

Machine Learning Basics

Mladen Nikolić

Faculty of Mathematics University of Belgrade

Everseen

Overview

About machine learning

Classifications of ML methods

Supervised ML Fundamentals

Linear regression

Logistic regression

Basic preprocessing and evaluation

Will It Work?

Overview

About machine learning

Classifications of ML methods

Supervised ML Fundamentals

Linear regression

Logistic regression

Basic preprocessing and evaluation

Will It Work?

What is machine learning?

► A discipline which deals with inducing algorithms from the data, instead of programming them explicitly

Critical notions

- ▶ Instead of algorithms, we talk about *models*
- Models express relations between different variables relevant for the task being solved
- ▶ Models are obtained from available data by some learning algorithm
- Models should generalize well, meaning that they should perform well on unseen data

Toy example (1)

- ▶ Automated detection of computer related articles
- ► How to detect them?

Toy example (1)

- Automated detection of computer related articles
- ▶ How to detect them?
- ► Based on terminology
- ► For instance "computer" and "file"
- ▶ Each article can be represented by frequencies of these words
- Points in 2D space!
- ▶ How to express discrimination rule between computer related ones and the others?

Toy example (2)

Figure: P. Janičić, M. Nikolić, Artificial intelligence, in preparation.

Why is machine learning important?

- ▶ Numerous applications which move boundaries of technology and imagination
- Superhuman performance in some tasks (with a grain of salt)
- Deep theory of inductive inference
- Great interplay of theory and practice, of academia and industry
- Most applicable branch of artificial intelligence
- Probably most popular and fastest growing branch of computer science

Machine learning and artificial intelligence

- ightharpoonup DL \subsetneq ML \subsetneq AI
- ▶ Logic based AI vs. probability based AI
- ▶ Logic formalizes deductive inference
- ML formalizes inductive inference
- ▶ Logic based approaches to AI expect formal definitions of inference rules and are applied to problems for which we are able to provide full formal descriptions
- ▶ ML aims at problems for which we can't provide formal descriptions (e.g., face recognition), but can provide examples instead
- ▶ Logic based approaches do not operate with uncertainty, while ML approach does (which is often great, but sometimes not)

Short history (1)

- ▶ 1943 McCulloch and Pitts formulate threshold logic, first artificial neuron
- ▶ 1950 Alan Turing contemplates about learning machines
- ▶ 1950 Marvin Minsky builds a first neural network
- ▶ 1952 Arthur Samuel makes first checkers playing programme
- ▶ 1957 Frank Rosenblatt makes perceptron (in hardware)
- ▶ 1963 Vapnik and Chervonenkis propose first support vector machine

Short history (2)

- ▶ 1967 Cover and Hart propose *k* nearest neighbours algorithm with application to travelling salesman problem
- ▶ 1969 Marvin Minsky and Seymor Papert criticize perceptron, leading to first neural network winter
- ▶ 1975 Werbos formulates backpropagation algorithm
- ▶ 1981 Dejong introduces explanation based learning for extraction of rules from data
- ▶ 1986 Rumelhart, Hinton, and Williams reintroduce backpropagation

Short history (3)

- ▶ 1989 Watkins proposes Q-learning
- ▶ 1989 First selfdriving car
- ▶ 1992 Boser, Guyon, and Vapnik propose to use kernles with SVM, starting the domination of SVM during nineties
- ▶ 1992 Tesauro makes TD-Gammon, backgammon system which beats human champions
- ▶ 1995 Tin Kam Ho proposes random decision forests
- ▶ 1997 Hochreiter and Schmidhuber propose LSTM

Short history (4)

- ▶ 2006 Hinton rebrands neural networks as deep learning
- ▶ 2011 IBM's system Watson outcompetes human champions in Jeopardy!
- ▶ 2012 Google Brain develops a system which can recognize cats in YouTube videos!!
- ▶ 2012 AlexNet sets machine learning as a standard in computer vision
- ▶ 2016 Google's Alpha Go defeats human world champion in the game of Go
- ▶ 2017 Microsoft's speech recognition system beats human standard

