2025 湖南大学程序设计竞赛 题解

lvle TrainerMarvin Vistarin zmy123456

Hunan University

2025年6月29日

Overview

预期难度

Easy: C, H, F, J

Medium: E, D, I Medium-Hard: A, B

Hard: G, K

Anti-AK: L

Overview

实际难度 - 线下

Easy: C, J

Medium: F, E, H, D

Medium-Hard:

Hard: A, G, B, K

Anti-AK: L

实际难度 - 线上

Easy: C, J, F Medium: D, H, E Medium-Hard: I, A, G Hard: B, K

Λn+i Λk· I

Anti-AK: L

C - Echoes of the Runes

题意

给定一个长度为 n 的数组,判断能否使用至多一次交换使得数组升序。

数据范围

$$1 \le n \le 1000, \ 1 \le a_i \le 10^9.$$

C - Echoes of the Runes

做法 - $O(n \log n)$

将数组升序排序,统计排序后数组和原数组的差异。 不难发现,对有序数组的一次交换会产生两个差异。 若差异数小于等于 2,输出 Sorted。否则输出 Failed。 时间复杂度 $O(n \log n)$ 。

C - Echoes of the Runes

花絮

作为签到题,本题放宽了数据范围, $O(n^3)$ 做法也可以通过。

做法 - $O(n^3)$

暴力地交换每一对元素。每次交换暴力检查数组是否有序。 时间复杂度 $O(n^3)$ 。

H - Simai

题意

给出一些圆内线条, 求它们的长度。

数据范围

$$1 \le T \le 10^5$$
.

H - Simai

做法

模拟题。按题意模拟即可。

相对麻烦的是计算 x-y。圆心角 α 对应的弦长为 $2r \cdot \sin(\alpha/2)$,所以可使用 std::sin() 等库函数方便地求得长度。

F - Portal

题意

给定 n 个节点,第 i 个节点需要和自身或其他节点连边 a_i 次。问 1 号点是否一定能到达 n 号点。

数据范围

$$1 \le n \le 10^5$$
, $1 \le a_i \le 10^9$, $\sum_{i=1}^n a_i$ 为偶数。

F - Portal

做法

首先特判: n=1 时答案为 Yes。

然后,若数组 a 中只有 a_1 和 a_n 为奇数,则答案为 Yes;反之,答案为 No。时间复杂度 O(n)。

证明

由于一条边连接两个点,所以一个连通块的 $\sum a$ 一定是偶数。

若数组 a 中只有 a_1 和 a_n 为奇数,考虑 a_1 所在连通块,不难发现:只要不向 a_n 连边,就不可能满足奇偶性,故答案为 Yes。

反之,我们令每个节点优先向自身连边。此时若 a_1 为偶数,答案显然为 No; 若 a_1 为奇数,必然可以找到另一个非 a_n 的奇数与之连接,答案同样为 No。

J - Uniform Random Descent Process

题意

输入 n, 问期望执行多少次 n = rand(0, n-1) 后, n 变为 0。

数据范围

$$1 < T < 10^5$$
, $0 < n < 10^5$.

J - Uniform Random Descent Process

做法 - 期望 DP

设 f_i 为 i 期望执行多少次操作,则

$$f_i = \sum_{j=0}^{i-1} \frac{f_j}{i} + 1$$

可以记录 f_i 前缀和来实现 O(1) 转移。O(n) 预处理后每组数据 O(1) 回答询问。

J - Uniform Random Descent Process

做法 - 调和级数

事实上,手玩一下前几项,可以发现答案是调和级数 $\sum_{i=1}^{n} \frac{1}{i}$ 。 由期望 DP 的转移式,可以归纳得出这一结论。

更直观的解释是: i 有 $\frac{1}{i}$ 的概率随机到 i-1,此时比 i-1 多一次操作; 在剩下 $1-\frac{1}{i}$ 的情况下,与 i-1 等价。故期望比 i-1 多 $\frac{1}{i}$ 次操作。

同样地,可以O(n)预处理并O(1)回答。

E - Neuro's New Game

题意

给定一个长度为 n 的 01 串 (记为 s),构造一个长度为 n 的排列 a,满足:

