1. Fill in each of the blanks below with the word 'high' or 'low' corresponding to the diagram at the right.

2. In this first-order model, $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$

What is the interpretation of β_1 ?

 β_1 indicates the change in the mean response E{Y} per unit increase in X1 when X2 is held constant.

What is the interpretation of β_2 ?

 β_2 indicates the change in the mean response per unit increase in X2 when X1 is held constant.

- 3. For each of the following regression models, indicate whether it is a general linear regression model. If it is not, state whether it can be expression as a general linear regression model of the form, $Y_i =$ $\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i-1} + \varepsilon_i$, by a suitable transformation:
 - a. $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 \log_{10} X_{i2} + \beta_3 X_{i1}^2 + \varepsilon_i$ Does not show a linear regression model, however, can be transformed into a linear regression model.
 - b. $Y_i = \varepsilon_i \exp(\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i1}^2)$ Does not show a linear regression model, however, can be transformed into a linear regression model.
 - c. $Y_i = \log_{10}(\beta_1 X_{i1}) + \beta_2 X_{i2} + \varepsilon_i$ Does not show a linear regression model and cannot be transformed into a linear regression model.
 - d. $Y_i = \beta_0 \exp(\beta_1 X_{i1}) + \varepsilon_i$ Does not show a linear regression model and cannot be transformed into a linear regression model.
 - e. $Y_i = [\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_3 + \varepsilon_i]^{-1}$ Does not show a linear regression model, however, can be transformed into a linear regression model.
- 4. For this regression function, $E\{Y\} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$, where Y = Salary in 1000's X_1 = Years on the job

$$X_{1} = \text{Teals off the job}$$

$$X_{2} = \begin{cases} 0 & \text{if subject is male} \\ 1 & \text{if subject is female} \end{cases}$$

$$X_{3} = \begin{cases} 0 & \text{if subject does not have a bachelor's degree} \\ 1 & \text{if subject does have a bachelor's degree} \end{cases}$$

$$X_3 = \begin{cases} 0 & \text{if subject does not have a bachelor's degree} \\ 1 & \text{if subject does have a bachelor's degree} \end{cases}$$

Write the sub-model for each of these four conditions:

a. Males without a bachelor's degree:

$$E\{Y\} = \beta_0 + \beta_1 X_1$$

b. Males with a bachelor's degree:

$$E\{Y\} = \beta_0 + \beta_1 X_1 + \beta_3$$

c. Females without a bachelor's degree:

$$E\{Y\} = \beta_0 + \beta_1 X_1 + \beta_2$$

d. Females with a bachelor's degree:

$$E\{Y\} = \beta_0 + \beta_1 X_1 + \beta_2 + \beta_3$$

e. Interpret the parameter, β_3

It indicates the change in mean response per unit increase in X3 when X2 and X1 are held constant. Also, it is the coefficient for when the subject does have a bachelor's degree.

5. Complete this diagram with the component sums of squares using the ANOVA tables that follow it:

Response: Y Df Sum Sq X1	Response: Y
Response: Y Df Sum Sq X1	Response: Y
Response: Y	Response: Y