Current day applications

- Algorithmic trading
- Bioinformatics
- ► Brain-machine interfaces
- Cheminformatics
- Computer vision
- Credit card fraud detection
- Computer vision
- Handwriting recognition
- ► Information retrieval

- Marketing
- Medical diagnostics
- Natural language processing
- Online advertising
- Recommender systems
- Robot control
- Social network analysis
- Speech recognition
- ► Tracking patient's health condition

Computer vision

- ► Face recognition
- ▶ Object detection
- ▶ 3D reconstruction
- ▶ Pose estimation
- Video captioning

Figure: https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b

Autonomous driving/flight

- ► ALVINN drove 140km at the highway at the end of eighties with no human assistence
- ► In the past decade numerous companies started working on autonomous vehicle driving using neural networks, reinforcement learning...
- Autonomous flight of quadrotors, helicopters...

Game playing

- ▶ Human level backgammon player at the end of eighties
- ▶ Alfa Go defeats human champion in Go 4 to 1
- Neural network plays Atari games
- ▶ Neural network plays 3D shooters (e.g., Doom) better than humans

Natural language processing and speech recognition

- OCR and hand written text recognition
- ► Text classification
- Sentiment analysis
- ► Topic analysis
- ► Machine translation
- Speech recognition
- Dialog and recommendation systems

Figure:

https://rpubs.com/rain10241/63854

Medical applications

- ► Tumor recognition and classification
- ▶ Predicting patient's future health state
- ► Therapy optimization (e.g., sepsis)

Network analysis

- Community detection
- ► Link recommendation in social networks
- Link detection in criminal and terrorist networks
- ► Targeted advertising

Figure:

http://francescopochetti.com/community-detection-social-networks/

Overview

About machine learning

Classifications of ML methods

Supervised ML Fundamentals

Linear regression

Logistic regression

Basic preprocessing and evaluation

Will It Work

With respect to problem formulation

- Supervised learning
- Unsupervised learning
- ► Reinforcement learning

Supervised learning

- ▶ Model should establish relationship between *target variable* and *features*
- Model allows making predictions of target variable if feature values are known
- Input data consist of both feature values and target values
- ► Term supervision refers to availability of target values
- ▶ Task to be learned is defined by the data instead of being defined by the algorithm
- Typical tasks:
 - Regression
 - Classification

Regression

- ► Target variable is continuous
- ► Tasks like prediction of stock prices, steering angles, resource consumption, rainfall, algorithm runtime

Figure: P. Janičić, M. Nikolić, Artificial intelligence, in preparation.

Classification

- ► Target variable is categorical (finite and unordered value set)
- ► Tasks like face detection, object recognition, OCR, speech recognition

Figure: P. Janičić, M. Nikolić, Artificial intelligence, in preparation.

Unsupervised learning

- ▶ Model should identify some relevant structure in the data
- ▶ Input data consists only of feature values, there are no target values
- ► Task to be learned is defined by the algorithm for different kinds of tasks, different learning algorithms are formulated
- ► Typical tasks:
 - Clustering
 - Dimensionality reduction
 - Representation learning

Clustering

- ▶ Identification of groups of data
- ▶ Grouping can be defined based on proximity, density, shape, ...
- \blacktriangleright k means, DBSCAN, Gaussian mixture, agglomerative hierarchical clustering, ...
- ► Tasks like community detection in social networks, human genetic clustering, detection of different types of tissue in medical imaging, data reduction
- ▶ Interesting both in its own right and as a data preprocessing technique

Clustering illustration

Figure: https://towardsdatascience.com/k-means-data-clustering-bce3335d2203

Dimensionality reduction

- ▶ Identification of subspaces (planes or manifolds) in which data lie
- ▶ PCA, autoencoders, t-SNE, ...
- ▶ Mostly used for data preprocessing and visualisation

Figure: S. Roweis, L. Saul, Nonlinear Dimensionality Reduction by Locally Linear Embeddings

Representation learning

- ▶ Finding representations in data which facilitate exploitation of relevant information
- ▶ PCA, autoencoders, VAEs, GANs, word2vec,...
- ► Mostly used for natural language understanding, semantic image manipulation, improvement of other algorithms...

