Fields in the vertex	Variational derivative of Lagrangian by fields
$A_{\mu} W^{+}_{\nu} W^{-}_{\rho}$	$-e(p_2^{\rho}g^{\mu\nu}-p_2^{\mu}g^{\nu\rho}-p_3^{\nu}g^{\mu\rho}+p_3^{\mu}g^{\nu\rho}+p_1^{\nu}g^{\mu\rho}-p_1^{\rho}g^{\mu\nu})$
$A_{\mu} \sim V^{+}_{\nu} \sim V^{-}_{\rho}$	$e(p_1^{\rho}g^{\mu\nu} - p_1^{\nu}g^{\mu\rho} - p_3^{\mu}g^{\nu\rho} + p_2^{\mu}g^{\nu\rho} + p_3^{\nu}g^{\mu\rho} - p_2^{\rho}g^{\mu\nu})$
\bar{b}_{ap} b_{bq} A_{μ}	$\frac{1}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{b}_{ap} b_{bq} $G_{\mu r}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^\mu$
\bar{b}_{ap} b_{bq} H	$-rac{1}{2}rac{e\cdot M_b}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
$ar{b}_{ap}$ b_{bq} Z_{μ}	$\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} ((1 + 2c_w^2) \cdot \frac{(1 - \gamma^5)_{cb}}{2} - 2s_w^2 \cdot \frac{(1 + \gamma^5)_{cb}}{2})$
\bar{b}_{ap} t_{bq} W^{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
\bar{c}_{ap} c_{bq} A_{μ}	$-rac{2}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{c}_{ap} c_{bq} $G_{\mu r}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^\mu$
\bar{c}_{ap} c_{bq} H	$-rac{1}{2}rac{e\cdot M_c}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
\bar{c}_{ap} c_{bq} Z_{μ}	$\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} ((1 - 4c_w^2) \cdot \frac{(1 - \gamma^5)_{cb}}{2} + 4s_w^2 \cdot \frac{(1 + \gamma^5)_{cb}}{2})$
\bar{c}_{ap} s_{bq} W^+_{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
$egin{array}{ccc} ar{d}_{ap} & d_{bq} & A_{\mu} \end{array}$	$\frac{1}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{d}_{ap} d_{bq} $G_{\mu r}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^\mu$
$ar{d}_{ap}$ d_{bq} H	$-rac{1}{2}rac{e\cdot Md}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
$ar{d}_{ap}$ d_{bq} Z_{μ}	$\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} ((1 + 2c_w^2) \cdot \frac{(1 - \gamma^5)_{cb}}{2} - 2s_w^2 \cdot \frac{(1 + \gamma^5)_{cb}}{2})$
\bar{d}_{ap} u_{bq} W^{-}_{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
$\bar{e}_a e_b A_\mu$	$e\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$ar{e}_a$ e_b Z_μ	$ -\frac{1}{2} \frac{e}{c_w \cdot s_w} \gamma_{ac}^{\mu} ((1 - 2c_w^2) \cdot \frac{(1 - \gamma^5)_{cb}}{2} + 2s_w^2 \cdot \frac{(1 + \gamma^5)_{cb}}{2}) $
$\bar{e}_a \nu^e_b W^\mu$	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\gamma^{\mu}_{ac}rac{(1-\gamma^5)_{cb}}{2}$
