Inverse Kinematics

2023 Computer Animation and Special Effects

Outline

- Overview
- Objective
- Report
- Scoring
- Submission

Overview

- Use different bones to touch the ball
- Start bone
 - The last movable bone
- End bone
 - The bone that touches the ball

Demo link: https://youtu.be/52-auc1 QUk

Objective

- Everything you need to implement is in kinematics.cpp
- There are three functions you need to implement in this homework
 - void forwardSolver(...)
 - VectorXd pseudoInverseLinearSolver(...)
 - bool inverseJacobianIKSolver(...)
- Bonus
 - Return whether IK is stable so that the skeleton would not swing its hand in the air
 - Take rotation limit of bones into consideration in bool inverse Jacobian IKS olver

Objective (cont.)

- void forwardSolver(...)
 - Goal
 - Implement forward kinematics, which is similiar to HW2

Objective (cont.)

- VectorXd pseudoInverseLinearSolver(...)
 - Goal
 - Find solution of linear least squares system, which will be needed for inverse kinematics
 - i.e. find x which min(| jacobian * x target |)
 - o Hint
 - You might use some pseudo-inverse methods such as SVD
 - There are some built-in functions in Eigen that you can use
 - Eigen::Matrixs4Xf means a matrix with 4 rows and unknown columns
 - Eigen::Matrix4Xf m(4, 10); // A matrix with 3 rows and 10 columns
 - Eigen::VectorXf means a vector with unknown size
 - Eigen::VectorXf v(10); // A vector with 10 elements

Objective (cont.)

- bool inverseJacobianIKSolver(...)
 - Goal
 - Implement inverse kinematics
 - We use inverse-Jacobain method in this homework
 - Hint
 - Review "kinematics.pptx" from p.20 p.50
 - Review "acclaim_FK_IKnote.pdf" Inverse Kinematics part
 - Traverse from end bone to start bone
 - Make end bone touch the ball (target)
 - Start bone is the last movable bone, so you should stop at this bone
 - You can check struct Bone in bone.h

Report

- Suggested outline
 - Introduction/Motivation
 - Fundamentals
 - Implementation
 - Result and Discussion
 - How different step and epsilon affect the result
 - Touch the target or not
 - Least square solver
 - Bonus (Optional)
 - Conclusion

Scoring

- Forward kinematics 0%
- Least square solver -20%
- Inverse kinematics 60%
- Report 20%
- Bonus 10%

Submission

- Please upload only two files respectively
 - kinematics.cpp
 - report_< your student ID>.pdf
 - other necessary files (optional)
 - o penalty of 5 points for incorrect submit format
- Late policies
 - Penalty of 10 points on each day after deadline
- Cheating policies
 - 0 points for any cheating on assignments
- Deadline
 - o Sunday, 2023/05/14, 23:59