Planificação Aula 9 (E@D)

TP4D-1: 5ª feira, 15/04, 14h; TP4D-2: 5ª feira, 15/04, 16h; TP4D-3: 6ª feira, 16/04, 11h; TP4D-4: 4ª feira, 14/04, 10h30; TP4D-5: 6ª feira, 16/04, 14h

1ª Parte da aula: Resolução do Mini Teste 1

2ª Parte da aula: Resolução dos seguintes exercícios sobre séries de Fourier

Exercício1: Seja f definida em [-
$$\pi$$
, π [por $f(x) = \begin{cases} \cos x & \text{se } x \in J_0, \pi$ [$\cos x = \cos x = 0 \\ -\cos x & \text{se } x \in E - \pi, o$ [

- a) Esboce o gráfico de f em [-π,π[.
- b) Mostre que a série de Fourier associada a f e uma série de senos, ou sejo, $\sum_{m=1}^{+\infty} b_m$ sen $(m\infty)$ e calcule o valor do coeficiente b_1 .

Exercício 2: Seja f 217-periódica tal que
$$f(x) = \begin{cases} \alpha, -\pi < x < 0 \\ \beta, 0 < x < \pi \end{cases}$$
 $(\alpha, \beta \in \mathbb{R}; \alpha \neq \beta)$

- a) Sem determinar a série de Fourier associada a f, indique a sua soma em x=0 e em $x=\frac{\pi}{2}$.
- b) Considerando $\alpha = -Ti \ge \beta = tt$, mostre que a série de Fourier associada a $f \ge \frac{4}{2m-1} sen((2m-1)x)$.
- c) Usando o rexultado anterior, mostre que $\sum_{m=1}^{+\infty} \frac{(-1)^{m+1}}{2m-1} = \frac{\pi}{4}$.

Exercício 3: Seja
$$f$$
 2 π -periódica tal que $f(x) = \pi - 2|x|$, $-\pi \le x \le \pi$.

- a) Determine a série de Fourier associada a f.
- b) Justifique que $f(x) = \frac{8}{\pi} \sum_{n=1}^{+\infty} \frac{\cos((2m-1)x)}{(2m-1)^2}$, $\forall x \in \mathbb{R}$.
- c) Mostre que $\sum_{m=1}^{+\infty} \frac{1}{(2m-1)^2} = \frac{\pi^2}{8}$.
- d) Mostre que a serie de Fourier associada a f e uniformemente convergente em IR.