Q1. (a)

$$(1110101.101)_{2}$$

$$= (1 \times 2^{6} + 1 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3})_{10}$$

$$= (117.625)_{10}$$

(b) We have

$$2023 = 2 \times 1011 + 1 \implies b_0 = 1$$

$$1011 = 2 \times 505 + 1 \implies b_1 = 1$$

$$505 = 2 \times 252 + 1 \implies b_2 = 1$$

$$252 = 2 \times 126 + 0 \implies b_3 = 0$$

$$126 = 2 \times 63 + 0 \implies b_4 = 0$$

$$63 = 2 \times 31 + 1 \implies b_5 = 1$$

$$31 = 2 \times 15 + 1 \implies b_6 = 1$$

$$15 = 2 \times 7 + 1 \implies b_7 = 1$$

$$7 = 2 \times 3 + 1 \implies b_8 = 1$$

$$3 = 2 \times 1 + 1 \implies b_9 = 1$$

$$1 = 2 \times 0 + 1 \implies b_{10} = 1$$

Then $(2023)_{10} = (11111100111)_2$.

Q2. (a) Since $\beta = 2$, n = 5 and M = 4, the floating number is represented as

$$x = \pm (0.a_1 a_2 a_3 a_4 a_5)_2 \cdot 2^e$$

Because $a_1 \neq 0$ and a_i can only be 0 or 1, i = 1, 2, 3, 4, 5, for positive number, $0.a_1a_2a_3a_4a_5$ is at least 0.10000 and at most 0.11111, 2^e is at least $2^{-4} = 0.0625$ and at most $2^4 = 16$, then we know that the smallest positive number in decimal form is $(0.10000)_2 \times 0.0625 = 2^{-1} \times 0.0625 = 0.03125$, and the largest number in decimal form is $(0.11111)_2 \times 16 = (2^{-1} + 2^{-2} + 2^{-3} + 2^{-4} + 2^{-5}) \times 16 = 0.9688 \times 16 = 15.5008$.

(b) Since n = 5 and we have $(3)_{10} = (11.000)_2$, we can obtain the maximum number smaller than π which can be represented by the floating number is

 $(3.125)_{10} = (11.001)_2 = (0.11001)_2 \cdot 2^2$, and the minimum number larger than π which can be represented by the floating number is $(3.25)_{10} = (11.010)_2 = (0.11010)_2 \cdot 2^2$, obviously, the closest floating number to π is $(3.125)_{10} = (11.001)_2 = (0.11001)_2 \cdot 2^2$.

Q3. (a) Cancellation error happens as $\cos x$ is close to -1, that is, $x = (2k+1)\pi$, $k \in \mathbb{Z}$.

To remedy this problem, the function can be transferred to

$$f(x) = 1 + \cos x = 1 + \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}.$$

(b) Cancellation error happens as $\sqrt{x^2+1}$ is close to $\sqrt{x^2+4}$, that is, x is large positive or small negative.

To remedy this problem, the function can be transferred to

$$f(x) = \sqrt{x^2 + 1} - \sqrt{x^2 + 4} = \frac{-3}{\sqrt{x^2 + 1} + \sqrt{x^2 + 4}}$$

(c) Cancellation error happens as $\ln x$ is close to $\ln(1/x)$, that is, x = 1.

To remedy this problem, the function can be transferred to

$$f(x) = \ln x - \ln(1/x) = 2 \ln x$$
.

(d) Cancellation error happens as x is close to $\sin x$, that is, x = 0.

To remedy this problem, the function can be transferred to

$$f(x) = x - \sin x = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^{2k+1}}{(2k+1)!}.$$

(e) Cancellation error happens as $2\sin^2 x$ is close to 1, that is, $x = \frac{1+2k}{4}\pi$, $k \in \mathbb{Z}$.

To remedy this problem, the function can be transferred to

$$f(x) = 1 - 2\sin^2 x = \cos(2x)$$
.

(f) Cancellation error happens as $\ln x$ is close to 1, that is, x = e.

To remedy this problem, the function can be transferred to

$$f(x) = \ln x - 1 = \ln \frac{x}{e}$$
.

Q4. (a) Using Taylor polynomials, we have

$$f(x+h) = f(x) + f'(x)h + \frac{1}{2}f''(x)h^2 + \frac{1}{6}f'''(x)h^3 + O(h^4)$$

$$f(x-h) = f(x) - f'(x)h + \frac{1}{2}f''(x)h^2 - \frac{1}{6}f'''(x)h^3 + O(h^4)$$

By adding them, we obtain

$$f(x+h)+f(x-h)=2f(x)+f''(x)h^2+O(h^4)$$

That is

$$f(x-h)-2f(x)+f(x+h)+O(h^4)=f''(x)h^2$$

Then we finally have

$$f''(x) = \frac{f(x-h)-2f(x)+f(x+h)+O(h^4)}{h^2} = \frac{f(x-h)-2f(x)+f(x+h)}{h^2} + O(h^2)$$

(b) With $h = 2^{-n}$, n = 1, 2, 3, ..., 10, the curve of error against h is plotted as below.

Figure.1 Curve of error against h

The table is listed as shown in Table.1.

Table.1 Relevant information

h	Df	E	E / h	E/h^2	E/h^3
2^{-1}	1.042190610	0.042190610987	0.084381221974	0.1687624439	0.3375248878
	98749	4948	9895	49979	99958
2^{-2}	1.010449267	0.010449267232	0.041797068930	0.1671882757	0.6687531028
	23267	6730	6921	22769	91074
2^{-3}	1.002606201	0.002606201928	0.020849615431	0.1667969234	1.3343753876
	92892	92347	3877	51102	0882
2^{-4}	1.000651168	0.000651168835	0.010418701361	0.1666992217	2.6671875484
	83507	069882	1181	77890	4624
2^{-5}	1.000162768	0.000162768364	0.005208587652	0.1666748048	5.3335937560
	36414	138088	41883	77403	7688
2^{-6}	1.000040690	4.069060087275	0.002604198455	0.1666687011	10.666796875

	60087	03e-05	85602	74785	1863
2^{-7}	1.000010172	1.017255709001	0.001302087307	0.1666671753	21.333398446
	55709	57e-05	52202	62818	4407
2^{-8}	1.000002543	2.543133433619	0.000651042159	0.1666667927	42.666698932
2	1.000002515	2.5 15 155 155017	0.000031012139	0.1000007727	12.000070732
	13343	01e-06	006465	05655	6477
2^{-9}	1.000000635	6.357829818171	0.000325520886	0.1666666939	85.333347320
	78298	01e-07	690356	85462	5566
2^{-10}	1.000000158	1.589456815054	0.000162760377	0.1666666269	170.66662597
	94568	29e-07	861559	30237	6563

From the curve, it can be observed that the smaller h is, the smaller error is.

From the table, the same conclusion can be drawn, besides, since E/h^2 is relative the same, the rate of convergence is 2.

Q5. The program we write is as below

```
function d2b_function(decimal)
  if decimal == 0
     binary = '0';
else
     binary = '';
    while decimal ~= 0
        binary = [num2str(mod(decimal, 2)) binary];
        decimal = floor(decimal / 2);
     end
end
disp(binary);
end
```

Using the program, we obtain the results as

(a)
$$(471)_{10} = (111010111)_2$$
;

(b)
$$(2016)_{10} = (111111100000)_2$$
.