

Quad D Flip-Flop With Master Reset

The MC74AC/ACT175 is a high-speed quad D flip-flop. The device is useful for general flip-flop requirements where clock and clear inputs are common. The information on the D inputs is transferred to storage during the LOW-to-HIGH clock transition. The device has a Master Reset to simultaneously clear all flip-flops, when MR is low.

The MC74AC/ACT175 consists of four edge-triggered D flip-flops with individual D inputs and Q and Q outputs. The Clock (CP) and Master Reset (MR) are common to all flip-flops. Each D input's state is transferred to the corresponding flip-flop's output following the LOW-to-HIGH Clock (CP) transition. A LOW input to the Master Reset (MR) will force all Q outputs LOW and Q outputs HIGH independent of Clock or Data inputs. The MC74AC/ACT175 is useful for applications where the Clock and Master Reset are common to all storage elements.

- · Outputs Source/Sink 24 mA
- 'ACT175 Has TTL Compatible Inputs

Pinout: 16-Lead Packages (Top View)

PIN NAMES

$D_0 - D_3$	Data Inputs
CP	Clock Pulse Input
MR	Master Reset Input
$Q_0 - Q_3$	Outputs
$Q_0 - Q_3$	Outputs

MC74AC175 **MC74ACT175**

QUAD D FLIP-FLOP WITH MASTER RESET

TRUTH TABLE

	Inputs		Out	outs
MR	СР	D	Qn	Qn
L	Х	Х	L	Н
Н	ſ	Н	Н	L
Н	ſ	L	L	<u>H</u> Qn
Н	L	Х	Qn	Qn

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

= LOW-to-HIGH Transition of Clock

LOGIC SYMBOL

LOGIC DIAGRAM

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
VCC	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	± 20	mA
l _{out}	DC Output Sink/Source Current, per Pin	± 50	mA
lcc	DC V _{CC} or GND Current per Output Pin	± 50	mA
T _{stg}	Storage Temperature	-65 to +150	°C

^{*} Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Min	Unit	
Vac	Supply Voltage	'AC	2.0	5.0	6.0	V	
Vcc	Supply Voltage	'ACT	4.5	5.0	5.5	V	
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Ref. to GND)		0		Vcc	V	
		V _{CC} @ 3.0 V		150			
t _r , t _f	Input Rise and Fall Time (Note 1) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V		40		ns/V	
	No Devices except commit inputs			25			
	Input Rise and Fall Time (Note 2)	V _{CC} @ 4.5 V		10		0.7	
t _r , t _f	'ACT Devices except Schmitt Inputs	V _{CC} @ 5.5 V		8.0		ns/V	
TJ	Junction Temperature (PDIP)				140	°C	
TA	Operating Ambient Temperature Range		-40	25	85	°C	
loн	Output Current — HIGH				-24	mA	
l _{OL}	Output Current — LOW				24	mA	

^{1.} V_{in} from 30% to 70% V_{CC} ; see individual Data Sheets for devices that differ from the typical input rise and fall times.

^{2.} V_{in} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

			74.	AC	74AC		
Symbol	Parameter	V _{CC} (V)	T _A =	+25°C	T _A = -40°C to +85°C	Unit	Conditions
			Тур	Guar	anteed Limits		
VIH	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
Vон	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	V	Ι _{ΟΟΤ} = – 50 μΑ
		3.0 4.5 5.5		2.56 3.86 4.86	2.46 3.76 4.76	V	*V _{IN} = V _{IL} or V _{IH} - 12 mA IOH - 24 mA - 24 mA
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	V	ΙΟυΤ = 50 μΑ
		3.0 4.5 5.5		0.36 0.36 0.36	0.44 0.44 0.44	V	*V _{IN} = V _{IL} or V _{IH} 12 mA I _{OH} 24 mA 24 mA
I _{IN}	Maximum Input Leakage Current	5.5		±0.1	±1.0	μΑ	$V_I = V_{CC}$, GND
lold	†Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65 V Max
IOHD	Output Current	5.5			- 75	mA	V _{OHD} = 3.85 V Min
ICC	Maximum Quiescent Supply Current	5.5		8.0	80	μΑ	V _{IN} = V _{CC} or GND

AC CHARACTERISTICS

				74AC		74	AC		
Symbol	Parameter	V _{CC*} (V)	T _A = +25°C C _L = 50 pF		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		35°C	Unit	Fig. No.
			Min	Тур	Max	Min	Max		
fmax	Maximum Clock Frequency	3.3 5.0	149 187			139 187		MHz	3-3
^t PLH	Propagation <u>D</u> elay CP to Q _n or Q _n	3.3 5.0	2.0 1.5		12.0 9.0	2.0 1.0	13.5 9.5	ns	3-6
tPHL	Propagation <u>D</u> elay CP to Q _n or Q _n	3.3 5.0	2.5 1.5		13.0 9.5	2.0 1.5	14.5 10.5	ns	3-6
^t PLH	<u>Pro</u> pagation Delay MR to Q _n	3.3 5.0	3.0 2.0		12.5 9.0	2.5 1.5	13.5 10.0	ns	3-6
^t PHL	<u>Pro</u> pagation Delay MR to Q _n	3.3 5.0	3.0 2.0		11.0 8.5	2.5 1.5	12.5 9.0	ns	3-6

^{*} All outputs loaded; thresholds on input associated with output under test. † Maximum test duration 2.0 ms, one output loaded at a time. Note: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC}.

