# Asymptotic Notations

- Algorithms perform f(n) basic operations to accomplish task
  - Identify that function
  - Identify size of problem (n)
  - Count number of operations in terms of n

#### Execution time

- Time computer takes to execute f(n) operations is cf(n)
- where c
  - depends on speed of computer and
  - varies from computer to computer

# Development of Notation

- Not concerned with small values of n
- Concerned with VERY LARGE values of n
- Asymptotic refers to study of function f as n approaches infinity

• Example:  $f(n) = n^2 + 4n + 20$   $n^2$  is the dominant term and the term 4n + 20becomes insignificant as n grows larger

# Development of Notation

- Drop insignificant terms and constants
- Say function is of O(n²) called Big-O of n²
- Common Big-O functions in algorithm analysis
  - -g(n) = 1 (growth is constant)
  - $-g(n) = \log_2 n$  (growth is logarithmic)
  - g(n) = n (growth is linear)
  - $-g(n) = n \log_2 n$  (growth is faster than linear)
  - $-g(n) = n^2$  (growth is quadratic)
  - $-g(n) = 2^n$  (growth is exponential)

| n  | log2n | nlog2n | n^2  | <b>2</b> ^n |
|----|-------|--------|------|-------------|
| 1  | 0     | 0      | 1    | 2           |
| 2  | 1     | 2      | 4    | 4           |
| 4  | 2     | 8      | 16   | 16          |
| 8  | 3     | 24     | 64   | 256         |
| 16 | 4     | 64     | 256  | 65536       |
| 32 | 5     | 160    | 1024 | 4294967296  |

# Common Growth Functions (How f(n) grows as n grows)



# Big Oh

• **Definition:** f(n) = O(g(n)) iff there are two positive constants c and  $n_0$  such that

$$|f(n)| \le c |g(n)|$$
 for all  $n \ge n_0$ 

• If f(n) is nonnegative, we can simplify the last condition to

$$0 \le f(n) \le c g(n)$$
 for all  $n \ge n_0$ 

- We say that "f(n) is big-O of g(n)."
- As n increases, f(n) grows no faster than g(n). In other words, g(n) is an asymptotic upper bound on f(n).

# Big Oh



 $n_0$ 

## **Example:** $n^2 + n = O(n^3)$

#### **Proof:**

- Here, we have  $f(n) = n^2 + n$ , and  $g(n) = n^3$
- Notice that if  $n \ge 1$ ,  $n \le n^3$  is clear.
- Also, notice that if  $n \ge 1$ ,  $n^2 \le n^3$  is clear.
- Side Note: In general, if  $a \le b$ , then  $n^a \le n^b$  whenever  $n \ge 1$ . This fact is used often in these types of proofs.

• Therefore,

$$n^2 + n \le n^3 + n^3 = 2n^3$$

We have just shown that

$$n^2 + n \le 2n^3$$
 for all  $n \ge 1$ 

• Thus, we have shown that  $n^2 + n = O(n^3)$ (by definition of Big-O, with  $n_0 = 1$ , and c = 2.)

## **Big-** $\Omega$ notation

• **Definition:**  $f(n) = \Omega(g(n))$  iff there are two positive constants c and  $n_0$  such that

$$|f(n)| \ge c |g(n)|$$
 for all  $n \ge n_0$ 

• If f(n) is nonnegative, we can simplify the last condition to

$$0 \le c g(n) \le f(n)$$
 for all  $n \ge n_0$ 

- We say that "f(n) is omega of g(n)."
- As n increases, f(n) grows no slower than g(n). In other words, g(n) is an asymptotic lower bound on f(n).

## **Big-** $\Omega$ notation

• **Definition:**  $f(n) = \Omega(g(n))$  iff there are two positive constants c and  $n_0$  such that

$$|f(n)| \ge c |g(n)|$$
 for all  $n \ge n_0$ 

• If f(n) is nonnegative, we can simplify the last condition to

$$0 \le c g(n) \le f(n)$$
 for all  $n \ge n_0$ 

- We say that "f(n) is omega of g(n)."
- As n increases, f(n) grows no slower than g(n). In other words, g(n) is an asymptotic lower bound on f(n).



**Example:** 
$$n^3 + 4n^2 = \Omega(n^2)$$

#### **Proof:**

- Here, we have  $f(n) = n^3 + 4n^2$ , and  $g(n) = n^2$
- It is not too hard to see that if  $n \geq 0$ ,

$$n^3 \le n^3 + 4n^2$$

• We have already seen that if  $n \ge 1$ ,

$$n^2 < n^3$$

Thus when  $n \geq 1$ ,

$$n^2 \le n^3 \le n^3 + 4n^2$$

Therefore,

$$1n^2 \le n^3 + 4n^2$$
 for all  $n \ge 1$ 

Thus, we have shown that  $n^3 + 4n^2 = \Omega(n^2)$  (by definition of Big- $\Omega$ , with  $n_0 = 1$ , and c = 1.)

## **Big-** $\Theta$ **notation**

• **Definition:**  $f(n) = \Theta(g(n))$  iff there are three positive constants  $c_1$ ,  $c_2$  and  $n_0$  such that

$$|c_1|g(n)| \le |f(n)| \le |c_2|g(n)|$$
 for all  $n \ge n_0$ 

• If f(n) is nonnegative, we can simplify the last condition to

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$
 for all  $n \ge n_0$ 

- We say that "f(n) is theta of g(n)."
- As n increases, f(n) grows at the same rate as g(n). In other words, g(n) is an asymptotically tight bound on f(n).

## **Big-** $\Theta$ **notation**

• **Definition:**  $f(n) = \Theta(g(n))$  iff there are three positive constants  $c_1$ ,  $c_2$  and  $n_0$  such that

$$|c_1|g(n)| \le |f(n)| \le |c_2|g(n)|$$
 for all  $n \ge n_0$ 

• If f(n) is nonnegative, we can simplify the last condition to

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$
 for all  $n \ge n_0$ 

- We say that "f(n) is theta of g(n)."
- As n increases, f(n) grows at the same rate as g(n). In other words, g(n) is an asymptotically tight bound on f(n).



**Example:** 
$$n^2 + 5n + 7 = \Theta(n^2)$$

#### **Proof:**

• When  $n \geq 1$ ,

$$n^2 + 5n + 7 \le n^2 + 5n^2 + 7n^2 \le 13n^2$$

• When  $n \geq 0$ ,

$$n^2 < n^2 + 5n + 7$$

• Thus, when  $n \ge 1$ 

$$1n^2 \le n^2 + 5n + 7 \le 13n^2$$

Thus, we have shown that  $n^2 + 5n + 7 = \Theta(n^2)$  (by definition of Big- $\Theta$ , with  $n_0 = 1$ ,  $c_1 = 1$ , and  $c_2 = 13$ .)

## **Arithmetic of Big-O,** $\Omega$ **, and** $\Theta$ **notations**

#### • Transitivity:

- $f(n) \in O(g(n))$  and  $g(n) \in O(h(n)) \Rightarrow f(n) \in O(h(n))$
- $f(n) \in \Theta(g(n)) \text{ and}$   $g(n) \in \Theta(h(n)) \Rightarrow f(n) \in \Theta(h(n))$
- $f(n) \in \Omega(g(n))$  and  $g(n) \in \Omega(h(n)) \Rightarrow f(n) \in \Omega(h(n))$

## **Arithmetic of Big-O,** $\Omega$ **, and** $\Theta$ **notations**

- Scaling: if  $f(n) \in O(g(n))$  then for any  $k > 0, f(n) \in O(kg(n))$
- Sums: if  $f_1(n) \in O(g_1(n))$  and  $f_2(n) \in O(g_2(n))$  then  $(f_1 + f_2)(n) \in O(max(g_1(n), g_2(n)))$

