1-13 odd

4.7 EXERCISES

- 1. Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$ be bases for a vector space V, and suppose $\mathbf{b}_1 = 6\mathbf{c}_1 2\mathbf{c}_2$ and $\mathbf{b}_2 = 9\mathbf{c}_1 4\mathbf{c}_2$.
 - a. Find the change-of-coordinates matrix from $\mathcal B$ to $\mathcal C$.
 - b. Find $[x]_{\mathcal{C}}$ for $x = -3\mathbf{b}_1 + 2\mathbf{b}_2$. Use part (a).

- 2. Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$ be bases for a vector space V, and suppose $\mathbf{b}_1 = -\mathbf{c}_1 + 4\mathbf{c}_2$ and $\mathbf{b}_2 = 5\mathbf{c}_1 3\mathbf{c}_2$.
 - a. Find the change-of-coordinates matrix from $\mathcal B$ to $\mathcal C$.
 - b. Find $[\mathbf{x}]_{C}$ for $\mathbf{x} = 5\mathbf{b}_{1} + 3\mathbf{b}_{2}$.

3. Let $\mathcal{U} = \{\mathbf{u}_1, \mathbf{u}_2\}$ and $\mathcal{W} = \{\mathbf{w}_1, \mathbf{w}_2\}$ be bases for V, and let P be a matrix whose columns are $[\mathbf{u}_1]_{\mathcal{W}}$ and $[\mathbf{u}_2]_{\mathcal{W}}$. Which of the following equations is satisfied by P for all \mathbf{x} in V?

(i)
$$[\mathbf{x}]_{\mathcal{U}} = P[\mathbf{x}]_{\mathcal{W}}$$
 (ii) $[\mathbf{x}]_{\mathcal{W}} = P[\mathbf{x}]_{\mathcal{U}}$

4. Let $\mathcal{A} = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ and $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3\}$ be bases for V, and let $P = [[\mathbf{d}_1]_{\mathcal{A}} \quad [\mathbf{d}_2]_{\mathcal{A}} \quad [\mathbf{d}_3]_{\mathcal{A}}]$. Which of the following equations is satisfied by P for all \mathbf{x} in V?

(i)
$$[\mathbf{x}]_{\mathcal{A}} = P[\mathbf{x}]_{\mathcal{D}}$$
 (ii) $[\mathbf{x}]_{\mathcal{D}} = P[\mathbf{x}]_{\mathcal{A}}$

5. Let $\mathcal{A} = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ be bases for a vector space V, and suppose $\mathbf{a}_1 = 4\mathbf{b}_1 - \mathbf{b}_2$, $\mathbf{a}_2 = -\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3$, and $\mathbf{a}_3 = \mathbf{b}_2 - 2\mathbf{b}_3$.

a. Find the change-of-coordinates matrix from \mathcal{A} to \mathcal{B} .

b. Find
$$[x]_{B}$$
 for $x = 3a_1 + 4a_2 + a_3$.

6. Let $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3\}$ and $\mathcal{F} = \{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\}$ be bases for a vector space V, and suppose $\mathbf{f}_1 = 2\mathbf{d}_1 - \mathbf{d}_2 + \mathbf{d}_3$, $\mathbf{f}_2 = 3\mathbf{d}_2 + \mathbf{d}_3$, and $\mathbf{f}_3 = -3\mathbf{d}_1 + 2\mathbf{d}_3$.

a. Find the change-of-coordinates matrix from \mathcal{F} to \mathcal{D} .

b. Find
$$[\mathbf{x}]_{\mathcal{D}}$$
 for $\mathbf{x} = \mathbf{f}_1 - 2\mathbf{f}_2 + 2\mathbf{f}_3$.

In Exercises 7–10, let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$ be bases for \mathbb{R}^2 . In each exercise, find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} and the change-of-coordinates matrix from \mathcal{C} to \mathcal{B} .

7.
$$\mathbf{b}_1 = \begin{bmatrix} 7 \\ 5 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -3 \\ -1 \end{bmatrix}, \mathbf{c}_1 = \begin{bmatrix} 1 \\ -5 \end{bmatrix}, \mathbf{c}_2 = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$$

8.
$$\mathbf{b}_1 = \begin{bmatrix} -1 \\ 8 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 1 \\ -5 \end{bmatrix}, \mathbf{c}_1 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \mathbf{c}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

9.
$$\mathbf{b}_1 = \begin{bmatrix} -6 \\ -1 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \mathbf{c}_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \mathbf{c}_2 = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

10.
$$\mathbf{b}_1 = \begin{bmatrix} 7 \\ -2 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \mathbf{c}_1 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \mathbf{c}_2 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$

In Exercises 11 and 12, $\mathcal B$ and $\mathcal C$ are bases for a vector space V. Mark each statement True or False. Justify each answer.

11. a. The columns of the change-of-coordinates matrix ${}_{\mathcal{C}} \stackrel{P}{\leftarrow} \mathcal{B}$ are \mathcal{B} -coordinate vectors of the vectors in \mathcal{C} .

b. If $V = \mathbb{R}^n$ and \mathcal{C} is the *standard* basis for V, then $\underset{\mathcal{C} \leftarrow \mathcal{B}}{\leftarrow} \mathcal{B}$ is the same as the change-of-coordinates matrix $P_{\mathcal{B}}$ introduced in Section 4.4.

12. a. The columns of $\underset{C}{\overset{P}{\leftarrow}_{\mathcal{B}}}$ are linearly independent.

b. If $V = \mathbb{R}^2$, $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$, and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$, then row reduction of $[\mathbf{c}_1 \ \mathbf{c}_2 \ \mathbf{b}_1 \ \mathbf{b}_2]$ to $[I \ P]$ produces a matrix P that satisfies $[\mathbf{x}]_{\mathcal{B}} = P[\mathbf{x}]_{\mathcal{C}}$ for all \mathbf{x} in V.

13. In \mathbb{P}_2 , find the change-of-coordinates matrix from the basis $\mathcal{B} = \{1 - 2t + t^2, 3 - 5t + 4t^2, 2t + 3t^2\}$ to the standard basis $\mathcal{C} = \{1, t, t^2\}$. Then find the \mathcal{B} -coordinate vector for -1 + 2t.

14. In \mathbb{P}_2 , find the change-of-coordinates matrix from the basis $\mathcal{B} = \{1 - 3t^2, 2 + t - 5t^2, 1 + 2t\}$ to the standard basis. Then write t^2 as a linear combination of the polynomials in \mathcal{B} .

Exercises 15 and 16 provide a proof of Theorem 15. Fill in a justification for each step.

15. Given v in V, there exist scalars x_1, \ldots, x_n , such that

$$\mathbf{v} = x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + \dots + x_n \mathbf{b}_n$$

because (a) $_$ ___. Apply the coordinate mapping determined by the basis \mathcal{C} , and obtain

$$[\mathbf{v}]_{\mathcal{C}} = x_1[\mathbf{b}_1]_{\mathcal{C}} + x_2[\mathbf{b}_2]_{\mathcal{C}} + \dots + x_n[\mathbf{b}_n]_{\mathcal{C}}$$

because (b) _____. This equation may be written in the form

$$\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} \begin{bmatrix} \mathbf{b}_1 \end{bmatrix}_{\mathcal{C}} & \begin{bmatrix} \mathbf{b}_2 \end{bmatrix}_{\mathcal{C}} & \cdots & \begin{bmatrix} \mathbf{b}_n \end{bmatrix}_{\mathcal{C}} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
(8)

by the definition of (c) _____. This shows that the matrix $_{C \leftarrow \mathcal{B}}^{P}$ shown in (5) satisfies $[\mathbf{v}]_{C} = _{C \leftarrow \mathcal{B}}^{P} [\mathbf{v}]_{\mathcal{B}}$ for each \mathbf{v} in V, because the vector on the right side of (8) is (d) ____.

16. Suppose Q is any matrix such that

$$[\mathbf{v}]_{\mathcal{C}} = Q[\mathbf{v}]_{\mathcal{B}}$$
 for each \mathbf{v} in V (9)

Set $\mathbf{v} = \mathbf{b}_1$ in (9). Then (9) shows that $[\mathbf{b}_1]_{\mathcal{C}}$ is the first column of Q because (a) _____. Similarly, for $k = 2, \ldots, n$, the kth column of Q is (b) _____ because (c) _____. This shows that the matrix ${}_{\mathcal{C}} \stackrel{P}{\leftarrow}_{\mathcal{B}}$ defined by (5) in Theorem 15 is the only matrix that satisfies condition (4).

17. [M] Let $\mathcal{B} = \{\mathbf{x}_0, \dots, \mathbf{x}_6\}$ and $C = \{\mathbf{y}_0, \dots, \mathbf{y}_6\}$, where \mathbf{x}_k is the function $\cos^k t$ and \mathbf{y}_k is the function $\cos k t$. Exercise 34 in Section 4.5 showed that both \mathcal{B} and \mathcal{C} are bases for the vector space $H = \text{Span}\{\mathbf{x}_0, \dots, \mathbf{x}_6\}$.

a. Set $P = [[\mathbf{y}_0]_{\mathcal{B}} \cdots [\mathbf{y}_6]_{\mathcal{B}}]$, and calculate P^{-1} .

b. Explain why the columns of P^{-1} are the C-coordinate vectors of $\mathbf{x}_0, \dots, \mathbf{x}_6$. Then use these coordinate vectors to write trigonometric identities that express powers of $\cos t$ in terms of the functions in C.

See the Study Guide.

18. [M] (Calculus required)³ Recall from calculus that integrals such as

$$\int (5\cos^3 t - 6\cos^4 t + 5\cos^5 t - 12\cos^6 t) dt \tag{10}$$

are tedious to compute. (The usual method is to apply integration by parts repeatedly and use the half-angle formula.) Use the matrix P or P^{-1} from Exercise 17 to transform (10); then compute the integral.

³ The idea for Exercises 17 and 18 and five related exercises in earlier sections came from a paper by Jack W. Rogers, Jr., of Auburn University, presented at a meeting of the International Linear Algebra Society, August 1995. See "Applications of Linear Algebra in Calculus," *American Mathematical Monthly* **104** (1), 1997.