CS101 Algorithms and Data Structures

Graph traversal Textbook Ch 22.2/3/5

Outline

- Graph traversal
 - Breadth-first
 - Depth-first
- Applications
 - Connectedness
 - Unweighted path length
 - Identifying bipartite graphs

Graph Traversal

Traversals of a graph

- A means of visiting all the vertices in a graph
- Also called searches

Similar to tree traversal, we have breadth-first and depth-first traversals on graphs

- Breadth-first requires a queue
- Depth-first requires a stack

Graph Traversal

Different from tree traversal: there may be multiple paths between two vertices.

To avoid visiting a vertex for multiple times, we have to track which vertices have already been visited

- We may have an indicator variable in each vertex
- We may use a hash table or a bit array
- Requiring $\Theta(|V|)$ memory

The time complexity of graph traversal cannot be better than and should not be worse than $\Theta(|V| + |E|)$

- Connected graphs simplify this to $\Theta(/E|)$
- Worst case: $\Theta(|V|^2)$

Breadth-first traversal

Breadth-first traversal on a graph:

- Choose any vertex, mark it as visited and push it onto queue
- While the queue is not empty:
 - Pop the top vertex v from the queue
 - For each vertex adjacent to *v* that has not been visited:
 - Mark it visited, and
 - Push it onto the queue

This continues until the queue is empty

If there are no unvisited vertices, the graph is connected

The size of the queue is O(|V|)

Consider this graph

Performing a breadth-first traversal

Push the first vertex onto the queue

Performing a breadth-first traversal

- Pop A and push B, C and E

В

Α

Performing a breadth-first traversal:

- Pop B and push D

Performing a breadth-first traversal:

- Pop C and push F

Performing a breadth-first traversal:

- Pop E and push G and H

A, B, C, E

Performing a breadth-first traversal:

- The queue is empty: we are finished

A, B, C, E, D, F, G, H, I

Iterative depth-first traversal

An implementation can use a queue

```
void Graph::depth first traversal( Vertex *first ) const {
    unordered map<Vertex *, int> hash;
    hash.insert( first );
    std::queue<Vertex *> queue;
    queue.push( first );
    while ( !queue.empty() ) {
        Vertex *v = queue.front();
        queue.pop();
        // Perform an operation on v
        for ( Vertex *w : v->adjacent vertices() ) {
            if (!hash.member( w ) ) {
                hash.insert( w );
                queue.push( w );
```

Depth-first traversal

Depth-first traversal on a graph:

- Choose any vertex, mark it as visited
- From that vertex:
 - If there is another adjacent vertex not yet visited, go to it
 - Otherwise, go back to the previous vertex
- Continue until no visited vertices have unvisited adjacent vertices

Two implementations:

- Recursive
- Use a stack

Depth-first traversal

A recursive implementation:

```
void Vertex::depth_first_traversal() const {
    for ( Vertex *v : adjacent_vertices() ) {
        if ( !v->visited() ) {
            v->mark_visited();
            v->depth_first_traversal();
        }
    }
}
```

Depth-first traversal

Use a stack:

- Choose any vertex
 - Mark it as visited
 - Place it onto an empty stack
- While the stack is not empty:
 - If the vertex on the top of the stack has an unvisited adjacent vertex v,
 - Mark v as visited
 - Place v onto the top of the stack
 - Otherwise, pop the top of the stack

Perform a recursive depth-first traversal on this same graph

Performing a recursive depth-first traversal:

Visit the first node

Performing a recursive depth-first traversal:

A has an unvisited neighbor

A, B

Performing a recursive depth-first traversal:

- B has an unvisited neighbor

A, B, C

Performing a recursive depth-first traversal:

C has an unvisited neighbor

A, B, C, D

Performing a recursive depth-first traversal:

D has no unvisited neighbors, so we return to C

A, B, C, D, E

Performing a recursive depth-first traversal:

E has an unvisited neighbor

Performing a recursive depth-first traversal:

F has an unvisited neighbor

Performing a recursive depth-first traversal:

H has an unvisited neighbor

Performing a recursive depth-first traversal:

