Implementation and Analysis of Apple's CSAM Detection System

Alessandro Baccarini anbaccar@buffalo.edu University at Buffalo December 1, 2021

1. Introduction

2. Streaming threshold PSI with associated data

Symbol	Meaning
\mathcal{U}	Universe of hash values
$X\subseteq \mathcal{U}$	Set of hash values the server has, s.t. $ X = n$. Every hash is distinct.
$\bar{Y} = ((y_i, id_i, ad_i))$	Triples the client has, s.t. $ \bar{Y} = m, i \in [1, m]$.
$y \in \mathcal{U}$	Hash value
$id \in \mathcal{ID}$	Unique identifier of a triple
$ad \in \mathcal{D}$	Associated data of a triple
$id(ar{Y})$	Set of id 's of triples in \bar{Y}
$id(ar{Y}\cap X)$	Set of id 's of triples in \bar{Y} whose y is also in X
$ar{Y}_{id} \in \mathcal{ID}^m$	List of all id 's in the triples in \bar{Y}
$\bar{Y}_{id,ad} \subseteq (\mathcal{ID} \times \mathcal{D})$	(Projection) Set of id 's and ad 's in the triples in \bar{Y}
$\bar{Y}[T] \subseteq (\mathcal{U} \times \mathcal{I}\mathcal{D} \times \mathcal{D})^{\leq m}$	(Selection) For a set of id's $T \subseteq \mathcal{ID}$, this is the
	list of triples in \bar{Y} whose id 's are in T
$x \leftarrow d$	Assignment of value d to variable x
$x \stackrel{\$}{\leftarrow} \mathcal{X}$	x is a RV sampled uniformly over a finite set \mathcal{X}
$x \xleftarrow{\$} A(\cdot)$	x is the output of a randomized algorithm A

Table 1: PSI notations.

3. Building Blocks

Cryptographic primitives:

- (Enc, Dec) denotes a symmetric encryption scheme with key space \mathcal{K}' and satisfies standard symmetric key security properties (AES128-GCM).
- $E(\mathbb{F}_p)$ is an elliptic curve of prime order q, with G as a fixed generator of $E(\mathbb{F}_p)$. Assume Decision Diffie-Hellman (DDH) holds in $E(\mathbb{F}_p)$ (NIST P256).
- $H: \mathcal{U} \to E(\mathbb{F}_p) \setminus \{\mathcal{O}\}$ is a hash function modeled as as random oracle.
- $H': E(\mathbb{F}_p) \to \mathcal{K}'$ is secure key derivation function; the uniform distribution on $E(\mathbb{F}_p)$ mapped to an "almost" uniform distribution on \mathcal{K}' (HKDF, based on HMAC)

- Shamir secret sharing on an element of \mathcal{K}' to obtain shares in \mathbb{F}^2_{Sh} for some field \mathbb{F}_{Sh} that is sufficiently large such that when choosing t+1 random elements from \mathbb{F}_{Sh} , the probability of a collision is low.
- A pseudorandom function (PRF) $F: \mathcal{K}'' \times \mathcal{ID} \to \mathbb{F}^2_{Sh} \times \mathcal{X} \times \mathbb{R}$, where the sets \mathcal{X} and \mathbb{R} are the domain and range of a detectable hash function, respectively (HMAC).

3.1. The Diffie-Hellman random self reduction

3.2. Detectable hash functions

3.3. Cuckoo Tables (Cuckoo Hashing)

We provide a brief overview of Cuckoo Hashing, which is a technique designed for resolving collisions in hash tables and provides a worst-case $\Theta(1)$ lookup and deletion time.

4. Threshold PSI-AD using the DH random self reduction

4.1. tPSI-AD protocol walkthrough

We now walk through every step up the warm-up tPSI-AD protocol outlined in [1]. We let t denote the threshold, m be an upper bound on the number of triples the client will process, and n = |X|.

The specific protocol we are implementing occurs in four phases: S-Init, C-Init, C-Gen-Voucher, and S-Process, where S and C refer to the Server and Client, respectively.

Protocol 1 $(pdata, skey) \leftarrow S-Init(X)$
1:
1:
1:
Protocol 4 S-Process(pdata, skey, voucher)
1:

References

[1] Abhishek Bhowmick, Dan Boneh, Steve Myers, and Kunal Talwar Karl Tarbe. The Apple PSI System. https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf.

A. Mathematical Reference

A.1. Finite Fields

Definition A.1. A (finite) finite \mathbb{F} is a set defined with operations $+, \times$ such that the following hold:

- \mathbb{F} is abelian with respect to "+," where we let 0 denote the identity element.
- $\mathbb{F} \setminus \{0\}$ is abelian with respect to " \times ," where we let 1 denote the identity element. We write ab in place of $a \times b$.
- (Distributivity:) $\forall a, b, c \in \mathbb{F}$, we have $a \times (b+c) = ab + ac$

The additive inverse of $a \in \mathbb{F}$ denoted by -a is a unique element that satisfies a + (-a) = 0, and the multiplicative inverse of $a \in \mathbb{F} \setminus \{0\}$ denoted a^{-1} is the unique element that satisfies $aa^{-1} = 1$.

The order of a F is the number of elements in \mathbb{F} , provided \mathbb{F} is finite. If q is a prime power $q = p^r$ for a prime p and positive integer r, we can establish the field \mathbb{F}_p of prime order q.