Probabilistic Method and Random Graphs

Lecture 2. Moments and Inequalities ¹

Xingwu Liu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

Preface

Questions, comments, or suggestions?

Monty Hall Problem?

Review

- Probability axioms
- Union Bound
- Independence
- Conditional probability and chain rule
 - $\Pr(\bigcap_{i=1}^n A_i) = \prod_{i=1}^n \Pr(A_i | \bigcap_{j=1}^{i-1} A_j)$
- Sandom variables: expectation, linearity, Bernoulli/binomial/geometric distribution
- **o** Coupon collector's problem: $\mathbb{E}[X] = nH(n) \approx n \ln n$

Coupon collector's problem: fight the salesman

Expectation is too weak

Average has nothing to do with the probability of exceeding it, $\operatorname{Guy}!$

Example

- Random variables Y_{α} with $\alpha \geq 1$
- Let $\Pr(Y_{\alpha} = \alpha) = \frac{1}{\alpha}$ and $\Pr(Y_{\alpha} = 0) = 1 \frac{1}{\alpha}$
- $\Pr(Y_{\alpha} \ge 1) = \frac{1}{\alpha}$ can be arbitrarily close to 1

But, mh...

Possible to exceed so much with high probability?

An inequality for tail probability

Markov's inequality

If $X \ge 0$ and a > 0, $\Pr(X \ge a) \le \frac{\mathbb{E}[X]}{a}$.

Proof:

$$\mathbb{E}[X] = \sum_{i \ge 0} i * \Pr(X = i) \ge \sum_{i \ge a} i * \Pr(X = i)$$

$$\ge \sum_{i \ge a} a * \Pr(X = i) = a * \Pr(X \ge a).$$

Observations

- Intuitive meaning (level of your income)
- With 12 coupons, $\mathbb{E}[X] \approx 30, \Pr(X \ge 200) < 1/6$
- Loose? Tight when only expectation is known!

Conditional expectation

Definition

$$\mathbb{E}[Y|Z = z] = \sum_{y} y * \Pr(Y = y|Z = z)$$

Theorem

$$\mathbb{E}[Y] = \mathbb{E}_Z[\mathbb{E}_Y[Y|Z]] \triangleq \sum_z \Pr(Z=z) \mathbb{E}[Y|Z=z]$$

Proof.

$$\begin{array}{ll} \sum_z \Pr(Z=z) \mathbb{E}[Y|Z=z] = & \sum_z \Pr(Z=z) \sum_y y \frac{\Pr(Y=y,Z=z)}{\Pr(Z=z)} \\ = & \sum_y y \sum_z \Pr(Y=y,Z=z) \\ = & \sum_y y \Pr(Y=y) = \mathbb{E}[Y] \end{array}$$

Application: expected run-time of Quicksort

Via conditional expectation

- X_n : the runtime of sorting an n-sequence.
- K: the rank of the pivot.
- If K=k, the pivot divides the sequence into a (k-1)-sequence and an (n-k)-sequence.
- Given K = k, $X_n = X_{k-1} + X_{n-k} + n 1$.
- $\mathbb{E}[X_n|K=k] = \mathbb{E}[X_{k-1}] + \mathbb{E}[X_{n-k}] + n 1.$
- $\mathbb{E}[X_n] = \sum_{k=1}^n \Pr(K = k) (\mathbb{E}[X_{k-1}] + \mathbb{E}[X_{n-k}] + n 1)$ = $\sum_{k=1}^n \frac{\mathbb{E}[X_{k-1}] + \mathbb{E}[X_{n-k}]}{n} + n - 1.$
- Please verify that $\mathbb{E}[X_n] = 2n \ln n + O(n)$.

Application: expected run-time of Quicksort

Via linearity + indicators

- y_i : the i-th biggest element
- ullet Y_{ij} : indicator for the event that y_i,y_j are compared
- \bullet $Y_{ij}=1$ iff the first pivot in $\{y_i,y_{i+1},...y_j\}$ is y_i or y_j
- $\mathbb{E}[Y_{ij}] = \Pr(Y_{ij} = 1) = \frac{2}{j-i+1}$
- $X_n = \sum_{i=1}^n \sum_{j=i+1}^n Y_{ij}$
- $\mathbb{E}[X_n] = \sum_{i=1}^n \sum_{j=i+1}^n \mathbb{E}[Y_{ij}]$
- It is easy to see that $\mathbb{E}[X_n] = (2n+2)\sum_{i=1}^n \frac{1}{i} + O(n)$

Moments of random variables

Why moments?

- Global features of a random variable.
- ullet Expectation is too weak: can't distinguish Y_{lpha}

Definition

- kth moment: $\mathbb{E}[X^k]$.
- Variance: $Var[X] = \mathbb{E}[(X \mathbb{E}[X])^2]$ Show how far the values are away from the average.
- Examples: $Var[Y_{\alpha}] = \alpha 1$
- Covariance: $Cov(X,Y) \triangleq \mathbb{E}[(X \mathbb{E}[X])(Y \mathbb{E}[Y])].$
- It's zero in case of independence.

Properties of the variance

$$Var[X + Y] = Var[X] + Var[Y] + 2Cov(X, Y)$$

$$Var[X + Y] = Var[X] + Var[Y]$$
 if X and Y are independent.

$$Var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Variances of some random variables

Binomial random variable with parameters n and p

- $X = \sum_{k=1}^{n} X_i$ with the X_i 's independent.
- $Var[X_i] = p p^2 = p(1 p)$.
- $Var[X] = \sum_{k=1}^{n} Var[X_i] = np(1-p)$

Geometric random variable with parameter p

Straightforward computing shows that $Var[X] = \frac{1-p}{p^2}$

Coupon collector's problem

- We know that $Var[X_i] = \frac{1-p_i}{p_i^2}$.
- $Var[X] = \sum_{k=1}^{n} Var[X_i] \le \sum_{k=1}^{n} \frac{n^2}{(n-k+1)^2} \le \frac{\pi^2 n^2}{6}$

A new argument against the salesman

Chebyshev's inequality

- $\Pr(|X \mathbb{E}[X]| \ge a) \le \frac{Var[X]}{a^2}$.
- An immediate corollary from Markov's inequality.

Coupon collector's problem

$$\Pr(X \ge 200) = \Pr(|X - \mathbb{E}[X]| \ge 170) \le \frac{255}{170^2} < 0.01$$

A new argument against the salesman

Chebyshev's inequality

- $\Pr(|X \mathbb{E}[X]| \ge a) \le \frac{Var[X]}{a^2}$.
- An immediate corollary from Markov's inequality.

Coupon collector's problem

$$\Pr(X \ge 200) = \Pr(|X - \mathbb{E}[X]| \ge 170) \le \frac{255}{170^2} < 0.01$$

Trump card

- By union bound, $\Pr(|X nH_n| \ge 5nH_n) \le \frac{1}{n^5}$.
- Hint: Consider the probability of not containing the ith coupon after $(c+1)n\ln n$ steps.

Union bound beats the others. What a surprise!

Brief introduction to Chebyshev

- May 16, 1821 –
 December 8, 1894
- A founding father of Russian mathematics

- Probability, statistics, mechanics, geometry, number theory
- Chebyshev inequality, Bertrand-Chebyshev theorem, Chebyshev polynomials, Chebyshev bias
- Aleksandr Lyapunov, Markov brothers

Chernoff bounds: inequalities of independent sum

Motivation

- 1-moment ⇒ Markov's inequality
- 1- and 2-moments ⇒ Chebyshev's inequality
- Q: more information ⇒ stronger inequalities?

Examples

Flip a fair coin for n trials. Let X be the number of Heads, which is around the expectation $\frac{n}{2}$. How about its concentration?

- Markov's inequality: $\Pr(X \frac{n}{2} > \sqrt{n \ln n}) < \frac{n}{n + 2\sqrt{n \ln n}} \leadsto 1$
- Chebyshev's inequality: $\Pr(X \frac{n}{2} > \sqrt{n \ln n}) < \frac{1}{\ln n}$
- Can we do better due to independent sum? YES!

Chernoff bounds: basic form

Chernoff bounds

Let $X=\sum_{i=1}^n X_i$, where $X_i's$ are **independent** Poisson trials. Let $\mu=\mathbb{E}[X]$. Then

- 1. For any $\delta > 0$, $\Pr(X \ge (1+\delta)\mu) \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}$.
- 2. For any $1 > \delta > 0$, $\Pr(X \le (1 \delta)\mu) \le \left(\frac{e^{-\delta}}{(1 \delta)^{(1 \delta)}}\right)^{\mu}$.

Remarks

Note that $0 < \frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} < 1$ when $\delta > 0$. The bound in 1 exponentially deceases w.r.t. $\mu!$ And so is the bound in 2.

