Practice Problems for Final Exam: Solutions CS 341: Foundations of Computer Science II Prof. Marvin K. Nakayama

1. Short answers:

- (a) Define the following terms and concepts:
 - i. Union, intersection, set concatenation, Kleene-star, set subtraction, complement

Answer: Union: $S \cup T = \{ x \mid x \in S \text{ or } x \in T \}$

Intersection: $S \cap T = \{ x \mid x \in S \text{ and } x \in T \}$ Concatenation: $S \circ T = \{ xy \mid x \in S, y \in T \}$

Kleene-star: $S^* = \{ w_1 w_2 \cdots w_k \mid k \ge 0, w_i \in S \ \forall \ i = 1, 2, \dots, k \}$

Subtraction: $S - T = \{ x \mid x \in S, x \notin T \}$

Complement: $\overline{S} = \{ x \in \Omega \mid x \notin S \} = \Omega - S$, where Ω is the universe of all elements under

consideration.

ii. A set S is closed under an operation f

Answer: S is closed under f if applying f to members of S always returns a member of S.

iii. Regular language

Answer: A regular language is defined by a DFA.

iv. Kleene's theorem

Answer: A language is regular if and only if it has a regular expression.

v. Context-free language

Answer: A CFL is defined by a CFG.

vi. Chomsky normal form

Answer: A CFG is in Chomsky normal form if each of its rules has one of 3 forms: $A \to BC$, $A \to x$, or $S \to \varepsilon$, where A, B, C are variables, B and C are not the start variable, x is a terminal, and S is the start variable.

vii. Church-Turing Thesis

Answer: The informal notion of algorithm corresponds exactly to a Turing machine that always halts (i.e., a decider).

viii. Turing-decidable language

Answer: A language A that is decided by a Turing machine; i.e., there is a Turing machine M such that M halts and accepts on any input $w \in A$, and M halts and rejects on input input $w \notin A$; i.e., looping cannot happen.

ix. Turing-recognizable language

Answer: A language A that is recognized by a Turing machine; i.e., there is a Turing machine M such that M halts and accepts on any input $w \in A$, and M rejects or loops on any input $w \notin A$.

x. co-Turing-recognizable language

Answer: A language whose complement is Turing-recognizable.

xi. Countable and uncountable sets

Answer: A set S is countable if it is finite or we can define a correspondence between S and the positive integers. In other words, we can create a list of all the elements in S and each specific element will eventually appear in the list. An uncountable set is a set that is not countable. A common approach to prove a set is uncountable is by using a diagonalization argument.

xii. Language A is mapping reducible to language B, $A \leq_{\mathrm{m}} B$

Answer: Suppose A is a language defined over alphabet Σ_1 , and B is a language defined over alphabet Σ_2 . Then $A \leq_{\mathrm{m}} B$ means there is a computable function $f: \Sigma_1^* \to \Sigma_2^*$ such that $w \in A$ if and only if $f(w) \in B$. Thus, if $A \leq_{\mathrm{m}} B$, we can determine if a string w belongs to A by checking if f(w) belongs to B.

$$w \in A \iff f(w) \in B$$

YES instance for problem $A \iff YES$ instance for problem B

xiii. Function f(n) is O(g(n))

Answer: There exist constants c and n_0 such that $|f(n)| \le c \cdot g(n)$ for all $n \ge n_0$.

xiv. Classes P and NP

Answer: P is the class of languages that can be **decided** by a **deterministic** Turing machine in **polynomial time**. NP is the class of languages that can be **verified** in (deterministic) **polynomial time**. Equivalently, NP is the class of languages that can be **decided** by a **nondeterministic** Turing machine in **polynomial time**.

xv. Language A is polynomial-time mapping reducible to language B, $A \leq_{P} B$.

Answer: Suppose A is a language defined over alphabet Σ_1 , and B is a language defined over alphabet Σ_2 . Then $A \leq_P B$ means there is a polynomial-time computable function $f: \Sigma_1^* \to \Sigma_2^*$ such that $w \in A$ if and only if $f(w) \in B$.

xvi. NP-complete

Answer: Language B is NP-Complete if $B \in NP$, and for every language $A \in NP$, we have $A \leq_P B$.

The typical approach to proving a language C is NP-Complete is as follows:

- First show $C \in NP$ by giving a deterministic polynomial-time verifier for C. (Alternatively, we can show $C \in NP$ by giving a nondeterministic polynomial-time decider for C.)
- Next show that a known NP-Complete language B can be reduced to C in polynomial time; i.e., $B \leq_P C$.

Note that the second step implies that $A \leq_P C$ for each $A \in NP$ Because we can first reduce A to B in polynomial time because B is NP-Complete, and then we can reduce B to C in polynomial time, so the entire reduction of A to C takes polynomial time.

xvii. NP-hard

Answer: Language B is NP-hard if for every language $A \in NP$, we have $A \leq_P B$.

(b) Give the transition functions δ of a DFA, NFA, PDA, Turing machine and nondeterministic Turing machine.

Answer:

- DFA, $\delta: Q \times \Sigma \to Q$, where Q is the set of states and Σ is the alphabet.
- NFA, $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$, where $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$ and $\mathcal{P}(Q)$ is the power set of Q
- PDA, $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$, where Γ is the stack alphabet and $\Gamma_{\varepsilon} = \Gamma \cup \{\varepsilon\}$.
- Turing machine, $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$, where Γ is the tape alphabet, L means move tape head one cell left, and R means move tape head one cell right.
- Nondeterministic Turing machine, $\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$, where Γ is the tape alphabet, L means move tape head one cell left, and R means move tape head one cell right.
- (c) Explain the "P vs. NP" problem.

Answer: P is the class of languages that can be solved in polynomial time, and NP is the class of languages that can be verified in polynomial time. We know that $P \subseteq NP$. To see why, each TM is also an NTM, so deciding in deterministic polynomial time is a special case of deciding in nondeterministic polynomial time, making $P \subseteq NP$. But it is currently unknown if P = NP or $P \neq NP$.

- 2. Recall that $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \}.$
 - (a) Prove that $A_{\rm TM}$ is undecidable. You may not cite any theorems or corollaries in your proof.

Overview of Proof: We use a proof by contradiction. Suppose A_{TM} is decided by some TM H, so H accepts $\langle M, w \rangle$ if TM M accepts w, and H rejects $\langle M, w \rangle$ if TM M doesn't accept w.

Define another TM D using H as a subroutine.

So D takes as input any encoded TM $\langle M \rangle$, then feeds $\langle M, \langle M \rangle \rangle$ as input into H, and finally outputs the opposite of what H outputs. Because D is a TM, we can feed $\langle D \rangle$ as input into D. What happens when we run D with input $\langle D \rangle$?

Note that D accepts $\langle D \rangle$ iff D doesn't accept $\langle D \rangle$, which is impossible. Thus, A_{TM} must be undecidable.

Complete Proof: Suppose there exists a TM H that decides A_{TM} . TM H takes input $\langle M, w \rangle$, where M is a TM and w is a string. If TM M accepts string w, then $\langle M, w \rangle \in A_{\text{TM}}$ and H accepts input $\langle M, w \rangle$. If TM M does not accept string w, then $\langle M, w \rangle \not\in A_{\text{TM}}$ and H rejects input $\langle M, w \rangle$. Consider the language $L = \{\langle M \rangle \mid M \text{ is a TM that does not accept } \langle M \rangle \}$. Now construct a TM D for L using TM H as a subroutine:

$$D = \text{``On input } \langle M \rangle, \text{ where } M \text{ is a TM:}$$

$$1. \text{ Run } H \text{ on input } \langle M, \langle M \rangle \rangle.$$

$$2. \text{ If } H \text{ accepts, } reject. \text{ If } H \text{ rejects, } accept.$$

If we run TM D on input $\langle D \rangle$, then D accepts $\langle D \rangle$ if and only if D doesn't accept $\langle D \rangle$. Because this is impossible, TM H must not exist, so $A_{\rm TM}$ is undecidable.

(b) Show that A_{TM} is Turing-recognizable.

Answer: The universal TM U recognizes A_{TM} , where U is defined as follows:

U = "On input $\langle M, w \rangle$, where M is a TM and w is a string: 1. Run M on w. 2. If M accepts w, accept; if M rejects w, reject."

Note that U only recognizes A_{TM} and does not decide A_{TM} Because when we run M on w, there is the possibility that M neither accepts nor rejects w but rather loops on w.

3. Each of the languages below in parts (a), (b), (c), (d) is of one of the following types:

Type REG. It is regular.

Type CFL. It is context-free, but not regular.

Type DEC. It is Turing-decidable, but not context-free.

For each of the following languages, specify which type it is. Also, follow these instructions:

- If a language L is of Type REG, give a regular expression and a DFA (5-tuple) for L.
- If a language L is of Type CFL, give a context-free grammar (4-tuple) and a PDA (6-tuple) for L. Also, prove that L is not regular.
- If a language L is of Type DEC, give a description of a Turing machine that decides L. Also, prove that L is not context-free.
- (a) $A = \{ w \in \Sigma^* \mid w = \text{reverse}(w) \text{ and the length of } w \text{ is divisible by } 4 \}, \text{ where } \Sigma = \{0, 1\}.$

Circle one type:

REG

CFL

DEC

Answer: A is of type CFL. A CFG $G = (V, \Sigma, R, S)$ for A has $V = \{S\}$, $\Sigma = \{0, 1\}$, starting variable S, and rules $R = \{S \to 00S00 \mid 01S10 \mid 10S01 \mid 11S11 \mid \varepsilon\}$. A PDA for A is as follows:

The above PDA has 6-tuple $(Q, \Sigma, \Gamma, \delta, q_1, F)$, with $Q = \{q_1, q_2, \dots, q_6\}$, $\Sigma = \{0, 1\}$, $\Gamma = \{0, 1, \$\}$, starting state $q_1, F = \{q_1, q_6\}$, and transition function $\delta : Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$ defined by

Input:	0					1				ε			
Stack:		1	\$	ε	0	1	\$	ε	0	1	\$	ε	
q_1												$\{(q_2,\$)\}$	
q_2				$\{(q_3,0)\}$				$\{(q_3,1)\}$				$\{(q_4,arepsilon)\}$	
q_3				$\{(q_2,0)\}$				$\{(q_2,1)\}$					
q_4	$\{(q_5,\varepsilon)\}$					$\set{(q_5, \varepsilon)}$					$\{(q_6,\varepsilon)\}$		
q_5	$\{(q_4,\varepsilon)\}$					$\set{(q_4, \varepsilon)}$							
q_6													

Blank entries are \emptyset .

We now prove that A is not regular by contradiction. Suppose that A is regular. Let $p \ge 1$ be the pumping length of the pumping lemma (Theorem 1.I). Consider string $s = 0^p \ 1^{2p} \ 0^p \in A$, and note that |s| = 4p > p, so the conclusions of the pumping lemma must hold. Thus, we can split s = xyz satisfying conditions (1) $xy^iz \in A$ for all $i \ge 0$, (2) |y| > 0, and (3) $|xy| \le p$. Because all of the first p symbols of s are 0s, (3) implies that x and y must only consist of 0s. Also, z must consist of the rest of the 0s at the beginning, followed by $1^{2p}0^p$. Hence, we can write $x = 0^j$, $y = 0^k$, $z = 0^m \ 1^{2p}0^p$, where j+k+m=p because $s = 0^p 1^{2p}0^p = xyz = 0^j \ 0^k \ 0^m \ 1^{2p}0^p$. Moreover, (2) implies that k > 0. Finally, (1) states that xyyz must belong to A. However,

$$xyyz = 0^j \ 0^k \ 0^k \ 0^m \ 1^{2p} \ 0^p = 0^{p+k} \ 1^{2p} \ 0^p$$

because j + k + m = p. But, k > 0 implies reverse $(xyyz) \neq xyyz$, which means $xyyz \notin A$, which contradicts (1). Therefore, A is a nonregular language.

