Behavior-based Control Examples

See paper by Craig Reynolds entitled "Steering Behaviors for Autonomous Characters" for more details.

Basic Vehicle Dynamics

Translational Dynamics: $m\dot{V} = F$ Rotational Dynamics: $I\ddot{\theta} = \tau$

The velocity vector V of the vehicle can be represented in a coordinate system attached to the body (i.e. body coordinates) or the world coordinate system (i.e. world coordinates)

 V_w = Velocity vector V in world coordinates V_B = Velocity vector V in body coordinates

Relationship between V_w and V_B :

 $\mathbf{V}_{w} = \mathbf{R}(z, \theta)\mathbf{V}_{B}$ where R is a z-axis rotation matrix

Vehicle Constraints:

 $F_{max} = max force$

 $\tau_{max} = max torque$

 $V_{max} = max \ velocity$

 $\dot{\theta}_{\text{max}} = \text{max angular velocity}$

Group Behaviors

Separation

- Determine vehicles and objects in local neighborhood of radius = $R_{neighborhood}$
- Given the distance to each vehicle/object in the neighborhood, compute the separation velocity as follows:

$$\mathbf{V}_{separate} = K_{separate} \sum w_i \frac{\mathbf{d}_i}{\left\|\mathbf{d}_i\right\|^2}$$

as the weighted sum of the inverse of the separation distances \boldsymbol{d}_{i}

Alignment

- Determine vehicles in local neighborhood of radius = $R_{neighborhood}$
- Given the velocity of each vehicle in the neighborhood, compute the alignment velocity as the weighted average: $\mathbf{V}_{align} = K_{align} \frac{\sum_{i} w_i \mathbf{V}_i}{\sum_{i} w_i}$

$$\mathbf{V}_{align} = K_{align} \frac{\sum w_i \mathbf{V}_i}{\sum w_i}$$

Cohesion

- Determine vehicles in local neighborhood of radius = $R_{neighborhood}$
- Given the position of each vehicle in the neighborhood, \mathbf{x}_i , compute the center of mass of the vehicles as the average of their current positions:

$$\mathbf{x}_{cm} = \frac{\sum w_i \mathbf{x}_i}{\sum w_i}$$

• Compute V_{cohesion} as the vector from the vehicles current position (\mathbf{x}) to the center of mass position of all the vehicles in the neighborhood (\mathbf{x}_{cm}) :

$$\mathbf{V}_{cohesion} = K_{cohesion} (\mathbf{x}_{cm} - \mathbf{x})$$

Flocking

• Flocking behaviors are created as a weighted sum of separation, cohesion and alignment velocity commands

$$\mathbf{V}_{flock} = c_{separate} \mathbf{V}_{separate} + c_{cohesion} \mathbf{V}_{cohesion} + c_{alignment} \mathbf{V}_{alignment}$$

where c_{separate} , c_{cohesion} and $c_{\text{alignment}}$ are the coefficients which determine the relative weighting of the separation, cohesion and alignment velocity commands

- Control law command variables V_d and θ_d for each vehicle are of the form:
 - o $V_d = ||V_{flock}||$
 - o Given V_{flock} , compute θ_d as in Seek behavior

Leader Following

 Leader Following behaviors are created as a weighted average of separation and arrival commands

$$\mathbf{V}_{leaderfollow} = c_{separate} \mathbf{V}_{separate} + c_{arrival} \mathbf{V}_{arrival}$$

where $c_{separate}$, $c_{arrival}$ are the coefficients which determine the relative weighting of the separation and arrival velocity commands

- Compute the target location for the arrival command to be a point offset slightly behind the leader, which can vary based on the vehicle velocity (i.e. tighter or looser formation)
- Control law command variables V_d and θ_d for each vehicle are of the form:
 - o $V_d = ||V_{leaderfollow}||$
 - o Given $V_{leaderfollow}$, compute θ_d as in Seek behavior

Individual Behaviors

Seek/Flee

- Compute error, $e = x_{target} x$, between target location and present location
- Compute components of error \mathbf{e}_x and \mathbf{e}_y in body axes
- Compute desired heading angle command (θ_d) for Seek as follows:

Seek:
$$\theta_d = \theta + \tan^{-1}(\frac{\mathbf{e}_y}{\mathbf{e}_x})$$
 where $\theta_d \in [-\pi, \pi]$

• Compute desired heading angle command (θ_d) for Flee as follows:

For Flee, the desired direction is opposite that of the error vector. This can be achieved using the arctan function by negating the sign of the error components which yields:

Flee:
$$\theta_d = \theta + \tan^{-1}(\frac{\mathbf{e}_y}{\mathbf{e}_x}) + \pi$$
 where $\theta_d \in [-\pi, \pi]$

If using arctan2 can be computed as
$$\theta_d = \theta + \tan^{-1}(\frac{-\mathbf{e_y}}{-\mathbf{e_x}})$$

 $\bullet~$ For both Seek and Flee, set the desired velocity command $V_{\text{d}} = V_{\text{max}}$

