

**PERFORMANCE VERIFICATION TEST REPORT
METSAT AMSU-A2 RECEIVER ASSEMBLY
FOR
INTEGRATED ADVANCED MICROWAVE SOUNDING UNIT-A
(AMSU-A)**

**CONTRACT NO. NAS5-32314
CDRL 208**

NOVEMBER 1998

SUBMITTED TO

**NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND 20771**

SUBMITTED BY

**AEROJET ELECTRONIC SYSTEMS PLANT
1100 WST HOLLYVALE STREET
AZUSA, CALIFORNIA 91702**

AMSU-A RECEIVER VERIFICATION TEST REPORT

LEVEL OF ASSEMBLY: SUBASSEMBLY

TEST ITEM: AMSU-A2 RECEIVER ASSEMBLY
P/N: 1356441-1, S/N: F04

TYPE OF HARDWARE: METSAT FLIGHT MODEL (FM)

TYPE OF TEST: FUNCTIONAL PERFORMANCE

VERIFICATION TEST PROCEDURE: AE-26002/6A

TEST FACILITY LOCATION: AESP
AZUSA, CALIFORNIA

SIGNATURE:

TEST ENGINEER:

DATE: 11/11/1998

TABLE OF CONTENTS

SECTION	PAGE	
1.0	INTRODUCTION	1
2.0	REASON FOR TEST	1
3.0	ACCEPTANCE TEST	1
4.0	ORGANIZATION OF TEST DATA	4
5.0	SUMMARY AND RECOMMENDATIONS	5
6.0	TEST DATA	5
7.0	ASSEMBLY INSTALLATION AND REPLACEMENT LOG	91

1.0 INTRODUCTION

The AMSU-A receiver subsystem comprises two separated receiver assemblies; AMSU-A1 and AMSU-A2 (P/N 1356441-1). The AMSU-A1 receiver contains 13 channels and the AMSU-A2 receiver 2 channels. The AMSU-A1 receiver assembly is further divided into two parts; AMSU-A1-1 (P/N 1356429-1) and AMSU-A1-2 (P/N 1356409-1), which contain 9 and 4 channels, respectively. Figures 1 and 2 illustrate the functional block diagrams of the AMSU-A1 and AMSU-A2 receivers.

The AMSU-A receiver subsystem stands in between the antenna and signal processing subsystems of the AMSU-A instrument and comprises the RF and IF components from RF isolators to IF attenuators as shown in Figures 1 and 2. It receives the RF signals from the antenna subsystem, down-converts the RF signals to IF signals, amplifies and defines the IF signals to proper power level and frequency bandwidth as specified for each channel, and inputs the IF signals to the signal processing subsystem.

The test reports for the METSAT AMSU-A receiver subsystem are prepared separately for the A1 and A2 receivers so that each receiver stands alone during integration of instruments into the spacecraft. This test report presents the test data of the METSAT AMSU-A2 Flight Model No. 4 (FM-4) receiver. The tests are performed per the Acceptance Test Procedure for the AMSU-A Receiver Subsystem, AE-26002/6A. The functional performance tests are conducted either at the component or subsystem level. While the component-level tests are performed over the entire operating temperature range predicted by thermal analysis, the subsystem-level tests are conducted at ambient temperature only.

2.0 REASON FOR TEST

The Acceptance Test Procedure for the AMSU-A Receiver Subsystem, AE-26002/6A, is prepared to describe in detail the configuration of the test setups and how the tests are to be conducted to verify that the receiver subsystem meets the specifications as required either in the AMSU-A Instrument Performance and Operation Specification, S-480-80, or in AMSU-A Receiver Subsystem Specification, AE-26608, derived by the Aerojet System Engineering. Test results that verify the conformance to the specifications demonstrates the acceptability of that particular receiver.

3.0 ACCEPTANCE TEST

The acceptance tests for the AMSU-A receiver subsystem are performed either at the component or subsystem level. The component-level tests are conducted per the Acceptance Test Procedure of each component at supplier's facilities. The subsystem-level tests are conducted per the Acceptance Test Procedure (ATP), AE-26002/6A at Aerojet Azusa facility.

Figure 1. AMSU-A1 Receiver Functional Block Diagram

Figure 2. AMSU-A2 Receiver Functional Block Diagram

The component-level tests include the center frequency, center frequency stability, bandpass characteristics, gain stability, and gain compression. Although the bandpass characteristics can change slightly in subsystem level, these performances are mainly dependent on the component characteristics. The subsystem-level tests include the center frequency, IF output power, bandpass characteristics, noise figure, noise power stability, and the tunable short test (for Protoflight Model only).

The subsystem-level tests are performed on the AMSU-A2 receiver. However, since the diplexer of the AMSU-A2 system is inseparably integrated to the receiver, the acceptance tests are conducted with the feedhorn directly connected to the diplexer that precedes the receiver. These tests are performed at room ambient temperature only.

Wire connections between the D-sub connectors and platinum resistance temperature (PRT) sensors and thermistors, and D-sub connector and survival heaters through the thermal switches are verified by measuring either the resistances between the respective two pins or the voltages across the two respective pins. The component bias voltages are verified by measuring the voltages across the two respective banana jacks of the breakout box that are connected to corresponding pins of the D-sub connector.

The subsystem-level tests went smoothly except an error in the LO power adjustment for the channel 1 mixer/IF amplifier (P/N: 1331562-11, S/N: 7A41). While the performance of the unit was optimized at +7dBm at the component level, the LO power level of the mixer was already set at +10.5dBm as nominally applied to the mixers in previous receivers, resulting in higher noise figure of 5.3dB against the specification of 4.5dB. When the LO power of the mixer was reduced to +7dBm, the noise figure of the channel was improved to 4.27dB.

The tunable short tests were not performed as they were performed on previous EOS AMSU-A2 receiver.

4.0 ORGANIZATION OF TEST DATA

The test data are organized in the following formats. The test data obtained at the component level are first summarized for each category for all applicable receiver channels. The bandpass characteristics of the filters are summarized only for the data measured at mid-temperature. Supporting component test data over the operating temperature range then follows the summaries. The subsystem-level test data then follows the component test data. Test data recorded in the test sheet as prepared in the Acceptance Test Procedure and related data plots are included in this test report.

5.0 SUMMARY AND RECOMMENDATIONS

The METSAT AMSU-A2 FM-4 receiver subsystem successfully passed all performance requirements and was delivered to the System Engineering for system integration and test. The test data indicated adequate margins for all performance specifications.

6.0 TEST DATA

In the following, the component and subsystem-level test data are organized as delineated in Paragraph 4.0.

Report No. 11317
November 1998

COMPONENT-LEVEL TEST DATA

CENTER FREQUENCY AND FREQUENCY STABILITY
FOR
LOCAL OSCILLATORS (LOs)
(DROs)

CENTER FREQUENCY OF LOs

Channel No.	1	2
Specification (GHz)	23.8	31.4
Setting Accuracy (+/-GHz)	0.002	0.002
Measured (GHz)	23.80050	31.40182

FREQUENCY STABILITY OF LOs

Channel No.	1	2
<u>Short-Term Specification</u> (+/-MHz)	8	8
Setting Accuracy (+/-MHz)	2	2
W/ Temp. & Voltage (+/-MHz)	6	6
Measured (MHz) Total	+0.93, -1.92	+4.22, -3.48
<u>Long-Term Specification</u> (+/-MHz)	2	2
By Design or Analysis * (+/-MHz)	0.1	0.1

* Based on accelerated life-test data of DROs.

Channel 1 LO

DRO (P/N: 1336610-1, S/N: 87057)

LITTON
Solid State

TEST DATA SHEET 7.2

FUNCTIONAL PERFORMANCE TESTS
INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LS K 9604 CF
SERIAL NUMBER: 87057

AESD 1336610-1
ACCEPT TEST ✓

Basic Electrical Test; Ref. Test Para. 5.2.2

<u>SPECIFICATION</u>	<u>MEASUREMENT AT $T_{nom} \pm 1^\circ C$</u>	<u>LIMIT</u>
----------------------	--	--------------

Measurement at $V_{op}=10$ VDC

Temperature	<u>18</u> $^\circ C$	Table IIIB
Input Voltage	<u>10</u> VDC	10.0 ± 0.2 VDC
Input Current	<u>65.1</u> mA	Table IIIB
Input Power, P_{diss}	<u>0.651</u> W DC	P_{diss} max
Frequency, $f_{T_{nom}}$	<u>23.80050</u> GHz	Table IIIB
RF Output Power, $P_{T_{nom}}$	<u>12.4</u> dBm	12 to 17 dBm
Frequency Setting Accuracy, Δf_S ($= f_{T_{nom}} - F_o$)	<u>0.5</u> MHz	

Frequency and RF Output Power Variation With Voltage, Ref. Test Para 5.2.3

Measurement at 9.5 VDC or at 9.5 VDC

Temperature	<u>18</u> $^\circ C$	Table IIIB
Input Voltage	<u>9.5</u> VDC	9.5 VDC or Para. 5.2.3.2
Input Current	<u>65.1</u> mA	Table IIIB
Frequency, f_{meas}	<u>23.80050</u> GHz	Table IIIB
RF Output Power, P_{meas}	<u>12.4</u> dBm	12 to 17 dBm

Measurement at 10.5 VDC or at 10.5 VDC

Temperature	<u>18</u> $^\circ C$	Table IIIB
Input Voltage	<u>10.5</u> VDC	10.5 VDC or Para. 5.2.3.3
Input Current	<u>65.1</u> mA	Table IIIB
Frequency, f_{meas}	<u>23.80050</u> GHz	Table IIIB
RF Output Power, P_{meas}	<u>12.4</u> dBm	12 to 17 dBm

Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{T_{nom}}$,

Δf_V at 9.5 VDC or at 9.5 VDC = 0 MHz
 Δf_V at 10.5 VDC or at 10.5 VDC = 0 MHz

Calculate RF Output Power Variation, $\Delta P_V = P_{meas} - P_{T_{nom}}$,

ΔP_V at 9.5 VDC or at 9.5 VDC = 0 dB
 ΔP_V at 10.5 VDC or at 10.5 VDC = 0 dB

Accept ✓ Reject

Test Performed by
Litton QA

Date 4-17-98
Date APR 17 1998

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 38 OF 68
56348	A	1300823	B3	

LITTON**Solid State****TEST DATA SHEET 7.3****FUNCTIONAL PERFORMANCE TESTS**
INITIAL DATA SET N/A FINAL DATA SET ✓LITTON TYPE LS K 9604 CF
SERIAL NUMBER: 87057QUAL TEST N/AAESD 1336610-1ACCEPT TEST ✓Temperature Testing at $T=10^{\circ}\text{C}$, Ref. Test Para. 5.2.5.1

<u>SPECIFICATION</u>	<u>MEASUREMENT AT $T=10^{\circ}\pm 1^{\circ}\text{C}$</u>	<u>LIMIT</u>
Measurement at $V_{op}=10 \text{ VDC}$		
Temperature	<u>10</u> $^{\circ}\text{C}$	$10^{\circ}\pm 1^{\circ}\text{C}$
Input Voltage	<u>10</u> VDC	$10.0\pm 0.2 \text{ VDC}$
Input Current	<u>65.0</u> mA	Table IIIB
Input Power, P_{diss}	<u>0.650</u> W DC	$P_{diss \max}$
Frequency, $f_{10^{\circ}\text{C}}$	<u>23.80057</u> GHz	Table IIIB
RF Output Power, $P_{10^{\circ}\text{C}}$	<u>12.5</u> dBm	12 to 17 dBm

Frequency and RF Output Power Variation With Voltage, Ref. Test Para 5.2.5.1

Measurement at 9.5 VDC or at <u>9.5</u> VDC		
Temperature	<u>10</u> $^{\circ}\text{C}$	Table IIIB
Input Voltage	<u>9.5</u> VDC	9.5 VDC or Para. 5.2.3.2
Input Current	<u>64.9</u> mA	Table IIIB
Frequency, f_{meas}	<u>23.80056</u> GHz	Table IIIB
RF Output Power, P_{meas}	<u>12.5</u> dBm	12 to 17 dBm

Measurement at 10.5 VDC or at <u>10.5</u> VDC		
Temperature	<u>10</u> $^{\circ}\text{C}$	Table IIIB
Input Voltage	<u>10.5</u> VDC	10.5 VDC or Para. 5.2.3.3
Input Current	<u>65.0</u> mA	Table IIIB
Frequency, f_{meas}	<u>23.80054</u> GHz	Table IIIB
RF Output Power, P_{meas}	<u>12.5</u> dBm	12 to 17 dBm

Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{10^{\circ}\text{C}}$:

$$\Delta f_V \text{ at } 9.5 \text{ VDC or at } \underline{9.5} \text{ VDC} = \underline{0.01} \text{ MHz}$$

$$\Delta f_V \text{ at } 10.5 \text{ VDC or at } \underline{10.5} \text{ VDC} = \underline{-8.82} \text{ MHz}$$

$$\Delta f_T \text{ at } 10.0 \text{ VDC } (=f_{10^{\circ}\text{C}} - f_{T_{nom}}) = \underline{0.07} \text{ MHz}$$

Calculate RF Output Power Variation, $\Delta P_V = P_{meas} - P_{10^{\circ}\text{C}}$:

$$\Delta P_V \text{ at } 9.5 \text{ VDC or at } \underline{9.5} \text{ VDC} = \underline{\phi} \text{ dB}$$

$$\Delta P_V \text{ at } 10.5 \text{ VDC or at } \underline{10.5} \text{ VDC} = \underline{\phi} \text{ dB}$$

$$\Delta P_T \text{ at } 10.0 \text{ VDC } (=P_{10^{\circ}\text{C}} - P_{T_{nom}}) = \underline{0.1} \text{ dB}$$

Test Performed by
Litton Q.A.VN 25
8/93Accept ✓ Reject _____
Date 4-17-98
Date 4-29-98

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 39 OF 68
56348	A	1300823	B3	

LITTON
Solid State

TEST DATA SHEET 7.4
FUNCTIONAL PERFORMANCE TESTS
INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LS K 9604 CF
SERIAL NUMBER: 87057 QUAL TEST N/A

AESD 1336610- 1
ACCEPT TEST ✓

Temperature Extreme Testing at T_{min} , Ref. Test Para. 5.2.5.2

SPECIFICATION MEASUREMENT AT $T_{min} \pm 1^\circ C$ LIMIT

Measurement at $V_{op}=10$ VDC

Temperature	<u>-5</u> °C	Table IIIB
Input Voltage	<u>10</u> VDC	10.0 ± 0.2 VDC
Input Current	<u>65.1</u> mA	Table IIIB
Input Power, P_{diss}	<u>0.651</u> W DC	P_{diss} max
Frequency, $f_{T_{min}}$	<u>23.80062</u> GHz	Table IIIB
RF Output Power, $P_{T_{min}}$	<u>12.5</u> dBm	12 to 17 dBm

Frequency and RF Output Power Variation With Voltage, Ref. Test Para 5.2.5.2

Measurement at 9.5 VDC or at 9.5 VDC

Temperature	<u>-5</u> °C	Table IIIB
Input Voltage	<u>9.5</u> VDC	9.5 VDC or Para 5.2.3.2
Input Current	<u>65.2</u> mA	Table IIIB
Frequency, f_{meas}	<u>23.80060</u> GHz	Table IIIB
RF Output Power, P_{meas}	<u>12.5</u> dBm	12 to 17 dBm

Measurement at 10.5 VDC or at 10.5 VDC

Temperature	<u>-5</u> °C	Table IIIB
Input Voltage	<u>10.5</u> VDC	10.5 VDC or Para 5.2.3.3
Input Current	<u>65.2</u> mA	Table IIIB
Frequency, f_{meas}	<u>23.80059</u> GHz	Table IIIB
RF Output Power, P_{meas}	<u>12.5</u> dBm	12 to 17 dBm

Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{T_{min}}$:

Δf_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>-0.02</u> MHz
Δf_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>-0.01</u> MHz
Δf_T at 10.0 VDC ($= f_{T_{min}} - f_{T_{nom}}$)		<u>0.12</u> MHz

Calculate RF Output Power Variation, $\Delta P_V = P_{meas} - P_{T_{min}}$:

ΔP_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>0.1</u> dB
ΔP_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>-0.1</u> dB
ΔP_T at 10.0 VDC ($= P_{T_{min}} - P_{T_{nom}}$)	=	<u>-0.1</u> dB

Accept ✓ Reject

Test Performed by
Litton Q.A.

