

CSC-257 Theory Of Computation (BSc CSIT, TU)

Ganesh Khatri kh6ganesh@gmail.com

Proving a Language not to be Regular

- It is shown that the class of language known as regular language has at least four different descriptions.
- They are the languages accepted by DFAs, by NFAs, by E-NFAs, and defined by RE.
- Not every language is Regular.
- To show that a language is not regular, the powerful technique used is known as Pumping Lemma

Pumping Lemma

• **Statement**: Let L be a regular language. Then there exists a constant n such that for every string w in L such that |w| >= n, we can break w into three strings, w = xyz, such that:

- $-y \neq \epsilon$
- |xy| <= n
- for all $k \ge 0$, the string xy^kz is also in L
- That is, we can always find a nonempty string y not too far from the beginning of w that can be "pumped"; that is, repeating y any number of times, or deleting it (the case k=0) keeps the resulting string in language L

Pumping Lemma

- Proof: Suppose, L is a regular language for some DFA A. Suppose, A has n states.
- Now, consider any string w of length n or more, say $w = a_1 a_2 \dots a_m$, where m>=n and each a_i is an input symbol.
- For i = 0,1,....n, define state p_i to be $\delta^*(q_0, a_1a_2...a_i)$, where δ be the transition function of A, and q_0 is the start state of A.
- That is, p_i , is the state A is in after reading the first i symbols of w. Note that $p_0 = q_0$.
- By the pigeonhole principle, it is not possible for the n+1 different p_i 's for i=0,1,2,...,n to be distinct, since there are only n different states.
- Thus, we can find two different integers i and j, with 0 <=i <=j <=n, such that $p_i = p_j$

Pumping Lemma

Now, we can break w = xyz as follows :

$$- x = a_1 a_2 a_i$$

$$- y = a_i + 1a_{i+2} + \dots + a_j$$

$$- z = a_{j+1}a_{j+2}....a_{m}$$

That is, x takes us to p_i once; y takes us from p_i back to p_i (since p_i = p_j), and z is
the balance of w

Every string longer than the number of states must cause a state to repeat

- So we can say A accepts $a_1a_2.....a_i(a_{i+1}.....a_i)^Ka_{i+1}.....a_m$ for all $k \ge 0$
- Hence, xy^kz ε L for all k≥0.

- Show that language, $L=\{0^n1^n|n \ge 0\}$ is not a regular language
- **Solution**: Let L is a regular language. Then by pumping lemma, there are strings u, v, w with $v \ge 1$ such that $uv^k w \in L$ for $k \ge 0$
- Case I: Let v contain 0's only. Then, suppose $u = 0^p$, $v = 0^q$, $w = 0^r1^s$; Then we must have p+q+r = s (as we have 0^n1^n) and q>0
- Now, $uv^kw = 0^p(0^q)^k0^r1^s = 0^{p+qk+r}1^s$
- Only these strings in $0^{p+qk+r}1^s$ belongs to L for k=1 otherwise not.
- Hence, L is not regular.

- Show that language, $L=\{0^n1^n|n \ge 0\}$ is not a regular language
- **Solution**: Let L is a regular language. Then by pumping lemma, there are strings u, v, w with $v \ge 1$ such that $uv^k w \in L$ for $k \ge 0$
- Case II: Let v contains 1's only. Then $u = 0^p1^q$, $v = 1^r$, $w = 1^s$, then p = q + r + s and r > 0
- Now, $0^{p}1^{q}(1^{r})^{k}1^{s} = 0^{p}1^{q+rk+s}$
- Only those strings in $0^{p}1^{q+rk+s}$ belongs to L for k = 1 otherwise not
- Hence, L is not regular.

- Show that language, $L=\{0^n1^n|n \ge 0\}$ is not a regular language
- **Solution**: Let L is a regular language. Then by pumping lemma, there are strings u, v, w with $v \ge 1$ such that $uv^k w \in L$ for $k \ge 0$
- Case III: Let, V contains 0's and 1's both. Then, suppose, $u = 0^p$, $v = 0^q 1^r$, $w = 1^s$; p+q = r+s and q+r>0
- Now, $uv^kw = 0^p(0^q1^r)^k1^s = 0^{p+qk}1^{rk+s}$
- Only those strings in $0^{p+qk}1^{rk+s}$ belongs to L for k=1, otherwise not. (As it contains 0 after 1 for k>1 in the string)
- Hence, L is not regular

- Prove that $L = \{0^i \mid i \text{ is a perfect square}\}\$ is not a regular language.
- **Proof**: Assume that L is regular and let m be the integer guaranteed by the pumping lemma.
- Now, consider the string $w = 0^{m^2}$ where $m \le |w|(m^2)$
- Clearly $w \in L$, so w can be written as w = xyz with $|xy| \le m$ and |y| > 0.
- Consider what happens when i = 2. That is, look at xy^2z .
- Then, we have $m^2 = |w| < |xy^2z| \le m^2 + m = m(m + 1) < (m + 1)^2$.
- That is, the length of the string xy²z lies between two consecutive perfect squares.
- This means xy²z ∉ L contradicting the assumption that L is regular.

- 1. Prove that $L = \{ a^n : n \text{ is a prime number } \}$ is not regular
- 2. Prove that $L = \{ (10)^p 1^q : p, q \in \mathbb{N}, p \ge q \}$ is not regular

- 1. Prove that $L = \{ a^n : n \text{ is a prime number } \} \text{ is not regular } \}$
- **Proof**: For the sake of contradiction, assume that L is regular.
- Let, $w = a^n \in L$ and |w| = n
- The Pumping Lemma must then apply; let k be the pumping length
- Let n be any prime number at least as large as k (since |w| >= k)
- Since $|w| \ge k$, it must be possible to split w into three pieces xyz satisfying the conditions of the Pumping Lemma.
- Now consider the string xy^iz . The string xy^iz has length n + (i 1)|y|
- Letting i = n + 1, we have
- n + (i 1)|y| = n + ((n + 1) 1)|y|
- = n + n|y| = n(1+|y|) which is a composite number.
- So, xyⁱz ∉ L. Here we got a contradiction. Hence, L is not regular.

Minimization of DFA

Equivalent States :

– Two states p & q are called equivalent states, denoted by $p \equiv q$ if and only if for each input string x, $\delta^*(p, x)$ is a final state if and only if $\delta^*(q, x)$ is a final state

Distinguishable States :

- Two states p & q are said to be distinguishable states if (for any) there exists a string x, such that $\delta^*(p, x)$ is a final state $\delta^*(q, x)$ is not a final state
- Suppose a DFA M, that accepts a language L (M).
- For minimization of M, the table filling algorithm is used.

Minimization of DFA

- For identifying the pairs of states (p, q) with $p \neq q$; (distinguishable)
 - List all the pairs of states for which $p \neq q$
 - Make a sequence of passes through each pairs
 - On first pass, mark the pair for which exactly one element is final (F)
 - On each sequence of pass, mark the pair (r, s) if for any a ε Σ, δ (r, a) = p and δ (s, a) = q and (p, q) is already marked
 - After a pass in which no new pairs are to be marked, stop
 - Then marked pairs (p, q) are those for which $p \equiv q$ and unmarked pairs are distinguishable.
- Note: any pair of states that we do not find distinguishable are equivalent and distinguishable pairs should be marked.

Minimization of DFA: Example

- Minimize the following DFA.
- Let us first find which pairs of states are distinguishable and equivalent using table filling algorithm as:
- Here, For the basis, since C is the only accepting state, so we put x in each pair that involves C. [p ≠ q]
- Now we know some distinguishable pairs, we can discover others.

- For instance, since {C,H} is distinguishable, and states E and F go to H and C, respectively on input 0.
- Again, pair {E,F} is also distinguishable because, on input 0, {E,F} goes to {H,C} which is distinguishable pair and so on.

Minimization of DFA: Example

- Minimize the following DFA.
- $(\delta(A, 1), \delta(B, 1)) = (F, C) \text{marked [since, F} \neq C]$
- $(\delta(A, 0), \delta(D, 0)) = (B, C) \text{marked [since, B } \neq C]$
- And so on.
- At last, those pairs of states which are not marked will be equivalent states.

Minimization of DFA: Example

• So, minimized DFA will look like:

		1					
B	х						
C	х	x					
D	x	x	x		_		
E		x	x	x			
F	x	x	x		x		
G	x	x	x	x	x	x	
Н	х		х	х	х	x	x
	\overline{A}	В	С	D	Ε	F	G