МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и кибербезопасности Высшая школа технологий искусственного интеллекта Направление 02.03.01 Математика и Компьютерные науки

КУРСОВАЯ РАБОТА

по дисциплине «Параллельное программирование на суперкомпьютерных системах»

Параллельное программирование на СК: обращение матриц

Студент:	 Жилкина Лада Михайловна		
Преподаватель:	 Лукашин Алексей Андреевич		
	// N 20 F		

Содержание

1	. Алгоритмы решения задачи и подходы к распараллеливанию к		3
	1.1	Определение обратной матрицы	
	1.2	Способы нахождения обратных матриц	3

1 Алгоритмы решения задачи и подходы к распараллеливанию кода

1.1 Определение обратной матрицы

Обратная матрица - такая матрица A^{-1} , при умножении которой на исходную матрицу A получается единичная матрица I:

$$AA^{-1} = A^{-1}A = I$$

Матрица обратима тогда и только тогда, когда она невырождена, то есть её определитель не равен нулю. Для неквадратных матриц и вырожденных матриц обратных матриц не существует.

1.2 Способы нахождения обратных матриц

Метод Жордана—**Гаусса.** Строится расширенная матрица [A|I], матрица A последовательно приводится к единичной преобразованием строк (или столбцов). Метод характеризуется высокой последовательностью вычислений, так как каждый шаг зависит от предыдущего. Внутри шага мажно распараллелить операции над строками (умножение, вычитание) и нормализацию строк.

Метод LU-разложения. Исходная матрица A представляется в виде A=LU, где L – нижнетреугольная U – верхнетреугольная. Тогда обратную матрицу $A^{-1}=U^{-1}L^{-1}$ можно найти решением системы

$$AX = I \implies L(UX) = I$$

Разложение можно распараллелить по блокам. После разложения обращение сводится к решению нескольких систем с правыми частями – столбцами единичной матрицы. Решение для каждого столбца I независимо, что даёт высокую степень параллелизма.

Метод QR—**разложения.** Исходная матрица A представляется в виде A=QR, где Q – ортогональная,R – верхнетреугольная. Обратная матрица вычисляется как $A^{-1}=R^{-1}Q^T$.

Использование ортогональных преобразований минимизирует накопление ошибок округления и повышает устойчивость при обработке плохо обусловленных систем. Требует большего объёма операций по сравнению с LU-разложением, но хорошо подходит для распараллеливания, так как ключевые этапы могут выполняться независимо для различных подблоков матрицы.

Итерационный метод Ньютона-Шульца. Находится приближение $X \approx A^{-1}$ итерационно:

$$X_{k+1} = X_k(2I - AX_k)$$

Требуется начальное приближение X_0 , которое можно выбрать как

$$X_0 = \frac{A^T}{||A||_0 ||A||_{\infty}}$$

Основные операции в итерационном процессе — матричное умножение и вычитание, что позволяет эффективно распараллеливать вычисления. Может демонстрировать нестабильность или медленную сходимость для плохо обусловленных матриц. Может быть избыточным для матриц небольших размеров из-за накладных расходов на организацию итераций и параллельных вычислений.

Из всех рассмотренных методов метод Ньютона-Шульца представляет наибольший интерес с точки зрения распараллеливания и будет реализован в ходе работы.