实变函数笔记20250221

偏序

 $X
eq \emptyset, X$ 上一个关系 $R \subseteq X imes X$, 当R满足自反、传递、反对称,我们称R为一个偏序

 $lacksymbol{\parallel}$ 默认下文中的R均为X上的偏序

全序子集

 $E\subseteq X,$ 如果 $orall x_0, x_1\in E, x_0Rx_1\oplus x_1Rx_0$,我们称E是X的一个全序子集

上界

 $\exists x \in X, \forall x' \in E \subseteq X, x'Rx$,我们称x是E的一个上界

最大元

如果 $x \in X, xRx' \Rightarrow x = x'$,我们称x为一个最大元 R\$为X上的偏序,

Zorn 引理

设X为一偏序集,如果X的每一个全序子集均有上界,则X有一个最大元

选择公理

设 \mathcal{F} 为一族非空集合,则存在一个选择函数,即可从每一集合中选择一个元素

上极限集与下极限集

 $\{A_n\}_{n=1}^{\infty}$ 为一族集合

其上极限集 $\limsup A_n := \bigcap_{k=1}^\infty \bigcup_{n=k}^\infty A_n \Leftrightarrow \exists$ 无穷多 $n \ s.t. \ x \in A_n$ 其下极限集 $\liminf A_n := \bigcup_{k=1}^\infty \bigcap_{n=k}^\infty A_n \Leftrightarrow \exists$ 有限个 $n \ s.t. \ x \not\in A_n$

σ -代数

 $\mathcal{A}\subseteq 2^X$,若 \mathcal{A} 满足

- 1. $\emptyset \in A$
- $2. A \in \mathcal{A} \Rightarrow A^C \in \mathcal{A}$
- 3. $\{A_n\}_{n=1}^\infty\subseteq\mathcal{A}\Rightarrowigcup_{n=1}^\infty A_n\in\mathcal{A}$

则称A为一个 σ 一代数

Borel 集族

Borel集族 $\mathcal{B}\subseteq 2^\mathbb{R}$ 为包含所有 \mathbb{R} 中开集的最小 σ 一代数

F_{σ} 与 G_{δ}

 F_{σ} 为可数个闭集的并, G_{δ} 为可数个开集的交

引理

 $U\subseteq\mathbb{R}$ 且为开集,则存在存在至多可数个两两不交的开区间 $\{I_k\}$ 使得 $U=igcup_k I_k$

Cantor 集

 $C_0 = [0, 1]$

 $n \geq 1$ 递推定义 C_n 为:将 C_{n-1} 每个区间三等分后,留下的左右两个闭子区间。可知 C_n 为 2^n 个长度为 3^{-n} 的闭区间。

Cantor集 $\mathcal{C}:=igcap_{n=0}^\infty C_n$