Institut für Informatik

Priv.-Doz. Dr. W. Kössler

Aufgaben zur

"Stochastik für Informatiker"

Aufg. 30) Eine Zufallsvariable (T_1, T_2) heißt zweidimensional exponentialverteilt mit den Parametern $(\lambda_1, \lambda_2, \lambda_3)$, falls die Verteilungsfunktion die Gestalt

$$F(t_1, t_2) = \begin{cases} 1 - e^{-(\lambda_1 + \lambda_3)t_1} - e^{-(\lambda_2 + \lambda_3)t_2} + e^{-\lambda_1 t_1 - \lambda_2 t_2 - \lambda_3 \max(t_1, t_2)} & t_1 > 0, t_2 > 0 \\ 0 & \text{sonst} \end{cases}$$

hat.

- a) (2 P.) Bestimmen Sie die Randverteilungen von $(T_1, T_2)!$
- b) (2 P.) Zeigen Sie: T_1 und T_2 sind unabhängig und exponentialverteilt, genau dann wenn $\lambda_3 = 0$.

Aufg. 31) In der folgenden Tabelle sind einige Einzelwahrscheinlichkeiten p_{ij} einer zweidimensionalen Zufallsvariablen (X, Y) eingetragen.

$X \setminus Y$	1	2	3	4	$p_{i.}$
-1		0.01		0.10	0.2
0	0.6			0.07	0.7
1		0.06			
$\overline{p_{.j}}$	0.6	0.1		0.2	1

- a) (1P.) Bestimmen Sie die restlichen Einträge!
- b) (2 P.) Berechnen Sie die Korrelation zwischen X und Y!

Aufg. 32) Seien $U, V \sim R(0, 1)$, unabhängig.

- a) (2 P.) Berechnen Sie die Kovarianz zwischen $X = U \cdot V$ und V!Hinweis: Benutzen Sie den Transformationssatz für Erwartungswerte!
- b) (1 P.) Berechnen Sie die Korrelation zwischen X und V!