

Combinatorial Games: Open Problems and Computational Approaches

Gwyn Whieldon

Hood College

November 7, 2015

Game Solutions and Winning Strategies

Two Players (Left/Right)

- Two Players (Left/Right)
- No Chance or Randomness

- Two Players (Left/Right)
- No Chance or Randomness
- No Hidden Information

- Two Players (Left/Right)
- No Chance or Randomness
- No Hidden Information
- Turn-Based Play

- Two Players (Left/Right)
- No Chance or Randomness
- No Hidden Information
- Turn-Based Play

- Two Players (Left/Right)
- No Chance or Randomness
- No Hidden Information
- Turn-Based Play
- Clear Winning Conditions

(Finite) Combinatorial Games

- Two Players (Left/Right)
- No Chance or Randomness
- No Hidden Information
- Turn-Based Play
- Clear Winning Conditions
- Finite

(Finite) Combinatorial Games

- Two Players (Left/Right)
- No Chance or Randomness
- No Hidden Information
- Turn-Based Play
- Clear Winning Conditions
- Finite

Let's play a game!

Rules for Chomp

Rules for Chomp

 Play begins on an n × m rectangular board:

 Players select a square in remaining in the board, and remove all squares above and to the right of it.

Rules for Chomp

• Play begins on an $n \times m$ rectangular board:

 Players select a square in remaining in the board, and remove all squares above and to the right of it.

Rules for Chomp

 Play begins on an n × m rectangular board:

 Players select a square in remaining in the board, and remove all squares above and to the right of it.

Rules for Chomp

- Players select a square in remaining in the board, and remove all squares above and to the right of it.
- Player forced to take the bottom left square loses.

Rules for Chomp

- Players select a square in remaining in the board, and remove all squares above and to the right of it.
- Player forced to take the bottom left square loses.

Rules for Chomp

- Players select a square in remaining in the board, and remove all squares above and to the right of it.
- Player forced to take the bottom left square loses.

Rules for Chomp

- Players select a square in remaining in the board, and remove all squares above and to the right of it.
- Player forced to take the bottom left square loses.

Rules for Chomp

- Players select a square in remaining in the board, and remove all squares above and to the right of it.
- Player forced to take the bottom left square loses.

Rules for Chomp

- Players select a square in remaining in the board, and remove all squares above and to the right of it.
- Player forced to take the bottom left square loses.

Rules for Chomp

• Play begins on an $n \times m$ rectangular board:

- Players select a square in remaining in the board, and remove all squares above and to the right of it.
- Player forced to take the bottom left square loses.

Rules for Chomp

- Players select a square in remaining in the board, and remove all squares above and to the right of it.
- Player forced to take the bottom left square loses.

Rules for Chomp

- Players select a square in remaining in the board, and remove all squares above and to the right of it.
- Player forced to take the bottom left square loses.

Rules for Chomp

- Players select a square in remaining in the board, and remove all squares above and to the right of it.
- Player forced to take the bottom left square loses.

Rules for Chomp

• Play begins on an $n \times m$ rectangular board:

- Players select a square in remaining in the board, and remove all squares above and to the right of it.
- Player forced to take the bottom left square loses.

Rules for Chomp

- Players select a square in remaining in the board, and remove all squares above and to the right of it.
- Player forced to take the bottom left square loses.

Rules for Chomp

 Play begins on an n × m rectangular board:

- Players select a square in remaining in the board, and remove all squares above and to the right of it.
- Player forced to take the bottom left square loses.

Rules for Chomp

• Play begins on an $n \times m$ rectangular board:

- Players select a square in remaining in the board, and remove all squares above and to the right of it.
- Player forced to take the bottom left square loses.

Game Terminology

Examples of Games

• $\mathcal{B} = \text{set of all boards/positions}$

Rules for Chomp

 Play begins on an n × m rectangular board:

- Players select a square in remaining in the board, and remove all squares above and to the right of it.
- Player forced to take the bottom left square loses.

- ullet $\mathcal{B}=$ set of all boards/positions
- $\mathcal{M} = \text{permissible moves}$ $m = (B_i, B_j) \in \mathcal{B} \times \mathcal{B}$

Rules for Chomp

 Play begins on an n × m rectangular board:

- Players select a square in remaining in the board, and remove all squares above and to the right of it.
- Player forced to take the bottom left square loses.

- ullet $\mathcal{B}=$ set of all boards/positions
- $\mathcal{M} =$ permissible moves $m = (B_i, B_j) \in \mathcal{B} \times \mathcal{B}$
- B_S = opening board/position

Rules for Chomp

• Play begins on an $n \times m$ rectangular board:

- Players select a square in remaining in the board, and remove all squares above and to the right of it.
- Player forced to take the bottom left square loses.

