

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1978

Investigation of welding thermal strains in high strength quenched and tempered steel.

Lipsey, Mark D.

Massachusetts Institute of Technology

<http://hdl.handle.net/10945/28318>

Downloaded from NPS Archive: Calhoun

<http://www.nps.edu/library>

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community.

Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

Dudley Knox Library / Naval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

INVESTIGATION OF WELDING THERMAL STRAINS IN
HIGH STRENGTH QUENCHED AND TEMPERED STEEL

Mark D. Lipsey

Thesis
L679

DUDLEY KNOX LIBRAR
NAVAL GRADUATE
MONT
MONTEREY CA 9394

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) INVESTIGATION OF WELDING THERMAL STRAINS IN HIGH STRENGTH QUENCHED AND TEMPERED STEEL		5. TYPE OF REPORT & PERIOD COVERED THESIS
7. AUTHOR(s) LIPSEY, MARK D.		8. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS MASS. INST. OF TECHNOLOGY		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS NAVAL POSTGRADUATE SCHOOL CODE 031 MONTEREY, CALIFORNIA, 93940		12. REPORT DATE JUNE 78
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 130
		15. SECURITY CLASS. (of this report) UNCLASS
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) WELDING THERMAL STRAINS; THERMAL STRAINS; QUENCHED AND TEMPERED STEEL		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) SEE REVERSE.		

INVESTIGATION OF WELDING THERMAL STRAINS
IN HIGH STRENGTH QUENCHED AND TEMPERED STEEL

by

MARK D. LIPSEY

Submitted to the Department of Ocean Engineering on May 12, 1978 in partial fulfillment of the requirements for the Degree of Ocean Engineer and to the Department of Materials Science and Engineering on May 12, 1978 in partial fulfillment of the requirements of the Degree of Master of Science in Materials Engineering.

ABSTRACT

Previous studies of transient thermal strains during welding of high strength quenched and tempered steels are discussed. Data on the transient strain and temperature response during welding experiments on HY-130 and low carbon steel are presented. The experiments consisted of unrestrained, multipass, butt welds in one inch thick plates.

The experimental results are compared to analytical predictions by the MIT computer program for the one dimensional analysis of thermal stresses and metal movement during welding. Results indicate that the program accurately predicts the temperature distribution present during welding. However, the program fails to accurately predict the transient strain response except far from the weld line where transverse strains are insignificant. Therefore, the one-dimensional program has limited usefulness for predicting response in thick sections.

Recommendations are made which include a comparison of results with a two-dimensional computer analysis and a metallurgical characterization of both the weld metal and the base metal near the weld.

Thesis Supervisor: Koichi Masubuchi

Title: Professor of Ocean Engineering and Materials Science

Approved for public release,
distribution unlimited.

INVESTIGATION OF WELDING THERMAL STRAINS
IN HIGH STRENGTH QUENCHED AND TEMPERED STEEL

by

LT. MARK D. LIPSEY, USN
B.S., Metallurgy and Materials Science
University of Pennsylvania
(1970)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF
OCEAN ENGINEER
AND FOR THE DEGREE OF
MASTER OF SCIENCE IN MATERIALS ENGINEERING

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June, 1978

Thesis
L679
0.2

**INVESTIGATION OF WELDING THERMAL STRAINS
IN HIGH STRENGTH QUENCHED AND TEMPERED STEEL**

by

MARK D. LIPSEY

Submitted to the Department of Ocean Engineering on May 12, 1978 in partial fulfillment of the requirements for the Degree of Ocean Engineer and to the Department of Materials Science and Engineering on May 12, 1978 in partial fulfillment of the requirements of the Degree of Master of Science in Materials Engineering.

ABSTRACT

Previous studies of transient thermal strains during welding of high strength quenched and tempered steels are discussed. Data on the transient strain and temperature response during welding experiments on HY-130 and low carbon steel are presented. The experiments consisted of unrestrained, multipass, butt welds in one inch thick plates.

The experimental results are compared to analytical predictions by the MIT computer program for the one dimensional analysis of thermal stresses and metal movement during welding. Results indicate that the program accurately predicts the temperature distribution present during welding. However, the program fails to accurately predict the transient strain response except far from the weld line where transverse strains are insignificant. Therefore, the one-dimensional program has limited usefulness for predicting response in thick sections.

Recommendations are made which include a comparison of results with a two-dimensional computer analysis and a metallurgical characterization of both the weld metal and the base metal near the weld.

Thesis Supervisor: Koichi Masubuchi

Title: Professor of Ocean Engineering and Materials Science

ACKNOWLEDGEMENTS

I wish to thank many individuals at MIT who were of great assistance to me in my thesis research. Mr. Fred Merlis of MIT's Aerelastic Laboratory, Mr. Anthony Zona of the Materials Joining Laboratory, and Mr. Robert Huston of the Materials Processing Laboratory were especially helpful in the preparation and conduct of my welding experiments, and special thanks goes to Professor Koichi Masubuchi for his advice and support of my work. I am also indebted to Mr. Ivo Fioretti of the Naval Ship Engineering Center and Mr. Jim Peck of Mare Island Naval Shipyard for providing the material necessary for my research.

Finally, I thank Ms. Debbie Schmitt for her great perception and perseverance in typing this thesis.

TABLE OF CONTENTS

	<u>Page</u>
TITLE PAGE	1
ABSTRACT	2
ACKNOWLEDGEMENTS	3
TABLE OF CONTENTS	4
LIST OF FIGURES	5
LIST OF TABLES	8
I. INTRODUCTION	9
A. Background	9
B. Previous Work in Welding Analysis	11
C. Previous Work in Quenched and Tempered Steels	16
D. Aim and Purpose of Present Study	17
II. MATERIAL CHARACTERISTICS	19
III. PROCEDURES	35
A. Scope of Research	35
B. Measurement of Strain	35
C. Apparatus	37
1. Specimen Preparation	37
2. Instrumentation	38
D. Experimental Procedure	39
IV. RESULTS	48
A. Presentation of Data	48
V. DISCUSSION OF RESULTS	76
A. HY-130	76
B. 1020 Steel	78
C. Analytical Comparison	79
VI. CONCLUSIONS AND RECOMMENDATIONS	82
REFERENCES	86

LIST OF FIGURES

	<u>Page</u>
1. Schematic Representation of Changes in Temperature Stress During Welding	15
2. Estimated Effect of Temperature on 0.2% Offset Yield Stress for HY-130	23
3. Estimated Effect of Temperature on Young's Modulus for HY-130	24
4. Estimated Effect of Temperature on the Coefficient of Thermal Expansion for HY-130	25
5. Estimated Effect of Temperature on Density of HY-130	26
6. Estimated Effect of Temperature on the Thermal Conductivity of HY-130	27
7. Estimated Effect of Temperature on Specific Heat of HY-130	28
8. Estimated Effect of Temperature on 0.2% Offset Yield Stress for 1020 Steel	29
9. Estimated Effect of Temperature on Young's Modulus for 1020 Steel	30
10. Estimated Effect of Temperature on the Coefficient of Thermal Expansion for 1020 Steel	31
11. Estimated Effect of Temperature on Density of 1020 Steel	32
12. Estimated Effect of Temperature on the Thermal Conductivity of 1020 Steel	33
13. Estimated Effect of Temperature on Specific Heat of 1020 Steel	34
14. Effect of Temperature on Apparent Strain for SR-4 Strain Gage	41
15. Test Plate Arrangement	42

LIST OF FIGURES (continued)

	<u>Page</u>
16. Weld Joint Configuration	42
17. Test Plate Support Arrangement	43
18. Location of Instrumentation on HY-130 Specimen I and 1020 Steel	44
19. Location of Instrumentation on HY-130 Specimen II	44
20. Thermocouple and Strain Gage Location on HY-130 Specimen I and 1020 Steel	45
21. Thermocouple and Strain Gage Location on HY-130 Specimen II	45
22. HY-130 Specimen I, Experimental Results, Pass 2 .	51
23. HY-130 Specimen I, Experimental Results, Pass 3 .	52
24. HY-130 Specimen I, Experimental Results, Pass 4 .	53
25. HY-130 Specimen I, Experimental Results, Pass 5 .	54
26. HY-130 Specimen I, Experimental Results, Pass 6 .	55
27. HY-130 Specimen II, Experimental Results, Pass 2	56
28. HY-130 Specimen II, Experimental Results, Pass 3	57
29. HY-130 Specimen II, Experimental Results, Pass 4	58
30. HY-130 Specimen II, Experimental Results, Pass 5	59
31. HY-130 Specimen II, Experimental Results, Pass 6	60
32. HY-130 Specimen II, Experimental Results at 0.6" from Weld Line	61

LIST OF FIGURES (continued)

	<u>Page</u>
33. 1020 Steel, Experimental Results, Pass 2	62
34. 1020 Steel, Experimental Results, Pass 3	63
35. 1020 Steel, Experimental Results, Pass 4	64
36. 1020 Steel, Experimental Results, Pass 5	65
37. 1020 Steel, Experimental Results, Pass 6	66
38. HY-130 Specimen II, 1.0", Temperature and Strain Analytical Comparison, Pass 3	67
39. HY-130 Specimen I, 1.25", Temperature and Strain Analytical Comparison, Pass 3	68
40. HY-130 Specimen II, 1.5", Temperature and Strain Analytical Comparison, Pass 3	69
41. HY-130 Specimen II, 2.0", Temperature and Strain Analytical Comparison, Pass 3	70
42. HY-130 Specimen I, 2.25", Temperature and Strain Analytical Comparison, Pass 3	71
43. HY-130 Specimen I, 4.25", Temperature and Strain Analytical Comparison, Pass 3	72
44. 1020 Steel, 1.25", Temperature and Strain Analytical Comparison, Pass 3	73
45. 1020 Steel, 2.25", Temperature and Strain Analytical Comparison, Pass 3	74
46. 1020 Steel, 4.25", Temperature and Strain Analytical Comparison, Pass 3	75
47. Longitudinal Strain Field in HY-130, Pass 3 . . .	85

LIST OF TABLES

	<u>Page</u>
I. Composition of HY-130	20
II. Mechanical Properties of HY-130	20
III. Composition of 1020 Steel	21
IV. Mechanical Properties of 1020 Steel	21
V. Strain Gage Properties	40
VI. Welding Conditions	47

CHAPTER I

INTRODUCTION

A. Background

Welding is the most widely used form of joining in the fabrication of marine structures. It is used almost exclusively in the fabrication of naval vessels for welding offers many advantages over other forms of joining. These advantages include a reduction in structural weight, an increase in structural strength, and ease of attaining air and water tightness. However, welding does suffer from a few disadvantages which derive from the local heating which occurs during the welding process. Complex thermal stresses which occur during welding may cause cracking and mismatching. High tensile residual stresses near the weld may promote fracture and fatigue crack propagation. Distortion and compressive residual stress may reduce the buckling strength of structural members.

For many years the development of high strength steels for use in submarines and deep diving submersibles has been pursued in order to lower structural weight, provide for an increase in depth, and to improve the safety characteristics of submersibles. The direction this development has taken is toward the use of quenched and tempered steels. By use of proper production procedures,

it is possible to achieve high strength levels as well as superior fracture toughness behavior in quenched and tempered steels. These two characteristics make the development of quenched and tempered steels highly desirable.

Since the mechanical properties of quenched and tempered steels are mainly derived from the heat treatment applied during production, it follows that the heat input which occurs during welding will have a large effect on the properties of the plate near the weld. The structure of the quenched and tempered steel will give rise to highly complex thermal strains near the weld. The exact nature of these strains is not well understood, but the ability to analytically predict the mechanical behavior of the weldment in these complex steels will avoid the huge costs of money, time, and manpower which would be required to empirically generate the data necessary to predict and avoid problems in all stages of fabrication. The key to analytically predicting and avoiding problems during the later stages of fabrication is to develop the ability to predict residual stresses and distortion resulting from welding. The most reliable method of achieving this aim is to accurately predict the thermal strains which occur in the metal near the weld line

during the entire welding process.

B. Previous Work in Welding Analysis

The passage of a welding arc induces the formation of complex stresses and strains in the base metal near the weld line. This phenomenon is primarily due to the nature of the heat source in that a welding arc causes not only local heating but this local heating source is constantly moving. Therefore, the temperature distribution in the metal is non-uniform and it is this non-uniformity of temperature distribution which causes thermal strains to develop and change during the welding process. At the conclusion of welding, residual strains and stresses will remain in the metal.

The formation of thermal strains and stresses near the weld line in a low carbon steel, which is due to the passage of the welding arc, is best described by Masubuchi [10] and is repeated here.

"Figure 1 shows schematically how residual stresses are formed in a weld. Figure 1a shows a bead-on-plate weld in which a weld bead is being laid at a speed v . O-xy is the coordinate axis; the origin, O, is on the surface underneath the welding arc, and the x direction lies in the direction of welding.

Figure 1b shows temperature distribution along several cross sections. Along Section A-A, which is ahead of the welding arc, the temperature change due to welding, ΔT , is almost zero (Figure 1b-1). Along Section B-B, which crosses the welding arc, the temperature distribution is very steep (Figure 1b-2). Along Section C-C, which is some distance behind the welding arc, the distribution of temperature change is as shown in Figure 1b-3. Along Section D-D, which is very far from the welding arc, the temperature change due to welding again diminishes (Figure 1b-4).

Figure 1c shows the distribution of stresses along these sections in the x direction, σ_x . Stress in the y direction, σ_y , and shearing stress, τ_{xy} , also exist in a two-dimensional stress field.

Along Section A-A, thermal stresses due to welding are almost zero (Figure 1c-1). The stress distribution along Section B-B is shown in Figure 1c-2. Stresses in areas underneath the welding arc are close to zero, because molten metal does not support loads. Stresses in areas somewhat away from the arc are compressive, because the expansion of these areas is restrained by surrounding areas that are heated to lower temperatures. Since the temperatures of these areas are quite high and the yield strength

of the material is low, stresses in these areas are as high as the yield strength of the material at corresponding temperatures. The amount of compressive stress increases with increasing distance from the weld or with decreasing temperature. However, stresses in areas away from the weld are tensile and balance with compressive stresses in areas near the weld. In other words,

$$\int \sigma_x \cdot dy = 0$$

across Section B-B. Thus, the stress distribution along Section B-B is as shown in Figure 1c-2.

Stresses are distributed along Section C-C as shown in Figure 1c-3. Since the weld-metal and base-metal regions near the weld have cooled, they try to shrink causing tensile stresses in areas close to the weld. As the distance from the weld increases, the stresses first change to compressive and then become tensile.

Figure 1c-4 shows the stress distribution along Section D-D. High tensile stresses are produced in areas near the weld, while compressive stresses are produced in areas away from the weld. The distribution of residual stresses that remain after welding is completed is shown in the figure.

The cross-hatched area, MM', Figure 1a shows the region where plastic deformation occurs during the welding thermal cycle. The cross-hatched area near the origin O indicates the region where the metal is melted. The region outside the cross-hatched area remains elastic during the entire welding thermal cycle."

In the past twenty years, a number of research programs have been directed toward the development of analytical methods of analyzing the formation of these transient thermal strains and the resultant residual stresses and strains in weldments. In 1961, Tall [15] developed a simple computer program in the first significant attempt to use a computer in the analysis of thermal stresses during welding. In his study, temperature distribution was treated as a two-dimensional heat conduction problem but longitudinal stress, in the direction of the weld line, was assumed to be a function of the transverse distance only. Transverse stress and shear stress were assumed to be zero. This type of analysis was designated one-dimensional.

In 1968, Masubuchi, et.al. [11] further developed the above technique to handle thermal stresses in bead-on-plate welding. At MIT in 1970, Masubuchi [2] again improved the one-dimensional program. Later, Bryan [3] modified the

a. Weld

b. Temperature Change c. Stress σ_x
 Change

Figure 1 - Schematic Representation of Changes
in Temperature and Stress During Welding

program so that different materials could be analyzed. Provisions for multipass welding and heat losses from the surface were then incorporated into the program.

C. Previous Work on High Strength Steels

At MIT, study of thermal stresses resulting from welding of high strength steels has been done in two programs. Most recently, Hwang [6] studied transient thermal strains during welding and residual stresses in high strength steels. This work complemented that reported by Klein [7,8] on transient thermal strains resulting from welding high strength marine steels.

Klein's study [7] of transient thermal strains concentrated on the quenched and tempered marine steels, HY-80 and HY-130. HY-80 specimens were 1/4 inch thick and 3/4 inch thick and were welded bead-on-plate. The HY-130 specimens were 3/4 inch thick and were multipass butt welded. Strain changes were measured on the specimen surface by electric resistance strain gages and temperature on the surface was measured by adhesive bonded thermocouples. The analytical predictions for HY-80 steel did not agree closely with experimental results. The results of multipass welding of HY-130 showed sudden strain changes which occurred following the passage of the welding arc.

It has been speculated that these sudden strain changes may have been due to phase transformations occurring during cooling of the base metal. Another result was that the strains observed near the weld line decreased as the strength level of the base metal increased.

D. Aim and Purpose of Present Study

Most experimental work to date concerning transient thermal strains and stresses has been concentrated on single pass welding of thin plates. Where multipass welding has been studied, specimen plate thicknesses have not exceeded 3/4 inch. Because of this, it has not been adequately determined whether the computer programs developed to analytically predict thermal stresses and strains during welding are accurate for thicker sections.

The quenched and tempered steel to be used in future U.S. Navy submarines and deep-diving submersibles is HY-130. In order to achieve safe and efficient fabrication procedures for this steel, it is necessary to understand the formation of transient thermal strains during welding in order to be able to predict the residual stresses present after welding. Experimental data on transient thermal strains in thick plates of HY-130 are not extensive and further experiments to generate more data are needed to

increase the existing store of knowledge.

Therefore, the primary purpose of this investigation is to generate experimental data on transient thermal strains during welding of thick sections of HY-130 and low carbon steel. Experiments will consist of unrestrained butt welding by the multipass gas-metal-arc process. Objectives of the experimental program include:

- (1) to verify previous experimental results on HY-130.
- (2) to determine the applicability of the MIT one-dimensional computer program to multipass welding of thick sections.
- (3) to provide useful information for the modification of the present program as well as for the development of more practical computer programs.

CHAPTER II

MATERIAL CHARACTERISTICS

The material chosen for this study is a high strength quenched and tempered steel which exhibits a minimum yield stress of 130 ksi. This steel has been developed by the U.S. Navy for use as hull plating and structural members in deep diving submersibles, and is designated HY-130. In addition to the extremely high yield stress, this steel exhibits very good energy absorption characteristics at low temperatures. The chemical composition of HY-130 quenched and tempered steel is presented in Table I. The mechanical properties of HY-130 in the "as received" condition are presented in Table II.

One test specimen was a low carbon steel with a designation 1020. This steel was chosen in order to provide further data on another material for use in validating and improving the MIT one-dimensional computer program. The nominal chemical composition of this steel and its mechanical properties are listed in Table III and Table IV respectively.

In order to analytically study the heat flow and thermal strains which occur during the welding process, it is necessary to know the physical and mechanical properties of the metal as a function of temperature, from room

TABLE I
COMPOSITION OF HY-130

<u>Element</u>	<u>Weight Percent</u>
Ni	4.75 - 5.25
Cr	0.40 - 0.70
Mn	0.60 - 0.90
Si	0.20 - 0.35
Mo	0.30 - 0.65
V	0.05 - 0.10
C	0.08 - 0.12
P	0.010 maximum
S	0.015 maximum
Ti	0.02 maximum
Cu	0.25 maximum
Fe	Remainder

TABLE II
MECHANICAL PROPERTIES OF HY-130

Yield Stress	145 ksi
Tensile Stress	147 ksi
Elongation in 2 inches	20%
Reduction of Area	69%
V-Notch Requirements	60 ft-lbs at 70°F and 0°F

TABLE III
COMPOSITION OF 1020 STEEL

<u>Element</u>	<u>Weight Percent</u>
C	.18 - .23
Mn	.30 - .60
P	.04 maximum
S	.05 maximum
Fe	Remainder

TABLE IV
MECHANICAL PROPERTIES OF 1020

Yield Stress	48 ksi
Tensile Stress	65 ksi
Elongation in 2 inches	36%
Reduction of Area	59%

temperature through melting temperatures. For most metals this information is not readily available and for HY-130 no systematic study has been made to determine these physical and mechanical properties at elevated temperatures. However, in his study of fracture of welds of HY-130, Schrodt [13] developed curves for the physical and mechanical properties of HY-130 as functions of temperature which he derived from data published in References [1,5,9, 12, and 16]. At the present time, these curves are the most valid approximations for the properties at elevated temperatures which are available. The mechanical and physical properties of HY-130 as functions of temperature are presented in Figures 2-7. These physical and mechanical properties for 1020 steel can be found in the literature [4] and are presented as functions of temperature in Figures 8-13.

Figure 2 - Estimated Effect of Temperature on 0.2% Offset Yield Stress for HY-130

Figure 3 - Estimated Effect of Temperature on Young's Modulus for HY-130

Figure 4 - Estimated Effect of Temperature on the Coefficient of Thermal Expansion for HY-130

Figure 5 - Estimated Effect of Temperature
on Density of HY-130

Figure 6 - Estimated Effect of Temperature
on the Thermal Conductivity of HY-130

Figure 7 - Estimated Effect of Temperature
on Specific Heat of HY-130

Figure 8 - Estimated Effect of Temperature on 0.2% Offset Yield Stress for 1020 Steel

Figure 9 - Estimated Effect of Temperature
on Young's Modulus for 1020 Steel

Figure 10 - Estimated Effect of Temperature on the Coefficient of Thermal Expansion for 1020 Steel

Figure 11 - Estimated Effect of Temperature
on Density of 1020 Steel

Figure 12 - Estimated Effect of Temperature on the Thermal Conductivity of 1020 Steel

Figure 13 - Estimated Effect of Temperature
on Specific Heat of 1020 Steel

CHAPTER III

PROCEDURES

A. Scope of Research

A series of three experiments was conducted to measure temperature changes and thermal strains which occur in thick plate during multipass welding of unrestrained butt joints. Metal movement, as measured by transverse shrinkage, was measured during one of the experiments.

The two primary experiments were conducted with HY-130 steel, a quenched and tempered steel under development by the U.S. Navy for use in deep diving submersibles. U.S. Navy specifications for the fabrication of this steel by the Gas-Metal-Arc method were followed as closely as possible. The third experiment was conducted with a low carbon steel (by using the Gas-Metal-Arc method of welding). The data obtained experimentally were compared to analytical predictions of temperature and strain produced by the MIT one-dimensional computer program for the analysis of thermal strains during welding.

B. Measurement of Strain

Strain measurements were made on the surface of the metal plate by use of adhesive bonded, electric resistance

strain gages. This method of strain measurement on the test plate is used extensively and is a convenient and accurate method of measurement. When measuring strain with resistance strain gages, the total resistance change measured, ΔR , consists of resistance changes taking place in the test plate due to mechanical strains and thermal strains as well as resistance changes due to thermal strain and thermo-electric changes in the strain gage itself. In the case of welding thermal strains, the total resistance change can therefore be expressed in the following way:

$$\Delta R = \Delta R(e) + \Delta R(p) + \Delta R(T) + \Delta R(g)$$

where

$\Delta R(e)$ = resistance change due to elastic strain
in the test plate.

$\Delta R(p)$ = resistance change due to plastic strain
in the test plate.

$\Delta R(T)$ = resistance change due to temperature
induced thermal strain in the gage.

$\Delta R(g)$ = resistance change due to thermo-
electric effects in the gage.

In studying welding thermal strains, the measurements of interest are $\Delta R(e)$ and $\Delta R(p)$. These can be separated out from ΔR if $[\Delta R(T) + \Delta R(g)]$ can be determined throughout the temperature range. This correction has been made by the gage manufacturer and is supplied with the gages in the form of a curve of apparent strain versus temperature. Therefore,

$$E\Delta R(e) + E\Delta R(p) = E\Delta R - A.S.$$

where A.S. = apparent strain.

