Question:

Point P(x, 4) lies on the line segment joining the points A(-5, 8) and B(4, -10). Find the ratio in which point P divides the line segment AB. Also, find the value of x.

Solution:

Given Points	Description	Formula
$\mathbf{P}(x,4)$	Point that cuts line segment AB internally	To find x , $\mathbf{A} - \mathbf{B} = r(\mathbf{A} - \mathbf{P})$
A (-5, 8)	One end of line segment AB	_
B (4, -10)	Other end of line segment AB	_
k	denotes the ratio AP: PB	$\mathbf{P} = \frac{1}{1+k} \left(\mathbf{A} + k \mathbf{B} \right)$

TABLE 0: Given Information

To find x:

$$\mathbf{A} - \mathbf{B} = r(\mathbf{A} - \mathbf{P})$$

$$\Rightarrow \begin{pmatrix} -5 \\ 8 \end{pmatrix} - \begin{pmatrix} 4 \\ -10 \end{pmatrix} = r \begin{pmatrix} -5 \\ 8 \end{pmatrix} - \begin{pmatrix} x \\ 4 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} -9 \\ 18 \end{pmatrix} = r \begin{pmatrix} -5 - x \\ 4 \end{pmatrix}$$

$$\Rightarrow 18 = 4r$$

$$\Rightarrow r = \frac{18}{4} = \frac{9}{2}$$

$$9 = r(5 + x)$$

Also,

$$9 = r(5 + x)$$

$$\implies 9 = \frac{9}{2}(5 + x)$$
or, $x = -3$

To find k:

$$\mathbf{P} = \frac{1}{1+k} (\mathbf{A} + k\mathbf{B})$$
$$\begin{pmatrix} -3\\4 \end{pmatrix} = \frac{1}{1+k} \begin{pmatrix} -5\\8 \end{pmatrix} + k \begin{pmatrix} 4\\-10 \end{pmatrix}$$

$$\implies {\binom{-3}{4}} = \frac{1}{1+k} {\binom{4k-5}{8-10k}}$$
or, $k = \frac{2}{7}$

Fig. 0.1: Plot of line segment AB along with point \mathbf{P}