- $\mathcal{B} = \text{set of all boards/positions}$
- $\mathcal{M} = \text{permissible moves}$ $m = (B_i, B_i) \in \mathcal{B} \times \mathcal{B}$
- B_S = opening board/position
- $\mathcal{M}_{B_i} = \text{set of moves available}$ to player from board B_i

Rules for Chomp

 Play begins on an n × m rectangular board:

- Players select a square in remaining in the board, and remove all squares above and to the right of it.
- Player forced to take the bottom left square loses.

Game Terminology

- ullet $\mathcal{B}=$ set of all boards/positions
- $\mathcal{M} =$ permissible moves $m = (B_i, B_i) \in \mathcal{B} \times \mathcal{B}$
- B_S = opening board/position
- \mathcal{M}_{B_i} = set of moves available to player from board B_i

Goal: Find solutions to games.

Solved Games

Calling a game solved may actually mean a few different things.

Solved Games

Calling a game *solved* may actually mean a few different things.

• **Ultra-Weak:** There exists a strategy for the first (or second) player to guarantee a win, given optimal play on both sides.

Solved Games

Calling a game solved may actually mean a few different things.

- **Ultra-Weak:** There exists a strategy for the first (or second) player to guarantee a win, given optimal play on both sides.
- **Weak:** There is an algorithm to *describe* the optimal moves to secure a win or draw for the first (or second) player from the initial position of the game.

Solved Games

Calling a game solved may actually mean a few different things.

- **Ultra-Weak:** There exists a strategy for the first (or second) player to guarantee a win, given optimal play on both sides.
- **Weak:** There is an algorithm to *describe* the optimal moves to secure a win or draw for the first (or second) player from the initial position of the game.
- **Strong:** There is an algorithm to secure a win for a player from *any* game position, even if sub-optimal moves were made in previous play.

Poset Games

Definition of Posets

A poset P, or partially ordered set, is a set equipped with a reflexive, transitive and antisymmetric relation \leq .

Poset Games

Definition of Posets

A poset P, or partially ordered set, is a set equipped with a reflexive, transitive and antisymmetric relation \leq .

The divisor poset on n = 495, consisting of n and all of its divisors, with $k \prec n$ if $k \mid n$.

Poset Games

Definition of Posets

A poset P, or partially ordered set, is a set equipped with a reflexive, transitive and antisymmetric relation \leq .

Poset Games

Given a non-empty poset P, players alternate turns selecting an element $x \in P$ and removing x and all elements y with $x \leq y$. The loser takes the last element remaining in P.

The *divisor poset* on n = 495, consisting of n and all of its divisors, with $k \prec n$ if $k \mid n$.

Game of Divisors

Given a positive integer n, the game of divisors on n is the poset game of the divisor poset D_n .

Game of Divisors

Given a positive integer n, the game of divisors on n is the poset game of the divisor poset D_n .

Player 1 can always win at the game of divisors for any $n \ge 2$, via a strategy stealing argument.

Game of Divisors

Given a positive integer n, the game of divisors on n is the poset game of the divisor poset D_n .

Player 1 can always win at the game of divisors for any $n \ge 2$, via a strategy stealing argument.

Ultra weakly solved then...

Game of Divisors

Given a positive integer n, the game of divisors on n is the poset game of the divisor poset D_n .

Player 1 can always win at the game of divisors for any $n \ge 2$, via a strategy stealing argument.

Ultra weakly solved then...

What about a weak or strong solution?

Chomp as a Game of Divisors

An $n \times m$ Chomp game is equivalent to the poset game on $D(p^{n-1} \cdot q^{m-1})$.

Chomp as a Game of Divisors

An $n \times m$ Chomp game is equivalent to the poset game on $D(p^{n-1} \cdot q^{m-1})$. For example, consider:

$$n=2, m=3$$

Chomp as a Game of Divisors

An $n \times m$ Chomp game is equivalent to the poset game on $D(p^{n-1} \cdot q^{m-1})$. For example, consider:

$$n=2, m=3$$

Chomp as a Game of Divisors

An $n \times m$ Chomp game is equivalent to the poset game on $D(p^{n-1} \cdot q^{m-1})$. For example, consider:

$$n=2, m=3$$

Chomp as a Game of Divisors

An $n \times m$ Chomp game is equivalent to the poset game on $D(p^{n-1} \cdot q^{m-1})$. For example, consider:

$$n=2, m=3$$

One board of game for each antichain of the poset.

Sprague-Grundy Function for Games

Sprague-Grundy Function

Let \mathcal{B}_L be the set of boards in game G for which a player has no permissible moves (losing boards.)

- Set SG(B) = 0 for each board $B \in B_L$.
- Define $SG(B) = \max(\mathcal{M}_B)$, recursively for each $B \in \mathcal{B}$.

• Solve the Game of Divisors.

- Solve the Game of Divisors.
 - Solving the Game of Divisors for $n=p^aq^b$ for integers p,q,a,b>0 is the same as solving Chomp. (Too big.)

- Solve the Game of Divisors.
 - Solving the Game of Divisors for $n = p^a q^b$ for integers p, q, a, b > 0 is the same as solving Chomp. (Too big.)
- Solve the Game of Divisors for $n = pq^b$. (Too easy.)

