1. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

- A. $a \in [-5, 0], b \in [2, 6], \text{ and } c \in [-10, -7]$
- B. $a \in [0, 2], b \in [-9, -1], \text{ and } c \in [-1, 3]$
- C. $a \in [-5, 0], b \in [2, 6], and c \in [-1, 3]$
- D. $a \in [-5, 0], b \in [-9, -1], \text{ and } c \in [-10, -7]$
- E. $a \in [0, 2], b \in [2, 6], \text{ and } c \in [-1, 3]$
- 2. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$24x^2 + 38x + 15$$

- A. $a \in [0.66, 1.17], b \in [14, 23], c \in [0.1, 1.3], and <math>d \in [17, 25]$
- B. $a \in [7.56, 8.25], b \in [0, 6], c \in [1.2, 4.3], and <math>d \in [-1, 9]$
- C. $a \in [3.97, 4.01], b \in [0, 6], c \in [3.9, 6.1], and <math>d \in [-1, 9]$
- D. $a \in [1.22, 1.4], b \in [0, 6], c \in [17.1, 20.9], and <math>d \in [-1, 9]$
- E. None of the above.

3. Graph the equation below.

 $f(x) = (x+2)^2 + 10$

A.

C.

D.

- В.
- E. None of the above.
- 4. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $x_1 \leq x_2$.

$$8x^2 - 54x + 81 = 0$$

- A. $x_1 \in [17.74, 18.55]$ and $x_2 \in [32.4, 37.5]$
- B. $x_1 \in [0.16, 0.86]$ and $x_2 \in [12.9, 15]$
- C. $x_1 \in [1.33, 1.8]$ and $x_2 \in [5.3, 8.6]$
- D. $x_1 \in [1.11, 1.21]$ and $x_2 \in [8.4, 9.4]$
- E. $x_1 \in [2.06, 2.51]$ and $x_2 \in [3.6, 5.1]$
- 5. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$-12x^2 - 12x + 5 = 0$$

A.
$$x_1 \in [-6.3, -3.1]$$
 and $x_2 \in [15.53, 16.4]$

B.
$$x_1 \in [-21.1, -19.2]$$
 and $x_2 \in [18.77, 19.71]$

C.
$$x_1 \in [-1.6, -1.2]$$
 and $x_2 \in [0.26, 0.5]$

D.
$$x_1 \in [-0.4, 1]$$
 and $x_2 \in [1.24, 2.47]$

E. There are no Real solutions.

Summer C 2020