POLYNOMIAL IDENTITY INVOLVING BINOMIAL THEOREM AND FAULHABER'S FORMULA

PETRO KOLOSOV

ABSTRACT. In this manuscript we show that for every $n \geq 1, n, m \in \mathbb{N}$ there are coefficients

 $\mathbf{A}_{m,0}, \mathbf{A}_{m,1}, \dots, \mathbf{A}_{m,m}$ such that the polynomial identity holds

$$n^{2m+1} = \sum_{k=1}^{n} \mathbf{A}_{m,0} k^{0} (n-k)^{0} + \mathbf{A}_{m,1} (n-k)^{1} + \dots + \mathbf{A}_{m,m} k^{m} (n-k)^{m}$$

Contents

1.	Introduction	1
2.	Approach via a system of linear equations	3
3.	Approach via recursion	8
4.	Approach via recursion: Examples	11
5.	Conclusions	13
Re	ferences	14

1. Introduction

Considering the table of forward finite differences of the polynomial n^3

Date: July 16, 2023.

²⁰¹⁰ Mathematics Subject Classification. 26E70, 05A30.

Key words and phrases. Binomial theorem, Polynomial identities, Binomial coefficients, Bernoulli numbers, Pascal's triangle, Faulhaber's formula, Polynomials.

n	n^3	$\Delta(n^3)$	$\Delta^2(n^3)$	$\Delta^3(n^3)$
0	0	1	6	6
1	1	7	12	6
2	8	19	18	6
3	27	37	24	6
4	64	61	30	6
5	125	91	36	
6	216	127		
7	343			

Table 1. Table of finite differences of the polynomial n^3 .

We can observe easily that finite differences of the polynomial n^3 may be expressed according to the following relation, via rearrangement of the terms

$$\Delta(0^3) = 1 + 6 \cdot 0$$

$$\Delta(1^3) = 1 + 6 \cdot 0 + 6 \cdot 1$$

$$\Delta(2^3) = 1 + 6 \cdot 0 + 6 \cdot 1 + 6 \cdot 2$$

$$\Delta(3^3) = 1 + 6 \cdot 0 + 6 \cdot 1 + 6 \cdot 2 + 6 \cdot 3$$

$$\vdots$$

$$\Delta(n^3) = 1 + 6 \cdot 0 + 6 \cdot 1 + 6 \cdot 2 + 6 \cdot 3 + \dots + 6 \cdot n$$

Furthermore, the polynomial n^3 is identical to

$$n^{3} = [1 + 6 \cdot 0] + [1 + 6 \cdot 0 + 6 \cdot 1] + [1 + 6 \cdot 0 + 6 \cdot 1 + 6 \cdot 2] + \cdots$$
$$+ [1 + 6 \cdot 0 + 6 \cdot 1 + 6 \cdot 2 + \cdots + 6 \cdot (n - 1)]$$

Rearranging the above equation, we get

$$n^{3} = n + (n-0) \cdot 6 \cdot 0 + (n-1) \cdot 6 \cdot 1 + (n-2) \cdot 6 \cdot 2 + \dots + 1 \cdot 6 \cdot (n-1)$$

Therefore, we can consider n^3 as

$$n^{3} = \sum_{k=1}^{n} 6k(n-k) + 1 \tag{1.1}$$

Assume that equation (1.1) has an implicit form as follows

$$n^{3} = \sum_{k=1}^{n} \mathbf{A}_{1,1} k^{1} (n-k)^{1} + \mathbf{A}_{1,0} k^{0} (n-k)^{0},$$
(1.2)

where $\mathbf{A}_{1,1} = 6$ and $\mathbf{A}_{1,0} = 1$, respectively. So is there a generalization of the relation (1.2) for all positive odd powers? Therefore, let be a conjecture

Conjecture 1.1. For every $n \geq 1$, $n, m \in \mathbb{N}$ there are coefficients $\mathbf{A}_{m,0}, \mathbf{A}_{m,1}, \ldots, \mathbf{A}_{m,m}$ such that

$$n^{2m+1} = \sum_{k=1}^{n} \mathbf{A}_{m,0} k^{0} (n-k)^{0} + \mathbf{A}_{m,1} (n-k)^{1} + \dots + \mathbf{A}_{m,m} k^{m} (n-k)^{m}$$

