

Organising, Visualising, and Describing Data

Data Types and Data Organisation

© 2021 by Keith Tan. All rights reserved.

No part of this video/slides may be reproduced or transmitted in any form or by any means, electronic or mechanical, without the written permission of the copyright holder.

Organising, Visualising, and Describing Data

- 1. Numerical vs Categorical
- 2. Cross-sectional vs Time Series
 - 3. Structured vs Unstructured

"Quantitative Data"

Numerical Data

values that can be counted or measured

Discrete

Continuous

Countable (finite number of values)

Any fractional value (infinite number of possible values) 00 2.3134 10.0 values do **not** have to stretch to infinity

"Quantitative Data"

Numerical Data

values that can be counted or measured

Discrete

Continuous

Countable (finite number of values)

Any fractional value (infinite number of possible values) -0.61243492...

> Range-bound (e.g. correlation [-1,1])

Numerical Data

values that can be counted or measured

Discrete

Continuous

"Qualitative Data"

Categorical Data

labels used to classify a set of data into groups

Nominal

(labels have no logical order)

Industry Classification

- Manufacturing
- □ Retail
- ☐ Food & Beverage

Ordinal

(can be ranked in logical order)

Mutual Fund Ranking

- Top quartile
- 2) 2nd quartile
- 3 3rd quartile
- Last quartile

Data Types and Data Organisation

1. Numerical vs Categorical 2. Cross-sectional vs Time Series

3. Structured vs Unstructured

Numerical Data

values that can be counted or measured

Discrete

Categorical Data

labels used to classify a set of data into groups

Nominal

(labels have no logical order)

Industry Classification

- Manufacturing
- □ Retail
- ☐ Food & Beverage

Data Types and Data Organisation

1. Numerical vs Categorical 2. Cross-sectional vs Time Series

3. Structured vs Unstructured

Cross-sectional vs Time Series Data

Cross-Sectional Data

comparable observations all taken at specific time

e.g. Sales data of 4 companies in 2011

Company	2011
A	\$24,000
В	\$122,500
C	\$34,000
D	\$72,800
0.	

Cross-sectional vs Time Series Data

Cross-Sectional Data

comparable observations all taken at specific time

Company 2011 2012 2013 2014 2015 \$27,000 \$24,000 \$31,000 \$38,500 \$45,900 A **Time Series Data 1D Array** Identify trends, set of observations taken B \$122,500 cycles, patterns periodically over a Represent single variable C \$34,000 e.g. annual sales for Company A D \$72,800

period of time

Data Types and Data Organisation

Forecasts

Cross-sectional vs Time Series Data

Data Types and Data Organisation

1. Numerical vs Categorical 2. Cross-sectional vs Time Series 3. Structured vs Unstructured

Structured vs Unstructured Data

Structured Data

organised in a defined way

Analytical data e.g. earnings forecasts

Fundamental data

e.g. accounting values

Data Types and Data Organisation

analyse large

amount of data

1. Numerical vs Categorical 2. Cross-sectional vs Time Series

3. Structured vs Unstructured

Structured vs Unstructured Data

Unstructured Data

prepnuggets.com