Dissimilarity between Asymmetric Binary Variables

Proximity Measure for Binary Attributes

• A contingency table for binary data

		Obj	ect j	
		1	0	sum
Object i	1	q	r	q+r
Object i	0	8	t	s+t
	sum	q+s	r+t	p

Symmetric binary คือ ค่าความจริงทั้งสองค่า มันมีความน่าจะเป็นเท่าๆกัน
Asymmetric binary คือ ค่าความจริงทั้งสองค่า มีความน่าจะเป็นที่เกิดขึ้นไม่เท่ากัน

- Distance measure for symmetric binary variables $d(i, j) = \frac{r+s}{q+r+s+t}$
- Distance measure for asymmetric binary variables: $d(i, j) = \frac{r+s}{q+r+s}$
- Jaccard coefficient (*similarity* measure for asymmetric binary variables): $sim_{Jaccard}(i,j) = \frac{q}{q+r+s}$
- Note: Jaccard coefficient is the same as "coherence" (a concept discussed in Pattern Discovery)

$$coherence(i,j) = \frac{sup(i,j)}{sup(i) + sup(j) - sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

(#)

Example: Dissimilarity between Asymmetric Binary Variables

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4				Mary	
Jack Mary	M F	Y Y	N N	P P	N N	N P	N N	To	-1-	1	0	∑ro w
Jim	M	Y	P	N	N	N	N	Ja	ck 1	2	0	2
• Ge	ender is	a symr	netric a	ttribute	(not co	unted in	1)		0	1	3	4
• Tl	ne remai	ning at	tributes	are act	mmetri	c hinar	7		Jim	3	3	6
		•		•		•			1	0	∑ro	
• Le	t the val	lues Y	and P b	e 1, and	the val	ue N be					W	
• Di	stance:	d(i, j)) = -	r+s	_		Jack	1	1	1	2	
			-			1		0	1	3	4	
	d(jack	, mary	$r^{2} = \frac{0}{2}$	0+1	= 0.33	3_		У <u>Σ</u> .c	2	4	6	
ary 2			1+	- 0 + 1 - 1	2		1		∑ro			
"	d(jack	, jim)	$=\frac{1}{1+1}$	$\frac{1}{1} = 0$	0.67 🗾	71			W			
	d(jack d(jack d(jim,	marv) = -1-	+ 2 =	0.75	Jim	1 1	1 2	2			

Name	Ge	nder	Fe	ver	Co	ugh	Te	est-1	Te	st-2	Te	st-3	Te	st-4
Jack	M	1	Y	1	N	0	P	1	N	0	N	0	N	0
Mary	F	0	Y	1	N	0	P	1	N	0	P	1	N	0
Jim	M		Y		P	1	N		N		N		N	

Jack

Mary

สูศ	13	Obi	ect j	
		1	0	sum
Object i	1	q	r	q + r
	0	8	t	s+t
	sum	q + s	r+t	p

	1	0	Sum
1	2	1	3
0	1	3	4
Sum	3	4	7

ด้าเป็น symmetric binary จะใช้สูตรนี้
$$d(i,j)=rac{r+s}{q+r+s+t}=rac{1+1}{2+1+1+3}=rac{2}{7}$$

กับเป็น Asymmetric binary จะใช้สูตรนี้
$$\ d(i,j)=rac{r+s}{q+r+s}$$

Name	Ge	nder	Fe	ver	Co	ough	Te	st-1	Te	st-2	Te	st-3	Te	st-4
Jack	M	1	Y	1	N	0	P	1	N	0	N	0	N	0
Mary	F	0	Y	1	N	0	P	1	N	0	P	1	N	
Jim	M		Y	1	P	1	N	0.	N	0	N	0	N	0

Jim

ನ್ನ೯	19	Obi	ject j	
	11111	1	0	sum
Object i	1	q	r	q + r
Object i	0	8	t	s+t
	sum	q + s	r+t	p

		1	0	Sum
Jack	1	2	1	3
Odok	0	1	3	4
	Sum	3	4	7

ด้าเป็น symmetric binary จะใช้สูตรนี้
$$d(i,j)=rac{r+s}{q+r+s+t}=rac{1+1}{2+1+1+3}=rac{2}{7}$$

กับเป็น Asymmetric binary จะใช้สูตรนี้
$$\ d(i,j)=rac{r+s}{a+r+s}$$

Name	Ge	nder	Fe	ver	Co	ugh	Te	st-1	Te	st-2	Te	st-3	Te	st-4
Jack	M	1	Y	1	N	0	P	1	N	0	N	0	N	0
Mary	F	0	Y	1	N	0	P	1	N	0	P	1	N	
Jim	M	1	Y	Y.	P	1	N	0	N	0	N	0	N	0

	1.0	arry	
	1	0	Sum
1	1	2	3
0	2	2	4
Sum	3	4	7

ด้าเป็น symmetric binary จะใช้สูตรนี้
$$d(i,j)=rac{r+s}{q+r+s+t}=rac{1+1}{2+1+1+3}=rac{2}{7}$$

กับเป็น Asymmetric binary จะใช้สูตรนี้
$$\ d(i,j)=rac{r+s}{q+r+s}$$

Proximity Measure for Categorical Attributes

- Categorical data, also called nominal attributes
- Example: Color (red, yellow, blue, green), profession, etc.
- Method 1: Simple matching
- m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$
จำนวนทั้งหมด

- Method 2: Use a large number of binary attributes
 - Creating a new binary attribute for each of the M nominal states

ตัวอย่าง method2

	สี r.	ನೆ g.	నే b	ว่างงาน, นักศึกษา, อาจารย์, Grab							
1	1	0	0	0	1	0	0				
2	1	0	0	0	0	1	0				
3	0	1	0	0	1	0	0				

ระยะน่างระหว่าง 1 กับ 3 น่างกันเท่าในร่ (Binary) ศอบ 2/7

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)
- Can be treated like interval-scaled
 - Replace an ordinal variable value by its rank: $r_{ij} \in \{1,...,M_j\}$
 - Map the range of each variable onto [0, 1] by replacing i-th object in the f-th variable by $z_{ij} = \frac{r_{ij}-1}{M_f-1}$ ลำดับที่? $=\frac{1-1}{4-1} = \frac{0}{3}$
 - Example: freshman: 0; sophomore: 1/3; junior: 2/3; senior 1
 - Then distance: d(freshman, senior) = 1, d(freshman, senior) = 1/3
- Compute the dissimilarity using methods for interval-scaled variables

Attributes of Mixed Type

• A dataset may contain all attribute types

ตัวเวบ

- Nominal, symmetric binary, asymmetric binary, numeric, and ordinal
- One may use a weighted formula to combine their effects:

- If f is numeric: Use the normalized distance
- If f is binary or nominal: dij(f) = 0 if xif = xjf; or dij(f) = 1 otherwise
- If f is ordinal
 - Compute ranks zif (where $r_{if} = \frac{r_{if} 1}{M_f 1}$)
- Treat zif as interval-scaled

กความเนมือนอีกุนน้ำตัว

(#)

Cosine Similarity of Two Vectors

A **document** can be represented by a bag of terms or a long vector, with each attribute recording the *frequency* of a particular term (such as word, keyword, or phrase) in the document

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: Gene features in micro-arrays
- Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.
- Cosine measure: If d1 and d2 are two vectors (e.g., term-frequency vectors), then

$$cos(d_1, d_2) = \frac{d_1 \cdot d_2}{\|d_1\| \times \|d_2\|}$$

where • indicates vector dot product, ||d||: the length of vector d

