

EMPLOYMENT

· ETH Zürich, Switzerland.

Nov. 2019 - Till Date.

Position: Professorship for Computer Vision.

Funded by: ETH Zürich Foundation and Google for 3D vision projects.

Advised and Directed by: Luc Van Gool.

Advisor at Google: Vittorio Ferrari, Cristian Sminchisescu.

· Google New York, USA. May 2019 - Aug. 2019.

Topic: Geometric Learning

· Uurmi Systems, Hyderabad, India. [uly 2014 - June 2015.

Consultant Engineer.

Position: Computer Vision Algorithm Developer

· INRIA, e-Motion, Grenoble-France. Sept. 2013 - Feb. 2014.

Visiting Scientist.

Topic: Autonomous Driving

· IIIT-Hyderabad, India. Jan. 2011 - Aug. 2013.

Research Assistant. Topic: Robot Vision

· IIT-Hyderabad, India. Aug. 2010 - Dec. 2010.

Project Associate.

Topic: Pervasive Sensor Networks

EDUCATION

· Australian National University.

Sept. 2015 - July 2019.

Ph.D. in Engineering and Computer Science.

Thesis: Non-Rigid Structure from Motion.

Supervisory Panel: Yuchao Dai, Hongdong Li, Richard Hartley.

· IIIT-Hyderabad. July 2013.

M.S. in Computer Science and Engineering.

Research Area: Robotic Vision.

AWARDS AND ACHIEVEMENTS

- · Awarded ANU Vice-Chancellor Grant.
- · Winner of NRSfM Challenge at CVPR 2017, Prize awarded by Disney Research.
- · Student funding to attend ICML 2017, Sydney Australia and ICCV 2017, Venice Italy.
- · Student funding to attend Robot Vision Summer School 2016, Kiola, Australia.
- · Recipient of "Australian National University Higher Degree Research" Merit Scholarship Award.
- · Recipient of "Best Innovative Group 2014", by Uurmi Systems Private Limited, India.
- · Fully funded by Campus France to do research at INRIA, Grenoble-France.
- · Full-Time Scholarship Student for MS program at IIIT-Hyderabad, India.
- · Winner of "8085 Programming" and "Project Demonstration" contest at TITIKSHA 2008.

Publications

[1] Non-rigid Structure from Motion: Prior-Free Factorization Method Revisited.

Suryansh Kumar.

Winter Conference on Applications of Computer Vision (WACV), IEEE, 2020, Colorado, USA.

[2] Jumping Manifolds: Geometry Aware Dense Non-Rigid Structure from Motion. Suryansh Kumar.

Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2019, CA, USA.

- ★ Invited for oral presentation at Dynavis CVPR 2019.
- [3] Superpixel Soup: Monocular Dense 3D Reconstruction of a Complex Dynamic Scene. Suryansh Kumar, Yuchao Dai, Hongdong Li.
 Transactions on Pattern and Machine Intelligence (**T-PAMI**), IEEE, 2019.
- [4] Scalable Dense Non-rigid Structure from Motion: A Grassmannian Perspective. Suryansh Kumar, Anoop Cherian, Yuchao Dai, Hongdong Li. Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2018, Utah, USA.
- [5] Monocular Dense 3D Reconstruction of a Complex Dynamic Scene from Two Perspective Images. Suryansh Kumar, Yuchao Dai, Hongdong Li. International Conference on Computer Vision (ICCV), IEEE, 2017, Venice, Italy.
 - * Conferred at IEEE Comm. Society MMTC Communications-Review Vol. 9, No.2, April 2018.
 - * Presented at CMU RI VASC Seminar on 20th November 2017 by Prof. Hondong Li.
- [6] Spatio-Temporal Union of Subspaces for Multi-body Non-rigid Structure-from-Motion. Suryansh Kumar, Yuchao Dai, Hongdong Li. Pattern Recognition Journal (PR), Elsevier, 2017.
 - * Received Best Algorithm Award in NRSFM Challenge at (CVPR) 2017 by ** ** Private Research.
- [7] Multi-body Non-rigid Structure from Motion. Suryansh Kumar, Yuchao Dai, Hongdong Li. International Conference on 3D Vision (3DV), IEEE, 2016, Stanford University, USA.
- [8] Markov Random Field based Small Obstacle discovery over Images. Suryansh Kumar, Siva Karthik M, K. Madhava Krishna. International Conference on Robotics and Automation (ICRA), IEEE, 2014, Hong Kong, China.
- [9] A Bayes filter based adaptive floor segmentation with homography and appearance cues. Suryansh Kumar, Ayush Dewan, K. Madhava Krishna. (ICVGIP), ACM, 2012, IIT-Bombay, India. (Oral Presentation)
- [10] CRF Based Frontier Detection using Monocular Camera. Sarthak Upadhyay, Suryansh Kumar, K. Madhava Krishna. (ICVGIP), ACM, 2014, IISc Bangalore, India. (Oral Presentation)
- [11] Small object discovery and recognition using actively guided robot.
 Sudhanshu Mittal, Siva Karthik M, Suryansh Kumar, K. Madhava Krishna.
 International Conference on Pattern Recognition (ICPR), IEEE, 2014, Stockholm, Sweden.

Under Preparation

[12] Dense Depth Estimation of a Complex Dynamic Scene without Explicit 3D Motion Estimation. Suryansh Kumar, Ram Srivatsav Ghorakavi, Yuchao Dai, Hongdong Li. arXiv Preprint 2019. (Under Progress)

RECENT TALK

ETH Zürich "Non-Rigid Structure-from-Motion."
Host: Computer Vision Lab, D-ITET, ETH Zürich.

Iune 2019.

Dec. 2019.

- Dynavis CVPR 2019, "Jumping Manifold."
 Host: Armin Mustafa, Marco Volino, Michael Zollhöefer, Dan Casas, Adrian Hilton.
- Australian National University, "Non-Rigid Structure from Motion."
 March 2019.
 Host: Hongdong Li, Yuchao Dai.

2

· Samsung Research America, "Dynamic Scene 3D Reconstruction." Host: Shalini Ghosh.

Jan. 2019.

ACADEMIC SERVICE

- · Technical Program Committee Member: ACM MM 2019.
- · Reviewer: T-PAMI, CVPR, ICCV, ICRA, 3DV, IEEE C.I Magazine, Pattern Recognition.

· TA, Computer Vision Course. (ENGN4528/6528)

Feb. 2018 - July 2018.

Course Instructor: Hongdong Li.

· TA, Individual Engineering Project Course. (ENGN4200)

Feb. 2017 - July 2017.

Course Instructor: Yuchao Dai.

• TA, Computer Vision Course. (ENGN4528/6528)

Feb. 2017 - July 2017.

Course Instructor: Jonghyuk Kim.

STUDENTS AND COLLABORATORS

- Eric Sandström (Ph.D)

· Students:

- Berk Kaya (Ph.D)

(Co-advisors: Luc Van Gool, Vittorio Ferrari)

(Co-advisors: Luc Van Gool, Cristian Sminchisescu)

· Collaborators:

- Dr. Zhiwu Huang

(Topic: Application of Non-Euclidean Geometry Learning for Videos.)

RESEARCH INTERESTS

- · Computer Vision: 3D Reconstruction, Depth Estimation and Motion Segmentation.
- · Robotic Vision: Camera Calibration, SLAM and Visual SLAM.
- · Mathematics: Mathematical Optimisation, Compressed Sensing, Topological Manifolds.
- · Machine Learning: Deep Learning, Support Vector Machine, Probabilistic Graphical Models.
- · Others: Discrete Differential Geometry.

TECHNICAL SKILL SET

- · **Programming Language:** C/C++, Python.
- · Scripting Language: Matlab, Octave, Unix Shell Programming.
- · Libraries and APIs: OpenCV, OpenGL, ROS, Eigen, STL, Numpy, Scipy, Pangolin.
- · Deep Neural Network Framework: PyTorch.
- · Web and Documentation: HTML, CSS, LATEX.
- · Others: Embedded C, Unix System Programming.

LANGUAGES

English, Hindi.