

Curso de Microcontroladores PIC Capítuo 3

Prof. Joacillo Luz Dantas

Departamento Telemática – IFCE

Memória de Programa

- A maioria dos PICs só possuem memória interna.
- □ Alguns PICs da família 17, 18 e 24 admitem memória externa.
- Paginação de memória: 3 bits para paginação e 11 para acessar 2k de memória

Instrução	Opcode				
call	100 kkk kkkk kkkk				
Goto	101 kkk kkkk kkkk				

 Os bits PCLATH<4:3> são configurados manualmente para paginação da memória.

Tipos de Memória de Programa

- ROM tipo Mascara: gravada de fábrica com o firmware desejado. Não podem ser apagadas.
- Memória OTP: São memórias limpas, mas que só podem ser gravadas uma única vez. Não podem ser apagadas
- Memória tipo EPROM: São memórias que, após gravadas, podem ser apagadas através de raios ultravioletas.
- Memória FLASH: São memórias que podem ser gravadas e apagadas eletricamente. São memórias tipo EEPROM, porém com o processo de gravação e apagamento mais rápido. Suportam 1000 ciclos de gravação.

Memória RAM

- Memória dados volátil.
- É dividida em dois grupos:
 - a) Registradores de uso geral: utilizados para guardar as variáveis do programa.
 - Registradores Especiais: São os registradores de configuração do microcontrolador e processamento da ULA.
- □ O PIC 16F877 possue RAM de 368 x 8 bits.
- □ A arquitetura do PIC 16F87X possue capacidade para operar com uma RAM de 512 bytes. Os endereços indisponíveis trata-se de posições não implementadas pela Microchip.

RAM PIC 16F871

Not a physical register.

Note 1: These registers are reserved; maintain these registers clear.
2: These registers are not implemented on the PIC16F870.

	File Address		File Address		File Address	
Indirect addr.(*)	OOh	Indirect addr.(*)	80h	Indirect addr. (*)	100h	Indirect addr.(*)
TMR0	01h	OPTION REG	81h	TMR0	101h	OPTION_REG
PCL	02h	PCL	82h	PCL	102h	PCL
STATUS	03h	STATUS	83h	STATUS	103h	STATUS
FSR	04h	FSR	84h	FSR	104h	FSR
PORTA	05h	TRISA	85h		105h	
PORTB	06h	TRISB	86h	PORTB	106h	TRISB
PORTC	07h	TRISC	87h	133	107h	
PORTD(2)	08h	TRISD(2)	88h		108h	
PORTE ⁽²⁾	09h	TRISE(2)	89h		109h	
PCLATH	OAh	PCLATH	8Ah	PCLATH	10Ah	PCLATH
INTCON	OBh	INTCON	8Bh	INTCON	10Bh	INTCON
PIR1	OCh	PIE1	8Ch	EEDATA	10Ch	EECON1
PIR2	ODh	PIE2	8Dh	EEADR	10Dh	EECON2
TMR1L	DEh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽¹⁾
TMR1H	OFh		8Fh	EEADRH	10Fh	Reserved ⁽¹⁾
T1CON	10h		90h	-	110h	
TMR2	11h		91h			
T2CON	12h	PR2	92h			
15	13h		93h			
	14h		94h			
CCPR1L	15h		95h			
CCPR1H	16h		96h			
CCP1CON	17h		97h			
RCSTA	18h	TXSTA	98h			
TXREG	19h	SPBRG	99h			
RCREG	1Ah		9Ah			
	1Bh		9Bh			
	1Ch		9Ch			
	1Dh	155551	9Dh			
ADRESH	1Eh	ADRESL	9Eh			
ADCON0	1Fh	ADCON1	9Fh		120h	
5200 520	20h	General Purpose Register	A0h	accesses 20h-7Fh		accesses A0h - BFh
General Purpose Register		32 Bytes	BFh C0h			A CONTROL SURVEY STATE
96 Bytes			EE-		16Fh	
		800 00000000000000000000000000000000000	EFh FOh	accesses	170h	accesses
	7Fh	accesses 70h-7Fh	FFh	70h-7Fh	17Fh	70h-7Fh
Bank 0		Bank 1		Bank 2		Bank 3

Interrupções

- Interrupção: É um evento que provoca a parada do programa principal e o desvio do mesmo para o atendimento desse evento.
- A interrupção é uma parte do firmware.
- A estrutura de interrupções é utilizada para que a CPU tome conhecimento dos eventos de alta prioridade.
- Toda interrupção tem um Flag que sinaliza que ela ocorreu.
- Ao reconhecer o Flag da interrupção o microprocesador finaliza a instrução em andamento, o PC é armazenado na pilha(Stack pointer) e o programa desviado para o endereço 04h (na Família 16Fxx), que é o vetor de interrupção.
- Os PICs da família 16F não possuem níveis de prioridades.

