Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

Разработка алгоритма определения аномалий в данных

Выполнила:

Руководитель:

Консультант:

Ханова Юлия Алексеевна, гр. 7383 Геппенер В.В., д.т.н., профессор Шевская Н.В.

Санкт-Петербург, 2021

Цель и задачи

Актуальность: выявление аномальных значений в данных может предотвратить поломку оборудования или предотвратить мошенничество. **Проблема:** точность существующих методов зависит от области применения.

Цель: разработка алгоритма, определяющего аномальные значения в данных для последующего их удаления или корректировки.

Задачи:

- 1. проанализировать существующие методы определения аномалий в данных;
- 2. выбрать метод создания ансамблей моделей;
- 3. разработать алгоритм на основе ансамбля выбранных методов;
- 4. реализовать консольное приложение для демонстрации результатов работы алгоритма;
- 5. проанализировать качество работы разработанного инструменты.

Методы определения аномалий (задача 1)

Критерии

- 1) Скорость работы
- 2) Устойчивость к неточности вводимых данных
- 3) Доступность формирования правил
- 4) Независимость от предметной области

	1	2	3	4
Статистический анализа	+	-	+	-
Машинное обучение	-	+	+	-
Индуктивный вывод	-	-	-	+
Нечеткая логика	-	+	-	-
Генетические алгоритмы	-	+	-	-
Искусственные нейронные сети	-	+	+	-
Гибридные системы	+	+	+	+

Метод опорных векторов для одного класса

Применяется разновидность классического метода – метод опорных векторов для одного класса (One-Class SVM).

В данном методе разделяющая гиперплоскость строится так, чтобы значения лежали как можно дальше от начала координат, а всё, что будет находится по другую сторону, от разделяющей границы будет считаться аномалией. («-1» - аномалии)

Метод изолирующего леса

Изолирующий лес (Isolation Forest) – это алгоритм обучения без учителя, который принадлежит к семейству деревьев решений ансамбля.

Для каждого объекта мера его нормальности - среднее арифметическое глубин листьев, в которые он попал (изолировался)

Деревья строятся до тех пор, пока каждый объект не окажется в листе. Экземпляры с меньшей мерой нормальности считаются аномалиями («r = 2» – аномалия)

Пространственная кластеризация, основанная на плотности.

DBSCAN (Density-based spatial clustering of applications with noise) – основанная на плотности пространственная кластеризация для приложений с шумами.

- Основная точка, если принадлежит плотной области (1);
- Пограничный пункт, если имеет меньше точек в своей окрестности чем min_samples, но лежит в окрестности другой точка, принадлежащей к плотной области (2);
- Аномалия, если не является основной и пограничной. (3)

Методы создания ансамбля моделей (задача 2)

Тип ансамбля	Описание и примеры		
Комитеты (голосование) / усреднение	Построение независимых алгоритмов и их усреднение / голосование.		
Кодировки / перекодировки ответов	Специальные кодировки целевых значений и сведение решения задачи к решению нескольких задач.		
Стекинг (stacking)	Построение мета признаков – ответов базовых алгоритмов на объектах выборки, обучение на них мета- алгоритма.		
Бустинг (boosting)	Построение суммы нескольких алгоритмов. Каждое следующее слагаемое строится с учётом ошибок предыдущих.		
Бэггинг (bootstrap aggregating)	Каждый базовый алгоритм обучается на случайном подмножестве обучающей выборки — бутстрэп выборки		

Комитеты(голосование)/усреднение

Комитеты (голосование) / усреднения имеют преимущества перед другими методами ансамблирования:

• *Статистическое* – применение ансамбля моделей усредняет ошибку каждой отдельной модели.

Вычислительное – параллельно обучаются несколько базовых

Разработка алгоритма на основе ансамбля выбранных алгоритмов (задача 3)

Консольное приложение для демонстрации результатов (задача 4)

Оценка точности полученных результатов (задача 5)

- точность определения аномалий

Метрика Метод	Количество аномалий (ТР)	Количество нормальных значений (TN)	Количество ошибок 1-го типа (FN)	Количество ошибок 2-го типа (FP)	Точность определения аномалий (а)
OneClassSVM	8	35	1	7	84.31%
IsolationForest	6	36	3	6	82.35%
DBSCAN	4	39	5	3	84.31%
Ensemble	7	38	2	4	88.24%

Заключение

- Проделанный обзор методов показал необходимость разработки новых вариантов алгоритма определения аномалий в данных, так как для разных наборов данных применяется индивидуальный подход.
- В процессе разработки алгоритма был выбран комитет (голосование), в следствии чего три метода были объединены в ансамбль.
- Для демонстрации работы алгоритма было создано консольное приложение, содержащее меню, обеспечивающее взаимодействие пользователя и программы.
- Экспериментальное исследование точности определения аномалий показало, что точность определения аномалий ансамблем методов выше, чем точность методов по отдельности.

Дальнейшие направления исследований включают в себя повышение точности определения аномалий, использование различных видов ансамблей методов.

Апробация работы

- Ханова Ю.А. Разработка процедуры бэггинга для определения аномалий в данных // ІХ Научно-практическая конференция с международным участием «Наука настоящего и будущего» для студентов, аспирантов и молодых ученых.
- Репозиторий проекта https://github.com/yulyakhanovagit/anomalies_in_the_data

Схема работы алгоритма

Графики отдельных признаков с отмеченными аномалиями

Меню консольного приложения

```
    OneClassSVM - метод опорных векторов для одного класса
    IsolationForest - метод изолирующего леса
    DBSCAN - пространственная кластеризация, основанная на плотности
    Ансамбль моделей
    Тестовые данные
    Выйти из программы
    Выберите алгоритм выявления аномалий:
```

```
Выберите алгоритм выявления аномалий: 1
OneClassSVM:
-1 1 -1
number of detected anomalies(OCSVM): 15
error type 1: 1
error type 2: 7
accuracy: 84.31%
1 - Вывести график полученных аномалий
2 - Вывести графики по каждому признаку
3 - Вывести матрицу путаницы
0 - Выйти к предыдущему выбору
Выберите:
```

Обозначения в матрице путаницы

- True Positive (TP): Определено как аномалия и фактически является аномалией.
- False Negative (FN): Определено как аномалия, но фактически является нормальным значением. Будем называть это ошибкой 1 типа.
- True Negative (TN): Определено как нормальное значение и фактически является нормальным значением.
- False Positive (FP): Определено как нормальное значение, но фактически является нормальным значением. Будем называть это ошибкой 2 типа.

Точность: