (Bnc) = (AvB) n (AvC)
AvA = A Complementárgesetze:	Absorptionsgesetze:
AATA = 0	$A_{V}(A_{A}B) = A$ $A_{A}(A_{V}B) = A$
Aut =1	$A_{\Lambda}(A_{V}B) = A$

Weitere logische Identitäten: $(A \rightarrow B) \equiv (7A \vee B)$ $(A \rightarrow B) \equiv (7B \rightarrow 7A)$ $(A \leftarrow B) \equiv (A \rightarrow A) \wedge (B \rightarrow A)$ (7A1B) VA = (BVA) (1AVB) AA = (BAA)