C. Apparatus

1. Specimen Preparation

All experiments consisted of the unrestrained butt welding of one inch thick plates. Each plate measured approximately 12" x 24" and after welding created a plate with dimensions 24" x 24". In accordance with U.S. Navy specifications, the weld joint configuration chosen was a double-V groove with a 60° included angle. The plates were first flame cut to their 12" x 24" dimensions and then the edges to be welded were machined to the proper configuration. The surfaces of the plates near the weld line were mechanically cleaned in order to remove as much

potential weld contamination as possible. The specimen arrangement and weld joint configuration are shown in Figures 15 and 16 respectively.

2. Instrumentation

Strain on the surface of the specimen plates was measured by electric resistance strain gages set at varying transverse distances from the weld line, but at the same longitudinal position. The strain gages consisted of a 90° pair which allowed the simultaneous measurement of longitudinal and transverse strains during welding. The strain gage specifications are contained in Table V and the curve of apparent strain versus temperature for these gages is shown in Figure 14.

Temperature was measured on the surfaces of the specimen plates by use of Chromel/Alumel adhesive bonded thermocouples referenced to 32°F. These thermocouples were positioned at transverse positions from the weld line corresponding to the transverse positions of the strain gages. On the Specimen I HY-130 plate and on the low carbon steel specimen plate, the thermocouples were positioned 0.5 inches ahead of the strain gages. On the Specimen II HY-130 plate, the thermocouples were positioned 1.0 inches ahead of the strain gages. When reducing the

data, the time the welding arc passed the thermocouples was referenced to the time the arc passed the position of the strain gages so that correct corresponding values of temperature and strain were obtained.

Temperature and strain were simultaneously read out on a twelve channel, continuous recording Visicorder. Thermocouple and strain gage locations are indicated in Figures 18 - 21.

D. Experiment Procedure

Welding on all tests was performed by the semi-automatic gas-metal-arc method (GMA), using a SVI-300 power supply and associated controls manufactured by the Linde Division of Union Carbide Corporation. Arc travel speed, voltage, and amperage were set prior to the start of welding on each test specimen in order to obtain the desired heat input. Pre-heat was applied by oxygen-acetylene torches and monitored by the installed thermocouples. Interpass temperature was also monitored by the installed thermocouples.

The test plates were lined up with the welding head and tack welded together at one end. The welding head was then moved to the starting end of the weld line and preheat was applied to the plates. When the temperature of

TABLE V
STRAIN GAGE PROPERTIES

Gage	SR-4 90°
Designation	FAET-18D-12-S6
Manufacturer	BLH Electronics
Grid Dimensions	.19 x .19 inches
Temperature Range	-100 - 500°F
Resistance	120 Ohms
Gage Factor	1.98
Cement	EPY-500

Figure 14 - Effect of Temperature on Apparent Strain for SR-4 Strain Gage

Figure 15 - Test Plate Arrangement

Figure 16 - Weld Joint Configuration

Figure 17 - Test Plate Support Arrangement

Figure 18 - Location of Instrumentation on HY-130 Specimen I and 1020 Steel

Figure 19 - Location of Instrumentation on HY-130 Specimen II

Figure 20 - Thermocouple and Strain Gage Location on HY-130 Specimen I and 1020 Steel

Figure 21 - Thermocouple and Strain Gage Location on HY-130 Specimen II

the test specimen, as measured by the thermocouples, averaged between 150°F and 175°F, the visicorder was actuated and an arc was struck to begin the first pass. When the arc reached the end of the weld line, it was extinguished and the welding head was returned to the starting point. The visicorder continued to record temperatures and strains continuously for approximately one minute and then intermittently until the next pass was to be made. The test specimen air cooled until the desired interpass temperature range of 150°F-175°F was reached as measured by the thermocouple nearest the weld line. At this point the visicorder was actuated, the arc struck, and the process repeated for the next pass. This procedure was repeated for each of the six passes needed to fill the upper half of the double-V groove. After the completion of the sixth pass, the test specimen was allowed to cool to room temperature. Welding conditions are summarized in Table VI.

TABLE VII

TEST PLATE	1020	HY-130 SPECIMEN I	HY-130 SPECIMEN II
WELD TYPE	BUTT	BUTT	BUTT
PROCESS	GMA	GMA	GMA
ARC VOLTS	26	25	25
POLARITY	DCRP	DCRP	DCRP
TRAVEL SPEED (rpm)	12	12	12
HEAT INPUT (Kjoules/in)	39	37	37
FILLER WIRE	.0625" A-675	.045" Linde-140	.045" Linde-140
SHIELDING GAS	AR, 25% CO ₂	AR, 2% O ₂	AR, 2% O ₂
NUMBER OF PASSES	6	6	6
PREHEAT & INTER PASS TEMP.	150-175°F	150-175°F	150-175°F

WELDING CONDITIONS

CHAPTER IV

RESULTS

A. Presentation of Data

The experimental results are presented as measurements of longitudinal strain versus time for the strain results and temperature versus time for the temperature measurements. The time axis refers to the time elapsed from the start of one pass until the start of the next pass. The time scales for each pass have been adjusted and the data is presented so that the arc passes the point of observation at the time of 40 seconds. This point is marked on each graph. This manipulation of time scales is permissible because there is minimal movement in either temperature or strain during the first 20 seconds of each pass. Note the change in scale at 100 seconds to that of a log plot from 100 to 1000 seconds. Temperature is measured in degrees Fahrenheit. Longitudinal strain is presented as units of microstrain, which equals 10^{-6} in/in.

Figures 22 through 31 present the experimental mechanical strain results for HY-130. First, the results for Specimen I are presented with the longitudinal strain measured at 1.25", 2.25", and 4.25" from the weld line presented in a graph for each of the passes 2-6. The strain and temperature movement measured at 6.25" were

minimal and therefore are not presented. The results for Specimen II are then presented, with the longitudinal strain measured at 1.0", 1.5", and 2.0" from the weld line shown on graphs for passes 2-6. The longitudinal strain measurements at 0.6" from the weld line on Specimen II are shown in Figure 32. These were separated from the other HY-130 results because of the uniqueness of the curves. The results shown are for passes 2, 3, and 5. Pass 4 is very similar to pass 3 and the results for pass 6 are unreliable because the temperature of the strain gage greatly exceeded the maximum allowable temperature of the gage for a significant amount of time.

Figures 33 through 37 present the experimental mechanical strain results for 1020 steel. The longitudinal strain measured at 1.25", 2.25", and 4.25" from the weld line are presented together for each pass, 2-6. The strain measured at 6.25" from the weld line was insignificant and therefore not presented.

Figures 38 through 46 show comparisons between experimental results and predictions by the one-dimensional computer program for both temperature and longitudinal strain. The results shown are for pass 3 and are entirely representative of the comparisons for the other passes. The results for HY-130, both measured and predicted at

1.0", 1.25", 2.0", 2.25", and 4.25" from the weld line,
are presented as well as the results for 1020 steel at
1.25", 2.25", and 4.25" from the weld line.

Figure 22 - HY-130 Specimen I, Experimental Results, Pass 2

Figure 23 - HY-130 Specimen I, Experimental Results, Pass 3

Figure 24 - HY-130 Specimen I, Experimental Results, Pass 4

Figure 25 - HY-130 Specimen I, Experimental Results, Pass 5

Figure 26 - HY-130 Specimen I, Experimental Results, Pass 6

Figure 27 - HY-130 Specimen II, Experimental Results, Pass 2

Figure 28 - HY-130 Specimen II, Experimental Results, Pass 3

Figure 29 - HY-130 Specimen II, Experimental Results, Pass 4

Figure 30 - HY-130 Specimen III, Experimental Results, Pass 5

Figure 31 - HY-130 Specimen II, Experimental Results, Pass 6

Figure 32 - HY-130 Specimen II, Experimental Results at 0.6" from Weld Line

Figure 33 - 1020 Steel, Experimental Results, Pass 2

Figure 34 - 1020 Steel, Experimental Results, Pass 3

Figure 35 - 1020 Steel, Experimental Results, Pass 4

Figure 36 - 1020 Steel, Experimental Results, Pass 5

Figure 37 - 1020 Steel, Experimental Results, Pass 6

Figure 38 - HY-130 Specimen II, 1.0", Temperature and Strain Analytical Comparison, Pass 3

Figure 39 - HY-130 Specimen I, 1.25", Temperature and Strain Analytical Comparison, Pass 3

Figure 40 - HY-130 Specimen II, 1.5", Temperature and Strain Analytical Comparison, Pass 3

1: Experiment
2: Computer

Figure 41 - HY-130 Specimen II, 2.0", Temperature and Strain Analytical Comparison, Pass 3

Figure 42 - HY-130 Specimen I, 2.25", Temperature and Strain Analytical Comparison, Pass 3

Figure 43 - HY-130 Specimen I, 4.25", Temperature and Strain Analytical Comparison, Pass 3

1: Experiment
2: Computer

Figure 44 - 1020 Steel, 1.25", Temperature and Strain Analytical Comparison, Pass 3

1: Experiment
2: Computer

Figure 45 - 1020 Steel, 2.25", Temperature and Strain Analytical Comparison, Pass 3

Figure 46 - 1020 Steel, 4.25", Temperature and Strain Analytical Comparison, Pass 3

CHAPTER V

DISCUSSION OF RESULTS

A. HY-130

In reviewing the results for HY-130, Specimen I shows almost identical results for each pass except for pass 2. After welding pass 1 on Specimen I, longitudinal cracks appeared along the fusion line between the bead and the base metal. They did not extend the entire length of the weld, but did exist in the vicinity of the instrumentation. This is the likely reason that the curves for pass 2 have not quite reached the characteristic shapes shown for passes 3-6. No cracks in the weld appeared following any passes except pass 1 on Specimen I. On Specimen I, where the measured strain at 1.25" from the weld line for passes 2 and 4 does not reach compressive strains as large as for passes 3, 5, and 6, it is felt that this is due to the slight movement of the arc from the prescribed weld line in order to fill the groove. As the arc was further from the points of measurement for passes 2 and 4 than for the other passes, the maximum temperature and strains reached were lower.

During the welding of Specimen II, no cracking occurred after any of the passes and the curves for strain measured at 1.0", 1.5", and 2.0" from the weld line exhibited a

characteristic shape immediately with pass 2, as shown in Figures 27 through 31. Great care was taken to fill the groove with minimal movement of the arc away from the center of the weld line. It is thought that this contributed to the relatively small variation in maximum tensile and compressive strains from one pass to the next.

Very interesting results occurred at 0.6" from the weld line on Specimen II, as shown in Figure 32. This location was the closest point of measurement to the arc and the first notable observation is that the strains which exist between passes reach very high levels of tensile strain. These strain levels are approximately four times the interpass strain levels measured at 1.0" from the weld line. The second notable aspect of the curves is the rapidity in which the strain changes from a smoothly decreasing tensile strain to a high tensile peak and then returns to a smoothly decreasing tensile strain for passes 2, 3, and 4 (not shown). This entire change takes place in less than half the time and covers a much larger total strain change than that measured at any other transverse position. Following these strain movements, pass 5 shows no tensile peak at all but rather the strain starts at a high tensile strain level, reaches a minimum, and returns to a high tensile strain level. As stated in the previous

section, data for pass 6 is unreliable due to the temperatures greatly exceeding the maximum allowable for the strain gage.

This behavior at 0.6" from the weld line resembles that reported by Klein [2] in his study on 3/4" thick HY-130 plate. He reported two tensile peaks at points 1.0" or closer to the weld line. The differences between these results and those of Klein are most likely caused by the fact that his specimens were highly restrained whereas the specimens in this study were unrestrained. Klein [2] attributes this behavior to the possibility that precipitates form in the fusion zone and weld metal upon solidification which will cause high tensile strains in the metal near the weld line. Stoop and Metzbower [16] recently reported that the microstructure in the heat affected zone of GMA weldments of HY-130 consisted of coarse grained Bainite close to the fusion zone and auto-tempered Martensite plus ferrite further away from the fusion zone. Outside the heat affected zone, the base metal remained tempered Martensite. More will be said on this later.

B. 1020 Steel

The results for 1020 steel closely resemble those for

HY-130 in terms of general shape of the curves of strain versus time. During welding of the first pass, there were areas of incomplete fusion and porosity. The second pass resulted in a complete, high quality bead. It is thought that the results shown for pass 2 reflect the low quality weld bead on the first pass and the results for the following passes show the characteristic strain behavior of a good weld in 1020 steel. The results measured at 6.25" from the weld line showed very little strain movement and are deleted from the figures.

C. Analytical Comparison

Figures 38 through 46 compare experimental results for temperature and longitudinal strain with one-dimensional computer program predictions for temperature and longitudinal strain. The results for pass 3 were arbitrarily chosen as they are entirely typical of the comparisons for the other passes.

Immediately apparent upon looking at the figures is that the temperature comparisons are very good whereas the strain comparisons are not very good in most cases. In calculating the temperature, the computer program treats the temperature distribution around the moving arc as a two-dimensional heat conduction problem. It appears that

this approach is adequate to describe the temperature distribution in the plates. Of interest in the results is that the arc efficiency used for calculating the temperature distribution was the same for both HY-130 and 1020 steel. This supports the contention that arc efficiency is only a function of the welding equipment used and not a function of the material being welded.

In analyzing strains, the one-dimensional program assumes that the longitudinal strain is only a function of the transverse distance from the weld line and the transverse strain as well as the shear strain are assumed to be zero. In fact, the transverse strains measured were not zero and for distances from the weld line of up to approximately one inch, the transverse strains were of the same order of magnitude as the longitudinal strains. At transverse distances of approximately two inches, transverse strains are greatly reduced, but still significant. Only at greater transverse distances do they become relatively insignificant. It is thought that the presence of these transverse strains accounts for the poor comparisons between the experimental results and the one-dimensional program predictions because the assumptions used in calculating the longitudinal strains are not valid in these one inch thick plates. However, it can be seen that the

results for 4.25" in both the HY-130 and 1020 steels agree more closely than for points closer to the weld line. This appears to be due to the absence of any significant transverse strains this far from the weld line.

To summarize the computer results, treating the temperature distribution as a two-dimensional heat conduction problem is shown to be an adequate method to use in thick plates. However, in calculating longitudinal strains, the one-dimensional program is only accurate when there are insignificant transverse strains.

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

In summary, the results of these experiments indicate that the following conclusions can be made.

(1) The use of electric resistance strain gages is an inexpensive, accurate, and convenient method of measuring transient thermal strains which occur during welding.

(2) The strain system which exists close to the weld line in HY-130 is extremely complex and not well understood. The strain results of this study at 0.6" from the weld line of an unrestrained butt weld tend to support the existence of the secondary tensile peaks in restrained butt welds as reported by Klein [7]. This behavior is not evident at distances greater than 1.0 inch from the weld line.

(3) The MIT computer program for the one-dimensional analysis of thermal stresses and metal movement during welding, which treats the temperature distribution surrounding the arc as a two-dimensional heat flow problem, accurately predicts the temperature distribution in one inch thick HY-130 and low carbon steel plates.

(4) The existence of large transverse strains invalidates the assumptions made by the one-dimensional computer

program in calculating the longitudinal strains close to the weld line in thick plates. Therefore, the usefulness of the one-dimensional program for predicting longitudinal strains in thick plates is very limited.

(5) The description by Masubuchi [10] of the strain changes occurring in the base metal near the weld as the arc goes by is validated by the results of this study. Figure 47 shows the longitudinal strain field for HY-130 at times thirty seconds before the passage of the arc, during the passage of the arc, and ten minutes after the passage of the arc for pass 3. These curves show that just before the passage of the arc, strains are small with compressive strains near the weld becoming tensile far away. At the moment of passage, most of the plate is in tension with metal near the weld line in compression. Then, ten minutes after the passage of the arc, high tensile strains exist near the weld, changing to compressive strains at points further than approximately two inches.

The results of this study create the desire to continue the work on these specimen plates. Recommendations for further study include the following.

(1) Compare the results with the predictions of a two-dimensional analysis of thermal stresses and metal movement.

(2) Conduct a residual stress analysis of the weldment.

(3) Conduct a metallurgical characterization study of the weldment to complement the study by Stoop and Metzbower [14].

Figure 47 - Longitudinal Strain Field in HY-130, Pass 3

REFERENCES

1. Aerospace Structural Metals Handbook, AFML-TR-68-115, Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, 1970.
2. Andrews, J.B., Arita, M., and Masubuchi, K., "Analysis of Thermal Stresses and Metal Movement During Welding", NASA Contractor Report NASA CR-61351, prepared for the G.C. Marshall Space Flight Center, NASA, December 1970.
3. Bryan, J., "Analysis of Two-Dimensional Thermal Strains and Metal Movement During Welding", O.E. Thesis, MIT, May 1973.
4. Eldridge, E.A. and H.W. Deem, "Report on Physical Properties of Metals and Alloys from Cryogenic to Elevated Temperatures", ASTM Special Technical Publication No. 296.
5. Hibbitt, H.D., "A Numerical Thermo-Mechanical Model for the Welding and Subsequent Loading of a Fabricated Structure", Ph.D. Thesis, Brown University, June 1972.
6. Hwang, J., "Residual Stresses in Weldments in High-Strength Steels", O.E. Thesis, MIT, 1976.
7. Klein, K., "Investigation of Welding Thermal Strains in Marine Steels", O.E. Thesis, MIT, May 1971.
8. Klein, K. and Masubuchi, K., "Investigation of Welding Thermal Strains in High Strength Steels for Marine Structures", paper presented at the Second International Ocean Development Conference, Tokyo, October 1972.
9. Manganello, S.J., B. Mravic and L.F. Porter, "Development of a Low Manganese HY-150 Steel - I", U.S. Steel Technical Report, Pennsylvania, January 1968.
10. Masubuchi, K., "Control of Distortion and Shrinkage in Welding", Welding Research Council Bulletin, No. 149, April 1970.
11. Masubuchi, K., Simmons, F.B., and Monroe, R.E., "Analysis of Thermal Stresses and Metal Movement During Welding", RSIC-820, Redstone Scientific Information Center, Redstone Arsenal, Alabama, July 1968.

12. Rathbone, A.M., "Welding Characteristics of Four Promising 130 to 150 KSI Yield-Strength Submarine-Hull Steels - II", U.S. Steel Technical Report, Pennsylvania, September 1963.
13. Schrodt, C., "Fracture of High Restraint Welds in High Strength Quenched and Tempered Steel", O.E. Thesis, MIT, 1974.
14. Stoop, J. and E.A. Metzbower, "A Metallurgical Characterization and Assessment of SMA, GMA, EB, and LB Welds of HY-130 Steel", NRL Report 8157, September 1977.
15. Tall, L., "Residual Stresses in Welded Plates - A Theoretical Study", Welding Journal, 43, 1, 1964.
16. Willner, A.R. and Soline, M.L., "Materials Survey for the Rescue and Search Vehicles of the Deep-Submergence Systems Project", David Taylor Model Basin Report 1987, U.S. Navy, March 1965.

APPENDIX

Analytical Predictions for HY-130 steel are presented.

	0.600	0.996	1.243	1.500	2.004	2.250	4.243	7.203	9.600	12.000
0	0.600	0.996	1.243	1.500	2.004	2.250	4.243	7.203	9.600	12.000

RECEIVED SOURCE AT T= 10:00

TEMPERATURE	150.00	150.00	150.00	150.00	150.00	150.00	150.00	150.00
TECH. STRAIN	0.0	-0.000	0.0	-0.000	0.0	-0.000	0.0	-0.000
ELASTIC STRAIN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054
STRESS	0.0	-0.000	0.0	-0.000	0.0	-0.000	0.0	-0.000

卷之三

卷之三

TIME= 6.00 INVOLVE MULTI-PASS EFFECT 1 PASS

TEMPERATURE	150.05	150.00	150.00	150.00	150.00	150.00	150.00	150.00	150.00
RECH. STRAIN	-0.001	-0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
PLASTIC STRAIN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.954	0.959	0.959	0.959	0.959	0.959	0.959	0.959	0.959
STRESS	-0.019	-0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

TIME= 7.00 INVOLVE MULTI-PASS EFFECT 1 PASS

TEMPERATURE	151.08	150.02	150.00	150.00	150.00	150.00	150.00	150.00	150.00
RECH. STRAIN	-0.021	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
PLASTIC STRAIN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.954	0.954	0.954	0.954	0.954	0.954	0.954	0.954	0.954
STRESS	-0.019	0.001	0.005	0.005	0.005	0.005	0.005	0.005	0.005

TIME= 8.00 INVOLVE MULTI-PASS EFFECT 1 PASS

TEMPERATURE	206.56	150.26	150.02	150.00	150.00	150.00	150.00	150.00	150.00
RECH. STRAIN	-0.384	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003
PLASTIC STRAIN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.957	0.957	0.957	0.957	0.957	0.957	0.957	0.957	0.957
STRESS	-11.511	0.465	0.089	0.089	0.089	0.089	0.089	0.089	0.089

TIME= 9.00 INVOLVE MULTI-PASS EFFECT 1 PASS

TEMPERATURE	196.05	153.16	150.11	150.02	150.00	150.00	150.00	150.00	150.00
RECH. STRAIN	-5.115	0.010	0.329	0.329	0.328	0.026	0.025	0.016	0.016
PLASTIC STRAIN	-0.924	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.998	0.945	0.909	0.909	0.909	0.979	0.978	0.953	0.959
STRESS	-137.654	0.297	0.865	0.865	0.865	0.763	0.732	0.695	0.712

TIME= 10.00 INVOLVE MULTI-PASS EFFECT 1 PASS

TEMPERATURE	250.00	165.19	150.05	150.02	150.01	150.00	150.00	150.00	150.00
RECH. STRAIN	-17.614	-0.463	0.510	0.514	0.514	0.013	0.013	0.004	0.004
PLASTIC STRAIN	-17.654	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.971	0.970	0.969	0.969	0.969	0.967	0.966	0.962	0.966
STRESS	0.0	-2.608	0.283	0.423	0.422	0.393	0.378	0.256	0.272

TIME= 11.00 INVOLVE MULTI-PASS EFFECT 1 PASS

TEMPERATURE	250.00	194.79	154.79	150.50	150.50	150.00	150.00	150.00	150.00
RECH. STRAIN	-17.614	-0.517	0.627	0.642	0.642	0.040	0.040	0.026	0.026
PLASTIC STRAIN	-17.614	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.996	1.002	1.200	0.998	0.998	0.993	0.992	0.979	0.991
STRESS	0.0	-7.180	0.333	1.259	1.262	1.178	1.132	0.763	0.216

TIME= 12.00 INVOLVE MULTI-PASS EFFECT 1 PASS

TEMPERATURE	250.00	237.50	156.99	151.31	150.14	150.00	150.00	150.00	150.00
RECH. STRAIN	-17.568	-0.517	0.344	0.079	0.384	0.379	0.376	0.051	0.014
PLASTIC STRAIN	-17.269	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.257	1.053	1.045	1.042	1.042	1.033	1.029	1.005	0.966
STRESS	0.0	-15.261	1.336	2.362	2.504	2.347	2.245	1.520	0.421

TIME=	13.30	INVOLVE	MULTI-PASS	EFFECT	1 PASS
TEMPERATURE	2500.00	JU	278.28	164.30	152.93
MECH. STRAIN	-17.515	-0.765	0.042	0.113	0.126
PLASTIC STRAIN	-17.515	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.116	1.099	1.091	1.087	1.082
STRESS	0.0	-22.431	1.251	3.366	3.538
					3.400
					2.292
					0.651
					-0.083
					-2.017

TIME=	14.00	INVOLVE	MULTI-PASS	EFFECT	1 PASS
TEMPERATURE	2500.00	JU	310.75	173.50	155.58
MECH. STRAIN	-17.469	-0.963	0.017	0.134	0.154
PLASTIC STRAIN	-17.469	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.156	1.142	1.132	1.126	1.120
STRESS	0.0	-26.099	0.512	3.996	4.701
					4.634
					2.972
					0.947
					-0.080
					-2.604

TIME=	15.00	INVOLVE	MULTI-PASS	EFFECT	1 PASS
TEMPERATURE	2500.00	JU	344.16	184.61	154.32
MECH. STRAIN	-17.431	-1.103	-0.327	0.141	0.182
PLASTIC STRAIN	-17.431	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.194	1.177	1.165	1.154	1.151
STRESS	0.0	-36.088	-0.792	4.167	5.410
					5.428
					5.223
					1.527
					1.039
					-1.010
					-3.085

TIME=	16.00	INVOLVE	MULTI-PASS	EFFECT	1 PASS
TEMPERATURE	2500.00	J5C.J5	196.31	164.05	151.77
MECH. STRAIN	-17.400	-1.197	-0.002	0.155	0.197
PLASTIC STRAIN	-17.400	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.225	1.205	1.192	1.184	1.176
STRESS	0.0	-34.733	-2.416	3.948	5.016
					5.037
					5.089
					3.010
					1.143
					-1.163
					-1.470

TIME=	17.00	INVOLVE	MULTI-PASS	EFFECT	1 PASS
TEMPERATURE	2500.00	JGJ.JG	207.79	169.52	155.77
MECH. STRAIN	-17.375	-1.256	-0.140	0.110	0.204
PLASTIC STRAIN	-17.375	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.250	1.229	1.215	1.206	1.197
STRESS	0.0	-36.383	-4.152	3.515	6.063
					6.660
					4.433
					4.353
					1.255
					-1.263
					-1.782

TIME=	18.00	INVOLVE	MULTI-PASS	EFFECT	1 PASS
TEMPERATURE	2500.00	J66.J0	216.56	175.46	156.22
MECH. STRAIN	-17.354	-1.290	-0.190	0.095	0.204
PLASTIC STRAIN	-17.354	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.271	1.248	1.233	1.224	1.214
STRESS	0.0	-37.354	-5.059	2.023	6.075
					7.101
					6.882
					4.665
					1.351
					-1.263
					-1.470

TIME=	19.30	INVOLVE	MULTI-PASS	EFFECT	1 PASS
TEMPERATURE	2500.00	J72.64	226.33	181.62	161.57
MECH. STRAIN	-17.354	-1.306	-0.252	0.068	0.194
PLASTIC STRAIN	-17.354	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.281	1.265	1.249	1.229	1.209
STRESS	0.0	-37.385	-7.447	2.004	5.931
					7.388
					7.259
					4.942
					1.455
					-4.253

TEMPERATURE 2500.00 J5C.J5 150.00 150.00 150.00 150.00 150.00
 MECH. STRAIN -17.354 -1.306 -0.252 0.068 0.194 0.244 0.166 0.044 -0.044 -0.144
 PLASTIC STRAIN -17.354 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 1.281 1.265 1.249 1.229 1.209 1.199 1.179 1.159 1.139 1.119
 STRESS 0.0 -37.385 -7.447 2.004 5.931 4.353 4.255 4.151 4.051 3.951

TEMPERATURE 2500.00 J66.J0 150.00 150.00 150.00 150.00 150.00
 MECH. STRAIN -17.354 -1.290 -0.190 0.095 0.204 0.231 0.157 0.042 -0.042 -0.127
 PLASTIC STRAIN -17.354 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 1.271 1.248 1.233 1.224 1.214 1.195 1.186 1.176 1.166 1.156
 STRESS 0.0 -37.354 -5.059 2.023 6.075 7.101 6.882 6.665 6.463 6.263

TEMPERATURE 2500.00 J72.64 150.00 150.00 150.00 150.00 150.00
 MECH. STRAIN -17.354 -1.306 -0.252 0.068 0.194 0.244 0.166 0.044 -0.044 -0.144
 PLASTIC STRAIN -17.354 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 1.281 1.265 1.249 1.229 1.209 1.199 1.179 1.159 1.139 1.119
 STRESS 0.0 -37.385 -7.447 2.004 5.931 7.388 7.259 4.942 4.842 -4.253

TIME =	20.0	INVOLVE	MULTI-PASS	EFFECT	1 PASS
TEMPERATURE	2500.00	375.02	236.88	187.79	163.23
TECH. STRAIN	-17.322	-1.311	-0.301	0.337	6.190
PLASTIC STRAIN	-17.324	0.0	0.0	0.0	0.0
LOGICAL STRAIN	1.303	1.279	1.262	1.252	1.223
STRESS	0.0	-37.8894	-8.8800	1.106	5.0550

TIME= 400.00
 INVOLVE MULTI-PASS EFFECT 1 PASS
 TEMPERATURE 150.00 167.82 167.95 160.93 160.44 165.25 164.57 156.38 151.49 150.31 150.36
 MECH. STRAIN 0.011 -0.019 -0.010 -0.013 -0.013 0.011 0.011 -0.011 0.011 0.011 0.011
 PLASTIC STRAIN -4.005 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.997 0.187 0.987 0.987 0.987 0.987 0.987 0.987 0.987 0.987 0.987
 STRESS 144.000 -2.617 -2.541 -2.456 -2.355 -2.112 -1.973 -0.712 0.586 0.926 0.977

TIME= 450.00
 INVOLVE MULTI-PASS EFFECT 1 PASS
 TEMPERATURE 150.00 166.04 165.71 163.42 163.07 162.23 161.75 157.19 152.01 150.40 150.10
 MECH. STRAIN 0.016 -0.010 -0.018 -0.016 -0.016 -0.015 -0.015 -0.014 -0.014 -0.014 -0.014
 PLASTIC STRAIN -4.015 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990
 STRESS 143.790 -2.076 -2.209 -1.949 -1.378 -1.107 -1.008 -0.602 0.371 0.696 0.757

TIME= 500.00
 INVOLVE MULTI-PASS EFFECT 1 PASS

TIME= 550.00
 INVOLVE MULTI-PASS EFFECT 1 PASS
 TEMPERATURE 150.00 161.13 160.49 160.68 160.43 159.83 159.40 156.11 151.94 150.44 150.15
 MECH. STRAIN 0.020 -0.056 -0.034 -0.051 -0.051 -0.047 -0.044 -0.021 0.007 0.017 0.017
 PLASTIC STRAIN -4.035 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974
 STRESS 143.620 -1.653 -1.011 -1.568 -1.517 -1.344 -1.323 -0.637 0.203 0.571 0.571

TIME= 600.00
 INVOLVE MULTI-PASS EFFECT 1 PASS

TIME= 650.00
 INVOLVE MULTI-PASS EFFECT 1 PASS
 TEMPERATURE 150.00 158.86 158.69 158.54 158.36 157.92 157.64 155.14 151.82 150.54 150.19
 MECH. STRAIN 0.015 -0.045 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 0.004 0.012 0.012
 PLASTIC STRAIN -4.005 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989
 STRESS 143.473 -1.944 -1.309 -1.279 -1.242 -1.151 -1.100 -0.587 0.087 0.416 0.416

TIME= 700.00
 INVOLVE MULTI-PASS EFFECT 1 PASS

TIME= 750.00
 INVOLVE MULTI-PASS EFFECT 1 PASS
 TEMPERATURE 150.00 157.09 156.96 156.85 156.72 156.39 156.20 155.30 151.66 150.55 150.24
 MECH. STRAIN 0.011 -0.017 -0.016 -0.016 -0.016 -0.015 -0.015 -0.014 -0.014 -0.014 -0.014
 PLASTIC STRAIN -4.005 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965
 STRESS 143.350 -1.106 -1.046 -1.058 -1.031 -0.964 -0.926 -0.540 -0.053 0.204 0.204

TIME= 800.00
 INVOLVE MULTI-PASS EFFECT 1 PASS

TIME= 850.00
 INVOLVE MULTI-PASS EFFECT 1 PASS
 TEMPERATURE 150.00 155.69 155.59 155.51 155.42 155.17 155.13 154.59 151.50 150.55 150.27
 MECH. STRAIN 0.008 -0.031 -0.010 -0.010 -0.010 -0.010 -0.010 -0.010 -0.010 -0.010 -0.010
 PLASTIC STRAIN -4.005 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.951 0.961 0.961 0.961 0.961 0.961 0.961 0.961 0.961 0.961 0.961
 STRESS 143.248 -0.924 -0.905 -0.888 -0.819 -0.790 -0.498 -0.374 0.118 0.175 0.175

TIME= 900.00
 INVOLVE MULTI-PASS EFFECT 1 PASS

TIME= 950.00
 INVOLVE MULTI-PASS EFFECT 1 PASS
 TEMPERATURE 150.00 154.50 154.51 14.45 154.37 154.19 154.13 152.94 151.13 150.51 150.29
 MECH. STRAIN 0.005 -0.026 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016
 PLASTIC STRAIN -4.005 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.959
 STRESS 143.162 -0.784 -0.710 -0.750 -0.700 -0.664 -0.462 -0.125 0.036 0.175 0.175

TIME= 750.00

	INVOLVE MULTI-PASS EFFECT						1 PASS
TEMPERATURE	150.00	151.69	151.04	151.60	151.54	151.40	153.42
MECH. STRAIN	0.12	-0.023	-0.122	-0.022	-0.122	-0.021	-0.020
PLASTIC STRAIN	-4.015	0.0	0.1	0.0	0.1	0.0	0.0
TOTAL STRAIN	0.956	0.956	0.956	0.956	0.956	0.956	0.956
STRESS	149.038	-0.676	-0.666	-0.656	-0.645	-0.617	-0.614

TIME= 800.00

	INVOLVE MULTI-PASS EFFECT						1 PASS
TEMPERATURE	150.00	152.99	152.95	152.91	152.87	152.76	152.76
MECH. STRAIN	0.020	-0.020	-0.020	-0.019	-0.019	-0.018	-0.018
PLASTIC STRAIN	-4.015	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.954	0.954	0.954	0.954	0.954	0.954	0.954
STRESS	149.039	-0.593	-0.585	-0.578	-0.569	-0.548	-0.535

TIME= 850.00

	INVOLVE MULTI-PASS EFFECT						1 PASS
TEMPERATURE	150.00	152.42	152.39	152.36	152.33	152.26	152.26
MECH. STRAIN	-0.016	-0.016	-0.017	-0.017	-0.017	-0.016	-0.016
PLASTIC STRAIN	-4.69	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.953	0.953	0.953	0.953	0.953	0.953	0.953
STRESS	139.829	-0.521	-0.515	-0.509	-0.503	-0.487	-0.477

TIME= 900.00

	INVOLVE MULTI-PASS EFFECT						1 PASS
TEMPERATURE	150.00	151.96	151.94	151.92	151.89	151.80	151.70
MECH. STRAIN	-0.012	-0.016	-0.016	-0.015	-0.015	-0.015	-0.012
PLASTIC STRAIN	-4.69	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.951	0.951	0.951	0.951	0.951	0.951	0.951
STRESS	139.791	-0.466	-0.462	-0.458	-0.452	-0.443	-0.433

TIME= 950.00

	INVOLVE MULTI-PASS EFFECT						1 PASS
TEMPERATURE	150.00	151.60	151.50	151.56	151.54	151.50	151.47
MECH. STRAIN	-0.014	-0.014	-0.014	-0.014	-0.014	-0.014	-0.013
PLASTIC STRAIN	-4.69	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.950	0.950	0.950	0.950	0.950	0.950	0.950
STRESS	139.757	-0.427	-0.423	-0.420	-0.416	-0.406	-0.401

TIME= 1000.00

	INVOLVE MULTI-PASS EFFECT						1 PASS
TEMPERATURE	150.00	151.30	151.28	151.27	151.26	151.20	150.97
MECH. STRAIN	-0.014	-0.014	-0.014	-0.014	-0.014	-0.013	-0.013
PLASTIC STRAIN	-4.69	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.949	0.949	0.949	0.949	0.949	0.949	0.949
STRESS	139.727	-0.396	-0.393	-0.390	-0.387	-0.380	-0.375

TIME= 1050.00

	INVOLVE MULTI-PASS EFFECT						1 PASS
TEMPERATURE	150.00	151.30	151.24	151.27	151.26	151.20	151.97
MECH. STRAIN	-0.014	-0.014	-0.014	-0.014	-0.014	-0.013	-0.013
PLASTIC STRAIN	-4.69	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.949	0.949	0.949	0.949	0.949	0.949	0.949
STRESS	139.727	-0.396	-0.393	-0.390	-0.387	-0.380	-0.375

	INVOLVE MULTI-PASS EFFECT						1 PASS
TEMPERATURE	150.00	151.30	151.24	151.27	151.26	151.20	151.97
MECH. STRAIN	-0.014	-0.014	-0.014	-0.014	-0.014	-0.013	-0.013
PLASTIC STRAIN	-4.69	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.949	0.949	0.949	0.949	0.949	0.949	0.949
STRESS	139.727	-0.396	-0.393	-0.390	-0.387	-0.380	-0.375

TIME	0.0	INVOLVING MULTIPASS EFFECT		2 PASS	
		TEMPERATURE	STRAIN	TEMPERATURE	STRAIN
-0.314	-0.023	151.30	151.28	151.27	151.26
-0.059	0.0	-0.023	-0.023	-0.023	-0.022
-0.942	0.940	-0.376	-0.376	-0.673	-0.673
1.37	-0.681	-0.681	-0.681	-0.681	-0.681

LINE =		INVOLVE MULTI-FASS EFFECT						2 PASS					
1.00		INVOLVE			MULTI-FASS			EFFECT			2 PASS		
TEMPERATURE	150.02	151.30	151.28	151.27	151.26	151.24	151.20	150.97	150.56	150.41	153.29		
TECH. STRAIN	-J.014	-0.023	-0.023	-0.023	-0.023	-0.023	-0.023	-0.022	-0.021	-0.018	-0.017	-0.016	
PLASTIC STRAIN	-4.099	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	J.C	0.0	
TOTAL STRAIN	G.946	0.940	0.940	0.940	0.940	0.940	0.940	0.940	0.940	0.940	0.940	0.940	
STRESS	139.442	-0.681	-0.678	-0.675	-0.673	-0.665	-0.661	-0.613	-0.531	-0.530	-0.530	-0.476	
LINE =		INVOLVE MULTI-FASS EFFECT						2 PASS					
2.00		INVOLVE			MULTI-FASS			EFFECT			2 PASS		
TEMPERATURE	150.00	151.40	151.2H	151.27	151.26	151.23	151.23	150.97	150.56	150.41	150.29		
TECH. S.STRAIN	-0.014	-0.023	-0.023	-0.023	-0.023	-0.023	-0.023	-0.022	-0.021	-0.018	-0.017	-0.016	
PLASTIC S.STRAIN	1.693	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
TOTAL S.STRAIN	G.740	0.740	0.740	0.740	0.740	0.740	0.740	0.740	0.740	0.740	0.740	0.740	
STRESS	139.442	-0.681	-0.678	-0.675	-0.673	-0.665	-0.661	-0.613	-0.531	-0.530	-0.530	-0.476	

TIME =	INVOLVE MULTI-PASS EFFECT		2 PASS	
	3.00	1.00	3.00	1.00
TEMPERATURE	150.00	151.50	151.20	151.40
STRECH. STRAIN	-0.314	-0.323	-0.323	-0.323
PLASTIC STRAIN	-6.699	0.0	0.0	0.0
FINAL STRAIN	0.440	3.940	0.440	0.440
STRESS, S	139.442	-0.681	-0.678	-0.673

TIME =	4.03	INVOLVE		MULTI-LASS EFFECT		2 PASS	
		STRAIN	STRESS	STRAIN	STRESS	STRAIN	STRESS
TEMPERATURE	150.26	151.30	151.26	151.27	151.26	150.97	150.56
CREATING STRAIN	-0.14	-0.22	-0.32	-0.23	-0.23	-0.22	-0.17
PLASTIC STRAIN	-0.44	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.94	0.34	0.34	0.34	0.34	0.34	0.34
STRESS	139.442	-0.681	-0.578	-0.675	-0.673	-0.665	-0.531

TIME=	7.30	INVOLVE	MULTI-PASS	EFFECT	2 PASS
TEMPERATURE	151.66	151.32	151.29	151.27	151.26
MECH. STRAIN	-0.025	-0.043	-0.023	-0.023	-0.023
PLASTIC STRAIN	-4.699	0.9	0.0	0.0	0.0
TOTAL STRAIN	6.390	0.943	0.940	0.946	0.940
STRESS	119.383	-0.665	-0.677	-0.675	-0.672
TIME=	8.30	INVOLVE	MULTI-PASS	EFFECT	2 PASS
TEMPERATURE	179.50	151.56	151.30	151.28	151.26
MECH. STRAIN	-0.216	-0.024	-0.022	-0.022	-0.021
PLASTIC STRAIN	-8.699	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.941	0.941	0.941	0.941	0.941
STRESS	113.008	-0.706	-0.654	-0.640	-0.645
TIME=	9.00	INVOLVE	MULTI-PASS	EFFECT	2 PASS
TEMPERATURE	60.46	150.46	151.40	151.29	151.26
MECH. STRAIN	-5.445	-0.029	-0.036	-0.037	-0.037
PLASTIC STRAIN	-6.699	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.955	0.955	0.955	0.955	0.955
STRESS	54.599	-0.864	-0.244	-0.222	-0.216
TIME=	10.00	INVOLVE	MULTI-PASS	EFFECT	2 PASS
TEMPERATURE ²	2500.30	166.49	152.14	151.35	151.27
MECH. STRAIN	-17.507	-0.028	0.070	0.075	0.076
PLASTIC STRAIN	-17.507	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.038	1.030	1.040	1.040	1.038
STRESS	0.3	-0.861	2.083	2.242	2.259
TIME=	11.00	INVOLVE	MULTI-PASS	EFFECT	2 PASS
TEMPERATURE	2500.00	190.29	154.07	151.57	151.31
MECH. STRAIN	-17.576	-0.225	0.067	0.084	0.086
PLASTIC STRAIN	-17.576	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.049	1.049	1.049	1.049	1.049
STRESS	0.0	-6.672	1.996	2.505	2.559
TIME=	12.00	INVOLVE	MULTI-PASS	EFFECT	2 PASS
TEMPERATURE	2500.00	230.74	158.28	152.58	151.40
MECH. STRAIN	-17.561	-0.512	0.054	0.093	0.101
PLASTIC STRAIN	-17.561	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.064	1.064	1.064	1.064	1.064
STRESS	0.0	-15.098	1.599	2.758	2.997
TIME=	13.00	INVOLVE	MULTI-PASS	EFFECT	2 PASS
TEMPERATURE	2500.00	270.54	165.29	154.20	151.62
MECH. STRAIN	-17.545	-0.743	0.021	0.097	0.115
PLASTIC STRAIN	-17.545	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.080	1.080	1.080	1.080	1.080
STRESS	0.0	-24.256	0.637	2.897	3.503

LIN	15-09	INVOLVE	BULLI-PASS	EFFECT	2 PASS
TEMPERATURE	250.00	345.36	185.89	160.66	153.53
TECH. STRAIN	-17.520	-1.184	-0.026	0.079	0.427
LASTIC STRAIN	-17.520	0.0	V.C.	C.0	0.0
LASTL STRAIN	1.105	1.105	1.105	1.105	1.105
LASTL TOTAL	0.0	-36.447	-28.847	2.348	3.709
LASTL STRSS					

LIVE =	16.40	INVOLVE	MULTI-CLASS	EFFECT	2 PASS
EPICLONATHUS	2630.03	J51.55	197.19	165.J2	155.03
ETCH. SERIUM	-17.511	-1.297	-0.169	0.-056	0.-126
LAGIC. SERIUM	-17.511	0.0	0.0	0.0	0.0
LAGIC. SERIUM	1.114	1.114	1.114	1.114	1.114
THALASS.	0.0	-47.019	-46.991	1.061	3.761
				4.510	4.535
				4.588	4.671
				4.731	4.751
				4.771	4.791
				4.811	4.831
				4.841	4.861
				4.871	4.891
				4.901	4.921
				4.931	4.951
				4.961	4.981
				4.991	5.011
				5.021	5.041
				5.051	5.071
				5.081	5.101
				5.111	5.131
				5.141	5.161
				5.171	5.191
				5.201	5.221
				5.231	5.251
				5.261	5.281
				5.291	5.311
				5.321	5.341
				5.351	5.371
				5.381	5.401
				5.411	5.431
				5.441	5.461
				5.471	5.491
				5.501	5.521
				5.531	5.551
				5.561	5.581
				5.591	5.611
				5.621	5.641
				5.651	5.671
				5.681	5.701
				5.711	5.731
				5.741	5.761
				5.771	5.791
				5.801	5.821
				5.831	5.851
				5.861	5.881
				5.891	5.911
				5.921	5.941
				5.951	5.971
				5.981	6.001
				6.011	6.031
				6.041	6.061
				6.071	6.091
				6.101	6.121
				6.131	6.151
				6.161	6.181
				6.191	6.211
				6.221	6.241
				6.251	6.271
				6.281	6.301
				6.311	6.331
				6.341	6.361
				6.371	6.391
				6.401	6.421
				6.431	6.451
				6.461	6.481
				6.491	6.511
				6.521	6.541
				6.551	6.571
				6.581	6.601
				6.611	6.631
				6.641	6.661
				6.671	6.691
				6.701	6.721
				6.731	6.751
				6.761	6.781
				6.791	6.811
				6.821	6.841
				6.851	6.871
				6.881	6.901
				6.911	6.931
				6.941	6.961
				6.971	6.991
				7.001	7.021
				7.031	7.051
				7.061	7.081
				7.091	7.111
				7.121	7.141
				7.151	7.171
				7.181	7.201
				7.211	7.231
				7.241	7.261
				7.271	7.291
				7.301	7.321
				7.331	7.351
				7.361	7.381
				7.391	7.411
				7.421	7.441
				7.451	7.471
				7.481	7.501
				7.511	7.531
				7.541	7.561
				7.571	7.591
				7.601	7.621
				7.631	7.651
				7.661	7.681
				7.691	7.711
				7.721	7.741
				7.751	7.771
				7.781	7.801
				7.811	7.831
				7.841	7.861
				7.871	7.891
				7.901	7.921
				7.931	7.951
				7.961	7.981
				7.991	8.011
				8.021	8.041
				8.051	8.071
				8.081	8.101
				8.111	8.131
				8.141	8.161
				8.171	8.191
				8.201	8.221
				8.231	8.251
				8.261	8.281
				8.291	8.311
				8.321	8.341
				8.351	8.371
				8.381	8.401
				8.411	8.431
				8.441	8.461
				8.471	8.491
				8.501	8.521
				8.531	8.551
				8.561	8.581
				8.591	8.611
				8.621	8.641
				8.651	8.671
				8.681	8.701
				8.711	8.731
				8.741	8.761
				8.771	8.791
				8.801	8.821
				8.831	8.851
				8.861	8.881
				8.891	8.911
				8.921	8.941
				8.951	8.971
				8.981	9.001
				9.011	9.031
				9.041	9.061
				9.071	9.091
				9.101	9.121
				9.131	9.151
				9.161	9.181
				9.191	9.211
				9.221	9.241
				9.251	9.271
				9.281	9.301
				9.311	9.331
				9.341	9.361
				9.371	9.391
				9.401	9.421
				9.431	9.451
				9.461	9.481
				9.491	9.511
				9.521	9.541
				9.551	9.571
				9.581	9.601
				9.611	9.631
				9.641	9.661
				9.671	9.691
				9.701	9.721
				9.731	9.751
				9.761	9.781
				9.791	9.811
				9.821	9.841
				9.851	9.871
				9.881	9.901
				9.911	9.931
				9.941	9.961
				9.971	9.991
				10.001	10.021
				10.031	10.051
				10.061	10.081
				10.091	10.111
				10.121	10.141
				10.151	10.171
				10.181	10.201
				10.211	10.231
				10.241	10.261
				10.271	10.291
				10.301	10.321
				10.331	10.351
				10.361	10.381
				10.391	10.411
				10.421	10.441
				10.451	10.471
				10.481	10.501
				10.511	10.531
				10.541	10.561
				10.571	10.591
				10.601	10.621
				10.631	10.651
				10.661	10.681
				10.691	10.711
				10.721	10.741
				10.751	10.771
				10.781	10.801
				10.811	10.831
				10.841	10.861
				10.871	10.891
				10.901	10.921
				10.931	10.951
				10.961	10.981
				10.991	11.011
				11.021	11.041
				11.051	11.071
				11.081	11.101
				11.111	11.131
				11.141	11.161
				11.171	11.191
				11.201	11.221
				11.231	11.251
				11.261	11.281
				11.291	11.311
				11.321	11.341
				11.351	11.371
				11.381	11.401
				11.411	11.431
				11.441	11.461
				11.471	11.491
				11.501	11.521
				11.531	11.551
				11.561	11.581
				11.591	11.611
				11.621	11.641
				11.651	11.671
				11.681	11.701
				11.711	11.731
				11.741	11.761
				11.771	11.791
				11.801	11.821
				11.831	11.851
				11.861	11.881
				11.891	11.911
				11.921	11.941
				11.951	11.971
				11.981	12.001
				12.011	12.031
				12.041	12.061
				12.071	12.091
				12.101	12.121
				12.131	12.151
				12.161	12.181
				12.191	12.211
				12.221	12.241
				12.251	12.271
				12.281	12.301
				12.311	12.331
				12.341	12.361
				12.371	12.391
				12.401	12.421
				12.431	12.451
				12.461	12.481
				12.491	12.511
				12.521	12.541
				12.551	12.571
				12.581	12.601
				12.611	12.631
				12.641	12.661
				12.671	12.691
				12.701	12.721
				12.731	12.751
				12.761	12.781
				12.791	12.811
				12.821	12.841
				12.851	12.871
				12.881	12.901
				12.911	12.931
				12.941	12.961
				12.971	12.991
				13.001	13.021
				13.031	13.051
				13.061	13.081
				13.091	13.111
				13.121	13.141
				13.151	13.171
				13.181	13.201
				13.211	13.231
				13.241	13.261
				13.271	13.291
				13.301	13.321

