Natural Language Processing

Lecture-0

Welcome!

- Course Code: 15CSE358
- Title: Natural Language Processing
- Faculty: Manu Madhavan (<u>m_manu@cb.amrita.edu</u>, 7736735850)
- Lectures:
 - Monday slot 1
 - Tuesday slot 2
 - Tuesday slot 1

Some intuition

Barack Hussein Obama II is an American politician and attorney who served as the 44th president of the United States from 2009 to 2017. A member of the

kya haal hai

for translating from Hindi to English and vice-versa in 1964 (for both houses). Currently, this system has been expanded for translation across the following languages - Lok Sabha: Kannada, Marathi, Tamil, Punjabi, Malayalam, Manipuri, Sanskrit, Telugu and Oriya Rajya Sabha: Assamese, Bengali, Tamil, Telugu, Kannada, Gujarati, Malayalam, Marathi, Urdu, Oriya

- Automatic reply suggestion
- Sign board detection
- Spell correction
- Word suggestion
- Sentence generation
- Text Mining

Natural Language Processing

- Field focuses on communication between computers and humans in natural language and NLP is all about making computers understand and generate human language
- Languages are the highest form of human cognition
- Try to model language properties using computational model
 - Probability of next word?
 - Most probable answer
 - Most similar word (translation)
- NLU and NLG

Focuses of the course

- Foundation of Natural Language Processing
- Applications
- Language Modeling
- NLP at various stages

Key Features

- Mix of theory and application
- Latest trends in the research/industry will discuss
- Practical sessions
- Research oriented
- Talks and workshops

Course Outcome

COs	Course Outcome	Bloom's Taxonomy Level
15CSE458.CO 1	Understand and represent the linguistic phenomena at morphological, word, syntactic and semantic levels of Natural language processing	L2 - Understand
15CSE458.CO 2	Design the linguistic phenomena using formal language and probabilistic model	L3 - Apply
15CSE458.CO 3	Understand the ambiguity in language at morphological, word, syntactic and semantic levels and apply appropriate methods to avoid them	L4 - Analyze
15CSE458.CO 4	Understand the probabilistic parsing and statistical alignment.	L2 - Understand

Major Topics

- Introduction to NLP
- Probability: Recap
- Linguistic essentials
- Statistical NLP
- Applications- NER, WSD, Topic models
- Language Models
- Information Retrieval
- Machine translation
- Text mining

Syllabus

Unit 1

Introduction: Words – Morphology and Finite State transducers - Computational Phonology and Pronunciation, Modelling - Probabilistic models of pronunciation and spelling – Ngram Models of syntax - Hidden markov models and Speech recognition - Word classes and Part of Speech Tagging.

Unit 2

Context free Grammars for English – Parsing with Context free Grammar – Features and unification -Lexicalized and Probabilistic Parsing -Language and Complexity. Semantics: Representing meaning -Semantic analysis - Lexical semantics - Word sense disambiguation and Information retrieval

Unit 3

Pragmatics: Discourse - Dialog and Conversational agents - Natural language generation, Statistical alignment and Machine translation: Text alignment – word alignment – statistical machine translation.

Evaluation Pattern

Component	Online	Viva	Total
Mid-term assessment	10	20	30
Continuous Assessment (Programming Assignments (2), Case study, Quizzes (5))	20 (Programming-7 Case study-7 Quizzes-6)	=>	20
External Assessment - End Semester	20	30	50
Total			100 marks

Textbooks/References

- 1. C.D. Manning et al, "Foundations of Statistical Natural Language Processing," MIT Press. 1999. isbn: 9780262133609.
- Daniel Jurafsky and James H. Martin "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition," 1st. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2000. isbn: 0130950696.
- 3. James Allen, "Natural Language Processing with Python", O'Reilly Media, July 2009.
- 4. Ian Goodfellow, Yoshua Bengio, and Aaron Courville, **Deep Learning**, http://www.deeplearningbook.org. MIT Press, 2016.
- 5. Stephan Raaijmakers, **Deep Learning for Natural Language Processing**, Manning Publications, 2020.
- 6. Noah A. Smith, "Linguistic Structure Prediction. Synthesis Lectures on Human Language Technologies," Morgan and Claypool, May 2011.

Additional References

- Applied Natural Language Processing Course (CMI, NPTEL)
- <u>CS224N: Natural Language Processing with Deep Learning</u> (MIT winter course)
- NLP Specialization, coursera (Deeplearning.ai)

Any Queries?

Next

Formal introduction