2. Approach via a system of linear equations

One approach to prove the conjecture was proposed by Albert Tkaczyk in his series of the preprints [1, 2] and extended further at [3]. The main idea is to construct and solve a system of linear equations. Such a system of linear equations is constructed via expanding the definition of the coefficients $\mathbf{A}_{m,r}$ applying Binomial theorem [4] and Faulhaber's formula [5]. Consider the definition of the coefficients $\mathbf{A}_{m,r}$

$$n^{2m+1} = \sum_{r=0}^{m} \mathbf{A}_{m,r} \sum_{k=1}^{n} k^{r} (n-k)^{r}$$
(2.1)

Expanding the $(n-k)^r$ part via Binomial theorem we get

$$n^{2m+1} = \sum_{r=0}^{m} \mathbf{A}_{m,r} \sum_{k=1}^{n} k^{r} (n-k)^{r}$$

$$= \sum_{r=0}^{m} \mathbf{A}_{m,r} \sum_{k=1}^{n} k^{r} \left[\sum_{t=0}^{r} (-1)^{t} {r \choose t} n^{r-t} k^{t} \right]$$

$$= \sum_{r=0}^{m} \mathbf{A}_{m,r} \left[\sum_{t=0}^{r} (-1)^{t} {r \choose t} n^{r-t} \sum_{k=1}^{n} k^{t+r} \right]$$
(2.2)

Applying the Faulhaber's formula to the sum $\sum_{k=1}^{n} k^{t+r}$ we get

$$n^{2m+1} = \sum_{r=0}^{m} \mathbf{A}_{m,r} \left[\sum_{t=0}^{r} (-1)^{t} {r \choose t} n^{r-t} \sum_{k=1}^{n} k^{t+r} \right]$$

$$= \mathbf{A}_{m,0} n + \mathbf{A}_{m,1} \left[\frac{1}{6} (-n+n^{3}) \right] + \mathbf{A}_{m,2} \left[\frac{1}{30} (-n+n^{5}) \right] + \mathbf{A}_{m,3} \left[\frac{1}{420} (-10n+7n^{3}+3n^{7}) \right]$$

$$+ \mathbf{A}_{m,4} \left[\frac{1}{630} (-21n+20n^{3}+n^{9}) \right] + \mathbf{A}_{m,5} \left[\frac{1}{2772} (-210n+231n^{3}-22n^{5}+n^{11}) \right]$$

$$+ \mathbf{A}_{m,6} \left[\frac{1}{60060} (-15202n+18200n^{3}-3003n^{5}+5n^{13}) \right]$$

$$+ \mathbf{A}_{m,7} \left[\frac{1}{51480} (-60060n+76010n^{3}-16380n^{5}+429n^{7}+n^{15}) \right]$$

$$+ \mathbf{A}_{m,8} \left[\frac{1}{218790} (-1551693n+2042040n^{3}-516868n^{5}+26520n^{7}+n^{17}) \right] + \cdots$$

$$(2.3)$$

Given fixed m, the coefficients $\mathbf{A}_{m,r}$ can be determined via a system of linear equations. Consider an example

Example 2.1. Let be m = 1 so that we have the following relation defined by (eqref)

$$\mathbf{A}_{m,0}n + \mathbf{A}_{m,1} \left[\frac{1}{6} (-n + n^3) \right] - n^3 = 0$$

Multiplying by 6 right-hand side and left-hand side, we get

$$6\mathbf{A}_{1,0}n + \mathbf{A}_{1,1}(-n+n^3) - 6n^3 = 0$$

Opening brackets and rearranging the terms gives

$$6\mathbf{A}_{1,0} - \mathbf{A}_{1,1}n + \mathbf{A}_{1,1}n^3 - 6n^3 = 0$$

Combining the common terms yields

$$n(6\mathbf{A}_{1,0} - \mathbf{A}_{1,1}) + n^3(\mathbf{A}_{1,1} - 6) = 0$$

Therefore, the system of linear equations follows

$$\begin{cases} 6\mathbf{A}_{1,0} - \mathbf{A}_{1,1} = 0 \\ \mathbf{A}_{1,1} - 6 = 0 \end{cases}$$

Solving it, we get

$$\begin{cases} \mathbf{A}_{1,1} = 6 \\ \mathbf{A}_{1,0} = 1 \end{cases}$$

Example 2.2. Let be m = 2 so that we have the following relation defined by (eqref)

$$\mathbf{A}_{m,0}n + \mathbf{A}_{m,1} \left[\frac{1}{6} (-n+n^3) \right] + \mathbf{A}_{m,2} \left[\frac{1}{30} (-n+n^5) \right] - n^5 = 0$$