Reinforcement learning

- Probably highest hype to utility ratio :)
- Agent takes actions in an environment, observes its state, and receives reward from the environment for actions taken
- Model should map states to actions, so that total obtained reward is maximal
- Since reward is given, it is not unsupervised learning
- ▶ Agent is not informed if the action taken in some state was the right one!!
- ▶ Therefore it is not supervised learning, either
- Credit assignment mechanism is needed to identify best actions based on total reward obtained
- Control tasks in robotics, autonomous vehicle driving, therapy optimisation, dialog systems, game playing

With respect to the kind of variable dependence modelled

- ▶ Generative: p(x)
- ▶ Discriminative: $p(y|\mathbf{x})$

Generative models

- ▶ Model joint probability p(x)
- ▶ Provide full description of the data if the probability model is right
- Can generate data
- Require a lot of data for training
- Costly to train and sometimes even to apply
- ► Can provide confidence intervals for *y* if the probability model is explicit
- Can be wrong if the probability models is far from reality

Discriminative models

- ▶ Model conditional probability $p(y|\mathbf{x})$
- ▶ Therefore cannot generate data (x, y), only y given x
- Less data is required
- Easier to train and use
- ► Can provide confidence intervals for *y* if the probability model is explicit
- ► Can be wrong if the probability models is far from reality

The distinction is not clear

- What if we model $p(x_1, x_2, x_3 | x_4, x_5, x_6)$?
- ▶ It is conditional, so it does not model dependencies between x_4, x_5, x_6 , but jointly models x_1, x_2, x_3
- ▶ It's somewhere in between

Overview

About machine learning

Classifications of ML methods

Supervised ML Fundamentals

Linear regression

Logistic regression

Basic preprocessing and evaluation

Will It Work?

Loss and risk

- ▶ There is a relationship between **x** and *y*
- ▶ We are aware of that relationship via sample $\mathcal{D} = \{(\mathbf{x}_i, y_i) \mid i = 1, ..., N\}$
- ▶ Find "the best" function f such that $y \approx f(\mathbf{x})$
- Let loss function L quantify the discrepancy between y and f(x)
- ▶ Loss is averaged over the training set to obtain *error function* or *empirical risk*

$$E(f,\mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(\mathbf{x}_i))$$

► Emprirical risk minimization principle: find the model which minimizes E

Model representation

- Considering all possible models is infeasible, so a model representation is assumed
- We assume that the model $f_{\mathbf{w}}(\mathbf{x})$ is determined by a vector of model parameters \mathbf{w} , so the error function can be written $E(\mathbf{w}, \mathcal{D})$

ERM for classification

▶ What should we minimize?

ERM for classification

- ▶ What should we minimize?
- ▶ Minimize the number of training errors
- ► Indicator function:

$$I(F) = \begin{cases} 1 & \text{if } F \\ 0 & \text{if } \neg F \end{cases}$$

- ▶ Loss: $L(u, v) = I(u \neq v)$
- Optimization problem:

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{i=1}^{N} I(y_i \neq f_{\mathbf{w}}(\mathbf{x}_i))$$

Regression

Figure: P. Janičić, M. Nikolić, Artificial intelligence, in preparation.

Regression

- ▶ Regression function: $r(\mathbf{x}) = \mathbb{E}(y|\mathbf{x}) = \int y \ p(y|\mathbf{x}) dy$
- If $r(\mathbf{x}) = f_{\mathbf{w}}(\mathbf{x})$ for some \mathbf{w} , then it is a minimizer of

$$\mathbb{E}[(y-f_{\mathbf{w}}(\mathbf{x}))^2]$$

▶ In general, the minimum is attained for the function closest¹ to r(x)

ERM for regression

► Loss:

$$L(u,v) = (u-v)^2$$

► Optimization problem:

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{i=1}^{N} (y_i - f_{\mathbf{w}}(\mathbf{x}_i))^2$$

How well can we fit a model?

