Practice Final, STAT 611

Name:

1. Let X_1, \dots, X_n be independent identically distributed random variables with pdf

$$f(x) = \frac{1}{\lambda} \exp\left[-\left(1 + \frac{1}{\lambda}\right)\log(x)\right]$$

where $\lambda > 0$ and $x \ge 1$

- (a) Find the maximum likelihood estimator of λ .
- (b) What is the maximum likelihood estimator of λ^8 ? Explain your answer.
- 2. Let X_1, \ldots, X_n be independent identically distributed from a N (μ, σ^2) population, where σ^2 is known. Let \overline{X} be the sample mean.
 - (a) Calculate the MSE of the maximum likelihood estimator of μ . Does this estimator attain the Cramer-Rao lower bound?
 - (b) Find the UMVUE of μ^2 .
- 3. Let X_1, \ldots, X_n be iid random variables from the Pareto(a, b) distribution. The PDF is $f_X(x) = ba^b x^{-b-1}$ for x > a and $f_X(x) = 0$ for $x \le a$. The parameters a, b satisfy a > 0, b > 2.
 - (a) Find the moment estimator for a, b. Provide brief derivation.
 - (b) Is your estimator strongly consistent? Briefly justify your answers.
 - (c) Find the MLE for a, b. Provide brief derivation.
 - (d) Is your estimator strongly consistent? Briefly justify your answer.
- 4. Let X_1, \dots, X_n be independent identically distributed random variables from a $N(\mu, \sigma^2)$ distribution where the variance σ^2 is known. We want to test $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$
 - (a) Derive the likelihood ratio test
 - (b) Let λ be the likelihood ratio. Show that $-2 \log \lambda$ is a function of $(\bar{X} \mu_0)$
 - (c) Derive the distribution for $-2 \log \lambda$.
- 5. Let $X \sim \text{Binomial}(n, p)$, where the positive integer n is large and 0 .

- (a) Find the asymptotic distribution of X/n.
- (b) Find the asymptotic distribution of $(X/n)^2$.
- 6. Let X_1, \ldots, X_n be a random sample from a uniform $(0, \theta)$ distribution. Let $Y = \max(X_1, X_2, \ldots, X_n)$.
 - (a) Find the pdf of Y/θ .
 - (b) Find a pivotal quantity and use it to construct a $(1 \alpha)\%$ confidence interval for θ .
- 7. Let X_1, \ldots, X_n be a random sample from a location-exponential family with density

$$f(x;\theta) = \exp^{-(x-\theta)}$$
, if, $x \ge \theta, -\infty < \theta < \infty$

and CDF,

$$F(x;\theta) = 1 - \exp^{-(x-\theta)}, \text{ if, } x \ge \theta, -\infty < \theta < \infty$$

- (a) Write down the likelihood function of θ . (Pay attention to the range/support of θ)
- (b) Derive the likelihood ratio test and calculate the power function for the test

$$H_0: \theta \leq \theta_0$$
 versus $H_1: \theta > \theta_0$

- (c) Construct a $100(1-\alpha)\%$ confidence interval of θ .
- 8. Review exercises on other topics which are not covered in the previous 7 questions.