Formal Methods in SE: Homework #3

Due on 3/6 at 11:59 a.m.

 $Professor\ Ciardo$

Charles Dudley

Problem 1

 $\{1\omega000, 0\omega1\omega0, 0\omega0\omega1\}$

Problem 2

$$\begin{split} & ([03110] \vDash \mathcal{AF}(p_4 = 0)) \Leftrightarrow \mathtt{tt} \\ & ([03110] \vDash \mathcal{AF}(p_2 = 0 \land p_4 = 0)) \Leftrightarrow \mathtt{ff} \end{split}$$

Problem 3

$$\mathcal{L} = \{a^x b^y c^y | x, y \in \mathbb{N}\}$$

Problem 4

Proof \mathcal{L} (as defined above) is non-regular:

Suppose \mathcal{L} was a regular language. Let $\mathcal{L}' \subset \mathcal{L}$ such that $\mathcal{L}' = \{a^x b^n c^n \mid x = 0, y \in \mathbb{N}\}$. Additionally, let $\mathcal{L}'' = \{b^n c^n\}$. Clearly $\mathcal{L}' \equiv \mathcal{L}''$, therefore $\mathcal{L}'' \subset \mathcal{L}$. It is known that \mathcal{L}'' is a non-regular language, therefore we have a non-regular language \mathcal{L}'' which is subset of regular language \mathcal{L} . Here we have reached a contradiction as, for language \mathcal{P} , ($\mathcal{P} \in \text{Regular Languages}$) \Leftrightarrow ($\neg \exists \mathcal{P}' \subseteq \mathcal{P}$ such that $\mathcal{P}' \notin \text{Regular Languages}$). Thus the assumption that \mathcal{L} was a regular language was false, and \mathcal{L} must be non-regular.

Proof $\mathcal L$ is a context-free language by defining context-free grammar $\mathcal G$

$$\begin{split} \mathcal{G} &= (V,T,S,P) \text{ such that } \\ V &= \{X,Y,Z\}, \\ T &= \{a,b,c\}, \\ S &= X, \\ P &= \{X \to YZ, Y \to Ya \,|\, a \,|\, \epsilon, \, Z \to bZc \,|\, bc \,|\, \epsilon\} \end{split}$$