1

High School Assignment

K Vivek Kumar

1 2018-ICSE-10th Board-Problem

Problem 8(b): If the mean of the following distribution is 24, find the value of 'a'.

Marks	0-10	10-20	20-30	30-40	40-50
Number of students	7	a	8	10	5

Solution: Given, the mean of the following distribution is, m = 24.

We know that,

$$mean(m) = \frac{\sum f_i x_i}{\sum f_i}$$
 (1.1)

This can also be written as

$$mean(m) = \frac{\mathbf{f}^T \mathbf{x}}{\mathbf{1}^T \mathbf{f}}$$
 (1.2)

As per the question,

Intervals	Frequencies	Mid-Values	
0-10	7	5	
10-20	a	15	
20-30	8	25	
30-40	10	35	
40-50	5	45	

Therefore, from the above table we can deduce the following vectors,

$$\mathbf{f} = \begin{pmatrix} 7 \\ a \\ 8 \\ 10 \\ 5 \end{pmatrix}; \mathbf{x} = \begin{pmatrix} 5 \\ 15 \\ 25 \\ 35 \\ 45 \end{pmatrix}$$

To find the value of 'a', we can simplify the equation (2),

$$mean(m) = \frac{\mathbf{f}^T \mathbf{x}(\text{without 'a'}) + \mathbf{f}^T \mathbf{x}(\text{with 'a'})}{\mathbf{1}^T \mathbf{f}(\text{without 'a'}) + \mathbf{1}^T \mathbf{f}(\text{with 'a'})}$$

Taking the dot product,

$$\mathbf{f}^T \mathbf{x}(\text{without 'a'}) = \begin{pmatrix} 7 \\ 8 \\ 10 \\ 5 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 25 \\ 35 \\ 45 \end{pmatrix} = (810).$$

$$\mathbf{f}^T \mathbf{x}(\text{with 'a'}) = (a) \cdot (15) = (15a) \cdot$$

$$\mathbf{1}^{T}\mathbf{x}(\text{without 'a'}) = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \cdot \begin{pmatrix} 7\\8\\10\\5 \end{pmatrix} = \begin{pmatrix} 7+8+10+5 \end{pmatrix}.$$

$$\mathbf{1}^T \mathbf{x}(\text{with 'a'}) = (1) \cdot (a) = (a)$$
.

On substituting the following above values in the equation, we get

$$mean(m) = \frac{(35 + 200 + 350 + 225) + (15a)}{(7 + 8 + 10 + 5) + (a)}$$

$$mean(m) = \frac{810 + 15a}{30 + a}$$

$$24(30 + a) = 810 + 15a$$

$$720 + 24a = 810 + 15a$$

$$9a = 90$$

$$a = 10$$

Therefore, the required value(a) is 10.