An R Companion to James Hamilton's Times Series Analysis

with R

Robert Bell, Matthieu Stigler

Foreword

RcompHam94 is an R package that implements many of the worked examples in Time Series Analysis (Hamilton, 1994) as well as providing access to the code and datasets used. In many cases RcompHam94 provides both simplified implementations "from scratch" to allow the reader to explore the underlying logic and calculations, and more realistic implementations that make use of the large body of contributed packages in the Comprehensive R Archive Network (CRAN). Thus readers who have cut their teeth on the textbook can use this package as a stepping stone to doing their own analysis and/or research. Readers looking for additional introductory treatment of facilities available in CRAN can explore other excellent introductions such as http://cran.r-project.org/doc/contrib/Farnsworth-EconometricsInR.pdf and http://cran.r-project.org/web/packages/AER/AER.pdf (Kleiber and Zeileis, 2008).

We assume the reader has downloaded the R language, and package "RcompHam94" from http://www.r-project.org/ and has read "An Introduction to R" available here http://cran.r-project.org/doc/manuals/R-intro.html and also available as a PDF from the "Help" menu of the R package.

To load the package, just use:

```
library("RcompHam94")
```

Code shown in this document (and some not shown for brevity) can be executed using the R "demo" function. For a list of available demos, use:

```
demo(package = "RcompHam94")
```

To invoke a specific demo, say the demo called "p112", use:

```
demo(topic = "p112", package = "RcompHam94")
```

In general the demos are written so that the results of individual calculations can be examined after the fact by examining variables containing the results of those calculations.

Page references in the body of this document refer to \mathtt{Time} \mathtt{Series} $\mathtt{Analy-sis}$.

Contents

1	Difference Equations			
	1.1	Dynamic Multipliers for First Order Difference Equations	4	
	1.2	Comparing Transitory Versus Permanent Changes	5	
	1.3	Dynamic Multipliers for Second Order Difference Equations	6	
2	Stationary ARMA Processes			
	2.1	Autocorrelations for AR and MA Processes	7	
	2.2	R Facilities for ARMA Autocorrelations	9	
	2.3	Autocorrelations as a Function of the Moving Average Parameter	10	
	2.4	Realizations of ARMA Processes	11	
	2.5	R Facilities for simulating ARMA process	12	
4	Forecasting			
	4.1	A Box Jenkins Example	13	
	4.2	R Facilities for Sample Autocorrelations	15	
6	Spectral Analysis 1		16	
7	Asy	mptotic distribution theory	18	
13	The	Kalman Filter	19	
	13.1	Kalman Filtering Example Applied to Detecting Business Cycles	19	
	13.2	R facilities for Kalman Filtering	22	
14	Generalized Method of Moments			
	14.1	Classical Method of Moments	24	
	14.2	Generalized Method of Moments	24	
	14.3	R Facilities for Generalized Method of Moments $\ \ldots \ \ldots \ \ldots$	27	
15	Models of Nonstationary Time Series			
	15.1	Fractional Integration	27	
17	Uni	variate Processes with Unit Roots	28	
	17.1	Preamble	28	
	17.2	Dickey Fuller Tests for Unit Roots	30	
		Analyzing GNP data	36	
	17.4	Using Phillips Perron Tests	38	
		Augmented Dickey Fuller Tests	43	
	17.6	Example 17.10 - Bayesian Test of Autoregressive Coefficient	47	

	17.7 D	etermining Lag Length	48		
19	Cointe	egration	49		
	19.1 Te	esting Cointegration when the Cointegrating Vector is Known .	49		
	19.2 Es	stimating the Cointegrating Vector	57		
	19.3 To	esting Hypotheses About the Cointegrating Vector	62		
20	Full-Information Maximum Likelihood Analysis of Cointegrated				
	System	ms	64		
	20.1 A	n Application of the Johansen Approach to the PPP data	64		
	20.2 Li	ikelihood Ratio Tests on the Cointegration Vector	67		
21	Time Series Models of Heteroskedasticity				
	21.1 P	reamble	70		
	21.2 A	pplication of ARCH Models to US Fed Funds Data	72		
	21.3 R	Facilities For GARCH models	76		
22	Model	ling Time Series with Changes in Regime	7 6		
	22.1 St	tatistical Analysis of i.i.d. Mixture Distributions	76		
	22.2 M	Iodeling Changes in Regime	78		
$R\epsilon$	eference	es	82		

1 Difference Equations

1.1 Dynamic Multipliers for First Order Difference Equations

Page 3 describes calculations for dynamic multipliers for first order difference equations. An example of these calculations in action is given on page 4. A simple method to calculate dynamic multipliers is to simulate the difference equation calculating forward based on an initial shock at time t=1, assuming the value of y at time 0 is 0. R indexes arrays starting at 1 instead of 0, so subscripts are one more than the convention used in the text, meaning that the shock will be said to occur at time 2.

In the examples shown on page 4 there are actually four different equations being simulated, so we will use a matrix, rather than a vector, to store the results.

```
Phis <- c(0.8, -0.8, 1.1, -1.1)
> y <- array(dim = c(T, length(phis)))
> y[1, ] <- rep(0, length(phis))
> for (j in 2:T) y[j, ] <- phis * y[j - 1, ] + w[j]</pre>
```

We can check this calculation against the closed form expression on page 3.

```
> print(y[2:T, 1])
```

```
_____ output _____
[1] 1.00000000 0.80000000 0.64000000 0.51200000 0.40960000 0.32768000
```

```
> print(phis[[1]]^seq(0, T - 2))
```

^{[7] 0.26214400 0.20971520 0.16777216 0.13421773 0.10737418 0.08589935}

^{[13] 0.06871948 0.05497558 0.04398047 0.03518437 0.02814750 0.02251800}

^{[19] 0.01801440}

output -

^{[1] 1.00000000 0.80000000 0.64000000 0.51200000 0.40960000 0.32768000}

 $^{[7] \ \ 0.26214400 \ \ 0.20971520 \ \ 0.16777216 \ \ 0.13421773 \ \ 0.10737418 \ \ 0.08589935}$

Finally we can plot the results using a histogram plot reproducing figure 1.1.

1.2 Comparing Transitory Versus Permanent Changes

The above example examined the effect changing ϕ on the dynamic multiplier. Pages 5 and 6 describe what happens when the permanence of the change is varied with a fixed multiplier, i.e. while leaving ϕ unchanged.

```
Phi <- 0.8
> T <- 20
> w <- 1 * cbind(1:T == 6, 1:T >= 6)
> y <- array(dim = c(T, 2))
> y[1:5, ] <- 0
> for (j in 6:T) y[j, ] <- phi * y[j - 1, ] + w[j, ]</pre>
```

The results can be plotted reproducing figures 1.2 and 1.3.

1.3 Dynamic Multipliers for Second Order Difference Equations

Finally we use similar techniques to calculate the effects of an impulse on a second order system. Here each column of phi represents the coefficients of a second order system.

```
R code
> T <- 20
> w <- 1 * (1:20 == 3)
> y <- array(dim = c(T, 2))
> y[1:2, ] <- 0
> phi <- array(c(0.6, 0.2, 0.5, -0.8), c(2, 2))
> for (j in 3:T) y[j, ] <- apply(X = phi * y[(j - 1):(j - 2), ],
+ MARGIN = 2, FUN = sum) + w[j]</pre>
```

The results can be plotted reproducing figure 1.4.

2 Stationary ARMA Processes

2.1 Autocorrelations for AR and MA Processes

Pages 50 to 59 describe the calculation of autocorrelation functions of AR and MA processes. Following the expressions in the text we can calculate results using separate formulae for white noise, moving average, and autoregressive processes.

White noise calculations are described on bottom of page 47 and the top of page 48.

```
> specifications[[1]]$rho <- c(1, rep(0, T - 1))
```

Moving average calculations are described on page 51.

Autocorrelation calculations are described on page 59

2.2 R Facilities for ARMA Autocorrelations

Function ARMAacf can be used to calculate autocorrelations for an arbitrary ARMA process.

```
R code -
> g3 <- ARMAacf(ar = numeric(0), ma = specifications[[3]]$MA, lag.max = T,
     pacf = FALSE)
> print(specifications[[3]]$rho)
                                output
[1]
                           0.4871795 -0.3487179
     1.0000000 -0.6666667
                                                0.1538462
     0.0000000 0.0000000
                           0.0000000 0.0000000
                                                0.0000000
                                                           0.0000000
     0.0000000
                0.000000
                           0.0000000
                0.000000
[19]
                               _ R code _
> print(g3)
                                output .
1.0000000 \ -0.6666667 \ \ 0.4871795 \ -0.3487179 \ \ \ 0.1538462 \ \ \ 0.0000000 \ \ \ \ 0.0000000
```

```
13
                                          10
14
                   15
                               16
                                          17
                                                      18
                                                                 19
                                                                             20
0.0000000 \quad 0.0000000 \quad 0.0000000 \quad 0.0000000 \quad 0.0000000 \quad 0.0000000 \quad 0.0000000
                                 _ R code
> g4 \leftarrow ARMAacf(ar = specifications[[4]]$AR, ma = numeric(0), lag.max = T -
      1, pacf = FALSE)
> print(specifications[[4]]$rho)
                                  output
 [1] 1.00000000 0.80000000 0.64000000 0.51200000 0.40960000 0.32768000
  [7] \ \ 0.26214400 \ \ 0.20971520 \ \ 0.16777216 \ \ 0.13421773 \ \ 0.10737418 \ \ 0.08589935 
 [13] \ \ 0.06871948 \ \ 0.05497558 \ \ 0.04398047 \ \ 0.03518437 \ \ 0.02814750 \ \ 0.02251800 
[19] 0.01801440 0.01441152
                              ___ R code ___
> print(g4)
1.00000000 \ 0.80000000 \ 0.64000000 \ 0.51200000 \ 0.40960000 \ 0.32768000 \ 0.26214400
                    8
                                9
                                          10
                                                      11
                                                                 12
0.20971520 0.16777216 0.13421773 0.10737418 0.08589935 0.06871948 0.05497558
        14
                   15
                               16
                                          17
                                                      18
0.04398047 0.03518437 0.02814750 0.02251800 0.01801440 0.01441152
```

2.3 Autocorrelations as a Function of the Moving Average Parameter

Figure 3.2 is easily generated from the formula for autocorrelations of an MA(1) process.

```
R code
> theta <- (-300:300) * 0.01
> corrs <- theta/(1 + theta^2)
> plot(theta, corrs, type = "l")
> grid(nx = 2, ny = 2)
```


2.4 Realizations of ARMA Processes

Pages 55 shows some realizations of AR processes. We will assume the innovations are drawn from a standard normal distribution.

```
R code
> specifications <- list(list(label = "f = 0", MA = vector(mode = "numeric"),
+ AR = vector(mode = "numeric")), list(label = "f = .5", MA = vector(mode = "numeric"),
+ AR = c(0.5)), list(label = "f = .9", MA = vector(mode = "numeric"),
+ AR = c(0.9)))
> T <- 100
> set.seed(123)
> epsilon <- rnorm(T, 0, 1)</pre>
```

These can be calculated by iterating forward on the defining equations.

```
R code
> simulate.forward <- function(specification, epsilon) {
+ T <- length(epsilon)
+ AR <- specification$AR
+ MA <- specification$MA
+ presample <- rep(0, max(length(AR), length(MA)))
+ epsilon <- c(presample, epsilon)</pre>
```

```
+ Y <- vector(mode = "numeric", length = T + length(presample))
+ Y[1:length(presample)] <- 0
+ for (i in (length(presample) + 1):(T + length(presample))) Y[i] <- epsilon[[i]] +
+ ifelse(length(AR) > 0, t(AR) %*% Y[(i - 1):(i - length(AR))],
+ 0) + ifelse(length(MA) > 0, t(MA) %*% epsilon[(i -
+ 1):(i - length(MA))], 0)
+ Y[(length(presample) + 1):(T + length(presample))]
+ }
> for (i in 1:length(specifications)) specifications[[i]]$Y <- simulate.forward(specifications[[i]],
+ epsilon)</pre>
```


2.5 R Facilities for simulating ARMA process

Function "simulate.forward" is a special case of capabilities provided by the function arima.sim in package stats, as the following code verifies.

```
R code
> for (specification in specifications) {

+ AR <- specification$AR

+ MA <- specification$MA

+ shift <- max(length(AR), length(MA))

+ Y <- arima.sim(model = list(order = c(length(AR), 0, length(MA)),</pre>
```

```
+ ar = AR, ma = MA), n = T, innov = epsilon[1:T], n.start = max(shift,
+ 1), start.innov = rep(0, max(shift, 1)))
+ print(specification$Y[1:10])
+ print(Y[1:10])
+ }
```

```
[1] -0.56047565 -0.23017749 1.55870831 0.07050839 0.12928774 1.71506499
[7] 0.46091621 -1.26506123 -0.68685285 -0.44566197
[1] -0.56047565 -0.23017749 1.55870831 0.07050839 0.12928774 1.71506499
[7] 0.46091621 -1.26506123 -0.68685285 -0.44566197
[1] -0.5604756 -0.5104153 1.3035007 0.7222587 0.4904171 1.9602735
[7] 1.4410530 -0.5445347 -0.9591202 -0.9252221
[1] -0.5604756 -0.5104153 1.3035007 0.7222587 0.4904171 1.9602735
[7] 1.4410530 -0.5445347 -0.9591202 -0.9252221
[1] -0.5604756 -0.73460557 0.89756330 0.87831536 0.91977156 2.54285939
[7] 2.74948966 1.20947946 0.40167866 -0.08415118
[1] -0.56047565 -0.73460557 0.89756330 0.87831536 0.91977156 2.54285939
[7] 2.74948966 1.20947946 0.40167866 -0.08415118
```

4 Forecasting

4.1 A Box Jenkins Example

Example 4.1 from page 112 illustrates the Box-Jenkins approach based on autocorrelations. Here the data series is log changes of seasonally adjusted real US GNP from 1947 to 1988, available by simple transformations of the data in object "gnp1996". The data is prepared by selecting quarterly date from as shown, then computing the log of differences.

```
R code
> data(gnp1996, package = "RcompHam94")
> selection <- subset(gnp1996, Quarter >= "1947-01-01" & Quarter <=
+ "1988-10-01")
> y <- diff(log(selection$GNPH))
```

Page 110 shows how to compute sample autocorrelations - we will generate the first 20 to be used in plotting the results below.

```
R code ______
> max.lags <- 20
> T <- length(y)</pre>
```

Page 111 shows how to compute sample partial autocorrelations.