- Consider regression problem
- ▶ Simple linear regression: $f_{\mathbf{w}}(x) = w_0 + w_1 x$
- ▶ Polynomial linear regression: $f_{\mathbf{w}}(x) = \sum_{i=0}^{n} w_i x^i$

Simple linear regression

Figure: P. Janičić, M. Nikolić, Artificial intelligence, in preparation.

Polynomial linear regression

Figure: P. Janičić, M. Nikolić, Artificial intelligence, in preparation.

Training and testing data

- ▶ Obviously, we cannot trust the error $E(\mathbf{w}, \mathcal{D})$ as an estimate of future model error on unseen data
- ► Therefore, fitting and evaluation are always performed on separate data sets training and testing data
- ► Still, what's going on?

Overfitting

- ▶ Good fit of the model on the training data does not mean good generalization
- Compare to rote learning
- Caused by model flexibility (often called complexity)
- ► Controlling model flexibility is of paramount importance for good generalization
- ▶ One of central topics of machine learning and source of it's deepest theory

How to make models less flexible?

▶ Restrict model representation (e.g. linear models)?

How to make models less flexible?

- ▶ Restrict model representation (e.g. linear models)?
- ▶ Possible, but that approach may be too rigid

How to make models less flexible?

- Restrict model representation (e.g. linear models)?
- Possible, but that approach may be too rigid
- ► Given a very flexible model representation, can flexibility be tuned based on model's performance?

Regularization (1)

▶ Minimization of regularized empirical risk:

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{i=1}^{N} L(y_i, f_{\mathbf{w}}(\mathbf{x}_i)) + \lambda \Omega(\mathbf{w})$$

▶ Frequent choice of *regularization term* is squared ℓ_2 norm

$$\Omega(\mathbf{w}) = \|\mathbf{w}\|_2^2 = \sum_{i=1}^n w_i^2$$

- ► Regularization term penalizes the magnitude of the parameters, making the model less adaptable to the data
- Regularization meta-parameter λ tunes model flexibility/complexity

Regularization (2)

- ▶ In a more general sense, regularization is any modification of optimization problem that restricts model flexibility and makes it less susceptible to overfitting
- ▶ In an even more general sense, regularization is any modification of a mathematical problem which makes it less sensitive to changes in input parameters

Regularization example – classification models

Linear classification model:

$$f_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2$$

► Polynomial classification model:

$$f_{\mathbf{w}}(\mathbf{x}) = \sum_{i=1}^{n} \sum_{j=0}^{i} w_{ij} x_1^j x_2^{i-j}$$

Regularization example – data points

Figure: P. Janičić, M. Nikolić, Artificial intelligence, in preparation.

Regularization example – linear classifier prediction

Figure: P. Janičić, M. Nikolić, Artificial intelligence, in preparation.

Regularization example – polynomial classifier prediction

Figure: P. Janičić, M. Nikolić, Artificial intelligence, in preparation.

Figure: P. Janičić, M. Nikolić, Artificial intelligence, in preparation.

Figure: P. Janičić, M. Nikolić, Artificial intelligence, in preparation.

Figure: P. Janičić, M. Nikolić, Artificial intelligence, in preparation.

Figure: P. Janičić, M. Nikolić, Artificial intelligence, in preparation.

Figure: P. Janičić, M. Nikolić, Artificial intelligence, in preparation.

Figure: P. Janičić, M. Nikolić, Artificial intelligence, in preparation.

How to minimize error function?

- Anlytically by setting gradients to zero. Often impossible.
- ▶ Numerically by iteratively moving towards lower values of the function.
- What is the direction of steepest descent?
- ▶ Differentiable error functions allow for use of gradients (direction of steepest ascent)
- ► Cautious move in opposite direction leads to decrease of error function value

Gradient

 ${\bf Figure:\ math.wikia.com/wiki/Gradient}$

Gradient descent

► Repeat until convergence:

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \mu_k \nabla E(\mathbf{w}_k, \mathcal{D})$$

- ▶ How to select step size μ_k ?
- ▶ Fixed step size is often used, but there are better choices

Gradient descent

Figure: Y. Li, Course materials.

