

Full SAR TEST REPORT

No. ECIT-2013-0138-SAR

For

Client: CT Asia

Production: Digital Mobile Phone

Model Name: DASH4.0

Hardware Version: Q203_MAIN_PCB_V2.1

Software Version: Q203_PUBLIC_V0.5.5_S1026

Issued date: 2013-1-31

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of ECIT Shanghai.

Test Laboratory:

ECIT Shanghai, East China Institute of Telecommunications

Add: 7F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China

Tel: (+86)-021-63843300, E-Mail: welcome@ecit.org.cn

Revision Version

Report Number	Revision	Date	Memo
ECIT-2013-0138-SAR	00	2013/1/31	Initial creation of test report

CONTENTS

1 Test Laboratory	5
1.1 Testing Location	5
1.2 Testing Environment	5
1.3 Project Data	5
1.4 Signature	5
2 Statement of Compliance	e
3 Client Information	9
3.1 Applicant Information	9
3.2 Manufacturer Information	9
4 Equipment Under Test (EUT) and Ancillary Equipment (AE)	. 10
4.1 About EUT	. 10
4.2 Internal Identification of EUT used during the test	11
4.3 Internal Identification of AE used during the test	11
5 TEST METHODOLOGY	. 12
5.1 Applicable Limit Regulations	. 12
5.2 Applicable Measurement Standards	. 12
6 Specific Absorption Rate (SAR)	. 13
6.1 Introduction	. 13
6.2 SAR Definition	. 13
7 Tissue Simulating Liquids	. 14
7.1 Targets for tissue simulating liquid	. 14
7.2 Dielectric Performance	. 14
8 System verification	. 18
8.1 System Setup	. 18
8.2 System Verification	. 19
9 Measurement Procedures	. 20
9.1 Tests to be performed	. 20
9.2 General Measurement Procedure	. 21
9.3 WCDMA Measurement Procedures for SAR	. 22
9.4 Bluetooth & Wi-Fi Measurement Procedures for SAR	. 23
9.5 Power Drift	. 24
11 Conducted Output Power	25

11.1 Manufacturing tolerance	25
11.2 GSM Measurement result	27
11.3 WCDMA Measurement result	28
11.4 Wi-Fi and BT Measurement result	28
12 Simultaneous TX SAR Considerations	30
12.1 Introduction	30
12.2 Transmit Antenna Separation Distances	30
12.3 Standalone SAR Test Exclusion Considerations	31
13 Evaluation of Simultaneous	32
14 SAR Test Result	34
15 SAR Measurement Variability	40
16 Measurement Uncertainty	42
17 Main Test Instrument	44
ANNEX A GRAPH RESULTS	45
ANNEX B SYSTEM VALIDATION RESULTS	133
ANNEX C SAR Measurement Setup	139
C.1 Measurement Set-up	139
C.2 DASY5 E-field Probe System	140
C.3 E-field Probe Calibration	140
C.4 Other Test Equipment	141
C.4.1 Data Acquisition Electronics(DAE)	141
C.4.2 Robot	142
C.4.3 Measurement Server	143
C.4.4 Device Holder for Phantom	
C.4.5 Phantom	144
ANNEX D Position of the wireless device in relation to the phantom	145
D.1 General considerations	145
D.2 Body-worn device	146
D.3 Desktop device	146
D.4 DUT Setup Photos	
ANNEX E Equivalent Media Recipes	
ANNEX F System Validation	155
ANNEX G Probe and DAE Calibration Certificate	157

1 Test Laboratory

1.1 Testing Location

Company Name: ECIT Shanghai, East China Institute of Telecommunications

Address: 7F, G Area, No. 668, Beijing East Road, Huangpu District, Shanghai,

P. R. China

Postal Code: 200001

Telephone: 00862163843300 Fax: 00862163843301

1.2 Testing Environment

Normal Temperature: $15-35^{\circ}$ C Relative Humidity: 20-75%

Ambient noise & Reflection: < 0.012 W/kg

1.3 Project Data

Project Leader: Liu Jianquan
Testing Start Date: Jan 18, 2013
Testing End Date: Jan 30, 2013

1.4 Signature

Hu Jiajing

(Testing engineer)

Yu Naiping

Yu Naiping

(Reviewed this test report)

Zheng Zhongbin
Director of the laboratory

(Approved this test report)

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for DASH4.0 are as follows (with expanded uncertainty 22.4%)

Table 2.1: Max. Reported SAR (1g)

Band	Position	Reported SAR
Danu	Position	1g (W/Kg)
GSM 850	Head	0.166
G3W 650	Body	1.035
GSM 1900	Head	0.283
	Body	0.860
WCDMA 850	Head	0.321
WCDIVIA 650	Body	1.027
WCDMA 1900	Head	0.566
WCDINA 1900	Body	1.078
Wi-Fi	Head	0.179
	Body	0.266

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The measurement together with the test system set-up is described in chapter 7 of this test report. A detailed description of the equipment under test can be found in chapter 3 of this test report. The maximum reported SAR value is obtained at the case of **(Table 2.1)**, and the values are: **1.078 W/kg (1g)**.

Table 2.2: Simultaneous Transmission with 2.4GHz WLAN(Head)

Simult Tx	Configuration	GSM 835MHz SAR(W/Kg)	2.4 GHz WLAN SAR(W/Kg)	SUM SAR(W/Kg)
Head SAR	Right Cheek	0.166	0.142	0.308
	Right Tilt	0.104	0.029	0.133
	Left Cheek	0.153	0.096	0.249
	Left Tilt	0.100	0.024	0.124

Simult Tx	Configuration	GSM 1900MHz SAR(W/Kg)	2.4 GHz WLAN SAR(W/Kg)	SUM SAR(W/Kg)
Head SAR	Right Cheek	0.150	0.142	0.292
	Right Tilt	0.070	0.029	0.099
	Left Cheek	0.283	0.096	0.379
	Left Tilt	0.089	0.024	0.113

Simult Tx	Configuration	WCDMA 1900MHz SAR(W/Kg)	2.4 GHz WLAN SAR(W/Kg)	SUM SAR(W/Kg)
Head SAR	Right Cheek	0.300	0.142	0.442
	Right Tilt	0.121	0.029	0.150
	Left Cheek	0.566	0.096	0.662
	Left Tilt	0.172	0.024	0.196

Simult Tx	Configuration	WCDMA 850MHz SAR(W/Kg)	2.4 GHz WLAN SAR(W/Kg)	SUM SAR(W/Kg)
Head SAR	Right Cheek	0.206	0.142	0.348
	Right Tilt	0.153	0.029	0.182
	Left Cheek	0.321	0.096	0.417
	Left Tilt	0.153	0.024	0.177

Table 2.3: Simultaneous Transmission with 2.4GHz WLAN(Body)

Simult Tx	Configuration	GSM 835MHz SAR(W/Kg)	2.4 GHz WLAN SAR(W/Kg)	SUM SAR(W/Kg)
Body SAR	Toward Ground	1.035	0.211	1.246
	Toward Phantom	0.264	0.0012	0.2652

Simult Tx	Configuration	GSM 1900MHz SAR(W/Kg)	2.4 GHz WLAN SAR(W/Kg)	SUM SAR(W/Kg)
	Toward Ground	0.860	0.211	1.077
Body SAR	Toward Phantom	0.212	0.0012	0.2132

Simult Tx	Configuration	WCDMA 1900MHz SAR(W/Kg)	2.4 GHz WLAN SAR(W/Kg)	SUM SAR(W/Kg)
Body SAR	Toward Ground	1.078	0.211	1.289
	Toward Phantom	0.165	0.0012	0.1662

Simult Tx	Configuration	WCDMA 850MHz SAR(W/Kg)	2.4 GHz WLAN SAR(W/Kg)	SUM SAR(W/Kg)
Body SAR	Toward Ground	1.027	0.211	1.238
	Toward Phantom	0.313	0.0012	0.3142

According to the above table, the maximum sum of reported SAR values for GSM and WiFi is **1.289 W/kg (1g)**. The above numerical SAR results for all worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured simultaneous SAR summation is required per FCC KDB Publication 447498 D01 v05. The detail for simultaneous transmission consideration is described in chapter 13.

3 Client Information

3.1 Applicant Information

Company Name: CT Asia

Address /Post: Unit 01, 15/F, Seaview Centre, 139-141 Hoi bun road, Kwun Tong,

Kowloon, Hongkong

City: Hongkong Country: China

Contact Edward Phan
Tel 852-27931198

3.2 Manufacturer Information

Company Name: Shanghai Ragentek Communication Technology Co. ,Ltd.

