Formelsammlung Lineare Algebra

Kapitel 2: Analytische Geometrie

Vektor von P = (p₁, p₂, p₃) nach Q = (q₁, q₂, q₃):
$$\overrightarrow{PQ} = \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 \\ q_3 - p_3 \end{pmatrix}$$

Betrag: $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \Rightarrow |\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

Lineare Unabhängigkeit von $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n \iff r_1 \cdot \vec{a}_1 + r_2 \cdot \vec{a}_2 + ... + r_n \cdot \vec{a}_n = \vec{0}$ hat nur die triviale Lösung $r_1 = ... = r_n = 0$

Geradengleichung in Parameterform: $\vec{x} = \vec{a} + r \cdot \vec{m}$

Ebenengleichung in Parameterform : $\vec{x} = \vec{a} + r \cdot \vec{u} + s \cdot \vec{v}$, Ebene in Koordinatenform: $a \cdot x + b \cdot y + c \cdot z = d$

Skalarprodukt: $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\varphi) = a_1 \cdot b_1 + a_2 \cdot b_2 + a_3 \cdot b_3$

Winkel zwischen zwei Vektoren: $cos(\varphi) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$ Orthogonalität: $\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0$

Vektorprodukt: $\vec{a} \times \vec{b} = \begin{vmatrix} a_3b_1 - a_1b_3 \end{vmatrix}$

Normalengleichung einer Ebene: $(\vec{x} - \vec{a}) \cdot \vec{n} = 0$ Hesse'sche Normalform: $(\vec{x} - \vec{a}) \cdot \vec{n}_0 = 0$ mit $|\vec{n}_0| = 1$.

Abstände: Punkt-Ebene: $d = |(\vec{p} - \vec{a}) \cdot \vec{n}_0|$, Punkt-Gerade: $d = |(\vec{p} - \vec{a}) \times \vec{m}_0|$, windschiefe Geraden: $d = |(\vec{p} - \vec{q}) \cdot \vec{n}_0|$

Kapitel 3: Matrizen

Matrixmultiplikation: $(m \times n) \cdot (n \times r) = m \times r \implies C = A \cdot B \text{ mit } c_{ik} = a_{i1} \cdot b_{1k} + a_{i2} \cdot b_{2k} + ... + a_{in} \cdot b_{nk}$ (i = 1, ..., m; k = 1, ..., r)

Lineares Gleichungssystem: $A \cdot \vec{x} = \vec{b}$

Eindeutige Lösung, falls A^{-1} existiert: $\vec{x} = A^{-1} \cdot \vec{b}$

Inverse Matrix: $A \cdot A^{-1} = A^{-1} \cdot A = E_n$ Inverse einer 2×2 -Matrix: $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{a \cdot d - c \cdot b} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

Übergangsmatrix: $M \cdot \vec{a} = \vec{b}$ Fixvektor (stabile Anteile): $M \cdot \vec{x} = \vec{x}$ bzw. $\lim_{n \to \infty} M^n \cdot \vec{a} = \vec{x}$. Determinanten: $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \cdot d - c \cdot b$ $\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + bfg + cdh - gec - hfa - idb$

Kapitel 4: Lineare Abbildungen

Abbildungsmatrix: $\vec{x}' = A \cdot \vec{x}$ (Spalten von A = Bilder der Standardeinheitsvektoren)

Drehung um dem Ursprung um φ : $\begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix}$ Streckung um Faktor a: $\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$

 $Bild(A) = \{A \cdot \vec{x} \mid \vec{x} \in R^n\}$ $Kern(A) = \{\vec{x} \in R^n \mid A \cdot \vec{x} = \vec{0}\}$

Fixpunkte (A) = $\{\vec{x} \in R^n \mid A \cdot \vec{x} = \vec{x}\}$

Eigenwerte = Nullstellen d. charakt. Polynoms: $\det(A - \lambda \cdot E) = 0$, Eigenvektor $\vec{v}_i \neq \vec{0}$ zum EW λ_i : $A \cdot \vec{v}_i = \lambda_i \cdot \vec{v}_i$

Koordinatentransformation: $\vec{v} = T \cdot \vec{w}$ (\vec{v} in Standardbasis, \vec{w} in neuer Basis, Spalten von T = neue Basis)

Transformation von Abbildungsmatrizen: $B = T^{-1} \cdot A \cdot T$ (A in Standardbasis, B in neuer Basis, T s.o.)

Diagonalisierbarkeit: $A_{n\times n}$ hat n verschiedene EW \Rightarrow A diagonalisierbar (EW auf Diagonale; Spalten von T: EV)

Kapitel 5: Algebraische Strukturen

Komplexe Zahlen **C**: $z = (a, b) = a + i \cdot b = |z| \cdot (\cos(\varphi) + i \cdot \sin(\varphi)) = |z| \cdot e^{i \cdot \varphi}$ (mit $i^2 = -1$) Betrag: $|z| = \sqrt{a^2 + b^2}$

Lösungen der Gleichung $x^n = z$ (mit $z = r \cdot e^{i\phi} \in C$): $x_k = \sqrt[n]{r} \cdot e^{i(\frac{\theta}{n} + k \cdot \frac{2\pi}{n})}$ (k = 0, 1, ..., n-1)