CONCOURS COMMUN POLYTECHNIQUE (ENSI)

FILIERE MP

MATHEMATIQUES 2

EXERCICE I

I.1.
$$21 = 16 + 4 + 1 = 2^4 + 2^2 + 1$$
 et donc $21 = \overline{10101}_2$.

I.2. Tableau complété.

k	1	2	3
c_k	6	5	2
t _k	[6]	[6 5]	[6 5 2]
n_k	25	2	0

I.3. Soit n > 0.

I.3.a. Dans la boucle while de mystère(n, 10), on obtient successivement les différents chiffres de n en base 10. Puisque n a un nombre fini de chiffres en base 10, la boucle while se termine.

 $\textbf{I.3.b.} \quad \text{Montrons par récurrence que pour tout } k \in [\![0,p]\!], \, n_k \leqslant \frac{n}{10^k}.$

- $n_0 = n \leqslant \frac{n}{10^0}$ et l'inégalité est vraie quand k = 0.
- Soit $k \in [0, p-1]$. Supposons que $n_k \leqslant \frac{n}{10^k}$. Alors

$$n_{k+1} = E\left(\frac{n_k}{10}\right) \leqslant \frac{n_k}{10} \leqslant \frac{n}{10^{k+1}}.$$

Le résultat est démontré par récurrence.

Par définition de p, $n_{p-1} > 0$ et $n_p = 0$. Puisque $n_p = E\left(\frac{n_{p-1}}{10}\right)$, on a donc $1 \leqslant n_{p-1} \leqslant 9$ puis $1 \leqslant n_{p-1} \leqslant \frac{n}{10^{p-1}}$ puis $10^{p-1} \leqslant n$ et donc

$$p \leq 1 + \log(n)$$
.

I.4. Fonction somme chiffres.

def somme_chiffres(n)
$$\begin{tabular}{ll} " & " & Données : n > 0 \\ & & Résultat : somme des chiffres de n en base 10 & " & " & s = 0 \\ & & while n > 0 : & & & & & \\ & & c = n \% \ 10 & & & & \\ & & s = s + c & & & \\ & & & n = n \ // \ 10 & \\ & & & & return \ s & \end{tabular}$$

I.5. Version recursive.

def somme_rec(n)
" " " Données :
$$n \ge 0$$
 un entier
Résultat : somme des chiffres de n en base 10 " " "
if $n > 0$:
 return $(n \% 10) + \text{somme}_{\text{rec}}(n // 10)$
else :
return 0

EXERCICE II

II.1.
$${}^{t}AA' = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a' + bb' & ab' + cd' \\ ba' + dc' & cc' + dd' \end{pmatrix} \text{ et donc}$$

$$(A|A') = aa' + bb' + cc' + dd'$$

II.2. (|) est donc le produit scalaire canonique. Par suite, la base canonique $(E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2})$ de $\mathscr{M}_2(\mathbb{R})$ est une base orthonormée.

 \mathcal{T} est le sous-espace de $\mathcal{M}_2(\mathbb{R})$ de base $(\mathsf{E}_{1,1},\mathsf{E}_{1,2},\mathsf{E}_{2,2})$. D'après ce qui précède, $(\mathsf{E}_{1,1},\mathsf{E}_{1,2},\mathsf{E}_{2,2})$ est une base orthonormée de \mathcal{T} et $(\mathsf{E}_{2,1})$ est une base orthonormée de \mathcal{T}^\perp .

II.3. On sait que

$$\begin{split} P_{\mathscr{T}}(A) &= (A|E_{1,1}) \, E_{1,1} + (A|E_{1,2}) \, E_{1,2} + (A|E_{2,2}) \, E_{2,2} \\ &= E_{1,1} + 2E_{1,2} + 4E_{2,2} = \left(\begin{array}{cc} 1 & 2 \\ 0 & 4 \end{array} \right), \end{split}$$

puis

$$d(A, \mathcal{T}) = ||A - P_{\mathcal{T}}(A)|| = ||3E_{2,1}|| = 3.$$

Problème III. Surjectivité de l'application exponentielle de $\mathscr{M}_n(\mathbb{C})$ vers $\mathsf{GL}_n(\mathbb{R})$

Partie préliminaire

III.1. Soit $(A, B) \in (\mathcal{M}_n(\mathbb{C}))^2$. Pour $(i, j) \in [1, n]^2$,

$$\left| \sum_{k=1}^{n} a_{i,k} b_{k,j} \right| \leqslant \sum_{k=1}^{n} |a_{i,k}| |b_{k,j}| \leqslant \sum_{k=1}^{n} \|A\|_{\infty} \|B\|_{\infty} = n \|A\|_{\infty} \|B\|_{\infty},$$

et donc $\|AB\|_{\infty} \leq n\|A\|_{\infty}\|B\|_{\infty}$ puis $n\|AB\|_{\infty} \leq n\|A\|_{\infty}n\|B\|_{\infty}$ ou encore $\|AB\| \leq \|A\|\|B\|$. On a montré que $\|\|$ est une norme d'algèbre.

