Stats

Type of Analysis Types of Stats

Measure of central Tendency - Mean, Median, Mode

Inter Quartile Range IQR

IQR - It is a measure based on the diving the dataset into quartiles (Parts). It also gives an idea where the bulk of the values lies. Plot -> Box Plot, Violin Plot *It helps us to detect the outliers

IQR = Q3 - Q1
$$Q1 = 25\%$$
$$Q2 = 50\%$$
$$Q3 = 75\%$$

Steps to find out the IQR

- 1. Arrange the data in the form of ascending order
- 2. Find Q2 (Median)
- 3. Find Q1 & Q3
- 4. Find IQR = (Q3 Q1)
- 5. Upper Bound: Q3 (1.5*IQR)
- 6. Lower Bound: Q1 (1.5*IQR)

11, 20, 23, 24, 34, 25, 46, 90

Note: Any datapoint thet lies outside the Lower & Upper Bound is an OUTLIER.

$$Q2 = 9$$

$$Q1 = 5.5$$

$$Q3 = 18.5$$

Random Variables

It is a variable that stores value that depends upon the outcomes of a random phenomeon.

Types of random Variable

Discrete RV

Should be a Whole number and cannot be -ve

Continuous

RV Can have any number that includes floating, decimal Categorical RV

x = 'Male'

x = 'Electronics'

x = 'Domestic Animal'

Covariance

It is a measure to show the relationship between two random variables. It will only help to find out the direction of the relationship (Disadvantage)

It can take any +ve & -ve values

Positive Covariance - When the outcome of the two RV tend to move in the same direction

Negative Covariance - When the outcome of the two RV tend to move in the different direction


```
Cov(x,y) = \underbrace{\left[x(i) - mean(x)][y(i) - mean(y)]}_{n}
```

```
def cov(x,y):
    mean_x = np.mean(x)
    mean_y = np.mean(y)
    count = 0
    for i,j in zip(x,y):
        result = (i - mean_x)*(j - mean_y)
        count += result
    return count/len(x)
```

np.cov(df.X, df.Y)

It is a measure to show the relationship between two random variables.

It not only helps to find out the direction of the relationship, but also the strength.

$$Corr(x,y) = \underline{Cov(x,y)}$$

$$SD(x) * SD(y)$$

np.corrcoef(df.Age, df.Height)
df.corr()

1 -> Perfect Positive Correlation 0.99 - 0.79 -> High +ve Corr 0.78 - 0.5 -> Moderate +ve Corr > 0.5 - 0 -> Low +ve corr

```
def corrcoef(x,y):
     mean_x = np.mean(x)
     mean_y = np.mean(y)
     count = 0
     for i,j in zip(x,y):
            result = (i - mean_x)*(j - mean_y)
            count += result
     cov = count/len(x)
     SD_x = np.std(x)
     SD_y = np.std(y)
     denominator = SD_x * SD_y
     return cov/denominator
```

Variable Measurement Scales

It is important beacause different types of data allow for different types of Data Analysis

- 1. Nominal Qualitative Data. It is the data that split into categories-> Gender, Color, Car Type
- 2. Ordinal Qualitative Data. It is the data where the order matters but the distance b/w the values doesn't matter.
- 3. Interval Quantative Data. It is the data where the order matters and the distance b/w the values matters, and a natural zero (0) is not present.
- 4. Ratio Quantative Data. It is the data where the order matters and the distance b/w the values matters, and a natural zero (0) is present

Spearman Rank Correlation

Data: Ordinal, Interval, Ratio

It is a measure to show the monotonic relationship between two random variables. It not only helps to find out the direction of the relationship, but also the strength.

A monotonic relationship is where:

- 1. One variable increases and the other also increases, or
- 2. One variable decreases and the other also decreases

	Α	B	5	D	E	F	G
		Physical activity	Blood presure	Physical activity	Blood presure	d	d
1	Name	(min)	(mm Hg)	(rank)	(rank)	u	a ₂
2	Alan	60	118	1	9	-8	64
3	Carl	55	117	2	10	-8	64
4	David	25	120	8	7	1	1
5	Don	50	121	3	6	-3	9
6	John	40	119	5	8	-3	9
7	Matt	45	122	4	5	-1	1
8	Mike	35	123	6	4	2	4
9	Neal	10	124	10	3	7	49
10	Rick	30	125	7	2	5	25
11	Rob	20	126	9	1	8	64
12							290
13	Spearman correlation		-0.757575758	=CORREL(D2:D11, E2:E11)			
14			-0.757575758	=1-(6*G12/(10*(10^2-1)))			

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} - \frac{6 \times 4^{3}}{\sqrt{2}}$$

```
r = cov(r(x),r(y))
         SD(x) * SD(y)
r(x) \rightarrow rank of x
r(y) \rightarrow rank of y
   def spearman(x,y):
       rank_x = x.rank(ascending=False)
       rank_y = y.rank(ascending=False)
       covariance = cov(rank_x, rank_y)
       SD_x = np.std(x)
       SD_y = np.std(y)
       deno = SD_x * SD*y
       return covariance/deno
```

import scipy

scipy.stats.spearman(a,b)