3.1 Graphing using the first derivative

A function is said to be increasing if its graph is rising as x increase i and decreasing if its graph is falling as x increases.

If
$$f'(x) > 0$$
 for $a < x < b$, then $f(x)$ is increasing for $a < x < b$.
If $f'(x) < 0$ for $a < x < b$, then $f(x)$ is decreasing for $a < x < b$.

On a graph, a relative maximum point is a point that is at least as high as high as the neighboring points of the curve on either side; and a relative minimum point is a point that is at least as low as the neighboring points on either side.

Critical number

A critical number of a function f is an x-value in the domain of f at which either f'(x) = 0 or f'(x) is undefined. (Derivative is zero or undefined)

example 1

Determine where the function $f(x) = x^3 - 12x^2 - 60x + 36$ is increasing and where is decreasing, find its relative extrema, and draw the graph.

$$f'(x) = 3x^2 - 24x - 60 = 3(x+2)(x-10) = 0$$

$$\Rightarrow$$
 Critical numbers C.N. $\begin{cases} x = -2 \\ x = 10 \end{cases}$

<u>intervals</u>	sign of f'	increasing or decreasing
x < -2	+	↑
-2 < x < 10	_	↓
<i>x</i> > 10	+	↑

- 1. f(x) is \uparrow for x < -2 and x > 10f(x) is \downarrow for -2 < x < 10
- 2. f'(x) has a relative maximum at x = -2 and f(-2) = 100 f'(x) has a relative minimum at x = 10 and f(10) = -764

First-derivative Test

If a function f has a critical number c, then at x=c, the function has a

{relative maximum if f' > 0 just before c and f' < 0 just after c relative minimum if f' < 0 just before c and f' > 0 just after c

example2

Determine where the function $f(x) = -x^4 + 4x^3 - 20$ is increasing and where is decreasing, find its relative extrema, and draw the graph

$$f'(x) = -4x^3 + 12x^2 = -4x^2(x-3) = 0$$

$$\Rightarrow$$
 Critical numbers C.N. $\begin{cases} x = 0 \\ x = 3 \end{cases}$

<u>intervals</u>	sign of f'	increasing or decreasing
x < 0	+	↑
0 < x < 3	+	↑
x > 3	_	\downarrow

- 1. f(x) is increasing for x < 3 and decreasing for x > 3
- 2. f(x) has a relative maximum at x = 3, and f(3) = 7 No relative minimum
- 3. graph: P. 193

example 3

$$f(x) = \frac{1}{x^2 - 4x}$$
 is undefined at $x = 0$ and $x = 4$

$$f'(x) = \frac{-2(x-2)}{(x^2-4x)^2}$$
 is zero at $x=2$ and undefined at $x=0$ and $x=4$

sign of f'	increasing or decreasing
+	↑
+	↑
_	\downarrow
_	\downarrow
	sign of f' + + - -

- 1. f(x) is increasing for x < 2 and 0 < x < 2
 - f(x) is decreasing for 2 < x < 4 and x > 4
- 2. f(x) has a relative maximum at x=2 and $f(2)=-\frac{1}{4}$. No relative maximum