None

Null

26 septembre 2023

Table des matières

1 TD1														1													
2	Mesures Additives et σ -additives 2.1 Exercice 1																1										
	2.1	Exerci	ce 1															 								1	
	2.2	Exerci	ce 2															 								1	
	2.3	Exerci	ce 3															 								1	
		2.3.1	Question 1																							1	
		2.3.2	Question 2																							2	
		2.3.3	Question 3																							2	
		2.3.4	Question 4																							2	
		2.3.5	Question 5																							2	
		2.3.6	Question 6																							2	

1 TD1

2 Mesures Additives et σ -additives

2.1 Exercice 1

On pose $\tilde{A_0} = A_0$ et pour $n \in \mathbb{N}$, on pose $\tilde{A_{n+1}} = A_{n+1} \setminus \tilde{A_n}$. On a alors : $\mu \left(\bigcup_{n \in \mathbb{N}} A_n \right) = \mu \left(\bigsqcup_{n \in \mathbb{N}} \tilde{A_n} \right)$ car ces unions sont égales. Mais, par σ -additivité de μ : $\mu \left(\bigsqcup_{n \in \mathbb{N}} \tilde{A_n} \right) = \sum_{n \in \mathbb{N}} \mu \left(\tilde{A_n} \right)$ Par croissance/positivité : $\sum_{n \in \mathbb{N}} \mu \left(\tilde{A_n} \right) \leq \sum_{n \in \mathbb{N}} \mu \left(A_n \right)$. Donc : $\mu \left(\bigcup_{n \in \mathbb{N}} A_n \right) \leq \sum_{n \in \mathbb{N}} \mu \left(A_n \right)$

2.2 Exercice 2

Il est clair que \mathcal{G} est stable par intersections finies et contient \emptyset et E. Par ailleurs, si A_i est une famille d'éléments de \mathcal{G} , en posant \tilde{A}_n l'union des n premiers A_i , la suite \tilde{A}_i est une suite croissante d'éléments de \mathcal{G}

2.3 Exercice 3

2.3.1 Question 1

 $\liminf_{n\to +\infty}A_n$ est l'ensemble des éléments qui sont dans tous les A_k àper.

 $\limsup_{n\to +\infty}A_n$ est l'ensemble des éléments qui sont apparaissent une infinité de fois dans les $A_k.$

2.3.2 Question 2

On a:
$$\left(\liminf_{n\to+\infty}A_n\right)^{\complement}\left(\bigcup_{n\geq 1}\bigcap_{k\geq n}A_k\right)^{\complement}=\left(\bigcap_{n\geq 1}\left(\bigcap_{k\geq n}A_k\right)^{\complement}\right)=\left(\bigcap_{n\geq 1}\bigcup_{k\geq n}A_k^{\complement}\right)=\limsup_{n\to+\infty}A_n^{\complement}$$

2.3.3 Question 3

On a : $1_{\lim\inf A_n} = \liminf 1_{A_n}$. De même pour \limsup

2.3.4 Question 4

Par 1. on a :

- 1. $\liminf A_n = F \cup G$ et $\limsup A_n = F \cap G$
- 2. $\liminf A_n = [0,3] \cup [-1,2] = [-1,3]$ et $\limsup A_n = [0,2]$

2.3.5 Question 5

Par continuité croissante :
$$\mu\left(\bigcup_{n\geq 1}\bigcap_{k\geq n}A_k\right)=\sup_n\mu\left(\bigcap_{k\geq n}A_k\right)\leq \liminf_n\mu\left(A_n\right)$$

On pose : $A_k=[k;k+1].$ Alors, \blacksquare .

2.3.6 Question 6

Par continuité décroissante : $\mu\left(\limsup_n A_n\right) = \inf_n \mu\left(\bigcup_{k\geq n} A_k\right)$ Par σ -additivité, on obtient bien le résultat.