

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES  
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum  
Internationales Büro



(43) Internationales Veröffentlichungsdatum  
16. August 2001 (16.08.2001)

PCT

(10) Internationale Veröffentlichungsnummer  
**WO 01/58960 A1**

(51) Internationale Patentklassifikation<sup>7</sup>: C08B 1/00,  
D01F 2/00, D01D 1/02, C08J 3/09, 3/11

(74) Gemeinsamer Vertreter: THÜRINGISCHES IN-  
STITUT FÜR TEXTIL- UND KUNSTSTOFF-  
FORSCHUNG E.V.; Breitscheidstrasse 97, 07407 Rudol-  
stadt (DE).

(21) Internationales Aktenzeichen: PCT/DE01/00445

(22) Internationales Anmeldedatum:  
6. Februar 2001 (06.02.2001)

(81) Bestimmungsstaaten (*national*): AE, AU, BA, BG, BR,  
CA, CN, CU, CZ, HR, HU, ID, IL, IN, IS, JP, KP, KR, LK,  
LT, LV, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR,  
US, UZ, VN, YU, ZA, ZW.

(25) Einreichungssprache: Deutsch

(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH,  
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW),  
eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,  
TM), europäisches Patent (AT, BE, CH, CY, DE, DK,  
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR),  
OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML,  
MR, NE, SN, TD, TG).

(26) Veröffentlichungssprache: Deutsch

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

(30) Angaben zur Priorität:  
100 05 163.4 8. Februar 2000 (08.02.2000) DE

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): THÜRINGISCHES INSTITUT FÜR TEXTIL- UND KUNSTSTOFF-FORSCHUNG E.V. [DE/DE]; Breitscheidstrasse 97, 07407 Rudolstadt (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): RIEDEL, Bernd [DE/DE]; Nr. 16, 07318 Dorfkulm (DE). TAEGER, Eberhard [DE/DE]; Nr. 26, 07407 Weissbach (DE). EILERS, Markus [DE/DE]; An den langen Bergen 7, 07407 Rudolstadt (DE). KRAMER, Horst [DE/DE]; Carpar-Schulte-Str. 23, 07407 Rudolstadt (DE).

(54) Title: METHOD FOR PRODUCING AND PROCESSING A CELLULOSE SOLUTION

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG UND VERARBEITUNG EINER CELLULOSELÖSUNG

(57) Abstract: The invention concerns a simplified process for producing and processing a cellulose solution obtained by dissolving the cellulose in a tertiary aminoxide-pyrrolidonate, preferably in a NMMO-pyrrolidonate. The cellulose is dissolved in a tertiary aminoxide-pyrrolidonate, preferably in a NMMO-pyrrolidonate and shaped bodies are produced by shaping, coagulating and subsequently removing the solvent. Applications of the cellulose shaped bodies for conferring special characteristics is achieved by adding organic or inorganic compounds. The process involves the following steps: preparing the starting material, mixing and homogenizing in a solvent pre-stage, removing water, transporting and filtering, extruding using a shaping tool, washing to remove the solvent, applying and purifying and concentrating the regenerating bath.

**WO 01/58960 A1**

(57) Zusammenfassung: Vereinfachtes Verfahren zur Herstellung und Verarbeitung einer Celluloselösung, welche durch Lösen der Cellulose in einem tertiar Aminoxid-Pyrrolidonat, vorzugsweise NMNO-Pyrrolidonat, entsteht. Cellulose wird in tertiar Aminoxid-Pyrrolidonaten, vorzugsweise NMNO-Pyrrolidonate, gelöst und durch Verformung, Koagulation und anschliessende Entfernung des Lösungsmittels werden Formkörper hergestellt. Durch Zumischung von organischen oder anorganischen Verbindungen werden Applikationen des Celluloseformkörpers zur Prägung spezieller Eigenschaften erzielt. Die Prozessstufen umfassen Aufbereitung des Ausgangsmaterials, Mischen und Homogenisieren in einer Lösungsmittelvorstufe, Entfernen von Wasser, Transport und Filtration der Lösung, Extrusion durch ein Formwerkzeug, Wäsche zur Entfernung des Lösungsmittels, Applikation und Reinigung und Aufkonzentrierung des Fällbades.