VN
125
130823

Date 4-17-98
Date APR 29 1998

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 40 OF 68
56348	A	1300823	B3	

LITTON
Solid State

TEST DATA SHEET 7.5
FUNCTIONAL PERFORMANCE TESTS
INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LS K 9604 CF AESD 1336610- 1
SERIAL NUMBER: 87057 QUAL TEST N/A ACCEPT TEST ✓

Temperature Testing at T=30°C, Ref. Test Para. 5.2.5.3

SPECIFICATION MEASUREMENT AT T=30° ± 1°C LIMIT

Measurement at V_{op}=10 VDC

Temperature	<u>30</u> °C	<u>30° ± 1°C</u>
Input Voltage	<u>10</u> VDC	<u>10.0 ± 0.2 VDC</u>
Input Current	<u>65.4</u> mA	<u>Table IIIB</u>
Input Power, P _{diss}	<u>0.654</u> W DC	<u>Pdiss max</u>
Frequency, f _{30°C}	<u>23.79972</u> GHz	<u>Table IIIB</u>
RF Output Power, P _{30°C}	<u>12.3</u> dBm	<u>12 to 17 dBm</u>

Frequency and RF Output Power Variation With Voltage, Ref. Test Para 5.2.5.3

Measurement at 9.5 VDC or at 9.5 VDC

Temperature	<u>30</u> °C	<u>Table IIIB</u>
Input Voltage	<u>9.5</u> VDC	<u>9.5 VDC or Para. 5.2.3.2</u>
Input Current	<u>65.4</u> mA	<u>Table IIIB</u>
Frequency, f _{meas}	<u>23.79972</u> GHz	<u>Table IIIB</u>
RF Output Power, P _{meas}	<u>12.3</u> dBm	<u>12 to 17 dBm</u>

Measurement at 10.5 VDC or at 10.5 VDC

Temperature	<u>30</u> °C	<u>Table IIIB</u>
Input Voltage	<u>10.5</u> VDC	<u>10.5 VDC or Para. 5.2.3.3</u>
Input Current	<u>65.4</u> mA	<u>Table IIIB</u>
Frequency, f _{meas}	<u>23.79971</u> GHz	<u>Table IIIB</u>
RF Output Power, P _{meas}	<u>12.3</u> dBm	<u>12 to 17 dBm</u>

Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{30^\circ C}$:

Δf_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>0</u> MHz
Δf_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>- 0.01</u> MHz
Δf_T at 10.0 VDC ($= f_{30^\circ C} - f_{T_{nom}}$)	=	<u>- 0.78</u> MHz

Calculate RF Output Power Variation, $\Delta P_V = P_{meas} - P_{30^\circ C}$:

ΔP_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>0</u> dB
ΔP_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>0</u> dB
ΔP_T at 10.0 VDC ($= P_{30^\circ C} - P_{T_{nom}}$)	=	<u>- 0.1</u> dB

Test Performed by
Litton Q.A.

VAF
8/8/98

Accept ✓ Reject
Date 4-17-98
Date 5-29-98

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 41 OF 68
56348	A	1300823	B3	

LITTON
Solid State

TEST DATA SHEET 7.7
FUNCTIONAL PERFORMANCE TESTS
INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LS K 9604 CF AESD 1336610-1
SERIAL NUMBER: 87057 QUAL TEST N/A ACCEPT TEST ✓

Power Supply Immunity, Ref. Test Para. 5.2.4

<u>SPECIFICATION</u>	<u>MEASUREMENT AT T_{nom} ± 1°C</u>	<u>LIMIT</u>
Initial Measurement		
Temperature	<u>18</u> °C	Table IIIB
Input Voltage	<u>10</u> VDC	<u>10.0 ± 0.2</u> VDC
Input Current	<u>6.50</u> mA	Table IIIB
Input Power	<u>0.650</u> W DC	Pdiss max
Frequency (f _{T_{nom}})	<u>23.80065</u> GHz	Table IIIB
RF Output Power	<u>12.3</u> dBm	<u>12 to 17</u> dBm
Frequency Setting Accuracy, Δf _s (= f _{T_{nom}} -F _o)	<u>0.65</u> MHz	

Performance After Short Circuit on Power Supply: Ref Test Para 5.2.4.2

Input Voltage	<u>10</u> VDC	<u>10.0 ± 0.2</u> VDC
Input Current	<u>6.50</u> mA	Table IIIB
Input Power	<u>0.650</u> W DC	Pdiss max
Frequency	<u>23.80063</u> GHz	Table IIIB
RF Output Power	<u>12.3</u> dBm	<u>12 to 17</u> dBm

Over Voltage: Ref Test Para 5.2.4.3

Overvoltage Input Voltage 28 VDC +28V

Performance After Input Overvoltage

Input Voltage	<u>10</u> VDC	<u>10.0 ± 0.2</u> VDC
Input Current	<u>6.50</u> mA	Table IIIB
Input Power	<u>0.650</u> W DC	Pdiss max
Frequency	<u>23.80060</u> GHz	Table IIIB
RF Output Power	<u>12.3</u> dBm	<u>12 to 17</u> dBm

Reverse Polarity: Ref Test Para 5.2.4.4

Reverse Input Voltage -10 VDC -10.0 ± 0.2 VDC

Performance After Reverse Input Voltage

Input Voltage	<u>10</u> VDC	<u>10.0 ± 0.2</u> VDC
Input Current	<u>6.50</u> mA	Table IIIB
Input Power	<u>0.650</u> W DC	Pdiss max
Frequency, f _{T_{nom}}	<u>23.80059</u> GHz	Table IIIB
RF Output Power	<u>12.3</u> dBm	<u>12 to 17</u> dBm
Frequency Setting Accuracy, Δf _s (= f _{T_{nom}} -F _o)	<u>0.65</u> MHz	

Accept ✓ Reject
Date APR 17 1990
Date APR 29 1990

Test Performed by VN
Litton Q.A.

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 43 OF 68
56348	A	1300823	B3	

LITTON**Solid State**

TEST DATA SHEET 7.23B
FUNCTIONAL PERFORMANCE TESTS
INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LS K 9604 CF
 SERIAL NUMBER: 87057 QUAL TEST —

AESD 1336610- 1
 ACCEPT TEST ✓

Frequency Pulling and Load VSWR 2.5:1 max. all phases. Ref Test Para. 5.9

TEST DESCRIPTION**LIMITS**

Output Open and Short. Ref. Test Para. 5.9.5

Temperature	<u>23</u> °C	<u>24°C ± 5°C</u>
Frequency:	<u>23.80006</u> GHz	Table IIIB
RF Output Power:	<u>12.3</u> dBm	12 to 17 dBm
Input Voltage	<u>10</u> VDC	<u>10 ± 0.2</u> VDC
Input Current:	<u>65.2</u> mA	Table IIIB
Results:	<u>✓</u> Acceptable	No Damage or Degradation

Calculate maximum Frequency Accuracy (both positive and negative),

$\Delta f_{acc} = \Delta f_s$ (Use worst-case Δf_s from 7.2, 7.7, and 7.22A) + Δf_H (from 7.22A) + Δf_L (from 7.23A):

Maximum Δf_{acc} = 0.98 MHz (Positive) Table IIIB
- 0.11 MHz (Negative) Table IIIB

Calculate maximum Short-term Frequency Stability (both positive and negative),

$\Delta f_{V+T} = \Delta f_V + \Delta f_T$ (Use worst-case Δf_V and Δf_T from 7.2 thru 7.6):

Maximum Δf_{V+T} = 0.01 MHz (Positive) Table IIIB
- 1.78 MHz (Negative) Table IIIB

Calculate maximum overall RF Output Power Stability (both positive and negative),

$\Delta P_{ov} = \Delta P_V + \Delta P_T$ (Use worst-case ΔP_V and ΔP_T from 7.2 thru 7.6) + ΔP_H (from 7.22A) + ΔP_L (from 7.23A):

Maximum ΔP_{ov} = 0 dB (Positive) 1.0 dB
- 8.1 dB (Negative) -1.0 dB

Accept ✓ Reject

Test Performed by VN Date 4-23-98

Litton Q.A. Date APR 29 1998

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 61 OF 68
56348	A	1300823	B3	

Channel 2 LO

DRO (P/N: 1336610-2, S/N: 87056)

LITTON**Solid State****TEST DATA SHEET 7.2****FUNCTIONAL PERFORMANCE TESTS**INITIAL DATA SET N/A FINAL DATA SET ✓LITTON TYPE LS A 9635 CF
SERIAL NUMBER: 87056QUAL TEST N/AAESD 1336610-2ACCEPT TEST ✓

Basic Electrical Test; Ref. Test Para. 5.2.2

SPECIFICATION**MEASUREMENT AT $T_{nom} \pm 1^\circ C$** **LIMIT**Measurement at $V_{op}=10$ VDC

Temperature	<u>18</u>	$^\circ C$	Table IIIB
Input Voltage	<u>10</u>	VDC	10.0 ± 0.2 VDC
Input Current	<u>135.5</u>	mA	Table IIIB
Input Power, P_{diss}	<u>1.355</u>	W DC	P_{diss} max
Frequency, $f_{T_{nom}}$	<u>31.40182</u>	GHz	Table IIIB
RF Output Power, $P_{T_{nom}}$	<u>15.6</u>	dBm	12 to 17 dBm
Frequency Setting Accuracy, Δf_S ($= f_{T_{nom}} - F_0$)	<u>1.82</u>	MHz	

Frequency and RF Output Power Variation With Voltage, Ref. Test Para 5.2.3

Measurement at 9.5 VDC or at 9.5 VDC

Temperature	<u>18</u>	$^\circ C$	Table IIIB
Input Voltage	<u>9.5</u>	VDC	9.5 VDC or Para. 5.2.3.2
Input Current	<u>135.5</u>	mA	Table IIIB
Frequency, f_{meas}	<u>31.40179</u>	GHz	Table IIIB
RF Output Power, P_{meas}	<u>15.6</u>	dBm	12 to 17 dBm

Measurement at 10.5 VDC or at 10.5 VDC

Temperature	<u>18</u>	$^\circ C$	Table IIIB
Input Voltage	<u>10.5</u>	VDC	10.5 VDC or Para. 5.2.3.3
Input Current	<u>135.6</u>	mA	Table IIIB
Frequency, f_{meas}	<u>31.40179</u>	GHz	Table IIIB
RF Output Power, P_{meas}	<u>15.6</u>	dBm	12 to 17 dBm

Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{T_{nom}}$,
 Δf_V at 9.5 VDC or at 9.5 VDC = -0.03 MHz
 Δf_V at 10.5 VDC or at 10.5 VDC = -0.03 MHz
Calculate RF Output Power Variation, $\Delta P_V = P_{meas} - P_{T_{nom}}$,
 ΔP_V at 9.5 VDC or at 9.5 VDC = 0 dB
 ΔP_V at 10.5 VDC or at 10.5 VDC = 0 dB
Accept ✓ Reject Test Performed by
Litton QAVN
LITTON
1160Date 5-27-98
Date MAY 28 1998

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 38 OF 68
56348	A	1300823	B3	

LITTON**Solid State**

TEST DATA SHEET 7.3
FUNCTIONAL PERFORMANCE TESTS
INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LS A 9635 CF AESD 1336610- 2
 SERIAL NUMBER: 87056 QUAL TEST N/A ACCEPT TEST ✓

Temperature Testing at $T=10^{\circ}\text{C}$, Ref. Test Para. 5.2.5.1

<u>SPECIFICATION</u>	<u>MEASUREMENT AT $T=10^{\circ}\pm 1^{\circ}\text{C}$</u>	<u>LIMIT</u>
Measurement at $V_{op}=10$ VDC		
Temperature	<u>10</u> $^{\circ}\text{C}$	$10^{\circ}\pm 1^{\circ}\text{C}$
Input Voltage	<u>10</u> VDC	10.0 ± 0.2 VDC
Input Current	<u>135.4</u> mA	Table IIIB
Input Power, P_{diss}	<u>1.354</u> W DC	P_{diss} max
Frequency, $f_{10^{\circ}\text{C}}$	<u>31.40267</u> GHz	Table IIIB
RF Output Power, $P_{10^{\circ}\text{C}}$	<u>15.6</u> dBm	12 to 17 dBm
Frequency and RF Output Power Variation With Voltage, Ref. Test Para 5.2.5.1		
Measurement at 9.5 VDC or at <u>9.5</u> VDC		
Temperature	<u>10</u> $^{\circ}\text{C}$	Table IIIB
Input Voltage	<u>9.5</u> VDC	9.5 VDC or Para. 5.2.3.2
Input Current	<u>135.3</u> mA	Table IIIB
Frequency, f_{meas}	<u>31.40263</u> GHz	Table IIIB
RF Output Power, P_{meas}	<u>15.6</u> dBm	12 to 17 dBm
Measurement at 10.5 VDC or at <u>10.5</u> VDC		
Temperature	<u>10</u> $^{\circ}\text{C}$	Table IIIB
Input Voltage	<u>10.5</u> VDC	10.5 VDC or Para. 5.2.3.3
Input Current	<u>135.4</u> mA	Table IIIB
Frequency, f_{meas}	<u>31.40263</u> GHz	Table IIIB
RF Output Power, P_{meas}	<u>15.6</u> dBm	12 to 17 dBm

Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{10^{\circ}\text{C}}$:

Δf_V at 9.5 VDC or at 9.5 VDC = -0.04 MHz
 Δf_V at 10.5 VDC or at 10.5 VDC = -0.04 MHz
 Δf_T at 10.0 VDC ($= f_{10^{\circ}\text{C}} - f_{T_{nom}}$) = 0.85 MHz

Calculate RF Output Power Variation, $\Delta P_V = P_{meas} - P_{10^{\circ}\text{C}}$:

ΔP_V at 9.5 VDC or at 9.5 VDC = 0 dB
 ΔP_V at 10.5 VDC or at 10.5 VDC = 0 dB
 ΔP_T at 10.0 VDC ($= P_{10^{\circ}\text{C}} - P_{T_{nom}}$) = 0 dB

Accept ✓ Reject _____

Date 5-27-98
 Date MAY 28 1998

Test Performed by
 Litton Q.A.

