Probleme de satisfacere a restricțiilor

IA 2023/2024

Conținut

Introducere

Algoritmi de căutare

Îmbunătățirea algoritmului de căutare

Structura grafului de restricții

Căutare locală

2/59

Probleme de satisfacere a constrângerilor (CSP)

- ▶ Sunt definite prin: variabilele X_i cu valori din domeniul D_i și o mulțime de constrângeri care specifică combinațiile permise de valori pentru submulțimi de variabile.
- O asignare este consistentă dacă nu sunt încălcate constrângeri. O asignare este completă dacă include toate variabilele. Soluție: o asignare completă de valori variabilelor a.î. toate constrângerile sunt satisfăcute.
- NP-hard
 - algoritmi cu scop-general, mai puternici decât algoritmii de căutare standard
- MaxCSP: maximizează numărul de constrângeri satisfăcute

3 / 59

Exemplu: Colorarea unei hărți

Variabile: WA, NT, Q, NSW, V, SA, T

Domenii: $D_i = \{red, green, blue\}$

Constrângeri: regiunile adiacente trebuie să aibă culori diferite

 $WA \neq NT$ (dacă limbajul permite), sau

 $(\textit{WA},\textit{NT}) \in \{(\textit{red},\textit{green}),(\textit{red},\textit{blue}),(\textit{green},\textit{red}),(\textit{green},\textit{blue}),\ldots\}$

FII, UAIC Curs 4 IA 2023/2024 4 / 59

Exemplu: Colorarea unei hărți

Soluțiile sunt asignări care satisfac toate restricțiile. $\{WA = red, NT = green, Q = red, NSW = green, V = red, SA = SA = red, SA =$ blue, T = green

Exemplu: N-Regine

Formularea 1:


```
Variabile: X_{ij}
```

Domenii: {0,1}

$$\sum_{i,j} X_{ij} = N$$

$$\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}$$

$$\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0,0), (0,1), (1,0)\}$$

$$\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\}$$

$$\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0,0), (0,1), (1,0)\}$$

6 / 59

Exemplu: N-Regine

Formularea 2:

Variabile: Q_k

Domenii: {1, 2, 3, ..., N}

Constrângeri

Implicit: $\forall i, j \quad non-threatening(Q_i, Q_j)$ Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), ...\}$...

Exemplu: Sudoku

Variabile: $x_{ij} \in \{1,...,9\} =: N$ (valorile din celulele corespunzătoare) Restricții de inegalitate (perechi): toate valorile de pe o linie, coloană, regiune sunt diferite

$$x_{ij} \neq x_{ik}$$
 $\forall k \neq i, j \in N, (linie)$
 $x_{ij} \neq x_{kj}$ $\forall k \neq i, j \in N, (coloana)$
 $x_{i_1j_1} \neq x_{i_2j_2}$ $\forall (i_1, j_1) \neq (i_2, j_2) \in C_{ij}, \forall i, j \in N' = \{1, 2, 3\}, (regiune)$
 $x_{ij} \in N$ $\forall i, j \in N$

$$C_{ij} = \{(3(i-1)+i',3(j-1)+j')|(i',j') \in N' \times N'\}$$

Se poate utiliza restricția globală alldifferent pentru o formulare mai puternică:

$$\begin{aligned} \textit{alldifferent}(x_{ij}|j \in N) \ \forall i \in N, (\textit{linie}) \\ \textit{alldifferent}(x_{ij}|i \in N) \ \forall j \in N, (\textit{coloana}) \\ \textit{alldifferent}(C_{ij}) \ \forall i, j \in N', (\textit{regiune}) \\ x_{i,j} \in N \ \forall i, j \in N \end{aligned}$$

Exemplu: Cryptarithmetic puzzle

Variabile: $F T U W R O X_1 X_2 X_3$ Domenii: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Constrângeri:

alldiff
$$(F, T, U, W, R, O)$$

 $O + O = R + 10 \cdot X_1$, etc.

9 / 59

Exemplu: planificarea orarului

Planificarea orarului profesorilor și a elevilor

- ► Variabile: profesori, materii, clase, săli, intervale orare
- Constrângeri:
 - un profesor predă anumite materii
 - o materie este tinută la anumite clase
 - un profesor preferă anumite intervale orare, etc.