**Verfahren zur Herstellung und Verarbeitung einer  
Celluloselösung**

Die Erfindung betrifft ein vereinfachtes Verfahren zur Herstellung und Verarbeitung einer Celluloselösung, welche durch

5 Lösen der Cellulose in einem tertiär Aminoxid-Pyrrolidonat, vorzugsweise NMMO-Pyrrolidonat, entsteht.

**[Stand der Technik]**

Die Vorteile der Nutzung nachwachsender Rohstoffe zur Produktion von Kunststoffen, Fasern und Folien sind hinreichend bekannt.

Seit über 100 Jahren dient Cellulose, welche aus Pflanzen gewonnen wird, der Erzeugung von textilen Formkörpern, z. B. Fasern, Filamente oder Folien. Viele Jahrzehnte dominierten

15 dabei Verfahren, bei denen die Cellulose chemisch verändert werden musste, bevor sie in Lösung ging, durch entsprechende Formwerkzeuge extrudiert und wiederum chemisch umgewandelt zu werden. Das dabei am meisten benutzte Verfahren war das Viskoseverfahren, bei dem eine Vielzahl von umweltbelastenden

20 Chemikalien, Neben- und Abprodukten sowie resourcenintensive Prozessgestaltung eine Rolle spielen. Lange war man auf der Suche nach geeigneten Direktlösungsmitteln der Cellulose. Ein solches System, das auch industriell nutzbar gemacht wurde, ist eine wässrige Lösung eines tertiären Aminoxides, z. B. N-

25 Methylmorpholin-N-oxid, im weiteren NMMO, (z. B. US 4324593, US 4290815, DD 218104). Die nach solchen Verfahren erzeugten Fasern bekamen den Gattungsbegriff LYOCCELL. Ein entscheidender Nachteil dieses Systems ist die relativ hohe Viskosität der Spinnmassen, die einen Transport innerhalb eines

30 Prozesses nur unter definierten, technisch nicht einfachen Bedingungen gestattet. Außerdem verlangt hier der Löseprozess eine exakte aufwendig zu realisierende Temperaturführung, um

den für die Löseprozeß bestimmenden Restwassergehalt einstellen zu können (EP 0668941, EP 0662204).

In DE 2848471 wurde für das System N-Oxid/Cellulose zur Senkung der Viskosität vorgeschlagen, eine aprotische organische Flüssigkeit mit einem Dipolmoment von mehr als 3,5 Debye zuzusetzen. Nachteilig daran ist, dass diese aprotischen Verbindungen eine für den technisch realisierbaren Löseprozess zu hohe Flüchtigkeiten besitzen.

Auch in US 5362867 sowie in US 5929228 wurden veränderte Lösungssysteme vorgestellt. Im ersten benutzt man dabei neben dem bekannten N-Methylmorpholin-N-oxid (NMMO) eine Mischung aus rückgewonnenem Caprolaktam der Polyamidherstellung. Die Abhängigkeit zu vorgelagerter Produktion und damit verbundener möglicher Inhomogenitäten durch mögliche Verunreinigungen wirken sich nachteilig auf die weiteren Verfahrensschritte aus.

In US 5929228 wird der Weg gegangen, neben dem NMMO bestimmte Anteile eines Gemisches aus N-Methylol-Caprolaktam und Tetra-Methylammoniumchlorid zum Lösemittelsystem zu geben. Die technische, arbeitsschutzmäßige sowie ökologische Beherrschung eines solchen Systems ist aufgrund der komplizierten Eigenschaften, vor allem des Tetra-Methylammoniumchlorides, sehr aufwendig.

Es ist Ziel der Erfindung, diese Nachteile von Celluloselösungen zu beseitigen.

Überraschenderweise konnte gefunden werden, dass sich Cellulose in tertiär Aminoxid-Pyrrolidonaten, vorzugsweise NMMO-Pyrrolidonate, löst und sich aus diesen vorteilhaften Lösungen durch Verformung, Koagulation und anschließende Entfernung des Lösungsmittels Formkörper herstellen lassen. Offenbar ist dieser Vorteil dadurch begründet, dass das Pyrrolido-

nate eine günstigere innere Struktur der Celluloselösung bewirkt.

Die Lösungen zeichnen sich gegenüber den bekannten Lösungen auf Basis NMMO durch eine niedrigere Einfriertemperatur und 5 in Folge des im Vergleich größeren Molekülvolumens der Pyrrolidonate und des damit verbundenen größeren Abstandes zwischen den solvatisierten Cellulosemolekülen durch eine geringere Strukturviskosität aus.

