EE230-02 RFIC II Fall 2018

Lecture 17: Phase-Locked Loops 2

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Type-II PLLs: Phase/Frequency Detectors

- A rising edge on A yields a rising edge on Q_A (if Q_A is low)
- A rising edge on B resets Q_A (if Q_A is high)
- \triangleright The circuit is symmetric with respect to A and B (and Q_A and Q_B)

PFD: Logical Implementation

Charge Pumps: an Overview

- Switches S_1 and S_2 are controlled by the inputs "UP" and "Down"
- A pulse on Up for ΔT on S_1 makes V_{out} goes up by $\Delta T \cdot I_1/C_1$
- \triangleright A pulse on Down yields a drop in V_{out} .

Charge Pump PLLs: First Attempt

- ldeally forces the input phase error to zero because a finite error would lead to an unbounded value for V_{cont} .
- Called Type-II PLL because its open-loop transfer function contains two poles at the origin

Transfer Function: Continuous-Time Approximation

Approximate this waveform by a ramp --- as if the charge pump continuously injected current into C_1

$$V_{cont}(t) \approx \frac{\Delta \phi_0}{2\pi} \frac{I_p}{C_1} t u(t)$$
 \Longrightarrow $\frac{V_{cont}}{\Delta \phi}(s) = \frac{I_p}{2\pi C_1} \frac{1}{s}$

Charge-Pump PLL

- If one of the integrators becomes lossy, the system can be stabilized.
- This can be accomplished by inserting a resistor in series with C_1 . The resulting circuit is called a "Charge Pump PLL" (CPPLL)

Computation of the Transfer Function

Approximate the pulse sequence by a step of height $(I_pR_1)[\Delta\Phi_0/(2\pi)]$:

$$V_{cont}(t) = \frac{\Delta\phi_0}{2\pi} \frac{I_p}{C_1} t u(t) + \frac{\Delta\phi_0}{2\pi} I_p R_1 u(t)$$

$$\frac{V_{cont}}{\Delta\phi}(s) = \frac{I_p}{2\pi} \left(\frac{1}{C_1 s} + R_1\right) \Longrightarrow H(s) = \frac{\frac{I_p K_{VCO}}{2\pi C_1} (R_1 C_1 s + 1)}{s^2 + \frac{I_p}{2\pi} K_{VCO} R_1 s + \frac{I_p}{2\pi C_1} K_{VCO}}$$

Stability of Charge-Pump PLL

Write the denominator as $s^2 + 2\zeta\omega_n s + \omega_n 2$

$$\zeta = \frac{R_1}{2} \sqrt{\frac{I_p C_1 K_{VCO}}{2\pi}}$$

$$\omega_n = \sqrt{\frac{I_p K_{VCO}}{2\pi C_1}}.$$

As C₁ increases, so does ζ --- a trend opposite of that observed in type-I PLL: trade-off between stability and ripple amplitude thus removed.

Closed-loop poles are given by

$$\omega_{p1,2} = \left[-\zeta \pm \sqrt{\zeta^2 - 1} \right] \omega_n$$

A closed-loop zero at $-\omega_n/2\zeta$

$$\frac{V_{cont}}{\Delta\phi}(s) = \frac{I_p}{2\pi} \left(\frac{R_1 C_1 s + 1}{C_1 s} \right)$$