

String Theory is a **sigma model** on the worldsheet. It turns out string theory can be described by a **free CFT** on the worldsheet:

$$S_{
m P} = rac{1}{2\pilpha'}\int d^2z\partial X^\muar\partial X_\mu + rac{1}{2\pi}\int d^2z\Big(bar\partial c + ar b\partial ar c\Big) + \lambda\chi$$

$$S_{\rm pp} = -m \int d\tau \sqrt{-\eta_{\mu\nu} \dot{X}^{\mu} X^{\nu}} \qquad S_{\rm NG} = -\frac{1}{2\pi\alpha'} \int_{M} d\tau d\sigma \sqrt{-\det(\eta_{\mu\nu} \partial_{a} X^{\mu} \partial_{b} X^{\nu})}$$

String Theory is a **sigma model** on the worldsheet. It turns out string theory can be described by a **free CFT** on the worldsheet:

$$S_{
m P} = rac{1}{2\pilpha'}\int d^2z\partial X^\muar\partial X_\mu + rac{1}{2\pi}\int d^2z\Big(bar\partial c + ar b\partial ar c\Big) + \lambda\chi$$

 X^{μ} : Rieman surface \hookrightarrow our spacetime

b, c: fix the **diff** \times **weyl** gauge

 χ : interactions \Leftrightarrow worldsheet topologies Unlike QFT, string theory's interactions are **intrinsic** and **unique**.

$$S_{\rm pp} = -m \int d\tau \sqrt{-\eta_{\mu\nu} \dot{X}^{\mu} X^{\nu}} \qquad S_{\rm NG} = -\frac{1}{2\pi\alpha'} \int_{M} d\tau d\sigma \sqrt{-\det(\eta_{\mu\nu} \partial_{a} X^{\mu} \partial_{b} X^{\nu})}$$

String Theory is a **sigma model** on the worldsheet. It turns out string theory can be described by a **free CFT** on the worldsheet:

$$S_{
m P} = rac{1}{2\pilpha'}\int d^2z\partial X^\muar\partial X_\mu + rac{1}{2\pi}\int d^2z\Big(bar\partial c + ar b\partial ar c\Big) + \lambda\chi$$
 Ghost Fields

 X^{μ} : Rieman surface \hookrightarrow our spacetime

b, c: fix the **diff** \times **weyl** gauge

 χ : interactions \Leftrightarrow worldsheet topologies Unlike QFT, string theory's interactions are **intrinsic** and **unique**.

$$S_{\rm pp} = -m \int d\tau \sqrt{-\eta_{\mu\nu} \dot{X}^{\mu} X^{\nu}} \qquad S_{\rm NG} = -\frac{1}{2\pi\alpha'} \int_{M} d\tau d\sigma \sqrt{-\det(\eta_{\mu\nu} \partial_{a} X^{\mu} \partial_{b} X^{\nu})}$$

String Theory is a **sigma model** on the worldsheet. It turns out string theory can be described by a **free CFT** on the worldsheet:

$$S_{
m P} = rac{1}{2\pilpha'}\int d^2z\partial X^\muar\partial X_\mu + rac{1}{2\pi}\int d^2z\Big(bar\partial c + ar b\partial ar c\Big) + \lambda\chi$$
 Ghost Fields

 X^{μ} : Rieman surface \hookrightarrow our spacetime

b, c: fix the **diff** \times **weyl** gauge

 χ : interactions \Leftrightarrow worldsheet topologies Unlike QFT, string theory's interactions are **intrinsic** and **unique**.

To avoid conformal anomalies, central charge should be zero, which implies **D=26, 10**

Tachyon $|0;k\rangle \cong :e^{ik\cdot X(0,0)}:$

Photon $\alpha_{-1}^{i}|0;k\rangle \cong :\partial X^{\mu}e^{ik\cdot X}:$

Graviton $\alpha_{-1}^i \tilde{\alpha}_{-1}^j |0; k\rangle \cong :\partial X^{\mu} \bar{\partial} X^{\nu} e^{ik \cdot X}$:

b, c ghosts make the relationship between U and V very simple:

$$V = cU$$

Tachyon $|0;k\rangle \cong :e^{ik\cdot X(0,0)}:$

Photon $\alpha_{-1}^{i}|0;k\rangle \cong :\partial X^{\mu}e^{ik\cdot X}:$

Graviton $\alpha_{-1}^i \tilde{\alpha}_{-1}^j |0; k\rangle \cong :\partial X^{\mu} \bar{\partial} X^{\nu} e^{ik \cdot X}$:

b, c ghosts make the relationship between U and V very simple:

$$V = cU$$

Tachyon $|0;k\rangle \cong :e^{ik\cdot X(0,0)}:$

Photon $\alpha_{-1}^{i}|0;k\rangle \cong :\partial X^{\mu}e^{ik\cdot X}:$

Graviton $\alpha_{-1}^i \tilde{\alpha}_{-1}^j |0; k\rangle \cong :\partial X^{\mu} \bar{\partial} X^{\nu} e^{ik \cdot X}$:

b, c ghosts make the relationship between U and V very simple:

Fix 3 points on

the sphere

Topological

Expansion

Vertex Operator

non-tivial

Topologies

$$V = cU$$

 $\int_{\mathcal{M}_{g,n}} d^{\mu} t : \text{integrate over all }$ complex structures

 $e^{\lambda\chi}$: sum over worldsheet topologies

 $\int d^2 z$: Amplitudes independent of worldsheet coordinates

*V*_{CKG}: Conformal symmetries help us fix some points

V: inserted at fixed punctures

U: integrated over the worldsheet

can be computed using the OPE

Spherical Topology

State-Operator Correspondence

Integrated

Vertex Operator

Tachyon $|0;k\rangle \cong :e^{ik\cdot X(0,0)}:$

Photon $\alpha_{-1}^{i}|0;k\rangle \cong :\partial X^{\mu}e^{ik\cdot X}:$

Graviton $\alpha_{-1}^i \tilde{\alpha}_{-1}^j |0; k\rangle \cong :\partial X^{\mu} \bar{\partial} X^{\nu} e^{ik \cdot X}$:

b, c ghosts make the relationship between U and V very simple:

V = cU

 $\int_{\mathcal{M}_{g,n}} d^{\mu} t : \text{integrate over all }$

 $e^{\lambda\chi}$: sum over worldsheet topologies

 $\int d^2 z$: Amplitudes independent of worldsheet coordinates

V_{CKG}: Conformal symmetries help us fix some points

V: inserted at fixed punctures

U: integrated over the worldsheet

(···): Tree-level correlation functions can be computed using the OPE

Asymptotic

States

Tachyon $|0;k\rangle \cong :e^{ik\cdot X(0,0)}:$

Photon $\alpha_{-1}^{i}|0;k\rangle \cong :\partial X^{\mu}e^{ik\cdot X}:$

Graviton $\alpha_{-1}^i \tilde{\alpha}_{-1}^j |0; k\rangle \cong :\partial X^{\mu} \bar{\partial} X^{\nu} e^{ik \cdot X}$:

b, c ghosts make the relationship between U and V very simple:

nple:
$$V = cU$$

 $d^{\mu} t$: integrate over all $\mathcal{M}_{g,n}$ complex structures

 $e^{\lambda \chi}$: sum over worldsheet topologies

 d^2z : Amplitudes independent of worldsheet coordinates

 $V_{
m CKG}\,$: Conformal symmetries help us fix some points

V: inserted at fixed punctures

U: integrated over the worldsheet

 $\langle \cdots \rangle$: Tree-level correlation functions can be computed using the OPE

Asymptotic **States**

State-Operator Correspondence **Conformal Transformation Vertex Operator**

 $=\sum_{ ext{compact}}\intrac{[dXdg]}{V_{ ext{diff} imes ext{Weyl}}} ext{exp}(-S_X-\lambda\chi)\prod_{i=1}^n\int d^2\sigma_i g(\sigma_i)^{1/2}V_{j_i}(k_i,\sigma_i)$ topologies Integrated non-tivial Topological Fix 3 points on Vertex Operator **Topologies Expansion** Spherical Topology

QFT: off-shell correlation function LSZ on-shell amplitudes

 $S_{j_1...j_n}(k_1,\ldots,k_n)$

String Theory: we only know how to define the on-shell amplitudes directly!

Superstring Theory

Superstring Theory

Bosonic String $\frac{Worldsheet SUSY}{Spacetime SUSY}$ RNS Formalism

What we really want $\frac{Can't}{Covariantly}$

Superstring Theory

Bosonic String Spacetime SUSY RNS Formalism

What we really want Can't be quantized covariantly

Free Boson $S_{RNS} = \frac{1}{2\pi} \int \mathrm{d}^2 z \left(\frac{2}{\alpha'} \partial X^\mu \overline{\partial} X_\mu + \psi^\mu \overline{\partial} \psi_\mu + b \overline{\partial} c + \beta \overline{\partial} \gamma \right) + \mathrm{c.c.}$

