COMP/EECE 7/8745 Machine Learning

Topics:

Supervised learning

- Support Vector Machine (SVM)
- Kernelization approaches
- Applications of SVM

Md Zahangir Alom Department of Computer Science University of Memphis, TN

History of SVM (Support Vector Machines)

- SVM is related to statistical learning theory [3]
- SVM was first introduced in 1992 [1]
- SVM becomes popular because of its success in handwritten digit recognition
 - 1.1% test error rate for SVM. This is the same as the error rates of a carefully constructed neural network, LeNet 4.
 - See Section 5.11 in [2] or the discussion in [3] for details
- SVM is now regarded as an important example of "kernel methods", one of the key area in machine learning
 - Note: the meaning of "kernel" is different from the "kernel" function for Parzen windows

^[2] L. Bottou et al. Comparison of classifier methods: a case study in handwritten digit recognition. Proceedings of the 12th IAPR International Conference on Pattern Recognition, vol. 2, pp. 77-82.

What is a good Decision Boundary?

- Consider a two-class, linearly separable classification problem
- Many decision boundaries!
 - The Perceptron algorithm can be used to find such a boundary
 - Different algorithms have been proposed (DHS ch. 5)
- Are all decision boundaries equally good?

Examples of Bad Decision Boundaries

Large-margin Decision Boundary

- The decision boundary should be as far away from the data of both classes as possible
 - We should maximize the margin, m
 - Distance between the origin and the line w^Tx=k is k/||w||

Finding the Decision Boundary

- Let $\{x_1, ..., x_n\}$ be our data set and let $y_i \in \{1,-1\}$ be the class label of x_i
- The decision boundary should classify all points correctly $\Rightarrow y_i(\mathbf{w}^T\mathbf{x}_i + b) \geq 1, \forall i$
- The decision boundary can be found by solving the following constrained optimization problem

Minimize
$$\frac{1}{2}||\mathbf{w}||^2$$
 subject to $y_i(\mathbf{w}^T\mathbf{x}_i+b)\geq 1$ $\forall i$

- This is a constrained optimization problem. Solving it requires some new tools
 - Feel free to ignore the following several slides; what is important is the constrained optimization problem above

Recap of Constrained Optimization

- The case for inequality constraint $g_i(\mathbf{x}) \le 0$ is similar, except that the **Lagrange multiplier** α_i should be positive
- If x₀ is a solution to the constrained optimization problem

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 subject to $g_i(\mathbf{x}) \leq 0$ for $i = 1, \dots, m$

• There must exist $\alpha_i \ge 0$ for i=1, ..., m such that \mathbf{x}_0 satisfy

$$\begin{cases} \frac{\partial}{\partial \mathbf{x}} \left(f(\mathbf{x}) + \sum_{i} \alpha_{i} g_{i}(\mathbf{x}) \right) \Big|_{\mathbf{x} = jx_{0}} = \mathbf{0} \\ g_{i}(\mathbf{x}) \leq \mathbf{0} \quad \text{for } i = 1, \dots, m \end{cases}$$

• The function $f(\mathbf{x}) + \sum_{i} \alpha_{i} g_{i}(\mathbf{x})$ is also known as the Lagrangrian; we want to **set its gradient to 0**

Back to the Original Problem

Minimize
$$\frac{1}{2}||\mathbf{w}||^2$$
 subject to $1-y_i(\mathbf{w}^T\mathbf{x}_i+b)\leq 0$ for $i=1,\ldots,n$

The Lagrangian is

$$\mathcal{L} = \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{i=1}^n \alpha_i \left(1 - y_i (\mathbf{w}^T \mathbf{x}_i + b) \right)$$

- Note that $||\mathbf{w}||^2 = \mathbf{w}^\mathsf{T}\mathbf{w}$
- Setting the gradient of \mathcal{L} w.r.t. **w** and b to zero, we have n

$$\mathbf{w} + \sum_{i=1}^{n} \alpha_i (-y_i) \mathbf{x}_i = \mathbf{0} \quad \Rightarrow \quad \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$
$$\sum_{i=1}^{n} \alpha_i y_i = \mathbf{0}$$

The Dual Problem

max.
$$W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 subject to $\alpha_i \geq 0, \sum_{i=1}^{n} \alpha_i y_i = 0$

- This is a quadratic programming (QP) problem
 - A global maximum of α_i can always be found
- w can be recovered by

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

The Quadratic Programming Problem

- Many approaches have been proposed
 - Loqo, cplex, etc. (see http://www.numerical.rl.ac.uk/qp/qp.html)
- Most are "interior-point" methods
 - Start with an initial solution that can violate the constraints
 - Improve this solution by optimizing the objective function and/or reducing the amount of constraint violation
- For SVM, sequential minimal optimization (SMO) seems to be the most popular
 - A QP with two variables is trivial to solve
 - Each iteration of SMO picks a pair of (α_i, α_j) and solve the QP with these two variables; repeat until convergence
- In practice, we can just regard the QP solver as a "black-box" without bothering how it works

A Geometrical Interpretation

Non-linearly Separable Problems

- We allow "error" ξ_i in classification; it is based on the output of the discriminant function $\mathbf{w}^T\mathbf{x}$ +b
- ξ_i approximates the number of misclassified samples

Soft Margin Hyperplane

• If we minimize $\sum_{i} \xi_{i}$, ξ_{i} can be computed by

$$\begin{cases} \mathbf{w}^T \mathbf{x}_i + b \ge 1 - \xi_i & y_i = 1 \\ \mathbf{w}^T \mathbf{x}_i + b \le -1 + \xi_i & y_i = -1 \\ \xi_i \ge 0 & \forall i \end{cases}$$

- $-\xi_i$ are "slack variables" in optimization
- Note that ξ_i =0 if there is no error for \mathbf{x}_i
- $-\xi_i$ is an upper bound of the number of errors
- We want to minimize $\frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^n \xi_i$
 - C: tradeoff parameter between error and margin
- The optimization problem becomes

Minimize
$$\frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^n \xi_i$$

subject to $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i, \quad \xi_i \ge 0$

Feature Mapping and Kernel Trick

- Non-linear separable problem can be mapped to linearly mapped high-dimension space
- Feature mapping can be done implicitly by Kernel Trick

Extension to Non-linear Decision Boundary

- So far, we have only considered large-margin classifier with a linear decision boundary
- How to generalize it to become nonlinear?
 - Key idea: transform x_i to a higher dimensional space to "make life easier"
 - Input space: the space the point **x**_i are located
 - Feature space: the space of φ(x_i) after transformation
- Why transform?
 - Linear operation in the feature space is equivalent to nonlinear operation in input space
 - Classification can become easier with a proper transformation.
 In the XOR problem, for example, adding a new feature of x₁x₂ make the problem linearly separable

Suppose we're in 1-dimension

What would SVMs do with this data?

Suppose we're in 1-dimension

Not a big surprise

Harder 1-dimensional dataset

That's wiped the smirk off SVM's face.

What can be done about this?

Harder 1-dimensional dataset

Remember how permitting non-linear basis functions made linear regression so much nicer?

Let's permit them here too

$$\mathbf{z}_k = (x_k, x_k^2)$$

Harder 1-dimensional dataset

Remember how permitting non-linear basis functions made linear regression so much nicer?

Let's permit them here too

$$\mathbf{z}_k = (x_k, x_k^2)$$

Transforming the Data (c.f. DHS Ch. 5)

Note: feature space is of higher dimension than the input space in practice

- Computation in the feature space can be costly because it is high dimensional
 - The feature space is typically infinite-dimensional!
- The kernel trick comes to rescue

Non-linear SVMs: Feature spaces

 General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

What Functions are Kernels?

- For some functions $K(\mathbf{x}_i, \mathbf{x}_i)$ checking that $K(\mathbf{x}_i, \mathbf{x}_i)$ = $\varphi(\mathbf{x}_i)^{\mathsf{T}}\varphi(\mathbf{x}_i)$ can be cumbersome.
- Mercer's theorem:

Every semi-positive definite symmetric function is a kernel

 Semi-positive definite symmetric functions correspond to a semi-positive definite symmetric Gram matrix:

> $K(\mathbf{x}_1,\mathbf{x}_1)$ $K(\mathbf{x}_1,\mathbf{x}_n)$ $K(\mathbf{x}_1,\mathbf{x}_2)$ $K(\mathbf{x}_1,\mathbf{x}_3)$ $K(\mathbf{x}_2,\mathbf{x}_1)$ $K(\mathbf{x}_2,\mathbf{x}_2)$ $K(\mathbf{x}_2,\mathbf{x}_3)$ $K(\mathbf{x}_2,\mathbf{x}_n)$ $K(\mathbf{x}_n,\mathbf{x}_1)$ $K(\mathbf{x}_n,\mathbf{x}_2)$ $K(\mathbf{x}_n,\mathbf{x}_3)$ $K(\mathbf{x}_n,\mathbf{x}_n)$