$\bar{\mu}_a$ μ_b A_μ	$e\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$\bar{\mu}_a$ μ_b H	$-rac{1}{2}rac{e\cdot M_{\mu}}{M_W\cdot s_w}\cdot \delta_{ab}$
$\bar{\mu}_a$ μ_b Z_μ	$-\frac{1}{2} \frac{e}{c_w \cdot s_w} \gamma_{ac}^{\mu} ((1 - 2c_w^2) \cdot \frac{(1 - \gamma^5)_{cb}}{2} + 2s_w^2 \cdot \frac{(1 + \gamma^5)_{cb}}{2})$
$\bar{\mu}_a \nu^{\mu}{}_b W^{-}{}_{\mu}$	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\gamma^{\mu}_{ac}rac{(1-\gamma^5)_{cb}}{2}$
$ar{ au}_a$ $ au_b$ A_μ	$e\gamma^{\mu}_{ac}\cdot\delta_{cb}$

Fields in the vertex	Variational derivative of Lagrangian by fields
$\bar{\tau}_a \tau_b H$	$-rac{1}{2}rac{e\cdot M_{ au}}{M_W\cdot s_w}\cdot\delta_{ab}$
$\bar{ au}_a$ $ au_b$ Z_μ	$ -\frac{1}{2} \frac{e}{c_w \cdot s_w} \gamma_{ac}^{\mu} ((1 - 2c_w^2) \cdot \frac{(1 - \gamma^5)_{cb}}{2} + 2s_w^2 \cdot \frac{(1 + \gamma^5)_{cb}}{2}) $
$\bar{\tau}_a \nu^{\tau}_b W^{-}_{\mu}$	$-\frac{1}{2}\frac{e\cdot\sqrt{2}}{s_w}\cdot\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
$G_{\mu p}$ $G_{\nu q}$ $G_{\rho r}$	$g_s f_{pqr} (p_3^{\nu} g^{\mu\rho} - p_3^{\mu} g^{\nu\rho} + p_1^{\rho} g^{\mu\nu} - p_1^{\nu} g^{\mu\rho} - p_2^{\rho} g^{\mu\nu} + p_2^{\mu} g^{\nu\rho})$
$ar{C}^G_{\ p}$ $C^G_{\ q}$ $G_{\mu r}$	$\int g_s \cdot p_2^\mu f_{pqr}$
H H H	$-rac{3}{2}rac{e\cdot M_H{}^2}{M_W{}\cdot s_w}$
H W^+_{μ} W^{ν}	$\left[rac{e\cdot M_W}{s_w}\cdot g^{\mu u} ight]$
H Z_{μ} Z_{ν}	$\left rac{e \cdot M_W}{c_w^2 \cdot s_w} \cdot g^{\mu u} ight $
$ H \sim V^+_{\mu} \sim V^{\nu} $	$-2\frac{M_W \cdot s_w \cdot \lambda_2}{e} \cdot g^{\mu\nu}$
$H \sim V_{1\mu} \sim V_{1\nu}$	$-2\frac{M_W \cdot s_w}{e} g^{\mu\nu} (\lambda_2 + \lambda_3 + \lambda_4)$
$H \sim V_{2\mu} \sim V_{2\nu}$	$-2\frac{M_W \cdot s_w}{e} g^{\mu\nu} (\lambda_2 + \lambda_3 - \lambda_4)$
$\bar{\nu}^e{}_a e_b W^+{}_\mu$	$-\frac{1}{2}\frac{e\cdot\sqrt{2}}{s_w}\cdot\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^e{}_a {\nu^e}_b Z_\mu$	$-\frac{1}{2}\frac{e}{c_w \cdot s_w} \cdot \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^{\mu}{}_{a}$ μ_{b} $W^{+}{}_{\mu}$	$-\frac{1}{2}\frac{e\cdot\sqrt{2}}{s_w}\cdot\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
$\bar{ u}^{\mu}{}_{a}$ $\nu^{\mu}{}_{b}$ Z_{μ}	$-\frac{1}{2}\frac{e}{c_w \cdot s_w} \cdot \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^{\tau}{}_{a}$ τ_{b} $W^{+}{}_{\mu}$	$-\frac{1}{2}\frac{e\cdot\sqrt{2}}{s_w}\cdot\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
