Нижегородский государственный университет имени Н.И. Лобачевского Радиофизический факультет. Кафедра статистической радиофизики и мобильных систем связи.

Отчет по лабораторной работе №1 Согласованные фильтры

Выполнили студенты 450 группы Понур К.А., Хавьер, Шиков А.П.

Цель работы: Тут цель

1. Теоритическая часть

Тут теория

2. Практическая часть

Тут практика

2.1. Задание 1. Простые и сложные сигналы и их свойства

В этом задании рассматриваются особенности простых и сложных сигналов, которые проявляются в поведении спектров сигналов. Следует проследить за тем, какие существуют закономерности при изменении спектров в зависимости от изменения временных параметров простых и сложных сигналов. Для каждого рассмотренного сигнала m(t) строятся графики реализации сигнала, амплитудного и фазового спектров, а так же функция корреляции и спектральная плотность энергии.

На что ответить в отчете:

- 1. Получить оценку энергии импульса разными способами по экспериментальным данным. Сравнить результаты с теоретическими.
- 2. **Done, надо пояснения** Для всех четырех видов сигнала оценить базу, используя формулу $B = T \cdot \Delta f$, где T эффективная длительность, Δf эффективная ширина полосы спектра сигнала. За оценку ширины следует принять половину расстояния между первыми нулями (ширины главного лепестка).
- 3. Пояснить, как изменяется фазовый спектр сигнала, в том диапазоне частот, где лежит основная энергия сигнала. Показать с помощью рисунка, как происходит сложение гармонических составляющих сигнала. Выделить на графиках амплитудного и энергетического спектров диапазон частот, в котором лежит основная энергия сигнала. Как изменяется фазовый спектр сигнала в этом диапазоне частот? Почему физический амплитудный спектр имеет смысл рассматривать только внутри этой полосы?
- 4. **Done**, **надо пояснения** Для ЛЧМ сигнала сравнить протяженность корреляционной функции с длительностью сигнала. Во сколько раз она меньше длительности сигнала?

- 5. **Done, надо пояснения** Для ЛЧМ сигнала оценить диапазон изменения фазовых сдвигов у гармоник сигнала в пределах полосы амплитудного спектра. Нарисовать амплитудный спектр в приближенном виде (аппроксимируя прямоугольником) и посмотреть, какой в этих пределах фазовый спектр.
- 6. Во всех примерах рассматривались изменения спектральных характеристик при изменении временных зависимостей сигналов. Учитывая, что для функций, сопряженных по Фурье, справедливы следующие соотношения (см. Приложение)...(см методичку)
- 7. Чем определяется максимальное значение функции корреляции? Рассмотреть корреляционную функцию как сигнал и найти его базу.
- 8. Сравнить изменения спектрально-корреляционных характеристик при изменении длительности различных сигналов.

2.1.1 Прямоугольный видеоимпульс

Для прямоугольного видеоимпульса

- Получить аналитическое выражение для амплитудного, фазового и энергетического спектра, построить теоретический график.
- Изучить амплитудный, фазовый и энергетический спектры. Для этого задать длительность импульса 10мс и 20мс, амплитуду равной 1, а затем проанализировать зависимости.

Рис. 1: 10ms

Рис. 2: 20ms

База

Найдем базу для прямоугольного импульса по следующей формуле:

$$B = T \cdot \Delta f,$$

где T - эффективная длительность, Δf - эффективная ширина полосы спектра сигнала(в качестве оценки берется половина ширины главного лепестка амплитудного спектра).

$$B_{10ms} = 10^{-2} \cdot 100 = 1, \quad B_{20ms} = 20 \cdot 10^{-3} \cdot 50 = 1$$

База прямоугольного импульса равна единице, что означает что это простой сигнал. Таким образом справедливо соотношение $\Delta f = \frac{1}{T}$. Действительно, в соответствии с этой зависимостью, наблюдается сужение амплитудного спектра при увеличении длительности сигнала.

Спектры

Фазовый спектр ??, энергетический спектр так же сузился.

Энергия

Получим оценку энергии импульса. Для этого необходимо взять частотный диапазон, в котором фаза φ спектральных компонент равна нулю (откуда это и почему ??). В случае прямоугольного импульса (см. рис. 1), $\varphi = 0, f \in [-100, 100]$ Гц. Полная энергия сигнала равна $2\pi T$ (см. формулу 49 методички $\int \varepsilon(\omega)d\omega$). Найдем значение энергии в диапазоне $f \in [-100, 100]$ Гц (с помощью численного вычисления интеграла, (см. формулу 49 методички)). Получим, что 90.2% энергии находится в указанном диапазоне.

2.1.2 Прямоугольный видеоимпульс с гармоническим заполнением

Изучить амплитудный, фазовый и энергетический спектры. Задать длительность импульса 10мс и 20мс, амплитуду равной 1 и частоту заполнения 400Γ ц, а затем проанализировать зависимости.

