

FIG. 1

		RIGIN=332bp	SV40 0		15bp	LINKER #1
60	AATAGCTCAG	CTACTTCTGG	AGCCTCCTCA	CCTCCAAAAA	CCGCTCTAGG	GACGTCGCGG
120	TGCATGGGGC	TAGTCAGCCA	TAAAAAAAAT	TCTGCATAAA	GGCCTCGGCC	AGGCCGAGGC
180	GGGCGGGACT	GCGGAGTTAG	GGCGGGATGG	CGGAGTTAGG	CGGAACTGGG	GGAGAATGGG
240	GGAGCCTGGG	TGCCTGCTGG	TGCATACTTC	ATGCATGCTT	ACTAATTGAG	ATGGTTGCTG
300			AGATGCATGC	TGACTAATTG	ACCTGGTTGC	GACTTTCCAC
360 1	ER #2=13bp TAATTCCCCT 360		TGACACACAT	ACACCCTAAC	GGGACTTTCC	GGGGAGCCTG
420	GGAGTTCCGC	GCCCATATAT	TTAGTTCATA	TACGGGGTCA	AGTAATCAAT	AGTTATTAAT
480	CCGCCCATTG			TGGCCCGCCT	TTACGGTAAA	GTTACATAAC
540	TTGACGTCAA		TER-ENHANCE ACGCCAATAG	CMV PROMO TCCCATAGTA	TGACGTATGT	ACGTCAATAA
600	TCATATGCCA	ATCAAGTGTA	TTGGCAGTAC	AACTGCCCAC	ATTTACGGTA	TGGGTGGACT
660	TGCCCAGTAC	CCTGGCATTA	AAATGGCCCG	CAATGACGGT	CTATTGACGT	AGTACGCCCC
720	CGCTATTACC	TATTAGTCAT	TACATCTACG	TACTTGGCAG	GGGACTTTCC	ATGACCTTAT
780	CTCACGGGGA	AGCGGTTTGA	GGGCGTGGAT	GTACATCAAT	GGTTTTGGCA	ATGGTGATGC
340	AAATCAACGG	TTTGGCACCĄ	GGGAGTTTGT	TGACGTCAAT	TCCACCCCAT	TTTCCAAGTC
900	TAGGCGTGTA	AAATGGGCGG		CAACTCCGCC	AATGTCGTAA	GACTTTCCAA
960		GTCAGATCGC	#3=76bp TACGTGAACC	LINKER CAGAGCTIGGG 727 8		
1020		LEADER=60bi	GCTCAGCTCC	GAGGGTCCCC	TTCTCACCAT	Bgl CATCAC <u>AGAT</u>
1080	GGCTGCACCA	07 108 AACGTACGGT 62 3 Bsi WI	GTGGAAATCA	TGGTACCAAG	+1	CTCCCAGGTG
1140	CTCTGTTGTG	CTGGAACTGC	CAGTTGAAAT	ATCTGATGAG	TCTTCCCGCC	TCTGTCTTCA
1200	GGATAACGCC	AGTGGAAGGT	GCCAAAGTAC	TCCCAGAGAG	ATAACTTCTA	TGCCTGCTGA
1260				STANT 324bp GGAGAGTGTC		
1320	AGTCTACGCC	AGAAACACAA	GCAGACTACG	GCTGAGCAAA	GCACCCTGAC	AGCCTCAGCA
1380	CAGGGGAGAG	AGAGCTTCAA	CCCGTCACAA	CCTGAGCTCG	CCCATCAGGG	STOP
1440	GACAACATGC	CTGGATTCGT	4=85bp ACTACCTAGA	LINKER # ACGGTTACCA		LIGHT CHAIN Eco IGTTGAATTC 1386 7
1500	GCCATCTGTT	CTAGTTGCCA	ACTGTGCCTT	ATCAGCETCG	TCTACGTATG	

FIG. 2A

ا اي.

