

Правоугаоници

У средњем веку, Мехо Пузић, владар Београда, донео је одлуку да сагради тврђаву у центру свога града, на врху Лабудовог брда.

Лабудово брдо се може предсатвити као мрежа састављена од $n \times m$ квадрата. Редови мреже су нумерисани бројевима од 0 до n-1, док су колоне мреже нумерисане бројевима од 0 до m-1. Означимо квадрат у i-том реду и j-тој колони $(0 \le i \le n-1, 0 \le j \le m-1)$ са (i,j). Сваки квадрат (i,j) има своју висину a[i][j].

Мехо Пузић је затражио од градитеља тврђаве, Јове Бенгина, да трврђава има **правоугаони облик**. Тврђава не сме садржати ниједан гранични квадрат Лабудовог брда (тј. ред 0, ред n-1, колона 0 и колона m-1). Дакле, градитељи морају изабрати четири цела броја r_1 , r_2 , c_1 и c_2 ($1 \le r_1 \le r_2 \le n-2$ і $1 \le c_1 \le c_2 \le m-2$), чиме се дефинише да тврђава садржи све квадрате (i,j) такве да је $r_1 \le i \le r_2$ і $c_1 \le j \le c_2$.

Тврђава ће се сматрати **валидном** ако и само ако за сваки квадрат (i,j) који припада тврђави важи следећи услов:

• Посматрајмо следећа четири квадрата: два која су суседна тврђави у реду i (квадрати (i,c_1-1) и (i,c_2+1)) и два која су суседна тврђави у колони j (квадрати (r_1-1,j) и (r_2+1,j)). Висина квадрата (i,j) мора бити **строго** мања од висина та четири квадрата.

Ваш задатак је да помогнете градитељу Јови да одреди на колико начина може направити валидну тврђаву (тј. на колико се начина могу изабрати бројеви r_1 , r_2 , c_1 и c_2 који дефинишу валидну тврђаву).

Детаљи имплементације

Потребно је имплементирати следећу функцију:

int64 count_rectangles(int[][] a)

- a: матрицу димензије $n \times m$ која садржи целе бројеве који представљају висине квадарата.
- Функција треба да врати број начина на које је могуће изградити валидну тврђаву.

Примери

Пример 1

Посматрајте следећи позив функције:

Постоји шест начина да се изгради валидна тврђава:

- $r_1 = r_2 = c_1 = c_2 = 1$
- $r_1 = 1, r_2 = 2, c_1 = c_2 = 1$
- $r_1=r_2=1, c_1=c_2=3$
- $r_1 = r_2 = 4, c_1 = 2, c_2 = 3$
- $\bullet \ \ r_1=r_2=4, c_1=c_2=3$
- $r_1=3, r_2=4, c_1=c_2=3$

На пример, $r_1=1, r_2=2, c_1=c_2=1$ дефинишу валидну тврђаву јер су задовољени услови:

- ullet a[1][1]=4 је строго мање од a[0][1]=8, a[3][1]=14, a[1][0]=7 и a[1][2]=10.
- ullet a[2][1]=7 је строго мање од a[0][1]=8, a[3][1]=14, a[2][0]=9 и a[2][2]=20.

Ограничења

- 1 < n, m < 2500
- ullet $0 \leq a[i][j] \leq 7\,000\,000$ (за свако $0 \leq i \leq n-1, 0 \leq j \leq m-1$)

Подзадаци

- 1. (8 поена) $n, m \leq 30$
- 2. (7 поена) $n, m \le 80$
- 3. (12 поена) $n, m \leq 200$
- 4. (22 поена) $n, m \le 700$
- 5. (10 поена) $n \leq 3$
- 6. (13 поена) $0 \leq a[i][j] \leq 1$ (за свако $0 \leq i \leq n-1, 0 \leq j \leq m-1$)
- 7. (28 поена) Нема додатних ограничења.

Грејдер

Грејдер учитава податке у следећем формату:

- линија 1: п т
- ullet линија 2+i (за $0 \leq i \leq n-1$): a[i][0] a[i][1] \dots a[i][m-1]

Грејдер штампа једну линију која садржи вредност коју враћа функција count_rectangles.