IN4387 System Validation Design & Verification of Controller for a Package Storage System

S. Balasubramanian, #0785610
 Voudouris. P, #0788565
 Gozek. E, #0786244

Eindhoven University of Technology Department of Embedded Systems

September 21, 2012

Contents

1	EXAMPLES	2
	1.1 A section	2
	1.2 Another section	2
2	Introduction	4
3	Global requirements	5
4	External interactions	6
5	Translated requirements	7
6	Architecture	8
7	Modelling the controller	9
8	Verification	10
9	Experimental results	11
10	Conclusions and recommendations	12
Bi	bliography	12
٨	Source Code Structure	11

EXAMPLES

1.1 A section

You can see a random figure in Figure 1.1.

A list:

- An item
- And another one

Figure 1.1: This is the google logo

An example of a table is given in table 1.1. See the literature list at the end of the report somewhere.

left aligned column	centred column
next row	random content

Table 1.1: This table contains stuff

This is an example of a reference [?].

And here a new example: pseudocode 1!

1.2 Another section

You should read all the stuff in section 1.1. This section holds only an example of a reference ;)

Algorithm 1 DEPTHFIRSTSEARCH

Require: A graph G=(V,E) in adjacency list presentation, starting vertex v, an empty stack S

Ensure: All vertices in this connected component labelled

- 1: label v
- 2: push all neighbours of v on S
- 3: while S not empty do
- 4: $w \leftarrow \text{pop } S$
- 5: label w
- 6: **for** u in adjacency list w **do**
- 7: **if** u **not** labelled **then**
- 8: push u onto S

Introduction

Global requirements

Global Requirements

In the section, we describe the global requirements to required initially for the design of the controller:

- 1. Each elevator, rack and conveyor belt contains at most one packet.
- 2. Packet is exchanged only when the elevator platform is at the same level as that of a conveyor belt.
- 3. Packet is exchanged only when elevator platform is at the same level as that of a rack.
- 4. The two elevators cannot be at the same position.
- 5. The lower elevator must never pass the upper one.
- 6. Packets are always delivered in the same order as requested.
- 7. If a packet is ready to enter and there is a free position at the rack(s), it will be eventually accepted.
- 8. If a requested packet is in the system, it will be eventually delivered.
- 9. If a packet is unable to be located, a unique alarm must be generated.
- 10. The number of packets in the system can at most be equal to the number of racks.

External interactions

Translated requirements

Architecture

Modelling the controller

Verification

Experimental results

Conclusions and recommendations

Bibliography

Appendix A

Source Code Structure