Exemplu: Job-shop scheduling

Asamblarea unei mașini

Sarcini: instalează axele (față, spate), fixează roțile, strânge piulițele (pentru fiecare roată), fixează capacele roților, inspectează ansamblul final.

```
Modelare: variabila: sarcină, valoare: timpul la care începe (minute). X = \{Axle_F, Axle_B, Wheel_{RF}, Wheel_{LF}, Wheel_{RB}, Wheel_{LB}, Nuts_{RF}, Nuts_{LF}, Nuts_{RB}, Nuts_{LB}, Cap_{RF}, Cap_{LF}, Cap_{RB}, Cap_{LB}, Inspect\}
```

- Constrângeri:
 - o sarcină trebuie să înceapă înaintea alteia (o roată trebuie instalată înaintea capacului)
 - $T_1+d_1\leq T_2$ (T_1 trebuie să înceapă înaintea lui T_2)
 - o sarcină necesită o perioadă de timp pentru a fi finalizată

11 / 59

Exemplu: Job-shop scheduling

Asamblarea unei masini. Constrângeri:

- Axele trebuie instalate înaintea rotilor $Axle_F + 10 < Wheel_{RF}$
- După fixarea roţilor, strânge piuliţele şi apoi ataşează capacele Wheel_{RF} $+ 1 < Nuts_{RF}$: Nuts_{RF} $+ 2 < Cap_{RF}$
- Pentru a așeza axele, se utilizează un instrument (Axlef, Axleg nu se suprapun)
 - $(Axle_F + 10 \le Axle_B)$ or $(Axle_B + 10 \le Axle_F)$
- Inspecția este la sfârșit și durează 3 minute $X + d_X < Inspect$
- Ansamblul trebuie terminat în 30 de minute $D = \{1, 2, 3, ..., 27\}$

Curs 4

Probleme din lumea reală

- ▶ Planificarea orarului personalului medical
- Planificarea transportului în comun, a construcției unei fabrici, Floorplanning, etc.
- Meeting scheduling
- Probleme de asignare (a profesorilor la clase)
- Configurare hardware

Obs: multe probleme din lumea reală implică variabile cu valori reale

https://www.csplib.org/Problems/

13 / 59

Tipuri de variabile

- Variabile discrete
 - ightharpoonup domenii finite; dimensiune domeniu $d \implies O(d^n)$ asignări complete
 - ex: Boolean CSPs, incl. Boolean satisfiability (NP-complete)
 - domenii infinite (întregi, siruri de caractere, etc.)
 - ex: job scheduling
 - constrângeri liniare (rezolvabil), neliniare (nedecidabil)
- Variabile continue
 - ex: timpii de început/sfârsit pentru observatiile furnizate de telescopul Hubble
 - constrângeri liniare (rezolvabile în timp polinomial cu metode de programare liniară)

Tipuri de constrângeri

- Constrângeri unare implică o singură variabilă ex: SA ≠ green
- Constrângeri binare implică perechi de variabile
 ex: SA ≠ WA
 Probleme CSP binare: fiecare constrângere se referă la cel mult două variabile
- Constrângeri de ordin superior implică 3 sau mai multe variabile ex: constrângerile din exemplul cryptarithmetic puzzle
- Preferințe (restricții soft) ex: roșu este mai bun decât verde reprezentate prin costuri asociate asignărilor → probleme de optimizare

15 / 59

Graful de restricții

Nodurile sunt variabile, muchiile reprezintă restricții

Algoritmii cu scop-general utilizează structura grafului pentru a accelera căutarea (ex: Tasmania este o subproblemă independentă)

FII, UAIC Curs 4 IA 2023/2024 16/59

Conținut

Introducere

Algoritmi de căutare

Îmbunătățirea algoritmului de căutare

Structura grafului de restricții

Căutare locală

FII, UAIC Curs 4 IA 2023/2024 17/59

Formularea standard (căutare incrementală)

Stările sunt definite prin valorile asignate.

