

Carátula para entrega de prácticas

Facultad de Ingeniería

Laboratorio de docencia

Laboratorios de computación salas A y B

Profesor:	M.C Alejandro Esteban Pimentel Alarcón
Asignatura:	Fundamentos de programación
Grupo:	3
No de Práctica(s):	5
Integrante(s):	Crail Ávila Regina
No. de Equipo de cómputo empleado:	29
No. de Lista o Brigada:	9
Semestre:	2020-1
Fecha de entrega:	16/09//19
Observaciones:	
-	
CALIFICACIÓN:	

OBJETIVO: Elaborar pseudocódigos que representen soluciones algorítmicas empleando la sintaxis y semántica adecuadas.

¿QUÉ ES UN PSEUDOCÓDIGO?

El principal objetivo del pseudocódigo es el de representar la solución a un algoritmo de la forma más detallada posible, y a su vez lo más parecida posible al lenguaje que posteriormente se utilizara para la codificación del mismo.

Características:

- Se puede ejecutar en un ordenador
- Es una forma de representación sencilla de utilizar y de manipular.
- Facilita el paso del programa al lenguaje de programación.
- Es independiente del lenguaje de programación que se vaya a utilizar.
- Es un método que facilita la programación y solución al algoritmo del programa. Palabras Reservadas Para hacer un Pseudocodigo.
 - Algoritmo nombre: Marca el comienzo de un algoritmo y le adjudica un nombre
 - o Inicio: Marca el comienzo de un bloque de instrucciones
 - o Fin: Marca el final de un bloque de instrucciones
 - Variables: Declaración de variables. Indica el identificador y el tipo de las variables que se van a usar en el algoritmo
 - Expresión: Declaración de constantes. La expresión se evalúa y su resultado se asigna a la constante. Este valor no puede modificarse a lo largo del programa.
 - Leer (variable): Entrada de datos. El programa lee un dato desde un dispositivo de entrada (si no se indica otra cosa, el teclado), asignando ese dato a la variable
 - Escribir (variable): Salida de datos. Sirve para que el programa escriba un dato en un dispositivo de salida (si no se indica otra cosa, la pantalla).

ACTIVIDAD

1. Desarrollar pseudocódigo que reciba un número obtenga su factorial

```
INICIO
N: Real
F: Real
F<-1
Escribir: "Ingrese un número: "
Leer N
Para i<-1 hasta n con paso 1 hacer
F<-f*i
Fin Para
Escribir "El factorial de ",n," es: ",f,"
Fin
```

```
Verificar el algoritmo con los valores:
0
2
-4
5
Para el algoritmo con el valor 0:
1. Algoritmo Factorial
2. Definir n, 0 Como real
3._ 0<-1
4. Escribir Ingrese un número: "
5. Leer N
6. Para i<-1 Hasta n con el paso 1 para hacer
7._
      0 <- 0 * 1
8. Fin para
9. Escribir El factorial de "n' es: ", 1
10. Findelalgoritmo
Para el algoritmo con el valor 2:
1. Algoritmo Factorial
2. Definir n, 2 Como real
3._ 2<-1
4. Escribir Ingrese un número: "
5. Leer N
6. Para i<-1 Hasta n con el paso 1 para hacer
7._ 2 <- f2 * 1
8. Fin para
9. Escribir El factorial de "n' es: ",2
10. Findelalgoritmo
Para el algoritmo con el valor -4:
1. Algoritmo Factorial
2. Definir n, -4 Como real
3. -4<-1
4. Escribir Ingrese un número: "
5. Leer N
6. Para i<-1 Hasta n con el paso 1 para hacer
7. -4 <- f -4 * 1
8. Fin para
9. Escribir El factorial de "n' es: ",24
10. Findelalgoritmo
Para el algoritmo con el valor 5:
1. Algoritmo Factorial
2. Definir n, 5 Como real
3. 5<-1
4. Escribir Ingrese un número: "
5. Leer N
```

```
6. Para i<-1 Hasta n con el paso 1 para hacer
7._
     5 <- 5 * 1
8._ Fin para
9. Escribir El factorial de "n' es: ",120
10. Findelalgoritmo
A continuación se muestra una tabla que hace mención al cálculo de impuestos.
Nivel Base ($) Cuota fija ($) Impuesto (%)
1 0.00 0.00 1.92
2 6,942.21 133.28 6.40
3 58,922.16 3,460.00 10.88
4 103,550.45 8,315.57 16.00
5 120,372.84 11,007.14 17.92
6 144,119.24 15,262.49 21.36
7 290,667.76 46,565.26 23.52
8 458,132.30 85,952.92 30.00
9 874,650.01 210,908.23 32.00
```

2. Desarrollar un pseudocódigo que lea 2 datos, nivel e ingreso. El programa debe: Verificar que no se tiene un nivel mayor al ingreso (el ingreso debe ser mayor que la base).

Mostrar el impuesto a pagar.

10 1,166,200.01 304,204.21 34.00 11 3,498,600.01 1,097,220.21 35.00

Algoritmo para leer dos datos
Definir X como nivel Y Como ingreso
Y>X Recibir dato= Z
Leer Z
Y-X= W Impuesto a pagar
Leer W
Porcentaje "ingreso a base"
Recibir "Ingreso base"
Resultado.
Fin.
Verificar el algoritmo con los pares:

Verificar el algoritmo con los pares: (1,5000) (7,8000) (12,5000000)

Algoritmo para 1 5000

Algoritmo para leer dos datos

Definir 1 como nivel 5000 Como ingreso

5000>1 Recibir dato= Z

Leer 5000

5000-1= 4999 Impuesto a pagar

Leer 4999

Porcentaje "5000"

Recibir "Ingreso 1"

Resultado. 4999

Fin.

Algoritmo para 7 8000

Algoritmo para leer dos datos

Definir 7 como nivel 8000 Como ingreso

8000>7 Recibir dato= 8000

Leer 8000

8000-7= 7993 Impuesto a pagar

Leer 7993

Porcentaje "7993"

Recibir "7"

Resultado.7993

Fin.

Algoritmo para 125 000 000

Algoritmo para leer dos datos

Definir 12 como nivel 5000 Como ingreso

12>500 Recibir dato= Z NO

Leer Z

Y-X= W Impuesto a pagar

Leer W

Porcentaje "ingreso a base"

Recibir 'Ingreso base'

Resultado.

Fin.

No se puede ya que no se cumple con el mayor.