

"Os requisitos de um sistema são descrições dos serviços fornecidos pelo sistema e as suas restrições operacionais."

Sommerville, 2007

 Completude: devem incluir descrições de todas as funcionalidades requeridas. Significa que nenhum serviço (ou limitação) que seja necessário foi esquecido.

 Consistência: não podem existir conflitos ou contradições na descrição das funcionalidades requeridas.

• A clareza é imprescindível.

"Navegar é preciso, viver não é preciso."

Fernando Pessoa

Preciso = Necessário Ou Preciso = Precisão, Acurárcia

O uso correto e adequado da língua e linguagem é a base de uma *boa e efetiva comunicação*. Usualmente usa-se a forma escrita para registrar os requisitos.

Qual o significado destas palavras?

Ordinário

o que é comum, frequente. conforme ao costume, à ordem normal; comum. que se repete regularmente, ou se faz presente a todo instante.

Mediocre

de qualidade média, comum; mediano, meão, modesto, pequeno. Característica do que é comum, ordinário, trivial

"que me perdoem os confusos e obscuros, mas a **clareza** é fundamental".

Por mais que possa haver diferentes pontos de vista, a informação é única e só tinha um único objetivo ou conteúdo a informar. Na verdade era um "g" mal escrito.

Ninguém é obrigado a entender a entender ou falar a língua do outro, a não ser que seja um analista de requisitos.

Perspectiva é tudo, ou nada. Lembrem-se disto mais tarde.

Perspectiva é tudo, ou nada. Lembrem-se disto mais tarde.

Requisitos

"A determinação de requisitos é realizada para transformar a declaração de alto nível dos requisitos de negócio em uma lista mais detalhada e precisa do que o novo sistema deve fazer para fornecer o valor necessário ao negócio."

Dennis, Wixom, Roth. 2014

Requisitos

"Um requisito é simplesmente uma declaração do que o sistema deve fazer ou de quais características ele deve possuir."

Dennis, Wixom, Roth. 2014

Requisitos

"O termo requisito não é usado pela indústria de software de maneira consistente. Em alguns casos, um requisito é simplesmente uma declaração abstrata de alto nível de um serviço que o sistema deve fornecer ou uma restrição do sistema. No outro extremo, é uma definição formal e detalhada de uma função do sistema." Sommerville, 2007

Durante a fase de projeto, serão criados requisitos que descrevem as necessidades do negócio (req.do Negócio), o que os usuários precisam fazer (req. de Usuário), o que o sistema deve fazer (req. Funcionais), características que o sistema deve ter (req. Não Funcionais) e como o sistema deve ser construído (req. De Sistema).

O fato de se determinar as formas com que o sistema irá atender e suportar as necessidades dos usuários nos leva a declaração dos *Requisitos Funcionais*.

"Um requisito funcional esta diretamente relacionado a um processo que o sistema precisa realizar para como parte do suporte fornecido a uma tarefa do usuário e/ou à informação que o sistema precisa fornecer quando o usuário estiver realizando uma tarefa."

Dennis, Wixom, Roth. 2014

O Internation Institute of Business Analysis (IIBA) define Requisitos Funcionais como

"as capacidades do produto ou as coisas que um produto deve fazer para seus usuários."

Requisitos Funcionais e os Requisitos dos Usuários definidos na fase de análise serão tratados na fase de Design, na qual serão desenvolvidos, tornando-se mais técnicos.

Estes requisitos refletem a perspectiva do desenvolvedor e o arquiteto do sistema, tornando-se o que chamamos de *Requisitos de Sistema*.

Vale salientar que pode ser muito difícil traçar uma linha divisória nítida entre estas categorias de requisitos.

Ao longo do tempo o entendimento das partes envolvidas acarreta no maior detalhamento e refinamento dos requisitos.

Outra categoria de requisitos é a dos *Requisitos Não Funcionais*. O IIBA os definem como

"os atributos de qualidade, as restrições de design e implementação e as interfaces externas que um produto deve possuir".

