Contents

1	Resolutions of the ground ring	3
2	Resolutions of modules	4
3	Induced equivariant chain maps	5
4	Functors	6
5	Chain complexes	7
6	Homology and cohomology groups	8
7	Poincare series	9
8	Cohomology ring structure	10
9	Commutator and nonabelian tensor computations	11
10	Lie commutators and nonabelian Lie tensors	12
11	Generators and relators of groups	13
12	Orbit polytopes and fundamental domains	14
13	Cocycles	15
14	Words in free ZG-modules	16
15	FpG-modules	17
16	Meataxe modules	18
17	G-Outer Groups	19
18	Cat-1-groups	20
19	Coxeter diagrams and graphs of groups	21
20	Some functions for accessing basic data	22

Resolutions of the ground ring

ResolutionAbelianGroup (L, n) ResolutionAbelianGroup (G, n) Inputs a list $L := [m_1, m_2, ..., m_d]$ of nonneg ResolutionAlmostCrystalGroup (G, n) Inputs a positive integer n and an almost crystallographic pcp group G. I $Resolution Almost Crystal Quotient (G, n, c) \\ Resolution Almost Crystal Quotient (G, n, c, false) \\ \textbf{An almost Crystal Quotient (G, n, c, false)} \\ \textbf{An almost Crystal Quotient (G,$ ResolutionArtinGroup (D, n) Inputs a Coxeter diagram D and an integer n > 1. It returns n terms of a free ZG-re ResolutionAsphericalPresentation (F, R, n) Inputs a free group F, a set R of words in F which constitute an a ResolutionBieberbachGroup(G) ResolutionBieberbachGroup (G, v) Inputs a Bieberbach group G (represented using AffineCrystGroupOnR ResolutionDirectProduct(R,S,"internal") Inputs a ZG-resolution R ResolutionDirectProduct(R,S) ResolutionExtension(q,R, S, "TestFiniteness") ResolutionExten ResolutionExtension(g,R,S) ResolutionFiniteDirectProduct(R,S) ResolutionFiniteDirectProduct (R, S, "internal") Inputs a ResolutionFiniteExtension(gensE, gensG, R, n, true ResolutionFiniteExtension(gensE, gensG, R, n) ResolutionFiniteGroup(gens, n, true) ResolutionFiniteGroup(ResolutionFiniteGroup(gens,n) ResolutionFiniteSubgroup(R,K) ResolutionFiniteSubgroup (R, gensG, gensK) Inputs a ZG-resolution for ResolutionGraphOfGroups (D, n, L) Inputs a graph of groups D and a p ResolutionGraphOfGroups(D,n) ResolutionNilpotentGroup(G,n,"TestFiniteness") Inputs a nilpot ResolutionNilpotentGroup(G,n) ResolutionNormalSeries(L,n) ResolutionNormalSeries(L,n,true) ResolutionNormalSeries(L, ResolutionPrimePowerGroup (G, n, p) Inputs a p-group P and integer ResolutionPrimePowerGroup(P,n) ResolutionSmallFpGroup(G,n) ResolutionSmallFpGroup(G, n, p) Inputs a small finitely presented grou ResolutionSubgroup (R, K) Inputs a ZG-resolution for an (infinite) group G and a subgroup K of finite index G: ResolutionSubnormalSeries (L, n) Inputs a positive integer n and a list $L = [L_1, ..., L_k]$ of subgroups L_i of a fire TwistedTensorProduct (R, S, EhomG, GmapE, NhomE, NEhomN, EltsE, Mult, InvE) Inputs a ZG-resolution R, a ZM

Resolutions of modules

Resolution FpGModule (M, n) Inputs an FpG-module M and a positive integer n. It returns n terms of a minimal fr

