Computational Methods

(Course code: CCC.528)

Record of Practical Work

Submitted by

Piyush R.Maharana (21msphcp02)

for the degree of

M.Sc. Computational Physics

Department of Computational Sciences

School of Basic Sciences Central University of Punjab Bathinda-151 401, Punjab, India

Jan 2023

List of Exercises

Languages used: Python and FORTRAN

S.No.	Title of the Exercise	Signature
1	Numerical Differentiation: Central,Backward Forward	
2	Numerical Integration: Simpson,Trapezoidal,Quadrature,Monte-Carlo	
3	Interpolation: Lagrange,Cubic Spline	
4	Matrix Methods: Gauss Seidel,Gauss Jacobi	
5	Root Finding: Bisection,Newton-Raphson,Fixed Point,Secant,Chebyshev,Halley	
6	Gradient Descent: 1D and 2D	
7	Polynomial evaluation: Horner's method	
8	Partial Differential Equations: 2D Heat Equation	

Piyush R.Maharana

M.Sc Computational Physics 21msphcp02

Numerical Differentiation

Forward
$$f'(x_j) = \frac{f(x_{j+1}) - f(x_j)}{h} + O(h)$$
 Backward
$$f'(x_j) = \frac{f(x_j) - f(x_{j-1})}{h} + O(h)$$
 Central
$$f'(x_j) = \frac{f(x_{j+1}) - f(x_{j-1})}{h} + O(h^2)$$

```
import numpy as np
import matplotlib.pyplot as plt
x=[]; y=[]
lower=0; upper=10; step=0.2
N=int(((upper-lower)/step))
dy = [0]*N ; back=[0]*N ; forw=[0]*N
secder = [0]*N
def f(x):
 return np.sin(4*x)*np.exp(-x)
for i in range(0,N+1):
 x_step = lower+i*step
 x.append(x_step)
 y.append(f(x[i]))
for i in range(1,N-1):
#derivative nikalo
  dy[i]=(y[i+1] - y[i-1]) / (x[i+1] - x[i-1]) #central difference formula
for i in range(1,N):
 back[i]=(y[i] - y[i-1]) / (x[i] - x[i-1]) #backward difference
for i in range(0,N):
 forw[i]=(y[i+1] - y[i]) / (x[i+1] - x[i]) #forward difference
#for i in range(0,N):
# secder[i]=(y[i+2]-2*y[i+1] - y[i])/((x[i+1] - x[i])**2)
#interpolate karo bhai log
dy[0] = dy[1] + (dy[2]-dy[1])/(x[2]-x[1])*(x[0]-x[1])
dy[N-1] = dy[N-2] + (dy[N-2]-dy[N-3])/(x[N-2]-x[N-3])*(x[N-1]-x[N-2])
plt.figure(figsize=(5,4))
print('h=',step)
plt.plot(x,y,color='grey',linewidth=2.0,label=r'$f(x)$')
plt.plot(x[:-1],forw,color='orange',linewidth=2.0,label='Forward')
plt.plot(x[1:-1],back[1:],color='blue',linewidth=2.0,label='Backward')
plt.plot(x[:-1],dy,color='deeppink',linewidth=2.0,label='Central')
plt.xlabel('$x$',fontsize=20)
plt.ylabel('$y$')
plt.legend(loc='upper right')
```



```
allocate (x(N),y(N),dy(N),dy2(N),diff(N)) !allocate array size
 !assign data
 do i = 1, N
  x(i) = lower+i*step !fill grid spaces
 end do
 doi=1,N
  y(i) = EXP(-(x(i)**2))
 end do
 ! compute derivation
 do i = 2, N-1
    dy(i) = (y(i+1) - y(i-1)) / (x(i+1) - x(i-1)) !derivative of function
 end do
 ! compute first and last derivation using linear extrapolation
 dy(1) = dy(2) + (dy(3)-dy(2))/(x(3)-x(2))*(x(1)-x(2))
 dy(N) = dy(N-1) + (dy(N-1)-dy(N-2))/(x(N-1)-x(N-2))*(x(N)-x(N-1))
 do i = 1, N
   diff(i)=dy(i)-((-2*x(i))*EXP(-(x(i)**2)))
 end do
 !print the results
 !write (*,'(4a10)') 'x', 'y=f(x)', 'dy/dx','d2y/dx2'
write (*,'(5a10)') 'x', 'y=f(x)', 'dy/dx','diff','d2y/dx2'
   write(*,'(5f10.2)') x(i), y(i), dy(i),diff(i),dy2(i)
 end do
end program deriv
```

```
## Provided Comparison  #
```


$$\mathbf{x}(\mathbf{t}) = \mathbf{e}^{-\mathbf{x}}\mathbf{cos}(\mathbf{x})$$

```
#Nov 19,2022
import numpy as np
import matplotlib.pyplot as plt
def f(x):
   """our function to numerically differentiate"""
   return x*x*x
def forwi(x, h):
    """a discrete approximation to the derivative at x"""
    return (f(x+h) - f(x))/h
def backi(x, h):
   return (f(x) - f(x-h))/h
def centri(x, h):
   return (f(x) - f(x-h))/h
def fprime(x):
   return 3*x*x
hs = np.logspace(-15, -2, 1000)
                                  # generate a set of h's from 1.e-16 to 0.1
\#x = np.pi/3.0
                                   # we'll look at the error at pi/3
x = 10.0
```

```
forward = forwi(x, hs)
                                  #compute the numerical difference for all h's
backward = backi(x, hs)
central = centri(x,hs)
                                 # get the analytic derivative
ans = fprime(x)
err1 = np.abs(forward - ans)/ans # compute the relative error
err2 = np.abs(backward - ans)/ans
err3 = np.abs(central - ans)/ans
#fig = plt.figure()
                                  # plot the error vs h
#ax = fig.add_subplot(111)
plt.grid(alpha=0.69)
plt.loglog(hs, err1,color='deeppink',linewidth=0.5,label='Forward')
plt.loglog(hs, err2,color='mediumpurple',linewidth=0.5,label='Backward')
plt.loglog(hs, err3,color='cyan',linewidth=0.3,label='Central')
plt.legend(loc='upper right',frameon=False)
plt.xlabel(r'$h$')
plt.ylabel(r'$\frac{\delta y}{y}$')
```


Numerical Integration

$$\int_a^b f(x)\,dx pprox rac{b-a}{6}\left[f(a)+4f\left(rac{a+b}{2}
ight)+f(b)
ight]$$

```
print(I_r, I_t, I_s, I_a)
```

Trapezoid

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n-1} h \frac{f(x_i) + f(x_{i+1})}{2}$$