- 若 $s_i = 0$, 则 $a_i < a_{(i+1)\%n}$;
- 若 $s_i = 1$, 则 $a_i > a_{(i+1)\%n}$ 。

如果不存在这样的 a, 则输出 -1。

数据范围

$$1 \le n \le 2 \cdot 10^5.$$

E - Neuro's New Game

做法 - 拓扑排序

本题做法很多, 比较直观的是使用拓扑排序。

注意到,将小于关系视作入边,将大于关系视作出边,对连边后 形成的图做一次拓扑排序,即可得到一段符合条件的排列。

图中有环时无解。从图的拓扑关系进一步观察到,当且仅当 s 全为 0 和 1 时才会成环。

E - Neuro's New Game

做法 - 离散化

- 一种更为暴力的做法是:
 - $\leq s_i = 0$ 时, $\Leftrightarrow a_i := a_{i-1} 1$;

不难发现这样构造出的 a_i 一定不会重复。

构造完成后,将数据离散化即可得到答案。

D - Keine's Prefix Sum

题意

定义数组 a 的前缀和 $s_i = \sum_{j=1}^i a_j$ 。如果所有 $s_i \geq 0$,则称数组 a 为 good 数组。

对数组 a 进行 n 次循环左移操作。输出 n 次操作中 **good** 数组 的总数。

数据范围

$$1 \le n \le 10^5, -10^3 \le a_i \le 10^3.$$

D - Keine's Prefix Sum

做法

给定数组 $[a_1,\ldots,a_n]$ 。令 S 为前缀和,P 为前缀和的前缀 min, Q 为前缀和的后缀 min。即

- $S_i = \sum_{i=1}^i a_i$
- $P_i = \min_{0 < i < i} S_i$
- $Q_i = \min_{i < j < n} S_i (Q_{n+1} = +\infty)$

将数组左移 k 次后,数组变为 $[a_{k+1}, \ldots, a_n, a_1, \ldots, a_k]$ 。 可以发现,它是 good 数组当且仅当

$$Q_{k+1} \geq S_k \perp P_k \geq S_k - S_n$$
.

预处理 P, Q 用时 O(n),每次检查 O(1),总时间复杂度 O(n)。

I - The Dream-Quest

题意

给你一棵根为 1,大小为 n 的树。初始时刻,Vistar 在树根,每个叶子上有一个警察。

一个回合内,Vistar 可以选择移动到相邻节点(或保持静止), 然后所有不在根节点的警察向根节点移动一次。如果任何时候 Vistar 与警察在同一节点,则被抓住。

判断 n 回合后 Vistar 是否可能未被抓住。如果可能,输出任意一个行动方案。

数据范围

1 < n < 2000.

I - The Dream-Quest

做法

本题有多种做法。一种简单的做法是建分层图并 DFS。

设当前位置为 u,时间为 t,相邻节点为 v,则 (u,t) 转移到 (v,t+1),当且仅当 t 时刻和 t+1 时刻中 v 节点都没有警察。

我们可以 $O(n^2)$ 预处理出每个时刻警察的位置。预处理后,按照限制进行 DFS,同时使用栈维护行动的路径。如果进入一个 t=n 的状态,就说明此时的方案合法。

时间复杂度 $O(n^2)$ 。

A - A Slide B Slide

题意

给定两个数组 $a = [a_1, a_2, \ldots, a_n]$ 和 $b = [b_1, b_2, \ldots, b_m]$ 。 你需要选择 a 的一个子序列 $[a_{c_1}, a_{c_2}, \ldots, a_{c_n}]$ 和 b 的一个子序列 $[b_{d_1}, b_{d_2}, \dots, b_{d_a}]$, 满足以下条件:

- $c_1 < 2$, $d_1 < 2$;
- $\forall i > 2$. $c_i c_{i-1} < 2$. $d_i d_{i-1} < 2$:
- $c_p = n, d_q = m.$

问: 是否无论如何选择 $[c_1, c_2, \ldots, c_p]$, 都存在 $[d_1, d_2, \ldots, d_q]$, 使得 $[b_{d_1}, b_{d_2}, \ldots, b_{d_n}]$ 是 $[a_{c_1}, a_{c_2}, \ldots, a_{c_n}]$ 的子序列。

