中間報告書

創域理工学部 情報計算科学科 桂田研究室 4年 学籍番号:6322045 砂川恵太朗

2025年8月30日

1 テーマ

本研究のテーマは、「双方向予測符号化を導入したスパイキングニューラルネットワークの提案」である. 生物の脳が持つエネルギー効率と柔軟性にヒントを得て、脳の情報処理原理に基づいた新しい計算モデルの構築を目指す.

2 背景

近年,深層学習を筆頭とする機械学習技術は目覚ましい進歩を遂げ,特に大規模言語モデル(LLM)は,自然言語処理の分野において人間を凌駕する性能を示すまでになった.しかしその一方で,その成功は膨大な計算資源とデータ量を前提としており,生物の脳が持つ圧倒的なエネルギー効率や柔軟性とは未だ大きな乖離がある.また,現在の LLM の多くはテキストという単一のモダリティに特化しており,我々が日常的に経験するような,複数の感覚情報を統合して世界を認識する能力については限界を抱えている.

この課題を克服し、真に汎用的な知能へと至るためには、マルチモーダルな情報を扱え、かつ生物学的な妥当性を備えた新しい計算モデルの探求が不可欠である。そこで本稿では、数ある感覚の中でも特に外界理解の根幹をなす「視覚」情報処理に着目し、脳の情報処理原理に基づいた新たなネットワークモデルを提案する。

そこで、脳を予測器とみなし、外界からの入力と予測の誤差を最小化するという原理の下、生物学的に妥当性の高い神経回路モデルとして具体化した予測符号化(Predictive Coding: PC)というフレームワークに焦点を当てる。予測符号化は、大脳皮質の階層的な情報処理様式、特にトップダウンの予測信号とボトムアップの誤差信号の相互作用を巧みに説明できることから、有力な脳の計算モデルと見なされている。

しかし、従来の予測符号化モデルの多くは、トップダウンの予測に基づく生成モデルか、ボトムアップの信号処理に基づく識別モデルのいずれかに特化しており、脳が持つ柔軟な情報処理能力を完全に再現するには至っていなかった。こうした背景のもと、Oliviers らによって提案された双方向予測符号化(Bidirectional Predictive Coding: bPC)[1] は、生成と識別の両方の情報処理を単一のエネルギー関数を最小化する過程で自然に両立させる画期的なモデルである。bPC は、教師あり学習における高い分類性能と、教師なし学習における優れた表現学習能力を同時に達成し、人間の視覚認知システムが持つ二重の機能、すなわち「世界がどう見えるかを予測する能力(生成)」と「見えたものが何かを判断する能力(識別)」を統合的に実現する働きが期待される。

本研究では、この bPC モデルの生物学的妥当性をさらに一歩進めることを目指す. 具体的には、神経活動を非同期的なスパイクの発生としてモデル化するスパイキングニューラルネットワーク(SNN)上に bPC を実装する. SNN は、その時間ダイナミクスやエネルギー効率の観点から、実際の生物学的ニューロンの振る舞いをより忠実に模倣した計算モデルである. bPC を SNN の枠組みで実現することにより、bPC が仮定する計算プロセスを、より人間の視覚ネットワークに近い、生物学的に現実的な形で検証することが可能となる.

予測符号化を SNN へ実装する試みはこれまでにもいくつか報告されているが,bPC の持つ双方向の予測 誤差計算と学習則を SNN 上で効果的に実現するためには,ネットワークアーキテクチャの選定が極めて重要 となる.多くの SNN モデルの中から,本研究では,予測誤差を陽な形で表現するエラーニューロンをネットワーク内に組み込んだ Spiking Neural Coding Network[2] のアーキテクチャを採用する.このモデルは,bPC が定義するトップダウンおよびボトムアップの予測誤差をネットワーク上の特定のニューロン活動として直接的に表現できるため,bPC のダイナミクスやヘブ則に基づく学習ルールを自然かつ忠実に組み込む上

で最も適していると判断した.本稿では、このアーキテクチャに基づき、bPC の SNN 実装を提案し、その有効性を検証することを目指す.

