$\operatorname{MATH}1241$ Problem Set Solutions - Algebra

Yue Yu

 $2022~{\rm Term}~2$

Contents

	or Spaces
6.1	Problem 1
6.2	Problem 2
6.3	Problem 3
6.4	Problem 4
6.5	Problem 5
6.6	Problem 6
6.7	Problem 7

Chapter 6

Vector Spaces

6.1 Problem 1

For $\mathbf{x} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} \in S$, $(-1)\mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \notin S$, which implies that S is not closed under scalar multiplication. Hence, S is not a vector space.

6.2 Problem 2

For $\mathbf{x} = \begin{pmatrix} 8 \\ 0 \\ 2 \end{pmatrix} \in S$, $(-1)\mathbf{x} = \begin{pmatrix} -8 \\ 0 \\ -2 \end{pmatrix} \notin S$ because $2x_1 + 3x_2^3 - 4x_3^2 = -32 \neq 0$, which implies that S is not closed under scalar multiplication. Hence, S is not a vector space.

6.3 Problem 3

a)

For example,
$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
 and $\begin{pmatrix} 2\\1\\0 \end{pmatrix}$.

b)

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \in S, \text{ but } \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \notin S \text{ because } (3-2) \times 1 \neq 0, \text{ which implies that } S \text{ is not closed under vector addition}$$

6.4 Problem 4

Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{C}^n$ and $\lambda, \mu \in \mathbb{C}$.

For axiom 1, because \mathbb{C} is closed under addition, we have

$$\mathbf{u} + \mathbf{v} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} + \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{pmatrix} \in \mathbb{C}^n,$$

which shows that axiom 1 is satisfied.

For axiom 2, because addition in \mathbb{C} is associative, we have

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \begin{pmatrix} \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} + \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \end{pmatrix} + \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} u_1 + v_1 + w_1 \\ \vdots \\ u_n + v_n + w_n \end{pmatrix}$$
$$= \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} + \begin{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} \end{pmatrix}$$
$$= \mathbf{u} + (\mathbf{v} + \mathbf{w}),$$

which shows that axiom 2 is satisfied.

For axiom 6, because \mathbb{C} is closed under scalar multiplication, we have

$$\lambda \mathbf{v} = \lambda \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} \lambda v_1 \\ \vdots \\ \lambda v_n \end{pmatrix} \in \mathbb{C}^n,$$

which shows that axiom 6 is satisfied.

For axiom 9, because of the distributive law in \mathbb{C} , we have

$$(\lambda + \mu)\mathbf{v} = (\lambda + \mu) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} (\lambda + \mu)v_1 \\ \vdots \\ (\lambda + \mu)v_n \end{pmatrix} = \begin{pmatrix} \lambda v_1 + \mu v_1 \\ \vdots \\ \lambda v_n + \mu v_n \end{pmatrix}$$
$$= \begin{pmatrix} \lambda v_1 \\ \vdots \\ \lambda v_n \end{pmatrix} + \begin{pmatrix} \mu v_1 \\ \vdots \\ \mu v_n \end{pmatrix} = \lambda \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} + \mu \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$
$$= \lambda \mathbf{v} + \mu \mathbf{v},$$

which shows that axiom 9 is satisfied.

6.5 Problem 5

Suppose $A, B \in M_{mn}(\mathbb{C})$ and $\lambda \in \mathbb{C}$.

For axiom 1, because \mathbb{C} is closed under addition, we have

$$a_{ij} + b_{ij} \in \mathbb{C}, \quad 1 \le i \le m \text{ and } 1 \le j \le n.$$

Hence, $A + B \in M_{mn}(\mathbb{C})$, which shows that axiom 1 is satisfied.

For axiom 3, because \mathbb{C} is commutative, we have

$$a_{ij} + b_{ij} = b_{ij} + a_{ij}, \quad 1 \le i \le m \text{ and } 1 \le j \le n.$$

Hence, A + B = B + A, which shows that axiom 3 is satisfied. For axiom 6, because \mathbb{C} is closed under scalar multiplication, we have

$$\lambda a_{ij} \in \mathbb{C}, \quad 1 \le i \le m \text{ and } 1 \le j \le n.$$

Hence, $\lambda A \in M_{mn}(\mathbb{C})$, which shows that axiom 6 is satisfied. For axiom 10, because of the distributive law in \mathbb{C} , we have

$$\lambda(a_{ij} + b_{ij}) = \lambda a_{ij} + \lambda b_{ij}, \quad 1 \le i \le m \text{ and } 1 \le j \le n.$$

Hence, $\lambda(A+B) = \lambda A + \lambda B$, which shows that axiom 10 is satisfied.

6.6 Problem 6

It is easy to see that $(\mathbb{C}^n, +, *, \mathbb{R})$ is a vector space because \mathbb{R} is a subfield of \mathbb{C} and $(\mathbb{C}^n, +, *, \mathbb{C})$ is a vector space.

For $(\mathbb{R}^n, +, *, \mathbb{C})$, let $\mathbf{x} \in \mathbb{R}^n$ with all entries being 1, then $i\mathbf{x}$ is a vector with entries being i and is not in \mathbb{R}^n . Hence, the system is not closed under scalar multiplication, which implies that it is not a vector space.

6.7 Problem 7

This system is not a vector space.