Lecture 4

Real and Complex Analysis

MTL122/ MTL503/ MTL506

Lecturer: A. Dasgupta aparajita.dasgupta@gmail.com

Definition 0.1. Let S be a subset of \mathbb{R} .

- (1) A point $x \in \mathbb{R}$ is an **accumulation point** of S if for every $\epsilon > 0$ $N^*(x, \epsilon) \cap S \neq \phi$.
 - The set of all accumulation points of S is called the **derived set** of S and is denoted by S'.
- (2) S is said to be **dense** in itself if $S \subset S'$.
- (3) S is called **perfect** if S = S'.
- (4) The **closure** of S is the set $\bar{S} = S \cup S'$.

Remark 0.2.

- An accumulation point of a set S need not be an element of S.
- A real number x is an accumulation point of a set $S \subset \mathbb{R}$ if for each $\epsilon > 0$ the interval $(x \epsilon, x + \epsilon)$ contains infinitely many elements of S. Indeed, if x is an accumulation point of S then, for any $\epsilon > 0$, there exists an element $s_1 \in S$ with $s_1 \neq x$, such that $0 < |x s_1| < \epsilon$. Taking $\epsilon_1 = |x s_1|$, there exists an element $s_2 \in S$ with $s_2 \neq x$, such that $0 < |x s_2| < \epsilon_1 < \epsilon$. Taking $\epsilon_2 = |x s_2|$, there exists $s_3 \in S$ with $s_3 \neq x$ such that $0 < |x s_3| < \epsilon_2 < \epsilon$. Continuing in this way we obtain a sequence (s_n) with the property that $s_n \neq x$ and $|s_n x| < \epsilon$ for all n.

Example 0.3.

- (1) $S = \{x \in \mathbb{R} : 0 < x \le 1\}$. Then $S' = \{x \in \mathbb{R} : 0 \le x \le 1\}$. Therefore $\bar{S} = S \cup S' = S'$.
- (2) $S = \{x \in \mathbb{R} : a \le x \le b\}$, then S' = S. Therefore $\bar{S} = S$.
- (3) Every real number is an accumulation point of the set \mathbb{Q} , that is, $\mathbb{Q}' = \mathbb{R}$.
- (4) $\mathbb{Z}' = \phi$. Indeed, for any $x \in \mathbb{R}$ we can find an $\epsilon > 0$ small enough such that $(x \epsilon, x + \epsilon)$ contains no integer, except possibly when x is itself an integer. It thus follows that $\bar{\mathbb{Z}} = \mathbb{Z} \cup \mathbb{Z}' = \mathbb{Z}$

Theorem 0.4. Let $S \subset \mathbb{R}$. Then S is closed if and only S contains all its accumulation points.

Proof Suppose S is closed and let $x \in S'$. We want to show that $x \in S$. If $x \notin S$, then $x \in \mathbb{R} \setminus S$. Since S is closed so $\mathbb{R} \setminus S$ is open. So there exists $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subset \mathbb{R} \setminus S$. This implies $(x - \epsilon, x + \epsilon) \cap S = \phi$. A contradiction. Thus $S' \subset S$.

To prove the converse assume, $S' \subset S$. We will show that $\mathbb{R} \setminus S$ is open. Let $x \in \mathbb{R} \setminus S$. Then $x \notin S'$, and so there is an $\epsilon > 0$ such that

$$N^*(x,\epsilon) \cap S = \phi.$$

Since $x \notin S$, we have that $(x - \epsilon, x + \epsilon) \cap S = \phi$. Thus $(x - \epsilon, x + \epsilon) \subset \mathbb{R} \setminus S$. So $\mathbb{R} \setminus S$ is open.

1. Compact Sets

The significance of compact sets is not as immediately apparent as the significance of open sets, but the notion of compactness plays a central role in analysis. One indication of its importance already appears in the Bolzano-Weierstrass theorem.

