UNIVERSIDAD DE GRANADA.

ESCUELA TECNICA SUPERIOR DE INGENIERIAS INFORMATICA Y DE TELECOMUNICACIÓN.

Departamento de Arquitectura y Tecnología de Computadores.

TECNOLOGÍA Y ORGANIZACIÓN DE COMPUTADORES.

TEMA 1. INTRODUCCIÓN GUÍA DE AYUDA PARA EL APRENDIZAJE AUTÓNOMO.

1º GRADO EN INGENIERÍA INFORMÁTICA.

TEMA 1º. INTRODUCCIÓN.

GUÍA DE AYUDA PARA EL APRENDIZAJE AUTÓNOMO.

1.1.- PARTE TEÓRICA: El estudiante deberá:

- 1.1.1.- Descargar de la plataforma docente y leer detenidamente el fichero 01.-TEMA_1_TOC_INTRODUCCION.PDF.
- 1.1.2.- Visualizar las grabaciones de clase de la asignatura:
- Tema 1. Clase de Teoría.

https://drive.google.com/file/d/1Klbq7euS4LJg5VkZntEgogbb4NLFPSQ2/view?usp=sharing

- Tema 1. Clase de Problemas.

https://drive.google.com/file/d/1GPcxiO6mr4Agy1r4Us6UyQW0PUn6yHer/view?usp=sharing

- 1.1.3.- Visualizar las video-clases de la asignatura "Fundamentos de Informática" desarrolladas por el profesor D. Alberto Prieto Espinosa ubicadas en el enlace http://atc.ugr.es/APrieto_videoclases correspondientes a las lecciones:
 - o Lección 1.1:
 - https://www.youtube.com/watch?v=47fnyDA2LB0&feature=youtu.be
 - o Lección 1.2:
 - https://www.youtube.com/watch?v=pBmxO8VxfbA&feature=youtu.be
 - o Lección 2.6:
 - https://www.youtube.com/watch?v=pSPuGiQ0vdE&feature=youtu.be
 - Lección 2.7:
 - https://www.youtube.com/watch?v=L2YUAIWXlco&feature=youtu.be
- 1.1.4.- Se recomienda el estudio en el libro [PRI06]: Prieto, A., Lloris, A., Torres, J. C.. Introducción a la Informática, 4ª Edición, McGraw-Hill, 2006. Capítulo 1 y Capítulo 4.5.

1.2.- PARTE DE EJERCICIOS:

1.2.1.- Ejercicios sobre representación de datos de tipo entero.

1.2.1.1- Representación interna binaria de un dato decimal entero con signo:

Suponiendo un computador con longitud de palabra n=8 bits, indique la representación interna de los siguientes números en signo magnitud, complemento a 1, complemento a 2 y representación sesgada: 45, -23, -34 y 68. El sesgo es $S=2^{(n-1)}$.

En primer lugar (según el Seminario 1) obténgase la representación binario natural con 8 bits de los valores absolutos de los datos decimales enteros en cuestión:

- \bullet 45)₁₀ = 0010 1101)₂
- $= 23)_{10} = 0001\ 0111)_2$
- \blacksquare 34)₁₀ = 0010 0010)₂
- $\bullet 68)_{10} = 0100\ 0100)_2$
- a) Representación en binario de tipo Signo Magnitud:
 - 1) Los datos positivos mantienen su representación binaria igual que en binario natural con el bit de la izquierda (bit de signo) S=0. Ver primera columna de la Tabla 1 (bit de signo en rojo).
 - 2) Los datos negativos mantienen su representación binaria igual que en binario natural pero cambiando el bit de la izquierda (bit de signo) S=1. Ver primera columna de la Tabla 1 (bit de signo en rojo).
- b) Representación en binario de tipo Complemento a 1:
 - 1) Los datos positivos mantienen su representación binaria igual que en binario natural con el bit de la izquierda (bit de signo) S=0. Ver segunda columna de la Tabla 1 (bit de signo en rojo).
 - 2) Para representar en binario los datos negativos se les realiza, partiendo de su representación binaria natural, el complemento a 1 que consiste en cambiar los bits que valen cero por uno y

viceversa. De esta manera, el bit de la izquierda (bit de signo) tomará el valor S=1. Ver segunda columna de la Tabla 1 (bit de signo en rojo).

