

8 BIT SHIFT REGISTER WITH OUTPUT LATCHES (3 STATE)

- HIGH SPEED f_{MAX} = 55 MHz (TYP.) AT V_{CC} = 5 V
- LOW POWER DISSIPATION I_{CC} = 4 µA (MAX.) AT T_A = 25 °C
- HIGH NOISE IMMUNITY

 VNIH = VNIL = 28 % VCC (MIN.)
- OUTPUT DRIVE CAPABILITY

 15 LSTTL LOADS FOR QA TO QH

 10 LSTTL LOADS FOR QH'
- SYMMETRICAL OUTPUT IMPEDANCE |I_{OH}| = I_{OL} = 6 mA (MIN.) FOR QA TO QH |I_{OH}| = I_{OL} = 4 mA (MIN.) FOR QH'
- BALANCED PROPAGATION DELAYS tplh = tphl
- WIDE OPERATING VOLTAGE RANGE V_{CC} (OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH LSTTL 54/74LS595

DESCRIPTION

The M54/74HC595 is a high speed CMOS 8-BIT SHIFT REGISTERS/OUTPUT LATCHES (3-STATE) fabricated in silicon C²MOS technology. It has the same high speed performance of LSTTL combined with true CMOS low power consumption. This device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has 8 3-STATE outputs. Separate clocks are provided for both the shift register and the storage register.

The shift register has a direct-overriding clear, serial input, and serial output (standard) pins for cascading. Both the shift register and storage register use positive-edge triggered clocks. If both clocks are connected together, the shift register state will always be one clock pulse ahead of the storage register.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

April 1993 1/13

INPUT AND OUTPUT EQUIVALENT CIRCUIT

TRUTH TABLE

		INPUTS			OUTPUT
SI	SCK	SCLR	RCK	G	OUTFUT
Х	X	X	Χ	Н	QA THRU QH OUTPUTS DISABLE
Х	X	Х	Χ	L	QA THRU QH OUTPUTS ENABLE
Х	X	L	X	X	SHIFT REGISTER IS CLEARED
L		Н	Х	х	FIRST STAGE OF S.R. BECOMES "L" OTHER STAGES STORE THE DATA OF PREVIOUS STAGE, RESPECTIVELY
Н	」	Н	Х	Х	FIRST STAGE OF S.R. BECOMES "H" OTHER STAGES STORE THE DATA OF PREVIOUS STAGE, RESPECTIVELY
Х	1	Н	Х	X	STATE OF S.R IS NOT CHANGED
Х	X	Х	-	X	S.R. DATA IS STORED INTO STORAGE REGISTER
X	Х	Х	L	X	STORAGE REGISTER STATE IS NOT CHANGED

X: DON'T CARE

LOGIC DIAGRAM

LOGIC DIAGRAM

TIMING CHART

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1, 2, 3, 4, 5, 6, 7, 15	QA to QH	Data Outputs
9	QH'	Serial Data Outputs
10	SCLR	Shift Register Clear Input
11	SCK	Shift Register Clock Input
13	G	Output Enable Input
14	SI	Serial Data Input
12	RCK	Storage Register Clock Input
8	GND	Ground (0V)
16	V_{CC}	Positive Supply Voltage

IEC LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
V_{I}	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
lok	DC Output Diode Current	± 20	mA
lo	DC Output Current Per Output Pin QA-QH	± 35	mA
Io	DC Output Current Per Output Pin QH'	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 70	mA
PD	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
T_L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (*) 500 mW: \cong 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V_{CC}	Supply Voltage		2 to 6	V
V_{I}	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T_{op}	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	°C
t _r , t _f	Input Rise and Fall Time	V _{CC} = 2 V	0 to 1000	ns
		Vcc = 4.5 V	0 to 500	
		V _{CC} = 6 V	0 to 400	

