Chiusura di un insieme di attributi

Index

- Utilità della chiusura \$X^+\$
- Come si calcola \$X^+\$
- L'algoritmo è corretto (teorema)
- Proprietà dell'insieme vuoto
- Esercizi

Cosa vogliamo ottenere

Quando si decompone uno schema di relazione R su cui è definito un insieme di dipendenze funzionali F, oltre ad ottenere schemi in 3NF occorre

- 1. preservare le dipendenze
- 2. poter **ricostruire tramite join** tutta e sola l'informazione originaria Le dipendenze funzionali che si vogliono preservare sono tutte quelle che sono soddisfatte da ogni istanza legale di R, cioè le dipendenze funzionali in F^+

Quindi si è interessati a calcolare F^+ e sappiamo farlo, ma calcolare F^+ richiede tempo esponenziale in $\mid R \mid$

(i) Ricordiamo

Se $X \to Y \in F^+$, per le regole della decomposizione e dell'unione, si ha che $X \to Z \in F^+$, per ogni $Z \subseteq Y$; pertanto il calcolo di $\mid F^+ \mid$ è esponenziale in $\mid R \mid$

Fortunatamente per i nostri scopi è sufficiente avere un modo per decidere se una dipendenza funzionale $X \to Y$ appartiene ad F^+ (cioè alla chiusura di un insieme di dipendenze).

Ciò puà essere fatto calcolando X^+ e verificando se $Y\subseteq X^+$. Infatti ricordiamo il lemma: $X\to Y\in F^A$ se e solo se $Y\subseteq X^+$ e il teorema che dimostra che $F^A=F^+$

Utilità della chiusura X^+

Vedremo che il calcolo di X^+ è utile in diversi casi:

- verificare le condizioni perché un insieme di attributi sia chiave di uno schema
- verificare se una decomposizione preserva le dipendenze funzionali dello schema originario
- altro ancora...

Come si calcola X^+

Per il calcolo della chiusura dell'insieme di attributi X, denotata con X^+ , possiamo usare il seguente algoritmo

 $\operatorname{Input} \to \operatorname{uno}$ schema di relazione R, e un insieme F di dipendenze funzionali su R, un sottoinsieme X di R

Output \rightarrow la chiusura di X rispetto ad F (restituita nella variabile \mathbb{Z})

```
\begin{array}{l} \operatorname{begin} \\ Z:=X \\ S:=\{A\mid Y\to V\in F,\ A\in V,\ Y\subseteq Z\} \\ \text{while } S\not\subset Z \\ \text{do} \\ \text{begin} \\ Z:=Z\cup S \\ S:=\{A\mid Y\to V\in F,\ A\in V,\ Y\subseteq Z\} \\ \text{end} \end{array}
```

Si inseriscono in S i singoli attributi che compongono le parti destre di dipendenze in F la cui parte destra è contenuta in Z (in pratica decomponendo le parti destre). All'inizio Z è proprio X, quindi inseriamo gli attributi che sono determinati funzionalmente da X; una volta che questi sono entrati in Z, da questi ne aggiungiamo altri (per transitività). Possiamo "numerare" gli insiemi Z successivi ($Z^{(i)}$ è l'insieme ottenuto dopo la i-esima iterazione del while)

All'iterazione i+1 aggiungiamo in S i songoli attribut che compongono le parti destre di dipendenze in F la cui parte sinistra è contenuta in $Z^{(i)}$ cioè $S:=\{A\mid Y\to V\in F,\ A\in V,\ Y\subseteq Z\}.$ Alla fine di ogni iterazione aggiungiamo qualcosa a Z, ma non eliminiamo mai nessun attributo

L'algoritmo si ferma quando il nuovo insieme S che otteniamo è (già) contenuto nell'insieme Z, cioè quando non possiamo aggiungere nuovi attributi alla chiusura transitiva di X

∃ Example

$$F = \{AB
ightarrow C, B
ightarrow D, AD
ightarrow E, CE
ightarrow H\}$$
 $R = A, B, C, D, E, H, L$

Vogliamo calcolare la chiusura di AB

$$Z = A, B$$

$$S = \{C, D\}$$

inseirco c perché $AB \to C \in F$, per inserire D ho

$$AB o B ext{ (riflessiva)} + B o D (\in F) = AB o D ext{ (transitiva)}$$

S ha qualcosa in più?

$$Z = \{A, B, C, D\}$$

$$S = \{C, D, E\}$$
 per inserire E ho

$$AB \rightarrow B + B \rightarrow D + AB \rightarrow AD + AD \rightarrow E = AB \rightarrow E$$

S ha qualcosa in più?

$$Z = \{A, B, C, D, E\}$$

$$S = \{C, D, E, H\}$$
 per inserire H ho

$$AB
ightarrow C + AB
ightarrow AD + AD
ightarrow E + AB
ightarrow E + AB
ightarrow E + AB
ightarrow E + AB
ightarrow E + CE$$

S ha qualcosa in più?

$$Z = \{A, B, C, D, E, H\}$$

$$S = \{C, D, E, H\}$$

S ha qualcosa in più?

STOP

L'algoritmo è corretto (teorema)

L'algoritmo per il calcolo di X^+ calcola correttamente la chiusura di un insieme di attributi X rispetto ad un insieme F di dipendenze funzionali.

(i) Dimostrazione

Indichiamo con $Z^{(0)}$ il valore iniziale di $Z(Z^{(0)}=X)$ e con $Z^{(i)}$ ed $S^{(i)}$ con $i\geq 1$, i valori di Z ed S dopo l'i-esima esecuzione del corpo del ciclo.

