Exercise 5.8. Show that A_{10} contains an element of order 15.

Proof. Consider $\sigma \in A_{10} \subset S_{10}$ given by $\sigma = (12345)(678)$, the product of two disjoint cycles. Then $\sigma \in A_{10}$ as σ is the product of two even permutations and Theorem 5.7 states A_{10} is a sub-group of S_{10} , therefore closed. Notice $(12345)^{-1} = (12345)^4$ and $(678)^{-1} = (678)^2$, and clearly $(12345)^{-1} \neq (678)^n$ and $(678)^{-1} \neq (12345)^m$ for any $(n,m) \in \mathbb{Z}^2$. Because $|A_{10}| = \frac{10!}{2}$ is finite, $|\sigma| \neq \infty$ as $\sigma^n \in A_{10}$ for all $n \in \mathbb{Z}$ by Theorem 5.7 that A_n is a sub-group of S_n . Then

$$\sigma^{15} = [(12345)(678)]^{15}$$
= $(12345)^{15}(678)^{15}$ by Proposition 5.2 (that disjoint cycles commute) and Theorem 3.8.3
= $[(12345)^5]^3[(678)^3]^5$ by Theorem 3.8.2
= $(id)^3(id)^5$
= id

So $\sigma = (12345)(678) \in A_{10}$ is an element of A_{10} of order 15.

Exercise 5.13. Let $\sigma = \sigma_1 \cdots \sigma_m \in S_n$ be the product of disjoint cycles. Prove that the order of σ is the least common multiple of the lengths of the cycles $\sigma_1, \ldots, \sigma_m$.

Proof. Let $|\sigma| = k$. So

$$\sigma^k = (\sigma_1 \cdots \sigma_m)^k$$

= $\sigma_1^k \cdots \sigma_m^k$ by Proposition 5.2 (that disjoint cycles commute) and Theorem 3.8.3
= id because $\sigma^k = id$ as $|\sigma| = k$

So $\sigma_i^k = id$ for $i \in ([1, m] \cap \mathbb{Z})$. So if So $\sigma_i^k = id$ then k must be a common multiple of the length of each σ_i . So the smallest k (that is, the order of σ) must be equal to the least common divisor of lengths of $\sigma_1, \ldots, \sigma_m$ by definition of least common multiple.

Exercise 5.16. Find all group of rigid motions of a tetrahedron. Show that this is the same group as A_4 .

Proof.

A regular tetrahedron centered at (0,0,0) with each face an equilateral triangle of side length $\frac{\sqrt{6}}{2}$

Consider the position of face $ACD \rightarrow A'C'D'$ for each rigid motion of the tetrahedron. The point A may assume 4 distinct locations. Once A is fixed, C may assume one of 3 remaining distinct locations. Once A and C are chosen, D may assume only 1 distinct location. So the order is $4 \times 3 \times 1 = 12$. The group of rigid rotations is given by $\rho_A = \begin{pmatrix} A & B & C & D \\ A & D & B & C \end{pmatrix}$, $\rho_A^2 = \begin{pmatrix} A & B & C & D \\ A & C & D & B \end{pmatrix}$, $\rho_B = \begin{pmatrix} A & B & C & D \\ B & D & C & A \end{pmatrix}$, $\rho_B^2 = \begin{pmatrix} A & B & C & D \\ B & D & C & A \end{pmatrix}$, $\rho_C = \begin{pmatrix} A & B & C & D \\ B & D & C & A \end{pmatrix}$, $\rho_C = \begin{pmatrix} A & B & C & D \\ B & D & C & A \end{pmatrix}$, $\rho_C = \begin{pmatrix} A & B & C & D \\ B & D & C & A \end{pmatrix}$, $\rho_C = \begin{pmatrix} A & B & C & D \\ B & D & C & A \end{pmatrix}$, $\rho_C = \begin{pmatrix} A & B & C & D \\ B & D & C & A \end{pmatrix}$, $\rho_C = \begin{pmatrix} A & B & C & D \\ B & D & C & A \end{pmatrix}$, $\rho_C = \begin{pmatrix} A & B & C & D \\ B & D & C & A \end{pmatrix}$, and $id = \begin{pmatrix} A & B & C & D \\ A & B & C & D \end{pmatrix}$. By Proposition 5.8, $A_4 \subset S_4$ is of order $\frac{4!}{2} = 12$ and A_4 is given by

$$A_4 = \{id, (12)(13), (12)(14), (12)(34), (13)(12), (13)(14), (13)(24), (14)(12), (14)(13), (14)(23), (23)(24), (24)(23)\} \quad \text{by definition} \\ = \{(24)(23), (23)(24), (14)(13), (13)(14), (14)(12), (12)(14), (13)(12), (12)(13), (12)(34), (13)(34), (14)(23), id\} \quad \text{by reordering} \\ = \{(234), (243), (134), (143), (124), (142), (123), (132), (12)(34), (13)(24), (14)(23), id\} \quad \text{as } (a_i a_k)(a_i a_j) = (a_i a_k a_j).$$

Notice this matches the set A_4 as listed in Chapter 5, Example 8.

Since the order of the rigid motions of a tetrahedron equals the order of A_4 , to show that the two groups are equivalent we must show that every rigid motion of a tetrahedron is the product even number of permutations. Label A, B, C, D as 1, 2, 3, 4 respectively. Then

- (234) corresponds to ρ_A ((243) to ρ_A^2)
- (124) corresponds to ρ_C ((142) to ρ_C^2)
- (12)(34) corresponds to $\rho_{AB,BC}$
- (14)(23) corresponds to $\rho_{AD,BC}$

- (134) corresponds to ρ_B ((143) to ρ_B^2)
- (123) corresponds to ρ_D ((132) to ρ_D^2)
- (13)(24) corresponds to $\rho_{AC,BD}$
- The identity *id* corresponds to itself

Notice every rigid motion of is the product of an even number of permutations as for each $x \in \{\text{group of rigid motions of a tetrahedron}\}\$, $x \in A_4$. So the group of rigid motions of a tetrahedron is the same as A_4 as

```
 \{ \text{group of rigid motions of a tetrahedron} \} = \left\{ \rho_A, \rho_A^2, \rho_B, \rho_B^2, \rho_C, \rho_D^2, \rho_D, \rho_D^2, \rho_{((AB)(BC))}, \rho_{((AC)(BD))}, \rho_{((AD)(BC))} \right\}  from way above  = \left\{ (234), (243), (134), (143), (124), (142), (123), (132), (12)(34), (13)(24), (14)(23), id \right\}  from above  = \left\{ id, (12)(34), (13)(24), (14)(23), (123), (123), (124), (142), (134), (143), (234), (243) \right\}  by reordering  = A_4 \quad \text{as listed in Chapter 5, Example 8. and above}
```

Exercise 5.19. Prove that D_n is non-abelian for $n \geq 3$.

Proof. By Theorem 5.10, we know that the group D_n consists of all products of the two elements r and s satisfying the relations

$$r^{n} = id$$

$$s^{2} = id$$

$$srs = r^{-1}$$

for $n \geq 3$.

Let $n \geq 3$ and label r, s such that $r^n = id$ and $s^2 = id$, which is certainly possible by Theorem 5.10. Now assume for a contradiction of D_n is abelian. Then

```
srs = (sr)s = (rs)s by assumption that D_3 is abelian = r(ss) = rs^2 by associativity of elements in D_n as D_n is a sub-group of S_n by Theorem 5.9 = r(id) by Theorem 5.15 and chose of s \in D_n = r
```

However srs = r is a contradiction to Theorem 5.10 that $srs = r^{-1}$ as this would imply

$$rr^{-1} = id \implies r(srs) = id$$
 by Theorem 5.10
 $\implies r(r) = id$ by calculation above that $srs = r$
 $\implies r^2 = id$

and $r^2 = id$ cannot happen for $r \in D_n$ for $n \ge 3$ as r is necessarily of order n and 0 < n. So our original assumption that 0 < n is abelian must be false, so 0 < n must be non-abelian for 0 < n.