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \left(f(x_0) + 2 \left(\sum_{i=1}^{n-1} f(x_i) \right) + f(x_n) \right).$$

```
#Last update Piyush 22 Dec 2022
PROGRAM numtrapz
IMPLICIT NONE
real,allocatable :: x(:),y(:)
                 :: N,i,num
real
                  :: sumtrap
N = 0
OPEN (1, file ='data.txt')
    READ (1,*, END=10)
    N = N + 1
END DO
10 CLOSE (1)
allocate (x(N),y(N)) !allocate the arrays from the text file
open (unit = 1, file ='data.txt', status ='old')
\mathbf{DO} \mathbf{i} = \mathbf{1}, \mathbf{N}
     read (1,*) x(i),y(i)
END DO
close (1)
DO i = 1,N
    write(*,*) x(i),y(i)
END DO
sumtrap =0
DO i=2,N
   sumtrap = sumtrap+ 0.5*(y(i-1)+y(i))*(x(i)-x(i-1))
WRITE(*,*)sumtrap
```

END PROGRAM numtrapz

```
import numpy as np
import matplotlib.pyplot as plt
a = 1; b = 100
N = 250
x = np.linspace(a,b,N+1)
#y = 1 + 0.25*x*np.sin(np.pi*x);
y = np.exp(-x)/x
y_right = y[1:] #Riemann Right sum
y_{\text{left}} = y[:-1] #Riemann Left sum
dx = (b - a)/N
A = (dx/2)*np.sum(y_right + y_left)
print("A =",A)
plt.plot(x,y,label=N)
plt.fill_between(x,y,color='#DF73FF',alpha=0.5,label=A)
plt.xlabel(r'$x$')
plt.ylabel(r'$f(x)$')
plt.legend()
```

$$\int_{1}^{100} \frac{e^{-x}}{x} dx \approx 0.219$$


```
V1 = 1
V2 = 5
n = 1; R = 8.314; T = 300
N = 50
V = np.linspace(V1,V2,N+1)
W = (n*R*T)/V
y_right = W[1:]
y_left = W[:-1]
dx = (V2 - V1)/N
A = (dx/2)*np.sum(y_right + y_left)
print("A =",A)
plt.plot(V,W,label=N)
plt.fill_between(V,(n*R*T)/V,color='blue',alpha=0.5,label=A)
plt.xlabel(r'$Volume$')
plt.ylabel(r'$Work\:done$')
plt.legend()
```


Solving the elliptic integral for pendulum motion

$$T=rac{2T_0}{\pi}K(k), \qquad ext{where} \quad k=\sinrac{ heta_0}{2}.$$
 $K(k)=F\left(rac{\pi}{2},k
ight)=\int_0^{rac{\pi}{2}}rac{du}{\sqrt{1-k^2\sin^2u}}\,.$

```
import numpy as np
import matplotlib.pyplot as plt
pi = 3.14
a = 0; b = pi/2
N = 50
x = np.linspace(a,b,N+1)
tau=[];x1=[]
for angle in range(0,91,5):
k = np.sin(angle*0.0174533/2)
y = (1-((k**2)*np.sin(x)**2))**(-0.5)
y_right = y[1:] #Riemann Right sum
y_{left} = y[:-1] #Riemann Left sum
dx = (b - a)/N
A = (dx/2)*np.sum(y_right + y_left)
tau.append((2/pi)*A)
x1.append(angle)
plt.ylim([0.95,1.2])
plt.xlim([0,90])
plt.fill_between(x1,tau,color='#DF73FF',alpha=0.5)
plt.xlabel(r'$\theta [deg]$')
plt.ylabel(r'$T/T_{0}$')
```


Power series solution for the elliptic integral

$$\sinrac{ heta_0}{2} = rac{1}{2} heta_0 - rac{1}{48} heta_0^3 + rac{1}{3\,840} heta_0^5 - rac{1}{645\,120} heta_0^7 + \cdots.$$

$$T = 2\pi\sqrt{\frac{\ell}{g}}\left(1 + \frac{1}{16}\theta_0^2 + \frac{11}{3\,072}\theta_0^4 + \frac{173}{737\,280}\theta_0^6 + \frac{22\,931}{1\,321\,205\,760}\theta_0^8 + \frac{1\,319\,183}{951\,268\,147\,200}\theta_0^{10} + \frac{233\,526\,463}{2\,009\,078\,326\,886\,400}\theta_0^{12} + \cdots\right),$$

Simpson

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \left[f(x_0) + 4 \left(\sum_{i=1, i \text{ odd}}^{n-1} f(x_i) \right) + 2 \left(\sum_{i=2, i \text{ even}}^{n-2} f(x_i) \right) + f(x_n) \right]$$

```
import numpy as np
import matplotlib.pyplot as plt
a = 0 ; b = 1
n = 51; h = (b-a)/(n-1)
x = np.linspace(a, b, n)
f = 1/(1+np.exp(x**2))
I_{simp} = (h/3) * (f[0] + 4*sum(f[1:n-1:2]) + 2*sum(f[:n-2:2]) + f[n-1])
I_{trap} = (h/2)*(f[0]+2*sum(f[1:n-2:1])+f[n-1])
I_ana
       = 0.41946
err_simp = I_ana - I_simp
err_trap = I_ana - I_trap
plt.plot(x,f,color='deeppink',linewidth=2.0,label='f(x)')
plt.fill_between(x, f, 0, color='deeppink', alpha=.2)
plt.xlabel('x')
plt.ylabel('f(x)')
```

```
plt.grid()
print('I_s =',I_simp)
print('I_t =',I_trap)
print('Error_I_s=',err_simp)
print('Error_I_t=',err_trap)
```

I s = 0.4261331478942992

I t = 0.4139174099321641

Error I s= -0.006673147894299181

Error I t= 0.0055425900678359175

$$\int_0^1 \frac{1}{1 + e^{x^2}} dx \approx 0.41946$$

$$egin{split} \int_a^b f(x) \, dx &pprox rac{3}{8} h \sum_{i=1}^{n/3} \left[f(x_{3i-3}) + 3 f(x_{3i-2}) + 3 f(x_{3i-1}) + f(x_{3i})
ight] \ &= rac{3}{8} h \Big[f(x_0) + 3 f(x_1) + 3 f(x_2) + 2 f(x_3) + 3 f(x_4) + 3 f(x_5) + 2 f(x_6) + \dots + 2 f(x_{n-3}) + 3 f(x_{n-2}) + 3 f(x_{n-1}) + f(x_n) \Big] \ &= rac{3}{8} h \left[f(x_0) + 3 \sum_{i=1, \ 3 \nmid i}^{n-1} f(x_i) + 2 \sum_{i=1}^{n/3-1} f(x_{3i}) + f(x_n)
ight]. \end{split}$$

```
#simpson 3/8
PROGRAM simpsimp38
IMPLICIT NONE
INTEGER::j,n
REAL::a,b,h,I,f
a=0;b=1;n=100
```

```
h=(b-a)/n
I=f(a)+f(b)
DO j=1,n-1
IF (MOD(j,3)==0) THEN
I=I+(2*f(a+(j*h)))
ELSE
I=I+(3*f(a+(j*h)))
END IF
END DO
I=(3/8.)*h*I

WRITE(6,9) "I=",I
9 FORMAT (a,F9.6)
END PROGRAM

REAL function f(x1)
f=x1**2
return
end function
```

