

### UNIVERSITÀ DEGLI STUDI DI CATANIA

DIPARTIMENTO DI FISICA E ASTRONOMIA "ETTORE MAJORANA"

CORSO DI LAUREA IN FISICA

### Relazioni di Laboratorio di Fisica 3

LE QUATTRO COSE

# Indice

| In       | dice       |                                                               | j        |
|----------|------------|---------------------------------------------------------------|----------|
| So       | mma        | ario                                                          | ii       |
| 1        | <b>Imp</b> | lementazione Numerica della Formula di Bethe–Bloch Il modello | <b>1</b> |
|          | 1.2        | La simulazione                                                | 2        |
| <b>2</b> | Mis        | ura di Temperature con Arduino                                | 5        |
|          | 2.1        | L'esperimento                                                 | 5        |
|          | 2.2        | Dati                                                          | 7        |
|          | 2.3        | Conclusioni                                                   | 9        |
| 3        | Mis        | ura di resistenze con un multimetro digitale                  | 10       |
|          | 3.1        | Il multimetro                                                 | 10       |
|          | 3.2        | Resistori                                                     | 11       |
|          | 3.3        | Altre misure di resistenze                                    | 13       |
| 4        | Acc        | ettanza Geometrica di un Rivelatore                           | 16       |
|          | 4.1        | Il sistema fisico proposto                                    | 16       |
|          | 4.2        | Codice e generazione dei punti                                | 18       |
| A        | Coc        | lice per Arduino                                              | 20       |
| Bi       | hlios      | rrafia                                                        | 21       |

### Sommario

In QUESTO documento sono raccolte le quattro relazioni brevi da svolgere durante il corso annuale di *Laboratorio di Fisica 3* del Corso di Laurea in *Fisica* presso l'Università degli Studi di Catania.

Le esperienze sono esposte nei quattro capitoli seguenti:

- 1. Implementazione numerica della formula di Bethe-Bloch. Attraverso un codice in C che implementa numericamente la formula di Bethe-Bloch ho simulato il passaggio di una particella  $\alpha$  a 5 MeV attraverso un sottile foglio di alluminio, realizzando un grafico che rappresenta l'energia della particella e la quantità di energia ceduta in funzione della distanza percorsa dentro il materiale.
- 2. Misura di temperature con Arduino. Attraverso l'uso di un microcontrollore Arduino, un sensore di temperatura e un semplice codice ho misurato la variazione di temperatura di una stanza in seguito all'accensione del riscaldamento. Nella relazione analizzo qualitativamente i dati raccolti ed estrapolo una possibile funzione che ne modelli l'andamento.
- 3. Misura di resistenze con un multimetro digitale. Utilizzando un multimetro digitale ho effettuato la misura dei resistori forniti dal kit del multimetro, verificandone la distribuzione statistica. A partire dai risultati di questo studio ho confrontato le misure di alcune delle resistenze collegate in parallelo con i valori previsti teoricamente. Infine ho trovato la resistività di un anello d'argento sfruttando di nuovo una misura di resistenza e considerazioni geometriche.
- 4. Accettanza geometrica di un rivelatore. Con un altro codice in C ho applicato il metodo Montecarlo per valutare numericamente l'accettanza geometrica di un rivelatore a forma di dischetto in presenza di una sorgente di radiazioni isotropa ed estesa. Dai dati simulati ho realizzato delle immagini rappresentative del sistema e un istogramma che mostri la distribuzione della radiazione sul sensore.

Riporto inoltre i collegamenti alle mie due repository su GitHub dove è possibile consultare e scaricare i codici sorgente in C qualora si desiderasse utilizzarli.

Sommario

- 1. https://github.com/ImAure/bethe-bloch-simulation
- 4. https://github.com/ImAure/geometric-acceptance

Il codice realizzato per l'esperienza con Arduino, essendo molto più breve, è invece esposto in appendice  $\S A.$ 

# 1 Implementazione Numerica della Formula di Bethe–Bloch

### 1.1 Il modello

Come descritto dal Particle Data Group [4], la formula di Bethe–Bloch è un modello sperimentale che descrive la perdita di energia di particelle cariche pesanti di media energia—come protoni e particelle  $\alpha$ —nella materia:

$$\left\langle -\frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[ \frac{1}{2} \log \frac{2m_e c^2 \beta^2 \gamma^2 W_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right], \tag{1.1}$$

dove  $\beta$  e  $\gamma$  sono le usuali quantità relativistiche mentre il resto dei simboli sono esplicitati in Tab. 1.1. La perdita di energia media data dalla (1.1) è misuarta in MeV g<sup>-1</sup> cm<sup>2</sup> ma può essere portata in MeV cm<sup>-1</sup> moltiplicando entrambi i membri per la densità volumica  $\rho$  del bersaglio misurata in g cm<sup>-3</sup>. La quantità  $W_{\text{max}}$  è la massima energia che una particella carica può cedere a un elettrone e si

| Simbolo               | Definizione                                                 | Valore o unità di misura                               |
|-----------------------|-------------------------------------------------------------|--------------------------------------------------------|
| $\overline{m_e c^2}$  | massa a riposo dell'elettrone $\times c^2$                  | $0.51099895000(15)\mathrm{MeV}$                        |
| $r_e$                 | raggio classico dell'elettrone $e^2/4\pi\epsilon_0 m_e c^2$ | $2.8179403227(19)\mathrm{fm}$                          |
| $N_{ m A}$            | numero di Avogadro                                          | $6.022140857(74)\times10^{23}\mathrm{mol^{-1}}$        |
| $\overline{\rho}$     | densità                                                     | $\rm gcm^{-3}$                                         |
| x                     | massa per unità di area                                     | $\mathrm{gcm}^{-2}$                                    |
| M                     | massa della particella incidente                            | $MeV c^{-2}$                                           |
| E                     | energia della particella incidente $\gamma Mc^2$            | ${ m MeV}$                                             |
| $W_{\rm max}$         | massima energia trasferibile per collisioni                 | ${ m MeV}$                                             |
| z                     | numero di carica della particella incidente                 |                                                        |
| Z                     | numreo atomico del bersaglio                                |                                                        |
| A                     | numero di massa atomica del bersaglio                       |                                                        |
| K                     | $4\pi N_{\mathrm{A}} r_e^2 m_e c^2$                         | $0.307075\mathrm{MeV}\mathrm{mol}^{-1}\mathrm{cm}^{2}$ |
| I                     | energia media di eccitazione                                | ${ m eV}$                                              |
| $\delta(\beta\gamma)$ | correzione di ionizzazione                                  |                                                        |

Tabella 1.1: Notazione e unità di misura per la formula di Bethe–Bloch. Si tratta di un riassunto della tabella del PDG [4].

Tabella 1.2: caption!!

esprime come

$$W_{\text{max}} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + \gamma m_e / M + (m_e / M)^2}.$$
 (1.2)

La (1.1) e la (1.2) sono valide nell'approssimazione  $0.1 \lesssim \beta \gamma \lesssim 1000$  poiché al limite inferiore la velocità del proiettile diventa confrontabile con la "velocità" degli elettroni atomici mentre al limite superiore gli effetti radiativi non sono più trascurabili.

### 1.2 La simulazione

Ho scelto di simulare la perdita di energia di una particella  $\alpha$  a 5 MeV attraverso un foglio di alluminio di spessore<sup>1</sup> 0.022 mm. Per realizzare la simulazione ho scritto un codice in C che implementa la (1.1) in modo numerico.

### 1.2.1 Descrizione del codice e dei calcoli

L'utente che lancia il programma sceglie lo spessore del materiale bersaglio e il numero di step in cui suddividere il calcolo. Il programma quindi chiede all'utente di selezionare un proiettile tra  $\alpha$ , protoni o muoni e un materiale tra alluminio e rame. I dati come le masse delle particelle, le densità dei materiali e i valori di I, sono definiti come costanti all'inizio del programma. Non li riporto in questo elaborato per brevità—la totalità del codice, costanti incluse, è consultabile sul mio profilo GitHub.<sup>2</sup>

Assumiamo che in ciascun intervallo di spessore<sup>3</sup> ds tutte le quantità variabili di nostro interesse siano costanti—velocità, energia, perdita di energia *et cetera*. Dalla teoria della relatività ristretta scriviamo per l'*n*-esimo intervallo

$$E_n = T_n + Mc^2,$$
  
$$E_n = \gamma_n Mc^2,$$

dove M è la massa a riposo della particella incidente,  $T_n$  la sua energia cinetica ed  $E_n$  la sua energia totale. Note queste ultime due quantità, è possibile calcolare il fattore di Lorentz  $\gamma_n$  e  $\beta_n^2$  come

$$\gamma_n = \frac{T_n + Mc^2}{Mc^2}, \quad \beta_n^2 = 1 - \frac{1}{\gamma_n^2}.$$

<sup>&</sup>lt;sup>1</sup>Dopo aver provato con uno spessore di 0.015 mm e aver constatato che la curva risultava tagliata—la particella non cedeva tutta l'energia all'alluminio—ho scelto di aumentare di poco lo spessore per il gusto di un grafico più completo.

<sup>&</sup>lt;sup>2</sup>Repository: https://github.com/ImAure/bethe-bloch-simulation

 $<sup>^{3}</sup>$ Ricordo che in questo caso la x non indica una distanza.

Noti  $\gamma_n$  e  $\beta_n$ , è possibile calcolare la perdita di energia media per unità di lunghezza attraverso la (1.1) moltiplicata per  $\rho$ . Possiamo in particolare calcolare l'energia cinetica con cui la particella  $\alpha$  entra nello strato successivo,  $T_{n+1}$  come

$$T_{n+1} = T_n + dT_n = T_n + \rho \left\langle -\frac{dE}{dx} \right\rangle_n ds$$
,

essendo naturalmente  $dT_n \leq 0$ . Il calcolo di  $\rho |\langle -dE/dx \rangle_n|$  è svolto dalla funzione bethe(), con l'ausilio della funzione wmax() che in particolare calcola il termine  $W_{\text{max}}$ :

```
double wmax(double beta2, double gamma, double gamma2, double m,
double m2) {
    return (2.0 * E_M * beta2 * gamma2) / (1.0 + (2.0 * gamma * m) +
    m2);
}

double bethe(double z_inc, double z_tar, double a_tar, double beta2,
double gamma2, double w_max, double i2) {
    return (((K * z_inc * z_inc * z_tar) / (a_tar * beta2)) * (0.5 *
    log((2.0 * E_M * beta2 * gamma2 * w_max) / (i2 * 1.0e-12)) - beta2));
}
```

Il calcolo viene quindi ripetuto a partire dalla nuova energia  $T_{n+1}$  per ottenere la perdita di energia attraverso il successivo strato. Per ogni reiterazione il codice stampa su un file la distanza totale percorsa, l'energia cinetica della particella e la quantità  $|dT_n| = \rho |\langle -dE/dx \rangle_n|$ .

#### 1.2.2 Risultati della simulazione

Osserviamo adesso i dati che si ottengono inserendo nel programma un numero arbitrariamente alto di step pari a 500. In Fig. 1.1 sono riportati in due grafici i valori dell'energia cinetica della particella  $\alpha$  e del potere d'arresto del materiale al variare della distanza percorsa.

Dal primo grafico risulta evidente la decrescita dell'energia della particella. Si nota che l'energia cinetica non si annulla del tutto, nonostante si avvicini ragionevolmente a  $0\,\mathrm{MeV}$ : questo può essere dovuto a imprecisioni nel codice come il modo in cui vengono gestiti valori di T negativi e valori di dT che farebbero aumentare l'energia.

Nel secondo grafico invece è riportato l'andamento del potere d'arresto, detto comunemente curva di Bragg. L'energia depositata dalla particella  $\alpha$  è inversamente proporzionale al quadrato della velocità, per questo subito prima del totale arresto si osserva il massimo deposito di energia nel tratto di grafico detto picco di Bragg.



Figura 1.1: In alto l'energia della particella  $\alpha$  che diminuisce man mano che la particella penetra l'alluminio. In basso il potere d'arresto con l'evidente picco di Bragg.

# 2 Misura di Temperature con Arduino

Tra le esperienze svolte con Arduino Uno riporto in particolare la misura della variazione della temperatura della mia stanza da letto in seguito all'accensione del riscaldamento in casa.

### 2.1 L'esperimento

L'obiettivo dell'esperienza è quello di valutare qualitativamente l'andamento della temperatura della stanza per fare una stima di quanto velocemente si riscaldi e a quale temperatura tenda asintoticamente.

### 2.1.1 Preparazione della stanza

Per massimizzare l'escursione termica ho effettuato la misura durante una sera invernale avendo preventivamente aperto le finestre per abbassare la temperatura della stanza.

Per migliorare la circolazione dell'aria ed evitare un eccessivo gradiente di temperatura—il radiatore caldo si trova in un angolo della stanza mentre i vetri freddi della finestra si trovano dal lato opposto—ho acceso dei ventilatori: uno a soffitto per limitare la raccolta dell'aria calda in alto e un più piccolo ventilatore da tavolo per allontanare l'aria calda dal radiatore e facilitare il riscaldamento dell'aria fredda.

Infine, per isolare il più possbile il sistema, ho chiuso le tende sulla finestra per ridurre la dispersione di calore attraverso il vetro freddo e mantenuto la porta chiusa per non disperdere calore nel resto della casa.

#### 2.1.2 Strumenti utilizzati

Gli strumenti utillizzati per la presa dei dati sono:

- Una microcontrollore Arduino Uno con un sensore di temperatura TMP36;
- Un computer per compilare ed eseguire il codice sulla scheda Arduino e prelevare i dati.



Figura 2.1: A sinistra una rappresentazione digitale del circuito realizzato per l'esperimento. A destra lo schema del circuito. Entrambe le illustrazioni sono state realizzate con Tinkercad<sup>®</sup>.

Il sensore TMP36 è un sensore di temperatura a semiconduttore pensato per operare in un range di temperature che va da  $-40\,^{\circ}\mathrm{C}$  a  $+125\,^{\circ}\mathrm{C}$ . Esso presenta tre pin: +vs, vout e gnd. Il primo e l'ultimo servono per l'alimentazione che deve essere compresa tra  $2.7\,\mathrm{V}$  e  $5.5\,\mathrm{V}$  con una corrente inferiore ai  $50\,\mu\mathrm{A}$ , che garantisce un surriscaldamento per effetto Joule trascurabile. Il secondo pin invece sestituisce una differenza di potenziale rispetto al gnd proporzionale alla temperatura misurata. La sensibilità del sensore fornita dal costruttore è di  $\pm 1\,^{\circ}\mathrm{C}$  e il suo fattore di scala è di  $10\,\mathrm{mV}\,^{\circ}\mathrm{C}^{-1}$  [1].

La scheda Arduino attraverso i pin analogici accetta in input delle differenze di potenziale che vanno da 0 V a 5 V che vengono convertite in un segnale digitale che assume valori discreti da 0 a 1023.

### 2.1.3 Circuito e codice

Il circuito realizzato per l'esperimento è quello rappresentato in Fig. 2.1. L'alimentazione al sensore è fornita tramite i pin 5v e gnd mentre il segnale in uscita dal sensore viene letto dal pin A0 della scheda.

Per effettuare le misure ho usato il codice riportato in appendice A. A intervalli di  $30\,\mathrm{s}$  la lettura discreta di tensione data dal sensore e la converte in un numero decimale tra  $0\,\mathrm{V}$  e  $5\,\mathrm{V}$  attraverso la formula

$$\frac{(\texttt{float}) \texttt{analogRead}(\texttt{SENSOR\_PIN})}{\texttt{MAX\_READ}} * \texttt{MAX\_V} \,,$$

<sup>&</sup>lt;sup>1</sup>Come detto prima si tratta di un valore tra 0 e 1023



Figura 2.2: Andamento della temperatura nel tempo

essendo MAX\_READ = 1023 e MAX\_V = 5 V. Sapendo che a una tensione di 0 V corrisponde una temperatura di 0.5 °C e a 4.5 V corrispondono 100 °C, la conversione della lettura in gradi Celsius è data da

$$\left[\frac{({\rm float}){\rm analogRead}({\rm SENSOR\_PIN})}{{\rm MAX\_READ}} * {\rm MAX\_V} - {\rm A}\right] * {\rm B}\,, \eqno(2.1)$$

dove  $A = 0.5 \,\mathrm{V}$  e  $B = 100 \,\mathrm{^{\circ} C} \,\mathrm{V}^{-1}$  sono i fattori di scala.

La conversione dei valori discreti in temperatura è eseguita dal codice tra le righe 23 e 26 applicando la (2.1). Vengono eseguite N=20 misure consecuitive di cui è contestualmente calcolata la media che viene a sua volta stampata a schermo. Infine il codice attende il tempo mancante per raggiungere i 30 s dall'inizio del 100p.

### 2.2 Dati

Attraverso il codice riportato al punto §2.1.3 ho misurato la temperatura della stanza ogni 30 s per circa cinque ore e mezza; in Fig. 2.2 sono riportati tutti i dati raccolti, avendo convertito il tempo in minuti.

### 2.2.1 Prime considerazioni

Osservando il grafico si nota una evidente crescita di temperatura che, dopo una crescita regolare, oscilla fino a stabilizzarsi poco sopra i 24°C.

I primi punti a temperatura più elevata possono essere dovuti a un precedente contatto con le mani e un riscaldamento del sensore che è poi tornato a temperatura



Figura 2.3: Temperature mediate in intervalli di 30 min.

ambiente. L'ampia oscillazione dei dati intorno ai 130 min deve essere dovuta a un movimento del sensore, che ho dovuto spostare di qualche centimetro. È quindi possibile che anche le successive oscillazioni siano dovute alla nuova posizione del sensore in un punto con un flusso d'aria più dinamico.

### 2.2.2 Breve analisi dei dati

Per per visualizzare il macro-andamento della temperatura tamponando il rumore, ho deciso di suddividere le misure in intervalli temporali di 30 min e riportare nel grafico in Fig. 2.3 la temperatura media per ciascun intervallo.

Anche in questo caso si notano l'andamento crescente della temperatura e il salto, ma le oscillazioni intorno alla temperatura finale di circa  $24\,^{\circ}\text{C}$  risultano smorzate. Si osserva inoltre che la temperatura si stabilizza intorno a questo valore  $150\,\text{min}$ —oppure  $2\,\text{h}\,30\,\text{min}$ —dopo l'accensione del riscaldamento.

Svolgiamo adesso un fit dei dati di carattere prettamente qualitativo. Dal momento che il radiatore a regime avrà una temperatura  $T^*$  fissata e tenendo conto della dispersione del calore verso l'esterno, è ragionevole assumere che la temperatura della stanza T(t) tenda asintoticamente a un valore finito  $T_f \leq T^*$  per  $t \to +\infty$ . Una funzione crescente che ha un comportamento simile è

$$T(t) = T_{\rm f} \left[ 1 - \exp\left(-\frac{t - t_0}{\tau}\right) \right], \tag{2.2}$$

per qualche valore di  $T_{\rm f}$ ,  $t_0$  e  $\tau$ . Supponiamo arbitrariamente che la temperatura

limite² sia  $T_{\rm f}=24.5\,^{\circ}{\rm C}$ ; per quanto detto prima supponiamo inoltre che il tempo caratteristico³ sia  $\tau=95\,{\rm min}\approx63\,\%$  di 150 min. Imponendo che sia  $T(0)=18.63\,^{\circ}{\rm C}$  troviamo

 $t_0 = \tau \log \left[ 1 - \frac{T(0)}{T_{\mathrm{f}}} \right] \approx -135 \, \mathrm{min} \,.$ 

Infine per centrare meglio la funzione rispetto agli intervalli di  $30 \,\mathrm{min}$  sommiamo a  $t_0$  un valore di  $15 \,\mathrm{min}$ , pari a metà dell'intervallo di tempo. La funzione finale che si ottiene sostituendo questi valori nella (2.2) e si trova rappresentata in Fig.  $2.3 \,\mathrm{\grave{e}}$ 

 $T(t) = 24.5 \left[ 1 - \exp\left(-\frac{t + 120}{95}\right) \right].$  (2.3)

### 2.3 Conclusioni

I dati presi possono essere migliorati facendo maggiore attenzione a non toccare gli strumenti o uscendo dalla stanza e assicurandosi che la porta non venga mai aperta.

Per avere informazioni più dettagliate sulla bontà del fit si potrebbe invece procedere applicando il metodo dei minimi quadrati per determinare i tre parametri  $T_{\rm f}$ ,  $t_0$  e  $\tau$ . Per eseguire un fit con due parametri invece che tre, si può migliorare l'accuratezza su  $T_{\rm f}$  continuando a prendere dati il più a lungo possibile. Questo permetterebbe di fissare la temperatura limite con più sicurezza e di determinare  $t_0$  e  $\tau$  attraverso la linearizzazione della (2.2) in

$$\log \left[ 1 - \frac{T(t)}{T_{\rm f}} \right] = \frac{t_0}{\tau} - \frac{1}{\tau}t \quad \iff \quad y(t) = c_1(t_0, \tau) + c_2(t_0, \tau)t \,.$$

Si potrebbe inoltre provare a utilizzare funzioni diverse dalla (2.2) nel fit per provare a modellare quantitativamente le oscillazioni che si verificano in prossimità della temperatura limite, possibilmente dovute a moti convettivi non del tutto smorzati dai ventilatori indicati al punto §2.1.1.

 $<sup>^2\</sup>mathrm{I}$ dati in Fig. 2.2 oscillando superano i 25 °C ma le ultime misure sono tutte comprese tra 24 °C e 24.5 °C, motivo per cui assumo quest'ultimo valore come temperatura limite.

 $<sup>^3</sup>$ Dal momento che "a occhio" la temperatura di 24.5  $^{\circ}$ C viene già raggiunta dopo 150 min, scegliamo il tempo caratteristico come il tempo necessario a raggiungere il 63 %, ovvero (1/e)-esimo della temperatura finale.

# 3 Misura di resistenze con un multimetro digitale

Tra le esperienze svolte con il multimetro digitale riporto la misura delle resistenze di vari oggetti, tra cui un anello e alcuni resistori, misurati sia individualmente che in parallelo.

Ai resistori dedico una sezione più approfondita in quanto ho preso 50 misure su resistori distinti—ma teoricamente con resistenza uguale—per verificare la distribuzione delle misure.

### 3.1 Il multimetro

Lo strumento utilizzato per l'interezza dell'esperienza è un multimetro digitale della serie DVM841 della Vellemann<sup>®</sup> [5], Fig. 3.1. Il multimetro è in grado di misurare tensione e corrente continua e alternata, resistenza, frequenza e temperatura. Avendo una risoluzione di 2000 punti, il display del multimetro può visualizzare un massimo di 1999 unità.

L'apparecchio è alimentato a batteria e presenta tre prese a cui si possono collegare due puntali con gli appositi spinotti. Volendo misurare solo resistenze, ho usato solo la presa V $\Omega\,\mathrm{mA}$ e la messa a terra.



Figura 3.1: Il multimetro DVM841 della Vellemann® usato per l'esperienza.





Figura 3.2: A sinistra alcuni dei 50 resistori da  $820\,\Omega$ . A destra un dettaglio dove è visibile il codice colore.

|     | Resistenze $(\Omega)$ |     |     |     |     |     |     |     |     |
|-----|-----------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| 797 | 806                   | 806 | 807 | 807 | 807 | 807 | 807 | 807 | 807 |
| 807 | 808                   | 808 | 808 | 808 | 808 | 808 | 808 | 808 | 808 |
| 808 | 808                   | 808 | 809 | 809 | 809 | 809 | 809 | 809 | 809 |
| 809 | 809                   | 809 | 809 | 809 | 809 | 810 | 810 | 810 | 810 |
| 810 | 810                   | 810 | 811 | 811 | 812 | 812 | 812 | 812 | 813 |

Tabella 3.1: Misure di resistenza effettuate su 50 resistori distinti.

### 3.2 Resistori

Il kit presenta N=50 resistori distinti—come quelli in Fig. 3.2—il cui codice colore restituisce un valore<sup>1</sup> teorico di  $820\,\Omega\pm5\,\%$ , ovvero  $820(40)\,\Omega$ .

Ho effettuato le misure impostando il multimetro in modalità ohm, alla portata di  $2\,\mathrm{k}\Omega$ , poggiando i puntali sui terminali di ciascun resistore e aspettando di volta in volta che la lettura si stabilizzasse. I dati raccolti sono riportati in ordine crescente in Tab. 3.1.

### 3.2.1 Considerazioni preliminari

Notiamo subito che la resistenza media è  $R_{\rm m}=808.6\,\Omega$  con una deviazione standard di  $\sigma=2.3\,\Omega$ ; l'errore sul valor medio è quindi  $\sigma_R=\sigma/\sqrt{N-1}=0.33\,\Omega$ , che è confrontabile con la sensibilità dello strumento  $\delta R_{\rm s}=1\,\Omega$ .

Questi valori rientrano completamete nell'intervallo fornito dal costruttore; tuttavia, il fatto che tutte le misure siano inferiori a 820  $\Omega$  suggerisce la presenza di un errore sistematico.<sup>2</sup>

 $<sup>^{1}\</sup>mathrm{Lo}$ si può dedurre da qualunque legenda fedele allo standard IEC 60062.

 $<sup>^2\</sup>mathrm{Se}$  si trattasse di errori casuali dovuti a imprecisioni di fabbricazione, mi aspetterei letture sia al di sopra che al di sotto del valore di riferimento; è poco probabile che tutte le resistenze devino dal valore teorico allo stesso modo a meno che non si sia verificato un evento che ha alterato tutte le resistenze—un lotto prodotto con lo stesso materiale meno resistente, seppur entro il margine del  $5\,\%$ , o deterioramento nel tempo.

|       | In | $O_k$          | $E_k$ |       |    |       |
|-------|----|----------------|-------|-------|----|-------|
|       |    | $\overline{R}$ | <     | 806.5 | 2  | 4.133 |
| 806.5 | <  | R              | <     | 807.5 | 8  | 5.735 |
| 807.5 | <  | R              | <     | 808.5 | 12 | 6.925 |
| 808.5 | <  | R              | <     | 809.5 | 13 | 7.278 |
| 809.5 | <  | R              | <     | 810.5 | 6  | 6.655 |
| 810.5 | <  | R              | <     | 811.5 | 2  | 5.297 |
| 811.5 | <  | R              | <     | 812.5 | 4  | 3.668 |
| 812.5 | <  | R              |       |       | 1  | 2.211 |

Tabella 3.2: Suddivisione dei dati per il test del  $\chi^2$ . Ometto le unità di misura per chiarezza espositiva e semplicità dei calcoli.

Il dato di resistenza minima di 797  $\Omega$  può essere scartato secondo il cirerio di Chauvenet. Esso dista più di  $4\sigma$  dal valor medio (ca. 4.17 $\sigma$ ) e il numero di dati atteso<sup>3</sup> su un campione di N=50 elementi a una distanza maggiore o uguale a  $4\sigma$  è pari a  $0.003 \ll 1/2$ . Scartando questo dato la nuova media e la nuova deviazione standard sono:

$$R_{\rm m} = 808.8 \,\Omega$$
  $\sigma = 1.633 \,\Omega$ .

La nuova incertezza sul valor medio è  $\sigma_R = 0.24 \,\Omega \lesssim \delta R_{\rm s} = 1 \,\Omega$ , che è ancora confrontabile con la sensibilità dello strumento. Se tuttavia consideriamo la somma in quadratura delle due incertezze troviamo

$$\overline{\sigma} = \sqrt{\sigma_R^2 + \delta R_{\rm s}^2} = 1.02\,\Omega \simeq 1\,\Omega\,,$$

per cui assumo  $\overline{\sigma} = 1 \Omega$  come incertezza sul valor medio.

### 3.2.2 Test del $\chi^2$

Supponiamo che le misure seguano, con una significatività  $\alpha=0.05$ , la distribuzione normale centrata in  $R_{\rm m}$  e di ampiezza  $\sigma$ :

$$N(x; R_{\rm m}, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[ -\frac{1}{2} \left( \frac{x - R_{\rm m}}{\sigma} \right)^2 \right].$$

Costruiamo quindi un istogramma dei dati. Visto l'intervallo contenuto in cui le misure variano, ho scelto di raccogliere i dati in bin di ampiezza  $1\Omega$ , uno per ciascun valore misurato; ciascun bin si estende da mezza unità *prima* del valore di interesse a mezza unità *dopo*. In Tab. 3.2 sono riportati i bin e le frequenze osservate  $O_k$ .

Nella stessa tabella sono riportati i valori attesi  $E_k$  per ciascun bin, calcolati moltiplicando la dimensione del campione N=49 per l'integrale di ciascun intervallo della gaussiana. Ho ottenuto gli intervalli convertendo gli estremi in variabili normali standardizzate e ho ricavato l'integrale attraverso un foglio di calcolo.

<sup>&</sup>lt;sup>3</sup>Per il calcolo di questa probabilità ho fatto riferimento a [INSERIRE TAYLOR!!!]



Figura 3.3: Illustrazione rappresentativa dei resistori montati in parallelo su una breadboard.

È adesso possibile calcolare il  $\chi^2$  per definizione:

$$\chi^2 = \sum_{k=1}^8 \frac{(O_k - E_k)^2}{E_k} = 12.98.$$

essendo d=n-c=6 il numero di gradi di libertà, n=8 il numero di bin e c=2 il numero di parametri stimati—media e deviazione standard. Il valore critico per il test del  $\chi^2$  è  $\chi^2_{\rm crit}=12.59$  [3], posso quindi rigettare l'ipotesi nulla che le misure seguano la distribuzione gaussiana.

### 3.3 Altre misure di resistenze

Riporto altre misure eseguite con il multimetro su vari materiali.

### 3.3.1 Resistenze in parallelo

Usando n=1,2,3 resistori scelti casualmente tra quelli studiati al punto §3.2, ho misurato la resistenza equivalente  $R_{\rm o}$  dei resistori montati in parallelo su una breadboard come in Fig. 3.3. I risultati sono riportati in Tab. 3.3, insieme ai valori teorici, calcolati a partire dalla  $R_{\rm m}$  del punto precedente come

$$\frac{1}{R_{\rm e}} = \frac{n}{R_{\rm m}} \iff R_{\rm e} = \frac{R_{\rm m}}{n} \,,$$

e alle incertezze  $\delta R_{\rm s}$  e  $\delta R_{\rm e}$ . La prima è ancora la sensibilità dello strumento, mentre la seconda è calcolata propagando l'incertezza  $\overline{\sigma}$  sul valor medio  $R_{\rm m}$  trovata al punto §3.2:

$$\delta R_{\rm e} = \left| \frac{\partial R_{\rm e}}{\partial R} \right| \overline{\sigma} = \frac{\overline{\sigma}}{n} \,,$$

Osservando i dati si nota che la resistenza equivalente osservata  $R_{\rm o}$  è sempre maggiore della resistenza teorica  $R_{\rm e}$ . Questo può essere dovuto alla presenza di una resistenza di contatto con la breadboard, che non ho considerato nel calcolo di  $R_{\rm e}$ .

| $\overline{n}$ | $R_{\rm o}$ | $\delta R_{ m s}$ | $R_{\rm e}$ | $\delta R_{ m e}$ |
|----------------|-------------|-------------------|-------------|-------------------|
| 1              | 815         | 1                 | 808.8       | 1                 |
| 2              | 410         | 1                 | 404.4       | 0.5               |
| 3              | 272         | 1                 | 269.6       | 0.3               |

Tabella 3.3: Resistenze equivalenti misurate su resistori in parallelo e relative incertezze. Tutti i valori sono espressi in  $\Omega$ .



Figura 3.4: Fotografia dell'anello. I tratti in rosso indicano il punti in cui sono stati poggiati i puntali del multimetro.

### 3.3.2 Resistività di un anello

Ho misurato la resistenza di un anello metallico che suppongo essere in argento. L'anello è di forma circolare ma presenta un'apertura in basso, per cui ho effettuato la misura della resistenza poggiando i puntali del multimetro in corrispondenza dei punti estremi dell'apertura, come in Fig. 3.4. Ho posto il multimetro alla portata di  $200\,\Omega$  disponendo di una sensibilità  $\delta R_{=}0.1\,\Omega$ ; la resistenza misurata è quindi  $R=0.5\,\Omega$ .

Dalla seconda legge di Ohm possiamo ricavare la resistività del materiale che compone l'anello, supponendo che esso sia omogeneo e isotropo. La resistività è definita come

$$\rho = R \frac{S}{L} \,, \tag{3.1}$$

dove S è la sezione dell'anello e L la lunghezza equivalente ottenuta rettificando la circonferenza.

L'anello ha una raggio medio di  $r=2.1(1)\,\mathrm{cm}$ , uno spessore di  $d=0.3(1)\,\mathrm{cm}$  e un'altezza pari a  $h=0.8(1)\,\mathrm{cm}$ . La sezione dell'anello è quindi  $S=hd=0.24(11)\,\mathrm{cm}^2$ , mentre, denotando con  $\ell=1.0(1)\,\mathrm{cm}$  la distanza che separa i due puntali e che quindi non partecipa alla resistenza, la lunghezza equivalente è  $L=2\pi r-\ell=12.3(7)\,\mathrm{cm}$ .

Dal momento che l'anello è formato da fili cilindrici intrecciati, la sezione S rappresenta in realtà una sovrastima della sezione effettiva. Il rapporto tra la superficie di un cerchio di raggio d/2 e quella di un quadrato di lato d è pari a  $\pi/4$ , per cui la sezione effettiva è  $S_{\rm eff} = S\pi/4 = 0.19(8)\,{\rm cm}^2$ .

La resistività dell'anello calcolata dalla (3.1) è quindi

$$\rho = R \frac{S_{\rm eff}}{L} = 0.0077(55)\,\Omega\,{\rm cm} = 7.7(55)\times 10^{-5}\,\Omega\,{\rm m}\,,$$

valore che si discosta di diversi ordini di grandezza da quello noto di  $1.59 \times 10^{-8} \,\Omega$  m [2]. Un risultato così elevato può essere attribuito sia all'incertezza sulle misure geometriche, sia al fatto che l'anello non sia composto da argento puro, sia alla presenza di ossidazione superficiale o di cattivi contatti tra i fili intrecciati che ne aumentano la resistenza complessiva.

# 4 Accettanza Geometrica di un Rivelatore

L'utlima esperienza consiste nel calcolare l'accettanza geometrica di un rivelatore, definita come il rapporto tra il numero di particelle incidenti e il numero di particelle emesse, sfruttando la generazione di numeri casuali e il metodo montecarlo.

### 4.1 Il sistema fisico proposto

L'obiettivo che mi sono posto è stato quello di calcolare l'accettanza geometrica di un rivelatore a forma di dischetto con raggio variabile, posto in una posizione arbitraria nel semispazio positivo delle z. Allo stesso modo, la sorgente di particelle è costituita da un secondo dischetto, anch'esso con raggio variabile, centrato nell'origine.

Le ipotesi che ho fatto sono le seguenti:

- 1. Ciascun punto della sorgente emette in maniera isotropa, ovvero in tutte le direzioni con la stessa probabilità;
- 2. La probabilità di emissione da parte di un punto della sorgente è uniforme, ovvero tutti i punti hanno la stessa probabilità di emettere una particella;
- 3. Il rivelatore e la sorgente sono sempre paralleli tra loro e al piano Oxy, e il rivelatore è sempre posto sopra la sorgente.

Per ragioni di simmetria, la posizione del rivelatore sopra la sorgente non causa alcuna perdita di generalità. Se il rivelatore avesse altezza z=0, visto lo spessore nullo sia della sorgente che del rivelatore, nessuna particella verrebbe rivelata. La sorgente inoltre emette in modo simmetrico rispetto al piano Oxy, quindi il caso z<0 è equivalente al caso z>0.

### 4.1.1 Sorgente puntiforme

Dal momento che la sorgente può emettere da un solo punto alla volta, cominciamo col risolvere il problema nel caso di una sorgente puntiforme nell'origine e un rivelatore che può essere spostato rispettando le ipotesi di cui sopra.

Affinché la distribuzione delle particelle sia uniforme, generare delle coordinate cartesiane casuali non è sufficiente. La scelta che ho fatto è quella di generare delle direzioni casuali in coordinate sferiche  $(\varrho, \vartheta, \varphi)$ , risparmiando la spesa computazionale di generare la distanza  $\varrho$  dall'origine. Per le proprietà delle coordinate sferiche possiamo generare uniformemente  $\cos \vartheta \in [-1; 1]$ , per poi ricavare  $\vartheta$  prendendone l'arcocoseno, mentre possiamo generare uniformemente  $\varphi \in [0; 2\pi]$ .

Fissata una direzione  $(\vartheta, \varphi)$ , la particella emessa dalla sorgente si muoverà lungo la retta che passa per l'origine avente tale direzione. Ci chiediamo quindi se questa retta intersecherà il rivelatore, e in caso affermativo, in quale punto.<sup>1</sup>

Da semplici considerazioni geometrice, se indichiamo con  $P \equiv (x, y, z)$  il generico punto dello spazio, con  $C \equiv x_c, y_c, z_c$  il centro del rivelatore e con R il suo raggio, il punto appartiene al dischetto se si verificano contemporaneamente le seguenti condizioni:

$$(P-C)^2 \le R^2, \tag{4.1}$$

$$z = z_c. (4.2)$$

La prima condizione corrisponde a  $(x-x_c)^2+(y-y_c)^2+(z-z_c)^2 \leq R^2$ , che messa a sistema con la seconda dà  $(x-x_c)^2+(y-y_c)^2 \leq R^2$ . Passiamo quindi a coordinate polari per trovare le condizioni che devono rispettare i valori di  $\vartheta \in \varphi$ :

$$\begin{cases} x = \varrho \sin\vartheta \cos\varphi \\ y = \varrho \sin\vartheta \sin\varphi \\ z = \varrho \cos\vartheta \end{cases}.$$

Sostituendo queste relazioni nella condizione di appartenenza al cerchio troviamo:

$$(\varrho \sin\theta \cos\varphi - x_c)^2 + (\varrho \sin\theta \sin\varphi - y_c)^2 \le R^2,$$

che con qualche passaggio si riduce a

$$\varrho^2 \sin^2 \vartheta + x_c^2 + y_c^2 - 2\varrho \sin \vartheta (x_c \cos \varphi + y_c \sin \varphi) \le R^2,$$

che a sua volta, a patto di porre  $d^2 = x_c^2 + y_c^2$ ,  $x_c = d\cos\varphi_c$  e  $y_c = d\sin\varphi_c$ , non è altro che il teorema del coseno applicato al triangolo formato dalle proiezioni sul piano Oxy dei punti O, P e C, che ha un angolo in O proprio pari a  $\varphi - \varphi_c$ :

$$\varrho^2 \sin^2 \vartheta + d^2 - 2\varrho \sin \vartheta d \cos(\varphi - \varphi_c) \le R^2. \tag{4.3}$$

Se assumiamo  $\cos \vartheta \neq 0$ —che è vero se  $P \notin Oxy$ , e ciò non è restrittivo in quanto il piano è un sottoinsieme a misura nulla dello spazio  $\mathbb{R}^3$ —possiamo invertire la (4.2) scritta in coordinate polari per esplicitare  $\varrho$ :

$$\varrho = \frac{z_c}{\cos\vartheta} \,. \tag{4.4}$$

<sup>&</sup>lt;sup>1</sup>Sapere il punto non è necessario per il calcolo dell'accettanza geometrica, ma è utile allo scopo di generare un'immagine del sistema.

Sostituendo quest'ultima relazione (4.4) nella (4.3) si ottiene

$$z_c \tan \theta + d^2 - 2z_c \tan \theta d \cos(\varphi - \varphi_c) \le R^2. \tag{4.5}$$

I valori  $z_c$ , d e  $\varphi_c$  sono costanti, per cui una volta generati  $\vartheta$  e  $\varphi$  è sufficiente verificare la disequazione per sapere se il raggio interseca o no il rivelatore. Resta quindi da trovare esplicitamente la posizione dei punti  $P^* \equiv (x^*, y^*, z^*)$  che soddisfano la relazione; il problema può essere ridotto a quello dell'intersezione tra la retta individuata dalla direzione  $(\vartheta, \varphi)$  e il piano  $z = z_c$ . La quantità  $z_c \tan \vartheta$  è la proiezione del segmento  $\overline{OP^*}$  sul piano Oxy: il suo prodotto per  $\cos \varphi$  e  $\sin \varphi$  ci dà rispettivamente le coordinate  $x^*$  e  $y^*$ . L'altezza  $z^*$  è banalmente quella del rivelatore  $z_c$ .

È importante notare che il problema non distingue tra "sopra" e "sotto", per cui un raggio rivolto verso il simmetrico di C rispetto all'origine sarà ugualmente soluzione della disequazione. Per tener conto di ciò basterà dividere per 2 il conteggio totale dei punti che intersecano il rivelatore.

### 4.1.2 Sorgente estesa

Per estendere quanto sviluppato al punto precedente alla sorgente estesa, è sufficiente fare una semplice traslazione: generato un punto  $S \equiv (x_s, y_s, 0)$  arbitrario nella sorgente circolare, è possibile calcolare la posizione relativa del centro C' che avrà quindi coordinate  $C' \equiv (x_c - x_s, y_c - y_s, z_c)$ . Fatto ciò possiamo generare una direzione casuale e, con gli stessi passaggi del punto precedente, trovare gli eventuali punti di intersezione nel sistema di riferimento del punto sorgente. Trovati tali punti, sarà immediato riportarli nel sistema di riferimento del centro della sorgente con la traslazione inversa. Si trova in particolare

$$\begin{cases} x^* = x_s + z_c \tan\theta \cos\varphi \\ y^* = x_s + z_c \tan\theta \sin\varphi \\ z^* = z_c \end{cases},$$

dove  $\vartheta$  e  $\varphi$  sono ancora le direzioni generate casualmente nel sistema del punto sorgente.

### 4.2 Codice e generazione dei punti

Come per la simulazione dell'assorbimento di particelle cariche esposto al capitolo §1, anche per questo progetto l'interezza del codice è reperibile sul mio profilo GitHub.<sup>2</sup>

Il programma può essere lanciato scegliendo fin da subito il numero di punti da generare, le dimensioni della sorgente e del rivelatore e la posizione di quest'ultimo. Dopo aver verificato la validità dell'input e caricati i dati in memoria, il programma

<sup>&</sup>lt;sup>2</sup>Repository: https://github.com/ImAure/geometric-acceptance

genera un punto casuale come sorgente in coordinate polari piane e una direzione casuale per la radiazione in coordinale polari sferiche.

```
int rand_polar2D(polar2D_t *ptr, double radius) {
       if (ptr == NULL) return -1;
2
       ptr->rho = (radius < 0) ? 1 : (sqrt((double)rand() / RAND_MAX) *</pre>
3
       ptr->phi = (radius == 0) ? 0 : ((double)rand() / RAND_MAX) * (2 *
4
   M_PI);
5
       return 0;
6
7
   int rand_polar3D(polar3D_t *ptr, double radius) {
8
9
       if (ptr == NULL) return -1;
       ptr->rho = (radius < 0) ? 1 : (cbrt((double)rand() / RAND_MAX) *</pre>
10
   radius);
       if (radius == 0) {
11
           ptr->theta = 0;
12
           ptr->phi
13
       } else {
14
           ptr->theta = acos(1 - 2 * ((double)rand() / RAND_MAX));
15
           ptr->phi = ((double)rand() / RAND_MAX) * (2 * M_PI);
16
17
       return 0;
18
19
```

Affinché la distribuzione sia uniforme, nel caso bidimensionale viene generato uniformemente  $\varrho^2 \in [0;1]$ , ne viene presa la radice quadrata e il risultato è moltiplicato per il raggio massimo. Nel caso tridimensionale la funzione fa la stessa cosa con  $\varrho^3$  e la radice terza, mentre come detto prima viene generato  $\cos \vartheta \in [-1;1]$  e ne viene preso l'arcocoseno per avere  $\vartheta$ .

Entrambe le funzioni ammettono come input anche un raggio massimo negativo: in quel caso il raggio verrà posto uguale a 1 e verrà generata solo una direzione. Questo comportamento è sfruttato nella generazione casuale della radiazione, in cui la chiamata a funzione avviene come rand\_polar3D(&ray, -1).

La funzione intercept() è pensata appositamente per verificare l'intersezione del raggio nel caso di una sorgente puntiforme posta nell'origine. Di conseguenza viene calcolata la posizione relativa del rivelatore  $(x'_c, y'_c, z_c)$  e data in input alla funzione insieme alla direzione. La funzione verifica quindi la disequazione (4.5) e in caso di successo aggiorna il conteggio e salva i dati in un file che raccoglie solo i punti del rivelatore dove si è verificata un'intersezione e i punti sorgente da cui si è originato il raggio.

<sup>&</sup>lt;sup>3</sup>Per essere precisi, il coseno è generato tra 1 e -1 piuttosto che tra -1 e 1. Questo perché per  $\vartheta = 0$  si ha  $\cos \vartheta = 1$  e per  $\vartheta = \pi$  si ha  $\cos \vartheta = -1$ 

# A Codice per Arduino

Riporto in questa appendice il codice utilizzato per l'esperienza descritta al Capitolo §2.

```
#define SENSOR_PIN A0
   #define MAX_READ
                        1023.0
   #define MAX_V
                        5.0
   #define N
                        20
   #define A
                        0.5
   #define B
                        100
   void setup() {
      // set SENSOR_PIN (A0) as analog input pin and initialize the
9
   serial monitor
       pinMode(SENSOR_PIN, INPUT);
10
       Serial.begin(9600);
11
12
   }
13
   float
                 tmp;
15
                 i = 0;
   unsigned long dt = 0;
16
17
   void loop() {
18
       // print the time since the program started
19
20
       Serial.print(dt = millis());
21
       // measure the temperature 20 times and calculate the average
22
23
       for (i = 0, tmp = 0; i < N; i++) {
           tmp += (((float)analogRead(SENSOR_PIN) / MAX_READ) * MAX_V -
   A) * B;
25
       tmp = tmp / N;
26
27
       // print the measured temperature next to the corresponding time
28
       Serial.print(", ");
29
       Serial.println(tmp);
30
31
       // keep waiting until 30 seconds have passed
32
       dt = millis() - dt;
       delay(30000 - dt);
   }
```

## Bibliografia

- [1] Analog Devices. TMP35/TMP36/TMP37 Data Sheet. Analog Devices. 2015. URL: https://www.analog.com/media/en/technical-documentation/data-sheets/tmp35\_36\_37.pdf.
- [2] David J Griffiths. *Introduction to Electrodynamics*. 4<sup>a</sup> ed. Upper Saddle River, NJ: Pearson, 2012.
- [3] National Institute of Standards and Technology (NIST). Critical Values of the Chi-Square Distribution. NIST. URL: https://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm.
- [4] S. Navas et al. «Review of Particle Physics». In: Phys. Rev. D 110.3 (2024), p. 030001. DOI: 10.1103/PhysRevD.110.030001. URL: https://link.aps. org/doi/10.1103/PhysRevD.110.030001.
- [5] Velleman. *DVM841 Digital Multimeter*. Velleman. 2021. URL: https://cdn.velleman.eu/downloads/1/dvm841a6v04.pdf.