Tecnología Industrial II	Circuitos digitales	IES Fernando Savater
NOMBRE:		CURSO:

Ejercicio 1 .- Un circuito digital recibe a su entrada un número binario de tres bits: B₀, B₁, B₂ y tiene tres salidas: S₁, S₂, S₃. La salida S₁ se activa si la entrada representa en binario el número decimal 7. La salida S₂ se activa si el número de entrada es el 0. La tercera señal de salida S₃ se activa si el número de entrada es alguno de los siguientes: 3, 5, 6, 7. Se pide:

- a) La tabla de verdad para S₁, S₂ y S₃ (1 punto).
- b) Las funciones lógicas S₁, S₂ y S₃ simplificadas por Karnaugh e implementarlas con puertas lógicas (1 punto).

Ejercicio 2 .- La apertura de la compuerta de un depósito está controlada por 3 variables binarias V₁, V₂ y V₃. Para que la compuerta se abra (A = "1") debe cumplirse la siguiente función lógica:

$$A = \overline{V}_1 \overline{V}_2 \overline{V}_3 + \overline{V}_1 V_2 \overline{V}_3 + \overline{V}_1 \overline{V}_2 V_3 + V_1 \overline{V}_2 V_3 + V_1 \overline{V}_2 \overline{V}_3$$

- a) Obtenga la tabla de verdad y simplifique la función lógica aplicando el método de Karnaugh (1 punto).
- b) Diseñe el circuito lógico de la función simplificada utilizando puertas NAND de 2 entradas (1 punto).
- **Ejercicio 3** .- Para controlar el nivel de líquido de un depósito se usan tres sensores, s₁, s₂ y s₃, como se muestra en la figura, colocados a 1, 5 y 6 m del fondo, respectivamente. Los sensores se ponen a "1" lógico si están en contacto con el líquido y a "0" en caso contrario. El sistema tiene una salida, L₁, que se pone a "1" cuando el nivel del agua no alcanza 1 m y otra, L₂, que se pone a "1" solo cuando el nivel es superior a 5 m e inferior a 6 m.
- s₃ 6m s₂ — 5m s₁ — 1m

- a) Obtenga la tabla de verdad para las salidas L₁ y L₂ (1 punto).
- b) Simplifique por Karnaugh las funciones L₁ y L₂ y dibuje sus circuitos lógicos (1 punto).

ВО	B1	B2	S1	S2
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

S3

V1	V2	V3	Α
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

S1	S2	S3	L1	L
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		