제 2 교시

수학 영역

5지선다형

- 1. $\left(\frac{5}{\sqrt[3]{25}}\right)^{\frac{3}{2}}$ 의 값은? [2점]
- ① $\frac{1}{5}$ ② $\frac{\sqrt{5}}{5}$ ③ 1 ④ $\sqrt{5}$ ⑤ 5

- 2. 함수 $f(x) = x^2 + x + 2$ 에 대하여 $\lim_{h \to 0} \frac{f(2+h) f(2)}{h}$ 의 값은? [2점]

- ① 1 ② 2 ③ 3 ④ 4

3. 수열 $\{a_n\}$ 에 대하여 $\sum_{k=1}^5 (a_k+1)=9$ 이고 $a_6=4$ 일 때,

$$\sum_{k=1}^{6} a_k$$
의 값은? [3점]

- ① 6 ② 7 ③ 8 ④ 9
- **⑤** 10

4. 함수 y = f(x)의 그래프가 그림과 같다.

- $\lim_{x \to 0+} f(x) + \lim_{x \to 1-} f(x)$ 의 값은? [3점]

- ① 1 ② 2 ③ 3 ④ 4

5. 함수 $f(x) = (x^2 - 1)(x^2 + 2x + 2)$ 에 대하여 f'(1)의 값은?

[3점]

- ① 6
- ② 7
- 3 8
- **4** 9
- ⑤ 10
- 7. x에 대한 방정식 $x^3 3x^2 9x + k = 0$ 의 서로 다른 실근의 개수가 2가 되도록 하는 모든 실수 k의 값의 합은? [3점]
 - ① 13
- ② 16
- ③ 19
- **4** 22
- ⑤ 25

- 6. $\pi < \theta < \frac{3}{2}\pi$ 인 θ 에 대하여 $\sin\left(\theta \frac{\pi}{2}\right) = \frac{3}{5}$ 일 때, sinθ의 값은? [3점]

 - ① $-\frac{4}{5}$ ② $-\frac{3}{5}$ ③ $\frac{3}{5}$ ④ $\frac{3}{4}$ ⑤ $\frac{4}{5}$

8. $a_1a_2 < 0$ 인 등비수열 $\{a_n\}$ 에 대하여

$$a_6 = 16$$
, $2a_8 - 3a_7 = 32$

일 때, $a_9 + a_{11}$ 의 값은? [3점]

- $\bigcirc -\frac{5}{2}$ $\bigcirc -\frac{3}{2}$ $\bigcirc -\frac{1}{2}$ $\bigcirc \frac{1}{2}$ $\bigcirc \frac{3}{2}$

9. 함수

$$f(x) = \begin{cases} x - \frac{1}{2} & (x < 0) \\ -x^2 + 3 & (x \ge 0) \end{cases}$$

에 대하여 함수 $(f(x)+a)^2$ 이 실수 전체의 집합에서 연속일 때, 상수 a의 값은? [4점]

- ① $-\frac{9}{4}$ ② $-\frac{7}{4}$ ③ $-\frac{5}{4}$ ④ $-\frac{3}{4}$ ⑤ $-\frac{1}{4}$

- 10. 다음 조건을 만족시키는 삼각형 ABC의 외접원의 넓이가 9π일 때, 삼각형 ABC의 넓이는? [4점]
 - $(7) \quad 3\sin A = 2\sin B$
 - (\downarrow) $\cos B = \cos C$
 - ① $\frac{32}{9}\sqrt{2}$ ② $\frac{40}{9}\sqrt{2}$ ③ $\frac{16}{3}\sqrt{2}$
- $4 \frac{56}{9}\sqrt{2}$ $5 \frac{64}{9}\sqrt{2}$

11. 최고차항의 계수가 1이고 f(0) = 0인 삼차함수 f(x)가

$$\lim_{x \to a} \frac{f(x) - 1}{x - a} = 3$$

을 만족시킨다. 곡선 y=f(x) 위의 점 (a,f(a))에서의 접선의 y 절편이 4일 때, f(1)의 값은? (단, a는 상수이다.) [4점]

- $\bigcirc 1 -1$ $\bigcirc 2 -2$ $\bigcirc 3 -3$ $\bigcirc 4 -4$ $\bigcirc 5 -5$
- 12. 그림과 같이 곡선 $y=1-2^{-x}$ 위의 제1사분면에 있는 점 A를 지나고 y축에 평행한 직선이 곡선 $y=2^x$ 과 만나는 점을 B라 하자. 점 A를 지나고 x축에 평행한 직선이 곡선 $y=2^x$ 과 만나는 점을 C, 점 C를 지나고 y축에 평행한 직선이 곡선 $y=1-2^{-x}$ 과 만나는 점을 D라 하자. $\overline{AB}=2\overline{CD}$ 일 때, 사각형 ABCD의 넓이는? [4점]

- ① $\frac{5}{2}\log_2 3 \frac{5}{4}$ ② $3\log_2 3 \frac{3}{2}$ ③ $\frac{7}{2}\log_2 3 \frac{7}{4}$

