Bidding Strategies for Shapley Value Profit Sharing

2

Profit Sharing Rule:

Calculating the Shapley Value

Shapley Value
$$_{i} = \sum_{S,i \in S} \frac{(|S|-1)!*(|N|-|S|)!}{|N|!} * [g(S)-g(S\setminus i)]$$

Where:

N = Grand Coalition of Carriers

S = Subset of Grand Coalition

g(S) = Collaboration Gain of Coalition S

See [11]

Conspiring Bidder Strategies

Strategic Bidder Strategies

INPUT_MAX
Increase price of Input Bid

INPUT_MANIPULATION

Overbid/Underbid on the Input Bid

BID_MANIPULATION_REL

Overbid/Underbid on all bids with a relative margin

Bidding Strategies for Shapley Value Profit Sharing Test Results for Conspiring Bidder

Bidding Strategies for Shapley Value Profit Sharing Test Results for Strategic Bidder

Bidding Strategies for Shapley Value Profit Sharing Test Results for Strategic Bidder

Bidding Strategies for Critical Weight Profit Sharing

Valuation

Profit Sharing Rule:

Use the **Critical Delta** for the calculation of the profit share

Note

Paying the Critical Delta to bidders would be equivalent to paying the Vickrey-Clarke-Groves Payment which creates an incentive compatible mechanisms (not budged balanced)

Critical Delta

Feasible Solutions

Legend: Price of my BID Price of my INPUT BID Price of BIDs (others)

Price of INPUT BIDs (others)

See [9]

Bidding Strategies for Critical Weight Profit Sharing

Perspective of Conspiring Bidder

Critical Weight

For Carrier 1:

CD1 / (CD1 + CD2 + CD3) ~ 33%

For Carrier 2:

CD2 / (CD1 + CD2 + CD3) ~ 43%

For Carrier 3:

CD3 / (CD1 + CD2 + CD3) ~ 24%

Interpretation

Marginal contribution of the carrier (however, less accurate than the Shapley Value because not considering all sub-coalitions)

Bidding Strategies for Critical Weight Profit Sharing Perspective of Conspiring Bidder

Feasible Solutions

Bidding Strategies for Critical Weight Profit Sharing Perspective of Conspiring Bidder

Bidding Strategies for Critical Weight Profit Sharing Perspective of Conspiring Bidder

Bidding Strategies for Critical Weight Profit Sharing

Perspective of Conspiring Bidder

Strategy - DESTROY_WEIGHT

Increase valuation of a Bid of a candidate with an Input Bid of another Bidder as much as possible

For Bidder 1:

CD1 / (CD1 + CD2 + CD3) ~ **57%**→ (+) Increase of Collaboration Share

For Bidder 2:

CD2 / (CD1 + CD2 + CD3) ~ **0**%

→ (-) Decrease of Collaboration Share

For Bidder 3:

CD3 / (CD1 + CD2 + CD3) ~ **43**%

→ (+) Increase of Collaboration Share

Conspiring Bidder Strategies

Strategic Bidder Strategies

INPUT_MAX

Increase price of Input Bid

DESTROY_WEIGHT

Increase prices of bids in the feasible solutions with an Input Bid of other carrier(s) as much as possible

INPUT_MANIPULATION

Overbid/Underbid on the Input Bid

BID_MANIPULATION_REL

Overbid or Underbid on all bids with a relative margin

Bidding Strategies for Critical Weight Profit Sharing Test Results for Conspiring Bidder

Bidding Strategies for Critical Weight Profit Sharing Test Results for Strategic Bidder

Bidding Strategies for Critical Weight Profit Sharing Simulation Results for Strategic Bidder

Comparison of the analysed Profit Sharing Methods

Egalitarian

- computational efficient
- easy to understand
- could be considered unfair
- encourages overbidding the Input Bid

(Sidenote: Modified Egalitarian superior)

Purchase/Sale Weights

- computational efficient
- incentivizes contribution
- manipulable through overbidding

Shapley Value

- well-known economic formula
- desirable economic properties*
- could be considered fair
- quite robust against strategic manipulation
- computational inefficient
- requires evaluation of all sub-coalitions

* e.g., efficieny, symmetry, linearity, null player exclusion, anonymity etc.