INL =	17.30	INVOLVE	MULTI-PASS	EFFECT	2 PASS
TEMPERATURE	-2500.00	JW2-44	209-37	170-79	157-34
ECU. STRAIN	-17.50	-1.371	-0.242	0.026	0.141
LAWSON STRAIN	-17.50	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.022	1.122	1.222	1.122	1.122
STRESS	6.0	-19.720	-7.152	0.771	4.719

LNG	10.00	INVOLVE	MULTI-MASS	EFFECT	2 PASS
EM. STRAIN	25.66.00	369.44	214.23	176.74	159.46
ECII. STRAIN	-17.44.00	-1.418	-0.312	-0.009	0.110
CLASSIC STRAIN	-17.44.00	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.129	1.129	1.129	1.129	1.129

LINE =	19-30	INVOLVE	MULTI-PASS	EFFECT.	2 PASS
EAPLARQUEY	4500.00	373.83	225.60	102.49	162.33
ECH. STRAIN	-17.441	-1.446	-0.476	-0.046	0.166
ELASIC STRAIN	-17.441	0.0	0.0	0.0	0.0
ELASIC STRAIN	-17.441	0.134	0.134	0.134	1.134
TOTAL STRAIN					

LINEx	20.30	INVOLVEx	MULTI-PASS	EFFICIEx	2 PASS
TEMPERATURE	2491.22	J16.21	2381.14	199.36	152.70
EACH	-16.682	-1.546	-0.519	-0.171	-0.007
SANDAL	-17.951	0.0	0.0	0.0	0.0
CLASSIC STRAIN	-1.053	1.053	1.053	1.053	1.053
TOTAL STRAIN	-1.053	1.053	1.053	1.053	1.053

TIME= .00.00
 TEMPERATURE 1491.70 361.46 279.53 233.56 199.06 163.46 156.09 150.97 150.56 150.41 150.24
 MECH. STRAIN -10.501 -1.412 -0.199 -0.465 -0.213 -0.324 -0.075 C.114 0.117 C.118 0.114
 PLASTIC STRAIN -15.219 C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 1.074 1.074 1.074 1.074 1.074 1.074 1.074 1.074 1.074 1.074 1.074
 STRESS 16.031 -40.908 -23.424 -13.762 -6.491 0.843 2.223 J.387 3.470 3.500 J.525

TIME= 40.00
 TEMPERATURE 1C34.51 3J6.63 284.0d 249.7C 219.42 177.42 166.29 156.98 150.56 150.41 150.24
 MECH. STRAIN -7.257 -1.223 -0.842 -0.580 -0.364 -0.370 0.010 0.115 0.117 0.118 0.117
 PLASTIC STRAIN -11.394 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 1.075 1.075 1.075 1.075 1.075 1.075 1.075 1.075 1.075 1.075 1.075
 STRESS 82.465 -35.577 -24.365 -17.078 -10.711 -2.376 0.289 3.409 3.495 3.525 3.550

TIME= 50.00
 TEMPERATURE 749.74 315.52 276.96 253.12 228.39 169.07 175.75 151.07 150.56 150.41 150.26
 MECH. STRAIN -6.595 -1.065 -0.794 -0.665 -0.427 -0.140 -0.056 0.114 C.117 C.118 0.119
 PLASTIC STRAIN -8.645 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 1.075 1.075 1.075 1.075 1.075 1.075 1.075 1.075 1.075 1.075 1.075
 STRESS 111.644 -41.069 -23.277 -17.001 -12.592 -4.396 -1.650 3.391 3.495 3.525 3.550

TIME= 60.00
 TEMPERATURE 5/1.54 293.26 271.33 251.3b 2J1.34 196.43 183.09 151.32 150.56 150.41 150.29
 MECH. STRAIN -3.13y -0.948 -0.739 -0.594 -0.449 -0.201 -0.10d C.111 0.116 C.117 0.117
 PLASTIC STRAIN -7.564 0.0 C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 1.074 1.074 1.074 1.074 1.074 1.074 1.074 1.074 1.074 1.074 1.074
 STRESS 123.127 -27.421 -21.688 -17.464 -13.244 -5.953 -3.194 J.309 J.40J 3.493 J.510

TIME= 70.00
 TEMPERATURE 465.75 284.02 263.33 247.53 231.14 260.77 188.41 152.11 150.56 150.41 150.29
 MECH. STRAIN -2.224 -0.844 -0.682 -0.449 -0.233 -0.145 0.104 0.115 0.116 0.116 0.116
 PLASTIC STRAIN -6.745 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 1.072 1.072 1.072 1.072 1.072 1.072 1.072 1.072 1.072 1.072 1.072
 STRESS 128.719 -24.439 -20.346 -16.705 -13.253 -6.907 -4.304 3.094 3.409 3.440 3.464

TIME= 80.00
 TEMPERATURE 364.12 272.04 255.66 242.87 229.29 203.01 191.51 152.97 150.56 150.41 150.29
 MECH. STRAIN -1.569 -0.749 -0.629 -0.537 -0.439 -0.252 -0.171 C.095 0.112 0.113 0.113
 PLASTIC STRAIN -6.160 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 1.069 1.069 1.069 1.069 1.069 1.069 1.069 1.069 1.069 1.069 1.069
 STRESS 131.977 -21.974 -16.504 -15.804 -12.948 -7.455 -5.069 2.337 J.325 J.356 J.380

TIME= 90.00
 TEMPERATURE 324.34 261.79 248.52 2J7.59 226.61 203.82 193.44 153.97 150.56 150.41 150.29
 MECH. STRAIN -1.140 -0.677 -0.581 -0.505 -0.423 -0.261 -0.184 J.045 0.109 0.116 C.110
 PLASTIC STRAIN -7.744 0.0 C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 1.066 1.066 1.066 1.066 1.066 1.066 1.066 1.066 1.066 1.066 1.066
 STRESS 131.012 -19.096 -11.740 -14.671 -12.4n0 -7.710 -5.069 2.337 J.325 J.356 J.380

TIME=	100.00	INVOLVE	MULTI-PASS	EFFECT	2 PASS
TEMPERATURE	260.04	252.93	241.98	233.17	221.55
MECH. STRAIN	-0.820	-0.616	-0.357	-0.273	-0.245
PLASTIC STRAIN	-5.435	0.0	0.0	0.5	0.6
TOTAL STRAIN	1.363	1.003	1.063	1.063	1.063
STRESS	135.221	-16.122	-15.814	-13.959	-11.940

TIME=	150.00	INVOLVE	MULTI-PASS	EFFECT	2 PASS
TEMPERATURE	161.82	221.67	216.65	212.45	207.60
MECH. STRAIN	-0.142	-0.409	-0.373	-0.310	-0.255
PLASTIC STRAIN	-4.816	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.045	1.045	1.045	1.045	1.045
STRESS	138.591	-12.076	-11.027	-10.150	-9.154

TIME=	200.00	INVOLVE	MULTI-PASS	EFFECT	2 PASS
TEMPERATURE	159.41	202.58	193.03	197.55	194.30
MECH. STRAIN	-0.009	-0.291	-0.271	-0.255	-0.236
PLASTIC STRAIN	-4.816	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.047	1.047	1.047	1.047	1.047
STRESS	143.465	-8.006	-8.036	-7.552	-6.951

TIME=	250.00	INVOLVE	MULTI-PASS	EFFECT	2 PASS
TEMPERATURE	152.72	189.00	186.18	166.76	145.36
MECH. STRAIN	0.041	-0.216	-0.204	-0.194	-0.182
PLASTIC STRAIN	-4.816	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.013	1.013	1.013	1.013	1.013
STRESS	144.503	-6.386	-6.043	-5.749	-5.476

TIME=	300.00	INVOLVE	MULTI-PASS	EFFECT	2 PASS
TEMPERATURE	150.81	180.71	179.66	178.74	170.60
MECH. STRAIN	0.042	-0.164	-0.157	-0.150	-0.143
PLASTIC STRAIN	-4.816	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.001	1.001	1.001	1.001	1.001
STRESS	144.556	-4.868	-4.650	-4.461	-4.243

TIME=	350.00	INVOLVE	MULTI-PASS	EFFECT	2 PASS
TEMPERATURE	150.24	174.08	173.38	172.77	172.03
MECH. STRAIN	0.045	-0.140	-0.123	-0.119	-0.114
PLASTIC STRAIN	-4.810	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.001	1.001	1.001	1.001	1.001
STRESS	144.375	-3.807	-3.664	-3.548	-3.388

TIME=	400.00	INVOLVE	MULTI-PASS	EFFECT	2 PASS
TEMPERATURE	150.46	169.12	166.64	166.21	166.70
MECH. STRAIN	0.047	-0.132	-0.109	-0.099	-0.074
PLASTIC STRAIN	-4.811	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.002	1.002	1.002	1.002	1.002
STRESS	144.131	-3.044	-2.945	-2.850	-2.553

TIME= 450.00 INVOLVE MULTI-PASS EPPFC1 2 PASS

TEMPERATURE	150.07	165.14	164.99	164.69	164.33	163.45	162.95	158.16	152.57	150.61	150.39
MECH. STRAIN	0.021	-0.004	-0.001	-0.019	-0.077	-0.371	-0.667	-0.034	-0.004	-0.016	0.019
PLASTIC STRAIN	-0.816	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.975
STRESS	143.948	-2.483	-2.412	-2.451	-2.477	-2.397	-1.994	-1.023	0.116	0.472	0.557

TIME= 500.00 INVOLVE MULTI-PASS EFFECT 2 PASS

TEMPERATURE	150.03	162.03	162.10	161.96	161.70	161.35	160.66	157.07	152.50	150.09	150.44
MECH. STRAIN	C.015	-0.069	-0.060	-0.060	-0.064	-0.060	-0.057	-0.033	-0.002	0.009	0.012
PLASTIC STRAIN	-0.816	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.969	0.969	0.969	0.969	0.969	0.969	0.969	0.969	0.969	0.969	0.969
STRESS	143.762	-2.064	-2.014	-1.969	-1.915	-1.704	-1.708	-0.974	-0.346	0.281	0.372

TIME= 550.00 INVOLVE MULTI-PASS EFFECT 2 PASS

TEMPERATURE	150.01	160.16	159.90	159.62	159.34	158.06	156.11	152.38	150.55	150.46	150.46
MECH. STRAIN	J.011	-0.059	-0.050	-0.056	-0.055	-0.052	-0.050	-0.031	-0.006	0.C4	0.007
PLASTIC STRAIN	-0.816	C.0									
TOTAL STRAIN	0.964	0.964	0.964	0.964	0.964	0.964	0.964	0.964	0.964	0.964	0.964
STRESS	143.639	-1.749	-1.712	-1.678	-1.639	-1.591	-1.484	-0.924	-0.167	0.217	

TIME= 600.00 INVOLVE MULTI-PASS EFFECT 2 PASS

TEMPERATURE	150.00	156.49	156.25	156.11	157.66	157.61	157.40	155.27	152.22	150.95	150.52
MECH. STRAIN	0.000	-0.051	-0.050	-0.049	-0.040	-0.036	-0.034	-0.030	-0.003	0.003	0.003
PLASTIC STRAIN	-0.816	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.969	0.960	0.960	0.960	0.960	0.960	0.960	0.960	0.960	0.960	0.960
STRESS	143.518	-1.511	-1.482	-1.457	-1.427	-1.351	-1.310	-0.878	-0.250	-0.034	0.085

TIME= 650.00 INVOLVE MULTI-PASS EFFECT 2 PASS

TEMPERATURE	150.00	156.99	156.88	156.79	156.67	156.59	156.23	154.56	152.35	150.96	150.56
MECH. STRAIN	C.011	-0.045	-0.044	-0.044	-0.043	-0.041	-0.039	-0.034	-0.011	-0.004	-0.004
PLASTIC STRAIN	-0.016	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.957	0.957	0.957	0.957	0.957	0.957	0.957	0.957	0.957	0.957	0.957
STRESS	143.415	-1.328	-1.307	-1.288	-1.265	-1.208	-1.175	-0.835	-0.327	-0.105	-0.024

TIME= 700.00 INVOLVE MULTI-PASS EFFECT 2 PASS

TEMPERATURE	150.00	155.48	155.79	155.72	155.63	155.41	155.26	153.96	151.09	150.24	150.58
MECH. STRAIN	0.000	-0.040	-0.039	-0.039	-0.038	-0.037	-0.036	-0.027	-0.013	-0.006	-0.006
PLASTIC STRAIN	-0.816	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.954	0.954	0.954	0.954	0.954	0.954	0.954	0.954	0.954	0.954	0.954
STRESS	143.336	-1.188	-1.172	-1.157	-1.139	-1.094	-1.066	-0.790	-0.379	-0.187	-0.015

TIME= 750.00 INVOLVE MULTI-PASS EFFECT 2 PASS

TEMPERATURE	150.00	154.99	154.93	154.87	154.80	154.62	154.52	153.45	151.73	150.91	150.66
MECH. STRAIN	-0.004	-0.046	-0.035	-0.035	-0.035	-0.033	-0.033	-0.025	-0.014	-0.006	-0.006
PLASTIC STRAIN	-0.700	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.952	0.952	0.952	0.952	0.952	0.952	0.952	0.952	0.952	0.952	0.952
STRESS	143.239	-1.060	-1.051	-1.041	-1.027	-0.991	-0.971	-0.753	-0.404	-0.239	-0.116

TIME= 000.00
 TEMPERATURE 150.00 154.23 154.19 154.13 153.99 153.93 153.92 151.23 150.64 150.61
 MECH. STRAIN -0.3C4 -0.033 -0.033 -0.032 -0.032 -0.030 -0.030 -0.034 -0.034 -0.034
 PLASTIC STRAIN -0.700 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.200 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950
 STRESS 139.712 -0.983 -0.970 -0.960 -0.948 -0.933 -0.933 -0.933 -0.933 -0.933

TIME= 450.00 INVOLVE MULTI-PASS EFFECT 2 PASS
 TEMPERATURE 150.00 151.12 151.67 151.60 151.59 151.47 151.40 152.67 151.44 150.64
 MECH. STRAIN -0.305 -0.031 -0.030 -0.030 -0.030 -0.029 -0.029 -0.024 -0.024 -0.024
 PLASTIC STRAIN -0.704 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.248 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948
 STRESS 139.721 -0.915 -0.907 -0.899 -0.889 -0.865 -0.851 -0.793 -0.453 -0.332 -0.285

TIME= 400.00 INVOLVE MULTI-PASS EFFECT 2 PASS
 TEMPERATURE 150.00 153.26 153.23 153.19 153.15 153.06 153.00 152.38 151.32 150.66
 MECH. STRAIN -0.307 -0.029 -0.029 -0.028 -0.028 -0.020 -0.020 -0.016 -0.016 -0.011
 PLASTIC STRAIN -0.703 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.247 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947
 STRESS 139.693 -0.861 -0.854 -0.847 -0.839 -0.819 -0.807 -0.682 -0.467 -0.360 -0.322

TIME= 950.00 INVOLVE MULTI-PASS EFFECT 2 PASS
 TEMPERATURE 150.00 152.89 152.56 152.64 152.40 152.12 152.67 152.13 151.21 150.65 150.54
 MECH. STRAIN -0.300 -0.024 -0.024 -0.027 -0.027 -0.026 -0.026 -0.022 -0.022 -0.022
 PLASTIC STRAIN -0.700 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.240 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946
 STRESS 139.664 -0.821 -0.815 -0.809 -0.803 -0.795 -0.775 -0.667 -0.460 -0.407 -0.355

TIME= 1000.00 INVOLVE MULTI-PASS EFFECT 2 PASS
 TEMPERATURE 150.00 152.60 152.57 152.55 152.52 152.44 152.42 151.93 151.12 150.02 150.58
 MECH. STRAIN -0.309 -0.027 -0.027 -0.026 -0.026 -0.026 -0.026 -0.022 -0.022 -0.022
 PLASTIC STRAIN -0.703 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.245 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945
 STRESS 139.619 -0.793 -0.785 -0.780 -0.774 -0.759 -0.759 -0.656 -0.493 -0.429 -0.361

TIME= 0.0 INVOLVE MULTI-PASS EFFECT 3 PASS
 TEMPERATURE 150.00 152.00 152.57 152.55 152.52 152.44 152.40 151.23 151.12 150.62 150.58
 MECH. STRAIN -0.309 -0.037 -0.037 -0.037 -0.037 -0.036 -0.036 -0.032 -0.032 -0.032
 PLASTIC STRAIN -0.703 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.234 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934
 STRESS 139.500 -1.110 -1.104 -1.099 -1.093 -1.078 -1.078 -0.975 -0.609 -0.429 -0.361

TIME= 1.00

	INVOLVE MULTI-PASS EFFECT						3 PASS
TEMPERATURE	150.00	152.60	152.57	152.55	152.52	152.44	152.40
HIGH STRAIN	-0.320	-0.337	-0.037	-0.337	-0.337	-0.336	-0.336
PLASTIC STRAIN	-4.73	C.6	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.934	0.934	0.934	0.934	0.934	0.934	0.934
STRESS	159.300	-1.110	-1.104	-1.099	-1.093	-1.069	-0.975

TIME= 2.00

	INVOLVE MULTI-PASS EFFECT						3 PASS
TEMPERATURE	150.00	152.60	152.57	152.55	152.52	152.44	152.40
HIGH STRAIN	-0.320	-0.337	-0.037	-0.337	-0.337	-0.336	-0.336
PLASTIC STRAIN	-4.700	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.934	0.934	0.934	0.934	0.934	0.934	0.934
STRESS	159.303	-1.110	-1.104	-1.099	-1.093	-1.069	-0.975

TIME= 3.00

	INVOLVE MULTI-PASS EFFECT						3 PASS
TEMPERATURE	150.00	152.60	152.57	152.55	152.52	152.44	152.40
HIGH STRAIN	-0.320	-0.337	-0.037	-0.337	-0.337	-0.336	-0.336
PLASTIC STRAIN	-4.700	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.934	0.934	0.934	0.934	0.934	0.934	0.934
STRESS	159.300	-1.110	-1.104	-1.099	-1.093	-1.069	-0.975

TIME= 4.00

	INVOLVE MULTI-PASS EFFECT						3 PASS
TEMPERATURE	150.00	152.60	152.57	152.55	152.52	152.44	152.40
HIGH STRAIN	-0.320	-0.337	-0.037	-0.337	-0.337	-0.336	-0.336
PLASTIC STRAIN	-4.700	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.934	0.934	0.934	0.934	0.934	0.934	0.934
STRESS	159.360	-1.110	-1.104	-1.099	-1.093	-1.069	-0.975

TIME= 5.00

	INVOLVE MULTI-PASS EFFECT						3 PASS
TEMPERATURE	150.00	152.60	152.57	152.55	152.52	152.44	152.40
HIGH STRAIN	-0.320	-0.337	-0.037	-0.337	-0.337	-0.336	-0.336
PLASTIC STRAIN	-4.700	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.934	0.934	0.934	0.934	0.934	0.934	0.934
STRESS	159.300	-1.110	-1.104	-1.099	-1.093	-1.069	-0.975

TIME= 6.00

	INVOLVE MULTI-PASS EFFECT						3 PASS
TEMPERATURE	150.00	152.60	152.57	152.55	152.52	152.44	152.40
HIGH STRAIN	-0.320	-0.337	-0.037	-0.337	-0.337	-0.336	-0.336
PLASTIC STRAIN	-4.700	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.934	0.934	0.934	0.934	0.934	0.934	0.934
STRESS	159.293	-1.110	-1.104	-1.099	-1.093	-1.069	-0.975

TIME= 7.00

	INVOLVE MULTI-PASS EFFECT						3 PASS
TEMPERATURE	150.00	152.60	152.57	152.55	152.52	152.44	152.40
HIGH STRAIN	-0.320	-0.337	-0.037	-0.337	-0.337	-0.336	-0.336
PLASTIC STRAIN	-4.700	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.934	0.934	0.934	0.934	0.934	0.934	0.934
STRESS	159.304	-1.110	-1.104	-1.099	-1.093	-1.069	-0.975

TIME=	0.00	INVOLVE	MULTI-PASS	EFFECT	J PASS
TEMPERATURE	169.16	152.86	152.59	152.55	152.52
MECH. STRAIN	-0.153	-0.033	-0.036	-0.035	-0.034
PLASTIC STRAIN	-0.700	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.951	0.955	0.935	0.935	0.935
STRESS	1.142	-1.156	-1.061	-1.051	-1.043
TIME=	3.03	INVOLVE	MULTI-PASS	EFFECT	J PASS
TEMPERATURE	475.62	155.76	152.68	152.56	152.44
MECH. STRAIN	-2.924	-0.042	-0.621	-0.020	-0.019
PLASTIC STRAIN	-0.704	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.951	0.951	0.951	0.951	0.951
STRESS	64.705	-1.247	-0.623	-0.599	-0.590
TIME=	16.00	INVOLVE	MULTI-PASS	EFFECT	J PASS
TEMPERATURE	2500.00	167.80	153.42	152.63	152.44
MECH. STRAIN	-17.581	-0.032	0.067	0.072	0.073
PLASTIC STRAIN	-17.581	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.044	1.044	1.044	1.044	1.044
STRESS	0.0	-0.941	1.940	2.151	2.159
TIME=	11.00	INVOLVE	MULTI-PASS	EFFECT	J PASS
TEMPERATURE	2500.00	197.59	155.36	152.84	152.44
MECH. STRAIN	-17.571	-0.249	0.064	0.001	0.003
PLASTIC STRAIN	-17.571	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.034	1.054	1.054	1.054	1.054
STRESS	0.0	-6.774	1.903	2.415	2.471
TIME=	12.00	INVOLVE	MULTI-PASS	EFFECT	J PASS
TEMPERATURE	2500.00	239.89	159.57	153.05	152.66
MECH. STRAIN	-16.555	-0.515	0.051	0.090	0.094
PLASTIC STRAIN	-17.555	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.070	1.070	1.070	1.070	1.070
STRESS	0.0	-15.166	1.503	2.666	2.900
TIME=	13.00	INVOLVE	MULTI-PASS	EFFECT	J PASS
TEMPERATURE	2500.00	280.76	166.58	155.40	152.00
MECH. STRAIN	-17.540	-0.197	0.018	0.094	0.112
PLASTIC STRAIN	-17.540	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.065	1.005	1.085	1.085	1.085
STRESS	0.0	-23.354	0.541	2.806	3.334
TIME=	14.00	INVOLVE	MULTI-PASS	EFFECT	J PASS
TEMPERATURE	2500.00	313.19	176.36	158.13	153.74
MECH. STRAIN	-17.526	-1.023	-0.346	0.350	0.120
PLASTIC STRAIN	-17.526	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.099	1.099	1.099	1.099	1.099
STRESS	0.0	-29.858	-0.956	2.600	3.573