A plot of the outputs reproducing figure 4.2 is shown below. The source code is provided in the demo.

Figure 4.2(a) Sample autocorrelations

Figure 4.2(b) Sample partial autocorrelations

4.2 R Facilities for Sample Autocorrelations

Function acf from R package "stats" performs the same function as acf, as we can readily confirm.

```
_ R code .
> acf.correlation <- acf(y, lag.max = max.lags, type = "correlation",
      plot = FALSE, demean = TRUE)
> print(as.vector(acf.correlation$acf))
                                  output
 [1] 1.00000000 0.34509475 0.17817758 -0.02537843 -0.14230681 -0.18827409
  \begin{bmatrix} 7 \end{bmatrix} \ -0.11613672 \ -0.09335581 \ -0.04441490 \ \ 0.03902657 \ \ 0.05412612 \ \ 0.03788102 
[13] -0.12386994 -0.12725888 -0.10256196 -0.10719806 0.05022865 0.07874423
[19] 0.10451845 0.05540046 0.07001701
> print(rhos)
                                  output
 [1] 1.00000000 0.34509475 0.17817758 -0.02537843 -0.14230681 -0.18827409
  [7] \ -0.11613672 \ -0.09335581 \ -0.04441490 \ \ 0.03902657 \ \ 0.05412612 \ \ 0.03788102 
[13] -0.12386994 -0.12725888 -0.10256196 -0.10719806 0.05022865 0.07874423
[19] 0.10451845 0.05540046 0.07001701
                                 R code
> acf.partial <- acf(y, lag.max = max.lags, type = "partial", plot = FALSE,
      demean = TRUE)
> print(as.vector(acf.partial$acf))
                                 output
 [1] 0.345094750 0.067075208 -0.120748043 -0.128609341 -0.096659383
 [6] 0.006935269 -0.040052970 -0.027544630 0.043507786 0.007543470
[11] -0.020592065 -0.186352407 -0.053599417 0.009939122 -0.066137883
      0.093638650 0.007111983 0.016895000 -0.045185857 0.023227306
                                _ R code _
> print(alphas)
                                 output
 [1] 0.345094750 0.067075208 -0.120748043 -0.128609341 -0.096659383
 [6] 0.006935269 -0.040052970 -0.027544630 0.043507786 0.007543470
[11] -0.020592065 -0.186352407 -0.053599417 0.009939122 -0.066137883
[16] 0.093638650 0.007111983 0.016895000 -0.045185857 0.023227306
```

6 Spectral Analysis

Pages 167 to 170 give an example of the uses of spectral analysis, as applied to US Industrial Production from January 1947 to November 1989, available in data source "indprod". We will analyze the actual raw data, as well as one month and one year log changes.

```
R code

> data(indprod, package = "RcompHam94")

> selection <- subset(indprod, Month >= "1947-01-01" & Month <= 
+ "1989-11-01")

> raw.data <- selection$IPMFG6

> logdiff.data <- 100 * diff(log(raw.data), lag = 1)

> yeardiff.data <- 100 * diff(log(raw.data), lag = 12)
```

For plotting purposes, generate frequencies at regular intervals as show on page 159. The first spectrum uses unsmoothed estimates, the last two use a Bartlett kernel.

We show this in two ways:

- Step by step function (page 16)
- Built-in function (page 17)

Step by step function

```
_ R code
> s.Y.omega <- function(omega, gammas, params) {</pre>
     1/(2 * pi) * (gammas[[1]] + 2 * as.numeric(t(gammas[-1]) %*%
         cos(1:(length(gammas) - 1) * omega)))
> s.Y.omega.Bartlett <- function(omega, gammas, params) {
     1)) * gammas[2:(params + 1)]) %*% cos(1:params * omega)))
+ }
> generate.plot.data <- function(values, estimator, params) {
     T <- length(values)</pre>
     acf.covariance <- acf(values, lag.max = T - 1, type = "covariance",</pre>
         plot = FALSE, demean = TRUE)
     sapply(2 * pi/T * 1:((T - 1)/2), estimator, as.vector(acf.covariance$acf),
         params)
> raw.s.Y.omega <- generate.plot.data(raw.data, s.Y.omega, NULL)
> logdiff.s.Y.omega <- generate.plot.data(logdiff.data, s.Y.omega.Bartlett,
```

```
+ 12)
> yeardiff.s.Y.omega <- generate.plot.data(yeardiff.data, s.Y.omega.Bartlett,
+ 12)</pre>
```

The resulting output is shown below.

Built-in function We use here the function spectrum:

The resulting output is shown below.

7 Asymptotic distribution theory

Further features in R

There exist a number of packages that illustrate interactively the central limit theorem or the law of large numbers, that can be useful to have an intuition on those theorems:

- Package animation has clt.ani and lln.ani
- ullet Package TeachingDemos has clt.examp
- Package ResearchMethods has cltDemo

In addition, package ConvergenceConcepts, described in the R journal 1/2 2009 enables one to investigate graphically the four classical modes of convergence of a sequence of random variables: convergence almost surely, convergence in probability, convergence in law and convergence in r-th mean. (de Micheaux and Liquet (2009))

13 The Kalman Filter

13.1 Kalman Filtering Example Applied to Detecting Business Cycles

Page 376 describes an application of Kalman filtering to business cycles by James Stock and Mark Watson.

This can be implemented in two steps. The first is to implement the Kalman algorithm as described in the text. The following function generally follows the notation in Chapter 13, but several of the variables store the complete history of the iterations so that they include one more dimension. For example, rather than being a simple variable, the state vector is a vector of vectors (i.e. a two dimensionsal array) as shown.

```
> xi.t.t_1 <- array(dim = c(length(xi.1.0), T + 1))</pre>
```

One minor difference is that the gain matrix as computed here does not include premultiplication by the F matrix as shown in [13.2.19] in the text.

```
______ R code ______
> K.t[, , tt] <- P.t.t_1[, , tt] %*% H %*% V
```

See also [13.2.16], [13.2.21] for updates of the second moments; [13.2.15], [13.2.17] for updates of the state vectors; [13.6.11], [13.6.16], [13.6.20] for computation of the smoothed inferences.

```
_ R code _
> kalman <- function(H, R, F, x, A, y, Q, xi.1.0, P.1.0) {
      T \leftarrow dim(x)[[2]]
      P.t.t_1 \leftarrow array(dim = c(dim(P.1.0), T + 1))
      P.t.t_1[, , 1] \leftarrow P.1.0
      P.t.t \leftarrow array(dim = c(dim(P.1.0), T))
      K.t \leftarrow array(dim = c(dim(H), T))
      xi.t.t_1 \leftarrow array(dim = c(length(xi.1.0), T + 1))
      xi.t.t_1[, 1] <- xi.1.0
      xi.t.t \leftarrow array(dim = c(length(xi.1.0), T))
      L <- 0
      for (tt in 1:T) {
           V \leftarrow solve(t(H) \%*\% P.t.t_1[, , tt] \%*\% H + R)
           K.t[, , tt] \leftarrow P.t.t_1[, , tt] %*% H %*% V
           P.t.t[, , tt] \leftarrow P.t.t_1[, , tt] - K.t[, , tt] %*% t(H) %*%
                P.t.t_1[, , tt]
```

```
P.t.t_1[, , tt + 1] \leftarrow F %*% P.t.t[, , tt] %*% t(F) +
          w \leftarrow y[, tt] - t(A) %*% x[, tt] - t(H) %*% xi.t.t_1[,
          xi.t.t[, tt] \leftarrow xi.t.t_1[, tt] + K.t[, , tt] %*% w
          xi.t.t_1[, tt + 1] \leftarrow F %*% xi.t.t[, tt]
          L \leftarrow L - 1/2 * dim(y)[[1]] * log(2 * pi) + 1/2 * log(det(V)) -
               1/2 * t(w) %*% V %*% w
      xi.t.T \leftarrow array(dim = c(length(xi.1.0), T))
      xi.t.T[, T] \leftarrow xi.t.t[, T]
      P.t.T \leftarrow array(dim = c(dim(P.1.0), T))
      P.t.T[, , T] \leftarrow P.t.t[, , T]
      for (tt in (T - 1):1) {
          Jt \leftarrow P.t.t[, , tt] %*% t(F) %*% solve(P.t.t_1[, , tt +
          xi.t.T[, tt] \leftarrow xi.t.t[, tt] + Jt %*% (xi.t.T[, tt +
               1] - xi.t.t_1[, tt + 1])
          P.t.T[, , tt] <- P.t.t[, , tt] + Jt %*% (P.t.T[, , tt +
               1] - P.t.t_1[, , tt + 1]) %*% t(Jt)
      list(xi.t.t = xi.t.t, xi.t.t_1 = xi.t.t_1, P.t.t = P.t.t,
          P.t.t_1 = P.t.t_1, K.t = K.t, log.likelihood = L, xi.t.T = xi.t.T,
          P.t.T = P.t.T)
+ }
```

The second is to specify the state space model as described on pp376-377 and estimate the parameters via maximum likelihood. Data for this analysis is consumption and income data form dataset "coninc" in log differences.

```
R code

> data(coninc, package = "RcompHam94")

> YGR <- diff(log(as.vector(coninc[, "GYD82"])))

> CGR <- diff(log(as.vector(coninc[, "GC82"])))

> y <- t(cbind(YGR - mean(YGR), CGR - mean(CGR)))
```

The following helper function converts the parameters from a vector of labeled components into the correct inputs for the filter as shown in equations [13.1.28], [13.1.29], and [13.1.30].

```
R code
> THETA <- c(phic = 0.9, phi1 = 0.9, phi2 = 0.9, g1 = 0.5, g2 = 0.5,
+ sigc = 0.05^0.5, sig11 = 0.05^0.5, sig22 = 0.05^0.5, r11 = sd(YGR),
```

```
+ r22 = sd(CGR))
> theta.y.to.params <- function(THETA, y) {
+ params <- list(F = diag(THETA[c("phic", "phi1", "phi2")]),
+ Q = diag(THETA[c("sigc", "sig11", "sig22")]^2), H = rbind(THETA[c("g1",
+ "g2")], diag(2)), R = diag(THETA[c("r11", "r22")]^2),
+ A = diag(c(0, 0)), x = c(1, 1) %0% rep(1, dim(y)[[2]]),
+ xi.1.0 = c(0, 0, 0))
+ c(params, list(P.1.0 = array(solve(diag(length(params$xi.1.0)^2) -
+ params$F %x% params$F, as.vector(params$Q)), c(length(params$xi.1.0),
+ length(params$xi.1.0)))))</pre>
```

The objective function is the log.likelihood obtained from the Kalman iteration.

```
R code
> objective <- function(THETA, y) {

+ params <- theta.y.to.params(THETA, y)

+ kalman(params$H, params$R, params$F, params$x, params$A,

+ y, params$Q, params$xi.1.0, params$P.1.0)$log.likelihood

+ }

> optimizer.results <- optim(par = THETA, fn = objective, gr = NULL,

+ y = y, control = list(trace = 0))</pre>
```

Finally calculate the smoothed results based on the ML estimated parameters.

```
R code
> params <- theta.y.to.params(optimizer.results$par, y)
> smoothed.results <- kalman(params$H, params$R, params$F, params$x,
+ params$A, y, params$Q, params$xi.1.0, params$P.1.0)
> smoothed.data <- smoothed.results$xi.t.T[1, ]
```

The results of the smoothed inference are shown below.

13.2 R facilities for Kalman Filtering

There are several different packages in R for Kalman filtering, some that provide univariate support, others multivariate support. For example, package FKF is a fast implementation, but there are others. One key aspect of using such packages is specifying an interface to allow for time varying inputs, and providing results under those conditions. Some packages use caller supplied functions, others check for dimensions of (up to three dimensional) arrays, etc.