Overview

About machine learning

Classifications of ML methods

Supervised ML Fundamentals

Linear regression

Logistic regression

Basic preprocessing and evaluation

Will It Work?

Model

► Assume linear model:

$$f_{\mathbf{w}}(\mathbf{x}) = w_0 + \sum_{i=1}^n w_i x_i$$

▶ Let's go probabilistic!

$$p_{\mathbf{w}}(y|\mathbf{x}) = \mathcal{N}(\mathbf{w} \cdot \mathbf{x}, \sigma^2)$$

Illustration

Figure: D. Shafer, Z. Zhang, Introductory Statistics, 2012.

Maximal likelihood principle (1)

- ► How to choose **w**?
- Probability of observing the training set is (assuming IID)

$$\prod_{i=1}^N
ho_{\mathbf{w}}(y_i|\mathbf{x}_i)$$

where

$$p_{\mathbf{w}}(y|\mathbf{x}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y - \mathbf{w} \cdot \mathbf{x})^2}{2\sigma^2}\right)$$

- As a function of w it is called likelihood
- ▶ We are interested in *maximal likelihood estimate* of the parameters the parameter values under which the data is most likely

Maximal likelihood principle (2)

▶ It is more suitable to minimize negative log likelihood of the parameters:

$$NLL(\mathbf{w}) = -\log \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - \mathbf{w} \cdot \mathbf{x}_i)^2}{2\sigma^2}\right)$$

$$NLL(\mathbf{w}) = \frac{N}{2} \log 2\pi + N \log \sigma + \frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

► Learning problem:

$$\min_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

Solution (1)

Matrix formulation

$$\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$$

- It is a convex problem!
- Ideally

$$Xw = y$$

so, ideally,

$$\mathbf{w} = \mathbf{X}^{-1}\mathbf{y}$$

but, in general, **X** is not quadratic, nor invertible

Let's set derivatives of error function to 0

$$E(\mathbf{w}) = \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2 = (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$
$$\nabla E(\mathbf{w}) = 2\mathbf{X}^T (\mathbf{y} - \mathbf{X}\mathbf{w}) = 0$$
$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Solution (2)

▶ Interestingly $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ behaves like one would expect nonexistent \mathbf{X}^{-1} to behave:

$$\underbrace{(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T}_{\mathsf{pseudoinverse}}\mathbf{X} = \mathbf{I}$$

▶ If the matrices are too big for inversion or even storing in memory, gradient based methods can be used

Interpretability

- Magnitude of parameters reflects their relative importance (if the features vary in the same range)
- Sign of a parameter reflects the direction of correlation of the corresponding feature and the target variable
- For example, model $y = 2x_1 0.1x_2 + 3$ suggests that feature x_1 affects y much more strongly than feature x_2 and that x_1 affects it positively and x_2 negatively

What about polynomials?

- ▶ Linearity means linearity in parameters, not in features!!
- ► This is a linear model:

$$f_{\mathbf{w}}(\mathbf{x}) = w_0 + \sum_{i=1}^n w_i x^i$$

▶ It does not seem linear in coordinate system (x), but it clearly is in coordinate system $(1, x, x^2, ..., x^n)$

Illustration

Figure: P. Janičić, M. Nikolić, Artificial intelligence, in preparation.

Interactions

- ► Linear model expresses independent contributions of features to target variable, which is not realistic
- ▶ One solution is to include interactions (products of features):

$$f_{\mathbf{w}}(\mathbf{x}) = w_0 + \sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=i}^{n} w_{ij} x_i x_j$$

▶ The model is still linear, but the contribution of x_i can be dependent on x_j if it benefits the prediction

Ridge regression

- \triangleright If the features are linearly dependent, matrix $\mathbf{X}^T\mathbf{X}$ is not invertible
- ▶ If they are highly correlated, it is ill-conditioned
- ▶ Therefore, regularized problem is considered

$$\min_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2 + \lambda \|\mathbf{w}\|_2^2$$

▶ The solution

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

• Adding $\lambda \mathbf{I}$ makes it a full rank matrix

Overview

About machine learning

Classifications of ML methods

Supervised ML Fundamentals

Linear regression

Logistic regression

Basic preprocessing and evaluation

Will It Work?

