## Teorema de Rolle:

Seja f uma função contínua em [a,b] e diferenciável em ]a,b[. Se f(a)=f(b), então existe  $c\in ]a,b[$  tal que f'(c)=0

## Ilustração Gráfica:



### Corolários do Teorema de Rolle

#### Corolário:

Seja f uma função contínua em [a, b] e diferenciável em ]a, b[. Então entre dois zeros de f existe pelo menos um zero de f'.

#### Corolário:

Seja f uma função contínua em [a, b] e diferenciável em ]a, b[. Então entre dois zeros consecutivos de f' existe, no máximo, um zero de f.

#### Exercício:

Mostrar que a função definida por  $f(x) = \operatorname{sen} x - x$  tem um único zero no intervalo  $[-\pi, \pi]$ .

## Teorema de Lagrange:

Seja f uma função contínua em [a,b] e diferenciável em ]a,b[. Então, existe  $c \in ]a,b[$  tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

### Ilustração Gráfica:



## Consequências do Teorema de Lagrange (sobre a monotonia)

#### Proposição:

Sejam  $I \subseteq \mathbb{R}$  um intervalo e  $f: I \longrightarrow \mathbb{R}$  uma função contínua em I e diferenciável em int(I). Então

- (i) Se  $f'(x) = 0, \forall x \in int(I)$ , então f é constante em I.
- (ii) Se  $f'(x) \ge 0$ ,  $\forall x \in int(I)$ , então f é crescente em I.
- (iii) Se  $f'(x) \leq 0$ ,  $\forall x \in int(I)$ , então f é decrescente em I.
- (iv) Se  $f'(x) > 0, \forall x \in int(I)$ , então f é estritamente crescente em I.
- (v) Se f'(x) < 0,  $\forall x \in int(I)$ , então f é estritamente decrescente em I.

# Condição suficiente para a existência de extremo local para função contínua (em ponto onde esta poderá ser não diferenciável):

#### Proposição:

Seja  $f: D_f \longrightarrow \mathbb{R}$  uma função contínua em  $[a, b] \subseteq D_f$  e diferenciável em [a, b], exceto possivelmente em  $c \in ]a, b[$ . Então,

- (i) se f'(x) > 0, para todo o x < c, e f'(x) < 0, para todo o x > c, então f(c) é um máximo local de f;
- (ii) se f'(x) < 0, para todo o x < c, e f'(x) > 0, para todo o x > c, então f(c) é um mínimo local de f.

# Condição suficiente de segunda ordem para que um ponto crítico seja extremante

#### Proposição:

Seja c um ponto crítico de f num intervalo ]a, b[. Admitamos que f é contínua em ]a, b[ e f'' existe e é finita em todo o ponto de ]a, b[. Então verificam-se as condições seguintes:

- (i) se f''(c) > 0., então c é um minimizante local;
- (ii) se f''(c) < 0, então c é um maximizante local.

#### Teorema de Cauchy:

Sejam f e g duas funções contínuas em [a,b] e diferenciáveis em ]a,b[. Se  $g'(x) \neq 0$ , para todo o  $x \in ]a,b[$ , então existe  $c \in ]a,b[$  tal que

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

#### Observação:

Do Teorema de Cauchy pode estabelecer-se uma regra — Regra de Cauchy — de grande utilidade no cálculo de limites quando ocorrem indeterminações do tipo  $\frac{\infty}{\infty}$  ou  $\frac{0}{0}$ .

Nos cinco slides seguintes enunciam-se as várias formas dessa regra.

## Regra de Cauchy (versão 1)

#### Proposição:

Sejam f e g funções diferenciáveis em I = ]a, b[ tais que, para todo o  $x \in I$ ,  $g(x) \neq 0$  e  $g'(x) \neq 0$ . Se

 $\lim_{x\to a^+} f(x)$  e  $\lim_{x\to a^+} g(x)$  são ambos nulos ou ambos infinitos

e existe o limite

$$\lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

$$\lim_{x\to a^+} \frac{f(x)}{g(x)} = \lim_{x\to a^+} \frac{f'(x)}{g'(x)}.$$

# Regra de Cauchy (versão 2)

#### Proposição:

Sejam f e g funções diferenciáveis em I=]a,b[ tais que, para todo o  $x\in I,\ g(x)\neq 0$  e  $g'(x)\neq 0$ . Se

$$\lim_{x \to b^{-}} f(x)$$
 e  $\lim_{x \to b^{-}} g(x)$  são ambos nulos ou ambos infinitos

e existe o limite

$$\lim_{x \to b^{-}} \frac{f'(x)}{g'(x)}$$

$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = \lim_{x \to b^{-}} \frac{f'(x)}{g'(x)}.$$

# Regra de Cauchy (versão 3)

#### Proposição:

Sejam I = ]a, b[ e  $c \in I$ . Sejam f e g funções definidas em  $I \setminus \{c\}$  e diferenciáveis em  $I \setminus \{c\}$ , tais que  $g(x) \neq 0$ , para todo o  $x \in I \setminus \{c\}$ . Se

$$g'(x) \neq 0$$
, para todo o  $x \in I \setminus \{c\}$ ,

 $\lim_{x\to c} f(x)$  e  $\lim_{x\to c} g(x)$  são ambos nulos ou ambos infinitos

e existe o limite

$$\lim_{x\to c}\frac{f'(x)}{g'(x)}$$

$$\lim_{x\to c}\frac{f(x)}{g(x)}=\lim_{x\to c}\frac{f'(x)}{g'(x)}.$$

# Regra de Cauchy (versão 4)

#### Proposição:

Sejam f e g funções definidas em  $I = ]a, +\infty[$  e diferenciáveis em I, com  $g(x) \neq 0$ , para todo o  $x \in I$ .

Suponhamos que  $g'(x) \neq 0$ , para todo o  $x \in I$ . Se

$$\lim_{x \to +\infty} f(x)$$
 e  $\lim_{x \to +\infty} g(x)$  são ambos nulos ou ambos infinitos

e

existe 
$$\lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$$

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$$

# Regra de Cauchy (versão 5)

#### Proposição:

Sejam f e g funções definidas em  $I = ]-\infty, b[$  e diferenciáveis em I, com  $g(x) \neq 0$ , para todo o  $x \in I$ .

Suponhamos que  $g'(x) \neq 0$ , para todo o  $x \in I$ . Se

$$\lim_{x\to -\infty} f(x)$$
 e  $\lim_{x\to -\infty} g(x)$  são ambos nulos ou ambos infinitos

e

existe 
$$\lim_{x \to -\infty} \frac{f'(x)}{g'(x)}$$

$$\lim_{x \to -\infty} \frac{f(x)}{g(x)} = \lim_{x \to -\infty} \frac{f'(x)}{g'(x)}$$