	MATH 104: Multivariable Calculus
	Name:
	May 22, 2023
Ru	les
•	5 questions, 90 minutes
•	Closed books
•	Show all your work. Mere numbers for solutions will not congrades.
•	No sharing of calculators
Sco	ores
Prob	olem 1/20
Prob	olem 2/20
Prob	olem 3/20
Prob	olem 4/20
Prob	olem 5/20
Tota	l/100

Questions

Problem 1. Let $f: \mathbb{R}^2 \to \mathbb{R}$.

- a. What does it mean for f to be differentiable at (a, b)?
- b. What does it mean for f to have a directional derivative in the direction of \mathbf{u} ? What's a notation for this notion?
- c. Write directional derivative of function f in the direction \mathbf{u} in terms of partial derivative/gradient of f.
- d. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function and C be a smooth curve in \mathbb{R}^2 parametrized by $\mathbf{r}: [a,b] \to \mathbb{R}^2$. Write down the formula to compute the line integral of f over C.

Problem 2. a. Consider the vector field

$$\mathbf{F}(x,y) = x^2 \mathbf{j} \,.$$

Is the integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ independent of path?

b. Compare the path integrals of **F** on two paths $A \to B \to C$ and $A \to D \to C$, where the paths are from the figure below.

c. Are parts (a) and (b) consistent with each other? Why or why not?

- Problem 3. 1. Given a function $f: \mathbb{R}^n \to \mathbb{R}$, where $n \geq 2$. What are the properties of ∇f ? (List everything that you can think of)
 - 2. Given any surface F(x, y, z) = C, where F is differentiable everywhere, how do you know there's only one tangent plane at a given point? (Give the best answer you can)
 - 3. Find the tangent plane to the surface

$$x^2 + 2xy - y^2 + z^2 = 7$$

at point

$$P_0(1,-1,3)$$
.

Problem 4. 1. Find the tangent vector, normal vector and curvature of the following curve

$$\mathbf{r}(t) = \langle \cos t + t \sin t, \sin t - t \cos t, 3 \rangle$$
.

2. What's the meaning of the curvature of a curve at a point on the curve?

- *Problem 5.* 1. State the second derivative test when you want to optimize a differentiable function $f: \mathbb{R}^2 \to \mathbb{R}$.
 - 2. Find all the local maxima, local minima, and saddle points (neither min nor max) of the function

$$f(x,y) = \ln(x+y) + x^2 - y$$
.