Stochastische Modelle

9. Übung

Aufgabe 36. Ein Spieler kann bei einem zweiarmigen Banditen in jeder Runde Arm A oder Arm B wählen. Wählt er Arm A, gewinnt er 1 Euro mit Wahrscheinlichkeit $\alpha \in (0,1)$ und verliert 1 Euro mit Wahrscheinlichkeit $1-\alpha$. Wählt er Arm B, gewinnt er 1 Euro mit Wahrscheinlichkeit $\beta \in (0,1)$ und verliert 1 Euro mit Wahrscheinlichkeit $1-\beta$. Dabei sind α und β unbekannt. Würde der Spieler Arm A bzw. B jeweils mit Wahrscheinlichkeit $\frac{1}{2}$ wählen, ergäbe sich also in jeder Runde die Gewinnwahrscheinlichkeit $\frac{1}{2}(\alpha + \beta)$. Er wählt aber nur in der ersten Runde den Arm zufällig aus. Danach geht er wie folgt vor. Gewinnt er in Runde n, wählt er in Runde n+1 denselben Arm wie in Runde n. Andernfalls wählt er den anderen Arm.

- (a) Berechnen Sie den Grenzwert für $n \to \infty$ der Wahrscheinlichkeit, dass der Spieler in Runde n gewinnt.
- (b) Unter welcher Bedingung an α und β ist dieser Grenzwert größer als $\frac{1}{2}(\alpha + \beta)$?

Aufgabe 37. Im Lauf der Zeit bilden sich n Personen ihre Meinungen, jeweils ausgedrückt durch eine Zahl im Intervall [0,1]. Beispielsweise kann diese Zahl den Grad der Zustimmung zu einer Aussage ausdrücken. Zum Zeitpunkt t=0 hat Person i die Meinung $x_i(0), i=1,\ldots,n$. Zu den Zeitpunkten $t=1,2,\ldots$ aktualisiert jede Person ihre Meinung, indem sie zu einem gewichteten Mittel der bisherigen Meinungen übergeht:

$$x_i(t) = \sum_{j=1}^n a_{ij} x_j(t-1), \qquad i = 1, \dots, n.$$

Person i misst also der Meinung von Person j das Gewicht a_{ij} bei. Die Gewichte sind zeitlich konstant und nichtnegativ und es gilt $\sum_{j=1}^{n} a_{ij} = 1$ für alle $i = 1, \ldots, n$.

- (a) Formulieren Sie geeignete Bedingungen an die Gewichte, die sicherstellen, dass ein Konsens erreicht wird in dem Sinn, dass die Grenzwerte $\lim_{t\to\infty} x_i(t)$ für $i=1,\ldots,n$ existieren und übereinstimmen.
- (b) Zeigen Sie, dass die Grenzwerte gleich dem arithmetischen Mittel von $x_1(0), \ldots, x_n(0)$ sind, falls (zusätzlich zu den Bedingungen aus (a)) $a_{ij} = a_{ji}$ gilt für alle $i \neq j$.

Aufgabe 38. Sei $\{X_n : n \in \mathbb{N}_0\}$ eine Markov-Kette mit Zustandsraum S und Übergangsmatrix $(p_{ij})_{i,j\in S}$. Sei $\tau_j := \inf\{n \geq 1 : X_n = j\}$ und $f_{ij} := P(\tau_j < \infty | X_0 = i), i, j \in S$.

(a) Zeigen Sie: Für alle $n \in \mathbb{N}$ und $i, j \in S$ gilt

$$P(X_n = j, X_m \neq i \text{ für alle } m > n | X_0 = i) = p_{ij}^{(n)} (1 - f_{ji}).$$

- (b) Nehmen Sie nun an, dass i ein rekurrenter Zustand ist und dass j ein Zustand ist, für den $f_{ij} > 0$ gilt.
 - (i) Berechnen Sie f_{ii} .
 - (ii) Ist *j* rekurrent?
 - (iii) Berechnen Sie f_{ij}

so halb