3 関連研究

本研究は、主に「双方向予測符号化 (Bidirectional predictive coding, bPC)」と「Spiking neural predictive coding (SpNCN)」という 2 つの技術を基盤とする.

3.1 双方向予測符号化 (bPC)

予測符号化とは、脳が高効率な情報処理を実現するための一つの理論であり、「自身の予測と実際の入力との差分(予測誤差)を最小化する」という原理に基づいている。予測符号化の実装においてはトップダウンもしくはボトムアップどちらかの単方向予測モデルが多いが、bPC は双方向で予測を行うモデルである。

生成と識別の両立

- bPC は、トップダウン(上位層から下位層へ)の生成的予測と、ボトムアップ(下位層から上位層へ)の識別予測を単一のエネルギー関数で定式化し、両方の予測誤差を同時に最小化する.
- これにより、教師あり学習における高い分類性能と、教師なし学習における優れた表現学習能力を両立させる.

3.1.1 理論

エネルギー関数

bPC のエネルギー関数 E は以下で定義される.

$$E(x, W, V) = \sum_{l=1}^{L-1} \frac{\alpha_{gen}}{2} ||x_l - W_{l+1} f(x_{l+1})||_2^2 + \sum_{l=2}^{L} \frac{\alpha_{disc}}{2} ||x_l - V_{l-1} f(x_{l-1})||_2^2$$
 (1)

ここで、 x_l は第 l 層のニューロン活動、 W_l と V_l はそれぞれトップダウンとボトムアップの重み行列、f は活性化関数、 α_{qen} と α_{disc} は生成と識別のバランスを調整する係数である.

学習則

ニューロン活動 x_l および重み W,V は、勾配降下法によりエネルギー E を最小化するように更新される.

■ニューロン活動の更新:

$$\frac{dx_l}{dt} = -\nabla_x E = -\epsilon_l^{gen} - \epsilon_l^{disc} + f'(x_l) \odot (W_l^{\top} \epsilon_{l-1}^{gen} + V_l^{\top} \epsilon_{l+1}^{disc})$$
 (2)

ここで、 $\epsilon_l^{gen} := \alpha_{gen}(x_l - W_{l+1}f(x_{l+1}))$ と $\epsilon_l^{disc} := \alpha_{disc}(x_l - V_{l-1}f(x_{l-1}))$ はそれぞれトップダウン予測 誤差とボトムアップ予測誤差である.

■重みの更新:

$$\Delta W_l \propto \epsilon_{l-1}^{gen} f(x_l)^\top, \quad \Delta V_l \propto \epsilon_{l+1}^{disc} f(x_l)^\top$$
 (3)

神経実装

図1 bPC の神経実装

図 1は bPC モデルの神経実装である。左のモデルが bPC であり、中央のモデルは識別過程のみの予測符号 化モデルである。bPC モデルの各ニューロンの添え字に注目すると、価値ニューロンと同じ添え字のエラーニューロンは重み 1 のシナプスで結合されているのが確認できる。これはニューロン活動の更新式から分かるように、同じ層の価値ニューロンは自らの値を同じ層のエラーニューロンに送る必要があり、逆にエラーニューロンは,その結果となる予測誤差を価値ニューロンにフィードバックする必要があるからである。異なる層のニューロン同士では,その予測に重みを乗算して渡す必要があるので、シナプス結合の強さは W と V になる。

柔軟な学習

bPC は、教師あり学習と教師なし学習の両方で学習できる。いずれの場合も、中間層(層 2 から L-1)の ニューロンは入力にクランプされず、式(2)に示すニューラルダイナミクスに従って進化する。教師あり学習 では、第 1 層 x_1 は入力であるデータそのものに固定され、最上層 x_L はターゲットラベルに固定される。教師なし学習では、 x_L は固定されず、bPC は入力の圧縮表現を学習する。 x_L 内のニューロンのサブセットの みがラベル情報に固定され、他のニューロンは固定されない混合学習も可能である。この設定では、モデルは ラベルを推論し、関連する圧縮表現を学習することができる。

