

PROGRAMME: MCA (GENERAL) SEMESTER – I Teaching-Learning & Evaluation Plan (TLEP)

Course Information:

Course Code: **23MCAC101** Course Title: Data Structures

Credits Units: 04 Contact Hours: 45 L-T-P-E: 3-1-0-4

IA: UE Weightage – 50: 50

Pass Marks(CA & UE)-40% and Aggregate Pass Marks: 40%

40%

UE Question Paper Marks: 100 Special Examination Fees: NA

Prerequisite (if any): Problem solving Techniques.

Course Facilitator (s): Ms. Ninitha Mary Antonina N.M, Assistant Professor, School of CS &

Engineering.

Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

	mine Outcomes (1 Os) and 1 rogramme specific Outcomes (1 50s)
	At the end of the Programme, students will be able to
PO 1	Computational Knowledge: Apply mathematical foundation, computing and domain knowledge for the conceptualization of computing models from defined problems.
PO 2	Problem Analysis: Analyze complex computing problems using fundamentals of computer science and application domains.
PO 3	Design & Develop Solutions: Transform complex business scenarios and contemporary issues into problems, and propose integrated solutions using emerging technologies.
PO 4	Conduct Investigations of Complex Computing Problems: Conduct experiments, interpret data and provide well informed conclusions.
PO 5	Modern Tool Usage: Select modern computing tools, skills and techniques necessary for providing innovative software solutions.
PO 6	Innovation and Entrepreneurship: Create ideas for opportunities, entrepreneurship vision and use of wealth for the betterment of the individual and society.
PO 7	Societal & Environmental Concern: Recognize economical, environmental, social, health, legal, ethical issues involved in the usage of computing technologies and other consequential responsibilities relevant to professional practice.
PO 8	Professional Ethics: Employ professional ethics and cyber regulations in a global economic environment.
PO 9	Individual & Team Work: Function effectively as a member or leader in diverse teams in a multidisciplinary environment.
PO 10	Communication Efficacy: Communicate effectively with the computing community as well as society by being able to comprehend effective documentations and presentations.
PO11	Project Management: Demonstrate managerial skills with computing knowledge to manage projects in multidisciplinary environments.
PO12	Life-long Learning: Develop the ability and acquire the skills required to engage in continuous learning as a Computing professional.
PSO1	Acquire proficiency in developing and implementing effective solutions using new age IT platforms and emerging technologies.
PSO2	Develop professional and ethical attitude, effective communication skills, team work skills

and multidisciplinary approach to relate computer solutions to broader social context thereby enhancing entrepreneurship skills.

Course Objectives:

COB1	To introduce the different types of Data Structures.
COB2	To help students by providing effective data access by organizing data effectively.

Course Outcomes:

At the end of the course, students will be able to

Sl. No.	Cour se Outc ome	Description	Bloom's Taxonomy Level	PO's	Assessment
1	CO 1	Select Linked Lists or Arrays based on the time-space complexity required in the expected solution.	L2	PO1, PO2, PO3,PSO1	IA-1 Activity-1
2	CO 2	Apply the Stacks and Queues sequential data structures in solving real world problems	L 3	PO1, PO2, PO3, PO4, PO5, PO8, PO11, PO12, PSO1	IA – 1 Activity - 1
3	CO 3	Experiment with General and Binary Trees on accessing the data in random fashion using traversal techniques.	L 4	PO1, PO2, PO3, PO4, PO6, PO8, PO9, PO11, PO12, PSO1	IA – 1 Activity - 1
4	CO 4	Evaluate the performance of different types of Trees, Hashing and Heaps on solving real time problems.	L 5	PO1, PO2, PO3, PO4 PO6, PO9, PO10, PO11, PO12, PSO1	IA – 2 Activity - 2
5	CO 5	Develop the solutions using Graphs and Hashing for real world problems.	L 6	PO1, PO2, PO3, PO4 PO6, PO9, PO10, PO11, PO12, PSO1	IA – 2 Activity - 2

CO-PO/PSO Mapping: (3-Strong Correlation 2- Medium Correlation 1- Low Correlation)