We recurse back to C which has an unvisited neighbour
 A, B, C, D, E, G, I, H, F

Performing a recursive depth-first traversal:

We recurse finding that no other nodes have unvisited neighbours
 A, B, C, D, E, G, I, H, F

Comparison

The order in which vertices can differ greatly

An iterative depth-first traversal may also be different again

A, B, C, E, D, F, G, H, I

A, B, C, D, E, G, I, H, F

Outline

- Graph traversal
 - Breadth-first
 - Depth-first
- Applications
 - Connectedness
 - Unweighted path length
 - Identifying bipartite graphs

Connected

First, let us determine whether one vertex is connected to another

 $-v_i$ is connected to v_k if there is a path from the first to the second

Strategy:

- Perform a breadth-first traversal starting at v_i
- If the vertex v_k is ever found during the traversal, return true
- Otherwise, return false

Connected

Consider implementing a breadth-first traversal on an undirected graph:

- Choose any vertex, mark it as visited and push it onto queue
- While the queue is not empty:
 - Pop to top vertex v from the queue
 - For each vertex adjacent to v that has not been visited:
 - Mark it visited, and
 - Push it onto the queue

This continues until the queue is empty

Note: if there are no unvisited vertices, the graph is connected,

Is A connected to D?

Vertex A is marked as visited and pushed onto the queue

Pop the head, A, and mark and push B, F and G

Pop B and mark and, in the left graph, mark and push H

On the right graph, B has no unvisited adjacent vertices

Popping F results in the pushing of E

In either graph, G has no adjacent vertices that are unvisited

Popping H on the left graph results in C, I, D being pushed

On the left, D is now visited

We determine A is connected to D

On the right, the queue is empty and D is not visited

We determine A is not connected to D

Suppose we want to partition the vertices into connected sub-graphs

- While there are unvisited vertices in the tree:
 - Select an unvisited vertex and perform a traversal on that vertex
 - Each vertex that is visited in that traversal is added to the set initially containing the initial unvisited vertex
- Continue until all vertices are visited

We would use a disjoint set data structure for maximum efficiency

Here we start with a set of singletons

Α	В	С	D	E	F	G	Н	ı	J	K
Α	В	С	D	E	F	G	Н	I	J	K

The vertex A is unvisited, so we start with it

Α	В	С	D	E	F	G	Н	1	J	K
A	В	С	D	E	F	G	Н	ı	J	K

Take the union of with its adjacent vertices: {A, B, H, I}

Α	В	С	D	E	F	G	Н	1	J	K
A	A	С	D	E	F	G	A	A	J	K

As the traversal continues, we take the union of the set {G} with the set containing H: {A, B, G, H, I}

Α	В	С	D	E	F	G	Н	1	J	K
Α	A	С	D	E	F	A	A	A	J	K

Start another traversal with C: this defines a new set {C}

Α	В	С	D	E	F	G	Н	I	J	K
A	A	С	D	E	F	A	A	A	J	K

We take the union of {C} and its adjacent vertex J: {C, J}

This traversal is finished

Α	В	С	D	E	F	G	Н	1	J	K
A	A	С	D	E	F	A	A	A	С	K

We start again with the set {D}

Α	В	С	D	Е	F	G	Н	1	J	K
A	A	С	D	E	F	A	A	A	С	K

K and E are adjacent to D, so take the unions creating {D, E, K}

Α	В	С	D	E	F	G	Н	I	J	K
A	A	С	D	D	F	A	A	A	С	D

Finally, during this last traversal we find that F is adjacent to E

Take the union of {F} with the set containing E: {D, E, F, K}

Α	В	С	D	E	F	G	Н	1	J	K
A	A	С	D	D	D	A	A	A	С	D

All vertices are visited, so we are done

- There are three connected sub-graphs {A, B, G, H, I}, {C, J}, {D, E, F, K}

Α	В	С	D	E	F	G	Н	1	J	K
A	A	С	D	D	D	A	A	A	С	D

How do you implement a set of unvisited vertices so as to:

- Find an unvisited vertex in $\Theta(1)$ time?
- Remove a vertex that has been visited from this list in $\Theta(1)$ time?

