HW3

Yupei Zhou yz7005@nyu.edu

- 1. (a) Note that if $x_i \in \{0, 1\}$, then $0 \le x_i \le 1$. Thus if the constraints of the Boolean LP are satisfied, then so are the constraints of the LP relaxation. This means that the feasible set of the Boolean LP is a subset of the feasible set of the LP relaxation. Since the LP relaxation minimizes over a larger set, its optimal value is a lower bound of the optimal value of the Boolean LP. Moreover, if the LP relaxation is infeasible, then the Boolean LP is infeasible.
 - (b) If the solution to the LP relaxation is $x_i \in \{0.1\}$, then it is also the solution to the Boolean LP since the feasible set of the Boolean LP is a subset of the feasible set of the LP relaxation.
- 2. (a) The Lagrangian is $L(x,\lambda)=e^x-\lambda x$. If $\lambda<0$, then $L(x,\lambda)$ is unbounded below. If $\lambda=0$, then $L(x,\lambda)=e^x$ whose infimum is 0. If $\lambda>0$, the minimum of $L(x,\lambda)$ is achieved when $\frac{\partial L}{\partial x}=0$, i.e. $x=\log\lambda$. Thus the minimal value of $L(x,\lambda)$ is $\lambda-\lambda\log\lambda$. Hence, the Lagrange dual function is

$$g(\lambda) = \begin{cases} \lambda - \lambda \log \lambda & \lambda > 0 \\ 0 & \lambda = 0 \\ -\infty & \lambda < 0 \end{cases}$$

Figure 1 shows the plot of the dual function $g(\lambda)$ for $\lambda \in [0,2]$.

- (b) The Lagrange dual problem is $\max_{\lambda \geq 0} g(\lambda)$. If $\lambda > 0$, then $g(\lambda) = \lambda \lambda \log \lambda$ is concave since $g''(\lambda) \frac{1}{\lambda} < 0$. Thus, $g(\lambda)$ is maximized when $g'(\lambda) = -\log \lambda = 0$, i.e. $\lambda = 1$. In this case, $g(\lambda) = 1$. Therefore, the dual optimal solution is $\lambda^* = 1$ and the dual optimal value is $d^* = 1$. Since $p^* = d^*$, strong duality holds.
- 3. (a) The feasible set is $\{x \mid (x-2)(x-4) \leq 0\} = [2,4]$. Since $x^2 + 1$ is an increasing function on $[0,+\infty)$, the optimal solution is $x^* = 2$ and the optimal value is $p^* = 5$.
 - (b) The Lagrangian is $L(x,\lambda)=x^2+1+\lambda(x-2)(x-4)=(\lambda+1)x^2-6\lambda x+(8\lambda+1)$. Note that when $\lambda\leq -1$, the Lagrangian is unbounded below. When $\lambda>-1$, the minimizer of the Lagrangian is $x=\frac{3\lambda}{\lambda+1}$ and the minimal value of the Lagrangian is $g(\lambda)=-\frac{9\lambda^2}{\lambda+1}+8\lambda+1$. Therefore the Lagrange dual function is

$$g(\lambda) = \begin{cases} -\frac{9\lambda^2}{\lambda+1} + 8\lambda + 1 & \lambda > -1\\ -\infty & \lambda \le -1 \end{cases}$$

Figure 2 shows the plot of the objective function, the optimal point, and the Lagrangian for $\lambda = 1, 2, 3$ on the feasible set [2, 4]. We can see from the plot that indeed $p^* \geq \inf_x L(x, \lambda)$. Figure 3 shows the plot of the dual function $g(\lambda)$.

(c) The Lagrange dual problem is $\max_{\lambda\geq 0} -\frac{9\lambda^2}{\lambda+1} + 8\lambda + 1$. It is a concave maximization problem since $g''(\lambda) = -\frac{18}{\lambda^3+1} < 0, \forall \lambda \geq 0$. To find the dual optimal solution, we thus find λ such that $g'(\lambda) = -\frac{9\lambda^2+18\lambda}{(\lambda+1)^2} + 8 = 0$. Hence the dual optimal solution is $\lambda^* = 2$ and the dual optimal value is $d^* = 5$. In this case, $p^* = d^*$, so strong duality holds.

