Instance Based Learning

Bùi Tiến Lên

2022

Contents

1. Classification

2. Metric Learning

3. Regression

4. Clustering

k-Means

Notation

Parametric vs Non-parametric Models

Parametric Models

- In the models that we have seen, we select a hypothesis space H and adjust a fixed set of parameters w with the training data D
- We assume that the parameters w summarize the training data D and we can forget about it

$$y = f(\mathbf{x}; \mathbf{w}) \tag{1}$$

Non-parametric Models

- A non parametric model is one that can not be characterized by a fixed set of parameters
- A family of non parametric models is **Instance Based Learning**. The function is based on the training data $\mathcal{D} = \{x_1, x_2, ... x_n\}$

$$y = f(x; x_1, x_2, ..., x_n)$$
 (2)

Metric Learning

Motivation
Metric Learning

Loss Function

Regressi

Kernel Regression
k-NN Regression
Nadaraya-Watsor

Nadaraya-Watson Parametric Mode

Parametric Mode

Clusteri

k-Means Hierarchical Cluster

Inductive Bias

Concept 1

In nonparametric model, we assume that *similar* inputs have *similar* outputs.

 This is a reasonable assumption: The world is smooth, and functions, whether they are densities, discriminants, or regression functions, change slowly. Similar instances mean similar things.

Classification

- k-Nearest Neighbor (k-NN)
- Effects of Hyper-parameters

k-Nearest Neighbor (k-NN)

k-Means

When To Consider Nearest Neighbor

- Data points $\mathbf{x} \in \mathbb{R}^D$
- Less than D < 20 attributes
- Lots of training data \mathcal{D}

Nearest Neighbor

Learning mode

• Store all training examples $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i) \mid i = 1, ..., N\}$

Running mode

• Nearest neighbor: Given query instance x_a , first locate the nearest neighbor $\mathbf{x}^{(1)}$, then estimate

$$h(\mathbf{x}_q) = \mathbf{y}^{(1)} \tag{3}$$

• k-Nearest neighbor: Given x_a , take vote among its k nearest neighbors $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(k)}\}\$

$$h(\mathbf{x}_q) = \text{majority vote}\{y^{(1)}, y^{(2)}, ..., y^{(k)}\}$$
 (4)

Distance

Some common distances in space \mathbb{R}^D

• The Minkowski distance of order p > 0

$$d(\mathbf{x}, \mathbf{y}) = L_{p}(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^{D} |x_{i} - y_{i}|^{p}\right)^{1/p}$$
(5)

Euclidean distance (popular)

$$d(\mathbf{x}, \mathbf{y}) = L_2(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{D} (x_i - y_i)^2}$$
 (6)

k-Means

Distance (cont.)

Manhattan distance

$$d(\mathbf{x}, \mathbf{y}) = L_1(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{D} |x_i - y_i|$$
(7)

Figure 1: Contours of the distance from the origin O for various values of the parameter *p*

k-Nearest Neighbor (k-NN)

The Curse of dimensionality

- The more dimensions we have, the more examples we need
- The number of examples that we have in a volume of space decreases exponentially with the number of dimensions
 - If the number of dimensions is very high, the nearest neighbours can be very far away

k-Nearest Neighbor

(k-NN)

k-Means

Analysis

Advantages

- No training, just store data
- Learn complex target functions
- Don't lose information

Disadvantages

- Slow at query time
- Easily fooled by irrelevant attributes

Effects of Hyper-parameters

k-Means

Parameter k

- if k = 1 the cross point x should be classified to square class
- if k = 3?
- if k = 5?
- square class
- circle class

assification

(k-NN) Effects of

Hyper-parameters

Metric Learni

Metric Learnin

Loss Functio

Regressi

Kernel Functio

k-NN Regressio

Nadaraya-Wats Model

Parametric Mod

Parametric Mod

. ..

k-Means

Hierarchical Clusterin

Parameter k (cont.)