Bad solution

- We can simply flag vertices as visited, but this would require O(|V|) time to find an unvisited vertex

Good solutions

- A hash table of unvisited vertices
- Or, an array of unvisited vertices, and we store for each vertex its position in the array

Create two arrays:

- One array, unvisited, will contain the unvisited vertices
- The other, $loc_in_unvisited$, will contain the location of vertex v_i in the first array

0	1	2	3	4	5	6	7	8	9	10
Α	В	С	D	Е	F	G	Н	I	J	K

Α	В	С	D	E	F	G	Н	1	J	К
0	1	2	3	4	5	6	7	8	9	10

 Or, instead of a second array, we may add a member variable in the vertex class

Suppose we visit D

- D is in entry 3
- How shall we delete D in the first array?

0	1	2	3	4	5	6	7	8	9	10
Α	В	С	D	E	F	G	Н	_	J	К

А	В	С	D	E	F	G	Н	1	J	К
0	1	2	3	4	5	6	7	8	9	10

Suppose we visit D

- D is in entry 3
- Copy the last unvisited vertex into this location and update the location array for this value

0	1	2	3	4	5	6	7	8	9	10
Α	В	С	K ⁴	ш	F	G	Η	_	_	/
		-								
А	В	С	D	E	F	G	Ι	-	J	K
0	1	2	3	4	5	6	7	8	9	3

Suppose we visit G

- G is in entry 6

0	1	2	3	4	5	6	7	8	9	10
Α	В	С	K	Е	F	G	Н	I	J	

Α	В	С	D	E	F	G	Н	1	J	K
0	1	2	3	4	5	6	7	8	9	3

Suppose we visit G

- G is in entry 6
- Copy the last unvisited vertex into this location and update the location array for this value

0	1	2	3	4	5	6	7	8	9	10
Α	В	С	K	Ε	F	J	Н	- 1		
А	В	С	D	E	F	G	Н	1	J	K
0	1	2	3	1	5	6	7	Q	6	α

Suppose we now visit K

- K is in entry 3

0	1	2	3	4	5	6	7	8	9	10
Α	В	С	K	Е	F	J	Н	l		

Α	В	С	D	E	F	G	Н	1	J	K
0	1	2	3	4	5	6	7	8	6	3

Suppose we now visit K

- K is in entry 3
- Copy the last unvisited vertex into this location and update the location array for this value

0	1	2	3	4	5	6	7	8	9	10
А	В	С	1 *	E	F	J	Н			
А	В	С	D	E	F	G	Н	1	J	K
0	1	2	2	1	5	6	7	~	6	\sim

If we want to find an unvisited vertex, we simply return the last entry of the first array and return it

0	1	2	3	4	5	6	7	8	9	10
Α	В	С	I	Е	F	J	Н			

Α	В	С	D	E	F	G	Н	1	J	K
0	1	2	3	4	5	6	7	3	6	3

In this case, an unvisited vertex is H

Removing it is trivial: just decrement the count of unvisited vertices

0	1	2	3	4	5	6	7	8	9	10
Α	В	С	I	E	F	J				

Α	В	С	D	E	F	G	H	1	J	K
0	1	2	3	4	5	6	7	3	6	3

Outline

- Graph traversal
 - Breadth-first
 - Depth-first
- Applications
 - Connectedness
 - Unweighted path length
 - Identifying bipartite graphs

Problem: in an unweighted graph, find the distances from one vertex ν to all the other vertices

Distance: the length of the shortest path between two vertices

Method:

- Use a breadth-first traversal
- Vertices are added in *layers*
- The starting vertex v is defined to be in the zeroth layer, L_0
- While the $k^{\rm th}$ layer is not empty, all unvisited vertices adjacent to vertices in L_k are added to the $(k+1)^{\rm st}$ layer

The distance from v to vertices in L_k is kAny unvisited vertices are said to have an infinite distance from v

