Ranking-Oriented Evaluation Metrics

Weike Pan

College of Computer Science and Software Engineering Shenzhen University

Outline

- Introduction
- Evaluation Metrics
- Experiments
- Conclusion

Recommendation with Implicit Feedback

• We may represent users' implicit feedback in a *matrix* form:

 If we can estimate the missing values (denoted as "?") in the matrix or rank the items directly, we can make recommendations for each user.

Notations (1/2)

Table: Some notations.

n	user number
m	item number
$u \in \{1, 2, \dots, n\}$	user ID
$i, j \in \{1, 2, \dots, m\}$	item ID
$\mathcal{R} = \{(u,i)\}$	(user, item) pairs in training data
$y_{ui} \in \{1,0\}$	indicator variable, $y_{ui} = 1$ if $(u, i) \in \mathcal{R}$
\mathcal{I}_{u}	preferred items by user <i>u</i> in training data
${\mathcal I}$	the whole item set
\mathcal{U}	the whole user set
$i, j \in \{1, 2,, m\}$ $\mathcal{R} = \{(u, i)\}$ $y_{ui} \in \{1, 0\}$ \mathcal{I}_u	item ID (user, item) pairs in training data indicator variable, $y_{ui} = 1$ if $(u, i) \in \mathcal{R}$ preferred items by user u in training data the whole item set

Notations (2/2)

Table: Some notations.

$\mathcal{R}^{te} = \{(u, i)\}$ \mathcal{I}_u^{te} \mathcal{U}^{te}	(user, item) pairs in test data preferred items by user <i>u</i> in test data user set in test data
\hat{r}_{ui} \mathcal{I}_{u}^{re}	predicted rating of user <i>u</i> on item <i>i</i> recommended items for user <i>u</i>

Top-k Recommended Items

Assume we have a ranked recommendation list of items for user *u* as generated by some recommendation method,

$$\mathcal{I}_u^{re} = \{i(1), \dots, i(\ell), \dots, i(k)\} \in \mathcal{I} \setminus \mathcal{I}_u$$

where $i(\ell)$ represents the item located at position ℓ .

How Shall We Evaluate the Recommendation Performance?

• Compare the ranked recommendation list of items for user u, i.e., \mathcal{I}_{u}^{re} , with the preferred items by user u in test data, i.e., \mathcal{I}_{u}^{te}

Pre@k

The precision of user *u* is defined as,

$$Pre_u@k = \frac{1}{k} \sum_{\ell=1}^k \delta(i(\ell) \in \mathcal{I}_u^{te}),$$

where $\delta(x)=1$ if x is true and $\delta(x)=0$ otherwise. $\sum_{\ell=1}^k \delta(i(\ell)\in\mathcal{I}_u^{te})=|\mathcal{I}_u^{re}\cap\mathcal{I}_u^{te}| \text{ thus denotes the number of items in } \mathcal{I}_u^{re}\cap\mathcal{I}_u^{te}.$

$$Pre@k = \sum_{u \in \mathcal{U}^{te}} Pre_u@k/|\mathcal{U}^{te}|$$
 (1)

Rec@k

The recall of user u is defined as,

$$Rec_u@k = \frac{1}{|\mathcal{I}_u^{te}|} \sum_{\ell=1}^k \delta(i(\ell) \in \mathcal{I}_u^{te}),$$

which means how many preferred items in $\mathcal{I}_u^{\text{te}}$ are also in $\mathcal{I}_u^{\text{re}}$.

$$Rec@k = \sum_{u \in \mathcal{U}^{te}} Rec_u@k/|\mathcal{U}^{te}|$$
 (2)

F1@k

The F1 score of user *u* is defined as,

$$F1_u@k = 2 \times \frac{Pre_u@k \times Rec_u@k}{Pre_u@k + Rec_u@k}.$$

$$F1@k = \sum_{u \in \mathcal{U}^{te}} F1_u@k/|\mathcal{U}^{te}|$$
 (3)

NDCG@k

The NDCG of user *u* is defined as,

$$NDCG_u@k = \frac{1}{Z_u}DCG_u@k,$$

where $DCG_u@k = \sum_{\ell=1}^k \frac{2^{\delta(i(\ell) \in \mathcal{I}_u^{\text{te}})} - 1}{\log(\ell+1)}$ and Z_u is the best $DCG_u@k$ score with preferred items in $\mathcal{I}_u^{\text{te}}$ in the beginning of $\mathcal{I}_u^{\text{re}}$.

Then, we have

$$NDCG@k = \sum_{u \in \mathcal{U}^{te}} NDCG_u@k/|\mathcal{U}^{te}|$$
 (4)

 NDCG emphasizes the items ranked in the beginning (i.e., location dependent)

1-call@*k*

The 1-call of user *u* is defined as,

$$1-call_u@k = \delta(\sum_{\ell=1}^k \delta(i(\ell) \in \mathcal{I}_u^{te}) \ge 1),$$

which means whether there is at least one preferred item in \mathcal{I}_{u}^{re} .

$$1-call@k = \sum_{u \in \mathcal{U}^{te}} 1-call_u@k/|\mathcal{U}^{te}|$$
 (5)

Mean Reciprocal Rank (MRR)

The reciprocal rank of user *u* is defined as,

$$RR_{u} = \frac{1}{\min_{i \in \mathcal{I}_{u}^{te}}(p_{ui})}$$

where $\min_{i \in \mathcal{I}_u^{\text{te}}}(p_{ui})$ is the position of the first preferred item in $\mathcal{I}_u^{\text{re}}$.

$$MRR = \sum_{u \in \mathcal{U}^{te}} RR_u / |\mathcal{U}^{te}| \tag{6}$$

Mean Average Precision (MAP)

The average precision of user *u* is defined as,

$$AP_{u} = \frac{1}{|\mathcal{I}_{u}^{te}|} \sum_{i \in \mathcal{I}_{u}^{te}} \left[\frac{1}{p_{ui}} (\sum_{j \in \mathcal{I}_{u}^{te}} \delta(p_{uj} \prec p_{ui}) + 1) \right]$$

where p_{ui} is the ranking position of item i. $p_{uj} \prec p_{ui}$ means that item j is ranked before item i for user u.

$$MAP = \sum_{u \in \mathcal{U}^{\text{te}}} AP_u / |\mathcal{U}^{\text{te}}| \tag{7}$$

Average Relative Position (ARP)

The relative position of user *u* is defined as,

$$RP_{u} = rac{1}{|\mathcal{I}_{u}^{te}|} \sum_{i \in \mathcal{I}_{u}^{te}} rac{p_{ui}}{|\mathcal{I}| - |\mathcal{I}_{u}|}$$

where $\frac{p_{ui}}{|\mathcal{I}|-|\mathcal{I}_{u}|}$ is the relative position of item *i*.

$$ARP = \sum_{u \in \mathcal{U}^{\text{te}}} RP_u / |\mathcal{U}^{\text{te}}| \tag{8}$$

Area Under the Curve (AUC)

The AUC of user *u* is defined as,

$$AUC_{u} = \frac{1}{|\mathcal{R}^{te}(u)|} \sum_{(i,j) \in \mathcal{R}^{te}(u)} \delta(\hat{r}_{ui} > \hat{r}_{uj})$$

where $\mathcal{R}^{te}(u) = \{(i,j) | (u,i) \in \mathcal{R}^{te}, (u,j) \notin \mathcal{R} \cup \mathcal{R}^{te}\}.$

$$AUC = \sum_{u \in \mathcal{U}^{te}} AUC_u / |\mathcal{U}^{te}|$$
 (9)

PopRank

We may use the bias of each item as the predicted rating,

$$\hat{r}_{ui} = b_i = \sum_{u=1}^{n} y_{ui}/n - \mu$$
 (10)

where $\mu = \sum_{u=1}^{n} \sum_{i=1}^{m} y_{ui} / n / m$.

Data Set

- We use the files u1.base and u1.test of MovieLens100K¹ as our training data and test data, respectively.
- user number: n = 943; item number: m = 1682.
- u1.base (training data): 80000 rating records, and the density (or sparsity) is 80000/943/1682 = 5.04%.
- u1.test (test data): 20000 rating records.
- Pre-processing (for simulation): we only keep the (user, item) pairs with ratings 4 or 5 in u1.base and u1.test as preferred (user, item) pairs, and remove all other records. Finally, we obtain u1.base.OCCF and u1.test.OCCF.

¹http://grouplens.org/datasets/

Results

Table: Prediction performance of PopRank on MovieLens100K (u1.base.OCCF, u1.test.OCCF).

	PopRank
Pre@5	0.2338
Rec@5	0.0571
<i>F</i> 1@5	0.0775
NDCG@5	0.2568
1 <i>–call</i> @5	0.5877
MRR	0.4657
MAP	0.1516
ARP	0.1551
AUC	0.8516

Conclusion

Different ranking-oriented evaluation metrics with different emphasis

Homework

- Implement the ranking-oriented evaluation metrics and conduct empirical studies of PopRank on u2.base.OCCF, u2.test.OCCF of MovieLens100K with similar pre-processing
- Design some new evaluation metrics
- Design a new recommendation method to beat PopRank