Árboles de Decisión

Los modelos de clasificación o regresión de Árboles de Decisión se basan en la estratificación del dominio de las co-variantes predictoras X en un número de regiones mediante el método de división binaria recursiva.

Nodos terminales u hojas

Segmentación binaria recursiva

Es Segmentación binaria recursiva

No Es Segmentación binaria recursiva

Entrenamiento del Modelo

<u>Predicciones utilizando el Modelo</u>

Predicciones para Nodo 1:

Rojos = 7, Negros= 2

Porc. de R = 7/(7+2) = 78%

Porc. de N = 22%.

Ahora, al igual que en Regresión Logística y Naive Bayes, podemos usar un valor umbral para clasificar al valor que caiga en ese subconjunto. Un umbral de 0,5/50%, corresponde a la elección del resultado más frecuente que sería Rojo.

Armado del Árbol e Decisión en Regresión

Como es computacionalmente inviable analizar todas las posibles formas de armar todas las posibles regiones (fuerza bruta) es que se utiliza un mecanismo llamado *partición recursiva binaria*. Es un método HEURÍSTICO *por pasos o etapas*.

<u>Procedimiento</u>: Elegimos una variable X_i y probamos con diferentes punto de corte s evaluando en cada una de las regiones $\{X|X_j < s\}$ $\{X|X_j \geq s\}$ la SCE. El punto de corte que de la menor SCE será el que utilizaremos para delimitar la ramificaciones R_i del árbol

$$R_1(j,s) = \{X | X_j < s\}$$
 $y \in R_2(j,s) = \{X | X_j \ge s\},\$

Y buscaremos minimizar la suma de los SCE que llamaremos **Costo**, de las regiones recién conformadas por la partición binaria:

$$\sum_{i: x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i: x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

Siendo \hat{y}_{R_1} la media muestral de las observaciones de la región $R_1(j,s)$ y \hat{y}_{R_2} la media muestral de $R_2(j,s)$

Este proceso se repite en cada una de las ramificaciones hasta llegar a un pto de parada, que podría ser la cantidad de datos en las hojas o nodos terminales (p.e. mínimo 5 datos)

Árboles de Decisión en Clasificación

Proporción de la clases k en las observaciones del nodo o m

$$\hat{p}_{mk} = \frac{1}{N_m} \sum_{x_i \in R_m} I(y_i = k)$$

Clasificamos la nueva observación del nodo *m* a la clase *k* que cumpla:

$$k(m) = \arg \max_{k} \hat{p}_{mk},$$
 Si k=2 será: $\max(p, 1-p)$

El error o costo al clasificar mediante este modelo será:

$$\frac{1}{N_m} \sum_{i \in R_m} I(y_i \neq k(m)) = 1 - \hat{p}_{mk(m)} = 1 - \max(p, 1 - p)$$

PROBLEMA: este modelo de clasificación tiene el problema que no privilegia la *pureza* de los nodos resultantes. Veamos un ejemplo: Tenemos un nodo con la siguiente distribución de clases (400,400). Aplicamos dos modelos diferentes de clasificación, generando estos dos splits:

El error de clasificación para cada modelo sería: E(S1)=0.5*100/400 + 0.5*100/400 = 0.25

Ec(S2)=0.75*200/600 + 0.25*0/200 = 0.25

El segundo modelo clasifica mejor (al tener un nodo de pureza 100%). Debemos encontrar otra forma de medir el ERROR de Clasificación

Medida de impureza en los nodos

La entropía mide el grado de desorden o impureza entre los miembros de un grupo. A partir de paper de Shannon (1948):

entropy =
$$-p_1 \log (p_1) - p_2 \log (p_2) - \dots - p_k \log (p_k)$$

$$entropy(R_1) = -0.7 \times log_2(0.7) -0.3 \times log_2(0.3) = 0.88$$

$$entropy(R_2) = -0.9 \times log_2 (0.9) - 0.1 \times log_2 (0.1) = 0.47$$

$$entropy(R_3) = -2*0.5* \times log_2(0.5) = 1$$

$$entropy(R_4) = -0.2 \times log_2(0.2) - 0.8 \times log_2(0.2)$$

=0,72

$$entropy(R_5) = -1 \times log_2(1) - 0 \times log_2(0) = 0$$

Si la variable respuesta tiene 2 clases y p es la proporción de la clase 2, entonces:

$$\frac{1}{N_m} \sum_{i \in R_m} I(y_i \neq k(m)) = 1 - \hat{p}_{mk(m)} = 1 - \max(p, 1 - p) \qquad \text{Error Clasif}$$

$$\sum_{k \neq k'} \hat{p}_{mk} \hat{p}_{mk'} = \sum_{k=1}^K \hat{p}_{mk} (1 - \hat{p}_{mk}) = 2p(1 - p) \qquad \text{Gini}$$

$$-\sum_{k=1}^K \hat{p}_{mk} \log \hat{p}_{mk} = -p \log p - (1 - p) \log (1 - p) \qquad \text{Entropía}$$

Las tres son similares pero Gini y Entropía cruzada son diferenciables

- → mejor para aplicar métodos numéricos
- → Aparte Gini y Entropía cumplen las premisas de la entropía de la información

<u>ejemplo</u>

Ganancia de Información (Information gain)

La ganancia de información mide el cambio en la entropía debido a cualquier cantidad de nueva información agregada. En el contexto de los árboles de decisión, se refiere a la **información obtenida al crear nuevos nodos** en base a los valores de un cierto atributo. Llamemos al nodo original conjunto "padre" y a los nodos originados como resultado de la división en base al atributo, nodos "hijos".

 $\textit{IG(padre, hijos)} = entropía(padre) - p(hijo_1) \times entropía(hijo_1) - p(hijo_2) \times entropía(hijo_2)$

Siendo:

$$p(hijo_1) = N(hijo_1) / N(padre)$$

 $p(hijo_2) = N(hijo_2) / N(padre)$

entropía(hijo₁) =
$$-p_1*log(p_1) - (1-p_1)*log(1-p_1)$$

entropía(hijo₂) = $-p_2*log(p_2) - (1-p_2)*log(1-p_2)$

En A.D, de decisiones la IG mide la disminución de la entropía del árbol (o el sub-árbol generado por esa división/ramificación) debida a la nueva ramificación.

Ejemplo, k=2, (400,400)

Error(orig)=1/800*400=0,5 Gini(original)=2*0,5*0,5=0,5 Entropía(original)=-2*0,5*log₂(0,5)=1

$$\frac{1}{N_m} \sum_{i \in R_m} I(y_i \neq k(m)) = 1 - \hat{p}_{mk(m)} = 1 - \max(p, 1 - p)$$

$$\sum_{k \neq k'} \hat{p}_{mk} \hat{p}_{mk'} = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk}) = 2p(1-p)$$
 Gini

$$-\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk} = -p \log p - (1-p) \log (1-p)$$
 Entropía

Volvamos a los dos modelos de clasificación vistos, que nos dan los sig. splits:

Los errores de clasificación para cada uno son:

$$E(S1)=0.5*100/400 + 0.5*100/400 = 0.25$$

$$Ec(S2)=0.75*200/600+0.25*0/200=0.25$$

Son iguales, cuando se debería privilegiar a la segmentación que dio un nodo puro al 100%

Con Gini y entropía da:

Gini: Ec(S1)=0.5*(2*0.75*(1-0.75))+0.5*2*0.75*(1-0.75)=**0.375**

Ec(S2) = 0.75*(2*0.666*(1-0.666)) = 0.336

Entropía: $Ec(S1)=0.5*(-0.75*log_20.75-0.25*log_20.25)+0.5*(-0.75*log_20.75-0.25*log_20.25)=0.81$

 $Ec(S2)=0.75*(-0.33*log_20.33-0.66*log_20.66) = 0.69$

FACULTAD
DE INGENIERIA
Universidad de Buenos Aires

Veamos la ganancia de información (IG) en el ejemplo de recién

$$\textit{IG(padre, hijos)} = entropía(padre) - p(hijo_1) \times entropía(hijo_1) - p(hijo_2) \times entropía(hijo_2)$$

```
k=2, (400,400)
```

Mayor pureza

Pseudo Código de algoritmo de Árboles de Decisión (de CART, Breiman at.al. 1984)

Árboles de Decisión en R

Ejemplo: Data Set Carseats

	CompPrice †	Income †	Advertising ‡	Population [‡]	Price ‡	ShelveLoc ‡	Age ‡	Education ‡	Urban 🕏	US ‡	High ‡
1	138	73	11	276	120	Bad	42	17	Yes	Yes	Alta
2	111	48	16	260	83	Good	65	10	Yes	Yes	Alta
3	113	35	10	269	80	Medium	59	12	Yes	Yes	Alta
4	117	100	4	466	97	Medium	55	14	Yes	Yes	Baja
5	141	64	3	340	128	Bad	38	13	Yes	No	Baja
6	124	113	13	501	72	Bad	78	16	No	Yes	Alta
7	115	105	0	45	108	Medium	71	15	Yes	No	Baja
8	136	81	15	425	120	Good	67	10	Yes	Yes	Alta
9	132	110	0	108	124	Medium	76	10	No	No	Baja
10	132	113	0	131	124	Medium	76	17	No	Yes	Baja
11	121	78	9	150	100	Bad	26	10	No	Yes	Alta
12	117	94	4	503	94	Good	50	13	Yes	Yes	Alta
13	122	35	2	393	136	Medium	62		Yes	No	Baja
14	115	28	11	29	86	Good	53	18	Yes	Yes	Alta
15	107	117	11	148	118	Good	52	18	Yes	Yes	Alta
16	149		'data.frame': 400 obs. of 11 variables:								
17	118		\$ CompPrice : num 138 111 113 117 141 124 115 136 132 132								
\$ Income : num 73 48 35 100 64 113 105 81 110 113 \$ Advertising: num 11 16 10 4 3 13 0 15 0 0 \$ Population : num 276 260 269 466 340 501 45 425 108 131 \$ Price : num 120 83 80 97 128 72 108 120 124 124 \$ ShelveLoc : Factor w/ 3 levels "Bad", "Good", "Medium": 1 2 3 3 1 1 3 \$ Age : num 42 65 59 55 38 78 71 67 76 76 \$ Education : num 17 10 12 14 13 16 15 10 10 17											Baja
		\$ U	<pre>\$ Urban</pre>								