III.2. $\mathscr{M}_n(\mathbb{C})$ est un \mathbb{C} -espace vectoriel de dimension finie. On sait alors que toute série absolument convergente d'éléments de $\mathscr{M}_n(\mathbb{C})$ est convergente.

III.3. Soit $M \in \mathcal{M}_n(\mathbb{C})$. Puisque $\| \|$ est multiplicative, pour tout entier naturel k,

$$0 \leqslant \left\| \frac{1}{k!} M^k \right\| = \frac{1}{k!} \left\| M^k \right\| \leqslant \frac{\|M\|^k}{k!}.$$

La série numérique de terme général $\frac{\|M\|^k}{k!}$, $k \in \mathbb{N}$, converge (et a pour somme $e^{\|M\|}$). On en déduit que la numérique de terme général $\left\|\frac{1}{k!}M^k\right\|$, $k \in \mathbb{N}$, converge ou encore que la série de matrices de terme général $\frac{1}{k!}M^k$, $k \in \mathbb{N}$, converge absolument. D'après la question précédente, la série de matrices de terme général $\frac{1}{k!}M^k$, $k \in \mathbb{N}$, converge.

Première partie

III.4. Soit $M \in \mathcal{M}_n(\mathbb{C})$. Posons $\mathrm{Sp}_{\mathbb{C}}(M) = (\lambda_1, \ldots, \lambda_n)$.

On sait que tout élément de $\mathcal{M}_n(\mathbb{C})$ est trigonalisable dans \mathbb{C} . Donc il existe $T \in \mathcal{T}_n(\mathbb{C})$ et $P \in GL_n(\mathbb{C})$ telles que $M = PTP^{-1}$. Pour tout entier \mathfrak{p} , on a alors

$$P\left(\sum_{k=0}^{p} T^{k}\right) P^{-1} = \sum_{k=0}^{p} P T^{k} P^{-1} = \sum_{k=0}^{p} \left(P T P^{-1}\right)^{k} \quad (*).$$

Quand p tend vers $+\infty$, le membre de droite de cette égalité tend vers $\exp\left(PTP^{-1}\right) = \exp(M)$. D'autre part, l'application $A \mapsto PAP^{-1}$ est un endomorphisme de l'espace de dimension finie $\mathcal{M}_n(\mathbb{C})$. On sait alors que l'application $A \mapsto PAP^{-1}$ est continue sur $\mathcal{M}_n(\mathbb{C})$.

Par continuité de l'application $A \mapsto PAP^{-1}$, le membre de gauche de l'égalité (*) tend vers $P \times \exp(T) \times P^{-1}$. Ainsi, $\exp(M) = P \times \exp(T) \times P^{-1}$ et en particulier, $\exp(M)$ est semblable à $\exp(T)$. Donc,

$$\det(\exp(\mathsf{M})) = \det(\exp(\mathsf{T})) = e^{\lambda_1} \times \dots e^{\lambda_n} = e^{\lambda_1 + \dots + \lambda_n} = e^{\operatorname{Tr}(\mathsf{M})}.$$

III.5. En développant suivant la première colonne, on obtient

$$\det(A) = 3(-63 + 55) + (42 - 30) = -24 + 12 = -12 < 0.$$

S'il existe une matrice B à coefficients réels telle que $B^2 = A$, alors $\det(A) = (\det(B))^2 \geqslant 0$ (car $\det(B)$ est un réel) ce qui n'est pas. Donc, il n'existe pas une matrice B à coefficients réels telle que $B^2 = A$.

S'il existe une matrice M à coefficients réels telle que $\exp(M) = A$, alors $\det(A) = \exp(\operatorname{Tr}(M)) > 0$ (car $\operatorname{Tr}(M)$ est un réel) ce qui n'est pas. Donc, il n'existe pas une matrice M à coefficients réels telle que $\exp(M) = A$.

Deuxième partie

III.6.

III.6.a. Pour tout $x \in \mathbb{R}$, posons $f(x) = \alpha 3^x e^{i\pi x} + \beta x^2 2^x$. Alors, f est un élément de F et pour tout entier naturel n,

$$f(n) = \alpha 3^n e^{i\pi n} + \beta n^2 2^n = \alpha (-3)^n + \beta n^2 2^n$$
.

III.6.b. Soit $x_0 \in \mathbb{R}$. Soit $(k, \rho, \theta) \in \{0, 1, 2\} \times]0, +\infty[\times]0, 2\pi]$. Pour tout réel x, posons $f_{k,\rho,\theta}(x) = x^k \rho^x e^{i\theta x}$ puis $g_{k,\rho,\theta}(x) = f_{k,\rho,\theta}(x + x_0)$.

 $g_{0,\rho,\theta} = \rho^{x_0} e^{i\theta x_0} f_{0,\rho,\theta} \in F, \ g_{1,\rho,\theta} = \rho^{x_0} e^{i\theta x_0} f_{1,\rho,\theta} + x_0 \rho^{x_0} e^{i\theta x_0} f_{0,\rho,\theta} \in F \ \mathrm{et} \ g_{2,\rho,\theta} = \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} + 2x_0 \rho^{x_0} e^{i\theta x_0} f_{1,\rho,\theta} + x_0^2 \rho^{x_0} e^{i\theta x_0} f_{1,\rho,\theta} \in F \ \mathrm{et} \ g_{2,\rho,\theta} = \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} + 2x_0 \rho^{x_0} e^{i\theta x_0} f_{1,\rho,\theta} + x_0^2 \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} \in F \ \mathrm{et} \ g_{2,\rho,\theta} = \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} + 2x_0 \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} = \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} + 2x_0 \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} + 2x_0 \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} + 2x_0 \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} = \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} + 2x_0 \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} + 2x_0 \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} = \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} + 2x_0 \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} + 2x_0 \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} = \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} + 2x_0 \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} + 2x_0 \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} = \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} + 2x_0 \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} + 2x_0 \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} + 2x_0 \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} = \rho^{x_0} e^{i\theta x_0} f_{2,\rho,\theta} + 2x_0 \rho^{x_0} f_{2,\rho$

Ainsi, si f est l'un des $f_{k,\rho,\theta}$, alors la fonction $x \mapsto f((x+x_0))$ est un élément de F. Il en est de même de toute combinaison linéaire des $f_{k,\rho,\theta}$ et donc si f est un élément de F, la fonction $x \mapsto f((x+x_0))$ est un élément de F.

III.7.

III.7.a. Pour tout entier naturel n, $\left|n^2\left(\frac{2}{3}\right)^n e^{i\theta n}\right| = n^2\left(\frac{2}{3}\right)^n$. $n^2\left(\frac{2}{3}\right)^n$ tend vers 0 quand n tend vers $+\infty$ d'après un théorème de croissances comparées et donc $n^2\left(\frac{2}{3}\right)^n$ tend vers 0 quand n tend vers $+\infty$.

III.7.b. • Supposons $0 < \rho_1 < \rho_2$. Après division des deux membres de l'égalité de l'énoncé par $n^{k_2} \rho_2^n e^{i\theta_2 n}$, on obtient pour tout entier naturel n,

$$\beta + \alpha n^{k_1 - k_2} e^{i(\theta_1 - \theta_2)n} \left(\frac{\rho_1}{\rho_2}\right)^n = 0.$$

Quand n tend vers $+\infty$, on obtient $\beta = 0$. Quand n = 1, on obtient $\alpha \rho_1 e^{i\theta_1} = 0$ et donc $\alpha = 0$.

• Supposons que $\rho_1 = \rho_2$. Si par exemple $k_1 < k_2$, alors un raisonnement analogue au raisonnement précédent montre que $\beta = 0$ puis $\alpha = 0$. Si $k_1 = k_2$, on obtient après simplification

$$\forall n \in \mathbb{N}^*, \ \alpha e^{i\theta_1 n} + \beta e^{i\theta_2 n} = 0.$$

 $n=1 \text{ et } n=2 \text{ fournissent } \left\{ \begin{array}{l} \alpha e^{i\theta_1} + \beta e^{i\theta_2} = 0 \\ \alpha e^{2i\theta_1} + \beta e^{2i\theta_2} = 0 \end{array} \right. \text{ (S). Le déterminant de (S) vaut } e^{i(\theta_1+\theta_2)} \left(e^{i\theta_2} - e^{i\theta_1} \right) \text{. Puisque } \\ (\theta_1,\theta_2) \in]0,2\pi]^2 \text{ et que } \theta_1 \neq \theta_2, \text{ on a det}(S) \neq 0. \text{ (S) est donc un système de Cramer homogène. (S) admet l'unique solution } \alpha=\beta=0. \end{array}$

III.7.c. Soient f et g deux éléments de F. Si pour tout $n \in \mathbb{N}$, f(n) = g(n), alors pour tout $n \in \mathbb{N}$, (f - g)(n) = 0. Puisque f - g est un élément de F, on en déduit que f - g = 0 et donc que f = g.

III.8. La division euclidienne de X^n par χ_A qui est de degré 3 et le théorème de CAYLEY-HAMILTON montrent que pour tout entier naturel n, il existe trois nombres complexes a_n , b_n et c_n tels que

$$A^n = a_n A^2 + b_n A + c_n I_3.$$

Que χ_A admettent trois racines simples, une racine double et une racine simple ou une racine triple, a_n , b_n et c_n sont solutions d'un système linéaire de trois équations à trois inconnues à coefficients constants dont le second membre est

du type $\begin{pmatrix} f_1(n) \\ f_2(n) \\ f_3(n) \end{pmatrix}$ où f_1 , f_2 et f_3 sont trois éléments de F. Les formules de Cramer montrent alors qu'il existe trois

éléments g_1 , g_2 et g_3 de F tels que pour tout entier naturel n, $a_n = g_1(n)$, $b_n = g_2(n)$ et $c_n = g_3(n)$. On en déduit que les 9 coefficients de A^n sont du type $\omega_{i,j}(n)$ où les $\omega_{i,j}$ sont des éléments de F.

III.9.

III.9.a.
$$\gamma(0) = I_3 \text{ et } \gamma(1) = A.$$

III.9.b. Soient
$$(\mathfrak{m},\mathfrak{n}) \in \mathbb{N}^2$$
. $\gamma(\mathfrak{n}+\mathfrak{m}) = A^{\mathfrak{n}+\mathfrak{m}} = A^{\mathfrak{n}}A^{\mathfrak{m}} = \gamma(\mathfrak{n})\gamma(\mathfrak{m})$.

III.9.c. g est un élément de F et f est un élément de F d'après III.6.b. Pour tout entier naturel n, f(n) est le coefficient ligne i, colonne j, de $\gamma(n+m)$ et g(n) est le coefficient ligne i, colonne j, de $\gamma(n)\gamma(m)$. D'après la question précédente, ces deux coefficients sont égaux.

f et g sont deux éléments de F vérifiant pour tout entier naturel \mathfrak{n} , $f(\mathfrak{n}) = g(\mathfrak{n})$. D'après la question III.7.c), on en déduit que f = g. Mais alors, pour $(\mathfrak{i},\mathfrak{j}) \in [1,3]^2$, les coefficients ligne \mathfrak{i} , colonne \mathfrak{j} , de $\gamma(x+\mathfrak{m})$ et $\gamma(x)\gamma(\mathfrak{m})$ sont les mêmes. Ceci montre que pour tout entier naturel \mathfrak{m} et tout réel x, $\gamma(x+\mathfrak{m}) = \gamma(x)\gamma(\mathfrak{m})$.

 $\begin{aligned} \textbf{III.9.d.} & \text{ Mais alors les applications } f : y \mapsto \omega_{i,j}(x+y) \text{ et } g : y \mapsto \sum_{k=1}^3 \omega_{i,k}(x)\omega_{k,j}(y) \text{ sont deux éléments de } \\ & \text{F vérifiant } \forall m \in \mathbb{N}, \ f(m) = g(m). \ \text{On en déduit que } f = g \text{ et donc que pour } (i,j) \in [\![1,3]\!]^2 \text{ et pour } (x,y) \in \mathbb{R}^2, \\ & \omega_{i,j}(x+y) = \sum_{k=1}^3 \omega_{i,k}(x)\omega_{k,j}(y). \end{aligned}$

Ceci montre que pour tout $(x,y) \in \mathbb{R}^2$, $\gamma(x+y) = \gamma(x)\gamma(y)$.