Quadrature

Gauss Legendre

```
#gauss quadrature #general mode
import numpy as np
def f(x):
    return 1/(x**2+5)
a = 0
b = 2*3.14
x 1 = [0]
                                  ; W_1 = [2]
x_2 = [-0.577, 0.577]
                                  ; W_2 = [1.000, 1.000]
x_3 = [0.000, -0.744, 0.744] ; w_3 = [0.888, 0.555, 0.555]
x_4 = [-0.339, 0.339, -0.861, 0.861]; w_4 = [0.652, 0.652, 0.347, 0.347]
x_5 = [-0.90618, -0.538469, 0, 0.538469, 0.909618]; w_5 =
[0.236927, 0.478629, 0.56889, 0.478629, 0.236927]
integral=0
N=4
if N == 1:
    integral += w_1[0]*(b-a)*0.5*(f((0.5*((b-a)*x_1[0]+(b+a)))))
elif N == 2:
 for i in range(len(x_2)):
      integral += +w_2[i]*(b-a)*0.5*(f((0.5*((b-a)*x_2[i]+(b+a)))))
elif N == 3:
  for i in range(len(x_3)):
      integral += w_3[i]*(b-a)*0.5*(f((0.5*((b-a)*x_3[i]+(b+a)))))
```

```
elif N == 4:
    for i in range(len(x_4)):
        integral += w_4[i]*(b-a)*0.5*(f((0.5*((b-a)*x_4[i]+(b+a)))))
else :
    for i in range(len(x_5)):
        integral += w_5[i]*(b-a)*0.5*(f((0.5*((b-a)*x_5[i]+(b+a)))))
print(integral)
```

FORTRAN:

```
#FORTRAN gauss code
program gaussquad
 implicit none
  ! declare variables
                    :: i,N
 real
                    :: f,integral,a,b
 real, dimension(1) :: x_1,w_1
 real, dimension(2) :: x_2,w_2
 real, dimension(3) :: x_3,w_3
 real, dimension(4) :: x_4,w_4
 x 1 = (/0/)
                                   ; W_1 = (/2/)
 x_2=(/-0.577,0.577/)
                                   ; W_2 = (/1.000, 1.000/)
 x_3=(/0.000,-0.744,0.744/)
                                   ; w_3 = (/0.888, 0.555, 0.555/)
 x_4=(/-0.339,0.339,-0.861,0.861/); w_4=(/0.652,0.652,0.347,0.347/)
 a = 0.0
 b = 3.0
 N = 4
  do i = 1,N
     integral = integral+ w_4(i)*(b-a)*0.5*(f((0.5*((b-a)*x_4(i)+(b+a)))))
 end do
write (6,9) 'I=',integral
9 FORMAT(a3,f10.6)
end program gaussquad
REAL function f(x1)
REAL::x1
 f=x1*EXP(x1)
return
end function
```

Other quadrature methods can be implemented too just by changing the weights in the initial lists

For example Gauss-Chebyshev and Gauss-Hermite.

```
#Gauss Hermite quadrature
import numpy as np
import matplotlib.pyplot as plt
```

```
#Gauss Chebyshev quadrature
import numpy as np
import matplotlib.pyplot as plt

def f(x):
    return 1/(1+x**2)
a = 0
b = 1
x_2 = [-0.7071068,0.7071068] ; w_2 = [1.5707963,1.5707963]
x_3 = [0.0000,0.8660254,-0.8660254] ; w_3 = [1.0471976,1.0471976,1.047196]
x_4 = [0.3826834,-0.3826834,0.9238795,-0.9238795] ; w_4 = [0.7853982,0.7853982,0.7853982]
```

$$\int_0^3 \frac{1}{2+x^2} dx \approx 0.79923265$$

N=4

Gauss-Legendre 0.7977961

Gauss-Hermite 1.298547

Gauss-Chebyshev 0.696479

$$\int_{0.5}^{1.5} 1 + \frac{x}{4} \sin(\pi x) dx \approx 0.949$$

Gauss-Legendre 0.948779

Gauss-Hermite 0.83891978

Gauss-Chebyshev 1.4598072

Monte-Carlo

```
#19 Nov 2022
from random import uniform
import matplotlib.pyplot as plt
x_ran,y_ran=[],[]
```

```
def funci(x):
  return 1/(2+x**2)
def monte_carlo_integrate(f, a, b, c, d, num_points):
    inside count = 0
   for i in range(num_points):
        x = uniform(a,b)
        y = uniform(c,d)
        x_ran.append(x);y_ran.append(y)
        if 0 <= y <= f(x):
          inside_count += 1
        elif f(x) <= y <= 0:</pre>
          inside_count -= 1
    return inside_count/num_points*(b-a)*(d-c)
print(monte_carlo_integrate(funci,0,3,0,1,1000))
x1=np.linspace(0,10)
plt.figure(figsize=(4,5));
plt.xlim([0,3]); plt.ylim([-1,3])
plt.plot(x1,funci(x1),color='mediumslateblue',Linewidth=3.0)
plt.scatter(x_ran,y_ran,linewidth=0.007,c ="deeppink",alpha=0.3)
```


Monte Carlo


```
#Code to evaluate the MC integration N times and determine the average and plot the
histogram
monty=[]
N=500
def funci(x):
    return x**2
for k in range(0,N):
    monty.append(monte_carlo_integrate(funci,0,1,0,1,500))
sum=0
for i in range(0, len(monty)):
    sum = sum + monty[i];
average=sum/len(monty)

plt.hist(monty,histtype='stepfilled',color='darkorange',alpha=0.8,edgecolor='black', bins=20,label='Chem')
plt.axvline(average,color='red')
```

Determining the value of Pi

```
#Last update Piyush
import numpy
import matplotlib.pyplot as plt
#plt.style.use("bmh")
#%config InlineBackend.figure_formats=["png"]
```

```
N = 10_00
inside = []
for i in range(N):
    x = numpy.random.uniform(-1, 1)
    y = numpy.random.uniform(-1, 1)
    if numpy.sqrt(x**2 + y**2) < 1:
        inside.append((x, y))
plt.figure(figsize=(3, 3))
plt.scatter([x[0] for x in inside], [x[1] for x in inside], marker=".", alpha=0.5);
pi=4 * len(inside)/float(N)
print(pi)</pre>
```


$$\int_0^3 \frac{1}{2+x^2} dx \approx 0.79923265$$

$$\int_{-1}^{1} x^4 \sin^2 x dx \approx 0.21925$$

$$\int_{-\infty}^{\infty} e^{-x^2} dx \approx 1.7724538$$
 Trapezoid

$$I = \int_0^2 \sin^2\left(\frac{1}{x(2-x)}\right) dx$$

Trapezoid

Monte Carlo

1.4539480000000011

Differential Equations

Numerov Algorithm

$$rac{-\hbar^2}{2m} \; rac{\partial^2}{\partial x^2} \; \psi(x) + V(x) \psi(x) = E \psi(x)$$