LITTON
M-69

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 39 OF 68
56348	A	1300823	B3	

LITTON**Solid State**

TEST DATA SHEET 7.4
FUNCTIONAL PERFORMANCE TESTS
 INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LS A 9635 CF AESD 1336610- 2
 SERIAL NUMBER: 87056 QUAL TEST N/A ACCEPT TEST ✓

Temperature Extreme Testing at T_{min} , Ref. Test Para. 5.2.5.2

<u>SPECIFICATION</u>	<u>MEASUREMENT AT $T_{min} \pm 1^\circ C$</u>	<u>LIMIT</u>
----------------------	--	--------------

Measurement at $V_{op}=10$ VDC

Temperature	<u>-5</u> °C	Table IIIB
Input Voltage	<u>10</u> VDC	10.0 ± 0.2 VDC
Input Current	<u>134.8</u> mA	Table IIIB
Input Power, P_{diss}	<u>1.348</u> W DC	P_{diss} max
Frequency, $f_{T_{min}}$	<u>31.403 74</u> GHz	Table IIIB
RF Output Power, $P_{T_{min}}$	<u>15.5</u> dBm	12 to 17 dBm

Frequency and RF Output Power Variation With Voltage, Ref. Test Para 5.2.5.2

Measurement at 9.5 VDC or at 9.5 VDC

Temperature	<u>-5</u> °C	Table IIIB
Input Voltage	<u>9.5</u> VDC	9.5 VDC or Para 5.2.3.2
Input Current	<u>134.7</u> mA	Table IIIB
Frequency, f_{meas}	<u>31.403 75</u> GHz	Table IIIB
RF Output Power, P_{meas}	<u>15.5</u> dBm	12 to 17 dBm

Measurement at 10.5 VDC or at 10.5 VDC

Temperature	<u>-5</u> °C	Table IIIB
Input Voltage	<u>10.5</u> VDC	10.5 VDC or Para 5.2.3.3
Input Current	<u>134.8</u> mA	Table IIIB
Frequency, f_{meas}	<u>31.403 77</u> GHz	Table IIIB
RF Output Power, P_{meas}	<u>15.5</u> dBm	12 to 17 dBm

Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{T_{min}}$:

Δf_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>0.01</u> MHz
Δf_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>0.03</u> MHz
Δf_T at 10.0 VDC ($= f_{T_{min}} - f_{T_{nom}}$)		<u>1.92</u> MHz

Calculate RF Output Power Variation, $\Delta P_V = P_{meas} - P_{T_{min}}$:

ΔP_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>-0.1</u> dB
ΔP_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>-0.1</u> dB
ΔP_T at 10.0 VDC ($= P_{T_{min}} - P_{T_{nom}}$)	=	<u>-0.1</u> dB

Accept ✓ Reject

Test Performed by
Litton Q.A.

VN

Date 5-27-98
Date MAY 28 1998

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 40 OF 68
56348	A	1300823	B3	

LITTON**Solid State**

TEST DATA SHEET 7.5
FUNCTIONAL PERFORMANCE TESTS
INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LSA 9635 CF AESD 1336610- 2
 SERIAL NUMBER: 87056 QUAL TEST N/A ACCEPT TEST ✓

Temperature Testing at $T=30^{\circ}\text{C}$, Ref. Test Para. 5.2.5.3

<u>SPECIFICATION</u>	<u>MEASUREMENT AT $T=30^{\circ}\pm 1^{\circ}\text{C}$</u>	<u>LIMIT</u>
----------------------	--	--------------

Measurement at $V_{op}=10 \text{ VDC}$

Temperature	<u>30</u> $^{\circ}\text{C}$	$30^{\circ}\pm 1^{\circ}\text{C}$
Input Voltage	<u>10</u> VDC	$10.0\pm 0.2 \text{ VDC}$
Input Current	<u>135.6</u> mA	Table IIIB
Input Power, P_{diss}	<u>1.356</u> W DC	$P_{diss \max}$
Frequency, $f_{30^{\circ}\text{C}}$	<u>31.40124</u> GHz	Table IIIB
RF Output Power, $P_{30^{\circ}\text{C}}$	<u>15.6</u> dBm	12 to 17 dBm

Frequency and RF Output Power Variation With Voltage, Ref. Test Para 5.2.5.3

Measurement at 9.5 VDC or at 9.5 VDC

Temperature	<u>30</u> $^{\circ}\text{C}$	Table IIIB
Input Voltage	<u>9.5</u> VDC	9.5 VDC or Para. 5.2.3.2
Input Current	<u>135.6</u> mA	Table IIIB
Frequency, f_{meas}	<u>31.40117</u> GHz	Table IIIB
RF Output Power, P_{meas}	<u>15.6</u> dBm	12 to 17 dBm

Measurement at 10.5 VDC or at 10.5 VDC

Temperature	<u>30</u> $^{\circ}\text{C}$	Table IIIB
Input Voltage	<u>10.5</u> VDC	10.5 VDC or Para. 5.2.3.3
Input Current	<u>135.6</u> mA	Table IIIB
Frequency, f_{meas}	<u>31.4012</u> GHz	Table IIIB
RF Output Power, P_{meas}	<u>15.6</u> dBm	12 to 17 dBm

Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{30^{\circ}\text{C}}$:

Δf_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>- 0.07</u> MHz
Δf_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>- 0.12</u> MHz
Δf_T at 10.0 VDC ($= f_{30^{\circ}\text{C}} - f_{T_{nom}}$)	=	<u>- 0.58</u> MHz

Calculate RF Output Power Variation, $\Delta P_V = P_{meas} - P_{30^{\circ}\text{C}}$:

ΔP_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>0</u> dB
ΔP_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>0</u> dB
ΔP_T at 10.0 VDC ($= P_{30^{\circ}\text{C}} - P_{T_{nom}}$)	=	<u>0</u> dB

Accept ✓ Reject

Date 5-27-98

Date MAY 28 1998

Test Performed by
Litton Q.A.

VN
LITTON
M 68

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 41 OF 68
56348	A	1300823	B3	

TEST DATA SHEET 7.6
 FUNCTIONAL PERFORMANCE TESTS
 INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LS A 9635 CF
 SERIAL NUMBER: 87056

AESD 1336610- 2
 ACCEPT TEST ✓

Temperature Extreme Testing at T_{max}, Ref. Test Para. 5.2.5.4

SPECIFICATION MEASUREMENT AT T_{max} ± 1°C LIMIT

Measurement at V_{op}=10 VDC

Temperature	<u>40</u> °C	Table IIIB
Input Voltage	<u>10</u> VDC	10.0 ± 0.2 VDC
Input Current	<u>136.5</u> mA	Table IIIB
Input Power, P _{diss}	<u>1.365</u> W DC	P _{diss} max
Frequency, f _{Tmax}	<u>31.39888</u> GHz	Table IIIB
RF Output Power, P _{Tmax}	<u>15.6</u> dBm	12 to 17 dBm

Frequency and RF Output Power Variation With Voltage, Ref. Test Para 5.2.5.4

Measurement at 9.5 VDC or at 9.5 VDC

Temperature	<u>40</u> °C	Table IIIB
Input Voltage	<u>9.5</u> VDC	9.5 VDC or Para 5.2.3.2
Input Current	<u>136.5</u> mA	Table IIIB
Frequency, f _{meas}	<u>31.39887</u> GHz	Table IIIB
RF Output Power, P _{meas}	<u>15.6</u> dBm	12 to 17 dBm

Measurement at 10.5 VDC or at 10.5 VDC

Temperature	<u>40</u> °C	Table IIIB
Input Voltage	<u>10.5</u> VDC	10.5 VDC or Para 5.2.3.3
Input Current	<u>136.5</u> mA	Table IIIB
Frequency, f _{meas}	<u>31.39885</u> GHz	Table IIIB
RF Output Power, P _{meas}	<u>15.6</u> dBm	12 to 17 dBm

Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{Tmax}$:

Δf_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>- 0.01</u> MHz
Δf_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>- 0.03</u> MHz
Δf_T at 10.0V ($= f_{Tmax} - f_{Tnom}$)	=	<u>- 2.94</u> MHz

Calculate RF Output Power Variation. $\Delta P_V = P_{meas} - P_{Tnom}$:

ΔP_V at 9.5 VDC or at <u>9.5</u>	VDC =	<u>∅</u> dB
ΔP_V at 10.5 VDC or at <u>10.5</u>	VDC =	<u>∅</u> dB
ΔP_T at 10.0 VDC ($= P_{Tmax} - P_{Tnom}$)	=	<u>∅</u> dB

Accept ✓ Reject

Test Performed by
 itton Q.A.

VN
 LITTON
 M 60

Date 5-27-98
 Date MAY 28 1998

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 42 OF 68
56348	A	1300823	B3	

LITTON
Solid State

TEST DATA SHEET 7.7
FUNCTIONAL PERFORMANCE TESTS
INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LS A 9635 CF AESD 1336610- 2
SERIAL NUMBER: 87056 QUAL TEST N/A ACCEPT TEST ✓

Power Supply Immunity, Ref. Test Para. 5.2.4

<u>SPECIFICATION</u>	<u>MEASUREMENT AT T_{nom} ± 1°C</u>	<u>LIMIT</u>
Initial Measurement		
Temperature	<u>18</u> °C	Table IIIB
Input Voltage	<u>10</u> VDC	10.0 ± 0.2 VDC
Input Current	<u>135.9</u> mA	Table IIIB
Input Power	<u>1.359</u> W DC	Pdiss max
Frequency (f _{T_{nom}})	<u>31.40125</u> GHz	Table IIIB
RF Output Power	<u>15.6</u> dBm	12 to 17 dBm
Frequency Setting Accuracy, Δf _S (= f _{T_{nom}} -F _o)	<u>1.25</u> MHz	

Performance After Short Circuit on Power Supply: Ref Test Para 5.2.4.2

Input Voltage	<u>10</u> VDC	10.0 ± 0.2 VDC
Input Current	<u>135.8</u> mA	Table IIIB
Input Power	<u>1.358</u> W DC	Pdiss max
Frequency	<u>31.40132</u> GHz	Table IIIB
RF Output Power	<u>15.6</u> dBm	12 to 17 dBm

Over Voltage: Ref Test Para 5.2.4.3

Overvoltage Input Voltage 28 VDC +28V

Performance After Input Overvoltage

Input Voltage	<u>10</u> VDC	10.0 ± 0.2 VDC
Input Current	<u>135.8</u> mA	Table IIIB
Input Power	<u>1.358</u> W DC	Pdiss max
Frequency	<u>31.40150</u> GHz	Table IIIB
RF Output Power	<u>15.6</u> dBm	12 to 17 dBm

Reverse Polarity: Ref Test Para 5.2.4.4

Reverse Input Voltage -10 VDC -10.0 ± 0.2 VDC

Performance After Reverse Input Voltage

Input Voltage	<u>10</u> VDC	10.0 ± 0.2 VDC
Input Current	<u>135.8</u> mA	Table IIIB
Input Power	<u>1.358</u> W DC	Pdiss max
Frequency, f _{T_{nom}}	<u>31.40160</u> GHz	Table IIIB
RF Output Power	<u>15.6</u> dBm	12 to 17 dBm
Frequency Setting Accuracy, Δf _S (= f _{T_{nom}} -F _o)	<u>1.6</u> MHz	

Accept ✓ Reject

Date 5-27-98

Date MAY 28 1998

Test Performed by VN
Litton Q.A. LITTON

M.S.O.

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 43 OF 68
56348	A	1300823	B3	

LITTON
Solid State

TEST DATA SHEET 7.23B
FUNCTIONAL PERFORMANCE TESTS
INITIAL DATA SET N/A FINAL DATA SET ✓

LITTON TYPE LS A 9635 CF
SERIAL NUMBER: 87056 QUAL TEST N/A

AESD 1336610- 2
ACCEPT TEST ✓

Frequency Pulling and Load VSWR 2.5:1 max. all phases. Ref Test Para. 5.9

TEST DESCRIPTION

LIMITS

Output Open and Short. Ref. Test Para. 5.9.5

Temperature	<u>24</u> °C	$24^{\circ}\text{C} \pm 5^{\circ}\text{C}$
Frequency:	<u>31.40190</u> GHz	Table IIIB
RF Output Power:	<u>15.6</u> dBm	12 to 17 dBm
Input Voltage	<u>10</u> VDC	10 ± 0.2 VDC
Input Current:	<u>135.5</u> mA	Table IIIB
Results:	<u>✓</u> Acceptable	No Damage or Degradation

Calculate maximum Frequency Accuracy (both positive and negative),

$$f_{\text{acc}} = \Delta f_S \text{ (Use worst-case } \Delta f_S \text{ from 7.2, 7.7, and 7.22A) + } \Delta f_H \text{ (from 7.22A) + } \Delta f_L \text{ (from 7.23A):}$$

$$\begin{aligned} \text{Maximum } \Delta f_{\text{acc}} = & \quad \underline{\underline{1.85}} \text{ MHz (Positive)} & \text{Table IIIB} \\ & \quad \underline{\underline{-0.12}} \text{ MHz (Negative)} & \text{Table IIIB} \end{aligned}$$

Calculate maximum Short-term Frequency Stability (both positive and negative),

$$\Delta f_{V+T} = \Delta f_V + \Delta f_T \text{ (Use worst-case } \Delta f_V \text{ and } \Delta f_T \text{ from 7.2 thru 7.6):}$$

$$\begin{aligned} \text{Maximum } \Delta f_{V+T} = & \quad \underline{\underline{1.95}} \text{ MHz (Positive)} & \text{Table IIIB} \\ & \quad \underline{\underline{-3.06}} \text{ MHz (Negative)} & \text{Table IIIB} \end{aligned}$$

Calculate maximum overall RF Output Power Stability (both positive and negative),

$$\Delta P_{\text{ov}} = \Delta P_V + \Delta P_T \text{ (Use worst-case } \Delta P_V \text{ and } \Delta P_T \text{ from 7.2 thru 7.6) + } \Delta P_H \text{ (from 7.22A) + } \Delta P_L \text{ (from 7.23A):}$$

$$\begin{aligned} \text{Maximum } \Delta P_{\text{ov}} = & \quad \underline{\underline{0.41}} \text{ dB (Positive)} & 1.0 \text{ dB} \\ & \quad \underline{\underline{-0.30}} \text{ dB (Negative)} & -1.0 \text{ dB} \end{aligned}$$

Accept ✓ Reject

Test Performed by VN

Date 5-28-98

Litton Q.A.

Date MAY 28 1998

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 61 OF 68
56348	A	1300823	B3	

BANDPASS CHARACTERISTICS
FOR
IF FILTERS

3 dB BANDWIDTH OF IF FILTERS

Channel No.	1	2
<u>Specification</u> (MHz)	135	90
3 dB bandwidth (MHz) *	127	82
$f_L - f_H$ (MHz)	8-135	8-90
<u>Measured</u> (MHz)		
3 dB bandwidth (MHz)	125.51	80.16
$f_L - f_H$ (MHz)	8.60-134.11	9.06-89.22

* Actual specifications for IF filters.

