지능화 캡스톤 프로젝트-10

[프로젝트 #2] YOLO를 이용한 안전모 검출

2022. 05. 11

도규원, 김현용

충북대학교 산업인공지능학과

공지사항

- 출석관리 철저
 - 채팅창에 "20학번 OOO 출석"으로 1일 2회 기록 : 입장(19시)과 퇴장(21시~)
 - 20학번 : 프로젝트(60%) + 주제발표(10%) + **출석(30%)**

항목		비율	내 용	비고
발표 평가 (총 100%)	1차 발표	30%	Project #1. CNN을 이용한 불량검출	조 편성
	2차 발표	40%	Project #2. YOLO를 이용한 안전모 검출	
주제발표 평가		10%	조별 발표	조별 발표 주제 선정
출 석		20%	총 수업시간의 ¾ 미달시 F. (총 수업시간 : 60시간, 15시간 이상 미출석시 F)	

→ 5일 이상 결석 시 F 처리

조편성 결과(4/27 현재)

<u>20 학번 조편성</u>

<u>21 학번 조편성</u>

조	성명	발표여부	조	성명	발표여부
20-1	전일우, 이효중, 박성범	0	21-1	이용규, 유대건	
20-2	임동민, 신정환, 안건호		21-2	김대훈	0
20-3	최원희, 손의걸	0	21-3	최준혁, 이지연	0
20-4	윤재웅, 김성웅	0	21-4	김상순, 정수현	0
20-5	강윤구, 김병근	0	21-5	방창현, 정원용	
20-6	박민우	0	21-6	우상진, 김준태	
20-7	원형일, 장민우		21-7	봉은정, 김원우	
20-8	고정재, 유용주	0	21-8	이충현, 이지호	
초 Q 不	5 / 17명		21-9	정준영, 윤범희	

궁 8소 / 1/명

총 9조 / 17명

조별 발표 주제 (4/27 현재)

주차	날짜	대면	발표 주제	발표조
7	4/20	0	Project #2 : YOLO를 이용한 안전모 검출	김현용, 도규원
8	4/27	Χ	검출과 분할 – Object Detection vs. Segmentation, Mask-RCNN	21-3, 21-4
9	5/4	X	AI특강1(19:00~20:30) : 산업지능화를 통한 비즈니스	초청강사
10	5/11	X	RCNN계열-R-CNN, fast/faster R-CNN의 비교(구조, 성능) 1-Stage detector – YOLO 외 SSD, RetinaNet 등	21-6, 21-9 20-7, 21-1
11	5/18	X	YOLOv5 사용법 - 각종 파라미터 설정, 학습/검증/추론 방법 등 주석 - 레이블링 파일형식(xml, json, yolov5) 변환 코드 평가지표- mAP(예제, 코드) AI특강2(21:00~22:00) : 심층강화학습 개론	20-2, 21-7 21-5 21-8 초청강사
12	5/25	0	중간점검(19~20시, 개신동 E9-105): 5분 발표 (20학번, 21학번) 장소 이동 후 간담회: 학과장님 및 교수님	모든 조
13	6/1	Χ	[휴무 대보강] 동영상 강의 시청	이광연, 김재영
14	6/8	X	AI특강3(19:00~20:00): 미정 최종점검(20학번, 21학번) 테스트 데이터 공개 → 검출결과 제출 (→ mAP 피드백)	초청강사 모든 조
15	6/15	0	프로젝트 #2 발표평가	모든 조

4

오늘 수업진행

구분	시간	20학번	21학번	
	19:00~19:10	수업 안내 / 출석체크		
전체수업		주제발표		
	19:10~19:50	21-6조, 21-9조 : RCNN 계열		
		20-7조, 21-1조 : YOLO 계열		
		소회의실1 / 논문방	소회의실2/프로젝트방	
		(이광연, 윤성철, 김재영)	(김현용, 도규원)	
분반수업	20:00~21:00	- 포트폴리오 제출방법	- AI메이커톤 사례#2	
		- 논문 샘플 공유	- 각 조 진행점검	
		- 논문발표 연습일정	조별 토의 (30분)	
전체수업	21:00~	수업 마무리 / (전체방에서) 출석체크		

