

從事後究責到前瞻治理的系統化學習

計畫單位: 財團法人職業災害預防及重

建中心

執行單位: 社團法人中華製程安全學會

課程表

時段	時間 a	課程主題	課程內容	講師b			
上午	09~10 概念與流程		事故調查重要性與法規要求、事故調查指南介紹	A · B			
	10~11	案例與應用	事故調查演練案例的應用、調查工具簡介	B · C			
	11~12	調查方法介紹	事故調查方法介紹(ECFC、Why Tree、屏障分析等 5 種)				
	12~13	午餐	餐點 (免費-計畫提供)	-			
下午	13~14	案例實作演練	演練案例(參考圖卡分析工具)	В · С			
	14~15 案例成果分享		分組演練不同案例,並發表分享				
	15~16	案例成果分享	各組成果彼此觀摩交流(講師經驗互動)	A · B			
	16~ 後測與問卷 填寫意見		填寫意見與回饋	B · C			
註	a. 每節課 50 分鐘,各安排兩位講師共同協助學員,確保課程順利進行。						
	b. 現場提供教材「事故調查制度實務指南」電子檔下載與演練教具(事故調查方法圖卡)。						
	c. 講師:A-檢查機構,B-謝賢書教授,C-何明信博士						

國外課程規劃

• 學費:由職災預防中心免費提供本課程、資料與餐點。

- 學習是投資?
 - 1. DNV Incident Investigation (USD 1495)
 - 2. NSC Incident Investigation Course (\$439. Members \$349) ~ NTD 13K.
 - 3. NEBOSH
 - 1. Introduction to Incident Investigation (£580) \sim NTD 22.9K.
 - 2. Human Factors in Accident and Incident Investigations (£1,400)

這份指南可以給你?

目標是「從經驗中學習,預防再發」。

定位:提供實用的調查參考架構(含方法與技能)。

- 貳、事故調查角色定位 (P9)
- 參、事故調查相關用語與定義 (P14)
- 肆、良好事故調查的構成要素 (P23)
- 伍、事故因果模型 (P25)
- 陸、事故調查流程與查檢表 (P29)
- 柒、事故調查的專業技能 (P40)
- · 捌、事故調查分析方法 (P46)
- 玖、矯正改措施建議 (P70)
- 壹拾、事故報告書參考建議(P72)
- 附錄:調查分析工具圖卡

肆、良好事故調查的構成要素

打造有效的事故調查體系

- •四大關鍵要素:
 - 系統化的調查制度框架: 明確調查範圍,配備必要資源與專家支持。
 - 構建學習型組織文化:建立「公正文化」、「報告文化」與「學習文化」,避免歸責個人。
 - 確保調查專業性與獨立性:調查小組需具備多學科背景,保持客觀獨立。
 - 實施持續改進機制:將調查結果回饋風險管理,確保矯正措施落實並評估其有效性。
- 附錄 G 良好事故調查要項查檢表(HSE) (P88)

伍、事故因果模型(一)-骨牌模型

Figure 2: Domino model of accident causation (modified from Heinrich, 1931)

圖 1 簡單線性系統模型 引自[24]

(P26) 傳統思維:簡單線性系統模型

- 模型代表: 韓立奇的骨牌模型 (Heinrich's Domino Model)。
- •核心概念:
 - 事故是一連串線性的因果鏈,如同骨牌效應。
 - 移除其中一個環節(骨牌),就可以阻止事故發生。
 - 這是最基礎的因果模型,國內常用的「直接-間接-根本原因」分類。

伍、事故因果模型 (二) - 乳酪模型

Figure 6: Reason's 'Swiss Cheese' Model (modified from Reason, 2008 p.102)

圖 2複雜線性模型 引自[24]

(P27) 進階思維:複雜線性模型

- 模型代表: Reason的瑞士乳酪模型 (Swiss Cheese Model)。
- •核心概念:
 - 系統的防禦措施(屏障)像一片片的乳酪,本身都存在弱點(孔洞)。
 - 事故的發生,是當所有層次的孔洞在某一瞬間對齊,讓危害得以穿過所有屏障。
 - 事故是「主動失效 (Active Failures)」和「潛在條件 (Latent Conditions)」 的線性組合。
 - 將調查重點從「責怪個人」轉向「系統分析」。

