Analyse de données d'échange

Les modèles à blocs stochastiques

Vanesse Labeyrie & Sarah Ouadah

Formation Analyse de Réseaux 11-15 Juin 2019

Objectifs

- Présentation de quelques modèles de graphes aléatoires.
 On se demandera s'ils miment les propriétés de réseaux observés.
- Focus sur le modèle à blocs stochastiques [SBM] qui suppose que les liens entre individus découlent de leur appartenance à un groupe.
 - Comment le mettre en oeuvre et l'interpréter ?
- Quelques références et packages R sur les extensions du SBM.
- ► Focus sur le modèle à blocs latents [LBM] pour les graphes bipartites.

Sommaire

Exemples de modèles de graphes aléatoires Modèle d'Erdös-Rényi Modèle d'attachement préférentiel Modèle d'ERGM

Modèle à blocs stochastiques

Graphe aléatoire

Un graphe aléatoire $\mathcal{G}=(\mathcal{V}=\{1,\ldots n\},\mathcal{E})$ est la représentation mathématique d'un réseau d'interaction.

Variable d'intérêt - Données : f Y la matrice d'adjacence de ${\cal G}$

$$Y_{ij} = \left\{ egin{array}{ll} 1 \ {
m ou \ autre \ valeur} & {
m si} \ (i,j) \in \mathcal{E} \ ({
m arête}) \ {
m sinon} \end{array}
ight.$$

et $Y_{ii} = 0, \forall i$. Lorsque le graphe est non dirigé $Y_{ij} = Y_{ji}, \forall i \neq j$.

Les Y_{ij} sont des variables aléatoires. Leur réalisations, i.e. les valeurs que l'on observe, se réalisent donc avec une certaine probabilité et proviennent d'un échantillon de la population.

Matrice d'adjacence

$$\mathbf{Y} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Modèle d'Erdös-Rényi

Modèle d'Erdös-Rényi (Erdös et Rényi, 1959)

$$Y_{ij}$$
 i.i.d. $\sim \mathcal{B}(p)$

Tous les nœuds ont même probabilité de connexion

Erdös-Rényi – Exemple (1)

```
G1 <- sample_gnp(20, 0.1)
G2 <- sample_gnp(20, 0.8)
G3 <- sample_gnp(100, .02)
```


Erdös-Rény – Caractéristiques

> hist(degree(G2)); hist(betweenness(G2))

Les distributions des degrés et de la betweenness sont assez homogènes

- > average.path.length(G2); diameter(G2)
- [1] 1.152632
- Γ17 2

La moyenne et le maximum de la longueur du plus court chemin se constituent de très peu de nœuds. La modularité est quasi nulle :

- > modularity(G2.clustering)
- [1] 0.03841326

Extensions du modèle d'Erdös-Rényi

Modèle d'Erdös-Rényi hérérogène

$$Y_{ij}$$
 ind. $\sim \mathcal{B}(p_{ij})$

Chaque paire de nœuds a sa propre probabilité de connexion

Modèle linéaire généralisé

$$\begin{cases} Y_{ij} \text{ ind.} \sim \mathcal{B}(p_{ij}) \\ logit(p_{ij}) = x_{ij}^{\mathsf{T}} \beta + \alpha \end{cases}$$

où x_{ij} est le vecteur de covariables sur l'arête (i,j).

Chaque paire de nœuds a sa propre probabilité de connexion qui dépend de covariables, e.g. différence d'âge

Modèle d'attachement préférentiel

Modèle d'attachement préférentiel (Barabàsi et Albert, 1999)

Le graphe se construit ainsi à partir d'un graphe initial $\mathcal{G}_0=(\mathcal{V}_0,\mathcal{E}_0)$:

- 1. au temps t, on ajoute un nouveau nœud V_t
- 2. V_t est connecté à $i \in V_{t-1}$ avec probabilité $D_i^{\alpha} + \text{constante}$, où $D_i = \sum_{i \neq j} Y_{ij}$ est le degré du nœud i

Les nœuds qui ont un fort degré ont de grandes chances d'être connectés : les riches s'enrichissent.

Modèle d'attachement préférentiel – Exemple

```
G1 <- sample_pa(20, 1)
G2 <- sample_pa(20, 5)
G3 <- sample_pa(200)</pre>
```


Modèle d'attachement préférentiel - Caractéristiques

> hist(degree(G3)); hist(betweenness(G3))

Les distributions des degrés et de la betweenness sont hétérogènes et caractéristiques d'une loi de puissance

```
> average.path.length(G3); diameter(G3)
```

[1] 6.704372

[1] 17

La moyenne et le maximum de la longueur du plus court chemin se constituent de relativement peu de nœuds (n = 200). Aucun triangle ne se forme :

```
> transitivity(G3)
```

[1] 0

Modèle exponentiel de graphe [ERGM]

Modèle exponentiel de graphe [ERGM] (review de Wasserman et Pattison, 1996)

$$\mathbb{P}_{ heta}(\mathbf{Y} = \mathbf{y}) = \left(rac{1}{\kappa}
ight) exp\left(\sum_{H} heta_{H}g_{H}(\mathbf{y})
ight)$$

avec

- y une réalisation de Y
- ► *H* une configuration/motif, e.g. arête, triangle, étoile, etc.
- $ightharpoonup g_H(y)$ le nombre de fois où cette configuration apparaît dans ${f y}$
- $ightharpoonup heta_H$ le coefficient de dépendance
- \triangleright κ la constante de normalisation

La distribution des arêtes est due à la présence de différents motifs dans le réseau observé. On peut également ajouter dans le modèle des attributs sur les nœuds et les arêtes.