Induced equivariant chain maps

 $\Big| \quad \texttt{EquivariantChainMap} \, (\texttt{R,S,f}) \, \, \textbf{Inputs a} \, \textbf{\textit{ZG}-resolution} \, \textbf{\textit{R}}, \, \textbf{\textit{a}} \, \textbf{\textit{ZG}'-resolution} \, \textbf{\textit{S}}, \, \textbf{\textit{and a group homomorphism}} \, f : \textbf{\textit{G}} \, - \, \textbf{\textit{G}} \, \textbf{\textit{A}} \, \textbf{\textit{C}} \, \textbf{\textit{C}$

Functors

HomToIntegers (X) Inputs either a ZG-resolution X=R, or an equivariant chain map $X=(F:R\longrightarrow S)$. It return HomToIntegersModP (R) Inputs a ZG-resolution R and returns the cochain complex obtained by applying HomZG HomToIntegralModule (R, f) Inputs a ZG-resolution R and a group homomorphism $f:G\longrightarrow GL_n(Z)$ to the gro HomToGModule (R, A) Inputs a ZG-resolution R and an abelian G-outer group G. It returns the G-cocomplex obtain LowerCentralSeriesLieAlgebra (G) LowerCentralSeriesLieAlgebra (f) Inputs a pcp group G. If each TensorWithIntegers (X) Inputs either a ZG-resolution X=R, or an equivariant chain map $X=(F:R\longrightarrow S)$. It TensorWithIntegersModP (X, p) Inputs either a ZG-resolution X=R, or an equivariant chain map $X=(F:R\longrightarrow S)$. It TensorWithRationals (R) Inputs a ZG-resolution X=R and returns the chain complex obtained by tensoring with the

Chain complexes

ChevalleyEilenbergComplex(X,n) Inputs either a Lie algebra X = A (over the ring of integers Z or over a field LeibnizComplex(X,n) Inputs either a Lie or Leibniz algebra X = A (over the ring of integers Z or over a field X)

Homology and cohomology groups

Cohomology (X, n) Inputs either a cochain complex X = C (or G-cocomplex C) or a cochain map $X = (C \longrightarrow D)$ of CohomologyModule (C, n) Inputs a G-cocomplex C together with a non-negative integer n. It returns the cohomologyCohomologyPrimePart (C, n, p) Inputs a cochain complex C in characteristic 0, a positive integer n, and a prime p. GroupCohomology (X, n) GroupCohomology (X, n, p) Inputs a positive integer n and either a finite group X = G of GroupHomology (X, n)

GroupHomology (X, n, p) Inputs a positive integer n and either a finite group X = G or a Coxeter diagram X = D rep Homology (X, n) Inputs either a chain complex X = C or a chain map $X = (C \longrightarrow D)$. If X = C then the torsion coeff HomologyPb (C, n) This is a back-up function which might work in some instances where Homology(C,n) fails. It is HomologyPrimePart (C, n, p) Inputs a chain complex C in characteristic 0, a positive integer n, and a prime n. It returns a LeibnizAlgebraHomology (A, n) Inputs a Lie or Leibniz algebra n (over the ring of integers n over a field n LieAlgebraHomology (A, n) Inputs a Lie algebra n (over the integers or a field) and a positive integer n. It returns the PrimePartDerivedFunctor (G, R, F, n) Inputs a finite group n0, a positive integer n1, at least n1 terms of a n2 RankHomologyPGroup (G, n) RankHomologyPGroup (G, n) RankHomologyPGroup (G, n) Inputs a (smallish) n3-group n4 together with a positive integer n5. It returns a function n4 RankPrimeHomology (G, n) Inputs a (smallish) n4-group n5 together with a positive integer n5. It returns a function n5 together with a positive integer n6. It returns a function n6 together with a positive integer n6.