- c) Representación en binario de tipo Complemento a 2:
 - 1) Los datos positivos mantienen su representación binaria igual que en binario natural con el bit de la izquierda (bit de signo) S=0. Ver tercera columna de la Tabla 1 (bit de signo en rojo).
 - 2) Para representar en binario los datos negativos se les realiza, partiendo de su representación binaria natural, el complemento a 2 que consiste hacer el complemento a 1 del dato binario (cambiar los bits que valen cero por uno y viceversa) y luego sumarle 1. De esta manera, el bit de la izquierda (bit de signo) tomará el valor S=1. Ver tercera columna de la Tabla 1 (bit de signo en rojo).
- d) Representación en binario de tipo sesgada:
 - 1) Se define una constante denominada Sesgo que depende del número de bits (n) que se va a utilizar para la representación binaria del dato entero con signo. El Sesgo se define como $2^{(n-1)}$. Por ejemplo, si se trabaja con una longitud de palabra de n = 8 bits, es sesgo se definiría como $S=2^{(8-1)}=2^7=128$.
 - 2) Una vez obtenido el sesgo (en el ejemplo S = 128) se le suma al dato entero decimal para obtener el dato entero sesgado, por ejemplo:
 - **+45 + 128 = 173**
 - -23 + 128 = 105
 - **■** -34 + 128 = 94
 - **+68 + 128 = 196**
 - 3) Una vez obtenido el número decimal sesgado se procede a pasar a binario natural (Seminario 1): Ver cuarta columna de la Tabla 1 (bit de signo en rojo).
 - $+45 + 128 = 173 = 1010 1101)_2$
 - $-23 + 128 = 105 = 0110 1001)_2$
 - $-34 + 128 = 94 = 0101 1110)_2$
 - $+68 + 128 = 196 = 1100 0100)_2$

En este tipo de representación, los números decimales enteros positivos en la representación binaria tiene bit de signo S=1 mientras que los números decimales enteros negativos en la representación binaria tiene bit de signo S=0.

	Signo Magnitud	Complemento a uno	Complemento a dos	Representación Sesgada (Sesgo = 2 ⁿ⁻¹ = 128)
+45	0 010 1101	0 010 1101	<mark>0</mark> 010 1101	1 010 1101
-23	1 001 0111	1 110 1000	1 110 1001	0 110 1001
-34	1 010 0010	1 101 1101	1 101 1110	<mark>0</mark> 101 1110
+68	0 100 0100	0 100 0100	<mark>0</mark> 100 0100	1 100 0100

Tabla 1

1.2.1.2.- Representación decimal de un dato entero partiendo de su representación binaria:

¿Cuáles serían los números decimales enteros correspondientes a los números binarios (de 8 bits):

1000 1000 ; 0111 1001

suponiendo las representaciones que se indican a continuación?:

- a) Sin signo
- b) Signo y magnitud
- c) Complemento a 1
- d) Complemento a 2
- e) Sesgada
- f) BCD.

Ayuda. Utilice los conocimientos adquiridos en el Seminario 1.

a) Sin signo:

```
a.1) 1000\ 1000)_2 = (1^*2^7) + (1^*2^3) = 128 + 8 = 136)_{10}
a.2) 0111\ 1001)_2 = (1^*2^6) + (1^*2^5) + (1^*2^4) + (1^*2^3) + (1^*2^0) = 121)_{10}
```

b) Signo y magnitud, considerando el bit de la izquierda como de signo (en rojo):

```
b.1) 1000 \ 1000)_2 = -(1^*2^3) = -8)_{10}
b.2) 0111 \ 1001)_2 = +(1^*2^6) + (1^*2^5) + (1^*2^4) + (1^*2^3) + (1^*2^0) = +121)_{10}
```

- c) Complemento a 1:
 - c.1) 1000 1000)₂ ; Como el Signo S=1 entonces el número decimal es negativo. Por tanto, para obtenerlo, hay que realizar el complemento a 1 del dato binario C1(1000 1000) = 0111 0111 y pasarlo de binario a decimal (Seminario 1). Por tanto: 0111 0111)₂ = $(1*2^6) + (1*2^5) + (1*2^4) + (1*2^2) + (1*2^1) + (1*2^1) = 119$. Por tanto, el número decimal es -119.
 - c.2) 0111 1001)₂ ; Como el Signo S=0 entonces el número decimal es positivo. Por tanto, basta con pasarlo a de binario a decimal (Seminario 1). Por tanto:
 - $0111\ 1001)_2 = + (1^2)^6 + (1^2)^5 + (1^2)^4 + (1^2)^3 + (1^2)^6 = + 121)_{10}$
- d) Complemento a 2:
 - d.1) $1000 \ 1000)_2$; Como el Signo S=1 entonces el número decimal es negativo. Por tanto, para obtenerlo, hay que realizar el complemento a 2 del dato binario. Para ello, hay que restarle una unidad (1000 1000 0000 0001 = 1000 0111) y luego, realizar el complemento a 1 de este resultado, C1(1000 0111) = 0111 1000 y pasarlo de binario a decimal (Seminario 1). Por tanto: $0111 \ 1000)_2 = (1*2^6) + (1*2^5) + (1*2^4) + (1*2^3) = 120$. Por tanto, el número decimal es 120.
 - d.2) $0111\ 1001)_2$; Como el Signo S=0 entonces el número decimal es positivo. Por tanto, basta con pasarlo a de binario a decimal (Seminario 1). Por tanto:
 - $0111\ 1001)_2 = + (1^2)^6 + (1^2)^5 + (1^2)^4 + (1^2)^3 + (1^2)^6 = + 121)_{10}$
- e) Sesgada:
 - e.1) Considere el dato como si fuera binario natural y páselo a decimal