Entra nas descrições dos requisitos não funcionais:

- Desempenho
- Usabilidade
- Operacionais
- Segurança
- Culturais
- Políticas

Requisito Funcional	Descrição	Exemplos
Orientado por processos	Um processo que o sistema deve realizar; um processo que o sistema deve fazer	 O sistema deve permitir que os clientes registrados revejam seu próprio histórico de pedidos nos últimos três anos. O sistema deve verificar a disponibilidade em estoque dos pedidos que chegam de usuários. O sistema deve permitir que os alunos vejam a programação de um curso quando estiverem se matriculando nas disciplinas.
Orientado por informações	Informações que o sistema deve conter	 O sistema deve conservar o histórico dos pedidos dos clientes por três anos. O sistema deve incluir níveis de estoque em tempo real em todos os depósitos. O sistema deve incluir as vendas previstas no orçamento e atuais e o volume de vendas no presente ano e nos três anos anteriores.

Requisito Não Funcional	Descrição	Exemplos
Operacional	O ambiente físico e o ambiente técnico no qual o sistema vai trabalhar	 O sistema pode ser executado em dispositivos portáteis. O sistema deve ser capaz de se integrar com o sistema de estoque existente. O sistema deve ser capaz de funcionar com qualquer navegador (browser) Web.
Desempenho	A velocidade, a capacidade e a confiabilidade do sistema	 Qualquer iteração entre o usuário e o sistema não deve ser superior a 2 segundos. O sistema faz o download dos parâmetros do novo status menos de 5 minutos depois de ser feita uma modificação. O sistema deve estar disponível 24 horas por dia e 365 dias por ano. O sistema deve suportar 300 usuários simultâneos das 9-11 horas da manhã; 150 usuários simultâneos em todos os outros horários.
Segurança	Quem tem acesso autorizado ao sistema e sob quais circunstâncias	 Apenas os gerentes diretos podem ver os registros pessoais dos funcionários. Os clientes podem ver o histórico de seus pedidos apenas durante o horário comercial. O sistema inclui todos os dispositivos de segurança contra vírus, worms e cavalos de Troia (trojan horses) etc.
Cultural e Político	Fatores culturais e políticos e exigências legais que afetam o sistema	 O sistema deve ser capaz de fazer a distinção entre a moeda americana e as moedas de outras nações. A política da companhia é comparar computadores apenas da Dell. É permitido aos gerentes regionais autorizar o uso de interfaces personalizadas com o usuário dentro de suas unidades. As informações pessoais estão protegidas segundo as prescrições do Data Protection Act.

Processos de Engenharia de Requisitos

Produção, Retrabalho e Custos

Distribuição do retrabalho pelas atividades de desenvolvimento de software. Adaptado de (WHEELER et al., 1996).

Custo relativo para corrigir um defeito. Adaptado de (BOEHM, 1981).

Produção, Retrabalho e Custos

Tabela 1- Custos em projeto de software por fase de desenvolvimento				
Etapa de Trabalho	%			
Análise de Requisitos	3			
Desenho	8			
Programação	7			
Testes	15			
Manutenção	67			

Fonte: LEE, RICHARD C. e TEPFENHART, WILLIAM M., UML e C++ - Guia de desenvolvimento orientado a objeto, São Paulo, Ed. Makron Books, 2002.

Produção, Retrabalho e Custos

Custos para Correção de Erros de Software							
Fase de Desenvolvimento	% de Desvios (\$)	Erros Introduzidos (%)	Erros Encontrados (%)	Custo Relativo Correção			
Análise de Requisitos	5	55	18	1,0			
Desenho	25	30	10	1,0 – 1,5			
Teste do Código e da Unidade	10						
Teste de Integração	50	10	50	1,0 - 5,0			
Validação e Documentação	10						
Manutenção Operacional		5	22	10 - 100			

Fonte: LEE, RICHARD C. e TEPFENHART, WILLIAM M., UML e C++ - Guia de desenvolvimento orientado a objeto, São Paulo, Ed. Makron Books, 2002.