- Starea iniţială: asignarea vidă, Ø
- Funcția succesor: atribuie o valoare unei variabile neasignate
- Testarea obiectivului: asignarea curentă este completă

18 / 59

FII, UAIC Curs 4

Formularea standard (căutare incrementală)

- Soluțiile se găsesc la adâncimea n în arbore (n variabile asignate) \Rightarrow utilizează DFS
- ► Factorul de ramificare este nd, la următorul nivel (n-1)d, etc. $\rightarrow n!d^n$ frunze, d^n asignări posibile

19 / 59

Backtracking

Asignările variabilelor sunt comutative [WA = red then NT = green] la fel ca [NT = green then WA = red]

La fiecare nod considerăm asignarea unei singure variabile (nu intră în conflict cu asignarea curentă) \implies d noduri pe nivel și d^n frunze

Căutarea DFS pentru CSP cu asignări pentru o singură variabilă: backtracking. Backtracking este algoritmul de bază neinformat pentru CSP.

20 / 59

FII, UAIC Curs 4

Exemplu Backtracking

Când un nod este extins, se verifică dacă fiecare stare următoare este consistentă, înainte de a fi adăugată.

Backtracking

```
function Backtracking-Search(csp) returns solution/failure
  return Recursive-Backtracking({ }, csp)
function RECURSIVE-BACKTRACKING (assignment, csp) returns soln/failure
  if assignment is complete then return assignment
  var \leftarrow \text{Select-Unassigned-Variables}[csp], assignment, csp)
  for each value in Order-Domain-Values (var, assignment, csp) do
      if value is consistent with assignment given Constraints[csp] then
           add \{var = value\} to assignment
           result \leftarrow Recursive-Backtracking(assignment, csp)
           if result \neq failure then return result
           remove \{var = value\} from assignment
  return failure
```

Backtracking = DFS + ordonarea variabilelor + fail-on-violation Poate rezolva problema celor n regine pentru $n \approx 25$.

FII, UAIC Curs 4 IA 2023/2024 22 / 59

Conținut

Îmbunătățirea algoritmului de căutare

FII, UAIC Curs 4

Îmbunătățirea eficienței algoritmului Backtracking

- 1. Ce variabilă trebuie asignată?
- 2. În ce ordine trebuie verificate valorile?
- 3. Putem detecta esecul mai devreme?
- 4. Putem profita de structura problemei?

24 / 59

1. Minimum-remaining-values

Minimum-remaining-values (MRV): alege variabila cu cele mai puține valori permise (variabila cea mai constrânsă).

"Fail-first" heuristic

25 / 59

2. Least-constraining-value

Least-constraining-value: alege valoarea cea mai puțin constrânsă (cea care exclude cele mai puține valori)

Exemplu: ce valoare alegem pentru Q?

Combinarea acestor euristici face posibilă rezolvarea problemei 1000-regine.

26 / 59

Chestionar

Question!

Variable order WA, NT, Q, NSW, V, T, SA. Tightest upper bound on naïve backtracking search space size?

(A): 145

(B): 382

(C): 433

(D): 3^7

FII, UAIC Curs 4

Chestionar

Question!

Variable order SA,NT,Q,NSW,V,WA,T. Tightest upper bound on naïve backtracking search space size?

(A): 52

(C): 382

(B): 145 (D): 433

FII, UAIC Curs 4

Idee: actualizează domeniul variabilelor neasignate

Idee: actualizează domeniul variabilelor neasignate

Idee: actualizează domeniul variabilelor neasignate

Idee: actualizează domeniul variabilelor neasignate

Forward checking - algoritm

```
procedure SelectValue-forward-checking
   while D'_i is not empty
      select an arbitrary element a \in D'_i, and remove a from D'_i
      empty-domain \leftarrow false
      for all k, i < k \le n
         for all values b in D'_k
            if not consistent (\vec{a}_{i-1}, x_i = a, x_k = b)
               remove b from D'_k
         end for
         if D'_k is empty (x_i = a \text{ leads to a dead-end})
            empty-domain \leftarrow true
      if empty-domain (don't select a)
         reset each D'_k, i < k \le n to value before a was selected
      else
         return a
   end while
   return null
                                (no consistent value)
end procedure
```

```
procedure GENERALIZED-LOOKAHEAD
Input: A constraint network P = (X, D, C)
Output: Either a solution, or notification that the network is inconsis-
tent.
    D_i' \leftarrow D_i \text{ for } 1 \le i \le n  (copy all domains)
    i \leftarrow 1
                                 (initialize variable counter)
    while 1 \le i \le n
       instantiate x_i \leftarrow \text{SELECTVALUE-XXX}
       \mathbf{if} \ x_i \ \mathrm{is} \ \mathrm{null} \qquad \qquad (\mathrm{no} \ \mathrm{value} \ \mathrm{was} \ \mathrm{returned})
          i \leftarrow i - 1 (backtrack)
          reset each D'_k, k > i, to its value before x_i was last instantiated
       else
                                   (step forward)
          i \leftarrow i + 1
    end while
    if i = 0
       return "inconsistent"
    else
       return instantiated values of \{x_1, \ldots, x_n\}
end procedure
```

Propagarea constrângerilor

Forward checking propagă informații la variabile neasignate, dar nu asigură detectarea timpurie a eșecurilor:

NT și SA nu pot fi colorate ambele cu albastru! Nu există propagare între variabilele neasignate! \to Singleton domains

Aplică în mod repetat constrângerile la nivel local.

FII, UAIC Curs 4 IA 2023/2024 35 / 59

Arc consistency

Arc consistency: cea mai simplă formă de propagare; face ca fiecare arc să fie consistent.

 $X \rightarrow Y$ este consistent dacă și numai dacă pentru fiecare valoare x a lui X, există o valoare permisă y pentru Y

Arc consistency

Arc consistency: cea mai simplă formă de propagare; face ca fiecare arc să fie consistent.

X o Y este consistent dacă și numai dacă pentru fiecare valoare x a lui X, există o valoare permisă y pentru Y

FII, UAIC Curs 4 IA 2023/2024 37/59

Arc consistency

Arc consistency: cea mai simplă formă de propagare; face ca fiecare arc să fie consistent.

X o Y este consistent dacă și numai dacă pentru fiecare valoare x a lui X, există o valoare permisă y pentru Y

Dacă X pierde o valoare, vecinii lui X trebuie verificați.

→□▶→□▶→□▶→□ → ○ ○ ○

38 / 59

FII, UAIC Curs 4 IA 2023/2024

Arc consistency

Arc consistency: cea mai simplă formă de propagare; face ca fiecare arc să fie consistent.

X o Y este consistent dacă și numai dacă pentru fiecare valoare x a lui X, există o valoare permisă y pentru Y

Daca X pierde o valoare, vecinii lui X trebuie verificați.

Arc consistency detectează eșecul mai devreme decât Forward checking.

Poate fi executat ca un pas de preprocesare sau după fiecare asignare.

FII, UAIC Curs 4 IA 2023/2024 39 / 59

Algoritmul Arc consistency

```
function AC-3(csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_i) \leftarrow \text{Remove-First}(queue)
      if Remove-Inconsistent-Values(X_i, X_j) then
         for each X_k in Neighbors [X_i] do
            add (X_k, X_i) to queue
function Remove-Inconsistent-Values (X_i, X_i) returns true iff succeeds
   removed \leftarrow false
   for each x in Domain[X_i] do
      if no value y in DOMAIN[X<sub>i</sub>] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_j
         then delete x from DOMAIN[X_i]; removed \leftarrow true
   return removed
```

Complexitate timp: $O(n^2d^3)$; versiuni $O(n^2d^2)$.

FII, UAIC Curs 4 IA 2023/2024 40 / 59

Propagarea constrângerilor

3-consistentă (path consistency), k-consistentă *k-consistentă*: orice asignare consistentă a k-1 variabile poate fi extinsă la o instantiere de k variabile

Dacă o problemă CSP cu n variabile este n-consistentă, atunci nu mai e necesară căutarea Backtracking.

