

RoboSwap: A GAN-driven Video Diffusion

Framework For Unsupervised Robot Arm Swapping

HANGZHOU 2025

HUAWEI

universität freiburg

Yang Bai, Liudi Yang, George Eskandar, Fengyi Shen, Dong Chen, Mohammad Altillawi, Ziyuan Liu, Gitta Kutyniok

Contributions

1. Unpaired Swapping

- Robotic arm replacement in videos reduces data needs in unpaired embodiment transfer.

2. Hybrid Framework Pipeline

- Two-stage GAN-diffusion approach with key design insights from ablation studies.

3. State-of-the-Art

- Superior results on three benchmarks with strong generalization.

- Qualitative Results																		
Method	Google robot→Kuka robot					Kuka robot→Google robot						Google robot→UR5						
	Mot.	Bg.	Subj.	Tem.	Can be	User	Mot.	Bg.	Subj.	Tem.	Can be	User	Mot.	Bg.	Subj.	Tem.	Can be	User
	Cons.	Cons.	Cons.	Fli.	Swapped	Pref.	Cons.	Cons.	Cons.	Fli.	Swapped	Pref.	Cons.	Cons.	Cons.	Fli.	Swapped	Pref.
PBE (Per-frame)	0.9777	0.9119	0.8455	0.9761	X	0	0.9729	0.9336	0.8739	0.9694	X	0	0.9787	0.9345	0.8806	0.9758	X	0
AnyDoor (Per-frame)	0.9423	0.8956	0.8605	0.9343	X	0	0.9381	0.8826	0.8458	0.9314	X	0	0.9185	0.9007	0.8639	0.9093	X	0
AnyV2V	0.9869	0.9213	0.8732	0.9830		13.99	0.9832	0.9000	0.8845	0.9806	✓	3.28	0.9872	0.9129	0.9174	0.9825		6.74
I2VEdit	0.9864	0.9479	0.9139	0.9726		20.69	0.9881	0.9465	0.9374	0.9866		4.56	0.9839	0.9459	0.9104	0.9755		17.52
CycleGAN	0.9822	0.9492	0.9247	0.9765	X	0	0.9767	0.9473	0.9274	0.9730	X	0	0.9747	0.9416	0.9400	0.9656	X	0
I2V-Original	0.9895	0.9414	0.9230	0.9884	X	0	0.9904	0.9482	0.9312	0.9924	X	0	0.9908	0.9612	0.9484	0.9906	X	0
I2V-Bkg	0.9938	0.9535	0.9416	0.9946	×	0	0.9922	0.9537	0.9535	0.9945	×	0	0.9936	0.9527	0.9412	0.9946	X	0
I2V-Swapped	0.9875	0.9268	0.9413	0.9857	X	8.64	0.9944	0.9824	0.9473	0.9960		30.47	0.9869	0.9455	0.9116	0.9857	X	19.24
Ours with CUT	0.9889	0.9645	0.9413	0.9892	✓	27.97	0.9927	0.9638	0.9560	0.9946	✓	29.13	0.9905	0.9588	0.9549	0.9926	✓	24.62
Ours with CycleGAN	0.9894	0.9617	0.9381	0.9892	✓	28.71	0.9934	0.9558	0.9573	0.9952	✓	32.56	0.9906	0.9628	0.9737	0.9926	✓	31.88