Cours de MOMI Licence I Math-Info

CHAPITRE II: ENSEMBLES

Définition (naïve)

- Un ensemble est une collection d'objets.
- Un objet de la collection s'appelle élément de l'ensemble.

1. Appartenance

- Si e est un élément d'un ensemble E, on dit que e appartient à E et on écrit $e \in E$.
- Si e n'appartient pas à E, on écrit $e \notin E$.

2. Détermination d'un ensemble

- Un ensemble E est déterminé:
 - soit par l'énumération de ses éléments, on dit alors que E est défini en extension. Dans ce cas, si α, β, \cdots sont les éléments de E, alors on écrit $E = \{\alpha, \beta, \cdots\}$.
 - soit par une propriété donnant ses éléments, on dit alors que E est défini en compréhension. Dans ce cas, si P(x) est la propriété décrivant l'élément x de E, on écrit $E = \{x \mid P(x)\}$ qu'on lit "E est l'ensemble des éléments x tels que P(x)".

- On peut aussi représenter l'ensemble E par une patate à l'intérieur de laquelle on met les éléments.

Par exemple, les deux conditions $E = \{a, b\}$ et $c \notin E$ se représentent ainsi:

Exemples.

- 1. Soient \triangle , Ω , x et 0 les éléments constituant un ensemble E. Alors, on écrit $E = \{\triangle, \Omega, x, 0\}$. L'ordre d'énumération des éléments de E n'a pas d'importance.
- 2. $\mathbb{N}=\{0,1,2,\cdots\}$ l'ensemble des entiers naturels. $\mathbb{Z}=\{\cdots,-3,-2,-1,0,1,2,3,\cdots\}$ l'ensemble des entiers relatifs.

 $\mathbb{Q}=\{rac{a}{b}\mid a,b\in\mathbb{Z}\,\mathrm{et}\,b
eq0\}$ l'ensemble des nombres rationnels.

 \mathbb{R} l'ensemble des nombres réels.

 $\mathbb C$ l'ensemble des nombres complexes.

3. Singleton - Ensemble vide

Définition. On appelle singleton tout ensemble formé d'un seul élément.

Exemples. $E = \{1\}$ est le singleton dont l'unique élément est 1. Alors que $F = \{\{1\}\}$ est le singleton dont l'unique élément est $\{1\}$.

Définition. Il existe un ensemble qui ne contient aucun élément. On le note ∅ et on l'appelle l'ensemble vide. (Parfois on le note {}).

Remarque. $\{\emptyset\}$ n'est pas l'ensemble vide. C'est le singleton dont l'unique élément est \emptyset .

4. Quantificateurs

Soit P(x) une proposition qui dépend des éléments x d'un ensemble E (par exemple, $E = \mathbb{R}$ et P(x): x est un réel positif).

On distingue trois cas:

Cas 1. P(x) est vérifiée pour tout élément x de E. On écrit alors:

$$\forall x \in E \ P(x)$$

qu'on lit: "Quelque soit x de E P(x)".

(on lit aussi: "Pour tout x de E P(x)").

Cas 2. P(x) est vérifiée pour au moins un élément $x \in E$. On écrit alors:

$$\exists x \in E \mid P(x)$$

qu'on lit: "Il existe un élément x de E tel que P(x)".

Cas 3. P(x) n'est vérifiée pour aucun élément x de E. On écrit alors:

$$\forall x \in E \quad non P(x).$$

- ∀ s'appelle le quantificateur universel.
- ∃ s'appelle le quantificateur existentiel.

Remarque. Parfois on utilise le quantificateur $\exists !$ pour indiquer l'unicité. L'écriture $\exists ! x \in E \mid P(x)$ se lit: "il existe un unique élément x de E tel que P(x)".

Exemples. (1) La fonction sinus est minorée par -1 et majorée par 1, ce qu'on écrit: $\forall x \in \mathbb{R} -1 \leq \sin(x) \leq 1$.

(2) L'équation $x^2+x-1=0$ admet au moins une solution dans \mathbb{R} , ce qu'on écrit: $\exists x \in \mathbb{R} \mid x^2+x-1=0$.

Remarques. (1) Quand il y a plusieurs quantificateurs, on doit faire attention à l'ordre d'écrirure. Par exemple, la proposition $(\forall x \in \mathbb{R}, \ \exists \ n \in \mathbb{Z} \ | \ n \le x < n+1)$ qui est vraie, ne signifie pas la même chose que la proposition $(\exists \ n \in \mathbb{Z} \ | \ \forall x \in \mathbb{R} \ | \ n \le x < n+1)$ qui est fausse.

(2) Soit P(x) une proposition dépendant des éléments x d'un ensemble E.

