

Repaso: Técnicas de Factorización

Grado 9 2021

Contenido

- i. Contexto: ...Y, eso cómo pa que sirve?
- ii.El concepto de factorización
- iii.Productos notables
- iv.Ejemplos

...Y eso cómo pa que sirve?

- Uso: criptografía
- Ejemplo: algoritmo ECDSA
- La "idea" del ECDSA:

$$y^{2} = x^{3} + Ax + B$$

$$\downarrow \qquad \qquad \downarrow$$

$$y^{2} = x(x + a^{n})(x - b^{n})$$

a, b, n -> Claves

El concepto de la Factorización

<u>Factorizar</u> una expresión algebraica, es el procedimiento que permite escribir como multiplicación alguna expresión.

Requiere el conocimiento de operaciones algebraicas (<u>producto</u>). Algunas técnicas tienen origen en los productos notables.

Productos notables

- Son multiplicaciones algebraicas cuyo resultado se puede escribir sin verificación (<u>receta</u>).
- Su uso simplifica y agiliza algunas multiplicaciones habituales.
- Cada producto notable corresponde a una técnica de factorización.
- En seguida, los más frecuentes ...

Factor común

Productos notables

- Cuadrado de un binomio
 - $\begin{bmatrix} b \\ b^2 \end{bmatrix} \begin{bmatrix} ab \\ ab \end{bmatrix} \begin{bmatrix} a^2 \\ ab \end{bmatrix} \begin{bmatrix} a^2 \\ -b \end{bmatrix}$

$$(a+b)^2$$

= $a^2+b^2+ab+ab$
= $a^2+2ab+b^2$

 Diferencia de cuadrados

Resumen productos notables

Producto notable		Expresión algebraica	Nombre
$(a + b)^2$	=	a ² + 2ab + b ²	Binomio al cuadrado
(a + b) ³	=	a ³ + 3a ² b + 3ab ² + b ³	Binomio al cubo
a2-b2	=	(a + b) (a – b)	Diferencia de cuadrados
$a^3 - b^3$	-	$(a - b) (a^2 + b^2 + ab)$	Diferencia de cubos
a ³ + b ³	=	(a + b) (a ² + b ² – ab)	Suma de cubos
a ⁴ - b ⁴	-	(a + b) (a - b) (a ² + b ²)	Diferencia cuarta
(a + b + c) ²	=	a ² + b ² + c ² + 2ab + 2ac + 2bc	Trinomio al cuadrado

Ejemplos

Factorizar (si es posible) cada expresión algebraica.

1)
$$3x + 12$$

2)
$$8m^2 + 12m$$

3)
$$3am^3 + 6a^3m$$

4)
$$14acd - 7cd + 21c^2d^2$$

1)
$$x^2 + 4x + 4$$

2)
$$m^2 + 8m + 16$$

3)
$$1 + 49a^2 - 14a$$

2)
$$1 - 25a^2b^2$$

Referencias

- [1] ¿Por qué se utiliza Criptografía de Curva Elíptica en Bitcoin? ECDSA (VI). Recuperado el, 4 de febrero de 2021 de https://www.oroyfinanzas.com/2014/01/criptografia-curva-elipticabitcoin-por-que-utiliza-ecdsa/
- [2] Productos Notables Y Factorizacion. Recuperado el, 5 de febrero de 2021 de https://sites.google.com/site/lauracecyte26/unidad/productosnotables-y-factorizacion
- > [3] Baldor, A. (1983). Álgebra de Baldor.