Minimal Proof System of Matching Logic

Formal Systems Laboratory

November 14, 2017

The following inference rules are shown to constitute a sound and complete proof system of matching logic. We conjecture that all rules marked with "*" are derivable from the rest plus the axiom (Definedness). In other words, we conjecture that all rules that are *not* marked with "*" constitute a sound and complete proof system of matching logic.

Propositional₁ $\varphi_1 \to (\varphi_2 \to \varphi_1)$ $(\varphi_1 \to (\varphi_2 \to \varphi_3)) \to ((\varphi_1 \to \varphi_2) \to (\varphi_1 \to \varphi_3))$ Propositional₂ $(\neg \varphi_1 \rightarrow \neg \varphi_2) \rightarrow (\varphi_2 \rightarrow \varphi_1)$ Propositional₃ $\forall x. \varphi \to \varphi[y/x]$ VARIABLE SUBSTITUTION $\forall x.(\varphi_1 \to \varphi_2) \to (\varphi_1 \to \forall x.\varphi_2)$ if x does not occur free in φ_1 $\sigma(\ldots,\varphi_1\vee\varphi_2,\ldots)\leftrightarrow\sigma(\ldots,\varphi_1,\ldots)\vee\sigma(\ldots,\varphi_2,\ldots)$ Κ Ν BARCAN $\sigma(\ldots, \exists x.\varphi, \ldots) \leftrightarrow \exists x.\sigma(\ldots, \varphi, \ldots)$ if x does not occur free in the left-hand side of the double implication $x \in \sigma(\ldots, \varphi_i, \ldots) \to \exists y. y \in \varphi_i \land x \in \sigma(\ldots, y, \ldots)$ *Membership Symbol $x \in \neg \varphi \to \neg (x \in \varphi)$ *Membership ¬ *Membership ∃ $x \in \forall y. \varphi \to \forall y. (x \in \varphi)$ where x is distinct from y*Definedness $\lceil x \rceil$

Modus Ponens From φ_1 and $\varphi_1 \to \varphi_2$ deduce φ_2

Universal Generalization – From φ deduce $\forall x. \varphi$

Equational Substitution From $\varphi_1 \leftrightarrow \varphi_2$ deduce $\varphi_3[\varphi_1/x] \leftrightarrow \varphi_3[\varphi_2/x]$

*Introduction \in From φ deduce $x \in \varphi$

If x does not occur free in φ

*ELIMINATION \in From $x \in \varphi$ deduce φ

If x does not occur free in φ