$$\begin{split} \mathbf{III.10.} \quad \gamma(-1) \times A &= \gamma(-1) \times \gamma(1) = \gamma(0) = \mathrm{I_3.\ Donc}, \, \gamma(-1) = A^{-1}. \\ \mathrm{Pour} \ p \in \mathbb{N}, \, \left(\gamma\left(\frac{1}{p}\right)\right)^p &= \gamma\left(\frac{1}{p} + \dots \frac{1}{p}\right) = \gamma(1) = A. \end{split}$$

III.11. Chaque application $\omega_{i,j}$ est dérivable sur \mathbb{R} et donc γ est dérivable sur \mathbb{R} . Pour tout $(x,y) \in \mathbb{R}^2$, $\gamma(x+y) = \gamma(x)\gamma(y)$. En dérivant les deux membres de cette égalité à y fixé, on obtient

$$\forall (x,y) \in \mathbb{R}^2, \ \gamma'(x+y) = \gamma'(x)\gamma(y).$$

Quand y=0, on obtient en particulier $\forall x\in\mathbb{R},\,\gamma'(x)=\gamma'(0)\gamma(x).$ De plus, $\gamma(0)=I_3.$ La fonction $\mathfrak u:t\mapsto\exp(t\gamma'(0))$ vérifie $\mathfrak u(0)=\exp(0)=I_3$ et pour tout réel $\mathfrak t,\,\mathfrak u'(t)=\gamma'(0)\mathfrak u(t).$ Par unicité de la solution au problème de Cauchy, on en déduit que

$$\forall t \in \mathbb{R}, \ \gamma(t) = \exp(t\gamma'(0)).$$

En particulier, pour t = 1,

$$A = \exp(\gamma'(0))$$
.

Troisième partie

III.12. En développant suivant la deuxième colonne, on obtient

$$\chi_A = \det{(XI_3 - A)} = \begin{vmatrix} X - 3 & 0 & -1 \\ -1 & X + 1 & 2 \\ 1 & 0 & X - 1 \end{vmatrix} = (X - 1)(X^2 - 4X + 4) = (X + 1)(X - 2)^2.$$

 $\text{La matrice A est diagonalisable dans } \mathbb{C} \text{ si et seulement si dim } (\text{Ker}(A-2I_3)) = 2 \text{ ou encore si et seulement si } \text{rg}(A-2I_3) = 1.$

Or, $A - 2I_3 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & -3 & -2 \\ -1 & 0 & -1 \end{pmatrix}$. Les deux premières colonnes ne sont pas colinéaires et donc $A - 2I_3$ n'est pas de rang 1. A n'est pas diagonalisable dans \mathbb{C} .

III.13. Soit $n \in \mathbb{N}$. La division euclidienne de X^n par χ_A s'écrit $X^n = Q \times \chi_A + a_n X^2 + b_n X + c_n$. On évalue en -1 puis en 2 directement et après avoir dérivé. On obtient

$$\begin{cases} a_n - b_n + c_n = (-1)^n \\ 4a_n + 2b_n + c_n = 2^n \\ 4a_n + b_n = n2^{n-1} \end{cases} \Rightarrow \begin{cases} b_n = -4a_n + n2^{n-1} \\ a_n - \left(-4a_n + n2^{n-1}\right) + c_n = (-1)^n \\ 4a_n + 2\left(-4a_n + n2^{n-1}\right) + c_n = 2^n \end{cases} \Rightarrow \begin{cases} b_n = -4a_n + \frac{n}{2}2^n \\ 5a_n + c_n = \frac{n}{2}2^n + (-1)^n \\ -4a_n + c_n = (-n+1)2^n \end{cases}$$

$$\Rightarrow \begin{cases} a_n = \frac{1}{9}\left(\left(\frac{3n}{2} - 1\right)2^n + (-1)^n\right) \\ b_n = -\frac{4}{9}\left(\left(\frac{3n}{2} - 1\right)2^n + (-1)^n\right) + \frac{n}{2}2^n \\ c_n = \frac{4}{9}\left(\left(\frac{3n}{2} - 1\right)2^n + (-1)^n\right) + (-n+1)2^n \end{cases}$$

$$\Rightarrow \begin{cases} a_n = \frac{1}{9}\left(\left(\frac{3n}{2} - 1\right)2^n + (-1)^n\right) \\ b_n = \frac{1}{9}\left(\left(\frac{3n}{2} - 1\right)2^n + (-1)^n\right) \\ c_n = \frac{1}{9}\left(\left(-\frac{3n}{2} + 4\right)2^n - 4(-1)^n\right) \end{cases}$$

Mais alors, d'après le théorème de Cayley-Hamilton, $A^n=Q(A)\chi_A(A)+a_nA^2+b_nA+c_nI_3=a_nA^2+b_nA+c_nI_3$ et donc

$$\forall n \in \mathbb{N}, \ A^n = \frac{1}{9} \left[\left(\left(\frac{3n}{2} - 1 \right) 2^n + (-1)^n \right) A^2 + \left(\left(-\frac{3n}{2} + 4 \right) 2^n - 4(-1)^n \right) A + \left((-3n + 5) 2^n + 4(-1)^n \right) I_3 \right].$$

Plus précisément, puisque $A^2 = \begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & -2 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & -2 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 8 & 0 & 4 \\ 4 & 1 & 1 \\ -4 & 0 & 0 \end{pmatrix}$, pour tout $n \in \mathbb{N}$,

$$\begin{split} 9A^n &= \left(\left(\frac{3n}{2} - 1 \right) 2^n + (-1)^n \right) \left(\begin{array}{ccc} 8 & 0 & 4 \\ 4 & 1 & 1 \\ -4 & 0 & 0 \end{array} \right) + \left(\left(-\frac{3n}{2} + 4 \right) 2^n - 4(-1)^n \right) \left(\begin{array}{ccc} 3 & 0 & 1 \\ 1 & -1 & -2 \\ -1 & 0 & 1 \end{array} \right) \\ &+ \left((-3n + 5)2^n + 4(-1)^n \right) \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \\ &= \left(\begin{array}{ccc} \left(\frac{9n}{2} + 9 \right) 2^n & 0 & \left(\frac{9n}{2} \right) 2^n \\ \left(\frac{9n}{2} \right) 2^n & 9(-1)^n & \left(\frac{9n}{2} - 9 \right) 2^n + 9(-1)^n \\ \left(-\frac{9n}{2} \right) 2^n & 0 & \left(-\frac{9n}{2} + 9 \right) 2^n \end{array} \right). \end{split}$$

$$\text{Ensuite, on pose pour tout r\'eel } t, \gamma(t) = \left(\begin{array}{ccc} \left(\frac{t}{2}+1\right)2^t & 0 & \left(\frac{t}{2}\right)2^t \\ \left(\frac{t}{2}\right)2^t & e^{i\pi t} & \left(\frac{t}{2}-1\right)2^t + e^{i\pi t} \\ \left(-\frac{t}{2}\right)2^t & 0 & \left(-\frac{t}{2}+1\right)2^t \end{array} \right).$$

III.13.a. 0 n'est pas valeur propre de A et donc A est inversible. De plus, d'après la question III.10

$$A^{-1} = \gamma(-1) = \begin{pmatrix} \left(-\frac{1}{2} + 1\right) 2^{-1} & 0 & \left(-\frac{1}{2}\right) 2^{-1} \\ \left(-\frac{1}{2}\right) 2^{-1} & e^{-i\pi} & \left(-\frac{1}{2} - 1\right) 2^{-1} + e^{-i\pi} \\ \left(\frac{1}{2}\right) 2^{-1} & 0 & \left(\frac{1}{2} + 1\right) 2^{-1} \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1 & 0 & -1 \\ -1 & -4 & -7 \\ 1 & 0 & 3 \end{pmatrix}.$$

III.13.b. D'après la question III.10, si $B = \gamma \left(\frac{1}{2}\right)$, alors $B^2 = A$ avec

$$\gamma\left(\frac{1}{2}\right) = \begin{pmatrix} \frac{5\sqrt{2}}{4} & 0 & \frac{\sqrt{2}}{4} \\ \frac{\sqrt{2}}{4} & i & -\frac{3\sqrt{2}}{4} + i \\ \frac{\sqrt{2}}{4} & 0 & \frac{3\sqrt{2}}{4} \end{pmatrix}.$$

III.13.c. D'après la question III.11, si $M = \gamma'(0)$, alors $\exp(M) = A$ avec

$$\gamma'(0) = \begin{pmatrix} \frac{1}{2} + \ln 2 & 0 & \frac{1}{2} \\ \frac{1}{2} & i\pi & \frac{1}{2} - \ln 2 + i\pi \\ -\frac{1}{2} & 0 & -\frac{1}{2} + \ln 2 \end{pmatrix}.$$