Group Project Breast Cancer

Alejandra Barrios—301314502 Paula Carrillo—301314500 Sebastian Gonzalez—301336125 Saksham Tiwari-301334725

Centennial College Business Analytics Capstone David Parent July 15, 2024

Contents

Introduction	
Data Setup and Exploration	3
Variable Analysis	5
Descriptive Statistics	6
Over sampling	8
Decision Tree Model	9
Maximal Tree	9
Misclassification Tree	9
Average Square Error Tree	9
Optimal Tree	9
Impute	10
Adjust Outliers	
Skewness	11
Replace Dummies	11
Logistic Regression Model	11
Full Regression	
Forward Regression	
Backward Regression	
Stepwise Regression	12
Optimal Regression	
Neural Network Model	14
Neural Network: Cap & Floor	14
Neural Network: Transform Variables	
Neural Network: Best Regression (3H)	
Neural Network: 2H	
Neural Network: 4H	
Neural Network: 5H	
Neural Network: 6H	
Neural Network: 7H	
Neural Network: 8H	
Optimal Neural Network	15

Assessment	16
Conclusion and Recommendations	18
Appendix	20

Introduction

The objective of this project is to determine the characteristics of the patients who are more likely to die of breast cancer with a dataset extracted from Kaggle Website¹.

The project has several steps including an initial exploratory analysis to understand a general panorama of the records; cleaning and managing outliers of the dataset; running different models such as decision trees, regressions, and Neural Networks to predict which patients are more likely to die according to different attributes of the dataset; comparing each model considering Average Squared Error (ASE) and ROC index; finally, choosing the best model using ASE as a validation assessment rating and interpret its results to make recommendations to the health industry.

Data Setup and Exploration

The dataset chosen is from patients with breast cancer, it has a total of 4024 records with the following variables:

Name	Description	Role	Level
Age	The age in years of each patient	Input	Interval
Race	The ethnicity or skin color of the patient (White, Black,	Input	Nominal
	Other)		
Marital Status	Status of relationship of the patient (Divorced, Married,	Input	
	Separated, Single, and Widowed)		Nominal
T Stage	Indicates the size of the main tumor. The higher the	Input	Nominal
	number after T, the larger the tumor		
	T1: Tumor is 2 cm (3/4 of an inch) or less across.		
	T2 : Tumor is more than 2 cm but not more than 5 cm		
	(2 inches) across.		
	T3: Tumor is more than 5 cm across.		
	T4: Tumor of any size growing into the chest wall or		
	skin. This includes inflammatory breast cancer.		

Dataset link: https://www.kaggle.com/datasets/reihanenamdari/breast-cancer

N Stage	Refer to the number and location of lymph nodes that contain cancer. The higher the number after N, the more lymph nodes that contain cancer. N1: Cancer has spread to 1 to 3 lymph nodes under the arm with at least one area of cancer spread greater than 2 mm across. N2: Cancer has spread to 4 to 9 lymph nodes under the arm, or cancer has enlarged the internal mammary lymph nodes. N3: Cancer has spread to 10 or more axillary lymph nodes, with at least one area of cancer spread greater than 2 mm.	Input	Nominal
6 th Stage	IIA: The tumor is less than 2 centimeters and less than four axillary lymph nodes have cancer cells present. IIB: The tumor is between 2 and 5 centimeters and has spread to less than four axillary lymph nodes. IIIA: The tumor is larger than the approximate size of a small lime (over 5 centimeters), AND the cancer has spread to 1, 2, or 3 lymph nodes under the arm or near the breastbone. IIIB: the tumor has grown into the muscles of the chest wall or skin. IIIC: The cancer has spread to 10 or more axillary lymph nodes	Input	Nominal
Differentiate	How the cells look like. Going from well differentiated to undifferentiated.	Rejected	Nominal
Grade	 The cancer cells are well differentiated. They look almost like normal cells. The cancer cells are moderately differentiated. They are between grades 1 and 3. The cancer cells are poorly differentiated or undifferentiated. They look less normal, or more abnormal, than healthy cells. anaplastic; Grade IV: The cells look undifferentiated or abnormal. 	Input	Nominal
A Stage	Regional: The cancer has spread outside the breast to nearby lymph nodes. Distant: The cancer has spread to distant parts of the body (Such as lungs, liver, bones, etc.)	Input	Nominal
Tumor Size	Size of tumor in mm	Input	Interval

Estrogen Status	Positive: Cancer cells have receptors for estrogen.	Input	Nominal
	Negative: Otherwise		
Progesterone	Positive: Cancer cells have receptors for progesterone.	Input	Nominal
Status	Negative: Otherwise		
Regional Node	Total number of regional lymph nodes that were	Input	Interval
Examined	removed and examined by the pathologist.		
Reginol Node	Number of regional lymph nodes examined that were	Input	Interval
Positive	positive for cancer.		
Survival	Number of months that the person is being alive after	Rejected	Interval
Months	the diagnosis.		
Status	If the patient survived (1 dead - 0 alive)	Target	Binary

Variable Analysis

In this section, a Heatmap and Chi-Square Test of independence was created to discover any relationship between the variables for numerical and categorical variables, respectively.

Heatmap

The Heatmap identifies that the variable 'Survival Months' has a strong relationship negative correlation (-0.6) with 'Status' (Target label). This correlation suggests that as the number of survival months increases, the likelihood of Status being 1 (Dead) decreases, which aligns with the expected outcome that longer survival time correlates with being live.

For this reason, Survival Months is rejected in the model to address the curse of dimensionality and ensure that the model remains focused and free from redundancy.

Chi-Square Test of independence

A chi-square test was conducted between the categorical variables 'Differentiate' and 'Grade since it appears to have a relationship. The Contingency table shows the frequency of each category of 'Differentiate' compared across the categories of 'Grade'. The null hypothesis for this test is that there is no relationship between the two variables; whereas the alternative hypothesis is that there is a relationship between the two variables.

Contingency Table:				
Grade	anaplastic; Grade IV	1	2	3
differentiate				
Moderately differentiated	0	0	697	0
Poorly differentiated	0	0	0	406
Undifferentiated	10	0	0	0
Well differentiated	0	119	0	0

The Chi-square test, with a significance level of 0.05, shows that the p-value is 0.0, meaning that the null hypothesis is rejected and concluding that there is an association between the two variables. A p-value of 0.0 indicates a extremely strong evidence against the null hypothesis.

```
Chi-Square Statistic: 3696.0 p-value: 0.0 Degrees of Freedom: 9
```

For this reason, the variable differentiate is rejected in the model.

Descriptive Statistics

The following table presents the measures of central tendency for each variable of the dataset. The dataset has no missing values for any variable which means it is not necessary to apply techniques to manage these values; also, the numerical variables present a range (minimun and maximun) and mean. For instance, the age of patients is between 30 years and 69 years with a mean of 54.52. The regional Node Positive vary between 1 tumor and 46 tumors and mean of 5.60, which it could indicate that it migh have outliers as well as tumor size with a range between 1 tumor and 140 tumors and mean of 33.17.

As for the categorical varibles, the table shows the mode which indicates the most frequent category of the variable. The most popular characteristics in patients are the marital status married, race white, grade 2 which means the cancer cells are moderately differentiated, N1 stage which means the cancer has spread to 1 to 3 lymph nodes, T2 stage which means Tumor is more than 2 cm but not more than 5 cm.

Obs #	Variable Name	Label	Type	Percen	Minimum	Maximum	Mean	Number of Levels	Mode Percentage	Mode
	1A Stage	A Stage	CLASS	0				2	96.42857	REGIONAL
	2Estrogen Status	Estrogen Status	CLASS	0				2	88.96104	POSITIVE
	3Grade		CLASS	0				4	56.57468	2
	4Marital Status	Marital Status	CLASS	0				5		MARRIED
	5N Stage	N Stage	CLASS	0				3	57.14286	
	6Progesterone Status	Progesterone Status	CLASS	0				2	76.94805	POSITIVE
	7Race		CLASS	0				3	84.25325	
	8T Stage	T Stage	CLASS	0				4	45.86039	
	9 6th Stage	6th Stage	CLASS	0				5	27.51623	
	10 differentiate		CLASS	0				4	56.57468	MODER
	11Age		VAR	0	30	69				
	12Reginol Node Positive	Reginol Node Positive	VAR	0	1	46				
	13Regional Node Examined	Regional Node Examined	VAR	0	1	57				
	14Status		VAR	0	0	- 1	0.5			
	15Survival Months	Survival Months	VAR	0	2	107				
	16Tumor Size	Tumor Size	VAR	0	1	140	33.16721			

The graphs represent the distribution of N stage and T stage according to the status, showing that the most frequent patients dead are in N1 stage with 270 patients, and in T2 stage with 303 patients who have died.

