

MASTER OF DATA SCIENCE FACULTY OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

WQD7005 Data Mining

ALTERNATIVE ASSESMENT

Name	Sze Hui Ling
Matric Number	22075528
Lecturer	Prof. Dr. Teh Ying Wah

Project Overview

The case study focus on data mining techniques using a Kaggle E-commerce Customer Behaviour Dataset <u>E-commerce Customer Behavior Dataset (kaggle.com)</u>. Talend Data Preparation Tool used to handle missing values and adding attributes like "Churn" and "Age Group." The project use SAS Enterprise Miner for data import and setting variable roles. In-depth data exploration and analysis are conducted to identify key variables influencing 'Total Spend.' Various models, including regression trees, Random Forest, and Gradient Boosting, are implemented to understand and predict customer spending patterns. The goal is to enhance customer segmentation and targeting in marketing by leveraging statistical and machine learning techniques to analyze customer behaviors and spending patterns.

Tasks

Data Import and Preprocessing: Import your dataset into SAS Enterprise Miner, handle missing values, and specify variable roles.

[15 marks]

Handle missing value in Talend Data Preparation Tool
Remove the row contain missing value in attribute "Satisfied level" in using function "Delete the
row with empty cell"

2. Add attribute "Churn"

The figures above show the histogram chart and box plot of attribute "Days Since Last Purchase". Define the churn based on attribute "Days Since Last Purchase", label the upper quartile as churned. The 75 percentiles of "Days Since Last Purchase" is 38 days. This targets the 25% customers with the highest inactivity and flags them for churn. Use the "Compare numbers" function to evaluate whether the 'Days Since Last Purchase' for each customer is greater than 38 days. Then, convert the resulting Boolean values: 'True' is replaced with '1' to indicate churn, and 'False' is replaced with '0' to indicate no churn.

3. Add attribute "Age Group"

Set the age group to 3 categories': below 30, 30-40 and above 40.

Use function "compare" for cell that value less than 30. Then replace true to "below 30".

Use function "compare" for cell that value greater than 40. Then replace true to "above 40".

Then only view above 40, and replace in column churn, after that replace all the false to "30-40"

4. Add attribute "Favorite Category"

Table below is the rule that set for favorite category based on membership type, age group, and gender.

Membership Type	Age Group	Gender	Favorite Category
Gold	Below 30	Male	Electronics
Gold	Below 30	Female	Clothing
Gold	30 - 40	Male	Sports and Outdoors
Gold	30 - 40	Female	Beauty Products
Gold	Above 40	Male	Gourmet Foods
Gold	Above 40	Female	Home Goods
Silver	Below 30	Male	Toys and Games
Silver	Below 30	Female	Books and Media
Silver	30 - 40	Male	Kitchen Appliances
Silver	30 - 40	Female	Gardening and DIY
Silver	Above 40	Male	Home Goods
Silver	Above 40	Female	Gourmet Foods
Bronze	Below 30	Male	Electronics
Bronze	Below 30	Female	Beauty Products
Bronze	30 - 40	Male	Sports and Outdoors
Bronze	30 - 40	Female	Clothing
Bronze	Above 40	Male	Books and Media
Bronze	Above 40	Female	Kitchen Appliances

Then create a new column called "Favorite Category", then replace each category one by one based on membership type, age group, and gender criteria. Finally, the favorite category got 7 category, Kitchen Application, Clothing, Beauty Products, Toys and Games, Electronics, Sport and Outdoor, Book and Media.

5. Import exported dataset from Talend Data Preparation Tool to SAS Enterprise Miner and set specify variable roles.

The node 'File Import' is drag to diagram and click import file to import exported dataset from Talend Data Preparation Tool to SAS Enterprise Miner. The 'Customer ID' is set as an 'ID' role to uniquely identify each record. The 'Total Spend' has been designated as the 'Target' variable, which allows for the identification of characteristics among high spenders. Understanding these characteristics enables more effective targeting of marketing efforts towards segments with the potential for higher revenue generation or increased sales. All other variables have been assigned the default role of 'Input', serving as predictors in the model. Besides, the age attribute is drop since the dataset already exist age group.

6. Data Explore

Explore the data using 'StatExplore', there was 5 interval and 6 nominal input variable and 1 interval target variable 'Total Spend'. The correlation statistics shows that 'Item Purchased' and 'Average Rating' most positive correlation to target variable.

Variable	Summary							
Role	Measurement Level	Frequency Count	Correlation Statistics					
ID INPUT	INTERVAL INTERVAL	1 5	(maximum 500 observations printed) Data Role=TRAIN Type=PEARSON Target=Total_Spend					
INPUT TARGET	NOMINAL INTERVAL	6						
			Input	Correlation				
	Variable Levels Summary (maximum 500 observations printed)		Items_Purchased Average Rating	0. 97228 0. 94119				
Vari abl	e Role	Frequency Count	Discount_Applied Churn	-0. 16853 -0. 38441				
Customer,	_ID ID	348	Days_Since_Last_Purchase	−0. 54468				

7. Remove outlier

In SAS Enterprise Miner, "Filter" function is used to remove outlier and missing value. "Filter" setting is to 'Rare Values (Percentage)' probably means that the filter will remove values that occur below a certain threshold percentage. Choose to drop the missing values and exclude single-occurrence values as they may be noise. For interval variables, filter out values far from the mean, targeting outliers. As result, there has been 1 observation in Favourite Category been filter out and there is no any outlier presented.

Decision Tree Analysis: Create a decision tree model in SAS Enterprise Miner to analyse customer behaviour.

[20 marks]

The data partition is set to a 70-30 split to separate the dataset into training and testing subsets. However, such a split is typically more suited for larger datasets. Therefore, to prevent overfitting and ensure the model's robustness and generalizability, I have chosen to use cross-validation instead of a simple data split. For the decision tree settings, the usual significance level for a splitting rule is 0.05, but I have selected a significance level of 0.1. This more lenient threshold permits splits that may not meet conventional standards of statistical significance but are appropriate for an exploratory model like a decision tree, which seeks to identify potential patterns. I have limited the maximum number of branches to three, aligning with the majority of categorical variables in the dataset that have 2 or 3 categories, with the exception of 'city', which has 6.

The regression tree analysis, with 'Total Spend' as the target variable, demonstrates how customer behaviors and satisfaction influence spending amounts. The model developed using key customer related features such as 'Items Purchased', 'Days Since Last Purchase' and 'Average Rating'. The model has facilitated the identification of patterns and average spending figures within distinct customer segments, which can inform targeted marketing strategies and customer relationship management.

For example, the 'Membership Type' was initial split, indicating its significant influence on target variable 'Total Spend'. In the 'GOLD' category, the regression tree reveals three spending tiers: members with fewer than 17 purchases have a lower average spend, indicating a base spending level. Those with 17 to 19.5 purchases occupy a mid-tier spending bracket, while members with over 19.5 purchases emerge as the top spenders, with the highest average spend within the group, illustrating a clear positive correlation between the frequency of purchases and spending levels among 'GOLD' members.

In the 'SILVER' category, the regression tree identifies spending patterns based on how recently they've made purchases: those buying within 26.5 days, those between 26.5 to 47.5 days, and those with more than 47.5 days since their last purchase, each with distinct average spending levels, implying more recent shoppers spend differently than less frequent ones.

In the 'BRONZE' category, fewer purchases (less than 7.5) correlate with lower spending, while higher customer ratings suggest distinct spending behaviors, indicating that both purchase frequency and satisfaction levels are key indicators of spending within this group.

Overall, the 'GOLD' category demonstrate that increased purchase frequency aligns with higher average spending within 'Gold' members. The 'SILVER' category demonstrates that the timing of purchases is a predictive factor for spending, with longer intervals between purchases potentially indicating a different type of spending behavior. Besides, the 'BRONZE' category demonstrate that both the quantity of items purchased and the satisfaction level are closely linked to their spending habits. These insights about 'Total Spend' suggest that spending isn't just about how much members buy or how satisfied they are, but also about how these factors interact across different membership levels. This nuanced understanding of spending behavior is vital for tailoring strategies to enhance customer engagement and increase total spending across each segment.

Ensemble Methods: Apply Bagging and Boosting, using the Random Forest algorithm as a Bagging example.

[10 marks]

Random Forest algorithm as a Bagging, the bagging involves creating multiple decision tree, each trained on different sample of the dataset and combined output. The score distribution plot shows the relationship between the predicted total spend (Model Score) and the actual total spend (Mean Target) for the training set. The plot is a 45-degree line plot, which suggests a perfect prediction where every point's predicted value matches the target value. Score ranking overlay plot indicates the model's accuracy at different levels of confidence in predictions. The descending line shows model is less accurate at predicting spending customers. The model is better at predicting higher spenders than lower spenders.

The model achieves accurate predictions with a low ASE and RASE of 7.87, indicating precision in forecasting spending. Besides, the model captures complex spending patterns by utilizing deeper trees, enable to distinguish between different customer behaviors. The model consistently predicts both high and low spending across various depths, demonstrating its reliability in capturing diverse spending behaviors.

				ment Score Rankin ole=TRAIN Target		tal Spand Turget Label=Total Spand	Assessment Score Distribution						
							Data Role-TRAIN Target Variable-Total_Spend Target Label-Total Spend						
Fit Statisti	20		5	24	1492.18	1492.18	P	Nesn.	Mean To distrib	Number of	Model		
Target=Total_Spend Target Label=Total Spend		10 15	12 22	1467.17 1420.38	1467, 17 1420, 38	Runge for Predicted	Target	Predicted	Observations	Score			
			20 25	25 10	1189.99 1158.29	1189.99 1158.29	1439.309 - 1492.183	1476.02	1476.02	49	1465.75		
Fit Statistics	Statistics Label	Train	30	17	1146.48	1146.48	1333.560 - 1386.434	1371.31	1371.31	9	1360.00		
2181121162	Statistics Paper	11.8111	35 40	15 19	970.01 818.27	970. 01 818. 27	1174.936 - 1227.810 1122.061 - 1174.936	1189.99 1146.69	1189.99 1146.69	25 34	1201.37 1148.50		
ASE	Average Squared Error	61.92	45 55	32 18	791.90 710.96	791. 90 710. 96	804.814 - 857.688	821.60	821.60	27	831.25		
DIA	Divisor for ASE	347.00	60	30	685.40	685. 40	751.939 - 804.814	791.90	791.90	32	778.38		
MAX _NOBS_	Maximum Absolute Error Sum of Frequencies	38.09 347.00	65 70	9 34	661.44 510.80	661.44 510.80	699.064 - 751.939	710.96	710.96	18	725.50		
RASE	Root Average Squared Error	7.87	80 85	24 12	484. 42 468. 87	484. 42 468. 87	646, 190 - 699, 064 487, 566 - 540, 441	679.87 510.80	679.87 510.80	39 34	672.63 514.00		
322	Sum of Squared Errors	21487.14	90 95	16 28	453.20 435.38	453. 20 435. 38	434.691 - 487.566	458.68	458.68	34 80	461.13		

For Gradient Boosting model, it builds one tree at a time, where each new tree helps to correct errors made by previously trained trees. The Gradient Boosting model is set to run for 50 iterations to build enough trees for accurate predictions while avoiding overfitting and excessive computation time. A learning rate of 0.1 helps the model learn steadily without making drastic changes that could lead to overfitting. Training on 60% of the data allows for a robust learning process while reserving 40% for testing the model's ability to predict new data, ensuring it performs well not just on the training data but also on unseen data. These settings aim to create a well-generalizing model that balances learning complexity and predictive reliability.

The key findings are that 'Items Purchased' and 'Average Rating' are the most influential factors predicting customer spending. The statistical output from the boosting model demonstrates a strong performance with a low Average Squared Error, indicating that the predictions are generally close to the actual spending amounts. The model performs better at predicting higher spending, as shown by the consistent decrease in predicted values with increasing depth, suggesting higher confidence in these predictions. The model's effectiveness is further suggested by the close match between the mean predicted and actual values across different segments of the data. This consistency is crucial for the model's reliability in practical applications. These insights can guide strategies to enhance customer spending, such as encouraging more purchases or improving product ratings.

			Assessment Score Rankings										
			Data Role-TRAIN Target Variable-Total_Spend Target Label-Total Spend										
			Number of Mean Mean Mean										
			Depth	Observations	Target	Predicted							
Fit Statist			Depth	0034174110113	Tal get	114410044		Data Role=TRAIN Target Variable=Total_Spend Target Label=Total_Spend					
rit Statist	ies		5	18	1495.10	1484. 71							
			10	24	1469.15	1466.61			Hean.	Mesa.	Number of	Model	
Target=Total	l_Spend Target Label=Total Spend		15	16	1405.96	1405.50		Bange for Predicted	Target	Predicted	Observations	Soure	
			20	12	1187.45	1189.81		nange for frequeted	Tanget	tremoted	UDSERWEILORS	Soure	
Fit			25	22	1180.14	1168.60							
Statistics	Statistics Label	Train	30	17	1146.48	1145.62		1433.032 - 1485.285	1476.02	1470.62	49	1459, 16	
			35	16	979.40	986. 64		1328.526 - 1380.779	1371.31	1372.31	9	1354.65	
wore	S	347.00	40	16	817.77	815.89		1171.767 - 1224.020	1189.54	1187.66	24	1197.89	
NOBS	Sum of Frequencies		45 55	35 24	794. 39 707. 90	793.52 707.59		1119.514 - 1171.767	1148.23	1145.87	35	1145.64	
S10004	Sum of Case Weights Times Freq	347.00	60	9	689.49	691.50		858.248 - 910.501	820.75	877.02	1	884.37	
MAX	Maximum Absolute Error	56.27	65	19	674.51	672.29				817.68	-		
SSE	Sum of Squared Errors	47359.35	70	29	532.36	534. 71		805.995 - 858.248	821.63		26	832.12	
ASE	Average Squared Error	136.48	75	7	520.40	499.64		753. 742 - 805. 995	791.90	791.58	32	779.87	
RASE	Root Average Squared Error	11.68	80	27	489.39	498.24		701.489 = 753.742	707.90	707.59	24	727.62	
DIV	Divisor for ASE	347.00	85	7	470.50	465.28		649.236 - 701.489	676.44	677.27	33	675.36	
			90	15	460.55	461.71		492.477 - 544.730	499.88	501.78	58	518.60	
DFT	Total Degrees of Freedom	347.00	95	17	441.35	452.21		440.224 - 492.477	447.65	452.87	56	466.35	
			100	17	433.15	440.61		100.000 TVE-111		PAC. 01		20.00	