Московский физико-технический институт (национальный исследовательский университет) Факультет общей и прикладной физики

Лабораторная работа №6.6.1 (Основы современной физики)

Эффект Мессбауэра

Работу выполнил: Дорогинин Демид, группа Б02-825

г. Долгопрудный 2021 год

Аннотация

В работе с помощью метода доплеровского сдвига мессбауэровской линии поглощения исследуется резонансное поглощение γ -лучей, испускаемых ядрами олова ¹¹⁹Sn в соединении $BaSnO_3$ при комнатной температуре. Определяется положение максимума резонансного поглощения, его величина, а также экспериментальная ширина линии $\Gamma_{\rm экc}$. Оценивается время жизни возбужденного состояния ядра ¹¹⁹Sn.

Теория

При испускании или поглощении γ -кванта ядром, находящимся в узле кристаллической решётки, могут происходить два процесса:

- Изменение колебательного состояния решётки, т.е. возбуждение фононов;
- Передача импульса γ -кванта решётке как целому, без изменения её колебательного состояния, т.е. упругое испускание и поглощение γ -кванта.

С понижением температуры вероятность упругих процессов возрастает. Эффект Мессбау-эра - явление излучения и поглощения γ -квантов в твёрдых телах без рождения фононов. Мессбауэровский переход осуществляется в том случае, если колебательное состояние решётки не изменяется и γ -квант получает всю энергию перехода.

Проведём оценки для свободного ядра. Ядро, испускающее γ -квант, приобретает импульс отдачи, равный по абсолютной величине импульсу γ -кванта. Если ядро массы M свободно и изначально покоится, то энергия отдачи R равна

$$R = \frac{p^2}{2M} = \frac{E_\gamma^2}{2Mc^2}.$$

В качестве примера рассмотрим ядро олова $^{119}{\rm Sn}$: его расстояние между основным и первым возбуждённым уровнями составляет $E_0=23.8$ кэВ. Согласно закону сохранения энергии $E_0=E_\gamma+R$. Принимая $R\ll E_\gamma$, получаем

$$R = \frac{E_{\gamma}^2}{2Mc^2} \approx \frac{E_0^2}{2Mc^2} = 2.5 \cdot 10^{-3} \text{ sB}.$$

Возбуждённые уровни ядра имеют конечную ширину. Отложим по оси абсцисс энергию ядра, по оси ординат — вероятность найти ядро с данной энергией. Ширина кривой, измеренная на половине вьсоты, называется естественной шириной линии Г. Она связана со средним временем жизни возбуждённого состояния ядра соотношением неопределённостей:

$$\Gamma \tau \sim \hbar$$
.

Ширина линий испускания и поглощения складывается из собственной ширины линии и доплеровской ширины, которая играет основную роль и связана с тепловым движением атомов. Доплеровский сдвиг уровней в нерелятивистском случае будет рассчитываться по формуле

$$D = \frac{v}{c} E_{\gamma} \approx \frac{v}{c} E_0.$$

На одну степень свободы ядра (движение к поглотителю или от него) приходится энергия, равная $k_{\rm B}T/2$. Приравнивая это значение к кинетической энергии ядра $Mv^2/2$, получаем

значение скорости

$$v = \sqrt{\frac{k_{\rm B}T}{M_n}}.$$

Итак, принимая во внимание энергию отдачи, значение доплеровской ширины линии испускания $^{119}{
m Sn}$ при комнатной температуре равно

$$D = \sqrt{2Rk_{\rm B}T} = 1.5 \cdot 10^{-2} \text{ sB}.$$

Рис. 1: Энергетическое распределение, характеризующее (а) возбужденное состояние ядра (б) сдвиг линий испускания и поглощения из-за отдачи при свободных ядрах.

Установка

В ходе измерения источник остаётся неподвижен, а образец поглотителя совершает равномерное движение с контролируемой скоростью. Доплеровский сдвиг изменяет частоту гамма-квантов в системе покоя поглотителя, что позволяет изучить зависимость поглощения в образце от энергии гамма-кванта. Детектируется интенсивность γ -излучения, прошедшего через образец поглотителя. При совпадении энергии гамма-кванта с разницей энергий между основным состоянием и первым возбуждённым происходит резонансное поглощения гамма-квантов и интенсивность прошедшего излучения уменьшается. Измерительная аппаратура (сцинцилятор с ФЭУ) оптимизированы под детектирование квантов с энергией 23.8 кэВ, электронная часть схемы измерения оптимизируется под обнаружение этих квантов в ходе работы. Принципиальная схема установки представлена на Рис. 2:

Выполнение и обработка данных

Цель этого этапа работы – подобрать настройки анализатора импульсов так, чтобы детектировались только гамма-кванты с энергией 23.8 кэВ, исходящие от источника Sn-119.

