紫毛香茶菜中的黄酮类化合物

纳智,项伟,李朝明,林中文,孙汉董*

(中国科学院昆明植物研究所植物化学开放实验室,云南昆明 650204)

摘要:从紫毛香茶菜($Isodon\ enanderianus$)的茎叶提取物中分离到 7 个黄酮类化合物,经波谱分析鉴定,其中一个为新的黄酮甙,即 5 – 羟基 -6 , 7 , 4 – 三甲氧基黄酮 -8 – 0 – β – D – 葡萄糖甙(1);其它 6 个已知的黄酮类化合物分别为芫花素(genkwanin , 2) 滨蓟素(cirsimartin , 3) 胡麻素(pedalitin , 4) 鼬瓣花亭(ladanetin , 5) isothymusin – 8 – 0 – β – D – glucoside (6) 和槲皮甙(quercitrin , 7)。

关键词:唇形科;紫毛香茶菜;黄酮类化合物

中图分类号: Q 946 文献标识码: A 文章编号: 0253 - 2700(2002)01 - 0120 - 04

Flavonoids from Isodon enanderianus

NA Zhi , XIANG Wei , LI Chao – Ming , LIN Zhong – Wen , SUN Han – Dong * (Laboratory of Phytochemistry , Kunming Institute of Botany , Chinese Academy of Sciences , Kunming 650204 , China)

Abstract: A new flavone glycoside , 5 – hydroxy – 6 , 7 , 4 – trimethoxyflavone – 8 – O – β – D – glucoside (1), together with six known flavonoids , genkwanin (2), cirsimartin (3), pedalin (4), ladanetin (5), isothymusin – 8 – O – β – D – glucoside (6), and isoquercitri (7), was isolated from the aerial parts of *Isodon enanderianus* (Labiatae). Their stuctures were elucidated on the basis of spectroscopic evidence.

Key words: Labiatae; Isodon enanderianus; Flavonoids

Isodon enanderianus (Hand. – Mazz.) H. W. Li , a perennial shrub plant in Labiatae family , is widely distributed in the southern part of Yunnan province. It has been used as folk medicine to diminish inflammation and detoxify (Kunming Institute of Botany , 1977) for a long history. The genus Isodon is known to be rich in ent – kaurane diterpenoids. A series of new ent – kaurane diterpenoids have been isolated from the dried leaves of *I. enanderianus* (Wang et al , 1998). During the reinvestigation of chemical constituents of *I. enanderianus* , seven flavonoids including a new flavone glycoside were isolated from the 70% acetone extract of aerial parts from the whole plant. Their structures were elucidated by spectroscopic methods , especially by NMR experiments. The new compound was identified as 5 – hydroxy – 6 , 7 , 4 – trimethoxyflavone – 8 – 0 – β – D – glucoside (1) and the other compounds were genkwanin (2) (Wang et al , 1998) , cirsimartin (3) (Wang et al , 1998) , pedal-

收稿日期:2001-04-13,2001-05-15接受发表

作者简介:纳智(1973-)男,在读博士研究生,主要从事植物化学的研究

^{*} 通讯联系人: Corresponding author

compounds were genkwanin (2) (Wang et al, 1998), cirsimartin (3) (Wang et al, 1998), pedalitin (4) (Zhang et al, 1994), ladanetin (5) (Agrawal et al, 1981), isothymusin – 8 – 0 – β – D – glucoside (6) (Wang et al, 1998) and quercitrin (7) (Markham et al, 1978).

Fig. 1 The structures of compounds 1-7

Fig. 2 The key HMBC correlations of compound 1

Rusults and Discussion

Compound 1 was obtained as pale yellow needles (MeOH). It was established to have a molecular formula of C_{24} H_{26} O_{12} , which was deduced by negative FABMS (base ion peak at m/z 505 [M – H] $^{-}$) and 13 C NMR data including DEPT technique. The IR spectrum had absorptions at 3422 and 1652 cm $^{-1}$ corresponding to the hydroxy and hydrogen bonded unsaturated carbonyl groups. The UV spectrum showed bands at 326.5, 287.5, 205.5 nm. This information along with the analysis of 1 H and 13 C NMR signals indicated that 1 was a flavone

glycoside. FABMS exhibited a fragmental ion peak at m/z 343 [aglycone-H], which showed that the aglylone ($C_{18}H_{16}O_7$) was a flavone containing two hydroxyl groups and three methoxyl groups. The 1H NMR spectrum of this compound revealed a characteristic proton signal at $\delta12.82$, which showed the presence of a free hydroxyl group at C-5 position, an AX pair of aromatic doublets at δ 8.23 (2H, J = 8.6 Hz) and 7.06 (2H, J = 8.6 Hz), indicating a *para*-substituted aromatic ring. The NMR data and HMQC, HMBC spectra indicated that the sugar was glucose and its anomeric proton and carbon were at δ 4.83 (d, J = 7.6 Hz) and 102.2, respectively, suggesting the presence of a β -O-glycosidic bond. The chemical shifts of the carbons in ring A agreed well with glycosylation effect (Yao *et al*,

1995). In general, the carbon at the site of glycosylation is shifted to a higher field following glycosylation, whereas the *ortho*-and *para*-related carbons shifted downfield. By comparison of ¹³ C NMR spectrum of its aglycone (Tokunaru *et al*, 1995), a downfield shift of C-5 (3.5 ppm), C-7 (4.3 ppm) and C-9 (3.3 ppm), and an upfield shift of C-8 (2.2 ppm) indicated that the sugar moiety was linked at C-8, which was confirmed by HMBC experiments. Therefore, compound 1 was elucidated as 5-hydroxy-6, 7, 4-trimethoxyflavone-8-O-β-D-glucoside. The structures of other six known compounds were identified by comparison of the spectral data (MS, ¹H and ¹³C NMR) with literature.