La négation de $(\forall x \in E \ P(x))$ est $\exists x \in E \ | \ non P(x)$.

De même, la négation de $(\exists x \in E \mid P(x))$ est $\forall x \in E \text{ non } P(x)$.

Exemples. (1) Donner la négation de:

 $\forall n \in \mathbb{N} \ \exists x \in \mathbb{R} \ | \ x^2 \ge 10^n.$

$$\begin{aligned} & \textit{non}(\forall \, n \in \mathbb{N} \ \exists \, x \in \mathbb{R} \ | \ x^2 \geq 10^n) & \iff & \exists \, n \in \mathbb{N} \ | \, \textit{non}(\exists \, x \in \mathbb{R} \ | \ x^2 \geq 10^n) \\ & \iff & \exists \, n \in \mathbb{N} \ | \, \forall \, x \in \mathbb{R} \ \textit{non}(x^2 \geq 10^n) \\ & \iff & \exists \, n \in \mathbb{N} \ | \, \forall \, x \in \mathbb{R} \ x^2 < 10^n. \end{aligned}$$

(2) Donner la négation de: $\forall \epsilon > 0 \ \exists \ q \in \mathbb{Q} \ | \ 0 < q < \epsilon$.

```
\begin{aligned} & \operatorname{non}(\forall \, \epsilon > 0 \ \exists \, q \in \mathbb{Q} \ | \ 0 < q < \epsilon) & \iff & \exists \, \epsilon > 0 \ | \operatorname{non}(\exists \, q \in \mathbb{Q} \ | \ 0 < q < \epsilon) \\ & \iff & \exists \, \epsilon > 0 \ | \ \forall \, q \in \mathbb{Q} \ \operatorname{non}(0 < q < \epsilon) \\ & \iff & \exists \, \epsilon > 0 \ | \ \forall \, q \in \mathbb{Q} \ \operatorname{non}(0 < q \text{ et } q < \epsilon) \\ & \iff & \exists \, \epsilon > 0 \ | \ \forall \, q \in \mathbb{Q} \ \operatorname{non}(0 < q \text{ et } q < \epsilon) \\ & \iff & \exists \, \epsilon > 0 \ | \ \forall \, q \in \mathbb{Q} \ (q \le 0 \text{ ou } \epsilon \le q). \end{aligned}
```

5. Inclusion

Définition. – On dit qu'un ensemble A est **inclus** dans un ensemble B (ou A est une **partie** de B) si tout élément de A est un élément de B. On écrit $A \subset B$.

- Si A n'est pas inclus dans B, on écrit A ⊄ B.
- Si A ⊂ B et B ⊂ A, alors on dit que A et B sont **égaux** et on écrit A = B.

Exemples. (1) $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.

(2) Les ensembles $A = \{1, \Delta, 0\}$ et $B = \{0, 1, \Delta\}$ sont égaux.

Remarques. (1) $A \subset A$ pour tout ensemble A.

- (2) $A \subset B \iff \forall a \in A, a \in B$.
- (3) $A \not\subset B \iff \exists a \in A \mid a \notin B$.
- (4) $A = B \iff A \subset B \text{ et } B \subset A$.
- (5) (Exo) $A \neq B \iff (\exists a \in A \mid a \notin B)$ ou $(\exists b \in B \mid b \notin A)$.
- (6) (À savoir!!!) Pour tout ensemble A, on a $\emptyset \subset A$.

6. Opérations sur les ensembles

6.1 Intersection

Définition. L'intersection de deux ensembles A et B est l'ensemble formé des éléments qui appartiennent à la fois à A et à B. On la note $A \cap B$, et on lit "A inter B". Donc:

$$A \cap B = \{x \mid x \in A \text{ et } x \in B\}$$

$$x \in A \cap B \iff x \in A \text{ et } x \in B.$$

Illustration

Remarques. (À faire en exercice)

- (1) $A \cap B = B \cap A$, $A \cap A = A$ et $A \cap B \subset A$.
- (2) $x \notin A \cap B \iff x \notin A \text{ ou } x \notin B$.
- $(3) (A \cap B) \cap C = A \cap (B \cap C).$
- (4) Pour tout ensemble A, on a $A \cap \emptyset = \emptyset$.

6.2 Réunion

Définition. La réunion de deux ensembles A et B est l'ensemble formé des éléments qui appartiennent à A ou à B. On la note $A \cup B$, et on lit "A union B". Donc:

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$$

$$x \in A \cup B \iff x \in A \text{ ou } x \in B.$$

Illustration

Remarques. (À faire en exercice)

- (1) $A \cup B = B \cup A$, $A \cup A = A$ et $A \subset A \cup B$.
- (2) $x \notin A \cup B \iff x \notin A \text{ et } x \notin B$.
- $(3) (A \cup B) \cup C = A \cup (B \cup C).$
- (4) Pour tout ensemble A, on a $A \cup \emptyset = A$.

Proposition. L'intersection et la réunion sont distributives l'une par rapport à l'autre, c'est-à-dire, si A, B et C sont des ensembles, alors on a:

- $(1) A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
- $(2) A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

6.3 Généralisation de l'intersection et de la réunion

Soient I une partie de \mathbb{N} et $(A_i)_{i \in I}$ une famille d'ensembles indexée sur I.

Définition. – L'intersection des ensembles A_i , $i \in I$, est l'ensemble des éléments appartenant à A_i pour tout $i \in I$. On la note $\bigcap_{i \in I} A_i$, et on lit: "intersection des A_i pour $i \in I$.

– La réunion des ensembles A_i , $i \in I$, est l'ensemble des éléments appartenant à l'un au moins des A_i . On la note $\bigcup_{i \in I} A_i$, et on lit: "réunion des A_i pour $i \in I$.

Cette définition se traduit ainsi:

Intersection
$$\begin{cases} \bigcap_{i \in I} A_i = \{x \mid \forall i \in I \ x \in A_i\} \\ x \in \bigcap_{i \in I} A_i \iff \forall i \in I \ x \in A_i \end{cases}$$

$$\text{Réunion} \begin{cases} \bigcup_{i \in I} A_i = \{x \mid \exists i \in I \ x \in A_i\} \\ x \in \bigcup_{i \in I} A_i \iff \exists i \in I \mid x \in A_i. \end{cases}$$

Remarques. (À faire en exercice)

$$(1) \times \not\in \bigcap_{i \in I} A_i \iff \exists i \in I \mid \times \not\in A_i.$$

(2)
$$x \notin \bigcup_{i \in I} A_i \iff \forall i \in I \ x \notin A_i$$
.

6.4 Différence de deux ensembles

Définition. Soient A et B deux ensembles. On appelle différence de A par rapport à B, l'ensemble des éléments qui appartiennent à A mais qui n'appartiennent pas à B. On note cet ensemble $A \setminus B$, et on lit: "A moins B". Donc

$$A \setminus B = \{x \mid x \in A \text{ et } x \notin B\}$$

 $x \in A \setminus B \iff x \in A \text{ et } x \notin B.$

Illustration

Cas particulier important

Soient A et B deux ensembles tels que $B \subset A$. Dans ce cas, l'ensemble $A \setminus B$ s'appelle le complémentaire de B dans A. On le note \mathbb{C}_A^B .

Illustration

Remarques. (1) On a $x \in \mathbb{C}_A^B \iff x \in A \text{ et } x \notin B$.

(2) Si $x \in A$, on a que $x \notin \mathcal{C}_A^B \iff x \in B$.

Proposition. (Lois de De Morgan)

Soient B_1 et B_2 deux parties d'un ensemble A. On a:

- $(1)\ \mathbb{C}_A^{B_1\cap B_2}=\mathbb{C}_A^{B_1}\cup\mathbb{C}_A^{B_2}.$
- $(2)\ \mathbb{C}_A^{B_1\cup B_2}=\mathbb{C}_A^{B_1}\cap \mathbb{C}_A^{B_2}.$

Remarques. (À faire en exercice)

- (1) Soit B une partie de A. On a $\mathcal{C}_A^{\mathcal{C}_A^B} = B$.
- (2) Pour tout ensemble E, on a $\mathcal{C}_E^\emptyset = E$ et $\mathcal{C}_E^E = \emptyset$.
- (3) (Généralisation des lois de De Morgan) Soient I une partie de \mathbb{N} , et $(B_i)_{i\in I}$ une famille de parties de A indexée sur I. On a:

$$\mathbb{C}_A^{\cap_{i\in I}B_i}=igcup_{i\in I}\mathbb{C}_A^{B_i}\quad ext{ et }\quad \mathbb{C}_A^{\cup_{i\in I}B_i}=igcap_{i\in I}\mathbb{C}_A^{B_i}.$$

6.5 Produit cartésien

Définition. Soient A et B deux ensembles.

- (1) On appelle couple d'éléments de A et B tout ensemble de la forme $\{a, \{a, b\}\}$ avec $a \in A$ et $b \in B$. On note ce couple (a, b).
- (2) Le produit cartésien de A par B, noté $A \times B$, est l'ensemble de tous les couples d'éléments de A et B. On lit $A \times B$: "A croix B".

Donc, on a

$$A \times B = \{(a, b) \mid a \in A \text{ et } b \in B\}.$$

Remarques. (1) $(a, b) \in A \times B \iff a \in A \text{ et } b \in B$.

- (2) $(a, b) \notin A \times B \iff a \notin A \text{ ou } b \notin B$.
- (3) On a souvent $(a, b) \neq (b, a)$ (voir la proposition ci-dessous).
- (4) Pour tout ensemble A, on a: $A \times \emptyset = \emptyset$ et $\emptyset \times A = \emptyset$.

Proposition. Soient (a,b) et (a',b') deux éléments de $A \times B$.

Alors:
$$(a, b) = (a', b') \iff a = a' \text{ et } b = b'$$
.

Exemple. Soient $A = \{1, 2\}$ et $B = \{a, b, c\}$. Alors:

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.$$

Plus tard, on prouvera le résultat suivant:

Proposition. Soient A un ensemble formé de m éléments et B un ensemble formé de n éléments. Alors, l'ensemble $A \times B$ est formé de mn éléments.

Proposition. Soient A, B et C trois ensembles. Alors:

$$(1) A \times (B \cap C) = (A \times B) \cap (A \times C).$$

$$(2) A \times (B \cup C) = (A \times B) \cup (A \times C).$$

Généralisation du produit cartésien

Soient A_1, \dots, A_n des ensembles (avec $n \geq 2$). Le produit cartésien $A_1 \times A_2 \times \ldots \times A_n$ est défini comme étant l'ensemble $(A_1 \times A_2 \times \ldots \times A_{n-1}) \times A_n$ (donc on procède par itération). Un éléments de $A_1 \times A_2 \times \ldots \times A_n$ est appelé n-uplet et est noté (a_1, a_2, \dots, a_n) avec $a_i \in A_i$ pour tout $i = 1, \dots, n$. On a aussi la propriété:

$$(a_1,a_2,\cdots,a_n)=(b_1,b_2,\cdots,b_n)\iff\forall\,i\in\{1,2,\cdots,n\}\quad a_i=b_i.$$

Remarque. (1) Pour $n \ge 3$, on dit:

triplet au lieu de 3-uplet. quadruplet au lieu de 4-uplet. quintuplet au lieu de 5-uplet, etc

(2) Pour un ensemble A, on note $A^n = \underbrace{A \times \cdots \times A}_{n \text{ fois}}$, qu'on appelle

le produit cartésien *n*-ième de *A*. Par exemple: $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$, $\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$. \cdots

6.6 L'ensemble des parties d'un ensemble

Définition. Soit A un ensemble. On note $\mathcal{P}(A)$ l'ensemble des parties de A. Donc, on a:

$$\mathcal{P}(A) = \{X \mid X \subset A\}$$
$$X \in \mathcal{P}(A) \iff X \subset A.$$

Remarque. L'ensemble $\mathcal{P}(A)$ n'est jamais vide. En effet, $\emptyset \in \mathcal{P}(A)$ et $A \in \mathcal{P}(A)$ (car $\emptyset \subset A$ et $A \subset A$).

Exemples.

$$(1) \mathcal{P}(\emptyset) = \{\emptyset\}$$

Le nombre d'éléments de $\mathcal{P}(\emptyset)$ est $1=2^{0}$.

- (2) Pour x un élément, on a $\mathcal{P}(\{x\}) = \{\emptyset, \{x\}\}$ Le nombre d'éléments de $\mathcal{P}(\{x\})$ est $2 = 2^1$.
- (3) Pour x, y deux éléments, on a

$$\mathcal{P}(\{x,y\}) = \{\emptyset, \{x\}, \{y\}, \{x,y\}\}$$

Le nombre d'éléments de $\mathcal{P}(\{x,y\})$ est $4=2^2$.

Plus généralement on a:

Proposition. Soit A un ensemble fini formé de n éléments. Alors, $\mathcal{P}(A)$ est formé de 2^n éléments.

Preuve. La preuve sera donnée plus tard.

Remarques. Soient A et B deux ensembles.

(1)
$$\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$$
.

$$X \in \mathcal{P}(A \cap B) \iff X \subset A \cap B$$

$$\iff X \subset A \text{ et } X \subset B$$

$$\iff X \in \mathcal{P}(A) \text{ et } X \in \mathcal{P}(B)$$

$$\iff X \in \mathcal{P}(A) \cap \mathcal{P}(B).$$

(2)
$$\mathcal{P}(A) \cup \mathcal{P}(B) \subset \mathcal{P}(A \cup B)$$
.

Mais en général, $\mathcal{P}(A \cup B) \not\subset \mathcal{P}(A) \cup \mathcal{P}(B)$. Donner un exemple montrant cela.