DM 14 Éléments de correction

	Mesure du rayon de courbure d'un miroir par une mé-	
	thode interférentielle	
	Dispositif interférentiel	
1	On doit faire l'image de la source S_L par L_p pour obtenir S_p .	
	On doit faire l'image de S_L par L_p puis M_1 pour S_1 .	
	On doit faire l'image de S_L par M_2 puis L_p pour S_2 .	
	Les longueurs se conservent par symétrie donc $OS_1 = OO_p +$	
	$2O_1O_p + O_pS_p = L + 2d_1 + l.$	
	De même $OS_2 = OO_p + 2O_2O_p + O_pS_p = L + 2d_2 + l$.	
	La distance qui sépare les deux sources est $a = OS_1 - OS_2 =$	
	$2(d_1-d_2)$.	
	La distance du milieu de S_1 et de S_2 à l'écran est $d = \frac{OS_1 + OS_2}{2} =$	
	$L+d_1+d_2+l.$	
2	Si on a un éclairement uniforme alors on est au contact optique	
	donc a = 0.	
3	On est en lame d'air donc on observe des anneaux.	
4	la différence de marche en lame d'air est $\delta = 2e\cos(i)$. Au centre	
	de l'écran $i \ll \frac{\pi}{2}$ donc $\delta = 2e(1 - \frac{i^2}{2})$. Comme i est petit $i \approx \frac{r}{d}$,	
	$donc \ \delta = 2e(1 - \frac{r^2}{2d^2}).$	
	L'ordre d'interférence est $p = \frac{\delta}{\lambda} = \frac{2e}{\lambda}(1 - \frac{r^2}{2d^2})$.	
	Si le centre est brillant, alors $p(r=0)$ est entier et le premier	
	anneau suivant a pour ordre $p(r=0)-1=\frac{2e}{\lambda}(1-\frac{r^2}{2d^2})$ donc	
	$\frac{2e}{\lambda} - 1 = \frac{2e}{\lambda} \left(1 - \frac{r^2}{2d^2} \right)$ donc $1 = \frac{2er^2}{2\lambda d^2}$ donc $e = \frac{\lambda d^2}{r^2}$	
	L'ordre d'interférence au centre de la figure est donné par $p =$	
	$\frac{2e}{\lambda} = \frac{2d^2}{r^2}$	

5	On refait le schéma, mais cette fois-ci les réflexions sur le miroir	
	sont en dehors de l'axe à cause de l'inclinaison des miroirs. Le	
	milieu S reste lui sur l'axe.	
6	On détermine la distance SS_1 que l'on multipliera par 2 pour avoir	
	S_1S_2 ,	
	si on prend l'image de S_L par la séparatrice S_p , on a un tri-	
	angle rectangle S_pSS_1 . De plus en repérant les angles SS_1	
	$S_p S_1 \sin(\alpha)$.	
	Si on nomme H le point d'intersection sur le miroir de S_pS_1 , on	
	obtient par réflexion $S_pS_1=2S_pH$ et on remarque que le triangle	
	S_pHO_1 est rectangle en H donc $S_pH = (S_pO_p + O_pO_1)\cos(\alpha)$.	
	D'où $SS_1 = 2\cos(\alpha)\sin(\alpha)(S_pO_p + O_pO_1)$ donc $S_1S_2 = 2SS_1 = -1$	
	$2\sin(2\alpha)(S_pO_p + O_pO_1) = 2\sin(2\alpha)(l + d_1).$	
	On est en coin d'air, et les sources secondaires sont dans une	
	configuration de trous d'Young, donc on a des franges rectilignes.	
7	La distance entre deux franges brillantes est l'interfrange, donc	
	$p(z = d_i) - p(z = 0) = 1 \text{ donc } \delta(z = d_i) - \delta(z = 0) = \lambda.$	
	Les deux sources secondaires forment un disposition en trou	
	d'Young, donc par symétrie $\delta(z=0)=0$ et en faisant le	
	développement limité de $\delta(z = d_i) = \sqrt{SO^2 + (a/2 + d_i)^2} -$	
	$\sqrt{SO^2 + (a/2 - d_i)^2} \approx \frac{ad_i}{SO}$, on a $\frac{ad_i}{SO} = \lambda$ donc $a = \frac{SO\lambda}{d_i}$ donc	
	$2\sin(2\alpha)(l+d_1) = \frac{SO\lambda}{d_i}$ donc $\sin(2\alpha) = \frac{\lambda(L+2d_1+l)}{2d_i(l+d_1)}$ si $\alpha \ll \frac{\pi}{2}$ on a	
	$\alpha = \frac{\lambda(L+2d_1+l)}{4d_i(l+d_1)}$ et avec $d_1 = l$ on a $\alpha = \frac{\lambda(L+3l)}{8d_il}$	
	si α augmente alors d_i diminue, d'après la relation à la question	
	précédente.	