



## <u>DIAGRAMA POLAR Y DIAGRAMA DE BODE</u> <u>DE CIRCUITO DE MODELO LINEAL EQUIVALENTE DE UN AMPLIFICADOR</u> TRANSISTORIZADO EN BAJA FRECUENCIA

Dado el circuito de la Figura 1, obtenga la función de transferencia, trace el diagrama polar y el diagrama de Bode del mismo.



FIGURA 1. Circuito de modelo equivalente de un amplificador transistorizado en baja frec.

Determinamos la función de transferencia:

$$E_{IN(P)} = I_{IN} \times \left(R_1 + \frac{1}{C_1 P}\right)$$
 por lo tanto :  $V_X = \frac{E_{IN} \times R_1}{\left(R_1 + \frac{1}{C_1 P}\right)}$ 

$$E_{OUT(P)} = \frac{K \times V_X}{\frac{R_2 \times \frac{1}{C_2 P}}{R_2 + \frac{1}{C_2 P}} + R_L} \times R_L = \frac{K \times \frac{E_{IN} \times R_1}{\left(R_1 + \frac{1}{C_1 P}\right)}}{\frac{R_2 \times \frac{1}{C_2 P} + R_L \times \left(R_2 + \frac{1}{C_2 P}\right)}{R_2 + \frac{1}{C_2 P}}} \times R_L = \frac{K \times \frac{E_{IN} \times R_1}{\left(R_1 + \frac{1}{C_1 P}\right)}}{R_2 + \frac{1}{C_2 P}} \times R_L = \frac{K \times \frac{E_{IN} \times R_1}{\left(R_1 + \frac{1}{C_1 P}\right)}}{R_2 + \frac{1}{C_2 P}}$$

$$F_{(P)} = \frac{E_{OUT(P)}}{E_{IN(P)}} = \frac{K \times R_1 \times R_L \times \left(R_2 + \frac{1}{C_2 P}\right)}{\left(R_1 + \frac{1}{C_1 P}\right) \times \left[R_2 \times \frac{1}{C_2 P} + R_L \times \left(R_2 + \frac{1}{C_2 P}\right)\right]}$$

Operamos:

$$F_{(P)} = \frac{E_{OUT(P)}}{E_{IN(P)}} = \frac{K \times R_1 \times R_L \times R_2 + \frac{K \times R_1 \times R_L}{C_2 \, P}}{\left(\frac{R_1 * R_2}{C_2 \, P} + R_1 \times R_2 \times R_L + \frac{R_1 \times R_L}{C_2 \, P} + \frac{R_2}{C_1 \, C_2 \, P^2} + \frac{R_2 \times R_L}{C_1 \, C_2 \, P^2} + \frac{R_L}{C_1 \, C_2 \, P^2}\right)}$$

$$F_{(P)} = \frac{E_{OUT(P)}}{E_{IN(P)}} = \frac{\frac{1}{C_2 P} \times (KR_1R_LR_2C_2P + KR_1R_L)}{\frac{1}{C_1 C_2 P^2} (R_1R_2C_1P + R_1R_2R_LC_1C_2P^2 + R_1R_LC_1P + R_2 + R_2R_LC_2P + R_L)}$$

$$F_{(P)} = \frac{E_{OUT(P)}}{E_{IN(P)}} = \frac{\frac{C_1 C_2 P^2}{C_2 P} \times (KR_1 R_L R_2 C_2 P + KR_1 R_L)}{[R_1 R_2 R_L C_1 C_2 P^2 + (R_1 R_2 C_1 + R_1 R_L C_1 + R_2 R_L C_2) P + (R_2 + R_L)]}$$





$$F_{(P)} = \frac{E_{OUT(P)}}{E_{IN(P)}} = \frac{K \times P \times (R_1 R_2 R_L C_2 C_1 P + R_1 R_L C_1)}{[R_1 R_2 R_L C_1 C_2 P^2 + (R_1 R_2 C_1 + R_1 R_L C_1 + R_2 R_L C_2) P + (R_2 + R_L)]}$$

$$F_{(P)} = \frac{E_{OUT(P)}}{E_{IN(P)}} = \frac{K \times P \times (R_1 R_2 R_L C_2 C_1 P + R_1 R_L C_1)}{(R_1 R_2 R_L C_1 C_2) \left[P^2 + \frac{(R_1 R_2 C_1 + R_1 R_L C_1 + R_2 R_L C_2)}{(R_1 R_2 R_L C_1 C_2)} P + \frac{(R_2 + R_L)}{(R_1 R_2 R_L C_1 C_2)}\right]}$$

$$F_{(P)} = \frac{E_{OUT(P)}}{E_{IN(P)}} = \frac{K \times P \times \left(\frac{R_1 R_2 R_L C_2 C_1}{R_1 R_2 R_L C_1 C_2} P + \frac{R_1 R_L C_1}{R_1 R_2 R_L C_1 C_2}\right)}{\left[P^2 + \frac{(R_1 R_2 C_1 + R_1 R_L C_1 + R_2 R_L C_2)}{(R_1 R_2 R_L C_1 C_2)} P + \frac{(R_2 + R_L)}{(R_1 R_2 R_L C_1 C_2)}\right]}$$

$$F_{(P)} = \frac{E_{OUT(P)}}{E_{IN(P)}} = \frac{K \times P \times \left(P + \frac{1}{R_2 C_2}\right)}{\left[P^2 + \frac{(R_1 R_2 C_1 + R_1 R_L C_1 + R_2 R_L C_2)}{(R_1 R_2 R_L C_1 C_2)} P + \frac{(R_2 + R_L)}{(R_1 R_2 R_L C_1 C_2)}\right]}$$

