International Rectifier

1N5817

SCHOTTKY RECTIFIER

1.0 Amp

Major Ratings and Characteristics

Characteristics	1N5817	Units
I _{F(AV)} Rectangular waveform	1.0	А
V _{RRM}	20	V
I _{FSM} @tp=5µssine	240	А
V _F @1 Apk, T _J =25°C	0.45	V
T _J range	-65 to 150	°C

Description/Features

The 1N5817 axial leaded Schottky rectifier has been optimized for very low forward voltage drop, with moderate leakage. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- Low profile, axial leaded outline
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- · Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Voltage Ratings

Part number	1N5817	
V _R Max. DC Reverse Voltage (V)	20	
V _{RWM} Max. Working Peak Reverse Voltage (V)	20	

Absolute Maximum Ratings

	Parameters	1N5817	Units	Conditions		
I _{F(AV)}	Max. Average Forward Current	1.0	Α	50% duty cycle @ T _L = 138 °C,	rectangular wave form	
I _{FSM}	Max. Peak One Cycle Non-Repetitive	240	Δ .	5μs Sine or 3μs Rect. pulse	Following any rated	
	Surge Current, @T _J =25°C	40		10ms Sine or 6ms Rect. pulse	load condition and with rated V _{RRM} applied	

Electrical Specifications

	Parameters	Тур.	Max.	Units	Conditio	ns
V _{FM}	Max. Forward Voltage Drop (1)	0.42	0.45	V	@ 1A	T = 25 °C
		0.50	0.75	V	@ 3A	T _J = 25 °C
I _{RM}	Max. Reverse Leakage Current (1)	0.012	1.0	mA	T _J = 25 °C	V _R = rated V _R
		2.0	10	mA	T _J = 100 °C	V _R - rated V _R
C _T	Typical Junction Capacitance	110	-	pF	V _R = 5V _{DC} (test signal range 100kHz to	
					1Mhz), @ 25°	C
L _S	Typical Series Inductance	8.0	-	nΗ	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	-	10000	V/ µs	(Rated V _R)	

⁽¹⁾ Pulse Width < 300 μ s, Duty Cycle <2%

Thermal-Mechanical Specifications

	Parameters	1N5817	Units	Conditions
T _J	Max. Junction Temperature Range (2)	-65 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-65 to 150	°C	
R _{thJL}	Max. Thermal Resistance Junction to Lead	32	°C/W	DC operation, Lead lenght = 1/8 inch.
R _{thJA}	Max. Thermal Resistance Junction to Ambient	100	°C/W	DC operation, without cooling fin
Wt	Approximate Weight	0.33(0.012)	gr(oz)	
	Case Style	DO-204AL(DO-41)		

 $\frac{\text{(2)}\,\text{dPtot}}{\text{dTj}} < \frac{1}{\text{Rth(j-a)}} \ \ \text{thermal\ runaway\ condition\ for\ a\ diode\ on\ its\ own\ heatsink}$

Fig. 1-Typical Forward Voltage Drop Characteristics

Fig. 2-Typical Peak Reverse Current Vs. Reverse Voltage

Fig. 3-Typical Junction Capacitance Vs. Reverse Voltage

Fig. 4-Maximum Average Forward Current Vs. Allowable Lead Temperature

Fig. 5 - Maximum Average Forward Dissipation Vs. Average Forward Current

Fig. 6-Maximum Peak Surge Forward Current Vs. Pulse Duration

(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D)$ (see Fig. 6); $Pd_{REV} = Inverse Power Loss = V_{R1} \times I_{R} (1 - D)$

Bulletin PD-20646 rev. B 05/02

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed for Industrial Level. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 05/02

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.