Entwurf, Analyse und Umsetzung von Algorithmen Hash Map, Universal Hashing

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Rolf Backofen

Bioinformatics Group / Department of Computer Science Entwurf, Analyse und Umsetzung von Algorithmen

Structure

Associative Arrays

Introduction Hash Map

Universal Hashing

Introduction
Probability Calculation
Proof

F1001

Examples

Structure

Associative Arrays

Introduction Hash Map

Universal Hashing

Introduction
Probability Calculation
Proof
Examples

Reminder:

■ An associative array is like a normal array, only that the indices are not 0,1,2,..., but different, e.g. telephone numbers

Reminder:

An associative array is like a normal array, only that the indices are not 0, 1, 2, ..., but different, e.g. telephone numbers

Problem:

Quickly find an element with a specific key

■ An associative array is like a normal array, only that the indices are not 0,1,2,..., but different, e.g. telephone numbers

Problem:

- Quickly find an element with a specific key
- Naive solution: store pairs of key and value in a normal array

Reminder:

An associative array is like a normal array, only that the indices are not 0, 1, 2, ..., but different, e.g. telephone numbers

Problem:

- Quickly find an element with a specific key
- Naive solution: store pairs of key and value in a normal array
- For n keys searching requires $\Theta(n)$ time

■ An associative array is like a normal array, only that the indices are not 0,1,2,..., but different, e.g. telephone numbers

Problem:

- Quickly find an element with a specific key
- Naive solution: store pairs of key and value in a normal array
- For n keys searching requires $\Theta(n)$ time
- With a hash map this just requires $\Theta(1)$ in the best case, ... regardless of how many elements are in the map!

Structure

Associative Arrays

Introduction

Hash Map

Universal Hashing

Introduction

Probability Calculation

Proo

Examples

- Mapping the keys onto indices with a hash function
- Store the values at the calculated indices in a normal array

Example:

■ Key set: $x = \{3904433, 312692, 5148949\}$

- Mapping the keys onto indices with a hash function
- Store the values at the calculated indices in a normal array

Example:

- Key set: $x = \{3904433, 312692, 5148949\}$
- Hash function: $h(x) = x \mod 5$, in the range [0, ..., 4]

- Mapping the keys onto indices with a hash function
- Store the values at the calculated indices in a normal array

Example:

The Hash Map

- Key set: $x = \{3904433, 312692, 5148949\}$
- Hash function: $h(x) = x \mod 5$, in the range $[0, \ldots, 4]$
- We need an array T with 5 elements. A "hash table" with 5 "buckets"

- Mapping the keys onto indices with a hash function
- Store the values at the calculated indices in a normal array

Example:

- Key set: $x = \{3904433, 312692, 5148949\}$
- Hash function: $h(x) = x \mod 5$, in the range [0, ..., 4]
- We need an array T with 5 elements. A "hash table" with 5 "buckets"
- The element with the key x is stored in T[h(x)]

Associative Arrays

The Hash Map

Storage:

Figure: Hash table T

REIBURG

Storage:

■ insert(3904433, "A"): $h(3904433) = 3 \Rightarrow T[3] = (3904433, "A")$

- insert(3904433, "A"): $h(3904433) = 3 \Rightarrow T[3] = (3904433, "A")$
- insert(312692, "B"): $h(312692) = 2 \Rightarrow T[2] = (312692, "B")$

Associative Arrays The Hash Map

Storage:

- insert(3904433, "A"): $h(3904433) = 3 \Rightarrow T[3] = (3904433, "A")$
- insert(312692, "B"): $h(312692) = 2 \Rightarrow T[2] = (312692, "B")$
- insert (5148949, "C"): $h(5148949) = 4 \Rightarrow T[4] = (5148949, "C")$

Searching:

 \blacksquare search(3904433): h(3904433) = 3 $\ \Rightarrow$ T[3] \rightarrow (3904433, "A")

Figure: Hash table T

Searching:

- search(3904433): $h(3904433) = 3 \Rightarrow T[3] \rightarrow (3904433, "A")$
- search(123459): $h(123459) = 4 \Rightarrow T[4]$
 - ⇒ Value with key 123459 does not exist

Figure: Hash table T

Associative Arrays

The Hash Map

Searching:

- search(3904433): $h(3904433) = 3 \Rightarrow T[3] \rightarrow (3904433, "A")$
- search(123459): $h(123459) = 4 \Rightarrow T[4]$
 - ⇒ Value with key 123459 does not exist
- Search time for this example: $\mathcal{O}(1)$

Further inserting:

 \blacksquare insert(876543, "D"): h(876543) = 3

Figure: Hash table T

Further inserting:

```
■ insert(876543, "D"): h(876543) = 3

⇒ T[3] = (876543, "D") ⇒ Collision
```


