TD 4: Relations

Exercice 1. On considère un ensemble $E = \{e_1, e_2, e_3, e_4\}$ et les relations suivantes sur E

$$\mathcal{R} = \{(e_1, e_2), (e_2, e_2), (e_4, e_2), (e_1, e_4) \text{ et } \mathcal{S} = \{(e_1, e_3), (e_3, e_2), (e_3, e_4)\}$$

- 1. Représenter \mathscr{R} et \mathscr{S} par des graphes orientés puis par des matrices booléennes $M_{\mathscr{R}}$ et $M_{\mathscr{S}}$.
- 2. En déduire les matrices des relations $\mathcal{R} \circ \mathcal{S}$ et $\mathcal{S} \circ \mathcal{R}$.
- 3. Vérifier à l'aide de graphes orientés la cohérence du calcul précédent.

Exercice 2. Soit X un ensemble fini (|X| = n).

- 1. Combien de relations symétriques peut-on construire sur X?
- 2. Combien de relations réflexives peut-on construire sur X?
- 3. Combien de relations symétriques non réflexives peut-on construire sur X ?
- 4. Combien de relations réflexives non symétriques peut-on construire sur X ?

Exercice 3. On considère $\mathbb{Z}/7\mathbb{Z}$ l'ensemble quotient pour la relation $x\mathcal{R}y\Leftrightarrow 7|x-y$.

- 1. Écrire la table d'addition est de multiplication dans $\mathbb{Z}/7\mathbb{Z}$.
- 2. Quelles classes jouent le rôle de l'élément neutre pour l'addition et la multiplication dans $\mathbb{Z}/7\mathbb{Z}$?
- 3. Montrer que les éléments de $(\mathbb{Z}/7\mathbb{Z})^*$ sont inversibles. Est-ce aussi vrai pour $\mathbb{Z}/6\mathbb{Z}$?

Exercice 4. 1. Construction de \mathbb{Z} à partir de \mathbb{N} . On suppose connaître \mathbb{N} , l'addition sur \mathbb{N} et ses propriétés.

(a) Sur \mathbb{N}^2 on définit la relation \sim par :

$$(x_1, y_1) \sim (x_2, y_2) \Leftrightarrow x_1 + y_2 = y_1 + x_2$$

Montrer que \sim est d'équivalence. Déterminer pour un couple (a,b) de \mathbb{N}^2 sa classe d'équivalence, notée $\overline{(a,b)}$.

- (b) Notations : On posera $\overline{(a,0)} = +a$ et $\overline{(0,b)} = -b$; on note $\mathbb Z$ l'ensemble des classes d'équivalence. Montrer qu'il existe une injection de $\mathbb N$ dans $\mathbb Z$.En déduire qu'on peut considérer $\mathbb N$ comme une partie de $\mathbb Z$.
- (c) Opérations dans \mathbb{Z}
 - i. Somme. On appelle somme de deux éléments de \mathbb{Z} , l'élément de \mathbb{Z} défini comme suit :

$$\overline{(x_1, y_1)} + \overline{(x_2, y_2)} = \overline{(x_1 + x_2, y_1 + y_2)}$$

Vérifier que cette définition a un sens, cest-à-dire ne dépend pas du représentant choisi dans une classe. Quelles sont les propriétés de + dans \mathbb{Z} ?

ii. Produit. On appelle produit de deux éléments de \mathbb{Z} , l'élément de \mathbb{Z} défini comme suit :

$$\overline{(x_1, y_1)} \times \overline{(x_2, y_2)} = \overline{(x_1x_2 + y_1y_2, x_1y_2 + y_1x_2)}$$

Vérifier que cette définition a un sens, cest-à-dire ne dépend pas du représentant choisi dans une classe. Quelles sont les propriétés de \times dans \mathbb{Z} ?

- 2. Construction de \mathbb{Q} à partir de \mathbb{Z} . On suppose connaître \mathbb{Z} , l'addition, le produit sur \mathbb{Z} et leurs propriétés.
 - (a) Sur $\mathbb{Z} \times \mathbb{N}^*$ on définit la relation \sim par :

$$(x_1, y_1) \sim (x_2, y_2) \Leftrightarrow x_1 y_2 = y_1 x_2$$

Montrer que \sim est d'équivalence. Déterminer pour un couple (a,b) de $\mathbb{Z} \times \mathbb{N}^*$, sa classe d'équivalence, notée $\overline{(a,b)}$.

- (b) Notations : On posera $\overline{(a,b)} = \frac{a}{b}$; on note $\mathbb Q$ l'ensemble des classes d'équivalence. Montrer qu'il existe une injection de $\mathbb Z$ dans $\mathbb Q$. En déduire qu'on peut considérer $\mathbb Z$ comme une partie de $\mathbb Q$.
- (c) Opérations dans Q

 E/\mathscr{R}

 $\overline{(x_1,y_1)}$

 $\overline{(x_1, y_1)} \times \overline{(x_2, y_2)} = \overline{(x_1 x_2, y_1 y_2)}$

i. Produit. On appelle produit de deux éléments de Q,

l'élément de Q défini comme suit :

Vérifier que cette définition a un sens, cest-à-dire ne dépend pas du représentant choisi dans une classe. Quelles sont les propriétés de \times dans \mathbb{Q} ?

ii. Somme. On appelle produit de deux éléments de \mathbb{Q} , l'élément de \mathbb{Q} défini comme suit :

$$\overline{(x_1, y_1)} + \overline{(x_2, y_2)} = \overline{(x_1y_2 + y_1x_2, y_1y_2)}$$

Vérifier que cette définition a un sens, cest-à-dire ne dépend pas du représentant choisi dans une classe. Quelles sont les propriétés de + dans \mathbb{Q} ?

iii. Que dire de $(\mathbb{Q}, +, \times)$?