Quin-AD(OMe)-FMK M.Wt:389

Quin-VAD(OMe)-FMK M.Wt:488; C24H19N4O6F

FIGURE 2

FIGURE 2A

\sim	2	c	_	2	c	۵	a	

inh conc	log of con	% inhib	Q-(C=O)-VD(OMe)-CH ₂ -ASA
0 005uM 0 01uM 025uM 05uM 1uM 0 5uM 1uM 2.5uM 5uM 10uM 25uM	-2.301 -2 -1.602 -1 301 -1 -0.301 0 0.3979 0.6989 1 1.398 1.6989	0 0 0 0 0 16.2 21.8 47.4 62 82.4 92.6	100 80 60 40 20 3 -2 -1 20 0 1 2 log of conc. in uM

FIGURE 9

Caspase 8

inh conc	log of con	% inhib	Q-(C=O)-VD(OMe)-CH ₂ -ASA
0.005uM 0.01uM .025uM .05uM .1uM 0.5uM 1uM 2.5uM 5uM 10uM 25uM	-2.301 -2 -1.602 -1.301 -1 -0.301 0 0 3979 0.6989 1 1.398 1 6989	0 0 0 0 4.7 5.5 21.1 45.5 73.6 96.8	120 100 80 60 40 20 2 1 20 0 1 2
			log of conc. in uM

Caspase 1

inh conc	log of con .	% inhib
.025uM .05uM .1uM 0.5uM 1uM 2.5uM 5uM 10uM 25uM	-1.602 -1.301 -1 -0.301 0 0.3979 0.6989 1 1.398 1.6989	0 0 0 18.2 34.8 69.7 100 100

Q-(C=O)-VD(OMe)-CH₂-ASA

FIGURE 11

Caspase 3

inn conc	log of con	% inhib
0.005uM	-2.301	0
0.01uM	-2	0
.025uM	-1.602	2.3
.05uM	-1.301	9.1
.1⊔M	-1	6.4
0.5uM	-0.301	29.3
1uM	0	45
2.5uM	0.3979	74.8
5uM	0.6989	91.5
10uM	1	98.2
25uM	1.398	100
50uM	1.6989	⁼ 100

Q-(C=O)-VD(OMe)-CH₂-ASA

Caspase 1

inh conc	log of con	% inhib
.0025uM	-2.602	3.14
.005uM	-2.301	2.6
.01uM	-2	1.4
.025uM	-1.602	10.3
.05uM	-1.301	8.3
.1uM	-1	23.7
0.5uM	-0.301	50.9
1uM	0	66.29
2.5uM	0.3979	90.3
5uM	0.6989	96.3
10u M	1	100
25uM	1.3979	100
50uM	1.6979	100

Indole-(C=O)-VD(OMe)-CH₂-OPh

Caspase 1

inh conc	log of con	% inhib
.0025uM	-2.602	16.3
.005uM	-2.301	19.4
.01uM	-2	22.6
.025uM	-1.602	42.86
.1uM	-1	44
0.5uM	-0.301	74
1uM	0	87.4
2.5uM	0.3979	97.1
5uM	0.6989	100
10uM	1	100
25uM	1.3979	100
50uM	1.6979	100

FIGURE 13

Melatonin-VD(OMe)-CH2-OPh

FIGURE 15

inh conc log of con % inhib 0.0025uM -2.602 38.4 0.005uM -2.301 25.7 0.01uM -2 29.6 .025uM -1.602 23 05uM -1.301 44 3 0.5uM -0.301 57.2 1uM 91.4 2.5uM 0.3979 95 5uM 0.6989 96.9

Caspase 1

HydroxyTryptophan-VD(OMe)-CH2-OPh

Caspase 1

inh conc	log of con	% inhib
0 0025uM	-2.602	0
0.005uM	-2.301	. 0
0.01uM	-2	0
.025uM	-1.602	0
.05uM	-1.301	0
.1uM	-1	20.7
0.5uM	-0.301	42.7
1uM	0	81.7
2.5uM	0.3979	100
5uM	0.6989	100
10uM	1	100
25uM	1.398	100
50uM	1.6989	100

TRP-VD(OCH₃)-CH₂-OPh · TFA

log of conc. in uM

8/16

FIGURE 17A

Caspase 9

inh cor-c	iog of con	didni 89
025uM	-1.602	33 6
05uM	-1.301	43.9
.1uM	- 1	58.7
0,56M	-0.301	90.7
1 u N1	0	94.7
2 5uM	0.3979	100
5u14	0.6989	100
10uM	1	100
25uM	1.3979	100
50uM	1.6979	100

Q-(C=O)-L-D-(OMe)-CH₂-F (the FMK)

FIGURE 17B

Caspase 9

inh cond	lag of con	°° inhib
025011	-1 602	25 7
05UM	-1 301	37.3
15M	-1	58 9
0.5uM	-0 301	88 9
1 00.1	0	94 9
2.5uM	0.3979	96 1
5uM	0.6989	100
10uM	1	100
25uM	1.3979	100
500M	1.6979	100

Q-(C=O)-L-D-(OMe)-CH₂-F (the FMK)

FIGURE 18A

Caspase 9

cand	log of con	dınni é
		•
025uM	-1.602	47 3
05 u M	-1.301	64.4
1 UM1	-1	8.5
0.5uM	-0.301	97.8
1 uM	0	99.5
2 5cM	0.3979	100
5 JM	0 6989	100
*OLM	1	100
25uM1	1 3979	100
50uM -	1.6979	100

Q-(C=O)-V-D-(OCH₃)-CH₂-F (the FMK)

FIGURE 18B

Caspase 9

בחם בחונ	log of con	% innib
.025uM .025uM .1uM .1uM .1uM .2.5uM .5uM	-1 502 -1,301 -1 -0,301 0 0 3979 0 6989	62.2 76.3 81.3 99.1 100 100
10uM 25uM 50uM	1 1 39 79 1 6979	100 100 100
	1 6979	100

$Q-(C=O)-V-D-(OCH_3)-CH_2-F$ (the FMK)

10/16

FIGURE 20

Caspase 3

inh conc	log of con	% inhib	Q-(C=O)-VD(OMe)-CH ₂ -SA
0 005uM 0.01uM .025uM .05uM .1uM 0 5uM 1uM 2 5uM 5uM 10uM 25uM 50uM	-2.301 -2 -1.602 -1.301 -1 -0.301 0 0.3979 0.6989 1.1398 1.6989	0 0.57 2.8 18.3 32.4 54.7 87.8 97.6 99.7 100	120 100 80 60 40 20 0 10g of conc. in uM

$Q-(C=O)-L-D-CH_2-OPh$

Caspase 1		
ind cond	log of con	% וחחום
025uM	-1 602	19
05LM	-1 301	22
10M	-1	19
0.5051	-0.301	46.7
1001	0	69.5
2.5014	0 3979	92.7
5ut.1	0 6989	98 5
1051	•	87.3

FIGURE 22

Q-(C=O)-V-D-CH₂-OPh

Caspase	•	
inh conc	lag of can	s innib
025_f.f	. 602	39.8
0561.1	-1 301	55 98
tulat	.*	57.2
0.551.1	-0.361	95.8
1uM	ō	98.5
2 5uM1	0 3979	100
5uM	0 5989	100
10441	1	100

12/16 FIGURE 25A

Non esterase treated Inhibitor D with Caspase 3

nh sond	leg of con	% inhib
0283M 054M 13M 6 54M 13M 2 54M 54M 104M 254M	-1.602 -1.301 -0.301 -0.3979 0.6989 1.2973	37.8 52 73 100 100 100 100
50UM	1.6979	100

 $Q-(C=O)-L-D-(OMe)-CH_2-F$

FIGURE 25B

Esterase treated Innibitor D with Caspase 3

 $Q\text{-}(C\text{=}O)\text{-}L\text{-}D\text{-}(OMe)\text{-}CH_2\text{-}F$

225uM -1 602 40.1 25uM -1 301 54.9

73.2 * _M 81.7 -0.301 0.5uM 100 0 19M 0 3979 2 5uM 100 0.6989 5uM 100 10uN1 100 1.3979 25uM 100 1.6979 50uM

Q-(C=O)-V-D-(OMe)-CH₂-F

FIGURE 24

Esterase treated Inhibitor D with Caso 1

n 5000	103 of cou	לורת: ב
025_N1	-1 602	0
05uM	-1 301	33 8
1.353	- 1	63.4
0.5511	-0 301	85.2
2 501.1	0 3979	85.2
513	0.6989	100
13,50		100
25.13	: 3979	.00
50,14	: 6979	-00

Q-(C=O)-L-D-(OMe)-CH₂-F

14/16 **FIGURE 26**

Q-LD-OPh

FIGURE 27

Q-VD-OPh

Caspase 3 w/ IE -

Q-(C=O)-LI	O-C	H ₂ -()-Ph
-----	-----	------	-----	-------------------	------

inh conc	log of con	% inhib
.025uM	-1.602	31.85
.05uM	-1.301	47.1
.1uM	-1	59.2
0.5uM	-0.301	96.2
1uM	0	100
2.5uM	0.3979	100
5uM	0.6989	100
25uM	1.3979	100
50uM	1.699	100

FIGURE 28

5 29			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L·Iyrosin s (Tyr)	00-0 -0-0 -0-0 -0-0 -0-0 -0-0 -0-0 -0-	L-Histidine [His]
FIGURE	1795 — C112 1795 — C112 1795 — C11 1795 — C11	L. Proline (Prol		L·Tryplophan (Iry)	113 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	L-Arginina , (Arg)
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L·Phenylatanine (Phe)	60 = 0 H - 1 - M ₂ H th 1 - 2 - 0 _t H	L - Methianine (Meth)	IR): \$\begin{align*}(\begin{align*}(0) & 0 & 0 & 0 & 0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	L-175ine (173)
Acips	60, 3 60, 3 60	L · Isoleucine (Illeu)	60° - 3 - 411 - 5 - 12 - 12 - 12 - 12 - 12 - 12 - 1	stine S-Cps)		
IMPORTANT AMINO ACIDS	60 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1 - Leucina (Leu)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L-Cystine (Cys-S-S-Cys)	CO C	L-Glutomine (Glu:NH2)
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L·Votine (Yat)	115 - ¢117 115 - ¢117 00 - 5 - 11	L·Cysteine (Cys·SH)	80°-3	L-Gutomic acid (Glu)
	60 = 0 H-1 + H-2 - N(H)	1 · Atanine (Ata)	00-10-H	L Threoning (Thre)	60 - 1	l·Asparagine (Asp NH2)
	1) c=00 0 1 Hyw-ch2	Gyeine 16171	11) (=00 1 10 10 10 10 10 10 1	L - Serine (Ser)	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L-Asparik acid (Asp)