# 6CCS3AIN: Week 8 Argumentation & Dialog Machine Languages

Peter McBurney
Department of Informatics
King's College London
London

peter.mcburney@kcl.ac.uk

# **Outline**

- Software agents
- Agent Communication Languages (ACLs)
- Syntax of ACLs
- Semantics of ACLs
- Dialog Game Protocols



Machine Languages

# Software Agents

# We are on the verge of a revolution . . .

- Computational devices and systems will soon be:
  - Everywhere
  - Interconnected
  - Always active
  - Intelligent and autonomous.
- Software systems will thus be:
  - Situated
    - · Responsive to and influential upon their environment
  - Open
    - · Entities will enter & leave these environments continually
  - Autonomous
    - Entities and systems will be goal-directed and exhibit autonomous behaviours
    - · Systems and sub-systems will have multiple threads of control.

# Implications for software engineering

A revolution will be needed for software engineering:

- Robust Systems
  - Robust to: changes in their environment, new entities, new relationships between entities, new goals, etc.
  - Designing for system-level properties:
    - Engineers need to generate desired system behaviours without designing all the components, and without knowledge of all the initial states and possible interactions.
  - Living Systems
    - · Systems need to be tested, maintained and upgraded without removal, or even without downtime.

# Implications for software engineering

- Software engineering starts to resemble:
  - Economic mechanism design (the design of marketplaces)
  - Ecology and ecosystem management
  - Statistical physics.



# Reminder: Autonomous intelligent software agents

It helps to conceive of computer systems as consisting of interacting autonomous entities ("agents").

- A software agent is a computational entity with (some degree of):
  - Social awareness
  - Proactive behaviour towards defined goals
  - Reactive behaviour in response to its environment
  - Decision-making autonomy. (Wooldridge & Jennings 1995)
- Agents v. Objects (Object-Oriented Programming)
  - Agents are autonomous (they are requested to act, not invoked)
  - A multi-agent system (MAS) has multiple, interacting threads of control, not one.
  - Agents have dynamic relationships with each other, not static.

# Some applications

- Air Traffic Control systems
  - aircraft and controllers
- E-commerce
  - buyers, sellers, auctioneers



- Provisioning of complex products and services
  - eg, telecommunications services
- Logistics and management of fleets
  - vehicles, satellites, sensor networks, drones, etc.
- Conceptualization of distributed software systems.

# Agents direct the second economy

- Parallel to the physical economy, we now have a second economy
  - Digital, Internet-enabled
  - With machine-to-machine communications

The second economy increasingly relies on interacting software

entities, which are

- Intelligent
- Autonomous
- Dynamic
- Able to learn
- Self-organizing.



# Two key agendas:

- How best to architect (design and create) agents
  - The most common approach is based on the Philosophy of Intention and Rational Agency (Bratman, Pollock)
    - Eg, In the BDI model, agents are assumed have three types of mental states: Beliefs, Desires, and Intentions.
    - · Considerable work has focused on formalizing these models using dialects of modal logic (epistemic, temporal, deontic, etc).
- How best to architect Multi-Agent Systems (MAS)
  - How may agents interact with one another?
  - How may they make collaborate or compete, or make joint decisions?
  - How to ensure desired system properties when other programmers design the entities involved?



# Human Language

# **Human language has many functions**

- A means of information transfer
  - The weather is sunny today.
  - I am hungry.
  - I prefer chicken to fish.
  - I intend to eat lunch.



- A means of co-ordinating joint actions
  - Would you be free for lunch today?
  - We can divide the bill equally.
- A means of establishing and maintaining social relationships
  - Let's do lunch!
- A signalling system
  - Let me pay for lunch!

# Aspects of human languages

Linguistic theory distinguishes:

Syntax of a language: its words, phrases, sentences and grammar

**Semantics** of a language: what meanings are assigned to the words, phrases & sentences

**Pragmatics** of a language: how the words, phrases and sentences are used in conversation.

# A typology of human utterances

- Factual statements (Propositions)
  - Purport to describe states of the real-world
- Expressive statements
  - Purport to describe internal mental states of speaker
- Social Connection statements
  - Purport to describe social relations between participants or others
- Commissives
  - Speaker desires a particular world state, and proposes actions to establish or maintain this world state
- Directives
  - Speaker desires a particular world state, and seeks to direct others to undertake actions to establish or maintain this world state
- Inferences
  - Statements which draw logical inferences from earlier statements
- Argumentation statements
  - Statements which question, challenge or justify earlier statements
- Control statements
  - Statements which refer to the dialog itself, aiming to facilitate communication.

McBurney & Parsons 2004, drawing on Austin, Searle, Habermas.

# Not all utterances are propositions

Speech Act Theory in the Philosophy of Language is an account of these other utterances

- This theory is due to:
  - Thomas Reid (1710-1796)
  - Adolph Reinach (1883-1917)
  - John Austin (1911-1960)
  - John Searle (1932-)
  - Jurgen Habermas (1929-)











# Speech acts

- Some statements change the world by their very utterance, eg.
  - "I name this ship, The Queen Elizabeth."
  - "I declare you man and wife."





- These statements perform some action, but only under certain pre-conditions:
  - eg, For a marriage declaration to be legally binding in the UK, the celebrant must be registered, the location must be a registered location, both the individuals must be single, at least two witnesses must be present, etc.
- Speech acts can be defined in terms of their felicity conditions and their rational effects.
  - Modern theory due to: Austin 1955, Searle 1969.
- Applications to linguistics, social sciences, computer science.

# Aside: Shannon's communication theory

- Claude Shannon developed an influential theory of communication in the 1930s and 1940s
  - Widely used in the design of electronic communications systems
- But: Shannon explicitly ignored the semantics of messages
  - This is inappropriate for agent-to-agent communications
- Example:
  - I promise you to wash the car.

VS.

- I command you to wash the car.

Syntactically, there is no difference between these two statements, but they have very different meanings and implications.

# Agent Communications Languages

# What are Agent Communication Languages?

#### A means of communications (as with human languages)

between independent, autonomous entities
 Functions: information transfer, action co-ordination, social manipulation, signalling.

#### **Programming languages for agents**

- To enable software entities to achieve their goals
  - · eg, to communicate with other agents
- We desire that agent communication can be automated

#### Software engineering methods

- To enable software engineers to achieve *their* goals
  - · eg, for their agents to interact with other agents
- We desire that the level of abstraction facilitate the S/E task

#### Formal languages

- Defined syntax
- Defined semantics
- We desire that properties be known and understood before deployment.

# So we draw upon:

- Linguistic theory
- The philosophy of language
- The philosophy of communicative action
- The theory of semiotics (signs and signalling)
- Social anthropology
- The theory of programming languages
- Software engineering theory
- Formal logic.

Note that the word "semantics" has different meanings in these different fields.

# **Agent Communication Languages (ACLs)**

- Two major proposals for ACLs:
  - Knowledge Query and Manipulation Language (KQML)
  - IEEE Foundation for Intelligent Physical Agents ACL (FIPA ACL)
- Both ACLs distinguish between two layers of communicated messages:
  - The topics of conversation (which may be represented in a suitable logical language)
  - The utterances which refer to these topics
    - For example:
      - query (Is it raining?)
      - *inform* (It is raining)

# FIPA Agent Communications Language

- IEEE FIPA ACL has 22 locutions (types of utterances)
  - eg, inform, query-if, request, agree, refuse
  - Each has a defined syntax:



 The origins of FIPA ACL are in knowledge-sharing and automated contract negotiations.

# Classification of FIPA ACL locutions

Factual statements: 8 locutions (eg, *confirm*)

Expressive statements: 1 locution (inform)

Social connection statements:
 1 locution (inform)

Commissives: 5 locutions (eg, *propose*)

Directives: 5 locutions (eg, request)

Inferences: 1 locution (inform)

Argumentation statements: 0 locutions

Control statements: 4 locutions

(eg, not-understood)

#### Conclusions:

- An absence of locutions supporting argumentation
- An overloading of some locutions (eg, inform).

# Some flaws with FIPA ACL

- As befits a language for knowledge-sharing, the semantics impose sincerity
  - For many applications, sincerity is not appropriate (eg, negotiations).
- As befits a language for contract negotiations, the underlying (implicit) argumentation theory is simplistic
  - No ability to argue, to challenge or to justify statements.
- The absence of an explicit argumentation theory causes a statespace explosion
- The language does not readily support self-transformation
- The private axiomatic semantics is not verifiable.

# Semantics of Agent Communications Languages

# What are the purposes of an ACL semantics?

To ensure shared understanding of language in communication

- By agents
- By their human principals
- By the software developers of the MAS
- By the software developers of the participating agents
- By other stakeholders (eg, regulators).

To enable study of **formal properties** of the language, eg:

- Can dialogs always terminate?
- Can successful termination be achieved?
- What are the properties of outcome states?
- Can dialogs always continue?

To provide an account of what is happening when an ACL is used

- Eg, social semantics

To facilitate successful software engineering & implementation.

## **Semantics of ACLs**

- Considerable work on defining semantics of individual utterances
- Less work on semantics of dialogues under a given protocol
- Very little work yet on semantics of protocols
- Types of semantics (from programming language theory):
  - Axiomatic
  - Operational
  - Game-theoretic
  - Denotational.

## **Axiomatic Semantics**

- An axiomatic semantics articulates the pre-conditions and postconditions of an utterance
  - What needs to be true beforehand and
  - What becomes true aftterwards

 This is usually done in a formal logical language, such as First-Order Logic or modal logic.

# **Semantics of FIPA ACL**

- FIPA ACL has been given a formal, axiomatic semantics using speech act theory, called SL ("Semantic Language")
- An axiomatic semantics articulates the pre-conditions and postconditions of each utterance
- The speech act semantics SL for FIPA ACL links utterances to the private mental states of the participants
  - Beliefs, Uncertain Beliefs, Desires, and Intentions
  - This semantics has been formalized using modal epistemic logic.

Bretier, Cohen, Levesque, Perrault, Sadek (1979, 1990, 1997)

# For example: inform

- Suppose agent Alice (A) informs agent Bob (B) that, "It is raining"
- Required Pre-conditions: Before a valid utterance by A:
  - A must believe "It is raining",
  - A must not already believe that B has a belief regarding whether or not it is raining

and

- A must desire that B also comes to believe "It is raining".
- Post-conditions: Upon receipt by B of such an utterance by A:
  - B must believe that A believes "It is raining", and
  - B must believe that A desires that B believes "It is raining".
- Following the utterance by A, B may or may not adopt the belief "It is raining".

# The FIPA semantics for inform

- The single most common computer interaction is a request for a password.
  - System S asks agent A to enter a password to login into system S
- Can A use the *inform* utterance to give the password?
  - inform (A, S, password= pword263)
- Three pre-conditions:
  - A must believe "password=pword263". YES
  - A must not already believe that S has a belief regarding whether or not "password=pword263".

But S already knows the password, and A knows that S knows the password.

#### and

- A must desire that S also comes to believe "password=pword263".
   But what does A care about the future beliefs of S?
- So an agent compliant with the semantics of FIPA ACL could not validly use the *inform* utterance to provide a password.

# Moreover . . .

Suppose Alice tells you that some proposition P is true.

What can you conclude from this fact?



# Some possible conclusions

- That P is true.
- That Alice believes that P is true.
- That Alice wants you to believe that P is true.
- That Alice wants you to believe that she wants you to believe that P is true.
- That Alice wants you to NOT believe that P is true.
- That Alice wants you believe that she wants you to not believe that P is true.
- That Alice wants you to believe that P is not true.
- That Alice wants you to believe that she wants you to believe that P is not true.

• . . .

# **Operational Semantics**

- An operational semantics treats the utterances in an agent interaction as programming commands working on some large, virtual machine
  - The commands acts to change the state of this virtual machine.
- We can therefore view utterances as functions which cause state transitions.
- Does the virtual machine include the mental states of the interacting agents?



## **Denotational Semantics**

- Each formula is mapped to some object in a mathematical space
- Having a denotational mapping means we can reason about the language by reasoning about the mathematical objects.
- Examples:
  - Possible Worlds Semantics
  - Game Semantics

## **Possible Worlds Semantics**

- The standard semantics for modal logic languages is the Possible Worlds semantics
  - This is a collection of states of the world, at each of which some propositions are true and some not.
  - Some worlds are connected by accessibility relationships, indicating (for example) that it is possible to move from one world-state to another.



#### **Game Theoretic Semantics**

- Each well-formed statement in the language corresponds to a game G, usually between two fictional players, Protagonist P vs. Antagonist A.
- Usually, we say that the goals of the players are:
  - P aims to win the game G, and
  - A aims is to prevent P from winning the game G.
- The statement is true (or valid) if and only if P always has a winning strategy for the game.

#### **Semantics of ACLs**

- ACLs and protocols usually defined with an axiomatic semantics for the utterances
- Some protocols have been given an operational semantics
  - Does an operational semantics have meaning in an open distributed system, when any encompassing machine is entirely virtual?
- In a handful of cases, a denotational semantics has been given for utterances in a protocol.
  - For example: utterances conceived as actions on a tuple space.
  - Research is still immature.

