

PRINT YOUR NAME:	John Keller	

Rraden Ralentine PRINT INSTRUCTOR'S NAME: _

Mark your section/instructor:

Mark	your section,	/instructor:	
	Section 001	Brendt Gerics	8:00 - 8:50
□.	Section 002	Leo Herr	9:00 - 9:50
	Section 003	Tyler Schrock	9:00 - 9:50
	Section 004	Lee Roberson	10:00 - 10:50
A	Section 005	Braden Balentine	10:00 - 10:50
	Section 006	Xingzhou Yang	10:00 - 10:50
	Section 007	Lee Roberson	11:00 - 11:50
	Section 008	Shen Lu	11:00 - 11:50
	Section 009	Suzanne Craig	12:00 - 12:50
	Section 010	Carlos Pinilla-Suarez	12:00 - 12:50
	Section 011	Nathan Davidoff	1:00 - 1:50
	Section 012	Sion Ledbetter	1:00 - 1:50
	Section 013	Ruofan Li	2:00 - 2:50
	Section 014	Daniel Martin	2:00 - 2:50
	Section 015	Isabel Corona	3:00 - 3:50
	Section 016	Ira Becker	3:00 - 3:50
	Section 017	Ira Becker	4:00 - 4:50

Question	Points	Score	
1	9	8	
2	18	15	
3	11	10	
4	12	12	
5	8	7	
6	8 2	8	
7	12	10	
8	10	10	
9	12	9	
Total:	100	89	

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- $\bullet\,$ You have 90 minutes and the exam is 100 points.
- $\bullet\,$ You do not need to simplify numerical expressions. For example leave fractions like 100/7 or expressions like ln(3)/2 as is.
- \bullet When done, give your exam to your instructor, who will mark your name off on a photo roster.
- We hope you show us your best work!

Math 1300

 ${\rm Midterm}\ 1$

February 6, 2017

1. The position, s(t), of a banana slug from the end of a log is checked at various times t. The collected information is given in the table below.

t (in minutes)	10	20	60	110	300
s(t) (in feet)	3.25	2.60	1.00	0.25	0.22

(a) (3 points) Find the slope of the secant line intersecting s(t) at t=10 and t = 110.(110, 10)

m	5(10)-5(110)
men	10-10
deline.	3.25-0.25
1000	3
	-100
M=	3

$$\left(m = -\frac{3}{100} \right)$$

(b) (3 points) Estimate s'(20).

(10, 20): $m = \frac{5(10) - 5(20)}{10 - 20} = \frac{3.25 - 2.60}{-10} = \frac{1.35}{-10}$

= 107

(c) (3 points) Suppose s'(50) = -0.3. What does the value -0.3 represent in the context of the problem? Include units.

this problem, 5'(50) = -0.3 simply backwards 0.3 feet, mits of went

- 2. Determine the value of the following limits. You do NOT need to show work.
 - (a) (3 points) $\lim_{x \to 0} \frac{x-1}{\cos x}$
- II) 0
- III) 1
- IV) ∞
- V) DNE

- III) 0
- IV) 1

- (c) (3 points) $\lim_{x \to \frac{7}{2}} \frac{4x^2 49}{2x 7}$ I) 0 II) $\frac{7}{2}$

- V) DNE

$$\frac{(2x-7)(2x+7)}{2x+7} = \frac{2x+7}{2}$$

- 3. (a)
- 3. (a) (2 points) State the mathematical definition of what it means for the function f(x) to be continuous at x = a.

(b) (9 points) Find the value of k such that the following function is continuous.

$$g(x) = \begin{cases} x+k, & \text{if } x \ge 2\\ kx^2, & \text{if } x < 2 \end{cases}$$

$$2=3k$$

$$k=\frac{3}{2}$$

- 4. The following statements are all false. Justify why each statement is false by providing an explanation that includes a picture.
 - (a) (4 points) If $\lim_{x \to 8^+} f(x) = 51 = \lim_{x \to 8^-} f(x)$, then f(x) is continuous at x = 8.

f(8) = und.

This statement is incorrect because (b) is and (d) ((8) can be undefined while still having limits (see graph)

(b) (4 points) If $\lim_{x\to -4} r(x)$ does not exists, then r(-4) does not exist.

This statement is not true because there could be a jump continuity at rf4).

(see graph)

4-1 3

(c) (4 points) If $f(x) = \frac{x^2 - 1}{x + 1}$ and g(x) = x - 1, then f(x) is equal to g(x).

This statement is not true because f(-1)18 Not equal to g(-1). f(-1) is

undefined because the equation has

O in the denominator.

5. (8 points) Use the Squeeze Theorem to determine

$$\lim_{x \to 5} |x - 5| \cos\left(\frac{2}{x - 5}\right).$$

$$\lim_{x \to 5} \left| -x + 5 \right| \leq \lim_{x \to 5} \left| x - 5 \right| \cos \left(\frac{2}{x - 5} \right) \leq \lim_{x \to 5} \left| x - 5 \right|$$

(a) Now inputting limit values as
$$x^{55}$$
 makes: +2
 $[-5+5]=0$ and $[5-5]=0$

$$\lim_{x \to S} |x - S| \cos\left(\frac{2}{x - S}\right) = 0$$

- 8/8
- 6. (8 points) Let $f(x) = x^5 + 2x^3 + 2x^2 2$. Use the Intermediate Value Theorem to show f(x) crosses the x-axis in the interval [-1,1]. You must check that the hypotheses of the Intermediate Value Theorem are satisfied to receive full credit.
- O Because f(x) is a polynomial, f(x) is continuous.
- $2 f(-1) = (-1)^5 + 2(-1)^3 + 2(-1)^2 2 = -1 2 + 2 2 = -3$ $4(1) = (1)^5 + 2(1)^3 + 2(1)^2 2 = 1 + 2 + 2 2 = 3$ these numbers
- (3) Therefore, by the IVT, there is a "c"value in the interval (-1,1) where f(c)=0.

- 7. Consider the function $f(x) = \frac{3}{x+2}$.
 - (a) (9 points) Use the limit definition of the derivative to find f'(1).

$$f'(1) = \lim_{h \to 0} \frac{3}{(1+h)+2} - \left(\frac{3}{1+2}\right)$$

$$\lim_{h \to 0} \frac{3}{(1+h)+2} - \left(\frac{3}{1+2}+h\right)$$

$$\lim_{h \to 0} \frac{h}{h+3}$$

$$\lim_{h \to 0} \frac{h}{h}$$

$$\lim_{h \to 0} \frac{h}{h+3}$$

$$\lim_{h \to 0} \frac{h}{h+3}$$

$$\lim_{h \to 0} \frac{h}{h+3}$$

(b) (3 points) Write the equation of the tangent line of the function at
$$x = 1$$
.

$$y - 1 = \frac{1}{4}(x - 1)$$
 $y = \frac{1}{4}x + \frac{3}{4}$

8. (10 points) Draw a function which meets the following requirements:

(a)
$$\lim_{x \to -\infty} f(x) = 2$$
 \checkmark

(d)
$$\lim_{x \to 2^+} f(x) = 3$$
 \checkmark

(b)
$$\lim_{x \to -4} f(x) = -\infty$$

(e)
$$\lim_{x\to 5} f(x)$$
 DNE \checkmark

(a)
$$\lim_{x \to -\infty} f(x) = 2 \quad \checkmark$$
(b)
$$\lim_{x \to -4} f(x) = -\infty \quad \checkmark$$
(c)
$$\lim_{x \to -1} f(x) = -3 \quad \checkmark$$

9. Answer the questions about the following functions. You do NOT need to show work.

$$g(x) = \begin{cases} -x^2 + 1 & x \le -3\\ x + 1 & x > -3 \end{cases}$$

(a) (3 points) $\frac{f(4)}{g(4)}$ $\frac{1}{5}$ III) $\frac{-4}{15}$ III) $\frac{-1}{15}$

(b) (3 points) $\lim_{x \to 4^{-}} (f(x) - g(x))$

I)
$$-22$$

II)
$$-20$$

$$\overline{1}$$
 -4

$$II) -2$$

(d) (3 points) $\lim_{x\to 0} g(f(x))$