Nonparametric Regression

Nihar Shah

DSSG

9 July 2013

Linear regression

$$y = \beta_0 + \beta_1 x$$

- Linear regression
- Polynomial regression

$$y = \beta_0 + \beta_1 x$$
$$y = \beta_0 + \beta_1 x + \beta_2 x^2$$

- Linear regression
- Polynomial regression
- Logit regression

$$y = \beta_0 + \beta_1 x$$
$$y = \beta_0 + \beta_1 x + \beta_2 x^2$$
$$y = \frac{1}{1 + e^{\beta_0 + \beta_1 x}}$$

- Linear regression
- Polynomial regression
- Logit regression
- Probit regression

$$y = \beta_0 + \beta_1 x$$
$$y = \beta_0 + \beta_1 x + \beta_2 x^2$$
$$y = \frac{1}{1 + e^{\beta_0 + \beta_1 x}}$$
$$y = \Phi(\beta_0 + \beta_1 x)$$

- Linear regression
- Polynomial regression
- Logit regression
- Probit regression
- Poisson regression

$$y = \beta_0 + \beta_1 x$$

$$y = \beta_0 + \beta_1 x + \beta_2 x^2$$

$$y = \frac{1}{1 + e^{\beta_0 + \beta_1 x}}$$

$$y = \Phi(\beta_0 + \beta_1 x)$$

$$v = e^{\beta_0 + \beta_1 x}$$

- Linear regression
- Polynomial regression
- Logit regression
- Probit regression
- Poisson regression
- Quantile regression

$$y = \beta_0 + \beta_1 x$$

$$y = \beta_0 + \beta_1 x + \beta_2 x^2$$

$$y = \frac{1}{1 + e^{\beta_0 + \beta_1 x}}$$

$$y = \Phi(\beta_0 + \beta_1 x)$$

$$y = e^{\beta_0 + \beta_1 x}$$

$$y_{\pi} = \beta_0 + \beta_1 x$$

- Linear regression
- Polynomial regression
- Logit regression
- Probit regression
- Poisson regression
- Quantile regression

$$y = \beta_0 + \beta_1 x$$

$$y = \beta_0 + \beta_1 x + \beta_2 x^2$$

$$y = \frac{1}{1 + e^{\beta_0 + \beta_1 x}}$$

$$y = \Phi(\beta_0 + \beta_1 x)$$

$$y = e^{\beta_0 + \beta_1 x}$$

$$y_{\tau} = \beta_0 + \beta_1 x$$

These all assume a model!

By contrast...

Nonparametric regression makes no model assumptions (i.e. no parameters to estimate)

$$y = f(x; x_1, x_2, x_3, ..., x_n)$$

By contrast...

Nonparametric regression makes no model assumptions (i.e. no parameters to estimate)

$$y = f(x; x_1, x_2, x_3, ..., x_n)$$

Parametric estimation:

 $data \Rightarrow parameters \Rightarrow estimation$

Nonparametric estimation:

 $data \Rightarrow estimation$

True Functional Form: ??

True Functional Form: ??

True Functional Form: ??

True Functional Form: ??

$$1.02^{\min\{0.5x^3-1.5x^2+1.1x-6\sqrt{x}+3,\ 25\}+u}, u \sim \mathcal{N}(0,2)$$

Types of Nonparametric Regression

- Kernel regression
- Nonparametric multiplicative regression
- Regression trees

Types of Nonparametric Regression

- Kernel regression
- Nonparametric multiplicative regression
- Regression trees

Kernel nonparametric regression is just...

Kernel nonparametric regression is just... weighted averages!

Kernel nonparametric regression is just... weighted averages!

Say you want to predict a response (\hat{y}) at a given point (x)

- Linear regression
 - Use available data $(x_1, y_1), (x_2, y_2), (x_3, y_3)...$ to estimate $\hat{\beta_0}$ and $\hat{\beta_1}$
 - Use $\hat{\beta_0}$ and $\hat{\beta_1}$ to now predict \hat{y} , or $\hat{y} = \hat{\beta_0} + \hat{\beta_1}x$

Kernel nonparametric regression is just... weighted averages!

Say you want to predict a response (\hat{y}) at a given point (x)

- Linear regression
 - Use available data $(x_1, y_1), (x_2, y_2), (x_3, y_3)...$ to estimate $\hat{\beta_0}$ and $\hat{\beta_1}$
 - Use $\hat{\beta_0}$ and $\hat{\beta_1}$ to now predict \hat{y} , or $\hat{y} = \hat{\beta_0} + \hat{\beta_1}x$
- Kernel regression
 - Calculate a weight for each data point: w_1 for (x_1, y_1) , w_2 for (x_2, y_2) , w_3 for (x_3, y_3) , etc.
 - Estimate \hat{y} as a weighted average of the responses: $\sum w_i y_i$

Kernel nonparametric regression is just... weighted averages!

Say you want to predict a response (\hat{y}) at a given point (x)

- Linear regression
 - Use available data $(x_1, y_1), (x_2, y_2), (x_3, y_3)...$ to estimate $\hat{\beta_0}$ and $\hat{\beta_1}$
 - Use $\hat{\beta_0}$ and $\hat{\beta_1}$ to now predict \hat{y} , or $\hat{y} = \hat{\beta_0} + \hat{\beta_1}x$
- Kernel regression
 - Calculate a weight for each data point: w_1 for (x_1, y_1) , w_2 for (x_2, y_2) , w_3 for (x_3, y_3) , etc.
 - Estimate \hat{y} as a weighted average of the responses: $\sum w_i y_i$
 - The weight is computed by the Kernel

Heights versus Weight

Height (in)	Weight (lb)	
68	140	
70	150	
72	165	
74	170	

Now say we want to estimate the weight of someone who is 71 inches.

Heights versus Weight

Height (in)	Weight (lb)	
68	140	
70	150	
72	165	
74	170	

Now say we want to estimate the weight of someone who is 71 inches.

Linear regression: $\hat{\beta_0} = -216.5$, $\hat{\beta_1} = 5.25$

Estimation: $\hat{y} = -216.5 + 5.25 \cdot 71 = 156.25$

Heights versus Weight

Take a made-up kernel:
$$K(x_1, x_2) = \frac{1}{|x_1 - x_2|}$$

 $x = 71$ inches, $\hat{y} = ?$

Height (in)	Weight (lb)	Original Weight	Normalized Weight
68	140	0.333	0.125
70	150	1	0.375
72	165	1	0.375
74	170	0.333	0.125

$$\hat{y} = 0.125 \cdot 140 + 0.375 \cdot 150 + 0.375 \cdot 165 + 0.125 \cdot 170$$

 $\hat{v} = 156.875$

Theory

Nadaraya-Watson Kernel Estimator

$$\hat{y} = \hat{m}_h(x) = \frac{\sum_{i=1}^n K_h(x - X_i) Y_i}{\sum_{i=1}^n K_h(x - X_i)}$$

Popular Kernels

- Uniform
- Triangular
- Normal
- Epanechnikov

Kernels: Some Details

Turns out they are a little more complicated than just weights...

- They have a parameter (h) called bandwidth
- They can be multiplied when we have several predictors (e.g. height and gender):

$$K_h(x - X_i) = K_h^1(x^1 - X_i^1)K_h^2(x^2 - X_i^2)$$

Returning to Original Plot

$$1.02^{\min\{0.5x^3-1.5x^2+1.1x-6\sqrt{x}+3,\ 25\}+u}, u \sim \mathcal{N}(0,2)$$

Returning to Original Plot

Using an Epanechnikov Kernel...

Extrapolation is problematic

Extrapolation is problematic

- Extrapolation is problematic
- Prediction is computationally intensive

- Extrapolation is problematic
- Prediction is computationally intensive
- No parameters to analyze

- Extrapolation is problematic
- Prediction is computationally intensive
- No parameters to analyze
- Requires lots of data for accurate prediction

- Extrapolation is problematic
- Prediction is computationally intensive
- No parameters to analyze
- Requires lots of data for accurate prediction
- Still requires some assumptions...

