## Quintic Corporation

# **QN9020 User Manual**

**PWM** 

Ver 0.9



## 1. PWM

The PWM provides two independent channel PWM waveforms with programmable period and duty cycle. Each channel includes 8-bit auto-reload down counter.

#### 1.1 Features

- Two independent PWM channels
- Each channel has 8-bit down counter and 10-bit prescaler
- Programmable period and duty cycle
- Predictable PWM initial output state
- Overflow interrupt generation
- Buffered compare and polarity register to ensure correct output

## 1.2 Functional Description

The block diagram of PWM is as shown in the following figure.



Figure 1 PWM Block Diagram

Two independent but identical PWM channels are available with separate control registers.

#### 1.2.1 10-bit Prescaler

There are two 10-bit prescaler, that be contained in PSCL register.

The 10-bit prescaler is to divier APB Clock to generate the scaled clock, which is to clock the 8-bit down counter.

The frequency of scaled clock is calculated as follow.

$$f_{scled} = \frac{f_{clk}}{(pscl+1)}$$



## 1.2.2 8-bit Counter Unit

The period of the PWM waveform is determined by the PERIOD register. The down counter is automatically reloaded with (PERIOD-1) once it's down to zero. An interrupt can be generated simultaneously.

The edge of PWM waveform is determined by the CMP register. When the counter is larger or equal to CMP, it outputs high level, otherwise, low. The polarity can be changed by register POL. Set POL to 1, and then output high when counter is smaller than CMP.

To generate dynamic PWM waveforms, buffer registers are designed for CMP and POL. The buffer registers are loaded into active registers upon the counter overflow.

## 1.3 Register Description

## 1.3.1 Register Map

The PWM base address is 0x4000 E0000.

**Table 1 Register Map** 

| Offset | Name | Description                   |
|--------|------|-------------------------------|
| 000h   | CR   | PWM control register          |
| 004h   | PSCL | PWM prescaler register        |
| 008h   | PCP  | PWM period & compare register |
| 00Ch   | SR   | PWM status register           |



## 1.3.2 Register Description

#### Table 2 CR

| į | 2    | 20   | 30   | 7.0  | 26   | 75   | 77   | 23   | ,,   | 21   | 20   | 19   | ć    | 17   | 16   | 15   | 11   | 13   | 12   | 11 | 10    | б        | 8        | 7   | 6    | 7    | 4    | 3    | Ç     | 7   | O        |
|---|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----|-------|----------|----------|-----|------|------|------|------|-------|-----|----------|
| 6 | RSVD | DSVD | DOVD | RSVD |    | POI 1 | INT FN 1 | PWM EN 1 | PSV | RSVD | RSVD | RSVD | RSVD | ס וסם |     | PWM FN 0 |
| 0 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0  | 0     | 0        | 0        | 0   | 0    | 0    | 0    | 0    | 0     | 0   | 0        |
| ( | Ω.   | ~    | ~    | ~    | В    | В    | В    | В    | В    | В    | R    | В    | В    | В    | В    | R    | В    | α    | В    | œ  | RW    | RW       | RW       | В   | В    | В    | В    | æ    | /W/ d | D\M | RW       |

| Bit   | Туре | Reset | Symbol   | Description                                                          |
|-------|------|-------|----------|----------------------------------------------------------------------|
| 31-11 | R    | 0     | RSVD     | Reserved                                                             |
|       |      |       |          | PWM channel 1 waveform Polarity control:                             |
| 10    | RW   | 0     | POL_1    | 0 = Output high when (CNT>=CMP), low when (CNT <cmp)< td=""></cmp)<> |
|       |      |       |          | 1 = Output low when (CNT>=CMP), high when (CNT <cmp)< td=""></cmp)<> |
|       |      |       |          | PWM channel 1 interrupt enable:                                      |
| 9     | RW   | 0     | INT_EN_1 | 0 = disable;                                                         |
|       |      |       |          | 1 = enable.                                                          |
|       |      |       |          | PWM channel 1 enable:                                                |
| 8     | RW   | 0     | PWM_EN_1 | 0 = disable;                                                         |
|       |      |       |          | 1 = enable.                                                          |
| 7-3   | R    | 0     | RSVD     | Reserved                                                             |
|       |      |       |          | PWM channel 0 waveform Polarity control:                             |
| 2     | RW   | 0     | POL_0    | 0 = Output high when (CNT>=CMP), low when (CNT <cmp)< td=""></cmp)<> |
|       |      |       |          | 1 = Output low when (CNT>=CMP), high when (CNT <cmp)< td=""></cmp)<> |
|       |      |       |          | PWM channel 0 interrupt enable:                                      |
| 1     | RW   | 0     | INT_EN_0 | 0 = disable;                                                         |
|       |      |       |          | 1 = enable.                                                          |
|       |      |       |          | PWM channel 0 enable:                                                |
| 0     | RW   | 0     | PWM_EN_0 | 0 = disable;                                                         |
|       |      |       |          | 1 = enable.                                                          |