For example, a simple implementation of the example on page 382 using function *kalman* above might look like:

```
R code
> sigmasq <- 2
> params <- list(F = array(c(0, 1, 0, 0), c(2, 2)), Q = diag(c(sigmasq,
+ 0)), H = array(c(1, 0.8), c(2, 1)), R = array(0, c(1, 1)),
+ A = array(0.5, c(1, 1)), x = 1 %0% rep(1, 5), y = 1 %0% c(1,
+ seq(0.5, 4)), xi.1.0 = c(0, 0))
> params <- c(params, list(P.1.0 = array(solve(diag(length(params$xi.1.0)^2) -
+ params$F %x% params$F, as.vector(params$Q)), c(length(params$xi.1.0),
+ length(params$xi.1.0))))
> myResults <- kalman(params$H, params$R, params$F, params$x, params$A,
+ params$y, params$Q, params$xi.1.0, params$P.1.0)</pre>
```

We can perform the some operations using package FKF with a slight alteration of the function arguments. In particular, many of the arguments using an outer product as a quick way to convert them into a structure of one additional dimension, with the length of the additional dimension being 1. This is a convenient calling convention to specifying a *non* time varying parameter. If the parameter *were* time varying then the full extra dimension would be used. For example, the F matrix can be time varying in FKF (called Tt). A call exploiting this would then have a vector of two dimensional F matrices, one for each time index, i.e. a three dimensional array. If F is not time varying, (as in the case of the simple example above) then a three dimensional array with the third dimension being of length 1 is used.

R code

```
> fkfResults <- FKF::fkf(a0 = params$xi.1.0, P0 = params$P.1.0,
      dt = rep(0, length(params$xi.1.0)) %o% 1, Tt = params$F %o%
          1, HHt = params$Q \%o\% 1, ct = t(params$A) \%*\% params$x,
      Zt = t(params$H) \%0\% 1, GGt = params$R \%0\% 1, yt = params$y,
      check.input = TRUE)
The results can be confirmed by examing the output:
                                 R code -
> print(myResults$xi.t.t)
                                   output
                      [,2]
          [,1]
                                            [,4]
                                  [,3]
[1,] 0.3048780 -0.1951600 1.02502699 1.100137 2.031900
[2,] 0.2439024
                0.2439500 -0.03128374 1.124828 1.210125
                                  R code
> print(fkfResults$att)
                                   output
          [,1]
                      [,2]
                                  [,3]
                                            [,4]
                                                     [,5]
[1,] 0.3048780 -0.1951600 1.02502699 1.100137 2.031900
[2,] 0.2439024 0.2439500 -0.03128374 1.124828 1.210125
```

14 Generalized Method of Moments

14.1 Classical Method of Moments

> nu <- 2 * mu2/(mu2 - 1)
> print(classical.results)

[1] 10.44206

Pages 409-410 gives a simple example of estimating the degrees of freedom of a standard t distribution. To illustrate, first generate a sample of 500 observations from a t distribution with 10 degrees of freedom.

_ R code _

```
> Y <- rt(500, 10)

Then maximize the sum of logs of a t density evaluated on the sample points.

R code
> objective <- function(nu, Y) {
+ -sum(log(dt(Y, df = nu)))
+ }
> classical.results <- optimize(interval = c(1, 30), f = objective,
+ Y = Y)
> mu2 <- mean(Y^2)</pre>
```

14.2 Generalized Method of Moments

Using the sample sample, we can estimate the degrees of freedom using GMM. To this end define a function following the GMM recipe in the text.

_ output _

```
R code
> compute.estimates <- function(Y, h, interval) {
+    g <- function(Y, THETA) {</pre>
```

```
apply(X = apply(X = Y, MARGIN = 1, FUN = h, THETA = THETA),
              MARGIN = 1, FUN = mean)
      7
      objective <- function(THETA, Y, W) {
          g.value \leftarrow g(Y, THETA)
          t(g.value) %*% W %*% g.value
     r <- length(h(Y[1, ], interval[[1]]))</pre>
      a <- length(interval[[1]])</pre>
      T \leftarrow dim(Y)[[1]]
      stage.1.results <- optimize(interval = interval, f = objective,</pre>
          Y = Y, W = diag(r)
      temp <- apply(X = Y, MARGIN = 1, FUN = h, THETA = stage.1.results$objective)</pre>
      S \leftarrow 1/T * temp %*% t(temp)
      stage.2.results <- optimize(interval = interval, f = objective,</pre>
          Y = Y, W = solve(S)
      J.test <- 1 - pchisq(T * stage.2.results$objective, r - a)</pre>
      list(stage.1.results = stage.1.results, stage.2.results = stage.2.results,
          overidentifying = J.test)
+ }
```

Using this function is then a matter of specifying an appropriate function h to define an observation of the set of moments being targeted.

```
R code
> h <- function(Yt, THETA) {
+    nu <- THETA
+    c(Yt^2 - nu/(nu - 2), Yt^4 - 3 * nu^2/((nu - 2) * (nu - 4)))
+ }
> estimates <- compute.estimates(Y %o% 1, h, interval = c(5, 30))
> print(estimates)
```

```
$stage.1.results
$stage.1.results$minimum

[1] 14.01396

$stage.1.results$objective
```

[1,] 0.004985588

[,1]

A second example estimates the shape parameter of a two-sided gamma distribution.

14.3 R Facilities for Generalized Method of Moments

TBD

15 Models of Nonstationary Time Series

15.1 Fractional Integration

This example uses package package fracdiff to compute the exponent of fractional integration as described on pp 448-449. We use the function fdGPH:

	R code
> library(fracdiff)	
> args(fdGPH)	
	output
function (x, bandw.exp = 0.5)	output
NULL	
Applied on US GDP and Treasu	ry Yields data:
	R code
> print(fdGPH(log(gnptbill[, "GNF	/"J)))
\$d	output
[1] 0.9832278	

```
$sd.as
[1] 0.2427173

$sd.reg
[1] 0.04075541

> print(fdGPH(gnptbill[, "TBILL"]))

$d
[1] 0.9511594

$sd.as
[1] 0.2427173

$sd.reg
[1] 0.227921
```

17 Univariate Processes with Unit Roots

17.1 Preamble

This section uses a few utility functions that follow procedures in the text for testing hypotheses about unit roots. First is the Newey West estimator described by [10.5.10] and [10.5.15].

```
Print(Newey.West)

function (X, lags)
{
    S <- 0
    T <- dim(X)[[1]]
    for (lag in lags:1) S <- S + (lags + 1 - lag)/(lags + 1) *
        t(X[(lag + 1):T, ]) %*% X[1:(T - lag), ]
    1/T * (t(X) %*% X + S + t(S))
}
<environment: namespace:RcompHam94>
```

Next are the Dickey Fuller stats described in [17.4.7] and [17.4.9], with an optional correction for serial correlation defined in [17.7.35] and [17.7.38].

```
_ R code _
> print(Dickey.Fuller)
                                 output
function (T, rho, sigma.rho, zeta = numeric(0))
{
    list(T = T, rho = rho, sigma.rho = sigma.rho, zeta = zeta,
        rho.stat = T * (rho - 1)/(1 - sum(zeta)), t.stat = (rho - 1)/(1 - sum(zeta))
            1)/sigma.rho)
}
<environment: namespace:RcompHam94>
The Phillips Perron stats are defined by [17.6.8] and [17.6.12]
                                __ R code ____
> print(Phillips.Perron)
                                  output -
function (T, rho, sigma.rho, s, lambda.hat.sq, gamma0)
    list(T = T, rho = rho, sigma.rho = sigma.rho, s.sq = s^2,
        lambda.hat.sq = lambda.hat.sq, gamma0 = gamma0, rho.stat = T *
            (rho - 1) - 1/2 * (T * sigma.rho/s)^2 * (lambda.hat.sq -
            gamma0), t.stat = (gamma0/lambda.hat.sq)^0.5 * (rho -
            1)/sigma.rho - 1/2 * (lambda.hat.sq - gamma0) * T *
            sigma.rho/s/(lambda.hat.sq^0.5))
<environment: namespace:RcompHam94>
Finally the Wald form of an F test as defined by [8.1.32].
                                 _ R code _
> print(Wald.F.Test)
                                 _ output _
function (R, b, r, s2, XtX_1)
    v <- R %*% b - r
    as.numeric(t(v) %*% solve(s2 * R %*% XtX_1 %*% t(R)) %*%
        v/dim(R)[[1]])
```

}

For the following analyses we will use the R package dynlm which extends the formula language of the workhorse lm function of R to include constructs for expressing lags and differences. The raw data used is a series of treasury bill rates and real GNP. The GNP numbers are converted to logs and multiplied by 100 to get percentage growth rates, and we will use data from 1947:Q1 to 1989:Q1. Note that the text specifies a start date of 1947:Q2, but we include Q1 because it will be used in the lag calculation for the first "official" data point of Q2.

```
R code
> data(gnptbill, package = "RcompHam94")
> dataset <- window(cbind(i = gnptbill[, "TBILL"], y = 100 * log(gnptbill[,
+ "GNP"]), tt = 1:dim(gnptbill)[[1]]), start = c(1947, 1),
+ end = c(1989, 1))
```

17.2 Dickey Fuller Tests for Unit Roots

Page 489 describes the analysis of nominal three month U.S. Treasury yield data from dataset gnptbill, shown below.

Figure 17.2 - Nominal Interest Rate

The regression model is shown in [17.4.13], and the results are shown below.

```
> case1.lms <- summary(dynlm(i ~ 0 + L(i), dataset))</pre>
> case1.DF <- Dickey.Fuller(T = length(case1.lms$residuals), rho = case1.lms$coefficients[["L(i)",
      "Estimate"]], sigma.rho = case1.lms$coefficients[["L(i)",
      "Std. Error"]])
> print(t(case1.lms$coefficients[, c("Estimate", "Std. Error"),
      drop = FALSE]))
                                 – output –
                 L(i)
Estimate
           0.99693575
Std. Error 0.01059183
                             ____ R code ___
> print(case1.DF)
                                _ output _
$Т
[1] 168
$rho
[1] 0.9969357
$sigma.rho
[1] 0.01059183
$zeta
numeric(0)
$rho.stat
[1] -0.5147943
$t.stat
[1] -0.2893034
```

A similar analysis is described on page 494, but a constant is included in the regression model [17.4.37].

```
R code _______ R code _______
> case2.lms <- summary(dynlm(i ~ 1 + L(i), dataset))
> case2.DF <- Dickey.Fuller(T = length(case2.lms$residuals), rho = case2.lms$coefficients[["L(i)",
```

```
"Std. Error"]])
> print(t(case2.lms$coefficients[, c("Estimate", "Std. Error"),
      drop = FALSE]))
                                  output
           (Intercept)
Estimate
             0.2105899 0.96691035
Std. Error
             0.1121230 0.01913305
                                 _ R code _
> print(case2.DF)
                                 _ output _
[1] 168
$rho
[1] 0.9669104
$sigma.rho
[1] 0.01913305
$zeta
numeric(0)
$rho.stat
[1] -5.559061
$t.stat
[1] -1.729450
Example 17.5 describes how to test the joint hypothesis that the trend coefficient
is 0 and the autoregressive coefficient is 1.
                                 R code
> F <- Wald.F.Test(R = diag(2), b = case2.lms$coefficients[, "Estimate"],
      r = c(0, 1), s2 = case2.lms$sigma^2, XtX_1 = case2.lms$cov.unscaled)
> print(F)
                                 _ output _
[1] 1.806307
```

"Estimate"]], sigma.rho = case2.lms\$coefficients[["L(i)",

```
We can conduct a similar analysis for cases 1 and 2 using contributed package "urca" from CRAN.
```

```
____ R code _
> library(urca)
> args(ur.df)
                             output
function (y, type = c("none", "drift", "trend"), lags = 1, selectlags = c("Fixed",
   "AIC", "BIC"))
NULL
                           _ R code _
> tbill.1.ur.df <- ur.df(dataset[, "i"], type = "none", lags = 0)
> print(summary(tbill.1.ur.df))
                             output
# Augmented Dickey-Fuller Test Unit Root Test #
Test regression none
Call:
lm(formula = z.diff ~ z.lag.1 - 1)
Residuals:
    Min
             1Q Median
                             3Q
                                    Max
-3.69575 -0.12230 0.09615 0.39872 4.48805
Coefficients:
        Estimate Std. Error t value Pr(>|t|)
z.lag.1 -0.003064 0.010592 -0.289
Residual standard error: 0.8045 on 167 degrees of freedom
Multiple R-squared: 0.0005009,
                                 Adjusted R-squared: -0.005484
F-statistic: 0.0837 on 1 and 167 DF, p-value: 0.7727
Value of test-statistic is: -0.2893
```

```
1pct 5pct 10pct
tau1 -2.58 -1.95 -1.62
                             _ R code _
> tbill.2.ur.df <- ur.df(dataset[, "i"], type = "drift", lags = 0)
> print(summary(tbill.2.ur.df))
                             output -
# Augmented Dickey-Fuller Test Unit Root Test #
******************
Test regression drift
Call:
lm(formula = z.diff ~ z.lag.1 + 1)
Residuals:
             1Q Median
    Min
                             3Q
                                     Max
-3.50540 -0.19242 -0.04279 0.35148 4.55229
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.21059
                     0.11212 1.878 0.0621 .
z.lag.1
          -0.03309
                     0.01913 -1.729 0.0856 .
---
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.7985 on 166 degrees of freedom
Multiple R-squared: 0.0177,
                               Adjusted R-squared: 0.01178
F-statistic: 2.991 on 1 and 166 DF, p-value: 0.08559
Value of test-statistic is: -1.7294 1.8063
Critical values for test statistics:
     1pct 5pct 10pct
tau2 -3.46 -2.88 -2.57
phi1 6.52 4.63 3.81
```

Critical values for test statistics:

The test statistic quoted here is the t-statistic from text, and, conveniently the critical values from the appropriate tables in the book are printed as well. The ur.df function uses a slightly different form of the regression than the Hamilton text, using the first difference of the input variable as the left hand side, rather than its level. The resulting coefficient on the lagged value of the input variable will thus be 1 less than that obtained using the "manual" procedure above.