## **Dialog Game Protocols**

#### FIPA ACL's lack of structure

Problem: Lack of structure, state-space explosion.

#### Possible Solutions:

- Conversation Policies (CPs)
  - Sequences of utterance-patterns for a small number of utterances
    - · Eg, a question must be followed by a response
    - Eg, a request for proposals must only be followed by a proposal or proposals.
- Formal Dialog Games (DGs).

#### **Dialogue Game Protocols**

- Games between two or more participants where each "moves" by making utterances, subject to some rules.
- Origins in Philosophy
  - Aristotle and medieval philosophers
  - Revived for the study of the logical fallacies in 1960s
  - Applied to quantum physics (Mittelstaedt 1979).
- Within computer science, applied to protocols for automated agent dialogues.

#### A DG Protocol is defined in terms of:

- A language of statements (the topics of the dialog)
- A set of utterance types instantiated with the statements
  - e.g. assert(p), accept(p), contest(p).
- Combination rules, defining the circumstances in which each instantiated utterance may be uttered
- Termination Rules, defining the circumstances in which dialogs terminate.
- Rules for creating and combining commitments
  - Commitment Stores: publicly-accessible sets of statements, holding the commitments incurred by participants.

# Relationship between types of interaction protocols

Generic ACLs

Dialogue Game Protocols Auction Mechanisms

Increasing expressiveness

Increasing constraints on utterances

#### An influential typology of dialogues

Classification on the basis of what each participant knows at outset, and what they each aim to achieve in the dialog.

- Information-seeking dialogues
- Inquiry dialogues
- Persuasion dialogues
- Negotiation dialogues
- Deliberation dialogues
- Eristic dialogues.

Walton and Krabbe (1995)

#### **Aside: HTTP**

• What types of dialogs does Hyper-Text Transfer Protocol enable?

#### GET

- One agent (the client) requests another agent (the server) to transfer from server to client a copy of the object specified by URL.
- Server responds by doing so, or by sending a message explaining why server cannot do so.
  - · eg, 404 Error: File Not Found
  - · eg, 503 Error: Service Unavailable
- PUT, POST
  - One agent (the client) transfers some data to another agent (the server).
- HTTP combines dialogs for:
  - Action-requests
  - Information-provision



#### Formal Dialogue-Game Protocols

- Agent DG protocols have been designed for all the Walton and Krabbe types, as well as:
  - Information-provision dialogs
  - Argumentation dialogs
  - Command dialogs
  - Discovery dialogs
  - Design dialogs
- These protocols are more constrained than are generic Agent Communications Languages
  - Rules govern combinations of locutions: agents usually cannot just say anything at any time.
  - Usually, the protocol is designed with a specific purpose in mind, and design may be informed by an explicit theory of argument.

### A simple DG protocol for info-seeking

- Information-Seeking dialog
  - Parsons, Wooldridge & Amgoud (2002).
- For p a proposition, and S a set of propositions:
- Valid utterances:
  - question(p)
  - assert(p) assert(S)
  - accept(p)accept(S)
  - challenge(p)
- Plus: special argument *U* for assert(.) to indicate that speaker is unable to give a response.

#### Information-seeking dialogue (2)

- Just two agents, A and B. Valid combination rules are given by:
- A: question(p)
- 2. B: Responds with one of:
  - assert(p)
  - assert(~p)
  - assert(U)
- 3. A: Responds with one of (respectively):
  - accept(p) v challenge(p)
  - accept(~p) v challenge(~p)
  - DIALOGUE ENDS
- 4. If accept(.), then DIALOGUE ENDS.
- 5. B: Replies to challenge with:
  - assert(S) (S an argument for p or ~p)
- 6. Go to 3.

#### **Example Application: BGP**

- The Border Gateway Protocol (BGP) is an Internet Protocol at Layer 3 (the Network Layer)
  - Allows for negotiation between neighbouring autonomous domains over routing and reachability of internet addresses.
- The Fatio Argumentation Protocol is an extension to FIPA ACL to allow intelligent agents to argue with one another.
  - Allows for claims to be questioned & challenged, and for claims to be justified.
- Fatio has been used to support automated identification and resolution of conflicts between hosts using the BGP.

McBurney & Parsons (2004) Kodeswaran, Perich, Li, Joshi & Finin (2010)

#### **Research Challenges**

- Dialogs over action
- Semantics of protocols
- Properties of protocols



- Better understanding of the relationships between syntax rules and protocol properties
- How best to organize libraries of protocols (for efficient storage and search)
- Automated negotiation over protocols.

## Thank you!

