

8869

RESEARCH MEMORANDUM

THEORETICAL ROCKET PERFORMANCE OF JP-4 FUEL WITH

MIXTURES OF LIQUID OZONE AND FLUORINE

By Vearl N. Huff and Sanford Gordon

Lewis Flight Propulsion Laboratory Cleveland, Ohio

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

January 28, 1957

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

THEORETICAL ROCKET PERFORMANCE OF JP-4 FUEL WITH MIXTURES

OF LIQUID OZONE AND FLUORINE

By Vearl N. Huff and Sanford Gordon

SUMMARY

Theoretical rocket performance was calculated for JP-4 fuel with mixtures of ozone and fluorine. The data were estimated by means of a heat-correction equation using data for JP-4 fuel with mixtures of oxygen and fluorine. The estimated values were checked with several direct calculations. The estimated data were based upon equilibrium composition during expansion, while the directly computed data were obtained for both equilibrium and frozen composition during expansion.

The maximum value of specific impulse was 334.9 pound-seconds per pound for a combustion-chamber pressure of 600 pounds per square inch absolute and an exit pressure of 1 atmosphere.

INTRODUCTION

Liquid-fluorine - liquid-ozone mixtures might serve as high-energy oxidants for rocket propellants. A mixture of liquid fluorine and liquid oxygen has been shown to give better performance with hydrocarbons than either 100 percent fluorine or oxygen (ref. 1). This is due to the preferential burning of fluorine with hydrogen and oxygen with carbon.

The substitution of liquid ozone for liquid oxygen provides the advantages of greater energy and density. Available information indicates that liquid-fluorine - liquid-ozone mixtures may be stable. If stable mixtures can be produced, this oxidant might have practical application. The performance of fluorine-ozone mixtures on the assumption of chemical equilibrium during expansion may be obtained from the performance of fluorine-oxygen mixtures for chemical equilibrium by applying a simple correction for the increased heat of reaction. A formula for such a correction is given in reference 2. The present report gives the specific impulse of fluorine-ozone mixtures with JP-4 fuel obtained with this correction equation and compares it with several direct computations.

4192

CALCULATION OF PERFORMANCE DATA

The performance data presented in this report were calculated by two methods. The first method estimates performance by means of a heat-correction equation. The second method obtains performance by direct calculation.

Estimated Performance

Specific-impulse data for fluorine-oxygen mixtures with JP-4 fuel were corrected for the difference in heat of reaction between oxygen and ozone to obtain estimated data for fluorine-ozone mixtures with JP-4 fuel. The heat required to convert 1 gram of liquid oxygen at its boiling point to liquid ozone at its boiling point is about 726 calories per gram (ref. 3). The difference in heat per gram of propellant due to the use of ozone instead of oxygen is given by

$$\Delta h = 726 (1 - x) y$$
 (1)

where x is the weight fraction of fuel in the propellant and y is the weight fraction of ozone in the oxidant. (Symbols are defined in the appendix.) The specific impulse corrected for this energy difference is given by

$$I^2 = I_1^2 + a \Delta h + b \Delta h^2$$
 (2)

where

a = 87.0132
$$\left(1 - \frac{T_e}{T_c}\right)_1$$

b = $\frac{87.0132}{2} \left(\frac{T_e}{T_c^2}\right)_1 \left[\frac{1}{(c_p)_c} - \frac{1}{(c_p)_e}\right]_1$

and the subscript 1 indicates the value of the parameters before the change is made. Equation (2) is derived in reference 2 and is restricted to the assumption of chemical equilibrium during expansion. A numerical example of the use of equation (2) is given in reference 4.

The value of 726 calories per gram used in equation (1) was obtained from heat of formation and heat of vaporization data in reference 5 and specific heat data for ozone calculated from spectroscopic data of reference 6. More recent data quoted in reference 7 give a value of 711

calories per gram. This difference affects specific impulse in this report by less than 0.25 pound-second per pound.

Direct Computation of Performance

The estimated performance data obtained by means of equation (2) were checked by several direct calculations. The general method used to obtain directly computed data is described in reference 3.

Assumptions. - The calculations were based on the following usual assumptions: perfect gas law, adiabatic combustion at constant pressure, isentropic expansion, no friction, homogeneous mixing, and one-dimensional flow. The products of combustion were assumed to be graphite and the following ideal gases: atomic carbon C, carbon monofluoride CF, carbon difluoride CF2, carbon trifluoride CF3, carbon tetrafluoride CF4, difluoroacetylene C_2F_2 , methane CH_4 , carbon monoxide CO, carbon dioxide CO_2 , atomic fluorine F, fluorine F_2 , atomic hydrogen H, hydrogen H_2 , hydrogen fluoride HF, water H_2O , atomic oxygen O, oxygen O_2 , and the hydroxyl radical OH. The combustion products were assumed to be expanded completely within the exit nozzle, that is, exit pressure equals ambient pressure. The graphite was assumed to be finely divided and in temperature and velocity equilibrium with the gases during the flow process.

Thermodynamic data. - The thermodynamic data for all combustion products except graphite, methane, the fluorocarbons, and water were taken from reference 3. Data for graphite were taken from reference 8, carbon monofluoride from reference 9, the remainder of the fluorocarbons from reference 10, and water from reference 11. Data for methane were determined by the rigid-rotator - harmonic-oscillator approximation using spectroscopic data from reference 6. The base used in this report for assigning absolute values to enthalpy is the same as in reference 3.

The dissociation energy of fluorine was taken to be 35.6 kilocalories per mole, and the heat of sublimation of graphite at 298.16° K was taken to be 171.698 kilocalories per mole (ref. 5). The heat of solution of oxygen and fluorine was taken to be zero.

Viscosity data. - The theoretical viscosities for the gases in this report were calculated by means of three types of equations or estimated. The viscosity data for CH_4 , CO, CO_2 , F_2 , H_2 , and O_2 were calculated by the method of reference 12. The viscosities of C, F, H, HF, O, and OH were calculated by the method of reference 13, which assumes that the logarithm of viscosity is a linear function of the logarithm of temperature. The viscosity of H_2O was obtained by means of a Sutherland equation (ref. 14). The viscosities of CF, CF_2 , CF_3 , CF_4 , and C_2F_2 were

taken to be equal to those of CO_2 , CH_3 , CH_4 , and C_2H_2 , respectively. The method used to obtain the viscosities and conductivities of mixtures of combustion products is given in reference 4.

Physical and thermochemical data. - The properties of the fuel used in these calculations are typical of the JP-4 fuel delivered to this laboratory over a period of 2 years. The JP-4 fuel was assumed to have a hydrogen-to-carbon weight ratio of 0.163 (atom ratio of 1.942), a lower heat of combustion value of 18,640 Btu per pound, and a specific gravity of 0.769. Additional properties of jet fuels may be found in reference 15.

Several properties of fluorine and ozone taken from references 3, 5, 7, and 16 are listed in table I. Additional data on ozone may be found in reference 7.

Method of calculation. - The calculation procedures and the formulas used are the same as described in reference 4.

