TASK 1

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapor in the air in Classroom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

ANSWER

At the time solving this exercise,

Temperature $T = 7^{\circ}C$

Relative Humidity $\phi = 90\%$

Air Total Pressure P = 1019hPa = 101.9kPa

Consider the dimensions of Aula A as follow:

$$V = d \times w \times h = 18 \times 6 \times 5 = 540m^3$$

Using Psychrometric Chart,

Absolute Humidity $\omega = 0.006 \frac{kg_{water}}{kg_{dryAir}}$

Wet-bulb Temperature $T_{wetbulb} = 6^{\circ}C$

Specific volume $0.8m^3/kg_{dryair}$

Enthalpy $h = 21 \frac{kJ}{kg_{dryAir}}$

Using Formula,

We have
$$\phi = \frac{m_v}{m_g} = \frac{P_v}{P_g}$$

The saturation pressure of water at 7° C $P_g = 1.002$ kPa (using Tetens' formula)

Partial pressure of vapor $P_v = P_g \times \phi = 1.002 \times 90\% = 0.902 \, kPa$

Partial pressure of dry air $P_a = P - P_v = 101.9 - 0.9 = 101 \text{ kPa}$

Absolute Humidity $\omega = 0.622 \frac{P_v}{P_a} = 0.622 \frac{0.9}{101} = 0.0055 \frac{kg_{water}}{kg_{dryAir}}$

Mass of water vapor $m_v = \frac{P_v V}{R_v T} = \frac{0.9 \times 540}{0.4615 \times (273 + 7)} = 3.761 kg \ of \ water$

Enthalpy of dry air $h_a = 1.005 \times T = 1.005 \times 7 = 7.035 \frac{kJ}{kg_{dryAir}}$

Enthalpy of vapor $h_v = 2501.3 + 1.82 \times T = 2501.3 + 1.82 \times 7 = 2514.04 \frac{kJ}{kg_{dryAir}}$

Total enthalpy

$$h_{total} = h_a + h_v \times \omega = 7.035 + 2514.04 \times 0.0055 = 20.86 \frac{kJ}{kg_{dryAir}}$$

TASK 2

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry (Height of 2.5 m, conditioned floor area of 200 m² and wall area is 144 m², two occupants and one bed room) located in Brindisi, Italy

		BRINDISI, Italy									WMO#:	163200					
	Lat	40.65N	Long:	17.95E	Elev:	10	StdP	101.2		Time Zone:	1.00 (EU	W)	Period	86-10	WBAN:	99999	
	Annual He	ating and H	umidificat	ion Design C	onditions												
	Coldest	Heating DB Humidification DP/MCDB and HR 99.6% 99%						Coldest month WS/M 0.4%				B %		PCWD 6% DB			
	Month	99.6%	99%	DP	99.0% HR	MCDB	DP	HR	MCDB	WS U.	MCDB	WS	MCDB	MCWS	PCWD		
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(1)	(k)	(1)	(m)	(n)	(0)		
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Appual Co	olina Debu	midificatio	on, and Enth	alov Design	Condition											
	Annual Co	Jonny, Denu	momoatre	in, and Entire	aipy besigi	i Condition	•										
	Hottest	Hottest			Cooling (DB/MCWB					Evaporation	WB/MCDB			MCWS/	PCWD	
	Month	Month Month 0.4% 1% 2%					0.4% 1%					2%	to 0.4% DB		1		
	INVOITOT	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	į.
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
				Dehumidific	ation DP/M	CDB and HF	3					Enthalo	v/MCDB			Hours	1
		0.4%			1%			2%		0.	.4% 1%		%	2%		8 to 4 &	1
	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	1
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
	Extreme A	innual Desig	n Conditie	ons													
	Extr	Extreme Annual WS									1						
			Max WB	Min	ean Max	Standard	Max	n=5 Min	years Max	n=10 Min	years Max	n=20 Min	years Max	n=50 Min	years Max	1	
	1% (a)	2.5% (b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(o)	(p)	i
			8.7										-2.2				
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

ANSWER

Internal Gain

$$\begin{split} \dot{Q}_{ig_{sensible}} &= 136 + 2.2 * A_{cf} + 22 N_{oc} = 136 + 2.2 * 200 + 22 * 2 = 620 W \\ \\ \dot{Q}_{ig_{latent}} &= 20 + 0.22 * A_{cf} + 12 N_{oc} = 20 + 0.22 * 200 + 12 * 2 = 88 WDR = 11.9 °C \end{split}$$

Infiltration and Ventilation

Table 3 Unit Leakage Areas

Construction	Description	A_{ul} , cm ² /m ²
Tight	Construction supervised by air-sealing specialist	0.7
Good	Carefully sealed construction by knowledgeable builder	1.4
Average	Typical current production housing	2.8
Leaky	Typical pre-1970 houses	5.6
Very leaky	Old houses in original condition	10.4

Good Construction quality \rightarrow A_{ul}=1.4cm²/m²

Total leakage Area
$$A_L = A_{es} \times A_{ul} = (200 + 144) \times 1.4 = 481.6 cm^2$$

From Brindisi Weather Design Condition and table 5, typical IDF values,

Heating design temperature 4.1°C
$$\rightarrow IDF_{heating} = 0.065 \frac{L}{s.cm^2}$$

Cooling design temperature
$$31.1^{\circ}\text{C} \rightarrow IDF_{cooling} = 0.032 \frac{L}{s.cm^2}$$

Table 5 Typical IDF Values, L/(s·cm²)

Н,			ting De peratu	_		Cooling Design Temperature, °C					
m	-40	-30	-20	-10	0	10	30	35	40		
2.5	0.10	0.095	0.086	0.077	0.069	0.060	0.031	0.035	0.040		
3	0.11	0.10	0.093	0.083	0.072	0.061	0.032	0.038	0.043		
4	0.14	0.12	0.11	0.093	0.079	0.065	0.034	0.042	0.049		
5	0.16	0.14	0.12	0.10	0.086	0.069	0.036	0.046	0.055		
6	0.18	0.16	0.14	0.11	0.093	0.072	0.039	0.050	0.061		
7	0.20	0.17	0.15	0.12	0.10	0.075	0.041	0.051	0.068		
8	0.22	0.19	0.16	0.14	0.11	0.079	0.043	0.058	0.074		

$$\dot{V}_{infiltration_{heating}} = A_L \times IDF_{heating} = 486.1 \times 0.065 = 31.60 \frac{L}{s}$$

$$\dot{V}_{infiltration_{cooling}} = A_L \times IDF_{cooling} = 486.1 \times 0.032 = 15.56 \frac{L}{s}$$

$$\dot{V}_{ventilation} = 0.05 A_{cf} + 3.5 (N_{br} + 1) = 0.05 \times 200 + 3.5 \times (1 + 1) = 17 \frac{L}{S}$$

For
$$C_{sensible} = 1.23$$
 , $C_{latent} = 3010$

$$\dot{Q}_{inf-vent_{heating_{sensible}}} = C_{sensible} \dot{V}_{inf-vent} \Delta T_{heating} = 1.23 \times (31.6 + 17) \times (20 - 4.1) = 950.5 \, W$$

$$\dot{Q}_{inf-vent_{cooling_{sensible}}} = C_{sensible} \dot{V}_{inf-vent} \Delta T_{cooling} = 1.23 \times (15.56 + 17) \times (31.1 - 24) = 284.3 \, W$$

Using Psychrometric Chart, at 50% relative humidity,

At 31.1°C,
$$\omega_{outside} = 0.0132 \frac{kg_{water}}{kg_{dryAir}}$$

At 24°C,
$$\omega_{inside} = 0.0093 \frac{kg_{water}}{kg_{dryAir}}$$

$$\rightarrow \Delta \omega_{cooling} = 0.0132 - 0.0093 = 0.0039$$

$$\dot{Q}_{inf-vent_{cooling}_{lantent}} = C_{lantent} \dot{V}_{inf-vent} \Delta \omega_{cooling} = 3010 \times (31.6 + 17) \times 0.0039 = 570.5 \, W$$