Multiple-Choice Test

Newton's Divided Difference Method of Interpolation

- 1. If a polynomial of degree n has n+1 zeros, then the polynomial is
 - (A) oscillatory
 - (B) zero everywhere
 - (C) quadratic
 - (D) not defined.
- 2. The following x-y data is given.

$\boldsymbol{\mathcal{X}}$	15	18	22
у	24	37	25

The Newton's divided difference second order polynomial for the above data is given by

$$b_0 + b_1(x-15) + b_2(x-15)(x-22)$$

The value of b_1 is most nearly

- (A) -1.048
- (B) 0.1433
- (C) 4.333
- (D) 24.00
- 3. The polynomial that passes through the following x-y data

X	18	22	24
у	?	25	123

is given by

$$8.125x^2 - 324.75x + 3237,18 \le x \le 24.$$

The corresponding polynomial using Newton's divided difference polynomial is given by

$$b_0 + b_1(x-18) + b_2(x-18)(x-22)$$

The value of b_2 is

- (A) 0.2500
- (B) 8.125
- (C) 24.00
- (D) not obtainable with the information given

ndd.doc 1

MULTIPLE CHOICE TEST - NEWTON'S DIVIDED DIFFERENCE METHOD OF INTERPOLATION

4. Velocity vs. time data for a body is approximated by a second order Newton's divided difference polynomial as

$$v(t) = b_0 + 39.622(t - 20) + 0.5540(t - 20)(t - 15), 10 \le t \le 20$$

The acceleration at t = 15 is

- (A) $0.5540m/s^2$
- (B) $39.622m/s^2$
- (C) $36.852m/s^2$
- (D) not obtainable with the given information
- 5. A robot is following a path on a x-y plane is found by interpolating four data points as

X	2	4.5	5.5	7
y	7.5	7.5	6	5

$$y(x) = 0.1524x^3 - 2.257x^2 + 9.605x - 3.900$$

The length of the path from x=2 to x=7 is

(A)
$$\sqrt{(7.5-7.5)^2 + (4.5-2)^2} + \sqrt{(6-7.5)^2 + (5.5-4.5)^2} + \sqrt{(5-6)^2 + (7-5.5)^2}$$

(B) $\int_{2}^{7} \left[\sqrt{1 + (0.1524x^3 - 2.257x^2 + 9.605x - 3.900)^2} \right] dx$
(C) $\int_{2}^{7} \sqrt{1 + (0.4572x^2 - 4.514x + 9.605)^2} dx$
(D) $\int_{2}^{7} (0.1524x^3 - 2.257x^2 + 9.605x - 3.900) dx$

6. The following data of the velocity of a body as a function of time is given

Time (s)	0	15	18	22	24
Velocity(m/s)	22	24	37	25	123

If you were going to use quadratic interpolation to find the value of the velocity at t=14.9 seconds, the three data points of time you would choose for interpolation are

- (A) 0, 15, 18
- (B) 15, 18, 22
- (C) 0, 15, 22
- (D) 0, 18, 24.

For answers, take the test online at

http://numericalmethods.eng.usf.edu/mcquizzes/05inp/ndd.html

ndd.doc 2

MULTIPLE CHOICE TEST – NEWTON'S DIVIDED DIFFERENCE METHOD OF INTERPOLATION

ndd.doc 3