Unidad III: Aproximación de funciones.

José Luis Ramírez B.

January 14, 2025

1 Introducción

- 2 Interpolación
 - Taylor

• En este tema se da una posible respuesta a una situación

bastante natural en el ámbito científico.

- En este tema se da una posible respuesta a una situación bastante natural en el ámbito científico.
- Se Investiga un fenómeno que se está desarrollando, se desea estudiarlo, y junto con los modelos previos con que se cuente, se pueden tomar muestras experimentales.

- En este tema se da una posible respuesta a una situación bastante natural en el ámbito científico.
- Se Investiga un fenómeno que se está desarrollando, se desea estudiarlo, y junto con los modelos previos con que se cuente, se pueden tomar muestras experimentales.
- Se tiene una serie de datos a partir de mediciones sobre el mismo.

- En este tema se da una posible respuesta a una situación bastante natural en el ámbito científico.
- Se Investiga un fenómeno que se está desarrollando, se desea estudiarlo, y junto con los modelos previos con que se cuente, se pueden tomar muestras experimentales.
- Se tiene una serie de datos a partir de mediciones sobre el mismo.
- Se desea extraer información de esos datos.

Esencialmente podemos tratarlo con:

Esencialmente podemos tratarlo con:

• Técnicas estadísticas (que continuarán observando el fenómeno de un modo discreto, es decir, sobre ese conjunto finito de mediciones).

Esencialmente podemos tratarlo con:

- Técnicas estadísticas (que continuarán observando el fenómeno de un modo discreto, es decir, sobre ese conjunto finito de mediciones).
- o bien "intentando recrear/reconstruir el fenómeno en su totalidad" (en un dominio continuo de espacio, tiempo o cualquier otra magnitud), con la función que represente "lo mejor posible" esos datos.

Las técnicas que utilizan funciones continuas y se consideran en este curso son de dos tipos:

Las técnicas que utilizan funciones continuas y se consideran en este curso son de dos tipos:

• Interpolación: cálculo de funciones que pasan ("interpolan" es el término matemático) exactamente por los puntos dados.

Las técnicas que utilizan funciones continuas y se consideran en este curso son de dos tipos:

- Interpolación: cálculo de funciones que pasan ("interpolan" es el término matemático) exactamente por los puntos dados.
- Curvas de ajuste: cálculo de funciones aproximadas a los datos que tenemos (en algún sentido, para cierta distancia)

Polinomio de grado n:

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 (a_n \neq 0)$$

Polinomio de grado n:

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 (a_n \neq 0)$$

Teorema:

Si p_n es un polinomio de grado $n \ge 1$, entonces $p_n(x) = 0$ tiene al menos una raíz (posiblemente compleja).

Teorema:

Sea p_n un polinomio de grado $n \ge 1$, entonces existen constantes x_1, x_2, \ldots, x_k , posiblemente complejas, y enteros positivos m_1, m_2, \ldots, m_k , tales que $m_1 + m_2 + \ldots + m_k = n$ verificando:

$$p_n(x) = a_n(x - x_1)^{m_1}(x - x_2)^{m_2} \cdots (x - x_k)^{m_k}$$

Teorema:

Sea p_n un polinomio de grado $n \ge 1$, entonces existen constantes x_1, x_2, \ldots, x_k , posiblemente complejas, y enteros positivos m_1, m_2, \ldots, m_k , tales que $m_1 + m_2 + \ldots + m_k = n$ verificando:

$$p_n(x) = a_n(x - x_1)^{m_1}(x - x_2)^{m_2} \cdots (x - x_k)^{m_k}$$

Teorema:

Sean p_n y q_n dos polinomios de grado menor o igual que n. Si existen x_1, x_2, \ldots, x_k , con k > n, números distintos tales que $p_n(x_i) = q_n(x_i)$, $i = 1, \ldots, k$, entonces $p_n(x) = q_n(x)$ para todo x.

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Se necesitan menos operaciones para evaluarlo en un punto x_0 si se escribe:

$$p_n(x) = a_0 + x(a_1 + x(\cdots(a_{n-2} + x(a_{n-1} + xa_n))\cdots))$$

Algoritmo de Horner para evaluar $p_n(x_0)$

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Se necesitan menos operaciones para evaluarlo en un punto x_0 si se escribe:

$$p_n(x) = a_0 + x(a_1 + x(\cdots(a_{n-2} + x(a_{n-1} + xa_n))\cdots))$$

Algoritmo de Horner para evaluar $p_n(x_0)$

$$b_{n-1} = a_n$$

 $b_k = a_{k+1} + x_0 b_{k+1}$ $k = n - 2, \dots, 1, 0, -1$

entonces: $p_n(x_0) = b_{-1}$

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Se necesitan menos operaciones para evaluarlo en un punto x_0 si se escribe:

$$p_n(x) = a_0 + x(a_1 + x(\cdots(a_{n-2} + x(a_{n-1} + xa_n))\cdots))$$

Algoritmo de Horner para evaluar $p_n(x_0)$

$$b_{n-1} = a_n$$

 $b_k = a_{k+1} + x_0 b_{k+1}$ $k = n - 2, \dots, 1, 0, -1$

entonces: $p_n(x_0) = b_{-1}$

Además, si se llama

$$q_{n-1}(x) = b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \dots + b_1x + b_0$$

se tiene que:

$$p_n(x) = (x - x_0)q_{n-1}(x) + b_{-1}$$

y por lo tanto

$$p'_n(x_0) = q_{n-1}(x_0)$$

¿Por qué es Importante el Algoritmo de Horner?

• Eficiencia: Es más eficiente que calcular las potencias de x_0 y multiplicar por los coeficientes de forma individual (se usa menos memoria y tiempo de cómputo).

- Eficiencia: Es más eficiente que calcular las potencias de x_0 y multiplicar por los coeficientes de forma individual (se usa menos memoria y tiempo de cómputo).
- Estabilidad: Reduce errores de redondeo en cálculos numéricos.

- Eficiencia: Es más eficiente que calcular las potencias de x_0 y multiplicar por los coeficientes de forma individual (se usa menos memoria y tiempo de cómputo).
- Estabilidad: Reduce errores de redondeo en cálculos numéricos.
- Derivadas: Permite obtener información sobre la derivada del polinomio en el mismo punto.

- Eficiencia: Es más eficiente que calcular las potencias de x_0 y multiplicar por los coeficientes de forma individual (se usa menos memoria y tiempo de cómputo).
- Estabilidad: Reduce errores de redondeo en cálculos numéricos.
- Derivadas: Permite obtener información sobre la derivada del polinomio en el mismo punto.
- División Sintética: Está relacionado con el método de división sintética para polinomios, lo que lo hace muy útil en el campo del álgebra y el análisis numérico.

En Resumen:

- El algoritmo de Horner es una herramienta poderosa para evaluar polinomios y también para obtener información sobre su derivada.
- Es un método eficiente, estable y muy utilizado en diversos campos de las matemáticas y la informática.

Tenemos el polinomio:

$$p_3(x) = 2x^3 - 3x^2 + 4x - 1$$

Y queremos evaluarlo en $x_0 = 2$ y también calcular $p'_3(2)$.

1. Aplicación del Algoritmo de Horner para $p_3(2)$ Recordemos que el algoritmo es:

$$b_{n-1} = a_n$$

 $b_k = a_{k+1} + x_0 \cdot b_{k+1}$ para $k = n-2, ..., 1, 0, -1$
 $p_n(x_0) = b_{-1}$

1. Aplicación del Algoritmo de Horner para $p_3(2)$ Recordemos que el algoritmo es:

$$b_{n-1} = a_n$$

 $b_k = a_{k+1} + x_0 \cdot b_{k+1}$ para $k = n-2, ..., 1, 0, -1$
 $p_n(x_0) = b_{-1}$

• Inicialización: $b_2 = a_3 = 2$ (coeficiente de x^3)

1. Aplicación del Algoritmo de Horner para $p_3(2)$ Recordemos que el algoritmo es:

$$b_{n-1} = a_n$$

 $b_k = a_{k+1} + x_0 \cdot b_{k+1}$ para $k = n-2, ..., 1, 0, -1$
 $p_n(x_0) = b_{-1}$

- Inicialización: $b_2 = a_3 = 2$ (coeficiente de x^3)
- Iteración: $b_1 = a_2 + x_0 \cdot b_2 = -3 + 2 \cdot 2 = 1$ (coefficiente de x^2) $b_0 = a_1 + x_0 \cdot b_1 = 4 + 2 \cdot 1 = 6$ (coeficiente de x^1) $b_{-1} = a_0 + x_0 \cdot b_0 = -1 + 2 \cdot 6 = 11$ (término independiente)

1. Aplicación del Algoritmo de Horner para $p_3(2)$ Recordemos que el algoritmo es:

$$b_{n-1} = a_n$$

 $b_k = a_{k+1} + x_0 \cdot b_{k+1}$ para $k = n-2, ..., 1, 0, -1$
 $p_n(x_0) = b_{-1}$

 Inicialización: $b_2 = a_3 = 2$ (coeficiente de x^3)

• Iteración:

$$b_1 = a_2 + x_0 \cdot b_2 = -3 + 2 \cdot 2 = 1$$
 (coeficiente de x^2)
 $b_0 = a_1 + x_0 \cdot b_1 = 4 + 2 \cdot 1 = 6$ (coeficiente de x^1)
 $b_{-1} = a_0 + x_0 \cdot b_0 = -1 + 2 \cdot 6 = 11$ (término independiente)

 Resultado: $p_3(2) = b_{-1} = 11$

2. Obtención del Polinomio Cociente $q_2(x)$ Con los valores de b que obtuvimos (excepto b_{-1}), podemos formar el polinomio cociente de grado 2:

$$q_2(x) = b_2 x^2 + b_1 x + b_0 = 2x^2 + 1x + 6$$

2. Obtención del Polinomio Cociente $q_2(x)$ Con los valores de b que obtuvimos (excepto b_{-1}), podemos formar el polinomio cociente de grado 2:

$$q_2(x) = b_2 x^2 + b_1 x + b_0 = 2x^2 + 1x + 6$$

3. Relación entre $p_3(x)$, $q_2(x)$ y b_{-1} El polinomio $p_3(x)$ se puede expresar como: $p_3(x) = (x - x_0) \cdot q_2(x) + b_{-1}$

$$p_3(x) = (x - x_0) \cdot q_2(x) + b_{-1}$$

$$p_3(x) = (x - 2) \cdot (2x^2 + x + 6) + 11$$

4. Aplicación del Algoritmo de Horner a $q_2(x)$ para obtener $q_2(2) = p'_3(2)$ Aplicando el algoritmo de Horner para evaluar el polinomio $q_2(x)$ en $x_0 = 2$. Los coeficientes de $q_2(x)$ son: $b_2 = 2$, $b_1 = 1$, $b_0 = 6$ Llamemos a los nuevos coeficientes c_i :

4. Aplicación del Algoritmo de Horner a $q_2(x)$ para obtener $q_2(2) = p_3'(2)$

Aplicando el algoritmo de Horner para evaluar el polinomio $q_2(x)$ en $x_0 = 2$. Los coeficientes de $q_2(x)$ son: $b_2 = 2$, $b_1 = 1$, $b_0 = 6$

Llamemos a los nuevos coeficientes c_i :

• Inicialización: $c_1 = b_2 = 2$

4. Aplicación del Algoritmo de Horner a $q_2(x)$ para obtener $q_2(2) = p_2'(2)$

Aplicando el algoritmo de Horner para evaluar el polinomio $q_2(x)$ en $x_0 = 2$. Los coeficientes de $q_2(x)$ son: $b_2 = 2$, $b_1 = 1$, $b_0 = 6$

Llamemos a los nuevos coeficientes c_i :

• Inicialización:

$$c_1 = b_2 = 2$$

• Iteración:

$$c_0 = b_1 + x_0 \cdot c_1 = 1 + 2 \cdot 2 = 5$$

 $c_{-1} = b_0 + x_0 \cdot c_0 = 6 + 2 \cdot 5 = 16$

4. Aplicación del Algoritmo de Horner a $q_2(x)$ para obtener $q_2(2) = p_3'(2)$

Aplicando el algoritmo de Horner para evaluar el polinomio $q_2(x)$ en $x_0=2$. Los coeficientes de $q_2(x)$ son: $b_2=2$, $b_1 = 1, b_0 = 6$

Llamemos a los nuevos coeficientes c_i :

Inicialización:

$$c_1 = b_2 = 2$$

• Iteración:

$$c_0 = b_1 + x_0 \cdot c_1 = 1 + 2 \cdot 2 = 5$$

 $c_{-1} = b_0 + x_0 \cdot c_0 = 6 + 2 \cdot 5 = 16$

 Resultado: $q_2(2) = c_{-1} = 16$

5. Derivada $p'_3(2)$ Se tiene que $p'_3(2) = q_2(2) = 16$

5. Derivada $p_3'(2)$ Se tiene que $p_3'(2) = q_2(2) = 16$

•
$$p_3(2) = 11$$

5. Derivada $p_3'(2)$ Se tiene que $p_3'(2) = q_2(2) = 16$

•
$$p_3(2) = 11$$

•
$$q_2(x) = 2x^2 + x + 6$$

5. Derivada $p'_3(2)$ Se tiene que $p'_3(2) = q_2(2) = 16$

•
$$p_3(2) = 11$$

•
$$q_2(x) = 2x^2 + x + 6$$

•
$$p_3(x) = (x-2) * (2x^2 + x + 6) + 11$$

5. Derivada $p'_3(2)$ Se tiene que $p'_3(2) = q_2(2) = 16$

•
$$p_3(2) = 11$$

•
$$q_2(x) = 2x^2 + x + 6$$

•
$$p_3(x) = (x-2)*(2x^2+x+6)+11$$

•
$$p_3'(2) = q_2(2) = 16$$

Comprobación de la Derivada

Derivando el polinomio $p_3(x)$ y evaluándolo en x=2.

