Unit 3: Application Areas

3d. Language Processing

Probabilistic language models

- Sometimes we want to know "how likely is this string of words W"?
 - Example: language model in ASR
 - n-gram model: Markov assumption
 - bigram: $P(W)=P(w_1)P(w_2|w_1)P(w_3|w_2)P(w_4|w_3)...$
- A language model is a model of language
 - Can evaluate model by computing probability of held out test set
 - Better model = higher probability

Training Language Models

Get a whole bunch of text data (corpus)

```
...go to the market...
...want to go to...
...give the ball to him...
...have to leave now...
...supposed to go on Monday...
```

■ Simplest model: Learn $P(w_{t+1}|w_t)$ (bigram) $P(\langle the,go,him,leave\rangle |to) = \langle 0.2,0.4,0.2,0.2\rangle$

Training Language Models

- Problem: what's the probability of P(havelto)?
 P(<the,go,him,leave>lto) = <0.2,0.4,0.2,0.2>
 With this model, P(havelto)=0!
- Smoothing techniques needed to estimate unseen word pairs
 - Add small counts for all words (bad idea in practice)
 - Backoff smoothing: use P(have) to help estimate P(havelto)
 - P(havelto) = P(have) BackoffWeight(to)
 - Interpolation: $P(\text{havelto}) = \alpha P(\text{havelto}) + (1-\alpha) P(\text{have})$

N-grams vs. CFGs

- N-grams lack structure
 - The dog
 - The big dog
 - The big red dog
 - The big red smelly dog
- Plain CFGs don't assign probabilities
 - Solution: add probabilities to CFG rules

Probabalistic CFGs

If W is a word sequence, and T is a tree:

$$P(W) = \sum_{T} P(W,T) = \sum_{T} P(W \mid T)P(T)$$

- Why multiple trees? There can be multiple parses of a sentence.
- How to calculate P(T)? If T is headed by rule R: H->S₁...S_n

$$P(T) = P(R) \prod_{i} P(S_i)$$

$$S_1 S_2 ... S$$

Rule probabilities

■ If R₁...R_n are the only rules with the same LHS nonterminal, then

$$\sum_{i=1}^{n} P(R_i) = 1$$

- 0.96 S -> NP VP
- 0.04 S -> VP

Example

- Non-terminal rules (P(T)):
 - 1 S -> NP VP
 - 0.8 VP->V NP
 - 0.2 VP->V NP PP
 - 0.1 NP -> NP PP
 - 0.9 NP -> Det N
 - 1 PP->P NP
- Terminal (lexical) rules (P(WIT)):
 - Det-> 0.5 the I 0.5 a
 - N-> 0.4 man I 0.3 boy I 0.3 binoculars
 - V-> 1 saw
 - P-> 1 with

The man saw the boy with the binoculars

How do you get rule probabilities?

- Use a corpus of text
 - Must be specially marked up for parses
 - English: Penn Treebank

Penn Treebank example

```
( (S
( (S
  (NP-SBJ
   (NP (NNP Pierre) (NNP Vinken))
   (, ,)
   (ADJP
    (NP (CD 61) (NNS years))
    (JJ old))
   (, ,)
  (VP (MD will)
   (VP (VB join)
    (NP (DT the) (NN board))
    (PP-CLR (IN as)
      (NP (DT a) (JJ nonexecutive) (NN
    director) ))
    (NP-TMP (NNP Nov.) (CD 29) )))
  (..)))
```

```
( (S
    (NP-SBJ (NNP Mr.) (NNP Vinken) )
    (VP (VBZ is)
     (NP-PRD
        (NP (NN chairman) )
        (PP (IN of)
        (NP
            (NP (NNP Elsevier) (NNP N.V.) )
            (, ,)
            (NP (DT the) (NNP Dutch) (VBG publishing) (NN group) )))))
(. .) ))
```

What if you don't have a treebank?

- Assumption: you still know rules, just not the probabilities
- Inside-outside algorithm
 - EM for parsing probabilities
 - Like the forward-backward algorithm in HMMs
 - In any EM problem:
 - What are the observed variables?
 - What are the hidden variables?

