Chapitre : Produit scalaire (1)

Dans tout le chapitre, sauf mention contraire, on se placera dans un repère orthonormé $(0, \vec{i}, \vec{j})$

I. Rappels

Soient $\vec{u} \binom{x}{y}$ un vecteur et $A(x_A; y_A)$, $B(x_B; y_B)$ deux points du plan tel que $\vec{u} = \overrightarrow{AB}$.

- \overrightarrow{AB} a pour coordonnées
- On appelle **norme** du vecteur \vec{u} , noté $||\vec{u}||$, la ______du segment [AB]. On a donc $||\vec{u}|| = AB$.
- Dans une base orthonormée on a :

$\ \vec{u}\ = \underline{\hspace{1cm}}$		 	
AB =			

II. Produit scalaire

1) Produit scalaire et angle

Définition 1: Soient \vec{u} et \vec{v} sont deux vecteurs non nuls.

Il existe trois points A, B et C tels que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$.

On appelle ______ de \vec{u} par \vec{v} le nombre réel, noté ______ tel que :

$$\vec{u} \cdot \vec{v} =$$

Autrement dit : $\vec{u} \cdot \vec{v} =$

Remarque 1 : (\vec{u}, \vec{v}) est un angle orienté de vecteurs.

Pour le visualiser, il faut ramener ces vecteurs à la même origine.

Remarque 2 : Cette expression du produit scalaire modélise le travail d'une force en physique.

Application 1:

1. Calculer \overrightarrow{AB} . \overrightarrow{AC} tel que : AB = 3, AC = 9 et $\widehat{BAC} = \frac{\pi}{4}$

2. Calculer AB sachant que: $AB \cdot AC = 40$, $AC = 8$ et $BAC = 60^{\circ}$.		
3. Calculer \widehat{BAC} au degré près sachant que : $AB = 3$, $AC = 7$ et \overrightarrow{AB} . $\overrightarrow{AC} = 6$.		

Exercice 1 : Produit scalaire avec normes et angle

Soit deux vecteurs \vec{u} et \vec{v} . On note θ une mesure en radian de l'angle (\vec{u}, \vec{v}) .

Dans chacun des cas suivants, calculer \vec{u} . \vec{v} :

a.
$$\|\vec{u}\| = 4$$
, $\|\vec{v}\| = 7$ et $\cos(\vec{u}, \vec{v}) = \frac{\sqrt{2}}{2}$

b.
$$\|\vec{u}\| = 8, \|\vec{v}\| = 5 \text{ et } \cos(\vec{u}, \vec{v}) = \frac{\sqrt{3}}{2}$$

c.
$$\|\vec{u}\| = 2$$
, $\|\vec{v}\| = 7$ et $\theta = \frac{\pi}{4}$

d.
$$\|\vec{u}\| = 6$$
, $\|\vec{v}\| = 3$ et $\theta = \frac{\pi}{6}$

e.
$$\|\vec{u}\| = 4$$
, $\|\vec{v}\| = 10$ et $\theta = -\frac{2\pi}{3}$

Exercice 2: Produit scalaire avec normes et angle

On considère un triangle ABC.

Dans chacun des cas suivants, calculer \overrightarrow{AB} . \overrightarrow{AC} .

a.
$$AB = 5$$
, $AC = 7$ et $\widehat{BAC} = 0$.

b.
$$AB = 10, AC = 4 \text{ et } \widehat{BAC} = \frac{\pi}{2}$$

c.
$$AB = 3$$
, $AC = 9$ et $\widehat{BAC} = \frac{\pi}{4}$.

Exercice 3: Produit scalaire avec normes et angle

On considère un triangle ABC.

Calculer AB sachant que :

a.
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 40$$
, $AC = 8$ et $\widehat{BAC} = 60^{\circ}$.

b.
$$\overrightarrow{AB}.\overrightarrow{AC} = -10, AC = 4 \text{ et } \widehat{BAC} = \frac{2\pi}{3}$$

Exercice 4 : Produit scalaire avec normes et angle

On considère un triangle ABC.