$$p_3(x) = 2x^3 - 3x^2 + 4x - 1$$

$$p_3'(x) = 6x^2 - 6x + 4$$

Comprobación de la Derivada

Derivando el polinomio $p_3(x)$ y evaluándolo en x=2.

$$p_3(x) = 2x^3 - 3x^2 + 4x - 1$$

$$p_3'(x) = 6x^2 - 6x + 4$$

Evaluando en x = 2:

$$p_3'(2) = 6(2^2) - 6(2) + 4 = 6(4) - 12 + 4 = 24 - 12 + 4 = 16$$

Problema de interpolación de Taylor

Dados un entero n no negativo, un punto $x_0 \in \mathbb{R}$ y los valores $f(x_0), f'(x_0), \ldots, f^{(n)}(x_0)$ de una función y sus n primeras derivadas en x_0 , encontrar un polinomio P(x) de grado $\leq n$ tal que

$$P(x_0) = f(x_0), P'(x_0) = f'(x_0), \dots, P^{(n)}(x_0) = f^{(n)}(x_0).$$

Problema de interpolación de Taylor

Dados un entero n no negativo, un punto $x_0 \in \mathbb{R}$ y los valores $f(x_0), f'(x_0), \ldots, f^{(n)}(x_0)$ de una función y sus n primeras derivadas en x_0 , encontrar un polinomio P(x) de grado $\leq n$ tal que

$$P(x_0) = f(x_0), P'(x_0) = f'(x_0), \dots, P^{(n)}(x_0) = f^{(n)}(x_0).$$

Teorema:

El problema de interpolación de Taylor tiene solución única, que se denomina polinomio de Taylor de grado $\leq n$ de la función f en el punto x_0 :

$$P(x) = f(x_0) + f'(x_0)(x - x_0) + f''(x_0)\frac{(x - x_0)^2}{2!} + \dots + f^{(n)}(x_0)\frac{(x - x_0)^n}{n!}$$

Teorema:

Para n > 1 sea f(x) una función n veces derivable en x_0 . El polinomio de Taylor P(x) verifica que:

$$\lim_{x \to x_0} \frac{f(x) - P(x)}{(x - x_0)^n} = 0$$

con la notación o pequeña de Landau $f(x) - P(x) = o((x - x_0)^n)$ para $x \to x_0$. Además, P(x) es el único polinomio de grado $\leq n$ con esta propiedad.

Laylor

Problema de interpolación de Taylor

• Error del polinomio interpolador de Taylor

• Error del polinomio interpolador de Taylor

Teorema:

Sean x y x_0 dos números reales distintos y f(x) una función con n derivadas continuas en un intervalo conteniendo a x y x_0 , en el que también existe $f^{(n+1)}$. Entonces existe un punto ξ entre x y x_0 tal que:

$$f(x) - P(x) = f^{(n+1)}(\xi) \frac{(x-x_0)^{n+1}}{(n+1)!}$$

Colorario:

Además de las hipótesis del teorema supongase que para cada t entre x y x_0 se verifica que $|f^{(n+1)}(t)| \leq K_{n+1}$ constante, entonces:

$$|f(x) - P(x)| \le \frac{|x - x_0|^{(n+1)} K_{n+1}}{(n+1)!}$$

A continuación se muestran las gráficas de la función $f(x) = \sin(x)$ y de su polinomio de Taylor de orden 1 al 9 en el cero. Se puede comprobar que la aproximación es más exacta a medida que se aumenta el orden.

El hecho de que la función seno y su polinomio de Taylor se parezcan tanto como se quiera, con sólo aumentar el grado del polinomio lo suficiente, no es algo que le ocurra a todas las funciones. Para la función arctan la situación no es tan buena:

- Se desea aproximar la función $f(x) = e^x$ mediante el polinomio de Taylor centrado en $x_0 = 0$ de orden 5 y hallar el error obtenido en la estimación para x = 1.5
- El polinomio de Taylor de grado 5 viene dada por la siguiente expresión

$$P_5(x) = 1 + 1(x - 0) + \frac{1}{2!}(x - 0)^2 + \frac{1}{3!}(x - 0)^3 + \frac{1}{4!}(x - 0)^4 + \frac{1}{5!}(x - 0)^5$$
$$P_5(x) = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}(x - 0)^4 + \frac{1}{5!}x^5$$

Taylor

Con la expresión del residuo se calcula el error de Truncamiento:

$$R_5(x) = \frac{f^{(6)}(\xi)}{6!}(x - x_0)^6 = \frac{f^{(6)}(\xi)}{6!}x^6 = \frac{e^{\xi}}{6!}x^6$$
$$R_5(x) = \frac{e^{\xi}}{6!}x^6$$