Подготовим приборы к работе. Проведём измерение спектра излучения источника при значениях нижнего порога напряжения от 0 до 9,5 В. Результаты измерения занесём в таблицу 1. Данные графически представим на Рис. 3.

По графику, приведённому на рис. 3, определяем, что большая часть гамма-квантов с нужной нам энергией 23,8 кэВ появляется при пороговых значениях порядка 4 В. Установим эти значения на выпрямителе. По окончании этого этапа электронная схема нашей установки настроена так, что подсчитываются только гамма-кванты с энергиями,

Рис. 2: Блок-схема установки для наблюдения эффекта Мессбауэра: Э – эксцентрик, С – сцинтилляционный кристалл NaI(Tl), У – усилитель, AA – одноканальный амплитудный анализатор, ЭВМ – персональный компьютер, Γ – генератор для питания двигателя, РД-09 – двигатель с редуктором, ВСВ – высоковольтный стабилизированный выпрямитель

U, B	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5
N	309.4	141.8	48.4	86.2	223.6	500.8	981.8	1447.6	1665.4	1514.6
U, B	5	5.5	6	6.5	7	7.5	8	8.5	9	9.5
N	1022.4	556.4	246.6	88.4	33.2	18.4	10.6	10.6	9.4	10.8

Таблица 1: Измерение спектра источника излучения

соответствующими используемому источнику. Теперь можно переходить к исследованию резонансного поглощения.

Измерим фоновое излучение. Вычитание фона в дальнейшем производится компьютером автоматически. Измеренное значение фона: 3,65 1/сек.

Проведём измерение спектра резонансного поглощения для четырех образцов: 3 оловянные пленки разной толщины (90 мкм, 180 мкм и 310 мкм первый, второй и третий образцы соответственно) и образец оксида олова ${\rm SnO_2}$. Для этого проведём серию измерений при разных скоростях движения поглотителя. Результаты занесём в таблицы 2 и 3.

По результатам измерения построим графики спектров резонансного поглощения для разных поглотителей (рис. 4-7). По графикам определим амплитуду резонансного поглощения в максимуме (в процентах) для образцов 1-3, величину химического сдвига (в мм/с и в эВ) и экспериментальную ширину линии Г. К сожалению, для образца оксида олова соответствующие измерения сделать не удалось, поскольку не удалось промерить околонулевые скорости.

Рис. 3: Спектр источника излучения

Рис. 4: Поглотитель 1

Поглотит	гель 1, врем	ия измерени	я 30 сек	Поглотитель 2, время измерения 20 сек			
v-, MM/c	I-, счет	v+, mm/c	I+, счет	v-, mm/c	I-, счет	v+, mm/c	I+, счет
0,00	-50770	0,00	50770	0,00	31721	0,00	31721
-4,59	-35913	4,58	35748	-4,58	18312	4,57	17981
-4,43	-35870	4,43	35672	-4,41	18287	4,42	18015
-4,25	-35886	$4,\!26$	35503	-4,25	18328	$4,\!27$	17922
-4,07	-35864	4,36	35436	-4,07	18291	4,50	17917
-3,89	-35823	3,90	35342	-3,91	18382	3,92	17800
-3,73	-35824	3,74	35296	-3,72	18310	3,75	17641
-3,54	-35845	3,56	35218	-3,53	18332	3,56	17553
-3,37	-35842	3,39	34991	-3,35	18360	3,37	17338
-3,16	-35769	3,20	34793	-3,15	18376	3,19	17186
-2,99	-35793	3,02	34522	-2,98	18344	3,00	16969
-2,79	-35830	2,82	34167	-2,79	18298	2,81	16524
-2,59	-35799	2,62	33504	-2,58	18357	2,62	16174
-2,39	-35848	2,43	32928	-2,39	18364	2,42	15936
-2,19	-35848	2,21	32799	-2,19	18335	2,21	15831
-1,97	-35824	2,00	33347	-1,97	18361	1,99	15998
-1,74	-35851	1,76	34230	-1,73	18308	1,77	16742
-1,48	-35834	1,52	34923	-1,47	18355	1,50	17443
-1,20	-35710	1,22	35483	-1,19	18244	1,22	17909
-0,77	-35688	0,91	35640	-0,80	18239	0,90	18058

Таблица 2: Поглотители 1 и 2

Рис. 5: Поглотитель 2

Поглотит	ель 3, врем	ия измерени	я 15 сек	Поглотитель 4, время измерения 5 сек			
v-, MM/c	I-, счет	v+, mm/c	I+, счет	v-, mm/c	I-, счет	v+, mm/c	I+, счет
0,00	16378	0,00	16378	0,00	33630	0,00	33630
-4,58	7847	4,61	7631	-4,56	29810	4,56	29977
-4,40	7831	4,42	7592	-4,39	29741	4,39	29829
-4,26	7876	4,25	7528	-4,21	29760	4,27	29745
-4,08	7875	4,07	7474	-4,06	29711	4,05	29674
-3,87	7801	3,90	7459	-3,90	29774	3,89	29606
-3,80	7804	3,74	7448	-3,68	29613	3,74	29621
-3,52	7818	3,55	7340	-3,52	29402	3,57	29495
-3,32	7870	3,37	7178	-3,40	29450	3,38	29299
-3,16	7838	3,19	7080	-3,20	29436	3,20	29396
-2,98	7802	3,01	6958	-3,00	29270	2,97	29225
-2,80	7789	2,80	6772	-2,76	29029	2,78	29083
-2,59	7822	2,61	6515	-2,61	29062	2,61	28911
-2,38	7808	2,40	6340	-2,38	28770	2,42	28844
-2,18	7833	2,20	6342	-2,17	28586	2,20	28542
-1,98	7827	2,00	6484	-1,97	28162	1,99	28300
-1,72	7866	1,76	6889	-1,75	27788	1,78	27920
-1,46	7826	1,49	7275	-1,48	26994	1,50	27160
-1,20	7817	1,22	7515	-1,21	26045	1,25	26394
-0,82	7803	1,33	7647	-0,84	23878	1,85	24718

Таблица 3: Поглотители 3 и 4

Рис. 6: Поглотитель 3

Рис. 7: Поглотитель 4

Формула для вычисления величины амплитуды эффекта Мессбауэра:

$$\varepsilon(v) = \frac{N(\infty) - N(v)}{N(\infty) - N_{\Phi}},$$

где $N(\infty)$ — скорость счёта квантов при достаточно большой скорости, N(v) — скорость счёта квантов, прошедших через поглотитель при некоторой скорости, N_{Φ} — скорость счёта радиоактивного фона (вычитается программой автоматически).

Величина химического сдвига, выраженная в эВ:

$$\Delta E = E \frac{v}{c},$$

где E – энергия гамма-кванта, излучаемого веществом (в нашем случае E=23.8 кэВ). Экспериментальная ширина линии Γ_e , выраженная в эВ:

$$\Gamma_e = 2\Gamma = E \frac{v_{\Gamma}}{c}$$
.

	Ампл. эффекта, %	Хим. сдвиг, мм/с	Хим. сдвиг, 10^{-7} эВ	Γ_e , mm/c	$\Gamma_e, 10^{-7} \ { m 9B}$
Погл. 1	3,92	2,20	1,75	1,5	1,19
Погл. 2	5,52	2,25	1,79	1,6	1,27
Погл. 3	8,44	2,27	1,80	1,6	1,27

Обсуждение

В ходе работы с помощью метода доплеровского сдвига для нескольких образцов поглотителя Sn были определены амплитуда резонансного поглощения, химический сдвиг и экспериментальное значение ширины спектральной линии. Было оценено время жизни мессбауэровского ядерного уровня 23,8 кэВ: по порядку величины оно совпало с табличным значением.

Список литературы

[1] Игошин Ф.Ф., Самарский Ю.А., Ципенюк Ю.М. Лабораторный практикум по общей физики: Учеб. пособие для вузов. Т3. Квантовая физика.. М.: Физматкнига - 2005.