Further inserting:

- insert(876543, "D"): h(876543) = 3⇒ T[3] = (876543, "D") ⇒ Collision
- This happens more often than expected
 - Birthday problem: with 23 people we have the probability of 50 % that 2 of them have birthday at the same day

Figure: Hash table T

Two keys are equal h(x) = h(y) but not the values $x \neq y$

Two keys are equal h(x) = h(y) but not the values $x \neq y$

Easiest Solution:

Two keys are equal h(x) = h(y) but not the values $x \neq y$

Easiest Solution:

Represent each bucket as list of key-value pairs

Figure: Hash table T

Two keys are equal h(x) = h(y) but not the values $x \neq y$

Easiest Solution:

- Represent each bucket as list of key-value pairs
- Append new values to the end of the list

Figure: Hash table T

Best case:

- We have n keys which are equally distributed over m buckets
- We have $\approx \frac{n}{m}$ pairs per bucket
- The runtime for searching is nearly $\mathcal{O}(1)$ if **not** $n \gg m$

Best case

$$(m = 5, n = 10)$$

Worst case:

- All n keys are mapped onto the same bucket
- The runtime is $\Theta(n)$ for searching

Worst case

(m = 5, n = 10)

Structure

Associative Arrays Introduction Hash Map

Universal Hashing

Introduction
Probability Calculation
Proof
Examples

■ A hash function is defined for a given key set

- A hash function is defined for a given key set
- Find a set of keys resulting in a degenerated hash table

- A hash function is defined for a given key set
- Find a set of keys resulting in a degenerated hash table
 - The hash function stays fixed

- A hash function is defined for a given key set
- Find a set of keys resulting in a degenerated hash table
 - The hash function stays fixed
 - For table size of 100: try $100 \times (99 + 1)$ different numbers

- A hash function is defined for a given key set
- Find a set of keys resulting in a degenerated hash table
 - The hash function stays fixed
 - For table size of 100: try $100 \times (99 + 1)$ different numbers
 - Worst case: all 100 key sets map to one bucket
- **Now:** find a solution to avoid that problem

Solution: universal hashing

Out of a set of hash functions we randomly choose one

Figure: Hash func. 1 Fig

Figure: Hash func. 2

Figure: Hash func. coll.

Solution: universal hashing

- Out of a set of hash functions we randomly choose one
- The expected result of the hash function is an equal distribution over the buckets

Figure: Hash func. 1

Figure: Hash func. 2

Figure: Hash func. coll.

Solution: universal hashing

- Out of a set of hash functions we randomly choose one
- The expected result of the hash function is an equal distribution over the buckets
- This hash function stays fixed for the lifetime of table Optional: copy table with new hash when degenerated

Figure: Hash func. 1

Figure: Hash func. 2

Figure: Hash func. coll.

Universal Hashing Definition

Definition:

lacktriangle We call $\Bbb U$ the set (universe) of possible keys

Universal Hashing Definition

Definition:

- lacktriangle We call $\Bbb U$ the set (universe) of possible keys
- \blacksquare The size m of the hash table T

Definition:

- lacktriangle We call $\Bbb U$ the set (universe) of possible keys
- The size m of the hash table T
- Set of hash functions $\mathbb{H} = \{h_1, h_2, \dots, h_n\}$ with $h_i : \mathbb{U} \to \{0, \dots, m-1\}$

- We call U the set (universe) of possible keys
- The size m of the hash table T
- Set of hash functions $\mathbb{H} = \{h_1, h_2, \dots, h_n\}$ with $h_i: \mathbb{U} \to \{0,\ldots,m-1\}$

- We call U the set (universe) of possible keys
- The size m of the hash table T
- Set of hash functions $\mathbb{H} = \{h_1, h_2, ..., h_n\}$ with $h_i : \mathbb{U} \to \{0, ..., m-1\}$
- Idea: runtime should be $O(1 + \frac{|S|}{m})$, where $\frac{|S|}{m}$ is the table load

■ We choose two random keys $x, y \in \mathbb{U} \mid x \neq y$

Figure: Set of hash functions H

- We choose two random keys $x, y \in \mathbb{U} \mid x \neq y$
- An average of 3 out of 15 functions produce collisions

Figure: Set of hash functions ℍ

Number of hash functions that create collisions

$$\underbrace{|\{h \in \mathbb{H} : h(x) = h(y)\}|}_{|\mathbb{H}|}$$

$$\leq c \cdot \frac{1}{m}, \quad c \in \mathbb{R}$$

Number of hash functions

Number of hash functions that create collisions

$$\underbrace{|\{h \in \mathbb{H} : h(x) = h(y)\}|}_{\mid \mathbb{H}\mid}$$

$$\leq c \cdot \frac{1}{m}, \quad c \in \mathbb{R}$$

Number of hash functions

■ In other words, given an arbitrary but fixed pair x, y. If $h \in \mathbb{H}$ is chosen randomly then