 Data set $\mathcal D$ with 500 samples belonging to two classes {blue, orange}

k-Means

Parameter k (cont.)

Decision regions for various values of k

Metric Learning

- Motivation
- Metric Learning
- Loss Function

Motivation

Motivation

Nearest neighbor classification

Motivation

Hierarchical Clustering

Motivation (cont.)

Clustering

assification

(k-NN)

Hyper-parame

Metric Learni

Motivation

Metric Learni

Regres

Kamal Forest

Kernel Funct

Kernel Regres

k-NN Regressie

Nadaraya-Wats

Nadaraya-Watsoi

Parametric Mode

k-Means

K-IAIGHII

Hierarchical Cluste

Motivation (cont.)

Information retrieval

Most similar images

Motivation

k-Means

Motivation (cont.)

Data visualization

Metric Learning

- Given a set of data points \mathcal{X} and their corresponding labels \mathcal{Y}
- Select a parametric distance or similarity function

$$d_{\mathbf{W}}(\mathbf{x}, \mathbf{x}') = L\left(f_{\mathbf{W}}(\mathbf{x}), f_{\mathbf{W}}(\mathbf{x}')\right) \tag{8}$$

An embedding function (parametric function)

$$f_{\mathbf{W}}(\mathbf{x}) \colon \mathcal{X} o \mathbb{R}^n$$

A distance function (which is usually fixed beforehand)

$$L(\mathbf{x}, \mathbf{x}') \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$
 (10)

 The goal is to train the parametric distance, so that the combination $d_{\mathcal{W}}(\mathbf{x}, \mathbf{x}')$ produces small values if the labels $y, y' \in \mathcal{Y}$ of the samples $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$ are equal, and larger values if they aren't.

(9)

Metric Learning

Metric Learning (cont.)

Collect similarity judgements on data pairs/triplets

$$S = \{(\mathbf{x}_i, \mathbf{x}_j) : \mathbf{x}_i \text{ and } \mathbf{x}_j \text{ should be similar}\},$$

$$D = \{(\mathbf{x}_i, \mathbf{x}_j) : \mathbf{x}_i \text{ and } \mathbf{x}_j \text{ should be dissimilar}\}.$$

$$\mathcal{R} = \{(\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k) : \mathbf{x}_i \text{ should be more similar to } \mathbf{x}_j \text{ than to } \mathbf{x}_k\}.$$
(11)

Estimate parameters s.t. metric best agrees with judgements

$$\hat{W} = \arg\min_{W} \left[\underbrace{\ell(d_{W}, \mathcal{S}, \mathcal{D}, \mathcal{R})}_{\text{loss function}} + \underbrace{\lambda R(W)}_{\text{regularization}} \right]$$
(12)

lassificatio

Classification

Effects of

Hyper-parame

Metric Learni

Motivation

Metric Learning

Loss Function

Dogge

Kernel Functi

k-NN Regressi Nadaraya-Wat Model

Nadaraya-Watsor Parametric Mode

Parametric Mod

k-Means

Hierarchical Clustering

Metric Learning (cont.)

Motivation

Metric Learning

Metric Learning (cont.)

Metric Learning

k-Means

Contrastive Approaches

- An embedding function is usually a neural network
- A distance function is L₂ distance
- A loss function

Contrastive Loss

Contrastive Loss (Chopra et al. 2005)

• Let x_1, x_2 be some samples in the dataset, and y_1, y_2 are their corresponding labels. Also, for some condition A, let's denote \mathbb{I}_A as the identity function that is equal to 1 if A is true, and 0 otherwise. The loss function is then defined as follows:

$$\ell_{\mathsf{contrast}} = \mathbb{I}_{y_1 = y_2} d_{\mathbf{W}}(\mathbf{x}_1, \mathbf{x}_2) + \mathbb{I}_{y_1 \neq y_2} \max(0, \alpha - d_{\mathbf{W}}(\mathbf{x}_1, \mathbf{x}_2))$$
(13)

where α is the margin.

Loss Function

Triplet Loss

Triplet Loss (Schroff et al. 2015)

• Let x_a, x_p, x_n be some samples from the dataset and y_a, y_n, y_n be their corresponding labels, so that $y_a = y_p$ and $y_a \neq y_p$. Usually, x_a is called anchor sample, x_p is called **positive** sample because it has the same label as x_a , and x_n is called **negative** sample because it has a different label. It is defined as:

$$\ell_{\text{triplet}} = \max\left(0, d_{\mathbf{W}}(\mathbf{x}_{\mathsf{a}}, \mathbf{x}_{\mathsf{p}}) - d_{\mathbf{W}}(\mathbf{x}_{\mathsf{a}}, \mathbf{x}_{\mathsf{n}}) + \alpha\right) \tag{14}$$

where α is the margin.

Loss Function

k-Means

Contrastive Loss vs. Triplet Loss

Regression

- Kernel Function
- Kernel Regression
- k-NN Regression
- Nadaraya-Watson Model
- Nadaraya-Watson Parametric Model

Regression

k-Means

Feature Space

Project the data into a **higher dimensional space** (feature space) \mathcal{F}

Transformation function

$$\phi : \mathbb{R}^D \to \mathcal{F} \\
\mathbf{x}_i \to \phi(\mathbf{x}_i) \tag{15}$$

• Work with $\phi(\mathbf{x}_i)$ instead of working with \mathbf{x}_i .

Kernel Function

The Kernel Function

Concept 2

A **kernel** is a function k(x, z) which represents a dot product in a "hidden" feature space of ϕ .

$$k(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x}) \cdot \phi(\mathbf{z}) \tag{16}$$

- **Note that**: we have only dot products $\phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_i)$ to compute; however, this could be very expensive in a high dimensional space.
- Kernel trick:

instead of
$$\phi(\mathbf{x}) = \phi \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{pmatrix}$$
, use $k(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})^2$

Kernel Function

k-Means

Common Kernels

Polynomial:

$$k(\mathbf{x}, \mathbf{z}) = (u\mathbf{x} \cdot \mathbf{z} + v)^{p} \ (u \in \mathbb{R}, v \in \mathbb{R}, p \in \mathbb{N})$$
 (17)

Gaussian:

$$k(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{z}\|^2}{\sigma^2}\right), \sigma \in \mathbb{R}^+$$
 (18)

Note: feature space is infinite-dimensional

Kernel Function

Techniques for Construction of Kernels

In all the following, $k_1, k_2, ..., k_i$ are assumed to be valid kernel functions

1. Scalar multiplication: The validity of a kernel is conserved after multiplication by a positive scalar, i.e., for any $\alpha > 0$, the function

$$k(\mathbf{x}, \mathbf{z}) = \alpha k_1(\mathbf{x}, \mathbf{z}) \tag{19}$$

2. Adding a positive constant: For any positive constant $\alpha > 0$, the function

$$k(\mathbf{x}, \mathbf{z}) = \alpha + k_1(\mathbf{x}, \mathbf{z}) \tag{20}$$

Techniques for Construction of Kernels (cont.)

3. Linear combination: A linear combination of kernel functions involving only positive weights, i.e.,

$$k(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{m} \alpha_{i} k_{j}(\mathbf{x}, \mathbf{z}), \quad \text{with } \alpha_{i} > 0$$
 (21)

is a valid kernel function.

4. **Product**: The product of two kernel functions, i.e.,

$$k(\mathbf{x}, \mathbf{z}) = k_1(\mathbf{x}, \mathbf{z})k_2(\mathbf{x}, \mathbf{z}) \tag{22}$$

is a valid kernel function.

Techniques for Construction of Kernels (cont.)

5. Polynomial functions of a kernel output: Given a polynomial $f: \mathbb{R} \to \mathbb{R}$ with positive coefficients, the function

$$k(\mathbf{x}, \mathbf{z}) = f(k_1(\mathbf{x}, \mathbf{z})) \tag{23}$$

is a valid kernel function

6. Exponential function of a kernel output: The function

$$k(\mathbf{x}, \mathbf{z}) = \exp(k_1(\mathbf{x}, \mathbf{z})) \tag{24}$$

is a valid kernel function.

7. Product of matrix and vectors:

$$k(\mathbf{x}, \mathbf{z}) = \mathbf{x}^{\mathsf{T}} A \mathbf{z} \tag{25}$$

where A is a symmetric positive semidefinite matrix.

Linear Regression Revisted

Problem: Given a dataset of input-output pairs $\mathcal{D} = \{(x_1, y_1), \dots, (x_N, y_N)\}$, find the best linear regresion

Primal form

$$\hat{y} = f(\mathbf{x}) = \sum_{i=1}^{D} \mathbf{w}_i x_i \tag{26}$$

where

$$\mathbf{w} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I}_D)^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} \tag{27}$$

Dual Form

$$\hat{y} = f(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}$$
 (28)

where

$$\boldsymbol{\alpha} = (\boldsymbol{X}\boldsymbol{X}^{\mathsf{T}} + \lambda \boldsymbol{I}_{N})^{-1}\boldsymbol{y} \tag{29}$$

Kernel Regression

The Kernel Trick

• **Question**: How introduce nonlinearity to

$$\hat{y} = f(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}$$

• **Solution**: Replace the inner product $x_i^T x$ by $k(x, x_i)$, we have

$$\hat{y} = f(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i k(\mathbf{x}, \mathbf{x}_i)$$
(30)

Classification

(k-NN) Effects of

Effects of Hyper-parameters

Metric Learnin

Motivation

Metric Learnin

Regressio

Kernel Function

Kernel Regression

k-NN Regression

Nadaraya-Watson

Parametric Mode

Clusteri

k-Moone

k-Means

Hierarchical Clustering

Kernel Method

- **1.** Select a kernel function $k(\cdot, \cdot)$
- **2.** Construct a kernel matrix $\mathbf{K} \in \mathbb{R}^{N \times N}$ where

$$[\mathbf{K}]_{ij} = k(\mathbf{x}_i, \mathbf{x}_j) \tag{31}$$

3. Compute the coefficients $\alpha \in \mathbb{R}^N$, with

$$\boldsymbol{\alpha} = (\boldsymbol{K} + \lambda \boldsymbol{I}_{N})^{-1} \boldsymbol{y} \tag{32}$$

4. Estimate the predicted value for a new sample **x**

$$\hat{y} = \sum_{i=1}^{N} \alpha_i k(\mathbf{x}, \mathbf{x}_i) \tag{33}$$

Kernel Regression

Linear Regression vs. Kernel Method

pest fit locally
samples)

k-NN Regression

k-NN Regression

- **Problem**: Given a dataset of input-output pairs $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\},$ how to learn f to predict the output $\hat{y} = f(\mathbf{x})$ for any new input x?
- **Solution**: Take the mean of the values of *k* nearest neighbors $\{\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, ..., \boldsymbol{x}^{(k)}\}$

$$\hat{y} = \frac{\sum_{i=1}^{k} y^{(i)}}{k} \tag{34}$$

assification

(k-NN) Effects of

Metric Learnin

Motivation
Metric Learnin

Regressio

Kernel Funct

k-NN Regress

Nadaraya-Watson Model

Nadaraya-Watsor

Parametric Mode

Clusterin

k-Moone

Hierarchical Clustering

Nadaraya-Watson Model

- **Problem**: Given a dataset of input-output pairs $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$, how to learn f to predict the output $\hat{y} = f(\mathbf{x})$ for any new input \mathbf{x} ?
- **Solution**: Consider (x_i, y_i) as a pair of key-value and x as query

value
y_1
÷
УN

$$\hat{y} = \sum_{i=1}^{N} \alpha(\mathbf{x}, \mathbf{x}_i) y_i, \tag{35}$$

Nadaraya-Watson

Model

k-Means

Nadaraya-Watson Model (cont.)

