Nipun Batra and the teaching staff

IIT Gandhinagar

August 27, 2025

Table of Contents

- 1. Setup
- 2. Normal Equation
- 3. Basis Expansion
- 4. Geometric Interpretation
- 5. Dummy Variables and Multicollinearity
- 6. Practice and Review

Setup

• Output is continuous in nature.

- Output is continuous in nature.
- Examples of linear systems:

- · Output is continuous in nature.
- Examples of linear systems:
 - F = ma

- Output is continuous in nature.
- Examples of linear systems:
 - F = ma
 - v = u + at

Task at hand

TASK: Predict Weight = f(height)

Height	Weight
3	29
4	35
5	39
2	20
6	41
7	?
8	?
1	?

The first part of the dataset is the training points. The latter ones are testing points.

Scatter Plot

- $weight_1 pprox \theta_0 + \theta_1 \cdot height_1$
- $weight_2 \approx \theta_0 + \theta_1 \cdot height_2$
- $weight_N \approx \theta_0 + \theta_1 \cdot height_N$

- $weight_1 \approx \theta_0 + \theta_1 \cdot height_1$
- $weight_2 \approx \theta_0 + \theta_1 \cdot height_2$
- $weight_N \approx \theta_0 + \theta_1 \cdot height_N$

weight_i
$$\approx \theta_0 + \theta_1 \cdot height_i$$

$$\begin{bmatrix} weight_1 \\ weight_2 \\ \dots \\ weight_N \end{bmatrix} = \begin{bmatrix} 1 & height_1 \\ 1 & height_2 \\ \dots & \dots \\ 1 & height_N \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$

$$\begin{bmatrix} weight_1 \\ weight_2 \\ \dots \\ weight_N \end{bmatrix} = \begin{bmatrix} 1 & height_1 \\ 1 & height_2 \\ \dots & \dots \\ 1 & height_N \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$

 $\hat{\mathbf{v}}_{n\times 1} = \mathbf{X}_{n\times d}\boldsymbol{\theta}_{d\times 1}$

$$\begin{bmatrix} weight_1 \\ weight_2 \\ \dots \\ weight_N \end{bmatrix} = \begin{bmatrix} 1 & height_1 \\ 1 & height_2 \\ \dots & \dots \\ 1 & height_N \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$
$$\hat{\mathbf{y}}_{n \times 1} = \mathbf{X}_{n \times d} \boldsymbol{\theta}_{d \times 1}$$

• θ_0 - Bias Term/Intercept Term

$$\begin{bmatrix} weight_1 \\ weight_2 \\ \dots \\ weight_N \end{bmatrix} = \begin{bmatrix} 1 & height_1 \\ 1 & height_2 \\ \dots & \dots \\ 1 & height_N \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$

$$\hat{\mathbf{y}}_{n\times 1} = \mathbf{X}_{n\times d}\boldsymbol{\theta}_{d\times 1}$$

- θ_0 Bias Term/Intercept Term
- θ_1 Slope

In the previous example y = f(x), where x is one-dimensional.

In the previous example y = f(x), where x is one-dimensional. Examples in multiple dimensions.

In the previous example y=f(x), where x is one-dimensional. Examples in multiple dimensions.

One example is to predict the water demand of the IITGN campus

In the previous example y=f(x), where x is one-dimensional. Examples in multiple dimensions.

One example is to predict the water demand of the IITGN campus

Demand = f(# occupants, Temperature)

In the previous example y=f(x), where x is one-dimensional. Examples in multiple dimensions.

One example is to predict the water demand of the IITGN campus

Demand = f(# occupants, Temperature)

 $\mathsf{Demand} = \mathsf{Base} \ \mathsf{Demand} \ + \ \mathsf{K}_1 \ * \ \# \ \mathsf{occupants} \ + \ \mathsf{K}_2 \ * \ \mathsf{Temperature}$

Intuition

We hope to:

- Learn f: Demand = f(#occupants, Temperature)
- From training dataset
- To predict the condition for the testing set

•
$$x_i = \begin{bmatrix} Temperature_i \\ \#Occupants_i \end{bmatrix}$$

We have

•
$$x_i = \begin{bmatrix} Temperature_i \\ \#Occupants_i \end{bmatrix}$$

• Estimated demand for i^{th} sample is $demand_i = \theta_0 + \theta_1 Temperature_i + \theta_2 Occupants_i$

- $x_i = \begin{bmatrix} Temperature_i \\ \#Occupants_i \end{bmatrix}$
- Estimated demand for i^{th} sample is $demand_i = \theta_0 + \theta_1 Temperature_i + \theta_2 Occupants_i$
- $demand_i = \chi_i^T \theta$

•
$$x_i = \begin{bmatrix} Temperature_i \\ \#Occupants_i \end{bmatrix}$$

- Estimated demand for i^{th} sample is $demand_i = \theta_0 + \theta_1 Temperature_i + \theta_2 Occupants_i$
- $demand_i = \chi_i^T \theta$

