Introduction to Computer Networks

Slide Source: Cisco Networking

Networking Today

- Network has no boundary and supports the way we:
 - Learn
 - Communicate
 - Work
 - Play

Providing Resources in a Network

Networks of Many Sizes

- Small Home / Office Networks
- Medium to Large Networks
- World Wide Network

Clients and Servers

- Clients request and display information
- Servers provide information to other devices on the network

Peer-to-Peer

- Computers can be both server and client at the same time.
- What are the advantages?
- What are the disadvantages?

Network Components

End Devices

- Either the source or destination of a message
- Name some end devices

Intermediary Network Devices

- Connect multiple individual networks to form an internetwork
- Connect the individual end devices to the network
- Ensure data flows across the network
- Provide connectivity

Network Media

- Provide the pathway for data transmission
- Interconnect devices
- Name the three types of media

Network Components

- Network Representations
 - What do the symbols represent?
- Topology Diagrams
 - Physical
 - Logical

LANs and WANs

Local Area Networks

- Spans across small geographical area
- Interconnects end devices
- Administrated by a single organization
- Provide high speed bandwidth to internal devices

WAN Area Networks

- Interconnects LAN
- Administrated by multiple service providers
- Provide slower speed links between LANS
- Can you name more network types?

The Internet, Intranets, and Extranets

- The Internet
 - Worldwide collection of interconnected networks
 - Not owned by any individual or group
- Intranets and Extranets

The Network as a Platform

Converged Networks

- Traditional Separate Networks
 - Each network with its own rules and
- The Converging Network
 - Capable of delivering data, voice, and video over the same network infrastructure

What is Communication?

Establishing the Rules

- An identified sender and receiver.
- Agreed upon method of communicating (face-to-face, telephone, letter, photograph)
- Common language and grammar
- Speed and timing of delivery
- Confirmation or acknowledgment requirements

Message Encoding

Message Formatting and Encapsulation

Example: Personal letter contains the following elements:

- Identifier of the recipient's location
- Identifier of the sender's location
- Salutation or greeting
- Recipient identifier
- The message content
- Source identifier
- End of message indicator

Sender 4085 SE Pine Street Ocala, Florida 34471

Recipient 1400 Main Street Canton, Ohio 44203

Message Size

An overview of the segmenting process:

- The size restrictions of frames require the source host to break a long message into individual pieces (or segments) that meet both the minimum and maximum size requirements.
- Each segment is encapsulated in a separate frame with the address information, and is sent over the network.
- At the receiving host, the messages are de-encapsulated and put back together to be processed and interpreted.

Message Timing

- Access Method
- Flow Control
- Response Timeout

Network Protocols

- How the message is formatted or structured
- The process by which networking devices share information about pathways with other networks
- How and when error and system messages are passed between devices
- The setup and termination of data transfer sessions

Interaction of Protocols

- Application Protocol Hypertext Transfer Protocol (HTTP)
- Transport Protocol Transmission Control Protocol (TCP)
- Internet Protocol Internet Protocol (IP)
- Network Access Protocols Data link & physical layers

Protocol Suites and Industry Standards

Protocol Suites and Industry Standards

TCP/IP	ISO	AppleTalk	Novell Netware			
HTTP DNS DHCP FTP	ACSE ROSE TRSE SESE	AFP	NDS			
TCP UDP	TP0 TP1 TP2 TP3 TP4	ATP AEP NBP RTMP	SPX			
IPv4 IPv6 ICMPv4 ICMPv6	CONP/CMNS CLNP/CLNS	AARP	IPX			
Ethernet PPP Frame Relay ATM WLAN						

Creation of Internet, Development of TCP/IP

- The first packet switching network and predecessor to today's Internet was the Advanced Research Projects Agency Network (ARPANET), which came to life in 1969 by connecting mainframe computers at four locations.
- ARPANET was funded by the U.S. Department of Defense for use by universities and research laboratories. Bolt, Beranek and Newman (BBN) was the contractor that did much of the initial development of the ARPANET, including creating the first router known as an Interface Message Processor (IMP).
- In 1973, Robert Kahn and Vinton Cerf began work on TCP to develop the next generation of the ARPANET. TCP was designed to replace ARPANET's current Network Control Program (NCP).
- In 1978, TCP was divided into two protocols: TCP and IP. Later, other protocols were added to the TCP/IP suite of protocols including Telnet, FTP, DNS, and many others.

