EE 223 Homework 4

Enrique Hernandez 11/04/2018

Design of High-Swing Cascode Bias and Cascode OTA Circuit

1. Schematic and DC Operating Points of the Circuit

Figure 1: Start Up Circuit and Beta Multiplier DC Operating Points and Node Voltages

Figure 2: Nmos High Swing Current Cascode DC operating point and Node Voltage.

Figure 3: Pmos High Swing Current cascode DC operating Point and Node voltage.

Fiugre 4: Fully differential DC Operating point and Node voltage.

Figure 5: Operational Transconductance Amplifier DC Operating point and Node Voltage.

Figure 5: Circuit Power dissipation VDD= 1.8V, I=484.755uA, P=872.561uW (VDD*I).

Figure 6: Start Up and Beta multiplier device size and region of operation. Where $w_pm13=1$, $W_pm13=50$, $L_nm10=2$ and $W_nm10=10$.

Figure 7: NMOS high swing current cascode device size and DC operating region.

Figure 8: PMOS high swing current cascode device size and DC operating region.

Figure 9: Fully differential circuit device size and DC operating region.

Figure 10: Operational Transconductance Amplifier devices size and DC Operating region.

2. AC Simulation and results.

Schematic

Figure 11: AC response schematic

Figure 12: AC response plot

Table 1: AC response Results

Parameter	Gain[dB]	Frequency[HZ]
A0	49.501	0
-3dB BW	46.59	164.57K
Wu	0	49.88M
A0*-3dB BW		49.1182M

3. Transient simulation of Buffer configuration

Schematic

Figure 13: Unity gain configuration circuit.

Figure 14: Transient Response of the Unity gain configuration (red trace is output, and green is input).