

School of Computer Science and Statistics

DNS Abuse Transparency

Abdelaziz Abushark

Supervisor: Dr. Stephen Farrell

April 3, 2024

A dissertation submitted in partial fulfilment of the requirements for the degree of Computer Science and Business

Declaration

I hereby declare that this dissertation is entirely my own work and that it has not been submitted as an exercise for a degree at this or any other university.
I have read and I understand the plagiarism provisions in the General Regulations of th University Calendar for the current year, found at http://www.tcd.ie/calendar.
I have completed the Online Tutorial on avoiding plagiarism 'Ready Steady Write', located a http://tcd-ie.libguides.com/plagiarism/ready-steady-write.
I consent / do not consent to the examiner retaining a copy of the thesis beyond the examining period, should they so wish (EU GDPR May 2018).
I agree that this thesis will not be publicly available, but will be available to TCD state and students in the University's open access institutional repository on the Trinity domain only, subject to Irish Copyright Legislation and Trinity College Library conditions of use and acknowledgement. Please consult with your supervisor on this last item before agreeing, and delete if you do not consent
Signed: Date:

Abstract

This research project explores the vital subject of DNS (Domain Name System) abuse, which is widespread and jeopardises the reliability and security of the Internet. The integrity of DNS operations has become critical due to the growing reliance on the internet for both personal and professional activity. To promote a safer online environment, this project aims to increase transparency within the DNS ecosystem by examining the forms, effects and current mitigating techniques of DNS abuse. DNS abuse poses serious threats to internet security and includes phishing, confusable domains (typosquatting), domain hijacking, botnets, quick flux hosting, and domain generation algorithms (DGA). Every type of abuse puts users at risk by making identity theft, money loss, data breaches, and system intrusions easier, as well as by undermining confidence in online services. The reseach project emphasises how urgent it is to address these problems because new technologies like IoT, cloud computing, and AI have the potential to make them worse.

The methodology used in this study included a thorough examination of the DNS ecosystem, vulnerability identification, and an assessment of the mitigation initiatives that are currently being undertaken by important parties, such as registries and registrars. Surveying DNS infrastructure providers and stakeholders was a major part of the investigation to determine the existing level of transparency in the mitigation of DNS abuse. This involved assessing the usefulness of transparency reports and how well they work to stop DNS abuse. Key findings point to a serious weakness in DNS abuse mitigation initiatives' openness. Although several organisations have taken positive steps towards transparency, there is still a lack of standardisation and fragmentation in the industry as a whole. The report makes a number of suggestions to improve openness, such as creating uniform reporting guidelines, encouraging greater cooperation between DNS stakeholders, and implementing best practices to deal with DNS abuse in an open and transparent manner.

This research project adds to the current conversation on DNS abuse by providing a practical reform plan and a detailed grasp of its complexities. It establishes the foundation for more successful mitigation of DNS abuse by promoting greater transparency, which ultimately results in a more secure and reliable Internet.

Lay Abstract

The goal of this project is to address DNS abuse to make the Internet safer. If you think of the Internet as a giant library, DNS is the index that lets you locate the specific book you are looking for. However, some people manipulate this index to point you to the incorrect book, one that could endanger you by installing malicious software on your computer, stealing your personal information, or stealing money without your knowledge. We refer to this type of deceit as DNS abuse, and it is a serious issue since it can cause people to lose faith in the internet. In this study, we examine how malicious actors use DNS to cause harm, how it affects regular internet users like you and me, and the measures taken to prevent them. We took particular note of the transparency and candour with which the Internet's operators handled these issues. We can all trust the Internet better if they are transparent about how they solve these problems.

To gain an understanding of this, we reviewed publications on countermeasures against DNS abuse and spoke with numerous individuals involved in the Internet's index system. We found that there is still a great deal of room for improvement, despite the fact that some people are making an effort to be more transparent about how they are solving the issue. There is no standard approach to solving or discussing the issue, and nobody is in agreement. Our findings imply that, in order for everyone to collaborate more successfully, we need to improve the system. To ensure that everyone is aware of the steps being taken to protect the internet, we should all be able to deal with DNS abuse in a uniform manner and have a conversation about it. Those who maintain the index system for the Internet may make it feel safer for all of us to use it by being more transparent.

This project clarifies the causes, consequences, and significance of communicating openly and clearly about mitigating DNS abuse. We want to contribute to the development of a safe and reliable online environment for all users by offering suggestions on how to improve.

Acknowledgements

In the name of God, the most Gracious, the most Merciful.

First, I would like to thank God. Everything I do is only done with his permission. I sincerely thank everyone who helped me along the way with this thesis. First, I express my sincere gratitude to Dr. Stephen Farrell, my supervisor, whose knowledge, compassion, and tolerance greatly enhanced my graduate experience. From the beginning to the end of my inquiry, your advice was very helpful.

I also would like to express my gratitude to the study participants who enthusiastically engaged with my work and offered valuable insights into the dynamics of DNS abuse.

I must express my sincere gratitude to my family for their unwavering support and unceasing encouragement during my years of education, as well as during the process of conducting research and composing this project. Without them, this achievement would not have been feasible. I am grateful to my parents for their guidance and experience.

Finally, I would like to thank Trinity College Dublin and my lecturers for giving me opportunities over the past four years. I am appreciative of what they have offered.

Contents

List of Figures

List of Tables

1 Introduction

1.1 Brief Context for the Problem

The Domain Name System (DNS), which turns domain names into IP addresses, is an element in the large and complex network of digital communications. This system has an impact on each user's everyday digital interactions, in addition to ensuring that the internet runs smoothly. Unfortunately, this system is not resistant to abuse. Malicious actors use DNS domains for a variety of illegal activities, such as sending malware, phishing websites, and controlling botnets?. These actions compromise the reliability and security of the Internet by posing serious risks to cybersecurity and user trust? Addressing this issue requires a robust response from DNS infrastructure providers, including registrars and registries, who play a pivotal role in managing abuse complaints. Registries are organisations that manage top-level domains (TLDs) such as ".com " and ".net", and registrars are like a dealership for domain names. These entities have the authority to deactivate or deny the registration of DNS names if abuse is proven. Proactive measures are also considered, such as the prevention of registrations that could facilitate "typosquatting," and theoretically the regulation of permissible domain names to censor registration or renewal based on content. The effectiveness of these interventions could be significantly improved by adopting a transparent approach to the measures implemented and the rationale behind such decisions. Although the publication of transparency reports can illuminate these practices, their issuance is rarely observed in the current landscape.

Figure 1.1: How DNS works. Adapted from ?.

The abuse of DNS extends beyond simple inconvenience; it is a serious flaw in the Internet's architecture that might have a big impact on people's privacy, business, and national security. Abuse techniques are numerous and constantly changing; they include confusable domains, which is the practice of creating malicious domains that imitate real ones, phishing, etc.?. All of these strategies can have disastrous outcomes, ranging from the theft of private information to the shutdown of important internet services. DNS security and mitigation of DNS abuse are important due to their central role in Internet operations. To counter these dangers, constant monitoring and proactive steps are needed. This includes communication between numerous parties, such as hosting companies, domain registrars, registers, researchers, and law enforcement, in addition to technology solutions?

1.2 Motivation

The Domain Name System (DNS) is a vital element of web activity in the age of technology, but malicious actors are increasingly interested in the system. The abuse of DNS for illegal activities such as confusable domains and phishing has raised questions about the integrity and security of the Internet. The severity and frequency of these concerns are highlighted in recent studies, such as the "Study on Domain Name System (DNS) Abuse: Technical Report" by Bayer et al. ?, highlighting the importance of more monitoring and mitigation tactics. Not only have significant cases of DNS abuse endangered user security, but they have also damaged the general trust in the digital economy. Users' trust in online services declines as they become more aware of these hazards, necessitating the implementation of mitigation measures to regain confidence and guarantee a secure online experience.

According to Hesselman et al. ?, the idea of a "responsible Internet" aims to increase confidence and sovereignty by improving network-level transparency and accountability. Furthermore, Mathew and Cheshire's ? study "Trust and Community in the Practice of Network Security" dives into the significance of trust connections and communities in cybersecurity, demonstrating the negative effects of DNS abuse on user trust.

Figure 1.2: increase in DNS abuse incidents over time. Adapted from ?.

Organisations are leading the way in this issue, especially DNS infrastructure providers such as registrars and registries. However, their policies and activities tend to not be sufficiently clear. The continuous lack of confidence is made worse by the unclear way in which DNS abuse allegations are handled and the actions that follow. The importance of protecting the Internet and its reliability is recognised in relation to this issue ?. These difficulties are compounded by the average user's short attention span and diminished ability to comprehend information, as demonstrated by cognitive psychology studies like Medvedskaya's? investigation of adult Internet users' attention spans. According to this research, consuming digital media may have a detrimental effect on one's capacity for sustained concentration, which would make grasping complicated topics even more difficult. Furthermore, there are ethical and legal consequences to DNS abuse and how to mitigate it in addition to the technical ones. The goal of this project is to close this gap by investigating ways to improve the transparency of DNS abuse mitigation. This study aims to shine light on the present efforts and highlight the obstacles to greater transparency by assessing the current landscape of transparency reports and practices among DNS infrastructure providers. The ultimate objective is to provide a contribution to a system that promotes and enables more efficient and approachable transparency in the mitigation of DNS abuse.

1.3 Research Question/Project & Personal objective

1.3.1 Research Question

The primary research question for this project is: "What strategies and practices are registries, registrars, and other parties involved in DNS infrastructure utilising to mitigate DNS abuse, and how do the transparency reports available from these entities characterise

and reflect their efforts? Furthermore, how could these practices and reports inform the development of best-practices for transparency in handling DNS abuse complaints?". This question seeks to uncover the mechanisms, policies, and practices in place to mitigate DNS abuse and to what extent these efforts are transparent to the public and stakeholders.

1.3.2 Project Objectives

Assess handling of abuse complaints

- Investigate the procedures and policies that DNS infrastructure providers have in place to handle abuse complaints.
- Document the types of DNS abuses that are most frequently reported and the response strategies used.

Assess Transparency Levels:

- Analyse the current state of transparency in the actions taken by providers against DNS abuse.
- Identify what information is made public, how it is communicated, and the frequency of disclosure.

Benchmark against Best Practices:

- Compare the findings with best practices in the industry to identify areas of strength and opportunities for improvement.
- Highlight exemplary cases of transparency and effective abuse mitigation.

Develop recommendations:

- Propose actionable recommendations for DNS infrastructure providers to improve their abuse handling and transparency.
- Suggest policy changes or initiatives that could standardise and improve practices in the industry.
- Feed into future work on ways in which best practices for transparency could be developed.

Contribute to stakeholder understanding:

- Provide insights that help stakeholders, including users, policymakers, and other providers, understand the landscape of DNS abuse handling and transparency.
- Offer a foundation for further research and discussion on improving DNS security and trust.

1.4 Scope

The Scope of this project is to perform a detailed examination of the transparency measures taken by registrars and registries to mitigate DNS abuse and to survey registries, registrars and others involved in mitigating DNS abuse to collect and characterise the transparency reports currently available. Examining the different types of data released, quantity and quality are all part of this process, as well as examining current transparency reports to inform future work on ways in which best practices for transparency could be developed. To obtain opinions and insights on current procedures and difficulties, the project will interact with a variety of players in the DNS ecosystem, such as registries, registrars, and policy makers. As part of the research, a set of criteria will also be developed to assess how transparency affects the views of Internet users about trust and safety. It will, however, not include the development of brand-new transparency tools or systems; rather, it will concentrate on examining current procedures and making recommendations for improvements. The main goal of the research is to understand and enhance transparency and its impacts.

Figure 1.3: DNS ecosystem.

1.5 Outline of the Project Work

The goal of this project, "DNS Abuse Transparency," is to better understand and increase the transparency of the efforts of the registrars and registries to mitigate DNS abuse. Research will first examine the different aspects of DNS abuse, such as popular forms like phishing, confusable domains, etc. and their broader consequences. The project's later phases will be initiated by this fundamental understanding.

Data gathering will be based on a carefully planned questionnaire that will be distributed to a variety of DNS infrastructure providers and stakeholders throughout the world. The questionnaire attempts to shed light on current practices, the scope and efficacy of transparency measures, and the difficulties encountered in mitigating DNS abuse. At the same time, an examination of the transparency reports currently available from different sources will provide information on the transparency landscape, including the frequency, scope, and accessibility of these reports for users.

Critical evaluation of the handling of DNS abuse reports forms the core of the project. This involves looking at any proactive security measures that may be in place as well as the procedures for dealing with and preventing abusive domain registrations. After that, the research will change its focus to assessing how transparency affects user trust, provider reputation, and the general effectiveness of abuse mitigation techniques.

The project will discover and clarify best practices for transparency in the mitigation of DNS abuse, based on the data and insights obtained. The careful balance between security, privacy, and transparency will be taken into account by these best practices. The project will produce a series of practical suggestions for DNS infrastructure providers based on these findings, with the goal of improving transparency and, consequently, security and confidence in the digital ecosystem.

The project is designed to take place in a sequence of phases, each characterised by distinct deliverables. A comprehensive timeline will guide the progress, guaranteeing an organised and exhaustive study of the subject. Upon completion, this project will have contributed a collection of recommendations and considerations for future study and policy creation in this area of Internet governance, in addition to offering a comprehensive understanding of the current state of DNS abuse transparency.

1.6 Outline of the report

This report offers a comprehensive account of the steps performed, decisions made, and research carried out during the project's development. The format of the report is as follows:

Chapter 2 - Background

This chapter examines the foundations of DNS, along with its significance, weaknesses, and several types of abuse. Observe the tactics and alliances used to combat DNS abuse, including the work of ICANN and the DNS Abuse Institute. The topic of DNS abuse is discussed along with its effects on users and potential risks in the future, with a focus on mitigation techniques and recommended practices.

Chapter 3 - State of the art

This chapter critically analyses current strategies for DNS abuse mitigation and evaluates their effectiveness. Explores the complex relationship that exists between international governments and DNS, highlighting efforts to openness made by companies such as Google and Cloudflare. In addition to stressing the difficulties in striking a balance between user privacy and compliance requirements, the chapter emphasises the importance of DNS in internet governance. It investigates how various tactics are used and their effects on the larger online ecosystem through critical analysis.

Chapter 4 - Research methodology

This chapter describes techniques to investigate DNS abuse and transparency from the infrastructure provider. The author goes on how the questionnaires were made, how the responses from stakeholders were analysed, and what kinds of DNS abuse were found. This chapter describes the methodology used to collect and examine data to understand DNS abuse reporting procedures and transparency policies.

Chapter 5 - Implementation

This chapter involves the practical application, which involves findings from the project, especially the integration of the system, the back-end, the front-end implementations, and the technologies that comprise it. It includes how DNS data on abuse are visualised and the solution to the challenges during the implementation of the system. This part also includes testing and validation to ensure the success of the project.

Chapter 6 - Evaluation & Discussion

This chapter assesses how well the project addresses DNS abuse mitigation and improves transparency. It evaluates the advantages of transparency in DNS abuse mitigation as well as the security risks involved. The chapter also addresses the research limits and the degree to which the project's goals were achieved.

Chapter 7 - Conclusion

This chapter summarises the project's results and recommendations to enhancing DNS abuse mitigation transparency. Consider the difficulties faced, the importance of continuous attempts to improve DNS security, and the possibilities for further study in this field. In conclusion, the importance of cooperation and transparency is emphasised in the fight against DNS abuse.

2 Background

This chapter will explore the fundamental information relevant to this project, with an emphasis on the world of DNS abuse and transparency. It will include a detailed investigation of the domain name system (DNS), its function in the online community, and the variety of abuses it faces, the history of widely used policies and organisations aimed at mitigating DNS abuse, including a thorough examination of the DNS Abuse Institute and its achievements. A 'competition landscape' providing an examination of current market choices, from automated solutions to human tactics, will be provided as we navigate through the current methodology and technology deployed to mitigate DNS abuse. The reader will obtain a detailed understanding of the current situation of DNS abuse and the need for a more open, strong, and proactive strategy by analysing these various techniques and appreciating their strengths and weaknesses. This chapter emphasises the importance of the suggested solution in an era where digital authenticity is required, not only by providing information, but also by laying the groundwork for its presentation as a better and essential progression in the battle against DNS abuse.

2.1 Understanding DNS & Its Vulnerabilities

The Domain Name System (DNS) is a significant part of the Internet infrastructure, serving as the key to converting computer-understandable IP addresses into human-friendly domain names. Although the DNS plays a vital role in maintaining ongoing online activities, privacy and security problems still arise. The ScienceDirect paper "Domain Name System Security and Privacy: A Contemporary Survey" provides a detailed analysis of these concerns that highlights the fundamental importance of DNS while illuminating the weaknesses that malicious actors may take advantage of ?. There are a variety of security threats, ranging from DNS infrastructure targeting distributed denial-of-service (DDoS) assaults to cache poisoning and hijacking. Each of these attacks has the potential to do significant harm, including interruptions in service and the promotion of theft and spying. Due to the standard DNS design's lack of encryption, users' query data is vulnerable to abuse and eavesdropping, raising serious privacy problems. However, weaknesses do not mark the end of the story. In the same survey, new approaches are examined to improve DNS security and

privacy. The use of DNSSEC (DNS Security Extensions), which authenticates DNS data and guarantees its integrity while repelling some types of attack, is an example of these advances in security measures. In addition, privacy-enhancing technologies are being used to encrypt DNS queries, preventing eavesdropping and manipulation, such as DNS over HTTPS (DoH) and DNS over TLS (DoT). The environment of DNS threats and defences is always changing in sync with the Internet. For systems to be robust and resilient, it is essential to understand these weaknesses and the continuous efforts being made to mitigate them. In this section, we provide an in-depth discussion of DNS vulnerability details, the effects of these safety concerns, and creative solutions that aim to bring in a new era of DNS security and privacy.

In a usual DNS lookup, three types of queries come into play to streamline the process and minimise the data journey. The first type is a recursive query, where the DNS client expects a direct answer or an error if the record cannot be found from the DNS server. Then there is an iterative query, which means if the server doesn't have the answer, it points the client to another server that might know, and the client keeps asking down the line until it gets an answer or hits a dead end. Lastly, a non-recursive query happens when the DNS server already knows the answer either because it is directly responsible for that piece of information or it has it saved from earlier inquiries. This method helps to reduce unnecessary internet traffic and reduce the load on the servers involved.

2.2 Strategies & Collaborations in Addressing DNS Abuse

The DNS Abuse Institute, which will focus on DNS abuse to help increase safety and security through the domain name system, will be catered on these efforts to address DNS abuse with a comprehensive approach throughout the internet infrastructure. It helps the Internet community identify, report and mitigate DNS abuse in its mission to make the online environment more secure. Efforts by the institute, such as Compass Dashboards, provide vital data to registries and registrars that will enable proper decisions on combating DNS abuse. They show the commitment to transparency and education by issuing publications such as the "DNSAI 2022 Annual Report" or "DNSAI Bulletin 2023 04; Account Takeovers," which provide information on DNS abuse and how recommended mitigation practices? Another such global strategy against DNS abuse has been contributed by the Internet Corporation for Assigned Names and Numbers (ICANN)? in collaboration with the entire DNS community, ICANN supports a synchronised method in the development of policies and standards on how to mitigate DNS abuse while ensuring the openness of the Internet. These participatory pillars hint at concerted efforts through policy development, technological developments, and stakeholder engagement as a central

component in this collective approach to combating DNS abuse ?.