Poincare series

EfficientNormalSubgroups(G)

EfficientNormalSubgroups (G, k) Inputs a prime-power group G and, optionally, a positive integer k. The default ExpansionOfRationalFunction (f, n) Inputs a positive integer n and a rational function f(x) = p(x)/q(x) where

PoincareSeries(G,n) PoincareSeries(R,n)

PoincareSeries(L,n)

PoincareSeries (G) Inputs a finite p-group G and a positive integer n. It returns a quotient of polynomials f(x): PoincareSeriesPrimePart (G, p, n) Inputs a finite group G, a prime p, and a positive integer n. It returns a quotient G, and G in G in

Cohomology ring structure

IntegralCupProduct(R,u,v,p,q)

IntegralCupProduct (R, u, v, p, q, P, Q, N) (Various functions used to construct the cup product are also available IntegralRingGenerators (R, n) Inputs at least n+1 terms of a ZG-resolution and integer n>0. It returns a min ModPCohomologyGenerators (G, n)

ModPCohomologyGenerators (R) Inputs either a p-group G and positive integer n, or else n terms of a minimal Z ModPCohomologyRing (G, n)

ModPCohomologyRing(G,n,level)

ModPCohomologyRing(R)

ModPCohomologyRing (R, level) Inputs either a p-group G and positive integer n, or else n terms of a minimal Z ModPRingGenerators (A) Inputs a mod p cohomology ring A (created using the preceding function). It returns a

Commutator and nonabelian tensor computations

BaerInvariant (G, c) Inputs a nilpotent group G and integer c>0. It returns the Baer invariant $M^(c)(G)$ defined a Coclass (G) Inputs a group G of prime-power order p^n and nilpotency class c say. It returns the integer r=n-c EpiCentre (G, N)

EpiCentre (G) Inputs a finite group G and normal subgroup N and returns a subgroup $Z^*(G,N)$ of the centre of N. NonabelianExteriorProduct (G, N) Inputs a finite group G and normal subgroup N. It returns a record E with the NonabelianSymmetricKernel (G)

NonabelianSymmetricKernel (G, m) Inputs a finite or nilpotent infinite group G and returns the abelian invariant NonabelianSymmetricSquare (G)

NonabelianSymmetricSquare (G, m) Inputs a finite or nilpotent infinite group G and returns a record T with the NonabelianTensorProduct (G, N) Inputs a finite group G and normal subgroup N. It returns a record E with the NonabelianTensorSquare (G)

NonabelianTensorSquare (G, m) Inputs a finite or nilpotent infinite group G and returns a record T with the foldom RelativeSchurMultiplier (G, N) Inputs a finite group G and normal subgroup N. It returns the homology group TensorCentre (G) Inputs a group G and returns the largest central subgroup N such that the induced homomorph ThirdHomotopyGroupOfSuspensionB (G)

ThirdHomotopyGroupOfSuspensionB(G,m) Inputs a finite or nilpotent infinite group G and returns the abelian i UpperEpicentralSeries(G,c) Inputs a nilpotent group G and an integer c. It returns the c-th term of the upper

Lie commutators and nonabelian Lie tensors

Functions on this page are joint work with Hamid Mohammadzadeh, and implemented by him.

LieCoveringHomomorphism (L) Inputs a finite dimensional Lie algebra L over a field, and returns a surjective Lie LeibnizQuasiCoveringHomomorphism (L) Inputs a finite dimensional Lie algebra L over a field, and returns a sur LieEpiCentre (L) Inputs a finite dimensional Lie algebra L over a field, and returns an ideal $Z^*(L)$ of the centre of LieExteriorSquare (L) Inputs a finite dimensional Lie algebra L over a field. It returns a record E with the follow LieTensorSquare (L) Inputs a finite dimensional Lie algebra E over a field and returns a record E with the follow LieTensorCentre (L) Inputs a finite dimensional Lie algebra E over a field and returns the largest ideal E such that

Generators and relators of groups

CayleyGraphDisplay(G, X)
CayleyGraphDisplay(G, X, "mozilla") Inputs a finite group G together with a subset X of G. It displays the condentityAmongRelatorsDisplay(R, n) IdentityAmongRelatorsDisplay(R, n, "mozilla") Inputs a free IsAspherical(F,R) Inputs a free group F and a set R of words in F. It performs a test on the 2-dimensional CW PresentationOfResolution(R) Inputs at least two terms of a reduced ZG-resolution R and returns a record P we TorsionGeneratorsAbelianGroup(G) Inputs an abelian group G and returns a generating set $[x_1, \ldots, x_n]$ where