	R code
<pre>> print(case1.lms\$coefficier</pre>	
[1] 0.9969357	output
	R codeR tode
[1] 0.9969357	output
> print(case2.lms\$coefficien	R codents["L(i)", "Estimate"])
[1] 0.9669104	output
<pre>> print(attr(tbill.2.ur.df, + "Estimate"] + 1)</pre>	R code R code
[1] 0.9669104	output

17.3 Analyzing GNP data

A similar analysis can be conducted on log real GNP data described beginning on

page 501, shown below.

The regression model here incorporates a time trend, based on the shape of the GDP graph

```
R code
> case4.lms <- summary(dynlm(y ~ 1 + L(y) + tt, dataset))
> case4.DF <- Dickey.Fuller(T = length(case4.lms$residuals), rho = case4.lms$coefficients[["L(y)",
+ "Estimate"]], sigma.rho = case4.lms$coefficients[["L(y)",
+ "Std. Error"]])
> print(t(case4.lms$coefficients[, c("Estimate", "Std. Error"),
+ drop = FALSE]))

(Intercept) L(y) tt

Estimate 27.23724 0.96252203 0.02753238
Std. Error 13.53483 0.01930452 0.01520877

R code
> print(case4.DF)
```

output -

```
$Т
[1] 168
$rho
[1] 0.962522
$sigma.rho
[1] 0.01930452
$zeta
numeric(0)
$rho.stat
[1] -6.296298
$t.stat
[1] -1.941409
                             _ R code _
> F \leftarrow Wald.F.Test(R = cbind(rep(0, 2), diag(2)), b = case4.lms$coefficients[,
     "Estimate"], r = c(1, 0), s2 = case4.lmssigma^2, XtX_1 = case4.lms$cov.unscaled)
> print(F)
                             _ output _
[1] 2.442251
Similarly we can use ur.df to get similar results, although ur.df gives a slightly
different value for the intercept because of the way the trend dummy is calcu-
lated.
                              R code _
> gnp.4.ur.df <- ur.df(dataset[, "y"], type = "trend", lags = 0)
> print(summary(gnp.4.ur.df))
                              output -
# Augmented Dickey-Fuller Test Unit Root Test #
```

37

Test regression trend

```
Call:
lm(formula = z.diff ~ z.lag.1 + 1 + tt)
Residuals:
    Min
              1Q Median
                                30
                                       Max
-3.03075 -0.61071 0.08077 0.62590 2.65110
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 27.26477 13.54993
                                 2.012 0.0458 *
           -0.03748
                      0.01930 -1.941 0.0539 .
z.lag.1
            0.02753
tt
                       0.01521 1.810 0.0721 .
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 1.075 on 165 degrees of freedom
Multiple R-squared: 0.02875,
                                  Adjusted R-squared: 0.01698
F-statistic: 2.442 on 2 and 165 DF, p-value: 0.0901
Value of test-statistic is: -1.9414 33.2587 2.4423
Critical values for test statistics:
      1pct 5pct 10pct
tau3 -3.99 -3.43 -3.13
phi2 6.22 4.75 4.07
phi3 8.43 6.49 5.47
```

17.4 Using Phillips Perron Tests

Examples 17.6 and 17.7 reanalyze the case 2 and case 4 regressions above using the Phillips Perron tests as shown on pages 511-513.

```
R code

> case2.PP <- Phillips.Perron(T = length(case2.lms$residuals),

+ rho = case2.lms$coefficients[["L(i)", "Estimate"]], sigma.rho = case2.lms$coefficients[["L(i)"

+ "Std. Error"]], s = case2.lms$sigma, lambda.hat.sq = as.numeric(Newey.West(case2.lms$residuals ^ 2))

> print(t(case2.lms$coefficients[, c("Estimate", "Std. Error"),

+ drop = FALSE]))

output

output
```

```
(Intercept)
                                                                                                                           L(i)
Estimate
                                                      0.2105899 0.96691035
Std. Error
                                                      0.1121230 0.01913305
                                                                                                                                       __ R code __
> print(case2.PP)
                                                                                                                                        _ output _
$Т
[1] 168
$rho
[1] 0.9669104
$sigma.rho
[1] 0.01913305
$s.sq
[1] 0.6375998
$lambda.hat.sq
[1] 0.6880069
$gamma0
[1] 0.6300093
$rho.stat
[1] -6.028975
$t.stat
[1] -1.795686
                                                                                                                                           R code
> case4.PP <- Phillips.Perron(T = length(case4.lms$residuals),</pre>
                          \verb| rho = case 4.lms \\ \verb| coefficients [["L(y)", "Estimate"]], sigma.rho = case \\ 4.lms \\ \verb| coefficients [["L(y)", "Estimate"]], sigma.rho = case \\ 4.lms \\ \verb| coefficients [["L(y)", "Estimate"]], sigma.rho = case \\ 4.lms \\ \verb| coefficients [["L(y)", "Estimate"]], sigma.rho = case \\ 4.lms \\ \verb| coefficients [["L(y)", "Estimate"]], sigma.rho = case \\ 4.lms \\ \verb| coefficients [["L(y)", "Estimate"]], sigma.rho = case \\ 4.lms \\ \verb| coefficients [["L(y)", "Estimate"]], sigma.rho = case \\ 4.lms \\ \verb| coefficients [["L(y)", "Estimate"]], sigma.rho = case \\ 4.lms \\ \verb| coefficients [["L(y)", "Estimate"]], sigma.rho = case \\ 4.lms \\ \verb| coefficients [["L(y)", "Estimate"]], sigma.rho = case \\ 4.lms \\ \verb| coefficients [["L(y)", "Estimate"]], sigma.rho = case \\ 4.lms \\ \verb| coefficients [["L(y)", "Estimate"]], sigma.rho = case \\ 4.lms \\ \verb| coefficients [["L(y)", "Estimate"]], sigma.rho = case \\ 4.lms 
                                           "Std. Error"]], s = case4.lms$sigma, lambda.hat.sq = as.numeric(Newey.West(case4.lms$resid
                                           1, 4)), gamma0 = mean(case4.lms$residuals^2))
> print(t(case4.lms$coefficients[, c("Estimate", "Std. Error"),
                          drop = FALSE]))
```

_ output _

		(Intercept)	L(y)	tt	
Esti	mate	27.23724	0.96252203	0.02753238	
Std.	Error	13.53483	0.01930452	0.01520877	
- pı	rint(cas			R code	
				output	
\$T				output	
[1]	168				
\$rhc	,				
	, 0.96252	22			
[1]	0.90232				
\$sig	gma.rho				
[1]	0.01930)452			
\$s.s	sq				
	1.15627	0			
\$lam	nbda.hat	.sq			
[1]	2.11717	'3			
\$gam	·m > 0				
	шао 1.13562)3			
LTJ	1.13302	.5			
\$rhc	.stat				
[1]	-10.760	066			
\$t.s	stat				
	[1] -2.439143				
We	can get	similar result	s for the PF	t-stat by using the function ur.pp from the	
urca	packag	ge. Note that	the implied	l regression generates the trend centered at	
T/2	, so tha	t the interce	pt term sho	wn is different than that calculated above,	
whe	re the t	rend starts a	t 1.		
				R code	
> aı	rgs(ur.p	op)		n code	
	-	-			

_ output _

```
function (x, type = c("Z-alpha", "Z-tau"), model = c("constant",
   "trend"), lags = c("short", "long"), use.lag = NULL)
NULL
                             _ R code _
> case2.ur.pp <- ur.pp(dataset[, "i"], type = "Z-tau", model = "constant",</pre>
     use.lag = 4)
> print(summary(case2.ur.pp))
                             output _
#####################################
# Phillips-Perron Unit Root Test #
Test regression with intercept
Call:
lm(formula = y ~ y.11)
Residuals:
    Min
             1Q Median
                              3Q
                                     Max
-3.50540 -0.19242 -0.04279 0.35148 4.55229
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.21059 0.11212 1.878 0.0621.
y.11
           Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.7985 on 166 degrees of freedom
Multiple R-squared: 0.939, Adjusted R-squared: 0.9386
F-statistic: 2554 on 1 and 166 DF, p-value: < 2.2e-16
Value of test-statistic, type: Z-tau is: -1.796
        aux. Z statistics
Z-tau-mu
                  1.9156
```

Critical values for Z statistics:

```
1pct
                             5pct
                                      10pct
critical values -3.470245 -2.878694 -2.575818
R code
> case4.ur.pp <- ur.pp(dataset[, "y"], type = "Z-tau", model = "trend",</pre>
     use.lag = 4)
> print(summary(case4.ur.pp))
                               output _
#####################################
# Phillips-Perron Unit Root Test #
Test regression with intercept and trend
Call:
lm(formula = y ~ y.l1 + trend)
Residuals:
    Min
            1Q Median
                               ЗQ
                                       Max
-3.03075 -0.61071 0.08077 0.62590 2.65110
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 29.57749 14.81856 1.996 0.0476 *
y.11
            0.96252
                      0.01930 49.860
                                        <2e-16 ***
            0.02753
                       0.01521
                               1.810
                                       0.0721 .
trend
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 1.075 on 165 degrees of freedom
Multiple R-squared: 0.9992,
                                 Adjusted R-squared: 0.9992
F-statistic: 1.055e+05 on 2 and 165 DF, \, p-value: < 2.2e-16
Value of test-statistic, type: Z-tau is: -2.4454
          aux. Z statistics
Z-tau-mu
                     0.4383
Z-tau-beta
                     2.5557
```

```
Critical values for Z statistics:

1pct 5pct 10pct

critical values -4.015201 -3.437273 -3.142561
```

17.5 Augmented Dickey Fuller Tests

Example 17.8 illustrates incorporates the use of lagged regressors to (putatively) eliminate serial correlation in the residuals.

```
> tbill.lms <- summary(dynlm(i ~ L(d(i), 1:4) + 1 + L(i), dataset))
> tbill.adf <- Dickey.Fuller(T = length(tbill.lms$residuals), rho = tbill.lms$coefficients[["L(i)",
      "Estimate"]], sigma.rho = tbill.lms$coefficients[["L(i)",
      "Std. Error"]], zeta = tbill.lms$coefficients[paste("L(d(i), 1:4)", 
      1:4, sep = ""), "Estimate"])
> print(t(tbill.lms$coefficients[, c("Estimate", "Std. Error"),
      drop = FALSE]))
                                 output
           (Intercept) L(d(i), 1:4)1 L(d(i), 1:4)2 L(d(i), 1:4)3 L(d(i), 1:4)4
Estimate
             0.1954328
                           0.3346654
                                       -0.38797356
                                                       0.27613320
                                                                    -0.10670899
Std. Error
             0.1086376
                           0.0788234
                                        0.08082096
                                                       0.07998276
                                                                     0.07944645
                 L(i)
           0.96904450
Estimate
Std. Error 0.01860387
                                _ R code _
> print(tbill.adf)
                                 output -
$Т
[1] 164
$rho
[1] 0.9690445
$sigma.rho
[1] 0.01860387
L(d(i), 1:4)1 L(d(i), 1:4)2 L(d(i), 1:4)3 L(d(i), 1:4)4
    0.3346654
                 -0.3879736
                                0.2761332
                                             -0.1067090
```

```
$rho.stat
[1] -5.74363
$t.stat
[1] -1.663928
The next test checks whether or not the farthest lag is different from zero, i.e.
whether or not the right number of lags are included in the equation.
                                  R code -
> print(tbill.lms$coefficients[["L(d(i), 1:4)4", "t value"]])
                                _ output _
[1] -1.343156
Example 17.9 performs a similar analysis for the GNP data.
                                 R code
> gnp.lms <- summary(dynlm(y ~ L(d(y), 1:4) + 1 + L(y) + tt, dataset))
> gnp.adf <- Dickey.Fuller(T = length(gnp.lms$residuals), rho = gnp.lms$coefficients[["L(y)",
      "Estimate"]], sigma.rho = gnp.lms$coefficients[["L(y)", "Std. Error"]],
      zeta = gnp.lms$coefficients[paste("L(d(y), 1:4)", 1:4, sep = ""),
          "Estimate"])
> F \leftarrow Wald.F.Test(R = cbind(rep(0, 2) %o% rep(0, 5), diag(2)),
      b = gnp.lms$coefficients[, "Estimate"], r = c(1, 0), s2 = gnp.lms$sigma^2,
      XtX_1 = gnp.lms$cov.unscaled)
> print(t(gnp.lms$coefficients[, c("Estimate", "Std. Error"), drop = FALSE]))
                                 output
           (Intercept) L(d(y), 1:4)1L(d(y), 1:4)2L(d(y), 1:4)3L(d(y), 1:4)4
Estimate
              35.91808
                          0.32908487
                                         0.20856825
                                                      -0.08424648
                                                                     -0.07453301
Std. Error
              13.57200
                          0.07769385
                                         0.08128118
                                                                      0.07879621
                                                       0.08182895
                 L(y)
                              tt
Estimate
           0.94969015 0.03783123
Std. Error 0.01938565 0.01521561
                                _ R code _
> print(gnp.adf)
```