Accuracy of results. - The values presented for enthalpy, entropy, and specific impulse appear to be computed correctly to all figures tabulated. The temperature and molecular weight may in some cases be in error by a few figures in the last place tabulated. The derivatives may, in regions where they are changing rapidly, be in error by a few percent. However, because of uncertainties in thermodynamic data used, all values are probably tabulated to more places than are entirely significant.

THEORETICAL PERFORMANCE DATA

Tables

The theoretical specific impulse obtained by direct calculation and estimated by means of equation (2) is given in table II. The data used in equation (2) were obtained from results previously computed at this laboratory both published (refs. 1 and 4) and unpublished (including specific heat data for ref. 1). The estimated values of specific impulse are from 0.2 to 0.8 pound-second per pound lower than the directly calculated values for the five points for which both values were calculated. It is expected that the other estimated values given in table II are in error by about the same amount.

The maximum value of specific impulse is 334.9 pound-seconds per pound for a combustion-chamber pressure of 600 pounds per square inch absolute and an exit pressure of 1 atmosphere.

The calculated values of performance parameters and combustion products obtained by direct calculations are given in tables III to VI.

The properties of gases in the combustion chamber and the characteristic velocity are given in table III. The equilibrium values of specific heat, isentropic exponent, and characteristic velocity include the energy of dissociation. The equilibrium specific heat was calculated by means of equation (37) in reference 3. The equilibrium isentropic exponent $\gamma = \left(\frac{\partial \ln F}{\partial \ln \rho} \right)_{\alpha}$ was computed by means of equation (32) in reference 3.

The frozen values of specific heat, isentropic exponent, and characteristic velocity do not include the energy of dissociation and are computed by the conventional formulas (see ref. 17).

Tables IV and V present the values of performance parameters and combustion products at assigned temperatures and constant entropy. The values were computed directly and used to interpolate properties at the assigned pressure ratios given in table VI. A discussion of the use of derivatives such as $n_{\rm I}$, $n_{\rm T}$, and $(\partial M/\partial T)_{\rm S}$ is given in reference 4. Mole fractions were computed for all 19 substances considered in this report, but those substances are omitted from table V whose mole fractions are less than 5×10^{-6} for all temperatures shown for a given equivalence ratio r and fluorine-to-oxygen atom ratio β .

Table VI presents performance data at various assigned pressure ratios from 1 to 300. Reference 4 gives an example of the use of data at the low pressure ratios to obtain pressures at the injector face.

Figures

The specific-impulse data of table II for a pressure ratio of 20.41 are plotted in figure 1. The maximum value of specific impulse is 309.0 at an equivalence ratio of 1.508 for a fluorine-to-oxygen atom ratio of 1.942.

Figure 2 presents the maximum value of specific impulse for any percent fluorine in the oxidant. A curve of maximum specific impulse for oxygen instead of ozone is given for comparison.

The increase in maximum specific impulse due to the substitution of ozone for oxygen is summarized in the following table (combustion-chamber pressure, 600 lb/sq in. abs; exit pressure, 2 atm; pressure ratio, 20.41):

- 1	Fluorine		Increase in spe-	
		JP-4 fuel plus fluorine-oxygen mixture		cific impulse, lb-sec/lb
	0	262.3	284.3	22.0
ľ	40	281.7	295.4	13.7
L	70	301.0	309.0	8.0

Figures 3 and 4 present data computed by direct methods. Figure 3 shows specific impulse as a function of the logarithm of pressure ratio for frozen and equilibrium composition during expansion. The equilibrium values are from about 7 to 12 percent higher than the frozen values. The specific-impulse exponent n_{T} is also given.

Figure 4 presents temperature plotted against the logarithm of pressure ratio for frozen and equilibrium composition during expansion. Also shown is the temperature exponent $n_{\mathbb{T}}$.

SUMMARY OF RESULTS

Rocket performance data are presented for JP-4 fuel with mixtures of ozone and fluorine. Specific-impulse data were estimated by means of a heat-correction equation from data for JP-4 fuel with mixtures of oxygen and fluorine. The estimated data were checked for several cases by direct calculations. The difference in specific impulse between the estimated and directly calculated values was from 0.2 to 0.8 pound-second per pound. This difference is negligible for many applications.

The maximum specific impulse for a combustion-chamber pressure of 600 pounds per square inch absolute is 309.0 and 334.9 pound-seconds per pound for pressure ratios of 20.41 and 40.83, respectively.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, November 26, 1956

.APPENDIX - SYMBOLS

A nozzle area, sq in.

 C_F coefficient of thrust; $C_F = g_c I/c^* = F/P_c A_t$

 $c_{\rm p}$ specific heat at constant pressure, $(\partial h/\partial T)_{\rm P}$, $cal/(g)(^{\rm O}K)$

c* characteristic velocity, g_cP_cA_t/w, ft/sec

F thrust, 1b

HTO sum of sensible enthalpy and chemical energy, cal/mole

h sum of sensible enthalpy and chemical energy per unit mass, $\frac{\sum_i n_i(H_T^0)_i}{M(1-n_t)}, \; \text{cal/g}$

I specific impulse, 1b force-sec/lb mass

M molecular weight, $\frac{\sum_{i} n_{i}M_{i}}{1 - n_{k}}$, g/g-mole or lb/lb-mole

 $\left(\frac{\partial M}{\partial T}\right)_{S}$ derivative of molecular weight with respect to temperature at constant entropy, $\binom{O}{K}^{-1}$

n mole fraction

n_I specific-impulse exponent for fixed pressure ratio, $\left(\frac{\partial \ln I}{\partial \ln P_c}\right)_{P_c/P}$

 n_{T} temperature exponent for fixed pressure ratio, $\left(\frac{\partial \ln T}{\partial \ln P_{c}}\right)_{P_{c}/P}$

P static pressure (sum of partial pressures), lb/sq in.

p partial pressure, lb/sq in.

```
R universal gas constant (consistent units)

r equivalence ratio, ratio of four times the number of carbon atoms plus the number of hydrogen atoms to two times the number of
```

oxygen atoms plus the number of fluorine atoms in propellant,
$$\frac{4(C) + (H)}{2(O) + (F)}$$

$$S_{rp}^{O}$$
 entropy at pressure of 1 atmosphere, cal/(mole)(O K)

s entropy per unit mass,
$$\frac{\sum_{j} n_{j}(S_{T}^{O})_{j} - R \sum_{j} p_{j} \ln(p_{j}/14.696)}{M(1 - n_{k})}$$

$$\gamma$$
 isentropic exponent, $\left(\frac{\partial \ln P}{\partial \ln \rho}\right)_s$

Subscripts:

c combustion chamber

e nozzle exit

i product of combustion including both gaseous and solid phases

j gaseous product of combustion

k solid product of combustion (graphite)

