```
In [1]:
```

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns $\textbf{from IPython.display import} \ \texttt{Image}$ from sklearn.ensemble import RandomForestClassifier $\begin{picture}(100,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){10$ from sklearn.metrics import classification_report from sklearn.metrics import roc_curve

Matplotlib is building the font cache; this may take a moment.

In [2]:

```
data = pd.read_csv("heart_disease.csv.csv")
```

In [3]:

data

Out[3]:

		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
:	298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
:	299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
:	300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
,	301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
;	302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

303 rows × 14 columns

In [4]:

```
data.head()
```

Out[4]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

In [5]:

```
data.tail()
```

Out[5]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

In [7]:

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):

#	Column	Non-	-Null Count	Dtype
0	age	303	non-null	int64
1	sex	303	non-null	int64
2	ср	303	non-null	int64
3	trestbps	303	non-null	int64
4	chol	303	non-null	int64
5	fbs	303	non-null	int64
6	restecg	303	non-null	int64
7	thalach	303	non-null	int64
8	exang	303	non-null	int64
9	oldpeak	303	non-null	float64
10	slope	303	non-null	int64
11	ca	303	non-null	int64
12	thal	303	non-null	int64
13	target	303	non-null	int64
-14	E1+C	1 /1 \	:-+(1/12)	

dtypes: float64(1), int64(13)

memory usage: 33.3 KB

In [8]:

```
data.describe()
```

Out[8]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.00
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	149.646865	0.326733	1.039604	1.39
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.905161	0.469794	1.161075	0.6
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000	0.000000	0.000000	0.00
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.500000	0.000000	0.000000	1.00
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.000000	0.000000	0.800000	1.00
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.000000	1.000000	1.600000	2.00
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.000000	1.000000	6.200000	2.00
4											· Þ

In [9]:

```
###### null values #####
```

```
data.isnull().sum()
```

Out[9]:

```
age 0
sex 0
cp 0
trestbps 0
chol 0
fbs 0
```

thalach 0
exang 0
oldpeak 0
slope 0
ca 0
thal 0
target 0
dtype: int64

In [10]:

data.describe().T

Out[10]:

	count	mean	std	min	25%	50%	75%	max
age	303.0	54.366337	9.082101	29.0	47.5	55.0	61.0	77.0
sex	303.0	0.683168	0.466011	0.0	0.0	1.0	1.0	1.0
ср	303.0	0.966997	1.032052	0.0	0.0	1.0	2.0	3.0
trestbps	303.0	131.623762	17.538143	94.0	120.0	130.0	140.0	200.0
chol	303.0	246.264026	51.830751	126.0	211.0	240.0	274.5	564.0
fbs	303.0	0.148515	0.356198	0.0	0.0	0.0	0.0	1.0
restecg	303.0	0.528053	0.525860	0.0	0.0	1.0	1.0	2.0
thalach	303.0	149.646865	22.905161	71.0	133.5	153.0	166.0	202.0
exang	303.0	0.326733	0.469794	0.0	0.0	0.0	1.0	1.0
oldpeak	303.0	1.039604	1.161075	0.0	0.0	0.8	1.6	6.2
slope	303.0	1.399340	0.616226	0.0	1.0	1.0	2.0	2.0
са	303.0	0.729373	1.022606	0.0	0.0	0.0	1.0	4.0
thal	303.0	2.313531	0.612277	0.0	2.0	2.0	3.0	3.0
target	303.0	0.544554	0.498835	0.0	0.0	1.0	1.0	1.0

In [11]:

######### data visualization ###########

data.corr()

Out[11]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	
age	1.000000	0.098447	0.068653	0.279351	0.213678	0.121308	0.116211	0.398522	0.096801	0.210013	0.168814	0.276326	0.06
sex	0.098447	1.000000	0.049353	0.056769	0.197912	0.045032	0.058196	0.044020	0.141664	0.096093	0.030711	0.118261	0.21
ср	0.068653	0.049353	1.000000	0.047608	0.076904	0.094444	0.044421	0.295762	0.394280	0.149230	0.119717	0.181053	0.16
trestbps	0.279351	0.056769	0.047608	1.000000	0.123174	0.177531	0.114103	0.046698	0.067616	0.193216	0.121475	0.101389	0.06
chol	0.213678	0.197912	0.076904	0.123174	1.000000	0.013294	0.151040	0.009940	0.067023	0.053952	0.004038	0.070511	0.09
fbs	0.121308	0.045032	0.094444	0.177531	0.013294	1.000000	0.084189	0.008567	0.025665	0.005747	0.059894	0.137979	0.03
restecg	0.116211	0.058196	0.044421	0.114103	0.151040	0.084189	1.000000	0.044123	0.070733	0.058770	0.093045	0.072042	0.01
thalach	0.398522	0.044020	0.295762	0.046698	0.009940	0.008567	0.044123	1.000000	0.378812	0.344187	0.386784	0.213177	0.09
exang	0.096801	0.141664	0.394280	0.067616	0.067023	0.025665	0.070733	0.378812	1.000000	0.288223	0.257748	0.115739	0.20
oldpeak	0.210013	0.096093	0.149230	0.193216	0.053952	0.005747	0.058770	0.344187	0.288223	1.000000	0.577537	0.222682	0.21

```
| Slope | 0.168898 | 0.030797 | 0.119767 | 0.119767 | 0.004098 | 0.004098 | 0.059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059898 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0059998 | 0.0
```

In [13]:

```
plt.figure(figsize=(12,10))
sns.heatmap(data.corr(), annot=True,cmap='Wistia')
plt.show()  ####### we can figure out that cp, thalach, slope is little bit correlated with t
arget #######
```


In [17]:

```
plt.figure(figsize=(15,10))
num = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak', 'target']
sns.pairplot(data[num], kind = 'scatter', diag_kind='hist')
plt.show()
```

<Figure size 1080x720 with 0 Axes>

In [18]:

histogram plotting

data.hist(figsize = (15,12))
plt.show()

In [22]:

```
######### visualizing the age #########

plt.subplots(figsize=(15,12))
data['age'].value_counts(normalize = True)
data['age'].value_counts(dropna=False).plot.bar(color = 'cyan')
plt.title('visualizing the age')
plt.xlabel('age')
plt.ylabel('count')
plt.show()
```


In [23]:

```
pd.crosstab(data.age,data.target).plot(kind = 'bar',figsize=(15,12))
plt.title('heart disease frequency for male and female ages')
plt.xlabel('age')
plt.ylabel('frequency')
plt.show()
```


In [24]:

```
plt.subplots(figsize=(15,12))
sns.distplot(data['age'],color = 'cyan')
plt.title('distribution of age',fontsize = 20)
plt.show()
```


In [27]:

```
plt.subplots(figsize=(15,12))
plt.subplot(1,4,1)
sns.distplot(data['age'])

plt.subplot(1,4,2)
sns.distplot(data['sex'])

plt.subplot(1,4,3)
sns.distplot(data['cp'])

plt.subplot(1,4,4)
sns.distplot(data['trestbps'])

plt.show()
```


In [28]:

In [29]:

```
female_count=len(data[data.sex==0])
male_count=len(data[data.sex==1])
print("percentage of female patients:{:.2f}%".format((female_count/len(data.sex)*100)))
print("percentage of male patients:{:.2f}%".format((male_count/len(data.sex)*100)))
```

percentage of female patients:31.68%
percentage of male patients:68.32%

In [31]:

```
plt.subplots(figsize = (15,12))
sns.countplot(x = 'cp', data=data, hue = 'sex', palette = 'bright')
plt.show()
```


In [32]:

```
plt.subplots(figsize=(15,12))
sns.countplot(x='cp',data=data,hue='target',palette='bright')
plt.show()
```


In [33]:

