SBVLIFA: Linguagens Formais e Autômatos

Aula 03: Autômatos Finitos Não-Determinísticos

2/23 Linguagens Regulares

Linguagens Regulares

Tipo	Classe de Linguagens	Modelo de Gramática	Modelo de Reconhecedor
0	Recursivamente enumeráveis	Irrestrita	Máquina de Turing
1	Sensíveis ao contexto	Sensível ao contexto	Máquina de Turing com fita limitada
2	Livres de contexto	Livre de contexto	Autômato de pilha
3	Regulares	Linear (direita ou esquerda)	Autômato finito

Linguagens Regulares

- Relembrando...
 - Autômato Finito Determinístico (DFA): o controle é determinístico, ou seja, sempre está em um único estado em qualquer instante;
 - Autômato Finito Não-Determinístico (NFA): o controle pode estar em mais de um estado em qualquer instante.

Linguagens Regulares Autômatos Finitos Não-Determinísticos

- A adição do não-determinismo não permite a definição de quaisquer linguagens que não sejam reconhecidas por DFAs;
- O não-determinismo permite "programar" soluções para problemas usando uma linguagem de alto nível, que depois podem ser "compiladas" em DFAs que, por sua vez, podem então ser executados em computadores convencionais;
- Trocando em miúdos, o não-determinismo nos dá mais ferramentas para descrever o autômato finito, facilitando sua definição e então podemos convertê-lo, usando um algoritmo que estudaremos, para um DFA;
- Em relação à terminologia, chamaremos um Autômato Finito Não-Determinístico de NFA.

Linguagens Regulares Autômatos Finitos Não-Determinísticos

- Informalmente, a diferença entre DFAs e NFAs é que os NFAs permitem que haja mais de uma transição com o mesmo símbolo partindo de qualquer estado;
- Isso implica justamente na capacidade do controle de execução do autômato estar em mais de um estado ao mesmo tempo, visto que guando um símbolo for lido e duas ou mais transições forem tomadas, chega-se a estados diferentes;
- Em razão disso, a função de transição dos NFAs tem a mesma "cara", ou assinatura, da função de transição dos DFAs, ou seja, ela recebe um estado e um símbolo como entrada, mas com a diferença que ela retorna um conjunto de estados, mesmo que unitário, ao ser executada.

6/23 Autômatos Finitos Não-Determinísticos

Definição Formal:

$$A = (Q, \Sigma, \delta, q_0, F)$$

- \vec{A} : autômato finito não-determinístico, uma 5-upla, onde:
 - Q: conjunto finito de estados;
 - \triangleright Σ : conjunto finito de símbolos de entrada (alfabeto);
 - lacksquare δ : função de transição, na forma $\delta(q,a) \to \{p_1,p_2,...,p_n\}$, ou seja, $\delta: Q \times \Sigma \to \mathcal{P}(Q)$
 - $ightharpoonup q_0$: estado inicial, tal que $q_0 \in Q$
 - ightharpoonup F: conjunto de estados finais ou de aceitação, tal que $F \subseteq Q$
- ightharpoonup Obs: $\mathcal{P}(Q)$ significa todos os subconjuntos de Q. Lê-se "conjunto tência de Q''.

7/23 Autômatos Finitos Não-Determinísticos Exemplo

Para:

```
L = \{ x01 \mid x \text{ \'e qualquer string de 0's e 1's } \}
```

- Strings da linguagem: 01, 1101 e 00101, ...
- Strings que não são da linguagem: ε , 0, 111000, ...

8/23 Autômatos Finitos Não-Determinísticos Exemplo

Diagrama de transições:

9/23 Autômatos Finitos Não-Determinísticos Exemplo

- $A = (Q, \Sigma, \delta, q_0, F)$, onde:
- $Q = \{ q_0, q_1, q_2 \}$
- $\Sigma = \{ 0, 1 \}$
- $F = \{q_2\}$
- **δ**:

	0	1
$\rightarrow q_0$	$\{q_0,q_1\}$	$\{q_0\}$
q_1	Ø	{q ₂ }
* q ₂	Ø	Ø

10/23 Autômatos Finitos Não-Determinísticos Extensão da Função de Transição às Strings

- Necessária para tornar exata a noção da linguagem de um NFA;
- lacktriangle Se δ é a função de transição, $\hat{\delta}$ (delta chapéu) é a função de transição estendida:
- Definição:
 - **Base:** $\hat{\delta}(q, \varepsilon) = \{q\}$

Se estamos em q e não lemos nada, ficamos em q

- Indução:
 - w = xa, onde a é o último símbolo de w e x é o restante de w;
 - $\hat{\delta}(q, x) = \{p_1, p_2, ..., p_k\}$

 - $\hat{\delta}(q, w) = \{r_1, r_2, ..., r_m\}$
- Ou seja, calculamos $\hat{\delta}(q,w)$ calculando primeiro $\hat{\delta}(q,x)$ e depois seguindo todas as transições de quaisquer desses estados que sejam rotuladas por a.

