Übungen zur Mathematik I für Studierende Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2014/2015

Fachbereich Mathematik, Stefan Geschke

A: Präsenzaufgaben am 6. und 7. November 2014

- 1. Wahr oder falsch? (Kurze Begründung!)
 - (a) $89 \equiv 16 \pmod{5}$
 - (b) $89 \equiv -16 \pmod{5}$
 - (c) $-108 \equiv 11 \pmod{17}$
 - $(d) -99 \equiv -1 \pmod{4}$
- 2. Man bestimme ggT(768, 216) mit Hilfe des euklidischen Algorithmus.
- 3. Zeigen Sie, dass $\sqrt{3}$ irrational ist. (Hinweis: Man orientiere sich an dem Beweis der Irrationalität von $\sqrt{2}$ und benutze den Satz über die eindeutige Darstellbarkeit ganzer Zahlen als Produkt von Primzahlen.)

B: Hausaufgaben zum 13. und 14. November 2014

- 1. Zeigen Sie, dass $\sqrt{6}$ irrational ist.
- 2. (a) Wahr oder falsch? (Kurze Begründung!)
 - i. $177 \equiv 18 \pmod{5}$
 - ii. $177 \equiv -18 \pmod{5}$
 - iii. $-123 \equiv 33 \pmod{13}$
 - iv. $2^{51} \equiv 51 \pmod{2}$
 - (b) Bestimmen Sie ggT(3213, 234) mit dem euklidischen Algorithmus.
- 3. (a) Sind die folgenden Regeln richtig oder falsch? Begründen Sie Ihre Antwort.
 - i. Aus $a_1 \mid b_1$ und $a_2 \mid b_2$ folgt $a_1 + a_2 \mid b_1 + b_2$.
 - ii. Aus $a | b_1$ und $a | b_2$ folgt $a | b_1 + b_2$.
 - iii. Aus $a \mid b_1$ und $a \mid b_2$ folgt $a \mid b_1 b_2$.
 - (b) Beweisen Sie Regel (5) in Satz 2.31 im Skript.
- 4. (a) Zeigen Sie, dass die Funktion

$$g: \mathbb{Q}^2 \to \mathbb{Q}^3; (x,y) \mapsto (xy^2, xy^2 - 3x, (x^2 - 2)y)$$

injektiv ist.

(b) Ist die Funktion

$$h: \mathbb{Z} \to \mathbb{Z}^2; z \mapsto (z+2, z-1)$$

surjektiv? Begründen Sie Ihre Antwort.

5. Zeigen Sie mit Hilfe von vollständiger Induktion, dass jede n-elementige Menge genau 2^n Teilmengen hat.