VIII - Fonctions

I - Fonctions particulières

I.1 - Polynômes

À Savoir

Soit a, b, c des réels tels que $a \neq 0$.

- * Si $f: x \mapsto ax + b$, alors f est un polynôme de degré 1 et de coefficient dominant égal à a. Il s'annule en $-\frac{b}{a}$.
- * Si $f: x \mapsto ax^2 + bx + c$, alors f est un polynôme de degré 2 (appelé également trinôme) et de coefficient dominant égal à a. Le discriminant de f est égal à $\Delta = b^2 - 4ac$.
 - \star Si $\Delta > 0$, la fonction f possède deux racines distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

Alors, $x_1 + x_2 = -\frac{b}{a}$ et $x_1 \times x_2 = \frac{c}{a}$. * Si $\Delta = 0$, la fonction f possède une unique racine :

$$x_0 = \frac{-b}{2a}.$$

À Savoir

Si f est un polynôme et si a est une racine de f (c'est-à-dire f(a) = 0), alors il existe un polynôme g(x) tel que

$$f(x) = (x - a)g(x).$$

I.2 - Valeur absolue

À Savoir

Soit a un réel. La valeur absolue de a, notée |a|, est égale à

$$\begin{cases} a & \text{si } a \geqslant 0 \\ -a & \text{si } a < 0 \end{cases}$$

Les limites aux bornes de son ensemble de définition sont :

$$\lim_{x \to -\infty} |x| = +\infty,$$

$$\lim_{x \to +\infty} |x| = +\infty.$$

À Savoir

Soit a, b deux réels. La valeur |a-b| est la distance entre les réels $a ext{ et } b$.

I.3 - Logarithme

À Savoir

La fonction logarithme népérien, notée ln, définie sur \mathbb{R}_{+}^{*} , est la primitive de la fonction $x \mapsto \frac{1}{x}$ qui s'annule en 1 :

$$\forall x > 0, \ln(x) = \int_1^x \frac{1}{t} dt.$$

La fonction logarithme est croissante sur \mathbb{R}_{+}^{*} .

Les limites aux bornes de son ensemble de définition sont :

$$\lim_{x \to 0^+} \ln(x) = -\infty,$$
$$\lim_{x \to +\infty} \ln(x) = +\infty.$$

Ses valeurs remarquables sont:

$$ln(1) = 0,$$

 $ln(e) = 1.$

À Savoir

La fonction logarithme est dérivable sur \mathbb{R}_+^* et

$$\forall x > 0, \ln'(x) = \frac{1}{x}.$$

À Savoir

Pour tous a, b > 0,

$$\ln(ab) = \ln(a) + \ln(b),$$

$$\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b).$$

I.4 - Exponentielle

À Savoir

La fonction exponentielle, notée exp, définie sur \mathbb{R} , est la fonction réciproque de la fonction logarithme. On note $e^x = \exp(x)$.

$$\forall x \in \mathbb{R}, \ln(e^x) = x,$$

 $\forall x > 0, e^{\ln(x)} = x.$

La fonction exponentielle est croissante sur \mathbb{R} .

Les limites aux bornes de son ensemble de définition sont :

$$\lim_{x \to -\infty} e^x = 0,$$
$$\lim_{x \to +\infty} e^x = +\infty.$$

Ses valeurs remarquables sont:

$$e^0 = 1,$$

 $e^1 = e.$

À Savoir

La fonction exponentielle est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \exp'(x) = \exp(x).$$

À Savoir

Pour tous $a, b \in \mathbb{R}$,

$$e^{a+b} = e^a \cdot e^b,$$
$$e^{-a} = \frac{1}{e^a}.$$

II - Généralités

À Savoir

* Si f est croissante sur I et $x, y \in I$. Alors,

$$x \leqslant y$$

$$\Rightarrow f(x) \leqslant f(y)$$

Chapitre VIII - Fonctions ECT 2

* Si f est $d\acute{e}croissante$ sur I et $x, y \in I$. Alors,

$$x \leqslant y$$

$$\Rightarrow f(y) \leqslant f(x)$$

II.1 - Limites

À Savoir

- * La limite à droite de f en a est la valeur que prend f(x) lorsque x tend vers a tout en restant supérieur à a. On la note $\lim_{x\to a^+} f(x)$.
- * La limite à gauche de f en a est la valeur que prend f(x) lorsque x tend vers a tout en restant inférieur à a. On la note $\lim_{x\to a^-} f(x)$.

À Savoir

- * La limite en $-\infty$ ou en $+\infty$ d'un polynôme est égale à la limite de son terme de plus haut degré.
- * La limite en $-\infty$ ou en $+\infty$ d'un quotient de polynômes est égale à la limite du quotient de leurs termes de plus haut degré.

À Savoir

Si la case indique??, la limite est indéterminée. Il faut transformer l'expression (factorisation, expression conjuguée, croissances comparées,...) pour pouvoir la déterminer.

* Multiplication par une constante.

$\lim f =$	ℓ	$-\infty$	$+\infty$	
$\lim kf =$	$k\ell$	$-\infty$	$+\infty$	$\sin k > 0$
	$k\ell$	$+\infty$	$-\infty$	$\sin k < 0$
	0	0	0	$\sin k = 0$

* **Addition** de limites. Dans le tableau est indiquée la valeur de $\lim (f + q)$.

27					
$\lim f = \lim g$	ℓ_1	$-\infty$	$+\infty$		
ℓ_2	$\ell_1 + \ell_2$	$-\infty$	$+\infty$		
$-\infty$	$-\infty$	$-\infty$??		
$+\infty$	$+\infty$??	$+\infty$		

* Multiplication de limites. Dans le tableau est indiquée la valeur de $\lim (f \times g)$.

