MA446 Grupos e Representações - Exercícios P3

Adair Neto

25 de junho de 2023

Lista 3

Exercício 1

Questão: Seja Q₈ o grupo $\langle a, b \mid a^4 = 1, b^2 = a^2, bab^{-1} = a^{-1} \rangle$.

- 1. Mostre que $|Q_8| = 8$.
- 2. Escreva os caracteres irredutíveis de Q₈.

Resolução:

- 1. $|Q_8| = 8$.
 - Note que podemos escrever

$$Q_8 = \langle a^i b^j \mid 0 \le i \le 3, \ 0 \le j \le 1 \rangle$$

· Temos os elementos

$$Q_8 = \{1, a, a^2, a^3, b, ab, a^2b, a^3b\}$$

- Assim, $|Q_8| = 8$. Observe que $Q_8 = \{1, -1, i, -i, j, -j, k, -k\}$ é o grupo dos quatérnios.
- 2. Caracteres irredutíveis de Q₈.
 - Classes de conjugação de Q8:
 - Como $bab^{-1} = a^3$, temos que $a e a^3$ são conjugados.
 - Note que a^2 é o único elemento de ordem 2, formando uma classe de conjugação.
 - Como $a^3ba = a^2b$ e $b(ab)b^{-1} = a^3b$ (pois $ba = a^{-1}b$), temos as seguintes classes de conjugação:

$$\{1\}, \{a^2\}, \{a, a^3\}, \{ab, a^3b\}, \{b, a^2b\}$$

- Como o número de classes de conjugação é o número de representações irredutíveis, temos cinco representações irredutíveis.
- Representações de grau um:
 - Seja $\rho: Q_8 \longrightarrow \mathbb{C}^*$ representação linear.
 - Vejamos que $\rho(1) = \rho(-1) = 1$. Sabemos que $(\rho(-1))^2 = \rho(1) = 1$, ou seja, $\rho(-1) = \pm 1$. Suponha que $\rho(-1) = -1$. Assim, como ab = -ba, teríamos

$$\rho(ab) = \rho(a)\rho(b) = -\rho(a)\rho(b)$$

o que é absurdo.

- Como $(\rho(a))^2 = (\rho(b))^2 = 1$, temos as seguintes possibilidades: $\rho(1) = \rho(-1) = 1$, $\rho(a) = \pm 1$,
- Assim, temos quatro representações de grau um.
- Representação de grau dois:

 - Denote por n_1, \ldots, n_r as dimensões das representações irredutíveis não isomorfas entre si de G. Como $|G| = n_1^2 + \cdots + n_r^2$ e já sabemos que temos quatro representações de grau um, segue que r = 5 e $n_r = 2$. Ou seja, temos uma representação de grau dois.
 - Sejam

$$A = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

- Observe que $A^4 = I$, $A^2 = B^2$ e $BAB^{-1} = A^{-1}$.

- Assim, podemos definir o homomorfismo de grupos $\rho_5: \mathbb{Q}_8 \longrightarrow \mathrm{GL}_2(\mathbb{C})$ como $\rho_5(a)\nu = \mathrm{A}\nu$ e $\rho_5(b)\nu = \mathrm{B}\nu$
- para todo $v \in GL_2(\mathbb{C})$.

 Como $(\chi_5, \chi_5) = \frac{1}{|G|} \sum_{g \in G} \chi_5(g) \overline{\chi_5(g)} = 1$, segue que ρ_5 é irredutível.
- Tabela de caracteres:

	1	а	b	ab	a^2
χ_1	1	1	1	1	1
χ_2	1	1	-1	-1	1
χ3	1	-1	1	-1	1
χ4	1	-1	-1	1	1
χ ₅	2	0	0	0	-2

Exercício 2

Questão: Sejam A um grupo abeliano finito, B um subgrupo de A e φ um caracter irredutível de B. Mostre que

- 1. Existe um caracter irredutível ψ de A tal que $\psi|_{B} = \varphi$.
- 2. O número de extensões ψ é [A : B].

Resolução:

- 1. Existência de caracter irredutível.
 - Primeiro mostramos que φ pode ser estendido a um subgrupo de A que é maior do que B.
 - Tome $x \in A \setminus B$ e d o menor inteiro tal $x^d \in B$. Note que $x^n \in B$ sse. $n \notin multiplo de <math>d$.
 - Seja $a \in \mathbb{C}$ tal que $a^d = \varphi(x^d)$ e defina $C = \langle B, x \rangle$. Observe que os elementos de C são da forma $x^n b$, para algum $b \in B$.

 - Podemos definir um caracter $\tilde{\varphi}$ de C como $\tilde{\varphi}(x^nb)=a^n\varphi(b)$. Se $x^nb=x^mb'$, então $b'b^{-1}=x^{n-m}$. Assim, n-m=dk, para algum k. Então,

$$\varphi(b')\varphi(b)^{-1} = \varphi(x^{n-m}) = \varphi(x^d)^k = a^dk = a^{n-m}$$

- Isso implica que $a^n \varphi(b) = a^m \varphi(b')$. Portanto, $\tilde{\varphi}$ está bem definido.
- Claramente, $\tilde{\varphi}$ é homomorfismo de grupos. Portanto, é um caracter.
- Seja S o conjunto de subgrupos $C \le A$ tais que $B \subseteq C$ e φ pode ser estendido a C.
- Como B ∈ S, temos que S é não vazio. Portanto, podemos tomar K como sendo o elemento maximal.
- Caso K seja um subgrupo próprio de A, então a extensão de arphi a K existe, mas não pode ser estendida a um subgrupo maior, o que contradiz a afirmação acima. Logo, K = A e ψ é a extensão de φ a K.
- 2. Número de extensões.
 - Pela parte 1, sabemos que se $B_0 \le A$, então podemos estender φ para um subgrupo B_1 de A que é maior do que B₀. Isso nos dá uma cadeia

$$B_0 \subsetneq B_1 \subsetneq B_2 \subsetneq \cdots \subsetneq B_m = A$$

· Logo, o número total de extensões é

$$\prod [B_{i+1}:B_i] = [A:B]$$

Exercício 3

Questão: Existe um grupo G finito e um caracer χ de G tal que $\sum_{g \in G} \chi(g) = 1/2$?

