Esame di Ingegneria del software Appello del 24 settembre 2019

Nome	\mathbf{e}	cognome
Matrio	ഹ	la•

Il punteggio relativo a ciascuna domanda, indicato fra parentesi, è in trentesimi. I candidati devono consegnare entro un'ora dall'inizio della prova.

1	sviluppo?	pro	cesso di	(1)
	sí, perché richiede l'uso di strumenti CASE			
	sí, perché facilita la ripartizione del lavoro			
	no, perché è solo un aspetto tecnico del progetto			
2	Nel modello OO, un metodo è			(1) (1) (1)
	un'operazione privata.			Ò
	un'operazione pubblica.			
	l'implementazione di un'operazione.			
3	Un guasto è			(1)
	un comportamento scorretto rispetto alle specifiche.			
	un difetto del codice sorgente.			
	un errore di progetto o di programmazione.			
4	I linguaggi formali			(1)
	hanno una sintassi grafica.			Ì
	sono standardizzati.			
	hanno una semantica di tipo matematico.			
5	Negli Automi a Stati Finiti le uscite			(1)
	dipendono dalla marcatura			(1)
	dipendono dallo stato e dall'ingresso			
	dipendono dalle condizioni di guardia			
6	Con riferimento alla Fig. 1,			(5)
		\mathbf{V}	${f F}$	
	il Produttore inizia l'interazione			
	il Produttore fa terminare l'interazione			
	il Produttore invia il segnale consuma			
	il Consumatore entra in Elaborazione prima del Produttore			
	il Consumatore entra in Attesa quando riceve produci			
7	Con riferimento alla Fig. 2,			(5)
		\mathbf{V}	${f F}$	
	un ConcreteScrollWdw contiene un Window			
	un ConcreteScrollWdw è un PlainWdw			
	ConcreteScrollWdw implementa PlainWdw			
	ConcreteScrollWdw estende il comportamento di PlainWdw			
	un Window contiene un PlainWdw			

- Con riferimento alla Fig. 3, (5) \mathbf{F} Un **Network** è composto da istanze di **Node** Un **Network** è composto da istanze di **Vector** createlterator() è implementato da Node Database deriva da Vector Si può accedere ai nodi di un **Network** senza conoscerne l'implementazione 9 Disegnare un diagramma di classi che rappresenti la seguente (5) applicazione: un'agenda elettronica permette di (i) inserire coppie di stringhe (nome, numero) in un elenco, (ii) cancellare coppie fornendo il nome, e (iii) cercare i numeri corrispondenti ai nomi. L'elenco viene memorizzato in un file. Strutturare l'applicazione separando le funzioni della gestione dell'elenco e della gestione del file contenente l'elenco. L'elenco, oltre alle operazioni di inserimento, cancellazione e ricerca, ha un'operazione enumera() per accedere in sequenza alle coppie, e un'operazione azzera() per riposizionare tale sequenza sulla prima coppia. Queste due operazioni vengono usate dal gestore del file. Il programma principale (non rappresentato) accede all'elenco ed al file attraverso un'unica
- 10 Riprogettare la soluzione dell'esercizio precedente prevedendo che l'elenco possa venire implementato con una lista oppure con una tabella, e che si applichi il pattern *Iterator* (Fig. 4) al posto delle operazioni enumera() e azzera().

classe.

Figura 1: Domanda 6.

Figura 2: Domanda 7.

Figura 3: Domanda 8.

Figura 4: Domanda 10.