STAT 200:

Introduction to Data Science with

Descriptive Statistics and Visualizing Distributions

San Diego State University

000011

Department | Mathematics and Statistics Division | Statistics and Data Science

Descriptive Statistics

Descriptive Statistics

The first step in any data analysis is to gain an understanding of the data itself

head(murders, 10)					
	А	data.frai	me: 10 × 5		
	state	abb	region	population	total
	<chr></chr>	<chr></chr>	<fct></fct>	<dbl></dbl>	<db1></db1>
1	Alabama	AL	South	4779736	135
2	Alaska	AK	West	710231	19
3	Arizona	AZ	West	6392017	232
4	Arkansas	AR	South	2915918	93
5	California	CA	West	37253956	1257
6	Colorado	со	West	5029196	65
7	Connecticut	СТ	Northeast	3574097	97
8	Delaware	DE	South	897934	38
9	District of Columbia	DC	South	601723	99
10	Florida	FL	South	19687653	669

Descriptive Statistics

- The first step in any data analysis is to gain an understanding of the data itself
- We do this by loading our data into some program (e.g., R, Excel) and exploring it various attributes
 - Number of observations
 - Number of variables
 - Identify errors in data entry
 - Identify missing values
 - etc.

- Once we have an initial understanding of our data, we can then perform basic data analysis through both
 - 1. Descriptive statistics
 - 2. Data visualizations

- Once we have an initial understanding of our data, we can then perform basic data analysis through both
 - 1. Descriptive statistics
 - 2. Data visualizations
- What are descriptive statistics?

- Once we have an initial understanding of our data, we can then perform basic data analysis through both
 - 1. Descriptive statistics
 - 2. Data visualizations
- What are descriptive statistics?
 - Measurements that summarize a given dataset

- Once we have an initial understanding of our data, we can then perform basic data analysis through both
 - 1. Descriptive statistics
 - 2. Data visualizations
- What are descriptive statistics?
 - Measurements that summarize a given dataset
- We use different descriptive statistics and data visualizations for different types of data

- Once we have an initial understanding of our data, we can then perform basic data analysis through both
 - 1. Descriptive statistics
 - 2. Data visualizations
- What are descriptive statistics?
 - Measurements that summarize a given dataset
- We use different descriptive statistics and data visualizations for different types of data
 - Numeric data

- Once we have an initial understanding of our data, we can then perform basic data analysis through both
 - 1. Descriptive statistics
 - 2. Data visualizations
- What are descriptive statistics?
 - Measurements that summarize a given dataset
- We use different descriptive statistics and data visualizations for different types of data
 - Numeric data
 - Categorical data

What is numeric data?

head(murders, 10)					
	А	data.frai	me: 10 × 5		
	state	abb	region	population	total
	<chr>></chr>	<chr></chr>	<fct></fct>	<dbl></dbl>	<db1></db1>
1	Alabama	AL	South	4779736	135
2	Alaska	AK	West	710231	19
3	Arizona	AZ	West	6392017	232
4	Arkansas	AR	South	2915918	93
5	California	CA	West	37253956	1257
6	Colorado	со	West	5029196	65
7	Connecticut	СТ	Northeast	3574097	97
8	Delaware	DE	South	897934	38
9	District of Columbia	DC	South	601723	99
10	Florida	FL	South	19687653	669

What is numeric data?

Data consisting of numbers that are either discrete or continuous

head(murders, 10)						
	A data.frame: 10 × 5					
	state	abb	region	population	total	
	<chr></chr>	<chr></chr>	<fct></fct>	<dbl></dbl>	<db1></db1>	
1	Alabama	AL	South	4779736	135	
2	Alaska	AK	West	710231	19	
3	Arizona	AZ	West	6392017	232	
4	Arkansas	AR	South	2915918	93	
5	California	CA	West	37253956	1257	
6	Colorado	со	West	5029196	65	
7	Connecticut	СТ	Northeast	3574097	97	
8	Delaware	DE	South	897934	38	
9	District of Columbia	DC	South	601723	99	
10	Florida	FL	South	19687653	669	

What is numeric data?

- Data consisting of numbers that are either discrete or continuous
- Discrete data consist of numeric values that are distinct and countable, typically integer-valued data
 - e.g., population
 - e.g., number of students in a classroom

What is numeric data?

- Data consisting of numbers that are either discrete or continuous
- Discrete data consist of numeric values that are distinct and countable, typically integer-valued data
 - e.g., population
 - e.g., number of students in a classroom
- Continuous numeric data is quantitative data, typically represented by a fraction or decimal
 - e.g., temperature of 98.6 degrees Fahrenheit
 - e.g., time of 2.84 seconds

head	head(murders, 10)					
	А	data.frai	me: 10 × 5			
	state	abb	region	population	total	
	<chr>></chr>	<chr>></chr>	<fct></fct>	<dbl></dbl>	<db1></db1>	
1	Alabama	AL	South	4779736	135	
2	Alaska	AK	West	710231	19	
3	Arizona	AZ	West	6392017	232	
4	Arkansas	AR	South	2915918	93	
5	California	CA	West	37253956	1257	
6	Colorado	СО	West	5029196	65	
7	Connecticut	СТ	Northeast	3574097	97	
8	Delaware	DE	South	897934	38	
9	District of Columbia	DC	South	601723	99	
10	Florida	FL	South	19687653	669	

What is categorical data?

Data divided into distinct groups or categories

head	head(murders, 10)					
	А	data.fra	me: 10 × 5			
	state	abb	region	population	total	
	<chr></chr>	<chr></chr>	<fct></fct>	<dbl></dbl>	<db1></db1>	
1	Alabama	AL	South	4779736	135	
2	Alaska	AK	West	710231	19	
3	Arizona	AZ	West	6392017	232	
4	Arkansas	AR	South	2915918	93	
5	California	CA	West	37253956	1257	
6	Colorado	co	West	5029196	65	
7	Connecticut	СТ	Northeast	3574097	97	
8	Delaware	DE	South	897934	38	
9	District of Columbia	DC	South	601723	99	
10	Florida	FL	South	19687653	669	

- Data divided into distinct groups or categories
- Two types of categorical data
 - Nominal
 - Ordinal

- Data divided into distinct groups or categories
- Two types of categorical data
 - Nominal
 - Ordinal
- Nominal categorical data consist of categories that have no inherent ordering or ranking
 - e.g., states, region

- Data divided into distinct groups or categories
- Two types of categorical data
 - Nominal
 - Ordinal
- Nominal categorical data consist of categories that have no inherent ordering or ranking
 - e.g., states, region
- Ordinal categorical data consist of categories that have inherent ordering or ranking
 - e.g., education level (high school, bachelor's, master's, PhD)
 - e.g., mood (1-sad, 2-neutral, 3-happy)

What is categorical data?

- Data divided into distinct groups or categories
- Two types of categorical data
 - Nominal
 - Ordinal
- Nominal categorical data consist of categories that have no inherent ordering or ranking
 - e.g., states, region
- Ordinal categorical data consist of categories that have inherent ordering or ranking
 - e.g., education level (high school, bachelor's, master's, PhD)
 - e.g., mood (1-sad, 2-neutral, 3-happy)

Note that discrete numeric data can be considered ordinal!

- For numeric data, there are two common types of descriptive statistics
 - Measures of central tendency
 - Measures of variability (how things change or vary)

- For numeric data, there are two common types of descriptive statistics
 - Measures of central tendency
 - Measures of variability (how things change or vary)

- Measures of central tendency
 - Mean (average)
 - Median (50th percentile, 0.50 quantile)
 - Mode (value that occurs most often)

- For numeric data, there are two common types of descriptive statistics
 - Measures of central tendency
 - Measures of variability (how things change or vary)

- Measures of central tendency
 - Mean (average)
 - Median (50th percentile, 0.50 quantile)
 - Mode (value that occurs most often)

- Measures of variability
 - Range
 - Variance
 - Standard deviation
 - Quantiles/Percentiles

- For numeric data, there are two common types of descriptive statistics
 - Measures of central tendency
 - Measures of variability (how things change or vary)

- Measures of central tendency
 - Mean (average)
 - Median (50th percentile, 0.50 quantile)
 - Mode (value that occurs most often)

- Measures of variability
 - Range
 - Variance
 - Standard deviation
 - Quantiles/Percentiles

These were likely covered in your high school courses, but I will review them here!

