PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-209207

(43)Date of publication of application: 03.08.2001

(51)Int.CI.

G03G 9/08 G03G 9/087 G03G 15/08

(21)Application number: 2000-016528

(71)Applicant: CANON INC

(22)Date of filing:

26.01.2000

(72)Inventor:

KUKIMOTO TSUTOMU

TAKIGUCHI TAKESHI

(54) TONER AND IMAGE FORMING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a toner excellent in developing performance and so excel lent in durability that it can maintain a high resolution image even after the output of many copied images or printer images. SOLUTION: In the toner having toner particles containing at least a bonding resin and a colorant and fine particles of one or more inorganic compounds, at least one of the inorganic compounds comprises at least a phosphate anion and one or more cations, at least one of the cations is Zr and the values of the shape factors SF-1 and SF-2 of the toner measured with an image analyzing device saticefy >100 to 160 and >100 to 140, respectively.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2001-209207 (P2001-209207A)

(43)公開日 平成13年8月3日(2001.8.3)

(51) Int.Cl.7		識別記号	FΙ		ร	7]ド(参考)
G 0 3 G	9/08	374	G 0 3 G	9/08	374	2H005
		365			365	2H077
	9/087				384	
	15/08	5 0 7	1	15/08	507L	

審査請求 未請求 請求項の数21 OL (全 16 頁)

(21)出願番号	特願2000-16528(P2000-16528)	(71) 出顧人 000001007
		キヤノン株式会社
(22)出顧日	平成12年1月26日(2000.1.26)	東京都大田区下丸子3丁目30番2号
		(72)発明者 久木元 力
		東京都大田区下丸子3丁目30番2号 キヤ
		ノン株式会社内
		(72)発明者 瀧口 剛
		東京都大田区下丸子3丁目30番2号 キヤ
		ノン株式会社内
		(74)代理人 100096828
		弁理士 渡辺 敬介 (外1名)

最終頁に続く

(54)【発明の名称】 トナーおよび画像形成方法

(57)【要約】

【課題】 現像性に優れ、複写画像あるいはプリンター 画像を多数枚出力しても高解像度の画像を維持しうる耐 久性に優れたトナーを提供することにある。

【解決手段】 少なくとも結着樹脂及び着色剤を含有するトナー粒子と無機化合物の微粒子とを有しているトナーにおいて、該無機化合物の一種が少なくともリン酸系陰イオンと少なくとも1種以上の陽イオンから構成され、該陽イオンの少なくとも1種は2rであり、該トナーの画像解析装置で測定した形状係数SF-1とSF-2の値が下記式

 $100 < SF - 1 \le 160$

 $1 \ 0 \ 0 < S \ F - 2 \le 1 \ 4 \ 0$

を満足することを特徴とする。

【特許請求の範囲】

【請求項1】 少なくとも結着樹脂及び着色剤を含有するトナー粒子と無機化合物の徴粒子とを有しているトナーにおいて、

該無機化合物の一種が少なくともリン酸系陰イオンと少なくとも 1 種以上の陽イオンから構成され、該陽イオンの少なくとも 1 種は 2 r であり、

該トナーの画像解析装置で測定した形状係数 S F - 1 と S F - 2 の値が下記式

 $100 < SF - 1 \le 160$

 $100 < SF - 2 \le 140$

を満足することを特徴とするトナー。

【請求項2】 該無機化合物が少なくとも2種以上の陽イオンから構成され、少なくとも1種はZrであり、他の1種はIB族及びVIII族金属元素から選ばれる金属のイオンであることを特徴とする請求項Iに記載のトナー。

【請求項3】 該無機化合物が少なくとも2種以上の陽イオンから構成され、少なくとも1種はZrであり、他の1種はAu, Ag, Cu, Ptから選ばれる金属のイ 20オンであることを特徴とする請求項1に記載のトナー。 【請求項4】 該無機化合物の形状が平面に囲まれた多面体であり、数平均粒径が0.05~2μmであることを特徴とする請求項1乃至3のいずれかに記載のトナ

【請求項5】 該無機化合物の形状が立方晶であることを特徴とする請求項1乃至4のいずれかに記載のトナ

【請求項6】 該無機化合物の抵抗が $10^4 \sim 10^{12}$ Ω ・ c m であることを特徴とする請求項1 乃至5 のいずれ 30 かに記載のトナー。

【請求項7】 該トナー粒子が、軟化点が40~90℃ のワックスを含有することを特徴とする請求項1乃至6のいずれかに記載のトナー。

【請求項8】 該ワックスの含有量がトナー全体に対し、 $0.1\sim50$ 質量%であることを特徴とする請求項7に記載のトナー。

【請求項9】 該トナー粒子が、重量平均粒径 $1\sim 9~\mu$ mを有していることを特徴とする請求項 1 乃至 8 のいずれかに記載のトナー。

【請求項10】 該トナー粒子の一部又は全体が重合法 により形成されたことを特徴とする請求項1乃至9のいずれかに記載のトナー。

【請求項11】 静電荷像担持体を帯電する帯電工程と、光エネルギーの照射により該静電荷像担持体上に静電潜像を形成する露光工程と、該静電荷像担持体上の静電潜像とトナー担持体に薄層コートされたトナーとを接触させながら現像する現像工程と、該トナー像を転写材に転写する転写工程を少なくとも有する画像形成方法において、

該トナーが少なくとも結着樹脂及び着色剤を含有するトナー粒子と無機化合物の微粒子とを有しており、

該無機化合物の一種が少なくともリン酸系陰イオンと少なくとも1種以上の陽イオンから構成され、該陽イオンの少なくとも1種は Z_r であり、

該トナーの画像解析装置で測定した形状係数 S F - 1 と S F - 2 の値が下記式

 $100 < SF - 1 \le 160$

 $100 < SF - 2 \le 140$

を満足することを特徴とする画像形成方法。

【請求項12】 該無機化合物が少なくとも2種以上の陽イオンから構成され、少なくとも1種はZrであり、他の1種はIB族及びVIII族金属元素から選ばれる金属のイオンであることを特徴とする請求項11に記載の画像形成方法。

【請求項13】 該無機化合物が少なくとも2種以上の陽イオンから構成され、少なくとも1種はZrであり、他の1種はAu, Ag, Cu, Ptから選ばれる金属のイオンであることを特徴とする請求項11に記載の画像形成方法。

【請求項14】 該無機化合物の形状が平面に囲まれた 多面体であり、数平均粒径が $0.05\sim2~\mu$ mであることを特徴とする請求項11乃至13のいずれかに記載の 画像形成方法。

【請求項15】 該無機化合物の形状が立方晶であることを特徴とする請求項11乃至14のいずれかに記載の画像形成方法。

【請求項 16 】 該無機化合物の抵抗が $10^4 \sim 10^{12}$ $\Omega \cdot c$ m であることを特徴とする請求項 11 乃至 15 のいずれかに記載の画像形成方法。

【請求項17】 該トナー粒子が、軟化点が40~90 ℃のワックスを含有することを特徴とする請求項11乃 至16のいずれかに記載の画像形成方法。

【請求項18】 該ワックスの含有量がトナー全体に対し、 $0.1\sim50$ 質量%であることを特徴とする請求項17に記載の画像形成方法。

【請求項19】 該トナー粒子が、重量平均粒径1~9 μ mを有していることを特徴とする請求項11乃至18 のいずれかに記載の画像形成方法。

【請求項20】 該トナー粒子の一部又は全体が重合法 により形成されたことを特徴とする請求項11乃至19 のいずれかに記載の画像形成方法。

【請求項21】 該転写工程で静電荷像担持体上に残存した転写残トナーを、現像工程で現像と同時に回収することを特徴とする請求項11乃至20のいずれかに記載の画像形成方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電子写真法, 静電 記録法, 磁気記録法, トナージェット方式記録法などを 利用した記録方法に用いられるトナーおよび画像形成方法に関するものである。詳しくは、本発明は、予め静電 潜像担持体上にトナー像を形成後、転写材上に転写させ て画像形成する、複写機、プリンター、ファックスに用 いられるトナーおよび画像形成方法に関する。

[0002]

【従来の技術】従来、電子写真法としては多数の方法が知られているが、一般にはコロナ帯電あるいは帯電ローラー等の帯電部材により、光導電性物質からなる潜像担持体、いわゆる感光体上の表面を一様に帯電させた後、光エネルギーの照射等により潜像担持体上に電気的潜像を形成し、次いで該潜像を正又は負に帯電しているトナーで現像を行なって可視像とし、必要に応じて紙などの転写材にトナー像を転写した後、熱・圧力等のエネルギーにより転写材上にトナー画像を定着して複写物を得るものである。そして、転写時に転写材に転写されずに残余したトナーは種々の方法でクリーニングされ、上述の工程が繰り返される。

【0003】電気的潜像をトナーにより可視化する方法としては、カスケード現像法、キャリアと混合して使用される磁気ブラシ現像法、非磁性一成分現像方法、加圧現像方法等が知られている。さらには、磁性トナーを用い、中心に磁極を配した回転スリーブを用い感光体上とスリーブ上の間を電界にて飛翔させる磁性一成分現像方法も用いられている。いずれに用いられるトナーも、スリーブあるいはキャリア等の帯電付与部材との摩擦帯電により帯電されて用いられる。

