Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Atomic Structure:

52. A ball weighing 10 g is moving with a velocity of 90 ms. If the uncertainty in its velocity is 5%, then the uncertainty in its position is _____ × 10-m. (Rounded off to the nearest integer)

[Given: $h = 6.63 \times 10^{-1} Js$]

[JEE Main (April) 2021]

Ans. 1

- 64. For an electron, with n = 3 has only one radial node. The orbital angular momentum of the electron will be
 - (A) 0

- (B) $\sqrt{6} \frac{h}{2\pi}$ (C) $\sqrt{2} \frac{h}{2\pi}$ (D) $3 \left(\frac{h}{2\pi}\right)$
- 11. According to Bohr's theory angular momentum of electron in 5th shell is : [AIEEE-2006]
 - (1) $1.0 \text{ h/}\pi$
- (2) 10 h/π
- (3) $2.5 \text{ h/}\pi$
- (4) 25 h/π
- 33. An atom has x energy level, then total number of lines in its spectrum are:-
 - (A) $1 + 2 + 3 \dots (x + 1)$
- (B) $1 + 2 + 3 \dots (x^2)$

(C) $1 + 2 + 3 \dots (x - 1)$

- (D) (x + 1) (x + 2) (x + 4)
- 28. If λ_0 and λ be the threshold wavelength and wavelength of incident light, the velocity of photoelectron ejected from the metal surface is [JEE-Main(online) 2014]
 - $(1)\ \sqrt{\frac{2hc}{m}\bigg(\frac{\lambda_{o}-\lambda}{\lambda\lambda_{o}}\bigg)} \quad (2)\ \sqrt{\frac{2h}{m}\bigg(\frac{1}{\lambda_{o}}-\frac{1}{\lambda}\bigg)} \quad (3)\ \sqrt{\frac{2h}{m}\bigg(\lambda_{o}-\lambda\bigg)} \qquad (4)\ \sqrt{\frac{2hc}{m}\bigg(\lambda_{o}-\lambda\bigg)}$

93. The complex ion which has no 'd' electrons in the central metal atom is

(A) [MnO₄]⁻

(B) [Co(NH₃)₆]³⁺

(C) [Fe(CN)₆]³⁻

(D) [Cr(H₂O)₆]³⁺

30. Consider the following complex ions P, Q and R,

 $P = [FeF_6]^{3-}$, $Q = [V(H_2O)_6]^{2+}$ and $R = [Fe(H_2O)_6]^{2+}$

The correct order of the complex ions, according to their spin-only magnetic moment values (in B.M.) is -[JEE 2013]

(A) R < Q < P (B) Q < R < P (C) R < P < Q (D) Q < P < R

5. The number of 3d-electrons remained in Fe²⁺ (At.no. of Fe = 26) ion is – [AIEEE-2003]

(1)4

(2)5

(3)6

(4) 3

Mn₂(CO)₁₀ is an is an organometallic compound due to the presence of : [JEE MAIN 2019] 67.

Mn – O bond

(2) Mn – C bond

(3) Mn – Mn bond

(4) C - O bond

55. Two complexes [Cr(H₂O)₆]Cl₃ (A) and [Cr(NH₃)₆]Cl₃ (B) are violet and yellow coloured, respectively. The incorrect statement regarding them is : [JEE MAIN 2019]

Δ₀ value of (A) is less than that of (B).

- Δ₀ value of (A) and (B) are calculated from the energies of violet and yellow light, respectively
- (3) Both absorb energies corresponding to their complementary colors.
- (4) Both are paramagnetic with three unpaired electrons.

Compound Angle:

The maximum value of the expression $\frac{1}{\sin^2\theta + 3\sin\theta \cos\theta + 5\cos^2\theta}$ is [JEE 2010] 9.

If $\frac{\cos^x x}{\cos^2 y} + \frac{\sin^x x}{\sin^2 y} = 1$, then prove that $\frac{\cos^x y}{\cos^2 x} + \frac{\sin^x y}{\sin^2 x} = 1$. 13.

ein⁴a coe⁴a 1

ein⁸g coe⁸g

10.	Two parallel chords of a circle of radius 2 are at a distance $\sqrt{3}+1$ apa	rt. If the	chords subtend
	at the centre, angles of $\frac{\pi}{k}$ and $\frac{2\pi}{k}$, where $k > 0$, then the value of $[k]$ is		
	[Note : [k] denotes the largest integer less than or equal to k].	[JEE 20	10]
	1	1	1

18. Given that $3\sin x + 4\cos x = 5$ where $x \in (0, \pi/2)$. Find the value of $2\sin x + \cos x + 4\tan x$

The value of tan 9° + tan 36° + tan 9° · tan 36° is equal to

(A) 2 (B) 1 (C) tan 60° (D) tan 30°