Cours de Statistiques Inférentielles

CQLS: cqls@upmf-grenoble.fr

24 septembre 2013

Plan

Future $\widehat{\mu}^{\bullet}(\mathbf{Y}^{\bullet})$

L'Expérimentateur :

L'Expérimentateur :

L'Expérimentateur :

L'Expérimentateur :

- Réaliser *m* expériences
- **2** Répartition des $\widehat{\mu}^{\bullet}$ ($\mathbf{y}_{[j]}^{\bullet}$) représentées par m briques de surface 1/m et de largeur 1/n empilées l'une après l'autre en les centrant en abscisse en leur valeur.

- Réaliser *m* expériences
- Répartition des $\widehat{\mu^{\bullet}}\left(\mathbf{y_{[j]}^{\bullet}}\right)$ représentées par m briques de surface 1/m et de largeur 1/n empilées l'une après l'autre en les centrant en abscisse en leur valeur.

- Réaliser *m* expériences
- Répartition des $\widehat{\mu^{\bullet}}\left(\mathbf{y_{[j]}^{\bullet}}\right)$ représentées par m briques de surface 1/m et de largeur 1/n empilées l'une après l'autre en les centrant en abscisse en leur valeur.

- Réaliser m expériences
- Répartition des $\widehat{\mu^{\bullet}}\left(\mathbf{y_{[j]}^{\bullet}}\right)$ représentées par m briques de surface 1/m et de largeur 1/n empilées l'une après l'autre en les centrant en abscisse en leur valeur.

L'Expérimentateur :

- Réaliser m expériences
- **2** Répartition des $\widehat{\mu^{\bullet}}\left(\mathbf{y_{[j]}^{\bullet}}\right)$ représentées par m briques de surface 1/m et de largeur 1/n empilées l'une après l'autre en les centrant en abscisse en leur valeur.

Le Matheux:

3 Je le savais à **l'avance** pour $m \to +\infty$

L'Expérimentateur :

- Réaliser m expériences
- **2** Répartition des $\widehat{\mu^{\bullet}}\left(\mathbf{y_{[j]}^{\bullet}}\right)$ représentées par m briques de surface 1/m et de largeur 1/n empilées l'une après l'autre en les centrant en abscisse en leur valeur.

Le Matheux:

- 3 Je le savais à l'avance pour $m \to +\infty$

m = 10000 vs $m = +\infty$

Réalisation d'une future estimation par l'**Expérimentateur**

j	$\widehat{\mu^{ullet}}\left(\mathbf{y_{[j]}^{ullet}} ight)$
	:
4150	14.4%
4151	17.2%
4152	15%
4153	14.9%
4154	13.7%
4155	15.8%
4156	14.6%
:	:

Réalisation d'une future estimation par l'**Expérimentateur**

j	$\widehat{\mu^{ullet}}\left(\mathbf{y_{[j]}^{ullet}} ight)$
:	:
2105	15.3%
2106	14.1%
2107	13.2%
2108	15.5%
2109	16.7%
2110	15.5%
2111	14.5%
:	:

Réalisation d'une future estimation par l'Expérimentateur

j	$\widehat{\mu^{ullet}}\left(\mathbf{y}_{[\mathbf{j}]}^{ullet} ight)$
	:
3728	14.9%
3729	14.4%
3730	14.8%
3731	13.4%
3732	14.9%
3733	14.4%
3734	16.4%
	:

Réalisation d'une future estimation par le Matheux

j	$\widehat{\mu^{ullet}}\left(\mathbf{y}_{[\mathbf{j}]}^{ullet} ight)$
:	:
4150	14.4%
4151	17.2%
4152	15%
4153	14.9%
4154	13.7%
4155	15.8%
4156	14.6%
:	:

Réalisation d'une future estimation par le Matheux

j	$\widehat{\mu^{ullet}}\left(\mathbf{y_{[j]}^{ullet}} ight)$
:	:
2105	15.3%
2106	14.1%
2107	13.2%
2108	15.5%
2109	16.7%
2110	15.5%
2111	14.5%
:	:

Réalisation d'une future estimation par le Matheux

j	$\widehat{\mu^{ullet}}\left(\mathbf{y}_{f{[j]}}^{ullet} ight)$
:	:
3728	14.9%
3729	14.4%
3730	14.8%
3731	13.4%
3732	14.9%
3733	14.4%
3734	16.4%
:	:

Réalisation d'une future estimation

 \rightarrow L'industriel s'imagine être le **jour J** dans la situation où $\mu^{\bullet}=0.15$ (juste pas le marché)

- ightarrow L'industriel s'imagine être le **jour J** dans la situation où $\mu^{ullet}=0.15$ (juste pas le marché)
- → Il prend alors conscience que ce qui peut lui arriver le jour J, c'est équivalent (ou presque) à :

