

University of Vavuniya

First Examination in Information Technology - 2020

First Semester - Apr/May 2022

IT1122 Foundation of Mathematics

Answer Four Questions Only

Time Allowed: Two hours

1. (a) Let $A = \{x \in \mathbb{N} | 1 < x \le 5\}$ and $B = \{x \in \mathbb{N} | 3 \le x \le 8\}$.

Find each of the following:

i. $A \cup B$

ii. $A \cap B$

iii. A - B

iv. B - A

[20%]

(b) Find the sets A and B, if $A - B = \{1,5,7,8\}$, $B - A = \{2,10\}$ and $A \cap B = \{3,6,9\}$.

[10%]

(c) In an examination, 70% of the candidates passed in Mathematics, 73% passed in Computer Science, 64% passed in both subjects and 63 candidates are failed in both subjects.

Use a Venn diagram to find the total number of candidates who appeared at the examination.

[15%]

[This question is continued on the next page]

- (d) Let A and B be two non empty sets.

 Using the Set Identities show that $(A^c \cup B)^c \cap A^c = \emptyset$.
- (e) Let A and B be two non empty sets.

 Using the Set Identities simplify the following expression: $(A \cap B) \cup (A \cup B^c)_c$
- (f) Let $A = \{x, y\}$, $B = \{1, 2, 3\}$ and $C = \{a, b\}$. Find each of the following: i. P(B)
 - ii. $A \times B \times C$
- (g) A school basketball team plays 20 matches each year. The probability for winning any match is 0.6. Find each of the following:
 - i. The probability that the school losing a match.
 - ii. The number of matches that the school may expect to win each year.
- 2. (a) Define each of the following functions with the aid of an example:
 - i. One-to-one function
 - ii. Onto function
 - iii. Bijective function
 - (b) Determine whether each of the following function is a **bijection** from \mathbb{R} to \mathbb{R} Justify your answer.

i.
$$f(x) = 2x + 1$$

ii.
$$f(x) = x^2 + 1$$

iii.
$$f(x) = x^3$$

(c) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 3x + 1. Determine whether the function f(x) invertible. If so, find the inverse function, f^{-1} .

(d) Let
$$f: \mathbb{R} \to \mathbb{R}$$
 and $g: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 4x - 3$ and $g(x) = x^2 + 2$ for all $x \in \mathbb{R}$. Find $(g \circ f)(x)$ and $(f \circ g)(x)$.

30%

3. (a) Find the *domain* and *range* of each of the relations R on the sets A to B, where R is defined as given below:

i.
$$A = \{1, 2, 3, 4, 5\}, B = \{1, 2, 3, 10\}, aRb$$
 if and only if $2a = b$.

i.
$$A = \{1, 2, 3, 4, 5\}$$
, and only if $a + b = 5$.
ii. $A = B = \{1, 2, 3, 4\}$, aRb if and only if $a + b = 5$.

(b) Let $A = \{1, 2, 3\}$ and $B = \{1, 2, 3, 4\}$. The relation $R_1 = \{(1, 1), (2, 2), (3, 3)\}$ and

(b) Let
$$A = \{1, 2, 3\}$$
 and $B = \{1, 2, 3, 3\}$. Find the each of the following: $R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4)\}$. Find the each of the following:

i. $R_1 \cup R_2$

ii. $R_1 \cap R_2$

iii. $R_1 - R_2$

iv.
$$R_2 - R_1$$

[20%]

[20%]

(c) Draw a directed graph representation for each of the following relations on the set {1,2,3,4}. Determine whether each of the following relations is reflexive, symmetric or transitive:

i.
$$R_1 = \{(1,3), (1,4), (2,2), (3,1), (3,3), (4,1), (4,4)\}$$

ii.
$$R_2 = \{(1,1), (2,2), (3,3), (4,4)\}$$

iii.
$$R_3 = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,3), (1,3), (3,2)\}$$

[30%]

(d) Consider the relation $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} | x - y \text{ is divisible by 3}\}$. Prove that R is an equivalence relation. [30%]

4. (a) Show that the compound propositions $\neg (p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent by developing a series of logical equivalences. [10%]

(b) Prove each of the following using truth table:

i.
$$(p \longrightarrow q) \longleftrightarrow (\neg p \lor q)$$
 is a tautology.

ii.
$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

[20%]

[This question is continued on the next page]

(c) Find the dual of each of the following Boolean expressions:

i.
$$x \cdot \overline{z} + x \cdot 0 + \overline{x} \cdot 1$$

ii.
$$\overline{x} \cdot y \cdot 1 + x \cdot \overline{y} \cdot 1 \cdot (x + y \cdot 0)$$

[10%]

(d) Using the properties of Boolean algebra, simplify each of the following Boolean functions:

i.
$$F(x,y) = y + \overline{xy}$$

ii.
$$F(x,y) = \overline{xy}(\overline{x} + y)(\overline{y} + y)$$

[20%]

(e) Construct circuits using the basic gates that produce the following outputs:

i.
$$\overline{x} \cdot \overline{(y+\overline{z})}$$

ii.
$$(x+y+z)\cdot(\overline{x}\cdot\overline{y}\cdot\overline{z})$$

[20%]

(f) Use Karnaugh-Map to simplify the following expression:

- 5. (a) Define a Graph and a Tree in Discrete Mathematics and describe their properties. [20%]
 - (b) Consider the following directed graph G:

Find the in-degree and out-degree of each of the vertices of G. Represent G as an adjacency matrix. Verify the Handshaking Theorem for the graph G. [25%]

[This question is continued on the next page]

(c) Consider the following Tree T:

- i. Find the height of T.
- ii. Is T balanced? Justify your answer.
- iii. Determine the order of vertices of T using pre-order, in-order and post-order traversals.

[30%]

(d) Consider the finite-state machine M defined by the following state transition table shown below:

	Input	
State	0	1
S_0	S_1	S_2
S_1	S_1	S_2
$\dot{S_2}$	S_3	S_4
S_3	S_1	S_2
S_4	S_3	S_4

Draw the state diagram for the finite state machine M.

[15%]

(e) Describe the characteristics of Turing machines.

[10%]