Course Outco me	Bloom' s Taxon omy Level	Program Outcomes (PO)	Program Specific Outcomes (PSO)
-----------------------	--------------------------------------	-----------------------	---------------------------------

		P O 01	P O 02	P O 03	P O 04	P O 05	P O 06	P O 07	P O 08	P O 09	P O 10	PO 11	P O 12	PS O 1	PS O 2
CO1	L3	2	3	1	-	-	-	-	-	1	1	1	1	2	1
CO2	L3	2	2	1	3	2	-	-	2		-	1	2	2	1
CO3	L3	3	2	3	3	-	1	-	2	1	1	2	2	2	3
CO4	L4	3	1	3	1	-	1	-	-	1	1	2	3	3	3
CO5	L3	3	2	3	2	-	1	-	-	1	2	2	3	3	3
	Total	13	10	11	9	2	3	-	4	3	3	7	10	12	11
		2.6	2	2.2	2.3	2	1	-	2	1	1.5	1.8	2.5	2.4	2.3

Course Contents:

Mod ule	Details					
I	List ADT Abstract Data Types, List ADT, Static and Dynamic Arrays, Array Operation. Linked List Implementation, Singly Linked List, Circularly Linked List, Doubly Linked List- all operations—Creation, Insertion, Deletion, Search and Traversal, Circular Linked Lists, Applications of Linked Lists-Polynomial addition and subtraction—Sparse Matrix Implementation.	12				
II	Stacks & Queues Stack ADT- Stack operations Push, Pop, Peek, isEmpty, isFull and initialize, Stack implementation using Array, Stack implementation using Linked List, applications of Stacks, evaluating arithmetic expressions, conversion of infix to postfix expression. Queue ADT — Enqueue, Dequeue, Peek, isEmpty, isFull and initialize, Queue implementation using Array, Queue implementation using Linked List, applications of Queue, Priority Queue — Circular Queue and Queue Applications.	12				
III	Trees Introduction to Tree Data Structure and Basic Terminology. Implementation of Tree ADT. Types of Trees. Binary Tree ADT, Enumeration of Binary Trees, Tree Traversal – Expression Trees – applications of trees – Binary Search Tree ADT. Construct BST from given preorder traversal, Binary Tree to Binary Search Tree Conversion.	12				
IV	Advanced Trees and Hashing Binary Search Tree- Operations. AVL trees - Threaded Binary Tree, B Trees, B+ Tree, Heaps- Types of Heaps, Operations and Applications of heap. Hashing – Hashing functions – Collision Strategy.	12				

V	Graphs Data Structure Introduction to graph representation and Terminology – Types of Graphs— Graph traversal using Stack and Queue- Applications of Depth First and Breadth First Traversal, applications of graph, Detect Cycle in a Directed Graph and in an undirected graph, Transitive Closure of a Graph using DFS.	12
Text Bo	oks (TB):	
TD	1. Data Structures and Algorithm Analysis in C++, Mark Allen Weiss, Pearson	
ТВ	Education Asia, 4th Edition, 2013. ISBN: 9780132871174 (Module: 1 to 5)	
Referer	ce Books (RB):	
	1. Advanced Data Structures, Peter Brass, Cambridge University Press; 1st edition, 2	2008.
RB	2. Data Structures, Algorithms and Applications in C++, Sartaj Sahni,	
T.D	University Press India Private Limited, Second Edition, 2005	
Other	reading material:(Lab sessions)	
	1. The C Programming Language" by Brian Kernighan and Dennis Ritchie	
ORB	2. "C Programming: A Modern Approach" by K.N. King	
	3. "Data Structures and Algorithmic Thinking with C++" by Narasimha Karumang	chi

Session-Wise Plan:

	Abbreviations & Expansions									
	Pedagogy/Activity planned		Mode of Delivery							
P1	PPT presentation & Classroom interaction		M1	Synchronous – PPT						
P2	Blended Learning with Hands on		M2	Asynchronous / synchronous						
P3	Flip Class & Module Quiz		M3	Synchronous - Hands on						
A1	Activity-1		M4	Synchronous - Discussion						
A2	Activity-2									

Mod ule	Sessi on No	Topic Name	No. of sessi ons	Reading s and Referen ces	Pedagog y/ Activity planned	CO Mappi ng	Mode of Deliver y		
	1	List ADT Abstract Data Types, List ADT, Static and Dynamic Arrays	1	TB1	Students have to				
	2	Array Operation	1	RB1	do a				
1	3	Linked List Implementation: Singly Linked List:all operations— Creation, Insertion, Deletion, Search and Traversal	1	ORB1	minimu m 5 hours of any	CO1	Synchr onous, PPT		
	4	Linked List Implementation: Singly Linked List:all operations— Creation, Insertion, Deletion, Search and Traversal	1	WVL-1 MOOC certificat ion.					

