Network Science Summer School

Day program

09:00-10:00:

Introductions

10:00-12:00:

Introduction to network science

Practical + discussion

12:00-13:00

Lunch

13:00-16:30:

Network representation

Centrality

Intro to linear algebra

Why? Multiplying sparse matrices is fast (relatively)

Network representation

Adjacency list: (edgelist)

Adv: It is dense: Only keeping edges

Disadvantage: Hard to work with

Source	Target	Weigth
Alice	Bob	1
Alice	John	1

Adjacency matrix:

Adv: Linear algebra is easy

 Disadvantage: It is sparse (mostly zeros).1E6 nodes → 1 trillion options

Target → ↓ Source	Alice	Bob	John
Alice	0	1	1
Bob	0	0	0
John	0	0	0

In computers → Sparse matrices: Best of both worlds

Directed networks

Target → ↓ Source	Alice	Bob	John
Alice	0	1	1
Bob	0	0	0
John	0	0	0

Undirected networks

Target → ↓ Source	Alice	Bob	John
Alice	0	1	1
Bob	1	0	0
John	1	0	0

Some terms

Trace = Sum of elements in the diagonal

Transpose $(A^T, A') =$

(python) A.T

Identity matrix (I) =	1	0	0
	0	1	0
I @ A = A	0	0	1

Target → ↓ Source	Alice	Bob	John
Alice	0	0	0
Bob	1	0	0
John	1	0	0

Symmetric matrix: A = A.T (e.g. undirected network)

Python exercise notebook 2, ex.1

Python:

- Convert between formats
- Plot matrix

Transposing = changing the direction

	Target → ↓ Source	Alice	Bob	John
A =	Alice	0	1	1
	Bob	0	0	0
	John	0	0	0

Matrix multiplication: sum

Target → ↓ Source	Alice	Bob	John	Amy
Alice	0	1	1	0
Bob	1	0	0	0
John	1	0	0	1
Amy	0	0	1	0

Node	kids
Alice	3
Bob	2
John	1
Amy	0

Node	kids
Alice	0*3 + 1*2 + 1*1 + 0*0 = 3
Bob	1*3 + 0*2 + 0*1 + 0*0 = 3
John	1*3 + 0*2 + 0*1 + 1*0 = 3
Amy	0*3 + 0*2 + 1*1 + 0*0 = 1

$$(N \times N) @ (N \times 1) = (N \times 1)$$

Matrix multiplication: average

Alice (3)

(2) John (1)

Amy

Bob

Divide by the degree. We get it by summing the adjacency elements column-wise A.sum(axis=1)

A @ M / A.sum(1) $(N \times N)$ @ $(N \times 1)$ / $(N \times 1)$ = $(N \times 1)$ / $(N \times 1)$ = $(N \times 1)$

Target → ↓ Origin	Alice	Bob	John	Amy
Alice	0	1	1	0
Bob	1	0	0	0
John	1	0	0	1
Amy	0	0	1	0

		Kids
	Node	
	Alice	3
@	Bob	2
	John	1
	Amy	0

	Kids
Node	
Alice	3
Bob	3
John	3
Amy	1

Target → ↓ Source	Sum
Alice	2
Bob	1
John	2
Amy	1

Target → ↓ Source	Sum
Alice	2
Bob	1
John	2
Amy	1

Node	Kids
Alice	1.5
Bob	3
John	1.5
Amy	1

Python exercise notebook 2, ex.2

Calculate the average number of children of your friends using matrix multiplication

Matrix multiplication: paths

Interpretation A: Presence of path between node i and j

	Target → ↓ Source	Alice	Rop	Jonn	Amy
• 0	Alice	0	1	1	0
$A^2 =$	Bob	0	0	0	0
	John	0	0	0	1
	Amy	0	0	0	0

Target → ↓ Source	Alice	Bob	John	Amy
Alice	0	1	1	0
Bob	0	0	0	0
John	0	0	0	1
Amy	0	0	0	0

Target → ↓ Source	Alice	Bob	John	Amy
Alice	0	0	0	1
Bob	0	0	0	0
John	0	0	0	0
Amy	0	0	0	0

From you → to your neighbors

From your neighbors → to their neighbors

You → the neig. of your neig.