ERGM - Exemple

Lazega est un réseau de collaboration entre 36 avocats appartenant à différents cabinets et compte 115 liens non dirigés

```
my.ergm <- formula(lazega ~ edges + kstar(2) + kstar(3) + triangle)</pre>
```


Limites

- Modèle d'Erdös-Rényi
 - modélisation d'une structure homogène, pas de degré fort, ni de modularité
 - peu adapté aux réseaux observés
- Modèle d'attachement préférentiel
 - modélisation d'une structure où la distribution des mesures de centralité est une loi de puissance, i.e. existence d'un petit groupe de nœuds centraux, une transitivité nulle
 - non propice à un cadre d'inférence statistique (mécanistique)
- Modèle ERGM
 - modélisation de structures très particulières et de petites tailles
 - justifications théoriques (pendant du glm) non établies

Modèle à blocs stochastiques

- modélisation de réseaux structurés en groupes : situation courante des réseaux réels
- propice à l'inférence statistique : estimation des interactions et de la composition des groupes

Sommaire

Exemples de modèles de graphes aléatoires

Modèle à blocs stochastiques SBM Autour du SBM – packages R

SBM – Exemple de topologie (1)

Réseau de communauté

SBM – Exemple de topologie (2)

Réseau en étoiles (hubs)

```
pi <- matrix(c(0.05,0.3,0.3,0),2,2)
star <- sample_sbm(100, pi, c(4, 96))</pre>
```


Modèle à blocs stochastiques [SBM] (1)

SBM (Nowicki et Snijders, 2001)

Soient *n* nœuds répartis ainsi :

- $\blacktriangleright \ \mathcal{Q} = \{ {\color{red} \bullet}, {\color{red} \bullet}, {\color{red} \bullet} \} \text{ groupes}$
- $\qquad \qquad \boldsymbol{\pi}_{\bullet} = \mathbb{P}(i \in \bullet) \bullet \in \mathcal{Q}, i = 1, \dots, n$

$$Z_i = \mathbf{1}_{\{i \in ullet\}} \text{ i.i.d. } \sim \mathcal{M}(1,\pi), \quad orall ullet \in \mathcal{Q}$$
 $Y_{ij} \mid \{i \in ullet, j \in ullet\} \text{i.i.d} \sim \mathcal{B}(lpha_{ullet})$

Toute paire de nœuds a une probabilité de connexion induite par un caractère spécifique à chacun des nœuds : le groupe d'appartenance

SBM (2)

SBM

Soient *n* nœuds répartis ainsi :

- $ightharpoonup \mathcal{Q} = \{ ullet, ullet, ullet, ullet \}, \ \mathsf{card}(\mathcal{Q}) \ \mathsf{connu}$
- \blacktriangleright $\pi_{\bullet}=?$,
- $\sim \alpha_{\bullet \bullet} = ?$

$$\begin{split} Z_i &= \mathbf{1}_{\{i \in \bullet\}} \text{ i.i.d.} \sim \mathcal{M}(1,\pi), \quad \forall \bullet \in \mathcal{Q}, \\ Y_{ij} \mid \{i \in \bullet, j \in \bullet\} \text{ i.i.d.} \sim \mathcal{B}(\alpha_{\bullet \bullet}) \end{split}$$

SBM – Estimation – Sélection de modèle

- Constitution des groupes : estimation de π le vecteur des probabilités d'appartenance aux Q groupes
 via un algorithme EM variationnel
- Interactions : estimation de α la matrice des probabilités de connexion au sein des groupes et entre les groupes
 via ce même vEM
- ► Nombre de groupes : estimation de *Q* le nombre de groupes via la maximisation du critère vICL

SBM – Réseau de communautés n = 100, $\rho = 0.12$

SBM – Communautés – Package blockmodels (1)

```
# appel du package
> library(blockmodels)

# définition de l'objet
> communities.sbm <- BM_bernoulli("SBM_sym",communities_adjacency)

# méthode d'inférence
> communities.sbm$estimate()

# nombre de groupes sélectionné avec vICL
> which.max(communities.sbm$ICL)
[1] 3
```

Le critère de sélection de modèle vICL retrouve le nombre de groupes égal à 3

SBM – Communautés – Package **blockmodels** (2)