Dans chacun des cas suivants, calculer \overline{BAC} au centième de radian près.

a.
$$AB = 3$$
, $AC = 7$ et \overrightarrow{AB} . $\overrightarrow{AC} = 6$.

b.
$$AB = 4 AC = 2 \text{ et } \overrightarrow{AB}.\overrightarrow{AC} = 7.$$

c.
$$AB = 8$$
, $AC = 3$ et \overrightarrow{AB} . $\overrightarrow{AC} = 12$.

Exercice 5: Produit scalaire avec normes et angle

En physique, le travail d'une force \vec{F} lors d'un déplacement \overrightarrow{AB} est le produit scalaire des vecteurs \vec{F} et \overrightarrow{AB} . Sur un téléski, la perche exerce sur un skieur une force constante \vec{F} d'intensité 400N lors d'un déplacement du point A au point B de longueur 100 m.

Une mesure de l'angle $(\vec{F}, \overrightarrow{AB})$ est 30°.

Quel est le travail de la force \vec{F} durant le déplacement \overrightarrow{AB} ?

Propriété 1 :

Si l'un des vecteurs (ou les deux) est le vecteur nul, alors le produit scalaire est _____

Attention! La réciproque n'est pas généralement vraie.

<u>Propriété 2</u>: Soit \vec{u} un vecteur.

On appelle ______ du vecteur \vec{u} le nombre réel :

 $\vec{u}^2 =$

Preuve : $\vec{u}^2 = \vec{u} \cdot \vec{u} = ||\vec{u}|| \times ||\vec{u}|| \times \cos(0) = ||\vec{u}||^2$

Remarque : On a alors $\overrightarrow{AB}^2 = AB^2$

2) Propriétés

<u>Définition 2:</u> Soient $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{CD}$ deux vecteurs non nuls. \vec{u} et \vec{v} sont ______ lorsque les droites (AB) et (CD) sont ______.

Par convention, le vecteur nul est orthogonal à tout vecteur.

Propriété 3 :

Deux vecteurs sont orthogonaux si et seulement si leur produit scalaire est

Preuve : Soit $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{CD}$ deux vecteurs.

- Si $\vec{u} = \vec{0}$ ou $\vec{v} = \vec{0}$ alors $\vec{u} \cdot \vec{v} = 0$ et le vecteur nul est orthogonal à tout vecteur du plan par définition.
- Si $\vec{u} \neq \vec{0}$ et $\vec{v} \neq \vec{0}$ alors AB et AC sont non nuls. $\vec{u} \cdot \vec{v} = 0 \Leftrightarrow AB \times AC \times \cos(\widehat{BAC}) = 0 \Leftrightarrow \cos(\widehat{BAC}) = 0 \Leftrightarrow \widehat{BAC}$ est droit $\Leftrightarrow \vec{u}$ et \vec{v} sont orthogonaux.

Propriétés 4 (symétrie et bilinéarité du produit scalaire) :

Soient \vec{u}, \vec{v} et \vec{w} trois vecteurs et k un réel alors :

- 1. $\vec{u} \cdot \vec{v} =$
- 2. $\vec{u} \cdot (\vec{v} + \vec{w}) =$
- 3. $(\vec{u} + \vec{v}).\vec{w} =$
- 4. $k(\vec{u}.\vec{v}) =$

Application 2:

Sachant que $\overrightarrow{AB}.\overrightarrow{AC}=5$ et $\overrightarrow{AB}.\overrightarrow{CD}=10$, calculer $\overrightarrow{AB}.\overrightarrow{AD},\overrightarrow{BA}.\overrightarrow{DA}$ et $\overrightarrow{BA}.\overrightarrow{AD}$.

