YIFAN JIANG AMY ZHANG MELODY FENG JASON LEE KAI HAYDEN

Beijing Air Quality

Time Series Analysis and Forecasting (MSCA 31006-1)

1

YIFAN JIANG AMY ZHANG MELODY FENG JASON LEE KAI HAYDEN

Contents

- Dataset & Cleaning
- Experimental Results and Analysis
- △ Modeling
- △ Model Evaluation
 - Conclusion

Business Problem

Problem

4

Goal & Business Value

Goal: Build a time series model that predicts PM2.5 daily levels

- 1. Obtain PM2.5 measures in Beijing from March 2013 to June 2017
- 2. Fit 4 models: ARIMA, ARIMA errors, VAR, and TBATS to the PM2.5 time series
- 3. Cross-validate best fitted model from each model type
- 4. Recommend the best performing model

Business Value

- 1. Inform citizens on days that are suitable for outdoor activities
- 2. Simulate air quality trend following government interventions and regulations

Dataset & Cleaning

Data Summary

→ **File Type:** CSV file

→ Data Shape: 18 Columns × 35,064 Rows

→ **File Size:** 2,598 kB

→ Using data from Wanliu station

Variables	Туре	Description	Format
Year, Month, Day, Hour	Integer	Integer Hourly data, from 2013/3 0:00 to 2017/2 23:00	
PM2.5	Float	Hourly PM2.5 concentration (ug/m^3)	80.25
PM10	Float	Hourly PM10 concentration (ug/m^3)	120.25
Temp	Float	Hourly temperature measurements in Celsius	-1.1
Pres	Float	Hourly pressure measurements (hPa)	1023.2
Rain	Float	Hourly precipitation (mm)	0

Data Cleaning

Missing Values

Linear Interpolation with values before and after NA values

Too Many Data Points

Take average by date to transform hourly data to daily data

After Cleaning

6 Columns × 1461 Rows

Data Plot of daily PM2.5, pressure, temperature and rail

Decomposition

Hypothesis Testing

Variable	Augmented Dickey-Fuller Test	KPSS Test for Level Stationarity	KPSS Test for Trend Stationarity
PM 2.5	P-value < 0.05 Stationary		P-value > 0.05 Stationary
Temperature			
Pressure			
Rain	P-value < 0.05 Stationary	P-value > 0.05 Stationary	P-value > 0.05 Stationary

Experimental Results & Analysis

Box Cox Transform - PM2.5

Box Cox Transform - Temperature

Box Cox Transform - Pressure

Box Cox Transform - Rain

Differencing - PM2.5

First Order Differencing

Seasonal Differencing

Augmented Dickey-Fuller Test Statistics

-9.029

-18.598

-10.152

Stationary

Stationary

Stationary

Differencing - Temperature

Augmented Dickey-Fuller Test Statistics

-1.944

-12.845

-7.399

Stationary

Stationary

Differencing - Pressure

Before Differencing

First Order Differencing

Seasonal Differencing

Augmented Dickey-Fuller Test Statistics

-2.685

-17.126

-9.686

Non-stationary

Stationary

Stationary

Differencing - Rain

Periodogram

Max Frequency = 0.00266

Seasonality = ~375 Days

The maximum frequency in the periodogram corresponds to a period of approximately 1 year

Modeling

ARIMA Model

1st Order Differencing

KPSS Test for Level Stationarity: 0.09 Stationary KPSS Test for Level Stationarity: 0.1 Stationary

ARIMA Model

ARIMA(4,1,2)

Lambda	AR1	AR2	AR3	AR4	MA1	MA2
0.8812	0.0412	0.1947	-0.085	-0.016	-0.370	-0.596

- P-value = 0.9561
- Independently Distributed

Regression with ARIMA Errors

ARIMA(1,1,2) Errors

ar1	ma1	ma2	temp	pres	rain
0.4182	-0.6631	-0.2950	-2.3596	-3.3031	-0.7672

ARIMA(2,0,0)(0,1,0)[365] Errors

ar1	ar2	temp	pres	rain
0.6913	-0.1812	0.0668	-2.9515	0.5163

AICc: 14137.47, Independently Distributed

AICc: 11356.90, Serially Correlated

Adjusted R-Squared to check the model performance

VARselect(x_df, lag.max = 10, type = "both")\$selection AIC(n) HQ(n) SC(n) FPE(n)

<mark>10</mark> 9 **4** 10

Portmanteau Test (asymptotic)