DC SPECIFICATIONS

		Test Conditions						Value				
Symbol	Parameter	Vcc	V _{CC} (V)			_A = 25 ^c C and 7			85 °C HC	1	125 °C HC	Unit
		(V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
VoH	High Level	2.0	V _I =		1.9	2.0		1.9		1.9		
	Output Voltage (for QH' output)	4.5	VI – VIH	I _O =-20 μA	4.4	4.5		4.4		4.4		
		6.0	or		5.9	6.0		5.9		5.9		V
		4.5	V _{IL}	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-5.2 mA	5.68	5.8		5.63		5.60		
Vон	High Level	2.0	\/		1.9	2.0		1.9		1.9		
	Output Voltage (for QA to QH outputs)	4.5	V _I =	I _O =-20 μA	4.4	4.5		4.4		4.4		
		6.0	or		5.9	6.0		5.9		5.9		V
		4.5	VIL	I _O =-6.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-7.8 mA	5.68	5.8		5.63		5.60		
Vol	Low Level Output	2.0	V _I =			0.0	0.1		0.1		0.1	V
	Voltage	4.5	VI =	I _O = 20 μA		0.0	0.1		0.1		0.1	
	(for QH' output)	6.0	or			0.0	0.1		0.1		0.1	
		4.5	VIL	I _O = 4.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 5.2 mA		0.18	0.26		0.33		0.40	
Vol	Low Level Output	2.0	V _I =			0.0	0.1		0.1		0.1	
	Voltage	4.5	VI =	I _O = 20 μA		0.0	0.1		0.1		0.1	
	(for QA to QH outputs)	6.0	or			0.0	0.1		0.1		0.1	V
	outputs)	4.5	V _{IL}	lo= 6.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 7.8 mA		0.18	0.26		0.33		0.40	
l _l	Input Leakage Current	6.0	V _I = '	V _{CC} or GND			±0.1		±1		±1	μΑ
loz	3 State Output Off State Current	6.0		$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			±0.5		±5		±10	μΑ
Icc	Quiescent Supply Current	6.0	V _I = '	V _{CC} or GND			4		40		80	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

		To	est Co	nditions				Value				
Symbol	Parameter	Vcc	C _L			A = 25 °C and 7		1	85 °C HC		125 °C HC	Unit
		(V)	(pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH}	Output Transition	2.0				25	60		75		90	
t _{THL}	Time (Qn)	4.5	50			7	12		15		18	ns
		6.0]			6	10		13		15	
t _{TLH}	Output Transition	2.0				30	75		95		115	
t_{THL}	Time (QH')	4.5	50			8	15		19		23	ns
		6.0				7	13		16		20	
t _{PLH}	Propagation	2.0				45	125		155		190	
t_{PHL}	Delay Time	4.5	50			15	25		31		38	ns
	(SCK - QH')	6.0				13	21		26		32	
t _{PLH}	Propagation	2.0				60	175		220		265	
t_{PHL}	Delay Time	4.5	50			18	35		44		53	ns
	(SCLR - QH')	6.0				15	30		37		45	
t _{PLH}	Propagation	2.0				60	150		190		225	
t _{PHL}	Delay Time	4.5	50			20	30		38		45	ns
	(RCK - Qn)	6.0				17	26		32		38	
		2.0				75	190		240		285	
		4.5	150			25	38		48		57	ns
		6.0				22	32		41		48	
t_{PZL}	3 State Output	2.0				45	135		170		205	
t_{PZH}	Enable Time	4.5	50	$R_L = 1 K\Omega$		15	27		34		41	ns
		6.0				13	23		29		35	
		2.0				60	175		220		265	
		4.5	150	$R_L = 1 K\Omega$		20	35		44		53	ns
		6.0				17	30		37		45	
t _{PLZ}	3 State Output	2.0				30	150		190		225	
t _{PHZ}	Disable Time	4.5	50	$R_L = 1 K\Omega$		15	30		38		45	ns
		6.0				14	26		32		38	
f_{MAX}	Maximum Clock	2.0			6.0	17		4.8		4		
	Frequency	4.5	50		30	50		24		20		ns
		6.0			35	59		28		24		
		2.0			5.2	14		4.2		3.4		
		4.5	150		26	40		21		17		ns
		6.0			31	45		25		20		
$t_{W(H)}$	Minimum Pulse	2.0				17	75		95		110	
	Width	4.5	50			6	15		19		22	ns
	(SCK, RCK)	6.0				6	13		16		19	
$t_{W(L)}$	Minimum Pulse	2.0				20	75		95		110	
	Width_	4.5	50			6	15		19		22	ns
	(SCLR)	6.0				6	13		16		19	
t_s	Minimum Set-up	2.0				25	50		65		75	
	Time	4.5	50			5	10		13		15	ns
	(SI - CCK)	6.0				4	9		11		13	