Q&A

제 2회 AI 메이커톤

+AI MAKEATHON

충북대학교 빅데이터전공 최우석 충북대학교 빅데이터전공 이주연 충북대학교 빅데이터전공 유연주

3

- 1) 데이터 분석 수행
- 2) 데이터 분석 결과

- 1) 활용 데이터 소개
- 2) 알고리즘 소개
- 3) 분석 프로세스 로드맵

1-1. 배경

인공지능 기술을 적용(+AI)하여 산업 현장의 문제를 해결

안전모는 생명을 지키는 소중한 보물

교량 슬래브 거푸집 해체 작업 중 떨어진 거푸집에 맞고 사망 건설 현장에서 안전모를 착용하고 작업을 하는 것은 가장 기본적인 일이다. 이 기본을 지키지 않아 그 동안 수많 은 근로자가 죽거나 다쳤다. 이번 사례는 소중한 생명을 지키는 안전모의 중요성을 다시 한 번 느끼게 해 준다.

안전모를 착용한 사람과 착용하지 않은 사람을 Al 알고리즘을 적용하여 보다 정확히 판별, 나아가 산업 현장의 안전사고 예방에 기여

출처 : 안전보건공단 블로그

1-2. 문제 정의 및 방법론

문제 정의: "영상 속에서 작업자의 안전모 착용상태에 대해 Object Detection을 수행하여 Class와 Bounding box 정보 도출"

YOLO-CNN 복합모델 적용

2-1. 활용 데이터 소개

2-2. 알고리즘 소개 (1)

출처 : https://ropiens.tistory.com/44

YOLO란, 객체 탐지를 단일 회귀로 재구성하여 이미지에 대한 Bounding Box로 영역을 설정하고, 영역 내 물체의 종류나 유무를 판단하여 분류와 객체 탐지를 한꺼번에 수행하는 방법론이다.

s, m, l, x 순으로 모델의 깊이가 깊어지며 이에 따라 **정확도가 높아진다**.

본 경진대회에서는 정확도가 가장 높은 모델인 YOLOv5x를 사용하였다.

2-2. 알고리즘 소개 (2)

VGGNet은 2014년에 등장한 CNN 알고리즘으로, 간단한 CNN층으로 **빠르며 정확한 이미지 분류 성능**을 보인다. 본 경진대회에서는 **16버전**을 사용하였다.

2-3. 분석 프로세스 로드맵

roboflow

Dataset Summary

First Step) 데이터 수집

Blog Public Datasets Model Zoo Docs

Hard Hat Workers Dataset

Second Step) 학습-검증 데이터 Split (0.9)

```
from sklearn.model_selection import train_test_split

file_names = ["hard_hat_workers"+str(i)+".png" for i in range(5000)]

train, test = train_test_split(file_names, test_size=0.1, shuffle=True) #世晉是堂

train = sorted(train, key = lambda x : int(x.split('workers')[-1].replace('.png', '')))

test = sorted(test, key = lambda x : int(x.split('workers')[-1].replace('.png', '')))

image_p = 'D:/메이커是/images/'

for i in train:
    image_path = image_p + i
    image = Image.open(image_path)
    image_save('D:/메이커是/images/train/' + i)

for i in test:
    image_path = image_p + i
    image_save('D:/메이커是/images/test/' + i)
```

- YOLO-CNN 결합 모델의 성능을 평가하기 위해 Sklearn의 train_test_split 함수를 활용하여 5,000개의 데이터 중 10%를 평가데이터로 분리

