Definition 0.0.1. Take $\alpha \in \mathbb{C}$ to be an algebraic integer with minmal polynomial,

$$p(z) = z^n + a_{n-1}z^{n-1} + \dots + a_n$$

Then,

$$\operatorname{tr}(\alpha) = \sum_{\text{conjugates}} \sigma(\alpha) = -a_{n-1}$$

Then the absolute trace is,

$$atr\alpha = \frac{1}{\deg \alpha} \sum_{\text{conjugates}} \sigma(\alpha) = -\frac{a_{n-1}}{n}$$

Call α totally positive (TPAI = totally positive algebraic integer) if all roots of p are positive reals (if $\mathbb{Q}(\alpha)$ is totally real and α always embeds as a positive number).

There are TPAIs with atr = $1, \frac{3}{2}, \frac{5}{3}, \ldots$ approaching 2. If $\zeta^p = 1$ and $\zeta \neq 1$ and p is an odd prime then $\zeta + \zeta^{-1} + 2$ as atr < 2.

0.1 Schur-Siegel-Smyth Trace Problem

Choose an enumeration $\alpha_1, \alpha_2, \ldots$ of TPAI define,

$$\lambda_{SSS} = \liminf_{k \to \infty} \operatorname{atr}(\alpha_k) \le k$$

We want to show that $\lambda_{SSS} = 2$.

0.2 Serre

There are lots of results like $\lambda_{SSS} > 1.79$. Serre showed that their method cannot prove $\lambda_{SSS} > \lambda_{Serre}$ where $\lambda_{Serre} \simeq 1.899$.

0.3 What Alex Showed

Proved that $1.809 > \lambda_{SSS} > 1.802$ so the conjecture is false.

0.4 Methods

We two methods.

0.4.1 Integrality of Resultants

Suppose α is an AI with conjugates $\alpha_1, \ldots, \alpha_n$. Take \mathbb{Q} be an integer polynomial and suppose that $Q(\alpha) \neq 0$ then,

$$\prod_{i \le n} |Q(\alpha_i)| \ge 1$$

0.4.2 Integrality of Discriminants

$$\prod_{i < j} |\alpha_i - \alpha_j|^2 \ge 1$$

0.4.3 Analysis

Definition 0.4.1. Given $\alpha \in \mathbb{C}$ take δ_{α} to be the Borel measure on \mathbb{C} defined by,

$$\delta_{\alpha}(Y) = \begin{cases} 1 & \alpha \in Y \\ 0 & \alpha \notin Y \end{cases}$$

Given $P(z) = a_n(z - \alpha_1) \cdots (z - \alpha_n)$ then we define,

$$\mu_P = \frac{1}{n} (\delta_{\alpha_1} + \dots + \delta_{\alpha_n})$$

Proposition 0.4.2. If α is an AI with min poly P and given an int poly Q with P+Q then,

$$\int \log |Q(z)| \mathrm{d}\mu_O \ge 0$$

0.4.4 Smyth Approach

Find integer polynomials Q_1, \ldots, A_N and positive numbers $a_1, \ldots, a_N, \lambda$ so that,

$$t \ge \lambda + \sum_{i \le N} a_i \log \left(Q_i(t) \right)$$

for $t \geq 0$. Suppose α is TPAI with min poly P and $p \not\mid Q_1, \ldots, Q_N$ then,

$$\operatorname{atr}(\alpha) = \int t d\mu_P(t) \ge \int \lambda d\mu_P + \sum_{i \le N} a_i \int \log |Q_i| d\mu_P \ge \lambda$$

The exception list is exactly the roots of the Q_1, \ldots, Q_N .

Proposition 0.4.3. Suppose every probability measure μ on $\mathbb{R}^{\geq 0}$ satisfying,

- (a) $\int \log |Q_i| d\mu \ge 0$
- (b) $I(\mu) = \int \int \log|z w| d\mu(z) d\mu(w) \ge 0$

also satisfies,

$$\int t \mathrm{d}\mu \ge \lambda$$

Then $\lambda_{SSS} \geq \lambda$.

0.4.5 Schur

Uses no polynomials but incorporates the discriminant.

0.4.6 Siegel

Uses only one polynomial $Q_1(x) = x$.

0.4.7 Alexander Smith

Uses about 10 polynomials. Key ingredients in the proof, given a sequence of prob. measures μ_1, μ_2, \ldots on $\mathbb{P}^1_{\mathbb{C}}$ there is a measure μ and subsequence, n_1, n_2, \ldots , so $\mu_{n_k} \to \mu$ converge in the weak-* topology (this is because $\mu_i(\mathbb{P}^1_{\mathbb{C}}) = 1$ for all i so this is in the unit ball). Also for every $f: \mathbb{C}^{\infty} \to \mathbb{R}$ continuous then,

$$\lim_{k \to \infty} \int f \mathrm{d}\mu_{n_k} = \int f \mathrm{d}\mu$$

Remark. This is just because $C(X)^*$ is the space of finite sined measures on X and the probability measures are the unit sphere which is inside the unit ball which is weak-* compact. For what it's worth $(L^1)^* = L^{\infty}$ and $(L^{\infty})^*$ are finite sined measures absolutely continuous with respect to the measure defining L^{∞} .

Theorem 0.4.4.

Let Σ be a finite union of