• Defina requisitos para:

Quem são?
Ondem vivem?
Como encontra-los?

Hoje no Globo Reporter!

Regra de Pareto (80:20)

"80% das consequências advêm de 20% das causas;

e 80% dos resultados advêm de 20% de esforço."

Regra de Pareto

Outra aplicação da regra em software é que 80% dos usuários utilizam apenas 20% das features. Essa afirmação é de uma pesquisa de 2002 do Standish Group, que também fala que:

- 45% das características de um sistema nunca são utilizadas;
- 19% são usadas raramente;
- 16% às vezes;
- Apenas 20% são usadas com frequência ou sempre.

Regra de Pareto

Menor Entregável Possível (Mininum Viable Product – MVP)

Uma pesquisa mais recente do Standinsh Group mostra que pensar em tamanhos menores e entregar menos é a chave para aumentar o sucesso de projetos de software: enquanto mais de 70% dos pequenos projetos têm uma entrega bem-sucedida, projetos grandes têm "chance de virtualmente não alcançar nenhum sucesso:... mais que duas vezes a chance de atraso, ultrapassar o orçamento ou ficar sem *features* críticas".

MVP – Minimum Viable Product

MVP – Minimum Viable Product

HOW NOT TO BUILD A MINIMUM VIABLE PRODUCT -

MVP – Minimum Viable Product

ALSO HOW NOT TO BUILD A MINIMUM VIABLE PRODUCT

ALSO HOW NOT TO BUILD A MINIMUM VIABLE PRODUCT

1 2 3 4

MVP – Minimum Viable Product

HOW NOT TO BUILD A MINIMUM VIABLE PRODUCT ALSO HOW NOT TO BUILD A MINIMUM VIABLE PRODUCT HOW TO BUILD A MINIMUM VIABLE PRODUCT

FRED VOORHORST WWW.EXPRESSIVEPRODUCTDESIGN.COM

MVP – Minimum Viable Product

Minimum Viable Product

Thanks to @jopas and @stephenanderson :: August 2015

Regra de Pareto

"Em resumo, não há dúvidas de que focar nos 20% de features que vão entregar 80% de valor vai maximizar o investimento em desenvolvimento de software e aumentar a satisfação do usuário. Afinal, nunca há tempo ou dinheiro suficientes para se fazer tudo. A expectativa natural é que executivos e stakeholders queiram tudo, e queiram já. Portanto, reduzir o escopo e não fazer 100% dos recursos e funções não só é uma estratégia válida, mas uma bastante prudente."

Standish Group

Elicitação de Requisitos

"Uma das atividades central da engenharia de requisitos é a elicitação de requisitos para o sistema a ser desenvolvido. A base da elicitação de requisitos é formada pelo conhecimento sobre o contexto do sistema a ser desenvolvido obtido durante a engenharia de requisitos, que inclui as fontes de requisitos a serem analisadas e investigadas."

Pohl e Rupp, 2012.

Fontes de Requisitos

- Stakeholders
- (pessoas ou organizações)
- Documentos
 (Universais e específicos)
- Sistemas em operação
 (Anteriores, legados ou concorrentes)

Stakeholders

"Identificar os stakeholders relevantes é a tarefa central da engenharia de requisitos."

[Glinz e Wieringa, 2007]

- Coletar
- Documentar
- Consolidar as metas e requsitos parcialmente conflitantes dos diferentes stakeholders

Acordo entre analistas e stakeholders

Gerenciar Stakeholders

Direitos e deveres do Engenheiro de Requisitos:

- Falar a mesma língua do stakeholder
- Familiarizar-se inteiramente com o domínio da aplicação
- Criar um documento de requisitos
- Ser capaz de apresentar resultados de trabalho
- Manter um relacionamento respeitoso com stakeholders
- Apresentar suas ideias e alternativas, bem como seus resultados
- Permitir que os stakeholders demandem propriedades do sistema que venham a simplificar e facilitar sua utilização
- Assegurar que o sistema atenda às exigências funcionais e de qualidade (não funcionais) dos stakeholders

