Electronegativities of the elements (data page)

Contents

Electronegativity (Pauling scale)

Notes

Electronegativity (Allen scale)

References

WEL

CRC

LNG

Allen Electronegativities

Electronegativity (Pauling scale)

	Periodic table of electronegativity by Pauling scale																		
	\rightarrow Atomic radius decreases \rightarrow Ionization energy increases \rightarrow Electronegativity increases \rightarrow																		
	<u>1</u>	2	<u>3</u>		<u>4</u>	5	<u>6</u>	<u>7</u>	8	9	<u>10</u>	<u>11</u>	<u>12</u>	<u>13</u>	14	<u>15</u>	16	<u>17</u>	<u>18</u>
	Group →																		
↓ <u>Pe</u>	↓ <u>Period</u>																		
1	<u>H</u> 2.20																		He
2	<u>Li</u> 0.98	<u>Be</u> 1.57												<u>B</u> 2.04	<u>C</u> 2.55	3 <u>.0</u> 4	<u>O</u> 3.44	<u>F</u> 3.98	Ne
3	<u>Na</u> 0.93	Mg 1.31												Al 1.61	<u>Si</u> 1.90	2 <u>P</u> 2.19	<u>S</u> 2.58	<u>Cl</u> 3.16	<u>Ar</u>
4	<u>K</u> 0.82	<u>Ca</u> 1.00	<u>Sc</u> 1.36		<u>Ti</u> 1.54	1 <u>V</u>	<u>Cr</u> 1.66	Mn 1.55	<u>Fe</u> 1.83	<u>Co</u> 1.88	<u>Ni</u> 1.91	<u>Cu</u> 1.90	<u>Zn</u> 1.65	<u>Ga</u> 1.81	<u>Ge</u> 2.01	<u>As</u> 2.18	<u>Se</u> 2.55	<u>Br</u> 2.96	<u>Kr</u> 3.00
5	<u>Rb</u> 0.82	<u>Sr</u> 0.95	1 <u>.</u> 22		<u>Zr</u> 1.33	$\frac{\text{Nb}}{1.6}$	Mo 2.16	<u>Tc</u> 1.9	<u>Ru</u> 2.2	<u>Rh</u> 2.28	<u>Pd</u> 2.20	<u>Ag</u> 1.93	<u>Cd</u> 1.69	<u>In</u> 1.78	<u>Sn</u> 1.96	<u>Sb</u> 2.05	<u>Te</u> 2.1	<u>l</u> 2.66	<u>Xe</u> 2.60
<u>6</u>	<u>Cs</u> 0.79	<u>Ba</u> 0.89	<u>La</u> 1.1	*	Hf 1.3	<u>Ta</u> 1.5	<u>W</u> 2.36	<u>Re</u> 1.9	Os 2.2	2 <u>lr</u> 2.20	<u>Pt</u> 2.28	<u>Au</u> 2.54	<u>Hg</u> 2.00	<u>Tl</u> 1.62	<u>Pb</u> 1.87	<u>Bi</u> 2.02	<u>Po</u> 2.0	<u>At</u> 2.2	<u>Rn</u> 2.2
7	Fr >0.79	Ra 9[•0]. 9]	Ac 1.1	*	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	<u>Og</u>
				*	<u>Ce</u> 1.12 <u>Th</u> 1.3	Pr 1.13 Pa 1.5	Nd 1.14 U 1.38	Pm 1.13 Np 1.36	Sm 1.17 Pu 1.28	Eu 1.2 Am 1.13	Gd 1.2 Cm 1.28	Tb 1.1 Bk 1.3	Dy 1.22 Cf 1.3	Ho 1.23 Es 1.3	Er 1.24 Fm 1.3	Tm 1.25 Md 1.3	Yb 1.1 No 1.3	<u>Lu</u> 1.27 <u>Lr</u> 1.3 ^{[en}	2]

Values are given for the elements in their most common and stable <u>oxidation states</u>. See also: Electronegativities of the elements (data page)

^{1.} The electronegativity of francium was chosen by Pauling as 0.7, close to that of caesium (also assessed 0.7 at that point). The base value of hydrogen was later increased by 0.10 and caesium's electronegativity was later refined to 0.79; however, no refinements have been made for francium as no experiment has been conducted. However, francium is expected and, to a small extent, observed to be more electronegative than caesium. See **francium** for details.

