Chapitre 27 : Variables aléatoires

Dans tout le chapitre (Ω, P) désignera un espace probabilisé fini.

1 Variables aléatoires

Souvent, dans une expérience aléatoire, on ne s'intéresse pas à la réalisation de l'ensemble des résultats possibles et de leur probabilité mais à un aspect particulier : on lance 2 fois un dés et on regarde la somme des résultats obtenus ... L'application qui, au résultat de l'expérience, associe cette somme est appelée une variable aléatoire.

1.1 Définitions

Définition

Une variable aléatoire sur Ω est une application définie sur l'univers Ω à valeurs dans un ensemble E. L'ensemble des valeurs prises par cette application est noté $X(\Omega) = \{X(\omega) \mid \omega \in \Omega\}$.

Lorsque $E \subset \mathbb{R}$, la variable aléatoire est dite réelle.

Exemple:1: On lance deux fois de suite un dé équilibré. Un espace probabilisé adapté est alors $[1,6]^2$ muni de la probabilité uniforme.

L'application:

$$S: \quad \Omega \quad \to \quad \mathbb{R}$$
$$(x,y) \quad \mapsto \quad x+y$$

est une variable aléatoire réelle et on a : $S(\Omega) = [2, 12]$.

Exemple :2 : Dans un jeu de 32 cartes, on tire simultanément 5 cartes. L'univers Ω est l'ensemble des sous-ensembles à 5 éléments de l'ensemble des cartes.

L'application X qui à tout tirage associe le nombre de piques obtenu est une variable aléatoire réelle sur Ω et $X(\Omega) = [0,5]$.

Définition

- Soit $X : \Omega \to E$ une variable aléatoire.
 - Soit $A \in \mathcal{P}(E)$, on note $\{X \in A\}$ ou $(X \in A)$ l'événement $X^{-1}(A) = \{\omega \in \Omega \mid X(\omega) \in A\}$ et $P(X \in A)$ sa probabilité.

Soit $x \in E$, on note $\{X = x\}$ ou (X = x) l'événement $X^{-1}(\{x\}) = \{\omega \in \Omega \mid X(\omega) = x\}$ et P(X = x) sa probabilité.

• Soit $X : \Omega \to \mathbb{R}$ une variable aléatoire réelle.

On note $\{X \le x\}$ ou $(X \le x)$ l'événement $X^{-1}(]-\infty,x]) = \{\omega \in \Omega \mid X(\omega) \le x\}$ et $P(X \le x)$ sa probabilité.

Remarque : On définit de même les événements (X < x), $(X \ge x)$, (X > x) ou $(X \ne x)$.

Exemple :1 : Avec les notations de l'exemple précédent, l'événement : « la somme des numéros est paire » est donc noté : $S \in \{0, 2, 4, 6, 8, 10, 12\}$.

Proposition

Soit $X : \Omega \to E$ une variable aléatoire.

- La famille $(\{X = x\})_{x \in X(\Omega)}$ est un système complet d'événements. En particulier, $\sum_{x \in X(\Omega)} P(X = x) = 1$.
- Soit $A \in \mathcal{P}(X(\Omega))$. On a: $\{X \in A\} = \bigcup_{x \in A} \{X = x\}$. Ainsi, $P(X \in A) = \sum_{x \in A} P(X = x)$.

 $D\acute{e}monstration. \qquad \bullet \ \ \text{Soit} \ \omega \in \Omega. \ \ \text{Posons} \ \ x = X(\omega). \ \ \text{On a} \ \ \omega \in \{X = x\} \subset \bigcup_{x \in X(\Omega)} \{X = x\}). \ \ \text{Ainsi,} \ \ \Omega = \bigcup_{x \in X(\Omega)} \{X = x\}).$

De plus, soient $x_1, x_2 \in X(\Omega)$ tels que $x_1 \neq x_2$. Supposons qu'il existe $\omega \in \{X = x_1\} \cap \{X = x_2\}$. Alors $x_2 = X(\omega) = x_1$. Donc $\{X = x_1\} = \{X = x_2\}$. Absurde. Ainsi, les $\{X = x\}$ pour $x \in X(\Omega)$ sont deux à deux distincts.

• Il suffit de décomposer l'évènement $\{X \in A\}$ dans le système complet d'évènements $(\{X = x\})_{x \in X(\Omega)}$.

Définition

Soit $X : \Omega \to E$ une variable aléatoire sur Ω . L'application

$$\begin{array}{cccc} P_X: & \mathcal{P}(X(\Omega)) & \to & [0,1] \\ & A & \mapsto & P(X \in A) \end{array}$$

est une probabilité sur $X(\Omega)$ appelée loi de X.

Démonstration. • L'application \mathbb{P}_X est définie sur $\mathscr{P}(X(\Omega))$ et à valeurs dans [0,1].

- On a par définition $\{X \in X(\Omega)\} = \Omega \operatorname{donc} \mathbb{P}_X(X(\Omega)) = 1$.
- Si A et B sont deux parties disjointes de $X(\Omega)$, alors :

$$\{X \in A\} \cap \{X \in B\} = \emptyset$$
 et $\{X \in A\} \cup \{X \in B\} = \{X \in A \cup B\}$

Les événements $\{X \in A\}$ et $\{X \in B\}$ étant incompatibles,

$$\mathbb{P}_X(A \cup B) = \mathbb{P}(X \in A \cup B) = \mathbb{P}(X \in A) + \mathbb{P}(X \in B) = \mathbb{P}_X(A) + \mathbb{P}_X(B)$$

Pour alléger les notations, dans toute la suite, toute variable aléatoire est implicitement définie sur l'espace probabilisé (Ω, P) .

Proposition

Soit X une variable aléatoire. La loi de X i.e P_X est déterminé de manière unique par la donnée des $P_X(\{x\}) = P(X = x)$ pour tout $x \in X(\Omega)$.

Et on a:

$$\forall A \subset X(\Omega), \; P(X \in A) = P_X(A) = \sum_{x \in A} P(X = x)$$

Démonstration. On a vu qu'une probabilité sur un espace probabilisé fini est définie de manière unique par la donnée des probabilités des événements élémentaires (i.e les $\{X = x\}$).

Remarque : Seule la loi de la variable aléatoire est nécessaire pour calculer $P(X \in A)$: l'univers de départ n'a plus aucune importance.

Méthode

Déterminer la loi d'une variable aléatoire *X* revient à :

- Déterminer $X(\Omega)$
- Préciser, pour tout $x \in X(\Omega)$, la valeur de P(X = x).

Si $X(\Omega) = \{x_1, ..., x_n\}$. La loi de X peut être représentée par un tableau de la forme :

Xi	x_1	x_2	• • •	x_{n-1}	x_n
$\mathbb{P}(\mathbf{X} = \mathbf{x_i})$	$P(X = x_1)$	$P(X = x_2)$	• • •	$P(X = x_{n-1})$	$P(X = x_n)$

Exemple : 1 : Déterminons la loi de *S*.

On a : $S(\Omega) = [2, 12]$. La loi de S est donnée par :

х	2	3	4	5	6	7	8	9	10	11	12
$\mathbb{P}(X=x)$	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{9}$	$\frac{5}{36}$	$\frac{1}{6}$	$\frac{5}{36}$	$\frac{1}{9}$	$\frac{1}{12}$	$\frac{1}{18}$	$\frac{1}{36}$

Exemple: 2: Déterminons la loi de X.