The histograms show the distribution of the variables Tumor size, Reginol Node Positive, Age and Regional Node Examined. The tumor size and Reginol Node positive is skewed in the right tail.

The box plot shows how data are distributed and any outliers. In this case, as mentioned earlier, tumor size has outliers; the median of the tumor size for patients that are alive is less than the median of the patients that died.

The next graph shows the that the tumor size of the patients alive (Status is 0) has more variability than the patients dead (Status is 1) although the patients dead have greater outliers.

Over sampling

The original dataset had 4024 records, 3408 of them had the status of "alive", and 616 "Dead". A random sampling was performed to balance the dataset and avoid bias in the model; 616 from the 3408 "alive" records were randomly choosing in Microsoft Excel.

For the target variable **Status**, the original dataset was modified from Nominal to binary, replacing "Dead" to 1 and "Alive" to 0.

Decision Tree Model

Maximal Tree

The Average -Squared error for the Maximal Tree is 0.236363. Figure 1 and Figure 2 in the Appendix section exhibit the statistics results and the diagram for the Maximal Tree.

Misclassification Tree

The Average -Squared error for the Misclassification Tree is 0.229525. Figure 3 and Figure 4 in the Appendix section exhibit the statistics results and the diagram for the Misclassification Tree.

Average Square Error Tree

The Average-Squared error for the Average Square Error Tree is 0.228703. Figure 5 and Figure 6 in the Appendix section exhibit the statistics results and the diagram for the Average Square Error Tree.

Optimal Tree

The ASE decision tree with the average square error of 0.228703 is the optimal choice of tree for predicting patients who are more likely to die of breast cancer. Having the lowest average square error indicated the model predictions are closer to the true values on average. The decision tree is better suited for identifying high-risk individuals, contributing to more effective and potentially life-saving interventions.

Based upon the average square error tree, patients with positive or missing progesterone status are less likely to die at 44.10% compared to negative status with 67.3%, indicating **negative progesterone status** might be a positive prognosis indicator.

With **N stages** N3 and N2 the survival rate lowers as potential dead percentage holds to be 60.1%, with N1 stage having 32.45% and this aligns with expected relationship between advance stages and reduced survival.

Under **Age**, younger patients have less death rate of 28% compared to older patients at 41.11%. This suggests age might play a role in deaths within this specific group.

Progesterone status and N stage seems to be the important factors influencing deaths in this model.

Impute

The dataset did not contain any missing values, for that reason the imputation was not needed. The following image shows there were not any missing values for non of the variables.

Adjust Outliers

In the previous image, there are 2 variables with a skewness higher than 1: Reginol Node Positive and Tumor Size. To address this, capping and flooring was employed to reduce the skewness of those two variables. Although this technique resulted in a reduction in skewness, both variables still presented skewness values exceeding 1.

Skewness

To continue reducing the skewness, a log transformation method was used in both variables mentioned above, to make the data more closely to a normal distribution. The method reduced the skewness in less than 1 for both variables with its respective levels.

Replace Dummies

For the study case, no categorical variable was replaced; instead, the categorical variables were kept as the original variables without any substitution to not loss any relevant information. The categorical variables in the dataset represent different patterns or conditions associated with breast cancer that are crucial to have a comprehensive understanding within the data.

Logistic Regression Model

Four regression models were applied: Full Regression, Forward Regression, Backward Regression, and Stepwise Regression. Average Square Error was used as the metric to decide which is the optimal regression model.

Full Regression

The Average Square Error for the Full Regression is 0.211012 (Appendix – Figure 7).

Forward Regression

The Average Square Error for the Forward Regression is 0.211064 (Appendix – Figure 8).

Backward Regression

The Average Square Error for the Backward Regression is 0.20826 (Appendix – Figure 9).

Stepwise Regression

The Average Square Error for the Stepwise Regression is 0.211064 (Appendix – Figure 10).

Optimal Regression

After comparing the Average Square Error (ASE) of the four regressions, the optimal regression with the lower ASE is Backward Regression.

The variables that are included in the final model are:

- Grade.
- LOG REP Reginol Node Positive.
- Progesterone Status.
- REP Age.
- REP Regional Node Examined.
- T Stage.

However, the variables with the higher Chi-Square are the most important variables for the model. For this model the variables that are more important are:

- Progesterone_Status with a chi-square of 28.55.
- LOG_REP_Reginol_Node_Positive with a chi-square of 22.03.
- T Stage T1 with a chi-square of 8.13.
- REP Age with a chi-square of 7.50.

The next image indicates the odds ratio estimates for each input, following with the interpretation:

• For **Grade**, the odds ratio (1 vs anaplastic; **Grade IV**) estimate equals 0.001. This means that cases with Grade 1 are 99.9% less likely to die of breast cancer than cases with anaplastic Grade 4.

- For **Grade**, the odds ratio (2 vs anaplastic; **Grade IV**) estimate equals 0.001. This means that cases with Grade 2 are 99.9% less likely to die of breast cancer than cases with anaplastic Grade 4.
- For **Grade**, the odds ratio (3 vs anaplastic; **Grade IV**) estimate equals 0.001. This means that cases with Grade 3 are 99.9% less likely to die of breast cancer than cases with anaplastic Grade 4.
- For LOG_REP_Reginol_Node_Positive, the odds ratio estimate equals 1.871. This means that every time LOG_REP_Reginol_Node_Positive goes up by the factor of 2.74 the probability to die of breast cancer increases by 87.1%.
- For **Progesterone_Status**, the odds ratio estimate equals 3.725. This means that cases with Negative Progesterone are 3.725 times more likely to die of breast cancer that cases with Positive Progesterone.
- For **REP_Age**, the odds ratio estimate equals 1.027. This means that for each additional year, the probability of die of breast cancer increases by 2.7%.
- For **REP_Regional_Node_Examined**, the odds ration estimate equals 0.974. This means that for each additional node examined the probability of die of breast cancer goes down by 97.4%.
- For **T_Stage**, the odds ratio (**T1 vs T4**) estimate equals 0.269. This means that cases with T1 are 73.1% less likely to die of breast cancer than cases with anaplastic T4.
- For **T_Stage**, the odds ratio (**T2 vs T4**) estimate equals 0.414. This means that cases with T2 are 58.6% less likely to die of breast cancer than cases with anaplastic T4.
- For **T_Stage**, the odds ratio (**T3 vs T4**) estimates equals 0.392. This means that cases with T3 are 60.8% less likely to die of breast cancer than cases with anaplastic T4.

Neural Network Model

The Neural Models in the Breast Cancer Model are nine. Seven of these Neural Models are using just the most important variables of the best regression model to mitigate the curse of dimensionality. In this case, the backward regression. The average error was selected as the model selection criterion. Also, the maximum iterations were changed to 100 and the maximum time to 10 minutes.

The other two models were included after the Cap and Floor (NN Cap and Floor) and the Transform Variables (NN Transform Variables) modifications. These models were included to validate if they have lower (ASE) than the Neural Models connected to the backward regression that is the best regression model.

Neural Network: Cap & Floor

The Cap & Floor Neural Network has the model selection criterion Profit/Loss and three hidden units. The Average Square Error is 0.20948 (Appendix – Figure 11).

Neural Network: Transform Variables

The Transform Neural Network has the model selection criterion Profit/Loss and three hidden units. The Average Square Error is 0.211469 (Appendix – Figure 12).

Neural Network: Best Regression (3H)

The Neural Network: Best Regression has the model selection criterion Average Error and three hidden units. The Average Square Error is 0.208826 (Appendix – Figure 13).

Neural Network: 2H

The Neural Network: Best Regression has the model selection criterion Average Error and two hidden units. The Average Square Error is 0.210514 (Appendix – Figure 14).

Neural Network: 4H

The Neural Network: Best Regression has the model selection criterion Average Error and four hidden units. The Average Square Error is 0.210002 (Appendix – Figure 15).