• where
$$oldsymbol{ heta} = egin{bmatrix} heta_0 \\ heta_1 \\ heta_2 \end{bmatrix}$$

- $x_i = \begin{bmatrix} Temperature_i \\ \#Occupants_i \end{bmatrix}$
- Estimated demand for i^{th} sample is $demand_i = \theta_0 + \theta_1 Temperature_i + \theta_2 Occupants_i$
- $demand_i = \chi_i^T \theta$
- where $oldsymbol{ heta} = egin{bmatrix} heta_0 \\ heta_1 \\ heta_2 \end{bmatrix}$

• and
$$x_i' = \begin{bmatrix} 1 \\ Temperature_i \\ \#Occupants_i \end{bmatrix} = \begin{bmatrix} 1 \\ x_i \end{bmatrix}$$

We have

•
$$x_i = \begin{bmatrix} Temperature_i \\ \#Occupants_i \end{bmatrix}$$

- Estimated demand for i^{th} sample is $demand_i = \theta_0 + \theta_1 Temperature_i + \theta_2 Occupants_i$
- $demand_i = \chi_i^T \theta$

• where
$$oldsymbol{ heta} = egin{bmatrix} heta_0 \\ heta_1 \\ heta_2 \end{bmatrix}$$

• and
$$x_i' = \begin{bmatrix} 1 \\ Temperature_i \\ \#Occupants_i \end{bmatrix} = \begin{bmatrix} 1 \\ x_i \end{bmatrix}$$

 Notice the transpose in the equation! This is because x_i is a column vector

We can expect the following

- Demand increases, if # occupants increases, then θ_2 is likely to be positive

We can expect the following

- Demand increases, if # occupants increases, then θ_2 is likely to be positive
- Demand increases, if temperature increases, then θ_1 is likely to be positive

We can expect the following

- Demand increases, if # occupants increases, then θ_2 is likely to be positive
- Demand increases, if temperature increases, then θ_1 is likely to be positive
- Base demand is independent of the temperature and the # occupants, but, likely positive, thus θ_0 is likely positive.

Normal Equation

Assuming N samples for training

- Assuming N samples for training
- # Features = M

- Assuming N samples for training
- # Features = M

- Assuming N samples for training
- # Features = M

$$\begin{bmatrix} \hat{y_1} \\ \hat{y_2} \\ \vdots \\ \hat{y_N} \end{bmatrix}_{N \times 1} = \begin{bmatrix} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,M} \\ 1 & x_{2,1} & x_{2,2} & \dots & x_{2,M} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & x_{N,1} & x_{N,2} & \dots & x_{N,M} \end{bmatrix}_{N \times (M+1)} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_M \end{bmatrix}_{(M+1) \times 1}$$

- Assuming N samples for training
- # Features = M

$$\begin{bmatrix} \hat{y_1} \\ \hat{y_2} \\ \vdots \\ \hat{y_N} \end{bmatrix}_{N \times 1} = \begin{bmatrix} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,M} \\ 1 & x_{2,1} & x_{2,2} & \dots & x_{2,M} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & x_{N,1} & x_{N,2} & \dots & x_{N,M} \end{bmatrix}_{N \times (M+1)} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_M \end{bmatrix}_{(M+1) \times 1}$$

$$\hat{\mathbf{y}} = \mathbf{X}\boldsymbol{\theta}$$

- There could be different $\theta_0, \theta_1 \dots \theta_M$. Each of them can represents a relationship.
- Given multiples values of $\theta_0, \theta_1 \dots \theta_M$ how to choose which is the best?
- · Let us consider an example in 2d

Out of the three fits, which one do we choose?

We have $\hat{y} = 2 + 1x$ as one relationship.

How far is our estimated \hat{y} from ground truth y?

•
$$y_i = \hat{y}_i + \epsilon_i$$
 where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

- $y_i = \hat{y}_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- Critical Assumption: ϵ_i are independent and identically distributed (i.i.d.)

- $y_i = \hat{y}_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- Critical Assumption: ϵ_i are independent and identically distributed (i.i.d.)
- y_i denotes the ground truth for i^{th} sample

- $y_i = \hat{y}_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- Critical Assumption: ϵ_i are independent and identically distributed (i.i.d.)
- y_i denotes the ground truth for i^{th} sample
- \hat{y}_i denotes the prediction for i^{th} sample, where $\hat{y}_i = \mathbf{x}_i^{\top} \boldsymbol{\theta}$

- $y_i = \hat{y}_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- Critical Assumption: ϵ_i are independent and identically distributed (i.i.d.)
- y_i denotes the ground truth for i^{th} sample
- \hat{y}_i denotes the prediction for i^{th} sample, where $\hat{y}_i = \mathbf{x}_i^{ op} oldsymbol{ heta}$
- ϵ_i denotes the error/residual for i^{th} sample