Channel 1 Mixer/Amplifier

Mixer/Amplifier (P/N: 1331562-11, S/N: 7A41)

TEST DATA SHEET NO. 6. AMPLIFIER TESTS

REF: SDAR#29

GAIN FLATNESS TEST: ATP PARAGRAPH 5.1.3

GAIN FLATNESS SPEC. GAIN FLATNESS
(dB)ppK (dB)ppK

ACC REJ

0.65 0.50

GAIN VERSUS VOLTAGE SENSITIVITY TEST: ATP PARAGRAPH 5.1.4

AMPLIFIER VOLTAGE	GAIN READING (dBm)	$\Delta G/\Delta V$
9.96	70.77 70.50	2.5
10.00	71.05 70.60	
10.04	71.13 70.70	
$\Delta G_V =$	0.20 dB	

SPEC. $\Delta G/\Delta V$
ACC REJ

ENGINEERING DATA
ONLY. SEE AE 24869
PARA. 3.2.1.15.2

DATE ACC REJ

PART NO. 1331562-116

SPACEK QA

6-5-98

SER NO. 7A41

TEST FAILURE: _____

TESTED BY: 7A41

FAILURE ANALYSIS NO. _____

END DATE: 6-5-98

Spacek Labs, Inc.
212 E. Gutierrez St.
Santa Barbara, CA, 93101

END TIME: 1600

Amplifier Gain

Amb Temp +2.3

Amplifier Gain (db)

150

TRANSMITTER (MHz)

8

Model No. 1331562-11
Serial No. 7A WT
Date 6-5-98
Tested By 228

QA
1

TEST DATA SHEET NO. 7. AMPLIFIER TESTS

GAIN VERSUS TEMPERATURE SENSITIVITY TEST: ATP PARAGRAPH 5.1.5

Nominal Temperature (°C)	Relative Gain	ΔG/ΔT	SPEC	ACC	REJ
T1 -6	G _{T1} 71.52	* 0.009	0.085dB/°C	QA 1	
T2 +8	G _{T2} 71.39	* 0.022	0.020dB/°C	QA 1	
T3 +28	G _{T3} 70.95	* 0.026	0.035dB/°C	QA 1	
T4 +40	G _{T4} 70.64				

* Perform the following calculations and record on the TDS

$$\Delta G/\Delta T = \frac{G_{T_i} - G_{T_{i+1}}}{T_i - T_{i+1}} \quad i = 1, 2, 3, 4 \quad \Delta G_T = 0.88 \text{ dB}$$

$$\Delta G_{\text{TOTAL}} = \Delta G_V + \Delta G_T + 0.4 = 1.48 \text{ dB Spec 1.4dB}$$

ACC _____ REJ _____

QA 1

DATE ACC REJ ENGINEERING DATA
ONLY. SEE AE2C
PARA. 3.2.1.15.

PART NO. 1331562-11F

SPACEK QA

6-8-78

QA 1

SER NO. 7A41

TEST FAILURE: _____

TESTED BY: 778

FAILURE ANALYSIS NO. _____

END DATE: 6-5-98

Spacek Labs, Inc.
212 E. Gutierrez St.
Santa Barbara, CA, 93101

END TIME: 1600

Amplifier Gain

Amb Temp +23°C

Amplifier Gain (db)

Model No. 1331542-11
Serial No. 7A41
Date 6-5-98
Tested By 7774

8

TEST DATA SHEET NO. 8. AMPLIFIER TESTSOUTPUT 1.0 dB COMPRESSION POINT TEST: ATP PARAGRAPH 5.1.6

DASH #

11	12	13	14	15	16	17	18	19	20	FREQ. (MHz)	P2 COMP (dBm)	OUTPUT COMP. at+10(dBm)	SPEC. COMP.	ACC	REJ
<u>X</u>	10	-2.3	0.7	1.0											
			X							20					
										50					
		X	X							100	-2.4	0.6	1.0		
		X	X	X	X	X	X	X		150	-2.5	0.5	1.0		
X										200					
										400					
										X	500				
										X	1000				
										X	1500				

AMPLIFIER NOISE FIGURE AND TOTAL POWER TEST: ATP PARAGRAPH 5.1.7DATE: 6-5-98 AMBIENT ROOM TEMPERATURE °C: 23

AMPLIFIER OUTPUT POWER AMBIENT (dBm)	AMPLIFIER OUTPUT POWER (-77 K)(dBm)	Y FACTOR (dB)	AMPLIFIER NOISE FIGURE (dB)
<u>-22.9</u>	<u>-26.7</u>	<u>3.8</u>	<u>1.04</u>

Above data taken with Daden filter attached (except -19).

Intermediate test results for information only

PART NO. 1331562-11F

SPACEK QA

DATE 6-8-98 ACC S REJ SER NO. 7A41

TEST FAILURE: _____

TESTED BY: 77A

FAILURE ANALYSIS NO. _____

END DATE: 6-5-98Spacek Labs, Inc.
212 E. Gutierrez St.
Santa Barbara, CA, 93101END TIME: 1600

TEST DATA SHEET NO. 13. MIXER-AMPLIFIER ASSEMBLY TESTS

NOISE FIGURE, TOTAL POWER AND CURRENT VS. TEMPERATURE TEST: ATP PARA 5.4.8.

DATE: 8-20-98 AMBIENT ROOM TEMPERATURE °C: +21

UUT TEMP °C.	UUT CURRENT	MIXER-AMP. OUTPUT POWER (AMBIENT) (dBm)	MIXER-AMP. OUTPUT POWER (77 DEG K) (dBm)	Y FACTOR (dB)	MIXER-AMP. NOISE FIGURE (dB)	SPEC. MIXER-AMP. NOISE FIGURE (dB)	ACC	REJ
<u>-6</u>	<u>43.1</u>	<u>-22.20</u>	<u>-24.10</u>	<u>1.90</u>	<u>3.3</u>	<u>3.5</u>	<u>8-1</u>	
<u>+8</u>	<u>43.1</u>	<u>-22.40</u>	<u>-24.30</u>	<u>1.90</u>	<u>3.3</u>	<u>3.5</u>	<u>8-1</u>	
<u>+28</u>	<u>43.2</u>	<u>-22.70</u>	<u>-24.60</u>	<u>1.90</u>	<u>3.3</u>	<u>3.5</u>	<u>8-1</u>	
<u>+40</u>	<u>43.3</u>	<u>-22.90</u>	<u>-24.75</u>	<u>1.85</u>	<u>3.4</u>	<u>3.5</u>	<u>8-1</u>	

Noise figure change 0.1 dB Spec is .5dB peak to peak on -20

ACC 3-1 REJ

NOTE: Above data to be taken with the Daden filter, except on the -19 unit.

NEΔT-NOISE POWER STABILITY TEST: ATP PARAGRAPH 5.4.9

Date: 8/23/98 Ambient Room Temperature °C: 24

Attach computer generated NEΔT spreadsheet to this test data sheet.

Record the calculated Nps(K) from spreadsheet data: 0.060

Record Nps(K) 0.07 for dash number from Aerojet specification AE-24869, Table II.
Accept units if calculated Nps(K) is less than or equal to specified Nps(K), otherwise reject.

PART NO. 1331562-115

SPACEK QA

ACC 3-1 REJ
DATE 8-25-98 ACC 3-1 REJ

SER NO. 7A41

TEST FAILURE: _____

TESTED BY: 404

FAILURE ANALYSIS NO. _____

END DATE: 8-20-98

Spacek Labs, Inc.

END TIME: 1600

212 E. Gutierrez St.

Santa Barbara, CA, 93101

5.4.14 Noise Power Profile

Model No.: 1331562-11G

Serial No.: 7A41

Date: 8-25-98

Tested by: 04

Spectrum Analyzer Parameters

Vertical Scale: 2 dB/div.

Scan Width: 30 mhz/Div.

IF Band Width: 10 Khz

Scan Time: 3 sec/Div.

No video filter.

Channel 2 Mixer/Amplifier

Mixer/Amplifier (P/N: 1331562-12, S/N: 7A32)

TEST DATA SHEET NO. 6. AMPLIFIER TESTS

GAIN FLATNESS TEST: ATP PARAGRAPH 5.1.3

GAIN FLATNESS (dB)ppK	SPEC. GAIN FLATNESS (dB)ppK	ACC	REJ
<u>0.3</u>	<u>0.5</u>		—

GAIN VERSUS VOLTAGE SENSITIVITY TEST: ATP PARAGRAPH 5.1.4

AMPLIFIER VOLTAGE	GAIN READING (dBm)	$\Delta G/\Delta V$	SPEC. $\Delta G/\Delta V$	ACC	REJ
<u>9.96</u>	<u>70.72</u>	<u>2.13</u>	<u>2.0</u>		<i>E&N CAMSU-1352</i>
<u>10.00</u>	<u>70.80</u>				
<u>10.04</u>	<u>70.89</u>				
$\Delta G_V =$	<u>0.17</u> dB				

DATE ACC REJ

PART NO. 1331562-125

SPACEK QA

6-29-98

SER NO. 7A32

TEST FAILURE: _____

TESTED BY: 77H

FAILURE ANALYSIS NO. _____

END DATE: 6-5-98

Spacek Labs, Inc.
212 E. Gutierrez St.
Santa Barbara, CA, 93101

END TIME: 1600

Amplifier Gain

Amb Temp $+23^{\circ}\text{C}$

Amplifier Gain (db)

Model No. 1331562-12
Serial No. 7A32
Date 6-5-98
Tested By 272

TEST DATA SHEET NO. 7. AMPLIFIER TESTS

GAIN VERSUS TEMPERATURE SENSITIVITY TEST: ATP PARAGRAPH 5.1.5

Nominal Temperature (°C)	Relative Gain	ΔG/ΔT	SPEC	ACC	REJ
T1 -6	G _{T1} 71.38	* 0.014	0.035dB/°C	QA 1	
T2 +8	G _{T2} 71.19	* 0.022	0.020dB/°C		QA 1
T3 +28	G _{T3} 70.75	* 0.025	0.035dB/°C	QA 1	
T4 +40	G _{T4} 70.45				

ECN
CAMSU-1352

* Perform the following calculations and record on the TDS

$$\Delta G/\Delta T = \frac{G_{Ti} - G_{Ti+1}}{T_i - T_{i+1}} \quad i = 1,2,3,4 \quad \Delta G_T = 0.93 \text{ dB}$$

$$\Delta G_{TOTAL} = \Delta G_V + \Delta G_T + 0.4 = 1.5 \text{ dB Spec 1.4dB} \quad ACC \quad REJ$$

ECN
CAMSU-1352

PART NO. 1331562-125

SPACEK QA

6-27-98

QA 1

SER NO. 7A32

TEST FAILURE: _____

TESTED BY: 778

FAILURE ANALYSIS NO. _____

END DATE: 6-5-98

Spacek Labs, Inc.
212 E. Gutierrez St.
Santa Barbara, CA, 93101

END TIME: 1600

Amplifier Gain

Amb Temp $+23^{\circ}\text{C}$

Model No. 1331542-12
Serial No. 7A32
Date 6-5-98
Tested By 774

Amplifier Gain (db)

Frequency (MHz)

01
1

100

8

TEST DATA SHEET NO. 8. AMPLIFIER TESTS

OUTPUT 1.0 dB COMPRESSION POINT TEST: ATP PARAGRAPH 5.1.6

DASH #

11	12	13	14	15	16	17	18	19	20	FREQ. (MHz)	P2 COMP (dBm)	OUTPUT COMP. at+10(dBm)	SPEC. COMP.	ACC.	REJ.
X	X	X	X	X	X	X	X	X	X	10	-2.6	0.4	1.0	3-1	3-1
						X				20	-2				3-1
							X			50	-2.7	0.3			3-1
								X		100	-2.5	0.5			3-1
X										150					
									X	200					
										400					
									X	500					
										X	1000				
									X	1500					

AMPLIFIER NOISE FIGURE AND TOTAL POWER TEST: ATP PARAGRAPH 5.1.7

DATE: 6-5-98 AMBIENT ROOM TEMPERATURE °C: 23°C

AMPLIFIER OUTPUT POWER AMBIENT (dBm)	AMPLIFIER OUTPUT POWER (-77 K)(dBm)	Y FACTOR (dB)	AMPLIFIER NOISE FIGURE (dB)
<u>-24.4</u>	<u>-29.1</u>	<u>3.7</u>	<u>1.11</u>

Above data taken with Daden filter attached (except -19).

Intermediate test results for information only

PART NO. 1331562-125

SPACEK QA

DATE 6-29-98 ACC 3-1 REJ 3-1

SER NO. 7A32

TEST FAILURE: _____

TESTED BY: 77A

FAILURE ANALYSIS NO. _____

END DATE: 6-5-98

Spacek Labs, Inc.
212 E. Gutierrez St.
Santa Barbara, CA, 93101

END TIME: 1600

TEST DATA SHEET NO. 13. MIXER-AMPLIFIER ASSEMBLY TESTS

NOISE FIGURE, TOTAL POWER AND CURRENT VS. TEMPERATURE TEST:
ATP PARA 5.4.8.

DATE: 6-24-98 AMBIENT ROOM TEMPERATURE °C: +21

UUT TEMP °C.	UUT CURRENT	MIXER- AMP. OUTPUT POWER (AMBIENT) (dBm)	MIXER- AMP. OUTPUT POWER (77 DEG K) (dBm)	Y FACTOR (dB)	MIXER- AMP. NOISE FIGURE (dB)	SPEC. MIXER- AMP. NOISE FIGURE (dB)	ACC	REJ
<u>-6</u>	<u>43.4</u>	<u>-22.80</u>	<u>-24.80</u>	<u>2.0</u>	<u>3.1</u>	<u>3.2</u>	<u>04</u>	<u>1</u>
<u>+8</u>	<u>43.5</u>	<u>-23.00</u>	<u>-24.95</u>	<u>1.95</u>	<u>3.2</u>	<u>3.2</u>	<u>04</u>	<u>1</u>
<u>+28</u>	<u>43.7</u>	<u>-23.10</u>	<u>-25.10</u>	<u>1.90</u>	<u>3.2</u>	<u>3.2</u>	<u>04</u>	<u>1</u>
<u>+40</u>	<u>43.8</u>	<u>-23.60</u>	<u>-25.50</u>	<u>1.90</u>	<u>3.2</u>	<u>3.2</u>	<u>04</u>	<u>1</u>

Noise figure change 0.1 dB Spec is .5dB peak to peak on -20

ACC 04 REJ 1

NOTE: Above data to be taken with the Daden filter, except on the -19 unit.

NEΔT-NOISE POWER STABILITY TEST: ATP PARAGRAPH 5.4.9

Date: 6-23-98 Ambient Room Temperature °C: 25

Attach computer generated NEΔT spreadsheet to this test data sheet.

Record the calculated Nps(K) from spreadsheet data: 0.038

Record Nps(K) 0.07 for dash number from Aerojet specification AE-24869, Table II.
Accept units if calculated Nps(K) is less than or equal to specified Nps(K), otherwise reject.

PART NO. 1331562-12F

SPACEK QA 6-27-98 DATE 6-27-98 ACC 04 REJ 1

SER NO. 7A32

TEST FAILURE:

TESTED BY: 778

FAILURE ANALYSIS NO.

END DATE: 6-23-98

Spacek Labs, Inc.

END TIME: 1600

212 E. Gutierrez St.
Santa Barbara, CA, 93101

5.4.14 Noise Power Profile

Model No.: 1331562-12G

Serial No.: 7A92

Date: 6-29-98

Tested by: *dk*

Spectrum Analyzer Parameters

Vertical Scale: 2 dB/div.

Scan Width: 30 mhz/Div.

IF Band Width: 10 Khz

Scan Time: 3 sec/Div.

QA
1

Report No. 11317
November 1998

SUBSYSTEM-LEVEL TEST DATA

CENTER FREQUENCY OF LOs

Channel No.	1	2
Specification (GHz) *	23.8	31.4
Setting Accuracy (+/-GHz)	0.008	0.008
Measured (GHz) **	23.8002	31.4004

* Specification in vacuum condition.

** Measured at ambient pressure (standard atmosphere).

TEST DATA
FOR
AMSU-A2 (P/N: 1356441-1, S/N: F04)

TEST DATA SHEET 3
LO Frequency Test Data (Paragraph 3.5.1) (A2)

Test Setup Verified: D. J. Murray
Signature

Baseplate Temperature (T_B) 23.3 °C

Component	Channel No.	V _b (V)	I _b (mA)	P _{dc} (mW)			f _o (GHz)		
				Required (Max)	Measured	Pass/Fail	Required	Measured	Pass/Fail
LO	1	10.01	65.0	2,000	650.7	P	23.800 ± 0.008	23.800	P
	2	10.02	135.7	2,100	1359.7	P	31.400 ± 0.008	31.401	P
Mixer/ Amps	All	10.01	83.4	900	834.8				
TOTAL				5,000	2845.2				

Pass = P, Fail = F

Part No.: 1356441-1

Test Engineer: M. H. Murray

Serial No.: F04

Quality Assurance: W. J. O'Leary OCT 22 98

Date: 10/20/98

FOR REFERENCE ONLY

LO FREQUENCY, A2, S/N: F04

HP
10 dB/

2.725

CNVLOSS
18.0
dB

CENTER 23.800 22 GHz
RES BW 30 kHz

FOR REFERENCE ONLY

LO FREQUENCY, A2, S/N: F04

1.7m

CENTER 31.401 41 GHz
RES BW 30 kHz

TEST DATA SHEET 6
IF Output Test Data (Paragraph 3.5.2) (A2)

Test Setup Verified: J. J. Hwy
Signature

Baseplate Temperature (T_B) 23.6 °C

Component	Channel No.	V_b (V)	I_b (mA)	P_o (dBm)	Atten (dB)	P_o (dBm)		
						Required	Measured	Pass/Fail
LO	1	10.01	65.0	-22.19	5	-27.0 ± 1.0	-27.21 -27.21 27.25	P
	2	10.02	135.7	-23.19	4	-27.0 ± 1.0	-27.26	P
Mixer/ Amps	All	10.01	83.4					

Pass = P, Fail = F

Part No.: 1356441-1

Serial No.: F04

Test Engineer: J. J. Hwy

Quality Assurance: J. J. Hwy OCT 22 '98

Date: 10/20/98

TEST DATA SHEET 9

Test Setup Verified: 7.1.1
Signature

Baseplate Temperature (T_B) 24.7 °C

Component	Channel No.	V _b (V)	I _b (mA)	3 dB BW Frequency (MHz)		3 dB BW Frequency (MHz)		Pass/Fail
				Lower	Higher	Required MAX.	Measured	
LO	1	10.02	65.1	8.6	133.9	135	125.3	P
	2	10.02	135.8	9.0	88.2	90	79.2	P
Mixer/Amps	All	10.01	83.4					

Compo- nent	Channel No.	V _b (V)	I _b (mA)	40 dB BW Frequency (MHz)		40 dB BW Frequency (MHz) (Ref. Only)		Pass/ Fail
				Lower	Higher	Required MAX.	Measured	
LO	1	10.02	65.1	3.6	146.2	351	142.6	P
	2	10.02	135.8	3.6	99.0	234	95.4	P
Mixer/ Amps	All	10.01	83.4					

Part No.: 1356441-1

Test Engineer: Preeti

Serial No.: F0 4

Quality Assurance: OCT 1

18/2/1998 (C)

Date: 10/21/98 S

FOR REFERENCE ONLY

A2, 5% F04, 40dB BPF

FOR REFERENCE ONLY

FOR REFERENCE ONLY

A2, sh FO4, Stop Band

MAP 3.12 M112

(20) $\mu_{Wf} = 7$) 10/21/98

ATTEN 0 dB CH 1

REF -38.7 dBm

RE

7.7 min

MARKER

三七四

卷之三

SWP 3.00 sec

START 0 Hz BES BW 30 kHz

FOR REFERENCE ONLY

A2, S/N: F04, 3 dB BPF

1 dB/
10³

$f_L = 9.0, f_H = 89.2$
 $BW = 79.2 \text{ MHz}$

7.7m

FOR REFERENCE ONLY

A2, S/N: 504, 40 dB BPF

SPAN 150 MHz
SWP 45.0 sec

CENTER 75 MHz
RES BW 30 kHz VBW 3000 Hz

FOR REFERENCE ONLY

A2, SW: F04, STOPBAND

7.75

TEST DATA SHEET 12 (Sheet 1 of 4)
Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A2)

Test Setup Verified: 7.7mwy
Signature

Baseplate Temperature (T_B) 25.7 °C

Component	Channel No.	V_b (V)	I_b (mA)	T_H (°C)	V_H (V)		T_C (°C)	V_C (V)	
					Mean	Standard Deviation		Mean	Standard Deviation
LO	1	10.02	65.1	23.0	-93075	.00021	-194.0	-67299	.00018
					-93058	.00023	-194.0	-67059	.00016
					-93051	.00023	-194.0	-67267	.00018
					-93078	.00024	-194.0	-67135	.00017
					-93054	.00020	-194.0	-67274	.00017
					-93067	.00020	-194.0	-67186	.00015
					-93092	.00021	-194.0	-67299	.00016
					-93094	.00022	-194.0	-67255	.00013
					-93078	.00020	-194.0	-67195	.00017
					-93092	.00021	-194.0	-67151	.00016
Mixer/Amps	All	10.01	83.4						
IF Amps	All	N/A	N/A						

Part No.: 1356441-1

Test Engineer: Hettig

Serial No.: F04

Quality Assurance: W. J. Hettig OCT 22 '98

Date: 10/21/98

TEST DATA SHEET 12 (Sheet 3 of 4)
Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A2)Test Setup Verified: J. Dunn
SignatureBaseplate Temperature (T_B) 25.7 °C

Channel No.	NF (dB)			NPS (K)					
	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
1	4.28	4.28			0.03				
		4.24			0.08				
		4.28			0.07				
		4.25			0.09				
		4.28			0.04				
		4.26			0.04				
		4.28			0.02				
		4.27			0.07				
		4.26			0.04				
		4.26			0.02				
	4.5		4.27	P	0.09		0.05	0.077	P

Pass = P, Fail = F

Part No.: 1356441-1Test Engineer: WentzSerial No.: F04Quality Assurance: W. G. Gammie OCT 22 '98Date: 10/21/98

FOR REFERENCE ONLY

AMSU-A TEST

AMSU-A2, S/N: F04, CH1, LO POWER=7.1 dBm, NF & NPS DATA, TB=25.7C, 10/21/98

SEQ	TEMP_TEST	TEST TEMP	VOLTAGE	STD_DEV	NF (dB)	NPS(K)
1	WARM TEST	296.15	-.93075367	.00020665	-----	-----
2	COLD TEST	79.15	-.67298859	.00018073	4.28250247	.02730919
3	WARM TEST	296.15	-.93057793	.00023029	-----	-----
4	COLD TEST	79.15	-.67058927	.00016283	4.24407642	.08045363
5	WARM TEST	296.15	-.93050567	.00022503	-----	-----
6	COLD TEST	79.15	-.67267258	.00018075	4.28018131	.06991896
7	WARM TEST	296.15	-.93078297	.00023832	-----	-----
8	COLD TEST	79.15	-.67134821	.00016505	4.25437701	.09550154
9	WARM TEST	296.15	-.93054189	.00020375	-----	-----
10	COLD TEST	79.15	-.67274166	.00016513	4.28090963	.03970158
11	WARM TEST	296.15	-.93066635	.00020400	-----	-----
12	COLD TEST	79.15	-.67186366	.00015227	4.26450671	.03871695
13	WARM TEST	296.15	-.93091818	.00020808	-----	-----
14	COLD TEST	79.15	-.67298522	.00016017	4.28042629	.01838761
15	WARM TEST	296.15	-.93094441	.00022390	-----	-----
16	COLD TEST	79.15	-.67254876	.00012664	4.27270442	.06693901
17	WARM TEST	296.15	-.93078286	.00020428	-----	-----
18	COLD TEST	79.15	-.67194706	.00017051	4.26449457	.03778497
19	WARM TEST	296.15	-.93091786	.00020783	-----	-----
20	COLD TEST	79.15	-.67150655	.00015817	4.25540717	.02013159

CH. 1 ,125.3 MHz MHz .

NOISE FIGURE AVERAGE (dB) = 4.2679775064

NOISE POWER STABILITY (K) = .0494855036981

NOISE POWER STABILITY DELTA (K) = .0771139279986

NPS_MAX (K) = .09550154213 NPS_MIN (K) = .0183876141314

INTEGRATION TIME = .158

TEST DATA SHEET 12 (Sheet 2 of 4)
Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A2)

Test Setup Verified: 7.2.1m
Signature

Baseplate Temperature (T_B) 25.7 °C

Component	Channel No.	V_b (V)	I_b (mA)	T_H (°C)	V_H (V)		T_C (°C)	V_C (V)	
					Mean	Standard Deviation		Mean	Standard Deviation
LO	2	10.02	135.8	23.0	-88289	.00027	-194.0	-59431	.00024
				23.0	-88220	.00024	-194.0	-59435	.00024
				23.0	-88172	.00026	-194.0	-59412	.00021
				23.0	-88166	.00028	-194.0	-59461	.00023
				23.0	-88149	.00025	-194.0	-59374	.00025
				23.0	-88150	.00028	-194.0	-59527	.00020
				23.0	-88125	.00027	-194.0	-59342	.00018
				23.0	-88153	.00022	-194.0	-59294	.00020
				23.0	-88133	.00027	-194.0	-59392	.00026
				23.0	-88153	.00024	-194.0	-59408	.00021
Mixer/Amps	All	10.01	83.4	XXXXXXXXXX					
IF Amps	All	N/A	N/A	XXXXXXXXXX					

Part No.: 1356441-1

Test Engineer: Mark

Serial No.: F04

Quality Assurance: QA OCT 22 '98

Date: 10/21/98

TEST DATA SHEET 12 (Sheet 4 of 4)
Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A2)

Test Setup Verified: 7/2/2019
Signature

Baseplate Temperature (T_B) 25, 7 °C

Channel No.	NF (dB)				NPS (K)				
	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
2		3.56				0.08			
		3.56				0.06			
		3.57				0.05			
		3.57				0.09			
		3.56				0.03			
		3.59				0.10			
		3.56				0.07			
		3.55				0.08			
		3.57				0.08			
		3.57				0.05			
	3.95		3.57	P	0.09		0.07	0.061	P

Pass = P, Fail = F

Part No.: 1356441-1
Serial No.: F04

Test Engineer: Frank

Quality Assurance: _____

Date: 10/21/98

FOR REFERENCE ONLY

AMSU-A TEST

AMSU-A2, S/N: F04, CH2, NF & NPS DATA, TB = 25.7 C, 10/21/98

SEQ	TEMP_TEST	TEST TEMP	VOLTAGE	STD_DEV	NF (dB)	NPS(K)
1	WARM TEST	296.15	-.88288601	.00027115	-----	-----
2	COLD TEST	79.15	-.59431112	.00024391	3.55566048	.07969987
3	WARM TEST	296.15	-.88219801	.00023707	-----	-----
4	COLD TEST	79.15	-.59439313	.00023584	3.56495555	.05836065
5	WARM TEST	296.15	-.88171541	.00025949	-----	-----
6	COLD TEST	79.15	-.59411625	.00020567	3.56569121	.05445363
7	WARM TEST	296.15	-.88166028	.00027655	-----	-----
8	COLD TEST	79.15	-.59461455	.00023262	3.57386049	.09058862
9	WARM TEST	296.15	-.88148899	.00025259	-----	-----
10	COLD TEST	79.15	-.59373968	.00025359	3.56227756	.03117418
11	WARM TEST	296.15	-.88149773	.00028110	-----	-----
12	COLD TEST	79.15	-.59527214	.00019978	3.58559413	.08861723
13	WARM TEST	296.15	-.88124573	.00026657	-----	-----
14	COLD TEST	79.15	-.59341662	.00018449	3.55985227	.07173872
15	WARM TEST	296.15	-.88152986	.00022482	-----	-----
16	COLD TEST	79.15	-.59293577	.00020273	3.54963036	.08082976
17	WARM TEST	296.15	-.88133487	.00026823	-----	-----
18	COLD TEST	79.15	-.59391763	.00026212	3.56657270	.07503417
19	WARM TEST	296.15	-.88153157	.00024048	-----	-----
20	COLD TEST	79.15	-.59408297	.00021343	3.56707262	.04934157

CH. 2 ,79.2 MHz MHz

NOISE FIGURE AVERAGE (dB) = 3.56522651574

NOISE POWER STABILITY (K) = .0689838378223

NOISE POWER STABILITY DELTA (K) = .0674430491914

NPS_MAX (K) = .0986172251355 NPS_MIN (K) = .0311741759441

INTEGRATION TIME = .158

TEST DATA SHEET 18

Test Setup Verified: 7/7/2019
Signature

Baseplate Temperature (T_B) 22.3 °C

Reference Designation	Specification	Measured Value	Pass/Fail
RT 12	$2200 \pm 100 \Omega$	2166 Ω	P
RT 19	$2200 \pm 100 \Omega$	2168 Ω	P
RT 20	$2200 \pm 100 \Omega$	2170 Ω	P
RT 13	$2200 \pm 100 \Omega$	2169 Ω	P
RT 14	$2200 \pm 100 \Omega$	2172 Ω	P
RT 17	$2200 \pm 100 \Omega$	2168 Ω	P
TB 58	$3000 \pm 100 \Omega$	3013 Ω	P
TB 59	$3000 \pm 100 \Omega$	3002 Ω	P
TB 53	4.1 – 4.6 V	4.34 V	P

Pass = P, Fail = F

Part No.: 1356441-1

Test Engineer: Prakash

Serial No.: F04

Date: 10/20/98

TEST DATA SHEET 22
Survival Heater and Thermal Switch Test Data (Paragraph 3.6.3) (A2)

Test Setup Verified: 7.7 revs
Signature

Baseplate Temperature (T_B) 22.4 °C

Reference Designation	Open Switch		Closed Switch		
	>10 MΩ	Pass/Fail	Specification	Measured Value	Pass/Fail
HR1/TS1	50MΩ	P	50 - 65 Ω	58.3	P
	50MΩ	P		58.1	P
HR2/TS2	50MΩ	P		55.1	P
	50MΩ	P		55.4	P

Pass = P, Fail = F

Part No.: 1356441-1

Serial No.: F04

Test Engineer: Rehilly

Quality Assurance: Rehilly OCT 22 '98

Date: 10/20/98

TEST DATA SHEET 23 (Sheet 3 of 3)
Bias Voltage Verification Test Data (Paragraph 3.6.4) (A2)

Test Setup Verified: 7.7.11
Signature

Baseplate Temperature (T_B) 22.5 °C

Reference Designation	Specification	Measured Value (V)	Pass/Fail
Mixer/IF AMP Ch 1, 2	$+10 \pm 0.1$	10.00	P
DRO Ch 1	$+10 \pm 0.1$	10.01	P
DRO Ch 2	$+10 \pm 0.1$	10.01	P

Part No.: 1356441-1

Test Engineer: Plukter

Oct 22 1998

Serial No.: F04

Quality Assurance: W. J. W.