$$\Psi_{n+1} = \frac{2(1 - \frac{5}{12}l^2k_{n+1}^2)\Psi_n - (1 + \frac{1}{12}l^2k_{n-1}^2)\Psi_{n-1}}{1 + \frac{1}{12}l^2k_{n+1}^2}$$

```
#Last update piyush 4 Oct 2022 Particle in a box
import numpy as np
import matplotlib.pyplot as plt
N = 1000
psi = np.zeros(N)
                              # wavefunction
x = np.linspace(0,1000,N) # grid points
v = (-1)*np.ones(N)
g2 = 200
                    #gamma square
ep = 1.418053
                   # intiial energy
k2 = g2*(ep-v)
12 = (1.0/(N-1))**2
def wavefunction(ep,N): #Numerov Algorithm
 psi[0] = 0
 psi[1] = 1e-4
 for i in range(2,N):
    psi[i] =
(2*(1-(5.0/12)*12*k2[i-1])*psi[i-1]-(1+(1.0/12)*12*k2[i-2])*psi[i-2])/(1+(1.0/12)*12*k2[i-2])
2*k2[i])
 return psi
plt.figure(figsize=(4,5));
plt.xlim([0,N]); plt.ylim([-0.05,0.05])
#plt.plot(x,wavefunction(-0.95065,N),linewidth=2.0,color='magenta')
#plt.plot(x,wavefunction(-0.80260,N),linewidth=2.0,color='cornflowerblue')
plt.plot(x,wavefunction(ep,N),linewidth=2.0,color='mediumorchid')
plt.ylabel(r'$\Psi_{n}(\tilde{x})$',fontsize=12)
plt.xlabel(r'$\tilde{x}$',fontsize=12)
```


Interpolation

Lagrange

```
#Lagrange Interpolation
#Last update:Piyush
import numpy as np
import matplotlib.pyplot as plt
#x=[1,1.5,2,3.2,4.5]
                       #If you have a dataset
y=[5,8.2,9.2,11,16]
N = 10
                        #If you want a functional form
x = np.zeros((N))
y = np.zeros((N))
for i in range(len(x)):
 a=i/2
 x[i]=a
 y[i]=np.sin(a)
#xp = float(input('Enter interpolation point: '))
xp = 2.75; yp = 0
for i in range(len(x)):
    prod = 1
    for j in range(len(x)):
      if i != j:
            prod = prod * (xp - x[j])/(x[i] - x[j])
    yp = yp + prod * y[i]
print('Interpolated value at %.3f is %.3f.' % (xp, yp))
```

```
plt.scatter(x,y,label='Data')
plt.plot(x,y,linewidth=1.5,color='red')
plt.xlabel(r'$x$');plt.ylabel(r'$y$')
plt.scatter(xp,yp,label='Interpolated')
plt.legend(loc='lower right')
```


Spline

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3.$$

$$S_i'(x_{i+1}) \neq S_{i+1}'(x_{i+1})$$

$$S'_{i}(x_{i+1}, y_{i+1})$$

$$S'_{i}(x_{i+1}) = S'_{i+1}(x_{i+1})$$

Tridiagonal Matrices: Thomas Algorithm

MS6021, Scientific Computation, University of Limerick

The Thomas algorithm is an efficient way of solving tridiagonal matrix systems. It is based on LU decomposition in which the matrix system Mx=r is rewritten as LUx=r where L is a lower triangular matrix and U is an upper triangular matrix. The system can be efficiently solved by setting $Ux=\rho$ and then solving first $L\rho=r$ for ρ and then $Ux=\rho$ for x. The Thomas algorithm consists of two steps. In Step 1 decomposing the matrix into M=LU and solving $L\rho=r$ are accomplished in a single downwards sweep, taking us straight from Mx=r to $Ux=\rho$. In step 2 the equation $Ux=\rho$ is solved for x in an upwards sweep.

$$b_i = \frac{H_i}{h_i} - \frac{h_i}{3}(2c_i + c_{i+1}),$$
 $d_i = \frac{c_{i+1} - c_i}{3h_i}.$

```
#Spline Interpolation Piyush Oct 12,2022
import numpy as np
import matplotlib.pyplot as plt

#input data
x=[1,3,4,5,9]; y=[2,5,8,7,15]
N=len(x)-1

h =[0]*N ; H =[0]*N  #x diff and y diff
b =[0]*N ; d =[0]*N

for i in range(0,N):
    h[i]=x[i+1]-x[i]
    H[i]=y[i+1]-y[i]
A = np.zeros((5,5))
    print("h");print(h)
    print("H");print(H)
A[0][0]=1; A[N,N]=1 #Boundary conditions
```

```
#Constructing A
for w in range(1,N):
  A[w][w+1] = h[w]
for k in range(0,N-1):
 A[k+1][k] = h[k]
for 1 in range(1,N):
  A[1][1] = 2*(A[1][1-1]+A[1][1+1])
print("Matrix A");print(A)
B=np.zeros((5,1))
for s in range(1,len(B)-1):
  B[s][0]=3*((H[s]/h[s])-(H[s-1]/h[s-1]))
print("Matrix B");print(B)
#Thomas Algorithm to solve tridiagonal matrix
gamma = [0]*N
rho
      = [0]*(N+1)
gamma[0] = A[0][1]/A[0][0]
rho[0] = B[0][0]/A[0][0]
for o in range(1,N):
  gamma[o]=A[o][o+1]/(A[o][o]-gamma[o-1]*A[o][o-1])
for z in range(1,N+1):
   rho[z]=(B[z][0]-rho[z-1]*A[z][z-1])/(A[z][z]-gamma[z-1]*A[z][z-1])
print("rho");print(rho)
print("gamma"); print(gamma)
C = [0] * (N+1)
c[-1]=rho[-1]
for t in reversed(range(∅,N)):
  c[t]=rho[t]-gamma[t]*c[t+1]
print("c");print(c)
#calculate coefficients
b = [(H[g]/h[g])-(h[g]/3)*(2*c[g]+c[g+1]) \text{ for } g \text{ in } range(0,N)]
print("b");print(b)
d = [(c[e+1]-c[e])/(3*h[e]) \text{ for } e \text{ in } range(0,N)]
print("d");print(d)
```

I. STAGE 1

In the first stage the matrix equation Mx=r is converted to the form $Ux=\rho.$ Initially the matrix equation looks like:

$$\begin{pmatrix} b_1 & c_1 & 0 & 0 & 0 & 0 \\ a_2 & b_2 & c_2 & 0 & 0 & 0 \\ 0 & a_3 & b_3 & c_3 & 0 & 0 \\ 0 & 0 & a_4 & b_4 & c_4 & 0 \\ 0 & 0 & 0 & a_5 & b_5 & c_5 \\ 0 & 0 & 0 & 0 & a_6 & b_6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \\ r_6 \end{pmatrix}$$

At this point x, the solution to the matrix equation, is fully determined.

Thomas algorithm was used to solve the tridiagonal matrix A to determine the cubic spline coefficients.

