Unidade 2 – Testes para uma amostra

Teste Binomial

Esse teste pode ser utilizado em populações dicotomizadas, ou seja, que podem ser divididas em duas classes. A proporção, que é o objeto de teste, será denominada de p em uma das classes e q na outra classe. Lembrese que q=1-p.

Hipóteses:

$$\begin{cases} H_0: p = p_0 \\ H_1: p \neq p_0 \text{ (Bilateral)} \end{cases}$$
ou
$$\begin{cases} H_1: p > p_0 \text{ (unilateral a direita)} \\ \text{ou} \\ H_1: p < p_0 \text{ (unilateral a esquerda)} \end{cases}$$

Em que: po = suposto valor para a proporção populacional;

Procedimento:

- a) fixar o nível de significância α;
- b) observar n = número total de observações;
- c) estabelecer as frequências das ocorrências em cada uma das duas categorias;
- d) determinar a probabilidade, sob ^H_o, da ocorrência dos valores observados ou valores mais extremos:
- **d.1)** se n \leq 25 utilizar para o cálculo da probabilidade a distribuição binomial:

$$P(X \le x) = \sum_{i=0}^{x} {N \choose i} p^{i} q^{N-i} \text{ ou } P(X \ge x) = \sum_{i=x}^{N} {N \choose i} p^{i} q^{N-i} *$$

*dependendo da hipótese alternativa

Em que: x é a menor freqüência observada entre as duas categorias.

Se o valor de p (probabilidade calculada), for menor ou igual a α , rejeita-se H_{\circ} .

d.2) se n > 25 (amostra grande) e p é próximo a 0.5, testar $^{\rm H_{o}}$, aplicando-se a equação:

$$Z_{cal} = \left(\frac{x - np}{\sqrt{npq}}\right) \sim N(0,1)$$

Nessa situação, Z calculado segue uma distribuição Normal e utilizamos a tabela da distribuição para encontrar a referida probabilidade. Se a probabilidade é menor ou igual a zero, rejeitamos a hipótese nula.

Exemplo 1: Examinando-se uma cultura de soja, para verificar o grau de infestação de uma doença de raízes coletaram-se 10 plantas ao acaso constatando que uma apresentava os sintomas característicos da doença.

Se uma infestação abaixo de 30% é controlável, há a possibilidade de se efetuar o controle? (use 5% de significância)

Resolução:

Pelos dados amostrais, percebe-se que temos 1 ocorrência em 10. Isso é menor que 0.30 (30%), mas é a informação da amostra. Será que a população se mantem com p<0.30?

Hipóteses

$$\begin{cases}
H_0: p = 0.30 \\
H_1: p < 0.30
\end{cases}$$

Outras informações:

N = 10 (amostra pequena)

p = 0.30

q = 0.70

x=1 (menor frequência das duas categorias)

Devemos calcular então, seguindo o modelo binomial

$$P(X \le 1) = {10 \choose 0} 0.3^{0} 0.7^{10} + {10 \choose 1} 0.3^{1} 0.7^{9} = 0.1493$$

Como 0.1493 é maior que 0.05, não rejeitamos a hipótese nula. Existem evidências de que não consigamos controlar a doença.

Exemplo 2: Deseja-se verificar se a proporção de nascimentos do sexo masculino e feminino em uma região é igual.

Considerando uma amostra de 1500 nascimentos, 725 foram do sexo masculino. Teste a referida hipótese (p=0.5) considerando 5% de significância.

Resolução:

Nesse caso temos um N = 1500 (amostra grande) e utilizaremos então a aproximação pela normal. X que é a menor frequencia é 725, p=0.5 e q=0.5.

Hipóteses:

$$H_0: p = 0.50$$
 $H_1: p \neq 0.50$

$$Z_{cal} = \left(\frac{725 - 1500 \times 0.5}{\sqrt{1500 \times 0.5 \times 0.5}}\right) = -1.29$$

Distribuição Normal

	0	1	2	3	4	5	6	7	8	9
0,0	0.00000	0.00399	0.00798	0.01197	0.01595	0.01994	0.02392	0.02790	0.03188	0.03586
0,1	0.03983	0.04380	0.04776	0.05172	0.05567	0.05962	0.06356	0.06749	0.07142	0.07535
0,2	0.07926	0.08317	0.08706	0.09095	0.09483	0.09871	0.10257	0.10642	0.11026	0.11409
0,3	0.11791	0.12172	0.12552	0.12930	0.13307	0.13683	0.14058	0.14431	0.14803	0.15173
0,4	0.15542	0.15910	0.16276	0.16640	0.17003	0.17364	0.17724	0.18082	0.18439	0.18793
0,5	0.19146	0.19497	0.19847	0.20194	0.20540	0.20884	0.21226	0.21566	0.21904	0.22240
0,6	0.22575	0.22907	0.23237	0.23565	0.23891	0.24215	0.24537	0.24857	0.25175	0.25490
0,7	0.25804	0.26115	0.26424	0.26730	0.27035	0.27337	0.27637	0.27935	0.28230	0.28524
0,8	0.28814	0.29103	0.29389	0.29673	0.29955	0.30234	0.30511	0.30785	0.31057	0.31327
0,9	0.31594	0.31859	0.32121	0.32381	0.32639	0.32894	0.33147	0.33398	0.33646	0.33891
1,0	0.34134	0.34375	0.34614	0.34849	0.35083	0.35314	0.35543	0.35769	0.35993	0.36214
1,1	0.36433	0.36650	0.36864	0.37076	0.37286	0.37493	0.37698	0.37900	0.38100	0.38298
1,2	0.38493	0.38686	0.38877	0.39065	0.39251	0.39435	0.39617	0.39796	0.39973	0.40147
1,3	0.40320	0.40490	0.40658	0.40824	0.40988	0.41149	0.41309	0.41466	0.41621	0.41774
1,4	0.41924	0.42073	0.42220	0.42364	0.42507	0.42647	0.42785	0.42922	0.43056	0.43189
1,5	0.43319	0.43448	0.43574	0.43699	0.43822	0.43943	0.44062	0.44179	0.44295	0.44408
1.0	0.44500	0.44690	0.44770	O 4404F	0.44050	O AFOFO	O APERA	0.45054	O AFOFO	0.45440

Logo P(Z<-1,29) = 0.5-0.40147=0.09853

O teste é bilateral. Teremos duas regiões críticas. O p-valor final é 2X0.09853 = 0.1970

Não rejeitamos a hipótese nula.