

Computer Technology

- Performance improvements:
 - Improvements in semiconductor technology
 - Feature size, clock speed
 - Improvements in computer architectures
 - Enabled by HLL compilers, UNIX
 - Lead to RISC architectures
 - Together have enabled:
 - Lightweight computers
 - Productivity-based managed/interpreted programming languages

M<

Copyright © 2019, Elsevier Inc. All rights reserved.

Current Trends in Architecture

auction

- Cannot continue to leverage Instruction-Level parallelism (ILP)
 - Single processor performance improvement ended in 2003
- New models for performance:
 - Data-level parallelism (DLP)
 - Thread-level parallelism (TLP)
 - Request-level parallelism (RLP)
- These require explicit restructuring of the application

M<

Copyright © 2019, Elsevier Inc. All rights reserved.

Classes of Computers

- Personal Mobile Device (PMD)
 - e.g. start phones, tablet computers
 - Emphasis on energy efficiency and real-time
- Desktop Computing
 - Emphasis on price-performance
- Servers
 - Emphasis on availability, scalability, throughput
- Clusters / Warehouse Scale Computers
 - Used for "Software as a Service (SaaS)"
 - Emphasis on availability and price-performance
 - Sub-class: Supercomputers, emphasis: floating-point performance and fast internal networks
- Internet of Things/Embedded Computers
 - Emphasis: price

M<

Copyright © 2019, Elsevier Inc. All rights reserved.

Parallelism

- Classes of parallelism in applications:
 - Data-Level Parallelism (DLP)
 - Task-Level Parallelism (TLP)
- Classes of architectural parallelism:
 - Instruction-Level Parallelism (ILP)
 - Vector architectures/Graphic Processor Units (GPUs)
 - Thread-Level Parallelism
 - Request-Level Parallelism

M<

Copyright © 2019, Elsevier Inc. All rights reserved.

6

Chapter 2 — Instructions: Language of the Computer

Flynn's Taxonomy

- Single instruction stream, single data stream (SISD)
- Single instruction stream, multiple data streams (SIMD)
 - Vector architectures
 - Multimedia extensions
 - Graphics processor units
- Multiple instruction streams, single data stream (MISD)
 - No commercial implementation
- Multiple instruction streams, multiple data streams (MIMD)
 - Tightly-coupled MIMD
 - Loosely-coupled MIMD

M<

Copyright © 2019, Elsevier Inc. All rights reserved.

Defining Computer Architecture

- "Old" view of computer architecture:
 - Instruction Set Architecture (ISA) design
 - i.e. decisions regarding:
 - registers, memory addressing, addressing modes, instruction operands, available operations, control flow instructions, instruction encoding
- "Real" computer architecture:
 - Specific requirements of the target machine
 - Design to maximize performance within constraints: cost, power, and availability
 - Includes ISA, microarchitecture, hardware

M<

Copyright © 2019, Elsevier Inc. All rights reserved.

3

Defining Computer Architect

Instruction Set Architecture

- Memory addressing
 - RISC-V: byte addressed, aligned accesses faster
- Addressing modes
 - RISC-V: Register, immediate, displacement (base+offset)
 - Other examples: autoincrement, indexed, PC-relative
- Types and size of operands
 - RISC-V: 8-bit, 32-bit, 64-bit

M<

Copyright © 2019, Elsevier Inc. All rights reserved.

Instruction Set Architecture

- Operations
 - RISC-V: data transfer, arithmetic, logical, control, floating point
 - See Fig. 1.5 in text
- Control flow instructions
 - Use content of registers (RISC-V) vs. status bits (x86, ARMv7, ARMv8)
 - Return address in register (RISC-V, ARMv7, ARMv8) vs. on stack (x86)
- Encoding
 - Fixed (RISC-V, ARMv7/v8 except compact instruction set) vs. variable length (x86)

Copyright © 2019, Elsevier Inc. All rights reserved.

