2018春高数下期中试题1(回忆版)

1. Determine whether the following statements are true or false? No justification is necessary.

(a) If both $f_x(x,y)$ and $f_y(x,y)$ exist at (x_0,y_0) , then f(x,y) is continuous at (x_0,y_0) .

(b) Let $f(x,y) = \begin{cases} \frac{xy}{x^2+y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$

(c) For the f(x,y) as in (1), both $f_{x}(0,0)$ and $f_{y}(0,0)$ exist.

(d) Nonzero vectors u and v are parallel if and only if uxv=0.

(e) The surface y²-x²=z is a hyperbolic paraboloid.

- (f) If f(x,y) and its partial derivatives f_x , f_y , f_{xy} , and f_{yx} are defined throughout an open region containing a point (a,b), then $f_{xy}(a,b) = f_{yx}(a,b)$.
- 2. Suppose that the function f(x,y) is differentiable, and f(0,0)=1, $f_x(0,0)=2$, $f_y(0,0)=3$. Then $f(x,y) \approx$ ____ when both x and y are small (using the standard linear approximation at (0,0).

3. Find the distance from the point (1,1,5) to the line

L: x = 1 + t, y = 3 - t, z = 2t.

4. Find the length of the curve $r(t) = (\sqrt{2}t)i + (\sqrt{2}t)j + (1-t^2)k$

from (0,0,1) to $(\sqrt{2},\sqrt{2},0)$.

5. Find the normal vector and the curvature for the helix.

 $r(t) = (a cost) it (a sint) j + (bt)k, a,b > 0, a^2+b^2 + 0.$

6. Find (x, y)=(0,0) x++y2, if it exists; otherwise give the reason why the limit does not exist.

7. Find $\frac{\partial w}{\partial v}$ when u=-1, v=2, if $w=xy+\ln z$, x=x, y=u+v, $z=\cos u$.

8. Find the critial points of the function $f(x,y) = x^4 + y^4 + 4xy$, and use the second derivative test to classify each point as one where a saddle, local maximum or local minimum occurs.

9. Find the point on the surface & z² = xy +4 closest to the origin.

10. Use Taylor's formula for f(x,y) = xey at the origin to find quadratic and cubic approximations of f near the origin.