MANUAL DE PRODUÇÃODE MANTEIGA

Programa de Difusão de Tecnologias Agroindustriais Alimentares do Nordeste BNB - ETENE

Projeto Núcleos de Difusão de Tecnologias Agroindustriais Alimentares EMBRAPA - CTAA

MANUAL DE PRODUÇÃO DE MANTEIGA

Fernando Teixeira Silva EMBRAPA/CTAA

Rio de Janeiro

PROMOÇÃO: Banco do Nordeste do Brasil S.A. (BNB)

Escritório Técnico de Estudos Econômicos do

Nordeste (ETENE)

Fundo de Desenvolvimento Científico e

Tecnológico (FUNDECI)

REALIZAÇÃO:

Empresa Brasileira de Pesquisa Agropecuária

(EMBRAPA)

Centro Nacional de Pesquisa de Tecnologia

Agroindustrial de Alimentos (CTAA)

INFORMAÇÕES:

Banco do Nordeste do Brasil S.A. (BNB)

Escritório Técnico de Estudos Econômicos do Nordeste (ETENE)

Praça General Murilo Borges, nº 1

Edifício Raul Barbosa - 11º andar

60035-210 - Fortaleza - CE

Telefone: (085) 255-4034 (secretaria do ETENE)

Fax: (085) 255-4308

E-Mail: bnbetene@ufc.br

EMBRAPA-CTAA

Av. das Américas, 29.501 - Guaratiba

23020-470 - Rio de Janeiro - RJ

Telefone: (021) 410-1353 - Fax: (021) 410-1090

SILVA, F. T. Manual de produção de manteiga. Fortaleza: Banco do Nordeste do Brasil; Rio de Janeiro: EMBRAPA-CTAA, 1996. 16 p.

1. Manteiga - Produção. I. Banco do Nordeste do Brasil. II. EMBRAPA. Centro Nacional de Pesquisa de Tecnologia Agroindustrial de Alimentos. III. Título.

SUMÁRIO

AF	PRESENTAÇÃO	4		
1.	INTRODUÇÃO	6		
2.	PROCESSO DE FABRICAÇÃO	6		
	2.1. Fluxograma de produção 2.2. Descrição das etapas de produção			
	2.2.1. Obtenção do creme	8		
	2.2.1.1. Desnate natural	8		
	2.2.1.2. Desnate mecânico	8		
	2.2.2. Filtração do creme	9		
	2.2.3. Tratamento do creme	9		
	2.2.3.1. Estocagem do creme	9		
	2.2.3.2. Padronização	10		
	2.2.3.3. Neutralização	10		
	2.2.3.4. Pasteurização	11		
	2.2.3.5. Resfriamento	12		
	2.2.2.6. Maturação	12		
	2.2.2.6.1. Maturação natural	12		
	2.2.2.6.2. Maturação artificial	12		
	2.2.4. Batedura	13		
	2.2.5. Lavagem da manteiga	14		
	2.2.6. Salga da manteiga	14		
	2.2.7. Malaxagem	15		
4.	EMBALAGEM	15		
5.	ARMAZENAMENTO	16		
6	BIBLIOGRAFIA CONSULTADA	16		

APRESENTAÇÃO

O BANCO DO NORDESTE DO BRASIL S.A. (BNB) e o CENTRO NACIONAL DE PESQUISA DE TECNOLOGIA AGROINDUSTRIAL DE ALIMENTOS (CTAA) da EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA (EMBRAPA), com o intuito de continuar colaborando com aqueles que desejam começar ou expandir a atividade de processamento de alimentos, têm a satisfação de oferecer ao público em geral - e em particular aos produtores, técnicos, empresários e organizações associativadas - esta publicação.

Ela é fruto de um Convênio de Cooperação Técnica e Financeira celebrados entre o BNB e EMBRAPA-CTAA, que tem como objetivo geral a difusão do estoque existente de tecnologias apropriadas ao Nordeste, visando estimular a modernização dos segmentos agropecuários e de processamento de matérias-primas regionais.

A implantação de parceria BNB/CTAA, justifica-se por vários motivos, dentre os quais podemos destacar as elevadas perdas do setor hortifrutícola entre a produção e o consumo, provocadas, principalmente, pela inexistência de um parque agroindustrial, nas áreas produtoras, sincronizado com a agricultura irrigada. Constata-se, ainda, que a modernização da cadeia agroalimentar tem deixado à margem os pequenos produtores, seja por sua desorganização, seja por não terem acesso ao acervo das pesquisas geradas e concluídas pelos centros de pesquisa.

Ademais, para inserir-se nos principais mercados consumidores de frutas e hortaliças mundiais, a Região deverá armar-se dos conhecimentos necessários, valendo-se também do Programa Brasileiro de Qualidade e Produtividade, do qual faz parte esta ação BNB-EMBRAPA.

O convênio, coerente com as potencialidades do Nordeste, especialmente as do semi-árido, que tem na fruticultura tropical uma das linhas mestras do processo de desenvolvimento sustentável regional, priorizará os segmentos de processamento de frutas e leite, conservação de carnes e pescados e a secagem e armazenamento de grãos.

Ao CTAA caberá difundir as tecnologias de processamento alimentar disponíveis e os equipamentos agroindustriais por ele desenvolvidos e ao BNB caberá viabilizar tais ações através dos

recursos do FUNDO CONSTITUCIONAL DE FINANCIAMENTO DO NORDESTE (FNE), financiando a implantação de empreendimentos agroindustriais para os empresários, produtores e suas organizações.

A conjugação de esforços entre o BNB e a EMBRAPA-CTAA, que contará, também, com as parcerias do Centro Nacional de Pesquisa de Agroindústria Tropical (CNPAT) e do Centro Nacional de Caprinos (CNPC), e ainda com o envolvimento de outras instituições governamentais e não governamentais, constitui requisito indispensável para inserir o pequeno produtor-irrigante no contexto da modernização de toda a cadeia da agricultura regional.

O BNB e o CTAA reconhecem que a agroindústria é uma das alternativas mais apropriadas para o desenvolvimento regional rural pois além de fomentar a produção agrícola, pode promover, através da geração de emprego e renda nas áreas rurais e urbanas interiorizadas, a contenção do fluxo migratório para os grandes centros urbanos, e contribui para o incremento de arrecadação dos pequenos e médios municípios.

BYRON COSTA DE QUEIROZ Presidente do BNB LUIZ FERNANDO VIEIRA Chefe do CTAA

1. INTRODUÇÃO

A manteiga é um produto derivado do leite, que é obtido a partir da batedura do creme do leite (nata) fermentado ou não, que faz com que haja aglomeração dos glóbulos de gordura, ocorrendo uma separação de uma fase líquida denominada leitelho.

A gordura é o principal componente da manteiga, que também possue em sua composição água, proteínas, vitaminas, ácidos lactose e cinzas, fazendo com que seja um produto de alto valor nutritivo. O sal também pode fazer parte da composição da manteiga, sendo opcional a sua adição.

De acordo com a legislação brasileira a manteiga recebe a seguinte classificação:

COMPOSIÇÃO	TIPO EXTRA	1ª QUALIDADE	2ª QUALIDADE
gordura (%)	≥ 83,0	≥ 80,0	≥ 80.0
acidez (cm³)/litro	≤ 3,0	≤ 8,0	≤ 10,0
sal (%)	≤ 2,0	≤ 2,5	≤ 6,0
corante vegetal	ausência	facultativo	obrigatório

2. FLUXOGRAMA

As etapas para fabricação da manteiga estão esquematizadas no fluxograma a seguir:

2.1. Fluxograma de Produção

2.2. Descrição das Etapas

As etapas que envolvem a fabricação da manteiga são:

2.2.1. Obtenção do creme

O creme é a matéria prima utilizada na produção da manteiga, e é obtido através da operação de desnate, que pode ser feito de duas formas natural ou mecânica. Um procedimento recomendável é que se faça o desnate logo após a ordenha, permitindo a obtenção de creme com melhor qualidade e porque o leite, após a ordenha, apresenta-se com a temperatura na faixa de 33-35°C, que é ideal para proceder o desnate.

2.2.1.1. Desnate natural

É a forma mais simples para a obtenção do creme, pois consiste em deixar o leite em repouso durante aproximadamente 24 horas, acarretando a separação por diferença de densidade (a nata é leve), sendo necessário somente efetuar a coleta do material. Deve-se para esta operação utilizar recipiente raso o que facilita a separação da nata.

A principal desvantagen apresentada por este método é o longo tempo para a obtenção do creme, favorecendo o desenvolvimento de microrganismos que prejudicam o sabor e aroma da manteiga. Outras desvantagens são: a acidificação do creme e o baixo rendimento em comparação ao desnate mecânico.

2.2.1.2. Desnate mecânico

É a melhor forma em relação ao desnate natural pois: o tempo de processo é menor obtendo-se um creme doce e fresco; o leite por esse método não fica sujeito ao ataque microbiano e a absorver sabores e odores estranhos; apresenta uma menor perda de creme e evita a possibilidade de coagulação do leite e ocupa menor espaço físico. O equipamento utilizado é a

centrifuga ou desnatadeira, sendo a mais indicada a fechada, que pode obter leite com teor de gordura menor que 0,04 %.

É recomendável, trabalhar-se com temperatura na faixa de 30 a 35°C. Se a temperatura for maior que a recomendada, embora facilite o desnate, pode ocorrer, caso o leite esteja ácido, a coagulação da caseína promovendo a obstrução da centrífuga e utilizando temperatura menor haverá redução na eficiência do processo.

2.2.2. Filtração do creme

A coagem é realizada com os objetivos de eliminar sujidades, como pelos, que além de prejudicar a aparência do produto também são fontes de microrganismos, e também para eliminar resíduos de caseína, o que é importante pois esta serve como substrato para o desenvolvimento de microrganismos. Para esta operação usa-se uma peneira de malhas finas (0,5mm).

2.2.3. Tratamento do creme

Se a fabricação da manteiga for feita logo após o desnate, dará origem a um produto denominado manteiga de massa doce, que além de não ter bom sabor e aroma, terá curta durabilidade. Para a obtenção de um produto com melhor qualidade e conservação, é importante o tratamento do creme conforme descrito abaixo.

2.2.3.1. Estocagem do creme

Se a produção da manteiga não for feita logo após a obtenção do creme, faz-se necessário o armazenamento. É fundamental que este seja feito a temperatura baixa (pode ser feito em geladeira), para evitar a possível perda de qualidade devido ao crescimento de microrganismos.

2.2.3.2. Padronização

É feita a padronização do creme para que este apresente em torno de 35 a 40% de gordura. Acima desta quantidade, na etapa de bateção, haverá perda de gordura no leitelho e se for menor haverá uso do equipamento abaixo de sua capacidade total.

A padronização pode ser feita com leite desnatado ou mesmo com água, sendo necessário que estejam com boa qualidade, ou seja, leite pasteurizado e a água filtrada e também fervida. O leite é o mais recomendável pois favorece para que o creme tenha uma melhor maturação além de contribuir para a formação do sabor e do aroma devido a presença de lactose. Para tanto é necessário que seja feita a determinação do teor inicial de gordura, de acordo com a seguinte fórmula:

2.2.3.3. Neutralização

O valor ideal para a acidez do creme está entre 15 a 20°D (domic). Se estiver acima faz-se necessário a neutralização, que é feita através da adição dos seguintes redutores: bicarbonato de sódio, carbonato de sódio, hidróxido de cálcio, que podem ser usados individualmente, ou em mistura.

O creme ácido tem as seguintes desvantagens: o creme apresenta-se espesso; na pasteurização pode favorecer o aparecimento de gosto, de queimado e a precipitação da caseína, podendo com isso haver arraste de gordura diminuindo o rendimento e na maturação, a cultura lática não se desenvolve normalmente, ocorrendo a formação de uma manteiga oleosa, sem consistência, sem aroma, com sabores de peixe.

A quantidade de neutralizante a ser adicionada pode ser calculada conforme fórmula abaixo. Antes de adicioná-los, deve-se ter o cuidado de sempre promover a diluição em água

quente (40-50°C) em quantidade de aproximadamente 10 vezes o peso do neutralizante e acrescentá-los no creme sob agitação constante.

$$Q = \frac{(c-a).m.N}{L}$$

onde:

Q = quantidade de neutralizante.

m = massa do creme.

c = acidez inicial do creme.

a = acidez desejada.

N = equivalente grama do neutralizante.

L = equivalente grama do ácido lático.

Também deve-se ter o cuidado de não acrescentar neutralizante acima da quantidade necessária, para que não ocorra neutralização excessiva e com isso não venha a induzir a formação de sabão além de favorecer a presença de bactérias alcalinizantes ou proteolíticas resultando na formação de sabores desagradáveis e um aspecto pastoso.

2.2.3.4. Pasteurização

A pasteurização é feita elevando-se a temperatura até 75-80°C durante 10-15 segundos, fazendo em seguida o resfriamento, que deve ser rápido para evitar a formação de sabor de cozido e oleoso além de favorecer a solidificação dos glóbulos de gordura.

Esta etapa tem duas finalidades: destruir os microrganismos que possam vir a prejudicar a qualidade da manteiga e causadores de doença e eliminar substâncias indesejáveis (voláteis) e redução da viscosidade do creme, facilitando o processo de obtenção da manteiga.

2.2.3.5. Resfriamento

Se não for realizada a etapa de maturação do creme, o resfriamento é feito entre 8 a 13°C. Se for realizada a maturação resfriar à 20 °C.

2.2.3.6. Maturação

Para a fabricação de uma boa manteiga esta etapa é fundamental, pois através do fermento são desenvolvidos sabores e aromas que aprimoram a qualidade sensorial da manteiga.

A maturação pode ser feita de duas formas: natural ou artificial.

2.2.3.6.1. Maturação natural

A maturação natural é feita quando o creme não sofre pasteurização. Como já foi dito a pasteurização traz importantes vantagens, portanto, o ideal é que seja feita.

Pelo método natural não é possível a obtenção de uma manteiga padronizada, ou seja, sempre com as mesmas características, porque não se tem como controlar quais os microrganismos que estarão presentes após a pasteurização.

A maturação natural é feira deixando-se o creme em repouso por 12 a 16 horas, que é o tempo necessário para que ocorra a maturação.

Caso a batedura do creme não seja feita logo após o final da maturação, deve-se fazer o armazenamento do creme à temperatura de 4-6°C.

2.2.3.6.2. Maturação artificial

Ao contrário do método natural, o método artificial é feito adição de microrganismos específicos para promoverem a maturação, que são o Lactococcus lactis, L. cremoris (desenvolvem acidez), L. citrovorus e L. diacetilactis (desenvolvem sabor e aroma). Devem ser adicionados numa prorpoção de 3% em relação ao peso do creme, sob agitação,.

Se a manteiga for destinada ao consumo rápido, o final da maturação é determinado quando a acidez chega a 50°D, apresentando excelente sabor e aroma. Caso a manteiga seja armazenada por longo tempo, o final é determinado quando a acidez chega a 30-35°D, para obtenha maior durabilidade, embora apresente-se com sabor e aroma inferiores.

Esta é a melhor forma de fabricação pois como são acrescentados microrganismos conhecidos, obtem-se produto padronizado e se não houver mudança durante o processo, o produto sempre terá a mesma característica.

Caso a batedura do creme não seja feita logo após o final da maturação, deve-se fazer o armazenamento do creme à temperatura de 4-6°C.

2.2.4. Batedura

Após a maturação o creme deve ser resfriado antes de iniciar a etapa de batedura, que é feita na batedeira, e tem como objetivo a união dos glóbulos de gordura, formando os grãos de manteiga, havendo também a separação da fase líquida (leitelho).

A temperatura deve ficar na faixa de 8 a 13°C. Abaixo de 8°C, a operação é prejudicada pois aumenta o tempo para a obtenção dos grãos de manteiga, dificultando a união dos glóbulos de gordura. Acima de 13°C, ocorre diminuição do tempo de processo só que, produzindo manteiga com qualidade inferior, sendo difícil separar o leitelho, ocorrendo também arraste de gordura com o leitelho e a manteiga fica mole, tendo aspecto de mingau pastoso, diminuindo a sua conservação.

Para realizar a batedura, deve-se encher a batedeira entre 35-50% de sua capacidade, pois acima deste volume, aumenta em demasia o tempo do processo e abaixo o creme adere à parede e não se realiza a bateção. O final, que leva em tomo de 20 a 40 minutos, pode ser determinado de três formas:

visor da batedeira: quando apresentar-se completamente limpo.

- som: toma-se seco com a batida da massa.
- aspecto: no final do processo a manteiga apresenta-se granulada com aspecto de couve-flor e os grãos com tamanho de um grão de ervilha.

Após a determinação do final da etapa de batedura, faz-se a separação dos grãos, sendo escoado o leitelho, que sai por uma tela que fica na parte inferior da batedeira.

2.2.5. Lavagem da manteiga

Esta etapa é necessária para que se promova a retirada de resíduos de leitelho, que pode ser fermentado pelos microrganismos prejudicando a qualidade da manteiga, e também ajuda na retirada de sabores estranhos.

Deve ser feita com água limpa e fervida e com temperatura a 8°C no início e 4°C no final, para não promover o amolecimento da manteiga. A quantidade de água a ser usada é igual a quantidade de leitelho retirado, e deve ser feita no mínimo 2 vezes.

A lavagem pode ser feita dentro da própria batedeira. Após colocar a quantidade de água necessária, fecha-se a batedeira e deixa-se girar algumas vezes. Após o escorrimemto da água, efetua-se novas lavagens, até que a água saia limpa.

2.2.6. Salga da manteiga

É uma etapa opcional, mas apresenta as vantagens de conferir melhor sabor à manteiga e de também ajudar na conservação.

A salga é realizada, aproximadamente, 15 minutos antes de iniciar a malaxagem. A quantidade de sal a acrescentar varia entre 2 a 6%, pois depende da classificação da manteiga, ou seja, se será do tipo extra, 1ª qualidade ou 2ª qualidade.

2.2.7. Malaxagem

Nesta etapa, os grãos de manteiga são amassados até formar uma massa homogênea e elástica, juntamente com a retirada

do excesso de água. Esta operação que é feita no malaxador, que normalmente está conjugado com a batedeira.

Caso a malaxagem seja feita de forma incompleta, haverá um excesso de água, facilitando o desenvolvimento de microrganismos contaminantes. Por outro lado se, a malaxagem for excessiva dará a manteiga um aspecto gorduroso além de excessiva retirada de água fazendo com que caia o rendimento.

A temperatura deve estar em torno de 12 a 14 °C, pois se for maior a manteiga ficará muito mole aderindo às paredes do equipamento, mas se estiver abaixo, tornará difícil o processo de homogeinização da manteiga.

O término é determinado fazendo-se uma pressão, após um corte, na manteiga, se for observada a presença de pequenas gotas de água limpa, pode-se interromper a malaxagem. Outro indicativo é quando a massa da manteiga apresenta-se uniforme, sem cavidades.

4. EMBALAGEM

A embalagem é uma etapa importante, pois dará ao produto proteção contra microrganismos e também protegerá contra a luz, ar e aromas estranhos além de ser importante na sua apresentação.

Os principais materiais utilizados são: papel, que é utilizado quando o consumo for rápido, pois é permeável ao vapor d'água, ar e luz; o plástico (PVC, polietileno), que é mais vantajoso que o papel e a lata que deve ser estanhada.

5. ARMAZENAMENTO

Se a manteiga for consumida rapidamente, pode ficar na geladeira, caso seja feito armazenamento prolongado é recomendável ficar em temperatura de 10 a 15°C abaixo de zero.

4. BIBLIOGRAFIA CONSULTADA

- AQUARONE, E.; LIMA, U. B.; BONZANI, W. Alimentos e bebidas produzidos por fermentação. São Paulo :Editora Edgard Blücher, 1983. v. 5
- BEHMER, M. L. A. **Tecnologia do leite.** 7.ed. Rio de Janeiro: Nobel, 1977.
- CARUSO, A. J. B.; OLIVEIRA, A. J. Leite: obtenção, controle de qualidade e processamento. São Paulo: Secretaria da Indústria, Comércio, Ciência e Tecnologia, 1985. 116 p.
- CASAGRANDE, H.de R.; MUNK, A. V. Manteiga: princípios básicos de fabricação. Informe Agropecuário, Belo Horizonte, v. 88, n. 8, p. 36-8,1982.