Logic Simulation

- Introduction
- Simulation Models
 - Logic States
 - Logic Gate Evaluation
 - Delay Models
- Logic Simulation Techniques
- Issues of Logic Simulations
- Conclusions

Logic States

- Binary logic (0,1)
- Three-valued logic (0,1, u) aka. Ternary logic [Eichelberger 65]
 - u (unknown) for logic value cannot be determined
 - * aka. "x"
- Four-valued logic (0,1, u,z)
 - z = floating node without conducting path to VDD or GND
 - * aka. high impedance
 - Note: do not confuse "u" and "z"

AND	0	1	u	Z
0	0	0	0	0
1	0	1	u	u
u	0	u	u	u
Z	0	u	u	u

OR	0	1	u	Z
0	0	1	u	u
1	1	1	1	1
u	u	1	u	u
Z	u	1	u	u

NOT	0	1	u	Z
	1	0	u	u

More States, More Accuracy, More CPU Time

Ternary Logic Simulation

Problem: output K should be zero

(b) Enumerate all possible cases (B = 0 and 1): K = 0

Possible Solution

Introduce u' to represent inverse of u

- What is problem with this solution?
 - For every different source of u, need one unique u'
 - * Too many u's!
 - Need symbolic simulation to distinguish all u's

Moral: Simulation Results not 100% accurate. Must Check!

High Impedance State (Z)

Tri-state bus driver

$$o_i = \begin{cases} x_i & \text{if } e_i = 1 \\ Z & \text{if } e_i = 0 \end{cases}$$

- Only one driver enabled at a time
 - e₁,e₂, e₃ are one-hot signals

(WWW Fig 3.6)

Quiz

Q: If e_1, e_2, e_3 are NOT one-hot signals what is y?

A:

(WWW Fig 3.6)

Logic Simulation

- Introduction
- Simulation Models
 - Logic States
 - Logic Gate Evaluation
 - * Truth table
 - Input scanning
 - Delay Models
- Logic Simulation Techniques
- Issues of Logic Simulations
- Conclusions

Gate Evaluation Using Truth Table

- Determine output value based on a pre-stored truth table
- Example: 4-valued logic truth table

AND	0	1	u	Z	
0	0	0	0	0	_
1	0	1	u	u	
u	0	u	u	u	
Z	0	u	u	u	

OR	0	1	u	Z
0	0	1	u	u
1	1	1	1	1
u	u	1	u	u
Z	u	1	u	u

NOT	0	1	u	Z
	1	0	u	u

Quiz:

What is size of truth table for n-input gate using 4 valued-logic?

A:

- Practical implementation
 - Break n-input gate into multiple 2-input gates
 - Use for-loop to evaluate gate one by one

Input Scanning

- Idea: check gate inputs one by one
 - Determine gate output by number of c, i, u
- Gates can be characterized by *
 - Controlling value, c
 - * c = input value that decides gate output
 - * regardless of other gate inputs
 - Inversion, i
 - * *i* =1, gate output is inverted w.r.t. gate input

* i = 0, otherwise

	_	C	1	
	AND	0	0	•
	OR	1	0	
*Assumes only elementary gates : AND, OR, NAND, and NOR	NAND	0	1	
	NOR	1	1	

Input Scanning Algorithm

Logic Simulation

- Introduction
- Simulation Models
 - Logic States
 - Logic Gate Evaluation
 - Delay Models
 - Gate delay model
 - Wire delay (not in lecture)
- Logic Simulation Techniques
- Issues of Logic Simulations
- Conclusions

Gate Delay Models

- Propagation delay (aka. Transport delay)
 - DEF: time from gate input change to output change
 - * Zero delay: prop. delay of all gates is zero
 - * Unit delay: prop. delay of all gates is 1 time unit
 - * Multiple delay: prop. delay is multiple of some time unit
 - * Rise delay, fall delay
- Ambiguous delay model
 - Max delay, Min delay, Typical (nominal) delay
- Inertial delay model
 - Minimum amount of time during which a signal must persist at gate input in order to change gate output

Different Delay Model, Different Usage

Example

Summary

- Simulation Models
 - Logic States
 - * 0,1,u,z
 - Logic Gate Evaluation
 - Truth table, Input scanning
 - Delay Models
 - * propagation, ambiguous, inertial delay

FFT 1

- Q: From truth table to input scanning, what do we gain/loose?
 - HINT: CPU time vs memory

FFT 2

- Q: What is the use of pull-up or pull-down?
 - HINT: what happens when $e_1 = e_2 = e_3 = 0$

(WWW Fig 3.6)

Appendix: Logic Symbols

- IEEE logic symbols: rectangular shape v.s. distinctive shape
- AND

Or

inverter

