Matemáticas Actuariales del Seguro de Personas II

Jorge Luis Reyes García

Universidad Nacional Autónoma de México Facultad de Ciencias

jorgeluis.reyes@ciencias.unam.mx

Diciembre 2021

Prólogo

Este trabajo ha sido el resultado de un esfuerzo constante por más 10 años en mi labor como docente impartiendo las materias de Matemáticas Actuariales del Seguro de Personas I y II.

El objetivo de las notas es facilitar la comprensión y entendimiento de las matemáticas actuariales aplicadas los seguros de vida bajo tres enfoques:

- Clásico: a partir de tablas de mortalidad y valores conmutados.
- Probabilístico: Considerando variables aleatorias discretas y continuas.
- Estocástico: a partir de cadenas de Markov en tiempo discreto y tiempo continúo.

En cada capítulo encontrarán explicaciones, demostraciones y aplicaciones.

Contenido

Vidas Múltiples

Ejemplo: Se tienen dos vidas de edades (80) y (84) independientes y se sabe:

	X	$p_{\scriptscriptstyle X}$
	80	0.50
	81	0.40
	82	0.60
	83	0.25
	84	0.20
	85	0.15
	86	0.10
		0.10

Calcular el cambio en $_{2|1}q_{\overline{80.84}}$ si p_{82} cambia de 0.50 a 0.60

Solución:

Calculemos la probabilidad original:

$$\begin{aligned}
2|1 q_{80:84}^o &= {}_{2}p_{80:84}^o - {}_{3}p_{80:84}^o \\
&= {}_{2}p_{80} + {}_{2}p_{84} - ({}_{2}p_{84})({}_{2}p_{84}) - [{}_{3}p_{80} + {}_{3}p_{84} - ({}_{3}p_{80})({}_{3}p_{84})] \\
&= (0.2240) - (0.1226) \\
&= 0.1014
\end{aligned}$$

Ahora calculamos la probabilidad modificada:

$$_{2|1}q_{\overline{80:84}}^{m} = {}_{2}p_{\overline{80:84}}^{m} - {}_{3}p_{\overline{80:84}}^{m} = (0.2240) - (0.0628) = 0.1612$$

Por lo tanto, el cambio en la probabilidad es:

$$_{2|1}q_{\overline{80:84}}^{m} - _{2|1}q_{\overline{80:84}}^{o} = (0.1612) - (0.1014) = 0.0598$$

Estatus

Ejemplo: Se tienen 2 vidas con v.a. T_x y T_y con función de densidad conjunta

$$f_{T_x T_y}(s,t) = \frac{s+t}{125} \text{ para } 0 < s < 5 \text{ y } 0 < t < 5$$

Calcular $_1p_{\overline{2:2}}$

Solución:

Para el estatus de último sobreviviente siempre es más fácil calcular $tq_{\overline{XY}}$

La probabilidad que se rompa el estatus:

$$P(T_x \le 3, T_y \le 3 | T_x > 2, T_y > 2) = \frac{P(2 < T_x \le 3, 2 < T_y \le 3)}{P(T_x > 2, T_y > 2)}$$

Calculamos cada una de las probabilidades:

$$\mathbb{P}(2 < T_x \le 3, 2 < T_y \le 3) = \int_2^3 \int_2^3 f_{T_x T_y}(s, t) ds dt = \int_2^3 \int_2^3 \frac{s + t}{125} ds dt = \frac{5}{125}$$

$$\mathbb{P}(T_x > 2, T_y > 2) = \int_2^5 \int_2^5 f_{T_x T_y}(s, t) ds dt = \int_2^5 \int_2^5 \frac{s + t}{125} ds dt = \frac{63}{125}$$

Retomando la expresión.

$$\frac{\mathbb{P}(2 < T_x \le 3, 2 < T_y \le 3)}{\mathbb{P}(T_x > 2, T_y > 2)} = \frac{\frac{5}{125}}{\frac{63}{125}} = \frac{5}{63}$$

Por lo tanto.

$$_{1}p_{\overline{2:2}} = 1 - \frac{5}{63} = 0.920634$$

Estatus

Ejemplo: Se tienen dos vidas con edades 50 y 60 independientes y comparten el mismo modelo de mortalidad.

$$\mu_x = \frac{1}{100 - x}$$
 para $0 < x < 100$

Calcular $\mathring{e}_{50:60}$

Solución:

$${e}_{\overline{50:60}} = \int_0^\infty {}_t
{p}_{\overline{50:60}} dt =
{e}_{50} +
{e}_{60} -
{e}_{50:60}$$

Calculamos cada indicador:

Notemos $T_{50} \sim U(0,50)$ y $T_{60} \sim U(0,40)$ y bajo el modelo de De Moivre:

$$\mathring{e}_x = \mathrm{E}(T_x) = \frac{w - x}{2}$$
 $\mathring{e}_{50} = \frac{50}{2} = 25$
 $\mathring{e}_{60} = \frac{40}{2} = 20$

Estatus

$$\dot{e}_{50:60} = \int_{0}^{\min(50,40)} {}_{t} p_{50:60} dt = \int_{0}^{40} ({}_{t} p_{50}) ({}_{t} p_{60}) dt
= \int_{0}^{40} (\frac{50 - t}{50}) (\frac{40 - t}{40}) dt
= \frac{1}{(50)(40)} \int_{0}^{40} (50)(40) - 90t + t^{2} dt
= \frac{1}{(50)(40)} ((50)(40)t - \frac{90t^{2}}{2} + \frac{t^{3}}{3} \Big|_{0}^{40})
= \frac{1}{(50)(40)} ((50)(40)^{2} - \frac{90(40)^{2}}{2} + \frac{(40)^{3}}{3})
= 14.6667$$

Por lo tanto,

$$\mathring{e}_{\overline{50:60}} = 25 + 20 - 14.6667 = 30.3333$$

Ejemplo: Se tienen dos vidas (x) y (y) independientes y comparten el mismo modelo de mortalidad:

$$\mu_{x+t} = 0.02 \text{ para } t > 0$$

Calcular la mediana de $T_{\overline{xy}}$

Solución:

Recordemos que la mediana es el percentil que acumula el 50 % de probabilidad

$$\mathbb{P}(T_{\overline{xy}} \leq me) = {}_{me}q_{xy} = \frac{1}{2}$$

Dado que T_x y T_y son independientes,

$$me q_{x} \cdot_{me} q_{y} = (1 - e^{-0.02me})(1 - e^{-0.02me}) = 1/2$$

$$\Rightarrow (1 - e^{-0.02me})^{2} = 1/2$$

$$\Rightarrow 1 - e^{-0.02me} = (1/2)^{2}$$

$$\Rightarrow 1 - (1/2)^{2} = e^{-0.02me}$$

$$\Rightarrow me = \frac{-ln(1 - (1/2)^{2})}{0.02} = 61.3973 \blacksquare$$

Contenido

Vidas Múltiples

Bibliografia

- Título: Models for Quantifying Risk. Autor: Stephen Camilli
- Título: Actuarial Mathematics for Life Contingent Risks. Autor: David Dickson
- Título: Actuarial Mathematics. Autor: Newton Bowers
- Título: Basic Life Insurance Mathematics Autor: Ragnar Norberg
- Título: Actuarial Mathematics and Life-Table Statistics Autor: Eric Slud
- Título: Life Contingencies Autor: Chester Wallace Jordan
- Título: Matemáticas Actuariales y Operaciones de Seguros Autor: Sandoya

Matemáticas Actuariales del Seguro de Personas II

Jorge Luis Reyes García

Universidad Nacional Autónoma de México Facultad de Ciencias

jorgeluis.reyes@ciencias.unam.mx

Diciembre 2021