

GUÍA DE MATEMÁTICA #21

NOMBRE:		CURSO: 1° medio	FECHA: / 09 / 2024
UNIDAD	Unidad 3: Geometría		
CONTENIDOS	Área y volumen del cilindro y del cono		
OBJETIVOS	Determinar el área o el volumen de un cilindro o un cono a partir de sus medidas utilizando la fórmula apropiada.		
INSTRUCCIONES	Resuelva en el espacio asignado para cada eje	rcicio.	

Contenidos I.

Área y volumen del cilindro

Un cilindro recto es un cuerpo redondo o cuerpo de rotación que se genera a partir de un rectángulo que se hace girar considerando uno de sus lados como eje de rotación.

h: altura del cilindro r: radio de la base L: eje de rotación

Para calcular el área total (A_T) de un cilindro se suman el área lateral (A_L) con el área de las caras basales (A_R) .

$$A_T = A_L + A_B + A_B = 2\pi rh + \pi r^2 + \pi r^2 = 2\pi rh + 2\pi r^2 = 2\pi r(h+r)$$

El volumen (V) de un cilindro se asemeja al de un prisma. Para calcularlo se determina el área de la base (A_B) y se multiplica por la medida de su altura. Es decir, el volumen (V) de un cilindro está dado por:

$$V = A_R \cdot h = \pi r^2 \cdot h$$

donde r es el radio de la base y h la altura del cilindro.

Área y volumen del cono

El área de la superficie de un cono se puede calcular a partir de su red de construcción usando la siguiente expresión:

$$A_{\text{total}} = A_{\text{basal}} + A_{\text{lateral}}$$

= $\pi r^2 + \pi r g$
= $\pi r (r + g)$

El **volumen (V) de un cono** corresponde a un tercio del volumen de un cilindro con igual área de la base e igual medida de la altura. Se encuentra dado por la expresión:

$$V_{\text{cono}} = \frac{1}{3} \cdot V_{\text{cilindro}}$$
 $V_{\text{cono}} = \frac{1}{3} \cdot \pi r^2 h$

$$V_{\rm cono} = \frac{1}{3} \cdot \pi r^2 h$$

Observaciones

Calcularemos el área en aquellos problemas que se refieran a la superficie (la parte que se puede tocar, "lo de afuera") de algún objeto.

Calcularemos el volumen en aquellos problemas que se refieran a la cantidad de líquido que cabe en el interior de un objeto, a la cantidad de espacio que ocupa o a su capacidad.

El área de una figura se expresa en unidades cuadradas, manteniendo la misma unidad basal original. Es decir, si la unidad de longitud es metro, la unidad de área es metro cuadrado (m^2) .

El volumen de una figura se expresa en unidades cúbicas, manteniendo la misma unidad basal original. Es decir, si la unidad de longitud es centímetro, la unidad de volumen es centímetro cúbico (cm³).

Para calcular la medida de la generatriz de un cono se puede utilizar la fórmula del teorema de Pitágoras asumiendo que la base y la altura son los catetos y la generatriz la hipotenusa de un triángulo rectángulo.

El diámetro de una figura mide dos veces el radio, es decir, d = 2r.

Cuando un ejercicio pida el resultado con pi expresado, se trata a pi como si fuera una letra. Cuando se pida con pi aproximado, se reemplaza la letra por el valor indicado.

II. **Ejercicios iniciales**

1. Use el teorema de Pitágoras para determinar la medida de la generatriz o del radio de cada cono.

C.

d.

2. Calcula el área total de los siguientes conos. Considera π = 3,14.

c.

d.

3. Calcula el área de los siguientes cilindros considerando π = 3,14:

c.

Área basal: _

Área lateral: _

Área total: ___

Área basal:

Área lateral: ___

Área total: ____

Área basal:

Área lateral: Área total: ___

4. Calcula el volumen de los siguientes conos. Considera π = 3,14:

a.

b.

c.

5. Calcula el volumen de los siguientes cilindros. Considera π = 3,14:

a.

c.

6. Marca la opción correcta en cada una de las siguientes preguntas de alternativas. Justifica con tu desarrollo.

¿Cuál es el área lateral de un cilindro recto cuya base tiene 3,5 m de radio y su altura mide 12 m?

¿Cuál es el área total de un cilindro recto de altura 10 cm y radio 7 cm? Considera π = 3,14.

- 7. Resuelve cada uno de los siguientes problemas. Considera π = 3,14:
 - a. En una lata cilíndrica de jugo natural se indica que el contenido es de 300 cm³. Si el diámetro de la lata es de 5 cm, ¿cuál será, aproximadamente, la altura del envase?

b. El cilindro fonográfico fue el primer método utilizado para grabar y reproducir sonidos. Hacia 1890, algunas empresas decidieron estandarizar sus medidas; fue así como se produjeron cilindros fonográficos de 10 cm de altura y 5,7 cm de diámetro. ¿Cuál era el volumen de un cilindro fonográfico?

c. Una torta de novios tiene tres pisos, cada uno en forma de cilindro. El primer piso tiene 40 cm de diámetro, el segundo, 30 cm y el tercero, 20 cm. Cada uno tiene una altura de 12 cm. Calcula el volumen total de la torta.

d. En una industria de enlatados se utilizan recipientes con forma cilíndrica para contener alimentos como se muestra en la imagen.

- a. ¿Cuál de los dos recipientes tiene mayor capacidad?
- b. ¿En cuál de los recipientes se usa mayor cantidad de aluminio para su elaboración?
- c. Si en cada recipiente la etiqueta cubre toda la superficie lateral, ¿en cuál de las dos etiquetas se emplea mayor cantidad de papel?