Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа Р3212	К работе допущен
Студент Балин А. А.	Работа выполнена
Преполаватель Смирнов А В	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.05

Температурная зависимость электрического сопротивления металла и полупроводника

1. Цели работы.

- Получить зависимость электрического сопротивления металлического полупроводникового образцов в диапазоне температур от комнатной до 75 °C.
- По результатам п.1 вычислить температурный коэффициент сопротивления металла и ширину запрещенной зоны полупроводника.

2. Измерительные приборы.

$N_{\underline{0}}$	Наименование	Тип прибора	Используемый	Погрешность
			диапазон	
1	Термометр	Электронный	290–380 K	0,5 K
2	Амперметр	Электронный	0–2 мА	0,001 мА
3	Вольтметр	Электронный	0–2 B	0,001 B

3. Схема установки.

Рисунок 1. Общий вид лабораторной установки.

И

Схема 1. Принципиальная электрическая схема установки.

4. Рабочие формулы:

$$10 \text{м} = \frac{1 \text{B}}{1 \text{мкA}} \cdot 10^6$$

$$1 \text{ к0 м} = \frac{1 \text{B}}{1 \text{мкA}} \cdot 10^3$$

$$1^{\circ} C \approx 274.1 \text{ K}$$

$$\alpha_{ij} = \frac{R_i - R_j}{R_j \cdot t_i - R_i \cdot t_j}$$

$$E_{g_{ij}} = 2k \frac{\ln R_i - \ln R_j}{\frac{1}{T_i} - \frac{1}{T_j}} = 2k \frac{T_i T_j}{T_j - T_i} \ln \left(\frac{R_i}{R_j}\right).$$

5. Ход работы.

	Т,К	I, мкA	U, B	R, Om	ln R	$\frac{10^3}{m}, \frac{1}{m}$
1	(1033293	1058	0,241			T'K
3	297	1080	0,241			
4	393301	1116	0,188			
5 (1	309	1171	0,161			
6	343	1194 1	2,123			
7	317	1213	0,123			
8	321	1231	0,005			
10	321 325 329	1245 0	0, 035 0, 082 0, 072 0, 063			
11	333	17.69	0.063			
1 2 3 4 5 (1) 6 7 8 9	7, K (290 294 298 302 306 310 314 318 328 328 330	1, MKA 1165 1151 1137 1127 1116 1113 1402 1091 1075 1062	1, 49 1, 49 1, 49 1, 49 1, 502 1, 51 1, 535	45 55 4 3 1	R, кОм	t, °C
11	370	1030				

№	Т, К	<i>I,</i> мкА	U, B	R, ON	$\ln R$	$\frac{10^3}{T}$, $\frac{1}{K}$
12	337	1275	0,059 0,050 0,044 0,032 0,0			
13	341	1286 1295 1311	0,050			
44 45	345	1295	0,044			
45	349	1311	0,032			
46	353 357		0,0			
40	354		1			
8						
9						
10						
11						
2) MeT №	аллический образ T, K	I, MKA	U,	В	<i>R</i> , кОм	t,°C
		1042	1.5	42		
12	33734	1076	1,5	47		
43	338	1035	1 5	61		
事4	342	1023	1'5	72		
45	346	1004	1,7			
5		m and the second				
5						
5						
5						

Nº	Т, К	<i>I</i> , мкА	U, B	<i>R</i> , Ом	ln R	$\frac{10^3}{T}$, $\frac{1}{K}$
1	293	1058	0,241	227,7883	5,4284	3,4130
2	297	1080	0,211	195,3704	5,2749	3,3670
3	301	1116	0,188	168,4588	5,1267	3,3223
4	305	1148	0,161	140,2439	4,9434	3,2787
5	309	1171	0,140	119,5559	4,7838	3,2362
6	313	1194	0,123	103,0151	4,6349	3,1949
7	317	1213	0,108	89,0354	4,4890	3,1546

8	321	1231	0,095	77,1730	4,3461	3,1153
9	325	1245	0,082	65,8635	4,1876	3,0769
10	329	1257	0,072	57,2792	4,0479	3,0395
11	333	1269	0,063	49,6454	3,9049	3,0030
12	337	1275	0,059	46,2745	3,8346	2,9674
13	341	1286	0,050	38,8802	3,6605	2,9326
14	345	1295	0,044	33,9768	3,5257	2,8986

Таблица 1. Таблица экспериментальных значений для полупроводникового образца.

№	Т, К	<i>I</i> , мкА	<i>U</i> , B	<i>R</i> , кОм	t,°C
1	290	1165	1,445	1,2403	16,9
2	294	1151	1,455	1,2641	20,9
3	298	1137	1,464	1,2876	24,9
4	302	1122	1,473	1,3128	28,9
5	306	1116	1,481	1,3271	32,9
6	310	1113	1,483	1,3324	36,9
7	314	1102	1,494	1,3557	40,9
8	318	1091	1,502	1,3767	44,9
9	322	1075	1,516	1,4102	48,9
10	326	1062	1,524	1,4350	52,9
11	330	1050	1,535	1,4619	56,9
12	334	1042	1,542	1,4798	60,9
13	338	1035	1,547	1,4947	64,9
14	346	1029	1,551	1,5073	72,9

Таблица 2. Таблица экспериментальных значений для металлического образца.

6. Обработка результатов.

Заполнили таблицу 1. По данным таблицы 1 построили график 1.

Рисунок 2. График зависимости $ln(R) = ln(R) \left(\frac{1}{T}\right)$ для полупроводникового образца.

Качественно оценим линейность полученного графика: аппроксимируем график прямой ax + b и, найдя коэффициенты a и b, посчитаем коэффициент корреляции r и СКО.

$$\varphi_{1(x)} = 3,704x - 7,1992$$

Формула 1. Линейная аппроксимация графика 1.

Корреляция:

$$r_1 = \frac{\sum_{i=1}^{n} (\overline{x} - x_i)(\overline{y} - y_i)}{\sqrt{\sum_{i=1}^{n} (\overline{x} - x_i)^2 \sum_{i=1}^{n} (\overline{y} - y_i)^2}} = 0,99967$$

что говорит о сильной линейной зависимости.

СКО:

$$\delta_1 = \sqrt{\frac{\sum_{i=1}^{n} (\phi_1(x_i) - y_i)^2}{n}} = 0.015 \text{ Om}$$

Поэтому можно сделать вывод, что график 1 имеет сильную линейную зависимость. По данным таблицы 2 построили график 2:

Рисунок 3. График зависимости сопротивления от температуры для металлического образца.

Качественно оценим линейность графика 2:

$$\phi_2(x) = 0.005092x + 1.158$$
 $r_2 = 0.99308$ $\delta_2 = 0.0099 \ \mathrm{KOM}$

Так как СКО находится в рамках погрешности приборов и коэффициент корреляции > 0.9, можно говорить о сильной линейной зависимости температуры и сопротивления металлического образца.

Построили таблицу 3 для расчёта температурного коэффициента сопротивления металла:

i	j	R_i , кОм	R_j , кОм	t_i ,° C	t _j ,°C	$\alpha_{ij}, \frac{10^{-3}}{^{\circ}C}$
1	8	1,2403	1,3767	16,9	44,9	4,21
2	9	1,2641	1,4102	20,9	48,9	4,52
3	10	1,2876	1,4350	24,9	52,9	4,55
4	11	1,3128	1,4619	28,9	56,9	4,59
5	12	1,3271	1,4798	32,9	60,9	4,76
6	13	1,3324	1,4947	36,9	64,9	5,18
7	14	1,3557	1,5073	40,9	72,9	4,08

Таблица 3. Расчёт значения α_{ij} для всех пар.

Нашли величину среднего значения температурного коэффициента сопротивления:

$$\langle \alpha \rangle = 4.55 \cdot \frac{10^{-3}}{^{\circ}C}$$

И оценили погрешность с доверительной вероятностью 0,9:

$$\Delta \alpha = t_{0.9,6} \cdot \sqrt{\frac{\sum (\alpha_i - \langle \alpha \rangle)^2}{n(n-1)}} = 0.19 \cdot \frac{10^{-3}}{^{\circ}C}$$

Результат для температурного коэффициента сопротивления металла:

$$\alpha = (4,55 \pm 0,19) \cdot \frac{10^{-3}}{^{\circ}C}$$

В этот доверительный интервал попадают два значения из таблицы:

Олово: $4.4 \cdot 10^{-3} \cdot {}^{\circ}C^{-1}$

Вольфрам: $4.5 \cdot 10^{-3} \cdot {}^{\circ}C^{-1}$

Значение ближе у вольфрама, предположим, что образец был из этого металла.

Для вычисления запрещённой зоны полупроводника построили таблицу 4:

i	j	R_i , Ом	R_j , Ом	<i>t</i> _i , K	t_j , K	$E_{g_{ij}}$, 10^{-20} Дж	$\mathit{E}_{g_{ij}}$, эВ
1	8	227,79	77,17	293	321	10,04	0,63
2	9	195,37	65,86	297	325	10,35	0,65
3	10	168,46	57,28	301	329	10,54	0,66
4	11	140,24	49,65	305	333	10,40	0,65
5	12	119,56	46,27	309	337	9,75	0,61
6	13	103,02	38,88	313	341	10,26	0,64
7	14	89,04	33,98	317	345	10,39	0,65

Таблица 4. Расчёт запрещённой зоны полупроводника для каждой пары.

Нашли среднюю величину для двух размерностей и оценили с доверительной вероятностью 0,9:

$$E_g = (0,639 \pm 0,009)$$
 эВ = $(10,246 \pm 0,639) \cdot 10^{-20}$ Дж

Сравниваем со значениями ширины запрещённых зон полупроводников при температуре 300 K, в наш интервал подходит германий со значением $0,65 \ \ni B$.

7. Вывод.

В ходе работы были измерены значения температуры, тока, напряжения и рассчитаны соответствующие значения сопротивления для обоих типов образцов.

Результаты обработки данных показали сильную линейную зависимость между ln(R) и 1/T или R(t) для полупроводника и металла соответственно. Коэффициенты корреляции и СКО подтверждают эту зависимость.

Затем были проведены расчеты температурного коэффициента сопротивления металла и ширины запрещенной зоны полупроводника. Доверительные интервалы с доверительной вероятностью 0,9 позволили сделать вывод о том, что значения, полученные для металлического образца, соответствуют характеристикам вольфрама, а для полупроводника соответствуют германию.

Линейные зависимости, доказанные в расчётах, соответствуют теоретическим данным и зависимостям.