- Utilizarea tehnicilor de propagare a constrângerilor implică si o crestere a timpului de executie
 - un compromis între propagare si căutare; dacă propagarea durează mai mult decât căutarea, atunci nu se merită
- Consistentă directională

- Backtracking: ne întoarcem la variabila anterioară pentru a-i asigna o nouă valoare
 - ne întoarcem UN nivel în arborele de căutare
- ► Când ajungem într-un punct din care nu mai putem continua (datorită unei inconsistențe), putem încerca să identificăm cauza problemei
 - ▶ în loc să ne întoarcem un nivel, ne putem întoarce direct la variabila care a cauzat problema

42 / 59

FII, UAIC Curs 4 IA 2023/2024

- ▶ Idee: Menține o mulțime de conflicte CONFLICT SET pentru fiecare variabilă (actualizată pe măsură ce asignăm valori variabilelor)
- Considerăm variabila curentă X_i. Mulțimea CONFLICT SET a lui X_i este mulțimea de VARIABILE ASIGNATE ANTERIOR conectate cu X_i (datorită unei restricții)
- Dacă nu am identificat o asignare validă pentru variabila curentă X_i , ne ÎNTOARCEM la variabila X_k , din mulțimea de conflicte a lui X_i , cea mai apropiată
- Actualizăm mulțimea de conflicte a lui X_k $CONFLICT_SET(X_k) =$ $CONFLICT_SET(X_k) \cup CONFLICT_SET(X_i) \setminus X_k$

43 / 59

FII, UAIC Curs 4 IA 2023/2024

Exemplu: colorarea unei hărți

 X_7 nu este în mulțimea de conflicte a lui X_3 ; ne întoarcem la cea mai apropiată variabilă din mulțimea de conflicte (X_6)

FII, UAIC Curs 4 IA 2023/2024 44 / 59

procedure Conflict-directed-backjumping

Input: A constraint network $\mathcal{R} = (X, D, C)$.

Output: Either a solution, or a decision that the network is inconsistent.

```
i \leftarrow 1
                                          (initialize variable counter)
    D_i' \leftarrow D_i
                                          (copy domain)
    J_i \leftarrow \emptyset
                                          (initialize conflict set)
    while 1 \le i \le n
        instantiate x_i \leftarrow \text{SELECTVALUE-CBJ}
        if x_i is null
                                         (no value was returned)
            iprev \leftarrow i
            i \leftarrow \text{index of last variable in } J_i \quad \text{(backjump)}
            J_i \leftarrow J_i \cup J_{ivrev} - \{x_i\} \text{(merge conflict sets)}
        else
            i \leftarrow i + 1
                                       (step forward)
           D'_i \leftarrow D_i
                                         (reset mutable domain)
            J_i \leftarrow \emptyset
                                          (reset conflict set)
    end while
    if i = 0
        return "inconsistent"
    else
        return instantiated values of \{x_1, \ldots, x_n\}
end procedure
```

subprocedure SelectValue-CBJ

```
while D'_i is not empty
      select an arbitrary element a \in D'_i, and remove a from D'_i
       consistent \leftarrow true
      k \leftarrow 1
      while k < i and consistent
          if consistent(\vec{a}_k, x_i = a)
             k \leftarrow k + 1
          else
             let R_S be the earliest constraint causing the conflict
             add the variables in R_S's scope S, but not x_i, to J_i
             consistent \leftarrow false
      end while
      if consistent
          return a
   end while
   return null
                                  (no consistent value)
end procedure
```

Conținut

Introducere

Algoritmi de căutare

Îmbunătățirea algoritmului de căutare

Structura grafului de restricții

Căutare locală

FII, UAIC Curs 4

Structura problemei

Tasmania și continentul sunt subprobleme independente

Identificabile ca și componente conexe ale grafului constrângerilor.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● めぬ◎

FII, UAIC Curs 4 IA 2023/2024 48 / 59

Structura problemei

Presupunem că fiecare subproblemă are c variabile, dintr-un total de n.

Complexitatea în cazul cel mai nefavorabil este $n/c \cdot d^c$, liniar în n

Exemplu: n = 80, d = 2, c = 20

 $2^{80} = 4$ miliarde de ani la 10 milioane noduri/sec

 $4 \cdot 2^{20} = 0.4$ secunde la 10 milioane noduri/sec

Sunt rare situațiile acestea.

49 / 59

FII, UAIC Curs 4 IA 2023/2024

Probleme CSP cu structură arborescentă

Teoremă: dacă graful de constrângeri nu are cicluri, problema CSP poate fi rezolvată în $O(n d^2)$ timp.