Exercise 5.23. If σ is a cycle of odd length, prove that σ^2 is also a cycle.

Proof. Let $\sigma = (\sigma_1, \dots, \sigma_k)$ for some odd integer k. Then σ may be written as $\sigma = (\sigma_1 \sigma_k) (\sigma_1 \sigma_{k-1}) \cdots (\sigma_1 \sigma_3) (\sigma_1 \sigma_2)$, a finite product of transpositions. Then

$$\sigma^{2} = ((\sigma_{1}\sigma_{k})(\sigma_{1}\sigma_{k-1})\cdots(\sigma_{1}\sigma_{3})(\sigma_{1}\sigma_{2}))^{2}$$

$$= [(\sigma_{1}\sigma_{k})(\sigma_{1}\sigma_{k-1})\cdots(\sigma_{1}\sigma_{3})(\sigma_{1}\sigma_{2})][(\sigma_{1}\sigma_{k})(\sigma_{1}\sigma_{k-1})\cdots(\sigma_{1}\sigma_{3})(\sigma_{1}\sigma_{2})] \text{ by definition of exponentiation}$$

Then σ^2 is given by $\sigma^2(\sigma_\ell) = \sigma(\sigma(\sigma_\ell)) = \sigma(\sigma_{\ell+1}) = \sigma_{\ell+2}$ for $\ell = 1, 2, \dots, k-2$. So $\sigma^2 : \sigma_1 \mapsto \sigma_3$, and $\sigma^2 : \sigma_3 \mapsto \sigma_5$, and eventually we will arrive at $\sigma^2 : \sigma_{k-2} \mapsto \sigma_k$ as k is an odd number. Then $\sigma^2(\sigma_k) = \sigma(\sigma_1) = \sigma_2$. $\sigma^2(\sigma_\ell) = \sigma(\sigma(\sigma_\ell)) = \sigma(\sigma_{\ell+1}) = \sigma_{\ell+2}$ for $\ell = 1, 2, \dots, k-2$. So $\sigma^2 : \sigma_2 \mapsto \sigma_4$, and $\sigma^2 : \sigma_4 \mapsto \sigma_6$, and eventually we will arrive at $\sigma^2 : \sigma_{k-3} \mapsto \sigma_{k-1}$ as k is an odd number so k-3 is even. Then $\sigma_{k-1} \mapsto \sigma_1$ as $\sigma_1 \mapsto \sigma_3$ as before. So $\sigma^2 = (\sigma_3, \sigma_5, \dots, \sigma_{k-2}, \sigma_k, \sigma_2, \sigma_4, \dots, \sigma_{k-1}, \sigma_1)$ is a cycle. \square

Exercise 5.26. Prove that any element in S_n can be written as a finite product of the following permutations.

(a)
$$(12), (13), \dots, (1n)$$

(b)
$$(12), (23), \dots, (n-1, n)$$

(c)
$$(12), (12 \dots n)$$

Proof. Let $\sigma \in S_n$.

(a) Then by Theorem 5.3, σ can be written as the product of disjoint cycles $\sigma = a_1 a_2 \cdots a_k$. For $i = 1, \ldots, k$, let $a_i = (\alpha_{i_1}, \ldots, \alpha_{i_\ell})$. Then $a_i : \alpha_{i_m} \mapsto \alpha_{i_{m+1}}$ for $m = 1, \ldots, \ell - 1$ and $a_i : \alpha_{i_\ell} \mapsto \alpha_1$. Consider $a_i' = (\alpha_{i_1} a_{i_\ell})(a_{i_1} a_{i_{\ell-1}}) \cdots (a_{i_1} a_{i_3})(a_{i_1} a_{i_2})$, which is a product of $(12), (13), \ldots, (1n)$. Then $a_i' : \alpha_{i_m} \mapsto \alpha_{i_{m+1}}$ for $m = 1, \ldots, \ell - 1$ and $a_i' : \alpha_{i_\ell} \mapsto \alpha_1$. So $a_i = a_i'$ for all i. So

$$\sigma = a_1 a_2 \cdots a_k
= a'_1 a'_2 \cdots a'_k \quad \text{as } a_i = a'_i
= ((a_{1_1} a_{1_\ell}) \cdots (a_{1_1} a_{1_2})) ((a_{2_1} a_{2_\ell}) \cdots (a_{2_1} a_{2_2})) \cdots ((a_{k_1} a_{k_\ell}) \cdots (a_{k_1} a_{k_2}))$$

which is a product of $(12), (13), \ldots, (1n)$

Exercise 6.1. Suppose that G is a finite group with an element g of order 5 and an element h of order 7. Why must $|G| \ge 35$? Proof. Let $g = (g_1g_2g_3g_4g_5)$ and $h = (h_1h_2h_3h_4h_5h_6h_7)$. By Corollary 6.6, the orders of g and h, (5 and 7 respectively) must divide the number of elements in G, so |G| is 35 at least, or larger.

Exercise 6.3. Prove or disprove: Every sub-group of the integers has finite index.

Proof. This is false. Let $H = \{1\}$. Then H is a sub-group of \mathbb{Z} and $[\mathbb{Z}: H] = \#\mathcal{L}_H = \#\{g \cdot 1 : g \in \mathbb{Z}\} = \infty$

Exercise 6.5. List the left and right co-sets of the sub-groups in each of the following.

(a) $\langle 8 \rangle$ in \mathbb{Z}_{24}

(b) $\langle 3 \rangle$ in U(8)

(d) A_4 in S_4

(f) D_4 in S_4

Solution.

(a) The left and right co-sets of $\langle 8 \rangle$ in \mathbb{Z}_{24} are the same as addition is commutative in \mathbb{Z}_{24} . So the left and right co-set are

$0+\langle 8\rangle$	=	$8+\langle 8\rangle$	=	$16+\langle 8 \rangle$	=	$\{0, 8, 16\}$
$1+\langle 8 \rangle$	=	$9+\langle 8\rangle$	=	$17+\langle 8 \rangle$	=	$\{1, 9, 17\}$
$2+\langle 8\rangle$	=	$10+\langle 8 \rangle$	=	$18+\langle 8 \rangle$	=	$\{2, 10, 18\}$
$3+\langle 8 \rangle$	=	$11+\langle 8 \rangle$	=	$19+\langle 8 \rangle$	=	$\{3, 11, 19\}$
$4+\langle 8 \rangle$	=	$12+\langle 8 \rangle$	=	$20+\langle 8 \rangle$	=	$\{4, 12, 20\}$
$5+\langle 8 \rangle$	=	$13+\langle 8 \rangle$	=	$21+\langle 8 \rangle$	=	$\{5, 13, 21\}$
$6+\langle 8 \rangle$	=	$14+\langle 8 \rangle$	=	$22+\langle 8 \rangle$	=	$\{6, 14, 22\}$
$7+\langle 8 \rangle$	=	$15+\langle 8 \rangle$	=	$23+\langle 8 \rangle$	=	$\{6, 14, 22\}$

(b) The left and right co-sets of $\langle 3 \rangle$ in U(8) are the same as multiplication is commutative in \mathbb{Z}_8 . $U(8) = \{1, 3, 5, 7\}$ and $\langle 3 \rangle = \{1, 3\}$, so the left and right co-sets are:

$$1 \cdot \{3, 1\} = \{3, 1\}$$

$$3 \cdot \{3, 1\} = \{1, 3\}$$

$$5 \cdot \{3,1\} \ = \{7,5\}$$

$$7 \cdot \{3, 1\} = \{5, 7\}$$

(d) The order of A_4 in S_4 is 2, so the left co-sets equals the right co-sets. So the left and right co-sets of

$$A_4 = \{(234), (243), (134), (143), (124), (142), (123), (132), (12)(34), (13)(24), (14)(23), id\}$$

are

$$A_4 = \{(234), (243), (134), (143), (124), (142), (123), (132), (12)(34), (13)(24), (14)(23), id\}$$

$$(12)A_4 = \{(1234), (1243), (1342), (1432), (24), (14), (23), (34), (1324), (1423), (12)\}$$

(f) From Chapter 5 **Example 9.**, $D_4 = \{(1234), (13)(24), (1432), id, (24), (13), (12)(34), (14)(32)\}$. So the left co-sets are

$$D_4 = \{(1234), (13)(24), (1432), id, (24), (13), (12)(34), (14)(32)\}$$

$$(12)D_4 = \{(12), (234), (2413), (143), (34), (1423), (132), (124)\}$$

$$(14)D_4 = \{(14), (123), (1342), (243), (1243), (23), (134), (142)\}$$

Exercise 6.7. Verify Euler's Theorem for n = 15 and a = 4.

