Data Analytics Models

Introduction

Data analytics models are mathematical or computational frameworks that help us understand, predict, and optimize real-world phenomena using data. The three main types of models in analytics are:

- 1. Statistical Models
- 2. Machine Learning Models
- 3. Simulation Models

Each serves a unique purpose, has its own mathematical intuition, and is widely used in real-life scenarios.

1. Statistical Models

Definition

A statistical model uses mathematical equations to describe relationships between variables in data, often for explanation or prediction.

How It Works

- Identify **dependent** (output) and **independent** (input) variables.
- Use historical data to estimate model parameters.
- The model quantifies how changes in inputs affect outputs.

Classic Example: Linear Regression

Scenario:

Predicting a student's exam score based on study hours.

DAN_Part_4_Data Analytics Models

Model Equation:

Exam Score = $\beta 0+\beta 1\times Study$ Hours + ϵ

• β0: Intercept (baseline score)

• β1: Change in score per study hour

• €: Random error

Working Demo:

Student	Study Hours	Exam Score
A	2	65
В	4	75
С	6	85

Suppose the fitted model gives:

$$\beta_0 = 55, \beta_1 = 5$$

Prediction:

A student studying 5 hours:

$$PredictedScore = 55 + 5 \times 5 = 80$$

Real-Life Applications:

• **Business:** Forecasting sales based on advertising spend.

• Healthcare: Predicting patient wait times.

• **Marketing:** Assessing the impact of campaigns.

2. Machine Learning Models

Definition

Machine learning (ML) models are algorithms that automatically learn patterns from data, often used for prediction, classification, or clustering.

How It Works

- Data is split into **training** (to learn) and **testing** (to validate).
- The algorithm "learns" from the training data to generalize to new, unseen data.

Example: Decision Tree (Classification)

Scenario:

Predict if a patient has diabetes based on BMI and age.

Demo Data:

Patient	BMI	Age	Diabetes?
X	22	30	No
Y	28	40	Yes
Z	35	50	Yes
W	20	25	No

How a Decision Tree Works:

- If BMI $> 25 \rightarrow$ likely "Yes"
- If BMI \leq 25 and Age > 35 \rightarrow check further, etc.

Prediction:

A new patient with BMI 30 and age 45 predicts "Yes" for diabetes.

Real-Life Applications:

- **E-commerce:** Product recommendations.
- **Banking:** Fraud detection.
- Healthcare: Automated risk predictions.

3. Simulation Models

Definition

Simulation models use mathematics or computer programs to mimic complex real-life processes and assess possible outcomes under uncertainty.

How It Works

- Define possible scenarios and inputs (including randomness).
- Run multiple "simulations" to see the range and likelihood of results.

Example: Hospital Queue Simulation

Scenario:

A hospital wants to predict patient waiting times based on arrival and service rates.

- **Inputs:** 10 patients/hour arrive, service rate is 12 patients/hour.
- Run the simulation 1,000 times to estimate average queue length and waiting time.

Outcome:

Hospital management learns that at busy hours, wait times jump—so they plan for extra staff during these rushes.

Real-Life Applications:

• Airlines: Simulate boarding processes.

• **Logistics:** Optimize delivery routes.

• Call Centers: Manage peak hours.

Summary Table

Model Type	What It Does	Classic Example	Common Application
Statistical	Mathematical relationship, explain	Linear Regression	Forecasting, KPIs
Machine Learning	Learns from data to predict/classify	Decision Tree	Recommendations, risk
Simulation	Mimics reality for planning/estimates	Queue Simulation	Optimization, planning

Visuals (Conceptual)

Linear Regression:

Scatter plot of Study Hours vs. Exam Score with a best-fit line.

Decision Tree:

Tree diagram showing how yes/no questions predict outcomes.

Simulation:

Histogram showing simulated waiting times in hospital queues.

Research & Theory References

- **Regression:** Francis Galton (1880s), Ronald Fisher (1930s)
- **Decision Trees:** J. Ross Quinlan, "ID3" (1986)
- **Simulation:** Queuing theory, A.K. Erlang (early 1900s)

Conclusion

- Statistical models describe and forecast based on known relationships.
- Machine learning models adaptively learn complex patterns for advanced predictions.
- **Simulation models** help visualize "what-if" scenarios in uncertain, dynamic environments.

Each model type underpins real-world analytics solutions: from healthcare to e-commerce, these frameworks turn data into smart, actionable decision-making tools.

References:

- 315326-DATA-ANALYTICS.pdf
- Data-Analytics-Lifecycle-Data-Attributes.pptx