

Behavioral System Theory in Safe Predictive Control

Formal Methods for Al-Enabled Cyber-Physical Systems Author: Ayse Aybüke Ulusarslan Supervisor: Yongkuan Zhang, M.Sc.

05-FM

Motivation

- Traditional control methods often rely on explicit modeling not always practical
- Limits the usability of learning-based control systems
- Behavioral System Theory offers a solution

Behavioral System Theory

Key Assumptions .Persistency of Excitation: A signal $u \in$ \mathbb{R}^{mT} is PE of order L

if $H_L(u)$ has full row

2. LTI'ness: The system $\Sigma = (T, W, \mathscr{B})$ sat-

(a) Linearity: \mathscr{B} is a vec-

tor space: $\mathscr{B}(\alpha_1 \cdot$ $w_1 + \alpha_2 \cdot w_2) =$ $\alpha_1 \cdot \mathscr{B}(w_1) + \alpha_2 \cdot$ $\mathscr{B}(w_2)$

Invariance: $B \subset \sigma B$, where σ is the shift operator: $(\sigma w)(t)$

w(t + 1)(c) Completeness: $w|_{[t_0,t_1]}$ $\mathscr{B}|_{[t_0,t_1]}$

 $w \in \mathscr{B}$ 3. Sufficient trajectory length T: $T \geq (m+1)(T_{\mathsf{ini}} +$

N + n(B)) - 1,• N: Prediction horizon.

•n(B): System state dimension. • *m*: Input dimension.

Traditional control relies on state-space models described by:

$$x(t+1) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t),$$

where (A, B, C, D) are system matrices. Behavioral System Theory (BST) offers a data-driven alternative using Hankel matrices:

$$H_L(u) = \begin{bmatrix} u_1 & u_2 & \cdots & u_{T-L+1} \\ u_2 & u_3 & \cdots & u_{T-L+2} \\ \vdots & \vdots & \ddots & \vdots \\ u_L & u_{L+1} & \cdots & u_T \end{bmatrix},$$

constructed from input trajectories over a window of length L. According to the Fundamental Lemma [3], if u^d is persistently exciting of order $L + n(\mathcal{B})$, then:

$$(u, y) \in \mathscr{B} \iff \exists \alpha \in \mathbb{R}^{T-L+1}$$

$$s.t. \begin{bmatrix} H_L(u^d) \\ H_L(y^d) \end{bmatrix} \alpha = \begin{bmatrix} u \\ y \end{bmatrix}.$$

Data-Enabled Predictive Control (DeePC) [2]

Classical Optimal Tracking Objective

$$\min_{u,x,y} \sum_{k=0}^{N-1} \\
(\|y_k - r_{t+k}\|_Q^2 + \\
\dots \|u_k\|_R^2)$$

 $s.t. \quad x_0 = \hat{x}(t),$

$$x_{k+1} = Ax_k + Bu_k,$$

 $y_k = Cx_k + Du_k, \quad ,$

 $u_k \in \mathcal{U}, y_k \in \mathcal{Y}$ $\forall k \in [0, N-1]$

System vectors:

-(System state) $\vec{x} =$ where x is the vertical dis-

applied to the mass-spring damper system

-(Output) $y = \begin{bmatrix} 1, 0 \end{bmatrix} \cdot \vec{x} = \begin{bmatrix} 1, 0 \end{bmatrix} \cdot \vec{x}$ x, vertical displacement -System dimensions: n =

2, p = 1, m = 1Input Constraints:

-Control inputs u[0, 100] [N]

Output Constraints: -System outputs

Initial and Target States:

[-10, 10] [m]

-Initial State: =[9 [m].-Target State y_{target} $0 \ [m].$

Filter Parameters:

 $T_{\mathsf{ini}} = 1$. -(Prediction horizon) N =

-(Output weight matrix) Q = $100 \cdot \mathbf{I}_{2 \times 2}$. -(Input weight matrix) R = $0.01 \cdot \mathbf{I}_{1 \times 1}$