Dando valores a los componentes, obtenemos:

$$F_{(P)} = \frac{E_{OUT(P)}}{E_{IN(P)}} = \frac{2,22 \times 10^6 \times P \times (P+100)}{[P^2+1120 \times P+22000]} = \frac{2,22 \times 10^6 \times P \times (P+100)}{(P+20) \times (P+1100)}$$

Para realizar el cálculo mediante el método analítico emplearemos:

$$F_{(P)} = \frac{E_{OUT(P)}}{E_{IN(P)}} = \frac{2,22 \times 10^6 \times (P^2 + 100 \times P)}{[P^2 + 1120 \times P + 22000]}$$

Hacemos el cambio de P→jω

$$F_{(j\omega)} = \frac{E_{OUT(j\omega)}}{E_{IN(j\omega)}} = \frac{2,22 \times 10^6 \times ((j\omega)^2 + 100 \times (j\omega))}{[(j\omega)^2 + 1120 \times (j\omega) + 22000]}$$

$$F_{(j\omega)} = \frac{E_{OUT(j\omega)}}{E_{IN(j\omega)}} = \frac{2,22 \times 10^6 \times (-\omega^2 + 100 \times (j\omega))}{[(22000 - \omega^2) + j \ 1120 \ \omega]}$$

Multiplicamos y dividimos la función por el conjugado del denominador para obtener:

$$F_{(j\omega)} = Re_{(j\omega)} + jIm_{(j\omega)}$$

$$F_{(j\omega)} = \frac{E_{OUT(j\omega)}}{E_{IN(j\omega)}} = \frac{2,22 \times 10^6 \times (-\omega^2 + 100 \times (j\omega))}{[(22000 - \omega^2) + j \ 1120 \ \omega]} \times \frac{(22000 - \omega^2) - j \ 1120 \ \omega}{(22000 - \omega^2) - j \ 1120 \ \omega}$$

$$F_{(j\omega)} = 2,22 \times 10^6 \times \left\{ \frac{(\omega^4 - 22000 \ \omega^2 + 112000 \ \omega^2)}{[(22000 - \omega^2)^2 + (1120 \ \omega)^2]} + j \frac{22000000 \ \omega - 100 \ \omega^3 + 1120 \ \omega^3}{[(22000 - \omega^2)^2 + (1120 \ \omega)^2]} \right\}$$

$$F_{(j\omega)} = 2,22 \times 10^6 \times \left\{ \frac{(\omega^4 + 90000 \ \omega^2)}{[(22000 - \omega^2)^2 + (1120 \ \omega)^2]} + j \frac{1020 \ \omega^3 + 22000000 \ \omega}{[(22000 - \omega^2)^2 + (1120 \ \omega)^2]} \right\}$$

$$Re(iw) \qquad + i Im(iw)$$





Calculamos para distintos valores de  $\omega$ , el valor que toma la parte Real, la parte Imaginaria, el Módulo y la Fase de la función de transferencia  $F_{(j\omega)}$ .

| ω        | Real        | Imag        | Módulo      | Fase        |
|----------|-------------|-------------|-------------|-------------|
| 0        | 0           | 0           | 0           | 90          |
| 50       | 146000,711  | 149946,6761 | 209285,0049 | 45,76389846 |
| 400      | 404099,2409 | 668380,1445 | 781043,0296 | 58,84305524 |
| 925,304  | 1016149,481 | 1016149,679 | 1437052,517 | 45,00000559 |
| 2500     | 1886581,672 | 759060,4818 | 2033559,249 | 21,91724091 |
| 10000    | 2195424,476 | 223736,7634 | 2206795,588 | 5,818951198 |
| 5,50E+15 | 2220000     | 4,11709E-07 | 2220000     | 1,06258E-11 |

## Trazamos el diagrama polar :



FIGURA 2. Diagrama polar del circuito mediante MATLAB.



FIGURA 3. Diagrama polar del circuito trazado mediante EXEL.





## Simulamos el circuito mediante EWB5:



## Ampliando el diagrama de Bode, obtenemos:







Trazando el diagrama de Bode mediante MATLAB, de la misma función :

$$F_{(P)} = \frac{E_{OUT(P)}}{E_{IN(P)}} = \frac{2,22 \times 10^6 \times P \times (P+100)}{[P^2+1120 \times P+22000]} = \frac{2,22 \times 10^6 \times P \times (P+100)}{(P+20) \times (P+1100)}$$

obtenemos:



Trazando el diagrama de Bode mediante el programa Control Cad 5 (CC5), obtenemos:



Vemos que tanto con MATLAB, como con CC5, obtenemos identicos resultados al diagrama de Bode conseguido, mediante la simulación del circuito empleando EWB5.

<u>NOTA:</u> recuerde que EWB5 tiene la escala del eje X en <u>frecuencia</u> es decir [Hertz], mientras que MATLAB y CC5, la tiene en <u>pulsaciónes</u>  $\rightarrow \omega = 2 * \pi * f$ , es decir en [radianes/seg] ó [rps]