1) Problem Statement:

Insurance Charge Prediction based on several parameters

2) Data set Total number of rows and columns

 $1338 \text{ rows} \times 5 \text{ columns}$

There are two columns are classifier, we convert string to numerical value using ordinal data (Label encoding algorithms) because compare possible.

Stage 1- Domain (Machine Learning)

Stage 2 - Supervised Learning

Stage 3 - Regression

To find following the machine learning regression method using in r2 value

1. Multiple Linear Regression:

R2 Value = 0.7891

2. Support Vector Machine:

S.NO	Hyper	Linear	RBF(Non-Linear)	Poly	Sigmoid
	Parameter	(r value)	(r value)	(r value)	(r value)
1	C10	0.4624	-0.0323	0.0386	0.0394
2	C100	0.6289	0.3196	0.6164	0.5268
3	C500	0.7630	0.6616	0.8285	0.4429
4	C1000	0.7648	0.8107	0.8546	0.2120
5	C2000	0.7439	0.8540	0.8583	-0.6216
6	C3000	0.7413	0.8646	0.8580	-2.1431

The SVM Regression use R2 value (RBF(non linear) and hyper parameter (C3000) = 0.8646

3. Decision Tree:

S.NO	CRITERION	MAX FEATURES	SPLITTER	R VALUE
1	squared_error	Sqrt	Best	0.7780
2	squared_error	log2	random	0.6125
3	squared_error	Sqrt	random	0.6256
4	squared_error	log2	best	0.7129
5	absolute_error	Sqrt	Best	0.7274
6	absolute_error	log2	Random	0.6460
7	absolute_error	Log2	Best	0.7158
8	absolute_error	Sqrt	Random	0.6330
9	friedman_mse	Log2	Best	0.6980
10	friedman_mse	Sqrt	random	0.7009
11	friedman_mse	Sqrt	Best	0.6253
12	friedman_mse	log2	random	0.6364
13	poisson	Log2	Best	0.6395
14	poisson	Sqrt	random	0.6779
15	poisson	Sqrt	Best	0.7054
16	poisson	log2	random	0.6550
17	poisson	None	best	0.6955
18	poisson	None	random	0.6812
19	squared_error	None	random	0.6951
20	squared_error	None	best	0.7019
21	absolute_error	None	Best	0.6843
22	absolute_error	None	Random	0.7261
23	friedman_mse	None	Best	0.6855
24	friedman_mse	None	random	0.6817

The Decision tree Regression use R2 value (squared_error, sqrt, best) = 0.7780

4. Random Forest

S.NO	CRITERION	MAX_FEATURES	N_ESTIMATORS	R VALUE
1	squared_error	Auto	10	0.8453
2	squared_error	Auto	100	0.8535
3	squared_error	Sqrt	10	0.8515
4	squared_error	Sqrt	100	0.8614

5	squared_error	Log2	10	0.8469
6	squared_error	Log2	100	0.8640
7	absolute_error	Auto	10	0.8410
8	absolute_error	Auto	100	0.8585
9	absolute_error	Sqrt	10	0.8602
10	absolute_error	Sqrt	100	0.8722
11	absolute_error	Log2	10	0.8565
12	absolute_error	Log2	100	0.8676
13	friedman_mse	Auto	10	0.8482
14	friedman_mse	Auto	100	0.8514
15	friedman_mse	Sqrt	10	0.8586
16	friedman_mse	Sqrt	100	0.8645
17	friedman_mse	Log2	10	0.8501
18	friedman_mse	Log2	100	0.8654
19	poisson	Auto	10	0.8390
20	poisson	Auto	100	0.8557
21	poisson	Sqrt	10	0.8417
22	poisson	Sqrt	100	0.8642
23	poisson	Log2	10	0.8496
24	poisson	Log2	100	0.8667

The Random Forest Regression R2 Value (absolute_error,sqrt,100) = 0.8722

The final machine learning regression best method:

The Random Forest Regression R2 Value (absolute_error,sqrt,100) = 0.8722
(OR)

The SVM Regression use R2 value (RBF(non linear) and hyper parameter(C3000)) = 0.8646