2.3 Different Forms of DNS Abuse

DNS abuse takes many forms, each with its procedures and effects on users and the Internet as a whole. It is essential to understand these various pieces of evidence to create responses and regulations that work. This section will examine the comprehensive analysis of DNS abuse presented, describing the description, mechanism, and impact of each kind?

2.3.1 Phishing

- **Description**: Phishing is a technique aimed at deceiving individuals by creating website addresses that mimic those of companies, to trick users into revealing sensitive information such as login credentials, credit card numbers, or personal identification information?
- Mechanism: This deception often occurs through emails or messaging services that direct users to websites similar to authentic ones ?.
- Impact: Victims may suffer identity theft, financial fraud, and security compromise.

2.3.2 Confusable Domains (Typosquatting)

- **Description:** Registering domain names that look visually similar to popular websites, taking advantage of typing errors or character similarities ?.
- Mechanism: Users may accidentally visit these websites when making a typo in a URL, which can expose them to malware or phishing attempts.
- Impact: Deception of users and potential harm to brand reputation?

2.3.3 Domain Hijacking

- **Description:** Unauthorised acquisition of domain names by exploiting security vulnerabilities in the domain registration system ?.
- Mechanism: Attackers may use tactics like social engineering, phishing, or exploiting security loopholes to gain control over a domain.
- Impact: Loss of control of the website, redirection to malicious sites, and potential data breaches.

2.3.4 Botnets

- **Description:** Botnets involve controlling a group of computers infected with malware, used to carry out attacks or spread spam and malware?.
- Mechanism: Malware infects computers of unsuspecting users, incorporating them into a network under the attacker's control.
- Impact: Can result in large-scale DDoS attacks, mass spam campaigns, and widespread malware dissemination.

2.3.5 Fast Flux Hosting

- **Description**: A technique used to conceal the location of websites associated with phishing and malware distribution ?.
- Mechanism: Involves a network of compromised hosts that regularly modify DNS records to avoid detection.
- Impact: Makes tracking and shutting down malicious sites difficult.

2.3.6 Domain Generation Algorithms (DGA)

- Description: DGAs generate domain names that act as meeting points for botnets?.
- Mechanism: Malicious software uses algorithms to generate a sequence of domain names for command-and-control servers.
- Impact: Adds complexity to efforts to disrupt botnet command and control channels.

Figure 2.1: Different Forms of DNS Abuse.

2.4 How DNS Abuse Harms Users

DNS abuse has serious and detrimental effects for both users and organisations, going beyond basic technological disruptions. Identity theft is among the most direct and direct effects. Phishing attacks, a common type of DNS abuse, use realistic websites to trick visitors into revealing sensitive data. Such attacks can produce information that results in financial theft, unauthorised access to accounts, and long-term damage to a person's reputation and credit?

2.4.1 Identity Theft

 Phishing: Phishing attacks often use domain names that imitate legitimate websites, fooling users into providing sensitive information such as usernames, passwords, or financial details, leading to potential identity theft.

2.4.2 Financial Loss

• **Deceptive Transactions**: Users may be tricked into making payments to deceptive websites or unknowingly disclose their credit card information, resulting in financial losses ?.

2.4.3 Data Breach

• Malware: Malicious software spread through compromised DNS systems can allow unauthorised access to corporate data, leading to data breaches?.

2.4.4 System Compromise

• Malware Infection: Systems infected with malware due to DNS abuse can be exploited for further attacks, including the creation of botnets or the distribution of ransomware, resulting in system compromise ?.

Figure 2.2: How DNS Abuse Harms Users.

2.5 Future Dangers of DNS Abuse

As technology develops, so do bad actor strategies and tools, creating a dynamic environment for DNS abuse that could present new risks in the future. The sophistication of attacks has increased, which is a major issue. Bad actors are always creating increasingly sophisticated methods to take advantage of DNS, such as creating more convincing phishing schemes and using advanced virus distribution networks?

2.5.1 Increased Sophistication

• Evolving Techniques: Bad actors are constantly developing more sophisticated techniques to exploit DNS, such as advanced phishing schemes and malware distribution?

2.5.2 IoT Vulnerabilities

• Expanding Vulnerabilities: The widespread adoption of Internet of Things (IoT) devices, which often lack robust security measures, presents a growing target for DNS-based attacks ?.

2.5.3 Infrastructure Attacks

• DNS as a Prime Target: Attacks on DNS infrastructure can disrupt internet services on a large scale, including DDoS attacks targeting DNS providers or exploiting weaknesses in DNS protocols ?.

2.5.4 Deepfakes & Al

• Al-Enhanced Phishing: The use of Al technologies, such as deepfakes, has made phishing attacks more convincing and deceptive, manipulating audio and video content to impersonate trusted entities?.

2.5.5 Cloud Computing Vulnerabilities

• Targeting Cloud Services: As organisations increasingly rely on cloud-based services, bad actors are exploiting DNS vulnerabilities to attack these platforms, potentially leading to data breaches and service disruptions?

2.5.6 Mobile Device Exploitation

 Mobile DNS Attacks: The rising usage of mobile devices has led bad actors to target smartphones and tablets through DNS-based attacks, which can lead to data theft and the spread of malware?.

2.5.7 Cryptocurrency & Blockchain Exploitation

• Crypto-Related DNS Attacks: Attackers could exploit DNS vulnerabilities to redirect users to fake cryptocurrency exchanges or blockchain platforms, leading to financial fraud and theft of digital assets ?.

2.5.8 Political and Information Warfare

• DNS in Cyber Warfare: The manipulation of domain name systems can be used to spread misinformation or disrupt services during significant political events, serving as a tool for political and information warfare ?.

2.5.9 Exploiting Emerging Technologies

• Abuse in New Tech Domains: As new technologies such as 5G, Al, and quantum computing advance, tactics involving DNS abuse are likely to evolve, potentially leading to more sophisticated attacks ?.

2.5.10 Supply Chain Attacks

• DNS in Supply Chain Compromise: DNS manipulation can also be employed as part of supply chain attacks, targeting software updates or cloud-based services to compromise organisations ?.

Figure 2.3: Future Dangers of DNS Abuse.

By understanding these future dangers and emerging trends, stakeholders can better prepare and adapt their strategies to anticipate and counteract the evolving nature of DNS abuse.

2.6 Foundational Mitigation Strategies & Best Practices

To address the broad nature of threats, mitigating DNS abuse requires an integrated strategy that integrates multiple strategies and best practices. The establishment of reporting and monitoring procedures is one fundamental tactic. Automated systems have the ability to track domain name registration patterns that may indicate DNS abuse, and protocols to report questionable actions can help ensure prompt intervention?. To confirm security and ensure that systems have not been compromised, regular audits of DNS configurations and domain registrations are also necessary?

1 Monitoring & Reporting

• Implementation: Use automated systems to monitor domain name registration for patterns that may indicate DNS abuse?. Establish procedures for reporting activities to authorities or cybersecurity organisations?.

2. Security Awareness Training

• Implementation: Develop training programmes for users and IT staff with a focus

on recognising phishing attempts, practising browsing habits, and understanding DNS security.

3. DNS Security Extensions (DNSSEC)

• Implementation: Deploy DNSSEC to ensure the integrity of the DNS data. This involves signing DNS records to protect against modification and DNS spoofing.

4. Multi-Factor Authentication (MFA)

• Implementation: Enforce multifactor authentication (MFA) for domain registrars and interfaces used to manage DNS?. This adds a layer of security beyond passwords, helping to prevent unauthorised domain transfers or alterations?.

5 Blacklisting & Takedown Services

• Implementation: Collaborate with cybersecurity firms to identify and blacklist domains engaged in malicious activities. Establish response teams dedicated to removing domains involved in DNS abuse.

6 Collaboration

• Implementation: Foster collaboration among Internet service providers (ISPs), domain registrars, governments, and cybersecurity organisations. Share intelligence and best practices to collectively improve defence against DNS abuse ?.

7 Regular Audits

• Implementation: Conduct security audits of domain registrations and DNS configurations to verify their security and ensure that they have not been compromised ?.

8. Machine Learning

• Implementation: Using AI and machine learning algorithms to analyse patterns in DNS traffic and proactively predict instances of DNS abuse?. This proactive approach enables the identification of threats before they materialise?.

9. Geo-Blocking & IP Filtering

• Implementation: Deploy geo-blocking and IP filtering techniques to limit access to DNS services from regions that have a history of DNS abuse. This can reduce the risk that attackers will use these services to carry out malicious activities or distribute malware?

10. Enhanced Domain Validation Procedures

• Implementation: Enhance the domain registration process by implementing validation procedures. This may involve verifying the identity of individuals or organisations that register domains, especially domains that resemble brands or fall into sensitive categories. By taking these measures, we can strengthen security and mitigate the risks associated with fraudulent domain registrations.

Figure 2.4: Mitigation Strategie.

Each of these strategies plays a role in creating a comprehensive defence against DNS abuse. By integrating these tactics, organisations can establish robust, proactive measures to detect, prevent, and mitigate the ever-evolving threats posed by DNS abuse.

2.7 Summary & Synthesis

After exploring the different forms of DNS abuse, How DNS abuse harms user, Future Dangers of DNS abuse and Mitigation Strategies and Best Practices. I have designed a table that has DNS abuses and the best possible mitigation strategies to help them against them, taking into account the transparency story behind it, user harm and reasoning.

DNS Abuse	User Harm	Mitigation Strategy	Reasoning	Transparency Aspect
Phishing	Identity Theft,	Security Awareness	Training helps users	Increases awareness and
	Financial Loss	Training, Enhanced Domain	recognize phishing	scrutiny during domain
		Validation Procedures	attempts. Validation	registration.
			prevents registration	
			of mimic domains.	
Confusable	Unauthorised	Enhanced Domain	Prevents Registration	transparent domain
Domains	Account Access	Validation Procedures,	of Similar Domains.	registration process
(Typosquatting)		Regular Audits	Audits ensure	
			compliance.	
Domain	System	Multi-Factor Authentication	MFA secures domain	Accountability in domain
Hijacking	Compromise,	(MFA), Regular Audits	management.	management.
	Data Breach		Audits verify security	
			measures.	
Botnets	Malware	Collaboration, Machine	Intelligence Sharing	Shared responsibility and
	Distribution	Learning	identifies botnet	proactive detection.
			activities. Al predicts	
			the formation of	
			botnets.	
Fast Flux	System Infections	Blacklisting and Takedown	Rapid response to	Responsive and transparent
Hosting		Services, Geo-Blocking	malicious domains.	threat management.
			Restrict access from	
			risky regions.	
Domain	Malware	Machine Learning, DNS	Al detects abnormal	Integrity and trust in DNS
Generation	Distribution	Security Extensions	patterns. DNSSEC	data.
Algorithms		(DNSSEC)	prevents spoofing.	
(DGA)				
loT	Unauthorised	Security Awareness	Educates on security	Open exchange of
Vulnerabilities	Access, Data	Training, Collaboration	practices.	knowledge and efforts.
	Breach		Collaboration on best	
			practices.	
Infrastructure	DDoS Attacks,	DNSSEC, Collaboration	Protects DNS data	Collective action
Attacks	System Downtime		integrity. Sharing of	strengthens the DNS
			threat intelligence.	infrastructure.
Deepfakes and Al	Identity Theft,	Security Awareness	Recognising Phishing.	Vigilance and prompt
	Misinformation	Training, Monitoring	Monitor Al threats.	threat reporting.
Cloud	Data Breach,	Regular Audits, Enhanced	Secure DNS settings	Framework for secure
Computing	Unauthorised	Validation	in cloud services.	domain use in cloud.
Vulnerabilities	Access		Prevents exploitation.	
Mobile Device	Unauthorised	MFA, Security Awareness	Secures account	Mobile security awareness
Exploitation	Access, Financial	Training	access.	and protection.
	Loss		Raises awareness of	

DNS Abuse	User Harm	Mitigation Strategy	Reasoning	Transparency Aspect
Political and	Misinformation,	Monitoring, Collaboration	Monitoring abuse in	Transparency in monitoring
Information	Political		campaigns. Unified	and collective action.
Warfare	Manipulation		response to	
			misinformation.	
Exploiting	system	Machine Learning,	Analytics to predict	Innovation in defense
Emerging	Vulnerabilities	Collaboration	DNS abuse. Share	strategies and sharing
Technologies			knowledge about	
			threats.	
Supply Chain	System	Regular Audits, Blacklisting	Audits for DNS	Transparency in supply
Attacks	Compromise,		integrity. Rapid	chain security.
	Data Breach		response to threats.	

Table 2.1: Mitigation strategies against DNS abuse and its impact on users.

Finally, this chapter has examined all aspects of DNS abuse, the various forms, the serious harm it does, as well as potential future threats. To create efficient regulations and countermeasures, it is essential to understand the extent and consequences of DNS abuse. Significant progress towards resolving these issues has been made by organisations like the DNS Abuse Institute and ICANN. However, as new technologies are incorporated into the equation and the threat environment changes in sophistication, it becomes increasingly important to adopt alert, flexible and cooperative strategies. The mitigation techniques and best practices discussed in this chapter provide a roadmap for mitigating DNS abuse. Every tactic contributes to a defence mechanism, from advanced technology solutions and improved methods for validation to monitoring and reporting. It is impossible to overestimate the value of cooperation, regular checks, and the application of cutting-edge technologies to anticipate and mitigate DNS abuse. After analysing the data, it is evident that a team effort is needed to comprehend, track, and mitigate DNS abuse. A complex strategy that integrates multiple techniques and encourages collaboration across industries is required instead of a single insufficient strategy. Our approaches to preserving the integrity and security of the DNS and, consequently, the larger Internet infrastructure must adapt, as does the digital environment.

By understanding the connections between different aspects of DNS abuse and reinforcing the collective effort required for effective mitigation, stakeholders can be better prepared to face the challenges ahead. This chapter sets the stage for further research and action, with the aim of contributing to a safer and more secure digital world.

3 State of the Art

This chapter explores the strategies used to mitigate DNS abuse and new developments in this field. Explore and evaluate the effectiveness and transparency of multiple mitigation techniques, including DNS filtering and threat intelligence, in which experts organise and analyse information about cyber attacks. Additionally, the use of domain-generating techniques and DoT and DoH are two novel forms of DNS abuse that are highlighted in this section. In addition, the role of Al and machine learning in identifying and mitigating DNS abuse is covered. The final half of the section includes a discussion on potential future research areas and technologies to improve DNS abuse mitigation. Case studies offer practical information on DNS abuse occurrences.

3.1 Current Strategies and Their Effectiveness in Relation to DNS Abuse

DNS abuse presents a significant challenge for Internet entities involved in domain name management. Various approaches are employed to mitigate such abuse, including DNS filtering, which regulates access to specific websites and prevents you from accessing malicious sites that can administer phishing and ransomware. Additionally, threat intelligence methodologies use data analysis to identify potential risks, as exemplified by ?. Anomaly detection plays a role in identifying suspicious DNS activities indicative of malicious intent using Packet Analysis to analyse individual packets for DNS allowing for real-time detection and statistical analysis, which involves performing statistical analysis on a large dataset of DNS traffic. However, these methods can face operational challenges, such as errors and the need for fast access to critical threat data.

3.1.1 Transparency in DNS Abuse Mitigation & DNS Relevance

1. A Case Study of Cloudflare's Transparency Approach

Cloudflare is firmly committed to transparency ?, the cornerstone of its relationship with customers, which guides its approach to DNS abuse reports and requests that

may come from law enforcement. This reduces their actions and policies to mould a trustworthy environment while addressing internet safety and privacy concerns. Their approach to handling DNS abuse reports and law enforcement requests is grounded in three core principles:

- (a) Require Due Process: Whatever shall be lawfully requiring due process of law enforcement and Cloudflare shall adhere in letter and spirit. They are neutral in behaviour and do not intend to hinder or facilitate law enforcement efforts more than is required by law.
- (b) Respect privacy: At Cloudflare, privacy is very important. They assure customers that anything of personal nature shared by them remains private and protected. The company makes a commitment not to sell, rent, or disclose personal information without specific and unambiguous consent from the individual, applying this policy to commercial and government or law enforcement requests.
- (c) Provide Notice: Per the CloudFlare policy, they undertake to provide notice to any of their customers in case a subpoena or other legal process issues for customer or billing information relating to the use of its network, unless otherwise such disclosure is otherwise not permitted by law. This is to ensure that individuals and organisations are made aware before theirs can be distributed.

The Cloudflare Transparency Report for the latter half of 2022 gives deep statistics and trends based on DNS abuse reports over Cloudflare's response. Highlights

- (a) Abuse Reports: Cloudflare avidly responds to various abuse reports and has shown an enthusiastic commitment to maintaining a clean and lawful network. Some reported types of abuse include phishing, malware, and content that violates copyright laws, among others.
- (b) Actions taken: Cloudflare not only reserves the right to review, accept, or decline clients, but also ensures decisive actions against reported abuses by terminating hosting services from the domains taking part in technical abuses, such as phishing or any malicious activities. Such terminations are not limited to actions taken by content-based abuse and are handled differently.
- (c) Termination of services: Cloudflare suspends services to domains that do not take action to remedy reported instances of CSAM (Child Sexual Abuse Material) or are otherwise dedicated to distributing such material. Last year, in just the second half of 2022, alone, Cloudflare suspended service for 206 accounts and 530 domains connected to CSAM.
- (d) IPFS and Ethereum Gateways: If a valid abuse report is received in regard to copyright, technical sanctions compliance, or otherwise, Cloudflare reserves the

- ability to disable access through its operated gateways to content on IPFS and the Ethereum network. 99 actions were taken on Ethereum gateways and 1142 for IPFS during the second half of 2022.
- (e) UDRP Requests: 21 UDRP (Uniform Domain-Name Dispute Resolution Policy) responses resulted from verification requests to Cloudflare by an ICANN-approved dispute board in the second half of 2022, further illustrating its commitment to response in such legitimate concerns regarding domain name disputes.

In addition, Cloudflare's careful description of compliance and due process with respect to handling law enforcement requests comes from their latest Transparency Report. Below is a summary of the major areas covered.

- (a) Legal Sufficiency Review: Each request is reviewed by Cloudflare for legal sufficiency before processing. This may range from ensuring compliance with necessary processes to all that is practically feasible within the purview of law to meet the need. They respect and safeguard the privacy of users and provide customer information to written requests from law enforcement that are validly issued based upon laws with valid legal process such as a subpoena or court order.
- (b) Respect to International Privacy Laws: Cloudflare recognises the potential conflict of privacy laws of different countries, and when they receive requests from government, they legally challenge any request for data that is conflicting with the privacy laws of the country where the user stays.
- (c) Emergency Disclosure Requests: Cloudflare takes very seriously all emergency disclosure requests. They may therefore make such disclosures to law enforcement without legal process when there appears to be an imminent danger of death or serious physical injury and requests that law enforcement obtain legal process when time permits, therefore ensuring that the use of emergency disclosures remains a carefully controlled exception.
- (d) National Security Requests and Non-Disclosure Obligations: Cloudflare has made a lot of effort to challenge FISA court orders or National Security Letters (NSLs) in case they feel that the company received one with which their desire for transparency or releasing transparency reports cannot be met. In this regard, there was a period in which the company fought legal prohibitions to report the receipt of NSLs, indicating its attitude of fighting for transparency and user privacy.
- (e) International Requests for Data: In the case of requests emanating from governments outside the United States, Cloudflare again evaluates them with strict adherence. The company responds to requests issued through U.S. courts

by way of diplomatic processes like mutual legal assistance treaties (MLATs) and evaluates other international requests on a case-by-case basis. These include an analysis of local law, the request's compliance with international norms, and company policy.

