Appunti Comunicazioni Numeriche

Francesco Mignone

Professori: Luca Sanguinetti - Marco Moretti

Figure 1: uwu

AA 2022 - 2023

Contents

1	Introduzione Richiamo Sui Numeri Complessi				
2					
	2.1	Struttura di un numero complesso			
		2.1.1 Forma Cartesiana			
		2.1.2 Forma Polare			
		2.1.3 Complesso Coniugato			
	2.2				
	2.3	Operazioni			
	2.4				
3	Introduzione Ai Segnali 3.1 Classificazione di segnale in base alla continuità dei domini				
4	Segnali Analogici				

1 Introduzione

I seguenti appunti sono presi seguendo le lezioni del corso di Comunicazioni Numeriche di Ingegneria Informatica dell'Univertistá di Pisa. Questi appunti non vanno a sostituire il materiale e le lezioni dei professori. I testi consigliati sono:

S.Hawking Digital Communication System Wiley Leon Digital Analog Communication System Pearson

2 Richiamo Sui Numeri Complessi

2.1 Struttura di un numero complesso

2.1.1 Forma Cartesiana

$$z\in\mathbb{C}:z=a+jb$$
 Parte reale: $a=Re\{z\}$ Parte Immaginaria: $b=Img\{z\}$ j o i é la $\sqrt{-1}$

2.1.2 Forma Polare

$$z \in \mathbb{C} : z = \rho \ e^{j\theta}$$

Modulo: $\rho = |z|$
Fase: $\theta = \arg(z)$

grafico forma polare-cartesiana

2.1.3 Complesso Coniugato

• Forma Cartesiana

$$z^* = a - jb$$

• Forma Polare

$$z^* = \rho \ e^{-j\theta}$$

2.2 Relazione Tra Forma Polare e Cartesiana

• Parte Reale e parte Immaginaria

$$a = \rho \cos(\theta) \ b = \rho \sin(\theta)$$

• Modulo

$$\rho = |z| = \sqrt{a^2 + b^2}$$

• Fase

$$a > 0 \Rightarrow \theta = \arg(z) = \arctan\left(\frac{b}{a}\right)$$

$$a < 0 \Rightarrow \theta = \arg(z) = \pi + \arctan\left(\frac{b}{a}\right)$$

2.3 Operazioni

Dati: $z_1 = a_1 + jb_1 = \rho_1 \ e^{j\theta_1}, \ z_2 = a_2 + jb_2 = \rho_2 \ e^{j\theta_2}$

• Somma

$$z = z_1 + z_2 = (a_1 + a_2) + j(b_1 + b_2)$$

• Sottrazione

$$z = z_1 - z_2 = (a_1 - a_2) + j(b_1 - b_2)$$

• Moltiplicazione

$$z = z_1 z_2 = \rho_1 \rho_2 \ e^{j(\theta_1 + \theta_2)}$$

• Divisione

$$z = \frac{z_1}{z_2} = \frac{\rho_1}{\rho_2} e^{j(\theta_1 - \theta_2)}$$

• Modulo

$$|z| = \sqrt{zz^*} = \sqrt{a^2 + b^2}$$

 $|z|^2 = zz^* = a^2 + b^2$

2.4 Funzioni Complesse a Variabile Reale

$$z \in \mathbb{C}$$
 $t \in \mathbb{R} \to z_{(t)} = a_{(t)} + jb_{(t)} = \rho_{(t)}e^{j\theta_{(t)}}$

• Integrale

$$\int_{a}^{b} z_{(t)} dt = \int_{a}^{b} a_{(t)} + jb_{(t)} dt = \int_{a}^{b} a_{(t)} dt + \int_{a}^{b} jb_{(t)} dt$$

• Derivata

$$\frac{d}{dt}z_{(t)} = \frac{d}{dt}a_{(t)} + jb_{(t)} = \frac{d}{dt}a_{(t)} + \frac{d}{dt}jb_{(t)}$$

3 Introduzione Ai Segnali

- \bullet Deterministici: Segnale rappresentabile con funzioni analitiche e noto $\forall t$
- Aleatori: Segnale rappresentabile tramite statistiche

3.1 Classificazione di segnale in base alla continuità dei domini

- Dominio del tempo:
 - Segnale tempo continuo: $t \in \mathbb{R}$ assume con conitinuità tutti i valori contenuti all'interno di un intervallo
 - Segnale a tempo discreto: $t = \{nT\}n \in \mathbb{Z}\ T$ =periodo di campionamento, la variabile temporale assume solo valori discreti
- Dominio dell'ampiezza (spazio):
 - Segnale ad ampiezza continua: $x_{(t)}$ continua, la grandezza fisica del segnale assume con continuità tutti i valori all'interno di un intervallo
 - Segnale ad ampiezza discreta: $x_{(t)}$ discreta,
se restringo l'intervallo posso renderla continua, la grandezza fisica pu
ó assumere solo valori discreti

Segnale	Cotinuo	Discreto	t
Continua	Analogico	Sequenza/Digitale	
Discreta	Quantizzato	Binario	
$x_{(t)}$			

4 Segnali Analogici