Tipos de Interrupções

- Mascaráveis: São interrupções que podem ser desabilitadas. Nesse
 caso o evento ocorre, o flag sinaliza mas o programa não é desviado.
- Não mascaráveis: A interrupção é atendida sempre que o evento o corre. Os PICs da família 16F não possuem interrupções não mascaráveis.
- Os Flags individuais das interrupções sempre são "setados" quando ocorre o evento.
- Cada interrupção tem um bit de habilitação.
- GlE (Global Interrupt enable) é o bit de habilitação global das interrupções
- Latência de uma interrupção: É o tempo decorrido entre o evento da interrupção e o efetivo desvio para o vetor da interrupção. No caso das interrupções síncronas a latência é de 3 ciclos de máquinas.

Circuito de Interrupções no PIC16F871

Registro INTCON

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	R = Readable bit
oit7	•	•	•	•	•	,	bit0	W = Writable bit U = Unimplemented bit, read as '0' - n= Value at POR reset
oit 7:	1 = Enab		ıpt Enable -masked ir errupts					
bit 6:	1 = Enab	oles all un-	nterrupt Er -masked p ripheral in	eripheral i	interrupts			
bit 5:	1 = Enab	oles the TI	low Interru MR0 interr MR0 inter	upt	bit			
bit 4:	1 = Enab	oles the RI	ternal Inte B0/INT ex B0/INT ex	ternal inte	rrupt			
bit 3:	1 = Enab	oles the RI	ange Inter B port cha B port cha	nge interr	upt			
bit 2:	1 = TMR	0 register	low Interru has overf did not ov	owed (mu	t ist be clear	ed in softw	rare)	
bit 1:	1 = The	RB0/INT e		terrupt oc		st be cleare	ed in softwa	re)
bit 0:	1 = At le	ast one of		RB4 pins o			e cleared ir	n software)

Ex. de Interruções PIC 16F877

- □ **TIMERO:** Ocorre sempre que o contador TMRO estoura.
- Externa: Gerada por um sinal externo ligada ao RBO.
- Mudança de estado dos pinos da PORTB: Ocorre sempre que um dos pinos RB4, RB5, RB6 e RB7 mudar de estado.
- Conversor A/D: Ocorre quando uma conversão analógico para digital é completada.
- Recepção na USART: Indica o termino da recepção de um dado pela USART.
- Transmissão na USART: Indica o esvaziamento do buffer de transmissão.
- Interrupção TIMER1: Estouro do TIMER1, que é um registrador de 16bits.
- CCP(Capture/Compare/PWM):

Portas de Entradas e Saídas (I/O)

- Os I/O do PIC são agrupados em PORTs
- Registradores Especiais:
 - a) Porta A: PORTA e TRISA
 - b) Porta B: PORTB e TRISB
 - e) Porta C : PORTC e TRISC
 - d) Porta D : PORTD e TRISD

PORTA

RA3:RA0 AND RA5 PINS

BLOCK DIAGRAM OF RA4

PORTA

TABLE 3-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function			
RA0/AN0	bit0	TTL	Input/output or analog input			
RA1/AN1	bit1	TTL	Input/output or analog input			
RA2/AN2	bit2	TTL	Input/output or analog input			
RA3/AN3/VREF	bit3	TTL	Input/output or analog input or VREF			
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0 Output is open drain type			
RA5/AN4	bit5	TTL	Input/output or analog input			

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	_		RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	_	_	PORTA	PORTA Data Direction Register						11 1111
9Fh	ADCON1	ADFM		_	_	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

PORTB

RB3:RB0 PINS

RB7:RB4 PINS

- Note 1: I/O pins have diode protection to VDD and Vss.
 - To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).

PORTB

TABLE 3-3: PORTB FUNCTIONS

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3/PGM	bit3	TTL/ST ⁽¹⁾	Input/output pin or programming pin in LVP mode. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6/PGC	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change) or In-Circuit Debugger pin. Internal software programmable weak pull-up. Serial programming clock.
RB7/PGD	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change) or In-Circuit Debugger pin. Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt or LVP mode.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 3-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h, 186h	TRISB	PORTB	PORTB Data Direction Register							1111 1111	1111 1111
81h, 181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

PORTC

- Note 1: I/O pins have diode protection to VDD and VSS.
 - Port/Peripheral select signal selects between port data and peripheral output.
 - Peripheral OE (output enable) is only activated if peripheral select is active.