Exercice 6 : Propriété du produit scalaire

Soit deux vecteurs \vec{u} et \vec{v} qui vérifient :

 $\|\vec{u}\| = 2$, $\|\vec{v}\| = 3$ et $\vec{u} \cdot \vec{v} = 5$.

Calculer les réels suivants :

a)
$$(\vec{u} + \vec{v}) \cdot \vec{v}$$

b)
$$(\vec{u} + 3\vec{v}).(2\vec{u} + \vec{v})$$

c)
$$(\vec{u} + \vec{v})^2$$

Exercice 7 : Propriété du produit scalaire

Soit *ABC* un triangle, *I* étant le milieu du côté [*BC*].

On suppose que BC = 8 et IA = 5.

Calculer \overrightarrow{AB} . \overrightarrow{AC} .

Exercice 8 : Propriété du produit scalaire

Soit trois points A, B et C.

On suppose que \overrightarrow{AB} . $\overrightarrow{AC} = 5$ et \overrightarrow{AB} . $\overrightarrow{BC} = -4$.

Calculer la longueur du segment [AB].

Exercice 9 : Propriété du produit scalaire

ABCD est un parallélogramme tel que AB = 6, AD = 7 et BD = 10.

- 1. Calculer \overrightarrow{DA} . \overrightarrow{DC} , puis \overrightarrow{DB} . \overrightarrow{DC} .
- 2. En déduire \overrightarrow{AB} . \overrightarrow{AD} .
- 3. Déterminer alors la longueur de la diagonale [AC]

3) Expression analytique

<u>Propriété 5 :</u> Soient $\vec{u} \binom{x}{y}$ et $\vec{v} \binom{x'}{y'}$ deux vecteurs dans une base **orthonormée.**

Le produit scalaire est le nombre réel \vec{u} . $\vec{v} =$ ___

<u>Preuve</u>: Soit une base orthonormée (\vec{i}, \vec{j}) du plan donc $\vec{i}^2 = 1, \vec{j}^2 = 1$ et $\vec{i}. \vec{j} = \vec{j}. \vec{i} = 0$.

Comme $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ alors $\vec{u} = x\vec{i} + y\vec{j}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ alors $\vec{u} = x'\vec{i} + y'\vec{j}$.

Ainsi \vec{u} . $\vec{v} = (x\vec{i} + v\vec{i})(x'\vec{i} + v'\vec{i})$ $= xx'\vec{\imath}^2 + xy'\vec{\imath}.\vec{\jmath} + yx'\vec{\jmath}.\vec{\imath} + yy'\vec{\jmath}^2$ (à l'aide des **propriétés 4**)

Remarque : On retrouve $\vec{u}^2 = \vec{u} \cdot \vec{u} = x^2 + y^2 = ||\vec{u}||^2$.

<u>Propriété 6 :</u> Soient $\vec{u} \binom{x}{y}$ et $\vec{v} \binom{x'}{y'}$ deux vecteurs dans une base orthonormée.

Deux vecteurs sont orthogonaux si et seulement si

Preuve: C'est une conséquence des propriétés 3 et 5.

Application 3 : Démonter que deux vecteurs sont orthogonaux.

On se place dans un repère orthonormé. Soient les points A(-1;-1), B(3;5), C(2;1) et D(-1;3).

Montrer que les droites (AB) et (CD) sont perpendiculaires.

Exercice 10: Expression analytique du produit scalaire

On considère deux vecteurs \vec{u} et \vec{v} , dans chacun des cas :

- 1. Calculer \vec{u} , \vec{v} , \vec{u} , \vec{u} , $(\vec{u} + \vec{v})$, \vec{u} et \vec{v}^2 .