3.1.2 実験

教師あり分類と生成

この実験では、bPC モデルが単一のモデルで識別タスク(画像分類)と生成タスク(クラス平均画像の生成)を同時に実行できることを示します。 MNIST と Fashion-MNIST データセットを用いて、他の単方向予測符号化モデル (discPC (識別的予測符号化)、genPC (生成的予測符号化)、hybridPC (双方向予測符号化. ただし bPC とは異なる)) や、それらに対応するバックプロパゲーションベースのモデル(BP)と比較評価を行った。

実験結果

表 1と図 2に結果を示す. 分類性能は正解率(Accuracy, %)で、生成性能は元画像のクラス平均と生成画像の間の RMSE(Root Mean Squared Error)で評価している. 結果として、bPC は分類精度において純

図 2 bPC は、MNIST と Fashion-MNIST を正確に分類し、クラス平均画像を生成する。 $A: \mathbb{N}$ レーニングセットアップ。モデルは、 x_1 を画像に固定し、 x_L をラベルに固定して \mathbb{N} にこクラスラベルを条件として生成された画像の例(左)と、生成された画像と各クラスの平均画像間の RMSE(右)。

表 1 教師あり学習における分類精度と画像生成 RMSE

	分類正解率 (Acc %) ↑		生成 RMSE ↓	
モデル	MNIST	Fashion-MNIST	MNIST	Fashion-MNIST
bPC	98.10 ± 0.05	89.24 ± 0.12	0.0581 ± 0.0004	0.0415 ± 0.0005
hybridPC	86.22 ± 0.15	80.34 ± 0.11	0.0612 ± 0.0003	0.0480 ± 0.0016
genPC	83.48 ± 0.21	77.00 ± 0.16	0.0198 ± 0.0001	0.0140 ± 0.0001
discPC	98.43 ± 0.01	89.74 ± 0.14	0.3133 ± 0.0224	0.3326 ± 0.0024
BP (genBP/discBP)	98.48 ± 0.10	89.66 ± 0.11	$\bf 0.0198 \pm 0.0001$	0.0128 ± 0.0001

粋な識別モデルである discPC や BP と同等の性能を達成し、同時に画像生成においては純粋な生成モデルである genPC や genBP に匹敵する低い RMSE を示した.これにより、 bPC が識別と生成の両方のタスクを単一モデルで高いレベルで両立できることが確認された.

教師なし表現学習

このセクションでは、教師なし設定で bPC が効果的に圧縮表現を学習する能力を評価する. MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100 データセットを使用し、入力画像からの再構成誤差 (RMSE) を指

標として、他のモデルと比較を行う.

実験結果

表 2と図 3に,各モデルが学習した表現から画像を再構成した際の RMSE を示す. 図 3B および表 2が示す

図 3 bPC は,低次元表現の学習において他の PC モデルよりも優れた性能を発揮.A:入力画像に x_1 のみが固定されたトレーニングセットアップ.B:モデルとデータセット間の再構成 RMSE.C:再構成 の例.

モデル	MNIST	Fashion-MNIST	CIFAR-10	CIFAR-100
bPC	0.2320 ± 0.0010	0.2497 ± 0.0004	0.1311 ± 0.0005	0.1366 ± 0.0007
genPC	0.2473 ± 0.0020	0.2868 ± 0.0013	0.1837 ± 0.0009	0.2077 ± 0.0003
hybridPC	0.2401 ± 0.0012	0.2508 ± 0.0007	0.1664 ± 0.0015	0.2089 ± 0.0071
AE	0.1565 ± 0.0006	0.1868 ± 0.0001	0.1135 ± 0.0050	0.1171 ± 0.0042
BP (hybridBP)	0.1969 ± 0.0004	0.2084 ± 0.0002	0.0964 ± 0.0004	0.0983 ± 0.0002

表 2 教師なし学習で得られた表現からの画像再構成 RMSE

ように、bPC は全てのデータセットにおいて genPC を一貫して上回り、より複雑な CIFAR データセットでは hybridPC を大幅に上回る性能を示した.これは、bPC の双方向アーキテクチャが、ボトムアップの重みも推論ダイナミクスに積極的に関与させることで、より高品質な表現学習を可能にすることを示唆している.

