혼자 공부하며 함께 만드는

혼공 용어 노트

목차

가나다순

RMS 정규화 root mean square normalization	
top-k 샘플링	32
top-p 샘플링	32
가중치(또는 계수) weight(또는 coefficient)	11
강인공지능 vs 약인공지능	06
검증 세트 validation set	16
결정 트리 Decision Tree	16
결정계수 coefficient of determination	10
과대적합 vs 과소적합 overfitting vs underfitting	10
교차 검증 cross validation	16
군집 clustering	19
그레이디언트부스팅 gradient boosting	18
그리드 서치 Grid Search	17
넘파이 numpy	09
다중 분류 multi-class classification	13
다중 회귀 multiple regression	11
다항 회귀 polynomial regression	11
단어 임베딩 word embedding	27
대규모 언어 모델 large language model, LLM	30
데이터 전처리 data preprocessing	09
드롭아웃 dropout	22
딥러닝 deep learning	20
라쏘 회귀 lasso regression	12
랜덤 서치 Random Search	17
랜덤 포레스트 Random Forest	17
렐루 함수 ReLU Function	21
로지스틱 손실 함수 logistic loss function	15

로지스틱 회귀 logistic regression	13
릿지 회귀 ridge regression	12
망치 corpus	
	26
맷플롯립 matplotlib	07
머신러닝과 딥러닝 machine learning과 deep learning	06
멀티 헤드 어텐션 multi-head-attention	29
미니배치 경사 하강법 minibatch gradient descent	14
배열 인덱싱 array indexing	09
배치 경사 하강법 batch gradient descent	15
밸리드 패딩 valid padding	23
변환기 transformer	12
부트스트랩 샘플 bootstrap sample	17
불리언 인덱싱 boolean indexing	13
브로드캐스팅 broadcasting	09
비지도 학습 unsupervised learning	08
샘플링 편향 sampling bias	09
선형 회귀 linear regression	11
셀 cell	26
셀 상태 cell state	27
셀프 어텐션 Self-attention	29
소프트맥스 함수 softmax function	14
손실 함수 loss function	15
순차 데이터 sequential data	25
순환 신경망 recurrent neural network, RNN	26
스트라이드 stride	24
시계열 데이터 time series data	25
시그모이드 할수 sigmoid function	13

심층 신경망 deep neural network, DNN	21		
앙상블 학습 ensemble learning			
어텐션 메커니즘 Attention mechanism			
에포크 epoch	14		
엑스트라 트리 extra trees	18		
오픈소스 LLM	31		
옵티마이저 optimizer	22		
원-핫 인코딩 one-hot encoding	20		
위치 인코딩 positional encoding	30		
은닉 상태 hidden state	26		
은닉층 hidden layer	21		
이니셔 inertia			
이진 분류 binary classification			
인공신경망 artificial neural network, ANN			
인공지능 artificial intelligence			
적응적 학습률 adaptive learning	22		
전이 학습 transfer learning			
정형 데이터 vs 비정형 데이터			
structured data vs unstructured data	17		
주성분 분석 principal component analysis, PCA	19		
지도 학습 supervised learning	08		
치원 축소 dimensionality reduction			
최대 풀링과 평균 풀링 max pooling과 average pooling			
층 정규화 layer normalization	29		
코랩과 노트북 Colab과 Notebook			
콜백 callback			
크로스 어텐션 cross attention	30		

크로스엔트로피 손실 함수 cross-entropy loss function	15	
클 <u>로즈드 소스</u> LLM	31	
텐서플로 TensorFlow	20	
토큰 token	27	
토큰화 tokenization	31	
트랜스포머 Transformer	29	
특성 feature	07	
특성 맵 feature map	23	
패딩과 세임 패딩 padding과 same padding	23	
풀링 pooling	24	
피드포워드 네트워크 feedforward network	29	
피드포워드 신경망 feedforward neural network, FFNN	25	
필터 filter	23	
하이퍼파라미터 hyperparameter	12	
합성곱 convolution	23	
허깅페이스 HuggingFace	30	
확률적 경사 하강법 Stochastic Gradient Descent	14	
활성화 함수 activation function	20	
회귀 regression	10	
훈련 training	07	
훈련 데이터 training data	08	
훈련 세트와 테스트 세트 train set와 test set		
히스토그램 histogram		
히스토그램 기반 그레이디언트 부스팅		
Histogram-based Gradient Boosting	18	
힌지 손실 hinge loss	15	

ABC 순

activation function 활성화 함수	20	
adaptive learning 적응적 학습률	22	
ANN artificial neural network 인공신경망	20	
array indexing માલુ ાવ્યા	09	
artificial intelligence থ্ৰস্ক	06	
Attention mechanism 어텐션 메커니즘	29	
BART	30	
batch gradient descent 배치 경사 하강법	15	
binary classification 이진 분류	06	
boolean indexing 불리언 인덱싱	13	
bootstrap sample 부트스트랩 샘플	17	
broadcasting 브로드캐스팅	09	
callback 콜백	22	
cell state 셀 상태	27	
cell 셀	26	
clustering ^{군집}	19	
coefficient of determination 결정계수	10	
Colab과 Notebook 코랩과 노트북	06	
convolution 합성곱	23	
Corpus 말뭉치	26	
cross-entropy loss function 크로스엔트로피 손실 함수	15	
cross attention 크로스 어텐션	30	
cross validation 교차 검증	16	
data preprocessing 데이터 전처리	09	
Decision Tree 결정 트리	16	
deep learning 딥러닝	20	
dimensionality reduction 차원 축소		
DNN, deep neural network 심층 신경망	21	

dropout 드롭아웃	22		
ensemble learning 앙상블 학습	17		
epoch 에포크	14		
EXAONE	31		
extra trees 엑스트라 트리	18		
feature map 특성 맵	23		
feature 특성	07		
feedforward network 피드포워드 네트워크	29		
FFNN feedforward neural network 피드포워드 신경망	25		
filter 필터	23		
GPT Generative Pre-trained Transformer	32		
gradient boosting 그레이디언트부스팅	18		
Grid Search 그리드 서치			
GRU Gated Recurrent Unit	28		
hidden layer 은닉층	21		
hidden state 은닉 상태	26		
hinge loss 힌지 손실	15		
Histogram-based Gradient Boosting	18		
histogram 히스토그램	19		
HuggingFace 허킹페이스	30		
hyperparameter 하이퍼파라미터	12		
inertia 이너셔	19		
k-최근접 이웃 분류 vs k-최근접 이웃 회귀	10		
k-최근접 이웃 알고리즘	07		
k-means algorithm k-평균 알고리즘	19		
large language model, LLM 대규모 언어 모델	30		
lasso regression 라스 회귀	12		
layer normalization 층 정규화	29		

linear regression ধৰ্ত্ত অন	11
logistic loss function 로지스틱 손실 함수	15
logistic regression 로지스틱 회귀	13
loss function 손실 함수	15
LSTM Long Short-Term Memory	27
machine learning과 deep learning 머신러닝과 딥러닝	06
matplotlib 맷플롯립	07
max pooling과 average pooling 최대 풀링과 평균 풀링	24
minibatch gradient descent 미니배치 경사 하강법	14
multi-class classification 다중 분류	13
multi-head-attention 멀티 헤드 어텐션	29
multiple regression 다중 회귀	11
numpy 넘파이	09
one-hot encoding 원-핫 인코딩	20
optimizer 옵티마이저	22
overfitting vs underfitting 과대적합 vs 과소적합	10
padding과 same padding 패딩과 세임 패딩	23
PCA, principal component analysis 주성분 분석	19
polynomial regression 다항 গ্রম	11
pooling 풀링	24
positional encoding 위치 인코딩	30
Random Forest 랜덤 포레스트	17
Random Search 랜덤 서치	17
regression 회귀	10
ReLU Function 렐루 함수	21
ridge regression 릿지 회귀	12
RNN recurrent neural network 순환 신경망	26
root mean square normalization RMS ਕੁਜੜੇ	31

sampling bias 샘플링 편향	09
Self-attention 셀프 어텐션	29
sequential data 순차 데이터	25
sigmoid function 시그모이드 함수	13
softmax function 소프트맥스 함수	14
Stochastic Gradient Descent 확률적 경사 하강법	14
stride 스트라이드	24
structured data vs unstructured data	17
supervised learning 지도 학습	08
TensorFlow 텐서플로	20
time series data 시계열 데이터	25
token 토큰	27
tokenization 토큰화	31
train set와 test set 훈련 세트와 테스트 세트	09
training data 훈련 데이터	08
training 훈련	07
transfer learning 전이 학습	30
transformer 변환기	12
Transformer 트랜스포머	29
transformers	31
unsupervised learning 비지도 학습	08
valid padding 밸리드 패딩	23
validation set 검증 세트	16
weight 가중치 (또는 계수)	11
word embedding 단어 임베딩	27

	The expenses of the same of th	
	UIS	
□ 인공지능	artificial intelligence	[01장 029쪽]
	학습하고 추론할 수 있는 지능을 가진 컴퓨터 시스템을 만드는	: 기술
□ 강인공지능 vs		[01장 028쪽, 029쪽]
약인공지능	강인공지능은 인공일반지능이라고도 하고 사람의 지능과 유시	l·(영화 속 전지전능한
	AI)함. 약인공지능은 특정 분야에서 사람을 돕는 보조 AI(음	성 비서나 자율 주행
	도 여기 포함)	
□ 머신러닝과	machine learning과 deep learning	[01장 029쪽, 030쪽]
딥러닝	머신러닝은 데이터에서 규칙을 학습하는 알고리즘을 연구하는	- 분야(대표 라이브러
	리는 사이킷런). 딥러닝은 인공신경망을 기반으로 한 머신러	닝 분야를 일컬음(대
	표 라이브러리는 텐서플로와 파이토치)	
□ 코랩과 노트북	Colab과 Notebook	[01장 034쪽, 038쪽]
	코랩은 웹 브라우저에서 텍스트와 프로그램 코드를 자유롭게	작성 할 수 있는 온라
	인 에디터로 이를 코랩 노트북 또는 노트북이라 부름. 최소 실	행 단위는 셀이며 코
	드 셀과 텍스트 셀이 있음	
□ 이진 분류	binary classification	[01장 048쪽]
	머신러닝에서 여러 개의 종류(혹은 클래스) 중 하나를 -	구별해 내는 문제를
	분류classification라고 부르며 2개의 종류(클래스) 중 하나를 고르	는 문제를 이진 분류
	라 함	

□특성	feature	[01장 049쪽]
	데이터를 표현하는 특징으로, 예를 들어 아래 그림과 같이 생선의	특징인 길이와
	무게를 특성이라 함	
	첫 번째특성 : 길이 두 번째 특성 : 무제 첫 번째 주미	
□ 맷플롯립	matplotlib	[01장 049쪽]
	파이썬에서 과학계산용 그래프를 그리는 대표 패키지	
□ k-최근접 이웃	k-Nearest Neighbors Algorithm, KNN	[01장 052쪽]
알고리즘	가장 간단한 머신러닝 알고리즘 중 하나로 어떤 규칙을 찾기보다는 역	인접한 샘플을
	기반으로 예측을 수행함	
□훈련	training	[01장 055쪽]
	머신러닝 알고리즘이 데이터에서 규칙을 찾는 과정 또는 모델에 데이	이터를 전달하
	여 규칙을 학습하는 과정	
		1 (E)