Orbit polytopes and fundamental domains

FundamentalDomainAffineCrystGroupOnRight (v, G) Inputs a crystallographic group G (represented using AffineOrbitPolytope (G, v, L) Inputs a permutation group or matrix group G of degree n and a rational vector v of length PolytopalComplex (G, v)

PolytopalComplex (G, v, n) Inputs a permutation group or matrix group G of degree n and a rational vector v of PolytopalGenerators (G, v) Inputs a permutation group or matrix group G of degree n and a rational vector v of VectorStabilizer (G, v) Inputs a permutation group or matrix group G of degree n and a rational vector v of vectorStabilizer (G, v) Inputs a permutation group or matrix group G of degree n and a rational vector v of vectorStabilizer (G, v) Inputs a permutation group or matrix group G of degree n and n are vector v of vectorStabilizer (G, v) Inputs a permutation group or matrix group G of degree n and n are vector v of vectorStabilizer (G, v) Inputs a permutation group or matrix group G of degree n and n are vector v of vectorStabilizer (G, v) Inputs a permutation group or matrix group G of degree n and n are vector v of v of v of v of v of v of v or v of v of v or v

Cocycles

CcGroup (A, f) Inputs a G-module A (i.e. an abelian G-outer group) and a standard 2-cocycle f GxG - --> A. It CocycleCondition (R, n) Inputs a resolution R and an integer n>0. It returns an integer matrix M with the follow StandardCocycle (R, f, n)

StandardCocycle (R, f, n, q) Inputs a ZG-resolution R (with contracting homotopy), a positive integer n and an in Syzygy (R, g) Inputs a ZG-resolution R (with contracting homotopy) and a list g = [g[1], ..., g[n]] of elements in G

Words in free ZG-modules

AddFreeWords (v, w) Inputs two words v, w in a free ZG-module and returns their sum v + w. If the characteristic AddFreeWordsModP (v, w, p) Inputs two words v, w in a free ZG-module and the characteristic p of Z. It returns the AlgebraicReduction (w)

AlgebraicReduction (w,p) Inputs a word w in a free ZG-module and returns a reduced version of the word in w Multiply Word (n,w) Inputs a word w and integer n. It returns the scalar multiple $n \cdot w$.

Negate ([i,j]) Inputs a pair [i,j] of integers and returns [-i,j].

NegateWord (w) Inputs a word w in a free ZG-module and returns the negated word -w.

PrintZGword (w, elts) Inputs a word w in a free ZG-module and a (possibly partial but sufficient) listing elts of a TietzeReduction (S, w) Inputs a set S of words in a free ZG-module, and a word w in the module. The function

FpG-modules

DirectSumOfFpGModules(M,N)

DirectSumOfFpGModules([M[1], M[2], ..., M[k]])) Inputs two FpG-modules M and N with common \mathfrak{g} FpGModule(A,P)

FpGModule (A, G, p) Inputs a p-group P and a matrix A whose rows have length a multiple of the order of G. It ret FpGModuleDualBasis (M) Inputs an FpG-module M. It returns a record R with two components: R. f reeM odule i FpGModuleHomomorphism (M, N, A)

FpGModuleHomomorphismNC (M, N, A) Inputs FpG-modules M and N over a common p-group G. Also inputs a list DesuspensionFpGModule (M, N)

DesuspensionFpGModule (R, n) Inputs a positive integer n and and FpG-module M. It returns an FpG-module D RadicalOfFpGModule (M) Inputs an FpG-module M with G a p-group, and returns the Radical of M as an FpG-module M and returns a matrix whose rows correspond to a minimal ImageOfFpGModule (M) Inputs an FpG-module homomorphism $f:M\longrightarrow N$ and returns its image IntersectionOfFpGModules (M, N) Inputs two FpG-modules M, M arising as submodules in a common free module ImageOfFpGModule (M, N) Inputs two M and M over a common M-group M also input MultipleOfFpGModule (M, N) Inputs an M and a list M is M and M over a common M-group M and M-group M-module (M, N) Inputs an M-module M-modules M

Meataxe modules

DesuspensionMtxModule (M) Inputs a meataxe module M over the field of p elements and returns an FpG-module IFpG_to_MtxModule (M) Inputs an FpG-module M and returns an isomorphic meataxe module.