- Solve the Game of Divisors.
 - Solving the Game of Divisors for $n = p^a q^b$ for integers p, q, a, b > 0 is the same as solving Chomp. (Too big.)
- Solve the Game of Divisors for $n = pq^b$. (Too easy.)
 - Calculate Sprague-Grundy value for each $B \in \mathcal{B}$.

- Solve the Game of Divisors.
 - Solving the Game of Divisors for $n=p^aq^b$ for integers p,q,a,b>0 is the same as solving Chomp. (Too big.)
- Solve the Game of Divisors for $n = pq^b$. (Too easy.)
 - Calculate Sprague-Grundy value for each $B \in \mathcal{B}$.
- One board in poset get for D(n) for each antichain.

- Solve the Game of Divisors.
 - Solving the Game of Divisors for $n = p^a q^b$ for integers p, q, a, b > 0 is the same as solving Chomp. (Too big.)
- Solve the Game of Divisors for $n = pq^b$. (Too easy.)
 - Calculate Sprague-Grundy value for each $B \in \mathcal{B}$.
- One board in poset get for D(n) for each antichain.
 - List antichains in D(n).

- Solve the Game of Divisors.
 - Solving the Game of Divisors for $n = p^a q^b$ for integers p, q, a, b > 0 is the same as solving Chomp. (Too big.)
- Solve the Game of Divisors for $n = pq^b$. (Too easy.)
 - Calculate Sprague-Grundy value for each $B \in \mathcal{B}$.
- One board in poset get for D(n) for each antichain.
 - List antichains in D(n).
 - Given a pair of antichains B_i , B_j , determine if $(B_i, B_j) \in \mathcal{M}$.

- Solve the Game of Divisors.
 - Solving the Game of Divisors for $n=p^aq^b$ for integers p,q,a,b>0 is the same as solving Chomp. (Too big.)
- Solve the Game of Divisors for $n = pq^b$. (Too easy.)
 - Calculate Sprague-Grundy value for each $B \in \mathcal{B}$.
- One board in poset get for D(n) for each antichain.
 - List antichains in D(n).
 - Given a pair of antichains B_i , B_j , determine if $(B_i, B_j) \in \mathcal{M}$.
 - Given an antichain B_i , calculate all moves $(B_i, B_j) \in \mathcal{M}$.

- Solve the Game of Divisors.
 - Solving the Game of Divisors for $n = p^a q^b$ for integers p, q, a, b > 0 is the same as solving Chomp. (Too big.)
- Solve the Game of Divisors for $n = pq^b$. (Too easy.)
 - Calculate Sprague-Grundy value for each $B \in \mathcal{B}$.
- One board in poset get for D(n) for each antichain.
 - List antichains in D(n).
 - Given a pair of antichains B_i , B_j , determine if $(B_i, B_j) \in \mathcal{M}$.
 - Given an antichain B_i , calculate all moves $(B_i, B_j) \in \mathcal{M}$.
- Suppose poset game for D(n) was solved, and $p \nmid n$, can you solve D(pn)?

Game Solutions

- Solve the Game of Divisors.
 - Solving the Game of Divisors for $n = p^a q^b$ for integers p, q, a, b > 0 is the same as solving Chomp. (Too big.)
- Solve the Game of Divisors for $n = pq^b$. (Too easy.)
 - Calculate Sprague-Grundy value for each $B \in \mathcal{B}$.
- One board in poset get for D(n) for each antichain.
 - List antichains in D(n).
 - Given a pair of antichains B_i , B_j , determine if $(B_i, B_j) \in \mathcal{M}$.
 - Given an antichain B_i , calculate all moves $(B_i, B_j) \in \mathcal{M}$.
- Suppose poset game for D(n) was solved, and $p \nmid n$, can you solve D(pn)?
 - Find Sprague-Grundy values for D(pn) in terms of D(n).

- Solve the Game of Divisors.
 - Solving the Game of Divisors for $n=p^aq^b$ for integers p,q,a,b>0 is the same as solving Chomp. (Too big.)
- Solve the Game of Divisors for $n = pq^b$. (Too easy.)
 - Calculate Sprague-Grundy value for each $B \in \mathcal{B}$.
- One board in poset get for D(n) for each antichain.
 - List antichains in D(n).
 - Given a pair of antichains B_i , B_j , determine if $(B_i, B_j) \in \mathcal{M}$.
 - Given an antichain B_i , calculate all moves $(B_i, B_j) \in \mathcal{M}$.
- Suppose poset game for D(n) was solved, and $p \nmid n$, can you solve D(pn)?
 - Find Sprague-Grundy values for D(pn) in terms of D(n).
 - Solve $D(p_1p_2\cdots p_k)$.

MAA MD-VA-DC Section Meeting: Fall 2015

MAA Section Meeting, Fall 2015

Thanks for listening!

Code from this talk is available at Github and on my website at:

https://github.com/

gwynwhieldon/PosetGames

http://cs.hood.edu/~whieldon