数据范围

 $1 < n, m < 10^5, 1 < a_i, b_i < 10^9.$

A - A Slide B Slide

做法

无论 a 选什么,都必须选择一个 b 的子序列与其匹配。

所以,对于每一个 a_i ,我们应该贪心地考虑 **最坏情况下** b 匹配 到的最远位置。

可以证明, 这样不会错过最优解。

考虑一个基于贪心的 DP。

设 dp_i 为: 选择 a_i 时,贪心策略下 b 能够匹配的最远位置。若最终 $dp_n = m$,则说明总可以完成匹配。转移如下:

首先

$$dp_i = \min(dp_{i-1}, dp_{i-2}), \ k := dp_i$$

然后有

$$dp_i = \begin{cases} k+2, & \text{if } a_i = b_{k+2} \\ k+1, & \text{else if } a_i = b_{k+1} \\ k, & \text{otherwise} \end{cases}$$

时间复杂度 O(n+m)。

题意

使用不超过 $3 \cdot 10^5$ 个耐火砖 (F),构建出 n 个砖高炉结构。耐 火砖 (F) 可以共用。

砖高炉结构如下图所示:

F	F	F
F	L	F
F	В	F

F	F	F
F	L	В
F	F	F

F	В	F
F	L	F
F	F	F

F	F	F
В	L	F
F	F	F

Not even two BBFs are fast enough...Can you figure out how to save the most bricks making 4?

PS: If you can't, this pack may not be for you.

数据范围

 $1 < n < 10^5$.

做法

最简单的构造方法是摆成两排,但是显然,这样不能通过此题(需要 $3 \cdot 10^5 + 5$ 个)。

做法

考虑将构造从两排扩展成多排。如果再密铺一些就会非法。

F	F	F	F	F	F	F
F	L	F	L	F	L	F
F	В	F	В	F	В	F
F	L	F	L	F	L	F
F	В	F	В	F	В	F
F	L	F	L	F	L	F
F	В	F	В	F	В	F

问题在于, 砖高炉的主方块 (B) 会占用其它结构里耐火砖 (F) 的位置。

做法

我们可以去掉一些砖高炉结构(得到一些空位),并将旁边结构 的主方块 (B) 放在一个十字的四条边上。

F	F	F	F	F	F	F
F	L	F	L	F	L	F
F	В	F	В	F	В	F
F	L	F		F	L	F
F	В	F	F	F	В	F
F	L	F	L	F	L	F
F	В	F	В	F	В	F

这样构造后,对于每个砖高炉结构,(B)的旁边必须存在至少一个空位。我们需要最小化空位数量。

做法

考虑如何在二维平面上选择这些空位。

构造方法比较简单,直接按照日字形放空位即可。注意:为展示方便,下图将距离缩短至实际的一半。

Χ					Χ	
		Х				
				Χ		
	Χ					Χ
			Χ			
Χ					Χ	
		Χ				

做法 下图更加直观地呈现了 (F) 的分布。

证明

假设初始放置 $x \cdot y$ 个砖高炉结构, 那么至多需要 $k = \left| \frac{xy}{5} \right| \leq \frac{xy}{5}$ 个空位。

砖高炉结构的数量为 xy - k, (F) 的数量为 $(2x+1)\cdot(2y+1)-2xy+k=2xy+k+2x+2y+1$

由干

$$\frac{2xy + k + 2x + 2y + 1}{xy - k} = \frac{3xy + 2x + 2y + 1}{xy - k} - 1$$
$$\leq \frac{11}{4} + \frac{10x + 10y + 5}{4xy}$$

我们知道一个砖高炉结构大约使用 $\frac{14}{4}$ 个 (F),故该构造合法。

题意

给定 n 个节点,第 i 个节点需要和其他节点连边 a_i 次。问 1 号点是否一定能到达 n 号点。

数据范围

$$2 \le n \le 10^5$$
, $1 \le a_i \le 5000$, $\sum_{i=1}^n a_i$ 为偶数。

做法

如果集合 S 存在一种合法配对方案, 我们就称 S 是合法的。

引理1

 \mathbb{S} 合法 \Leftrightarrow sum(\mathbb{S}) 为偶数且 sum(\mathbb{S}) $-2 \max(\mathbb{S}) \geq 0$ 。

引理 1

 \mathbb{S} 合法 \Leftrightarrow sum(\mathbb{S}) 为偶数且 sum(\mathbb{S}) $-2 \max(\mathbb{S}) \geq 0$ 。

证明 - 引理 1

右侧条件必要性显然。下面只证明充分性。

我们将不断采取以下构造步骤,直至配对完成:

- 选取当前集合中最大的两个非 0 元素 a_1 和 a_2 。
- 在二者之间配对一次。这可以等价为 $a_1 := a_1 1, a_2 := a_2 1$ 。

可以证明,这样的构造一定能完成配对。故引理1得证。

做法

可以发现,如果原数组能被划分成若干个合法集合,且 1 和 n 不在同一集合中,答案即为 No。反之即为 Yes。

我们称这样的划分为 合法划分。

引理 2

若存在合法划分,则必存在一种合法划分,使得数组恰好被划分 为两个集合。

引理 2

若存在合法划分,则必存在一种合法划分,使得数组恰好被划分 为两个集合。

证明 - 引理 2

只需证明将两个合法集合合并,得到的依然是合法集合。

设 S 和 T 为两个合法集合。则

$$\operatorname{sum}(\mathbb{S} + \mathbb{T}) \ge 2 \max(\mathbb{S}) + 2 \max(\mathbb{T}) \ge 2 \max(\mathbb{S} + \mathbb{T})$$

故引理 2 得证。

做法

由引理 2, 可以使用 01 背包检查合法划分的存在性。

设 $f_{0/1,i,j}$ 表示: 总和为偶数/奇数,考虑前 i 个点,总和为 j 时是否可行。我们将 a_2 至 a_{n-1} 排序,并钦定最大值在哪个集合中。

不妨设最大值和 a_n 在同一集合。定义:

•
$$\mathbb{A} = [2 \cdot \max(a_1, a_i), \sum_{i=1}^n a_i - 2 \cdot \max_{i=1}^n (a_i)]$$

•
$$\mathbb{B} = \{ \max(a_1, a_i), \sum_{i=1}^n a_i - \max_{i=1}^n (a_i) \}$$

只需检查以下条件是否成立:

$$\exists j \in \mathbb{A} - \mathbb{B}, \ f_{0,i,j} = 1$$

G - Portal 2

做法

朴素背包会超时,使用 bitset 可以优化到 $O\left(\frac{n\cdot\sum_{i=1}^{n}a_{i}}{\omega}\right)$,但仍然无法通过。

然而,本题有如下性质:

引理 3

数组中只有 a_1 和 a_n 为奇数时, 答案为 Yes;

否则, $\sum_{i=1}^{n} a_i \geq 6 \max(a)$ 时, 答案一定为 No。

做法

由引理 3, 背包的值域只需开到 $O(\max(a))$ 。

时间复杂度 $O\left(\frac{n \cdot \max(a)}{\omega}\right)$ 。

花絮

上述做法足以通过本题,不过还可以进一步常数优化:

- 若在值域 $\leq 4 \max(a)$ 内未发现合法划分,则答案为 Yes。 反之为 No。
- 或者,在上一个性质的基础上只跑 $3 \max(a)$,也能得到正 确答案。

证明 - 引理 3

将 a_2 至 a_{n-1} 降序排序,得到的新数组记作 b。我们取 b_1, b_2 分入集合 \mathbb{S} ,此时有

$$|\operatorname{sum}(\mathbb{S}) - 2\max(\mathbb{S})| = |b_1 - b_2|$$

考虑整数 j 为最小的、满足 $\sum_{i=3}^{j} b_i \geq |b_1 - b_2|$ 的整数。则

$$\sum_{i=3}^{j} b_i \le |b_1 - b_2| + \min(b_1, b_2) \le \max(a)$$

将 b_3 至 b_j 并入集合 \mathbb{S} ,此时即有 $\mathrm{sum}(\mathbb{S}) - 2 \mathrm{max}(\mathbb{S}) \geq 0$ 。 $\mathrm{sum}(\mathbb{S})$ 未必是偶数。是奇数时,我们再向其中加入一个奇数以满足奇偶性。不妨设此数为 b_k 。