Consider this graph: find the distance from A to each other vertex

A forms the zeroeth layer, L_0

The unvisited vertices B, F and G are adjacent to A

- These form the first layer, L_1

We now begin popping L_1 vertices: pop B

- H is adjacent to B
- It is tagged L_2

Popping F pushes E onto the queue

- It is also tagged L_2

We pop G which has no other unvisited neighbours

- G is the last L_1 vertex; thus H and E form the second layer, L_2

Popping H in L_2 adds C and I to the third layer L_3

E has no more adjacent unvisited vertices

- Thus C and I form the third layer, L_3

The unvisited vertex D is adjacent to vertices in L_3

- This vertex forms the fourth layer, L_4

- Distance 1: B, F, G
- Distance 2: H, E
- Distance 3: C, I
- Distance 4: D

Determining Distances

Theorem:

- If, in a breadth-first traversal of a graph, two vertices v and w appear in layers L_i and L_j , respectively and $\{v, w\}$ is an edge in the graph, then i and j differ by at most one

Proof:

```
If i=j, we are done If i\neq j, without loss of generality, assume i< j Because v\in L_i, w does not appear in any previous layer, and \{v,w\} is an edge in the graph, it follows that w\in L_{i+1} Thus, j=i+1 Therefore, i and j differ by at most one
```

Outline

- Graph traversal
 - Breadth-first
 - Depth-first
- Applications
 - Connectedness
 - Unweighted path length
 - Identifying bipartite graphs

Definition

Definition

- A bipartite graph is a graph where the vertices V can be divided into two disjoint sets V_1 and V_2 such that **every** edge has one vertex in V_1 and the other in V_2

Consider this graph: is it bipartite?

Yes: With a little work, it is possible to determine that we can decompose the vertices into two disjoint sets

Is this graph bipartite?

In this case, it is not a bipartite graph

How can we determine if a graph is bipartite?

Use a breadth-first traversal for a connected graph:

- Choose a vertex, mark it belonging to V_1 and push it onto a queue
- While the queue is not empty, pop the front vertex v and
 - Any adjacent vertices that are already marked must belong to the set not containing v, otherwise, the graph is not bipartite (we are done);
 - Any unmarked adjacent vertices are marked as belonging to the other set and they are pushed onto the queue
- If the queue is empty, the graph is bipartite

With the first graph, we can start with any vertex

We will use colours to distinguish the two sets

Push A onto the queue and colour it red

Pop A and its two neighbours are not marked:

Mark them as blue and push them onto the queue

Pop B—it is blue:

Its one marked neighbour, A, is red

Its other neighbours G and H are not marked: mark them red and push

them onto the queue

Pop F—it is blue:

- Its two marked neighbours, A and G, are red
- Its neighbour E is not marked: mark it red and pus it onto the queue

Pop G—it is red:

Its two marked neighbours, B and F, are blue

Pop H—it is red:

- Its marked neighbours, B, is blue

It has two unmarked neighbours, C and I; mark them blue and push

them onto the queue

Pop E—it is red:

- Its marked neighbours, F and I, are blue

Pop C—it is blue:

- Its marked neighbour, H, is red
- Mark D as red and push it onto the queue

Pop I—it is blue:

- Its marked neighbours, H, D and E, are all red

Pop D—it is red:

- Its marked neighbours, C and I, are both blue

The queue is empty, the graph is bipartite

Consider the other graph which was claimed to be not bipartite

Push A onto the queue and colour it red

Pop A off the queue:

 Its neighbours are unmarked: colour them blue and push them onto the queue

Pop B off the queue:

Its one neighbour, A, is red

The other neighbour, H, is unmarked: colour it red and push it onto the

queue

Pop F off the queue:

- Its one neighbour, A, is red

- The other neighbours, E and G, are unmarked: colour them red and

push it onto the queue

Pop H off the queue—it is red:

- Its one neighbour, G, is already red
- The graph is not bipartite

Definition

Cycles that contains either an even number or an odd number of vertices are said to be *even cycles* and *odd cycles*, respectively

Theorem

A graph is bipartite if and only if it does not contain any odd cycles

Outline

- Graph traversal
 - Breadth-first: use a queue
 - Depth-first: use recursion or stack
- Applications
 - Connectedness
 - Unweighted path length
 - Identifying bipartite graphs