FY1005/TFY4165 Termisk fysikk. Institutt for fysikk, NTNU. Høsten 2015.

Veiledning: 9. november og 12. november. Innleveringsfrist: Fredag 13. november kl 16.

Øving 12

Oppgave 1. Varmeskjold

En svart overflate som holdes på konstant (høy) temperatur T_H er parallell med en annen svart overflate med konstant temperatur T_L . Det er vakuum mellom platene.

For å redusere varmestrømmen på grunn av stråling innføres et varmeskjold som består av N parallelle svarte plan som plasseres mellom den kalde og varme overflaten. Etter en stund oppnås stasjonære forhold. Beregn hvilken reduksjon av energistrømmen mellom overflatene T_H og T_L varmeskjoldet gir.

Oppgave 2 Kokte poteter

Poteter av en viss størrelse trenger 25 minutter for å koke ferdig. Anta at poteter er kokt ferdig når temperaturen i midten overstiger en viss verdi. Hvor lang tid trengs da for å koke ferdig poteter av samme type og samme form, men som er dobbelt så tunge?

Oppgave 3. Fjernvarmeanlegg

På Tiller produseres varme ved forbrenning av avfall. Årlig energiproduksjon er 600 GWh. Varmen distribueres til kunder i Trondheim og Klæbu ved hjelp av varmt vann som strømmer gjennom isoporisolerte rør. Rørene ligger stort sett under bakken men går åpent under Elgesæter bro:

- a) Hvor stor (gjennomsnittlig) effekt leverer fjernvarmeanlegget? Dersom den produserte varmen benyttes til å heve temperaturen i vann fra 15 til 95°C, hvor mye vann kan da passere gjennom anlegget på Tiller pr tidsenhet? (Varmekapasiteten til vann er c = 1 cal/g K, dvs 4184 J/kg K.) Anta at dette vannet sirkulerer i to hovedsløyfer, en til Trondheim og en til Klæbu, begge med sirkulære rør med (indre) diameter $d_2 = 25$ cm. Vis at strømningshastigheten da er begrenset til (ca) v = 2 m/s.
- b) Anta at rørene er isolert med et 5 cm tykt isoporlag, slik at ytre diameter er $d_1 = 35$ cm. Vis at varme avgitt pr tidsenhet, og pr lengdeenhet av røret, i avstand z fra fjernvarmeanlegget, er gitt ved

$$j(z) = \frac{dQ/dt}{L} = \frac{2\pi\kappa[T(z) - T_0]}{\ln(d_1/d_2)}.$$

Her er $\kappa = 0.035$ W/m K varmeledningsevnen til isopor, T_0 er temperaturen i bakken omkring røret (antatt konstant), og T(z) er vannets temperatur i avstand z fra anlegget. (Vi antar for enkelhets skyld at temperaturen er konstant over det indre rørets tverrsnitt.)

c) På grunn av varmetapet vil temperaturen i vannet falle. "Stasjonære forhold" betyr her konstant temperatur T(z) i en gitt avstand z fra anlegget. Følger vi en gitt vannmengde, derimot, avtar temperaturen med tiden t. Kjenner vi vannets hastighet v = dz/dt, kan T(t) for en gitt vannmengde enkelt "oversettes" til den stasjonære T(z). Vis at j(z) kan skrives som

$$j(z) = -\frac{1}{4} c\rho \pi d_2^2 v \frac{dT}{dz}.$$

Her er $\rho=10^3~{\rm kg/m^3}$ massetet
theten til vann, og andre størrelser er definert tidligere.

d) Kombineres de to uttrykkene for j(z), blir resultatet en differensialligning for T(z), med løsning

$$T(z) = T_0 + [T(0) - T_0] e^{-\beta z}.$$

Vis dette, og vis dermed at

$$\beta = \frac{8\kappa}{c\rho d_2^2 v \ln(d_1/d_2)}.$$

e) Anta at temperaturen nede i bakken ikke blir lavere enn $T_0 = 0$ °C. Anta videre at temperaturen i vannet ikke skal falle med mer enn 5°C over en avstand z = 10 km. Hvor stor må da strømningshastigheten v minst være?