On a:
$$X(\Omega) = [0, 5]$$
. Soit $k \in [0, 5]$, on a: $P(X = k) = \frac{\binom{8}{k} \binom{24}{5-k}}{\binom{32}{5}}$.

Définition: Image d'une variable aléatoire par une fonction

Soit $X : \Omega \to E$ est une variable aléatoire et $f : E \to F$, $f \circ X$ définit une variable aléatoire sur Ω notée f(X).

Proposition

Soit $X: \Omega \to E$ une variable aléatoire et $f: E \to F$. Posons Y = f(X). Alors, $Y(\Omega) = \{f(x) \mid x \in X(\Omega)\} = \{f(X(\omega)) \mid \omega \in \Omega\}$ et

$$\forall y \in Y(\Omega), \ P(Y=y) = \sum_{x \in f^{-1}(\{y\})} P(X=x) = \sum_{\substack{x \in X(\Omega) \\ \text{et } f(x) = y}} P(X=x).$$

Démonstration. Soit $y \in Y(\Omega)$. On a :

$$\begin{split} \{Y = y\} &= \{f(X) = y\} = \{\omega \in \Omega \mid f(X(\omega)) = y\} = \{\omega \in \Omega \mid X(\omega) \in f^{-1}(\{y\})\} \\ &= \{X \in f^{-1}(\{y\}) = \bigcup_{x \in f^{-1}(\{y\})} \{X = x\} = \bigcup_{x \in f^{-1}(\{y\}) \cap X(\Omega)} \{X = x\} \end{split}$$

Or, les événements $\{X = x\}$ avec $x \in f^{-1}(\{y\})$ sont deux à deux incompatibles. On en déduit :

$$\mathbb{P}(Y=y) = \sum_{x \in f^{-1}(\{y\})} \mathbb{P}(X=x) = \sum_{\substack{x \in X(\Omega) \\ f(x) = y}} \mathbb{P}(X=x)$$

Exemple : Considérons une variable aléatoire *X* de loi :

 x_i $\begin{vmatrix} -3 & -2 & -1 & 0 & 1 & 2 & 3 \\ \mathbb{P}(X = x_i) & \frac{1}{20} & \frac{2}{20} & \frac{3}{20} & \frac{4}{20} & \frac{3}{20} & \frac{4}{20} & \frac{3}{20} \end{vmatrix}$

et posons $Y = X^2$. Ainsi, $X(\Omega) = \{-3, -2, -1, 0, 1, 2, 3\}$ et $Y(\Omega) = \{0, 1, 4, 9\}$.

On a alors:

$$\mathbb{P}(Y=0) = \mathbb{P}(X=0) = \frac{4}{20} \qquad \mathbb{P}(Y=1) = \mathbb{P}(X=-1) + \mathbb{P}(X=1) = \frac{6}{20}$$

$$\mathbb{P}(Y=4) = \mathbb{P}(X=-2) + \mathbb{P}(X=2) = \frac{6}{20} \qquad \mathbb{P}(Y=9) = \mathbb{P}(X=-3) + \mathbb{P}(X=3) = \frac{4}{20}$$

Ainsi, la loi de Y est :

x_i	0	1	4	9
$\mathbb{P}(X=x_i)$	$\frac{1}{5}$	$\frac{3}{10}$	$\frac{3}{10}$	$\frac{1}{5}$

1.2 Lois usuelles

Loi uniforme

Définition

Soit X une variable aléatoire. Soit $F = \{x_1, ..., x_n\}$ un ensemble fini de cardinal n. On dit que X suit la loi uniforme sur F, et on note $X \hookrightarrow \mathcal{U}(F)$ lorsque :

$$X(\Omega) = F$$
 $\forall k \in [1, n], P(X = x_k) = \frac{1}{n}$

Interprétation

Une variable X de loi uniforme sur F modélise le tirage « au hasard » d'un élément de F.

Exemple:

- Une urne contient n boules numérotées de 1 à n. On pioche une boule au hasard et on note X le numéro de la boule piochée. X suit une loi uniforme sur [1, n].
- Si X est la variable aléatoire représentant le résultat d'un lancer de dés équilibrés, X suit la loi uniforme sur [1,6].

Loi de Bernoulli

Définition

Soit X une variable aléatoire sur Ω , on dit que X suit la loi de Bernoulli de paramètre $p \in [0,1]$, et on note $X \sim \mathcal{B}(p)$ si et seulement si

$$X(\Omega) = \{0, 1\},$$
 $P(X = 1) = p$ et $P(X = 0) = 1 - p$

Interprétation

Considérons une expérience aléatoire ayant deux issues possibles : succès avec probabilité $p \in [0,1]$ et échec avec la probabilité 1-p. Une telle épreuve est appelée épreuve de Bernoulli.

Soit X la variable aléatoire égale à 1 en cas de succès et 0 sinon. Alors, X suit la loi de Bernoulli $\mathcal{B}(p)$. De plus, si on note A

l'événement « l'épreuve est un succès » on a alors $X=\mathbbm{1}_A$ où $\omega \mapsto \begin{cases} 0 & \text{si } \omega \notin A \\ 1 & \text{si } \omega \in A \end{cases}.$

Exemple:

- On lance une pièce qui a probabilité p de tomber sur pile. Soit X la variable aléatoire valant 1 si on tombe sur pile et 0 sinon. X suit la loi $\mathcal{B}(p)$.
- Soit une urne contenant a boules blanches et b boules noires. On note X la variable aléatoire égale à 0 si on a tiré une boule blanche et égale à 1 si on tire une boule noire. X suit la loi $\mathcal{B}(\frac{b}{a+b})$.

Proposition

Démonstration. $\mathbb{1}_A(\Omega) = \{0,1\}$ et $\mathbb{P}(\mathbb{1}_A = 1) = \mathbb{P}(\{\omega \in \Omega \mid \omega \in A\}) = \mathbb{P}(A)$.

Loi binomiale

Définition

Soit X une variable aléatoire sur Ω , on dit que X suit la loi binomiale de paramètres $n \in \mathbb{N}^*$ et $p \in [0,1]$, et on note $X \hookrightarrow \mathcal{B}(n,p)$ si et seulement si

$$X(\Omega) = [0, n]$$
 et $\forall k \in [0, n]$, $P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$.

Remarque: Une loi de Bernoulli est un cas particulier de loi binomiale avec n = 1.

Interprétation

Le nombre X de succès obtenus lors de la répétition de $n \in \mathbb{N}^*$ expériences de Bernoulli indépendantes de paramètre $p \in [0,1]$ suit une loi binomiale $\mathcal{B}(n,p)$ (on prouvera ce résultat un peu plus tard dans le cours) (tirages avec remise dans une urne).

Exemple : Considérons une urne contenant une proportion p de boules blanches et 1-p de boules noires, on effectue n tirages successifs avec remise. La variable aléatoire X représentant le nombre de boules blanches tirées suit alors la loi $\mathcal{B}(n,p)$.

2 Couple de variables aléatoires

Définition

Soit $X: \Omega \to E$ et $Y: \Omega \to F$. On appelle couple des variables aléatoires X et Y, et on note Z=(X,Y), l'application $Z: \Omega \to E \times F$ $\omega \mapsto Z(\omega) = (X(\omega), Y(\omega))$ **Remarque :** $Z(\omega) = \{(X(\omega), Y(\omega)), \omega \in \Omega\}$. Ainsi, on a : $Z(\Omega) \subset \{(x, y) \mid x \in X(\omega), y \in Y(\Omega)\} = X(\Omega) \times Y(\Omega)$ mais en général, il n'y a pas égalité.