See [9]

Critical Weights

- could be considered fair
- orobust against simple strategic manipulation
- no need to evaluate all sub-coalitions
- less easy to understand
- operation potentially vulnerable to complex strategies

See [9]

Egalitarian

- computational efficient
- easy to understand
- could be considered unfair
- encourages overbidding the Input Bid

(Sidenote: Modified Egalitarian superior)

Purchase/Sale Weights

- computational efficient
- incentivizes contribution
- manipulable through overbidding

Shapley Value

- well-known economic formula
- desirable economic properties*
- could be considered fair
- quite robust against strategic manipulation
- computational inefficient
- requires evaluation of all sub-coalitions!

* e.g., efficieny, symmetry, linearity, null player exclusion, anonymity etc.

Critical Weights

- could be considered fair
- orobust against simple strategic manipulation
- no need to evaluate all sub-coalitions
- (X) less easy to understand
- operation potentially vulnerable to complex strategies

Egalitarian

- computational efficient
- easy to understand
- could be considered unfair
- encourages overbidding the Input Bid

(Sidenote: Modified Egalitarian superior)

Purchase/Sale Weights

- computational efficient
- incentivizes contribution
- manipulable through overbidding

Shapley Value

- well-known economic formula
- desirable economic properties*
- could be considered fair
- quite robust against strategic manipulation
- computational inefficient
- requires evaluation of all sub-coalitions!

See [9]

Critical Weights

- could be considered fair
- orobust against simple strategic manipulation
- no need to evaluate all sub-coalitions
- (X) less easy to understand
- operation potentially vulnerable to complex strategies

^{*} e.g., efficieny, symmetry, linearity, null player exclusion, anonymity etc.

Outlook

Potentially part of my Master Thesis

- Comparison of the Shapley Value and Critical Weight Profit Sharing for more than 3 carriers
- Research/Development of complex strategies for manipulating the Shapley Value or Critical Weight Profit Sharing

Further Research

- Evaluation of strategic behaviour during the request selection phase
- Evaluation/development of additional profit sharing methods
- Evaluation of various methods that approximate the Shapley Value
- Evaluation of equilibria and expected outcomes of a setting with multiple strategic carriers
- Strategic evaluation of payment methods that don't guarantee Individual Rationality
- Experimental analysis of strategic behaviour

References

- [1] Berger, S. and Bierwirth, C., 2010. Solutions to the request reassignment problem in collaborative carrier networks. Transportation Research Part E: Logistics and Transportation Review, 46(5), pp.627-638.
- [2] Gansterer, M. and Hartl, R.F., 2016. Request evaluation strategies for carriers in auction-based collaborations. OR spectrum, 38(1), pp.3-23.
- [3] Gansterer, M. and Hartl, R.F., 2018. Centralized bundle generation in auction-based collaborative transportation. Or Spectrum, 40(3), pp.613-635.
- [4] Gansterer, M. and Hartl, R.F., 2018. Collaborative vehicle routing: a survey. European Journal of Operational Research, 268(1), pp.1-12.
- [5] Gansterer, M., Hartl, R.F. and Sörensen, K., 2020. Pushing frontiers in auction-based transport collaborations. Omega, 94, p.102042.
- [6] Gansterer, M., Hartl, R.F. and Vetschera, R., 2019. The cost of incentive compatibility in auction-based mechanisms for carrier collaboration. Networks, 73(4), pp.490-514.
- [7] Jacob, J. and Buer, T., 2018. Impact of non-truthful bidding on transport coalition profits. In Operations research proceedings 2016 (pp. 203-208). Springer, Cham.
- [8] Krajewska, M.A. and Kopfer, H., 2006. Collaborating freight forwarding enterprises. OR spectrum, 28(3), pp.301-317.
- [9] Nisan, N., Roughgarden, T., Tardos, E. and Vazirani, V.V., 2007. Algorithmic Game Theory. Cambridge University Press
- [10] Renaud, J., Boctor, F.F. and Ouenniche, J., 2000. A heuristic for the pickup and delivery traveling salesman problem. Computers & Operations Research, 27(9), pp.905-916.
- [11] Shapley, L.S., 2016. 17. A value for n-person games (pp. 307-318). Princeton University Press.