伍、事故因果模型(三)-複雜非線性模型/系統模型

(P27) 近期發展,用於理解在高度複雜的系統中

複雜非線性模型/系統模型 引自[24]

• 模型代表:霍納格爾 (Hollnagel) 的功能共振事故模型 (Functional Resonance Accident Model, FRAM) •

•核心概念:

- 著重於整體分析,從整體和相互關聯的角度來理解事故,而非個別部分。
- 事故發生是多個因素同時作用和相互影響,而不是簡單的線性序列。
- 認為事故可能源於系統正常運作中不可避免的變異性的意外組合。
- 預防策略:管理系統的複雜性和變異性,提升系統的韌性。

陸、事故調查流程與查檢表

(P30) 系統化事故調查的五大階段

- •初步應變與現場控制: 救人第一,保護現場,初步判斷。
- 資訊收集:組成團隊,蒐集人、事、物、文件。(如4P)
- 分析與原因確認: 運用分析工具,找出立即、構成、根本原因。
- 制定與實施矯正措施: 提出具體、可行、可追蹤的改善計畫。
- 追蹤與評估:確保措施有效,並進行經驗分享。

陸、事故調查流程與查檢表

(P37)

		表 5 事故調查步驟重點事項彙整表
流程	主要步驟	重點注意事項
1	初步應變	■調查前確認所有緊急應變措施均已實施,現場必須是安全且未被破
	與現場控	壞。(US OSIIA)
	制	
1	保留現場	■現場保持(三角錐、警示帶、護欄等),紀錄現場事實狀況(人事時地
	與資料	物)-包含錄影、照相、描繪等。(US OSHA, p7)
2	資訊收集	■個人防護具需充分,記錄現場之儀器、設備與工具(如相機、錄影設
	(調查前	備、設備電力狀態、記憶卡、量尺、筆電、筆記本、照明設備、手機
	準備)	等), 識別證, 調查程序指引, 交通工具。(ILO, p29)
		■事前準備工具查檢表,成立調查小組。(US OSHA, pB-1)
2	資訊收集	■透過訪談、資料回顧等方法收集資料,參考訪談人員注意事項。(US
		OSHA, p8-9, 查檢表如其附錄 E)

	表 6 事故調查完整性查核表				
調查流程	查檢事項				
1.初步應變與	1步應變與 □確認已完成緊急應變措施,現場安全且未被破壞。				
現場控制	□成立調查小組(應有勞工代表)				
	□個人防護具(呼吸、手套、工作服)				
	□記錄現場之儀器設備(量測工具、相機、筆記本、照明等)				
	□事故調查程序或指引(內部發展或參照本指南等)				
	附記:確認事前準備工具清單-可參考[14]附錄六意外事故調查小組所				
	需用品;[8]附件 B。				
	□現場保持(三角錐、警示帶、護欄等)。				
	□紀錄現場事實狀況(人事時地物,照相、錄影、繪圖等方式)。				
2資訊收集	□人員訪談(找出所有相關證人,規劃訪談,包括傷者、證人、相關人				
	員等)。				
	□資料記錄收集。				

資料收集(訪談) 附錄 F 訪談提示事項

• (P87)

- 1. 請詳細描述事故發生的經過。
- 2. 請詳細描述事故發生前的工作情況及環境。
- 3. 請記錄事故發生前或發生期間任何不尋常的現象(視覺、聲音、 氣味等)。
- 4. 您在事故過程中擔任的工作(角色)是什麼。
- 您認為哪些條件影響了事故的發生(如天氣、時間、設備故障等)。
- 6. 你認為是什麼原因導致了這起事故。
- 7. 如何才能避免這起事故的發生。
- 8. 請說明其他可能的目擊者。
- 9. 其他觀察或意見。

捌、事故調查分析方法-導論

- 事故是複雜的,單一方法只能看到片面。
- 整合應用突破表層歸因,避免直觀地停留在不安全行為或狀況上。

• 本指南建議的整合流程:

- 1. 建立事實時間軸 -- ECFC / 時間序列表。
- 2. 釐清因果關係-- 為何樹、屏障分析、變更分析、人為失效分析。
 - 分析結果視覺化 邏輯圖或分析表
- 3. 統整所有發現,找出管理系統的缺失--根本原因分析

玖、矯正措施建議-風險控制階層

(P69) 如何選擇最有效的改善對策?

