

Universidade de Brasília

Departamento de Ciência da Computação

Disciplina: CIC 116394 – Organização e Arquitetura de Computadores – Turma A Prof. Marcus Vinicius Lamar

2012/2

Prova 1

(4.0) 1) Respeitando a convenção do uso dos registradores, compile e monte, i.e. codifique em linguagem de máquina (hexadecimal), a partir do endereço .text 0x00400000 o programa ao lado. Coloque a resposta final no verso desta folha.

Obs.: Não se preocupe com a codificação do segmento de dados.

(2.0) 2) O montador Mars implementa várias pseudo-instruções Assembly que são muito úteis aos programadores. Às vezes, algumas instruções reais não são implementadas propositalmente, devendo ser emuladas como as pseudo-instruções.

Escreva um código alternativo para as instruções abaixo:

(1.0)a) lb \$t0,Imm(\$t1) # Carrega em \$t0 o byte presente em (Imm+\$t1) considerando-o em complemento de 2

void main(void)
{
 int k;

printf("k=");
 scanf("%d",&k);
 printf("r=%d\n",proc(2*k,k));
}

int proc(int a, int b)
{
 if(a<=b) return (a+b);
 else return (a+proc(a-b,a+b)-b);
}</pre>

 $d_0 d_1 / d_2 d_3 d_4 d_5 d_6 d_7 d_8$

- (0.5)b) lhu \$t0,Imm(\$t1) # Carrega em \$t0 a half-word presente em (Imm+\$t1) considerando-a sem sinal
- (0.5)c) lui \$t0,Imm # Coloca o Imm na porção mais significativa de \$t0
- (1.5) 2) No estudo de desempenho de sistemas computacionais, a sua definição pode ser extremamente genérica. Neste curso usamos apenas o tempo de execução do programa do usuário para medir o desempenho. No entanto, vo trabalha em uma indústria que fabrica tablets de alto desempenho, e neste caso a dimensão (D em polegadas), o peso do produto (P em gramas) e a capacidade da bateria (C em mA/h) são tão importantes quanto o tempo de execução (t em segundos). Estes fatores podem possuir relações bastante complexas entre si D(P,C,t), P(D,C,t), C(D,P,t) e t(P,D,C). Para os seus superiores, o ideal é ter um tablet de 7" com tela sensível ao toque capacitiva de AMOLED que tenha o menor peso possível, uma bateria que dure o máximo possível e execute o programa do usuário o mais rápido possível. Usando esses fatores crie uma função para a medir o desempenho.
- (1.5) 3) Sobre as arquiteturas Harvard e Von Neumann:
- (0.5)a) O que caracteriza estas arquiteturas?
- (0.5)b) Quais as vantagens e desvantagens de cada uma.
- (0.5)c) Qual é usada hoje em dia nos modernos processadores?
- (1.5) 4) Suponha que melhoramos uma máquina fazendo todas as instruções de ponto flutuante serem executadas cinco vezes mais rápido. Estamos procurando um benchmark para mostrar essa nova unidade de ponto flutuante e queremos que o benchmark geral mostre um aumento de velocidade de 3 vezes. Um benchmark que estamos considerando é executado durante 100 segundos com o hardware de ponto flutuante antigo. Quanto do tempo de execução as instruções de ponto flutuante teriam que considerar para produzir nosso aumento de velocidade desejado nesse benchmark?

Universidade de Brasília

Departamento de Ciência da Computação

Disciplina: CIC 116394 – Organização e Arquitetura de Computadores Prof. Marcus Vinicius Lamar

Nome:	Oaban, to	Matrícula:
INOTHIC.	0000-11010	Matricula.

Endereço (Hexa)	Conteúdo(Hexa)
0x0040 0000	0x24020004
0x0040 0004	0x3c011001
0x0040 0008	0x 3424 000 0
0x0040 000C	AX 0000 000C
0x0040 0010	01 24 02 0005
0x0040 0014	0x 0200 000C
0x0040 0018	0x 0002 7021
0x0040 001C	0x0010 2040
0x0040 0020	0x 0010 2821
0x0040 0024	0x 0c10 0014
0x0040 0028	OX 0002 7871
0x0040 002C	0× 2402 0004
0x0040 0030	34 30011001
0x0040 0034	DX 3424 0003
0x0040 0038	DX DOOD DOOC
0x0040 003C	DX 2402 000)
0x0040 0040	0x00112021
0x0040 0044	0 x 0 0 0 0 0 0 0 0 0 0
0x0040 0048	0x2402 000A
0x0040 004C	2X0000 200C
0x0040 0050	UX23BD FFFY
0x0040 0054	DX AFB F 0008
0x0040 0058	DK AFA 50004
0x0040 005C	dx AFA4 0000
0x0040 0060	0x00854024
0x0040 0064	DX 1500 000C
0x0040 0068	Dx 108 5 000B
0x0040 006C	DX 0004 4021
0x0040 0070	0x00852022
0x0040 0074	0x0109 2820
0x0040 0078	0x00100014
0x0040 007C	DX 8FBF 0008
0x0040 0080	0 x 8FA5 0004
0x0040 0084	018FAY 0000
0x0040 0088	0x23BD 000C
0x0040 008C	0×00441020
0x0040 0090	0×00451022
0x0040 0094	0×03€0 0008
0x0040 0098	0x 0085 1020
0x0040 009C	0× 2350 000C
0x0040 00A0	0x03E0 0008
0x0040 00A4	
0x0040 00A8	•
0x0040 00AC	
0x0040 00B0	
0x0040 00B4	
0x0040 00B8	
0x0040 00C4	
0x0040 00BC 0x0040 00C0 0x0040 00C4 0x0040 00C8	

