SCRAPBOOK

LINAS VEPSTAS

ABSTRACT. Collection of random observations pertaining to number theory topics.

SIGMA ALGEBRAS

7 August 2012

Sigma algebra on \mathbb{N} . The sigma algebra for functions on the integers is given by $2^{\mathbb{N}}$, and, specifically, by individual *points* in $2^{\mathbb{N}}$. Each point should be interpreted as a Dirac-delta/membership function. This is in contrast to the standard sigma algebra for the Cantor set, which is the set of all finite-length strings.

Non-standard sigma algebras on $2^{\mathbb{N}}$. The standard sigma algebra for the Cantor set $2^{\mathbb{N}}$ is given by the set of all finite-length strings. Why? Because this fits well with the standard topology on the reals. However, we can also consider cylinder sets which are not finite-length. To do this, define a cylinder set as a point (an infinitely long string) in $\{0,1,*\}^{\mathbb{N}} = 3^{\mathbb{N}}$ So, for example, the string $101*1***\cdots$ is the collection of all infinitely long strings whose 1st, 2nd and 3rd bits are 101, whose 5th bit is 1 and all other bits are 'don't care'. Clearly, we can consider strings in $3^{\mathbb{N}}$ with non-* bits stretching off to infinity: these form a valid sigma algebra.

Using the standard Bernoulli measure, these sets have measure zero. Why? The standard measure gives a binary string of length n the measure of 2^{-n} (or, more generally p and 1-p multiplied n times). Thus, for the standard Bernoulli measure, we conider only those strings in $3^{\mathbb{N}}$ which have a *finite* number of 0's an 1's in them, and thus end with an infinite number of trailing *'s.

Are there measures on the sigma algebra $(\Omega, \mathcal{B}) = (2^{\mathbb{N}}, 3^{\mathbb{N}})$ which are not Bernoulli measures? i.e. assign non-zero measures to infinitely long strings in $3^{\mathbb{N}}$? Well, there are some, which are "trivial" extensions of the Bernoulli measure: so: fix any one, given string in $3^{\mathbb{N}}$ and then assign a Bernoulli measure to all strings that differ by a finite number of positions. We can extend this to any finite number of strings in $3^{\mathbb{N}}$, partition up the total measure between these, and then sub-partition these up using the standard Bernoulli measure. We can 'trivially' go one step further: pick a countable number of infinite strings in $3^{\mathbb{N}}$, partition up the total measure between those, and then sub-partition each of these with Bernoulli measures. So, with this trivial extension, the best we can do is to pick out a countable subset from $3^{\mathbb{N}}$ and distribute the measure across this countable subset.

Theorem. For standard measure theory, this is the best that one can do. That is, one cannot use standard measure theory, and at the same time contemplate a function μ : $3^{\mathbb{N}} \to \mathbb{R}^+$ that assigns a non-zero value to uncountably many points in $3^{\mathbb{N}}$.

Proof. The reason for this is that, for standard measure theory, we always always ask that μ be sigma-additive. The sigma-additivity condition is for countable disjoint unions. To do what we want above, we would need to extend the notion of sigma-additivity to an

1

SCRAPBOOK 2

uncountable class of sets. That is, we would have to have some mechanism for assigning a non-zero, but infinitessimal amount of the measure to various sets. We'd have to extend the usual sigma-additivity summation into an integral. This is beyond the scope of standard measure theory. $\hfill \Box$

I hope above wasn't too confusing.