TIME= 15.00 INVOLVE MULTI-PASS EFFECT 3 PASS

TEMPERATURE	2407.74	JJ6.57	187.18	161.88	154.79	152.51	152.41	151.93	151.12	150.82	150.58
Mech. STRAIN	-16.74	-1.27	-C.102	-0.037	0.041	C.057	C.050	C.061	C.050	C.060	C.070
PLASTIC STRAIN	-17.526	0.0	J.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.028	1.028	1.028	1.028	1.028	1.028	1.028	1.028	1.028	1.028	1.028
STRESS	(+2.08	-46.947	-5.406	-0.213	1.231	1.094	1.713	1.810	1.976	2.037	2.065

TIME= 16.00 INVOLVE MULTI-PASS EFFECT 3 PASS

TEMPERATURE	2508.00	J52.74	198.97	166.60	156.36	152.57	152.43	151.93	151.12	150.82	150.58
Mech. STRAIN	-17.505	-1.303	-0.172	J.053	0.123	0.149	0.150	C.153	C.153	C.153	C.162
PLASTIC STRAIN	-17.202	C.0	C.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.120	1.120	1.120	1.120	1.120	1.120	1.120	1.120	1.120	1.120	1.120
STRESS	J.0	-37.711	-5.090	1.568	J.673	0.430	0.460	0.4560	0.4720	0.4737	0.4836

TIME= 17.00 INVOLVE MULTI-PASS EFFECT 3 PASS

TEMP DO 2S JDF CONVERGE J= 1 TAU,TUE	2432.41	210.J5	172.07	158.24	152.6H	152.45	151.93	151.12	150.82	150.58	
TEMPERATURE	2482.41	J63.62	210.J5	172.07	158.24	152.6H	152.45	151.93	151.12	150.82	150.58
Mech. STRAIN	-17.440	-1.400	-0.400	-0.062	0.033	C.071	0.072	C.076	C.076	C.076	C.085
PLASTIC STRAIN	-17.505	J.0	J.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.044	1.044	1.044	1.044	1.044	1.044	1.044	1.044	1.044	1.044	1.044
STRESS	C.005	-42.214	-9.764	-1.087	J.969	2.109	2.156	2.261	2.427	2.488	2.536

TIME= 18.00 INVOLVE MULTI-PASS EFFECT 3 PASS

TEMPERATURE	2451.40	J7C.64	221.10	170.01	160.71	152.45	151.50	151.93	151.12	150.82	150.58
Mech. STRAIN	-17.294	-1.504	-0.401	-0.098	0.022	0.025	0.027	C.032	C.032	C.032	C.031
PLASTIC STRAIN	-17.505	C.0	C.0	0.0	0.0	0.0	0.0	C.C	C.C	C.C	C.C
TOTAL STRAIN	1.049	1.049	1.049	1.049	1.049	1.049	1.049	1.049	1.049	1.049	1.049
STRESS	C.050	-43.016	-11.041	-2.897	J.639	2.295	2.318	2.432	2.548	2.659	2.717

TIME= 19.00 INVOLVE MULTI-PASS EFFECT 3 PASS

TEMPERATURE	1590.09	J75.02	230.00	184.17	161.59	153.44	152.56	151.93	151.12	150.82	150.58
Mech. STRAIN	-10.577	-1.524	-0.460	-0.177	0.035	0.074	0.080	C.095	C.095	C.095	C.094
PLASTIC STRAIN	-12.912	0.0	C.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.051	1.051	1.051	1.051	1.051	1.051	1.051	1.051	1.051	1.051	1.051
STRESS	10.136	-34.461	-13.805	-4.082	J.141	2.208	2.307	2.515	2.681	2.742	2.790

TIME= 20.00 INVOLVE MULTI-PASS EFFECT 3 PASS

TEMPERATURE	1216.93	J77.41	239.40	190.34	166.76	153.92	152.66	151.93	151.12	150.82	150.58
Mech. STRAIN	-10.582	-1.532	-0.526	-0.177	-C.013	C.015	C.017	C.048	C.048	C.048	C.049
PLASTIC STRAIN	-12.910	0.0	0.0	0.0	0.0	0.0	0.0	C.0	C.0	C.0	C.0
TOTAL STRAIN	1.055	1.055	1.055	1.055	1.055	1.055	1.055	1.055	1.055	1.055	1.055
STRESS	11.940	-44.060	-15.406	-5.242	-D.393	2.225	2.480	2.620	2.794	2.855	2.903

TIME= 20.00 INVOLVE MULTI-PASS EFFECT 3 PASS

TEMPERATURE	1252.17	J62.00	246.77	246.31	202.51	164.03	157.09	151.93	151.12	150.82	150.58
Mech. STRAIN	-7.438	-1.431	-0.110	-C.043	-C.038	C.038	C.037	C.049	C.049	C.049	C.049
PLASTIC STRAIN	-11.253	0.0	C.0	0.0	0.0	0.0	C.C	C.0	C.0	C.0	C.0
TOTAL STRAIN	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065
STRESS	79.455	-41.494	-23.960	-14.245	-7.033	D.310	1.0395	2.407	3.074	3.134	3.194

TIME= 40.00

	INVOLVE	MULTI-PASS	EFFECT	J PASS
TEMPERATURE	80.5, 26	337.86	285.31	250.94
MECH. STRAIN	-5.199	-1.239	-0.847	-0.596
PLASTIC STRAIN	-9.462	0.0	0.0	0.0
TOTAL STRAIN	1.069	1.069	1.069	1.069
STRESS	107.076	-30.028	-24.813	-17.527

TIME= 50.00

	INVOLVE	MULTI-PASS	EFFECT	J PASS
TEMPERATURE	640.38	316.77	280.20	254.36
MECH. STRAIN	-5.118	-1.079	-0.608	-0.619
PLASTIC STRAIN	-0.077	0.0	0.0	0.0
TOTAL STRAIN	1.070	1.070	1.070	1.070
STRESS	110.967	-41.478	-23.684	-18.206

TIME= 60.00

	INVOLVE	MULTI-PASS	EFFECT	J PASS
TEMPERATURE	540.59	299.53	272.58	252.62
MECH. STRAIN	-6.844	-0.952	-0.753	-0.607
PLASTIC STRAIN	-7.301	0.0	0.0	0.0
TOTAL STRAIN	1.069	1.069	1.069	1.069
STRESS	125.344	-27.822	-22.389	-17.062

TIME= 70.00

	INVOLVE	MULTI-PASS	EFFECT	J PASS
TEMPERATURE	463.71	205.26	264.58	248.78
MECH. STRAIN	-2.212	-0.848	-0.696	-0.581
PLASTIC STRAIN	-0.794	0.0	0.0	0.0
TOTAL STRAIN	1.067	1.067	1.067	1.067
STRESS	126.867	-24.847	-20.448	-17.104

TIME= 80.00

	INVOLVE	MULTI-PASS	EFFECT	J PASS
TEMPERATURE	403.99	273.30	256.92	234.12
MECH. STRAIN	-0.746	-0.763	-0.643	-0.550
PLASTIC STRAIN	-6.310	0.0	0.0	0.0
TOTAL STRAIN	1.054	1.054	1.064	1.064
STRESS	131.346	-22.382	-18.710	-16.208

TIME= 90.00

	INVOLVE	MULTI-PASS	EFFECT	J PASS
TEMPERATURE	356.00	263.06	249.78	239.24
MECH. STRAIN	-1.393	-0.691	-0.595	-0.519
PLASTIC STRAIN	-5.971	0.0	0.0	0.0
TOTAL STRAIN	1.061	1.061	1.061	1.061
STRESS	132.796	-20.307	-17.490	-15.276

TIME= 100.00

	INVOLVE	MULTI-PASS	EFFECT	J PASS
TEMPERATURE	319.40	254.20	244.42	224.79
MECH. STRAIN	-1.112	-0.630	-0.551	-0.407
PLASTIC STRAIN	-5.718	0.0	0.0	0.0
TOTAL STRAIN	1.056	1.056	1.056	1.056
STRESS	130.205	-10.534	-10.221	-10.366

TIME= 150.00

	INVOLVE	MULTI-PASS	EFFECT	3 PASS
TEMPERATURE	216.47	222.96	217.92	213.71
MECH. STRAIN	-0.377	-0.423	-0.367	-0.324
PLASTIC STRAIN	-0.029	0.0	0.0	0.0
TOTAL STRAIN	1.019	1.039	1.039	1.039
STRESS	137.425	-12.498	-11.445	-10.566
	1.917	1.917	1.917	1.917

TIME= 200.00

	INVOLVE	MULTI-PASS	EFFECT	3 PASS
TEMPERATURE	177.74	203.67	201.12	198.77
MECH. STRAIN	-0.124	-0.405	-0.285	-0.269
PLASTIC STRAIN	-0.799	0.0	0.3	0.0
TOTAL STRAIN	1.023	1.043	1.023	1.023
STRESS	130.007	-9.014	-6.461	-7.954
	1.914	1.914	1.914	1.914

TIME= 250.00

	INVOLVE	MULTI-PASS	EFFECT	3 PASS
TEMPERATURE	162.00	191.14	189.47	186.62
MECH. STRAIN	-0.027	-0.229	-0.210	-0.208
PLASTIC STRAIN	-0.716	0.0	0.0	0.0
TOTAL STRAIN	1.004	1.004	1.008	1.008
STRESS	139.343	-6.799	-6.954	-6.157
	1.914	1.914	1.914	1.914

TIME= 300.00

	INVOLVE	MULTI-PASS	EFFECT	3 PASS
TEMPERATURE	155.31	182.01	181.94	180.02
MECH. STRAIN	-0.016	-0.176	-0.171	-0.164
PLASTIC STRAIN	-0.716	0.0	0.0	0.0
TOTAL STRAIN	1.036	0.996	0.996	0.996
STRESS	140.473	-5.286	-5.066	-4.876
	1.914	1.914	1.914	1.914

TIME= 350.00

	INVOLVE	MULTI-PASS	EFFECT	3 PASS
TEMPERATURE	152.39	175.38	174.66	174.04
MECH. STRAIN	-0.016	-0.143	-0.116	-0.133
PLASTIC STRAIN	-0.716	0.0	0.0	0.0
TOTAL STRAIN	1.005	0.945	0.945	0.945
STRESS	140.803	-4.230	-4.382	-3.954
	1.914	1.914	1.914	1.914

TIME= 400.00

	INVOLVE	MULTI-PASS	EFFECT	3 PASS
TEMPERATURE	151.09	170.42	169.91	169.46
MECH. STRAIN	0.316	-0.117	-0.113	-0.110
PLASTIC STRAIN	-0.716	0.0	0.0	0.0
TOTAL STRAIN	0.977	0.977	0.977	0.977
STRESS	140.832	-3.467	-3.363	-3.275
	1.914	1.914	1.914	1.914

TIME= 450.00

	INVOLVE	MULTI-PASS	EFFECT	3 PASS
TEMPERATURE	150.51	169.64	166.20	165.97
MECH. STRAIN	0.313	-0.093	-0.055	-0.039
PLASTIC STRAIN	-0.710	0.0	0.0	0.0
TOTAL STRAIN	0.976	0.970	0.970	0.970
STRESS	140.744	-2.905	-2.432	-2.704
	1.914	1.914	1.914	1.914

TIME= 500.00 INVOLVE MULTI-PASS EFFECT 3 PASS

TEMPERATURE	150.43	161.73	163.46	163.23	162.96	162.27	161.88	158.84	153.36	151.29	150.73
MECH. STRAIN	-0.309	-0.084	-0.082	-0.080	-0.078	-0.074	-0.071	-0.065	-0.061	-0.051	-0.045
PLASTIC STRAIN	-4.716	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.964	0.964	0.964	0.964	0.964	0.964	0.964	0.964	0.964	0.964	0.964
STRESS	140.633	-2.486	-2.483	-2.386	-2.329	-2.190	-2.113	-1.328	-0.316	0.341	0.150

TIME= 550.00 INVOLVE MULTI-PASS EFFECT 3 PASS

TEMPERATURE	150.26	161.46	161.27	161.93	160.38	160.36	160.06	157.07	152.93	151.46	150.77
MECH. STRAIN	0.304	-0.074	-0.072	-0.070	-0.069	-0.065	-0.063	-0.043	-0.045	-0.044	-0.044
PLASTIC STRAIN	-4.716	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.959	0.959	0.959	0.959	0.959	0.959	0.959	0.959	0.959	0.959	0.959
STRESS	140.479	-2.171	-2.131	-2.095	-2.052	-1.947	-1.835	-1.278	-0.437	-0.116	0.001

TIME= 600.00 INVOLVE MULTI-PASS EFFECT 3 PASS

TEMPERATURE	150.13	152.69	159.54	159.40	159.24	158.94	158.60	158.24	152.78	151.37	150.61
MECH. STRAIN	0.303	-0.065	-0.064	-0.063	-0.062	-0.059	-0.058	-0.041	-0.041	-0.041	-0.041
PLASTIC STRAIN	-4.716	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.955	0.955	0.955	0.955	0.955	0.955	0.955	0.955	0.955	0.955	0.955
STRESS	140.303	-1.932	-1.401	-1.074	-1.041	-1.759	-1.712	-1.211	-0.529	-0.243	-0.136

TIME= 650.00 INVOLVE MULTI-PASS EFFECT 3 PASS

TEMPERATURE	150.07	158.29	158.17	158.06	157.93	157.62	157.43	155.53	152.61	151.37	150.65
MECH. STRAIN	-0.062	-0.059	-0.058	-0.057	-0.056	-0.054	-0.053	-0.040	-0.040	-0.040	-0.040
PLASTIC STRAIN	-4.700	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.952	0.952	0.952	0.952	0.952	0.952	0.952	0.952	0.952	0.952	0.952
STRESS	139.825	-1.741	-1.717	-1.695	-1.669	-1.604	-1.567	-1.180	-0.569	-0.336	-0.231

TIME= 700.00 INVOLVE MULTI-PASS EFFECT 3 PASS

TEMPERATURE	150.03	157.18	157.08	157.00	156.99	156.64	156.49	154.92	152.44	151.35	150.67
MECH. STRAIN	-0.305	-0.054	-0.053	-0.053	-0.052	-0.050	-0.049	-0.038	-0.038	-0.032	-0.031
PLASTIC STRAIN	-4.700	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.949	0.949	0.949	0.949	0.949	0.949	0.949	0.949	0.949	0.949	0.949
STRESS	139.746	-1.601	-1.582	-1.564	-1.543	-1.491	-1.461	-1.143	-0.410	-0.322	-0.231

TIME= 750.00 INVOLVE MULTI-PASS EFFECT 3 PASS

TEMPERATURE	150.02	156.29	156.21	156.14	156.06	155.45	155.72	154.42	152.24	151.32	150.65
MECH. STRAIN	-0.307	-0.053	-0.052	-0.049	-0.049	-0.047	-0.046	-0.037	-0.037	-0.032	-0.031
PLASTIC STRAIN	-4.703	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.946	0.946	0.946	0.946	0.946	0.946	0.946	0.946	0.946	0.946	0.946
STRESS	139.678	-1.493	-1.477	-1.463	-1.445	-1.402	-1.377	-1.112	-0.580	-0.485	-0.397

TIME= 800.00 INVOLVE MULTI-PASS EFFECT 3 PASS

TEMPERATURE	150.01	155.57	155.42	155.46	155.39	155.21	155.10	154.93	152.13	151.49	150.91
MECH. STRAIN	-0.009	-0.047	-0.047	-0.047	-0.046	-0.045	-0.044	-0.037	-0.037	-0.034	-0.034
PLASTIC STRAIN	-4.700	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944
STRESS	139.620	-1.410	-1.396	-1.384	-1.369	-1.333	-1.312	-1.080	-0.579	-0.478	-0.395

TIME= 850.00

INVOLVE MULTI-PASS EFFECT

	3 PASS
TEMPERATURE	156.00
MECH. STRAIN	-0.01
PLASTIC STRAIN	-0.005
TOTAL STRAIN	-0.015
STRESS	139.571

TIME= 900.00

INVOLVE MULTI-PASS EFFECT

	3 PASS
TEMPERATURE	156.00
MECH. STRAIN	-0.014
PLASTIC STRAIN	-0.003
TOTAL STRAIN	0.001
STRESS	139.533

TIME= 950.00

INVOLVE MULTI-PASS EFFECT

	3 PASS
TEMPERATURE	156.00
MECH. STRAIN	-0.013
PLASTIC STRAIN	-0.002
TOTAL STRAIN	0.000
STRESS	139.498

TIME= 1000.00

INVOLVE MULTI-PASS EFFECT

	3 PASS
TEMPERATURE	156.00
MECH. STRAIN	-0.014
PLASTIC STRAIN	-0.001
TOTAL STRAIN	0.000
STRESS	139.469

TIME= 1050.00

INVOLVE MULTI-PASS EFFECT

	3 PASS
TEMPERATURE	156.00
MECH. STRAIN	-0.014
PLASTIC STRAIN	-0.001
TOTAL STRAIN	0.000
STRESS	139.469

TIME= 1100.00

INVOLVE MULTI-PASS EFFECT

	3 PASS
TEMPERATURE	156.00
MECH. STRAIN	-0.014
PLASTIC STRAIN	-0.001
TOTAL STRAIN	0.000
STRESS	139.469

TIME= 1150.00

INVOLVE MULTI-PASS EFFECT

	3 PASS
TEMPERATURE	156.00
MECH. STRAIN	-0.014
PLASTIC STRAIN	-0.001
TOTAL STRAIN	0.000
STRESS	139.469

TIME= 1200.00

INVOLVE MULTI-PASS EFFECT

	3 PASS
TEMPERATURE	156.00
MECH. STRAIN	-0.014
PLASTIC STRAIN	-0.001
TOTAL STRAIN	0.000
STRESS	139.469

TIME	2.03	INCLUDE MULTI-PASS EFFECT				4 PASS			
		TEMPERATURE	ECH. STRAIN	LASIC STRAIN	TOTAL STRAIN	TEMPERATURE	ECH. STRAIN	LASIC STRAIN	TOTAL STRAIN
150.00	151.90	151.36	151.82	151.78	153.67	152.60	151.67	151.22	150.67
-0.114	-0.050	-0.050	-0.050	-0.050	-0.249	-0.048	-0.044	-0.035	-0.036
-4.730	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.130	0.930	0.930	0.930	0.930	0.930	0.930	0.930	0.930	0.930
139.167	-1.502	-1.494	-1.494	-1.494	-1.455	-1.442	-1.360	-1.051	-0.866

LINE	J.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	15C. 00	153.90	153.86	153.82	153.76
F.E.C.H.	-0.344	-0.350	-0.350	-0.350	-0.349
STRAIN	-0.744	-0.744	-0.744	-0.744	-0.744
LASTIC STRAIN	-4.700	0.0	0.0	0.0	0.0
TOTAL STRAIN	-0.319	0.949	0.930	0.930	0.930
TOTAL STRESS	139.187	-1.502	-1.494	-1.486	-1.477
STRESS	-0.008	-0.008	-0.008	-0.008	-0.008

LIME	4.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	150.0C	153.90	153.66	153.82	153.78
ECH. SCAIN	-0.04	-0.050	-0.050	-0.050	-0.049
LASTIC STRAIN	-4.700	0.0	0.0	0.0	0.0
ALOMAL STRAIN	6.740	0.936	0.930	0.930	0.930
STRENG.	139.147	-0.502	-1.494	-1.486	-1.477
				-1.455	-1.442
					-1.430
					-1.411
					-1.391
					-1.371
					-1.351
					-1.331
					-1.311
					-1.291
					-1.271
					-1.251
					-1.231
					-1.211
					-1.191
					-1.171
					-1.151
					-1.131
					-1.111
					-1.091
					-1.071
					-1.051
					-1.031
					-1.011
					-0.991
					-0.971
					-0.951
					-0.931
					-0.911
					-0.891
					-0.871
					-0.851
					-0.831
					-0.811
					-0.791
					-0.771
					-0.751
					-0.731
					-0.711
					-0.691
					-0.671
					-0.651
					-0.631
					-0.611
					-0.591
					-0.571
					-0.551
					-0.531
					-0.511
					-0.491
					-0.471
					-0.451
					-0.431
					-0.411
					-0.391
					-0.371
					-0.351
					-0.331
					-0.311
					-0.291
					-0.271
					-0.251
					-0.231
					-0.211
					-0.191
					-0.171
					-0.151
					-0.131
					-0.111
					-0.091
					-0.071
					-0.051
					-0.031
					-0.011
					0.011
					0.031
					0.051
					0.071
					0.091
					0.111
					0.131
					0.151
					0.171
					0.191
					0.211
					0.231
					0.251
					0.271
					0.291
					0.311
					0.331
					0.351
					0.371
					0.391
					0.411
					0.431
					0.451
					0.471
					0.491
					0.511
					0.531
					0.551
					0.571
					0.591
					0.611
					0.631
					0.651
					0.671
					0.691
					0.711
					0.731
					0.751
					0.771
					0.791
					0.811
					0.831
					0.851
					0.871
					0.891
					0.911
					0.931
					0.951
					0.971
					0.991
					1.011
					1.031
					1.051
					1.071
					1.091
					1.111
					1.131
					1.151
					1.171
					1.191
					1.211
					1.231
					1.251
					1.271
					1.291
					1.311
					1.331
					1.351
					1.371
					1.391
					1.411
					1.431
					1.451
					1.471
					1.491
					1.511
					1.531
					1.551
					1.571
					1.591
					1.611
					1.631
					1.651
					1.671
					1.691
					1.711
					1.731
					1.751
					1.771
					1.791
					1.811
					1.831
					1.851
					1.871
					1.891
					1.911
					1.931
					1.951
					1.971
					1.991
					2.011
					2.031
					2.051
					2.071
					2.091
					2.111
					2.131
					2.151
					2.171
					2.191
					2.211
					2.231
					2.251
					2.271
					2.291
					2.311
					2.331
					2.351
					2.371
					2.391
					2.411
					2.431
					2.451
					2.471
					2.491
					2.511
					2.531
					2.551
					2.571
					2.591
					2.611
					2.631
					2.651
					2.671
					2.691
					2.711
					2.731
					2.751
					2.771
					2.791
					2.811
					2.831
					2.851
					2.871
					2.891
					2.911
					2.931
					2.951
					2.971
					2.991
					3.011
					3.031
					3.051
					3.071
					3.091
					3.111
					3.131
					3.151
					3.171
					3.191
					3.211
					3.231
					3.251
					3.271
					3.291
					3.311
					3.331
					3.351
					3.371
					3.391
					3.411
					3.431
					3.451
					3.471
					3.491
					3.511
					3.531
					3.551
					3.571
					3.591
					3.611
					3.631
					3.651
					3.671
					3.691
					3.711
					3.731
					3.751
					3.771
					3.791
					3.811
					3.831
					3.851
					3.871
					3.891
					3.911
					3.931
					3.951
					3.971
					3.991
					4.011
					4.031
					4.051
					4.071
					4.091
					4.111
					4.131
					4.151
					4.171
					4.191
					4.211
					4.231
					4.251
					4.271
					4.291
					4.311
					4.331
					4.351
					4.371
					4.391
					4.411
					4.431
					4.451
					4.471
					4.491
					4.511
					4.531
					4.551
					4.571
					4.591
					4.611
					4.631
					4.651
					4.671
					4.691
					4.711
					4.731
					4.751
					4.771
					4.791
					4.811
					4.831
					4.851
					4.871
					4.891
					4.911
					4.931
					4.951
					4.971
					4.991
					5.011
					5.031
					5.051
					5.071
					5.091
					5.111
					5.131
					5.151
					5.171
					5.191
					5.211
					5.231
					5.251
					5.271
					5.291
					5.311
					5.331
					5.351
					5.371
					5.391
					5.411
					5.431