2.	See Brown, Geoffrey (2012). <i>The Inaccessible Earth: An integrated view to its structure and composition</i> . Springer Science & Business Media. p. 88. <u>ISBN</u> <u>9789401115162</u> .

Number	Symbol	Name	use	WEL	CRC	LNG
1	Н	hydrogen	2.20	same		
2	He	helium	no data	same		
3	Li	lithium	0.98	same		
4	Ве	beryllium	1.57	same		
5	В	boron	2.04	same		
6	С	carbon	2.55	same		
7	N	nitrogen	3.04	same		
8	0	oxygen	3.44	same		
9	F	fluorine	3.98	3.98	3.98	3.90
10	Ne	neon	no data	same		
11	Na	sodium	0.93	same		
12	Mg	magnesium	1.31	same		
13	Al	aluminium	1.61	same		
14	Si	silicon	1.90	same		
15	Р	phosphorus	2.19	same		
16	S	sulfur	2.58	same		
17	CI	chlorine	3.16	same		
18	Ar	argon	3.20	same		
19	К	potassium	0.82	same		
20	Ca	calcium	1.00	same		
21	Sc	scandium	1.36	same		
22	Ti	titanium	1.54	same		
23	V	vanadium	1.63	same		
24	Cr	chromium	1.66	same		
25	Mn	manganese	1.55	same		
26	Fe	iron	1.83	same		
27	Со	cobalt	1.88	same		
28	Ni	nickel	1.91	same		
29	Cu	copper	1.90	same		
30	Zn	zinc	1.65	same		
31	Ga	gallium	1.81	same		
32	Ge	germanium	2.01	same		
33	As	arsenic	2.18	same		
34	Se	selenium	2.55	same		
35	Br	bromine	2.96	same		
36	Kr	krypton	3.00			no data
37	Rb	rubidium	0.82	same		
38	Sr	strontium	0.95	same		
39	Y	yttrium	1.22	same		
40	Zr	zirconium	1.33	same		

41	Nb	niobium	1.6	same	same			
42	Мо	molybdenum	2.16	same				
43	Tc	technetium	1.9	1.9	2.10	2.10		
44	Ru	ruthenium	2.2	same				
45	Rh	rhodium	2.28	same				
46	Pd	palladium	2.20	same				
47	Ag	silver	1.93	same				
48	Cd	cadmium	1.69	same				
49	In	indium	1.78	same				
50	Sn	tin	1.96	same				
51	Sb	antimony	2.05	same				
52	Те	tellurium	2.1	same				
53	1	iodine	2.66	same				
54	Xe	xenon	2.6	2.6	2.60	no data		
55	Cs	caesium	0.79	same				
56	Ва	barium	0.89	same				
57	La	lanthanum	1.10	same				
58	Ce	cerium	1.12	same				
59	Pr	praseodymium	1.13	same				
60	Nd	neodymium	1.14	same				
61	Pm	promethium	no data	same				
62	Sm	samarium	1.17	same	same			
63	Eu	europium	no data	same	same			
64	Gd	gadolinium	1.20	same	same			
65	Tb	terbium	no data	same	same			
66	Dy	dysprosium	1.22	same				
67	Но	holmium	1.23	same				
68	Er	erbium	1.24	same				
69	Tm	thulium	1.25	same				
70	Yb	ytterbium	no data	same	same			
71	Lu	<u>lutetium</u>	1.27	1.27	1.0	1.0		
72	Hf	hafnium	1.3	same				
73	Та	tantalum	1.5	same				
74	W	tungsten	2.36	2.36	1.7	1.7		
75	Re	rhenium	1.9	same				
76	Os	osmium	2.2	same	same			
77	Ir	iridium	2.20	2.20 2.2		2.2		
78	Pt	platinum	2.28	2.28	2.2			
79	Au	gold	2.54	2.54	2.54 2.4			
80	Hg	mercury	2.00	2.00	1.9	1.9		
81	TI	thallium	1.62	1.62	1.8	1.8		

82	Pb	lead	2.33	2.33	1.8	1.8				
83	Bi	<u>bismuth</u>	2.02	2.02	1.9	1.9				
84	Po	polonium	2.0	same	same					
85	At	astatine	2.2	same	same					
86	Rn	radon	no data	same						
87	Fr	francium	no data	0.7						
88	Ra	radium	0.9	same						
89	Ac	actinium	1.1	same	same					
90	Th	thorium	1.3	same						
91	Pa	protactinium	1.5	same	same					
92	U	uranium	1.38	1.38	1.7	1.7				
93	Np	neptunium	1.36	1.36	1.3	1.3				
94	Pu	plutonium	1.28	1.28 1.3		1.3				
95	Am	americium	1.3	1.3	no data	1.3				
96	Cm	curium	1.3	1.3	no data	1.3				
97	Bk	berkelium	1.3	1.3	no data	1.3				
98	Cf	californium	1.3	1.3	no data	1.3				
99	Es	einsteinium	1.3	1.3	no data	1.3				
100	Fm	fermium	1.3	1.3	no data	1.3				
101	Md	mendelevium	1.3	1.3 no data		1.3				
102	No	nobelium	1.3	1.3	no data	1.3				

Notes

- Separate values for each source are only given where one or more sources differ.
- Electronegativity is not a uniquely defined property and may depend on the definition. The suggested values are all taken from WebElements as a consistent set.
- Many of the highly radioactive elements have values that must be predictions or extrapolations, but are unfortunately not marked as such. This is especially problematic for francium, which by relativistic calculations can be shown to be less electronegative than caesium, but for which the only value (0.7) in the literature predates these calculations.

Electronegativity (Allen scale)

	Electronegativity using the Allen scale																	
Group -	→ <u>1</u>	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
↓ Perioc	_																	
<u>1</u>	<u>H</u> 2.300																	<u>He</u> 4.160
2	<u>Li</u> 0.912	<u>Be</u> 1.576											<u>B</u> 2.051	<u>C</u> 2.544	3.066	<u>O</u> 3.610	<u>E</u> 4.193	<u>Ne</u> 4.787
<u>3</u>	Na 0.869	<u>Mg</u> 1.293											Al 1.613	<u>Si</u> 1.916	P 2.253	<u>S</u> 2.589	<u>CI</u> 2.869	Ar 3.242
4	<u>K</u> 0.734	<u>Ca</u> 1.034		<u>Ti</u> 1.38	_	<u>Cr</u> 1.65					<u>Cu</u> 1.85	<u>Zn</u> 1.59	<u>Ga</u> 1.756	<u>Ge</u> 1.994	<u>As</u> 2.211	<u>Se</u> 2.424	<u>Br</u> 2.685	<u>Kr</u> 2.966
<u>5</u>	<u>Rb</u> 0.706		1.12	<u>Zr</u> 1.32					<u>Rh</u> 1.56			<u>Cd</u> 1.52	<u>In</u> 21.656	<u>Sn</u> 1.824	<u>Sb</u> 1.984	<u>Te</u> 2.158	<u>I</u> 2.359	<u>Xe</u> 2.582

- $\underline{7}$ 0.67 \underline{Ra} 0.89

See also: Electronegativities of the elements (data page)

Number	Symbol	Name	Electronegativity		
1	Н	hydrogen	2.300		
2	Не	helium	4.160		
3	Li	lithium	0.912		
4	Ве	beryllium	1.576		
5	В	boron	2.051		
6	С	carbon	2.544		
7	N	nitrogen	3.066		
8	0	oxygen	3.610		
9	F	fluorine	4.193		
10	Ne	neon	4.787		
11	Na	sodium	0.869		
12	Mg	magnesium	1.293		
13	Al	aluminium	1.613		
14	Si	silicon	1.916		
15	Р	phosphorus	2.253		
16	S	sulfur	2.589		
17	CI	chlorine	2.869		
18	Ar	argon	3.242		
19	К	potassium	0.734		
20	Ca	calcium	1.034		
21	Sc	scandium	1.19		
22	Ti	titanium	1.38		
23	V	vanadium	1.53		
24	Cr	chromium	1.65		
25	Mn	manganese	1.75		
26	Fe	iron	1.80		
27	Co	cobalt	1.84		
28	Ni	nickel	1.88		
29	Cu	copper	1.85		
30	Zn	zinc	1.59		
31	Ga	gallium	1.756		
32	Ge	germanium	1.994		
33	As	arsenic	2.211		
34	Se	selenium	2.424		
35	Br	bromine	2.685		
36	Kr	krypton	2.966		
37	Rb	rubidium	0.706		
38	Sr	strontium	0.963		
39	Y	yttrium	1.12		
40	Zr	zirconium	1.32		

41	Nb	niobium	1.41
42	Мо	molybdenum	1.47
43	Tc	technetium	1.51
44	Ru	ruthenium	1.54
45	Rh	rhodium	1.56
46	Pd	palladium	1.58
47	Ag	silver	1.87
48	Cd	cadmium	1.52
49	In	indium	1.656
50	Sn	tin	1.824
51	Sb	antimony	1.984
52	Те	tellurium	2.158
53	1	iodine	2.359
54	Xe	xenon	2.582
55	Cs	caesium	0.659
56	Ва	barium	0.881
71	Lu	lutetium	1.09
72	Hf	hafnium	1.16
73	Ta	tantalum	1.34
74	W	tungsten	1.47
75	Re	rhenium	1.60
76	Os	osmium	1.65
77	Ir	iridium	1.68
78	Pt	platinum	1.72
79	Au	gold	1.92
80	Hg	mercury	1.76
81	TI	thallium	1.789
82	Pb	lead	1.854
83	Bi	bismuth	2.01
84	Po	polonium	2.19
85	At	astatine	2.39
86	Rn	radon	2.60
87	Fr	francium	0.67
88	Ra	radium	0.89

References

WEL

As quoted at http://www.webelements.com/ from these sources:

• A.L. Allred, *J. Inorg. Nucl. Chem.*, 1961, 17, 215.

■ J.E. Huheey, E.A. Keiter, and R.L. Keiter in *Inorganic Chemistry : Principles of Structure and Reactivity*, 4th edition, HarperCollins, New York, USA, 1993.

CRC

As quoted from these sources in an online version of: David R. Lide (ed), *CRC Handbook of Chemistry and Physics*, *84th Edition*. CRC Press. Boca Raton, Florida, 2003; Section 9, Molecular Structure and Spectroscopy; Electronegativity

- Pauling, L., The Nature of the Chemical Bond, Third Edition, Cornell University Press, Ithaca, New York. 1960.
- Allen, L.C., J. Am. Chem. Soc., 111, 9003, 1989.

LNG

As quoted from these sources in: J.A. Dean (ed), *Lange's Handbook of Chemistry* (15th Edition), McGraw-Hill, 1999; Section 4; Table 4.5, Electronegativities of the Elements.

- L. Pauling, *The Chemical Bond*, Cornell University Press, Ithaca, New York, 1967.
- L. C. Allen, J. Am. Chem. Soc. 111:9003 (1989).
- A. L. Allred J. Inorg. Nucl. Chem. 17:215 (1961).

Allen Electronegativities

Three references are required to cover the values quoted in the table.

- L. C. Allen, J. Am. Chem. Soc. 111:9003 (1989).
- J. B. Mann, T. L. Meek and L. C. Allen, J. Am. Chem. Soc. 122:2780 (2000).
- J. B. Mann, T. L. Meek, E. T. Knight, J. F. Capitani and L. C. Allen, *J. Am. Chem. Soc.* **122**:5132 (2000).

Retrieved from "https://en.wikipedia.org/w/index.php? title=Electronegativities_of_the_elements_(data_page)&oldid=931213836"

This page was last edited on 17 December 2019, at 17:37 (UTC).

Text is available under the <u>Creative Commons Attribution-ShareAlike License</u>; additional terms may apply. By using this site, you agree to the <u>Terms of Use</u> and <u>Privacy Policy</u>. Wikipedia® is a registered trademark of the <u>Wikimedia Foundation</u>, Inc., a non-profit organization.