FLUIDS

* Find the force acting on a surface whose area (rectangular)

is
$$40 \text{ cm}^2$$
 and the pressure acting on the surface $4:25$

10

 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10

* convert the 6.25 H cm² into pascals.

$$l cm^2 = \left(\frac{l}{100}\right)^2 m^2$$

$$\frac{6.25 \text{ N}}{10^{4} \text{ m}} = \frac{6.25 \text{ H}}{10^{4} \text{ m}} \Rightarrow \frac{6.25 \text{ K} 10^{4}}{10^{4} \text{ m}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ N} \text{ m}^{2}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ N}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ N}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ N}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{ m}^{2}}{10^{4} \text{ M}} \Rightarrow \frac{62.5 \text{ K} 10^{3} \text{ N} \text{$$

(1 - 1 - 1 : lon

Find the mass in kg for 1L of water. Given the density of crater is 1000 kg/m³ [Note: density of liquid (kg) (mg) =
$$\frac{mass}{volame(mg)}$$

3P
$$\Rightarrow 4\pi\tau^2 \text{ (area-of the sphere)} \Rightarrow$$

$$\Rightarrow \frac{4}{3}\pi\tau^3 \text{ (volume)} \Rightarrow m^3$$

. Find the Force acting on a squarical ball when a pressure of 1 pa is applied on a by the liquid on the balls surface. Assure r = 1em.