

as x increases, $f(x)$ also increases and its unbounded	
EVEN ODD DEGREE $ \begin{array}{cccccccccccccccccccccccccccccccccc$	Jind the maximum possible no. of turning points of each polynomial function. $f(x) = 1 + x^{2} + 4x^{5}$ $n = 5$ $\therefore \text{ Turning pts} = n - 1 = 5 - 1 = 4 \text{ (max. passible)}$ $f(x) = (x - 1)^{3} \text{ (x+2)}$
and 0 $x \to \infty$, $f(x) \to -\infty$ $x \to \infty$, $f(x) \to -\infty$ $x \to \infty$, $f(x) \to -\infty$	f(x) = (x-1)3 (x+2) n=4 Turning pts = n-1 = 4-1 = 3 (max. possible)
Degree & Turning Points 2. As seen in quadratic case, a polynomial of degree 2 has one turning point A turning point is a point of the graph where the graph changes from increasing to degreesing (rising to falling) or develosing to increasing (falling to	Find the x- and y- intercepts of possible. Check for symmetry of the forms an even for, it, graph is symmetrical about the y-axis, that is, flix) = f(x). If a forms an odd function, its graph is symmetrical about the origin, that is f(-x) = -flx). Use the multiplication of the person to determine the behaviour of the polynomial at the x-intercepts. Determine the end behaviour by examining the feading tram. term. Use the end behaviour and the behaviour at the intercepts to sketch a graph.