Multiplying by 30 right-hand side and left-hand side, we get

$$30\mathbf{A}_{2,0}n + 5\mathbf{A}_{2,1}(-n+n^3) + \mathbf{A}_{2,2}(-n+n^5) - 30n^5 = 0$$

Opening brackets and rearranging the terms gives

$$30\mathbf{A}_{2,0} - 5\mathbf{A}_{2,1}n + 5\mathbf{A}_{2,1}n^3 - \mathbf{A}_{2,2}n + \mathbf{A}_{2,2}n^5 - 30n^5 = 0$$

Combining the common terms yields

$$n(30\mathbf{A}_{2,0} - 5\mathbf{A}_{2,1} - \mathbf{A}_{2,2}) + 5\mathbf{A}_{2,1}n^3 + n^5(\mathbf{A}_{2,2} - 30) = 0$$

Therefore, the system of linear equations follows

$$\begin{cases} 30\mathbf{A}_{2,0} - 5\mathbf{A}_{2,1} - \mathbf{A}_{2,2} = 0 \\ \mathbf{A}_{2,1} = 0 \\ \mathbf{A}_{2,2} - 30 = 0 \end{cases}$$

Solving it, we get

$$\begin{cases} \mathbf{A}_{2,2} = 30 \\ \mathbf{A}_{2,1} = 0 \\ \mathbf{A}_{2,0} = 1 \end{cases}$$

Example 2.3. Let be m=3 so that we have the following relation defined by (eqref)

$$\mathbf{A}_{m,0}n + \mathbf{A}_{m,1} \left[\frac{1}{6} (-n+n^3) \right] + \mathbf{A}_{m,2} \left[\frac{1}{30} (-n+n^5) \right] + \mathbf{A}_{m,3} \left[\frac{1}{420} (-10n+7n^3+3n^7) \right] - n^7 = 0$$

Multiplying by 420 right-hand side and left-hand side, we get

$$420\mathbf{A}_{3,0}n + 70\mathbf{A}_{2,1}(-n+n^3) + 14\mathbf{A}_{2,2}(-n+n^5) + \mathbf{A}_{3,3}(-10n+7n^3+3n^7) - 420n^7 = 0$$

Opening brackets and rearranging the terms gives

$$420\mathbf{A}_{3,0}n - 70\mathbf{A}_{3,1} + 70\mathbf{A}_{3,1}n^3 - 14\mathbf{A}_{3,2}n + 14\mathbf{A}_{3,2}n^5 - 10\mathbf{A}_{3,3}n + 7\mathbf{A}_{3,3}n^3 + 3\mathbf{A}_{3,3}n^7 - 420n^7 = 0$$

Combining the common terms yields

$$N(420\mathbf{A}_{3,0} - 70\mathbf{A}_{3,1} - 14\mathbf{A}_{3,2} - 10\mathbf{A}_{3,3}) + n^3(70\mathbf{A}_{3,1} + 7\mathbf{A}_{3,3}) + n^514\mathbf{A}_{3,2} + n^7(3\mathbf{A}_{3,3} - 420) = 0$$

Therefore, the system of linear equations follows

$$\begin{cases} 420\mathbf{A}_{3,0} - 70\mathbf{A}_{3,1} - 14\mathbf{A}_{3,2} - 10\mathbf{A}_{3,3} = 0 \\ 70\mathbf{A}_{3,1} + 7\mathbf{A}_{3,3} = 0 \\ \mathbf{A}_{3,2} - 30 = 0 \\ 3\mathbf{A}_{3,3} - 420 = 0 \end{cases}$$

Solving it, we get

$$\begin{cases} \mathbf{A}_{3,3} = 140 \\ \mathbf{A}_{3,2} = 0 \\ \mathbf{A}_{3,1} = -\frac{7}{70} \mathbf{A}_{3,3} = -14 \\ \mathbf{A}_{3,0} = \frac{(70\mathbf{A}_{3,1} + 10\mathbf{A}_{3,3})}{420} = 1 \end{cases}$$