• 核心原則: 風險降低控制階層 (Risk Reduction Hierarchy of Controls)。

- 消除 (Eliminate)
- 替代 (Substitute)
- · 工程控制 (Engineering)
- · 警告措施 & 行政管理措施 (Warning & Administrative)
- · 個人防護具 (PPE)

結論 - 核心觀念回顧

本指南的核心訊息

- 事故調查的角色已從「事後究責」轉變為「前瞻治理」。
- 事故調查是整合職安衛管理系統、塑造安全文化的核心樞紐。
- 理解事故因果模型,有助於建立系統性、非線性的調查思維。
- 系統化調查流程與分析方法的整合應用,是找出根本原因的關鍵。

結論 - 未來展望

- 數位科技的應用: 3D掃描重建現場、AI分析訪談紀錄、調查分析APP化,將提升調查的系統性與效率。
- **跨領域合作**: 結合人因工程、心理學、數據科學等專業,提升調查的深度。
- ·職安衛人員的持續精進: 需不斷學習新技能,將調查的洞察 (insight)轉化為可執行的風險控制策略。

總結-我們學到了什麼?

- 系統化的事故調查框架與流程。
- 掌握了五大核心分析工具。
- 理解並挖掘管理的「根本原因」。
- •知道依據「風險控制階層」,提出最有效的「矯正措施」。

• 最終目標: 有效學習每一次事故,持續改善,邁向零災害的願景。

Q&A與聯絡資訊

•感謝聆聽與互動!

• 計畫: 職災預防及重建中心-職災預防技術處

• 執行: 中華製程安全學會

- 教材編撰與講師:謝賢書教授、何明信博士
 - 個案演練網站
 - 指南簡介網站

職災事故調查實務課程簡報大綱

第2節 案例與應用 (10:00-11:00)

- 主題:事故調查演練案例的應用、調查工具簡介
 - 從真實情境出發,學習如何系統性地看職災事故

講師: B-謝賢書教授、C-何明信博士

時間: 10:00-11:00

學習目標

我們將學到什麼?

- 理解為何要從「演練案例」開始學習事故調查。
- 熟悉本次課程將貫穿全程的核心演練案例。
- 建立「調查工具箱」的概念:面對複雜事故,我們有哪些武器?
- 挑戰直覺:為何不能只憑經驗判斷,而需要科學方法?

核心演練案例介紹:堆高機墜落致死事故

• 案例背景說明

• 時間: 113年3月5日 下午15時許

• 地點:公司倉庫貨櫃卸貨區

• 人物:

- 勞工A(罹災者,曳引車司機)
- 勞工B(堆高機操作員)
- 事件概述: 勞工A為協助卸貨,站立於勞工B操作的堆高機貨叉上, 隨貨叉上升至約1.6公尺高。A在處理貨物繩索時,不慎從貨叉上墜落 地面,頭部重創,送醫不治。

個案說明

- 113年3月5日15時15分許,某工廠所僱勞工A擔任司機駕駛曳拖車 載運貨櫃運送貨物至公司倉庫
- · 勞工A協助幫忙卸貨
- ·站立在公司所僱勞工B操作駕駛之荷重2.5公噸堆高機貨叉上,
- · 勞工B操作堆高機貨叉,上升離地高度約1.62 公尺。
- · A使用繩索固定貨物,
- 再藉由堆高機拖拉棧板上之貨物至貨櫃門口。
- 在將後扶架之繩索鬆綁後,然後再鬆綁棧板孔之繩索時,
- · 勞工A發生由貨叉上墜落地面受傷,
- 造成頭部外傷併顱內出血、顱骨骨折,經送醫不治死亡。

如果您是調查員?