AC OPERATING REQUIREMENTS

			74AC CC*		74AC		
Symbol	Parameter	V _{CC} * (V)			C: = 50 pE to +85°C		T _A = -40°C to +85°C C _L = 50 pF
			Тур	Guarantee	d Minimum		
t _S	Set-up Time, HIGH or LOW D _n to CP	3.3 5.0		4.5 3.0	4.5 3.0	ns	3-9
t _h	Hold Time, HIGH or LOW D _n to CP	3.3 5.0		1.0 1.0	1.0 1.0	ns	3-9
t _W	MR Pulse Width Low	3.3 5.0		4.5 3.5	4.5 3.5	ns	3-6
t _W	CP Pulse Width	3.3 5.0		4.5 3.5	5.0 3.5	ns	3-6
trec	Recovery Time MR to CP	3.3 5.0		0 0	0 0	ns	3-6

 $^{^{\}star}$ Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V.

DC CHARACTERISTICS

			74 <i>P</i>	СТ	74ACT		
Symbol	Parameter	V _{CC} (V)	T _A =	+25°C	T _A = -40°C to +85°C	Unit	Conditions
			Тур	Guar	anteed Limits		
VIH	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
VIL	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
VOH	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V	Ι _{ΟΟΤ} = – 50 μΑ
		4.5 5.5		3.86 4.86	3.76 4.76	V	*V _{IN} = V _{IL} or V _{IH} - 24 mA I _{OH} - 24 mA
VOL	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	ΙΟυΤ = 50 μΑ
		4.5 5.5		0.36 0.36	0.44 0.44	V	*V _{IN} = V _{IL} or V _{IH} 24 mA 10H 24 mA
I _{IN}	Maximum Input Leakage Current	5.5		±0.1	±1.0	μΑ	V _I = V _{CC} , GND
∆ICCT	Additional Max. ICC/Input	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1 \text{ V}$
l _{OLD}	†Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65 V Max
IOHD	Output Current	5.5			- 75	mA	V _{OHD} = 3.85 V Min
Icc	Maximum Quiescent Supply Current	5.5		8.0	80	μΑ	V _{IN} = V _{CC} or GND

^{*} All outputs loaded; thresholds on input associated with output under test.

[†]Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS

			74ACT			74ACT					
Symbol	Parameter	V _{CC*} (V)	T _A = +25°C C _L = 50 pF		T _A = +25°C V)		$T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to $+85^{\circ}C$ $C_L = 50 \text{ pF}$ Unit		to +85°C		Fig. No.
			Min	Тур	Max	Min	Max				
f _{max}	Maximum Clock Frequency	5.0	175			145		MHz	3-3		
^t PLH	Propagation Delay CP to Q _n	5.0	2.0		10.0	1.5	11.0	ns	3-6		
tPHL	Propagation Delay CP to Q _n	5.0	2.0		11.0	1.5	12.0	ns	3-6		
^t PHL	<u>Pro</u> pagation <u>D</u> elay MR to Q _n or Q _n	5.0	2.0		9.5	1.5	10.5	ns	3-6		

^{*} Voltage Range 5.0 V is 5.0 V ± 0.5 V.

AC OPERATING REQUIREMENTS

			74ACT		74ACT								
Symbol	Parameter	V _{CC*} (V)	T _A = +25°C C _L = 50 pF		T _A = +25°C C _L = 50 pF		1A = +25°C Cι = 50 pF		TA = +25°C to +85°C		T _A = -40°C to +85°C C _L = 50 pF	Unit	Fig. No.
			Тур	Guarantee	d Minimum								
t _S (H) (L)	Set-up Time, HIGH or LOW D _n to CP	5.0		2.0 2.5	2.0 2.5	ns	3-9						
th	Hold Time, HIGH or LOW D _n to CP	5.0		1.0	1.0	ns	3-9						
t _W	MR Pulse Width, LOW	5.0		3.0	4.0	ns	3-6						
t _W	CP Pulse Width, HIGH or LOW	5.0	3.0		3.5	ns	3-6						
t _{rec}	Recovery Time MR to CP	5.0		0	0	ns	3-6						

^{*} Voltage Range 5.0 V is 5.0 V ± 0.5 V.

CAPACITANCE

Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	45.0	pF	V _{CC} = 5.0 V

OUTLINE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 DIMENSION B DOES NOT INCLUDE MOLD FLASH.
- ROUNDED CORNERS OPTIONAL

-								
	INC	HES	MILLIMETERS					
DIM	MIN	MAX	MIN	MAX				
Α	0.740	0.770	18.80	19.55				
В	0.250	0.270	6.35	6.85				
U	0.145	0.175	3.69	4.44				
D	0.015	0.021	0.39	0.53				
F	0.040	0.70	1.02	1.77				
G	0.100	BSC	2.54 BSC					
Η	0.050	BSC	1.27	BSC				
7	0.008	0.015	0.21	0.38				
K	0.110	0.130	2.80	3.30				
L	0.295	0.305	7.50	7.74				
М	0°	10 °	0 °	10 °				
S	0.020	0.040	0.51	1.01				

NOTES

- 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE
 MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27 BSC		0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in not convey any license under its patent rights nor the rights of others. Motoroia products are not designed, interded to during the forth of any other application in which the failure of the Motoroia product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motoroia products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motoroia and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and una registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447

6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki,

MFAX: RMFAX0@email.sps.mot.com -TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