				1			
	5	Circularly Linked List : all operations—Creation, Insertion, Deletion, Search and Traversal	1				
	6	Circularly Linked List : all operations—Creation, Insertion, Deletion, Search and Traversal	1				
	7	Doubly Linked List: all operations—Creation, Insertion, Deletion, Search and Traversal	1				Async hronou s, Blende
	8	Doubly Linked List: all operations—Creation, Insertion, Deletion, Search and Traversal	1	Relate appropri	CO1	d learnin g with Hands on	
	9	Applications of Linked Lists-Polynomial addition and subtraction	1		ate data structure to solve the given		Experi
	10	Sparse Matrix Implementation.	1		computat	CO1	ential Lab
	11	Applications of Linked Lists-Polynomial addition and subtraction	1		problem.	COI	session s
	12	Sparse Matrix Implementation.	1				
	1	Stacks & Queues Stack ADT	1				
	2	Stack operations Push, Pop, Peek, isEmpty, isFull and initialize	1				Synchr onous,
	3	Stack implementation using Array	1		Students		PPT Experi
	4	Stack implementation using Linked List	1	TB1	have to do a		ential Lab
	5	Applications of Stacks	1	RB1	minimu m 5	CO2	session s
2	6	Evaluating arithmetic expressions	1		hours of		Async
	7	Conversion of infix to postfix expression	1	WVL-2 WTL-2	any MOOC certificat		hronou s, Blende
	8	Queue ADT – Enqueue, Dequeue, Peek, isEmpty, isFull and initialize	1	ion.			d learnin g with
	9	Queue implementation using Array	1				Hands on
	10	Queue implementation using Linked List	1				

	11	Applications of Queue, Priority Queue	1				
	12	Circular Queue and Queue Applications.	1				
			ı	Ī	Ī	Ī	_
	1	Trees Introduction to Tree Data Structure.	1				Synchr
	2	Basic Terminology	1				onous,
	3	Implementation of Tree ADT	1				PPT
	4	Types of Trees. Binary Tree ADT	1	_			Experi
	5	Enumeration of Binary Trees	1				ential
	6	Tree Traversal	1	TB1			Lab
	7	Expression Trees – applications of trees	1	RB1	Mini	CO3	session s
3	8	Binary Search Tree ADT	1	WWW 2	Project		Async
	9	Construct BST from given preorder traversal	1	WVL-3	J		hronou s,
	10	Construct BST from given preorder traversal:Program discussion	1	WTL-3			Blende d learnin
	11	Binary Tree to Binary Search Tree Conversion.	1				g with Hands on
	12	Binary Tree to Binary Search Tree Conversion: Program discussion	1				OII
		Administration and Health	l		Ī	l	Cl
	1	Advanced Trees and Hashing	1				Synchr onous,
	2	Binary Search Tree- Operations. AVL trees	1	_			PPT
							Experi
	3	AVL trees	1				ential
	5	Threaded Binary Tree B Trees	1	TB1			Lab
	6	B Trees	1	RB1		CO4,	session
4	7	B+ Tree	1	KDI	Mini	CO5	Async
'	8	Heaps- Types of Heaps	1	WVL-4	Project		hronou
	9	Operations and Applications of heap	1	WTL-4			s, Blende
	10	Hashing	1	''``			d
	11	Hashing functions	1	1			learnin
	12	Collision Strategy	1				g with Hands
					<u> </u>	<u> </u>	on
	1	Graphs Data Structure Introduction to graph	1	TB1	Mini	CO5	Synchr onous,
5	2	Representation and Terminology	1	RB1	Project		PPT Experi

