ALC-1131-00

WHAT IS CLAIMED IS:

	1	
(2	dispo
/	√ 3	inclu
K	JI #	confi
	(\$\l	
.E	6	said
	7	
	8	at a s
1:	9 .	
	10	stage
- - -	11	allot

12

13

14

15

A method of routing alarm signals in a signaling server osed\in a telecommunications network, said signaling server iding a plurality of cards organized into multiple stages having a tree iguration comprising the steps of:

generating alarm data by cards disposed at a select stage in tree configuration;

transmitting said alarm data by said cards to cards disposed subsequent stage in said tree configuration;

multiplexing, by said cards disposed at said subsequent e, said alarm data into a serial bitstream having multiple frames by ting predetermined time stots; and

forwarding said serial bitstream, by each of said cards disposed at said subsequent stage, through said tree configuration for successively multiplexing said serial bitstreams into a single multiplexed bitstream at a trunk of said tree configuration.

2

3

5

1

2

3

PATENT APPLICATION DOCKET NO.: 1285-0007 ALC-1131-00

2. The method of routing alarm signals in a signaling server
disposed in a telecommunications network as set forth in claim 1, further
comprising the step of inserting, by said cards disposed at said
subsequent stage alarm data pertaining to said cards disposed at said
subsequent stage into said serial bitstream.

3. The method of routing alarm signals in a signaling server disposed in a telecommunications network as set forth in claim 2, further comprising the step of providing said single multiplexed bitstream to a controller controlling said tree configuration.

3

4

5

6

PATENT APPLICATION DOCKET NO.: 1285-0007

ALC-1131-00

The method of routing alarm signals in a signaling server disposed in a telecommunications network as set forth in claim 3, wherein said controller comprises a system timing generator, and further wherein said tree configuration comprises at least one clock distribution module card coupled to a plurality of bus control module cards, each bus control module card interfacing with at least one line interface card.

5. The method of routing alarm signals in a signaling server disposed in a telecommunications network as set forth in claim 4, wherein each of said clock distribution module cards and bus control module cards is provided with an ID code in a serial framed control signal generated by said system timing generator, said ID codes facilitating said step of multiplexing by said clock distribution modules.

1	6. An apparatus for collecting alarm signals in a signaling
2	server disposed in a telecommunications network, comprising:
3	a system timing generator including circuitry for producing
4	a serial control signal;
5	a plurality of clock distribution modules organized into at
6	least one level in a nested hierarchy coupled to said system timing
7	generator;
8	a plurality of bus control modules coupled to said at least
9	one level of clock distribution modules in said nested hierarchy, each bus
10	control module interfacing with a plurality of printed board assembly
11	(PBA) cards disposed on a bus segment, wherein each bus control
12	module generates a status signal encoded with alarm data towards said
13	at least one level of clock distribution modules; and
14	multiplexing circuitry in each clock distribution module to
15	multiplex status signals received from one of a lower level in said nested
16	hierarchy and said plurality of bus control modules into a serial bitstream
17	having multiple frames by assigning predetermined time slots to said
18	alarm data based on control information provided in said serial control
19	signal.

PATENT APPLICATION DOCKET NO.: 1285-0007 ALC-1131-00

7. The apparatus for collecting alarm signals in a signaling
server disposed in a telecommunications network as set forth in claim 6,
further comprising means in each clock distribution module for inserting
its own alarm data into said serial bitstream based on said control
information provided in said serial control signal.

- 8. The apparatus for collecting alarm signals in a signaling server disposed in a telecommunications network as set forth in claim 7, wherein said system timing generator comprises clock circuitry to produce a system time clock based on a reference input of a predetermined frequency.
- 9. The apparatus for collecting alarm signals in a signaling server disposed in a telecommunications network as set forth in claim 8, wherein said bus segment comprises a Compact Peripheral Component Interconnect (CPCI) bus segment.

2

3

4

1

2

3

PATENT APPLICATION DOCKET NO.: 1285-0007 ALC-1131-00

10.	The apparatus for collecting alarm signals in a signaling
server disposed in a telecommunications network as set forth in claim 8,	
wherein said reference input comprises a derived clock signal generated	
from a tele	communications signal received at one of said PBA cards.

11. The apparatus for collecting alarm signals in a signaling server disposed in a telecommunications network as set forth in claim 8, wherein said serial control signal comprises a framed bitstream.

