Durée : 30 minutes. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

BON COURAGE!

On considère pour toutes les questions de ce QCM l'application suivante :

Soit f l'application de \mathbb{R}^3 dans \mathbb{R}^3 définie par : f([x,y,z]) = [3x - 2y + 2z, x + 2y, x + y + z].

1. La matrice de f dans la base canonique est :

2. f est:

un homomorphisme
$$_{(2)}\square$$
 un morphisme $_{(3)}\square$ un endomorphisme $_{(4)}\square$ $f\in\mathcal{L}(\mathbb{R}^3)$ aucune des réponses précédentes n'est correcte.

3. L'image par f de $[0\ 1\ 1]^T$ est :

4. Ker f est :

5. Le rang de f est égal à :

$${}_{(1)}\square \quad 0 \qquad {}_{(2)}\square \quad 1 \qquad {}_{(3)}\square \quad 2 \qquad {}_{(4)}\square \quad 3 \qquad {}_{(5)}\square \quad \text{aucune des réponses précédentes n'est correcte.}$$

6.	f	est	une	application	
----	---	----------------------	-----	-------------	--

- $_{(1)}\square$ ni injective ni surjective
- $_{(2)}\square$ injective mais pas surjective
- (3) surjective mais pas injective
- $_{(4)}\square$ bijective
- $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

7. Dans l'espace de départ de f:

- $_{(1)}\square$ Toute famille libre de 3 vecteurs est une base.
- (2)☐ Toute famille génératrice de 4 vecteurs est une base.
- (3)□ Si on ajoute un vecteur quelconque à une famille libre de deux vecteurs, on obtient une base.
- $_{(4)}\square$ Si on enlève un vecteur quelconque à une famille libre de quatre vecteurs, on obtient une base.
- $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

8. On considère une nouvelle base $\mathcal{B}_1 = \{\varepsilon_1, \varepsilon_2, \varepsilon_3\} = \{[-1\ 1\ 2]^T, [0\ 1\ 1]^T, [1\ 1\ 1]^T\}$ pour f. On note $P_{\mathcal{BB}_1}$ la matrice de passage de la base canonique \mathcal{B} à la base \mathcal{B}_1 .

Parmi les affirmations suivantes lesquelles sont vraies?

9. On considère deux nouvelles bases \mathcal{B}_1 et \mathcal{B}_2 pour f.

On note $P_{\mathcal{BB}_1}$ la matrice de passage de la base canonique \mathcal{B} à la base \mathcal{B}_1 , $P_{\mathcal{BB}_2}$ la matrice de passage de la base canonique \mathcal{B} à la base \mathcal{B}_2 et $P_{\mathcal{B}_1\mathcal{B}_2}$ la matrice de passage de la base \mathcal{B}_1 à la base \mathcal{B}_2 . Parmi les affirmations suivantes lesquelles sont vraies?

$$(1)\square P_{\mathcal{B}_2\mathcal{B}_1} = P_{\mathcal{B}\mathcal{B}_1}^{-1} \cdot P_{\mathcal{B}\mathcal{B}_2} \qquad (2)\square P_{\mathcal{B}_1\mathcal{B}_2} = P_{\mathcal{B}\mathcal{B}_1}^{-1} \cdot P_{\mathcal{B}\mathcal{B}_2} \qquad (3)\square P_{\mathcal{B}\mathcal{B}_1} \cdot P_{\mathcal{B}_1\mathcal{B}_2} = P_{\mathcal{B}\mathcal{B}_2}$$

$$(4)\square P_{\mathcal{B}\mathcal{B}_1} = P_{\mathcal{B}_1\mathcal{B}_2}^{-1} \cdot P_{\mathcal{B}\mathcal{B}_2} \qquad (5)\square \text{ aucune des réponses précédentes n'est correcte.}$$

10. Soit N la matrice de l'application f dans la base \mathcal{B}_1 .

On note A la matrice de l'application f dans la base \mathcal{B} et P la matrice de passage de la base canonique \mathcal{B} à la base \mathcal{B}_1 .

Parmi les affirmations suivantes lesquelles sont vraies?

$$(1)$$
 \square $A=P^{-1}NP$ (2) \square $N=PAP^{-1}$ (3) \square A et N sont semblables (4) \square A est diagonalisable (5) \square aucune des réponses précédentes n'est correcte.