Descriptive Statistics:

Measures of Central Tendency

Consider the following data on the amount of emphysema in the lungs

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17
6	14

- Consider the following data on the amount of emphysema in the lungs
- We can represent the percentage emphysema on the number line

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17
6	14

- Consider the following data on the amount of emphysema in the lungs
- We can represent the percentage emphysema on the number line

The mean is a measure of the center of these observations

mean = sum of values / number of values

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17
6	14

- Consider the following data on the amount of emphysema in the lungs
- We can represent the percentage emphysema on the number line

The mean is a measure of the center of these observations

mean = sum of values / number of values

What is the mean of the variable percentage emphysema?

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17
6	14

- Consider the following data on the amount of emphysema in the lungs
- We can represent the percentage emphysema on the number line

• The mean is a measure of the center of these observations

What is the mean of the variable percentage emphysema?

$$(5 + 23 + 2 + 14 + 17 + 14) / 6 = 12.5\%$$

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17
6	14

- Consider the following data on the amount of emphysema in the lungs
- We can represent the percentage emphysema on the number line

The mean is a measure of the center of these observations

What is the mean of the variable percentage emphysema?

$$(5 + 23 + 2 + 14 + 17 + 14) / 6 = 12.5\%$$

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17
6	14

- Consider the following data on the amount of emphysema in the lungs
- We can represent the percentage emphysema on the number line

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17
6	14

- Consider the following data on the amount of emphysema in the lungs
- We can represent the percentage emphysema on the number line

 The median is the value such that half the data is above and half the data is below

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17
6	14

- Consider the following data on the amount of emphysema in the lungs
- We can represent the percentage emphysema on the number line

- The median is the value such that half the data is above and half the data is below
- To find the median
 - 1. Rank the data 2, 5, 14, 14, 17, 23

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17
6	14

- Consider the following data on the amount of emphysema in the lungs
- We can represent the percentage emphysema on the number line

- The median is the value such that half the data is above and half the data is below
- To find the median
 - 1. Rank the data 2, 5, 14, 14, 17, 23
 - 2. Find the "middle" number
 - If there is an even number of data points, average the two middle numbers

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17
6	14

- Consider the following data on the amount of emphysema in the lungs
- We can represent the percentage emphysema on the number line

- The median is the value such that half the data is above and half the data is below
- To find the median
 - 1. Rank the data 2, 5, 14, 14, 17, 23
 - 2. Find the "middle" number
 - If there is an even number of data points, average the two middle numbers
- The median is 14
 - Half the data points are greater than 14 and half are less than 14

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17
6	14

- Consider the following data on the amount of emphysema in the lungs
- We can represent the percentage emphysema on the number line

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17
6	14

- Consider the following data on the amount of emphysema in the lungs
- We can represent the percentage emphysema on the number line

• The mode is the value that appears most often

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17
6	14

- Consider the following data on the amount of emphysema in the lungs
- We can represent the percentage emphysema on the number line

- The mode is the value that appears most often
- To find the mode
 - 1. Count the occurrence of each value
 - 2. Choose the value with the largest occurrence

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17
6	14

- Consider the following data on the amount of emphysema in the lungs
- We can represent the percentage emphysema on the number line

- The mode is the value that appears most often
- To find the mode
 - 1. Count the occurrence of each value
 - 2. Choose the value with the largest occurrence
- What is the mode of percentage emphysema?

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17
6	14

- Consider the following data on the amount of emphysema in the lungs
- We can represent the percentage emphysema on the number line

- The mode is the value that appears most often
- To find the mode
 - 1. Count the occurrence of each value
 - 2. Choose the value with the largest occurrence
- What is the mode of percentage emphysema?
 - 14 since this value occurs 2 times
 - All other values occur less than 2 times

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17
6	14

Descriptive Statistics:

Measures of Variability

- Consider the following data on the amount of emphysema in the lungs
- We can represent the percentage emphysema on the number line

• The <u>range</u> is the maximum – minimum

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17
6	14

- Consider the following data on the amount of emphysema in the lungs
- We can represent the percentage emphysema on the number line

- The <u>range</u> is the maximum minimum
- The range measures the dispersion (spread) of the data

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17
6	14

- Consider the following data on the amount of emphysema in the lungs
- We can represent the percentage emphysema on the number line

- The <u>range</u> is the maximum minimum
- The range measures the dispersion (spread) of the data
- What is the range of percentage emphysema?

