Tensor Analysis

Mathematical Methods in the Physical Sciences

Steve Mazza

Naval Postgraduate School Monterey, CA

SE3030, Winter/2014
Quantitative Methods of Systems Engineering

Introduction

- Tensors are designated by their size and *order*.
- Tensors of order 0 are scalars
- Tensors of order 1 are vectors
- A second order tensor has 3² = 9 components

Cartesian Tensors

Tensor Notation and Operations

- For simplicity, we drop the summation sign and assume summation over any index which appears twice in one term.
- Contraction
 - Obtained by setting unlike indices equal and summing
 - Reduces the order by 2
- First and second order tensors can be displayed as matrices.
- Symmetry
 - Symmetric if $T_{ij} = T_{ji}$.
 - Antisymmetric if $T_{ij} = -T_{ji}$.
 - Any second order tensor can be written as a sum of a symmetric and antisymmetric tensor.
- Combination
 - The linear combination of two tensors of order n is a tensor of order n.
 - Addition is not defined for tensors of different order.
- Quotient Rule is useful for identifying components of a tensor.

Inertia Tensor

For a rigid body rotating about a fixed axis, we know that the velocity, ω , and momentum, L, are related by the equation $L = I\omega$ where I is the moment of inertia. But if the rotation axis is not fixed, then I must be replaced by a second order tensor with components I_{ik} .

Kronecker Delta and Levi-Civita Symbol

Kronecker Delta

$$\delta_{ij} = 1$$
 if $i = j, 0$ otherwise

Levi-Civita Symbol

- $\epsilon_{\it ijk}=1$ for an even permutation,
 - -1 for an odd permutation, and
 - 0 if any indices are repeated.

Vector Identities

3-by-3 determinant

$$\det A = a_{1i}a_{2j}c_{3k}\epsilon_{ijk}$$

Dot Product

$$A \cdot B = A_i B_i$$

Cross Product

$$(A \times B)_i = \epsilon_{ijk} B_j C_k$$

Curl

$$(\nabla \times V)_i = \epsilon_{ijk} \frac{\partial}{\partial x_i} V_k$$

Pseudovectors and Pseudotensors

More About Applications

Curvilinear Coordinates

Vector Operations in Orthogonal Curvilinear Coordinates

Non-Cartesian Tensors

Miscellaneous Problems

Questions?

