Demographic Forecasting

Lecture 3: parametric approaches

Ugofilippo Basellini

basellini@demogr.mpg.de

Max Planck Institute for Demographic Research

May 6, 2025

Course overview

- Lecture 1: direct extrapolation by (generalized) linear models
- Lecture 2: direct extrapolation by time-series methods
- Lecture 3: parametric approaches
- Lecture 4: Lee-Carter method

Parametric methods

Some advantages (see, e.g., Congdon 1993):

- Smoothness
- Parsimony
- Interpolation
- Comparison
- Trends and forecasting

Parametric methods

- Objective: obtain best fit with the smallest number of parameters
- Trade-off:
 - more parameters, better fit
 - more parameters, less statistical stability (overparameterization)

Fertility parametric methods

- Hadwiger (1940): $f_x=rac{ab}{c}\left(rac{c}{x}
 ight)^{3/2}e^{-b^2\left(rac{c}{x}+rac{x}{c}-2
 ight)}$
- Chandola et al. (1999):

$$egin{align} f_x = & lpha m rac{b_1}{c_1} \Big(rac{c_1}{x}\Big)^{3/2} e^{-b_1^2 \left(rac{c_1}{x} + rac{x}{c_1} - 2
ight)} \ &+ (1-m) rac{b_2}{c_2} \Big(rac{c_2}{x}\Big)^{3/2} e^{-b_2^2 \left(rac{c_2}{x} + rac{x}{c_2} - 2
ight)} \end{aligned}$$

Peristera and Kostaki (2007):

$$f_x = c_1 e^{-\left(rac{x-\mu}{\sigma_x}
ight)^2}$$

with $\sigma_x = \sigma_{1x}$ for $x \leq \mu$ and $\sigma_x = \sigma_{2x}$ for $x > \mu$

Mortality parametric methods

- Adult mortality (typically $x \geq 30$):
 - lacksquare Gompertz (1825): $m_x=e^{a+bx}$
 - Makeham (1860): $m_x = c + e^{a+bx}$
 - lacksquare Perks (1932): $m_x = c + rac{e^{a+bx}}{1+e^{lpha+bx}}$
- Overall mortality:
 - $lacksquare Thiele (1871): \ m_x = a_1 e^{-b_1 x} + a_2 e^{-rac{1}{2} b_2^2 (x-c)^2} + a_3 e^{b_3 x}$
 - Siler (1979): $m_x=a_1e^{-b_1x}+a_2+a_3e^{b_3x}$ (for animals, but used in demography see, e.g., Canudas-Romo and Schoen (2005))
 - lacksquare Heligman and Pollard (1980): $rac{q_x}{1-q_x} = A^{(x+B)^C} + De^{-E(\ln(x)-\ln(F))^2} + GH^x$

A simple parametric model for fertility

A simple parametric model for fertility

It looks like a simple log-quadratic model could fit the agepattern of fertility rather well:

$$\ln(f_{x,t}) = eta_{0,t} + eta_{1,t} x + eta_{2,t} x^2$$

i.e. we could fit a separate model for all years t and derive time-series for the model's parameters.

Exercise

Exercise

Open your R session. Load the FertSWE.Rdata dataset, and consider only data from 1950 onward. Further, focus on the year 2000, and fit a generalized linear model for births with exposures as an offset using age and age-squared as covariates. Plot the fitted values against the observed log rates.

Exercise

Exercise

Repeat this for all years the dataset (1950-2022), and plot the three time series of the estimated parameters over time.

Exercise

Exercise

Now forecast the three time-series using the most appropriate ARIMA(p,d,q) model, and derive the forecast age-pattern of fertility in 2050.

Observed + Forecast

Uncertainty

 We can use the ARIMA simulations for future paths of the coefficients to derive prediction intervals for the age-pattern of fertility as well as for summary measures

TFR simulations

TFR 80% CI

PIs with parametric approach

- uncertainty appears to escalate quickly with forecasting horizon
- Why is that?

Simulated parameters

Pls with parametric approach

- large uncertainty in the forecast parameters
- where does this stem from?

Parameters' correlation

Parameters' correlation

- The time-series of the three estimated parameters are highly correlated between each other
- Yet, we are treating them independently by fitting univariate time-series models
- It would be better to use multivariate time-series methods, or a methodology that is based on a single time-series, like the Lee-Carter method (see tomorrow)

Towards Lee-Carter I

• We could generalize the simple parametric model for fertility to allow for a linear time trend:

$$\ln(f_{x,t}) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 t$$

 Extrapolating the linear time trend can provide us with fertility forecasts

Exercise

Exercise

Fit a single GLM model to the same data, which includes a quadratic shape for age and a linear trend for time. Extrapolate the linear time index to compute fertility forecasts up to 2050.

Time pattern: observed and forecast

Towards Lee-Carter II

Alternatively, we could relax the linear time trend assumption and estimate one parameter for each year:

$$egin{align} \ln(f_{x,t}) &= eta_0 + eta_1 x + eta_2 x^2 + \sum_{t=2}^n \gamma_t \ &= eta_0 + eta_1 x + eta_2 x^2 + \kappa_t \end{aligned}$$

• Extrapolating the non-linear time trend (e.g. using an ARIMA model) can provide us with fertility forecasts

Time pattern: observed and forecast

Day 3 assignment

Assignment

- 6. Load the mortality data MORTSWE.Rdata, and focus on male mortality from 1950 onwards for ages $30 \le x \le 100$. Fit and forecast adult mortality up to 2050 using the parametric Gompertz model, fitting a model for each year independently [hint: this is a generalized linear model with deaths as response variable, exposures as an offset, and an intercept and age as covariates]. To forecast, fit the most appropriate ARIMA(p,d,q) models to the time-series of the two estimated parameters. Compute the 95% prediction intervals for life expectancy using simulations from the two ARIMA models.
- 7. Load the mortality data MORTSWE.Rdata, and focus on male mortality from 1950 onwards for ages $30 \le x \le 100$. Fit and forecast adult mortality up to 2050 using two different approaches:
- ullet a Gompertz model with log-linear time trend, i.e. $\ln(m_{x,t})=eta_0+eta_1x+eta_2t$
- ullet a Gompertz model with flexible time index, i.e. $\ln(m_{x,t})=eta_0+eta_1x+\kappa_t$

Plot the life expectancy forecasts of the two models (no need to derive PIs).

Hints: you can use the functions inside the LifetableMX.R code for constructing life tables and deriving estimates of life expectancy

