This work is to be done before Exam 1.

Assigned Reading on the Syntax of Expressions

Read Sections 2.1 and 2.2 on pp. 28 - 33 of Sethi (up to and including the figure at the top of p. 33).

Homework Exercises on the Syntax of Expressions [Not for credit]

A. Do problems 2.1, 2.2, 2.3, 2.7, and 2.8 on pp. 49 – 50 of Sethi.

B. Do the following exercises on infix, prefix, and postfix syntax, and abstract syntax trees:

1. In a certain language expressions are written in infix syntax. The language has binary, prefix, and postfix operators that belong to the following precedence classes:

	binary ops	prefix ops	postfix ops	associativity
1st Class:	# ~	~	[none]	right
2nd Class:	@	[none]	\$	left
3rd Class:	8 ^	@	[none]	right

1st class operators have *highest* precedence and 3rd class operators have *lowest* precedence.

(a) Say which operator is applied last in the following expression, and then draw the abstract syntax tree of the expression. [To help you, subscripts have been attached to each operator to indicate its precedence class and whether that class is left- or right-associative, even though this information can also be obtained from the above table.]

$$(@_{3R} a \#_{1R} u) @_{2L} w \$_{2L} \$_{3R} (5 ^{3R} b \sim_{1R} c) ^{3R} d$$

- (b) Rewrite the expression in prefix syntax.
- (c) Rewrite the expression in postfix syntax.
- 2. Draw the AST of the following postfix syntax expression, and rewrite the expression in prefix syntax. A subscript has been attached to each operator that shows the operator's arity. [The operators in this question and the next are *not* related to the operators in question 1.]

a b
$$\$_2$$
 $@_1$ 3 u $*_1$ v w $\$_2$ \sim_2 5 $@_1$ 3 $\#_2$

3. Draw the AST of the following prefix syntax expression, and rewrite the expression in postfix syntax. A subscript has been attached to each operator that shows the operator's arity.

3
 x y 4 2 3 3 2 2 u v * 1 w 4 2 $^{-1}$ 5 a b

```
Solutions
```

=======

Section A

remaining input 2.8 stack 7 7 * 4 2 * 3 * -7 * 4 2 * 3 * -* 4 2 * 3 * -49 4 2 * 3 * -

49 4

2 * 3 * -

 49	* 3 * -
 49 8 	3 * -
 49	* _
 49 24 	-
 25	

Section B

1.(a) % is applied last.

- 1.(b) % \$ @ @ # a u w ^ ^ 5 ~ b c d
- 1.(c) a u # @ w @ \$ 5 b c ~ ^ d ^ %

prefix syntax: # @ \$ a b ^ 3 ~ * u \$ v w @ 5

postfix syntax: x y u v ~ w * 5 - a # ^ b # ^