8

9

10

11

12

13

14

15

16

17

18

19

20

PATENT APPLICATION DOCKET NO.: 1285-0007

ALC-1131-00

An alarm collection method using a multi-stage clock

distribution system in a signaling server organized in a plurality of racks,
each rack including a plurality of shelves, said clock distribution system
having a system timing generator, at least one clock distribution module,
and a plurality of bus control modules, each bus control module
interfacing with at least a portion of line cards disposed in a shelf, said

7 method comprising the steps of:

12.

determining the size of said signaling server by ascertaining the number of racks and assigning levels to said clock distribution modules in a nested hierarchy based on said determination;

assigning unique IDs to said shelves;

generating, by said system timing generator, a framed serial control signal containing unique shelf ID information and clock distribution module level information;

generating, by each bus control module, a status signal encoded with alarm data; and

successively multiplexing said status signal towards said system timing generator through said nested hierarchy of clock distribution modules into a serial bitstream having multiple frames by assigning predetermined time slots to said alarm data by each clock

- distribution module based on control and ID information provided in said
- framed serial control signal.

7 .

PATENT APPLICATION DOCKET NO.: 1285-0007

15. The alarm confection method using a multi-stage clock
distribution system in a signaling server as set forth in claim 12, wherein
said step of assigning levels to said clock distribution modules comprises
the steps of:
if said signaling server includes more than 8 racks, writing
a first level code into a select field of said framed serial control signal by
said system timing generator;
transmitting said framed serial control signal to a
clock distribution module coupled to said system timing generator;
upon reading said first level code, assuming a Central
Level by said clock distribution module coupled to said system timing
generator and thereby becoming a C-Level clock distribution module;
changing said first level code into a second level code
by said C-Level clock distribution module in said select field of said
framed serial control signal;
transmitting said framed serial control signal to a
clock distribution module coupled to said C-Level clock distribution
module;
upon reading said second level code, assuming a Lead
Level by said clock distribution module coupled to said C-Level clock

21	distribution module and thereby becoming an L-Level clock distribution
22	module;
23	changing said second level code into a third level
24	code by said L-Level clock distribution module in said select field of said
25	framed serial control signal;
26	transmitting said framed serial control signal to a
27	clock distribution module coupled to said L-Level clock distribution
28	module;
29	upon reading said third level code, assuming a Rack
30	Level by said clock distribution module coupled to said L-Level clock
31	distribution module and thereby becoming an R-Level clock distribution
32	module;
33	if said signaling server includes between 2 and 8 racks,
34	inclusive, writing said second level code into said select field of said
35	framed serial control signal by said system timing generator;
36	transmitting said framed serial control signal to said
37	clock distribution module coupled to said system timing generator;
38	upon reading said second level code, assuming said
39	Lead Level by said clock distribution module coupled to said system
40	timing generator and thereby becoming said L-Level clock distribution
41	module:

ALC-1131-00

changing said second level code into said third level 42 code by said L-Level clock distribution module in said select field of said 43 framed serial control signal; 44 transmitting said framed serial control signal to a 45 46 clock distribution module coupled to said L-Level clock distribution module; 47 upon reading said third level code, assuming a Rack 48 Level by said clock distribution module coupled to said L-Level clock 49 distribution module and thereby becoming an R-Level clock distribution 50 module; 51 if said signaling server includes a single rack, writing third 52 level code into said select field of said framed serial control signal by 53 said system timing generator; 54 transmitting said framed serial control signal to said 55 56 clock distribution module coupled to said system timing generator; and upon reading said third level code, assuming Rack 57 Level by said clock distribution module coupled to said system timing 58 generator and thereby becoming said R-Level clock distribution module. 59

PATENT APPLICATION DOCKET NO.: 1285-0007

14. The alarm collection method using a multi-stage clock
distribution system in a signaling server as set forth in claim 13, wherein
said step of assigning unique IDs to said shelves comprises the steps of:
assigning, by said system timing generator, a redundancy
Plane code to said C-Level clock distribution modules in said nested
hierarchy;
assigning, by said C-Level clock distribution modules, a
Group code to said L-Level clock distribution modules in said nested
hierarchy;
assigning, by said L-Level clock distribution modules, a
Rack code to said R-Level clock distribution modules in said nested
hierarchy; and
assigning, by said R-Level clock distribution modules, a
Shelf code to said shelves.

2

3

1

2

3

4

PATENT APPLICATION DOCKET NO.: 1285-0007 ALC-1131-00

15. The alarm collection method using a multi-stage clock
distribution system in a signaling server as set forth in claim 14, whereir
said redundancy Plane code comprises a two-bit field in said framed
serial control signal.

16. The alarm collection method using a multi-stage clock distribution system in a signaling server as set forth in claim 15, wherein each of said Group, Rack, and Shelf codes comprises a separate four-bit field in said framed serial control signal.