Address /Post: Building D10-D11,No. 58-60, Lane 3188, Xiupu Road, PuDong District,

Shanghai,PRC

City: Shanghai
Country: China
Contact Jin xinjuan

Tel +86-21-60352626

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description: WCDMA/GSM (GPRS) Digital Mobile Phone

Model name: DASH4.0

Operation Model(s): GSM850/1900,WCDMA1900/850,Wifi2450 Tx Frequency: 824.2-848.8, 1850.2-1909.8MHz (GSM)

1852.4-1907.6 MHz, 826.4-846.6MHz (WCDMA)

2412-2462 MHz (Wi-Fi)

Test device Production information: Production unit

GPRS Class Mode: B
GPRS Multislot Class: 12

Device type: Portable device

UE category: 3
Release Version: R5

Antenna type: Inner antenna
Accessories/Body-worn configurations: Headset
Form factor: 12cm×6.8cm

Hotspot Mode: Support simultaneous transmission of hotspot and voice (or

data)

Picture 1: Constituents of the sample

4.2 Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version:
EUT1	IMEI:864171010000135	Q203_MAIN_PCB_V2.1	Q203_PUBLIC_V0.5.5_S1026

^{*}EUT ID: is used to identify the test sample in the lab internally.

4.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery N/A G2330000166LA		NINGBO VEKEN	
AEI	Battery	ttery N/A	G2330000100LA	BATTERY CO., LTD
۸Ε٥	Hoodoot	NI/A	G7260010070LA	ZheJiang MEEYON
AEZ	AE2 Headset N/A G7260010	G7260010070LA	Techology CO.,LTD	

^{*}AE ID: is used to identify the test sample in the lab internally.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IC RSS-102 ISSUE4: Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

OET Bulletin 65 (Edition 97-01) and Supplement C(Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

KDB648474 D04 SAR Handsets Multi Xmiter and Ant v01: SAR Evaluation Considerations for Wireless Handsets.

KDB248227 SAR meas for 802.11abg v01r02: SAR measurement procedures for 802.112abg transmitters.

KDB447498 D01 General RF Exposure Guidance v05: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB865664 D01: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB941225 D01 SAR test for 3G devides v02: Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE.

KDB941225 D03 SAR test Redution GSM GPRS EDGE v01: Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE.

KDB941225 D06 hotspot SAR v01: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities.

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

Frequency (MHz)	Liquid Type	Conductivity (σ)	± 5% Range	Permittivity (ε)	± 5% Range
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3

7.2 Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid

Measurement Date	te : 835 M	Hz Head <u>Janı</u>	1900 MHz H	lead <u>January 18</u>	3, 201 <u>3</u>	
	2450	MHz Head <u> Jaı</u>	2450 MHz I	Body January 30	<u>0, 2013</u>	
	835 N	lHz Body <u>Janı</u>	uary 21, 2013	1900 MHz E	Body January 22	<u>2, 2013</u>
/	Туре	Frequency	Drift (%)	Conductivity σ (S/m)	Drift (%)	
	Head	835 MHz	40.67	2.00%	0.909	1.00%
	Body	835 MHz	55.15	0.09%	0.9989	2.97%
Measurement	Head	1900 MHz	40.53	1.33%	1.459	4.21%
value	Body	1900 MHz	53.24	0.11%	1.524	0.26%
	Head	2450 MHz	38.87	0.84%	1.824	1.33%
	Body	2450 MHz	53.95	2.37%	1.918	1.64%

Picture 7-1: Liquid depth in the Flat Phantom (835 MHz Head)

Picture 7-2: Liquid depth in the Flat Phantom (1900 MHz Head)

Picture 7-3: Liquid depth in the Flat Phantom (835 MHz Body)

Picture 7-4: Liquid depth in the Flat Phantom (1900 MHz Body)

Picture 7-5: Liquid depth in the Flat Phantom (2450 MHz Head)

Picture 7-6: Liquid depth in the Flat Phantom (2450 MHz Body)

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

Table 8.1: System Verification of Head

2450 MHz January 30, 2013

Input power level: 250mW

input power level. 200111V									
		Target value (W/kg) N		Measured v	alue (W/kg)	Deviation			
	Frequency	10 g	1 g	10 g	1 g	10 g	1 g		
Verification		Average	Average	Average	Average	Average	Average		
results	835 MHz	6.10	9.35	6.20	9.40	1.63%	0.53%		
	1900 MHz	20.6	39.2	19.48	38.08	-5.43%	-2.85%		
	2450 MHz	25.0	53.6	23.72	51.04	-5.12%	-4.77%		

Table 8.2: System Verification of Body

Measurement Date: 2450 MHz January 30, 2013

835 MHz January 21, 2013 1900 MHz January 22, 2013

Input power level: 250mW

		Target value (W/kg)		Measured v	alue (W/kg)	Deviation		
	Frequency	10 g	1 g	10 g	1 g	10 g	1 g	
Verification		Average	Average	Average	Average	Average	Average	
results	835 MHz	6.29	9.50	6.60	10.12	4.93%	6.53%	
	1900 MHz	21.2	40.3	21.88	41.6	3.20%	3.22%	
	2450 MHz	24.1	51.4	24.64	53.2	2.24%	3.50%	

9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in Picture 11.1.

Step 1: The tests described in 11.2 shall be performed at the channel that is closest to the centre

of the transmit frequency band (f_c) for:

- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in Chapter 8),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., N_c > 3), then all

frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 11.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 9.1 Block diagram of the tests to be performed

9.2 General Measurement Procedure

The following procedure shall be performed for each of the test conditions (see Picture 11.1) described in 11.1:

- a) Measure the local SAR at a test point within 8 mm or less in the normal direction from the inner surface of the phantom.
- b) Measure the two-dimensional SAR distribution within the phantom (area scan procedure). The boundary of the measurement area shall not be closer than 20 mm from the phantom side walls. The distance between the measurement points should enable the detection of the location of local maximum with an accuracy of better than half the linear dimension of the tissue cube after interpolation. A maximum grip spacing of 20 mm for frequencies below 3 GHz and (60/f [GHz]) mm for frequencies of 3GHz and greater is recommended. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for

frequencies below 3 GHz and δ In(2)/2 mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and In(x) is the natural logarithm. The maximum variation of the sensor-phantom surface shall be ± 1 mm for frequencies below 3 GHz and ± 0.5 mm for frequencies of 3 GHz and greater. At all measurement points the angle of the probe with respect to the line normal to the surface should be less than δ° . If this cannot be achieved for a measurement distance to the phantom inner surface shorter than the probe diameter, additional uncertainty evaluation is needed.

- c) From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that are not within the zoom-scan volume; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR limit. This is consistent with the 2 dB threshold already stated; d) Measure the three-dimensional SAR distribution at the local maxima locations identified in step c). The horizontal grid step shall be (24/f[GHz]) mm or less but not more than 8 mm. The minimum zoom size of 30 mm by 30 mm and 30 mm for frequencies below 3 GHz. For higher frequencies, the minimum zoom size of 22 mm by 22 mm and 22 mm. The grip step in the vertical direction shall be (8-f[GHz]) mm or less but not more than 5 mm, if uniform spacing is used. If variable spacing is used in the vertical direction, the maximum spacing between the two closest measured points to the phantom shell shall be (12 / f[GHz]) mm or less but not more than 4 mm, and the spacing between father points shall increase by an incremental factor not exceeding 1.5. When variable spacing is used, extrapolation routines shall be tested with the same spacing as used in measurements. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz andδ In(2)/2 mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and $\ln(x)$ is the natural logarithm. Separate grids shall be centered on each of the local SAR maxima found in step c). Uncertainties due to field distortion between the media boundary and the dielectric enclosure of the probe should also be minimized, which is achieved is the distance between the phantom surface and physical tip of the probe is larger than probe tip diameter. Other methods may utilize correction procedures for these boundary effects that enable high precision measurements closer than half the probe diameter. For all measurement points, the angle of the probe with respect to the flat phantom surface shall be less than 5° . If this cannot be achieved an additional uncertainty evaluation is needed.
- e) Use post processing(e.g. interpolation and extrapolation) procedures to determine the local SAR values at the spatial resolution needed for mass averaging.

9.3 WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for

Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

For Release 5 HSDPA Data Devices:

Sub-test	$oldsymbol{eta}_c$	$oldsymbol{eta}_d$	β_d (SF)	β_c/β_d	$oldsymbol{eta}_{hs}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

For Release 6 HSDPA Data Devices

Sub-	$oldsymbol{eta}_c$	$oldsymbol{eta_d}$	eta_d	$oldsymbol{eta}_c$ / $oldsymbol{eta}_d$	$oldsymbol{eta_{hs}}$	$oldsymbol{eta}_{ec}$	$oldsymbol{eta}_{ed}$	eta_{ed}	$eta_{\it ed}$ (codes)	CM (dB)	MPR (dB)	AG Index	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	3.0	2. 0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed1} :47/15 eta_{ed2} :47/15	4	2	2. 0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	3. 0	2. 0	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.0	0.0	21	81

9.4 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.5 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 14.2 to Table 14.11 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

11 Conducted Output Power

11.1 Manufacturing tolerance

Table 11.1: GSM Speech

	GSM 835									
Channel	Channel 251	Channel 190	Channel 128							
Target (dBm)	31.5	31.5	31.5							
Tolerance ±(dB)	0.4	0.4	0.3							
	GSM	1 1900								
Channel	Channel 810	Channel 661	Channel 512							
Target (dBm)	29.5	29.5	29.5							
Tolerance ±(dB)	1.0	0.9	0.7							

Table 11.2: GPRS (GMSK Modulation)

