- Multiple choice
 - Itiple choice

 1. $T(n) = 3T(n/2) + n = \Theta(n/2)$. In addition, you achieve this by using Master Theorem's with case?

 a. Case 1

 b. Case 2 $n = \frac{1 3a^2}{1 3a^2} = \frac{1$
 - b.Case 2 c. Case 3
 - 2. $T(n) = 4T(n/2) + n = \Theta(n/2)$. In addition, you achieve this by using Master Theorem's with case?

 a. Case 1

 b. Case 2 $(n/2) + n = \Theta(n/2) + n = \Theta(n/2)$ $(n/2) + n = \Theta(n/2) + n = \Theta(n/2) + n = \Theta(n/2)$ $(n/2) + n = \Theta(n/2) + n = \Theta(n/2) + n = \Theta(n/2)$ $(n/2) + n = \Theta(n/2) + n = \Theta(n/2) + n = \Theta(n/2)$ $(n/2) + n = \Theta(n/2) + n = \Theta(n/2) + n = \Theta(n/2)$ $(n/2) + n = \Theta(n/2) + n = \Theta(n/2) + n = \Theta(n/2)$ $(n/2) + n = \Theta(n/2) + n = \Theta(n/2)$
 - c. Case 3 3. $T(n) = 3T(n/3) + n = \Theta(\frac{n/3}{2})$. In addition, you achieve this by using Master Theorem's with case?
 - $1^{\log_2 s} = \gamma = f(n)$ c. Case 3
 - 4. $T(n) = 2T(n/2) + n = \Theta(1) / O(1)$. In addition, you achieve this by using Master Theorem's with case?
 - 1 / log22 = N = f(N)
 - 5. $T(n) = 7T(n/3) + n = \Theta(1/77)$. In addition, you achieve this by using Master Theorem's with case?
 - a. Case 1 $\int_{0.937}^{0.937} = \int_{0.77}^{0.77}$