Рис. 3: 10ms

Рис. 4: 20ms

При увеличении длительности сигнала амплитудный спектр ??, фазовый

спектр ??, энергетический спектр ??.

$$B_{10ms} = 10^{-2} \cdot 100 = 1, \quad B_{20ms} = 20 \cdot 10^{-3} \cdot 50 = 1$$

Значение базы - единица, означает что радиоимпульс это простой сигнал.

2.1.3 Линейно-частотный модулированный импульс

Получить временные реализации ЛЧМ сигнала с параметрами:

- длительность 100мс, средняя частота заполнения 1000Гц, девиация 500Гц;
- длительность 100мс, средняя частота заполнения 1000Гц, девиация 1000Гц
- амплитуда 1.

Рис. 5: 500 Гц

Рис. 6: 1000 Гц

$$B_{500Hz} = 100 \cdot 10^{-3} \cdot (1260 - 760) = 50, \quad B_{1000Hz} = 100 \cdot 10^{-3} \cdot (1500 - 500) = 100$$

Для ЛЧМ сигнала сравнить протяженность корреляционной функции с длительностью сигнала. Во сколько раз она меньше длительности сигнала?

При длительности ЛЧМ сигнала 100 мс, протяженность функции корреляции составила всего 0.4 мс, что в 250 раз меньше.

Для ЛЧМ сигнала оценить диапазон изменения фазовых сдвигов у гармоник сигнала в пределах полосы амплитудного спектра. Нарисовать амплитудный спектр в приближенном виде (аппроксимируя прямоугольником) и посмотреть, какой в этих пределах фазовый спектр.

Диапазон изменения фазовых сдвигов в случае девиации 500 Гц составил $\varphi \in [0-160]$ радиан (см. рис. 7), в случае девиации 1000 Гц составил $\varphi \in [0-260]$ радиан (см. рис. 8).

Рис. 7: Диапазон изменения фазовых сдвигов у гармоник сигнала, девиация 500 Γ ц

Рис. 8: Диапазон изменения фазовых сдвигов у гармоник сигнала, девиация 1000 Γ ц

2.1.4 Код Баркера

Получить реализации для кода Баркера (N=13) при длительности 13мс и $26\mathrm{mc}$

Рис. 9: 13 мс

Рис. 10: 26 мс

$$B_{13ms} = 13 \cdot 10^{-3} \cdot 1 = 13 \cdot 10^{-3}, \quad B_{26ms} = 26 \cdot 10^{-3} \cdot 0.5 = 13 \cdot 10^{-3}$$

2.2. Задание 2. Параметры согласованного фильтра и выходного сигнала

В этом задании изучаются характеристики согласованных фильтров, соответствующих каждому из сигналов, рассмотренных в задании №1. Кроме того, исследуются вид и свойства выходных сигналов. Учитывая, что при расширении фазового спектра длительность сигнала увеличивается, а при уменьшении до нуля — укорачивается, в данном задании необходимо внимательно проследить за укорочением сигнала. Самый короткий и самый большой по амплитуде он должен получиться при нулевом фазовом спектре

Рекомендации по анализу результатов эксперимента

- Как коэффициент передачи по амплитуде $|K(\omega)|$ фильтра и фазовые сдвиги $\varphi(\omega)$, вносимые фильтром в соответствующую гармонику, связаны с амплитудным и фазовым спектром сигнала?
- Как связан выходной сигнал и его амплитудный и фазовый спектр с характеристиками выходного сигнала? Сравнить длительности входного и выходного сигналов.
- Какой вид имеет импульсная переходная характеристика согласованного фильтра?
- Какой фазовый спектр и база выходного сигнала?

2.2.1 Прямоугольный видеоимпульс

Рис. 11: 10 мс

Рис. 12: 30 мс

АЧХ $|K(i\omega)|$ и ФЧХ $\varphi(\omega)$ согласованного фильтра

$$|K(i\omega)| = |C_0| \cdot |C_m(i\omega)|, \quad \varphi(\omega) = -\varphi_m - \omega t + arg(C_0),$$

где C_m, φ_m - амплитудный и фазовый спектры входного сигнала m(t).

- 1.
- 2.
- 3.
- 4.

2.2.2 Прямоугольный видеоимпульс с гармоническим заполнением

Рис. 13: 10 мс

Рис. 14: 30 мс

1.

2.

3.

4.

2.2.3 ЛЧМ сигнал

Рис. 15: Девиация 500 Гц

Рис. 16: Девиация 1000 Гц

1.

2.

3.

4.

2.2.4 Код Баркера

Рис. 17: 13 мс

Рис. 18: 26 мс

1.

2.

3.

4.

