

ÉPREUVE SPÉCIFIQUE - FILIÈRE PSI

MATHÉMATIQUES 1

DURÉE: 4 heures

Les calculatrices programmables et alphanumériques sont autorisées, sous réserve des conditions définies dans la circulaire n° 99-186 du 16.11.99 – BOEN n°42 du 25.11.99.

Cette épreuve comporte deux problèmes indépendants l'un de l'autre.

PROBLÈME 1

Etant donné une série convergente $\sum_{k\geq 0} u_k(x)$, on note $R_n(x) = \sum_{k=n+1}^{+\infty} u_k(x)$ son reste d'ordre n, pour $n \in \mathbb{N}$ et on se propose d'étudier la série $\sum_{n\geq 0} R_n(x)$.

PARTIE I

- **I.1.** On suppose que $u_k(x) = (-1)^k x^k$, où $x \in \mathbb{R}$.
 - I.1.1. Déterminer l'ensemble I des $x \in \mathbb{R}$ tels que la série $\sum_{k\geq 0} (-1)^k x^k$ converge et préciser sa somme $\sum_{k=0}^{+\infty} (-1)^k x^k$ pour $x \in I$.
 - I.1.2. En supposant que $x \in I$, expliciter $R_n(x)$, montrer que la série $\sum_{n\geq 0} R_n(x)$ converge et calculer sa somme $S(x) = \sum_{n=0}^{+\infty} R_n(x)$.

I.2. On conserve les notations du I.1:

 $u_k(x) = (-1)^k x^k$, $R_n(x) = \sum_{k=n+1}^{+\infty} (-1)^k x^k$ pour $n \in \mathbb{N}$ et on pose $R_{-1}(x) = \sum_{k=0}^{+\infty} (-1)^k x^k$. On considère par ailleurs la série $\sum_{k\geq 1} \frac{(-1)^{k+1}}{k}$ et on pose : $r_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^{k+1}}{k}$ pour $n \in \mathbb{N}$. On se propose d'établir la convergence de la série $\sum_{n\geq 0} r_n$ et de calculer sa somme.

- I.2.1. Justifier la convergence de la série $\sum_{k\geq 1} \frac{(-1)^{k+1}}{k}$ et par suite l'existence de r_n pour tout $n\in\mathbb{N}$.
 - **I.2.2.** Soit $(n,m) \in \mathbb{N}^2$ avec $n \le m$ et $I_0 = [0, 1[$.
 - **I.2.2.1.** En remarquant que $\sum_{k=n}^{m} (-1)^k x^k = R_{n-1}(x) R_m(x)$, montrer que pour tout $x \in I_0$ on a l'inégalité: $\left| \sum_{k=n}^{m} (-1)^k x^k \right| \le 2$.
 - I.2.2.2. L'entier n étant fixé, déduire en particulier de I.2.2.1 que :

$$\int_{l_0} \lim_{m \to +\infty} \left(\sum_{k=n}^m (-1)^k x^k \right) dx = \lim_{m \to +\infty} \sum_{k=n}^m \int_{l_0} (-1)^k x^k dx$$

et par suite que $r_n = \int_{l_0} R_{n-1}(x) dx$.

- I.2.2.3. Retrouver ainsi la valeur (bien connue!) de r_0 .
- **I.2.2.4.** Montrer que pour tout couple $(m, x) \in \mathbb{N} \times I_0$ on a l'inégalité :

$$\bigg|\sum_{n=0}^m R_{n-1}(x)\bigg| \leq 2.$$

I.2.2.5. Déduire en particulier de **I.2.2.4** que la somme $\sum_{n=0}^{m} \int_{l_0} R_{n-1}(x) dx$ admet une limite lorsque m tend vers $+\infty$.

En déduire que la série $\sum_{n\geq 0} r_n$ converge et calculer sa somme $\sum_{n=0}^{+\infty} r_n$.

PARTIE II

Une égalité sur les restes ; quelques applications.

II.1. Egalité sur les restes.

Lorsque la série numérique $\sum_{k\geq 1} u_k$ converge, on note toujours $R_n = \sum_{k=n+1}^{+\infty} u_k$ son reste d'ordre n.