Example 2.4. Let be m = 4 so that we have the following relation defined by (eqref)

$$\mathbf{A}_{m,0}n + \mathbf{A}_{m,1} \left[\frac{1}{6} (-n+n^3) \right] + \mathbf{A}_{m,2} \left[\frac{1}{30} (-n+n^5) \right] + \mathbf{A}_{m,3} \left[\frac{1}{420} (-10n+7n^3+3n^7) \right]$$

$$+ \mathbf{A}_{m,4} \left[\frac{1}{630} (-21n+20n^3+n^9) \right] - n^9 = 0$$

Multiplying by 630 right-hand side and left-hand side, we get

$$630\mathbf{A}_{4,0}n + 105\mathbf{A}_{4,1}(-n+n^3) + 21\mathbf{A}_{4,2}(-n+n^5)$$
$$+ \frac{3}{2}\mathbf{A}_{4,3}(-10n+7n^3+3n^7) + \mathbf{A}_{4,4}(-21n+20n^3+n^9) - 630n^9 = 0$$

Opening brackets and rearranging the terms gives

$$630\mathbf{A}_{4,0}n - 105\mathbf{A}_{4,1}n + 105\mathbf{A}_{4,1}n^3 - 21\mathbf{A}_{4,2}n + 21\mathbf{A}_{4,2}n^5$$
$$-\frac{3}{2}\mathbf{A}_{4,3} \cdot 10n + \frac{3}{2}\mathbf{A}_{4,3} \cdot 7n^3 + \frac{3}{2}\mathbf{A}_{4,3} \cdot 3n^7$$
$$-21\mathbf{A}_{4,4}n + 20\mathbf{A}_{4,4}n^3 + \mathbf{A}_{4,4}n^9 - 630n^9 = 0$$

Combining the common terms yields

$$n(630\mathbf{A}_{4,0} - 105\mathbf{A}_{4,1} - 21\mathbf{A}_{4,2} - 15\mathbf{A}_{4,3} - 21\mathbf{A}_{4,4})$$

$$+ n^{3} \left(105\mathbf{A}_{4,1} + \frac{21}{2}\mathbf{A}_{4,3} + 20\mathbf{A}_{4,4}\right) + n^{5}(21\mathbf{A}_{4,2})$$

$$+ n^{7} \left(\frac{9}{2}\mathbf{A}_{4,3}\right) + n^{9}(\mathbf{A}_{4,4} - 630) = 0$$

Therefore, the system of linear equations follows

stem of linear equations follows
$$\begin{cases} 630\mathbf{A}_{4,0} - 105\mathbf{A}_{4,1} - 21\mathbf{A}_{4,2} - 15\mathbf{A}_{4,3} - 21\mathbf{A}_{4,4} = 0\\ 105\mathbf{A}_{4,1} + \frac{21}{2}\mathbf{A}_{4,3} + 20\mathbf{A}_{4,4} = 0\\ \mathbf{A}_{4,2} = 0\\ \mathbf{A}_{4,3} = 0\\ \mathbf{A}_{4,4} - 630 = 0 \end{cases}$$

Solving it, we get

$$\begin{cases} \mathbf{A}_{4,4} = 630 \\ \mathbf{A}_{4,3} = 0 \\ \mathbf{A}_{4,2} = 0 \\ \mathbf{A}_{4,1} = -\frac{20}{105} \mathbf{A}_{4,4} = -120 \\ \mathbf{A}_{4,0} = \frac{105 \mathbf{A}_{4,1} + 21 \mathbf{A}_{4,4}}{630} = 1 \end{cases}$$

3. Approach via recursion

Another approach to determine the coefficients $\mathbf{A}_{m,r}$ was provided by Dr. Max Alekseyev in MathOverflow discussion [6]. Generally, the idea was to determine the coefficients $\mathbf{A}_{m,r}$ recursively starting from the base case $\mathbf{A}_{m,m}$ up to $\mathbf{A}_{m,r-1},\ldots,\mathbf{A}_{m,0}$ via previously determined values. Consider the Faulhaber's formula

$$\sum_{k=1}^{n} k^{p} = \frac{1}{p+1} \sum_{j=0}^{p} {p+1 \choose j} B_{j} n^{p+1-j}$$

it is very important to note that summation bound is p while binomial coefficient upper bound is p + 1. It means that we cannot skip summation bounds unless we do some trick as

$$\sum_{k=1}^{n} k^{p} = \frac{1}{p+1} \sum_{j=0}^{p} {p+1 \choose j} B_{j} n^{p+1-j} = \left[\frac{1}{p+1} \sum_{j=0}^{p+1} {p+1 \choose j} B_{j} n^{p+1-j} \right] - B_{p+1}$$
$$= \left[\frac{1}{p+1} \sum_{j=0}^{p+1} {p+1 \choose j} B_{j} n^{p+1-j} \right] - B_{p+1}$$