- ightarrow L'industriel s'imagine être le **jour J** dans la situation où $\mu^{ullet}=0.15$ (juste pas le marché)
- → Il prend alors conscience que ce qui peut lui arriver le jour J, c'est équivalent (ou presque) à :
 - **1** Choisir au hasard une brique (i.e un $\widehat{\mu}^{\bullet}(\mathbf{y_{[j]}})$ parmi les m)

- ightarrow L'industriel s'imagine être le **jour J** dans la situation où $\mu^{ullet}=0.15$ (juste pas le marché)
- → Il prend alors conscience que ce qui peut lui arriver le jour J, c'est équivalent (ou presque) à :
 - **1** Choisir au hasard une brique (i.e un $\widehat{\mu}^{\bullet}$ ($\mathbf{y}_{[j]}$) parmi les m)
 - ② Choisir au hasard un point sous la "courbe $\mathcal{N}(\mu^{\bullet}, \frac{\sigma_{\bullet}}{\sqrt{n}})$ " associé à son abscisse représentant une réalisation au hasard de $\widehat{\mu^{\bullet}}$ (Y) choisie parmi une infinité.

- ightarrow L'industriel s'imagine être le **jour J** dans la situation où $\mu^{ullet}=0.15$ (juste pas le marché)
- \rightarrow II prend alors conscience que ce qui peut lui arriver **le jour J**, c'est équivalent (ou presque) à :
 - **1** Choisir au hasard une brique (i.e un $\widehat{\mu}^{\bullet}$ ($\mathbf{y_{[j]}}$) parmi les m)
 - ② Choisir au hasard un point sous la "courbe $\mathcal{N}(\mu^{\bullet}, \frac{\sigma_{\bullet}}{\sqrt{n}})$ " associé à son abscisse représentant une réalisation au hasard de $\widehat{\mu^{\bullet}}(\mathbf{Y})$ choisie parmi une infinité.
- \Rightarrow Il voit clairement la "courbe $\mathcal{N}(\mu^{\bullet}, \frac{\sigma_{\bullet}}{\sqrt{n}})$ " comme un empilement d'une infinité de briques ("devenues des points") associées à une infinité de réalisations possibles de $\widehat{\mu^{\bullet}}(\mathbf{Y})$.

Produit A: Risque 1ère espèce

$$\begin{split} & \widehat{\left(p^{A} \left(\mathbf{y_{[\cdot]}^{A}} \right) > 16.9\% \right)}_{m} = \text{Prop. des } \left(\widehat{p^{A}} \left(\mathbf{y_{[\cdot]}^{A}} \right) \right)_{10000} \text{ supérieurs à } 16.9\% \\ &= \frac{1}{m} \times \left(\text{Nbre des } \left(\widehat{p^{A}} \left(\mathbf{y_{[\cdot]}^{A}} \right) \right)_{m} \text{ supérieurs à } 16.9\% \right) \\ &= \text{Surface des } \mathbf{briques} \text{ associées aux } \left(\widehat{p^{A}} \left(\mathbf{y_{[\cdot]}^{A}} \right) \right)_{m} \text{ supérieurs à } 16.9\% \end{split}$$

Produit A: Risque 1ère espèce

$$\begin{split} & P(\widehat{p^A}\left(\mathbf{Y^A}\right) > 16.9\%) = \widehat{\left(\widehat{p^A}\left(\mathbf{y_{[\cdot]}^A}\right) > 16.9\%\right)}_{\infty} \\ &= \lim_{m \to \infty} \frac{1}{m} \times \left(\text{Nbre des } \left(\widehat{p^A}\left(\mathbf{y_{[\cdot]}^A}\right)\right)_{\infty} \text{ supérieurs à } 16.9\%\right) \\ &\simeq \text{Surface des points associés aux } \left(\widehat{p^A}\left(\mathbf{y_{[\cdot]}^A}\right)\right)_{\infty} \text{ supérieurs à } 16.9\% \end{split}$$

Produit A: Risque 1ère espèce

$$\begin{split} & P(\widehat{p^A}\left(\mathbf{Y^A}\right) > 16.9\%) \simeq \widehat{\left(\widehat{p^A}\left(\mathbf{y_{[\cdot]}^A}\right) > 16.9\%\right)}_{m} \\ &= \frac{1}{m} \times \left(\text{Nbre des } \left(\widehat{p^A}\left(\mathbf{y_{[\cdot]}^A}\right)\right)_{m} \text{ supérieurs à } 16.9\%\right) \\ &= \text{Surface des } \mathbf{briques} \text{ associées aux } \left(\widehat{p^A}\left(\mathbf{y_{[\cdot]}^A}\right)\right)_{m} \text{ supérieurs à } 16.9\% \end{split}$$

