主要内容

- 从专才到通才的转换;
- 更好控制模型的行为,消除bias和toxic;
- 提高参数效率;

专才与通才

Language Models are Super Mario: Absorbing Abilities from Homologous Models as a Free Lunch

- delta为SFT后的模型与预训练模型的增量;
- 简单将参数相加,直观;
- 问题:参数冲突; math的模型和code的模型SFT参数在一些地方有冲突,直接相加会造成能力损失;
- 解决:随机丢弃一些参数的增量delta,可以发现随着LM的size增加,其对于任务的完成依然很好(math上70B甚至99%);这说明SFT更新的大部分参数都是非常冗余的;
- (或许不应该随机drop,应该根据参数更新的幅值来drop,更新大的或许才是重要参数)
 - The delta parameters of both encoder- and decoder-based LMs are highly redundant.
 - The tolerance of drop rates increases with the sizes of LMs

Figure 3: Performance of various decoder-based LMs on AlpacaEval, GSM8K, and HumanEval.

• 方案: 通过丢弃大部分delta参数来解决参数冲突;

Table 1: Results of merging decoder-based LMs by Task Arithmetic, where LM, Math, and Code are the abbreviations of WizardLM-13B, WizardMath-13B, and llama-2-13b-code-alpaca. We use blue, green, and red colors to distinguish each single model and utilize mixed colors to denote the merged models. The best and second-best results among the single model, the merged models with and without DARE are marked in **bold** and underlined fonts.

Merging Methods	Models	Preprocess	Instruction- Following	Mathematical Reasoning		Code- Generating	
			AlpacaEval	GSM8K	MATH	HumanEval	MBPP
Single Model	LM	/	67.20	2.20	0.04	36.59	34.00
	Math	/	/	64.22	14.02	1	1
	Code	/	/	/	/	23.78	27.60
Task Arithmetic	LM	No	67.04	66.34	<u>13.40</u>	<u>28.66</u>	30.60
	& Math	w/ DARE	67.45	<u>66.26</u>	12.86	26.83	<u>32.40</u>
	LM	No	68.07	/	/	<u>31.70</u>	<u>32.40</u>
	& Code	w/ DARE	<u>67.83</u>	/	/	35.98	33.00
	Math	No	/	<u>64.67</u>	<u>13.98</u>	8.54	8.60
	& Code	w/ DARE	/	65.05	13.96	<u>10.37</u>	<u>9.80</u>
	LM & Math	No	69.03	<u>58.45</u>	9.88	18.29	29.80
	& Code	w/ DARE	69.28	56.48	<u>10.16</u>	<u>23.17</u>	31.60

实验来看,在2、3个任务上面参数融合是有效的;但是在更多的任务融合性能会较大下降;

LORAHUB:EFFICIENT CROSS-TASK GENERALIZATION VIA DYNAMIC LORA COMPOSITION

把多个任务得到的Lora模块统一存为一个hub; 基于具体任务对特定的lora模型进行组合,得到最终的权重;

缺点:效果有限;

消除bias

EDITING MODELS WITH TASK ARITHMETIC

两个任务相加,基本上能力都能获得;

c) Learning via addition

Example: building a multi-task model