LIN#	S. JU	INVCLV	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	150.00	153.40	153.02	153.74	152.90
LECH. SIMILAR	-0.024	-0.050	-0.050	-0.050	-0.048
LASTIC STRAIN	-4.700	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.940	0.940	0.930	0.930	0.930
THESS	139.196	-1.502	-1.494	-1.486	-1.442

TIME =	6.00	INVOLVE	MULTI-PASS	EFFECTIVE	4 PASS
TEMPERATURE	15C.03	153.90	153.86	153.82	153.78
ETCH. STRAIN	-0.024	-0.050	-0.050	-0.050	-0.050
C.O.	-0.024	-0.050	-0.050	-0.050	-0.050
LASTIC STRAIN	-4.70C	C.0	0.0	0.0	0.0
C.O.	-4.70C	C.0	0.0	0.0	0.0
ONAL STRAIN	0.930	0.940	0.930	0.930	0.930
C.O.	0.930	0.940	0.930	0.930	0.930
THESS	139.181	-1.502	-1.494	-1.486	-1.477
					-1.455
					-1.442
					-1.300
					-1.051
					-0.966
					-0.087

LCL=	d,J,J	INVOLVE	MULTI-PASS	EFFECT	4 PASS
LARGE STRAIN	164.01	154.10	154.37	153.82	153.60
SMALL STRAIN	-0.13	-0.051	-0.049	-0.049	-0.049
LOGIC STRAIN	-4.70	3.0	0.0	0.0	0.0
TOTAL STRAIN	0.151	0.941	0.941	0.931	0.931
LCL=0.025	-1.533	-1.473	-1.462	-1.453	-1.453
LCL=0.033				-1.4275	-1.4275
				-0.0277	-0.0277
				-0.935	-0.935

STATE	9.60	INVOLVE	MULTI-PASS	EPPECT	4 PASS
TEMPERATURE	409.05	157.06	154.97	153.76	153.67
WALLS, SKIN	-1.913	-0.055	-0.333	-0.033	-0.031
PLASTIC STAIN	-4.71 C	C-U	U-U	0.0	0.0
PLASTIC STAIN	J. 947	J. 947	J. 947	0.947	0.947
STICKS	00.444	-1.624	C. 996	-0.969	-0.934

TIME: 10.0	INVOLVING TEMPERATURE	MULTI-PASS EFFECT	4 PASSES
TEMPERATURE	2500.00	169.10	154.71
STRECH. STRAIN	-17.575	-0.035	0.664
PLASTIC STRAIN	-17.575	0.0	0.0
TOTAL STRAIN	1.350	1.050	1.050
STRESS	0.0	1.096	2.060
	-1.041	2.083	2.103

TIME =	11.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
LITERATURE	2500-30	19d. 89	150-65	150. 1e	153. 82
WENZU-JISAIN	-11.30b	-0.232	6.661	0.676	0.000
PLASTIC STRAIN	-17.565	0.0	0.0	0.0	0.0
PLASTIC STRAIN	1.060	1.060	1.060	1.060	1.060
PLASTIC STRAIN	0.0	-6.677	1.000	2.324	2.415
PLASTIC STRAIN	0.0	0.0	0.0	0.0	0.0

TIME =	12.00	INVOLVING TEMPERATURE	MULTI-PASS EFFECT	4 PASS
MECHANICAL STRAIN	-17.550	-0.518	0.347	0.095
PLASTIC STRAIN	-17.550	0.0	0.0	0.0
PERMANENT STRAIN	1.375	1.075	1.375	1.075
STRESS	0.0	-15.267	1.408	2.021

TIME	13.0	INVOLVE	MULTI-PASS EFFECT	4 PASSES
TEMPERATURE	44.0°C	48.2°C	40.7°C	45.0°C
MACH. STRAIN	-0.007	-0.001	-0.066	0.011
PLASTIC STRAIN	-17.55J	0.0	0.0	0.0
ROTATIONAL STRAIN	1.61J	1.61J	1.011	1.011
SIGNS	0.277J	-25.81J	-0.947	0.319
SIGNS	0.277J	-25.81J	-0.947	0.319

LINE =	14-03	INVOLVE	MULTI-PASS	EFFECT	4 PASSES
TENSILE STRAIN	2500.0	JU	314.41	177.37	159.41
Mechanical STAIN	-17.520	-1.027	-0.337	0.087	0.117
PLASTIC STRAIN	-17.520	0.0	0.0	0.0	0.0
Total PLASTIC STRAIN	1.105	1.105	1.105	1.105	1.105
STRESS	0.0	-29.953	-1.092	2.508	3.752
STRESS PASS	0.0	-29.953	-1.092	2.508	3.752

TIME =	15.00	INVOLVING	MULTI-PASS	EFFECT	4 PASSES
TRANSMISSIONS	2500.00	JULY 31, 1967	163.16	153.05	153.61
which	-17.50	-1.191	-0.103	0.073	0.121
TOTAL	-17.50	0.0	0.0	0.0	0.0
TOTAL TRANSMISSIONS	1.116	1.116	1.116	1.116	1.116
TOTAL CONSECUTIVE	0.0	0.0	0.0	0.0	0.0

TIME=	16.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	1547.60	353.96	209.16	167.80	157.56
MECH. STRAIN	-10.516	-1.391	-0.263	-0.338	0.032
PLASTIC STRAIN	-19.107	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.638	1.038	1.038	1.038	1.038
STRESS	12.424	-40.358	-7.797	-1.143	0.964
					1.729
					1.763
					1.911
					2.160
					2.251
					2.324

TIME=	17.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	1470.73	364.81	211.63	173.35	159.55
MECH. STRAIN	-10.464	-1.468	-0.339	-0.071	0.024
PLASTIC STRAIN	-19.107	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.643	1.043	1.043	1.043	1.043
STRESS	16.529	-42.515	-10.017	-2.035	0.720
					1.675
					1.926
					2.079
					2.320
					2.419
					2.492

TIME=	18.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	1402.07	371.87	226.37	179.29	162.01
MECH. STRAIN	-10.238	-1.518	-0.411	-0.108	0.012
PLASTIC STRAIN	-13.197	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.304	1.347	1.047	1.047	1.047
STRESS	22.402	-43.904	-12.142	-3.195	0.346
					1.561
					2.039
					2.200
					2.449
					2.541
					2.613

TIME=	19.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	1340.00	376.21	236.15	185.44	164.86
MECH. STRAIN	-9.918	-1.548	-0.478	-0.048	0.005
PLASTIC STRAIN	-13.107	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.055	1.050	1.050	1.050	1.050
STRESS	30.077	-44.750	-14.106	-4.381	-0.153
					1.924
					2.107
					2.293
					2.532
					2.623
					2.696
					2.759

TIME=	20.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	1265.53	376.06	240.65	191.60	168.02
MECH. STRAIN	-9.548	-1.564	-0.530	-0.109	-0.025
PLASTIC STRAIN	-12.937	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.052	1.052	1.052	1.052	1.052
STRESS	37.807	-45.198	-15.636	-5.591	-0.737
					1.091
					2.150
					2.346
					2.595
					2.759

TIME=	21.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	874.55	463.49	282.00	236.06	201.56
MECH. STRAIN	-5.746	-1.446	-0.833	-0.496	-0.253
PLASTIC STRAIN	-9.634	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.058	1.058	1.058	1.058	1.058
STRESS	190.654	-41.882	-26.408	-14.609	-7.475
					-0.123
					1.268
					2.528
					2.777
					2.959

TIME=	22.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	693.20	349.49	286.55	252.19	221.90
MECH. STRAIN	-4.375	-1.253	-0.461	-0.069	-0.391
PLASTIC STRAIN	-8.393	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.064	1.064	1.064	1.064	1.064
STRESS	116.104	-36.421	-25.211	-17.923	-11.554
					-2.902
					-0.527
					2.669
					2.944
					3.045
					3.178

TIME=	50.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	516.39	318.02	281.44	255.6C	230.0J
MECH. STRAIN	-0.118	-1.0,J	-0.121	-0.632	-0.174
PLASTIC STRAIN	-7.546	J.0	0,J	0,J	0,J
TOTAL STRAIN	1.066	1.066	1.066	1.066	1.066
STRESS	123.305	-31.861	-24.367	-18.58H	-13.375
				-5.1b5	-2.409
					2.733
					3.302
					3.094
					3.167
TIME=	60.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	490.97	300.78	273.82	253.87	233.82
MECH. STRAIN	-2.47J	-0.965	-0.766	-0.42C	-0.475
PLASTIC STRAIN	-6.97b	J.0	0.0	0.0	0.0
TOTAL STRAIN	1.065	1.065	1.065	1.065	1.065
STRESS	127.276	-28.20J	-22.467	-10.239	-14.013
				-6.10U	-3.340
					2.663
					2.984
					4.076
					3.148
TIME=	70.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	437.62	286.55	265.84	250.62	233.61
MECH. STRAIN	-2.010	-0.801	-0.709	-0.594	-0.476
PLASTIC STRAIN	-6.551	0.0	0.0	C.0	C.0
TOTAL STRAIN	1.064	1.064	1.064	1.064	1.064
STRESS	129.948	-25.223	-20.025	-17.480	-14.523
				-7.06J	-5.050
					2.448
					2.930
					3.022
					3.095
TIME=	30.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	392.33	244.57	258.17	245.37	231.77
MECH. STRAIN	-1.661	-0.776	-0.656	-0.563	-0.465
PLASTIC STRAIN	-6.249	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.061	1.061	1.061	1.061	1.061
STRESS	131.749	-22.762	-19.287	-16.583	-13.720
				-8.212	-5.817
					2.189
					2.845
					2.936
					3.009
TIME=	90.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	353.79	264.33	251.04	240.49	229.39
MECH. STRAIN	-1.371	-0.704	-0.608	-0.531	-0.449
PLASTIC STRAIN	-5.952	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.057	1.057	1.057	1.057	1.057
STRESS	132.890	-20.688	-17.877	-15.652	-13.255
				-6.479	-6.313
					1.887
					2.747
					2.839
TIME=	100.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	323.2C	255.47	244.50	235.6U	226.03
MECH. STRAIN	-1.144	-0.643	-0.564	-0.530	-0.431
PLASTIC STRAIN	-5.73J	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.054	1.054	1.054	1.054	1.054
STRESS	133.845	-16.916	-16.600	-14.743	-12.717
				-8.558	-6.611
					1.562
					2.641
					2.734
TIME=	150.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	231.42	224.24	219.20	214.98	210.17
MECH. STRAIN	-6.488	-0.437	-0.401	-0.370	-0.336
PLASTIC STRAIN	-5.130	C.0	0.0	0.0	0.0
TOTAL STRAIN	1.056	1.056	1.056	1.056	1.056
STRESS	136.931	-12.884	-11.020	-10.946	-9.944
				-7.727	-6.508
					0.C59
					2.072
					2.107

TIME=	200.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	190.59	235.17	264.39	200.03	197.30
MECH. STRAIN	-0.215	-0.116	-0.210	-0.262	-0.218
PLASTIC STRAIN	-4.084	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.019	1.019	1.019	1.019	1.019
STRESS	138.341	-9.404	-8.027	-8.338	-7.771
TIME=	250.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	170.32	192.43	190.74	183.29	187.59
MECH. STRAIN	-0.093	-0.243	-0.231	-0.221	-0.209
PLASTIC STRAIN	-4.775	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.004	1.004	1.004	1.004	1.004
STRESS	139.054	-7.104	-6.035	-6.536	-6.105
TIME=	300.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	161.02	183.41	184.22	181.29	183.12
MECH. STRAIN	-0.037	-0.191	-0.184	-0.177	-0.170
PLASTIC STRAIN	-4.727	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.92	0.992	0.992	0.912	0.912
STRESS	139.410	-5.677	-5.454	-5.262	-5.030
TIME=	350.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	155.97	176.68	175.45	175.31	174.15
MECH. STRAIN	-0.013	-0.156	-0.151	-0.146	-0.141
PLASTIC STRAIN	-4.706	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.901	0.901	0.901	0.901	0.901
STRESS	139.608	-4.625	-4.475	-4.344	-4.186
TIME=	400.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	153.19	171.71	171.21	170.76	170.22
MECH. STRAIN	-0.002	-0.130	-0.126	-0.123	-0.119
PLASTIC STRAIN	-4.638	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.975	0.975	0.975	0.975	0.975
STRESS	139.700	-3.846	-3.743	-3.651	-3.550
TIME=	450.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	151.74	167.94	167.57	167.24	166.45
MECH. STRAIN	-0.004	-0.111	-0.108	-0.106	-0.097
PLASTIC STRAIN	-4.694	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.966	0.966	0.966	0.966	0.966
STRESS	139.811	-3.287	-3.211	-3.144	-3.065
TIME=	500.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	150.76	165.03	164.75	164.51	164.22
MECH. STRAIN	-0.007	-0.097	-0.095	-0.093	-0.091
PLASTIC STRAIN	-4.676	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.956	0.960	0.960	0.960	0.960
STRESS	139.794	-2.889	-2.812	-2.763	-2.703

TIME=	550.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	150.53	162.77	162.55	162.37	162.14
MECH. STRAIN	-0.002	-0.006	-0.004	-0.003	-0.002
PLASTIC STRAIN	-0.697	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.955	0.955	0.955	0.955	0.955
STRESS	139.737	-2.553	-2.511	-2.473	-2.314
TIME=	600.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	150.29	160.94	160.82	160.68	160.50
MECH. STRAIN	-0.005	-0.008	-0.007	-0.007	-0.007
PLASTIC STRAIN	-0.697	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.951	0.951	0.951	0.951	0.951
STRESS	139.605	-2.316	-2.282	-2.252	-2.216
TIME=	650.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	150.45	159.54	159.46	159.34	159.20
MECH. STRAIN	-0.309	-0.072	-0.071	-0.073	-0.069
PLASTIC STRAIN	-0.097	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.447	0.447	0.447	0.447	0.447
STRESS	139.249	-6.194	-2.107	-2.081	-2.054
TIME=	700.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	150.21	158.48	158.37	158.27	158.15
MECH. STRAIN	-0.311	-0.067	-0.066	-0.066	-0.066
PLASTIC STRAIN	-0.697	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.945	0.945	0.945	0.945	0.945
STRESS	139.491	-1.994	-1.972	-1.952	-1.926
TIME=	750.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	150.13	157.54	157.50	157.42	157.32
MECH. STRAIN	-0.312	-0.069	-0.069	-0.062	-0.060
PLASTIC STRAIN	-0.097	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.942	0.942	0.942	0.942	0.942
STRESS	139.446	-1.886	-1.867	-1.850	-1.780
TIME=	800.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	150.08	156.89	156.81	156.73	156.65
MECH. STRAIN	-0.314	-0.061	-0.061	-0.060	-0.059
PLASTIC STRAIN	-0.697	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.940	0.940	0.940	0.940	0.940
STRESS	139.391	-1.892	-1.786	-1.771	-1.754
TIME=	850.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	150.05	156.42	156.25	156.18	156.11
MECH. STRAIN	-0.316	-0.059	-0.059	-0.057	-0.057
PLASTIC STRAIN	-0.697	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.938	0.938	0.938	0.938	0.938
STRESS	139.347	-1.747	-1.723	-1.710	-1.695

TIME=	900.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	150.01	155.14	155.30	155.74	155.67
MECH. STRAIN	-0.017	-0.057	-0.056	-0.056	-0.054
PLASTIC STRAIN	-4.697	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.937	0.937	0.937	0.937	0.937
STRESS	139.313	-1.684	-1.670	-1.650	-1.644

TIME=	950.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	150.62	155.50	155.44	155.38	155.32
MECH. STRAIN	-0.018	-0.055	-0.055	-0.054	-0.053
PLASTIC STRAIN	-4.697	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.936	0.936	0.936	0.936	0.936
STRESS	139.280	-1.643	-1.631	-1.620	-1.608

TIME=	1000.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	150.31	155.20	155.14	155.09	155.14
MECH. STRAIN	-0.019	-0.054	-0.054	-0.053	-0.053
PLASTIC STRAIN	-4.697	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.935	0.935	0.935	0.935	0.935
STRESS	139.252	-1.612	-1.601	-1.591	-1.579

TIME=	1000.00	INVOLVE	MULTI-PASS	EFFECT	4 PASS
TEMPERATURE	150.61	155.26	155.14	155.09	155.04
MECH. STRAIN	-0.019	-0.054	-0.054	-0.053	-0.052
PLASTIC STRAIN	-4.697	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.935	0.935	0.935	0.935	0.935
STRESS	139.252	-1.612	-1.601	-1.591	-1.579

TIME=	0.0	INVOLVE	MULTI-PASS	EFFECT	5 PASS
TEMPERATURE	150.01	155.20	155.14	155.09	155.04
MECH. STRAIN	-0.029	-0.064	-0.064	-0.064	-0.063
PLASTIC STRAIN	-4.697	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.925	0.925	0.925	0.925	0.925
STRESS	138.946	-1.918	-1.907	-1.897	-1.885

TIME=	1.00	INVOLVE	MULTI-PASS	EFFECT	5 PASS
TEMPERATURE	150.01	155.20	155.14	155.09	155.04
MECH. STRAIN	-0.029	-0.064	-0.064	-0.064	-0.063
PLASTIC STRAIN	-4.697	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.925	0.925	0.925	0.925	0.925
STRESS	138.946	-1.918	-1.907	-1.897	-1.885

TIME=	2.00	INVOLVE	MULTI-PASS	EFFECT	5 PASS
TEMPERATURE	150.01	155.20	155.14	155.09	155.04
MECH. STRAIN	-0.029	-0.064	-0.064	-0.064	-0.063
PLASTIC STRAIN	-4.697	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.925	0.925	0.925	0.925	0.925
STRESS	138.946	-1.918	-1.907	-1.897	-1.885

TIME =	0.00	INVOLVING PASS	MULTI-PASS EFFECT	'S' PASS
TEMPERATURE	150.01	155.20	155.16	155.09
SIECH. STRAIN	-0.029	-0.064	-0.064	-0.062
ELASTIC STRAIN	-4.677	0.9	0.0	0.0
PLASTIC STRAIN	1.925	0.945	0.925	0.925
INITIAL TOTAL STRAIN	138.946	-1.918	-1.207	-1.897
		155.24	156.89	155.97
		-0.064	-0.062	-0.055
		0.0	0.0	0.0
		0.925	0.925	0.925
		-1.885	-1.885	-1.648
		152.22	151.97	151.15
		-0.064	-0.062	-0.055
		0.0	0.0	0.0
		0.925	0.925	0.925
		-1.885	-1.885	-1.317
		-0.037	-0.030	-0.037
		0.0	0.0	0.0
		0.925	0.925	0.925
		-1.648	-1.648	-1.145
		-1.145	-1.145	-1.CyD

LINE	4.0J	INVOLVE	MULTI-INDEX	EFFECT	S P A S
TEMPERATURE	150.01	155.20	155.14	155.09	154.80
FRECH. STRAIN	-0.029	-0.064	-0.064	-0.064	-0.062
LASTIC STRAIN	-4.997	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.825	3.925	3.925	3.925	3.925
TOTAL STRAIN	138.996	-1.918	-1.918	-1.917	-1.917

TEMPERATURE	-6.0°	-6.0°	INVOLVING MULTI-PASS EFFECT	5 PASS
15°C.0.3	155.20	155.14	155.04	154.00
-0.029	-0.064	-0.064	-0.064	-0.062
ECU. STRAIN			-0.062	-0.055
-4.697	0.0	0.0	0.0	0.0
PLASTIC STRAIN			0.0	0.0
13.942	0.910	1.925	0.945	0.925
TOTAL STRAIN			0.945	0.925
-4.697	-1.910	-1.927	-1.085	-1.049
15°C.0.4	155.20	155.14	155.04	154.00
-0.029	-0.064	-0.064	-0.064	-0.062
ECU. STRAIN			-0.062	-0.055
-4.697	0.0	0.0	0.0	0.0
PLASTIC STRAIN			0.0	0.0
13.942	0.910	1.925	0.945	0.925
TOTAL STRAIN			0.945	0.925
-4.697	-1.910	-1.927	-1.085	-1.049

INTL	7.30	INVOLVE	MULTI-PASS	EFFECT	S. 1455:
TEMPERATURE	150-40	155.22	155.15	155.10	155.04
ECH.	-0.032	-0.065	-0.064	-0.064	-0.063
STRAIN	-4.677	0.0	0.0	0.0	0.0
LASTIC STRAIN	0.925	0.925	0.925	0.925	0.925
TOTAL STRAIN	130.062	-1.922	-1.907	-1.885	-1.855
STRESS	-0.025	-0.025	-0.025	-0.025	-0.025

LIME	0.00	INVOLVE	MULTI-PASS	EFFECT	5 PASS
TEMPERATURE	161.62	155.46	155.16	155.16	154.80
EACH STRAIN	-3.108	-0.065	-0.063	-0.063	-0.061
TOTAL STRAIN	-4.697	0.0	0.0	0.0	0.0
LASTIC STRAIN	9.925	0.925	0.925	0.925	0.925
STRESS	150.441	-1.548	-1.888	-1.075	-1.072
LIME	9.00	INVOLVE	MULTI-PASS	EFFECT	5 PASS
TEMPERATURE	367.96	155.37	155.26	155.11	154.86
EACH STRAIN	-1.532	-0.064	-0.067	-0.066	-0.064
TOTAL STRAIN	-4.037	0.0	0.0	0.0	0.0
LASTIC STRAIN	9.043	0.943	0.943	0.943	0.943
STRESS	91.024	-2.027	-1.196	-1.166	-1.151

TIME= 10.00 INVOLVE MULTI-PASS EFFECT S PASS

TEMPERATURE	2500.00	170.41	156.03	155.18	155.35	154.83	154.80	153.87	152.23	151.63	151.15
MECH. STRAIN	-17.570	-0.038	0.061	0.066	0.067	0.068	0.069	0.075	0.086	0.090	0.094
PLASTIC STRAIN	-17.570	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.055	1.055	1.055	1.055	1.055	1.055	1.055	1.055	1.055	1.055	1.055
STRESS	1.000	-1.140	1.002	1.969	1.995	2.020	2.046	2.235	2.567	2.650	2.786

TIME= 11.00 INVOLVE MULTI-PASS EFFECT S PASS

TEMPERATURE	2500.00	200.19	157.94	155.39	155.08	154.49	154.80	153.87	152.23	151.63	151.15
MECH. STRAIN	-17.559	-0.246	0.058	0.075	0.077	0.079	0.079	0.085	0.097	0.101	0.104
PLASTIC STRAIN	-17.559	0.6	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.066	1.066	1.066	1.066	1.066	1.066	1.066	1.066	1.066	1.066	1.066
STRESS	0.0	-6.919	1.715	2.233	2.296	2.315	2.353	2.543	2.875	2.997	3.094

TIME= 12.00 INVOLVE MULTI-PASS EFFECT S PASS

TEMPERATURE	2342.84	242.44	162.15	156.41	155.18	154.89	154.80	153.87	152.23	151.63	151.15
MECH. STRAIN	-16.237	-0.601	-0.035	0.004	0.012	0.014	0.015	0.021	0.033	0.037	0.040
PLASTIC STRAIN	-17.559	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.362	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002
STRESS	0.020	-17.737	-1.047	0.122	0.372	0.430	0.448	0.619	0.973	1.392	1.888

TIME= 13.00 INVOLVE MULTI-PASS EFFECT S PASS

TEMPERATURE	2500.00	263.44	169.16	156.03	155.40	154.93	154.00	153.87	152.23	151.63	151.15
MECH. STRAIN	-17.520	-0.804	0.012	0.008	0.016	0.010	0.010	0.016	0.017	0.024	0.035
PLASTIC STRAIN	-17.526	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.047	1.097	1.097	1.097	1.097	1.097	1.097	1.097	1.097	1.097	1.097
STRESS	0.0	-23.550	0.349	2.643	3.159	3.261	3.280	3.491	3.803	3.925	4.022

TIME= 14.00 INVOLVE MULTI-PASS EFFECT S PASS

TEMPERATURE	1529.20	151.42	176.66	160.69	156.26	154.92	154.81	153.87	152.23	151.63	151.15
MECH. STRAIN	-10.658	-1.118	-0.127	-0.003	0.027	0.036	0.037	0.043	0.054	0.064	0.069
PLASTIC STRAIN	-13.180	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.024	1.024	1.024	1.024	1.023	1.023	1.023	1.023	1.023	1.023	1.023
STRESS	13.203	-32.598	-4.783	-0.103	0.798	1.072	1.094	1.285	1.617	1.739	1.836

TIME= 15.00 INVOLVE MULTI-PASS EFFECT S PASS

TEMPERATURE	1423.00	338.97	189.76	164.44	157.31	154.95	154.81	153.87	152.23	151.63	151.15
MECH. STRAIN	-10.341	-1.285	-0.197	-0.022	0.027	0.043	0.044	0.051	0.062	0.066	0.069
PLASTIC STRAIN	-13.180	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.031	1.031	1.031	1.031	1.031	1.031	1.031	1.031	1.031	1.031	1.031
STRESS	20.769	-47.366	-5.851	-0.047	0.806	1.285	1.313	1.505	1.837	2.056	2.195

TIME= 16.00 INVOLVE MULTI-PASS EFFECT S PASS

TEMPERATURE	1334.27	355.14	201.44	169.16	156.42	156.22	154.82	153.87	152.23	151.63	151.15
MECH. STRAIN	-9.400	-1.000	-0.275	-0.050	0.021	0.047	0.049	0.055	0.066	0.070	0.074
PLASTIC STRAIN	-10.151	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.055	1.055	1.055	1.055	1.055	1.055	1.055	1.055	1.055	1.055	1.055
STRESS	11.200	-40.682	-8.134	-1.475	0.637	1.410	1.444	1.644	1.970	2.390	2.786

TIME=	17.00	INVOLVE	MULTI-PASS	EFFECT	5 PASS
TEMPERATURE	1256.7b	366.0b	212.91	174.63	160.82
MECH. STRAIN	-9.375	-1.982	-0.353	0.011	0.050
PLASTIC STRAIN	-12.825	3.0	0.3	0.0	0.0
TOTAL STRAIN	1.639	1.039	1.329	1.039	1.039
STRESS	41.393	-42.937	-10.424	-2.459	0.326

TIME=	18.00	INVOLVE	MULTI-PASS	EFFECT	5 PASS
TEMPERATURE	1182.5b	373.6b	224.65	180.57	161.27
MECH. STRAIN	-6.746	-1.434	-0.428	-0.124	-0.004
PLASTIC STRAIN	-12.350	6.0	6.0	0.0	0.0
TOTAL STRAIN	1.040	1.440	1.040	1.440	1.040
STRESS	53.069	-46.374	-12.629	-3.680	-0.134

TIME=	19.00	INVOLVE	MULTI-PASS	EFFECT	5 PASS
TEMPERATURE	1112.25	377.40	233.40	186.72	166.12
MECH. STRAIN	-6.510	-1.567	-0.490	-0.167	-0.024
PLASTIC STRAIN	-11.782	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.646	1.040	1.046	1.040	1.040
STRESS	66.401	-45.304	-14.678	-4.052	-0.719

TIME=	20.00	INVOLVE	MULTI-PASS	EFFECT	5 PASS
TEMPERATURE	1079.05	379.74	241.91	192.88	160.17
MECH. STRAIN	-7.529	-1.585	-0.558	-0.269	-0.045
PLASTIC STRAIN	-11.335	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.041	1.041	1.041	1.041	1.041
STRESS	78.241	-45.791	-16.447	-6.202	-1.344

TIME=	30.00	INVOLVE	MULTI-PASS	EFFECT	5 PASS
TEMPERATURE	745.92	365.11	203.24	237.31	202.62
MECH. STRAIN	-4.560	-1.461	-0.348	-0.514	-0.268
PLASTIC STRAIN	-8.823	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.052	1.052	1.052	1.052	1.052
STRESS	112.163	-42.319	-24.650	-15.132	-7.916

TIME=	40.00	INVOLVE	MULTI-PASS	EFFECT	5 PASS
TEMPERATURE	603.94	346.33	207.79	253.44	243.15
MECH. STRAIN	-3.554	-1.267	-0.875	-0.624	-0.405
PLASTIC STRAIN	-7.755	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.053	1.059	1.059	1.059	1.059
STRESS	121.777	-36.837	-25.629	-18.541	-11.469

TIME=	50.00	INVOLVE	MULTI-PASS	EFFECT	5 PASS
TEMPERATURE	516.75	319.20	282.69	256.45	232.11
MECH. STRAIN	-2.643	-1.108	-0.836	-0.647	-0.464
PLASTIC STRAIN	-7.123	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.001	1.003	1.060	1.060	1.060
STRESS	126.320	-32.259	-24.495	-19.515	-15.300

TEMPERATURE 516.75 319.20 282.69 256.45 232.11 192.73 179.35 154.97 152.23 151.63 151.15
 MECH. STRAIN -2.643 -1.108 -0.836 -0.647 -0.464 -0.188 -0.093 0.081 0.079 0.094 0.097
 PLASTIC STRAIN -7.123 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 1.001 1.003 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060
 STRESS 126.320 -32.259 -24.495 -19.515 -15.300 -5.503 -2.822 2.373 2.404 2.445 2.442

TIME= 60.00 INVOLVE MULTI-PASS EFFECT 5 PASS

TEMPERATURE	-455.1b	332.0a	275.0d	255.11	235.06	200.08	186.69	154.22	152.23	151.63	151.15
MECH. STRAIN	-2.152	-0.380	-0.781	-0.635	-0.493	-0.241	-0.147	0.037	0.091	0.095	0.098
PLASTIC STRAIN	-6.681	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.069	1.060	1.360	1.060	1.060	1.060	1.060	1.060	1.060	1.060	1.060
STRESS	129.105	-28.633	-22.093	-18.062	-14.434	-7.123	-4.349	2.124	2.700	2.936	2.927

TIME= 70.00 INVOLVE MULTI-PASS EFFECT 5 PASS

TEMPERATURE	408.52	267.8b	267.09	251.27	234.85	204.41	191.60	155.02	152.23	151.63	151.15
MECH. STRAIN	-0.780	-0.710	-0.74	-0.609	-0.490	-0.273	-0.184	0.070	0.089	0.093	0.097
PLASTIC STRAIN	-6.394	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.156	1.058	1.056	1.058	1.050	1.050	1.050	1.058	1.058	1.058	1.058
STRESS	131.161	-25.069	-21.249	-17.962	-14.462	-8.075	-5.457	2.091	2.657	2.779	2.876

TIME= 80.00 INVOLVE MULTI-PASS EFFECT 5 PASS

TEMPERATURE	171.67	275.03	259.43	246.62	231.01	206.65	195.69	155.87	152.23	151.63	151.15
MECH. STRAIN	-1.508	-0.711	-0.671	-0.578	-0.479	-0.291	-0.210	0.062	0.066	0.091	0.044
PLASTIC STRAIN	-6.083	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.059	1.055	1.055	1.055	1.055	1.055	1.055	1.055	1.055	1.055	1.055
STRESS	132.346	-23.106	-19.739	-17.002	-14.137	-8.622	-6.222	1.835	2.574	2.696	2.793

TIME= 90.00 INVOLVE MULTI-PASS EFFECT 5 PASS

TEMPERATURE	341.62	265.61	252.30	241.74	230.43	207.46	197.02	156.84	152.24	151.63	151.15
MECH. STRAIN	-1.284	-0.719	-0.622	-0.546	-0.464	-0.261	-0.227	0.052	0.053	0.067	0.051
PLASTIC STRAIN	-5.370	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.052	1.052	1.052	1.052	1.052	1.052	1.052	1.052	1.052	1.052	1.052
STRESS	133.266	-21.112	-16.294	-16.070	-13.671	-8.498	-6.718	1.533	2.476	2.539	2.696

TIME= 100.00 INVOLVE MULTI-PASS EFFECT 5 PASS

TEMPERATURE	317.51	256.75	245.77	236.93	227.28	207.34	197.95	157.96	152.24	151.63	151.15
MECH. STRAIN	-1.106	-0.658	-0.578	-0.514	-0.445	-0.237	-0.237	0.041	0.081	0.084	0.087
PLASTIC STRAIN	-5.703	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.049	1.049	1.049	1.049	1.049	1.049	1.049	1.049	1.049	1.049	1.049
STRESS	130.046	-19.340	-17.022	-15.161	-14.134	-8.966	-7.015	1.208	2.371	2.494	2.591

TIME= 110.00 INVOLVE MULTI-PASS EFFECT 5 PASS

TEMPERATURE	238.04	225.53	220.47	216.24	211.42	200.73	195.22	162.65	152.35	151.63	151.15
MECH. STRAIN	-0.541	-0.651	-0.415	-0.385	-0.351	-0.275	-0.226	-0.010	0.040	0.065	0.069
PLASTIC STRAIN	-5.179	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.030	1.030	1.030	1.030	1.030	1.030	1.030	1.030	1.030	1.030	1.030
STRESS	136.671	-13.310	-12.251	-11.367	-10.362	-8.137	-6.994	-0.297	1.800	1.946	2.043

TIME= 120.00 INVOLVE MULTI-PASS EFFECT 5 PASS

TEMPERATURE	199.30	246.46	233.67	201.30	190.50	192.23	188.82	164.39	152.69	151.63	151.15
MECH. STRAIN	-0.282	-0.332	-0.311	-0.296	-0.277	-0.222	-0.208	-0.042	0.041	0.040	0.042
PLASTIC STRAIN	-4.945	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.013	1.013	1.013	1.013	1.013	1.013	1.013	1.013	1.013	1.013	1.013
STRESS	136.020	-9.861	-9.253	-8.760	-8.130	-6.879	-6.174	-1.259	1.447	1.536	1.643

TIME= 250.00
 TEMPERATURE 178.53 193.72 192.03 190.57 188.85 104.82 102.59 165.23 153.34 151.60 151.16
 MECH. STRAIN -0.151 -0.245 -0.235 -0.223 -0.195 -0.119 -0.059 -0.022 0.022 0.034 0.037
 PLASTIC STRAIN -4.828 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
 STRESS 138.776 -7.614 -7.263 -6.960 -6.605 -5.774 -5.315 -1.754 0.660 1.003 1.109

TIME= 300.00
 TEMPERATURE 160.85 184.60 183.51 182.56 181.45 178.77 177.26 164.57 153.79 151.75 151.16
 MECH. STRAIN -0.206 -0.198 -0.191 -0.184 -0.165 -0.155 -0.142 -0.135 -0.127 0.021 0.025
 PLASTIC STRAIN -6.769 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.966 0.966 0.966 0.986 0.986 0.986 0.986 0.986 0.986 0.986 0.986
 STRESS 139.203 -6.097 -5.871 -5.676 -5.497 -4.896 -4.586 -1.387 0.207 0.619 0.738

TIME= 350.00
 TEMPERATURE 160.11 177.98 177.24 176.58 175.81 173.95 172.93 163.47 154.38 151.05 151.18
 MECH. STRAIN -0.047 -0.176 -0.165 -0.161 -0.155 -0.142 -0.135 -0.127 -0.120 0.000 0.014
 PLASTIC STRAIN -4.737 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.976
 STRESS 139.452 -5.051 -4.899 -4.764 -4.605 -4.224 -4.300 -2.002 -0.170 0.283 0.417

TIME= 400.00
 TEMPERATURE 156.13 175.02 172.49 172.01 171.40 170.14 169.37 162.46 154.22 151.44 151.22
 MECH. STRAIN -0.028 -0.146 -0.141 -0.137 -0.134 -0.124 -0.119 -0.070 -0.015 0.000 0.005
 PLASTIC STRAIN -4.221 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.967 0.967 0.967 0.967 0.967 0.967 0.967 0.967 0.967 0.967 0.967
 STRESS 135.559 -4.281 -4.176 -4.002 -3.968 -3.694 -3.538 -2.085 -0.451 0.311 0.159

TIME= 450.00
 TEMPERATURE 153.75 169.24 168.06 168.52 168.11 167.12 166.55 161.07 154.24 152.04 151.26
 MECH. STRAIN -0.019 -0.125 -0.123 -0.120 -0.117 -0.111 -0.107 -0.097 -0.069 -0.022 -0.007
 PLASTIC STRAIN -4.714 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960
 STRESS 139.688 -3.718 -3.640 -3.570 -3.408 -3.127 -2.972 -2.883 -2.006 -0.827 -0.215 -0.057

TIME= 500.00
 TEMPERATURE 152.31 166.33 166.64 165.79 165.48 164.72 164.28 159.98 154.17 152.11 151.30
 MECH. STRAIN -0.015 -0.111 -0.109 -0.107 -0.105 -0.103 -0.097 -0.067 -0.032 -0.014 -0.008
 PLASTIC STRAIN -4.711 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954
 STRESS 139.741 -3.301 -3.242 -3.190 -3.127 -2.972 -2.883 -2.006 -0.827 -0.215 -0.057

TIME= 550.00
 TEMPERATURE 151.43 164.07 163.04 163.64 163.40 162.81 162.47 159.31 154.05 152.17 151.45
 MECH. STRAIN -0.014 -0.100 -0.099 -0.098 -0.097 -0.096 -0.095 -0.066 -0.032 -0.015 -0.013
 PLASTIC STRAIN -4.711 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.949 0.949 0.949 0.949 0.949 0.949 0.949 0.949 0.949 0.949 0.949
 STRESS 139.774 -2.906 -2.941 -2.903 -2.851 -2.733 -2.660 -2.006 -0.849 -0.215 -0.057

TIME= 0.00 INVOLVE MULTI-PASS EFFECT 5 PASS
 TEMPERATURE 150.89 162.29 162.11 161.95 161.76 161.29 161.01 158.18 153.90 152.19 151.39
 MECH. STRAIN -0.015 -0.092 -0.091 -C.090 -0.084 -0.086 -0.084 -0.086 -0.084 -0.064 -0.035 -0.023 -0.018
 PLASTIC STRAIN -4.711 0.0 0.0 C.0 C.0 C.0 C.0 C.0 C.0 C.0 C.0 C.0
 TOTAL STRAIN 0.945 3.965 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945
 STRESS 139.767 -2.748 -2.712 -2.679 -2.643 -2.543 -2.487 -2.487 -2.487 -1.910 -1.041 -0.694 -0.533

TIME= 650.00 INVOLVE MULTI-PASS EFFECT 5 PASS
 TEMPERATURE 150.56 160.89 160.74 160.61 160.46 160.36 159.84 157.46 153.74 152.1d 151.42
 MECH. STRAIN -0.016 -0.086 -0.085 -0.084 -0.083 -0.081 -0.079 -0.079 -0.079 -0.063 -0.037 -0.027 -0.022
 PLASTIC STRAIN -4.711 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942
 STRESS 139.736 -2.566 -2.535 -2.509 -2.477 -2.397 -2.351 -2.351 -2.351 -1.868 -1.110 -0.796 -0.643

TIME= 700.00 INVOLVE MULTI-PASS EFFECT 5 PASS
 TEMPERATURE 150.36 159.78 159.66 159.55 159.42 159.34 158.89 156.86 153.56 152.16 151.45
 MECH. STRAIN -0.017 -0.061 -0.060 -0.059 -0.058 -0.057 -0.057 -0.057 -0.057 -0.061 -0.039 -0.029 -0.024
 PLASTIC STRAIN -4.711 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.934 0.939 0.939 0.939 0.939 0.939 0.939 0.939 0.939 0.939 0.939 0.939
 STRESS 139.710 -2.610 -2.595 -2.563 -2.533 -2.463 -2.269 -2.269 -2.269 -1.817 -1.147 -0.864 -0.719

TIME= 750.00 INVOLVE MULTI-PASS EFFECT 5 PASS
 TEMPERATURE 150.45 159.96 159.79 159.69 159.60 159.29 158.13 156.45 153.40 152.14 151.46
 MECH. STRAIN -0.020 -0.077 -0.077 -0.076 -0.075 -0.075 -0.074 -0.074 -0.074 -0.069 -0.040 -0.027 -0.027
 PLASTIC STRAIN -4.711 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.937 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947
 STRESS 139.618 -2.302 -2.281 -2.261 -2.238 -2.160 -2.146 -2.146 -2.146 -1.785 -1.186 -0.930 -0.794

TIME= 800.00 INVOLVE MULTI-PASS EFFECT 5 PASS
 TEMPERATURE 150.30 158.19 158.10 158.01 157.91 157.66 157.51 155.91 153.25 152.10 151.47
 MECH. STRAIN -0.021 -0.075 -0.074 -0.073 -0.073 -0.073 -0.072 -0.072 -0.072 -0.069 -0.041 -0.023 -0.023
 PLASTIC STRAIN -4.711 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.943 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945
 STRESS 139.590 -2.218 -2.200 -2.182 -2.162 -2.110 -2.080 -2.080 -2.080 -1.759 -1.216 -0.983 -0.856

TIME= 850.00 INVOLVE MULTI-PASS EFFECT 5 PASS
 TEMPERATURE 150.20 157.62 157.54 157.46 157.37 157.14 157.01 155.57 153.12 152.06 151.47
 MECH. STRAIN -0.022 -0.072 -0.072 -0.071 -0.071 -0.071 -0.069 -0.069 -0.069 -0.050 -0.042 -0.034 -0.032
 PLASTIC STRAIN -4.711 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.933 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944
 STRESS 139.561 -2.153 -2.136 -2.121 -2.102 -2.050 -2.029 -2.029 -2.029 -1.738 -1.239 -0.985 -0.856

TIME= 900.00 INVOLVE MULTI-PASS EFFECT 5 PASS
 TEMPERATURE 150.14 157.16 157.09 157.02 156.93 156.72 156.60 155.28 152.99 152.11 151.47
 MECH. STRAIN -0.023 -0.071 -0.070 -0.070 -0.070 -0.070 -0.069 -0.069 -0.069 -0.058 -0.042 -0.036 -0.032
 PLASTIC STRAIN -4.711 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.932 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942
 STRESS 139.556 -2.099 -2.083 -2.069 -2.052 -2.010 -1.945 -1.945 -1.945 -1.717 -1.253 -0.986 -0.856

TIME= 950.00
 TEMPERATURE 156.10 156.50 156.73 156.66 156.58 156.39 156.27 155.94 152.69 152.67 151.44
 TECH. STRAIN -0.024 -0.069 -0.069 -0.068 -0.068 -0.068 -0.066 -0.066 -0.057 -0.043 -0.033
 PLASTIC STRAIN -4.711 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941
 STRESS 139.511 -2.059 -2.045 -2.031 -2.016 -2.016 -1.976 -1.953 -1.702 -1.666 -1.101 -0.976

TIME= 1000.00
 INVOLVE MULTI-PASS EFFECT 5 PASS
 TEMPERATURE 150.07 156.50 156.43 156.37 156.30 156.11 156.00 154.84 152.79 152.04 151.44
 TECH. STRAIN -0.024 -0.068 -0.068 -0.067 -0.067 -0.066 -0.065 -0.065 -0.057 -0.043 -0.038 -0.033
 PLASTIC STRAIN -4.711 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930
 STRESS 139.486 -2.028 -2.014 -2.002 -1.987 -1.949 -1.927 -1.690 -1.276 -1.123 -1.002

TIME= 1000.00
 INVOLVE MULTI-PASS EFFECT 5 PASS
 TEMPERATURE 150.07 156.50 156.43 156.37 156.30 156.11 156.00 154.84 152.79 152.04 151.44
 TECH. STRAIN -0.024 -0.068 -0.068 -0.067 -0.067 -0.066 -0.065 -0.065 -0.057 -0.043 -0.038 -0.034
 PLASTIC STRAIN -4.711 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930
 STRESS 139.486 -2.028 -2.014 -2.002 -1.987 -1.949 -1.927 -1.690 -1.276 -1.123 -1.002

TIME= 0.0
 INVOLVE MULTI-PASS EFFECT 6 PASS
 TEMPERATURE 150.07 156.50 156.43 156.37 156.30 156.11 156.00 154.84 152.79 152.04 151.44
 TECH. STRAIN -0.024 -0.078 -0.077 -0.077 -0.077 -0.075 -0.075 -0.075 -0.067 -0.053 -0.048 -0.043
 PLASTIC STRAIN -4.711 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.920 0.920 0.920 0.920 0.920 0.920 0.920 0.920 0.920 0.920 0.920 0.920
 STRESS 139.197 -2.319 -2.305 -2.293 -2.277 -2.249 -2.249 -2.218 -1.981 -1.567 -1.414 -1.293

TIME= 1.00
 INVOLVE MULTI-PASS EFFECT 6 PASS
 TEMPERATURE 150.07 156.50 156.43 156.37 156.30 156.11 156.00 154.84 152.79 152.04 151.44
 TECH. STRAIN -0.024 -0.078 -0.077 -0.077 -0.077 -0.075 -0.075 -0.075 -0.067 -0.053 -0.048 -0.043
 PLASTIC STRAIN -4.711 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.920 0.920 0.920 0.920 0.920 0.920 0.920 0.920 0.920 0.920 0.920 0.920
 STRESS 139.197 -2.319 -2.305 -2.293 -2.277 -2.249 -2.249 -2.218 -1.981 -1.567 -1.414 -1.293

TIME= 2.00
 INVOLVE MULTI-PASS EFFECT 6 PASS
 TEMPERATURE 150.07 156.50 156.43 156.37 156.30 156.11 156.00 154.84 152.79 152.04 151.44
 TECH. STRAIN -0.024 -0.078 -0.077 -0.077 -0.077 -0.075 -0.075 -0.075 -0.067 -0.053 -0.048 -0.043
 PLASTIC STRAIN -4.711 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.920 0.920 0.920 0.920 0.920 0.920 0.920 0.920 0.920 0.920 0.920 0.920
 STRESS 139.197 -2.319 -2.305 -2.293 -2.277 -2.249 -2.249 -2.218 -1.981 -1.567 -1.414 -1.293

TIME= 3.00
 INVOLVE MULTI-PASS EFFECT 6 PASS
 TEMPERATURE 150.07 156.50 156.43 156.37 156.30 156.11 156.00 154.84 152.79 152.04 151.44
 TECH. STRAIN -0.024 -0.078 -0.077 -0.077 -0.077 -0.075 -0.075 -0.075 -0.067 -0.053 -0.048 -0.043
 PLASTIC STRAIN -4.711 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.920 0.920 0.920 0.920 0.920 0.920 0.920 0.920 0.920 0.920 0.920 0.920
 STRESS 139.197 -2.319 -2.305 -2.293 -2.277 -2.249 -2.249 -2.218 -1.981 -1.567 -1.414 -1.293

TIME= 4.00 INVOLVE MULTI-PASS EFFECT 6 PASS

TEMPERATURE	150.07	156.50	156.43	156.37	156.30	156.11	156.00	154.66	152.76	151.24
MECH. STRAIN	-0.034	-0.378	-0.677	-0.677	-0.677	-0.675	-0.675	-0.675	-0.675	-0.675
PLASTIC STRAIN	-4.711	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.920	0.920	0.920	0.920	0.920	0.920	0.920	0.920	0.920	0.920
STRESS	139.197	-2.319	-2.305	-2.293	-2.277	-2.240	-2.218	-1.981	-1.987	-1.293

TIME= 5.00 INVOLVE MULTI-PASS EFFECT 6 PASS

TEMPERATURE	150.07	156.56	156.43	156.37	156.30	156.11	156.00	154.64	152.79	151.46
MECH. STRAIN	-0.034	-0.078	-0.077	-0.077	-0.077	-0.075	-0.075	-0.075	-0.075	-0.075
PLASTIC STRAIN	-4.711	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.920	0.920	0.920	0.920	0.920	0.920	0.920	0.920	0.920	0.920
STRESS	139.197	-2.319	-2.305	-2.293	-2.277	-2.240	-2.218	-1.981	-1.987	-1.293

TIME= 6.00 INVOLVE MULTI-PASS EFFECT 6 PASS

TEMPERATURE	150.09	156.50	156.43	156.37	156.30	156.11	156.00	154.64	152.79	151.46
MECH. STRAIN	-0.034	-0.078	-0.077	-0.077	-0.077	-0.075	-0.075	-0.075	-0.075	-0.075
PLASTIC STRAIN	-4.711	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.920	0.920	0.920	0.920	0.920	0.920	0.920	0.920	0.920	0.920
STRESS	139.193	-2.319	-2.305	-2.293	-2.277	-2.240	-2.218	-1.981	-1.987	-1.293

TIME= 7.00 INVOLVE MULTI-PASS EFFECT 6 PASS

TEMPERATURE	150.39	156.52	156.43	156.37	156.30	156.11	156.00	154.64	152.79	151.46
MECH. STRAIN	-0.036	-0.078	-0.077	-0.077	-0.077	-0.075	-0.075	-0.075	-0.075	-0.075
PLASTIC STRAIN	-4.711	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.920	0.920	0.920	0.920	0.920	0.920	0.920	0.920	0.920	0.920
STRESS	139.126	-2.323	-2.305	-2.293	-2.277	-2.240	-2.217	-1.981	-1.987	-1.293

TIME= 8.00 INVOLVE MULTI-PASS EFFECT 6 PASS

TEMPERATURE	159.77	156.76	156.45	156.37	156.30	156.11	156.00	154.64	152.79	151.46
MECH. STRAIN	-0.100	-0.079	-0.077	-0.077	-0.077	-0.075	-0.075	-0.075	-0.075	-0.075
PLASTIC STRAIN	-0.711	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921
STRESS	137.099	-2.357	-2.294	-2.278	-2.263	-2.225	-2.203	-1.966	-1.952	-1.276

TIME= 9.00 INVOLVE MULTI-PASS EFFECT 6 PASS

TEMPERATURE	331.62	159.67	156.55	156.39	156.30	156.11	156.00	154.84	152.79	151.46
MECH. STRAIN	-1.323	-0.082	-0.360	-0.059	-0.059	-0.057	-0.057	-0.057	-0.057	-0.057
PLASTIC STRAIN	-4.711	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938
STRESS	98.596	-2.429	-1.794	-1.762	-1.744	-1.706	-1.684	-1.447	-1.432	-0.754

TIME= 10.00 INVOLVE MULTI-PASS EFFECT 6 PASS

TEMPERATURE	2500.00	171.72	157.29	156.45	156.31	156.11	156.00	154.84	152.79	151.46
MECH. STRAIN	-17.564	-0.042	0.057	0.063	0.063	0.065	0.066	0.074	0.083	0.097
PLASTIC STRAIN	-17.564	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.061	1.061	1.061	1.061	1.061	1.061	1.061	1.061	1.061	1.061
STRESS	0.0	-1.240	1.704	1.874	1.907	1.947	1.970	2.237	2.442	2.616

TIME=	11.00	INVOLVE	MULTI-PASS	EFFECT	6 PASS
TEMPERATURE	2500.00	201.49	159.23	156.67	156.00
MECH. STRAIN	-17.554	-0.239	0.054	0.072	0.076
PLASTIC STRAIN	-17.554	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.071	1.071	1.071	1.071	1.071
STRESS	0.0	-7.682	1.620	2.142	2.255
					3.204
TIME=	12.00	INVOLVE	MULTI-PASS	EFFECT	6 PASS
TEMPERATURE	2500.00	243.70	163.44	157.68	156.44
MECH. STRAIN	-17.536	-0.525	0.041	0.000	0.009
PLASTIC STRAIN	-17.536	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.087	1.087	1.087	1.087	1.087
STRESS	0.0	-15.470	1.218	2.392	2.645
					3.661
TIME=	13.00	INVOLVE	MULTI-PASS	EFFECT	6 PASS
TEMPERATURE	1498.15	286.48	170.45	159.31	156.60
MECH. STRAIN	-10.574	-0.895	-0.000	-0.003	0.015
PLASTIC STRAIN	-1.266	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.018	1.014	1.014	1.014	1.014
STRESS	15.566	-26.227	-2.362	-0.067	0.452
					0.562
					0.586
					0.823
					1.238
					1.391
					1.512
TIME=	14.00	INVOLVE	MULTI-PASS	EFFECT	6 PASS
TEMPERATURE	1363.12	316.84	179.95	161.97	157.53
MECH. STRAIN	-13.016	-1.129	-0.338	-0.014	0.016
PLASTIC STRAIN	-13.242	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.021	1.021	1.021	1.021	1.021
STRESS	27.866	-32.911	-4.103	-0.418	0.487
					0.769
					0.795
					1.034
					1.449
					1.602
					1.723
TIME=	15.00	INVOLVE	MULTI-PASS	EFFECT	6 PASS
TEMPERATURE	1255.99	340.14	191.05	165.72	158.57
MECH. STRAIN	-9.511	-1.299	-0.211	-0.035	0.014
PLASTIC STRAIN	-12.034	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.026	1.026	1.026	1.026	1.026
STRESS	41.521	-37.766	-6.263	-1.055	0.403
					0.893
					0.923
					1.162
					1.577
					1.730
					1.851
TIME=	16.00	INVOLVE	MULTI-PASS	EFFECT	6 PASS
TEMPERATURE	1157.79	456.44	202.72	170.44	160.48
MECH. STRAIN	-6.513	-1.421	-0.293	-0.067	0.004
PLASTIC STRAIN	-12.171	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.027	1.027	1.027	1.027	1.027
STRESS	59.191	-41.190	-8.658	-1.995	0.121
					0.903
					0.946
					1.183
					1.604
TIME=	17.00	INVOLVE	MULTI-PASS	EFFECT	6 PASS
TEMPERATURE	1074.29	507.19	214.10	115.91	162.06
MECH. STRAIN	-7.692	-1.503	-0.374	-0.105	0.010
PLASTIC STRAIN	-11.471	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.021	1.021	1.027	1.027	1.027
STRESS	75.525	-43.507	-11.043	-3.115	-0.285
					0.942
					1.190
					1.605
					1.750
					1.877

TIME=	18.30	INVOLVE MULTI-PASS EFFECT	6 PASS
TEMPERATURE	1009.03	J78.25	224.92
MECH. STRAIN	-7.059	-1.556	-0.849
PLASTIC STRAIN	-10.925	0.0	0.0
TOTAL STRAIN	1.028	1.024	1.028
STRESS	66.592	-44.963	-11.254
TIME=	19.00	INVOLVE MULTI-PASS EFFECT	6 PASS
TEMPERATURE	953.83	J78.00	234.66
MECH. STRAIN	-6.525	-1.587	-0.516
PLASTIC STRAIN	-10.445	0.0	0.0
TOTAL STRAIN	1.029	1.029	1.029
STRESS	92.950	-45.870	-15.262
TIME=	20.00	INVOLVE MULTI-PASS EFFECT	6 PASS
TEMPERATURE	907.40	J8C.99	246.15
MECH. STRAIN	-6.081	-1.601	-0.577
PLASTIC STRAIN	-10.116	0.0	0.0
TOTAL STRAIN	1.031	1.031	1.031
STRESS	97.654	-46.318	-16.989
TIME=	30.00	INVOLVE MULTI-PASS EFFECT	6 PASS
TEMPERATURE	659.58	J66.33	484.48
MECH. STRAIN	-7.448	-1.477	-0.864
PLASTIC STRAIN	-8.180	0.0	0.0
TOTAL STRAIN	1.046	1.046	1.046
STRESS	118.229	-42.769	-25.297
TIME=	40.30	INVOLVE MULTI-PASS EFFECT	6 PASS
TEMPERATURE	545.07	J41.58	289.03
MECH. STRAIN	-8.879	-1.282	-0.900
PLASTIC STRAIN	-7.335	0.0	0.0
TOTAL STRAIN	1.053	1.053	1.053
STRESS	120.920	-37.264	-28.056
TIME=	50.00	INVOLVE MULTI-PASS EFFECT	6 PASS
TEMPERATURE	473.51	J20.51	283.49
MECH. STRAIN	-7.442	-1.122	-0.650
PLASTIC STRAIN	-6.917	0.0	0.0
TOTAL STRAIN	1.056	1.056	1.056
STRESS	128.468	-32.694	-24.890
TIME=	60.00	INVOLVE MULTI-PASS EFFECT	6 PASS
TEMPERATURE	422.77	J0.36	276.32
MECH. STRAIN	-1.902	-0.994	-0.714
PLASTIC STRAIN	-0.453	0.0	0.0
TOTAL STRAIN	1.055	1.055	1.055
STRESS	130.679	-16.011	-7.141

TIME= 70.00 INVOLVE MULTI-PASS EFFECT 6 PASS

TEMPERATURE	384.24	289.07	268.34	252.52	236.09	205.63	193.00	155.98	152.79	152.04	151.44
MECH. STRAIN	-1.636	-0.890	-0.737	-0.622	-0.503	-0.206	-0.197	0.059	0.081	0.086	0.090
PLASTIC STRAIN	-0.177	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.054	1.054	1.054	1.054	1.054	1.054	1.054	1.054	1.054	1.054	1.054
STRESS	131.969	-26.050	-21.698	-18.298	-14.836	-8.461	-5.839	1.760	2.409	2.562	2.683

TIME= 80.00 INVOLVE MULTI-PASS EFFECT 6 PASS

TEMPERATURE	353.60	277.10	260.69	247.87	234.25	207.86	196.29	156.84	152.79	152.04	151.44
MECH. STRAIN	-1.376	-0.404	-0.684	-0.591	-0.493	-0.305	-0.223	0.051	0.378	0.083	0.087
PLASTIC STRAIN	-5.957	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.051	1.051	1.051	1.051	1.051	1.051	1.051	1.051	1.051	1.051	1.051
STRESS	132.095	-23.566	-20.107	-17.357	-14.529	-9.007	-6.603	1.504	2.327	2.400	2.601

TIME= 90.00 INVOLVE MULTI-PASS EFFECT 6 PASS

TEMPERATURE	328.45	266.88	253.51	241.00	231.56	206.68	196.21	157.05	152.79	152.04	151.44
MECH. STRAIN	-1.189	-0.733	-0.636	-0.554	-0.477	-0.314	-0.240	0.449	0.075	0.075	0.084
PLASTIC STRAIN	-5.781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.049	1.049	1.049	1.049	1.049	1.049	1.049	1.049	1.049	1.049	1.048
STRESS	133.679	-21.513	-18.697	-16.467	-14.064	-9.274	-7.691	1.202	2.229	2.363	2.544

TIME= 100.00 INVOLVE MULTI-PASS EFFECT 6 PASS

TEMPERATURE	307.42	258.02	247.31	238.19	226.52	208.55	199.15	158.93	152.00	152.04	151.44
MECH. STRAIN	-1.046	-0.672	-0.592	-0.526	-0.459	-0.316	-0.250	0.029	0.371	0.077	0.081
PLASTIC STRAIN	-5.637	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.044	1.044	1.044	1.044	1.044	1.044	1.044	1.044	1.044	1.044	1.044
STRESS	134.250	-19.743	-17.421	-15.558	-13.527	-9.552	-7.396	0.877	2.124	2.278	2.394

TIME= 110.00 INVOLVE MULTI-PASS EFFECT 6 PASS

TEMPERATURE	299.40	246.82	221.74	212.67	201.95	196.41	163.62	152.91	152.04	151.44	
MECH. STRAIN	-0.555	-0.465	-0.429	-0.398	-0.364	-0.280	-0.249	-0.021	0.352	0.058	0.062
PLASTIC STRAIN	-5.193	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.026	1.026	1.026	1.026	1.026	1.026	1.026	1.026	1.026	1.026	1.026
STRESS	136.623	-13.714	-12.652	-11.765	-10.756	-8.523	-7.375	-0.629	1.552	1.729	1.850

TIME= 120.00 INVOLVE MULTI-PASS EFFECT 6 PASS

TEMPERATURE	293.87	207.75	204.95	202.57	199.61	193.44	190.02	165.06	153.24	152.05	151.44
MECH. STRAIN	-0.319	-0.346	-0.326	-0.310	-0.290	-0.245	-0.221	-0.054	0.031	0.041	0.045
PLASTIC STRAIN	-4.978	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.009	1.009	1.009	1.009	1.009	1.009	1.009	1.009	1.009	1.009	1.009
STRESS	137.865	-10.246	-9.654	-9.159	-8.560	-7.267	-6.558	-1.592	0.976	1.218	1.341

TIME= 130.00 INVOLVE MULTI-PASS EFFECT 6 PASS

TEMPERATURE	193.51	115.02	144.10	191.05	146.10	146.04	181.06	166.19	153.06	152.04	151.44
MECH. STRAIN	-0.150	-0.271	-0.254	-0.244	-0.226	-0.204	-0.192	-0.070	0.344	0.026	0.021
PLASTIC STRAIN	-0.004	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STRAIN	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
STRESS	140.594	-8.019	-7.664	-7.062	-7.002	-6.161	-5.701	-2.014	0.415	0.712	0.914

TIME= 300.00 INVOLVE MULTI-PASS EFFECT 6 PASS
 TEMPERATURE 171.32 185.91 104.80 103.80 192.71 179.39 178.46 165.53 154.34 152.16 151.45
 MECH. STRAIN -0.118 -0.219 -0.212 -0.205 -0.197 -0.178 -0.168 -0.155 -0.148 -0.134 -0.113 0.010
 PLASTIC STRAIN -4.800 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.382 0.982 0.382 0.982 0.982 0.982 0.982 0.982 0.982 0.982 0.982 0.982
 STRESS 139.329 -6.505 -6.276 -6.077 -5.846 -5.286 -4.971 -2.324 -0.346 0.398 0.341

TIME= 350.00 INVOLVE MULTI-PASS EFFECT 6 PASS
 TEMPERATURE 163.76 179.28 178.52 177.86 175.17 174.10 164.44 154.64 152.25 151.47
 MECH. STRAIN -0.076 -0.184 -0.178 -0.174 -0.168 -0.155 -0.148 -0.141 -0.134 -0.126 0.002
 PLASTIC STRAIN -4.764 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.971 0.371 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971
 STRESS 139.317 -5.448 -5.292 -5.157 -4.994 -4.694 -4.384 -2.469 -2.414 0.371 0.228

TIME= 400.00 INVOLVE MULTI-PASS EFFECT 6 PASS
 TEMPERATURE 158.98 174.32 173.70 173.31 172.74 171.37 170.57 163.22 154.70 152.45 151.55
 MECH. STRAIN -0.053 -0.150 -0.154 -0.151 -0.147 -0.140 -0.132 -0.124 -0.116 -0.107 -0.097
 PLASTIC STRAIN -4.744 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.393 0.963 0.963 0.963 0.963 0.963 0.963 0.963 0.963 0.963 0.963 0.963
 STRESS 139.493 -4.695 -4.583 -4.487 -4.363 -4.308 -3.927 -2.425 -2.415 -0.643

TIME= 450.00 INVOLVE MULTI-PASS EFFECT 6 PASS
 TEMPERATURE 155.92 170.55 170.14 169.79 169.37 168.35 167.75 162.04 154.30 152.44 151.55
 MECH. STRAIN -0.059 -0.159 -0.156 -0.154 -0.151 -0.141 -0.132 -0.124 -0.116 -0.107 -0.094
 PLASTIC STRAIN -4.732 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.395 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955
 STRESS 139.607 -4.131 -4.049 -3.977 -3.891 -3.681 -3.560 -2.393 -2.347 -0.922 -0.444 -0.262

TIME= 500.00 INVOLVE MULTI-PASS EFFECT 6 PASS
 TEMPERATURE 153.93 167.63 167.33 167.06 166.74 165.95 165.49 160.95 154.73 152.52 151.54
 MECH. STRAIN -0.031 -0.125 -0.123 -0.121 -0.119 -0.113 -0.110 -0.107 -0.104 -0.101 -0.094
 PLASTIC STRAIN -4.726 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.350 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950
 STRESS 139.681 -3.711 -3.650 -3.554 -3.523 -3.387 -3.273 -2.347 -1.905 -0.635 -0.407 -0.267

TIME= 550.00 INVOLVE MULTI-PASS EFFECT 6 PASS
 TEMPERATURE 152.64 165.37 165.13 164.92 164.66 164.04 163.67 159.98 154.61 152.58 151.64
 MECH. STRAIN -0.027 -0.114 -0.113 -0.111 -0.109 -0.105 -0.103 -0.101 -0.097 -0.094 -0.091
 PLASTIC STRAIN -4.723 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.345 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945
 STRESS 139.724 -3.394 -3.302 -3.253 -3.122 -3.047 -2.296 -2.204 -1.204 -0.793 -0.601

TIME= 600.00 INVOLVE MULTI-PASS EFFECT 6 PASS
 TEMPERATURE 151.73 161.59 161.40 161.22 162.51 162.41 159.14 154.46 152.59 151.65
 MECH. STRAIN -0.025 -0.106 -0.105 -0.104 -0.102 -0.099 -0.097 -0.096 -0.094 -0.091 -0.089
 PLASTIC STRAIN -4.722 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.346 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946
 STRESS 139.761 -3.156 -3.117 -3.061 -2.945 -2.819 -2.250 -2.250 -1.257 -0.920 -0.734

TIME= 650.00
 TEMPERATURE 151.22 162.19 162.03 161.89 161.72 161.29 161.04 158.43 154.29 152.59 151.71
 MECH. STRAIN -0.025 -0.103 -0.039 -0.098 -0.037 -0.394 -0.032 -0.074 -0.046 -0.014 -0.0328
 PLASTIC STRAIN -4.722 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937
 STRESS 139.780 -2.974 -2.944 -2.912 -2.877 -2.769 -2.739 -2.208 -1.367 -1.622 -0.644

TIME= 700.00 INVOLVE MULTI-PASS EFFECT 6 PASS
 TEMPERATURE 150.84 161.08 160.95 160.82 160.68 160.51 160.49 157.04 154.12 152.57 151.74
 MECH. STRAIN -0.025 -0.095 -0.034 -0.094 -0.053 -0.049 -0.039 -0.073 -0.048 -0.037 -0.031
 PLASTIC STRAIN -4.722 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934
 STRESS 139.776 -2.834 -2.836 -2.781 -2.751 -2.676 -2.642 -2.172 -1.419 -1.105 -0.946

TIME= 750.00 INVOLVE MULTI-PASS EFFECT 6 PASS
 TEMPERATURE 150.59 160.20 160.08 159.97 159.84 159.52 159.33 157.42 153.96 152.54 151.75
 MECH. STRAIN -0.026 -0.092 -0.031 -0.090 -0.048 -0.047 -0.046 -0.072 -0.049 -0.039 -0.034
 PLASTIC STRAIN -4.722 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932
 STRESS 139.759 -2.726 -2.730 -2.679 -2.653 -2.587 -2.549 -2.190 -1.458 -1.171 -1.011

TIME= 800.00 INVOLVE MULTI-PASS EFFECT 6 PASS
 TEMPERATURE 150.42 152.49 152.36 152.29 152.17 152.04 152.01 152.01 152.01 152.01 151.76
 MECH. STRAIN -0.027 -0.093 -0.049 -0.088 -0.087 -0.087 -0.086 -0.087 -0.087 -0.087 -0.036
 PLASTIC STRAIN -4.722 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930
 STRESS 139.746 -2.641 -2.641 -2.619 -2.603 -2.537 -2.516 -2.462 -2.430 -2.091 -1.224 -1.072

TIME= 850.00 INVOLVE MULTI-PASS EFFECT 6 PASS
 TEMPERATURE 150.31 153.92 156.84 158.74 158.43 158.37 158.21 156.54 153.67 152.47 151.76
 MECH. STRAIN -0.029 -0.087 -0.066 -0.085 -0.085 -0.085 -0.083 -0.082 -0.080 -0.051 -0.038
 PLASTIC STRAIN -4.722 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.928 0.928 0.928 0.928 0.928 0.928 0.928 0.928 0.928 0.928 0.928
 STRESS 139.736 -2.575 -2.555 -2.537 -2.516 -2.462 -2.430 -2.430 -2.091 -1.509 -1.266 -1.122

TIME= 900.00 INVOLVE MULTI-PASS EFFECT 6 PASS
 TEMPERATURE 150.39 153.47 158.39 158.29 158.20 157.95 157.80 156.25 153.55 152.52 151.76
 MECH. STRAIN -0.030 -0.085 -0.064 -0.084 -0.084 -0.084 -0.081 -0.080 -0.070 -0.051 -0.043
 PLASTIC STRAIN -4.722 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.927 0.927 0.927 0.927 0.927 0.927 0.927 0.927 0.927 0.927 0.927
 STRESS 139.653 -2.521 -2.502 -2.485 -2.465 -2.415 -2.386 -2.386 -2.070 -1.523 -1.313 -1.159

TIME= 950.00 INVOLVE MULTI-PASS EFFECT 6 PASS
 TEMPERATURE 150.40 153.10 156.01 157.94 157.64 157.61 157.47 156.01 153.44 152.44 151.76
 MECH. STRAIN -0.030 -0.083 -0.063 -0.082 -0.082 -0.082 -0.081 -0.079 -0.069 -0.052 -0.045
 PLASTIC STRAIN -4.722 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 TOTAL STRAIN 0.926 0.926 0.926 0.926 0.926 0.926 0.926 0.926 0.926 0.926 0.926
 STRESS 139.635 -2.480 -2.463 -2.447 -2.447 -2.447 -2.381 -2.381 -2.055 -1.554 -1.341 -1.191

TIME= 1000.00

	INVOLVE	MULTI-PASS	EFFECT	6 PASS
TEMPERATURE	150.23	157.80	157.72	157.65
MECH. STRAIN	-0.031	-0.082	-0.082	-0.081
PLASTIC STRAIN	-4.722	0.0	0.0	0.0
TOTAL STRAIN	0.925	0.925	0.925	0.925
STRESS	139.625	-2.449	-2.432	-2.418

TIME= 1000.00

	INVOLVE	MULTI-PASS	EFFECT	6 PASS
TEMPERATURE	150.23	157.80	157.72	157.65
MECH. STRAIN	-0.031	-0.082	-0.082	-0.081
PLASTIC STRAIN	-4.722	0.0	0.0	0.0
TOTAL STRAIN	0.925	0.925	0.925	0.925
STRESS	139.625	-2.449	-2.432	-2.418

MSU

27003

Thesis
L679
c.2

Lipsey

187453

Investigation of
welding thermal strains
in high strength
quenched and tempered

Thesis

187453

L679

Lipsey

c.2

Investigation of
welding thermal strains
in high strength
quenched and tempered
steel.

thesL679
Investigation of welding thermal strains

3 2768 002 11816 8
DUDLEY KNOX LIBRARY