▶ DeePC Control Objective

$$\min_{g,u,y} \sum_{k=0}^{N-1} (\|y_k - r_{t+k}\|_Q^2 + \|u_k\|_R^2)$$

$$s.t. \begin{pmatrix} U_p \\ Y_p \\ U_f \\ Y_f \end{pmatrix} g = \begin{pmatrix} u_{\text{ini}} \\ y_{\text{ini}} \\ u \\ y \end{pmatrix}$$

 $u_k \in \mathcal{U}, y_k \in \mathcal{Y} \ \forall k \in [0, N-1]$

► System: Mass-Spring Damper

$$A = \begin{bmatrix} 1 & dt \\ -\frac{k \cdot dt}{m} & 1 - \frac{b \cdot dt}{m} \end{bmatrix}$$

$$B = \begin{bmatrix} 0 \\ \frac{dt}{m} \end{bmatrix},$$

▶ Simulation Results

(b) System Outputs

► The tracking problem is solvable in the BST framework

Data-Driven Safety Filter (DDSF) [1]

Classical Safety Filter

 $\min \|u_0(t) - u_l(t)\|_R^2$

s.t.
$$x_{k+1} = Ax_k + Bu_k$$
, $x_0(t) = x_0$,

 $x_k(t) \in \mathcal{X} \quad \forall k \in [0, N]$

 $u_k(t) \in \mathcal{U} \quad \forall k \in [0, N-1].$

Behavioral Safety Filter

$$\min_{\alpha(t), \bar{u}(t), \bar{y}(t)} \|\bar{u}_0(t) - u_l(t)\|_R^2$$
 s.t.

$$\begin{bmatrix} \bar{u}_{[-T_{\text{ini}},N+T_{\text{ini}}-1]}(t) \\ \bar{y}_{[-T_{\text{ini}},N+T_{\text{ini}}-1]}(t) \end{bmatrix} = \begin{bmatrix} H_L(u^d) \\ H_L(y^d) \end{bmatrix} \alpha(t),$$

$$\begin{bmatrix} \bar{u}_{[-T_{\mathrm{ini}},-1]}(t) \\ \bar{y}_{[-T_{\mathrm{ini}},-1]}(t) \end{bmatrix} = \begin{bmatrix} u_{[t-T_{\mathrm{ini}},t-1]} \\ y_{[t-T_{\mathrm{ini}},t-1]} \end{bmatrix},$$

 $\bar{u}_k(t) \in \mathcal{U}, \bar{y}_k(t) \in \mathcal{Y} \quad \forall k \in [0, N-1],$ $\bar{u}_k(t), \bar{y}_k(t) \in S_f, \quad \forall k \in [N, N+T_{\mathsf{ini}}-1].$

► Systems: Inverted Pendulum, Quadrotor

$$\vec{x} = \begin{bmatrix} x \\ \dot{x} \end{bmatrix}; u = F \in \mathbb{R}$$
 $y = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \vec{x} = x \in \mathbb{R}$

$$x = [\phi, \ \theta, \ \psi, \ p, \ q, \ r, \ u, \ v, \ w, \ x, \ y, \ z]^{\top},$$
 $u = [u_1, \ u_2, \ u_3, \ u_4]^{\top},$ $y = [\phi, \ \theta, \ \psi, \ x, \ y, \ z]^{\top}$

▶ Simulation Results

Key Observations

- Overall, the DDSF effectively enforced safety limits
- The conservatism of the filter behavior varies with system complexity.

Outlook

- Feasibility: Translating classical control algorithms into the behavioral paradigm proved achievable
- Limitations
 - Neither of the algorithms was tested extensively on nonlinear systems
 - Constrained by numerical stability issues
 - Continuing dependency on the state-space representation in the computation of system lag and equilibria
- Future Work
 - Adress numerical challenges
 - Extend the framework to nonlinear systems
 - Facilitate truly data-driven methologies
 - Conduct robustness tests under progressingly increasing levels of perturbation and time delay

KEY REFERENCES

- Mohammad Bajelani and Klaske van Heusden. Data-Driven Safety Filter: An Input-Output Perspective. 2023.
- Jeremy Coulson, John Lygeros, and Florian Dörfler. Data-Enabled Predictive Control: In the Shallows of the DeePC. 2019. [2]
- Jan C. Willems et al. "A note on persistency of excitation". In: Systems Control Letters 54.4 (2005), pp. 325–329. [3]