- The percentage is "a part" of "a unit". Percentages means per cent, per hundred or for every hundred. This may be greater than unit (increased) or smaller than unit (decreased).
- When we want to find the percentage of a number (considering as a unit) we just multiply the percentage with this
- number. Example. Find 45% of 74; 68% of 36; 108% of 82; 168% of 324
- Solution $45\% = \frac{45}{100}$ 45% of 74 is $\frac{45}{100} \times 74 = \frac{3330}{100} = 33.3$
- 108% = $\frac{108}{100}$ 108% of 82 is $\frac{108}{100} \times 82 = \frac{8856}{100} = 88.56$
- In general, when we speak about "n percent" of something we simply mean the fraction $\frac{n}{100}$
- Whatever any numerical quantity increased, or decreased economics usually refer to this change in percentages terms.
- Example. The investments of a company raised from \$4768 to \$5364. Express the increase as a percentage
- Find at first the difference 5364 4768 = 596. As a fraction of the original, it is $\frac{596}{4768} = 0.125$ or 12.5%. So the
- percentage of rise is 12.5%
- The price of a product is reduced 18%. Find the new price if the previous price was \$4326. Find at first 18% of 4326 which
- is $\frac{18}{100} \times 4326 = 0.18 \times 4326 = 778.68$ so the new price is 4326 778.68 = 3547.32

- Problem. A firm's annual sales rise from 50000 to 55000 from one year to the next. Express the rise as a percentage
- of the original. Solution. 55000 50000 = 5000 $\frac{5000}{50000} = 0.10$ or 10%
- The government imposes a 15% tax on price of a good. How much does the consumer pay for a good priced by firm at
- \$1360. Solution. Find 15% of the price which is $1360 \times 0.15 = 204$ the new price is 1360 + 204 = 1564
- If we consider the price before tax as 100% the new price is 100% + 15% = 115% so the new price is $1360 \times 115\%$
- or $1360 \times \frac{115}{100} = 1564$. we have the same result multiplying with 1.15 the previous price. This number
- 1.15 = 1 + 0.15 = $\frac{100}{100}$ + $\frac{15}{100}$ = 1 + $\frac{15}{100}$ = 1.15 is called **scale factor.**
- Investments fall during the course of a year by 7%. Find the value of an investment at the end of the year if it was
- worth \$9500 at the beginning of the year
- Find at first 7% of 9500 $9500 \times 0.07 = 665$ then 9500 665 = \$8835
- If we consider the investment at the beginning of the year as 100% and falls are 7% that means the falls are 93%.
- so $9500 \times 93\% = 9500 \times \frac{93}{100} = 8835$. Is the same result.
- Number $0.93 = 1 0.07 = \frac{100}{100} \frac{7}{100} = 1 \frac{7}{100} = 0.93$ is called **scale factor.**

- In general, we can say that the scale factor for increasing in r% is $1 + \frac{r}{100}$
- In general, we can say that the scale factor for decreasing in r% is $1 \frac{r}{100}$
- If we know the previous data, we can find the after data (going forward in time) just multiply by scale factor
- If we know the after data, we can find the previous data (going backward in time) just divide by scale factor
- Previous data scale factor After data
 multiply scale factor ? ? scale factor divide
- Problem. a) The value of a good rises by 13% in a year. If it was worth \$6.5 million at the beginning of the year,
- find its value at the end of the year.
- Solution. Scale factor is 1 + 0.13 = 1.13 so $1.13 \times 6.5 = 7.345$ million
- b) The GNP of a country has increased by 63% over the past five years and is now \$124 billion. What was the GNP five years ago?
- Solution. Scale factor is 1 + 0.63 = 1.63 so (going backward) $124 \div 1.63 = 76.07$ billion.
- c) sales rise from 115000 to 123050 in a year. Find the annual percentage rise.
- Solution. The annual rise is 123050 115000 = 8050 as percentage is $(8050 \times 100) \div 115000 = 805000 \div 115000 = 7$
- the rise was 7%