Using the Faulhaber's formula $\sum_{k=1}^{n} k^p = \left[\frac{1}{p+1} \sum_{j} {p+1 \choose j} B_j n^{p+1-j}\right] - B_{p+1}$ we get

$$\sum_{k=1}^{n} k^{r} (n-k)^{r} = \sum_{t=0}^{r} (-1)^{t} {r \choose t} n^{r-t} \sum_{k=1}^{n} k^{t+r}$$

$$= \sum_{t=0}^{r} (-1)^{t} {r \choose t} n^{r-t} \left[\frac{1}{t+r+1} \sum_{j} {t+r+1 \choose j} B_{j} n^{t+r+1-j} - B_{t+r+1} \right]$$

$$= \sum_{t=0}^{r} {r \choose t} \left[\frac{(-1)^{t}}{t+r+1} \sum_{j} {t+r+1 \choose j} B_{j} n^{2r+1-j} - B_{t+r+1} n^{r-t} \right]$$

$$= \sum_{t=0}^{r} {r \choose t} \frac{(-1)^{t}}{t+r+1} \sum_{j} {t+r+1 \choose j} B_{j} n^{2r+1-j} - \sum_{t=0}^{r} {r \choose t} \frac{(-1)^{t}}{t+r+1} B_{t+r+1} n^{r-t}$$

$$= \sum_{j} \sum_{t} {r \choose t} \frac{(-1)^{t}}{t+r+1} {t+r+1 \choose j} B_{j} n^{2r+1-j} - \sum_{t=0}^{r} {r \choose t} \frac{(-1)^{t}}{t+r+1} B_{t+r+1} n^{r-t}$$

$$= \sum_{j} B_{j} n^{2r+1-j} \sum_{t} {r \choose t} \frac{(-1)^{t}}{t+r+1} {t+r+1 \choose j} - \sum_{t=0}^{r} {r \choose t} \frac{(-1)^{t}}{t+r+1} B_{t+r+1} n^{r-t}$$

Now, we notice that

$$\sum_{t} {r \choose t} \frac{(-1)^{t}}{r+t+1} {r+t+1 \choose j} = \begin{cases} \frac{1}{(2r+1)\binom{2r}{r}}, & \text{if } j=0; \\ \frac{(-1)^{r}}{j} {r \choose 2r-j+1}, & \text{if } j>0. \end{cases}$$
(3.1)

An elegant proof of the above binomial identity is provided at [7]. In particular, the equation (3.1) is zero for $0 < t \le j$. So that taking j = 0 we have

$$\sum_{k=1}^{n} k^{r} (n-k)^{r} = \frac{1}{(2r+1)\binom{2r}{r}} n^{2r+1} + \left[\sum_{j\geq 1} B_{j} n^{2r+1-j} \sum_{t} \binom{r}{t} \frac{(-1)^{t}}{t+r+1} \binom{t+r+1}{j} \right] - \left[\sum_{t=0}^{r} \binom{r}{t} \frac{(-1)^{t}}{t+r+1} B_{t+r+1} n^{r-t} \right]$$

Now let's simplify the double summation

$$\sum_{k=1}^{n} k^{r} (n-k)^{r} = \frac{1}{(2r+1)\binom{2r}{r}} n^{2r+1} + \underbrace{\left[\sum_{j\geq 1} \frac{(-1)^{r}}{j} \binom{r}{2r-j+1} B_{j} n^{2r+1-j}\right]}_{(\star)}$$
$$-\underbrace{\left[\sum_{t=0}^{r} \binom{r}{t} \frac{(-1)^{t}}{t+r+1} B_{t+r+1} n^{r-t}\right]}_{(\diamond)}$$

Hence, introducing $\ell = 2r - j + 1$ to (\star) and $\ell = r - t$ to (\diamond) , we get

$$\sum_{k=1}^{n} k^{r} (n-k)^{r} = \frac{1}{(2r+1)\binom{2r}{r}} n^{2r+1} + \left[\sum_{\ell} \frac{(-1)^{r}}{2r+1-\ell} \binom{r}{\ell} B_{2r+1-\ell} n^{\ell} \right]$$
$$- \left[\sum_{\ell} \binom{r}{\ell} \frac{(-1)^{r-\ell}}{2r+1-\ell} B_{2r+1-\ell} n^{\ell} \right]$$
$$= \frac{1}{(2r+1)\binom{2r}{r}} n^{2r+1} + 2 \sum_{\text{odd } \ell} \frac{(-1)^{r}}{2r+1-\ell} \binom{r}{\ell} B_{2r+1-\ell} n^{\ell}$$