COM OFF OPPO									
	GSM 850 GPRS								
	Channel	251	190	128					
1 Txslots	Target (dBm)	32.5	32.5	32.5					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance \pm (dB)	1.3	0.9	1.3					
2 Txslots	Target (dBm)	31.0	31.0	31.0					
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance \pm (dB)	1.2	1.0	1.2					
3 Txslots	Target (dBm)	30.0	30.0	30.0					
3 1 XSIOIS	Tolerance \pm (dB)	1.5	1.3	1.5					
4 Typloto	Target (dBm)	28.5	28.5	28.5					
4 Txslots	Tolerance \pm (dB)	1.1	0.9	1.1					
		GSM 1900 GPRS	3						
	Channel	810	661	512					
1 Txslots	Target (dBm)	28.0	28.0	28.0					
1 1 XSIOIS	Tolerance \pm (dB)	0.7	0.4	0.2					
2 Txslots	Target (dBm)	27.0	27.0	27.0					
2 1 X SIOLS	Tolerance \pm (dB)	1.1	0.8	0.6					
2 Typlots	Target (dBm)	26.0	26.0	26.0					
3 Txslots	Tolerance \pm (dB)	1.4	1.1	0.9					
4 Typlots	Target (dBm)	25.0	25.0	25.0					
4 Txslots	Tolerance \pm (dB)	1.5	1.2	1.0					

Table 11.3: WCDMA

WCDMA 850 CS									
Channel	Channel 4132	Channel 4182	Channel 4233						
Target (dBm)	23.5	23.5	23.5						
Tolerance \pm (dB)	0.56	0.54	0.51						
	WCDMA	1900 CS							
Channel	Channel 9262	Channel 9400	Channel 9538						
Target (dBm)	23.5	23.5	23.5						
Tolerance \pm (dB)	1.21	1.01	0.72						

Table 11.4: WiFi

19810 11111 1								
WiFi 802.11b								
Channel	Channel 1	Channel 6	Channel 11					
Target (dBm)	15.00	15.00	15.00					
Tolerance \pm (dB)	13.15	13.09	13.11					
	WiFi 8	302.11g						
Channel	Channel 1	Channel 6	Channel 11					
Target (dBm)	14.00	14.00	14.00					
Tolerance \pm (dB)	11.83	11.62	11.74					
	WiFi 8	302.11n						
Channel	Channel 1	Channel 6	Channel 11					
Target (dBm)	13.00	13.00	13.00					
Tolerance \pm (dB)	1.46	1.46	1.23					

11.2 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Table 11.5: The conducted power measurement results for GSM850/1900

GSM		Conducted Power (dBm)	
850MHZ	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)
OSUIVINZ	31.1	31.1	31.2
CCM		Conducted Power (dBm)	
GSM 1900MHZ	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)
I 900IVITZ	28.5	28.6	28.8

Table 11.6: The conducted power measurement results for GPRS

GSM 850	Meası	ured Power	(dBm)	calculation	Avera	ged Power	(dBm)
GPRS (GMSK)	251	190	128		251	190	128
1 Txslot	31.2	31.4	31.2	-9.03dB	22.17	22.37	22.17
2 Txslots	29.8	30.0	29.8	-6.02dB	23.78	23.98	23.78
3Txslots	28.5	28.7	28.5	-4.26dB	24.24	24.44	24.24
4 Txslots	27.4	27.6	27.4	-3.01dB	24.39	24.59	24.39
	Measured Power (dBm)						
PCS1900	Measu	red Power	(dBm)	calculation	Avera	ged Power	(dBm)
PCS1900 GPRS (GMSK)	Measu 810	red Power 661	(dBm) 512	calculation	Avera(810	ged Power 661	(dBm) 512
			· ,	calculation -9.03dB	`		ì ,
GPRS (GMSK)	810	661	512		810	661	512
GPRS (GMSK) 1 Txslot	810 27.3	661 27.6	512 27.8	-9.03dB	810 18.27	661 18.57	512 18.77

NOTES:

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) = -4.26 dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 4Txslots for GSM850 and GSM1900.

¹⁾ Division Factors

11.3 WCDMA Measurement result

Table 11.7: The conducted power for WCDMA850/1900

	band		FDDV result(dBm)		
ltem	ARFCN	4233 (846.6MHz)	4182 (836.4MHz)	4132 (826.4MHz)		
WCDMA	RMC	22.94	22.96	22.99		
	sub1	22.88	22.91	22.92		
HSDPA	sub2	21.67	21.60	21.71		
ПЭДРА	sub3	22.16	22.10	22.12		
	sub4	21.68	21.62	21.69		
	band	FDDII result(dBm)				
Item	ARFCN	9538 (1907.6MHz)	9400 (1880MHz)	9262 (1852.4MHz)		
WCDMA	RMC	22.78	22.49	22.29		
	sub1	22.69	22.41	22.21		
HSDPA	sub2	21.48	21.22	21.01		
ПЭДРА	sub3	22.19	21.89	21.02		
	sub4	21.50	21.19	21.02		

Note: HSDPA body SAR are not required, because maximum average output power of each RF channel with HSDPA active is not 1/4 dB higher than that measured without HSDPA and the maximum SAR for WCDMA850 and WCDMA1900 are not above 75% of the SAR limit.

11.4 Wi-Fi and BT Measurement result

The output power of BT antenna is as following:

For GFSK

Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)
Conducted Output Power (dBm)	3.57	3.30	3.13

For π/4 DQPSK

Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)
Conducted Output Power (dBm)	3.48	3.27	3.31

For 8DPSK

Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)
Conducted Output Power (dBm)	3.82	3.72	3.29

The average conducted power for Wi-Fi is as following: 802.11b (dBm)

Channel\data rate	1Mbps	2Mbps	5.5Mbps	11Mbps
1	12.20	12.10	13.15	12.74
6	11.71	11.64	13.09	12.68
11	11.88	12.19	13.11	12.72

802.11g (dBm)

Channel\data	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
rate								
1	11.83	11.16	11.10	11.12	11.57	11.69	10.79	10.65
6	11.62	11.63	11.62	11.62	11.73	11.73	10.19	10.19
11	11.74	11.77	11.77	11.79	11.63	11.71	10.38	10.37

20M 802.11n (dBm)

Channel\data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
1	11.11	11.22	11.19	11.54	9.79	9.76	7.86	7.95
6	11.53	11.54	11.52	11.10	9.12	9.11	7.16	7.20
11	11.77	11.75	11.74	11.33	9.34	9.35	7.42	7.43

The peak conducted power for Wi-Fi is as following:

802.11b (dBm)

Channel\data rate	1Mbps	2Mbps	5.5Mbps	11Mbps
1	13.69	13.69	13.66	14.13
6	14.72	14.68	14.77	14.63
11	14.65	14.64	14.72	14.63

802.11g (dBm)

Channel\data	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
rate								
1	18.23	18.42	17.35	17.12	17.82	18.59	17.42	17.50
6	18.19	18.24	17.42	17.46	17.97	18.30	16.84	16.94
11	18.03	18.13	17.37	17.44	17.95	18.14	16.76	16.86

802.11n (dBm)

Channel\data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
1	18.23	18.42	17.35	17.12	17.82	18.59	17.42	17.50
6	18.19	18.24	17.42	17.46	17.97	18.30	16.84	16.94
11	18.03	18.13	17.37	17.44	17.95	18.14	16.76	16.86

SAR is not required for 802.11g/n channels if the output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels, and for each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 0.25dB higher than those measured at the lowest data rate. According to the above conducted power, the EUT should be tested for "802.11b, 5.5Mbps, channel 1".

12 Simultaneous TX SAR Considerations

12.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters.

12.2 Transmit Antenna Separation Distances

Picture 12.1 Antenna Locations

12.3 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

According to the KDB447498 appendix A, the SAR test exclusion threshold for 2450MHz at 5mm test separation distances is 10mW.

Appendix A

SAR Test Exclusion Thresholds for 100 MHz − 6 GHz and ≤ 50 mm

Approximate SAR Test Exclusion Power Thresholds at Selected Frequencies and Test Separation Distances are illustrated in the following Table.

MHz	5	10	15	20	25	mm
150	39	77	116	155	194	
300	27	55	82	110	137	
450	22	45	67	89	112	
835	16	33	49	66	82	
900	16	32	47	63	79	SAR Test Exclusion Threshold (mW)
1500	12	24	37	49	61	
1900	11	22	33	44	54	
2450	10	19	29	38	48	
3600	8	16	24	32	40	
5200	7	13	20	26	33	
5400	6	13	19	26	32	
5800	6	12	19	25	31	

Picture 12.2 Power Thresholds

13 Evaluation of Simultaneous

Table 13.1: Summary of Transmitters

Band/Mode	F(GHz)	SAR test exclusion threshold (mW)	RF output power (mW)
Bluetooth	2.441	10	2.410
2.4GHz WLAN 802.11 b/g	2.45	10	20.65

According to the conducted power measurement result, we can draw the conclusion that: stand-alone SAR for WiFi should be performed. Then, simultaneous transmission SAR for WiFi is considered with measurement results of GSM/WCDMA and WiFi.