Exemple : On considère l'expérience aléatoire consistant à jeter successivement deux dés, et on note X la variable aléatoire donnant le premier résultat et Y le second, Z = (X, Y) est couple de variables aléatoires et $Z(\Omega) = [1, 6]^2$

Exemple :3 : On considère l'expérience aléatoire consistant à jeter deux dés et on pose X la variable aléatoire donnant le plus petit résultat et Y le plus grand, Z = (X, Y) est couple de variables aléatoires et $Z(\omega) = \{(i, j)[1, 6]^2, i \le j\}$.

Proposition

Soit (X, Y) un couple de variables aléatoires. La famille $(\{X = x\} \cap \{Y = y\})_{(x,y) \in X(\Omega) \times Y(\Omega)}$ est un système complet d'événements de Ω .

En particulier,
$$\sum_{(x,y)\in X(\Omega)\times Y(\Omega)} P\left(\{X=x\}\cap\{Y=y\}\right) = 1.$$

Démonstration.

• On a:
$$\bigcup_{(x,y)\in X(\Omega)\times Y(\Omega)} \{X=x\}\cap \{Y=y\}\subset \Omega.$$

- Réciproquement : soit $\omega \in \Omega$. Posons $x = X(\omega) \in X(\Omega)$ et $y = Y(\omega) \in Y(\Omega)$, alors $\omega \in \{X = x\} \cap \{Y = y\} \subset \bigcup_{(x,y) \in X(\Omega) \times Y(\Omega)} \{X = x\} \cap \{Y = y\}.$
- Enfin, soient (x, y) et (x', y') sont deux éléments distincts de $X(\Omega) \times Y(\Omega)$, on a soit $x \neq x'$ et $\{X = x\} \cap \{X = x'\} = \emptyset$, soit $y \neq y'$ et $\{Y = y\} \cap \{Y = y'\} = \emptyset$. On en déduit :

$$(X = x) \cap (Y = y) \cap (X' = x') \cap (Y' = y') = \emptyset$$

Remarque: $\{X = x\} \cap \{Y = y\} = \{(X, Y) = (x, y)\}.$

Définition

Soit $X: \Omega \to E$ et $Y: \Omega \to F$ deux variables aléatoires. On appelle loi conjointe de X et Y la loi du couple (X,Y) i.e l'application :

Remarque : La loi de Z=(X,Y) est entièrement déterminé par la donnée des $P(\{X=x\}\cap \{Y=y\})$ avec $(x,y)\in X(\Omega)\times Y(\Omega)$. Certaines de ces probabilités peuvent être nulles car $Z(\Omega)\subset X(\Omega)\times Y(\Omega)$ mais l'inclusion peut être stricte.

Méthode

Déterminer la loi conjointe de deux variables aléatoires *X* et *Y* revient à :

- Déterminer $X(\Omega) = \{x_1, ..., x_n\}$ et $Y(\Omega) = \{y_1, ..., y_n\}$.
- Déterminer pour tout $(i, j) \in [1, n] \times [1, p]$, la valeur de $P(\{X = x_i\} \cap \{Y = y_i\})$.

La loi conjointe de deux variables X et Y peut être représenté pas un tableau à double entrée de la forme :

X Y	<i>y</i> 1	<i>y</i> 2		y_p
x_1	$P(\{X = x_1\} \cap \{Y = y_1\})$	$P(\{X = x_1\} \cap \{Y = y_2\})$	• • • •	$P(\{X = x_1\} \cap \{Y = y_p\})$
x_2	$P(\{X = x_2\} \cap \{Y = y_1\})$	$P(\{X = x_2\} \cap \{Y = y_2\})$	• • • •	$P(\{X = x_2\} \cap \{Y = y_p\})$
:	:	:		:
x_n	$P(\{X = x_n\} \cap \{Y = y_1\})$	$P(\{X = x_n\} \cap \{Y = y_2\})$	•••	$P(\{X=x_n\}\cap \{Y=y_p\})$

Exemple :3 : Déterminer la loi conjointe de *X* et *Y* .

Considérons l'expérience aléatoire consistant à jeter deux dés, X la variable aléatoire donnant le plus petit résultat et Y le plus grand, Z = (X, Y). La loi conjointe de Z est représentée par

	Y = 1	Y=2	Y = 3	Y=4	Y = 5	Y=6
X = 1	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$
X = 2	0	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$
X = 3	0	0	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$
X = 4	0	0	0	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{18}$
X = 5	0	0	0	0	$\frac{1}{36}$	$\frac{1}{18}$
X = 6	0	0	0	0	0	$\frac{1}{36}$

Exemple :4 : Une urne contient 3 boules indiscernables numérotées de 1 à 3. On tire successivement deux boules avec remise, et on note X_1 et X_2 les numéros obtenus. On pose $X = X_1$ et $Y = \min(X_1, X_2)$.

Déterminons la loi conjointe de X et Y.

Une urne contient 3 boules indiscernables numérotées de 1 à 3. On tire successivement deux boules avec remise, et on note X_1 et X_2 les numéros obtenus. On pose $X = X_1$ et $Y = \min(X_1, X_2)$. On trouve $X(\Omega) = Y(\Omega) = [1, 3]$. Soit $(i, j) \in [1, 3]^2$.