Pyrrolidon ist ein amphiprotisches Lösungsmittel welches über 10 Wasserstoffbrückenbindungen mit tertiären Aminoxiden einen ganzähnlichen definierten und isolierbaren 1:1 Komplex sowie gebrochenzahlige, im Einzelnen nicht isolierbare Komplexe bildet. Diese bis 150° C thermisch stabilen Komplexe werden als Pyrrolidonate bezeichnet.

15 Zu ihrer Herstellung wird wasserhaltiges NMMO mit Pyrrolidon vermischt und unter Zuführung von Wärme aus der Lösung im Vakuum über eine zwischengeschaltete Kolonne das Wasser abgezogen. Beim Abkühlen kristallisiert das NMMO-Pyrrolidonat aus und kann durch Umkristallisation aus Benzol gereinigt 20 werden.

Die Lösung der Cellulose kann erfolgen durch

a) definierte Pyrrolidonat- bzw. definierte Pyrrolidonat-Gemische, hergestellt aus wässrigem NMMO und Pyrrolidon durch Abdestillation des Wassers und Reinigung durch Umkristallisation,  
25

b) Pyrrolidonat-Gemische, hergestellt aus wässrigem NMMO und Pyrrolidon durch Abdestillation des Wassers bis zur Erreichung einer für Cellulose ausreichenden Lösequalität.

Das Pyrrolidonat bzw. die Pyrrolidonat-Gemische können Verdünnungsmittel enthalten.  
30

Die in den Lösungen gegebenenfalls noch enthaltenen Verdünnungsmittel können aprotische organische Lösungsmittel, wie

z. B. Dimethylsulfoxid, Dimethylformamid, N-Methylpyrrolidon und Dimethylacetamid, oder amphiprotische Lösungsmittel, wie z. B. das Pyrrolidon und/oder Wasser und/oder niedere Alkohole, oder das tertiäre Aminoxid selbst sein.

5 Durch den um mehr als 140 °C höheren Siedepunkt des Pyrrolidons gegenüber Wasser kann die Zusammensetzung des Pyrrolidonates technisch sicher realisiert werden.

Cellulosematerialien, die im Prozess verwendet werden, sind bevorzugt Chemiefaserzellstoff, Baumwoll-Linters, Nadelholz-  
10 sulfit-, Nadelholzsulfat und oder Laubholzzellstoffe aus dem Sulfit- oder Sulfataufschlussverfahren unterschiedlicher Polymerisationsgrade. Dabei kann der Zellstoff eines oder in Form von Mischungen verschiedener Polymerisationsgrade eingesetzt werden. Ebenso sind Zellstoffe behandelt mit Druckexplosionstechnik, Elektronenstrahlen oder Enzymen einsetzbar.  
15

Zur besseren Veranschaulichung der Erfindung soll im Weiteren in einer besonders vorteilhaften Ausführungsform (b) beschrieben werden, wie eine Celluloselösung hergestellt, zu  
20 Fasern verformt, die Cellulose durch Einwirkung eines Koagulationsmediums regeneriert sowie das Lösungsmittel ausgewaschen und zurückgewonnen wird. Als tertiäres Aminoxid wird NMNO verwendet.

Ausgangspunkt bilden Zellstoffe, wie sie im vorher beschriebenen Teil genannt wurden. Der Zellstoff wird einer Vorbehandlung unterzogen, um eine bessere Zugänglichkeit zum Lösungsmittel bzw. dessen Vorstufe zu sichern. Dabei kann der Zellstoff mechanisch mit Hilfe von Shreddern oder Mühlen zerkleinert werden und in dieser Form zugesetzt werden. Eine  
30 andere Variante der Vorbehandlung des Zellstoffes ist, dass dieser in einer wässrigen Lösung durch intensive Scherung zerkleinert wird und die so entstandene Zellstoffpulpe anschließend durch Entwässerung auf einen definierten Feuchte-

gehalt eingestellt wird, bevor er mit dem Lösemittelsystem in Berührung kommt. Dabei kann der Zellstoff in der Phase der wässrigen Behandlung mit den Aufschluss und die Zugänglichkeit der Zellulose begünstigenden Chemikalien ( Laugen, 5 Säuren, Tensiden) bzw. Enzymen behandelt werden.