Going binary

- ▶ Assume classification task and let $y \in \{0, 1\}$
- ► Linear model approximates values {0,1} very badly:

$$f_{\mathbf{w}}(\mathbf{x}) = w_0 + \sum_{i=1}^n w_i x_i$$

▶ But it can be squashed to the interval (0,1) using *sigmoid function*:

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

The model:

$$f_{\mathbf{w}}(\mathbf{x}) = \sigma(\mathbf{w} \cdot \mathbf{x})$$

Sigmoid function

Figure: M. Nikolić, A. Zečević, Machine learning, in preparation.

Going probabilistic

► This can be seen as probability

$$p_{\mathbf{w}}(y=1|\mathbf{x}) = \sigma(\mathbf{w} \cdot \mathbf{x})$$

► Therefore

$$p_{\mathbf{w}}(y|\mathbf{x}) = \sigma(\mathbf{w} \cdot \mathbf{x})^{y} (1 - \sigma(\mathbf{w} \cdot \mathbf{x}))^{1-y}$$

► How to choose parameters w?

Maximal likelihood principle

Likelihood function:

$$\prod_{i=1}^{N} p_{\mathbf{w}}(y_i|\mathbf{x}_i) = \prod_{i=1}^{N} \sigma(\mathbf{w} \cdot \mathbf{x}_i)^{y_i} (1 - \sigma(\mathbf{w} \cdot \mathbf{x}_i))^{1-y_i}$$

► Negative log likelihood:

$$NLL(\mathbf{w}) = -\sum_{i=1}^{N} [y_i \log \sigma(\mathbf{w} \cdot \mathbf{x}) + (1 - y_i) \log(1 - \sigma(\mathbf{w} \cdot \mathbf{x}))]$$

Loss used is called *crossentropy* and is very common in classification tasks:

$$L(p,q) = -\sum_{i} p(j) \log q(j)$$

Learning problem

► Learning problem is to minimize regularized negative log likelihood:

$$\mathit{NLL}(\mathbf{w}) = -\sum_{i=1}^{N} [y_i \log \sigma(\mathbf{w} \cdot \mathbf{x}_i) + (1 - y_i) \log(1 - \sigma(\mathbf{w} \cdot \mathbf{x}_i))] + \lambda \|\mathbf{w}\|_2^2$$

- ► The problem is convex!
- Usually optimized by Newton's method, but let's go for gradient descent!

Gradient

$$\frac{\partial NLL(\mathbf{w})}{\partial w_{j}} = -\sum_{i=1}^{N} \left[y_{i} \frac{\partial}{\partial w_{j}} \log \sigma(\mathbf{w} \cdot \mathbf{x}_{i}) + (1 - y_{i}) \frac{\partial}{\partial w_{j}} \log(1 - \sigma(\mathbf{w} \cdot \mathbf{x}_{i})) \right] + \lambda \frac{\partial}{\partial w_{j}} \sum_{i=1}^{n} w_{i}^{2}$$

$$= -\sum_{i=1}^{N} \left[y_{i} \frac{\sigma(\mathbf{w} \cdot \mathbf{x}_{i})(1 - \sigma(\mathbf{w} \cdot \mathbf{x}_{i}))}{\sigma(\mathbf{w} \cdot \mathbf{x}_{i})} x_{ij} - (1 - y_{i}) \frac{\sigma(\mathbf{w} \cdot \mathbf{x}_{i})(1 - \sigma(\mathbf{w} \cdot \mathbf{x}_{i}))}{1 - \sigma(\mathbf{w} \cdot \mathbf{x}_{i})} x_{ij} \right] + 2\lambda w_{j}$$

$$= -\sum_{i=1}^{N} \left[y_{i}(1 - \sigma(\mathbf{w} \cdot \mathbf{x}_{i})) x_{ij} - (1 - y_{i}) \sigma(\mathbf{w} \cdot \mathbf{x}_{i}) x_{ij} \right] + 2\lambda w_{j}$$

$$= \sum_{i=1}^{N} \left[\sigma(\mathbf{w} \cdot \mathbf{x}_{i}) - y_{i} \right] x_{ij} + 2\lambda w_{j}$$