_____ 1.사람추출(AI메이커톤).py

¹ 2.사람추출(Hardhat).py

3-1. 데이터 분석 수행

Second Step) 사진 내 Head 추출

- +AI 메이커톤과 roboflow 데이터 모두 annotations을 XML 형식으로 제공
- Python의 xml.etree.ElementTree 패키지를 활용하여 정보 추출
- 사진마다 Object-bounding_box 정보를 활용하여
 사람의 머리 부분을 .png형식으로 crop
 (이미지가 Head 인지 Helmet인지 분류하는 모델을 학습하기 위함)

3.train-test-extract2.py

3-1. 데이터 분석 수행

Second Step) 학습-검증 데이터 Split

3-1. 데이터 분석 수행 Second Step) 데이터 증강

```
aug = ImageDataGenerator(
    rotation_range=5,
    width_shift_range=0.12,
    height_shift_range=0.12,
                                       mage_directory = image_p + i + '\\' + str(j) #save_pat
    shear_range=0.1,
                                      image_directories = sorted(glob(image_directory + '\\*'))
                                      image_directories = image_directories[:-1]
    horizontal flip=True,
                                      image_directories = sorted(image_directories, key = lambda x : int((x.replac
    vertical_flip=True,
                                         img in image_directories:
    fill_mode="nearest",
                                         print(img) #image
                                          image = load_img(img) #이미지로드
                                          image = np.expand_dims(image, axis=0)
                                          imageGen = aug.flow(
                                             batch_size=1,
                                             save_to_dir=image_directory, #제장장소
                                             save_format="jpg",
                                          for image in imageGen:
                                             total += 1
```

- Head-Helmet 데이터셋을 확인해본 결과, Head(8,918개),
 Helmet(27,687개)로 클래스 불균형 확인
- 따라서 augmentation 방법을 통해 Head 이미지를 3배 증강시킴
- 증강 후, Head 26,878개, Helmet 27,687개로 데이터 확정

3-1. 데이터 분석 수행 Third Step) CNN 모델 생성 (1)

```
5. classification_learning.py
6. classification_inference.py
```

```
def define_model():
    model = V6G16(include_top=False, input_shape=(224, 224, 3))
# model = DenseNet121(include_top=False, input_shape=(224, 224, 3))
# model = EfficientNetB0(include_top=False, input_shape=(224, 224, 3))
# model = EfficientNetB4(include_top=False, input_shape=(224, 224, 3))
# model = EfficientNetB4(include_top=False, input_shape=(224, 224, 3))

# model = False

# 전이학급을 하기 위해, CNN을의 학급 차단
for layer in model.layers:
    layer.trainable = False

# classification을 위한 FC을
flat1 = Flatten()(model.layers[-1].output)
class1 = Dense(128, activation='relu', kernel_initializer='he_uniform')(flat1)
output = Dense(1, activation='sigmoid')(class1)

# 모델 정의
model = Model(inputs=model.inputs, outputs=output)
```

- Head-Helmet 이미지 분류를 위해 CNN 기반의 Model 생성
- 모델의 성능을 고도화하기 위해 전이학습 실시
- Dense층을 1로 설정하여, Confidence가 0과 가까우면 Head, 1과 가까우면 Helmet이라고 볼 수 있음
- 임계값은 0.5로 설정 (0.5보다 크면 Helmet, 작으면 Head Labeling)

Third Step) CNN 모델 생성 (2)

5. classification_learning.py

6. classification_inference.py

Third Step) YOLOv5x 모델 생성 (1)

```
model_size = (640,640)
 path objname = r"obj.names"
                                                   "사전학습모델 Human_head.pt
 path weights = r"YOLOV5X/human head.pt
                                                     (가중치 파일)를 이용하였음'
 score = 0.45 #0.25
 nms = 0.80
∨ if <u>__name__</u> == "__mai
        image_path = path_dir + "/" + image
        INPUT = cv2.imread(image_path)
        img, cnn_boxes = yolomodel.getObject(img, 0.25, 0.55, drawBox=True, char_type='Chinese')
        cv2.imwrite('./yolo-result/'+image+'.png',img) #박스 시각화
        for box in cnn_boxes:
           image_paths.append(image_path)
                                                            Yolov5x 모델에 이미지를 넣으면
            image_boxes.append(box)
                                                      Output 위치 정보를 저장하도록 코드 구현
dataset["image_path"] = image_paths
dataset["image_box"] = image_boxes
 dataset.to_excel("./yolo-result/yolo_result.xlsx", index=False)
```