Date: 10/20/98

GENCORP AEROJET	MANUFACTURING ASSEMBLY INSTRUCTIONS (M.A.I.)						PAGE	OF
	PART DESCRIPTION RECEIVER ASSEMBLY (A2)				PART NUMBER 1356441-1		1	4
PLANNED BY B. MULLIGAN	DATE 6/4/98	REVISION 01		FO4	NEXT ASSEMBLY 1356006-1/1331200-2		OPER 0004	

ASSEMBLY INSTALLATION AND REPLACEMENT LOG

INITIAL INSTALLATION							REPLACEMENT			
ITEM NO.	PART NUMBER	REV	DESCRIPTION	S/N	MFG	INSP	REV	S/N	MFG	IN.
5	1331084-1	F	DIPLEXER, 3 PORT	05	MFG 155 7/16/98					
7	1331100-1	D	WAVEGUIDE ATTENUATOR	102 101	MFG 161 7/16/98					
8	1331100-2	E	WAVEGUIDE ATTENUATOR	104	MFG 155 7/16/98					
9	1331111-2	G	ISOLATOR	006	MFG 155 7/16/98					
10	1331112-2	G	ISOLATOR	007	MFG 155 7/16/98					
16	1336610-1	E	STABLE OSCILLATOR	87060 87057	MFG 161 7/16/98					
17	1336610-2	E	STABLE OSCILLATOR	87056 9821	MFG 161 7/16/98					
19	1331559-3	E	IF BAND PASS FILTER	P229- 008	MFG 155 7-11-98					
20	1331559-6	E	IF BAND PASS FILTER	P232- 006	MFG 155 7/25/98					
21	1331562-11		MIXER/AMP, CHAN 1	7A41	MFG 155 9-29-98					
22	1331562-12	G	MIXER/AMP, CHAN 2	7A32	MFG 155 7/16/98					
29	1337640-4	N/A	THERMOFOIL HEATER	HR15IN 0034 HR25IN 0029	MFG 155 7/25/98					

NOTES:

1. THIS LOG SHALL BE COMPLETED AT THE TIME THAT THE COMPONENT(S) OR PART(S) ARE BEING INSTALLED INTO THE ASSEMBLY. EACH LINE SHALL BE ENTERED AND STAMPED BY THE OPERATOR THAT INSTALLED THE COMPONENT(S) OR PART(S).
2. IF A COMPONENT(S) OR PART(S) ARE REMOVED AND REPLACED, RECORD THE REPLACEMENT PART ON IT'S RESPECTIVE LINE.
3. IF A COMPONENT(S) OR PART(S) HAVE BEEN REMOVED AND REPLACED MORE THAN ONCE, RECORD THE REPLACEMENT P. NUMBER AT THE END OF THE ASSEMBLY LOG.

FORMS

National Aeronautics and
Space Administration

Report Documentation Page

1. Report No. ---	2. Government Accession No. ---	3. Recipient's Catalog No. ---	
4. Title and Subtitle Integrated Advanced Microwave Sounding Unit-A (AMSU-A), Performance Verification Report		5. Report Date November 1998	
7. Author(s) R. Kapper		6. Performing Organization Code ---	
9. Performing Organization Name and Address Aerojet 1100 W. Hollyvale Azusa, CA 91702		8. Performing Organization Report No. 11317	
12. Sponsoring Agency Name and Address NASA Goddard Space Flight Center Greenbelt, Maryland 20771		10. Work Unit No. ---	
15. Supplementary Notes ---		11. Contract or Grant No. NAS 5-32314	
		13. Type of Report and Period Covered Final	
		14. Sponsoring Agency Code ---	
16. ABSTRACT (Maximum 200 words) This is the Performance Verification Report, METSAT AMSU-A2 Receiver Assembly (P/N 1356441-1, S/N F04) S/N 107, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).			
17. Key Words (Suggested by Author(s)) EOS Microwave System		18. Distribution Statement Unclassified --- Unlimited	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of pages	22. Price ---

NASA FORM 1626 OCT 86

FINAL FUNCTIONAL PERFORMANCE

TRANSMISSION LOSS

SERIAL NO. P229-008

+15C DATA

OPR: R. HOGGATT DATE DEC 18 1996

MARKER PARAMETERS

14.000000 MHz 50.000000 MHz
OFF -2427 dB

86.000000 MHz 49.141672 MHz
OFF OFF

20.000000 MHz 9.058860 MHz
OFF -3.2427 dB

80.000000 MHz 89.224484 MHz
OFF -3.2427 dB

0.000000 MHz 89.425802 MHz
0 dB -3.2342 dB

REFERENCE MARKER PLACEMENT	OFF	OFF
MARKER SEARCH	CONTINUOUS	CONTINUOUS
TARGET VALUE	OFF	OFF
MARKER WIDTH VALUE	-14 dB	-3 dB
MARKER TRACKING	-3 dB	-3 dB
	OFF	OFF
	OFF	OFF

FINAL FUNCTIONAL PERFORMANCE
TRANSMISSION LOSS
SERIAL NO. P229-008

+40C DATA

OPR: R. HOGGATT DATE DEC 18 1996

MARKER PARAMETERS

MARKER 1	14.000000 MHz OFF	50.000000 MHz -2576 dB
MARKER 2	56.000000 MHz OFF	49.054793 MHz OFF
MARKER 3	20.000000 MHz OFF	9.048819 MHz -3.2577 dB
MARKER 4	80.000000 MHz OFF	89.060767 MHz -3.2577 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	89.425802 MHz -3.2342 dB

REFERENCE MARKER PLACEMENT	OFF	OFF
MARKER SEARCH	CONTINUOUS	CONTINUOUS
TARGET VALUE	OFF	OFF
MARKER WIDTH VALUE	-14 dB	-3 dB
MARKER TRACKING	-3 dB	-3 dB
	OFF	OFF
	OFF	OFF

APPENDIX CACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL50-80-10SS1 S/N P229-008
 AEROJET 1331559-3 REV. E

PASSBAND RIPPLE (CON'T)

{11f} RECORD PASS/FAIL (0.5 dB MAX)

PASS/FAIL

PASS/FAIL

PASS/FAIL

{11g) ATTACH PASSBAND RIPPLE
PERFORMANCE X-Y PLOT(S)

✓(√)

✓(√)

✓(√)

OUT-OF-BAND REJECTION

ACCEPTANCE TEST PROCEDURE

-10°C

+15°C

+40°C

63-0005-02 PARA 4.5.5

F_c=50.0 MHz.

REF {5A} FOR INSERTION LOSS @ F_c

{12} WORST CASE REJECTION FROM
0.300 MHz TO 1.0 MHz

>100 dB
(40.0 dB MIN)

>100 dB
(40.0 dB MIN)

>100 dB
(40.0 dB MIN)

{13a} WORST CASE REJECTION FROM
102.0 MHz TO 1000.0 MHz

-57.6 dB
(40.0 dB MIN)

-57.8 dB
(40.0 dB MIN)

-57.8 dB
(40.0 dB MIN)

{13c} RECORD MEASURED TEMPERATURE

-12.9 °C
(-15.0 TO -10.0)

+14.3 °C
(12.5 TO 17.5)

+42.8 °C
(40.0 TO 45.0)

{14} ATTACH REJECTION PERFORMANCE
X-Y PLOT(S)

✓(√)

✓(√)

✓(√)

TEST PERFORMED BY R. HOGGATT DATE 12/18/91

NOTE IF TEST WITNESSED BY AESD: Not witnessed
this time. DLD

***** END OF FUNCTIONAL PERFORMANCE TEST *****

OUTLINE AND MOUNTING DIMENSIONS VERIFICATION

{16} REFERENCE CUSTOMER DRAWING 1331559

DESCRIPTION OF MEASUREMENT	DIMENSION AND TOLERANCE	ACTUAL MEASUREMENT
OVER ALL LENGTH	$3.50 \pm .03$	<u>3.501</u>
MOUNTING HOLE CENTER	$0.125 \pm .010$	<u>0.127</u>
BETWEEN UPPER MOUNTING HOLES	<u>3.250</u>	<u>3.250</u>
BETWEEN LOWER MOUNTING HOLES	<u>3.250</u>	<u>3.250</u>

Prepared in accordance with MIL-STD-100

CONTRACT NO.	SIZE A	CAGE CODE	DWG. NO.	REV.
		57032	63-0005-02	J
DADEN-ANTHONY ASSOCIATES INC.		FILE: ACAD/63/0502APCJ.DOC	SHEET	14

**FINAL FUNCTIONAL PERFORMANCE
REJECTION PERFORMANCE
SERIAL NO. P229-008**

**-10C DATA
OPR: R. HOGGATT DATE DEC 18 1996**

MARKER PARAMETER CHANNEL 2

MARKER 1	1.000000 MHz	50.000000 MHz
	OFF	0 dB
MARKER 2	5.000000 MHz	102.000000 MHz
	OFF	-57.654 dB
MARKER 3	5.000000 MHz	120.494452 MHz
	OFF	OFF
MARKER 4	5.000000 MHz	1000.000000 MHz
	OFF	OFF
MKR STIMULUS OFFSET	0.000000 MHz	0.000000 MHz
	0 dB	0 dB
REFERENCE MARKER PLACEMENT	OFF	MARKER 1
MARKER SEARCH	CONTINUOUS	CONTINUOUS
TARGET VALUE	OFF	OFF
MARKER WIDTH VALUE	-3 dB	-3 dB
	-3 dB	-3 dB
MARKER TRACKING	OFF	OFF
	OFF	OFF

FINAL FUNCTIONAL PERFORMANCE
REJECTION PERFORMANCE
SERIAL NO. P229-008
+15C DATA
OPR: R. HOGGATT DATE DEC 18 1996

MARKER PARAMETERS

Marker 1

Channel 2

MARKER 1 1.000000 MHz 50.000000 MHz
OFF 0 dB

MARKER 2 5.000000 MHz 102.000000 MHz
OFF -58.721 dB

MARKER 3 5.000000 MHz 120.294510 MHz
OFF -57.788 dB

MARKER 4 5.000000 MHz 1000.000000 MHz
OFF OFF

MKR STIMULUS OFFSET 0.000000 MHz 0.000000 MHz
0 dB 0 dB

REFERENCE MARKER PLACEMENT	OFF	MARKER 1
MARKER SEARCH	CONTINUOUS	CONTINUOUS
TARGET VALUE	OFF	OFF
MARKER WIDTH VALUE	-3 dB	-3 dB
MARKER TRACKING	OFF	OFF
	OFF	OFF

FINAL FUNCTIONAL PERFORMANCE

REJECTION PERFORMANCE

SERIAL NO. P229-008

+40C DATA

OPR: R. HOGGATT DATE DEC 18 1996

MARKER PARAMETERS

channel 1 channel 2

MARKER 1	1.000000 MHz OFF	50.000000 MHz 0 dB
MARKER 2	5.000000 MHz OFF	102.000000 MHz -59.744 dB
MARKER 3	5.000000 MHz OFF	120.294511 MHz -57.827 dB
MARKER 4	5.000000 MHz OFF	1000.000000 MHz OFF
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	0.000000 MHz 0 dB
REFERENCE MARKER PLACEMENT	OFF	MARKER 1
MARKER SEARCH	CONTINUOUS	CONTINUOUS
TARGET VALUE	OFF	OFF
MARKER WIDTH VALUE	-3 dB	-3 dB
MARKER TRACKING	OFF	OFF

APPENDIX CACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL50-80-10SS1 S/N P229-008
 AEROJET 1331559-3 REV. E

BANDPASS CHARACTERISTICS MEASUREMENT

PER ATP PARA 4.6
 (REF: AE-24687, PARA 4.8.2)

RECORD THE AMBIENT ROOM TEMPERATURE. +22.5 °C (+19°C TO +29.0°C)

{15} ATTACH PASSBAND PERFORMANCE X-Y PLOT

✓ (✓)

{24} TEST POINT MATRIX

REF	FREQ	UNIT	VALUE	REF	FREQ	UNIT	VALUE
F1	0.5	MHz	-103.3 dB	F11	(*) 60.0	MHz	-0.32 dB
F2	1.0	MHz	-96.3 dB	F12	(*) 70.0	MHz	-0.41 dB
F3	5.0	MHz	-31.9 dB	F13	80.0	MHz	-0.63 dB
F4	7.5	MHz	-11.1 dB	F14	85.0	MHz	-0.85 dB
F5	10.0	MHz	-1.54 dB	F15	90.0	MHz	-5.56 dB
F6	15.0	MHz	-0.26 dB	F16	100.0	MHz	-46.5 dB
F7	20.0	MHz	-0.21 dB	F17	200.0	MHz	-80.2 dB
F8	(*) 30.0	MHz	-0.18 dB	F18	300.0	MHz	-103.8 dB
F9	(*) 40.0	MHz	-0.21 dB	F19	500.0	MHz	-104.2 dB
F10	50.0	MHz	-0.24 dB	F20	1000.0	MHz	-106.2 dB

TEST PERFORMED BY: R. Hoggatt DATE 12/18/96

NOTE IF TEST WITNESSED BY AESD Not witnessed
 this time. DLD _____

***** END OF BANDPASS CHARACTERISTICS TEST *****

FUNCTIONAL PERFORMANCE TEST

ACCEPTANCE TEST PROCEDURE

63-0005-02 PARA 4.1

BRIEF TEST DESCRIPTION: THE TESTS DESCRIBED IN APPENDIX C PAGE 10 THRU PAGE 13 ARE PERFORMED TO DOCUMENT THE FUNCTIONAL PERFORMANCE OF THE UNIT AT THE CONCLUSION OF ALL ENVIRONMENTAL TESTING. THE TESTS ARE AS FOLLOWS AND IN ANY SEQUENCE:

- a.) VSWR PER ATP PARA 4.5.1.
- b.) INSERTION LOSS PER ATP PARA 4.5.2
- c.) INSERTION LOSS VS TEMPERATURE PER ATP PARA 4.5.6.
- d.) 3.0 dB BANDWIDTH PER ATP PARA 4.5.3.
- e.) CENTER FREQUENCY (fc) PER ATP PARA 4.5.7 (PART OF 3.0 dB B/W TEST)
- f.) PASSBAND RIPPLE PER ATP PARA 4.5.4 (PART OF INSERTION LOSS TEST).
- g.) OUT-OF-BAND REJECTION PER ATP PARA 4.5.5.

Prepared in accordance with MIL-STD-100

CONTRACT NO.	SIZE A	CAGE CODE 57032	DWG. NO. 63-0005-02	REV. J
DADEN-ANTHONY ASSOCIATES INC.	FILE: ACAD/63/0502APCJ.DOC	SHEET	11	

POST THERMAL CYCLE
 PASSBAND CHARACTERISTICS
 SERIAL NO. P229-008

AMBIENT

OPR: R. HOGGATT DATE DEC 18 1996

MARKER PARAMETER

channel 1

channel 2

MARKER 1	30.000000 MHz OFF	30.000000 MHz - .1780 dB
MARKER 2	40.000000 MHz OFF	40.000000 MHz - .2092 dB
MARKER 3	60.000000 MHz OFF	60.000000 MHz - .3244 dB
MARKER 4	70.000000 MHz OFF	70.000000 MHz - .4116 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	0.000000 MHz 0 dB
REFERENCE MARKER PLACEMENT	OFF	OFF
MARKER SEARCH	CONTINUOUS	CONTINUOUS
TARGET VALUE	OFF	OFF
MARKER WIDTH VALUE	-3 dB	-3 dB
MARKER TRACKING	OFF	OFF

GAIN STABILITY AND GAIN COMPRESSION
FOR
MIXER/IF AMPLIFIERS

GAIN-TEMPERATURE SENSITIVITY FOR MIXER/AMPLIFIERS

Channel No.	1	2
Specification (+/-dB/°C)	0.02	0.02
Measured (dB/°C)	-0.015	-0.017

Channel 1 Bandpass Filter

IF Filter (S/N: 1331559-6, S/N: P232-006)

APPENDIX E

ACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL72.5-125-10SS1 S/N P232-006
 AEROJET 1331559-6 REV. E

3.0 dB BANDWIDTH

ACCEPTANCE TEST PROCEDURE
 63-0005-02 PARA 4.5.3

	-10°C	+15°C	+40°C
{7} UPPER 3.0 dB BANDEDGE	<u>134.32</u> MHz (133.0-135.0)	<u>134.11</u> Mhz (133.0-135.0)	<u>133.87</u> MHz (133.0-135.0)
{8} LOWER 3.0 dB BANDEDGE	<u>8.62</u> MHz (8.0-10.0)	<u>8.60</u> Mhz (8.0-10.0)	<u>8.59</u> MHz (8.0-10.0)
{9} 3.0 dB RELATIVE BANDWIDTH	<u>125.76</u> MHz (123.0-127.0)	<u>125.51</u> Mhz (123.0-127.0)	<u>125.28</u> MHz (123.0-127.0)
{10} ADD {7} AND {8} ÷ 2 =	<u>71.47</u> MHz (72.5 NOM)	<u>71.36</u> MHz (72.5 NOM)	<u>71.23</u> Mhz (72.5 NOM)
{10a} RECORD MEASURED TEMPERATURE	<u>-13.0</u> °C (-15.0 TO -10.0)	<u>+14.1</u> °C (12.5 TO 17.5)	<u>+42.5</u> °C (40.0 TO 45.0)
{6} ATTACH TRANSMISSION LOSS PERFORMANCE X-Y PLOT	<u>✓</u> (✓)	<u>✓</u> (✓)	<u>✓</u> (✓)

PASSBAND RIPPLE

ACCEPTANCE TEST PROCEDURE
 63-0005-02 PARA 4.5.4

	-10°C	+15°C	+40°C
{11a} MIN INSERTION LOSS FREQ	<u>32.63</u> MHz	<u>31.84</u> Mhz	<u>31.84</u> MHz
MIN INSERTION LOSS PERFORMANCE	<u>-0.17</u> dB	<u>-0.17</u> dB	<u>-0.17</u> dB
{11b} 75% BW LOWER BANDEDGE FREQ	<u>10.24</u> MHz	<u>10.17</u> Mhz	<u>10.13</u> MHz
75% BW LOWER BANDEDGE I.L. PERF	<u>-0.41</u> dB	<u>-0.43</u> dB	<u>-0.46</u> dB
{11c} 75% BW UPPER BANDEDGE FREQ	<u>103.99</u> MHz	<u>103.92</u> Mhz	<u>103.88</u> MHz
75% BW UPPER BANDEDGE I.L. PERF	<u>-0.42</u> dB	<u>-0.43</u> dB	<u>-0.45</u> dB
{11d} PERFORMANCE DELTA (I.L. @ {11b} - I.L. @ {11a})	<u>0.24</u> dB	<u>0.26</u> dB	<u>0.29</u> dB
{11e} PERFORMANCE DELTA (I.L. @ {11c} - I.L. @ {11a})	<u>0.25</u> dB	<u>0.26</u> dB	<u>0.28</u> dB

Prepared in accordance with MIL-STD-100

CONTRACT NO.	SIZE A	CAGE CODE 57032	DWG. NO. 63-0005-02	REV. J
DADEN-ANTHONY ASSOCIATES INC.		FILE: ACAD/63/0502APFJ.DOC	SHEET	12

FINAL FUNCTIONAL PERFORMANCE

TRANSMISSION LOSS

SERIAL NO. P232-006

-10C DATA

OPR: R. HOGGATT DATE 12/11/96

MARKER PARAMETERS CHANNEL 2

MARKER 1 16.250000 MHz 72.500000 MHz
 OFF -256 dB

MARKER 2 128.750000 MHz 71.469838 MHz
 OFF

MARKER 3 134.325000 MHz 8.615992 MHz
 OFF -3.256 dB

MARKER 4 134.325000 MHz 134.323684 MHz
 OFF -3.256 dB

MKR STIMULUS OFFSET 0.000000 MHz 89.425802 MHz
 0 dB -3.2342 dB

REFERENCE MARKER OFF OFF
 PLACEMENT CONTINUOUS CONTINUOUS

MARKER SEARCH OFF OFF

TARGET VALUE -14 dB -3 dB

MARKER WIDTH VALUE -3 dB -3 dB

MARKER TRACKING OFF OFF

MARKER TRACKING OFF OFF

FINAL FUNCTIONAL PERFORMANCE

TRANSMISSION LOSS

SERIAL NO. P232-006

+15C DATA

OPR: R. HOGGATT DATE 12/11/96

MARKER PARAMETER

MARKER 1 16.250000 MHz 72.500000 MHz
OFF -.2637 dB

MARKER 2 128.750000 MHz 71.354527 MHz
OFF OFF

MARKER 3 25.625000 MHz 8.604033 MHz
OFF -3.2638 dB

MARKER 4 119.375000 MHz 134.105022 MHz
OFF -3.2638 dB

MKR STIMULUS OFFSET 0.000000 MHz 89.425802 MHz
0 dB -3.2342 dB

REFERENCE MARKER PLACEMENT OFF CONTINUOUS OFF CONTINUOUS SEE

MARKER SEARCH OFF OFF

MARKER WIDTH VALUE -3dB OFF OFF

MARKER TRACKING OFF OFF

FINAL FUNCTIONAL PERFORMANCE

TRANSMISSION LOSS

SERIAL NO. P232-006

+40C DATA

OPR: R. HOGGATT DATE 12/11/96

MARKER PARAMETER

FUNCTION

CHANNEL 2

MARKER 1

**16.250000 MHz
OFF**

**72.500000 MHz
-2773 dB**

MARKER 2

**128.750000 MHz
OFF**

**71.226904 MHz
OFF**

MARKER 3

**25.625000 MHz
OFF**

**8.587920 MHz
-3.2773 dB**

MARKER 4

**119.375000 MHz
OFF**

**133.865888 MHz
-3.2773 dB**

MARKER STIMULUS OFFSET

**0.000000 MHz
0 dB**

**89.425802 MHz
-3.2342 dB**

REFERENCE MARKER PLACEMENT

**OFF
CONTINUOUS**

**OFF
CONTINUOUS**

MARKER SEARCH

OFF

OFF

TARGET VALUE

-14 dB

-3 dB

MARKER WIDTH VALUE

-3 dB

-3 dB

MARKER TRACKING

**OFF
OFF**

**OFF
OFF**

BANDPASS FILTER MODEL HL72.5-125-10SS1 S/N P232-006
 AEROJET 1331559-6 REV. E

PASSBAND RIPPLE (CON'T)

{11f} RECORD PASS/FAIL (0.5 dB MAX)

PASS/FAIL

PASS/FAIL

PASS/FAIL

{11g) ATTACH PASSBAND RIPPLE
 PERFORMANCE X-Y PLOT(S)

✓ (✓)

✓ (✓)

✓ (✓)

OUT-OF-BAND REJECTION

ACCEPTANCE TEST PROCEDURE

-10°C

63-0005-02 PARA 4.5.5

+15°C

+40°C

Fc=72.5 MHz.

REF {5A} FOR INSERTION LOSS @ Fc

{12} WORST CASE REJECTION FROM
 0.300 MHz TO 1.0 MHz

>100 dB
 (40.0 dB MIN)

>100 dB
 (40.0 dB MIN)

>100 dB
 (40.0 dB MIN)

{13a} WORST CASE REJECTION FROM
 153.75 MHz TO 1000.0 MHz

-66.0 dB
 (40.0 dB MIN)

-67.0 dB
 (40.0 dB MIN)

-68.1 dB
 (40.0 dB MIN)

{13c} RECORD MEASURED TEMPERATURE

-13.3 °C
 (-15.0 TO -10.0)

+13.9 °C
 (12.5 TO 17.5)

+42.3 °C
 (40.0 TO 45.0)

{14} ATTACH REJECTION PERFORMANCE
 X-Y PLOT(S)

✓ (✓)

✓ (✓)

✓ (✓)

TEST PERFORMED BY T. HOGG DATE 12/11/96

NOTE IF TEST WITNESSED BY AESD: _____ GSI: Not witnessed
this time. DLD

***** END OF FUNCTIONAL PERFORMANCE TEST *****

OUTLINE AND MOUNTING DIMENSIONS VERIFICATION

{16} REFERENCE CUSTOMER DRAWING 1331559

DESCRIPTION OF MEASUREMENT	DIMENSION AND TOLERANCE	ACTUAL MEASUREMENT
OVER ALL LENGTH	3.50 ± .03	<u>3.500</u>
MOUNTING HOLE CENTER	0.125 ± .010	<u>0.126</u>
BETWEEN UPPER MOUNTING HOLES	<u>3.250</u>	<u>3.249</u>
BETWEEN LOWER MOUNTING HOLES	<u>3.250</u>	<u>3.251</u>

Prepared in accordance with MIL-STD-100

CONTRACT NO.	SIZE A	CAGE CODE	DWG. NO.	REV.
		57032	63-0005-02	J
DADEN-ANTHONY ASSOCIATES INC.		FILE: ACAD/63/0502APFJ.DOC		SHEET 13

**FINAL FUNCTIONAL PERFORMANCE
REJECTION PERFORMANCE
SERIAL NO. P232-006**

-10C DATA
OPR: R. HOGGATT DATE 12/11/96

MARKER PARAMETER CHANNEL 2

MARKER 1 1.000000 MHz 72.500000 MHz
OFF 0 dB

MARKER 2 5.000000 MHz 153.750000 MHz
OFF -65.965 dB

MARKER 3 5.000000 MHz 153.750000 MHz
OFF OFF

MARKER 4 5.000000 MHz 1000.000000 MHz
OFF OFF

MKR STIMULUS OFFSET 0.000000 MHz 0.000000 MHz
0 dB 0 dB

REFERENCE MARKER 1
PLACEMENT CONTINUOUS
MARKER SEARCH OFF

MARKER SEARCH OFF -3 dB

TARGET VALUE -3 dB -3 dB

MARKER WIDTH VALUE OFF OFF

MARKER TRACKING OFF OFF

FINAL FUNCTIONAL PERFORMANCE

REJECTION PERFORMANCE

SERIAL NO. P232-006

+15C DATA

OPR: R. HOGGATT DATE 12/11/96

MARKER PARAMETER

CHANNEL 2

MARKER 1 1.000000 MHz 72.500000 MHz
OFF 0 dB

MARKER 2 5.000000 MHz 153.750000 MHz
OFF -67.009 dB

MARKER 3 5.000000 MHz 153.750000 MHz
OFF

MARKER 4 5.000000 MHz 1000.000000 MHz
OFF

MKR STIMULUS OFFSET 0.000000 MHz 0.000000 MHz
0 dB 0 dB

REFERENCE MARKER
PLACEMENT OFF MARKER 1
CONTINUOUS

MARKER SEARCH OFF -3 dB

TARGET VALUE -3 dB -3 dB

MARKER WIDTH VALUE OFF OFF

MARKER TRACKING OFF

BANDPASS FILTER MODEL HL72.5-125-10SS1 S/N P232-006
 AEROJET 1331559-6 REV. E

BANDPASS CHARACTERISTICS MEASUREMENT

PER ATP PARA 4.6

(REF: AE-24687, PARA 4.8.2)

RECORD THE AMBIENT ROOM TEMPERATURE. +24.0 °C (+19°C TO +29.0°C)

{15} ATTACH PASSBAND PERFORMANCE X-Y PLOT

✓ (✓)

{24} TEST POINT MATRIX

REF	FREQ	UNIT	VALUE	REF	FREQ	UNIT	VALUE
F1	0.5	MHz	<u>-98.1</u> dB	F11	(*) 80.0	MHz	<u>-0.32</u> dB
F2	1.0	MHz	<u>-91.4</u> dB	F12	(*) 100.0	MHz	<u>-0.41</u> dB
F3	5.0	MHz	<u>-30.2</u> dB	F13	120.0	MHz	<u>-0.63</u> dB
F4	7.5	MHz	<u>-9.15</u> dB	F14	130.0	MHz	<u>-1.06</u> dB
F5	10.0	MHz	<u>-0.84</u> dB	F15	135.0	MHz	<u>-5.34</u> dB
F6	15.0	MHz	<u>-0.30</u> dB	F16	140.0	MHz	<u>-21.9</u> dB
F7	25.0	MHz	<u>-0.22</u> dB	F17	150.0	MHz	<u>-53.6</u> dB
F8	(*) 45.0	MHz	<u>-0.18</u> dB	F18	200.0	MHz	<u>-77.2</u> dB
F9	(*) 65.0	MHz	<u>-0.25</u> dB	F19	500.0	MHz	<u>-100.1</u> dB
F10	72.5	MHz	<u>-0.30</u> dB	F20	1000.0	MHz	<u>-103.7</u> dB

TEST PERFORMED BY: R. HOGGAN DATE 12/18/96NOTE IF TEST WITNESSED BY AESD _____ GSI Not witnessed this time. DLD

***** END OF BANDPASS CHARACTERISTICS TEST *****

FUNCTIONAL PERFORMANCE TEST

ACCEPTANCE TEST PROCEDURE

63-0005-02 PARA 4.1

BRIEF TEST DESCRIPTION: THE TESTS DESCRIBED IN APPENDIX F PAGE 10 THRU PAGE 13 ARE PERFORMED TO DOCUMENT THE FUNCTIONAL PERFORMANCE OF THE UNIT AT THE CONCLUSION OF ALL ENVIRONMENTAL TESTING. THE TESTS ARE AS FOLLOWS AND IN ANY SEQUENCE:

- a.) VSWR PER ATP PARA 4.5.1.
- b.) INSERTION LOSS PER ATP PARA 4.5.2
- c.) INSERTION LOSS VS TEMPERATURE PER ATP PARA 4.5.6.
- d.) 3.0 dB BANDWIDTH PER ATP PARA 4.5.3.
- e.) CENTER FREQUENCY (fc) PER ATP PARA 4.5.7 (PART OF 3.0 dB B/W TEST)
- f.) PASSBAND RIPPLE PER ATP PARA 4.5.4 (PART OF INSERTION LOSS TEST).
- g.) OUT-OF-BAND REJECTION PER ATP PARA 4.5.5.