(b) $B = \{ b^n a^n b^n \mid n \ge 0 \}.$

Circle one type:

REG

CFL

DEC

Answer: B is of type DEC. Below is a description of a Turing machine that decides B.

 $M = \text{"On input string } w \in \{a, b\}^*$:

- 1. Scan the input from left to right to make sure that it is a member of $b^*a^*b^*$, and reject if it isn't.
- 2. Return tape head to left-hand end of tape.
- **3.** Repeat the following until there are no more bs left on the tape.
- 4. Replace the leftmost b with x.
- **5.** Scan right until an a occurs. If there are no a's, reject.
- **6.** Replace the leftmost a with x.
- 7. Scan right until a b occurs. If there are no b's, reject.
- **8.** Replace the leftmost b (after the a's) with x.
- **9.** Return tape head to left-hand end of tape, and go to stage 3.
- 10. If the tape contains any a's, reject. Otherwise, accept."

We now prove that B is not context-free by contradiction. Suppose that B is context-free. Let p be the pumping length of the pumping lemma for CFLs (Theorem 2.D), and consider string $s = b^p a^p b^p \in B$. Note that |s| = 3p > p, so the pumping lemma will hold. Thus, we can split $s = b^p a^p b^p = uvxyz$ satisfying $uv^i xy^i z \in B$ for all $i \geq 0$, $|vy| \geq 1$, and $|vxy| \leq p$. We now consider all of the possible choices for v and v:

- Suppose strings v and y are uniform (e.g., $v = b^j$ for some $j \ge 0$, and $y = a^k$ for some $k \ge 0$). Then $|vy| \ge 1$ implies that $v \ne \varepsilon$ or $y \ne \varepsilon$ (or both), so uv^2xy^2z won't have the correct number of b's at the beginning, a's in the middle, and b's at the end. Hence, $uv^2xy^2z \notin B$.
- Now suppose strings v and y are not both uniform. Then uv^2xy^2z will not have the form $b\cdots ba\cdots ab\cdots b$. Hence, $uv^2xy^2z \notin B$.

Thus, there are no options for v and y such that $uv^ixy^iz \in B$ for all $i \geq 0$. This is a contradiction, so B is not a CFL.

(c) $C = \{w \in \Sigma^* \mid n_a(w) \mod 4 = 1\}$, where $\Sigma = \{a, b\}$ and $n_a(w)$ is the number of a's in string w. For example, $n_a(babaabb) = 3$. Also, recall $j \mod k$ returns the remainder after dividing j by k, e.g., $3 \mod 4 = 3$, and $9 \mod 4 = 1$.

Circle one type:

REG

CFL

DEC

Answer: C is of type REG. A regular expression for C is $(b^*ab^*ab^*ab^*ab^*)^*b^*ab^*$, and a DFA for C is below:

The above DFA has 5-tuple $(Q, \Sigma, \delta, q_1, F)$, with $Q = \{q_1, q_2, q_3, q_4\}$, $\Sigma = \{a, b\}$, q_1 as the starting state, $F = \{q_2\}$, and transition function $\delta : Q \times \Sigma \to Q$ defined by

	a	b
q_1	q_2	q_1
q_2	q_3	q_2
q_3	q_4	q_3
q_4	q_1	q_4

(d) $D = \{b^n a^n b^k c^k \mid n \ge 0, k \ge 0\}$. [Hint: Recall that the class of context-free languages is closed under concatenation.]

Circle one type:

REG

CFL

DEC

Answer: D is of type CFL. A CFG $G = (V, \Sigma, R, S)$ for D has $V = \{S, X, Y\}$, $\Sigma = \{a, b, c\}$, S as the starting variable, and rules R:

$$\begin{array}{ccc} S & \rightarrow & XY \\ X & \rightarrow & bXa \mid \varepsilon \\ Y & \rightarrow & bYc \mid \varepsilon \end{array}$$

A PDA for D is below:

We formally express the PDA as a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_1, F)$, where $Q = \{q_1, q_2, \dots, q_6\}$, $\Sigma = \{a, b, c\}$, $\Gamma = \{b, \$\}$ (use \$ to mark bottom of stack), q_1 is the start state, $F = \{q_6\}$, and the transition function $\delta : Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is defined by

Input:	a			b			c			arepsilon		
Stack:	b	\$	ε	b	\$	ε	b	\$	ε	b	\$	ε
q_1												$\{(q_2,\$)\}$
q_2						$\{(q_2,b)\}$						$\{(q_3,\varepsilon)\}$
q_3	$\{(q_3,\varepsilon)\}$										$\{(q_4,\$)\}$	
q_4						$\{(q_4,b)\}$						$\{(q_5,arepsilon)\}$
q_5							$\{(q_5,arepsilon)\}$				$\{(q_6,\varepsilon)\}$	
q_6												

Blank entries are \emptyset .

An important point to note about the above PDA is that the transition from q_3 to q_4 pops and pushes \$. It is important to pop \$ to make sure that the number of a's matches the number of b's in the beginning. We need to push \$ to mark the bottom of the stack again for the second part of the string of b's and c's.