2.3. Задание 3. Согласованная фильтрация линейно-частотно модулированного сигнала

В этом задании на примере ЛЧМ сигнала подробно исследуются особенности фильтрации сложных сигналов.

Выбрать среднюю частоту заполнения 1000Γ ц, длительность ЛЧМ сигнала менять в пределах от 10мс до 100мс девиацию частоты изменять от 400Γ ц до 1000Γ ц

Пропустить ЛЧМ сигнал через согласованный фильтр. Качественно проанализировать, чем определяются основные параметры выходного сигнала: величина его максимума и степень укорочения сигнала, временное положение максимума. Получить и построить графики следующих зависимостей, оставляя среднюю частоту неизменной:

Задание 3 Текст Ильи

1) Максимум выходного сигнала достигается в момент окончания входного сигнала, соответственно, чем длинне входной сигнал тем позже наступит пик выходного. Расстояние между нулем амлпитуды и ее максимумом не зависит от длительности входного сигнала.

При изменении девиации частоты входного сигнала не меняется положение максимума амплитуды во времени, но меняется длительность между пиковым и нулевым значением амплитуды.

2) При увеличении длительности сигнала прямо пропорционально возрастает амплитуда сигнала на выходе.

Изменение девиации частоты на амплитуду не виляет.

Сигнал на выходе согласованного фильтра имеет форму корреляционной функции полезного сигнала.

Пиковое значение выходного сигнала согласованного фильтра достигается не раньше, чем окончится импульсный сигнал, поступающий на вход фильтра. Иначе невозможно накопить всю энергию входного сигнала для формирования пика на выходе фильтра в момент времени t_0 . Увеличение t_0 сверх величины $\tau+T$ не влияет на величину максимума выходного сигнала, а лишь сдвигает его в сторону большего запаздывания. Поэтому имеет смысл выбирать $t_0 = \tau + T$. Тогда максимальное значение выходного сигнала достигается точно в момент окончания входного импульса.

Сигнал M(t) достигает максимального значения в момент t_0 , поскольку функция корреляции всегда имеет максимальное значение в нуле $max(\Psi_M(\tau)) = \Psi(0)$. Тогда максимальное значение с точностью до постоянного множителя C_0 равно энергии сигнала: Формула (35)

Сжатие сигнала (его укорочение) прямо пропорционально базе сигнала. В случае ЛЧМ сигнала база сигнала регулируется значением девиации частоты. При увеличении девиации уменьшается τ - характерное время выходного сигнала (см формулу 53). При уменьшении τ увеличивается характерная ширина спектра выходного сигнала (как следствие из Фурье-преобразования). Получаем, что при увеличении девиации сигнала увеличивается его база.

2.4. Задание 4. Зависимость отношения сигнал/шум на выходе согласованного фильтра от параметров входного сигнала

В задании исследуется свойство системы с согласованным фильтром при различных параметрах ЛЧМ сигнала: девиации частоты $\Delta f_{\rm дев}$ и длительности сигнала τ .

2.4.1 Изменяющаяся длительность ЛЧМ сигнала

Рис. 19: Панель виртуального прибора для задания 4.

Установили девиацию частоты $\Delta f_{\rm дев}=700~\Gamma$ ц и изменяли длительность в пределах $10~{\rm mc}-100~{\rm mc}.$

Был проведен эксперимент, в котором для нескольких реализаций виртуальным прибором¹ вычислялось усредненное и неусредненное отношение сигнал/шум. Получившееся облако точек представлено на рис.20.

¹Виртуальному прибору – виртуальный студент

Рис. 20: Облако значений зависимости ОСШ от длительности τ ЛЧМ сигнала.

Между реализациями, полученными при одинаковом значении длительности τ усреднялись, вычислялось среднее значение и формировалась усредненная функция $O\bar{C}\coprod{}^2$. Зависимость усредненного $O\bar{C}\coprod(\tau)$ от длительности сигнала представлена на рис. 21.

2.5. Done Задание 5. Разрешение во времени простых и сложных сигналов при согласованной фильтрации.

Проанализируем разрешение сигналов во времени при использовании согласованного фильтра. Качественно можно считать, что сигналы разрешены, если их максимумы отстоят не менее, чем на величину длительности сигнала.

Отметим, что если величина временной задержки больше длительности сигнала, то входные сигналы разнесены по времени, и уже считаются разрешенными. Поэтому, в дальнейшем будем рассматривать задержки величиной до длительности сигнала.

²Эт че, у меня двойное усреднение получается? Или что такое в проге усредненное и неусредненное?

Рис. 21: Усредненная зависимость $O\bar{C}\coprod$ от длительности τ ЛЧМ сигнала. Сплошными линиями показана линейная аппроксимация получившейся зависимости. Коэффициент k обозначает коэффициент наклона прямой

2.5.1 Прямоугольный видеоимпульс

Проводились измерения при значениях длительности сигналов T=10,20,40 мс. Пример суперпозиции сигналов, а также выход с фильтра приведены на рис. 22.