Neural Network: 5H

The Neural Network: Best Regression has the model selection criterion Average Error and five hidden units. The Average Square Error is 0.20793 (Appendix – Figure 16).

Neural Network: 6H

The Neural Network: Best Regression has the model selection criterion Average Error and six hidden units. The Average Square Error is 0.207433 (Appendix – Figure 17).

Neural Network: 7H

The Neural Network: Best Regression has the model selection criterion Average Error and seven hidden units. The Average Square Error is 0.208127 (Appendix – Figure 18).

Neural Network: 8H

The Neural Network: Best Regression has the model selection criterion Average Error and eight hidden units. The Average Square Error is 0.208862 (Appendix – Figure 19).

Optimal Neural Network

After running all the Neural Networks models, the best model is the Neural Network using 6 hidden units. The ASE is 0.207433 which is the lowest comparing the other models. Also, this model has a ROC index of 0.737 which is the highest as well. These two parameters indicate that the 6 hidden units neural network model is the best among the neural networks.

The following graph shows that the iteration where with the lowest ASE for the Valid dataset is in the third iteration, that means that the model has converged.

Assessment

The results shows that the best model is the Neural Network after regression with 6 hidden units with an ASE of 0.207433.

Using ROC as a validation assessment rating the best model is the Neural Network with 5 hidden units with a ROC of 0.741

Model Node	Model Description	Valid: Average Squared Error ▲	Model Node	Model Description	Valid: Roc Index ▼
Neural6	NN Regression 6H	0.207433	Neural7	NN Regression 5H	0.741
Neural7	NN Regression 5H	0.20793	Neural4	NN Regression 7H	0.739
Neural4	NN Regression 7H	0.208127	Reg4	Backward Regression	0.737
Reg4	Backward Regression	0.20826		NN Regression 6H	0.737
Neural3	NN best Reg	0.208826		NN best Reg	0.734
Neural5	NN Regression 3H	0.208826	Neural5	NN Regression 3H	0.734
Neural8	NN Regression 4H	0.210002	Neural9	NN Regression 2H	0.731
Neural9	NN Regression 2H	0.210514	Reg	Full Regression	0.729
Reg	Full Regression	0.211012	Reg2	Forward Regression	0.729
Reg2	Forward Regression	0.211064	Reg3	Stepwise Regression	0.729
Reg3	Stepwise Regression	0.211064	Neural8	NN Regression 4H	0.729
Neural10	NN Regression 8H	0.217083	Neural10	NN Regression 8H	0.719
Neural	NN Cap % Floor	0.224633	Neural	NN Cap % Floor	0.708
Tree3	ASE tree	0.228703	Tree3	ASE tree	0.674
Tree2	MissClas Tree	0.229525		Maximal Tree	0.669
Tree	Maximal Tree	0.236363	Neural2	NN Transform	0.665
Neural2	NN Transform	0.245027	Tree2	MissClas Tree	0.663

The cumulative response chart show that the Neural Network with 3 hidden units is the most effective model based on the response rate; choosing the best 5% of the records the response rate of this Neural Network is 100%.

As for the lift, choosing the best 5% of the records the best lift is from the Neural Network with 3 hidden units with a lift value of 1.996764

Conclusion and Recommendations

This project identifies the different characteristics of patients who are more likely to die from breast cancer; to have a consist and reliable model some changes had to be done to the dataset; first, balance the records between dead and alive patients to avoid bias; second, using cap and floor technique to manage the outliers; Finally, transforming the variables to manage properly the skewness of the variables.

After running the different predictive models including decision tree models, logistic regression models, and neural network models,

the backward regression model stands out as the most effective model to identifying individuals that have a higher risk of dying of breast cancer. Although the best model with the ASE criteria is the Neural Network with 6 hidden units, the backward regression was chosen as the best model due to Neural Network cannot be interpretated.

For the backward regression, the variables that are included in the model and that have a notable association with breast cancer mortality are: Grade, LOG_REP_Reginol_Node_Positive, Progesterone_Status, REP_Age, REP_Regional_Node_Examined, and T_Stage.

