

#### **DEVICE DESCRIPSION**

The TL431 is a three-terminal adjustable shunt regulator offering excellent temperature stability . This device has a typical dynamic output impedance of  $0.2\Omega$ . The device can be used as a replacement for zener diodes in many applications.

# SOT-23 1. REFERENCE 2. CATHODE 3. ANODE Reference (R) Anode (A)

#### **FEATURES**

- The output voltage can be adjusted to 36V
- Low dynamic output impedance, its typical value is 0.2Ω
- Trapping current capability is 1 to 100mA
- Low output noise voltage
- Fast on -state response
- The effective temperature compensation in the working range of full temperature
- The typical value of the equivalent temperature factor in the whole temperature scope is 50 ppm/°C

#### **APPLICATION**

- Shunt Regulator
- High-Current Shunt Regulator
- Precision Current Limiter

## ABSOLUTE MAXIMUM RATINGS (Operating temperature range applies unless otherwise specified)

| Parameter                          | Symbol          | Value         | Units |  |
|------------------------------------|-----------------|---------------|-------|--|
| Cathode Voltage                    | V <sub>KA</sub> | 37            | V     |  |
| Cathode Current Range (Continuous) | I <sub>KA</sub> | -100~+150     | mA    |  |
| Reference Input Current Range      | Iref            | 0.05~+10      | mA    |  |
| Power Dissipation                  | P <sub>D</sub>  | 350           | mW    |  |
| Operating temperature              | Topr            | -40~+85       | ℃     |  |
| Storage temperature Range          | Tstg            | tg -65~+150 ° |       |  |

#### MARKING





# ELECTRICAL CHARACTERISTICS (T<sub>a</sub>=25°C unless otherwise specified)

| Parameter                                                                                                           | Symbol                            | Test conditions                                                            |                                           | Min   | Тур  | Max   | Unit |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------|-------------------------------------------|-------|------|-------|------|
| Reference Input Voltage (Fig.1)                                                                                     | V <sub>ref</sub>                  | V <sub>KA</sub> =V <sub>REF</sub> , I <sub>KA</sub> =10mA                  |                                           | 2.487 | 2.5  | 2.513 | V    |
| Deviation of reference input Voltage Over temperature (note) (Fig.1)                                                | $\triangle V_{ref} / \triangle T$ | $V_{KA} = V_{REF}, I_{KA} = 10mA$<br>$T_{min} \le T_a \le T_{max}$         |                                           |       | 3.0  | 17    | mV   |
| Ratio Of Change in Reference Input Voltage to the change in Cathode $\triangle V_{ref}/\triangle V$ Voltage (Fig.2) | A.V. /A.V.                        | I <sub>KA</sub> =10mA                                                      | △V <sub>KA</sub><br>=10V~V <sub>REF</sub> |       | -1.0 | -2.7  | mV/V |
|                                                                                                                     | ∠ V ref / ∠ V KA                  |                                                                            | △V <sub>KA</sub><br>=36V~ 10V             |       | -0.5 | -2.0  | mV/V |
| Reference Input Current (Fig.2)                                                                                     | I <sub>ref</sub>                  | $I_{KA}$ = 10mA, $R_1$ =10 KΩ $R_2$ =∞                                     |                                           |       | 1.5  | 4     | μΑ   |
| Deviation Of Reference Input Current<br>Over Full Temperature Range (Fig.2)                                         | $\triangle I_{ref}/\triangle T$   | $I_{KA}$ =10mA, $R_1$ =10 KΩ $R_2$ =∞ $T_a$ =full Temperature              |                                           |       | 0.4  | 1.2   | μА   |
| Minimum cathode current for Regulation (Fig.1)                                                                      | I <sub>KA(min)</sub>              | V <sub>KA</sub> =V <sub>REF</sub>                                          |                                           |       | 0.45 | 1.0   | mA   |
| Off-state cathode Current (Fig.3)                                                                                   | I <sub>KA(OFF)</sub>              | V <sub>KA</sub> =36V,V <sub>REF</sub> =0                                   |                                           |       | 0.05 | 1.0   | μA   |
| Dynamic Impedance                                                                                                   | Z <sub>KA</sub>                   | V <sub>KA</sub> =V <sub>REF,</sub> I <sub>KA</sub> =1 to 100mA<br>f≤1.0KHz |                                           |       | 0.15 | 0.5   | Ω    |

note:  $T_{MIN}$ =0°C , $T_{MAX}$ =+70°C

# **CLASSIFICATION OF V<sub>ref</sub>**

| Rank  | 0.5%        |  |  |  |
|-------|-------------|--|--|--|
| Range | 2.487-2.513 |  |  |  |

Figure 1. Test Circuit for  $V_{KA} = V_{ref}$ 



Figure 2. Test Circuit for  $V_{KA} > V_{ref}$ 



Figure 3. Test Circuit for Ioff













Test Circuit for V<sub>KA</sub>=V<sub>ref</sub>











Test Circuit for  $V_{KA}=V_{ref}(1+R1/R2)+R1*I_{ref}$ 



Test Circuit for I<sub>ref</sub>



Test Circuit for Ioff

#### **APPICATION INFORMATION**

#### 1. Shunt Regulator



Note A : R Should provide cathode current 1mA to the TL431 at minimum  $V_{\text{I(BATT)}}$ 

## 2. Output Control of a Three-Terminal Fixed Regulator



# 3. High-Current Shunt Regulator



## 4. Efficient 5-V Precision Regulator



NOTE A: R<sub>B</sub> Should provide cathode current≥1mA to the TL431.

#### 5. Precision Current Limiter



# 6. Precision Constant-Current Sink