事故發生了,您腦中第一個念頭是什麼?

- 是誰的錯? —> 究責思維
- •他怎麼這麼不小心? —>歸因於個人疏失
- SOP怎麼寫的? —> 單純檢討程序文件

專家提醒: 這些都是常見的「直覺陷阱」。

• 一個好的調查,始於「系統性地收集證據」,而非「過早下定論」。

調查的挑戰:看見冰山的全貌

- 從「表面原因」到「根本原因」
- 顯而易見的:
 - 勞工A從高處墜落。
 - 頭部撞擊地面、未戴安全帽。
 - 站立於堆高機貨叉上。
 - 未使用安全带等防墜設施。
- 潛在的立即/構成原因:
 - 違反安全作業程序。
 - 現場監督不足。
- 系統性的根本原因:
 - ? —> 這就是我們要用工具找出來的答案!
 - 例如:安全管理制度缺失、風險評估不足、 安全文化薄弱等。

我們的調查分析「工具箱」概覽(解析事故的六大工具)

時間序列表 / ECFC: 發生了什麼? - 重建事 故的完整時間軸。 為何樹分析 (Why Tree): 為何會發生? - 層層深 入挖掘因果鏈。 屏障分析(Barrier Analysis): 防護為何 失效? - 檢視所有應有 卻失效的安全防線。

變更分析 (Change Analysis): 這次有何 不同? - 找出導致系統 異常的「改變點」。 人為失誤分析(Human Failure): 人的因素是什麼? - 超越責備,分析行為背後的系統問題。

根本原因分析 (RCA): 系統問題在哪? - 整合 所有發現,直指管理與 組織的缺失。

整合的力量:為何需要多種工具? (單一工具的盲點 vs 整合分析的全面性)

- ECFC 提供「事實骨架」
- 為何樹深入「因果脈絡」
- 屏障分析 檢視「防禦漏洞」
- 變更分析點出「異常觸發」
- 人為失誤剖析「行為背景」

根本原因分析

- 事故是複雜的,單一視角往往以偏概全。
- 這些工具並非互相取代,而是互補的關係。
- 目標: 透過多種方法的整合,建構一個立體、完整、且有證據支持的事故圖像。

下一節 調查方法(工具)介紹

準備動手操作!

•「打開工具箱」,逐一學習如何使用這些強大的分析方法。

第三節:調查方法介紹(11:00-12:00)

方法(ECFC、Why Tree、屏障分析、變更分析、人為失誤分析)

- •請參照圖卡
- 動手學習五大簡易核心分析工具(案例演練)

工具一:事故成因圖 ECFC & 時間序列表

(P46)事故成因圖 (ECFC) - 重建事故發生的順序

- •目的:將事故相關「事件」與「成因、條件」按時間順序視覺化(因果)。
- •核心元素
 - 事件 (Events): 發生了什麼? (矩形/黃色) 一個短暫的動作或決策。
 - 條件 (Conditions): 為何會這樣? (橢圓形/粉紅色) 影響事件的狀態或環境。
- 繪製原則:從左到右按時間排序,實線表順序,虛線表成因條件影響。
- 替代方案: 對初學者或調查初期,可先用「時間序列表」整理資訊。

ECFC - 功能與目的

• 核心功能:

- 整合證據: 將人、事、物證組織成有邏輯的框架。
- 驗證因果: 視覺化呈現事件順序,檢視邏輯鏈是否完整。
- 指導調查: 辨識出待確認的「假設」條件,指引下一步調查方向。

• 步驟:

- 定義事故起點與終點: 以事故發生為中心,向前向後追溯。
- 列出主事件鏈:將最關鍵的幾個「事件」用方框和粗實線連接,構成故事骨幹。
- 添加次要事件鏈:在主鏈上方或下方,繪製其他相關的事件序列。
- 分析並連結條件:針對每一個事件,提問「為何會發生?」,找出影響它的「條件」,用橢圓和虛線連接。
- · 動態調整與更新: 調查是動態的, ECFC也應隨著新證據的出現而不斷更新。

ECFC - 常見錯誤

避開陷阱,畫出高品質的ECFC

- 常見錯誤:
 - 混淆事件與成因條件: 把「沒有SOP」(條件) 當成「事件」。
 - 邏輯鏈不完整: 事件之間的跳躍太大, 缺乏中間環節。
 - 忽略管理缺失: 只記錄現場的不安全行為/狀況,未追溯「為何SOP不存在」或「為何監督不足」。
- ·總結: ECFC是事故調查的「地圖」,它幫助我們看清全局、找到方向,是所有後續分析的基礎。

ECFC 案例實作: 堆高機墜落事故

• (P50)

註:

- 1. 黃色表示事件、藍色表示待確認事件、粉紅色表示條件。
- 2. 事件應按時間順序從左到右排列。
- 3. 每個事件和條件都應有證據支持,如果僅是推測,則應以虛線邊框或藍色圖形表示。

圖 6 職災事故 ECFA/ECFC 案例試作範例

時間序列表 (Time sequential table)實作

(三). 時間序列表進階範例 (C表)

時間	事件描述	事實(F)/ 假設(A)	主(P)/ 次(S)	相關條件1	相關條件2
113年3月5 日15:30許	勞工 A 駕駛曳拖 車與貨櫃	F	S		
15:30 許	勞工 A 協助卸貨	A	P		
15:30 許	勞工 A 站立堆高 機貨叉	F	P	未制定或落實禁止人員站 立於堆高機貨叉上的安全 程序	可能缺乏相關安 全教育訓練
15:30 許	勞工 B 操作堆高機,貨叉上升	F	P	未制定或落實禁止使用堆 高機載人的安全程序	主管未有效監督 高風險作業
15:30 許	勞工 A 固定貨物 於棧板	F	P		
15:30 許	堆高機拖拉棧板 上的貨物至貨櫃 門口	F	P		
15:30 許	勞工 A 鬆綁後扶 架之繩索	F	P		
15:30 許	勞工 A 墜落地面	F	P	站立於不穩定的貨叉	未提供或要求使 用安全的高空作 業設備 未進行作業風險 評估

工具二:為何樹分析 (Why Tree)

(P54) 不斷提問,直達問題核心

- 目的:從最終事故結果開始,透過反覆提問「為什麼?」,系統性 地回溯,找出多層次的因果關係,直至根本原因。
- •方法:俗稱「5個為什麼 (5 Whys)」,但不必拘泥於5次。
- •優點:直觀、易於理解,能清晰地展示原因追查、邏輯分析與溝通。

為何樹-功能與目的

不斷提問,直達問題核心

方法:從最終事故結果開始,透過反覆提問「為什麼?」,系統 性地回溯因果關係。

• 主要目的:

- 呈現直觀的樹狀圖,有利溝通和報告。
- 深度腦力激盪,挖掘隱藏的管理系統缺失。

為何樹-繪製規則與步驟

• 步驟:

- 定義頂端事件(Top Event): 將最直接的損失或傷害放在最頂端 (如:A墜落死亡)。
- 識別直接原因(第一層Why): 問「為何會發生頂端事件?」,將答案作為第一層分支。
- 重複提問「為何」(向下展開): 針對每一個原因,再問「為何?」,持續展開因果鏈。
- 找到停止點:當原因追溯到「管理系統缺失」(如:制度設計不良)、「超出組織控制」或「再問下去已無意義」時,該分支即可停止。
- 審查與驗證:檢查整棵樹的邏輯,確保上下層之間是充分且必要的因果關係。

P36

為何樹(六)-限制

• 限制:

- 為何樹分析的弱點之一是可能受限於分析人員的知識,需結合其他工具。
- 可能無法找出所有原因因子: 依賴分析人員的經驗。
- 避免將矛頭指向個人:分析的終點應是「系統」或「管理」問題,而非「某某某不小心」。
- 需要證據支持: 每個節點都應有事實根據, 避免臆測。

• 總結:為何樹是一個強大且直觀的深度挖掘工具,當它與其他分析方法結合使用時,能最有效地幫助我們找到並呈現事故的根本原因。

為何樹案例實作:堆高機墜落事故

(P56)

圖 7 為何樹圖 (範例 - 參考用)

工具三:屏障分析 (Barrier Analysis)

(P56) 屏障分析-我們的安全防線哪裡破了洞?