Solution. Because gcd (15, 4) = 1, we may apply Euler's Theorem that $a^{\phi(n)} \equiv 1 \pmod{n}$.

$$\phi(15) = \# \{x \in ([1, 15) \cap \mathbb{Z}) | \gcd(x, 15) = 1\}$$
$$= \# \{1, 2, 4, 7, 8, 11, 13, 14\}$$
$$= 8$$

and

$$4^{8} = 4^{2^{3}}$$

$$\equiv 1 \quad \text{as } 4^{2^{0}} \equiv 4 \implies 4^{2^{1}} \equiv 1 \implies 4^{2^{2}} \equiv 4 \implies 4^{2^{3}} \equiv 1$$

So Euler's Theorem holds for n = 15 and a = 4. \checkmark

Exercise 6.8. Use Fermat's Little Theorem to show that if p = 4n + 3 is prime, there is no solution to the equation $x^2 \equiv -1 \pmod{p}$.

Proof. Notice $x \in [(\mathbb{Z}/p\mathbb{Z}) \setminus \{0\}]$ and $x^2 \equiv -1 \pmod p \implies x^4 \equiv 1 \pmod p$. If $x \equiv 1$ then $x^2 \equiv 1$ and $x^2 \equiv -1$, so $1 \equiv -1 \implies 2 \equiv 0 \implies p = 2 = 4n + 3$, which is a contradiction. So $x \not\equiv 1$ and $x^2 \not\equiv 1$,

Since |x|=4 and $x\in [(\mathbb{Z}/p\mathbb{Z})\setminus \{0\}]$, we have 4 divides |G|, where clearly |G|=p-1. So $4|p-1\implies 4|(4n+3)-1\implies 4|4n+2|$ which is a contradiction. Therefore there is no $x \in [(\mathbb{Z}/p\mathbb{Z}) \setminus \{0\}]$ such that $x^2 \equiv -1 \pmod{p}$.

Exercise 6.11. Let H be a sub-group of G and suppose that $g_1 \cdot g_2 \in G$. Prove that the following conditions are equivalent.

(a)
$$g_1 H = g_2 H$$
 (b) $H g_1^-$

(b)
$$Hg_1^{-1} = Hg_2^{-1}$$
 (c) $g_1H \subseteq g_2H$

(c)
$$g_1H \subseteq g_2H$$

(d)
$$g_2 \in g_1 H$$

(e)
$$g_1^{-1}g_2 \in H$$

Proof. (a) \iff (b):

$$g_{1}H = g_{2}H \iff g_{1} \sim_{H,L} g_{2}, \text{ as } [x]_{\sim_{H,L}} = xH$$

$$\iff g_{1}^{-1}g_{2} \in H \text{ by definition of } \sim_{H,L}$$

$$\iff g_{1}^{-1} \sim_{H,R} g_{2}^{-1} \text{ by definition of } \sim_{H,R}$$

$$\iff Hg_{1}^{-1} = Hg_{2}^{-1}, \text{ as } [x]_{\sim_{H,R}} = Hx$$

$$(1)$$

So
$$g_1 H = g_2 H \iff H g_1^{-1} = H g_2^{-1}$$
.

 $(a) \implies (d)$:

$$g_1H = g_2H$$
 and $g_2 \in g_2H \implies g_2 \in g_1H$ \square

 $(\mathbf{c}) \iff (\mathbf{a})$:

$$g_1H \subseteq g_2H \iff g_1 \in g_2H \text{ by } (\mathbf{d})$$
 $\iff g_1 = g_2h \text{ for some } h \text{ in } H$
 $\iff g_2^{-1}g_1 \in H$
 $\iff g_1 \sim_{H,L} g_2 \text{ by definition of } \sim_{H,L} \text{ and fact that } \sim_{H,L} \text{ is symmetric}$
 $\iff g_1H = g_2H, \text{ as } [x]_{\sim_{H,R}} = Hx$

So
$$g_1H \subseteq g_2H \iff g_1H = g_2H$$
.

(a) \iff (c): I kind of think of this as the definition, through a proof is given in (1).

Exercise 6.17. Suppose that [G:H]=2. If a and b are not in H, show that $ab \in H$.

Proof. Clearly $id \in H$ as H is a sub-group. Let $H = \{h_1, \ldots, h_n, id\}$ such that $a, b \notin H$. Consider $aH = \{ah_1, \ldots, ah_n, a\}$. Since [G:H]=2 we have that $aH=G\setminus H$ by theorem from class. Clearly $ab\notin aH$ as $ah_i\neq ab$ for any i by assumption that $b \notin H$. So $ab \notin G \setminus H \implies ab \in H$ (as ab must be in G because G is closed).

Exercise 6.20. Let H and K be sub-groups of a group G. Define a relation \sim on G by $a \sim b$ if there exists an $h \in H$ and a $k \in K$ such that hak = b. Show that this relation is an equivalence relation. The corresponding equivalence classes are **double co-sets.** Compute the double co-sets of $H = \{(1), (123), (132)\}$ in A_4 .

Proof.

Reflexive: As H and K are sub-groups, clearly $id \in H$ and $id \in K$. So let h = k = id. Then $id \cdot a \cdot id = a$, so \sim is reflexive. \checkmark Symmetric: Because they are sub-groups, H and K are closed under inverses. So

$$a \sim b \iff hak = b \iff ak = h^{-1}b$$
 by left multiplying by h^{-1} , as $h^{-1} \in H$ $\iff a = h^{-1}bk^{-1}$ by left multiplying by k^{-1} , as $k^{-1} \in k$ $\iff b \sim a$

So $a \sim b \iff b \sim a$, so \sim is symmetric. \checkmark

Transitive: $a \sim b$ and $b \sim c$ means there exists $h_1, h_2 \in H$ and $k_1, k_2 \in K$ such that $h_1ak_1 = b$ and $h_2bk_2 = c$. So

$$a \sim b$$
 and $b \sim c \iff h_1 a k_1 = b$ and $h_2 b k_2 = c$

$$\implies h_2 \left(h_1 a k_1 \right) k_2 = c \quad \text{by substitution}$$

$$\implies \left(h_2 h_1 \right) a \left(k_1 k_2 \right) = c \quad \text{by associativity in groups}$$

$$\iff a \sim c \quad \text{as } h_2 h_1 \in H \text{ and } k_1 k_2 \in H$$

So $a \sim b$ and $b \sim c \implies a \sim c$, so \sim is transitive. \checkmark

So \sim is an equivalence relation. So for $x \in G$,

$$\begin{split} [x] &:= \{ y \in G \text{ such that } x \sim y \} \\ &= \{ y \in G \text{ such that } hxk = y \text{ for some } h \in H, k \in K \} \\ &= \{ hxk \text{ for some } h \in H, k \in K \} \end{split}$$

So the double co-sets of $H = \{(1), (123), (132)\}$ in A_4 are

$$H(1)H = \{h_1h_2|h_1, h_2 \in H\}$$

= \{(1), (123), (132)\}

and

H(234)H

- $= \{h_1(234)h_2|h_1, h_2 \in H\}$
- $= \{(234)(13)(24), (142), (12)(34), (243), (143), (134), (124), (14)(23)\} = A_4 \setminus H$

Exercise 9.2. Prove that \mathbb{C}^* is isomorphic to the sub-groups of $GL_2(\mathbb{R})$ consisting of matrices of the form

$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

Proof. Let $\phi: \mathbb{C}^* \to \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} | a^2 + b^2 \neq 0 \right\}$ be given be $a + bi \mapsto \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$. Then ϕ forms a bijection between the sets \mathbb{C}^* and $\left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} | a^2 + b^2 \neq 0 \right\}$.