(f) Challenging Overly Broad or Inappropriate Requests: Over time, Cloudflare has long stated that it will challenge any law enforcement requests that are overbroad or issued wrongly and that act as an obstacle to their transparency with users. ., provided that due-procedure requirements are met or that the exercise is intended to protect user rights in any request they may receive in or outside the USA.

Public reporting by Cloudflare and working closely with law enforcement, as well as other partners, form important elements in its strategy of mitigating DNS abuse such as:

- (a) Reporting to the Public & Transparency: Cloudflare maintains a high level of transparency in its reporting with regard to the types and volumes of abuse reports it receives and the measures that are put in place. This supports the creation of trust among clients and partners, demonstrating action in the fight against abuse.
- (b) Law Enforcement Cooperation: The report shows how Cloudflare interacts and cooperates with many law enforcement agencies in the most approachable manner and without touching on user privacy. It enables careful consideration of such a request for any action to be legally justified, and, by so doing, contributes to general mitigation efforts of DNS abuse.
- (c) Mitigation Actions: Cloudflare has taken affirmative action against DNS abuse. These actions include, but are not limited to, terminating such services when knowing of domains that are used for phishing, distributing malware, and performing other activities that would harm a greater world. The termination of the access is done on content at the many different access points provided by Cloudflare, including any relating to abuse reports and, indeed, including IPFS and Ethereum gateways. This shows that the company is serious about mitigating DNS abuse.
- (d) Challenges to Preventing DNS Abuse: Although Cloudflare provides these tools, the report still refers to the challenges associated with reducing abuse. The struggle for balance between protection and abuse of free expression, legal and technical challenges when reacting to abuse reports, and from what kind of cooperation between key shareholders are, it is underlined, ongoing challenges.
- (e) Efficiency of Efforts to Mitigate DNS Abuse: Cloudflare transparency practices,

through the half-yearly publication of transparency reports, lend a hand in acquiring insights into the mitigation of DNS abuse. This clearly shows their commitment and forward-leaning policy to minimise problems related to DNS abuse. However, its efficacy also depends on the broader ecosystem's capacity to solve the initial cause of this DNS abuse, an undiversified market where most other options for hosting are very limited.

Some of the challenges with which Cloudflare is confronted in its transparency efforts and in mitigating DNS abuse are mentioned in the Transparency Report. They include such matters as the complexity of DNS abuse, keeping the fine balance between transparency and privacy, legal/regulatory compliance, and limitations of technical ability in mitigating the misuse while keeping the fine line. With these insights in mind, the following are recommendations that Cloudflare could use to identify potential enhancements in its processes:

- (a) Enhanced Cooperation with Stakeholders: Cloudflare will enhance cooperation with law enforcement, other service providers, and international organisations to exchange views on best practices and come up with standard operational procedures on how exactly they will address DNS abuse. Joint efforts reduce identification time and intensify the ability to mitigate abuse throughout the Internet ecosystem.
- (b) Improve Abuse Detection Systems: Continuous investment in the best technologies and machine learning algorithms will improve abuse detection and enhance its ability to respond to DNS abuse. Better detection will be less time-consuming in identifying and bringing down abusive content, therefore improving the entire internet safety concern as a whole.
- (c) Transparency Reporting Enhanced: The reports on transparency from Cloudflare are simple to understand, yet they need more details about the identification of types of abuse faced by the domain name system and evaluate the process with respect to checking its effectiveness on all counts for mitigation. It will keep stakeholders up to date by providing much more details when it comes to trend and pattern assessment in regard to abuse, which will lead them in the process to fine-tune the directions of best practices for abuse mitigation.
- (d) Better User Education & Awareness: Cloudflare would be in a position to prepare more materials and programmes to educate its users about cybersecurity and the risks of DNS abuse and what they should do to protect it. Enhanced user engagement in these can help build an enhanced internet environment.
- (e) Advocate Policy and Legal Reforms: Cloudflare can do more to try to advocate

for policies that will potentially be challenged in various legal jurisdictions and cause a potential conflict of privacy laws against law enforcement requests. In such a push for already formulated laws and put-in-place policies to balance user privacy against those interests supporting efforts in fighting DNS abuse, an improved offer may be realised. This policy helps offer protection against abuse, or even support for more coherent and efficient internet governance.

- (f) Create a Multi-stakeholder Feedback Mechanism: A mechanism can be framed that ensures feedback from users, civil society, and other stakeholders that would indicate how far Cloudflare has been successful in its transparency efforts and reducing abuse. Thus, such suggestions can then guide any subsequent policy revisions or enhancement of organisational policy.
- (g) Continue to Challenge Over-broad Requests: Cloudflare's willingness to continue fighting even with over-broad or inappropriate requests for user data in place remains praiseworthy. The possibility of being able to further prioritise the user and due process amongst this sort of situation implies some more badge of trust and a role model for the industry.

In conclusion, the company emphasises its commitment to protecting legal processes and user privacy while navigating government and law enforcement requests. A critical aspect of these reports is Cloudflare's approach to DNS requests, particularly regarding content blocking through its 1.1.1.1 Public DNS Resolver. This was the key answer: Cloudflare, in no uncertain terms, "received legal requests to block content at our DNS servers" and stated its policy to first "exhaust legal remedies" that they could enforce. This is an indication of how very carefully Cloudflare has to adhere to the demands of the law, yet protect the openness of the Internet, bringing out just how major DNS is in all matters that pertain to the accessibility of content on the Internet and governance of the Internet.

2. Google Transparency Reports

It has become evident that there lies a more dynamic in nature relationship between the governments of the world and internet governance, specifically through requests for removal of content in the Google services. In light of this, the function of the Domain Name System comes up as one of the mechanisms that are critical in realising how the requests can be translated into actions. The relevant data, for example, for Russia, contain tens of thousands of items to be redacted. Massive redaction requests, such as this one, go very far beyond the issue of focused content take-down and indicate potential for far broader action up to and perhaps including that which would be taken on the DNS level and through other means that may be ultimately settled here on the domains to be held in enforcement. Such instances further highlight all

the more the role of DNS in enabling access to or blocking content on the Internet while serving much more effectively as the gateways through which governments indeed wish to exercise control, for which legal and regulatory pressure is employed so often on large technology companies like Google.

Further, the queries clarify the relevance of DNS; they do not directly mention "DNS manipulation", but the phrasing points to some kind of 'how-to' on technical compliance, which could also be the making of DNS changes. The compliant removal requests that Google yield indicate technical mechanisms that may be in place to comply with government mandates and most likely affecting how DNS resolves to certain domains or URLs. This indirectly points to the DNS as a critical infrastructure within the larger debate on Internet governance, censorship, and access to information. In light of that Google Transparency Report, it becomes very telling that DNS clearly breaks through this legal and policy structure not only as an underpinning element to the architecture of the Internet, but as a very hotly contested space to control both digital content and information flow ?.

3. Amazon Transparency Reports

Necessarily, such a role of DNS in servicing governments or other legal data demands does not trace directly to specific acts of manipulation in the DNS or intervention at the domain-level. The report explains about Amazon's observance of due process laws in handling requests for data such as subpoenas and search warrants, with a lot of emphasis on customer privacy and protection of data which can be mounted against the state or any other third party institution or person. It goes without saying that handling the domain or the services to do with this website means that a possibility of such a move as DNS changes can be in the offing. However, they do not give clear examples where DNS interventions have been taken, but describe the circumstances related to legal compliance and internet governance without direct reference to DNS ?.

4. DNS- SB Transparency Reports

xTom reported nil compliance, for the most part, within the international statistics of content data requests, requests for information on subscribers, requests to have content taken down, requests to have content blocked, and domain name dispute resolutions in 2020. These zero compliances are placed to highlight the fact that the organisation, in reality, sets the protection level of user data and content integrity too high, which is part of a general position on how DNS and domains are managed for the protection of users and the achievement of operable thresholds ?.

5. The CyberGhost Transparency Report

An obvious upward trend of the recursion without DMCA complaints, along with

flagging malicious activities, flashes up in each year, record by record, before a sudden spike around 2023. Given the growing level of claims and requests, CyberGhost still regards the No Logs policy as a strong sweat so they keep a keen eye and hence stays guardedly strong on the user's privacy and any request relating to DNS. The report is categorical with such an idea that even in the case of mitigating malicious activity, they do not involve logging of DNS queries or respective user activity; therein, the integrity of user data and an assurance towards compliance in privacy. DNS somehow plays a function in this case: It becomes evident that the design of the CyberGhost infrastructure is supposed to be resistant to infiltrators and, hence, capable of withstanding invasions and pressures in no less than those that would compromise an individual's anonymity and right to freely receive information via the Internet ?.

6. The Meta-Transparency Reports

This will also touch on the enforcement of intellectual property on social media platforms like Facebook and Instagram, and usher in overall holistic measures to combat copyright, counterfeit, and trademark violations. The DNS is important to these functions in these two aspects. First, with regard to it being an underpinning of the distribution of information online and, in another sense, a checkpoint in the process of enforcement. For instance, Facebook removed 447,123 pieces of content on copyright grounds and on Instagram, 297,356 in the first half of 2022. When these volumes are taken in such high volumes, one would easily conclude that beyond the platform level of moderating content, other interventions had to be made at the DNS level. Those could vary from steps like de-indexing websites from search, to editing DNS records in such a manner that requests to domain names of abusive sites are not resolved or that access to infringing content is denied.

Results since the second halves of 2020 and 2021 seem to suggest that the rates of removals have been self-sustaining, due to the mechanisms of DNS dependency. Last year, in 2020, Facebook stuff removed 432,854 pieces of content for copyright reasons, but this number decreased to 273,325 counterfeit items removed in 2021. This is a huge amount, proving that if something was taken down, then Meta has not only removed nasty content from offers, but most likely reached an agreement with DNS providers too, to not allow access to offending domains. This clearly elaborates on the integral part of the DNS in enforcement; hence they are used in upholding intellectual property rights, effectively reducing the spread of counterfeit goods, and protecting the interests of creators and owners of the trademarks?.

7. T-Mobile Transparency Report

It outlines how the company complies with directions of the law in the management of requests for information from consumers, thus highlighting staying within customers'

privacy and legal compliance. Details the approach and policies of the company in response to lawful requests on records of customers within T-Mobile, Metro by T-Mobile, and Sprint, now collectively T-Mobile USA, Inc. (TMUS). At the same time, it provides information about what TMUS does to protect consumers from unauthorised data access, including first-party requests made by the company itself, such as subpoenas, court orders, and warrants, with all processes required following the same. When sharing details surrounding the number and types of requests received in 2022, the report marks a heavy emphasis on TMUS's efforts to take care of customer privacy and complying with applicable legal obligations. In the case of T-Mobile, it handled 301,388 subpoenas, mostly related to orders to disclose information about the subscriber, such as names and addresses, and 94,599 different types of warrants or search warrants, which can be after historical location data or the content of messages?.

8. IBM 1H 2021 Law Enforcement Requests Transparency Report

It shows how IBM ethically handles data and is transparent about it. Building on a tradition of over a century, a new standard in earning client trust, IBM sets the principles that will dictate IBM's management of client data and places an emphasis on client data ownership and promotion of fair and non-discriminatory government policy toward data. IBM: The finalisation of this report was to clarify that IBM, under no circumstances, has been handing over their clients' data to any government surveillance under surveillance programmes involving bulk collection and any other surveillance programme for that matter. It underlines the IBM policy related to compelling governments to work directly with enterprise clients in relation to data requests and adherence to rigid guidelines through legal routes including Mutual Legal Assistance Treaties (MLATs) with respect to international data requests. IBM received a total of 27 law enforcement requests during the period from January 1, 2021, to June 30, 2021, two of which were requests for information on an IBM account, and all information was accepted. The information pursued was, for the most part, basic subscriber contact information, such as a name, email, and business address that would allow law enforcement to contact directly with our customers. The report strongly emphasises a key IBM principle: that the customer owns their data and that requests for those data are matters of great gravity and extreme rarity. Meanwhile, within that time, there was no request for any data of the clients that was at all met, which clearly reflected that IBM has a stricter policy regarding the ownership of the data of the clients and less participation in providing specific or private information to investigative bodies. This approach shows the commitment of IBM to unwavering client privacy and data protection amidst legal and governmental inquiries?.

9. Trade Me Transparency Report

This report shows the ongoing commitment to transparency and openness of Trade Me, which gives a breakdown of its interactions with New Zealand government agencies. This is the 11th annual report by Trade Me and builds on last year's report of walking this tightrope of how they balance legal compliance with protecting their member's privacy. By being a step ahead in proactively sharing information with government agencies on data releases, Trade Me sets a tone with transparency and what they believe in, spilling the beans on the intended use and release of member information. There is also emphasis on the cumbersome process the Trust and Safety staff go through with regard to ensuring the relevancy and coverage by the law of such information released, definitely with good intentions of keeping the community safe within the laws. This ensures the confederation of trust among Trade Me's members and guarantees a safer online community. What stands out in this report is the clarity of numbers on requests and releases of member data to government agencies for the periods between July 1, 2022, and June 30, 2023, indicating how transparent Trade Me operates. For example, it states that there is a 36% year-on-year decrease in voluntary releases of information under the Privacy Act to the New Zealand Police. This signals the carefulness of the organisation towards the exposure of information?.

10. Xiaomi Transparency Report: Government Requests for User Information (2022)

This Report is a reflection of how the company treats the requests of the government when it comes down to the user-related data. In a statement by Xiaomi, the company shows that it had been straightforward in handling judicial, enforcement, and other government data requests. These are implemented by industry standard technical and organisational guidelines and observing the law and regulation of the world. The report hereafter is a general review of transparency by Xiaomi when it comes to requests from different governments in as far as users' data are concerned from device-based to financial-identifier-based to account-based, reflecting the bottom line and the bedrock principle upon which Xiaomi built trust with consumers in relation to privacy and data protection. In 2022, the government of India reached out to most companies, with at least 51 devices-based requests for Xiaomi Inc., which involved 49,683 devices. More specifically, 32 out of these requests were complied with by Xiaomi, which means that 62. 75% was the compliance rate in that country. Such data here talk about the extent of inquiries made by the government against Xiaomi in regions with a strong operational presence and give a perspective on what kinds of questions were posted?

11. eBay Global Transparency Report

This report highlights eBay's commitment to a safe and trusted experience for our global buying and selling community. "Safety" is a word the company takes quite seriously, and the report articulates the ongoing work of eBay to secure its

marketplace from fakes, fraud, and other abuses. With sophisticated AI technologies and image detection, combined with recent efforts, eBay continues with its commitment to everything from proactively identifying and mitigating potential threats, soon to be announced, which include better collaboration with rights owners and law enforcement agencies. This supports eBay investments in technology, partnerships, and other efforts that support that investment and hence maintain the platform's integrity on so many levels. Reflecting back on policy, procedure, and the far-reaching impact of eBay initiatives from 2002 through 2022, at its core, the report enshrines the company's foundational philosophy: that through transparency, a marketplace of economic opportunity is created for people around the globe. In 2022, eBay proactively removed a massive number of harmful listings. To put that into perspective, precisely 295 million prohibited items listed on eBay were blocked by eBay's Al tools, putting into question exactly how instrumental the technology at that company has been in damaging controlled substances. The unbelievable post-sale services on luxury watches, handbags, jewellery, sneakers, trading cards, and much more through the Authenticity Guarantee programme on eBay?

12. Cisco Transparency Report: Government Data Demands (First Half of 2023)

This report shows the public declaration of the company's commitment to open up about requests made to it by different governments for customer data within various jurisdictions across the world. This semiannual report, of indispensable importance in knowing the landscape of data privacy and government surveillance, will include the nature and volumes of requests that come to Cisco, the kind of task, and demands for both content and non-content data. Publishing how many requests were compiled, rejected, and met with no data found, Cisco stands by its principled approach to balancing legal obligations with customer privacy. In particular, the report indicates national security demands in the view of the United States and that Cisco complies with explicit legal frameworks such as the United States Freedom Act of 2015. In that same reporting period, there were 16 demands for noncontent data to Cisco from US government agencies, 7 of which resulted in data disclosure. This reflects an approximately 44% compliance rate in which data was indeed disclosed in NCDRs by Cisco after "MIND" demands in which no information was found, or demands were rejected. Such statistics are important to be aware of in that they help paint a picture of how a tech company, like Cisco, interfaces with government requests for data, supplying a view of the balance that exists amidst governmental interests versus privacy rights. Furthermore, international requests showed a total of 27 requests from Germany to Cisco with 25 disclosures, fostering the idea of how much government interest there is among the governments of the world for data ?.

13. Apple Transparency Report: Government & Private Party Requests

It involves a summary containing both legal requests from government agencies worldwide and US private parties. Shows how careful Apple tends to be with the data it holds from its users by defining requests according to devices, financial identifiers, accounts, and types of requests. It is reflective of a very tiring process through which Apple passes each and every request to ensure that it is within the laws and just how extremely committed the company is to user privacy and information security. Therefore, it is high that it is important for Apple to be transparent and allow all these requests to form an opinion about the operations and trust in it. This report is required to be read by those who may wish to understand the relation of technology, privacy, and law enforcement in the digital era. The report outlines the types and amounts of requests available. For example, Apple received 5,660 requests of devices from the US itself, 82% were met with data provision. For the most part, such requests arise in the investigations of lost or stolen devices and fraud inquiries. Similarly, for account requests, Apple in the US received 7,944 requests; for the last reporting period, data was provided in 47% of the cases ?.

3.1.2 Effectiveness of Current DNS Abuse Mitigation Strategies

Different methods are used to mitigate DNS abuse, including the implementation of blocking tools, awareness of potential threats, and identification of anomalous behaviour. DNS filtering entails the regulation of website access based on predetermined rules, which can have varied outcomes depending on the context in which it can happen in different environments such as register and registry in which it implements mechanisms to compare DNS names to the block list and given set of rules then takes the necessary action such as homograph attacks in which DNS filtering mechanism play a role in mitigating them by comparing domain names against block lists and predefined rule to identify potentially malicious homographs as stated earlier. Threat intelligence plays a role in identifying potential dangers and detecting unusual activities within the DNS, as noted ?, such as allowing proactive identification and assessment of potential threats and malicious activities, including detecting patterns indicative of phishing, domain hijacking, malware distribution, and other forms of DNS abuse. Evaluating the effectiveness of these methods requires careful consideration of their performance in real-world scenarios. For example, while DNS filtering can effectively block malicious content, it may inadvertently permit harmful elements to bypass the filtering process, potentially impacting the user experience. Similarly, the effectiveness of threat intelligence relies on the timeliness and accuracy of the data used. However, identifying anomalous behaviour poses challenges, as distinguishing between malicious actions and legitimate activities performed in innovative ways can be challenging.

3.2 Emerging Trends in DNS Abuse

Trends in DNS abuse had declined among some categories, such as botnets, malware, phishing, and spam. Much of this decline could be attributed to the multipronged approaches that ICANN itself launched around data analysis, community tools, and enforcement of registry and registrar obligations?. Although continuing to be slow, adopting organisations did so under the compulsion of situations that left them no choice but to use technology or by those for whom TLS adoption was a matter of technological innovation, choice, or desire for the embrace of technologies simpler and more robust from misdirection. One of the major issues has continued to be privacy, due to the fact that DNS queries have been accidentally found to give away user behaviours. One such move to enhance user privacy is the Query Name Minimisation. The main concern has been how to remain vigilant against DNS abuses while improving privacy without altering service efficiency.