Soit $\sum_{k\geq 1} u_k$ une série convergente; exprimer pour $n\in\mathbb{N}$ la différence $\sum_{k=0}^n R_k - \sum_{k=1}^n ku_k$ en fonction de n et de R_n .

II.2. Application à une suite.

Montrer qu'il existe deux réels α et β tels que $\sum_{k=1}^{n} (n-k)^{\frac{(-1)^{k+1}}{k}} = \alpha n + \beta + o(1)$ lorsque n tend vers $+\infty$.

II.3. Application à une série à termes positifs.

On suppose de plus que $u_k \ge 0$ pour tout $k \in \mathbb{N}^*$.

- II.3.1. Montrer que la convergence de la série $\sum_{k\geq 0} R_k$ entraîne la convergence de la série $\sum_{k\geq 1} ku_k$.
- II.3.2. On suppose que la série $\sum_{k\geq 1} ku_k$ est convergente. Quelle est la limite de la suite $(n+1)R_n$ lorsque n tend vers $+\infty$?
- II.3.3. Déduire de ce qui précède que les deux séries $\sum_{k\geq 0} R_k$ et $\sum_{k\geq 1} ku_k$ sont de même nature et lorsqu'elles convergent comparer alors leurs sommes $\sum_{k=0}^{+\infty} R_k$ et $\sum_{k=1}^{+\infty} ku_k$.

II.4. Application à la série $\sum_{k\geq 1} \frac{1}{k^x}$.

On suppose maintenant que $u_k(x) = \frac{1}{k^x}$ pour $k \in \mathbb{N}^*$ et $x \in D =] 1,+\infty [$.

On note toujours $R_n(x) = \sum_{k=n+1}^{+\infty} \frac{1}{k^x}$ le reste d'ordre n et on pose $\zeta(x) = \sum_{k=1}^{+\infty} \frac{1}{k^x}$ pour $x \in D$.

Préciser l'ensemble D_1 des $x \in D$ tels que la série $\sum_{n\geq 0} R_n(x)$ soit convergente et exprimer,

pour $x \in D_1$, la somme $\sum_{n=0}^{+\infty} R_n(x)$ à l'aide de la fonction ζ .

II.5. Application à une série entière.

On suppose maintenant que $u_k(x) = a_k x^k$, où $(a_k)_{k \in \mathbb{N}^*}$ désigne une suite de nombres réels et où $x \in \mathbb{R}$. On désigne par ρ le rayon de convergence de cette série entière, on suppose $\rho > 0$ et on note $f(x) = \sum_{k=1}^{+\infty} a_k x^k$ pour $x \in]-\rho, \rho[$.

- II.5.1. Soit $x \in]-\rho, \rho[$; justifier la convergence de la série $\sum_{k\geq 1} ka_k x^k$; en déduire que la suite $(n+1)R_n(x)$ admet une limite lorsque $n\to +\infty$ (et préciser cette limite).
- II.5.2. En déduire que la série $\sum_{n\geq 0} R_n(x)$ est convergente pour $x\in]-\rho, \rho[$ et exprimer sa somme $\sum_{n=0}^{+\infty} R_n(x)$ à l'aide de x et de la fonction f.
- II.5.3. Exemple: on suppose que $a_k = \sin(k\frac{\pi}{2}) + \frac{1}{k}\cos(k\frac{\pi}{2})$ pour $k \in \mathbb{N}^*$.
- II.5.3.1. Déterminer alors le rayon de convergence ρ de cette série entière.
- II.5.3.2. Expliciter la somme $\sum_{n=0}^{+\infty} R_n(x)$ pour $x \in]-\rho, \rho[$ (en justifiant le résultat).

PROBLÈME 2

Notations:

Pour $k \in \mathbb{N}$, $j \in \mathbb{N}$ et $0 \le j \le k$, on note $C_k^j = \frac{k!}{j!(k-j)!}$ le coefficient binomial (avec 0! = 1).

Si $n \in \mathbb{N}$ on note [0,n] l'ensemble des entiers naturels k tels que $0 \le k \le n$; on désigne par $M_{n+1}(\mathbb{R})$ l'anneau des matrices carrées d'ordre n+1 à coefficients dans \mathbb{R} . Si $M \in M_{n+1}(\mathbb{R})$ on note $M = (m_{i,j})$ avec $(i,j) \in [0,n]^2$ ou $m_{i,j}$ désigne l'élément de la ligne i et de la colonne j.

Pour $n \in \mathbb{N}^*$ on considère la matrice $W_n = (w_{i,j}) \in M_{n+1}(\mathbb{R})$, $(i,j) \in [0,n]^2$ avec $w_{i,j}$ définie par :

si
$$i + j$$
 est pair : $i + j = 2p$ alors $w_{i,j} = \frac{1}{2^{2p}} C_{2p}^p$
si $i + j$ est impair alors $w_{i,j} = 0$

On se propose de calculer le déterminant de W_n noté $det W_n$.

PARTIE I

- I.1. Expliciter la matrice W₃.
- I.2. Calculer det W₃.

I.3. Pour
$$m \in \mathbb{N}$$
 on note $J_m = \int_0^{\pi} \cos^m t \ dt$.

- **I.3.1.** Calculer J_0 et J_1 .
- **I.3.2.** Etablir une relation entre J_{m+2} et J_m pour $m \in \mathbb{N}$.

Quelle est la valeur de J_{2p+1} pour $p \in \mathbb{N}$?

- **I.3.3.** Expliciter J_{2p} en fonction de p et du coefficient binomial C_{2p}^p pour $p \in \mathbb{N}$.
- **I.3.4.** Exprimer $w_{i,j}$ en fonction de J_{i+j} , de i et de j pour tout couple $(i,j) \in [0,n]^2$.

PARTIE II

On considère l'espace vectoriel $E = \mathcal{E}([0, \pi], \mathbf{R})$ des fonctions continues sur l'intervalle $[0, \pi]$ à valeurs dans \mathbf{R} . On considère sur E le produit scalaire $<\cdot/\cdot>$ défini par :

pour
$$(f, g) \in E^2$$
: $\langle f/g \rangle = \frac{1}{\pi} \int_0^{\pi} f(t) g(t) dt$.

On définit deux suites $(e_k)_{k\in\mathbb{N}}$ et $(v_k)_{k\in\mathbb{N}}$ d'éléments de E par :

pour tout
$$t \in [0, \pi]$$
 $e_0(t) = v_0(t) = 1$ et pour $k \ge 1$ $e_k(t) = \sqrt{2}\cos(kt)$, $v_k(t) = \cos^k(t)$.

Pour $m \in \mathbb{N}$ on note $H_m(e)$ le sous-espace vectoriel vect $(e_0, e_1, ..., e_m)$ (sous-espace vectoriel de E engendré par la famille $(e_j)_{j \in [[0, m]]}$).

On note, de même, $H_m(v)$ le sous-espace vectoriel vect $(v_0, v_1, ..., v_m)$.

- II.1. Calculer les produits scalaires $\langle e_j / e_k \rangle$ pour $(j, k) \in [[0, m]]^2$.
- II.2. En déduire que pour tout $m \in \mathbb{N}$ la famille $(e_j)_{j \in [[0, m]]}$ est une base de $H_m(e)$.
- II.3. Soit $m \in \mathbb{N}$; montrer que $v_m \in H_m(e)$, c'est-à-dire que $v_m = \sum_{i=0}^m q_{i,m} e_i$; expliciter $q_{m,m}$ (on ne cherchera pas à calculer $q_{i,m}$ pour $0 \le i \le m-1$).
- II.4. Démontrer l'égalité $H_m(e) = H_m(v)$ pour tout $m \in \mathbb{N}$.
- II.5. Pour $m \in \mathbb{N}$ on note d_m la distance de v_{m+1} au sous-espace vectoriel $H_m(e)$ (pour la distance associée au produit scalaire défini au début de la partie II). Déduire de ce qui précède la valeur de d_m .

II.6. Soit
$$n \in \mathbb{N}^*$$
; pour $(i, j) \in [[0, n]]^2$ on note $v_j = \sum_{i=0}^n q_{i,j} e_i$ et on pose alors : $Q_n = (q_{i,j}) \in M_{n+1}(\mathbb{R})$

avec $(i, j) \in [0, n]^2$.

- II.6.1. Calculer $\det Q_n$ pour $n \in \mathbb{N}^*$.
- II.6.2. Calculer $det W_n$ pour $n \in \mathbb{N}^*$.