Gabarito

1) ·data 9TM1: , asaiz "K=" 0,25 STRZ: agait "v=" NL: agait "in" . TexT # imprine STA1 , addin \$2, \$0,4 MAIN: Li 510,4 Lui \$1,0x1001/or; \$4,\$1,0 La \$90,5TR1 SYSCALL 0.25 # Le K addin \$2,\$0,5 Lisve,5 GYSCALL I Souva en 50 addu \$16,50,92 move \$50, \$V4 # 398=2XK 54 990, 950,1 move \$ 91, \$50 #01=K adder \$5, \$0, \$16 Jal PROC # 9224 \$17,94,52 move \$51,\$VO LI \$V0,4 # infine reguly addin \$2,50,4 05 La Sao, STR2 Wi \$1,0x100) / DR; \$4, \$1,3 SYSCALL Haddin \$2, \$0,1 Li 5/0 1 move \$98 \$51 H 900 M &4, 50,\$17 SYSCALL Li\$VA,10 # CXIT addin \$2,84,10 SYSCALL

Proc: addi \$58, \$58, -12 #salva rapilita Sw gra, 8 (\$5P) 025 Su fal, 4 (\$58) Su gao, 0 (498) Set \$10, 500, 501 # 90ca17 bne \$to, \$tero, PULA beg fax, gar, PolA Had = a1? more stagas SUB Gas, 900, 801 add \$91, \$10, 591 for groc # 5ad=59+591 e \$50 = 990 + Par Lu \$r9, 8(\$5P) LW 591, 4(\$58) (w \$ax, & (95P) 0,25 FRETING Piltra addi \$58, \$58, 12 # PROC+\$40-\$41 add \$va, \$va, \$ax SUB 500, \$VD, \$a1 gr \$ va PULA: add \$10,590,501 # nerving \$9545al addi \$5P, \$5P, 12 # 43em Pilta 1 ya Assembly > L.M 1,0 2) 9) 66 \$td, Imm (\$11) Big enpian Little espian LW \$t0, Inn (8t1) Lw \$10, Imn (\$ 11) SLL \$to, \$t0, 24 SRA \$70, \$90, 24 SRA 910, 510, 24

b) LHM STO, IMM (9t1) 1316 Ergian LITTLE ENDIAN La \$to, Inm (\$t1) LWSTO, Inn (\$11) Ardi sta, ata, OXFFFF SRL 970,510, 16 C) Lui sto, Imm addi \$t0, \$22RO, Imn SLL \$t0, \$t0, 16 $d = \frac{C(D,P,t)}{(D(P,C,x)-7)^2 \times P(D,C,t) \times t(P,D,C)}$ Desempenho OTIMO C+00 (Barying Dune 00) 070) 0-17 (DISPLAY DE 7") P-10 (Pese Ogranas) t->0 (execute o grayana en Oseg) a) HARVARD : PROGRAMAS E DADOS EM MEMSIKS Von Memmarn: Prog e Dagos na mesmo memoria pirene, tes VANTAGEM DES VANTagen HARVALT AGSS + REPIDO HORANA - Acesso Proisilo à remise -2015/26, The Fisicos

- LARGUNA RO BONDA

-Etecta papo

VON NEUMAN I - Prog. TRETARD COMS PARO

C) E ugada A ALQUITETURA HARVARD MODIFICADA, inflametaga a maves por Hierarquia de mensliag cache:

4) 100 = Trais AFETADO + TERUMNIGA

100 = trais AFETADO + TERUMONA
3

teprova = tarisa 100 = transferance + trumpica

100-100 = TEPURSIGN - TEPURSIGN

TEPURTIGN = 1000 = 83,333 12 tra- AFETERD - 166666