Given a bank customer, build a neural network-based classifier that can determine whether they will leave or not in the next 6 months.

Dataset Description: The case study is from an open-source dataset from Kaggle. The dataset contains 10,000 sample points with 14 distinct features such as Customerld, CreditScore, Geography, Gender, Age, Tenure, Balance, etc. Link to the Kaggle project: https://www.kaggle.com/barelydedicated/bank-customer-churn-modeling Perform following steps:

- 1. Read the dataset.
- 2. Distinguish the feature and target set and divide the data set into training and test sets.
- 3. Normalize the train and test data.
- 4. Initialize and build the model. Identify the points of improvement and implement the same.
- 5. Print the accuracy score and confusion matrix.

```
In [46]:
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt #Importing the libraries
```

```
In [47]:
```

```
df = pd.read_csv("Churn_Modelling.csv")
```

Preprocessing.

```
In [48]:
```

```
df.head()
```

Out[48]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCare
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	(
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	(
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	
[1]											Þ

```
In [49]:
```

```
df.shape
```

Out[49]:

(10000, 14)

In [50]:

```
df.describe()
```

Out[50]:

_	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	Is
	40000 00000	4 000000 04	10000 00000	10000 00000	10000 00000	10000 00000	10000 000000	40000 00000	

count	10000.00000 RowNumber 5000.50000	1.000000e+04 Customerid 1.569094e+07	10000.000000 CreditScore 650.528800	10000.000000 Age 38.921800	10000.000000 Tenure 5.012800	10000.000000 Balance 76485.889288	NumOfProducts	10000.00000 HasCrCard Is 0.70550
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000

In [51]:

df.isnull()

Out[51]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrC
0	False	False	False	False	False	False	False	False	False	False	Fa
1	False	False	False	False	False	False	False	False	False	False	Fŧ
2	False	False	False	False	False	False	False	False	False	False	Fa
3	False	False	False	False	False	False	False	False	False	False	Fŧ
4	False	False	False	False	False	False	False	False	False	False	Fa
9995	False	False	False	False	False	False	False	False	False	False	Fa
9996	False	False	False	False	False	False	False	False	False	False	Fŧ
9997	False	False	False	False	False	False	False	False	False	False	Fa
9998	False	False	False	False	False	False	False	False	False	False	Fŧ
9999	False	False	False	False	False	False	False	False	False	False	Fŧ

10000 rows × 14 columns

In [52]:

df.isnull().sum()

Out[52]:

0 RowNumber CustomerId 0 Surname CreditScore 0 Geography 0 Gender Age 0 Tenure 0 0 Balance NumOfProducts 0 HasCrCard 0 IsActiveMember 0 EstimatedSalary 0 Exited dtype: int64

In [53]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

```
--- ----
                  Non-Null Count Dtype
                    -----
  RowNumber 10000 non-null int64
CustomerId 10000 non-null int64
 0
 1
   Surname 10000 non-null object CreditScore 10000 non-null int64 Geography 10000 non-null int64
   Surname
 3
   Geography
   Gender
 5
                   10000 non-null object
 6 Age
                   10000 non-null int64
 7
   Tenure
                   10000 non-null int64
 8 Balance
                   10000 non-null float64
 9 NumOfProducts 10000 non-null int64
 10 HasCrCard 10000 non-null int64
 11 IsActiveMember 10000 non-null int64
 12 EstimatedSalary 10000 non-null float64
13 Exited
                   10000 non-null int64
dtypes: float64(2), int64(9), object(3)
memory usage: 1.1+ MB
In [54]:
df.dtypes
Out[54]:
RowNumber
                  int64
CustomerId
                  int64
Surname
                 object
                  int64
CreditScore
Geography
                 object
                 object
Gender
Age
                  int64
                   int64
Tenure
                float64
Balance
NumOfProducts
                  int64
HasCrCard
                   int64
IsActiveMember
                   int64
EstimatedSalary float64
Exited
                  int64
dtype: object
In [55]:
df.columns
Out[55]:
dtype='object')
In [56]:
df = df.drop(['RowNumber', 'Surname', 'CustomerId'], axis= 1) #Dropping the unnecessary
columns
In [57]:
df.head()
Out [57]:
```

