

Agenda

- Understanding Evaluation Contexts
- Creating a Time Dimension Table
- Understanding DAX Time Intelligence Support
- Working with DAX Time Intelligence Functions

Evaluation Contexts

- DAX expressions evaluated using two context
 - Filter context
 - Row context
- Row Context
 - The set of active rows in a calculation
- Filter Context
 - The current row in a table iteration

Understanding Row Context

- There are 2 cases that create active row context
 - Evaluation of a calculated column

```
=(TODAY()-[BirthDate])/365

=LEFT([ProductCategory], Find(" >", [ProductCategory]))
```

Evaluation of a DAX function that iterates over a table

- Standard aggregation functions (e.g. SUM) have no row context
 - You can sum an individual column but you cannot sum an expressions

- Iterator functions (e.g. SUMX) iterate through rows in a target table
 - First argument accepts an expressions evaluates to a table of rows
 - · Second argument accepts expression that evaluated for each row in table

Iterator functions can also be used in calculated columns

DAX Functions With Tables Parameter

- The following DAX functions create row context
 - AVERAGEX
 - COUNTAX
 - COUNTX
 - MAXX
 - MINX
 - SUMX

1

DAX Functions that Return a Table

- ALL
- ALLEXCEPT
- CALCULATETABLE
- DISTINCT
- FILTER
- RELATEDTABLE
- VALUES

Using the CALCULATE Function

- CALCULATE provides greatest amount of control
 - You'll see more about Calculate later in this module

```
Sales Revenue RT =
CALCULATE(
    SUM(Sales[SalesAmount]),
    FILTER(
        ALL('Calendar'),
        'Calendar'[Date] <= MAX('Calendar'[Date])
)
)</pre>
```

Agenda

- ✓ Understanding Evaluation Contexts
- Creating a Time Dimension Table
- Understanding DAX Time Intelligence Support
- Working with DAX Time Intelligence Functions

Hierarchical Row Labels in a Matrix

- Dimensional hierarchy can be represented with matrix
 - No support as of November 2016 to collapse and expand children

- ✓ Understanding Evaluation Contexts
- ✓ Creating a Time Dimension Table
- Understanding DAX Time Intelligence Support
- Working with DAX Time Intelligence Functions

Functions That Return a Single Date

- FIRSTDATE / LASTDATE
- FIRSTNONBLANK / LASTNONBLANK
- STARTOFMONTH / ENDOFMONTH
- STARTOFQUARTER / ENDOFQUARTER
- STARTOFYEAR / ENDOFYEAR

To Date Functions

- Convenience To Date functions
 - TOTALMTD
 - TOTALQTD
 - TOTALYTD
- Convenience To Date functions really do this
 - CALCULATE (Expression, DATESMTD(Date) [, SetFilter])
 - TOTALMTD (Expression, Date [, SetFilter])

Function That Return a Table of Dates

- PREVIOUSDAY / NEXTDAY
- PREVIOUSMONTH / NEXTMONTH
- PREVIOUSQUARTER / NEXTQUARTER
- PREVIOUSYEAR / NEXTYEAR
- DATESMTD / DATESQTD / DATESYTD
- SAMEPERIODLASTYEAR
- DATEADD
- DATESBETWEEN
- DATESINPERIOD
- PARALLELPERIOD

1

Balance Functions

- · DAX Functions return value at specific point in time
 - OPENINGBALANCEMONTH
 - OPENINGBALANCEQUARTER
 - OPENINGBALANCEYEAR
 - CLOSINGBALANCEMONTH
 - CLOSINGBALANCEQUARTER
 - CLOSINGBALANCEYEAR

Agenda

- ✓ Understanding Evaluation Contexts
- ✓ Creating a Time Dimension Table
- ✓ Understanding DAX Time Intelligence Support
- ➤ Working with DAX Time Intelligence Functions