3.2 Spiking Neural Predictive Coding (SpNCN)

SpNCN は、予測符号化の理論をスパイキングニューラルネットワーク(SNN)上で実現したモデルである。 SNN は、生物の神経細胞(ニューロン)の発火現象を模したネットワークであり、非同期かつイベント駆動で動作するため、エネルギー効率が非常に高いという特徴がある。

3.2.1 理論

ニューロンモデル

SpNCN では,ニューロンモデルとして**漏れ積分発火(Leaky Integrate-and-Fire,LIF)モデル**が用いられる.ニューロンの膜電位 $\mathbf{v}^l(t)$ は,入力電流 $\mathbf{j}^l(t)$ に応じて時間変化し,以下の微分方程式で記述される.

$$\tau_m \frac{\partial \mathbf{v}^l}{\partial t} = -\gamma_m \mathbf{v}^l(t) + R_m \mathbf{j}^l(t)$$
(4)

ただし, τ_m は漏れの時間スケールを扱う膜時定数で, γ_m は漏れの強さ, R_m は膜抵抗である.膜電位が特定の閾値 \mathbf{v}_{thr} を超えると,ニューロンは**発火(スパイク)**し,デジタル値「1」を出力する.発火後,膜電位はリセットされる.また,電圧 $\mathbf{v}^l(t)$ はオイラー法を用いて離散化され,微小時間 Δt に対して更新される.

$$\mathbf{v}^{l}(t+\Delta t) = \mathbf{v}^{l}(t) + \frac{\Delta t}{\tau_{m}}(-\gamma_{m}\mathbf{v}^{l}(t) + R_{m}\mathbf{j}^{l}(t))$$
(5)

予測と誤差計算

離散的なスパイク列 $\mathbf{s}^l(t)$ は、時間定数 τ_{tr} を持つローパスフィルタによって滑らかな連続値(トレース) $\mathbf{z}^l(t)$ に変換される.

$$\mathbf{z}^{l}(t) = \mathbf{z}^{l}(t) + \left(-\frac{\mathbf{z}^{l}(t)}{\tau_{tr}} + \mathbf{s}^{l}(t)\right)$$
(6)

このトレースを用いて,トップダウン予測 \mathbf{z}_{μ}^l と予測誤差 $\mathbf{e}^l(t)$ が計算される.ただし, $\mathbf{W}^l(t)$ はトップダウン予測シナプス結合の重み行列である.

$$\mathbf{z}_{\mu}^{l} = \mathbf{W}^{l+1} \cdot \mathbf{s}^{l+1}(t) \tag{7}$$

$$\mathbf{e}^{l}(t) = (\mathbf{z}^{l}(t) - \mathbf{z}_{\mu}^{l}) \tag{8}$$

学習則

入力電流 $\mathbf{j}^l(t)$ は予測誤差 $\mathbf{e}^l(t)$ と,下位層からの誤差フィードバック $\mathbf{E} \cdot \mathbf{e}^{l-1}(t)$ を用いた時間に関する微分方程式で表される.

中間層 l:

$$\tau_j \frac{\partial \mathbf{J}^l(t)}{\partial t} = -\kappa_J \mathbf{J}^l(t) + \phi_e(-\mathbf{e}^l(t) + \mathbf{E}^l \cdot \mathbf{e}^{l-1}(t))$$
(9)

最終層L:

$$\tau_j \frac{\partial \mathbf{J}^l(t)}{\partial t} = -\kappa_J \mathbf{J}^l(t) + \phi_e(\mathbf{E}^l \cdot \mathbf{e}^{l-1}(t))$$
(10)

ただし, τ_j は電流の漏れに関する時定数であり, κ_j は電流の漏れ, ϕ_e は誤差信号に対する変換関数である. これらの信号の各ニューロン間での動きは,図 4に示されている.

