

《房屋结构》 课程设计

金工车间双跨等高厂房结构设计

 学生姓名
 胡双俊
 学号
 20090001024

 指导教师
 刘恒喜

 专业年级
 20 土木工程

 日
 期
 2022
 年9月16日

中国海洋大学工程学院

2022 年 <u>秋</u>季学期中国海洋大学全日制本科《房屋结构》课程设计任务书

专业年级: 土木工程 2020 任课教师: 刘恒喜

一、课程设计题目

金工车间双跨等高厂房结构设计

二、课程设计内容

- 1 结构布置和构件选型
- 2 计算简图
- 3 内力分析
- 4 内力组合表及其说明
- 5 排架柱截面设计
- 6柱下单独基础设计
- 7绘制柱施工图(柱模板图、柱配筋图)

三、设计资料

1.该车间为双跨等高无天窗厂房,跨度 24m,柱距 6m,车间总长度 66m,厂房平面图、剖面图如附图所示;

- 2. 吊车: 厂房 AB 跨设两台 15/3t 工作制级别 A4 的电动桥式吊车, BC 跨设两台 20/5t 工作制级别 A5 的电动桥式吊车,均为双闸小车和封闭式操纵室,轨顶标高+7.700m;
 - 3. 建设地点: 青岛市市郊区
 - 4. 工程地质及水文条件
 - 1. 耕土层: 厚约 0.5m;
 - 2. 粘土层: 厚约 2m, 硬塑状态, 地基土承载力特征值 f_k=180kN/mm²;
 - 3. 中砂: 中密, 厚约 4~5m, 地基土承载力特征值 f_k=280kN/mm²;
 - 4. 卵石: 厚约 5~7m, f_k=600kN/mm²;
 - 5. 基岩:表层中等风化,本层钻进深度 2m。

厂区地层承载力较高,是建筑的良好地基。厂区冲积层潜水,4~5 月份实测稳定水位埋深在 5.15~6.01 米左右,埋深高程为 39.75~41.06 米; 8 月份(雨季)实测稳定水位埋深在 2.90~3.70 米左右,埋深高程为 42.22~43.57 米。

四、课程设计成果及设计文件编制要求

1. 课程设计成果

金工车间双跨等高厂房结构设计计算书(正文)及柱施工图

2. 编制要求

课程设计成果包括金工车间双跨等高厂房结构设计计算书及柱施工图,**学号为单号同学完成边柱施工图绘制**,双号同学完成中柱施工图绘制。计算书采用 A4 纸双面打印后与图纸一并装订。柱施工图采用 A3 图幅,严格按照《建筑结构制图标准》、《建筑制图标准》、《房屋建筑统一制图标准》绘制,柱模板图、配筋图采用 1:50 比例,剖面图采用 1:30 比例,采用 CAD 绘图。文本及图纸均转为 PDF 格式,计算简图及内力图可以手工绘制扫描后插入文档。课程设计文件按以下顺序编排: 封面、课程设计任务书、(金工车间双跨等高厂房结构设计计算书)评分表、目录、正文、附图(排架 A 柱或 B 柱施工图)及参考文献。

《房屋结构》课程设计评分表

学生姓名	学号	专业年级		土木工程 2020						
设计题目	金工车间双跨等高厂房结构设计									
评价内容	具 体 要 求	分值	评		分		I	得分		
	, , , , , , , , , , , , , , , , , , ,	74 111	A	В	С	D	Е			
查阅、收集 资料	查阅相关文献资料,收集素材,对 文献进行分析,整理和归纳。	10	10	8	6	4	2			
选题、构 思、主见	选题符合要求,新颖,构思全面,对 问题有较深刻的认识,有一定独特 见解。	10	10	8	6	4	2			
学过知识的 运用	结合实际运用所学的基本原理和基本方法,进行强度计算和设计,分 析阐述观点。	20	20	18	15	13	11			
工程设计的能力	针对设计的对象和计算参数,设计执行机构,并绘制工程图纸。	30	30	24	20	18	15			
撰写质量	语句通顺,语言准确,书写工整, 达到论文要求的字数,符合论文要 求的书写格式。	20	20	18	15	13	11			
创新性	文章具有一定的创新性,能够提出 新观点。	10	10	8	6	4	2			
具体评审意 见						总分				

授课教师签字:

目录

一、	结构布置和构件选型	1
	1.1 结构布置与变形缝设置	1
	1.2 构件选型	1
	1.2.1 屋面板	1
	1.2.2 屋架	
	1.2.3 吊车梁、轨道联结及车挡	2
	1.2.4 预制钢筋混凝土柱	2
	1.2.5 柱下独立基础	2
_,	计算单元及计算模型	3
	2.1 定位轴线	3
	2.2 计算单元及计算模型	3
三、	荷载计算	5
	3.1 屋盖荷载	5
	3.2 柱和吊车梁自重	5
	3.3 吊车荷载	6
	3.4 风荷载	7
四、	计算简图	9
	4.1 恒荷载	9
	4.2 屋面活荷载	
	4.2.1 屋面活荷载作用在 AB 跨	9
	4.2.2 屋面活荷载作用在 BC 跨	
	4.3 吊车荷载	10
	4.3.1 吊车竖向荷载	
	4.3.2 吊车横向水平荷载	
	4.4 风荷载	
	4.4.1 左风	
	4.4.2 右风	
五、		
	5.1 计算剪力分配系数 η	13
	5.2 恒载作用下的内力计算	13
	5.3 屋面活荷载作用下的内力计算	15
	5.3.1 屋面活荷载作用在 AB 跨	15
	5.3.2 屋面活荷载作用在 BC 跨	17
	5.4 吊车竖向荷载作用下的内力计算	18
	5.4.1 AB 跨 $D_{\max,k}$ 在 @ 柱	18
	5.4.2 AB 跨 $D_{\max,k}$ 在⑧柱	
	5.4.3 BC 跨 $D_{\max,k}$ 在 🔞 柱	21
	5.4.4 BC 跨 $D_{\max,k}$ 在 © 柱	23
	5.5 吊车横向水平荷载作用下的内力分析	25
	5.5.1 AB 跨 $T_{\max,k}$ 向左	25
	5.5.2 AB 跨 $T_{\max,k}$ 向右	
	5.5.3 BC 跨 $T_{\max,k}$ 向左	27
	5.5.4 BC 跨 $T_{\max,k}$ 向右	28
	5.6 风荷载作用下的内力分析	28
	5.6.1 左风工况	28

房屋结构课程设计

5.6.2 右风工况	29
六、 内力组合	31
七、 柱截面设计	32
7.1 上柱配筋计算	
7.2 下柱配筋计算	34
7.3 排架柱的裂缝宽度验算	
7.4 箍筋配置	40
7.5 牛腿设计	
7.6 排架柱的吊装验算	42
7.7 绘制排架柱的施工图	43
八、 锥形杯口基础设计	44
8.1 确定基础设计等级	
8.2 作用在基础底面的内力	
8.3 基础尺寸的确定	45
8.3.1 初步确定基础尺寸	45
8.3.2 持力层承载力的验算	46
8.4 基础高度验算	47
8.5 基础底板配筋	
参考文献	
M录	

一、结构布置和构件选型

1.1结构布置与变形缝设置

(1) 柱网与定位轴线

根据设计资料,该厂房为双跨等高无天窗厂房,跨度为24m,柱距为6m。

(2) 变形缝设置

伸缩缝:根据《混凝土结构设计规范》,装配式钢筋混凝土排架结构处于室内或土中时,伸缩缝最大间距为100m,,处于露天环境时,伸缩缝最大间距为70m。该厂房车间总长度为66m,可不设置伸缩缝。

沉降缝: 厂房基础承载力较高, 地基良好, 不需设置沉降缝。

防震缝:厂房所处位置为山东省青岛市市郊区,处于地震带上,但厂房结构平面布置较为简单,可不设置防震缝。

1.2构件选型

1.2.1屋面板

本车间采用卷材防水屋面,抗震设防烈度按 8 度考虑,结构重要性系数 $\gamma_0 = 1$ 。 屋面处理方式:

25mm 厚 1:2.5 水泥砂桨找平,按1m×1m 分格,密封胶嵌缝(20 KN/m³)

4mm 厚高聚物改性沥青防水卷材($1200 Kg/m^3$)

刷基层处理剂一道

20mm 厚 1:3 水泥砂桨找平层 (20 KN/m³)

75mm 厚挤塑聚苯板(聚合物砂浆粘贴) ($30 Kg/m^3$)

20mm 厚 1:3 水泥砂桨找平层 (20 KN/m³)

排架计算时,雪荷载近似按积雪全跨均匀布置考虑,故取屋面积雪分布系数 $\mu_r=1$ 。根据《GB5009-2012 建筑结构荷载规范》,按 50 年一遇的情况考虑,可确定青岛市基本雪压 $s_0=0.2\,KN/m^2$ 。

屋面板上方荷载标准值:

总和 65 mm 厚水泥砂浆找平层

$$G_{1k} = 65 \times 20 \times 10^{-3} = 1.3 \, KN/m^2$$

防水层

$$G_{2k} = 1200 \times 10 \times 10^{-3} \times 4 \times 10^{-3} \approx 0.05 \, KN/m^2$$

保温层

$$G_{3k} = 75 \times 10^{-3} \times 30 \times 10 \times 10^{-3} \approx 0.02 \, KN/m^2$$

不上人屋面均布活荷载

本项目不考虑
$$Q_{1k} = 0.5 \, KN/m^2$$

积雪荷载

积灰荷载

$$Q_{2k} = \mu_r s_0 = 1 \times 0.2 = 0.2 \, KN/m^2$$

排架计算时,屋面均布活荷载与雪荷载不同时组合,仅取两者中的较大值。故可求得外加荷载的基本组合设计值:

$$q_1 = 1.3 \times (1.3 + 0.05 + 0.02) + 1.5 \times 0.5 = 2.53 \, KN/m^2$$

依《04G410-1 屋面板》中 6.2.1 选用表,选用 Y-WB-3III($q = 3.24 \, KN/m^2$, $G_k = 1.5 \, KN/m^2$), 其允许的均布荷载组合设计值为 $3.24 \, KN/m^2 > 2.53 \, KN/m^2$,满足要求。

1.2.2屋架

屋盖荷载基本组合设计值:

$$q_2 = 1.3 \times (1.3 + 0.05 + 0.02 + 1.5) + 1.5 \times 0.5 = 4.48 \, KN/m^2$$

依《05G511 梯形钢屋架》中表 7,满足无天窗,屋面荷载 4.48 KN/m²,无悬挂吊车的条件,应选择第 5号屋架;由表 3屋架两端连接分类属于屋架两端均与钢筋混凝土柱连接,其代号为 A;再由表 4屋架上、下弦连有横向支撑和垂直支撑,代号为 1,因此所选用的屋架型号为 GWJ24-5A₁。

1.2.3吊车梁、轨道联结及车挡

厂房 AB 跨设两台 15/3t 工作制级别 A4 的电动桥式吊车, BC 跨设两台 20/5t 工作制级别 A5 的电动桥式吊车,均为双闸小车和封闭式操纵室,且厂房柱距为 6*m*,吊车跨度均为 22.5*m*,满足图集《04G323-2 钢筋混凝土吊车梁-工作级别 A4、A5》要求。

于是依《04G323-2 钢筋混凝土吊车梁-工作级别 A4、A5》中 A4、A5 吊车梁选用表, 厂房 AB 跨和 BC 跨吊车梁边跨选用 DL-9B, 中间跨选用 DL-9Z。

对于 AB 跨,吊车梁上螺栓孔间距为 280mm,最大轮压值 185KN。对于 BC 跨,吊车梁上螺栓孔间距为 280mm,最大轮压值为 215KN,吊车跨度均为 22.5m。依《04G325 吊车轨道联结及车挡》,厂房 AB 和 BC 跨吊车轨道联结选用 DGL-13,最大轮压设计允许值为 510KN,满足要求。

根据吊车生产厂家规格,起重量查《04G325 吊车轨道联结及车挡》页 11 表 2,确定车挡型号为 CD-3。吊车梁端应根据 CD-3 安装要求预留螺栓。

1.2.4预制钢筋混凝土柱

由于选取的吊车轨道为 DGL-13, 查表可知轨道顶面至吊车梁顶面高度 $h_a=170mm\sim190mm$, 取 $h_a=180mm$, 故

牛腿顶面标高=轨顶标高- h_a - h_b =7.7-0.18-1.2=+6.320m。

由书后附录 12 查得,AB 跨吊车轨顶至吊车顶部的高度为 2.15m,BC 跨吊车轨顶的高度为 2.3m,一般情况下屋架下弦至吊车顶部所需空隙高度为 220mm,但考虑到 AB 跨和 BC 跨吊车轨顶至吊车顶部的高度不一样,空隙高度可略有调整,以便中间柱顶高度一致。故

柱顶标高 = 7.7 + 2.3 + 0.22 = +10.220m。

地基一般选择粘土层或者中砂作为持力层,则基础顶面至室外地坪距离大于 500mm, 且该厂区地基良好,一般认为室外地坪以下 0.5m 的土已完全固结,对柱能起到固定端约束 的作用,因此柱的计算高度从室外地坪以下 500mm 算起。室内外地面高差为 150mm,故

柱高H = 10.22 + 0.5 + 0.15 = 10.87m。

上柱高度 $H_{yy} = 10.22 - 6.32 = 3.9m$,

下柱高度 $H_1 = 10.87 - 3.9 = 6.97m$ 。

参考书上表 12-2 及有关资料,选择柱截面形式和尺寸:

对干边柱:

上部柱采用矩形截面尺寸 $b \times h = 400mm \times 400mm$;

下部柱采用工字形截面 $b \times h \times h_f \times b_f = 400 mm \times 800 mm \times 150 mm \times 100 mm$

对干中柱:

上部柱采用矩形截面尺寸 $b \times h = 400mm \times 800mm$;

下部柱采用工字形截面 $b \times h \times h_f \times b_f = 400 mm \times 800 mm \times 150 mm \times 100 mm$ 。

1.2.5柱下独立基础

采用锥形杯口基础。

二、计算单元及计算模型

2.1定位轴线

对于边柱和中柱:

 B_1 : 由附表 12 可以查得轨道中心线至吊车端部的距离 B_1 = 260mm;

 B_2 : 吊车桥架至上柱内边缘的距离,小于 50t 的吊车应取 $B_2 \ge 80mm$;