Im ersten Stadium wird durch kontinuierliches oder diskontinuierliches Mischen der Komponenten Wasser, NMNO, Pyrrolidon und Cellulose eine Maische hergestellt. Die Cellulosekonzentration der Maische liegt üblicherweise zwischen 4 und 23 % 10 (Masse). Neben der Cellulose können weitere, lösliche oder unlösliche, organische oder anorganische Verbindungen, wie zum Beispiel Pigmente, Farbstoffe, Ionenaustauscher, Reaktivharze, Ruß, Stabilisatoren, keramische Pulver, zugesetzt werden.

15 Die so entstandene Maische wird in einem Verdampfer unter Anlegen eines Vakuums mit entsprechender Temperaturführung geschert. Dabei ist es unbedeutend, ob der Apparat nach dem Prinzip eines Dünnschichters oder sonstigen Wellenapparates gestaltet ist. Erfindungsgemäß kann bei Temperaturen zwischen 20 60 - 140 °C, vorzugsweise bei 80 - 130 °C, und Unterdrücken von 30 - 150 mbar gearbeitet werden.

Die Cellulosekonzentration in der Lösung liegt zwischen 5 und 25 %.

Zur weiteren zusätzlichen thermischen Stabilisierung und 25 Unterdrückung eines Kettenabbaus der Cellulose, vor allem bei höheren Temperaturen, kann man Stabilisatoren, wie z. B. Gallussäurepropylester, vorzugsweise bis zu einem Gehalt von 1% bezogen auf Cellulose, in die Spinnlösung einbringen. Die erhaltene Spinnlösung wird über eine temperierte Transport- 30 leitung mit Hilfe einer Pumpe über ein Filterorgan gedrückt und anschließend über ein Formwerkzeug direkt oder durch einen Luftspalt in ein Fällbad geleitet. Die anschließende Wäsche vom anhaftenden Lösungsmittel NMNO / Pyrrolidon ge-

schieht mit Wasser, welches im Gegenstromprinzip die Konzentration des Spinnbades steuert. Eine übliche, für cellulose-sche Fasern/Filamente bekannte Nachbehandlungsprozedur schließt sich an [Avivieren, Trocknen, ggf. (dazwischen) 5 Bleichen und Schneiden].

Das Fällbad, bestehend aus NMNO, Pyrrolidon und als direktes Koagulationsmedium Wasser und/oder niedermolekulare Alkohole, wird zur Wiederaufarbeitung gegeben. Die Wiederaufarbeitung 10 schließt die Prozesse der Entfernung von ungelösten Fremdstoffen über Filter sowie von gelösten Fremdstoffen über Anionen- und Kationentauscherharzen sowie die Aufkonzentrierung durch Verdampferanlagen ein. Das so erhaltene regenerierte Gemisch kann wiederum der Stufe der Maischeherstellung 15 in der benötigten Konzentration zur Verfügung gestellt werden. Das anfallende Konzentrat aus der Stufe der Koagulationsmittelverdampfung wird ebenfalls im Kreislauf der Waschstufe nach dem Koagulationsbad wiederzugeführt.

Durch die beschriebene Kreislaufführung ist es möglich, die 20 Rückgewinnungsquote für NMNO und Pyrrolidon auf  $\geq 99,5\%$  einzuhalten.

Die einzelnen Prozeßstufen bei der vorgenannten Verfahrensausführung sind somit:

- Aufbereitung bzw. Vorbehandlung des cellulosischen Ausgangsmaterials zur Verbesserung der Zugänglichkeit bzw. der Löseeigenschaften,
- Mischen und Homogenisieren der Cellulose in einer Lösungsmittelvorstufe,
- Entfernen von Wasser durch Verdampfen bei Unterdruck und 30 Scherung gegebenenfalls unter Zusatz eines oder mehrerer Stabilisatoren,

- Transport und Filtration der Lösung durch Rohrleitungen, Lagerbehälter, Filtrationseinrichtungen,
- Extrusion der erhaltenen Celluloselösung durch ein Formwerkzeug direkt oder unter Zwischenschaltung eines Luftspaltes in ein wässriges oder alkoholhaltiges Fällbad mit anschließender Wäsche zur Entfernung des Lösungsmittels,
- 5 - Applikation des erhaltenen Celluloseformkörpers zur Prägung spezieller Eigenschaften,
- das erhaltene Fällbad durch Säuberung und Aufkonzentrierung wieder in die entsprechende Qualität der eingesetzten Lösungsmittelvorstufe gebracht wird.
- 10 .....