Gradient descent updates

► Elementwise:

$$w_j \leftarrow w_j - \mu \sum_{i=1}^{N} \left[\sigma(\mathbf{w} \cdot \mathbf{x}_i) - y_i \right] x_{ij} + 2\lambda w_j$$

Matrix form:

$$\mathbf{w} \leftarrow \mathbf{w} - \mu \mathbf{X}^T \left[\sigma(\mathbf{X}\mathbf{w}) - \mathbf{y} \right] + 2\lambda \mathbf{w}$$

Unregularized vs. regularized

Figure: https://playground.tensorflow.org

Overview

About machine learning

Classifications of ML methods

Supervised ML Fundamentals

Linear regression

Logistic regression

Basic preprocessing and evaluation

Will It Work

What is preprocessing?

- ► Sometimes algorithms are not directly applicable to the data due to its form
- ► Sometimes they are applicable, but their performance may be worse due to the form of the data
- ▶ In such cases data needs to be transformed to a more desirable form, which is called *preprocessing*

Some often used techniques

- ► Coding of categorical features
- Missing value imputation
- Standardization/normalization
- Outlier removal
- Dimensionality reduction (e.g., PCA)
- Decorrelation (e.g., PCA)
- Aggregation of feature values or instances
- ► Feature selection

One hot encoding

- ▶ How can we use a linear model if a categorical variable is present?
- ► Consider a feature country of birth with *C* possible outcomes
- ► Terrible way to represent its values would be to, say, sort countries alphabetically and assign them indices in the sorted sequence
- ▶ Meaningful way would be to introduce *C* variables such that for *i*-th country all are 0 except the *i*-th variable, which is 1

Missing value imputation

- ▶ Sometimes, values of some variables are not observed, but the values of others are
- One way of dealing with this problem is removing such instances, but they could be numerous
- Such data also contains information which should be used
- ▶ Two simple approaches:
 - Imputation of the mean of observed values of the variable
 - Prediction of missing values by a regression model based on other variables

Variables of different scale

- ► Features are often measured at wildly different scales (e.g., savings and age)
- ▶ If interpretability is of value, model parameters cannot be compared to determine relative importance of such variabels
- Regularization will act differently on parameters corresponding to different variables
- Numerical/optimization stability may be an issue

Standardization

- ► In response to the previous problem, some kind of feature scaling is virtually always applied
- ▶ One such approach is standardization each feature is *centered* by removing the mean and divided by its standard deviation

What does evaluation consist of?

- ▶ Evaluation metrics metrics in which we express the quality of the model
- ► Evaluation techniques procedures used to compute metrics in a proper way

Classification metrics

▶ Often derived from confusion matrix

Figure: MLxtend documentation

Accuracy

► Fraction of correctly classified instances among all classified instances

$$\frac{\mathit{TP} + \mathit{TN}}{\mathit{TP} + \mathit{TN} + \mathit{FP} + \mathit{FN}}$$

- Sensitive to class imbalance
- Consider detection of a rare disease

AUC

- ► Area under the (receiver operator characteristic) curve
- ▶ The name is as ugly as a related interpretation (we focus on a nice one)
- ► Assume that a binary classifier assigns a score to each class lower scores to class 0 and higher scores to class 1 (there should be a threshold)
- ightharpoonup Pick instances $m x_0$ from class 0 and $m x_1$ from class 1 at random

$$AUC = P(f_{\mathbf{w}}(\mathbf{x}_0) < f_{\mathbf{w}}(\mathbf{x}_1))$$

- \triangleright 0.5 is random guessing and < 0.5 means you are doing something very wrong :)
- Insensitive to class imbalance

Precision and recall

Often used in information retrieval and ranking

Figure: https://en.wikipedia.org/wiki/Precision_and_recall

Regression metrics

▶ Often derived from model residuals

Figure: P. Janičić, M. Nikolić, Veštačka inteligencija, in preparation.