□ 지도 학습 supervised learning [02장 071쪽] 지도 학습은 입력(데이터)과 타깃(정답)으로 이뤄진 훈련 데이터가 필요하며 새로 운 데이터를 예측하는 데 활용함. 1장에서 사용한 k-최근접 이웃이 지도 학습 알 고리즘임 □ 비지도 학습 unsupervised learning [02장 071쪽] 타깃 데이터 없이 입력 데이터만 있을 때 사용. 이런 종류의 알고리즘은 정답을 사 용하지 않으므로 무언가를 맞힐 수가 없는 대신 데이터를 잘 파악하거나 변형하는 데 도움을 줌 k-회라이웃 入区部台 出入区的台 머신러닝 小好的台 □훈련 데이터 training data [02장 071쪽] 지도 학습의 경우 필요한 입력(데이터)과 타깃(정답)을 합쳐 놓은 것 2749 号付 4974 ENVE ME 147H

□훈련 세트와	train set와 test set [02장 072쪽]
테스트 세트	모델을 훈련할 때는 훈련 세트를 사용하고 평가는 테스트 세트로 함. 테스트 세트
	는 전체 데이터에서 20~30%
□샘플링 편향	sampling bias [02장 076쪽]
	훈련 세트와 테스트 세트에 샘플이 고르게 섞여 있지 않을 때 샘플링 편향이 나타
	나며 제대로 된 지도 학습 모델을 만들 수 없음
	인비를 불편 데이터 -
	을면 ME BIVE ME
□ 넘파이	numpy [02장 077쪽]
	파이썬의 대표적인 배열array 라이브러리로 고차원의 배열을 손쉽게 만들고 조작할
	수 있는 간편한 도구를 많이 제공함.
□배열 인덱싱	array indexing [02장 081쪽]
	넘파이 기능으로 여러 개의 인덱스로 한 번에 여러 개의 원소를 선택할 수 있음
□ 데이터 전처리	data preprocessing [02장 103쪽]
	머신러닝 모델에 훈련 데이터를 주입하기 전 가공하는 단계로 특성값을 일정한 기
	준으로 맞추어 주는 작업. 데이터를 표현하는 기준이 다르면 알고리즘을 올바르게
	예측할 수 없음
□ 브로드캐스팅	broadcasting [02장 104쪽]
	조건을 만족하면 모양이 다른 배열 간의 연산을 가능하게 해 주는 기능

	N	
	UJ장♡	
□회귀	regression	[03장121쪽]
	클래스 중 하나로 분류하는 것이 아	니라 임의의 어떤 숫자를 예측하는 문제
□ k-최근접 이웃	참고용어 k─최근접 이웃 알고리즘	[03장 121쪽, 122쪽]
분류 vs k-최근	k-최근접 이웃 알고리즘을 사용해	각각 분류 문제와 회귀 문제를 해결하는 방법
접 이웃 회귀	k-	k- 합군정 이웃 회귀
		(00
	X	Υ
	0 \	60 0 1 80
	청군업 이웃은	철근전 이웃은
	☐ 27H, ○ 1.7H 따라서 X 의 클래스는 □	(00, 20, 60
	(HEFRI X 3 701-2 L	CELLEN X = 100 + 80 + 60 = 80
□ 결정계수(R²)	coefficient of determination	[03장 126쪽]
	회귀 모델에서 예측의 적합도를 0괴	1 사이의 값으로 계산한 것으로 1에 가까울수
	록 완벽함	
	(돈 ٢ 7 / - 떠 (즉)	
	R = 1 - (Eh/- 超型)。	
□과대적합 vs	overfitting vs underfitting	[03장 128쪽]
과소적합	과대적합은 모델의 훈련 세트 점수기	· 테스트 세트 점수보다 훨씬 높을 경우를 의미
	함. 과소적합은 이와 반대로 모델의	훈련 세트와 테스트 세트 점수가 모두 동일하
	게 낮거나 테스트 세트 성능이 오히	려 더 높을 경우를 의미함

□선형 회귀	linear regression	[03장 141쪽]
	널리 사용되는 대표적인 회귀 알고리즘으로 특	성이 하나인 경우 어떤 직선을 학습
	하는 알고리즘(예를 들면, 농어 무게 학습 그래	<u> </u>
	Zof Fni	
	누어우n = α×누어길이 + Ь	
	전달(b) 기 <mark>호</mark> 기(A)	
	Fol.	<u> </u>
□기중치	weight(또는 coefficient)	[03장 143쪽]
(또는 계수)	선형 회귀가 학습한 직선의 기울기를 종종 가중치 또는 계수라 함	
□다항 회귀	polynomial regression	[03장 145쪽]
	다항식을 사용하여 특성과 타킷 사이의 관계를	나타낸 선형 회귀
	रून द ेगा	
	우게 = 요x 길이² + bx 길이 + C	
		lo.
	₹σd ⁻	<u>i</u> "1
□ 다중 회귀	multiple regression	[03장 157쪽]
	여러 개의 특성을 사용한 선형 회귀	타겠
		等付2 等付1