[Beispiele]

15

Beispiel 1

Es werden 370 g Zellstoff mit einem Cuoxam DP von 520 in einem Gemisch aus 1830 g NMMO, 530 g Pyrrolidon und 720 g Wasser homogenisiert. Die Temperatur des Gemisches beträgt 20 50 °C. Die entstandene homogene Mischung wird unter Scherung, Wärmezufuhr und unter Anlegen eines Vakuums solange behandelt, bis eine homogene Lösung der Cellulose beobachtet wird. Der Prozess lief bei einem Endvakuum von 30 mbar und einer Temperatur der Reaktionsmasse von max. 95 °C ab.

25

Die erhaltene Celluloselösung wurde analysiert und mit folgenden Parametern charakterisiert:

|                          |        |
|--------------------------|--------|
| Cellulosegehalt:         | 12,5 % |
| Wassergehalt:            | 5,8 %  |
| NMMO-Pyrrolidonatgehalt: | 81,7 % |

Mikrobild: keine sichtbaren Teilchen bei 50-facher Vergrößerung im Mikroskop

Viskosität: 4200 Pa s

Schmelzpunkt: 57 °C

5

Die erhaltene Lösung wurde bei einer Temperatur von 80 °C durch eine Spinndüse gepresst und durch einen Luftspalt in ein Fällbad aus Wasser eingesponnen. Der Lochdurchmesser der Düsenbohrungen betrug 75 µm, die Spinngeschwindigkeit 36 m/min. Das entstandene Faserkabel wurde ausgewaschen, geschnitten und präpariert. Die textilphysikalischen Werte wurden wie folgt gemessen:

Titer: 0,13 tex

15 Festigkeit trocken/nass: 45 / 36 cN/tex

Dehnung trocken/nass: 12 / 13 %

Schlingenreißkraft: 14,5 cN/tex

Nassmodul: 250 cN/tex

20 Vergleichsbeispiel 1:

Es wurde eine Celluloselösung analog Beispiel 1, jedoch ohne die Pyrrolidonkomponente, hergestellt.

Im Einzelnen wurden zu einer Maische homogenisiert: 370 g Cellulose, 2240 g NMMO und 800 g Wasser.

25 Die Abdampfbedingungen entsprachen denen des Beispieles 1; es wurden 440 g Wasser abgedampft.

Die erhaltene Lösung wurde wie folgt charakterisiert:

Cellulosegehalt: 12,5 %

Wassergehalt: 12,0 %

30 NMNO-Gehalt: 75,5 %

Mikrobild: keine sichtbaren Teilchen bei 50-facher Vergrößerung im Mikroskop

Viskosität: 6500 Pa s

Schmelzpunkt: 72 °C

5

Die analog ermittelten Faserwerte nach den selben Bedingungen der Erspinnung stellten sich wie folgt dar:

Titer: 0,13 tex

10 Festigkeit trocken/nass: 41 / 35 cN/tex

Dehnung trocken/nass: 12 / 13,5 %

Schlingenreißkraft: 12,4 cN/tex

Nassmodul: 235 cN/tex

15 Beispiel 2:

Analog wie Beispiel 1 wurden folgende Komponenten homogenisiert:

350 g Cellulose, Cuoxam DP 500, 1150 g NMMO, 500 g Wasser,  
840 g Pyrrolidon, 2 g Gallussäurepropylester.

20 Die anschließende Behandlung der homogenisierten Maische unter den Bedingungen des Beispiel 1 wurde solange durchgeführt, bis 500 g Wasser abdestilliert waren.

Die erhaltene Lösung wurde wie folgt charakterisiert:

Cellulosegehalt: ca. 12 %

25 NMNO-Pyrrolidonatgehalt: ca. 88 %

Mikrobild: keine sichtbaren Teilchen bei 50-facher Vergrößerung im Mikroskop

Viskosität: 4520 Pa s

Schmelzpunkt: 52 °C

## [Patentansprüche]

1. Verfahren zur Herstellung von Formkörpern auf Basis von Cellulose, dadurch gekennzeichnet, dass Cellulose in 5 tertiär Aminoxid-Pyrrolidonaten gelöst, anschließend verformt, koaguliert und das Lösungsmittel entfernt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das tertiäre Aminoxid 10 N-Methylmorpholin-N-Oxid (NMMO) ist.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, dass die NMMO-Pyrrolidonate aus wässrigen NMMO und Pyrrolidon durch Abdestillation von Wasser hergestellt werden.
- 15 4. Verfahren nach Anspruch, 1 und 3, dadurch gekennzeichnet, dass die NMMO-Pyrrolidonate eine ganzzahlige und/oder gebrochenzahlige molare Zusammensetzung besitzt und einzeln oder als Gemische eingesetzt werden.
5. Verfahren nach Anspruch, 1 bis 4, dadurch gekennzeichnet, dass eine Cellulose mit einem mittleren Molekulargewicht von 40 000 bis 350 000 eingesetzt wird. 20
6. Verfahren nach Anspruch, 1 bis 5, dadurch gekennzeichnet, dass Mischungen von Cellulosen verschiedener Molekulargewichte eingesetzt werden.
- 25 7. Verfahren nach Anspruch, 1 bis 6, dadurch gekennzeichnet, dass als Cellulose Zellstoffe eingesetzt werden, die aus Hart- oder Weichhölzern nach dem Sulfit-, Sulfat-, oder dem Organocell-Verfahren hergestellt wurden.
8. Verfahren nach Anspruch, 1 bis 6, dadurch gekennzeichnet, dass als Cellulose Baumwoll - Linters eingesetzt 30 wird.

9. Verfahren nach Anspruch 1 bis 8, dadurch gekennzeichnet, dass die Cellulose mit Enzymen, Bestrahlungs- oder einer Explosionstechnik behandelt wird.
10. Verfahren nach Anspruch 1 bis 9, dadurch gekennzeichnet, dass der Zellstoff bzw. der Baumwoll-Linters vor dem Löseprozess geshreddert und/oder gemahlen wird.
11. Verfahren nach Anspruch 1 bis 9, dadurch gekennzeichnet, dass der Zellstoff bzw. der Baumwoll-Linters vor dem Löseprozess geshreddert und/oder gemahlen, in wässriger Phase mit Chemikalien (Laugen, Säuren, Tenside) bzw. aufschließend mit Enzymen behandelt, durch intensive Scherung nochmals zerkleinert und die so entstandene Zellstoffpulpe anschließend durch Entwässerung auf einen definierten Feuchtegehalt eingestellt wird.
- 15 12. Verfahren nach Anspruch 1 bis 11, dadurch gekennzeichnet, dass neben der Cellulose noch andere, im System lösliche oder unlösliche, organische oder anorganische Verbindungen, wie Pigmente, Farbstoffe, Ionenaustauscher, Reaktivharze, Ruß, keramische Pulver, zugesetzt werden.
- 20 13. Verfahren nach Anspruch 1 bis 12, dadurch gekennzeichnet, dass mindestens ein oder mehrere Stabilisatoren zugesetzt werden.
14. Verfahren nach Anspruch 1 bis 13, dadurch gekennzeichnet, dass als Stabilisator NaOH zum Einsatz kommt.
- 25 15. Verfahren nach Anspruch 1 bis 13, dadurch gekennzeichnet, dass als Stabilisatorgemisch NaOH und Gallussäure-propylester zum Einsatz kommt.
16. Verfahren nach Anspruch 1 bis 15, dadurch gekennzeichnet, dass als Stabilisator aldehydgruppenbindende Substanzen, wie Hydrazinderivate, Semicarbazide, Hydroxylamin bzw. deren Salze zugegeben werden.