図 4 2 層 SpNCN モデル

このダイナミクスの中で、電流 $\mathbf{j}^l(t)$ はオイラー法により離散化され、 Δt に対して更新される.

中間層 1:

$$\mathbf{j}^{l}(t + \Delta t) = \mathbf{j}^{l}(t) + \frac{\Delta t}{\tau_{i}} \left(-\kappa_{J} \mathbf{J}^{l}(t) + \phi_{e}(-\mathbf{e}^{l}(t) + \mathbf{E}^{l} \cdot \mathbf{e}^{l-1}(t)) \right)$$
(11)

最終層L:

$$\mathbf{j}^{l}(t + \Delta t) = \mathbf{j}^{l}(t) + \frac{\Delta t}{\tau_{j}} \left(-\kappa_{J} \mathbf{J}^{l}(t) + \phi_{e}(\mathbf{E}^{l} \cdot \mathbf{e}^{l-1}(t)) \right)$$
(12)

最後に、トップダウン予測シナプス結合の重み行列 \mathbf{W}^l と誤差フィードバック重み行列 \mathbf{E}^l は、局所的な情報 のみを用いて、勾配降下法によって更新される.

$$\Delta \mathbf{W}^l = \mathbf{e}^{l-1}(t) \cdot (\mathbf{s}^l(t))^\top \tag{13}$$

$$\Delta \mathbf{E}^{l} = \beta \left(\mathbf{s}^{l}(t) \cdot (\mathbf{e}^{l-1}(t))^{\top} \right)$$
(14)

ただし、 β は \mathbf{E}^l の更新速度を制御する係数である.

3.2.2 実験

表 3は、手書き数字データセットである MNIST に対する、様々なスパイキングネットワークモデルの汎化 誤差 (Generalization error) を比較したものである、汎化誤差は値が低いほど性能が良いことを示す.この

表 3 MNIST におけるスパイキングネットワークの汎化誤差(低いほど良い)。SpNCN および実装された SNN ベースライン("impl."とラベル付け)の性能は 10 試行で測定(平均と標準偏差を報告)。二重線の下にあるモデルはオンラインモデルである。

モデル	前処理	Type	Performance
Dendritic Neurons	はい	Rate-based	9.7%
Spiking RBM	いいえ	Rate-based	11.0%
Spiking RBM	はい	Rate-based	5.9%
Spiking CNN, BP	いいえ	Rate-based	0.9%
Spiking RBM	はい	Rate-based	7.4%
Spiking RBM	はい	Spike-Based	8.1%
Spiking CNN	はい	Spike-Based	8.7%
2-Layer SNN	はい	Spike-Based	3.5%
ML H-SNN	はい	Spike-Based	8.4%
2-Layer SNN	いいえ	Spike-Based	6.5%
2-Layer SNN	いいえ	Spike-Based	5.0%
syn-SNN (STDP)	いいえ	Rate-based	3.27%
SNN-LM	いいえ	Spike-Based	5.93%
2-Layer SNN, 3 passes	いいえ	Spike-Based	$\sim 17.1\%$
Online SNN-LM	いいえ	Spike-Based	6.61%
Online SCNN	いいえ	Spike-Based	4.76%
SNN, df-DRTP (impl.)	いいえ	Spike-Based	$40.13\pm0.35\%$
SNN, df-BFA (impl.)	いいえ	Spike-Based	$9.38\pm0.12\%$
SpNCN (ours)	いいえ	Spike-Based	$\textbf{2.47}\pm\textbf{0.16}\%$

表の核心は、提案手法である SpNCN の性能を他のモデルと比較することにある.

