Date	
Date	

NO.1 INSTITUTE FOR IAS/IFoS EXAMINATIONS

MATHEMATICS CLASSROOM TEST 2022-23

Under the guidance of K. Venkanna

MATHEMATICS

ORDINARY DIFFERENTIAL EQUATIONS CLASS TEST

Date: 7 Feb.-2022

Time: 03:00 Hours Maximum Marks: 250

INSTRUCTIONS

- 1. Write your details in the appropriate space provided on the right side.
- Answer must be written in the medium specified in the admission Certificate issued to you, which must be stated clearly on the right side. No marks will be given for the answers written in a medium other than that specified in the Admission Certificate.
- 3. Candidates should attempt All Question.
- 4. The number of marks carried by each question is indicated at the end of the question. Assume suitable data if considered necessary and indicate the same clearly.
- 5. Symbols/notations carry their usual meanings, unless otherwise indicated.
- 6. All answers must be written in blue/black ink only. Sketch pen, pencil or ink of any other colour should not be used.
- 7. All rough work should be done in the space provided and scored out finally.
- 8. The candidate should respect the instructions given by the invigilator.
- The question paper-cum-answer booklet must be returned in its entirety to the invigilator before leaving the examination hall. Do not remove any page from this booklet.

KEAD	INSIK	UCI	IONS (
LEFT	SIDE	ΟF	THIS	PAGE
CARE	FULLY			
Name				

Email.: (In Block Letter)	
Email (in block Letter)	

rest centre	
l	<u> </u>
Medium	

I have read all	the	instructions	and	shall
abide by them				

Signature of the Candidate

I have verified the information filled by the
candidate above

Signature of the invigilator

INDEX TABLE

Question	Page No.	Max. Marks	Marks Obtained
1		10	
2		15	
3.		15	
4.		14	
5.		10	
6.		16	
7.		10	
8.		10	
9.		12	
10.		14	
11.		12	
12.		14	
13.		13	
14.		13	
15.		20	
16.		17	
17.		20	
18.		15	

Total Marks

1.	Solve the initial value problem : $\frac{d^2y}{dx^2} + 4y = e^{-2x} \sin 2x$; $y(0) = y'(0) = 0$	
	using Laplace transform method.	[10]

3.	Find all possible solutions of the differential equation:	
	$y^{2} \log y = xy \frac{dy}{dx} + \left(\frac{dy}{dx}\right)^{2}.$	[15]
	$\int dx dx dx dx$	[10]

4.	(i) Solve $(2xy^4 e^y + 2xy^3 + y) dx + (x^2y^4 e^y - x^2 y^2 - 3x) dy = 0$	
	(ii) Solve $(1 + y^2) dx + (x - e^{-tan^{-1}y}) dy = 0$, $y(1) = 0$	[14]

5.	Find the general and singular solution of y^2 (y – xp) = x^4p^2 .	[10]

6.	Reduce the equation $x^2y'' - 2x(1+x)y' + 2(1+x)y = x^3$, $(x > 0)$ into the normal form and hence solve it. [16]

7.	(i)	If $L^{-1}\left\{\frac{e^{-1/p}}{p^{1/2}}\right\} = \frac{\cos 2\pi}{\sqrt{(\pi t)}}$	$\frac{\sqrt{t}}{t}$, find L^{-1}	$\left\{\frac{e^{-a/p}}{p^{1/2}}\right\}$	where a > 0
----	-----	---	--------------------------------------	---	-------------

(ii) Find
$$L^{-1} \left\{ log \left(1 + \frac{1}{p^2} \right) \right\}$$
. [10]

8.	Show graphically that $y_1(x) = x^2$ and $y_2(x) = x \mid x \mid$ one linearly independent	nt on
	Show graphically that $y_1(x) = x^2$ and $y_2(x) = x \mid x \mid$ one linearly independence $-\infty < x < \infty$, however Wronskian vanishes for every real value of x .	[10]
	· · · · · · · · · · · · · · · · · · ·	

9.	Find the orghogonal trajectories of the family of curve	
	$\frac{x^2}{a^2} + \frac{y^2}{a^2 + \lambda} = 1, \lambda$ being the parameter.	[12]
	$a^2 a^2 + \lambda$	

	16 01 36	
10.	Solve $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + y = \frac{\log x \sin \log x + 1}{x}$.	[14]
I		

12 .	Justify that	a differential	equation of	of the form
-------------	--------------	----------------	-------------	-------------

$$[y + x f(x^2 + y^2)] dx + [y f(x^2 + y^2) - x] dy = 0,$$

where $f(x^2 + y^2)$ is an arbitrary function of $(x^2 + y^2)$, is not an exact differential equation and $\frac{1}{x^2 + y^2}$ is an integrating factor for it. Hence solve this differential

equation for
$$f(x^2 + y^2) = (x^2 + y^2)^2$$
. [14]

13.	Solve by the method of variation of parameters $d^2y/dx^2 + (1 - \cot x)(dy/dx) - \cot x$	y cot
	$x = \sin^2 x$.	[13]

14.	By using Laplace transform method, solve the differential equation (D ²	+ n ²)
	x = a sin (nt + α), $D^2 = \frac{d^2}{dt^2}$ subject to the initial conditions x = 0 and $\frac{dx}{dt}$ =	= 0, at
	$t = 0$, in which a, n and α are constants.	[13]

15. (i) Solve the differential equation

$$\frac{d^2y}{dx^2} + \left(3\sin x - \cot x\right)\frac{dy}{dx} + 2y\sin^2 x = e^{-\cos x} \cdot \sin^2 x$$

(ii) Find the Laplace transforms of $t^{-1/2}$ and $t^{1/2}$. Prove that the Laplace transform

of
$$t^{n+\frac{1}{2}}$$
, where $n \in \mathbb{N}$, is $\frac{\Gamma\left(n+1+\frac{1}{2}\right)}{S^{n+1+\frac{1}{2}}}$

(iii) Find the inverse Laplace transform of $\frac{5s^2 + 3s - 16}{(s-1)(s-2)(s+3)}$ [10+6+4=20]

16.	Using the method of variation of parameters, solve the differential equation $y'' + (1 - \cot x)y' - y \cot x = \sin^2 x$, if $y = e^{-x}$ is one solution of CF. [17]

(ii) Find the general and singular solutions of the differential equation $9p^2(2-y)^2 = 4(3-y)$, where $p = \frac{dy}{dx}$. [10+10=20]

$$\left(\frac{dy}{dx}\right)^{\!2}\!\left(\frac{y}{x}\right)^{\!2}\cot^2\alpha - 2\!\left(\frac{dy}{dx}\right)\!\!\left(\frac{y}{x}\right) \!\!+\! \left(\frac{y}{x}\right)^{\!2}\cos\varepsilon^2\alpha = 1$$

Also find the complete primitive of the given differential equation. Give the geometrical interpretations of the complete primitive and singular solution.

[15]

No. 1 INSTITUTE FOR IAS/IFoS EXAMINATIONS

OUR ACHIEVEMENTS IN IAS (FROM 2008 TO 2020)

© Ph.:011-45629987, 9999197625 www.ims4maths.com @ e-Mail: ims4maths@gmail.com

Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152