17. Verfahren nach Anspruch 1 bis 16, dadurch gekennzeichnet, dass die Lösungsherstellung unter Vakuum und Scherung in einem handelsüblichen Dünnschichtapparat oder einem ein- oder mehrwelligen Reaktor mit Misch- und Scherwirkung erfolgt.  
5
18. Verfahren nach Anspruch 1 bis 17, dadurch gekennzeichnet, dass die Scherraten zwischen 100 - 10000 1/s liegen.
19. Verfahren nach Anspruch 1 bis 18, dadurch gekennzeichnet,  
10 dass die Celluloselösung eine Konzentration von 5 bis 25 % Cellulose enthält.
20. Verfahren nach Anspruch 1 bis 19, dadurch gekennzeichnet, dass neben dem NMMO-Pyrrolidonaten ein oder mehrere Verdünnungsmittel in der Celluloselösung enthalten sind.  
15
21. Verfahren nach Anspruch 1 bis 20, dadurch gekennzeichnet, dass ein Verdünnungsmittel Wasser ist.
22. Verfahren nach Anspruch 1 bis 20, dadurch gekennzeichnet, dass ein Verdünnungsmittel ein aprotisches organisches Lösungsmittel ist.  
20
23. Verfahren nach Anspruch 1 bis 20, dadurch gekennzeichnet, dass ein Verdünnungsmittel ein amphiprotisches Lösungsmittel ist.
24. Verfahren nach Anspruch 1 bis 23, dadurch gekennzeichnet, dass bei der Herstellung der Celluloselösung mit  
25 Temperaturen zwischen 60 und 140 °C, vorzugsweise zwischen 80 und 130 °C, gearbeitet wird.
25. Verfahren nach Anspruch 1 bis 24, dadurch gekennzeichnet, dass alle Rohrleitungen und/oder Apparate, in denen sich Celluloselösung befinden, aktiv oder passiv temperiert werden, wobei die Temperatur zwischen 50 und 140 °C liegen kann.  
30

26. Verfahren nach Anspruch 1 bis 25, dadurch gekennzeichnet, dass der aus dem Formwerkzeug austretende Lösungsstrahl direkt in das Fällbad geleitet wird.
27. Verfahren nach Anspruch 1 bis 25, dadurch gekennzeichnet,  
5 dass der aus dem Formwerkzeug austretende Lösungsstrahl vor Eintritt in das Fällbad durch einen Luftspalt geleitet wird.
28. Verfahren nach Anspruch 1 bis 25 und 27, dadurch gekennzeichnet,  
10 dass der aus dem Formwerkzeug austretende Lösungsstrahl vor Eintritt in das Fällbad durch einen Luftspalt geleitet und mit Hilfe eines bewegten gasförmigen Mediums, dass gegebenenfalls Zusatzstoffe enthält, temperiert wird.
29. Verfahren nach Anspruch 1 bis 28, dadurch gekennzeichnet,  
15 dass die Lösungstemperatur im Formwerkzeug zwischen 20 °C und 140 °C liegt.
30. Verfahren nach Anspruch 1 bis 29, dadurch gekennzeichnet,  
dass das Fällbad aus Wasser und/oder Alkohol und  
Pyrrolidon und tertiärem Aminoxid besteht.
- 20 31. Verfahren nach Anspruch 1 bis 30, dadurch gekennzeichnet,  
dass aus den Celluloselösungen Fasern, Filamente,  
Folien, Faservliese, Membrane hergestellt werden.
32. Verfahren nach Anspruch 1 bis 31, dadurch gekennzeichnet,  
25 dass die Formkörper mechanisch und / oder chemisch  
und / oder thermisch behandelt werden.
33. Verfahren nach Anspruch 1 bis 32, dadurch gekennzeichnet,  
dass das erhaltene Fällbad durch mechanische Filtration und / oder Aktivkohlebehandlung und / oder Ionentauscherstufen, bestehend aus kationen- und / oder  
30 anionenaktive Austauschersäulen oder Membranmodulen, gereinigt wird.

34. Verfahren nach Anspruch 1 bis 33, dadurch gekennzeichnet, dass die Lösungsmittelrückgewinnung durch eine Vakuumindampfanlagen und/oder Membrananlagen erfolgt.
35. Verfahren nach Anspruch 1 bis 34, dadurch gekennzeichnet, dass die bei dem Celluloseprozess gegebenenfalls anfallenden Kondensate im Waschprozess eingesetzt werden.  
5

# INTERNATIONAL SEARCH REPORT

International Application No  
PCT/DE 01/00445

**A. CLASSIFICATION OF SUBJECT MATTER**

IPC 7 C08B1/00 D01F2/00 D01D1/02 C08J3/09 C08J3/11

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C08B C08J D01F D01D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, PAJ, CHEM ABS Data, EPO-Internal

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                      | Relevant to claim No. |
|------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------|
| A          | US 3 447 939 A (DEE LYNN JOHNSON)<br>3 June 1969 (1969-06-03)<br>column 3, line 59 - line 64<br>claims 1-4<br>-----     | 1                     |
| A          | US 4 324 593 A (JULIANNA K. VARGA)<br>13 April 1982 (1982-04-13)<br>column 6; examples IX-A-D<br>-----                  | 1                     |
| A          | GB 2 337 990 A (ACORDIS FIBRES LIMITED)<br>8 December 1999 (1999-12-08)<br>page 5, line 15 - line 18<br>claims<br>----- | 1                     |