Trends in Technology

- Integrated circuit technology (Moore's Law)
 - Transistor density: 35%/year
 - Die size: 10-20%/year
 - Integration overall: 40-55%/year
- DRAM capacity: 25-40%/year (slowing)
 - 8 Gb (2014), 16 Gb (2019), possibly no 32 Gb
- Flash capacity: 50-60%/year
 - 8-10X cheaper/bit than DRAM
- Magnetic disk capacity: recently slowed to 5%/year
 - Density increases may no longer be possible, maybe increase from 7 to 9 platters
 - 8-10X cheaper/bit then Flash
 - 200-300X cheaper/bit than DRAM

M<

Copyright © 2019, Elsevier Inc. All rights reserved.

Bandwidth and Latency

- Bandwidth or throughput
 - Total work done in a given time
 - 32,000-40,000X improvement for processors
 - 300-1200X improvement for memory and disks
- Latency or response time
 - Time between start and completion of an event
 - 50-90X improvement for processors
 - 6-8X improvement for memory and disks

M<

Copyright © 2019, Elsevier Inc. All rights reserved.

Transistors and Wires

- Feature size
 - Minimum size of transistor or wire in x or y dimension
 - 10 microns in 1971 to .011 microns in 2017
 - Transistor performance scales linearly
 - Wire delay does not improve with feature size!
 - Integration density scales quadratically

M<

Copyright © 2019, Elsevier Inc. All rights reserved.

15

Power and Energy

- Problem: Get power in, get power out
- Thermal Design Power (TDP)
 - Characterizes sustained power consumption
 - Used as target for power supply and cooling system
 - Lower than peak power (1.5X higher), higher than average power consumption
- Clock rate can be reduced dynamically to limit power consumption
- Energy per task is often a better measurement

M<

Copyright © 2019, Elsevier Inc. All rights reserved.

Dynamic Energy and Power

- Dynamic energy
 - Transistor switch from 0 -> 1 or 1 -> 0
 - ½ x Capacitive load x Voltage²
- Dynamic power
 - ½ x Capacitive load x Voltage² x Frequency switched
- Reducing clock rate reduces power, not energy

M<

Copyright © 2019, Elsevier Inc. All rights reserved.

17

Power Intel 80386 consumed ~ 2 W 3.3 GHz Intel Core i7 consumes 130 W Heat must be dissipated from 1.5 x 1.5 cm chip This is the limit of what can be cooled by air The served. Copyright © 2019, Elsevier Inc. All rights reserved.

Trends in Cost

- Cost driven down by learning curve
 - Yield
- DRAM: price closely tracks cost
- Microprocessors: price depends on volume
 - 10% less for each doubling of volume

Copyright © 2019, Elsevier Inc. All rights reserved

Integrated Circuit Cost

Integrated circuit

Cost of die =
$$\frac{\text{Cost of wafer}}{\text{Dies per wafer } x \text{ Die yield}}$$

Dies per wafer =
$$\frac{\pi \times (Wafer\ diameter/2)^2}{Die\ area} - \frac{\pi \times Wafer\ diameter}{\sqrt{2 \times Die\ area}}$$

Bose-Einstein formula:

Die yield = Wafer yield $\times 1/(1 + Defects per unit area \times Die area)^N$

- Defects per unit area = 0.016-0.057 defects per square cm (2010)
- N = process-complexity factor = 11.5-15.5 (40 nm, 2010)

Copyright © 2019, Elsevier Inc. All rights reserved.

Dependability

- Module reliability
 - Mean time to failure (MTTF)
 - Mean time to repair (MTTR)
 - Mean time between failures (MTBF) = MTTF + MTTR
 - Availability = MTTF / MTBF

M<

Copyright © 2019, Elsevier Inc. All rights reserved.

