(2)

16 A search coil is used to investigate magnetic fields.

The search coil consists of a coil of thin copper wire connected to two output terminals, as shown.

A student placed the coil in a magnetic field with the axis parallel to the direction of the field, as shown.

The coil was rotated through 90° so the axis was perpendicular to the direction of the field, as shown.

As the coil was rotated, a potential difference (p.d.) was detected across the terminals.

(a) Explain why a p.d. was produced as the coil was rotated.

(b)	Show that the initial value of magnetic flux in the coil is about 9×10^{-5} Wb.	
	diameter of coil = 25 mm magnetic flux density = 0.18 T	
		(3)

(c) The graph shows the magnetic flux in the coil while the coil was being rotated.

Magnetic flux / 10^{-5} Wb

Time/s

Determine the maximum p.d. produced across the terminals.

number of turns on coil = 5000

(4)

Maximum p.d. =

(d) The output terminals of the coil are connected together, while the coil is in the magnetic field. The diagram shows a cross-section through one turn of the coil. X is on one side of the coil.

The coil is rotated clockwise in the magnetic field, causing a current in the coil. The student states that the current at X is into the page.

Deduce whether the student's statement is correct.

You should refer to Lenz's law.

1)