We now prove that D is not regular by contradiction. Suppose that D is regular. Let $p \ge 1$ be the pumping length of the pumping lemma (Theorem 1.I). Consider string $s = b^p \ a^p \ b^p \ c^p \in D$, and note that |s| = 4p > p, so the conclusions of the pumping lemma must hold. Thus, we can split s = xyz satisfying (1) $xy^iz \in D$ for all $i \ge 0$, (2) |y| > 0, and (3) $|xy| \le p$. Because all of the first p symbols of s are b's, (3) implies that x and y must only consist of b's. Also, z must consist of the rest of the b's at the beginning, followed by $a^p \ b^p \ c^p$. Hence, we can write $x = b^j$, $y = b^k$, $z = b^m \ a^p \ b^p \ c^p$, where j + k + m = p because $s = b^p \ a^p \ b^p \ c^p = xyz = b^j \ b^k \ b^m \ a^p \ b^p \ c^p$. Moreover, (2) implies that k > 0. Finally, (1) states that xyyz must belong to D. However,

$$xyyz = b^j b^k b^k b^m a^p b^p c^p = b^{p+k} a^p b^p c^p$$

because j + k + m = p. Also k > 0, so $xyyz \notin D$, which contradicts (1). Therefore, D is a nonregular language.

4. Each of the languages below in parts (a), (b), (c), (d) is of one of the following types:

Type DEC. It is Turing-decidable.

Type TMR. It is Turing-recognizable, but not decidable.

Type NTR. It is not Turing-recognizable.

For each of the following languages, specify which type it is. Also, follow these instructions:

- If a language L is of Type DEC, give a description of a Turing machine that decides L.
- If a language L is of Type TMR, give a description of a Turing machine that recognizes L. Also, prove that L is not decidable.
- If a language L is of Type NTR, give a proof that it is not Turing-recognizable.

In each part below, if you need to prove that the given language L is decidable, undecidable, or not Turing-recognizable, you must give an explicit proof of this; i.e., do not just cite a theorem that establishes this without a proof. However, if in your proof you need to show another language L' has a particular property and there is a theorem that establishes this, then you may simply cite the theorem for L' without proof.

(a)
$$EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs with } L(M_1) = L(M_2) \}$$
. [Hint: show $\overline{A}_{\text{TM}} \leq_{\text{m}} EQ_{\text{TM}}$.]
Circle one type: DEC TMR NTR

Answer: EQ_{TM} is of type NTR (see Theorem 5.K). We prove this by showing $\overline{A}_{\text{TM}} \leq_{\text{m}} EQ_{\text{TM}}$ and applying Corollary 5.I. Define the reducing function $f(\langle M, w \rangle) = \langle M_1, M_2 \rangle$, where

- $M_1 = "reject \text{ on all inputs."}$
- M_2 = "On input x:
 - 1. Ignore input x, and run M on w.
 - 2. If M accepts w, accept; If M rejects w, reject."

Note that $L(M_1) = \emptyset$. For the language of TM M_2 ,

- if M accepts w (i.e., $\langle M, w \rangle \notin \overline{A_{\text{TM}}}$), then $L(M_2) = \Sigma^*$;
- if M does not accept w (i.e., $\langle M, w \rangle \in \overline{A_{TM}}$), then $L(M_2) = \emptyset$.

Thus, if $\langle M, w \rangle$ is a YES instance for $\overline{A_{\rm TM}}$ (i.e., $\langle M, w \rangle \in \overline{A_{\rm TM}}$, so M does not accept w), then $L(M_1) = \emptyset$ and $L(M_2) = \emptyset$, which are the same, implying that $f(\langle M, w \rangle) = \langle M_1, M_2 \rangle \in EQ_{\rm TM}$ is a YES instance for $EQ_{\rm TM}$. Also, if $\langle M, w \rangle$ is a NO instance for $\overline{A_{\rm TM}}$ (i.e., $\langle M, w \rangle \notin \overline{A_{\rm TM}}$, so M accepts w), then $L(M_1) = \emptyset$ and $L(M_2) = \Sigma^*$, which are not the same, implying that $f(\langle M, w \rangle) = \langle M_1, M_2 \rangle \notin EQ_{\rm TM}$ is a NO instance for $EQ_{\rm TM}$. Hence, we see that $\langle M, w \rangle \in \overline{A_{\rm TM}} \iff f(\langle M, w \rangle) = \langle M_1, M_2 \rangle \in EQ_{\rm TM}$, so $\overline{A_{\rm TM}} \leq_{\rm m} EQ_{\rm TM}$. But $\overline{A_{\rm TM}}$ is not TM-recognizable (Corollary 4.M), so $EQ_{\rm TM}$ is not TM-recognizable by Corollary 5.I.

(b) $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \}$. [Hint: modify the universal TM to show that $HALT_{TM}$ is Turing-recognizable.]

Circle one type: DEC TMR NTR

Answer: $HALT_{TM}$ is of type TMR (see Theorem 5.A). The following Turing machine recognizes $HALT_{TM}$:

- T = "On input $\langle M, w \rangle$, where M is a TM and w is a string:
 - 1. Run M on w.
 - 2. If M halts on w, accept."

We now prove that $HALT_{TM}$ is undecidable, which is Theorem 5.A. Suppose there exists a TM R that decides $HALT_{TM}$. Then we could use R to develop a TM S to decide A_{TM} by modifying the universal TM to first use R to see if it's safe to run M on w.

- S = "On input $\langle M, w \rangle$, where M is a TM and w is a string:
 - 1. Run R on input $\langle M, w \rangle$.
 - 2. If R rejects, reject.
 - 3. If R accepts, simulate M on input w until it halts.
 - 4. If M accepts, accept; otherwise, reject."

Because TM R is a decider, TM S always halts and is a decider. Thus, deciding $A_{\rm TM}$ is reduced to deciding $HALT_{\rm TM}$. However, $A_{\rm TM}$ is undecidable (Theorem 4.I), so that must mean that $HALT_{\rm TM}$ is also undecidable.