1

Figure 1: Lagrange dual function

4. (a) To show that this is a convex optimization problem, we need to verify that $f_0(x,y)=e^{-x}$, $f_1(x,y)=\frac{x^2}{y}$ are convex. Since $\nabla\nabla f_0(x,y)=\begin{bmatrix} e^{-x} & 0\\ 0 & 0 \end{bmatrix}$ is clearly positive semi-definite, $f_0(x,y)$ is convex. Furthermore, $\nabla\nabla f_1(x,y)=\begin{bmatrix} \frac{2}{y} & -\frac{2x}{y^2}\\ -\frac{2x}{y^2} & \frac{2x^2}{y^2} \end{bmatrix}$ and we can show that it is positive semi-definite by showing that both of its eigenvalues are non-negative. Recall that the product of the two eigenvalues equals the determinant, which is 0 for $\nabla\nabla f_1(x,y)$, and so one of the eigenvalue is 0. Also recall that the sum of the two eigenvalues equals the trace, which is $\frac{2}{y}+\frac{x^2}{y^2}$, and it is non-negative on the domain $\mathcal{D}=\{(x,y)\mid y>0\}$. Therefore, the other eigenvalue is non-negative. Hence, both eigenvalues of $\nabla\nabla f_1(x,y)$ are non-negative, so $f_1(x,y)$ is convex.

To derive the optimal value and solution, note that $x^2 \ge 0, y > 0$, so we need x = 0 to satisfy the constraint $\frac{x^2}{y} \le 0$. Therefore the optimal value is $p^* = 1$ and the optimal solution is $\{(x,y) \mid x = 0, y > 0\}$.

(b) The Lagrangian is $L(x, y, \lambda) = e^{-x} + \frac{\lambda x^2}{y}$. If $\lambda < 0$, then $L(x, y, \lambda)$ is unbounded below. If $\lambda \geq 0$, then $L(x, y, \lambda) > 0$ and the infimum is 0, e.g. by taking $y = x^4, x \to +\infty$. Thus the Lagrange dual function is

$$g(\lambda) = \begin{cases} 0 & \lambda \ge 0 \\ -\infty & \lambda < 0 \end{cases}$$

Thus, the Lagrange dual problem is $\max_{\lambda \geq 0} 0$. So, the optimal value is $d^* = 0$ and the optimal solution is $\{\lambda \mid \lambda \geq 0\}$. The optimal duality gap is $p^* - d^* = 1$.

- (c) Slater's condition does not hold since no point in $\mathcal{D} = \{(x,y) \mid y > 0\}$ satisfies $\frac{x^2}{y} < 0$.
- 5. Note that \mathcal{D} is convex since it is the intersection of the domains of convex functions f_i, h_i . Let $(u_1, v_1, t_1), (u_2, v_2, t_2) \in \mathcal{A}$ and $\theta \in [0, 1]$. Then by definition of $\mathcal{A}, \exists x_1, x_2 \in \mathcal{D}$

such that $f_i(x_1) \leq u_1, h_i(x_1) = v_1, f_i(x_2) \leq u_2, h_i(x_2) = v_2$. Then by convexity of \mathcal{D} , $\theta x_1 + (1 - \theta)x_2 \in \mathcal{D}$, and $\forall i$,

$$f_i(\theta x_1 + (1 - \theta)x_2) \le \theta f_i(x_1) + (1 - \theta)f_i(x_2)$$

$$\le \theta u_1 + (1 - \theta)u_2$$

Furthermore, since h_i are affine, we can write $h_i(x) = A_i x + b_i, \forall i$. Then,

$$h_i(\theta x_1 + (1 - \theta)x_2) = A_i(\theta x_1 + (1 - \theta)x_2) + b_i$$

= $\theta(A_i x_1 + b_i) + (1 - \theta)(A_i x_2 + b_i)$
= $\theta h(x_1) + (1 - \theta)h(x_2)$
= $\theta v_1 + (1 - \theta)v_2$

Moreover, by convexity of f_0 ,

$$f_0(\theta x_1 + (1 - \theta)x_2) \le \theta f_0(x_1) + (1 - \theta)f_0(x_2)$$

 $\le \theta t_1 + (1 - \theta)t_2$

Therefore, $\theta(u_1, v_1, t_1) + (1 - \theta)(u_2, v_2, t_2) \in \mathcal{A}$, which means \mathcal{A} is convex.

Figure 2: Objective function and the Lagrangian on the feasible set

Figure 3: Lagrange dual function