$\bar{ u}^{ au}{}_{a}$ $ u^{ au}{}_{b}$ Z_{μ}	$-\frac{1}{2}\frac{e}{c_w \cdot s_w} \cdot \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
\bar{s}_{ap} c_{bq} W^{-}_{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
\bar{s}_{ap} s_{bq} A_{μ}	$\frac{1}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{s}_{ap} s_{bq} $G_{\mu r}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^\mu$
\bar{s}_{ap} s_{bq} H	$-rac{1}{2}rac{e\cdot M_s}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
\bar{s}_{ap} s_{bq} Z_{μ}	$\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} ((1 + 2c_w^2) \cdot \frac{(1 - \gamma^5)_{cb}}{2} - 2s_w^2 \cdot \frac{(1 + \gamma^5)_{cb}}{2})$
$ \bar{t}_{ap} b_{bq} W^{+}_{\mu}$	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
$egin{array}{cccc} ar{t}_{ap} & t_{bq} & A_{\mu} \end{array}$	$-\frac{2}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{t}_{ap} t_{bq} $G_{\mu r}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^\mu$

Fields in the vertex	Variational derivative of Lagrangian by fields
$\begin{bmatrix} \bar{t}_{ap} & t_{bq} & H \end{bmatrix}$	$-rac{1}{2}rac{e\cdot M_t}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
$egin{array}{cccc} ar{t}_{ap} & t_{bq} & Z_{\mu} \end{array}$	$\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} ((1 - 4c_w^2) \cdot \frac{(1 - \gamma^5)_{cb}}{2} + 4s_w^2 \cdot \frac{(1 + \gamma^5)_{cb}}{2})$
$ \bar{u}_{ap} d_{bq} W^+_{\ \mu}$	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
$ \bar{u}_{ap} u_{bq} A_{\mu}$	$-rac{2}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$ \bar{u}_{ap} u_{bq} G_{\mu r}$	$g_s \cdot \lambda^r_{pq} \gamma^\mu_{ab}$
$ \bar{u}_{ap} u_{bq} H$	$-rac{1}{2}rac{e\cdot Mu}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
$\left egin{array}{ccc} ar{u}_{ap} & u_{bq} & Z_{\mu} \end{array} \right $	$\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} ((1 - 4c_w^2) \cdot \frac{(1 - \gamma^5)_{cb}}{2} + 4s_w^2 \cdot \frac{(1 + \gamma^5)_{cb}}{2})$
$W^+_{\mu} W^{\nu} Z_{\rho}$	$-\frac{c_w \cdot e}{s_w} (p_1^{\nu} g^{\mu\rho} - p_1^{\rho} g^{\mu\nu} - p_2^{\mu} g^{\nu\rho} + p_2^{\rho} g^{\mu\nu} + p_3^{\mu} g^{\nu\rho} - p_3^{\nu} g^{\mu\rho})$
$W^{+}_{\mu} \sim V^{-}_{\nu} \sim V_{1\rho}$	$\frac{1}{2} \frac{e}{s_w} (p_1^{\nu} g^{\mu\rho} - p_1^{\rho} g^{\mu\nu} - p_2^{\mu} g^{\nu\rho} + p_3^{\mu} g^{\nu\rho} + p_2^{\rho} g^{\mu\nu} - p_3^{\nu} g^{\mu\rho})$