- 事故是「危害能量」突破了層層「屏障」接觸到「目標」的結果。
- 目的: 識別出
 - 應有的屏障有哪些?
 - 哪些屏障不存在?
 - 哪些屏障存在,卻失效了?
 - 為何失效?(是設計不良、沒使用、還是沒維護?)
- 屏障類型:
 - 物理屏障(如:護欄、安全網)
 - 行政管理屏障 (如: SOP、教育訓練、工作許可)
 - 程序性屏障(如:監督查核)

屏障分析-步驟與工作表

如何系統性地盤點屏障?(思考方向:預防+消減)

步驟:

- 識別危害與目標
- 識別應有的屏障 (腦力激盪)
- 評估屏障表現
- 分析失效原因 (為何沒發揮作用?)
- 填寫工作表。

屏障分析-限制

• 限制:

- 處理「哪些」屏障失效,但不深入探討「為何」失效的根本原因。
- · 需要與為何樹、RCA等方法結合,才能完成更深入的分析。

- 有效連接「事故現象」與「改善對策」的橋樑之一。
- 一個安全的系統, 仰賴的是「多層次」的屏障(深度防禦)。

屏障分析 案例實作: 堆高機墜落事故

(P58-59) 盤點失效的屏障

表 8 屏障分析工作表 (Barrier Analysis Worksheet)

危害 :從離出	也約 1.62 公尺的堆高机	幾貨叉上墜落 目標:勞工 A	
屏障	屏障表現	屏障失效原因	屏障如何影響事故
禁止站立堆	不存在或未遵守	未制定明確禁止規定	暴露於高處墜落的
高機貨叉規		未被充分宣導落實或監督	風險中
定			
高空作業防	未使用安全带或未	可能未提供或要求使用安全帶	勞工 A 失去平衡墜
墜措施	在安全的作業平台	未提供或使用符合安全規範的	落
	進行作業	高空作業平台	
堆高機操作	可能不足或未涵蓋	操作人員B可能未接受足夠的	操作人員不安全操
安全訓練	此類不安全行為之	堆高機安全操作訓練。	作(抬升人員)導致
	預防。		墜落風險

8 事故因果成因圖(ECFC) - 屏障分析後

工具四:變更分析 (Change Analysis)

(P60) 變更分析 - 這次跟平常有什麼「不一樣」?

- 基本假設: 許多事故的發生,源於系統中發生了某些「改變」。
- 目的: 系統性地比較「事故狀況」與「先前、理想的無事故狀況」, 找出所有差異點,並評估其對事故的影響。
- 分析維度 (4W1H): What(任務、材料、機器設備), When(時間、有效期、維修週期), Where(地點、環境狀況), Who(人員、能力要求), How(方法、程序)。

變更分析-步驟與工作表

如何系統性地找出變更?

• 步驟:

- 檢視事故情況:清晰描述事故發生的狀況(可參考ECFC)。
- 建立比較基準先前、理想或無事故的相似情況。(至關重要)
- 比較兩種情況:「4W1H」面向,找出所有差異。
- 記錄並分析差異:工作表,並評估其對事故的影響。
- · 整合分析結果: 將有影響的變更,視為促成因素,納入ECFC或為何中。

變更分析-限制

• 限制:

- 可能難以識別漸進式、累積性的變更。
- 需要調查人員的經驗與專業知識來設定恰當的「比較基準」。

· 變更分析是一個強大的「差異尋找」工具,它強迫我們思考「是什麼改變了,才導致了事故」,從而發現被忽視的風險。

P47

變更分析 案例實作: 堆高機墜落事故

(P63) 關鍵變更

	因素	事故狀況	先前、理想或未發生 事故狀況(假設)	差異 (變更)	效果評估
	WHAT	A. 勞工 A 站立在貨叉 上處理貨物。 B. 墜落地面不治死 亡。	A. 卸貨作業有安全 SOP和適當的設備。 B. 有規定人員不得的 立於堆高機貨叉上。 C. 先前曾有使用貨 載人進行作業(趕 工)?	A. 未採用安全 的卸貨 SOP。 B. 使用貨叉載 人。 C. 趕工?	A. 未依 SOP,使得作業的風險未能被有效控制和消除。 B. 導致勞工 A 高處墜落風險。 C. 無法安全作業。
	WHEN	A. 協助卸貨為臨時性 作業。 B. 未經過詳細的風險 評估和作業規劃?	A. 標準卸貨作業有固定的排程和 SOP。 B. 標準作業前已完成 風險評估和安全檢查。		A. 趕工選擇了不安全的作業 方法。 B. 未經周詳規劃和評估的臨 時性作業,潛在的風險未能 被及時辨識和預防。
WHERE	A. 高處作業無防墜保 護。 B. 作業環境陰暗。	A. 先前卸貨作業有安全防護作業平台。 B. 環境照明充足,地面平坦無障礙物。	A. 未使用工作 平台。 B. 照明不足?	A. 不穩固的高處作業增加墜 落風險。 B. 照明不足,增加作業風 險。	
- 1	I				

圖 10 為何樹分析 - 變更分析後 (參考用)

工具五:人為失誤分析 (Human Failure Analysis)

- (P32~34)方法五:人為失誤分析-停止責備,開始理解
- 「人為失誤」不是調查的終點,而是分析的起點。找出 影響行為的「工作、個體、組織」因素。
- HSE人為失效分類
 - 失誤 (Errors): 無意的行為
 - 疏忽/遺忘 (Slips/Lapses): 該做的沒做或做錯 (如:忘記鎖上安全扣)
 - 犯錯 (Mistakes): 規則或知識用錯 (如:以為A規則適用於B情況)
 - 違規 (Violations): 故意的行為,分經常性、情境性、特殊性。

J Larouzee, JC Le Coze, Good and bad reasons: The Swiss cheese model and its critics, Safety science, Vol. 126, June 2020

202508

人為失效分析-核心思維轉變

人為失效分析-停止責備,開始理解

- 核心思維轉變:
 - 舊思維: 事故原因是「人為疏失」。(調查終點)
 - 新思維:「人為失效」是事故的徵兆,不是原因。(分析起點)
 - 人會犯錯,如何降低人為錯誤(改善措施)
- HSE定義:「人為因素」是指影響工作行為的「環境、組織、工作因素」以及「個人特徵」。
- •目的:超越個體行為,檢視導致「人為失效」發生的組織設計、管理和決策功能。

人為失效分析-失效的類型

J Larouzee, JC Le Coze, Good and bad reasons: The Swiss cheese model and its critics, Safety science, Vol. 126, June 2020

202508 中華製程安全學會(謝賢書教授、何明信博士)編製 54

人為失效分析-從行為追溯系統問題

關鍵提問:為什麼「違規」會發生,甚至成為「常態」?

- 例:為何會發生「經常性違規」?
 - 工作因素: 卸貨流程設計不良,不這麼做就很難工作?時間壓力過大?
 - 組織因素:
 - 安全管理制度缺失或執行不力?
 - 風險評估不足,沒意識到這是高風險作業?
 - 監督與檢查不足?溝通不良?
 - 安全文化薄弱,容忍不安全行為?
- 人為失效的背後,往往是組織與管理的失效。

根本原因分析 (Root Cause Analysis)與總結

(P64) 整合應用,看見全貌,找出管理階層有能力且應該聚焦修正的事件。

- 五種強大又簡易的分析工具,每種工具都從不同角度剖析了我們的事故案例。
- ECFC 描繪了事實。
- 為何樹 探究了原因。
- 屏障分析 檢查了防護。
- 變更分析 找出了異常。
- 人為失誤分析 揭示了行為背後的系統問題。
- 調查專家,靈活整合運用這些工具,提出有證據、有邏輯、能解決根本問題的改善方案。

根本原因分析-整合思維

根本原因分析(RCA)-從「方法整合」到「系統思維」

- RCA不是單一工具,而是一個系統化的思維框架。
 - ECFC 提供了「發生了什麼」。
 - 為何樹 提供了「為何發生」。
 - 屏障分析提供了「防護如何失效」。
 - 變更分析 提供了「是什麼改變了」。
 - 人為失效分析提供了「為何人們會這麼做」。

• 目標: 找出位於因果鏈最底層,管理階層有能力修正的系統性缺失。

根本原因分析(RCA)-什麽是「根本原因」?