 B_3 : 封闭的纵向定位轴线至上柱内边缘的距离, $B_3 = 400mm$ 。

则 $B_1 + B_2 + B_3 = 260 + 80 + 400 = 740mm \le 750mm$, 可以。

因此封闭的定位轴线A、B都分别与左、右外纵墙内皮重合。

2.2计算单元及计算模型

由于该金工车间厂房在工艺上没有特殊要求,结构布置均匀,除吊车荷载外,荷载在纵向的分布是均匀的,故可取一榀横向框架为计算单元,计算单元的宽度为相邻柱间距中心线之间的距离,即B=6.0m,如下图 1 所示。同时也可得该榀框架的计算模型如下图所示。

图 2-1 计算单元

¹ 文中所有图片均为矢量图,可放大查看

图 2-2 计算模型

三、荷载计算

3.1屋盖荷载

(1) 屋盖恒荷载

屋盖恒荷载=屋面面层荷载+屋面板自重+钢屋架自重。查相关规范可知,屋面板 Y-WB-3III 自重为 $1.5\,KN/m^2$,钢屋架 GWJ24- $5A_1$ 自重 $35.3\,KN$ 。又屋面面层荷载为 $1.37\,KN/m^2$,故屋架传给排架柱的集中荷载 $F_{1,k}$ 标准值:

$$F_{1,k} = \frac{1}{2}(35.3 + (1.5 + 1.37) \times 24 \times 6) = 224.3KN$$

即边柱承受屋盖传来的集中荷载标准值为 $F_{1,k} = 224.3KN$,中柱为 $2F_{1,k} = 448.6KN$ 。

(2) 屋面活荷载

《荷载规范》规定,不上人屋面均布活荷载标准值为 $0.5\,KN/m^2$,比青岛市地区雪荷载标准值 $s_k=0.2\,KN/m^2$ 大,故仅按屋面均布活荷载计算。于是由屋盖传给排架柱的集中荷载标准值:

$$F_{6,k} = \frac{1}{2} \times 0.5 \times 24 \times 6 = 36KN$$

3.2柱和吊车梁自重

边柱上部柱自重标准值为 $25 \times 0.4 \times 0.4 = 4.0$ KN/m, 故作用在边柱牛腿顶截面处上部柱 恒荷载标准值为:

$$F_{2k} = 4 \times 3.9 = 15.6 KN$$

中柱上部柱自重标准值为 $25 \times 0.4 \times 0.8 = 8.0 \, KN/m$,故作用在中柱牛腿顶截面处上部柱恒荷载标准值为:

$$F_{2.k} = 8.0 \times 3.9 = 31.2 KN$$

边柱和中柱的下部柱自重标准值均为:

$$25 \times \left[2 \times (0.4 \times 0.15 + \frac{0.1 + 0.4}{2} \times 0.025) + 0.1 \times (0.8 - 0.15 \times 2 - 0.025 \times 2)\right] = 4.44 \, KN/m$$

故作用在基础顶截面处的下柱恒荷载标准值为:

$$F_{3,k} = 4.44 \times 6.97 = 30.95 KN$$

吊车梁自重标准值为 $39.5\,KN/根$, 轨道连接自重标准值为 $0.8\,KN/m$, 故作用在牛腿顶截面处的上部柱恒荷载标准值:

$$F_{4k} = 39.5 + 6 \times 0.8 = 44.3 KN$$

图 3-1 荷载作用位置

3.3吊车荷载

AB 跨和 BC 跨吊车跨度均为 $L_k = 24 - 2 \times 0.75 = 22.5m$ 。

对于 AB 跨吊车:

查书后附录 12,得Q=15/3t, $L_k=22.5m$ 时的吊车最大轮压标准值 $P_{\max,k}$,最小轮压标准值 $P_{\min,k}$,小车自重标准值 $G_{2,k}$ 以及吊车额定起重量相对应的重力标准值 $G_{3,k}$:

$$P_{\text{max},k} = 185KN, P_{\text{min},k} = 50KN, G_{2,k} = 74KN, G_{3,k} = 150KN$$

并查得吊车宽度 B 和 轮距 K:

$$B = 5.55m, K = 4.40m$$

对于BC跨吊车:

同理可得:

$$P_{\text{max},k} = 215KN, P_{\text{min},k} = 45KN, G_{2,k} = 78KN, G_{3,k} = 200KN$$

 $B = 5.55m, K = 4.40m$

(1) 吊车竖向荷载标准值 $D_{\max,k}$ 、 $D_{\min,k}$

对于 AB 跨吊车:

由下图所示吊车梁支座反力影响线知,

$$D_{\text{max},k} = \beta P_{\text{max},k} \sum_{i} y_{i} = 0.9 \times 185 \times (1 + 0.808 + 0.267 + 0.075) = 357.97 KN$$

$$D_{\text{min},k} = D_{\text{max},k} \times \frac{P_{\text{min},k}}{P_{\text{max},k}} = 357.97 \times \frac{50}{185} = 96.75 KN$$

对于BC跨吊车:

同理,有:

$$\begin{split} D_{\text{max},k} &= \beta P_{\text{max},k} \sum y_i = 0.9 \times 215 \times (1 + 0.808 + 0.267 + 0.075) = 416.03 \text{KN} \\ D_{\text{min},k} &= D_{\text{max},k} \times \frac{P_{\text{min},k}}{P_{\text{max},k}} = 416.03 \times \frac{45}{215} = 87.08 \text{KN} \end{split}$$

图 3-2 吊车梁支座反力影响线

(2) 吊车横向水平荷载标准值 $T_{\text{max},k}$

当吊车额定起重量 $15t < Q \le 50t$ 时, $\alpha = 0.10$ 。

对于 AB 跨吊车:

$$T_k = \frac{1}{4}\alpha(G_{2,k} + G_{3,k}) = \frac{1}{4} \times 0.1 \times (74 + 150) = 5.6KN$$

$$T_{\max,k} = D_{\max,k} \frac{T_k}{P_{\max,k}} = 357.97 \times \frac{5.6}{185} = 10.84KN$$

对于BC跨吊车:

$$T_k = \frac{1}{4}\alpha(G_{2,k} + G_{3,k}) = \frac{1}{4} \times 0.1 \times (78 + 200) = 6.95KN$$

$$T_{\text{max},k} = D_{\text{max},k} \frac{T_k}{P_{\text{max},k}} = 416.03 \times \frac{6.95}{215} = 13.45KN$$

3.4风荷载

(1) 作用在柱顶处的集中风荷载标准值 \bar{W}_{k}

因为该厂房无矩形天窗,风压高度系数 μ_z 按厂房檐口高度取值。而厂房檐口高度为 0.15+10.22+1.99 (屋架端部高度) +0.4 (高出屋架端部高度 300mm-500mm) =12.76m,查表 10-

4, 得离地面 10m 时, $\mu_z = 1.0$; 离地面 15m 时, $\mu_z = 1.14$, 利用线性插值, 可得:

$$\mu_z = \frac{12.76 - 10}{15 - 10} \times (1.14 - 1) + 1 = 1.08$$

查阅图集,得屋架 h_1 = 1.99m, h_2 = 1.2m 。查《GB50009-2012 建筑荷载规范》,按 50 年一 遇的情况考虑,得青岛市基本风压 w_0 = 0.6 KN/m^2 ,同时查得厂房屋盖和房屋风压体型系数 如下图所示。

$$\begin{split} \overline{W}_k &= \left[(0.8 + 0.4)h_1 + (0.5 + 0.4 - 0.6 - 0.4)h_2 \right] \times \mu_z w_0 B \\ &= \left[(0.8 + 0.4) \times 1.99 - 0.1 \times 1.2 \right] \times 1.08 \times 0.6 \times 6 \\ &= 8.82 KN \end{split}$$

图 3-3 风压体型系数 μ_s 取值

(2) 沿排架柱高度作用的均布风荷载标准值 $q_{1,k}$ 、 $q_{2,k}$

这时风压高度变化系数 μ_z 按柱顶离室外地坪的高度 0.15+10.22=10.37m 来计算。

$$\mu_z = \frac{10.37 - 10}{15 - 10} \times (1.14 - 1) + 1 = 1.01$$

$$q_{1,k} = \mu_s \mu_z w_0 B = 0.8 \times 1.01 \times 0.6 \times 6 = 2.91 \, KN/m$$

$$q_{2,k} = \mu_s \mu_z w_0 B = 0.4 \times 1.01 \times 0.6 \times 6 = 1.45 \, KN/m$$

四、计算简图

4.1恒荷载

考虑屋面恒载、柱自重和吊车梁及轨道连接自重,可得计算简图如下图所示。

图 4-1 恒载标准值作用下计算简图

4.2屋面活荷载

4.2.1屋面活荷载作用在 AB 跨

图 4-2 屋面活荷载作用在 AB 跨时计算简图

4.2.2屋面活荷载作用在 BC 跨

图 4-3 屋面活荷载作用在 BC 跨时计算简图

4.3吊车荷载

4.3.1吊车竖向荷载

图 4-4 AB 跨 $D_{\max,k}$ 在

图 4-5 AB 跨 $D_{\max,k}$ 在 \mathbb{B} 柱

图 4-6 BC 跨 $D_{\max,k}$ 在 \mathbb{B} 柱

图 4-7 BC 跨 $D_{\max,k}$ 在©柱

4.3.2吊车横向水平荷载

图 4-8 AB 跨 $T_{\max,k}$ 向右

图 4-9 AB 跨 $T_{\max,k}$ 向左

图 4-10 BC 跨 $T_{\max,k}$ 向右

图 4-11 BC 跨 $T_{\max,k}$ 向左

4.4风荷载

4.4.1左风2

图 4-12 左风工况

4.4.2右风

图 4-13 右风工况

² 此处"左风"为向左吹的风

五、内力计算

5.1计算剪力分配系数 η

对于边柱 (A、C柱):

$$n_1 = \frac{I_{u1}}{I_1} = \frac{2.13 \times 10^9}{14.38 \times 10^9} = 0.148$$

对于中柱 (B柱):

$$n_2 = \frac{I_{u2}}{I_l} = \frac{17.07 \times 10^9}{14.38 \times 10^9} = 1.187$$
 且 $\lambda = \frac{H_u}{H} = \frac{3.9}{10.87} = 0.359$,根据 $C_0 = \frac{3}{1 + \lambda^3 (\frac{1}{n} - 1)}$,分别得:
$$C_{0,A} = C_{0,C} = \frac{3}{1 + 0.359^3 (\frac{1}{0.148} - 1)} = 2.369$$

$$C_{0,B} = \frac{3}{1+0.359^3(\frac{1}{1.187}-1)} = 3.022$$
 又 $D_{0i} = \frac{E_c I_l C_0}{H^3}$,式中除 C_0 外其余均相同,可简化 $\eta_i = \frac{D_{0i}}{\sum D_{0i}} = \frac{C_{0i}}{\sum C_{0i}}$,可得:

$$\eta_A = \eta_C = \frac{2.369}{2.369 \times 2 + 3.022} = 0.305$$

$$\eta_B = 1 - \eta_A - \eta_C = 0.390$$

5.2恒载作用下的内力计算

将各恒载作用移至下柱中心线上,同时产生附加力矩

$$M_1 = F_{1,k} \times e_1 = 224.3 \times 0.05 = 11.215 KN \cdot m$$

$$V' = (F_{1,k} + F_{2,k}) \times e_2 - F_{1,k} \times e_3 = (224.3 + 15.6) \times 0.2 - 44.3 \times 0.35 = 12.415 KN \cdot m$$

$$M_1' = (F_{1,k} + F_{2,k}) \times e_2 - F_{4,k} \times e_3 = (224.3 + 15.6) \times 0.2 - 44.3 \times 0.35 = 32.475 KN \cdot m$$

$$M_2 = M_1, M_2' = M_1'$$

 $F_{all} = \sum F_{i,k} = 315.15KN$

计算简图如下图所示。

图 5-1 恒载作用下计算简图

(1) 在柱顶附加不动铰支座,如下图所示。

图 5-2 柱顶支座反力

对 A 柱分析, 查书后附录 9 中, 可得:

$$C_{1,A} = 1.5 \times \frac{1 - \lambda^2 (1 - \frac{1}{n_1})}{1 + \lambda^3 (\frac{1}{n_1} - 1)} = 1.5 \times \frac{1 - 0.359^2 (1 - \frac{1}{0.148})}{1 + 0.359^3 (\frac{1}{0.148} - 1)} = 2.06$$

$$C_{3,A} = 1.5 \times \frac{1 - \lambda^2}{1 + \lambda^3 (\frac{1}{n_1} - 1)} = 1.5 \times \frac{1 - 0.359^2}{1 + 0.359^3 (\frac{1}{0.148} - 1)} = 1.03$$

因此,不动铰支座反力

$$R_A = \frac{M_1}{H}C_{1,A} + \frac{M_1}{H}'C_{3,A} = \frac{11.215}{10.87} \times 2.06 + \frac{32.475}{10.87} \times 1.03 = 5.21 \text{ KN } (\rightarrow)$$

由 $A \times C$ 柱对称,且柱尺寸相同,可得 $R_C = -5.21$ KN (\leftarrow),且因为 $A \times C$ 柱顶有附加水平不动铰支座,故 B 柱无不动铰支座反力。

从而柱顶剪力为:

$$V_{A,1} = R_A = 5.21KN(\rightarrow)$$

$$V_{B,1} = R_B = 0KN(\rightarrow)$$

$$V_{C,1} = R_C = -5.21KN(\leftarrow)$$

(2) 撤销附加的不动铰支座

图 5-3 支座反力反号分配

$$\sum R = -R_A - R_B - R_C = -5.21 - 0 + 5.21 = 0 \text{ KN}$$

故 $V_{A,2} = V_{B,2} = V_{C,2} = 0 KN$ 。

(3)叠加上述两种状态,恢复结构原有受力状况,即把各柱分配到的柱顶剪力与柱顶不动铰支座反力相加,即得该柱顶的柱顶剪力:

$$V_A = V_{A,1} + V_{A,2} = 5.21 + 0 = 5.21KN \ (\rightarrow)$$

$$V_B = V_{B,1} + V_{B,2} = 0 + 0 = 0KN \ (\rightarrow)$$

 $V_C = V_{C,1} + V_{C,2} = -5.21 + 0 = -5.21KN \ (\leftarrow)$

先做如下说明:

- 1. 弯矩以右侧受拉为正;
- 2. 剪力自左向右为正,正剪力值的画在柱子右侧;
- 3. 轴力以压为正,正值画在柱子右侧。

从而,绘制内力图如下。

图 5-4 恒载作用下内力图

5.3屋面活荷载作用下的内力计算

5.3.1屋面活荷载作用在 AB 跨

将屋面活载作用移至下柱中心线上,同时产生附加力矩

$$M_1 = F_{6,k} \times e_1 = 36 \times 0.05 = 1.8 KN \cdot m$$

 $M_1' = F_{6,k} \times e_2 = 36 \times 0.2 = 7.2 KN \cdot m$

$$M_2 = F_{6,k} \times 150mm = 36 \times 0.15 = 5.4 KN \cdot m$$

图 5-5 屋面活载作用下计算简图

(1) 在柱顶附加不动铰支座

图 5-6 柱顶支座反力

查书后附录9,得

$$C_{1,B} = 1.5 \times \frac{1 - \lambda^2 (1 - \frac{1}{n_2})}{1 + \lambda^3 (\frac{1}{n_2} - 1)} = 1.5 \times \frac{1 - 0.359^2 (1 - \frac{1}{1.187})}{1 + 0.359^3 (\frac{1}{1.187} - 1)} = 1.48$$

不动铰支座反力

$$R_{A} = \frac{M_{1}}{H}C_{1,A} + \frac{M'_{1}}{H}C_{3,A} = \frac{1.8}{10.87} \times 2.06 + \frac{7.2}{10.87} \times 1.03 = 1.02KN(\rightarrow)$$

$$R_{B} = \frac{M_{2}}{H}C_{1,B} = \frac{5.4}{10.87} \times 1.48 = 0.735KN(\rightarrow)$$

由于 $A \times B$ 柱顶有附加水平不动铰支座,故 C 柱无不动铰支座反力。从而柱顶剪力为:

$$\begin{aligned} V_{A,1} &= R_A = 1.02 \, KN(\rightarrow) \\ V_{B,1} &= R_B = 0.735 \, KN(\rightarrow) \\ V_{C,1} &= R_C = 0 \, KN(\rightarrow) \end{aligned}$$

(2) 撤销附加的不动铰支座

图 5-7 支座反力反号分配

$$\sum R = -R_{A} - R_{B} - R_{C} = -1.02 - 0.735 = -1.755 KN (\leftarrow)$$
由剪力分配法,得

$$V_{A,2} = \eta_A \sum R = 0.305 \times (-1.755) = -0.535 KN (\leftarrow)$$

$$V_{B,2} = \eta_B \sum R = 0.390 \times (-1.755) = -0.685 KN (\leftarrow)$$

$$V_{C,2} = \eta_C \sum R = 0.305 \times (-1.755) = -0.535 KN (\leftarrow)$$

(3)叠加上述两种状态,恢复结构原有受力状况,即把各柱分配到的柱顶剪力与柱顶不动铰支座反力相加,即得该柱顶的柱顶剪力:

$$V_A = V_{A,1} + V_{A,2} = 1.02 - 0.535 = 0.485 KN \ (\rightarrow)$$

$$V_B = V_{B,1} + V_{B,2} = 0.735 - 0.685 = 0.05KN \ (\rightarrow)$$

 $V_C = V_{C,1} + V_{C,2} = 0 - 0.535 = -0.535KN \ (\leftarrow)$

从而,绘制内力图如下。

图 5-8 屋面活荷载作用于 AB 跨时内力图

5.3.2屋面活荷载作用在 BC 跨

图 5-9 屋面活荷载作用于 BC 跨时内力图

5.4吊车竖向荷载作用下的内力计算

5.4.1AB 跨 $D_{\max,k}$ 在 **A** 柱

将吊车竖向荷载移至下柱中心线上,同时产生附加力矩

$$M_1 = D_{\text{max},k} \times e_3 = 357.97 \times 0.35 = 125.3KN \cdot m$$

图 5-10 吊车竖向荷载作用下计算简图

(1) 在柱顶附加不动铰支座

图 5-11 柱顶支座反力

$$C_{3,B} = 1.5 \times \frac{1 - \lambda^2}{1 + \lambda^3 (\frac{1}{n_2} - 1)} = 1.5 \times \frac{1 - 0.359^2}{1 + 0.359^3 (\frac{1}{1.187} - 1)} = 1.32$$

不动铰支座反力

$$R_A = \frac{M_1}{H}C_{3,A} = \frac{125.3}{10.87} \times 1.03 = -11.87 KN(\leftarrow)$$

$$R_B = \frac{M_2}{H}C_{3,B} = \frac{72.56}{10.87} \times 1.32 = 8.81 KN(\rightarrow)$$

由于 A、B 柱顶有附加水平不动铰支座, 故 C 柱无不动铰支座反力。 从而柱顶剪力为:

$$\begin{aligned} V_{A,1} &= R_A = -11.87 \, KN(\longleftarrow) \\ V_{B,1} &= R_B = 8.81 \, KN(\longrightarrow) \\ V_{C,1} &= R_C = 0 \, KN(\longrightarrow) \end{aligned}$$

(2) 撤去附加的不动铰支座

图 5-12 支座反力反号分配

$$\sum R = -R_{A} - R_{B} - R_{C} = 11.87 - 8.81 - 0 = 3.06 KN (\rightarrow)$$

由剪力分配法,得

$$V_{A,2} = \eta_A \sum R = 0.305 \times 3.06 = 0.933 KN(\rightarrow)$$

$$V_{B,2} = \eta_B \sum R = 0.390 \times 3.06 = 1.194 KN (\rightarrow)$$

$$V_{C,2} = \eta_C \sum R = 0.305 \times 3.06 = 0.933 KN(\rightarrow)$$

(3)叠加上述两种状态,恢复结构原有受力状况,即把各柱分配到的柱顶剪力与柱顶 不动铰支座反力相加,即得该柱顶的柱顶剪力:

$$V_A = V_{A,1} + V_{A,2} = -11.87 + 0.933 = -10.937 \, KN \ (\leftarrow)$$

 $V_B = V_{B,1} + V_{B,2} = 8.81 + 1.194 \approx 10 \, KN \ (\rightarrow)$
 $V_C = V_{C,1} + V_{C,2} = 0 + 0.933 = 0.933 \, KN \ (\rightarrow)$

从而,绘制内力图如下。

图 5-13 $D_{\text{max},k}$ 作用在 A 柱时内力图

5.4.2AB 跨 $D_{\max,k}$ 在 ® 柱

将吊车竖向荷载移至下柱中心线上,同时产生附加力矩

$$M_1 = D_{\max,k} \times e_4 = 357.97 \times 0.75 = 268.48 KN \bullet m$$

$$M_2 = D_{\min,k} \times e_3 = 96.75 \times 0.35 = 33.86 KN \cdot m$$

图 5-14 吊车竖向荷载作用下计算简图

(1) 在柱顶附加不动铰支座 R_A R_B M_1 =268.48 KN·m

图 5-15 柱顶支座反力

不动铰支座反力

$$R_A = \frac{M_2}{H}C_{3,A} = \frac{33.86}{10.87} \times 1.03 = -3.21KN(\leftarrow)$$

$$R_B = \frac{M_1}{H}C_{3,B} = \frac{268.48}{10.87} \times 1.32 = 32.6KN(\rightarrow)$$

由于 $A \times B$ 柱顶有附加水平不动铰支座,故 C 柱无不动铰支座反力。从而,柱顶剪力为:

$$V_{A,1} = R_A = -3.21KN(\leftarrow)$$

$$V_{B,1} = R_B = 32.6KN(\rightarrow)$$

$$V_{C,1} = R_C = 0KN(\rightarrow)$$

(2) 撤去附加的不动铰支座

图 5-16 支座反力反号分配

$$\sum R = -R_A - R_B - R_C = 3.21 - 32.6 - 0 = -29.39 \, KN(\leftarrow)$$
 由剪力分配法,得
$$V_{A,2} = \eta_A \sum R = 0.305 \times (-29.39) = -8.96 \, KN(\leftarrow)$$

$$V_{B,2} = \eta_B \sum R = 0.390 \times (-29.39) = -11.47 \, KN(\leftarrow)$$

$$V_{C,2} = \eta_C \sum R = 0.305 \times (-29.39) = -8.96 \, KN(\leftarrow)$$

(3)叠加上述两种状态,恢复结构原有受力状况,即把各柱分配到的柱顶剪力与柱顶不动铰支座反力相加,即得该柱顶的柱顶剪力:

$$V_A = V_{A,1} + V_{A,2} = -3.21 - 8.96 = -12.17 KN \ (\leftarrow)$$

 $V_B = V_{B,1} + V_{B,2} = 32.6 - 11.47 = 21.13 KN \ (\rightarrow)$
 $V_C = V_{C,1} + V_{C,2} = 0 - 8.96 = -8.96 KN \ (\leftarrow)$

从而,绘制内力图如下。

图 5-17 $D_{\text{max},k}$ 作用在 B 柱左侧时内力图

5.4.3BC 跨 $D_{\max,k}$ 在 ® 柱

Α

将吊车竖向荷载移至下柱中心线上,同时产生附加力矩

$$M_1 = D_{\max,k} \times e_4 = 416.03 \times 0.75 = 312.02 KN \bullet m$$

 $M_2 = D_{\min,k} \times e_3 = 87.08 \times 0.35 = 30.48 KN \bullet m$

$$M_1$$
=312.02KN·m M_2 =30.48 KN·m $D_{min,k}$ =87.08KN

图 5-18 吊车竖向荷载作用下计算简图

(1) 在柱顶附加不动铰支座

图 5-19 柱顶支座反力

不动铰支座反力

$$R_B = \frac{M_1}{H}C_{3,B} = \frac{312.02}{10.87} \times 1.32 = -37.89KN(\longleftrightarrow)$$

$$R_C = \frac{M_2}{H}C_{3,c} = \frac{30.48}{10.87} \times 1.03 = 2.89KN(\Longrightarrow)$$

由于 B、C 柱顶有附加水平不动铰支座,A 柱无不动铰支座反力。从而,柱顶剪力为:

$$V_{A,1} = R_A = 0KN(\rightarrow)$$

$$V_{B,1} = R_B = -37.89KN(\leftarrow)$$

$$V_{C,1} = R_C = 2.89KN(\rightarrow)$$

(2) 撤去附加的不动铰支座

图 5-20 支座反力反号分配

$$\sum R = -R_A - R_B - R_C = 0 + 37.89 - 2.89 = 35KN(\rightarrow)$$

由剪力分配法,得

$$V_{A,2} = \eta_A \sum R = 0.305 \times 35 = 10.675 KN(\rightarrow)$$

$$V_{B,2} = \eta_B \sum R = 0.390 \times 35 = 13.65 KN(\rightarrow)$$

$$V_{C,2} = \eta_C \sum R = 0.305 \times 35 = 10.675 KN(\rightarrow)$$

(3)叠加上述两种状态,恢复结构原有受力状况,即把各柱分配到的柱顶剪力与柱顶不动铰支座反力相加,即得该柱顶的柱顶剪力:

$$\begin{split} V_A &= V_{A,1} + V_{A,2} = 0 + 10.675 = 10.675 KN(\longrightarrow) \\ V_B &= V_{B,1} + V_{B,2} = -37.89 + 13.65 = -24.24 KN(\longleftarrow) \\ V_C &= V_{C,1} + V_{C,2} = 2.89 + 10.675 = 13.565 KN(\longrightarrow) \end{split}$$

从而,绘制内力图如下。

图 5-21 $D_{\text{max},k}$ 作用在 B 柱右侧时内力图

5.4.4BC 跨 $D_{\max,k}$ 在 ②柱

将吊车竖向荷载移至下柱中心线上,同时产生附加力矩

$$M_1 = D_{\max,k} \times e_3 = 416.03 \times 0.735 = 145.61 KN \cdot m$$

图 5-22 吊车竖向荷载作用下计算简图

图 5-23 柱顶支座反力

不动铰支座反力

$$R_B = \frac{M_2}{H} C_{3,B} = \frac{65.31}{10.87} \times 1.32 = -7.93 KN (\leftarrow)$$

$$R_C = \frac{M_1}{H} C_{3,c} = \frac{145.61}{10.87} \times 1.03 = 13.80 KN (\rightarrow)$$

由于 B、C 柱顶有附加水平不动铰支座, A 柱无不动铰支座反力。 从而, 柱顶剪力为:

$$\begin{split} V_{A,1} &= R_A = 0KN(\rightarrow) \\ V_{B,1} &= R_B = -7.93KN(\leftarrow) \\ V_{C,1} &= R_C = 13.80KN(\rightarrow) \end{split}$$

(2) 撤去附加的不动铰支座

图 5-24 支座反力反号分配

$$\sum R = -R_{A} - R_{B} - R_{C} = 0 + 7.93 - 13.80 = -5.87 \, KN (\leftarrow)$$

由剪力分配法,得

$$\begin{split} V_{A,2} &= \eta_A \sum R = 0.305 \times (-5.87) = -1.79 \, KN(\longleftarrow) \\ V_{B,2} &= \eta_B \sum R = 0.390 \times (-5.87) = -2.29 \, KN(\longleftarrow) \\ V_{C,2} &= \eta_C \sum R = 0.305 \times (-5.87) = -1.79 \, KN(\longleftarrow) \end{split}$$

(3)叠加上述两种状态,恢复结构原有受力状况,即把各柱分配到的柱顶剪力与柱顶不动铰支座反力相加,即得该柱顶的柱顶剪力:

$$V_A = V_{A,1} + V_{A,2} = 0 - 1.79 = -1.79 KN (\leftarrow)$$

 $V_B = V_{B,1} + V_{B,2} = -7.93 - 2.29 = -10.22 KN (\leftarrow)$
 $V_C = V_{C,1} + V_{C,2} = 13.80 - 1.79 = 12.01 KN (\rightarrow)$

从而,绘制内力图如下。

(b)剪力图 (KN)

(c)轴力图 (KN)

图 5-25 $D_{\text{max},k}$ 作用在 C 柱时内力图

5.5吊车横向水平荷载作用下的内力分析

5.5.1AB 跨T_{max,k} 向左

图 5-26 柱顶支座反力

由于吊车横向水平荷载的作用位置位于吊车梁顶面,因此 $y = H_u - h_b = 3.9 - 1.2 = 2.7m$, $\frac{y}{H_u} = 0.692$, 故系数 C_5 可按 $y = 0.7H_u$ 和 $y = 0.6H_u$ 之间进行线性插值。