Рис. 22: Прямоугольный видеоимпульс. Длительность 10 мс, задержка 15 мс

При длительности импульса 10 мс, качественно, сигналы стали различимы при задержке в 11 мс - появились явные разделенные пики, по которым можно различить два сигнала. Однако при задержке в 11 мс, как было скачано раньше, наступает разделение сигналов на входе.

Если задержка между сигналами равна длительности первого сигнала, то два входных прямоугольных видеоимпульса сливаются в один, длительность которого становится равной 20 мс, и на входе фильтра эти сигналы не разрешены, и на выходе согласованного фильтра наблюдается только один выходной сигнал - сигналы не разрешены.

Использование согласованной фильтрации не позволяет разрешить два прямоугольных видеоимпульса подданных неразрешенными на вход фильтра.

2.5.2 ЛЧМ сигнал

Далее исследовался ЛЧМ сигнал с частотой заполнения f=3000 Гц, девиацией $\Delta f=200,400,800$ Гц, одинаковыми амплитудами, и длительностью T=10,20,40 мс. ЛЧМ сигналы это сложные сигналы, чья база B много больше единицы: $B=T\cdot\Delta f\in[2,32]$

Рис. 23: ЛЧМ сигнал, T=10 мс, $\Delta f=400$ Гц, $\Delta t=10$ мс

Рассмотрим сигналы с одинаковой амплитудой и длительностью. На рис. 23 приведены осциллограммы входного и выходного сигнала, длительностью T=10 мс, $\Delta f=400$ Гц, значение задержки $\Delta t=10$ мс. На входе сигналы не разрешены - они сливаются в один сигнал длительностью 20 мс, однако

на выходе согласованного фильтра наблюдается два разнесенных по времени пика.

Так происходит, потому что эффеткивная длительность сигнала уменьшается в B раз при прохождении согласованного фильтра. Таким образом, эффективная длительность каждого сигнала на выходе:

$$T_{eff} = \frac{T}{B} = \frac{1}{\Delta F} = \frac{10}{4} = 2.5 \text{MC}$$

В случае, когда задержка меньше длительности, например $\Delta t = 5$ мс, на входе сигналы перекрываются (см. рис. 24). При этом на выходе согласованного фильтра все также наблюдаются два отчетливо разнесенных отклика.

Рис. 24: ЛЧМ сигнал, T=10 мс, $\Delta f=400$ Гц, $\Delta t=5$ мс

Для сигнала в T=10 мс, $\Delta f=400$ Гц, значение задержки Δt , при котором становятся различимы сигналы, составляет $\Delta t=6$ мс.

Далее варьировались параметры сигналов и определялось минимальное значение временной задержки сигналов. По результатам измерений была составлена следующая таблица, в которой указаны пороговые значения задержки в мс, при которых сигналы становились различимыми:

Δf , Γ ц T ,мс	10	20	30
200	6	6	7
400	3	3.05	3.05
800	1.2	1.1	1.1

Из полученных данных видно, что увеличение длительности сигнала слабо практически не влияет на разрешающую способность, в то время как величина девиации напрямую влияет на разрешающую способность - эффективная длительность сигнала на выходе $T_{eff} = \frac{1}{\Delta f}$. Укорачивая длительность сигналов, они разносятся на выходе, повышая разрешающую способность.

Видно преимущество сложных сигналов - даже слившиеся или перектрытые сигналы можно разрешить, используя согласованный фильтр.

Также рассмотрим сигналы с разной амплитудой. Пусть амплитуда задержанного сигнала меньше основного в ~ 6 раз. Длительность T=10 мс, $\Delta f=400$ Γ ц, значение задержки $\Delta t=10$ мс (см. рис. 25).

Рис. 25: ЛЧМ сигнал, T=10 мс, $\Delta f=400$ Гц, $\Delta t=10$ мс, $A_1=6A_2$

На выходе фильтра наблюдается два отклика, разнесенные по времени. Таким образом, сигналы разрешены и на входе (по амплитуде), и на выходе (по времени). Однако стоит отметить, что в данной ситуации отклик второго испульса накладывается на побочный лепесток первичного импульса, и возможна ситуация, при которой сигналы будет невозможно разрешить.

Вывод Используя сложные сигналы, можно обеспечить необходимую разрешающую способность, поскольку проходя через согласованный фильтр, эффективная длительсноть сигнала сокращается в B раз, что бессмысленно в случае с простыми сигналами, которые невозможно различить при задержке меньше длительности.

- 2.6. Задание 6. Различение сигналов.
- 3. Вывод

4. Дополнение

Здесь приведены некоторые вопросы, которые разбирались на сдаче отчета