Théorie des langages : THL CM 8

Uli Fahrenberg

EPITA Rennes

S5 2021

Aperçu

Programme du cours

- Langages rationnels
- Automates finis
- Parsage LL
- TP 1: flex
- Parsage LR, partie 1
- Parsage LR, partie 2
- Parsage LR, partie 3
- TP 2 : bison

QCM 3

3/26

3:flex & bison

Uli Fahrenberg Théorie des langages : THL

Re: parsage ascendant: the basics

```
\begin{array}{l} \textbf{function} \ \text{BULRP}(\alpha) \\ \textbf{if} \ \alpha = S \ \textbf{then} \\ \textbf{return} \ \textbf{True} \\ \textbf{for} \ i \leftarrow 1 \ \textbf{to} \ |\alpha| \ \textbf{do} \\ \textbf{for} \ j \leftarrow i \ \textbf{to} \ |\alpha| \ \textbf{do} \\ \textbf{for} \ A \in N \ \textbf{do} \\ \textbf{if} \ A \rightarrow \alpha_i \dots \alpha_j \ \textbf{then} \\ \textbf{if} \ \text{BULRP}(\alpha_1 \dots \alpha_{i-1} A \alpha_{j+1} \dots \alpha_n) \ \textbf{then} \\ \textbf{return} \ \textbf{False} \end{array}
```

Re : parsage LR(0)

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow S - n$ (1)

parser n - n:

entrée	pile	action
n - n\$	⊥0	décaler
<i>−n</i> \$	⊥01	réduire 2
<i>−n</i> \$	⊥02	décaler
n\$	⊥024	décaler
\$	⊥0245	réduire 1
\$	⊥02	décaler
	⊥023	✓

$$S \rightarrow n$$

$$S \rightarrow S-n$$

Uli Fahrenberg

Théorie des langages : THL

Re: parsage SLR(1)

- calculer la table LR(0)
- si conflits : conditionner l'action par le FOLLOW

Exemple:
$$Z \rightarrow S$$
\$ (0) $S \rightarrow n-S$ (1) $\mid n \mid$ (2)

état	action	n	_	\$	S		état	n	_	\$	<i>S</i>
0	décaler	2			1		0	d.2			d.1
1	décaler			4			1			d.4	
2	réd. 2, déc.		3			\Longrightarrow	2		d.3	r.2	
3	décaler	2			5		3	d.2			d.5
4	accepter						4	_	- acce	pter -	_
5	réduire 1						5			r.1	

Uli Fahrenberg Théorie des langages : THL 6/ 26

Re : parsage LR(1)

 conditionner l'action par le contexte : les symboles qui peuvent suivre

Exemple:

$$Z \to S$$
\$ (0)
 $S \to L = E$ (1)
 $\mid E$ (2)
 $L \to x$ (3)
 $\mid *E$ (4)
 $E \to L$ (5)

état	productions pointées élargies
0	$Z \rightarrow \bullet S$ [ε]
	$S \to \bullet L = E \text{ [\$]}, S \to \bullet E \text{ [\$]}$ $L \to \bullet x \text{ [=]}, L \to \bullet * E \text{ [=]}$ $E \to \bullet L \text{ [\$]}$ $L \to \bullet x \text{ [\$]}, L \to \bullet * E \text{ [\$]}$ $Z \to S \bullet \$ \text{ [ε]}$
	$L o ullet \mathbf{x} =], \ L o ullet \mathbf{x} =]$
	E o ullet L [\$]
	$L \rightarrow ullet \mathbf{x}$ [\$], $L \rightarrow ullet \mathbf{*}E$ [\$]
1	$Z o Sullet^{ullet}[arepsilon]$
2	$S \to L \bullet = E $ [\$], $E \to L \bullet $ [\$]

Uli Fahrenberg Théorie des langages : THL 7/26

8/26

Exemple

	état	X	*	=	\$	S	L	Ε
	0	d.4	d.5			d.1	d.2	d.3
	1				d.6			
	2			d.7	r.5			
	3				r.2			
$Z \rightarrow S$ (0)	4			r.3	r.3			
$S \rightarrow L = E$ (1)	5	d.4	d.5				d.9	d.8
` *	6			— а	ccepte	er —		
, ,	7	d.12	d.13				d.11	d.10
$L \to \mathbf{x}$ (3)	8			r.4				
* <i>E</i> (4)	9			r.5				
$E \rightarrow L$ (5)	10				r.1			
()	11				r.5			
	12				r.3			
	13	d.12	d.13				d.11	d.14
	14				r.4			

Uli Fahrenberg Théorie des langages : THL

Parsage LALR(1) et GLR

Exemple, bis

	état	productions pointées élargies
	0	$Z \rightarrow \bullet S$ [ε], $S \rightarrow \bullet L = E$ [\$], $S \rightarrow \bullet E$ [\$], $L \rightarrow \bullet x$ [=]
		$L \rightarrow \bullet *E [=], E \rightarrow \bullet L [\$], L \rightarrow \bullet \times [\$], L \rightarrow \bullet *E [\$]$
	1	Z o S ullet [arepsilon]
	2	$S \rightarrow L \bullet = E $ [\$], $E \rightarrow L \bullet $ [\$ \checkmark]
7 Cf (0)	3	$S \to E \bullet [\$ \checkmark]$
$Z \rightarrow S$ (0)	4	$L \to x \bullet [= \checkmark], L \to x \bullet [\$ \checkmark]$
$S \rightarrow L=E$ (1)	5	$L \to * \bullet E [=], L \to * \bullet E [\$], E \to \bullet L [=], L \to \bullet x [=]$
E (2)		$L \rightarrow \bullet *E [=], E \rightarrow \bullet L [\$], L \rightarrow \bullet x [\$], L \rightarrow \bullet *E [\$]$
, , ,	6	$Z \to S$ • $[\varepsilon \checkmark]$
$L \rightarrow x$ (3)	7	$S \rightarrow L = \bullet E$ [\$], $E \rightarrow \bullet L$ [\$], $L \rightarrow \bullet x$ [\$], $L \rightarrow \bullet *E$ [\$]
*E (4)	8	$L \to *E \bullet [= \checkmark], L \to *E \bullet [\$ \checkmark]$
1	9	$E \to L \bullet [= \checkmark], E \to L \bullet [\$ \checkmark]$
$E \to L$ (5)	10	$S \rightarrow L = E \bullet [\$ \checkmark]$
	11	$E o Lullet \left[\$ \checkmark ight]$
	12	$L \to x \bullet [\$ \checkmark]$
	13	$L \rightarrow * \bullet E$ [\$], $E \rightarrow \bullet L$ [\$], $L \rightarrow \bullet x$ [\$], $L \rightarrow \bullet * E$ [\$]
	14	$L \to *E \bullet [\$ \checkmark]$

Exemple, bis

```
état
                                                      productions pointées élargies
                                                        Z \rightarrow \bullet S [\varepsilon], S \rightarrow \bullet L = E [$], S \rightarrow \bullet E [$], L \rightarrow \bullet x [=]
                                                        L \rightarrow \bullet *E = , E \rightarrow \bullet L = , L \rightarrow \bullet x = , L \rightarrow \bullet *E = 
                                                      Z \to S \bullet \$ [\varepsilon]
                                                     \mid S \rightarrow L \bullet = E \ [\$], E \rightarrow L \bullet \ [\$\checkmark]
                                                     S \rightarrow E \bullet [\$ \checkmark]
Z \rightarrow S
                         (0)
                                                     L \to x \bullet [= \checkmark], L \to x \bullet [\$ \checkmark]
S \rightarrow L=E (1)
                                                      L \rightarrow * \bullet E [=], L \rightarrow * \bullet E [\$], E \rightarrow \bullet L [=], L \rightarrow \bullet x [=]
                                                        L \rightarrow \bullet *E = , E \rightarrow \bullet L = , L \rightarrow \bullet x = , L \rightarrow \bullet *E = 
          | E
                        (2)
                                                      Z \to S [\varepsilon \checkmark]
 L \rightarrow x (3)
                                                      S \to L = \bullet E [$], E \to \bullet L [$], L \to \bullet x [$], L \to \bullet *E [$]
                                                      L \rightarrow *E \bullet [= \checkmark], L \rightarrow *E \bullet [$\checkmark]
           |*E (4)|
                                                      E \rightarrow L \bullet [= \checkmark], E \rightarrow L \bullet [\$ \checkmark]
F \rightarrow I
                        (5)
                                            10
                                                      S \rightarrow L=E \bullet [\$ \checkmark]
                                                      E \rightarrow L \bullet [\$ \checkmark]
                                            11
                                            12
                                                       L \to x \bullet [\$ \checkmark]
                                                        L \rightarrow * \bullet E [$], E \rightarrow \bullet L [$], L \rightarrow \bullet x [$], L \rightarrow \bullet * E [$]
                                            13
                                                      L \rightarrow *E \bullet [\$ \checkmark]
                                            14
```

