

Faculty Of Engineering and Technology Electrical and Computer Engineering Department CIRCUITS AND ELECTRONICS LABORATORY

ENEE 2103

Experiment #: 7

BJT Transistor As An Amplifier, CE, CC, CB Connection

Prepared by: Rahaf Naser 1201319

Instructor: Dr. Mahran Quraan

Teacher assistant: Eng. Rafah Rahhal

Date: 8/15/2023

1.COMMON EMITTER	TRANSISTOR AMPLIFIER	1
2.COMMON COLLECTO	OR TRANSISTOR AMPLIFIER	5

Table of Figures

Figure 1.1: Common-Emitter transistor amplifier	1
Figure 1.2: Common-Emitter transistor simulation	1
Figure 1.3: Vo when Vi=1v	2
Figure 1.4: Vo=4v	3
Figure 1.5: VB and Vo RMS	3
Figure 1.6: after remove the 100k resistor	4
Figure 2.1: Common-Collector transistor amplifier	5
Figure 2.2: Common-Collector transistor simulation	5
Figure 2.3: Vo=2.04v	6
Figure 2.4: Input/Output Current	7
Figure 2.5: Common-Collector transistor simulation to find Zo	8
Figure 2.6: Output Voltage and Current	Q

Table of Tables

Table 1: Voltage and Current values	2
Table 2: Voltage and Current values	0
Table 3: Conclusion values.	Ç

1.COMMON EMITTER TRANSISTOR AMPLIFIER

I connected the circuit in figure 1.1, and set Vi (t) amplitude to 0, and set the potentiometer value to 10 k and its set value to 0. I set sinusoidal source to 1 kHz and amplitude to zero.

Figure 1.1: Common-Emitter transistor amplifier

Result of simulation

Figure 1.2: Common-Emitter transistor simulation

Measured values from figure 1.2 above:

Vc	8.583v
Vbe	692.1mA
Vce	8.583v
Ic	6.417mA
Ib	34.19uA

Table 1: Voltage and Current values

Then I adjust amplitude of Vi(t) to 1 V and measured Vo(t).

Figure 1.3: Vo when Vi=1v

From figure 1.3 above :

$$V_0 = 1.9v, A_v = 1.9/1 = 1.9$$

After change peak of Vi(t) such that Vo(t) = 4V peak and perform Transient analysis

$$Vin = 4/1.9 = 2.105v$$

Figure 1.4: Vo=4v

$$Av = Vo/Vin = 4/2.105=1.9$$

To calculate Av1= Vb /Vin, I used RMS waves:

Figure 1.5: VB and Vo RMS

From figure 1.5:

$$Av1 = Vo /VB = 4 /0.7 = 5.7$$

After remove the 100k resistor to see what happens to voltage gain

Figure 1.6: after remove the 100k resistor

We can see from the figure that the voltage gain will increase:

$$Av = 15/2.2 = 6.8$$

2.COMMON COLLECTOR TRANSISTOR AMPLIFIER

I connected the circuit in figure 2.1. Set the sine wave generator to a frequency of 1 kHz, and its output amplitude to zero.

Figure 2.1: Common-Collector transistor amplifier

Simulation result->

Figure 2.2: Common-Collector transistor simulation

Measured values from figure 2.2 above:

Vb	2.988v
Vc	10v
Ib	13.36uA
Ic	2.323mA

Table 2: Voltage and Current values

To get output amplitude from the amplifier is about 2volts peak-to-peak:

Vin amplitude =16.6v

Figure 2.3: Vo=2.04v

$$Av = 2.04/16.6 = 0.12$$

To calculate Ai=Io/Iin and Zi from figure 2.4 below:

Figure 2.4: Input/Output Current

$$Ai = Io/Iin = 2.03/0.15 = 13.53$$

$$Zi = Vin / Iin = 16.6/0.15 = 110.66 \text{ kohm}$$

Now To find Zo, I take off the input sine wave generator and replace it with a short circuit, then I connect the generator to the output (emitter) via a capacitor, and measure its output voltage and current, as shown in figure 2.5 below.

Figure 2.5: Common-Collector transistor simulation to find Zo

Simulation result->

Figure 2.6: Output Voltage and Current

From figure 2.6 above: Zo=Vo/Io = 708/3.5 = 212.3 Ohm

Conclusion values:

Quantity	Measured value
Vin	16.6v
Vout	2.04
V100k_RMS	10
Iout	2.03
	Calculated value
Av=Vout/Vin	0.12
Iin = v100k_RMS/100k	0.15
Ai= Iout/Iin	13.5
Zin= Vin/Iin	110.66k
Zout=Vt/It	212.3

Table 3: Conclusion values