Part 2: Real-time Control and 20-sim

John Fitzgerald Peter Gorm Larsen **Ken Pierce**

AARHUS UNIVERSITY

Overview

- Layers of control
 - Supervisory, sequence and loop
- Loop control
 - Open vs. closed
 - PID control
 - Sampling
 - PWM

Crescendo Tutorial FM'14 Singapore

31-05-2014

Open and Closed Loop Control

• Open loop: sets an output without looking at the system

• Closed loop looks at the actual response of the system and takes it into account (feedback control)

PID Control (1)

- PID is an acronym
 - P means proportional
 - I means integral
 - D means differential
- Is a very common closed loop controller
 - humans do this intuitively; original theory based on observing humans steering ships
- Can be used in different combinations
 - i.e. P, PI, and PD control

Crescendo Tutorial FM'14 Singapore

31-05-2014

PID Control (2)

- All three elements look at the error (between measured value and setpoint)
 - each one influences the control output

Proportional Element (1)

- Output is proportional to error
- Multiplies the error (ε) by a gain (P)
- i.e. output = $\varepsilon \times P$
- P is dimensionless (just a number), since actual / measured value have the same units
- Doesn't rely on time (instantaneous error)
- On its own, proportional control tends to overshoot
- Does not settle on the setpoint (a steady-state error)

Crescendo Tutorial FM'14 Singapore

31-05-2014

Integral Element (1)

- Looks at the past
- Integrates previous error over time, multiplies by a gain (1)
 - Proportional to magnitude and duration of error
- I is also dimensionless
- Relies on time, hence fixed period important
 - variable instability can cause instability
- Gets to the setpoint faster, but liable to *overshoot*

Crescendo Tutorial FM'14 Singapore

31-05-2014

Differential Element (1)

- Predicts system behaviour
- Looks at the rate of change of error
- Differentiates the error over time, multiplies by a gain (D)
- D is also dimensionless
- Also relies on fixed time
- Can help reduce overshoot, but sudden changes in error cause a derivative kick (since predicted behaviour was wrong). Low-pass filter can help smooth input.

Crescendo Tutorial FM'14 Singapore

31-05-2014

Sampling (1)

- Real-time controllers must:
 - Observer the environment / plant, i.e. read (sample) sensors
 - Perform control computations (e.g. PID control)
 - Send output, i.e. write actuators
- Fixed time intervals are important
 - e.g. PID performs calculations assuming a constant sample time

Crescendo Tutorial FM'14 Singapore

31-05-2014

PWM (Pulse Width Modulation)

- Digital or binary output are either on or off
 e.g. digital input to a high-voltage motor
- Variable power can be achieved by turning the output on and off
- The percentage of time the power is switched on is called the *duty cycle*

0:00

Crescendo Tutorial FM'14 Singapore

31-05-2014

Control Loops

- Putting it all together
 - At the lowest level, we need a loop control
 - Sequence and supervisory control can be added here
- Typical control loop
 - Write previous outputs
 - Sample inputs
 - Change mode if necessary
 - Change setpoint if necessary
 - Compute next output
 - Wait for the start of the next period

Crescendo Tutorial FM'14 Singapore

31-05-2014

23

Summary

- Controllers can be logically divided into various levels
 - Supervisory (overall goal, modes); sequence (current goal);
 loop (achieving current goal)
- Loop controllers can be open or closed
 - PID is a common closed loop controller
 - Fixed timing is key (hence sample/hold)
- PWM can be used to achieve variable control of digital outputs

Crescendo Tutorial FM'14 Singapore

31-05-2014

Practical 1: Tool Installation and 20-sim

John Fitzgerald Peter Gorm Larsen **Ken Pierce**

AARHUS UNIVERSITY

Instructions

- Install the tools from the memory stick. Select 64-bit or 32-bit depending on your **Java** version:
 - Tools\64-bit
 - Crescendo-2.0.2-x86 64.exe (Crescendo for 64-bit Java and 20-sim)
 - jre-7u55-windows-x64.exe (Java 7 64-bit, if required)
 - Tools\32-bit
 - Crescendo-2.0.2-x86.exe (Crescendo for 32-bit Jaba and 20-sim)
 - jre-7u55-windows-x64.exe (Java 7 32-bit, if required)
- Follow the instructions in *Tools\Activating 20-sim.pdf*
- Extract *Practical\Practical1.zip* from the memory stick
 - this will place a TorsionBar folder on your hard drive
- Navigate to the extracted folder and follow the instructions in *Practical1-Instructions.pdf*

Crescendo Tutorial FM'14 Singapore

31-05-2014