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

		Te	est Conditions				Value				
Symbol	Symbol Parameter		C _L (pF)		T _A = 25 °C 54HC and 74HC			-40 to 85 °C 74HC		-55 to 125 °C 54HC	
		(V)	(pi)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
ts	Minimum Set-up	2.0			35	75		95		110	
	Time	4.5	50		8	15		19		22	ns
	(SCK - RCK)	6.0			6	13		16		19	
ts	Minimum Set-up	2.0			40	100		125		145	
	Time	4.5	50		10	20		25		29	ns
	(SCRL - RCK)	6.0			7	17		21		25	
t _h	Minimum Hold	2.0				0		0		0	
	Time	4.5	50			0		0		0	ns
		6.0				0		0		0	
t _{REM}	Minimum Clear	2.0			15	50		65		75	
	Remuval Time	4.5	50		3	10		13		15	ns
		6.0			3	9		11		13	
C _{IN}	Input Capacitance				5	10		10		10	pF
C _{PD} (*)	Power Dissipation Capacitance				184						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}$

SWITCHING CHARACTERISTICS TEST WAVEFORM

SWITCHING CHARACTERISTICS TEST WAVEFORM (continued)

TEST CIRCUIT ICC (Opr.)

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
Е		8.5			0.335			
е		2.54			0.100			
e3		17.78			0.700			
F			7.1			0.280		
ı			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			20			0.787		
В			7			0.276		
D		3.3			0.130			
E	0.38			0.015				
e3		17.78			0.700			
F	2.29		2.79	0.090		0.110		
G	0.4		0.55	0.016		0.022		
Н	1.17		1.52	0.046		0.060		
L	0.22		0.31	0.009		0.012		
М	0.51		1.27	0.020		0.050		
N			10.3			0.406		
Р	7.8		8.05	0.307		0.317		
Q			5.08			0.200		

SO16 (Narrow) MECHANICAL DATA

DIM.		mm		inch				
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Α			1.75			0.068		
a1	0.1		0.2	0.004		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)				
D	9.8		10	0.385		0.393		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		8.89			0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181	_	0.208		
L	0.5		1.27	0.019		0.050		
М			0.62			0.024		
S			8° (r	max.)		•		

PLCC20 MECHANICAL DATA

DIM.		mm		inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А	9.78		10.03	0.385		0.395		
В	8.89		9.04	0.350		0.356		
D	4.2		4.57	0.165		0.180		
d1		2.54			0.100			
d2		0.56			0.022			
E	7.37		8.38	0.290		0.330		
е		1.27			0.050			
e3		5.08			0.200			
F		0.38			0.015			
G			0.101			0.004		
М		1.27			0.050			
M1		1.14			0.045			

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use ascritical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

This datasheet has been downloaded from:

www.EEworld.com.cn

Free Download
Daily Updated Database
100% Free Datasheet Search Site
100% Free IC Replacement Search Site
Convenient Electronic Dictionary
Fast Search System

www.EEworld.com.cn