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17
6	14

- Consider the following data on the amount of emphysema in the lungs
- We can represent the percentage emphysema on the number line

- The <u>range</u> is the maximum minimum
- The range measures the dispersion (spread) of the data
- What is the range of percentage emphysema?

range =
$$max - min = 23 - 2 = 21\%$$

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17
6	14

• <u>Variance</u> is another measure of dispersion

Patient	%emph	%emph - mean	(%emph – mean)^2
1	5	-7.5	56.25
2	23	10.5	110.25
3	2	-10.5	110.25
4	14	1.5	2.25
5	17	4.5	20.25
6	14	1.5	2.25
		Total:	301.5
		Total/(6-1):	60.3

- **Variance** is another measure of dispersion
- Unlike range, variance is calculated from all data points (more informative)

Patient	%emph	%emph - mean	(%emph – mean)^2
1	5	-7.5	56.25
2	23	10.5	110.25
3	2	-10.5	110.25
4	14	1.5	2.25
5	17	4.5	20.25
6	14	1.5	2.25
		Total:	301.5
		Total/(6-1):	60.3

- <u>Variance</u> is another measure of dispersion
- Unlike range, variance is calculated from all data points (more informative)
- Variance is the average sum of squared distances from the mean

Patient	%emph	%emph - mean	(%emph – mean)^2
1	5	-7.5	56.25
2	23	10.5	110.25
3	2	-10.5	110.25
4	14	1.5	2.25
5	17	4.5	20.25
6	14	1.5	2.25
		Total:	301.5
		Total/(6-1):	60.3

- **Variance** is another measure of dispersion
- Unlike range, variance is calculated from all data points (more informative)
- Variance is the average sum of squared distances from the mean
 - 1. Subtract the mean from each point

Patient	%emph	%emph - mean	(%emph – mean)^2
1	5	-7.5	56.25
2	23	10.5	110.25
3	2	-10.5	110.25
4	14	1.5	2.25
5	17	4.5	20.25
6	14	1.5	2.25
		Total:	301.5
		Total/(6-1):	60.3

- **Variance** is another measure of dispersion
- Unlike range, variance is calculated from all data points (more informative)
- Variance is the average sum of squared distances from the mean
 - 1. Subtract the mean from each point
 - 2. Square each difference

Patient	%emph	%emph - mean	(%emph – mean)^2
1	5	-7.5	56.25
2	23	10.5	110.25
3	2	-10.5	110.25
4	14	1.5	2.25
5	17	4.5	20.25
6	14	1.5	2.25
		Total:	301.5
		Total/(6-1):	60.3

- <u>Variance</u> is another measure of dispersion
- Unlike range, variance is calculated from all data points (more informative)
- Variance is the average sum of squared distances from the mean
 - 1. Subtract the mean from each point
 - 2. Square each difference
 - 3. Add the squared differences

Patient	%emph	%emph - mean	(%emph – mean)^2
1	5	-7.5	56.25
2	23	10.5	110.25
3	2	-10.5	110.25
4	14	1.5	2.25
5	17	4.5	20.25
6	14	1.5	2.25
		Total:	301.5
		Total/(6-1):	60.3

- **Variance** is another measure of dispersion
- Unlike range, variance is calculated from all data points (more informative)
- Variance is the average sum of squared distances from the mean
 - 1. Subtract the mean from each point
 - 2. Square each difference
 - 3. Add the squared differences
 - 4. Divide the sum by the number of points minus one

Patient	%emph	%emph - mean	(%emph – mean)^2
1	5	-7.5	56.25
2	23	10.5	110.25
3	2	-10.5	110.25
4	14	1.5	2.25
5	17	4.5	20.25
6	14	1.5	2.25
		Total:	301.5
		Total/(6-1):	60.3