Resolução:

Não, pois $\chi(g)$ é integral sobre \mathbb{Z} .

Exercício 4

Questão: Sejam $\rho: G \longrightarrow GL(V)$ uma representação linear, H um subgrupo de G e U um subespaço $\rho(H)$ -invariante de V. Mostre que:

1. A dimensão de menor subespaço linear $\rho(G)$ -invariante de V que contém U é menor ou igual a dim(U)[G:H].

2. Se ρ é irredutível, então dim(V) $\leq m[G:H]$, onde m é a maximal dimensão de representação irredutível de H.

Resolução:

- 1. Dimensão de menor subespaço linear.
 - Escreva G como união disjunta de classes laterais:

$$G = \bigcup_{1 \le i \le k} g_i H$$

• Como $\rho(H)(U) = U$, definindo W como o subespaço de V gerado por $\rho(G)(U)$, temos que

$$\rho(G)(U) = \bigcup_{1 \le i \le k} \rho(g_i) \underbrace{\rho(H)(U)}_{\subseteq U} \subseteq W$$

• E como $\rho(g)$ é linear, temos que $\rho(g)(\lambda u) = \lambda \rho(g)(u)$, $\lambda \in \mathbb{C}$. E como $\rho(g)(U)$ é subespaço de V, temos também

$$\rho(g)(u_1) + \rho(g)(u_2) = \rho(g)(u_1 + u_2)$$

- Note que $\rho(g_1)(u_1) + \rho(g_2)(u_2) \neq \rho(g)(u)$.
- Com isso, podemos escrever

$$W = \rho(g_1)(U) + \rho(g_2)(U) + \cdots + \rho(g_k)(U)$$

- Observe que U ⊆ W (basta tomar g₁ = 1_G). Assim, W é o menor subespaço linear ρ(G)-invariante de V que contém U.
- Portanto, como k = [G : H],

$$\dim \mathbf{W} \le \sum_{1 \le i \le k} \dim \rho(g_i)(\mathbf{U}) = \dim(\mathbf{U})k = \dim(\mathbf{U})[\mathbf{G} : \mathbf{H}]$$

- 2. $\dim(V) \leq m[G:H]$.
 - Considere a restrição $\rho \mid_H : H \longrightarrow GL(V)$ e escolha $U \neq 0$ um subespaço de V que é $\rho(H)$ -invariante.
 - Como ρ é irredutível, segue que $\rho|_{H}$ é irredutível e dim $U \leq m$. Portanto,

$$\dim V = \dim W \le \dim U[G:H] \le m[G:H]$$

Exercício 5

Questão: Seja G um p-grupo não abeliano de ordem p^3 . Ache o número de caracteres irredutíveis de G e as dimensões desses caracteres. Dica: Z(G) = G' e |Z(G)| = p.

Resolução:

- Seja $\rho : G \longrightarrow GL(V)$ representação irredutível.
- Da lista 2 (exercício 10), sabemos que G' = Z(G). Assim, |G'| = |Z(G)| = p e $[G:G'] = p^2$. I.e., temos $|G/G'| = p^2$ representações de grau um.
- Como o grau de uma representação divide a ordem do grupo, temos que os possíveis graus para uma representação de G são {1,p,p²,p³}.
- Escreva Z(G) = $\{g_1 = 1_G, g_2, \dots, g_p\}$. Assim, ${}^Gg_i = \{g_i\}$ para $1 \le i \le p$.
- Sejam $h_1, \ldots, h_{p^2-1} \in G \setminus G'$. Então $h_i G' \neq h_j G'$ se $i \neq j$.
 - De fato, se $gh_ig^{-1} = h_i$, então

$$h_j = h_i h_i^{-1} g h_i g^{-1} \in h_i G'$$

porque $h_i^{-1}gh_ig^{-1} = [h_i, g^{-1}] \in G'$.

- Isso implica que $h_jG'=h_iG'$, o que é absurdo. Portanto, $h_iG'\neq h_jG'$ para $i\neq j$.
- Com isso, temos que ${}^Gh_i \neq {}^Gh_i$ para $1 \le i, j \le p^2 1$.
- Ou seja, temos as classes de conjugação

$${}^{G}g_{1}, {}^{G}g_{2}, \dots, {}^{G}g_{p}, {}^{G}h_{1}, \dots, {}^{G}h_{p^{2}-1}$$

todas distintas entre si. Observe que essa lista contém $p^2 + p - 1$ classes de conjugação. Verifiquemos que essas são todas as classes de conjugação:

$$p^{3} = |G| = \sum_{i=1}^{n} n_{i}^{2} \ge \underbrace{1 + \dots + 1}_{p^{2} \text{ vezes}} + \underbrace{p^{2} + \dots + p^{2}}_{p-1 \text{ vezes}} = p^{2} + (p-1)p^{2} = p^{3}$$

• Logo, temos p^2 representações de grau um e (p-1) representações de grau p.

Exercício 6

Questão: Existe grupo finito G com oito elementos e caracter χ com valores 1, -1, 2, 0, 0, -2, 0, 0?