- a. $\vec{u} {5 \choose 6}$ et $\vec{v} {2 \choose 4}$ b. $\vec{u} {-1 \choose 3}$ et $\vec{v} {2 \choose 5}$ c. $\vec{u} {10 \choose 7}$ et $\vec{v} {3 \choose 2}$ 2. Dire si les vecteurs \vec{u} et \vec{v} sont orthogonaux.
- a. $\vec{u} \begin{pmatrix} 5 \\ 3 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 10 \\ 6 \end{pmatrix}$ b. $\vec{u} \begin{pmatrix} 21 \\ -7 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 2 \\ 6 \end{pmatrix}$
- c. $\vec{u} \begin{pmatrix} 8 \\ 1 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 6 \\ 7 \end{pmatrix}$
- 3. Déterminer le réel m de telle sorte que les vecteurs \vec{u} et \vec{v} soient orthogonaux.

- a. $\vec{u} \begin{pmatrix} 4 \\ 6 \end{pmatrix}$ et b. $\vec{u} \begin{pmatrix} 7 \\ -2 \end{pmatrix}$ et c. $\vec{u} \begin{pmatrix} 2 \\ m-3 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} m \\ -5 \end{pmatrix}$ $\vec{v} \begin{pmatrix} 9 \\ m \end{pmatrix}$ $\vec{v} \begin{pmatrix} -1 \\ 2m \end{pmatrix}$

Exercice 11: Expression analytique

Dans chacun des cas suivants, montrer que les droites (AB) et (CD) sont perpendiculaires.

- 1. A(1;1), B(2;3), C(-2;1) et D(2;-1)
- 2. A(-3;2), B(6;-1), C(3;4) et D(1;-2)

Exercice 12: Expression analytique

Dans chacun des cas suivants, déterminer la nature du triangle *EFG*.

- 1. E(8;4), F(4;-2), et G(-2;2)
- 2. E(1;2), F(9;-2), et G(13;6)

Exercice 13: Expression analytique du produit scalaire

Soit les points A(3;5), B(-3;7), C(-1;1) et D(5;-1).

- 1. Calculer \overrightarrow{BD} . \overrightarrow{AC} .
- 2. Montrer que $\overrightarrow{AB} = \overrightarrow{DC}$
- 3. En déduire la nature du quadrilatère ABCD.

Exercice 14: Expression analytique du produit scalaire

Soit les points $A\left(\frac{3}{2};-2\right)$, $B\left(-\frac{3}{2};4\right)$, C(2;2) et D(-2;0).

- 1. Calculer \overrightarrow{AB} , \overrightarrow{CD} .
- 2. En déduire la nature du quadrilatère ACBD.

Exercice 15: Expression analytique du produit scalaire

Soit les points E(2;20), F(10;-5) et G(27;28).

- 1. Montrer que le triangle *FEG* est rectangle en *E*.
- 2. Calculer les coordonnées du point H tel que EFHG est un rectangle.

Exercice 16: Expression analytique du produit scalaire

Soit les points A(5:3) et B(-3:1).

Déterminer les coordonnées du point C de sorte que C appartiennent à l'axe des abscisses et que le triangle ABC soit rectangle en A.

Application 4 : Soient $A(1; 2)$, $B(3; -4)$ et $C(1; -1)$ trois points du plan.
1. Calculer \overrightarrow{AB} . \overrightarrow{AC}
2. Calculer $\cos(\widehat{BAC})$
3. Donner une mesure, en degré, de l'angle \widehat{BAC} .
4. Le triangle ABC est-il rectangle en A ? <u>Justifier.</u>

Exercice 17 : Produit scalaire avec normes et angle Le plan est muni d'un repère orthonormé $(0; \vec{i}, \vec{j})$. On donne les points A, B et C.

Dans chacun des cas suivants, calculer $\overrightarrow{AB}.\overrightarrow{AC}$, puis $\cos(\overrightarrow{AB},\overrightarrow{AC})$ et une mesure de l'angle \overrightarrow{BAC} .

- 1. A(4;1), B(-3;1) et C(1;5).
- 2. A(1;2), B(-1;2) et C(3;2)

Exercice 18: Produit scalaire avec normes et angle

Dans le plan rapporté à un repère orthonormé, on considère les points A(1;3), B(-3;2) et C(-5;-2).

