Conceptos Básicos sobre Corrosión y Protección Catódica

Conceptos sobre Corrosion Introducción

Resistividad de los Suelos

Resistividad (ohm-cm)	Escala
0 - 2000	Muy Agresivo
2000 - 5000	Agresivo
5000 - 8000	Agresividad moderada
Más de 8000	Agresividad despreciable

Valores Aproximados de Resistividades

Material	Resistividad (ohm-cm)
Aluminio	2,69 x 10 ⁻⁶
Carbón	$3,50 \times 10^{-3}$
Cobre	1,72 x 10 ⁻⁶
Hierro	9,80 x 10 ⁻⁶
Magnesio	4,46 x 10 ⁻⁶
Zinc	5,75 x 10 ⁻⁶
Agua de Mar	3,00 x 10
Agua Potable	$3,00 \times 10^3$
Hielo	$7,20 \times 10^8$
Goma	$2,69 \times 10^{16}$

Pila de Concentración

Tabla de Potenciales de Walter Nernst

METAL	SÍMBOLO	E° (Volts)
Magnesio	Mg/Mg^{++}	-2,4
Aluminio	Al / AL ⁺⁺	-1,7
Zinc	Zn/Zn^{++}	-0,76
Hierro (ferroso)	Fe / Fe +++	-0,44
Níquel	Ni / Ni ⁺⁺	-0,23
Hidrógeno	$H_2/2H^+$	0
Cobre	Cu / Cu ⁺	0,047
Hierro (férrico)	Fe++ / Fe ³⁺	0,77
Plata	Ag/Ag^+	0,8
Oro	Au / Au ⁺	1,68

Cómo se Produce la Corrosión

Un caso en el que se puede apreciar la corrosión galvánica agravada por la desproporción de áreas es el que se trata de un tanque de acero con fondo de acero inoxidable construido según indica la figura

Proceso Electroquímico de Protección

El circuito se establecerá como lo muestra el gráfico siguiente:

Electrodos de referencia utilizados

Nombre	Pot. vs Hidrógeno (mV)
Cobre/sulfato de cobre saturado "Cu-SO ₄ Cu"	+ 316
Plata/cloruro de Plata saturado "Ag-ClAg"	+ 222
Plata/cloruro de Plata (agua de mar)	+ 252 a 256

Las conexiones caño-electrodo instrumento de medición se efectúan así:

Criterios de Protección Usados Actualmente

Metal/Aleación	Pot. vs Cu-SO ₄ Cu (mV)
Hierro y Acero en medio aeróbicos	- 850
Hierro y Acero en medio anaeróbicos	- 950
Cobre	- 500

- - 850 mV ON
- - 850 mV OFF
- Cambio de Polarización

Sistema de Anodos Galvánicos

(Circuito Equivalente)

Resistencia conductor exterior

Ventajas

- No necesita suministro de energía exterior.
- Mínimo costo de mantenimiento.
- •Menor riesgo de interferencia.
- •Mejor distribución de corriente.

Desventajas

- Potencial disponible limitado.
- Corriente de salida pequeña y limitada en tiempo.
- •Limitaciones por resistividad del terreno.
- No aplicable para cañerías de gran diámetro, desnudas o pobremente revestidas.

Instalación de Anodos de Sacrificio

Sistema de Corriente Impresa

(Circuito Equivalente)

Ventajas

- •Tensión de fuente regulable.
- Energía limitada solo por la fuente.
- Gran variedad de ánodos.
- •Posibilidad de monitoreo de niveles de protección.

Desventajas

- •Suministro exterior de energía.
- •Requiere mantenimiento periodico.
- Los conductores anódicos pueden corroerse.
- Pueden producir interferencias eléctricas.

Agradece a ustedes por su asistencia

pcc@pccomahue.com.ar

www. pccomahue.com.ar