- $y_i = \hat{y}_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- Critical Assumption: ϵ_i are independent and identically distributed (i.i.d.)
- y_i denotes the ground truth for i^{th} sample
- \hat{y}_i denotes the prediction for i^{th} sample, where $\hat{y}_i = \mathbf{x}_i^{ op} oldsymbol{ heta}$
- ϵ_i denotes the error/residual for \emph{i}^{th} sample
- θ_0, θ_1 : The parameters of the linear regression

- $y_i = \hat{y}_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- Critical Assumption: ϵ_i are independent and identically distributed (i.i.d.)
- y_i denotes the ground truth for i^{th} sample
- \hat{y}_i denotes the prediction for i^{th} sample, where $\hat{y}_i = \mathbf{x}_i^{ op} oldsymbol{ heta}$
- ϵ_i denotes the error/residual for i^{th} sample
- θ_0, θ_1 : The parameters of the linear regression
- $\epsilon_i = y_i \hat{y}_i$

- $y_i = \hat{y}_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- Critical Assumption: ϵ_i are independent and identically distributed (i.i.d.)
- y_i denotes the ground truth for i^{th} sample
- \hat{y}_i denotes the prediction for i^{th} sample, where $\hat{y}_i = \mathbf{x}_i^{ op} oldsymbol{ heta}$
- ϵ_i denotes the error/residual for i^{th} sample
- θ_0, θ_1 : The parameters of the linear regression
- $\epsilon_i = y_i \hat{y}_i$
- $\epsilon_i = y_i (\theta_0 + x_i \cdot \theta_1)$

Good fit

• $|\epsilon_1|$, $|\epsilon_2|$, $|\epsilon_3|$, ... should be small.

Good fit

- $|\epsilon_1|$, $|\epsilon_2|$, $|\epsilon_3|$, ... should be small.
- minimize $\epsilon_1^2 + \epsilon_2^2 + \cdots + \epsilon_N^2$ L_2 Norm

Good fit

- $|\epsilon_1|$, $|\epsilon_2|$, $|\epsilon_3|$, ... should be small.
- minimize $\epsilon_1^2 + \epsilon_2^2 + \cdots + \epsilon_N^2$ L_2 Norm
- minimize $|\epsilon_1| + |\epsilon_2| + \cdots + |\epsilon_n|$ L_1 Norm

$$\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\epsilon}$$

$$\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\epsilon}$$

To Learn: θ

$$\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\epsilon}$$

To Learn: θ

Objective: minimize $\epsilon_1^2 + \epsilon_2^2 + \cdots + \epsilon_N^2$

$$oldsymbol{\epsilon} = egin{bmatrix} \epsilon_1 \ \epsilon_2 \ \vdots \ \epsilon_N \end{bmatrix}$$

$$oldsymbol{\epsilon} = egin{bmatrix} \epsilon_1 \ \epsilon_2 \ dots \ \epsilon_N \end{bmatrix}$$

Objective: Minimize $\epsilon^{\top}\epsilon$

Derivation of Normal Equation

$$egin{aligned} oldsymbol{\epsilon} &= \mathbf{y} - \mathbf{X} oldsymbol{ heta} \\ oldsymbol{\epsilon}^{ op} oldsymbol{\epsilon} &= (\mathbf{y} - \mathbf{X} oldsymbol{ heta})^{ op} (\mathbf{y} - \mathbf{X} oldsymbol{ heta}) \\ &= \mathbf{y}^{ op} \mathbf{y} - 2 \mathbf{y}^{ op} \mathbf{X} oldsymbol{ heta} + oldsymbol{ heta}^{ op} \mathbf{X}^{ op} \mathbf{X} oldsymbol{ heta} \end{aligned}$$

This is what we wish to minimize

Minimizing the objective function

$$\frac{\partial \boldsymbol{\epsilon}^{\top} \boldsymbol{\epsilon}}{\partial \boldsymbol{\theta}} = 0$$

- $\frac{\partial}{\partial \boldsymbol{\theta}} \mathbf{y}^{\top} \mathbf{y} = 0$
- $\frac{\partial}{\partial \boldsymbol{\theta}} (-2\mathbf{y}^{\top} \mathbf{X} \boldsymbol{\theta}) = -2\mathbf{X}^{\top} \mathbf{y}$
- $\frac{\partial}{\partial \boldsymbol{\theta}} (\boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}) = 2 \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}$

Substitute the values in the top equation

Normal Equation derivation

$$0 = -2\mathbf{X}^{\top}\mathbf{y} + 2\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta}$$

$$\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta}$$

$$\hat{\boldsymbol{\theta}}_{\textit{OLS}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

	Х	У
П	0	0
	1	1
	2	2
	3	3

Given the data above, find θ_0 and θ_1 .

Scatter Plot

$$\mathbf{X} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$$
$$\mathbf{X}^{\top} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$
$$\mathbf{X}^{\top} \mathbf{X} = \begin{bmatrix} 4 & 6 \\ 6 & 14 \end{bmatrix}$$

Given the data above, find θ_0 and θ_1 .

$$(\mathbf{X}^{\top}\mathbf{X})^{-1} = \frac{1}{20} \begin{bmatrix} 14 & -6 \\ -6 & 4 \end{bmatrix}$$

$$\mathbf{X}^{\top}\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ 14 \end{bmatrix}$$

$$\boldsymbol{\theta} = (\mathbf{X}^{\top}\mathbf{X})^{-1}(\mathbf{X}^{\top}\mathbf{y})$$

$$\begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} = \frac{1}{20} \begin{bmatrix} 14 & -6 \\ -6 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 14 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Scatter Plot

Effect of outlier

X	У
1	1
2	2
3	3
4	0

Compute the θ_0 and θ_1 .

Scatter Plot

$$\mathbf{X} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$$
$$\mathbf{X}^{\top} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$
$$\mathbf{X}^{\top} \mathbf{X} = \begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix}$$

Given the data above, find θ_0 and θ_1 .

$$(\mathbf{X}^{\top}\mathbf{X})^{-1} = \frac{1}{20} \begin{bmatrix} 30 & -10 \\ -10 & 4 \end{bmatrix}$$
$$\mathbf{X}^{\top}\mathbf{y} = \begin{bmatrix} 6 \\ 14 \end{bmatrix}$$

$$\boldsymbol{\theta} = (\mathbf{X}^{\top}\mathbf{X})^{-1}(\mathbf{X}^{\top}\mathbf{y})$$

$$\begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} = \begin{bmatrix} 2 \\ (-1/5) \end{bmatrix}$$

Scatter Plot

Basis Expansion

Transform the data, by including the higher power terms in the feature space.

t	S
0	0
1	6
3	24
4	36

The above table represents the data before transformation

Add the higher degree features to the previous table

t	t^2	S
0	0	0
1	1	6
3	9	24
4	16	36

Add the higher degree features to the previous table

t	t^2	S
0	0	0
1	1	6
3	9	24
4	16	36

The above table represents the data after transformation

Add the higher degree features to the previous table

t	t^2	S
0	0	0
1	1	6
3	9	24
4	16	36

The above table represents the data after transformation Now, we can write $\hat{s} = f(t, t^2)$

Add the higher degree features to the previous table

t	t^2	S
0	0	0
1	1	6
3	9	24
4	16	36

The above table represents the data after transformation Now, we can write $\hat{s} = f(t, t^2)$ Other transformations: $\log(x), x_1 \times x_2$

1.
$$\hat{s} = \theta_0 + \theta_1 * t$$
 is linear

1.
$$\hat{s} = \theta_0 + \theta_1 * t$$
 is linear

2. Is
$$\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2$$
 linear?

- 1. $\hat{s} = \theta_0 + \theta_1 * t$ is linear
- 2. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2$ linear?
- 3. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2 + \theta_3 * \cos(t^3)$ linear?

¹https://stats.stackexchange.com/questions/8689/ what-does-linear-stand-for-in-linear-regression ⊕ → ⟨ ᢓ → ⟨ ᢓ → ⟨

- 1. $\hat{s} = \theta_0 + \theta_1 * t$ is linear
- 2. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2$ linear?
- 3. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2 + \theta_3 * \cos(t^3)$ linear?
- 4. Is $\hat{s} = \theta_0 + \theta_1 * t + e^{\theta_2} * t$ linear?

¹https://stats.stackexchange.com/questions/8689/ what-does-linear-stand-for-in-linear-regression ⊕ → ⟨ ≧ → ⟨ ≧ → ⟨

- 1. $\hat{s} = \theta_0 + \theta_1 * t$ is linear
- 2. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2$ linear?
- 3. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2 + \theta_3 * \cos(t^3)$ linear?
- 4. Is $\hat{s} = \theta_0 + \theta_1 * t + e^{\theta_2} * t$ linear?
- 5. All except #4 are linear models!

¹https://stats.stackexchange.com/questions/8689/ what-does-linear-stand-for-in-linear-regression ⊕ → ⟨ ᢓ → ⟨ ᢓ → ⟨

A big caveat: Linear in what?!¹

- 1. $\hat{s} = \theta_0 + \theta_1 * t$ is linear
- 2. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2$ linear?
- 3. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2 + \theta_3 * \cos(t^3)$ linear?
- 4. Is $\hat{s} = \theta_0 + \theta_1 * t + e^{\theta_2} * t$ linear?
- 5. All except #4 are linear models!
- 6. Linear refers to the relationship between the parameters that you are estimating (θ) and the outcome

¹https://stats.stackexchange.com/questions/8689/ what-does-linear-stand-for-in-linear-regression ♂ → ⟨ ② → ⟨ ○ →

Basis Functions

- Linear regression only refers to linear in the parameters
- We can perform an arbitrary nonlinear transformation $\phi(x)$ of the inputs x and then linearly combine the components of this transformation.
- $\phi: \mathbb{R}^D \to \mathbb{R}^K$ is called the basis function

Basis Functions

Some examples of basis functions:

- Polynomial basis: $\phi(x) = \{1, x, x^2, x^3, \dots\}$
- Fourier basis: $\phi(x) = \{1, \sin(x), \cos(x), \sin(2x), \cos(2x), \dots\}$
- Gaussian basis:

$$\phi(x) = \{1, \exp(-\frac{(x-\mu_1)^2}{2\sigma^2}), \exp(-\frac{(x-\mu_2)^2}{2\sigma^2}), \dots\}$$

• Sigmoid basis: $\phi(x)=\{1,\sigma(x-\mu_1),\sigma(x-\mu_2),\dots\}$ where $\sigma(x)=\frac{1}{1+e^{-x}}$

Linear Combination of Vectors

Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_i$ be vectors in \mathbb{R}^D , where D denotes the dimensions.

