Image Comparison PoC

Jan 27-2025

Agenda

- Exploring the Image comparison methods considered
- Mapping properties PoC based on Image comparison (Approach, Results, Wayforward)

Context:

- Flywheel currently has the capability to do automated mappings basis lat-long, name and address.
- Properties are shortlisted basis the radius of 3 km, And then basis Fuzzy logic (token sort/set ratio) comparison shall happen for name and address. Final score is generated basis distance, name and address comparison scores.
- Number of properties above score 70 is ~ 50% (About 50/100 scheduled to run have score >= 70)

Labels	% of properties above score 70	Scores	Accuracy basis our experience	Manual effort involved
very_strict	52%	90+	95%+	Low
strict	7%	85-90	80%+	Med
decent	6%	80-85	70%+	High
lenient	36%	70-80	40%+	Very High

Problem Statement:

- To increase the accuracy esp for strict, decent, lenient category
- To increase the # of properties above score 70 from current ~50% to 70%+

Approach:

• To introduce Image comparison as one more parameter with relevant weightage

Models chosen:

- Resnet, Inception, EfficientNet, VGG cv2
- These are all pretrained CNN models which are trained over imagenet and are opensource
- Output of the model is Multidimensional vector capturing info like brightness, color, objects,....
- Cosine similarity comparison shall happen basis this vector to generate the similarity score

Models tried but not chosen:

- Cv2 Structural model basis luminance, contrast, and structure
- Clip- Needed SSH network permission to access

Pls bear with the image size

Question for the audience: Are these 2 images same? Let's see what AI thinks...

InceptionV3 model-based output

1/1 ______ 3s 3s/step 1/1 ______ 0s 97ms/step

Similarity score between the two images: 0.8359928727149963

928727149963

Pls bear

with the

image size

room1.jpg

room2.jpg

1/1 ______ 3s 3s/step 1/1 _____ 0s 78ms/step

Similarity score between the two images: 0.8522713780403137

Swim1.jpg

1/1 — 3s 3s/step 1/1 — 9s 73ms/step

Similarity score between the two images: 0.7748344540596008

Ginger1.jpg

Ginger2.jpg

1/1 — 4s 4s/step 1/1 — 0s 112ms/step

Similarity score between the two images: 0.6814899444580078

entrance1.jpg

entrance2.jpg

/1 ______ 3s 3s/step /1 ______ 0s 86ms/step

Similarity score between the two images: 0.6915736794471741

Resnet50 model-based output

1/1 ______ 2s 2s/step 1/1 ______ 0s 78ms/step

Similarity score between the two images: 0.6789659261703491

room1.jpg

room2.jpg

______ 2s 2s/step 1/1 — 0s 121ms/step

Similarity score between the two images: 0.8387798070907593

Pls bear with the image size

Swim1.jpg

Swim2.jpg

1/1 ______ 2s 2s/step 1/1 ______ 0s 97ms/step

Similarity score between the two images: 0.9792493581771851

Ginger1.jpg

Ginger2.jpg

1/1 ______ 2s 2s/step 1/1 ______ 0s 107ms/step

Similarity score between the two images: 0.7132307887077332

entrance1.jpg

entrance2.jpg

___ 2s 2s/step - 0s 72ms/step

Similarity score between the two images: 0.6488447785377502

We can try any 2 images of your choice

Approach to Mapping the properties

Identified 110 already
mapped set for Bkg and MMT

Sourced the Bkg images link from s3

Sourced the MMT images from hotstore Mongodb

SAMPLE **MMT Tags** https://r2imghtlak.m mtcdn.com/r2-mmtntl-image/roommgs/2021091518022 78551-2312-2021091518b715c87a161911eca3 Room 8a0a58a9feac02.jpg 02278551 https://r2imghtlak.m mtcdn.com/r2-mmtntl-image/htlmgs/2021091518022 78551-Lobby/Com 2021091518 eea89232161811eca5 mon Area 570a58a9feac02.ipg 02278551

Note the MMT Tags

Programmatically,

- 1. converted the .png, ifif, jpg into jpeg
- Downloaded about ~ 2200 images and resized into 2400x1600 px and stored in respective folder

Programmatically,

- 1. converted the .png, ifif, jpg into jpeg
- Picked images with MMT tags only <u>Facade</u>, <u>Room</u>, <u>Outdoors</u>, <u>Lobby/Common Area</u> (These filters helped reduce images considered by **75%**)
- 3. Downloaded about ~ 2200 images and resized

Built the Image Comparison algo

Image Comparison algo

- 1. For each Mmtid, identify the corresponding Bkgid and the next 10 Bkgid and then access Images from the folders.
- 2. Image Comparison: For each image in the Mmtid set, compare with every image in the corresponding Bkgid set.
- 3. Use ResNet, Inception, VGG, and EfficientNet models for comparison.
- 4. Store Results with fields: Mmt_id, Bkg_id, MMT_image_id, BKG_image_id, Resnet score, Inception score, EfficientNet score, VGG score

Resnet score	Inception score	EfficientNet score	VGG score
0.46	0.52	0.42	0.48
0.47	0.58	0.36	0.38
0.57	0.65	0.16	0.47
0.99	0.98	0.99	0.99
0.67	0.58	0.55	0.70
0.57	0.65	0.60	0.58
0.40	0.61	0.30	0.38
0.70	0.71	0.45	0.66
0.68	0.69	0.55	0.67
0.89	0.76	0.81	0.83
0.61	0.61	0.61	0.72
0.53	0.54	0.45	0.52
0.51	0.56	0.33	0.37
0.45	0.61	0.14	0.48

For scores >0.8 for 3 out of 4 models		True Negatives	False Positives	False Negatives
Accuracy basis my sampling checks out of 1500 combinations	100%	100%	0%	0%

14 combinations snippet (For my ref- MMTid: 202402120104099115 comparison with Bkgid: 11465256 (Mapped))

File name: comparison results4

Note on Latency:

- 1. For 3 MMTid x 30 Bkgid ~ 1500 image comparison took about 6 hrs (Need more time to run on HP basic laptop :p)
- 2. Converting, filtering the MMT tags and downloading for 110 properties took about 2 hrs

Way Forward:

- We can store every vector in vector db (using knn) so that we can retrieve it as and when needed/queried (Atlas db vector search with cosine/Euclidean similarity powered by Mongodb)
- Further filter basis MMT Tags and compare efficiently. Or/And generate tags for BKG images and then filter further.
- Run on powerful processors on aws cloud
- Add the image comparison check wherever the score is less than 95 for prev algo
- Set the threshold such that wherever the score of atleast 3 models greater than 0.8 for any of the comparison, then the property is 100% match OR
- Set the threshold such that wherever the score of atleast 3 models greater than 0.8 for 2 of the comparison, then the
 property is 100% match

Thanks

Result: • Wherever the score of atleast 3 models greater than 0.8, then the property is 100% match

Appendix

http://confluence.mmt.com/display/FLYW/Automated+Mappings

Core Data Provider for Products - Holidays package pricing

Flywheel is now powering data to Holidays LOB for pricing of train tickets across Europe for ~670 sectors

Problem Statement:

- Prices of train tickets were manually updated quarterly or bi-yearly with high markups to prevent losses
- This used to often result in overpriced Europe packages
- In peak months due to surge pricing, we used to absorb losses as our tickets were priced low

What we did:

Started crawling Raileurope website which has extensive coverage of all sectors with rail pricing

Current situation:

- We are now crawling 670 locations to and fro twice a week
- Specific prices at First/Second class, time, cancellation policies and pax level are being considered for rail prices in packages
- Because of the latest data and automatic integration, package prices are on par with the actuals.

Google Listing crawls to identify the supply contracting opportunities for Tier 2 & 3 cities

Context:

 Potential supply contracting opportunity needed to be identified through Google listing crawls for Tier 2 and Tier 3 cities to start with.

Capability developed:

 Conducted a PoC with the integration of thirdparty tools and APIs to crawl Google Hotel Listings and assess the scalability of the process.

Result of PoC:

- 6 cities are successfully crawled
- Data captured: hotel name, listing price, ratings, lat/long, address and phone number

Way forward:

- Scaling to 20 cities/week
- Enhancing tech capability to crawl Tier 1 cities