Parsage LALR(1)

Définition

Deux productions pointées élargies $A \to \alpha \bullet \beta$ [a] et $A \to \alpha' \bullet \beta'$ [b] sont équivalent LALR(1) si $\alpha = \alpha'$ et $\beta = \beta'$.

 les items sont identiques, mais les contextes peuvent être différents

Définition

L'automate LALR(1) d'une grammaire hors-contexte G est le quotient de l'automate LR(1) de G sous équivalence LALR(1).

Uli Fahrenberg

Théorie des langages : THL

Exemple, ter

		état	X	*	=	\$	S	L	Ε
		0	d.4	d.5			d.1	d.2	d.3
Z o S\$	(0)	1				d.6			
$S \rightarrow L=E$	(1)	2			d.7	r.5			
	` ,	3				r.2			
<i>E</i>	(2)	₁ 4			r.3	r.3			
$L \rightarrow x$	(3)	/ _* 5	d.4	d.5				d.9	d.8
* <i>E</i>	(4)	// 6			— а	ccepte	er —		
E o L	(5)	7	d.12	d.13				d.11	d.10
	()	, 8			r.4				
		9			r.5				
		\\ (10				r.1			
		\\`11				r.5			
		12				r.3			
		\13	d.12	d.13				d.11	d.14
		14				r.4			

Exemple, ter

		état	X	*	=	\$	S	L	Ε
		0	d.4	d.5			d.1	d.2	d.3
Z o S\$	(0)	1				d.6			
$S \rightarrow L=E$	(1)	2			d.7	r.5			
<i>E</i>	(2)	3				r.2			
'	` ,	4			r.3	r.3			
$L \rightarrow x$	(3)	5	d.4	d.5				d.9	d.8
* <i>E</i>	(4)	6			— а	ccepte	er —		
E o L	(5)	7	d.12	d.13				d.11	d.10
	()	8			r.4	r.4			
		9			r.5	r.5			
		10				r.1			
			ı				'		

Résolution de conflits

Exemple:

$$Z \rightarrow E$$
\$ (0)
 $E \rightarrow E + E$ (1)
 $\mid E*E$ (2)
 $\mid n$ (3)

état	+	*	n	\$	Е
0			d.2		g.1
1	d.4	d.5		d.3	
2	r.3	r.3		r.3	
		_	- acce	pter -	
4			d.2		g.6
5			d.2		g.6 g.7
6	d.4	d.5			
	r.1	r.1		r.1	
7	d.4	d.5			
	r.2	r.2		r.2	

- une grammaire ambiguë
- donc pas LR(k) pour n'importe quel k

Résolution de conflits

Exemple:

$$Z \rightarrow E\$ \qquad (0)$$

$$E \rightarrow E+E \qquad (1)$$

$$\mid E*E \qquad (2)$$

$$\mid n \qquad (3)$$

état	+	*	n	\$	Е
0			d.2		g.1
1	d.4	d.5		d.3	
2	r.3	r.3		r.3	
3		_	- acce	pter -	_
4			d.2		g.6
5			d.2		g.6 g.7
6	d.4	d.5			
	r.1	r.1		r.1	
7	d.4	d.5			
	r.2	r.2		r.2	

- une grammaire ambiguë
- donc pas LR(k) pour n'importe quel k
- associativité : d.4 \Rightarrow n + (n + n); $r.1 \Rightarrow (n + n) + n$
- priorité : d.5 \Rightarrow n * (n + n); $r.1 \Rightarrow (n * n) + n$