- # extraction des paramètres estimés
- > paramEstimSBM <- extractParamBM(communities.sbm,Q)
- # appartenance des noeuds aux groupes
- > paramEstimSBM\$Z

SBM – Communautés – Package blockmodels (3)

- > paramEstimSBM\$pi
- [1] 0.4995005 0.2502353 0.2502642
- > paramEstimSBM\$alpha

- [1,] 0.30473086 0.02469296 0.02309172 [2,] 0.02469296 0.32480004 0.02138467
- [2,] 0.02403230 0.32400004 0.02130407
- [3,] 0.02309172 0.02138467 0.31149209

On retrouve bien les probabilités d'appartenance des nœuds aux groupes (0.5, 0.25 et 0.25), ainsi que les probabilités de connexion intra et inter groupes (0.3 et 0.02).

SBM – UK faculty n = 81, $\rho = 0.13$

UKfaculty est un réseau d'amitiés entre 81 individus appartenant à différentes "écoles" et compte 817 liens dirigés

SBM – Réseau UKfaculty – Package **blockmodels**

> UK.sbm <- BM_bernoulli("SBM",UK_adjacency)</pre>

Autour du SBM – packages R

- SBM valué et/ou covariables : lois gaussienne et de Poisson package blockmodels
- SBM tenant compte des données manquantes missSBM
- Overlapping SBM : possibilité d'appartenir à plusieurs groupes package OSBM
- Modèles à blocs latents [LBM] : SBM pour graphes bipartites package blockmodels
- SBM multiplex package blockmodels (binaire) et codes R
- ► Tests d'ajustement à ER, HER, W-graphe, SBM, EDD codes R
- Test pour savoir si les covariables collectées sont suffisantes pour expliquer le réseau package gofnetwork

Modèle à blocs latents [LBM]

LBM (Govaert and Nadif, 2003)

$$(Z_i^R)$$
 i.i.d. $Z_i^R \sim \mathcal{M}(1, \pi^R)$
 (Z_i^C) i.i.d. $Z_i^C \sim \mathcal{M}(1, \pi^C)$

$$(Y_{ij})$$
 indep. $|(Z_i^R, Z_j^C)|$ $(Y_{ij} | Z_i^R = k, Z_j^C = \ell) \sim \mathcal{B}(\alpha_{k\ell})$

Toute paire de nœuds (constituée d'un nœud du "haut" et d'un nœud du "bas") a une probabilité de connexion induite par un caractère spécifique à chacun de ces nœuds : leur groupe d'appartenance. Les groupes se constituent de nœuds de même nature.

LBM - hôte-parasite

154 espèces de champignons et 51 espèces d'arbres interagissent lorsqu'un champignon parasite un arbre et de manière équivalente lorsqu'un arbre est hôte d'un champignon.

LBM – hôtes-parasites – Package **blockmodels** (1)

```
# définition de l'objet
> fungi_tree.lbm <- BM_bernoulli("LBM",as.matrix(fungi_tree))
# méthode d'inférence
> fungi_tree.lbm$estimate()
# nombre de groupes sélectionné avec vICL
> paramEstimLBM <- extractParamBM(fungi_tree.lbm,Q)
> paramEstimLBM$Q
QRow QCol
4 4
4
```

Le critère de sélection de modèle trouve 4 groupes d'arbres et 4 groupes de champignons

LBM – hôtes-parasites – Package **blockmodels** (2)

- # extraction des paramètres estimés
- > paramEstimLBM <- extractParamBM(fungi_tree.lbm,Q)
- # appartenance des noeuds aux groupes
- > paramEstimLBM\$ZRow; paramEstimLBM\$ZCol

LBM – hôtes-parasites – Package **blockmodels** (3)

- > paramEstimLBM\$piRow; paramEstimLBM\$piCol
- [1] 0.02655516 0.05570334 0.31666508 0.60107642
- [1] 0.1050494 0.1963968 0.2477304 0.4508234

> paramEstimLBM\$alpha

[,1] [,2] [,3] [,4] [1,] [0.96813478 0.077538579 0.840370657 0.067563355 [2,] 0.52055882 0.584398216 0.230893917 0.107930384 [3,] 0.32450427 0.003624764 0.098526840 0.005780612 [4,] 0.01834547 0.154334411 0.001330278 0.019219920

Références ER, PA, ERGM, SBM, LBM

- Erdös, P. et Rényi, A, (1959). On random graphs, *I Publicationes Mathematicae (Debrecen)*, **6**, 290–297.
- Barabási, A-L et Albert, R., (1999). Emergence of Scaling in Random Networks, *American Association for the Advancement of Science*, **286**, 509–512.
- Wasserman, S. et Pattison, P. (1996)., Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp", *Psychometrika*, **61**, 401–425.
- Nowicki, K. et Snijders, T.A.B., (2001). Estimation and prediction for stochastic block-structures, *JASA*, **96**, 1077–87.
- Govaert, G. and Nadif, M (2003). Clustering with block mixture models. Pattern Recognition, 36(2): 463?473.