Using the definition of $A_{m,r}$, we obtain the following identity for polynomials in n

$$\sum_{r} \mathbf{A}_{m,r} \frac{1}{(2r+1)\binom{2r}{r}} n^{2r+1} + 2\sum_{r} \mathbf{A}_{m,r} \sum_{\text{odd } \ell} \frac{(-1)^r}{2r+1-\ell} \binom{r}{\ell} B_{2r+1-\ell} n^{\ell} \equiv n^{2m+1}$$

Replacing odd ℓ by d we get

$$\sum_{r} \mathbf{A}_{m,r} \frac{1}{(2r+1)\binom{2r}{r}} n^{2r+1} + 2 \sum_{r} \mathbf{A}_{m,r} \sum_{d} \frac{(-1)^{r}}{2r-2d} \binom{r}{2d+1} B_{2r-2d} n^{2d+1} \equiv n^{2m+1}$$

$$\sum_{r} \mathbf{A}_{m,r} \left[\frac{1}{(2r+1)\binom{2r}{r}} n^{2r+1} \right] + 2 \sum_{r} \mathbf{A}_{m,r} \left[\sum_{d} \frac{(-1)^{r}}{2r-2d} \binom{r}{2d+1} B_{2r-2d} n^{2d+1} \right] - n^{2m+1} = 0$$

$$\sum_{r=0}^{m} \mathbf{A}_{m,r} \left[\frac{1}{(2r+1)\binom{2r}{r}} n^{2r+1} \right] + 2 \sum_{r=0}^{m} \mathbf{A}_{m,r} \left[\sum_{d=0}^{(r-1)/2} \frac{(-1)^{r}}{2r-2d} \binom{r}{2d+1} B_{2r-2d} n^{2d+1} \right] - n^{2m+1} = 0$$
(3.2)

Taking the coefficient of n^{2m+1} in (3.2), we get

$$\mathbf{A}_{m,m} = (2m+1) \binom{2m}{m}$$

and taking the coefficient of n^{2d+1} for an integer d in the range $m/2 \le d < m$, we get

$$\mathbf{A}_{m,d} = 0$$

Taking the coefficient of n^{2d+1} for d in the range $m/4 \le d < m/2$ we get

$$\mathbf{A}_{m,d} \frac{1}{(2d+1)\binom{2d}{d}} + 2(2m+1)\binom{2m}{m}\binom{m}{2d+1} \frac{(-1)^m}{2m-2d} B_{2m-2d} = 0$$

i.e

$$\mathbf{A}_{m,d} = (-1)^{m-1} \frac{(2m+1)!}{d!d!m!(m-2d-1)!} \frac{1}{m-d} B_{2m-2d}$$

Continue similarly we can express $\mathbf{A}_{m,r}$ for each integer r in range $m/2^{s+1} \leq r < m/2^s$ (iterating consecutively s = 1, 2, ...) via previously determined values of $\mathbf{A}_{m,d}$ as follows

$$\mathbf{A}_{m,r} = (2r+1) \binom{2r}{r} \sum_{d>2r+1}^{m} \mathbf{A}_{m,d} \binom{d}{2r+1} \frac{(-1)^{d-1}}{d-r} B_{2d-2r}$$

Finally, the coefficient $\mathbf{A}_{m,r}$ is defined recursively as

$$\mathbf{A}_{m,r} := \begin{cases} (2r+1)\binom{2r}{r}, & \text{if } r = m; \\ (2r+1)\binom{2r}{r} \sum_{d \ge 2r+1}^{m} \mathbf{A}_{m,d} \binom{d}{2r+1} \frac{(-1)^{d-1}}{d-r} B_{2d-2r}, & \text{if } 0 \le r < m; \\ 0, & \text{if } r < 0 \text{ or } r > m, \end{cases}$$
(3.3)

where B_t are Bernoulli numbers [8]. It is assumed that $B_1 = \frac{1}{2}$. For example,

m/r	0	1	2	3	4	5	6	7
0	1							
1	1	6						
2	1	0	30					
3	1	-14	0	140				
4	1	-120	0	0	630			
5	1	-1386	660	0	0	2772		
6	1	-21840	18018	0	0	0	12012	
7	1	-450054	491400	-60060	0	0	0	51480

Table 2. Coefficients $A_{m,r}$.