Inside-outside & EM

- Start with some random probabilities for each rule
- E-step: determine a probability for each parse
 - Same as finding P(T) in "the boy with the telescope"
- M-step: given parse probabilities from entire corpus, update P(Rules)
- Continue around E/M steps until convergence

Unknown structures

- What if you don't even know rules ahead of time?
- Can infer Chomsky Normal Form rules
 - X -> Y Z
 - X -> t
- This becomes a structural-EM problem
- Problems:
 - I-O algorithm slow (O(n³t³)), structural EM worse
 - Structures learned are often not linguistically plausible
 - PCFGs often not good at local dependencies

Local dependencies

■ The man sees the boy with the binoculars

Local dependencies

- The man sees the boy with the binoculars
- The man sees the boy with the bat

- The words are really not independent of the parse tree
- One solution: lexicalized grammars
 - Add dependency on words

Lexicalized grammars

One word is designated "head"

```
P(VP[see] -> V[see] NP PP[binoculars])
```

P(NP[boy] -> Det N[boy])

P(VP[see] -> V[see] NP)

P(NP[boy]-> Det N[boy] NP[bat])

Problem: the more specialized the grammar, the fewer data there are to train probabilities

Information retrieval

- Another use for probabilistic language models is information retrieval
 - Given a query Q, find the relevant documents D that best satisfy the query
 - relevance (R) is a binary variable
- There are several components to an IR problem
 - Document collection
 - Query (posed in a query language)
 - Result set (all documents for which r is true)
 - Presentation (e.g., ranked list)
- Parsing is too difficult, use simpler measures

Document relevance

Given document D & query Q, what is probability that D is relevant?

$$P(r \mid D,Q) = \frac{P(D,Q \mid r)P(r)}{P(D,Q)} = \frac{P(Q \mid D,r)P(D \mid r)P(r)}{P(D,Q)}$$
$$= P(Q \mid D,r)P(r \mid D)\frac{P(D)}{P(D,Q)}$$

Compare against

$$P(\neg r \mid D, Q) = P(Q \mid D, \neg r)P(\neg r \mid D) \frac{P(D)}{P(D, Q)}$$
$$= P(Q \mid \neg r)P(\neg r \mid D) \frac{P(D)}{P(D, Q)}$$

Relevance ratios

Instead of maximizing P(rID,Q), maximize ratio of P(rID,Q)/P(~rID,Q)

$$\frac{P(r \mid D, Q)}{P(\neg r \mid D, Q)} = \frac{P(Q \mid D, r)}{P(Q \mid \neg r)} \frac{P(r \mid D)}{P(\neg r \mid D)}$$

Relevance ratios

Instead of maximizing P(rID,Q), maximize ratio of P(rID,Q)/P(~rID,Q)

$$\frac{P(r \mid D, Q)}{P(\neg r \mid D, Q)} = \underbrace{\frac{P(Q \mid D, r)}{P(Q \mid \neg r)} \frac{P(r \mid D)}{P(\neg r \mid D)}}_{P(\neg r \mid D)}$$

Probability that query is generated by relevant document

If document is irrelevant, prob. of query words
SAME FOR

Query-independent odds that document is relevant

Computing query generation probabilities

- Use a "bag of words" model
 - Ordering doesn't matter: unigram model
 - "Bush hates Pelosi" & "Pelosi hates Bush" have same impact
- For every document D, assume it is relevant and compute P(QID):

$$P(Q \mid D, r) = \prod_{j} P(Q_{j} \mid D, r)$$

Evaluating IR

- Two numbers to describe performance
 - Precision: how many documents were relevant?
 - Recall: how many relevant documents were found?

	in resultset	~in resultset			
r	30	20			
~r	10	40			

- Precision: P(r I in resultset)=30/(10+30)=.75
- Recall: P(in resultset | r)=.6
- Useful concept in other domains (parsing)