Resolução:

Não, pois

$$(\chi,\chi) = \frac{1}{8}(1+1+4+4) = \frac{10}{8} \notin \mathbb{Z}$$

Exercício 7

Questão: Existe um grupo finito G tal que G tem 7 representações irredutíveis, 3 de dimensão 1 e 4 de dimensão 2? **Resolução:**

- Sabemos que se n_1, \ldots, n_α são as dimensões das representações irredutíveis de G, então $|G| = n_1^2 + \cdots + n_\alpha^2$.
- · Assim, temos

$$|G| = 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 = 19$$

- Como 19 é primo, G é cíclico e, portanto, abeliano.
- Ou seja, $G' = 1_G$. Mas isso implica que todas as representações irredutíveis têm grau um (e teríamos |G/G'| = |G| = 19 representações de grau um), o que é absurdo.

Exercício 8

Questão: Seja $\rho: G \longrightarrow GL(V)$ uma representação irredutível onde $|G| = p^3$ e dim $(V) \neq 1$. Mostre que ρ é injetivo. **Resolução:**

- Seja N = $\ker \rho = \{g \in G \mid \rho(g) = \mathrm{id}_V\}$ e suponha N $\neq 1$.
- Como N \neq 1 implica que dim V = p, segue que N \leq G.
- Defina

$$\tilde{\rho}: G/N \longrightarrow GL(V)$$

$$gN \longmapsto \rho(g)$$

- Como $|G/N| < p^3$, temos que $|G/N| \in \{p, p^2\}$. Portanto, G/N é abeliano.
- Sabemos que representação irredutível de grupo abeliano tem grau um, o que implica que dim V = 1, o que contradiz nosso enunciado.
- Logo, $\ker \rho = 1$ e ρ é injetivo.

Exercício 9

Questão: Seja ρ uma representação irredutível de grau n de um grupo G. Seja χ o caracter de ρ . Mostre que

- 1. Se $g \in Z(G)$, então o operador linear $\rho(g)$ é múltiplo escalar de id_V, assim, $|\chi(g)| = n$. Dica: Use o Lema de Schur.
- 2. $n^2 \le |G|/|Z(G)|$.
- 3. Se ρ é injetivo, então o grupo Z(G) é cíclico.

Resolução:

- 1. Seja $g \in Z(G)$ e mostremos que $\rho(g) = \lambda id_V e |\chi(g)| = n$.
 - Então $\rho(g)\rho(h) = \rho(h)\rho(g)$ e, assim, $\rho(gh) = \rho(hg)$, para todo $h \in G$.
 - Portanto, pelo Lema de Schur, $\rho(g)$ é uma homotetia, i.e.,

$$\rho(g) = \lambda \operatorname{id}_{V} = \begin{pmatrix} \lambda & & & \\ & \lambda & & \\ & & \ddots & \\ & & & \lambda \end{pmatrix}$$

- λ é raiz da unidade.
 - Se |Z(G)| = k, então $g^k = 1$. Assim,

$$id_{V} = \rho(1) = \rho(g^{k}) = \rho(g)^{k} = \begin{pmatrix} \lambda^{k} & & \\ & \ddots & \\ & & \lambda^{k} \end{pmatrix}$$

- Portanto, $\lambda^k = 1$ e, assim, λ é raiz da unidade.
- Portanto, $|\chi(g)| = |n\lambda| = n |\lambda| = n$, como queríamos.
- 2. $n^2 \le |G|/|Z(G)|$.
 - Como ρ é irredutível,

$$1 = (\chi, \chi) = \frac{1}{|G|} \sum_{h \in G} \chi(h) \overline{\chi(h)} = \frac{1}{|G|} \sum_{h \in G} |\chi(h)|^2$$

· Com isso,

$$|G| = \sum_{h \in G} |\chi(h)|^2 \ge \sum_{g \in Z(G)} |\chi(g)|^2 = n^2 |Z(G)|$$

- Logo, $n^2 \le |G|/|Z(G)|$.
- 3. Se ρ é injetivo, então o grupo Z(G) é cíclico.
 - Considere a restrição $\rho \mid_{Z(G)} : Z(G) \longrightarrow GL(V)$ que mapeia $g \longmapsto \rho(g) = \lambda \text{ id}_V$ e defina

$$\theta: Z(G) \longrightarrow \mathbb{C}^*$$
$$g \longmapsto \lambda$$

- Note que como ρ é homomorfismo de grupos, então θ é homomorfismo de grupos. E como ρ é injetivo, θ é injetivo.
- Assim, temos que $Z(G) \cong Im(\theta) \leq \mathbb{C}^*$. Como subgrupo finito de K^* é cíclico, temos que Z(G) é cíclico.

Exercício 10

Questão: Seja V um espaço vetorial sobre $\mathbb C$ de dimensão finita. E seja

$$\theta: V \otimes V \longrightarrow V \otimes V$$

o operator linear tal que $\theta(v_1 \otimes v_2) = v_2 \otimes v_1$.

Mostre que $V \otimes V = \text{Sym}^2(V) \oplus \text{Alt}^2(V)$ como espaço vetorial.

Resolução:

• Se $x \in \text{Sym}^2(V) \cap \text{Alt}^2(V)$, então

$$x = \theta(x) = -x \implies x = 0 \implies \text{Sym}^2(V) \cap \text{Alt}^2(V) = \{0\}$$

• Para todo $x \in V \otimes V$ podemos escrever

$$x = \frac{1}{2}(x + \theta(x)) + \frac{1}{2}(x - \theta(x))$$

- Como θ^2 é a identidade, temos que $\frac{1}{2}(x + \theta(x)) \in \text{Sym}^2(V)$ e $\frac{1}{2}(x \theta(x)) \in \text{Alt}^2(V)$.
- Logo, $V \otimes V = Sym^2(V) \oplus Alt^2(V)$.

Exercício 11

Questão: Seja $\rho: G \longrightarrow GL(V)$ uma representação linear.

