Die Gravitationskonstante g auf einer schiefen Bahn

Sascha Huber, Aaron Stampa, Joanne Gautschi, Damien Flury

1. Dezember 2019

Inhaltsverzeichnis

L	Experiment								2											
	1.1	Ball auf der schiefen Ebene																		2

Abbildung 1: Schiefe Bahn

1 Experiment

Wir haben unser Experiment eingerichtet, wie auf Abbildung 1 dargestellt. Dann haben wir sieben mal einen Ball herunterrollen lassen mit verschieden Höhen h. Die Länge x ist die Distanz, in welcher wir die Objekte messen. Der Winkel θ bezeichnet den Winkel der schiefen Ebene in Bogenmass.

1.1 Ball auf der schiefen Ebene

Zunächst haben wir einen Ball herunterrollen lassen. Sein Radius r beträgt etwa 4 cm, seine Masse m 242 g.

Wir haben die Strecke s in Abhängigkeit der Zeit t gemessen, um die Beschleunigung a zu bestimmen. Dazu haben wir folgende Formel angewandt:

$$s = \frac{1}{2} \cdot a \cdot t^2 \tag{1}$$

Woraus folgt:

$$a = \frac{2 \cdot s}{t^2} \tag{2}$$