Table 13.2: Simultaneous Transmission with 2.4GHz WLAN(Head)

				,
Simult Tx	Configuration	GSM 835MHz	2.4 GHz WLAN	SUM
Simult 1x	Configuration	SAR(W/Kg)	SAR(W/Kg)	SAR(W/Kg)
Head SAR	Right Cheek	0.166	0.142	0.308
	Right Tilt	0.104	0.029	0.133
	Left Cheek	0.153	0.096	0.249
	Left Tilt	0.100	0.024	0.124

Simult Tx	mult Tx Configuration	GSM 1900MHz	2.4 GHz WLAN	SUM
Omnun 1x	Comiguration	SAR(W/Kg)	SAR(W/Kg)	SAR(W/Kg)
Head SAR	Right Cheek	0.150	0.142	0.292
	Right Tilt	0.070	0.029	0.099
	Left Cheek	0.283	0.096	0.379
	Left Tilt	0.089	0.024	0.113

Simult Tx	Configuration	WCDMA 1900MHz	2.4 GHz WLAN	SUM
Simult 1x	Configuration	SAR(W/Kg)	SAR(W/Kg)	SAR(W/Kg)
	Right Cheek	0.300	0.142	0.442
Head SAR	Right Tilt	0.121	0.029	0.150
	Left Cheek	0.566	0.096	0.662
	Left Tilt	0.172	0.024	0.196

Simult Tx	Configuration	WCDMA 850MHz SAR(W/Kg)	2.4 GHz WLAN SAR(W/Kg)	SUM SAR(W/Kg)
Head SAR	Right Cheek	0.206	0.142	0.348
	Right Tilt	0.153	0.029	0.182
	Left Cheek	0.321	0.096	0.417
	Left Tilt	0.153	0.024	0.177

Table 13.3: Simultaneous Transmission with 2.4GHz WLAN(Body)

Simult Tx	Configuration	GSM 835MHz SAR(W/Kg)	2.4 GHz WLAN SAR(W/Kg)	SUM SAR(W/Kg)
Body SAR	Toward Ground	1.035	0.211	1.246
	Toward Phantom	0.264	0.0012	0.2652

Simult Tx	Configuration	GSM 1900MHz SAR(W/Kg)	2.4 GHz WLAN SAR(W/Kg)	SUM SAR(W/Kg)
Body SAR	Toward Ground	0.860	0.211	1.077
	Toward Phantom	0.212	0.0012	0.2132

Simult Tx	Configuration	WCDMA 1900MHz SAR(W/Kg)	2.4 GHz WLAN SAR(W/Kg)	SUM SAR(W/Kg)
Body SAR	Toward Ground	1.078	0.211	1.289
	Toward Phantom	0.165	0.0012	0.1662

Simult Tx	Configuration	WCDMA 850MHz SAR(W/Kg)	2.4 GHz WLAN SAR(W/Kg)	SUM SAR(W/Kg)
Body SAR	Toward Ground	1.027	0.211	1.238
	Toward Phantom	0.313	0.0012	0.3142

The above numerical SAR results for all worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured simultaneous SAR summation is required per FCC KDB Publication 447498 D01 v05.

According to the above table, the sum of reported SAR values for GSM and WiFi <1.6W/kg. So the simultaneous transmission SAR is not required for WiFi transmitter.

14 SAR Test Result

Table 14.1: Duty Cycle

	Duty Cycle
Speech for GSM835/1900	1:8.3
GPRS for GSM835/1900	1:2
WCDMA850/1900 and WiFi	1:1

Table 14.2: SAR Values (GSM 835 MHz Band - Head)

Frequency				Maximum	Measured		Measured	Reported	Power	
MHz	Ch.	Side	Test Position	allowed Power (dBm)	average power (dBm)	Scaling factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)	
836.6	190	Left	Touch	31.5	31.1	1.096	0.140	0.153	0.11	
836.6	190	Left	Tilt	31.5	31.1	1.096	0.092	0.100	-0.08	
848.8	251	Right	Touch	31.5	31.1	1.096	0.152	0.166	0.14	
836.6	190	Right	Touch	31.5	31.1	1.096	0.148	0.162	-0.18	
824.2	128	Right	Touch	31.5	31.2	1.072	0.104	0.111	0.11	
836.6	190	Right	Tilt	31.5	31.1	1.096	0.095	0.104	-0.14	
	SIM2 SAR value(test in worst-case of SIM1)									
848.8	251	Right	Touch	31.5	31.1	1.096	0.147	0.161	0.04	

Note: According to the values in the above table, SIM1 SAR value is higher than SIM2. SIM1 is the primary. So we'll perform the measurement with SIM1.

Table 14.3: SAR Values (GSM 835 MHz Band - Body)

Table 14.5. SAR values (GSW 655 WHZ Ballu - Bouy)										
Frequency		Mode	Test	Maximum allowed	Measured average	Scaling	Measured	Reported	Power	
		(number of	Position	Power		factor	SAR(1g)	SAR(1g)	Drift	
MHz Ch.	timeslots)	FUSITION	(dBm)	power (dBm)	lactor	(W/kg)	(W/kg)	(dB)		
836.6	190	GPRS (4)	Phantom	28.5	27.6	1.230	0.215	0.264	-0.17	
848.8	251	GPRS (4)	Ground	28.5	27.4	1.288	0.804	1.035	-0.01	
836.6	190	GPRS (4)	Ground	28.5	27.6	1.230	0.634	0.779	-0.01	
824.2	128	GPRS (4)	Ground	28.5	27.4	1.288	0.571	0.735	-0.00	
836.6	190	GPRS (4)	Left	28.5	27.6	1.230	0.154	0.189	-0.15	
836.6	190	GPRS (4)	Right	28.5	27.6	1.230	0.159	0.195	0.06	
836.6	190	GPRS (4)	Bottom	28.5	27.6	1.230	0.039	0.047	0.19	
848.8	251	Speech	Ground	31.5	31.1	1.096	0.749	0.821	-0.14	
040.0			(Headset)	31.3			0.749	0.021	-0.14	
	SIM2 SAR value(test in worst-case of SIM1)									
848.8	251	GPRS (4)	Ground	28.5	27.4	1.288	0.793	1.021	0.11	

Note:

According to the values in the above table, SIM1 SAR value is higher than SIM2. SIM1 is the

^{1.} The distance between the EUT and the phantom bottom is 5mm.

primary. So we'll perform the measurement with SIM1.

Table 14.4: SAR Values (GSM 1900 MHz Band - Head)

Frequency			_	Maximum	Measured	0 ::	Measured	Reported	Power	
MHz	٥.	Side	Test Position	allowed Power	average power	Scaling factor	SAR(1g)	SAR(1g)	Drift	
	Ch.		1 Osition	(dBm)	(dBm)	lactor	(W/kg)	(W/kg)	(dB)	
1909.8	810	Left	Touch	29.5	28.5	1.259	0.163	0.205	0.12	
1880	661	Left	Touch	29.5	28.6	1.230	0.142	0.174	-0.12	
1850.2	512	Left	Touch	29.5	28.8	1.175	0.241	0.283	0.15	
1880	661	Left	Tilt	29.5	28.6	1.230	0.073	0.089	0.12	
1880	661	Right	Touch	29.5	28.6	1.230	0.122	0.150	0.11	
1880	661	Right	Tilt	29.5	28.6	1.230	0.057	0.070	0.15	
	SIM2 SAR value(test in worst-case of SIM1)									
1850.2	512	Left	Touch	29.5	28.8	1.175	0.235	0.276	-0.16	

Note: According to the values in the above table, SIM1 SAR value is higher than SIM2. SIM1 is the primary. So we'll perform the measurement with SIM1.

Table 14.5: SAR Values (GSM 1900 MHz Band - Body)

Frequency		Mode	Test	Maximum	Measured	Scaling	Measured	Reported	Power		
MHz	Ch.	(number of timeslots)	Position	allowed Power (dBm)	average power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)		
1880	661	GPRS (4)	Phantom	25.0	23.8	1.318	0.161	0.212	0.11		
1909.8	810	GPRS (4)	Ground	25.0	23.5	1.413	0.600	0.847	-0.13		
1880	661	GPRS (4)	Ground	25.0	23.8	1.318	0.653	0.860	0.13		
1850.2	512	GPRS (4)	Ground	25.0	24.0	1.259	0.663	0.834	0.16		
1880	661	GPRS (4)	Left	25.0	23.8	1.318	0.092	0.121	0.05		
1880	661	GPRS (4)	Right	25.0	23.8	1.318	0.022	0.029	0.18		
1880	661	GPRS (4)	Bottom	25.0	23.8	1.318	0.188	0.247	-0.05		
1850.2	512	Speech	Ground (Headset)	29.5	28.8	1.175	0.173	0.203	0.17		
	SIM2 SAR value(test in worst-case of SIM1)										
1850.2	512	GPRS (4)	Ground	25.0	24.0	1.259	0.652	0.820	-0.12		

Note:

- 2. The distance between the EUT and the phantom bottom is 5mm.
- 3. According to the values in the above table, SIM1 SAR value is higher than SIM2. SIM1 is the primary. So we'll perform the measurement with SIM1.