3.2.1 Evolving New Forms of DNS Abuse

The field of cybersecurity is rapidly advancing, bringing forth new challenges as it evolves, and constantly moving the goalposts for defence mechanisms. The introduction of DNS over TLS (DoT) and DNS over HTTPS (DoH) is like a double-edged sword. Although these encryption protocols were designed to enhance privacy and security by encrypting DNS queries, they unintentionally provide attackers with means to disguise malicious traffic. This expands the attack surface, affecting everything from individual devices to corporate networks. For example, attackers could take advantage of DoT and DoH in enterprise settings to avoid outdated security controls and establish hidden communication channels. Furthermore, Domain Generation Algorithms (DGAs) play an important role in cyber threats by automatically generating a large number of random domain names, making it extremely difficult to identify and shut down malicious sites. ?. This tactic, integral to botnet command and control (C2) operations, significantly complicates cybersecurity defence efforts to predict and mitigate threats.

The adoption of DoT and DoH offers several benefits, such as enhanced privacy by preventing the surveillance of DNS queries and improved security through the encryption of DNS traffic, which weaken hackers' attempts to intercept or manipulate data. However, these protocols also allow attackers to hide their malicious activities, which poses challenges for traditional DNS security systems in detecting and filtering harmful content. Furthermore, these protocols could accidentally bypass content filtering policies, leading to potential security breaches within organisations. Conversely, DGAs provide attackers with a method to evade detection and maintain C2 communications, as the dynamically generated domains are difficult to predict and preemptively block. This results in an overwhelming number of domain names for security mechanisms to monitor, complicating the threat intelligence

process and necessitating continuous vigilance and blacklist updates. The widespread adoption of these technologies underscores the need for cybersecurity professionals to adopt a proactive and informed stance, understand their potential for exploitation, and develop comprehensive strategies. These strategies must strike a balance between the benefits of encryption and domain generation and the imperative to prevent DNS abuse, ensuring the integrity and security of the online environment.

3.2.2 Predictive Measures & Their Transparency

Efforts to mitigate DNS abuse are set toward immediately slowing such activities by utilising complex systems and advanced machine learning algorithms to detect patterns indicative of DNS abuse. Articulating and sharing insights about the decision-making processes in predictive modelling is considered significant, as well as the efforts by registrars and registries, acting together, in the context of DNS Abuse Transparency are comprehensive. These entities will invoke a wide range of mitigation measures to minimise damage and losses related to DNS, which will ensure the development of a more secure and trusted Internet environment. Some key mitigation strategies are account-based remediation in the way that maliciously generated accounts are locked out and further validated, in addition to monitoring third-party feeds and reports from cybersecurity organisations, law enforcement, and the public to discover and address abuse early. Moreover, this mitigation involves malware analysis, which comes from attacks on the communication infrastructure and the corresponding IP addresses, through suppression or sinkholes in the context of botnets and the use of domain generation algorithms (DGA) that direct botnet traffic ?. Most specifically, sinkholing is an authoritative measure that directs traffic from abusive domains to harmless servers and allows studies to be conducted on the sources of traffic and the extent of compromise. Compliance with legal and contractual requirements further underscores the actions of registrars and registries against DNS abuse, ensuring that their actions in mitigation are within the context of the ICANN agreements and local laws.

The evident evaluation of real-time black hole lists (RBLs), in addition to the responsible role of trusted notifiers, further increases the effectiveness and accuracy of mitigating actions, to filter and validate reports on abuse, so that proper responses may be made. This multipronged approach on the part of the registrars and the registries towards the mitigation of DNS abuse does not only emphasise the proactive and reactive measures, but also the possibilities of increased transparency as far as reporting and publicising the actions in place against DNS abuse are concerned. Such transparency is key to building trust, open to accountability, and creating an environment conducive to stakeholders' collaboration for the more effective fight against abuse in the DNS ecosystem. This transparency helps to understand the rationale behind the predictions, map the data used for model training, and clarify the methods that guide decision-making, as highlighted in ? Striking a balance

between the complexity of predictive models and their interpretability is a significant challenge. Therefore, it is essential to approach this challenge with caution, ensuring that the models are not only effective in identifying DNS abuse but also accessible for thorough examination and accountability.

Figure 3.1: DNS Ecosystem Contractually Related to ICANN (image courtesy of Verisign and originally published in SSAC 115 adapted from ?)

3.3 Technological Advancements

The mitigation of DNS abuse is increasingly influenced by the integration of artificial intelligence (AI) and machine learning technologies? At the helm of this evolution are innovative tools such as the iQ Domain Risk Score, which employs machine learning and string analytics to proactively detect potential domain abuses now of registration?. This tool aims to act as a mitigation measure by analysing domains against criteria indicative of malicious intent, thereby attempting to stop abuse before it even starts. Additionally, the field is witnessing a transformative shift in analysing abuse report evidence through the adoption of Large Language Models (LLMs), such as generative pre-trained transformers (GPTs). These models are highly adept at parsing and understanding complex data patterns that could be missed by human investigators, enhancing the efficiency and automation of DNS abuse mitigation efforts, and forming a more dynamic defence against cyber threats. However, this progress also highlights an emerging challenge: the potential for malicious entities to exploit AI technologies themselves ?. Consequently, the intersection of AI and machine learning with DNS abuse mitigation not only heralds significant advancements in cybersecurity strategies, but also emphasises the need for vigilance to prevent these technologies from being used for harmful purposes. This pivotal moment in the fight against DNS abuse underscores the need for ongoing innovation and adaptation to effectively secure digital ecosystems.

3.3.1 Role of Al & ML

The introduction of AI and machine learning technologies into DNS abuse mitigation marks the beginning of an innovative era focused on proactive detection and neutralisation of cyber threats?. This approach facilitates the rapid analysis of large datasets to uncover patterns indicative of malicious intent in DNS queries. For example, machine learning techniques have been highly effective in analysing DNS queries to classify domain names, significantly improving the detection of domains linked to malware? Furthermore, the application of neural network models, such as the Extreme Learning Machine (ELM), has achieved accuracy rates above 95% in the identification of malicious domains, demonstrating the predictive power of AI in combating cyber threats? Additionally, the technique of DNS graph mining has illuminated Al's potential within cybersecurity frameworks, with methodologies like belief propagation algorithms achieving high precision in identifying infected hosts and malicious domains. These examples underscore the vital role of Al and machine learning in supporting DNS abuse, paving new avenues for early detection and swift mitigation of potential abuses. However, the complexity of AI models and the demand for transparency in their decision-making processes present ongoing challenges. Integrating Al into DNS abuse mitigation strategies improves security measures, but also requires careful

attention to ethical considerations and the establishment of governance frameworks?. Al and machine learning can help improve DNS abuse mitigation, but experts must be clear about the problem. It is important to understand how Al models make certain decisions. This helps build trust and ensures that people are responsible for them. There are difficulties in making things clear, such as needing to write down what data was used for training, telling others about the things that affect choices, and explaining how models change to face new risks. It is still difficult to find the right balance between the complexity needed for good threat detection and the openness needed for blame.

In summary, Al and ML are valuable in protecting against rapidly evolving cyber threats and a wide range of devices, including those in the IoT. However, their predictive accuracy can be limited by the quality and quantity of data used for training. Sophisticated attacks designed to evade detection algorithms present a notable challenge, underscoring the importance of continuous learning and adaptation in AI/ML models to maintain their effectiveness.

3.4 Case Studies and Real-World Applications

In recent years, technology has become so widespread that we have witnessed an unmatched number and complexity of cyber threats. A significant vulnerability that can be exploited is the DNS domain name system, a critical part of the internet infrastructure that translates human-readable names into IP addresses ?.

1. Case Study 1: OilRig DNS Tunneling Attack

The case of OilRig reflects the use of custom DNS tunnelling protocols for command and control (C2) operations, thus making it dual-use in nature, both in normal operation and on a fallback communication channel ?. The xHunt campaign ? followed a similar trend of including Snugy backdoor implants in targets of Middle Eastern government organisations and keeping track of them using DNS tunnelling for communication with its C2. These are examples that underscore the strategic use by adversaries of DNS tunneling techniques for stealthiness and resilience within the context of their operations ?.

Figure 3.2: DNS tunneling communication between the attacker's command and control (C2) infrastructure and the victim's network.

2. Case Study 2: SUNBURST Use of DGAs

SUNBURST backdoor associated with the breach of the SolarWinds supply chain represents a case in which the use of DGAs is critical, if not only, to conceal communications and system details?. The SUNBURST backdoor applies the deep use of DNS manipulation for evasion purposes and subsequent attack stages by encoding basic system identifiers and the usage of DGAs for C2 check-ins?.

Figure 3.3: SUNBURST backdoor's utilization of DGAs and its associated components.

3. Case Study 3: Fast Flux Techniques The presence of several C2 domains related to the Smoke Loader malware family using Fast Flux techniques only further underscores the difficulties associated with the tracking and eradication of DNS-enabled threats. ?.The major takeaway in the rapid rotation of IP addresses of this method points to the dynamism of strategies used in malicious communications, thus improving the means of defence by cybersecurity ?.

Figure 3.4: The usage of Fast Flux techniques by the Smoke Loader malware family for dynamic C2 domain communications.

4. Case Study 4: Malicious Newly Registered Domains (NRDs)

Malicious NRDs crafted opportunistically in the context of the pandemic expose how threat actors exploit current events to engineer targeted attacks. ? From domains that mirror the information resources of COVID-19 to those that feign government relief programmes, the evolution of such attacks reflects a calculated approach to exploiting public interest and vulnerabilities ? .

Figure 3.5: The usage of Fast Flux techniques by the Smoke Loader malware family for dynamic C2 domain communications.

In the coronavirus pandemic, too, phishing attacks changed to initially targeting PPE and testing kits, then turning to government stimulus programmes and subsequently enlisting vaccine distribution. Several of them, in fact, employed sophisticated tools, such as MFA pretending as the US Federal Trade Commission and brands such as Pfizer and BioNTech, to steal credentials, where it emphasised that there was a 530% surge in vaccine-related phishing attempts and a 189% increase in attacks on pharmacies and hospitals from December last year to February this year. Advice was given to individuals and organisations that includes being cautious in email and website transactions, advancing security awareness training, and adopting multifactor authentication.

Since January 2020, a total of 69,950 COVID-19 related phishing URLs have been received, of which 33,447 are specifically dedicated to COVID-19. The data have been normalised in such a way that the peak of each topic is at 100%. The results showed much steadier phishing when it came to topics such as pharmaceuticals and virtual meeting platforms (e.g., Zoom) with vaccines and testing showing sharper rises and falls in the attention of scammers.

Figure 3.6: Development trends in the majority of COVID-19-related phishing content hosting sites during the period from January 2020 to February 2021. Adapted from ?.

It is evident that a large portion of COVID-19 themed phishing pages targeted leading brands for phishing business credentials, such as Microsoft login, Webmail, and Outlook login. For example, about 23% of these phishing URLs were posed as Microsoft login pages. This threat has particularly highlighted the shift towards remote work in the pandemic, and hence magnified the relevance of these attacks as one of the foremost methods that bad actors are taking on.

Popular Phishing Targets in COVID-Related URLs

Figure 3.7: Top spoofed websites in COVID-themed phishing attacks (global), where the percentage in each column is the percentage of phishing volume per site and category. Adapted from ?.

Thus, this clearly indicates a situation whereby the attackers set up websites frequently for COVID-19 themed phishing attacks. Many of these phishing pages are found on sites created less than 32 days, meaning that these sites are launched with specific purposes in view of these imminent attacks. The strategy allows attackers to customise their messages and URLs to the current pandemic trends, indicating the dynamism behind such cyber threats.

Figure 3.8: Statistic of lifespan distribution of COVID-19-related phishing content hosting sites when the sites are reported. Adapted from ?.

3.5 Challenges & Future Directions

Mitigating DNS abuse demands an immediate stop to the rapid evolution of cyber threats, underscoring the critical need for rapid global cooperation and the implementation of advanced technology. The key challenge is to achieve a fine balance between reducing false positives and accurately identifying genuine threats, while simultaneously advancing beyond the limitations of outdated technologies?. The future of this domain largely depends on researchers' ability to enhance technological solutions, particularly focussing on the improvement of AI algorithms for deeper analysis of DNS traffic patterns. This opens a promising pathway for the creation and application of locally developed tools, providing innovative strategies to strengthen DNS defences. The ability to navigate the complex landscape of DNS abuse will require stakeholders to be agile in responding to emerging threats and developing novel solutions. The collective push towards the evolution of technology and methodologies will play a pivotal role in shaping effective DNS abuse management strategies in the years ahead.

3.5.1 Identification of Current Challenges

Mitigating DNS abuse involves developing strategies that should not only be proactive, but kept constantly up to date to handle the changing environment of cyber threats. The fluid nature of these threats means updating current protocols as well as developing new defence methods. With bad actors constantly reviewing their methods to take advantage of the vulnerability of DNS, it has become imperative that the cybersecurity industry continuously updates its defence mechanisms? Being a global phenomenon, the Internet and hence DNS abuse being transnational in character, there is no other alternative than international cooperation. The effectiveness of DNS abuse management would be based on collaborative work across national borders, where experts in different geographical areas come together to share their knowledge and resources?. The legal and regulatory framework varies in the various jurisdictions, making it difficult to reach a consensus on the regulations, standards, and enforcement actions. Another big challenge is that, to mitigate DNS abuse, the requirement is necessary to eliminate both false positives and negatives. Balance must be established in such a way that rather strict measures may reduce user experience, while, at the same time, being liberal might bring less detection of malicious activities. The cybersecurity community must continue to advance its detection and response capabilities, due to the increasing levels of sophistication used by DNS abusers. This will keep the security and integrity of the DNS system in good shape, thus protecting this vital part of the Internet infrastructure.

3.5.2 Discussion on Future Research Directions and Technologies

At the ICANN77 meeting, developments on mitigating DNS abuse were presented. These included the draughting of changes mandating that registrars and registries respond to abuse notifications, which contributed to a decline in global abuse levels after Freenom's legal response. Although the ccNSO Domain Abuse Steering Committee argued for a proactive mitigation strategy, the gNSO's analysis found minimal abuse rates in EU ccTLDs, which it attributed to market maturity and non-profit models?. To improve domain security and enable international cooperation against changing cyberthreats, future initiatives will focus on creating cutting-edge tools and using technologies such as artificial intelligence and machine learning. This means that we need to look at more complex Al and machine learning tools that can understand the details of web traffic, which will make the results more accurate and stop the sending of wrong signals?

3.6 Summary of Findings

Research on the transparency of DNS abuse mitigation emphasises how threats are always changing and how mitigation techniques must evolve as well. It highlights how important community involvement and transparency are to fostering trust. Although technological advancements, especially in Al and machine learning, are essential for threat detection, their implementation must be carefully considered. Practical examples provide insight into the efficacy of various strategies. Maintaining a balance between new mitigation measures and effective teamwork and communication is a constant issue. To effectively address DNS abuse, future efforts should focus on using technology, international cooperation, and standardised information exchange.

4 Research Methodology

A structured questionnaire was sent by email to various stakeholders in the DNS ecosystem. This method was chosen because of its convenience, compliance with participants' busy schedules, and permission for detailed responses at the respondents' will. The approach provided a means of soliciting a wide range of expert observations on DNS abuse in terms of definition, the most prevalent types, mitigation challenges, and the theme of transparency. Email was chosen to reach the various players so that a much greater participation level would be reached, suitable to the schedules of the large number of participants, yet permitting ample space for an in-depth approach to the subject. Such an approach has made it possible to strike a balance for accessibility and convenience for participants while meeting the need for comprehensive data collection.

4.1 Questionnaire Design and Distribution

The questionnaire had to take into account all of these issues in a multidimensional approach, giving great emphasis, but not limited, to the following definitions, types encountered in practice, challenges of dealing with mitigation, and considerations regarding transparency. Even at the very outset, the respondent could be invited to agree or state their view of a well-known definition of DNS abuse, thus showing that this matter is diverse in application and interpretation.

The questions were carefully crafted to elicit detailed insights on:

- 1. The definition of DNS abuse.
- 2. The types of DNS abuse stakeholders most commonly encounter, aiming to identify prevalent patterns and specific concerns within the ecosystem.
- 3. The challenges and limitations faced in mitigating DNS abuse, seeking to understand the barriers to effective action.
- 4. The mitigation strategies used, gathering information on the practical steps taken and their perceived effectiveness.

- 5. The practice of publishing reports or data as a form of transparency, exploring the current state of openness in the field.
- 6. The role of transparency in aiding or impeding DNS abuse mitigation efforts, probing the potential impacts of increased visibility.
- 7. The effects of transparency on the relationships between various DNS stakeholders, considering the broader implications for cooperation and trust.

4.2 Stakeholder Responses

The insights from the completed questionnaire of the different stakeholders reflect several key themes and insights critical to understanding DNS abuse, as well as the mitigation of this abuse. These include various perspectives on what exactly the definition of DNS abuse is, the types of abuse most observed, and the difficulties experienced by stakeholders in efforts to mitigate its abuse. Additional discussions are related to mitigation methods, which provide a full view of current practices and potential areas for improvement with respect to the DNS ecosystem.

Key themes and insights

- Varied Definitions of DNS Abuse: Although stakeholders largely accepted the
 definition that had been adopted by the ICANN Contract Parties, they also noted its
 shortcomings, especially in being too categorical and thus may leave out evolving
 types of abuse. It was considered that a more flexible way forward would be a robust
 framework to define the abuses to be mitigated at the domain name level.
- Common Types of DNS Abuse: They pointed out that phishing was the most common attack type, followed by malware, botnets, and spam. It was also pointed out that one of the most common problems was related to the challenge related to proving the number of spam-related domains.
- Challenges in Mitigation: Perhaps the most significant was the economic structure of the domain registration industry, its ability to mitigate malicious registrations without fundamentally altering it. Stakeholders clearly state that a significant difference between large registrars, generally considered good actors on the Internet, and smaller registrars with a higher level of DNS abuse underscores the different aspects of this problem within different industry segments.
- Mitigation Strategies: The responses included different strategies, such as blocking orders from some regions or using software to monitor abusive activities.
 Recommendations were made on the role of education and outreach, including

relevant projects such as NetBeacon and Compass to report abuse and information on DNS abuse.

• Role of Transparency: Opinions on transparency were mixed since part of the respondents consider this positively because it is a tool that provides evidence to the industry in its fight against abuse, part of them consider it negatively as sensitive mitigation ways could be revealed. The impact of transparency was also elaborated on developments in relationships between all stakeholders, and there is in general agreement that transparency will increase understanding and teamwork through better communication on measures set against abuse.

Stakeholder responses significantly enriched the research by providing a detailed look at practical challenges and strategies in minimising DNS abuse. The responses not only offered valuable real-world perspectives, but also highlighted the importance of adaptive definitions, comprehensive mitigation strategies, and thoughtful consideration of transparency's role in the ecosystem. This analysis bridges theoretical knowledge with the experiences of those actively involved in mitigating DNS abuse.

4.3 Types of DNS Abuse Encountered

The stakeholder responses provided details of the most prevalent forms of DNS abuse that were being encountered within their specific ecosystem. These insights reveal a view of the various types of abuse, each of which poses unique challenges that require tailored mitigation strategies.

- 1. Phishing: Stakeholders identified it as the most prevalent form of DNS abuse and the most visible. In fact, the total number of phishing incidents observed through tools such as NetBeacon and tracked by Compass is a stark and singular metric of just how big and urgent the problem has become in the wider DNS domain.
- 2. Malware and Botnets: These also included malware and botnets, ie, multifaceted DNS abuses. Such abuses not only compromise the integrity of systems, but also present a security hazard to users and infrastructures in general.
- 3. Spam: It is now recognised as widespread, and stakeholders have pointed out the challenges of quantifying and appropriately addressing the relevant spam-related domains. Therefore, it makes spam elusive for existing mitigation efforts that raise the bar with respect to the pursuit of next-generation detection and response mechanisms.
- 4. Compromised CMS: Encounters with compromised content management systems (CMSs) have been referred to as common encounters. Consequently, such attacks are possible in cases of some other existing vulnerabilities in web platforms. This kind of

- abuse reinforces the need for strong web security control practices and the need for vigilance among platform operators.
- 5. "Water Torture" Attacks: Known as random subdomain attacks, they represent a more technical and sophisticated form of DNS abuse. These attacks not only disrupt normal DNS operations but also require advanced countermeasures to effectively mitigate their impact.

The varied nature of DNS abuse that stakeholders encounter underscores the fact that community efforts must continue to build on ongoing collaboration, innovation, and education to address these challenges effectively. This is derived from the experiences of stakeholders and forms a basis of paramount importance on which effective strategies and policies will be formulated in the mitigation of DNS abuse.

4.4 Challenges in Mitigation and Mitigation Strategies

The responses of stakeholders demonstrated details of the multifaceted challenges in mitigating DNS abuse, coupled with the various strategies used to address these issues.

- Economic and Technical Hurdles: A significant barrier identified was the economic structure of the DNS industry, characterised by low margins and high volumes, often limiting the resources available for robust mitigation efforts against DNS abuse.
 Stakeholders highlighted that about 80% of malicious domain registrations could be traced back to a mix of large, well-known registrars and smaller entities with disproportionately high levels of abuse. This economic reality complicates the implementation of effective mitigation strategies, underscoring the need for innovative solutions that are both cost-effective and scalable.
- Regulatory Gaps: The regulatory environment was also cited as a challenge, including poor, weak, or absent policies and enforcement mechanisms that could not effectively handle DNS abuse effectively. Stakeholders pointed out the necessity for clearer regulations and standards that can guide the industry's anti-abuse efforts more effectively.
- 3. Mitigation Strategies: Stakeholders have responded to this with a variety of mitigation strategies. They placed an emphasis on components of education, collaboration, and outreach to raise awareness and develop a social response to DNS abuse. Technological solutions such as abuse reporting intermediaries (NetBeacon) and measurement projects (Compass) that measure the Internet are vital in finding, reporting, and understanding abuse cases. Designed to improve reporting and mitigation, these tools can also capture essential data with a character that helps inform policy and regulatory responses.

4.5 Transparency in DNS Abuse Mitigation

The responses of stakeholders underscore the subtle perspective on transparency within the DNS abuse mitigation framework, highlighting both its potential benefits and challenges.

- 1. Benefits of Transparency: Increased transparency is widely recognised as a way to demonstrate commitment in the industry to defend against DNS abuse. It will encourage normalisation of mitigation efforts throughout the ecosystem, which means that proactive activity becomes more commonly adopted and attributed to a culture of responsibility and accountability. Transparency in reporting abuse metrics and mitigation outcomes can also enhance trust between users, regulators, and within the industry itself, promoting a unified approach to addressing DNS abuse. In addition, transparency is seen as a contributing element in improving understanding and cooperation among various entities involved in the DNS, including operators, registrars, registries, and regulators. By sharing information on abuse trends and mitigation strategies, stakeholders can better appreciate each other's challenges and contributions, leading to more effective collaborative efforts.
- 2. Challenges and Concerns: Stakeholders raised several concerns about the degree and manner of transparency. One point of concern is that some sensitive mitigation strategies could be exposed that, in turn, could serve as a support for malicious actors, allowing them to discover ways to detect and mitigate abuse. This fine balance between providing useful information and protecting operational integrity is a significant challenge for many in the industry. Furthermore, there is apprehension that increased transparency might lead to regulatory or legal consequences, especially if disclosures are mandated in a manner that does not consider the practical aspects of abuse mitigation. The stakeholders also mentioned operational challenges, such as the capacity to complete transparency reporting, given the current reliance on less formal mechanisms for reporting abuse and monitoring mitigation.
- 3. Strategic Approach to Transparency: Stakeholders advocate for a strategic approach to transparency that supports the goals of mitigation of DNS abuse without compromising the effectiveness of these efforts. This includes targeted transparency that focuses on aggregate data and trends rather than detailed disclosures of specific mitigation actions or techniques. Additionally, fostering an environment where sharing information does not lead to punitive outcomes, but rather supports collaborative improvement, is considered essential. Although the value of transparency for the mitigation of DNS abuse is considered high, stakeholders cautiously advocate that every step be done with care with regard to what, how, and to whom it shall be

disclosed. A balanced approach that improves the collective ability to address DNS abuse while safeguarding the methods used is crucial for the ongoing evolution of transparency practices in the industry.

4.6 Impact on Relationships within the DNS Ecosystem

Stakeholders pointed to a clearer potential impact on meaningful relationship building within their particular DNS ecosystems: greater transparency and mitigation. Better transparency is seen by creating a better understanding among different parties, for instance, among registries, registrars, and regulators about challenges and works against abuse, hence their collaboration and trust that improves combined efforts against abuse. However, this provision raises concerns that such transparency could get to the point of obstructing informal cooperation in general or actually reveal sensitive techniques from an operational standpoint detrimental to entities working together. Balance is a key element to ensure that these issues are addressed and that partners work harmoniously with each other within the DNS community.

4.7 Analysis and Data

The detached examination of stakeholders' emailed responses in regards to DNS abuse and its various connotations is reported herein. In relation to those themes, the following record the main important points.

Definition	Comments and Suggestions		
Supported			
ICANN Contracted	Endorses the ICANN definition for its clarity and actionability.		
Parties' Definition	However, it suggests that it may be too narrow and advocates		
	a more flexible framework to encompass evolving threats.		
	Points to a self-authored sophisticated way of defining harms		
	at the domain name layer, promoting adaptability.		
Critique of	Finds the ICANNwiki reference lacking, preferring the SSAC		
ICANNwiki	115 report definition for its broader applicability and recent		
Definition	adoption in RAA amendments.		
Mixed Views	While there's alignment with the existing categorical		
	definitions for practical reasons, there is a shared belief in the		
	necessity for definitions that evolve with emerging DNS		
	threats. The discussion indicates a desire for a balance		
	between categorical clarity and adaptability to new forms of		
	abuse.		

Table 4.1: Varied Definitions and Understandings of DNS Abuse

Type of DNS Abuse	Frequency Mentioned	Stakeholder Comments
Phishing	Most Common	Identified as the primary concern
		across responses, significant
		impact observed.
Compromised CMS and Confusable Domains	Frequently Mentioned	Highlighted as a prevalent issue
		alongside phishing and other
		platform abuses.

Table 4.2: Types of DNS Abuse Encountered

Challenge Type	Stakeholder Insights	Suggested Solutions	
Economic	High volume, low margin	Calls for industry-wide	
	business model impedes	collaboration and support.	
	anti-abuse efforts.		
Regulatory Gaps	Lack of clear regulations	Advocates for establishing	
	complicates mitigation	and following industry-wide	
	efforts.	best practices.	

Table 4.3: Challenges in Mitigating DNS Abuse

Strategy	Description	Stakeholder Feedback
Blocking Orders	From certain regions to	Implemented alongside
	mitigate abuse.	other criteria to make
		services less appealing to
		abusers.
Education & Collaboration	Outreach to improve	Viewed as essential, with
	awareness and cooperation.	a need for more systematic
		implementation.

Table 4.4: Mitigation Strategies Employed

Aspect of Transparency	Benefits	Concerns
Reporting Abuse Metrics	Enhances trust and	Risk of exposing sensitive
	accountability in the	mitigation techniques if not
	ecosystem.	managed carefully.

Table 4.5: Transparency in DNS Abuse Mitigation

Relationship Aspect	Positive Impacts	Potential Challenges
Between Entities	Improved understanding	Concerns about
	and collaboration from	competitive sensitivity
	shared data.	and operational integrity
		could limit openness.

Table 4.6: Impact on Relationships within the DNS Ecosystem

In analysing the data from the stakeholder responses, a thorough examination of DNS abuse has been carried out. The stakeholders, deeply embedded in the DNS ecosystem, provide valuable information on the definitions and manifestations of DNS abuse. They highlight phishing as the most common and worrying type, with compromised CMS and confusable domains also noted for their prevalence. Challenges in mitigation are primarily related to economic factors and regulatory gaps, where the structure of the industry alters mitigation abuse actions and the lack of clear regulations muddy the waters. Mitigation strategies like targeted blocking and collaborative education are in play, though their implementation faces hurdles due to the industry's focus on throughput and the capacities of various entities. The role of transparency is acknowledged as double-edged; although it could foster accountability and trust, there is a risk that bad actors exploit sensitive techniques. Stakeholder experiences and strategies contribute to a deeper understanding of DNS abuse, suggesting the need for a multifaceted approach that involves adaptation, collaboration, and a careful balance of transparency.

5 Implementation

This chapter focuses on practical implementation with respect to the Domain Legitimacy Checker. The multiviewed approach, along with programming in Python and the web framework in Flask, HTML, CSS, JavaScript, on the side of external APIs, assisted greatly in making a resilient framework for DNS abuse detection and transparency improvement. With these alternatives, I came up with this simple but effective way not just of finding legitimacy in domain names, but also of showing plainly and clearly the various tactics with which bad actors are using in the adoption of confusable domains for phishing and malware distribution, along with other malicious activities to help me with my research. This endeavour embarked on a journey from the idea to execution, focusing on a user-friendly web interface that allows users to quickly identify potentially malicious domains.

5.1 System Overview

Domain Legitimacy Checker is such a robust web-based platform that is tasked with the identification and analysis of domain names that can be malicious. The user first initiates domain name requests through the user interface. This request is processed by the Flask-based web server that orchestrates the core operations of the system. Domain Analysis Engine is meant to perform an analysis on DNS abuse patterns exhibited by the submitted domain using heuristics and pattern matching algorithms. For a deep check, the system queries external APIs such as VirusTotal for additional checks of legitimacy. The results of such checking are kept in a database as well, which gives out the history of known malicious domains. Finally, the Results Display component gives control of the results back to the user. Figure ?? provides an illustrative view of the architecture of the software system design and the information flow.

Figure 5.1: Domain Legitimacy Checker

5.2 Integration

5.2.1 Backend Implementation

The server side: Python on the Flask framework was used for implementing this side. The server works better with a solid web server in case you are time pressed because the learning curve on Flask to make it implement is not that steep. The Flask application is set to work through a series of endpoints, each of which corresponds to a set of functionalities with respect to the system, among which is an endpoint for submitting domains to ascertain the results of their analysis. A request comes into the Flask server, and for any incoming given request, it simply calls the indicated function to handle the process relevant to the request: a process to parse the input data, to start domain checks, or to respond with the check results.

API & library: The Domain Analysis Engine forms the main core within the backend, responsible for DNS abuse detection. This is realised by creating some of the changes that the submitted forms of domain names have so that possibly malicious or confusable counterparts are recognised with the assistance of pattern recognition algorithms. In addition, the development leverages libraries and packages such as "dnspython" and requests to conduct the queries to DNS and "request" APIs with respective libraries. This system communicates with external APIs such as "VirusTotal" in order to perform legitimacy checks, whereby the fact is made up for carrying out thorough analysis and reliable detection of malicious domains.

Figure 5.2: Domain Legitimacy Checker System Interaction Workflow

5.2.2 Frontend Implementation

Web Interface: HTML was used and then styled with CSS, and fine-tuned with Bootstrap, the user interface has responsiveness built in and is very user-friendly for use, regardless of the device that it is being used on. The interface is user-friendly, from submission of the initial domains easily, to displaying results, intending an automatically flowing process designed simple for the layman.

Interactive elements: JavaScript is used to bring in interactivity to most of the pages, mostly through the main.js file, bringing the most important interactivity to the web app domain submission pages. These respects real-time, giving feedback even for the submission of domains, for instance, changing the text of the submission button to "Analysing." and avoiding its swarming with submissions. These dynamic elements in the front-end make the process of domain analysis even more visually responsive, which increases users' engagements and trust in how the system processes.

Figure 5.3: Domain Legitimacy Checker

5.3 Tools & Technologies

The Domain Legitimacy Checker was built using a carefully selected stack of tools, languages, and platforms. The primary language chosen was Python, valued for its readability, comprehensive standard library, and wide range of third-party modules that facilitate rapid development and integration with other systems. As a result, the decision was made to stick with Flask as an interactive back-end web framework, since, in connection with its extremely light character, it is easily scalable in nature. Though designed very simple, it is versatile enough to really cover all major issues regarding painful threads of HTTP-requests processing. For the front-end, HTML5 was the markup language of choice to structure content on the Web, while CSS3 was used for styling to ensure a modern and engaging user interface. Bootstrap, a widely used front-end framework, was integrated to accelerate responsive design, allowing the interface to adapt to various device screens without extensive custom code. It is very important to ensure that a system runs smoothly by making the development of dynamic and interactive web pages using JavaScript. In the system, the scripting at the client side has used plain JavaScript so that it may maintain simplicity and hold onto any control over all the behaviours implicated. The dnspython library provided the tools necessary for DNS queries, allowing the system to interact with DNS records, an essential feature for checking domain registration status. To perform external checks for domain legitimacy, the request library facilitated communication with external APIs, such as VirusTotal, renowned for its extensive database and reliable threat analysis.

The VirusTotal API was used because of its comprehensive scanning capabilities, which take advantage of a multitude of antivirus engines and website scanners to assess the security of a domain. The scope of its scanning will come from thousands of antivirus engines and websites that will check if the domain is safe to browse or download. Equally important in the system is the ability to establish the analysis of a wide spectrum of potentially abusive domains. VirusTotal searches for a record of whether the supplied domain has been blacklisted before for hosting phishing sites, spreading malicious software, or, in general, being accessed for carrying out other suspicious actions. Such a dataset is to be found within the very repository of the API, thereby making available unmatched data and accuracy for threat detection, hence by and large enhancing the capability of this system in terms of protection against DNS related cyber threats.

Each tool and technology were chosen not only for its individual merits, but also for how well it integrated with the others, ensuring a cohesive and efficient system aligned with the project's objectives of DNS abuse detection and transparency.

5.4 Visualisations

The interface and layout of the web page have been designed for ease and smooth transition with users. The interface was specially designed by which our users can easily verify whether the domain is legitimate. As with all its applications. Upon loading, the domain legitimacy checker presents itself with a very neat and simple layout. The hero section comes with the name of the application. The domain name input field is at the heart of the page, which requires the user to type the domain url they wish to analyse. Once a domain is submitted, the system springs into action, processing the input through various checks and analyses. The server logs these interactions, as seen in subsequent visualisations, ensuring that every step of the process is recorded for performance monitoring and optimisation.

Figure 5.4: The main interface of the Domain Legitimacy Checker

5.4.1 Input & Interaction

The Domain Legitimacy Checker Tool provides an intuitive and streamlined place for interaction with users to ensure a seamless experience. The domain input method, a single-field form intended for simplicity of use and quick analysis, is at the centre of this interaction.

Figure 5.5: The domain input box where users begin their interaction with the Domain Legitimacy Checker.

First, the user is asked to enter a domain of their choice and to put it in a text box, minimally styled to not distract but to point the user's focus in performing the task. Right next to the text box is the "Analyze" button, contrasting with blue to stand out visually and identified for the user as the next step to take in the process. This design invites immediate action upon domain entry, providing a clear path from user input to results.

Figure 5.6: The 'Analyze' button, poised for user action after domain entry.

The user's request to check a domain is initiated as soon as a domain is entered into the 'Analyze' field and the button is hit: a series of background checks are run to understand the eligibility of the domain. It is at this point with the changing request of the user that his request is no longer an action but a graph analysis that is being done by the systems running in the back end.

5 4 2 Interactive Features

The programme comes with an interactive interface; the user is engaged in all the steps from entering a domain for analysis to receiving the results. In fact, starting from the second users have done submitting a domain for analysis, this very step will start a circle of HTTP-requests, which the server logs with great care. These logs are dynamic, real-time visualisations of user-server interaction rather than just recordings.

The moment a 'click' on the 'Analyze' button happens, the server instantly receives a 'POST' request through the endpoint '/check', which notes that the action marks the start of the domain analysis. On a successful request, a '200' status cookie is returned to signify a successful search. Such types of interaction go down as entries into the server log, forming a very critical and highly detailed timeline of activities.

```
127.0.0.1 - - [13/Mar/2024 14:15:48] "GET / HTTP/1.1" 200 -
127.0.0.1 - - [13/Mar/2024 14:15:48] "GET /static/style.css HTTP/1.1" 404 -
127.0.0.1 - - [13/Mar/2024 14:16:07] "POST /check HTTP/1.1" 200 -
127.0.0.1 - - [13/Mar/2024 14:16:11] "POST /check HTTP/1.1" 200 -
127.0.0.1 - - [13/Mar/2024 14:16:11] "GET /static/styles.css HTTP/1.1" 404 -
```

Figure 5.7: Server log entries capturing real-time HTTP requests and responses

If there is any issue, these logs are highly important, for example, in the case of "404 - Not Found" error in the requested resource. They not only instantly inform system administrators what might have gone wrong, but also act as hints for such troubleshooting. Log analysis allows an administrator to automatically correct problems.

5.4.3 Results Display

The Domain Legitimacy Checker displays the findings in an easy-to-understand style after the completion of the domain legitimacy research. Every domain has an icon next to it; an exclamation point indicates that the domain is possibly harmful, and a checkmark indicates that the domain is not malicious. The initial level of result interpretation is this instantaneous visual feedback, which enables users to assess domain safety rapidly.

Figure 5.8: visual indicators showing the legitimacy status of analysed domains.

For domains identified as malicious, the interface unfolds additional information, providing a breakdown of the detected security threats. The findings of each scanner are listed beneath the domain, revealing the specific categories of malicious activity identified, such as malware, phishing, or other security threats. This level of detail is not only informative but also actionable, guiding users on potential next steps for mitigation or further investigation.

5.4.4 Navigating Results

After the results from the domain check come back, the Domain Legitimacy Checker would then allow the user to easily explore more domains that interest them. It normally does this through a button that shows prominently on the interface for this function and which simply says "Check Another Domain." Basically, this re-engages the user with the input interface.

Check Another Domain

Figure 5.9: The 'Check Another Domain' button

This iterative process is another valuable characteristic of the user journey, so it can be continued non-stop right on the search results page. This squarely builds on the design philosophy of the tool, that of making the user capable of doing as many searches in as lean a manner as possible, fostering an environment of proactive web security.

5.5 Challenges & Solutions

During the development of the Domain Legitimacy Checker, I faced several challenges, each requiring a tailored solution to ensure the project's success.

Challenge 1: API rate limit The frequent use of the VirusTotal API presented a challenge due to its rate-limiting constraints. Exceeding the allotted number of requests would lead to temporary blocking of our service.

Solution: Implement a queuing system with a delay mechanism to spread the requests over time, adhering to the API's rate limits. Additionally, we cached the results of previous queries to minimise repeat requests for the same domains.

Challenge 2: Real-time Feedback for Users, therefore, is very important to give very instant feedback in the process of the domain analysis, but was otherwise very hard to prove because of the asynchronous behaviour, in principle for network operations.

Solution: Using asynchronous JavaScript to send information to the servers and receive results from them without refreshing the web page.

Challenge 3: Handling Malicious Domain Variations Identification and generation of a full set of confusing domain variations represented a key computational challenge.

Solution: Using a combination of common substitution algorithms and a heuristic approach, which prioritised variations based on their likelihood of being used in phishing attacks.

Challenge 4: Data Storage & Retrieval Efficiency Storing analysis results for quick retrieval while managing database performance was a concern, especially with the growth of the data set.

Solution: implementing a real-time domain analysis system with external APIs for comprehensive domain validity checks and creation of algorithmic domain variations to assess potential security risks.

Challenge 5: System Scalability As the system's user base grows, so does the load on our servers, which initially led to concerns about scalability.

Solution: The system was designed with scalability in mind, using Flask's built-in capabilities to handle an increasing number of simultaneous user requests.

By addressing these challenges with careful planning and adaptive solutions, we improve the reliability, performance, and user satisfaction of the system.

5.6 Testing & Validation

The domain legitimacy checker follows rigorous measures in testing the system, which ensures both dependability and accuracy. In the implementation, the back-end logic had a number of things implemented with unit tests; we have used the Python unittest framework. We use mock objects to simulate the acts of external APIs.Manual and automated tests were performed in front-end technologies. Automated UI testings, such as those with Selenium, were relied upon to ensure that all interactive elements are operable. The interface has been tested both automatically and manually, with the help of loading a page on a few browsers and mobile devices to ensure that the interface is responsive and behaves similarly. Continuous Integration (CI) pipelines was set up so that every time a new code commit passes to run tests, ensuring that newly made changes do not break existing functionalities automatically.

6 Evaluation & Discussion

In this chapter, I will focus on evaluating and discussing two forms of DNS abuse, which are confusable domains and phishing due to their popularity among bad actors by testing and validating them. I will dive into real-life examples to illustrate the severity of these threats and examine existing mitigations and techniques used to mitigate them to test how well my project met the objectives. Additionally, I will propose to improve transparency around these mitigation strategies to foster accountability and trust. Through analysis, I will assess the feasibility of implementing such transparency measures by performing an analysis using data and evidence. Finally, I will address the limitations of my work. This comprehensive approach aims to provide information on how to effectively address DNS abuse while promoting transparency in the process.

6.1 Confusable Domains

6.1.1 Identification & Examples of Targeted Domains

The choice of such domains to target and outsource depends on many factors, each with its implications on business strategy, marketing, and law enforcement. The selection of these domains hence matters a lot in creating potential conflict, especially those related to existing trademarks. Understanding these selection criteria is very important in trying to negotiate the hurdles of the digital market and in protecting rights through intellectual property. To navigate these complexities effectively, it is essential to consider several key factors.

- Commercial Appeal: High commercial appeal domains are lucrative targets due to the extremely high possibility of attracting a large traffic flow, with potential revenue generation and used for blackmailing purposes in which they demand payment to relinquish the domain. Such names are easy to remember, short in length, and are directly linked to products or services in a category that is searched most frequently ?.
- **Keyword Relevance**: Targeted domains have a certain relevance that holds the keyword itself. These domains are ranked higher in search engine outputs and attract organic traffic, making them a useful tool for businesses aiming to align with the

- primary keywords used by their target customers in which they are targeted because they generate a huge amount of clicks.
- Similarity to Well-known Trademarks: This refers to the practice of registering domains that are similar or confusingly similar to existing trademarks known as cybersquatting. This can lead to confrontations with the rightful trademark holders. Trademark law aims to prevent consumer confusion and protect the goodwill associated with the trademark, particularly in disputes over domain infringement.

6.1.2 Real-life examples

- Cybersquatting: is securing domain names that are the same as or in the likeness of trademarks or brand names, with the intent to sell them at grossly marked-up prices back to the target, showing ads which bad actors benefit financially from clicks generated by users who visit the site expecting it to be associated with the target, harvesting emails and redirecting to malicious websites. Perhaps the best example in that respect was one of the largest dairy product companies in India, Amul. In the financial year 2019-2020, the turnover that was taken into account through Amul was staggering, to say the least. During this period, the company was a target for cybersquatting, where some bad actors had registered similar domains impersonating Amul. These had been used for constructing several phishing sites to further various fraudulent schemes such as solicitation of payments under the pretext of distributorship of Amul products and also of securing jobs in Amul. This operation, which was active between 2018 & 2020 then finally came down to a public warning and additional law actions by Amul to deal with fraudulent activities happening in these domains. Such abuses in the domain name system expose even long-established brands to threats and show the relevance of legal action and public awareness activities to resolve them ?..
- Typosquatting- URL hijacking: it deals with the registration of misspelled variants of well-known domain names for the mere purpose of capturing traffic from users who tend to make mistakes in typing a URL. They could register "goggle.com" instead of "google.com", which was used to direct users to a site that bombarded their browsers with pop-ups and ads, leading to malware infections as that site was designed to capitalise on accidental misspellings or phishing attempts that tricked users into visiting? An example in December 2020, US healthcare provider Elara Caring suffered a major cyber incident that brought into sharp perspective the vulnerabilities lying at the heart of healthcare's cybersecurity framework. The incident was initiated by gaining unauthorised computer access to email accounts of its staff and resulted in breach of personal data for more than 100,000 elderly patients. Compromised information included almost every variety of personally identifiable data,

from their financial details to Social Security numbers. The attacker, despite being detected, remained in the system for a week, which may be a signal that the incident response could be better?

• Reverse Domain Name Hijacking: is the act of trademark owners trying to take a domain away from its rightful holder based on the claim of trademark rights, considering that he holds a bona fide registration over the said domain. It may also be described as the use of legal or dispute resolution mechanisms to try to force people from their domains?. An RDNH was claimed in a UDRP action against "groovle.com," in which the domain was purported to be too close to Google's trademark. However, since the domain was used for another search engine, it was deemed legitimately used and did not violate Google's trademark or be registered in bad faith?.

6.1.3 Homograph attacks

The threat of a homograph-based attack weaponising visually similar characters to swindle people persists. This is also true when attackers register domain names to appear like reputable ones, such as when the Latin letter 'I' (lower case "el") is visually confusable with the Latin latter with 'I' (upper case eye), and so on. Such as http://www.paypal.com vs. http://www.paypal.com. Latin character homographs were traditionally used up to now, though with the advent of International Domain Names there are many more possibilities. Although this rising trend suggests a higher potential for such attacks, current data say that they are not very prevalent. Vigilance is, however, important due to the increasing trend in phishing incidents and the ease with which users can be diverted to suspicious sites.

For example, a new study measures homograph attacks on Internet users: "Cutting through the confusion" explains the growth and potential impact of such attacks? The current study tries to measure how attackers are able to register domain names having visual similarity with respect to those which are legitimate and authoritative by using confusable characters during phishing. These confusable characters, though seemingly similar to the letters in the authoritative domains, are actually characters different from one another or come from multiple scripts like Cyrillic or Greek, represented in web browsers using punycode to maintain a consistent user experience. This study is summarised in a table of possible confusable domain names, the count of the actual number of confusable domain names they found available and the authoritative domain names. For example, 'yahoo.com' has more than 5000 possible confusables but has been registered two. Another instance is "google.com", with a thousand possible confusables yet registered 4. These confusable domains often contain punycode in their web address, which is not immediately recognised at first glance by the average user.

This table will be added in order to clearly show, by means of a graphic illustration, the scope and scale of homograph attacks, which point to the potential risks that these attacks could pose to online security and the awareness and mitigation strategies that need to be put in place for protecting internet users from such deceptive practices. Its noteworthy contribution will be added to the body of knowledge about how homograph attacks are leveraged and their prevalence across various high profile domains.

rank	authoritative domain name	# possible confusables	# registered confusables	confusable names (confusable characters underlined, IDN punycode in parenthesis)
1	yahoo.com	5,202	2	y <u>a</u> hoo.com (xnyhoo-53d.com), yah <u>@</u> o.com
2	msn.com	12	1	msn.com (xnmn-eoc.com)
3	google.com	1,156	4	g@ogle.com, go@gle.com, g@og1e.com, go@g1e.com
6	passport.net	19,584	1	passp <u>0</u> rt.net
8	ebay.com	252	2	ebay.com (xnbay-qdd.com), ebay.com (xnby-7kcs.com)
11	microsoft.com	48,552	5	microsoft.com (xnmicrosft-qbh.com), microsoft.com (xnmicrosft-sbh.com), microsoft.com (xnmicrsft-djgb.com), microsoft.com (xnmrft-65das6nf.com), microsoft.com
12	amazon.com	3,672	1	amaz <u>o</u> n.com (xnamazn-mye.com)
18	fastclick.com	1,344	0	
20	aol.com	204	2	aol.com (xnal-jbc.com), aol.com (xnal-fmc.com)
22	go.com	17	0	
102	bankofamerica.com	25,909,632	1	bankofamerica.com (xnbnkofamerica-x9j.com)
980	paypal.com	3,456	4	paypal.com (xnpypal-4ve.com), paypal.com (xnpapal-fze.com), paypal.com (xnpaypl-7ve.com), paypal.com (xnpyal-53d1h.com)

Figure 6.1: confusables registered for popular domains, adapted from ?.

6.1.4 Real-life Mitigations

The following scenarios are examples of real-life confusable domain mitigations:

• Cloudflare's Zero Trust Services Approach: Protection from this problem of newly created phishing websites is given by Cloudflare itself with its protection in the form of Zero Trust services, finding these websites, and blocking confusable domains. Cloudfare zero-trust rules can be enforced using Cloudfare Gateway in a way that they deny access to these illegitimate domains. In this way, corporate networks are supposed to be protected from phishing attempts that take advantage of human trust in well-known brands? Cloudflare's Zero Trust services enable a proactive approach to blocking confusable domains, which are important to avoid serving phishing sites. In particular, this mitigating measure will be triggered on the first query that involves any domain that is made through the 1.1.1.1 DNS resolver. Such queries will be inspected by the system and checked against a list of possible phishing domains through a "fuzzy" matching protocol. If the domain matches any of the saved patterns for legitimate brands, then Cloudflare's service will throw an alert. This method used by the server ensures that any domain trying to impersonate a known or respectable brand is detected as soon as it happens, in which it provides both real-time monitoring

and the capability to search into a historical archive of those domain names, by notifying a security team about new domains observed during the last 30 days that match their saved patterns. This enables a direct review and instant additional taking actions by this domain. The system can also be used by Cloudflare for a special investigation in a one-time domain search for some specific domain or pattern, which might become potentially dangerous from a security point of view.

• IDN Handling of Google Chrome: Google Chrome enforces an IDN (Internationalised Domain Names) policy to determine which Unicode or punycode form a domain label should be displayed in. The domain label is tested to determine whether it has mixed script, invisible characters, or visually confusable characters, and whether it is actually validly converted to Unicode. For instance, domains containing characters of different scripts, or those that are clearly identified as mixed script confusables, will be displayed in punycode, warning the users of potential deceptions. Chrome also offers comprehensive warnings for secure URLs that appear to be an imitation of already known web pages ?.

In addition to what I mentioned above, let us look at the most popular mitigations used world-wide :

- 1. Typosquatting Detection Tool: Tools such as DNStwist and URLCrazy are used to offer organisations similar domain names so that they can either secure these domain names in advance or file litigation for the same.
- 2. Anti-Phishing Working Group (APWG): It is a pool for stakeholders to share intelligence, trends and best practices regarding phishing and similar threats associated with confusable domains in which mitigation is carried out in collaboration action between cybersecurity entities and domain registrars, as it allows sharing of threat intelligence with respect to or cancelling out the holding of malicious domains.

6.1.5 Techniques for Mitigating Confusable Domains

Mitigating confusable domains requires sophisticated techniques tailored to address the unique challenges presented by both non-Internationalised Domain Names (non-IDNs) and Internationalised Domain Names (IDNs). This differentiation is significant due to the distinct nature of the threats they pose and the technical feasibility of the mitigation strategies applicable to each. The following is a detailed examination of mitigation techniques, along with discussions of the operational feasibility and potential collaboration frameworks involved.

Non-IDNs Mitigation Techniques: Strategies focus on identifying and mitigating domain squatting and typo-squatting, where attackers register domains that are typographical errors

or close variants of legitimate domains to deceive users.

- 1. Registry-Level Measures: Domain registries can implement checks to prevent the registration of domains that are similar to existing trademarks or brand names, using algorithms to detect variations and misspellings closely resembling protected names. ?
- 2. Trademark Protection Programs: Services like the Trademark Clearinghouse (TMCH) offer mechanisms for trademark holders to protect their rights by receiving notifications when someone attempts to register a domain matching their trademark. ?
- 3. Automated Monitoring and Reporting: Automated systems can continuously monitor domain registrations for names that closely resemble known trademarks or brand names, enabling rapid detection and legal action against infringers. ?

IDNs Mitigation Techniques: The challenge with IDNs lies in the potential for homograph attacks, where attackers use characters from different scripts that appear visually like characters in the Latin script to create deceptive domains.

- 1. Punycode Awareness and Monitoring: Web browsers and security tools convert IDNs to punycode, a representation that encodes Unicode characters in ASCII. Awareness of punycode and monitoring for suspicious registrations can help identify potential homograph domains. ?
- 2. Browser-Level Defenses: Modern web browsers have implemented defences against IDN homograph attacks by displaying the punycode version of the domain or alerting users when a domain name contains characters from multiple scripts. ?
- 3. Collaborative Blacklisting and Sharing of Threat Intelligence: Organisations can collaborate to share information on known malicious IDNs, contributing to comprehensive blacklists that can be used by registrars, DNS providers, and end-users to block access to malicious sites. ?

However, ICANN plays a pivotal role in the detection of confusable domains as it detects confusable domains, especially with respect to Internationalised Domain Names (IDNs) but also it does not provide a direct list publication on confusable domain, just like the other gTLD registries. Instead, they tend to develop frameworks and guidelines to manage threats related to IDNs and name collisions. This will involve the development of protocols regarding how the processing of internationalised domain names would be done and how the impact that name collisions may possibly have on the domain name system is minimised. ?

People detect Internationalised Domain Names (non-IDNs) and Internationalised Domain Names (IDNs) using comprehensive domain, IP and DNS intelligence tools. Tools that can do so, such as those offered by services like the WhoisXML API, help check domain names for the presence of suspiciously similar domains that could potentially confuse or deceive

consumers. An IDN deceptive score is given by means of an algorithm to such types of domain that take into account visual similarities, brand names, and TLD features to see if a domain name is being prepared for deceptive purposes. This approach has proven to be effective in academic research projects in identifying misleading IDNs in millions of domains distributed across various top-level domains. ?

6.1.6 Transparency in Mitigation Efforts

Transparency in the mitigation of confusable domains plays a pivotal role in the broader strategy to secure the Internet against phishing attacks, trademark infringement, and other malicious activities. This concept entails the practices adopted by domain registries and registrars in identifying potentially malicious domains that mimic or closely resemble legitimate ones and the extent to which these entities disclose identified confusable domains to the public. One of the primary methods to improve transparency involves the publication of lists of confusable names by registries and registrars. These lists typically include domains flagged for similarity to existing domain names, potentially infringing trademarks, or those that could be used for malicious purposes. The publication aims to alert the internet community, including businesses and end users, about possible threats, thereby fostering a proactive approach to domain name security. Here is how transparency can be applied to each of the mitigation techniques described:

- Cloudflare's Zero Trust Services Approach: Cloudflare's process for identifying and blocking confusable domains should be transparent to its users. This includes detailing the criteria for flagging domains as phishing sites and the mechanisms in place for users to appeal or request a review of blocked domains. By openly sharing the methodology behind their zero-trust rules and how they are applied through the Cloudflare Gateway, trust in Cloudflare's protective measures is bolstered among corporate networks.
- IDN Handling of Google Chrome: Google's approach to displaying domain names in Unicode or punycode based on their potential for deception benefits from transparency about its IDN policy. Detailed explanations of the checks performed (e.g., mixed script detection, invisible characters) and how decisions are made improve user understanding and awareness of potential threats. Furthermore, publishing information on how users can report misclassified domains or suggest improvements to the IDN policy can further empower users and foster a safer Internet environment.
- Typo-squatting Detection Tools: The effectiveness of tools like DNStwist and URLCrazy in helping organisations identify potential confusable domains relies on transparency on how these tools generate similar domain names and the criteria used for detection. Openly sharing updates, methodologies, and case studies can help

organisations better understand how to use these tools proactively.

• Collaborative Efforts and Intelligence Sharing: The partnership between cybersecurity entities and domain registrars, as well as initiatives such as the Anti-Phishing Working Group (APWG), should prioritise transparency in their operations. This includes the sharing of methodologies for threat detection, the criteria for taking action against malicious domains, and the processes for stakeholders to contribute or access shared intelligence. Transparency in these collaborative efforts ensures that actions taken against confusable domains are fair, understood by all parties involved, and supported by a broad community of internet security stakeholders.

• Transparency for non-IDN registries :

- 1. Registry-Level Measures: Transparency in level-registry measures becomes a necessity if trust has to be kept between registrants and domain trademark owners. They are published criteria and algorithms used to find variations and misspellings of names submitted for protection. Making these publicly available can then ensure fairness, and feedback in detecting mechanisms is therefore paved for improving them.
- 2. Trademark Protection Programmes: Services such as those of a Trademark Clearinghouse (TMCH) should operate with full transparency regarding the conduct of verification, matching, and notification. This can help trademark holders by demonstrating transparent guideline procedures that show both the rights of trademark holders and what needs to be done to effectively protect their brands.
- 3. Automated Monitoring and Reporting: Automated monitoring systems must be built with predefined criteria, algorithms, and thresholds that potentially support the participation of stakeholders. It also makes sure that the brand owners are aware to what extent his trademarks are protected and thus allows for some parameters within such services, making the monitoring more successful.

• Transparency for IDN registries :

- 1. Monitoring and Identifying Measures for Suspicious Punycode Registrations: All domain registrars and trademark owners, together with security professionals, must adhere to measures on suspicious punycode registrations. Publicising the details of activities carried out to monitor them propagates homographic threats through collective ideas, also in their identification and mitigation.
- 2. Browser-Level Defences: A good web browser should play the most critical role in protecting against IDN homograph attacks. Browsers must document, provide, and communicate their defence mechanisms in a clear and plain manner to users.

For instance, they should indicate when a domain is being displayed in puny code or the scenarios under which their warnings are triggered. This can only give a user assurance if there is transparency as a rationality measure for them in such defence measures to be able to rationalise the triggering of any warning and know what action to take.

3. Collaborative Blacklisting and Shared Threat Intelligence: Processes for the addition of domains to blacklists and criteria that determine whether a domain is to be considered malicious should be examined. Organisations that implement an intelligence sharing regime also need to have some rules on data submission and validation and data disposal from blacklists. Transparency in these processes can best ensure that blacklisting is done fairly and accurately and allows the right of appeal, improving trust in collaborative security.

In summary, transparency in all these mitigation techniques not only builds trust between users, developers, and organisations, but also enhances the collective ability to respond to and prevent threats posed by confusable domains.

6.1.7 Analysis: Feasibility & Practical Challenges

- 1. Automated Monitoring and Reporting: Feasible; Technology exists to automate monitoring, even though the refinement of algorithms to decrease false positives and negatives from human review can probably not be undertaken with existing resources.
- 2. Punycode Registration Monitoring: Feasible; This option is feasible and will mainly require the use of existing technology and cooperation that could be initiated with little difficulty between relevant stakeholders.
- 3. Blacklisting and Threat Intelligence Sharing: Moderately Feasible; Since agreement could be reached on shared platforms and protocols, but they imply strong cooperation and trust among such diverse entities, which is unlikely to be developed fast.
- 4. Registry-Level Measures: Not Feasible; this would require very heavy coordination and agreement on standards across diverse jurisdictions and registries, very complex in nature and long drawn.
- 5. Trademark Protection Programmes: Moderately Feasible; They are well-functioning processes under such adequate structures like TMCH and can be learnt while proceeding with experience, but likely to face legal and operational issues.
- 6. Browser-Level Defences: Not Feasible; While this is technically feasible, it seems rather infeasible soon that user practices will become uniform across all web browsers and that all users will be well trained in various security practices.

- 7. Cloudflare's Zero Trust Services Approach: Feasible; since well-architected infrastructure and broad adoption have made Cloudflare zero-trust rules simple and effective to deploy, with a balance of security and operational efficiency without seismic root and branch changes.
- 8. IDN Handling of Google Chrome and Browser-Level Defences: Feasible; Given that Chrome today has an enormous user base and that the groundwork for stopping homograph attacks already exists, it stands to reason that a solution is reasonably possible, meaning not too difficult, within a set timeline, and within the lifespan of any other typical software product.

6.2 Phishing

6.2.1 Real-life examples

Phishing, a cybercrime in which targets are contacted by email, telephone, or text message by someone posing as a legitimate institution to lure individuals into providing sensitive data, has become increasingly sophisticated. Two notable examples include:

- 1. InterMed and Spectrum Healthcare Partners fell for a major phishing attack on 44,000 patient data. A Portland-based health care provider, InterMed, could have put the security of 33,000 protected health information (PHI) of its patients at risk due to an attack detected on September 6. The attackers were in the system from September 4 through September 10. The compilation of revealed information included and was not limited to names, dates of birth, health insurance information, and even clinical information accompanied with exposed social security numbers in some cases. In other data breaches, Central Maine Orthopaedics issued a report affecting 11,308 patients within their service area by the Spector Healthcare Partners group. Obviously, unauthorised access to emails gives some glimpses of their patient names, date of birth, addresses, and clinical information. This is truly a bad reflection in the middle of an upswing of threats towards health data security, and thus, peremptory steps are required, not just in respect of strengthened security of emails, but in the deep training of support professionals in the best practices ?
- 2. In a breathtaking cyber fraud case, both Google and Facebook were almost swindled out of nearly \$ 100 million each via increasingly advanced phishing attacks in less than two weeks. In fact, the fake emails were near-identical replicas of real invoices that had been sent by actual suppliers, such that trust and daily procedures were abused in making huge money transfers to fraudster-controlled accounts. This incident is only a portrayal of the vulnerability of highly developed technological research firms to social engineering, which calls for tightening of security measures, constant training of

employees, and verification of threats that have evolved in cyberspace?

6.2.2 Real-life Mitigations

- Employee Awareness & Training: Very affirmative in the number of ways a phishing activity is carried out, and the training programme prepared through simulation scenarios for the employees, the Chelsea Technologies employee education policy can be said to be the most significant. It is an inevitable approach, as in most cases employees contain the credentials and knowledge that drive the breach to succeed. Keeping employees up-to-date on the different methods of phishing, for example, spoofs and malicious attachments, helps them in the protection of sensitive information?
- Comprehensive Security Measures: LaptopMD points out that the risk of ignorant searches requires the formulation of policies that make it difficult to land on some sites. In addition to this, the awareness of phisher techniques and browsing issues by employees will greatly save them from being caught in cases of phishing?.
- Technological & Human Factors: Each SecureHIM security approach comes with layers of added security between them, from technological tools such as spam filters and two-factor authentication to staff. It identifies the suspicious link, abstains from clicking on it, and maybe even some browser add-ons that allow one to easily skip some dangerous links. This underscores the fact that technological peripherals and informed employees are crucially needed to provide an effective defence against phishing attacks?
- Awareness against unsolicited emails: The Centre for Democracy and
 Technology (CDT) outlines some of the best practices in recognition and act to
 mitigate phishing; they include the sense of making urgent and unsolicited emails with
 poor headers, poor links, refusing to reply, open, or click on anything. The next
 emphasis is to train users on the awareness of phishing by setting avenues for reporting
 all suspicious messages?.

6.2.3 Techniques for Mitigating Phishing

Current phishing attack mitigation techniques focus mainly on preventing phishing emails from reaching users' inboxes and discouraging users from accessing phishing websites ?.

1. Email Filters: Advanced algorithms are used to identify phishing emails based on a predetermined set of attributes, such as the reputation of the sender, links embedded in the body of the email, and keywords flagged as associated with phishing are

prevented from reaching the inbox.

- 2. Domain blocking: The first step at an organisational level to make the phishing site not openable by users accidentally is applying domain-blocking measures whether access to the known phishing website from inside an organisation network, this usually inhibits access.
- 3. User Training: It is important that users are trained directly and reminded of any danger they are facing. Training users will require development along the lines of sensing signs in phishing emails, risk taking such as clicking on unknown links, or giving away personal or sensitive information.

The introduction of the Situational Crime Prevention Approach (SCP) ?, which is an idea to understand the detailed thinking process of the offender and the attributes in the environment that allow the attack. This approach seeks to deter potential attackers simply by raising the level of effort and risk involved in an attacker conducting a successful phishing attack with a concomitant reduction in the likely rewards. This method underscores the importance of understanding the criminal's perspective and creating a hostile environment for phishing activities through strategic preventive measures. This method involves these steps:

- 1. Increasing the Effort for Attackers: Implement strong authentication methods and encryption to make it more challenging for phishers to access or spoof legitimate websites or email accounts.
- 2. Clarifying User Responsibilities: Educating users about their role in maintaining cybersecurity, including recognising phishing attempts, and reporting them.
- 3. Enhancing Detection Probability: Using advanced detection technologies and threat intelligence to identify and neutralise phishing threats promptly.
- 4. Limiting Phishers' Access: Restrict the amount of publicly available information that could be used to create convincing phishing emails or impersonating individuals or organisations.
- 5. Discouraging Future Attacks: Implementing punitive measures against identified attackers and sharing information on phishing campaigns with broader communities to prevent repeat offenders.

This measure is designed not only to stop a phishing attack, but rather to create an environment that would lead to the cost-benefit ratio for phishing not so appealing to the attackers. In fact, comprehensive perspectives on addressing phish through the three methods above singularly go to dramatically lower the vulnerability of organisations and individual persons to such acts.

In addition, Phishlimiter?, which is a new phishing detection and mitigation approach using Software-Defined Networking where it first proposes a new technique for deep packet inspection (DPI) and then leverages it with software-defined networking (SDN) to identify phishing activities through email and web-based communication. This is how it works:

- 1. Deep Packet Inspection (DPI): Analyses the part of the network packet data beyond basic header information. It inspects the content of the packets for signatures and patterns associated with phishing.
- 2. Store and Forward (SF) and Forward and Inspect (FI) modes: SF mode temporarily stores packets for thorough inspection before forwarding, while FI mode prioritises immediate forwarding with parallel inspection to reduce latency.
- 3. Artificial Neural Network (ANN): A machine learning model that classifies network traffic to identify potential phishing activities by learning from known phishing signatures and behaviours.
- 4. Dynamic adjustment of network flows: Upon detection of a threat, the system dynamically reroutes or restricts traffic to mitigate potential phishing attacks, adapting to new threats in real time.
- 5. Minimal disruption to network services: Designed to ensure that the phishing mitigation process does not significantly impact network performance, ensuring smooth operation of network services even under threat detection and mitigation activities.

6.2.4 Transparency in Mitigation Efforts

Transparency in cybersecurity, including phishing mitigation techniques, refers to how openly and clearly methods, policies, and procedures are communicated, understood, and accessible to all involved stakeholders, particularly employees. Here is how transparency can be applied to each of the mitigation techniques described:

Employee Awareness and Training :

Communication: This will consist of clear informing the employees about the kind of threat and how it could mean for the organisation and their role in these defences.

Accessibility: Make people aware that the repository exists, or make the resources easily available for reference. This would include an intranet site or a repository where people could easily access the trends in phishing on the latest and how to respond.

Having a clear and simple method will inspire employees to report false phishing attempts and express their opinions on the training programme. It encourages active participation and continuous improvement of the training material.

• Comprehensive Security Measures:

Policy Publishing: All available policies, especially those related to web browsing, email attachments, and the use of security tools, will be published openly to let employees know about them.

Justifications: The rationale behind specific policies and restrictions so that the employee will appreciate why they are being put in place does not appear to be a set of arbitrary rules.

Changes and Updates: Introduce the workforce to changes relating to security measures and how such changes are beneficial and serve as a cover against new hazards.

Technological & Human Factors:

Tool Transparency: Clearly state the tool and the reason for its being in place for security (e.g., spam filters, two-factor authentication), and its work on subduing phishing.

User Control and Visibility: Attempt to give users some form of control or visibility over the security tools through which their work could be affected. Feedback from a blocked phishing attempt could, for example, help to reinforce the training.

A Continuous Feedback Loop: Reports and discussions not only of the phishing attempts that technology catches, but also of the ones it misses, have to be actively tracked in order to keep the human element alive in cybersecurity.

Awareness against unsolicited emails:

Open Communication on Threats: Constant updates on new phishing techniques and any other notable attacks are discussed among the industry to be updated.

Best practices: Develop best practices for easy identification and to be visible on how to catch and react to phishing attacks, with graphic examples or checklists.

Development of trust: Create an environment where employees will not have any fear of revenge for reporting any insecurity that they might suspect. This can be enabled by an easily established reporting system that is anonymous.

• Email Filters:

The effectiveness of email filtering technology in mitigating phishing attempts is greatly enhanced by transparency on its operational parameters. From disclosing the details of criteria and algorithms it uses to flag warnings over phishing e-mails to such steps as analysis of the reputation of the sender, scanning any content for embedded links, and spotting keywords associated with phishing so users can start to get to grips

with how the system makes its decisions. Similarly, an open forum at the beginning of the report that describes how the nature of phishing threats and the evolution of filters to catch them will help users report false positives (legitimate email incorrectly classified as phishing) or false negatives (phishing attempts which get by the filter), can encourage ongoing community participation and, more importantly, help to improve the filtering effort. In an open dialogue about the changing nature of phishing threats and adaptability of the filter in both cases, it engenders trust with users.

• Domain Blocking:

As a strategy put in place to mitigate access to known instances of phishing sites from within the organisation's network, it gains in the fact that the strategy is transparent by sharing information on criteria and constant update of the blacklist that can help stakeholders understand the reasons leading to the need for access restriction. Create a well-defined mechanism or path for the informer that the site is suspected to be, one that had not been taken into the blacklist, and also a procedure to deny false blockage (like, for example, a legitimate website in case being blocked by mistake). Educating and instructing users, as well as IT professionals, will make them aware of such a measure, and they will be made part of the secure e-culture.

• User Training:

In effect, this means that users are exactly informed about the content and delivery mechanisms of such phishing-focused training programmes. For example, through the inclusion of things such as the types of phishing attacks, an explanation of why certain behaviours must be conveyed-such as the risks of clicking suspicious links, and the psychological tricks of phishers as it means users can be even more informed about the exceptionally high value of the training. Enquiring about the effectiveness of the use of training sessions and what more could be included, that users would prefer to see, will help in making the programmes more user-friendly. Such sharing of success stories and statistics, of how those phishing incidents are going down right after the training, are all aspects that could fuel the energy of the employees toward uninhibited engagement and watchfulness in general. Openly discussing the challenge that advanced phishing detection presents and recognising the need for continual educative awareness might really get the ball rolling in the instillation of a culture of security and shared responsibility.

Situational Crime Prevention Approach (SCP):

SCP is said to reap tremendous benefit for the transparency of the approach that would be implemented in the means and results. In contrast, through the use of the explanation of how offenders' thinking and environmental stimulation analysis of what

is used to commit phishing attacks are done, the stakeholders could possibly be enlightened on the mitigation means being employed. Useful examples in a showcase format of case studies where SCP strategies were able to defend successfully by increasing the effort and risk to the attacker, attacker, and reducing the potential gain. One could also take feedback from the community on these approaches and elicit suggestions to increase deterrence. This opens up an environment involving continuous development of one's organisation in light of such strategies and other changes.

• Phishlimiter:

Transparency in the use and operation of the newly developed phishing detection and mitigation system is significant towards system acceptance and useful functionality. Detailing the deep packet inspection (DPI) technique and its integration with SDN to pinpoint phishing activities in email and web communications can demystify the technology for users. By elaborating the criteria and algorithms used to support accuracy in the detection of potential phishing attacks, the strength and reliability of such a system can be easily communicated to stakeholders. The way to report inaccuracies or missed attempts to fish encourages user participation in training the new system. Sharing the progress of Phishlimiter effectiveness with metrics like the number of identified and squashed attacks cements the new-worth technologies on the best ways to handle phishing. Open discussions, for example, on the challenges experienced and in what direction Phishlimiter development has to go, invite greater support from the cybersecurity community to participate in collaboration.

6.2.5 Analysis: Feasibility & Practical Challenges

- 1. Employee Awareness and Training: Feasible; Regular training and simulation exercises can be implemented across organisations of any size with scalable online platforms, requiring minimal resources beyond the initial setup.
- 2. Comprehensive Security Measures :Feasible; The deployment of web filters and secure browsing policies is technically straightforward with existing technology. The main effort lies in continuous update of policies and employee education.
- 3. Technological and Human Factors: Feasible; The integration of spam filters, two-factor authentication, and secure browsing add-ons is readily achievable with current technology. The human element, continuous employee vigilance, enhances the effectiveness of these tools without significant additional costs.
- 4. Awareness against unsolicited emails: Feasible; Establishing and communicating best practices for handling suspicious emails involves minimal costs and leverages existing communication channels within organisations.

- 5. User Training: Feasible; In fact, many of the details about training programmes based on phishing, e.g., information on how content about different methods of phishing, types of attacks, reasons why it is better to look out for who is emailing you, etc., properly belong into our reality. For example, asking for feedback on how effective is a training programme and getting recommended by customers on how to enhance them to make such programmes even more user-friendly.
- 6. Situational Crime Prevention Approach (SCP): Feasible; SCP approach shares insights into the thinking of the offenders as well as into the environmental facilitators to attacks. Offering case studies showing successful impacts of the SCP strategies on deterring of phishing through increased risk and efforts by the attackers can be done. However, sharing in detail the analysis of the offender behaviour may require cautious handling to avoid a 'how-to' guide for potential attackers. Engaging the community for feedback and suggestions is feasible and can foster a continuous improvement environment.
- 7. Domain Blocking: Moderately Feasible; It is an operational overhead to keep updating blacklists and managing appeals in cases of wrongful blockages. Being able to maintain the updated blacklist and to attend to the appeals in the right manner will have an overhead for the smaller organisation or teams with little resources. Moreover, the evaluation of appeals and requests and the decision process have to be fast, so it cannot always be done with due care and proper research, but sometimes with raw speed.
- 8. Email Filters: Not Feasible; Although it can certainly be a good idea to describe what type of criteria and algorithms exist for the email filtering process, full disclosure may be too much, because this information will be used, no doubt by the attackers, to make a way around the filters. In fact, if the attacker can fully understand how the mails are actually screened, they can alter their phishing methods to escape from the checkpoints. To some degree, transparency is possible, although full revelation of all operating parameters would represent a type of chaos where spam would just explode right through.
- 9. Phishlimiter: Not Feasible; With the technical technologies such as Deep Packet Inspection (DPI) and Software-Defined Networking (SDN), the complexity in Phishlimiter is at a higher level, maybe containing sensitive, proprietary security information. These three above would at best not be achieved without a fear of marking being compromised; background on the specifics of such technologies and testing on how they are integrated for phishing detection is technically too complex to summarise. Finally, the evolving and relatively complicated unpredictable tactics used by phishing attackers around the globe would demand that Phishlimiter therefore keep

pace with the developments, and those making changes have to ensure that, at every point in time, it keeps up with current events, which sometimes may be difficult to disclose in real time without the adversaries having a foothold.

6.3 Collaboration Among Registrars, Registries, and DNS Collaborators

This collaboration should be achieved with the DNS registry, the registry, and the collaborators. In that way, they can boost common resources and intelligence that can guide in making the Internet more secure and resilient. This strictly falls within the remit of registries and registrars acting in collaboration to put in place such stringent registration policy with procedures for verification, checking against mimicking existing trademarks or even popular domain names. In this way, the collaboration can even manifest itself through the sharing of sensitive data with regard to domain abuse threats and trends. Databases and threat intelligence platforms are shared amongst stakeholders, allowing them to anticipate and avert most such perils well before they impact netizens. This collective effort will enable the formulation of standards by which to coordinate responses to confusable domain incident reports. Mitigating confusable domains and phishing requires that registrars, registries, and DNS collaborators work in a common effort. This is due to the increasing level of threats and the shared responsibility of all actors involved in the DNS ecosystem. ? To put this into perspective, here are some examples:

- 1. Recent changes in the contract from ICANN's contracted parties have imposed on registrars and registries new specifications to define DNS abuse, together with clear requirements for the actions to be taken by such parties immediately actionable evidence of abuse is received. This is a major step toward establishing more clarity on the roles that these different stakeholders can play in addressing the problem of DNS abuse and ensuring that there is a common approach to redress?
- 2. The community itself has approved new obligations from ICANN contract parties to further mitigate DNS abuse, demonstrating the will of the community to come together to address DNS abuse issues ?.
- 3. Efforts like NetBeacon, with the support of the DNS Abuse Institute, are being rolled out to reduce friction in reporting and mitigating DNS abuse. This service solves the current complexities and quality standards associated with the reporting of DNS abuse, as it makes the work easier for the registrars, ultimately narrowing down their scope to the relevant and evidenced report, as well as it underlines the need for cooperation among registrars, registries, and other DNS stakeholders. This is what is capable of saving the Internet and, at the same time, protecting the credibility and

confidence of DNS ?.

Real-life examples of entities seeking to block the resolution of DNS names used by bad actors for phishing and other malicious activities, especially in connection with public recursive DNS servers, frequently revolve around matters of control, filtering, or securing internet traffic with various kinds of motivation corresponding to such sectors. Some attempted these efforts at the government, corporate, and individual levels. As typical examples that pinpoint those instances, consider the following:

- 1. Governmental Efforts to Block DNS Resolutions: Governments may interfere directly with DNS operation to enforce some censorship or block access to particular types of content. For instance, China uses the Great Firewall for regulation of access to the World Wide Web within their territory, including doing some DNS mismanagement to block unwanted content?
- 2. Corporate and ISP DNS Filtering: DNS filtering can be deployed by companies and even ISPs in a bid to achieve enhanced online security. For instance, Heimdal Security explicates how DNS filtering works as one of the measures to prevent their access to various harmful or inappropriate websites, since it first checks the requests for domains. If some are actually flagged, access is denied, hence maintaining both security and productivity within one's organisation. This approach is very effective for the prevention of phishing and malware attacks because it stops DNS requests towards malicious sites?
- 3. Ad Block DNS Services: Cloudflare discusses how DNS filtering can be used to prevent access to malicious sites and also filter what is harmful or unfit for viewing. This is done at the DNS level to prevent these sites from loading on devices. Cloudflare uses its DNS to filter part of a more prominent access control policy, which is an effort to secure company data and govern what employees will see on the network they manage?

On the negative side, attackers are taking advantage of DNS blocking mechanisms to carry out DNS-based attacks. These include using DGAs (Domain Generation Algorithms) for malware communication, using FastFlux techniques for slip-streaming attacks, basically creating malicious newly registered domains (NRDs) that appear benign and legitimate to an outside observer, etc. All this makes it difficult to block bad content at the DNS level, which calls for quite sophisticated countermeasures.

6.4 Benefits of Transparency

Transparency has numerous advantages when it comes to handling confusable domains and mitigating phishing. First, it encourages domain registry owners and registrars to be more

accountable to each other by motivating them to take an active role in the identification and removal of confusable domains and phishing websites. Second, openness discourages bad actors who might otherwise take advantage of the anonymity provided by a lack of public monitoring. Third, by making these lists available to the public, registries and registrars enable companies and trademark owners to promptly take precautionary measures to safeguard their brands, including acquiring domain names or pursuing legal action. Transparency also facilitates community-based mitigation initiatives, in which researchers studying cybersecurity and the broader community work together to detect and eliminate dangers. This coordinated effort not only tackles confusable domains, but also considerably impedes phishing attempts by revealing, and thus reducing, the strategies employed by bad actors. The effectiveness of these tactics is significantly increased by using the collective expertise and attention to detail of the cybersecurity community, resulting in a more secure online environment for all parties involved.

6.5 Drawbacks and Security Concerns

The publication of confusable domain lists, while aimed at enhancing cybersecurity, carries certain drawbacks and security concerns, including implications for phishing attacks. A primary issue is that making such lists public might serve as a guide for bad actors, revealing potential phishing targets. This exposure could allow bad actors to improve their strategies, thus remaining a step ahead of countermeasures. Additionally, the risk of false positives where legitimate domains are marked as confusable poses significant challenges. For legitimate businesses and individuals, being mistakenly associated with phishing can lead to unnecessary scrutiny, legal complications, and damage to their reputation. Furthermore, the tension between transparency and security raises questions about the effectiveness of these disclosures in preventing attacks. While the goal of transparency is to proactively mitigate abuse, including phishing, the vast number of domain registrations and the evolving tactics of domain abuse may diminish the utility of such lists for end users and businesses, potentially limiting their ability to preemptively address phishing risks.

6.6 Limitations of Research Conducted on DNS Abuse Transparency

This section lists a number of significant limitations that were observed during the research. The limitations imposed have had an effect on the extent, complexity, and applicability of the results, indicating potential avenues for future investigation to improve the understanding and efficacy of DNS abuse mitigation measures.

1. Variability in reporting standards: A significant challenge encountered was the lack of

uniform standards across DNS infrastructure providers, including registrars and registries, regarding the definition of abuse, the thresholds of action, and the manner in which these actions are reported. Such inconsistency has made efforts to collect and compare the data of different entities hard to piece together into one coherent picture for sensible enforcement of DNS abuse mitigation. This diversity highlights the need for standardised reporting standards by contributing to a fragmented view of abuse management procedures.

- 2. Limited Availability of Data: The general lack of transparency reports that are available to the public. Many providers either don't release these reports at all or do so in a way that leaves out important information that has to be thoroughly examined. Due to the restricted breadth of research due to this data availability issue, there may be gaps in our understanding of the entire range of DNS abuse management strategies. One major obstacle to evaluating the efficacy and transparency of the abuse mitigation techniques used by various parties is the lack of data.
- 3. Reluctance to Share Sensitive Information: Information provided by respondents about abuses and what they do to mitigate them. In general, concerns about privacy, security, and the potential of revealing vulnerabilities to bad actors contribute to this reluctance, which leads to Limiting the capacity of researchers to perform a comprehensive analysis of DNS abuse mitigation strategies.
- 4. Dynamic Nature of DNS Abuse: The evolving tactics employed by those who abuse DNS are constantly changing, so results can be out of date very fast. It is more difficult to create best practices that are applicable and efficient over time due to this quick change. Because DNS abuse is dynamic, it requires ongoing research and strategy adaptation to stay ahead of new threats.
- 5. Potential Bias in Self-Reported Data: Self-reporting in transparency reports can still bias the results. Organisations have a tendency to emphasise their achievements while downplaying their shortcomings or difficulties. Due to this biased reporting, opinions about how well DNS abuse is being controlled can be distorted, which could cause mitigation efforts to be overestimated.
- 6. Complexity of Measuring Impact: The evaluation of the efficacy of DNS abuse mitigation techniques is hampered by the nature of the Internet ecosystem. The evaluation procedure is further complicated by the indirect relationship that exists between specific actions taken to combat DNS abuse and larger effects, making it challenging to gauge the effectiveness of these efforts.
- 7. International and Jurisdictional Challenges: Due to the international scope of the Internet, different legal and regulatory frameworks in different jurisdictions have an

- impact on DNS abuse and how it is mitigated. These differences highlight the need for cross-border cooperation and harmonisation by adding complications to the implementation and evaluation of transparent practices on an international scale.
- 8. Ethical and Privacy Considerations: Ethical issues related to data collection and analysis that may include sensitive or personally identifiable information must be addressed in research in this field. Respecting ethical and privacy standards is very important, but it can also restrict the available research approaches, further limiting the breadth and depth of the study.

All of these limitations point to the complex difficulties in conducting thorough research on DNS Abuse Mitigation Transparency. Teamwork, creative thinking, and a commitment to improving research techniques and methods in this developing subject will be needed to address these problems.

6.7 How well did the project meet the objectives?

In evaluating the success and impact of the research project on DNS Abuse Transparency, a key question in assessing the achievements and influence of the study on DNS Abuse Transparency is addressed. To what extent did the project fulfil its original objectives? This section seeks to systematically evaluate the project's accomplishments in relation to its objectives, taking into account the intricate domain of DNS abuse and the difficulties associated with improving transparency and management procedures. A thorough review is provided by looking at stakeholder participation, the contribution to understanding DNS abuse, the objective achievement, and the practical consequences of the results. Shortcomings are acknowledged and recommendations for further research and development are made, recognising both the successes and the areas that still require improvement. This reflection not only demonstrates the progress gained but also the continuous path toward a DNS ecosystem that is more open, safe, and resistant to abuse.

6.7.1 Objective Fulfilment

The project's goal was to improve stakeholder awareness and transparency about DNS abuse management. Despite encountering obstacles including inconsistent reporting guidelines and restricted data access, the effort succeeded in bringing to light significant flaws in the methods used to mitigate and handle DNS abuse. It revealed the complexity and diversity of processes across various institutions, underscoring the urgent need for standardised reporting requirements.

6.7.2 Impact on Understanding DNS Abuse

Given the difficulties, the research project provided insightful information on the state of DNS abuse mitigation. It demonstrated how DNS abuse is dynamic and how quickly changing bad actor tactics require mitigation measures to be updated on a regular basis. The research highlighted gaps in current understanding and management methods by highlighting the lack of transparency reports and providers' reluctance to provide sensitive information. These discoveries can act as a starting point for future studies and the formulation of policies.

6.7.3 Stakeholder Engagement

It was essential to interact with stakeholders such as registries, policymakers, and DNS registrars. The project encouraged discussion of the need for increased sector and jurisdiction cooperation and transparency. On the other hand, it appears that there is room for improvement in the influence on stakeholder behaviours and policies, particularly in terms of encouraging more proactive engagement and teamwork in the fight against DNS abuse.

6.7.4 Practical Implications

The project's outcomes have beneficial consequences in improving the transparency of DNS abuse mitigation. If put into practice, suggestions for creating uniform reporting guidelines and improving data exchange procedures may result in more efficient and cohesive methods for mitigating DNS abuse. These recommendations provide practical next steps for stakeholders to better address the issues raised.

6.7.5 Suggestions for Improvement

Deeper insights may be obtained for next projects by focusing study questions on newly developed DNS abuse strategies and investigating more aspects of transparency. Improving the methods for engaging stakeholders, perhaps by creating more inclusive forums or working together on joint research projects, could increase the scope and quality of the information collected. Furthermore, promoting the idea of the project could lead to more noticeable changes in practice and policy.

6.7.6 Future Vision

This research project embarked on an extensive effort to clarify the complexity of the transparency of DNS abuse. Taking into account obstacles such as the dynamic nature of abuse methods and the availability of data, the effort achieved significant achievements in

highlighting important areas for development and setting the stage for future breakthroughs. The initiative is an essential move toward a more transparent and uniform strategy to mitigating DNS abuse, acknowledging the contributions and the need for continued research and cooperation. To move forward, all parties involved must work together to accept the recommendations and create a more secure, safe online environment.

7 Conclusion

7.1 Brief Review

This project looked at DNS abuse, a situation in which malicious actors exploit domain names for malicious activities such as phishing. DNS infrastructure providers, including registrars and registries, have been the focal points of attention due to their significant roles in controlling and potentially reducing this abuse. The investigation included the complaints these providers receive and the measures they take to mitigate abuse, such as the deletion or blocking of domain name registrations. A critical aspect of this research was the concept of transparency: the extent to which these actions are disclosed and documented by the providers. It was found that the practice of issuing comprehensive transparency reports is not as widespread as necessary, despite the crucial role that openness plays in fostering trust and accountability in the digital realm.

7.2 Main Results

7.2.1 Related back to Project Objectives:

The project led to the identification of serious transparency gaps in the mitigation of DNS abuse adopted by infrastructure providers. Although some reporting and communication measures of mitigation action against DNS abuse have been adopted to trace the information on the mitigation measures undertaken, it is largely inconsistent. This goes hand in hand with our first objective, to better understand practices on transparency in the area and set a clear requirement for standardised transparency measures.

7.2.2 Summary of Proposals:

Throughout the research project, several strategies have been discovered to improve transparency:

1. Regular Transparency Reporting: Urge all DNS infrastructure providers to release reports on a regular basis describing the steps they have taken to mitigate DNS abuse.

- 2. Stakeholder Engagement: Encourage more cooperation and communication on transparency regulations between DNS providers, users, and legislators.
- 3. Public Accountability Mechanisms: Provide and implement systems that allow the general public to monitor and evaluate DNS abuse mitigation efforts.
- 4. Innovation in Defence Strategies and Sharing: Emphasise the importance of preparing new methods to combat DNS abuse by developing and encouraging the sharing of these innovative strategies among stakeholders.
- 5. Transparency in Monitoring and Collective Action: Encourage open observation of DNS activity and cooperative efforts from all parties within the DNS ecosystem to ensure a unified strategy to mitigate abuse.

These strategies seek to expand on the fundamental measures outlined in this research project, focusing not only on the individual efforts of DNS infrastructure providers but also on the collective efforts and shared responsibilities throughout the DNS ecosystem. By using these tactics, the Internet community can work towards improving trust and transparency, which will result in a DNS system that is more secure and resistant to abuse.

7.2.3 Assessment of Contribution:

These results can be used to show the importance of the application, as the responsibility may fall on the DNS infrastructure providers to have a better and more transparent practice in mitigating DNS abuses. Eventually, the adopted strategies give a chance for better accountability and greater trust from the interested users and parties. In the larger context of cybersecurity and Internet governance, where transparency is becoming more widely acknowledged as essential to promoting a safer online environment, this contribution is vital.

7.3 Future Work

7.3.1 Further Research Directions:

Future research should examine how AI and machine learning are combined to detect predictive DNS abuse and how well international regulatory frameworks enforce transparency requirements. In addition, further research may examine how user trust and behaviour are affected by transparency, as well as how various degrees of openness influence how DNS infrastructure providers are seen. Furthermore, studies could assess how well different transparency techniques mitigate DNS abuse in the real world.

7.3.2 Practical Next Steps for Developing Transparency Best Practices:

- 1. Framework Development: Collaborate with leading industry players to develop a uniform transparency framework that DNS infrastructure providers can use anywhere.
- 2. Technology Solutions: Looking into technical options that automate the gathering and sharing of DNS abuse data to improve transparency.
- 3. Policy Recommendations: Draughting policy suggestions should require transparency in these activities to encourage legislative support for DNS abuse mitigation initiatives.
- 4. Stakeholder Collaboration: Governing bodies that maintain the DNS infrastructure, regulatory organisations, and cybersecurity communities need to join hands to combat and find an amicable solution to these challenges.
- 5. Transparency Standardisation: Standardise transparency reports across the industry to ensure uniformity in disclosing DNS abuse mitigation efforts.
- 6. Real-Time Monitoring: Implement real-time abuse monitoring dashboards to enable swift detection and response to DNS threats.
- 7. Public Awareness: Promote user education on DNS security to enhance public awareness and safeguard against potential abuses.

7.3.3 Enhanced Transparency Practices for DNS Abuse Mitigation:

Building on these initial steps, registries and registrars are urged to implement improved transparency measures such as the following to strengthen the DNS ecosystem's resistance to abuse:

- 1. Public Reporting: Establish detailed and consistent transparency reports that provide information on the number of DNS abuse reports received, the steps taken, and the results of those steps. In addition to increasing user trust, this transparency makes the organisation responsible for efficient abuse mitigation.
- 2. Stakeholder Engagement: Provide forums or advisory committees to discuss and evaluate mitigation solutions for DNS abuse that involve a wide range of stakeholders, such as government representatives, cybersecurity professionals, and members of civil society. This guarantees that decision-making procedures take into account a wide range of points of view.
- 3. Abuse Point of Contact: Clearly identify the abusive contact and make it public. This

- makes it easier for the community, including end users and cybersecurity researchers, to report and handle abuse problems effectively.
- 4. Best Practice Sharing: Encourage a transparency environment by sharing best practices, resources, and innovations to mitigate DNS abuse with colleagues in the DNS ecosystem. Workshops for the entire industry or collaborative platforms can help to promote this conversation.
- 5. User Education: Recreate and distribute instructional materials to help domain owners and end users identify and stop DNS misuse. Empowering people with knowledge can drastically reduce the effectiveness of phishing and other abusive techniques.
- 6. Automated Abuse Detection: Make use of Al and machine learning technology to automatically identify possible DNS abuse behaviours. Exchange anonymous indicators of compromise (IoCs) with reliable partners to increase the resilience of the ecosystem as a whole.

7.3.4 Future Directions in DNS Abuse Mitigation:

Future studies and practical initiatives should focus on the following areas to better address the dynamic nature of DNS abuse and proactively counter new threats:

- 1. Emerging Technologies: Exploring the possibility of DNS abuse and creating focused mitigation solutions in Al-generated content and the growth of IoT devices.
- 2. Al and Machine Learning for Proactive Defence: Using data analysis to find possible abuse vectors and advancing Al and machine learning models to anticipate and handle DNS abuse before it happens.
- 3. Enhanced IoT Security: Establishing security guidelines for IoT device makers to stop device exploitation in DNS abuse, encouraging industry-wide adoption through partnerships and laws.
- 4. Global Policy and Regulation Dialogue: Participating in policy discussions to coordinate mitigation measures for DNS abuse and promote laws that promote security, privacy, and openness.
- 5. Transparency Evolution: Advancing transparency standards in line with technology, emphasising real-time data sharing, blockchain-based log reporting, and user-friendly interfaces to prevent unauthorised access to data.

7.3.5 Contributions to Future Transparency Practices:

This research contributes to the ongoing development of best practices for transparency in DNS abuse mitigation. By emphasising the significance of transparent, consistent reporting and promoting stakeholder interaction, it seeks to enable better informed policy-making and promote a safer online environment. Identifying existing challenges and proposing feasible solutions, this study is a first step toward improving openness in the DNS ecosystem. The desired results are a reduction in DNS abuse, an informed and active user base, and the development of a more reliable Internet ecosystem.

7.4 Reflection

7.4.1 Personal Learning:

With this project, I have appreciably learnt the complexities of DNS abuse and how these complexities could pose a challenge in conceiving systems that address the potential lack of transparency. In that sense, DNS abuse is said to be very dynamic, always changing to expose new tactics by bad actors; mitigation strategies should, therefore, become adaptive. I learnt that transparency isn't just about sharing information; it is about building trust within the community, improving the effectiveness of abuse mitigation efforts, and impacting broader internet governance and security positively.

7.4.2 Evaluation of Research Process:

In other words, this research project has brought to light the complicated hurdles in studying DNS abuse mitigation transparency, from the reluctance to share sensitive information due to privacy and security concerns to possible biases in data self-reporting. The process made clear the delicate balance that must be struck between maintaining security and releasing just enough information to be transparent. Although the technique allowed a thorough analysis to be performed, it also highlighted areas that needed to be improved, such as determining more accurate ways to assess how transparency practices affect the reduction of DNS abuse.

7.4.3 Perspective on Research Findings and Contributions:

This research project offers a more comprehensive view of current procedures and their effectiveness, contributing to ongoing conversations on the mitigation and transparency of DNS abuse. Through gap analysis and practical strategy recommendations, the study highlights the necessity of a coordinated approach to openness. It calls for the creation of guidelines and best practices that improve cooperation between all parties involved in the

DNS ecosystem. While great progress has been made, my work emphasises the ongoing need for attention and effort in this area and suggests that the road towards a more transparent, safe, and abuse-resistant DNS landscape is far from over.

In summary, this project has improved my knowledge of DNS abuse mitigation and the pursuit of transparency, while also providing insightful information that will guide future research in this area of cybersecurity and Internet governance.

A1 Appendix

The Domain Name System (DNS) plays a role in the infrastructure of the Internet by converting user domain names into IP addresses. However, due to its use and importance it has become a target for actors seeking to exploit it. These abuses range from setting up phishing websites to taking advantage of DNS for activities such as typosquatting. The responsibility for mitigating abuse primarily lies with DNS infrastructure providers, such as registrars and registries. These entities respond to reports of abuse by taking down confirmed domain names or proactively blocking the registration of harmful ones. While these actions are essential for maintaining the security and integrity of DNS, they also raise questions about how transparent these measures are.

Transparency in the context of mitigating DNS abuse refers to the disclosure of actions taken by registries and registrars including the criteria and reasoning behind their decisions. Currently, there is a prevalence in publishing transparency reports related to this matter, leading to a lack of clarity and understanding about the processes involved in combating DNS abuse. This project aims to address this issue through a survey involving registries, registrars, and other stakeholders actively engaged in mitigating DNS abuse.

The main objective of the survey is to collect organise and describe the transparency reports they are presently accessible. This will help us gain an understanding of the status of transparency, in mitigating DNS abuse.

A1.1 Appendix numbering

Appendices are numbered sequentially, A1, A2, A3... The sections, figures and tables within appendices are numbered in the same way as in the main text. For example, the first figure in Appendix A1 would be Figure A1.1. Equations continue the numbering of the main text.

Temporary page!

LATEX was unable to guess the total number of pages correctly. As there was some unprocessed data that should have been added to the final page this extra page has been added to receive it.

If you rerun the document (without altering it) this surplus page will go away, because LATEX now knows how many pages to expect for this document.