Proof of the upper tail bound

For any $\lambda > 0$,

$$\Pr(X \ge (1+\delta)\mu) = \Pr\left(e^{\lambda X} \ge e^{\lambda(1+\delta)\mu}\right) \le \frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda(1+\delta)\mu}}.$$

$$\mathbb{E}\left[e^{\lambda X}\right] = \mathbb{E}\left[e^{\lambda \sum_{i=1}^{n} X_i}\right] = \mathbb{E}\left[\prod_{i=1}^{n} e^{\lambda X_i}\right] = \prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda X_i}\right].$$

Let
$$p_i = \Pr(X_i = 1)$$
 for each i . Then,
$$\mathbb{E}\left[e^{\lambda X_i}\right] = p_i e^{\lambda \cdot 1} + (1 - p_i) e^{\lambda \cdot 0} = 1 + p_i (e^{\lambda} - 1) \le e^{p_i (e^{\lambda} - 1)}.$$

So,
$$\mathbb{E}\left[e^{\lambda X}\right] \leq \prod_{i=1}^n e^{p_i(e^{\lambda}-1)} = e^{\sum_{i=1}^n p_i(e^{\lambda}-1)} = e^{(e^{\lambda}-1)\mu}.$$

Thus,
$$\Pr(X \ge (1+\delta)\mu) \le \frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda(1+\delta)\mu}} \le \frac{e^{(e^{\lambda}-1)\mu}}{e^{\lambda(1+\delta)\mu}} = \left(\frac{e^{(e^{\lambda}-1)}}{e^{\lambda(1+\delta)}}\right)^{\mu}$$
. Let $\lambda = \ln(1+\delta) > 0$, and the proof ends.

Lower tail bound and application

Lower tail bound

Can be proved likewise.

A tentative application

Recall the coin flipping example. By the Chernoff bound,

$$\Pr(X - \frac{n}{2} > \sqrt{n \ln n}) < \frac{e^{\sqrt{n \ln n}}}{\left(1 + 2\sqrt{\frac{\ln n}{n}}\right)^{\left(\frac{n}{2} + \sqrt{n \ln n}\right)}}$$

Even hard to figure out the order.

Is there a bound that is more friendly?

Chernoff bounds: a simplified form

Simplified Chernoff bounds

Let $X = \sum_{i=1}^n X_i$, where $X_i's$ are independent Poisson trials. Let $\mu = \mathbb{E}[X]$,

- 1. $\Pr(X \ge (1+\delta)\mu) \le e^{-\frac{\delta^2}{2+\delta}\mu}$ for any $\delta > 0$;
- 2. $\Pr(X \le (1 \delta)\mu) \le e^{-\frac{\delta^2}{2}\mu}$ for any $1 > \delta > 0$.

Application to coin flipping

 $\Pr(X - \frac{n}{2} > \sqrt{n \ln n}) \le n^{-\frac{2}{3}}$. This is exponentially tighter than Chebychev's inequality $\frac{1}{\ln n}$.

Proof and Remarks

Idea of the proof

- $\begin{aligned} 1. \ \ &\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} \leq e^{-\frac{\delta^2}{2+\delta}} \Leftrightarrow \delta (1+\delta) \ln(1+\delta) < -\frac{\delta^2}{2+\delta} \Leftrightarrow \\ &\ln(1+\delta) > \frac{2\delta}{2+\delta} \ \text{for} \ \delta > 0. \end{aligned}$
- 2. Use calculus to show that $\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}} \leq e^{-\frac{\delta^2}{2}}.$

Remark 1

When $1>\delta>0$, we have $-\frac{\delta^2}{2+\delta}<-\frac{\delta^2}{3}$, so

$$\Pr(X \geq (1+\delta)\mu) \leq e^{-\frac{\delta^2}{3}\mu} \text{, and } \Pr(|X-\mu| \geq \delta\mu) \leq 2e^{-\frac{\delta^2}{3}\mu}.$$

Remark 2

The bound is simpler but looser. Generally, it is outperformed by the basic Chernoff bound. See example.

Example: random rounding

Minimum-congestion path planning

- G = (V, E) is an undirected graph. $D = \{(s_i, t_i)\}_{i=1}^m \subseteq V^2$.
- Find a path P_i connecting (s_i, t_i) for every i.
- Objective: minimize the congestion $\max_{e \in E} cong(e)$, the number of the paths among $\{P_i\}_{i=1}^m$ that contain e.

This problem is NP-hard, but we will give an approximation algorithm based on randomized rounding.