Table 14.6: SAR Values (WCDMA 850 MHz Band - Head)

Frequ	uency		T	Maximum	Measured	0 - 1 - 1	Measured	Reported	5
MHz	Ch.	Side	Test Position	allowed Power (dBm)	average power (dBm)	Scaling factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Power Drift (dB)
846.6	4233	Left	Touch	23.5	22.94	1.138	0.282	0.321	0.12
836.4	4182	Left	Touch	23.5	22.96	1.132	0.225	0.255	0.10
826.4	4132	Left	Touch	23.5	22.99	1.125	0.277	0.312	0.17
836.4	4182	Left	Tilt	23.5	22.96	1.132	0.135	0.153	0.15
836.4	4182	Right	Touch	23.5	22.96	1.132	0.182	0.206	-0.13
836.4	4182	Right	Tilt	23.5	22.96	1.132	0.135	0.153	-0.06

Table 14.7: SAR Values (WCDMA 850 MHz Band - Body)

Frequ	ency	_	Maximum	Measured		Measured	Reported	Power
		Test	allowed	average	Scaling	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	Power	power	factor	(W/kg)	(W/kg)	(dB)
			(dBm)	(dBm)		(VV/Kg)	(vv/kg)	(GD)
836.4	4182	Phantom	23.5	22.96	1.132	0.276	0.313	-0.11
846.6	4233	Ground	23.5	22.94	1.138	0.903	1.027	0.00
836.4	4182	Ground	23.5	22.96	1.132	0.729	0.826	0.01
826.4	4132	Ground	23.5	22.99	1.125	0.754	0.927	-0.02
836.4	4182	Left	23.5	22.96	1.132	0.087	0.099	-0.04
836.4	4182	Right	23.5	22.96	1.132	0.098	0.111	-0.19
836.4	4182	Bottom	23.5	22.96	1.132	0.021	0.024	0.17
846.6	4233	Ground	23.5	22.94	1.138	0.798	0.908	0.02
0-0.0	7233	(Headset)	25.5	22.94	1.130	0.790	0.300	0.02

Note1: The distance between the EUT and the phantom bottom is 5mm.

Table 14.8: SAR Values (WCDMA 1900 MHz Band - Head)

Frequ	ency		_	Maximum	Measured		Measured	Reported	_
MHz	Ch.	Side	Test Position		average power (dBm)	Scaling factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Power Drift (dB)
1907.6	9538	Left	Touch	23.5	22.78	1.180	0.334	0.394	0.18
1880	9400	Left	Touch	23.5	22.49	1.262	0.344	0.434	-0.04
1852.4	9262	Left	Touch	23.5	22.29	1.321	0.428	0.566	0.17
1880	9400	Left	Tilt	23.5	22.49	1.262	0.136	0.172	0.14
1880	9400	Right	Touch	23.5	22.49	1.262	0.238	0.300	0.12
1880	9400	Right	Tilt	23.5	22.49	1.262	0.096	0.121	0.08

Table 14.9: SAR Values (WCDMA 1900 MHz Band - Body)

Frequ	ency		Maximum	Measured		Measured	Reported	Power
		Test	allowed	average	Scaling	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	Power	power	factor	` 0,	` "	
1411 12	011.		(dBm)	(dBm)		(W/kg)	(W/kg)	(dB)
1880	9400	Phantom	23.5	22.49	1.262	0.131	0.165	0.13
1907.6	9538	Ground	23.5	22.78	1.180	0.913	1.078	0.12
1880	9400	Ground	23.5	22.49	1.262	0.795	1.003	-0.09
1852.4	9262	Ground	23.5	22.29	1.321	0.595	0.786	0.11
1880	9400	Left	23.5	22.49	1.262	0.108	0.212	0.13
1880	9400	Right	23.5	22.49	1.262	0.026	0.033	0.14
1880	9400	Bottom	23.5	22.49	1.262	0.244	0.308	0.13
1907.6	9538	Ground (Headset)	23.5	22.78	1.180	0.768	0.847	0.13

Note1: The distance between the EUT and the phantom bottom is 5mm.

Table 14.10: SAR Values (Wi-Fi 802.11b - Head)

Frequ	ency		Test	Maximum	Measured	Caaling	Measured	Reported	Power
MHz	Ch.	Side	Position	allowed Power (dBm)	average power (dBm)	Scaling factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
2412	1	Left	Touch	15.00	13.15	1.531	0.063	0.096	0.11
2412	1	Left	Tilt	15.00	13.15	1.531	0.016	0.024	0.19
2412	1	Right	Touch	15.00	13.15	1.531	0.093	0.142	0.20
2412	1	Right	Tilt	15.00	13.15	1.531	0.019	0.029	0.16

Table 14.11: SAR Values (Wi-Fi 802.11b - Body)

Frequency		Test	Maximum allowed	Measured average	Scaling	Measured	Reported	Power
MHz	Ch.	Position	Power (dBm)	power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
2412	1	Phantom	15.00	13.15	1.531	0.000786	0.0012	0.04
2412	1	Ground	15.00	13.15	1.531	0.138	0.211	-0.02
2412	1	Left	15.00	13.15	1.531	0.00114	0.00175	-0.07
2412	1	Right	15.00	13.15	1.531	0.000179	0.00027	-0.11
2412	1	Тор	15.00	13.15	1.531	0.000655	0.001	-0.14
2412	1	Bottom	15.00	13.15	1.531	0.00026	0.0004	-0.09

Note1: The distance between the EUT and the phantom bottom is 5mm.

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 15.1: SAR Measurement Variability for Head Value (1g)

Frequ	Frequency MHz Ch. Side		Test	Original	First Repeated	The
MHz			Position	SAR (W/kg)	SAR (W/kg)	Ratio
N/A	N/A	N/A	N/A	N/A	N/A	N/A

Table 15.2: SAR Measurement Variability for Body Value (1g)

Freque	ency	Mode(number	Test	Spacing	Original	First	The
MHz	Ch.	of timeslots)	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio
848.8	251	GPRS (4)	Ground	5	0.804	0.815	1.01
848.8	251	Speech	Ground (Headset)	5	0.749	0.725	1.03
1909.8	810	GPRS (4)	Ground	5	0.600	0.646	1.07
1880	661	GPRS (4)	Ground	5	0.653	0.602	1.08
1850.2	512	GPRS (4)	Ground	5	0.663	0.682	1.02
846.6	4233	WCDMA	Ground	5	0.903	0.862	1.04
836.4	4182	WCDMA	Ground	5	0.729	0.775	1.06
826.4	4132	WCDMA	Ground	5	0.754	0.682	1.10
846.6	4233	WCDMA	Ground (Headset)	5	0.798	0.780	1.02
1907.6	9538	WCDMA	Ground	5	0.913	0.912	1.00
1880	9400	WCDMA	Ground	5	0.795	0.794	1.00
1907.6	9538	WCDMA	Ground (Headset)	5	0.768	0.768	1.00

16 Measurement Uncertainty

Error Description	Unc.	Prob.	Div	Ci	Ci	Std.Unc.	Std.Unc.	V_{i}
	value	Dist.		1g	10g	±%,1g	±%,10g	V _{eff}
	, ±%							
Measurement System								
Probe Calibration	6.0	N	1	1	1	6.0	6.0	∞
Axial Isotropy	0.5	R	$\sqrt{3}$	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	2.6	R	√3	0.7	0.7	1.1	1.1	∞
Boundary Effects	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Linearity	0.6	R	$\sqrt{3}$	1	1	0.3	0.3	∞
System Detection Limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Readout Electronics	0.7	N	1	1	1	0.7	0.7	∞
Response Time	0	R	$\sqrt{3}$	1	1	0	0	∞
Integration Time	2.6	R	√3	1	1	1.5	1.5	∞
RF Ambient Noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
RF Ambient Reflections	3.0	R	√3	1	1	1.7	1.7	∞
Probe Positioner	1.5	R	$\sqrt{3}$	1	1	0.9	0.9	∞
Probe Positioning	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Max. SAR Eval.	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Test Sample Related								
Device Positioning	2.9	N	1	1	1	2.9	2.9	145
Device Holder	3.6	N	1	1	1	3.6	3.6	5
Diople								
Power Drift	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Dipole Positioning	2.0	N	1	1	1	2.0	2.0	∞
Dipole Input Power	5.0	N	1	1	1	5.0	5.0	∞
Phantom and Setup								
Phantom Uncertainty	4.0	R	√3	1	1	2.3	2.3	∞
Liquid Conductivity (target)	5.0	R	√3	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (meas.)	2.5	Ν	1	0.64	0.43	1.6	1.1	∞
Liquid Permittivity (target)	5.0	R	√3	0.6	0.49	1.7	1.4	∞
Liquid Permittivity	2.5	N	1	0.6	0.49	1.5	1.2	∞

(meas.)					
Combined Std			±11.2%	±10.9%	387
Uncertainty					
Expanded Std			±22.4%	±21.8%	
Uncertainty					