*****U

1.77

C

FIG. 2B

.F

[] |4

FIG. 2C

STOP DHFR GTCTACGAGA AGAAAGACITA ACAGGAAGAT GCTTTCAAGT TCTCTGCTCC CCTCCTAAAG 4560 4521 2 3' UNTRANSLATED DHFR=82bp LLINKER #10-10001 TCATGCATTT TTATAAGACC ATGGGACTTT TGCTGGCTTT AGATCAGCCT CGACTGTGCC 4620 4603 4 4613 4 TTCTAGTTGC CAGCCATCTG TTGTTTGCCC CTCCCCCGTG CCTTCCTTGA CCCTGGAAGG 4680 BOVINE GROWTH HORMONE POLYADENYLATION REGION=231bp
TGCCACTCCC ACTGTCCTTT CCTAATAAAA TGAGGAAATT GCATCGCATT GTCTGAGTAG 4740 GTGTCATTCT ATTCTGGGGG GTGGGGTGGG GCAGGACAGC AAGGGGGAGG ATTGGGAAGA 4800 CAATAGCAGG CATGCTGGGG ATGCGGTGGG CTCTATGGAA CCAGCTGGGG CTCGAGCTAC 4860 MAGCTTTGCT TCTCAATTTC TTATTTGCAT AATGAGAAAA AAAGGAAAAT TAATTTTAAC 4920 ACCAATTCAG TAGTTGATTG AGCAAATGCG TTGCCAAAAA GGATGCTTTA GAGACAGTGT 4980 MOUSE BETA GLOBIN MAJOR PROMOTER=366bp
TCTCTGCACA GATAAGGACA AACATTATTC AGAGGGAGTA CCCAGAGCTG AGACTCCTAA 5040 GCCAGTGAGT GGCACAGCAT TCTAGGGAGA AATATGCTTG TCATCACCGA AGCCTGATTC 5100 CGTAGAGCCA CACCTTGGTA AGGGCCAATC TGCTCACACA GGATAGAGAG GGCAGGAGCC 5160 AGGGCAGAGC ATATAAGGTG AGGTAGGATC AGTTGCTCCT CACATTTGCT TCTGACATAG 5220 LINKER #12=21bp | START NEO
TTGTGTTGGG AGCTTGGATC GATCCTCTAT GGTTGAACAA GATGGATTGC ACGCAGGTTC 5280
5227 8 5248 9 TCCGGCCGCT TGGGTGGAGA GGCTATTCGG CTATGACTGG GCACAACAGA CAATCGGCTG 5340 CTCTGATGCC GCCGTGTTCC GGCTGTCAGC GCAGGGGGCGC CCGGTTCTTT TTGTCAAGAC 5400 NEOMYCIN PHOSPHOTRANSFERASE CGACCTGTCC GGTGCCCTGA ATGAACTGCA GGACGAGGCA GCGGGGCTAT CGTGGCTGGC 5460 795bp=264 AMINO ACIDS & STOP CODON CACGACGGGC GTTCCTTGCG CAGCTGTGCT CGACGTTGTC ACTGAAGCGG GAAGGGACTG 5520 GCTGCTATTG GGCGAAGTGC CGGGGCAGGA TCTCCTGTCA TCTCACCTTG CTCCTGCCGA 5580 GAAAGTATCC ATCATGGCTG ATGCAATGCG GCGGCTGCAT ACGCTTGATC CGGCTACCTS 5640 CCCATTCGAC CACCAAGCGA AACATCGCAT CGAGCGAGCA CGTACTCGGA TGGAAGCCGG 5700 TCTTGTCGAT CAGGATGATC TGGACGAAGA GCATCAGGGG CTCGCGCCAG CCGAACTGTT 5760 CGCCAGGCTC AAGGCGCGCA TGCCCGACGG CGAGGATCTC GTCGTGACCC ATGGCGATGC 5820 CTGCTTGCCG AATATCATGG TGGAAAATGG CCGCTTTTCT GGATTCATCG ACTGTGGCCG 5880 GCTGGGTGTG GCGGACCGCT ATCAGGACAT AGCGTTGGCT ACCCGTGATA TTGCTGAAGA 5940 GCTTGGCGGC GAATGGGCTG ACCGCTTCCT CGTGCTTTAC GGTATCGCCG CTICCCGATTC 6000

FIG. 2D

			STOP	NEO!		
GCAGCGCATC	GCCTTCTATC	GCCTTCTTGA	CGAGTTCTTC		TCTGGGGTTC	6060
GAAATGACCG	ACCAAGCGAC	GCCCAACCTG	CCATCACGAG	ATTTCGATTC	CACCGCCGCC	6120
TTCTATGAAA	GGTTGGGCTT	UNTRANSLAT CGGAATCGTT	ED NEO=1731 TTCCGGGACG	CCGGCTGGAT	GATCCTCCAG	6180
CGCGGGGATC	TCATGCTGGA	GTTCTTCGCC	CACCCCAACT	TGTTTATTGC	AGCTTATAAT	6240
GGTTACAAAT	AAAGCAATAG	CATCACAAAT	TTCACAAATA		TTCACTGCAT	6300
TCTAGTTGTG	GTTTGTCCAA	SV40 POLY A ACTCATCAAT		ATGTCTGGAT 6349 5	ER #13=19bp CGCGGCCGCG	6360
ATCCCGTCGA	GAGCTTGGCG	TAATCATGGT	CATAGCTGTT	TCCTGTGTGA	AATTGTTATC	6420
CGCTCACAAT	TCCACACAAC	ATACGAGCCG	GAAGCATAAA	GTGTAAAGCC	TGGGGTGCCT	6480
AATGAGTGAG	CTAACTCACA	TTAATTGCGT	TGCGCTCACT	GCCCGCTTTC	CAGTCGGGAA	6540
ACCTGTCGTG	CCAGCTGCAT	TAATGAATCG	GCCAACGCGC	GGGGAGAGGC	GGTTTGCGTA	6600
TTGGGCGCTC	TTCCGCTTCC	TCGCTCACTG	19 ACTCGCTGCG	CTCGGTCGTT	CGGCTGCGGC	6660
GAGCGGTATC	AGCTCACTCA	AAGGCGGTAA	TACGGTTATC	CACAGAATCA	GGGGATAACG	6720
CAGGAAAGAA	CATGTGAGCA	AAAGGCCAGC	AAAAGGCCAG	GAACCGTAAA	AAGGCCGCGT	6780
TGCTGGCGTT	6792=B	ACTERIAL ORI CICCGCCCCC	GIN OF REPLI CTGACGAGCA	ICATION TCACAAAAAT	CGACGCTCAA	6840
GTCAGAGGTG	GCGAAACCCG	ACAGGACTAT	AAAGATACCA	GGCGTTTCCC	CCTGGAAGCT	6900
CCCTCGTGCG	CTCTCCTGTT	CCGACCCTGC	CGCTTACCGG	ATACCTGTCC	GCCTTTCTCC	6960
CTTCGGGAAG	CGTGGCGCTT	TCTCAATGCT	CACGCTGTAG	GTATCTCAGT	TCGGTGTAGG	7020
TCGTTCGCTC	CAAGCTGGGC	TGTGTGCACG	AACCCCCCGT	TCAGCCCGAC	CGCTGCGCCT	7080
TATCCGGTAA	CTATCGTCTT	GAGTCCAACC	CGGTAAGACA	CGACTTATCG	CCACTGGCAG	7140
CAGCCACTGG	TAACAGGATT	AGCAGAGCGA	GGTATGTAGG	CGGTGCTACA	GAGTTCTTGA	7200
AGTGGTGGCC	TAACTACGGC	TACACTAGAA	GGACAGTATT	TGGTATCTGC	GCTCTGCTGA	7260
AGCCAGTTAC	CTTCGGAAAA	AGAGTTGGTA	GCTCTTGATC	CGGCAAACAA	ACCACCGCTG	7320
GTAGCGGTGG	TTTTTTTGTT	TGCAAGCAGC	AGATTACGCG	CAGAAAAAAA	GGATCTCAAG	7380
AAGATCCTTT	GATCTTTTCT	ACGGGGTCTG	ACGCTCAGTG	GAACGAAAAC	TCACGTTAAG	7440
GGATTTTGGT	CATGAGATTA	TCAAAAAGGA	TCTTCACCTA	GATCCTTTTA	AATTAAAAAT	7500

FIG. 2E

7550 TAATCAGTGA GGCACCTATC TCAGCGATCT GTCTATTTCG TTCATCCATA GTTGCCTGAC 7620 TCCCCGTCGT GTAGATAACT ACGATACGGG AGGGCTTACC ATCTGGCCCC AGTGCTGCAA 7680 TGATACCGCG AGACCCACGC TCACCGGCTC CAGATTTATC AGCAATAAAC CAGCCAGCCG 7740 BETA LACTAMASE=861bp