$\lim f = \lim g$	$\ell_1 < 0$	$\ell_1 > 0$	0	$-\infty$	$+\infty$
$\ell_2 < 0$	$\ell_1\ell_2$	$\ell_1\ell_2$	0	$+\infty$	$-\infty$
$\ell_2 > 0$	$\ell_1\ell_2$	$\ell_1\ell_2$	0	$-\infty$	$+\infty$
0	0	0	0	??	??
$-\infty$	$+\infty$	$-\infty$??	$+\infty$	$-\infty$
$+\infty$	$-\infty$	$+\infty$??	$-\infty$	$+\infty$

* **Quotient** de limites. Dans le tableau est indiquée la valeur de $\lim \frac{f}{a}$.

$\lim_{f \to g} f$	$\ell_1 < 0$	$\ell_1 > 0$	0-	0+	$-\infty$	$+\infty$
$\ell_2 < 0$	$rac{\ell_1}{\ell_2}$	$\frac{\ell_1}{\ell_2}$	$+\infty$	$-\infty$	0+	0-
$\ell_2 > 0$	$rac{\ell_1}{\ell_2}$	$\frac{\ell_1}{\ell_2}$	$-\infty$	$+\infty$	0-	0+
0-	0+	0-	??	??	0+	0-
$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$??	??
$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$??	??

Chapitre VIII - Fonctions ECT 2

À Savoir

Théorème des croissances comparées. Soit $\alpha > 0$ et $n \in \mathbb{N}^*$.

$$\lim_{x \to +\infty} \frac{\mathrm{e}^x}{x^{\alpha}} = +\infty,$$

$$\lim_{x \to +\infty} \frac{x^{\alpha}}{\mathrm{e}^x} = 0,$$

$$\lim_{x \to +\infty} \frac{\ln(x)}{x^{\alpha}} = 0,$$

$$\lim_{x \to +\infty} \frac{x^{\alpha}}{\ln(x)} = +\infty,$$

$$\lim_{x \to 0} (x^{\alpha} \ln(x)) = 0,$$

$$\lim_{x \to -\infty} x^n \, \mathrm{e}^x = 0.$$

À Savoir

- * Si $\lim_{x \to +\infty} f(x) = \ell$, alors la droite d'équation $y = \ell$ est une asymptote horizontale à la courbe représentative de f.
- * Si $\lim_{x\to+\infty} [f(x)-(ax+b)]=0$, alors la droite d'équation y = ax + b est une droite asymptote à la courbe représentative de f.
- * Si $\lim_{x \to a^+} f(x) = \pm \infty$, alors la droite d'équation x = a est une asymptote verticale à la courbe représentative de f.

II.2 - Continuité

À Savoir

* La fonction f est continue au point a si

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a).$$

- * Si f, q sont continues en a et $k \in \mathbb{R}$, alors
 - $\star f + kq$ est continue en a,
 - $\star f \times q$ est continue en a,

- * $\frac{f}{g}$ est continue en a si $g(a) \neq 0$, * $x \mapsto f(g(x))$ est continue en a si elle est définie.

À Savoir

Théorème des valeurs intermédiaires. Si f est continue sur [a, b]et $f(a) \leq y \leq f(b)$ ou $f(b) \leq y \leq f(a)$, alors il existe $x \in [a, b]$ tel que f(x) = y.

À Savoir

Théorème de la bijection monotone. Si f est continue et strictement monotone sur [a, b] et $f(a) \leq y \leq f(b)$ ou $f(b) \leq y \leq f(a)$, alors il existe un unique $x \in [a, b]$ tel que f(x) = y.

À Savoir

Si f est continue et strictement croissante sur [a, b], alors il existe une unique fonction h telle que

$$\forall y \in [f(a), f(b)], f(h(y)) = y$$
 et
$$\forall x \in [a, b], h(f(x)) = x.$$

La fonction h est la bijection réciproque de f.

À Savoir

Algorithme de dichotomie. Soit f telle que $f(a)f(b) \leq 0$. Pour trouver une valeur approchée à ε près d'un réel c tel que f(c) = 0, on procède itérativement comme suit :

- * si $b a \leq \varepsilon$, on renvoie la valeur a.
- * sinon on pose $m = \frac{a+b}{2}$.
 - * Si $f(a)f(m) \leq 0$, on recommence en remplaçant b par
 - \star Sinon on recommence en remplaçant a par m.

Chapitre VIII - Fonctions ECT 2

II.3 - Dérivabilité

À Savoir

Si f est une fonction dérivable en a et \mathscr{C}_f est sa courbe représentative dans un repère orthonormée, l'équation de la tangente à \mathscr{C}_f au point a est :

$$y = f'(a)(x - a) + f(a).$$

À Savoir

Soit I un intervalle de f.

- * Si $\forall x \in I, f'(x) \ge 0$, alors f est croissante sur I.
- * Si $\forall x \in I, f'(x) \leq 0$, alors f est décroissante sur I.
- * Si f'(x) > 0 pour tout $x \in I$ sauf éventuellement en un nombre fini de points, alors f est strictement croissante sur I.
- * Si f'(x) < 0 pour tout $x \in I$ sauf éventuellement en un nombre fini de points, alors f est strictement décroissante sur I.

À Savoir

Si f admet un maximum ou un minimum en a, alors f'(a) = 0.

II.4 - Convexité

À Savoir

La fonction f est convexe si sa courbe représentative se situe au-dessous de chacune de ses cordes.

Si f est deux fois dérivable :

- * f est convexe si et seulement si $f'' \ge 0$.
- * f est concave si et seulement si $f'' \leq 0$.

À Savoir

La courbe représentative de f admet un point d'inflexion en a si f''(a) = 0 et si f'' change de signe en a.