Détection des ondes gravitationnelles

Arthur Burgada Pierre-Hugues Blelly

Plan de l'exposé

- Les ondes gravitationnelles
- Présentation du Michelson
- 3 Présentation des interféromètres LIGO / VIRGO
- 4 LASER utilisés
- 5 Cavités de Fabry-Pérot
- 6 Cavité de recyclage
- Conclusion

Découverte théorique

- 1916 : Relativité Générale de Einstein
- En linéarisant les équations un terme d'onde progressive apparaît
- Artefact mathématique ou réalité physique?

Propriétés

- Analogue à une onde électromagnétique : émis lorsque un corps massique accélère
- Vitesse de propagation c
- Mais décroissance en 1/R
- Amplitude extrêmement faible

Ordres de grandeur

Source émettrice	Distance	Amplitude (m)	Puissance (W)
Cylindre d'acier de 500 tonnes tournant à 5 tours/s autours de son axe	1 m	$2 \cdot 10^{-34}$	10 · 10 ⁻²⁹
Bombre H, 1 Megatonne	10 km	$2 \cdot 10^{-39}$	10 ⁻¹¹
Supernova de 10 masses solaires	10 Mpc	10 ⁻²¹	10 ⁴⁴
Coalescence de 2 trous noirs de 10 masses solaires chacun	10 Mpc	10-20	10 ⁵⁰

Mise en évidence indirecte : Pulsar de Hulse et Taylor

- Couple de 2 étoiles dont l'une est une étoile à neutrons
- PSR B1913+16 découvert en 1974

Mise en évidence indirecte : Pulsar de Hulse et Taylor

- Période de 7,75 heures
- Diminution de la période dûe à l'émission d'ondes gravitationnelles

Enjeux du projet LIGO/VIRGO

- Mise en évidence directe
- Précision suffisante
- Evaluer le taux d'expansion de l'Univers de manière indépendante de la technique utilisant la luminosité des supernovas

Interféromètre de Michelson

Principe de la détection

Distortion de l'espace-temps On détecte cette distortion grâce à un interféromètre

L'interféromètre VIRGO

- 2 bras de 4km de long parfaitement horizontaux (Sous vide)
- Un système optique totalement isolé de l'exterieur

3 interféromètres : VIRGO (Italie) et LIGO(Hanford(Washington) / Livinston (Louisianne))

Système à injection

- 2 Lasers : Un laser maître et un laser esclave
- On injecte un rayonnement laser dans la cavité du second laser pour faire changer son gain et modifier la fréquence d'émission du second laser.

Le laser de VIRGO

Fonctionne en deux étapes

- Emission du laser Maître
- Emission du laser Esclave

Taille du faisceau $(W_0 \text{ [mm]})$	Longueur de Rayleigh $(z_0 \text{ [m]})$	Divergence du faisceau $(\theta_0 \ [\mu rad])$
4.5 +/- 0.5	60 +/- 10	75 -/+ 10

Le laser LIGO

Fonctionnement en quatre étapes :

- Emission du laser maître
- Emission du laser esclave
- Première amplification
- Seconde amplification

Intérêt du dispositif

Problème : 4km insuffisant pour obtenir une figure d'intérférence dûe aux ondes gravitationnelles Solution : On fait des aller-retours en utilisant des miroirs!

280 aller-retours : 1120km parcourus (de fait le Michelson le plus précis au monde actuellement)

Cavités de Recyclage

200W en entrée => 750kW nécessaire (facteur 3750)

Les Miroirs

- Miroirs en silice
- Pertes très faibles (< 2%)
- Abbérations $(10^{-8}m)$
- Diamètre : 35 cm

Détection des ondes gravitationnelles

Conclusion

- Formidable avancée technologique
- Découverte surmédiatisée.
- De futurs résultats prometteurs