- 1. Calculer \overrightarrow{AB} . \overrightarrow{AC} et \overrightarrow{BC} . \overrightarrow{BA} .
- En déduire une valeur approchée en degré des mesures des angles du triangle ABC.

4) Vecteurs colinéaires

Propriété 7 : Soient A, B, C trois points distincts.

- $\overrightarrow{AB}.\overrightarrow{AC} =$ si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont _____
- \overrightarrow{AB} . \overrightarrow{AC} = si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont

Preuve:

• Si \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires de même sens, alors $\widehat{BAC} = 0$ et $\cos(0) = 1$ ainsi :

$$\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times \cos(0) = AB \times AC$$

• Si \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires de sens contraire, alors $\widehat{BAC} = 180$ et $\cos(180) = -1$ ainsi :

$$\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times \cos(180) = -AB \times AC$$

5) Produit scalaire et projection orthogonale

<u>Propriété 8 :</u> Soient des points A, B, C et D avec A, B distincts. Soit C' et D' les projeté orthogonaux de C et D sur la droite (AB) alors :

$$\overrightarrow{AB}.\overrightarrow{CD} =$$

Preuve:

On a \overrightarrow{AB} . $\overrightarrow{CD} = \overrightarrow{AB}$. $(\overrightarrow{CC'} + \overrightarrow{C'D'} + \overrightarrow{D'D}) = \overrightarrow{AB}$. $\overrightarrow{CC'} + \overrightarrow{AB}$. $\overrightarrow{C'D'} + \overrightarrow{AB}$. $\overrightarrow{D'D} = \overrightarrow{AB}$. $\overrightarrow{C'D'}$ En effet \overrightarrow{AB} . $\overrightarrow{CC'} = \overrightarrow{AB}$. $\overrightarrow{D'D} = \overrightarrow{0}$ car C' et D' sont les projeté orthogonaux de C et D sur la droite (AB).

Illustration:

<u>Propriété 9</u>: Soient A, B, C trois point distincts. Soit H le projeté orthogonal du point C sur la droite (AB).

$$\overrightarrow{AB}$$
, \overrightarrow{AC} =

Preuve : C'est un cas particulier de la propriété précédente où A a pour projeté lui-même.

Conséquence 10:

Soient A, B, C trois point distincts. Soit H le projeté orthogonal du point C sur la droite (AB).

• $\overrightarrow{AB}.\overrightarrow{AC} =$ si les vecteurs \overrightarrow{AB} et \overrightarrow{AH} sont ______.

• \overrightarrow{AB} . $\overrightarrow{AC} =$ si les vecteurs \overrightarrow{AB} et \overrightarrow{AH} sont

Illustation: $\overrightarrow{AB} \cdot \overrightarrow{AC} = -AB \times AH$

Application 5:

ABCD est un rectangle de centre O tel que AB=5 et AD=2. Calculer les produits scalaires :

Exercice 19 : Produit scalaire et projeté orthogonal

ABC est un triangle et H est le pied de la hauteur issue de A.

On suppose que AB = 6, BH = 4 et HC = 5. Calculer:

- a) $\overrightarrow{BA}.\overrightarrow{BC}$
- b) $\overrightarrow{AB}.\overrightarrow{AH}$
- c) $\overrightarrow{AC}.\overrightarrow{AH}$
- d) $\overrightarrow{CA}.\overrightarrow{CB}$

Exercice 20 : Produit scalaire et projeté orthogonal

ABCD est un carré de côté 5. Calculer :

a) $\overrightarrow{AB}.\overrightarrow{AC}$

b) $\overrightarrow{BA}.\overrightarrow{BD}$

c) $\overrightarrow{BC}.\overrightarrow{BD}$

Exercice 21 : Produit scalaire et projeté orthogonal

ABCD est un trapèze rectangle en A et D tel que : AB = AD = 5 et DC = 7. Calculer :