K=

The Kernel Trick

Recall the SVM optimization problem

max.
$$W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 subject to $C \ge \alpha_i \ge 0$, $\sum_{i=1}^{n} \alpha_i y_i = 0$

- The data points only appear as inner product
- As long as we can calculate the inner product in the feature space, we do not need the mapping explicitly
- Many common geometric operations (angles, distances) can be expressed by inner products
- Define the kernel function K by

$$K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

Examples of Kernel Functions

Polynomial kernel with degree d

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y} + 1)^d$$

Radial basis function kernel with width σ

$$K(\mathbf{x}, \mathbf{y}) = \exp(-||\mathbf{x} - \mathbf{y}||^2/(2\sigma^2))$$

- Closely related to radial basis function neural networks
- The feature space is infinite-dimensional
- Sigmoid or Tanh with parameter κ and θ

$$K(\mathbf{x}, \mathbf{y}) = \tanh(\kappa \mathbf{x}^T \mathbf{y} + \theta)$$

• It does not satisfy the Mercer condition on all κ and θ

An Example for $\phi(.)$ and K(.,.)

Suppose φ(.) is given as follows

$$\phi(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

An inner product in the feature space is

$$\langle \phi(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}), \phi(\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}) \rangle = (1 + x_1y_1 + x_2y_2)^2$$

 So, if we define the kernel function as follows, there is no need to carry out φ(.) explicitly

$$K(\mathbf{x}, \mathbf{y}) = (1 + x_1y_1 + x_2y_2)^2$$

• This use of kernel function to avoid carrying out $\phi(.)$ explicitly is known as the kernel trick

The "Kernel Trick" examples

- The linear classifier relies on inner product between vectors $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^\mathsf{T} \mathbf{x}_j$
- If every datapoint is mapped into high-dimensional space via some transformation Φ : $\mathbf{x} \to \phi(\mathbf{x})$, the inner product becomes:

$$K(\mathbf{x}_i,\mathbf{x}_j) = \mathbf{\varphi}(\mathbf{x}_i)^{\mathsf{T}}\mathbf{\varphi}(\mathbf{x}_j)$$

- A kernel function is a function that is equivalent to an inner product in some feature space.
- Example:

2-dimensional vectors $\mathbf{x} = [x_1 \ x_2]$; let $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$,

Need to show that $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{\phi}(\mathbf{x}_i)^T \mathbf{\phi}(\mathbf{x}_j)$:

$$K(\mathbf{x}_{i},\mathbf{x}_{j}) = (1 + \mathbf{x}_{i}^{\mathsf{T}}\mathbf{x}_{j})^{2}, = 1 + x_{i1}^{2}x_{j1}^{2} + 2 x_{i1}x_{j1} x_{i2}x_{j2} + x_{i2}^{2}x_{j2}^{2} + 2x_{i1}x_{j1} + 2x_{i2}x_{j2} = 1 + x_{i1}^{2}x_{j1}^{2} + 2x_{i1}^{2}x_{j2}^{2} + 2x_{i1}^{2}x_{j2}^{2} + 2x_{i1}^{2}x_{j2}^{2} + 2x_{i1}^{2}x_{j2}^{2} = 1 + x_{i1}^{2}x_{i2}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{i2}^{2} = 1 + x_{i1}^{2}x_{i2}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{i2}^{2} = 1 + x_{i1}^{2}x_{i2}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{i2}^{2} = 1 + x_{i1}^{2}x_{i2}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{i2}^{2} = 1 + x_{i1}^{2}x_{i2}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{i2}^{2} = 1 + x_{i1}^{2}x_{i2}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{i2}^{2} = 1 + x_{i1}^{2}x_{i2}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{i2}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{i2}^{2} = 1 + x_{i1}^{2}x_{i2}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{i2}^{2} = 1 + x_{i1}^{2}x_{i2}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{i2}^{2} = 1 + x_{i1}^{2}x_{i2}^{2}$$

• Thus, a kernel function *implicitly* maps data to a high-dimensional space (without the need to compute each $\phi(x)$ explicitly).

