

Demystify AI Security Products With a Universal Pluggable XAI Translator

Tongbo Luo, Kailiang Ying, Xinyu Xing, Xuguang (Luke) Liu

Motivation

Scenarios

Vendor Customer Attacker

Key Takeaways

- Share lesson learned when we use XAI to evaluate security products
- Identify potential XAI research direction to fill in business need

State-of-art XAI Tools

- LIME
- SHAP (KernalSHAP)
- Anchor

LIME --- Local Interpretable Model-Agnostic Explanations

$$\operatorname{explanation}(x) = rg\min_{g \in G} L(f,g,\pi_x) + \Omega(g)$$

LIME

Advantages

- Works for all types of data (images, tabular, text)
- Model was trained with non-interpretable features

Disadvantages

- Instability of the Explanations
- Sampling process

SHAP

SHAP (SHapely Additive exPlanations)

- Shapely Values (Game Theory)
- Visualization

Build-in Visualization

Feature Importance

Summary Plot

Dependence Plot

Interaction Values

Anchor

ref: tinyurl.com/2nd7w8e7

Anchors: High-Precision Model-Agnostic Explanations (AAAI'18)

When XAI meets ML-based Security Product

- Malicious HTTP header Detection Tool (DNN with text-type input)
- IDS (DNN with numeric features)
- Malicious Binary Detection (RNN-based Detection Model)
- Detection Malicious Cloud Activity
- System-call Detection (Concept-based Explanation)

Detecting Malicious HTTP Requests

Common Attacks

Command Injection Attack
SQL Injection Attack
XSS

method path

GET | /tutorials/other/top-20-mysql-best-practices/ | HTTP/1.1 |

Host: net.tutsplus.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1 |
Accept: text/html, application/xhtml+xml, application/xml; q=0.9, */*; q= |
Accept-Language: en-us, en; q=0.5 |
Accept-Encoding: gzip, deflate |
Accept-Charset: ISO-8859-1, utf-8; q=0.7, *; q=0.7 |
Keep-Alive: 300 |
Connection: keep-alive |
Cookie: PHPSESSID=r2t5uvjq435r4q7ib3vtdjq120 |
Pragma: no-cache |
Cache-Control: no-cache |

Assumption Gaps

- Lack of model knowledge
 - Actual model's detail is confidential.

- No direct access to model
 - Trigger actual activity in the target system

Model-agnostic tools (treat model as blackbox)

Customize the XAI tools

Avoid Sampling Invalid Data

Detecting Malicious Requests

Text with highlighted words

Prediction probabilities

malicious 0.51 benign 0.49

malicious benign

Result with highlighted Top Indictor

```
{ "method" : "post", "query" : { }, "path" : "/checkout", "statusCode" : 400, "requestPayload" : { "creditCard" : "<script> document.write('iframe src="http://anywhere.com"); </script>" } }
```

XSS with remote iframe src

Prediction probabilities malicious 0.54 benign 0.46

malicious

statusCode statusCode SYSTEM 0.01 ENTITY 0.01 random 0.01 query

ELEMENT

Result with highlighted Top Indictor

```
{ "method" : "post", "query" : { } , "path" : "/checkout", "statusCode" : 400, "requestPayload" : { "creditCard" : "<!DOCTYPE foo [<!"ELEMENT root ANY ><!ENTITY unixfile SYSTEM \"file:///dev/random\"> ]> <root>&unixfile;</root>" } }
```

XXE DoS under Unix Server

ML-based IDS (Intrusion Detection System)