Descriptive Statistics – Numeric Data – Standard Deviation

- **Standard deviation** is the square root of the variance
- Since variance squares the units (%^2 in this case), we take square root to convert back to original units (%)

$$SD = \sqrt{Var} = \sqrt{60.3} = 7.77\%$$

Patient	%emph	%emph - mean	(%emph – mean)^2
1	5	-7.5	56.25
2	23	10.5	110.25
3	2	-10.5	110.25
4	14	1.5	2.25
5	17	4.5	20.25
6	14	1.5	2.25
		Total:	301.5
		Total/(6-1):	60.3
		$SD = \sqrt{60.3}$:	7.77

What happens to the variance when points are further from the mean?

- A) Variance is larger
- B) Variance is smaller
- C) Variance stays the same

Patient	%emph	%emph - mean	(%emph – mean)^2
1	5	-7.5	56.25
2	23	10.5	110.25
3	2	-10.5	110.25
4	14	1.5	2.25
5	17	4.5	20.25
6	14	1.5	2.25
		Total:	301.5
		Total/(6-1):	60.3
		$SD = \sqrt{60.3}$:	7.77

 Recap: The median is the value such that half the data is above and half the data is below

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17

- Recap: The median is the value such that half the data is above and half the data is below
- i.e. 50% of data falls below the median and 50% falls above the median

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17

- Recap: The median is the value such that half the data is above and half the data is below
- i.e. 50% of data falls below the median and 50% falls above the median
- Therefore, other names for the median are the
 - 50% percentile
 - 0.5 quantile

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17

- Recap: The median is the value such that half the data is above and half the data is below
- i.e. 50% of data falls below the median and 50% falls above the median
- Therefore, other names for the median are the
 - 50% percentile
 - 0.5 quantile
- The pth percentile is the value where
 - p% of data falls below the pth percentile
 - (1-p)% of data fall above the pth percentile

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17

- Two common percentiles are the
 - 25th percentile or "lower quartile"
 - 75th percentile or "upper quartile"

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17

- Two common percentiles are the
 - 25th percentile or "lower quartile"
 - 75th percentile or "upper quartile"
- For the emphysema table on the right,
 - What is the lower quartile?

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17

- Two common percentiles are the
 - 25th percentile or "lower quartile"
 - 75th percentile or "upper quartile"
- For the emphysema table on the right,
 - What is the lower quartile? 5

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17

- Two common percentiles are the
 - 25th percentile or "lower quartile"
 - 75th percentile or "upper quartile"
- For the emphysema table on the right,
 - What is the lower quartile? 5
 - That is, 25% of the data falls below 5
 - 75% of the data falls above 5

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17

- Two common percentiles are the
 - 25th percentile or "lower quartile"
 - 75th percentile or "upper quartile"
- For the emphysema table on the right,
 - What is the lower quartile? 5
 - That is, 25% of the data falls below 5
 - 75% of the data falls above 5
 - What is the upper quartile?

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17

- Two common percentiles are the
 - 25th percentile or "lower quartile"
 - 75th percentile or "upper quartile"
- For the emphysema table on the right,
 - What is the lower quartile? 5
 - That is, 25% of the data falls below 5
 - 75% of the data falls above 5
 - What is the upper quartile? 17

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17

- Two common percentiles are the
 - 25th percentile or "lower quartile"
 - 75th percentile or "upper quartile"
- For the emphysema table on the right,
 - What is the lower quartile?
 - That is, 25% of the data falls below 5
 - 75% of the data falls above 5
 - What is the upper quartile? 17
 - That is, 75% of the data falls below 17
 - 25% of the data falls above 17

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17

- Two common percentiles are the
 - 25th percentile or "lower quartile"
 - 75th percentile or "upper quartile"
- For the emphysema table on the right,
 - What is the lower quartile? 5
 - That is, 25% of the data falls below 5
 - 75% of the data falls above 5
 - What is the upper quartile? 17
 - That is, 75% of the data falls below 17
 - 25% of the data falls above 17

