Sensor Fusion for Irregularly Sampled Systems

Taiguara Tupinambás

Orientador por: Prof. Dr. Bruno Teixeira e Prof. Dr. Leonardo Tôrres

Laboratório de Modelagem, Análise e Controle de Sistemas Não-Lineares (MACSIN) Programa de Pós-Graduação em Engenharia Elétrica (PPGEE) Universidade Federal de Minas Gerais (UFMG)

21 de Fevereiro, 2019

- 🚺 Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Cenários de Simulação
 - Sistema Linear
 - Sistema Não-Linear
- Conclusões

- 🕕 Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Cenários de Simulação
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Crescimento do Mercado Global de Sensores

- Taxa Composta Anual de Crescimento de 11.3% a.a., de 2016-2022
- USD 241 bilhões em 2022

Fonte: Allied Market Research, 2016

Fonte: Postscape, 2015

Tendências

Internet das Coisas

Fonte: Business Insider

Redes Complexas de Sensores

Fonte: Libelium

Exemplo de Aplicação: Reconhecimento de Atividades Humanas

Taiguara Tupinambás

Exemplo de Aplicação: Rastreamento de um Robô

Taiguara Tupinambás

Aplicações de fusão sensorial clássicas assumem que:

- Informações são recebidas de forma regular
- Medições possuem carimbo de tempo correta

Aplicações de fusão sensorial clássicas assumem que:

- Informações são recebidas de forma regular
- Medições possuem carimbo de tempo correta

Falta de sincronização entre os múltiplos sensores da rede pode levar a amostragem irregular sem informação confiável de carimbo de tempo

Aplicações de fusão sensorial clássicas assumem que:

- Informações são recebidas de forma regular
- Medições possuem carimbo de tempo correta

Falta de sincronização entre os múltiplos sensores da rede pode levar a amostragem irregular sem informação confiável de carimbo de tempo

Possíveis soluções:

Investir em sincronização e em capacidade computacional

Aplicações de fusão sensorial clássicas assumem que:

- Informações são recebidas de forma regular
- Medições possuem carimbo de tempo correta

Falta de sincronização entre os múltiplos sensores da rede pode levar a amostragem irregular sem informação confiável de carimbo de tempo

Possíveis soluções:

- Investir em sincronização e em capacidade computacional
- Deslocar os instantes de tempo

Efeitos de se deslocar os instantes de tempo

Efeitos de se deslocar os instantes de tempo

Erro de estimação, com carimbo de tempo (vermelho) e sem (azul)

- → Linha tracejada com asterisco: instantes de tempo com medições
- → Círculos pretos: instantes regulares de estimação

Vale a pena investir em sincronização e capacidade computacional?

- Qual a relevância do erro para os objetivos da fusão sensorial?
- Quais são os fatores que influenciam o desempenho?

Vale a pena investir em sincronização e capacidade computacional?

- Qual a relevância do erro para os objetivos da fusão sensorial?
- Quais são os fatores que influenciam o desempenho?

Fusão sensorial o estimação de estados de sistemas amostrados Amostragem irregular o amostragem aperiódica

- 🚺 Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Cenários de Simulação
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

1. Revisar os métodos de fusão sensorial e o problema de amostragem irregular;

- 1. Revisar os métodos de **fusão sensorial** e o problema de **amostragem** irregular;
- 2. Discutir os algoritmos e suas **adaptações** ao modelo de amostragem aperiódica;

- 1. Revisar os métodos de **fusão sensorial** e o problema de **amostragem irregular**;
- 2. Discutir os algoritmos e suas **adaptações** ao modelo de amostragem aperiódica;
- 3. Desenvolver uma **metodologia** para estudar os efeitos de desconsiderar os carimbos de tempo;

- 1. Revisar os métodos de **fusão sensorial** e o problema de **amostragem irregular**;
- 2. Discutir os algoritmos e suas **adaptações** ao modelo de amostragem aperiódica;
- Desenvolver uma metodologia para estudar os efeitos de desconsiderar os carimbos de tempo;
- 4. Aplicar a metodologia em um sistema linear e outro não-linear, utilizando testes numéricos para **avaliar precisão e consistência** das estimativas;

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Cenários de Simulação
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Taiguara Tupinambás Defesa de Mestrado Fevereiro 2019 9/37

Modelo de Amostragem: Aperiódica

Instantes de amostragem modelados por um processo de Poisson:

$$\rho_{h_k}(t) = \lambda e^{-\lambda t}$$

 $\lambda
ightarrow$ frequência média de amostragem

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Cenários de Simulação
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Estimação de Estados

Sistemas Amostrados Não Lineares

$$\dot{x}(t) = f(x(t), u(t), w(t), t)$$
$$y(t_k) = g(x(t_k), v(t_k), t_k)$$

Discretizado por Runge-Kutta:

$$x(t_{k+1}) = x(t_k) + \frac{1}{6} (k_1 + 2k_2 + 3k_3 + k_4),$$

$$t_{k+1} = t_k + h_k,$$

Sistemas Amostrados Lineares

$$\dot{x}(t) = Ax(t) + Bu(t) + Gw(t)$$

$$y(t_k) = Cx(t_k) + v(t_k)$$

Discretizado por:

$$x(t_{k+1}) = A_d(t_k, t_{k+1})x(t_k) + B_d(t_k, t_{k+1})u(t_k) + w_d(t_k, t_{k+1})$$

