Unité d'enseignement HLEE 204 : Energie Electrostatique

Contrôle Continu n°2 d'avril 2021 : Durée 1h15

On rappelle que la permittivité diélectrique du vide $\varepsilon_0 = 1/(36\pi 10^9)$ F/m

Exercice 1 (10 pts): Champ et potentiel créés par une sphère chargé en surface.

Soit une sphère de centre O et de rayon R, uniformément chargée en surface $+\sigma$.

1°/ Déterminer en fonction de $(\sigma, R, r, \varepsilon_0)$ l'expression du champ électrique $\stackrel{\frown}{E}$ en tout point r variant de 0 à l'infini.

On utilisera le théorème de Gauss, que l'on énoncera.

- Représenter le champ électrique $\stackrel{\frown}{E}$ en tout point r variant de 0 à l'infini
- **2°/ Déterminer** en fonction de $(\sigma, R, r, \varepsilon_0)$ l'expression du potentiel V créé en tout point r variant de 0 à l'infini.

On considèrera le potentiel comme nul à l'infini

- Vérifier la continuité de potentiel en r = R
- Représenter le potentiel V en tout point r variant de 0 à l'infini.
- 3°/ Quelle est la particularité de cette distribution de charge, en particulier que vaut le courant pour $0 \le r \le R$?

Exercice 2 (10pts): Condensateur Sphérique

- 1- On considère un conducteur sphérique A chargé en surface de rayon R_1 = 5cm. Ce conducteur est isolé et porté au potentiel V_1 . La permittivité diélectrique est celle du vide ε_0 .
 - Calculer la charge Q portée par cette sphère si $V_1 = 100V$.
 - En déduire la valeur de la capacité de ce conducteur C₁.
- 2- On entoure complètement le conducteur sphérique A par un autre conducteur sphérique creux B d'épaisseur négligeable (figure 2) initialement neutre de rayon interne R_2 = 10 cm afin de former un condensateur sphérique. On place entre les 2 conducteurs un milieu diélectrique de constante diélectrique relative ε_r = 3.5.

Figure 2

Figure 3

Représenter sur un schéma la nouvelle répartition de charges et les vecteurs champs électriques $\,E\,$.

- **3-** Par rapport à la situation précédente, le conducteur B est relié au sol (potentiel zéro) par son armature extérieure (Fig. 3).
 - **Représenter** sur un schéma la nouvelle répartition de charges et les vecteurs champs électriques $\stackrel{\rightarrow}{E}$.
 - **Démontrer** que la capacité de ce condensateur est égale à $C=4\pi\varepsilon\frac{R_1R_2}{R_2-R_1}$
 - Calculer cette capacité C
 - Calculer le nouveau potentiel de la sphère centrale V'1.
 - En déduire la valeur du potentiel interne V₂ du conducteur B.

Exercice 1 (10 pts): Champ et potentiel créés par une sphère chargé en surface.

Soit une sphère de centre O et de rayon R, uniformément chargée en surface $+\sigma$.

1°/ Déterminer en fonction de $(\sigma, R, r, \varepsilon_0)$ l'expression du champ électrique $\stackrel{\rightarrow}{E}$ en tout point r variant de 0 à l'infini.

On utilisera le théorème de Gauss, que l'on énoncera.

- Représenter le champ électrique \vec{E} en tout point r variant de 0 à l'infini
- **2°/ Déterminer** en fonction de $(\sigma, R, r, \varepsilon_0)$ l'expression du potentiel V créé en tout point r variant de 0 à l'infini.

On considèrera le potentiel comme nul à l'infini

- Vérifier la continuité de potentiel en r = R
- Représenter le potentiel V en tout point r variant de 0 à l'infini.
- 3°/ Quelle est la particularité de cette distribution de charge, en particulier que vaut le courant pour $0 \le r \le R$?

2) Paux
$$E = -grad V =$$

$$V = -\int E dx \implies \frac{\sigma R^2}{\epsilon_0} \int \frac{1}{x^2} = \frac{\sigma R^2}{\epsilon_0} \left(\frac{1}{x} + C \right)$$

$$f_{\text{our } n} > R = V_{-\frac{\sigma}{\varepsilon_{0}}} R + cke = 0$$
 car on supose $l_{im} = 0$

Paus OK NKR

$$V = Cte = \sum_{k=0}^{\infty} Par containaité avec $V = R$

$$V = \frac{\sigma}{\epsilon} R$$$$

3) La Distribution de charge cree comme une cage de fanday de fait tout les charge É s'allele en son sain.

Sachont $E = \frac{I}{4\pi\epsilon_0} \frac{\vec{O} \vec{I} \cdot \vec{u}}{n^2}$ Si E est out ser $0 \le n \le R$ of n = 0

Ex2)