【0004】近年、プリンターあるいは複写機等電子写真法による画像形成装置においては、技術の方向として、より高解像度となって来ており、現像方式においてもこれに伴ってより高精細が要求されてきている。また、複写機においては高機能化が進んでおり、そのためプリンターと同様デジタル化の方向に進みつつある。この方向は、静電荷像をレーザーで形成する方法が主である為、やはり高解像度の方向に進んでおり、ここでもプリンターと同様に高解像・高精細の現像方式が要求されてきている。

【0005】特に近年、電子写真式カラー画像形成装置

が広く普及するに従い、その用途も多種多様に広がり、その画像品質への要求も厳しくなってきている。一般の写真、カタログ、地図の如き画像の複写では、微細な部分に至るまで、つぶれたり、とぎれたりすることなく、極めて微細且つ忠実に再現することが求められている。【0006】最近の、デジタルな画像信号を使用している電子写真方式の画像形成装置では、潜像は一定電位のドットが潜像担持体、所謂感光体の表面に集まって形成されており、ベタ部、ハーフトーン部及びライン部はドット密度を変えることによって表現されている。しかしながらこの方法では、ドットに忠実にトナー粒子がのり

にくく、ドットからトナー粒子がはみ出した状態とな

り、デジタル潜像の黒部と白部のドット密度の比に対応するトナー画像の階調性が得られないという問題が起こり易い。更に、画質を向上させるために、ドットサイズを小さくして解像度を向上させる場合には、微小なドットから形成される潜像の再現性が更に困難になり、解像度及び特にハイライト部の階調性の悪い、シャープネスさに欠けた画像となる傾向がある。

【0007】さて、このような電子写真法での帯電手段としては、所謂コロトロン、スコロトロンと呼ばれるコロナ放電を利用した手段が用いられていたが、コロナ放電特に負コロナを生成する際に多量のオゾンを発生することから、電子写真装置にオゾン捕獲のためのフィルタを具備する必要性があり、装置の大型化又は、ランニングコストがアップするなどの問題点があった。また、こういったコロナ帯電方法によって引き起こされる画像上の問題点としては、たとえば、窒素酸化物等の付着により感光体表面抵抗が低くなることで生じる所謂画像流れ、あるいは、電子写真装置が停止中帯電器内に残存するイオンが原因となる感光体のメモリ現象等が挙げられる。

【0008】このような問題点を解決するための技術として、ローラ又はブレードなどの帯電部材を感光体表面に接触させることにより(本願では以後、直接帯電と呼ぶ)、その接触部分近傍に狭い空間を形成し所謂パッシェンの法則で解釈できるような放電を形成させて、オゾン発生を極力抑さえた帯電方法が開発され、例えば、特開昭57-178257号公報、特開昭56-104351号公報、特開昭58-150975号公報で公知技術となっている。これらの中でも特に、帯電の安定性という点から、帯電部材として帯電ローラを用いた帯電方式が好ましく用いられている。

【0009】コロナ放電よりも直接帯電の方がオゾン発生量が少ない理由としては、その放電領域の違いによる感光体表面の帯電機構が異なるためと考えられる。コロナ放電では、放電領域で空気分子が電離してイオンとして感光体表面の帯電をつかさどると考えられるのに対して、直接帯電では、その放電領域において電子の増倍作用により多数の電子が感光体表面に到達することにより帯電される。

【0010】しかしながら、直接帯電においても、すでに述べたコロナ帯電方法での問題点とは別の解決すべき問題点があることがわかった。

【0011】具体的には、直接帯電は帯電部材から感光体等の被帯電体への放電によって行なわれるため、帯電が開始されるには、ある閾値電圧以上の電圧を印加する必要のあることが挙げられる。例えば感光層の厚さが25μmのOPC感光体に対して帯電ローラを当接させた場合には、約640V以上の電圧を印加すれば感光体の表面電位が上昇し始め、それ以降は印加電圧に対して傾

き1で線形に感光体表面電位が増加する。以後この閾値電圧を帯電開始電圧 V t h と定義する。つまり、感光体表面電位 V d を得るためには、帯電ローラには V d + V t h という必要とされる以上の D C 電圧が必要となる。 また環境変動等によって接触帯電部材の抵抗値が変動するため、感光体の電位を所望の値にすることが難しかっ

【0012】そこで、更なる帯電の均一化を図るために、所望のVdに相当するDC電圧に2×Vth以上のピーク間電圧を持つAC成分を重畳した電圧を接触帯電部材に印加するAC帯電方式が特開昭63-149669号公報に開示されている。これは、ACによる電位のならし効果を目的としたものであり、被帯電体の電位はAC電圧のピークの中央であるVdに収束し、環境等の外乱からの影響をかなり抑えることが可能となる。

た。

【0013】しかしながら、このような接触帯電装置においても、その本質的な帯電機構は、帯電部材から感光体への放電現象を用いているため、先に述べたように帯電に必要とされる電圧は感光体表面電位以上の値が必要とされる。また、帯電均一化のためにAC帯電を行なった場合には、AC電圧の電界による帯電部材と感光体の振動・騒音(以下AC帯電音と称す)の発生、また、AC電圧重畳の分だけ放電による感光体表面の劣化等が顕著になり、新たな問題点となっていた。

【0014】加えて、オゾンの発生を低下させるためには、本来、DC電圧のみの印加で帯電を行うことが好ましいが、DCのみの帯電では、前述の如く環境変動等の影響を受けやすいことに加え、帯電部材の汚染が生じた際に帯電ムラが生じやすいという欠点があった。

【0015】一方、現像工程で感光体上に形成されたト ナー像が転写工程で転写材に転写される際、上述したよ うに感光体上に転写残トナーが残る場合は、クリーニン グ工程でクリーニングされ、廃トナー容器に蓄えられる 必要が出てくる。このクリーニング工程については、従 来ブレードクリーニング、ファーブラシクリーニング、 ローラクリーニング等が用いられていた。いずれの方法 も力学的に転写残余のトナーを掻き落とすか、またはせ き止めて廃トナー容器へと捕集されるものであった。よ って、このような部材が感光体表面に押し当てられるこ とに起因する避けがたい問題が生じていた。例えば、部 40 材を強く押し当てることにより感光体を摩耗させ感光体 が短命化することが挙げられる。装置面からみると、か かるクリーニング装置を具備するために装置が必然的に 大きくなり装置のコンパクト化を目指すときのネックに なっていた。さらには、エコロジーの観点より、トナー の有効活用と言う意味で廃トナーの出ないシステムが望 まれている。

【0016】 ここで、クリーナレスに関連する技術の開示を行っているものに特開昭59-133573号公報、特開昭62-203182号公報、特開昭63-1

33179号公報、特開昭64-20587号公報、特開平2-302772号公報、特開平5-2289号公報、特開平5-53482号公報、特開平5-61383号公報等があるが、望ましいトナー構成については言及されていなかった。

【0017】更に、本質的にクリーニング装置を有さない現像同時クリーニング構成では、転写残トナーはそのまま帯電部材と感光体間を通過するため、帯電部材を汚染しやすく、帯電部材の抵抗が不均一となり、ハーフトーン画像部において極端な濃度ムラの原因となる帯電ムラが起こりやすい。加えて、この構成においては感光体表面をトナー及びトナー担持体によって擦る構成が必須であるが、転写残トナー量が多い場合、より強く擦る必要がある。このために長期間使用によるトナー劣化、トナー担持体表面劣化、感光体表面劣化又は磨耗等を引き起こし、耐久特性の劣化が問題点として残り、従来技術では充分な解決がなされているとは言えなかった。

【0018】また、特開平3-259161号公報では、形状係数と比表面積及び粒径を規定した非磁性一成分現像剤が提案されているが、該公報に規定されている現像剤では帯電部材の非汚染性や耐久性が不十分であった。

【0019】特開昭61-279864号公報においては、形状係数SF-1及びSF-2を規定したトナーが提案されている。しかしながら、該公報には転写に関してなんの記載もなく、また、実施例を追試した結果、転写効率や帯電部材の非汚染性が十分とは言えず、さらなる改良が必要である。

【0020】さらに、特開昭63-235953号公報においては、機械的衝撃力により球形化した磁性トナーが提案されている。しかしながら、転写効率はいまだ不十分であり、帯電部材の非汚染性と共にさらなる改良が必要である。

【0021】これに対し、例えば特開平2-16376 0号公報において、非磁性一成分トナーにシリカの如き 添加剤を混合して転写性を向上させる手段も提案されて いる。しかしながら、添加剤そのものの転写性や感光体 の帯電手段にまで触れられているものは見当たらない。 トナーの転写性向上剤として用いられる微小粒径の添加 剤は一般に転写性が低く、転写後も感光体上に残りやす い。残った添加剤は粒径が細かいためクリーニング部材 をすり抜けやすく、直接帯電においては帯電部材に付着 し、帯電不良の原因となる。この時、帯電部材からの電 圧印加により添加剤の帯電極性が帯電部材と同極性とな れば、添加剤は帯電部材と反発し、感光体上に吐き出さ れ、現像部位において現像器内に回収が可能となるが、 シリカの如き高抵抗の転写向上剤は極性の反転が起こり にくく、帯電部材に強固に付着したままとなりやすい。 【0022】よって、トナーの転写性を向上させ、か つ、電界によって極性が反転しやすいような、直接帯電

