Introduction to Geoinformatics for Epidemiology

Cole Brokamp

23 September 2018

Geomarker Assessment

GRAPPH

Geospatial Research Accelerator for Precision Population Health

- An interdisciplinary team of faculty, staff, and clinicians at Cincinnati Children's Hospital Medical Center with expertise in:
 - programming and informatics
 - (bio)statistics
 - epidemiology
 - population health
- Collaboration across divisions of:
 - Biostatistics and Epidemiology
 - Biomedical Informatics
 - Information Services
 - General & Community Pediatrics
 - Hospital Medicine
 - James M. Anderson Center

Table of contents

- 1 Geomarkers
- 2 Geospatial Data
- 3 Geomarker Assessmen:
- 4 Example Work

•0000000000

Biomarker: any substance, structure or process that can be measured in the body or its products and influence or predict the incidence of outcome or disease

to precision public health

Geomarkers

0000000000

Geomarker: any objective, contextual or geographic measure that influences or predicts the incidence of outcome or disease

Geomarkers and Health

Geomarkers

0000000000

Geomarkers are a powerful predictor of disease, disorder, injury, and mortality.

The role of environment on health has been known for decades, but the data and tools needed to characterize the relationship at a population level were not available until recently.

Geoinformatics

Geoinformatics defined as:

"The science and technology dealing with the structure and character of spatial information, its capture, its classification and qualification, its storage, processing, portrayal and dissemination, including the infrastructure necessary to secure optimal use of this information" 1

¹P.L.N. Raju, Fundamentals of Geographic Information Systems

Geomarker Assessment

Geoinformatics

You know it as:

- Google maps
- GPS navigation
- Hamilton County Auditor's Office
- Weather forecasting
- US Postal Service
- Election maps

Geoinformatics

Geomarkers

00000000000

Transforming spatial data into actionable knowledge

Geoinformatics and Health

Geoinformatics and Health

Uses:

- Identifying study population
- Identifying potential sources and routes of exposures
- Estimating environmental levels of pollutants
- Measuring community characteristics
- Estimating personal socioeconomic characteristics
- Statistical models with spatial correlations
- Temporal exposure estimates

Geoinformatics and Health

Advantages:

- Direct measurement of exposure or personal characteristics often not feasible in cohort- or EHR- based studies
 - Often use retrospective records, only containing home addresses

- Geomarkers are highly variable with respect to time and space
- Links outcome, exposure, and confounding data by location
- Data usually available publicly

GRAPPH Application Arms

Geomarkers

- 1 Innovative Research
 - Area-based SES confounders
 - Place-based predictors of health outcomes
- 2 Place-based Patient Care
 - Add information to clinical decision making
 - Deeper risk assessment and/or intervention deployment
- 3 Community-centered Quality Improvement
 - Illustrate health disparities
 - Identify disparity-reducing interventions

GRAPPH Application Arms

Geospatial Research Accelerator for Precision Public Health

Geomarker Assessment

- 2 Geospatial Data

Challenges

Aggregating different spatial and temporal resolutions from disparate sources like government agencies, academic departments, hospitals, pharmacies, and others

Available Geomarker Data

Geomarkers

Available Geomarker Data

Cole Brokamp

(cole.brokamp@cchmc.org)

Level 1

Database	Example Data	Space	Time
Topologically Integrated Geographic Encoding and Referencing (TIGER)	Proximity to roadway by type, locations of airports, railroads, bodies of water, elevation	Exact location (nationwide)	Yearly
Open Street Map (OSM)	Public transportation routes	Exact location	Current
Global Historical Climatology Network (GHCN)	Temperature, relative humidity, precipitation, wind speed and direction	Interpreted from > 5000 stations (nationwide)	Daily
National Emissions Inventory (NEI)	Location and amount of emissions	Exact location	Yearly
EPA Air Quality System (AQS)	Fixed site monitoring of ambient pollutant levels, air quality alerts	Interpreted from over 2500 stations (nationwide)	Daily
US Department of Transportation (DOT)	Highway traffic intensity	Exact location (nationwide)	Yearly

Level 2

Database	Example Data	Space	Time
US Census American Community Survey (ACS)	Population, socioeconomic indicators	Census tract or block (nationwide)	Yearly
North American Regional Reanalysis (NARR)	Air temperature, planetary boundary height, relative humidity, precipitation, wind	North America (0.3°×0.3°)	8-times (2001 – 2016); daily means (1979 – 2000)
Moderate Resolution Imaging Spectroradiometer (MODIS)	Greenspace, land cover, aerosol optical thickness, surface reflectance	3km square grids (nationwide)	Daily (2000 – 2015)
National Land Cover Database (NLCD)	21 classes of land cover classifications	30 x 30 m grid	Annual (1992, 2001, 2006, 2011)
Smart Location Database (SLD)	Location efficiency, characteristics of the built environment	Census tract	2010
Modified Retail Food Environment Index (mRFEI)	Fraction of food retailers that are "healthy"	Census Tract	2011

Truck Traffic

Greenspace

NEI Point Sources

PM2.5 Across Space and Time

Table of contents

- 3 Geomarker Assessment

Geocoding

Geocoding

- converting location information text into coordinates
- most often a postal address into latitude and longitude

Geomarker Assessment

most consider it a "magic black box", but is error prone

Street range address

Geomarker Assessment

Exact location

Geomarkers

Exposure Assessment

- Containing Geography:
 - Census tract linkage to survey data
 - Census block linked to population density
 - Neighborhood linked to policies or characteristics

Geomarker Assessment

Exposure Assessment

- Containing Geography:
 - Census tract linkage to survey data
 - Census block linked to population density
 - Neighborhood linked to policies or characteristics
- Radial Measures:
 - Buffer designated around location with a radius
 - Length / density of predicted sources
 - Calculate mean, total length, or fraction within buffer

Exposure Assessment

- ① Containing Geography:
 - Census tract linkage to survey data
 - Census block linked to population density
 - Neighborhood linked to policies or characteristics
- 2 Radial Measures:
 - Buffer designated around location with a radius
 - Length / density of predicted sources
 - Calculate mean, total length, or fraction within buffer
- 3 Exact Location:
 - Proximity to predicted source
 - Nearest neighbor weighting and krigging
 - Prediction models (land use models, etc)

- Interactive and linked visualizations
- Statistics and distributions to put a place on a relative scale

0000

Predictive modeling and inference

Geomarker Assessment

Table of contents

- 4 Example Work

App aims

Geomarkers

Who is your audience? What is the purpose of your application?

- hypothesis generation
- community engagement
- place-based care
- research database supplementation
- quality improvement
- public education

Place-based patient care

Geospatial Data

Place-based patient care

Place-based patient care

Innovative research

Innovative research

Innovative research

CCAAPS ECAT Estimation Upload a CSV file that contains columns of latitude and longitude coordinates (maximum file size of 15 MB). It must be a CSV file with no missing values and have a header. Specify the names of the latitude and longitude columns. Choose file to upload Name of Latitude Column Name of Longitude Column Browse... test_addresses_geoco Check the baxes to define the desired output. C ECAT Census Census PCA ☐ Land Use Distance to Census Basic Intermediate Nearest Location Indicies Values used in Highway and ECAT Interstate estimation After the file is uploaded, latitude & longitude names are specified, and data boxes are checked, click Download Results button to run the program. This may take some time if the file is large. **≜** Download Results Questions / Comments: cole.brokamp@gmail.com

Community-centered quality improvement

http://geomarker.io/neighborhood

Thank you

Cole Brokamp

@cole_brokamp

https://colebrokamp.com