Uli Fahrenberg

Théorie des langages : THL

Résolution de conflits

Exemple:

$$Z \rightarrow E\$ \qquad (0)$$

$$E \rightarrow E + E \qquad (1)$$

$$\mid E * E \qquad (2)$$

$$\mid n \qquad (3)$$

			Φ.	
+	*	n	\$	E
		d.2		g.1
d.4	d.5		d.3	
r.3	r.3		r.3	
	_	- acce	pter -	_
		d.2		g.6
		d.2		g.6 g.7
d.4	d.5			
r.1	r.1		r.1	
d.4	d.5			
r.2	r.2		r.2	
	r.3 d.4 r.1 d.4	r.3 r.3 d.4 d.5 r.1 r.1 d.4 d.5	d.2 d.4 d.5 r.3 r.3 — acce d.2 d.2 d.4 d.5 r.1 r.1 d.4 d.5	d.2 d.4 d.5 d.3 r.3 r.3 r.3

- une grammaire ambiguë
- donc pas LR(k) pour n'importe quel k
- associativité : d.4 \Rightarrow n + (n + n); $r.1 \Rightarrow (n + n) + n$
- priorité : d.5 \Rightarrow n*(n+n); r.1 \Rightarrow (n*n)+n
- solution : règles de priorité
- ici : r.1 > d.4, r.2 > d.5, r.2 > d.4, $d.5 > r.1 \Leftarrow !$

Uli Fahrenberg

18/26

Parsage LR généralisé

- embrace non-determinism!
- parsage GLR : en cas de conflit, suivre tous les chemins en parallel
- « parsage parallel », « parsage Tomita »
- implémenter l'automate (non-déterministe) de parsage sans déterminisation
- états : productions pointées, pas de clôture
- algorithme en temps exponentiel, pas linéaire
- optimisation : partager préfixes et suffixes de piles

Uli Fahrenberg Théorie des langages : THL

Résumé du cours

Hiérarchie de Chomsky

type	langages	grammaires	automates
4	finis	à choix finis	finis acycliques
	∤ ∩	\Downarrow	\Downarrow
3	réguliers	régulières	finis
	∤ ∩	\downarrow	\downarrow
2	algébriques	hors-contexte	à pile
	† ∩	\downarrow	
1	contextuels	contextuelles	linéairement bornés
	∤ ∩	\Downarrow	\downarrow
0	récursivement énumerables	syntagmatiques	de Turing

Uli Fahrenberg

Théorie des langages : THL

Hiérarchie de Chomsky

type	langages	grammaires	automates
4	finis	à choix finis	finis acycliques
	∤ ∩	₩	₩
3	réguliers	régulières	finis
	∤ ∩	\downarrow	\Downarrow
2	algébriques	hors-contexte	à pile
	∤ ∩	\downarrow	
1	contextuels	contextuelles	linéairement bornés
	† ∩	\downarrow	\Downarrow
0	récursivement énumerables	syntagmatiques	de Turing

Uli Fahrenberg

Zoom sur type 3

syntaxe

aut. finis dét. complets

aut, finis déterministes

∤∩

automates finis

 $\downarrow \cap$

aut. finis à trans. spontanées

expressions rationnelles

grammaires régulières

sémantique

langages reconnaissables

langages reconnaissables

II.

langages reconnaissables

Ш

langages reconnaissables

Ш

langages rationnelles

langages réguliers

Uli Fahrenberg Théorie des langages : THL 22/ 26

Zoom sur type 2

syntaxe

<u>sémantique</u>

grammaires hc forme Greibach

grammaires hors-contexte

1 14

grammaires hc forme Chomsky

automates à pile

O1

automates à pile sans trans. spont.

l Jł

automates à pile déterministes

langages algébriques

langages algébriques

II

langages algébriques

langages algébriques

langages algébriques

Uł

langages algébriques déterministes

Uli Fahrenberg Théorie des langages : THL 23/26

24/26

Zoom sur LR

syntaxe sémantique langages algébriques grammaires hors-contexte lang. alg. non-ambigués grammaires hc non-ambiguës grammaires hc déterministes lang. alg. déterministes grammaires LR(k)lang. alg. déterministes grammaires LR(1) lang. alg. déterministes langages LALR(1) grammaires LALR(1) grammaires SLR(1) langages SLR(1) grammaires LR(0) langages LR(0)

25/26

Zoom sur LL

grammaires LL(1)

syntaxe sémantique grammaires hors-contexte langages algébriques grammaires hc non-ambiguës lang. alg. non-ambigués grammaires hc déterministes lang. alg. déterministes grammaires LL(k) langages LL(k)grammaires LL(2) langages LL(2)

Uli Fahrenberg Théorie des langages : THL

langages LL(1)