E' facile vedere che $Z^{(i)} \subseteq Z^{(i+1)}$, per ogni i

⊗ Ricordiamo

In $Z^{(i)}$ ci sono attributi aggiunti a Z fino all'i-esmia iterazione.

Alla fine di ogni iterazione aggiungiamo qualcosa a \mathbb{Z} , ma non eliminiamo mai alcun attributo

Sia j tale che $S(j)\subseteq Z(j)$ (cioè Z(j) è il valore di Z quando l'algoritmo termina); proveremo che: $\mathbf{A}\in\mathbf{Z^{(j)}}\Leftrightarrow\mathbf{A}\in\mathbf{X^+}$

$Parte \Rightarrow$

Mostreremo per induzione su i che $Z^{(i)}\subseteq X^+$, per ogni i (e quindi, in particolare $Z^{(j)}\subseteq X^+$)

- Base dell'induzione (i=0): poiché $Z^{(0)}=X$ e $X\subseteq X^+$, si ha $Z^{(0)}\subseteq X^+$
- ullet Ipotesi induttiva (i>0): $Z^{(i-1)}\subseteq X^+\stackrel{\mathrm{Lemma}\; 1}{\Longrightarrow} X o Z^{(i-1)}\in F^A$
- Passo induttivo: $Z^{(i)}$

Sia A un attributo in $Z^{(i)}-Z^{(i-1)}$ allora deve esistere una dipendenza $Y\to V\in F$ tale che $Y\subseteq Z^{(i-1)}$ e $A\in V$.

Poiché $Y\subseteq Z^{(i-1)}$, per l'ipotesi induttiva si ha che $Y\subseteq X^+\Rightarrow X\to Y\in F^A$ $X\to Y\in F^A \stackrel{\mathrm{trans}}{\Longrightarrow} X\to V\in F^A \Longrightarrow A\in X^+$

Parte ←

Devo quindi dimostrare che $A \in X^+ \Rightarrow A \in Z^{(j)}$

Poiché $A\in X^+$, si ha $X\to A\in F^A=F^+$; pertanto $X\to A$ deve essere soddisfatta per ogni istanza legale di R. Si consideri la seguente istanza r di R

							R- Z ^(j)	
r	1	1		1	1	1		1
	1	1		1	0	0		0

Dobbiamo quindi dimostrare che:

1. r è un'istanza legale di R

2.
$$A \in X^+ \Rightarrow A \in Z^{(j)}$$

r è un'istanza legale di ${\cal R}$

Supponiamo per assurdo che la dipendenza $V o W\in F$ non è soddisfatta. Avremmo quindi $t_1[V]=t_2[V]\wedge t_1[W]\neq t_2[W]$; il che vuol dire che $V\subseteq Z^{(j)}$ e $W\cap (R-Z^j)\neq \varnothing$

Ma ciò non è possibile in quanto non sarebbe l'ultima iterazione $(Z^{(j)})$ in quanto manca W che invece ci dovrebbe essere in quanto $V \to W \in F$. Se non li ho ancora aggiunti $Z^{(j)}$ non è la versione finale ma questo è in contraddizione con la nostra costruzione dell'istanza

Quindi $W\subseteq Z^{(j)}\Rightarrow t_1[W]=t_2[W]$ terminando così la dimostrazione che questa istanza è legale

$$A \in X^+ \Rightarrow A \in Z^{(j)}$$

Come detto precedentemente $X \to A \in F^+$ ed essendo questa un'istanza legale di R anche qui deve essere soddisfatta.

Sapendo che $X=Z^{(0)}\subseteq Z^{(j)}$ allora le due tuple devono essere anche uguali su A, quindi $A\in Z^{(j)}$

Proprietà dell'insieme vuoto

Prima di tutto va sottolineato che la notazione $\{\emptyset\}$ indica l'insieme che contiene l'insieme vuoto (insieme di insiemi) e non va pertanto confusa con il semplice insieme vuoto \emptyset

• L'insieme vuoto è un sottoinsieme di ogni insieme A $\forall A: \varnothing \subseteq A$

- L'unione di un qualunque insieme A con l'insieme vuoto è A

$$\forall A:A\cup\varnothing=A$$

- L'intersezione di un qualunque insieme A con l'insieme vuoto è l'insieme vuoto $\forall A:A\cap\varnothing=\varnothing$
- Il $\operatorname{prodotto}$ cartesiano di un qualunque insieme A con l'insieme vuoto è l'insieme vuoto

$$\forall A: A \times \varnothing = \varnothing$$

- L'unico sottoinsieme dell'insieme vuoto è l'insieme vuoto stesso
- Il numero di elementi dell'insieme vuoto (vale a dire la sua cardinalità) è zero; l'insieme vuoto è quindi finito: $|\varnothing|=0$

Esercizi

∃ Esercizio 1

$$R = (A, B, C, D, E, H)$$

$$F = \{AB \rightarrow CD, EH \rightarrow D, D \rightarrow H\}$$

Calcolare le chiusure degli insiemi A, D e AB

$$A^{+} = \{A\}$$

 $D^{+} = \{D, H\}$
 $AB^{+} = \{A, B, C, D, H\}$

≔ Esercizio 2

$$R = (A, B, C, D, E, H, I)$$
 $F = \{A
ightarrow E, AB
ightarrow CD, EH
ightarrow I, D
ightarrow H\}$

Calcolare la chiusura dell'insieme AB

$$AB^{+} = \{A, B, C, D, H, E, I\}$$