Linear Combination of Vectors

Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_i$ be vectors in \mathbb{R}^D , where D denotes the dimensions.

A linear combination of $v_1, v_2, v_3, \ldots, v_i$ is of the following form

Linear Combination of Vectors

Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_i$ be vectors in \mathbb{R}^D , where D denotes the dimensions.

A linear combination of $v_1, v_2, v_3, \ldots, v_i$ is of the following form

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \cdots + \alpha_i \mathbf{v}_i$$

where $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_i \in \mathbb{R}$

Let v_1, v_2, \ldots, v_i be vectors in \mathbb{R}^D , with D dimensions.

Let v_1, v_2, \ldots, v_i be vectors in \mathbb{R}^D , with D dimensions. The span of v_1, v_2, \ldots, v_i is denoted by $\mathsf{SPAN}\{v_1, v_2, \ldots, v_i\}$

Let v_1, v_2, \ldots, v_i be vectors in \mathbb{R}^D , with D dimensions. The span of v_1, v_2, \ldots, v_i is denoted by $\mathsf{SPAN}\{v_1, v_2, \ldots, v_i\}$

$$\{\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_i \mathbf{v}_i \mid \alpha_1, \alpha_2, \dots, \alpha_i \in \mathbb{R}\}$$

Let v_1, v_2, \ldots, v_i be vectors in \mathbb{R}^D , with D dimensions. The span of v_1, v_2, \ldots, v_i is denoted by $\mathsf{SPAN}\{v_1, v_2, \ldots, v_i\}$

$$\{\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_i \mathbf{v}_i \mid \alpha_1, \alpha_2, \dots, \alpha_i \in \mathbb{R}\}$$

It is the set of all vectors that can be generated by linear combinations of v_1, v_2, \ldots, v_i .

Let v_1, v_2, \ldots, v_i be vectors in \mathbb{R}^D , with D dimensions. The span of v_1, v_2, \ldots, v_i is denoted by $\mathsf{SPAN}\{v_1, v_2, \ldots, v_i\}$

$$\{\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_i \mathbf{v}_i \mid \alpha_1, \alpha_2, \dots, \alpha_i \in \mathbb{R}\}$$

It is the set of all vectors that can be generated by linear combinations of v_1, v_2, \ldots, v_i .

If we stack the vectors v_1, v_2, \ldots, v_i as columns of a matrix V, then the span of v_1, v_2, \ldots, v_i is given as $V\alpha$ where $\alpha \in \mathbb{R}^i$

Find the span of $(\begin{bmatrix}1\\3\end{bmatrix},\begin{bmatrix}2\\1\end{bmatrix})$

We have $v_3 = v_1 + v_2$ We have $v_4 = v_1 - v_2$

Simulating the above example in python using different values of α_1 and α_2

$$\mathsf{Span}((\mathit{v}_1,\mathit{v}_2)) \in \mathcal{R}^2$$

Find the span of $(\begin{bmatrix}1\\2\end{bmatrix},\begin{bmatrix}2\\4\end{bmatrix})$

Find the span of $\begin{bmatrix}1\\2\end{bmatrix},\begin{bmatrix}2\\4\end{bmatrix}$) Can we obtain a point (x, y) s.t. x = 3y?

```
Find the span of \left(\begin{bmatrix}1\\2\end{bmatrix},\begin{bmatrix}2\\4\end{bmatrix}\right) Can we obtain a point (x, y) s.t. x = 3y? No
```

Find the span of $\begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 2\\4 \end{pmatrix}$)

Can we obtain a point (x, y) s.t. x = 3y?

No

Span of the above set is along the line y=2x

Find the span of (
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 , $\begin{bmatrix} 2\\-2\\2 \end{bmatrix}$)

Find the span of (
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 , $\begin{bmatrix} 2\\-2\\2 \end{bmatrix}$)

• Origin

• $X_1 = [1,1,1]$
• $X_2 = [2,-2,2]$

• $X_3 = [2,-2,2]$
• $X_4 = [2,-2]$
• $X_4 =$

1.5 x

2.0

Find the span of
$$\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$
, $\begin{pmatrix} 2\\-2\\2 \end{pmatrix}$)

• Origin

• $X_1 = [1,1,1]$
• $X_2 = [2,-2,2]$

• $X_3 = [2,-2,2]$
• $X_4 = [2,-2,2]$
• $X_5 = [2,-2,2]$

The span is the plane z = x or $x_3 = x_1$

1.5 2.0

Consider X and y as follows.

