

Laboratorio de redes

Práctica 5. Redistribución de rutas y redundancia con VRRP

Clemente Barreto Pestana
cbarretp@ull.edu.es
Profesor Asociado

Área de Ingeniería Telemática Departamento de Ingeniería Industrial Escuela Superior de Ingeniería y Tecnología

Parte I - Redistribución de rutas

- En una red la información de enrutamiento puede provenir de <u>distintas fuentes</u> de información:
 - Rutas dinámicas del protocolo empleado
 - Rutas estáticas definidas manualmente
 - Rutas de otros protocolos de pasarela interior (IGP)
 - Rutas externas al AS
- La redistribución es necesaria porque ayuda a <u>interoper</u>
 en escenarios con distintos protocolos de enrutamiento en un AS:
 - o Fusiones de organizaciones con distintos protocolos
 - Migración entre protocolos de enrutamiento
 - Zonas de la red con criterios de diseño diferentes
 - Conexión a Internet, cloud, etc.

0 ...

Parte I - Redistribución de rutas (II)

- Problemas en redes con distintos protocolos de enrutamiento se producen ciertas <u>dificultades</u>:
 - Distinto significado de costes, no es posible usar los costes de cada protocolo porque pueden tener significados diferentes:
 - RIP: número de saltos.
 - OSPF: función más elaborada.
 - **...**
 - Si hay caminos alternativos (bucles) a una red a través de zonas que usan distintos protocolos de enrutamiento
 - Se pueden provocar <u>rutas subóptimas</u>.

Parte I - Redistribución (ejemplo de ruta subóptima)

Parte I - Redistribución de rutas (III)

- <u>Solución</u> en redes con distintos protocolos de enrutamiento se define una **métrica para las rutas redistribuidas** que sea compatible con el protocolo receptor:
 - Se llama <u>Distancia Administrativa (DA)</u> y tiene valores de
 O (más prioritario) a 255 (menos prioritaria). Tiene valores
 por defecto en función del protocolo fuente).

Fuente	DA por defecto
Red directamente conectada	0
Ruta estática	1
BGP	20
IGRP	100
OSPF	110
IS-IS	115
RIP	120
Desconocido	255

Parte II - VRRP (Virtual Router Redundancy Protocol)

- Cuando usamos una ruta estática por defecto contra un único router en una LAN se crea un <u>punto único de fallo</u>.
- VRRP resuelve este problema:
 - Permite la conexión de varios routers en una LAN
 - Se establece un <u>primer salto redundante</u>.
 - Varios routers físicos conforman un router virtual con una IP virtual que se usa como puerta de enlace.
- Se establece una <u>coordinación</u> entre estos routers (maestro-respaldo)
 - Hay un maestro y los demás de backup.
 - El maestro envía anuncios de presencia y cuando se dejan de recibir uno de respaldo toma el control.

PARTES DEL LABORATORIO:

- I Simulación (casa)
- II Montaje + Simul (laboratorio)

I. Simulación de redistribución de rutas (casa)

I. Comandos router FRR (RIP)

Activar RIP en FRR

R(config)# router rip R(config-router)# network 192.168.1.0/26

R(config-router)# network 192.168.1.128/30

Redistribuir rutas aprendidas por OSPF en zona RIP

R(config)# router rip

R(config-router)# redistribute ospf metric 1

Ver información RIP

R# show ip rip R# show ip rip status

I. Comandos router FRR (OSPF)

Activar OSPF

```
R(config)# router ospf
R(config-router)# network 10.0.0.4/30 area 0
R(config-router)# network 10.0.0.0/30 area 0
```

Convertir área en stub (en todos) y nssa stub (sólo ABR)

```
R1(config)# router ospf
R1(config-router)# area 1 stub
....
R2(config)# router ospf
```

R2(config-router)# area 2 nssa no-summary

Sumarizar redes (sólo ABR)

```
R(config-router)# area 2 range 10.2.0.0/23
R(config-router)# area 1 range 10.1.0.0/23
```

I. Comandos router Mikrotik para OSPF

Activar OSPF (la instancia default y el área 0 ya existen)

R> routing ospf **instance** add name=default

R> routing ospf **area** add name=area1 area-id=0.0.0.1

R> routing ospf **network** add network=10.0.g.0/24 area=backbone

Ver estado OSPF

R> routing ospf route print (ver rutas)

R> routing ospf **neighbor** print (ver vecinos ospf)

I. Montaje de la práctica (laboratorio)

I. Simulación de la práctica (laboratorio)

I. Comandos router MikroTik (VRRP)

Activar VRRP, creando interfaz virtual (asignar IP)

interface vrrp add interface=ether1 vrid=51

Ver estado VRRP

interface vrrp print detail

Incrementar prioridad (mayor valor es más prioritario) de un router físico en VRRP para convertirlo en maestro

interface vrrp set vrrp1 priority=150

