Developing an Optimal Intersection Control Systemfor Automated Connected Vehicles

Y. Bichiou and H. A. Rakha, "Developing an Optimal Intersection Control System for Automated Connected Vehicles," in IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 5, pp. 1908-1916, May 2019, doi: 10.1109/TITS.2018.2850335.

contribution

作者提出了一种更全面的、非线性动态的网联车控制模型。具体来说就是考虑了车辆本身的属性(engine power、mass、fuel consumption、physical acceleration等等),天气状况(影响到路况)。

problem setting

如图所示,作者考虑了一种简化的场景:没有交通灯的十字路口,每辆车可以选择左转、右转或直行。

作者定义了两个参数 α_1 和 α_2 来分别对车的速度和偏转角进行控制,即如果将十字路口放在一个二维坐标轴中,小车的位置(x,y)和小车的速度v,夹角 θ 都可以用 α_1 和 α_2 来表示。

methodology

定义状态 $X = (x y v \theta)^T$, 控制向量 $\alpha = (\alpha_1 \alpha_2)^T$

则小车的运动可以写作 $\dot{X}=f(X,oldsymbol{lpha})$,优化的目标便是寻找最优的 $oldsymbol{lpha}$

constraints:包括acceleration constraints, a car-following model including collision avoidance constraints, time constraints和上面的动态限制

- (1) 其中加速度需要考虑各种阻力、车辆的质量和汽车的拉力,以便计算出加速度上限。减速上限由作者定义 为-5
 - (2) 使用Rakha-PasumarthyAdjerid (RPA) car-following model, 定义了最小前后车距的方程
 - (3) time constraints表示车辆必须在固定时间后到达(?)
 - (4) 小车的运动限制 $\dot{X}=f(X,oldsymbol{lpha})$

cost function:将损失函数定义为车辆通过十字路口的时间Optimal Control Time (OCT) ,或者定义为控制的幅度Optimal Control Effort (OCE)

solution:使用ICLOCS优化

simulation

对比的方法为roundabout, stop sign和traffic signal