□변환기	transformer	[03장 160쪽]
	특성을 만들거나 전처리하는 사이킷런의 클래스로 타깃 데이터 입	것이 입력 데이터
	를 변환함	
□릿지 회귀	ridge regression	[03장 166쪽]
	규제가 있는 선형 회귀 모델 중 하나로 모델 객체를 만들 때 alph.	a 매개변수로 규
	제의 강도를 조절함. alpha 값이 크면 규제 강도가 세지므로 계수	: 값을 더 줄이고
	조금 더 과소적합되도록 유도하여 과대적합을 완화시킴	
□하이퍼파라미터	hyperparameter	[03장 167쪽]
	머신러닝 모델이 학습할 수 없고 사람이 지정하는 파라미터	
□ 라쏘 회귀	lasso regression	[03장 170쪽]
	또 다른 규제가 있는 선형 회귀 모델로 alpha 매개변수로 규제의	강도를 조절함.
	릿지와 달리 계수 값을 아예 0으로 만들 수도 있음	
		2 P.
		p
		<u></u>

	04광 [♡]	
□ 다중 분류	multi-class classification	[04장 191쪽]
	타깃 데이터에 2개 이상의 클래스가 포함된 문제	
□로지스틱 회귀	logistic regression	[04장 193쪽]
	선형 방정식을 사용한 분류 알고리즘으로 선형 회귀와 달리 시	그모이드 함수나 소
	프트맥스 함수를 사용하여 클래스 확률을 출력	
□ 시그모이드 함수	sigmoid function or logistic regression	[04장 193쪽]
	시그모이드 함수 또는 로지스틱 함수라고 부르며 선형 방정식	의 출력을 0과 1 사
	이의 값으로 압축하며 이진 분류를 위해 사용. 이진 분류일 경	령우 시그모이드 함수
	의 출력이 0.5보다 크면 양성 클래스, 0.5보다 작으면 음성 클	래스로 판단
	$\emptyset = \frac{1}{1 + e^{-z}}$	
□불리언 인덱싱	boolean indexing	[04장 195쪽]
	넘파이 배열은 True, False 값을 전달하여 행을 선택할 수 있	으며 이를 불리언 인
	덱싱이라고 함	

□ 소프트맥스 함수	softmax function	[04장 200쪽]
	여러 개의 선형 방정식의 출력값을 0~1 사이로 압축하고 전체 합	
	만들며 이를 위해 지수 함수를 사용하기 때문에 정규화된 지수 함수	라고도 함
	$S1 = \frac{e^{z1}}{e_{-sum}}$, $S2 = \frac{e^{z2}}{e_{-sum}}$,, $S7 = \frac{e^{z1}}{e_{-sum}}$	zq sum
□확률적 경사	Stochastic Gradient Descent	[04장 211쪽]
하강법	훈련 세트에서 랜덤하게 하나의 샘플을 선택하여 손실 함수의 경사	를 따라 최적의
	모델을 찾는 알고리즘	
□에포크	epoch	[04장 213쪽]
	확률적 경사 하강법에서 훈련 세트를 한 번 모두 사용하는 과정	
	享进的医 4强 表测明 mun1(数量为 7.4.32%)	
	하는 하는 하는 한 한 한 한 한 한 한 한 한 한 한 한 한 한 한 한	
□미니배치 경사	minibatch gradient descent	[04장 213쪽]
하강법	1개가 아닌 여러 개의 샘플을 사용해 경사 하강법을 수행하는 방법	<u> </u>
	많이 사용	

□배치 경사 하강법	batch gradient descent	[04장 213쪽]
	한 번에 전체 샘플을 사용하는 방법으로 전체 데이터를 사용하드	로 가장 안정적인
	방법이지만 그만큼 컴퓨터 자원을 많이 사용함. 또한 어떤 경우	는 데이터가 너무
	많아 한 번에 전체 데이터를 모두 처리하지 못할 수 있음.	
□손실 함수	loss function	[04장 213쪽]
	어떤 문제에서 머신러닝 알고리즘이 얼마나 엉터리인지를 측정히	는 기준.
	\sim	
□로지스틱 손실	logistic loss function 손실 함수라고도 함	[04장 215쪽]
함수	양성 클래스(타깃 = 1)일 때 손실은 -log(예측 확률)로 계산하	며, 1 확률이 1에
	서 멀어질수록 손실은 아주 큰 양수가 됨. 음성 클래스(타깃 :	= 0)일 때 손실은
	−log(1−예측 확률)로 계산함. 이 예측 확률이 0에서 멀어질수	록 손실은 아주 큰
	양수가 됨	
	log Et7 = 1 % CCH	
	$\frac{1}{2} \longrightarrow -\log_{2}(\operatorname{GH}^{2})$	()
	Et-13 = 0 ° 1 m	н
	→ - log (1.	一叫诗妙元)
□크로스엔트로피	cross-entropy loss function	[04장 217쪽]
손실 함수	다중 분류에서 사용하는 손실 함수	
□ 힌지 손실	hinge loss	[04장 223쪽]
	서포트 벡터 머신support vector machine이라 불리는 또 다른 머신러닝	알고리즘을 위한
	손실 함수. SGDClassifier가 여러 종류의 손실 함수를 loss 매기	개변수에 지정하여
	다양한 머신러닝 알고리즘을 지원함	
'		CLIMAN

□ 그리드 서치	Grid Search	[05장 262쪽]
	하이퍼파라미터 탐색을 자동화해 주는 도구	
□ 랜덤 서치	Random Search	[05장 266쪽]
	랜덤 서치는 연속적인 매개변수 값을 탐색할 때 유용	
□ 정형 데이터 vs	structured data vs unstructured data	[05장 278쪽]
비정형 데이터	특정 구조로 이루어진 데이터를 정형 데이터라 하고, 반면 정형화되기	어려운 텍스
	트나 이미지 등을 비정형 데이터라 함 CSV나 레이터베이스 등	
□ 앙상블 학습	ensemble learning	[05장 278쪽]
	여러 알고리즘(예, 결정 트리)을 합쳐서 성능을 높이는 머신러닝 기법	
□ 랜덤 포레스트	Random Forest	[05장 279쪽]
	대표적인 결정 트리 기반의 앙상블 학습 방법. 안정적인 성능 덕분에	널리 사용됨.
	부트스트랩 샘플을 사용하고 컨텀 또레스트	
	랜덤하게 일부 특성을 선택하	결정 트리
	여 트리를 만드는 것이 특징	` !
□ 부트스트랩 샘플	bootstrap sample	[05장 279쪽]
	데이터 세트에서 중복을 허용하여 데이터를 샘플링하는 방식	
	FEVESH ME	
	□ △ → स्मु हथ ईस्	
	हेस् लाह	
	() े न्यूप्तह्य देख्	
	\bigcirc	
	;	

□엑스트라 트리	extra trees 참고용어 랜덤 포레스, 앙상블 학습 [05장 283쪽]
	랜덤 포레스트와 비슷하게 동작하며 결정 트리를 사용하여 앙상블 모델을 만들지
	만 부트스트랩 샘플을 사용하지 않는 대신 랜덤하게 노드를 분할하여 과대적합을
	감소시킴
□그레이디언트	gradient boosting [05장 285쪽]
부스팅	깊이가 얕은 결정 트리를 사용하여 이전 트리의 오차를 보완하는 방식으로 앙상블
	하는 방법. 깊이가 얕은 결정 트리를 사용하기 때문에 과대적합에 강하고 일반적
	으로 높은 일반화 성능을 기대할 수 있음
□히스토그램 기반	Histogram-based Gradient Boosting [05장 286쪽]
그레이디언트	그레이디언트 부스팅의 속도를 개선한 것으로 과대적합을 잘 억제하며 그레이디언
부스팅	트 부스팅보다 조금 더 높은 성능을 제공. 안정적인 결과와 높은 성능으로 매우 인
	기가 높음

□히스토그램	histogram	[06장 310쪽]
	값이 발생한 빈도를 그래프로 표시한 것으로 보통 x축이 값의 구간(계	급)이고, y축
	은 발생 빈도(도수)임	
□군집	clustering	[06장 314쪽]
	비슷한 샘플끼리 그룹으로 모으는 작업으로 대표적인 비지도 학습 작	업 중 하나
□ k-평균	k-means algorithm	[06장 321쪽]
알고리즘	처음에 랜덤하게 클러스터 중심을 정하여 클러스터를 만들고 그다음	- 클러스터의
	중심을 이동하여 다시 클러스터를 결정하는 식으로 반복해서 최적의] 클러스터를
	구성하는 알고리즘	
□이너셔	inertia	[06장 328쪽]
	k-평균 알고리즘은 클러스터 중심과 클러스터에 속한 샘플 사이의	거리를 잴 수
	있는데 이 거리의 제곱 합을 이너셔라고 함. 즉 클러스터의 샘플이 일]마나 가깝게
	있는지를 나타내는 값임	
□차원 축소	dimensionality reduction	[06장 336쪽]
	데이터를 가장 잘 나타내는 일부 특성을 선택하여 데이터 크기를 줄이	고 지도 학습
	모델의 성능을 향상시킬 수 있는 방법	
□주성분 분석	principal component analysis, PCA	[06장 336쪽]
	차원 축소 알고리즘의 하나로 데이터에서 가장 분산이 큰 방향을 찾는 병	ly법이며 이런
	방향을 주성분이라 함. 원본 데이터를 주성분에 투영하여 새로운 특성을	만들 수 있음

□ 인공신경망	artificial neural network, ANN	[07장 365쪽]
	생물학적 뉴런에서 영감을 받아 만든 머신러닝 알고리즘. 신경망은	기존의 머신러
	닝 알고리즘으로 다루기 어려웠던 이미지, 음성, 텍스트 분야에서	뛰어난 성능을
	발휘하면서 크게 주목을 받고 있으며 종종 딥러닝이라고도 부름	
□딥러닝	deep learning	[07장 368쪽]
	딥러닝은 인공신경망과 거의 동의어로 사용되는 경우가 많으며 혹	혹은 심층 신경
	망deep neural network, DNN을 딥러닝이라고 부름. 심층 신경망은 여러 7	개의 층을 가진
	인공신경망임	
□케라스	Keras	[07장 368쪽]
□케라스	Keras 딥러닝을 위한 고수준 API를 제공하는 파이썬 라이브러리. 실제 연	
□케라스		산은 텐서플로
□케라스	딥러닝을 위한 고수준 API를 제공하는 파이썬 라이브러리. 실제 연	산은 텐서플로
□케라스	딥러닝을 위한 고수준 API를 제공하는 파이썬 라이브러리. 실제 연 와 같은 백엔드가 담당하며 3.0버전부터는 텐서플로, 파이토치, 잭	산은 텐서플로
□케라스	딥러닝을 위한 고수준 API를 제공하는 파이썬 라이브러리. 실제 연 와 같은 백엔드가 담당하며 3.0버전부터는 텐서플로, 파이토치, 잭	산은 텐서플로
	딥러닝을 위한 고수준 API를 제공하는 파이썬 라이브러리. 실제 연와 같은 백엔드가 담당하며 3.0버전부터는 텐서플로, 파이토치, 잭사용할 수 있음	산은 텐서플로 스를 백엔드로
	딥러닝을 위한 고수준 API를 제공하는 파이썬 라이브러리. 실제 연와 같은 백엔드가 담당하며 3.0버전부터는 텐서플로, 파이토치, 잭사용할 수 있음 activation function 참고용에 소프트맥스 함수	산은 텐서플로 스를 백엔드로
	딥러닝을 위한 고수준 API를 제공하는 파이썬 라이브러리. 실제 연와 같은 백엔드가 담당하며 3.0버전부터는 텐서플로, 파이토치, 잭사용할 수 있음 activation function 참고용에 소프트맥스 함수	산은 텐서플로 스를 백엔드로
□ 활성화 함수	답러닝을 위한 고수준 API를 제공하는 파이썬 라이브러리. 실제 연와 같은 백엔드가 담당하며 3.0버전부터는 텐서플로, 파이토치, 잭사용할 수 있음 activation function 환교용에 소프트맥스 함수 소프트맥스와 같이 뉴런의 선형 방정식 계산 결과에 적용되는 함수	산은 텐서플로 스를 백엔드로 [07장 375쪽]
□ 활성화 함수	딥러닝을 위한 고수준 API를 제공하는 파이썬 라이브러리. 실제 연와 같은 백엔드가 담당하며 3.0버전부터는 텐서플로, 파이토치, 잭사용할 수 있음 activation function 참고용에 소프트맥스 함수 소프트맥스와 같이 뉴런의 선형 방정식 계산 결과에 적용되는 함수 one—hot encoding	산은 텐서플로 스를 백엔드로 [07장375쪽] [07장377쪽] 선, 다중 분류에
□ 활성화 함수	답러닝을 위한 고수준 API를 제공하는 파이썬 라이브러리. 실제 연와 같은 백엔드가 담당하며 3.0버전부터는 텐서플로, 파이토치, 잭사용할 수 있음 activation function 환고용에 소프트맥스 함수 소프트맥스와 같이 뉴런의 선형 방정식 계산 결과에 적용되는 함수 one─hot encoding 타깃값을 해당 클래스만 1이고 나머지는 모두 0인 배열로 만드는 것	산은 텐서플로 스를 백엔드로 [07장375쪽] [07장377쪽] 선, 다중 분류에
□ 활성화 함수	답러닝을 위한 고수준 API를 제공하는 파이썬 라이브러리. 실제 연와 같은 백엔드가 담당하며 3.0버전부터는 텐서플로, 파이토치, 잭사용할 수 있음 activation function 환교용에 소프트맥스 함수 소프트맥스와 같이 뉴런의 선형 방정식 계산 결과에 적용되는 함수 one─hot encoding 타깃값을 해당 클래스만 1이고 나머지는 모두 0인 배열로 만드는 것 서 크로스 엔트로피 손실 함수를 사용하려면 0, 1, 2와 같이 정수를	산은 텐서플로 스를 백엔드로 [07장375쪽] [07장377쪽] 선, 다중 분류에

□옵티마이저	optimizer	[07장 400쪽]
	신경망의 가중치와 절편을 학습하기 위한 알고리즘 또는 방법. 케	라스에는 다양한
	경사 하강법 알고리즘이 구현되어 있으며 대표적으로 SGD, 네	스테로프 모멘텀,
	RMSprop, Adam 등이 있음	
□ 적응적 학습률	adaptive learning rate	[07장 402쪽]
	모델이 최적점에 가까이 갈수록 안정적으로 수렴하도록 학습률을	낮추도록 조정하
	는 방법. 이런 방식들은 학습률 매개변수를 튜닝하는 수고를 덜 수	있는 것이 장점
□드롭아웃	dropout	[07장 431쪽]
	훈련 과정에서 층에 있는 일부 뉴런을 랜덤하게 꺼서(즉 뉴런의 출	력을 0으로 만들
	어) 과대적합을 막음	
□콜백	callback	[07장 437쪽]
	케라스에서 훈련 과정 중간에 어떤 작업을 수행할 수 있게 하는	- 객체로 keras.
	callbacks 패키지 아래에 있는 클래스로 fit() 메서드의 callback	xs 매개변수에 리
	스트로 전달하여 사용	
		٩

	## Convolution [08장 461쪽] 합성곱은 밀집층과 비슷하게 입력과 가중치를 곱하고 절편을 더하는 선형 계산이 지만 밀집층과 달리 합성곱은 입력 데이터 전체에 가중치를 적용하는 것이 아니라 일부에 가중치를 곱함
□필터	filter [08장 463쪽]
	밀집층의 뉴런에 해당. 뉴런 = 필터 = 커널 모두 같은 말이라 생각해도 좋음
	필터 -
	3 / 0 7 6 4 8 2 4 S / / 3 2 S タ
□특성 맵	feature map 의 기계 차고 [08장 465쪽]
	합성곱 계산을 통해 얻은 출력을 특별히 특성 맵이라 부름
□패딩과	padding과 same padding [08장 467쪽]
세임 패딩	입력 배열의 주위를 가상의 원소(보통 0)로 채우는 것을 패딩이라고 하고 합성곱
	신경망에서는 세임 패딩을 많이 사용함
□ 밸리드 패딩	valid padding [08장 469쪽]
	패딩 없이 순수한 입력 배열에서만 합성곱을 하여 특성 맵을 만드는 경우이며 특성
	맵의 크기가 줄어들 수밖에 없음