の系にうまく適合する転写向上剤の開発が望まれる。

【0023】一方、懸濁重合法によるトナーも古くから提案されている(例えば特公昭36-10231号公報)。この懸濁重合法においては重合性単量体および着色剤(更に必要に応じて重合開始剤、架橋剤、荷電制御剤、その他の添加剤)を均一に溶解または分散せしめて単量体組成物とした後、この単量体組成物を分散安定剤を含有する連続層(例えば水相)中に適当な撹拌器を用いて分散し同時に重合反応を行なわせ、所望の粒径を有するトナー粒子を得るものである。この懸濁重合法で得られるトナーは、個々のトナー形状がほぼ球形に揃っており、帯電量の分布も比較的均一となるため高い転写性を有している。

【0024】特開平8-305074号公報においては、残存モノマーが1000ppm以下の特定の形状のトナーを用いたクリーナレス画像形成方法について記載しているが、帯電部材汚染時の帯電ムラに関してはさらなる改良がもとめられていた。

[0025]

【発明が解決しようとする課題】本発明の目的は、上記 20 の従来技術の問題点を解決し得るトナーおよび画像形成 方法を提供することにある。

【0026】即ち本発明の目的は、現像性に優れ、複写画像あるいはプリンター画像を多数枚出力しても高解像度の画像を維持しうる耐久性に優れたトナーおよび画像形成方法を提供することにある。

【0027】さらに本発明の目的は、転写性に優れ、転写残トナーが少なく、クリーニング装置を有さずとも、帯電不良を生じることなく、長期にわたって安定した画像が得られるトナーおよび画像形成方法を提供することにある。

【0028】さらに本発明の目的は、高温高湿環境下で 複写画像あるいはプリンター画像を多数枚出力しても画 像流れを生じないトナーおよび画像形成方法を提供する ことにある。

【0029】さらに本発明の目的は、定着性を阻害することなく長期にわたってトナー劣化、帯電部材の汚染を防止できるトナーおよび画像形成方法を提供することにある。

[0030]

【課題を解決するための手段】本発明は、少なくとも結着樹脂及び着色剤を含有するトナー粒子と無機化合物の微粒子とを有しているトナーにおいて、該無機化合物の一種が少なくともリン酸系陰イオンと少なくとも1種以上の陽イオンから構成され、該陽イオンの少なくとも1種はZrであり、該トナーの画像解析装置で測定した形状係数SF-1とSF-2の値が下記式

 $100 < SF - 1 \le 160$

 $100 < SF - 2 \le 140$

を満足することを特徴とするトナーに関する。

ø

【0031】また、本発明は、静電荷像担持体を帯電する帯電工程と、光エネルギーの照射により該静電荷像担持体上に静電潜像を形成する露光工程と、該静電荷像担持体上の静電潜像とトナー担持体に薄層コートされたトナーとを接触させながら現像する現像工程と、該トナー像を転写材に転写する転写工程を少なくとも有する画像形成方法において、該トナーとして、上記のトナーを用いることを特徴とする画像形成方法に関する。

【0032】本発明において、好ましくは、該無機化合物が少なくとも2種以上の陽イオンから構成され、少なくとも1種はZrであり、他の1種はIb族、VIII族の金属元素から選ばれる金属のイオンであることが好ましく、さらにはAu、Ag、Cu、Ptから選ばれる金属のイオンであるものとすることで、トナーの転写性を向上させ、一方、転写残として残りやすい無機化合物がクリーニング工程をすり抜けて帯電部材に付着しても、帯電部材からの電荷注入により帯電極性が帯電部材と同極性となって帯電部材より吐き出され、帯電不良及び帯電むらの発生が防止される。この効果は現像同時クリーニングの構成において特に有効である。

【0033】また、リン酸系陰イオンと Zr陽イオンを有することで、平面で囲まれた多面体形状を有する粒径の揃った無機微粒子が得られやすく、該無機微粒子を表面に有するトナーは感光体表面に対して、大きな研磨効果を有し、高温高湿下においても、画像流れを防止できる。

[0034]

【発明の実施の形態】本発明者等は、トナーの転写性を向上しうる添加剤を種々選択した後、電圧印加によって帯電極性が反転しやすくなるよう材料設計を行った結果、無機化合物微粒子中に I B 族及び V I I I 族金属元素から選ばれる金属のイオンを含有せしめることにより、目的が達成しうることを見出した。特に、これら金属イオンをイオン交換法等により無機化合物微粒子の表面近傍に含有させた場合にその効果が顕著であった。

【0035】 I B族及び V I I I 族金属は、中性状態及びカチオン状態のいずれの状態もとりやすい。そのため、微粒子表面にカチオン状態で存在せしめれば、該微粒子を正極性に帯電させることができ、中性状態で存在せしめた場合には、該微粒子は、リン酸系イオンの影響により負極性に帯電する。即ち、印加電圧に応じて該微粒子を正・負のいずれの極性にも帯電させることが可能である。

 $A g^0 \Leftrightarrow A g^+ \Leftrightarrow A g^{2+}$

で示される各過程のイオン化ポテンシャルが比較的低い ことから、微粒子表面に存在する A g・が印加電圧に応 じて A g・(正帯電状態) あるいは A g。(負帯電状 態)へと変化しやすいこととして理解しうる。但し、これら I B 族及び V I I I 族金属化合物 そのものでは抵抗が低いため、そのまま用いるとトナーの帯電極性が悪化したり、現像剤担持体と感光体間でリークが起こって潜像が乱れるなどするため、本発明の如く、転写性向上剤の相成の一部として使用する必要がある。また、転写性向上剤の内部に過多に I B 族及び V I I I 族金属イオンが存在している場合、表面の電荷は内部へと移動し、内部も帯電するようになるが、こうなると外部からの電圧印加でもすぐには極性の反転が起こりにくくなるため、より好ましくは、 I B 族及び V I I I 族金属イオンは転写性向上剤の表面近傍に存在せしめて用いるのが良い。

【0037】優れた環境特性を得るためには、母体となる無機化合物は難水溶性のものが好ましい。この母体無機微粒子をイオン交換や無電解メッキ等により I B 族及び V I I I 族金属イオンを表面近傍に安定に存在させうることを見出した。

【0038】即ち、本発明に係わるトナーは、環境特性に優れた難水溶性無機化合物微粒子を転写性向上剤として用い、該無機化合物微粒子の(特にその表面近傍の)一部をIB族及びVIII族金属イオンとすることで、転写残の該微粒子が帯電部材に付着しても、電圧印加によりたやすく帯電部材と同じ帯電極性となり、帯電部材から迅速に吐き出されることにより帯電不良を防止するという発想により生まれたものである。

【0039】加えて、該無機化合物の抵抗を、 10^4 ~ 10^{12} Ω ・c mの範囲に制御して使用することで、トナーの電子写真特性及び感光体の帯電性がより良好となる。抵抗が $10^4\Omega$ ・c mよりも低い場合、高湿下においてトナーの摩擦帯電特性が低下しやすくなり、抵抗が 10^{12} Ω ・c mよりも高い場合には、無機化合物の極性反転が起こりにくくなると共に、低湿下での耐久時にトナーのトリボが上がり過ぎる傾向が出る。

【0040】本発明に係わる無機化合物の好ましい平均粒径は $0.05\sim2\mu$ mである。 0.05μ mよりも小さいとスペーサー効果に基づく転写性向上剤としての効果が乏しくなると共に、帯電部材からの吐き出し性が低下してしまい、帯電不良が発生しやすくなる。 2μ mよりも大きくなるとトナー表面から遊離しやすくなるため、やはり転写性向上剤としての効果が乏しくなると共ん、無機化合物の有効個数が減ってしまうためトナーへの添加量を増やす必要が生じ、その結果、定着性や流動性等のトナー特性が悪化してしまう。

【0041】また、本発明に係わる無機化合物の形状は 平面で囲まれた多面体であることが、適度な研磨効果を 持ち、感光体の表面付着物を除去し画像流れを防止した り、トナー担持体に当接する現像担持体へのトナー成分 の融着を軽減して現像スジを防止する上でさらに好まし い

【0042】これら無機化合物は、トナー粒子100質 50

量部に対して0.02~5質量部の割合の混合比で使用される。0.02質量部よりも少ないと、トナーの転写性向上効果に乏しく、5質量部を超える量を添加するとトナーの帯電性や定着性に悪影響を及ぼし易い。

【0043】また、これらの無機化合物は、トナーの摩擦帯電量の調整あるいは環境特性のさらなる改良のために、種々の表面処理剤で表面処理を行った後使用しても良い。処理方法は、溶液中での湿式法あるいは乾式法等任意に選択できる。

【0044】本発明に係るトナー粒子は、画像解析装置で測定した形状係数SF-1の値が下記式を満足しており、これにより添加する無機微粒子の効果が出やすく、耐久性もいっそう向上する。

 $1 \ 0 \ 0 < S \ F - 1 \le 1 \ 6 \ 0$

好ましくは

100<SF-1 \le 140 であり、

 $100 < SF - 1 \le 120$

とすることがより一層、好ましい。

【0045】さらに本発明に係るトナー粒子は、画像解析装置で測定した形状係数SF-2の値が下記式を満足しており、これにより添加する無機微粒子の効果が出やすく、転写性もより向上する。