!pip install missingno

Collecting missingno

Using cached missingno-0.4.2-py3-none-any.whl (9.7 kB)

```
Requirement already satisfied: numpy in c:\users\dipsikha\anaconda3\lib\site-packages (from
missingno) (1.18.1)
Requirement already satisfied: seaborn in c:\users\dipsikha\anaconda3\lib\site-packages (from
missingno) (0.10.0)
Requirement already satisfied: scipy in c:\users\dipsikha\anaconda3\lib\site-packages (from
missingno) (1.4.1)
Requirement already satisfied: matplotlib in c:\users\dipsikha\anaconda3\lib\site-packages (from
missingno) (3.3.1)
Requirement already satisfied: pandas>=0.22.0 in c:\users\dipsikha\anaconda3\lib\site-packages
(from seaborn->missingno) (1.1.1)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\dipsikha\anaconda3\lib\site-packages
(from matplotlib->missingno) (1.1.0)
Collecting certifi>=2020.06.20
  Downloading certifi-2020.6.20-py2.py3-none-any.whl (156 kB)
Requirement already satisfied: cycler>=0.10 in c:\users\dipsikha\anaconda3\lib\site-packages (from
matplotlib->missingno) (0.10.0)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in
c:\users\dipsikha\anaconda3\lib\site-packages (from matplotlib->missingno) (2.4.6)
Requirement already satisfied: python-dateutil>=2.1 in c:\users\dipsikha\anaconda3\lib\site-
packages (from matplotlib->missingno) (2.8.1)
Requirement already satisfied: pillow>=6.2.0 in c:\users\dipsikha\anaconda3\lib\site-packages
(from matplotlib->missingno) (7.0.0)
Requirement already satisfied: pytz>=2017.2 in c:\users\dipsikha\anaconda3\lib\site-packages (from
pandas>=0.22.0->seaborn->missingno) (2019.3)
Requirement already satisfied: setuptools in c:\users\dipsikha\anaconda3\lib\site-packages (from
kiwisolver>=1.0.1->matplotlib->missingno) (45.2.0.post20200210)
Requirement already satisfied: six in c:\users\dipsikha\anaconda3\lib\site-packages (from
cycler>=0.10->matplotlib->missingno) (1.14.0)
Installing collected packages: missingno, certifi
  Attempting uninstall: certifi
    Found existing installation: certifi 2019.11.28
    Uninstalling certifi-2019.11.28:
      Successfully uninstalled certifi-2019.11.28
Successfully installed certifi-2020.6.20 missingno-0.4.2
```

In [34]:

import missingno as msno

In [35]:

msno.matrix(data)

Out[35]:

<AxesSubplot:>

In [36]:

######## outlier detection ##########

```
data['age'].describe()
sns.boxplot(data['age'])
plt.show()
```


In [37]:

```
data['trestbps'].describe()
sns.boxplot(data['trestbps'])
plt.show()
```


In [38]:

```
data['chol'].describe()
sns.boxplot(data['chol'])
plt.show()
```


In [39]:

```
data['thalach'].describe()
sns.boxplot(data['thalach'])
plt.show()
```


In [40]:

```
data['oldpeak'].describe()
sns.boxplot(data['oldpeak'])
plt.show()
```


In [41]:

In [42]:

In [43]:

```
f,ax = plt.subplots(figsize=(12,8))
ax = sns.regplot(x='age',y='chol',data = data)
plt.show() ###### slightly better linear #############
```


In [44]:

```
f,ax = plt.subplots(figsize=(12,8))
ax = sns.regplot(x='chol',y='thalach',data = data)
plt.show() ###### completely no correlation #########
```


In []:

In [45]:

In [46]:

```
data['sex'][data['sex']==0]='female'
data['sex'][data['sex']==1]='male'

data['chest_pain_type'][data['chest_pain_type'] == 1] = 'typical angina'
data['chest_pain_type'][data['chest_pain_type'] == 2] = 'atypical angina'
data['chest_pain_type'][data['chest_pain_type'] == 3] = 'non-anginal pain'
data['chest_pain_type'][data['chest_pain_type'] == 4] = 'asymptomatic'

data['fasting_blood_sugar'][data['fasting_blood_sugar'] == 0] = 'lower than 120mg/ml'
```

```
data['rest_ecg'][data['rest_ecg'] == 0] = 'normal'
data['rest_ecg'][data['rest_ecg'] == 1] = 'ST-T wave abnormality'
data['rest_ecg'][data['rest_ecg'] == 2] = 'left ventricular hypertrophy'
data['exercise_induced_angina'][data['exercise_induced_angina'] == 0] = 'no'
data['exercise_induced_angina'][data['exercise_induced_angina'] == 1] = 'yes'
data['st_slope'][data['st_slope'] == 1] = 'upsloping'
data['st_slope'][data['st_slope'] == 2] = 'flat'
data['st slope'][data['st slope'] == 3] = 'downsloping'
data['thalassemia'][data['thalassemia'] == 1] = 'normal'
data['thalassemia'][data['thalassemia'] == 2] = 'fixed defect'
data['thalassemia'][data['thalassemia'] == 3] = 'reversable defect'
C:\Users\Dipsikha\anaconda3\lib\site-packages\ipykernel launcher.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy
    """Entry point for launching an IPython kernel.
C:\Users\Dipsikha\anaconda3\lib\site-packages\ipykernel launcher.py:4: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy
   after removing the cwd from sys.path.
C:\Users\Dipsikha\anaconda3\lib\site-packages\ipykernel_launcher.py:9: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
   if name == ' main ':
C:\Users\Dipsikha\anaconda3\lib\site-packages\ipykernel launcher.py:10: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy
    # Remove the CWD from sys.path while we load stuff.
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy
   if sys.path[0] == '':
\verb|C:\Users\Dipsikha\anaconda3\lib\site-packages\ipykernel\_launcher.py:16: Setting\With\Copy\Warning: \\
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
   app.launch new instance()
C:\Users\Dipsikha\anaconda3\lib\site-packages\ipykernel launcher.py:17: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
\verb|C:\Users\Dipsikha\anaconda3\lib\site-packages\ipykernel\_launcher.py:23: Setting\@With\Copy\@warning: and the conditions of the conditi
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy
C:\Users\Dipsikha\anaconda3\lib\site-packages\ipykernel launcher.py:24: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy
\verb|C:\Users\Dipsikha\anaconda3\lib\site-packages\ipykernel_launcher.py:25: Setting\WithCopyWarning: | C:\Users\Dipsikha\anaconda3\lib\site-packages\ipykernel_launcher.py:25: Setting\WithCopyWarning: | C:\Users\Dipsikha\anaconda3\lib\site-packages\lib\site-packages\lib\site-packages\lib\site-packages\lib\site-packages\Users\Dipsikha\anaconda3\lib\site-packages\lib\site-packages\Users\Dipsikha\anaconda3\lib\site-packages\Users\Dipsikha\anaconda3\lib\site-packages\Users\Dipsikha\anaconda3\lib\site-packages\Users\Dipsikha\anaconda3\lib\site-packages\Users\Dipsikha\anaconda3\lib\site-packages\Users\Dipsikha\anaconda3\lib\site-packages\Users\Dipsikha\anaconda3\lib\site-packages\Users\Dipsikha\anaconda3\lib\site-packages\Users\Dipsikha\Anaconda3\lib\site-packages\Users\Dipsikha\Anaconda3\lib\site-packages\Users\Dipsikha\Anaconda3\lib\site-packages\Users\Dipsikha\Anaconda3\lib\site-packages\Users\Dipsikha\Anaconda3\lib\site-packages\Users\Dipsikha\Anaconda3\lib\site-packages\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\Users\Dipsikha\User
A value is trying to be set on a copy of a slice from a DataFrame
```

See the careats in the documentation. https://nandas.nudata.org/nandas-

|data['fasting blood sugar'][data['fasting blood sugar'] == 1] = 'greater than 120mg/ml'

```
In [48]:

data['sex'] = data['sex'].astype('object')
data['chest_pain_type'] = data['chest_pain_type'].astype('object')
data['fasting_blood_sugar'] = data['fasting_blood_sugar'].astype('object')
data['rest_ecg'] = data['rest_ecg'].astype('object')
data['exercise_induced_angina'] = data['exercise_induced_angina'].astype('object')
data['st_slope'] = data['st_slope'].astype('object')
data['thalassemia'] = data['thalassemia'].astype('object')
```

data.dtypes

Out[53]:

int64 age sex object object chest_pain_type resting_blood_pressure int64 cholesterol int64 fasting_blood_sugar object rest ecg object max_heart_rate_achieved int64 exercise induced angina object float64 st depression object st slope num major vessels int64 thalassemia object int64 target dtype: object

In [54]:

data.head()

Out[54]:

	age	sex	chest_pain_type	resting_blood_pressure	cholesterol	fasting_blood_sugar	rest_ecg	max_heart_rate_achieved	exerci
0	63	male	non-anginal pain	145	233	greater than 120mg/ml	normal	150	
1	37	male	atypical angina	130	250	lower than 120mg/ml	ST-T wave abnormality	187	
2	41	female	typical angina	130	204	lower than 120mg/ml	normal	172	
3	56	male	typical angina	120	236	lower than 120mg/ml	ST-T wave abnormality	178	
4	57	female	0	120	354	lower than 120mg/ml	ST-T wave abnormality	163	
4									Þ

In [55]:

data = pd.get_dummies(data,drop_first=True)

In [56]:

data.head()

Out[56]:

age	resting_blood_pressure	cholesterol	max_heart_rate_achieved	st_depression	num_major_vessels	target	sex_male	chest_pair

0	63	145	233	150	2.3	0	1	1
1	37	130	250	187	3.5	0	1	1

```
41
age
      resting_blood_pressure
                         204 172 1.4 0 0 1 cholesterol max_heart_rate_achieved st_depression num_major_vessels target sex_male
                                                                                             chest pair
   56
                     120
                               236
                                                  178
                                                              0.8
                                                                              0
    57
                               354
                                                                                            0
4
In [57]:
###### splitting the dataset into dependent and independent variable ############
X = data.drop('target',axis=1)
Y = data['target']
In [58]:
###### splitting the set into training and testing ##########
from sklearn.model selection import train test split
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2,random_state=0)
In [59]:
####### getting shapes ###########
print("Shape of x_train :", x_train.shape)
print("Shape of x_test :", x_test.shape)
print("Shape of y_train :", y_train.shape)
print("Shape of y_test :", y_test.shape)
Shape of x_{train}: (242, 19)
Shape of x_{test}: (61, 19)
Shape of y_train : (242,)
Shape of y_test : (61,)
In [60]:
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion matrix
from sklearn.metrics import classification report
model = RandomForestClassifier(n estimators = 50, max depth=5)
model.fit(x_train,y_train)
y_predict = model.predict(x_test)
y pred quant=model.predict proba(x test)[:,1]
y_pred = model.predict(x_test)
###### evaluating the model ########
print('training accuracy:', model.score(x train, y train))
print('testing accuracy:',model.score(x test,y test))
training accuracy: 0.9421487603305785
testing accuracy: 0.8688524590163934
In [631:
###### classification report ########
cp = classification report(y test,y pred)
print(cp)
```

0.88 0.88 34

0.85

precision recall f1-score support

0.85

0

1

0.85

0.88

accuracy			0.87	61
macro avg	0.87	0.87	0.87	61
weighted avg	0.87	0.87	0.87	61

In []:

Precision quantifies the number of positive class predictions that actually belong to the positive class (correctly predicted positive observation to the total predicted positive observation. ##### Recall quantifies the number of positive class predictions made out of all positive examples in the dataset. true positives divided by the total number of true positives and false negatives. #### F-Measure provides a single score that balances both the concerns of precision and recall in one number.