23

Measuring Performance

- Typical performance metrics:
 - Response time
 - Throughput
- Speedup of X relative to Y
 - Execution time_Y / Execution time_X
- Execution time
 - Wall clock time: includes all system overheads
 - CPU time: only computation time
- Benchmarks
 - Kernels (e.g. matrix multiply)
 - Toy programs (e.g. sorting)
 - Synthetic benchmarks (e.g. Dhrystone)
 - Benchmark suites (e.g. SPEC06fp, TPC-C)

M<

Copyright © 2019, Elsevier Inc. All rights reserved.

Principles of Computer Design

Principle

- Take Advantage of Parallelism
 - e.g. multiple processors, disks, memory banks, pipelining, multiple functional units
- Principle of Locality
 - Reuse of data and instructions
- Focus on the Common Case
 - Amdahl's Law

$$Execution \ time_{new} = Execution \ time_{old} \times \left((1 - Fraction_{enhanced}) + \frac{Fraction_{enhanced}}{Speedup_{enhanced}} \right)$$

$$Speedup_{overall} = \frac{1}{(1 - Fraction_{enhanced}) + \frac{Fraction_{enhanced}}{Speedup_{enhanced}}}$$

M<

Copyright © 2019, Elsevier Inc. All rights reserved.

25

Principles of Computer Design

J

■ The Processor Performance Equation

CPU time = CPU clock cycles for a program × Clock cycle time

$$CPU \ time = \frac{CPU \ clock \ cycles \ for \ a \ program}{Clock \ rate}$$

$$CPI = \frac{CPU \ clock \ cycles \ for \ a \ program}{Instruction \ count}$$

CPU time = Instruction count \times Cycles per instruction \times Clock cycle time

$$\frac{Instructions}{Program} \times \frac{Clock\ cycles}{Instruction} \times \frac{Seconds}{Clock\ cycle} = \frac{Seconds}{Program} = CPU\ time$$

M<

Copyright © 2019, Elsevier Inc. All rights reserved.

Principles of Computer Design

Principles

 Different instruction types having different CPIs

CPU clock cycles =
$$\sum_{i=1}^{n} IC_i \times CPI_i$$

$$\textit{CPU time} = \left(\sum_{i=1}^{n} \textit{IC}_{i} \times \textit{CPI}_{i}\right) \times \textit{Clock cycle time}$$

M<

Copyright © 2019, Elsevier Inc. All rights reserved

27

Principles of Computer Design

Principles

 Different instruction types having different CPIs

$$\textit{CPU clock cycles} = \sum_{i=1}^{n} \textit{IC}_i \times \textit{CPI}_i$$

$$\textit{CPU time} = \left(\sum_{i=1}^{n} \textit{IC}_{i} \times \textit{CPI}_{i}\right) \times \textit{Clock cycle time}$$

M<

Copyright © 2019, Elsevier Inc. All rights reserved.

Fallacies and Pitfalls

- All exponential laws must come to an end
 - Dennard scaling (constant power density)
 - Stopped by threshold voltage
 - Disk capacity
 - 30-100% per year to 5% per year
 - Moore's Law
 - Most visible with DRAM capacity
 - ITRS disbanded
 - Only four foundries left producing state-of-the-art logic chips
 - 11 nm, 3 nm might be the limit

M<

Copyright © 2019, Elsevier Inc. All rights reserved.

Fallacies and Pitfalls

- Microprocessors are a silver bullet
 - Performance is now a programmer's burden
- Falling prey to Amdahl's Law
- A single point of failure
- Hardware enhancements that increase performance also improve energy efficiency, or are at worst energy neutral
- Benchmarks remain valid indefinitely
 - Compiler optimizations target benchmarks

M<

Copyright © 2019, Elsevier Inc. All rights reserved.

Fallacies and Pitfalls

- The rated mean time to failure of disks is 1,200,000 hours or almost 140 years, so disks practically never fail
 - MTTF value from manufacturers assume regular replacement
- Peak performance tracks observed performance
- Fault detection can lower availability
 - Not all operations are needed for correct execution

M<

Copyright © 2019, Elsevier Inc. All rights reserved.