11/23 Autômatos Finitos Não-Determinísticos Extensão da Função de Transição às Strings

- **Exemplo:** Para $A = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$, realizar a computação de $\hat{\delta}(q_0, w)$ para cada prefixo w de 00101, começando em δ e aumentando o tamanho:
 - $\hat{\delta}(q_0, \varepsilon) = \{q_0\}$
 - $\hat{\delta}(q_0, 0) = \delta(q_0, 0) = \{q_0, q_1\}$
 - $\hat{\delta}(q_0, 00) = \delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$
 - $\hat{\delta}(q_0, 001) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$
 - $\hat{\delta}(q_0, 0010) = \delta(q_0, 0) \cup \delta(q_2, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$
 - $\hat{\delta}(q_0, 00101) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$

δ		
	0	1
$\rightarrow q_0$	$\{q_0,q_1\}$	$\{q_0\}$
q_1	Ø	{q ₂ }
* q2	Ø	Ø

Autômatos Finitos Não-Determinísticos Extensão da Função de Transição às Strings

- **Exemplo:** Para $A = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$, realizar a computação de $\hat{\delta}(q_0, w)$ para cada prefixo w de 00101, começando em δ e aumentando o tamanho:
 - $\hat{\delta}(q_0, \varepsilon) = \{q_0\}$
 - $\hat{\delta}(q_0, 0) = \delta(q_0, 0) = \{q_0, q_1\}$
 - $\hat{\delta}(q_0, 00) = \delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$
 - $\hat{\delta}(q_0, 001) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$
 - $\hat{\delta}(q_0, 0010) = \delta(q_0, 0) \cup \delta(q_2, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$
 - $\hat{\delta}(q_0, 00101) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$

δ		
	0	1
$\rightarrow q_0$	$\{q_0,q_1\}$	$\{q_0\}$
q_1	Ø	{q ₂ }
* q2	Ø	Ø

13/23 Autômatos Finitos Não-Determinísticos Definição de Linguagem de um NFA

■ Dado um NFA $A = (Q, \Sigma, \delta, q_0, F)$, sua linguagem L(A) é definida por:

$$L(A) = \{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$$

▶ Isto é, L(A) é o conjunto de strings w em Σ^* tais que $\hat{\delta}(q_0, w)$ contém pelo menos um estado de aceitação. Se L é L(A) para algum NFA A, dizemos que L é uma linguagem regular, pois um NFA possui um DFA equivalente.

- Dado um NFA $N=(Q_N, \Sigma, \delta_N, q_0, F_N)$, construir o DFA $D=(Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ tal que L(N) = L(D)
 - Os alfabetos são os mesmos;
 - lacktriangle O estado inicial de D é o conjunto que contém apenas o estado inicial de N.
- Construção dos outros componentes:
 - Q_D é o conjunto de subconjuntos de Q_N , isto é, Q_D é o conjunto potência de Q_N . Se Q_N tem n estados, Q_D terá 2^n estados. O número de estados de Q_D pode ser efetivamente muito menor que 2^n , pois vários estados poderão ser inacessíveis e, por consequência, "descartados" do DFA:
 - $ightharpoonup F_D$ é o conjunto de subconjuntos S de Q_N tais que $S \cap F_N \neq \emptyset$, isto é, F_D representa todos os conjuntos de estados de N que incluem pelo menos um estado de aceitação de N;
 - Para cada conjunto $S \subseteq Q_N$ e para cada símbolo de entrada a em Σ ,

$$\delta_D(S,a) = \bigcup_{p \ em \ S} \delta_N(p,a)$$

Isto é, para calcular $\delta_D(S,a)$, examinamos todos os estados p em S, vemos para estados N vai a partir de p sobre a entrada a e unimos todos esses estados.

Construção do DFA	D = (QD, E, SD, 490), FD)

(PD=10, 190), 191), 192, 190,91), 190,92), 191,92), 190,91,92)

FD=(192), 190,92), 191, 92), 190,91,92) -> todo O estados de PD que têm

O(1) estado(2) final(is) de

//			
,	(D.	0	1
	$\overline{\varphi}$	Ø	Ø
	-> 1905	190,91)	59.}
	1914	ϕ	19a}
/	* 192)	ø	ø
1,	ጎ ዓ ₀ , ዓላ	199915	990,92 }
	* }90,92)	390,913	59.)
	* 191,92)	ø	3925
(* 1 90 91 914	390.90	390,925

δD:	0	1
ϕ_{A}	Ø A	ØA
-> 1905 3	190,91) =	590} B
1914 c/	Ø A	19a) D
* 190/2	A A	Ø A
¥90,91} <u>€</u>	199915 E	590,925 F
/* }90,92) F	}90,9,5 €	590) B
/ * 19, 92) 6	A	3925 D
* } 90,91,1925	390,913 €	∫90,92} F

Renomeando os estados

	0 1	1
A	A	A
-> B	E	B
c	A	D
* つ	A	А
E	E	F
* F	E	3
* G	A	D
* 4	E	F

Quais estados são?

