By Cliff Rodriguez

Intro to Econometrics -Problem Set 1

Due: January 31, 2018

Contents

Question 1	2
Question 2	4
Question 3	10
Question 4	11
Appendix I	16
Figure 1: Mean and standard deviation for each variable in dataset ps1q2.dta	4
Figure 2: Correlation between years of education and hourly wages in dataset ps1q2.dta	5
Figure 3: Covariance between years of education and hourly wages in dataset ps1q2.dta	6
Figure 4: Firm 1	8
Figure 5: Firm 2	8
Figure 5: Firm 2	8

Question 1

Question 1 uses dataset ps1q1.dta

- (i) U_i is a constant that represents a value for the impact of non-internalized variables that are relevant to the system it is an error term or random disturbance and is thought of as the unobserved factors that impact Y.
- (ii) Three examples of things that could be included in U_i for this model are
 - a. Height of father
 - b. Height of Mother
 - c. Were prenatal vitamins used by the mother
- (iii) Give and intuitive argument for why:
 - a. α_i might be positive in this model if an additional cigarette increases birthweight.
 - **b.** α_i might be negative in this model if an additional cigarette decreases birthweight.
- (iv) Simple regression does not solve the problem of omitted variable bias and reverse causality because in the least there are omitted variables. Examples of omitted variables are listed in ii, and include the height of each parent and whether or not prenatal vitamins were taken during pregnancy. Reverse causality is not applicable to this problem because the unborn baby can't cause the parent to smoke more cigarettes.

(v) Using the output from STATA below:

. reg bwght cigs

Source	SS	df	MS		er of obs		1,388
Model	13060.4194	1	13060.419		1386) > F	=	32.24
Residual	561551.3	1,386	405.15966		uared	=	0.0227
				– Adj	R-squared	=	0.0220
Total	574611.72	1,387	414.28386	4 Root	MSE	=	20.129
bwght	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
cigs	5137721	.0904909	-5.68	0.000	69128	61	3362581
_cons	119.7719	.5723407	209.27	0.000	118.64	92	120.8946

.

Estimated Equation: $bwght_i = 119.77 + -.5137721 \ cigs_i$

$$\alpha_0 = 119.77$$

Interpretation: If no cigarettes are smoked per day during pregnancy the estimated birthweight is 119.77 ounces.

$$\alpha_1 = -.5137721$$

Interpretation: For each cigarette smoked per day is expected to decreases birthweight by .51 ounces.

(vi) The predicted birthweight when *cigsi=0* is 119.77 ounces. The predicted birthweight when *cigsi=20* is 109.5 ounces.

Comparing the values of 119.77 ounces, the expected birthweight of a baby when the mother smoked zero cigarettes per day, and 109.5 ounces the expected birthweight for a baby when mother smokes 20 cigarettes per day indicates that smoking a pack a day will decrease the expected birthweight of the baby by roughly 10 ounces.

- (vii) An expected birthweight of 125 ounces is not possible with this model (viii)
 - a. The strong assumption made in this model includes ... because it is linear.
 - b. This model could be graphed using the equation below, is using a log scale for the data was desirable.

$$bwght_i = 119.77 - In(.5137721 \ cigs_i)$$

c. Working log data would be useful in this model if bwght (yi) has a constant level of change for a percentage change in cigs(xi).

Question 2

(i)

a. The mean and standard deviation for each variable in dataset ps1q2.dta are presented below.

. sum				
Variable	Obs	Mean	Std.	Dev.
yeduc_1 hrwage_1 yeduc_2 hrwage_2 yeduc_3	11 11 11	9	3.32 2.03 3.32 2.03 3.32	
hrwage_3 yeduc_4 hrwage_4 worker_id		7.5 9 7.5 6	2.03 3.32 2.03 3.32	

Figure 1: Mean and standard deviation for each variable in dataset ps1q2.dta

b. The covariance and correlation between years of education and hourly wages in dataset ps1q2.dta are presented below.

Figure 2: Correlation between years of education and hourly wages in dataset ps1q2.dta

. corr yeduc_1 hrwage_1, cov
(obs=11)

	yeduc_1	hrwage_1
yeduc_1	11	
hrwage_1	5.5	4.12763

. corr yeduc_2 hrwage_2, cov
(obs=11)

	yeduc_2	hrwage_2
yeduc_2	11	
hrwage 2	5.497	4.12262

. corr yeduc_3 hrwage_3, cov
(obs=11)

. corr yeduc_4 hrwage_4, cov
(obs=11)

Figure 3: Covariance between years of education and hourly wages in dataset ps1q2.dta

(ii) For each firm the OLS regress for hourly wages on years of education is below.

Interpretation: For each firm, the predicted increase on hourly wages for each additional year of education is 50 cents.