当
$$y = 0.7H_{...}$$
 时,

$$C_{5,A} = C_{5,C} = \frac{2 - 2.1\lambda + \lambda^{3} (\frac{0.243}{n_{1}} + 0.1)}{2 \left[1 + \lambda^{3} (\frac{1}{n_{1}} - 1) \right]} = \frac{2 - 2.1 \times 0.359 + 0.359^{3} (\frac{0.243}{0.148} + 0.1)}{2 \left[1 + 0.359^{3} (\frac{1}{0.148} - 1) \right]} = 0.524$$

$$C_{5,B} = \frac{2 - 2.1\lambda + \lambda^{3} (\frac{0.243}{n_{2}} + 0.1)}{2 \left[1 + \lambda^{3} (\frac{1}{n_{2}} - 1) \right]} = \frac{2 - 2.1 \times 0.359 + 0.359^{3} (\frac{0.243}{1.187} + 0.1)}{2 \left[1 + 0.359^{3} (\frac{1}{1.187} - 1) \right]} = 0.635$$

当 $y = 0.6H_u$ 时,

$$C_{5,A} = C_{5,C} = \frac{2 - 1.8\lambda + \lambda^{3} \left(\frac{0.416}{n_{1}} - 0.2\right)}{2\left[1 + \lambda^{3} \left(\frac{1}{n_{1}} - 1\right)\right]} = \frac{2 - 1.8 \times 0.359 + 0.359^{3} \left(\frac{0.416}{0.148} - 0.2\right)}{2\left[1 + 0.359^{3} \left(\frac{1}{0.148} - 1\right)\right]} = 0.582$$

$$C_{5,B} = \frac{2 - 1.8\lambda + \lambda^{3} \left(\frac{0.416}{n_{2}} - 0.2\right)}{2\left[1 + \lambda^{3} \left(\frac{1}{n_{2}} - 1\right)\right]} = \frac{2 - 1.8 \times 0.359 + 0.359^{3} \left(\frac{0.416}{1.187} - 0.2\right)}{2\left[1 + 0.359^{3} \left(\frac{1}{1.187} - 1\right)\right]} = 0.685$$

从而, 当
$$y = 0.692H_u$$
时,

$$C_{5,A} = C_{5,C} = \frac{0.692 - 0.6}{0.7 - 0.6} \times (0.524 - 0.582) + 0.582 = 0.528$$
$$C_{5,B} = \frac{0.692 - 0.6}{0.7 - 0.6} \times (0.635 - 0.685) + 0.685 = 0.639$$

故不动铰支座反力

$$R_A = T_{\text{max},k} \times C_{5,A} = 10.84 \times 0.528 = 5.72 \text{KN}(\rightarrow)$$

 $R_B = T_{\text{max},k} \times C_{5,B} = 10.84 \times 0.639 = 6.93 \text{KN}(\rightarrow)$

由于 $A \times B$ 柱顶有附加水平不动铰支座,故 C 柱无不动铰支座反力。从而柱顶剪力为:

$$\begin{aligned} V_{A,1} &= R_A = 5.72 \, KN(\rightarrow) \\ V_{B,1} &= R_B = 6.93 \, KN(\rightarrow) \\ V_{C,1} &= R_C = 0 \, KN(\rightarrow) \end{aligned}$$

(2) 撤去附加的不动铰支座

图 5-27 支座反力反号分配

$$\sum R = -R_A - R_B - R_C = -5.72 - 6.93 - 0 = -12.65KN(\leftarrow)$$

由剪力分配法,得

$$\begin{split} V_{A,2} &= \eta_A \sum R = 0.305 \times (-12.65) = -3.86 KN (\longleftarrow) \\ V_{B,2} &= \eta_B \sum R = 0.390 \times (-12.65) = -4.93 KN (\longleftarrow) \\ V_{C,2} &= \eta_C \sum R = 0.305 \times (-12.65) = -3.86 KN (\longleftarrow) \end{split}$$

(3)叠加上述两种状态,恢复结构原有受力状况,即把各柱分配到的柱顶剪力与柱顶不动铰支座反力相加,即得该柱顶的柱顶剪力:

$$V_A = V_{A,1} + V_{A,2} = 5.72 - 3.86 = 1.86KN \ (\rightarrow)$$

 $V_B = V_{B,1} + V_{B,2} = 6.93 - 4.93 = 2KN \ (\rightarrow)$
 $V_C = V_{C,1} + V_{C,2} = 0 - 3.86 = -3.86KN \ (\leftarrow)$

从而,绘制内力图如下。

图 $5-28T_{\text{max},k}$ 在 AB 跨向左时内力图

5.5.2AB 跨T_{max,k} 向右

由于荷载与5.5.1 大小相同,方向相反,内力计算步骤也相同,故下面直接给出内力图。

图 5-29 $T_{\text{max},k}$ 在 AB 跨向右时内力图

5.5.3BC 跨 T_{max,k} 向左

图 5-30 柱顶支座反力

不动铰支座反力

$$\begin{split} R_B &= T_{\max,k} \times C_{5,B} = 13.45 \times 0.639 = 8.59 \, KN(\rightarrow) \\ R_C &= T_{\max,k} \times C_{5,C} = 13.45 \times 0.528 = 7.10 \, KN(\rightarrow) \end{split}$$

由 $B \times C$ 柱顶有附加水平不动铰支座,A 柱无不动铰支座反力。从而柱顶剪力为:

$$V_{A,1} = R_A = 0KN(\rightarrow)$$

$$V_{B,1} = R_B = 8.59KN(\rightarrow)$$

$$V_{C,1} = R_C = 7.10KN(\rightarrow)$$

(2) 撤去附加的不动铰支座

图 5-31 支座反力反号分配

$$\sum R = -R_{A} - R_{B} - R_{C} = 0 - 8.59 - 7.10 = -15.69 KN (\leftarrow)$$

由剪力分配法,得

$$V_{A,2} = \eta_A \sum R = 0.305 \times (-15.69) = -4.78 KN (\leftarrow)$$

 $V_{B,2} = \eta_B \sum R = 0.390 \times (-15.69) = -6.13 KN (\leftarrow)$

$$V_{C,2} = \eta_c \sum R = 0.305 \times (-15.69) = -4.78 KN (\leftarrow)$$

(3)叠加上述两种状态,恢复结构原有受力状况,即把各柱分配到的柱顶剪力与柱顶不动铰支座反力相加,即得该柱顶的柱顶剪力:

$$V_A = V_{A,1} + V_{A,2} = 0 - 4.78 = -4.78KN \ (\leftarrow)$$

 $V_B = V_{B,1} + V_{B,2} = 8.59 - 6.13 = 2.46KN \ (\rightarrow)$
 $V_C = V_{C,1} + V_{C,2} = 7.10 - 4.78 = 2.32KN \ (\rightarrow)$

从而,绘制内力图如下。

图 $5-32T_{\text{max},k}$ 在 BC 跨向左时内力图

5.5.4BC 跨 T_{max,k} 向右

由于荷载与5.5.3 大小相同,方向相反,内力计算步骤也相同,故下面直接给出内力图。

图 5-33 $T_{\text{max},k}$ 在 BC 跨向右时内力图

5.6风荷载作用下的内力分析

5.6.1左风工况

(1) 在柱顶附加不动铰支座

图 5-34 柱顶支座反力

依书后附录 9,得

$$C_{11,A} = C_{11,C} = \frac{3\left[1 + \lambda^4 (\frac{1}{n_1} - 1)\right]}{8\left[1 + \lambda^3 (\frac{1}{n_1} - 1)\right]} = \frac{3\left[1 + 0.359^4 (\frac{1}{0.148} - 1)\right]}{8\left[1 + 0.359^3 (\frac{1}{0.148} - 1)\right]} = 0.324$$

从而,不动铰支座反力

$$R_A = qHC_{11,A} = 1.45 \times 10.87 \times 0.324 = 5.11KN(\rightarrow)$$

$$R_C = qHC_{11,C} = 2.91 \times 10.87 \times 0.324 = 10.23KN(\rightarrow)$$

由 A、C 柱顶有附加水平不动铰支座, B 柱无不动铰支座反力。 故柱顶剪力为:

$$V_{A,1} = R_A = 5.11KN(\rightarrow)$$

$$V_{B,1} = R_B = 0KN(\rightarrow)$$

$$V_{C,1} = R_C = 10.23KN(\rightarrow)$$

(2) 撤去附加的不动铰支座

图 5-35 支座反力反号和水平集中风荷载分配

$$\sum R + \overline{W}_k = -5.11 - 10.23 - 8.82 = -24.16KN(\leftarrow)$$

由剪力分配法,得

$$\begin{split} V_{A,2} &= \eta_A (\sum R + \bar{W_k}) = 0.305 \times (-24.16) = -7.37 \, KN(\longleftarrow) \\ V_{B,2} &= \eta_B (\sum R + \bar{W_k}) = 0.390 \times (-24.16) = -9.42 \, KN(\longleftarrow) \\ V_{C,2} &= \eta_C (\sum R + \bar{W_k}) = 0.305 \times (-24.16) = -7.37 \, KN(\longleftarrow) \end{split}$$

(3)叠加上述两种状态,恢复结构原有受力状况,即把各柱分配到的柱顶剪力与柱顶不动铰支座反力相加,即得该柱顶的柱顶剪力:

$$V_A = V_{A,1} + V_{A,2} = 5.11 - 7.37 = -2.26KN \ (\leftarrow)$$

 $V_B = V_{B,1} + V_{B,2} = 0 - 9.42 = -9.42KN \ (\leftarrow)$
 $V_C = V_{C,1} + V_{C,2} = 10.23 - 7.37 = 2.86KN \ (\rightarrow)$

从而,绘制内力图如下。

图 5-36 左风时内力图

5.6.2右风工况

由于荷载与5.6.1 大小相同,方向相反,内力计算步骤也相同,故下面直接给出内力图。

图 5-37 右风时内力图

六、内力组合

1. 内力组合表

B柱(中柱)控制截面 I-I、II-II 和 III-III 的内力组合列入表中。表见附件 1。

2. 内力组合的说明

- (1) 弯矩单位为 $KN \cdot m$, 剪力和轴力单位均为KN。
- (2) 规定弯矩以柱右侧受拉为正,剪力以截开柱取下部柱截面剪力方向向右为正, 正值画在柱的右侧,轴力以受压为正,正值画在柱的右侧。
- (3) 在进行目标组合时,若恒荷载对结构有利,分项系数取 1.0,不利时,分项系数取 1.3。
- (4) 由于不论大偏压还是小偏压,弯矩对配筋总是不利的,故在得到N的同时,应使M尽可能的大。
- (5) 当考虑四台吊车组合时,由于前述吊车内力计算是按两台吊车计算的,故内力值须乘以转换系数 $\frac{0.8}{0.9}$ 。

七、柱截面设计

采用就地预制柱,混凝土强度等级为 C50,纵向受力钢筋为 HRB400,采用对称配筋。

7.1上柱配筋计算

由前述内力组合表知,控制截面 I-I 的内力设计值共有 8 种情况,列表如下。

表 7-1 控制截面 I-I 内力设计值

荷载组合内力组合	恒载+0.9(两种活荷载及以上)				恒载+任一种活荷载			
	序号	M	N	序号	M	N		
+M _{max}	1)	193.09	661.09	2	141.804	623.74		
-M _{max}	3	-174.92	661.09	4	-123.615	623.74		
$N_{ m max}$	(5)	186.06	720.94	6	7.815	677.74		
$N_{ m min}$	7	186.06	479.8	8	141.804	479.8		

下面以第①组内力为例进行截面设计。

(1) 考虑 $P-\Delta$ 二阶效应:

$$e_0 = \frac{M_0}{N} = \frac{193.09}{661.09} = 292mm \; , \; e_a = \max\left\{\frac{h}{30}, 20mm\right\} = 26.67mm \; , \; \text{if } e_i = e_0 + e_a = 312mm \; .$$

$$M = \eta_s M_0$$
, $M_0 = 193.09 \, KN \cdot m$, $h_0 = 760 \, mm$, $\eta_s = 1 + \frac{1}{1500 e_i / h_0} \left(\frac{l_0}{h}\right)^2 \zeta_c$

$$\zeta_c = \frac{0.5 f_c A}{N} = \frac{0.5 \times 23.1 \times 400 \times 800}{661.09 \times 10^3} = 5.59 > 1.0 \; , \; \; \Re \zeta_c = 1.0$$

查书上表 12-3 知, $l_0 = H_u = 2 \times 3.9 = 7.8m$,于是

$$\eta_s = 1 + \frac{1}{1500e_i / h_0} \left(\frac{l_0}{h}\right)^2 \zeta_c = 1 + \frac{1}{1500 \times 312} \times \left(\frac{7.8}{0.8}\right)^2 \times 1.0 = 1.15$$

(2) 截面设计:

假设为大偏心受压,则

$$x = \frac{N}{\alpha_1 f_c b} = \frac{661.09 \times 10^3}{1.0 \times 23.1 \times 400} = 71.547 mm < \xi_b h_0 = 0.518 \times 760 = 393.68 mm , \text{ is } \text{if } \text{if$$

压计算,放置单排钢筋,故 $\alpha_s = \alpha_s' = 40mm$ 。

又
$$x = 71.547$$
 $mm < 2\alpha_s' = 80$ mm ,故 $x = 2\alpha_s' = 80$ mm ,则

$$A_{s} = A_{s}' = \frac{N(\eta_{s}e_{0} + e_{a} - \frac{h}{2} + \alpha_{s}')}{f_{y}(h_{0} - \alpha_{s}')} = \frac{661.09 \times 10^{3} \times (1.15 \times 292 + 26.67 - 400 + 40)}{360 \times (760 - 40)}$$

其余②-⑧组内力组合步骤同上,现将计算结果列表如下。

表 7-2 控制截面 I-I 各内力组合计算表

组别	2	3	4	(5)
$e_0 = \frac{M}{N}$ (mm)	227	265	198	258
$\zeta_c = \frac{0.5 f_c A}{N}$ (大于 1 取 1)	1	1	1	1
η_s	1.37	1.32	1.42	1.33
(111111)		71.547 $< \xi_b h_0 = 186.48mm$ $\mathbb{H} < 2\alpha_s' = 80mm$		
实际受压区高度 x/mm	80	80	80	80
A_s / mm^2	-146.62	-59.38	-220.84	-87.53
续上表				
组别	6	7	8	
$e_0 = \frac{M}{N}$ (mm)	12	388 296		
$\zeta_c = \frac{0.5 f_c A}{N}$ (大于 1 取 1)	1	1 1		
η_s	3.85	1.22	1.29	
$x = \frac{N}{\alpha_1 f_c b}$ (mm) $(假设为大偏心$ 受压)		51.926 $48mm$ $<\xi_b h_0 = 186.48mm$ $= 18$		
实际受压区高度 x/mm	80	80	80	
A_s / mm^2	-792.81	187.38	13.09	

