

# Interpreting (Even Tricky) Regression Coefficients Scaling of Dependent and Independent Variables

### **Module 2: Scaling of Dependent and Independent Variables**



- 1. Types of Transformations
- 2. Linear Transformations: Centering
- 3. Linear Transformations: Rescaling
- 4. Linear Transformations: Standardized Coefficients
- 5. Nonlinear Transformations



### **Types of Transformations**

### Transformations of X and Y



$$b_0 = E(Y \mid all \ X = 0)$$

$$b_{1} = \frac{\Delta \hat{Y}}{\Delta X_{1}} = \frac{difference in E(Y)}{1 unit difference in X_{1}}$$







### **Ways to Transform a Numerical Variable**

- Linear Transformations
   Add or subtract a constant
   Multiply or divide by a constant
- 2. Non-linear Transformations exponents, logs, inverse, trig functions, etc.
- 3. Make it non-numerical
  Ordered categories
  Unordered categories
  Ranks

### **Linear Transformations**

Centering

Rescaling

Standardizing







### **Nonlinear Transformations**

Logarithms

**Square Roots** 









**Linear Transformations: Centering** 

### **Centering**



Recoding a predictor variable by subtracting a constant from every observation's value

Typical constants to subtract:

- mean
- other meaningful central value

### **Center Mental Health Score**

How:

Create new variable:

MCSCen = MCS2000 - 5280.05

| MCS2000 | MCSCen   |
|---------|----------|
| 5860    | 579.95   |
| 5789    | 508.95   |
| 5792    | 511.95   |
| 5501    | 220.95   |
| 6079    | 798.95   |
| 5792    | 511.95   |
| 5545    | 264.95   |
| 6076    | 795.95   |
| 3466    | -1814.05 |
| 6716    | 1435.95  |

### Descriptive Statistics

|         | N    | Min | Max  | Mean    | Std Dev |   |
|---------|------|-----|------|---------|---------|---|
| MCS2000 | 2089 | 760 | 6921 | 5280.05 | 873.510 | _ |

### Descriptive Statistics

|        | N    | Min      | Max     | Mean  | Std Dev |
|--------|------|----------|---------|-------|---------|
| MCSCen | 2089 | -4520.05 | 1640.95 | .0031 | 873.510 |



# Centering Affects Intercept, not Slope iff there are no multiplicative terms in the model



### Regression Coefficients

Dependent Variable: PCS2000

| Variable  | В        | se      | t      | р    |
|-----------|----------|---------|--------|------|
| Intercept | 4513.771 | 110.530 | 40.837 | .000 |
| MCS2000   | .129     | .021    | 6.225  | .000 |



### Regression Coefficients

Dependent Variable: PCS2000

| Variable  | В        | se     | t       | p    |
|-----------|----------|--------|---------|------|
| Intercept | 5192.579 | 18.036 | 287.896 | .000 |
| MCSCen    | .129     | .021   | 6.225   | .000 |







|               |      |         |         |       | Std.      |
|---------------|------|---------|---------|-------|-----------|
|               | N    | Minimum | Maximum | Mean  | Deviation |
| Education2000 | 2102 | 0       | 20      | 13.05 | 2.537     |



### Where to Center? Depression Score









### **Center Mental Health Score and Education**

### Regression Coefficients

Dependent Variable: PCS2000

| Variable                      | В        | Se      | t       | p    |
|-------------------------------|----------|---------|---------|------|
| Intercept                     | 5931.907 | 182.535 | 32.497  | .000 |
| Education2000                 | 30.748   | 6.753   | 4.553   | .000 |
| NumberBioStepAdoptChildHH2000 | 34.881   | 12.772  | 2.731   | .006 |
| CESD2000Total                 | -84.633  | 5.217   | -16.222 | .000 |
| MCS2000                       | 169      | .026    | -6.489  | .000 |

### Regression Coefficients

Dependent Variable: PCS2000

| Variable                      | В        | Se     | t       | p    |
|-------------------------------|----------|--------|---------|------|
| Intercept                     | 5109.760 | 25.707 | 198.772 | .000 |
| EducationCen                  | 30.748   | 6.753  | 4.553   | .000 |
| NumberBioStepAdoptChildHH2000 | 34.881   | 12.772 | 2.731   | .006 |
| CESDCen                       | -84.633  | 5.217  | -16.222 | .000 |
| MCSCen                        | 169      | .026   | -6.489  | .000 |



**Linear Transformations: Rescaling** 

### Rescaling



Recoding a variable by multiplying or dividing every observation's value by a constant

Typical constants to multiply or divide:

- Meaningful change in units
- Making variances more comparable





How: Create new variables

gestation\_days = gestation \* 7

bwt\_pnds = bwt / 16

| bwt    | bwt_pnds | gestation | gestation_days |
|--------|----------|-----------|----------------|
| 100.99 | 6.31     | 37        | 259            |
| 93.02  | 5.81     | 38        | 266            |
| 132.00 | 8.25     | 38        | 266            |
| 105.01 | 6.56     | 39        | 273            |
| 102.33 | 6.40     | 43        | 301            |
| 119.05 | 7.44     | 39        | 273            |
| 106.99 | 6.69     | 37        | 259            |
| 117.99 | 7.37     | 39        | 273            |
| 123.99 | 7.75     | 39        | 273            |
| 110.58 | 6.91     | 46        | 322            |

