Uninformed Search

N Geetha
A M & C S
P S G College of Technology

Search

- Search problem is associated with
 - What to search ? Key (goal)
 - Where to search? Search space
- Solving a search problem has 2 phases
 - Generation of the state space
 - Searching the desired problem state (Goal) in that space
 - The state space is expanded in steps as it may cause a significant blockage of space
 - The goal is searched after each incremental expansion of the state space

Search

- Sometimes state space may be infinite
- Most search problems suffer from the problem of combinatorial explosion
- Search space is the narrowed down version of the state space

Example

1	2	8
	4	3
7	6	5

1	2	3
8		4
7	6	5

initial state

goal state

Uninformed search

- Brute Force Search
- Depth-first Search
- Breadth-first Search
- Bidirectional Search
- Iterative Deepening Search

Uninformed Search

- ➢ Brute Force Search (Generate and Test)
- Select an appropriate operator applicable to state and obtain the new state
- Initial and goal states are known
- Algorithm:
 - 1.state = Initial_state
 - 2.While state <> goal_state do state = operator(state)
 - 3.End.

Depth-First Search

- Procedure Depth-First Search (Vertical Search / Backtracking)
- /* OPEN is a stack data structure; CLOSED is a
- S1. Put the initial state in OPEN
- > S2. LOOP: If (empty(OPEN)), then exit(failure).
- /* If all the nodes have been examined and the search terminates, the result of the search is taken to be a failure */
- > S3. n = first(OPEN). /* fetch initial state from OPEN*/
- > S4. if goal(n), then exit(success).
- /* if n is the goal state, the search has succeeded and is terminated */
- S5. remove(n, OPEN); add(n, CLOSED)
- /* n is removed from OPEN and is added to CLOSED */
- ➤ S6. Expand n; Put all the child nodes of n at the head of OPEN and attach links from the child nodes to n (child nodes which do not appear in OPEN or CLOSED are alone put at the head of OPEN)
- > S7. Go to S2.

Depth first search

 Nodes explored in order: library, school, factory, hospital, park, newsagent, university.

Example 1

n	OPEN	CLOSED	Remarks
	1		Initial
1	1	1	Goal(1) is false
1	2,3	1	Expand 1
2	2,3	1,2	Goal(2) is false
2	4,5,3	1,2	Expand 2
4	4,5,3	1,2,4	Goal(4) is false
4	8,9,5,3	1,2,4	Expand 4
			Goal(12) is true

Evaluation Measures

- b: branching factor
- d: depth of shallowest goal node
- m: depth of the search tree
- Depth-first search is
 - Not complete
 - Not optimal
- Best case
 - Time and space complexity is O(d) extremely fast
- Average case
 - $-1+b+b^2+...+b^d=(b^{d+1}-1)/(b-1)=O(b^d)$
 - Time complexity is : O(b^d)
 - In practice, DFS is usually quicker than BFS
- Worst case
 - Time complexity is O(b^m) slow
 - Space complexity is O(b*m) excellent

Example 2: A:initial, U:goal

Graph for breadth- and depth-first search examples.

Breadth first search

Explore *nodes* in tree order: library, school, hospital, factory, park, newsagent, uni, church. (conventionally explore left to right at each level)

Example :1

• Example :1

OPEN = (3, 4, 5)

• Example :1

OPEN = (4, 5, 6, 7)

References

- ➤ Elaine Rich, Kevin Knight, "Artificial Intelligence", Tata Mcgraw Hill, 2002.
- Amit Konar, "Artificial Intelligence and Soft Computing", CRC Press, 2000.
- Peter Norvig, Stuart Russel, "Artificial Intelligence: A modern Approach", Prentice Hall of India, 2006.
- Florin Leon, http://eureka.cs.tuiasi.ro/~fleon