 $1 \ 0 \ 0 < S \ F - 2 \le 1 \ 4 \ 0$

好ましくは

100<SF-2≦130 であり、

 $100 < SF - 2 \le 120$

とすることがより一層、好ましい。

【0046】すなわち、表面に凹凸が少ないと、添加した微粒子がスペーサーとして挙動する確率が増え、また、耐久によって凹部に掃き寄せられることも少なくなるためと考えられる。

【0047】ここで、本発明において、形状係数を示す SF-1、SF-2とは、例えば日立製作所製FE-S EM(S-800) を用い1000倍に拡大した 2μ m 以上のトナー像を100個無作為にサンプリングし、その画像情報はインターフェースを介して、例えばニコレ 社製画像解析装置(Luzex III)に導入し解析を行い、下式より算出し、得られた値を形状係数SF-1、SF-2と定義する。

[0048]

【数1】

$$SF - 1 = \frac{(MXLNG)^{2}}{AREA} \times \frac{\pi}{4} \times 100$$

$$SF - 2 = \frac{(PERI)^{2}}{AREA} \times \frac{1}{4\pi} \times 100$$

〔式中、MXLNGは粒子の絶対最大長、PERIは粒子の周囲長、AREAは粒子の投影面積を示す。〕

【0049】形状係数SF-1はトナー粒子の丸さの度合いを示し、形状係数SF-2はトナー粒子の凹凸の度合いを示している。

【0050】これらの形状係数を制御することにより、 多数枚の画出しにおける帯電部材表面の汚染のみならず トナー担持体上のトナー融着も改善でき、耐久性をさら に向上させることができる。

【0051】160<SF-1の場合、球形から離れて不定形に近づき、現像器内でトナーが破砕され易く、粒度分布が変動したり、帯電量分布がブロードになりやすく、感光体上の非画像部へのトナーの現像、所謂カブリが生じやすい。また、転写残トナーも増加し、これらが帯電部材に付着した際、接触面積が大きいため電界等による帯電部材からの吐き出し性も低下するため帯電ムラの原因となる。

【0052】また、140<SF-2の場合、感光体から紙等の転写材へのトナーの転写効率の低下を招き、特にクリーナーレスの構成においては転写残トナーによる帯電部材の汚染を促進させるため帯電性が悪化し、好ましくない。

【0053】本発明に係るトナー粒子は、特に重量平均粒径 $1\sim9~\mu$ mを有する場合、非常に高画質な画像を長期間安定に得ることを可能とする。

【0054】一般に、トナーの粒径が細かくなると、現像時の解像度が向上することが知られているものの、トナー全体の表面積が増えることに加え、トナー粉体としての流動性及び撹拌性が低下し、個々の粒子を均一に帯電させることが困難となり、例えば極端に帯電量の高いトナー粒子が発生したりもする。

【0055】しかしながら、トナー粒子のSF-1及びSF-2を本発明に記した如く規制することにより、粒径の小さいトナーであっても個々の粒子を均一に帯電させることが可能となることに加え、本発明に係わる無機化合物と帯電量の高いトナー粒子とが接触する際、無機化合物がトナーの過剰な電荷を受け取り、トナー帯電量が適度に緩和されるため帯電量が均一となり、高精細な画像を長期に渡って得ることができる。

【0056】本発明のトナーは、軟化点が40~90℃ のワックスを含有させることも好ましい使用形態の一つ である。

【0057】先述したように、重量平均粒径が9 μ m以下のトナーを用いれば非常に高画質な画像を得ることができるが、粒径の細かいトナー粒子は紙等の被転写体を使用した場合に紙の繊維の隙間に入り込み、熱定着用ローラーからの熱の受け取りが不十分となり、低温オフセットが発生しやすい。しかしながら、本発明のトナーにおいて、離型剤としてワックスを含有せしめることにより、高解像性と耐オフセット性を両立させつつ帯電ムラを防止することが可能となる。

【0058】ここで、使用されるワックスの軟化点は4

 $0\sim90$ ℃であることが肝要である。軟化点が 40 ℃未満ではトナーの耐ブロッキング性及び保形性が不十分であり、一方、 90 ℃を超えると離型性の効果が不十分となり、また、定着性を阻害してしまう。ここで、ワックスの軟化点は環球法(JISK2531)による値を採用する。

【0059】本発明に用いられるワックス類としては、パラフィン・ポリオレフィン系ワックス、エステルワックス及び、これらの変性物、例えば、酸化物やグラフト処理物の他、高級脂肪酸、およびその金属塩、アミドワックスなどがあげられる。これらは2種以上を混合して用いても良い。その際の含有量としては、トナー全体に対して0.1~50質量%の範囲が好ましい。含有量が0.1質量%未満では低温オフセット抑制効果に乏しく、50質量%を超えてしまうと長期間の保存性が悪化すると共に、他のトナー材料の分散性が悪くなり、トナー流動性の悪化や画像特性の低下につながる。

【0060】なお、特開平5-281779号公報に金属化合物で表面を被覆した磁性体を含有するトナーについて、また、特開平6-138697号公報には無機化合物粉体を添加して熱特性や環境特性を改良したトナーについて、さらには、特開平7-92718号公報には金属またはその酸化物を含有する現像剤を用いる電子写真法について開示されているが、それらの発明と本発明との差異について説明する。

【0061】特開平5-281779号公報において開示されている金属化合物は、磁性体表面を無電解メッキによって均一に被覆し、被覆された磁性体はトナー中に含有せしめて使用され、さらに、被覆された着色磁性体をトナー中に含有せしめてトナーの色味を調整する発明である。従って、無機化合物をトナー表面に外添して帯電部材汚染を防止する本発明とは思想を全く異にするものである。

【0062】また、特開平6-138697号公報において開示されている無機化合物粉体は、組成中に含まれる陰イオンがリン酸系陰イオンでも良いという旨の記載が明細書中には一切記載されておらず、リン酸系陰イオンを必須成分とする本発明の無機化合物とは明らかに異なるものである。ここで、本発明者等の検討によれば、帯電部材からの電荷注入による無機化合物の極性の反転速度、及び、無機化合物の組成の一部のIB族及びVII/旅金属イオンへの変換しやすさに、リン酸系陰イオンの存在が大きく影響していることが判明している。ちに、特開平6-138697号公報で開示されている無機化合物粉体は、トナーの熱特性や環境特性を改良する目的で使用されるものであり、帯電部材からの吐き出しにより帯電不良を防止するという本発明とは、組成のみならず使用目的も異なるものである。

【0063】さらに、特開平7-92718号公報において開示されている金属化合物は、実施例からも分かる

ようにトナー組成物中に内添させて現像剤に導電性を持たせつつ配線回路を得ることを目的としており、トナーの絶縁性を維持したままトナーに外添した無機化合物により帯電部材汚染を防止する本発明とは、使用形態及び思想のいずれも全く異なるものである。

【0064】本発明のトナーに使用できる結着樹脂は、公知のものが全て使用可能である。

【0065】例えば、熱可塑性樹脂中に染・顔料からな る着色剤あるいは荷電制御剤等を溶融混合し、均一に分 散した後、微粉砕装置、分級機により所望の粒径を有す るトナーを製造する方法、所謂粉砕法においては、ポリ スチレン、ポリP-クロルスチレン、ポリビニルトルエ ンなどのスチレン及びその置換体の単重合体、スチレン -P-クロルスチレン共重合体、スチレンープロピレン 共重合体、スチレンービニルトルエン共重合体、スチレ ンービニルナフタリン共重合体、スチレンーアクリル酸 メチル共重合体、スチレンーアクリル酸エチル共重合 体、スチレンーアクリル酸プチル共重合体、スチレンー アクリチル酸オクチル共重合体、スチレンーメタクリル 酸メチル共重合体、スチレンーメタクリル酸エチル共重 合体、スチレンーメタクリル酸ブチル共重合体、スチレ ンーα-クロルメタクリル酸メチル共重合体、スチレン ーアクリロニトリル共重合体、スチレンービニルメチル エーテル共重合体、スチレンービニルエチルエーテル共 重合体、スチレン-ビニルメチルケトン共重合体、スチ レンーブタジエン共重合体、スチレンーイソプレン共重 合体、スチレンーアクリロニトリルーインデン共重合 体、スチレンーマレイン酸共重合体、スチレンーマレイ ン酸エステル共重合体などのスチレン系共重合体、ポリ メチルメタクリレート、ポリブチルメタクリレート、ポ 30 リ塩化ビニル、ポリ酢酸ビニル、ポリエチレン、ポリプ ロピレン、ポリエステル、ポリウレタン、ポリアミド、 エポキシ樹脂、ポリビニルブチラール、ポリアマイド、 ポリアクリル酸樹脂、ロジン、変性ロジン、テルペン樹 脂、フェノール樹脂、脂肪族又は脂環族炭化水素樹脂、 芳香族系石油樹脂、塩素化パラフィン、パラフィンワッ クスなどが単独或いは混合して使用できる。