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

\* Special categories of cited documents :

- \*A\* document defining the general state of the art which is not considered to be of particular relevance
- \*E\* earlier document but published on or after the international filing date
- \*L\* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- \*O\* document referring to an oral disclosure, use, exhibition or other means
- \*P\* document published prior to the international filing date but later than the priority date claimed

- \*T\* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- \*X\* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- \*Y\* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- \*&\* document member of the same patent family

Date of the actual completion of the international search

12 June 2001

Date of mailing of the international search report

22/06/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2  
NL - 2280 HV Rijswijk  
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.  
Fax: (+31-70) 340-3016

Authorized officer

Mazet, J-F

# INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/DE 01/00445

| Patent document cited in search report | Publication date | Patent family member(s)                                                                                                                    | Publication date                                                                                                 |
|----------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| US 3447939                             | A 03-06-1969     | BE 703203 A<br>BE 703240 A<br>DE 1694047 A<br>DE 1694048 A<br>FR 1546629 A<br>FR 1556993 A<br>GB 1144048 A<br>GB 1144759 A<br>US 3508941 A | 15-01-1968<br>15-01-1968<br>30-10-1969<br>05-02-1970<br><br>14-02-1969<br>05-03-1969<br>12-03-1969<br>28-04-1970 |
| US 4324593                             | A 13-04-1982     | NONE                                                                                                                                       |                                                                                                                  |
| GB 2337990                             | A 08-12-1999     | NONE                                                                                                                                       |                                                                                                                  |

# INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/DE 01/00445

|                                              |       |          |          |          |          |          |
|----------------------------------------------|-------|----------|----------|----------|----------|----------|
| A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES | IPK 7 | C08B1/00 | D01F2/00 | D01D1/02 | C08J3/09 | C08J3/11 |
|----------------------------------------------|-------|----------|----------|----------|----------|----------|

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

## B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 C08B C08J D01F D01D

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

WPI Data, PAJ, CHEM ABS Data, EPO-Internal

## C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

| Kategorie* | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile                             | Betr. Anspruch Nr. |
|------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------|
| A          | US 3 447 939 A (DEE LYNN JOHNSON)<br>3. Juni 1969 (1969-06-03)<br>Spalte 3, Zeile 59 - Zeile 64<br>Ansprüche 1-4<br>----       | 1                  |
| A          | US 4 324 593 A (JULIANNA K. VARGA)<br>13. April 1982 (1982-04-13)<br>Spalte 6; Beispiele IX-A-D<br>----                        | 1                  |
| A          | GB 2 337 990 A (ACORDIS FIBRES LIMITED)<br>8. Dezember 1999 (1999-12-08)<br>Seite 5, Zeile 15 - Zeile 18<br>Ansprüche<br>----- | 1                  |

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- \* Besondere Kategorien von angegebenen Veröffentlichungen :
- \*'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- \*'E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- \*'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- \*'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- \*'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

\*'T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kolidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

\*'X' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

\*'Y' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist

\*'g' Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

12. Juni 2001

Absendedatum des internationalen Recherchenberichts

22/06/2001

Name und Postanschrift der Internationalen Recherchenbehörde  
Europäisches Patentamt, P.B. 5818 Patentlaan 2  
NL - 2280 HV Rijswijk  
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,  
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Mazet, J-F

# INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/DE 01/00445

| Im Recherchenbericht angeführtes Patentdokument | Datum der Veröffentlichung | Mitglied(er) der Patentfamilie                                                                                                             | Datum der Veröffentlichung                                                                                       |
|-------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| US 3447939 A                                    | 03-06-1969                 | BE 703203 A<br>BE 703240 A<br>DE 1694047 A<br>DE 1694048 A<br>FR 1546629 A<br>FR 1556993 A<br>GB 1144048 A<br>GB 1144759 A<br>US 3508941 A | 15-01-1968<br>15-01-1968<br>30-10-1969<br>05-02-1970<br><br>14-02-1969<br>05-03-1969<br>12-03-1969<br>28-04-1970 |
| US 4324593 A                                    | 13-04-1982                 | KEINE                                                                                                                                      |                                                                                                                  |
| GB 2337990 A                                    | 08-12-1999                 | KEINE                                                                                                                                      |                                                                                                                  |