STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

IL1.2: FRACTIONAL INDICES

Previously we considered integer indices. What does a fractional index mean? The index laws apply to fractional indices as well as positive and negative integer indices.

Using the first index law we know that

$$3^{\frac{1}{2}} \times 3^{\frac{1}{2}} = 3^1$$

That is $3^{\frac{1}{2}}$ multiplied by itself equals 3.

The square root of 3 is the number that, when multiplied by itself, equals 3 and is written as $\sqrt{3}$.

$$\sqrt{3} \times \sqrt{3} = 3^1$$

Since $3^{\frac{1}{2}}$ behaves like $\sqrt{3}$ we say that $3^{\frac{1}{2}} = \sqrt{3}$.

Similarly

$$\sqrt[3]{2} \times \sqrt[3]{2} \times \sqrt[3]{2} = 2$$
 and

$$2^{\frac{1}{3}} \times 2^{\frac{1}{3}} \times 2^{\frac{1}{3}} = 2^{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} = 2 \quad \text{using the first index law}$$

Since $2^{\frac{1}{3}}$ behaves like the cube root $\sqrt[3]{2}$; we say $2^{\frac{1}{3}} = \sqrt[3]{2}$.

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$
 $(n^{th} \text{ root of } a)$ where n is a positive integer.

Examples

(1).
$$4^{\frac{1}{2}} = \sqrt{4} = 2$$

(1).
$$4^{\frac{1}{2}} = \sqrt{4} = 2$$
 (2). $27^{\frac{1}{3}} = \sqrt[3]{27} = 3$ (3). $3^{\frac{1}{4}} = \sqrt[4]{3}$

(3).
$$3^{\frac{1}{4}} = \sqrt[4]{3}$$

$$(4). \ b^{\frac{1}{5}} = \sqrt[5]{l}$$

(5).
$$x^{\frac{1}{2}} = \sqrt{x}$$

(1).
$$4^2 = \sqrt{4} = 2$$
 (2). $27^3 = \sqrt[3]{27} = 3$ (3). $3^4 = \sqrt[4]{3}$ (4). $b^{\frac{1}{5}} = \sqrt[5]{b}$ (5). $x^{\frac{1}{2}} = \sqrt{x}$ (6). $32^{-\frac{1}{5}} = \frac{1}{32^{\frac{1}{5}}} = \frac{1}{\sqrt[5]{32}} = \frac{1}{2}$

In most cases the root of a number will not be able to be written as a fraction and will be an irrational number. For example $\sqrt{2} = 1.414...$

See Exercise 1

Expressions of the form $a^{\frac{m}{n}}$

If
$$a^{\frac{1}{n}}=\sqrt[n]{a}$$
 $\left(n^{th} \mod \operatorname{of} a\right)$, what does $a^{\frac{2}{3}}$ mean? $a^{\frac{2}{3}}$ can be written $\left(a^{2}\right)^{\frac{1}{3}}$ using the third index law

So
$$a^{\frac{2}{3}} = a^{\frac{2}{3}} = \sqrt[3]{a^2}$$
using the definition of indices as roots

In general

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$
 where m and n are integers.

Examples

(1).
$$5^{\frac{3}{4}} = \sqrt[4]{5^3}$$
 (2). $7^{\frac{5}{2}} = \sqrt{7^5}$ (3). $a^{\frac{7}{5}} = \sqrt[5]{a^7}$ (4). $y^{-\frac{3}{4}} = \frac{1}{\sqrt[3]{\frac{3}{4}}} = \frac{1}{\sqrt[4]{y^3}}$ (5). $\sqrt[4]{x^3} = x^{\frac{3}{4}}$

The index laws can be used to evaluate and simplify expressions with fractional indices.

Examples

Simplify the following, and evaluate if possible.