$W^{+}_{\mu} \sim V^{-}_{\nu} \sim V_{2\rho}$	$\frac{1}{2} \frac{i \cdot e}{s_w} (p_1^{\nu} g^{\mu\rho} - p_1^{\rho} g^{\mu\nu} - p_2^{\mu} g^{\nu\rho} + p_3^{\mu} g^{\nu\rho} + p_2^{\rho} g^{\mu\nu} - p_3^{\nu} g^{\mu\rho})$
$W^{-}_{\mu} \sim V^{+}_{\nu} \sim V_{1\rho}$	$\frac{1}{2} \frac{e}{s_w} (p_1^{\rho} g^{\mu\nu} - p_1^{\nu} g^{\mu\rho} - p_3^{\mu} g^{\nu\rho} + p_2^{\mu} g^{\nu\rho} + p_3^{\nu} g^{\mu\rho} - p_2^{\rho} g^{\mu\nu})$
$W^{-}_{\mu} \sim V^{+}_{\nu} \sim V_{2\rho}$	$-\frac{1}{2}\frac{i \cdot e}{s_w}(p_1^{\rho}g^{\mu\nu} - p_1^{\nu}g^{\mu\rho} - p_3^{\mu}g^{\nu\rho} + p_2^{\mu}g^{\nu\rho} + p_3^{\nu}g^{\mu\rho} - p_2^{\rho}g^{\mu\nu})$
$Z_{\mu} \sim V^{+}_{\nu} \sim V^{-}_{\rho}$	$ -\frac{1}{2} \frac{(1-2c_w^2) \cdot e}{c_w \cdot s_w} (p_1^{\rho} g^{\mu\nu} - p_1^{\nu} g^{\mu\rho} - p_3^{\mu} g^{\nu\rho} + p_2^{\mu} g^{\nu\rho} + p_3^{\nu} g^{\mu\rho} - p_2^{\rho} g^{\mu\nu}) $
$Z_{\mu} \sim V_{1\nu} \sim V_{2\rho}$	$ -\frac{1}{2} \frac{i \cdot e}{c_w \cdot s_w} (p_1^{\nu} g^{\mu\rho} - p_1^{\rho} g^{\mu\nu} - p_2^{\mu} g^{\nu\rho} + p_3^{\mu} g^{\nu\rho} + p_2^{\rho} g^{\mu\nu} - p_3^{\nu} g^{\mu\rho}) $
$A_{\mu} A_{\nu} W^{+}{}_{\rho} W^{-}{}_{\sigma}$	$-e^2(2g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma} - g^{\mu\sigma}g^{\nu\rho})$
$A_{\mu} A_{\nu} \sim V^{+}{}_{\rho} \sim V^{-}{}_{\sigma}$	$-e^2(2g^{\mu\nu}g^{\rho\sigma} - g^{\mu\sigma}g^{\nu\rho} - g^{\mu\rho}g^{\nu\sigma})$
$A_{\mu} W^{+}_{\nu} W^{-}_{\rho} Z_{\sigma}$	$-\frac{c_w \cdot e^2}{s_w} (2g^{\mu\sigma}g^{\nu\rho} - g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma})$
$A_{\mu} W^{+}_{\nu} \sim V^{-}_{\rho} \sim V_{1\sigma}$	$\frac{1}{2} \frac{e^2}{s_w} \left(2g^{\mu\sigma} g^{\nu\rho} - g^{\mu\rho} g^{\nu\sigma} - g^{\mu\nu} g^{\rho\sigma} \right)$
$A_{\mu} W^{+}_{\nu} \sim V^{-}_{\rho} \sim V_{2\sigma}$	$\frac{1}{2} \frac{i \cdot e^2}{s_w} (2g^{\mu\sigma} g^{\nu\rho} - g^{\mu\rho} g^{\nu\sigma} - g^{\mu\nu} g^{\rho\sigma})$
$A_{\mu} W^{-}_{\nu} \sim V^{+}_{\rho} \sim V_{1\sigma}$	$-\frac{1}{2}\frac{e^2}{s_w}(g^{\mu\rho}g^{\nu\sigma} - 2g^{\mu\sigma}g^{\nu\rho} + g^{\mu\nu}g^{\rho\sigma})$
$A_{\mu} W^{-}_{\nu} \sim V^{+}_{\rho} \sim V_{2\sigma}$	$\frac{1}{2} \frac{i \cdot e^2}{s_w} (g^{\mu\rho} g^{\nu\sigma} - 2g^{\mu\sigma} g^{\nu\rho} + g^{\mu\nu} g^{\rho\sigma})$
$A_{\mu} Z_{\nu} \sim V^{+}{}_{\rho} \sim V^{-}{}_{\sigma}$	$\frac{1}{2} \frac{(1 - 2c_w^2) \cdot e^2}{c_w \cdot s_w} (2g^{\mu\nu} g^{\rho\sigma} - g^{\mu\sigma} g^{\nu\rho} - g^{\mu\rho} g^{\nu\sigma})$
$G_{\mu p}$ $G_{\nu q}$ $G_{\rho r}$ $G_{\sigma s}$	$g_s^2 (g^{\mu\rho}g^{\nu\sigma}f_{pqt}f_{rst} - g^{\mu\sigma}g^{\nu\rho}f_{pqt}f_{rst} + g^{\mu\nu}g^{\rho\sigma}f_{prt}f_{qst})$
	$-g^{\mu\sigma}g^{\nu\rho}f_{prt}f_{qst} + g^{\mu\nu}g^{\rho\sigma}f_{pst}f_{qrt} - g^{\mu\rho}g^{\nu\sigma}f_{pst}f_{qrt})$
H H H	$-\frac{3}{4} \frac{e^2 \cdot M_H^2}{M_W^2 \cdot s_w^2}$

Fields in the vertex	Variational derivative of Lagrangian by fields
$H H W^+_{\mu} W^{\nu}$	$\left rac{1}{2} rac{e^2}{s_w^2} \cdot g^{\mu u} ight $
H H Z_{μ} $Z_{ u}$	$\frac{1}{2} \frac{e^2}{c_w^2 \cdot s_w^2} \cdot g^{\mu\nu}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-\lambda_2 \cdot g^{\mu u}$
H H $\sim V_{1\mu}$ $\sim V_{1\nu}$	$-g^{\mu u}(\lambda_2+\lambda_3+\lambda_4)$
$H H \sim V_{2\mu} \sim V_{2\nu}$	$-g^{\mu u}(\lambda_2+\lambda_3-\lambda_4)$
$W^{+}_{\mu} W^{+}_{\nu} W^{-}_{\rho} W^{-}_{\sigma}$	$\frac{e^2}{s_w^2} (2g^{\mu\nu}g^{\rho\sigma} - g^{\mu\sigma}g^{\nu\rho} - g^{\mu\rho}g^{\nu\sigma})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-\frac{c_w^2 \cdot e^2}{s_w^2} (2g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma} - g^{\mu\sigma}g^{\nu\rho})$
$W^{+}_{\mu} W^{-}_{\nu} \sim V^{+}_{\rho} \sim V^{-}_{\sigma}$	$-\frac{1}{2}\frac{e^2}{s_w^2}(g^{\mu\sigma}g^{\nu\rho} - 2g^{\mu\rho}g^{\nu\sigma} + g^{\mu\nu}g^{\rho\sigma})$
$W^+_{\mu} W^{\nu} \sim V_{1\rho} \sim V_{1\sigma}$	$\frac{1}{4} \frac{e^2}{s_w^2} (g^{\mu\sigma} g^{\nu\rho} + g^{\mu\rho} g^{\nu\sigma} - 2g^{\mu\nu} g^{\rho\sigma})$
$W^+_{\mu} W^{\nu} \sim V_{1\rho} \sim V_{2\sigma}$	$\left(rac{3}{4} rac{i \cdot e^2}{s_w^2} (g^{\mu ho} g^{ u \sigma} - g^{\mu \sigma} g^{ u ho}) ight)$
$ W^+_{\mu} W^{\nu} \sim V_{2\rho} \sim V_{2\sigma} $	$\frac{1}{4} \frac{e^2}{s_w^2} (g^{\mu\sigma} g^{\nu\rho} + g^{\mu\rho} g^{\nu\sigma} - 2g^{\mu\nu} g^{\rho\sigma})$
$W^{+}_{\mu} Z_{\nu} \sim V^{-}_{\rho} \sim V_{1\sigma}$	$-\frac{1}{4} \frac{e^2}{c_w \cdot s_w^2} ((1 - 4c_w^2) \cdot g^{\mu\rho} g^{\nu\sigma} + (1 + 2c_w^2) \cdot g^{\mu\sigma} g^{\nu\rho})$
	$-2s_w^2 \cdot g^{\mu\nu}g^{\rho\sigma}$
$W^{+}_{\mu} Z_{\nu} \sim V^{-}_{\rho} \sim V_{2\sigma}$	$-\frac{1}{4} \frac{i \cdot e^2}{c_w \cdot s_w^2} ((1 - 4c_w^2) \cdot g^{\mu\rho} g^{\nu\sigma} + (1 + 2c_w^2) \cdot g^{\mu\sigma} g^{\nu\rho})$
	$-2s_w^2 \cdot g^{\mu\nu}g^{ ho\sigma})$
