Отчёт по лабораторным работам №1 и №2 по ММО студентки группы ИУ5-21М Дьяконовой Светланы

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set()
import warnings
warnings.filterwarnings('ignore')
Загрузка датасета
df = pd.read csv('marketing campaign.csv', sep='\t', index col='ID')
df.head()
                   Education Marital Status Kidhome Teenhome
      Year Birth
Dt Customer \
ID
5524
            1963 Graduation
                                     Single
                                                    0
                                                                2018-
04-09
2174
                                                              1 2020-
            1960 Graduation
                                     Single
                                                    1
08-03
4141
            1971 Graduation
                                   Together
                                                    0
                                                              0 2019-
08 - 21
6182
            1990 Graduation
                                   Together
                                                    1
                                                              0 2020-
10-02
5324
                                    Married
                                                    1
                                                              0 2020-
            1987
                         PhD
01-19
      Recency MntWines MntFruits MntMeatProducts
                                                           MntGoldProds
ID
                                                      . . .
5524
           58
                    635
                                88
                                                 546
                                                                     88
2174
                     11
                                 1
           38
                                                   6
                                                                      6
                                                      . . .
                                49
4141
           26
                    426
                                                 127
                                                                     42
                                                      . . .
6182
           26
                     11
                                 4
                                                  20
                                                      . . .
                                                                      5
5324
           94
                    173
                                43
                                                 118 ...
                                                                     15
```

NumDealsPurchases NumWebPurchases \

ID 5524 2174 4141 6182 5324	3 2 1 2 5	8 1 8 2 5		10 1 2 0 3	
T D	NumStorePurchases	NumWebVisitsMont	h Complain	Z_CostContact	\
ID 5524 2174 4141 6182 5324	4 2 10 4 6		7 0 5 0 4 0 6 0 5 0	3 3 3 3 3	
	Z_Revenue Accepte	dCmp			
ID 5524 2174 4141 6182 5324	11 11 11 11 11	1 0 0 0			
[5 ro	ws x 22 columns]				
df.in	fo()				
Int64 Data	s 'pandas.core.fram Index: 2240 entries columns (total 22 c Column	, 5524 to 9405	Dtype		

#	Column	Non-Null Count	Dtype
	Year_Birth	2240 non-null	int64
	Education	2240 non-null	object
2	Marital_Status	2240 non-null	object
3	Kidhome	2240 non-null	int64
4	Teenhome	2240 non-null	int64
5	Dt Customer	2240 non-null	object
6	Recency	2240 non-null	int64
7	MntWines	2240 non-null	int64
8	MntFruits	2240 non-null	int64
9	MntMeatProducts	2240 non-null	int64
10	MntFishProducts	2240 non-null	int64
11	MntSweetProducts	2240 non-null	int64
12		2240 non-null	
13	NumDealsPurchases	2240 non-null	int64
14	NumWebPurchases	2240 non-null	int64
15	NumCatalogPurchases		
16	NumStorePurchases		
	NumWebVisitsMonth		

18	Complain	2240	non-null	int64
19	<pre>Z_CostContact</pre>	2240	non-null	int64
20	Z_Revenue	2240	non-null	int64
21	AcceptedCmp	2240	non-null	int64

dtypes: int64(19), object(3)

memory usage: 467.0+ KB

Описание датасета

Анализ личности клиентов — это подробный анализ идеальных клиентов компании. Это помогает бизнесу лучше понять своих клиентов и облегчает им модификацию продуктов в соответствии с конкретными потребностями, поведением и проблемами различных типов клиентов.

Люди

- ID: уникальный идентификатор клиента.
- Year_Birth: год рождения клиента.
- Образование: уровень образования клиента.
- Marital Status: семейное положение клиента.
- Kidhome: Количество детей в семье клиента.
- Teenhome: количество подростков в семье клиента
- Dt_Customer: Дата регистрации клиента в компании
- Недавность: количество дней с момента последней покупки клиента. Пожаловаться: 1, если клиент сотрудничает

Продукты

- MntWines: сумма, потраченная на вино за последние 2 года.
- MntFruits: сумма, потраченная на фрукты за последние 2 года.
- MntMeatProducts: сумма, потраченная на мясо за последние 2 года.
- MntFishProducts: Сумма, потраченная на рыбу за последние 2 года.
- MntSweetProducts: сумма, потраченная на сладости за последние 2 года.
- MntGoldProds: Сумма, потраченная на золото за последние 2 года.

Реклама

- NumDealsPurchases: количество покупок со скидкой
- AcceptedCmp: 1, если клиент принял предложение в последней кампании, 0 в противном случае

Поведение

- NumWebPurchases: количество покупок, совершенных через веб-сайт компании.
- NumCatalogPurchases: количество покупок, сделанных с использованием каталога.

- NumStorePurchases: количество покупок, совершенных непосредственно в магазинах.
- NumWebVisitsMonth: количество посещений веб-сайта компании за последний месяц.
- NumDealsPurchases: количество покупок со скидкой.