【0066】一方、重合法によるトナー製造方法においては、例えば重合性単量体として、スチレン、o(m ー,pー)ーメチルスチレン,m(pー)ーエチルスチ 40 レン等のスチレン系単量体;(メタ)アクリル酸メチル,(メタ)アクリル酸エチル,(メタ)アクリル酸プロピル,(メタ)アクリル酸ブチル,(メタ)アクリル酸オクチル,(メタ)アクリル酸ドデシル,(メタ)アクリル酸ステアリル,(メタ)アクリル酸ベヘニル,(メタ)アクリル酸システアリル,(メタ)アクリル酸ジステルアミノエチル,(メタ)アクリル酸ジエチルアミノエチル,(メタ)アクリル酸ジエチルアミノエチル等の(メタ)アクリル酸エステル系単量体;ブタジエン,イソプレン,シクロヘキセン,(メタ)アクリロニトリル,アクリル酸アミド等の単量体が 50

好ましく用いられる。これらは、単独または一般的には出版物ポリマーハンドブック第2版-P139~192(JohnWiley&Sons社製)に記載の理論ガラス転移温度(Tg)が、40~75℃を示すように単量体を適宜混合し用いられる。理論ガラス転移温度が40℃未満の場合には、トナーの保存安定性や現像剤の耐久安定性の面から問題が生じ、一方75℃を超える場合は定着点の上昇をもたらし、特にフルカラートナーの場合においては各色トナーの混色が不十分となり色再現性に乏しく、更にOHP画像の透明性を著しく低下させ高画質の面から好ましくない。なお、その際、ジビニルベンゼン等のように1分子内に重合性官能基を2個以上有するモノマーを含有せしめれば、トナー中に適度なネットワークを形成し、定着性と耐久性をより向上させることが可能となる。

【0067】本発明に係るトナーを作製するには公知の方法が用いられるが例えば、結着樹脂、ワックス、金属塩ないしは金属錯体、着色剤としての顔料、染料、又は磁性体、必要に応じて荷電制御剤、その他の添加剤等をヘンシェルミキサー、ボールミル等の混合器により十分混合してから加熱ロール、ニーダー、エクストルーダーの如き熱混練機を用いて溶融混練して樹脂類をお互いに相溶せしめた中に金属化合物、顔料、染料、磁性体を分散又は溶解せしめ、冷却固化後、粉砕、分級を行なって本発明に係る現像剤を得ることが出来る。分級工程においては生産効率上、多分割分級機を用いることが好ましい。また、必要に応じて、分級工程前後に表面改質を行っても良い。

【0068】本発明において、重合法によりトナーを製造する場合、着色剤の持つ重合阻害性や水相移行性に注意を払う必要があり、好ましくは、表面改質、例えば、重合阻害のない物質による疎水化処理を施しておいたほうが良い。染料系を表面処理する好ましい方法としては、あらかじめこれら染料の存在下に重合性単量体を重合せしめる方法が挙げられ、得られた着色重合体を単量体系に添加する。

【0069】本発明で水系媒体中で重合する際に使用する重合開始剤としては、例えば、2,2'ーアゾビスー(2,4ージメチルバレロニトリル)、2,2'ーアゾビス(シクロペキサンー1ーカルボニトリル)、2,2'ーアゾビス(シクロペキサンー1ーカルボニトリル)、2,2'ーアゾビスー4ーメトキシー2,4ージメチルバレロニトリル、アゾビスイソブチロニトリル等のアゾ系重合開始剤;ベンゾイルペルオキシド、メチルエチルケトンペルオキシド、ジイソプロピルペルオキシカーボネート、クメンヒドロペルオキシド、2,4ージクロロベンゾイルペルオキシド、ラウロイルペルオキシド等の過酸化物系重合開始剤が用いられる。

【0070】該重合開始剤の添加量は、目的とする重合度により変化するが一般的には単量体に対し0.5~2

0質量%添加され用いられる。開始剤の種類は、重合方法により若干異なるが、十時間半減期温度を参考に、単独又は混合し利用される。

【0071】重合度を制御するため公知の架橋剤・連鎖 移動剤・重合禁止剤等を更に添加し用いることも可能で ある。

【0072】本発明において、水系媒体中で重合を行なう場合に用いられる分散剤として例えば無機系化合物として、リン酸三カルシウム、リン酸マグネシウム、リン酸アルミニウム、リン酸亜鉛、炭酸カルシウム、炭酸マグネシウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、メタケイ酸カルシウム、硫酸カルシウム、硫酸バリウム、ベントナイト、シリカ、アルミナ、磁性体、フェライト等が挙げられる。有機系化合物としては、例えばポリビニルアルコール、ゼラチン、メチルセルロース、メチルヒドロキシプロピルセルロース、エチルセルロース、カルボキシメチルセルロースのナトリウム塩、デンプン等が水相に分散させて使用される。これら分散剤は、重合性単量体100質量部に対して0.2~10質量部を使用することが好ましい。

【0073】これら分散剤は、市販のものをそのまま用いても良いが、細かい均一な粒度を有す分散粒子を得るために、分散媒中にて高速撹拌下にて該無機化合物を生成させることも出来る。例えば、リン酸三カルシウムの場合、高速撹拌下において、リン酸ナトリウム水溶液を混合することで懸濁重合方法に好ましい分散剤を得ることが出来る。また、これら分散剤の微細化のため0.001~0.1質量%の界面活性剤を併用しても良い。具体的には市販のノニオン、アニオン、カチオン型の界面活性剤が利用でき、例えばドデシル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、テトラデシル硫酸ナトリウム、ペンタデシル硫酸ナトリウム、オクチル硫酸ナトリウム、オレイン酸ナトリウム、ラウリル酸ナトリウム、ステアリン酸カリウム、オレイン酸カルシウム等が好ましく用いられる。

【0074】本発明におけるトナーを重合法により製造する場合、以下の如き方法によって具体的にトナーを製造することが可能である。単量体中に、着色剤、荷電制御剤、重合開始剤その他の添加剤を加え、ホモジナイザー・超音波分散機等によって均一に溶解又は分散せしめた単量体組成物を、分散安定剤を含有する水相中に通常の撹拌機またはホモミキサー、ホモジナイザー等により分散せしめる。好ましくは単量体組成物からなる液滴が所望のトナー粒子のサイズを有するように撹拌速度・時間を調整し、造粒する。その後は分散安定剤の作用により、粒子状態が維持され、且つ粒子の沈降が防止される程度の撹拌を行えば良い。重合温度は40℃以上、一般的には50~90℃の温度に設定して重合を行う。また、重合反応後半に昇温しても良く、更に、本発明の画像形成方法における耐久特性向上の目的で、未反応の重50

合性単量体、副生成物等を除去するために反応後半、又は、反応終了後に一部水系媒体を留去しても良い。反応終了後、生成したトナー粒子を洗浄・ろ過により回収し、乾燥する。この方法においては、通常単量体系100質量部に対して水300~300質量部を分散媒として使用するのが好ましい。

【0075】本発明においては、トナーの帯電性を制御する目的でトナー材料中に荷電制御剤を添加しておくことが望ましい。これら荷電制御剤としては、例えば正荷電制御剤としてトリフェニルメタン系染料・四級アンモニウム塩・グアニジン誘導体・イミダゾール誘導体・アミン系及びポリアミン系化合物等が挙げられ、負荷電制御剤としては、芳香族カルボン酸誘導体の金属塩または金属錯体・尿素誘導体・スチレンーアクリル酸共重合体・スチレンーメタクリル酸共重合体・アゾ染料あるいはケンが顔料の金属塩あるいは金属錯体等が挙げられる。これら荷電制御剤の添加量としては、0.1~10質量%が好ましい。

【0076】本発明のトナーは、さらに流動性向上剤を添加して用いても良い。流動性向上剤としては、トナー粒子に添加することにより添加後の流動性が向上しうるものであれば特に限定されるものではない。例えば、シリカ微粉体、酸化チタン微粉体、アルミナ微粉体、それらの表面を疎水化処理したもの等を単体あるいは2種以上を併用して用いることができる。

【0077】本発明のトナーは、一成分系現像剤として使用しても良く、キャリアと併用して二成分系現像剤として使用しても良い。キャリアとしては鉄粉、マグネタイト粉、フェライト粉、ガラスビース、磁性粉を樹脂中に分散させたもの等の従来公知のものが挙げられる。これらのキャリアは、必要に応じて表面を樹脂等で被覆しても良く、この場合に使用される樹脂としてはフッ素含有樹脂、フェノール樹脂、スチレン系樹脂、アクリル系樹脂、スチレンーアクリル共重合体、シリコーン樹脂等が挙げられる。これらの被覆樹脂は単独または、2種類以上併用して使用しても良い。トナーとキャリアとの混合比率は、現像剤中のトナー濃度として1乃至15質量%、好ましくは2乃至13質量%とすると通常良好な結果が得られる。

【0078】本発明のトナーは、帯電手段が帯電部材を感光体に当接させる直接帯電法の場合に特に効果的である。すなわち、一般のトナーでは、クリーニング工程をすり抜けた転写残トナー混合物が後工程である帯電部材に付着すると、帯電不良を引き起こし、画像上に帯電ムラが発生する。従って、帯電手段が感光体に接することのないコロナ放電等に比べて、残トナー混合物の量は、より少なく、付着し難くすると共に、付着しても吐き出し等により付着量を極力減らす必要がある。従って、直接帯電法においては、トナーの転写性を向上させると共に、それ自身の吐き出し性の良い無機化合物微粒子を含

有せしめた本発明のトナーは好適なものと言える。

【0079】本発明に用いられる好ましい現像工程の条件としては、現像剤と感光体表面が接触しているということと、反転現像方法を用いるということである。このとき、現像時あるいは現像前後の空白時には、直流あるいは交流成分のバイアスを印加し、現像と感光体上の残余のトナー混合物を回収出来るような電位に制御される。このとき直流成分は、明部電位と暗部電位の間に位置する。

【0080】一成分系現像剤の場合、トナー担持体とし て弾性ローラを用い、弾性ローラ表面等にトナーをコー ティングしこれを感光体表面と接触させる方法も用いら れる。このとき、トナーと感光体表面が接触しているこ とが重要となる。この場合、トナーを介して、感光体と 感光体表面に対向する弾性ローラ間に働く電界によって 現像と同時にクリーニングが行われるので、弾性ローラ 表面あるいは、表面近傍が電位をもち、感光体表面とト ナー担持表面の狭い間隙で電界を有する必要性がある。 このため、弾性ローラの弾性ゴムが中抵抗領域に抵抗制 御されて感光体表面との導通を防ぎつつ電界を保つか、 または導電性ローラの表面層に薄層の絶縁層を設ける方 法も利用できる。さらには、導電性ローラ上に感光体表 面に対向する側を絶縁性物質により被覆した導電性樹脂 スリーブあるいは、絶縁性スリーブで感光体に対向しな い側に導電層を設けた構成も可能である。また、トナー 担持体として剛体ローラを用い、感光体をベルトのごと きフレキシブルな物とした構成も可能である。トナー担 持体としての現像ローラの抵抗としては102~10°Ω · c mの範囲が好ましい。

【0081】一成分接触現像法を用いた場合、そのトナ 30 一を担持するローラ表面と感光体の周速同方向に回転していてもよい。その回転が同方向である場合感光体の周速に対して、周速比で 100%以上が望ましい。100%未満であると、画像品質が劣ったものになりやすい。周速比が高まれば高まるほど、現像部位に供給されるトナーの量は多く、潜像に対しトナーの脱着頻度が多くなり、不要な部分は掻き落とされ必要な部分には付与されるという繰り返しにより、潜像に忠実な画像が得られる。現像同時クリーニングという観点では、感光体上に密着した転写残余のトナ 40 一を、感光体表面とトナーの付着部分を周速差により物理的に引き剥がし電界により回収すると言う効果も期待できることから、周速比は高いほど転写残余のトナーの回収には都合がよい。

【0082】本発明に係わる画像形成方法の好ましい構成の一つを、図1を用いて具体的に説明する。

【0083】図1において、100は現像装置、109は感光体、105は紙などの被転写体、106は転写部材、107は定着用加圧ローラ、108は定着用加熱ローラ、110は感光体109に接触して直接帯電を行う

一次帯電部材を示す。

【0084】一次帯電部材110には、感光体109表面を一様に帯電するようにバイアス電源115が接続されている。

【0085】現像装置100はトナー104を収容しており、感光体109と接触して矢印方向に回転するトナー担持体102を具備する。さらに、トナー量規制及び帯電付与のための現像ブレード101と、トナー104をトナー担持体102に付着させかつトナー担持体102との摩擦でトナーへの帯電付与を行うため矢印方向に回転する塗布ローラ103も備えている。トナー担持体102には現像バイアス電源117が接続されている。塗布ローラ103にもバイアス電源118が接続されており、負帯電性トナーを使用する場合は現像バイアスよりも負側に、正帯電性トナーを使用する場合は現像バイアスよりも正側に電圧が設定される。

【0086】転写部材106には、感光体109と反対極性の転写バイアス電源116が接続されている。

【0087】ここで、感光体109とトナー担持体102の接触部分における回転方向の長さ、いわゆる現像ニップ幅は0.2mm以上8.0mm以下が好ましい。0.2mm未満ではトナーの供給量が不足して満足な画像濃度が得られず、転写残トナーの回収も不十分となる。8.0mmを超えてしまうと、トナーの供給量が過剰となり、カブリ抑制が悪化しやすく、また、感光体の摩耗にも悪影響を及ぼす。

【0088】トナー担持体としては、表面に弾性層を有する、いわゆる弾性ローラが好ましく用いられる。使用される弾性層の材料の硬度としては、20~65度(JISA)のものが好適に使用される。

【0089】また、トナー担持体の抵抗としては、体積抵抗値で $10^3\sim10^9\Omega$ c m程度の範囲が好ましい。 $10^3\Omega$ c mよりも低い場合、例えば感光体の表面にピンホール等がある場合、過電流が流れる恐れがある。反対に $10^9\Omega$ c mよりも高い場合は、摩擦帯電によるトナーのチャージアップが起こりやすく、画像濃度の低下を招きやすい。

【0090】トナー担持体上のトナーコート量は、0. $1 \, \text{mg/cm}^2$ 以上1. $5 \, \text{mg/cm}^2$ 以下が好ましい。0. $1 \, \text{mg/cm}^2$ 以りも少ないと十分な画像濃度が得にくく、1. $5 \, \text{mg/cm}^2$ よりも多くなると個々のトナー粒子全てを均一に摩擦帯電することが難しくなり、カブリ抑制の悪化の要因となる。さらに、0. $2 \, \text{mg/cm}^2$ 以上0. $9 \, \text{mg/cm}^2$ 以下がより好ましい。

【0091】トナーコート量は現像プレード101により制御されるが、この現像プレード101はトナー層を介してトナー担持体102に接触している。この時の接触圧は、5g/cm以上50g/cm以下が好ましい範囲である。5g/cmよりも小さいとトナーコート量の制御に加え均一な摩擦帯電も難しくなり、カブリ抑制の

悪化等の原因となる。一方、50g/cmよりも大きくなるとトナー粒子が過剰な負荷を受けるため、粒子の変形や現像ブレードあるいはトナー担持体へのトナーの融着等が発生しやすくなり、好ましくない。

【0092】図1において、一次帯電部材110は、矢印方向に回転する感光体109を一様に帯電する。そして、発光素子からの露光111によって感光体109上に情報信号に応じた静電潜像を形成し、トナー担持体102と当接する位置においてトナーにより静電潜像を現像し可視像化する。次に、該可視像を転写部材106により被転写体105上に転写し、更に転写トナー112は被転写体105と共に加熱ローラ108と加圧ローラ107の間を通過して定着され、永久画像を得る。

【0093】この際、転写されずに感光体109上に残った転写残トナー113は、感光体109と一次帯電部材110の間を通過して、再び現像ニップ部に到達し、トナー担持体102によって現像器100内に回収される。

【0094】次に本発明における各種測定方法について述べる。

【0095】(1)無機化合物の抵抗

無機化合物の抵抗は、図2に示すセルを用いて測定した。即ち、セルAに測定サンプルを充填し、該充填サンプル27に接するように電極21及び22を配し、上部電極22に15kg重の荷重をかけた状態で該電極間に電源26により直流電圧を印加し、ぞのとき流れる電流を直流電流計24で測定することにより求めた。測定において、充填サンプルのセルとの接触面積(=電極面積)をS、サンプルの厚み(=電極間距離)をd、印加電圧をV、流れる電流値をIとすると、サンプルの抵抗 30は

抵抗 $(\Omega \cdot c m) = (V/I) \times (S/d)$ となる。

【0096】本発明においては、代表的な測定条件として、S=2.3 c m^2 、厚み d=0.2 c m、V=1000 V を採用した。

【0097】(2)無機化合物の平均粒径

無機化合物の平均粒径は、透過型電子顕微鏡を用いて測定した。即ち、測定粉体サンプルを透過型電子顕微鏡で観察し、視野中の100個の粒子径を測定して、平均粒 40径を求めた。

【0098】(3)トナー粒子の平均粒径及び粒度分布トナー粒子の平均粒径及び粒度分布はコールターカウンターTA-II型あるいはコールターマルチサイザー(コールター社製)等を用い、個数分布、体積分布を出力するインターフェイス(日科機製)及びPC9801パーソナルコンピューター(NEC製)を接続し、電解液は1級塩化ナトリウムを用いて1%NaCI水溶液を調製する。たとえば、ISOTON R-II(コールー方、分散質として

【0099】(4)摩擦帯電量の測定方法

図3はトナーの帯電量を測定する装置の説明図である。 先ず、底に500メッシュのスクリーン33のある金属 製の測定容器32に摩擦帯電量を測定しようとするトナーとキャリアの混合物(現像剤)約0.5~1.0gを 入れ、金属製のふた34をする。このときの測定容器3 2全体の重量を秤りW1(kg)とする。次に、吸引機 31(測定容器32と接する部分は少なくとも絶縁体)において、吸引口36から吸引し風量を調整して真空計 35の圧力を2450Pa(250mmAq)とする。 この状態で十分、好ましくは約2分間吸引を行いトナーを吸引除去する。このときの電位計38の電位をV(ボルト)とする。ここで37はコンデンサーであり容量を で(mF)とする。また、吸引後の測定容器全体の重量を秤りW2(kg)とする。このときのトナーの摩擦帯 電量(mC/kg)は下記式の如く計算される。

【 0 1 0 0 】 トナーの摩擦帯電量 (m C / k g) = (C × V) / (W 1 - W 2)

【0101】(5) 定着画像のカブリの測定方法 カブリの測定は、東京電色社製のREFLECTMET ER MODEL TC-6DSを使用して測定した。 フィルターはグリーンフィルターを用い、下記式より算 出した。数値が小さい程、カブリが少ない。

【0102】カブリ(反射率)(%)=標準紙上の反射率(%)ーサンプル非画像部の反射率(%)

[0103]

【実施例】以下実施例をもって本発明をさらに具体的に 説明するが、本発明はこれらによってなんら限定される ものではない。

【0104】(黒色重合トナー粒子製造例1)2リットル用四つロフラスコ中のイオン交換水710質量部に、0.1M-Na3PO4水溶液450質量部を投入し、60℃に加温した後、高速撹拌装置TK式ホモミキサー(特殊機化工業製)を用いて、12000rpmにて撹拌した。これに1.0M-CaClz水溶液68質量部を徐々に添加し、微小な難水溶性分散剤を含む水系分散媒体を得た。

[0105]

22

(モノマー) スチレン

nーブチルアクリレート

155質量部 45質量部

(着色剤) カーボンブラック

4 3 貝里部

(荷電制御剤) モノアゾ染料と F e との化合物

1 0 質量部 4 質量部

(離型剤) エン

エステルワックス(軟化点75℃)

20質量部

上記処方のうち、着色剤とモノアゾ染料のFe化合物とスチレンだけをアトライター(三井金属社製)を用いてカーボンブラックのマスターバッチ製造を行った。次にこのマスターバッチと上記処方の残りの材料を60℃に加温し、溶解、分散して単量体混合物とした。さらに、60℃に保持しながら、開始剤2,2'ーアゾビス

た。60℃で、窒素雰囲気としたTKホモミキサーを用いて、10000rpmで20分間撹拌し、単量体組成物を造粒した。その後、パドル撹拌翼で撹拌しつつ60℃で6時間反応させた後、80℃で10時間重合させた。

(2, 4 - ジメチルバレロニトリル) 8 質量部を加えて 溶解し、単量体組成物を調製した。 【0107】重合反応終了後反応生成物を冷却し、塩酸を加えて難水溶性分散剤を溶解し、濾過、水洗、乾燥することにより、重量平均径7.0 μmの黒色重合トナー粒子1を得た。諸物性を表1に示した。

【0106】前記ホモミキサーの2リットルフラスコ中で調製した水系分散媒体に、上記単量体組成物を投入し

[0108]

(黒色重合トナー粒子製造例2)

分散質として

(モノマー) スチレン

160質量部

nープチルアクリレート

40質量部

(着色剤) カーボンブラック

10質量部

(荷電制御剤) モノアゾ染料とFeとの化合物

4質量部

(離型剤) 低分子量ポリエチレ

低分子量ポリエチレンワックス(軟化点115℃)20質量部

を用いる以外は黒色重合トナー粒子製造例 1 と同じ手段 により、重量平均径 7. 0 μ mの黒色重合トナー粒子 2 を得た。諸物性を表 1 に示した。

【0109】(黒色重合トナー粒子製造例3)離型剤として軟化点75℃のエステルワックスを100質量部用いる以外は黒色重合トナー粒子製造例1と同様の手段により、重量平均径7.1 μmの黒色重合トナー粒子3を

使用せず、黒色重合トナー粒子製造例 1 と同様の手段により、重量平均径 6 . 9 μ mの黒色重合トナー粒子 4 を得た。諸物性を表 1 に示した。

得た。諸物性を表1に示した。 【0110】(黒色重合トナー粒子製造例4)離型剤を 【0111】(黒色重合トナー粒子製造例5)黒色重合トナー粒子製造例1と同じ材料を用い、難水溶性分散剤の量を調整する以外は黒色重合トナー粒子製造例1と同様の手段により、重量平均径9.2 μ mの黒色重合トナー粒子5を得た。諸物性を表1に示した。

(黒色粉砕トナー粒子製造例1)

[0112]

(樹脂) スチレンーブチルアクリレート共重合体(共重合比80:20)

100質量部

(着色剤) カーボンブラック

5質量部

(荷電制御剤) モノアゾ染料とFeとの化合物

2質量部

(離型剤) 低分子量ポリエチレンワックス(軟化点115℃)

5℃) 5質量部

上記材料をあらかじめ混合し、二軸押し出し機にて120℃で溶融混練を行った。この溶融混練物をハンマーミルにて粗砕し、1mmメッシュパスのトナー粗砕物を得た。さらにこの粗砕物をジェット気流を利用した衝突式粉砕機で微粉砕した後、風力分級し、重量平均径9.9μmの黒色粉砕トナー粒子1を得た。諸物性を表1に示した。

トナー粒子1を、界面活性剤を含有する水溶液中に添加し、高速で撹拌しながら75℃で2時間球形化処理した後、ろ過、水洗、乾燥をして、重量平均径10.1 μ m の黒色粉砕トナー粒子2を得た。諸物性を表1に示した。

【0113】 (黒色粉砕トナー粒子製造例2) 黒色粉砕

【0114】

	SF-1	SF-2	使用ワックス の軟化点 (℃)	ワックス 含有量 (質量部)	粒径 (μm)
黒色重合トナー粒子1	109	110	7 5	1 0	7. 0
黒色重合トナー粒子2	121	123	115	10	7. 0
黒色重合トナー粒子3	126	125	7 5	5 0	7. 1
黒色重合トナー粒子4	114	116			6. 9
黒色重合トナー粒子5	111	112	7 5	1 0	9. 2
黒色粉砕トナー粒子1	170	151	115	5	9. 9
黒色粉砕トナー粒子2	155	138	115	5	10.1

1(

【0115】(無機微粒子製造例)後述のトナーに用いる無機微粒子として、リン酸ジルコニウムに陽イオン交換でAgイオンを導入した下記表2のものを調製した。

【0116】 【表2】

	含有金属	平均粒径 (μm)	抵抗 (Q·cm)
無機微粒子1	Ag, Zr	0. 9	7 × 1 0 ⁶
無機衡粒子2	Ag, Zr	0. 9	5×107
無機微粒子3	Ag, Zr	1. 3	9×10 ⁶
無機微粒子4	Au, Zr	0. 9	9 × 1 0 ⁶

【0117】 [トナー製造例1] 100質量部の黒色重 20 合トナー粒子1に対して、BET法による比表面積が200 m^2 /gであるシリカ母体の表面をシランカップリング剤及びシリコーンオイルで疎水化処理して比表面積が120 m^2 /gとなっている疎水性シリカを0.8質量部、無機化合物徴粒子1を0.2質量部外添し、トナー1を得た。

【0118】 [トナー製造例2~4] 100質量部の黒色重合トナー粒子1に対して、トナー製造例1で用いた疎水性シリカを0.8質量部、それぞれ無機化合物微粒子2~4を0.2質量部外添し、トナー2~4を得た。【0119】 [トナー製造例5~8] 黒色重合トナー粒子1の代わりに、黒色重合トナー粒子2~5を用いる以外はトナー製造例1と同様にして、トナー5~8を得

20 た。

【0120】 [トナー製造例9] 100質量部の黒色粉砕トナー粒子2に対して、トナー製造例1で用いた疎水性シリカを0.8質量部、無機化合物微粒子1を0.3質量部外添し、トナー9を得た。

【0121】 [トナー製造例10] 100質量部の黒色 粉砕トナー粒子2に対して、トナー製造例1で用いた疎水性シリカを1.1質量部外添し、トナー10を得た。【0122】 [トナー製造例11] 100質量部の黒色粉砕トナー粒子1に対して、トナー製造例1で用いた疎水性シリカを0.8質量部、無機化合物微粒子1を0.

