Abitur 2016 Mathematik Infinitesimalrechnung I

Gegeben ist die Funktion $f: x \mapsto \sqrt{1 - \ln x}$ mit maximaler Definitionsmenge D.

Teilaufgabe Teil A 1a (2 BE)

Bestimmen Sie D.

Teilaufgabe Teil A 1b (2 BE)

Bestimmen Sie den Wert $x \in D$ mit f(x) = 2.

Teilaufgabe Teil A 2 (3 BE)

Zeigen Sie, dass der Graph der in $\mathbb R$ definierten Funktion $g: x \mapsto x^2 \cdot \sin x$ punktsymmetrisch bezüglich des Koordinatenursprungs ist, und geben Sie den Wert des Integrals $\int\limits_{-\pi}^{\pi} x^2 \cdot \sin x \; \mathrm{d}x \; \mathrm{an}.$

Teilaufgabe Teil A 3 (3 BE)

Skizzieren Sie im Bereich $-1 \le x \le 4$ den Graphen einer in \mathbb{R} definierten Funktion f mit den folgenden Eigenschaften:

- f ist nur an der Stelle x = 3 nicht differenzierbar.
- f(0) = 2 und für die Ableitung f' von f gilt: f'(0) = -1.
- Der Graph von f ist im Bereich -1 < x < 3 linksgekrümmt.

Gegeben ist eine in \mathbb{R} definierte ganzrationale Funktion f dritten Grades, deren Graph G_f an der Stelle x=1 einen Hochpunkt und an der Stelle x=4 einen Tiefpunkt besitzt.

Teilaufgabe Teil A 4a (3 BE)

Begründen Sie, dass der Graph der Ableitungsfunktion f' von f eine Parabel ist, welche die x-Achse in den Punkten (1|0) und (4|0) schneidet und nach oben geöffnet ist.

Teilaufgabe Teil A 4b (2 BE)

Begründen Sie, dass 2,5 die x-Koordinate des Wendepunkts von G_f ist.

Die Abbildung zeigt den Graphen der in \mathbb{R} definierten Funktion f.

Teilaufgabe Teil A 5a (2 BE)

Bestimmen Sie mithilfe der Abbildung einen Näherungswert für $\int_3^5 f(x) dx$.

Die Funktion F ist die in \mathbb{R} definierte Stammfunktion von f mit F(3) = 0.

Teilaufgabe Teil A 5b (1 BE)

Geben Sie mithilfe der Abbildung einen Näherungswert für die Ableitung von F an der Stelle x=2 an.

Teilaufgabe Teil A 5c (2 BE)

Zeigen Sie, dass
$$F(b) = \int_3^b f(x) \, dx$$
 mit $b \in \mathbb{R}$ gilt.

Gegeben ist die in \mathbb{R} definierte Funktion $f: x \mapsto e^{\frac{1}{2}x} + e^{-\frac{1}{2}x}$. Der Graph von f wird mit G_f bezeichnet.

Teilaufgabe Teil B 1a (2 BE)

Bestimmen Sie die Koordinaten des Schnittpunkts von G_f mit der y-Achse und begründen Sie, dass G_f oberhalb der x-Achse verläuft.

Teilaufgabe Teil B 1b (3 BE)

Ermitteln Sie das Symmetrieverhalten von G_f sowie das Verhalten von f für $x \to -\infty$ und für $x \to +\infty$.

Teilaufgabe Teil B 1c (4 BE)

Zeigen Sie, dass für die zweite Ableitung f'' von f die Beziehung $f''(x) = \frac{1}{4} \cdot f(x)$ für $x \in \mathbb{R}$ gilt. Weisen Sie nach, dass G_f linksgekrümmt ist.

[Zur Kontrolle:
$$f'(x) = \frac{1}{2} \cdot \left(e^{\frac{1}{2}x} - e^{-\frac{1}{2}x} \right)$$
]

Teilaufgabe Teil B 1d (3 BE)

Bestimmen Sie Lage und Art des Extrempunkts von G_f .