P constant pressure

P_c/P constant pressure ratio

NACA RM E56Kl4

- s constant entropy
- t nozzle throat
- 1 reference point

REFERENCES

- 1. Gordon, Sanford, and Wilkins, Roger L.: Theoretical Maximum Performance of Liquid Fluorine Liquid Oxygen Mixtures with JP-4 Fuel as Rocket Propellants. NACA RM E54H09, 1954.
- 2. Gordon, Sanford, and Huff, Vearl N.: Theoretical Performance of Liquid Hydrazine and Liquid Fluorine as a Rocket Propellant. NACA RM E53El2, 1953.
- 3. Huff, Vearl N., Gordon, Sanford, and Morrell, Virginia E.: General Method and Thermodynamic Tables for Computation of Equilibrium Composition and Temperature of Chemical Reactions. NACA Rep. 1037, 1951. (Supersedes NACA TN's 2113 and 2161.)
- 4. Huff, Vearl N., Fortini, Anthony, and Gordon, Sanford: Theoretical Performance of JP-4 Fuel and Liquid Oxygen as a Rocket Propellant. II Equilibrium Composition. NACA RM E56D23, 1956.
- 5. Rossini, Frederick D., et al.: Selected Values of Chemical Thermodynamic Properties. Circular 500, Nat. Bur. Standards, Feb. 1952.
- 6. Herzberg, Gerhard: Infrared and Raman Spectra of Polyatomic Molecules. D. Van Nostrand Co., Inc., 1945, p. 308.
- 7. Thorp, Clark E.: Bibliography of Ozone Technology. Vol II. Physical and Pharmacological Properties. Armour Res. Foundation, Ill. Inst. Tech., 1955.
- 8. Anon.: Tables of Selected Values of Chemical Thermodynamic Properties. Table 23, Substance C, Ser. III (C, graphite), Nat. Bur. Standards, Mar. 31, 1947 and June 30, 1948.
- 9. Haar, Lester, and Beckett, Charles W.: Thermal Properties of Fluorine Compounds: Heat Capacity, Entropy, Heat Content and Free Energy Functions of Carbon Monofluoride in the Ideal Gaseous State. Rep. 1164, Nat. Bur. Standards, Oct. 1, 1951. (Office Naval Res. Contract NAonr 112-51.)

419,

10 NACA RM E56Kl4

10. Potocki, Rita M., and Mann, David Emerson: Thermal Properties of Fluorine Compounds: Heat Capacity, Entropy, Heat Content and Free Energy Functions of Carbon Difluoride, Carbon Trifluoride, Carbon Tetrafluoride and Difluoroacetylene in the Ideal Gaseous State. Rep. 1439, Nat. Bur. Standards, Feb. 15, 1952. (Office Naval Res. Contract NAonr 112-51.)

- 11. Glatt, Leonard, Adams, Joan H., and Johnston, Herrick L.: Thermodynamic Properties of the H₂O Molecule from Spectroscopic Data. Tech. Rep. 316-8, Cryogenic Lab., Dept. Chem., Ohio State Univ., June 1, 1953. (Navy Contract N6onr-225, Task Order XII, ONR Proj. NR O85-005.)
- 12. Hirschfelder, Joseph O., Bird, R. Byron, and Spotz, Ellen L.: The Transport Properties for Non-Polar Gases. Jour. Chem. Phys., vol. 16, no. 10, Oct. 1948, pp. 968-981.
- 13. Gilbert, Mitchell: Estimation of the Viscosity, Conductivity, and Diffusion Coefficients of O, H, N, and OH. Memo. No. 4-51, Power Plant Lab. Proj. No. MX527, Jet Prop. Lab., C.I.T., July 6, 1949. (AMC Contract No. W33-O38-ac-4320, Ord. Dept. Contract No. W-O4-200-ORD-455.)
- 14. Keyes, Frederick G.: Thermal Conductivities for Several Gases with a Description of New Means for Obtaining Data at Low Temperatures and Above 500° C. Tech. Memo. No. 1, Proj. Squid, M.I.T., Oct. 1, 1952. (Contract N5-ori-07855.)
- 15. Barnett, Henry C., and Hibbard, Robert R.: Properties of Aircraft Fuels. NACA TN 3276, 1956.
- 16. Kilner, Scott B., Randolph, Carl L., Jr., and Gillespie, Rollin W.: The Density of Liquid Fluorine. Jour. Am. Chem. Soc., vol. 74, no. 4, 1952, pp. 1066-1087.
- 17. Huff, Vearl N., and Fortini, Anthony: Theoretical Performance of JP-4 Fuel and Liquid Oxygen as a Rocket Propellant. I Frozen Composition. NACA RM E56A27, 1956.

TABLE I. - PROPERTIES OF OXIDANTS

Properties	Fluorine	Ozone
Molecular weight, M Density, g/cc	38.00 ^a l.54	48.00 bl.46 cl.571
Freezing point, ^O C Boiling point, ^O C	d ₋₂₁₇ .96 d ₋₁₈₇ .92	e_192.7 d_110.51
Enthalpy required to convert liquid at boiling point to gas at 25°C, kcal/mole	f _{3.030}	f _{3.8}
Enthalpy of vaporization, kcal/mole	g _{1.51}	h _{2.59}
Enthalpy of fusion, kcal/mole	¹ 0.372	

^aAt -196^o C (ref. 16).

bAt -112° C (ref. 7).

 $^{^{\}rm c}$ At -183 $^{\rm o}$ C (ref. 7).

dRef. 5.

e_{Ref. 7}.

fRef. 3.

gAt -187.92° C (ref. 5).

hAt -110.51° C (ref. 5).

¹At -217.96° C (ref. 5).

TABLE II. - THEORETICAL SPECIFIC IMPULSE OF JP-4 FUEL WITH MIXTURES OF LIQUID FLUORINE AND OZONE [Combustion-chamber pressure, 600 15/sq in. abs.]

Fluorine- to- oxygen	in oxidant, percent by	ratio,	Fuel in propellant, percent by	Specific estimate equation	d by (2) for	di	ecific im	utation	
atom ratio, B	weight	4(C)+(H) 2(O)+(F)	weight	equilibr	equilibrium com-		brium ition	Frozen composition	
			1			Pressure	rat10		
				20.41	40.83	20.41	40.83	20.41	40.83
0	o	1.000 1.200 1.300 1.400 1.508 1.600 1.800	22.71 26.07 27.64 29.15 30.70 31.98 34.59	270.9 277.4 279.7 2813.2 284.3 284.3	295.4 302.2 305.8 306.5 309.0 306.5	284.0	308.9	269.8	290.0
0.200	19.19	1.500 1.508 1.540	28.15 28.26 28.68	287.8 287.8 288.0	312.7				
0.500	37.25	1.500 1.508 1.600	25.69 25.78 26.94	293.8 293.8 294.2	319.0	294.5	319.8	377.2	297.0
1.000	54.29	1.500 1.508 1.550 1.600	23.21 23.30 23.80 24.38	301.0 301.1 301.3 301.4	325.7	301.4	327.0	282.2	302.5
1.600	65.52	1.500 1.508 1.530 1.600 1.700	21.48 21.57 21.82 22.59 23.67	306.9 307.0 307.0 307.7 304.9	332.6				
1.942	69.75	1.470 1.500 1.508 1.530	20.48 20.81 20.89 21.03	308.6 308.7 308.3	334.5 :	308.0 309.0 308.9	333.9 334.9 334.8	287.2 288.1 288.1	306.8 307.8 307.8
2.000	70.37	1.000 1.400 1.500 1.600 2.500	14.83 19.60 20.71 21.79 30.33	282.8 305.7 308.2 305.9 289.7	305.8 331.0 331.9 313.0				
2.100	71.38	1.400 1.500 1.530 1.570	19.44 20.55 20.87 21.28	305.1 306.5 305.9 305.3	:				
2.200	72.32	1.450 1.500 1.540 1.600	19.85 20.40 20.82 21.46	305.5 305.1 304.6 304.0	<u>.</u>				
2.500	74.80	1.650 1.700 1.750	21.56 22.07 22.57	301.1 301.1 301.1	ï .				
4.000	82.61	2.000 2.040 2.200	23.47 23.82 25.22	294.3 294.4 294.1	320.1				

4192

TABLE III. - THERMODYNAMIC PROPERTIES OF COMBUSTION GASES FOR JP-4 FUEL AND MIXTURES OF LIQUID FLUORINE AND OZONE

[Combustion-chamber pressure, 600 lb/sq in. abs.]