44

_ output _

\$Т [1] 164

```
$rho
[1] 0.9496901
$sigma.rho
[1] 0.01938565
$zeta
L(d(y), 1:4)1 L(d(y), 1:4)2 L(d(y), 1:4)3 L(d(y), 1:4)4
              0.20856825 -0.08424648 -0.07453301
  0.32908487
$rho.stat
[1] -13.28363
$t.stat
[1] -2.595211
                          ___ R code __
> print(F)
                            _ output _
[1] 3.743228
These calculations can be obtained using ur.df, noting that the coefficient on
the lagged value of the variable will be 1 less than the method above.
                            _ R code _
> tbill.ur.df <- ur.df(dataset[, "i"], type = "drift", lags = 4)
> print(summary(tbill.ur.df))
                             output
# Augmented Dickey-Fuller Test Unit Root Test #
Test regression drift
Call:
lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
Residuals:
```

```
1Q Median
-3.26481 -0.21527 -0.03154 0.27845 3.06784
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.19543
                     0.10864 1.799 0.073936 .
z.lag.1
          -0.03096
                     0.01860 -1.664 0.098109 .
z.diff.lag1 0.33467
                     0.07882 4.246 3.71e-05 ***
                     0.08082 -4.800 3.64e-06 ***
z.diff.lag2 -0.38797
z.diff.lag3 0.27613
                     0.07998 3.452 0.000713 ***
z.diff.lag4 -0.10671
                     0.07945 -1.343 0.181148
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.7396 on 158 degrees of freedom
                          Adjusted R-squared: 0.1715
Multiple R-squared: 0.1969,
F-statistic: 7.749 on 5 and 158 DF, p-value: 1.522e-06
Value of test-statistic is: -1.6639 1.6539
Critical values for test statistics:
     1pct 5pct 10pct
tau2 -3.46 -2.88 -2.57
phi1 6.52 4.63 3.81
                            R code _
> gnp.ur.df <- ur.df(dataset[, "y"], type = "trend", lags = 4)
> print(summary(gnp.ur.df))
                             output
# Augmented Dickey-Fuller Test Unit Root Test #
Test regression trend
Call:
lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
```

3Q

Max

Min

Residuals:

```
\mathtt{Min}
           1Q Median
                          ЗQ
                                 Max
-2.94175 -0.59496 0.02697 0.58862 2.85850
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 35.95591 13.58711 2.646 0.00897 **
         -0.05031 0.01939 -2.595 0.01035 *
z.lag.1
          tt
z.diff.lag1 0.32908 0.07769 4.236 3.87e-05 ***
z.diff.lag2 0.20857 0.08128 2.566 0.01122 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.9883 on 157 degrees of freedom
Multiple R-squared: 0.2177,
                            Adjusted R-squared: 0.1878
F-statistic: 7.282 on 6 and 157 DF, p-value: 7.069e-07
Value of test-statistic is: -2.5952 10.4162 3.7432
Critical values for test statistics:
    1pct 5pct 10pct
tau3 -3.99 -3.43 -3.13
phi2 6.22 4.75 4.07
phi3 8.43 6.49 5.47
```

17.6 Example 17.10 - Bayesian Test of Autoregressive Coefficient

Page 532 describes a test on the autoregressive coefficient that weights prior probabilities.

17.7 Determining Lag Length

Page 530 describes an iterative process to determine the correct lag length. This is easily expressed in terms of the structures used above.

Annex: R Facilities

Further features in R

Since the tests of Dickey-Fuller and of Philips Perron, the issue of unit root testing has seen tremendous research, with hundreds of papers on the topic. For a survey of the literature, see the article of Phillips and Xiao (1998), or the book of Maddala and Kim (1998).

Concerning further developments, Elliott, Rothenberg, and Stock (1996) used a so-called GLS detrending method to test for the presence of drift and trends, and obtain tests with higher power. Concerning the lag length selection, Ng and Perron (2001) and Perron and Qu (2007) introduce a new information criterion which enables a better selection of the lag length. Finally, Kwiatkowski, Phillips, Schmidt, and Shin (1992) design a test where the null hypothesis is a stationary series (around a mean or a linear trend), while the alternative is the unit root. In an other direction, Hansen (1995) show that by adding other related variables in the testing regression, one can obtain tests with much higher power.

Package urca, well documented in the book of Pfaff (2008), contains a number of other tests:

ullet The DF-GLS test: ur.ers

• A LM test: ur.sp

• The KPSS test of stationarity: ur.kpss

• A test taking into account structural breaks: ur.za

Package CADFtest, described in Lupi (2009), implements the Hansen covariate test, nesting the ADF test when no covariate is given. It offers also the choice of the lag according to the Ng and Perron (2001) MAIC criterion.

19 Cointegration

19.1 Testing Cointegration when the Cointegrating Vector is Known

Section 19.2, beginning on page 582 describes cointegration testing of purchasing power parity between Italian lire and US dollars. The data used is 100 times log monthly price levels and spot nominal and real exchange rates, normalized to a value of zero at the start of the series.

```
R code
> data(ppp, package = "RcompHam94")
> selection <- window(ppp, start = c(1973, 1), end = c(1989, 10))
> ppp.data <- cbind(pstar = 100 * log(selection[, "PC6IT"]/selection[[1, "PC6IT"]]), p = 100 * log(selection[, "PZUNEW"]/selection[[1, "PZUNEW"]]), ner = -100 * log(selection[, "EXRITL"]/selection[[1, "EXRITL"]]))
> ppp.data <- cbind(ppp.data, rer = ppp.data[, "p"] - ppp.data[, "ner"] - ppp.data[, "pstar"])</pre>
```


To save time define a simple utility function to perform augmented Dickey Fuller analysis according to the conventions in the text.

```
R code
> do.DF <- function(series, lag) {</pre>
              df.lms \leftarrow summary(dynlm(formula = as.formula(paste("y ~ L(y) + tt + L(d(y),1:",
                      lag, ") + 1", sep = "")), data = zooreg(cbind(y = series,
                       tt = 1:length(series)))))
              df.results <- Dickey.Fuller(T = length(df.lms$residuals),</pre>
                       rho = df.lms\\ coefficients\\ ["L(y)", "Estimate"]], sigma.rho = df.lms\\ coefficients\\ ["L(y)", location of the context of th
                                "Std. Error"]], zeta = df.lms$coefficients[paste("L(d(y), 1:",
                                lag, ")", 1:lag, sep = ""), "Estimate"])
             F \leftarrow Wald.F.Test(R = cbind(rep(0, 2), diag(2), rep(0, 2) %o%)
                      rep(0, lag)), b = df.lms$coefficients[, "Estimate"],
                      r = c(1, 0), s2 = df.lmssigma^2, XtX_1 = df.lms$cov.unscaled)
             print(t(df.lms$coefficients[, c("Estimate", "Std. Error"),
                       drop = FALSE]))
             print(df.results)
             print(F)
+ }
Following the text, check each series with a Dickey Fuller test with a regression
estimated with twelve lags.
                                                                         _ R code -
> for (series.name in c("p", "pstar", "ner", "rer")) do.DF(series = as.vector(ppp.data[,
              series.name]), lag = 12)
                         (Intercept)
                                                                    L(y)
                                                                                                    tt L(d(y), 1:12)1 L(d(y), 1:12)2
Estimate
                           0.13616093 0.994004087 0.002927051
                                                                                                                    0.55339784
                                                                                                                                                    -0.05690832
Std. Error 0.08577907 0.003067474 0.001766655
                                                                                                                    0.07521788
                                                                                                                                                       0.08544012
                         L(d(y), 1:12)3 L(d(y), 1:12)4 L(d(y), 1:12)5 L(d(y), 1:12)6
                                  0.07012512
                                                                    0.06038960
                                                                                                    -0.07823250
                                                                                                                                      -0.04837686
Estimate
Std. Error
                                  0.08490690
                                                                    0.08196995
                                                                                                      0.07848846
                                                                                                                                        0.07072189
                        L(d(y), 1:12)7 L(d(y), 1:12)8 L(d(y), 1:12)9 L(d(y), 1:12)10
                                  0.16584335
                                                                  -0.07020745
                                                                                                      0.24464455
Estimate
                                                                                                                                           -0.1100472
                                  0.06891545
Std. Error
                                                                    0.07001447
                                                                                                      0.07016141
                                                                                                                                             0.0725797
                        L(d(y), 1:12)11 L(d(y), 1:12)12
Estimate
                                    0.11758063
                                                                        0.04670235
Std. Error
                                    0.07293743
                                                                        0.06865031
$Т
[1] 189
$rho
```

[1] 0.994004

\$sigma.rho

[1] 0.003067474

\$zeta

\$rho.stat

[1] -10.78352

\$t.stat

[1] -1.954675

[1] 2.412933

L(y) tt L(d(y), 1:12)1 L(d(y), 1:12)2 (Intercept) 0.7680080 0.999456707 -0.002406065 0.4207017 -0.01159213 Estimate Std. Error 0.2530710 0.004116999 0.004989081 0.0761105 0.08152127 L(d(y), 1:12)3 L(d(y), 1:12)4 L(d(y), 1:12)5 L(d(y), 1:12)6Estimate 0.01343968 0.07720637 -0.03649430 0.1452822 Std. Error 0.08016238 0.08012553 0.08008714 0.0786705 L(d(y), 1:12)7 L(d(y), 1:12)8 L(d(y), 1:12)9 L(d(y), 1:12)10-0.09911809 -0.04998236 Estimate 0.04671752 -0.03463835 Std. Error 0.07883988 0.07859877 0.07811184 0.07816837 L(d(y), 1:12)11 L(d(y), 1:12)12

Estimate 0.07555504 0.02186374

Std. Error 0.07799367 0.07334667

\$Т

[1] 189

\$rho

[1] 0.9994567

\$sigma.rho

[1] 0.004116999

\$zeta

L(d(y), 1:12)1 L(d(y), 1:12)2 L(d(y), 1:12)3 L(d(y), 1:12)4 L(d(y), 1:12)5

0.42070173 -0.01159213 0.01343968 0.07720637 -0.03649430 L(d(y), 1:12)6 L(d(y), 1:12)7 L(d(y), 1:12)8 L(d(y), 1:12)9 L(d(y), 1:12)100.14528224 -0.09911809 0.04671752 -0.04998236 -0.03463835 L(d(y), 1:12)11 L(d(y), 1:12)120.07555504 0.02186374

\$rho.stat

[1] -0.2382095

\$t.stat

[1] -0.1319633

[1] 4.249956

(Intercept) L(y) tt L(d(y), 1:12)1 L(d(y), 1:12)2 Estimate -0.3893374 0.98294130 -0.007384125 0.34882976 -0.02556740 Std. Error 0.4138009 0.01076644 0.006883901 0.07443904 0.07911076 L(d(y), 1:12)3 L(d(y), 1:12)4 L(d(y), 1:12)5 L(d(y), 1:12)60.002617322 0.01168946 0.09931411 0.001387289 Estimate Std. Error 0.078947706 0.08000793 0.07994826 0.080819939 L(d(y), 1:12)7 L(d(y), 1:12)8 L(d(y), 1:12)9 L(d(y), 1:12)100.06320540 0.11722338 -0.06112766 0.08173960 Estimate Std. Error 0.08078856 0.08069646 0.08061435 0.08056098 L(d(y), 1:12)11 L(d(y), 1:12)12 Estimate 0.03726136 -0.03036347 0.07674078

Std. Error 0.08064652

\$Т

Γ1 189

\$rho

[1] 0.9829413

\$sigma.rho

[1] 0.01076644

\$zeta

L(d(y), 1:12)1 L(d(y), 1:12)2 L(d(y), 1:12)3 L(d(y), 1:12)4 L(d(y), 1:12)50.348829755 -0.025567401 0.002617322 0.011689457 0.099314112 L(d(y), 1:12)6 L(d(y), 1:12)7 L(d(y), 1:12)8 L(d(y), 1:12)9 L(d(y), 1:12)100.001387289 0.063205400 0.117223384 -0.061127657 0.081739596 L(d(y), 1:12)11 L(d(y), 1:12)120.037261364 -0.030363466

\$rho.stat

[1] -9.112996

\$t.stat

[1] -1.584433

[1] 1.489674

Std. Error 0.39055736 0.01414519 0.0032371854 0.07416327 0.07807885

 $L(d(y),\ 1:12)3\ L(d(y),\ 1:12)4\ L(d(y),\ 1:12)5\ L(d(y),\ 1:12)6$ Estimate $0.01279732 \quad 0.02242580 \quad 0.08451558 \quad -0.003065327$

Std. Error 0.07772772 0.07867690 0.07833952 0.079071534

L(d(y), 1:12)7 L(d(y), 1:12)8 L(d(y), 1:12)9 L(d(y), 1:12)10

Estimate 0.02991378 0.08241971 -0.04786150 0.07556671 Std. Error 0.07875080 0.07864164 0.07864791 0.07840588

L(d(y), 1:12)11 L(d(y), 1:12)12

Estimate 0.05040823 -0.01247043 Std. Error 0.07827994 0.07599776

\$Т

[1] 189

\$rho

[1] 0.9712933

\$sigma.rho

[1] 0.01414519

\$zeta

L(d(y), 1.12/11 L(d(y), 1.12/12

0.050408226 -0.012470431

\$rho.stat

[1] -13.48204

\$t.stat

[1] -2.029435

Now check the real exchange rate with a Phillips Perron test

```
"rer"])))))
> PP.results <- Phillips.Perron(T = length(pp.lms$residuals), rho = pp.lms$coefficients[["L(z)",
     "Estimate"]], sigma.rho = pp.lms$coefficients[["L(z)", "Std. Error"]],
     s = pp.lms\$sigma, lambda.hat.sq = as.numeric(Newey.West(pp.lms\$residuals~\%o\%))
         1, 12)), gamma0 = mean(pp.lms$residuals^2))
> print(t(pp.lms$coefficients[, c("Estimate", "Std. Error"), drop = FALSE]))
                              output _
          (Intercept)
           -0.0297931 0.98654204
Estimate
Std. Error
           0.1783572 0.01275287
                            __ R code __
> print(PP.results)
                             _ output _
$Т
[1] 201
$rho
[1] 0.986542
$sigma.rho
[1] 0.01275287
$s.sq
[1] 6.205887
$lambda.hat.sq
[1] 13.03064
$gamma0
[1] 6.144137
$rho.stat
[1] -6.35068
```

[1] -1.706128

Estimating the impulse response function gives a sense of the persistence of deviations from PPP. as shown in Figure 19.4, page 584. Proceed in three steps:

- 1. Estimate the AR(12)
- 2. Creta an innovation vector with only zeros and once a 1 value
- 3. Simulate an AR(12) process with parameters estimated in 1 and innovations defined in 2.

```
R code
> ar.results <- ar(ppp.data$rer, aic = FALSE, order.max = 13, method = "ols",
+    demean = TRUE)
> tt <- seq(1, 72)
> start.innov <- rep(0, 13)
> et <- c(start.innov, 1, rep(0, length(tt) - 14))
> arima.sim.output <- arima.sim(list(order = c(13, 0, 0), ar = ar.results$ar),
+    n = length(tt), innov = et, n.start = length(start.innov),
+    start.innov = start.innov)
> irf <- as.vector(arima.sim.output)</pre>
```


Estimating the Cointegrating Vector 19.2

Std. Error

Page 598 shows an example of the Phillips Ouliaris Hansen procedure for estimating a cointegrating vector.

```
> poh.cointegration.lm <- lm(p ~ 1 + ner + pstar, ppp.data)
> poh.residual.lms <- summary(dynlm(u ~ 0 + L(u), zooreg(cbind(u = poh.cointegration.lm$residuals)))
 > POH.results <- Phillips.Perron(T = length(poh.residual.lms$residuals),
                       rho = poh.residual.lms$coefficients[["L(u)", "Estimate"]],
                       sigma.rho = poh.residual.lms$coefficients[["L(u)", "Std. Error"]],
                       s = poh.residual.lms\$sigma, lambda.hat.sq = as.numeric(Newey.West(poh.residual.lms\$residuals \% and statement of the stateme
                                      1, 12)), gamma0 = mean(poh.residual.lms$residuals^2))
 > print(t(summary(poh.cointegration.lm)$coefficients[, c("Estimate",
                       "Std. Error"), drop = FALSE]))
                                                                                                                                                       pstar
                                          (Intercept)
                                                                                                                 ner
                                                 2.7123130 0.05134848 0.530040965
Estimate
                                                 0.3676955 0.01204537 0.006708385
```

R code

```
> print(t(poh.residual.lms$coefficients[, c("Estimate", "Std. Error"),
      drop = FALSE]))
                                 _ output _
                 L(u)
           0.98331085
Estimate
Std. Error 0.01171956
                                _ R code __
> print(POH.results)
                                _ output __
[1] 201
$rho
[1] 0.9833108
$sigma.rho
[1] 0.01171956
$s.sq
[1] 0.1630028
$lambda.hat.sq
[1] 0.4082242
$gamma0
[1] 0.1621919
$rho.stat
[1] -7.542281
$t.stat
[1] -2.020981
```

A second example performs a similar analysis on quarterly US consumption and income data from 1947Q1 to 1989Q3.

```
R code
> data(coninc, package = "RcompHam94")
> coninc.data <- window(cbind(c = 100 * log(coninc[, "GC82"]),</pre>
```

```
+  y = 100 * log(coninc[, "GYD82"])), start = c(1947, 1), end = c(1989,
+ 3))
> coninc.data <- cbind(coninc.data, tt = 1:dim(coninc.data)[[1]])</pre>
```


Test individual

series for unit root status using Dickey Fuller.

```
tt L(d(y), 1:6)1 L(d(y), 1:6)2
           (Intercept)
                            L(y)
Estimate
              20.33673 0.97058490 0.02379684 -0.006528755
                                                             -0.03584632
Std. Error
              15.04162 0.02306293 0.01985318 0.080928563
                                                             0.08025935
          L(d(y), 1:6)3 L(d(y), 1:6)4 L(d(y), 1:6)5 L(d(y), 1:6)6
                          -0.18753634
Estimate
              0.10212854
                                       -0.03718788
                                                       0.02785595
Std. Error
              0.07758036
                           0.07699406
                                          0.07813842
                                                       0.07662877
$Т
[1] 164
```

\$rho

[1] 0.970585

\$sigma.rho

[1] 0.02306293

\$zeta

L(d(y), 1:6)1 L(d(y), 1:6)2 L(d(y), 1:6)3 L(d(y), 1:6)4 L(d(y), 1:6)5
-0.006528755 -0.035846316 0.102128545 -0.187536343 -0.037187883
L(d(y), 1:6)6
0.027855951

\$rho.stat

[1] -4.242382

\$t.stat

[1] -1.275428

[1] 1.132134

tt L(d(y), 1:6)1 L(d(y), 1:6)2 (Intercept) L(y) 29.46860 0.95552168 0.03721088 0.03624864 0.25964745 Estimate 0.07979877 Std. Error 15.19248 0.02360001 0.02006161 0.07935028 L(d(y), 1:6)3 L(d(y), 1:6)4 L(d(y), 1:6)5 L(d(y), 1:6)6 $0.06273192 \quad -0.05234112 \quad -0.04791625 \quad -0.06782142$ Estimate Std. Error 0.08172798 0.08122252 0.07956524 0.07919698 \$T [1] 164

\$rho

[1] 0.9555217

\$sigma.rho

[1] 0.02360001

\$zeta

L(d(y), 1:6)1 L(d(y), 1:6)2 L(d(y), 1:6)3 L(d(y), 1:6)4 L(d(y), 1:6)5
0.03624864 0.25964745 0.06273192 -0.05234112 -0.04791625
L(d(y), 1:6)6
-0.06782142

\$rho.stat

[1] -9.011597

\$t.stat

[1] -1.884673

Estimate cointegration vector, then check for unit root status of the residual using Phillips Perron.

```
R code -
> poh.cointegration.lm <- lm(c ~ 1 + y, coninc.data)</pre>
> poh.residual.lms <- summary(dynlm(u ~ 0 + L(u), zooreg(cbind(u = poh.cointegration.lm$residuals)))
 > POH.results <- Phillips.Perron(T = length(poh.residual.lms$residuals),
                   rho = poh.residual.lms$coefficients[["L(u)", "Estimate"]],
                   sigma.rho = poh.residual.lms$coefficients[["L(u)", "Std. Error"]],
                   s = poh.residual.lms\$sigma, lambda.hat.sq = as.numeric(Newey.West(poh.residual.lms\$residuals \% and statement of the stateme
                                1, 6)), gamma0 = mean(poh.residual.lms$residuals^2))
> print(t(summary(poh.cointegration.lm)$coefficients[, c("Estimate",
                   "Std. Error"), drop = FALSE]))
                                                                                                       output _
                                   (Intercept)
Estimate
                                        0.6675807 0.986494296
Std. Error
                                         2.3503489 0.003217444
                                                                                                     _ R code .
 > print(t(poh.residual.lms$coefficients[, c("Estimate", "Std. Error"),
                   drop = FALSE]))
                                                                                                    _ output _
                                                     L(u)
                                  0.78185415
Estimate
Std. Error 0.04788553
                                                                                                     _ R code _
 > print(POH.results)
                                                                                                    \_ output \_
$Т
[1] 170
$rho
 [1] 0.7818542
$sigma.rho
```

```
[1] 0.04788553

$s.sq
[1] 1.22395

$lambda.hat.sq
[1] 1.030594

$gamma0
[1] 1.216750

$rho.stat
[1] -32.04525

$t.stat
[1] -4.27529
```

19.3 Testing Hypotheses About the Cointegrating Vector

Page 608-612 illustrate a technique that uses leads and lags to produce a stationary vector for hypothesis testing. The regression is estimated with both no trend and trend, and the corrected t-stat is calculated.

```
_ R code
> no.trend.lm <- dynlm(c ~ 1 + y + L(d(y), -4:4), coninc.data)
> trend.lm <- dynlm(c ~ 1 + y + tt + L(d(y), -4:4), coninc.data)
> for (model in list(no.trend.lm, trend.lm)) {
      lags <- 2
      cms <- summary(model)</pre>
      T <- length(cms$residuals)</pre>
      cfs <- cms$coefficients
      t.rho <- (cfs[["y", "Estimate"]] - 1)/cfs[["y", "Std. Error"]]
      rms <- summary(dynlm(as.formula(paste("u ~ 0 + L(u,1:", lags,
          ")", sep = "")), zooreg(cbind(u = as.vector(cms$residuals)))))
      sigma1.hat.sq <- mean(rms$residuals^2)</pre>
      lambda.11 <- sigma1.hat.sq^0.5/(1 - sum(rms$coefficients[paste("L(u, 1:",</pre>
          lags, ")", 1:lags, sep = ""), "Estimate"]))
      t.a <- t.rho * cms$sigma/lambda.11</pre>
      print(t(cfs[, c("Estimate", "Std. Error"), drop = FALSE]))
      print(t(rms\$coefficients[,\ c("Estimate",\ "Std.\ Error"),\ drop\ =\ FALSE]))
      print(T)
      print(cms$sigma)
```

```
print(t.a)
+ }
                                output -
                                 y L(d(y), -4:4)-4 L(d(y), -4:4)-3
           (Intercept)
            -4.519229 0.992158525
                                         0.1453095
                                                         0.2861419
Estimate
Std. Error
             2.340225 0.003063317
                                         0.1187996
                                                         0.1155945
           L(d(y), -4:4)-2 L(d(y), -4:4)-1 L(d(y), -4:4)0 L(d(y), -4:4)1
Estimate
                 0.2641186
                                 0.4859239
                                               -0.2403601
                                                             -0.01101143
Std. Error
                 0.1148920
                                 0.1157048
                                                0.1174159
                                                              0.11389942
           L(d(y), -4:4)2 L(d(y), -4:4)3 L(d(y), -4:4)4
               0.06969114
                              0.04055551
                                             0.02150153
Estimate
Std. Error
               0.11150577
                              0.11115520
                                             0.11008398
           L(u, 1:2)1 L(u, 1:2)2
          0.71796867 0.20574012
Estimate
Std. Error 0.07722647 0.07684783
[1] 162
[1] 1.516006
[1] -2.559799
[1] 0.3809180
[1] 8.089864
[1] -0.4796954
           (Intercept)
                                          tt L(d(y), -4:4)-4 L(d(y), -4:4)-3
                               У
Estimate
             198.87167 0.68117915 0.26895671
                                                  0.02782397
                                                                   0.16559666
             15.01478 0.02292367 0.01974617
                                                  0.08016237
                                                                   0.07805023
Std. Error
           L(d(y), -4:4)-2 L(d(y), -4:4)-1 L(d(y), -4:4)0 L(d(y), -4:4)1
                                              -0.05124600
                0.15407283
                                0.40061828
                                                              0.12737594
Estimate
Std. Error
                0.07749787
                                0.07787309
                                               0.07998305
                                                              0.07708222
           L(d(y), -4:4)2 L(d(y), -4:4)3 L(d(y), -4:4)4
                              0.20472613
               0.23116996
                                             0.18997478
Estimate
Std. Error
               0.07573754
                              0.07553655
                                             0.07487875
           L(u, 1:2)1 L(u, 1:2)2
Estimate 0.68717133 0.12918203
Std. Error 0.07786238 0.07666487
[1] 162
[1] 1.017016
[1] -13.90793
[1] 0.3439489
[1] 3.193478
```

print(t.rho)

print(sigma1.hat.sq)
print(lambda.11)

20 Full-Information Maximum Likelihood Analysis of Cointegrated Systems

20.1 An Application of the Johansen Approach to the PPP data

Section 20.3 reanalyzes the data used in Chapter 19 using the FIML approach.

```
R code
> data(ppp, package = "RcompHam94")
> selection <- window(ppp, start = c(1973, 2), end = c(1989, 10))
> ppp.data <- cbind(p = 100 * log(selection[, "PZUNEW"]/selection[[1, "PZUNEW"]]), ner = -100 * log(selection[, "EXRITL"]/selection[[1, "EXRITL"]]), pstar = 100 * log(selection[, "PC6IT"]/selection[[1, "PC6IT"]]))
> y <- as.matrix(ppp.data)</pre>
```

First conduct the auxiliary regressions. Given that the right hand sides consists of lagged values of the changes in y for both [20.2.4] and [20.2.5], construct a regression with both lagged y and lagged changes of y as left hand side.

Now calculate the canonical correlations according to [20.2.6], [20.2.7], [20.2.8], and calculate eigenvalues according to [20.2.9], and log likelihood as in [20.2.10]. Note that u is T rows by n columns so that ut is the t-th row of matrix u, so only a single inner product, rather than sum of outer products, is needed.

```
_ R code .
> SigmaUU <- 1/T * t(u) %*% u
> SigmaVV <- 1/T * t(v) %*% v
> SigmaUV <- 1/T * t(u) %*% v
> eigen.results <- eigen(solve(SigmaVV) %*% t(SigmaUV) %*% solve(SigmaUU) %*%
      SigmaUV)
> lambda <- eigen.results$values</pre>
> LRT <- -T * sum(log(1 - lambda))
> print(SigmaUU)
                                output _
            Response Y1 Response Y2 Response Y3
Response Y1 0.04351139 -0.03162842 0.01542973
Response Y2 -0.03162842 4.68649773 0.03198756
Response Y3 0.01542973 0.03198756 0.17992709
                                _ R code _
> print(SigmaVV)
                                _ output .
               Response p Response ner Response pstar
Response p
                 427.3661
                             -370.6990
                                             805.8124
Response ner
                -370.6990
                              424.0835
                                            -709.0365
                 805.8124
                             -709.0365
                                            1525.4480
Response pstar
                               _ R code _
> print(SigmaUV)
                                _ output _
            Response p Response ner Response pstar
Response Y1 -0.484857
                          0.4987583
                                        -0.8377012
Response Y2 -1.814008
                         -2.9592774
                                        -2.4689545
Response Y3 -1.808357
                          1.4689736
                                        -3.5899117
                               _ R code _
> print(lambda)
                                 output -
[1] 0.11046055 0.05603356 0.03039275
                                _ R code _
> print(T * log(1 - lambda))
```

```
output -
[1] -22.12272 -10.89862 -5.83333
                              ____ R code __
> print(LRT)
                                 _{-} output _{-}
[1] 38.85467
We can also use function ca.jo from package urca to calculate the lambda vector.
                                 _ R code _
> ca.jo.results <- ca.jo(y, type = "eigen", ecdet = "none", K = 12,</pre>
      spec = "transitory", season = NULL, dumvar = NULL)
> summary(ca.jo.results)
                               \longrightarrow output \longrightarrow
######################
# Johansen-Procedure #
Test type: maximal\ eigenvalue\ statistic\ (lambda\ max) , with linear trend
Eigenvalues (lambda):
[1] 0.11046055 0.05603356 0.03039275
Values of teststatistic and critical values of test:
          test 10pct 5pct 1pct
r <= 2 | 5.83 6.50 8.18 11.65
r <= 1 | 10.90 12.91 14.90 19.19
r = 0 \mid 22.12 \mid 18.90 \mid 21.07 \mid 25.75
Eigenvectors, normalised to first column:
(These are the cointegration relations)
                p.l1 ner.l1 pstar.l1
          1.00000000 1.000000 1.0000000
p.11
ner.11 -0.03695704 0.333539 -0.4217669
pstar.l1 -0.55679934 -0.276719 -0.6431898
```

Weights W:

(This is the loading matrix)

```
p.l1 ner.l1 pstar.l1
p.d -0.02117410 -0.002991059 -0.006182545
ner.d -0.18953663 -0.073068358 0.040400775
pstar.d 0.07825214 -0.011212959 -0.004700730
```

Finally following page 648, calculate the first cointegrating vector normalized as in [20.3.9], and also normalized to have unity for the first coefficient.

```
R code
> ahat1 <- eigen.results$vectors[, 1]
> ahat1.tilde <- ahat1/sqrt(t(ahat1) %*% SigmaVV %*% ahat1)
> ahat1.normal <- ahat1/ahat1[[1]]
> print(ahat1)

[1] 0.87324045 -0.03227239 -0.48621971

R code
> print(ahat1.tilde)

output

[1] 0.75794168 -0.02801128 -0.42202143

R code
> print(ahat1.normal)

output

[1] 1.00000000 -0.03695704 -0.55679934
```

20.2 Likelihood Ratio Tests on the Cointegration Vector

Page 649 shows how to conduct hypothesis tests on the cointegration vector. The follow code implements [20.3.10] - [20.3.14] and subsequent calculations.

```
R code

> D = cbind(c(1, 0, 0), c(0, 0, 1))

> SigmaVV.tilde <- t(D) %*% SigmaVV %*% D

> SigmaUV.tilde <- SigmaUV %*% D

> eigen.results <- eigen(solve(SigmaVV.tilde) %*% t(SigmaUV.tilde) %*%

+ solve(SigmaUU) %*% SigmaUV.tilde)
```

```
> lambda.tilde <- eigen.results$values
> h <- 1
> LRT <- -T * sum(log(1 - lambda[1:h])) + T * sum(log(1 - lambda.tilde[1:h]))
> ahat1.normal.tilde <- eigen.results$vectors[, 1]/eigen.results$vectors[,
      1][[1]]
> print(SigmaVV.tilde)
                                _ output __
         [,1]
                   [,2]
[1,] 427.3661 805.8124
[2,] 805.8124 1525.4480
                               __ R code __
> print(SigmaUV.tilde)
                                 output -
                 [,1]
Response Y1 -0.484857 -0.8377012
Response Y2 -1.814008 -2.4689545
Response Y3 -1.808357 -3.5899117
                                \_ R code \_
> print(lambda.tilde)
                                _ output _
[1] 0.10585119 0.04680752
                                 R code -
> print(T * log(1 - lambda.tilde))
                                 output -
[1] -21.145898
                -9.060362
                                _ R code _
> print(LRT)
                                _ output _
[1] 0.9768206
                                _ R code _
> print(ahat1.normal.tilde)
```

```
_ output _
[1]
    1.0000000 -0.5386492
Page 650 shows a second example.
                           _____ R code __
> h <- 1
> D = c(1, -1, -1) \%0\% 1
> SigmaVV.tilde <- t(D) %*% SigmaVV %*% D
> SigmaUV.tilde <- SigmaUV %*% D
> eigen.results <- eigen(solve(SigmaVV.tilde) %*% t(SigmaUV.tilde) %*%
      solve(SigmaUU) %*% SigmaUV.tilde)
> lambda.tilde <- eigen.results$values
> LRT <- -T * sum(log(1 - lambda[1:h])) + T * sum(log(1 - lambda.tilde[1:h]))
> print(SigmaVV.tilde)
                             ____ output _
         [,1]
[1,] 88.59774
                                __ R code __
> print(SigmaUV.tilde)
                              ____ output ____
                  [,1]
Response Y1 -0.1459141
Response Y2 3.6142237
Response Y3 0.3125815
                               __ R code ___
> print(lambda.tilde)
                                _ output _
[1] 0.04244982
                                _ R code _
> print(T * log(1 - lambda.tilde))
                                _ output _
[1] -8.198283
                             ____ R code __
> print(LRT)
                                _ output _
[1] 13.92444
```

21 Time Series Models of Heteroskedasticity

21.1 Preamble

Page 658 and forward provide examples of ARCH models. Several utility functions are needed for these examples. The function "arch.fitted.values" calculates the value of ht given the conditional information set YT and a parameter vector THETA as described on page 660, [21.1.17] to [21.1.20].

Function "arch.standard.errors" calculates values for standard errors according to the description on page 663, particularly equations [21.1.25], and also using [21.1.21] for the estimate of the outer product estimate of the information matrix.

```
+ S <- array(0, c(a, a))
+ D <- array(0, c(a, a))
+ for (tt in (m + 1):length(y)) {
+ temp <- c(t(alpha) %*% ((u2[(tt - 1):(tt - m)] %0% rep(1,
+ k)) * x[(tt - 1):(tt - m), ]), c(1, u[(tt - 1):(tt -
+ m)]^2))
+ st <- (u2[tt] - h[tt])/(2 * h[tt]^2) * temp + c(u2[tt]/h[tt] *
+ x[tt, ], rep(0, a - k))
+ S <- S + 1/T * st %*% t(st)
+ D <- D + 1/T * (1/(2 * h[tt]^2) * temp %*% t(temp) +
+ rbind(cbind(1/h[tt] * x[tt, ] %*% t(x[tt, ]), array(0,
+ c(k, a - k))), array(0, c(a - k, a))))
+ }
+ diag(1/T * solve(D) %*% S %*% solve(D))^0.5
+ }</pre>
```

The following two helper functions calculate the likelihood values under different distributional assumptions. The normal likelihood is calculated according to [21.1.20], the scaled t according to [21.1.24].

```
> arch.normal <- function(THETA, YT) {</pre>
                           fv <- arch.fitted.values(THETA, YT)</pre>
                           m <- length(THETA[grep("alpha.*", names(THETA))])</pre>
                           h <- fv$h[-1:-m]
                           u \leftarrow fv$u[-1:-m]
                           -1/2 * (length(h) * log(2 * pi) - sum(log(h)) - sum(u^2/h))
+ }
> arch.scaled.t <- function(THETA, YT) {</pre>
                           fv <- arch.fitted.values(THETA, YT)</pre>
                           m <- length(THETA[grep("alpha.*", names(THETA))])</pre>
                          h \leftarrow fv h[-1:-m]
                           u \leftarrow fv u[-1:-m]
                           nu <- THETA[grep("nu", names(THETA))]</pre>
                           result <- length(h) * log(gamma((nu + 1)/2)/(sqrt(pi) * gamma(nu/2)) *
                                              (nu - 2)^-0.5) - 1/2 * sum(log(h)) - (nu + 1)/2 * sum(log(1 + 1)/2) = (nu + 1)/2 * sum(log(1 + 1)
                                              u^2/(h * (nu - 2)))
+ }
```

GMM estimates are calculated according to the recipe in Chapter 14, notably equations [14.1.7] and [14.1.10]. Functions h and S are specified by the caller.

_____ R code _____

```
> GMM.estimates <- function(YT, h, THETA, S) {
      g <- function(YT, THETA) {</pre>
          apply(X = apply(X = YT, MARGIN = 1, FUN = h, THETA = THETA),
              MARGIN = 1, FUN = mean)
      objective <- function(THETA, YT, W) {
          g.value <- g(YT, THETA)</pre>
          as.numeric(t(g.value) %*% W %*% g.value)
      r <- length(h(YT[1, ], THETA))
      a <- length(THETA)
      stage.1.results <- optim(par = THETA, fn = objective, gr = NULL,</pre>
          YT = YT, W = diag(r)
      temp <- t(apply(X = YT, MARGIN = 1, FUN = h, THETA = stage.1.results$par))</pre>
      ST \leftarrow S(temp)
      stage.2.results <- optim(par = stage.1.results$par, fn = objective,</pre>
          gr = NULL, YT = YT, W = solve(ST))
      list(stage.1.results = stage.1.results, stage.2.results = stage.2.results)
+ }
```

21.2 Application of ARCH Models to US Fed Funds Data

The dataset for these examples is the US Fed Funds Rate, monthly between Jan 1955 and December 2000, shown below.

```
R code
> data(fedfunds, package = "RcompHam94")
> selection <- window(fedfunds, start = c(1955, 1), end = c(2000, + 12))
```


A first step is

to characterize the autocorrelation structure of the squared residuals. These two regressions show that a second order AR process seems to fit the data pretty well.

	R code
<pre>> print(F34.sig)</pre>	
[1] 0.439847	output
[1] 0.435047	
> print(F234)	R code
	output
[1] 11.88167	
	R code
> print(F234.sig)	
[1] 1.513714e-07	output
	R code
> print(accept.arch)	
[1] 1	output
[1] 1	
N 1:1-1:1-	- 1
	ood estimation to estimate the parameters for
the second order equation assum	ing normal errors.
	R code
> y <- as.vector(selection[, "H	
> YT <- list(y = y[-1], x = cb	<pre>ind(rep(1, length(y) - 1), y[-length(y)]))</pre>
> THETA <- c(beta = y.lm\$coeff:	icients, zeta = var(y.lm\$residuals),
+ $alpha = c(0.1, 0.1)$	
> optimizer.results <- optim(pa	ar = THETA, fn = arch.normal, gr = NULL,
+ $YT = YT)$	
<pre>> print(optimizer.results\$par)</pre>	
hoto (Intercent)	output
beta.(Intercept) beta.L(
0.25226382 0.948584	488 0.02734929 0.95530391
alpha2	
0.29858866	

```
R code
> se <- arch.standard.errors(optimizer.results$par, YT)
> print(se)
```

```
______ output ______
[1] 0.048149374 0.010283478 0.005256627 0.164308997 0.082197566
```

Now use GMM to estimate the same parameters following page 664. The initial values for the regression coefficients are derived from the (homoskedastic) regression above, as is the presample variance. The estimator for S assumes no correlation at leads and lags.

```
_ R code _
> h <- function(wt, THETA) {
      beta <- THETA[grep("beta.*", names(THETA))]</pre>
      zeta <- THETA["zeta"]</pre>
      alpha <- THETA[grep("alpha.*", names(THETA))]</pre>
      m <- length(alpha)</pre>
      k <- length(beta)</pre>
      yt <- wt[grep("yt.*", names(wt))]</pre>
      xt <- wt[grep("xt.*", names(wt))]</pre>
      ylagt <- wt[grep("ylagt.*", names(wt))]</pre>
      xlagt <- t(array(wt[grep("xlagt.*", names(wt))], c(k, m)))</pre>
      ut <- yt - t(xt) %*% beta
      zt \leftarrow c(1, (ylagt - t(xlagt) %*% beta)^2)
      c(ut * xt, (ut^2 - t(zt) %*% c(zeta, alpha)) * zt)
+ }
> S.estimator <- function(ht) {
      1/dim(ht)[[1]] * t(ht) %*% ht
+ }
> THETA <- c(beta = y.lm$coefficients, zeta = var(y.lm$residuals),
      alpha = c(0.1, 0.1))
> m <- length(THETA[grep("alpha.*", names(THETA))])</pre>
> T <- length(YT$y) - m
> w <- as.matrix(data.frame(yt = YT$y[-1:-m], xt = YT$x[-1:-m,
      ], ylagt = embed(YT$y[-(T + m)], m), xlagt = embed(YT$x[-(T + m)])
      m), ], m)))
> estimates <- GMM.estimates(YT = w, h = h, THETA = THETA, S.estimator)
> print(estimates$stage.1.results$par)
```

```
        beta.(Intercept)
        beta.L(y)
        zeta
        alpha1

        0.05788674
        0.98955937
        0.32491651
        0.01073606
```


21.3 R Facilities For GARCH models

TBD

22 Modeling Time Series with Changes in Regime

22.1 Statistical Analysis of i.i.d. Mixture Distributions

Figure 22.2:

```
R code
> curve(0.8 * dnorm(x, 0, 1), from = -2, to = 8, n = 100, col = 1,
+ ylab = "f(x)", main = "Density of mixture of 2 gaussians")
> curve(0.2 * dnorm(x, 4, 1), from = -2, to = 8, n = 100, add = TRUE,
+ col = 3)
> mixture <- function(x) 0.8 * dnorm(x, 0, 1) + 0.2 * dnorm(x,
+ 4, 1)
> curve(mixture, from = -2, to = 8, n = 100, col = 2, add = TRUE)
```

Density of mixture of 2 gaussians

Figure 22.3:

```
R code

> mixture2 <- function(x) 0.6 * dnorm(x, 0, 1) + 0.4 * dnorm(x, + 2, 8)

> curve(mixture2, from = -3, to = 8, n = 100, col = 2, ylab = "f(x)", + main = "Density of mixture of 2 gaussians", ylim = c(0, 0.25))

> curve(0.6 * dnorm(x, 0, 1), from = -3, to = 8, n = 100, col = 1, + add = TRUE)

> curve(0.4 * dnorm(x, 2, sqrt(8)), from = -3, to = 8, n = 100, + add = TRUE, col = 3)
```

Density of mixture of 2 gaussians

22.2 Modeling Changes in Regime

Page 697 describes an example of the application of Markov switching models to US GNP from 1951Q1 to 1984Q4.

```
R code
> data(gnpdata, package = "RcompHam94")
> selection <- window(gnpdata, start = c(1951, 1), end = c(1984,
+ 2))
> g <- diff(100 * log(as.vector(selection[, "GNP"])))
> d <- index(selection[-1])</pre>
```

The actual implementation uses the technique of collapsing multi-period states into a single state, p691, p698. During the maximum likelihood estimation process the state probabilities will change, but the layout of the matrix is still the same. The following code fragment precalculates the transition matrix structure with the five possible values, then uses a separate 5 element lookup vector to populate it.

```
R code
> nlags <- 4
> nstates <- 2^(nlags + 1)
> lagstate <- 1 + outer(1:nstates, 1:(nlags + 1), FUN = function(i,</pre>
```

```
j) {
      trunc((i - 1)/2^{nlags} + 1 - j))%2
+ })
> head(lagstate)
                                  _ output _
     [,1] [,2] [,3] [,4] [,5]
[1,]
        1
              1
                   1
[2,]
              1
                   1
[3,]
        1
             1
                   1
                        2
                              1
[4,]
                        2
                              2
        1
             1
                   1
[5,]
        1
             1
                   2
                        1
                              1
[6,]
                              2
        1
              1
                   2
                        1
                                  _ R code -
> transit <- outer(X = 1:nstates, Y = 1:nstates, FUN = function(i,</pre>
      j) {
      ((2 * lagstate[i, 1] + lagstate[j, 1] - 1) - 1) * (((i -
          1)\%(2^nlags)) == trunc((j - 1)/2)) + 1
+ })
> head(transit)
                                  output
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
[1,]
        2
              2
                                                                       1
                                                                             1
                   1
                        1
                                              1
                                                                1
[2,]
                        2
                                                                                    1
[3,]
                                                                                    1
[4,]
        1
              1
                   1
                                        2
                                              2
                                                   1
                                                          1
                                                                                    1
                        1
[5,]
              1
                   1
                        1
                              1
                                   1
                                        1
                                              1
                                                   2
                                                                             1
                                                                                    1
        1
[6,]
                                                                2
        1
              1
                   1
                        1
                                   1
                                        1
                                              1
                                                   1
                                                                                    1
     [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
[1,]
                                         1
                                                1
                                                       1
                                   1
                                                             1
[2,]
         1
                1
                      1
                             1
                                   1
                                         1
                                                1
                                                       1
                                                             1
                                                                   1
                                                                          1
                                                                                1
[3,]
                                         1
                1
                                   1
                                                1
                                                       1
                                                             1
                                                                                1
[4,]
                1
                                   1
                                         1
                                                1
                                                      1
                      1
                             1
                                                             1
                                                                                1
[5,]
         1
                1
                      1
                             1
                                   1
                                         1
                                                1
                                                      1
                                                             1
                                                                   1
                                                                          1
                                                                                1
```

[,27] [,28] [,29] [,30] [,31] [,32]

[6,]

[1,] [2,]

[3,]

[4,]

```
[5,] 1 1 1 1 1 1
[6,] 1 1 1 1 1 1
```

The bulk of the work is done by the following function, based on the algorithm in section 22.4. Ergodic probabilities are defined as on page 684, including equation [22.2.26]. The loop uses equations [22.4.24], [22.4.2], [22.4.5], [22.4.8], [22.4.7], [22.4.6] and [22.4.14].

```
R code
> infer.regimes <- function(THETA, YT) {</pre>
      phi <- THETA[grep("phi.*", names(THETA))]</pre>
      mu <- THETA[grep("mu.*", names(THETA))]</pre>
      sigma <- THETA["sigma"]</pre>
      p11star <- THETA["p11star"]</pre>
      p22star <- THETA["p22star"]</pre>
      T <- length(YT)</pre>
      tp <- c(0, p11star, 1 - p22star, 1 - p11star, p22star)
      P <- array(tp[transit], c(nstates, nstates))</pre>
      A <- rbind(diag(nstates) - P, rep(1, nstates))
      ergodic.pi <- (solve(t(A) %*% A) %*% t(A))[, nstates + 1]
      xi.t.t <- ergodic.pi %0% rep(1, nlags)
      xi.t.t_1 \leftarrow xi.t.t
      log.likelihood <- 0
      for (tt in (nlags + 1):T) {
          residuals <- as.vector(((rep(1, nstates) %o% YT[tt:(tt -
               nlags)]) - array(mu[lagstate], c(nstates, nlags +
               1))) %*% c(1, -phi))
          eta.t <- dnorm(residuals, mean = 0, sd = sigma)</pre>
          fp <- eta.t * xi.t.t_1[, tt - 1]</pre>
          fpt <- sum(fp)</pre>
          xi.t.t <- cbind(xi.t.t, fp/fpt)</pre>
          log.likelihood <- log.likelihood + log(fpt)</pre>
          xi.t.t_1 <- cbind(xi.t.t_1, P %*% xi.t.t[, tt])
      7
      xi.t.T \leftarrow xi.t.t[, T] \%0\% 1
      for (tt in (T - 1):1) xi.t.T <- cbind(xi.t.t[, tt] * (t(P) %*%
           (xi.t.T[, 1]/xi.t.t_1[, tt])), xi.t.T)
      list(log.likelihood = log.likelihood, xi.t.t = xi.t.t, xi.t.T = xi.t.T)
+ }
```

Initial values of the parameters for transition probabilities are set from historical averages. The phi and sigma values are obtained from a (non-state) regression of change in GDP on 4 of its own lags.

```
_ R code .
> g.lm \leftarrow dynlm(g \sim 1 + L(g, 1:4), data = zooreg(data.frame(g = g)))
> THETA <- c(p11star = 0.85, p22star = 0.7, mu = c(1, 0), phi = as.vector(g.lm$coefficients[1 + c(1, 0), phi = as.vec
                 (1:nlags)]), sigma = summary(g.lm)$sigma)
Now we are in a position to optimize, then calculate the smoothed probabilities
from the optimal parameters.
                                                                                          R code
> objective <- function(THETA, YT) {</pre>
                 -infer.regimes(THETA, YT)$log.likelihood
+ }
> optimizer.results <- optim(par = THETA, hessian = TRUE, fn = objective,
                gr = NULL, YT = as.vector(g), method = "BFGS")
> se <- diag(solve(optimizer.results$hessian))^0.5
> print(optimizer.results$par)
                                            p22star
                                                                                                                                                                                           phi2
           p11star
                                                                                                                          mu2
                                                                                                                                                         phi1
  0.90030933 \quad 0.76062170 \quad 1.17515197 \quad -0.31750266 \quad 0.02262260 \quad -0.02950457
                                                    phi4
                                                                                   sigma
-0.22818176 -0.20243029 0.77954523
                                                                                      __ R code __
> print(se)
                                       p22star
                                                                                                                                           phi1
0.04022558 0.09745502 0.08379353 0.27312797 0.12911244 0.14402459 0.11136972
                phi4
0.11306913 0.06950831
                                                                                          R code
> regimes <- infer.regimes(optimizer.results$par, as.vector(g))</pre>
> recession.probability <- as.vector((1:nstates > nstates/2) %*%
                 regimes$xi.t.t)
> smoothed.recession.probability <- as.vector((1:nstates > nstates/2) %*%
                regimes$xi.t.T)
```

The results are shown below.

References

DE MICHEAUX, P. L., AND B. LIQUET (2009): "ConvergenceConcepts: an R Package to Investigate Various Modes of Convergence," *The R Journal*, 1(2), 18–25.

Elliott, G., T. Rothenberg, and J. Stock (1996): "Efficient Tests for an Autoregressive Unit Root," *Econometrica*, 64(4), 813–836.

Hamilton, J. (1994): Time series analysis. Princeton University Press.

HANSEN, B. E. (1995): "Rethinking the Univariate Approach to Unit Root Testing: Using Covariates to Increase Power," *Econometric Theory*, 11(05), 1148–1171.

KLEIBER, C., AND A. ZEILEIS (2008): Applied Econometrics with R. Springer-Verlag, New York.

KWIATKOWSKI, D., P. PHILLIPS, P. SCHMIDT, AND Y. SHIN (1992): "Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root?," *Journal of Econometrics*, 54, 159–178.

- Lupi, C. (2009): "Unit Root CADF Testing with R," Journal of Statistical Software, 32(2)(i02).
- MADDALA, G. S., AND I.-M. KIM (1998): Unit roots, Cointegration and Structural Change. Cambridge University Press.
- NG, S., AND P. PERRON (2001): "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," *Econometrica*, 69(6), 1519–1554.
- Perron, P., and Z. Qu (2007): "A simple modification to improve the finite sample properties of Ng and Perron's unit root tests," *Economics Letters*, 94(1), 12–19.
- PFAFF, B. (2008): Analysis of Integrated and Cointegrated Time Series with R. Springer, New York, second edn., ISBN 0-387-27960-1.
- PHILLIPS, P. C. B., AND Z. XIAO (1998): "A Primer on Unit Root Testing," Journal of Economic Surveys, 12(5), 423–69.