- a) $\overrightarrow{AB}.\overrightarrow{AD}$
- b) $\overrightarrow{CD}.\overrightarrow{AB}$
- c) \overrightarrow{AB} , \overrightarrow{BC}
- d) $\overrightarrow{CA}.\overrightarrow{CD}$

Exercice 22 : Produit scalaire et projeté orthogonal

ABC est un triangle rectangle en B, avec AB=4 et BC=6. Calculer :

a) $\overrightarrow{AB}.\overrightarrow{AC}$

b) $\overrightarrow{AB}.\overrightarrow{BC}$

c) $\overrightarrow{CA}.\overrightarrow{CB}$

Exercice 23 : Produit scalaire et projeté orthogonal

ABC est un triangle équilatéral de côté 5.

Soit les points I,J et K les milieux respectifs des segments [AB],[BC] et [AC]. Calculer :

- a) $\overrightarrow{AB}.\overrightarrow{AC}$
- b) $\overrightarrow{BC}.\overrightarrow{BA}$
- c) $\overrightarrow{AB}.\overrightarrow{BC}$
- d) $\overrightarrow{BA}.\overrightarrow{AC}$
- e) $\overrightarrow{CA}.\overrightarrow{BC}$

Exercice 24 : Produit scalaire et projeté orthogonal

ABCD est un losange tel que AC = 8 et BD = 10.

On note O le centre de ce losange.

- 1. Calculer:
 - a) \overrightarrow{AC} . \overrightarrow{BD}

b) \overrightarrow{BC} , \overrightarrow{BD}

- c) $\overrightarrow{AB}.\overrightarrow{AC}$
- 2. a) Décomposer le vecteur \overrightarrow{AB} en fonction de \overrightarrow{AD} et \overrightarrow{DB} . En déduire \overrightarrow{AB} . \overrightarrow{AD} .
 - b) De la même façon, calculer $\overrightarrow{BA}.\overrightarrow{BC}.$

6) Produit scalaire avec norme	<u>es</u>	
<u>Propriété 11 :</u> Soient \vec{u} et \vec{v} deux	vecteurs.	
Le produit scalaire de \vec{u} par \vec{v} est l	e nombre réel, noté \vec{u} . \vec{v} tel que	e:
	$\vec{u}.\vec{v} =$	
On trouve souvent cette formule of	de cette manière :	
Application 6 : Calculer un produi		7.01.1
ABCD est un parallélogramme tel	· ·	
a) $\overrightarrow{AB}.\overrightarrow{AD}$	b) \overrightarrow{AB} . \overrightarrow{CA}	c) $\overrightarrow{CB}.\overrightarrow{CD}$

Exercice 25: Produit scalaire avec normes

On considère deux vecteurs \vec{u} et \vec{v} .

- 1. Dans chacun des cas suivants, calculer $\vec{u}.\vec{v}$, puis indiquer si les vecteurs \vec{u} et \vec{v} sont orthogonaux.
 - a. $\|\vec{u}\| = 5$, $\|\vec{v}\| = 7$ et $\|\vec{u} + \vec{v}\| = 12$.
 - b. $\|\vec{u}\| = 3$, $\|\vec{v}\| = 4$ et $\|\vec{u} + \vec{v}\| = 5$.
- 2. Dans chacun des cas suivants, calculer $\|\vec{u} + \vec{v}\|$.
 - a. $\|\vec{u}\| = 4$, $\|\vec{v}\| = 2$ et \vec{u} . $\vec{v} = 6$.
 - b. $\|\vec{u}\| = 2$, $\|\vec{v}\| = 8$ et \vec{u} . $\vec{v} = -5$.
- 3. Dans chacun des cas suivants, calculer $\|\vec{u}\|$.
 - a. $\|\vec{u} + \vec{v}\| = 10, \|\vec{v}\| = 2 \text{ et } \vec{u}.\vec{v} = 6.$
 - b. $\|\vec{u} + \vec{v}\| = 8$, $\|\vec{v}\| = 9$ et $\vec{u} \cdot \vec{v} = -11$.