- 1. Mostre que $W_1 = \operatorname{Sym}^2(V)$ e $W_2 = \operatorname{Alt}^2$ são $(\rho \otimes \rho)$ (G)-invariantes.
- 2. Calcule os caracteres de subrepresentações $(\rho \otimes \rho)^{W_1}$ e $(\rho \otimes \rho)^{W_2}$ usando o caracter χ_{ρ} de ρ .

Resolução:

- 1. Queremos verificar que $(\rho \otimes \rho)(g)(W_i) \subseteq W_i$ (i = 1, 2) para todo $g \in G$.
 - Temos as seguintes bases para W₁ e W₂:

$$\operatorname{Sym}^{2}(V) = \langle \{ v_{i} \otimes v_{i}, \ v_{i} \otimes v_{j} + v_{j} \otimes v_{i} \mid i < j \} \rangle$$
$$\operatorname{Alt}^{2}(V) = \langle \{ v_{i} \otimes v_{j} - v_{j} \otimes v_{i} \mid i < j \} \rangle$$

· Abrindo as contas,

$$(\rho \otimes \rho)(g)(v_i \otimes v_i) = \rho(g)(v_i) \otimes \rho(g)(v_i)$$

$$(\rho \otimes \rho)(g)(v_i \otimes v_j + v_j \otimes v_i) = \rho(g)(v_i) \otimes \rho(g)(v_j) + \rho(g)(v_j) \otimes \rho(g)(v_i)$$

$$(\rho \otimes \rho)(g)(v_i \otimes v_j - v_j \otimes v_i) = \rho(g)(v_i) \otimes \rho(g)(v_j) - \rho(g)(v_j) \otimes \rho(g)(v_i)$$

- 2. Caracteres de subrepresentações:
 - Denotemos por χ^{W_1} o caracter de $(\rho \otimes \rho)^{W_1}$ e por χ^{W_2} , o caracter de $(\rho \otimes \rho)^{W_2}$.
 - Tome v_1, \dots, v_n base de V tal que $gv_i = \lambda_i v_i, \ 1 \le i \le n$ e $\lambda_i \in \mathbb{C}$.
 - Com isso, temos que

$$g(v_i \otimes v_i - v_i \otimes v_i) = \lambda_i \lambda_i (v_i \otimes v_i - v_i \otimes v_i)$$

para g ∈ G e λ_i , λ_i ∈ \mathbb{C} .

Assim,

$$\chi^{\mathbb{W}_2}(g) = \sum_{i < j} \lambda_i \lambda_j$$

• Como $g^2 v_i = \lambda_i^2 v_i$, temos

$$\chi_{\rho}(g) = \sum_{1 \leq i \leq n} \lambda_i \quad \text{ e } \quad \chi_{\rho}(g^2) = \sum_{1 \leq i \leq n} \lambda_i^2$$

• Portanto,

$$\chi_{\rho}^{2}(g) = (\chi_{\rho}(g))^{2} = \sum_{1 \leq i \leq n} \lambda_{i}^{2} + 2 \sum_{i < j} \lambda_{i} \lambda_{j} = \chi_{\rho}(g^{2}) + 2\chi^{W_{2}}(g)$$

· Reordenando,

$$\chi^{W_2}(g) = \frac{1}{2}(\chi_{\rho}^2(g) - \chi_{\rho}(g^2))$$

• Como $\chi_{\rho}^2 = \chi^{W_1} + \chi^{W_2}$,

$$\chi^{W_1}(g) = \chi_{\rho}^2(g) - \chi^{W_2}(g) = \frac{1}{2}(\chi_{\rho}^2(g) + \chi_{\rho}(g^2))$$

· Logo,

$$\chi^{W_1}(g) = \frac{1}{2}(\chi_{\rho}(g)^2 + \chi_{\rho}(g^2))$$
 e $\chi^{W_2} = \frac{1}{2}(\chi_{\rho}(g)^2 - \chi_{\rho}(g^2))$

Exercício 12

Questão: Sejam

$$\rho_1: G \longrightarrow GL(V_1)$$
 e $\rho_2: G \longrightarrow GL(V_2)$

representações lineares com caracteres χ_1 e χ_2 .

Seja W = hom (V_1, V_2) o espaço vetorial de aplicações lineares $f: V_1 \longrightarrow V_2$. Para $g \in G$ e $f \in W$ definimos

$$\rho(g)(f) = \rho_2(g) \circ f \circ \rho_1(g)^{-1} : V_1 \longrightarrow V_2$$

uma aplicação linear, i.e., $\rho(g)(f) \in W$. Mostrar que

- 1. $\rho: G \longrightarrow GL(W)$ é uma representação linear.
- 2. O caracter χ de ρ satisfaz $\chi = \overline{\chi_1} \chi_2$.

Resolução:

1. É representação linear.

• Precisamos mostrar que ρ é homomorfismo de grupos. Sejam $g,h\in G$ e $f\in W$. Então

$$\rho(gh)(f) = \rho_2(gh) \circ f \circ \rho_1(gh)^{-1} = (\rho_2(g)\rho_2(h)) \circ f \circ (\rho_1^{-1}(h)\rho_1^{-1}(g)) = (\rho(g)\rho(h))(f)$$

- 2. Caracter de ρ .
 - Considere V'_1 o espaço dual a V_1 . Usaremos os seguintes fatos:
 - 1. Se ρ' : G \longrightarrow GL(V') é representação linear tal que

$$(\rho(g)(v), \rho'(g)(v')) = (v, v')$$

então o caracter de ρ' é igual a $\chi'(g) = \overline{\chi(g)}$.

