Homework 4:

I pledge my honor that I have abided by the Stevens honor system.

2.1: 10, 26, 30, 42; 2.2: 4, 8a, 12, 16abc, 20; 2.3: 10, 16, 20

2.1:

10. Determine whether these statements are true or false.

a)	$\emptyset \in \{\emptyset\}$	True
b)	$\emptyset \in \{\emptyset, \{\emptyset\}\}$	True
c)	$\{\varnothing\} \in \{\varnothing\}$	False
d)	$\{\varnothing\} \in \{\{\varnothing\}\}$	True
e)	$\{\varnothing\} \subset \{\varnothing, \{\varnothing\}\}$	True
f)	$\{\{\varnothing\}\} \subset \{\varnothing, \{\varnothing\}\}$	False
g)	$\{\{\emptyset\}\} \subset \{\{\emptyset\}, \{\emptyset\}\}$	True

26. Show that if $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$.

1.	$A \subseteq C = \forall x (x \in A \rightarrow x \in C)$	definition of⊆
2.	$B \subseteq D = \forall y (y \in B \rightarrow y \in D)$	definition of ⊆
3.	$(x, y) \in A \times B$	relation from A to B
4.	$(x, y) \in C \times D$	relation from C to D
5	$A \times B \subset C \times D$	

- 30. Suppose that A x B = \emptyset , where A and B are sets. What can you conclude? Either A, B, or both are empty sets (\emptyset).
- 42. Translate each quantification into English and determine the truth-value.
 - a) $\exists x \in \mathbb{R} (x^3 = -1)$: There exists a real number, x, such that $x^3 = -1$. True $(x = -1) : (-1)^3 = -1$
 - b) $\exists x \in \mathbf{Z} (x + 1 > x)$: There exists an integer x such that x + 1 > x. True (x = 1: 1 + 1 = 2 > 1)
 - c) $\forall x \in \mathbb{Z} (x 1 \in \mathbb{Z})$: For all integers x, x 1 is also an integer. True: Domain is \mathbb{Z} , so Range is \mathbb{Z} .
 - d) $\forall x \in \mathbf{Z} \ (x^2 \in \mathbf{Z})$: For all integers x, x^2 is also an integer. True: Domain is $\mathbf{Z} \ (-\infty, \infty)$, Range is $\mathbf{Z} \ (0, \infty)$

2.2:

- 4. Let $A = \{a, b, c, d, e\}$ and $B = \{a, b, c, d, e, f, g, h\}$. Find:
 - a. $A \cup B: \{x \mid x \in A \lor x \in B\} => \{a, b, c, d, e, f, g, h\}$
 - b. $A \cap B: \{x \mid x \in A \land x \in B\} => \{a, b, c, d, e\}$
 - c. $A B: \{x \mid x \in A \land x \notin B\} => \{\}$
 - d. $B A: \{x \mid x \in B \land x \notin A\} => \{f, g, h\}$
- 8. a. Prove $A \cup A = A$.

$$\forall x (x \in (A \cup A) \Leftrightarrow x \in A)$$

1. $x \in A \cup A$

definition of \cup

```
2. x \in \{y | y \in A \land (y \in A \lor y \in A)\}
```

set builder notation idempotence of v

3. $x \in A \lor x \in A$ 4. $x \in A$

12. Prove $A \cup (A \cap B) = A$.

 $\forall x (x \in A \lor (x \in A \land x \in B) \Leftrightarrow x \in A)$

- 1. $x \in A \cup (A \cap B)$ definition of \cup , \cap
- 2. $x \in \{z \mid z \in A \lor (z \in A \land z \in B)\}$ set builder
- 3. $x \in A \lor (x \in A \land x \in B)$ $x \in A$ in both cases, therefore.
- 4. $A \cup (A \cap B) \subseteq A$ switch directions...
- 5. $y \in \{z \mid z \in A \lor (z \in A \land z \in B)\}$ set builder
- 6. $y \in A \lor y \in (A \cap B)$ definition of \cup , \cap 7. $y \in A \cup (A \cap B)$ $y \in A$ in both cases
- 8. $A \subseteq A \cup (A \cap B)$ definition of absorption law
- 9. $A \cup (A \cap B) = A$

16. Let A and B be sets. Show that:

a. $(A \cap B) \subseteq A$

 $\forall x (x \in (A \cap B) \rightarrow x \in A)$

- 1. $x \in (A \cap B)$ definition of \cap 2. $x \in \{y \mid y \in A \land y \in B\}$ set builder
- 3. $x \in A \land x \in B$ A intersect B is a subset of A
- 4. $(A \cap B) \subseteq A$
- b. $A \subseteq (A \cup B)$

 $\forall x (x \in A \rightarrow x \in (A \cup B))$

- 1. $x \in A \lor x \in B$ definition of \lor 2. $x \in A \cup B$ definition of \lor
- 3. $x \in A \rightarrow x \in A \cup B$ if an element exists in a subset, then it exists in the set
- 4. $x \in A \rightarrow x \in A \lor x \in B$ definition of \lor
- 5. $A \subseteq (A \cup B)$ x is in A or B, A is a subset or equal to $(A \cup B)$

c. $A - B \subseteq A$

 $\forall x ((x \in A \land x \notin B) \rightarrow x \in A)$

- 1. $x \in A B$ definition of difference
- 2. $x \in \{y \mid y \in A \land y \notin B\}$ set builder
- 3. $x \in A \land x \notin B$ if x isn't in B, then it's just in A
- 4. $x \in A$ the difference of A and B is a subset of A
- 5. $A B \subseteq A$

20. Show that if A and B are sets with $A \subseteq B$, then:

a. $A \cup B = B$

If $A \subseteq B$, then $A \in B \land (x \in A \lor x \in B)$.

Therefore, $x \in B$.

Therefore, $A \cup B = B$

b. $A \cap B = A$

If
$$A \subseteq B$$
, then $A \in B \land (x \in A \land x \in B)$
Therefore, $A = B \rightarrow A \cap B = A$

2.3:

10. Determine whether each one of these functions from {a, b, c, d} to itself is one-to-one.

a.
$$f(a) = b$$
, $f(b) = a$, $f(c) = c$, $f(d) = d$

True

b.
$$f(a) = b$$
, $f(b) = b$, $f(c) = d$, $f(d) = c$

False

b.
$$f(a) = b$$
, $f(b) = b$, $f(c) = d$, $f(d) = c$
c. $f(a) = d$, $f(b) = b$, $f(c) = c$, $f(d) = d$

False

- 16. Consider these functions from the set of students in a discrete mathematics class. Under what conditions is the function one-to-one if it assigns to a student his or her:
 - a. Mobile phone number: every phone has its own phone number.
 - b. Student id number: the school gives each student a unique id number.
 - c. Final grade in the class: no two students get the same grade in the class.
 - d. Hometown: no two students are from the same town.
- 20. Give an example of a function form **N** to **N** that is:
 - a. One-to-one but not onto: f(x) = x + 1
 - b. Onto but not one-to-one: f(x) = x/2
 - c. Both onto and one-to-one (different from identity):

$$f(x) = \begin{cases} x+1 & \text{when } x \text{ is even} \\ x-1 & \text{when } x \text{ is odd} \end{cases}$$

d. Neither one-to-one nor onto: f(x) = c where c is a constant.