Ime i prezime: JMBAG:

MEĐUISPIT IZ OPTIČKIH MREŽA

Zagreb, xx. xx 20xx.

UPUTSTVA: Na ispitu se mogu imati pribor za pisanje i đepni kalkulator. Sve potrebne formule biti će dane kao prilog testu.

Primjer testa:

- 1. Usporedite 1+1, 1:1 i 1:N zaštite. Komentirajte prednosti i mane pojedinog rješenja.
- 2. Potrebno je projektirati optičku vezu između Zagreba i Rijeke duljine 140 km za 10 Gb/s sustav, jedna valna duljina ($\lambda = 1.55 \mu m$). Pri tom treba koristiti jednomodni svjetlovod s pomaknutom disperzijom različitom od nule G655, gušenje je 0.24 dB/km, parametar kromatske disperzije je D =(tu dolaze konkretni parametri)

Kolika je margina sustava? Kolika se očekuje srednja snaga optičke snage na mjeraču snage na kraju trase (navesti interval unutar kojeg se očekuje mjerena vrijednost)?

	Link Power Budget for Fiber Number,	Unit	Specificatio	nm	
Line #	for Tx to Rx		Unit Value	Quantity	Line Totals
1	Fiber loss	dB/km			
2	Splice loss	dB			
3	Connector loss	dB			
4	Other fiber loss	dB			
5	Fiber loss (sum L1 to L4)	dB			
6	WDM insertion loss	dB			
7	DCM insertion loss	dB			
8	Amplifier gain (show as neg.)	dB			
9	Other component loss	dB			
10	Link loss (sum L5 to L9)	dB			
11	CD penalty	dB			
12	PMD penalty	dB			
13	PDL _{Tmax} penalty	dB			
14	Nonlinear penalties total	dB			
15	Extinction ratio penalty	dB			
16	Total link loss with penalties (sum L10 to L15)	dB			

Ime i prezime: JMBAG:

	Link Power Budget for Fiber Number,		Specificatio	nm	
Line #	for Tx to Rx	Unit	Unit Value	Quantity	Line Totals
17	Maximum transmit power	dBm			
18	Minimum transmit power	dBm			
19	Receiver overload power	dBm			
20	Receiver sensitivity	dBm			
21	Minimum transceiver budget (L18 – L20)	dB			
22	Minimum measurable receive power (L18 – L10)	dBm			
23	Maximum measurable Rx power < L19 (L17 – L10)	dBm			
24	Remaining margin BoL must be > 0 (L21 – L16)	dB			
25	System aging	dB			
26	Cable repair	dB			
27	Remaining margin EoL must be > 0 (L24 – L25 – L26)	dB			

3. Koristeći Dijkstrov algoritam za pronalaženje najkraćeg puta odrediti najkraći put na sljedećem grafu. Kao početnu točku uzeti čvor A, a kao krajnju čvor F. Redoslijed čvorova koje promatrate odabirite abecedno (A, B, C, D, E, F). Korake algoritma možete prikazati grafički ili korištenjem tablice.

Trenutni čvor	Posjećeni čvorovi	A	В	C	D	E	F	Opis

Ime i prezime: JMBAG:

		_		

Potrebne formule za međuispit:

$$PP_{CD} = 10 \log_{10}(b_{CD}), \qquad b_{CD} = \frac{\sigma}{\sigma_0}$$

$$\sigma^2 = \sigma_0^2 + \sigma_D^2 = \sigma_0^2 + D^2 L^2 \left(\left(\frac{\lambda^2}{4\pi c \sigma_0} \right)^2 + \sigma_{\lambda}^2 \right)$$

$$\sigma_0 = \frac{T_0 d_c}{N} = \frac{d_c}{B_0 N}$$

$$\sigma^{2} = \sigma_{0}^{2} + \sigma_{D}^{2} = \sigma_{0}^{2} + D^{2}L^{2} \left(\left(\frac{\lambda^{2} B_{0} N}{4\pi \, c d_{c}} \right)^{2} + \sigma_{\lambda}^{2} \right)$$