Assignment 4, Problem 3 Sample Solution

3. (exercise 6.23, p 196, from DPV) A mission-critical production system has n stages that have to be performed sequentially; stage i is performed by machine M_i . Each machine M_i has a probability r_i of functioning reliably and a probability $1 - r_i$ of failing (and the failures are independent). Therefore, if we implement each stage with a single machine, the probability that the whole system works is $r_1 \cdot r_2 \cdots r_n$. To improve this probability we add redundancy by having m_i copies of the machine M_i that performs stage i. The probability that all m_i copies fail simultaneously is only $(1 - r_i)^{m_i}$, so the probability that stage i is completed correctly is $1 - (1 - r_i)^{m_i}$ and the probability that the whole system works is $\prod_{i=1}^n [1 - (1 - r_i)^{m_i}]$. Each machine M_i has a cost c_i , and there is a total budget B to buy machines. (Assume that B and the c_i are positive integers.)

Given the probabilities r_1, r_2, \ldots, r_n , the costs c_1, c_2, \ldots, c_n , and the budget B, find the maximum reliability that can be achieved within budget B.

solution:

This is a bit like the coin problem (and the 0-1 knapsack) without repetition. The subproblem will be denoted REL[i, b], the most reliable configuration of machines 1, 2, ..., i (at least one of each machine) available within budget b. The desired answer will be REL[n, B].

For the recurrence, if we are under budget, we return reliability 0 (which basically says "not possible"). Similarly, if we are out of budget (b = 0), but still need to buy machines (i > 0), we return 0 (assume all $c_i > 0$). If i = 0, we have have no machines that we have to buy, so reliability is 1 (if it were 0, then everything would get multiplied by 0, which is no good).

If there is budget left (b > 0) and machines left to buy (i > 0), we try all possibilities m of machines of type i to buy - we have to buy at least $m \ge 1$, and up to $m \le \lfloor \frac{b}{c_i} \rfloor \le b \le B$, of them. In each case, the remaining budget will be $b - m \cdot c_i$. The best reliability for machines $1, \ldots, i-1$ will be $REL[i-1, b-m \cdot c_i]$, which needs to be multiplied by the contribution of the m copies of M_i , $(1-(1-r_i)^m)$. Summarizing,

$$REL[i, b] = \begin{cases} 0 & \text{if } b < 0 \\ 0 & \text{if } b = 0, i > 0 \\ 1 & \text{if } b \ge 0, i = 0 \\ \max_{1 \le m \le \lfloor \frac{b}{c_i} \rfloor} [REL[i - 1, b - m \cdot c_i] \cdot (1 - (1 - r_i)^m)] & \text{otherwise.} \end{cases}$$