####### as a measure of the quality of binary (two-class) classifications,

In [65]:

```
########## confusion matrix #########

plt.subplots(figsize=(10,8))
cm=confusion_matrix(y_test,y_pred)
sns.heatmap(cm,annot=True,annot_kws={'size':15},cmap = 'PuBu')
```

Out[65]:

<AxesSubplot:>

In [78]:

```
label='root',
precision = 2, filled = True)
```

In [77]:

```
from sklearn.metrics import roc_curve
fpr,tpr,thresholds = roc_curve(y_test,y_pred_quant)
fig,ax = plt.subplots()
ax.plot(fpr,tpr)
ax.plot([0,1],[0,1], transform = ax.transAxes,ls="-",c = ".3")
plt.xlim([0.0,1.0])
plt.ylim([0.0,1.0])

plt.rcParams['figure.figsize'] = (15, 8)
plt.title('ROC curve for diabetes classifier', fontweight = 30)
plt.xlabel('False Positive Rate (1 - Specificity)')
plt.ylabel('True Positive Rate (Sensitivity)')
plt.show()
```


In [83]:

```
from sklearn import metrics
import xgboost as xgb

XGB = xgb.XGBClassifier(random_state = 1)

XGB.fit(x_train,y_train)
y_pred = XGB.predict(x_test)
acc_XGB = round(XGB.score(x_train,y_train)*100,2)
acc_XGB
print(classification_report(y_test,y_pred))
print("accuracy:",metrics.accuracy_score(y_test,y_pred))
```

	precision	recall	fl-score	support
0	0.75	0.89	0.81	2.7
1	0.90	0.76	0.83	34
accuracy			0.82	61
macro avg	0.82	0.83	0.82	61
weighted avg	0.83	0.82	0.82	61

accuracy: 0.819672131147541

In [85]:

```
###### decision tree ######

# Decision Tree
from sklearn.tree import DecisionTreeClassifier
decision_tree = DecisionTreeClassifier()
decision_tree.fit(x_train, y_train)
# predictions
yPred = decision_tree.predict(x_test)
acc_decision_tree = round(decision_tree.score(x_train,y_train)*100,2)
acc_decision_tree
```

```
Out[85]:
100.0
In [87]:
# K Nearest Neighbor:
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n neighbors = 3)
knn.fit(x_train, y_train)
y_pred = knn.predict(x_test)
acc knn = round(knn.score(x train, y train) * 100, 2)
acc knn
print(classification_report(y_test, y_pred))
print("accuracy:",metrics.accuracy_score(y_test, y_pred))
             precision recall f1-score support
                           0.63 0.61
0.65 0.67
          0
                  0.59
                           0.65
                  0.69
                                                 34
                                      0.64
                                                  61
   accuracy
                          0.64
                                     0.64
                  0.64
                                                  61
  macro avg
weighted avg
                  0.64
                            0.64
                                      0.64
                                                  61
accuracy: 0.639344262295082
In [91]:
from sklearn.naive bayes import GaussianNB
gaussian = GaussianNB()
gaussian.fit(x_train, y_train)
y_pred = gaussian.predict(x_test)
acc gaussian = round(gaussian.score(x train, y train) * 100, 2)
acc_gaussian
print(classification_report(y_test, y_pred))
print("accuracy:", metrics.accuracy_score(y_test, y_pred))
             precision recall f1-score support
                        0.89
0.85
          0
                  0.83
                                     0.86
                                                  2.7
          1
                  0.91
                                     0.88
                                                  34
                                      0.87
                                                 61
   accuracy
                           0.87
  macro avg
                  0.87
                                      0.87
                                                  61
weighted avg
                  0.87
                            0.87
                                      0.87
                                                  61
accuracy: 0.8688524590163934
In [ ]:
In [ ]:
In [ ]:
In [ ]:
```