Warsztaty rekrutacyjne lato 2023 – spotkanie 2 przerwania, funkcje nieblokujące, timery

Eryk Możdżeń

Koło Naukowe Robotyków KoNaR

17 maja 2023

Plan prezentacji

- Przerwania
 - Wstęp
 - NVIC
- 2 Rodzaje interakcji
 - Funkcje blokujące
 - Funkcje nieblokujące
- 3 Timery
 - Przedstawienie
 - Stałe interwały czasowe
 - Sygnał PWM

Organizacja peryferiów

 TIM1
 TIM2
 TIM3
 TIM4

 TIM5
 TIM6
 TIM7
 TIM8

 TIM15
 TIM16
 TIM17
 TIM17

SPI1 UART1 I2C1

SPI2 UART2 I2C2

SPI3 UART3 12C3

USB CAN1

ADC1

ADC2

ADC3

GPIOA GPIOB GPIOC GPIOD

CPU

Organizacja peryferiów

Organizacja pamięci w uC

Przestrzeń pamięciowa podzielona jest na kilka najważniejszych sekcji. Jedną z nich umieszczoną na początku pamięci (adres zero) jest wektor przerwań.

Wektor przerwań to tablica wskaźników na funkcje (handlery). Jej wartości są definiowane przez kod startup, który najczęściej jest w assemblerze.

NVIC

Organizacja przerwań

NVIC (ang. Nested Vectored Interrupt Controller)

Kontroler przerwań na uC z rdzeniem Cortex. Odpowiada za aktywacje, obsługe i priorytezacje sygnałów generujących przerwanie. Aby dane przerwanie działało, trzeba je w nim włączyć.

Funkcje blokujące

Receive Transmit Receive work work

Funkcje nieblokujące

Funkcje nieblokujące – możliwości

Funkcje nieblokujące – możliwości

Timery? A komu to potrzebne?

Timery (układy czasowo – licznikowe)

Układy peryferyjne służące do odmierzania czasu, generacji przebiegów czasowych oraz analizy sygnałów wejściowych. Potrafią generować przerwania.

Najczęstsze zastosowania:

- generacja sygnałów PWM
- generacja przerwania w konkretnych interwałach czasowych
- podstawa czasu

Stałe interwały czasowe

- PSC może być 16 lub 32-bitowe!
- ARR może być 16 lub 32-bitowe!

PWM

- PSC może być 16 lub 32-bitowe!
- ARR może być 16 lub 32-bitowe!
- CCRx może być 16 lub 32-bitowe!