GAAGGGCCGA GCGCAGAAGT GGTCCTGCAA CTTTATCCGC CTCCATCCAG TCTATTAATT 7800 286 AMINO ACID & STOP CODON
GTTGCCGGGA AGCTAGAGTA AGTAGTTCGC CAGTTAATAG TTTGCGCAAC GTTGTTGCCA 7860 TTGCTACAGG CATCGTGGTG TCACGCTCGT CGTTTGGTAT GGCTTCATTC AGCTCCGGTT 7920 CCCAACGATC AAGGCGAGTT ACATGATCCC CCATGTTGTG CAAAAAAGCG GTTAGCTCCT 7980 TCGGTCCTCC GATCGTTGTC AGAAGTAAGT TGGCCGCAGT GTTATCACTC ATGGTTATGG 8040 CAGCACTGCA TAATTCTCTT ACTGTCATGC CATCCGTAAG ATGCTTTTCT GTGACTGGTG 8100 AGTACTCAAC CAAGTCATTC TGAGAATAGT GTATGCGGCG ACCGAGTTGC TCTTGCCCGG 8160 CGTCAATACG GGATAATACC GCGCCACATA GCAGAACTTT AAAAGTGCTC ATCATTGGAA 8220 AACGTTCTTC GGGGCGAAAA CTCTCAAGGA TCTTACCGCT GTTGAGATCC AGTTCGATGT 8280 AACCCACTCG TGCACCCAAC TGATCTTCAG CATCTTTTAC TTTCACCAGC GTTTCTGGGT 8340 GAGCAAAAAC AGGAAGGCAA AATGCCGCAA AAAAGGGAAT AAGGGCGACA CGGAAATGTT 8400 GAATACTCAT ACTCTTCCTT TITCAATATT ATTGAAGCAT TTATCAGGGT TATTGTCTCA 8460 TGAGCGGATA CATATTTGAA TGTATTTAGA AAAATAAACA AATAGGGGTT CCGCGCACAT 8520 TTCCCCGAAA AGTGCCACCT

FIG. 2F

[]

ľU

J

1.1

HUMAN CTCCAATCGG	KAPPA CON	STANT=324bp	=107 AMINO	ACID & STOP	CODON CAGCACCTAC	1560
		GCTGAGCAAA				1620
STOP LIGHT		CCTGAGCTCG	CCCGTCACAA	AGAGCTTCAA	CAGGGGAGAG	1680
CHAIN Eco	RI AGATCCGTTA	LINKER ACGGTTACCA	#4=81bp ACTACCTAGA	CTGGATTCGT	GACAACA TGC	1740
GGCCGTGATA	TCTACGTATG	ATCAGCCTCG 177	ACTGTGCCTT	CTAGTTGCCA	GCCATCTGTT	1800
GTTTGCCCCT	CCCCCGTGCC	TTCCTTGACC	CTGGAAGGTG	CCACTCCCAC	TGTCCTTTCC	1860
TAATAAAATG	AGGAAATTGC	ATCGCATTGT	CTGAGTAGGT	GTCATTCTAT	TCTGGGGGGT	1920
		HORMONE PO GGGGGAGGAT				1980
GCGGTGGGCT	CTATGGAACC 20	LINKER AGCTGGGGCT	#5=15bp CGACAGC TAT 2017 8	GCCAAGTACG	CCCCCTATTG	2040
ACGTCAATGA	CGGTAAATGG	CCCGCCTGGC	ATTATGCCCA	GTACATGACC	TTATGGGACT	2100
TTCCTACTTG	GCAGTACATC	TACGTATTAG	TCATCGCTAT	TACCATGGTG	ATGCGGTTTT	2160
GGCAGTACAT		PROMOTER- GGATAGCGGT		· · · · · · · · · · · · · · · · · · ·	AGTCTCCACC	2220
CCATTGACGT	CAATGGGAGT	TTGTTTTGGC	ACCAAAATCA	ACGGGACTTT	CCAAAATGTC	2280
			GCGGTAGGCG	TGTACGGTGG	GAGGTCTATA	2340
	INKER #6=7by		CTCATCACCA	CTCAACACAC	Sal I	2400
START 235	1'2 2358'9				ACCCGTCGAC	2400
HEAVY CHAIN <u>ATG</u> GGTTGGA 240 1	GCCTCATCTT	THETIC & NA GCTCTTCCTT	TURAL LEADEI GTCGCTGTTG	CTACGCGTGT -5 -4 -3	2457 8 CCTGTCCCAG 3 -2 -1 +1	2460
GTACAACTGC	AGCAGCCTGG	GGCTGAGCTG	GTGAAGCCTG	GGGCCTCAGT	GAAGATGTCC	2520
TGCAAGGCTT	CTGGCTACAC	ATTTACCAGT	TACAATATGC	ACTGGGTAAA	ACAGACACCT	2580
GGTCGGGGCC	HEAVY CHA	IN VARIABLE: TGGAGCTATT	=363bp=121 A TATCCCGGAA	MINO ACID ATGGTGATAC	TTCCTACAAT	2640
CAGAAGTTCA	AAGGCAAGGC	CACATTGACT	GCAGACAAAT	CCTCCAGCAC	AGCCTACATG	2700
CAGCTCAGCA	GCCTGACATC	TGAGGACTCT	GCGGTCTATT	ACTGTGCAAG	ATCGACTTAC	2760
TACGGCGGTG	ACTGGTACTT	CAATGTCTGG	GGCGCAGGGA	CCACGGTCAC	CGTCTCTGC4	2820
Nhe I GCTAGCACCA	AGGGCCCATC	GGTCTTCCCC	CTGGCACCCT	CCTCCAAGAG	CACCTCTGGG	2880
GGCACAGCGG	CCCTGGGCTG	CCTGGTCAAG	GACTACTTCC	CCGAACCGGT	GACGGTGTCG	2940
TGGAACTCAG	HUM GCGCCCTGAC	AN GAMMA 1 CAGCGGCGTG	CONSTANT=9 CACACCTTCC	93bp CGGCTGTCCT	ACAGTCCTCA	3000