□스트라이드	stride	[08장 471쪽]
	합성곱 층에서 필터가 입력 위를 이동하는 크기로 기본으로	스트라이드는 1픽셀.
	즉 한 칸씩 이동함.	
□풀링	pooling	[08장 472쪽]
	합성곱 층에서 만든 특성 맵의 가로세로 크기를 줄이는 역할을	는 수행하지만 특성 맵
	의 개수는 줄이지 않음. 또한 가중치가 없는 대신 특성 맵에서	서 최댓값이나 평균값
	을 선택함	
□ 최대 풀링과	max pooling과 average pooling	[08장 473쪽]
평균 풀링	풀링을 수행할 때 가장 큰 값을 고르거나 평균값을 계산하는	톄 이를 각각 최대 풀
	링과 평균 풀링이라고 부름	
		AI
	T.	5

	09항 ♥	
□ 순차 데이터	sequential data 텍스트나 시계열 데이터와 같이 순서에 의미가 있는 데이터를 말함.	[09장 545쪽]
	am a boy"는 쉽게 이해할 수 있지만 "boy am a I"는 말이 되지 않은	
	는 하는 데이터 (시기에어, 하지) 1일 15°C, 2일 17°C, 3일 16°C,	
□시계열 데이터	time series data	[09장 545쪽]
	일정한 시간 간격으로 기록된 데이터	
	주어, 일자별 날씨 등등	
□ 피드포워드	feedforward neural network, FFNN	[09장 546쪽]
신경망	입력 데이터의 흐름이 앞으로만 전달되는 신경망. 완전 연결 신경망	과 합성곱 신
	경망이 모두 피드포워드 신경망에 속함	
	01 7 12 0 b	
	교드 또워드 순한	
	ीं भी प्राणी (देश RBF) । अहम- प्राणी जाडमें इ	

□순환 신경망	recurrent neural network, RNN	[09장 547쪽]
	완전 연결 신경망과 거의 비슷함. 순차 데이터에 잘 맞는 인공신경	· 명의 한 종류로
	순차 데이터를 처리하기 위해 고안된 순환 층을 1개 이상 사용한 신	<u>l</u> 경망
	© C B A → ○) O _A
□셀	cell	[09장 548쪽]
	순환 신경망에서는 특별히 층을 셀이라 부르며 한 셀에는 여러 개의	기 뉴런이 있지만
	완전 연결 신경망과 달리 뉴런을 모두 표시하지 않고 하나의 셀로	층을 표현함
□은닉 상태	hidden state	[09장 548쪽]
	순환 신경망에서는 셀의 출력을 은닉 상태라 부름. 은닉 상태는 다	ト음 층으로 전달
	될 뿐만 아니라 셀이 다음 타임스텝의 데이터를 처리할 때 재사용된	1
	h	
	MEN WEN	
	个 乾付計らみ(tanh) 	
□말뭉치	corpus	[09장 559쪽]
	자연어 처리 분야에서는 훈련 데이터를 종종 말뭉치라고 부름. 여	l를 들어 IMDB
	리뷰 데이터셋이 하나의 말뭉치임	

□토큰	token	[09장 559쪽]
	일반적으로 영어 문장은 모두 소문자로 바꾸고 구둣점을 삭제	한 다음 공백을 기준
	으로 분리하는데 이렇게 텍스트에서 공백으로 구분되는 문지	l열 또는 단어를 토큰
	이라고 부름 및 I am a boy는 4 발달해 형태소 분	9개의 토콘. 한글은 조사가 서울 해야 한
□단어 임베딩	word embedding	[09장 573쪽]
	순환 신경망에서 텍스트를 처리할 때 즐겨 사용하는 방법으로	르 입력으로 정수 데이
	터를 받아 메모리를 훨씬 효율적으로 사용할 수 있음	
□LSTM	Long Short-Term Memory	[09장 596쪽]
	단기 기억을 오래 기억하기 위해 고안된 순환층. 입력 게이트	트, 삭제 게이트, 출력
	게이트 역할을 하는 작은 셀이 포함	
	X	
□셀 상태	cell state	[09장 596쪽]
	LSTM 셀은 은닉 상태 외에 셀 상태를 출력. 셀 상태는 다음 여 현재 셀에만 순환됨	층으로 전달되지 않으

□GRU	Gated Recurrent Unit [09장 610쪽]
	LSTM 셀의 간소화 버전으로 생각할 수 있지만 LSTM처럼 셀 상태를 계산하지
	않고 은닉 상태 하나만 포함. LSTM보다 가중치가 적기 때문에 계산량이 적지만
	LSTM 못지않은 좋은 성능을 내는 것으로 알려져 있음

□ 어텐션 메커니즘	108	636쪽]
□ 어탠션 메기니늄		
	인코더-디코더 RNN 구조에서 디코더가 인코더가 만든 모든 타임스텝의 은	무상
	태를 참조하기 위해 고안된 구조 	
□트랜스포머	Transformer [10장	637쪽]
	RNN 대신 어텐션만을 사용하여 인코더—디코더 구조를 구현한 인공 신경망	
	MNN 대선 이벤션인을 사용하여 인고니~니고니 구소을 구현인 인공 선경정 셀프 어텐션, 층 정규화, 잔차 연결, 드롭아웃, 피드포워드 네트워크 등으로 구	
	설프 이벤션, 등 경규와, 산사 현실, 드톱이웃, 피므포워드 네트워크 등으로 구 	~8'=
□셀프 어텐션	Self-attention [10장	639쪽]
	트랜스포머의 인코더와 디코더에서 모두 사용하는 어텐션 메커니즘으로, 입	
	그런 그는 이의 어텐션을 계산	
	는 게 하여 하면 생각이 되었다.	
□ 멀티 헤드 어텐션	multi-head-attention [10장	641쪽]
	여러 개의 셀프 어텐션을 병렬로 처리하는 구성 요소	
□층 정규화	layer normalization [10장	642쪽]
	배치 정규화와 비슷하게 입력 데이터를 정규화하는 방법이지만, 배치 정규화	와 달
	리 각 토큰 별로 정규화를 수행함	
□ 피드포워드	feedforward network [10장	644쪽]
네트워크	트랜스포머 인코더와 디코더의 어텐션 층 다음에 오며, 일반적으로 두 개의	밀집
	층으로 구성됨. 첫 번째 밀집 층에만 활성화 함수를 사용하며, 초기에는 Re	LU를
	사용했지만 근래에는 다양한 활성화 함수를 사용한 변종이 많음	