<u>Procedimiento de Poda merdiante evaluación de Costo Complejidad</u>(Del Libro de Breiman Friedmann Ohlsen CART - 1984)

Luego de construir (entrenar) un árbol de decisión sólo indicando la cantidad mínima de observaciones en los nodos terminales (hojas) ahora debemos decidir con qué parte de ese árbol nos quedaremos en orden de incrementar la capacidad de generalización del modelo Sean T_{ν} , T_{ν} ,..., T_{k} los nodos terminales de un árbol de decisión T. Definamos:

ITI = número de nodos terminales u hojas del árbol <math>T

Llamaremos

Costo o Riesgo (risk) de T =
$$R(T) = \sum_{i=1}^{k} P(T_i) R(T_i)$$
 (1)

siendo $P(T_i)$ la proporción de instancias en el nodo i y R(Ti) la proporción de instancias mal clasificados en el nodo i

Penalización por Costo- Complejidad - Determinación del α

Ahora llamemos *Cp* (Parámetro de Complejidad por sus siglas en inglés) al parámetro que mide el "costo de adicionar" una nueva ramificación al modelo, quedándonos la siguiente medida de Costo Complejidad :

$$R_{\alpha}(T) = R(T) + \alpha |T| \qquad (2)$$

El proceso de poda va removiendo iterativamente los nodos terminales más débiles del árbol (que son los que más errores tienen) absorbiendo los dos hijos su nodo padre.

EL algoritmo de pruning en cada poda calcula el costro-Complejidad (formula 2) en los datos de entrenamiento, y devuelve el sub-árbol podado con el $R\alpha(T)$ mínimo..

PSEUDOALGORITMO DE PODA

DEFINICIONES

```
#info de nodo

r(i) = porcentaje de instancias mal clasificadas en nodo i
p(i) = proporción de instancias en nodo 8
i_left = nodo hijo de la izquierda del nodo padre i
i_right = nodo hijo de la derecha del nodo padre i

#tree info

|T| = número de nodos del árbol T
alfa = parámetro de complejidad
R(i) = r(i)*p(i)
Risk(T) = SUM_i [ R(i)]
Risk_alfa(T) = Risk(T) + alfa*|T|
```

INICIO:

```
Tmax = árbol_tamaño_max
Risk_alfa_min = Risk(Tmax) + alfa* |Tmax|
Current_Tree = Tmax
```

PRUNE: Do While | Current_tree | > 1

```
For all parents i of two terminal nodes in Current_Tree

Remove node(s) i for which R(i) - R(i_left) - R(i_right) is minimum

Current_Tree = Current_Tree - 1

If {Risk_alfa(Current_Tree) < Risk_alfa_min) } then

Risk_alfa_min=Risk_alfa(Current_Tree)
```


Algoritmo de poda completo

Para seleccionar el α óptimo debemos seguir los siguientes pasos:

- Utilizamos el método de partición binaria recursiva para hacer crecer el árbol, parando cuando cada uno de los nodos terminales contengan una cierta cantidad mínima de observaciones
- 2. Aplicamos poda por costo-complejidad al árbol anterior y obtenemos una secuencia de sub-arboles de decisión en función de diferentes α
- 3. Hacemos validación cruzada para elegir el α .
 - Repetimos los pasos 1 y 2 sobre cada set de entrenamiento de CV (o sea todos menos el k-ésimo sub-set)
 - b. Evaluamos el error de predicción en el k-ésimo subset .
 - Luego promediamos los errores del pto b para todos los k-ésimo subsets, quedándonos como el error representativo del sub-árbol podado por el parámetro de regularización α.
 - d. Elegimos el α con el menor error de predicción del pto c.
- 4. Con el valor de α recién hallado volvemos al árbol correspondiente a ese α del punto 2, que es el que va a ser nuestro modelo de clasificación.

2 covariantes