FIG. 3B

ļ.U

44

U

(3

1.4

FIG. 3D

ľU

I,T

arani Marini

J.

!-=

GACGCTCAAG TCAGAGGTGG CGAAACCCGA CAGGACTATA AAGATACCAG GCGTTTCCCC 7560 CTGGAAGCTC CCTCGTGCGC TCTCCTGTTC CGACCCTGCC GCTTACCGGA TACCTGTCCG 7620 CCTITCTCCC TTCGGGAAGC GTGGCGCTTT CTCAATGCTC ACGCTGTAGG TATCTCAGTT 7680 CGGTGTAGGT CGTTCGCTCC AAGCTGGGCT GTGTGCACGA ACCCCCGTT CAGCCCGACC 7740 GCTGCGCCTT ATCCGGTAAC TATCGTCTTG AGTCCAACCC GGTAAGACAC GACTTATCGC 7800 CACTGGCAGC AGCCACTGGT AACAGGATTA GCAGAGCGAG GTATGTAGGC GGTGCTACAG 7860 AGTTCTTGAA GTGGTGGCCT AACTACGGCT ACACTAGAAG GACAGTATTT GGTATCTGCG 7920 CTCTGCTGAA GCCAGTTACC TTCGGAAAAA GAGTTGGTAG CTCTTGATCC GGCAAACAAA 7980 CCACCGCTGG TAGCGGTGGT TTTTTTGTTT GCAAGCAGCA GATTACGCGC AGAAAAAAAG 8040 GATCTCAAGA AGATCCTTTG ATCTTTTCTA CGGGGTCTGA CGCTCAGTGG AACGAAAACT 8100 CACGTTAAGG GATTTTGGTC ATGAGATTAT CAAAAAGGAT CTTCACCTAG ATCCTTTTAA 8:60 STOP ATTAAAAATG AAGTTTTAAA TCAATCTAAA GTATATATGA GTAAACTTGG TCTGACAGITT 8220 BETA LACTAMASE ACCAATGCTT AATCAGTGAG GCACCTATCT CAGCGATCTG TCTATTTCGT TCATCCATAG 8280 TTGCCTGACT CCCCGTCGTG TAGATAACTA CGATACGGGA GGGCTTACCA TCTGGCCCCA 8340 GTGCTGCAAT GATACCGCGA GACCCACGCT CACCGGCTCC AGATTTATCA GCAATAAACC 8400 BETA LACTAMASE=861bp=286 AMINO ACID & STOP CODON AGCCAGCCGG AAGGGCCGAG CGCAGAAGTG GTCCTGCAAC TTTATCCGCC TCCATCCAGT 8460 CTATTAATTG TTGCCGGGAA GCTAGAGTAA GTAGTTCGCC AGTTAATAGT TTGCGCAACG 8520 TIGITGCCAT TGCTACAGGC ATCGTGGTGT CACGCTCGTC GTTTGGTATG GCTTCATTCA 8580 GCTCCGGTTC CCAACGATCA AGGCGAGTTA CATGATCCCC CATGTTGTGC AAAAAAGCGG 8540 TTAGCTCCTT CGGTCCTCCG ATCGTTGTCA GAAGTAAGTT GGCCGCAGTG TTATCACTCA 8700 TGGTTATGGC AGCACTGCAT AATTCTCTTA CTGTCATGCC ATCCGTAAGA TGCTTTTCTG 8760 TGACTGGTGA GTACTCAACC AAGTCATTCT GAGAATAGTG TATGCGGCGA CCGAGTTGCT 8820 CTTGCCCGGC GTCAATACGG GATAATACCG CGCCACATAG CAGAACTTTA AAAGTGCTCA 8880 TCATTGGAAA ACGTTCTTCG GGGCGAAAAC TCTCAAGGAT CTTACCGCTG TTGAGATCCA 8940 GGTCGATGTA ACCCACTCGT GCACCCAACT GATCTTCAGC ATCTTTTACT TTCACCAGCG 9000 TTTCTGGGTG AGCAAAAACA GGAAGGCAAA ATGCCGCAAA AAAGGGAATA AGGGCGACAC 9060 GGAAATGTTG AATACTCATA CTCTTCCTTT TTCAATATTA TTGAAGCATT TATCAGGGTT 9120 ATTGTCTCAT GAGCGGATAC ATATTTGAAT GTATTTAGAA AAATAAACAA ATAGGGGTTC 9180 CGCGCACATT TCCCCGAAAA GTGCCACCT

