(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 6 May 2005 (06.05.2005)

(10) International Publication Number WO 2005/041310 A1

- (51) International Patent Classification7: H01L 29/786. 21/336, 21/768, 21/288, 21/3205, H05B 33/10, 33/14
- (21) International Application Number:

PCT/JP2004/016169

- (22) International Filing Date: 25 October 2004 (25.10.2004)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

2003-368160

28 October 2003 (28.10.2003)

- (71) Applicant (for all designated States except US): SEMI-CONDUCTOR ENERGY LABORATORY CO., LTD. [JP/JP]; 398, Hase, Atsugi-shi, Kanagawa 2430036 (JP).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): YAMAZAKI, Shunpei [JP/JP]; c/o Semiconductor Energy Laboratory Co., Ltd., 398, Hase, Atsugi-shi, Kanagawa 2430036 (JP). MAEKAWA, Shinji [JP/JP]; c/o Semiconductor Energy Laboratory Co., Ltd., 398, Hase, Atsugi-shi, Kanagawa 2430036 (JP). FURUNO, Makoto [JP/JP]; c/o Semiconductor Energy Laboratory Co., Ltd., 398, Hase, Atsugi-shi, Kanagawa 2430036 (JP). NAKAMURA, Osamu [JP/JP]; c/o Semiconductor Energy Laboratory Co., Ltd., 398, Hase, Atsugi-shi, Kanagawa 2430036

- (JP). IMAI, Keitaro [JP/JP]; c/o Semiconductor Energy Laboratory Co., Ltd., 398, Hase, Atsugi-shi, Kanagawa 2430036 (JP).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: DISPLAY DEVICE AND METHOD FOR MANUFACTURING THE SAME, AND TELEVISION RECEIVER

(57) Abstract: According to the present invention, which is a display device in which a light-emitting element where an organic substance generating luminescence referred to as electroluminescence or a medium including a mixture of an organic substance and an inorganic substance is sandwiched between electrodes is connected to a TFT, the invention is to manufacture a display panel by forming at least one or more of a conductive layer which forms a wiring or an electrode and a pattern necessary for manufacturing a display panel such as a mask layer for forming a predetermined pattern is formed by a method capable of selectively forming a pattern. A droplet discharge method capable of forming a predetermined pattern by selectively discharging a droplet of a composition in accordance with a particular object and by forming a conductive layer or an insulating layer is used as a method capable of selectively forming a pattern.