TCP/IP Protocol Suite and Communication

Benefits of Using a Layered Model

The OSI Reference Model

OSI Model

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data Link

1. Physical

The TCP/IP Reference Model

TCP/IP Model

Application

Represents data to the user, plus encoding and dialog control.

Transport

Supports communication between diverse devices across diverse networks.

Internet

Determines the best path through the network.

Network Access

Controls the hardware devices and media that make up the network.

Comparing the OSI and TCP/IP Models

Communicating the Messages

- Segmenting message benefits
 - Different conversations can be interleaved
 - Increased reliability of network communications
- Segmenting message disadvantage
 - Increased level of complexity

Communicating the Message

Protocol Data Units (PDUs)

- Data
- Segment
- Packet
- Frame
- Bits

Protocol Encapsulation

Protocol Encapsulation Terms

Protocol De-encapsulation

Accessing Local Resources

Network Addresses and Data Link Addresses

Communicating with Device / Same Network

PC1 192.168.1.110 AA-AA-AA-AA-AA

FTP Server 192.168.1.9 CC-CC-CC-CC-CC

MAC and **IP** Addresses

Default Gateway

Getting the Pieces to the Correct Network

Communicating Device / Remote Network

Destination	Source	Source		Destination		
11-11-11-	AA-AA-AA-	Network	Device	Network	Device	Data
11-11	AA-AA	192.168.1.	110	172.16.1.	99	

PC1 192.168.1.110 AA-AA-AA-AA **R1** 192.168.1.1 11-11-11-11

R2 172.16.1.99 22-22-22-22

Web Server 172.16.1.99 AB-CD-EF-12-34-56

Introduction to ARP

I need to send information to 192.168.1.7, but I only have the IP address. I don't know the MAC address of the device that has that IP.

ARP Functions/Operation

ARP Table

- Used to find the data link layer address that is mapped to the destination IPv4 address.
- As a node receives frames from the media, it records the source IP and MAC address as a mapping in the ARP table.

ARP Request

- Layer 2 broadcast to all devices on the Ethernet LAN.
- The node that matches the IP address in the broadcast will reply.
- If no device responds to the ARP request, the packet is dropped because a frame cannot be created.

Note: Static map entries can be entered in an ARP table, but this is rarely done.

ARP Operation

Physical Layer Fundamental Principles

Media	Physical Components	Frame Encoding Technique	Signalling Method	
Copper Cable	UTPCoaxialConnectorsNICsPortsInterfaces	 Manchester Encoding Non-Return to Zero (NRZ) techniques 4B/5B codes are used with Multi-Level Transition Level 3 (MLT-3) signaling 8B/10B PAM5 	 Changes in the electromagnetic field Intensity of the electromagnetic field Phase of the electromagnetic wave 	
Fiber Optic Cable	 Single-mode Fiber Multimode Fiber Connectors NICs Interfaces Lasers and LEDs Photoreceptors 	 Pulses of light Wavelength multiplexing using different colors 	A pulse equals 1.No pulse is 0.	
Wireless Media	Access PointsNICsRadioAntennae	 DSSS (direct-sequence spread-spectrum) OFDM (orthogonal frequency division multiplexing) 	Radio waves	

Copper Cabling Copper Media

Copper Cabling UTP Cable

STP Cable

Copper Cabling Coaxial Cable

UTP Cabling

UTP cable does not use shielding to counter the effects of EMI and RFI. Instead, cable designers have discovered that they can limit the negative effect of crosstalk by:

- Cancellation
- Varying the number of twists per wire pair

UTP Cabling UTP Connectors

RJ-45 UTP Plugs

RJ-45 UTP Socket

Types of UTP Cable

Cable Type	Standard	Application
Ethernet Straight- through	Both ends T568A or both ends T568B	Connects a network host to a network device such as a switch or hub.
Ethernet Crossover	One end T568A, other end T568B	 Connects two network hosts Connects two network intermediary devices (switch to switch, or router to router)
Rollover	Cisco proprietary	Connects a workstation serial port to a router console port, using an adapter.

Fiber Optic Cabling

Properties of Fiber Optic Cabling

Fiber-optic cabling is now being used in four types of industry:

- Enterprise Networks
- Fiber-to-the-home (FTTH) and Access Networks
- Long-Haul Networks
- Submarine Networks

Fiber Optic Cabling

Network Fiber Connectors

ST Connectors

SC Connectors

LC Connector

Duplex Multimode LC Connectors

Types of Wireless Media

Introduction to the Ethernet Frame

IEEE 802.3									
7 Preamble	1 Start of Frame Delimiter	6 Destinatio n Address	6 Source Address	2 Length	46 to 1500 802.2 Header and Data	4 Frame Check Sequence			

Preamble and Start Frame Delimiter Fields – Used for synchronization between the sending and receiving devices.

Length/Type Field – Defines the exact length of the frame's data field; describes which protocol is implemented.

Data and Pad Fields – Contains the encapsulated data from a higher layer, an IPv4 packet.

Introduction to the Ethernet Frame (cont.)

IEEE 802.3									
7 Preamble	1 Start of Frame Delimiter	6 Destinatio n Address	6 Source Address	2 Length	46 to 1500 802.2 Header and Data	4 Frame Check Sequence			
	Dominion				500				

Frame Check Sequence Field

Used to detect errors in a frame with cyclic redundancy check (4 bytes); if calculations match at source and receiver, no error occurred.

End-to-End Connectivity, MAC, and IP (cont.)

LAN and WAN Frames

Examples of Layer 2 Protocols

The Network Layer S + 100

The network layer, or OSI Layer 3, provides services to allow end devices to exchange data across the network. To accomplish this end-to-end transport, the network layer uses four basic processes:

- Addressing end devices
- Encapsulation
- Routing
- De-encapsulating

Network Layer Protocols

Common network layer protocols include:

- IP version 4 (IPv4)
- IP version 6 (IPv6)

IP Components

IP Packets flow through the internetwork.

- Connectionless No connection is established before sending data packets.
- Best Effort (unreliable) No overhead is used to guarantee packet delivery.
- · Media Independent Operates independently of the medium carrying the data.

IP - Connectionless

Best Effort Delivery

As an unreliable network layer protocol, IP does not guarantee that all sent packets will be received. Other protocols manage the process of tracking packets and ensuring their delivery.

IP – Media Independent

IPv4 Packet

Encapsulating IP

Transport Layer Encapsulation Segment Header Data

Network Layer Encapsulation

IP Header Transport Layer PDU

Network Layer PDU

IP Packet

The network layer adds a header so packets can be routed through complex networks and reach their destination. In TCP/IP based networks, the network layer PDU is the IP packet.

IPv4 Packet

IPv4 Packet Header

IPv4 Packet IPv4 Header Fields

Unicast Address

Unicast

Broadcast MAC Address

Multicast Address

Sample IPv4 Headers in Packet Tracer

Limitations of IPv4

- IP Address depletion
- Internet routing table expansion
- Lack of end-to-end connectivity

IPv6

- Increased address space
- Improved packet handling
- Eliminates the need for NAT
- Integrated security
- 4 billion IPv4 addresses 4,000,000,000

Encapsulating IPv6

IPv6 Packet Header

