Übungsserie 1

Erstellen Sie für ihre manuelle Lösung für die Aufgaben 2a) eine PDF-Datei Name_S1_Aufg2a.pdf und fassen Sie diese mit Ihren Python-Skripts Name_S1_Aufg1.py und Name_S1_Aufg2b.py für die Aufgaben 1 und 2b) in einer ZIP-Datei Name_S1.zip zusammen. Laden Sie dieses File vor der Übungsstunde nächste Woche auf Moodle hoch.

Aufgabe 1 (ca. 60 Minuten):

Arbeiten Sie das Jupiter Notebook flaechen.ipynb durch, um zu sehen, wie Sie Flächen mit Python darstellen können. Weiterführende Informationen bietet Ihnen zum Beispiel auch das Tutorial

https://matplotlib.org/mpl toolkits/mplot3d/tutorial.html an.

Schreiben Sie ein Skript Name S1 Aufg1.py, welches Ihnen jede der folgenden Funktionen in a) und b)

- einmal dreidimensional mit plot_wireframe() darstellt
- einmal dreidimensional mit plot_surface() und passender Colormap darstellt
- einmal in zwei Dimensionen mit den Höhenlinien darstellt

Versehen Sie jede Abbildung mit passenden Achsenbeschriftungen und einem Titel.

- a) Die Funktion $W=W(v_0,\alpha)=\frac{v_0^2\sin(2\alpha)}{g}$ beschreibt die Wurfweite W eines Körpers, der mit der Anfangsgeschwindigkeit $v_0\left[\frac{\mathbf{m}}{\mathbf{s}}\right]$ unter einem Winkel α gegen die Horziontal abgeworfen wird. Nehme Sie für die Erdbeschleunigung $g=9.81\left[\frac{\mathbf{m}}{\mathbf{s}^2}\right]$ an. Für die Anfangsgeschwindigkeit soll gelten $v_0\in[0,100]$. Wählen Sie selbst einen vernünftigen Definitionsbereich für α . Bei welchem Winkel α erreicht W für gegebens v_0 sein Maximum? Schreiben Sie dies als Kommentar in Ihr Skript.
- b) Die Zustandsgleichung pV=RT für 1 Mol (entspricht 6.022·10²³ Molekülen) eines idealen Gases beschreibt den Zusammenhang zwischen den Grössen p (Druck, in $\frac{N}{m^2}$), V (Volumen in m^3) und T (absolute Temperatur in Kelvin) des Gases, wobei die Gaskonstante R=8.31.... (in $\frac{J}{mol K}$) ist. Daraus ergeben sich die folgenden Abhängigkeiten. Stellen Sie jede der drei Funktionen dar innerhalb der angegebenen Defintionsbereiche für p,V und T.
 - $p = p(V,T) = \frac{RT}{V}$ für $V \in [0,0.2], T \in [0,1e4]$
 - $V=V(p,T)=\frac{RT}{p}$ für $p\in[1e4,1e5],\,T\in[0,1e4]$

Aufgabe 2 (ca. 60 Minuten):

Die Auslenkung w=w(x,t) einer schwingenden Welle (z.B. einer Saite, einer Schall- oder Lichtwelle) in einer räumlichen Dimension wird in Abhängigkeit der Ortskoordinate x und der Zeitkoordinate t durch die eindimensionale Wellengleichgung beschrieben

$$\frac{\partial^2 w}{\partial t^2} = c^2 \frac{\partial^2 w}{\partial x^2}$$

Dabei ist c die (konstante) Geschwindigkeit der Welle und $\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial t} \left(\frac{\partial w}{\partial t} \right)$ bzw. $\frac{\partial^2 w}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial w}{\partial x} \right)$.

a) Zeigen Sie durch manuelles partielles Ableiten, dass die folgenden Funktionen die Wellengleichung erfüllen:

a1)
$$w(x,t) = \sin(x+ct)$$
 a2) $v(x,t) = \sin(x+ct) + \cos(2x+2ct)$

b) Schreiben Sie ein Skript $Name_S1_Aufg2b.py$, welches Ihnen die Funktionen w(x,t) und v(x,t) dreidimensional mittels plot_wireframe() darstellt (für c=1).

a1)
$$w(x,t) = \sin(x+ct)$$
 $v = \cos(x+ct)$
 $v = \cos(x+ct)$
 $v = \cos(x+ct)$
 $v = \sin(x)$
 $v = x+ct$
 $v' = \cos(x)$
 $v' = c$
 $\frac{\partial^2 w}{\partial t^2} = c^2 \frac{\partial^2 w}{\partial x^2}$
 $\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial t} \left(\frac{\partial w}{\partial t}\right) \text{ bzw. } \frac{\partial^2 w}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial w}{\partial x}\right).$
 $\frac{\partial}{\partial t} \cdot c \cdot \cos(x+ct) = c^2 \cdot \frac{\partial}{\partial x} \cos(x+ct)$
 $\frac{\partial}{\partial t} \cdot c \cdot \cos(x+ct) = c^2 \cdot \cos(x+ct)$
 $\frac{\partial}{\partial x} \cos(x+ct) + \cos(x+ct) = c^2 \cdot \sin(x+ct) + \cos(x+ct)$
 $\frac{\partial}{\partial x} \cos(x+ct) + \cos(x+ct) = c^2 \cdot \sin(x+ct) + \cos(x+ct)$
 $\frac{\partial}{\partial x} \cos(x+ct) + \cos(x+ct) = c^2 \cdot \sin(x+ct) + \cos(x+ct)$
 $\frac{\partial}{\partial x} \cos(x+ct) + \cos(x+ct) = c^2 \cdot \sin(x+ct) + \cos(x+ct)$
 $\frac{\partial}{\partial x} \cos(x+ct) + \cos(x+ct) = c^2 \cdot \sin(x+ct) + \cos(x+ct)$
 $\frac{\partial}{\partial x} \cos(x+ct) + \cos(x+ct) = \cos(x+ct)$
 $\frac{\partial}{\partial x} \cos(x+ct) + \cos(x+ct)$
 $\frac{\partial}{\partial x} \cos(x+ct) + \cos(x+ct)$
 $\frac{\partial}{\partial x} \cos(x+ct)$

 $-c^{2}(\sin(x+c+) + 4\cos(2x+2c+)) = c^{2} \cdot (-\sin(x+c+) - 4\cos(2x+2c+))$

 $-c^{2}(\sin(x+ct) + 4\cos(2x+2ct)) = -c^{2} \cdot (\sin(x+ct) + 4\cos(2x+2ct))$