Fluorine- to-oxygen atom ratio, β	in oxidant, percent by weight	Equivalence ratio, r, 4(C) + (H) 2(O) + (F)	Fuel, percent by weight	Temper- ature T, o _K	Molecular weight, M	Enthalpy, h, cal/g	Entropy, s, cal (g)(oK)	Specific heat, cp, cal (g)(OK)	Isentropic exponent,	Character- istic velocity c*, ft/sec		
	Equilibrium composition											
0 .5 1.0 1.942 1.942	0 37.25 54.29 69.75 69.75	1.508 1.508 1.508 1.47 1.50	30.70 25.78 23.30 20.48 20.81 20.89	3831 4100 4329 4602 4609 4606	20.74 20.31 20.26 20.62 20.52 20.51 en composi	3914 3636 3495 3319 3355 3359	2.954 2.903 2.845 2.749 2.758 2.759	(a) 1.887 1.665 1.485 1.481 1.490 1.494	(a) 1.145 1.162 1.171 1.169 1.168 1.167	(a) 6383 6637 6809 6964 6985 6986		
		 		1102	CH COMPOSI	-		(b)	(b)	(b)		
0 .5 1.0 1.942 1.942	0 37.25 54.29 69.75 69.75	1.508 1.508 1.508 1.47 1.50	30.70 25.78 23.30 20.48 20.81 20.89	3831 4100 4329 4602 4609 4606	20.74 20.31 20.26 20.62 20.52 20.51	3914 3636 3495 3319 3355 3359	2.954 2.903 2.845 2.749 2.758 2.759	0.4992 .4522 .4290 .4046 .4069 .4074	1.238 1.276 1.296 1.313 1.312 1.312	6198 6407 6555 6670 6691 6690		

^aEnergy of dissociation included in computation of property value.

bEnergy of dissociation excluded in computation of property value.

TABLE IV. - TESCRITICAL ROCKET PERFORMANCE AT ASSIGNED TEMPERATURES FOR JP-4 FUEL WITH MIXTURES OF FIJORINE AND OZONE

[Combustion-chamber pressure, 600 lb/sq in. abs.]

(- 1	Rom I Libratius	composition.	during	1 sentrondo	ermanaina	OF COMPRESS	aton.

Temperature presents present p				(a)	Equilibrius	oceposition	during isen	tropio expa	nsion or	compression.			т	
100	per- ature,	$\begin{pmatrix} \frac{a \ln T}{a \ln P_0} \end{pmatrix}_{P_0}$	pressure, P, lb/sq in.	h,	Molecular weight,	derivative,	exponent,	heat, ^C p ⁴	lute vis- cosity, micro-	conduc-	nozzle area to throat	olent of thrust,	impulse exponent, o _I , (<u>a ln I</u> a ln P _o) _{Po}	oific im- pulse, I, lb-sec
3600		<u> </u>			β = () (pure osone)	; r = 1.508	(50.70 per	cent fue	1)	L.,—		·	
0000	3600	.0410	311.190 87.566	3689.4 3284.5	21.148	001803 001824	1,1394	1.8313	908 828	.00175	1.866	1.179	0.0143 .0127 .0108	141.9 834.0 894.0
4000	3000 1600	0165	2.007 .575	3413.4	83.063 23.085 23.086	000134 000013 000000	1.8108 1.8238 1.8171	.5091 .4786 .4825	602 516 425	.00037 .00030 .00085	31.273 82.046	1.821	.0064	361.3
2800	4400	0.0594	1146 800	3007 0									 	
\$\frac{800}{0.0082} \frac{1.857}{1.8035} \frac{3237.4}{2.8781} \tag{0.00107} \frac{1.2449}{1.4566} \frac{1.0039}{0.0080} \frac{14.686}{0.0039} \frac{1.686}{0.0039} \frac{1.686}{0.0000} \frac{1.686}{0.000000} \frac{1.686}{0.00000} \frac{1.686}{0.00000} \frac{1.686}{0.00000} \frac{1.686}{0.00000} \frac{1.686}{0.000000} \frac{1.686}{0.00000000000000000000000000000000000	4000 3600	.0465	475.900 170.560 52.770	3544.4 3172.8 8803.5	91.529	001733	1,1499	11.5960	11088	.00211	1.251	.974	.0146	B00.9
4000	8400	0079	5.065	2217.4	22.781 22.887	000488 000107	1.2037	.8793 .4506	80 a 70 3	.00055	14.888	1.703	.0090	351.3
3500		0.0482	698.800	3556.9	90.166	001310	1.1718	1,4907	1410	0.00228	1 015	0 245		
24000242	3600	.0356	118.390 38.199	2562.4 2525.7	91.395	001564 001496	1.1581	1.5548	1102	.00178 .00138	1.569 3.221	1.372	.0139	234.6
## 1.942 (69.75 persent fluorine); r = 5.47 (20.48 persent fluor) ## 1.940 (0.0490	2400	0121	4.758 1.888	8005.2	22.722 92.801	000367	1.8398	.5118	883	.00055	15.113	11.701	.0086	360.1
3600				-1					0,48 per	oent fael)	<u> </u>			· ·
3400	4400	0497	399.730 167.530	3144.1	181.448	001403	11.1609	11.2923	11445	.00239	1.257	,981	.0145	212.9
48	9400	0236	4.932	1780.5	22.800	UQDQQ3.	12.×985	.3611	981	.00069	4.365 8.303 13.983 28.077	1.454 1.596 1.690 1.786	.0092	345.5
1000	1222	0.00	967 700	12591 7	β = 1.942 (4	BB.75 percent	fluorine);	r = 1,50 (2	0.81 per					
\$800 0044 10.249 1974.5 82.627 000468 1.2187 .5864 1108 .00074 8.128 1.596 .0093 346.200 0174 2.078 1639.1 32.756 000322 1.2825 .4150 848 .00044 26.225 1.780 .0018 366.7 .0018 366.7 .0018 366.4 .0018 .0018 366.2 .0018 .0018 .0018 366.4 .0018 .001	4400	.0426 .0350	165.130	868972	¥1.359	001384	1.1611	1.3569	1448	.00202	1.966	.986	.0144	214.0
4800 0.0486 870.400 3529.5 20.2862001274 1.1703 1.5308 1626 0.00269 4000 0.483 3966.220 3179.3 20.790001379 1.1643 1.4408 1.537 0.00269 1.2631 1.441 0.0000 1.260 0.576 0.0157 1.251 0.0000 0.348 166.050 2834.9 21.340001374 1.1609 1.2841 1.441 0.0000 1.263 0.984 0.143 213.6 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00	9800 2400	0044	10.249	1974.5 1792.5 1639.1	22.627 23.732 22.756	000466 009092 000232	1.2187	.5564 .4065 .4150	1108 963 848	.00074 .00051 .00044	8.325 14.835	1.696	1 .0078	1360.7
3200 .0123 35.356 8219.5 88.312001249 1.1639 1.0579 1338 .00157 2.215 1.253 .0127 272.0 3200 .0123 25.356 8219.5 88.312000920 1.1802 .7902 1227 .00111 4.292 1.450 .0110 314.9 84000042 10.460 1984.3 22.589000463 1.3194 .5555 1108 .00074 8.186 1.593 .0091 345.9 84000187 4.669 1800.1 22.700000133 1.2725 .4214 982 .00052 14.689 1.696 .0072 368.3 80000248 2.077 1644.4 28.725000019 1.3068 .3728 849 .00041 86.215 1.779 .0055 386.3	/	0486	270 (00											
\$\begin{align*} \begin{align*} \be	4400	.0483	396.220 166.050 65.286	3179.3 2834.9 2508.8	20.790 21.340 21.871	001359 001374 001849	1:1643	1.2841	1839 1441 1338	.00240	1.263	.984	0.0157 -0143 -0187	185.1 213.6 272.0
1	2800 8400	0048	10.460	1984.3	22.589 22.700	000463	1.8194	.5555	1108	.00074	8.186 14.689	1.695	-0072	345.9 368.3
			.895	1499.6	22.728	000001	1.3883	.3538	709	.00033	_		1	1

TABLE IV. - Concluded. THEORETICAL ROCKET PERFORMANCE AT ASSIGNED TEMPERATURES FOR

JP-4 FUEL WITH MIXTURES OF FLUCRINE AND OZONE

[Combustion-chamber pressure, 600 lb/sq in. abs.]

(b) Frozen composition during isentropic expansion or compression. Enthalpy, Tem-Static Specific Isentropic Abso-Thermal Ratio of Coeffi-Spe-cific im-pulse, exponent,

(a ln P)
a ln ρ)s pressure, P, lb/sq in. abs lute vis-cosity, nozzle area to throat cient of thrust, heat, per-ature, cal/g conductivity, cal/(cm) (sec)(°K) ď, (g)(°K) micro area C_F lb-sec lb $\beta = 0$ (pure ozone); r = 1.508 (30.70 percent fuel) 1.236 1.239 1.243 1.248 1.253 751.780 434.460 236.960 120.280 55.714 3998.4 3798.9 3601.6 3406.9 3215.5 0.5013 .4962 .4902 .4830 .4739 971 907 841 771 697 4000 0.00060 1.08 1.06 1.44 2.27 3600 3200 2800 2400 .00056 .00051 .00046 0.519 .856 1.090 1.280 100.0 164.8 210.0 246.5 22.871 7.951 2.164 .632 .124 3028.2 2846.6 2672.9 2549.8 2434.3 .4619 .4453 .4216 .3983 1.262 1.274 1.294 1.317 1.347 277.6 304.7 328.6 344.5 358.8 618 532 437 357 264 .00036 1.441 1.582 1.706 2000 4.09 1600 1200 900 8.58 21.92 53.67 74.55 .00018 .863 $\beta = 0.5 (37.25 percent)$ fluorine); r = 1.508 (25.78 percent fuel) 3772.2 0.4552 3590.9 .4512 3411.3 .4467 3233.6 .4416 3058.1 .4355 1265 1184 1099 1011 920 4400 832 960 1.274 1.277 1.280 1.285 0.00073 .00068 .00063 4000 3600 3200 2800 535.640 330.280 193.490 106.340 1.53 1.00 1.13 1.51 0.314 .702 .939 62.5 139.8 187.1 224.2 1.290 .00051 2885.4 2716.2 2551.6 2393.3 2280.0 .4279 .4179 .4044 .3860 1.296 1.306 1.319 1.339 1.361 2.24 3.70 6.97 15.61 34.00 824 723 615 497 400 .00045 1.283 255.5 24.488 9.585 2.998 .988 1.421 282.9 307.2 328.8 343.5 2000 .00032 1.651 . 223 2171.9 600 3517 1.385 292 .00014 96.88 1.792 356.9 r = 1.508 (23.30 percent fuel) $\beta = 1.0$ (54.29 percent fluorine); 4400 644.540 4000 425.320 3600 269.760 3200 163.010 2800 92.723 3525 .8 3354 .7 3185 .2 3017 .4 2851 .6 0.4297 .4259 .4318 .4171 .4116 1.296 1.299 1.303 1.307 0.00078 .00072 .00066 .00060 1410 0.543 110.6 .806 164.2 1.001 203.9 1.162 236.6 1314 1216 1115 1.07 1.02 1.21 1.60 1.313 1010 48.819 23.198 9.558 3.176 1.104 2688.3 2528.1 2372.1 2221.7 .4047 .3957 .3836 .3676 1.320 1.330 1.343 1.364 1.384 1.301 265.0 1.424 290.1 1.534 312.6 1.634 332.9 1.702 346.7 2400 900 785 662 531 .00047 3.33 3.74 6.73 2000 1600 1200 900 14.26 .00026 2113.6 .3535 425 -00020 600 . 264 2009.6 .3401 1.405 307 .00014 79.48 1.765 359.5 $\beta = 1.942$ (69.75 percent fluorine); r = 1.47 (20.48 percent fuel) 1.311 1.315 1.318 1.322 1.327 716.400 497.220 334.450 216.570 133.880 3399.4 3237.6 3077.1 2918.1 2760.6 0.4065 .4028 .3994 .3957 1639 1535 1429 0.00086 4800 4400 4000 3600 1.28 1.00 1.08 1.32 0.406 84.2 .700 145.1 .901 186.8 1.063 220.4 1319 .00068 3200 .3916 .00062 78.093 42.288 20.748 8.871 3.080 2605.0 2451.5 2300.9 2154.0 2012.1 .3866 .3805 .3724 .3616 .3475 1.75 2.51 3.93 6.88 14.02 1.202 249.3 1.325 274.8 1.436 297.7 1.536 318.4 1.627 337.2 .00055 .00048 .00041 2800 1.332 1089 2400 2000 1600 1200 1.339 1.349 1.363 1.384 968 840 707 564 .00026 1.112 .3356 900 1909.6 1810.6 1.403 448 322 28.05 72.36 1.689 350.2 .00020 .00014 $\beta = 1.942$ (69.75 percent fluorine); r = 1.50 (20.81 percent fuel) 711.830 493.870 332.070 214.940 132.800 3432.6 0.4087 3269.9 .4050 3108.6 .4016 2948.7 .3979 2790.3 .3937 1.310 1.314 1.318 1.322 1.326 1634 1531 1424 1315 4800 0.00087 .00081 .00074 4400 4000 3600 3200 1.26 1.00 1.08 1.32 0.413 .704 .904 1.066 85.9 146.4 188.0 221.6 1203 .00062 1.75 2.52 3.96 6.93 14.15 77.423 41.900 20.544 8.777 3.044 2633.8 2479.5 2328.1 2180.4 2037.7 .3887 .3825 .3744 .3635 .3493 .00055 .00049 .00042 .00034 2800 2400 2000 1600 1200 1.332 1086 1.204 250.5 1.327 276.0 1.437 298.9 1.537 319.7 1.628 338.5 1.339 1.349 1.363 1.384 965 838 705 562 900 1.099 1934.7 1835.2 .3373 1.403 447 .00020 28.33 73.15 1.690 351.5 322 $\beta = 1.942$ (69.75 percent fluorine); r = 1.508 (20.89 percent fuel 3438.4 0.4093 3275.5 .4055 3114.0 .4021 2953.9 .3984 2795.3 .3942 4800 714.270 4400 495.420 4000 332.980 1633 1530 1424 1.310 1.314 1.317 1.321 1.526 0.00087 .00087 .00081 .00074 .00068 0.410 .702 .903 1.27 0.410 85.3 .702 146.0 .903 187.8 1.065 221.5 215.460 1.08 1314 77.545 41.945 20.554 8.776 3.042 2800 2400 2000 1600 1200 2638.6 2484.1 2332.5 2184.6 2041.8 .3892 .3830 .3748 .3639 .3497 1.331 1.339 1.348 1.363 1.383 1085 964 838 704 562 1.75 2.52 3.96 6.94 14.17 1.204 250.4 1.327 275.9 1.437 298.9 1.537 319.7 1.628 338.5 .00055 .00049 1938.7 .00020 447 321 28.38 1.691

777

11年1月1日 11日 11日

-

Ξ

3

ü

TABLE V. - EQUILLERIUM COMPOSITION OF PRODUCTS OF REACTION AT COMBUSTION TEMPERATURE AND AT ASSIGNED TEMPERATURES FOR ISENTROPIC EXPANSION OR COMPRESSIONS

[Combustion-chamber pressure, 600 lb/sq in. abs.] $\beta = 0$ (pure ozone); r = 1.508 (50.70 percent fuel) T, °ĸ ^b3831 1200 2000 2400 3800 3600 4000 34934 15748 0.37396 0.37377 .08192 .06647 0.36013 .14383 .00906 .14161 0.36531 .13000 .02391 .13183 .36974 .11103 .04120 .18910 .37292 н со³ .15748 .06647 .00012 .05759 .07269 . 22756 .24462 .02121 .01501 .06473 .32954 .00#10 .29999 .26457 .23081 . 26509 . 3 3 4 3 4 H₂O .31197 000 .00018 00202 .00689 0H 03 .07183 .00001 .00032 = 0.5 (3 fluorine); r 1,508 (25. 25 percent 8 percent fuel) b 4100 3000 2800 3 2 0 0 3600 400Q 24400 2400 .33759 .05836 .00434 .06035 .07865 .33759 .03759 .008292 .07950 0.33194 .08229 .00051 .02271 .33523 .06769 .00186 .04138 .33580 .03114 .01388 .09560 0.32297 0.32919 .09131 .00007 .33764 .04010 .00844 .07856 C02 0 F H H₂ .00144 .00805 30300 10043 01838 00898 03582 .28593 .07634 .03154 .01160 .28937 .08067 .02896 .01127 .38608 .14152 .00214 .00144 HF H₂O 00 .01012 .00018 .00219 . 02318 .05246 fluorine); r 1.508 (23. percent fuel) B = 1.0 (54.29 percent D4329 4400 T, 2000 3600 4000 .32401 0.32148 .01643 .03252 .08918 .04476 0.31806 0.32217 .05242 .00108 .01946 .04928 .32408 .02154 .02139 .07460 0.38186 .05770 .00013 CO CO₂ .00112 .03717 H H2 .00655 .47668 .04600 .00766 .00294 .01337 .41150 .01996 .03248 .00555 .49783 .05994 .00011 .49113 .05632 .00170 .43268 .02531 .02607 .40678 .01902 .03368 HF H₂0 0 00 .00568 ᅊ .00009 $\beta = 1.942$ (69.75 percent fluorine; r - 1.47 (20.48 percent fuel) ٥ĸ Ť, b4602 3000 2400 2800 3600 4000 4800 0.00001 C(GAS 0.00002 .00201 .32579 .31915 .30506 .29755 .32544 .32356 .00577 .31855 C02 .05373 .13394 .00001 .08417 .01639 .46028 .12102 .00001 .07464 .01459 .48081 .08004 .00860 .01657 .01911 .03188 .10745 f Fa o ٥ .00179 .00034 .64487 .02531 .06463 .01271 .50839 .00007 .01011 .04443 .00001 .00221 냚 .00045 .00331 .00011 .00101 80000. \$0000. \$0000. .00030 .00046 .00417 .00008 .00131 .00043 .00041 0 .00474 0 .00005 0 ٥ .00039 H20 .00002 .00488 0 02 QH $\beta = 1.942$ (89.75 percer fluorine); 81 percent 4400 4800 T, b4609 2000 2400 2800 3200 3600 4000 0.00003 0.00015 C(GAS 0.00008 .00001 .00013 CF4 CO2 .00015 .33704 .00181 .32553 .00064 .30539 .33700 .33556 .33176 .12844 .00001 .08898 .01809 .11591 .00001 .07982 .01637 .48070 .04691 .07384 .10171 .00378 .00961 .02428 .00263 000 ŗ2 .02929 .00704 .58954 .04895 .01069 .54713 .00359 .00135 .64824 .01322 .00379 .62532 .00031 06941 .01444 H₂ .65837 00011 .00011 .00081 .00028 .00010 .00101 000 .00004 .00010 .00010 .00111 .00037 .00010 H20 .00030 ŭН 8 = 1.942 (69.75 percent fluorine); r = 1.508 (20.89 percent fuel) b4606 1600 3 270.0 3600 4000 4400 4800 0.00001 0.00016 0.00025 000 .00001 00005 0.00037 C(QAS) .00032 CF2 CF4 CaFa 00001 0 .00001 .00001 .00001 .33365 .00001 .02261 0.33781 .30623 .00006 .11388 .00001 .08043 .31054 .00005 .09997 .32702 .00002 .04521 .31899 .00003 .07814 co2 . 33985 33988 0 .00008 .00175 .00019 .00801 ٥ o Ω o F2 H .01400 .03017 .00004 .00066 .00421 .07026 0043 6854 00002

.00002

 8 Compositions given as mole fractions; those less than 5×10^{-6} are shown as 0.

DCombustion-chamber conditions.

ᄩ 0 H20

TABLE VI. - THEORETICAL ROCKET PERFORMANCE AT VARIOUS PRESSURE RATIOS FOR MIXTURES OF LIQUID

OZONE AND FLUCRINE WITH JP-4 FUEL

[Combustion-chamber pressure, 600 lb/sq in. abs.]

(a) Equilibrium composition during isentropic expansion.