```
numerical = [var for var in df.columns if df[var].dtypes!='0']
categorical = [var for var in df.columns if df[var].dtypes=='0']
```

Лабораторная № 1

Смотрим распределение таргета, чтобы понять его нормальность

```
f, ax = plt.subplots(figsize=(10,8))
x = df['Year_Birth']
ax = sns.distplot(x)
ax.set_title("Распределение Year_Birth")
plt.show()
```


Гистограмма количетсва посещений, наглядно показывает какое количество посещений встречается чаще всего

hist = df["NumWebVisitsMonth"].hist(bins=20) #groupby

смотрим попарные зависимости числовых переменных

```
g = sns.pairplot(df[numerical])
g.map_lower(sns.kdeplot, levels=4, color=".2")
plt.show()
```


т.к. попарное сравнение, приведенной выше, слишком перенасышено информацией, было принято решения построить этот график не на всех значенияь нумерикал

```
df_behavior = df[["NumWebPurchases", "NumCatalogPurchases",
"NumStorePurchases", "NumWebVisitsMonth", "NumDealsPurchases"]]
g = sns.pairplot(df_behavior)
g.map_lower(sns.kdeplot, levels=4, color=".2")
plt.show()
```



```
25
  20
  15
  10
   5
   0
               2000
                       4000
                                6000
                                        8000
                                                10000
        0
import plotly.express as px
df cat = df[['Education', 'Marital Status', 'Complain']]
fig = px.parallel categories(df cat)
fig.show()
df["Marital_Status"].value_counts()
Married
            864
Together
            580
Single
            480
Divorced
            232
Widow
             77
Alone
              3
Absurd
              2
Y0L0
              2
Name: Marital_Status, dtype: int64
# create data
labels = ["Married", "Together", "Single", "Divorced", "Widow",
"Alone", "Absurd", "YOLO"]
size of groups=df["Marital Status"].value counts()
# Create a pieplot
plt.pie(size_of_groups, labels=labels)
# add a circle at the center to transform it in a donut chart
my circle=plt.Circle((0,0), 0.7, color='white')
p=plt.gcf()
p.gca().add_artist(my_circle)
```

plt.show()

Лабораторная № 2

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set()

data_gr = pd.read_csv('gran_turismo_gt7.csv')
data_gr.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 425 entries, 0 to 424
Data columns (total 10 columns):

Data	Cocumins (coca	t 10 Cotumns).	
#	Column	Non-Null Count	Dtype
0	model	425 non-null	object
1	category	425 non-null	object
2	pp	425 non-null	object
3	transmission	425 non-null	object
4	coll	425 non-null	object
5	price	425 non-null	object
6	hp	425 non-null	object
7	lbs	409 non-null	float64
8	kg/kw	425 non-null	object
9	img_url	425 non-null	object

dtypes: float64(1), object(9)

memory usage: 33.3+ KB

В данных нет пропусков, поэтому он не подходит для выполнения задания с обработкой пропусков

```
data_se = pd.read_csv('sea_ears.csv')
data se.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5700 entries, 0 to 5699
Data columns (total 15 columns):

Jucu	cocamins (co	cac is cocamins, i	
#	Column	Non-Null Count	Dtype
0	Unnamed: 0	5700 non-null	int64
1	id	5700 non-null	int64
2	FN	5700 non-null	object
3	SN	5700 non-null	object
4	LN	5700 non-null	object
5	Captured	5700 non-null	object
6	Sex	5700 non-null	object
7	Length	5545 non-null	float64
8	Diam	5079 non-null	float64
9	Height	4931 non-null	float64
10	Whole	5687 non-null	float64
11	Shucke	4334 non-null	float64
12	Viscera	5158 non-null	float64
13	Shell	4938 non-null	float64
14	Rings	4960 non-null	float64
dtype	es: float64(8	3), int64(2), ob	ject(5)

memory usage: 668.1+ KB

data se.head()

Unnamed:	0	id	FN	SN	LN	Captured	Sex
Length \ 0 0.450	0	835	Kid	College	Machine	20200621T000000	I
1 0.500	1	540	Jalapeno	Glam	Machine	20200308T000000	F
2 0.520	2	2295	Baby	Full	Killer	20200222T000000	F
3 0.595	3	858	Kid	Rock	Head	20200222T000000	F
0.480	4	2329	Воу	Block	Death	20201219T000000	I

```
Diam Height Whole Shucke Viscera Shell Rings 0 0.350 0.130 0.5470 0.2450 0.1405 0.1405 8.0 1 0.375 0.140 0.6040 0.2420 0.1415 0.1790 15.0
```

```
2 0.415
           0.145 0.8045 0.3325
                                   0.1725
                                           0.2850
                                                    10.0
3 0.480
           0.150 1.1100 0.4980
                                   0.2280
                                           0.3300
                                                    10.0
                                   0.1210
4 0.390
           0.145 0.5825 0.2315
                                           0.2550
                                                    15.0
в датасете есть пропуски, поэтому будем выполнять лабораторную работу
на его основе.
list(zip(data se.columns, [i for i in data se.dtypes]))
[('Unnamed: 0', dtype('int64')),
 ('id', dtype('int64')),
 ('FN', dtype('0')),
 ('SN', dtype('0')),
 ('LN', dtype('0')),
 ('Captured', dtype('0')),
 ('Sex', dtype('0')),
 ('Length', dtype('float64')),
 ('Diam', dtype('float64')),
 ('Height', dtype('float64')),
 ('Whole', dtype('float64')),
 ('Shucke', dtype('float64')),
 ('Viscera', dtype('float64')),
 ('Shell', dtype('float64')),
 ('Rings', dtype('float64'))]
# Колонки с пропусками
hcols with na = [c for c in data se.columns if
data se[c].isnull().sum() > 0
hcols with na
['Length', 'Diam', 'Height', 'Whole', 'Shucke', 'Viscera', 'Shell',
'Rings']
# Доля (процент) пропусков
[(c, data se[c].isnull().mean()) for c in hcols with na]
[('Length', 0.027192982456140352),
 ('Diam', 0.10894736842105263),
 ('Height', 0.13491228070175437),
 ('Whole', 0.0022807017543859647),
 ('Shucke', 0.23964912280701756),
 ('Viscera', 0.09508771929824561),
 ('Shell', 0.1336842105263158),
 ('Rings', 0.12982456140350876)]
В столбцах Length и Whole содержание пропусков меньше 5%, поэтому
можно удалить строки содержащие пропущенные значения
# Колонки для которых удаляются пропуски
hcols for delete = ['Length', 'Whole']
```

Удаление пропусков

```
new_data = data_se.dropna(axis=0, how='any', subset = hcols_for_delete)

def plot_hist_diff(old_ds, new_ds, cols):

    Paзница между распределениями до и после устранения пропусков

    for c in cols:
        fig = plt.figure()
        ax = fig.add_subplot(111)
        ax.title.set_text('Поле - ' + str(c))
        old_ds[c].hist(bins=50, ax=ax, density=True, color='green')
        new_ds[c].hist(bins=50, ax=ax, color='blue', density=True, alpha=0.5)
        plt.show()
```

plot_hist_diff(data_se, new_data, hcols_for_delete)

new_data.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 5533 entries, 0 to 5699
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype			
0	Unnamed: 0	5533 non-null	int64			
1	id	5533 non-null	int64			
2	FN	5533 non-null	object			
3	SN	5533 non-null	object			
4	LN	5533 non-null	object			
5	Captured	5533 non-null	object			
6	Sex	5533 non-null	object			
7	Length	5533 non-null	float64			
8	Diam	4967 non-null	float64			
9	Height	4852 non-null	float64			
10	Whole	5533 non-null	float64			
11	Shucke	4309 non-null	float64			
12	Viscera	5055 non-null	float64			
13	Shell	4856 non-null	float64			
14	Rings	4881 non-null	float64			
		8), int64(2), obj	ject(5)			
memory usage: 691.6+ KB						

Для остальных полей применим метод "заполнения значений для нескольких признаков". А конкретно воспользуемся методом ближайщих соседей

```
knnimpute cols = [
    'Length', 'Diam', 'Height', 'Whole', 'Shucke', 'Viscera', 'Shell', 'Rings'
]
knn data = new data[knnimpute cols].copy()
# Признаки с пропусками
knn_data.isnull().sum()
Length
              0
            566
Diam
            681
Height
Whole
              0
           1224
Shucke
Viscera
            478
Shell
            677
Rings
            652
dtype: int64
from sklearn.impute import KNNImputer
knnimputer = KNNImputer(
    n neighbors=5,
    weights='distance',
    metric='nan euclidean',
    add indicator=False,
knn data imputed temp = knnimputer.fit transform(knn data)
knn data imputed = pd.DataFrame(knn data imputed temp,
columns=knn data.columns)
knn data imputed.head()
   Length
            Diam Height
                            Whole Shucke Viscera
                                                      Shell Rings
                   0.130
0
    0.450 0.350
                           0.5470 0.2450
                                             0.1405
                                                     0.1405
                                                                8.0
                           0.6040 0.2420
1
    0.500 0.375
                    0.140
                                             0.1415
                                                     0.1790
                                                               15.0
                                                               10.0
2
    0.520
           0.415
                                   0.3325
                                             0.1725
                                                     0.2850
                    0.145
                           0.8045
3
    0.595
           0.480
                    0.150
                           1.1100
                                   0.4980
                                             0.2280
                                                     0.3300
                                                               10.0
    0.480
           0.390
                    0.145
                           0.5825
                                   0.2315
                                             0.1210
                                                     0.2550
                                                               15.0
# Пропуски заполнены
knn data imputed.isnull().sum()
Length
           0
Diam
Height
           0
           0
Whole
Shucke
           0
Viscera
           0
           0
Shell
Rings
           0
dtype: int64
```

```
LotFrontage_df = pd.DataFrame({'original': knn_data['Diam'].values})
LotFrontage_df['KNN_5'] = knn_data_imputed['Diam']
sns.kdeplot(data=LotFrontage_df)
```

<matplotlib.axes. subplots.AxesSubplot at 0x7f68bb87db50>

LotFrontage_df = pd.DataFrame({'original': knn_data['Height'].values})
LotFrontage_df['KNN_5'] = knn_data_imputed['Height']
sns.kdeplot(data=LotFrontage_df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f68b8fe6790>

LotFrontage_df = pd.DataFrame({'original': knn_data['Shucke'].values})
LotFrontage_df['KNN_5'] = knn_data_imputed['Shucke']
sns.kdeplot(data=LotFrontage_df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f68b6ec7790>

LotFrontage_df = pd.DataFrame({'original':
knn_data['Viscera'].values})

LotFrontage_df['KNN_5'] = knn_data_imputed['Viscera']
sns.kdeplot(data=LotFrontage_df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f68b6e98310>

LotFrontage_df = pd.DataFrame({'original': knn_data['Shell'].values})
LotFrontage_df['KNN_5'] = knn_data_imputed['Shell']
sns.kdeplot(data=LotFrontage df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f68b6e7a510>


```
LotFrontage_df = pd.DataFrame({'original': knn_data['Rings'].values})
LotFrontage_df['KNN_5'] = knn_data_imputed['Rings']
sns.kdeplot(data=LotFrontage_df)
```

<matplotlib.axes. subplots.AxesSubplot at 0x7f68b6df4c50>

Кодирование категориальных

```
data_se['Sex'].unique()
array(['I', 'F', 'M'], dtype=object)
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
data_se_le = le.fit_transform(data_se['Sex'])
np.unique(data_se_le)
array([0, 1, 2])
```

Нормализация числовых признаков

```
from sklearn.preprocessing import MinMaxScaler
sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(new_data[['Whole']])
plt.hist(new_data['Whole'], 50)
plt.show()
```


plt.hist(sc1_data, 50)
plt.show()