$$\mathbf{X} = \begin{pmatrix} 1 & 2 \\ 1 & -2 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} 8.8957 \\ 0.6130 \\ 1.7761 \end{pmatrix}$$

• We are trying to learn $m{ heta}$ for $\hat{\mathbf{y}}=\mathbf{X}m{ heta}$ such that $||\mathbf{y}-\hat{\mathbf{y}}||_2$ is minimised

Consider X and y as follows.

$$\mathbf{X} = \begin{pmatrix} 1 & 2 \\ 1 & -2 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} 8.8957 \\ 0.6130 \\ 1.7761 \end{pmatrix}$$

- We are trying to learn $m{ heta}$ for $\hat{\mathbf{y}}=\mathbf{X}m{ heta}$ such that $||\mathbf{y}-\hat{\mathbf{y}}||_2$ is minimised
- Consider the two columns of X. Can we write X heta as the span

of
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
, $\begin{bmatrix} 2\\-2\\2 \end{bmatrix}$)?

Consider X and y as follows.

$$\mathbf{X} = \begin{pmatrix} 1 & 2 \\ 1 & -2 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} 8.8957 \\ 0.6130 \\ 1.7761 \end{pmatrix}$$

- We are trying to learn $m{ heta}$ for $\hat{\mathbf{y}} = \mathbf{X} m{ heta}$ such that $||\mathbf{y} \hat{\mathbf{y}}||_2$ is minimised
- Consider the two columns of X. Can we write X heta as the span

of
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
, $\begin{bmatrix} 2\\-2\\2 \end{bmatrix}$)?

• We wish to find \hat{y} such that

$$\mathop{\arg\min}_{\hat{\mathbf{y}} \in \textit{SPAN}\{\bar{x_1}, \bar{x_2}, \dots, \bar{x_D}\}} ||\mathbf{y} - \hat{\mathbf{y}}||_2$$

Span of
$$\left(\begin{bmatrix}1\\1\\1\end{bmatrix},\begin{bmatrix}2\\-2\\2\end{bmatrix}\right)$$

- We seek a $\hat{\boldsymbol{y}}$ in the span of the columns of \boldsymbol{X} such that it is closest to \boldsymbol{y}

• This happens when $\mathbf{y} - \hat{\mathbf{y}} \perp \mathbf{x}_j \forall j$ or $\mathbf{x}_i^{\top} (\mathbf{y} - \hat{\mathbf{y}}) = 0$

- This happens when $\mathbf{y} \hat{\mathbf{y}} \perp \mathbf{x}_j \forall j$ or $\mathbf{x}_j^{\top} (\mathbf{y} \hat{\mathbf{y}}) = 0$
- $\mathbf{X}^{\top}(\mathbf{y} \mathbf{X}\boldsymbol{\theta}) = 0$

- This happens when $\mathbf{y} \hat{\mathbf{y}} \perp \mathbf{x}_j \forall j \text{ or } \mathbf{x}_j^\top (\mathbf{y} \hat{\mathbf{y}}) = 0$
- $\mathbf{X}^{\top}(\mathbf{y} \mathbf{X}\boldsymbol{\theta}) = 0$
- $\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta}$ or $\hat{\boldsymbol{\theta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$

Dummy Variables and Multicollinearity

There can be situations where inverse of $\boldsymbol{X}^{\top}\boldsymbol{X}$ is not computable.

There can be situations where inverse of $\mathbf{X}^{\top}\mathbf{X}$ is not computable.

This condition arises when the $|\mathbf{X}^{\top}\mathbf{X}| = 0$.

$$\mathbf{X} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 4 \\ 1 & 3 & 6 \end{bmatrix} \tag{1}$$

There can be situations where inverse of $\mathbf{X}^{\top}\mathbf{X}$ is not computable.

This condition arises when the $|\mathbf{X}^{\top}\mathbf{X}| = 0$.

$$\mathbf{X} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 4 \\ 1 & 3 & 6 \end{bmatrix} \tag{1}$$

The matrix X is not full rank.

It arises when one or more predictor variables/features in \boldsymbol{X} can be expressed as a linear combination of others

How to tackle it?

• Regularize

It arises when one or more predictor variables/features in \boldsymbol{X} can be expressed as a linear combination of others

How to tackle it?

- Regularize
- Drop variables

It arises when one or more predictor variables/features in \boldsymbol{X} can be expressed as a linear combination of others

How to tackle it?

- Regularize
- Drop variables
- Avoid dummy variable trap

Say Pollution in Delhi = P

Say Pollution in Delhi = P
$$P = \theta_0 + \theta_1 * \# Vehicles + \theta_1 * \textit{Wind speed} + \theta_3 * \textit{Wind Direction}$$

Say Pollution in Delhi = P
$$P = \theta_0 + \theta_1 * \# Vehicles + \theta_1 * \textit{Wind speed} + \theta_3 * \textit{Wind Direction}$$

But, wind direction is a categorical variable.

```
Say Pollution in Delhi = P  P = \theta_0 + \theta_1 * \# Vehicles + \theta_1 * \textit{Wind speed} + \theta_3 * \textit{Wind Direction}
```

But, wind direction is a categorical variable. It is denoted as follows $\{N:0, E:1, W:2, S:3\}$

Say Pollution in Delhi = P
$$P = \theta_0 + \theta_1 * \# Vehicles + \theta_1 * \textit{Wind speed} + \theta_3 * \textit{Wind Direction}$$

But, wind direction is a categorical variable. It is denoted as follows $\{N:0, E:1, W:2, S:3\}$

Can we use the direct encoding?

Say Pollution in Delhi = P
$$P = \theta_0 + \theta_1 * \# Vehicles + \theta_1 * \textit{Wind speed} + \theta_3 * \textit{Wind Direction}$$
 But wind direction is a categorical variable

But, wind direction is a categorical variable. It is denoted as follows $\{N:0, E:1, W:2, S:3\}$

Can we use the direct encoding? Then this implies that S>W>E>N

N-1 Variable encoding

	Is it N?	Is it E?	Is it W?
N	1	0	0
Е	0	1	0
W	0	0	1
S	0	0	0

N Variable encoding

	Is it N?	Is it E?	Is it W?	Is it S?
Ν	1	0	0	0
Е	0	1	0	0
W	0	0	1	0
S	0	0	0	1

Which is better N variable encoding or N-1 variable encoding?

Which is better N variable encoding or N-1 variable encoding? The N-1 variable encoding is better because the N variable encoding can cause multi-collinearity.

Which is better N variable encoding or N-1 variable encoding? The N-1 variable encoding is better because the N variable encoding can cause multi-collinearity.

Is it S = 1 - (Is it N + Is it W + Is it E)

Binary Encoding

Ν	00
Е	01
W	10
S	11

Binary Encoding

N	00
Е	01
W	10
S	11

W and S are related by one bit.

Binary Encoding

N	00
Е	01
W	10
S	11

W and S are related by one bit.

This introduces dependencies between them, and this can cause confusion in classifiers.

Gender	height
F	
F	
F	
M	
M	

Gender	height
F	
F	
F	
Μ	
М	

Encoding

Gender	height
F	
F	
F	
M	
M	

Encoding

Is Female	height
1	
1	
1	
0	
0	

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$\textit{height}_i = \theta_0 + \theta_1 * (\text{Is Female}) + \epsilon_i$$

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$\textit{height}_i = \theta_0 + \theta_1 * (\text{Is Female}) + \epsilon_i$$

We get
$$\theta_0=$$
 5.9 and $\theta_1=$ -0.7

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$\textit{height}_i = \theta_0 + \theta_1 * (\text{Is Female}) + \epsilon_i$$

We get
$$\theta_0 = 5.9$$
 and $\theta_1 = -0.7$ $\theta_0 = \text{Avg height of Male} = 5.9$

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$\textit{height}_i = \theta_0 + \theta_1 * (\text{Is Female}) + \epsilon_i$$

```
We get \theta_0=5.9 and \theta_1=-0.7 \theta_0= Avg height of Male =5.9 \theta_0+\theta_1 is chosen based (equal to) on 5, 5.2, 5.4 (for three records).
```

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$height_i = \theta_0 + \theta_1 * (Is Female) + \epsilon_i$$

We get $\theta_0=5.9$ and $\theta_1=-0.7$

 $\theta_0 = \mathsf{Avg}\ \mathsf{height}\ \mathsf{of}\ \mathsf{Male} = \mathsf{5.9}$

 $\theta_0 + \theta_1$ is chosen based (equal to) on 5, 5.2, 5.4 (for three records).

 θ_1 is chosen based on 5-5.9, 5.2-5.9, 5.4-5.9

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$height_i = \theta_0 + \theta_1 * (Is Female) + \epsilon_i$$

We get $\theta_0 = 5.9$ and $\theta_1 = -0.7$

 $\theta_0 = \text{Avg height of Male} = 5.9$

 $\theta_0+\theta_1$ is chosen based (equal to) on 5, 5.2, 5.4 (for three records).