• We define α using a Gaussian kernel

$$\alpha(\mathbf{x}, \mathbf{x}_i) = \frac{\exp\left[-\frac{1}{2} \|\mathbf{x} - \mathbf{x}_i\|^2\right]}{\sum_{j=1}^n \exp\left[-\frac{1}{2} \|\mathbf{x} - \mathbf{x}_j\|^2\right]}.$$
 (36)

and plug it into equation (17)

$$\hat{y} = \sum_{i=1}^{N} \alpha(\mathbf{x}, \mathbf{x}_i) y_i$$

$$= \sum_{i=1}^{N} \frac{\exp\left[-\frac{1}{2} \|\mathbf{x} - \mathbf{x}_i\|^2\right]}{\sum_{i=1}^{N} \exp\left[-\frac{1}{2} \|\mathbf{x} - \mathbf{x}_i\|^2\right]} y_i$$
(37)

Nadaraya-Watson

Model

Nadaraya-Watson Model (cont.)

• A key x_i that is closer to the given query x will get more attention via a larger attention weight assigned to the key's corresponding value y_i .

Nadaraya-Watson Model

k-Means

Example 1

 Generate an artificial dataset including 50 training examples and 50 testing examples according to the following nonlinear function with the noise term $\epsilon \sim \mathcal{N}(0, 0.5)$

$$y = 2\sin(x) + x^{0.8} + \epsilon \tag{38}$$

• Find the kernel regression

Nadarava-Watson Parametric Model

Nadaraya-Watson Parametric Model

- Kernel regression enjoys the consistency benefit: given enough data this model converges to the optimal solution.
- Nonetheless, we can easily integrate learnable parameters.
- In the following the distance between the query x and the key x_i is multiplied a learnable parameter w:

$$\hat{y} = \sum_{i=1}^{N} \frac{\exp\left[-\frac{1}{2} (\|\mathbf{x} - \mathbf{x}_i\| \, \mathbf{w})^2\right]}{\sum_{j=1}^{N} \exp\left[-\frac{1}{2} (\|\mathbf{x} - \mathbf{x}_j\| \, \mathbf{w})^2\right]} y_i$$
(39)

Nadarava-Watson

Parametric Model

k-Means

Example 2

Generate an artificial dataset including 50 training examples and 50 testing examples according to the following nonlinear function with the noise term $\epsilon \sim \mathcal{N}(0, 0.5)$

$$y = 2\sin(x) + x^{0.8} + \epsilon \tag{40}$$

• Find the parametric kernel regression

Clustering

- k-Means
- Hierarchical Clustering
- k-d Tree

Clustering

Clustering

Concept 3

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters).

k-Means

k-Means

Concept 4

Given a set of observations $\mathcal{D} = \{x_1, \dots, x_N\}$, k-means clustering aims to partition the N observations into $k (\leq N)$ sets $\mathbf{S} = \{S_1, S_2, ..., S_k\}$ so as to minimize the within-cluster sum of squares

The objective to find

$$\arg\min_{\mathbf{S}} \sum_{i=1}^{k} \sum_{\mathbf{x} \in S_i} \|\mathbf{x} - \boldsymbol{\mu}_i\|^2 \tag{41}$$

where μ_i is the mean of S_i

Motivation

Model

k-Means

Hierarchical Clustering

Illustration

k-Means

Naive k-Means Algorithm

- 1. Initialise a set of k means $\boldsymbol{m}_{1}^{(0)},...,\boldsymbol{m}_{L}^{(0)}$
- **2.** For t = 1, 2, 3, ... do
 - Assignment step: Assign each observation to the cluster with the nearest mean: that with the least squared Euclidean distance

$$S_i^{(t)} = \left\{ \mathbf{x} \mid L_2(\mathbf{x}, \mathbf{m}_i^{(t)}) < L_2(\mathbf{x}, \mathbf{m}_j^{(t)}), \forall j \neq i \right\}$$
(42)