$\delta_{\mathbf{D}}$: 0	
$\emptyset A$ $\emptyset A$ $\emptyset A$	
> 19053 190,91) = \ 1905 B	
1915c ØA / 1925 T	7
* 19050 PA	
190,915 E 190,925	
(x 390,92) € 390,9,5 € 390) B	
* 19, 92 5 × 19, 925 D	
* } 90,91,1925 } } 990,915 E \$90,925	F

Kenomeando os estados

Os estados acemiais são:

B, E & F

Avais estades são?

$$D = (Q_D, \Xi, S_D, B, F_D)$$

$$Q_D = \langle B, F, F \rangle$$

$$F_D = \langle F, F \rangle$$

$$S_D = \begin{cases} 0 & 1 \\ - B & F \end{cases}$$

$$E & E & F \\ - B & F \end{cases}$$

Exercício e3.1: Para cada linguagem abaixo, todas sobre o alfabeto { 0, 1 }, defina formalmente o seu respectivo NFA, apresentando a tabela e o diagrama de transições:

- a) $L = \{ w \mid w \text{ termina em } 00 \}$
- b) $L = \{ w \mid w \text{ começa com } 1 \text{ e termina com } 0 \}$
- c) $L = \{ w \mid w \text{ possui três } 0'\text{s consecutivos } \}$
- $\mathcal{L} = \{ w \mid w \text{ contém a subcadeia 0101, isto \'e}, w = x0101y \text{ para algum } x \text{ e algum } y \}$

Díca: procure usar o não-determinismo para facilitar sua modelagem, você perceberá que a construção dos autômatos se tornará quase que trivial em comparação aos DFAs que reconhecem as mesmas linguagens!

Exercício e3.2: Para cada NFA do exercício anterior, construa um DFA equivalente.

Exercício e3.3: Converta o seguinte NFA em DFA:

	0	1
$\rightarrow p$	{ <i>p</i> , <i>q</i> }	{ <i>p</i> }
q	{r}	{r}
r	{s}	Ø
* S	<i>{s}</i>	{ <i>s</i> }

Exercício e3.4: Converta o seguinte NFA em DFA:

	0	1
$\rightarrow p$	{ <i>q</i> , <i>s</i> }	{q}
* q	{r}	{ <i>q</i> , <i>r</i> }
r	{s}	{ <i>p</i> }
* S	Ø	{ <i>p</i> }

Exercício e3.5: Converta o seguinte NFA em DFA:

	0	1
$\rightarrow p$	{ <i>p</i> , <i>q</i> }	{ <i>p</i> }
q	{ <i>r</i> , <i>s</i> }	$\{t\}$
r	{ <i>p</i> , <i>r</i> }	{ <i>t</i> }
* S	Ø	Ø
* t	Ø	Ø

Exercício e3.6: Converta o seguinte NFA em DFA:

	а	b	С
→* <i>q</i> ₀	$\{q_1,q_3\}$	$\{q_{3}\}$	Ø
q_1	Ø	$\{q_2\}$	$\{q_4\}$
* q2	Ø	$\{q_1\}$	Ø
q_3	Ø	Ø	{q ₁ }
$\overline{}^*q_4$	Ø	Ø	{q ₄ }

Exercício e3.7: Converta o seguinte NFA em DFA:

	а	b
$\rightarrow q_0$	$\{q_1,q_3\}$	$\{q_3\}$
q_1	$\{q_1,q_2\}$	$\{q_1, q_2\}$
q_2	$\{q_2,q_3\}$	$\{q_3\}$
* <i>q</i> ₃	Ø	Ø

Exercício e3.8: Converta o seguinte NFA em DFA:

<u> </u>		а	b	С
<u>_</u>	$\rightarrow q_0$	$\{q_1\}$	$\{q_1\}$	$\{q_2\}$
	q_1	$\{q_3\}$	$\{q_4\}$	$\{q_0, q_2, q_3, q_4\}$
	q_2	$\{q_0, q_4\}$	$\{q_0,q_3\}$	$\{q_1, q_3, q_4\}$
	* q ₃	$\{q_4\}$	$\{q_{4}\}$	$\{q_4\}$
	$* q_4$	$\{q_3\}$	$\{q_3\}$	$\{q_3\}$

23/23 Bibliografia

HOPCROFT, J. E.; ULLMAN, J. D.; MOTWANI, R. Introdução à Teoria de Autômatos, Linguagens e Computação. 2. ed. Rio de Janeiro: Elsevier, 2002. 560 p.

RAMOS, M. V. M.; JOSÉ NETO, J.; VEGA, I. S. Linguagens Førmais: Teoria, Modelagem e Implementação. Porto Alegre: Bookman, 2009. 656 p.

SIPSER, M. Introdução à Teoria da Computação. 2. ed. São Paulo: Cengage Learning, 2017. 459 p.