To show the group operations are conserved, I will show $\phi(a+bi)\cdot\phi(c+di)=\phi\left((a+bi)\times(c+di)\right)$ where \cdot is matrix multiplication and \times is complex multiplication. So

$$\begin{split} \phi\left(a+bi\right)\cdot\phi\left(c+di\right) &= \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \cdot \begin{bmatrix} c & d \\ -d & c \end{bmatrix} \quad \text{by definition of } \phi:\mathbb{C}^* \to \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} | a^2+b^2 \neq 0 \right\} \\ &= \begin{bmatrix} ac-bd & ad+bc \\ -\left(ad+bc\right) & ac-bd \end{bmatrix} \quad \text{by matrix multiplication} \\ &= \phi\left((ac-bd) + (ad+bc)i\right) \quad \text{by definition of } \phi:\mathbb{C}^* \to \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} | a^2+b^2 \neq 0 \right\} \\ &= \phi\left((a+bi) \times (c+di)\right) \end{split}$$

So
$$\phi(a+bi)\cdot\phi(c+di)=\phi\left((a+bi)\times(c+di)\right)$$
. So $(C^*,\times)\simeq\left(\left\{\left[\begin{smallmatrix} a&b\\-b&a\end{smallmatrix}\right]|a^2+b^2\neq 0\right\},\cdot\right)$.

Exercise 9.12. Prove that S_4 is not isomorphic to D_{12} .

Proof. Although S_4 and D_{12} each have 24 elements, by Theorem 5.10, there exists $r \in D_{12}$ with |r| = 12, but no such element in S_4 as $|s| \le 4$ for all $s \in S_4$.

Exercise 9.9. Let $G = \mathbb{R} \setminus \{-1\}$ and define a binary operation on G by

$$a * b = a + b + ab.$$

Prove that G is a group under this operation. Show that (G,*) is isomorphic to the multiplicative group of nonzero real numbers.

Proof. By Exercise 3.7 from homework #2, (G,*) is an abelian group.

The map $\phi: G \to \mathbb{R}^*$ given by $\phi(x) = 1 + x$ is clearly a bijection and well defined on each set. ϕ preserves group operations as for any $a, b \in G$,

$$\phi(a) \cdot \phi(b) = (1+a) \cdot (1+b) \quad \text{by definition of } \phi$$

$$= 1+b+a+ab=a+b+ab+1$$

$$= \phi(a+b+ab) \quad \text{by definition of } \phi$$

$$= \phi(a*b) \quad \text{by definition of } *$$

So $(G,*) \simeq (\mathbb{R}^*,\cdot)$.

Exercise 9.12. Prove that S_4 is not isomorphic to D_{12} .

Proof. Consider $(1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2) \in D_{12}$ which has order 12. Because every element of S_4 has order less than or equal to 4, the two groups cannot be isomorphic by Theorem from class that ord $[\phi(g_1)] = \operatorname{ord}(g_1)$.

Exercise 9.14. Show that the set of all matrices of the form $\begin{bmatrix} \pm 1 & k \\ 0 & 1 \end{bmatrix}$ is isomorphic to D_n where all entries in the matrix are in \mathbb{Z}_n .

Proof. Let $S = \left\{ \begin{bmatrix} \pm 1 & k \\ 0 & 1 \end{bmatrix} : k \in \mathbb{Z}_n \right\}$. Notice for any $\begin{bmatrix} \pm 1 & k \\ 0 & 1 \end{bmatrix} \in S$, we have

$$\begin{bmatrix} \pm 1 & k \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \pm 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^k \begin{bmatrix} \pm 1 & 0 \\ 0 & 1 \end{bmatrix}$$

and $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. So $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ generate S. Furthermore, $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ has order n, and $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ has order 2, and

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{-1}$$

By Theorem 5.10, D_n is generated by all the products of $r, s \in D_n$ such that $r^n = s^2 = id$ and $srs = r^{-1}$. Define $f: S \to D_n$ by $f\left(\left[\begin{smallmatrix} 1 & k \\ 0 & 1 \end{smallmatrix}\right]\right) = r^k$ and $f\left(\left[\begin{smallmatrix} -1 & k \\ 0 & 1 \end{smallmatrix}\right]\right) = r^ks$. To check that f preserves group operations, there are four cases to check:

$$1. \ f\left(\left[\begin{smallmatrix} 1 & k \\ 0 & 1 \end{smallmatrix}\right]\left[\begin{smallmatrix} 1 & \ell \\ 0 & 1 \end{smallmatrix}\right]\right) = f\left(\left[\begin{smallmatrix} 1 & k+\ell \\ 0 & 1 \end{smallmatrix}\right]\right) = r^{k+\ell} = r^k r^\ell = f\left(\left[\begin{smallmatrix} 1 & k \\ 0 & 1 \end{smallmatrix}\right]\right) \cdot f\left(\left[\begin{smallmatrix} 1 & \ell \\ 0 & 1 \end{smallmatrix}\right]\right). \ \checkmark$$

$$2. \ f\left(\left[\begin{smallmatrix} -1 & k \\ 0 & 1 \end{smallmatrix}\right]\left[\begin{smallmatrix} 1 & \ell \\ 0 & 1 \end{smallmatrix}\right]\right) = f\left(\left[\begin{smallmatrix} -1 & k \\ 0 & 1 \end{smallmatrix}\right]\right) = r^{k-\ell}s = r^kr^{-\ell}s = \cdots = \cdots = f\left(\left[\begin{smallmatrix} -1 & k \\ 0 & 1 \end{smallmatrix}\right]\right) \cdot f\left(\left[\begin{smallmatrix} 1 & \ell \\ 0 & 1 \end{smallmatrix}\right]\right). \ \checkmark$$

$$3. \ f\left(\left[\begin{smallmatrix} 1 & k \\ 0 & 1 \end{smallmatrix}\right]\left[\begin{smallmatrix} -1 & \ell \\ 0 & 1 \end{smallmatrix}\right]\right) = f\left(\left[\begin{smallmatrix} -1 & k + \ell \\ 0 & 1 \end{smallmatrix}\right]\right) = r^{k+\ell}s = r^kr^\ells = r^k\left(r^\ells\right) = f\left(\left[\begin{smallmatrix} 1 & k \\ 0 & 1 \end{smallmatrix}\right]\right) \cdot f\left(\left[\begin{smallmatrix} -1 & \ell \\ 0 & 1 \end{smallmatrix}\right]\right). \checkmark$$

4.
$$f\left(\begin{bmatrix} -1 & k \\ 0 & 1 \end{bmatrix}\begin{bmatrix} -1 & \ell \\ 0 & 1 \end{bmatrix}\right) = f\left(\begin{bmatrix} 1 & k-\ell \\ 0 & 1 \end{bmatrix}\right) = r^{k-\ell} = r^k r^{-\ell} = r \left(srs\right)^{\ell} \cdots = \cdots = f\left(\begin{bmatrix} -1 & k \\ 0 & 1 \end{bmatrix}\right) \cdot f\left(\begin{bmatrix} 1 & \ell \\ 0 & 1 \end{bmatrix}\right)$$
.

Exercise 10.2. Find all the sub-groups of D_4 . Which sub-groups are normal? What are all the factors groups of D_4 up to isomorphisms?

