République Islamique de Mauritanie Ministère de l'Education Nationale et de la fermation Professionnelle Directionades Examens et des Concours

BACCALAURE Session Complementaire Epreuve: MATHEMATIQUES Série : Sciences de la Nature cient: 6

Exercice 1 (3 points)

H

Soit I une fonction numérique dérivable sur son domaine de définition et (C) sa courbe représentative dans un repère orthonormé (O; i, j).

On donne, ci-contre, le tableau de variation de f.

Parmi les réponses proposées pour chaque question ci-après, une seule est correcte.

V.o	Question,	Réponse A	Réponse B	Réponse C]−∞,+∞∫	
1	L'ensemble de définition de f'est]-∞,3[U]3,+∞[*]-∞,3[U[3,+∞[
2 .	La fonction f est	paire	impaire	ni paire, ni impaire	
3	La courbe (C) coupe (Ox) en	3 points •	2 points	1 seul point	
4	Le nombre d'asymptotes de la courbe (C) est	une scule	deux	trois •	
5	Le nombre de tangentes horizontales de (C) est	1	2 or	3	
6	Le nombre de solutions de l'équation f(x) = -2 est	1 .	2 0	3	

Recopier sur la feuille de réponse et compléter le tableau ci-contre en choisissant la bonne réponse. Aucune justification n'est demandée

Question n° Réponse	I	2	3	4	5	6
Réponse	A	4	A	C	B	B

Exercice 2 (5 points)

1º Pour tout numbre complexe z, on pose $P(z) = z^3 - (4-i)z^2 + 7z - 4 + 7i$.	
a) Déterminer les racines carrées du nombre complexe -12-16i	
b) Calculer P(-i)	

e) Déterminer les réels a et b tels que, \(\nabla z \in C, \text{ on a : P(z) = (z+i)(z1+az+b).} \)

d) Résoudre, dans l'ensemble des nombres complexes, l'équation P(z) = 0.

2º Dans le plan complexe muni d'un repère orthonormé (O;u,v), on considère les points A, B et

C d'affixes respectives : $z_A = 1 + 2i$, $z_B = -i$ et $z_C = 3 - 2i$.

'a) Placer les points A, B et C. b) Soit D le point tel que ABCD soit un parallélogramme. Justifier que zp = 4+i

c) Extres sous forme algébrique $\frac{z_0 - z_C}{z_0 - z_C}$ et en déduire la nature du triangle ACD.

3° Pour tout nombre complexe $z \neq 1+2i$; on pose: $f(z) = \frac{z-3+2i}{z-1-2i}$.

a) Déterminer et construire l'ensemble I, des points M du'plan d'affixe z tel que f(z) = 1.

b) Déterminer et construire l'ensemble Γ_z des points M du plan d'affixe z tel que $|f(z)-1|=\sqrt{20}$.

4º On pose $\alpha = \frac{z_A + z_B}{2\sqrt{2}}$ et pour tout entier naturel n, on note $u_a = |\alpha^*|$.

a) Ecrire a sous forme algebrique et vérifier que u = 1

b) En déduire que (u,) est une suite géométrique et montrer que u, + u, + ... + u, ... = 2 -

0.25pt 0.5pt

0.5pt

0.5pt

0.5pt

0.25pt

0.5pt

0.5pt

0.5pt

0.5pt

0.5 pt

1pt

0.5

0.7

0.

Exercice 3 (5 points)

Soit f la fonction définie sur [-1,+\inf par f(-1) = 0. et \vx> -1, $f(x) = (x+1)^{2} \ln(x+1) - (x+1)$. On note (C) sa courbe représentative dans un repère orthonormé (O; i, j) .

	0.5 pt
b) Montrer que $\lim_{x\to 1^+} f(x) = 0$ et $\lim_{x\to 1^+} \frac{f(x)}{x+1} = -1$ (on donne la limite suivante : $\lim_{x\to 1^+} (x+1) \ln(x+1) = 0$).	0.5 pt
c) En déduire que f est continue et dérivable à droite de -1.	0.5 pt

- $\frac{f(x)}{x} = +\infty$. Interpréter graphiquemen 0.5 11 d) Calculer lim f(x) et vérifier que lim
- 2° a) Montrer que $\forall x > -1$, $f'(x) = 2(x+1)\ln(x+1) + x$, (f' étant la dérivée de f). 0.5 pt
- \times b) En remarquant que $\forall x > -1$, le signe de $2(x+1)\ln(x+1)$ est celui de x, montrer que f' est négative sur -1,0 ct positive sur $0,+\infty$.
 - 0.25 c) Dresser le tableau de variation de f.
- 3º Soit g la restriction de f sur l'intervalle [0,+∞[. 0.25 a) Montrer que g réalise une bijection de [0,+\infty] sur un intervalle J, à déterminer.
- b) Montrer que l'équation g(x) = 0 admet une unique solution α , avec $0.7 \le \alpha \le 0.8$. 0.5 1
- c) Justifier que $g'(\alpha) = \alpha + 2$ et en déduire la valeur de $(g^{-1})'(0)$, où g^{-1} est la réciproque de g. 0.5 0.5 do Tracer dans le même repère les courbes (C) et (C') ; ((C') étant la courbe de g

Exercice 4 (7 points)

Con i la conction définie, sur \mathbb{R} , par $f(x) = (2x-2)(1+e^x)$ et soit Γ sa courbe représentative dans un-repère orthonormé (O;i,j).

- 1° a) Montre: que lim $f(x) = +\infty$ et que lim $=+\infty$. Interpréter
- b) Calculer $\lim_{x \to \infty} f(x)$ et $\lim_{x \to \infty} (f(x) (2x 2))$.
- c) En déduire que la droite $\hat{\mathbf{D}}$ d'équation $\gamma = 2x 2$ est une asymptote oblique pour l'Etudier la position relative entre l' et D.
- 2° a) Calculer f'(x) et justifier que $f''(x) = (2x+2)e^x$
- b) Etudier les variations de f'et en déduire que $\forall x \in \mathbb{R}$ f'(x) > 0
- c) Dresser le tableau de variation de f.
- 3º a) Déterminer le point d'intersection de Γ avec (Ox).
- b) Ecrire une équation de la tangente Tau point d'abscisse 0 de F
- c) Tracer T, T et I dans le repère (O;i,j).
- d) Discuter graphiquement, selon les valeurs du paramètre réel in, le nombre de solutions de l'équation (2x-2)e'=2+m.
- 4° a) Calculer, a l'aide d'une intégration par parties, l'intégrale I = \((2x 2)e^x dx \(\frac{1}{2} \)
- b) En déduire l'aire A de la partie du plan délimitée par F, l'axe (Ox) et les droites d'équations x = 0 et x = 1.