F#	Feature name	F#	Feature name	F#	Feature name	
F1	Duration	F15	Su attempted	F29	Same srv rate	
F2	Protocol type	F16	Num root	F30	Diff srv rate	
F3	Service	F17	Num file creations	F31	Srv diff host rate	
F4	Flag	F18	Num shells	F32	Dst host count	
F5	Source bytes	F19	Num access files	F33	Dst host srv count	
F6	Destination bytes	F20	Num outbound cmds	F34	Dst host same srv rate	
F7	Land	F21	Is host login	F35	Dst host diff srv rate	
F8	Wrong fragment	F22	Is guest login	F36	Dst host same src port rate	
F9	Urgent	F23	Count	F37	Dst host srv diff host rate	
F10	Hot	F24	Srv count	F38	Dst host serror rate	
F11	Number failed logins	F25	Serror rate	F39	Dst host srv serror rate	
F12	Logged in	F26	Srv serror rate	F40	Dst host rerror rate	
F13	Num compromised	F27	Rerror rate	F41	Dst host srv rerror rate	
F14	Root shell	F28	Srv rerror rate	F42	Class label	

Common Features Used by ML-based IDS

Explain IDS Detection Result

(a) DoS

(b) Probe

Malware Detection (Binary Reverse-Engineering)

Detect Cloud Malicious Activity

Network

- Activity to/from Known bad IPs
- Usual changes to traffic pattern
- Unsal outbound port usage

DNS

Queries to known-bad domains

Host-based

- OS, Application, Security/Audit logs
- Endpoint security event

Network-device based

FW/IDS/IPS "drop-in" solution logs/alerts

Cloud provider API Activity

- Multiple failed logins
- Simultaneous API access from different regions
- Attempted activity from terminated accounts/credentials/keys
- Uncommon service/API usage
- Credential/permission enumeration
- Changes to user accounts/logging/detection configurations
- Sensitive changes to user permission
- Internal IAM credentials used from external sources

Concept-based Explanation

Instead of explaining individual sample, we think concept-level explanation is better when evaluating security products.

Malware Detection Model using System-call

	write	execve	accept	ioctl	
proc0	100	20	0	2	
proc1	50	10	90	3	

Kernel Module

Global explain on system call detection

high usage

- 1. SQL injection: high file I/O, high memory usage, high network throughput
- cmd injection: high execve usage

high execve

```
Class = Malicious.
  Concept = high execve
    Bottleneck = dense 1. TCAV Score = 0.70 \, (+-0.46), random was 0.54 \, (+-0.49). p-val = 0.344 \, (\text{not significant})
                                                                                                                       Gap: White-box model
 Concept = high usage
    Bottleneck = dense 1. TCAV Score = 0.90 (+-0.30), random was 0.54 (+-0.49). p-val = 0.030 (significant)
{'dense_1': {'bn_vals': [0.01, 0.8985], 'bn_stds': [0, 0.29953338712070143], 'significant': [False, True]}}
          TCAV Scores for each concept and bottleneck
 1.2
                                              dense 1
                                                   SQL injection
 1.0
TCAV Score
      cmd injection
  0.2
```


Attacker's Perspective

- 1. Use XAI to Craft Adversarial Example
- 2. Use XAI to Leak Information from Security Product

Crafting Adversarial Example

- Model set up
 - white-box
 - black-box

Estimate the gradient using finite difference

$$\mathrm{FD}_{\mathbf{x}}(g(\mathbf{x}), \delta) = \begin{bmatrix} \frac{g(\mathbf{x} + \delta \mathbf{e}_1) - g(\mathbf{x} - \delta \mathbf{e}_1)}{2\delta} \\ \vdots \\ \frac{g(\mathbf{x} + \delta \mathbf{e}_d) - g(\mathbf{x} - \delta \mathbf{e}_d)}{2\delta} \end{bmatrix}$$

- Adversarial Example must be "valid"
 - Satisfy the structure requirement
 - Keep the malicious behaviour

Generate Adversarial Example via XAI

benign

Prediction probabilities

malicious

Original example

Text with highlighted words

```
{ "method" : "get", "query" : { "query" : "Swimming Pools|Accessories;DROP" }
,"path" : "/search", "statusCode" : 404 ,"requestPayload" : null }
```

Prediction probabilities

malicious

Adversarial example

Text with highlighted words

```
{ "method" : "get", "query" : { "query" : "Swimming Pools Pools; DROP" } , "path" : "/search", "statusCode" : 404, "requestPayload" : null }
```


Leak Information from Hybrid Security Products

Text with highlighted words

Flaky local explain