 ${\tt GeneratorsOfMtxModule\,(M)}\ \ \textbf{Inputs a meataxe module}\ \textit{M}\ \ \textbf{acting on, say, the vector space}\ \textit{V}.\ \ \textbf{The function returns}$

G-Outer Groups

GOuterGroup (E, N)

GOuterGroup() Inputs a group E and normal subgroup N. It returns N as a G-outer group where G = E/N. The fur GOuterGroupHomomorphismNC(A,B,phi)

GOuterGroupHomomorphismNC() Inputs G-outer groups A and B with common acting group, and a group homomorphismTester (A, B, phi) Inputs G-outer groups A and B with common acting group, and a group homomorphismGouter group A and returns the group theoretic centre of ActedGroup(A) as a G-outer group.

DirectProductGog(A,B)

 ${\tt DirectProductGog\,(Lst)}\ \ \textbf{Inputs}\ \ \textbf{G-outer}\ \ \textbf{groups}\ A\ \ \textbf{and}\ B\ \ \textbf{with}\ \ \textbf{common}\ \ \textbf{acting}\ \ \textbf{group,}\ \ \textbf{and}\ \ \textbf{returns}\ \ \textbf{their}\ \ \textbf{group-theore}$

Cat-1-groups

AutomorphismGroupAsCatOneGroup (G) Inputs a group G and returns the Cat-1-group C corresponding th the cro HomotopyGroup (C, n) Inputs a cat-1-group C and an integer n. It returns the nth homotopy group of C. HomotopyModule (C, 2) Inputs a cat-1-group C and an integer n=2. It returns the second homotopy group of C as a ModuleAsCatOneGroup (G, alpha, M) Inputs a group G, an abelian group G and a homomorphism G: $G \to Aut(M)$ MooreComplex (C) Inputs a cat-1-group G and returns its Moore complex G as a list whose single entry is

Normal Subgroup As Cat One Group (G, N) Inputs a group G with normal subgroup N. It returns the Cat-1-group C co

Coxeter diagrams and graphs of groups

CoxeterDiagramComponents (D) Inputs a Coxeter diagram D and returns a list $[D_1,...,D_d]$ of the maximal connective CoxeterDiagramDegree (D, v) Inputs a Coxeter diagram D and vertex v. It returns the degree of v (i.e. the number CoxeterDiagramDisplay (D)

CoxeterDiagramFpArtinGroup (D) Inputs a Coxeter diagram D and returns the corresponding finitely presented CoxeterDiagramFpCoxeterGroup (D) Inputs a Coxeter diagram D and returns the corresponding finitely presented CoxeterDiagramIsSpherical (D) Inputs a Coxeter diagram D and returns "true" if the associated Coxeter group CoxeterDiagramMatrix (D) Inputs a Coxeter diagram D and returns a matrix representation of it. The matrix is a CoxeterSubDiagram (D, V) Inputs a Coxeter diagram D and a subset V of its vertices. It returns the full sub-diagram CoxeterDiagramVertices (D) Inputs a Coxeter diagram D and returns its set of vertices.

EvenSubgroup (G) Inputs a group G and returns a subgroup G^+ . The subgroup is that generated by all products X GraphOfGroupsDisplay (D)

GraphOfGroupsDisplay (D, "web browser") Inputs a graph of groups D and displays it as a .gif file. It uses the GraphOfGroupsTest (D) Inputs an object D and itries to test whether it is a Graph of Groups. However, it DOES

Some functions for accessing basic data

BoundaryMap(C) Inputs a resolution, chain complex or cochain complex C and returns the function C!. BoundaryMatrix(C,n) Inputs a chain or cochain complex C and integer n>0. It returns the n-th boundary map or Dimension(C)

Dimension (M) Inputs a resolution, chain complex or cochain complex C and returns the function C!. dimension . EvaluateProperty (X, "name") Inputs a component object X (such as a ZG-resolution or chain map) and a string GroupOfResolution (R) Inputs a ZG-resolution R and returns the group G.