由于 $x < 2a_s'$,故可按大偏心受压 $A_s' = 0$ 时计算出 A_s (此时 $A_s' = A_s$),比较此时的配筋面积和上述表中最大面积,选小值即可。

于是,根据

$$\begin{cases} N = \alpha_1 f_c bx - f_y A_s \\ N(\eta_s e_0 + e_a + \frac{h}{2} - \alpha_s) = \alpha_1 f_c bx (h_0 - \frac{x}{2}) \end{cases}$$

解得 $A_s = A_s' = 149.73 mm^2 < 187.38 mm^2$,但显然其不满足最小配筋面积。

综上,按最小配筋率进行配筋, $A_s=A_s'=\rho_{\min}bh=0.002\times400\times800=640mm^2$,选配 3 ± 20 ,

 $A_s = A_s' = 942mm^2$,且 $A_s + A_s' = 1884mm^2 > 0.55\% \times 400 \times 800 = 1760mm^2$,满足要求。

(3) 垂直于排架方向的截面承载力验算

由表 12-3 知,有柱间支撑,垂直于排架方向的上柱计算长度 $l_0 = 1.25 H_u = 1 \times 3.9 = 4.875 m$ 。

$$\frac{l_0}{b} = \frac{4.875}{0.4} = 12.1875$$
,查上册书表 5-1,得 $\varphi = \frac{0.92 - 0.95}{14 - 12} \times (12.1875 - 12) + 0.95 = 0.947$ 。

$$N_u = 0.9 \varphi(f_c A + f_v' A_s')$$

 $= 0.9 \times 0.947 \times (23.1 \times 400 \times 800 + 360 \times 1884)$

=6878.3KN > N = 720.94KN

承载力满足要求。

7.2下柱配筋计算

下柱配筋由截面 II-II 和 III-III 共同控制,共计 16 种组合,分别列表如下。

表 7-3 控制截面 II-II 内力设计值

荷载组合 内力组合	恒载+0.9(两种活荷载及以上)				恒载+任一种活荷载			
	序号 <i>M</i>		N	序号	M	N		
+ <i>M</i> _{max}	1	314.86	1270.78	2	279.10	1275.88		
$-M_{\rm max}$	3	-359.07	1349.16	4	-326.22	1362.97		
$N_{ m max}$	(5)	96.13	1764.92	6	-326.22	1362.97		
$N_{ m min}$	7	49.60	568.40	8	141.804	568.40		

表 7-4 控制截面 III-III 内力设计值

荷载组合 内力组合	恒载+0.9(两种活荷载及以上)				恒载+任一种活荷载		
	序号	M	N	序号	M	N	
+ <i>M</i> _{max}	1	358.55	1361.82	2	153.60	779.16	

$-M_{\rm max}$	3	-358.71	1443.09	4	-153.60	799.16
$N_{ m max}$	5	-263.63	1805.16	6	-72.80	1403.20
$N_{ m min}$	7	138.24	599.35	8	153.60	599.35

下面以控制截面 II-II 中①和⑤为代表性算例,进行截面配筋计算。 为了简化计算,可以将工字形截面转化成I形截面,如下图所示。

图 7-1 工字形截面简化为 I 形截面

(1) 按控制截面 II-II 中①内力设计

考虑 $P-\Delta$ 二阶效应:

$$e_0 = \frac{M_0}{N} = \frac{314.86}{1270.78} = 248mm$$
, $e_a = \max\left\{\frac{h}{30}, 20mm\right\} = 26.67mm$

则 $e_i = e_0 + e_a = 274.67mm$ 。

$$M = \eta_s M_0, \quad M_0 = 314.86KN \cdot m, \quad h_0 = 760mm, \quad \eta_s = 1 + \frac{1}{1500e_i / h_0} \left(\frac{l_0}{h}\right)^2 \zeta_c$$

$$\zeta_c = \frac{0.5f_c A}{N} = \frac{0.5 \times 23.1 \times (100 \times 800 + 162 \times (400 - 100) \times 2)}{1270.78 \times 10^3} = 1.61 > 1.0, \quad \text{fix } \zeta_c = 1.0$$

$$\Delta t = \frac{12.25 \text{ fig. } l_0 - l$$

查书上表 12-3 知, $l_0 = H_I == 6.97m$,于是

$$\eta_{s} = 1 + \frac{1}{1500e_{i} / h_{0}} \left(\frac{l_{0}}{h}\right)^{2} \zeta_{c} = 1 + \frac{1}{\frac{1500 \times 274.67}{760}} \times \left(\frac{6.97}{0.8}\right)^{2} \times 1.0 = 1.14$$

假设为大偏心受压,且中和轴在翼缘内:

$$x = \frac{N}{\alpha_1 f_c b} = \frac{1270.78 \times 10^3}{1.0 \times 23.1 \times 400} = 137.53 mm < h_f' = 162 mm$$

说明中和轴确实在翼缘内。

下柱钢筋放置一排,故 $\alpha_s = \alpha_s' = 40mm$ 。

$$e' = \eta_s e_0 + e_a + \frac{h}{2} - \alpha_s = 1.14 \times 248 + 26.67 + 400 - 40 = 669.39mm$$

$$A_{s} = A_{s}' = \frac{Ne' - \alpha_{1}f_{c}bx(h_{0} - \frac{x}{2})}{f_{y}'(h_{0} - \alpha_{s}')}$$

$$= \frac{1270.78 \times 10^{3} \times 669.39 - 1.0 \times 23.1 \times 400 \times 137.53 \times (760 - \frac{137.53}{2})}{360 \times (760 - 40)}$$

$$= -107.09mm^{2}$$

(2) 按控制截面 II-II 中⑤内力设计

考虑 $P-\Delta$ 二阶效应:

$$e_0 = \frac{M_0}{N} = \frac{96.13}{1764.92} = 54mm$$
, $e_a = \max\left\{\frac{h}{30}, 20mm\right\} = 26.67mm$

则 $e_i = e_0 + e_a = 80.67 mm$ 。

$$M = \eta_s M_0, \quad M_0 = 96.13KN \cdot m, \quad \eta_s = 1 + \frac{1}{1500e_i / h_0} \left(\frac{l_0}{h}\right)^2 \zeta_c, \quad h_0 = 760mm$$

$$\zeta_c = \frac{0.5 f_c A}{N} = \frac{0.5 \times 23.1 \times (100 \times 800 + 162 \times (400 - 100) \times 2)}{1764.92 \times 10^3} = 1.16 > 1.0, \quad \text{EX } \zeta_c = 1.0$$

查书上表 12-3 知, $l_0 = H_1 == 6.97m$,于是

$$\eta_s = 1 + \frac{1}{1500e_i / h_0} \left(\frac{l_0}{h}\right)^2 \zeta_c = 1 + \frac{1}{\frac{1500 \times 80.67}{760}} \times \left(\frac{6.97}{0.8}\right)^2 \times 1.0 = 1.48$$

假设为大偏心受压,且中和轴在翼缘内:

$$x = \frac{N}{\alpha_1 f_c b} = \frac{1764.92 \times 10^3}{1.0 \times 23.1 \times 400} = 191.01 mm > h_f' = 162 mm$$

故中和轴不在受压较大的这侧翼缘内, 现假设其在腹板中, 则

$$x = \frac{N - \alpha_1 f_c (b - b_f) h_f'}{\alpha_1 f_c b_f} = \frac{1764.92 \times 10^3 - 1.0 \times 23.1 \times 300 \times 162}{1.0 \times 23.1 \times 100}$$
$$= 278.03 mm < h - h_f' = 638 mm$$

说明中和轴确实在腹板内。

下柱钢筋每侧放置单排,故 $\alpha_s = \alpha_s' = 40mm$ 。

$$e' = \eta_s e_0 + e_a + \frac{h}{2} - \alpha_s = 1.48 \times 54 + 26.67 + 400 - 40 = 466.59mm$$

$$A_s = A_s' = \frac{Ne' - \alpha_1 f_c b_f x (h_0 - \frac{x}{2}) - \alpha_1 f_c (b - b_f) h_f' (h_0 - \frac{h_f'}{2})}{f_y' (h_0 - \alpha_s')}$$

$$1764.92 \times 10^3 \times 441.59 - 1.0 \times 23.1 \times 100 \times 278.03 \times (760 - \frac{278.03}{2}) - \frac{1764.92 \times 10^3 \times 441.59}{2} = 1.0 \times 10^3 \times 10^3$$

$$= \frac{1.0 \times 23.1 \times (400 - 100) \times 162 \times (760 - \frac{162}{2})}{360 \times (760 - 40)}$$

 $=-1302.54mm^2$

控制截面 II-II 和 III-III 其余内力组合计算都与上述两种步骤类似,下面分别给出两截面内力组合计算表。

表 7-5 控制截面 II-II 内力组合计算表

组别 ② ③ ④ ⑥

$e_0 = \frac{M}{N}$ (mm)	229	266	239	239	
$\zeta_c = \frac{0.5 f_c A}{N}$ (大于 1 取 1)	1	1	1	1	
η_s	1.16	1.13	1.14	1.14	
$x = \frac{N}{\alpha_1 f_c b}$ (mm) $(假设为大偏心$ 受压,且中和轴 在翼缘)		且	147.51 $< h_f$ '= $162mm$ 且. $< \xi_b h_0 = 393.68mm$	且	
中和轴不在翼缘 时,重新计算 <i>x/mm</i>					
实际受压区高度 <i>x/mm</i>	138.08	146.01	147.51	147.51	
A_s / mm^2	-378.57	1.40 -282.88		-282.88	
续上表					
组别	7	8			
$e_0 = \frac{M}{N}$ (mm)	87	97			
$\zeta_c = \frac{0.5 f_c A}{N}$ (大于 1 取 1)	1	1			
η_s	1.34	1.31			
$x = \frac{N}{\alpha_1 f_c b}$ (mm) $(假设为大偏心$ 受压,且中和轴 在翼缘)	61.52 $< h_f' = 162mm$ \Box $< \xi_b h_0 = 393.68mm$	61.52 $< h_f ' = 162mm$ \blacksquare $< \xi_b h_0 = 393.68mm$			
中和轴不在翼缘 时,重新计算 <i>x/mm</i>					
实际受压区高度 x/mm	$x < 2\alpha_s'$ $\mathfrak{R} \ x = 80mm$	$x < 2\alpha_s'$ $\Re x = 80mm$			
A_s / mm^2	-949.76	-985.24			

表 7-6 控制截面 III-III 内力组合计算表

组别	1)	2	3	4	
$e_0 = \frac{M}{N}$ (mm)	263	197	249	192	
$\zeta_c = \frac{0.5 f_c A}{N}$ (大于 1 取 1)	1	1	1	1	
η_s	1.13	1.17	1.14	1.18	
$x = \frac{N}{\alpha_1 f_c b}$ (mm) $(假设为大偏心$ 受压,且中和轴 在翼缘)	且.	且.	$ \begin{array}{c} 156.18 \\ < h_f ' = 162mm \\ $	且	
中和轴不在翼缘 时,重新计算 <i>x/mm</i>					
实际受压区高度 x/mm	147.38	84.32	156.18	86.49	
A_s / mm^2	-12.80	-382.70	-63.39	-401.44	
续上表					
组别	(5)	6	7	8	
$e_0 = \frac{M}{N}$ (mm)	146	52	231	256	
$\zeta_c = \frac{0.5 f_c A}{N}$ (大于 1 取 1)	1	1	1	1	
η_s	1.22	1.49	1.15	1.14	
在翼缘)	195.36 > h_f ' = $162mm$ 但 < $\xi_b h_0 = 393.68mm$	151.86 $< h_f$ '= 162 mm 且 $< \xi_b h_0 = 393.68mm$	64.86 $< h_f$ '= $162mm$ 且 $< \xi_b h_0 = 393.68mm$	64.86 $< h_f$ ' = 162 mm $ ext{ } e$	
中和轴不在翼缘 时,重新计算 <i>x/mm</i>	295.45				

实际受压区高度 <i>x/mm</i>	295.45	151.86	$x < 2\alpha_s'$ $\Re x = 80mm$	$x < 2\alpha_s'$ $\mathfrak{R} x = 80mm$	
A_s / mm^2	-619.68	-1334.90	-544.97	-546.08	

综合上述两表计算结果,可知采用 C50 混凝土时,下柱只需按最小配筋率配筋即可,即截面一侧配筋面积 $A_s = A_s$ ' $\geq \rho_{\min} A = 0.2\% \times 177200 = 354.4 mm^2$,同时柱截面总配筋要求 $A_s + A_s$ ' $\geq 0.55\% \times A = 0.55\% \times 177200 = 974.6 mm^2$ 。

选配 4 ± 20 , $A_s = A_s = 1256mm^2$,且 $A_s + A_s' < 5\% \times A = 5\% \times 177200 = 8860mm^2$,满足要求。

(3) 垂直于排架方向的截面承载力验算

由表 12-3 知, 垂直于排架方向的下柱计算长度 $l_0 = 0.8H_1 = 0.8 \times 6.97 = 5.576m$ 。

截面最小惯性矩 $I_{\rm min}=1767.7\times 10^6 mm^4$, 截面面积 $A=177200mm^2$ 。

于是得最小回转半径
$$i_{\min} = \sqrt{\frac{I_{\min}}{A}} = \sqrt{\frac{1767.7 \times 10^6}{177200}} = 99.88 mm$$
, $\frac{l_0}{i_{\min}} = \frac{5.576 \times 10^3}{99.88} = 55.83$,

查上册书表 5-1,得
$$\varphi = \frac{0.81 - 0.87}{62 - 55} \times (55.83 - 55) + 0.87 = 0.863$$
。

$$N_u = 0.9 \varphi(f_c A + f_y' A_s')$$

= $0.9 \times 0.863 \times (23.1 \times 177200 + 360 \times 2512)$
= $3881.67 KN > N = 1805.16 KN$
故承载力满足要求。

7.3排架柱的裂缝宽度验算

裂缝宽度应按内力的准永久组合值进行验算。风荷载的 $\varphi_q=0$,故不考虑风荷载;不上人屋面的屋面活荷载,其 $\varphi_q=0$,故将它改为雪荷载,即乘以系数 $\frac{30}{50}$,根据《建筑荷载规范》,查雪荷载的准永久值系数分区,青岛市属于 II 区,故 $\varphi_q=0.2$;吊车荷载的准永久值系数 $\varphi_q=0$ 。