Calculated Fields for QTD and YTD Sales

TOTALQTD function calculates quarter-to-date totals

TOTALYTD function calculates year-to-date totals

Using the CALCULATE Function

Calculate a running total of sales revenue across years

Matrix Visual with To-Date Running Totals

Running totals calculated using DAX

				=		
Year	Quarter	Month	Sales Revenue	Sales Revenue QTD	Sales Revenue YTD	Sales Revenue RT
2012	2012-Q1	Jan 2012	\$6,306	\$6,306	\$6,306	\$6,306
		Feb 2012	\$48,815	\$55,121	\$55,121	\$55,121
		Mar 2012	\$53,958	\$109,079	\$109,079	\$109,079
	2012-Q2	Apr 2012	\$52,601	\$52,601	\$161,680	\$161,680
		May 2012	\$61,756	\$114,357	\$223,436	\$223,436
		Jun 2012	\$76,756	\$191,113	\$300,192	\$300,192
	2012-Q3	Jul 2012	\$104,408	\$104,408	\$404,600	\$404,600
		Aug 2012	\$111,167	\$215,575	\$515,767	\$515,767
		Sep 2012	\$110,716	\$326,291	\$626,483	\$626,483
	2012-Q4	Oct 2012	\$145,999	\$145,999	\$772,483	\$772,483
		Nov 2012	\$156,751	\$302,750	\$929,234	\$929,234
		Dec 2012	\$147,593	\$450,343	\$1,076,826	\$1,076,826
2013	2013-Q1	Jan 2013	\$164,334	\$164,334	\$164,334	\$1,241,161
		Feb 2013	\$126,501	\$290,835	\$290,835	\$1,367,661

• Question: when did company reach \$1,000,000 in sales

Nov 2012	\$156,751	\$302,750	\$929,234	\$929,234
Dec 2012	\$147,593	\$450,343	\$1,076,826	\$1,076,826
Jan 2013	\$164,334	\$164,334	\$164,334	\$1,241,161
Feb 2013	\$126,501	\$290,835	\$290,835	\$1,367,661

Sales Growth PM Measure - First Attempt

· Create a measure named Sales Growth PM

```
Sales Growth PM =
DIVIDE(
SUM(Sales(SalesAmount)) -
CALCULATE(
SUM(Sales(SalesAmount)),
PREVIOUSMONTH(Calendar[Date])
),
CALCULATE(
SUM(Sales(SalesAmount)),
PREVIOUSMONTH(Calendar[Date])
)
)
)
```

- Use measure in matrix evaluating month and quarter
 - · Measure returns correct value for Month
 - · Measure returns incorrect and erroneous value for Quarter

Using the ISFILTERED Function

ISFILTERED function used to determine when perform evaluation

```
Sales Growth PM = IF(
    (ISFILTERED(Calendar[Month]) & ISFILTERED(Calendar[Date]) = FALSE() ),
    DUTUDE(
    SUM(Sales[SalesAmount]) -
    CALCULATE(
    SUM(Sales[SalesAmount]),
    PREVIOUSHOMIH(Calendar[Date])
    ),
    CALCULATE(
    SUM(Sales[SalesAmount]),
    PREVIOUSHOMIH(Calendar[Date])
    )
    ),
    BLANK()
}
```

Expression returns Blank when evaluation context isn't appropriate

Simulating KPIs with Power BI Desktop

- KPIs are not yet support
 - · But you can create something similar using measures

```
Sales Growth PM Eval =

IF I ISNUMBER([Sales Growth PM]),

SMITCH(TRUE(),

([Sales Growth PM] >= 0.2), "EXCELLENT",

([Sales Growth PM] >= 0.1), "GOOD",

([Sales Growth PM] >= 0), "OK",

([Sales Growth PM] <= 0), "BAD"

))
```


Sales Growth PQ Evo	Sales Growth PQ	Sales Growth PM Eval	Sales Growth PM	Sales Revenue	Month	Quarter	Year
		GOOD	16.21 %	\$385,275	Jan 2014	2014-Q1	2014
		BAD	-7.02 %	\$358,244	Feb 2014		
		OK	6.44 %	\$381,309	Mar 2014		
0	8.71 %			\$1,124,829	Total		
		BAD	-0.04 %	\$381,157	Apr 2014	2014-Q2	
		GOOD	14.98 %	\$438,261	May 2014		
		AWFUL	-13.58 %	\$378,749	Jun 2014		
OK	6.52 %			\$1,198,166	Total		
		BAD	-5.02 %	\$359,744	Jul 2014	2014-Q3	
		EXCELLENT	27.12 %	\$457,312	Aug 2014		
		GOOD	10.50 %	\$505,332	Sep 2014		
GOO	10.37 %			\$1,322,388	Total		
		GOOD	19.22 %	\$602,448	Oct 2014	2014-Q4	
		BAD	-9.44 %	\$545,572	Nov 2014		
		OK	6.67 %	\$581,977	Dec 2014		
EXCELLEN	30.82 %			\$1,729,996	Total		

- ✓ Understanding Evaluation Contexts
- ✓ Creating a Time Dimension Table
- ✓ Understanding DAX Time Intelligence Support
- ✓ Working with DAX Time Intelligence Functions