Number of hash functions that create collisions

$$\underbrace{|\{h \in \mathbb{H} : h(x) = h(y)\}|}_{|\mathbb{H}|}$$

$$\leq c \cdot \frac{1}{m}, \quad c \in \mathbb{R}$$

Number of hash functions

In other words, given an arbitrary but fixed pair x, y. If $h \in \mathbb{H}$ is chosen randomly then

$$Prob(h(x) = h(y)) \le c \cdot \frac{1}{m}$$

Number of hash functions that create collisions

$$\frac{|\{h \in \mathbb{H} : h(x) = h(y)\}|}{|\mathbb{H}|}$$

$$\leq c \cdot \frac{1}{m}, \quad c \in \mathbb{R}$$

Number of hash functions

In other words, given an arbitrary but fixed pair x, y. If $h \in \mathbb{H}$ is chosen randomly then

$$Prob(h(x) = h(y)) \le c \cdot \frac{1}{m}$$

Note: If the hash function assigns each key x and y randomly to buckets then:

Number of hash functions that create collisions

$$\underbrace{\left|\left\{h\in\mathbb{H}:h(x)=h(y)\right\}\right|}_{\left|\mathbb{H}\right|}$$

$$\leq c \cdot \frac{1}{m}, \quad c \in \mathbb{R}$$

Number of hash functions

In other words, given an arbitrary but fixed pair x, y. If $h \in \mathbb{H}$ is chosen randomly then

$$Prob(h(x) = h(y)) \le c \cdot \frac{1}{m}$$

Note: If the hash function assigns each key x and y randomly to buckets then:

$$Prob(Collision) = \frac{1}{m} \Leftrightarrow c = 1$$

- U: key universe
- S: used Keys
- \blacksquare $S_i \subseteq S$: keys mapping to Bucket *i* ("synonyms")
- Ideal would be $|S_i| = \frac{|S|}{|S|}$

Figure: Hash function $h \in \mathbb{H}$

Universal Hashing Definition

 \blacksquare Let \blacksquare be a *c*-universal class of hash functions

- Let H be a c-universal class of hash functions
- Let $\mathbb S$ be a set of keys and $h \in \mathbb H$ selected randomly

- Let \mathbb{H} be a *c*-universal class of hash functions
- Let S be a set of keys and $h \in \mathbb{H}$ selected randomly
- Let S_i be the key x for which h(x) = i

- \blacksquare Let \mathbb{H} be a *c*-universal class of hash functions
- Let \mathbb{S} be a set of keys and $h \in \mathbb{H}$ selected randomly
- Let S_i be the key x for which h(x) = i
- The expected average number of elements to search through per bucket is

$$\mathbb{E}[|\mathbb{S}_i|] \leq 1 + c \cdot \frac{|\mathbb{S}|}{m}$$

- Let \mathbb{S} be a set of keys and $h \in \mathbb{H}$ selected randomly
- Let S_i be the key x for which h(x) = i
- The expected average number of elements to search through per bucket is

$$\mathbb{E}[|\mathbb{S}_i|] \leq 1 + c \cdot \frac{|\mathbb{S}|}{m}$$

■ Particulary: if $(m = \Omega(|S|))$ then $\mathbb{E}[|S_i|] = \mathcal{O}(n)$

Associative Arrays Introduction Hash Map

Universal Hashing

Introduction

Probability Calculation

Proof

Examples

Universal Hashing **Probability Calculation**

Universal Hashing Probability Calculation

NI NEBURG

■ We just discuss the discrete case

Universal Hashing

Probability Calculation

- We just discuss the discrete case
- Probability space Ω with elementary (simple) events

- We just discuss the discrete case
- Probability space Ω with elementary (simple) events
- Events *e* have probabilities ...

$$\sum_{e\in\Omega}P(e)=1$$

Universal Hashing

Probability Calculation

- We just discuss the discrete case
- Probability space Ω with elementary (simple) events
- Events *e* have probabilities ...

$$\sum_{e\in\Omega}P(e)=1$$

■ The probability for a subset of events $E \subseteq \Omega$ is

$$P(E) = \sum_{e \in E} P(e) \mid e \in E$$

- We just discuss the discrete case
- Probability space Ω with elementary (simple) events
- Events e have probabilities ...