Firm 1 α_1 = .5

Firm 2 α_1 = .5

Firm 3 α_1 = .5

Firm 4 α_1 = .5

. reg hrwage_1	yeduc_1						
Source	SS	df	MS		of obs		11 17.97
Model	27.5000024	1	27.5000024	- F(1, 9		=	0.0022
Residual	13.776294		1.53069933			=	
Kesiquai	13.776294	9	1.53069933	-		= = F	
Total	41.2762964	10	4.12762964	-	squared	ı – =	
hrwage_1	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
yeduc 1	.5	.1179638	4.24	0.002	.23314	475	.7668526
_cons	3.000909	1.125303	2.67	0.026	.45529	978	5.54652
. reg hrwage_2	2 yeduc_2	df	MS	Number	of ob	s =	11
				- F(1, 9		=	
Model	27.4700075	1	27.4700075			=	0.0022
Residual	13.7561905	9	1.52846561			=	
				_	square	d =	
Total	41.2261979	10	4.12261979	-	-	=	1.2363
hrwage_2	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
yeduc_2 _cons	.4997273 3.002455	.1178777	4.24 2.67	0.002 0.026	.2330		.7663851 5.546208

. reg hrwage_3	3 yeduc_3						
Source	SS	df	MS	Numbe	r of obs	5 =	1:
				- F(1,		=	18.00
Model	27.4900007		27.4900007			=	0.0022
Residual	13.7424908	9	1.52694342	- 1	ared		0.666
				_	-squared		0.629
Total	41.2324915	10	4.12324915	Root	MSE	-	1.235
hrwage_3	Coef.	Std. Err.	t	P> t	[95% 0	Conf.	Interval:
yeduc 3	.4999091	.1178189	4.24	0.002	.23338	841	.7664343
_cons	3.001727	1.123921	2.67	0.026	.45924		5.544213
. reg hrwage_4	4 yeduc_4						
Source	SS	df	MS	Numbe	r of obs	s =	1
				- F(1,		=	17.99
Model	27.5100011		27.5100011			=	0.0022
Residual	13.7626904	9	1.52918783			=	0.6665
					-squared		0.6295
Total	41.2726916	10	4.12726916	Root	MSE	-	1.236
hrwage_4	Coef.	Std. Err.	t	P> t	[95% 0	Conf.	Interval
yeduc 4	.5000909	.1179055	4.24	0.002	.23337	701	.766811
_cons	3.000091	1.124747		0.026	.45573		5.544445

(iii)

Based on calculations made using the OLS method, for each firm the added value from one year of education is listed below for each firm:

- i. Firm 1: 50 cents per hour
- ii. Firm 2: 50 cents per hour
- iii. Firm 3: 50 cents per hour
- iv. Firm 4: 50 cents per hour
- (iv) The relationship between hourly wages and years of education for each firm is graphed below.

Figure 4: Firm 1

Figure 5: Firm 2

Figure 6: Firm 3

Figure 7: Firm 4

- (v) Reviewing the graphs the prediction is equally good for each firm. This is because the α_1 value for each is .5, meaning income increases by .50 cents per hour per each additional year of education.
- (vi) Reviewing the graphs the relationship between hourly wages and years of education is/is not the same. This is evident because the graphs all have a unique pattern.
- (vii) Based on points v and vi above it is suggested that this model is not very useful in predicting wages based on years of education.

Question 3

(i) See appendix I for work

$$\hat{\beta}_0$$
 =

$$\hat{\beta}_1$$
 =

- (ii) The \hat{eta}_0 term in this model is/is not useful because any student enrolled has a GPA
- (iii) The GPA score is predicted to be points higher if the ACT score increases by 5 points?
- (iv) The fitted values and residuals for each observation are presented in appendix I.

$$GPA - \overline{GPA} = .02$$

$$ACT - \overline{ACT} = 0$$

(v) Blank of the variation in GPA for the eight students is explained by the ACT. This is because...

Question 4

(i) $\overline{beauty} = -1.02 \text{ e-08}$, or near zero

(ii) $beauty_1 - \overline{beauty} =$

STATA CODE:

beautybar = 1.02E8 $generate\ b1 = beauty - beautybar$

. list id bl beauty beautybar

	id	bl	beauty	beautybar
1.	1	. 4665659	.4665659	-1.02e-08
2.	2	1.653514	1.653514	-1.02e-08
3.	3	7783977	7783977	-1.02e-08
4.	4	1886765	1886765	-1.02e-08
5.	5	4635571	4635571	-1.02e-08
•	_			
6.	6	.4189142	.4189142	-1.02e-08
7.	7	0925891	0925891	-1.02e-08
8.	8	.6024747	.6024747	-1.02e-08
9.	9	.6024747	.6024747	-1.02e-08
10.	10	4635571	4635571	-1.02e-08
11.	11	.1529052	.1529052	-1.02e-08
12.	12	2331249	233125	-1.02e-08
13.	13	.6024747	.6024747	-1.02e-08
14.	14	.1198157	.1198157	-1.02e-08
15.	15	6119655	6119655	-1.02e-08
16	16	7500150	7500150	1 02-00
16.		.7588158	.7588158	-1.02e-08
17.	17	3597814	3597814	-1.02e-08
18.	18	7999662	7999662	-1.02e-08
19.	19 20	2056043	2056043	-1.02e-08
20.	20	8396479	8396479	-1.02e-08
21.	21	-1.303629	-1.303629	-1.02e-08
22.	22	709264	709264	-1.02e-08
23.	23	.1174831	.1174831	-1.02e-08
24.	24	1.109391	1.109391	-1.02e-08
25.	25	6885042	6885042	-1.02e-08
26.	26	1.848021	1.848021	-1.02e-08
27.	27	5173993	5173993	-1.02e-08
28.	28	1763468	1763468	-1.02e-08
29.	29	8687903	8687903	-1.02e-08
30.	30	2480038	2480038	-1.02e-08
31.	31	3597814	3597814	-1.02e-08
32.	32	.1529052	.1529052	-1.02e-08
33.	33	-1.191165	-1.191165	-1.02e-08
34.	34	1.293693	1.293693	-1.02e-08
35.	35	.0276898	.0276898	-1.02e-08
36.	36	.0276898	.0276898	-1.02e-08
37.	37	1786794	1786794	-1.02e-08
38.	38	.63468	.63468	-1.02e-08
39.	39	.5210114	.5210114	-1.02e-08
40.	40	.1679129	.1679129	-1.02e-08

(iii) The covariance between course evaluation and beauty is .097 rating of instructor/units

. correlate course_eval beauty, cov
(obs=40)

	course~l	beauty
course_eval	.358333	
beauty	.097303	.520199

.

The units of measure for the covariance between course evaluation and beauty is rating of instructor over units and this does not have a real world interpretation.

(iv) The correlation between course evaluations and beauty is shown below using STATA and the $P_x = \frac{cov(X,Y)}{sd(x)sd(y)}$

. correlate beauty course_eval
(obs=40)

	beauty	course~l
beauty	1.0000	
course_eval	0.2254	1.0000

. correlate course_eval beauty, cov
(obs=40)

.

$$p_x = \frac{cov(X,Y)}{sd(x)sd(y)} = \frac{.097303}{(.721248) * (.5986095)} = .225402$$

(v) The data with beauty plotted on the x-axis is below.

Intro to Econometrics - Problem Set 1
Cliff Rodriguez

- (vi) Using $\hat{\beta}_1 = \frac{cov(X,Y)}{var(X)}$ to calculate the regression slope coefficient the value is .279
 - . correlate beauty course_eval, cov
 (obs=40)

	beauty	course~l
beauty	.520199	
course_eval	.097303	.358333

. sum beauty course_eval

Variable	Obs	Mean	Std. Dev.	Min	Max
beauty	40	-1.02e-08	.721248	-1.303629	1.848021
course eval	40	4.525	.5986095	3	5

- $. generate beta1hat = .097303/(.5896095)^2$
- . display beta1hat
- .27989638

.

(vii) For the data in ps1q4.dta the value of $\hat{\beta}_0$ is 4.525 and this does relate to course_eval because it indicates a course evaluation of 4.525 if beauty is zero.

0.1620 0.0508 0.0258

. regress cour	se_eval beaut	У				
Source	SS	df	MS	Number of ob		
Model	.709819188	1	.709819188	F(1, 38) Prob > F	=	
Residual	13.2651808	38	.349083706	R-squared	=	
Total	13.975	39	.358333333	Adj R-squared Root MSE	d = =	
course eval	Coef.	Std. Err.	t P	'> t [95% (Conf.	Int

(viii) Using the regression $course_{eval} = \beta_0 + \beta_1 * beauty + u_i$

The OLS estimates is:

$$\hat{\beta}_1 = .187$$

compare β_1 in step vi with β_1 found in step vi:

The step vi estimates is:

$$\hat{\beta}_1 = .225$$

(ix) R^2 is the ratio of the explained variation compared to the total variation and is interpreted as the fraction of the sample variation in Y (dependent variable) that is explained by X (independent variable). For this exact model, in question 4, R^2 measures how much of the variation in course_evaluation score is explained by beauty. R^2 is generally multiplied by 100 to change it to a percent.

The standard error (RMSE) of a regression measures the sample standard deviation of the forecast of errors (without any degrees of freedom adjustment)

 \mathbb{R}^2 is preferred because it is unitless.

(x) R²in step vii is .0508.
 5% of the variation in course_eval score is predicted by beauty.

Appendix I