(c) $EQ_{DFA} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are DFAs with } L(M_1) = L(M_2) \}.$

Circle one type: DEC TMR NTR

Answer: EQ_{DFA} is of type DEC (see Theorem 4.E). The following TM decides EQ_{DFA} :

- M = "On input $\langle A, B \rangle$, where A and B are DFAs:
 - 0. Check if $\langle A, B \rangle$ is a proper encoding of 2 DFAs. If not, reject.
 - 1. Construct DFA C such that

$$L(C) = [L(A) \cap \overline{L(B)}] \cup [\overline{L(A)} \cap L(B)]$$

using algorithms for DFA union, intersection and complementation.

- 2. Run TM decider for E_{DFA} (Theorem 4.D) on $\langle C \rangle$.
- 3. If $\langle C \rangle \in E_{DFA}$, accept; if $\langle C \rangle \notin E_{DFA}$, reject."
- (d) $\overline{A_{\text{TM}}}$, where $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \}$.

Circle one type:

DEC

TMR

NTR

Answer: $\overline{A_{\rm TM}}$ is of type NTR, which is just Theorem 4.M. We prove this as follows. We know that $A_{\rm TM}$ is recognized by the universal Turing machine, so $A_{\rm TM}$ is Turing-recognizable. If $\overline{A_{\rm TM}}$ were Turing-recognizable, then $A_{\rm TM}$ is co-Turing-recognizable. This makes $A_{\rm TM}$ both Turing-recognizable and co-Turing-recognizable. But then Theorem 4.L would imply that $A_{\rm TM}$ is decidable, which we know is not true by Theorem 4.I. Hence, $\overline{A_{\rm TM}}$ is not Turing-recognizable.

5. Let L_1, L_2, L_3, \ldots be an infinite sequence of regular languages, each of which is defined over a common input alphabet Σ . Let $L = \bigcup_{k=1}^{\infty} L_k$ be the infinite union of L_1, L_2, L_3, \ldots Is it always the case that L is a regular language? If your answer is YES, give a proof. If your answer is NO, give a counterexample. Explain your answer. [Hint: Consider, for each $k \geq 0$, the language $L_k = \{a^k b^k\}$.]

Answer: The answer is NO. For each $k \geq 1$, let $L_k = \{a^k b^k\}$, so L_k is a language consisting of just a single string $a^k b^k$. Because L_k is finite, it must be a regular language by Theorem 1.F. But $L = \bigcup_{k=1}^{\infty} L_k = \{a^k b^k \mid k \geq 1\}$, which we know is not regular (see end of Chapter 1).

- 6. Let L_1 , L_2 , and L_3 be languages defined over the alphabet $\Sigma = \{a, b\}$, where
 - L_1 consists of all possible strings over Σ except the strings $w_1, w_2, \ldots, w_{100}$; i.e., start with all possible strings over the alphabet, take out 100 particular strings, and the remaining strings form the language L_1 ;
 - L_2 is recognized by an NFA; and
 - L_3 is recognized by a PDA.

Prove that $(L_1 \cap L_2)L_3$ is a context-free language. [Hint: First show that L_1 and L_2 are regular. Also, consider $\overline{L_1}$, the complement of L_1 .]

Answer: Note that $\overline{L_1} = \{w_1, w_2, \dots, w_{100}\}$, so $|\overline{L_1}| = 100$. Thus, $\overline{L_1}$ is a regular language because it is finite by Theorem 1.F. Then Theorem 1.H implies that the complement of $\overline{L_1}$ must be regular, but the complement of $\overline{L_1}$ is L_1 . Thus, L_1 is regular. Language L_2 has an NFA, so it also has a DFA by Theorem 1.C. Therefore, L_2 is regular. Because L_1 and L_2 are regular, $L_1 \cap L_2$ must be regular by Theorem 1.G. Theorem 2.B then implies that $L_1 \cap L_2$ is context-free. Because L_3 has a PDA, L_3 is context-free by Theorem 2.C. Hence, because $L_1 \cap L_2$ and L_3 are both context-free, their concatenation is context-free by Theorem 2.F.

7. Write Y or N in the entries of the table below to indicate which classes of languages are closed under which operations.

	Regular		Decidable	Turing-recognizable
Operation	languages	CFLs	languages	languages
Union	Y (Thm 1.A)	Y (Thm 2.E)	Y (HW 7, prob 2a)	Y (HW 7, prob 2b)
Intersection	Y (Thm 1.G)	N (HW 6, prob 2a)	Y	Y
Complementation	Y (Thm 1.H)	N (HW 6, prob 2b)	Y	$N \text{ (e.g., } A_{TM})$

We now prove the three "Y" entries that we haven't established before. We first prove the class of decidable languages is closed under intersection. Suppose a TM M_1 decides language L_1 , and a TM M_2 decides language L_2 . Then the following TM decides $L_1 \cap L_2$:

M' = "On input string w:

- 1. Run M_1 on input w, and run M_2 on input w.
- **2.** If both M_1 and M_2 accept, accept. Otherwise, reject.

M' accepts w if both M_1 and M_2 accept it. If either rejects, M' rejects. The key here is that in stage 1 of M', both M_1 and M_2 are guaranteed to halt because both are deciders, so M' will also always halt, making it a decider. (Alternatively, we can change stage 1 to run M_1 and M_2 in parallel (alternating steps), both on input w, but this isn't necessary because M_1 and M_2 are deciders. In contrast, when we proved that the class of Turing-recognizable languages is closed under union, we did need to run M_1 and M_2 in parallel, both on input w, because if we didn't, then M_1 might loop forever on w, but M_2 might accept w.)

We now prove the class of decidable languages is closed under complementation. Suppose a TM M decides language L. Now create another TM M' that just swaps the accept and reject states of M. Because M is a decider, it always halts, so then M' also always halts. Thus, M' decides \overline{L} .

We now prove the class of Turing-recognizable languages is closed under intersection. Suppose a TM M_1 recognizes language L_1 , and a TM M_2 recognizes language L_2 . Then the following TM recognizes $L_1 \cap L_2$:

M' = "On input string w:

- **1.** Run M_1 on input w, and run M_2 on input w.
- **2.** If both M_1 and M_2 accept, accept. Otherwise, reject.

M' accepts w if both M_1 and M_2 accept it. If either rejects, M' rejects. But note that if M_1 or M_2 loops on w, then M' also loops on w. Hence, M' recognizes $L_1 \cap L_2$ but doesn't necessarily decide $L_1 \cap L_2$.

8. Consider the following context-free grammar G in Chomsky normal form:

$$\begin{array}{ccc} S & \rightarrow & a \mid YZ \\ Z & \rightarrow & ZY \mid a \\ Y & \rightarrow & b \mid ZZ \mid YY \end{array}$$

Use the CYK (dynamic programming) algorithm to fill in the following table to determine if G generates the string babba. Does G generate babba?

11

	1	2	3	4	5
1	Y	S	S	S	Y
2		S, Z	Z	Z	Y
3			Y	Y	S
4				Y	S
5					S, Z
	b	a	b	b	a

No, G does not generate babba because S is not in the upper right corner.

9. Recall that

```
CLIQUE = \{ \langle G, k \rangle \mid G \text{ is an undirected graph with a } k\text{-clique} \}, 3SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable 3cnf-function} \}.
```

Show that CLIQUE is NP-Complete by showing that $CLIQUE \in NP$ and $3SAT \leq_P CLIQUE$. Explain your reduction for the general case and not just for a specific example. Be sure to prove your reduction works and that it requires polynomial time. Also, be sure to provide proofs of these results, and don't just cite a theorem.

Answer:

Step 1: show that $CLIQUE \in NP$. We accomplish by giving a polynomial-time verifier for CLIQUE. The following verifier V for CLIQUE uses the k-clique as the certificate c.

```
V = "On input \langle \langle G, k \rangle, c \rangle:
```

- 1. Test whether c is a set of k different nodes in G.
- 2. Test whether G contains all edges connecting nodes in c.
- 3. If both tests pass, accept; otherwise, reject."

We now show that the verifier V runs in deterministic polynomial time in the size of $\langle G, k \rangle$. First we need to measure the size of the encoding $\langle G, k \rangle$, which depends on the particular graph G and the encoding scheme. Suppose the graph G has m nodes, and assume that G is encoded as a list of nodes followed by a list of edges. To determine the size of the encoding $\langle G \rangle$ of the graph G, note that each edge in G corresponds to a pair of nodes, so G has $O(m^2)$ edges. Therefore, the size of $\langle G \rangle$ is $m+O(m^2)=O(m^2)$, but because we don't care about polynomial differences, we can simply measure the size of the $\langle G \rangle$ as m. Now we analyze the time complexity of V. In Stage 1, for each of the k nodes in k, we have to go through the k nodes in k, so Stage 1 of k takes k that we have to consider, we have to go through the list of k of k pairs of nodes in k that we have to consider, we have to go through the list of k of k nodes of k so Stage 2 takes k takes k nodes in k that we have to consider, we have to go through the list of k nodes of k nodes of k nodes in k that we have to consider, we have to go through the list of k nodes of k nodes of k nodes in k nodes i

Step 2: show that $3SAT \leq_{\mathrm{m}} CLIQUE$. Next we show how to reduce 3SAT to CLIQUE. We need to convert an instance of the 3SAT problem to an instance of the 3SAT problem, with the property that a YES instance for 3SAT maps to a YES instance of 3SAT maps to a NO instance of 3SAT maps to a NO instance of 3SAT is a 3cnf-formula ϕ , and ϕ is a YES instance for 3SAT if ϕ is satisfiable, and ϕ is a NO instance for 3SAT if ϕ is not satisfiable. An instance of 3SAT if ϕ is a pair A0 of a graph A1 and an integer A2 and A3 is a YES instance for

CLIQUE if G has a clique of size k, and $\langle G, k \rangle$ is a NO instance for CLIQUE if G doesn't have a clique of size k. Thus, the reduction needs to map each 3cnf-formula to a graph and number k.

The reduction works as follows. Suppose that ϕ is a 3cnf-formula with k clauses. From ϕ , construct a graph G having a node for each literal in ϕ . Arrange the nodes in triples, where each triple corresponds to the literals from one clause. Add edges between every pair of nodes in G except when the nodes are from the same triple, or when the nodes are contradictory, e.g., x_i and $\overline{x_i}$.

To prove that this mapping is indeed a reduction, we need to show that $\langle \phi \rangle \in 3SAT$ if and only if $\langle G, k \rangle \in CLIQUE$. Note that ϕ is satisfiable if and only if every clause has at least one true literal. Suppose ϕ is satisfiable, so it is a YES instance for 3SAT. For each triple of nodes, choose a node corresponding to a true literal in the corresponding clause. This results in choosing k nodes, with exactly one node from each triple. This collection of k nodes is a k-clique because the graph G has edges between every pair of nodes except those in the same triple and not between contradictory literals. Thus, the resulting graph and number k is a YES instance for CLIQUE, so $\langle \phi \rangle \in 3SAT$ implies $\langle G, k \rangle \in CLIQUE$.

Now we show the converse: each NO instance for 3SAT maps to a NO instance for CLIQUE, which is equivalent to $\langle G, k \rangle \in CLIQUE$ implying that $\langle \phi \rangle \in 3SAT$. Suppose that G has a k-clique. The k nodes must be from k different triples because G has no edges between nodes in the same triple. Thus, the k literals corresponding to the k nodes in the k-clique come from k different clauses. Also, because G does not have edges between contradictory literals, setting the literals corresponding to the k nodes to true will lead to ϕ evaluating to true, so $\langle \phi \rangle \in 3SAT$. Thus, $\langle G, k \rangle \in CLIQUE$ implies $\langle \phi \rangle \in 3SAT$. Combining this with the proof from the last paragraph, we have shown $\langle \phi \rangle \in 3SAT$ if and only if $\langle G, k \rangle \in CLIQUE$, so our approach for converting an instance of the 3SAT problem into an instance of the CLIQUE problem is indeed a reduction; i.e., $3SAT \leq_{\rm m} CLIQUE$.

Step 3: show that reduction $3SAT \leq_{\mathrm{m}} CLIQUE$ takes polynomial time. In other words, we have to show that the time to convert an instance $\langle \phi \rangle$ of the 3SAT problem to an instance $\langle G, k \rangle$ of the CLIQUE problem is polynomial in the size of the 3cnf-formula ϕ . We can measure the size of ϕ in terms of its number k of clauses and its number m of variables. The constructed graph G has a node for every literal in ϕ , and because ϕ has k clauses, each with exactly 3 literals, G has 3k nodes. We then add edges between each pair of nodes in G except for those between nodes in the same triple nor between contradictory literals. So the number of edges in G is strictly less than $\binom{3k}{2} = 3k(3k-1)/2 = O(k^2)$, so the time to construct G is polynomial in m and k. Thus, $3SAT \leq_P CLIQUE$.

10. Recall that

 $ILP = \{ \langle A, b \rangle \mid \text{matrix } A \text{ and vector } b \text{ satisfy } Ay \leq b \text{ with } y \text{ and integer vector } \}.$

Show that ILP is NP-Complete by showing that $ILP \in \text{NP}$ and $3SAT \leq_{\text{P}} ILP$. Explain your reduction for the general case and not just for a specific example. Be sure to prove your reduction works and that it requires polynomial time. Also, be sure to provide proofs of these results, and don't just cite a theorem.

Answer:

Step 1: show that $ILP \in NP$. To do this, we now give a polynomial-time verifier V using as a certificate an integer vector c such that Ac < b. Here is a verifier for ILP:

V = "On input $\langle \langle A, b \rangle, c \rangle$:

- 1. Test whether c is a vector of all integers.
- 2. Test whether $Ac \leq b$.
- 3. If both tests pass, accept; otherwise, reject."

If $Ay \leq b$ has m inequalities and n variables, we measure the size of the instance $\langle A, b \rangle$ as (m, n). Stage 1 of V takes O(n) time, and Stage 2 takes O(mn) time. Hence, verifier V has O(mn) running time, which is polynomial in size of problem.

Step 2: show $3SAT \leq_m ILP$. (We later show the reduction takes polynomial time.) To prove that $3SAT \leq_m ILP$, we need an algorithm that takes any instance ϕ of the 3SAT problem and converts it into an instance of the ILP problem such that $\langle \phi \rangle \in 3SAT$ if and only if the constructed integer linear program has an integer solution. Suppose that ϕ has k clauses and m variables x_1, x_2, \ldots, x_m . For the integer linear program, define 2m variables $y_1, y'_1, y_2, y'_2, \ldots, y_m, y'_m$. Each y_i corresponds to x_i , and each y'_i corresponds to $\overline{x_i}$. For each $i = 1, 2, \ldots, m$, define the following inequality and equality relations to be satisfied in the integer linear program:

$$0 \le y_i \le 1, \quad 0 \le y_i' \le 1, \quad y_i + y_i' = 1.$$
 (1)

If y_i must be integer-valued and $0 \le y_i \le 1$, then y_i can only take on the value 0 or 1. Similarly, y_i' can only take on the value 0 or 1. Hence, $y_i + y_i' = 1$ ensures exactly one of the pair (y_i, y_i') is 1 and the other is 0. This corresponds exactly to what x_i and $\overline{x_i}$ must satisfy.

Each clause in ϕ has the form $(x_i \vee \overline{x_j} \vee x_k)$. For each such clause, create a corresponding inequality

$$y_i + y_i' + y_k \ge 1 \tag{2}$$

to be included in the integer linear program. This ensures that each clause has at least one true literal. By construction, ϕ is satisfiable if and only if the constructed integer linear program with m sets of relations in display (1) and k inequations as in display (2) has an integer solution. Hence, we have shown $3SAT \leq_m ILP$.

Step 3: show that the time to construct the integer linear program from a 3cnf-function ϕ is polynomial in the size of $\langle \phi \rangle$. We measure the size of $\langle \phi \rangle$ in terms of the number m of variables and the number k of clauses in ϕ . For each $i=1,2,\ldots,m$, display (1) comprises 6 inequalities:

- $y_i \ge 0$ (rewritten as $-y_i \le 0$),
- $y_i \le 1$,
- $y_i' \ge 0$ (rewritten as $-y_i' \le 0$),
- $y_i' \le 1$,
- $y_i + y_i' \le 1$, and
- $y_i + y_i' \ge 1$ (rewritten as $-y_i y_i' \le -1$),

where the last two together are equivalent to $y_i + y'_i = 1$. Thus, we have 6m inequalities corresponding to display (1). The k clauses in ϕ leads to k more inequalities, each of the form in display (2). Thus, the constructed integer linear program has 2m variables and 6m + k linear inequalities, so the size of the resulting integer linear program is polynomial in m and k. Hence, the reduction takes polynomial time.

List of Theorems

- Thm 1.A. The class of regular languages is closed under union.
- Thm 1.B. The class of regular languages is closed under concatenation.
- Thm 1.C. Every NFA has an equivalent DFA.
- Thm 1.D. The class of regular languages is closed under Kleene-star.
- Thm 1.E. (Kleene's Theorem) Language A is regular iff A has a regular expression.
- Thm 1.F. If A is finite language, then A is regular.
- Thm 1.G. The class of regular languages is closed under intersection.
- Thm 1.H. The class of regular languages is closed under complementation.
- Thm 1.I. (Pumping lemma for regular languages) If A is regular language, then \exists number p where, if $s \in A$ with $|s| \ge p$, then \exists strings x, y, z such that s = xyz and (1) $xy^iz \in A$ for each $i \ge 0$, (2) |y| > 0, and (3) $|xy| \le p$.
- Thm 2.A. Every CFL can be described by a CFG $G = (V, \Sigma, R, S)$ in Chomsky normal form, i.e., each rule in G has one of two forms: $A \to BC$ or $A \to x$, where $A \in V$, $B, C \in V \{S\}$, $x \in \Sigma$, and we also allow the rule $S \to \varepsilon$.
- Thm 2.B. If A is a regular language, then A is also a CFL.
- Thm 2.C. A language is context free iff some PDA recognizes it.
- Thm 2.D. (Pumping lemma for CFLs) For every CFL L, \exists pumping length p such that \forall strings $s \in L$ with $|s| \ge p$, we can write s = uvxyz with (1) $uv^ixy^iz \in L \ \forall \ i \ge 0, \ (2)$ $|vy| \ge 1, \ (3)$ $|vxy| \le p$.
- Thm 2.E. The class of CFLs is closed under union.
- Thm 2.F. The class of CFLs is closed under concatenation.
- Thm 2.G. The class of CFLs is closed under Kleene-star.
- Thm 3.A. For every multi-tape TM M, there is a single-tape TM M' such that L(M) = L(M').
- Thm 3.B. Every NTM has an equivalent deterministic TM.
- Cor 3.C. Language L is Turing-recognizable iff an NTM recognizes it.
- Thm 3.D. A language is enumerable iff some enumerator enumerates it.

Church-Turing Thesis. The informal notion of algorithm is the same as Turing machine algorithm.

- Thm 4.A. $A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts string } w \}$ is Turing-decidable.
- Thm 4.B. $A_{NFA} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts string } w \}$ is Turing-decidable.
- Thm 4.C. $A_{REX} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates string } w \}$ is Turing-decidable.
- Thm 4.D. $E_{DFA} = \{ \langle B \rangle \mid B \text{ is a DFA with } L(B) = \emptyset \} \text{ is Turing-decidable.}$
- Thm 4.E. $EQ_{DFA} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs with } L(A) = L(B) \}$ is Turing-decidable.
- Thm 4.F. $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$ is Turing-decidable.
- Thm 4.G. $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG with } L(G) = \emptyset \}$ is Turing-decidable.
- Thm 4.H. Every CFL is Turing-decidable.
- Thm 4.I. $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \}$ is undecidable.
- Thm 4.J. The set \mathcal{R} of all real numbers is uncountable.

- Cor 4.K. Some languages are not Turing-recognizable.
- Thm 4.L. A language is decidable iff it is both Turing-recognizable and co-Turing-recognizable.
- Cor 4.M. $\overline{A_{\rm TM}}$ is not Turing-recognizable.
- Thm 5.A. $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on } w \}$ is undecidable.
- Thm 5.B. $E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM with } L(M) = \emptyset \}$ is undecidable.
- Thm 5.C. $REG_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular } \}$ is undecidable.
- Thm 5.D. $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs with } L(M_1) = L(M_2) \}$ is undecidable.
- Thm 5.E. (Rice's Thm.) Let \mathcal{P} be any subset of the class of Turing-recognizable languages such that $\mathcal{P} \neq \emptyset$ and $\overline{\mathcal{P}} \neq \emptyset$. Then $L_{\mathcal{P}} = \{ \langle M \rangle \mid L(M) \in \mathcal{P} \}$ is undecidable.
- Thm 5.F. If $A \leq_{\mathrm{m}} B$ and B is Turing-decidable, then A is Turing-decidable.
- Cor 5.G. If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.
- Thm 5.H. If $A \leq_{\mathrm{m}} B$ and B is Turing-recognizable, then A is Turing-recognizable.
- Cor 5.I. If $A \leq_{\mathrm{m}} B$ and A is not Turing-recognizable, then B is not Turing-recognizable.
- Thm 5.J. $E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM with } L(M) = \emptyset \} \text{ is not Turing-recognizable.}$
- Thm 5.K. $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs with } L(M_1) = L(M_2) \}$ is neither Turing-recognizable nor co-Turing-recognizable.
- Thm 7.A. Let t(n) be a function with $t(n) \ge n$. Then any t(n)-time multi-tape TM has an equivalent $O(t^2(n))$ -time single-tape TM.
- Thm 7.B. Let t(n) be a function with $t(n) \ge n$. Then any t(n)-time NTM has an equivalent $2^{O(t(n))}$ -time deterministic 1-tape TM.
- Thm 7.C. $PATH \in P$.
- Thm 7.D. $RELPRIME \in P$.
- Thm 7.E. Every CFL is in P.
- Thm 7.F. A language is in NP iff it is decided by some nondeterministic polynomial-time TM.
- Cor 7.G. $NP = \bigcup_{k>0} NTIME(n^k)$
- Thm 7.H. $CLIQUE \in NP$.
- Thm 7.I. $SUBSET-SUM \in NP$.
- Thm 7.J. If $A \leq_{\mathbf{P}} B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.
- Thm 7.K. 3SAT is polynomial-time reducible to CLIQUE.
- Thm 7.L. If there is an NP-Complete problem B and $B \in P$, then P = NP.
- Thm 7.M. If B is NP-Complete and $B \leq_{\mathbf{P}} C$ for $C \in \mathbb{NP}$, then C is NP-Complete.
- Thm 7.N. (Cook-Levin Thm.) SAT is NP-Complete.
- Cor 7.O. 3SAT is NP-Complete.
- Cor 7.P. *CLIQUE* is NP-Complete.
- Thm 7.Q. *ILP* is NP-Complete.