### Rescaling



$$b_0 = E(Y \mid all \ X = 0)$$

$$b_1 = \frac{\Delta \hat{Y}}{\Delta X_1} = \frac{difference \ in \ E(Y)}{1 \ unit \ difference \ in \ X_1}$$

# Rescaling affects intercept and slope through units, not relationships







# Rescaling affects intercept and slope through units, not relationships



Regression Coefficients

Dependent Variable: Birth weight in pounds

| Variable  | В      | se   | t      | р    |
|-----------|--------|------|--------|------|
| Intercept | -4.015 | .475 | -8.445 | .000 |
| gestation | .291   | .012 | 23.681 | .000 |

Regression Coefficients

Dependent Variable: Birth weight in ounces

| Variable       | В       | se    | t      | р    |
|----------------|---------|-------|--------|------|
| Intercept      | -64.246 | 7.608 | -8.445 | .000 |
| gestation_days | .664    | .028  | 23.681 | .000 |

$$(.291 * 16)/7 = .665$$



**Linear Transformations: Standardized Coefficients** 



$$b_{1} = \frac{\Delta \hat{Y}}{\Delta X_{1}} = \frac{difference \cdot in \cdot E(Y)}{1 \cdot unit \cdot difference \cdot in \cdot X_{1}}$$



Both Response and all Predictor Variables are standardized:

$$Y_{i}^{'} = \left(\frac{Y_{i} - \overline{Y}}{S_{Y}}\right)$$

$$X_{i}^{'} = \left(\frac{X_{i} - \overline{X}}{S_{X}}\right)$$



Standardized Regression Model:

$$Y_{i}' = \beta_{1}' X_{i1}' + \beta_{2}' X_{i2}' + \beta_{3}' X_{i3}' + \varepsilon_{i}'$$



Standardized Regression Model:

$$Y_{i}' = \beta_{1}' X_{i1}' + \beta_{2}' X_{i2}' + \beta_{3}' X_{i3}' + \varepsilon_{i}'$$

No intercept

$$\beta_0 = \overline{Y} - \beta_1 \overline{X_1} - \beta_2 \overline{X_2} - \beta_3 \overline{X_3}$$



Standardized Regression Model:

$$Y_{i}' = \beta_{1}' X_{i1}' + \beta_{2}' X_{i2}' + \beta_{3}' X_{i3}' + \varepsilon_{i}'$$

Standardized Coefficients are related to Unstandardized Coefficients

$$oldsymbol{eta}_k^{'} = \left(rac{S_k}{S_Y}
ight)oldsymbol{eta}_k$$
 where k = 1, 2,...number of Xs



Standardized Regression Model:

$$Y_{i}' = \beta_{1}' X_{i1}' + \beta_{2}' X_{i2}' + \beta_{3}' X_{i3}' + \varepsilon_{i}'$$

Interpretation:

$$oldsymbol{eta}_k^{'}$$
 = Number of standard deviations difference in Y for each one standard deviation difference in X<sub>k</sub>



Regression Coefficients

Dependent Variable: PCS2000

| Dependent variable, FCS2 | 2000           |              |         |      |
|--------------------------|----------------|--------------|---------|------|
|                          | Unstandardized | Standardized |         |      |
|                          | Coefficients   | Coefficients |         |      |
| Variable                 | В              | β            | t       | p    |
| Intercept                | 5931.907       |              | 32.497  | .000 |
| Depression               | -84.633        | 451          | -16.222 | .000 |
| Education                | 30.748         | .094         | 4.553   | .000 |
| NumberChildren           | 34.881         | .055         | 2.731   | .006 |
| MentalHealth             | 169            | 178          | -6.489  | .000 |

E(Physical Health) = -0.45(Depression) + 0.09(Education) + .06(Number of Children) - .18(Mental Health)



### **Nonlinear Transformations**

### **Linear Transformations**



### Effects:

[(Y-k)\*c]

- Change units
- Change where we evaluate X=0
- Do not change relationships
- Do not change the spacing of the values of a variable

### **Nonlinear Transformations**



### Effects:

- Change units
- Change where we evaluate X=0
- Change relationships
- Change the spacing of the values of a variable

## Examples of Common Nonlinear Transformations:

- Logarithms
- Square, cubic, and Square root
- Inverse
- Trigonometric functions, like sine and cosine

