3

Fonctions affines

Plan du chapitre

1.	Rap	pels sur les fonctions affines	1
	1.1	Expression	1
	1.2	Représentation graphique	1
2.	Vari	ations d'une fonction affine	2
3.	\mathbf{Sign}	e d'une fonction affine	3

1. Rappels sur les fonctions affines

1.1 Expression

Définition 1

Les fonctions f, définies sur \mathbb{R} , dont l'expression peut se mettre sous la forme f(x) = mx + p, où m et p sont des réels, sont appelées **fonctions affines**.

Cas particuliers:

- si m = 0 alors f(x) = p est dite **constante**;
- si p = 0 alors f(x) = mx est dite linéaire.

1.2 Représentation graphique

Le plan est muni d'un repère.

Théorème 1

Toute fonction affine f définie sur \mathbb{R} par f(x) = mx + p est représentée par une droite \mathscr{D} non parallèle à l'axe des ordonnées qui aura pour équation y = mx + p.

Réciproquement, toute expression de la forme y=mx+p est celle d'une fonction affine. Par ailleurs :

- p s'appelle ordonnée à l'origine : la droite \mathscr{D} passe par le point de coordonnées (0; p).
- m s'appelle le coefficient directeur ou pente de la droite \mathscr{D} , et le taux d'accroissement de f:

Si $A(x_A; y_A)$ et $B(x_B; y_B)$ sont deux points de \mathscr{D} tels que $x_A \neq x_B$ alors :

$$m = \frac{f(x_{\rm B}) - f(x_{\rm A})}{x_{\rm B} - x_{\rm A}} = \frac{y_B - y_A}{x_B - x_A} = \frac{\Delta y}{\Delta x}.$$

Illustration.

Exemple. Soit la fonction f définie sur \mathbb{R} par f(x) = -3(x-1) + 7(x-3). Démontrer que la fonction f est une fonction affine.

2. Variations d'une fonction affine

Théorème 2

Soit $f: x \mapsto mx + p$ une fonction affine.

Pour deux réels u et v: si u < v alors f(u) < f(v).

On dit que f conserve l'ordre dans \mathbb{R} ou encore que f est strictement croissante sur \mathbb{R} :

m < 0

Pour deux réels u et v: si u < v alors f(u) > f(v).

On dit que f ne conserve pas l'ordre dans \mathbb{R} ou encore que f est strictement décroissante sur \mathbb{R} :

${\bf Exemples.}$

- 1. Pour $f: x \mapsto 1, 5x$: comme m=1, 5>0, si u < v alors, 1, 5u < 1, 5v, c'est-à-dire f(u) < f(v).
- 2. Pour $g: x \mapsto -0, 4x$: comme m = -0, 4 < 0, si u < v alors, -0, 4u > -0, 4v, c'est-à-dire f(u) > f(v).

Remarque : à partir des variations d'une fonction, on peut élaborer son tableau de variations : c'est un tableau synthétique regroupant les informations concernant les variations de cette fonction.

À retenir:

1. Cas m < 0

x	$-\infty$	$+\infty$
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$		

2. Cas m = 0

x	$-\infty$	$+\infty$
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$		

3. Cas m > 0

x	$-\infty$	$+\infty$
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$		

Exemple. Dresser le tableau de variation de la fonction f définie sur \mathbb{R} par f(x) = -4x + 2.

3. Signe d'une fonction affine

Définition 2

Soit f une fonction affine définie sur \mathbb{R} par f(x) = mx + p avec $m \neq 0$.

- On appelle racine de f le réel x_0 tel que $f(x_0) = 0$.
- Le point de coordonnées $(x_0; 0)$ est le point d'intersection de la courbe représentative de f avec l'axe des abscisses.

Propriété

Soit $f: x \mapsto mx + p$ une fonction affine avec $m \neq 0$ admettant pour racine x_0 . Le signe de f(x) selon les valeurs de x est donné par le tableau suivant :

 \square Si m>0

x	$-\infty$		x_0		$+\infty$
signe de $f(x)$		_	0	+	

 \square Si m < 0

x	$-\infty$		x_0		$+\infty$
signe de $f(x)$		+	0	_	