IR extensions

- Several tricks used to find "close" matches
 - Stemming: raining -> rain, pants -> pant
 - Synonyms
 - Relevance feedback
 - Get user to tell you if doc is relevant (more like this)
 - Add document words to query to expand terms

Non-probabilistic IR: Vector Space Model

- Again treat document as a bag of words
- Conceptualize document as a vector in n-space
 - Dimensions determined by vocabulary
 - Vector normalized to have length 1 in n-space
- Query is also a vector in same n-space
 - Find the documents that are closest to the query vector

Vector-space IR

Vocab: yellow, green, banana

Vector-space IR

- D1: green banana
- D2: yellow banana

Vector-space IR

- D1: green banana
- D2: yellow banana
- Q1: yellow
 - retreives D2
- Q2: banana
 - retreives D1 + D2
- Metric: cosine distance between vectors

Machine Translation (MT)

- One of the original AI holy grails
- Difficult problem: you can't just translate word for word from one langauge to another
 - English: no
 - German: nein, doch (used to contradict)
 - Brauchst du Eis? Nein.
 - Do you want some ice cream? No.
 - Hast du kein Eis gegessen? Doch.
 - Haven't you had any ice cream? No, actually, I have.
 - also: Eis = ice, ice cream
- Word order can also be different

Machine language strategies

- Rough translation: get the gist across, clean up afterwards
- Restricted source translation: use special domains and formats
 - Weather reports
- Preedited translations: like restricted source, reformat input document into simplified English (or other language)
 - Choose structures that are easy to translate
- Literary translation: capture all meanings
 - Beyond current MT capabilites

Translating at various levels

- Words
 - John loves Mary -> Jean aime Marie
- Syntax
 - S(NP(John) VP(loves NP(Mary)) -> S(NP(Jean) VP(aime NP(Marie))
- Semantics
 - Loves(John,Mary) -> Aime(Jean,Marie)
- Interlingua
 - Attraction(NamedJohn, NamedMary, High)
 - semantic representation that is lang. independent

Statistical MT

- Mostly takes a word-level approach
- Uses probabilistic language models to learn relationship between languages
 - E.g. English string E, French string F
- Let's say that you want to translate E to F

$$\underset{F}{\operatorname{arg\,max}} P(F \mid E) = \underset{F}{\operatorname{arg\,max}} \frac{P(E \mid F)P(F)}{P(E)}$$
$$= \underset{F}{\operatorname{arg\,max}} P(E \mid F)P(F)$$

Why Bayes rule?

- Could compute P(FIE) directly instead of using P(EIF)
- However, we can use a simpler model of P(EIF) and then clean up using P(F)
 - P(F): model of "good French"
- Simple model: $P(E \mid F) = \prod_{i} P(E_i \mid F_i)$
 - P(the doglle chein) = P(thelle) P(doglchien)

What about non 1–1 mappings?

- Sometimes there are different numbers of words in each language
 - Eis/ice cream
 - home/à la maison
- Fertility: words get copied 0 or more times
 - P(homelà la maison)= P(0là)P(0lla)P(homelmaison)
 - P(à la maisonlhome)= P(àlhome)P(lalhome)P(maisonlhome)

What about different word orders?

- chien brun = brown dog (+1 -1)
- Offset: how far do you have to move a word?
 - P(offsetIposition, englishlen, frenchlen)
- Combine all of this information together to get P(EIF)

Example combination

Source French	le	chien	brun	n'	est	pas	allé	à	la	maison
Fertility	1	1	1	1	1	0	1	0	0	1
Transformed French	le	chien	brun	n'	est		allé			maison
Word choice	the	dog	brown	not	did		go			home
Offset model	0	+1	-1	+1	-1		0			0
Target	the	brown	dog	did	not		go			home

Putting it all together

- Now we have P(EIF)
 - But we wanted P(FIE)!
- Hypothesize French sentence F
 - Evaluate P(EIF)P(F)
- But... can't just enumerate all F
 - Use the models to make some intelligent guesses, search over possible sequences
 - Like ASR problem