3	Types of Graphs	1	WVL-5	ential
4	Types of Graphs	1	***************************************	Lab
5	Graph traversal using Stack	1	WTL-5	session
6	Graph traversal using Queue	1		Async
7	Depth First Traversal	1		hronou
8	Applications of BFS and DFS	1		s,
9	Breadth First Traversal	1		Blende
10	Applications of graph	1		d learnin
11	Detect Cycle in a Directed Graph and in an undirected graph	1		g with Hands
12	Transitive Closure of a Graph using DFS.	1		on

Web Video Links:

WVL-1	Module-1	https://www.youtube.com/watch?v=3Hsf2LwjjQE
		https://www.youtube.com/watch?v=Tzw2rR_KeFg
WVL-2	Module-2	https://www.youtube.com/watch?v=-h5KziRac8I
		https://www.youtube.com/watch?v=okr-XE8yTO8
WVL-3	Module-3	https://www.youtube.com/watch?v=pYT9F8_LFTM
		https://www.youtube.com/watch?v=-DzowlcaUmE
		https://www.youtube.com/watch?v=1-1 UOFi1Xw
WVL-4	Module-4	https://www.youtube.com/watch?v=KyUTuwz_b7Q
		https://www.youtube.com/watch?v=G46P8cHyDlo
		https://www.youtube.com/watch?v=CVA85JuJEn0
WVL-5	Module-5	https://www.youtube.com/watch?v=59fUtYYz7ZU
		https://www.youtube.com/watch?v=j0IYCyBdzfA

Web Text Links: WTL

WTL-1	Module-	1. https://www.javatpoint.com/ds-types-of-linked-list	
	1	2. https://www.w3schools.com/dsa/dsa_data_linkedlists_types.php	
WTL-2	Module-	1.	https://www.geeksforgeeks.org/introduction-to-stack-data-structure-and-algor
	2		ithm-tutorials/
		2.	https://www.javatpoint.com/array-representation-of-queue
WTL-3	Module-	1.	https://www.geeksforgeeks.org/binary-search-tree-data-structure/
	3	2.	https://www.javatpoint.com/binary-tree-vs-binary-search-tree
WTL-4	Module-	1.	https://www.javatpoint.com/hashing-in-data-structure
	4	2.	https://www.javatpoint.com/tree
		3.	https://www.w3schools.com/dsa/dsa_theory_trees.php
WTL-5	Module-	1.	https://www.geeksforgeeks.org/introduction-to-graphs-data-structure-and-alg
	5		orithm-tutorials/
		2.	https://www.w3schools.com/dsa/dsa_theory_graphs.php
		3.	https://www.programiz.com/dsa/graph

Blended Learning [P2-Blended Learning with Hands on]: Interaction - (30 minutes) Teacher Input 20 minutes) Wrap Up (10 minutes)

Sl. No	LinkedIn Learning Link
1	https://www.linkedin.com/learning/nail-your-c-plus-plus-interview/linked-lists-in-c-plus-plu
1	<u>s?u=92695330</u>
	https://www.linkedin.com/learning/nail-your-c-plus-plus-interview/stacks-in-c-plus-plus?u=
2	<u>92695330</u>
	https://www.linkedin.com/learning/nail-your-c-plus-plus-interview/queues-in-c-plus-plus?re
	<u>sume=false&u=92695330</u>
3	https://www.coursera.org/learn/data-structures?specialization=data-structures-algorithms
4	https://www.coursera.org/learn/data-structures?specialization=data-structures-algorithms
5	https://www.coursera.org/learn/data-structures?specialization=data-structures-algorithms

Case studies

a. Real World case studies (https://www.programiz.com/blog/dsa-in-everyday-life/)

A1 - Activity-1: MOOC certification

Students have to do a minimum 5 hours of any MOOC certification.

Outcome: Students should be familiar with the concepts of data structures.

Rubrics: A1

Criteria	Poor Below Expectation	Fair Needs improvement	Good Meets Expectations	Excellent Exceeds Exceptions	Weightag e
Report Submission	Poor: Trivial Idea, No Clarity in items presented (5 Marks)	Moderate: Trivial Idea, No much Clarity in items presented (8 Marks)	Good Report: Trivial Idea, Clarity in items presented (12 Marks)	Very Good Report: Innovative Idea, Clarity in items presented (15 Marks)	15

A2 - Activity-2: MiniProject-2

Students have to create any one of the given projects based in groups based on their roll numbers.

