

Метрики производительности и САР-теорема

 ФИО студента:
 Группа:
 Дата:

 Иванов Иван Иванович
 ИСТ-21
 20.10.2025

П Основные метрики производительности

Percentiles (Процентили)

- Р50 (медиана): 50% запросов быстрее этого времени
- **Р95:** 95% запросов быстрее
- **Р99:** 99% запросов быстрее
- Р99.9: 99.9% запросов быстрее

Правило: В распределенной системе можно гарантировать только 2 из 3 свойств:

Практические компромиссы:

- **СР системы:** MongoDB, Redis Cluster (жертвуют доступностью)
- **AP системы:** Cassandra, DynamoDB (жертвуют согласованностью)
- **CA системы:** PostgreSQL, MySQL (не устойчивы к разделению)

D - Durability (Долговечность)

Зафиксированные изменения сохраняются навсегда

Пример: После подтверждения транзакции данные не теряются даже при сбое

Availability (Доступность)

Формула: Availability = (Uptime / Total Time) × 100%

SLA уровни:

Р Практические задания

Требования к выполнению:

- выполняются на ОС **Linux** (любой дистрибутив)
- пакеты устанавливаются в виртуальное окружение venv
- для создания серверов можно использовать **LLM** (желательно Claude Sonnet подключить в IDE)

Задание 1: Установка и использование Apache Bench

Установка Apache Bench на Linux:

```
# Ubuntu/Debian
sudo apt-get install apache2-utils
# CentOS/RHEL/Fedora
sudo yum install httpd-tools
# или
sudo dnf install httpd-tools
# Проверка установки
ab -V
```

Тестирование производительности:

```
# Запуск 1000 запросов с 10 одновременными соединениями
ab -n 1000 -c 10 http://httpbin.org/get
```

Результаты тестирования:

Время выполнения теста:

30.97 seconds

секунд

Requests per second:

32.29

запросов/сек

Time per request (mean):

309.7

MC

Статистика соединений (мс):

	min	mean	median	max
Connect:	45	67	65	123
Processing:	156	241	234	456

Перцентили времени ответа:

P50: 298 MC

Р90: 345 мс

Р95: 367 мс

Р99: 456 мс

Описание полученных результатов:

Опишите ваши наблюдения о производительности сервера...

📊 Подробный анализ результатов Apache Bench

Общая информация о тесте:

Утилита: ApacheBench 2.3 **URL:** http://httpbin.org/get **Количество запросов:** 1000

Уровень параллелизма: 10 одновременных соединений

Параметры сервера:

```
Server Software: awselb/2.0 — AWS Elastic Load Balancer
Server Hostname: httpbin.org
Server Port: 80 — HTTP порт
Document Path: /get — Тестируемый endpoint
Document Length: 162 bytes — Размер ответа
```

Расшифровка статистики соединений:

- Connect: Время установки TCP-соединения
- Processing: Время обработки запроса сервером
- Waiting: Время от отправки запроса до получения первого байта
- **Total:** Общее время запроса

Анализ качества:

Failed requests:	0	(ошибок нет)	Transfer rate:	15.2	Kbytes/sec
'					,

Выводы о производительности:

- 1. Стабильность: Низкое стандартное отклонение стабильная работа
- 2. Производительность: запросов/секунду умеренная нагрузка
- 3. Задержки: Среднее время ответа типично для географически удаленного сервера
- 4. Надежность: 0 неудачных запросов сервер стабилен

Рекомендации для улучшения:

- Оптимизировать можно за счет кеширования
- Рассмотреть CDN для уменьшения задержек
- Увеличить параллелизм для проверки пределов сервера

3 Задание 2: Измерение задержек (latency)

Простой HTTP сервер с задержками (Flask):

```
from flask import Flask
import time
import random

app = Flask(__name__)

@app.route('/fast')
def fast_endpoint():
    return {'response': 'fast', 'latency': '10ms'}

@app.route('/slow')
def slow_endpoint():
    time.sleep(random.uniform(0.1, 0.5)) # 100-500ms задержка
    return {'response': 'slow', 'latency': '100-500ms'}

if __name__ == '__main__':
    app.run(port=5000)
```

Измерение latency:

```
# Тестирование быстрого endpoint
ab -n 100 -c 5 http://localhost:5000/fast
# Тестирование медленного endpoint
ab -n 100 -c 5 http://localhost:5000/slow
```

RPS:
Средняя задержка:
MC
мс

2 Сравнение веб-фреймворков

FastAPI (порт 8000)

Код на Python:		
Вставьте код FastAPI сервера		
Результаты тестирования:		
Результаты /fast endpoint:	Результаты /slow endpoint:	
RPS:	RPS:	
Средняя задержка:	Средняя задержка:	
мс	МС	
Краткие выводы:		
Результаты тестирования FastAPI		

Django (порт 8001)

Код на Python:	
Вставьте код Django сервера	
Результаты тестирования:	
езультаты /fast endpoint: RPS:	Результаты /slow endpoint: RPS:
.P3;	KP5:
редняя задержка:	Средняя задержка:
nc	MC
Сраткие выводы:	
Результаты тестирования Django	
resymbiatal recomposation stanger	

Django REST Framework (порт 8002)

Код на Python:

Вставьте код DRF сервера	
Результаты тестирования:	
Результаты /fast endpoint: RPS:	Результаты /slow endpoint: RPS:
Средняя задержка:	Средняя задержка:
MC	мс
Краткие выводы:	
Результаты тестирования DRF	
LiteStar (порт 8003)	
Код на Python:	
Вставьте код LiteStar сервера	

Результаты /fast endpoint:	Результаты /slow endpoint:
RPS:	RPS:
·	
редняя задержка:	Средняя задержка:
мс	мс
Сраткие выводы:	
некнке	
HERTING	
Общие выводы о производительности веб-фреймво	ррков:
нкенке	

Домашнее задание

Задача: Доделать задания

Срок сдачи: К следующему занятию

Что нужно сделать:

- Протестировать 3 разных сайта с помощью Apache Bench
- Сравнить их производительность
- Построить график зависимости RPS от количества одновременных соединений
- Создать HTTP серверы на всех указанных фреймворках
- Провести сравнительное тестирование производительности

П Критерии оценки

Е Литература

- Клеппман М. "Высоконагруженные приложения"
- Фаулер М. "Архитектура корпоративных программных приложений"
- Документация Apache Bench
- Официальная документация веб-фреймворков