Introduction
Multi-Site Learning
Learning Procedure
Experiments & Results

MS-Net: Multi-Site Network for Improving Prostate Segmentation with Heterogeneous MRI Data

Quande Liu, Qi Dou, Lequan Yu and Pheng Ann Heng, 2020

Kobi Rahimi

Bar Ilan University

Outline

- Introduction
 - Prostate Segmentation
 - Domain Shift
- Multi-Site Learning
 - Motivation
 - Challenges
 - Approach
 - Methodology
- 3 Learning Procedure
 - Loss functions
 - Training procedure
- 4 Experiments & Results
 - Dataset
 - Experiments & Results

Prostate Segmentation

- The prostate is a gland and reproductive organ found in males.
- Prostate diseases are common afflictions in men.
- Accurate segmentation of the prostate from MRI images is crucial for diagnosis and treatment planning of these diseases.

Domain Shift

A domain shift, is a change in the data distribution between an algorithm's training dataset (source), and a dataset it encounters when deployed (target).

Motivation

- Due to the nature of scarcity for medical images, it is important to effectively aggregate data from multiple sites for robust model training.
- Jointly learn a single network from S different sites.
- Goal: boost the segmentation performance on all the S sites consistently.

First challenge - heterogeneous datasets

- Prostate MRIs from different sites present heterogeneity.
 - e.g, differences in scanners, imaging protocols, etc.
- Causes difficulty for learning generic representations.
- The BN layers may result in inaccurate estimation of global mean and variance leading to performance degradation.

Second challenge - robust representation

Flat vs. sharp minima:

- Under multi-site learning, the model converges to sharp minima of each dataset instead of exploring a robust global minima among multiple datasets.
- Shifting in test (target) loss causes bad generalization.

Domain-Specific Batch Normalization (DSBN)

- DSBN layers are implemented to compensate for the inter-site heterogeneity of different MRI datasets.
- Enables the network to estimate statistics and perform feature normalization for each site separately.

Multi-site-guided Knowledge Transfer (MSKT)

- MSKT is proposed in order to capture the shared knowledge from multiple datasets.
- Enhances the CNN kernels to extract more generic representations from multi-site data by digging the flat minima among different datasets.

Methodology

- Universal decoder and auxiliary branches have the same architecture.
- Universal decoder substitutes the BN layers with DSBN layers.
- Training is done with dice loss.

DSBN Layer

- Assign an individual BN layer for each site (s).
- Normalize the internal representations along the channel dimension.

Mathematical Expression:

• Let $x_k^s \in [x_1^s, ..., x_K^s]$ be a certain channel of the K-channel feature maps in a certain layer, the corresponding normalized representation $y_k^s \in [y_1^s, ..., y_K^s]$ are computed as:

$$y_k^s = \gamma^s \cdot \hat{x}_k^s + \beta^s$$
, where $\hat{x}_k^s = \frac{x_k^s - E[x_k^s]}{\sqrt{Var[x_k^s] + \epsilon}}$

MSKT via auxiliary branches

- Each auxiliary branch learns specific knowledge from a specific site.
- Train the universal network with dice loss w.r.t auxiliary branch's output ($L_{kt} = 1$ dice score).

Suggested dice score:

$$\frac{2 \cdot Intersection}{Groundtruth^2 + Prediction^2} = \frac{2 \cdot TP^2}{(TP + FN)^2 + (TP + FP)^2}$$

MSKT via auxiliary branches (cont.)

- The universal network outputs a probability map of the predicted segmentation (M_{uni}^s) .
- The auxiliary branches outputs a segmentation mask (P_{aux}^s) .
- Knowledge transfer uses dice loss to align results from universal network and auxiliary branches.

Knowledge transfer dice loss:

$$L_{kt}^{s}(M_{uni}^{s}, P_{uni}^{s}) = 1 - \frac{2\sum_{i}^{\Omega}m_{i}^{s} \cdot p_{i}^{s}}{\sum_{i}^{\Omega}(m_{i}^{s})^{2} + \sum_{i}^{\Omega}(p_{i}^{s})^{2}}$$

- Ω total number of pixels in one batch.
- $m_i^s \in M_{uni}^s, p_i^s \in P_{aux}^s$.

Loss functions

Auxiliary branches:

$$L_{aux} = \sum_{s=1}^{S} L_{aux}^{s} + \eta(||\theta_{e}||_{2}^{2} + \sum_{s=1}^{S} ||\theta_{aux}^{s}||_{2}^{2})$$

Universal network:

$$L_{uni} = \sum_{s=1}^{S} \alpha L_{kt}^{s} + (1 - \alpha) L_{uni}^{s} + \eta(||\theta_{e}||_{2}^{2} + ||\theta_{d}||_{2}^{2})$$

- L_{aux}^s , L_{uni}^s Segmentation dice loss for auxiliary branches and universal network w.r.t ground truth labels.
- η L_2 regularization factor $(1e^{-4})$.
- α Balances between segmentation and knowledge transfer losses (0.5).
- $\theta_e, \theta_d, \theta_{aux}^s$ Universal encoder, decoder and auxiliary parameters.

Training procedure

```
Algorithm 1: Training procedure of the proposed MS-Net
 Data: Datasets D_1, \ldots, D_S from from S different sites,
         Training iteration \tau
 Result: Universal encoder \theta_e, Universal decoder \theta_d,
           Auxiliary branch \{\theta_i\}_{i=1}^S;
 —Training—
 Initialization: t=1; Randomly initialize \theta_e, \theta_d, \{\theta_i\}_{i=1}^S;
 while t < \tau do
     Given S mini-batches from \{D_i\}_{i=1}^S;
     Compute the loss function of all auxiliary branches
       L_{\text{aux}}:
      Update parameters \theta_e and \{\theta_i\}_{i=1}^S;
     Compute the loss function of universal network L_{uni};
      Update parameters \theta_e and \theta_d;
 end
 —Testing—
 Leave \{\theta_i\}_{i=1}^S and only keep \theta_e, \theta_d for deployment.
```

Dataset

Dataset	Case	Field strength (T)	Resolution(in- plane/through- plane)(mm)	Coil	Manufactor	
Site A	30	3	0.6-0.625/3.6-4	Surface	Siemens	
Site B	30	1.5	0.4/3	Endorectal	Philips	
Site C	19	3	0.67-0.79/1.25	No	Siemens	

- **Site A** Radboud University Nijmegen Medical Center, 30 samples.
- Site B Boston Medical Center, 30 samples.
- Site C Hospital Center Regional University of Dijon-Bourgogne, 19 samples.

Separate vs. Joint experiment

Separate approach:

- Train a separate model for each dataset.
- Test within and across datasets.

Joint approach:

- Normalize each dataset separately before entering the model.
- Train one model with all the normalized datasets.
- Test with all the datasets.

Results

Methods	BFC	NF	Intensities	Site A	Site B	Site C	Overall	
Separate (A)	X	X	whitening	90.47	76.44	56.81		
Separate (B)	X	X	whitening	70.11	90.52	50.25	90.56	
Separate (C)	X	X	whitening	57.93	55.25	90.70		
Joint	Х	Х	×	86.51	88.00	86.78	87.10	
Joint	X	X	histogram	87.68	88.02	89.46	88.39	
Joint	×	X	scaled	90.43	88.06	88.26	88.92	
Joint	×	X	whitening	90.69	89.53	90.55	90.25	
Joint	X	✓	whitening	90.76	89.46	90.91	90.37	
Joint	/	X	whitening	90.84	89.81	90.81	90.49	
Joint	1	1	whitening	91.14	89.75	90.83	90.58	

• Joint approach doesn't show explicit advantage over the separate approach in terms of accuracy.

MS-Net vs. other state of the art experiment

	Dice Coefficient (mean±std, %)				Average Symmetric Distance (mean±std, mm)			
Methods	Site A	Site B	Site C	Overall	Site A	Site B	Site C	Overall
Tian et al. [26]	88.23	88.23	_					
Rundo et al. [9]	_	_	88.66					
Separate	90.47±3.00	90.52 ± 2.45	90.70 ± 3.34	90.56±2.88	1.02±0.42	$0.84{\pm}0.32$	0.75 ± 0.33	0.87 ± 0.38
Joint	90.69±3.05	89.53 ± 2.97	90.55 ± 3.18	90.25±3.08	0.96 ± 0.37	0.90 ± 0.34	0.75 ± 0.32	0.87 ± 0.36
USE-Net [19]	90.90±2.41	90.17±2.61	90.73±2.36	90.60±2.50	0.90±0.32	$0.85{\pm}0.31$	0.70 ± 0.30	$0.82{\pm}0.32$
Dual-Stream [47]	90.87±2.85	90.57 ± 2.12	90.10 ± 3.28	90.51±2.72	0.92±0.38	0.84 ± 0.27	0.75 ± 0.32	0.83 ± 0.33
Series-Adapter [48]	90.80±2.72	$89.92{\pm}2.80$	91.24 ± 2.21	90.65±2.71	0.95 ± 0.42	0.92 ± 0.38	0.71 ± 0.28	0.86 ± 0.39
Parallel-Adapter [23]	90.61±3.54	90.71 ± 2.17	91.30 ± 2.06	90.88±2.79	0.96±0.25	0.83 ± 0.29	0.74 ± 0.28	$0.84{\pm}0.28$
DSBN (ours)	90.98±2.69	90.67 ± 2.22	91.07±1.86	90.91±2.36	0.95±0.48	0.83 ± 0.30	0.74 ± 0.24	$0.84{\pm}0.38$
MS-Net (ours)	91.54±2.01	91.24±1.97	$92.18{\pm}1.62$	91.66±1.95	0.89±0.33	$0.76 {\pm} 0.25$	$0.67 {\pm} 0.23$	$0.77 {\pm} 0.29$

• MS-Net outperforms each and every state of the art approach.

Segmentation Results

Introduction Multi-Site Learning Learning Procedure Experiments & Results

Questions?

Bibliography

- MS-Net: Multi-Site Network for Improving Prostate Segmentation with Heterogeneous MRI Data. Quande Liu, Qi Dou, Lequan Yu and Pheng Ann Heng.
 - https://arxiv.org/pdf/2002.03366.pdf
- Be Your Own Teacher: Improve the Performance of Convolutional Neural Networks via Self Distillation. Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, Kaisheng Ma. https://arxiv.org/pdf/1905.08094.pdf
- Alejandra Marquez Herrera, Alex Cuadros Vargas, Helio Pedrini.
 Improving Semantic Segmentation of 3D Medical Images on CNNs.
 LatinX in AI Research at ICML 2019, Jun 2019, California, United States.
 ffhal-02265952f
 - https://hal.archives-ouvertes.fr/hal-02265952/document