Matrix Solvers

Jacobi

```
#Jacobi's Method
import matplotlib.pyplot as plt
x1=0;x2=0;x3=0;x4=0
data_x1=[];data_x2=[];data_x3=[];data_x4=[]
for i in range (10):
    a=(6+x2-2*x3)/10
```

```
b=(25+x1+x3-3*x4)/11
c=(-11-2*x1+x2+x4)/10
d=(15-3*x2+x3)/8
x1=a;x2=b;x3=c;x4=d
data_x1.append(x1);data_x2.append(x2);data_x3.append(x3);data_x4.append(x4)
print(x1,x2,x3,x4)
plt.plot (data_x1, label=r'$x_{1}$')
plt.plot (data_x2, label=r'$x_{2}$')
plt.plot (data_x3, label=r'$x_{3}$')
plt.plot (data_x4, label=r'$x_{4}$')
plt.xlabel('Iterations');plt.legend();plt.grid();plt.show()
```


$$\begin{bmatrix} 27 & 6 & -1 \\ 6 & 15 & 2 \\ 1 & 1 & 54 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 54 \\ 72 \\ 110 \end{bmatrix}$$

Gauss Seidel

```
#Gauss Seidel Iteration

#Last update:Piyush

N=5 #number of iterations

# 27x+6y-z=54

# 6x+15y+2z=72

# x+y+54z=110

x=0;y=0;z=0

for i in range(N):

    x = (1/27)*(54-6*y+z)

    y = (1/15)*(72-6*x-2*z)

    z = (1/54)*(110-x-y)

print('x',x)

print('y',y)

print('y',y)
```

x 1.1663468914798172

y 4.074797518245446

z 1.9399788072273099

Root Finding

Bisection

```
#Last update:Piyush
import numpy as np
import matplotlib.pyplot as plt
def bisectionhaitaakat(f, a, b, sehlo):
   if (np.sign(f(a)))*(np.sign(f(b))) > 0:
          print("can't do it")
   mid = (a + b)/2 #midpoint #sehlo is tolerance
   if np.abs(f(mid)) < sehlo: #jab tak root mil jaye</pre>
        return mid #root mil gaya that's it
    elif np.sign(f(a)) == np.sign(f(mid)):
        print(mid)
        return bisectionhaitaakat(f, mid, b,sehlo)
   elif np.sign(f(b)) == np.sign(f(mid)):
        print(mid)
        return bisectionhaitaakat(f, a, mid, sehlo)
x=np.linspace(-5,5,100)
def f(x):
   return x**3-3*x+1
                                #yeh raha function
plt.xlabel('x');plt.ylabel('y')
plt.xlim([-3,3.0]);plt.ylim([-5,5])
plt.axhline(0, color='grey',linestyle='--',linewidth=2)
root= bisectionhaitaakat(f,1,2, 1e-5) #function call kiya
print("root =", root)
print("f(root) =", f(root)) #ideally f(root) has to be zero
plt.plot(x,f(x),'-',linewidth=3.0)
plt.axvline(root,color='red',linewidth=1.5)
```


$$n = \left\lceil \log_2 \left(\frac{b_0 - a_0}{\epsilon} \right) - 1 \right\rceil.$$

Newton-Raphson

```
#Last update:Piyush
import numpy as np
import matplotlib.pyplot as plt
x=np.linspace(-5,10,200)
def f(x):
  return x**3-3*x+1
def f_prime(x):
 return 3*x**2-3
def newtoroot(f, df, x0, tol):
    if abs(f(x0)) < tol:</pre>
        return x0
    else:
        print(x0)
        return newtoroot(f, df, x0 - f(x0)/df(x0), tol)
result = newtoroot(f,f_prime, 1.2, 1e-5)
print("root =", result)
plt.figure(figsize=(6,4));plt.xlim([-5,5]);plt.ylim([-5,10])
plt.plot(x,f(x),label=r'$f(x)$',linewidth=2.0,color='deeppink')
plt.axvline(x=result,color='black',linewidth=1.3)
plt.axhline(y=0,color='grey')
plt.legend(fontsize='12')
```


 $\int x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

1.2

1.8606060606060604

1.6088541478282465

1.5379627005114658

1.5321277008797534

root = 1.5320888879510492

```
start = []
num = 10
N = 5
for i in range(num):
    c=random.randrange(-N, N)
    if(f_prime(c)>0):
        start.append(c)
print(start)

result=[]
for i in range(len(start)):
    result = newtoroot(f,f_prime,start[i], 1e-5)
    print("root =", result)
```

[-3, -2, 4, 3, 3, 3]

root = -1.8793852418279906

root = -1.879385244836671

root = 1.5320897486564136

```
root = 1.5320888862613389
root = 1.5320888862613389
```

root = 1.5320888862613389

```
PROGRAM NEWTON
!This program uses the Newton method to find the root
IMPLICIT NONE
             :: A,B,tol,DX,X0,X1,DF,F
INTEGER
             :: I
      tol = 1.0E-06
      A = 1.0
      B = 2.0
      DX = B-A
      X0 = (A+B)/2.0 !midpoint
      I = 0
  DO 100 WHILE (ABS(DX).GT.tol)
      X1 = X0 - F(X0)/DF(X0)
      DX = X1 - X0
      X0 = X1
      I = I + 1
  100 END DO
      WRITE (6,9) I,X0,DX
 9 FORMAT (14,F16.8)
END PROGRAM NEWTON
FUNCTION F(X)
F = EXP(X)*ALOG(X) - X*X
FUNCTION DF(X)
 DF = EXP(X)*(ALOG(X) + 1./X) - 2.*X
```

Chebyshev Method

```
#Chebyshev Method
import numpy as np
import matplotlib.pyplot as plt
x=np.linspace(-5,10,200)
```

```
def f(x):
                   #function
return x**3-3*x+1
                  #first derivative
def f_prime(x):
return 3*x**2-3
def f 2prime(x): #second derivative
return 6*x
def chebyroot(f, df, x0, tol): #chebyshev
  if abs(f(x0)) < tol:
      return x0
  else:
      print(x0)
       return chebyroot(f, df, x0 -
f(x0)/df(x0)-0.5*f_2prime(x0)*((f(x0)**2)/(f_prime(x0))**3), tol)
result = chebyroot(f,f_prime, -1.3, 1e-5)
print("root =", result)
plt.figure(figsize=(6,4));plt.xlim([-5,5]);plt.ylim([-5,10])
plt.plot(x,f(x),label=r'$f(x)$',linewidth=2.0,color='#0ABAB5')
plt.axvline(x=result,color='black',linewidth=1.3);plt.axhline(y=0,color='grey')
plt.legend(fontsize='12')
```

```
PROGRAM CHEBYSHEV
IMPLICIT NONE
             :: A,B,tol,DX,X0,X1,DF,F,D2F
INTEGER
             :: I
      tol = 1.0E-05
      A = -3.0; B = 0.0
      DX = B-A
      X0 = (A+B)/2.0 !midpoint
      I = 0
 DO 21 WHILE (ABS(DX).GT.tol)
      X1 = X0 - F(X0)/DF(X0) - 0.5*D2F(X0)*((F(X0))**2/DF(X0)**3)
      DX = X1 - X0
      X0 = X1
      I = I + 1 !step
 21 END DO
      WRITE (6,9) I,X0,DX
 9 FORMAT (I4,F16.8)
END PROGRAM CHEBYSHEV
FUNCTION F(X)
 F = X^{**}3-3^*X+1
```

```
FUNCTION DF(X)
DF = 3*X**2-3
RETURN
END

FUNCTION D2F(X)
D2F = 6*X
RETURN
END
```