Pressure ratio, Po/P	Static pressure, lb/sq in.	Temper- ature, T, OK	Temperature exponent, n _T , (a in T) a in P _C) F	Enthalpy, h, cal/s	Molecular weight,	Fartial derivative, (off), (°x)-1	$\left(\frac{a \ln^{\gamma} p}{a \ln p}\right)_{s}$	cific heat, cp, cal (g)(oK)	Ratio of nozzle area to throat area	Coeffi- cient of thrust, Cp	Specific- impulse exponent, n _I , d ln I a ln Pc)P _e	Specific impulse, I, 1b-sec 1b
1.040 1.446 1.735 2.168	600 576.92 415.07 345.89 276.71	3831 3817 3699 3636 3561	0.0455 .0452 .0430 .0417	8 = 0:(pu: 3913.8 3899.4 3781.6 3718.4 3642.9	20.74 20.76 20.97 21.08 21.21	r = 1.508 (36 00170 00171 00176 00179 00182	1.145 1.145 1.142 1.140	1.887	2.357 1.036 1.000 1.033	0.178 .541 .657	0.0151 .0147 .0144 .0142	35.4 107.3 130.4 153.5
10 20.41 40.83 60 100 300	60 30 29.392 14.696 10	3088 2885 2879 2676 2670 2549 2380 1999	0.0283 .0210 .0208 .0132 .0139 .0070 0034	3177.1 2992.2 2986.2 2882.3 2817.5 2729.8 2620.5 2412.8	22.08 22.42 22.69 22.70 22.82 22.94 23.06	00175 00151 00151 00113 00087 00055 rine); r = 1	1.139 1.159 1.152 1.162 1.178 1.210	1.429 1.180 1.172 .930 .923 .796 .657 .509	2.41 3.96 4.02 6.67 6.78 9.10 13.47 31.35	1.276 1.427 1.431 1.553 1.557 1.619 1.691 1.823	0.0122 .0112 .0113 .0101 .0101 .0094 .0065	335.5
1.040 1.454 1.744 2.180	600 576.92 412.78 343.97 275.18	4100 4082 3941 3867 3779	0.0481 .0478 .0455 .0442 .0427	3635.8 3620.1 3489.6 3421.0 3339.4	20.31 20.34 20.56 20.68 20.82	00151 00152 00159 00163 00167	1.162 1.162 1.158 1.156 1.154	1.665	2.368 1.035 1.000 1.033	0.179 .547 .663 .779	0.0163 .0158 .0156 .0153	36.9 112.8 136.7 160.6
10 20.41 40.83 60 100 300	60 30 29.392 15 14.696 10	3242 3018 3011 2791 2784 2652 2465 2033	0.0308 .0234 .0232 .0137 .0135 .0083 0030	2841.3 2644.8 2645.3 2465.3 2465.3 2467.9 2253.4 2038.2	21.76 22.13 22.14 22.46 22.60 22.75 23.88		1.149 1.161 1.162 1.175 1.196 1.242	1.394 1.171 1.163 .918 .918 .777 .622	2.38 3.89 3.95 6.53 8.88 13.09 29.96	1.275 1.424 1.428 1.547 1.550 1.610 1.681	0.0132 .0123 .0122 .0111 .0111 .0104 .0093	263.0 293.7 294.5 319.8 319.8 332.2 346.8 372.9
1 1.040 1.458 1.750	600 576.92 411.40 342.83	4329 4309 4149 4066	β = 1 0.0473 .0471 .0448 .0435	3495.2 3478.6 3339.3 3266.9	20.26 20.29 20.51 20.62	00133 00134 00140 00143	1.171 1.170 1.167	1.485	2.374 1.035 1.000	0.180 .550 .666	0.0161 .0156 .0154	38.0 116.5 140.9
2.188 100.41 40.83 100 300	274.26 60 39 2 15 69 6 10 29 6	3967 3364 3114 3106 2854 2707 2499 2025	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3180.9 2660.6 2456.1 2371.7 2266.5 2171.8 2171.9 1837.9	20.77 21.707 22.08 22.40 22.40 22.54 22.58 22.80	00146 00141 00108 00108 00108 00050	1.166 1.164 1.160 1.160 1.175 1.175 1.1291 1.2268	1	1.033 2.35 3.89 6.40 6.567 128.66	.781 1.273 1.424 1.542 1.5673 1.794	01151 0.011209 .01109 .01109 .01109 .01097	16 9.64 B B B B B B B B B B B B B B B B B B B
			β = 1		percent fl	norine); r =	1.47 (20.48	percent f	uel)			
1.040 1.458 1.749 2.187	600 576.92 411.56 342.98 274.37	4602 4582 4414 4327 4222	0.0460 .0457 .0429 .0414 .0395	3319.1 3301.7 3156.3 3080.7 2990.7	20.62 20.64 20.87 20.99 21.14	00134 00134 00137 00139 00140	1.169 1.168 1.165 1.164 1.163	1.481 1.477 1.437 1.412 1.379	2.373 1.035 1.000 1.032	0.180 .550 .665 .781	0.0165 .0159 .0156 .0153	38.9 119.0 144.0 169.0
10 20.41 40.83 60 100 300	60 30.392 15.696 10.696	3565 3279 3270 2981 2971 2786 2509 2013	0.0250 .0158 .0155 .0031 -0017 0083 0040	2446.7 2234.5 22328.6 20437.6 1940.6 18609.2	22.355 22.355 22.3655 22.322 2	00129 00108 00107 00066 00035 00005		1.063 .872 .866 .634 .629 .505	2.34 3.81 3.87 6.31 6.41 8.47 12.18 27.22	1.273 1.419 1.423 1.540 1.543 1.667 1.782	0.0127 .0115 .0115 .0101 .01091 .0077	333.9 346.3 360.9
1.040	600 576.92	4609 4589	0:0460	3354.8	20.52	00133 00133	1.168	1.490	3.373	0.179	0.0164	39.0
1.458 1.749 2.187	411.55 342.96 274.37	4421 4334 4229	.0429 .0414 .0395	3191.0 3114.9 3084.3	20.55 20.78 20.90 21.04	00137 00138 00139	1.166	1.442	1.035	.550 .665 .781	.0159 .0156 .0152	119.4 144.5 169.6
10 20.41 40.83 60 100 300	60 30 39.392 15 14.696 10	3568 3278 3269 29767 2788 2536 1985		2477.1 2263.7 2257.8 2071.4 2066.0 1968.5 1849.3 1632.9	21.94 22.28 22.53 22.53 22.53 22.71 22.76	00125 00102 00101 00068 00045 00018 00026	1.175 1.198 1.199 1.221 1.263 1.280	1.045 .851 .846 .655 .649 .550 .443 .421	2.34 3.80 5.30 6.39 8.48 126.92	1.273 1.413 1.423 1.539 1.542 1.600 1.667	0.0127 .0114 .0110 .01099 .0099 .0079	276.4 308.0 3034.9 3347.9
1.040 1.458 1.749 2.186	600 576.92 411.66 343.05 274.43	4606 4586 4418 4331 4185		3359.0 3341.6 3195.4 3119.3 3028.8	20.51 20.54 20.77 20.88 21.03	00132 00133 00136 00137 00138	1.167 1.167 1.165 1.163	1.494	2.373 1.035 1.000 1.022	0.179 .550 .665 .781	0.0163 .0158 .0155 .0150	39.0 119.3 144.4 169.5
10 20.41 40.83 60 100 300	60 30 39.392 15 14.696 10	3565 3272 3263 2968 2958 2778 2527	0.0242 .0149 .0146 .0036 .0050 0140	2481.3 2268.1 2262.1 2075.9 2075.6 19773.2 1854.3 1657.9	924500085 1222222222222222222222222222222222222	00123 00099 00065 00064 00022	1.176 1.176 1.201 1.202 1.222 1.256	1.035 .838 .844 .639 .546 .454	2.80 3.86 5.29 6.36 68.26 126.93	1.4133 1.4133 1.5142 1.5542 1.5682	0.0126 .0112 .0112 .0099 .0098 .0098 .0078	276.4 308.9 334.1 334.8 347.3 361.9 387.0

Throat.