### **Nonlinear Transformations of Y:**









### **Nonlinear Transformations**









### **How Nonlinear Transformations work on X or Y**



$$W_i = Log(Y_i)$$

$$Q_i = Log(X_i)$$

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \varepsilon_i$$

$$W_i = sqrt(Y_i)$$

$$Q_i = e^{Xi}$$

$$W_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \varepsilon_i$$

$$W_i = 1/Y_i$$

$$Q_i = X_i^2$$

$$Y_i = \beta_0 + \beta_1 Q_i + \beta_2 X_{2i} + \varepsilon_i$$

### **Nonlinear Transformations are NOT Link Functions**



X or Y

Transformation:

$$W_i = Log(Y_i)$$

$$Log(Y_i) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \varepsilon_i$$



Link Function:

$$f(\mu) = Log(\mu_{Yi})$$

$$Log(\mu_{Yi}) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}$$



### **Interpreting a Coefficient for a Square Rooted Y**

### Regression Coefficients

Dependent Variable: sqrt\_last\_preg

| Parameter | В     | se   | t     | p    |
|-----------|-------|------|-------|------|
| Intercept | 2.004 | .562 | 3.566 | .000 |
| mage      | .145  | .016 | 9.265 | .000 |
| _pre_wgt  | .002  | .002 | .877  | .381 |





### **Interpreting a Coefficient for a Log Transformed Y**

Regression Coefficients

Dependent Variable: ln\_last\_preg

| Parameter | В     | se   | t      | p    |
|-----------|-------|------|--------|------|
| Intercept | 2.383 | .181 | 13.164 | .000 |
| mage      | .041  | .005 | 8.026  | .000 |
| pre_wgt   | .000  | .001 | .530   | .596 |







**Square Roots** 

$$b_1 = \frac{E(\sqrt{Y})_{x+1} - E(\sqrt{Y})_x}{1}$$

Logarithms

$$b_1 = \frac{E(\log Y)_{x+1} - E(\log Y)_x}{1}$$

### **How Logarithms Work**



| 10 <sup>1</sup> =10    | $\log_{10}(10)=1$     | e <sup>1</sup> =2.72  |
|------------------------|-----------------------|-----------------------|
| 10 <sup>2</sup> =100   | $\log_{10}(100)=2$    | $e^2 = 7.40$          |
| 10 <sup>3</sup> =1,000 | $\log_{10}(1000)=3$   | $e^3=20.12$           |
| 104=10,000             | $\log_{10}(10,000)=4$ | e <sup>4</sup> =54.74 |

$$log(A) + log(B) = log(AB)$$

$$log(A) - log(B) = log(A/B)$$

Multiplicative relationship on raw scale

 $log_e(2.72)=1$ 

 $log_e(7.40)=2$ 

 $\log_{e}(20.12)=3$ 

 $log_e(54.74)=4$ 

Additive relationship on log scale

### When Y is logged



$$b_1 = \frac{E\Delta(\log Y)}{1 \, unit \, \Delta \, in \, X}$$

Difference on log Y scale Ratio on Y scale

Difference on X scale

### When Y is logged



Regression Coefficients

Dependent Variable: ln\_last\_preg

| Parameter | В     | se   | t      | p    |
|-----------|-------|------|--------|------|
| Intercept | 2.383 | .181 | 13.164 | .000 |
| mage      | .041  | .005 | 8.026  | .000 |
| pre_wgt   | .000  | .001 | .530   | .596 |

Each one-unit difference in X multiplies the expected value of Y by e<sup>b</sup>

$$e^{.041} = 1.042$$

## When Y is logged: Interpret as a % change



Regression Coefficients

Dependent Variable: ln\_last\_preg

| Parameter | В     | se   | t      | p    |
|-----------|-------|------|--------|------|
| Intercept | 2.383 | .181 | 13.164 | .000 |
| mage      | .041  | .005 | 8.026  | .000 |
| pre_wgt   | .000  | .001 | .530   | .596 |

$$e^{.041} = 1.042$$

 $100(e^b - 1) = \%$  change in Y for 1 unit difference in X

$$= 100*(e^{.041} - 1)$$
$$= 100*(1.042 - 1)$$
$$= 4.2%$$

### When X is logged



$$b_1 = \frac{E\Delta(Y)}{1 \ unit \ \Delta \ in \ log X}$$

Difference on Y scale

Difference on log X scale
Ratio on X scale



### When X is logged: Interpret as % change

 $E(\Delta Y)$  for a p% increase in X = b\*log[(100 + p)/100]

When the % difference in X is small: b/100 =  $E(\Delta Y)$  for each 1% difference in X

### Regression Coefficients

Dependent Variable: last\_preg

| Variable   | В       | se     | t      | p    |
|------------|---------|--------|--------|------|
| Intercept  | -41.621 | 28.305 | -1.470 | .142 |
| mage       | 2.314   | .239   | 9.696  | .000 |
| ln_pre_wgt | 4.461   | 5.580  | .799   | .424 |







## b expresses % change in Y for 1% increase in X

### Regression Coefficients

Dependent Variable: In last preg

| <b>X</b> 7 <b>1</b> -1 - | D     |      | 4     |      |
|--------------------------|-------|------|-------|------|
| Variable                 | В     | se   | τ     | p    |
| Intercept                | 2.240 | .600 | 3.736 | .000 |

mage .041 .005 8.032 .000 ln\_pre\_wgt .040 .118 .335 .738