$$\sum_{e\in\Omega}P(e)=1$$

■ The probability for a subset of events $E \subseteq \Omega$ is

$$P(E) = \sum_{e \in E} P(e) \mid e \in E$$

Table: throwing a dice

e	P(e)
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

Universal Hashing Probability Calculation

Example:

Rolling a dice twice $(\Omega = \{1, ..., 6\}^2)$

- Rolling a dice twice $(\Omega = \{1, ..., 6\}^2)$
- Each event $e \in \Omega$ has the probability P(e) = 1/36

Table: throwing a dice twice

e	P(e)
(1,1)	1/36
(1,2)	1/36
(1,3)	1/36
(6,5)	1/36
(6,6)	1/36

- Rolling a dice twice $(\Omega = \{1, ..., 6\}^2)$
- Each event $e \in \Omega$ has the probability P(e) = 1/36
- \blacksquare E = if both results are even, then P(E) =

Table: throwing a dice twice

e	P(e)
(1,1)	1/36
(1,2)	1/36
(1,3)	1/36
(6,5)	1/36
(6,6)	1/36

Universal Hashing Probability Calculation

Example:

■ Random variable

- Random variable
 - Assigns a number to the result of an experiment

- Random variable
 - Assigns a number to the result of an experiment
 - For example: X = Sum of results for rolling twice

- Random variable
 - Assigns a number to the result of an experiment
 - For example: X = Sum ofresults for rolling twice
 - X = 12 and X > 7 are regarded as events

Table: throwing a dice twice

е	P(e)	X	
(1,1)	1/36	2	
(1,2)	1/36	3	
(1,3)	1/36	4	
(6, 5)	1/36	11	
(6, 6)	1/36	12	

- Random variable
 - Assigns a number to the result of an experiment
 - For example: X = Sum of results for rolling twice
 - X = 12 and $X \ge 7$ are regarded as events
 - **Example 1:** P(X = 2) =

Table: throwing a dice twice

e	P(e)	X	
(1,1)	1/36	2	
(1,2)	1/36	3	
(1,3)	1/36	4	
(6,5)	1/36	11	
(6, 6)	1/36	12	

- Random variable
 - Assigns a number to the result of an experiment
 - For example: X = Sum of results for rolling twice
 - X = 12 and $X \ge 7$ are regarded as events
 - Example 1: P(X = 2) =
 - Example 2: P(X = 4) =

Table: throwing a dice twice

e	P(e)	X	
(1,1)	1/36	2	
(1,2)	1/36	3	
(1,3)	1/36	4	
(6,5)	1/36	11	
(6, 6)	1/36	12	

Universal Hashing

Probability Calculation

Expected value is defined as $\mathbb{E}(X) = \sum (k \cdot P(X = k))$

Probability Calculation

Expected value is defined as $\mathbb{E}(X) = \sum (k \cdot P(X = k))$

■ Intuitive: the weighted average of possible values of *X*, where the weights are the probabilities of the values

Universal Hashing **Probability Calculation**

Expected value is defined as $\mathbb{E}(X) = \sum_{k} (k \cdot P(X = k))$

Intuitive: the weighted average of possible values of X, where the weights are the probabilities of the values

Table: throwing a dice once

X	P(X)
1	1/6
2	1/6 1/6 1/6 1/6 1/6 1/6
2	1/6
4	1/6
5 6	1/6
6	1/6

Table: throwing a dice twice

X	P(X)
2	1/36
3	2/36
4	3/36
11	2/36
12	1/36

Universal Hashing **Probability Calculation**

Expected value is defined as $\mathbb{E}(X) = \sum_{k} (k \cdot P(X = k))$

Intuitive: the weighted average of possible values of X, where the weights are the probabilities of the values

Table: throwing a dice once

Example "rolling once":

Table: throwing a dice twice

X	P(X)
2	1/36
3	2/36
4	3/36
• • •	
11	2/36
12	1/36

Form and adventure i

Expected value is defined as $\mathbb{E}(X) = \sum (k \cdot P(X = k))$

Intuitive: the weighted average of possible values of X, where the weights are the probabilities of the values

Table: throwing a dice once

X | P(X) 1 | 1/6 2 | 1/6 3 | 1/6 4 | 1/6 5 | 1/6 6 | 1/6 Table: throwing a dice twice

Example "rolling once": $\mathbb{E}(X) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \dots + 6 \cdot \frac{1}{6} = 3.5$

Universal Hashing

Probability Calculation

Expected value is defined as $\mathbb{E}(X) = \sum (k \cdot P(X = k))$

Intuitive: the weighted average of possible values of X, where the weights are the probabilities of the values