Proof. The sub-groups are $D_4 = \{id, \rho, \rho^2, \rho^3, s, \rho s, \rho^2 s, \rho^3 s\} = \{id, (1234), (13)(24), (1432), (24), (12)(34), (13), (14)(23)\}$ are

- $1. \{id\}$
- 3. $\{id, s\}$
- 5. $\{id, \rho^2 s\}$
- 7. $\{id, \rho, \rho^2, \rho^3\}$ 9. $\{id, \rho^2, \rho s, \rho^3 s\}$

- 2. $\{id, \rho^2\}$
- 4. $\{id, \rho s\}$
- 6. $\{id, \rho^3 s\}$
- 8. $\{id, \rho^2, s, \rho^2 s\}$ 10. D_4

- 1. $\{id\}$ is normal.
- 2. $\{id, \rho^2\}$ is normal as $(1234)\{id, \rho^2\} = \{(1234), (1432)\} = \{id, \rho^2\}(1234)$ and $(24)\{id, \rho^2\} = \{(24), (13)\} = \{id, \rho^2\}(24)$ and $(12)(34)\{id, \rho^2\} = \{(12)(34), (14)(23)\} = \{id, \rho^2\}(12)(34).$
- 3. $\{id, s\}$ is not normal as $(1234)\{id, s\} = \{(1234), (12)(34)\} \neq \{(1234), (14)(23)\} = \{id, s\}(1234)$.
- 4. $\{id, \rho s\}$ is not normal as $(1234)\{id, \rho s\} = \{(1234), (13)\} \neq \{(1234), (24)\} = \{id, \rho s\} (1234)$
- 5. $\{id, \rho^2 s\}$ is not normal as $\rho \circ (\rho^2 s) = \rho^3 s \neq \rho s = (\rho^2 s) \circ \rho$.
- 6. $\{id, \rho^3 s\}$ is not normal as $\rho \circ (\rho^3 s) = s \neq \rho^2 s = (\rho^3 s) \circ \rho$.
- 7. $\{id, \rho, \rho^2, \rho^3\}$ is normal as $s\{id, \rho, \rho^2, \rho^3\} = \{s, \rho^3 s, \rho^2 s, \rho s\} = \{id, \rho, \rho^2, \rho^3\} s$.
- 8. $\{id, \rho^2, s, \rho^2 s\}$ is normal as $\rho \{id, \rho^2, s, \rho^2 s\} = \{\rho, \rho^3, \rho s, \rho^3 s\} = \{id, \rho^2, s, \rho^2 s\} \rho$.
- 9. $\{id, \rho^2, \rho s, \rho^3 s\}$ is normal as $\rho \{id, \rho^2, \rho s, \rho^3 s\} = \{\rho, \rho^3, \rho^2 s, s\}$. \checkmark
- 10. D_4 is normal.
- 2. The factor group $D_4/\{id, \rho^2\} = \{\{id, \rho^2\}, \{\rho, \rho^3\}, \{s, \rho^2 s\}, \{\rho s, \rho^3 s\}\}$.
- 7. The factor group $D_4/\{id, \rho, \rho^2, \rho^3\} = \{\{id, \rho, \rho^2, \rho^3\}, \{s, \rho^3 s, \rho^2 s, \rho s\}\}.$
- 8. $D_4/\{id, \rho^2, s, \rho^2 s\} = \{\{id, \rho^2, s, \rho^2 s\}, \{\rho, \rho^3, \rho s, \rho^3 s\}\}.$
- 9. $D_4/\{id, \rho^2, \rho s, \rho^3 s\} = \{\{id, \rho^2, \rho s, \rho^3 s\}, \{\rho, \rho^3, \rho^2 s, s\}\}.$

Exercise 10.7. Prove or disprove: If H is a normal sub-group of G such that H and G/H are abelian, then G is abelian.

Counterexample. Let $G = S_3$ and $H = A_3$. S_3 is non-abelian. By Corollary 9.4, $A_3 \simeq \mathbb{Z}_3$, so A_3 is abelian. We must show A_3 is normal and S_3/A_3 is abelian:

 A_3 is normal as for any $\sigma \in S_3$, $\sigma A_3 \sigma^{-1}$ is even whether σ is even or odd. So $\sigma A_3 \sigma^{-1} \subseteq A_3$, so A_3 is normal by Theorem 10.1.2. ✓

To show S_3/A_3 is abelian, notice by Lagrange's Theorem, $[S_3:A_3] = \frac{|S_3|}{|A_3|} = \frac{6}{3} = 2$. By Theorem 10.2, $|S_3/A_3| = [S_3:A_3]$. By Corollary 9.4, since $|S_3/A_3|=2$ and 2 is prime, $S_3/A_3\simeq\mathbb{Z}_2$, so S_3/A_3 is abelian. \checkmark

Exercise 10.11. If a group G has exactly one sub-group H of order k, prove that H is normal in G.

Proof. By Exercise 3.54 from homework #4, gHg^{-1} is a sub-group of G. By the assumption that H is the only sub-group of G, we have that $H = gHg^{-1}$. By Theorem 10.1.3, $H = gHg^{-1} \implies H$ is a normal subgroup of G.

Exercise 10.12. Define the *centralizer* of an element g in a group G to be the set

$$C(g) = \{x \in G : xg = gx\}.$$

Show that C(g) is a sub-group of G. If g generates a normal sub-group of G, prove that C(g) is normal in G.

Proof. For $C(g) \subseteq G$ to be a sub-group of G, it is sufficient to show

1. For all $a, b \in C(g)$, $a \circ b \in C(g)$.

- 3. For all $a \in C(g)$ there exists $a^{-1} \in C(g)$ such that $a \circ a^{-1} =$
- $e = a^{-1} \circ a$. 2. There exists $e \in C(g)$ such that $a \circ e = a = e \circ a$ for all $a \in C(g)$.

1. Consider $a, b \in C(g)$. Then $a, b \in G$ as $C(g) \subseteq G$. Then

$$(ab)x = a(bx)$$
 by associativity of elements of G
= $a(xb)$ by assumption that $b \in C(g)$
= $(ax)b$ by associativity of elements of G
= $(xa)b$ by assumption that $a \in C(g)$
= $x(ab)$ by associativity of elements of G

So $ab \in C(g)$. \checkmark

- 2. Because $e \in G$ by definition commutes with every element of $G, e \in C(g)$.
- 3. Consider $c \in C(g)$. Then $c \in G$ and $c^{-1} \in G$ as G is a group and $C(g) \subseteq G$. Then

$$\begin{array}{ll} c\in C(g) \implies cx = xc \\ \implies c^{-1}cxc^{-1} = c^{-1}xcc^{-1} & \text{by left and right multiplying by } c^{-1} \\ \implies xc^{-1} = c^{-1}x & \text{by condensing the $`$} c^{-1}c" \text{ and $`$} cc^{-1}" \text{ terms} \end{array}$$

So
$$c \in C(g) \implies c^{-1} \in C(g)$$
. \checkmark

So C(g) is a sub-group of G.

Because C(g) us clearly abelian, it follows that the left and right co-sets must be equal, and C(g) must be normal.

Exercise 11.2. Which of the following maps are homomorphisms? If the map is a homomorphism, what is the kernel?

(a) $\phi: \mathbb{R}^* \to GL_2(\mathbb{R})$ defined by

$$\phi(a) = \begin{bmatrix} 1 & 0 \\ 0 & a \end{bmatrix}$$

(b) $\phi: \mathbb{R} \to GL_2(\mathbb{R})$ defined by

$$\phi(a) = \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix}$$

(c) $\phi: GL_2(\mathbb{R}) \to \mathbb{R}$ defined by

$$\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a + d$$

(d) $\phi: GL_2(\mathbb{R}) \to \mathbb{R}^*$ defined by

$$\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad - bc$$

(e) $\phi: \mathbb{M}_2(\mathbb{R}) \to \mathbb{R}$ defined by

$$\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = b$$

Proof.

(a) ϕ is a homomorphism as for $a, b \in \mathbb{R}^*$,

$$\phi(a)\phi(b) = \begin{bmatrix} 1 & 0 \\ 0 & a \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & b \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & ab \end{bmatrix} = \phi(ab)$$

and $\ker \phi := \{x \in \mathbb{R}^* \text{ such that } \phi(x) = id\} = \{1\}.$

(b) ϕ is not a homomorphism as

$$\phi(a)\phi(b) = \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ a+b & 1 \end{bmatrix} \neq \phi(ab).$$

(c) ϕ is not a homomorphism as

$$\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}\right) = \phi\left(\begin{bmatrix} a\alpha + b\gamma & a\beta + b\delta \\ c\alpha + d\gamma & c\beta + d\delta \end{bmatrix}\right) = a\alpha + b\gamma + c\beta + d\delta \neq a\alpha + a\delta + d\alpha + d\delta = \phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right)\phi\left(\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}\right).$$

(d) ϕ is a homomorphism as

$$\begin{split} \phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}\right) &= \phi\left(\begin{bmatrix} a\alpha + b\gamma & a\beta + b\delta \\ c\alpha + d\gamma & c\beta + d\delta \end{bmatrix}\right) = (a\alpha + b\gamma)(c\beta + d\delta) - (a\beta + b\delta)(c\alpha + d\gamma) \\ &= ac\alpha\beta + ad\alpha\delta + bc\beta\gamma + bd\gamma\delta - ac\alpha\beta - ad\beta\gamma - bc\alpha\delta - bd\gamma\delta \\ &= ad\alpha\delta + bc\beta\gamma - ad\beta\gamma - bc\gamma\delta \\ &= (ad - bc)(\alpha\delta - \beta\gamma) = \phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right)\phi\left(\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}\right) \end{split}$$

and $\ker \phi := \{ M \in GL_2(\mathbb{R}) \text{ such that } \phi(A) = 1 \} = SL_2(\mathbb{R}).$

(e) ϕ is not a homomorphism as

$$\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}\right) = \phi\left(\begin{bmatrix} a\alpha + b\gamma & a\beta + b\delta \\ c\alpha + d\gamma & c\beta + d\delta \end{bmatrix}\right) = a\beta + b\delta \neq b\beta = \phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right)\phi\left(\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}\right).$$

Exercise 11.17. If H and K are normal sub-groups of G and $H \cap K = \{e\}$, prove that G is isomorphic to a sub-group of $G \setminus H \times G \setminus K$.

Proof. content...

Homework exercises I cited:

Exercise 3.7 Let $S = \mathbb{R} \setminus \{-1\}$ and define a binary operation on S by a * b = a + b + ab. Prove that (S, *) is an abelian group. An abelian group is a group G such that a * b = b * a for all $a, b \in G$.

Associative For all $a, b, c \in G$, (a * b) * c = a * (b * c).

$$(a*b)*c = (a*b) + c + (a*b)c$$
 by definition of $a*b$
 $= (a+b+ab) + c + (a+b+ab)c$ by definition of $a*b$
 $= a+b+c+ab+ac+bc+abc$
 $= a+(b+c+bc) + a(b+c+bc)$
 $= a+(b*c) + a(b*c)$ by definition of $a*b$
 $= a*(b*c)$ by definition of $a*b$

Identity element There exists an element $e \in G$ such that for any $a \in G$, e * a = a * e = a.

For any a, let b = 0. Then a * b = a + 0 + a(0) = a = 0 + a + 0(a) = b * a. So b = 0 is the identity element such that a * 0 = 0 * a for all $a \in G$.

Inverse element For each element $a \in G$ there exists an $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$. We know from above that e = 0. So given $a \in G$,

$$a+b+ab = 0$$

$$\implies b(1+a)+a = 0$$

$$\implies b = \frac{-a}{1+a}$$

which is defined for all $x \in S$. So $b = \frac{-a}{1+a}$ is the unique inverse element a^{-1} to each a such that $a * a^{-1} = a^{-1} * a = e$.

Commutative For all $a, b \in G$, a * b = b * a.

$$\begin{split} a*b &= a+b+ab\\ &= b+a+ab \quad \text{by commutative property of addition}\\ &= b+a+ba \quad \text{by commutative property of multiplication}\\ &= b*a \quad \text{by definition} \end{split}$$

So (S, *) is an abelian group.

Exercise 3.54. Let H be a sub-group of G. If $g \in G$, show that $gHg^{-1} := \{g^{-1}hg : h \in H\}$ is also a sub-group of G.

Proof. By theorem from class, for $gHg^{-1}\subseteq G$ to be a sub-group of G, it is sufficient to show

- 1. For all $a, b \in gHg^{-1}$, $a \circ b \in gHg^{-1}$.
- 2. There exists $e \in gHg^{-1}$ such that $a \circ e = a = e \circ a$ for all $a \in gHg^{-1}$.
- 3. For all $a \in gHg^{-1}$ there exists $a^{-1} \in gHg^{-1}$ such that $a \circ a^{-1} = e = a^{-1} \circ a$.

Notice that gHg^{-1} is necessarily a subset of G as every element in H is contained in G (by assumption that H is a sub-group of G). So $g, h, g^{-1} \in G$. Furthermore, every element in gHg^{-1} is of the form $g^{-1}hg$, and G is closed by assumption that G is a group. So $gHg^{-1} \subseteq G$.

Let $a, b \in gHg^{-1}$. Then $a = g^{-1}h_ag$ and $b = g^{-1}h_bg$ for some $h_a, h_b \in H$.

1. Consider

$$ab = (g^{-1}h_ag) (g^{-1}h_bg)$$

$$= (g^{-1}h_a) (gg^{-1}) (h_bg) \text{ by associativity of elements of } G$$

$$= (g^{-1}h_a) (e) (h_bg) \text{ by definition of } g^{-1}$$

$$= (g^{-1}h_a) (h_bg), \text{ by definition of } e$$

$$= g^{-1} (h_ah_b) g \text{ by associativity of elements of } G$$

and $(h_a h_b) \in H$ as H was assumed to be a sub-group, so H is closed. So $ab = g^{-1}(h_a h_b) g$ is of the form $g^{-1}hg$ for some $h \in H$. So gHg^{-1} is closed.

2. By assumption that H is a sub-group of $G, e \in H$. So $(g^{-1}eg) \in gHg^{-1}$ and

$$g^{-1}eg = g^{-1}g$$
 by definition of e
= e , by definition of g^{-1} .

So $(g^{-1}eg) \in gHg^{-1}$ and $g^{-1}eg = e$. so $e \in gHg^{-1}$.

3. By Proposition 3.4, if $a=g^{-1}h_ag$ then $a^{-1}=g^{-1}h_a^{-1}g$. So $a^{-1}\in gHg^{-1}$ if $h_a^{-1}\in H$, and h_a^{-1} is necessarily an element of H by assumption that H is a sub-group of G. So $a\in gHg^{-1}\implies a^{-1}\in gHg^{-1}$.

So this shows that gHg^{-1} is a sub-group of G.

Exercise 11.10. If $\phi: G \to H$ is a group homomorphism and G is cyclic, prove that $\phi(G)$ is also cyclic.

Proof. Let γ be a generator for G. Then for each $g \in G$, $g = \gamma^n$ for some $n \in \mathbb{N}$. Then

$$\begin{split} \phi(g) &= \phi\left(\gamma^n\right) \quad \text{because } \gamma \text{ generates } G \\ &= \phi\left(\underbrace{\gamma \cdot \gamma \cdot \ldots \cdot \gamma}_{n \text{ times}}\right) \\ &= \underbrace{\phi\left(\gamma\right) \circ \phi\left(\gamma\right) \circ \cdots \circ \phi\left(\gamma\right)}_{n \text{ times}} \quad \text{as } \phi \text{ is a homomorphism so } \phi\left(g_1 \cdot g_2\right) = \phi\left(g_1\right) \circ \phi\left(g_2\right) \\ &= \phi^n\left(\gamma\right) \end{split}$$

So for all $\phi(g) \in \phi(G)$, we have $\phi(g) = \phi^n(\gamma)$ for some $n \in \mathbb{N}$. So $\phi(\gamma)$ generates $\phi(G)$; so $\phi(G)$ is cyclic.

Lemma 11.1. If G_1, G_2 are groups with an isomorphism $\phi: G_1 \to G_2$ and there exists $g_1 \in G_1$ such that $\operatorname{ord}(g_1) = n$ for some $n \in \mathbb{N}$. Then $\operatorname{ord}(\phi(g_1)) = n$.

Proof. If $g_1^n = e_1$ then

$$e_2 = \phi\left(e_1\right)$$
 by Proposition 1.11.1
= $\phi\left(g_1^n\right)$ because ord $\left(g_1\right) = n$
= $\phi^n\left(g_1\right)$ because ϕ is an isomorphism

So ord $(\phi(g_1)) = n$.

Exercise 11.14. Prove or disprove: $\mathbb{Q}/\mathbb{Z} \simeq \mathbb{Q}$.

Proof. Consider $\frac{1}{2} + \mathbb{Z} \in \mathbb{Q}/\mathbb{Z}$ which has order 2 as $(\frac{1}{2} + \mathbb{Z}) + (\frac{1}{2} + \mathbb{Z}) = 1 + \mathbb{Z} \equiv \mathbb{Z}$ and \mathbb{Z} is the identity in \mathbb{Q}/\mathbb{Z} . Consider for a contradiction that there exists a non-zero $q \in \mathbb{Q}$ with order 2. That is, $q + q = 0 \iff 2q = 0$ which has no solution in $\mathbb{Q} \setminus \{0\}$. So there is no element of order 2 in \mathbb{Q} . So by Lemma 11.1, the two groups cannot be isomorphic.

Exercise 11.5 (Addition Exercises: Automorphism #5). Let G be a group and i_g be an inner automorphism of G, and define a map

 $\psi:G\to \mathrm{Aut}\,(G)$

by

$$g \mapsto i_g$$
.

Prove that this map is a homomorphism with image $\operatorname{Inn}(G)$ and kernel Z(G). Use this result to conclude that

$$G/Z(G) \simeq \operatorname{Inn}(G)$$
.

Proof. Recall

$$\begin{array}{rcl} \operatorname{Aut}\left(G\right) &:= & \left\{\text{all isomorphisms } \phi:G\to G\right\} \\ \operatorname{Given}\,g\in G, & i_g:G\to G & \text{by} & x\mapsto gxg^{-1} \\ & \operatorname{Inn}\left(G\right) &:= & \left\{i_g \text{ for all } g\in G\right\} \\ & Z(G) &:= & \left\{x\in G: gx=xg \text{ for all } g\in G\right\} \end{array}$$

 ψ is a homomorphism as

$$\begin{split} \psi\left(g_1\cdot g_2\right) &= i_{g_1\cdot g_2}\left(x\right) \quad \text{by definition of } \psi \\ &= \left(g_1\cdot g_2\right)\cdot \left(x\right)\cdot \left(g_1\cdot g_2\right)^{-1} \quad \text{by definition of } i_g \\ &= \left(g_1\cdot g_2\right)\cdot \left(x\right)\cdot \left(g_2^{-1}\cdot g_1^{-1}\right) \\ &= g_1\cdot \left(g_2\cdot x\cdot g_2^{-1}\right)\cdot g_1^{-1} \quad \text{because } G \text{ is a group so elements associate} \\ &= g_1\cdot \left(i_{g_2}(x)\right)\cdot g_1^{-1} \quad \text{by definition of } i_g \\ &= \left(i_{g_1}\circ i_{g_2}\right)\left(x\right) \quad \text{by definition of } i_g \end{split}$$

So ψ is a homomorphism.

The image of ψ is clearly $\operatorname{Inn}(G)$ as $\operatorname{Im}(\psi) := \{ \psi(g) \text{ for all } g \in G \} = \{ i_g \text{ for all } g \in G \} =: \operatorname{Inn}(G)$.

 $\ker(\psi) := \{g \in G : \psi(g) = id\} \text{ and } \psi(g) = id \iff gxg^{-1} = x \iff gx = xg. \text{ So } \ker(\psi) = Z(G).$

By the First Isomorphism Theorem, $G/\ker(\psi) \simeq \operatorname{Im}(\psi)$, so we have $G/Z(G) \simeq \operatorname{Inn}(G)$.

Exercise 13.3. Find all of the abelian groups of order 720 up to isomorphism.

Solution. $720 = 2^4 \cdot 3^2 \cdot 5$, so, by The Fundamental Theorem of Finite Abelian Groups, all of the abelian groups of order 720 up to isomorphism are:

1.
$$\mathbb{Z}_2^4 \times \mathbb{Z}_3^2 \times \mathbb{Z}_5$$

2.
$$\mathbb{Z}_4 \times \mathbb{Z}_2^2 \times \mathbb{Z}_3^2 \times \mathbb{Z}_5$$

3.
$$\mathbb{Z}_4^2 \times \mathbb{Z}_3^2 \times \mathbb{Z}_5$$

4.
$$\mathbb{Z}_8 \times \mathbb{Z}_2 \times \mathbb{Z}_3^2 \times \mathbb{Z}_5$$

5.
$$\mathbb{Z}_{16} \times \mathbb{Z}_3^2 \times \mathbb{Z}_5$$

6.
$$\mathbb{Z}_2^4 \times \mathbb{Z}_9 \times \mathbb{Z}_5$$

7.
$$\mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_3^2 \times \mathbb{Z}_5$$

8.
$$\mathbb{Z}_4^2 \times \mathbb{Z}_9 \times \mathbb{Z}_5$$

9.
$$\mathbb{Z}_8 \times \mathbb{Z}_2 \times \mathbb{Z}_9 \times \mathbb{Z}_5$$

10.
$$\mathbb{Z}_{16} \times \mathbb{Z}_9 \times \mathbb{Z}_5$$

Exercise 13.5. Show that the infinite direct product $G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \cdots$ is not finitely generated.

Proof. Suppose for a contradiction that G is finitely generated and has n generators. Because G is abelian and every element is of order 2, so $|G| \le 2^n$, which is a contradiction to the assumption that G is infinite.

Exercise 13.14. Let G be a solvable group. Prove that any sub-group of G is also solvable.

Proof. content...

Exercise 14.2. Computer all the X_q and all G_x for each of the following permutation groups.

(a) $X = \{1, 2, 3\},\$ $G = S_3 = \{(1), (12), (13), (23), (123), (132)\}\$

(b) $X = \{1, 2, 3, 4, 5, 6\},\$ $G = \{(1), (12), (345), (354), (12)(345), (12)(354)\}\$

Solution. Recall $X_g := \{x \in X \text{ such that } gx = x\}$ and $G_x := \{g \in G \text{ such that } gx = x\}$

(a)
$$\bullet X_{(1)} = X$$
 $\bullet X_{(13)} = \{2\}$ $\bullet X_{(123)} = X_{(132)} = \emptyset$ $\bullet G_2 = \{(1), (13)\}$

•
$$X_{(12)} = \{3\}$$
 • $X_{(23)} = \{1\}$

•
$$X_{(345)} = X_{(354)} = \{1, 2, 6\}$$
 • $G_1 = G_2 = \{(345), (354)\}$ • $G_6 = G$

• $G_1 = \{(1), (23)\}$ • $G_3 = \{(1), (12)\}$

•
$$X_{(1)} = X$$

• $X_{(345)} = X_{(354)} = \{1, 2, 6\}$
• $G_1 = G_2 = \{(345), (354)\}$
• $G_6 = X_{(12)} = \{3, 4, 5, 6\}$
• $X_{(12)(345)} = X_{(12)(354)} = \{6\}$
• $G_3 = G_4 = G_5 = \{(1), (12)\}$

Exercise 14.5. Let $G = A_4$ and suppose that G acts on itself by conjugation; that is, $(g,h) \mapsto ghg^{-1}$.

