KÜLSHAMMER NOTES

G, H linear algebraic groups over k, char k = p > 0. U maximal unipotent subgroup of H.

Question 1. Let $\sigma: U \to G$ be a representation. Are there only finitely many conjugacy classes of representation $\rho: H \to G$ such that $\rho|_U$ is G-conjugate to σ ?

H	G	status
finite	non-reductive	counterexample [Cram]
"	GL_n	p doesn't divide $ H \Rightarrow yes$ [Maschke's Theorem]
!!	connected, reductive	$p \text{ doesn't divide } H \Rightarrow \text{yes [Richardson]}$
		- embed G in GL_n and study induced map $Hom(H,G) \to Hom(H,GL_n)$
finite	GL_n	yes [Representation Theory]
"	G	p is good for $G \Rightarrow yes$ [Slodowy]
		- uses Richardson's argument
finite	G_2	counterexample [BMR]
connected, semisim	ple reductive (connected, semisimple)	yes [1.]
"	non-reductive	yes [2.]
Sketch of proof 1.		

Sketch of proof 2.