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17

Note there are variations for calculating percentiles

- Two common percentiles are the
 - 25th percentile or "lower quartile"
 - 75th percentile or "upper quartile"
- For the emphysema table on the right,
 - What is the lower quartile? 5
 - That is, 25% of the data falls below 5
 - 75% of the data falls above 5
 - What is the upper quartile? 17
 - That is, 75% of the data falls below 17
 - 25% of the data falls above 17

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17

- Note there are variations for calculating percentiles
- For this class, we will use R to calculate percentiles for us

- Two common percentiles are the
 - 25th percentile or "lower quartile"
 - 75th percentile or "upper quartile"
- For the emphysema table on the right,
 - What is the lower quartile?
 - That is, 25% of the data falls below 5
 - 75% of the data falls above 5
 - What is the upper quartile? 17
 - That is, 75% of the data falls below 17
 - 25% of the data falls above 17

Patient	Percentage Emphysema
1	5
2	23
3	2
4	14
5	17

- Note there are variations for calculating percentiles
- For this class, we will use R to calculate percentiles for us
- I primarily want you to know how to interpret these values

Descriptive Statistics:

Categorical Variables

Descriptive Statistics – Categorical Data

- Summarization of categorical data is much easier!
- We simply count the frequency of each category

Descriptive Statistics – Categorical Data

- Summarization of categorical data is much easier!
- We simply count the frequency of each category
- The table of counts is referred as a
 - Frequency tableOR
 - Contingency table

Descriptive Statistics –	Categorical Data
---------------------------------	-------------------------

- Summarization of categorical data is much easier!
- We simply count the frequency of each category
- The table of counts is referred as a
 - Frequency table

OR

- Contingency table
- For example, we can categorize % emphysema into three ordinal categories
 - >0, ≤10
 - >10, ≤ 20
 - >20

Patient	Percentage Emphysema	Emphysema Category
1	5	>0, ≤10
2	23	>20
3	2	>0, ≤10
4	14	>10, ≤ 20
5	17	>10, ≤ 20
6	14	>10, ≤ 20

Descriptive Statistics – Categorical Data

- Summarization of categorical data is much easier!
- We simply count the frequency of each category
- The table of counts is referred as a
 - Frequency tableOR
 - Contingency table
- For example, we can categorize % emphysema into three ordinal categories
 - >0, ≤10
 - >10, ≤ 20
 - >20
- We then count the number of observations per category

Patient	Percentage Emphysema	Emphysema Category
1	5	>0, ≤10
2	23	>20
3	2	>0, ≤10
4	14	>10, ≤ 20
5	17	>10, ≤ 20
6	14	>10, ≤ 20

Frequency Table

Emphysema Category	Frequency
>0, ≤10	2
>10, ≤ 20	3
>20	1

Distributions and Histograms

Measures of central tendency

- Mean (average)
- Median (50th percentile, 0.50 quantile)
- Mode (value that occurs most often)

Measures of variability

- Range
- Variance
- Standard deviation
- Quantiles/Percentiles

 These descriptive statistics describe the attributes/shape of what we call the <u>data</u> distribution

Measures of central tendency

- Mean (average)
- Median (50th percentile, 0.50 quantile)
- Mode (value that occurs most often)

Measures of variability

- Range
- Variance
- Standard deviation
- Quantiles/Percentiles

- These descriptive statistics describe the attributes/shape of what we call the <u>data</u> distribution
- The data distribution describes how often values in your data occur

Measures of central tendency

- Mean (average)
- Median (50th percentile, 0.50 quantile)
- Mode (value that occurs most often)

Measures of variability

- Range
- Variance
- Standard deviation
- Quantiles/Percentiles

- These descriptive statistics describe the attributes/shape of what we call the <u>data</u> distribution
- The data distribution describes how often values in your data occur
- The frequency in which data occurs determines the shape of the distribution

Measures of central tendency

- Mean (average)
- Median (50th percentile, 0.50 quantile)
- Mode (value that occurs most often)

Measures of variability

- Range
- Variance
- Standard deviation
- Quantiles/Percentiles

Why do we care?

Measures of central tendency

- Mean (average)
- Median (50th percentile, 0.50 quantile)
- Mode (value that occurs most often)

Measures of variability

- Range
- Variance
- Standard deviation
- Quantiles/Percentiles

Why do we care?

