

字母表与串 Alphabet and String

刘铎

liuduo@bjtu.edu.cn

"""字母表与串

- □ 字母表(alphabet)是指一个有限的非空符 号集 Σ , Σ 中元素称为字母。
- $\square \Sigma^*$ 为所有由 Σ 中元素生成的有限长度序列全体, Σ^* 中元素称为 Σ 上的词(word)或串(string)(在不引起混淆时,也可忽略序列各项间的","),即串是有限长度的符号序列。
- □ Σ* 中的空序列称作**空串**(empty string), 习惯上使用 λ 或ε 表示,用 Λ表示集合{λ}。

- □ 串 w 所含字母个数(即序列的项数)称作 w 的长 **度**(length),记作 |w|。
- □ 可以这样来理解:字母表是有限的符号集,而串 是有限长度的符号序列。
- □ 容易看出串在连接运算下形成的代数结构:
 - 假设 Σ 是一个字母表,则 (Σ^*, \circ) 构成一个半群

- □例
 - 常用的字母表有:
 - □ $\Sigma = \{0, 1\}$, 二进制字母表;
 - □ Σ = {a, b, ..., z}, 所有小写字母的集合;
 - □ 所有ASCII字符的集合,或者所有可打印的ASCII字 符的集合。
- □例
 - **0**1101是二进制字母表 Σ ={0, 1} 上的一个串, 长度为5
 - 111是这个字母表上的另一个串,长度为3
 - 空串 λ 的长度为0

- 口假设 w 是字母表 Σ 上的串,则可以定义 w 的 n 次幂 w^n 为
 - $(1) w^0 = \lambda$
 - (2) $w^n = w^{n-1} \circ w$, $n \ge 1$
- □例
 - $a^3=aaa$, $(ab)^2a=ababa$
 - $[0^n1^n \mid n \ge 1] = \{01,0011,000111,\ldots\}$

- □ 假设 x, y, z 是字母表 Σ 上的串,且 x = yz。
 - 称 *y* 是 *x* 的前缀(prefix)
 - 如果 $z \notin \lambda$,则称 $y \in x$ 的**真前缀(proper prefix)**

 - 如果 $y \notin \lambda$,则称 $z \in x$ 的**真后缀(proper suffix)**
- □假设 x, y 是字母表 Σ 上的串,且存在字母表 Σ 上的串 z, w 使得 x = zyw,则称 y 是 x 的子串(substring)
 - 简言之,x 的子串就是由 x 删除某个前缀后再删去 某个后缀得到的结果。

"""字母表与串

- □例
 - 串abcde的
 - □前缀是 ル, a, ab, abc, abcd, abcde
 - □真前缀是 *礼*, a, ab, abc, abcd
 - □后缀是 *礼*, e, de, cde, bcde, abcde
 - □真后缀是 *λ*, e, de, cde, bcde
 - 对于任意字符串 x, x 的前缀有 |x|+1 个, 真前缀有 |x| 个,x的后缀有 |x|+1 个,真 后缀有 |x| 个
- □例
 - 串 abc 的所有子串是λ, a, b, c, ab, bc, abc

口例

- (a) 对于任意非空字符串 x, λ 是 x 的前缀,且是真前缀; λ 是 x 的后缀,且是真后缀; λ 是 x 的子串
- (b) 对于任何字符串 x, x 是自身的前缀,但不是真前缀; x 是自身的后缀,但不是真后缀; x 是自身的子串
- (c) 对于任何字符串 x, x 的任意前缀 y 有惟一的一个后缀 z 与之对应,使得x = yz,反之亦然