FIG. 3F

LEADER

FRAI	ME 1				Gln			ATT	ATC		TTC	CTG					TCA	Val GTC	
	Met ATG		AGA	Gly GGA	+1 Gin		GTT	Leu	TCC				GCA				Ala GCA 1083		
	GGG			GTC			ACT	Cys	Arg AGG		Sen	Ser	Ser	Val			Ile ATC 1140		
Trp	TTC						TCC		CCC		CCC		ATT		Ala GCC	Thr ACA	Ser TCC 1197	Asn AAC	
	GCT	Ser	GGA	GTC			Arg CGC		Ser	GGC	250		TCT			TCT	Tyr TAC 1254		
	ACC			AGA			GCT			GCT			TAT			Gln		Trp. TGG	
	Ser AGT		Pro	Pro CCC		Phe TTC	Gly GGA	100 Gly GGG 1341	Gly GGG	Thr ACC		Leu	GAA	Ile					

FIG. 4

LEADER

-15 -10 -19 FRAME 1 Met Gly Trp Ser Leu Ile Leu Leu Phe Leu Val Ala Val Ala Thr Arg Val ATG GGT TGG AGC CTC ATC TTG CTC TTC CTT GTC GCT GTT GCT ACG CGT GTC 2427 2436 2445 2409 2418 41 15 10 FR1 Leu Ser Gin Val Gin Leu Gin Gin Pro Gly Ala Giu Leu Val Lys Ala Gly Ala Ser CTG TCC CAG GTA CAA CTG CAG CAG CCT GGG GCT GAG CTG GTG AAG CCT GGG GCC TCA 2469 2478 2487 2496 GCT 2505 2460 25 30 | 31 CDR1 20 Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr Asn Met His Trp GTG AAG ATG TCC TGC AAG GCT TCT GGC TAC ACA TTT ACC AGT TAC AAT ATG CAC TGG 2536 2544 2553 2526 2517 45 52 52A 53 54 40 FR2 49 | 50 Val Lys Gin Thr Pro Gly Arg Gly Leu Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn GTA AAA CAG ACA CCT GGT CGG GGC CTG GAA TGG ATT GGA GCT ATT TAT CCC EGA AAT 2610 2592 2601 2574 2583 65 | 66 FR3 CDR2 60 Gly Asp Thr Ser Tyr Asn Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys GGT GAT ACT TCC TAC AAT CAG AAG TTC AAA GGC AAG GCC ACA TTG ACT GCA GAC AAA 2631 2640 2649 2658 2667 2676 80 82 82A 82B 82C 83 Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val TEC TEC AGE ACA GEC TAC ATG CAG ETE AGE CEG ACA TET GAG GAE TET GEG GTE 2697 2706 2715 2724 2688 94|95 CDR3 100 100A 100B 100C 100D 101 [102 103 90 Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn Vall Trp Gly TAT TAC TGT GCA AGA TCG ACT TAC TAC GGC GGT GAC TGG TAC TTC AAT GTC TGG GGC 2772 2781 2790 2745 2754 2763 105 FR4 110 113 Ala Gly Thr Thr Val Thr Val Ser Ala GCA GGG ACC ACG GTC ACC GTC TCT GCA 1185 28201

FIG. 5

FIG. 7

FIG. 8

FIG. 9B

FIG. 90

FIG. 10

ا د و د