The coefficients $\mathbf{A}_{m,r}$ are also registered in the OEIS [9, 10].

4. Approach via recursion: Examples

Consider the coefficients $\mathbf{A}_{m,r}$ definition (eqref), it can be written as

$$\mathbf{A}_{m,r} := \begin{cases} (2r+1)\binom{2r}{r}, & \text{if } r = m; \\ \sum_{d \ge 2r+1}^{m} \mathbf{A}_{m,d} \underbrace{(2r+1)\binom{2r}{r}\binom{d}{2r+1}\frac{(-1)^{d-1}}{d-r}B_{2d-2r},}_{T(d,r)} & \text{if } 0 \le r < m; \\ 0, & \text{if } r < 0 \text{ or } r > m \end{cases}$$

Therefore, let be a definition for the polynomial T(d,r)

Definition 4.1.

$$T(d,r) = (2r+1)\binom{2r}{r}\binom{d}{2r+1}\frac{(-1)^{d-1}}{d-r}B_{2d-2r}$$

Example 4.2. Let be m = 2 so first we get $A_{2,2}$

$$\mathbf{A}_{2,2} = 5\binom{4}{2} = 30$$

Then $\mathbf{A}_{2,1} = 0$ because $\mathbf{A}_{m,d}$ is zero in the range $m/2 \leq d < m$ means that zero for d in $1 \leq d < 2$. Finally, the coefficient $\mathbf{A}_{2,0}$ is

$$\mathbf{A}_{2,0} = \sum_{d\geq 1}^{2} \mathbf{A}_{2,d} \cdot T(d,0) = \mathbf{A}_{2,1} \cdot T(1,0) + \mathbf{A}_{2,2} \cdot T(2,0)$$
$$= 30 \cdot \frac{1}{30} = 1$$

Example 4.3. Let be m = 3 so that first we get $A_{3,3}$

$$\mathbf{A}_{3,3} = 7 \binom{6}{3} = 140$$

Then $\mathbf{A}_{3,2} = 0$ because $\mathbf{A}_{m,d}$ is zero in the range $m/2 \le d < m$ means that zero for d in $2 \le d < 3$. The $\mathbf{A}_{3,1}$ coefficient is non-zero and calculated as

$$\mathbf{A}_{3,1} = \sum_{d>3}^{3} \mathbf{A}_{3,d} \cdot T(d,1) = \mathbf{A}_{3,3} \cdot T(3,1) = 140 \cdot \left(-\frac{1}{10}\right) = -14$$

Finally, the coefficient $A_{3,0}$ is

$$\mathbf{A}_{3,0} = \sum_{d\geq 1}^{3} \mathbf{A}_{3,d} \cdot T(d,0) = \mathbf{A}_{3,1} \cdot T(1,0) + \mathbf{A}_{3,2} \cdot T(2,0) + \mathbf{A}_{3,3} \cdot T(3,0)$$
$$= -14 \cdot \frac{1}{6} + 140 \cdot \frac{1}{42} = 1$$

Example 4.4. Let be m = 4 so that first we get $A_{4,4}$

$$\mathbf{A}_{4,4} = 9 \binom{8}{4} = 630$$

Then $\mathbf{A}_{4,3} = 0$ and $\mathbf{A}_{4,2} = 0$ because $\mathbf{A}_{m,d}$ is zero in the range $m/2 \le d < m$ means that zero for d in $2 \le d < 4$. The value of the coefficient $\mathbf{A}_{4,1}$ is non-zero and calculated as

$$\mathbf{A}_{4,1} = \sum_{d>3}^{4} \mathbf{A}_{4,d} \cdot T(d,1) = \mathbf{A}_{4,3} \cdot T(3,1) + \mathbf{A}_{4,4} \cdot T(4,1) = 630 \cdot \left(-\frac{4}{21}\right) = -120$$

Finally, the coefficient $A_{4.0}$ is

$$\mathbf{A}_{4,0} = \sum_{d\geq 1}^{4} \mathbf{A}_{4,d} \cdot T(d,0) = \mathbf{A}_{4,1} \cdot T(1,0) + \mathbf{A}_{4,4} \cdot T(4,0) = -120 \cdot \frac{1}{6} + 630 \cdot \frac{1}{30} = 1$$

