Joseph Silverstein

HW III Jesús Fernandez Villaverde

1. Define the following indicator functions: 1.(E) indicates that the agent is employed at time to 1.(Wi) indicates that the agent receives wage Wi at time to 1a. Will indicates that the agent receives wage Wi at time to 14(Wi) indicates that the agent accepts an offer of wage wi at time t

Then {\(\lambda_i\right)\right\rightarrow\) \(\lambda_i\right)\right\right\rightarrow\) \(\lambda_i\right)\right\right\rightarrow\) \(\lambda_i\right)\right\right\rightarrow\) \(\lambda_i\right)\right\right\rightarrow\) \(\lambda_i\right)\right\right\rightarrow\) \(\lambda_i\right)\right\right\rightarrow\) \(\lambda_i\right)\right\right\rightarrow\) \(\lambda_i\right)\right\rightarrow\) \(\lambda_i\right)\right\rightarrow\) \(\lambda_i\rightarrow\) \(\lambda_i\right)\rightarrow\) \(\lambda_i\right)\righta characterized by $f(1_{+}(w_{i})=1)=\begin{cases} d_{+-1} & \text{if } 1_{+-1}(w_{i})=1\\ \frac{1}{5}e_{+-1}^{0.5}\cdot 1_{+-1}^{\alpha}(w_{i}) & \text{if } 1_{+-1}(E)=0 \end{cases}$

1+(E) is then defined by 1+(E)= Z: 1+(Wi)

Then the sequential problem of the agent is [2+=01.96+log(c+-0.8d+5.]+(E)-0.9e+5(1-1+(E))] {(C+, b++1, d+, e+, {1*(w:)};=1}+=0

 $C_{+} + \frac{b_{++1}}{1.03} \le \sum_{i=1}^{5} w_{i} \cdot 1_{+}(w_{i}) + (1 - 1_{+}(E))_{z} + b_{+} \quad \forall + \ge 0$ $d_{+}, e_{+} \in [0, 1] \quad \forall t \geq 0$ $1^{\alpha}_{+}(w_{i}) \in \{0, 1\} \quad \forall t \geq 0, i = 1, ..., 5$ $C_{+}, b_{++} \geq 0 \quad \forall t \geq 0$

bo given

$$W(w,b) = \max_{c,b',d\geq 0} \log(c - 0.8d'^{.5}) + 0.95[d^{0.5}W(w,b') + (1-d^{0.5})U(b')]$$

s.t.
$$c+b'=1.03b+w$$

 $0 \le d \le 1$

$$U(b) = \max_{c,b,e \ge 0} \log(c - 0.8e^{1.5}) + 0.95[e^{0.5}\sum_{i=1}^{s} \pm \max\{W(w_i,b'), U(b')\} + (1-e^{0.5})U(b')]$$

s.t.
$$c+b'=1.03b+0.1$$

3. The feasible set of the sequential problem is $\Gamma(b) = [0, \sum_{i=1}^{n} 1(w_i) \cdot w_i + (1-1(E))z + 1.03b]$. Note that $\Gamma(b) \neq 0$.

The return function is F := log(c-1(E).0.8d"-(1-1(E)).0.9e")

WTS: lim Z=0 B F exists. (*)

If we show (*), then we know that the principle of optimality holds, in which case the sequential and recursive problems are equivalent.

A sufficient condition for (*) to hold is that $\forall x_0$ and for all feasible plans, $\exists \theta \in (0, 0.96)$ and $0 < c < \infty$ s.t. $\forall t$, $f_{+} \leq c \theta^{+}$.

Set $c = b_0 + w_s$ and $\theta = 1.03$. Then WTS: $\log(c_1 - 1_1(E) \cdot 0.8d_1^{1.5} - (1 - 1_1(E)) \cdot 0.9e_1^{1.5}) \le (b_0 + w_s) \cdot 1.03^+$

The highest possible savings of the agent at period toccurs in the theoretical case where she saves all of her wealth in all previous periods and always worked at wage w_{σ} . Thus we know that $c_{+} \leq b_{0}(1.03)^{+} + w_{\sigma} \sum_{r=0}^{+} (1.03)^{r}$

Then $\sum_{t=0}^{\infty} \beta^{t} \log(c_{t}-1_{t}(E)\cdot 0.8d_{t}^{1.5}-(1-1_{t}(E))\cdot 0.9e_{t}^{1.5})<\sum_{t=0}^{\infty} \beta^{t} C_{t}$ $=b_{0}\sum_{t=0}^{\infty} \left[\beta(1.03)\right]^{t}+\frac{1}{1.03}\sum_{t=0}^{\infty} \left[\beta(1.03)\right]^{t}-\frac{w_{0}}{1.03}\sum_{t=0}^{\infty} \beta^{t}$ $=: K \in \mathbb{R} \quad \text{because} \quad \beta(1.03)<1.$

Thus, we have verified (*). Then we know that the value and policy functions of the two problems are equivalent.