Free Fermion

Fermionic Ghost

Superstring Theory

Bosonic String

Spacetime SUSY

Worldsheet SUSY

RNS Formalism

Spacetime SUSY

GS Formalism

Can't be quantized covariantly

Free Boson

SRNS = $\frac{1}{2\pi} \int \mathrm{d}^2 z \left(\frac{2}{\alpha'} \partial X^\mu \bar{\partial} X_\mu + \psi^\mu \bar{\partial} \psi_\mu + b \bar{\partial} c + \beta \bar{\partial} \gamma\right) + \mathrm{c.c.}$

 ψ : spinor on the **worldsheet** NS sector: $\psi(\sigma + 2\pi) = -\psi(\sigma)$ R sector: $\psi(\sigma + 2\pi) = \psi(\sigma)$ β, γ : fix **Super diff** × **weyl** gauge But \mathcal{H}_{CO} is non-SUSY!

1-loop modular invariance

↓

We need **GSO projection**↓

Project \mathcal{H}_{CQ} to SUSY part
↓ **Type IIA\B** superstring

SUSY is hidden, not broken!

Superstring Theory

Bosonic String

Worldsheet SUSY RNS Formalism

Spacetime SUSY > GS Formalism

What we really want

Can't be quantized covariantly

$$S_{
m RNS} = rac{1}{2\pi} \int {
m d}^2z igg(rac{2}{lpha'} \partial X^\mu \overline{\partial} X_\mu + \psi^\mu \overline{\partial} \psi_\mu + b \overline{\partial} c + eta \overline{\partial} \gamma igg) + {
m c.c.}$$

$m^2=0$	Type IIA	Type IIB
R-R gauge fields IIA: $\Omega_1 \oplus \Omega_3, 8 \oplus 56$ IIB: $\Omega_0 \oplus \Omega_2 \oplus \Omega_4, 1 \oplus 28 \oplus 35$	$ \dot{lpha};- angle_{ m R}\otimes lpha;+ angle_{ m R}$	$ lpha;+ angle_{ m R}\otimes lpha;+ angle_{ m R}$
dilaton, B-field, graviton $1 \oplus 28 \oplus 35$	$ ilde{\psi}^{\imath}_{-1/2} 0 angle_{ m NS}\otimes\psi^{j}_{-1/2} 0 angle_{ m NS} $	$ ilde{\psi}^{\imath}_{-1/2} 0 angle_{ m NS}\otimes\psi^{j}_{-1/2} 0 angle_{ m NS}$
$2 imes$ dilatino gravitino $2 imes 56 \oplus 8$	${ ilde \psi}^i_{-1/2} 0 angle_{ m NS}\otimes lpha;+ angle_{ m R}$	${ ilde \psi}^{\imath}_{-1/2} 0 angle_{ m NS}\otimes lpha;+ angle_{ m R}$
IIA: same chirality	$ \dot{lpha};- angle_{ m R}\otimes\psi^i_{-1/2} 0 angle_{ m NS}$	$ lpha;+ angle_{ m R}\otimes\psi^i_{-1/2} 0 angle_{ m NS}$

$$U^{(-1)}(z) = \epsilon_{\mu} \psi^{\mu}(z) e^{-\phi(z)} e^{ik \cdot X(z)} \quad \text{for NS sector}$$

$$U^{(-1/2)}(z) = u^{\alpha} S_{\alpha}(z) e^{-\frac{1}{2}\phi(z)} e^{ik \cdot X(z)} \quad \text{for R sector}$$

$$V = cU$$

The definition of amplitudes is analogous to the bosonic string

 ψ : spinor on the **worldsheet**

NS sector: $\psi(\sigma + 2\pi) = -\psi(\sigma)$

R sector: $\psi(\sigma + 2\pi) = \psi(\sigma)$

 β , γ : fix **Super diff** × **weyl** gauge

But \mathcal{H}_{CO} is non-SUSY!

1-loop modular invariance

We need **GSO projection**

Project $\mathcal{H}_{ ext{CQ}}$ to SUSY part

Type IIA\B superstring

SUSY is hidden, not broken!

Superstring Theory Worldsheet SUSY RNS Formalism **Bosonic String** Spacetime SUSY > GS Formalism Can't be quantized What we really want covariantly Free Boson $S_{ m RNS} = rac{1}{2\pi} \int { m d}^2z \Big(rac{2}{arrho'} \partial X^\mu \overline{\partial} X_\mu + ig| \psi^\mu \overline{\partial} \psi_\mu ig| + ig| b \overline{\partial} c + eta \overline{\partial} \gamma \Big)$ ψ : spinor on the **worldsheet** Free Fermion Fermionic Ghost Type IIB Type IIA $m^2 = 0$ R-R gauge fields $|\dot{lpha};angle_{ m R}\otimes|lpha;+ angle_{ m R}$ $|\alpha;+ angle_{ m R}\otimes |\alpha;+ angle_{ m R}$ IIA: $\Omega_1 \oplus \Omega_3$, $8 \oplus 56$ IIB: $\Omega_0 \oplus \Omega_2 \oplus \Omega_4$, $1 \oplus 28 \oplus 35$

$$U^{(-1)}(z) = \epsilon_{\mu} \psi^{\mu}(z) e^{-\phi(z)} e^{ik \cdot X(z)} \quad \text{for NS sector}$$

$$U^{(-1/2)}(z) = u^{\alpha} S_{\alpha}(z) e^{-\frac{1}{2}\phi(z)} e^{ik \cdot X(z)} \quad \text{for R sector}$$

$$V = cU$$

The definition of amplitudes is analogous to the bosonic string

RNS Formalism: Covariant quantization | Hide spacetime SUSY

NS sector: $\psi(\sigma + 2\pi) = -\psi(\sigma)$ R sector: $\psi(\sigma + 2\pi) = \psi(\sigma)$

 β , γ : fix **Super diff** \times **weyl** gauge But \mathcal{H}_{CO} is non-SUSY!

1-loop modular invariance

We need **GSO projection**

Project $\mathcal{H}_{\mathsf{CO}}$ to SUSY part

Type IIA\B superstring

SUSY is hidden, not broken!

GS Formalism: Manifest spacetime SUSY | Light-cone quantization only

Superstring Theory **Bosonic String**

Worldsheet SUSY RNS Formalism

Spacetime SUSY > GS Formalism

What we really want

Free Boson

 $S_{
m RNS} = rac{1}{2\pi} \int {
m d}^2z \Big(rac{2}{arrho'} \partial X^\mu \overline{\partial} X_\mu + igg| \psi^\mu \overline{\partial} \psi_\mu \Big) + igg| b \overline{\partial} c + oldsymbol{ar{\partial}} \overline{\partial} \gamma$

Free Fermion Fermionic Ghost

Type IIB $m^2 = 0$ Type IIA R-R gauge fields $|\dot{lpha};angle_{
m R}\otimes |lpha;+
angle_{
m R}$ $|\alpha;+
angle_{
m R}\otimes |\alpha;+
angle_{
m R}$ IIA: $\Omega_1 \oplus \Omega_3$, $8 \oplus 56$ IIB: $\Omega_0 \oplus \Omega_2 \oplus \Omega_4$, $1 \oplus 28 \oplus 35$ $| ilde{\psi}^{\imath}_{-1/2}|0
angle_{
m NS}\otimes\psi^{j}_{-1/2}|0
angle_{
m NS}|$ $| ilde{\psi}^i_{-1/2}|0
angle_{
m NS}\otimes\psi^j_{-1/2}|0
angle_{
m NS}|$ dilaton, B-field, graviton

 $1 \oplus 28 \oplus 35$ $2 \times$ dilatino gravitino $2 \times 56 \oplus 8$ IIA: same chirality IIB: opposite chirality

 $| ilde{\psi}^{\imath}_{-1/2}|0
angle_{
m NS}\otimes|lpha;+
angle_{
m R}|$ $ilde{\psi}^{\imath}_{-1/2}|0
angle_{
m NS}\otimes|lpha;+
angle_{
m R}$ $|\dot{lpha};angle_{
m R}\otimes\psi^{i}_{-1/2}|0
angle_{
m NS}|$ $|lpha;+
angle_{
m R}\otimes\psi^i_{-1/2}|0
angle_{
m NS}$ $U^{(-1)}(z) = \epsilon_{\mu} \psi^{\mu}(z) e^{-\phi(z)} e^{ik \cdot X(z)}$ for NS sector V = cU

 $U^{(-1/2)}(z) = u^{\alpha} S_{\alpha}(z) e^{-\frac{1}{2}\phi(z)} e^{ik \cdot X(z)}$ for R sector The definition of amplitudes is analogous to the bosonic string

RNS Formalism: Covariant quantization | Hide spacetime SUSY

WHAT DO YOU WANT FOR X-MAS?

SUSY AT THE

NS sector: $\psi(\sigma + 2\pi) = -\psi(\sigma)$ R sector: $\psi(\sigma + 2\pi) = \psi(\sigma)$ β , γ : fix **Super diff** \times **weyl** gauge

But \mathcal{H}_{CO} is non-SUSY!

1-loop modular invariance We need **GSO projection**

Project \mathcal{H}_{CQ} to SUSY part

Type IIA\B superstring

SUSY is hidden, not broken!

We need Pure

Spinor Formalism!

GS Formalism: Manifest spacetime SUSY | Light-cone quantization only