PORTC

TABLE 3-5: PORTC FUNCTIONS

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input
RC1/T1OSI	bit1	ST	Input/output port pin or Timer1 oscillator input
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output
RC3	bit3	ST	Input/output port pin
RC4	bit4	ST	Input/output port pin
RC5	bit5	ST	Input/output port pin
RC6/TX/CK	bit6	ST	Input/output port pin or USART Asynchronous Transmit or Synchronous Clock
RC7/RX/DT	bit7	ST	Input/output port pin or USART Asynchronous Receive or Synchronous Data

Legend: ST = Schmitt Trigger input

TABLE 3-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	uuuu uuuu
87h	TRISC	PORTC	PORTC Data Direction Register							1111 1111	1111 1111

Legend: x = unknown, u = unchanged.

TMRO

BLOCK DIAGRAM OF THE TIMERO/WDT PRESCALER FIGURE 5-1: Data Bus CLKO (= Fosc/4) М RA4/T0CKI М SYNC Х TMR0 Reg X Cycles T0SE TOCS Set Flag Bit T0IF on Overflow PŚA PRESCALER 8-bit Prescaler Х Watchdog 8 Timer 8 - to - 1MUX - PS2:PS0 PŚA WDT Enable bit MUX- PSA WDT Time-out Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION_REG<5:0>).

TMRO

- Características
 - a) Timer ou contador de 8 bits
 - b) Acessível para leitura e escrita.
 - c) Possui pré-escala de 8 bits
 - d) Permite seleção de clock interno ou externo
 - e) Sinaliza estouro(overflow) de FFh para 00h.

TIMER 1

FIGURE 6-2: TIMER1 BLOCK DIAGRAM

TIMER 1

- Características
 - a) Timer/counter de 16 bits.
 - b) Possui dois registradores: TMR1H e TIMER1L.
 - c) Conta de 0000H a FFFFH
 - d) Se não estiver em sincronismo com a CPU, o TIMER1 Pode gerar uma interrupção no modo SLEEP e acordar o PIC.

I	ı							
Osc Type	Freq.	C1	C2					
LP	32 kHz	33 pF	33 pF					
	100 kHz	15 pF	15 pF					
	200 kHz	15 pF	15 pF					
These values are for design guidance only.								
Crystals Tested:								
32.768 kHz	Epson C-00	1R32.768K-A	± 20 PPM					
100 kHz	Epson C-2	100.00 KC-P	± 20 PPM					
200 kHz	STD XTL	200.000 kHz	± 20 PPM					
Note 1: Higher capacitance increases the stability of oscillator, but also increases the start-up time.								
2: Si	nce each reso	nator/crystal h	as its own					

characteristics, the user should consult the

resonator/crystal manufacturer for appropriate values of external components.

TIMER 1

DECISTED 6.4	TACON T	MED4 CC	NITOOL D	FOIGTED	(ADDDESS)			
REGISTER 6-1:					(ADDRESS:	•		
	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N
	bit 7							bit 0
bit 7-6	Unimplem	ented: Rea	ad as '0'					
bit 5-4	T1CKPS1:	T1CKPS0:	Timer1 Inpu	it Clock Pres	scale Select bits	S		
	11 = 1:8 Pi	rescale valu	ie					
	10 = 1:4 Pi	rescale valu	ıe					
	01 = 1:2 Pi							
	00 = 1:1 P							
bit 3	T10SCEN	Timer1 Os	cillator Enal	ble Control b	oit			
	1 = Oscilla							
			_		is turned off to	-	power drain)
bit 2			rnal Clock II	nput Synchro	onization Contr	ol bit		
	When TMF	_						
		•	e external d					
	-		nal clock inp	out				
	When TMF		ner1 uses th	e internal cla	ock when TMR	109 - 0		
bit 4		-			JOK WITCH TIMIX	100 - 0.		
bit 1			ck Source S		/I /on the rising	odas)		
	o = Interna		•	1050/1104	(I (on the rising	eage)		
b:+ 0			-					
bit 0		Timer1 On	DIT					
	1 = Enable	s ilmeri						

o = Stops Timer1

Oscilador

- □ Tipos:
 - a) LP: Low Power cristal.
 - b) XT : Cristal com freqüêcia menor que 4MHz.
 - c) HS: Cristal de alta velocidade(acima de 4MHz)
 - d) RC: Resistor/capacitor

Circuito oscilador

Note 1: See Table 11-1 and Table 11-2 for recommended values of C1 and C2.

> A series resistor (R_s) may be required for AT strip cut crystals.

RF varies with the crystal chosen.

Oscilador de Cristal : Tabela de capacitores

Osc Type	Crystal Freq.	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF