

UNIDAD 3

APLICACIÓN DE LAS REDES INDUSTRIALES PLANEAMIENTO DE UNA RED INDUSTRIAL, ACCESO A REDES, TECNOLOGÍAS LAN.

Logro

- El alumnos al finalizar la unidad
 - Al finalizar la unidad el estudiante:
 - Comprende la importancia de los estándares empleados.

Temario: 3

- 1. MODELOS DE INTERCONEXIÓN
- MODELO OSI
- 3. MODELO TCP/IP
- 4. DISPOSITIVOS DE ENLACE
- 5. REDES INALÁMBRICAS INDUSTRIALESCENET
- 6. SISTEMAS SCADA

gateway. NAS devices connect to hub and then to switch for access on wired

network. Bridge connects wired and wireless networks.

Dispositivos: Repetidor

 Un repetidor une dos segmentos del mismo tipo de red sin embargo, los cables que une pueden ser diferentes, por ejemplo coaxial y fibra óptica.

Dispositivos: Repetidor

- Dispositivo hardware encargado de amplificar, regenerar y retemporizar la señal.
- Permite que los bits viajen a mayor distancia a través de los medios.
- No entiende de formatos, copia cualquier señal eléctrica (ruido e interferencias también).
- No filtra tráfico de Red

Dispositivos: Hub

- Un Hub es un dispositivo que actúa como punto de conexión central entre los nodos que componen una red. Topología física en estrella pero lógica de bus.
- Los equipos conectados al hub son miembros de un mismo segmento de red, y comparten el ancho de banda del hub para sus comunicaciones.

Dispositivos: Hub

Son repetidores multipuertos: interconectan varios dispositivos en forma económica y sencilla.

Ventaja:

 Aumenta la confiabilidad de la red, ya que si cualquier cable falla no afecta a la red.

Desventaja:

• Transmite por difusión. Colisiones.

Dispositivos: Hub

Los Hub pueden ser de dos tipos:

- Activos: realizan la regeneración de la señal que reciben antes de ser enviada.
- Pasivos: en este caso no regeneran la señal, limitándose a interconectar los equipos.

https://www.youtube.com/watch?v=fGm4Tomy8hE

Hub: Funcionamiento

- Cuando un equipo envía un mensaje, los datos llegan al hub y éste los regenera (si es un concentrador activo) y los retransmite a todos sus puertos, excepto al puerto que emite el mensaje.
- El hub no divide dominios de colisión, ni dominios de broadcast.

UPC

REDES INDUSTRIALES

Dispositivos: Bridge o Puente

Los puentes son dispositivos que pueden conectar a varias LAN entre sí. Generalmente conectan LAN con idénticos protocolos de capa física y de acceso al medio (MAC).

- Deben tener una memoria temporal para albergar las tramas a intercambiar de LAN.
- Mantienen una tabla de direcciones físicas MAC para saber qué tramas van a una LAN y qué otras van a otra LAN.
- Desde el punto de vista de cada estación, todas las demás estaciones están en su misma LAN y es el puente el encargado de encaminar las tramas.

Puente: Funciones

Las funciones de un puente son:

- Dividir una red de área local en dos redes de menor tamaño.
 Cuando una red de área local se hace demasiado grande, en cuanto a número de nodos, debe ser dividida para que su rendimiento sea mejor.
- Interconectar redes de área local, pudiendo tener protocolos de nivel de enlace o medios de transmisión distintos. Como puede ser la interconexión de una red inalámbrica a una de cable o una red Ethernet a otra Token Ring.
- Controlar las tramas defectuosas.

Puente: Funcionamiento

- El puente entrará en funcionamiento, pasando la información, sólo cuando el nodo de un segmento envíe información al nodo del segmento al otro lado del puente.
- Cada puente va almacenando en memoria una tabla de direcciones MAC asignada a cada uno de sus puertos De esta manera, cuando llega una trama, comprueba la dirección MAC, la compara con el "mapa" que posee en memoria y la envía por el puerto adecuado.

Bridge o Puente

<u>Ventajas</u>

- Cuando se conectan varias LAN con puentes, el fallo en una LAN no implica el fallo en la otra .
- Varias LAN pequeñas tienen mayores prestaciones que una grande. Reduce el dominio de colisión.
- Las longitudes de cableado son menores .
- Cuando hay dos LAN separadas geográficamente, es más sencillo y barato conectarlas con un puente que usar cable coaxial.
- Divide el dominio de colisión, pero no el dominio de broadcast.

Bridge o Puente

Encaminamiento

- <u>Estático</u>: Los puentes tienen de antemano unas rutas predefinidas para el tránsito de tramas.
- En el origen: Cada estación origen envía una trama de control a una estación de destino de forma que cuando ésta recibe la trama, responde informando sobre el camino que ha seguido esta trama.
- Con árbol de Expansión: automatizan un proceso de creación de tablas de encaminamiento actualizada, su información cambia dinámicamente.

Bridge o Puente https://www.youtube.com/watch?v=1vsUBESA

Construcción dinámica de la tabla

 Las entradas de la tabla caducan para adaptarse a cambios de topología

	EVENTO DE COMUNICACIONES	INFORMACIÓN CARGADA EN LA TABLA
PRIMER PASO	E1 TRANSMITE A E2	E1, PUERTO A
SEGUNDO PASO	E2 CONTESTA A E1	E1, — PUERTO A E2, — PUERTO A
TERCER PASO	E5 TRANSMITE A E1	E1, PUERTO A E2, PUERTO A E5, PUERTO C
CUARTO PASO	E6 TRANSMITE A E3 ENVIA POR TODOS LOS PUERTOS	E1, — PUERTO A E2, — PUERTO A E5, — PUERTO C E6, — PUERTO C
QUINTO PASO	E3 CONTESTA A E6	E1, PUERTO A E2, PUERTO C E5, PUERTO C E6, PUERTO C E3, PUERTO B

Dispositivos: Switch o Conmutador

- Es un dispositivo que permite la interconexión de computadoras entre si.
- También permite segmentar una red para aumentar su rendimiento a nivel de enlace.
- A diferencia de los puentes, los switch sólo permiten conectar redes que utilicen los mismos protocolos a nivel físico y de enlace.
- Filtran y dirigen tramas entre los segmentos de la red de área local proporcionando un ancho de banda dedicado.

Dispositivos: Switch o Conmutador

- Conoce los dispositivos que tiene conectados a cada uno de sus puertos.
- Cuando se enchufa no conoce las direcciones de los disposivos de sus puertos, las aprende a medida que circula información a través de él.

Dispositivos: Switch o Conmutador

- Un switch divide el dominio de colisiones. Tiene tantos dominios de colisión como bocas posea.
- Un switch no divide el dominio de broadcast, ya que la red segmentada se ve como una sola.

Switch o Conmutador

- Cuando un "switch" no conoce la dirección MAC de destino envía la trama por todos sus puertos, al igual que un HUB. Cuando hay más de un ordenador conectado a un puerto de un "switch" este aprende sus direcciones MAC y cuando se envían información entre ellos no la propaga al resto de la red, a esto se llama filtrado.
- Operan a velocidades mucho más altas que los puentes.
- Los datos pueden conducirse por rutas separadas, mientras que en el hub, las tramas son conducidas por todos los puertos.

https://www.youtube.com/watch?v=7IbUXpvoN8M

Dispositivos: Router

REDES INDUST

Dispositivos: Router

- Hardware o software que permite interconectar redes entre sí.
- Como funciona a nivel de red los protocolos de comunicación en los niveles superiores, a ambos lados del router, deben ser iguales.
- Toma decisiones lógicas con respecto a la mejor ruta para el envío de datos a través de una red interconectada.
- Comparte información con otros enrutadores.
- Divide el dominio de Broadcast

Router: Funcionamiento

- Al recibir un paquete, debe extraer de éste la dirección del destinatario y decidir cuál es la mejor ruta, a partir del algoritmo y tabla de enrutamiento que utilice.
- Además un router dispone de sus propias direcciones a nivel de red.

Un router necesita de una serie de parámetros básicos para que pueda funcionar correctamente, como son:

- Direcciones de los puertos y redes a las que está conectado.
- Algoritmos de enrutamiento que va a utilizar.

¿Cómo determina un router la mejor ruta?

El router utiliza la tabla de rutas y evalúa la métrica. La ruta escogida es aquella que tiene la métrica Menor.

¿Qué es la métrica?

Es un valor generado por el enrutador o asignado por el administrador para cada ruta, tomando en cuenta los diferentes factores que la afectan y sus pesos correspondientes.

Los componentes de la métrica son:

- Ancho de banda
- Retardo
- Carga
- Confiabilidad
- Número de saltos
- Costo

Algoritmos de las tablas de enrutamiento

- No adaptativos o estáticos: No toman en cuenta los cambios. Las rutas se calculan manualmente y luego se introducen en la tabla de rutas (inundación)
- Adaptativos o dinámicos: Toman en cuenta los cambios de la topología y otros factores (vector de distancia, por estado de enlace, jerárquico)

https://www.youtube.com/watch?v=I1IpKSTEvqc

Dispositivos: Gateway o Pasarela

- Actúa como <u>traductor</u> entre sistemas que no utilizan los mismos protocolos de comunicaciones, formatos de estructuras de datos, lenguajes y/o arquitecturas.
- Se utilizan cuando las redes son completamente distintas; por ejemplo, una red Novell con una red con arquitectura SNA o TCP/IP.

Gateway o Pasarela

 Cuando una compuerta recibe un paquete de una red, ésta traduce el paquete del formato usado en la red a un formato común entre compuertas, y luego lo envía a otra compuerta, la cual después de recibirlo lo traduce del formato común al formato usado en la red destino, y por último lo envía a ésta.

Gateway o Pasarela

- Normalmente una gateway se diseña utilizando un ordenador personal dedicado, con varias tarjetas de red y programas de conversión y comunicación.
- Debe tener la capacidad suficiente para acoplar velocidades entre las líneas, realizar conversiones de protocolo y optimizar la ocupación de las redes.

Dispositivos de Interconexión

•				
		Aplicación		Aplicación
		Presentación		
	Sesión		Transporte	
Dispositivo de	Capa de OSI	Transporte Red	Capa de TCP/IP	Internet
		Enlace de Datos		Acceso de red
Red		Física		Física
Repetidor (Repeater)	Física		Física	
Concentrador (Hub)	Física		Física	
Conmutador (Switch)	Enlace de Datos		Acceso a la Red	
Puente (Bridge)				
(2.190)	Enlace de Datos		Acceso a la Red	
Enrutador (Router)	Red		Internet	
Compuerta (Gateway)	_	orte y/o sión	Trans	porte

