

Kriging

Luc Anselin

Spatial Analysis Laboratory
Dept. Agricultural and Consumer Economics
University of Illinois, Urbana-Champaign
http://sal.agecon.uiuc.edu

Outline

- > Principles
- Kriging Models
- > Spatial Interpolation

Principles

Spatial Prediction

- Model of Spatial Variability
 - large scale trend + small scale autocorrelation
 - $Z(s) = \mu(s) + \varepsilon(s)$
- > Predictor
 - model for large scale trend for unknown locations
 - use spatial structure in residuals to improve on prediction

Kriging

Principle

- obtain best linear unbiased predictor, BLUP
- take into account covariance structure as a function of distance

Best Predictor

- unbiased: E[yp y] = 0 or no systematic error
- minimum variance among the linear unbiased
- some nonlinear predictors could be better

Use of Covariance

- Covariance a Function of Distance
 - predict for new location s on the basis of distance between pairs
 - covariance between new and observed
 - uses distance between s and all s_i
 - covariance between observed
 - uses distance between and all s_i, s_i
 - $y^p(s) = \sum_i \lambda_i(s) y(s_i)$
 - linear predictor in y
 - weights λ must be obtained

Observed Values at si

Predicted Values for s₀

Kriging as a Linear Interpolator (Source: ESRI 2001)

Kriging Weights

- > Optimal Weights
 - as the solution of an optimization process
 - unbiased and min mean squared error
- Simple Kriging (ignore mean)
 - $\lambda(s) = C^{-1}c(s)$
 - C is covariance matrix for all i, j
 - in practice, use a moving window (dimensionality)
 - c(s) is covariance between s and s_i as a function of distance between s and s_i from variogram model

Kriging Predictor

- > Predicted Value
 - similarity with least squares solution
 - $y^p(s) = c^T(s)C^{-1}y$
 - with c, y as vectors, C matrix
- Kriging Variance
 - uncertainty of interpolated value
 - $\sigma_{p}^{2} = \sigma_{p}^{2} c_{p}^{T}(s)C^{-1}c(s)$
 - σ^2 is variance of process C(h=0)
- Practical Considerations
 - account for uncertainty in estimation of C
 - remove trend (estimate)

Predicted Value Map

Standard Errors of Spatial Interpolation

Kriging Models

Kriging Models

- Classification
 - different formulations for Z(s) and $\mu(s)$
- simple kriging, ordinary kriging, universal kriging
 - mean $\mu(s)$ known, constant or variable
- disjunctive kriging, indicator kriging, probability kriging
 - transformations of Z(s)
 - to model threshold effects
- block kriging
 - areal aggregate

Formal Kriging Models

- ➤ Simple Kriging
 - $Z(s) = \mu + e(s)$
 - μ known and fixed (no estimation)
- Ordinary Kriging
 - $Z(s) = \mu + e(s)$
 - μ fixed but not known (requires estimation)
- Universal Kriging
 - $Z(s) = \mu(s) + e(s)$
 - μ varies: trend surface, regression model
 - requires estimation, variogram on residuals

Simple Kriging

Source: ESRI (2001)

Ordinary Kriging

Source: ESRI (2001)

Universal Kriging

Source: ESRI (2001)

Spatial Interpolation by Kriging An Example

Spatial Interpolation

- > Consider 3 Baltimore Locations
 - \bullet #67 x=908.5 y=565.0 r=-4.44 p=53.5
 - #69 x=907.5 y=563.0 r=-3.82 p=53.0
 - #65 x=910.0 y=562.0 r=-8.14 p=48.0
- \triangleright Predict for x=909 y=564
 - trend surface prediction (mean)
 - p = -166.01 0.148 (909) + 0.634 (564) = 57.024

Compute distances between sample points and between sample and prediction point

■
$$D(s_0, s_i) = 1.118 1.803 2.236$$

- > Compute covariogram values
 - $C(h) = C(0) \gamma(h)$
 - using exponential variogram $\gamma(h) = C(0)[1 e^{-3h/a}] \text{ st. } C(h) = C(0).e^{-3h/a}$
 - with C(0) = 440 and a=28.2
 - note: C(0) cancels out in c'C⁻¹

$$- C^*(s_i, s_j) = 1$$
 0.788 0.700
1 0.751

$$-c*(s_0,s_i) = 0.888 \ 0.825 \ 0.788$$

Compute kriging weights

```
■ \lambda = c.C^{-1}
■ \lambda = [0.888 \ 0.825 \ 0.788]
× 2.743 -1.793 -0.491
3.466 -1.401
2.381
```

- $\lambda = 0.569 \ 0.163 \ 0.284$
 - (some rounding errors, sum is ~ 1.01)

- Kriging Predictor
 - error predictor
 - e = 0.57x(-4.44) + 0.16x(-3.82) + 0.28x(-8.14)= -5.46
- > Spatial Predicted Value
 - p = trend surface prediction + kriged residual
 - p = 57.02 5.46 = 51.6
- Plot Predicted Values on Map
 - contour or surface map of predicted values

> Prediction Error

- Kriging Variance
 - $C(0) c'C^{-1}c = (1 0.864)x440 = 59.9$
- Standard Error
 - $\sqrt{59.9} = 7.7$
- Uncertainty
 - assuming normality (1.96 approx. 95%)
 - 51.6 +/- 1.96*7.7

- ➤ Interpolated Map
 - repeat Kriging exercise for a grid of regularly spaced points
 - visualize by means of Grid Map, Contours, 3D elevation maps, TIN, etc.
 - map uncertainty, confidence intervals