Teilaufgabe Teil B 1e (3 BE)

Berechnen Sie die Steigung der Tangente g an G_f im Punkt P(2|f(2)) auf eine Dezimale genau. Zeichnen Sie den Punkt P und die Gerade g in ein Koordinatensystem ein (Platzbedarf im Hinblick auf das Folgende: $-4 \le x \le 4, -1 \le y \le 9$).

Teilaufgabe Teil B 1f (4 BE)

Berechnen Sie f(4), im Hinblick auf eine der folgenden Aufgaben auf zwei Dezimalen genau, und zeichnen Sie unter Berücksichtigung der bisherigen Ergebnisse G_f im Bereich $-4 \le x \le 4$ in das Koordinatensystem aus Aufgabe 1e ein.

Teilaufgabe Teil B 1g (3 BE)

Zeigen Sie durch Rechnung, dass für $x \in \mathbb{R}$ die Beziehung $\frac{1}{4} \cdot [f(x)]^2 - [f'(x)]^2 = 1$ gilt.

Die als Kurvenlänge $L_{a;b}$ bezeichnete Länge des Funktionsgraphen von f zwischen den Punkten (a|f(a)) und (b|f(b)) mit a < b lässt sich mithilfe der Formel $L_{a;b} = \int\limits_a^b \sqrt{1 + [f'(x)]^2} \, \mathrm{d}x$ berechnen.

Teilaufgabe Teil B 1h (4 BE)

Bestimmen Sie mithilfe der Beziehung aus Aufgabe 1g die Kurvenlänge $L_{0;b}$ des Graphen von f zwischen den Punkten (0|f(0)) und (b|f(b)) mit b>0.

[Ergebnis:
$$L_{0;b} = e^{\frac{1}{2}b} - e^{-\frac{1}{2}b}$$
]

Die Enden eines Seils werden an zwei vertikalen Masten, die 8,00 m voneinander entfernt sind, in gleicher Höhe über dem Erdboden befestigt. Der Graph G_f aus Aufgabe 1 beschreibt im Bereich $-4 \le x \le 4$ modellhaft den Verlauf des Seils, wobei die Fußpunkte F_1 und F_2 der Masten durch die Punkte (-4|0) bzw. (4|0) dargestellt werden (vgl. Abbildung). Eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Realität.

Teilaufgabe Teil B 2a (2 BE)

Der Höhenunterschied zwischen den Aufhängepunkten und dem tiefsten Punkt des Seils wird als Durchhang bezeichnet. Berechnen Sie auf der Grundlage des Modells den Durchhang des Seils auf Zentimeter genau.

Teilaufgabe Teil B 2b (5 BE)

Berechnen Sie auf der Grundlage des Modells die Größe des Winkels, den das Seil mit Mast 2 im Aufhängepunkt einschließt, sowie mithilfe der Kurvenlänge aus Aufgabe 1h die Länge des zwischen den Masten hängenden Seils auf Zentimeter genau.

Der Graph von f soll durch eine Parabel näherungsweise dargestellt werden. Dazu wird die in \mathbb{R} definierte quadratische Funktion q betrachtet, deren Graph den Scheitelpunkt (0|2) hat und durch den Punkt (4|f(4)) verläuft.

Teilaufgabe Teil B 2c (4 BE)

Ermitteln Sie den Term q(x) der Funktion q, ohne dabei zu runden.

Teilaufgabe Teil B 2d (3 BE)

Für jedes $x \in]0;4[$ wird der Abstand der vertikal übereinander liegenden Punkte (x|q(x)) und (x|f(x)) der Graphen von q bzw. f betrachtet, wobei in diesem Bereich q(x) > f(x) gilt. Der größte dieser Abstände ist ein Maß dafür, wie gut die Parabel den Graphen G_f im Bereich 0 < x < 4 annähert. Beschreiben Sie die wesentlichen Schritte, mithilfe derer man diesen größten Abstand rechnerisch bestimmen kann.