(Reamintim: pentru problemele generale CSP, complexitatea timp în cazul cel mai nefavorabil este $O(d^n)$)

FII, UAIC Curs 4 IA 2023/2024 50 / 59

Probleme CSP cu structură arborescentă

O problemă CSP este *directed arc-consistent* pentru o ordonare $X_1, X_2, ..., X_n$ a variabilelor \iff fiecare X_i este arc-consistent cu $X_j, \forall j > i$.

Metodă:

1. Alege în rădăcină o variabilă, ordonează variabilele de la rădăcină la frunze a.î. părintele fiecarui nod îl precede în ordonare

- 2. For j = n downto 2, aplică $Make-Arc-Consistent(Parent(X_j), X_j)$
- 3. For j=1 to n, asignează X_i (o valoare consistentă din domeniu)

Probleme CSP cu o structură "aproape" arbore

Cutset conditioning

- ► Alege o submulțime *S* de variabile a.î. graful de constrangeri devine arbore după ștergerea lui *S* (*S cutset*)
- ▶ Pentru fiecare asignare a variabilelor din *S*, șterge din domeniul celorlalte variabile valori care sunt inconsistente cu asignarea; returnează cele două soluții.

Timpul de execuție $O(d^c \cdot (n-c)d^2)$, c dimensiune cutset (rapid pentru valori mici ale lui c)

FII, UAIC Curs 4 IA 2023/2024 52 / 59

Conținut

Căutare locală

FII, UAIC

Algoritmi euristici pentru CSP

Hill-climbing, Simulated annealing lucrează cu stări "complete" (toate variabilele asignate)

Pentru a aplica pe probleme CSP: permitem stări cu restricții nesatisfacute operatori care reasignează valori variabilelor

Selectarea variabilei: alege aleator o variabilă conflictuală

Selectarea valorii utilizând euristica min-conflicts: alege valoarea care încalcă cele mai putine restrictii h(n) = numărul de restrictii violate

54 / 59

Min-conflicts

```
function MIN-CONFLICTS(csp, max_steps) returns a solution or failure
  inputs: csp, a constraint satisfaction problem
           max_steps, the number of steps allowed before giving up
  current \leftarrow an initial complete assignment for csp
  for i = 1 to max\_steps do
      if current is a solution for csp then return current
      var \leftarrow a randomly chosen conflicted variable from csp. VARIABLES
      value \leftarrow the value v for var that minimizes CONFLICTS(var, v, current, csp)
      set var = value in current
```

return failure

55 / 59

Exemplu: 4-Regine

```
Variabile: Q_1, Q_2, Q_3, Q_4 (câte o regină pentru fiecare coloană)
```

Domenii: $D_i = \{1, 2, 3, 4\}$ (pe ce linie se află fiecare regină)

Constrângeri:

$$Q_i \neq Q_j$$
 (nu pot fi pe aceeași linie)

$$|Q_i - Q_j| \neq |i - j|$$
 (sau pe aceeași diagonală)

FII, UAIC Curs 4

Exemplu: 4-Regine

- ► Stare: 4 regine pe 4 coloane (4⁴ = 256 stări)
- Operatori: mută regina pe coloană
- Testarea obiectivului: nu există atacuri
- **Evaluare**: h(n) = numărul de atacuri

FII, UAIC Curs 4 IA 2023/2024 57/59

Compararea algoritmilor pentru CSP

Numărul mediu de verificări a consistenței necesare pentru a rezolva problema

Problem	Backtracking	BT+MRV	Forward Checking	FC+MRV	Min-Conflicts
USA n-Queens Zebra Random 1 Random 2		() , ,	2K (> 40,000K) 35K 26K 77K	60 817K 0.5K 2K 15K	64 4K 2K

FII, UAIC Curs 4

Concluzii

- Probleme de satisfacere a restricțiilor stări: asignări ale variabilelor restricții intre variabile
- Backtracking = Depth-first search în care asignăm o variabilă (la fiecare nod)
- Euristici de ordonare a variabilelor și selectare a valorilor
- Forward-checking previne asignări care garantează eșecul ulterior. Propagarea constrangerilor (Arc consistency) constrânge suplimentar valorile.
- Reprezentarea utilizând graful de constrângeri permite analiza structurii problemei. Problemele cu structură arborescentă pot fi rezolvate în timp liniar.
- Metodele de căutare locală (Iterative min-conflicts) sunt de obicei eficiente în practică.