6

Arrival/Departure

• Arrival

o Compute $\mathbf{V}_{arrival} = K_{arrival} \mathbf{e}$

o Control law command variables V_d and θ_d are compute as follows:

$$\bullet \quad V_d = ||V_{arrival}||$$

• Given the desired direction of the vector $\mathbf{V}_{arrival}$, compute θ_d as in Seek behavior

Departure

o Compute $\mathbf{V}_{departure} = K_{departure} \frac{-\mathbf{e}}{\|\mathbf{e}\|^2}$

where $K_{departure}$ is a scalar gain that determines the strength of repulsion

o Control law command variables V_d and θ_d are compute as follows:

$$\bullet \quad V_d = ||V_{departure}||$$

o Given $V_{\text{departure}}$, compute θ_d as in Flee behavior

Obstacle Avoidance

- Approximate vehicle and obstacle using bounding spheres
 - o r_B = radius of vehicle bounding sphere
 - o r_0 = radius of obstacle bounding sphere
- Goal is to keep an imaginary cylinder of free space of length L_B and radius r_B in front of vehicle at all times
- Length of cylinder L_B is computed as a function of current velocity, $L_B = T_{avoid} * ||V||$
- Detect potential collision as follows:
 - \circ Compute $\mathbf{d}_{world} = position_obstacle position_vehicle$
 - o Localize **d**_{world} into body coordinates to get d
 - o If $||d_x|| > L_B$, then no collision
 - o If $||d_x|| \le L_B$, then potential collision
 - If $||\mathbf{d}_{\mathbf{v}}|| > r_{\mathbf{B}} + r_{\mathbf{o}}$, then no collision
 - If $||d_y|| \le r_B + r_o$, then potential for collision.
 - Take appropriate corrective action by computing V_{avoid} using either a normal or tangential velocity field approach
- Calculation of **V**_{avoid}
 - o *Normal velocity field* the vehicle is repulsed from the obstacle in a direction \hat{n}_{avoid} , which is a unit vector normal to the obstacle at the point of intersection with **d**.

- Direction of $\mathbf{V}_{\text{avoid}}$, $\hat{\mathbf{n}}_{avoid} = \frac{-\mathbf{d}}{\|\mathbf{d}\|}$
- Magnitude of $\mathbf{V}_{\text{avoid}}$, $\|\mathbf{V}_{avoid}\| = \frac{K_{aviod}V_{\text{max}}}{1 + (\|\mathbf{d}\| (r_B + r_o))^2}$ where K_{avoid} is a scalar gain that determines the strength of repulsion
- o **Tangential velocity field** the vehicle is repulsed from the obstacle in a direction \hat{t}_{avoid} , which is a unit vector tangent to the obstacle at the point of intersection with d.

- Direction of $\mathbf{V}_{\text{avoid}}$, \hat{t}_{avoid} , can be found as follows:
 - $\bullet \quad \hat{\mathbf{n}}_{avoid} = \frac{-\mathbf{d}}{\|\mathbf{d}\|}$
 - $\bullet \quad \hat{\mathbf{k}}_{avoid} = \frac{\mathbf{V} \times \mathbf{d}}{\|\mathbf{V}\| \|\mathbf{d}\|}$
 - $\bullet \quad \hat{\mathbf{t}}_{avoid} = \hat{\mathbf{k}}_{avoid} \times \hat{\mathbf{n}}_{avoid}$
- Magnitude of $\mathbf{V}_{\text{avoid}}$, $\|\mathbf{V}_{\text{avoid}}\| = \frac{K_{\text{aviod}}V_{\text{max}}}{1 + (\|\mathbf{d}\| (r_B + r_o))^2}$ where K_{avoid} is a scalar gain that determines the strength of repulsion
- Control law command variables V_d and θ_d are compute as follows:
 - $\quad \quad o \quad \ V_d = || \mathbf{V}_{avoid} ||$
 - o Given V_{avoid} , compute θ_d as in Seek behavior

Wander

- Wandering involves doing a random walk on a circle of radius $\|\mathbf{V}_{wander}\|$ centered at \mathbf{V}_0 , where \mathbf{V}_0 is the nominal velocity command.
- This can be accomplished as follows:
 - o Compute a random noise vector **n** from a uniform distribution
 - O Compute $\mathbf{r}_{noise} = K_{noise} \frac{\mathbf{n}}{\|\mathbf{n}\|}$ where K_{noise} is the noise scale factor
 - Compute the new wander velocity given the current wander velocity, V_{wander} , and the wander direction perturbation $\mathbf{r}_{\text{noise}}$,

•
$$\mathbf{V}_{wander} = K_{wander} \frac{\mathbf{V}_{wander} + \mathbf{r}_{noise}}{\|\mathbf{V}_{wander} + \mathbf{r}_{noise}\|}$$
 where K_{wander} is the wander

strength

o Compute the desired velocity vector as

$$\bullet \quad \mathbf{V}_{desired} = \mathbf{V}_0 + \mathbf{V}_{wander}$$

o Knowing V_{desired} , compute command variables V_d and θ_d as in Seek behavior