Applied Machine Learning for Business Analytics

Lecture 6: Convolutional Neural Network

Lecturer: Zhao Rui

Agenda

- 1. Introduction to CNN
- 2. Why CNN for images?
- 3. Limitations of CNN

Hidden representation in deep learning

Deep learning structures

https://www.asimovinstitute.org/author/fjodorvanveen/

1. Introduction to CNN

Image: a matrix of pixel values

- Every image can be represented as a matrix of pixel values
- The pixel value ranges from 0 to 255.
- Channel is referred to a certain component of an image
 - An image from your iphone will have three channels
 - A grayscale image has just one channel

Computers see image

Is Dense layer a good feature extractor for Images?

Input Image as a matrix (assume it is a grayscale one)

Is Dense layer a good feature extractor for Images?

(assume it is a grayscale one)

9

Think about MNIST dataset

The above model requires the digit should be in the center of the image and it had to be the only thing in the image.

What if the digits in top-left corner

The model will generate two different vectors even two data samples belong to the same class

Limitations of fully-connected neural networks

- For the grayscale image is 64 pixel by 64 pixel
- Image is represented by 64 * 64 * 1 = 4096 values
- FCNN's input size is 4096
- If the first hidden layer size is 500,
 - Number of weights in the first hidden layer is 4096*500 = 2,048,000
- The model size will explode further
 - Deep structures (many layers)
 - Color images (the input size will be 3 times)
- The concern for a huge model size:
 - Risk of Overfitting
 - Make training/deployment more time/resource consuming
 - Make learning more untraceable as dimension of search space is increased.

Limitations of fully-connected neural networks

- FNN can not scale easily to computer vision (Input Size is so big-> too many weights)
- Any spatial relationship is not captured
 - 2D image is flattened to be a 1D vector.
- Global Pattern vs Local Pattern
 - In FNN, each pixel in the image is connected to the hidden neuron
 - The hidden neuron tries to learn the "global feature"

Local Features

Cat vs dog

- To recognize those images, we captures the patterns
- For Cat vs Dog problems, patterns can be
 - Shapes of ears, eyes
 - Colors
 - Hairs
- Machine learning model should be trained to capture those

patterns

https://www.youtube.com/watch?v=FwFduRA_L6Q

Convolutional neural network

Extracting useful features of data

Perform a ML task (like classification based on the vectorized data)

Local Patterns

- Apply the same filter for every pixel in the original image
- Filter size is the shape of the filter matrix (yellow one)

Image

Convolved Feature Feature Map

Check gif version here:

https://docs.google.com/presentation/d/1V 7lqLDsKXyaEwR9ZgxmlQ9ixmcT41ZGOL mJtbpgGPM/edit?usp=sharing

Stanford UFLDL 19

- Convolution is a mathematical operation on two objects to product an outcome that expresses how the shape of one is modified by the other
- In the CNN, the feature map has the information about the particular pattern corresponding to the filter

Feature map

print(kernel)

[[-1 -1 -1] [-1 8 -1] [-1 -1 -1]]

Image

Edge Detection

Feature Map

Feature map

Image

Sharpen

Feature Map

Feature map

Image

Identity

Feature Map

Those edge pixels are not captured

Padding

- Padding: give additional pixels around the boundary of the image
- Padding size: the number of additional pixels

Padding Size: 0 Valid

Padding Size: 1 Same

Stride size

- Does a filter always have to move one pixel at a time?
- Stride size is the amount by which the filter shifts

Convolutional operation

- Three conv. Layer basic hyper-parameters:
 - o Filter size: K
 - Stride size: S
 - Padding size: P
- Output Size can be decided by

Multi-Channel CNN

- A color image is a 3-D tensor
- 400 (height) 630 (width) 3 (R,G,B channels)

4D tensor with shape: (batch, channels, rows, cols) if data_format is "channels_first" or 4D tensor with shape: (batch, rows, cols, channels) if data_format is "channels_last".

Output shape

4D tensor with shape: (batch, filters, new_rows, new_cols) if data_format is "channels_first" or 4D tensor with shape: (batch, new_rows, new_cols, filters) if data_format is "channels_last" rows and cols values might have changed due to padding.

Where are these filters from?

- Filters, in nature, are model parameters, which can be learned by Gradient Descent Algorithms.
- These filters weights are firstly randomly initialized, and then updated during training process.
- End-to-End optimization: Gradients computed by backpropagation.
- More details:

https://towardsdatascience.com/training-a-convolutional-neural-network-from-scratch-2235c2a25754

Non-linear activation

- Filter operation is dot product (linear computation)
- In deep learning, we need to have non-linear transformations
- Add non-linear activation

Image

Pooling operation

- Pooling Size: the box size. Here is 2 by 2
- Reduce the dimensionality
- Remove some noise

Extract significant values

Filter then pool

- 1. The size is **one quarter** the original size
- The vertical line features are enhanced.

Flattening

 Flattening is converting the data into one-dimensional array for feeding it to the next layer.

All in one shot

CNN can be deep

- Conv-Pool can be followed by another Conv-Pool
- At the end, after flatten operation, fully connected layers are used to map the outputs

2. Why CNN for Images

Local features matter

- Discriminative patterns are much smaller than the whole image
- A neuron or feature extractor does not have to see the whole image
- Less parameters required

Location insensitive

- The same patterns appear in different regions
- A neuron should be location insensitive

Subsampling works

- Subsampling the pixels will not change the object
- We can subsample the pixels to make the images smaller -> less parameters required

Crocodile

Locally connected

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

Applications

- Image Recognition
- Object Detection
- Image Denoising

https://blog.keras.io/building-autoencoders-in-keras.html https://www.kaggle.com/michalbrezk/denoise-images-using-autoencoders-tf-keras

3. Limitations of CNN

CNN vs human vision

 CNN can handle translations. But they can not cope with the effects of changing viewpoints such as rotation and scaling.

Huam is able to generalize knowledge.
 _{Neatly Positioned}

Real world ImageNet ObjectNet Chairs by Chairs Teapots T-shirts rotation background viewpoint

From: objectnet.dev

CNN vs human vision

- CNN may get confused by seeing this bizarre teapot, since they can not understand images in terms of objects and their parts.
- Huam is able to decompose an object into parts and then we can understand its nature.

CNN vs human vision

 $\label{lem:adversarial} \textit{Adversarial examples can cause neural networks to misclassify images while appearing unchanged to the human eye$

https://www.theverge.com/2021/3/8/22319173/op enai-machine-vision-adversarial-typographic-attac ka-clip-multimodal-neuron

Case study

https://medium.com/@DataStevenson/teaching-a-computer-to-classify-anime-8c77bc89b881

Task definition

Task definition

```
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
model = Sequential()
                                                                     Pokemon vs Digimon
model.add(Conv2D(32, (3, 3), input shape=(150, 150, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid', name='preds'))
                                     Epoch 1/3
model.compile(loss='binary_crossentropy',
                                     optimizer='rmsprop',
                                     loss: 0.0834 - val accuracy: 0.9922
           metrics=['accuracy'])
                                     Epoch 2/3
                                     loss: 0.0692 - val accuracy: 0.9961
```

The implementation and dataset could be found on Canvas Folder-

- 12s 1s/step - loss: 0.0559 - accuracy: 0.9856 - val

Epoch 3/3

8/8 [=============

loss: 0.0684 - val_accuracy: 0.9961

Next Class: Interpretability Methods in Machine Learning