VUSAL BABASHOV

DATA SCIENCE & ADVANCED ANALYTICS

CONTACT

✓ vbabashov@gmail.com

) (613) 716-6949

Ottawa, ON

vbabashov.github.io

in linkedin.com/in/vusalbabashov

github.com/vbabashov

PROFILE

Applied research scientist with expertise in operations research and machine learning aiming to contribute to success of the organization by optimizing the decisions and improving the efficiency using advanced analytics.

EDUCATION

2021 (Completed)
UNIVERSITY OF OTTAWA [OTTAWA, ON]

PhD in Management (Analytics)

2012

WESTERN UNIVERSITY [LONDON, ON]

MSc in Biostatistics (Health Economics)

2010

UNIVERSITY OF PITTSBURGH [PITTSBURGH, PA]

MSc in Industrial Engineering

2007

QAFQAZ UNIVERSITY [BAKU, AZE]

BSc in Industrial Engineering

DATA SCIENCE PROJECTS

Loan Classification | GitHub 😯

- Built an imbalanced loan classification model using Logistic Regression, Random Forest and LightGBM classifiers in Python to determine whether an applicant is eligible for mortgage.
- Demonstrated superior performance of the Random Forest Classifier through nested-cross validation and showed 52% improvement compared to baseline Dummy classifier using the ROC-AUC score.

House Prices Prediction | GitHub

- Developed predictive models using Python with Random Forest, LightGBM and Xgboost methods to predict the price of house given house and sale characteresics.
- Using nested-cross validation, demonstrated that LightGBM the best model and it results in 32% improvement in MAE compared to baseline OLS Regression model following the feature engineering and hyper-parameter tuning.
- Generated predictions on unseen features using the LightGBM model and saved them to SQL database.

EXPERIENCE

2015 - 2021

Research Scientist | Telfer School of Management, U of Ottawa

Setting Wait Time Targets in a Multi-Priority Patient Setting

 Developed a convex optimization model using simulation, deep neural network approximation, and linear programming using Python to determine optimal targets in a case study for rheumatology clinic leading to a reduction of 30%-60% in total cost of waiting and overtime.

Dynamic Advance Patient Scheduling with Follow-up Visits

 Demonstrated 500% improvement in average daily costs compared to current clinical practice (i.e., Myopic policy) by developing Reinforcement Learning - Markov decision process (MDP) model in Java to optimize scheduling decisions in a case study for an endocrinology clinic.

Predictive Framework for Drug Formulary Decisions

 Built a multi-criteria decision analysis model in R to sort and classify alternatives along a set of criteria given decision maker's preferences and illustrated the UTADIS^{GMS} method to streamline the decision-making process in a case study with oncology drugs.

VUSAL BABASHOV

DATA SCIENCE & ADVANCED ANALYTICS

MANAGEMENT SKILLS

- Leadership
- Project Management
- Coaching
- Problem Solving
- Git/Github

TECHNICAL SKILLS

- Machine Learning: scikit-learn, xgboost, lightgbm, keras. statsmodels
- Operations Research:
 Linear/Integer Programming,
 Markov Decision Process (Gurobi,
 Cplex)
- Programming: Python, R, SAS, SQL (SQLite, PostgreSQL), Java, Jupyter, LaTeX
- Data Visualization: Tableau, Matplotlib, Seaborn
- Time Series Forecasting: Arima, Exponential Smoothing
- Big Data Technologies/Cloud: Azure, Databricks
- AutoML: DataRobot

EXPERIENCE (Cont'd)

Instructor/ Lecturer | Telfer School of Management, U of Ottawa

- Business Analytics (2018, 2019)
- Business Forecasting Analytics (2020)

Note: Lectured BCom students on fundamentals of mathematical (e.g., linear, integer) programming, decision—tree models and time series forecasting models including but not limited to Arima and Exponential Smoothing.

Analyst, PhD Internship | Currency Department, Bank of Canada Banknote Demand Forecasting

- Implemented classical time series, random forest and deep neural network models in Python and R to forecast the banknote demand by each denomination and region to ensure right amount of bank notes in the right place at the right time.
- Proposed a forecasting model for production that showed approximately 15% improvement in MAE compared to the seasonal naïve approach.

2012 - 2014

Health Economist | Health Quality Ontario | Pivina Consulting Inc.

- Developed an economic model to inform a policy decision for funding of MRI-guided high intensity focused ultrasound treatment in Ontario by the Ministry of Health.
- Built cost-effectiveness, budget impact and survival analysis models for medical products to support pharmaceutical companies for regulatory/reimbursement approval and market authorization in Canada.

2010 - 2012

Research Assistant | Biostatistics, Western University

Economic Evaluation of brentuximab vedotin for persistent Hodgkin lymphoma

 Developed a Markov-Decision Tree model to evaluate lifetime costs and benefits and perform cost-effectiveness analysis for brentuximab vedotin using a survival analysis resulting in an incremental costeffectiveness ratio of \$164,248 per quality adjusted life years.