Table: throwing a dice once

Table: throwing a dice twice

X	P(X)	
1	1/6	
2	1/6 1/6 1/6 1/6 1/6 1/6	
2 3	1/6	
4	1/6	
4 5 6	1/6	
6	1/6	
_		

- **Example "rolling once":** $\mathbb{E}(X) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \dots + 6 \cdot \frac{1}{6} = 3.5$
- Example "rolling twice":

Francisco de la contractica de

Expected value is defined as $\mathbb{E}(X) = \sum (k \cdot P(X = k))$

Intuitive: the weighted average of possible values of X, where the weights are the probabilities of the values

Table: throwing a dice once

Table: throwing a dice twice

X	P(X)	X	P(X)
1	1/6	2	1/36
2	1/6	3	2/36
3	1/6	4	3/36
4	1/6		
5	1/6	11	2/36
6	1/6	12	1/36

- **Example "rolling once":** $\mathbb{E}(X) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \dots + 6 \cdot \frac{1}{6} = 3.5$
- Example "rolling twice": $\mathbb{E}(X) = 2 \cdot \frac{1}{36} + 3 \cdot \frac{2}{36} + \cdots + 12 \cdot \frac{1}{36} = 7$

UNI FREIBL

Sum of expected values: for arbitrary discrete random variables $X_1, ..., X_n$ we can write:

$$\mathbb{E}(X_1 + \cdots + X_n) = \mathbb{E}(X_1) + \cdots + \mathbb{E}(X_n)$$

Sum of expected values: for arbitrary discrete random variables X_1, \ldots, X_n we can write:

$$\mathbb{E}(X_1+\cdots+X_n)=\mathbb{E}(X_1)+\cdots+\mathbb{E}(X_n)$$

Example: throwing two dice

Sum of expected values: for arbitrary discrete random variables X_1, \ldots, X_n we can write:

$$\mathbb{E}(X_1+\cdots+X_n)=\mathbb{E}(X_1)+\cdots+\mathbb{E}(X_n)$$

Example: throwing two dice

■ X_1 : result of dice 1: $\mathbb{E}(X_1) = 3.5$

Sum of expected values: for arbitrary discrete random variables X_1, \ldots, X_n we can write:

$$\mathbb{E}(X_1 + \cdots + X_n) = \mathbb{E}(X_1) + \cdots + \mathbb{E}(X_n)$$

Example: throwing two dice

- X_1 : result of dice 1: $\mathbb{E}(X_1) = 3.5$
- X_2 : result of dice 2: $\mathbb{E}(X_2) = 3.5$

Universal Hashing

Probability Calculation

Sum of expected values: for arbitrary discrete random variables $X_1, ..., X_n$ we can write:

$$\mathbb{E}(X_1 + \cdots + X_n) = \mathbb{E}(X_1) + \cdots + \mathbb{E}(X_n)$$

Example: throwing two dice

- X_1 : result of dice 1: $\mathbb{E}(X_1) = 3.5$
- X_2 : result of dice 2: $\mathbb{E}(X_2) = 3.5$
- $X = X_1 + X_2$: total number
- Expected number when rolling two dices:

$$\mathbb{E}(X) = \mathbb{E}(X_1 + X_2) = \mathbb{E}(X_1) + \mathbb{E}(X_2) = 3.5 + 3.5 = 7$$

Corollary:

The probability of the event E is p = P(E). Let X be the occurrences of the event E and n be the number of executions of the experiment. Then $\mathbb{E}(X) = n \cdot P(E) = n \cdot p$

Corollary:

The probability of the event E is p = P(E). Let X be the occurrences of the event E and n be the number of executions of the experiment. Then $\mathbb{E}(X) = n \cdot P(E) = n \cdot p$

Example (Rolling the dice 60 times)

$$\mathbb{E}$$
 (occurences of 6) = $\frac{1}{6} \cdot 60 = 10$

Universal Hashing

Probability Calculation

Proof Corollary:

Indicator variable: X_i

Proof Corollary:

Indicator variable: Xi

$$X_i = \begin{cases} 1, & \text{if event occurs} \\ 0, & \text{else} \end{cases}$$

$$\Rightarrow X = \sum_{i=1}^{n} X_i$$

Proof Corollary:

Indicator variable: X_i

$$X_i = \begin{cases} 1, & \text{if event occurs} \\ 0, & \text{else} \end{cases}$$

$$\Rightarrow X = \sum_{i=1}^{n} X_i$$

$$\mathbb{E}(X) = \mathbb{E}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \mathbb{E}(X_i) \stackrel{\text{def. } \mathbb{E}\text{-value}}{=} \sum_{i=1}^{n} p = n \cdot p$$

Proof Corollary:

Indicator variable: X_i

$$X_i = \begin{cases} 1, & \text{if event occurs} \\ 0, & \text{else} \end{cases}$$

$$\Rightarrow X = \sum_{i=1}^{n} X_i$$

$$\mathbb{E}(X) = \mathbb{E}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \mathbb{E}(X_i) \stackrel{\text{def. } \mathbb{E}\text{-value}}{=} \sum_{i=1}^{n} p = n \cdot p$$

Def.
$$\mathbb{E}$$
-value: $\mathbb{E}(X_i) = 0 \cdot P(X_i = 0) + 1 \cdot P(X_i = 1) = P(X_i = 1)$

Structure

Associative Arrays Introduction Hash Map

Universal Hashing

Introduction
Probability Calculation

Proof

Examples

Given:

■ We pick two random keys $x, y \in \mathbb{S} \mid x \neq y$ and a random hash function $h \in \mathbb{H}$

Given:

- We pick two random keys $x, y \in \mathbb{S} \mid x \neq y$ and a random hash function $h \in \mathbb{H}$
- We know the probability of a collision:

$$P(h(x) = h(y)) \le c \cdot \frac{1}{m}$$

Given:

- We pick two random keys $x, y \in \mathbb{S} \mid x \neq y$ and a random hash function $h \in \mathbb{H}$
- We know the probability of a collision:

$$P(h(x) = h(y)) \le c \cdot \frac{1}{m}$$

To proof:

$$\mathbb{E}[|\mathbb{S}_i|] \leq 1 + c \cdot \frac{|\mathbb{S}|}{m} \quad \forall i$$

Universal Hashing Proof

We know:

$$\mathbb{S}_i = \{x \in \mathbb{S} : h(x) = i\}$$

Universal Hashing Proof

We know:

$$\mathbb{S}_i = \{x \in \mathbb{S} : h(x) = i\}$$

If
$$\mathbb{S}_i = \emptyset \Rightarrow |\mathbb{S}_i| = 0$$

Universal Hashing Proof

We know:

$$\mathbb{S}_i = \{x \in \mathbb{S} : h(x) = i\}$$

If
$$\mathbb{S}_i = \emptyset \Rightarrow |\mathbb{S}_i| = 0$$
 otherwise, let $x \in \mathbb{S}_i$ be any key

We know:

$$\mathbb{S}_i = \{x \in \mathbb{S} : h(x) = i\}$$

If $\mathbb{S}_i = \emptyset \Rightarrow |\mathbb{S}_i| = 0$ otherwise, let $x \in \mathbb{S}_i$ be any key

We define an indicator variable:

$$I_y = \begin{cases} 1, & \text{if } h(y) = i \\ 0, & \text{else} \end{cases} \quad y \in \mathbb{S} \setminus \{x\}$$

$$\mathbb{S}_i = \{x \in \mathbb{S} : h(x) = i\}$$

If $\mathbb{S}_i = \emptyset \Rightarrow |\mathbb{S}_i| = 0$ otherwise, let $x \in \mathbb{S}_i$ be any key

We define an indicator variable:

$$I_y = \begin{cases} 1, & \text{if } h(y) = i \\ 0, & \text{else} \end{cases} \quad y \in \mathbb{S} \setminus \{x\}$$

$$\Rightarrow \qquad |\mathbb{S}_i| = 1 + \sum_{y \in \mathbb{S} \setminus x} I_y$$

We know:

$$\mathbb{S}_i = \{x \in \mathbb{S} : h(x) = i\}$$

If $\mathbb{S}_i = \emptyset \Rightarrow |\mathbb{S}_i| = 0$ otherwise, let $x \in \mathbb{S}_i$ be any key

We define an indicator variable:

$$I_y = \begin{cases} 1, & \text{if } h(y) = i \\ 0, & \text{else} \end{cases} \quad y \in \mathbb{S} \setminus \{x\}$$

$$\Rightarrow \qquad |\mathbb{S}_i| = 1 + \sum_{y \in \mathbb{S} \setminus x} I_y$$

$$\Rightarrow \quad \mathbb{E}(|\mathbb{S}_i|) = \mathbb{E}\left(1 + \sum_{y \in \mathbb{S} \setminus x} l_y\right) = 1 + \sum_{y \in \mathbb{S} \setminus x} \mathbb{E}(l_y)$$