Examples of Kernel Functions

- Linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^\mathsf{T} \mathbf{x}_j$
 - Mapping Φ : $\mathbf{x} \to \mathbf{\phi}(\mathbf{x})$, where $\mathbf{\phi}(\mathbf{x})$ is \mathbf{x} itself
- Polynomial of power p: $K(\mathbf{x}_i, \mathbf{x}_i) = (1 + \mathbf{x}_i^\mathsf{T} \mathbf{x}_i)^p$
 - Mapping Φ : $\mathbf{x} \to \mathbf{\phi}(\mathbf{x})$, where $\mathbf{\phi}(\mathbf{x})$ has dimensions

$$\begin{pmatrix} d+p \\ p \end{pmatrix} \qquad -\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}$$

- Gaussian (radial-basis function): $K(\mathbf{x}_i, \mathbf{x}_i) = \mathcal{C}$
 - Mapping Φ : $\mathbf{x} \to \mathbf{\phi}(\mathbf{x})$, where $\mathbf{\phi}(\mathbf{x})$ is *infinite-dimensional*: every point is mapped to *a function* (a Gaussian); combination of functions for support vectors is the separator.
- Higher-dimensional space still has intrinsic dimensionality d (the mapping is not onto), but linear separators in it correspond to non-linear separators in original space.

Modification Due to Kernel Function

- Change all inner products to kernel functions
- For training,

Original max.
$$W(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 subject to $C \geq \alpha_i \geq 0, \sum_{i=1}^n \alpha_i y_i = 0$

With kernel function
$$\max_{i=1}^n W(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^n \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$
 subject to $C \geq \alpha_i \geq 0, \sum_{i=1}^n \alpha_i y_i = 0$

subject to
$$C \ge \alpha_i \ge 0, \sum_{i=1}^{\infty} \alpha_i y_i = 0$$

Modification Due to Kernel Function

For testing, the new data **z** is classified as class 1 if *f* ≥0, and as class 2 if *f* <0

Original
$$\mathbf{w} = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j}$$
$$f = \mathbf{w}^T \mathbf{z} + b = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j}^T \mathbf{z} + b$$

With kernel
$$\mathbf{w} = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \phi(\mathbf{x}_{t_j})$$
 function
$$f = \langle \mathbf{w}, \phi(\mathbf{z}) \rangle + b = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} K(\mathbf{x}_{t_j}, \mathbf{z}) + b$$

Examples

Example 23.3: Let us continue with the example dataset shown in Figure 23.2. The dataset has 14 points as shown in Table 23.1.

Solving the L_{dual} quadratic program yields the following values for the Lagrangian multipliers for the support vectors

\mathbf{x}_i	$ x_{i1} $	x_{i2}	$\mid y_i \mid$	$lpha_i$
\mathbf{x}_1	3.5	4.25	+1	0.0437
$ \mathbf{x}_2 $	4	3	+1	0.2162
$ \mathbf{x}_4 $	4.5	1.75	+1	0.1427
\mathbf{x}_{13}	2	2	-1	0.3589
\mathbf{x}_{14}	2.5	0.75	-1	0.0437

Figure 23.2: Margin of a Separating Hyperplane: $\frac{1}{\|\mathbf{w}\|}$ is the margin, and the shaded points are the support vectors.

Examples

\mathbf{x}_i	x_{i1}	x_{i2}	y_i
\mathbf{x}_1	3.5	4.25	+1
\mathbf{x}_2	4	3	+1
\mathbf{x}_3	4	4	+1
\mathbf{x}_4	4.5	1.75	+1
\mathbf{x}_5	4.9	4.5	+1
\mathbf{x}_6	5	4	+1
\mathbf{x}_7	5.5	2.5	+1
\mathbf{x}_8	5.5	3.5	+1
\mathbf{x}_9	0.5	1.5	-1
\mathbf{x}_{10}	1	2.5	-1
\mathbf{x}_{11}	1.25	0.5	-1
\mathbf{x}_{12}	1.5	1.5	-1
\mathbf{x}_{13}	2	2	-1
\mathbf{x}_{14}	2.5	0.75	-1

Table 23.1: Dataset corresponding to Figure 23.2

All other points are not support vectors, so they have $\alpha_i = 0$. Using (23.27) we can compute the weight vector for the hyperplane

$$\mathbf{w} = \sum_{i,\alpha_i > 0} \alpha_i y_i \mathbf{x}_i$$

$$= 0.0437 \begin{pmatrix} 3.5 \\ 4.25 \end{pmatrix} + 0.2162 \begin{pmatrix} 4 \\ 3 \end{pmatrix} + 0.1427 \begin{pmatrix} 4.5 \\ 1.75 \end{pmatrix} - 0.3589 \begin{pmatrix} 2 \\ 2 \end{pmatrix} - 0.0437 \begin{pmatrix} 2.5 \\ 0.75 \end{pmatrix}$$

$$= \begin{pmatrix} 0.833 \\ 0.334 \end{pmatrix}$$

We can compute the final bias as the average of the bias obtained from each support vector using (23.28)

\mathbf{x}_i	$\mathbf{w}^T\mathbf{x}_i$	$b_i = y_i - \mathbf{w}^T \mathbf{x}_i$
\mathbf{x}_1	4.332	-3.332
\mathbf{x}_2	4.331	-3.331
\mathbf{x}_4	4.331	-3.331
\mathbf{x}_{13}	2.333	-3.333
\mathbf{x}_{14}	2.332	-3.332
$b = avg\{b_i\}$		-3.332

Thus the optimal hyperplane is given as follows

$$h(\mathbf{x}) = \begin{pmatrix} 0.833 \\ 0.334 \end{pmatrix}^T \mathbf{x} - 3.332 = 0$$
 (23.31)

Choosing the Kernel Function

- Probably the most tricky part of using SVM.
- The kernel function is important because it creates
 the kernel matrix, which summarizes all the data
- Many principles have been proposed (diffusion kernel, Fisher kernel, string kernel, ...)
- There is even research to estimate the kernel matrix from available information
- In practice, a low degree polynomial kernel or RBF kernel with a reasonable width is a good initial try
- Note that SVM with RBF kernel is closely related to RBF neural networks, with the centers of the radial basis functions automatically chosen for SVM

Algorithm 23.1: Dual SVM Algorithm: Stochastic Gradient Ascent SVM-DUAL $(\mathbf{D}, K, C, \epsilon)$: $\mathbf{_{1}} \ \mathbf{foreach} \ \mathbf{x}_{i} \in \mathbf{D} \ \mathbf{do} \ \ \mathbf{x}_{i} \leftarrow \begin{pmatrix} \mathbf{x}_{i} \\ 1 \end{pmatrix} \ / / \ \mathtt{map} \ \mathtt{to} \ \mathbb{R}^{d+1}$ 2 if loss = hinge then $\mathbf{3} \mid \mathbf{K} \leftarrow \{K(\mathbf{x}_i, \mathbf{x}_i)\}_{i,i=1,\dots,n}$ // kernel matrix, hinge loss 4 else if loss = quadratic then5 | $\mathbf{K} \leftarrow \{K(\mathbf{x}_i, \mathbf{x}_j) + \frac{1}{2C}\delta_{ij}\}_{i,j=1,...,n}$ // kernel matrix, quadratic loss 6 for $k=1,\cdots,n$ do $\eta_k \leftarrow \frac{1}{K(\mathbf{x}_k,\mathbf{x}_k)}$ // set step size 7 $t \leftarrow 0$ **8** $\alpha_0 \leftarrow (0, \dots, 0)^T$ 9 repeat $\alpha \leftarrow \alpha_t$ 10 for k = 1 to n do 11 // update k-th component of α $\alpha_k \leftarrow \alpha_k + \eta_k \Big(1 - y_k \sum_{i=1}^n \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}_k) \Big)$ if $\alpha_k < 0$ then $\alpha_k \leftarrow 0$ **12 13** if $\alpha_k > C$ then $\alpha_k \leftarrow C$ 14 **15** $\alpha_{t+1} = \alpha$ $t \leftarrow t + 1$ 17 until $\|\boldsymbol{\alpha}_t - \boldsymbol{\alpha}_{t-1}\| < \epsilon$

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

		1	100	A	
	A T	N			
1					
E	r			1	

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

Multiclass SVM loss:

cat

3.2

1.3

2.2

car

5.1

4.9

frog

-1.7

2.0

-3.1

2.5
$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$

$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

delta

Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

score

score for correct class

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

2.2

2.5

cat

car

frog

Losses:

3.2

5.1

-1.7

2.9

1.3

4.9

2.0

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 5.1 - 3.2 + 1)$

 $+\max(0, -1.7 - 3.2 + 1)$

 $= \max(0, 2.9) + \max(0, -3.9)$

= 2.9 + 0

= 2.9

cat **3.2**

car 5.1

frog -1.7

Losses: 2.9

1.3

4.9

2.0

0

2.2

2.5

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

= 0

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 1.3 - 4.9 + 1)$$

$$+ \max(0, 2.0 - 4.9 + 1)$$

$$= \max(0, -2.6) + \max(0, -1.9)$$

$$= 0 + 0$$

2.2

2.5

-3.1

3.2 cat

car

5.1

-1.7 frog

2.9 Losses:

1.3

4.9

2.0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 2.2 - (-3.1) + 1)$ $+\max(0, 2.5 - (-3.1) + 1)$

 $= \max(0, 6.3) + \max(0, 6.6)$

= 6.3 + 6.6

= 12.9

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over full dataset is average:

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

$$L = (2.9 + 0 + 12.9)/3$$

= **5.27**

cat **3.2**

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What happens to loss if car image scores change a bit?

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q2: what is the min/max possible loss?

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q6: What if we used

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

Multiclass SVM Loss

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

```
def L_i_vectorized(x, y, W):
    scores = W.dot(x)
    margins = np.maximum(0, scores - scores[y] + 1)
    margins[y] = 0
    loss_i = np.sum(margins)
    return loss_i
```

$$f(x, W) = Wx$$

$$L = rac{1}{N} \sum_{i=1}^{N} \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

No! 2W is also has L = 0!

2.2

2.5

-3.1

cat	3.2	1.3	
car	5.1	4.9	
frog	-1.7	2.0	
Losses:	2.9	0	

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Before:

$$= \max(0, 1.3 - 4.9 + 1) + \max(0, 2.0 - 4.9 + 1) = \max(0, -2.6) + \max(0, -1.9) = 0 + 0 = 0$$

With W twice as large:

=
$$max(0, 2.6 - 9.8 + 1)$$

+ $max(0, 4.0 - 9.8 + 1)$
= $max(0, -6.2) + max(0, -4.8)$
= $0 + 0$
= 0

Strengths and Weaknesses of SVM

Strengths

- Training is relatively easy
 - No local optimal, unlike in neural networks
- It scales relatively well to high dimensional data
- Tradeoff between classifier complexity and error can be controlled explicitly
- Non-traditional data like strings and trees can be used as input to SVM, instead of feature vectors
- Inherent feature selection capability

Weaknesses

Need to choose a "good" kernel function.

Overtraining/overfitting

- A well-known problem with machine learning methods is overtraining.
- This means that we have learned the training data very well, but we can not classify unseen examples correctly.

An example: A botanist really knowing trees.

Every time he sees a new tree,

he claims it is not a tree.

Overtraining/overfitting 2

- A measure of the risk of overtraining with SVM (there are also other measures).
- It can be shown that: The portion, n, of unseen data that will be miss-classified is bounded by:
 - n ≤ Number of support vectors / number of training examples
- Ockham´s razor principle: Simpler system are better than more complex ones.
 - In SVM case: fewer support vectors mean a simpler representation of the hyperplane.

Example: Understanding a certain cancer if it can be described by one gene is easier than if we have to describe it with 5000.

SVM applications

- SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and gained increasing popularity in late 1990s.
- SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
- SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
- SVM techniques have been extended to a number of tasks such as regression [Vapnik et al. '97], principal component analysis [Schölkopf et al. '99], etc.
- Most popular optimization algorithms for SVMs use *decomposition* to hill-climb over a subset of α_i 's at a time, e.g. SMO [Platt '99] and [Joachims '99]
- Tuning SVMs remains a black art: selecting a specific kernel and parameters is usually done in a try-and-see manner.

A Cautionary Example

Image classification of tanks. Autofire when an enemy tank is spotted.

Input data: Photos of own and enemy tanks.

Worked really good with the training set used.

In reality it failed completely.

Reason: All enemy tank photos taken in the morning. All own tanks in dawn.

The classifier could recognize dusk from dawn!!!!

Summary

- Support Vector Machine (SVM)
- Kernelization methods
- Strength and weakness of SVM
- Applications of SVM
- What's next?
 - Principle Component Analysis (PCA) and it's variants

Resources

- http://www.kernel-machines.org/
- http://www.support-vector.net/
- http://www.support-vector.net/icml-tutorial.pdf
- http://www.kernel-machines.org/papers/tutorialnips.ps.gz
- http://www.clopinet.com/isabelle/Projects/SVM/applist .html