high_level_overview

Where each piece lives

Layer	Lives inside	Role
BICEP	"Physics + logic" sandbox	• Generates Brownian path ensemble • Feeds those paths through the $ENN\ cell\ \rightarrow\ collapses$ to the push-out symbol p_t
Fusion Alpha	Master signal head	• Consumes p _t (from BICEP/ENN)• Consumes z _t (graph embedding)• Consumes FinBERT sentiment & technicals• Emits directional score + size
Risk dial (Ising or limit/colimit functor)	Parallel overlay	• Reads live micro-/macro-risk gauges• Scales or vetoes the position coming out of Fusion Alpha

So the ENN stays inside BICEP, upstream of Fusion Alpha — not inside Fusion Alpha itself.

End-to-end inference loop (every tick)

high_level_overview

```
3. Feature stack x<sub>t</sub> = [z<sub>t</sub> || p<sub>t</sub> || FinBERT || TA]
↓
↓
4. Fusion Alpha forward pass → (dir, raw_size)
↓
↓
5. Risk dial (Ising or limit/colimit) → leverage_mult
↓
↓
6. Position sizing size = raw_size × leverage_mult
↓
↓
7. Live router / execution
```

Key points

- BICEP = "generate context" ENN sits here, translating Brownian exploration into the minimal symbol p_t your theory demands.
- Fusion Alpha = "decide direction" it needs both p_t and z_t to judge whether
 the market's outward story and inward crowd-state disagree.
- **Risk dial = "keep you alive"** whether it's Ising criticality or the category-limit blend of vol / corr / liquidity, it gates the final size.

Training pipeline (offline)

- 1. Pre-compute contradiction graphs for each training window.
- 2. Sample Brownian paths \rightarrow ENN collapse to generate p_t sequences.
- 3. Build training tuples (z_t , p_t , FinBERT, TA) \rightarrow future returns.
- 4. **Train Fusion Alpha** (with dropout, attention, etc.).
- 5. Separately fit / tune the **risk dial** on out-of-sample periods.
- 6. Optionally fine-tune ENN + graph encoder jointly once Fusion Alpha stabilises.

high_level_overview 2

Why keep ENN inside BICEP?

- **Separation of concerns** BICEP handles stochastic information discovery; Fusion Alpha focuses on exploiting contradictions for alpha.
- Latency neutrality ENN's 0.7 ms forward pass is amortised *before* Fusion Alpha, so the head model stays lightweight.
- **Modularity** you can iterate on BICEP (e.g., new path kernels) without touching the trained Fusion Alpha weights.

If you ever want to experiment with an *all-in-one* super-net, you can splice an ENN layer directly into Fusion Alpha, but the current architecture keeps debugging, risk controls, and theory alignment far cleaner.

TL;DR - Ordering is:

1 Contradiction-graph encoder \rightarrow 2 BICEP + ENN \rightarrow 3 Fusion Alpha \rightarrow 4 Risk dial \rightarrow 5 Execution.

high_level_overview 3