• **Update step**: Recalculate means (centroids) for observations assigned to each cluster.

$$\mathbf{m}_{i}^{(t+1)} = \frac{1}{|S_{i}^{(t)}|} \sum_{\mathbf{x} \in S_{i}^{(t)}} \mathbf{x}$$
(43)

The algorithm has converged when the assignments no longer change

lassification

(k-NN) Effects of

Hyper-parameters

Metric Learnir

Metric Learnin

Loss Function

Regressio

Kernel Functi

Kernel Regres

k-NN Regression

Nadaraya-Watso

Parametric Mod

Parametric Mode

Clustering

k-Means

Hierarchical Clustering

Therarchical cluste

Hierarchical Clustering

Concept 5

Hierarchical clustering is a method of cluster analysis which seeks to build a hierarchy of clusters.

Hierarchical Clustering

Linkage Function

Concept 6

A **linkage function** *L* is used to calculate the distance (similarity/dissimilarity) between arbitrary subsets of the instance space, given a distance metric d

 Single linkage: defines the distance between two clusters as the smallest pairwise distance between elements from each cluster.

$$L_{single}(A,B) = \min\{d(\mathbf{x},\mathbf{y}) \mid \mathbf{x} \in A, \mathbf{y} \in B\}$$
 (44)

• Complete linkage: defines the distance between two clusters as the largest pointwise distance.

$$L_{complete}(A, B) = \max\{d(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in A, \mathbf{y} \in B\}$$
 (45)

Hierarchical Clustering

Agglomerative algorithm

• Given a set of observations $\mathcal{D} = \{x_1, \dots, x_n\}$

Initialise clusters to singleton data points

Create a leaf node for every singleton cluster

Repeat

find the pair of clusters X, Y with lowest linkage merge X, Y into Z

create a node for Z (parent node of X, Y)

Until all data points are in one cluster

Return the constructed binary tree

Classification

(k-NN)

Effects of

Hyper-parameter

Metric Learnin

Metric Learning

Regression
Kernel Function
Kernel Regres

k-NN Regression Nadaraya-Watson

Nadaraya-Watson

Parametric Mode

Clustering

Hierarchical Clusterin

k-d Tree

k-d Tree

- The fundamental problem of k-NN is that distance computation is costly and the total cost unavoidably linear in the number of points compared.
- To increase the processing speed, it is possible to partition the data space and reduce this number significantly using k-d tree

Concept 7

A k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space

k-d Tree

Algorithm

Construct k-d tree

- Given and *D*-dimensional dataset $\mathcal{D} = \{ \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N \}$
- Cut data with a plane at its median value along that dimension
- **Recurse** this procedure to create a balanced binary tree k-d tree

Nearest neighbor search

- To locate the NN of an query vector x, determine which leaf cell it lies within
- To perform an exhaustive search within this cell.

k-Means

k-d Tree

Example

Given a dataset $\mathcal{D} = \{(x_1, x_2)\} = \{(2, 3), (5, 4), (9, 6), (4, 7), (8, 1), (7, 2)\}$

Construct k-d tree

Motivation

k-Means

k-d Tree

Example (cont.)

• Nearest neighbor search

58

References

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Lê, B. and Tô, V. (2014).
Cở sở trí tuệ nhân tạo.
Nhà xuất bản Khoa học và Kỹ thuật.

Russell, S. and Norvig, P. (2021).

Artificial intelligence: a modern approach.

Pearson Education Limited.