$$\mathbb{E}[I_y] = P(I_y = 1)$$

$$= P(h(y) = i)$$

$$= P(h(y) = h(x))$$

$$\leq c \cdot \frac{1}{m}$$

$$\mathbb{E}[I_y] = P(I_y = 1)$$

$$= P(h(y) = i)$$

$$= P(h(y) = h(x))$$

$$\leq c \cdot \frac{1}{m}$$

Proof

Auxiliary calculation: $\mathbb{E}[I_V] = P(I_V = 1)$

$$\mathbb{E}[I_y] = P(I_y = 1)$$

$$= P(h(y) = i)$$

$$= P(h(y) = h(x))$$

$$\leq c \cdot \frac{1}{m}$$

 $\leq 1 + |\mathbb{S}| \cdot c \cdot \frac{1}{m}$

 $= 1 + c \cdot \frac{|S|}{m}$

Hence:
$$\mathbb{E}[|\mathbb{S}_i|] = 1 + \sum_{y \in \mathbb{S} \setminus x} \mathbb{E}[l_y] \le 1 + \sum_{y \in \mathbb{S} \setminus x} c \cdot \frac{1}{m}$$
$$= 1 + (|\mathbb{S}| - 1) \cdot c \cdot \frac{1}{m}$$

Proof

Auxiliary calculation: $\mathbb{E}[I_V] = P(I_V = 1)$

$$\mathbb{E}[I_y] = P(I_y = 1)$$

$$= P(h(y) = i)$$

$$= P(h(y) = h(x))$$

$$\leq c \cdot \frac{1}{m}$$

Hence:
$$\mathbb{E}[|S_i|] = 1 + \sum_{y \in S \setminus X} \mathbb{E}[I_y] \le 1 + \sum_{y \in S \setminus X} c \cdot \frac{1}{m}$$

$$\leq 1 + |\mathbb{S}| \cdot c \cdot \frac{1}{m}$$
$$= 1 + c \cdot \frac{|\mathbb{S}|}{m}$$

Proof

Auxiliary calculation: $\mathbb{E}[I_y] = P(I_y = 1)$

$$\mathbb{E}[I_y] = P(I_y = 1)$$

$$= P(h(y) = i)$$

$$= P(h(y) = h(x))$$

$$\leq c \cdot \frac{1}{m}$$

Hence:
$$\mathbb{E}[|\mathbb{S}_i|] = 1 + \sum_{y \in \mathbb{S} \setminus x} \mathbb{E}[I_y] \le 1 + \sum_{y \in \mathbb{S} \setminus x} c \cdot \frac{1}{m}$$

$$= 1 + (|\mathbb{S}| - 1) \cdot c \cdot \frac{1}{m}$$

$$\le 1 + |\mathbb{S}| \cdot c \cdot \frac{1}{m}$$

$$= 1 + c \cdot \frac{|\mathbb{S}|}{m}$$

Structure

Associative Arrays Introduction Hash Map

Universal Hashing

Introduction
Probability Calculation
Proof

Examples

Universal Hashing Examples

Negative example:

Negative example:

■ The set of all *h* for which $h_a(x) = (a \cdot x) \mod m$, for a $a \in \mathbb{U}$

Negative example:

- The set of all h for which $h_a(x) = (a \cdot x) \mod m$, for a $a \in \mathbb{U}$
- It is not *c*-universal. Why?

Examples

Negative example:

- The set of all h for which $h_a(x) = (a \cdot x) \mod m$, for a $a \in \mathbb{U}$
- It is not *c*-universal. Why?
- If universal:

$$\forall x,y \quad x \neq y$$
: $\frac{|\{h \in \mathbb{H} : h(x) = h(y)\}|}{|\mathbb{H}|} \leq c \cdot \frac{1}{m}$

Negative example:

- The set of all h for which $h_a(x) = (a \cdot x) \mod m$, for a $a \in \mathbb{U}$
- It is not *c*-universal. Why?
- If universal:

$$\forall x,y \quad x \neq y$$
: $\frac{|\{h \in \mathbb{H} : h(x) = h(y)\}|}{|\mathbb{H}|} \leq c \cdot \frac{1}{m}$

■ Which x,y lead to a relative collision count bigger than $\frac{c}{m}$?

Universal Hashing

Examples

Positive example:

■ Let p be a big prime number, p > m and $p \ge |\mathbb{U}|$

- Let p be a big prime number, p > m and $p \ge |\mathbb{U}|$
- Let \mathbb{H} be the set of all h for which:

$$h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod m,$$

where $1 \le a < p, \ 0 \le b < p$

Examples

Positive example:

- Let p be a big prime number, p > m and $p \ge |\mathbb{U}|$
- \blacksquare Let \blacksquare be the set of all h for which:

$$h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod m,$$

where $1 \le a < p, \ 0 \le b < p$

This is \approx 1-universal, see Exercise 4.11 in Mehlhorn/Sanders

- Let p be a big prime number, p > m and $p \ge |\mathbb{U}|$
- Let \mathbb{H} be the set of all h for which:

$$h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod m,$$

where $1 \le a < p, \ 0 \le b < p$

- This is ≈ 1-universal, see Exercise 4.11 in Mehlhorn/Sanders
- E.g.: $U = \{0, ..., 99\}, p = 101, a = 47, b = 5$

Examples

- Let p be a big prime number, p > m and $p \ge |\mathbb{U}|$
- Let \mathbb{H} be the set of all h for which:

$$h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod m,$$

where $1 \le a < p, \ 0 \le b < p$

- This is \approx 1-universal, see Exercise 4.11 in Mehlhorn/Sanders
- E.g.: $U = \{0, ..., 99\}, p = 101, a = 47, b = 5$
- Then $h(x) = ((47 \cdot x + 5) \mod 101) \mod m$

- Let p be a big prime number, p > m and $p \ge |\mathbb{U}|$
- Let \mathbb{H} be the set of all h for which:

$$h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod m,$$

where $1 \le a < p, \ 0 \le b < p$

- This is ≈ 1-universal, see Exercise 4.11 in Mehlhorn/Sanders
- E.g.: $U = \{0, ..., 99\}, p = 101, a = 47, b = 5$
- Then $h(x) = ((47 \cdot x + 5) \mod 101) \mod m$
- Easy to implement but hard to proof

- Let p be a big prime number, p > m and $p \ge |\mathbb{U}|$
- Let \mathbb{H} be the set of all h for which:

$$h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod m,$$

where $1 \le a < p, \ 0 \le b < p$

- This is ≈ 1-universal, see Exercise 4.11 in Mehlhorn/Sanders
- E.g.: $U = \{0, ..., 99\}, p = 101, a = 47, b = 5$
- Then $h(x) = ((47 \cdot x + 5) \mod 101) \mod m$
- Easy to implement but hard to proof
- Exercise: show empirically that it is 2-universal

Universal Hashing

Examples

Positive example:

■ The set of hash functions is c-universal:

$$h_a(x) = a \bullet x \mod m, \quad a \in \mathbb{U}$$

Examples

Positive example:

■ The set of hash functions is *c*-universal:

$$h_a(x) = a \bullet x \mod m, \quad a \in \mathbb{U}$$

We define:

$$a = \sum_{0,\dots,k-1} a_i \cdot m^i, \qquad k = \text{ceil}(\log_m |\mathbb{U}|)$$
$$x = \sum_{0,\dots,k-1} x_i \cdot m^i$$

Examples

■ The set of hash functions is *c*-universal:

$$h_a(x) = a \bullet x \mod m, \quad a \in \mathbb{U}$$

■ We define:

$$a = \sum_{0,\dots,k-1} a_i \cdot m^i, \qquad k = \text{ceil}(\log_m |\mathbb{U}|)$$
$$x = \sum_{0,\dots,k-1} x_i \cdot m^i$$

Intuitive: scalar product with base m

$$a \bullet x = \sum_{0,\dots,k-1} a_i \cdot x_i$$

Example (
$$\mathbb{U} = \{0, ..., 999\}, m = 10, a = 348$$
)

With
$$a = 348$$
: $a_2 = 3$, $a_1 = 4$, $a_0 = 8$

$$h_{348}(x) = (a_2 \cdot x_2 + a_1 \cdot x_1 + a_0 \cdot x_0) \mod m$$

= $(3x_2 + 4x_1 + 8x_0) \mod 10$

With
$$x = 127$$
: $x_2 = 1$, $x_1 = 2$, $x_0 = 7$

$$h_{348}(127) = (3 \cdot x_2 + 4 \cdot x_1 + 8 \cdot x_0) \mod 10$$

= $(3 \cdot 1 + 4 \cdot 2 + 8 \cdot 7) \mod 10$
= 7

■ Course literature

- [CRL01] Thomas H. Cormen, Ronald L. Rivest, and Charles E. Leiserson.

 Introduction to Algorithms.

 MIT Proce. Combridge, Mass, 2001
 - MIT Press, Cambridge, Mass, 2001.
- [MS08] Kurt Mehlhorn and Peter Sanders.
 Algorithms and data structures, 2008.
 https://people.mpi-inf.mpg.de/~mehlhorn/
 ftp/Mehlhorn-Sanders-Toolbox.pdf.

Hash Map - Theory

- [Wik] Hash table
 - https://en.wikipedia.org/wiki/Hash_table
- Hash Map Implementations / API
 - [Cpp] C++ hash_map
 http://www.sgi.com/tech/stl/hash_map.html
 - [Jav] Java HashMap
 https://docs.oracle.com/javase/7/docs/api/
 java/util/HashMap.html
 - [Pyt] Python Dictionaries (Hash table)
 https://en.wikipedia.org/wiki/Hash_table