Halley's Method

$$x_{n+1} = x_n - rac{2f(x_n)f'(x_n)}{2[f'(x_n)]^2 - f(x_n)f''(x_n)}$$

```
import numpy as np
import matplotlib.pyplot as plt
x=np.linspace(-5,10,200)
                  #function
def f(x):
return x**3-3*x+1
def f prime(x):
                  #first derivative
return 3*x**2-3
def f_2prime(x): #second derivative
return 6*x
def chebyroot(f, df, x0, tol): #halley
  if abs(f(x0)) < tol:
      return x0
   else:
      print(x0)
       return halleyroot(f, df, x0 -
(2*f(x0)*f_prime(x0))/(2*(f_prime(x0)**2)-f(x0)*f_2prime(x0)), tol)
result = halleyroot(f,f_prime, -1.3, 1e-5)
print("root =", result)
plt.figure(figsize=(6,4));plt.xlim([-5,5]);plt.ylim([-5,10])
plt.plot(x,f(x),label=r'$f(x)$',linewidth=2.0,color='#0ABAB5')
plt.axvline(x=result,color='black',linewidth=1.3);plt.axvline(y=0,color='grey')
plt.legend(fontsize='12')
```

$$x - \frac{f(x)}{f'(x)} = x - \frac{x^2 - 2}{2x} = \frac{x^2 + 2}{2x} = \frac{x + \frac{2}{x}}{2}.$$

Nth root finding

```
def f(x):  #function
  return x**k-a

def f_prime(x):  #first derivative
  return k*x**(k-1)

def newtoroot(f, df, x0, tol):  #newton raphson method
  if abs(f(x0)) < tol:
     return x0
  else:
     print(x0)
     return newtoroot(f, df, x0 - f(x0)/df(x0), tol)</pre>
```

Secant

$$egin{aligned} x_2 &= x_1 - f(x_1) rac{x_1 - x_0}{f(x_1) - f(x_0)}, \ &x_3 &= x_2 - f(x_2) rac{x_2 - x_1}{f(x_2) - f(x_1)}, \ &dots \ & dots \ &x_n &= x_{n-1} - f(x_{n-1}) rac{x_{n-1} - x_{n-2}}{f(x_{n-1}) - f(x_{n-2})}. \end{aligned}$$

```
PROGRAM SECANTROOT

TOL = 1.0E-06

A = 10.0

B = 30.0

DX = (B-A)/10.0

X0 = (A+B)/2.0

CALL SECANT (DL,X0,DX,ISTEP)

END PROGRAM SECANTROOT

SUBROUTINE SECANT (DL,X0,DX,ISTEP)

!Subroutine for the root of f(x)=0 with the secant method.

I = 0
```

```
X1 = X0 + DX
DO 21 WHILE (ABS(DX).GT.TOL) !stop the loop when
X2 = X1 - F(X1)*(X1-X0)/(F(X1) - F(X0))
X0 = X1
X1 = X2
DX = X1 - X0
I = I + 1
WRITE (6,9) I,X0,DX
9 FORMAT (I4,F16.8)

21 END DO
RETURN
END

FUNCTION F(X)
F = X**2-612
RETURN
END
```

Fixed Point

```
program FixiePixie
IMPLICIT NONE
REAL::f
INTEGER::N,i
real, allocatable :: x(:)
N=10
allocate(x(N))
x(1) = 0.0
do i=1,N
      x(i+1) = f(x(i))
end do
do i = 1,N
      write(*,*) x(i)
end program FixiePixie
REAL function f(x1)
REAL::x1
 f=0.015625*(32*x1**5+31)
```


$$x_{n+1} = \sin(x_n); x_0 = 2$$

```
pos=[]
x = 2
for i in range(20):
    x = np.sin(x)
    pos.append(x)
    print(x)
```

$$(AX)_n = x_{n+2} - rac{(\Delta x_{n+1})^2}{\Delta^2 x_n} = x_{n+2} - rac{(x_{n+2} - x_{n+1})^2}{(x_{n+2} - x_{n+1}) - (x_{n+1} - x_n)}$$

```
import numpy as np
import matplotlib.pyplot as plt
pos=[]
x = 2.0
#This loop gives initial successive approximations to the root zeta
for i in range(3):
    #x = (10/(4+x))**(0.5)
    x = 1/(1+x**2)
    pos.append(x)
    print(x)

#Aitken's Delta 2 process
for i in range(1,15):
    zeta=pos[i+1]-((pos[i+1]-pos[i])**2)/(pos[i+1]-2*pos[i]+pos[i-1])
    pos.append(zeta)
    print(zeta)
```

Optimization

Gradient Descent

1D

```
#1D Gradient Descent
import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize
from scipy.misc import derivative
x = np.linspace(-5,10,100)
plt.xlabel(r'$x$')
plt.ylabel(r'$y$')
plt.grid();
def f(x):
                              #Function
   return -x**2*np.sin(2*x)
                             #Derivative
dx = derivative(f,x)
alpha = 0.1 #Learning rate
x new = 2.5 #yaha se start karo
    = 20
             #itni baar karo
plt.plot(x,f(x),linewidth=3,color='black')
for i in range(N):
   x_old = x_new
   x_new += -alpha*derivative(f,x_old)
   print(x_new,f(x_new)) #plot ke liye
   plt.scatter(x_new,f(x_new))
print("local minimum: %.3f" % x_new)
#scipy dhoondh minimum ab
result = optimize.minimize_scalar(f)
x_min = result.x
plt.axvline(x=x_min,color='red',linewidth=0.6)
print("scipy minimum",x_min)
```



```
Algorithm 1: Newton's method (Optimization)

1 initialize x^{(0)}

2 for k in 1, to max-iter, do

3 p^{(k)} = -H_f(x^{(k)}) \backslash \nabla f(x^{(k)})^T // since we interpret the gradient as a row vector, this is a column

4 if ||p^{(k)}|| < \epsilon_{\text{tol}} then

5 || \text{break}|| = \text{break}

6 end

7 ||x^{(k+1)} \leftarrow x^{(k)} + p(k)||

8 end
```

```
import numpy as np
import matplotlib.pyplot as plt
x=np.linspace(-5,10,200)
def f(x):
 return -x**2*np.sin(2*x)
def f_prime(x):
 return -2*x*(np.sin(2*x)+x*np.cos(2*x))
def f_prime2(x):
 return 2*(2*x**2-1)*np.sin(2*x)-8*x*np.cos(2*x)
def newtoroot(f, df, x0, tol):
   if abs(f(x0)) < tol:
        return x0
   else:
        return newtoroot(f, df, x0 - f(x0)/df(x0), tol)
result = newtoroot(f_prime, f_prime2, 6.9, 1e-5)
print("x_min|x_max =", result)
plt.figure(figsize=(8,8))
```

```
plt.plot(x,f(x),label=r'$f(x)$',linewidth=2.0,color='deeppink')
plt.plot(x,f_prime(x),label=r'$\frac{df}{dx}$',linewidth=2.0,color='mediumpurple',a
lpha=0.7)
#plt.plot(x,f_prime2(x),label=r'$\frac{d^2f}{dx^2}$',linewidth=2.0,color='turquoise
',alpha=0.5)
plt.axvline(x=result,color='red',linewidth=1.3)
plt.axhline(y=0,color='grey')
plt.legend(fontsize='16')
```


2D gradient descent

```
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-5,5,100)
y=np.linspace(-5,5,100)

def f(x,y):
    return x**2.0+y**2.0

def dx(x,y):
    return 2.0*x

def dy(x,y):
    return 2.0 *y
# Gradient Descent
alpha = 0.1 # learning rate
x1_0 = 1.5 # start point
x2_0 = 2.8
```

```
plt.scatter(x1_0,x2_0)
N=20
for i in range(N):
    tmp_x1_0 = x1_0 - alpha * dx(x1_0,x2_0)
    tmp_x2_0 = x2_0 - alpha * dy(x1_0,x2_0)
    x1_0 = tmp_x1_0
    x2_0 = tmp_x2_0
    print(x1_0,x2_0,f(x1_0,x2_0))
    plt.scatter(x1_0, x2_0)
#print(x1_0,x2_0,f(x1_0,x2_0))
```

$$f(x,y) = x^2 + y^2$$

$$f(x,y) = e^{-(x-2)^2 - y^2}$$

$$f(x,y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2$$

$$\alpha = 0.01$$

$$\frac{\partial f(x,y)}{\partial x} = 2(2x(x^2 + y - 11) + x + y^2 - 7)$$

$$\frac{\partial f(x,y)}{\partial y} = 2(x^2 + 2y(x + y^2 - 7) + y - 11)$$

```
from scipy import optimize
x_mini = optimize.minimize(funcy, x0=[-3, 0])
plt.imshow(funcy([x1, y1]), extent=[-4, 4, -4, 4], origin="lower",cmap='RdPu')
plt.colorbar(label=r'$f(x,y)$')
plt.scatter(x_mini.x[0], x_mini.x[1],color='black',marker='+') #minimum
```


Debye Heat

```
from scipy.integrate import quad  # For quad integration
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
#Temperatures
T=np.linspace(1,100, 100)
T e=np.float (40.10)
                        #Einstein Temperature
T_d=np.float_(40.00)
                         #Debye Temperature
def Dulong(T):
   return [1]*len(T)
                         #Dulong Petit Law C_v=3NK_B;
                         #Normalised it so this is 1.
def Einstein(T,T e):
                        #Einstein Function
    return ((T_e/T)^{**2})^*(np.exp(T_e/T)/(np.exp(T_e/T)-1)^{**2})
#Defining the function for the integral in Debye function
def thatintegralindebye(x):
    return ((x**4)*np.exp(x))/((np.exp(x)-1)**2)
    #Defining the function for the integral part in Debye Function
#Using scipy to integrate the integral and evaluating Debye
def Debye(T,T d):
    deby=list()
    for t in T:
        deby.append(3*((t/T_d)**3))
*np.float_(quad(thatintegralindebye, 0, T_d/t)[0]))
    return (np.array(deby))
plt.figure(figsize=(9, 6))
plt.plot( T, Einstein(T,T_e), linewidth=3,label='$Einstein$',color='deeppink')
#plt.plot( T, Dulong(T), linewidth=3,label='$Dulong-Petit$',color='darkturquoise')
plt.plot( T, Debye(T,T_d),linewidth=3, label='$Debye$',color='mediumorchid')
plt.plot( T,(1e-3)*T**3,label='$T^{3} $',lw=2,color='orange')
\#plt.plot(T,100*T**(-2)*np.exp(-(1/T)),label='$T^{2}e^{-1/T} $')
#plt.axvline(x=T_e,label='$T_e$',color='skyblue')
#plt.axvline(x=T_d,label='$T_d$',color='limegreen')
plt.xlim([0,50])
plt.ylim([0,1.1])
plt.xlabel("$T$",fontsize=15)
plt.ylabel("$C/3N k_B$",fontsize=15)
plt.legend(loc='lower right')
plt.show()
```


Polynomial evaluation

Horner's Method

```
read (1,*) coeff(i)
end do
close (1)

num = SIZE(coeff)
y(1)=coeff(n)
do i = 2,num
        y(i)=coeff(num-i+1)+x*y(i-1)
end do
print*,y(num)
end program hornerpoly
```

```
#17 Sep 2022
import numpy as np
data=np.loadtxt('data.txt')
coeff=data[0:]
#coeff=[3,-1,2,-4,0,1]  #coefficient matrix
#x = int(input("Enter value of x:"))
x=3
n = len(coeff)-1
y = np.zeros_like(coeff)
y[0]=coeff[n]
for i in range(1,n+1): # run loop for till a_n # access coeff array backwards
y[i]=coeff[n-i]+x*y[i-1]
print(y[n])
```

File reader:

5A125

5B234

6C001

7 E 5 1 2

Differential Equations

```
%pendulum length
length= 1;
g=9.8;
                 %surface acceleration
n = 250;
dt = 0.04;
%q = 0.5
omega = zeros(n,1);
theta = zeros(n,1);
time = zeros(n,1);
theta(1)=0.2;
for step = 1:n-1 % loop over timesteps
%omega(step+1) = omega(step) - (g/length)*theta(step)*dt; %Euler
omega(step+1) = omega(step) - (g/length)*theta(step)*dt-q*omega(step)*dt; %Damped
theta(step+1) = theta(step)+omega(step+1)*dt
                                                                           %Euler
Cromer
time(step+1) = time(step) + dt;
plot(time,theta,'r' );
xlabel('time (seconds) ');
ylabel('theta (radians)');
```



```
#Last update:Piyush
                     8 Aug 2022
#required: try making a code that automatically determines the
#derivative instead of relying on the user input
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0,4,100)
def euler_explicit(f_prime, y_0, a, b, h):#defining the euler method
  N=int((b-a)/h)
                        #Number of steps
                        #Initial Values to the equation y(0) and x(0)
  x = a ; y = y_0
  x_out,y_out =[],[]
   for i in range(N):
      y = y + h*f_prime(x, y) #y_n+1 = y_n + h * f
      x = x + h
      x_out.append(x)
      y_out.append(y)
   return x_out, y_out
```

```
def solution(x):
    return np.exp(x/2)*np.sin(5*x)

def f_prime(x, y):
    return -0.5*np.exp(x/2)*np.sin(5*x)+5*np.exp(x/2)*np.cos(5*x)+y
    #return y*np.exp(y)+np.exp(y)

x_euler, y_euler = euler_explicit(f_prime, 0, 0, 3, 0.1) #call the function and store the values in x and y

#plt.xlim([0,2])#plt.ylim([0.7,1.1])
plt.figure(figsize=(7,6))
plt.plot(x,solution(x),linewidth=3.0,color='mediumslateblue',label='Exact')
plt.plot(x_euler,y_euler,linewidth=3.0,color='orchid',label='Euler-Explicit')
plt.xlabel(r'$x$',fontsize=15);plt.ylabel(r'$y$',fontsize=15)
plt.legend(loc='upper right')
```


Slope Fields


```
#Euler Explicit and Euler Implicit
#Last update Piyush
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 1, 25) #gridpoints
def euler_explicit(x):
      y = np.zeros_like(x) #empty array
      h = x[1] - x[0] #step size
      for i in range(1, len(x)):
          y[i] = y[i-1] -50*h*(y[i-1] - np.cos(x[i]))
      return y
def euler implicit(x):
      y = np.zeros_like(x) #empty array
      h = x[1] - x[0] #step size
      for i in range(1, len(x)):
          y[i] = (y[i-1] + 50*h*np.cos(x[i])) / (50*h + 1)
      return y
def solution(x):
      return (50/2501)*(np.sin(x) + 50*np.cos(x)) - (2500/2501)*np.exp(-50*x)
plt.plot(x,euler_implicit(x),color='blue',label='Implicit')
plt.plot(x,euler_explicit(x),color='deeppink',label='Explicit')
plt.plot(x,solution(x),color='black',label='Analytical')
plt.xlabel(r'$x$')
plt.legend(loc='upper right')
```



```
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 5, 100)

def RK4(f_prime, y_0, a, b, h):
    N=int((b-a)/h)  #Number of steps

x = a ; y = y_0

x_out,y_out =[],[]
for i in range(N):
    k1 = h*f_prime(x,y)
    k2 = h*f_prime(x+0.5*h,y+0.5*k1)
    k3 = h*f_prime(x+0.5*h,y+0.5*k2)
    k4 = h*f_prime(x+h,y+k3)

y = y+ (1/6)*(k1+2*k2+2*k3+k4) #RK-4
```

```
x = x + h
      #print(x,y)
      x_out.append(x)
      y_out.append(y)
   return x_out, y_out
def f_prime(x, y): #Differential equation
return 50*(np.cos(x)-y)
                   #Analytical solution
def solution(x):
return (50/2501)*(np.sin(x)+50*np.cos(x)-50*np.exp(-50*x)) #y(0)=0
x_RK, y_RK = RK4(f_prime, 0, 0, 4, 0.05)
x_RK1, y_RK1 = RK4(f_prime, 0, 0, 4, 0.01)
plt.xlabel(r'$x$');plt.ylabel(r'$y$')
plt.ylim([-1.5,1.5])
plt.plot(x, solution(x), color='black', linewidth=2.0, label='Exact')
plt.plot(x_RK,y_RK,color='deeppink',linewidth=2.0,label='h=0.05')
plt.plot(x_RK1,y_RK1,color='orange',linewidth=2.0,label='h=0.01')
plt.legend(loc='upper right')
```


$$y_{n+1} = y_n + \frac{3}{2}hf(t_{n+1}, y_{n+1}) - \frac{1}{2}hf(t_n, y_n)$$

Adams - Bashforth - Predictor

$$y_{n+1} = y_n + \frac{h}{2}(f(t_{n+1}, y_{n+1}) + f(t_n, y_n))$$

Adams - Moulton - Corrector

```
program Predictor
IMPLICIT NONE
REAL::a,b,h,y_0,f_prime
INTEGER::N,i
real, allocatable :: x(:), y(:)
b=4
h=0.1
y_0=0
N=INT((b-a)/h) !Number of steps
allocate(x(N),y(N))
x(1) = a
y(1) = y 0
x(2) = a+h
                !Adam Bashforth 2 Step Method
y(2) = y_0 + h * f_prime(x(1), y(1))
do i=2,N
   y(i+1) = y(i) +
(h/2)*(3*f_prime(x(i),y(i))-f_prime(x(i-1),y(i-1)))
   x(i+1) = x(i) + h
   y(i+1) = y(i) + (h/2)*(f_prime(x(i+1),y(i+1))+f_prime(x(i),y(i)))
end do
do i = 1,N
   write(*,*) x(i),y(i)
   x(i)=x(i)+h
 end do
end program Predictor
```

```
REAL function f_prime(x1,y1)
REAL::x1,y1
f_prime=-0.5*EXP(x1/2)*SIN(5*x1)+5*EXP(x1/2)*COS(5*x1)+y1
return
end function
```


Heat Equation : Laplace 2D Equation

```
import numpy as np
import matplotlib.pyplot as plt
N = 50  #max iter
# Set Dimension and delta
lenX = lenY = 10
delta = 1
# Boundary condition
```

```
= 30
#Ttop
Tbottom
         = 0
Tleft = 100
Tright
        = 0
Tguess = 0 #intial guess for internal grid
X, Y = np.meshgrid(np.arange(0, lenX), np.arange(0, lenY))
T = np.empty((lenX, lenY))
T.fill(Tguess)
x2=np.linspace(0,lenX,lenX) #setting boundary condition
for m in range(0,lenX):
T[(lenY-1):, :] = 80*np.sin(x2/2)**2
T[:1, :]
                = Tbottom
T[:, (lenX-1):] = Tright
T[:, :1]
              = Tleft
Tcen, Tcen1=[],[]
for k in range(0,N):
   Tcen.append(T[5][5])
   \#Tcen1.append(T[7][3])
  for i in range(1, lenX-1, delta):
       for j in range(1, lenY-1, delta):
          T[i, j] = 0.25 * (T[i+1][j] + T[i-1][j] + T[i][j+1] +
T[i][j-1])
print(T)
x1 = np.linspace(0,N,N)
plt.xlabel('Iteration')
plt.ylabel(r'$T[deg]$')
plt.plot(x1,Tcen,linewidth=2.0,color='orchid',label=r'$T[2][2]$')
#plt.plot(x1,Tcen1,linewidth=2.0,color='#50C878',label=r'$T[7][3]$')
plt.legend()
```



```
plt.figure(figsize=(10,8))
contours = plt.contour(X, Y, T, 5,colors='white') # 5 contours
plt.clabel(contours, inline=True, fontsize=10.0)
plt.contourf(X, Y, T, 60, cmap=plt.cm.magma)
plt.colorbar(label=r'$T [deg]$')
```


Taylor Series

```
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0,5,20)
plt.ylim(-4, 3)
y1 = x - x**3/6
y2 = y1 + x**5/120
y3 = y2 - x**7/5040
y4 = y3 + x**9/362880
plt.plot(x, np.sin(x),'-',linewidth=2.0,label=r'$sin(x)$')
plt.plot(x,y1,'--',linewidth=2.0,label=r'$0(3)$')
plt.plot(x,y2, '--',linewidth=2.0,label=r'$0(5)$')
plt.plot(x,y3, '--',linewidth=2.0,label=r'$0(7)$')
plt.plot(x,y4, '--',linewidth=2.0,label=r'$0(9)$')
plt.plot(x,y4, '--',linewidth=2.0,label=r'$0(9)$')
plt.legend(loc='lower left')
```