Root mean squared error

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - f_{\mathbf{w}}(\mathbf{x}))^2}$$

- Like standard deviation, but not with respect to the mean, but with respect to the model
- Expressed in same units as the original variable
- Used to estimate the magnitude of the error
- ► Particularly useful if we know what magnitude of the error is acceptable in particular application

Coefficient of determination R^2

$$R^2 = 1 - rac{MSE}{Var} = 1 - rac{\sum_{i=1}^{N} (y_i - f_{\mathbf{w}}(\mathbf{x}_i))^2}{\sum_{i=1}^{N} (y_i - \bar{y})^2}$$

- ▶ Measures the portion of variance of target variable explained by the model
- ▶ In range $(-\infty, 1]$
- ▶ If < 0 your training set is probably biased
- More suitable in comparisons due to fixed scale

Main tenant of model evaluation

▶ Data used for model evaluation should by no means be used in its training!

Training/testing split

- ➤ Split data into two sets training and test set
- Use training set to train a model
- Use test set to compute the error of the model
- Used for a single training run (if there is such a thing), not for meta-parameter tuning!

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	у
1	9	0	8
0	6	2	1
1	3	1	5
4	9	7	6
1	1	6	7
7	2	3	4
2	9	9	9
3 7	3	4	6
7	2	1	7
6	5	1	5

Training/validation/testing split

- Split data into training, validation, and test sets
- Tune the model by training it for different meta-parameter settings on the training and checking its performance on the validation set
- ► Train on joint training and validation set using best meta-parameter values
- ▶ Estimate the error of the best model on the test set

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	у
1	9	0	8
0	6	2	1
1	3	1	5
4	9	7	6
1	1	6	7
7	2	3	4
7 2 3 7	9	9	9
3	3	4	6
7	3 2 5	1	7
6	5	1	5

Pitfalls of preprocessing and evaluation

- ▶ No information from the test set should be used in training, therefore:
 - ► For missing value imputation on the test set, use exclusively means computed on the training set
 - For standardization, use exclusively means and standard deviations computed on the training set
- Test set selection should follow practically realistic scenarios

Overview

About machine learning

Classifications of ML methods

Supervised ML Fundamentals

Linear regression

Logistic regression

Basic preprocessing and evaluation

Will It Work?

Will it work?

PROBABLY NOT!

If it's quite bad

- ▶ Bad data (go check your data :))
- Underfitting
- Overfitting

Underfitting vs. overfitting

Figure: T. Hastie, R. Tibshirani, J. Friedman, "Elements of Statistical Learning", 2001.

What if we have an underfitting problem?

- Use more flexible models (even try to overfit)
- ► Consider model properties maybe the one you used is not suited to the problem
- Use lower regularization parameter values
- Construct new features

What if we have an overfitting problem?

- Use less flexible models (even try to underfit)
- ▶ Use feature selection
- Use higher regularization parameter values
- Use more data

Word of caution

- High training error and high test error indicate lack of flexibility which leads to underfitting
- ▶ But not necessarily e.g., that could also happen due to large learning step
- ► Low training error and high test error indicate too flexible model, which leads to overfitting
- ▶ But not necessarily e.g., that could also happen due to bad preprocessing (stratification)
- It's tricky, be cautious

Sometimes it's all about features

- ▶ If the features are not informative enough, no learning algorithm can help
- Check which classes get mixed-up and check if existing features should be able to differentiate between them
- ► Check for correlations between features and target variable
- Consider using deep neural networks over raw data, instead of hand crafting the features

Getting more into details

- ▶ Check different error metrics, they tell you different things
- If the model is interpretable, check if it makes sense
- Check for patterns in instances for which the predictions are wrong
- Inspect instances for which the model provides wrong answers with high confidence
- ► Try to visualize errors might be easy for images, hard for high dimensional vectorial data

THANK YOU

Mladen Nikolić nikolic@math.rs Machine Learning and Applications Group at the Faculty of Mathematimachinelearning.math.rs