(a) Determine the conjugacy classes (orbits) of each element of G.

(b) Determine all the isotropy sub-groups for each element of G.

Proof. Recall if $\sigma = (\sigma_1, \dots, \sigma_n)$ and $\tau = (\tau_1, \dots, \tau_n)$ are permutations then $\tau \sigma \tau^{-1} = (\tau(\sigma_1), \dots, \tau(\sigma_n))$.

(a)
$$A_4 = \{(234), (243), (134), (143), (124), (142), (123), (132), (12)(34), (13)(24), (14)(23), id\}$$
, so

• $\mathcal{O}_{id} = \{id\}$

(b)

- $\bullet \ \mathcal{O}_{(234)} = \{(234), (423), (241), (213), (431), (132), (314), (124), (143), (412), (321), (234)\} = \{(234), (124), (132), (143)\}$
- $\bullet \ \mathcal{O}_{(243)} = \{(324), (243), (214), (231), (413), (123), (341), (142), (134), (421), (312), (243)\} = \{(243), (142), (123), (134)\}$

- $\mathcal{O}_{(12)(34)} = \{(13)(42), (14)(23), (32)(41), (42)(13), (24)(31), (41)(32), (23)(14), (31)(24), (12)(34), (43)(12), (43)(12), (12)(34)\} = \{(13)(24), (14)(23), (12)(34)\}$
- (b) Recall given an element $x \in G$, G_x is the isotropy sub-group defined by $G_x := \{g \in G \text{ such that } gx = x\}$

Exercise 16.1. Which of the following sets are rings with respect to the usual operations of addition and multiplication? If the set is a ring, is it also a field?

(b) \mathbb{Z}_{18}

(e)
$$\mathbb{Z}\left[\sqrt{3}\right] = \left\{a + b\sqrt{3} : a, b \in \mathbb{Z}\right\}$$

(c) $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}\$

(d)
$$\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} : a, b, c, d \in \mathbb{Q}\}$$

(f)
$$R = \left\{ a + b\sqrt[3]{3} : a, b \in \mathbb{Q} \right\}$$

Proof.

- (b) \mathbb{Z}_{18} is a ring; however it is not a field because not every every element has an inverse.
- (c) $\mathbb{Q}\left(\sqrt{2}\right) = \left\{a + b\sqrt{2} : a, b \in \mathbb{Q}\right\}$ is both a ring and a field: the inverse of any given $a + b\sqrt{2} \in \mathbb{Q}\left(\sqrt{2}\right)$ is given by $\frac{a}{a^2 2b^2} + \frac{b}{2b^2 a^2}\sqrt{2}$. Notice this is always well defined except when $a^2 2b^2 = 0$, which cannot be the case because $a, b \in \mathbb{Q}$.
- (d) $\mathbb{Q}\left(\sqrt{2},\sqrt{3}\right) = \left\{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} : a,b,c,d \in \mathbb{Q}\right\}$ is a ring but not a field. $\mathbb{Q}\left(\sqrt{2},\sqrt{3}\right)$ is closed as one can check that

$$\left(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}\right) \left(\alpha + \beta\sqrt{2} + \gamma\sqrt{2} + \delta\sqrt{2}\right) = \left(a\alpha + 2b\beta + 3c\gamma + 6d\delta\right) + \left(b\alpha + a\beta + 3d\gamma + 3c\delta\right)\sqrt{2}$$

$$+ \left(c\alpha + 2d\beta + a\gamma + 2b\delta\right)\sqrt{3} + \left(d\alpha + c\beta + b\gamma + a\delta\right)\sqrt{6}$$

$$\in \mathbb{Q}\left(\sqrt{2}, \sqrt{3}\right)$$

However, $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is not closed under inverses so it is not a field.

(e) $\mathbb{Z}\left[\sqrt{3}\right] = \left\{a + b\sqrt{3} : a, b \in \mathbb{Z}\right\}$ is a ring but not a field.

(f)
$$R = \left\{ a + b\sqrt[3]{3} : a, b \in \mathbb{Q} \right\}$$
 is a ring but not a field.

Exercise 16.2. Let R be the ring of 2×2 matrices of the form

$$\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix},$$

where $a, b \in \mathbb{R}$. Show that although R is a ring that has no identity, we can find a sub-ring S of R with an identity.

Proof. Consider $S := \{ \begin{bmatrix} c & 0 \\ 0 & 0 \end{bmatrix}$ such that $c \in \mathbb{R} \} \subseteq R$. By Proposition 16.2, to show that $S \subseteq R$ is a sub-ring of R, it is sufficient to show

- 1. $S \neq \emptyset$
- 2. $rs \in S$ for all $r, s \in S$
- 3. $r s \in S$ for all $r, s \in S$
- 1. $S \neq \emptyset$ as $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in S$.
- 2. S is closed under multiplication as for $\begin{bmatrix} c & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} \gamma & 0 \\ 0 & 0 \end{bmatrix} \in S$, $\begin{bmatrix} c & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \gamma & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} c\gamma & 0 \\ 0 & 0 \end{bmatrix} \in S$.
- 3. S is closed under subtraction as for $\begin{bmatrix} c & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} \gamma & 0 \\ 0 & 0 \end{bmatrix} \in S$, $\begin{bmatrix} c & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \gamma & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} c \gamma & 0 \\ 0 & 0 \end{bmatrix} \in S$. \checkmark

So S is a sub-ring of R. Furthermore, S is a sub-ring with unity as for any $\begin{bmatrix} c & 0 \\ 0 & 0 \end{bmatrix} \in S$, $\begin{bmatrix} c & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} c & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} c & 0 \\ 0 & 0 \end{bmatrix}$.

Exercise 16.3. List or characterize all of the units in each of the following rings.

777
//ɹ10

(d) $\mathbb{M}_2(\mathbb{Z})$, the 2×2 matrices with entries in \mathbb{Z}

- (b) \mathbb{Z}_{12}
- (c) \mathbb{Z}_7

(e) $\mathbb{M}_2(\mathbb{Z}_2)$, the 2×2 matrices with entries in \mathbb{Z}_2 .

Proof. (a) The units of \mathbb{Z}_{10} are $\{x \in \mathbb{Z}_{10} \text{ such that } \gcd(10, x) = 1\} = \{1, 3, 7, 9\}.$

- (b) The units of \mathbb{Z}_{12} are $\{x \in \mathbb{Z}_{12} \text{ such that } \gcd(12, x) = 1\} = \{1, 5, 7, 11\}.$
- (c) The units of \mathbb{Z}_7 are $\{x \in \mathbb{Z}_7 \text{ such that } \gcd(7,x)=1\}=\mathbb{Z}_7$ as 7 is prime.
- (d) The units of $\mathbb{M}_2(\mathbb{Z})$ are $GL_2(\mathbb{Z})$
- (e) The units of $\mathbb{M}_2(\mathbb{Z}_2)$ are $GL_2(\mathbb{Z}_2) = \mathbb{M}_2(\mathbb{Z}_2) \setminus \{\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}\}$

Exercise 16.4. Find all of the ideals in each of the following rings. Which of these ideals are maximal and which are prime?

(a) \mathbb{Z}_{18}

(b) \mathbb{Z}_{25}

Proof.

- (a) The ideals of \mathbb{Z}_{18} are $\{0\}$, \mathbb{Z}_{18} , $2\mathbb{Z}_{18}$, $3\mathbb{Z}_{18}$, $6\mathbb{Z}_{18}$, and $9\mathbb{Z}_{18}$.
- (b) The ideals of \mathbb{Z}_{25} are $\{0\}$, \mathbb{Z}_5 , and \mathbb{Z}_{25} .

Exercise 16.9. What is the characteristic of the field formed by the set of matrices

$$F = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$

with entries in \mathbb{Z}_2 ?

Proof. The characteristic of F is 2 because $2r = \left[\begin{smallmatrix} 0 & 0 \\ 0 & 0 \end{smallmatrix} \right]$ for all $r \in F$.