Matrix multiplication: paths

Interpretation A: Presence of path between node i and j Interpretation A²: Number of path between node i and j in two steps Interpretation A³: Number of path between node i and j in three steps

Target → ↓ Source	Alice	Bob	John	Amy
Alice	0	1	1	0
Bob	0	0	0	0
John	0	0	0	1
Amy	0	0	0	0

Target → ↓ Source	Alice	Bob	John	Amy
Alice	0	1	1	0
Bob	0	0	0	0
John	0	0	0	1
Amy	0	0	0	0

Target → ↓ Source	Alice	Bob	John	Amy
Alice	0	0	0	1
Bob	0	0	Ú	0
John	0	0	0	0
Amy	0	0	0	0

```
Alice \Rightarrow Alice (0) * Alice \Rightarrow Amy (0)
+ Alice \Rightarrow Bob (1) * Bob \Rightarrow Amy (0)
+ Alice \Rightarrow John (1) * John \Rightarrow Amy (1)
```

+ Alice \rightarrow Alice (0) * Alice \rightarrow Amy (1)

Python exercise notebook 2, ex.3a

Matrix multiplication: number of people reached in <3 steps

Number of paths in two or three steps from node i to node j: $N = A + A^2 + A^3$ We need to remove duplicate paths: N = N > 0We need to remove paths from us to ourselves *N.setdiag(0)*

Matrix multiplication: number of triangles

Number of paths in two or three steps from node i to node j in three steps: **A^3** We are interested in the diagonal

Undirected network? Divide the triangles by two (two directions) Counting the total number of triangles? Divide the trace by 3

Alice
(3)

John
(1)

Amy

A^2

1 2					
Target → ↓ Source	Alice	Bob	John	Amy	
Alice	0	0	0	1	
Bob	0	0	0	0	
John	0	0	0	0	
Amy	0	0	0	0	

Target → ↓ Source	Alice	Bob	John	Amy
Alice	0	1	1	0
Bob	0	0	0	0
John	0	0	0	1
Amy	0	0	0	0

Target → ↓ Source	Alice	Bob	John	Amy
Alice	0	0	0	0
Bob	0	0	0	0
John	0	0	0	0
Amy	0	0	0	0

```
Alice → Alice in two steps * Alice → Alice (0)
```

Diagonal of A³

Alice
$$\rightarrow$$
 X₁ * X₁ \rightarrow X₁ * X₁ \rightarrow Alice + Alice \rightarrow X₁ * X₁ \rightarrow X₂ * X₂ \rightarrow Alice +

•••

Python exercise notebook 2, ex.3b

(already done, just check solutions)

Centrality measures

Nice explanations:

https://aksakalli.github.io/2017/07/17/network-centrality-measures-and-their-visualization.html

Networks: an introduction (Newman)

Degree centrality = $d_i/N-1$

 d_i = degree of node i

N-1 = number of nodes - 1 (max. potential number of partners without self-edges/multi-edges)

Measures the **local** influence of the node

Closeness centrality = $^{1}/_{l_{i}}$

 l_i = average distance of node i to all other nodes := $l_i = \frac{1}{N} \sum_j d_{ij}$

 d_{ij} = shortest distance from node i to node j

Only useful in fully connected networks

Measures the most central node in the network (closest to get to all other nodes)

Harmonic closeness centrality = $^{1}/_{N-1}$ $\sum_{ij|i\neq j}$ $^{1}/_{d_{ij}}$

 d_{ij} = shortest distance from node i to node j

Useful also in disconnected networks. Gives more weight to closer nodes.

Measures the **most central** node in the network (harmonic average)

Closeness vs harmonic

Betweeness centrality = $1/n^2 \sum_{st} n_{st}^i$

 $n_{st}^i = 1/g$ if node i lies on the g shortest paths between nodes s and t

Assumptions:

- every pair of nodes in the network exchanges messages at the same average rate
- messages always take the shortest available path though the network

Measures **brokerage** in the network → disruption of these nodes = disruption of communication

Freeman (1977), and Anthonisse (1971, unpublished)

Eigenvector centrality = $\lambda^{-1} \sum_{j} A_{ij} e_{j}$

Takes into account how central your neighbors are.

 e_j = eigenvector centrality of node j

 λ = largest eigenvalue

Measures total **influence** in the network (assuming all nodes are the same)

Only for undirected, fully-connected networks!

