Linear Classification Wednesday, Feb 17 y E Re y E & red, blue, grear &

y=mx+c

- X - M X + C

X

A line can be used as a decision

boundary (or adecision rule) (d)

- H. Dy WTX+Wo

ter
$$\beta_1: (x_1, y_1)$$
 $y_1(w^Tx_1+w_0) > 0$

For $\beta_4: (x_1, y_1)$
 $w^Tx_1+w_0 < 0$

But $y_1(w^Tx_1+w_0) > 0$

for $\beta_3: (x_3, y_3)$
 $w^Tx_3+w_0 > 0$

But $y_3(w^Tx_3+w_0) < 0$

We have $y_3(w^Tx_3+w_0) < 0$

Cansider a dataset with anyone example, $y_3(x_1, y_2, y_3)$

Let $y_1=1$
 $y_1(w^Tx_1+w_0) > 0$
 $y_2(w^Tx_2+w_0) < 0$
 $y_3(w^Tx_3+w_0) < 0$

X Final

for some $w: w^{T_{X}} = -8$ For perception: $\frac{1}{2} (w - w^{T_{X}})^{2}$

Fri Feb 19

W= W-V VJW

$$\frac{P(y=+1)}{P(y=-1)} = exp(w^{T}x)$$

$$e^{\omega Tx}$$

 $\frac{p(y=+1)}{1-p(y=+1)} = exp(w^{r}x)$

 $\frac{1}{\sqrt{p(y=\pm t)}} = 1 + \frac{p(y=\pm t)}{\sqrt{p(y=\pm t)}}$

1-p(y=+1) exp $(-w^{2}x)$

$$P(y=+1)$$

$$= 1 + exp(-w^{T}x)$$

$$P(y=+1) = 1$$

$$= 1 + exp(-w^{T}x)$$

$$Sigmoid function$$

$$O(t) = 1 + exp$$

$$= 1 + exp(-w^{T}x)$$

$$Sigmoid function$$

$$= 1 + exp(-w^{T}x)$$

$$= 1 + exp(-w$$

(1+exp(-w'x)) $2 \geq 1 + exp(-w'x)$ $exp(-w'x) \leq 1$ $-w'x \leq 0$ $w'x \geq 0$

Find w such that prob propries Slog pi franti)

franti)

franti

frant I Slog (If exp (y; wix)

1 Slog (If exp (y; wix)

1 Slog (If exp (y; wix)

How to ophimize for W?

Direct Minimization

$$VJ = 0$$
 $VJ = 0$
 $VJ = 0$