$W^{\mu} Z_{\nu} \sim V^+_{\rho} \sim V_{1\sigma}$	$-\frac{1}{4} \frac{e^2}{c_w \cdot s_w^2} ((1 + 2c_w^2) \cdot g^{\mu\sigma} g^{\nu\rho} + (1 - 4c_w^2) \cdot g^{\mu\rho} g^{\nu\sigma})$
	$-2s_w^2 \cdot g^{\mu\nu}g^{\rho\sigma}$
$ W^{\mu} Z_{\nu} \sim V^+_{\rho} \sim V_{2\sigma} $	$\frac{1}{4} \frac{i \cdot e^2}{c_w \cdot s_w^2} ((1 + 2c_w^2) \cdot g^{\mu\sigma} g^{\nu\rho} + (1 - 4c_w^2) \cdot g^{\mu\rho} g^{\nu\sigma})$
	$-2s_w^2 \cdot g^{\mu\nu}g^{\rho\sigma}$
$Z_{\mu} Z_{\nu} \sim V^{+}_{\rho} \sim V^{-}_{\sigma}$	$-\frac{1}{4} \frac{(1 - 2c_w^2)^2 \cdot e^2}{c_w^2 \cdot s_w^2} (2g^{\mu\nu}g^{\rho\sigma} - g^{\mu\sigma}g^{\nu\rho} - g^{\mu\rho}g^{\nu\sigma})$
Z_{μ} Z_{ν} $\sim V_{1\rho}$ $\sim V_{1\sigma}$	$-\frac{1}{4} \frac{e^2}{c_w^2 \cdot s_w^2} (2g^{\mu\nu} g^{\rho\sigma} - g^{\mu\sigma} g^{\nu\rho} - g^{\mu\rho} g^{\nu\sigma})$
Z_{μ} Z_{ν} $\sim V_{2\rho}$ $\sim V_{2\sigma}$	$-\frac{1}{4} \frac{e^2}{c_w^2 \cdot s_w^2} (2g^{\mu\nu} g^{\rho\sigma} - g^{\mu\sigma} g^{\nu\rho} - g^{\mu\rho} g^{\nu\sigma})$
$\bigg \sim V^+{}_{\mu} \sim V^+{}_{\nu} \sim V^-{}_{\rho} \sim V^-{}_{\sigma}$	$-2(\alpha_2 \cdot g^{\mu\rho}g^{\nu\sigma} + \alpha_3 \cdot g^{\mu\rho}g^{\nu\sigma} + \alpha_2 \cdot g^{\mu\sigma}g^{\nu\rho} + \alpha_3 \cdot g^{\mu\sigma}g^{\nu\rho})$
$ \sim V^+_{\mu} \sim V^{\nu} \sim V_{1\rho} \sim V_{1\sigma} $	$-(2\alpha_2 \cdot g^{\mu\nu}g^{\rho\sigma} + \alpha_3 \cdot g^{\mu\rho}g^{\nu\sigma} + \alpha_3 \cdot g^{\mu\sigma}g^{\nu\rho})$
	$i \cdot \alpha_3 (g^{\mu\sigma}g^{\nu\rho} - g^{\mu\rho}g^{\nu\sigma})$
Fields in the vertex	Variational derivative of Lagrangian by fields
	$-(2\alpha_2 \cdot g^{\mu\nu}g^{\rho\sigma} + \alpha_3 \cdot g^{\mu\rho}g^{\nu\sigma} + \alpha_3 \cdot g^{\mu\sigma}g^{\nu\rho})$
$\sim V_{1\mu} \sim V_{1\nu} \sim V_{1\rho} \sim V_{1\sigma}$	$-2(\alpha_2 \cdot g^{\mu\nu}g^{\rho\sigma} + \alpha_3 \cdot g^{\mu\nu}g^{\rho\sigma} + \alpha_2 \cdot g^{\mu\rho}g^{\nu\sigma} + \alpha_3 \cdot g^{\mu\rho}g^{\nu\sigma} + \alpha_2 \cdot g^{\mu\sigma}$
	$+\alpha_3 \cdot g^{\mu\sigma}g^{\nu\rho})$
$\sim V_{1\mu} \sim V_{1\nu} \sim V_{2\rho} \sim V_{2\sigma}$	$-2g^{\mu\nu}g^{\rho\sigma}(\alpha_2+\alpha_3)$

 $+\alpha_3 \cdot g^{\mu\sigma}g^{\nu\rho}$

 $-2(\alpha_2 \cdot g^{\mu\nu}g^{\rho\sigma} + \alpha_3 \cdot g^{\mu\nu}g^{\rho\sigma} + \alpha_2 \cdot g^{\mu\rho}g^{\nu\sigma} + \alpha_3 \cdot g^{\mu\rho}g^{\nu\sigma} + \alpha_2 \cdot g^{\mu\sigma}g^{\nu\rho}$

 $\sim V_{2\mu} \sim V_{2\nu} \sim V_{2\rho} \sim V_{2\sigma}$