Prepared in accordance with MIL-STD-100

CONTRACT NO.	SIZE A	CAGE CODE 57032	DWG. NO. 63-0005-02	REV. J
DADEN-ANTHONY ASSOCIATES INC.		FILE: ACAD/63/0502APFJ.DOC	SHEET	10

**POST THERMAL CYCLE
PASSBAND CHARACTERISTICS
SERIAL NO. P232-006**

AMBIENT OPR: R. HOGGATT DATE DEC 18 1996

MARKER PARAMETER 1 2

MARKER 1 45.000000 MHz 45.000000 MHz
OFF - 1842 dB

MARKER 2 65.000000 MHz 65.000000 MHz
OFF - 2535 dB

MARKER 3 80.000000 MHz 80.000000 MHz
OFF - 3240 dB

MARKER 4 100.000000 MHz 100.000000 MHz
OFF - 4053 dB

MKR STIMULUS OFFSET 0.000000 MHz 0.000000 MHz
0 dB 0 dB

REFERENCE MARKER OFF
PLACEMENT CONTINUOUS CONTINUOUS

MARKER SEARCH OFF OFF

TARGET VALUE -3 dB -3 dB

MARKER WIDTH VALUE -3 dB -3 dB

OFF OFF

MARKER TRACKING OFF OFF

Channel 2 Bandpass Filter

IF Filter (S/N: 1331559-3, S/N: P229-008)

APPENDIX CACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL50-80-10SS1 S/N P229-008
 AEROJET 1331559-3 REV. E

3.0 dB BANDWIDTH

ACCEPTANCE TEST PROCEDURE
 63-0005-02 PARA 4.5.3

	-10°C	+15°C	+40°C
{7} UPPER 3.0 dB BANDEDGE	<u>89.37</u> MHz (88.0-90.0)	<u>89.22</u> Mhz (88.0-90.0)	<u>89.06</u> MHz (88.0-90.0)
{8} LOWER 3.0 dB BANDEDGE	<u>9.07</u> MHz (8.0-10.0)	<u>9.06</u> Mhz (8.0-10.0)	<u>9.05</u> MHz (8.0-10.0)
{9} 3.0 dB RELATIVE BANDWIDTH	<u>80.30</u> MHz (78.0-82.0)	<u>80.16</u> Mhz (78.0-82.0)	<u>80.01</u> MHz (78.0-82.0)
{10} ADD {7} AND {8} ÷ 2 =	<u>49.22</u> MHz (50.0 NOM)	<u>49.14</u> MHz (50.0 NOM)	<u>49.06</u> Mhz (50.0 NOM)
{10a} RECORD MEASURED TEMPERATURE	<u>-12.7</u> °C (-15.0 TO -10.0)	<u>+14.1</u> °C (12.5 TO 17.5)	<u>+42.9</u> °C (40.0 TO 45.0)
{6} ATTACH TRANSMISSION LOSS PERFORMANCE X-Y PLOT	<u>✓</u> (✓)	<u>✓</u> (✓)	<u>✓</u> (✓)

PASSBAND RIPPLE

ACCEPTANCE TEST PROCEDURE
 63-0005-02 PARA 4.5.4

	-10°C	+15°C	+40°C
{11a} MIN INSERTION LOSS FREQ	<u>21.00</u> MHz	<u>21.26</u> Mhz	<u>21.00</u> MHz
MIN INSERTION LOSS PERFORMANCE	<u>-0.17</u> dB	<u>-0.17</u> dB	<u>-0.18</u> dB
{11b} 75% BW LOWER BANDEDGE FREQ	<u>11.05</u> MHz	<u>11.00</u> Mhz	<u>10.94</u> MHz
75% BW LOWER BANDEDGE I.L. PERF	<u>-0.39</u> dB	<u>-0.41</u> dB	<u>-0.44</u> dB
{11c} 75% BW UPPER BANDEDGE FREQ	<u>71.05</u> MHz	<u>71.00</u> Mhz	<u>70.94</u> MHz
75% BW UPPER BANDEDGE I.L. PERF	<u>-0.39</u> dB	<u>-0.41</u> dB	<u>-0.43</u> dB
{11d} PERFORMANCE DELTA (I.L. @ {11b} - I.L. @ {11a})	<u>0.22</u> dB	<u>0.24</u> dB	<u>0.27</u> dB
{11e} PERFORMANCE DELTA (I.L. @ {11c} - I.L. @ {11a})	<u>0.22</u> dB	<u>0.24</u> dB	<u>0.27</u> dB

Prepared in accordance with MIL-STD-100

CONTRACT NO.	SIZE A	CAGE CODE 57032	DWG. NO. 63-0005-02	REV. J
DADEN-ANTHONY ASSOCIATES INC.		FILE: ACAD/63/0502APCJ.DOC	SHEET	13

FINAL FUNCTIONAL PERFORMANCE

TRANSMISSION LOSS

SERIAL NO. P229-008

-10C DATA

OPR: R. HOGGATT DATE DEC 18 1996

MARKER PARAMETERS

channel 2

MARKER 1 14.000000 MHz 50.000000 MHz
OFF -2336 dB

MARKER 2 86.000000 MHz 49.219192 MHz
OFF

MARKER 3 20.000000 MHz 9.087004 MHz
OFF -3.2337 dB

MARKER 4 89.000000 MHz 89.371381 MHz
OFF -3.2337 dB

MKR STIMULUS OFFSET 0.000000 MHz 89.425802 MHz
0 dB -3.2342 dB

REFERENCE MARKER PLACEMENT	OFF	OFF
MARKER SEARCH	CONTINUOUS	CONTINUOUS
TARGET VALUE	OFF	OFF
MARKER WIDTH VALUE	-14 dB	-3 dB
MARKER TRACKING	OFF	OFF

DOCUMENT APPROVAL SHEET

TITLE <u>Performance Verification Report</u> METSAT AMSU-A2 Receiver Assembly, (P/N 1356441-1, S/N F04) S/N 107			DOCUMENT NO. Report 11317 November 1998
INPUT FROM: R. Kapper	DATE 208	SPECIFICATION ENGINEER: N/A	DATE
CHECKED BY: N/A	DATE	JOB NUMBER: N/A	DATE
APPROVED SIGNATURES		DEPT. NO.	DATE
Product Team Leader (R. Kapper)		8661	11/10/98
Systems Engineer (R. Platt)		8311	11/16/98
Design Assurance (E. Lorenz)		8331	11/12/98
Quality Assurance (R. Taylor)		7831	11/16/98
Technical Director/PMO (R. Hauerwaas)		4001	11/11/98
Released: Configuration Management (J. Cavanaugh)		8361	11/16/98
By my signature, I certify the above document has been reviewed by me and concurs with the technical requirements related to my area of responsibility.			
(Data Center) FINAL			
Please return this sheet and the reproducible master to Jim Kirk (Bldg. 1/Dept. 8631), ext. 2081.			

PREPARATION OF THE REPORT DOCUMENTATION PAGE

The last page of a report facing the third cover is the Report Documentation Page, RDP. Information presented on this page is used in announcing and cataloging reports as well as preparing the cover and title page. Thus, it is important that the information be correct. Instructions for filing in each block of the form are as follows:

Block 1. Report No. NASA report series number, if preassigned.

Block 2. Government Accession No. Leave blank.

Block 3. Recipient's Catalog No. Reserved for use by each report recipient.

Block 4. Title and Subtitle. Typed in caps and lower case with dash or period separating subtitle from title.

Block 5. Report Date. Approximate month and year the report will be published.

Block 6. Performing Organization Code. Leave blank.

Block 7. Authors. Provide full names exactly as they are to appear on the title page. If applicable, the word editor should follow a name.

Block 8. Performing Organization Report No. NASA installation report control number and, if desired, the non-NASA performing organization report control number.

Block 9. Performing Organization Name and Address. Provide affiliation (NASA program office, NASA installation, or contractor name) of authors.

Block 10. Work Unit No. Provide Research and Technology Objectives and Plants (RTOP) number.

Block 11. Contract or Grant No. Provide when applicable.

Block 12. Sponsoring Agency Name and Address. National Aeronautics and Space Administration, Washington, D.C. 20546-0001. If contractor report, add NASA installation or HQ program office.

Block 13. Type of Report and Period Covered. NASA formal report series; for Contractor Report also list type (interim, final) and period covered when applicable.

Block 14. Sponsoring Agency Code. Leave blank.

Block 15. Supplementary Notes. Information not included

elsewhere: affiliation of authors if additional space is required for Block 9, notice of work sponsored by another agency, monitor of contract, information about supplements (file, data tapes, etc.) meeting site and date for presented papers, journal to which an article has been submitted, note of a report made from a thesis, appendix by author other than shown in Block 7.

Block 16. Abstract. The abstract should be informative rather than descriptive and should state the objectives of the investigation, the methods employed (e.g., simulation, experiment, or remote sensing), the results obtained, and the conclusions reached.

Block 17. Key Words. Identifying words or phrases to be used in cataloging the report.

Block 18. Distribution Statement. Indicate whether report is available to public or not. If not to be controlled, use "Unclassified-Unlimited." If controlled availability is required, list the category approved on the Document Availability Authorization Form (see NHB 2200.2, Form FF427). Also specify subject category (see "Table of Contents" in a current issue of STAR) in which report is to be distributed.

Block 19. Security Classification (of the report). Self-explanatory.

Block 20. Security Classification (of this page). Self-explanatory.

Block 21. No. of Pages. Count front matter pages beginning with iii, text pages including internal blank pages, and the RDP, but not the title page or the back of the title page.

Block 22. Price Code. If Block 18 shows "Unclassified-Unlimited," provide the NTIS price code (see "NTIS Price Schedules" in a current issue of STAR) and at the bottom of the form add either "For sale by the National Technical Information Service, Springfield, VA 22161-2171" or "For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402-0001," whichever is appropriate.

REPORT DOCUMENTATION PAGE		Form Approved OMB No. 0704-0188	
<p>Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.</p>			
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
4. TITLE AND SUBTITLE Integrated Advanced Microwave Sounding Unit-A (AMSU-A), Performance Verification Report		5. FUNDING NUMBERS NAS 5-32314	
6. AUTHOR(S) R. Kapper			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Aerojet 1100 W. Hollyvale Azusa, CA 91702		8. PERFORMING ORGANIZATION REPORT NUMBER 11317 November 1998	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) NASA Goddard Space Flight Center Greenbelt, Maryland 20771		10. SPONSORING/MONITORING AGENCY REPORT NUMBER ---	
11. SUPPLEMENTARY NOTES ---			
12a. DISTRIBUTION/AVAILABILITY STATEMENT ---		12b. DISTRIBUTION CODE ---	
13. ABSTRACT (Maximum 200 words) This is the Performance Verification Report, METSAT AMSU-A2 Receiver Assembly (P/N 1356441-1, S/N F04), S/N 107 for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).			
14. SUBJECT TERMS EOS Microwave System		15. NUMBER OF PAGES ---	
17. SECURITY CLASSIFICATION OF REPORT Unclassified		18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified
			20. LIMITATION OF ABSTRACT SAR

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filing in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

<p>Block 1. Agency Use Only(Leave blank)</p> <p>Block 2. Report Date Full publication date including day, month, and year, if available (e.g., 1 Jan 88). Must cite at least the year.</p> <p>Block 3. Type of Report and Dates Covered State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g., 10 Jun 87 - 30 Jun 88).</p> <p>Block 4. Title and Subtitle A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume report the primary title, add volume number and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.</p> <p>Block 5. Funding Numbers To include contract and grant numbers; may include program element number(s), project number(s), tasknumber(s), and work unit number(s). Use the following labels:</p> <table border="0" data-bbox="289 931 782 1036"> <tr> <td>C - Contract</td> <td>PR - Project</td> </tr> <tr> <td>G - Grant</td> <td>TA - Task</td> </tr> <tr> <td>PE - Program Element</td> <td>WU - Work Unit</td> </tr> <tr> <td></td> <td>Accession No.</td> </tr> </table> <p>Block 6. Author(s) Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).</p> <p>Block 7. Performing Organization Name(s) and Address(es) Self-explanatory.</p> <p>Block 8. Performing Organization Report Number Enter the unique alphanumeric report number(s) assigned by the organization performing the report.</p> <p>Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es) Self-explanatory.</p> <p>Block 10. Sponsoring/Monitoring Agency Reports Number (if known)</p> <p>Block 11. Supplementary Notes Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in... When a report is revised, include a statement whether the new report supersedes or supplements the older report.</p>	C - Contract	PR - Project	G - Grant	TA - Task	PE - Program Element	WU - Work Unit		Accession No.	<p>Block 12.a Distribution/Availability Statement Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g., NOFORN, REL, ITAR).</p> <p>DOD - See DoDD 5230.24 <i>Distribution Statement on Technical Documents</i> DOE - See authorities. NASA - See Handbook NHB 2200.2. NTIS - Leave blank.</p> <p>Block 12.b Distribution Code</p> <p>DOD - Leave blank. DOE - Enter DOE distribution categories from the standard Distribution for Unclassified Scientific and Technical Reports. NASA - Leave blank. NTIS - Leave blank.</p> <p>Block 13. Abstract Include a brief <i>Maximum 200 words</i> factual summary of the most significant information contained in the report.</p> <p>Block 14. Subject Terms Keywords or phases identifying major subjects in the report.</p> <p>Block 15. Number of Pages Enter the total number of pages.</p> <p>Block 16. Price Code Enter appropriate price code (NTIS only).</p> <p>Block 17 - 19. Security Classifications Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.</p> <p>Block 20. Limitation of Abstract This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.</p>
C - Contract	PR - Project								
G - Grant	TA - Task								
PE - Program Element	WU - Work Unit								
	Accession No.								

Standard Form 298 Back (Rev. 2-89)

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)			2. REPORT DATE November 1998	3. REPORT TYPE AND DATES COVERED Contractor Report	
4. TITLE AND SUBTITLE Integrated Advanced Microwave Sounding Unit-A (AMSU-A) Performance Verification Report METSAT AMSU-A2 Receiver Assembly (P/N 1356441-1, S/N F04) S/N 107			5. FUNDING NUMBERS NAS5-32314		
6. AUTHOR(S) R. Kapper			8. PERFORMING ORGANIZATION REPORT NUMBER 11317		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES) Aerojet 1100 West Hollyvale St. Greenbelt, MS 20771			9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS (ES) National Aeronautics and Space Administration Washington, DC 20546-0001		
10. SPONSORING / MONITORING AGENCY REPORT NUMBER CR-209220			11. SUPPLEMENTARY NOTES		
12a. DISTRIBUTION / AVAILABILITY STATEMENT Unclassified-Unlimited Subject Category: 18 Report available from the NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, MD 21076-1320. (301) 621-0390.			12b. DISTRIBUTION CODE		
13. ABSTRACT (Maximum 200 words) This is the Performance Verification Report, METSAT AMSU-A2 Receiver Assembly (P/N 1356441-1, S/N F04), S/N 107 for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A)					
14. SUBJECT TERMS EOS; microwave system.			15. NUMBER OF PAGES 94		
17. SECURITY CLASSIFICATION OF REPORT Unclassified			18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified		
19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified			20. LIMITATION OF ABSTRACT UL		