

Confidential - Delete Before Reading

System Block Diagram SmartTrak Solar Panel Controller

created by gsf Engineering for SmartTrak Copyright © 2013

External Hardware

Interrupt Handler

Finite State Machine

Foreground Loop

Major Software Routine (NOT FSM)

Drawing Legend
SmartTrak Solar Panel Controller
created by gsf Engineering for SmartTrak
Copyright © 2013

Confidential - Delete Before Reading

- Distance is measured by counting Motion Sensor Ticks
- To bring about a controlled stop at ANY time, change the number of Ticks to Move to ZERO

Copyright © 2013

Move Specification:

PWM Width

Measured Ouputs:

• Time between Motion Sensor ticks (Speed)

FSM Parameters:

- Initial PWM width
- Acceleration in PWM width change per timer interrupt
- Number of Motion Sensor ticks during acceleration (may not be enough to reach max
 - (Needs to account for travel limit)
- Final PWM width at end of acceleration (maximum PWM)
- Number of Motion Sensor ticks during constant speed (may be 0)
- (Needs to account for travel limit)
- Deceleration in PWM width change per timer interrupt
- Number of Motion Sensor ticks during deceleration (Needs to account for travel limit)
- Minimum PWM width at end of deceleration

Notes:

- Speed is measured by timing Motion Sensor Ticks
- Distance is measured by counting Motion Sensor Ticks
- To bring about a controlled stop at ANY time, change the number of Ticks to Move to ZERO

Implemented in MotionFSM.c

Simplified Motion FSM

SmartTrak Solar Panel Controller

Stall

created by gsf Engineering for SmartTrak Copyright © 2013

20 Mar, 2013

External FSM Events

New Motion Command

Distance

created by gsf Engineering for SmartTrak Copyright © 2013

PIC32 Starter Kit DM32001

PIC32 Starter Kit I/O Expansion Board DM32002

Prototype PICtail Plus Board AC164126

Serial SuperFlash Kit 1 AC243005-1

100MBPS Ethernet Pictail Plus Board AC164132

RS-232 Level Shifter and DB-9

RTCC MINIDS3232_A300

Pololu Dual MC33926 H-Bridge

Prototype Peripherals SmartTrak Solar Panel Controller

Smart

created by gsf Engineering for SmartTrak Copyright © 2013

H-Bridge Operation SmartTrak Solar Panel Controller

created by gsf Engineering for SmartTrak Copyright © 2013

SLEW default (open) low = SLOW

/D2

default (open) low = NON INVERTED

ΕN default (open) low = SLEEP, must be driven HIGH by MCU default (open) high = DISABLED, must be driven LOW by jumper D1

default (open) low = DISABLED, must be driven HIGH by jumper

A06

Copyright © 2013

created by gsf Engineering for SmartTrak

Note that all Jumpers EXCEPT D1 are pulled HI. D1 must be pulled LOW

MC33926 Wiring

SmartTrak Solar Panel Controller

PIC32 SK Wiring

SmartTrak Solar Panel Controller

created by gsf Engineering for SmartTrak Copyright © 2013

so that this can co-exist with the rest of the application

Copyright © 2013

Motor Kv 83 rpm/V (Measured) No Load 1800 RPM

PWM drive at 10KHz (arbitrarily selected) Starting PWM value 20%, based on prior experience

Mechanical Characteristics Travel Limits:

Motion Sensor (Hall Effect) 2 ticks per MOTOR revolution

Planetary Gearbox 575:1

Slew Gearbox 73:1

A06

- 1 00 degree Total Motion:
 - 0.0028 output shaft revolutions
 - 0.2028 input shaft revolutions
 - 116.6 motor revolutions
 - 233.2 motion sensor ticks
 - 0.065 minutes, 3.89S at maximum speed (no accel or decel)
- Minimum motion 0.00429 degrees
- 0.5 motor revolutions
- 1 Motion Sensor tick TOTAL
- Longest Motion Sensor tick timing:
- accelerating from 0 at 9.4 degrees/s/s
 - using d = 0.5 * a * t ^2, for d = 4.7 degrees, t = 1.0S
 - xxxxx TMR3 counts per motion sensor tick
 - xx.xx times longer than the 16.7mS tick at max speed
 - this time, which is not entirely accurate because we will start with at least 20% duty cycle, will nonetheless be used to determine the *maximum motion timeout* value

0.0522 output shaft revolutions/sec (18.8 degrees/sec)60 Motion Sensor ticks/sec

30 motor revolutions/sec (1800 RPM)

Max Motor Gearbox Velocity: 18.8 degrees/sec

- 16.7mS per Sensor tick (0.31 degrees/tick)
 TMR3 = (80MHz/2)/256, 156KHz, 6.40uS/count
 - 5219 TMR3 counts per Motion Sensor tick

• 3.13 output shaft revolutions/min (1127 degrees/min)

- Max Acceleration: x.xxx degrees/s/s
 - assuming linear acceleration from 0 to x.xxx degrees/s/s
 - x.xx shaft revolutions
 - xx.x motor revolutions
 - xxxx Motion Sensor "c. s

PWM is set . y 7.10 bit value, so the PWM can be adjusted on every Motion Sensor tick.

1.00 Degree Move

(This is an example, final specs not determined)

- 0.0028 Output Shaft Revolutions Motion Profile
 - 233 Motion Sensor Wheel ticks TOTAL
 - 58 ticks accelerating from 0 at 9.4 degrees/s/s
 - using d = 0.5 * a * t ^2, for d = 4.7 degrees, t = 1.0S
 - 58 ticks decelerating at 2.35 degrees/s/s (1:4)
 - using d = 0.5 * a * t ^2, for d = 4.7 degrees, t = 2.0S
 - 117 ticks at full speed, 16.7mS per tick
 - t = 1.95S
 - for a total 4.95S move
 - observed x.xxS move starting at 20% duty cycle

Total Required Motion 16 Degrees/hour

16 x 1.0 Degree Move 16 x 4.95S = **79.2S** in a 3600S hour

Azimuth Motion Math

SmartTrak Solar Panel Controller

Note: these timing calculations are based on starting motion at 0% PWM, and ramping up from there. In reality, we will start the PWM will be started at 20% (or higher), which makes the calculations more complicated, and better done with a spreadsheet - but this method of calculation provides worst-case timing.

created by gsf Engineering for SmartTrak Copyright © 2013