Formulação do Problema

Queremos estimar o vetor de estados x(iT) e sua covariância de forma recursiva, em intervalos igualmente espaçados T, considerando:

- Instantes de tempo das observações t_k é definido pelo intervalo:
 - $\rightarrow h_k \triangleq t_k t_{k-1}$ $\rightarrow h_k \sim \mathcal{E}(\lambda)$
- Entrada u(t) é atualizada em intervalos de tempo constantes T:
 - $\rightarrow u(t) = u(iT)$, para $iT \le t < (i+1)T$
 - $\rightarrow i = 0, 1, 2, ... \in \mathbb{N}$

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Cenários de Simulação
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Instantes de Estimação e de Observação

- Com carimbo:
 - 1. predição, de T a 2T;

- Sem carimbo:
 - 1. predição, de T a 2T;

Instantes de Estimação e de Observação

Com carimbo:

- 1. completo, de 3T a t_1 ;
- 2. predição, de t_1 a 4T;

Sem carimbo:

1. completo, de 3T a 4T, com $t_1 = 4T$:

Instantes de Estimação e de Observação

Com carimbo:

- 1. completo, de 8T a t_2 ;
- 2. completo, de t_2 a t_3 ;
- 3. predição, de t_3 a 9T;

Sem carimbo:

1. completo, de 8T a 9T, com $t_3 = 9T$;

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Cenários de Simulação
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Diretamente proporcional à derivada do sinal

- Modelo de medição $o y(t_k) = g(x(t_k), v(t_k), t_k)$
- Deslocamento de tempo $o \delta_k \triangleq nT t_k$,

$$e_k = g(t_k) - g(t_k + d_k),$$
 $e_k = \left[\frac{g(t_k) - g(t_k + d_k)}{\delta_k}\right] \delta_k$
 $e_k \approx -\frac{dy}{dt} \delta_k.$

Diretamente proporcional à derivada do sinal

Em função do ruído e da frequência média de amostragem

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Cenários de Simulação
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Parâmetros variados

Símbolo	Definição	Objetivo
λ	$h_k \sim \mathcal{E}(\lambda)$	Influência da taxa de amostragem média da saída
α	$\frac{1}{\lambda} \triangleq \alpha T$	Influência da relação entre as amostragens da saída e da entrada
SNR	$\mathit{SNR}_{\mathrm{dB}} \triangleq 10 \log_{10} rac{P_{\mathrm{signal}}}{P_{\mathrm{noise}}}$	Influência do nível de ruído no sistema

Sumário

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Cenários de Simulação
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Descrição do Sistema

Dois modos subamortecidos, um passa-baixas e outro passa-altas:

$$G_{\rm lp}(s) = \frac{100}{s^2 + 2s + 100}$$

$$G_{\rm hp}(s) = \frac{s^2 - 0.001s}{s^2 + 200s + 10^6}$$

Taiguara Tupinambás

Defesa de Mestrado

Descrição do Sistema

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

$$A = \begin{bmatrix} -100 & 994.99 & 0 & 0 \\ -994.99 & -100 & 0 & 0 \\ 0 & 0 & -1 & 9.949 \\ 0 & 0 & -9.949 & -1 \end{bmatrix}$$

Entrada:

Estimativas para uma Realização: modo passa-alta

Estimativas para uma Realização: modo passa-baixa

Resultados - Variação do Nível de Ruído do Sistema (SNR)

Cenários		Estado 1 (diferença RMSE)		Estado 4 (diferença RMSE)	
		$\mu_{ m D}$	Cohen's d	$\mu_{\rm D}$	Cohen's d
SNR (dB)	20 40 50		[0.39, 0.97] [0.97, 1.6] [1.6, 2.3] [1.9, 2.6] [1.6, 2.3]		[0.52, 1.1] [1.6, 2.3] [2.3, 3.1] [2.8, 3.7] [2.6, 3.4]

Resultados - Variação da Frequência Média da Saída (λ)

Cenário	os	Estado 1 (diferença RMSE)		Estado 4 (diferença	Estado 4 (diferença RMSE)	
		$\mu_{ m D}$	Cohen's d	$\mu_{ m D}$ Cohen's a		
λ (kHz)	0.1 0.3 0.5 1		[0.58, 1.2] [1.4, 2.0] [1.1, 1.7] [0.46, 1.0]		[2.0, 2.7] [2.1, 2.9] [2.3, 3.1] [2.0, 2.7]	

Resultados - Variação da Relação Entre Frequências (α)

Cen	ários	Estado 1 (diferença RMSE) μ _D Cohen's d		Estado 4 (diferenç	a RMSE) Cohen's d
		<i>F</i> D		I PD	
α	1 2	$[5.9, 7.8] \times 10^{-4}$ $[3.1, 4.2] \times 10^{-4}$	[1.1, 1.8] [0.96, 1.6]	$\begin{bmatrix} [15, & 17] \times 10^{-3} \\ [8.9, & 11] \times 10^{-3} \end{bmatrix}$	[2.5, 3.2] [1.9, 2.6]
	3	$[1.6, 2.5] \times 10^{-4}$	[0.56, 1.1]	$[5.6, 6.7] \times 10^{-3}$	[1.7, 2.4]
	5	$[0.46, 1.5] \times 10^{-4}$	[0.088, 0.65]	$[3.8, 4.9) \times 10^{-3}$	[1.3, 2.0]

Sumário

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Cenários de Simulação
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Descrição do sistema

Considere o sistema de um robô móvel não-holonômico:

$$\dot{p}_{\mathrm{x}} = v \cos(\theta),$$

 $\dot{p}_{\mathrm{y}} = v \sin(\theta),$
 $\dot{\theta} = u_{1}(t),$
 $\dot{v} = u_{2}(t),$

em que:

 p_{x} e p_{y} : coordenadas de posição,

 $\hat{\theta}$: orientação angular,

v: velocidade linear,

 u_1 : entrada: velocidade angular (ω) , u_2 : entrada: aceleração linear (a)

Robô Móvel não-Holonômico

Vetor de estados:

$$x_i \stackrel{\Delta}{=} [p_{x,i} \ p_{y,i} \ \theta_i \ v_i]^T.$$

Modelo de observações:

$$y(t_k) = egin{bmatrix} p_{\mathrm{x}}(t_k) \ p_{\mathrm{y}}(t_k) \end{bmatrix} + v(t_k), & v(t_k) \sim \mathcal{N}(0, R_{t_k}). \end{split}$$

Vetor de entradas:

$$u_i = [\omega_i \ a_i]^T,$$

$$u_i = \tilde{u}_i - w_i, \ w \sim \mathcal{N}(0, Q_i).$$

Entradas e Realização Única

Resultados - Variação do Nível de Ruído da Saída SNR_{obs}

Cenários		Position (dif $\mu_{ m D}$ (cm)	Position (diferença RMSE) μ_{D} (cm) Cohen's d		
SNR (dB)	10	[3.0, 3.4]	[0.76, 0.94]		
	20	[4.2, 4.8]	[0.83, 1.0]		
	40	[7.8, 8.7]	[1.0, 1.2]		
	60	[9.8, 11]	[1.2, 1.4]		
	80	[11, 13]	[1.2, 1.4]		
	100	[16, 18]	[1.2, 1.3]		

Taiguara Tupinambás

Resultados - Variação da Frequência Média da Saída (λ)

Cenários		Position (diferença RMSE) $\mu_{ m D}$ (cm) Cohen's d	
λ (kHz)	1.67	[10, 12]	[1.1, 1.3]
	2	[9.1, 10]	[1.0, 1.2]
	2.5	[8.4, 9.7]	[0.82, 1.0]
	3.33	[6.9, 7.9]	[0.79, 0.97]
	5	[6.0, 6.9]	[0.78, 0.96]
	10	[7.7, 8.7]	[1.0, 1.2]

Taiguara Tupinambás

Resultados - Variação da Relação Entre Frequências (α)

Cenários			(diferença RMSE) n) Cohen's <i>d</i>
α	1 2 5 10	[6.2, 6. [7.4, 8. [17, 18] [33, 35]	[1.3, 1.5]

Principais Resultados e Contribuições

Cenários com maior influência no desempenho do estimador:

- Baixo nível de ruído nos sinais;
- Baixa frequência média da amostragem irregular;
- Menor relação entre a frequência média da amostragem irregular e a frequência de estimação, quando SNR das observações é maior que o do modelo de processo.

Abordagem útil para a tomada de decisão sobre investimento em sincronização e em capacidade computacional.

1. Investigação sobre algoritmos que **compensam o erro** de deslocar instantes de tempo;

- Investigação sobre algoritmos que compensam o erro de deslocar instantes de tempo;
- 2. Desenvolvimento de **rotinas de sintonia** do estimador *ad hoc*, com **filtragem adaptativa**;

- Investigação sobre algoritmos que compensam o erro de deslocar instantes de tempo;
- 2. Desenvolvimento de **rotinas de sintonia** do estimador *ad hoc*, com **filtragem adaptativa**;
- 3. Estudo dos efeitos de amostragem irregular com a **introdução de atraso de tempo**;

- Investigação sobre algoritmos que compensam o erro de deslocar instantes de tempo;
- 2. Desenvolvimento de **rotinas de sintonia** do estimador *ad hoc*, com **filtragem adaptativa**;
- 3. Estudo dos efeitos de amostragem irregular com a **introdução de atraso de tempo**;
- Utilização de outros métodos de filtragem, como o baseado em partículas, com potencial de ser mais robustos a ruídos não gaussianos;

OBRIGADO

e-mail: tatatupi@gmail.com.br