- 2. O caracter de $\rho_1 \otimes \rho_2$ é igual a $\chi_1 \chi_2$.
- Definamos

$$\varphi: V_1' \otimes V_2 \longrightarrow W$$
$$\nu' \otimes \nu \longmapsto \varphi(\nu' \otimes \nu)$$

• em que

$$\varphi(v' \otimes v) : V_1 \longrightarrow V_2$$

 $x \longmapsto (v', x)v$

- Verificar que φ é sobrejetora:
 - Escolha bases para \mathbf{V}_1 e \mathbf{V}_2 e escreva f em notação matricial.
- Como $V_1' \otimes V_2$ e W têm a mesma dimensão, segue que φ é isomorfismo.
- Afirmação: $\rho(g) \circ \varphi = \varphi \circ (\rho_1'(g) \otimes \rho_2(g))$ para todo $g \in G$. Sejam $x \otimes y \in V_1' \otimes V_2$.

$$(\rho(g) \circ \varphi)(x \otimes y) = \rho_2(g) \circ \varphi(x \otimes y) \circ \rho_1^{-1}(g)$$
$$= \rho_2(g) \circ (x, \rho_1^{-1}(g))y$$
$$= \varphi \circ (\rho_1'(g) \otimes \rho_2(g))$$

Mas

$$\varphi((\rho_1'(g)\otimes\rho_2(g))(x\otimes y))=\varphi(\rho_1'(g)(x)\otimes\rho_2(g)(y))=\varphi\circ(\rho_1'(g)\otimes\rho_2(g))$$

- Como essa igualdade vale para $x \otimes y$, ela vale para um elemento qualquer de $V_1' \otimes V_2$. Ou seja, ρ é isomorfa a $\rho_1' \otimes \rho_2$ via φ^{-1} .
- Logo, pelos resultados listados acima, temos o que queríamos.

Exercício 13

Questão: Completar as contas das tabelas de caracteres irredutíveis de A₄ e S₄.

Resolução:

- 1. A₄
 - 1. Calcular G/G'.
 - Considere o grupo de Klein $K = \{1, (12)(34), (13)(24), (14)(23)\} \triangleleft A_4$.
 - Como $|A_4/K| = |A_4|/|K| = 12/4 = 3$, temos que $A_4/K \cong \mathbb{Z}_3$ é cíclico e, portanto, abeliano. Assim, $G' \subseteq K$. Como G não é abeliano, G' é não trivial.
 - Mostremos que G' = K.
 - Suponha que G' = K com $1 \nsubseteq G' \nsubseteq K$. Então G' = 2 e assim, temos |G/G'| = |G|/|G'| = 12/2 = 6 representações de grau 1.
 - Se m_1, \ldots, m_k são os graus das representações irredutíveis, então

$$|G| = m_1^2 + \dots + m_k^2 = \underbrace{1 + \dots + 1}_{6 \text{ veres}} + \sum_{m_i \ge 2} m_i^2 \implies 6 = \sum_{m_i \ge 2} m_i^2$$

- O que é absurdo. Logo, K = G'.
- · Com isso, temos

$$\left| \frac{\mathsf{G}}{\mathsf{G}'} \right| \frac{|\mathsf{G}|}{|\mathsf{G}'|} = \frac{12}{4} = 3$$

representações irredutíveis de grau 1.

· Mais ainda.

$$12 = |G| = 3 + \sum_{m_i > 2} m_i^2$$

implica que existe uma única representação de grau maior que 1 e esse grau é igual a 3.

- Portanto, temos quatro representações irredutíveis e, assim, quatro classes de conjugação.
- 2. Calcular classes de conjugação.
 - Já temos que $\{1\}$ e $\{x = (1\ 2)(3\ 4), y = (1\ 3)(2\ 4), z = (1\ 4)(2\ 3)\}$ são classes de conjugação.
 - Denotando $t = (1 \ 2 \ 3)$, então temos que $\{t, tx, ty, tz\}$ e $\{t^2, t^2x, t^2y, t^2z\}$ são classes de conjugação.
 - Vejamos que t e t^2 não são conjugados.
 - Se $gtg^{-1} = t^2$ em G, então $\overline{gtg^{-1}} = \overline{t^2}$ em G/G', em que $\overline{g} = gG'$.
 - Como $G/G'\cong \mathbb{Z}_3$ é abeliano, temos

$$\overline{t^2} = \overline{g}\overline{t}\overline{g^{-1}} \implies \overline{t} = 1$$

- Mas isso equivale a $t \in G' = K$, o que é absurdo. Logo, $t \in t^2$ não são conjugados.
- 3. Montar tabela de caracteres irredutíveis.
 - Com isso, podemos escolher 1, x, t e t^2 como representantes das classes de conjugação.
 - Como $\langle \bar{t} \rangle \cong \mathbb{Z}^3 \cong G/G'$ e $|t| = 3 = |\bar{t}|$, temos homomorfismos de grupos $\rho_i : G/G' \longrightarrow \mathbb{C}^*$ tais que $\chi_i(\bar{t})^3 = \chi_i(\bar{t}^3) = \chi_i(1) = 1$, para i = 2, 3.
 - Assim, denotando por $\omega = \cos(2\pi/3) + i\sin(2\pi/3)$, temos que $\chi_i \in \{1, \omega, \omega^2\}$, para i = 2, 3.
 - Portanto, temos a seguinte tabela:

	1	(1 2)(3 4)	(1 2 3)	(1 3 2)
χ_1	1	1	1	1
χ_2	1	1	ω	ω^2
χ 3	1	1	ω^2	ω
χ4	3	α	β	γ

• Pela ortogonalidade das colunas,

$$\bar{1} \cdot 1 + \bar{1} \cdot 1 + \bar{3} \cdot \alpha = 0 \implies \alpha = -1$$

$$\bar{1} \cdot 1 + \bar{1} \cdot \omega + \bar{1} \cdot \omega^2 + \bar{3} \cdot \beta = 0 \implies \beta = 0$$

$$\bar{1} \cdot 1 + \bar{1} \cdot \omega^2 + \bar{1} \cdot \omega + \bar{3} \cdot \gamma = 0 \implies \gamma = 0$$

