CS 228 (M) - Logic in CS Tutorial III - Solutions

Ashwin Abraham

IIT Bombay

24th August, 2023

Ashwin Abraham 2023 1/12

Table of Contents

- Question 1
- 2 Question 2
- Question 3
- Question 4
- Question 5

Ashwin Abraham

This statement is **False**. An easy counterexample to this would be $\mathcal{F} = \{p, \neg p\}$ and $\mathcal{G} = \{q, \neg q\}$.

Ashwin Abraham 2023 3 / 12

Theorem

A set of formulae Σ is satisfiable iff every finite subset of it is satisfiable.

This theorem is known as the **Compactness Theorem**.

Proof.

Proving the backward direction is trivial, as clearly if Σ is satisfiable then every finite subset of Σ is satisfiable (indeed, every subset is satisfiable). Let us show that if Σ is not satisfiable, then there exists a finite subset of it that is unsatisfiable (this suffices to show the forward direction). By the Completeness^a of our Formal Proof System, if Σ is unsatisfiable, then it is inconsistent, ie $\Sigma \vdash \bot$. The proof of this statement can use only a finite number of formulae in Σ (since all proofs are finite). Call this finite subset Σ' . Our proof of $\Sigma \vdash \bot$ will also show that $\Sigma' \vdash \bot$, and so this Σ' is a finite subset of Σ that is unsatisfiable.

^aFor this proof to be airtight, our proof of completeness should not depend on the Compactness Theorem, even in the infinite case. Such proofs do exist.

Ashwin Abraham 2023

Since \mathcal{F} is inconsistent (and therefore also unsatisfiable), by the Compactness Theorem there exists a finite subset of \mathcal{F} (say \mathcal{F}') that is unsatisfiable (and therefore inconsistent). Since \mathcal{F} is closed under conjunction $\left(\bigwedge_{f\in\mathcal{F}'}f\right)\in\mathcal{F}$. Call this F. Clearly $\{F\}\equiv\mathcal{F}'$, and therefore $\{F\}\vdash\bot$. By \bot elimination, for any formula G, we have $\{F\}\vdash\neg G$. Therefore, we have shown that there exists $F \in \mathcal{F}$ such that for any $G \in \mathcal{F}$, $\{F\} \vdash \neg G$. This is in fact a stronger statement than what we set out to prove!

Ashwin Abraham

We have to show that if F is not a contradiction and G is not a tautology, and $\vDash (F \implies G)$, then there exists a formula H such that $\vDash (F \implies H)$, $\vDash (H \implies G)$ and $Vars(H) \subseteq Vars(F) \cap Vars(G)$.

Firstly, note that we do not need the statement that F is not a contradiction and G is not a tautology. If F is a contradiction, then we can take $H = \bot$ and if G is a tautology we can take $H = \top$.

Removing this clause from the question statement, we shall prove the rest via induction on |Vars(F) - Vars(G)|. Our inductive hypothesis will be if |Vars(F) - Vars(G)| = k and $\models (F \implies G)$, then there exists H such that $\models (F \implies H)$, $\models (H \implies G)$ and $Vars(H) \subseteq Vars(F) \cap Vars(G)$.

Base Case:

When k = 0, we have $Vars(F) \subseteq Vars(G)$, and therefore we can choose H = F, which satisfies all the conditions.

Ashwin Abraham 2023 6/12

Before we proceed to the inductive step,

Lemma:

Say $q \in Vars(F) - Vars(G)$ and $\vDash (F \implies G)$. Let $H = F[q/\bot] \lor F[q/\top]$. Then we have $\vDash (F \implies H)$ and $\vDash (H \implies G)$.

Note that for any formula F, F[p/G] denotes the formula obtained by replacing all instances of p in F by G.

Proof:

Say an assignment α has $\alpha \vDash F$. If $\alpha(q) = 0$, then we have $\alpha \vDash F[q/\bot]$ and therefore $\alpha \vDash H$. On the other hand, if $\alpha(q) = 1$, then $\alpha \vDash F[q/\top]$ and we still have $\alpha \vDash H$. Therefore, we have $\alpha \vDash F \implies \alpha \vDash H$ for all α , ie $F \implies H$ is valid, ie $\vDash (F \implies H)$.

Now, let us show the other part. Some notation first: For an assignment α , $\alpha[q \to b]$ is an assignment identical to α except at q, where it is b. We have $\alpha[q \to 0] \vDash F \iff \alpha \vDash F[q/\bot]$, $\alpha[q \to 1] \vDash F \iff \alpha \vDash F[q/\top]$.

Ashwin Abraham 2023 7 / 12

Assume $\alpha \vDash H$. We have:

Now, since $q \notin Vars(G)$, $\alpha[q \to b] \models G \iff \alpha \models G$, $b \in \{0, 1\}$.