 θ_1 is chosen based on 5-5.9, 5.2-5.9, 5.4-5.9 $\theta_1 = \text{Avg. female}$ height (5+5.2+5.4)/3 - Avg. male height(5.9)

Alternatively, instead of a 0/1 coding scheme, we could create a dummy variable

Alternatively, instead of a 0/1 coding scheme, we could create a dummy variable

$$x_i = \begin{cases} 1 & \text{if } i \text{ th person is female} \\ -1 & \text{if } i \text{ th person is male} \end{cases}$$

Alternatively, instead of a 0/1 coding scheme, we could create a dummy variable

$$x_i = \begin{cases} 1 & \text{if } i \text{ th person is female} \\ -1 & \text{if } i \text{ th person is male} \end{cases}$$

$$y_i = \theta_0 + \theta_1 x_i + \epsilon_i = \begin{cases} \theta_0 + \theta_1 + \epsilon_i & \text{if } i \text{ th person is female} \\ \theta_0 - \theta_1 + \epsilon_i & \text{if } i \text{ th person is male.} \end{cases}$$

Alternatively, instead of a 0/1 coding scheme, we could create a dummy variable

$$x_i = \begin{cases} 1 & \text{if } i \text{ th person is female} \\ -1 & \text{if } i \text{ th person is male} \end{cases}$$

$$y_i = \theta_0 + \theta_1 x_i + \epsilon_i = \begin{cases} \theta_0 + \theta_1 + \epsilon_i & \text{if } i \text{ th person is female} \\ \theta_0 - \theta_1 + \epsilon_i & \text{if } i \text{ th person is male.} \end{cases}$$

Now, θ_0 can be interpreted as average person height. θ_1 as the amount that female height is above average and male height is below average.

Practice and Review

1. What is the geometric interpretation of least squares?

- 1. What is the geometric interpretation of least squares?
- 2. When does the normal equation have a unique solution?

- 1. What is the geometric interpretation of least squares?
- 2. When does the normal equation have a unique solution?
- 3. How do polynomial features help with non-linear relationships?

- 1. What is the geometric interpretation of least squares?
- 2. When does the normal equation have a unique solution?
- 3. How do polynomial features help with non-linear relationships?
- 4. What are the assumptions behind linear regression?

Before using linear regression, verify these assumptions:

• **Linearity**: Relationship between x and y is linear

- **Linearity**: Relationship between x and y is linear
- Independence: Observations are independent of each other

- **Linearity**: Relationship between x and y is linear
- Independence: Observations are independent of each other
- Homoscedasticity: Error variance is constant across all values of x

- **Linearity**: Relationship between x and y is linear
- Independence: Observations are independent of each other
- Homoscedasticity: Error variance is constant across all values of x
- Normality: Errors are normally distributed (for inference)

- **Linearity**: Relationship between x and y is linear
- **Independence**: Observations are independent of each other
- Homoscedasticity: Error variance is constant across all values of x
- Normality: Errors are normally distributed (for inference)
- No Multicollinearity: Features are not highly correlated

- **Linearity**: Relationship between x and y is linear
- **Independence**: Observations are independent of each other
- Homoscedasticity: Error variance is constant across all values of x
- Normality: Errors are normally distributed (for inference)
- No Multicollinearity: Features are not highly correlated

Before using linear regression, verify these assumptions:

- **Linearity**: Relationship between x and y is linear
- **Independence**: Observations are independent of each other
- Homoscedasticity: Error variance is constant across all values of x
- Normality: Errors are normally distributed (for inference)
- No Multicollinearity: Features are not highly correlated

Violation Consequences:

• Biased coefficient estimates

Before using linear regression, verify these assumptions:

- **Linearity**: Relationship between x and y is linear
- **Independence**: Observations are independent of each other
- Homoscedasticity: Error variance is constant across all values of x
- Normality: Errors are normally distributed (for inference)
- No Multicollinearity: Features are not highly correlated

Violation Consequences:

- Biased coefficient estimates
- Invalid confidence intervals

Before using linear regression, verify these assumptions:

- **Linearity**: Relationship between x and y is linear
- **Independence**: Observations are independent of each other
- Homoscedasticity: Error variance is constant across all values of x
- Normality: Errors are normally distributed (for inference)
- No Multicollinearity: Features are not highly correlated

Violation Consequences:

- Biased coefficient estimates
- Invalid confidence intervals
- Poor prediction performance

 Linear Model: Assumes linear relationship between features and target

- Linear Model: Assumes linear relationship between features and target
- Least Squares: Minimizes sum of squared residuals

- Linear Model: Assumes linear relationship between features and target
- Least Squares: Minimizes sum of squared residuals
- Normal Equation: Closed-form solution when $\mathbf{X}^{\top}\mathbf{X}$ is invertible

- Linear Model: Assumes linear relationship between features and target
- Least Squares: Minimizes sum of squared residuals
- Normal Equation: Closed-form solution when $\mathbf{X}^{\top}\mathbf{X}$ is invertible
- Geometric View: Projection onto column space of design matrix

- Linear Model: Assumes linear relationship between features and target
- Least Squares: Minimizes sum of squared residuals
- Normal Equation: Closed-form solution when $\mathbf{X}^{\top}\mathbf{X}$ is invertible
- Geometric View: Projection onto column space of design matrix
- Feature Engineering: Basis expansion enables non-linear modeling

- Linear Model: Assumes linear relationship between features and target
- Least Squares: Minimizes sum of squared residuals
- Normal Equation: Closed-form solution when $\mathbf{X}^{\top}\mathbf{X}$ is invertible
- Geometric View: Projection onto column space of design matrix
- Feature Engineering: Basis expansion enables non-linear modeling
- Foundation: Building block for more complex models