Katz centrality = $\alpha \sum_{j} A_{ij} k_j + \beta$

 k_i = Katz centrality of node j

Takes into account how central your neighbors are, each node has a minimum value of β , and the balance between the constant and the eigenvector part is controlled by α

Measures total **influence** in the network (assuming all nodes are the same)

Katz, 1953

Pagerank centrality = $\alpha \sum_{j} A_{ij}^{p_j} / d_i + \beta$

 d_j = Degree of node j

 p_j = Pagerank centrality of node j

Takes into account how central your neighbors are. Each node has a minimum value of β , the pagerank of your neighbours is normalized by their out-degree, and the balance between the constant and the eigenvector part is controlled by α

Hubs and authorities (HITS)

A node may be important if it points to others with high centrality, e.g., a review article pointing to prestigious articles

Authorities are nodes that contain useful information on a topic of interest and **hubs** are nodes that tell us where the best authorities are to be found (Newman). Two centralities: authority (a) and hub (h) centrality. Only for directed networks!

$$h_i = \alpha \sum_j A_{ij} a_j$$
 and $a_i = \alpha \sum_j A_{ij} h_j$

Source: Wikipedia (@Tapiocozzo) – katz centrality looks strange

Use a centrality measure that fits your theory, not the one that gives you the best results

Consider what is the real objective (e.g. is it to enable low-income individuals to increase their social capital?) (https://petterhol.me/2019/01/11/the-importance-of-being-earnest-about-node-importance/)

Chains

Sometimes data is represented as chains

- Life trajectory: Aranda → León → Vermont → Amsterdam
- Ownership chain: (right figure)

They allow you to do other analysis:

- Importance of the node based on how often it is found in between
- Importance of the node based on how many people jump to you

Practical 2: Exercise 4 and 5

Linear algebra and centrality measures

Degree

Target → ↓ Source	Alice	Bob	John	Amy
Alice	0	1	1	0
Bob	0	0	0	0
John	0	0	0	1
Amy	0	0	0	0

Alice	1
Bob	1
John	1
Amy	1

	Out- Degree
Alice	2
Bob	0
John	1
Amy	0

Matrix multiplication: paths

Interpretation A: Presence of path between node i and j Interpretation A²: Number of path between node i and j in two steps Interpretation A³: Number of path between node i and j in three steps

. . .

Target → ↓ Source	Alice	Bob	John	Amy	
Alice	0	1	1	0	
Bob	0	0	0	0	
John	0	0	0	1	
Amy	0	0	0	0	

Target → ↓ Source	Alice	Bob	John	Amy
Alice	0	1	1	0
Bob	0	0	0	0
John	0	0	0	1
Amy	0	0	0	0

Target → ↓ Source	Alice	Bob	John	Amy
Alice	0	0	0	1
Bob	0	0	Ū	0
John	0	0	0	0
A	0	^	0	

Alice

(3)

Bob

John

Amy

- Alice → Alice (0) * Alice → Amy (0)
- + Alice → Bob (1) * Bob → Amy (0)
- + Alice → John (1) * John → Amy (1)
- + Alice → Alice (0) * Alice → Amy (1)

Another view on matrix multiplications: Random walks on undirected networks

Target → ↓ Source	Alice	Bob	John	Amy
Alice	0	0.5	0.5	0
Bob	1	0	0	0
John	0.5	0	0	0.5
Amy	0	0	1	0

Target ↓ Sour	→ ce	Alice	Bob	John	Amy
Alice		0	0.5	0.5	0
Bob		1	0	0	0
John		0.5	0	0	0.5
Amy		0	0	1	0

A random walker starting in Alice will go 50% of the times to Bob, 50% of the times to John.

- From Bob it goes 100% of the times back to Alice
- From John it goes 50% of the times to John, 50% back to Alice

If we let the random walker walk forever → The fraction of time spend at each node converges to the **degree centrality** of the node

Another view on matrix multiplications: Random walks on directed networks

Transition matrix (row-normalized A)

Target → ↓ Source	Alice	Bob	John	Amy	
Alice	0	0.5	0.5	0	
Bob	0	0	0	0	
John	0	0	0	1	
Amy	0	0	0	0	

Target → ↓ Source	Alice	Bob	John	Amy
Alice	0	0.5	0.5	0
Bob	0	0	0	0
John	0	0	0	1
Amy	0	0	0	0

A random walker starting in Alice will go 50% of the times to Bob, 50% of the times to John.

- From Bob it gets trapped
- From John it goes 100% of the times to Amy and gets trapped

If we let random walkers walk forever → They gets trapped in the extremes!

Solution: PageRank (the beta parameter can be understood as a teletransportation probablity)

Practical 3: Working with networks using Gephi

- Follow this tutorial (slides 1–23 only!): https://gephi.org/users/quick-start/
- In community detection use the "stochastic blockmodel" instead of modularity maximization (or try both)
- You can choose to use our own data (https://tinyurl.com/network-game) or the Twitter data.

Python exercise notebook 2, ex.7