Definition 1.1. A set $K \subset \mathbb{R}$ is sequentially compact if every sequence in K has a convergent subsequence whose limit belongs to K.

Example 1.2. The open interval I = (0,1) is not compact. The sequence (1/n) in I converges to 0, so every subsequence also converges to $0 \in I$. Therefore, (1/n) has no convergent subsequence whose limit belongs to I.

Example 1.3. The set \mathbb{N} is closed, but it is not compact. The sequence (n) in \mathbb{N} has no convergent subsequence since every subsequence diverges to infinity.

Theorem 1.4. A subset of \mathbb{R} is sequentially compact if and only if it is closed and bounded.

Proof First, assume that $K \subset R$ is sequentially compact. Let (x_n) be a sequence in K that converges to $x \in \mathbb{R}$. Then every subsequence of K also converges to x, so the compactness of K implies that $x \in K$. It follows from Proposition that K is closed. Next, suppose for contradiction that K is unbounded. Then there is a sequence (x_n) in K such that $|x_n| \to \infty$ as $n \to \infty$.

Hence Kis bounded.

Conversely, assume that $K \subset R$ is closed and bounded. Let (x_n) be a sequence in K. Then (x_n) is bounded since K is bounded, and so (x_n) has a convergent subsequence. Since K is closed the limit of this subsequence belongs to K, so K is sequentially compact.

Definition 1.5. Let $A \subset \mathbb{R}$. A cover of A is a collection of sets $\{A_i \subset \mathbb{R} : i \in I\}$ whose union contains A,

$$\bigcup_{i\in I} A_i \supset A.$$

An open cover of A is a cover that A_i is open for every $i \in I$.

$$\#$$
 * Since K is sequentially compact so $\exists (x_{n_k}) \text{ s.t. } x_{n_k} \rightarrow x(e k)$ $\Rightarrow (x_{n_k}) \text{ is b.d.}$

Example 1.6. Let S=(0,1) and $\mathcal{U}=\{(\frac{1}{n},2)|n\in\mathbb{N}\}$. Then \mathcal{U} is an open cover for S. Indeed, let $x \in (0,1)$. Then, by the Archimedean Property, there is a natural number m such that $0 < \frac{1}{m} < x$. Therefore $x \in (\frac{1}{m}, 2)$, whence, $(0, 1) \subset \bigcup_{n \in \mathbb{N}} (\frac{1}{n}, 2)$.

On the other hand, \mathcal{U} is not a cover of [0,1] since its union does not contain 0. If for any $\delta > 0$, we add the interval $B = (-\delta, \delta)$ to \mathcal{U} , then

$$\bigcup_{n=1}^{\infty} \left(\frac{1}{n}, 2\right) \cup B = (-\delta, 2) \supset [0, 1],$$

so $\mathcal{U}' = \mathcal{U} \cup \{B\}$ is an open cover of [0,1].

Definition 1.7. A set $K \subset \mathbb{R}$ is compact if every open cover of K has a finite subcover.

Theorem 1.8. Let S be a compact subset of \mathbb{R} . If F is a closed subset of S, then F is compact.

Proof Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Omega\}$ be an open cover for F. Then $\mathcal{G} = \mathcal{U} \cup F^c$ is an open cover for S. Since S is compact, the cover \mathcal{G} is reducible to a finite subcover. That is, there are indices $\alpha_1, \alpha_2, ..., \alpha_n$ such that

$$S \subset \bigcup_{i=1}^{n} U_{\alpha_i} \cup F^c.$$

Since $F \subset S$ and $F \cap F^c = \phi$, it follows that $F \subset \bigcup_{i=1}^n U_{\alpha_i}$. Hence F is compact.

Theorem 1.9. (Exercise) Let a and b be real numbers such that $-\infty < a < b < \infty$. Then the interval [a, b] is compact.

Theorem 1.10. (Heine-Borel).

A subset of \mathbb{R} is compact if and only if it is closed and bounded.

