Simplifier l'écriture de la racine suivante :

$$\sqrt{20}$$

Question 3:

Factoriser l'expression suivante en utilisant une identité remarquable :

$$4x^2 - 12x + 9$$

Question 2:

Appliquer les règles sur les puissances :

$$11^8 \times 11^{(-7)} = \dots$$

Réponses:

Simplifier l'écriture de la racine suivante :

$$\sqrt{20}$$

Question 2:

Appliquer les règles sur les puissances :

$$11^8 \times 11^{(-7)} = \dots$$

Question 3:

Factoriser l'expression suivante en utilisant une identité remarquable :

$$4x^2 - 12x + 9$$

Réponses:

WANTED

$$2\sqrt{5}$$

Simplifier l'écriture de la racine suivante :

$$\sqrt{20}$$

Question 2:

Appliquer les règles sur les puissances :

$$11^8 \times 11^{(-7)} = \dots$$

Question 3:

Factoriser l'expression suivante en utilisant une identité remarquable :

$$4x^2 - 12x + 9$$

Réponses:

WANTED

- 1. $2\sqrt{5}$
- **2.** 11¹

Simplifier l'écriture de la racine suivante :

$$\sqrt{20}$$

Question 3:

Factoriser l'expression suivante en utilisant une identité remarquable :

$$4x^2 - 12x + 9$$

Question 2:

Appliquer les règles sur les puissances :

$$11^8 \times 11^{(-7)} = \dots$$

Réponses:

WANTED

- 1. $2\sqrt{5}$
- **2.** 11¹
- 3. $(2x-3)^2$

Solution détaillée de la question 1 :

Simplifier l'écriture de la racine suivante :

$$\sqrt{20}$$

Pour simplifier, on cherche les carrés parfaits dans la décomposition :

$$20 = 2^2 \times 5$$
The la formule: $\sqrt{ah} = \sqrt{a} \times \sqrt{h}$

Ensuite on utilise la formule : $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ (si $a, b \ge 0$) et on simplifie l'écriture des racines avec des termes au carré.

Résultat simplifié:

$$20 = 2\sqrt{5}$$

Solution détaillée de la question 2 :

Appliquer les règles sur les puissances :

$$11^8 \times 11^{(-7)} = \dots$$

Formule :
$$a^m \times a^n = a^{m+n}$$
 avec $a = 11$, $m = 8$ et $\left| 11^8 \times 11^{(-7)} = 11^{8+(-7)} = 11^1 \right|$ $n = (-7)$

Solution détaillée de la question 3 :

Factoriser l'expression suivante en utilisant une identité remarquable :

$$4x^2 - 12x + 9$$

Solution : On reconnaît l'identité remarquable
$$(a-b)^2 = a^2 - 2ab + b^2$$
 avec $a > 0$ et $b > 0$.

Ici, $a^2 = 4x^2$ donc a = 2x

Et $b^2 = 9$ donc b = 3

Vérifions:
$$2ab = 2 \times 2x \times 3 = 12x$$

Donc:
$$4x^2 - 12x + 9 = (2x - 3)^2$$