2022-2023 MP2I

À chercher pour lundi 12/12/2022, corrigé

TD 12:

Exercice 8.

1) On a $n^5+1\sim n^5$ donc par racine d'équivalent, $\sqrt{n^5+1}\sim n^{5/2}$. Puisque 5/2>2, on a $n^2=o(n^{5/2})$. On en déduit que :

$$n^2 - \sqrt{n^5 + 1} \sim -n^{5/2}$$

Pour le dénominateur, on a $\ln(n) = o(n^2)$ par croissance comparée donc $\ln(n) - 2n^2 \sim -2n^2$. Par quotient, on a donc :

$$u_n \sim \frac{-n^{5/2}}{-2n^2} \sim \frac{\sqrt{n}}{2}.$$

On a donc $\lim_{n\to+\infty} u_n = +\infty$.

2) De même, on a $2n^3 - \ln(n) + 1 \sim 2n^3$ par croissance comparée et $n^2 + 1 \sim n^2$ donc $v_n \sim \frac{2n^3}{n^2} \sim 2n$ et $\lim_{n \to +\infty} v_n = +\infty$.

3) On a $e^n = o(n!)$ par comparaison usuelle donc $n! + e^n \sim n!$. On a également $2^n = o(3^n)$ puisque $\frac{2^n}{3^n} = \left(\frac{2}{3}\right)^n$ tend vers 0 quand n tend vers l'infini (suite géométrique de raison strictement comprise entre -1 et 1). On a donc $2^n + 3^n \sim 3^n$. On en déduit que :

$$w_n \sim \frac{n!}{3^n}$$
.

Par comparaison usuelle, on a $\lim_{n\to+\infty} w_n = +\infty$.

Exercice 14. Pour $n \geq 3$, on pose $f_n : \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^n + nx - 1 \end{cases}$

1) f_n est dérivable sur $[0, +\infty[$. Pour tout $x \in \mathbb{R}_+$, $f'_n(x) = n(x^{n-1} + 1)$. f'_n est donc strictement positive sur \mathbb{R}_+ . On a $f_n(0) = -1$ et f_n tend vers $+\infty$ en $+\infty$. Puisqu'elle est continue, d'après le théorème des valeurs intermédiaires elle s'annule au moins une fois sur \mathbb{R}_+ . Puisqu'elle est strictement croissante, elle s'annule au plus une fois. Il existe donc un unique réel $u_n \geq 0$ tel que $f_n(u_n) = 0$.

2) Remarquons tout d'abord que $f_n(1) = n > 0$. La suite (u_n) est donc à valeurs dans]0,1[et est donc bornée. On peut être un peu plus précis. On a en effet que $f_n\left(\frac{1}{n}\right) = \frac{1}{n^n} > 0$ puisque $n \ge 3$. On a donc $\forall n \ge 3$, $0 \le u_n \le \frac{1}{n}$. Par théorème des gendarmes, on a donc $\lim_{n \to +\infty} u_n = 0$.

Utilisons à présent le fait que $u_n^n + nu_n - 1 = 0$. On a alors $nu_n = 1 - u_n^n$. Puisque $\lim_{n \to +\infty} u_n = 0$, alors $\lim_{n \to +\infty} u_n^n = 0$. On a alors que $nu_n \to 1$. La suite (u_n) tend donc vers 0 et on a plus précisément que $u_n \sim \frac{1}{n}$.

1

TD 11:

Exercice 3. Soit $\varepsilon > 0$. Puisque $\frac{1}{k}$ tend vers 0 quand k tend vers l'infini, il existe $K \in \mathbb{N}$ tel que pour tout $k \ge K$, $0 \le \frac{1}{k} \le \varepsilon$. On a donc en particulier pour $n \in \mathbb{N}^*$ et k = K:

$$0 \le u_n \le \frac{K}{n} + \varepsilon.$$

Puisque $\frac{K}{n}$ tend vers 0 quand n tend vers l'infini, il existe $N \in \mathbb{N}$ tel que $0 \le \frac{K}{n} \le \varepsilon$. On en déduit que pour $n \ge N$:

$$0 \le u_n \le 2\varepsilon$$
.