Length (R) Inputs a resolution R and returns its length (i.e. the number of terms of R that HAP has computed).

Map (f) Inputs a chain map, or cochain map or equivariant chain map f and returns the mapping function (as oppositive (f) Inputs a chain map, or cochain map, or equivariant chain map, or FpG-module homomorphism f and

Target (f) Inputs a chain map, or cochain map, or equivariant chain map, or FpG-module homomorphism f and

Parallel Computation - Core Functions

ChildProcess()
ChildProcess("computer.ac.wales") This starts a GAP session as a child process and returns a stream to the ch
- open a shell on thishost
- cd.ssh
- ls
-> if id_dsa, id_rsa etc exists, skip the next two steps!

- ssh-keygen -t rsa
- ssh-keygen -t dsa
- scp *.pub user@remotehost:~/
- ssh remotehost -l user
- cat id_rsa.pub >> .ssh/authorized_keys
- cat id_dsa.pub >> .ssh/authorized_keys
- rm id_rsa.pub id_dsa.pub
- exit

You should now be able to connect from "thishost" to "remotehost" without a password prompt.)

ChildClose(s) This closes the stream s to a child GAP process.

Parallel Computation - Extra Functions

ChildFunction ("function (arg);", s) This runs the GAP function "function(arg);" on a child process accessed to ChildRead(s) This returns, as a string, the output of the last application of ChildFunction("function(arg);",s). ChildReadEval(s) This returns, as an evaluated string, the output of the last application of ChildFunction("function("function")]. ParallelList (I, fn, L) Inputs a list I, a function fn such that fn(x) is defined for all x in I, and a list of children I.

Topological Data Analysis

MatrixToTopologicalSpace (A, n) Inputs an integer matrix A and an integer n. It returns a 2-dimensional topologicalSpace("file.png", n) ReadImageAsTopologicalSpace("file.png", [m, n]) Re ReadImageAsMatrix("file.png") Reads an image file ("file.png", "file.eps", "file.bmp" etc) and returns an integer WriteTopologicalSpaceAsImage(T, "filename", "ext") Inputs a 2-dimensional topological space T, and a file ViewTopologicalSpace(T) ViewTopologicalSpace(T, "mozilla") Inputs a topological space T, and optional Bettinumbers(T, n) Bettinumbers(T) Inputs a topological space T and a non-negative integer n. It returns the PathComponent(T, n) Inputs a topological space T and an integer n in the rane 0, ..., Bettinumbers(T,0). It returns SingularChainComplex(A) Inputs a topological space T and returns a (usually very large) integral chain complex ContractTopologicalSpace(T) Inputs a topological space T and returns its boundars as a topological space. BoundarySingularities(T) Inputs a topological space T and returns the subspace of points in the boundary when ThickenedTopologicalSpace(T) Inputs a topological space T and returns a topological space T and returns ComplementTopologicalSpace(T) Inputs a topological space T and returns a topological space T and returns ComplementTopologicalSpace(T) Inputs a list T of topological spaces whose underlying arrays of numbers all ConcatenatedTopologicalSpace(L) Inputs a list T of topological spaces whose underlying arrays of numbers and T are the concatenatedTopologicalSpace(L) Inputs a list T of topological spaces whose underlying arrays of numbers and T and T and T and T are the concatenatedTopologicalSpace(L) Inputs a list T of topological spaces whose underlying arrays of numbers and T and T and T and T and T are the concatenatedTopologicalSpace(L) Inputs a list T and T and T are the concatenatedTopologicalSpace(L) Inputs a list T and T and T are the concatenatedT

Pseudo lists

Add (L, x) Let L be a pseudo list of length n, and x an object compatible with the entries in L. If x is not in L then the Append (L, K) Let L be a pseudo list and K a list whose objects are compatible with those in L. This operation application of ListToPseudoList (L) Inputs a list L and returns the pseudo list representation of L.