- Model as an integer program
- Relax it into a linear program
- Round the solution
- Analyze the approximation ratio

ILP and its relaxation

Notation

 \mathbb{P}_i : the set of candidate paths connecting s_i and t_i ; f_P^i : the indicator of whether we pick path $P \in \mathbb{P}_i$ or not;

C: the congestion in the graph.

$$\begin{array}{ccc} \textbf{ILP} & \textbf{LP} \\ \text{Min } C & \text{Min } C \\ s.t. \sum_{P \in \mathbb{P}_i} f_P^i = 1, \forall i & s.t. \sum_{P \in \mathbb{P}_i} f_P^i = 1, \forall i \\ \sum_i \sum_{e \in P \in \mathbb{P}_i} f_P^i \leq C, \forall e & \Rightarrow & \sum_i \sum_{e \in P \in \mathbb{P}_i} f_P^i \leq C, \forall e \\ f_P^i \in \{0,1\}, \forall i, P & f_P^i \in [0,1], \forall i, P \end{array}$$

Round a solution to the LP

For every i, randomly pick **one** path $P_i \in \mathbb{P}_i$ with probability f_P^i . Use the set $\{P_i\}_{i=1}^n$ as an approximate solution to the ILP.

Approximation ratio

Notation

C: optimum congestion of the ILP.

 C^* : optimum congestion of the LP. $C^* \leq C$.

 X_i^e : indicator of whether $e \in P_i$.

 $X^e \triangleq \sum_i X_i^e$: congestion of the edge e.

 $X \triangleq \max_e X^e$: the network congestion.

Objective

We hope to show that $\Pr(X>(1+\delta)C)$ is small for a small δ . By union bound, we only need to show $\Pr(X^e>(1+\delta)C)<\frac{1}{n^3}$ for every e.

Apply Chernoff bound to $X^e = \sum_i X_i^e$

Prove $\Pr(X^e > (1 + \delta)C) < \frac{1}{n^3}$

Easy facts

$$\begin{array}{l} \mathbb{E}[X_i^e] = \sum_{e \in P \in \mathbb{P}_i} f_P^i. \\ \mu = \mathbb{E}[X^e] = \sum_i \mathbb{E}[X_i^e] = \sum_i \sum_{e \in P \in \mathbb{P}_i} f_P^i \leq C^* \leq C. \end{array}$$

If $C = \omega(\ln n)$, δ can be arbitrarily small

Proof: For any $0 < \delta < 1$, $\Pr(X^e > (1+\delta)C) \le e^{-\frac{\delta^2 C}{2+\delta}} \le \frac{1}{n^3}$.

If
$$C = O(\ln n)$$
, $\delta = \Theta(\ln n)$

Proof:
$$\Pr(X^e > (1+\delta)C) \le e^{-\frac{\delta^2 C}{2+\delta}} \le e^{-\frac{\delta}{2}}$$
 for $\delta \ge 2$. So, $\Pr(X^e > (1+\delta)C) \le \frac{1}{n^3}$ when $\delta = 6 \ln n$.

Prove $\Pr(X^e > (1+\delta)C) < \frac{1}{n^3}$

If
$$C = O(\ln n)$$
, δ can be improved to be $\delta = \Theta\left(\frac{\ln n}{\ln \ln n}\right)$

Proof: By the basic Chernoff bounds,

$$\Pr(X^e > (1+\delta)C) \le \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{C} \le \frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}.$$

When
$$\delta = \Theta\left(\frac{\ln n}{\ln \ln n}\right)$$
, $(1+\delta)\ln(1+\delta) = \Theta(\ln n)$ and $\delta - (1+\delta)\ln(1+\delta) = \Theta(\ln n)$.

Remarks of the application

Remark 1

It illustrates the practical difference of various Chernoff bounds.

Remark 2

Is it a mistake to use the inaccurate expectation?

No! It's a powerful trick.

If $\mu_L \leq \mu \leq \mu_H$, the following bounds hold:

- Upper tail: $\Pr(X \ge (1+\delta)\mu_H) \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu_H}$.
- Lower tail: $\Pr(X \leq (1 \delta)\mu_L) \leq \left(\frac{e^{-\delta}}{(1 \delta)^{(1 \delta)}}\right)^{\mu_L}$.

Chernoff bounds + Union bound: a paradigm

A high-level picture: Want to upper-bound $\Pr[something\ bad]$.

- 1. By Union bound, $\Pr(\text{something bad}) \leq \sum_{i=1}^{\text{Large}} \Pr(\text{Bad}_i);$
- 2. By Chernoff bounds, $Pr(Bad_i) \leq minuscule$ for each i;
- 3. $Pr(something bad) \leq Large \times minuscule = small.$

Questions

Why the Chernoff bound is better? Note that it's rooted at Markov's Inequality.

Can it be improved by using functions other than exponential?

References

- 1. http://tcs.nju.edu.cn/wiki/index.php/
- 2. http://www.cs.princeton.edu/courses/archive/fall09/cos521/Handouts/probabilityandcomputing.pdf
- 3. http://www.cs.cmu.edu/afs/cs/academic/class/15859-f04/www/