17 Main Test Instrument

Table 16.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	N5242A	MY51221755	Aug 07, 2012	One year
02	Power meter	NRVD	102257	Aug 20, 2012	One year
03	Power sensor	NRV-Z5	100644,100241	Aug 20, 2012	One year
04	Signal Generator	E4438C	MY49072044	Aug 07, 2012	One Year
05	Amplifier	NTWPA-0086010F	12023024	No Calibration Requeste	ed
06	Coupler	778D	MY48220551	Aug 06, 2012	One year
07	BTS	E5515C	MY50266468	Aug 04, 2012	One year
08	E-field Probe	ES3DV3	3252	Jul 24, 2012	One year
09	E-field Probe	EX3DV4	3754	Aug 17, 2012	One year
10	DAE	SPEAG DAE4	1244	Jul 20, 2012	One year
11	Dipole Validation Kit	SPEAG D835V2	4d112	Jul 25, 2012	One year
12	Dipole Validation Kit	SPEAG D1900V2	5d134	Jul 20, 2012	One year
13	Dipole Validation Kit	SPEAG D2450V2	858	Jul 24, 2012	One year

ANNEX A GRAPH RESULTS

GSM835 Left Cheek Middle

Date/Time: 1/18/2013 Electronics: DAE4 Sn1244 Medium: Head 835MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.91$ S/m; $\epsilon r = 40.663$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 835 MHz; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.09, 6.09, 6.09); Calibrated: 7/24/2012

Middle Cheek Left GSM835MHz/Area Scan (11x7x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.151 W/kg

Middle Cheek Left GSM835MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.280 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.238 W/kg

SAR(1 g) = 0.140 W/kg; SAR(10 g) = 0.095 W/kgMaximum value of SAR (measured) = 0.162 W/kg

GSM835 Left Tilt Middle

Date/Time: 1/18/2013 Electronics: DAE4 Sn1244 Medium: Head 835MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.91$ S/m; $\epsilon r = 40.663$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 835 MHz; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.09, 6.09, 6.09); Calibrated: 7/24/2012

Middle Tilt Left GSM835MHz/Area Scan (11x7x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.0971 W/kg

Middle Tilt Left GSM835MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.630 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.118 W/kg

SAR(1 g) = 0.092 W/kg; SAR(10 g) = 0.069 W/kg Maximum value of SAR (measured) = 0.0986 W/kg

GSM835 Right Cheek Middle

Date/Time: 1/18/2013 Electronics: DAE4 Sn1244 Medium: Head 835MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.91$ S/m; $\epsilon r = 40.663$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 835 MHz; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.09, 6.09, 6.09); Calibrated: 7/24/2012

Middle Cheek Right GSM835MHz/Area Scan (11x7x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.145 W/kg

Middle Cheek Right GSM835MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.442 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.188 W/kg

SAR(1 g) = 0.148 W/kg; SAR(10 g) = 0.100 W/kgMaximum value of SAR (measured) = 0.147 W/kg

GSM835 Right Tilt Middle

Date/Time: 1/18/2013 Electronics: DAE4 Sn1244 Medium: Head 835MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.91$ S/m; $\epsilon r = 40.663$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 835 MHz; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.09, 6.09, 6.09); Calibrated: 7/24/2012

Middle Tilt Right GSM835MHz/Area Scan (11x7x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.0979 W/kg

Middle Tilt Right GSM835MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.002 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.119 W/kg

SAR(1 g) = 0.095 W/kg; SAR(10 g) = 0.071 W/kgMaximum value of SAR (measured) = 0.101 W/kg

GSM835 Right Cheek High

Date/Time: 1/18/2013 Electronics: DAE4 Sn1244 Medium: Head 835MHz

Medium parameters used: f = 849 MHz; $\sigma = 0.919$ S/m; $\epsilon r = 40.508$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 835 MHz; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.09, 6.09, 6.09); Calibrated: 7/24/2012

High Cheek Right GSM835MHz/Area Scan (11x7x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.159 W/kg

High Cheek Right GSM835MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.088 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.234 mW/g

SAR(1 g) = 0.152 W/kg; SAR(10 g) = 0.108 W/kgMaximum value of SAR (measured) = 0.164 W/kg

GSM835 Right Cheek Low

Date/Time: 1/18/2013 Electronics: DAE4 Sn1244 Medium: Head 835MHz

Medium parameters used: f = 824.2 MHz; $\sigma = 0.9 \text{ S/m}$; $\epsilon r = 40.801$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 835 MHz; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.09, 6.09, 6.09); Calibrated: 7/24/2012

Low Cheek Right GSM835MHz/Area Scan (11x7x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.109 W/kg

Low Cheek Right GSM835MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.762 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.143 W/kg

SAR(1 g) = 0.104 W/kg; SAR(10 g) = 0.074 W/kgMaximum value of SAR (measured) = 0.110 W/kg

GSM835 Right Cheek High SIM2

Date/Time: 1/18/2013 Electronics: DAE4 Sn1244 Medium: Head 835MHz

Medium parameters used: f = 849 MHz; $\sigma = 0.919$ S/m; $\epsilon r = 40.508$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 835 MHz; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.09, 6.09, 6.09); Calibrated: 7/24/2012

High Cheek Right GSM835MHz SIM2/Area Scan (11x7x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.148 W/kg

High Cheek Right GSM835MHz SIM2/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.088 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.214 W/kg

SAR(1 g) = 0.147 mW/g; SAR(10 g) = 0.085 mW/g

Maximum value of SAR (measured) = 0.161 W/kg

GSM835 Body Toward Ground GPRS 4TS Middle

Date/Time: 1/21/2013 Electronics: DAE4 Sn1244 Medium: Body 835MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001 \text{ S/m}$; $\epsilon r = 55.152$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 835 GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.06, 6.06, 6.06); Calibrated: 7/24/2012

Middle Toward Ground GPRS 4TS 835MHz/Area Scan (10x18x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.668 W/kg

Middle Toward Ground GPRS 4TS 835MHz/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.187 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.878 W/kg

SAR(1 g) = 0.634 W/kg; SAR(10 g) = 0.457 W/kgMaximum value of SAR (measured) = 0.665 W/kg

GSM835 Body Toward Phantom GPRS 4TS Middle

Date/Time: 1/21/2013 Electronics: DAE4 Sn1244 Medium: Body 835MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001 \text{ S/m}$; $\epsilon r = 55.152$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 835 GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.06, 6.06, 6.06); Calibrated: 7/24/2012

Middle Toward Phantom GPRS 4TS 835MHz/Area Scan (10x18x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.225 W/kg

Middle Toward Phantom GPRS 4TS 835MHz/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.036 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.359 W/kg

SAR(1 g) = 0.215 W/kg; SAR(10 g) = 0.138 W/kgMaximum value of SAR (measured) = 0.231 W/kg

GSM835 Body Left GPRS 4TS Middle

Date/Time: 1/21/2013 Electronics: DAE4 Sn1244 Medium: Body 835MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001 \text{ S/m}$; $\epsilon r = 55.152$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 835 GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.06, 6.06, 6.06); Calibrated: 7/24/2012

Middle Left GPRS 4TS 835MHz/Area Scan (9x18x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 0.158 W/kg

Middle Left GPRS 4TS 835MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.852 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.221 W/kg

SAR(1 g) = 0.154 W/kg; SAR(10 g) = 0.104 W/kgMaximum value of SAR (measured) = 0.166 W/kg

GSM835 Body Right GPRS 4TS Middle

Date/Time: 1/21/2013 Electronics: DAE4 Sn1244 Medium: Body 835MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001 \text{ S/m}$; $\epsilon r = 55.152$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 835 GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.06, 6.06, 6.06); Calibrated: 7/24/2012

Middle Right GPRS 4TS 835MHz/Area Scan (9x18x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 0.169 W/kg

Middle Right GPRS 4TS 835MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.769 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.226 W/kg

SAR(1 g) = 0.159 W/kg; SAR(10 g) = 0.108 W/kgMaximum value of SAR (measured) = 0.170 W/kg

GSM835 Body Bottom GPRS 4TS Middle

Date/Time: 1/21/2013 Electronics: DAE4 Sn1244 Medium: Body 835MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001 \text{ S/m}$; $\epsilon r = 55.152$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 835 GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.06, 6.06, 6.06); Calibrated: 7/24/2012

Middle Bottom GPRS 4TS 835MHz/Area Scan (7x11x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 0.0421 W/kg

Middle Bottom GPRS 4TS 835MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.790 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.0650 W/kg

SAR(1 g) = 0.039 W/kg; SAR(10 g) = 0.023 W/kgMaximum value of SAR (measured) = 0.0432 W/kg

GSM835 Body Toward Ground GPRS 4TS High

Date/Time: 1/21/2013 Electronics: DAE4 Sn1244 Medium: Body 835MHz

Medium parameters used: f = 849 MHz; $\sigma = 1.015$ S/m; $\epsilon r = 55.205$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 835 GPRS 4TS; Frequency: 848.8 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.06, 6.06, 6.06); Calibrated: 7/24/2012

High Toward Ground GPRS 4TS 835MHz/Area Scan (10x18x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.854 W/kg

High Toward Ground GPRS 4TS 835MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.652 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.804 W/kg; SAR(10 g) = 0.589 W/kgMaximum value of SAR (measured) = 0.844 W/kg

GSM835 Body Toward Ground GPRS 4TS Low

Date/Time: 1/21/2013 Electronics: DAE4 Sn1244 Medium: Body 835MHz

Medium parameters used: f = 824.2 MHz; $\sigma = 0.993 \text{ S/m}$; $\epsilon r = 55.149$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 835 GPRS 4TS; Frequency: 824.2 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.06, 6.06, 6.06); Calibrated: 7/24/2012

Low Toward Ground GPRS 4TS 835MHz/Area Scan (10x18x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.601 W/kg

Low Toward Ground GPRS 4TS 835MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.071 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 0.782 W/kg

SAR(1 g) = 0.571 W/kg; SAR(10 g) = 0.418 W/kgMaximum value of SAR (measured) = 0.597 W/kg

GSM835 Body Toward Ground High With Headset

Date/Time: 1/21/2013 Electronics: DAE4 Sn1244 Medium: Body 835MHz

Medium parameters used: f = 849 MHz; $\sigma = 1.015$ S/m; $\epsilon r = 55.205$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 835 MHz; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.06, 6.06, 6.06); Calibrated: 7/24/2012

High Toward Ground GSM835MHz With Headset/Area Scan (10x18x1): Measurement

grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.785 W/kg

High Toward Ground GSM835MHz With Headset/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.816 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.749 W/kg; SAR(10 g) = 0.516 W/kgMaximum value of SAR (measured) = 0.800 W/kg

GSM835 Body Toward Ground GPRS 4TS High SIM2

Date/Time: 1/21/2013 Electronics: DAE4 Sn1244 Medium: Body 835MHz

Medium parameters used: f = 849 MHz; $\sigma = 1.015$ S/m; $\epsilon r = 55.205$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 835 GPRS 4TS; Frequency: 848.8 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.06, 6.06, 6.06); Calibrated: 7/24/2012

High Toward Ground GPRS 4TS 835MHz SIM2/Area Scan (10x18x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.842 W/kg

High Toward Ground GPRS 4TS 835MHz SIM2/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.343 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.020 mW/g

SAR(1 g) = 0.793 mW/g; SAR(10 g) = 0.577 mW/gMaximum value of SAR (measured) = 0.835 W/kg

GSM1900 Left Cheek Middle

Date/Time: 1/18/2013 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.442 \text{ S/m}$; $\epsilon r = 40.614$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 1900 MHz; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.1, 5.1, 5.1); Calibrated: 7/24/2012

Middle Cheek Left GSM1900MHz/Area Scan (12x7x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.154 W/kg

Middle Cheek Left GSM1900MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.229 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.223 W/kg

SAR(1 g) = 0.142 W/kg; SAR(10 g) = 0.086 W/kgMaximum value of SAR (measured) = 0.153 W/kg

GSM1900 Left Tilt Middle

Date/Time: 1/18/2013 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.442 \text{ S/m}$; $\epsilon r = 40.614$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 1900 MHz; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.1, 5.1, 5.1); Calibrated: 7/24/2012

Middle Tilt Left GSM1900MHz/Area Scan (12x7x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.0772 W/kg

Middle Tilt Left GSM1900MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.937 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.117 W/kg

SAR(1 g) = 0.073 W/kg; SAR(10 g) = 0.044 W/kgMaximum value of SAR (measured) = 0.0768 W/kg

GSM1900 Right Cheek Middle

Date/Time: 1/18/2013 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.442 \text{ S/m}$; $\epsilon r = 40.614$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 1900 MHz; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.1, 5.1, 5.1); Calibrated: 7/24/2012

Middle Cheek Right GSM1900MHz/Area Scan (12x7x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.131 W/kg

Middle Cheek Right GSM1900MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.314 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.189 W/kg

SAR(1 g) = 0.122 W/kg; SAR(10 g) = 0.077 W/kgMaximum value of SAR (measured) = 0.132 W/kg

GSM1900 Right Tilt Middle

Date/Time: 1/18/2013 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.442 \text{ S/m}$; $\epsilon r = 40.614$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 1900 MHz; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.1, 5.1, 5.1); Calibrated: 7/24/2012

Middle Tilt Right GSM1900MHz/Area Scan (12x7x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.0601 W/kg

Middle Tilt Right GSM1900MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.952 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.0910 W/kg

SAR(1 g) = 0.057 W/kg; SAR(10 g) = 0.036 W/kgMaximum value of SAR (measured) = 0.0605 W/kg

GSM1900 Left Cheek High

Date/Time: 1/18/2013 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.469 \text{ S/m}$; $\epsilon r = 40.495$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 1900 MHz; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.1, 5.1, 5.1); Calibrated: 7/24/2012

High Cheek Left GSM1900MHz/Area Scan (12x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.181 W/kg

High Cheek Left GSM1900MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.555 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.260 W/kg

SAR(1 g) = 0.163 W/kg; SAR(10 g) = 0.097 W/kgMaximum value of SAR (measured) = 0.177 W/kg

GSM1900 Left Cheek Low

Date/Time: 1/18/2013 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.415 \text{ S/m}$; $\epsilon r = 40.792$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 1900 MHz; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.1, 5.1, 5.1); Calibrated: 7/24/2012

Low Cheek Left GSM1900MHz/Area Scan (12x7x1): Measurement grid: dx=15mm, dy=15mm

M · 1 CCAD (1) 0.2

Maximum value of SAR (measured) = 0.269 W/kg

Low Cheek Left CSM1900MHz/Zoom Scan (5x5x7)/Cube 0: Measurement

Low Cheek Left GSM1900MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.249 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.381 W/kg

SAR(1 g) = 0.241 W/kg; SAR(10 g) = 0.146 W/kgMaximum value of SAR (measured) = 0.259 W/kg

GSM1900 Left Cheek Low SIM2

Date/Time: 1/18/2013 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.415 \text{ S/m}$; $\epsilon r = 40.792$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 1900 MHz; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.1, 5.1, 5.1); Calibrated: 7/24/2012

Low Cheek Left GSM1900MHz SIM2/Area Scan (12x7x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.269 W/kg

Low Cheek Left GSM1900MHz SIM2/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.787 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.378 mW/g

SAR(1 g) = 0.235 mW/g; SAR(10 g) = 0.139 mW/g

Maximum value of SAR (measured) = 0.255mW/g

GSM1900 Body Toward Ground GPRS 4TS Middle

Date/Time: 1/22/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\epsilon r = 53.319$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(4.64, 4.64, 4.64); Calibrated: 7/24/2012

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.614 W/kg

Middle Toward Ground GPRS 4TS 1900MHz/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.736 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 2.48 W/kg

SAR(1 g) = 0.653 W/kg; SAR(10 g) = 0.328 W/kg

Maximum value of SAR (measured) = 0.689 W/kg

GSM1900 Body Toward Phantom GPRS 4TS Middle

Date/Time: 1/22/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\epsilon r = 53.319$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(4.64, 4.64, 4.64); Calibrated: 7/24/2012

Middle Toward Phantom GPRS 4TS 1900MHz/Area Scan (10x18x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.181 W/kg

Middle Toward Phantom GPRS 4TS 1900MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.584 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.305 W/kg

SAR(1 g) = 0.161 W/kg; SAR(10 g) = 0.082 W/kg

GSM1900 Body Left GPRS 4TS Middle

Date/Time: 1/22/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\epsilon r = 53.319$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(4.64, 4.64, 4.64); Calibrated: 7/24/2012

Middle Left GPRS 4TS 1900MHz/Area Scan (10x18x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.104 W/kg

Middle Left GPRS 4TS 1900MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.947 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.148 W/kg

SAR(1 g) = 0.092 W/kg; SAR(10 g) = 0.053 W/kgMaximum value of SAR (measured) = 0.106 W/kg

GSM1900 Body Right GPRS 4TS Middle

Date/Time: 1/22/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\epsilon r = 53.319$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(4.64, 4.64, 4.64); Calibrated: 7/24/2012

Middle Right GPRS 4TS 1900MHz/Area Scan (10x18x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.0235 W/kg

Middle Right GPRS 4TS 1900MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.211 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.0370 W/kg

SAR(1 g) = 0.022 W/kg; SAR(10 g) = 0.013 W/kgMaximum value of SAR (measured) = 0.0250 W/kg

GSM1900 Body Bottom GPRS 4TS Middle

Date/Time: 1/22/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\epsilon r = 53.319$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(4.64, 4.64, 4.64); Calibrated: 7/24/2012

Middle Bottom GPRS 4TS 1900MHz/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.199 W/kg

Middle Bottom GPRS 4TS 1900MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.483 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.329 W/kg

SAR(1 g) = 0.188 W/kg; SAR(10 g) = 0.100 W/kgMaximum value of SAR (measured) = 0.211 W/kg

GSM1900 Body Toward Ground GPRS 4TS High

Date/Time: 1/22/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.534 \text{ S/m}$; $\epsilon r = 53.187$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1909.8 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(4.64, 4.64, 4.64); Calibrated: 7/24/2012

High Toward Ground GPRS 4TS 1900MHz/Area Scan (10x18x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.602 W/kg

High Toward Ground GPRS 4TS 1900MHz/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.383 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.600 W/kg; SAR(10 g) = 0.299 W/kg

