BITS Pilani Post Graduate Programme AI/ML C6: Deep Learning and ANN Assignment 1

- [12 marks]

Q1. Train a perceptron

Perceptron is a fundamental building block for neural networks. Let us try to train a single perceptron. Consider the data given in the following table. As one can see, it has two attributes x1,x2, and a class label (either 0 or 1)

- 1. Implement the perceptron training rule and get the appropriate parameters for a single perceptron (Using only basic libraries like NumPy)
- 2. Plot the data points and the obtained decision boundary
- 3. Also draw the schematic diagram of the trained perceptron with learned weights. You can draw this on paper and upload it in the Python notebook

[2+2+1=5 Marks]

X1	X2	Y
-3.98	-0.12	1
-3.464	-2.11	1
-3.461	1.89	1
-2.22	-3.474	1
-2.02	0.03	0
-2.01	3.459	1
-1.42	-1.409	0
-1.416	1.419	0
-1.09	0.08	0
-0.19	-4.13	1
0.01	1.02	0
0.03	-2.12	0
0.04	2.06	0
0.06	3.97	1
0.07	0.1	0
0.12	-1.12	0
1.11	0.09	0
1.411	1.419	0
1.414	-1.415	0
1.86	3.47	1
1.96	-0.12	0
2.11	-3.472	1

Q2. Train a neural network

Let us design a neural network to classify the Pima Indians Diabetes Dataset.

- 1. Implement a single hidden layer MLP. The final output layer will have 3 neurons, one for each result. Arch: [Input, hidden, output]
- 2. Now use a NN with three hidden layers. The first hidden layer has 8 neurons. The second hidden layer has 4 neurons. The third hidden layer has 4 neurons. Arch: [Input,hidden1(8),hidden2(4),hidden3(4),output]
- (i) Use Keras or any other framework to design the NN model and train on the diabetes data. Report the accuracy.
- (ii) Draw the schematic diagram of the NN along with all the weights and specify a suitable activation function.

$$[2 (NN1) + 3 (NN2) + 2(diagram) = 7 Marks]$$

Note: The architecture for NN1 and NN2 is clearly mentioned, any change in the number of layers/neurons will be penalized in the marks.