Chi-squared = 75.475, df = 9, p-value < 2.2e-16

- → The VARselect function selected the VAR(10) by the AIC, and VAR(4) by BIC.
- → Rain was excluded since it does not have much contribution to the model of predicting other variables and the R^2 for itself is very low

After taking the difference for PM 2.5, Temperature, Pressure

Estimation results for equation pm d1:

Multiple R-Squared: 0.2145, Adjusted R-squared: 0.2024

Estimation results for equation temp_d1:

Multiple R-Squared: 0.2169, Adjusted R-squared: 0.2015

Estimation results for equation pres_d1:

Multiple R-Squared: 0.1931, Adjusted R-squared: 0.1833

- → Adjusted R-Squared from the Summary table are low, suggesting the model has a bad fit
- → Null hypothesis of no serial correlation in residuals is rejected for VAR(10) and VAR(4) (p<0.05)
- → Pass the test to VAR(p) with p ∈ [1,10] and all failed. So we decided to fit models to the <u>original</u> <u>data</u>

Fit model on original, undifferenced data

→ The VARselect function selected the VAR(5) by the AIC, and VAR(3) by BIC

Portmanteau test to check whether the residuals are correlated for each model

VAR(5)	VAR(3)	VAR(6)
p-value = 0.02188 < 0.05 ⇒ serial correlation	p-value = 1.609e- 05 < 0.05 ⇒ serial correlation	p-value = 0.05698 > 0.05 ⇒ no serial correlation

- → The null hypothesis of no serial correlation in the residuals is rejected for both a VAR(5) and a VAR(3) (p-value <0.05).</p>
- → Continued to VAR(6) and the model has passed the serial test, proving there's little/no serial correlation, so we decided to build <u>VAR(6)</u>

• Estimation results for equation ts_pm: Adjusted R-squared: 0.3624

ts_pm.	ts_te mp.l1	ts_pre s.l1	ts_pm. I2	ts_te mp.l2	ts_pre s.l2	ts_pm. I3	ts_te mp.l3	ts_pre s.l3	ts_pm. I4	ts_te mp.l4	ts_pre s.l4	ts_pm. I5	ts_te mp.l5	ts_pre s.l5	ts_pm. I6	ts_te mp.l6	ts_pre s.l6	const	trend
6.598 e-01	1.383 e+00	1.309 e+00	- 2.194 e-01	4.768 e-01	- 3.773 e-01	5.504 e-02	- 6.123 e-01	1.013 e+00	- 4.430 e-02	5.675 e-01	- 2.325 e-01	4.132 e-02	- 9.354 e-01	- 1.464 e-01	- 2.521 e-02	- 3.080 e-01	1.530 e-01	- 1.691 e+03	- 1.307 e-02

• Estimation results for equation ts_temp: Multiple R-Squared: 0.9706, Adjusted R-squared: 0.9702

Estimation results for equation ts_pres:
 Multiple R-Squared: 0.8567, Adjusted R-squared: 0.8548

Residuals have little autocorrelation, especially for PM2.5 and temperature

Residuals generally follow the normal distribution

TBATS Model

Lambda	Alpha	Beta	Damping	AR1	AR2	MA
0.037646	-0.020774	0.014209	0.8	0.1924	0.0534	0.4085

- P-value = 0.02795
- Serially correlated

Model Evaluation

Model Evaluation MAE over 30 horizon AIC

AIC over 80 CV iterations

AIC for VAR(6) model is too large to display in the graph

Conclusion

Conclusion

- TBATS was the best on predicting PM2.5. It was an automated model, so almost no adjustments was made.
- Rain doesn't have much correlation with PM2.5, temperature, and pressure, making it less useful as a predictor. The other three set of time series data can be used to predict each other due to correlation.
- ARIMA model does not capture other variables correlations with PM2.5.
- Regression with ARIMA errors better captures correlations than ARIMA but there are still patterns in the data that are not exploited by the model.
- VAR is good at predicting temperature and pressure but not the PM2.5

Improvement and Future Work

- Try advanced models:
 - RNN, ARCH, and GARCH
- Better data selection:
 - Try using other data combinations to train the VAR model when predict PM 2.5
 - Consider using alternative data sources
- Try using different tools:
 - Meta has an interesting library Prophet
 - Get some experience with Python time series (for practice)

YIFAN JIANG AMY ZHANG MELODY FENG JASON LEE KAI HAYDEN

Thanks for Listening!

Any Questions?

36

Appendix: Model Evaluation

RMSE over 30 horizons