4. Substituting for c and writing separately for each value of WEW, we get 6 value functions:

$$\begin{cases} W_{s}(b) = \max_{b',d \geq 0} \log(1.03b + w_{s} - b' - 0.8d^{1.5}) \\ + 0.95[d^{0.5}W_{s}(b') + (1-d^{0.5})U(b')] \quad s.t. \quad 0 \leq d \leq 1 \end{cases}$$

$$U(b) = \max_{b',e \ge 0} \log(1.03b + 0.1 - b' - 0.8e^{1.5}) + 0.95[e^{0.5} \ge \frac{1}{5} \max\{W_i(b'), U(b')\} + (1 - e^{0.5})U(b')]$$
s.t. $0 \le e \le 1$

(Figure 5)
From the graph of the value functions, we can see that the agent will always accept a wage of 0.4 or higher. She will accept a wage of 0.2 iff her savings are below 0.14.

5. The distribution of assets is presented in Figure 5 in histogram form.

539 agents are workers and 461 agents are searchers.

The distribution of wages is		
Wage	Count	Percent
0.2	9	1.95%
0.4	57	12.36%
0.6	91	19.74%
0.8	100	21.69%
	204	44.25%

6. a) When un	em alon	ent insurance is lowered to 0.05,
the age	Listil	live to accept all cores in diding
the layer	I I WII	ling to accept all wages including
remaining	ruge V	ecause the opportunity cost of
Remaining	nemp	loyed is now higher.
Running	The sim	ulation, unemployment rises to 50.3% ution of wages becomes
and the	ans Iribo	ition of wages becomes
Value	Count	rercent
0.2	46	5.17% 12.92%
0,4	65	12.927
		18.29%
0.8	112	22,27%
	208	1 41.35%
1 \ 1 \ / /		
b) When uner	nployment	insurance is raised to 0.15, the agent
is never u	villing t	a accept the low wage because the
apport unity	cost of	remaining unemployed is now
lower. Rus	nning 17	remaining unemployed is now he simulation, unemployment falls to
42.27. ar	id The	ansiribution of wages becomes
Value	Count	Percent 0.40%
0.2	2	0.40%
0.4	66	13.12%
0.6	95	18.89%
0.8	126	25.05%
	214	42.54%
	417	14971
		1

7. Looking at Figure 17 (the distribution of assets), we can see that it is centered far to the right of where it was in the benchmark case. This makes sense because the agents are risk-averse and thus prefer to save more when there is higher turbulence. 8. The wording of the question is ambiguous, so I clearly state my assumptions:

i. Conditional on paying search cost 0.25, agent receives offer for sure.

ii. If agent accepts an offer, she can't lose her job at the beginning of the next period. The recursive formulation of this problem is:

$$|W_{i}(b)| = \max\{V_{i}^{NS}(b), V_{i}^{S}(b)\}, 0 \le d \le 1, \text{ for } i=1,...,5$$

$$|W_{i}^{NS}(b)| := \log(1.03b + w_{i} - b' - 0.8d^{1.5}) + 0.95[d^{0.5}w_{i}(b') + (1-d^{0.5})u_{i}(b')]$$
and
$$|V_{i}^{S}(b)| := \log(1.03 + w_{i} - b' - 0.8d^{1.5} - 0.25) + 0.95\sum_{i=1}^{5} \pm \max\{w_{i}(b'), d^{0.5}w_{i}(b') + (1-d^{0.5})u_{i}(b')\}$$

$$|u_{i}^{S}(b)| := \log(1.03 + w_{i} - b' - 0.8d^{1.5} - 0.25) + 0.95\sum_{i=1}^{5} \pm \max\{w_{i}(b'), d^{0.5}w_{i}(b') + (1-d^{0.5})u_{i}(b')\}$$

$$|u_{i}^{S}(b)| = \log(1.03b + 0.1 - b' - 0.8e^{1.5}) + 0.95[e^{0.5}\sum_{i=1}^{5} \pm \max\{w_{i}(b'), u_{i}(b')\} + (1-e^{0.5})u_{i}(b')]$$

In Figure 19, we can see that on-the-job search causes the agents to exert diligence iff they have the high wage ws=1. This makes sense because if they have the option to search for a new job while on the job and they get an offer for sure, maintaining their current wage through diligence is less important to them than before. It is only worth it to them if they have no incentive to search because they have the highest wage already, in which case their problem is equivalent to the benchmark problem without on-the-job search.

The stationary distribution becomes of assets, excluding 0, becomes more spread out as the people who are able to maintain the high wage are able to maintain savings.

<u>1.4</u>

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

1.6(a)

Figure 6:

Figure 7:

Figure 8:

Figure 9:

<u>1.6(b)</u>

Figure 10:

Figure 11:

Figure 12:

Figure 13:

Figure 14:

Figure 15:

Figure 16:

Figure 17:

Figure 18:

Figure 19:

Figure 20:

Figure 21:

