

On the Prefix Granularity Problem in NDN Adaptive Forwarding

Teng Liang
Peng Cheng Lab
2020/09/30

NDN Adaptive Forwarding

- IP forwarding is stateless and has no adaptability
 - Link failure, congestion, prefix hijack
- NDN forwarding is stateful and has adaptability
 - Observe past data retrieval measurement on multiple paths
 - and use it to improve forwarding decisions for future Interests
- Because of
 - Interest-Data exchange model
 - and States

Adaptive Forwarding in Named Data Networking

University of Arizona vic@cs.arizona.edu

Alexander Afanasvey afanasev@cs.ucla.edu

Lan Wang University of Memphis lanwang@memphis.edu

Beichuan Zhang University of Arizona Lixia Zhang UCLA

An Experimental Investigation of Hyperbolic

ABSTR

Routing with a Smart Forwarding Plane in NDN In Named carry data This chan Vince Lehman, Ashlesh Gawande consumers University of Memphis vslehman, agawande}@memphis.edu

Lixia Zhang UCLA

Rodrigo Aldecoa, Dmitri Krioukov Northeastern University {raldecoa, dima}@neu.ed

Lan Wang University of Memphi

Beichuan Zhang

The University of Arizona

routing (HR) to NDN networks. HR is greedy geometric

NDN Adaptive Forwarding

The Prefix Granularity Problem

- NDN adaptive forwarding assumes that Interest Routing Locality
 - is influenced by the length of common name prefix
- Interests sharing a longer name prefix are more likely to take the same forwarding path
- Problem: which name prefix length should be used to record path performance measurements?
 - The longer the name prefix, the better Interest Routing locality
 - However, the fewer Interests will be covered, the bigger FIB
- We define it as the *Prefix Granularity Problem*

Existing Solutions

• Existing designs use a static name prefix to record measurements

The Limits of Existing Designs

Existing designs cannot handle partial network failures

Simulation Results

The scenario is simulated in ndnSIM

Dynamic FIB Expanding

Simulation Results

The scenario is simulated in ndnSIM

Dynamic FIB Expanding

- When to trigger FIB expanding:
 - when a new ranking of next hops is observed
- How to do FIB expanding?
 - Three different algorithms
- How to evaluate a FIB expanding algorithm?
 - Two metrics
- How to control/optimize FIB expanding?
 - Dynamic FIB collapsing mechanisms

The Top-down FIB Expanding Algorithm

FIB Name Tree

Path Ranking Observation

Interest/Data: /edu/ua/cs/people/teng/index.html
(face1, face0)

Interest/Data: /edu/ua/cs/news/index.html
(face0, face1)

Interest/Data: /edu/ua/cs/about-us/index.html
(face0, face1)

The Bottom-up FIB Expanding Algorithm

FIB Name Tree

Path Ranking Observation

Interest/Data: /edu/ua/cs/people/teng/index.html (face1, face0)

Interest/Data: /edu/ua/cs/people/alex/index.html
(face1, face0)

Interest/Data: /edu/ua/cs/people/bob/index.html (face1, face0)

Find the Shortest Name Prefix with the Solo Route Ranking (SS)

Evaluation Model

- Given a FIB name tree, an "accurate" FIB expanding name prefix, and a sequence of observed data names with route ranking
 - how many new FIB names are inserted
 - the length of newly inserted FIB names

Evaluation Details

- Use 5-length 3-out-degree name tree
- Generate one "accurate" name prefix at different levels
- Randomly generate a sequence of data name and observed route ranking

L5 **PIT ······**

Metric 1: the Number of newly inserted FIB entries

Metric 2: the average height of the inserted FIB entries

The level of the accurate FIB name to be added

Optimize NDN Adaptive Forwarding Processing

Summary

- The Prefix Granularity Problem:
 - To balance the trade-offs between Interest routing locality and FIB size
- Key ideas:
 - Dynamic FIB Expanding: disaggregating FIB names
 - Dynamic FIB Collapsing: aggregating FIB names
- Optimizing measurement management in Data processing to reduce FIB lookups.

Q/A

Thanks!

