Restoring Method

• In restoring division, the multiplier to the divisor is determined by first subtracting the divisor. If the result is negative, the divisor is restored (added back).

Restoring Method

- Initialization
 - Clear A. Requires 1 extra bit for A to be used as a sign bit.
 - Q gets dividend.
 - *M* gets divisor.
- Loop for each bit of the dividend Q
 - Shift AQ to the left.
 - Subtract $(A \leftarrow A M)$
 - If negative $(A_n = 1)$, restore $(A \leftarrow A + M)$ and reset Q_0 $(Q_0 \leftarrow 0)$
 - Else set Q_0 ($Q_0 \leftarrow 1$)
- Quotient in Q while remainder in A; adjust sign as needed

Restoring Division

111 (Q) / 11 (M)

- Initialization
 - Clear A. Requires 1 extra bit for A to be used as a sign bit.
 - Q gets dividend.
 - M gets divisor.
- Loop for each bit of the dividend Q
 - Shift AQ to the left.
 - Subtract $(A \leftarrow A M)$
 - If negative $(A_n = 1)$, restore $(A \leftarrow A + M)$ and reset $Q_0 (Q_0 \leftarrow 0)$
 - Else set $Q_0 (Q_0 \leftarrow 1)$
- Quotient in Q while remainder in A; adjust sign as needed

Try: 01101 (Q) / 00101 (M) (using restoring division)
Show the value of A and Q after the end of each pass

After this pass	A	Q
1 st	000000	11010
2 nd	000001	10100
3 rd	000011	01000
4 th	000001	10001
5th	000011	00010