□ 위치 인코딩	positional encoding	[10장 646쪽]
	토큰 임베딩 벡터에 토큰의 위치를 보상하기 위해 더해주는	실수 벡터. 트랜스포
	머는 입력 텍스트를 순차적으로 처리하지 않기 때문에 토큰 위	치에 대한 정보를 추
	가하기 위해 사용함	
□크로스 어텐션	cross attention	[10장 648쪽]
	트랜스포머 모델의 디코더 블록에 있는 두 번째 어텐션 메커	니즘. 크로스 어텐션
	에서는 인코더의 최종 출력을 키와 값으로 사용하고, 디코더의	의 은닉 벡터를 쿼리
	로 사용함	
□ 대규모 언어	large language model, LLM	[10장 650쪽]
모델	기술적인 정의는 모호하지만, 일반적으로 많은 수의 모델 파리	·미터를 가진 트랜스
	포머 기반 언어 모델을 말함. 이런 모델들은 보통 수십억 개에	서 수백억 개의 파라
	미터를 가지고 있으며, 1조 개가 넘는 파라미터를 가진 경우도	있음
□ 전이 학습	transfer learning	[10장 657쪽]
	대규모 데이터셋에서 훈련된 신경망을 비슷하거나 다른 작업어	활용하는 방법으로
	사전 훈련된 신경망을 그대로 사용하거나 부분적으로 미세 튜니	J할 수 있음
□BART		[10장 658쪽]
	메타에서 공개한 인코더—디코더 기반의 트랜스포머 모델. 번역	멱, 요약과 같은 시퀀
	스-투-시퀀스 작업에 활용할 수 있음	
□ 허깅페이스	HuggingFace	[10장 663쪽]
	트랜스포머 기반의 모델을 개발하고 공유하기 위한 플랫폼으로	문, 많은 모델이 등록
	되어 있고 자연어 처리뿐만 아니라 비전과 오디오 분야의 모델	도 제공함

□transformers	[10장 663	쪽]
	허깅페이스에서 만든 인기 많은 파이썬 패키지로, 사전 훈련된 트랜스포머 기	반
	모델을 전이 학습에 활용하고 미세 튜닝하기 위한 다양한 기능을 제공	
□토큰화	tokenization [10장 670	즉]
	입력 텍스트를 신경망 모델에 전달하기 위해 작은 단위로 쪼개는 방법. 대표적	인
	방법으로 BPE, 워드피스, 센텐스피스 등이 있음	
□ 오픈소스 LLM	[10장 663	즉]
	대규모 언어 모델의 구조와 가중치가 모두 공개된 모델로, 가중치가 공개되었지	간
	이를 상업적인 목적으로 사용하는 기준은 모델마다 다를 수 있음. 대표적인 오	드
	소스 LLM: Llama, Gemma, Phi, Qwen 등	
□클로즈드 소스	[10장 656	즉]
LLM	모델의 구조와 가중치가 공개되지 않은 독점적인 모델로, 이런 모델을 사용하	려
	면 제공하는 회사의 인터페이스나 API를 사용해야 함. 대표적인 클로즈드 소	스
	LLM: GPT, Claude, Gemini 등	
□EXAONE	[10장 685	즉]
	LG AI 연구원에서 만든 디코더 기반의 트랜스포머 모델이며, 오픈소스 파운데	>]
	션 모델. 비교적 적은 파라미터 개수를 가진 모델로도 영어와 한국어 텍스트를	생
	성하는데 높은 성능을 냄	
□RMS 정규화	root mean square normalization [10장 687	즉]
	층 정규화의 변종으로, 분산을 계산할 때 평균을 고려하지 않는 정규화 기법. 계	산
	량도 줄어들고 성능에도 영향이 없기 때문에 최신 LLM에서 널리 사용됨	

□top-k 샘플링	[10장 696쪽]
	가장 높은 로짓(또는 확률)을 가진 상위 몇 개의 토큰을 선택하는 샘플링 전략, 이
	를 1로 지정하면 가장 높은 값을 가진 토큰 하나만 선택하기 때문에 항상 결정적인
	결과를 얻게 됨
□top−p 샘플링	[10장 697쪽]
	확률 크기 순으로 토큰을 정렬한 후 지정한 임계 확률에 도달할 때까지 토큰을 선
	택하므로 샘플링할 때마다 선택 가능한 토큰의 개수가 달라짐. 이를 1로 지정하면
	모든 토큰이 후보 토큰이 됨
□GPT	Generative Pre−trained Transformer [10장 700쪽]
	오픈AI에서 만든 대규모 언어 모델로 GPT-3부터는 클로즈드 소스로 제공. 최신
	GPT 모델을 사용하려면 ChatGPT 웹 인터페이스나 오픈AI에서 제공하는 API