Miscellaneous

BigStepLCS (G, n) Inputs a group G and a positive integer n. It returns a subseries $G = L_1 > L_2 > \dots L_k = 1$ of the l Compose (f, g) Inputs two FpG-module homomorphisms $f: M \longrightarrow N$ and $g: L \longrightarrow M$ with Source(f) = Target(f) HAPcopyright () This function provides details of HAP'S GNU public copyright licence.

IsLieAlgebraHomomorphism (f) Inputs an object f and returns true if f is a homomorphism $f:A\longrightarrow B$ of Lie a IsSuperperfect (G) Inputs a group G and returns "true" if both the first and second integral homology of G is tributed by MakeHAPManual () This function creates the manual for HAP from an XML file.

PermToMatrixGroup (G, n) Inputs a permutation group G and its degree n. Returns a bijective homomorphism f SolutionsMatDestructive (M, B) Inputs an $m\tilde{A}n$ matrix M and a $k\tilde{A}n$ matrix B over a field. It returns a $k \times m$ matrix M and the correction of the correctio

Index

Add, 26	CoxeterDiagramFpArtinGroup, 21
AddFreeWords, 16	CoxeterDiagramFpCoxeterGroup, 21
AddFreeWordsModP, 16	CoxeterDiagramIsSpherical, 21
AlgebraicReduction, 16	CoxeterDiagramMatrix, 21
Append, 26	CoxeterDiagramVertices, 21
AutomorphismGroupAsCatOneGroup, 20	CoxeterSubDiagram, 21
Tawamarphamaraup. Isaurana araup, 20	conclusion ingrain, 21
BaerInvariant, 11	DesuspensionFpGModule, 17
Bettinumbers, 25	DesuspensionMtxModule, 18
BigStepLCS, 27	Dimension, 22
BoundaryMap, 22	DirectProductGog, 19
BoundaryMatrix, 22	DirectSumOfFpGModules, 17
BoundarySingularities, 25	7.10
BoundaryTopologicalSpace, 25	EpiCentre, 11
	EquivariantChainMap, 5
CayleyGraphDisplay, 13	EvaluateProperty, 22
CcGroup (HAPcocyclic), 15	EvenSubgroup, 21
Centre, 19	ExpansionOfRationalFunction, 9
ChevalleyEilenbergComplex, 7	EnCModulo 17
ChildClose, 23	FpGModule, 17
ChildCommand, 23	FpGModuleDualBasis, 17
ChildFunction, 24	FpGModuleHomomorphism, 17
ChildGet, 23	FpG_to_MtxModule, 18
ChildProcess, 23	Fundamental domains (HAPcryst), 14
ChildPut, 23	GeneratorsOfFpGModule, 17
ChildRead, 24	GeneratorsOfMtxModule, 18
ChildReadEval, 24	GOuterGroup, 19
Coclass, 11	GOuterGroupHomomorphismNC, 19
CocycleCondition, 15	GOuterHomomorphismTester, 19
Cohomology, 8	GraphOfGroupsDisplay, 21
CohomologyModule, 8	GraphOfGroupsTest, 21
CohomologyPrimePart, 8	GroupCohomology, 8
ComplementTopologicalSpace, 25	
Compose(f,g), 27	GroupOfPoselution 22
ConcatenatedTopologicalSpace, 25	GroupOfResolution, 22
ContractTopologicalSpace, 25	HAPcopyright, 27
CoxeterDiagramComponents, 21	HAPPrintTo, 23
CoxeterDiagramDegree, 21	HAPRead, 23
CoxeterDiagramDisplay, 21	Homology, 8
	1101110108/

