Enseignantes	:	Mme. M. Fourati & Mme. E. Menif	Nom	:
Niveau	:	2 ^{ème} année ingénieur génie informatique	Prénom	:
Documents et calculatrices	:	Non autorisées	Groupe	:

Les réponses données au crayon ne seront pas considérées

Exercice 1 : Questions de cours (3,5 points : 0,5 pour une bonne réponse, -0,25 pour une mauvaise réponse et 0 si pas de réponse)

- 1. L'analyseur lexical reconnait les expressions mal parenthésées
- 2. Le module Assembleur est-il indispensable
- 3. Un lexème est un motif.
- 4. Les expressions régulières $(y^* + z^*)$ et $(y + z)^*$ sont équivalentes
- 5. Les expressions régulières $(p+q+\varepsilon)^*$ et $(p+q)^*$ sont équivalentes
- 6. L'expression ba^* dénote le langage $L((a+b)a^*) \cap L(a^*baa^*)$
- 7. Un interpréteur traduit le code source en un pseudo-code

Vrai	Faux
	X
X	X
	X
	X
X	
	X
	X

Exercice 2: (7 points)

Soit l'automate A de la figure 1.

Figure 1 : Automate A

Partie I:

1. Donner la représentation tabulaire de l'automate A (0,5 point)

	a	b
→1	2	3
2	3	5
3	4	3
4	3	5
*5	2	5

2. L'automate A est-il déterministe? Justifier

L'automate est déterministe puisqu'il est complet et non ambigu

3. L'automate A n'est pas minimal, donner la représentation graphique de l'automate minimal A_{Min} qui lui correspond.(1 point minimisation + 0,5 représentation graphique)

2

3

Partie II:

1

Soit l'automate B dont la représentation tabulaire est donnée dans le tableau 1

4

	a	b
→*A	В	A
*B	A	С
С	В	С

Tableau 1 : Automate B

4. Tracer la représentation graphique de l'automate B (0,5 point)

5. Tracer la représentation graphique de l'automate $(L(B))^*$

6. Donner l'expression E_B dénotant le langage L(B) (1 point)

$$L_{A} = aL_{B} + bL_{A} + \varepsilon = a(b^{+}a)^{*}aL_{A} + a(b^{+}a)^{*} + bL_{A} + \varepsilon = [a(b^{+}a)^{*}a + b]L_{A} + a(b^{+}a)^{*} + \varepsilon$$

$$= [a(b^{+}a)^{*}a + b]^{*}(a(b^{+}a)^{*} + \varepsilon)$$

$$L_{B} = aL_{A} + bL_{C} + \varepsilon = aL_{A} + b^{+}aL_{B} + \varepsilon = (b^{+}a)^{*}(aL_{A} + \varepsilon) = (b^{+}a)^{*}aL_{A} + (b^{+}a$$

$$L_C = aL_B + BL_C = b^*aL_B$$

7. Montrer que $L(A_{Min}) = L(\bar{B})$ (1 point)

En construisant l'automate reconnaissant \bar{B} , nous remarquons qu'il a le même nombre d'états ainsi que les même transitions entre les états, de plus A_{Min} est un automate minimal. Nous déduisons que les deux langages sont équivalents.

8. Tracer le plus petit automate qui reconnaisse
$$L(A_{Min}) \cup L(B)$$
 (1 point)

$$L(A_{Min}) = L(\overline{B})$$
 d'où $L(A_{Min}) \cup L(B) = L(\overline{B}) \cup L(B) = \Sigma^*$

Exercice 2: (4,5 points)

Soit l'automate C de la figure 2 et D dont la représentation tabulaire est donnée dans le tableau 2.

Figure 2 : Automate C

	a	b
\rightarrow S ₀	S_1	-
S_1	S_2	S_3
S_2	S_2	-
S_3	S_1	-

a,b

Tableau 2 : Automate D

1. L'automate C est-il déterministe? Justifier. S'il ne l'est pas, donner la représentation graphique de l'automate déterministe qui lui correspond (0,5+1+0,5)

L'automate n'est pas déterministe, il est ambigu au niveau de l'état 3 et incomplet au niveau de tous les états

	a	b
→* {1}	{2}	Ø
{2}	Ø	{3}
Ø	Ø	Ø
{3}	{1,4,5}	Ø
*{1,4,5}	{1,2,5}	Ø
*{1,2,5}	{1,2}	{3}
*{1,2}	{2}	{3}

2. Donner le langage L(C) (0,5 point) $L(C) = (\{aba\} \cup \{abaaa\} \cup \{abaaa\})^* = (\{ab\}(\{a\} \cup \{aaa\}))^*$

3. Tracer l'automate reconnaissant L(C).L(D)(1 point)

L'automate D n'a aucun état final d'où $L(D) = \emptyset$

$$L(C).\emptyset = \emptyset$$

4. Tracer l'automate reconnaissant $L(C) \cap L(D)$ (1 point)

$$L(D) = \emptyset$$
 alors $L(C) \cap \emptyset = \emptyset$

Exercice 3: (5 points)

Soit un langage spécial L comportant les éléments suivants :

- Un **id** est un identificateur qui commence par une lettre majuscule suivie par une ou plusieurs lettres où et chaque lettre a minuscule doit être suivie par la lettre b.
- Un nombre est représenté sous une forme binaire (suite de 0 et 1) qui <u>contient la séquence 010</u> et qui contient <u>au moins 3 symboles</u>.
- Il existe des opérateurs suivants :
 - ∀ est un opérateur universel
 - ∃ est un opérateur existentiel
 - o := est un opérateur d'affection
 - o :> est un opérateur de comparaison (>)
 - o :< est un opérateur de comparaison (<)
 - o :== est un opérateur de comparaison (==)
 - Opérateur d'incrémentation : c'est une suite de + chacun permet d'incrémenter de 1 un nombre (+,++,++++, etc.)
- Deux mots clés **Debut** et **Fin**.
- | est un séparateur
- : est un séparateur

Voici un exemple de programme avec le langage L.

```
Debut Mabu := 001 \forall Ac | Ac :>Mabu : Ac+++ Fin
```

- 1. Identifier les lexèmes des deux premières lignes (0,5 point) Debut, Mabu, := , 001
- 2. Tracer un analyseur lexical reconnaissant L, sachant qu'il est glouton et que la reconnaissance des mots clés est prioritaire

DS TLA & Compilation Page 5/6

Exercice bonus (1 point)

Donner un automate E qui reconnait le langage sur l'alphabet $\{0,1,2\}$ dont les mots ne contiennent pas deux symboles consécutifs identiques (pas de 00, pas de 11 et pas de 22 dans une séquence).