Exercice 26: Produit scalaire avec normes

ABCD est un parallélogramme tel que :

$$AB = 5$$
, $AC = 9$ et $AD = 7$.

1. Calculer:

a) \overrightarrow{AB} , \overrightarrow{BA}

b) $\overrightarrow{AB}.\overrightarrow{CD}$

c) \overrightarrow{CA} , \overrightarrow{AB}

- 2. a. Justifier l'égalité $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$.
 - b. Calculer \overrightarrow{AB} . \overrightarrow{AD} .

Exercice 27: Produit scalaire avec normes

ABC est un triangle tel que :

$$AB = 6$$
, $BC = 3$ et $AC = 4$.

Calculer:

a) $\overrightarrow{BA}.\overrightarrow{AC}$

b) $\overrightarrow{AB}.\overrightarrow{BC}$

c) $\overrightarrow{CA}.\overrightarrow{BC}$

Exercice 28: Produit scalaire avec normes

ABCD est un losange tel que AB = 10 et AC = 16.

- 1. Calculer la longueur de la diagonale [BD]
- 2. Calculer:
 - a) $\overrightarrow{AB}.\overrightarrow{AD}$
- b) $\overrightarrow{BC}.\overrightarrow{BA}$
- c) $\overrightarrow{CD}.\overrightarrow{AD}$
- d) $\overrightarrow{CD}.\overrightarrow{AB}$

e) $\overrightarrow{BC}.\overrightarrow{AD}$

Exercice 29 : Produit scalaire avec normes

ABCD est un carré de côté 4.

- 1. Calculer $\|\overrightarrow{AB}\|$ et $\|\overrightarrow{AC}\|$.
- 2. Calculer:
 - a) $\overrightarrow{AB}.\overrightarrow{AD}$
- b) $\overrightarrow{AB}.\overrightarrow{CD}$
- c) $\overrightarrow{AB}.\overrightarrow{CA}$
- d) $\overrightarrow{AB}.\overrightarrow{BA}$
- e) $\overrightarrow{CB}.\overrightarrow{CD}$

Application 7 : Choisir la forme la plus adapté.	5. $ABCD$ est un losange dans lequel la diagonale $[AC]$ mesure 10 cm.
Calculer dans chacun des cas le produit scalaire \overrightarrow{AB} . \overrightarrow{AC}	
1. ABC est un triangle tel que $AB = 5$, $AC = 6$ et $BC = 10$.	
2. ABC est un triangle tel que $AB = 3$, $AC = 4$ et $\widehat{BAC} = \frac{5\pi}{6}$	6. $ABCD$ est un rectangle dans lequel $AB = 6$.
2. The est an triangle tel que the spirit i et en e	
3. Les trois points A, B et C sont tel que $AB = 6, BC = 3$ et B appartient au segment $[AC]$.	7. ABCDEF est un hexagone régulier de côté 4.
5. Les trois points A, B et C sont terque $AB = 0, BC = S$ et B appartient au segment $[AC]$.	
4. <i>A</i> (2;6), <i>B</i> (-1;7) et <i>C</i> (5;3).	8. ABC est un triangle isocèle en A tel que $AB = 5$ et $\widehat{ABC} = 30^{\circ}$.
11(2)0))2(1)1)000(0)0).	8. Abc est un triangle isocele en A tel que $Ab = 5$ et $Abc = 50$.

III. Théorème d'AL-Kashi

<u>Propriété 12 :</u> Dans un triangle quelconque ABC, notons a = BC, b = AC et c = AB.

Le théorème d'AL-Kashi nous donne :

•
$$a^2 =$$

•
$$b^2 =$$

$$\bullet$$
 $c^2 =$

<u>Remarque</u>: Ce théorème généralise le théorème de Pythagore. Il permet de calculer la longueur d'un côté d'un triangle quelconque en fonction des deux autres et de l'angle opposé au côté.