- Si i < j, $\mathbb{P}(\{X = i\} \cap \{Y = j\}) = \mathbb{P}(\emptyset) = 0$.
- Si i > j, $\mathbb{P}(\{X = i\} \cap \{Y = j\}) = \mathbb{P}(\{X_1 = i\} \cap \{X_2 = j\}) = \frac{1}{9}$ (par indépendance des deux tirages).
- Si i = j, $\mathbb{P}(\{X = i\} \cap \{Y = j\}) = \mathbb{P}(\{X_1 = i\} \cap \{X_2 \in [i,3]\}) = \mathbb{P}\left(\bigcup_{k \in [i,3]} \{X_1 = i\} \cap \{X_2 = k\}\right) = \sum_{k=i}^{3} \mathbb{P}(\{X_1 = i\} \cap \{X_2 = k\}) \text{ car les evénements } \{X_1 = i\} \cap \{X_2 = k\} \ (k \in [i,3]) \text{ sont deux à deux incompatibles. Ainsi, } \mathbb{P}(\{X = i\} \cap \{Y = j\}) = \sum_{k=i}^{3} \frac{1}{9} = \frac{4-i}{9} \text{ par les evénements } \{X_1 = i\} \cap \{X_2 = k\} \ (k \in [i,3]) \text{ sont deux à deux incompatibles. Ainsi, } \mathbb{P}(\{X = i\} \cap \{Y = j\}) = \sum_{k=i}^{3} \frac{1}{9} = \frac{4-i}{9} \text{ par les evénements } \{X_1 = i\} \cap \{X_2 = k\} \ (k \in [i,3]) \text{ sont deux à deux incompatibles. Ainsi, } \mathbb{P}(\{X = i\} \cap \{Y = j\}) = \sum_{k=i}^{3} \frac{1}{9} = \frac{4-i}{9} \text{ par les evénements } \{X_1 = i\} \cap \{X_2 = k\} \ (k \in [i,3]) \text{ sont deux à deux incompatibles. Ainsi, } \mathbb{P}(\{X = i\} \cap \{Y = j\}) = \sum_{k=i}^{3} \frac{1}{9} = \frac{4-i}{9} \text{ par les evénements } \{X_1 = i\} \cap \{X_2 = k\} \ (k \in [i,3]) \text{ sont deux à deux incompatibles. Ainsi, } \mathbb{P}(\{X = i\} \cap \{X_2 = k\}) = \sum_{k=i}^{3} \frac{1}{9} = \frac{4-i}{9} \text{ par les evénements } \{X_1 = i\} \cap \{X_2 = k\} \ (k \in [i,3]) \text{ sont deux à deux incompatibles. Ainsi, } \mathbb{P}(\{X = i\} \cap \{X_2 = k\}) = \sum_{k=i}^{3} \frac{1}{9} = \frac{4-i}{9} \text{ par les evénements } \{X_1 = i\} \cap \{X_2 = k\} \ (k \in [i,3]) \text{ sont deux à deux incompatibles. } \mathbb{P}(\{X_1 = i\} \cap \{X_2 = k\}) = \sum_{k=i}^{3} \frac{1}{9} = \frac{4-i}{9} \text{ par les evénements } \{X_1 = i\} \cap \{X_2 = k\} \ (k \in [i,3]) \text{ sont deux à deux incompatibles. } \mathbb{P}(\{X_1 = i\} \cap \{X_2 = k\}) = \sum_{k=i}^{3} \frac{1}{9} = \frac{4-i}{9} \text{ par les evénements } \{X_1 = i\} \cap \{X_2 = k\} \ (k \in [i,3]) \text{ sont deux à deux incompatibles. } \mathbb{P}(\{X_1 = i\} \cap \{X_2 = k\}) = \sum_{k=i}^{3} \frac{1}{9} = \frac{4-i}{9} \text{ par les evénements } \{X_1 = i\} \cap \{X_2 = k\} \ (k \in [i,3]) \text{ sont deux à deux incompatibles. } \mathbb{P}(\{X_1 = i\} \cap \{X_2 = k\}) = \sum_{k=i}^{3} \frac{1}{9} = \frac{4-i}{9} \text{ par les evénements } \{X_1 = i\} \cap \{X_2 = k\} \ (k \in [i,3]) = \mathbb{P}(\{X_1 = i\} \cap \{X_2 = k\}) =$

indépendance des deux tirages.

La loi conjointe des variables X et Y peut ainsi être résumée dans le tableaux suivant :

X Y	1	2	3
1	$\frac{1}{3}$	0	0
2	$\frac{1}{9}$	$\frac{2}{9}$	0
3	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$

Définition

Soit (X, Y) un couple de variables aléatoires. On appelle lois marginales du couple (X, Y) les lois de X et Y.

Proposition

Soient X, Y deux variables aléatoire. On note $X(\Omega) = \{x_1, \dots, x_n\}$ et $Y(\Omega) = \{y_1, \dots, y_n\}$. Alors:

$$\forall i \in [1, n], \ P(X = x_i) = \sum_{i=1}^{p} P(\{X = x_i\} \cap \{Y = y_j\})$$

$$\forall j \in [\![1,p]\!], \in P(Y=y_j) = \sum_{i=1}^n P(\{X=x_i\} \cap \{Y=y_j\}).$$

Remarque : Autrement dit, la loi conjointe de *X* et de *Y* déterminer les lois marginales du couple (*X*, *Y*).

 $D\acute{e}monstration$. La famille $(Y = y_j)_{j \in [1,p]}$ est un système complet d'événements. La formule des probabilités totales donne donc :

$$\forall i \in [\![1,n]\!], \; \mathbb{P}(X=x_i) = \sum_{j=1}^p \mathbb{P}(\{X=x_i\} \cap \{Y=y_j\})$$

Méthode

On peut donc déterminer facilement les lois marginales de (X, Y) à partir de la loi conjointe : il suffit de faire la somme sur chaque ligne (pour la loi de X) ou sur chaque colonne (pour la loi de Y) du tableau qui la représente.

Exemple :3 : Déterminons les lois marginales du couple (X, Y).

On obtient que pour tout $i \in [1, 6]$,

$$\mathbb{P}(X=i) = \sum_{j=1}^{6} \mathbb{P}(\{X=i\} \cap \{Y=j\}) = \frac{1}{36} + \sum_{j=i+1}^{6} \frac{1}{18} = \frac{1+2(6-i)}{36} = \frac{13-2i}{36}$$

De même, pour tout j de [1,6], on a :

$$\mathbb{P}(Y=j) = \sum_{i=1}^{6} \mathbb{P}(\{X=i\} \cap \{Y=j\}) = \sum_{i=1}^{j-1} \frac{1}{18} + \frac{1}{36} = \frac{2(j-1)+1}{36} = \frac{2j-1}{36}$$

Exemple :4 : Déterminons les lois marginales du couple (X, Y).

On trouve:

X Y	$y_1 = 1$	$y_2 = 2$	$y_3 = 3$	$P(X=x_i)$
$x_1 = 1$	$\frac{1}{3}$	0	0	$\frac{1}{3}$
$x_2 = 2$	$\frac{1}{9}$	$\frac{2}{9}$	0	$\frac{1}{3}$
$x_3 = 3$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{3}$
$P(Y=y_j)$	$\frac{5}{9}$	$\frac{1}{3}$	$\frac{1}{9}$	

On obtient ainsi:

x_i	1	2	3
m(X	1	1	\Box
$\mathbb{P}(X=x_i)$	3	3	3

y_j	1	2	3
m (17	5	1	1
$\mathbb{P}(Y=x_j)$	9	3	9

On remarque ainsi que $X \hookrightarrow \mathcal{U}([1,3])$.

Remarque: En revanche, les lois marginales ne déterminent pas la loi conjointe.

Exemple:

• Soient X et Y deux variables aléatoires telles que :

$$P((X=0)\cap (Y=0)) = P((X=1)\cap (Y=1)) = \frac{1}{2} \quad \text{et} \quad P((X=0)\cap (Y=1)) = P((X=1)\cap (Y=0)) = 0$$

Déterminer les lois marginales de (X, Y).

On a alors: $P(X = 0) = P((X = 0) \cap (Y = 0)) + P((X = 0) \cap (Y = 1)) = \frac{1}{2}$.

Et:
$$P(X = 1) = P((X = 1) \cap (Y = 0)) + P((X = 1) \cap (Y = 1)) = \frac{1}{2}$$
.

Ainsi, X suit une loi de Bernoulli de paramètre $\frac{1}{2}$ et par symétrie, Y suit aussi une loi de Bernoulli de paramètre $\frac{1}{2}$.

• Soient X et Y deux variables aléatoires telles que :

$$P((X=0)\cap (Y=0)) = P((X=1)\cap (Y=1)) = \frac{1}{6} \quad \text{et} \quad P((X=0)\cap (Y=1)) = P((X=1)\cap (Y=0)) = \frac{1}{3}$$

Déterminer les lois marginales de (X, Y). On a alors : $P(X = 0) = P((X = 0) \cap (Y = 0)) + P((X = 0) \cap (Y = 1)) = \frac{1}{2}$.

Et:
$$P(X = 1) = P((X = 1) \cap (Y = 0)) + P((X = 1) \cap (Y = 1)) = \frac{1}{2}$$
.

Ainsi, X suit une loi de Bernoulli de paramètre $\frac{1}{2}$ et par symétrie, Y suit aussi une loi de Bernoulli de paramètre $\frac{1}{2}$. Dans les 2 cas, les lois marginales sont donc les mêmes alors que les lois conjointes sont différentes.