Maximum value of SAR (measured) = 0.684 W/kg

GSM1900 Body Toward Ground GPRS 4TS Low

Date/Time: 1/22/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.475 \text{ S/m}$; $\epsilon r = 53.44$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1850.2 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(4.64, 4.64, 4.64); Calibrated: 7/24/2012

Low Toward Ground GPRS 4TS 1900MHz/Area Scan (10x18x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.663 W/kg

Low Toward Ground GPRS 4TS 1900MHz/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.969 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.663 W/kg; SAR(10 g) = 0.346 W/kg

Maximum value of SAR (measured) = 0.750 W/kg

GSM1900 Body Toward Ground Low With Headset

Date/Time: 1/22/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.475 \text{ S/m}$; $\epsilon r = 53.44$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 1900 MHz; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(4.64, 4.64, 4.64); Calibrated: 7/24/2012

Low Toward Ground GSM1900MHz With Headset/Area Scan (10x18x1): Measurement

grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.187 W/kg

Low Toward Ground GSM1900MHz With Headset/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.115 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.308 W/kg

SAR(1 g) = 0.173 W/kg; SAR(10 g) = 0.090 W/kgMaximum value of SAR (measured) = 0.192 W/kg

GSM1900 Body Toward Ground GPRS 4TS Low SIM2

Date/Time: 1/22/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.475 \text{ S/m}$; $\epsilon r = 53.44$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1850.2 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(4.64, 4.64, 4.64); Calibrated: 7/24/2012

Low Toward Ground GPRS 4TS 1900MHz SIM2/Area Scan (10x18x1): Measurement

grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.663 W/kg

Low Toward Ground GPRS 4TS 1900MHz SIM2/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.525 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.889 mW/g

SAR(1 g) = 0.652 mW/g; SAR(10 g) = 0.326 mW/gMaximum value of SAR (measured) = 0.701 W/kg

WCDMA850 Left Cheek Middle

Date/Time: 1/18/2013 Electronics: DAE4 Sn1244 Medium: Head 835MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.919 \text{ S/m}$; $\epsilon r = 40.986$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: WCDMA band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.09, 6.09, 6.09); Calibrated: 7/24/2012

Middle Cheek Left WCDMA850MHz/Area Scan (11x7x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.236 W/kg

Middle Cheek Left WCDMA850MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.799 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.357 W/kg

SAR(1 g) = 0.225 W/kg; SAR(10 g) = 0.141 W/kgMaximum value of SAR (measured) = 0.244 W/kg

WCDMA850 Left Tilt Middle

Date/Time: 1/18/2013 Electronics: DAE4 Sn1244 Medium: Head 835MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.919 \text{ S/m}$; $\epsilon r = 40.986$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: WCDMA band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.09, 6.09, 6.09); Calibrated: 7/24/2012

Middle Tilt Left WCDMA850MHz/Area Scan (11x7x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.140 W/kg

Middle Tilt Left WCDMA850MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.019 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.170 W/kg

SAR(1 g) = 0.135 W/kg; SAR(10 g) = 0.101 W/kgMaximum value of SAR (measured) = 0.143 W/kg

WCDMA850 Right Cheek Middle

Date/Time: 1/18/2013 Electronics: DAE4 Sn1244 Medium: Head 835MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.91$ S/m; $\epsilon r = 40.663$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: WCDMA band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.09, 6.09, 6.09); Calibrated: 7/24/2012

Middle Cheek Right WCDMA850MHz/Area Scan (11x7x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.185 W/kg

Middle Cheek Right WCDMA850MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.762 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.225 W/kg

SAR(1 g) = 0.182 W/kg; SAR(10 g) = 0.135 W/kgMaximum value of SAR (measured) = 0.192 W/kg

WCDMA850 Right Tilt Middle

Date/Time: 1/18/2013 Electronics: DAE4 Sn1244 Medium: Head 835MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.91$ S/m; $\epsilon r = 40.663$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: WCDMA band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.09, 6.09, 6.09); Calibrated: 7/24/2012

Middle Tilt Right WCDMA850MHz/Area Scan (11x7x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.138 W/kg

Middle Tilt Right WCDMA850MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.987 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.166 W/kg

SAR(1 g) = 0.135 W/kg; SAR(10 g) = 0.103 W/kgMaximum value of SAR (measured) = 0.142 W/kg

WCDMA850 Left Cheek High

Date/Time: 1/18/2013 Electronics: DAE4 Sn1244 Medium: Head 835MHz

Medium parameters used: f = 847 MHz; $\sigma = 0.927 \text{ S/m}$; $\epsilon r = 40.809$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: WCDMA band V; Frequency: 846.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.09, 6.09, 6.09); Calibrated: 7/24/2012

High Cheek Left WCDMA850MHz/Area Scan (11x7x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.300 W/kg

High Cheek Left WCDMA850MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.614 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.449 W/kg

SAR(1 g) = 0.282 W/kg; SAR(10 g) = 0.177 W/kgMaximum value of SAR (measured) = 0.304 W/kg

WCDMA850 Left Cheek Low

Date/Time: 1/18/2013 Electronics: DAE4 Sn1244 Medium: Head 835MHz

Medium parameters used: f = 826.4 MHz; $\sigma = 0.911$ S/m; $\epsilon r = 41.264$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: WCDMA band V; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.09, 6.09, 6.09); Calibrated: 7/24/2012

Low Cheek Left WCDMA850MHz/Area Scan (11x7x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.288 W/kg

Low Cheek Left WCDMA850MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.682 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.436 W/kg

SAR(1 g) = 0.277 W/kg; SAR(10 g) = 0.172 W/kgMaximum value of SAR (measured) = 0.297 W/kg

WCDMA850 Body Toward Ground Middle

Date/Time: 1/21/2013 Electronics: DAE4 Sn1244 Medium: Body 835MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001 \text{ S/m}$; $\epsilon r = 55.152$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.06, 6.06, 6.06); Calibrated: 7/24/2012

Middle Toward Ground WCDMA850MHz/Area Scan (10x18x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.776 W/kg

Middle Toward Ground WCDMA850MHz/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.780 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.929 W/kg

SAR(1 g) = 0.729 W/kg; SAR(10 g) = 0.542 W/kgMaximum value of SAR (measured) = 0.769 W/kg

WCDMA850 Body Toward Phantom Middle

Date/Time: 1/21/2013 Electronics: DAE4 Sn1244 Medium: Body 835MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001 \text{ S/m}$; $\epsilon r = 55.152$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.06, 6.06, 6.06); Calibrated: 7/24/2012

Middle Toward Phantom WCDMA850MHz/Area Scan (10x18x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.294 W/kg

Middle Toward Phantom WCDMA850MHz/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.307 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.425 W/kg

SAR(1 g) = 0.276 W/kg; SAR(10 g) = 0.189 W/kgMaximum value of SAR (measured) = 0.293 W/kg

WCDMA850 Body Left Middle

Date/Time: 1/21/2013 Electronics: DAE4 Sn1244

Medium: Body 835MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\epsilon r = 55.152$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.06, 6.06, 6.06); Calibrated: 7/24/2012

Middle Left WCDMA850MHz/Area Scan (10x18x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 0.0930 W/kg

Middle Left WCDMA850MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 9.766 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.116 W/kg

SAR(1 g) = 0.087 W/kg; SAR(10 g) = 0.062 W/kgMaximum value of SAR (measured) = 0.0924 W/kg

WCDMA850 Body Right Middle

Date/Time: 1/21/2013 Electronics: DAE4 Sn1244 Medium: Body 835MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\epsilon r = 55.152$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.06, 6.06, 6.06); Calibrated: 7/24/2012

Middle Right WCDMA850MHz/Area Scan (10x18x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 0.106 W/kg

Middle Right WCDMA850MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.457 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.127 W/kg

SAR(1 g) = 0.098 W/kg; SAR(10 g) = 0.072 W/kgMaximum value of SAR (measured) = 0.104 W/kg

WCDMA850 Body Bottom Middle

Date/Time: 1/21/2013 Electronics: DAE4 Sn1244 Medium: Body 835MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001 \text{ S/m}$; $\epsilon r = 55.152$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.06, 6.06, 6.06); Calibrated: 7/24/2012

Middle Bottom WCDMA850MHz/Area Scan (7x11x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 0.0211 W/kg

Middle Bottom WCDMA850MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.987 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.0280 W/kg

SAR(1 g) = 0.021 W/kg; SAR(10 g) = 0.015 W/kgMaximum value of SAR (measured) = 0.0220 W/kg

WCDMA850 Body Toward Ground High

Date/Time: 1/21/2013 Electronics: DAE4 Sn1244 Medium: Body 835MHz

Medium parameters used: f = 847 MHz; $\sigma = 1.012$ S/m; $\epsilon r = 55.214$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: WCDMA band V; Frequency: 846.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.06, 6.06, 6.06); Calibrated: 7/24/2012

High Toward Ground WCDMA850MHz/Area Scan (10x18x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.947 W/kg

High Toward Ground WCDMA850MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.195 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.903 W/kg; SAR(10 g) = 0.657 W/kgMaximum value of SAR (measured) = 0.956 W/kg

