RIP 协议实验报告

组长: 刘育麟 181250090 组员1: 陈泔錞 181250010 组员2: 冯鑫泽 181250031 组员3: 陆张驰 181250095 组员4: 蒋沂霄 181250059

1 实验目的:

实现一个有回路的拓扑,验证 RIP 协议能够有效阻止路由回路。

2 实验要求:

- (1) 实现的拓扑能够以 PT5.x 版本的模拟器上打开。
- (2) 设计拓扑后,验证 RIP 协议能够有效阻止路由回路。

3 实验环境

(1) 软件环境:安装了 Windows 系统的计算机

(2) 硬件环境:路由器,pc等。(详见实验步骤中的实验设备)

4 实验步骤

4.1 实验设备

PC: 两台 Router: 三台 交叉线 直连线

4.2 实验拓扑

4.3 IP 地址规划

设备名称	端口	地址
PC0	FastEthernet	192.168.10.2

PC1	FastEthernet	192.168.40.2
路由器 0	FastEthernet0/0	192.168.10.1
	Serial2/0	192.168.20.1
路由器 1	Serial2/0	192.168.20.2
	Serial3/0	192.168.30.1
路由器 2	FastEthernet0/0	192.168.40.1
	Serial3/0	192.168.30.2

4.4 拓扑准备

- (1) 如图连接拓扑图
- (2) 分别为 PC0,PC1 配置 IP 地址, 以及默认网关。

(以 pc0 为例)

(3) 打开路由器 0 的 FastEthernet0/0 端口,设置 IP 地址为 192.168.10.1。并将 Serial2/0 端口打开,设置 Clock Rate 64000, IP Address:192.168.20.1。打开路由器 1 的 Serial2/0、3/0 端口,设置 Clock Rate 64000, IP Address 分别为 192.168.20.2、192.168.30.1。打开路由器 2FastEthernet0/0 端口,设置 IP 地址为 192.168.40.1;并将 Serial3/0 端口打开,设置 Clock Rate 64000, IP Address:192.168.30.2。

(以 Router0 为例)

(4) R0, R1, R2 打开 rip, 以 R0 为例。

```
Router(config) #router rip
Router(config-router) #network 192.168.10.0
Router(config-router) #network 192.168.20.0
```

(5) 在 R2 中开启 debug 模式, 并查看路由表。

(6) PC0 ping PC1, 说明拓扑无误。

4.5 构造路由回路

- (1) 为了构造路由回路, 我们需要先关闭 R1 与 R2 之间的水平分割。
- (2) 将 PC1 与 R2 之间的链路断开

(3) 在 debug 模式下观察 R1, R2 的 rip 及路由表。

(R1的路由表)

(R2 的路由表)

(4) 由以上几图可以看出

路由器	目的网段	下一路由器
R1	192.168.40.0	R2
R2	192.168.40.0	R1

(5) 进入模拟模式, PC0 上 ping PC1 (192.168.40.2) 可以看到 ICMP 包在 R1,R2 间不断 传递, 这就造成了路由回路, 产生超时。

4.6 RIP 协议避免路由回路

(1) 恢复链路, 并开启 R2,R1 之间的水平分割

```
Router onf
Configuring from terminal, memory, or network [terminal]?
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) in s3/0
Router(config-if) psplit-horizon
Router(config-if) v
```

- (2) 断开 PC1 与 R2 之间的链路
- (3) 在 debug 模式下观察 R2,R3 的 rip 及路由表

(图为 R1 的例子)

(图为 R2 的例子)

从上图我们可以发现,开启水平分割后 R2 不会收到 R1 关于 192.168.40.0 的信息,R1 也不会向 R2 发送 192.168.40.0 的信息。

(4) 180 秒后, 查看 R1 的路由表

(6) 此时,在 PC0上 ping 192.168.40.2

5 实验结论

RIP 协议可以避免路由回路。