Gerenciar Stakeholders

Direitos e Deveres dos Stakeholders

- Introduzir o eng. de requisitos no domínio da aplicação
- Suprir o engR com requisitos;
- Documentar cuidadosamente os requisitos
- Tomar decisões em tempo hábil
- Respeitar as estimativas de custos e viabilidade feitas pelo engR
- Priorizar os requisitos
- Inspecionar os requisitos que o engR documenta
- Comunicar imediatamente as mudanças de nos requisitos
- Aderir ao processo de mudança previamente determinados
- Respeitar o processo de Engenharia de requisitos implantado

Categorização de Requisitos (Modelo Kano)

Fatores Básicos de Satisfação (dissatisfiers)

Propriedades evidentes e pressupostas – conhecimento subconsciente

Fatores Esperados de Satisfação (satisfiers)

Propriedades explicitamente exigidas do sistema – conhecimento consciente

Fatores Inesperados de Satisfação (delighters)

Propriedades que os stakeholders não conhecem ou esperam, que descobrem apenas ao executar o sistema – surpresa agradável e útil – conhecimento inconsciente

Categorização de Requisitos (Modelo Kano)

Categorização de Requisitos (Modelo Kano)

Fatores	Atendimento p/Sistema	Técnicas Elicitação
Básicos	De qualquer maneira / Não gera atitude positivas dos stakeholders	Observação e Documentação
Esperados	É desejável / gera satisfação e aceitação do sistema	De pesquisa
Inesperados	O valor só é percebido quando do uso pelo stakeholder	Criativas

Técnicas de Elicitação

"As técnicas de elicitação têm a finalidade de identificar os requisitos conscientes, inconscientes e sub-conscientes dos stakeholders. Entretanto não existe um método universal para elicitar estes requisitos."

Hickey e Davis, 2003.

Fatores Influentes na escolha

- Distinção entre requisitos conscientes, inconscientes e subconscientes a elicitar;
- Restrições e disponibilidades dos stakeholders em termos de orçamento e tempo;
- Experiência do engR com determinada técnica de elicitação;
- Oportunidades e riscos do projeto;

"É recomendável combinar diferentes técnicas, pois isso minimiza muito dos riscos inerentes ao projeto. Pontos fracos e desvantagens de uma técnica podem ser compensados pelo uso de outra que apresenta pontos fortes onde a primeira técnica eventualmente seja deficitária.!

Técnicas de Pesquisa

- Indicado para conhecimentos explícitos
- Pressupõe que o stakeholder é capaz de expressar explicitamente seu conhecimento ou dedicar tempo para a elicitação
- Dirigida pelo engR através de perguntas

Técnicas de Pesquisa

- Entrevistas
- Questionários

Técnicas de Criatividade

- Desenvolver requisitos inovadores
- Esboçar uma visão inicial do sistema
- Não são geralmente adequados para estabelecer requisitos precisos

Técnicas de Criatividade

- Brainstorming
- Brainstorming Paradox
- Mudança de Perspectiva
- Técnicas de Analogia (biônica / bissociações)

Técnicas Baseadas em Documentos

- Reutiliza soluções e experiências dos sistemas existentes
- Garante que a troca de um sistema tenha todas as funcionalidades disponíveis
- Devem ser utilizadas em conjunto com outras para garantir novos requisitos

Técnicas Baseadas em Documentos

- Arqueologia de Sistema
- Leitura Baseada em Perspectiva
- Reutilização

Técnicas de Observação

- Quando os especialistas (stakeholders) não se dispõem ou tem tempo para dedicar ao engR, ou não são capazes de transmitir seu conhecimento
- Limitado a capacidade de percepção e entendimento do engR

Técnicas de Observação

- Observação de Campo
- Apprenticing

Técnicas de Apoio

- Mapas Mentais
- Workshops
- CRC (Class Responsibility Collaboration)
- Gravações de Áudio e Vídeo
- Modelagem de Casos de Uso (trigger / outcome)
- Protótipos