- a) Current monthly output from a factory is 25000. In a recession, this is expected to fall by 65%. Estimate the new level
- output.
- Solution. Scale factor is 1 0.65 = 0.35 so (going forward in time) the new level is $25000 \times 0.35 = 8750$
- b) As a result of a modernization program, a firm can reduce the size of its workforce by 24%. If it now employs
- 570 workers, how many people did it employ before restructuring?
- Solution. Scale factor is 1 0.24 = 0.76 so (going backward) $570 \div 0.76 = 750$.
- c) Shares originally worth \$10.50 fall in a stock market crash to \$2.10. Find the percentage decrease.
- Solution. The difference of prices is 10.50 2.10 = 8.4 and in percentage it is $8.4 \div 10.5 = 0.8$ or 80%.
- The ratio of prices give us $\frac{new\ price}{old\ price} = \frac{2.10}{10.50} = 0.20$. This can consider as $1 0.80 = 1 \frac{80}{100}$. So, the fall is 80%
- The final application of scale factors is calculation of the percentage changes. On the different periods of time we
- often change the price of a good having several individual percentage changes. Is more useful to replace these by an
- equivalent single percentage for the entire period.
- This can be done simply multiplying together successive scale factors.

- There are three variables, the first percentage, the second percentage and the single percentage. If we know two of them, we can find the third.
- Problem. Find the single percentage increase or decrease equivalent to
- a) an increase of 30% followed by an increase of 40%.
- solution. The scale factor of the first increasing is $1 + \frac{30}{100} = 1.30$ and for the second increasing is $1 + \frac{40}{100} = 1.40$
- the single percentage is $1.30 \times 1.40 = 1.82$ which can be thought as $1 + \frac{82}{100}$ so increasing is 82% (different from 30% + 40%)
- b) a decrease of 30% followed by a decrease of 40%.
- Solution. At the same way find scale factors which are 1 0.30 = 0.70 and 1 0.40 = 0.60. After multiplication have
- $0.70 \times 0.60 = 0.42$ or $1 \frac{58}{100}$ so we have decrease 58%
- c) an increase of 10% followed by a decrease of 50%
- Solution scale factors are 1 + 0.10 = 1.10 and 1 0.50 = 0.50. After multiplication we have $1.1 \times 0.5 = 0.55$
- If the result is **greater than one have increase** and if the result is **less than one have decrease**. In our case have
- decrease $0.55 = 1 \frac{45}{100}$ so decrease is 45%

- Economic data often take the form of a time series; values of economic indicators are available on an annual, quarterly or monthly bases, and we are interested in analyzing the **rise** and the **falls** of these numbers over time. **Index numbers** enable us to identify trends and relationships in the data.
- Using the example below let's see how we calculate the index number taking a period as base and how interpret the result discovering the trends and relationships in data.

			Year	Choose as a base year 2, so the inde		
	1	2	3	4	5	number of Y2 is 100. to find the
Household spending	686.9	697.2	723.7	716.6	734.5	index number of Y3 we use scale
						factor related Y2 (the base)and

multiply by 100. index number = scale factor from base year \times 100. In our case

$$\frac{723.7}{697.2} \times 100 = 103.8$$

- For the Y4 the value is $\frac{716.6}{697.2} \times 100 = 102.8$
- During the year 3 the household spending increased 3.8%. During year 4 household spending increased 2.8% between Y2 and Y4. Comparing with Y3, is fact that spending fell slightly during Y4.

• **Index numbers have no units**. They merely express the value of some quantity as a percentage of a base number. It enable us to compare how values of quantities change in relation to each other.

Month		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
Share	Α	0.31	0.28	0.31	0.34	0.40	0.39	0.45	0.52
Share	В	6.34	6.40	6.45	6.52	6.57	6.43	6.65	7.00

- if invested \$1000 on share A on January could have bought $3225 (1000 \div 0.31 = 3225)$ of them and in August their value is \$1677 (3225×0.52 = 1677) the profit is \$677
- If invested on share B \$1000 (1000 \div 6.34 = 157.7) and their value on, August is \$1104.1 (157.7×7 = 1104.1) the profit is \$104.1
- Example

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
Index of share price A (base Apr)	91.2	82.3	91.2	100	117.6	114.7	132.4	152.9
Index of share price B (base Apr)	97.2	98.2	98.9	100	100.8	98.6	102.0	107.4

- From the tables of the index numbers, we can find the percentage changes between any pairs of values. Compare in
- percentage prices A and B on period March- Jun.
- $114.7 \div 91.2 = 1.25 = 1 + 0.25$ increase 25% $98.6 \div 98.9 = 0.99 = 1 0.01$ decrease 1%
- Exercises page 211

- Key words
- Percentage
- Scale factor
- Going forward in time
- Going backward in time
- Base data
- Index number

- Note
- For every key word ask the question "what is" and try to answer it