• Logo, temos a tabela de caracteres irredutíveis:

	1	(1 2)(3 4)	(1 2 3)	(1 3 2)
χ_1	1	1	1	1
χ_2	1	1	ω	ω^2
X 3	1	1	ω^2	ω
χ4	3	-1	0	0

2. S₄

- 1. Encontrar representantes das classes de conjugação.
 - Notemos que os elementos 1, $a = (1\ 2)$, $b = (1\ 2)(3\ 4)$, $c = (1\ 2\ 3)$ e $d = (1\ 2\ 3\ 4)$ nos dão cinco classes de conjugação distintas.
 - E temos que as representações trivial (com caracter por χ_1) e sinal (com caracter χ_2) são irredutíveis de grau um. Se m_3 , m_4 e m_5 são os graus das outras representações irredutíveis, então

$$24 = |G| = 1^2 + 1^2 + m_3^2 + m_4^2 + m_5^2$$

- Mas isso só é possível se $m_3 = 2$ e $m_4 = m_5 = 3$.
- Ou seja, temos duas representações irredutíveis de grau um e, assim, |G/G'| = 2.

- Como $|S_4/A_4| = 2$, temos que $S_4/A_4 \cong \mathbb{Z}_2$ é cíclico e, portanto, abeliano. Assim, como $G' \subseteq A_4$, temos que $G' = A_4$.
- 2. Escrever a tabela de caracteres irredutíveis.
 - Podemos escrever

	1	(12)	(1 2)(3 4)	(1 2 3)	(1 2 3 4)
χ_1	1	1	1	1	1
χ_2	1	-1	1	1	-1
χ 3	2				
χ4	3				
χ_5	3				

- Fato: se ho_0 é representação de grau um e ho é representação irredutível, então $ho_0 \otimes
 ho$ é representação irredutível de grau igual ao grau de ρ .
- Assim, como χ_2 tem grau um e χ_3 é a única representação irredutível de grau dois, temos que $\chi_2\chi_3=\chi_3$. Isso implica que $\chi_3(1\ 2) = 0$ e $\chi_3(1\ 2\ 3\ 4) = 0$.
- Usando novamente o fato, temos que $\chi_2\chi_4=\chi_5$ ou $\chi_2\chi_4=\chi_2\chi_4$ e $\chi_2\chi_5=\chi_5$.
- Suponha que $\chi_2 \chi_4 = \chi_2 \chi_4$ e $\chi_2 \chi_5 = \chi_5$.

 - Então $\chi_4(a) = 0 = \chi_5(a)$ e $\chi_4(d) = 0 = \chi_5(d)$. Mas como $\sum_{1 \le i \le k} \overline{\chi_i(g)} \chi_i(g) = \frac{|G|}{c(g)}$ e c(a) = 6, temos

$$\frac{|G|}{c(A)} = \frac{24}{6} = 4 \neq 2$$

- Assim, esse caso não é possível e, portanto, $\chi_2\chi_4=\chi_5$.
- Sabemos que o grupo de Klein K é subgrupo normal de S_4 e, mais ainda $S_4' = A_4$.
- Como S_4/K é um grupo não abeliano de ordem 24/4=6, existe isomorfismo de grupos $\theta:S_4/K\longrightarrow S_3$.
- Seja $\rho: S_3 \longrightarrow GL(V)$ representação irredutível de S_3 de grau 2. Se $\pi: S_4 \longrightarrow S_4/K$ é a projeção canônica,

$$\rho \circ \theta \circ \pi : S_4 \longrightarrow GL(V)$$

é representação irredutível de S₄ de grau 2.

• Lembre que a tabela de S₃ é:

	1	(12)	(1 2 3)
χ_1	1	1	1
χ 2	1	-1	1
χ3	2	0	-1

- Com isso, $\chi_3(b) = \rho \circ \theta \circ \pi(b) = \rho(1_{S_3}) = 2$. E também $\chi_3(c) = \rho(c) = -1$.
- Agora considere $\rho: S_4 \longrightarrow GL(V)$ uma representação dada por $\rho(g)(e_i) = e_{g(i)}$, em que e_1, e_2, e_3, e_4 formam base de V.
- Como W = $\mathbb{C}(e_1 + e_2 + e_3 + e_4)$ é ρ (G)-invariante, pelo teorema de Mashcke existe W₀ ρ (G)-invariante tal que $V = W \oplus W_0$. Ou seja, $\rho = \rho^W \oplus \rho^{W_0}$ e $\chi = \chi^W + \chi^{W_0}$.

 • Como dim(W) = 1, sabemos que ρ^W é irredutível. Agora como $\chi^{W_0} = \chi - \chi^W$, temos que $(\chi^{W_0}, \chi^{W_0}) = 1$.
- Assim, ρ^{W_0} é irredutível e podemos definir χ_4 como o caracter de ρ^{W_0} e como $\chi_2\chi_4=\chi_5$, podemos completar a tabela como segue.

	1	(12)	(1 2)(3 4)	(1 2 3)	(1 2 3 4)
χ_1	1	1	1	1	1
χ_2	1	-1	1	1	-1
X 3	2	0	2	-1	0
χ4		1	-1	0	-1
χ5		-1	-1	0	1

Exercício 14

Questão: Seja G um grupo e A um subgrupo abeliano. Mostre que, para cada representação irredutível $\rho: G \longrightarrow GL(V)$, temos dim $(\rho) \leq [G:A]$.

Dica: para cada subespaço ρ (A)-invariante W temos que $W_0 = \sum_{g \in G} \rho(g)$ (W) é um subespaço ρ (G)-invariante de V.

Resolução:

Pelo exercício 4b, $\dim(V) \le m[G:A]$, em que m é a maximal dimensão de representação irredutível de A. Como A é abeliano, toda representação irredutível de A tem grau um, i.e., m = 1.

Exercício 15

Questão: Sejam $\rho_1: G_1 \longrightarrow GL(V_1)$ e $\rho_2: G_2 \longrightarrow GL(V_2)$ duas representações. E seja $\pi_i: G_1 \times G_2 \longrightarrow G_i$ o homomorfismo de grupos definido por $\pi_i(g_1,g_2)=g_i$. Definimos

$$\hat{\rho}_i = \rho_i \circ \pi_i : G = G_1 \times G_2 \longrightarrow GL(V_i)$$

Mostre que

- 1. Se ρ_1, ρ_2 são irredutíveis, então $\hat{\rho_1} \otimes \hat{\rho_2} : G \longrightarrow GL(V_1 \otimes V_2)$ é uma representação irredutível de $G_1 \times G_2$.
- 2. Cada representação irredutível de $G_1 \times G_2$ é isomorfa a $\hat{\rho_1} \otimes \hat{\rho_2}$ para algumas representações irredutíveis ρ_1, ρ_2 .

Resolução:

- 1. $\hat{\rho_1} \otimes \hat{\rho_2}$ é irredutível.
 - Denotemos por χ_i o caracter de ρ_i de $\hat{\chi}_i$ o caracter de $\hat{\rho}_i$. com i=1,2. Note que, se $g_1 \in G_1$ e $g_2 \in G_2$,

$$\hat{\chi}_i((g_1, g_2)) = \operatorname{tr}(\rho_i \circ \pi_i(g_1, g_2)) = \operatorname{tr}(\rho_i(g_i)) = \chi_i(g_i)$$

• E se $\chi_{1,2}$ é o caracter de $\hat{\rho_1}\otimes\hat{\rho_2}$, então $\chi_{1,2}=\hat{\chi_1}\hat{\chi_2}$. Assim,

$$\chi_{1,2}((g_1,g_2)) = \hat{\chi_1}(g_1,g_2)\hat{\chi_2}(g_1,g_2) = \chi_1(g_1)\chi_2(g_2)$$

• Com isso, temos que

$$\begin{split} (\chi_{1,2},\chi_{1,2}) &= \frac{1}{|G_1 \times G_2|} \sum_{\substack{g_1 \in G_1 \\ g_2 \in G_2}} \chi_{1,2}(g_1,g_2) \overline{\chi_{1,2}(g_1,g_2)} \\ &= \frac{1}{|G_1| |G_2|} \sum_{\substack{g_1 \in G_1 \\ g_2 \in G_2}} \chi_1(g_1) \overline{\chi_1(g_1)} \chi_2(g_2) \overline{\chi_2(g_2)} \\ &= \left(\frac{1}{|G_1|} \sum_{g_1 \in G_1} \chi_1(g_1) \overline{\chi_1(g_1)}\right) \left(\frac{1}{|G_2|} \sum_{g_2 \in G_2} \chi_2(g_2) \overline{\chi_2(g_2)}\right) \\ &= (\chi_1,\chi_1)_{G_1} (\chi_2,\chi_2)_{G_2} \end{split}$$

- Mas como ρ_1 e ρ_2 são irredutíveis, $(\chi_1,\chi_1)_{G_1}=1$ e $(\chi_2,\chi_2)_{G_2}=1$.
- Logo, $\hat{\rho_1} \otimes \hat{\rho_2}$ é irredutível.
- 2. Isomorfismo.
 - Sejam μ_1, \ldots, μ_k as representações irredutíveis de G_1 com caracteres χ_1, \ldots, χ_k e sejam ν_1, \ldots, ν_s as representações irredutíveis de G_2 com caracteres $\tilde{\chi}_1, \ldots, \tilde{\chi}_s$.
 - Defina

$$A = {\hat{\mu}_i \otimes \hat{\nu}_i \mid 1 \le i \le k, \ 1 \le j \le s}$$

e suponha que não há representações isomorfas em A. Note que, pelo item anterior, cada $\hat{\mu}_i \otimes \hat{\nu}_j$ é irredutível. Assim, construímos $k \cdot s$ representações irredutíveis.

- Calculemos o número de classes de conjugação de G₁ × G₂:
 - Como podemos escrever

$$G_1 = \bigcup_{t \in \{t_1, \dots, t_k\}}^{G_1} G_1 t, \quad G_2 = \bigcup_{d \in \{d_1, \dots, d_s\}}^{G_2} d$$

- Temos

$$G_1 \times G_2 = \bigcup_{\substack{t \in \{t_1, \dots, t_k\}\\ d \in \{d_1, \dots, d_s\}}}^{G_1 \times G_2} (t_i, d_j)$$

- Portanto, o número desejado é $k \cdot s$.
- Assim, resta mostrar que as classes listadas em A não são isomorfas entre si.
 - Seja $\chi_{i,j}$ o caracter de $\hat{\mu}_i \otimes \hat{\nu}_i$. Então

$$\begin{split} (\chi_{i,j},\chi_{\alpha,\beta})_{G_{1}\times G_{2}} &= \frac{1}{|G_{1}\times G_{2}|} \sum_{\substack{g_{1}\in G_{1}\\g_{2}\in G_{2}}} \chi_{i,j}(g_{1},g_{2}) \overline{\chi_{\alpha,\beta}(g_{1},g_{2})} \\ &= \frac{1}{|G_{1}| |G_{2}|} \sum_{\substack{g_{1}\in G_{1}\\g_{2}\in G_{2}}} \chi_{i}(g_{1}) \overline{\chi_{\alpha}(g_{1})} \tilde{\chi}_{j}(g_{2}) \overline{\tilde{\chi}_{\beta}(g_{2})} \\ &= \left(\frac{1}{|G_{1}|} \sum_{g_{1}\in G_{1}} \chi_{i}(g_{1}) \overline{\chi_{\alpha}(g_{1})}\right) \left(\frac{1}{|G_{2}|} \sum_{g_{2}\in G_{2}} \tilde{\chi}_{j}(g_{2}) \overline{\tilde{\chi}_{\beta}(g_{2})}\right) \\ &= (\chi_{i},\chi_{\alpha})_{G_{1}} (\tilde{\chi}_{j},\tilde{\chi}_{\beta})_{G_{2}} = \delta_{i\alpha}\delta_{j\beta} \end{split}$$

– Portanto, $(\chi_{i,j}, \chi_{\alpha,\beta})_{G_1 \times G_2} = 0$ se $(i,j) \neq (\alpha,\beta)$.

Outro

Teorema de Maschke

Questão: Enuncie o Teorema de Maschke.

Resolução: Seja $\rho: G \longrightarrow GL(V)$ uma representação linear e W um subespaço $\rho(G)$ -invariante de V. Então existe um subespaço $\rho(G)$ -invariante W_0 tal que $V = W \oplus W_0$.

Lema de Schur

Questão: Enuncie o Lema de Schur.

Resolução: Sejam V₁ e V₂ espaços vetoriais sobre o corpo K,

$$\rho_i: G \longrightarrow GL(V_i), \quad i = 1, 2$$

duas representações irredutíveis e $f: V_1 \longrightarrow V_2$ uma transformação linear sobre K tal que, para cada $g \in G$, temos

$$\rho_2(g) \circ f = f \circ \rho_1(g) : V_1 \longrightarrow V_2.$$

Então,

- 1. Se ρ_1 e ρ_2 não são isomorfos, temos que $f \equiv 0$.
- 2. Se $\rho_1 = \rho_2$ (e, assim, $V = V_1 = V_2$) e dim $(V) < \infty$, então existe $\lambda \in \mathbb{C}$ tal que $f = \lambda Id_V$.

P3 2021

Questão 1

Questão: Definir o produto escalar no espaço de funções de classe de G. Enunciar o teorema de ortogonalidade de caracteres irredutíveis de G (i.e. as condições sobre as linhas da tabela de caracteres irredutíveis). Enunciar as condições de ortogonalidade das colunas de tabela de caracteres irredutíveis.

Resolução:

1. Definição do produto escalar.

Sejam $\varphi, \psi : G \longrightarrow \mathbb{C}$. Definimos

$$(\varphi, \psi) = \frac{1}{|G|} \sum_{g \in G} \varphi(g) \overline{\psi(g)}$$

- 2. Ortogonalidade de caracteres irredutíveis.
 - 1. Se χ é o caracter de uma representação irredutível, então $(\chi,\chi)=1$.
 - 2. Se χ_1, χ_2 são caracteres de representações irredutíveis não isomorfas, então $(\chi_1, \chi_2) = 0$.
- 3. Ortogonalidade das colunas.

Sejam $g \in G$, $c(g) = |g^G|$ e χ_1, \dots, χ_k todos os caracteres irredutíveis não isomorfos entre si. Então:

- 1. $\sum_{1 \le i \le k} \overline{\chi_i(g)} \chi_i(g) = \frac{|G|}{c(g)}.$
- 2. Se $h \in G$ e $h \notin g^G$, então $\sum_{1 \le i \le k} \overline{\chi_i(g)} \chi_i(h) = 0$.

Questão 2

Questão: Seja G = P × Q um produto semidireto, em que P = $\mathbb{Z}_7 = \langle b \rangle$ é um subgrupo normal de G, Q = $\mathbb{Z}_3 = \langle a \rangle$ e $aba^{-1} = b^4$.

- 1. Descrever, a menos de isomorfismo, o grupo G/G'.
- 2. Encontrar os rerpresentantes das classes de conjugação de G.
- 3. Encontrar as dimensões das representações irredutíveis de G.
- 4. Demonstrar que cada representação irredutível de G de grau maior do que 1 é uma representação induzida por uma representação de grau 1. Descrever todas essas representações em forma matricial.
- 5. Descrever a tabela de caracteres de G.

Resolução:

1.

G/G'

Questão 3

Questão: Sejam $\rho: G \longrightarrow GL(V)$ uma representação e e_1, \dots, e_n uma base de V como espaço vetorial sobre \mathbb{C} . Definimos

$$\mu = \rho \otimes (\rho \otimes \rho) : G \longrightarrow GL(V \otimes V \otimes V)$$

Para $\sigma \in S_3$, definimos o mapa linear

$$\theta_{\sigma}: V \otimes V \otimes V \longrightarrow V \otimes V \otimes V$$

tal que

$$\theta_{\sigma}(v_1 \otimes v_2 \otimes V_3) = v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes v_{\sigma(3)}$$

E definimos

$$W = \{ w \in V \otimes V \otimes V \mid \theta_{\sigma}(w) = w, \ \sigma \in S_3 \}$$

1. Demonstre que W, como espaço vetorial sobre C, tem base

$$\left\{ \sum_{\sigma \in \mathcal{S}_3} e_{\sigma(i_1)} \otimes e_{\sigma(i_2)} \otimes e_{\sigma(i_3)} \mid 1 \leq i_1 \leq i_2 \leq i_3 \leq n \right\}$$

- 2. Demonstre que W é μ (G)-invariante.
- 3. Calcule os caracteres de μ e de μ^W : G \longrightarrow GL(W).

Resolução: