Lecture 3A: Diode Circuits

EE 103

2023-24/I (Autumn)

Joseph John (j.john@iitb.ac.in, jjohn@ee.iitb.ac.in)

Summary of Topics for Lect 3

- Lect 3A Rectifier and Regulator Circuits
 - Part1: Rectifier circuits: Half-wave rectifier, Full-wave rectifier (Bridge rectifier)
 - Part 2: Unregulated DC Power Supply
 - Part 3: Regulator DC Power Supply (Voltage Regulator: IC based regulated DC Power Supply)

Part 1: Rectifier Circuits

Part 1: Rectifier Circuits

Half-Wave Rectifier

- Full-wave Rectifier
 - Bridge rectifier circuit

Step Down Transformer (230 V - 12 V RMS)

Fig. 1 Step-down Transformer

A) Half-wave Rectifier

Fig. 2

Half-wave Rectifier Output

Fig. 3

B) Full-wave (Bridge) Rectifier

Fig. 4

 Bridge Rectifier: in every half cycle, two diodes will be in the current path

- 1st half cycle (output A is +ve w.r.t. Output B): current path from output A \rightarrow D1 \rightarrow R_L \rightarrow D4 \rightarrow B; D2 and D3 will not conduct.
- 2nd half cycle (Output B is +ve w.r.t. output A): current path from B → D2 → R₁ → D3 → A; D1 and D4 will not conduct.

- Full-wave Rectifier: Input and Output waveforms (considering diode drops)
- Output voltage will have the *two diode drops* lower than the input voltage. Typ. diode drop = 0.6 V

Part 2: Unregulated Power Supply (Capacitive filter)

Unregulated Power Supply

(Using Half-wave Rectifier and a Capacitive filter)

Fig. 7

V_{out} with Vout ripple voltage Vout \bigvee_r $\rightarrow \Delta t \leftarrow$ Conduction interval Δt

 The half-wave rectifier with C is very seldom used due to its higher ripple voltage

Operation with C across R_L

- C charges during Δ_t , and discharges during $(T-\Delta_t)$.
- Ripple voltage, V_r increases with i_L (load current).
- Ripple voltage can be decreased by increasing C (not a good solution).
- For a given i_L , as $C \uparrow$, $\Delta_t \downarrow$ (which will make $i_D \uparrow \uparrow$)

Fig. 9

Operation with C across R_L

- C charges during Δ_t , and discharges during $(T-\Delta_t)$.
- Ripple voltage, V_r increases with i_L (load current).
- Ripple voltage can be decreased by increasing C (not a good solution).
- For a given i_L , as $C \uparrow$, $\Delta_t \downarrow$ (which will make $i_D \uparrow \uparrow$)

Unregulated Power Supply

(Using Full-wave Bridge Rectifier and a Capacitive filter)

Fig. 10

- Much better than the half-wave (HW) rectifier
 - For the same C and R_L, peak-to-peak ripple voltage gets reduced to half that of HW

Fig. 11

- Full-wave rectifier output waveform (blue)
- Less Ripple voltage, compared to the Halfwave rectifier circuit
 - Discharge interval for C almost half that of HW case)

Problems of Unregulated Power Supply

- Output voltage fluctuates
 - When ac input voltage fluctuates
 - When load current fluctuates

- Ripple voltage increases with load current
 - Ripple voltage for a given load current (i_L) can be reduced only by increasing C
 - Increasing C beyond a certain value can cause diode damages (as the peak diode current will always be many times the average load current)

Part 3: Regulated DC Power Supply

Regulated Power Supply

Problems of the unregulated power supply

- Output voltage fluctuates with the input voltage (for a given load current) - Line regulation
- Output voltage fluctuates for load current (for a given input voltage) - Load regulation

Regulated Power Supply

- Output voltage stays constant (reasonably well):
 - For varying input voltages
 - For varying load currents

Two solutions

- Solution 1
 - Zener diode regulator circuit

- Solution 2
 - Voltage Regulator IC

Solution 1: Zener Regulator Circuit

Problem statement:

In the Zener regulator circuit shown, $V_{in} = 20 \text{ V}$, $R_S = 600 \Omega$, $R_L = 1 \text{ k} \Omega$. Find out the regulator output voltage V_{out} and the load current I_L . Zener parameters: $V_Z = 12 \text{ V}$, $r_z = 200 \Omega$

Solution:

- In the circuit, the zener diode is reverse biased and operating as a zener.
- We will use a simple model for the zener diode (zener diode voltage (V_z) and a series resistor r_z).
- Replace the zener with the equivalent circuit.
- Apply Thevenin's theorem.

Find V_{Th} and R_{Th} of this circuit across AB

Putting
$$V_{in} = 20 \text{ V}$$
, $R_S = 600 \Omega$, $V_Z = 12 \text{ V}$, $r_z = 200 \Omega$, we get $V_{TH} (V_{AB}) = 14 \text{ V}$; $R_{TH} (= R_S \mid \mid r_z) = 150 \Omega$ $R_L = 1 \text{ k } \Omega$

Substituting and evaluating, $V_{out} = 12.17 \text{ V}$ $I_L = 12.17 \text{ mA}$

3B: 7812 Three-terminal Voltage Regulator

Fig. 12

$$V_{in}$$
: +14.5 to 30 V, V_{out} : 11.5 to 12.5 V I_{L} = up to 1 A

Major blocks of the 7812 Voltage Regulator IC:

- Series-pass transistor (Q16)
- Stable Zener reference voltage
- Error amplifier
- Short-circuit protection

Source: 7812 Data sheet, National Semiconductor Corp., 2000

Features of an IC Regulator

• V_{out} will be steady for a large range of V_{in} and I_L values

• Minimum V_{in} to the IC regulator: V_{out} + 2 or 3 V (typical)

- A small value of capacitor, typically 1 μ F is put at the output for stability (i.e. to prevent oscillations)
 - The regulator IC uses a negative feedback error amplifier circuit, which could result in instability.

Other Popular Three-terminal Voltage Regulator ICs

Positive Voltage Regulator ICs

- 1. $7805 : V_{out} = 5 V$
- 2. $7806 : V_{out} = 6 V$
- 3. $7809: V_{out} = 9 V$

Negative Voltage Regulator ICs

- 1. $7905 : V_{out} = -5 V$
- 2. $7906 : V_{out} = -6 \text{ V}$
- 3. $7909: V_{out} = -9V$
- 4. $7912: V_{out} = -12 V$