$$1000\ 1000)_2 = (1^*2^7) + (1^*2^3) = 128 + 8 = 136)_{10}$$

 $0111\ 1001)_2 = (1^*2^6) + (1^*2^5) + (1^*2^4) + (1^*2^3) + (1^*2^0) = 121)_{10}$

- e.2) Se define una constante denominada Sesgo que depende del número de bits (n) que se han utilizado para la representación binaria del dato entero con signo. El Sesgo se define como $2^{(n-1)}$. Por ejemplo, si se trabaja con una longitud de palabra de n = 8 bits, es sesgo se definiría como $S=2^{(8-1)}=2^7=128$
- e.3) Réstele al dato decimal sesgado el sesgo obtenido y se obtendrá el número decimal:

$$136 - 128 = +8$$

 $121 - 128 = -7$

f) BCD (ver Tabla BCD del Seminario 1):

```
1000\ 1000)_{BCD} = 8\ 8 ; 0111\ 1001)_{BCD} = 7\ 9
```

1.2.1.3.- Extensión de signo:

Suponiendo que se representa el número $N = 1010 \ 1010$ de $8 \ bits$ en representación complemento a 2. Indique qué representación en complemento a 2 tendría con $16 \ bits$ en vez de con $8 \ bits$.

Como el bit de signo S=1 (1010 1010) se extiende el signo hasta completar los 16 bits

1111 1111 1010 1010

Suponiendo que se representa el número $N = 0010 \ 1110$ de $8 \ bits$ en representación complemento a 2. Indique qué representación en complemento a 2 tendría con $16 \ bits$ en vez de con $8 \ bits$.

Como el bit de signo S=0 (0010 1110) se extiende el signo hasta completar los 16 bits

0000 0000 0010 1110

1.2.1.4.- Realice los ejercicios siguientes:

- 1) Ejercicios 1 a 4 de la relación de problemas del Tema 1
- 2) Ejercicios 8 y 9 de la relación de problemas del Tema 1.

1.2.2.- Ejercicios sobre representación de datos de tipo real.

1.2.2.1- Representación interna binaria de un dato decimal real:

Obtenga razonadamente la representación del número decimal de tipo real (-434,25) en formato normalizado IEEE 754 para coma flotante, simple precisión, de 32 bits, con 1 bit para el signo, 8 bits para el campo del exponente (con sesgo S=127) y 23 bits para el campo de la mantisa.

- a) Como el número real decimal es negativo, el bit de signo S=1
- b) Para obtener la mantisa (M) de la forma M = 1,m hay que proceder de la siguiente manera.
 - a. El número decimal hay que normalizarlo: $-434,25 = -4,3425 * 10^{2}$
 - b. Realizar el cálculo:

$$10^2 = 2^x \rightarrow \log(10^2) = \log(2^x) \rightarrow 2^* \log(10) = x^* \log(2) \rightarrow x = 2/\log(2) = 6,64385619$$

-4,3425 *
$$10^2$$
 = -4,3425 * $2^{6,64385619}$ = -4,3425 * $2^{0,64385619}$ * 2^6 = -4,3425 * 1,5625 * 2^6 = 6,78515625 * 2^6

d. Ahora hay que pasar el número 6,78515625 a binario (Seminario 1) y obtener los 23 bits de la mantisa. Para ello, se hace uso del código intermedio hexadecimal:

		HEY DIIN
6	= 6	\rightarrow 6 \rightarrow 0110
0,785156	25 x 16 = 12 ,5625	\rightarrow C \rightarrow 1100
0,5625	x 16 = 9,0000	\rightarrow 9 \rightarrow 1001
0,0000	x 16 = 0,0000	\rightarrow 0 \rightarrow 0000
0,0000	x 16 = 0,0000	\rightarrow 0 \rightarrow 0000
0,0000	x 16 = 0,0000	\rightarrow 0 \rightarrow 0000
0.0000	x 16 = 0 .0000	\rightarrow 0 \rightarrow 0000

