PIE NIA02 Revue de projet MidTerm

Brice Appenzeller, Mathieu Dario, Julien Delavande, Aurélien Deniau, Jules Gomel, Rayanne Igbida

00 Introduction

Rappel du contexte et objectifs du meeting

Trois facettes

BCI

- Utilisation de signaux cérébraux
 - Novateur, grandes perspectives
- Des limitations mais se démocratise

Neurofeedback

- Donner un retour sur l'état mental de l'utilisateur fait travailler sa plasticité cérébrale
- Features extraction
 - Classification

Projet EEG-Stroke

- Lecture d'articles
- Travail sur les compétences nécessaires
- 18/12 : Point technique avec respo école → fait office d'état de l'art

Sommaire

01

Progrès réalisés

02

Gestion de projet

03

Risques

04

Livrables

05

Perspectives

06

Conclusion

01 Progrès réalisés

Les avancées depuis le début du projet

Avancées concrètes

Appropriation du problème

- Problème et contexte compris
- PIE précédent synthétisé : + et identifiés
- Manipulation des données

Avancées concrètes

Etat de l'art

- Vérification des méthodes dans les articles
- Soutenance présentation technique
- Support de la présentation qui nous servira de synthèse de l'état de l'art (cf livrable)

Etat de l'art

- Repose sur les articles suivants :
 - [1] Rashid et al 2020, Current Status, challenges and possible solutions for EEG-Based BCI: A comprehensive review, Frontiers in Neurorobotics
 - [2]: Mansour et al 2022. Efficacy of Brain-Computer Interface and the Impact of Its Design Characteristics on Poststroke Upper-limb Rehabilitation: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Clinical EEG and Neuroscience.
 - [3]: F Lotte et al 2018 A review of classification algorithms for EEGbased brain-computer interfaces: a 10 year update J. Neural Eng. 15 031005

Pre-processing

- Variété de solutions pour enlever les artefacts et les bruits mais pas de gold standard [1]
- Plus utilisées :
 - Filtrage temporel:
 - O Passe-bande : peut enlever de l'information
 - O Filtrage spatial : Blind-source separation
 - O ICA [3]
 - o xDawn [3]
 - Ο ..

Extraction de features

- Deux types majeurs de features [3]:
 - Temporels : concaténation des signaux sur toutes les électrodes
 → ++ pour les ERP
 - Fréquentiels : Band power... → ++ pour activité oscillatoires dont l'imagerie mentale
- Peut aussi être représenté comme matrices ou tenseurs
- Combiner les types de features améliore les performances mais augmente la dimensionnalité [3]
- Une étape de sélection de features peut être judicieuse [3]

Classification

- Une variété de méthodes [3] :
 - O Classification adaptative : supervisé et non-supervisé
 - Matrices et tenseurs
 - Deep Learning
- Avantages et inconvénients pour chaque méthode [3]
 - Non supervisé pas assez robuste, adaptif parfois pas adapté aux BCI (feedback changeant)
 - O Deep learning prometteur, mais pas encore bien testé en 2018

Avancées concrètes

Exploration

- Structure de données maîtrisée : forme commune mise en place
- Exploration de notre côté : délimitation et identification de plusieurs méthodes à implémenter
- Début du travail sur une implémentation de la méthode standard du labo + détection du mouvement
- Interface homme-machine

Défis techniques

Plusieurs situations difficiles:

- Difficile de structurer le travail de groupe sur l'implémentation
- Comment organiser notre structure de données ?
- Parti sur deep learning à fond → peut-être pas la solution ?
- Contrordre sur la pipeline standard à appliquer qui nous a été donné le 18/12

02 Gestion de projet

Un point sur notre gestion du projet

Gestion du planning

Avancement

Globalement dans les temps, il nous reste le coeur du problème à faire

03 Risques

Bilan sur les risques identifiés, passés et futurs

Risques passés

Depuis le début du projet, nous avons été confrontés à plusieurs risques du PDD qui ne sont plus d'actualités

- Difficulté d'accès aux données
- Manque de compétences dans le milieu

Nouveaux risques

Nouveaux risques identifiés lors des réunions

- Projet pas fini dans les temps
- Manque de validité scientifique de notre travail

Nouvelles solutions

- Planification efficace et jalons internes + organisation d'équipe plus efficace
- Implémentation de solutions déjà validées dans des articles maintenant que l'exploratoire a porté ses fruits

04 Livrables

Avancées de nos différents livrables

Livrables écoles

PDD

Relu, mis à jour et quasiment fini

Rapport

Canevas commencé, à agrémenter pendant tout le long du travail

Support d'oral

Sera repris de ce diapo au maximum

Fiche synthèse

Pas commencée

Livrables clients

Code

Rigueur d'organisation pour limiter l'effort avant le rendu

IHM

Interface précédente inspectée Possibilité de la refaire à zéro, mais chronophage. À voir en fonction des avancées

Guide utilisateur

Rédaction pas commencée mais le but est de réutiliser le plus le précédent

Guide technique

Rédaction pas commencée

05 Perspectives

L'organisation du travail à venir

Organisation future

Pour gérer au mieux les risques techniques :

- Implémentation quasiment terminé de la pipeline complète, qui nous a été donnée le 18/12 : travail à partir de cela
- Exploration qui prend la forme de pipelines complètes tirées directement d'articles
- Panel de classifiers plus complets : pas de focus sur l'IA

Organisation future

Pour gérer au mieux les risques gestion de projet :

- Rationalisation du travail en équipe et répartition efficiente du travail : + de feedback, points réguliers et en continu accentués
- Ecriture des livrables au plus tôt et en parallèle

06 Conclusion

Puis questions-réponses!