1 Introduction, Definitions & Overview

Reliability

- ... is a characteristic of an item, expressed by the probability that the item performs its required function under given conditions $\underline{\text{during}}$ a stated time interval, i.e. (0,t]
- Item = entity for investigation, i.e. component, assembly, equipment, subsystem, system

•

2 Probability Theory and Reliability Analysis

Definitions:

- Experiment ϵ
- Sample space Ω
- Event E

An event E is a subset of the sample space Ω and the experiment ε yields a set of possible outcoms (= E) of the experiment

<u>Certain Events</u> follow <u>Boolean Logic</u>, an event E can occur or not occur, meaning an <u>Indicator Variable</u> X_E is 0 when E does not occur and 1 if E occurs

Uncertain Events follow can either be true or false, with each a probability associated to it. Event E in sample space Ω is triggered with a probability that the outcome has happened or not

Classical Probability

- The experiment ϵ has N possible, elementary, mutually exclusive and equally probable outcomes $A_1,A_2,...,A_N\in\Omega$
- The event $E = A_1 \cup A_2 \cup ... \cup A_M$, M < N
- The probability of event E is defined as p(E) = M/N

Kolmogorov Axioms

- 1. $0 \le P(E) \le 1$
- 2. $P(\Omega) = 1, P(\emptyset) = 0$
- 3. Mutually exclusive events: $P(\cup_i E_i) = \sum_i p(E_i)$
- 4. Non-mutually exhibit events: $P(A \cup B) = P_A + P_B P(A \cap B)$
- 5. Conditional probability: $P(A|B) = P(A \cap B)/P(B)$
- 6. Theorem of total probability: Given an event A in Ω where the space is consisting of exclusive and exhaustive events $\cup_j E_j = \Omega$: $P(A) = \Sigma_i (P(A|E_i)P(E_i))$

Random Variables

- CDF: Is a non-decreasing function and returns the probabilty (state) from random variable X from 0 to a given point A: F_X(X = A) = P(0 < X ≤ A)
- **pdf**: Probability of per unit x (continuous)
- pmf: Histogram, it assignes the probability to discrete values \boldsymbol{x}

Summary

• Distribution Percentile x_{α} :

–
$$F_X(x_\alpha) = \alpha/100 = \int_{-\infty}^{x_\alpha} f_X(x) dx$$

Median:

$$-F_X(x_50) = 0.5$$

· Mean:

-
$$\mu_X = E[X] = \langle X \rangle = \sum_i x_i p_i$$
 (discrete)
- $= \int_{-\infty}^{\infty} x f_X(x) dx$ (continuous)

• Variance:

-
$$\sigma_X^2 = \sum (x_i - \mu_X)^2 p_i$$
 (discrete)
- $= \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) dx$ (continuous)

Hazard Function (Failure Rate)