- ■SpNCN の優れた性能 提案手法である SpNCN は、汎化誤差 2.47% を達成しており、これは表中の他の多くの SNN モデルを大幅に上回る結果である.特に注目すべきは、二重線の下に示された「オンライン学習 モデル」の中での性能である.オンライン学習とは、データを一度しか見ずに学習する,より実践的で困難な設定である.SpNCN はこの設定でありながら、複数回データを見て学習するオフラインモデルに匹敵する、あるいはそれ以上の性能を示している.
- ■他のオンラインモデルとの比較 同じオンライン学習の SNN モデルである「Online SCNN」(4.76%) や「Online SNN-LM」(6.61%) と比較して、SpNCN の誤差率は約半分であり、その優位性は明らかである.また、著者らが比較対象として実装した「SNN、df-BFA」(9.38%) や「SNN、df-DRTP」(40.13%) と比較しても、提案された学習手法(ST-LRA)がいかに効果的であるかが分かる.
- ■学習条件の利点 SpNCN は「前処理」の項目が「いいえ」となっており、事前のデータ加工なしで高い性能を達成している。これは、モデルがデータから直接特徴を学習する能力が高いことを示唆しており、実用上の利点となる。
- ■結論 表 3は、SpNCN が MNIST データセットにおいて、特にオンライン学習という制約の厳しい条件下で、既存の SNN モデルよりも優れた性能を発揮することを示した、重要な結果である.

また表 4は、MNIST よりも複雑で多様な 3 つのデータセット(Fashion MNIST、Stanford OCR、Caltech 101)を用いて、オンラインスパイキングネットワークの汎化誤差を比較したものである。これにより、SpNCN の性能が MNIST 以外のタスクにも汎化可能かどうかを検証している。以下のモデルはすべてデータの前処理を行っていない。この表 4は、SpNCN の汎化性能をさらに厳しく評価するものである。

表 4 Fashion MNIST, Stanford OCR, Caltech 101 データセットにおける様々なオンラインスパイキングネットワークの汎化誤差(低いほど良い). SpNCN および実装された SNN ベースラインの性能は 10試行で測定(平均と標準偏差を報告).

		Fashion MNIST	Stanford OCR	Caltech 101
Model	Type	Performance	Performance	Performance
ANN (BP)	Rate-based	12.98%	$37.01 \pm 1.19\%$	$44.77 \pm 1.22\%$
syn-SNN (STDP)	Rate-based	15.35%	_	_
SNN, df-DRTP (impl.)	Spike-Based	$45.27\pm0.26\%$	$82.19\pm0.12\%$	$77.75 \pm 0.24\%$
SNN, df-BFA (impl.)	Spike-Based	$25.65\pm0.12\%$	$84.11\pm0.51\%$	$63.68\pm0.42\%$
SpNCN (ours)	Spike-Based	$15.61\pm0.05\%$	$42.78\pm0.16\%$	$51.67\pm0.53\%$

■一貫した優位性 最も重要な点は、SpNCN がテストされた 3 つのデータセットすべてにおいて、他のオンライン SNN ベースライン(df-DRTP, df-BFA)を一貫して大幅に上回っていることである.これにより、SpNCN のアーキテクチャと学習メカニズムが、特定のデータセットに過度に依存するものではなく、ロバストであることが示される.

- ■Fashion MNIST での性能 Fashion MNIST において、SpNCN の誤差(15.61%)は、同じく SNN である「syn-SNN (STDP)」(15.35%)に匹敵し、さらには標準的な非スパイキングニューラルネットワークである「ANN (BP)」(12.98%)に迫る性能を示している.スパイキングモデルは一般的に ANN よりも学習が難しいとされる中で、この結果は非常に注目に値する.
- ■Stanford OCR $\boldsymbol{\mathcal{E}}$ Caltech 101 $\boldsymbol{\mathcal{C}}$ での性能 これら 2 つのより困難なデータセットでは,全体的にモデルの誤差は高くなっている.しかし,その中でも SpNCN は他の SNN モデルに対して明確な性能的優位性を保っている.例えば Caltech 101 では,SpNCN の誤差は 51.67% であるのに対し,次点の SNN,df-BFA は 63.68% であり,10% 以上の差がある.この結果は,多様な特徴を持つ画像に対しても SpNCN が比較的うまく機能することを示唆している.
- ■結論 表 4は,表 3で示された SpNCN の優れた性能が,MNIST という単一のタスクに限定されたものではなく,より多様で複雑な画像分類タスクにおいても維持されることを実証している.これは,提案手法の汎用性と実用的な可能性を強く裏付けるものである.