Example 4.5. Let be m = 5 so that first we get $A_{5,5}$

$$\mathbf{A}_{5,5} = 11 \binom{10}{5} = 2772$$

Then $\mathbf{A}_{5,4} = 0$ and $\mathbf{A}_{5,3} = 0$ because $\mathbf{A}_{m,d}$ is zero in the range $m/2 \le d < m$ means that zero for d in $3 \le d < 5$. The value of the coefficient $\mathbf{A}_{5,2}$ is non-zero and calculated as

$$\mathbf{A}_{5,2} = \sum_{d>5}^{5} \mathbf{A}_{5,d} \cdot T(d,2) = \mathbf{A}_{5,5} \cdot T(5,2) = 2772 \cdot \frac{5}{21} = 660$$

The value of the coefficient $A_{5,1}$ is non-zero and calculated as

$$\mathbf{A}_{5,1} = \sum_{d\geq 3}^{5} \mathbf{A}_{5,d} \cdot T(d,1) = \mathbf{A}_{5,3} \cdot T(3,1) + \mathbf{A}_{5,4} \cdot T(4,1) + \mathbf{A}_{5,5} \cdot T(5,1)$$
$$= 2772 \cdot \left(-\frac{1}{2}\right) = -1386$$

Finally, the coefficient $A_{5,0}$ is

$$\mathbf{A}_{5,0} = \sum_{d\geq 1}^{5} \mathbf{A}_{5,d} \cdot T(d,0) = \mathbf{A}_{5,1} \cdot T(1,0) + \mathbf{A}_{5,2} \cdot T(2,0) + \mathbf{A}_{5,5} \cdot T(5,0)$$
$$= -1386 \cdot \frac{1}{6} + 660 \cdot \frac{1}{30} + 2772 \cdot \frac{5}{66} = 1$$

5. Conclusions

In this manuscript, we have shown that for every $n \geq 1$, $n, m \in \mathbb{N}$ there are coefficients $\mathbf{A}_{m,0}, \mathbf{A}_{m,1}, \dots, \mathbf{A}_{m,m}$ such that the polynomial identity holds

$$n^{2m+1} = \sum_{k=1}^{n} \mathbf{A}_{m,0} k^{0} (n-k)^{0} + \mathbf{A}_{m,1} (n-k)^{1} + \dots + \mathbf{A}_{m,m} k^{m} (n-k)^{m}$$

In particular, the coefficients $\mathbf{A}_{m,r}$ may be evaluated both ways, by constructing and solving a system of linear equations or applying recurrence relations; all these approaches are explained in the sections (1,2 refs), respectively, including detailed examples.

References

- [1] Tkaczyk, Albert. problem About the of triangle developing the polynoa mial function. Published electronically athttps://www.linkedin.com/pulse/ problem-triangle-developing-polynomial-function-fn-nm-albert-tkaczyk/, 2018.
- [2] Tkaczyk, Albert. On the problem of a triangle developing the polynomial function continuation. Published electronically at https://www.linkedin.com/pulse/problem-triangle-developing-polynomial-function-f-n-m-albert-tkaczyk/, 2018.
- [3] Kolosov, Petro. 106.37 An unusual identity for odd-powers. The Mathematical Gazette, 106(567):509–513, 2022.
- [4] Milton Abramowitz, Irene A Stegun, and Robert H Romer. Handbook of mathematical functions with formulas, graphs, and mathematical tables, 1988.
- [5] Alan F Beardon. Sums of powers of integers. The American mathematical monthly, 103(3):201–213, 1996.
- [6] Alekseyev, Max. MathOverflow answer 297916/113033. Published electronically at https://mathoverflow.net/a/297916/113033, 2018.
- [7] Scheuer, Markus. MathStackExchange answer 4724343/463487. Published electronically at https://math.stackexchange.com/a/4724343/463487, 2023.
- [8] Harry Bateman. Higher transcendental functions [volumes i-iii], volume 1. McGRAW-HILL book company, 1953.
- [9] Petro Kolosov. Entry A302971 in The On-Line Encyclopedia of Integer Sequences. Published electronically at https://oeis.org/A302971, 2018.
- [10] Petro Kolosov. Entry A304042 in The On-Line Encyclopedia of Integer Sequences. Published electronically at https://oeis.org/A304042, 2018.

 $Email\ address \hbox{: } \verb|kolosovp94@gmail.com|$

URL: https://kolosovpetro.github.io