Асимптотическая сложность алгоритма Штрассена

$$T(N) = 7 \cdot T(\frac{N}{2}) + \mathcal{O}(N^2)$$

$$a=7$$
, $b=2$, $c=2$. Применим мастер-теорему: $log_b a = log_2 7 > \iota = c$.

Torga
$$T(N) = \Theta(N^{\log_2 7})$$

Асимптотическая сложность алгоритма МИLТ

$$T(N) = a \cdot T(\frac{N}{4}) + \mathcal{O}(N^2)$$

Применим мастер-теорему:
$$log_4 a v 2=c$$
 Ограничение: $a > 1$

1) Ecau $\alpha > 16$, to $T(N) = O(N^{\log_4 \alpha})$ 4 TOSGU STOT ANTOPUTAL SUM SUPPRENTIBILE, MEOSXOGUMO $\log_4 \alpha < \log_2 7$

4 to do
$$2 \text{ for an } 1 \text{ for an } 2 \text{ for an } 3 \text{ f$$

2) Ecau
$$a = 16$$
, to $T(N) = O(N^2 \log_2 N)$

$$\log_2 N \quad V \quad N \quad \log_2 7 - 2 \quad \log_2 7 - \log_2 4 \quad \log_2 \frac{7}{4} = \left(\frac{2}{4}\right) \log_2 N$$

$$\log_{1}N = X$$
, $\times v \left(\frac{7}{4}\right)^{X}$. No $\left(\frac{7}{4}\right)^{X} > X$ $\forall X \in \mathbb{N}$, rorga $N^{2}\log_{1}N < N^{2}\log_{2}N$
3) Ean $\alpha < 16$, to $T(N) = \Theta(N^{2})$. $N^{2} = N^{2}\log_{1}^{4} < N^{2} \implies Rogrogut$.

Тогда подходят натуральные а >1 и а < 49.