3 質量部外添し、トナー 1 1 を得た。 【 0 1 2 3】

【表3】

	使用黑色粒子	外訴処方
トナー1	黒色重合トナー粒子1	シリオ:0.8質量部+無機化合物微粒子1:0.2質量部
トナー2	黒色重合トナー粒子1	シリカ:0.8質量部+無機化合物微粒子2:0.2質量部
トナー3	黒色重合トナー粒子1	ジリカ: 0.8 質量部+無機化合物微粒子3:0.2 質量部
トナー4	黒色重合トナー粒子1	シリオ: 0.8質量部+無機化合物微粒子4:0.2質量部
トナー5	黒色重合トナー粒子2	シタカ:0.8質量部+無機化合物機粒子1:0.2質量部
トナー6	黒色重合トナー粒子3	シリオ:0.8質量部+無機化合物微粒子1:0.2質量部
トナー7	黒色重合トナー粒子4	シリカ:0.8質量部+無機化合物微粒子1:0.2質量部
トナー8	黒色重合トナー粒子5	シリカ:0.8質量部+無機化合物微粒子1:0.2質量部
トナー9	黒色粉砕トナー粒子2	シリオ:0.8質量部+無機化合物微粒子1:0.3質量部
トナー10	黒色粉砕トナー粒子2	シリオ: 1.1 質量部
トナーロ	黒色粉砕トナー粒子1	シリオ:0.8質量部+無機化合物微粒子1:0.3質量部

【0124】<実施例1>電子写真装置として600dpiレーザービームプリンタ(キヤノン製:LBP-860)を用意した。プロセススピードは、改造して約倍速の94mm/sとし、A4縦毎分16枚相当の改造機とした。

【0125】さらに、このプロセスカートリッジにおけるクリーニングゴムブレードを取りはずし、装置の帯電方式をゴムローラを当接して行う直接帯電とし、印加電圧を直流成分(-1200V)とした。

50 【0126】次に、プロセスカートリッジにおける現像

部分を改造した。トナー供給体であるステンレススリーブの代わりにカーボンブラックを分散したシリコーンゴムからなる中抵抗ゴムローラ(16ϕ 、硬度ASKER

C45度、抵抗 105Ω ・cm)をトナー担持体とし、感光体に当接した。この時の現像ニップ幅は約2mmとなるようにした。該トナー担持体の回転周速は、感光体との接触部分において同方向であり、該感光体回転周速に対し150%となるように駆動する。

【0127】ここで用いる感光体としては、30 ϕ , 254mmのA1シリンダーを基体としたもので、これに、以下に示すような構成の層を順次浸漬塗布により積層して、感光体を作製した。

【0128】 (1) 導電性被覆層:酸化錫及び酸化チタンの粉末をフェノール樹脂に分散したものを主体とする。 膜厚 15μ m。

【0129】 (2)下引き層:変性ナイロン及び共重合ナイロンを主体とする。膜厚 0.6μ m。

【0130】(3)電荷発生層:長波長域に吸収を持つ チタニルフタロシアニン顔料をブチラール樹脂に分散し たものを主体とする。膜厚 0.6μ m。

【0131】(4)電荷輸送層:ホール搬送性トリフェニルアミン化合物をポリカーボネート樹脂(オストワルド粘度法による分子量2万)に8:10の質量比で溶解したものを主体とする。膜厚20μm。

【0132】トナー担持体にトナーを塗布する手段として、現像器内に発泡ウレタンゴムからなる塗布ローラを設け、該トナー担持体に当接させた。塗布ローラには、約-550Vの電圧を印加する。さらに、該トナー担持体上トナーのコート層制御のために樹脂をコートしたステンレス製プレードを、トナー担持体との接触圧が線圧 30約20g/cmとなるように取付けた。概略を図1に示す。また、現像時の印加電圧をDC成分(-450V)のみとした。

【0133】これらのプロセスカートリッジの改造に適合するよう電子写真装置に以下のように改造及びプロセス条件設定を行った。

【0134】改造された装置はローラ帯電器(直流のみを印加)を用い像担持体を一様に帯電する。帯電に次いで、レーザー光で画像部分を露光することにより静電潜像を形成し、トナーにより可視画像とした後に、電圧を 40印加したローラによりトナー像を転写材に転写するプロセスを持つ。概略を図1に示す。

【0135】また、感光体帯電電位は、暗部電位を一6

00Vとし、明部電位を-150Vとした。転写材としては、75g/m²の紙を用いた。

【0136】該画像形成装置により、トナー1を用いて、温度23℃/湿度60%の条件下で耐久試験を行った。

【0137】なお、耐久性評価は、印字面積比率6%で文字印刷を行い、ハーフトーン画像上に帯電部材汚染による帯電ムラが発生した枚数及びその時点でのマクベスによるベタ黒画像濃度で判断した。汚れが発生しない場合1500枚まで画像印刷を続けた。帯電ムラが発生した枚数が多い程、また、その時点での画像濃度が高い程耐久性が良好なことを意味する。

【0138】さらに耐久試験終了時での帯電ローラに付着したトナー量を測定した。帯電ローラの汚れは、帯電ローラ上の単位面積当たりのトナー重量 (mg/cm^2) を測定した。

【0139】また、耐久初期の転写性は、ベタ黒画像現像時の感光体上の転写残トナーをマイラーテープによりテーピングしてはぎ取り、紙上に貼ったもののマクベス濃度から、テープのみを貼ったもののマクベス濃度を差し引いた数値で評価した。従って、値の小さいほど転写性は良好である。

【0140】また、耐久初期の解像力は潜像電界によって電界が閉じやすく、再現しにくい600dpiにおける小径孤立1ドットの再現性によって評価した。

A:100個中の欠損が5個以下

B:100個中の欠損が6~10個

C:100個中の欠損が11~20個

D:100個中の欠損が20個超

【0141】耐オフセット性は、初期から耐久100枚までの画像サンプルの裏側に発生する汚れを観察し、発生枚数を数えた。

【0142】以上の条件及び評価方法により実験を行ったところ、トナー1は初期画像特性並びに耐久性共に非常に優れた性能を示した。結果を表4に示す。

【0143】<実施例 $2\sim9$ 並びに比較例1, 2>トナー $2\sim1$ 1を用いて実施例1と同様の実験を行った。結果を表4に示す。なお、実施例7については、軽微ながらオフセットによる裏汚れが生じた。また、比較例1については、ブレード融着に起因するハーフトーン画像上の現像スジが100枚目から生じた。

[0144]

【表4】

		ud 14.	1 : 51 .	fit de la	1 46 212 -	- 151	
	ht- No.	初期画像	ルーフトーン 画像上 帯電ムラ 発生枚数	特電45 発生時 画像濃度	帯電ワーラー 上付着 トナー量 (mg/cm ²)	初期 転写性	初期 解像力
実施例 1	1	1. 42	1500 枚ま で発生せず	1.45	0.35	0.06	Α
実施例2	2	1.38	T	1.42	0.38	0.06	Α
実施例3	3	1.40	ī	1.38	0.44	0.07	A
突施例4	4	1.40	Ť	1.40	0.53	0.08	A
実施例 5	5	1.44	î	1.41	0.52	0.07	A_
実施例6	6	1.44	T	1.43	0.51	0.07	Α
実施例7	7	1.44	1	1.44	0.64	0.06	Α
実施例8	8	1.44	1	1.42	0.43	0.06	В
実施例9	9	1.44	1200 枚で 軽微に発生	1.40	0.82	0.12	В
比較例1	10	1.45	200 枚で 発生	0.54	1. 20	0.16	В
比較例2	1 1	1.45	200 枚で 発生	0.46	1. 50	0. 25	С

【0145】<実施例10>重合トナー1と、シリコーン樹脂をキャリア芯材100質量部に対し0.5質量部コートしたフェライトキャリア(平均粒径46μm)とを、現像剤中のトナー濃度が5%となるよう混合して二成分現像剤を作製し、コロナ帯電器を有する電子写真用複写機CLC-700(キヤノン製)を改造してクリー20ニングユニットを取り外して使用し、温度23℃/湿度60%の環境下において、画像面積比率20%のオリジナル原稿を用い、白黒画像のみで10000枚の耐刷試験を行った。

【0146】その結果、

初期の帯電量-29.8 μ C / k g → 10000枚画出し後の帯電量-29.5 μ C / k g

初期画像濃度 1. 6 1→1 0 0 0 0 枚画出し後の画像濃度 1. 6 0

と安定に推移し、帯電ムラやカブリ等の画質欠陥の見ら 30 れない高解像度の画像が安定に得られた。

[0147]

【発明の効果】以上説明したように、本発明のトナーを 用いれば、現像同時クリーニング画像形成方法において も帯電ムラ等の画像不良や、現像特性の劣化を生ずるこ となく高解像度の画像が得られ、優れた耐久性が得られ る。さらに、二成分現像剤として使用しても長期に渡り 高精細な画像を得ることができる。

【図面の簡単な説明】

【図1】本発明の画像形成方法に好ましく用いられる電 40子写真装置のプロセスの概略図である。

【図2】無機化合物微粒子の抵抗を測定する装置の説明 図である。

【図3】トナーの帯電量を測定する装置の説明図である。

【符号の説明】

100 現像装置

101 コート層制御用現像ブレード(樹脂コートした

ステンレス製)

- 102 トナー担持体(中抵抗ゴムローラ)
- 103 トナー塗布ローラ
- 104 トナー
- 105 転写材
- 106 転写ローラ
- 107 定着用加圧ローラ
- 108 定着用加熱ローラ
- 109 感光体
- 110 帯電ローラ
- 111 レーザー光
- 112 転写トナー
- 113 転写残トナー
- 115 帯電ローラ用バイアス電源
- 116 転写ローラ用バイアス電源
- 117 トナー担持体用バイアス電源
- 118 トナー塗布ローラ用バイアス電源
- d サンプル厚み
- A 測定用セル
- 21、22 電極
- 23 絶縁体
- 2 4 電流計
- 25 電位計
- 26 電源
- 27 サンプル
- 28 セル外枠
- 3.1 吸引機
- 32 測定容器
- 33 500メッシュスクリーン
- 34 ふた
- 3 5 真空計
- 36 吸引口
- 37 コンデンサー
- 38 電位計

[図3]

フロントページの続き

F ターム(参考) 2H005 AA06 AA08 AA15 AB06 CA13 CA14 CB08 DA07 EA01 EA03 EA05 EA07 2H077 AA37 AD13 AD17 EA14 EA15 FA26