HomologyPb, 8	NonabelianSymmetricKernel, 11
HomologyPrimePart, 8	NonabelianSymmetricSquare, 11
HomotopyGroup, 20	NonabelianTensorProduct, 11
HomotopyModule, 20	NonabelianTensorSquare, 11
HomToGModule, 6	NormalSubgroupAsCatOneGroup, 20
HomToIntegers, 6	
HomToIntegersModP, 6	OrbitPolytope, 14
HomToIntegralModule, 6	ParallelList, 24
	PathComponent, 25
IdentityAmongRelatorsDisplay, 13	PermToMatrixGroup, 27
ImageOfFpGModuleHomomorphism, 17	PoincareSeries, 9
IntegralCupProduct, 10	PoincareSeriesPrimePart, 9
IntegralRingGenerators, 10	PolytopalComplex, 14
IntersectionOfFpGModules, 17	• •
IsAspherical, 13	PolytopalGenerators, 14 Prank, 9
IsAvailableChild, 23	
IsFpGModuleHomomorphismData, 17	PresentationOfResolution, 13
IsLieAlgebraHomomorphism, 27	PrimePartDerivedFunctor, 8
IsSuperperfect, 27	PrintZGword, 16
	ProjectedFpGModule, 17
LeibnizAlgebraHomology, 8	RadicalOfFpGModule, 17
LeibnizComplex, 7	RandomHomomorphismOfFpGModules, 17
LeibnizQuasiCoveringHomomorphism, 12	Rank, 17
Length, 22	RankHomologyPGroup, 8
LieAlgebraHomology, 8	RankPrimeHomology, 8
LieCoveringHomomorphism, 12	ReadImageAsMatrix, 25
LieEpiCentre, 12	ReadImageAsTopologicalSpace, 25
LieExteriorSquare, 12	RelativeSchurMultiplier, 11
LieTensorCentre, 12	ResolutionAbelianGroup, 3
LieTensorSquare, 12	ResolutionAlmostCrystalGroup, 3
ListToPseudoList, 26	ResolutionAlmostCrystalQuotient, 3
LowerCentralSeriesLieAlgebra, 6	ResolutionArtinGroup, 3
MakeHAPManual, 27	ResolutionAsphericalPresentation, 3
	ResolutionBieberbachGroup (HAPcryst), 3
Map, 22 MatrixToTopologicalSpace, 25	ResolutionDirectProduct, 3
ModPCohomologyGenerators, 10	ResolutionExtension, 3
ModPCohomologyRing, 10	ResolutionFiniteDirectProduct, 3
	ResolutionFiniteExtension, 3
ModPRingGenerators, 10 ModuleAsCatOneGroup, 20	ResolutionFiniteGroup, 3
*	ResolutionFiniteSubgroup, 3
MooreComplex, 20	ResolutionFpGModule, 4
MultipleOfFpGModule, 17 MultiplyWord, 16	ResolutionGraphOfGroups, 3
Multiply Word, 10	ResolutionNilpotentGroup, 3
Negate, 16	ResolutionNormalSeries, 3
NegateWord, 16	ResolutionPrimePowerGroup, 3
NextAvailableChild, 23	ResolutionSmallFpGroup, 3
NonabelianExteriorProduct, 11	ResolutionSubgroup, 3
,	· · · · · · · · · · · · · · · · · · ·

ResolutionSubnormalSeries, 3		
SingularChainComplex, 25		
SolutionsMatDestructive, 27		
Source, 22		
StandardCocycle, 15		
SumOfFpGModules, 17		
SumOp, 17		
Syzygy, 15		
Target, 22		
TensorCentre, 11		
TensorWithIntegers, 6		
TensorWithIntegersModP, 6		
TensorWithRationals, 6		
TestHap, 27		
ThickenedTopologicalSpace, 25		
ThirdHomotopyGroupOfSuspensionB, 11		
TietzeReduction, 16		
TorsionGeneratorsAbelianGroup, 13		
TwistedTensorProduct, 3		
UpperEpicentralSeries, 11		
VectorStabilizer, 14		
VectorsToFpGModuleWords, 17		
ViewTopologicalSpace, 25		

WriteTopologicalSpaceAsImage, 25