Proof Let $K \subset \mathbb{R}$. Assume that K is compact. We show that K is closed and bounded.

<u>Closedness of K</u>: It suffices to show that the complement $\mathbb{R} \setminus K$, of K is open. To that end, let $x_0 \in \mathbb{R} \setminus K$ and for each $k \in \mathbb{N}$, let

$$U_k = \{x \in \mathbb{R} : |x - x_0| > \frac{1}{k}\} = (-\infty, x_0 - \frac{1}{k}) \cup (x_0 + \frac{1}{k}, \infty).$$

Then $\bigcup_{k=1}^{\infty} U_k = \mathbb{R} \setminus \{x_0\}$ and $\mathcal{U} = \{U_k : k \in \mathbb{N}\}$ is an open cover for K. Since K is compact, this cover of K is reducible to finite subcover. That is, there are indices $k_1, k_2, ..., k_n$ such that $K \subset \bigcup_{j=1}^n U_{k_j}$. Let $k_{\max} = \max\{k_1, k_2, ..., k_n\}$. Then

$$K \subset \bigcup_{j=1}^n U_{k_j} = (-\infty, x_0 - \frac{1}{k_{\max}}) \cup (x_0 + \frac{1}{k_{\max}}, \infty) = \{x \in \mathbb{R} : |x - x_0| > \frac{1}{k_{\max}}\}.$$

Example

4

Hence,

$$\{x \in \mathbb{R} : |x - x_0| < \frac{1}{k_{\text{max}}}\} \subset \{x \in \mathbb{R} : |x - x_0| \le \frac{1}{k_{\text{max}}}\} \subset \mathbb{R} \setminus K,$$

which implies $\mathbb{R} \setminus K$ is open and so K is closed.

Boundedness of K: Let $\mathcal{U} = \{(-k, k) : k \in \mathbb{N}\}$. Then \mathcal{U} is an open cover for K. Indeed,

$$K \subset \mathbb{R} = \bigcup_{k \in \mathbb{N}} (-k, k).$$

Since K is compact, there are natural numbers $k_1, k_2, k_3, ..., k_n$ such that $K \subset \bigcup_{j=1}^n (-k_j, k_j)$.

Let $k_{\max} = \max\{k_1, k_2, ..., k_n\}$. Then

$$K \subset \bigcup_{j=1}^{n} (-k_j, k_j) = (-k_{\max}, k_{\max}).$$

It now follows that K is bounded since it is contained in the bounded interval $(-k_{\text{max}}, k_{\text{max}})$.

Conversely, assume that K is a closed and bounded subset of \mathbb{R} . Then there are real numbers a and b such that $K \subset [a,b]$. Then K being a closed subset of a compact set is compact.

Corollary 1.11. A subset of \mathbb{R} is compact if and only if it is sequentially compact.

Ex: 5 is closed.

· Prove sequentially compact.

Let $(x_n) \in S$ sit $x_n \to x$ on $x \neq \infty$ to show $x \in S$

Let x \$5 = SUS'

=> re\$5 and r\$5' Since x \$ 5' 7 Ne(x) N S = Ø. and also since $x \neq S \Rightarrow N_{\epsilon}(x) \cap S = \emptyset$ $Ne(x) \subset S^{c}$ -(1) $x_n \rightarrow x$ and $x_n \in \overline{S}$ Given > for any E>O JN sit [双n-双|くら」サカラル· anes then (1) is a "Y. xnes' +5>0 Ng(an)∩S≠Ø. $y \in N_S(x_n) \cap S$. Let $S = \frac{C}{2}$. - Let \an-y \< €/2 then, [y - x] < |xn - x| + |xn - yn|

Conversely, assume that K is a closed and bounded subset of \mathbb{R} . Then there are real numbers a and b such that $K \subset [a,b]$. Then K being a closed subset of a compact set is compact.

Corollary 1.11. A subset of \mathbb{R} is compact if and only if it is sequentially compact.