- Plagiarism detection system
- Banking management system
- Travel planner using Graph
- Building a crossword puzzle game
- Email Spam Filter

Rubrics: A2

Criteria	Poor Below Expectation	Fair Needs improvement	Good Meets Expectations	Excellent Exceeds Exceptions	Weightag e
Project Execution	Poor: Errors & No database operations (4 Marks)	Moderate: Errors & data database operations not up to the mark (5-6 Marks)	Good Execution: No Errors but database operations not up to the mark (7-8 Marks)	Very Good Execution: No Errors & good database operations (9-10 Marks)	10
Report Submission	Poor: Trivial Idea, No Clarity in items presented (2Marks)	Moderate: Trivial Idea, No much Clarity in items presented (3 Marks)	Good Report: Trivial Idea, Clarity in items presented (4 Marks)	Very Good Report: Innovative Idea, Clarity in items presented (5 Marks)	5

Assessment Scheme: IA: UE - 50:50

Sl. No.	Assessment Instrument	Formative/ Summative	Frequency	Weightage (%)	СО
1	MOOC Course	Formative	1	15	CO 1, CO 2,
2	Mini Project	Formative	1	15	CO 3, CO 4, CO 5
3	Internal Test	Formative	2	15	CO 1, CO 2, CO 3, CO 4, CO 5
4	Class Participation	Formative		5	
5	University Exam	Summative	1	50	CO 1, CO 2, CO 3, CO 4, CO 5
	Total			100	

Lab sessions(LS)

Course Title: Data Structures Lab

Course Code: 23MCAC101L

Credits: 1 Contact Hours: 30 L:T:P:E 0:0:2:0

CA: UE Weightage - 100 Pass Marks (CA& UE) - 40% Aggregate Pass Marks: 50 %

COURSE OBJECTIVES:

Course Objectives				
COB1	To write programs to demonstrate the Linear and Non-Linear Data structures			
	operations			
COB2	To understand how the nodes are visited in the Non-Linear Data structures			
COB3	To apply suitable data structures in developing applications.			

COURSE OUTCOMES:

After the completion of the course the students are able to

Course Outcomes	Description	Bloom's Taxonomy Level
	Compare different types of Linked Lists, Stacks and Queues on	L4
	creating the sequential data structure operations and applications.	
CO2	Order the nodes in the Binary Trees to demonstrate how tree	L5
	traversals can be done.	
CO3	Produce the visiting of Graph nodes by using Breadth-First and	L6
	Depth-First traversal techniques.	

List of Programs

- 1. Write a C program that uses functions to perform the following:
- a. Create a singly linked list of integers.
- b. Delete a given integer from the above linked list.
- c. Display the contents of the above list after deletion.
- 2. Write a C program that uses functions to perform the following:
- a. Create a doubly linked list of integers.
- b. Delete a given integer from the above doubly linked list.
- c. Display the contents of the above list after deletion.
- 3. Write C programs to implement a Stack ADT using i) Array and ii) Linked list respectively.
- 4. Write a C program that uses stack operations to convert a given infix expression into its

- postfix equivalent.
- 5. Write C programs to implement a queue ADT using i) Array and ii) Linked list respectively.
- 6. Write a C program to implement a circular queue along with different operations using linked lists.
- 7. Write a C program that uses functions to perform the following:
- a. Create a Binary tree of numbers
- b. Define functions to perform Inorder, Postorder and Preorder traversals on the above tree.
- 8. Write a C program that uses functions to perform the following:
- a. Create a Binary Search Tree (BST) of integers.
- b. Define a function to search for a given key in the BST.
- 9. Write a C program to demonstrate an AVL Tree (Insertion and Rotations).
- 10. Write C programs for implementing the Breadth first graph traversal technique.
- 11. Write C programs for implementing the Depth first graph traversal technique.
- 12. Write C programs for demonstrating Hashing technique with Searching operation