4 提案手法

本研究では、bPC の持つ「生成と識別の両立」という強力な学習能力と、SpNCN の持つ「高いエネルギー効率」を統合した新しいモデル「Bidirectional SpNCN (bSpNCN)」を提案する.

双方向予測誤差の導入

SpNCN のフレームワークに bPC の双方向予測の概念を導入する. これにより, 各層のニューロンはトップダウン(生成的)とボトムアップ(識別的)の両方の予測誤差を計算する.

■生成的予測誤差 (Top-down):

$$\mathbf{z}_{qen}^{l} = \mathbf{W}^{l+1} \cdot \mathbf{s}^{l+1}(t) \tag{15}$$

$$\mathbf{e}_{qen}^{l}(t) = \alpha_{gen}(\mathbf{z}^{l}(t) - \mathbf{z}_{qen}^{l}) \tag{16}$$

■識別的予測誤差 (Bottom-up):

$$\mathbf{z}_{disc}^{l} = \mathbf{V}^{l-1} \cdot \mathbf{s}^{l-1}(t) \tag{17}$$

$$\mathbf{e}_{disc}^{l}(t) = \alpha_{disc}(\mathbf{z}^{l}(t) - \mathbf{z}_{disc}^{l}) \tag{18}$$

統合された入力電流ダイナミクス

入力電流 $\mathbf{j}^l(t)$ の更新式に、上記 2 種類の予測誤差と、それぞれの誤差をフィードバックするシナプスの重み行列($\mathbf{E}_{gen},\mathbf{E}_{disc}$)からの入力を統合する.

中間層 1:

$$\tau_{j} \frac{\partial \mathbf{j}^{l}(t)}{\partial t} = -\kappa_{j} \mathbf{j}^{l}(t) + \phi_{e} \left(-\mathbf{e}_{gen}^{l}(t) - \mathbf{e}_{disc}^{l}(t) + \mathbf{E}_{gen}^{l} \cdot \mathbf{e}_{gen}^{l-1}(t) + \mathbf{E}_{disc}^{l} \cdot \mathbf{e}_{disc}^{l+1}(t) \right)$$
(19)

第1層:

$$\tau_{j} \frac{\partial \mathbf{j}^{1}(t)}{\partial t} = -\kappa_{j} \mathbf{j}^{1}(t) + \phi_{e} \left(-\mathbf{e}_{gen}^{1}(t) + \mathbf{E}_{gen}^{1} \cdot \mathbf{e}_{gen}^{0}(t) + \mathbf{E}_{disc}^{1} \cdot \mathbf{e}_{disc}^{2}(t) \right)$$
(20)

最終層L:

$$\tau_{j} \frac{\partial \mathbf{J}^{L}(t)}{\partial t} = -\kappa_{J} \mathbf{J}^{L}(t) + \phi_{e} \left(-\mathbf{e}_{disc}^{l}(t) + \mathbf{E}_{gen}^{L} \cdot \mathbf{e}^{L-1}(t) \right)$$
(21)

ただし, $\mathbf{e}^0_{gen}(t)$ は,入力層(データ)に対するトップダウン予測誤差である.これらより, Δt に対する $\mathbf{j}^l(t)$ の更新則は次のようになる.

中間層 1:

$$\mathbf{j}^{l}(t + \Delta t) = \mathbf{j}^{l}(t) + \frac{\Delta t}{\tau_{j}} \left(-\kappa_{j} \mathbf{j}^{l}(t) + \phi_{e} \left(-\mathbf{e}_{gen}^{l}(t) - \mathbf{e}_{disc}^{l}(t) + \mathbf{E}_{gen}^{l} \cdot \mathbf{e}_{gen}^{l-1}(t) + \mathbf{E}_{disc}^{l} \cdot \mathbf{e}_{disc}^{l+1}(t) \right) \right)$$
(22)

