211: Computer Architecture Spring 2021

Instructor: Exam Help

Topics: https://eduassistpro.github.io/

Digital Logic
 Add WeChat edu_assist_pro
 Reading material avail

Logic Design

Assignment Project Exam Help

How does your pro

operations?

https://eduassistpro.github.io/

Logic Gates

Transition from representing information to implementing them

Logic gates are simple digital circuits.

Assignment Project Exam Help

- Take one or m
- Produce a bin https://eduassistpro.github.io/
- Truth table: relationship betwe _____ and the output Add WeChat edu_assist_pro

Not Gate

```
Assignment Project Exam Help

https://eduassistpro.githubti@ate

Add WeChat edu_assist_pro

1 0
```

AND Gate

A	В	Two inputs, One output
0	0	0
0	1	Result is 1 only if both the
1	0	0 Assignment Project Exam Help inputs are 1.
1	1	1 https://eduassistpro.github.io/
		Add WeChat edu_assist_pro

OR Gate

```
A B C
Assignment Project Exam Help
1 1
https://eduassistpro.gjthub.io/
Add WeChat edu_assist_pro
```

Logical Completeness

Can implement ANY truth table with AND, OR, NOT.

A	В	C	D	
0	0	0	0	combinations
0	0	1	ssignment Project Exam Helpo that	yield a "1" in the
0	1	0	1 https://eduassistpro.github.ld	table.
0	1	1	O Add WeChat edu_assist_pro	1
1	0	0		,
1	0	1		he results e AND gates.
1	1	0	0	
1	1	1	0	

NAND and **NOR** Gate

A	В	С			
0	0	Assignment Project Exam Help			
0	1	0			
1	0	0	https://eduassistpro.github.io/		
1	1	0	Add WeChat edu_assist_pro		
	A	В	C		
	0	0	1		
	0	1	1		
	1	0	1		
	1	1	0		

Beneath the Digital Abstraction

A digital system uses discrete values

• Represent it with continuous variables (eg, voltage), handle noise

Use transistors to implement logical functions: AND, OR, NOT Digital symbols: Assignment Project Exam Help

recall that we asside digital (logic) sym https://eduassistpro.github.io/

- assignment of voltage ranges depends on electrical properties of transistors being used
 - typical values for "1": +5V, +3.3V, +2.9V
 - from now on we'll use +2.9V

Transistor: Building Block of Computers

Microprocessors contain millions (billions) of transistors

- Intel Pentium 4 (2000): 48 million
- IBM PowerPC 750FX (2002): 38 million
- IBM/Apple Assiven Proceeds R2003 to 48 xm it in oHelp

Logically, each tra https://eduassistpro.github.io/

Combined to implement logic fun AND, OR, NOT we'Chat edu_assist_pro

Combined to build higher-level structures

Adder, multiplexer, decoder, register, ...

Combined to build processor

DeMorgan's Law

Converting AND to OR (with some help from NOT)

Consider the following gate:

A	.— 3—	o o_	Ass	signm	To convert AND to OR Project Example versa),
A	В	Ā	B	https	nputs and outputs://eduassistpro.github.io/
0	0	1 1	1	Add	WeChat edu_assist_pro 1 DeMorgan's Laws:
0	1	1	0	0	1 DeMorgan's Laws:
1	0	0	1	0	1 1. $\overline{PQ} = \overline{P} + \overline{Q}$
1	1	0	0	0	1 $2. \overline{P+Q} = \overline{P} \overline{Q}$

Same as A+B!

NAND and NOR Functional Completeness

Any gate can be implemented using either NOR or NAND gates.

Why is this important?

• When building game, taste jectulia ane with all of the same gates.

https://eduassistpro.github.io/

https://eduassistpro.github.io/

More than 2 Inputs?

AND/OR can take any number of inputs.

- AND = 1 if all inputs are 1.
- OR = 1 if any input is 1.
- Similar for NAMENT Project Exam Help

Can implement wit CMOS circuit.

https://eduassistpro.github.io/

Circuit Design

Have a good idea. What kind of circuit might be useful?

Derive a truth table for this circuit

Derive a Boolean expression for the truth table Assignment Project Exam Help

Build a circuit give

n

- Building the cirhttps://eduassistpro.github.io/expression to actual gates. This part is ea edu_assist_pro
- Deriving the Boolean expressi eriving a good one is tricky.

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Given a circuit, isolate the rows in which the output of the circuit should be true

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Given a circuit, isolate that rows in which the output of the circuit should be true

A product term that contains exactly one instance of every variable is called a minterm

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Given the expressions for each row, build a larger Boolean expression for the entire table.

This is a sum-of-products (SOP) form.

Canonical Forms

We have studied two canonical forms

- 1. Sum of Products (SoP)
- 2. Product of Sums (PoS)

```
How to convert to SAPstropment to the temperature of the second of the s
```

How to convert to PoS fr

hrough, complement via

DeMorgan's)

https://eduassistpro.github.io/

Formal Definition of Minterms

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Finally build the circuit.

- Problem: SOP forms are often not minimal.
- Solution: Make it minimal. We'll go over two ways.

First Approach: Algebraic

Simply use the rules of Boolean logic

Assignment Project Exam Help

https://eduassistpro.github.io/

The Result

Assignment Project Exam Help

https://eduassistpro.github.io/

Decoder

n inputs, 2ⁿ outputs

exactly one output is 1 for each possible input pattern

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

2-bit decoder

Decoder Circuits

Assignment Project Exam Help

https://eduassistpro.github.io/

Decoder Example

Assignment Project Exam Help

https://eduassistpro.github.io/

Internal 2:4 Decoder Design

Assignment Project Exam Help

https://eduassistpro.github.io/

2:4 Decoder from 1:2 Decoders

Assignment Project Exam Help

https://eduassistpro.github.io/

Hierarchical 3:8 Decoder

Assignment Project Exam Help

https://eduassistpro.github.io/

Encoder: Inverse of Decoder

Inverse of decoder: converts m bit input to n bit output (n <= m)

Assignment Project Exam Help

https://eduassistpro.github.io/

Multiplexer (MUX)

n-bit selector and 2^n inputs, one output

output equals one of the inputs, depending on selector

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

4-to-1 MUX

Multiplexers (Muxes)

Combinational circuit that selects binary information from many inputs to one output

Assignment Project Exam Help

https://eduassistpro.github.io/

Functions with Decoders or Muxes

Assignment Project Exam Help

https://eduassistpro.github.io/

Can we do it a Smaller Mux?

Can actually use a smaller mux with a trick:

$$F = A\overline{C} + BC$$

Look at the rows below, A & B have the same value, C iterates between 0 & 1

For the pair of rows sight entire of the pair of the p

https://eduassistpro.github.io/

Another Example

Assignment Project Exam Help

https://eduassistpro.github.io/

Where are we?

We have already seen

- -- Basic gates: AND, NOT, OR
- -- Building blocks: Decoder and Multiplexer Help
- -- Implement circuit
- -- We know: (a) mi https://eduassistpro.github.io/
- -- We know basic identities Chat edu_assist_pro

Implement A+B

With Multiplexers

(1) Using 2:1 mux. Assignment Project Exam Help

(2) Using 4:1 mux

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

With Decoders

(1) Using a 2:4 decoder

37

Half Adder

Add two bits and produce a sum and a carry.

How do we go about building the circuit? Help

https://eduassistpro.github.io/

Full Adder

Add two bits and carry-in, produce one-bit sum and carry-out.

Sum and Carry-Out.	A	В	Cin	S	Cou	
					t	
Assignment Project Exam Help	0	0	0	0	0	
issignment Project Exam Help	0	0	1	1	0	
https://eduassistpro.github.io/0	0	1	0	1	0	
	0	1	1	0	1	
Add WeChat edu_assist_pro	1	0	0	1	0	
	1	0	1	0	1	
	1	1	0	0	1	
	1	1	1	1	1	
				1		

Four-bit Adder

Assignment Project Exam Help

https://eduassistpro.github.io/

Karnaugh Maps or K-Maps

K-maps are a graphical technique to view minterms and how they relate.

The "map" is a diagram made up of squares, with each square representing a Aimienter Project Exam Help

Minterms resulting https://eduassistpro.githubl.io/hers are marked "0"

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

42

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

0 1

0 1

44

Finding Commonality

Assignment Project Exam Help

https://eduassistpro.github.io/

Finding the "best" solution

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Grouping become simplified products.

Both are "correct". "A+B" is preferred.

Simplify Example

Assignment Project Exam Help

https://eduassistpro.github.io/

Simplify Example

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

48

https://eduassistpro.github.io/

Note in higher maps, several var py a given axis

- The sequence of Asian Westing edu_assistepsequence.
- Grey code is a number system where two successive values differ only by 1-bit

https://eduassistpro.github.io/

https://eduassistpro.github.io/

https://eduassistpro.github.io/

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Back to our earlier example.....

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

The K-map and the algebraic produce the same result.

Up... up... and let's keep going

https://eduassistpro.github.io/

Few more examples

Few more examples

https://eduassistpro.github.io/

Don't Care Conditions

Assignment Project Exam Help

https://eduassistpro.github.io/

Don't Cares can Greatly Simplify Circuits

Assignment Project Exam Help

https://eduassistpro.github.io/

Design Example

Assignment Project Exam Help

https://eduassistpro.github.io/

Design Example

Assignment Project Exam Help

https://eduassistpro.github.io/

Design Example

We will do f, but you should be able to design a-e as well

$$+X\overline{Y}$$
 $+X\overline{Y}$

Assignment Project Exam Help

https://eduassistpro.github.io/

Combinational Circuits

Stateless circuits

Outputs are function of inputs only Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Time and State

SEQUENTIAL CIRCUITS

How are Sequential Circuits different from Combinational Circuits?

Outputs of sequential logic depend on both current and prior values – it has memory

Assignment Project Exam Help

Definitions:

State: all the infor https://eduassistpro.githylainipits future

behavior

Add WeChat edu_assist_pro

Latches and flip-flops: state elements that store one bit of state

Synchronous sequential elements: combinational logic followed by a bank of flip-flops

Enabler Circuits

Assignment Project Exam Help

https://eduassistpro.github.io/

Bistable Circuits

Fundamental building blocks of other elements

No inputs

Two outputs (Qand Q') Assignment Project Exam Help

https://eduassistpro.github.io/

Bistable Circuit Analysis

Consider all the cases

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Bistable circuit stores 1 bit of state (Q, or Q')
But there are no inputs to control state

Set/Reset Latch

Assignment Project Exam Help

https://eduassistpro.github.io/

S/R Latch Analysis

Assignment Project Exam Help

https://eduassistpro.github.io/

S/R Latch Analysis

Assignment Project Exam Help

https://eduassistpro.github.io/

S/R Latch Symbol

Set operation – makes output 1 (S = 1, R = 0, Q = 1)

Reset operation – makes output 0 (S = 0, R = 1, Q = 0)

What about invalid state? (S=1, R=1)
Assignment Project Exam Help

https://eduassistpro.github.io/

D Latch

```
Two inputs (C and D)
```

C: controls when the output changes

```
D (data input): controls what the output changes to

When C = 1, D pas parent latch)

When C = 0, Q hol https://eduassistpro.github.io/

We Chat edu_assist_pro

D Latch
Symbol
D Latch
Symbol
D Latch
Symbol
D Latch
```

74

D Latch Internal Circuit

Assignment Project Exam Help

https://eduassistpro.github.io/

How to Coordinate with Multiple Components?

But how do we coordinate computations and the changing of state values across lots of different parts of a circuit?

We use CLOCKING (eg. 2.6GHz clock on Intel processors)

On each clock pulshttps://eduassistpro.gitationioare performed, and results stored in I Add WeChat edu_assist_pro

How to introduce clocks into latches?

Flip-flops: Latches on a Clock

A straightforward latch is not safely synchronous (or predictably synchronous)

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Flip-flops designed so that outputs will NOT change within a single clock pulse

D Flip-Flop

When CLK is 0

• master is enabled (N1 obtains — put to the master)

slave is disabled (Old output is still output)

When CLK is 1

- then master is disabled (N1 is the old value)
- Slave is enabled, it copies N1 into output

D Flip-Flop Summary

Two inputs: Clk, D

Function

- The flip-flop samples D on rising clock edge
- · When clock gods signment Praises hang Help
- Otherwise, Q holds https://eduassistpro.github.io/
- Q only changes on rising clock edge

• Flip-flop is called "edge-triggered be edu_assist pro only on the clock edge

D Flip-Flop

Symbols

Flip-Flop versus Latch

Assignment Project Exam Help

https://eduassistpro.github.io/

Registers

Assignment Project Exam Help

https://eduassistpro.github.io/

Finite State Machines

Stores the next state and ment Promputes the next state and computes the next state at clock edge

Add WeChat edu_assist_pro

Traffic Light Controller Example

Assignment Project Exam Help

https://eduassistpro.github.io/

FSM State Transition Diagram

Assignment Project Exam Help

https://eduassistpro.github.io/

FSM State Transition Table

State transitions from diagram can be rewritten in a state transition table

Assignment Project Exam Help

https://eduassistpro.github.io/

Encoded State Transition Table

After selecting a state encoding, the symbolic states in the transition table can be realized with current state/next state bits

Assignment Project Exam Help

https://eduassistpro.github.io/

Computing Next State Logic

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro
From K-maps, figure out expressions for e:

$$S_1' = S_1 \oplus S_0$$

$$S_0' = \overline{S_1} \, \overline{S_0} \, \overline{T_A} + S_1 \, \overline{S_0} \, \overline{T_B}$$

FSM Output Table

FSM output logic is computed in similar manner as next state logic

In this system, output is a function of current state (Moore machine)

Alternative – Mealy machine (output function of both current state and inputs, though we won't cover this pipoless) Exam Help

https://eduassistpro.github.io/

$$L_{A1} = S_1; L_{A0} = \overline{S_1} S_0$$

 $L_{B1} = \overline{S_1}; L_{B0} = S_1 S_0$

State Register: Assume D-FF

Assignment Project Exam Help

https://eduassistpro.github.io/

FSM: Figure out Next State Logic

$$S_1' = S_1 \oplus S_0$$

$$S_0' = \overline{S_1} \, \overline{S_0} \, \overline{T_A} + S_1 \, \overline{S_0} \, \overline{T_B}$$

Assignment Project Exam Help

https://eduassistpro.github.io/

FSM: Figure out Output Logic

$$L_{A1} = S_1; L_{A0} = \overline{S_1} S_0$$

 $L_{B1} = \overline{S_1}; L_{B0} = S_1 S_0$

Assignment Project Exam Help

https://eduassistpro.github.io/

FSM Example 2

Design an FSM that detects a stream of three or more consecutive 1s on an input stream

Input: Assignment Project Foxam Hedp1 ...

Output: 0 https://eduassistpro.gifh@b0o/..

Finite State Machine for the 3 1's problem

Assignment Project Exam Help

https://eduassistpro.github.io/

FSM Truth Table

Truth Table for Next State (AN and BN are next states)

End	coding	g	
	Α	В	We mod true hits
S0	0	0	We need two bits
S1	0	1	to encode 4 states
S2	1	0	(lots call those bits A & D)
S3	1	1	(lets call these bits A & B)

FSM with D-Flip Flops

Assignment Project Exam Help

https://eduassistpro.github.io/

$$A' = AX + BX = AA + BX = AA + BA =$$

Y = AN. BN

FSM Circuit

$$A' = A X + B X = (A + B) X$$

$$B' = A X + \overline{B} X = (A + \overline{B}) X$$

Backup

Assignment Project Exam Help

https://eduassistpro.github.io/

n-type MOS Transistor

MOS = Metal Oxide Semiconductor

two types: n-type and p-type

n-type

when Gate has positive voltage, Exam Help short circuit be https://eduassistpro.github.io/

• when Gate ha open circuit between the armate edu_assiste pro

p-type MOS Transistor

p-type is complementary to n-type

- when Gate has positive voltage, open circuit between #1 and #2
- when Gate has granney of the short circuit be

https://eduassistpro.github.io/

#2

CMOS Circuit

Complementary MOS

Uses both n-type and p-type MOS transistors

- p-type
 - Attachessignmente Project Exam Help
 - Pulls outpu https://eduassistpro.github.io/
- n-type
 - Attached to A WeChat edu_assist_pro
 - Pulls output voltage DOWN when input is one

MOS transistors are combined to form Logic Gates

For all inputs, make sure that output is either connected to GND or to +, but not both!

Inverter (NOT Gate)

Assignment Project Exam Help

https://eduassistpro.github.io/

In	Out	In	Out
0 V	2.9 V	0	1
2.9 V	0 V	1	0