## **Table 3 PSCL**

| 31   | 30   | 29   | 28   | 7.0  | 26   | 25          | 24 | 23  | 22 | 21 | 20          | 19   | 18 | 17 | 16   | 15   | 14   | 13   | 12   | 11   | 10   | 6           | ø  | 7           | Ь  | 5    | 4  | ۲           | 2    | 1  | O           |
|------|------|------|------|------|------|-------------|----|-----|----|----|-------------|------|----|----|------|------|------|------|------|------|------|-------------|----|-------------|----|------|----|-------------|------|----|-------------|
| RSVD | RSVD | RSVD | RSVD | DSVD | UNSA | CH1 DCCI[0] |    | DYC |    |    | CH1 PSCI[4] | PSCI |    |    | DSCI | RSVD | RSVD | RSVD | RSVD | RSVD | RSVD | CHO PSCI[9] |    | CHO PSCI[7] |    | DSCI |    | CHO PSCI[3] | PSCI |    | CHO PSCI[0] |
| 0    | 0    | 0    | 0    | 0    | 0    | 0           | 0  | 0   | 0  | 0  | 0           | 0    | 0  | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0           | 0  | 0           | 0  | 0    | 0  | 0           | 0    | 0  | 0           |
| R    | R    | R    | Ω.   | α    | α    | ۵           | RW | RW  | RW | RW | RW          | RW   | RW | RW | RW   | R    | R    | R    | R    | R    | R    | RW          | RW | RW          | RW | RW   | RW | RW          | RW   | RW | RW          |

| Bit   | Туре | Reset | Symbol        | Description                                                      |
|-------|------|-------|---------------|------------------------------------------------------------------|
| 31-26 | R    | 0     | RSVD          | Reserved                                                         |
| 25-16 | RW   | 0     | CH1_PSCL[9-0] | PWM channel 1 prescaler. Output frequency = fclk/( CH1_PSCL + 1) |
| 15-10 | R    | 0     | RSVD          | Reserved                                                         |
| 9-0   | RW   | 0     | CH0_PSCL[9-0] | PWM channel 0 prescaler. Output frequency = fclk/( CH0_PSCL + 1) |



## **Table 4 PCP**

| 31         | 30 | 29 | 28 | 27 | 96 | 25             | 2.4 | 23    | 22 | 21 | 20 | 19            | 18 | 17 | 16 | 15         | 14 | 13 | 12 | 11         | 10 | σ          | ×          | 7             | 9             | 5  | 4             | 3             | 2  | 1             |  |
|------------|----|----|----|----|----|----------------|-----|-------|----|----|----|---------------|----|----|----|------------|----|----|----|------------|----|------------|------------|---------------|---------------|----|---------------|---------------|----|---------------|--|
| CH1 CMP[7] | S  |    |    |    |    |                |     | 1 111 |    |    |    | CH1 PERIOD[3] |    |    | ۵  | CHO CMP[7] |    |    |    | CHO CMP[3] |    | CHO CMP[1] | CHO CMP[0] | CHO PERIOD[7] | CHO PERIODÍGI |    | CHO PERIOD[4] | CHO PERIOD[3] | Д  | CHO PERIOD[1] |  |
| 1          | 1  | 1  | 1  | 1  | 1  | 1              | 1   | 1     | 1  | 1  | 1  | 1             | 1  | 1  | 1  | 1          | 1  | 1  | 1  | 1          | 1  | 1          | 1          | 1             | 1             | 1  | 1             | 1             | 1  | 1             |  |
| RW         | RW | RW | RW | RW | RW | W <sub>A</sub> | W.  | RW    | RW | RW | RW | RW            | RW | RW | RW | RW         | RW | RW | RW | RW         | RW | RW         | RW         | RW            | RW            | RW | RW            | RW            | RW | RW            |  |

| Bit   | Туре | Reset | Symbol          | Description                     |
|-------|------|-------|-----------------|---------------------------------|
| 31-24 | RW   | FFh   | CH1_CMP[7-0]    | PWM channel 1 compare register. |
| 23-16 | RW   | FFh   | CH1_PERIOD[7-0] | PWM channel 1 period register.  |
| 15-8  | RW   | FFh   | CH0_CMP[7-0]    | PWM channel 0 compare register. |
| 7-0   | RW   | FFh   | CH0_PERIOD[7-0] | PWM channel 0 period register.  |



## Table 5 SR

| 21   |   | 29   | 28   | 27 | 26   | 25   | 24   |      | 22   | 21   | 20   | 19   | 18   | 17   | 16   | 15   | 14   |      | 12 |      | 10   | 6    | 8      | 7 | 9    | 7    | 4    | 3    | 2    | -    | 0      |
|------|---|------|------|----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----|------|------|------|--------|---|------|------|------|------|------|------|--------|
| RSVD |   | RSVD | RSVD |    | RSVD |    | RSVD | RSVD | RSVD | CH1 IF |   | RSVD | RSVD | RSVD | RSVD | RSVD | RSVD | CH0 IF |
| 0    | 0 | 0    | 0    | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0    | 0      | 0 | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
| α.   | R | R    | R    | R  | R    | R    | R    | R    | R    | R    | R    | R    | В    | R    | R    | R    | R    | R    | R  | R    | R    | R    | RW1    | R | R    | R    | ×    | R    | R    | R    | RW1    |

| Bit  | Туре | Reset | Symbol | Description                                               |
|------|------|-------|--------|-----------------------------------------------------------|
| 31-9 | R    | 0     | RSVD   | Reserved                                                  |
|      |      |       |        | PWM channel 1 interrupt flag:                             |
| 8    | RW1  | 0     | CH1_IF | 0 = no interrupt occurring;                               |
|      |      |       |        | 1 = an interrupt pending. Write 1 to clear the interrupt. |
| 7-1  | R    | 0     | RSVD   | Reserved                                                  |
|      |      |       |        | PWM channel 0 interrupt flag:                             |
| 0    | RW1  | 0     | CH0_IF | 0 = no interrupt occurring;                               |
|      |      |       |        | 1 = an interrupt pending. Write 1 to clear the interrupt. |