For the logistic regression, the odds ratio estimates provide a crucial information about the impact of individual variables on the likelihood of death from breast cancer. For the backward regression of the breast cancer model, the odds ratio estimates show:

- For the variable **Grade**, cases with Grades 1,2, and 3 are shown to be 99.9% less likely to die compared to cases with anaplastic Grade4.
- For **LOG_REP_Reginol_Node_Positive**, every time this variable goes up by the factor of 2.74 the probability to die of breast cancer increases by 87.1%.
- For **Progesterone_Status**, cases with Negative Progesterone are 3.725 times more likely to die of breast cancer than cases with Positive Progesterone.
- For **REP_Age**, for each additional year the probability of die of breast cancer increases by 2.7%.
- For **REP_Regional_Node_Examined**, for each additional node examined the probability of die of breast cancer goes down by 97.4%.
- For **T_Stage**, cases with T1 are 73.1% less likely to die of breast cancer than cases with anaplastic T4.
- For **T_Stage**, cases with T2 are 58.6% less likely to die of breast cancer than cases with anaplastic T4.
- For **T_Stage**, cases with T3 are 60.8% less likely to die of breast cancer than cases with anaplastic T4.

Some recommendations for the health industry include focusing on those patients who their progesterone is negative since they have a 272,5% more chance to die than patients with positive progesterone. Also, the number of positive nodes has a major impact on critical patients; the more positive node a patient has, the probability of dead increase in 87,1%.

The cases in anaplastic T4 stage are other important characteristic to consider since these patients have a 26,9% more probability to die. Finally, the age has also an impact with a 2,7% of more chances to die when the age increase.

The study also showed that anaplastic grade 4 has a greater impact in the target comparing with the other categories 1,2 and 3, with 0,1% chance not to die. For further research, it is recommended the use of more techniques for a deeper understanding of this categorical variable.

Appendix

Figure 1. Maximal Tree Results

Figure 2. Maximal Tree Diagram

Figure 3. Misclassification Tree Results

Figure 4. Misclassification Tree Diagram

🗗 Results - Node: ASE Tree Diagram: Breast Cancer

Figure 5. Average Squared Error Tree Results

Figure 6. Average Squared Error Tree Diagram

🗗 Results - Node:	: Full Regression Diagram: Breast	Cancer				- 🗆
ile Edit View Win	ndow					
Fit Statistics						
Target	Target Label	Fit Statistics	Statistics Label	Train	Validation	Test
Status		AIC	Akaike's Information Criterion	770,737		
Status		ASE	Average Squared Error	0.201377	0.211012	
Status		AVERR	Average Error Function	0.585965	0.61773	
Status		DFE	Degrees of Freedom for Error	590		
Status		DFM	Model Degrees of Freedom	25		
Status		DFT	Total Degrees of Freedom	615		
Status		DIV	Divisor for ASE	1230	1234	
Status		ERR	Error Function	720.737	762.2792	
Status		FPE	Final Prediction Error	0.218443		
Status		MAX	Maximum Absolute Error	0.926015	0.999811	
Status		MSE	Mean Square Error	0.20991	0.211012	
Status		NOBS	Sum of Frequencies	615	617	
Status		NW	Number of Estimate Weights	25		
Status		RASE	Root Average Sum of Squares	0.44875	0.45936	
Status		RFPE	Root Final Prediction Error	0.467379		
Status		RMSE	Root Mean Squared Error	0.458159	0.45936	
Status		SBC	Schwarz's Bayesian Criterion	881.2776		
Status		SSE	Sum of Squared Errors	247.6936	260.3887	
Status		SUMW	Sum of Case Weights Time	1230	1234	
Status		MISC	Misclassification Rate	0.328455	0.32577	

Figure 7. Full Regression Results

Figure 8. Forward Regression Results

Figure 9. Backward Regression Results

Figure 10. Stepwise Regression Results

Figure 11. Neural Network Cap and Floor Results

Figure 12. Neural Network Transform Variables Results

Figure 13. Neural Network 3 Hidden Units

Figure 14. Neural Network 2 Hidden Units

Figure 15. Neural Network 4 Hidden Units

Figure 16. Neural Network 5 Hidden Units

Figure 17. Neural Network 6 Hidden Units

Figure 18. Neural Network 7 Hidden Units

Figure 19. Neural Network 8 Hidden Units