UES012: Engineering Materials

Tutorial Solutions/answer key

Tutorial-2

Question No.	Formula used	Answer
7	LD=(No. of atoms along a direction)/(length	LD [100]=2.77 atoms /nm
	of the line segment)	LD[110]=3.912 atoms/nm
		LD[111]=1.597 atoms/nm
8	LD=(No. of atoms along a direction)/(length	LD [100]=1.901 atoms/nm
	of the line segment)	LD[110]=1.344 atoms/nm
	For BCC, $\sqrt{3}a = 4r$	LD[111]=2.195 atoms/nm
9	PD = (Number of atoms on the plane) / (Area	$PD(100) = \frac{4}{16.3}$
	of the plane)	$\frac{16r^2}{4}$
	For FCC, $\sqrt{2}a = 4r$	$PD(100) = \frac{4}{16r^2}$ $PD(110) = \frac{4}{\sqrt{2} \cdot 16r^2}$ $PD(111) = \frac{4}{\sqrt{3} \cdot 16r^2}$
		$PD(111) = \frac{4}{\sqrt{3} \ 16r^2}$
10	PD = (Number of atoms on the plane) / (Area	$PD(100) = 1.24 atoms/nm^2$
	of the plane)	$PD(110) = 17.16 \text{ atoms/nm}^2$
		$PD(111) = 7.01 atoms/nm^2$

Tutorial-3

Question No.	Formula used	Answer
6	$\rho = \frac{M}{V} = \frac{m \times N_e}{a^3}$	a = 4.077 Å
7	$\rho = \frac{M}{V} = \frac{m \times N_e}{a^3}$ $r = \frac{\sqrt{3}}{4} a$	ho = 11.67 gm/cc

Tutorial-4

Question	Formula used	Answer
No.		
1	$\rho = \frac{A*n}{N*V}$	ho = 2.211 gm/cc
2	$\rho = \frac{A*n}{N*V}$	ho = 5.546 gm/cc
3	$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$	5.63 Å
4	$d_{hkl} = rac{a}{\sqrt{h^2 + k^2 + l^2}} \ 2d_{hkl} \sin \theta = n \lambda$	$\lambda = 1.5236 \text{Å}$

5	$2d \sin\theta = n\lambda$	r = 1.45 Å
6	$\begin{aligned} d_{hkl} &= \frac{a}{\sqrt{h^2 + k^2 + l^2}} \\ &2 d_{hkl} \sin\theta = n\lambda \end{aligned}$	a=4.026Å
7	$\frac{V_{BCC} - V_{HCP}}{V_{BCC}} \times 100\%$	3.2%
8	R= 0.414r (For octahedral voids) R= 0.225r (For tetrahedral voids) R= radius of largest interstitial void r = radius of iron atom For FCC, $\sqrt{2}a = 4r$	Largest one is for octahedral void. Diameter=1.103 nm
9	R= 0.414r (For octahedral voids) R= 0.225r (For tetrahedral voids)	Tetrahedral void at (0,1/2,1/4) R=0.225r Octahedral void at ()
10	a = 2(R _a + R _c) Density of the unit cell = Number of ions X Molecular weight Avegardros number X Volume	PD(100)=22.89 atoms/nm ² 2.4 g/cm ³
	Ionic packing fraction $= \frac{number\ of\ ions \times volume\ of\ ions}{volume\ of\ unit\ cell} \times 100\ \%$	64%