TABLE VI. - Concluded. THEORETICAL ROCKET PERFORMANCE AT VARIOUS PRESSURE RATIOS FOR

MIXTURES OF LIQUID OZONE AND FLUORINE WITH JP-4 FUET.

[Combustion-chamber pressure, 600 lb/sq in. abs.]

(b) Frozen composition during isentropic expansion.

ratio, pressure, ature, h, exponent, offic nozzle P-/P F, T. cal/s 7, heat, area to	Coeffi- cient of thrust,	Specific impulse, I,
$ \begin{array}{c c} & \text{1b/eq in.} & \text{ok} \\ \hline & \text{abs} & \\ \end{array} $ ok $ \begin{array}{c c} & \text{cal} \\ \hline & \text{in P} \\ \hline & \text{in P} \\ \hline & \text{(g)(ok)} \\ \end{array} $ throat area	thrust,	
	C ^B	1b-sec 1b
β = 0:(pure ozone); r = 1.508 (30.70 percent fuel)	• • • • • • • • • • • • • • • • • • • •	
1 600 3831 3913.8 1.238 0.499		
1.497	.183 .578 .691	35.3 111.4 133.0 154.7
10 60 8436 3232.6 1.253 0.475 2.17	.803 17264	
20.41 29.392 2106 3077.6 1.259 .465 3.45 1	1.364 1.397 1.400 1.503	243.5 269.1 269.8 289.5
40.83	1.506 1.555	299.5
300 8 11/9 2004.0 1.290 .420 23.21 1	.718	310.7 329.8
$\beta = 0.5 \text{ (37.25 percent fluorine); } r = 1.508 \text{ (25.78 percent fuel)}$ 1 600 4100 3635.8 1.276 0.452		
1 040	.185	36.9
1.817 395.43 3744 3475.9 1.279 .448 1.030 1.881 329.53 3598 3410.5 1.280 2.447 1.000 2.276	.703 .814	118.0 140.0 162.1
. 90 30 2007 2756 1 303 424 3 24 1	.261	851.1 876.6
20.41 29.392 2087 2752.7 1.303 .420 3.28 1	480	277.2
40.83 14.696 1773 2623.0 1.313 .411 5.21 1 60 1 60 1 61 2558.2 1 .318 .405 6.77 1 60 1427 2482.3 1.3287 .397 9.63	.492 .538 .591	297.0 306.2 316.8
300 2 1062 2348.2 1.347 .380 20.73 1	.681	334.7
1 600 4329 3495.2 1.296 0.429		
1	.186 .600 .710	188.8
8.292 861.78 3875 3174.6 1.303 .482 1.028	820	144.6
20 30 2131 2580.2 1.326 .399 3.16 1	.260	256.7
AA 1	. 482	302.0
10.83 14.696 1785 2443.5 1.336 .390 5.04 1 100 6 1419 2379.3 1.343 .377 9.23	.485	302.5
60 10 1619 2379.3 1.343 .384 6.53 1 100 6 1419 2303.3 1.352 .377 9.23 1 300 2 1060 2170.5 1.373 .361 19.61	.581	322.0
β = 1.942 (69.75 percent fluorine); r = 1.47 (20.48 percent	Tuel)	
1 .040 576.92 4559 5301.8 1.313 0.405 1.537 390.47 4153 3138.9 1.313 0.405 1.028	.187	38.8
1.844 385.40 3974 3000.0 1.310 .399 1.000	.606	125.5
	.824	261.0
20.41 29.392 2188 2371.1 1.344 .377 3.11 1	.382	286.5
	478	306.3
	.524	315.8 326.1 343.3
$\beta = 1.942$ (69.75 percent fluorine); $r = 1.50$ (20.81 percent		
1.040 576.92 4509 3354.8 1.312 0.407 1.040 1.536 3397.3 1.316 0.405 1.028	.187	38.9
1.844 325.44 3981 3100.8 1.318 .401 1.000	.605	125.9 148.7 171.4
10 60 2627 2566.8 1.335 0.386 2.03 1	.824	261.8
30 30 3204 3405.1 1.343 .379 3.11 1 30.41 29.392 8193 8400.7 1.344 .379 3.15 1	382	287.5
40 15 1843 2269.6 1.354 .370 4.86 1	478	307.3
100 6 1445 2124.3 1.370 .358 8.94 1	.524	307.8 316.9 327.2 344.4
300 2 1067 1991.6 1.392 .344 18.83 1 β = 1.942 (69.75 percent fluorine); r = 1.508 (20.89 percent	.656 Tt fuel)	244.4
	187	100
1.040	.605	38.9 185.9 148.6
1.843 325.49 3978 3105.2 1.318 .402 1.005 8.304 260.38 3769 3021.5 1.320 .400 1.027	.824	171.4
	250	261.8
10 60 8626 8571.2 1.334 0.387 2.03 1	.259 .382	261.8
10 60 8626 8571.2 1.334 0.387 2.03 1 20 30 8204 2409.4 1.343 .379 3.11 1 80.41 29.398 3193 2405.1 1.343 .379 3.15 1 40 83 15 88 193 2275.9 1.353 .371 4.86	382	307.3
10	- 388 I	286.1

Figure 1. - Theoretical equilibrium specific impulse of JP-4 fuel with liquid-ozone - liquid-fluorine mixtures. Data calculated by means of equation (2). Combustion-chamber pressure, 600 pounds per square inch absolute; isentropic expansion to 2 atmospheres; pressure ratio, 20.41.

Figure 2. - Theoretical specific impulse of JP-4 fuel with liquid-ozone - liquid-fluorine mixtures and with liquid-oxygen - liquid-fluorine mixtures at equivalence ratios for which equilibrium specific impulse is maximum. Isenfropic expansion from 600 pounds per square inch absolute to pressure ratio indicated assuming equilibrium composition.

NACA RM E56K14 21

Figure 3. - Theoretical specific impulse plotted against logarithm of nozzle pressure ratio for JP-4 fuel with liquid-ozone - liquid-fluorine mixtures at equivalence ratio of 1.508. Isentropic expansion from combustion-chamber pressure of 600 pounds per square inch absolute.

Figure 4. - Theoretical nozzle-exit temperature plotted against logarithm of nozzle pressure ratio for JP-4 fuel with liquid-ozone - liquid-fluorine mixtures at equivalence ratio of 1.508. Isentropic expansion from combustion-chamber pressure of 600 pounds per square inch absolute.