(1) 上柱裂缝宽度验算

根据准永久值组合公式 $S_d = \sum S_{G,k} + \sum \varphi_{g,i} S_{O,k,i}$, 可得控制截面 I-I 的准永久组合内力值:

$$M_q = 0 + 0.2 \times \frac{30}{50} \times 5.21 = 0.63 \text{KN} \cdot \text{m}$$

 $N_q = 479.8 + 0.2 \times \frac{30}{50} \times 36 = 484.12 \text{KN}$

最大裂缝宽度计算公式:
$$w_{\text{max}} = \alpha_{cr} \psi \frac{\sigma_{sq}}{E_s} (1.9c_s + 0.08 \frac{d_{eq}}{\rho_{cs}})$$

$$\begin{split} &\rho_{te} = \frac{A_s}{A_{te}} = \frac{A_s}{0.5bh} = \frac{1884}{0.5 \times 400 \times 800} = 0.012 \\ &e_0 = \frac{M_q}{N_q} = \frac{0.63}{484.12} = 1.3mm \;, \quad y_s = \frac{h}{2} - \alpha_s = 400 - 40 = 360mm \\ &\frac{l_0}{h} = \frac{7.8}{0.8} = 9.75 < 14 \;, \quad \text{in } \eta_s = 1.0 \;, \\ &e = \eta_s e_0 + y_s = 1.0 \times 1.3 + 360 = 361.3mm \end{split}$$

$$\begin{split} \gamma_f' &= 0 \\ z &= \left[0.87 - 0.12(1 - \gamma_f') \left(\frac{h_0}{e} \right)^2 \right] h_0 \\ &= \left[0.87 - 0.12 \times (1 - 0) \times \left(\frac{760}{361.3} \right)^2 \right] \times 760 \\ &= 257.66 mm \\ \sigma_{sq} &= \frac{N_q \left(e - z \right)}{A_s z} = \frac{492.76 \times 10^3 \times (361.3 - 257.66)}{942 \times 257.66} = 210.41 N / mm^2 \end{split}$$

纵向受拉钢筋外边缘至受拉边的距离为 28mm,即 $c_s = 28mm$ 。

$$\begin{split} \psi &= 1.1 - 0.65 \frac{f_{t,k}}{\rho_{te} \sigma_{sq}} = 1.1 - 0.65 \times \frac{2.64}{0.012 \times 210.41} = 0.420 \\ w_{\text{max}} &= \alpha_{cr} \psi \frac{\sigma_{sq}}{E_s} (1.9 c_s + 0.08 \frac{d_{eq}}{\rho_{te}}) \\ &= 1.9 \times 0.420 \times \frac{210.41}{2 \times 10^5} \times \left(1.9 \times 28 + 0.08 \times \frac{20}{0.012} \right) \\ &= 0.14 mm < 0.3 mm \ (实际上 \frac{e_0}{h} = 0.0017 < 0.55, 不需要进行裂缝宽度验算) \end{split}$$

(2) 下柱裂缝宽度验算

同理,分别求得控制截面 II-II 和 III-III 的准永久组合内力值: 控制截面 II-II:

$$M_q = 0 + 0.2 \times \frac{30}{50} \times 5.21 = 0.63 \text{KN} \cdot \text{m}$$

 $N_q = 568.4 + 0.2 \times \frac{30}{50} \times 36 = 572.72 \text{KN}$

控制截面 III-III:

$$M_q = 0 + 0.2 \times \frac{30}{50} \times 5.21 = 0.63 \text{KN} \cdot \text{m}$$

 $N_q = 599.35 + 0.2 \times \frac{30}{50} \times 36 = 603.67 \text{KN}$

可以看出,无论选择哪个截面,都有 $\frac{e_0}{h_0}$ < 0.55 ,因此不需进行最大裂缝宽度的验算。

7.4締筋配置

非地震地区的单层厂房排架柱箍筋一般按构造要求。本设计对上下柱均采用 $$\Phi 8@200$,在牛腿处箍筋加密为 $$\Phi 8@100$ 。

7.5牛腿设计

根据吊车梁支撑位置,吊车梁尺寸及构造要求,确定牛腿截面宽度为b=400mm,截面高度为h=800mm,截面有效高度为 $h_0=760mm$ 。

(1) 按裂缝控制要求验算牛腿截面高度

作用在牛腿顶面的竖向力的标准值

$$F_{v,k} = D_{\text{max},k} + F_{4,k} = 416.03 + 44.3 = 460.33KN$$

作用在牛腿顶面的水平荷载标准值

$$F_{h,k} = T_{\text{max},k} = 13.45 KN$$

设裂缝控制系数为 $\beta = 0.65$, $f_{t,k} = 2.64 \, N/mm^2$, a = 350 + 20 = 370 mm 。 故:

$$\beta(1 - 0.5 \frac{F_{h,k}}{F_{v,k}}) \frac{f_{t,k}bh_0}{0.5 + \frac{a}{h_0}} = 0.65 \times (1 - 0.5 \times \frac{13.45}{460.33}) \times \frac{2.64 \times 400 \times 760}{0.5 + \frac{370}{560}}$$

 $= 520.9KN > F_{v,k} = 460.33KN$

满足要求。

(2) 牛腿配筋

 $a = 370mm > 0.3h_0 = 228mm$, $F_v = 1.5F_{v,k} = 1.5 \times 460.33 = 690.5KN$

 $F_h = 1.5 F_{h,k} = 1.5 \times 13.45 = 20.175 KN$ 。于是位于牛腿顶面水平受拉纵筋面积

$$A_s \ge \frac{F_v a}{0.85 f_y h_0} + 1.2 \frac{F_h}{f_y} = \frac{690.5 \times 10^3 \times 370}{0.85 \times 360 \times 760} + 1.2 \times \frac{20.175}{360} = 1098.6 mm^2$$

选配 4
$$\pm$$
20, $A_s=1256mm^2$ $\begin{cases} <0.2\%\times bh=0.002\times 400\times 800=640mm^2 \\ >0.6\%\times bh=0.006\times 400\times 800=1920mm^2 \end{cases}$,可以。

已如前述, 牛腿处水平箍筋为 单8@100。

同时,剪跨比 $\frac{a}{h_0} = \frac{370}{760} = 0.487 > 0.3$,宜设置弯起筋,承受竖向力的受拉钢筋面积为

 $\frac{F_{v}a}{0.85f_{y}h_{0}} = \frac{690.5\times370}{0.85\times360\times760} = 1098mm^{2}, \ \ \mbox{设置 } 3\pm16, \ \ A_{s} = 603mm^{2} > \frac{1}{2}\times1098 = 549mm^{2}, \ \mbox{满足}$ 条件。

图 7-2 牛腿尺寸及配筋

7.6排架柱的吊装验算

(1) 计算简图

由书上表 12-4 知, 排架柱插入基础杯口内的高度 $h_1 = 800mm$, 故柱总长为 10.87 + 0.8 = 11.67m。

采用就地翻身起吊,吊点设在牛腿下部处,因此起吊时的支点有两个,柱底和牛腿底, 上柱和牛腿是悬臂的,计算简图如下图所示。

图 7-3 计算简图与弯矩图

(2) 荷载计算

吊装时,应考虑动力系数 $\mu=1.5$,柱自重的重力荷载分项系数取 1.3。

$$\begin{aligned} q_1 &= \mu \gamma_G q_{1,k} = 1.5 \times 1.3 \times 8 = 15.6 \, KN/m \\ q_2 &= \mu \gamma_G q_{2,k} = 1.5 \times 1.3 \times (0.4 \times 2.4 \times 25) = 46.8 \, KN/m \\ q_3 &= \mu \gamma_G q_{3,k} = 1.5 \times 1.3 \times 4.44 = 8.66 \, KN/m \end{aligned}$$

(3) 弯矩计算

弯矩以柱下侧受拉为正。

は
$$M_1 = -\frac{1}{2}q_1H_u^2 = -\frac{1}{2}\times15.6\times3.9^2 = -118.64$$
 KN・m
$$M_2 = -q_1H_u\times(\frac{H_u}{2}+0.8) - \frac{1}{2}q_2\times(0.8)^2$$

$$= -15.6\times3.9\times(\frac{3.9}{2}+0.8) - \frac{1}{2}\times46.8\times0.8^2$$

$$= -182.3$$
 KN・m
$$\pm \sum M_B = 0$$
 知, $R_A l_3 - \frac{1}{2}q_3 l_3^2 - M_2 = 0$, 得
$$R_A = \frac{1}{2}q_3 l_3 + \frac{M_2}{l_3} = \frac{1}{2}\times8.66\times6.97 - \frac{182.3}{6.97} = 4.025$$
 KN(↑)
$$M_3 = R_A x - \frac{1}{2}q_3 x^2$$

令
$$\frac{dM_3}{dx} = 0$$
,得 $x = \frac{R_A}{q_3} = \frac{4.025}{8.66} = 0.465m$,故 $M_3 = 4.025 \times 0.465 - \frac{1}{2} \times 8.66 \times 0.465^2 = 3.55KN \cdot m$

(4) 截面受弯承载力及裂缝宽度的验算

上柱:
$$M_u = f_y' A_s' (h_0 - \alpha_s') = 360 \times 942 \times (760 - 40) = 244.2 KN \bullet m$$
$$> \gamma_0 \mid M_1 \mid = 0.9 \times 118.64 = 106.78 KN \bullet m$$

裂缝宽度验算:

$$\begin{split} M_q &= M_{1,k} = \frac{M_1}{\gamma_G} = \frac{-118.64}{1.3} = -91.3 \text{KN} \cdot \text{m} \\ \sigma_{sq} &= \frac{M_q}{0.87 A_s h_0} = \frac{91.3 \times 10^6}{0.87 \times 942 \times 760} = 146.6 \, \text{N/mm}^2 \\ \rho_{te} &= \frac{A_s}{0.5 bh} = \frac{942}{0.5 \times 400 \times 800} = 0.006 < 0.01 \,, \quad \text{IX } \rho_{te} = 0.01 \\ \psi &= 1.1 - 0.65 \frac{f_{t,k}}{\rho_{te} \sigma_{sq}} = 1.1 - 0.65 \times \frac{2.64}{0.01 \times 146.6} = -0.07 < 0.2 \,, \quad \text{IX } \psi = 0.2 \\ w_{\text{max}} &= \alpha_{cr} \psi \frac{\sigma_{sq}}{E_s} (1.9 c_s + 0.08 \frac{d_{eq}}{\rho_{te}}) = 1.9 \times 0.2 \times \frac{146.6}{2 \times 10^5} \times (1.9 \times 28 + 0.08 \times \frac{20}{0.01}) \\ &= 0.06 \text{mm} < 0.3 \text{mm}, \quad \text{High } \Xi \text{ o} \end{split}$$

下柱:
$$M_u = f_y' A_s' (h_0 - \alpha_s') = 360 \times 1256 \times (760 - 40) = 325.56 KN \bullet m$$
$$> \gamma_0 \mid M_2 \mid = 0.9 \times 118.64 = 164.07 KN \bullet m$$

裂缝宽度验算:

$$\begin{split} M_{q} &= \frac{M_{2}}{\gamma_{G}} = \frac{-182.3}{1.3} = -140.23KN \bullet m \\ \sigma_{sq} &= \frac{M_{q}}{0.87h_{0}A_{s}} = \frac{140.23 \times 10^{6}}{0.87 \times 760 \times 1256} = 168.86N/mm^{2} \\ \rho_{te} &= \frac{A_{s}}{0.5bh + (b_{f} - b)h_{f}} = \frac{1256}{0.5 \times 100 \times 800 + (400 - 100) \times 162} = 0.0142 \\ \psi &= 1.1 - 0.65 \frac{f_{t,k}}{\rho_{te}\sigma_{sq}} = 1.1 - 0.65 \times \frac{2.64}{0.0142 \times 168.86} = 0.384 \\ w_{\text{max}} &= \alpha_{cr} \psi \frac{\sigma_{sq}}{E_{s}} (1.9c_{s} + 0.08 \frac{d_{eq}}{\rho_{te}}) = 1.9 \times 0.384 \times \frac{168.86}{2 \times 10^{5}} \times (1.9 \times 28 + 0.08 \times \frac{20}{0.0142}) \\ &= 0.102mm < 0.3mm, \text{ iff } E \circ \end{split}$$

7.7绘制排架柱的施工图

包括模板图与配筋图,见附件2。

八、锥形杯口基础设计

8.1确定基础设计等级

本项目是场地和地基条件较为简单,荷载分布较为均匀的单层工业厂房,查《建筑地基基础设计规范 GB50007-2011》,得地基基础设计等级为丙级。

同时,由于地基主要受力层 $f_{ak} = 170 Kpa$,且吊车额定起重量 $\leq 30t$,厂房跨度 $\leq 30m$,依《规范》,知该厂房可不进行地基变形验算。

8.2作用在基础底面的内力

由于前述内力组合的是中柱,故基础也相应于设计中柱下的独立锥形杯口基础,同时, 正因为此,故不需考虑基础梁和其上围护墙的重力荷载。下面根据内力组合表,分别计算出 柱传来的内力。

(1) + M_{max} 相应的内力组合①

柱传到基础顶面内力设计值3:

$$+M_{\rm max}=358.55KN \cdot m$$
 , $N=1361.82KN$, $V=-14.40KN(\leftarrow)$

初步确定基础高度 $^4h=1.05m$,于是上述内力对基础底面产生的内力设计为

$$M = 358.55 + 14.4 \times 1.05 = 373.67 KN \cdot m$$

$$N = 1361.82KN$$

$$V = -14.40KN(\leftarrow)$$

同时,根据内力标准组合公式 $S_d=\sum S_{G,k}+S_{Q,1,k}+\sum_{i>1}\varphi_{c,i}S_{Q,i,k}$,其中组合值系数,对于风荷载,取 0.6,其余活荷载取 0.7 。

依内力组合表,得

$$\begin{split} M_{k,\text{max}} &= 1.0 \times 0 + 102.4 + 0.7 \times (4.86 + (38.6 + 45.78) \times \frac{0.8}{0.9} + 83.15) \\ &= 216.63 KN \bullet m \\ N_k &= 1.0 \times 599.35 + 0 + 0.7 \times (36 + (357.97 + 87.08) \times \frac{0.8}{0.9} + 0) \\ &= 901.47 KN \\ V_k &= 1.0 \times 0 - 9.42 + 0.7 \times (0.05 + (21.13 - 10.22) \times \frac{8}{9} - 10.99) \\ &= -10.3 KN (\longleftrightarrow) \end{split}$$