 By summarizing the data distribution using descriptive statistics, we can

Measures of central tendency

- Mean (average)
- Median (50th percentile, 0.50 quantile)
- Mode (value that occurs most often)

Measures of variability

- Range
- Variance
- Standard deviation
- Quantiles/Percentiles

Why do we care?

- By summarizing the data distribution using descriptive statistics, we can
 - Better understand data within a group
 - e.g., salary, survival for cancer patients

Measures of central tendency

- Mean (average)
- Median (50th percentile, 0.50 quantile)
- Mode (value that occurs most often)

Measures of variability

- Range
- Variance
- Standard deviation
- Quantiles/Percentiles

Why do we care?

- By summarizing the data distribution using descriptive statistics, we can
 - Better understand data within a group
 - e.g., salary, survival for cancer patients
 - and compare data between groups
 - e.g., salary by gender, survival for different cancer treatments, etc.

Measures of central tendency

- Mean (average)
- Median (50th percentile, 0.50 quantile)
- Mode (value that occurs most often)

Measures of variability

- Range
- Variance
- Standard deviation
- Quantiles/Percentiles

Why do we care?

- By summarizing the data distribution using descriptive statistics, we can
 - Better understand data within a group
 - e.g., salary, survival for cancer patients
 - and compare data between groups
 - e.g., salary by gender, survival for different cancer treatments, etc.

Comparing groups using information about their data distributions is **statistics!**

 Data distributions are most commonly visualized using histograms

- Data distributions are most commonly visualized using histograms
- Histograms describe how often values in your data occur

- Data distributions are most commonly visualized using histograms
- Histograms describe how often values in your data occur
- Consider the following data set:
 - You collect data on 9 students on the number of years a student has played an instrument

Person	Years Playing Music
1	8
2	6
3	5
4	7
5	6
6	7
7	8
8	7
9	9

- Data distributions are most commonly visualized using histograms
- Histograms describe how often values in your data occur
- Consider the following data set:
 - You collect data on 9 students on the number of years a student has played an instrument
 - How many times does 5 occur?

Person	Years Playing Music
1	8
2	6
3	5
4	7
5	6
6	7
7	8
8	7
9	9

- Data distributions are most commonly visualized using histograms
- Histograms describe how often values in your data occur
- Consider the following data set:
 - You collect data on 9 students on the number of years a student has played an instrument
 - How many times does 5 occur?
 - How many times does 7 occur?

Person	Years Playing Music
1	8
2	6
3	5
4	7
5	6
6	7
7	8
8	7
9	9

- Data distributions are most commonly visualized using histograms
- Histograms describe how often values in your data occur
- Consider the following data set:
 - You collect data on 9 students on the number of years a student has played an instrument
 - How many times does 5 occur?
 - How many times does 7 occur?
- The plot of these frequencies vs the data values is a <u>histogram</u>

Person	Years Playing Music
1	8
2	6
3	5
4	7
5	6
6	7
7	8
8	7
9	9

 But what if the data are continuous (decimals) and not discrete (integer-valued)?

Person	Years Playing Music
1	8.2
2	6.1
3	5.5
4	7.8
5	6.4
6	7.6
7	8.2
8	7.3
9	9.9

- But what if the data are continuous (decimals) and not discrete (integervalued)?
- Not very informative!

Person	Years Playing Music
1	8.2
2	6.1
3	5.5
4	7.8
5	6.4
6	7.6
7	8.2
8	7.3
9	9.9

- But what if the data are continuous (decimals) and not discrete (integer-valued)?
- Not very informative!
- In this case, we place the data in "bins" to visualize the distribution
 - e.g., 4-5, 5-6, 6-7

Years Playing Music	Bins
8.2	8-9
6.1	6-7
5.5	5-6
7.8	7-8
6.4	6-7
7.6	7-8
8.2	8-9
7.3	7-8
9.9	9-10
	Playing Music 8.2 6.1 5.5 7.8 6.4 7.6 8.2 7.3

- But what if the data are continuous (decimals) and not discrete (integer-valued)?
- Not very informative!
- In this case, we place the data in "bins" to visualize the distribution
 - e.g., 4-5, 5-6, 6-7
- The number of bins is chosen by the data scientist

Person	Years Playing Music	Bins
1	8.2	8-9
2	6.1	6-7
3	5.5	5-6
4	7.8	7-8
5	6.4	6-7
6	7.6	7-8
7	8.2	8-9
8	7.3	7-8
9	9.9	9-10

- But what if the data are continuous (decimals) and not discrete (integer-valued)?
- Not very informative!
- In this case, we place the data in "bins" to visualize the distribution
 - e.g., 4-5, 5-6, 6-7
- The number of bins is chosen by the data scientist
- The best number of bins is subjective

Person	Years Playing Music	Bins
1	8.2	8-9
2	6.1	6-7
3	5.5	5-6
4	7.8	7-8
5	6.4	6-7
6	7.6	7-8
7	8.2	8-9
8	7.3	7-8
9	9.9	9-10

- But what if the data are continuous (decimals) and not discrete (integer-valued)?
- Not very informative!
- In this case, we place the data in "bins" to visualize the distribution
 - e.g., 4-5, 5-6, 6-7
- The number of bins is chosen by the data scientist
- The best number of bins is subjective
- You may need to try a few times before acquiring a useful histogram

Person	Years Playing Music	Bins
1	8.2	8-9
2	6.1	6-7
3	5.5	5-6
4	7.8	7-8
5	6.4	6-7
6	7.6	7-8
7	8.2	8-9
8	7.3	7-8
9	9.9	9-10

 Thus far, we have defined a data distribution and visualized it using a histogram

- Thus far, we have defined a data distribution and visualized it using a histogram
- Data distributions can take on many, many different shapes

- Thus far, we have defined a data distribution and visualized it using a histogram
- Data distributions can take on many, many different shapes

Histogram of

- Thus far, we have defined a data distribution and visualized it using a histogram
- Data distributions can take on many, many different shapes

• However, the most common is a bell-shaped curve called the normal distribution $\frac{1}{1-(x-y)^2}$

 $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$

Histogram of

Distributions and Descriptive Statistics

- Descriptive statistics describe different aspects of the distribution
- Central tendency Where is the center of the distribution?

- Descriptive statistics describe different aspects of the distribution
- Central tendency Where is the center of the distribution?

- Descriptive statistics describe different aspects of the distribution
- Central tendency Where is the center of the distribution?
 - Mean = 5.99, Median = 5.98, Mode = ~5.75

- Descriptive statistics describe different aspects of the distribution
- Central tendency Where is the center of the distribution?
 - Mean = 5.99, Median = 5.98, Mode = ~5.75
- What can we say about years playing music among students in our sample?

- Descriptive statistics describe different aspects of the distribution
- Central tendency Where is the center of the distribution?
 - Mean = 5.99, Median = 5.98, Mode = ~5.75
- What can we say about years playing music among students in our sample?
- Note: For the theoretical normal distribution, the mean = median = mode

- Descriptive statistics describe different aspects of the distribution
- Dispersion What is the range of years of music played?

- Descriptive statistics describe different aspects of the distribution
- Dispersion What is the range of years of music played?
 - 2 to 10 years

- Descriptive statistics describe different aspects of the distribution
- Dispersion What is the range of years of music played?
 - 2 to 10 years
- What can we say about this student?

- Descriptive statistics describe different aspects of the distribution
- Dispersion What is the range of years of music played?
 - 2 to 10 years
- What can we say about this student?
- Where is the student with the least amount of experience playing music?

- Imagine we collect data on two different groups of students (shown on the right)
- Which sample (1 or 2) has a smaller standard deviation in years of playing music?
 - A) Sample 1
 - B) Sample 2

- Imagine we collect data on two different groups of students (shown on the right)
- Which sample (1 or 2) has a smaller standard deviation in years of playing music?
 - A) Sample 1
 - B) Sample 2

Histogram of

When the distribution is close to symmetric the

mean ≈ median

When the distribution is close to symmetric the

mean ≈ median

• Left skewed distributions

mean < median

When the distribution is close to symmetric the

mean ≈ median

Left skewed distributions

mean < median

Right skewed distributions

mean > median

Data distributions can take on many, many different shapes!

R Code Covered in Practice Assignment