

Progressão Educação - MAT 3 - 2004 - 3002 - TSM

Prof.: Arley Rocha

LISTA DE EXERCÍCIOS ESTATÍSTICA

 A seguir temos a distribuição de frequências dos salários dos colaboradores da companhia A&B.

Salário (em reais)	Frequência
500	40
850	35
1100	10
1400	25
1700	15
2000	5

- a) Determine o salário médio.
- b) Determine a moda.
- 2) (Cesgranrio Transpetro) Foi realizado um experimento com uma perfuradora hidráulica com o objetivo de conhecer sua capacidade de perfuração em estruturas rochosas. Para isso foi observada a profundidade, em polegadas, de perfuração em 10 locais, cujos dados estão apresentados na Tabela a seguir.

Locais	Profundidade em polegadas
1	10,4
2	10,7
3	9,4
4	10,9
5	10,8
6	11,0
7	10,5
8	10,6
9	10,9
10	9,8

A média e a mediana são, respectivamente:

- a) 10,0 e 10,6
- b) 10,5 e 10,65
- c) 10,5 e 10,6
- d) 10,6 e 10,6
- e) 10,6 e 10,65
- 3) (Cesgranrio IBGE) Consideremos o exemplo de uma turma de 15 alunos cujas alturas, em centímetros, são: 185, 180, 174, 171, 171, 170, 168, 166, 165, 163, 162, 160, 160, 159, 158. FERREIRA, C. e SIMÕES, **N. Tratamento estatístico e gráfico em geografia**. Lisboa: Gradiva, 1987, p. 45.

A mediana da altura desses alunos, em centímetros, é de

- a) 158
- b) 160
- c) 165
- d) 166
- e) 171
- 4) (EEAR) Numa prova de matemática, três classes obtiveram as seguintes médias e desvios: classe A: x = 4.5 e $\delta = 2.5$ classe B: x = 4.5 e $\delta = 3.1$ classe C: x = 4.5 e $\delta = 2.8$ Se for sorteado um aluno em cada classe, em qual delas é mais provável que a nota desse aluno esteja entre 3,0 e 6,0?
 - a) Classe A
- b) Classe B
- c) Classe C
- d) Classes B e C
- 5) (EEAR) A tabela traz a idade, em anos, dos filhos de 5 mães

	-				
Nome da mãe	Ana	Márcia	Cláudia	Lúcia	Eloísa
Idades dos filhos	7, 10, 12	11, 15	8, 10, 12	12, 14	9, 12, 15, 16, 18

A idade modal desses 15 filhos é inferior à idade média dos filhos de Eloísa em ____ ano(s).

a) 4

b) 3

c) 2

d) 1

6) (EEAR) O histograma abaixo representa a distribuição dos diâmetros de 65 peças de uma loja. Se f_i são as frequências absolutas, então o número de peças com diâmetro não inferior a 20mm é:

a) 30

b) 35

c) 40

d) 45

7) (EEAR) Sendo f_i as frequências absolutas, a classe mediana da distribuição é a:

classe	[10, 20[[20, 30[[30, 40[[40, 50[[50, 60[[60, 70[[70, 80[
f_i	25	18	10	05	09	12	15
							•

a) 2^a

b) 3^a

c) 4^a

d) 5^a

8) (EEAR) A tabela mostra as idades dos alunos matriculados no Centro de Educação Infantil "X", em 2005. A média das idades dos alunos dessa escola, em anos, é, aproximadamente:

Idade (anos)	Número de alunos
2	3
3	3
4	5
5	14
6	25
Total	50

a) 4,1

b) 4,5

c) 5,1

d) 5,6

9) (EEAR) Os resultados de uma pesquisa realizada com 20 alunos de uma escola, a respeito da área da carreira pretendida, estão apresentados na tabela:

Área	Frequência absoluta	Frequência Relativa
Humanas	8	M
Biológicas	P	0,35
Exatas	R	S
Total	20	1,00

Os valores M, P, R e S são, respectivamente

- a) 0,35; 5; 7; 0,35
- b) 0,4; 7; 5; 0,4
- c) 0,4; 7; 5; 0,25
- d) 0,25; 5; 7; 0,25

10)(EEAR) Numa pesquisa feita em uma cidade, para verificar o meio de transporte utilizado por 240 pessoas, chegou-se ao seguinte resultado:

Meio de transporte	Número de pessoas
Metrô	90
Ônibus	80
Automóvel	40
Trem	30

Apresentando esses dados num gráfico de setores, o ângulo do setor correspondente a "Automóvel" será de

a) 60°

b) 65°

c) 70°

d) 75°

11) (EEAR) mediana dos valores 2, 2, 3, 6, 6, 1, 5, 4, 4, 5 e 1 é:

a) 5

b) 4

d) 2

12)(EEAR) Feito um levantamento sobre a altura dos 50 alunos da 5ª série A de um colégio, chegou-se aos seguintes resultados:

Altura (cm)	nº de alunos	Altura (cm)	nº de alunos
150 154	6	162 166	8
154 158	12	166 170	6
158 162	14	170 174	4