第1層:

$$\mathbf{j}^{1}(t + \Delta t) = \mathbf{j}^{1}(t) + \frac{\Delta t}{\tau_{i}} \left(-\kappa_{j} \mathbf{j}^{1}(t) + \phi_{e} \left(-\mathbf{e}_{gen}^{1}(t) + \mathbf{E}_{gen}^{1} \cdot \mathbf{e}_{gen}^{0}(t) + \mathbf{E}_{disc}^{1} \cdot \mathbf{e}_{disc}^{2}(t) \right) \right)$$
(23)

最終層L:

$$\mathbf{j}^{L}(t + \Delta t) = \mathbf{j}^{L}(t) + \frac{\Delta t}{\tau_{i}} \left(-\kappa_{j} \mathbf{j}^{L}(t) + \phi_{e} \left(-\mathbf{e}_{disc}^{L}(t) + \mathbf{E}_{gen}^{L} \cdot \mathbf{e}_{gen}^{L-1}(t) \right) \right)$$
(24)

統合された学習則

生成過程(トップダウン)と識別過程(ボトムアップ)の各重みは、それぞれの予測誤差を用いて勾配降下 法で局所的に更新される.

■生成過程の重み更新:

$$\Delta \mathbf{W}^{l} = \mathbf{e}_{qen}^{l-1}(t) \cdot (\mathbf{s}^{l}(t))^{\top}$$
(25)

$$\Delta \mathbf{E}_{qen}^{l} = \beta \left(\mathbf{s}^{l}(t) \cdot (\mathbf{e}_{qen}^{l-1}(t))^{\top} \right)$$
(26)

■識別過程の重み更新:

$$\Delta \mathbf{V}^l = \mathbf{e}_{disc}^{l+1}(t) \cdot (\mathbf{s}^l(t))^{\top} \tag{27}$$

$$\Delta \mathbf{E}_{disc}^{l} = \beta \left(\mathbf{s}^{l}(t) \cdot (\mathbf{e}_{disc}^{l+1}(t))^{\top} \right)$$
(28)

この統合により、bPC の強力な表現学習能力を、SNN のエネルギー効率の高い計算基盤上で実現することを目指す.

5 現在の状況と今後について

5.1 現在の状況

現在,提案手法である bSpNCN モデルの実装に取り組んでいる.関連研究論文ではモデルの理論的な枠組みは示されているが,実装コードは公開されていないため,数式やアルゴリズムを基に自力で実装を進めている段階である.双方向の誤差計算やスパイクベースの非同期な更新など,複雑な要素が多く,実装には苦戦しているが,モデルの動作原理の理解を深めながら進めている.実装には pytorch で SNN を実装できる Bindsnet というライブラリを用いている.Bindsnet はコンポーネントとして Nodes(ニューロン),Connection(シナプス結合),Learning rule(学習則)そしてそれらを統括する Network から成る.コンポーネントを提案した bSpNCN に合わせて定義し,実験に合わせて Network を構築する必要がある.

5.2 今後の計画

実装が完了次第、モデルの有効性を検証するための実験を論文 [1]、[2] 同様行う.

- 1. **データセット:** まずは標準的な画像データセットである MNIST を用いる.
- 2. **教師あり学習:** MNIST データセットを用いた画像分類タスクを実施し、モデルの識別性能を評価する. ベースラインとして、元の SpNCN や bPC モデルの性能と比較・検討する.
- 3. **教師なし学習:** 教師ラベルを用いずにモデルを学習させ,入力画像を再構成・生成するタスクを実施し, モデルの表現学習能力を評価する.
- 4. 性能評価: 分類精度や画像生成の品質に加え、計算中のスパイク発火頻度を計測することで、モデルのエネルギー効率についても評価を行う.

参考文献

- [1] Gaspard Oliviers, Mufeng Tang, Rafal Bogacz. (2025): Bidirectional predictive coding, https://arxiv.org/abs/2505.23415.
- [2] Alexander Ororbia. (2023): Spiking neural predictive coding for continually learning from data streams, Neurocomputing Vol.544.
- [3] Hiroshi Araki. (2021): ゼロから学ぶスパイキングニューラルネットワーク, https://snn.hirlab.net/