Si on reprend les définitions des limites et que l'on applique les propriété en $\varepsilon/2 > 0$ au lieu de ε , on obtient exactement la définition de $\lim_{n \to +\infty} u_n = 0$. La suite $(u_n)_{n \in \mathbb{N}}$ tend donc vers 0.

On peut aussi appliquer la propriété en $k = \lfloor \sqrt{n} \rfloor$. On obtient alors que pour $n \geq 1$:

$$0 \le u_n \le \frac{\lfloor \sqrt{n} \rfloor}{n} + \frac{1}{\lceil \sqrt{n} \rceil}.$$

Puisque $\sqrt{n} - 1 < \lfloor \sqrt{n} \rfloor \le \sqrt{n}$, on a $\lim_{n \to +\infty} \lfloor \sqrt{n} \rfloor = +\infty$ donc $\lim_{n \to +\infty} \frac{1}{\lfloor \sqrt{n} \rfloor} = 0$ et on a aussi :

$$\frac{1}{\sqrt{n}} - \frac{1}{n} < \frac{\lfloor \sqrt{n} \rfloor}{n} \le \frac{1}{\sqrt{n}}$$

donc par théorème des gendarmes, $\lim_{n\to+\infty}\frac{\lfloor\sqrt{n}\rfloor}{n}+\frac{1}{\lfloor\sqrt{n}\rfloor}=0$ et donc par théorème des gendarmes, $\lim_{n\to+\infty}u_n=0$.

Exercice 5.

1) Pour $n \in \mathbb{N}$, on a:

$$v_{n+1} - v_n = u_{n+2} - u_{n+1} - (u_{n+1} - u_n)$$

= $u_{n+2} - 2u_{n+1} + u_n$
> 0.

On en déduit que $(v_n)_{n\in\mathbb{N}}$ est croissante. Supposons par l'absurde que $(v_n)_{n\in\mathbb{N}}$ ne soit pas majorée par 0. Il existe alors $N\in\mathbb{N}$ tel que $v_N>0$. Puisque (v_n) est croissante, on en déduit que pour tout $n\geq N, v_n\geq v_N$, ce qui entraine $u_{n+1}-u_n\geq v_N>0$.

Ceci entraine que la suite (u_n) est croissante à partir d'un certain rang et elle admet donc une limite en $+\infty$. Puisque la suite est bornée, c'est une limite finie $l \in \mathbb{R}$. En passant à la limite dans l'égalité $u_{n+1} - u_n = v_N$, on obtient $l - l = v_N$ et donc $0 = v_N$: absurde!

On en déduit que $(v_n)_{n\in\mathbb{N}}$ est majorée par 0.

Une autre manière de faire est de sommer la relation $u_{n+1} - u_n \ge v_N$ pour n allant de N à k avec $k \ge N$. On a alors par somme télescopique :

$$\sum_{n=N}^{k} (u_{n+1} - u_n) \ge \sum_{n=N}^{k} v_N \Leftrightarrow u_{k+1} - u_N \ge (k - N + 1)v_N.$$

Puisque $v_N > 0$, on a que $\lim_{k \to +\infty} (k - N + 1)v_N = +\infty$ ce qui implique $\lim_{k \to +\infty} u_{k+1} = +\infty$ par comparaison, ce qui est absurde car la suite $(u_n)_{n \in \mathbb{N}}$ est bornée.

2) La suite (v_n) est croissante et majorée par 0. Elle converge donc vers une limite $l \leq 0$. Supposons par l'absurde que $l \neq 0$. On a alors l < 0 et donc $(v_n)_{n \in \mathbb{N}}$ qui est toujours négative (car inférieure à sa limite car elle est croissante). On en déduit que pour $n \in \mathbb{N}$, on a $u_{n+1} - u_n \leq 0$, soit que (u_n) est décroissante.

Puisque (u_n) est minorée (car bornée), on en déduit qu'elle converge vers une limite $L \in \mathbb{R}$. En passant à la limite dans l'égalité $v_n = u_{n+1} - u_n$, on obtient alors l = L - L, soit l = 0: absurde!

On en déduit finalement que (v_n) converge vers 0.

Exercice 19. Soit
$$k \in \mathbb{R}_+$$
. On pose $u_0 = 2$, $u_1 = 1 + k$ et $\forall n \in \mathbb{N}$, $u_{n+2} = u_{n+1} + \left(k^2 - \frac{1}{4}\right)u_n$.

L'équation caractéristique associée à la suite $(u_n)_{n\in\mathbb{N}}$ est $X^2-X-\left(k^2-\frac{1}{4}\right)=0$. Son discriminant vaut $4k^2$.

Si k=0, alors l'équation caractérisque admet $\frac{1}{2}$ comme racine double. On en déduit qu'il existe des constantes λ et μ tels que pour tout $n \in \mathbb{N}$, $u_n = (\lambda + n\mu) \left(\frac{1}{2}\right)^n$. On en déduit, avec les conditions initiales, que pour tout $n \in \mathbb{N}$:

$$u_n = 2\left(\frac{1}{2}\right)^n.$$

Cette suite converge alors vers 0.

Si $k \neq 0$, on en déduit que les racines de cette équation sont $x_1 = \frac{1+2k}{2}$ et $x_2 = \frac{1-2k}{2}$. Si $k \neq 0$, on a deux racines distinctes. Il existe donc des réels λ et μ tels que pour tout $n \in \mathbb{N}$:

$$u_n = \lambda(x_1)^n + \mu(x_2)^n.$$

Utilisons à présent les conditions initiales pour déterminer λ et μ . On trouve que :

$$\begin{cases} \lambda + \mu &= 2\\ \lambda x_1 + \mu x_2 &= 1 + k \end{cases}$$

On en déduit que $\begin{cases} \lambda + \mu &= 2 \\ \lambda(1+2k) + \mu(1-2k) &= 2+2k \end{cases}$. On a donc que $\begin{cases} \lambda + \mu &= 2 \\ \lambda - \mu &= 1 \end{cases}$. On en déduit que $\lambda = \frac{3}{2}$ et $\mu = \frac{1}{2}$.

On en déduit que si $k \neq 0$, alors pour tout $n \in \mathbb{N}$:

$$u_n = \frac{3}{2} \left(\frac{1+2k}{2} \right)^n + \frac{1}{2} \left(\frac{1-2k}{2} \right)^n.$$

On peut alors déterminer la limite de $(u_n)_{n\in\mathbb{N}}$. Puisque 1+2k>1-2k, on a l'impression que le premier terme va l'emporter sur le second. En effet, on a :

$$u_n = \frac{3}{2} \left(\frac{1+2k}{2} \right)^n \times \left(1 + \frac{1}{3} \left(\frac{1-2k}{1+2k} \right)^n \right).$$

On a alors puisque 1+2k>0, $-1<\frac{1-2k}{1+2k}<1\Leftrightarrow -1-2k<1-2k<1+2k$. L'inégalité de gauche est vraie puisqu'elle est équivalente à -1<1. Celle de droite est également vraie car elle est équivalente à 0<4k. On a donc par limite de suite géométrique :

$$\lim_{n \to +\infty} \left(\frac{1 - 2k}{1 + 2k} \right)^n = 0.$$

On en déduit que $u_n \sim \frac{3}{2} \left(\frac{1+2k}{2}\right)^n$. Ceci entraine que si $0 \leq \frac{1+2k}{2} < 1$ (c'est à dire si $0 < k < \frac{1}{2}$) que $\lim_{n \to +\infty} u_n = 0$. Si $k = \frac{1}{2}$, on a alors $\lim_{n \to +\infty} u_n = \frac{3}{2}$ et si $k > \frac{1}{2}$, $\lim_{n \to +\infty} u_n = +\infty$.