Tutorial 1

SC-220 Groups and linear algebra Autumn 2019 (Groups)

- (1) Find all the rotational symmetries of the cube.
- (2) If G is a group then show the following
 - i) The identity element of G is unique
 - ii) For $x \in G$ then x has a unique inverse
 - iii) For $a, b \in G$ there is a unique x such that a * x = b
- (3) Determine whether the binary operation * gives a group structure
 - i)Let * be defined on \mathbb{Z} by a * b = ab
 - ii)Let * be defined on \mathbb{R}^+ by $a*b=\sqrt{ab}$
 - iii)Let * be defined on $\mathbb{R} \{0\}$ by $a * b = \frac{a}{b}$
- (4) Let $G = \{a + \sqrt{2}b \in \mathbb{R} | a, b \in \mathbb{Q}\}$
 - i) Prove that G is a group under addition.
 - ii) Prove that the non-zero elements of G are a group under multiplication.
- (5) Let S be the set of all real numbers except -1. Define an operation * on S by

$$a * b = a + b + ab$$

- i) Show that $\langle S, * \rangle$ is a group.
- ii) Find the solution to the following equation in S.

$$2 * x * 3 = 7$$

- (6) Show that a group of three elements is commutative
- (7) If x and y are elements of a group show that $(x * y)^{-1} = y^{-1} * x^{-1}$.
- (8) Prove that if $x^2 = 1$ for all $x \in G$ then G is a commutative (abelian) group.

1