## Math 112 Exam 2 March, 2013 Professor Hopkins

| Name: |  |       |         |  |  |
|-------|--|-------|---------|--|--|
|       |  | €     | e-mail: |  |  |
| 1.    |  | 4.    |         |  |  |
| 2.    |  | 5.    |         |  |  |
| 3.    |  | 6.    |         |  |  |
|       |  | Total |         |  |  |

Make sure your name is written on every page of this exam.

| Name:                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. (20 pts) Suppose that $X$ is a metric space, and that $p_1, p_2, \ldots$ is a sequence of points in $X$ converging to a point $p$ . Show that the set |
| $P = \{p\} \cup \{p_1, p_2, \dots\}$                                                                                                                     |
| is compact.                                                                                                                                              |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |

| Name: |
|-------|
|-------|

## 2. (5 pts each) True or False.

- (a) A continuous function is differentiable.
- (b) If X and Y are metric spaces  $f:X\to Y$  is continuous, and  $K\subset Y$  is compact, then  $f^{-1}K$  is compact.
- (c) If  $f: X \to Y$  is a function, then  $f(U \cap V) = f(U) \cap f(V)$ .
- (d) If  $f: X \to Y$  is a function, then  $f(U \cup V) = f(U) \cup f(V)$ .

| Name:                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>3.</b> (20 pts) Suppose that $f:[a,b] \to \mathbb{R}$ is differentiable at $x$ , and that $f'(x) > 0$ . Prove that there exists $\epsilon > 0$ such that if $t$ satisfies $0 < t - x < \epsilon$ then $f(t) > f(x)$ . |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |

**4.** (20 pts) Suppose that X a metric space and  $p \in X$  is a point. Show that the function  $f: X \to \mathbb{R}$ 

defined by f(x) = d(p, x) is continuous. Show that if  $K \subset X$  is compact and  $p \not\in K$  then there are points  $x, y \in K$  such that for all  $z \in K$  one has  $d(p, x) \leq d(p, z)$  and  $d(p, y) \geq d(p, z)$ .



| Name:                                                                                                                                   | Name: |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| <b>5.</b> (20 pts) Let $X$ be a metric space and $E \subset X$ a non-empty subset. For $x \in X$ define the distance from $x$ to $E$ by | .e    |  |  |
| $\rho_E(x) = \inf_{z \in E} d(x, z).$                                                                                                   |       |  |  |
| Show that $\rho_E$ is uniformly continuous.                                                                                             |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |
|                                                                                                                                         |       |  |  |

**6. (20 pts)** A subset  $E \subset \mathbb{R}^n$  is said to be *starlike* if there is a point  $O \in E$  with the property that for each  $x \in E$  and each  $0 \le t \le 1$ , the point tO + (1-t)x is in E. Geometrically this says that E contains the straight line from O to x, as illustrated below. Let  $E \subset \mathbb{R}^n$  be starlike, and  $x, y \in E$  two points. Let  $f : E \to \mathbb{R}$  be a continuous function. Write f(x) = a, f(y) = b and suppose a < b. Show that if c is between a and b there is a point  $c \in E$  with  $c \in E$  and  $c \in E$  with  $c \in E$  with c



| Name: |  |
|-------|--|
|       |  |