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary
0	619	France	Female	42	2	0.00	1	1	1	101348.88
1	608	Spain	Female	41	1	83807.86	1	0	1	112542.58
2	502	France	Female	42	8	159660.80	3	1	0	113931.57
3	699	France	Female	39	1	0.00	2	0	0	93826.63
A	950	Cnain	Esmala	12	•	105510 00	1	1	4	7000/ 10

Visualization

```
In [101]:
```

```
def visualization(x, y, xlabel):
   plt.figure(figsize=(10,5))
   plt.hist([x, y], color=['red', 'green'], label = ['exit', 'not_exit'])
   plt.xlabel(xlabel, fontsize=20)
   plt.ylabel("No. of customers", fontsize=20)
   plt.legend()
```

In [102]:

```
df_churn_exited = df[df['Exited']==1]['Tenure']
df_churn_not_exited = df[df['Exited']==0]['Tenure']
```

In [103]:

```
visualization(df_churn_exited, df_churn_not_exited, "Tenure")
```


In [105]:

```
df_churn_exited2 = df[df['Exited']==1]['Age']
df_churn_not_exited2 = df[df['Exited']==0]['Age']
```

In [106]:

```
visualization(df churn exited2, df churn not exited2, "Age")
```


Age

Converting the Categorical Variables

```
In [59]:

X = df[['CreditScore','Gender','Age','Tenure','Balance','NumOfProducts','HasCrCard','IsAc
tiveMember','EstimatedSalary']]
states = pd.get_dummies(df['Geography'],drop_first = True)
gender = pd.get_dummies(df['Gender'],drop_first = True)

In [61]:

df = pd.concat([df,gender,states], axis = 1)
```

Splitting the training and testing Dataset

```
In [62]:
df.head()
```

Out[62]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	619	France	Female	42	2	0.00	1	1	1	101348.88
1	608	Spain	Female	41	1	83807.86	1	0	1	112542.58
2	502	France	Female	42	8	159660.80	3	1	0	113931.57
3	699	France	Female	39	1	0.00	2	0	0	93826.63
4	850	Spain	Female	43	2	125510.82	1	1	1	79084.10
4										Þ

```
In [63]:

X = df[['CreditScore', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMembe
r', 'EstimatedSalary', 'Male', 'Germany', 'Spain']]
```

```
In [64]:
y = df['Exited']
```

```
In [65]:
```

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.30)
```

Normalizing the values with mean as 0 and Standard Deviation as 1

```
In [66]:
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
```

```
In [67]:

X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

```
In [68]:
```

```
X train
Out[68]:
array([[ 4.56838557e-01, -9.45594735e-01, 1.58341939e-03, ...,
         9.13181783e-01, -5.81969145e-01, -5.73611200e-01],
       [-2.07591864e-02, -2.77416637e-01, 3.47956411e-01, ...,
        -1.09507222e+00, -5.81969145e-01, 1.74334114e+00],
       [-1.66115021e-01, 1.82257167e+00, -1.38390855e+00, ...,
        -1.09507222e+00, -5.81969145e-01, -5.73611200e-01],
       [-3.63383654e-01, -4.68324665e-01, 1.73344838e+00, ...,
         9.13181783e-01, -5.81969145e-01, -5.73611200e-01],
       [ 4.67221117e-01, -1.42286480e+00, 1.38707539e+00, ...,
         9.13181783e-01, -5.81969145e-01, 1.74334114e+00],
       [-8.82511636e-01, 2.95307447e-01, -6.91162564e-01, ...,
         9.13181783e-01, -5.81969145e-01, -5.73611200e-01]])
In [69]:
X test
Out [69]:
array([[ 3.63395520e-01, 1.99853433e-01, 1.58341939e-03, ...,
         9.13181783e-01, -5.81969145e-01, -5.73611200e-01],
       [-4.15243057e-02, 4.86215475e-01, 1.58341939e-03, ...,
        -1.09507222e+00, -5.81969145e-01, 1.74334114e+00],
       [-1.87923736e+00, -3.72870651e-01, -1.38390855e+00, ...,
         9.13181783e-01, -5.81969145e-01, -5.73611200e-01],
       [-6.02182526e-01, -5.63778679e-01, -1.73028154e+00, ...,
        -1.09507222e+00, -5.81969145e-01, -5.73611200e-01],
       [ 1.51585964e+00, -6.59232693e-01, 1.73344838e+00, ...,
         9.13181783e-01, -5.81969145e-01, -5.73611200e-01],
       [-5.19122049e-01, 1.04399419e-01, 1.73344838e+00, ...,
         9.13181783e-01, -5.81969145e-01, -5.73611200e-01]])
Building the Classifier Model using Keras
In [70]:
import keras #Keras is the wrapper on the top of tenserflow
#Can use Tenserflow as well but won't be able to understand the errors initially.
In [71]:
from keras.models import Sequential #To create sequential neural network
from keras.layers import Dense #To create hidden layers
In [72]:
classifier = Sequential()
In [74]:
#To add the layers
#Dense helps to contruct the neurons
#Input Dimension means we have 11 features
# Units is to create the hidden layers
#Uniform helps to distribute the weight uniformly
classifier.add(Dense(activation = "relu", input_dim = 11, units = 6, kernel initializer = "
uniform"))
In [75]:
```

classifier.add(Dense(activation = "relu", units = 6, kernel initializer = "uniform"))

dding second hidden layers

In [76]:

classifier.add(Dense(activation = "sigmoid", units = 1, kernel_initializer = "uniform")) #
Final neuron will be having siigmoid function

In [77]:

classifier.compile(optimizer="adam",loss = 'binary_crossentropy',metrics = ['accuracy'])
#To compile the Artificial Neural Network. Ussed Binary crossentropy as we just have only
two output

In [79]:

classifier.summary() #3 layers created. 6 neurons in 1st,6neurons in 2nd layer and 1 neur
on in last

Model: "sequential 1"

Layer (type)	Output Shape	Param #
dense_3 (Dense)	(None, 6)	72
dense_4 (Dense)	(None, 6)	42
dense_5 (Dense)	(None, 1)	7

Total params: 121
Trainable params: 121
Non-trainable params: 0

In [89]:

 ${\tt classifier.fit(X_train,y_train,batch_size=10,epochs=50)} \ \textit{\#Fitting the ANN to training dataset}$

```
Epoch 1/50
700/700 [================ ] - 0s 674us/step - loss: 0.4293 - accuracy: 0.794
Epoch 2/50
700/700 [================ ] - 0s 647us/step - loss: 0.4239 - accuracy: 0.794
Epoch 3/50
Epoch 4/50
Epoch 5/50
700/700 [================ ] - 0s 674us/step - loss: 0.4153 - accuracy: 0.828
Epoch 6/50
700/700 [=============== ] - 0s 653us/step - loss: 0.4137 - accuracy: 0.831
Epoch 7/50
700/700 [================ ] - 0s 658us/step - loss: 0.4125 - accuracy: 0.831
Epoch 8/50
Epoch 9/50
Epoch 10/50
Epoch 11/50
Epoch 12/50
700/700 [================ ] - 0s 688us/step - loss: 0.4087 - accuracy: 0.833
```

```
Epoch 13/50
700/700 [========
               ========] - 0s 675us/step - loss: 0.4081 - accuracy: 0.834
Epoch 14/50
Epoch 15/50
700/700 [================ ] - 1s 811us/step - loss: 0.4065 - accuracy: 0.834
Epoch 16/50
700/700 [================ ] - 0s 711us/step - loss: 0.4056 - accuracy: 0.835
Epoch 17/50
700/700 [=============== ] - 0s 702us/step - loss: 0.4046 - accuracy: 0.836
Epoch 18/50
700/700 [============== ] - 0s 688us/step - loss: 0.4035 - accuracy: 0.834
Epoch 19/50
Epoch 20/50
Epoch 21/50
Epoch 22/50
\Omega
Epoch 23/50
700/700 [============== ] - 0s 692us/step - loss: 0.3993 - accuracy: 0.837
Epoch 24/50
700/700 [=============== ] - 0s 709us/step - loss: 0.3990 - accuracy: 0.835
Epoch 25/50
Epoch 26/50
700/700 [================ ] - 1s 719us/step - loss: 0.3984 - accuracy: 0.836
Epoch 27/50
Epoch 28/50
Epoch 29/50
700/700 [=============== ] - 0s 667us/step - loss: 0.3976 - accuracy: 0.837
Epoch 30/50
700/700 [=============== ] - 0s 669us/step - loss: 0.3972 - accuracy: 0.837
Epoch 31/50
700/700 [=============== ] - 0s 670us/step - loss: 0.3970 - accuracy: 0.837
Epoch 32/50
700/700 [=============== ] - 1s 720us/step - loss: 0.3972 - accuracy: 0.837
Epoch 33/50
Epoch 34/50
4
Epoch 35/50
700/700 [=============== ] - 0s 685us/step - loss: 0.3962 - accuracy: 0.837
Epoch 36/50
700/700 [============== ] - 1s 771us/step - loss: 0.3960 - accuracy: 0.837
```

```
Epoch 37/50
700/700 [============] - 1s 1ms/step - loss: 0.3963 - accuracy: 0.8366
Epoch 38/50
700/700 [================ ] - 1s 764us/step - loss: 0.3962 - accuracy: 0.837
Epoch 39/50
Epoch 40/50
Epoch 41/50
700/700 [=============== ] - 1s 773us/step - loss: 0.3949 - accuracy: 0.836
Epoch 42/50
Epoch 43/50
700/700 [=============== ] - 0s 701us/step - loss: 0.3952 - accuracy: 0.836
Epoch 44/50
700/700 [=============== ] - 0s 707us/step - loss: 0.3952 - accuracy: 0.836
Epoch 45/50
700/700 [================ ] - 0s 680us/step - loss: 0.3955 - accuracy: 0.837
Epoch 46/50
Epoch 47/50
700/700 [=============== ] - 0s 708us/step - loss: 0.3947 - accuracy: 0.837
Epoch 48/50
700/700 [================ ] - 0s 681us/step - loss: 0.3944 - accuracy: 0.837
Epoch 49/50
Epoch 50/50
700/700 [=============== ] - 1s 869us/step - loss: 0.3944 - accuracy: 0.837
Out[89]:
<tensorflow.python.keras.callbacks.History at 0x1fb1eb93df0>
In [90]:
y pred =classifier.predict(X test)
y_pred = (y_pred > 0.5) #Predicting the result
In [97]:
from sklearn.metrics import confusion matrix, accuracy score, classification report
In [92]:
cm = confusion matrix(y test, y pred)
In [93]:
cm
Out[93]:
          72],
array([[2328,
    [ 425, 175]], dtype=int64)
In [94]:
accuracy = accuracy score(y test, y pred)
```

In [95]:

accuracy

Out[95]:

0.8343333333333334

In [98]:

```
plt.figure(figsize = (10,7))
sns.heatmap(cm,annot = True)
plt.xlabel('Predicted')
plt.ylabel('Truth')
```

Out[98]:

Text(69.0, 0.5, 'Truth')

In [100]:

print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
0	0.85 0.71	0.97 0.29	0.90 0.41	2400 600
accuracy macro avg weighted avg	0.78 0.82	0.63 0.83	0.83 0.66 0.81	3000 3000 3000

In []: