Demo Class - Approximation

Introduction to the Fourier Transform

Borja Cadenato

2024-04-24

How does an A4 sound wave look like?

An A4 sound wave

Representation of a wave

Frequency is measured in Hertz, number events per second.

$$f_1=440rac{ ext{periods}}{ ext{s}}=440 ext{Hz}$$

Representation of a wave

Frequency is measured in Hertz, number events per second.

$$f_1=440rac{ ext{periods}}{ ext{s}}=440 ext{Hz}$$

Frequency in the context of sinusoidal waves is usually measured in radians:

$$\omega_1 = 2\pi \cdot 440 rac{
m radians}{
m s}$$

Representation of a wave

Frequency is measured in Hertz, number events per second.

$$f_1=440rac{ ext{periods}}{ ext{s}}=440 ext{Hz}$$

Frequency in the context of sinusoidal waves is usually measured in radians:

$$\omega_1 = 2\pi \cdot 440 rac{ ext{radians}}{ ext{s}}$$

The representation of the 440 Hz (A4) sound wave is thus:

$$x(t) = \cos(2\pi f_1 t) = \cos(\omega_1 t)$$

An A4 sound wave in the frequency domain

Dirac Delta Function

$$\delta(k) = egin{cases} \infty & ext{if } k = 0 \ 0 & ext{if } k
eq 0 \end{cases}$$
 $\int_{-\infty}^{\infty} \delta(k) dk = 1$

Dirac Delta Function

$$\delta(k) = egin{cases} \infty & ext{if } k = 0 \ 0 & ext{if } k
eq 0 \end{cases}$$

$$\int_{-\infty}^{\infty} \delta(k) dk = 1$$

Dirac Delta Function

$$\delta(k) = egin{cases} \infty & ext{if } k = 0 \ 0 & ext{if } k
eq 0 \end{cases}$$

$$\int_{-\infty}^{\infty} \delta(k) dk = 1$$

In general, a wave $c_1 \cdot \cos(\omega_1 t)$ of amplitude c_1 and angular frequency ω_1 can be represented as $c_1 \cdot \delta(\omega - \omega_1)$

An E5 sound wave

An E5 sound wave in the frequency domain

A4 and E5 sound waves added up

A4 and E5 sound waves added up

A4 and E5 sound waves in the frequency domain

A4 and E5 sound waves in the frequency domain

If a function can be represented as a sum of sinusoidal functions:

$$x(t) = c_1 \cdot \cos(\omega_1 t) + c_2 \cdot \cos(\omega_2 t) + \dots$$

If a function can be represented as a sum of sinusoidal functions:

$$x(t) = c_1 \cdot \cos(\omega_1 t) + c_2 \cdot \cos(\omega_2 t) + \dots$$

It can be represented in the frequency domain:

$$X(\omega) = c_1 \cdot \delta(\omega - \omega_1) + c_2 \cdot \delta(\omega - \omega_2) + \ldots$$

If a function can be represented as a sum of sinusoidal functions:

$$x(t) = c_1 \cdot \cos(\omega_1 t) + c_2 \cdot \cos(\omega_2 t) + \dots$$

It can be represented in the frequency domain:

$$X(\omega) = c_1 \cdot \delta(\omega - \omega_1) + c_2 \cdot \delta(\omega - \omega_2) + \dots$$

We say that $X(\omega)$ is the Fourier Transform of x(t)

Angular Frequency Shifting

A function $x(t)=cos(\omega t)$ can be shifted in frequency by an angular frequency offset ω_d :

$$x(t)_{\omega_d} = \cos([\omega - \omega_d]t)$$

Angular Frequency Shifting

A function $x(t)=cos(\omega t)$ can be shifted in frequency by an angular frequency offset ω_d :

$$x(t)_{\omega_d} = \cos([\omega - \omega_d]t)$$

Angular Frequency Shifting

A function $x(t) = cos(\omega t)$ can be shifted in frequency by an angular frequency offset ω_d :

$$x(t)_{\omega_d} = \cos([\omega - \omega_d]t)$$

How to frequency shift a function?

Euler's formula is:

$$e^{ix}=\cos x+i\sin x$$
 If $x=\omega t$ then $e^{i\omega t}=\cos(\omega t)+i\sin(\omega t)$

How to frequency shift a function?

Euler's formula is:

$$e^{ix}=\cos x+i\sin x$$
 If $x=\omega t$ then $e^{i\omega t}=\cos(\omega t)+i\sin(\omega t)$

Multiplying the previous expression by $e^{-i\omega_d t}$

$$e^{i\omega t}\cdot e^{-i\omega_d t}=e^{i(\omega-\omega_d)t}=\cos([\omega-\omega_d]t)+i\sin([\omega-\omega_d]t)$$

What is the Fourier Transform of this function?

How can we identify the wave parameters?

Let's assume that the function x(t) is a sum of cosine functions:

$$x(t) = c_1 \cdot \cos(\omega_1 t) + c_2 \cdot \cos(\omega_2 t) + \cdots$$

How can we identify the wave parameters?

Let's assume that the function x(t) is a sum of cosine functions:

$$x(t) = c_1 \cdot \cos(\omega_1 t) + c_2 \cdot \cos(\omega_2 t) + \cdots$$

The Fourier Transform $X(\omega)$ would be

$$X(\omega) = c_1 \cdot \delta(\omega - \omega_1) + c_2 \cdot \delta(\omega - \omega_2) + \cdots$$

But now the parameters c_1 , ω_1 , c_2 , ω_2 , etc. are unknown.

Let
$$x(t) = \cos(\omega_1 t)$$

Let's shift $\cos(\omega_1 t)$ by an angular frequency ω_d

$$\cos([\omega_1-\omega_d]t)$$

Let
$$x(t) = \cos(\omega_1 t)$$

Let's shift $\cos(\omega_1 t)$ by an angular frequency ω_d

$$\cos([\omega_1-\omega_d]t)$$

Let's call

$$F(\cos(\omega_1 t),\omega) = \int_{-\infty}^{\infty} \cos([\omega_1 - \omega] t) dt$$

Then, if
$$\omega_1 - \omega_d \neq 0$$

$$F(\cos(\omega_1 t), \omega_d) = \int_{-\infty}^{\infty} \cos([\omega_1 - \omega_d] t) dt = 0$$

Let
$$x(t) = \cos(\omega_1 t)$$

Let's shift $\cos(\omega_1 t)$ by an angular frequency ω_d

$$\cos([\omega_1-\omega_d]t)$$

Let's call

$$F(\cos(\omega_1 t),\omega) = \int_{-\infty}^{\infty} \cos([\omega_1 - \omega] t) dt$$

Then, if
$$\omega_1 - \omega_d \neq 0$$

$$F(\cos(\omega_1 t),\omega_d)=\int_{-\infty}^{\infty}\cos([\omega_1-\omega_d]t)dt=0$$

If
$$\omega_1 - \omega_d = 0$$

$$F(\cos(\omega_1 t),\omega_d)=\int_{-\infty}^{\infty}\cos([\omega_1-\omega_d]t)dt=\int_{-\infty}^{\infty}dt=\infty$$

because
$$\cos([\omega_1 - \omega_d]t) = \cos(0) = 1$$

To summarise, if $x(t) = \cos(\omega_1 t)$:

$$F(x(t),\omega) = egin{cases} 0 & ext{if } \omega
eq \omega_1 \ \infty & ext{if } \omega = \omega_1 \end{cases} = \delta(\omega - \omega_1)$$

To summarise, if $x(t) = \cos(\omega_1 t)$:

$$F(x(t),\omega) = egin{cases} 0 & ext{if } \omega
eq \omega_1 \ \infty & ext{if } \omega = \omega_1 \end{cases} = \delta(\omega - \omega_1)$$

Let's call

$$X(\omega) = F(x(t), \omega)$$

Then, in general, if $x(t) = c_1 \cdot \cos(\omega_1 t)$ then

$$X(\omega) = c_1 \cdot \delta(\omega - \omega_1)$$

To summarise, if $x(t) = \cos(\omega_1 t)$:

$$F(x(t),\omega) = egin{cases} 0 & ext{if } \omega
eq \omega_1 \ \infty & ext{if } \omega = \omega_1 \end{cases} = \delta(\omega - \omega_1)$$

Let's call

$$X(\omega) = F(x(t), \omega)$$

Then, in general, if $x(t) = c_1 \cdot \cos(\omega_1 t)$ then

$$X(\omega) = c_1 \cdot \delta(\omega - \omega_1)$$

And if
$$x(t) = c_1 \cdot \cos(\omega_1 t) + c_2 \cdot \cos(\omega_2 t) + \ldots$$
 then

$$X(\omega) = c_1 \cdot \delta(\omega - \omega_1) \; c_2 \cdot \delta(\omega - \omega_2) + \ldots$$

Conclusion - Fourier Transform of x(t)

Finally, if x(t) is a general function over time, and it can be described as a (possibly infinite) series of sinusoidal functions...

Conclusion - Fourier Transform of x(t)

Finally, if x(t) is a general function over time, and it can be described as a (possibly infinite) series of sinusoidal functions...

... the Fourier Transform of x(t) is a new function $X(\omega)$ in the angular frequency domain.

Conclusion - Fourier Transform of x(t)

Finally, if x(t) is a general function over time, and it can be described as a (possibly infinite) series of sinusoidal functions...

... the Fourier Transform of x(t) is a new function $X(\omega)$ in the angular frequency domain.

If x(t) can be expressed as a series of complex exponential functions $c_k \cdot e^{i\omega_k t}$, since frequency shifting is just multiplying by $e^{-i\omega t}$, and following the same approach described before:

$$X(\omega) = \int_{-\infty}^{\infty} x(t) \cdot e^{-i\omega t} dt$$

Slides: github.com/bcadenato/ie-demo