Measuring Segregation: The Index of Dissimilarity

ANALYZING US CENSUS DATA IN PYTHON

Lee Hachadoorian

Asst. Professor of Instruction, Temple
University

What is Segregation?

$$A = 100$$

 $B = 400$

- a_i = Small area Group A count
- b_i = Small area Group B count

$$A = 100$$

 $B = 400$

- a_i = Small area Group A count
- b_i = Small area Group B count
- A = Large area Group A count
- B = Large area Group B count

$$A = 100$$

 $B = 400$

$$D = rac{1}{2} \sum_i \left| rac{a_i}{A} - rac{b_i}{B}
ight|$$

- a_i = Small area Group A count
- b_i = Small area Group B count
- A = Large area Group A count
- B = Large area Group B count

$$A = 100$$

 $B = 400$

$$D= rac{a_i}{A}$$

- a_i = Small area Group A count
- b_i = Small area Group B count
- A = Large area Group A count
- B = Large area Group B count

$$A = 100$$

 $B = 400$

$$D= rac{b_i}{B}$$

- a_i = Small area Group A count
- b_i = Small area Group B count
- A = Large area Group A count
- B = Large area Group B count

$$A = 100$$

 $B = 400$

$$D = egin{aligned} rac{a_i}{A} - rac{b_i}{B} \end{aligned}$$

- a_i = Small area Group A count
- b_i = Small area Group B count
- A = Large area Group A count
- B = Large area Group B count

$$A = 100$$

 $B = 400$

$$D = \sum_{i} \left| rac{a_i}{A} - rac{b_i}{B} \right|$$

- a_i = Small area Group A count
- b_i = Small area Group B count
- A = Large area Group A count
- B = Large area Group B count

$$A = 100$$

 $B = 400$

$$D = \frac{1}{2} \sum_{i} \left| \frac{a_i}{A} - \frac{b_i}{B} \right|$$

- a_i = Small area Group A count
- b_i = Small area Group B count
- A = Large area Group A count
- B = Large area Group B count

$$A = 100$$

 $B = 400$

$$D = \frac{1}{2} \sum_{i} \left| \frac{a_i}{A} - \frac{b_i}{B} \right|$$

- a_i = Small area Group A count
- b_i = Small area Group B count
- A = Large area Group A count
- B = Large area Group B count

$$A = 100$$

 $B = 400$

Suitable Data

```
tracts.head()
```

```
tract white black
 state county
0
     01
           001
                020100
                         1601
                                 217
    01
          001
                020200
                         844
                                1214
    01
          001
                020300
                         2538
                                 647
3
    01
          001
                020400
                         4030
                                 191
     01
           001
                020500
                         8438
                                1418
```

Source: Table P5 - 2010 Decennial Census

- white = Nonhispanic White population
- black = Nonhispanic Black population

Calculating the Index of Dissimilarity (D)

```
# Extract California tracts using state FIPS "06"
ca_tracts = tracts[tracts["state"] == "06"]

# Define convenience variables to hold column names
w = "white"
b = "black"
```

Calculating the Index of Dissimilarity (D)

```
# Print the sum of Black population for all tracts in California
print(ca_tracts[b].sum())
```

2163804

```
# Print the sum of White population for all tracts in California
print(ca_tracts[w].sum())
```

14956253

Calculating the Index of Dissimilarity (D)

$$D = rac{1}{2} \sum_i \left| rac{a_i}{A} - rac{b_i}{B}
ight|$$

```
# Calculate Index of Dissimilarity
print(0.5 * sum(abs(
   ca_tracts[w] / ca_tracts[w].sum() - ca_tracts[b] / ca_tracts[b].sum()
   )))
```

0.6033425039167011

Let's Practice!

ANALYZING US CENSUS DATA IN PYTHON

Metropolitan Segregation

ANALYZING US CENSUS DATA IN PYTHON

Lee Hachadoorian

Asst. Professor of Instruction, Temple University

Source: United States Census Bureau

```
import requests
# Build base URL
HOST = "https://api.census.gov/data"
year = "2012"
dataset = "acs/acs5"
base_url = "/".join([HOST, year, dataset])
# Specify requested variables
# B01001_001E = Total population (estimate)
# B03002_003E = Nonhispanic White population (estimate)
# B03002_004E = Nonhispanic Black population (estimate)
get_vars = ["NAME", "B01001_001E", "B03002_003E", "B03002_004E"]
```

```
# Specify requested variables
get_vars = ["NAME", "B01001_001E", "B03002_003E", "B03002_004E"]
# Create dictionary of predicates
predicates = {}
predicates["get"] = ",".join(get_vars)
# Requested geography
predicates["for"] = \
    "metropolitan statistical area/micropolitan statistical area:*"
```

```
r = requests.get(base_url, params=predicates)
print(r.json()[:5])
```

```
[['NAME', 'B01001_001E', 'B03002_003E', 'B03002_004E', 'metropolitan statistical area/ms
['Adjuntas, PR Micro Area', '19458', '140', '0', '10260'],
['Aguadilla-Isabela-San Sebastián, PR Metro Area', '305538', '5602', '231', '10380'],
['Coamo, PR Micro Area', '71596', '228', '53', '17620'],
['Fajardo, PR Metro Area', '70633', '543', '195', '21940']]
```

```
# Create user-friendly column names
col_names = ["name", "pop", "white", "black", "msa"]

# Load JSON response into data frame
msa = pd.DataFrame(columns=col_names, data=r.json()[1:])

# Cast count columns to int data type
msa[["pop", "white", "black"]] = msa["pop", "white", "black"]].astype(int)
```

Metropolitan Area Definition

```
black
  state county
                         white
                  tract
                 020100
     01
           001
                           1601
                                   217
0
                                  1214
     01
           001
                 020200
                            844
                 020300
     01
           001
                          2538
                                   647
                 020400
           001
                          4030
                                 191
     01
     01
           001
                 020500
                          8438
                                  1418
```

	msa	msa_name	county_name	state_name	state	county
0	10100	Aberdeen, SD	Brown County	South Dakota	46	013
1	10100	Aberdeen, SD	Edmunds County	South Dakota	46	045
2	10140	Aberdeen, WA	Grays Harbor County	Washington	53	027
3	10180	Abilene, TX	Callahan County	Texas	48	059
4	10180	Abilene, TX	Jones County	Texas	48	253


```
import pandas as pd
```

```
# Join data frames on matching columns
tracts_with_msa_id = pd.merge(...)
```



```
import pandas as pd
```

```
# Join data frames on matching columns
tracts_with_msa_id = pd.merge(tracts, msa_def, ...)
```


import pandas as pd

```
# Join data frames on matching columns
tracts_with_msa_id = pd.merge(tracts, msa_def,
    left_on = ["state", "county"], right_on = ["state", "county"])
```

```
# Alternative when column names are the same
tracts_with_msa_id = pd.merge(tracts, msa_def, on = ["state", "county"])
```

```
# Data frame with state names
st.head()
```

```
state_name
state
01 Alabama
02 Alaska
04 Arizona
05 Arkansas
06 California
```



```
# Join tracts and st data frames
tracts_st = pd.merge(tracts, st, left_on = "state", right_index = True)
tracts_st.head()
```

```
state county
            tract
                     white black state_name
             020100
                     1601
                             217
                                     Alabama
   01
        001
   01
        001
             020200
                     844
                             1214
                                    Alabama
             020300
                                    Alabama
  01
        001
                      2538
                            647
                                     Alabama
   01
        001
             020400
                      4030
                              191
```

Let's Practice

ANALYZING US CENSUS DATA IN PYTHON

Segregation Impacts: Unemployment

ANALYZING US CENSUS DATA IN PYTHON

Lee Hachadoorian

Asst. Professor of Instruction, Temple University

Deciphering ACS Subject Table IDs

[B|C]ssnnn[A-I]

[B|C]ssnnn[A-I]

B or C = "Base Table" or "Collapsed Table"

B15002	C15002[A-I]			
No schooling	Less than high school diplom			
Nursery to 4th grade	High school grad, GED, or alt.			
5th and 6th grade	Some college or associate's			
7th and 8th grade	Bachelor's degree or higher			
9th grade				
etc				

[B|C]ssnnn[A-I]

- A = White alone
- B = Black or African American Alone
- C = American Indian and Alaska Native Alone
- D = Asian Alone
- E = Native Hawaiian and Other Pacific Islander Alone
- F = Some Other Race Alone
- G = Two or More Races
- H = White Alone, Not Hispanic or Latino
- I = Hispanic or Latino

[B|C]ssnnn[A-I]

- 01 = Age and Sex
- 02 = Race
- 03 = Hispanic or Latino Origin
- 05 = Foreign Born; Citizenship; Year of Entry; Nativity
- 15 = Educational Attainment
- 19 = Income (Households and Families)
- 23 = Employment Status; Work Experience; Labor Force

Source: https://www.census.gov/programs-surveys/acs/guidance/which-data-tool/table-ids-explained.html

Comparing Segregation Impacts

Tidy Data

Wide data frame: msa_labor_force

```
msa male_lf female_lf
0 12060 400843 481425
1 25540 30656 35046
2 26420 231346 268923
3 26900 55943 71036
...
```

```
msa_labor_force.columns =
    ["msa", "male", "female"]
```

Tidy data frame: tidy_msa_labor_force

```
labor_force
      msa
               sex
    12060
             male
                         400843
    25540
             male
                          30656
    26420
             male
                         231346
3
    26900
             male
                           55943
           female
49
    12060
                         481425
    25540
           female
                          35046
50
    26420
           female
51
                         268923
    26900
           female
                           71036
```

pandas.melt

```
tidy_msa_labor_force = msa_labor_force.melt(
   id_vars = ["msa"],
   value_vars = ["male", "female"],
   var_name = "sex",
   value_name = "labor_force"
)
```

pandas.melt

```
tidy_msa_labor_force
```

```
labor_force
              sex
      msa
    12060
             male
                         400843
   25540
             male
                          30656
   26420
            male
                         231346
    26900
             male
                          55943
49
    12060
           female
                         481425
           female
50
   25540
                          35046
   26420
           female
51
                         268923
   26900
           female
                          71036
```


Let's Practice

ANALYZING US CENSUS DATA IN PYTHON

Neighborhood Segregation Over Time

ANALYZING US CENSUS DATA IN PYTHON

Lee Hachadoorian

Asst. Professor of Instruction, Temple
University

Histograms

counties.head()

```
totalpop state county
0
      54571
                01
                      001
      22915
                01
                      007
      34215
                01
                      017
3
      25989
                01
                      019
      25833
                01
                      025
```


Histograms

tracts.head()

	totalpop	state	county	tract	
0	1912	01	001	020100	
1	2170	01	001	020200	
2	3373	01	001	020300	
3	4386	01	001	020400	
4	10766	01	001	020500	

IPUMS NHGIS, University of Minnesota, www.nhgis.org

NHGIS vs. Census Bureau FTP

- 1. Historical data going back to 1790 (first United States Census)
- 2. GIS files for mapping Census data
- 3. Time series data for consistent geographic areas

Let's Practice!

ANALYZING US CENSUS DATA IN PYTHON

