

Ensemble Learning Course Prof. Dr. Mehmet Fatih Amasyalı Homework 02 Prepared by Rayene Bech – 18011115 02/12/2022

Outline

- 1. Introduction
- 2. Hyperparameters Tuning
- 3. T-test results
- 4. Test Loss/Epoch graphs (MSE)
- 5. Test Score/Epoch graphs (R2)
- 6. Test Loss/ K-fold iteration graphs
- 7. Conclusion
- 8. References

1. Introduction

To study the performance of different ensemble learning algorithms, these ten regression datasets were chosen:

- 1- 2dplanes.arff
- 2- abalone.arff
- 3- ailerons.arff
- 4- autoHorse.arff
- 5- autoMpg.arff
- 6- auto price.arff
- 7- bank32nh.arff
- 8- bank8FM.arff
- 9- elevators.arff
- 10- housing.arff

One **base regression model** (a regression neural network with a single hidden layer with neurons equal to half of the data features) and four **ensemble algorithms** were analyzed on each of the datasets listed above. Each ensemble algorithm has 10 estimators. The architecture of each estimator is identical to the base model. These ensemble algorithms are:

- 1- **Bagging**: For each base estimator random **subsets of data** were taking from the whole dataset **with replacement**.
- 2- Random Subspaces: For each base estimator random subsets of features were taking from the whole features.
- 3- **Pasting**: For each base estimator random **subsets of data** were taking from the whole dataset **without replacement**.
- 4- **AdaBoost:** Starts by fitting one estimator on the dataset, then fitting additional estimators on the same dataset **but focusing on the errors** of the previous estimator's predictions.

2. Hyperparameters Tuning:

All the models were trained on Epoch= 200. However, the training is stopped if the validation score doesn't change for successive 5 epochs (Early Stopping). The reported Epoch in the tables shows the value of the epoch when the training was stopped -5.

As an optimizer, the Adam optimizer was chosen in all experiments.

Dataset 1: 2dplanes.arff

lr		0.01		0.001			
Batch Size	Time (s)	Val Score(%)	Epoch	Time (s)	Val Score(%)	Epoch	
32	1.6	94.636	4	3.6	94.861	21	
64	1.3	94.734	13	2.6	94.894	32	
128	0.7	94.754	13	1.9	94.891	41	
256	0.6	94.859	18	2.6	94.888	71	

Dataset 2: abalone.arff

lr		0.01		0.001			
Batch Size	Time (s)	Val Score(%)	Epoch	Time (s)	Val Score(%)	Epoch	
32	0.7	51.165	33	1.2	49.997	72	
64	0.5	50.644	52	1.2	48.604	148	
128	0.3	49.877	71	0.9	46.448	200	
256	0.5	50.618	144	0.5	36.44	200	

Dataset 3: ailerons.arff

lr		0.01		0.001			
Batch Size	Time (s)	Val Score(%)	Epoch	Time (s)	Val Score(%)	Epoch	
32	0.7	80.583	6	2.2	81.857	29	
64	0.4	81.045	8	1.3	81.752	34	
128	0.5	80.919	19	1.3	81.361	59	
256	0.6	80.757	37	0.7	80.699	44	

Dataset 4: autoHorse.arff

lr		0.01		0.001			
Batch Size	Time (s)	Val Score(%)	Epoch	Time (s)	Val Score(%)	Epoch	
32	0.04	73.814	20	0.2	69.251	97	
64	0.04	67.019	21	0.1	67.190	122	
128	0.02	66.30180	19	0.1	68.424	134	
256	0.02	62.985	31	0.1	63.795	195	

Dataset 5: autoMpg.arff

lr		0.01		0.001			
Batch Size	Time (s)	Val Score(%)	Epoch	Time (s)	Val Score(%)	Epoch	
32	0.1	85.809	46	0.3	86.461	155	
64	0.03	77.555	22	0.2	83.6	200	
128	0.03	76.063	31	0.1	65.479	129	
256	0.04	75.423	43	0.1 47.759		129	

Dataset 6: auto_price.arff

lr		0.01		0.001			
Batch Size	Time (s)	Val Score(%)	Epoch	Time (s)	Val Score(%)	Epoch	
32	0.08	80.468	72	0.01	-1.85	6	
64	0.02	0.19	23	0.01	-2.21	10	
128	0.007	-1.54	3	0.01	-2.16	19	
256	0.005	-1.54	3	0.01	-2.16	19	

Dataset 7: bank32nh.arff

lr		0.01		0.001			
Batch Size	Time (s)	Val Score(%)	Epoch	Time (s)	Val Score(%)	Epoch	
32	0.7	59.299	15	1.2	57.919	26	
64	0.4	58.921	18	0.7	57.915	38	
128	0.3	58.794	24	0.7	57.890	57	
256	0.2	56.785	17	0.6 57.123		73	

Dataset 8: bank8FM.arff

Ir		0.01		0.001			
Batch Size	Time (s)	Val Score(%)	Epoch	Time (s)	Val Score(%)	Epoch	
32	0.8	94.610	20	1.3	94.532	35	
64	0.3	94.392	15	1.3	94.569	69	
128	0.5	94.585	42	1.2	95.023	135	
256	0.4	94.494	69	1.1	94.7558	200	

Dataset 9: elevators.arff

lr		0.01		0.001			
Batch Size	Time (s)	Val Score(%)	Epoch	Time (s)	Val Score(%)	Epoch	
32	1.9	88.398	22	3.1	86.769	37	
64	1.4	88.833	37	1.5	85.447	40	
128	1.1	88.106	57	1.2	85.084	68	
256	0.69	85.276	58	1.4 85.386		127	

Dataset 10: housing.arff

lr		0.01		0.001			
Batch Size	Time (s)	Val Score(%)	Epoch	Time (s)	Val Score(%)	Epoch	
32	0.05	83.179	17	0.2	82.753	32	
64	0.05	84.288	32	0.2	81.413	152	
128	0.05	82.631	48	0.2	77.034	195	
256	0.05	81.076	63	0.1	65.477	195	

Afterwards, all the experiments related to the datasets are configured with the hyperparameters highlighted in green.

3. T-test results

To compare the performance of models and different ensemble models, a 10-fold 5*2 t-test was implemented.

In each iteration of this t-test, we compare two models A and B. Firstly, we assume that model A and model B test loss values are drawn from a normal distribution (with unknown variance). We define two hypothesizes accordingly:

- Null hypothesis: The loss values of A and B are drawn from the same distribution (Since they were trained and tested on the same datasets).
 Hence, the difference in the loss values has an expected value equal to 0 (E[diff]=0). This implies that there is no difference between the two models.
- **Alternative hypothesis**: The loss values of A and B are drawn from two different distributions, i.e. E[diff] ≠ 0. Thus, the two models are different, and one is performing better than the other.

We define a confidence level of 95%. This means the value of alpha is:

For each iteration of the 10 (5*2) K-fold iterations, we train and test the 2 models A and B. If model A performs better than model B, we add +1 to the "Win" value. Otherwise, we add +1 to the "Loss" value.

After testing on all iterations, we compute the p-value and the loss mean of each model.

- If p-value < alpha: we reject the Null Hypothesis → The two models are different. Then we decide which model is better by comparing the mean losses.
- If p-value > alpha: We accept the Null hypothesis.

			Boostin	g Vs NN				Bagging Vs I	NN	
Datasets	W	1	P-value	e-mean	b-mean	W	- 1	P-value	e-	b-
									mean	mean
2dplanes.arff	10	0	0.002	0.002	0.003	0	10	0.0133	0.003	0.002
abalone.arff	0	10	0.742	0.007	0.006	6	4	0.0519	0.006	0.006
ailerons.arff	10	0	0.035	0.002	0.003	10	0	0.0895	0.002	0.002
autoHorse.arff	10	0	0.263	0.005	0.008	10	0	0.0425	0.004	0007
autoMpg.arff	10	0	0.005	0.007	0.011	10	0	0.103	0.007	0.010
auto_price.arff	10	0	0.823	0.009	0.025	9	1	0.024	0.009	0.01
bank32nh.arff	2	8	0.115	0.010	0.010	10	0	0.587	0.009	0.011
bank8FM.arff	6	4	0.843	0.002	0.002	10	0	0.002	0.002	0.003
elevators.arff	8	2	0.127	0.001	0.001	7	3	0.298	0.002	0.002
housing.arff	0	10	0.218	0.017	0.013	0	10	0.106	0.013	0.012
(win-tie-loss)			3-7-0	·				3-6-1		

		Rando	m Subspa	ace Vs NN				Pastin	g Vs NN	
Datasets	w	1	P-	e-	b-	W	1	P-	e-mean	b-mean
			value	mean	mean			value		
2dplanes.arff	0	10	6.6e-6	0.006	0.003	0	10	0.002	0.003	0.001
abalone.arff	6	4	0.607	0.006	0.006	5	5	0.575	0.006	0.006
ailerons.arff	0	10	0.001	0.0032	0.0025	10	0	0.496	0.002	0.002
autoHorse.arff	10	0	0.163	0.005	0.007	10	0	0.024	0.004	0.007
autoMpg.arff	10	0	0.042	0.007	0.012	10	0	0.017	0.006	0.010
auto_price.arff	10	0	0.785	0.011	0.025	10	0	0.022	0.009	0.012
bank32nh.arff	0	10	0.003	0.012	0.010	10	0	0.834	0.009	0.011
bank8FM.arff	0	10	1.9e-6	0.009	0.002	10	0	0.0003	0.002	0.003
elevators.arff	0	10	0.008	0.002	0.001	7	3	0.290	0.002	0.002
housing.arff	0	10	0.003	0.026	0.013	1	9	0.053	0.013	0.012
(win-tie-loss)			1-3-6					4-5-1		

	Boosting Vs Bagging						Boosting Vs Random Subspace					
Datasets	W		P-	boosting-	bagging-	W		P-	boosting-	RS-		
			value	mean	mean			value	mean	mean		
2dplanes.arff	10	0	0.006	0.001	0.003	10	0	2.3e-8	0.001	0.005		
abalone.arff	0	10	0.775	0.007	0.006	0	10	0.858	0.007	0.006		
ailerons.arff	6	4	0.283	0.002	0.002	10	0	0.001	0.002	0.003		
autoHorse.arff	1	9	0.832	0.005	0.005	1	9	0.713	0.005	0.005		
autoMpg.arff	6	4	0.645	0.007	0.007	5	5	0.409	0.007	0.007		
auto_price.arff	8	2	0.852	0.009	0.014	7	3	0.957	0.009	0.011		
bank32nh.arff	1	9	0.054	0.010	0.009	10	0	0.034	0.010	0.012		
bank8FM.arff	1	9	0.270	0.002	0.002	10	0	4e-7	0.002	0.009		
elevators.arff	10	0	0.168	0.001	0.001	10	0	0.001	0.001	0.002		
housing.arff	1	9	0.461	0.017	0.014	10	0	0.059	0.017	0.026		
(win-tie-loss)			1-9-0					5-5-0				

	Pasting Vs Bagging					Pasting Vs Boosting					
Datasets	W	1	P-	pasting-	bagging-	W	- 1	P-	pasting-	boosting-	
			value	mean	mean			value	mean	mean	
2dplanes.arff	4	6	0.911	0.003	0.003	0	10	0.020	0.003	0.001	
abalone.arff	6	4	0.397	0.006	0.006	9	1	0.962	0.006	0.007	
ailerons.arff	5	5	0.417	0.002	0.002	5	5	0.494	0.002	0.002	
autoHorse.arff	8	2	0.139	0.004	0.004	9	1	0.178	0.004	0.005	
autoMpg.arff	5	5	0.573	0.007	0.007	6	4	0.245	0.007	0.007	
auto_price.arff	7	3	0.961	0.012	0.014	2	8	0.791	0.013	0.009	
bank32nh.arff	2	8	0.061	0.010	0.009	9	1	0.076	0.010	0.010	
bank8FM.arff	6	4	0.899	0.002	0.002	8	2	0.298	0.002	0.002	
elevators.arff	5	5	0.677	0.001	0.001	1	9	0.154	0.002	0.001	
housing.arff	4	6	0.696	0.014	0.014	9	1	0.74	0.014	0.017	
(win-tie-loss)			0-10-0					0-9-1			

	Bagging Vs Random Subspace						Pasting Vs Random Subspace					
Datasets	W	I	P-	bagging-	RS-	W	- 1	P-	pasting-	RS-		
			value	mean	mean			value	mean	mean		
2dplanes.arff	10	0	6.6e-5	0.003	0.006	10	0	0.0003	0.003	0.005		
abalone.arff	3	7	0.759	0.006	0.006	6	4	0.456	0.006	0.006		
ailerons.arff	10	0	0.0002	0.002	0.003	10	0	0.0005	0.002	0.003		
autoHorse.arff	4	6	0.897	0.005	0.005	7	3	0.193	0.004	0.005		
autoMpg.arff	7	3	0.320	0.007	0.007	6	4	0.611	0.007	0.007		
auto_price.arff	3	7	0.786	0.014	0.011	3	7	0.687	0.012	0.011		
bank32nh.arff	10	0	4.1e-5	0.009	0.012	10	0	0.0001	0.010	0.012		
bank8FM.arff	10	0	2.2e-6	0.002	0.009	10	0	4.7e-6	0.002	0.009		
elevators.arff	10	0	8.5e-5	0.001	0.002	10	0	9.1e-5	0.001	0.002		
housing.arff	10	0	0.027	0.014	0.026	10	0	0.039	0.014	0.026		
(win-tie-loss)			6-4-0					6-4-0				

Notes:

- Pasting and Bagging models almost performed the same on all datasets: The data replacement didn't change the performance of the Bagging model.
- The Random Subspace model performed poorly compared to the base model (won only one time and lost 6 times).
- The Random Subspace model was first trained by choosing 50% of the features for each estimator. But the performance of the model was bad for almost all the datasets. Hence, we trained again this ensemble model using 70% of the features for each estimator.
- Bagging, Pasting and Boosting methods performed better than Random Subspace model in almost half of the datasets.
- There was a slight difference between the performance of the Boosting model and the Bagging model.

4. Test Loss/Epoch Graphs (MSE):

- Two datasets were chosen for this section: "2dplanes.arff" and "elevators.arff".
- The metric used to compute the loss in these graphs is the Mean Squared Error (MSE).

• Dataset 01: 2dplanes.arff:

Pasting Ensemble VS Base Model for 2dplanes.arff

Random Subspace Ensemble VS Base Model for 2dplanes.arff

AdaBoost Ensemble VS Base Model for 2dplanes.arff

- We notice that for all models, starting from the earliest epochs, the ensemble model's loss is less than the base model's loss. (Fast Convergence)
- The loss of the ensemble was lower than the loss of its weak learners (estimators) in the first epochs despite some of them had very big loss values.
- The weak learners of the Adaboost ensemble had lower loss values compared to the bagging 's weak learners (Having much training data?)

Dataset 02: elevators.arff

Bagging Ensemble VS Base Model for elevators.arff

Pasting Ensemble VS Base Model for elevators.arff

Random Subspace Ensemble VS Base Model for elevators.arff

AdaBoost Ensemble VS Base Model for elevators.arff

- This dataset shows clearly that the Random Subspace performed worser than the base model.
- AdaBoost and Bagging models had very close loss values to the base model.
- Again we see that Adaboost model converged faster than other ensemble methods and even faster than the bagging models.

5. Test Score/Epoch graphs (R2)

- The same previous two datasets were used in this section: "2dplanes.arff" and "elevators.arff".
- The metric used to compute the loss in these graphs is R-Squared (R2).

• Dataset 01: 2dplanes.arff:

Dataset 02: elevators.arff

Pasting Ensemble VS Base Model for elevators.arff

Random Subspace Ensemble VS Base Model for elevators.arff

6. Graphs for Test Loss / K-Fold Iteration

After each test iteration in the K-Fold 5*2 t-test, the test loss of both the base model and the ensemble models were plotted for the same 2 datasets.

• Dataset 01: 2dplanes.arff:

Dataset 02: elevators.arff

Adaboost Ensemble Vs Base Model for elevators.arff

7. Conclusion:

- Using Bagging and Boosting algorithms helped in enhancing the performance of the model.
- AdaBoost ensemble model converged after few epochs compared to the base model and to the bagging ensemble models. However, it takes more time to be trained since we cannot parallelize the training of the weak learners (because the data weights of each weak leaner are based on the errors of the previous weak learner).
- Pasting (without replacements) and Bagging (with replacement)
 had very close values for all datasets. Hence, the replacement
 method did not affect the performance of the Bagging model.
- Random Subspace models did not perform well for the used datasets. Not having a high number of features, reducing the number of features used for each weak learner hurt the performance and made it worse than all other ensemble models and even worse than the base model.

8. References

- 1. Raschka, S. (no date) *PAIRED_TTEST_5X2CV: 5x2cv paired t test for classifier comparisons*, *paired_ttest_5x2cv: 5x2cv paired *t* test for classifier comparisons mlxtend*. Available at: http://rasbt.github.io/mlxtend/user_guide/evaluate/paired_ttest_5x2cv/ (Accessed: November 30, 2022).
- 2. Silvan (2019) Ensemble methods: Bagging and pasting in Scikit-Learn, Medium. Medium. Available at: https://medium.com/@silvaan/ensemble-methods-bagging-and-pasting-in-scikit-learn-723f4183cdf4 (Accessed: November 28, 2022).
- 3. *Sklearn.ensemble.baggingregressor* (no date) *scikit*. Available at: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html#sklearn.ensemble.BaggingRegressor (Accessed: November 25, 2022).
- 4. Politi, M. (2022) *Paired T-test to evaluate machine learning classifiers using Python, Medium.* Towards Data Science. Available at: https://towardsdatascience.com/paired-t-test-to-evaluate-machine-learning-classifiers-1f395a6c93fa (Accessed: November 30, 2022).