E. Building Forest

time limit per test: 2 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

An oriented weighted forest is an acyclic weighted digraph in which from each vertex at most one edge goes.

The *root* of vertex v of an oriented weighted forest is a vertex from which no edge goes and which can be reached from vertex v moving along the edges of the weighted oriented forest. We denote the root of vertex v as root(v).

The *depth* of vertex v is the sum of weights of paths passing from the vertex v to its root. Let's denote the depth of the vertex v as depth(v).

Let's consider the process of constructing a weighted directed forest. Initially, the forest does not contain vertices. Vertices are added sequentially one by one. Overall, there are n performed operations of adding. The i-th (i > 0) adding operation is described by a set of numbers $(k, v_1, x_1, v_2, x_2, \dots, v_k, x_k)$ and means that we should add vertex number i and k edges to the graph: an edge from vertex $root(v_1)$ to vertex i with weight $depth(v_1) + x_1$, an edge from vertex $root(v_2)$ to vertex i with weight $depth(v_2) + x_2$ and so on. If k = 0, then only vertex i is added to the graph, there are no added edges.

Your task is like this: given the operations of adding vertices, calculate the sum of the weights of all edges of the forest, resulting after the application of all defined operations, modulo $100000007 (10^9 + 7)$.

Input

The first line contains a single integer n ($1 \le n \le 10^5$) — the number of operations of adding a vertex.

Next n lines contain descriptions of the operations, the i-th line contains the description of the operation of adding the i-th vertex in the following format: the first number of a line is an integer k ($0 \le k \le i$ - 1), then follow 2k space-separated integers: $v_1, x_1, v_2, x_2, \ldots, v_k, x_k$ ($1 \le v_i \le i$ - 1, $|x_i| \le 10^9$).

The operations are given in the order, in which they should be applied to the graph. It is guaranteed that sum k of all operations does not exceed 10^5 , also that applying operations of adding vertexes does not result in loops and multiple edges.

Output

Print a single number — the sum of weights of all edges of the resulting graph modulo $100000007 (10^9 + 7)$.

Examples

```
input

6
0
0
1 2 1
2 1 5 2 2
1 1 2
1 3 4

output

30
```

```
input

5
0
1 1 5
0
```

0	
2	3 1 4 3

output

_

Note

Conside the first sample:

- 1. Vertex 1 is added. k = 0, thus no edges are added.
- 2. Vertex 2 is added. k = 0, thus no edges are added.
- 3. Vertex 3 is added. k = 1. $v_1 = 2$, $x_1 = 1$. Edge from vertex root(2) = 2 to vertex 3 with weight $depth(2) + x_1 = 0 + 1 = 1$ is added.
- 4. Vertex 4 is added. k = 2. $v_1 = 1$, $x_1 = 5$. Edge from vertex root(1) = 1 to vertex 4 with weight $depth(1) + x_1 = 0 + 5 = 5$ is added. $v_2 = 2$, $x_2 = 2$. Edge from vertex root(2) = 3 to vertex 4 with weight $depth(2) + x_1 = 1 + 2 = 3$ is added.
- 5. Vertex 5 is added. k = 1. $v_1 = 1$, $x_1 = 2$. Edge from vertex root(1) = 4 to vertex 5 with weight $depth(1) + x_1 = 5 + 2 = 7$ is added.
- 6. Vertex 6 is added. k = 1. $v_1 = 3$, $x_1 = 4$. Edge from vertex root(3) = 5 to vertex 6 with weight $depth(3) + x_1 = 10 + 4 = 14$ is added.

The resulting graph is shown on the pictore below: