### Лабораторная работа №7

Модель системы массового обслуживания типа  $M|M|1|\infty$ 

Ибатулина Дарья Эдуардовна, НФИбд-01-22

## Содержание

| 1                 | Теоретическое введение         | 4  |
|-------------------|--------------------------------|----|
| 2                 | Цель работы                    | 5  |
| 3                 | Задание                        | 6  |
| 4                 | Выполнение лабораторной работы | 7  |
| 5                 | Выводы                         | 11 |
| Список литературы |                                | 12 |

# Список иллюстраций

| 4.1 | Задание переменных окружения в хсоз для модели | 7  |
|-----|------------------------------------------------|----|
| 4.2 | Суперблок, моделирующий поступление заявок     | 8  |
| 4.3 | Суперблок, моделирующий обработку заявок       | 8  |
| 4.4 | Модель $M M 1 \infty$ в хсоз                   | 9  |
| 4.5 | Динамика размера очереди                       | 9  |
| 4.6 | Поступление и обработка заявок                 | 10 |

#### 1 Теоретическое введение

Теория массового обслуживания (или теория очередей) является разделом теории вероятностей, целью которого является изучение и оптимизация систем массового обслуживания (СМО). СМО представляют собой модели, в которых заявки поступают в систему, где они обслуживаются в соответствии с определенной дисциплиной. Одной из наиболее простых и широко используемых моделей СМО является система типа  $M|M|1|\infty$ , где:

M|M|1: Означает, что заявки поступают в систему по пуассоновскому потоку (M), обслуживаются одним сервером (1), а время обслуживания также распределено по экспоненциальному закону (M).

 $\infty$ : Указывает на то, что в системе нет ограничений на количество заявок, которые могут находиться в очереди.

Эта модель часто используется для анализа различных характеристик СМО, таких как среднее время ожидания, среднее время пребывания в системе и вероятность наличия заявок в очереди. В лабораторной работе мы будем использовать программное обеспечение  $\times$  соѕ для моделирования и анализа поведения системы  $M|M|1|\infty$ . Это позволит нам наглядно продемонстрировать основные принципы теории массового обслуживания и оценить эффективность системы при различных условиях[2],[3].

## 2 Цель работы

Рассмотреть пример моделирования в xcos системы массового обслуживания типа  $M|M|1|\infty$  [1].

### 3 Задание

- 1. Реализовать модель системы массового обслуживания типа  $M|M|1|\infty$ ;
- 2. Построить график поступления и обработки заявок;
- 3. Построить график динамики размера очереди.

#### 4 Выполнение лабораторной работы

Зафиксируем начальные данные:  $\lambda=0.3,\,\mu=0.35,\,z_0=6$  [1]. В меню *Моделирование -> Установить контекст* зададим значения коэффициентов (рис. 4.1) [4].



Рис. 4.1: Задание переменных окружения в хсоз для модели

Суперблок, моделирующий поступление заявок, представлен на рис. 4.2. Заявки поступают в систему по пуассоновскому закону[2]. Поступает заявка в суперблок, идет в синхронизатор входных и выходных сигналов, происходит равномерное распределение на интервале [0;1] (также заявка идет в обработчик событий), далее идет преобразование в экспоненциальное распределение с параметром  $\lambda$ , затем заявка опять попадает в обработчик событий и выходит из суперблока [4].



Рис. 4.2: Суперблок, моделирующий поступление заявок

Суперблок, моделирующий процесс обработки заявок, представлен на рис. 4.3. Тут происходит обработка заявок в очереди по экспоненциальному закону.



Рис. 4.3: Суперблок, моделирующий обработку заявок

Готовая модель  $M|M|1|\infty$  представлена на рис. 4.4. Здесь имеется селектор, два суперблока, построенных ранее, первоначальное событие на вход в суперблок,

суммирование, оператор задержки (имитация очереди), также есть регистрирующие блоки: регистратор размера очереди и регистратор событий [4].



Рис. 4.4: Модель  $M|M|1|\infty$  в хсоs

Результат моделирования представлен на рис. 4.5 и 4.6. График динамики размера очереди начинается со значения 6, потому что мы указали  $z_0=6$  [1].



Рис. 4.5: Динамика размера очереди



Рис. 4.6: Поступление и обработка заявок

### 5 Выводы

В процессе выполнения данной лабораторной работы я рассмотрела пример моделирования в хсоs системы массового обслуживания типа  $M|M|1|\infty$ .

#### Список литературы

- 1. Королькова А.В., Кулябов Д.С. Руководство к лабораторной работе №7. Модельование информационных процессов. Модель системы массового обслуживания типа  $M|M|1|\infty$  2025. 4 с.
- 2. Плескунов М.А. Теория массового обслуживания : учебное пособие / М-во науки и высшего образования РФ, Урал. федер. ун-т. Екатеринбург : Изд-во Урал. ун-та, 2022. 264 с.
- Гнеденко Б.В., Коваленко И.Н. Введение в теорию массового обслуживания.
  М.: Наука, 2017. 432 с.
- 4. Капля В.И., Капля Е.В. [Электронный ресурс] / Министерство науки и высшего образования Российской Федерации, ВПИ (филиал) ФГБОУ ВО ВолгГТУ. Волжский, 2022. Режим доступа: http://lib.volpi.ru:57772/csp/lib/PDF/72 0548296.pdf Загл. с титул. экрана.