- $4 \log_2 3 2$ $5 \frac{9}{2} \log_2 3 \frac{9}{4}$

13. 곡선 $y = \frac{1}{4}x^3 + \frac{1}{2}x$ 와 직선 y = mx + 2 및 y축으로 둘러싸인 부분의 넓이를 A, 곡선 $y = \frac{1}{4}x^3 + \frac{1}{2}x$ 와 두 직선 y = mx + 2, x = 2로 둘러싸인 부분의 넓이를 B라 하자. $B - A = \frac{2}{3}$ 일 때, 상수 m의 값은? (단, m < -1) [4점]

① $-\frac{3}{2}$ ② $-\frac{17}{12}$ ③ $-\frac{4}{3}$ ④ $-\frac{5}{4}$ ⑤ $-\frac{7}{6}$

14. 다음 조건을 만족시키는 모든 자연수 k의 값의 합은? [4점]

 $\log_2 \sqrt{-n^2 + 10n + 75} - \log_4 (75 - kn)$ 의 값이 양수가 되도록 하는 자연수 n의 개수가 12이다.

- ① 6
- ② 7
- 3 8
- ⑤ 10

4 9

수학 영역

15. 최고차항의 계수가 1인 삼차함수 f(x)와 상수 $k(k \ge 0)$ 에 대하여 함수

$$g(x) = \begin{cases} 2x - k & (x \le k) \\ f(x) & (x > k) \end{cases}$$

가 다음 조건을 만족시킨다.

- (r) 함수 g(x)는 실수 전체의 집합에서 증가하고 미분가능하다.
- (나) 모든 실수 x에 대하여

$$\int_{0}^{x}g\left(t\right)\left\{ \left|t(t-1)\right|+t(t-1)\right\} dt\geq0\,\mathrm{od}\,$$

$$\int_{-3}^{x}g\left(t\right)\left\{ \,|\,(t-1)(t+2)\,|\,-\,(t-1)(t+2)\right\} \,dt\,\geq\,0\,\,\mathrm{or}\,.$$

g(k+1)의 최솟값은? [4점]

- ① $4-\sqrt{6}$ ② $5-\sqrt{6}$ ③ $6-\sqrt{6}$
- ① $7 \sqrt{6}$ ⑤ $8 \sqrt{6}$

단답형

16. 방정식 $\log_2(x+1) - 5 = \log_{\frac{1}{2}}(x-3)$ 을 만족시키는 실수 x의 값을 구하시오. [3점]

17. 함수 f(x)에 대하여 $f'(x) = 6x^2 + 2$ 이고 f(0) = 3일 때, f(2)의 값을 구하시오. [3점]

수학 영역

7

18. $\sum_{k=1}^{9} (ak^2 - 10k) = 120 일 때, 상수 <math>a$ 의 값을 구하시오. [3점]

20. 5 이하의 두 자연수 a, b에 대하여 열린구간 $(0, 2\pi)$ 에서 정의된 함수 $y = a \sin x + b$ 의 그래프가 직선 $x = \pi$ 와 만나는 점의 집합을 A라 하고, 두 직선 y = 1, y = 3과 만나는 점의 집합을 각각 B, C라 하자. $n(A \cup B \cup C) = 3$ 이 되도록 하는 a, b의 순서쌍 (a,b)에 대하여 a+b의 최댓값을 M, 최솟값을 m이라 할 때, $M \times m$ 의 값을 구하시오. [4점]

19. 시각 t=0일 때 원점을 출발하여 수직선 위를 움직이는 점 P의 시각 $t\,(t\geq 0)$ 에서의 속도 $v\,(t)$ 가

$$v(t) = \begin{cases} -t^2 + t + 2 & (0 \le t \le 3) \\ k(t-3) - 4 & (t > 3) \end{cases}$$

이다. 출발한 후 점 P의 운동 방향이 두 번째로 바뀌는 시각에서의 점 P의 위치가 1일 때, 양수 k의 값을 구하시오. [3점]

8

수학 영역

- **21.** 최고차항의 계수가 1인 사차함수 f(x)가 다음 조건을 만족시킨다.
 - (r) $f'(a) \le 0$ 인 실수 a의 최댓값은 2이다.
 - (나) 집합 $\{x \mid f(x) = k\}$ 의 원소의 개수가 3 이상이 되도록 하는 실수 k의 최솟값은 $\frac{8}{3}$ 이다.

f(0) = 0, f'(1) = 0일 때, f(3)의 값을 구하시오. [4점]

22. 수열 $\{a_n\}$ 은

$$a_2 = -a_1$$

이고, $n \ge 2$ 인 모든 자연수 n에 대하여

$$a_{n+1} = \left\{ \begin{array}{ll} a_n - \sqrt{n} \times a_{\sqrt{n}} & (\sqrt{n} \text{ ol 자연수이고 } a_n > 0 \text{ 인 경우}) \\ \\ a_n + 1 & (그 외의 경우) \end{array} \right.$$

를 만족시킨다. $a_{15}=1$ 이 되도록 하는 모든 a_1 의 값의 곱을 구하시오. [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.
- 이어서, **「선택과목(확률과 통계)」** 문제가 제시되오니, 자신이 선택한 과목인지 확인하시오.

제 2 교시

수학 영역(기하)

5지선다형

23. 두 벡터 $\stackrel{\rightarrow}{a}$ 와 $\stackrel{\rightarrow}{b}$ 에 대하여

$$\overrightarrow{a} + 3(\overrightarrow{a} - \overrightarrow{b}) = k\overrightarrow{a} - 3\overrightarrow{b}$$

이다. 실수 k의 값은? (단, $\overrightarrow{a} \neq \overrightarrow{0}$, $\overrightarrow{b} \neq \overrightarrow{0}$) [2점]

- ① 1 ② 2 ③ 3 ④ 4 ⑤ 5
- **24.** 타원 $\frac{x^2}{18} + \frac{y^2}{b^2} = 1$ 위의 점 $(3, \sqrt{5})$ 에서의 접선의 y 절편은? (단, b는 양수이다.) [3점]
 - ① $\frac{3}{2}\sqrt{5}$ ② $2\sqrt{5}$ ③ $\frac{5}{2}\sqrt{5}$ ④ $3\sqrt{5}$ ⑤ $\frac{7}{2}\sqrt{5}$

25. 좌표평면에서 두 벡터 $\overrightarrow{a} = (-3, 3), \ \overrightarrow{b} = (1, -1)$ 에 대하여 벡터 \overrightarrow{p} 가

$$|\overrightarrow{p} - \overrightarrow{a}| = |\overrightarrow{b}|$$

를 만족시킬 때, $|\stackrel{
ightarrow}{p}-\stackrel{
ightarrow}{b}|$ 의 최솟값은? [3점]

- ① $\frac{3}{2}\sqrt{2}$ ② $2\sqrt{2}$ ③ $\frac{5}{2}\sqrt{2}$ ④ $3\sqrt{2}$ ⑤ $\frac{7}{2}\sqrt{2}$
- **26.** 쌍곡선 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ 의 한 초점 F(c, 0)(c > 0)을 지나고 y축에 평행한 직선이 쌍곡선과 만나는 두 점을 각각 P, Q라 하자. 쌍곡선의 한 점근선의 방정식이 y=x 이고 $\overline{PQ}=8$ 일 때, $a^2 + b^2 + c^2$ 의 값은? (단, a와 b는 양수이다.) [3점]
 - ① 56

- 2 60 3 64 4 68
- ⑤ 72

수학 영역(기하)

3

27. 그림과 같이 직사각형 ABCD의 네 변의 중점 P, Q, R, S를 꼭짓점으로 하는 타원의 두 초점을 F, F'이라 하자. 점 F를 초점, 직선 AB를 준선으로 하는 포물선이 세 점 F', Q, S를 지난다. 직사각형 ABCD의 넓이가 $32\sqrt{2}$ 일 때, 선분 FF'의 길이는? [3점]

① $\frac{7}{6}\sqrt{3}$ ② $\frac{4}{3}\sqrt{3}$ ③ $\frac{3}{2}\sqrt{3}$ ④ $\frac{5}{3}\sqrt{3}$ ⑤ $\frac{11}{6}\sqrt{3}$

28. 좌표평면에서 두 점 A(1,0), B(1,1)에 대하여 두 점 P, Q가

$$|\overrightarrow{OP}| = 1$$
, $|\overrightarrow{BQ}| = 3$, $\overrightarrow{AP} \cdot (\overrightarrow{QA} + \overrightarrow{QP}) = 0$

을 만족시킨다. $|\overrightarrow{PQ}|$ 의 값이 최소가 되도록 하는 두 점 P, Q에 대하여 $\overrightarrow{AP} \cdot \overrightarrow{BQ}$ 의 값은?

(단, O는 원점이고, $|\overrightarrow{AP}| > 0$ 이다.) [4점]

- ① $\frac{6}{5}$ ② $\frac{9}{5}$ ③ $\frac{12}{5}$ ④ 3 ⑤ $\frac{18}{5}$

4

수학 영역(기하)

단답형

29. 좌표평면에 곡선 $|y^2-1| = \frac{x^2}{a^2}$ 과 네 점 A(0, c+1),

B(0, -c-1), C(c, 0), D(-c, 0)이 있다. 곡선 위의 점 중 y좌표의 절댓값이 1보다 작거나 같은 모든 점 P에 대하여 $\overline{PC} + \overline{PD} = \sqrt{5}$ 이다. 곡선 위의 점 Q가 제1사분면에 있고 $\overline{AQ} = 10$ 일 때, 삼각형 ABQ의 둘레의 길이를 구하시오. (단, a와 c는 양수이다.) [4점]

30. 두 초점이 F(5,0), F'(-5,0)이고, 주축의 길이가 6인 쌍곡선이 있다. 쌍곡선 위의 $\overline{PF} < \overline{PF'}$ 인 점 P에 대하여 점 Q가

$$(|\overrightarrow{FP}|+1)\overrightarrow{F'Q} = 5\overrightarrow{QP}$$

를 만족시킨다. 점 A(-9, -3)에 대하여 $|\overrightarrow{AQ}|$ 의 최댓값을 구하시오. [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.