Exercises for Week 8

1 Exponential Fit (in Python)

In this exercise, we apply the variable projection method to solve the exponential fit problem in Exercise 3 from last week. We try to fit the data in data_exe3.mat with the function

$$\phi(\mathbf{x}, t) = x_1 e^{x_3 t} + x_2 e^{x_4 t}.$$

Note that the fit function is slightly different comparing with the one in Exercise 3 from last week.

1. Write a Python function to return the residual $r(a_k)$ (also called as the variable projection of y), the Jacobian $J(a_k)$, and the linear coefficients $c(a_k)$, where $a = [x_3, x_4]^T$ and $c = [x_1, x_2]^T$. You can write this function by completing the following Python code:

```
def fun_All(a, t, y):
# obtain F(a)
# compute c by calling linearLSQ
# compute the residual, i.e. the variable projection of y
# compute the Jacobian
```

2. Download the Python function variable_projection and save in the same folder as the function written in the previous question. Set the same starting point as in Exercise 3.3 from last week, i.e., $\boldsymbol{a} = [-1, -2]^T$, and call

```
xopt, stat = variable_projection_method(fun_All, a0, None, t, y)
```

Do you get the same solution as applying Gauss-Newton method directly on the nonlinear data fitting problem?

- 3. Plot $\|\nabla f(a_k)\|_2$ and $f(a_k)$ as functions of the iteration number. Do you need more or less iterations than applying Gauss-Newton?
- 4. Plot all data as points and the fit function as a curve.

2 Minimization of a quadratic function

We consider the strictly convex quadratic optimization problem

$$\min_{(x_1, x_2) \in \mathbb{R}^2} f(x_1, x_2) = 3x_1^2 + 5x_2^2 + 2x_1x_2 + 7x_1 + 3x_2 + 5.$$
(1)

1. (By hand) Show that (1) can be expressed as

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \ f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T H \boldsymbol{x} + \boldsymbol{g}^T \boldsymbol{x} + \gamma$$

where H is symmetric. What are the values of H, \boldsymbol{g} and γ ? What is the value of n?

- 2. (By hand) What is the gradient $\nabla f(x)$ and the Hessian $\nabla^2 f(x)$?
- 3. (In Python) Install cvxopt, and use the Python function cvxopt.solvers.qp, solve the unconstrained minimization problem (1). What is the solution?
- 4. (In Python) Use cvxopt.solvers.qp to solve the minimization problem (1) with the constraint $3x_1 + x_2 \le -5$. What is the solution now?

3 Data fitting with different norms (in Python)

We try to fit the data shown in the following table

	-1.5				2.5
y_i	0.80	1.23	1.15	1.48	2.17

by a fit function in the form of $\phi(x,t) = x_1t + x_2$.

- 1. Call your Python function linearLSQ to find the least-squares fit solution $x_{(2)}^*$, and calculate the objective function value $f_{(2)}(x_{(2)}^*) = ||r(x_{(2)}^*)||_2$.
- 2. Call the Python function scipy.optimize.linprog to find the l_1 regression solution $\boldsymbol{x}_{(1)}^*$, and calculate the objective function value $f_{(1)}(\boldsymbol{x}_{(1)}^*) = \|\boldsymbol{r}(\boldsymbol{x}_{(1)}^*)\|_1$.

In fact the l_1 regression solution is not unique. All

$$\boldsymbol{x}_{(1)} = \begin{bmatrix} 0.227 \\ 1.140 \end{bmatrix} + \alpha \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
 for $0 \le \alpha \le 0.0579$

give you the same minimal value $f_{(1)}$. Please pick up one value for α and check if it gives the same minimal value as what you got with $\boldsymbol{x}_{(1)}^*$.

- 3. Call the Python function scipy.optimize.linprog to find the l_{∞} regression solution $\boldsymbol{x}_{(\infty)}^*$, and calculate the objective function value $f_{(\infty)}(\boldsymbol{x}_{(\infty)}^*) = \|\boldsymbol{r}(\boldsymbol{x}_{(\infty)}^*)\|_{\infty}$.
- 4. Plot the data as points and all 3 fit functions as straight lines.

- 5. Download and run the Python script contourplot.py. It creates three contour plots for the objective functions $f_{(2)}$, $f_{(1)}$ and $f_{(\infty)}$. From the contour plots, can you see that for l_2 and l_{∞} the minimizer is unique, but for l_1 the minimizer is not unique? In addition, the function with smoother contours is usually easier to solve. Then, which one would be the easiest to solve?
- 6. Now, we study how sensitive these three regression solutions to outliers. Change the data (t_5, y_5) from (2.5, 2.17) into (2.5, 4). Then, use the Python function linearLSQ and scipy.optimize.linprog to find the/a minimizer of l_2 , l_1 and l_{∞} regression solutions. Plot them in the same figure created in Question 4 but with dashed lines. Which one is the most robust with respect to the outliers?