Springboard—DSC Capstone Project 1 BREAST CANCER PREDICTION

By: Yoheita Yoshimura

November 2021

Introduction

- Used a dataset from University of Wisconsin, which was produced from digitalized images of fine needle aspirate (FNA) with specimen cells characteristic and diagnosis results.
- FNA study shows:
 - False positive result: 0-2.5%
 - false negative result: 5-10% or even higher than 15%
- Explored classification models to predict diagnosis result using Python
- The project was developed under the classical data science method: data wrangling, exploratory data analysis (EDA), baseline modeling, and extended modeling

Data Acquisition and Wrangling

- 569 patient data and 13 features are included in the original dataset
- 13 features includes below data type:
 - 11 float data
 - 1 char data
 - 1 null data
- Target feature is called "diagnosis"
 - 'M' as Malignant or 'B' as Benign

Removed unnecessary features (ID and Unnamed: 32)

Investigate for any null values in each feature

- Imbalanced data
 - Malignant = 212 patients (37.2%)
 - Benign = 357 patients (62.74%)

Used standardization to compare each feature

Feature	Pattern of distribution	Mean	Predicting correlation
concave points_worst	similar	separate	High
symmetry_se	similar	similar	Low

oncave points_worst

symmetry_worst

- Plotted heat-map for correlation of target feature with other features
 - High negative correlation for concave point_worst (-0.79)
 - Close to zero symmetry_se (0.0065)

Correlation of diagnosis with other features

- Plotted empirical cumulative distribution of features (ECDF) for:
 - "concave points_worst"
 - "symmetry_se"
- Able to also observe:
 - "symmetry_se" Malignant and Beni have a very similar distribution
 - "concave points_worst" separate distribution between Malignant and Benign

Modeling

- Separate the data:70% for Train data and 30% for Test data
- Keep ratio of Malignant or Benign in Train data and Test data is same as original data
- Used classification algorithms:
 - Logistic Regression
 - Decision Tree
 - SVM,
 - Random Forest
 - Random Forest (Hyperparameter tunning)

Modeling

Logistic Regression scored highest accuracy for both Malignant or Benign

Springboard Project: Yoheita Yoshimura

Findings

- Plotted feature importance using Random Forest
 - concave points_worst had highest feature importance

Findings

- Used SHAP to visualize feature importance
 - Importance is measured with SHAP value
- Discovered "concave point_worst" was still the highest importance

Findings

- Plotted feature value importance with "concave point_worst" with "concavity_worst" as color bar
- Both feature value likely to increase at:
 - "concave point_worst" > 0.15
 - Increasing the probability of tumor being malignant.

Conclusions - Overview

- Able to explore data with multiple classification algorithm
- Able to analyze the dataset and applied to the feature impact
- More in-depth study is necessary to use more effective algorithm
- Logistic Regression has the highest accuracy score:
 - f1-score over 0.96
 - False positive and false negative less than 1%

Recommendations for the Clients

- The model with Logistic Regression was able to predict over 90% with the current dataset.
- The highest impacted feature "concave points_worst" for diagnosis prediction
- If more data is provided, there is a possibility that a more accurate model could be made.