Définition

Soit X, Y deux variables aléatoires.

La loi de Y sachant (X = x) est la loi de Y pour la probabilité conditionnelle $P_{(X = x)}$. Elle est déterminée par la donnée, pour tout $y \in Y(\Omega)$ de :

$$P_{(X=x)}(Y=y) = P(Y=y|X=x) = \frac{P((X=x) \cap (Y=y))}{P(X=x)}.$$

Remarque : On définit de même la loi conditionnelle de X sachant que $\{Y = y\}$ si $y \in Y(\Omega)$ est tel que $P(Y = y) \neq 0$.

Exemple :4 : Déterminons la loi de X conditionnellement à $\{Y = 1\}$. On trouve :

$$x_i$$
 1 2 3 $\mathbb{P}_{\{Y=1\}}(X=x_i)$ $\frac{3}{5}$ $\frac{1}{5}$ $\frac{1}{5}$

Proposition

Soit X, Y deux variables aléatoires.

On suppose que, pour tout $(x, y) \in X(\Omega) \times Y(\Omega)$, on a $P(X = x) \neq 0$ et $P(Y = y) \neq 0$.

Alors, pour tout $(x, y) \in X(\Omega) \times Y(\omega)$:

$$P(\{X = x\} \cap \{Y = y\}) = P(Y = y)P(X = x|Y = y)$$

$$= P(X = x)P(Y = y|X = x)$$

$$P(X = x) = \sum_{y \in Y(\Omega)} P(Y = y)P(X = x|Y = y)$$

$$P(Y=y) = \sum_{x \in X(\Omega)} P(X=x) P(Y=y|X=x)$$

Démonstration. Les premières égalités résultent de la définition des probabilités conditionnelles, les deux dernières formules résultent de la formule des probabilités totales appliquée aux systèmes complets d'événements $({Y = y})_{y \in Y(\Omega)}$ et $({X = x})_{x \in X(\Omega)}$. □

Remarque : Connaissant une des lois marginales et la probabilité conditionnelle de l'autre variable par rapport à celle-ci, on obtient alors la loi conjointe et la loi marginale de la deuxième variable.

3 Indépendance de variables aléatoires

3.1 Indépendance de deux variables

Définition

Soit X, Y deux variables aléatoires. On dit que X et Y sont indépendantes ssi

$$\forall (x,y) \in X(\Omega) \times Y(\Omega) \text{ , } P(\{X=x\} \cap \{Y=y\}) = P(X=x)P(Y=y).$$

Remarque:

- X et Y sont donc indépendantes ssi pour tout $(x, y) \in X(\Omega) \times Y(\Omega)$, les événements [X = x] et [Y = y] sont indépendants.
- Souvent l'indépendance de 2 variables aléatoires X et Y résulte directement de l'expérience aléatoire.
- La loi conjointe de X et Y s'obtient dans ce cas directement à partir des lois marginales.

Exemple : Dans le cas d'un tirage avec remise dans une urne, si X est le numéro de la première boule tirée, Y celui de la seconde, les variables X et Y sont indépendantes.

Proposition

Soient X et Y deux variables aléatoires sur Ω .

SI X et Y sont indépendantes alors :

$$\forall A \in \mathcal{P}(X(\Omega)), \forall B \in \mathcal{P}(Y(\Omega)), \ P((X,Y) \in A \times B) = P(X \in A)P(Y \in B).$$

Démonstration. On a

$$\mathbb{P}((X,Y) \in A \times B) = \sum_{(x,y) \in A \times B} \mathbb{P}(\{X = x\} \cap \{Y = y\}) = \sum_{x \in A} \sum_{y \in B} \mathbb{P}(X = x) \mathbb{P}(Y = y)$$
$$= \left(\sum_{x \in A} \mathbb{P}(X = x)\right) \left(\sum_{y \in B} \mathbb{P}(Y = y)\right) = \mathbb{P}(X \in A) \mathbb{P}(Y \in B).$$

Remarque : Réciproquement, si pour tout $A \in \mathcal{P}(X(\Omega))$ et $B \in \mathcal{P}(Y(\Omega))$, $P((X,Y) \in A \times B) = P(X \in A)P(Y \in B)$ alors, X et Y sont indépendantes. Il suffit d'appliquer la proposition aux singletons $A = \{x\}$ et $B = \{y\}$ pour tout $x \in X(\Omega)$ et $y \in Y(\Omega)$.

Proposition: Image de variables aléatoires indépendantes

Soient $X: \Omega \to E$ et $Y: \Omega \to F$ deux variables aléatoires indépendantes, f et g deux fonctions définies respectivement sur E et F. Alors f(X) et g(Y) sont indépendantes.

Démonstration. Soit $x \in E$ et $y \in F$.

$$\mathbb{P}(\{f(X) = x\} \cap \{g(Y) = y\}) = \mathbb{P}\left(\{X \in f^{-1}(\{x\})\} \cap \{Y \in g^{-1}(\{y\})\}\right)$$
$$= \mathbb{P}\left(X \in f^{-1}(\{x\})\right) \mathbb{P}\left(Y \in g^{-1}(\{y\})\right)$$
$$= \mathbb{P}(f(X) = x) \mathbb{P}(g(Y) = y)$$

Ainsi, f(X) et g(Y) sont indépendantes.

Remarque : La réciproque est fausse.

3.2 Indépendance mutuelle, indépendance deux à deux

3.3 Indépendance mutuelle

Définition

Les variables aléatoires $X_1, ..., X_n$ sont dites mutuellement indépendantes ssi :

$$\forall (x_1,\ldots,x_n) \in X_1(\Omega) \times \cdots \times X_n(\Omega) , P\left(\bigcap_{i=1}^n (X_i=x_i)\right) = \prod_{i=1}^n P(X_i=x_i).$$

Exemple:

- Dans le cas d'un tirage avec remise dans une urne, si X_i est le numéro de la i-ème boule tirée, $X_1, ..., X_n$ sont mutuellement indépendantes.
- De manière plus générale, si on effectue n fois la même expérience, de manière indépendante, et si X_i est le résultat de la i-ème, X_1, \ldots, X_n sont mutuellement indépendantes.

Proposition

Soient $X_1, ..., X_n$ des variables aléatoires

• $X_1,...,X_n$ sont mutuellement indépendantes si et seulement si :

$$\forall (A_1, \dots, A_n) \in \prod_{i=1}^n \mathscr{P}(X_i(\Omega)), \ P(\bigcap (X_i \in A_i)) = \prod_{i=1}^n P(X_i \in A_i).$$

- Toute sous-famille d'une famille de variables aléatoires mutuellement indépendantes est une famille de variables aléatoires mutuellement indépendantes.
- $X_1,...,X_n$ sont mutuellement indépendante si et seulement si pour tout $(x_1,...,x_n) \in X_1(\Omega) \times \cdots \times X_n(\Omega)$, les événements $\{X_1 = x_1\},...,\{X_n = x_n\}$ sont mutuellement indépendants.
- $X_1,...,X_n$ sont mutuellement indépendante si et seulement si pour tout $(A_1,...,A_n) \in \prod_{i=1}^n \mathscr{P}(X_i(\Omega))$, les événements $\{X_1 \in A_1\},...,\{X_n \in A_n\}$ sont mutuellement indépendants.

$$\mathbb{P}((X_1 \in A_1) \cap \dots \cap (X_n \in A_n)) = \mathbb{P}\left(\left(\bigcup_{x_1 \in A_1} \{X_1 = x_1\}\right) \cap \dots \cap \left(\bigcup_{x_n \in A_n} \{X_n = x_n\}\right)\right)$$

$$= \mathbb{P}\left(\bigcup_{(x_1, \dots, x_n) \in A_1 \times \dots \times A_n} \left(\{X_1 = x_1\} \cap \dots \cap \{X_n = x_n\}\right)\right)$$

$$= \sum_{(x_1, \dots, x_n) \in A_1 \times \dots \times A_n} \mathbb{P}(\{X_1 = x_1\} \cap \dots \cap \{X_n = x_n\})$$

$$= \sum_{x_1 \in A_1} \dots \sum_{x_n \in A_n} \mathbb{P}(X_1 = x_1) \dots \mathbb{P}(X_n = x_n)$$

$$= \left(\sum_{x_1 \in A_1} \mathbb{P}(X_1 = x_1)\right) \dots \left(\sum_{x_n \in A_n} \mathbb{P}(X_n = x_n)\right)$$

$$= \mathbb{P}(X_1 \in A_1) \dots \mathbb{P}(X_n \in A_n).$$

• Quitte à réordonner (X_1,\ldots,X_n) , on se donne (X_1,\ldots,X_p) sous-famille de (X_1,\ldots,X_n) (avec $p\in [\![1,n]\!]$). Pour $(x_1,\ldots,x_p)\in X_1(\Omega)\times\cdots\times X_p(\Omega)$, on pose $A_i=\{x_i\}$ si $i\in [\![1,p]\!]$ et $A_i=X_i(\Omega)$ si $i\in [\![p+1,n]\!]$. D'après le point précédent, il vient

$$\mathbb{P}([X_1 = x_1] \cap \dots \cap [X_p = x_p]) = \mathbb{P}((X_1 \in A_1) \cap \dots \cap (X_n \in A_n))$$
$$= \mathbb{P}(X_1 \in A_1) \dots \mathbb{P}(X_n \in A_n)$$
$$= \mathbb{P}(X_1 = x_1) \dots \mathbb{P}(X_p = x_p)$$

donc $X_1, ..., X_p$ sont indépendantes.

• Le troisième point est direct, à partir des deux précédents.

3.4 Application à la loi binomiale

Théorème: Somme de Bernoulli indépendantes

Soient $X_1, ..., X_n$ n variables de Bernoulli mutuellement indépendantes de même paramètre $p \in [0,1]$. Alors $X_1 + \cdots + X_n$ suit la loi binomiale de paramètres n et p.

Remarque : Intuitivement, la variable aléatoire $X_1 + \cdots + X_n$ représente le nombre de succès de n expériences indépendantes ayant probabilité p de réussir.

Démonstration. Posons $Y = X_1 + ... + X_n$. Pour tout $i \in [1, n]$, $X_i(\Omega) = \{0, 1\}$, et $Y(\Omega) = [0, n]$. Soit $k \in [0, n]$, alors, notons $A_k = \{(x_1, ..., x_n) \in \{0, 1\}^n; x_1 + ... + x_n = k\}$. A_k est de cardinal $\binom{n}{k}$. En effet, il faut choisir:

- $k x_i$ parmi les n qui ont la valeur $1: \binom{n}{k}$ possibilités.
- les autres prenant la valeur $0: \binom{n-k}{n-k} = 1$ possibilités.

Soit au total $\binom{n}{k}$ possibilités.

De plus, les $(\{X_1 = x_1\} \cap ... \cap \{X_n = x_n\})$ avec $(x_1,...,x_n) \in A_k$ sont deux à deux incompatibles. Ainsi,

$$\mathbb{P}(Y = k) = \mathbb{P}\left(\bigcup_{(x_1, \dots, x_n) \in A_k} \left(\{X_1 = x_1\} \cap \dots \cap \{X_n = x_n\} \right) \right) = \sum_{(x_1, \dots, x_n) \in A_k} \mathbb{P}([X_1 = x_1] \cap \dots \cap [X_n = x_n])$$

$$= \sum_{(x_1, \dots, x_n) \in A_k} \mathbb{P}(X_1 = x_1) \dots \mathbb{P}(X_n = x_n) = \sum_{(x_1, \dots, x_n) \in A_k} p^k (1 - p)^{n - k}$$

$$= \binom{n}{k} p^k (1 - p)^{n - k}$$

car parmi les x_i , k valent 1 donc k des $\mathbb{P}(X_i = x_i)$ valent p, n - k valent 0 donc les n - k autres $\mathbb{P}(X_i = x_i)$ valent 1 - p. Ainsi $Y \sim \mathcal{B}(n, p)$.

Espérance

4.1 Définition et propriétés

Définition

Soit X une variable aléatoire réelle définie sur Ω , on appelle espérance de X et on note E(X) le réel

$$E(X) = \sum_{x \in X(\Omega)} P(X = x)x.$$

Remarque:

- Comme $\sum_{x \in X(\Omega)} P(X = x) = 1$, l'espérance est donc la moyenne des valeurs prises par X, chacune étant pondérée par sa
- L'espérance d'une variable aléatoire ne dépend que de sa loi : deux variables aléatoires réelles de même loi ont même espérance.

Exemple:1: Calculer l'espérance de S.

On a:

$$\mathbb{E}(S) = \frac{1}{36} \times 2 + \frac{2}{36} \times 3 + \frac{3}{36} \times 4 + \frac{4}{36} \times 5 + \frac{5}{36} \times 6 + \frac{6}{36} \times 7 + \frac{5}{36} \times 8 + \frac{4}{36} \times 9 + \frac{3}{36} \times 10 + \frac{2}{36} \times 11 + \frac{1}{36} \times 12 = 7.$$

Soit X une variable aléatoire sur l'espace probabilisé (Ω, P) , son espérance est donnée par :

$$E(X) = \sum_{\omega \in \Omega} P(\{\omega\}) X(\omega)$$

Démonstration. On peut écrire : $\{X = x\} = \bigcup_{w \in \{X = x\}} \{w\}$. Les ensembles de cette union sont deux à deux disjoints. Ainsi, $\mathbb{P}(\{X = x\})$

$$x\}) = \mathbb{P}\left(\bigcup_{\omega \in \{X=x\}} \{w\}\right) = \sum_{\omega \in \{X=x\}} \mathbb{P}(\{\omega\})$$

 $x\}) = \mathbb{P}\left(\bigcup_{\omega \in \{X=x\}} \{w\}\right) = \sum_{\omega \in \{X=x\}} \mathbb{P}(\{\omega\}).$ De plus, on a : $\Omega = \bigcup_{x \in X(\Omega)} (X=x) = \bigcup_{x \in X(\Omega)} \bigcup_{\omega \in (X=x)} \{\omega\}$ et ces unions sont disjointes.

Ainsi:

$$\sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) X(\omega) = \sum_{x \in X(\omega)} \sum_{\omega \in \{X=x\}} \mathbb{P}(\{\omega\}) X(\omega) = \sum_{x \in X(\omega)} \sum_{\omega \in \{X=x\}} \mathbb{P}(\{\omega\}) x = \sum_{x \in X(\omega)} x \sum_{\omega \in \{X=x\}} \mathbb{P}(\{\omega\}) = \sum_{x \in X(\omega)} x \mathbb{P}(\{X=x\}) = \sum_{\omega \in X(\omega)} x \mathbb{P}(\{\omega\}) =$$

Exemple : Soit *A* une partie de Ω et $X = \mathbb{1}_A$, alors

$$\mathbb{E}(X) = \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) X(\omega) = \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) \mathbb{1}_A(\omega) = \sum_{\omega \in A} \mathbb{P}(\{\omega\}) = \mathbb{P}(A).$$

- Linéarité : soient X et Y deux variables aléatoires réelles et $(\lambda, \mu) \in \mathbb{R}^2$. Alors $E(\lambda X + \mu Y) = \lambda E(X) + \mu E(Y)$.
- Croissance: soient X et Y deux variables aléatoires réelles telles que $X \le Y$. Alors $E(X) \le E(Y)$.

Démonstration. • On a

$$\mathbb{E}(\lambda X + \mu Y) = \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\})(\lambda X + \mu Y)(\omega) = \lambda \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\})X(\omega) + \mu \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\})Y(\omega) = \lambda \mathbb{E}(X) + \mu \mathbb{E}(Y).$$

• Comme pour tout $\omega \in \Omega$, $X(\omega) \le Y(\omega)$, et comme $\mathbb{P}(\{\omega\}) \ge 0$, $\mathbb{P}(\{\omega\}) X(\omega) \le \mathbb{P}(\{\omega\}) Y(\omega)$ et en sommant $\mathbb{E}(X) \le \mathbb{E}(Y)$.

Théorème : Théorème du transfert

Soit $X : \Omega \to E$ une variable aléatoire et $f : E \to \mathbb{R}$. Alors

$$E(f(X)) = \sum_{x \in X(\omega)} P(X = x) f(x).$$

Démonstration. On a déjà vu que $\Omega = \bigcup_{x \in X(\omega)} \bigcup_{\omega \in \{X = x\}} \{\omega\}$ et que ces unions sont disjointes. Ainsi,

$$\mathbb{E}(f(X)) = \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) f(X(\omega)) = \sum_{x \in X(\Omega)} \sum_{\omega \in \{X=x\}} \mathbb{P}(\{\omega\}) f(X(\omega)) = \sum_{x \in X(\Omega)} \sum_{\omega \in \{X=x\}} \mathbb{P}(\{\omega\}) f(x) = \sum_{x \in X(\Omega)} f(x) \sum_{\omega \in \{X=x\}} \mathbb{P}(\{\omega\}) = \sum_{x \in X(\Omega)} \mathbb{P}(X=x) f(x).$$

Remarque : L'intérêt de cette formule est qu'elle permet le calcul de E(f(X)) sans connaître la loi de f(X). L'espérance de f(X) est entièrement déterminée par la loi de X.

Proposition

Soient X et Y deux variables aléatoires réelles. Si X et Y sont indépendantes, alors E(XY) = E(X)E(Y).

Démonstration. On a

$$\mathbb{E}(X)\mathbb{E}(Y) = \left(\sum_{x \in X(\Omega)} \mathbb{P}(X = x)x\right) \left(\sum_{y \in Y(\Omega)} \mathbb{P}(Y = y)y\right) = \sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} \mathbb{P}(X = x)\mathbb{P}(Y = y)xy$$
$$= \sum_{(x,y) \in X(\Omega) \times Y(\Omega)} \mathbb{P}([X = x] \cap [Y = y])xy = \mathbb{E}(XY)$$

par le théorème du transfert (appliqué à $f:(x,y)\mapsto xy$) et à la variable Z=(X,Y).

Proposition

Soient $X_1, ..., X_n$ des variables réelles.

Si $X_1,...,X_n$ sont mutuellement indépendantes alors $E(X_1...X_n)=E(X_1)...E(X_n)$.

Démonstration. Ce résultat se prouve par récurrence.

4.2 Espérance usuelles

Proposition

Soient $a \in \mathbb{R}$ et X la variable constante égale à a. Alors :

$$E(X) = a$$

$$D\acute{e}monstration. \ \ \text{On a}\ E(X) = \sum_{\omega \in \Omega} aP(\{\omega\}) = a\sum_{\omega \in \Omega} P(\{\omega\}) = aP(\Omega) = a.$$

Proposition

Soit A un événement de l'espace probabilisé fini. Alors : $E(\mathbb{1}_A) = P(A)$.

Démonstration. On a :
$$E(\mathbb{1}_A) = 0 \times P(\mathbb{1}_A = 0) + 1 \times P(\mathbb{1}_A = 1) = 0 \times P(\overline{A}) + 1 \times P(A) = P(A)$$
.

Proposition

Si X suit la loi uniforme sur [1, n], on a :

$$E(X) = \frac{n+1}{2}$$

Démonstration. On a $\mathbb{E}(X)=\sum_{k=1}^n kP(X=k)=\sum_{k=1}^n \frac{k}{n}=\frac{1}{n}\sum_{k=1}^n k=\frac{n+1}{2}$.

Proposition

Si X suit la loi de Bernoulli de paramètre $p \in [0, 1]$, alors :

$$E(X) = p$$

Démonstration. On a $\mathbb{E}(X) = \mathbb{P}(X = 0) \times 0 + \mathbb{P}(X = 1) \times 1 = p$

Proposition

Si X suit la loi binomiale de paramètres $n \in \mathbb{N}^*$ et $p \in [0,1]$, on a :

$$E(X) = np$$

Démonstration. Notons tout d'abord que pour k ∈ [1, n],

$$k\binom{n}{k} = k \frac{n!}{(n-k)!k!} = \frac{n!}{(n-k)!(k-1)!} = n \times \frac{(n-1)!}{((n-1)-(k-1))!(k-1)!} = n\binom{n-1}{k-1}$$

donc

$$\begin{split} \mathbb{E}(X) &= \sum_{k=0}^{n} k P(X = k) \\ &= \sum_{k=1}^{n} k P(X = k) \\ &= \sum_{k=1}^{n} k \binom{n}{k} p^{k} (1 - p)^{n - k} \\ &= \sum_{k=1}^{n} n \binom{n-1}{k-1} p^{k} (1 - p)^{n-k} \\ &= n p \sum_{l=0}^{n-1} \binom{n-1}{l} p^{l} (1 - p)^{n-1-l} \\ &= n p \end{split}$$

par le binôme de Newton.

5 Variance

5.1 Définition et propriétés

Définition

Soit X une variable aléatoire réelle. On appelle variance de X et on note V(X) le réel défini par

$$V(X) = E((X - E(X))^{2}).$$

On appelle écart-type de X le réel souvent $\sigma(X)$ défini par $\sqrt{V(X)}$.

Remarque:

- L'écart type est bien défini car $(X E(X))^2 \ge 0$ donc par croissance de l'espérance, on a $V(X) \ge 0$.
- L'espérance de X est un indicateur de position. Elle indique une valeur centrale pour X. La variance est l'espérance du carré de la distance entre les valeurs de X et l'espérance de X. La variance ou l'écart type sont donc des mesures de la dispersion de X par rapport à E(X). Plus ces quantités sont petites, plus les valeurs de X sont « concentrées » autour de l'espérance.

Remarque : Soit *X* une variable aléatoire réelle. Avec le théorème de transfert, on a :

$$V(X) = \sum_{x \in X(\Omega)} (x - E(X))^2 P(X = x)$$

Ainsi, comme l'espérance, la variance ne dépend que de la loi de X.

Exemple : 1 : Déterminer la variance de *S*.

On a:

$$\mathbb{V}(S) = \frac{1}{36} \times 25 + \frac{2}{36} \times 16 + \frac{3}{36} \times 9 + \frac{4}{36} \times 4 + \frac{5}{36} \times 1 + \frac{6}{36} \times 0 + \frac{5}{36} \times 1 + \frac{4}{36} \times 4 + \frac{3}{36} \times 9 + \frac{2}{36} \times 16 + \frac{1}{36} \times 25 = \frac{35}{6}.$$

Proposition

Soit X une variable aléatoire réelle. On a :

- $V(X) = E(X^2) E(X)^2$ (formule de Kœnig Huygens).
- Pour tout $(a, b) \in \mathbb{R}^2$, $V(aX + b) = a^2V(X)$.

Démonstration.

• Par linéarité de l'espérance, on a

$$\mathbb{V}(X) = \mathbb{E}(X^2 - 2X\mathbb{E}(X) + \mathbb{E}(X)^2) = \mathbb{E}(X^2) - 2\mathbb{E}(X)^2 + \mathbb{E}(\mathbb{E}(X)^2) = \mathbb{E}(X^2) - 2\mathbb{E}(X)^2 + \mathbb{E}(X)^2.$$

• On a $\mathbb{E}(aX + b) = a\mathbb{E}(X) + b$ par linéarité de l'espérance, ainsi

$$\mathbb{V}(aX + b) = \mathbb{E}((aX + b - a\mathbb{E}(X) - b)^2) = \mathbb{E}(a^2(X - \mathbb{E}(X))^2) = a^2\mathbb{V}(X).$$

Méthode

On utilisera généralement la formule $V(X) = E(X^2) - E(X)^2$ pour le calcul de variances.

Proposition: Inégalité de Bienaymé-Tchebychev

Soit X une variable aléatoire et $\epsilon > 0$. Alors

$$P(|X - E(X)| \ge \epsilon) \le \frac{V(X)}{\epsilon^2}.$$

Démonstration. On pose $Y = (X - E(X))^2$.

On a:

$$\begin{split} V(X) &= E(Y) = \sum_{y \in Y(\Omega)} y P(Y = y) \\ &= \sum_{y \geq e^2} y P(Y = y) + \sum_{0 \leq y \leq e^2} y P(Y = y) \\ &\geq \sum_{y \geq e^2} y P(Y = y) \quad \text{Le second terme est positif} \\ &\geq \sum_{y \geq e^2} e^2 P(Y = y) \\ &\geq e^2 P(Y \geq e^2) \\ &\geq e^2 P((X - E(X))^2 \geq e^2) \\ &\geq e^2 P(|X - E(X)| \geq e) \end{split}$$

П

Remarque : La probabilité que l'écart entre X et E(X) soit grand est donc majorée. Le majorant est proportionnel à V(X). Ainsi, plus une variable est dispersée, plus on a de chances d'observer une valeur éloignée de E(X). De plus, le majorant est inversement proportionnelle à ε^2 . Ainsi, des écarts très importants ont peu de chances d'être observés.

Proposition

Si X et Y sont deux variables aléatoires indépendantes, alors V(X+Y)=V(X)+V(Y).

Démonstration. On a

$$V(X + Y) = \mathbb{E}((X + Y)^{2}) - \mathbb{E}(X + Y)^{2} = \mathbb{E}(X^{2} + 2XY + Y^{2}) - (\mathbb{E}(X)^{2} + 2\mathbb{E}(X)\mathbb{E}(Y) + \mathbb{E}(Y)^{2})$$

$$= \mathbb{E}(X^{2}) - \mathbb{E}(X)^{2} + \mathbb{E}(Y^{2}) - \mathbb{E}(Y)^{2} + 2(\mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y))$$

$$= V(X) + V(Y)$$

car les variables X et Y sont indépendantes.

Proposition

Si $X_1, ..., X_n$ sont n variables mutuellement indépendantes, $V(X_1 + \cdots + X_n) = V(X_1) + \cdots + V(X_n)$.

Démonstration. Par linéarité de l'espérance, $\mathbb{E}(X_1 + \cdots + X_n) = \mathbb{E}(X_1) + \cdots + \mathbb{E}(X_n)$. Ainsi

$$\begin{split} \mathbb{V}(X_1 + \dots + X_n) &= \mathbb{E}((X_1 + \dots + X_n)^2) - (\mathbb{E}(X_1) + \dots + \mathbb{E}(X_n))^2 \\ &= \mathbb{E}\left(\sum_{i=1}^n X_i^2 + 2\sum_{i < j} X_i X_j\right) - \sum_{i=1}^n \mathbb{E}(X_i)^2 - 2\sum_{i < j} \mathbb{E}(X_i)\mathbb{E}(X_j) \\ &= \sum_{i=1}^n (\mathbb{E}(X_i^2) - \mathbb{E}(X_i)^2) - 2\sum_{i < j} (\mathbb{E}(X_i X_j) - \mathbb{E}(X_i)\mathbb{E}(X_j)) \\ &= \sum_{i=1}^n \mathbb{V}(X_i) \end{split}$$

puisque les variables sont deux à deux indépendantes.

5.2 Variances usuelles

Proposition

Si X suit la loi de Bernoulli de paramètre $p \in [0, 1]$, alors :

$$V(X) = p(1-p)$$

Démonstration. On sait déjà que $\mathbb{E}(X) = p$ et $\mathbb{E}(X^2) = 1^2 \mathbb{P}(X = 1) + 0^2 \mathbb{P}(X = 0) = p$ par le théorème de transfert. Ainsi $\mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = p - p^2 = p(1-p)$.

Proposition

Si *X* suit la loi binomiale de paramètres $n \in \mathbb{N}^*$ et $p \in [0, 1]$, on a :

$$V(X) = n \, p (1-p)$$

Démonstration. On sait déjà que $\mathbb{E}(X) = np$. Notons que pour $k \in [2, n]$,

$$k(k-1)\binom{n}{k} = k(k-1)\frac{n!}{(n-k)!k!} = \frac{n!}{(n-k)!(k-2)!} = n(n-1) \times \frac{(n-2)!}{((n-2)-(k-2))!(k-2)!} = n(n-1)\binom{n-2}{k-2}$$

donc par le théorème de transfert,

$$\begin{split} \mathbb{E}(X(X-1)) &= \sum_{k=0}^{n} k(k-1) \mathbb{P}(X=k) \\ &= \sum_{k=2}^{n} k(k-1) \mathbb{P}(X=k) \\ &= \sum_{k=2}^{n} k(k-1) \binom{n}{k} p^{k} (1-p)^{n-k} \\ &= \sum_{k=2}^{n} n(n-1) \binom{n-2}{k-2} p^{k} (1-p)^{n-k} \\ &= n(n-1) \sum_{l=0}^{n-2} \binom{n-2}{l} p^{l+2} (1-p)^{n-2-l} \\ &= n(n-1) p^{2} \sum_{l=0}^{n-2} \binom{n-2}{l} p^{l} (1-p)^{n-2-l} \\ &= n(n-1) p^{2} \end{split}$$

Par suite,

$$\mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \mathbb{E}(X(X-1) + X) - \mathbb{E}(X)^2 = \mathbb{E}(X(X-1)) + \mathbb{E}(X) - \mathbb{E}(X)^2 = n(n-1)p^2 + np - n^2p^2 = np - np^2 = np(1-p).$$