- YOLOv5x 코드 구현
- 평가방법 중 머리의 위치도 정확도 계산에 반영된다는 점을 고려하여, 직접 학습하는 대신 사전학습 모델을 이용하여 정확도를 높이고자 함
- 사전 학습 모델인 YOLO_person.pt를 이용
- YOLO_person.pt는 Head(사람머리)와 Person(사람전체) 2개의 Class를 탐지할 수 있도록 학습됨

Third Step) YOLOv5x 모델 생성 (2)

58 for p in predictions:
59 if p['class'] == 0: #사람머리만 등장하게함 "Class=0(Head)만 출력하게 함"

cnn box.append((xmin, ymin, xmax, ymax))

- construction_YOLO.py에 Yolo Class 설계
- 사전에 학습된 Weight(.pt)를 이용하여 사진을 넣으면 사람의 얼굴(Head)만 탐지되도록 코드 수정
- Output 결과물과 박스 위치를 return 받음

run_cnn.py

3-1. 데이터 분석 수행

Final Step) 모델 결합

```
### 2. run_yolov5x.py 결과 불러오기(이미지 경로, 비운영 박스 좌표)및 데이터 형식 변경 ###
box_location = pd.read_excel("./yolo-result/yolo_result.xlsx")

box_location["image_path"] = box_location["image_path"].apply(lambda x : x.replace("./Demo/test/", ""))

box_location["image_pox"] = box_location["image_pox"].apply(lambda x : eval(x))

"'YOLO_y5 모델 output(郑莊祝)를 input으로 크롭한 위 classification(V6G16) 모델 로드''

try:

while image_p == box_location["image_path"][check]:

if box_location["image_pox"][check] != 0: ###801 없는 경우에 변 파일 저장

INPUT = INPUT.crop(box_location["image_box"][check])

INPUT = INPUT.sresize((224,224))

# 1NPUTs = INPUT.sresize((224,224))

# 1NPUTs = img_to_array(INPUTs)

INPUTs = INPUTs.resize((224,224))

INPUTs = INPUTs.resize((224,224))

INPUTs = INPUTs.resize((1,224,234,3))

INPUTs = INPUTs.astype('float32')

INPUTs = INPUTs.astype('float32')

INPUTs = INPUTs.resize((1,224,234,3))

INPUTs = INPUTs.astype('float32')

INPUTs = INPUTs.resize((1,224,234,3))

INPUTs = INPUTs.resize((1,224,234,3))

INPUTs = INPUTs.resize((1,224,234,3))

INPUTs = INPUTs.astype('float32')

INPUTs = INPUTs.resize((1,224,234,3))

INPUTs = INPUTs.resize((1,224,234,3)
```

- Yolov5x의 Output으로 나온 box에 CNN 분류 모델을 이용하여
 Head-Helmet 분류 진행
- 임계값을 0.5로 설계하여 CNN 결과가 0.5보다 크면 Helmet, 작으면 Head로 분류
- YOLO-CNN 모델의 결과물은 사진 1장에 .TXT 1개로 저장하도 록 구현
- +AI 메이커톤 Test 데이터를 이용하여 YOLO-CNN 모델 평가

3-1. 데이터 분석 수행 Final Step) 모델 평가

3-2. 데이터 분석 결과

감사합니다

충북대학교 빅데이터전공 최우석 충북대학교 빅데이터전공 이주연 충북대학교 빅데이터전공 유연주