对基础底面产生的内力标准值为

$$M_k = 216.63 + 10.3 \times 1.05 = 227.45 KN \cdot m$$

 $N_k = 901.47 KN$
 $V_k = -10.3 KN (\leftarrow)$

(2) $-M_{\text{max}}$ 相应的内力组合②

柱传到基础顶面的内力设计值:

$$-M_{\rm max} = -358.71 KN \cdot m$$
, $N = 1443.09 KN$, $V = 10.40 KN (\rightarrow)$

对基础底面产生的内力设计值:

$$-M = -358.71 - 10.4 \times 1.05 = -369.63KN \cdot m$$

 $N = 1443.09KN$
 $V = 10.40KN(\rightarrow)$

依内力组合表,得

³ 此处内力值的正负所代表的方向同内力组合表说明 2. (1)

⁴ 详细过程见本节基础底面尺寸确定中

$$-M_{k,\text{max}} = 1.0 \times 0 - 102.4 - 0.7 \times (4.86 + (36.18 + 48.53) \times \frac{8}{9} + 83.15)$$

$$= -216.72KN \cdot m$$

$$N_k = 1.0 \times 599.35 + 0 + 0.7 \times (36 + (96.75 + 416.03) \times \frac{8}{9} + 0)$$

$$= 943.61KN$$

$$V_k = 1.0 \times 0 + 9.42 + 0.7 \times (-0.05 + (10.004 - 24.24) \times \frac{8}{9} + 10.99)$$

$$= 8.22KN(\rightarrow)$$

对基础底面产生得内力标准值为

$$-M_k = -216.72 - 8.22 \times 1.05 = -225.35 KN \cdot m$$

 $N_k = 943.61 KN$
 $V_k = 8.22 KN (\rightarrow)$

(3) N_{max} 相应的内力组合③

柱传到基础顶面的内力设计值:

$$M = -263.63KN \cdot m$$
, $N_{\text{max}} = 1805.16KN$, $V = 23.82KN (\rightarrow)$

对基础底面产生的内力设计值:

$$M = -263.63 - 23.82 \times 1.05 = -288.64 KN$$

 $N = 1805.16 KN$
 $V = 23.82 KN (\rightarrow)$

依内力组合表,得

$$\begin{split} M_k &= 1.0 \times 0 - 48.53 \times \frac{8}{9} + 0.7 \times (4.86 - 4.86 + 38.8 \times \frac{8}{9} - 83.5) - 0.6 \times 102.4 \\ &= -138.64 KN \bullet m \\ N_{k,\text{max}} &= 1.0 \times 599.35 + 416.03 \times \frac{8}{9} + 0.7 \times (36 + 36 + 357.97 \times \frac{8}{9} + 0) + 0.6 \times 0 \\ &= 1242.3 KN \\ V_k &= 1.0 \times 0 - 24.24 \times \frac{8}{9} + 0.7 \times (0.05 - 0.05 + 21.13 \times \frac{8}{9} + 10.99) + 0.6 \times 9.42 \\ &= 4.94 KN (\rightarrow) \end{split}$$

对基础底面产生得内力标准值为

$$M_k = -138.64 - 4.94 \times 1.05 = -143.83KN \cdot m$$

 $N_k = 1242.3KN$
 $V_k = 4.94KN(\rightarrow)$

(4) N_{min} 相应的内力组合④

经比较,该组内力相对较有利,故不予考虑。

8.3基础尺寸的确定

8.3.1初步确定基础尺寸

(1) 确定基础高度和杯口尺寸

已知柱插入杯口深度为 800mm,故杯口深度为 800+50=850mm。杯口顶部尺寸: 宽为 $400+2\times75=550mm$,长为 $800+2\times75=950mm$;杯口底部尺寸: 宽为 $400+2\times50=500mm$,长为 $800+2\times50=900mm$ 。

按书上表 12-6, 取杯壁厚度 t = 300mm, 杯底厚度 $a_1 = 200mm$ 。

据此,确定基础高度为800+50+200=1050mm,基础二阶尺寸 $l_1 \times b_1=1.55m \times 1.15m$,柱截面尺寸 $a_c \times b_c=0.8m \times 0.4m$ 。

(2) 确定基础底面尺寸

设基础顶面距室外地坪距离为 0.5m, 则基础埋深 d = 0.5 + 1.05 = 1.55m。取基础底面以

上土的加权平均重度 $\gamma_m = 20 \, KN/m^3$,假设基础宽度 $b \le 3m$,查表得持力层 $\eta_d = 1.6$,则深度 修正后的地基承载力 fa为:

$$f_a = f_{ak} + \eta_d \gamma_m (d - 0.5) = 180 + 1.6 \times 20 \times (1.55 - 0.5) = 213.6 Kpa$$

由前述 8.2 知, 传到基础底面最大轴向力标准值 $N_k = 1242.3KN$ 。按轴心受压估算基础 底面尺寸

$$A_0 \ge \frac{N_k}{f_a - \gamma_G \overline{d}} = \frac{1242.3}{213.6 - 20 \times \frac{1.55 + 1.7}{2}} = 6.86m^2$$

考虑偏心荷载的影响,将 A_0 放大 30%左右,则 $A=1.3A_0=8.92m^2$ 。同时,令 $\frac{l}{h}=2$,则

$$b \ge \sqrt{\frac{1}{2} \times 8.92} = 2.1m$$

取 $b=2.4m \le 3m$,则l=2b=4.8m, $A=l \times b=4.8 \times 2.4=11.52m^2>8.92m^2$ 。令弯矩作用方 向平行于基础的长边方向,则截面弯矩抵抗矩 $W = \frac{1}{6}bl^2 = \frac{1}{6} \times 2.4 \times 4.8^2 = 9.216m^3$ 。

8.3.2持力层承载力的验算

基础及基础上方土的重力标准值

$$G_k = \gamma_G A \overline{d} = 20 \times 2.4 \times 4.8 \times \frac{1.55 + 1.7}{2} = 552.96 KN$$

(1) 按第①组内力标准值验算

轴向力
$$N_k + G_k = 901.47 + 552.96 = 1454.43KN$$

弯矩⁵
$$M_k = 227.45KN \cdot m$$

偏心距
$$e = \frac{227.45}{1454.43} = 0.156m < \frac{l}{6} = 0.8m$$

$$P_{k,\text{max}} = \frac{N_k + G_k}{A} + \frac{M_k}{W} = \frac{1454.43}{2.4 \times 4.8} + \frac{227.45}{9.216} = 150.9 \text{Kpa} < 1.2 f_a = 1.2 \times 213.6 = 256.32 \text{Kpa}$$

$$P_{k,\text{max}} = \frac{N_k + G_k}{A} - \frac{M_k}{W} = \frac{1454.43}{2.4 \times 4.8} - \frac{227.45}{9.216} = 101.57 \text{Kpa} \ge 0$$

$$P_{k,\text{max}} = \frac{N_k + G_k}{\Lambda} - \frac{M_k}{W} = \frac{1454.43}{2.4 \times 4.8} - \frac{227.45}{9.216} = 101.57 \text{Kpa} \ge 0$$

$$P_k = \frac{1454.43}{2.4 \times 4.8} = 126.25 Kpa \le f_a = 213.6 Kpa$$

(2) 按第②组内力标准值验算

轴向力
$$N_k + G_k = 943.61 + 552.96 = 1496.57 KN$$

弯矩
$$M_k = 225.35 KN \cdot m$$

偏心距
$$e = \frac{225.35}{1496.57} = 0.150m < \frac{l}{6} = 0.8m$$

$$\begin{split} P_{k,\text{max}} &= \frac{N_k + G_k}{A} + \frac{M_k}{W} = \frac{1496.57}{2.4 \times 4.8} + \frac{225.35}{9.216} = 154.36 \text{Kpa} < 1.2 f_a = 1.2 \times 213.6 = 256.32 \text{Kpa} \\ P_{k,\text{max}} &= \frac{N_k + G_k}{A} - \frac{M_k}{W} = \frac{1496.57}{2.4 \times 4.8} - \frac{225.35}{9.216} = 105.46 \text{Kpa} \ge 0 \end{split}$$

$$P_{k,\text{max}} = \frac{N_k + G_k}{A} - \frac{M_k}{W} = \frac{1496.57}{2.4 \times 4.8} - \frac{225.35}{9.216} = 105.46 \text{Kpa} \ge 0$$

$$P_k = \frac{1496.57}{2.4 \times 4.8} = 129.91 Kpa \le f_a = 213.6 Kpa$$

满足要求。

(3) 按第③组内力标准值验算

轴向力
$$N_k + G_k = 1242.3 + 552.96 = 1795.26 KN$$

弯矩 $M_{\nu} = 143.83 KN \cdot m$

⁵ 由于弯矩正负对本次验算无影响,只是最大基地反力在左侧或右侧的问题,这里及下文全部取为正 值

偏心距
$$e = \frac{143.83}{1795.26} = 0..08m < \frac{l}{6} = 0.8m$$

$$P_{k,\text{max}} = \frac{N_k + G_k}{A} + \frac{M_k}{W} = \frac{1795.26}{2.4 \times 4.8} + \frac{143.83}{9.216} = 171.45 \text{Kpa} < 1.2 f_a = 1.2 \times 213.6 = 256.32 \text{Kpa}$$

$$P_{k,\text{max}} = \frac{N_k + G_k}{A} - \frac{M_k}{W} = \frac{1795.26}{2.4 \times 4.8} - \frac{143.83}{9.216} = 140.23 \text{Kpa} \ge 0$$

$$P_k = \frac{1795.26}{2.4 \times 4.8} = 155.84 \text{Kpa} \le f_a = 213.6 \text{Kpa}$$

满足要求。

综上,确定基础底面尺寸为 $b \times l = 2.4m \times 4.8m$ 。

图 8-1 基础尺寸

8.4基础高度验算

图 8-2 基础各部分高度

只考虑杯口顶面由排架柱传到基础底面的内力设计值,显然这时第③组内力最不利。 N = 1805.16KN , $M = -288.64KN \cdot m$, 故基底最大净反力

$$\begin{split} P_{j,\text{max}} &= \frac{N}{A} + \frac{M}{W} = \frac{1805.16}{2.4 \times 4.8} + \frac{288.64}{9.216} = 188.02 \textit{Kpa} \\ P_{j,\text{min}} &= \frac{N}{A} - \frac{M}{W} = \frac{1805.16}{2.4 \times 4.8} - \frac{288.64}{9.216} = 125.4 \textit{Kpa} \\ P_{j} &= \frac{N}{A} = \frac{1805.16}{2.4 \times 4.8} = 156.7 \textit{Kpa} \\ P_{j,\text{I}} &= P_{j,\text{min}} + \frac{l + a_{c}}{2l} (P_{j,\text{max}} - P_{j,\text{min}}) = 125.4 + \frac{4.8 + 0.8}{2 \times 4.8} (188.02 - 125.4) = 161.93 \textit{Kpa} \\ P_{j,\text{III}} &= P_{j,\text{min}} + \frac{l + l_{1}}{2l} (P_{j,\text{max}} - P_{j,\text{min}}) = 125.4 + \frac{4.8 + 1.55}{2 \times 4.8} (188.02 - 125.4) = 166.82 \textit{Kpa} \end{split}$$

基础下设 100 厚 C20 混凝土垫层。取 $\alpha_s=50mm$,则 $h_0=h-\alpha_s=1000mm$ 。

对于 I-I 截面,由于 $b_c + 2h_0 = 0.4 + 2 \times 1.0 = 2.4 \le b$,故应验算柱与基础交接处受剪承载力。

$$V = \frac{1}{2}(P_{j,\text{max}} + P_{j,\text{I}})b\left(\frac{l - a_c}{2}\right) = \frac{1}{2} \times (188.02 + 161.93) \times 2.4 \times 2 = 839.88KN$$

$$V_u = 0.7 \beta_{hs} f_t A_0$$
,其中 $\beta_{hs} = \left(\frac{800}{h_0}\right)^{\frac{1}{4}} = \left(\frac{800}{1000}\right)^{\frac{1}{4}} = 0.945$,基础混凝土等级仍采用 C50。

$$A_0 = bh_{01} + b_1h_3 + \frac{(b+b_1)h_2}{2} = 2.4 \times 0.5 + 1.15 \times 0.3 + \frac{(2.4+1.15) \times 0.2}{2} = 1.9m^2$$

故 $V_u = 0.7 \times 0.945 \times 2.64 \times 1.9 \times 10^3 = 3318.1 KN > V = 839.88 KN$,满足要求。

对于 III-III 截面,由于 $b_1 + 2(h_2 + h_{01}) = 1.15 + 2 \times (0.2 + 0.5) = 2.55 m > b = 2.4 m$,故应验算变阶处截面受剪 1 承载力。

$$V = \frac{1}{2}(P_{j,\text{max}} + P_{j,\text{III}})b\left(\frac{l - l_1}{2}\right) = \frac{1}{2} \times (188.02 + 161.93) \times 2.4 \times 1.625 = 682.4KN$$

 $V_{_{\!u}}=0.7\beta_{_{\!h\!s}}f_{_{\!t}}A_{_{\!0}}$, 其中由于 $h_{_{\!0}}+h_{_{\!2}}+h_{_{\!01}}=200+500=700mm<800mm$, 故 $eta_{_{\!h\!s}}=1$ $_{\!\circ}$

$$A_0 = bh_{01} + \frac{(b+b_1)h_2}{2} = 2.4 \times 0.5 + \frac{(2.4+1.15) \times 0.2}{2} = 1.555m^2$$

故 $V_u = 0.7 \times 1 \times 2.64 \times 1.555 \times 10^3 = 2873.64 KN > V = 682.4 KN$,满足要求。

$$b_c + 2h_0 = b$$

 $b_1+2(h_{01}+h_2)>b$

图 8-3 基础冲切体示意图

8.5基础底板配筋

由于基础配筋主要取决于基底净反力的大小,只要求得上述 3 组内力组合中最不利的基底净反力即可。

第①组内力设计值所得基底净反力:

$$P_{j,\text{max}} = \frac{N}{A} + \frac{M}{W} = \frac{1361.82}{2.4 \times 4.8} + \frac{373.67}{9.216} = 158.76 \text{Kpa}$$

$$P_{j,\text{min}} = \frac{N}{A} - \frac{M}{W} = \frac{1361.82}{2.4 \times 4.8} - \frac{373.67}{9.216} = 77.67 \text{Kpa}$$

第②组内力设计值所得基底净反力:

$$P_{j,\text{max}} = \frac{N}{A} + \frac{M}{W} = \frac{1443.09}{2.4 \times 4.8} + \frac{369.63}{9.216} = 165.4 \text{Kpa}$$

$$P_{j,\text{min}} = \frac{N}{A} - \frac{M}{W} = \frac{1443.09}{2.4 \times 4.8} + \frac{369.63}{9.216} = 85.16 \text{Kpa}$$

第③组内力设计值所得基底净反力:

$$\begin{split} P_{j,\text{max}} &= \frac{N}{A} + \frac{M}{W} = \frac{1805.16}{2.4 \times 4.8} + \frac{288.64}{9.216} = 188.02 \textit{Kpa} \\ P_{j,\text{min}} &= \frac{N}{A} - \frac{M}{W} = \frac{1805.16}{2.4 \times 4.8} - \frac{288.64}{9.216} = 125.4 \textit{Kpa} \\ 综上,可知第③组内力基础配筋最不利,故按第③组内力进行基础底板配筋设计。 \end{split}$$

$$P_{j,l} = P_{j,\min} + \frac{l + a_c}{2l} (P_{j,\max} - P_{j,\min}) = 125.4 + \frac{4.8 + 0.8}{2 \times 4.8} (188.02 - 125.4) = 161.93 Kpa$$

$$P_{j,\text{III}} = P_{j,\text{min}} + \frac{l + l_1}{2l}(P_{j,\text{max}} - P_{j,\text{min}}) = 125.4 + \frac{4.8 + 1.55}{2 \times 4.8}(188.02 - 125.4) = 166.82 \textit{Kpa}$$

图 8-4 基底反力示意图

对于基础 I-I 截面:

$$\begin{split} M_{1} &= \frac{1}{48} \Big[\Big(P_{j,\text{max}} + P_{j,\text{I}} \Big) (2b + b_{c}) + \Big(P_{j,\text{max}} - P_{j,\text{I}} \Big) b \Big] \Big(l - a_{c} \Big)^{2} \\ &= \frac{1}{48} \times \Big[\Big(188.02 + 161.93 \Big) \times (2 \times 2.4 + 0.4) + \Big(188.02 - 161.93 \Big) \times 2.4 \Big) \Big] \times \Big(4.8 - 0.8 \Big)^{2} \\ &= 627.45 KN \bullet m \end{split}$$

$$A_{s,l} \ge \frac{M_1}{0.9 f_v h_0} = \frac{627.45 \times 10^6}{0.9 \times 360 \times 1000} = 1936.6 mm^2$$

$$\begin{split} M_{\text{III}} &= \frac{1}{48} \Big[\Big(P_{j,\text{max}} + P_{j,\text{III}} \Big) (2b + b_1) + \Big(P_{j,\text{max}} - P_{j,\text{III}} \Big) b \Big] (l - l_1)^2 \\ &= \frac{1}{48} \times \Big[\Big(188.02 + 166.82 \Big) \times (2 \times 2.4 + 1.) + \Big(188.02 - 166.82 \Big) \times 2.4 \Big) \Big] \times \Big(4.8 - 1.55 \Big)^2 \\ &= 475.8 KN \bullet m \\ A_{s,\text{III}} &\geq \frac{M_{\text{III}}}{0.9 \, f \, (h_2 + h_2)} = \frac{475.8 \times 10^6}{0.9 \times 360 \times (200 + 500)} = 2097.9 mm^2 \end{split}$$

由于 $A_{s,III} > A_{s,I}$,故宽度方向配筋按 $A_{s,III} = 2079.9 mm^2$ 进行配筋。

选配 6 ± 25 , $A_s = 2945 mm^2 > 2097.9 mm^2$, 可以。下面验算最小配筋率:

对于基础 II-II 截面:

$$M_{\parallel} = \frac{1}{24} P_j (2l + a_c) (b - b_c)^2 = \frac{1}{24} \times 156.7 \times (2 \times 4.8 + 0.8) \times (2.4 - 0.4)^2$$

$$= 271.61 KN \cdot m$$

$$A > \frac{M_{\parallel}}{M_{\parallel}} = \frac{271.61 \times 10^6}{M_{\parallel}} = 859.8 mm^2$$

$$A_{s,||} \ge \frac{M_{||}}{0.9f_{v}(h_{0} - d)} = \frac{271.61 \times 10^{6}}{0.9 \times 360 \times (1000 - 25)} = 859.8mm^{2}$$

对于基础 IV-IV 截面:

$$\begin{split} M_{\mathrm{IV}} &= \frac{1}{24} P_{j} \left(2l + l_{1} \right) \left(b - b_{1} \right)^{2} = \frac{1}{24} \times 156.7 \times (2 \times 4.8 + 1.55) \times (2.4 - 1.15)^{2} \\ &= 113.75 KN \bullet m \\ A_{\mathrm{s,IV}} &\geq \frac{M_{\mathrm{IV}}}{0.9 f_{\mathrm{y}} (h_{01} + h_{2} - d)} = \frac{113.75 \times 10^{6}}{0.9 \times 360 \times (500 + 200 - 25)} = 520.12 mm^{2} \end{split}$$

由于 $A_{s,II} > A_{s,IV}$, 故长度方向配筋按 $A_{s,II} = 859.8 mm^2$ 进行配筋。

选配 $12 \oplus 25$, $A_s = 5890mm^2 > 859.8mm^2$, 下面验算最小配筋率:

$$A_{s} = 5890mm^{2} > \rho_{\min}lh = 0.15\% \times \left[4800 \times 550 + \frac{(1550 + 4800) \times 200}{2} + 1550 \times 300\right] = 5610mm^{2}$$

满足要求。绘制基础施工图如下。

图 8-5 基础施工图

参考文献

- [1] 04G323-2《钢筋混凝土吊车梁-工作级别 A4、A5》[S].北京: 中华人民共和国建设部, 2004.
- [2] 04G325《吊车轨道联结及车挡》[S].北京:中华人民共和国建设部,2004.
- [3] 04G410-1《1.5m×6.0m 预应力混凝土屋面板》[S].北京:中华人民共和国建设部, 2004.
- [4] 05G511《梯形钢屋架》[S].北京: 中华人民共和国建设部, 2004.
- [5] GB/T50105-2010《建筑结构制图标准》[S].北京: 中华人民共和国住房和城乡建设部, 2010.
- [6] GB50010-2010《混凝土结构设计规范》[S].北京:中国建筑工业出版社,2010.
- [7] GB50009-2012《建筑荷载设计规范》[S].北京:中国建筑工业出版社,2012.
- [8] 龙驭求等编著.结构力学(上、下册)[M].北京: 高等教育出版社, 2018.
- [9] 东南大学、天津大学、同济大学等合编.混凝土结构设计原理[M].北京:中国建筑工业出版社,2016.

附录

附录一 排架柱 (中柱) 内力组合表

附录二 柱施工图

排架柱(中柱)内力组合表

				T	1			
		+ <i>M</i> _{max} 及相应 的 <i>N</i>	1.3*(1)+0.9*1.5*[(2) +(6)+(10)+(12)]	$+M_{\text{max}} = 1.3*0+0.9*1.5*[5.21+94.536+6.546+36.74]=193.09$	N =1.3*479.8+0.9*1.5*[36+0+0+0]=661.09	1.3*(1)+1.5*(6)	$+M_{\text{max}} = 1.3*0 + 1.5*94.536$ = 141.804	N =1.3*479.8+1.5*0 =623.74
		-M _{max} 及相应 的 N	1.3*(1)+0.9*1.5*[(3)+ (5)+(9)+(13)]	$-M_{\text{max}} = 1.3*0 + 0.9*1.5*(-5.21 - 82.41 - 5.21 - 36.74] = -174.92$	N =1.3*479.8+0.9*1.5*[36+0+0+0]=661.09	1.3*(1)+1.5*(5)	$-M_{\text{max}} = 1.3*0 + 1.5*[-82.41]$ $= -123.615$	N=1.3*479.8+1.5*0 =623.74
	I - I	N _{max} 及相应的 <i>M</i>	1.3*(1)+0.9*1.5*[(2)+(3) +(6)+(10)+(12)]	M = 1.3*0+0.9*1.5*[5.21-5.21+94.536+6.546+36.74] =186.06	$N_{\text{max}} = 1.3*479.8+0.9*1.5*$ $[36+36+0+0+0] = 720.94$	1.3*(1)+1.5*(2)	<i>M</i> =1.3*0+1.5*5.21=7.815	$N_{\text{max}} = 1.3*479.8+$ $1.5*36 = 677.74$
		N _{min} 及相应的 <i>M</i>	1.0*(1)+0.9*1.5*[(6) +(10)+(12)]	M =1.0*0+0.9*1.5*[94.536+ 6.546+36.74]=186.06	$N_{\text{min}} = 1.0*479.8+0.9*1.5$ *[0+0+0]=479.8	1.0*(1)+1.5*(6)	M = 1.0*0+1.5*94.536 =141.804	$N_{\text{min}} = 1.0*479.8+1.5*0$ =479.8
		+M _{max} 及相应 的 N	1.3*(1)+0.9*1.5*[(2)+(5) +(8)+(12)]	$+M_{\text{max}} = 1.3*0+0.9*1.5*[5.21+186.07+5.21+36.74]=314.86$	N=1.3*568.4+0.9*1.5* [36+357.97+0+0]=1270.78	1.3*(1)+1.5*(5)	$+M_{\text{max}} = 1.3*0 + 1.5*186.07 = 279.10$	N =1.3*568.4+1.5* 357.97=1275.88
	II	的 <i>N</i>	1.3*(1)+0.9*1.5*[(3)+(6) +(11)+(13)]	$-M_{\text{max}} = 1.3*0 + 0.9*1.5*[-5.21$ $-217.48 - 6.546 - 36.74]$ $= -359.07$	N=1.3*568.4+0.9*1.5* [36+416.03+0+0] =1349.16	1.3*(1)+1.5*(6)	$-M_{\text{max}} = 1.3*0+1.5*(-217.48)$ $= -326.22$	N =1.3*568.4+1.5* 416.03=1362.97
	II	N _{max} 及相应的 <i>M</i>	$1.3*(1)+0.9*1.5*[(2) +(3)+[(5)+(6)]* \frac{0.8}{0.9}+(11)+(13)]$	$M = 1.3*0+0.9*1.5*[5.21-5.21$ $+(-217.48+186.07)*\frac{0.8}{0.9}-6.546$ $-36.74]=96.13$	$N_{\text{max}} = 1.3*568.4 + 0.9*1.5*$ $[36+36+(357.97+416.03)*$ $\frac{0.8}{0.9}+0+0]=1764.92$		<i>M</i> =1.3*0+1.5*(-217.48) =-326.22	N _{max} =1.3*568.4+1.5* 416.03=1362.97
<u> </u>		N _{min} 及相应的 <i>M</i>	1.0*(1)+0.9*1.5*(12)	M = 1.0*0+0.9*1.5*36.74 =49.60	$N_{\text{min}} = 1.0*568.40.9*1.5*0$ =568.4	1.0*(1)+1.5*(12)	<i>M</i> =1.0*0+1.5*36.74=55.11	N _{min} =1.0*568.4+1.5* 0=568.4
B	III - III		$1.3*(1)+0.9*1.5*[(2)+$ $[(5)+(7)]*\frac{0.8}{0.9}+(10)+(12)]$	$+M_{\text{max}} = 1.3*0+0.9*1.5*[4.86+$ $(38.80+45.78)*\frac{0.8}{0.9}+83.15+$ $102.40]=358.55$	$N = 1.3*599.35+0.9*1.5*[$ $36+(357.97+87.08)*\frac{0.8}{0.9}$ $+0+0]=1361.82$ $V = 1.3*0+0.9*1.5*(0.05)$ $+(21.13-10.22)*\frac{0.8}{0.9}-10.99-$ $9.42]=-14.40$	1.3*(1)+1.5*(12)	$+M_{\text{max}} = 1.3*0+1.5*102.40=153.6$	N=1.3*599.35+1.5* 0=779.16 V=1.3*0+1.5*(-9.42) =-14.13
		-M _{max} 及相应 的 N	$1.3*(1)+0.9*1.5*[(3)+$ $[(4)+(6)]*\frac{0.8}{0.9}$ $+(11)+(13)]$	$-M_{\text{max}} = 1.3*0 + 0.9*1.5*[-4.86-$ $(36.18 + 48.53)*\frac{0.8}{0.9} - 83.15 - 102.4]$	$N = 1.3*599.35+0.9*1.5*[$ $36+(96.75+416.03)*\frac{0.8}{0.9}$ $+0+0]=1443.09$	1.3*(1)+1.5*(13)	$-M_{\text{max}} = 1.3*0 + 1.5*(-102.4)$ $= -153.6$	N=1.3*599.35+1.5*0 =799.16 V=1.3*0+1.5*9.42 =14.13

		=-358.71	$V = 1.3*0+0.9*1.5*[-0.05+(10.004-24.24)*\frac{0.8}{0.9}$ $+10.99+9.42]$ $=10.40$			
N _{max} 及相应的 M	$1.3*(1)+0.9*1.5*[(2)+(3)$ $+[(5)+(6)]*\frac{0.8}{0.9}$ $+(11)+(13)]$	$M = 1.3*0+0.9*1.5*[4.86-4.86 + (38.80-48.53)*\frac{0.8}{0.9}-83.15-102.40]=-263.63$	$N_{\text{max}} = 1.3*599.35+0.9*1.5$ $*[36+36+(357.97+416.03)*$ $\frac{0.8}{0.9}+0+0]=1805.16$ $V = 1.3*0+0.9*1.5*[0.05-$ $0.05+(21.13-24.24)*\frac{0.8}{0.9}$ $+10.99+9.42]=23.82$		M =1.3*0+1.5*(-48.53) =-72.80	$N_{\text{max}} = 1.3*599.35+1.5*$ $416.03=1403.2$ $V = 1.3*0+1.5*(-24.24)$ $= -36.36$
N _{min} 及相应的 <i>M</i>	1.0*(1)+0.9*1.5*(12)	M = 1.0*0+0.9*1.5*102.40 $= 138.24$	$N_{\text{min}} = 1.0*599.35+0.9*1.5$ *0=599.35 V = 1.0*0+0.9*1.5*(-9.42) =-12.72	1.0*(1)+1.5*(12)	<i>M</i> =1.0*0+1.5*102.40=153.6	$N_{\text{min}} = 1.0*599.35+1.5$ *0=599.35 V = 1.0*0+1.5*(-9.42) =-14.13