G - Portal 2

证明 - 引理 3

上述步骤完成后,有

$$\operatorname{sum}(\mathbb{S}) \le b_1 + b_2 + \max(a) + b_k \le 4 \max(a)$$

将剩下的数分入集合 \mathbb{T} , $\operatorname{sum}(\mathbb{S}) + \operatorname{sum}(\mathbb{T}) \geq 6 \operatorname{max}(a)$ 时,必有 $\operatorname{sum}(\mathbb{T}) - 2 \operatorname{max}(\mathbb{T}) \geq 0$ 。容易验证边界无法取到,故性质得证。

不难发现 $sum(\mathbb{T}) \leq 4 \max(a)$ 。故 DP 时只需做两次检查,每次检查到 $4 \max(a)$ 。进一步的分讨可以优化到只检查 $3 \max(a)$ 。

题意

给定 n 个节点的有向图, 节点编号从 1 到 n。连边情况如下:

- 如果节点 u 是一个完全平方数,则存在一条从 u 指向 \sqrt{u} 的有向边。
- 如果 u 不是完全平方数且 $u \le n-3$,则存在一条从 u 指向 u+3 的有向边。

给定 q 个询问,每个询问包含一个目标节点 x。对于每个 x,计算图中有多少个节点能够到达 x。

数据范围

 $1 < T < 100, \ 1 < n < 10^{12}, \ 1 < q < 10^6.$

做法

首先形式化题意。让我们设起始点为 a_0 , 不考虑边界有

$$a_{i+1} = egin{cases} \sqrt{a_i}, & a_i$$
 是完全平方数 $a_i+3, & ext{otherwise} \end{cases}$

不难发现:

- $a_0 = 1$ 时, a_i 恒等于 1;
- 3-6-9-3 是一个循环。

做法

排除 $a_0 = 1$ 的特例,分 $a_0 \equiv 0, 1, 2 \pmod{3}$ 三种情况讨论。考虑 n 趋于无穷,可以证明:

引理1

- $a_0 \equiv 0 \pmod{3}$ Ff, $\forall i \in \mathbb{N}, a_i \equiv 0 \pmod{3}$;
- $a_0 \equiv 1 \pmod{3}$ 时, $\exists i \in \mathbb{N}, a_i \equiv 2 \pmod{3}$;
- $a_0 \equiv 2 \pmod{3}$ Ft, $\forall i \in \mathbb{N}, a_i \equiv 2 \pmod{3}$;
- 3-6-9-3 是唯一可能的循环。

做法

先处理单次询问。考虑这张图的反图,以 x 为起点在反图上搜索,能到达的点数即为答案。

设 l 为小于 x 且与 x 同余的最大完全平方数。x 可以直接到达 (l,x] 内与 x 同余的点。注意: $x \equiv 2 \pmod{3}$ 时,这样的完全 平方数不存在,x 可直接到达 [2,x]。此时不妨定义 l=-1。

接下来,对区间内所有编号平方,并继续考虑这些点能到达哪些点。重复这一过程直到计算出所有贡献。

可以证明除 3-6-9-3 外,贡献是独立的,可以直接加起来得到答案。

做法

形式化上面的过程。设 f(x) 为 x 的答案,有

$$f(x) = \frac{x - l}{3} + \sum_{i: i \equiv x \pmod{3}, \ l < i \le x} f(i^2)$$

时间复杂度为 $O(\sqrt{n})$ 。

做法

考虑多次询问,我们可以分段预处理 \sqrt{n} 以内的答案:

$$f(i) = \begin{cases} f(3), & i \in \{6,9\} \text{ 且 } n \geq 9 \\ f(i^2) + 1, & i - 3 \text{ 是完全平方数} \\ f(i-3) + f(i^2) + 1, & \text{otherwise} \end{cases}$$

预处理时,对 f 按拓扑序搜索,或者记忆化搜索,复杂度仍然是 $O(\sqrt{n})$ 。事实上,不做任何优化直接搜索,复杂度只退化到 $O(\sqrt{n}\log\log n)$,同样可以通过。

预处理后单次询问 O(1)。时间复杂度 $O(\sum(\sqrt{n}+q))$,约 1e7。

花絮

- 题目灵感来自 IMO 2017 Problem 1 和 Neuro-sama。
- 完整的证明较为繁琐。这里略过不表,留作读者练习。
- 本题有较为复杂的边界情况。可以考虑对拍小数据来检查。 出题人和验题人都没有一遍写对本题的正解。
- 时限约为 std 的 6 倍。如果做法正确但是 TLE, 很可能是 因为实现不精细(例如:多一个 log, 过量使用 double 和 std::sqrt(), etc.)。

题意

给定 n 个节点的有向图, 节点编号从 1 到 n。连边情况如下:

- 如果节点 u 是一个完全平方数,则存在一条从 u 指向 \sqrt{u} 的有向边。
- 如果 u 不是完全平方数且 $u \le n-3$,则存在一条从 u 指向 u+3 的有向边。

给定 q 个询问,每个询问包含一个目标节点 x。对于每个 x,计算图中有多少个节点能够到达 x。

数据范围

 $1 < T < 10^5$, $1 < n < 10^{18}$, $1 < q < 10^6$.

做法

设 g(x) 为 x 本身和通过 x^2 开根到达 x 的点的数量,排除 $x \in \{1,3,6,9\}$ 之后:

$$g(x) = f(x^2) + [x \le n]$$

$$f(x) = \sum_{i: i \equiv x \pmod{3}, l < i \le x} g(i)$$

做法

考虑对 g(x) 的 3 个同余类分别进行前缀和,记为:

- $s_0(x) = \sum_{i=0}^x g(3i) + C;$
- $s_1(x) = \sum_{i=0}^x g(3i+1) + C;$
- $s_2(x) = \sum_{i=0}^{x} g(3i+2) + C$.

做法

对
$$x \equiv 0, 1, 2 \pmod{3}$$
 进行分讨,令 $k = \lfloor x/3 \rfloor$:

$$g(x) = f(x^{2}) + 1$$

$$= \begin{cases} s_{0}(3k^{2}) - s_{0}(3k^{2} - 6k + 3) + [x \le n], & x = 3k \\ s_{1}(3k^{2} + 2k) - s_{1}(3k^{2} - 2k) + [x \le n], & x = 3k + 1 \\ s_{1}(3k^{2} + 4k + 1) - s_{1}(3k^{2} + 2k) + [x \le n], & x = 3k + 2 \end{cases}$$

可以从大到小依次求出 g(x) 和 s(x)。

做法

观察发现, g(x) 和 s(x) 可以表示为分段多项式函数。

例如:

$$g(3k) = \begin{cases} 1, & O(\sqrt{n}) \sim O(n) \\ 6k - 2, & O(n^{1/4}) \sim O(\sqrt{n}) \\ 108k^3 - 162k^2 + 114k - 29, & O(n^{1/8}) \sim O(n^{1/4}) \\ \dots \end{cases}$$

这可以使用数学归纳法证明。

做法

注意特殊点: 当一个点的求和区间跨过了两段不同的解析式时, 需要单独计算。

对于每个 n, 预处理出 g(x) 和 s(x) 分段的端点和特殊点的值, 在询问时直接代入求值。

实现及复杂度分析

选定一个阈值 K,假设使用多项式计算超过 3K 的部分,剩余位置直接计算出数值。

此时,我们需要计算到约 $\log_K n$ 次的多项式。

因为每段的多项式系数和 n 无关,可以打表或者在最开始时插 值 $O(\log_K^2 n)$ 计算得到。

实现及复杂度分析

对于每个 n 需要计算:

- 3K 以内所有点的值: $O(K \log_K n)$;
- 每段的端点: 依次开根得到,需要微调, $O(\log\log_K n)$;
- 特殊点的值:有 $\log \log n$ 个特殊点,总共需要计算的多项式次数之和为 $O(\log_K n)$ 。

询问时,代入解析式计算即可, $O(\log_K n)$ 。

时间复杂度 $O(\log_K^2 n + TK \log_K n + \sum q \log_K n)$, std 取 K = 5 时运行时间约 750ms。

空间复杂度 $O(K + \log_K n)$ 。

THANK YOU!