- 6, 78515625 = 0110,1100 1001 0000 0000 0000 0000 y se tiene, además que:
- 6, $78515625 \times 2^6 = 0110,1100 \times 1001 \times 1000 \times 100$
- = 1,10 1100 1001 0000 0000 0000 * 2⁸ (los tres últimos bits en rojo no se utilizan) c) Ahora hay que obtener el exponente sesgado: e = E + S, siendo E = 8 y S = 127, por tanto, $e = E + S = 8 + 127 = 135)_{10} = 1000 \ 0111)_2$

Solución:

S	е	m
1	10000111	10110010010000000000000

1.2.2.2.- Representación decimal de un dato real partiendo de su representación binaria:

Obtenga razonadamente el valor decimal que corresponde al siguiente dato de tipo real, en representación interna de un computador en simple precisión IEEE 754 (1 bit de signo, 8 bits de exponente y 23 bits de mantisa):

$$N = 1011 \ 1100 \ 0111 \ 1110 \ 0000 \ 0000 \ 0000 \ 0000)_2 = BC7E \ 0000)_{16}$$

a) Desglosando el número binario en Signo, Exponente y Mantisa se tiene:

S	е	m
1	01111000	111111000000000000000000

- b) Como el bit de signo S=1, el número real decimal es negativo.
- Se calcula el exponente sin sesgar.

$$e = 0111 \ 1000)_2 = 120)_{10}$$
; Como $e = E + S$, entonces $E = e - S = 120 - 127 = -7$

d) Se calcula la mantisa que está almacenada de la forma M = 1,m ($1 \le M < 2$) y se pasa a decimal (Seminario 1):

$$M = 1, 111 1110 0000 0000 0000 0000 =$$

$$= (1*2^{0}) + (1*2^{-1}) + (1*2^{-2}) + (1*2^{-3}) + (1*2^{-4}) + (1*2^{-5}) + (1*2^{-6}) =$$

$$= 1 + 0.5 + 0.25 + 0.125 + 0.0625 + 0.03125 + 0.015625 = 1.984375$$

e) Por tanto, el número decimal será:

$$-1,984375 * 2^{-7} = -0,015502929 = -1,5502930 * 10^{-2}$$

1.2.2.3.- Otro tipo de ejercicios:

Se tienen los siguientes datos numéricos en representación en formato normalizado IEEE 754 para coma flotante, simple precisión, de 32 bits, con un bit para el signo (s), 8 bits para el campo del exponente (e, con sesgo S = 127) y 23 bits para el campo de la mantisa (m).

	S	е	m
DATO 1	0	0001 0101	111 0000 0000 0000 0000 0000
DATO 2	1	1111 0101	010 1111 0000 0000 0000 0000
DATO 3	0	0001 1111	000 1111 0000 0000 0000 0000
DATO 4	0	0001 1111	000 1111 0001 0001 0001 0001

Ordene de menor a mayor los números.

Para resolver el problema hay que estudiar:

- a) Primero el signo: los números negativos son menores que los positivos. Por tanto, DATO 2 (S=1) es negativo y será el número menor.
- b) A igualdad de signo, en los positivos, será menor el que tenga menor exponente. Por tanto, DATO 1 (es el que tiene menor exponente) será el siguiente menor.
- c) A igualdad de signo y exponente, en los positivos, será menor el que tenga menor mantisa. Por tanto DATO 3 será el siguiente menor y, por último, DATO 4 será el mayor.

Por tanto: DATO 2 < DATO 1 < DATO 3 < DATO 4

El cálculo de los datos en decimal no hace falta para resolver el problema:

DATO $1 = +2,3111159*10^{-32}$

DATO $2 = -4,5432598*10^{+35}$

DATO $3 = +1,4100889*10^{-29}$

DATO $4 = +1,4107462*10^{-29}$

1.2.2.4.- Ayuda:

Como ayuda para la comprobación de resultados de ejercicios en formato IEEE-754 se dispone de una herramienta de conversión:

- En https://babbage.cs.qc.cuny.edu/IEEE-754.old/Decimal.html se dispone de un conversor de Decimal a IEEE-754
- En https://babbage.cs.qc.cuny.edu/lEEE-754.old/32bit.html se dispone de un conversor de IEEE-754.
 Simple precisión a decimal.

1.2.2.5.- Realice los ejercicios siguientes:

- Ejercicios 4.18 y 4.20 del libro [PRI06]: Prieto, A., Lloris, A., Torres, J. C.. Introducción a la Informática, 4ª Edición, McGraw-Hill, 2006.