Preuve:

$$a^2 = BC^2 = \|\overrightarrow{BC}\|^2 = \overrightarrow{BC}.\overrightarrow{BC}$$

D'après la relation de Chasles : $\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}$ Ainsi :

$$a^{2} = (\overrightarrow{BA} + \overrightarrow{AC}) \cdot (\overrightarrow{BA} + \overrightarrow{AC})$$

$$a^{2} = \overrightarrow{BA} \cdot (\overrightarrow{BA} + \overrightarrow{AC}) + \overrightarrow{AC} \cdot (\overrightarrow{BA} + \overrightarrow{AC})$$

$$a^{2} = \overrightarrow{BA}^{2} + \overrightarrow{BA} \cdot \overrightarrow{AC} + \overrightarrow{AC} \cdot \overrightarrow{BA} + \overrightarrow{AC}^{2}$$

$$a^{2} = \overrightarrow{BA}^{2} - \overrightarrow{AB} \cdot \overrightarrow{AC} - \overrightarrow{AC} \cdot \overrightarrow{AB} + \overrightarrow{AC}^{2}$$

$$a^{2} = \overrightarrow{BA}^{2} - 2\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{AC}^{2}$$

$$a^{2} = \overrightarrow{BA}^{2} - 2\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{AC}^{2}$$

$$a^{2} = c^{2} - 2||\overrightarrow{AB}||||\overrightarrow{AC}||\cos(\hat{A}) + b^{2}$$

$$a^{2} = b^{2} + c^{2} - 2bc \times \cos(\hat{A})$$

Application 8 : Calculer une longueur et un angle

Le triangle ABC est tel que AB = 9, AC = 4 et $\hat{A} = 60^{\circ}$.

1. Calculer BC.

2. Calculer \hat{C} , en donner l'arrondi au degré près.

Exercice 30 : Electricité

Il est conseillé d'avoir un bon $\cos \varphi$, sur une installation électrique.

La figure est issue d'une situation rencontrée en électricité.

On donne:

$$\|\overrightarrow{BC}\| = U_1 = 25, \|\overrightarrow{AC}\| = U_2 = 20 \text{ et } (\overrightarrow{CD}, \overrightarrow{CB}) = -72^{\circ}.$$

Dans le triangle ABC, déterminer :

- 1. La valeur approchée arrondie à 10^{-2} de $U = \|\overrightarrow{AB}\|$
- 2. La valeur approchée arrondie à 10^{-2} de la mesure φ en degrés de l'angle orienté $(\overrightarrow{AC},\overrightarrow{AB})$

Exercice 31 : Parcours d'un avion (En mécanique)

Un avion se déplace dans un plan horizontal à partir d'un point O situé à la verticale de sa base.

Il part en suivant une direction de 30° par rapport au nord, cap nord-est, parcourt 200 km et arrive en point M. Là il change de cap, suit la direction est, sur une distance de 100 km jusqu'au point P.

Quelle distance doit-il parcourir pour revenir au-dessus de sa base?

Exercice 32:

On souhaite calcule la somme de deux forces. Soit $\overrightarrow{F_1}$ et $\overrightarrow{F_2}$ deux forces s'exerçant sur un même point O d'intensités respectives $F_1=40N$ et $F_2=30N$ en formant un angle de 50° comme l'illustre le schéma ci-contre.

Ces deux forces s'exerçant simultanément sur O peuvent être résumées par une seule force \vec{F} appelée force résultante et obtenue par la relation :

$$\overrightarrow{F} = \overrightarrow{F_1} + \overrightarrow{F_2}$$

On souhaite déterminer l'intensité et la direction de \vec{F} .

- a) Déterminer la mesure de l'angle \widehat{OAS} .
- b) En déduire la valeur approchée à 0,01 près de la distance OS.
- c) Calculer enfin l'angle \widehat{AOS} à 0,1° près .
- d) Conclure par rapport au problème posé.