找到問題的「根」

• 根本原因的特徵:

- 如果原因被矯正,能夠防止事故再次發生。
- 通常是管理、計畫、組織或系統上的相關缺失。
- 它解釋了「為何」構成原因會存在。

• 常見的「假」根本原因:

- •「員工訓練不足」->根本原因應是:為何訓練系統會允許訓練不足的員工上崗?
- 「未遵守SOP」 -> 根本原因應是:為何SOP難以遵守?為何不遵守也沒關係?
- •「設備故障」->根本原因應是:為何維護保養系統未能預防此次故障?

根本原因分析(RCA)-案例

綜合分析:堆高機事故的可能根本原因

• 安全管理制度缺失:

- 未建立或落實高風險作業(如:高處作業、堆高機使用)的安全管理程序。
- 缺乏有效的「變更管理」程序來應對臨時性作業。

• 風險評估與控制不足:

- 未能充分辨識卸貨作業的潛在危害,並採取有效的控制措施(屏障)。
- 風險評估未落實,或僅是紙上作業。

• 監督與領導力失效:

- 現場缺乏有效的安全監督。
- 管理階層對安全的承諾不足,或默許不安全的「常規作法」。

• 安全文化薄弱:

- 組織文化中,生產效率或方便性優先於安全性。
- 員工缺乏回報不安全行為/狀況的管道或意願。

根本原因分析(RCA) - 總結

- RCA的成功關鍵在於「拒絕簡化歸因」。
- 透過整合各分析方法,揭示「為何發生」與「如何預防」。

- 最終目標
 - 推動組織從「事後補救」轉向「事前預防」,建立有韌性的安全系統。

歸因模式對比

國內分類		國際分類			
直接原因	能量來源、危害物		能量來源、危害物		
間接原因	不安全狀態與不安 全行為	立即原因	不安全狀態與不安全 行為	WHAT	
		促成原因	個人、工作、環境等 因素	HOW	
基本原因	雇主之安全政策和 決心	根本原因	執行、制度等根本、 潛在因素	WHY	

複習我們的調查分析「工具箱」概覽(解析事故的六大工具)

時間序列表 / ECFC: 發生了什麼? - 重建事 故的完整時間軸。 為何樹分析(Why Tree): 為何會發生? - 層層深 入挖掘因果鏈。 屏障分析(Barrier Analysis): 防護為何失效? - 檢視所有應有 御失效的安全防線。

變更分析 (Change Analysis): 這次有何 不同? - 找出導致系統 異常的「改變點」。 人為失誤分析(Human Failure): 人的因素是什麼? - 超越責備,分析行為背後的系統問題。

根本原因分析 (RCA): 系統問題在哪? - 整合 所有發現,直指管理與 組織的缺失。

圖卡:分析工具複習

- (P76) 事故成因圖 (ECFA/ECFC) 圖卡 (附錄A)
- (P78) 「時間序列表」圖卡 (附錄 B)
- (P80) 「為何樹(WHY Tree)分析」圖卡 (附錄 C)
- (P82) 「屏障分析(Barrier Analysis)」圖卡 (附錄 D)
- (P84) 「變更分析(Change Analysis)」圖卡 (附錄 E)

P63

案例演練說明

- 1. 掃描個案演練QRcode
- 2. 每組選擇一個案 (共5組)
- 3. 参考圖卡,依序討論分析,並做成分析報告
- 4. 每組代表上台分享(電腦呈現分析結果)
- 5. 討論與回饋
- 6. 一週後上網公告各組個案