Therefore,

$$\bullet$$
 $\alpha \models G$

Therefore,
$$\forall \alpha, \alpha \vDash H \implies \alpha \vDash G$$
, ie $\vDash (H \implies G)$

Ashwin Abraham 2023 8 / 12

Now, back to the main proof. Our inductive hypothesis is that for any formulae F and G if |Vars(F) - Vars(G)| = k and $\models (F \implies G)$, then there exists H such that $\models (F \implies H), \models (H \implies G)$, and $Vars(H) \subseteq Vars(F) \cap Vars(G)$. Assuming this, we have to prove the hypothesis for the case where |Vars(F) - Vars(G)| = k + 1. Let $g \in Vars(F) - Vars(G)$, and let $H = F[q/\top] \vee F[q/\bot]$. By the previous lemma, we have $\vDash (F \implies H)$ and $\models (H \implies G)$. Note that |Vars(H) - Vars(G)| = k. Applying the inductive hypothesis, there exists H' such that $\models (H \implies H')$, $\models (H' \implies G)$ and $Vars(H') \subseteq Vars(H) \cap Vars(G)$. Using $\models (F \implies H)$ and the fact that $Vars(H) \subseteq Vars(F)$, we get $\models (F \implies H')$, $\models (H' \implies G)$, and $Vars(H') \subseteq Vars(F) \cap Vars(G)$. Therefore, the inductive hypothesis is proven for k+1, and thus the statement in the question is also proven.

◆□▶◆□▶◆■▶◆■▶ ■ かくで

Ashwin Abraham 2023 9/12

Firstly, note that the empty set \emptyset is satisfiable (in fact, it is valid)¹. Now, it can be easily shown that the set

$$\Sigma_n = \{p_1, \dots p_n, \bigvee_{i=1}^n \neg p_i\}$$

is an example of a minimal unsatisfiable set for $n \ge 1$.

Ashwin Abraham 2023 10 / 12

¹This is because all universally quantified propositions over the empty set are true - these are known as vacuous truths.

- (a) Mechanically keep calculating $Res^n(\psi)$ by resolution, until you find that $\emptyset \in Res^*(\psi) = Res^3(\psi)$. This correctly tells us that ψ is unsatisfiable due to the soundness of the resolution proof system.
- (b) Let us do resolution in a slightly different way.

Our algorithm is as follows:

- If $Vars(\psi)$ is empty, then we can immediately conclude the satisfiability of ψ by checking if $\emptyset \in \psi$.
- ② If not, pick a variable $p \in Vars(\psi)$ such that resolution² can be done with pairs of clauses in ψ with p as pivot.
- **③** If no such variable exists, then we are done with resolution, and we can check satisfiability by checking if $\emptyset \in \psi$.
- If such a variable exists, replace ψ with $R_p(\psi)$, where $R_p(\psi)$ is formed by removing all clauses that were involved in resolution from ψ and replacing them with the newly generated resolved clauses.
- Go to step 1

 2 We do not consider resolutions that lead to tautologies > < 3 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > <

Ashwin Abraham 2023 11 / 12

To show that this algorithm works, we show that ψ and $R_p(\psi)$ are equisatisfiable, ie $\psi \vdash \bot \iff R_p(\psi) \vdash \bot$.

The reverse direction is easy to prove here, the clauses of $R(\psi)$ are either members of ψ or are formed from ψ by resolution, ie any proof that $R_p(\psi) \vdash \bot$ can easily be converted into a proof that $\psi \vdash \bot$ by replacing the steps assuming the resolved clauses with their resolutions.

For the forward direction, let us prove the contrapositive, ie $R_p(\psi)$ is satisfiable $\implies \psi$ is satisfiable.

Let
$$\psi = \{ \{p\} \cup A_i : i \in \{1 ... m\} \} \cup \{ \{\neg p\} \cup B_j : j \in \{1 ... n\} \} \cup C$$
 where A_i, B_j and C do not contain p .

We have $R_p(\psi) = \{A_i \cup B_j : (i,j) \in [m] \times [n], A_i \cup B_j \text{ not a tautology}\} \cup C$ Let's say some assignment α has $\alpha \models R_p(\psi)$. Firstly, clearly $\alpha \models C$. If $\alpha \models A_i$ for all $i \in [m]$, then $\alpha[p \to 0] \models \psi$. If there is some $k \in [m]$ such that $\alpha \nvDash A_k$, then for all $j \in [n]$, we have $\alpha \models A_k \cup B_j$ (this follows from the membership of the clause in $R_p(\psi)$ for non-tautological clauses and by definition for the tautologies). Since $\alpha \nvDash A_k$, we must have $\alpha \models B_j$, for all $j \in [n]$. Therefore, $\alpha[p \to 1] \models \psi$. Therefore, ψ is satisfiable.

Ashwin Abraham 2023 12 / 12