#### Prove that

$$5n^2 + 3n + 20 = O(n^2)$$

$$\frac{1}{2}n^2 + 3n = \Theta(n^2)$$

$$(n\log n - 2n + 13) = \Omega(n\log n)$$

$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

**Show that** 
$$\frac{1}{2}n^2 + 3n = \Theta(n^2)$$

#### **Proof:**

• Notice that if  $n \geq 1$ ,

$$\frac{1}{2}n^2 + 3n \le \frac{1}{2}n^2 + 3n^2 = \frac{7}{2}n^2$$

• Thus,

$$\frac{1}{2}n^2 + 3n = O(n^2)$$

• Also, when  $n \geq 0$ ,

Also, when  $n \geq 0$ ,

$$\frac{1}{2}n^2 \le \frac{1}{2}n^2 + 3n$$

So

$$\frac{1}{2}n^2 + 3n = \Omega(n^2)$$

Since  $\frac{1}{2}n^2 + 3n = O(n^2)$  and  $\frac{1}{2}n^2 + 3n = \Omega(n^2)$ ,

$$\frac{1}{2}n^2 + 3n = \Theta(n^2)$$

Show that 
$$(n \log n - 2n + 13) = \Omega(n \log n)$$

**Proof:** We need to show that there exist positive constants c and  $n_0$  such that

$$0 \le c n \log n \le n \log n - 2n + 13$$
 for all  $n \ge n_0$ .

Since 
$$n \log n - 2n \le n \log n - 2n + 13$$
,

we will instead show that

$$c n \log n \le n \log n - 2 n$$

which is equivalent to

$$c \leq 1 - \frac{2}{\log n}$$
, when  $n > 1$ .

If  $n \ge 8$ , then  $2/(\log n) \le 2/3$ , and picking c = 1/3 suffices. Thus if c = 1/3 and  $n_0 = 8$ , then for all  $n \ge n_0$ , we have

$$0 \le c n \log n \le n \log n - 2n \le n \log n - 2n + 13.$$

Thus 
$$(n \log n - 2n + 13) = \Omega(n \log n)$$
.

**Show that** 
$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

#### **Proof:**

• We need to find positive constants  $c_1$ ,  $c_2$ , and  $n_0$  such that

$$0 \le c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2 \text{ for all } n \ge n_0$$

• Dividing by  $n^2$ , we get

$$0 \le c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2$$

- $c_1 \leq \frac{1}{2} \frac{3}{n}$  holds for  $n \geq 10$  and  $c_1 = 1/5$
- $\frac{1}{2} \frac{3}{n} \le c_2$  holds for  $n \ge 10$  and  $c_2 = 1$ .
- Thus, if  $c_1 = 1/5$ ,  $c_2 = 1$ , and  $n_0 = 10$ , then for all  $n \ge n_0$ ,

$$0 \le c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2 \text{ for all } n \ge n_0.$$

Thus we have shown that  $\frac{1}{2}n^2 - 3n = \Theta(n^2)$ .

#### o-notation

For a given function g(n), the set little-o:

```
o(g(n)) = \{f(n): \forall c > 0, \exists n0 > 0 \text{ such that} \\ \forall n \ge n0, \text{ we have } 0 \le f(n) < cg(n)\}.
```

f(n) becomes insignificant relative to g(n) as n approaches infinity:

$$\lim_{n\to\infty} [f(n) / g(n)] = 0$$

- g(n) is an *upper bound* for f(n) that is not asymptotically tight.
- Observe the difference in this definition from previous ones. Why?

#### $\omega$ -notation

For a given function g(n), the set little-omega:

```
w(g(n)) = \{f(n): \forall c > 0, \exists n0 > 0 \text{ such that} \\ \forall n \ge n0, \text{ we have } 0 \le cg(n) < f(n)\}.
```

f(n) becomes arbitrarily large relative to g(n) as n approaches infinity:

$$\lim_{n\to\infty} [f(n) / g(n)] = \infty.$$

g(n) is a *lower bound* for f(n) that is not asymptotically tight.

# Comparison of Functions

$$f \leftrightarrow g \approx a \leftrightarrow b$$

$$f(n) = O(g(n)) \approx a \leq b$$
  
 $f(n) = \Omega(g(n)) \approx a \geq b$   
 $f(n) = \Theta(g(n)) \approx a = b$   
 $f(n) = o(g(n)) \approx a < b$   
 $f(n) = \omega(g(n)) \approx a > b$ 

True False 
$$3n + 10 n \log n = O(n \log n)$$

True False 
$$3 n + 10 n \log n = \Omega (n \log n)$$

True False 
$$3 n + 10 n \log n = \Theta(n \log n)$$

True False 
$$n \log n + \frac{n}{2} = O(n^2 \log n)$$

True False 
$$5n^2 + n = \Theta(n^3)$$

True False 
$$2^n + n^2 = \Omega(1)$$