Nessas condições, o número de alunos da 5^a A que não atingem 1,58m de altura, e a porcentagem de alunos cuja altura é maior ou igual a 1,62m são, respectivamente:

- a) 12 e 12%
- b) 20 e 20%
- c) 18 e 36%
- d) 18 e 20%

13)(EEAR) A tabela a seguir traz o resultado de uma prova de Ciências. Nela, xi são as notas e fi são as frequências absolutas. Agrupando os dados em 5 classes do tipo [a, b[, de amplitude 1,5, sendo o limite infe rior da 1ª classe a nota 1,5, a frequência absoluta da 3ª classe da nova tabela será igual a:

					-								~		
\mathbf{x}_{i}	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0	6,5	7,0	7,5	8,0	8,5
f_i	1	2	2	3	5	6	7	8	9	7	6	5	4	3	2
2) 1	1				م 10	1			c)	24			۷)	20	

a) 14

b) 19

a) 29

14)(EEAR) Os resultados de uma pesquisa, cujo objetivo era saber o número de televisores, por família, realizada em uma certa comunidade, estão na tabela:

Números de televisores	1	2	3	4	5
Números de famílias	23	35	22	14	6

É correto afirmar que o número modal e o número médio de televisores, por família, são, respectivamente

- a) 2 e 2,45
- b) 5 e 2.45
- c) 2 e 3
- d) 5 e 3

15)(EEAR) Numa prova de matemática, três classes obtiveram as seguintes médias e desvios: classe A: $x = 4.5 e \delta = 2.5$ classe B: $x = 4.5 e \delta = 3.1$ classe C: $x = 4.5 e \delta = 2.8$ Se for sorteado um aluno em cada classe, em qual delas é mais provável que a nota desse aluno esteja entre 3,0 e 6,0?

- a) Classe A
- b) Classe B
- c) Classe C
- d) Classes B e C

16)(AFA) Em uma turma de 5 alunos, as notas de um teste de matemática são números inteiros tais que a média aritmética e a mediana são iguais a 5, e nenhum aluno errou todas as questões.

Sabendo que esse conjunto é unimodal com moda igual a 8, então a diferença entre a maior e a menor nota é um número divisor de

a) 14

b) 15

c) 16

d) 18

17)(AFA)As seis questões de uma prova eram tais, que as quatro primeiras valiam 1,5 ponto cada, e as duas últimas valiam

2 pontos cada. Cada questão, ao ser corrigida, era considerada certa ou errada. No caso de certa era atribuída a ela o

total de pontos que valia e, no caso de errada, a nota 0 (zero). Ao final da correção de todas as provas, foi divulgada a seguinte tabela:

Nº DA QUESTÃO	PERCENTUAL DE ACERTOS
1	40%
2	50%
3	10%
4	70%
5	5%
6	60%

A média aritmética das notas de todos os que realizaram tal prova é

a) 3,7

b) 3,85

c) 4

d) 4,15

18)(AFA) Em uma avaliação de inglês, valendo 10 pontos, os alunos de uma turma apresentaram os resultados inseridos no quadro abaixo:

Número de alunos	Resultado da Avaliação
5	6,0
1	7,0
3	8,0
1	9,0

Sabendo-se que a turma estava completa nesse dia e que todos os alunos participaram da avaliação, é correto afirmar que no conjunto dos resultados da avaliação

- a) A variância é maior que 1
- b) Essa distribuição é bimodal
- c) O desvio padrão é maior que 1
- d) A média, a mediana e a moda formam, nessa ordem, uma progressão geométrica

19)(AFA) As notas de oito alunos numa prova de matemática foram escritas pelo professor numa tabela como a que segue:

Aluno	Α	В	С	D	Е	F	G	Н
Nota	6,5	10	8	9,4	8	6,4	x	7,4

Sabe-se que a média aritmética dessas notas é 8,2. Considerando as notas dos oito alunos, é correto afirmar que a nota do G é

- a) Igual à moda
- b) Inferior a 9,8
- c) Superior à mediana
- d) Inferior à média aritmética das outras sete notas

20)(AFA) Desde 2003, o campeonato brasileiro de futebol passou a ser disputado no formato de pontos corridos em que:

- 1. Todas as equipes jogam entre si em duas partidas;
- 2. Uma partida acontece no estádio determinado por um dos times, ou seja, esse é o mandante; e
- 3. A outra partida, como visitante, acontece no estádio em que o adversário determina.

Um levantamento de 2003 até 2019 mostrou que o Santos é o melhor mandante da competição com 67,6% de aproveitamento dos pontos; porém, por estádio, o clube de melhor desempenho é o Corinthians, que obteve 71,3% de aproveitamento em seu estádio. Abaixo, encontra-se a tabela que relaciona o aproveitamento como mandante dos 20 primeiros times do ranking da confederação Brasileira de Futebol (CBF).

Quantidade de times	Aproveitamento como mandante em %		
3	54 ⊢ 58		
6	58 ⊢ 62		
2	62 ⊢ 66		
8	66 ⊢ 70		
1	70 ⊢ 74		

Com base nos dados da tabela, o desvio padrão mede, aproximadamente

a) 1,9

b) 2,9

c) 3,9

d) 4,9