Prova di Fisica Nucleare e Subnucleare

11 Luglio 2025

Esercizio 1

Un fascio di elettroni di energia $E=205~{\rm MeV}$ collide con un fascio di positroni di energia $E=75~{\rm MeV}$ lungo l'asse z e si vogliono studiare alcuni stati finali con sole due particelle prodotte perpendicolarmente alla direzione dei fasci nel riferimento del centro di massa, come mostrato nella figura.

- 1. Dire quali delle seguenti reazioni **non** possono avvenire e motivarlo
 - (a) $e^- + e^+ \to K^+ + K^-$
 - (b) $e^- + e^+ \rightarrow e^+ + \mu^-$
 - (c) $e^- + e^+ \rightarrow \mu^+ + \mu^-$
 - (d) $e^- + e^+ \to \pi^+ + \pi^-$
- 2. Per le reazioni che avvengono, calcolare l'impulso delle particelle nel laboratorio e dire quale particella (carica positiva o negativa) ha l'impulso maggiore;
- 3. Per poter studiare le sole particelle positive, è necessario fermare le particelle di carica negativa facendole interagire con uno strato di spessore D di uno dei due materiali nella tabella.
 - (a) indicare il meccanismo di perdita di energia
 - (b) dire quale dei materiali riportati nella tabella consente di fermarla con lo spessore D minore, motivando la risposta
 - (c) calcolare lo spessore D del materiale in centimetri (con 2 cifre decimali), assumendo una perdita di energia costante nel mezzo.

	densita` [g/cm³]	<l> eV </l>	E _c [MeV]	Lunghezza di radiazione X ₀ [cm]	Lunghezza d'interazione X ₁ [cm]	Z/A	δ
PbWO4	8.30	601	9.64	0.89	20.27	0.413	0
Nal	3.67	452	13.37	2.59	42.16	0.427	0

Esercizio 2

Un fascio di pioni e muoni con impulso di 200 MeV attraversa un tunnel vuoto, lungo 20 m, prima di raggiungere uno strato di piombo spesso D=5 cm, seguito poi da un sottile scintillatore. Il pione decade in volo nello stato finale $\mu^-\bar{\nu_\mu}$, mentre il muone decade nello stato finale $e^-\bar{\nu_e}\nu_\mu$.

- 1. Calcolare la frazione di pioni e muoni che decadono prima di raggiungere lo strato di piombo
- 2. Stimare l'energia dei pioni e dei muoni (che non decadono nel tunnel) dopo che hanno attraversato lo strato D di piombo, considerando una perdita di energia costante nel materiale
- 3. Determinare se gli elettroni prodotti nel decadimento dei muoni possono raggiungere lo scintillatore

	Densità [g/cm³]	<l> eV]</l>	E _c [MeV]	Lungh. Radiazione X ₀ [cm]	Lungh. Interazione X _I [cm]	Z	A	δ
Pb	11.35	823	7.4	0.56	17.59	82	207	0.6

Dati utili:

velocità della luce: $c = 3 \cdot 10^8 \text{m/s}$

 $m_\mu = 106$ MeV, $m_e = 511$ keV, $m_\pi = 140$ MeV, $m_K = 494$ MeV $\tau_\mu = 2.2 \cdot 10^{-6} \, s, \, \tau_\pi = 2.6 \cdot 10^{-8} \, s$

Formula di Bethe-Bloch per l'energia persa per ionizzazione:

$$-\frac{1}{\rho}\frac{dE}{dx} = \mathcal{C} \cdot \frac{Z}{A} \cdot \frac{z^2}{\beta^2} \cdot \left[\ln \left(\frac{2m_e(\beta \gamma)^2}{\langle I \rangle} \right) - \beta^2 \right]$$

Costante C: $0.307 \,\mathrm{MeV/g} \times \mathrm{cm}^2$

Energia persa per Bremsstrahlung: $E(x) = E_0 e^{-x/X_0}$

Energia per
sa per interazione nucleare: $E(x) = E_0 e^{-x/X_I}$

Soluzione dell'esercizio 1

1. Le masse dell'elettrone de del positrone sono trascurabili rispetto all'energia del fascio. Il quadrimpulso dell'elettrone è $\underline{P}_{e^-}=(205,0,0,205)$ MeV e quello del positrone $\underline{P}_{e^+}=(75,0,0,-75)$ MeV. I fasci hanno energie diverse per cui il centro di massa non è fermo e si muove rispetto al sistema di riferimento del laboratorio lungo l'asse z. Il quadrimpulso del riferimento del centro di massa è $\underline{P}_{CM}=(280,0,0,130)$ da cui si ottiene l'energia totale totale nel centro di massa $\sqrt{s}=\sqrt{280^2-130^2}=248$ MeV.

Delle quattro reazioni possibili:

- (a) KK non può avvenire perché $\sqrt{s} < 2 m_K = 988$ MeV;
- (b) $e\mu$ viola la conservazione del numero leptonico elettronico e muonico e non avviene pur essendo possibile energeticamente;
- (c) $\mu\mu$ avviene perché $\sqrt{s} > 2 m_{\mu} = 212 \text{ MeV};$
- (d) $\pi\pi$ non avviene perché $\sqrt{s} < 2 m_{\pi} = 280 \text{ MeV};$

Dunque l'unica reazione possibile è $e^- + e^+ \rightarrow \mu^+ + \mu^-$.

2. I due muoni hanno la stessa massa e nel centro di massa sono prodotti perpendicolarmente alla direzione del boost pertanto avranno lo stesso impulso anche nel riferimento del laboratorio.

Nel centro di massa i due muoni hanno l'energia $E^* = \sqrt{s}/2 = 124$ MeV e quindi un impulso $p^* = \sqrt{E^{*2} - m_{\mu}^2} = 64.3$ MeV solo lungo l'asse x perpendicolare al fascio.

I parametri del boost per il centro di massa rispetto al laboratorio sono $\beta \gamma = p_{CM}/\sqrt{s} = 130/248 = 0.5242$ e $\beta = p_{CM}/E_{CM} = 130/280 = 0.4643$, e $\gamma = E_{CM}/\sqrt{s} = 280/248 = 1.1290$.

Utilizzando la trasformazione di Lorentz, otteniamo l'energia del muone nel laboratorio $E=\gamma E^*=140$ MeV. L'impulso totale del muone nel laboratorio è $p_\mu=\sqrt{E^2-m_\mu^2}=91$ MeV.

Per completezza (anche se qui non serve) ricordiamo che per il muone nel laboratorio $p_z = \beta \gamma E^* = 65$ MeV mentre $p_x = p_x^* = 64$ MeV, da cui il tri-impulso totale del muone nel laboratorio è $\vec{p} = (64, 0, 65)$ MeV, con $|\vec{p}| = 91$ MeV.

- 3. (a) il muone perde energia solo per ionizzazione attraversando i due materiali
 - (b) dato che PbWO4 ha una densità maggiore, ferma i muoni con uno spessore minore rispetto a NaI
 - (c) Per calcolare lo spessore, serve conoscere l'energia e l'impulso totale del muone nel laboratorio. Il muone ha l'energia cinetica totale $T_{\mu}=E-m_{\mu}=34$ MeV.

L'impulso totale del muone nel laboratorio è $p_{\mu}=91$ MeV.

Si ha quindi $\beta = p/E = 91/140 = 0.65$ e $\beta \gamma = p/m_{\mu} = 91/106 = 0.8585$ e utilizzando la formula di Bethe-Bloch si ottiene $(dE/dx)_{PWO} = 16.56$ MeV/cm. Lo spessore del materiale, assumendo una perdita di energia costante, è pari a $D = T_{\mu}/(dE/dx)_{PWO} = 2.053$ cm.

Soluzione dell'esercizio 2

- 1. Il numero di particelle con una vita media propria τ sopravvissute dopo aver percorso una distanza L è $N(L) = N(0) \times e^{-L/\beta \gamma c \tau}$. La frazione di particelle sopravvissute è dunque $e^{-L/\beta \gamma c \tau}$.
 - I muoni e pioni hanno lo stesso impulso p=200 MeV ma masse diverse per cui per i pioni: $\beta_\pi \gamma_\pi = p/m_\pi = 1.42857$ e $\beta_\pi = p/E_\pi = 0.81923$ mentre per i muoni $\beta_\mu \gamma_\mu = p/m_\mu = 1.88679$ e $\beta_\mu = p/E_\mu = 0.88357$.
 - Si ha che la frazione di pioni decaduti è 83.4% mentre la frazione dei muoni decaduti è solo 1.59%.
- 2. Le particelle sopravvissute raggiungono il piombo con lo stesso impulso iniziale che corrisponde a $E_{\pi}=244$ MeV e l'energia cinetica $T_{\pi}=244-140=104$ MeV per i pioni, mentre per i muoni $E_{\mu}=226$ MeV e l'energia cinetica $T_{\mu}=226-106=120$ MeV.

Muoni:

I muoni perdono energia solo per ionizzazione. Assumendo una perdita di energia costante nel piombo, si ottiene una perdita di energia $dE_{\mu}=(dE/dx)_{\mu}\cdot D=64.0$ MeV inferiore all'energia cinetica dei muoni che quindi riescono ad attraversare il piombo con un'energia finale $E_{\mu}=226-64=162$ MeV.

Pioni:

I pioni perdono energia sia per ionizzazione che per interazione nucleare nel piombo.

La perdita di energia per ionizzazione è $dE_{\pi,ion} = 70.6$ MeV simile a quella per i muoni.

La variazione dell'energia dei pioni a causa dell'interazione nucleare in funzione dello spessore attraversato è $E_{\pi}(D) = E_{\pi}(0)e^{-D/X_{I,Pb}}$ che corrisponde alla variazione totale di energia pari a $dE_{\pi,nucl} = E_{\pi}(1 - e^{-D/X_{I,Pb}}) = 60.4$ MeV.

L'energia persa totale del pioni nel piombo è $dE_{\pi} = dE_{\pi,ion} + dE_{\pi,nucl} = 131$ MeV superiore alla loro energia cinetica iniziale. Dunque i pioni vengono fermati nel piombo e non raggiungono lo scintillatore.

3. Gli elettroni possono avere al massimo lo stesso impulso dei muoni nel laboratorio, $p_e=200$ MeV molto superiore alla loro massa, per cui $E_e\simeq 200$ MeV e l'energia cinetica $T_e\simeq 199.5$ MeV.

L'energia critica del piombo è $E_c = 600/82 = 7.3$ MeV per cui gli elettroni perdono energia principalmente per Bremsstrahlung. L'energia degli elettroni dopo aver percorso un tratto D nel piombo è $E_e(D) = E_e e^{-D/X_0} = 0.030$ MeV, inferiore alla massa dell'elettrone. Quindi gli elettroni vengono fermati nel piombo e non possono raggiungere lo scintillatore.