

Relatório

Experiência 5 - Codificação de imagens segundo o padrão JPEG

PSI3531 - Processamento de Sinais Aplicado (2020)

Matheus Bordin Gomes - 9838028

Essa experiência visa a implementação de princípios básicos do padrão JPEG de compressão de imagens, utilizando transformação pela DCT e codificação de Huffman.

1. Sub-amostragem do sinal de crominância

Esse exercício foi implementado no *script* "exp5_1.m", entregue juntamente com este relatório. Nessa etapa, foi implementada a sub-amostragem dos sinais de crominância, além da recuperação da imagem a partir desses sinais.

1. Pode-se ver na figura 1 a imagem original utilizada. Além disso, na figura 2 pode-se ver cada uma das componentes RGB separadamente. Por fim, na figura 3 é possível ver as componentes YCbCr obtidas após a transformação.

Figura 1. Imagem original utilizada no programa.

Figura 2. Componentes RGB da imagem original.

Figura 3. Componentes YCbCr da imagem original obtidas após as transformações.

- 2. Após a sub-amostragem dos canais Cb e Cr, foi obtida uma taxa de compressão de 49.98% em relação ao tamanho original.
- 3. Seguem as componentes YCbCr da imagem recuperada e as componentes RGB obtidas após a anti-transformação nas figuras 4 e 5, respectivamente.

Figura 4. Componentes YCbCr da imagem recuperada após a subamostragem dos canais Cb e Cr.

Figura 5. Componentes RGB da imagem recuperada.

4. A imagem recuperada pode ser vista na figura 6. Quanto a comparação das imagens, obteve-se um erro quadrático médio (MSE) = 1.4949 e um *peak signal-to-noise ratio* (PSNR) = 46.3848 dB.

Figura 6. Imagem recuperada.

2. Quantização da DCT

Esse exercício foi implementado no *script* "exp5_2.m", entregue juntamente com este relatório. Nessa etapa, foi implementada a transformação DCT dos sinais YCbCr e a quantização dos coeficientes da transformada.

- 1. A implementação desse item pode ser vista no *script* mencionado anteriormente, nas linhas 51 a 53.
- 2. A implementação desse item pode ser vista no *script* mencionado anteriormente, nas linhas 72 a 77.
- 3. A implementação desse item pode ser vista no *script* mencionado anteriormente, nas linhas 79 a 93.
- 4. Pode-se ver na figura 7 as componentes YCbCr obtidas na recuperação da imagem, após a sub-amostragem, a transformação DCT e a quantização dos coeficientes da transformada. Já as componentes RGB da imagem recuperada podem ser vistas na figur 8. Por fim, a imagem recuperada está disponível na figura 9.

Figura 7. Componentes YCbCr da imagem recuperada após a subamostragem dos canais Cb e Cr, utilizando a quantização dos coeficientes da DCT.

Figura 8. Componentes RGB da imagem recuperada, utilizando a quantização dos coeficientes da DCT.

Figura 9. Imagem recuperada, utilizando a quantização dos coeficientes da DCT.

Quanto a comparação das imagens, obteve-se um erro quadrático médio (MSE) = 33.2848 e um *peak signal-to-noise ratio* (PSNR) = 32.9083 dB. Dessa forma, temos uma relação PSNR menor do que no caso anterior, porém ainda é satisfatória visto que valores de PSNR maiores ou iguais a 30 dB são dados como razoáveis na apostila da disciplina sobre o tema. Vale notar que esses resultados foram obtidos para k = 1;

5. A razão entre o número de pixels da imagem original e o número de coeficientes nulos da DCT, considerando-se todos os canais, é de 2.2758. Em um caso ideal, em que os coeficientes

nulos não precisassem ser armazenados, poderíamos descartar o inverso dessa razão em dados desnecessários, ou seja, 43,94% dos dados poderiam ser descartados. Porém, isso não é possível, visto que é necessária a informação de quais coeficientes foram descartados para recuperar a imagem. c

3. Cálculo da entropia do sinal

Esse exercício foi implementado no *script* "exp5_3.m", entregue juntamente com este relatório. Nessa etapa, foi calculada a entropia da imagem e foi feita uma estimação do tamanho que a compressão JPEG da imagem irá ocupar.

- 1. O cálculo da probabilidade de cada valor de código dos coeficientes DC aparecer pode ser visto nas linhas 110 e 118 do *script* supracitado. Já o cálculo referente a probabilidade de cada valor de código dos coeficientes AC pode ser visto nas linhas 123 a 131 do mesmo *script*.
- 2. A entropia resultante dos coeficientes DC é de 7.9378 bits, enquanto a entropia resultante dos coeficientes AC é de 0.9626 bits. Isso mostra que o comprimento médio da informação DC é maior do que o comprimento médio da informação AC. Vale notar que esse resultado foi obtido para k = 1. Para valores maiores de k, a entropia seria menor.
- 3. Multiplicando o tamanho médio dos coeficientes DC pelo número de coeficientes DC na imagem e multiplicando o tamanho médio dos coeficientes AC pelo número de coeficientes AC na imagem, obtemos a quantidade de bits estimada para cada um dos casos. No total, seriam necessários 586.77 kb para armazenar a imagem usando codificação de Huffman. Vale notar que esse resultado foi obtido para k = 1. Para valores maiores de k, o tamanho seria menor, visto que a entropia seria menor.
- 4. Na figura 10, pode-se observar dos coeficientes DC dos blocos em função dos coeficientes DC dos blocos seguintes. É notável que existe uma correlação significativa entre os valores, que tendem a formar uma reta. Já na figura 11, pode-se notar os valores de um coeficiente AC dos blocos em função do mesmo coeficiente dos blocos seguintes. Pela grande dispersão dos pontos, é notável que não há correlação significativa entre os coeficientes AC.

Figura 10. Valores dos coeficientes DC de um bloco em função dos valores dos coeficientes DC dos blocos seguintes.

Figura 11. Valores de um coeficiente AC de um bloco em função do valores dos coeficientes AC dos blocos seguintes.