No	С	H (J in Hz)	No	С	H (J in Hz)	
2	163.3		<u> </u>	161.8	11 (J III 11L)	
3	103.1	6.92 (s)	5	113.7	7.06 (d, 8.6)	
4	181.8	,	6	128.2	8.23 (d, 8.6)	
5	148.2	12.82 (s, OH - 5)	6 – OCH3	60.4	3.81 (s)	
6	135.3		7 – OCH ₃	60.8	4.01 (s)	
7	152.3		4' - OCH ₃	54.8	3.84 (s)	
8	128.3		1″	102.2	4.83 (d, 7.6)	
9	144.6		2,*	73.3	1.05 (4, 7.0)	
10	105.4		<u>-</u>	75.7		
ľ	122.0		4"	69.4		
2	128.2	8.23 (d, 8.6)	5″	76.5	3.10 - 3.63	
3	113.7	7.06 (d, 8.6)	6"	60.4	(6H, overlap)	

Table 1 $^{-1}$ H (400 MHz) and 13 C (100.6 MHz) NMR data of compound 1 (in DMSO – d_6)

Experimental

General Melting point was measured on an XRC – 1 micro melting point apparatus and is uncorrected. IR spectra were obtained on a Bio – Rad FTS – 135 spectrometer with KBr pellets. UV spectra were recorded on a UV 210A spectrometer. Optical rotation was taken on a SEPA – 300 polarimeter. The EI and FAB MS were carried out on a VG Auto Spec – 3000 spectrometer at 70 eV. 1D – and 2D – NMR spectra were run on Bruker AM – 400 and DRX – 500 instruments with TMS as internal standard.

Extraction and isolation The aerial parts of *Isodon enanderianus* were collected in Shiping county of Yunnan province in 1997. The air-dried powdered plant (7.8 kg) was extracted with 70% acetone (3 × 20 L) at room temperature for 3 days each time. The extract was concentrated and partitioned with EtOAc. The EtOAc extract (391 g) was chromatography on a silica gel column (2.0 kg, 200 – 300 mesh) eluting with CHCl₃ by increasing Me₂ CO to yield eight fractions (I – VIII). From fraction III (45 g), compounds 2 (13 mg) and 3 (25 mg) were isolated by CC on Si-gel (200 – 300 mesh) eluting with cyclohexane/2-propanol (10:1). Compounds 4 (55 mg) and 5 (46 mg) were obtained from fraction IV (24 g) by Si – gel CC (cyclohexane/2-propanol, 8:1). Fraction VII (24 g) was Si – gel CC with CHCl₃/CH₃ OH (25:1→5:1) to yield compounds 1 (50 mg), 6 (70 mg) and 7 (1.2 g).

5 - hydroxy - 6, 7, 4 - trimethoxyflavone - 8 - O - β - D - glucoside (1), C_{24} H₂₆ O₁₂ pale yellow needles (MeOH); mp 203 - 205 °C; $[\alpha]_D^{25}$ - 39.0 (c = 0.250, C_5 H₅ N); UV λ_{max}^{MeOH} nm; 326.5, 287.5, 205.5; IR ν_{max}^{KBP} cm⁻¹; 3422, 1652, 1603, 1566, 1431, 1375, 1312, 1071, 1019, 828; EIMS m/z (%); 506 [M]⁺ (5), 344 $[aglycone]^+$ (88), 329 (66), 211 (4), 197 (23), 169 (9), 133 (14), 69 (100); FABMS (neg.); 505 $[M-H]^-$ (100), 343 $[343-H]^-$ (65); ¹H and ¹³C NMR data see Table 1.

Acknowledgements We would like to thank the staffs of analytical group at the Phytochemistry Laboratory, Kunming Institute of Botany for their measuring the spectral data.

References:

- Kunming Institute of Botany, Chinese Academy of Sciences, 1977. Flora Yunnannica [M]. Beijing: Science Press, 764
- Wang YH, Chen YZ, Sun HD et al., 1998. 7, 20-Epoxy-ent-kaurenoids from Isodon enanderianus [J]. Phytochemistry, 48 (7): 1267—1269
- Wang YH, Chen YZ, Sun HD et al., 1998. A new 1β-hydroxy-ent-kaurenoid from Isodon enanderianus [J]. Chin Chem Lett, 9 (8): 733—734
- Wang J, Lin ZW, Sun HD, 1998. Flavonoids from Isodon eriocalyx [J]. Natural Product Sciences, 4 (1): 38-41
- Zhang XF, Hu BL, Wang SX, 1994. The chemical constituents from *Dracocephalum tanguticum Maxim* [J]. Acta Botanica Sinica, 36 (8): 645—648
- Agrawal PW, Rastogi RP, 1981. 13 C NMR spectroscopy of flavonoids [J]. Heterocycles, 16 (12): 2202-2204
- Markham KR, Ternai B, Stanley R et al., 1978. Carbon 13 NMR studies of flavonoids III naturally occurring flavonoid glycosides and their acylated derivatives [J]. Tetrahedron, 34: 1389—1397
- Yao XS, Zhao SX, Pan JD et al., 1995. The Chemistry of Natural Medicine [M]. Beijing: The People's Health Publishing House,
- Tokunaru H, Yasuhiko K, Hitoshi Y et al, 1995. Synthesis of 5, 8 dihydroxy 6, 7 dimethoxyflavones and revised structures for some natural flavones [J]. Phytochemistry, 39 (5); 1201—1210