(1)
$$(x^3y^9)^{\frac{2}{3}}$$
; $(x^3y^9)^{\frac{2}{3}} = x^{\frac{3\times\frac{2}{3}}{3}}y^{\frac{9\times\frac{2}{3}}{3}} = x^2y^6$ using third index law

(2)
$$3^{\frac{1}{3}} \div 3^{\frac{4}{3}}$$
; $3^{\frac{1}{3}} \div 3^{\frac{4}{3}} = 3^{\frac{1}{3} - \frac{4}{3}} = 3^{-1} = \frac{1}{3}$ using second index law

(3)
$$32^{\frac{3}{5}}$$
; $32^{\frac{3}{5}} = (2^5)^{\frac{3}{5}} = 2^3 = 8$ write 32 as 2^5 . Use third index law.

(4)
$$25^{-\frac{1}{2}}$$
; $25^{-\frac{1}{2}} = \frac{1}{25^{\frac{1}{2}}} = \frac{1}{\sqrt{25}} = \frac{1}{5}$ power $\frac{1}{2}$ - same as the square root.

(5)
$$\left(a^{2}b^{5}\right)^{\frac{1}{3}} \times a^{\frac{1}{3}}b^{-\frac{2}{3}}$$

 $\left(a^{2}b^{5}\right)^{\frac{1}{3}} \times a^{\frac{1}{3}}b^{-\frac{2}{3}} = a^{\frac{2}{3}}b^{\frac{5}{3}} \times a^{\frac{1}{3}}b^{-\frac{2}{3}}$
 $= a^{\frac{2}{3} + \frac{1}{3}}b^{\frac{5}{3} - \frac{2}{3}}$
 $= ab$

See Exercise 2

Exercises

Exercise 1

Evaluate the following expressions. If the answer is not exact give the decimal approximation to two decimal places.

- (a) $64^{\frac{1}{2}}$
- (b) $125^{\overline{3}}$
- (c) $36^{\frac{1}{4}}$

- (d) $81^{-\frac{1}{2}}$
- (e) $128^{-\frac{1}{7}}$
- (f) $250^{\frac{1}{5}}$

Exercise 2

Simplify the following expressions. Give your answer in index notation with positive indices.

$$(a)\left(\frac{8}{27}\right)^{\frac{2}{3}}$$

(b)
$$\sqrt{5} \times \sqrt[3]{5} \times \sqrt[6]{5}$$
 (c) $\sqrt{a} \times \sqrt[4]{a} \times \sqrt[3]{a^2}$

(c)
$$\sqrt{a} \times \sqrt[4]{a} \times \sqrt[3]{a^2}$$

(d)
$$(125a^6b)^{-\frac{1}{3}} \times b^{\frac{2}{3}}$$

(d)
$$(125a^6b)^{-\frac{1}{3}} \times b^{\frac{2}{3}}$$
 (e) $\frac{(2xy^3)^{\frac{1}{2}}}{2} \times \left(\frac{x^{\frac{3}{2}}}{y^2}\right)^4$ (f) $2^{\frac{5}{2}} - 2^{\frac{3}{2}}$

(f)
$$2^{\frac{5}{2}} - 2^{\frac{3}{2}}$$

Answers

Exercise 1

(b) 5 (c) 2.45 (d)
$$\frac{1}{9}$$
 (e) $\frac{1}{2}$

(d)
$$\frac{1}{9}$$

(e)
$$\frac{1}{2}$$

Exercise 2

(a)
$$\frac{2^2}{3^2}$$

(c)
$$a^{\frac{1}{11}}$$

(d)
$$\frac{b^{\frac{1}{3}}}{5a^2}$$

(a)
$$\frac{2^2}{3^2}$$
 (b) 5 (c) $a^{\frac{17}{12}}$ (d) $\frac{b^{\frac{1}{3}}}{5a^2}$ (e) $\frac{x^{\frac{13}{2}}}{2^{\frac{1}{2}}y^{\frac{13}{2}}}$ (f) $2^{\frac{3}{2}}$

(f)
$$2^{\frac{3}{2}}$$