Seção 1.2. Curvas Parametrizadas

By Gabriela Silva

10 de fevereiro de 2020

Exercício 1. Encontre uma curva parametrizada $\alpha(t)$ cujo traço seja o círculo $x^2 + y^2 = 1$ de maneira que $\alpha(t)$ percorra o círculo no sentido anti-horário e tenhamos $\alpha(0) = (0,1)$.

Comentário: Na página 4, o autor nos mostra no exemplo 5 uma curva parametrizada $\alpha(t) = (\cos(t), \sin(t))$, com $t \in (0 - \epsilon, 2\pi + \epsilon)$, $\epsilon > 0$, que possui como traço o círculo unitário $x^2 + y^2 = 1$. Assim, já podemos desconfiar que as funções coordenadas da curva parametrizada α , desse exercício 1, são funções que envolvem seno e cosseno e $\alpha(0) = (0,1)$.

Solução. Considere a curva parametrizada

$$\alpha:(0-\epsilon,2\pi+\epsilon)\to\mathbb{R}^2$$

$$\alpha(t) = (-\sin(t), \cos(t)), \text{ com } t \in (0 - \epsilon, 2\pi + \epsilon), \epsilon > 0$$

Veja, na Figura abaixo, que α percorre o círculo no sentido antihorário e ainda temos que $\alpha(0)=(0,1)$

Figure 1: Traço da curva α

Fonte: Autora.¹

•

 $^{^1\}mbox{Figura}$ (Tikzpicture) construída pelo software Mathcha. Disponível em: https://www.mathcha.io.