第二换元法之"根式代换法"

Table of Contents

- 1. 第二换元法 之"根式代换法"
- 2. 第二类换元积分法

2.1. 对于
$$\sqrt{a^2-x^2}$$
, 其中的x, 用 $x=a\cdot\sin t$ 来替换.

2.2. 对于
$$\sqrt{x^2 + a^2}$$
, 其中的x, 用 $x = a \cdot \tan t$ 来替换.

2.3. 对于
$$\sqrt{x^2 - a^2}$$
, 其中的x, 用 $x = a \cdot \sec t$ 来替换.

1. 第二换元法 之"根式代换法"

 $=\frac{1}{6}(2x+1)^{\frac{3}{2}}-\frac{1}{2}(2x+1)^{\frac{1}{2}}+C$

Example 1. 标题

例如:
$$\int \frac{x}{\sqrt{2x+1}} dx \leftarrow \text{既然是根式代换法,我们就用一个变量来代换这个根号全部,如,令 $t = \sqrt{2x+1}$ 则 $t^2 = 2x+1$, $x = \frac{1}{2}(t^2-1)$
$$= \int \frac{\frac{1}{2}(t^2-1)}{t} d\left(\frac{1}{2}(t^2-1)\right) \leftarrow \text{ 这里的做微分: } d\left(\frac{1}{2}(t^2-1)\right) = (\frac{1}{2}(t^2-1))' \det = \frac{1}{2} \cdot 2t \ dt = t dt$$

$$= \int \frac{\frac{1}{2}(t^2-1)}{t} t dt$$

$$= \frac{1}{2} \int (t^2-1) \ dt$$

$$= \frac{1}{2} \left[\int t^2 dt - \int 1 dt \right]$$

$$= \frac{1}{2} \left(\frac{1}{3}t^3 - t + C\right)$$

$$= \frac{1}{6}t^3 - \frac{t}{2} + C \leftarrow \text{再把t还原成x}, \ \text{因为} t^2 = 2x+1, \ \text{所以: } t = (2x+1)^{\frac{1}{2}}$$$$

Example 2. 标题

例如:

$$\int_{0}^{4} \frac{x}{\sqrt{2x+1}} dx \leftarrow \ \, \Leftrightarrow t = \sqrt{2x+1}, \ \, \text{QU:} \ \, t^{2} = 2x+1, \\ x = \frac{1}{2}(t^{2}-1)$$

$$dx \, \text{部分} \ \, = d\left(\frac{1}{2}(t^{2}-1)\right)$$

$$= (2^{-1}(t^{2}-1))'dt$$

$$= 2^{-1}(2t)dt$$

$$= t \cdot d(t)$$

换元必换限(∫符号的上下限):

本例,原始 \int 对x 的上限是4,下限是0,即 \int_0^4 ... dx 那么 "换元"成t 后, \int 对t 的 "新限"是多少呢? 因为 $t=\sqrt{2x+1}$ 所以x 的原上限4 (即x=4),用t 表示就是 $t=\sqrt{2(4)+1}=3$ x 的原下限0 (即x=0),用t 表示就是 $t=\sqrt{2(0)+1}=1$ 所以,新的积分符号就是 \int_1^3 ... dt

$$= \int_{1}^{3} \frac{\frac{1}{2}(t^{2} - 1)}{t} \cdot t \cdot dt$$

$$= \frac{1}{2} \int_{1}^{3} (t^{2} - 1) dt$$

$$= \frac{1}{2} \left(\frac{1}{3} t^{3} - t \right) \Big|_{1}^{3}$$

2. 第二类换元积分法

Header 1

Header 2

Header 1	Header 2
第一类换元积分法	是把d前面的东西,往d里面拿,即这个过程相当于是: 先把d外面的东西"求原函数", 再放到d里面.
第二类换元积分法 : 它主要解决 "∫(根 号)dx" 这类导函 数是带根号的问题	是把d里面的东西,朝外拿,即: 对于dx,将 $x=\varphi(t)$ 朝外拿,这个过程相当于对 $\varphi(t)$ 求导. 即变成 $\varphi'(t)dt$ \leftarrow 这个其实就是做微分. 这不也是第一换元法这个"凑微分法"的过程之一么?

原式 $\int f(x)dx$, 我们用一个函数来代替x, 比如 $x = \varphi(t)$,依此, $t = \varphi^{-1}(x)$

意思是:原函数如果是输入t,会输出x,

则其"时间倒流性质"的反函数就是 输入x,能输出t

就像,原函数是输入水果原材料,输出水果汁;

则其反函数机器就是:输入水果汁,能输出其水果原材料.

则原式
$$=\int f[\varphi(t)]\ d(\varphi(t))\leftarrow d(\varphi(t))=\ \text{给}\varphi(t)$$
做微分, $=\varphi'(t)dt$ 所以原式就继续 $=\int f[\varphi(t)]\ \varphi'(t)dt\leftarrow$ 别忘了:我们还要把 t ,重新换回 x
$$=[\int f[\varphi(t)]\ \varphi'(t)dt]_{t=\varphi^{-1}(x)}$$

例如:

总结做题的方法,一般的替换规律如下:

第 \mathcal{D} 种: 对于 $\sqrt{a^2-x^2}$ 的,

$$\rightarrow$$
 我们令 $x = \mathbf{a} \cdot \sin t$

根号部分 =
$$\sqrt{a^2 - (\mathbf{a} \cdot \sin t)^2} = \sqrt{a^2 (1 - \sin^2 t)} = \sqrt{a^2 \cos^2 t}$$

第②种: 对于 $\sqrt{x^2-a^2}$ 的,

$$\rightarrow$$
 我们令 $x = a \cdot \sec t$

根号部分 =
$$\sqrt{a^2 - (\mathbf{a} \cdot \sec t)^2} = \sqrt{a^2 (1 - \sec^2 t)} = \sqrt{a^2 \tan^2 t}$$

第 \Im 种: 对于 $\sqrt{x^2+a^2}$ 的,

$$\rightarrow$$
 我们令 $x = \mathbf{a} \cdot \tan t$

根号部分 =
$$\sqrt{a^2 + (a \cdot \tan t)^2} = \sqrt{a^2 (1 + \tan^2 t)} = \sqrt{a^2 \sec^2 t}$$

2.1. 对于 $\sqrt{a^2-x^2}$, 其中的x, 用 $x=a\cdot\sin t$ 来替换.

Example 4. 标题

例如:

$$\int \sqrt{a^2 - x^2} \, dx \ (a > 0) \leftarrow \Rightarrow x = a \cdot \sin t, \quad \left(-\frac{\pi}{2} < t < \frac{\pi}{2} \right)$$

限定t的定义域,是为了让"该令"有反函数.

这个"令",也就有:
$$\sin t = \frac{x}{a}$$

两边同时乘上一个 \arcsin ,把t暴露出来,就有:

$$ar\sin\sin t$$
 = $\arcsin\frac{x}{a}$

$$t = \arcsin \frac{x}{a}$$

$$= \int \sqrt{a^2 - (\mathbf{a} \cdot \sin t)^2} \ d(\mathbf{a} \cdot \sin t)$$

$$= \int \sqrt{a^2 - a^2 \sin^2 t} \ d(\mathbf{a} \cdot \sin t)$$

$$= \int \sqrt{a^2(1-\sin^2 t)} \ d(\mathbf{a} \cdot \sin t)$$

2.2. 对于 $\sqrt{x^2+a^2}$, 其中的x, 用 $x=a\cdot \tan t$ 来替换.

Example 5. 标题

例如:

$$=\ln|\frac{1}{a}\left(\sqrt{x^2+a^2}+x\right)| + C \leftarrow x \text{和}\sqrt{x^2}$$
是一样大的,而根号里再加一个正数,其值肯定就比 x 更大了,所以绝对值符号可以去掉,它肯定是个正数
$$=\ln\left(\sqrt{x^2+a^2}+x\right) + C$$

2.3. 对于 $\sqrt{x^2 - a^2}$, 其中的x, 用 $x = a \cdot \sec t$ 来替换.

Example 6. 标题

$$\int \frac{1}{\sqrt{x^2-a^2}}dx$$
 $(a>0)$ ①当分母根号中的 $x^2>a^2$ 时:

$$\leftarrow \Leftrightarrow x = \mathbf{a} \cdot \sec t \quad \left(-\frac{\pi}{2} < t < \frac{\pi}{2}\right)$$
$$dx = d\left(\mathbf{a} \cdot \sec t\right)$$
$$= \left(\mathbf{a} \cdot \sec t\right)' dt$$
$$= \mathbf{a} \cdot \sec t \tan t \ dt$$

$$= \int \frac{1}{\sqrt{(\mathbf{a} \cdot \sec t)^2 - a^2}} \mathbf{a} \cdot \sec t \tan t \ dt$$

←分母的
$$\sqrt{(\mathbf{a} \cdot \sec t)^2 - a^2}$$

$$= \sqrt{\mathbf{a}^2 \cdot \sec^2 t - a^2}$$

$$= \sqrt{\mathbf{a}^2 (\sec^2 t - 1)} \leftarrow 根据公式: 1 + \tan^2 x = \sec^2 x$$

$$= a\sqrt{\tan^2 t}$$

$$= \mathbf{a} \cdot \tan t$$

$$= \int \frac{\mathbf{a} \cdot \sec t \tan t}{\mathbf{a} \cdot \tan t} dt$$

$$=\int \sec t \ dt$$

$$=\ln|\sec t + \tan t| + C$$

$$\leftarrow$$
 根据积分公式: \int $\sec t$

$$\leftarrow$$
 根据积分公式:
$$\int \sec t \ dt = \ln|\sec t + \tan t| + C$$

←別忘了把
$$t$$
换回 x :

因为我们令了
$$x = a \cdot \sec t$$
, 即 $\sec t = \frac{x}{a} = \frac{\text{斜边}}{\text{邻边}}$,

所以:对边 =
$$\sqrt{$$
斜边² - 邻边² = $\sqrt{x^2 - a^2}$

$$=\ln |rac{x}{a}+rac{\sqrt{x^2-a^2}}{a}| \ +C \ \leftarrow$$
其中的公因子 $\ln |rac{1}{a}|$ 是一个常数,可以归并到常数 C 里面去

$$= \ln(x + \sqrt{x^2 - a^2}) + C$$

②当分母根号中的
$$x^2 < a^2$$
时,结果是: $= \ln|x + \sqrt{x^2 - a^2}| + C$

https://www.bilibili.com/video/BV1Eb411u7Fw? p=46&vd source=52c6cb2c1143f8e222795afbab2ab1b5 https://www.bilibili.com/video/BV1Jo4y1R7Bx? spm_id_from=333.337.top_right_bar_window_history.content.click&vd_source=52c6cb2c1143f8e22 2795afbab2ab1b5

9.55