MA 110 - Ordinary Differential Equations

Santanu Dey

Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 76 santanudey@iitb.ac.in

March 12, 2024

Outline of the lecture

- Orthogonal Trajectories
- Lipschitz continuity
- Existence & uniqueness

Orthogonal Trajectories

If two families of curves always intersect each other at right angles, then they are said to be orthogonal trajectories of each other.

Orthogonal Trajectories

If two families of curves always intersect each other at right angles, then they are said to be orthogonal trajectories of each other.

To find the OT of a family of curves

$$F(x,y,c)=0.$$

To find the OT of a family of curves

$$F(x,y,c)=0.$$

• Find the DE $\frac{dy}{dx} = f(x, y)$.

To find the OT of a family of curves

$$F(x,y,c)=0.$$

- Find the DE $\frac{dy}{dx} = f(x, y)$.
- Slopes of the OT's are given by

$$\frac{dy}{dx} = -\frac{1}{f(x,y)}.$$

To find the OT of a family of curves

$$F(x,y,c)=0.$$

- Find the DE $\frac{dy}{dx} = f(x, y)$.
- Slopes of the OT's are given by

$$\frac{dy}{dx} = -\frac{1}{f(x,y)}.$$

• Obtain a one parameter family of curves G(x, y, c) = 0 as solutions of the above DE.

To find the OT of a family of curves

$$F(x,y,c)=0.$$

- Find the DE $\frac{dy}{dx} = f(x, y)$.
- Slopes of the OT's are given by

$$\frac{dy}{dx} = -\frac{1}{f(x,y)}.$$

- Obtain a one parameter family of curves G(x, y, c) = 0 as solutions of the above DE.
- (Leaving a part certain trajectories that are vertical lines!)

Find the set of OT's of the family of circles $x^2 + y^2 = c^2$.

Find the set of OT's of the family of circles $x^2 + y^2 = c^2$.

$$x + y \frac{dy}{dx} = 0$$

Find the set of OT's of the family of circles $x^2 + y^2 = c^2$.

$$x + y \frac{dy}{dx} = 0 \Longrightarrow \frac{dy}{dx} = -\frac{x}{y}$$

Find the set of OT's of the family of circles $x^2 + y^2 = c^2$.

$$x + y \frac{dy}{dx} = 0 \Longrightarrow \frac{dy}{dx} = -\frac{x}{y}$$

The slope of OT's are

Find the set of OT's of the family of circles $x^2 + y^2 = c^2$.

$$x + y \frac{dy}{dx} = 0 \Longrightarrow \frac{dy}{dx} = -\frac{x}{y}$$

The slope of OT's are $\frac{dy}{dx} = \frac{y}{x}$

Find the set of OT's of the family of circles $x^2 + y^2 = c^2$.

$$x + y \frac{dy}{dx} = 0 \Longrightarrow \frac{dy}{dx} = -\frac{x}{y}$$

The slope of OT's are $\frac{dy}{dx} = \frac{y}{x} \Longrightarrow y = kx$.

Find the set of OT's of the family of circles $x^2 + y^2 = c^2$.

$$x + y \frac{dy}{dx} = 0 \Longrightarrow \frac{dy}{dx} = -\frac{x}{y}$$

The slope of OT's are $\frac{dy}{dx} = \frac{y}{x} \Longrightarrow y = kx$.

Hence the orthogonal trajectories are given by y = kx.

• Let f be a real function defined on D, where D is either a domain or a closed domain of the xy plane. The function f is said to be bounded in D if there exists a positive number M such that

$$|f(x,y)| \leq M$$

for all (x, y) in D.

■ Let f be a real function defined on D, where D is either a domain or a closed domain of the xy plane. The function f is said to be bounded in D if there exists a positive number M such that

$$|f(x,y)| \leq M$$

for all (x, y) in D.

2 Let f be defined and continuous on a closed rectangle $R: a \le x \le b, \ c \le y \le d.$

■ Let f be a real function defined on D, where D is either a domain or a closed domain of the xy plane. The function f is said to be bounded in D if there exists a positive number M such that

$$|f(x,y)| \leq M$$

for all (x, y) in D.

2 Let f be defined and continuous on a closed rectangle $R: a \le x \le b, \ c \le y \le d$. Then, f is bounded in R.

• Let f be a real function defined on D, where D is either a domain or a closed domain of the xy plane. The function f is said to be bounded in D if there exists a positive number M such that

$$|f(x,y)| \leq M$$

for all (x, y) in D.

- 2 Let f be defined and continuous on a closed rectangle $R: a \le x \le b, \ c \le y \le d$. Then, f is bounded in R.
- Output
 Let f be defined on D, where D is either a domain or a closed domain of the xy- plane. The function f is said to satisfy Lipschitz condition (with respect to y) in D if ∃ a constant M > 0 such that

• Let f be a real function defined on D, where D is either a domain or a closed domain of the xy plane. The function f is said to be bounded in D if there exists a positive number M such that

$$|f(x,y)| \leq M$$

for all (x, y) in D.

- 2 Let f be defined and continuous on a closed rectangle $R: a \le x \le b, \ c \le y \le d$. Then, f is bounded in R.
- O Let f be defined on D, where D is either a domain or a closed domain of the xy- plane. The function f is said to satisfy Lipschitz condition (with respect to y) in D if ∃ a constant M > 0 such that

$$|f(x, y_1) - f(x, y_2)| \le M|y_1 - y_2|$$

■ Let f be a real function defined on D, where D is either a domain or a closed domain of the xy plane. The function f is said to be bounded in D if there exists a positive number M such that

$$|f(x,y)| \leq M$$

for all (x, y) in D.

- 2 Let f be defined and continuous on a closed rectangle $R: a \le x \le b, \ c \le y \le d$. Then, f is bounded in R.
- Output Description Section 1. Let f be defined on D, where D is either a domain or a closed domain of the xy- plane. The function f is said to satisfy Lipschitz condition (with respect to y) in D if ∃ a constant M > 0 such that

$$|f(x, y_1) - f(x, y_2)| \le M|y_1 - y_2|$$

for every $(x, y_1), (x, y_2)$ which belong to D. The constant M is called the Lipschitz constant.

6/1

■ Let f be a real function defined on D, where D is either a domain or a closed domain of the xy plane. The function f is said to be bounded in D if there exists a positive number M such that

$$|f(x,y)| \leq M$$

for all (x, y) in D.

- 2 Let f be defined and continuous on a closed rectangle $R: a \le x \le b, \ c \le y \le d$. Then, f is bounded in R.
- Output Description Section 1. Let f be defined on D, where D is either a domain or a closed domain of the xy- plane. The function f is said to satisfy Lipschitz condition (with respect to y) in D if ∃ a constant M > 0 such that

$$|f(x, y_1) - f(x, y_2)| \le M|y_1 - y_2|$$

for every $(x, y_1), (x, y_2)$ which belong to D. The constant M is called the Lipschitz constant.

6/1

Consider

$$|g(x_2) - g(x_1)| \le M|x_2 - x_1| \ \forall x_1, \ x_2 \text{ in the domain of } g.$$

Consider

$$|g(x_2) - g(x_1)| \le M|x_2 - x_1| \ \forall x_1, x_2 \text{ in the domain of } g.$$

This condition in the form $\frac{|g(x_2) - g(x_1)|}{|x_2 - x_1|} \le M$ can be interpreted as follows:

7/1

Consider

$$|g(x_2) - g(x_1)| \le M|x_2 - x_1| \ \forall x_1, x_2 \text{ in the domain of } g.$$

This condition in the form $\frac{|g(x_2)-g(x_1)|}{|x_2-x_1|} \leq M$ can be interpreted as follows:

At each point (a, g(a)), the entire graph of g lies between the lines

$$y = g(a) - M(x - a) \& y = g(a) + M(x - a).$$

7/1

Consider

$$|g(x_2) - g(x_1)| \le M|x_2 - x_1| \ \forall x_1, x_2 \text{ in the domain of } g.$$

This condition in the form $\frac{|g(x_2)-g(x_1)|}{|x_2-x_1|} \leq M$ can be interpreted as follows:

At each point (a, g(a)), the entire graph of g lies between the lines

$$y = g(a) - M(x - a) \& y = g(a) + M(x - a).$$

• Let (x, y_1) and (x, y_2) be any two points in D having the same abscissa x.

- Let (x, y_1) and (x, y_2) be any two points in D having the same abscissa x.
- Consider the corresponding points

$$P_1(x, y_1, f(x, y_1)) \& P_2(x, y_2, f(x, y_2))$$

on the surface z=f(x,y), and let α ($0 \le \alpha \le \pi/2$) denote the angle that the chord joining P_1 and P_2 makes with the xy- plane.

- Let (x, y_1) and (x, y_2) be any two points in D having the same abscissa x.
- Consider the corresponding points

$$P_1(x, y_1, f(x, y_1)) \& P_2(x, y_2, f(x, y_2))$$

on the surface z=f(x,y), and let α ($0 \le \alpha \le \pi/2$) denote the angle that the chord joining P_1 and P_2 makes with the xy- plane.

Then if the condition

$$|f(x, y_1) - f(x, y_2)| \le M|y_1 - y_2|$$

holds in D, then $\tan \alpha$ is bounded in absolute value.

- Let (x, y_1) and (x, y_2) be any two points in D having the same abscissa x.
- Consider the corresponding points

$$P_1(x, y_1, f(x, y_1)) \& P_2(x, y_2, f(x, y_2))$$

on the surface z=f(x,y), and let α ($0 \le \alpha \le \pi/2$) denote the angle that the chord joining P_1 and P_2 makes with the xy- plane.

Then if the condition

$$|f(x, y_1) - f(x, y_2)| \le M|y_1 - y_2|$$

holds in D, then $\tan \alpha$ is bounded in absolute value.

• That is, the chord joining P_1 and P_2 is bounded away from being perpendicular to the xy- plane.

- Let (x, y_1) and (x, y_2) be any two points in D having the same abscissa x.
- Consider the corresponding points

$$P_1(x, y_1, f(x, y_1)) \& P_2(x, y_2, f(x, y_2))$$

on the surface z=f(x,y), and let α ($0 \le \alpha \le \pi/2$) denote the angle that the chord joining P_1 and P_2 makes with the xy- plane.

Then if the condition

$$|f(x, y_1) - f(x, y_2)| \le M|y_1 - y_2|$$

holds in D, then $\tan \alpha$ is bounded in absolute value.

- That is, the chord joining P_1 and P_2 is bounded away from being perpendicular to the xy- plane.
- Further, this bound is independent of the points (x, y_1) and (x, y_2) belonging to D.

Lipschitz condition \Longrightarrow Continuity ?

If f satisfies Lipschitz condition with respect to y in D, then for each fixed x, the resulting function of y is a continuous function of y, for all (x, y) in D.

Lipschitz condition \Longrightarrow Continuity?

If f satisfies Lipschitz condition with respect to y in D, then for each fixed x, the resulting function of y is a continuous function of y, for all (x,y) in D.

Example : Let f(x, y) = y + [x] where g(x) = [x] is the greatest integer function.

Lipschitz condition \Longrightarrow Continuity?

If f satisfies Lipschitz condition with respect to y in D, then for each fixed x, the resulting function of y is a continuous function of y, for all (x,y) in D.

Example : Let f(x, y) = y + [x] where g(x) = [x] is the greatest integer function. For fixed x,

Lipschitz condition \Longrightarrow Continuity?

If f satisfies Lipschitz condition with respect to y in D, then for each fixed x, the resulting function of y is a continuous function of y, for all (x,y) in D.

Example: Let f(x,y) = y + [x] where g(x) = [x] is the greatest

integer function. For fixed x,

$$f(x,y_1)-f(x,y_2)$$

If f satisfies Lipschitz condition with respect to y in D, then for each fixed x, the resulting function of y is a continuous function of y, for all (x,y) in D.

Example : Let f(x, y) = y + [x] where g(x) = [x] is the greatest

$$f(x, y_1) - f(x, y_2) = y_1 + [x] - y_2 - [x]$$

If f satisfies Lipschitz condition with respect to y in D, then for each fixed x, the resulting function of y is a continuous function of y, for all (x,y) in D.

Example: Let f(x,y) = y + [x] where g(x) = [x] is the greatest

$$f(x, y_1) - f(x, y_2) = y_1 + [x] - y_2 - [x]$$

= $y_1 - y_2$

If f satisfies Lipschitz condition with respect to y in D, then for each fixed x, the resulting function of y is a continuous function of y, for all (x,y) in D.

Example : Let f(x, y) = y + [x] where g(x) = [x] is the greatest

$$f(x, y_1) - f(x, y_2) = y_1 + [x] - y_2 - [x]$$

= $y_1 - y_2$

That is,
$$|f(x, y_1) - f(x, y_2)| = |y_1 - y_2|$$

If f satisfies Lipschitz condition with respect to y in D, then for each fixed x, the resulting function of y is a continuous function of y, for all (x,y) in D.

Example : Let f(x, y) = y + [x] where g(x) = [x] is the greatest

$$f(x, y_1) - f(x, y_2) = y_1 + [x] - y_2 - [x]$$

= $y_1 - y_2$

That is,
$$|f(x, y_1) - f(x, y_2)| = |y_1 - y_2| \le 1 \cdot |y_1 - y_2|$$

If f satisfies Lipschitz condition with respect to y in D, then for each fixed x, the resulting function of y is a continuous function of y, for all (x,y) in D.

Example : Let f(x, y) = y + [x] where g(x) = [x] is the greatest

integer function. For fixed x,

$$f(x, y_1) - f(x, y_2) = y_1 + [x] - y_2 - [x]$$

= $y_1 - y_2$

That is, $|f(x, y_1) - f(x, y_2)| = |y_1 - y_2| \le 1 \cdot |y_1 - y_2|$ But we know that f is discontinuous w.r.t. x for every integral value of x.

If f satisfies Lipschitz condition with respect to y in D, then for each fixed x, the resulting function of y is a continuous function of y, for all (x,y) in D.

Example: Let f(x,y) = y + [x] where g(x) = [x] is the greatest

integer function. For fixed x,

$$f(x, y_1) - f(x, y_2) = y_1 + [x] - y_2 - [x]$$

= $y_1 - y_2$

That is, $|f(x, y_1) - f(x, y_2)| = |y_1 - y_2| \le 1 \cdot |y_1 - y_2|$ But we know that f is discontinuous w.r.t. x for every integral value of x.

Note that the condition of Lipschitz continuity implies nothing concerning the continuity of f with respect to x.

Continuity w.r.t. second variable DOES NOT imply Lipschitz condtn. w.r.t. second variable.

Continuity w.r.t. second variable DOES NOT imply Lipschitz condtn. w.r.t. second variable.

Example: Consider $f(x, y) = \sqrt{|y|}$.

Continuity w.r.t. second variable DOES NOT imply Lipschitz condtn. w.r.t. second variable.

Example: Consider $f(x, y) = \sqrt{|y|}$.

f is continuous for all y.

Continuity w.r.t. second variable DOES NOT imply Lipschitz condtn. w.r.t. second variable.

Example: Consider $f(x, y) = \sqrt{|y|}$.

f is continuous for all y.

Note that f doesn't satisfy Lipschitz condition in any region that includes y = 0 as for $y_1 = 0$, $y_2 > 0$, we have

Continuity w.r.t. second variable DOES NOT imply Lipschitz condtn. w.r.t. second variable.

Example: Consider $f(x, y) = \sqrt{|y|}$.

f is continuous for all y.

Note that f doesn't satisfy Lipschitz condition in any region that includes y=0 as for $y_1=0,\ y_2>0$, we have

$$\frac{|f(x,y_1)-f(x,y_2)|}{|y_1-y_2|}=$$

Continuity w.r.t. second variable DOES NOT imply Lipschitz condtn. w.r.t. second variable.

Example: Consider $f(x, y) = \sqrt{|y|}$.

f is continuous for all y.

Note that f doesn't satisfy Lipschitz condition in any region that includes y = 0 as for $y_1 = 0$, $y_2 > 0$, we have

$$\frac{|f(x, y_1) - f(x, y_2)|}{|y_1 - y_2|} = \frac{\sqrt{y_2}}{|y_2|}$$

Continuity w.r.t. second variable DOES NOT imply Lipschitz condtn. w.r.t. second variable.

Example: Consider $f(x, y) = \sqrt{|y|}$.

f is continuous for all y.

Note that f doesn't satisfy Lipschitz condition in any region that includes y = 0 as for $y_1 = 0$, $y_2 > 0$, we have

$$\frac{|f(x,y_1) - f(x,y_2)|}{|y_1 - y_2|} = \frac{\sqrt{y_2}}{|y_2|} = \frac{1}{\sqrt{y_2}}$$

Continuity w.r.t. second variable DOES NOT imply Lipschitz condtn. w.r.t. second variable.

Example: Consider $f(x, y) = \sqrt{|y|}$.

f is continuous for all y.

Note that f doesn't satisfy Lipschitz condition in any region that includes y = 0 as for $y_1 = 0$, $y_2 > 0$, we have

$$\frac{|f(x,y_1) - f(x,y_2)|}{|y_1 - y_2|} = \frac{\sqrt{y_2}}{|y_2|} = \frac{1}{\sqrt{y_2}}$$

which can be made as large as we want by making y_2 smaller.

Continuity w.r.t. second variable DOES NOT imply Lipschitz condtn. w.r.t. second variable.

Example: Consider $f(x, y) = \sqrt{|y|}$.

f is continuous for all y.

Note that f doesn't satisfy Lipschitz condition in any region that includes y = 0 as for $y_1 = 0$, $y_2 > 0$, we have

$$\frac{|f(x,y_1) - f(x,y_2)|}{|y_1 - y_2|} = \frac{\sqrt{y_2}}{|y_2|} = \frac{1}{\sqrt{y_2}}$$

which can be made as large as we want by making y_2 smaller.

The Lipschitz condition requires that the quotient should be bounded by a fixed constant K.

Continuity w.r.t. second variable \implies Lipschitz condtn. w.r.t. second variable.

Continuity w.r.t. second variable \implies Lipschitz condtn. w.r.t. second variable.

Example : Consider $f(x, y) = \sqrt{|y|}$.

Continuity w.r.t. second variable \implies Lipschitz condtn. w.r.t. second variable.

Example: Consider $f(x, y) = \sqrt{|y|}$.

f is continuous for all y.

Continuity w.r.t. second variable \implies Lipschitz condtn. w.r.t. second variable.

Example: Consider $f(x, y) = \sqrt{|y|}$.

f is continuous for all y.

Note that f doesn't satisfy Lipschitz condition in any region that includes y = 0 as for $y_1 = 0$, $y_2 > 0$, we have

Continuity w.r.t. second variable \implies Lipschitz condtn. w.r.t. second variable.

Example: Consider $f(x, y) = \sqrt{|y|}$.

f is continuous for all y.

Note that f doesn't satisfy Lipschitz condition in any region that includes y=0 as for $y_1=0,\ y_2>0$, we have

$$\frac{|f(x,y_1) - f(x,y_2)|}{|y_1 - y_2|} =$$

Continuity w.r.t. second variable \implies Lipschitz condtn. w.r.t. second variable.

Example: Consider $f(x, y) = \sqrt{|y|}$.

f is continuous for all y.

Note that f doesn't satisfy Lipschitz condition in any region that includes y=0 as for $y_1=0,\ y_2>0$, we have

$$\frac{|f(x, y_1) - f(x, y_2)|}{|y_1 - y_2|} = \frac{\sqrt{y_2}}{|y_2|}$$

Continuity w.r.t. second variable \implies Lipschitz condtn. w.r.t. second variable.

Example: Consider $f(x, y) = \sqrt{|y|}$.

f is continuous for all y.

Note that f doesn't satisfy Lipschitz condition in any region that includes y = 0 as for $y_1 = 0$, $y_2 > 0$, we have

$$\frac{|f(x,y_1) - f(x,y_2)|}{|y_1 - y_2|} = \frac{\sqrt{y_2}}{|y_2|} = \frac{1}{\sqrt{y_2}}$$

Continuity w.r.t. second variable \implies Lipschitz condtn. w.r.t. second variable.

Example: Consider $f(x, y) = \sqrt{|y|}$.

f is continuous for all y.

Note that f doesn't satisfy Lipschitz condition in any region that includes y=0 as for $y_1=0,\ y_2>0$, we have

$$\frac{|f(x, y_1) - f(x, y_2)|}{|y_1 - y_2|} = \frac{\sqrt{y_2}}{|y_2|} = \frac{1}{\sqrt{y_2}}$$

which can be made as large as we want by making y_2 smaller.

Continuity w.r.t. second variable \implies Lipschitz condtn. w.r.t. second variable.

Example: Consider $f(x, y) = \sqrt{|y|}$.

f is continuous for all y.

Note that f doesn't satisfy Lipschitz condition in any region that includes y=0 as for $y_1=0,\ y_2>0$, we have

$$\frac{|f(x,y_1) - f(x,y_2)|}{|y_1 - y_2|} = \frac{\sqrt{y_2}}{|y_2|} = \frac{1}{\sqrt{y_2}}$$

which can be made as large as we want by making y_2 smaller.

The Lipschitz condition requires that the quotient should be bounded by a fixed constant K.

Result : If f is such that $\frac{\partial f}{\partial y}$ exists and is bounded for all $(x,y)\in D$, then f satisfies Lipschitz condition w.r.t. y in D, where the Lipschitz constant

$$M = I.u.b._{(x,y)\in D} |\frac{\partial f}{\partial y}(x,y)|.$$

Result : If f is such that $\frac{\partial f}{\partial y}$ exists and is bounded for all $(x,y)\in D$, then f satisfies Lipschitz condition w.r.t. y in D, where the Lipschitz constant

$$M = I.u.b._{(x,y)\in D} |\frac{\partial f}{\partial y}(x,y)|.$$

Result : If f is such that $\frac{\partial f}{\partial y}$ exists and is bounded for all $(x,y)\in D$, then f satisfies Lipschitz condition w.r.t. y in D, where the Lipschitz constant

$$M = I.u.b._{(x,y)\in D} |\frac{\partial f}{\partial y}(x,y)|.$$

$$\implies f(x, y_1) - f(x, y_2) = (y_1 - y_2) \frac{\partial f}{\partial y}(x, \xi),$$

Result : If f is such that $\frac{\partial f}{\partial y}$ exists and is bounded for all $(x,y)\in D$, then f satisfies Lipschitz condition w.r.t. y in D, where the Lipschitz constant

$$M = I.u.b._{(x,y)\in D} |\frac{\partial f}{\partial y}(x,y)|.$$

$$\Longrightarrow f(x,y_1)-f(x,y_2)=(y_1-y_2)\frac{\partial f}{\partial y}(x,\xi),\ \xi\in(y_1,y_2).$$

Result : If f is such that $\frac{\partial f}{\partial y}$ exists and is bounded for all $(x,y)\in D$, then f satisfies Lipschitz condition w.r.t. y in D, where the Lipschitz constant

$$M = I.u.b._{(x,y)\in D} |\frac{\partial f}{\partial y}(x,y)|.$$

$$\Longrightarrow f(x,y_1)-f(x,y_2)=(y_1-y_2)\frac{\partial f}{\partial y}(x,\xi),\ \xi\in(y_1,y_2).$$

$$|f(x, y_1) - f(x, y_2)|$$

Result : If f is such that $\frac{\partial f}{\partial y}$ exists and is bounded for all $(x,y)\in D$, then f satisfies Lipschitz condition w.r.t. y in D, where the Lipschitz constant

$$M = I.u.b._{(x,y)\in D} |\frac{\partial f}{\partial y}(x,y)|.$$

$$\Longrightarrow f(x,y_1)-f(x,y_2)=(y_1-y_2)\frac{\partial f}{\partial y}(x,\xi),\ \xi\in(y_1,y_2).$$

$$|f(x, y_1) - f(x, y_2)| = |y_1 - y_2| |\frac{\partial f}{\partial y}(x, \xi)|$$

Result : If f is such that $\frac{\partial f}{\partial y}$ exists and is bounded for all $(x,y)\in D$, then f satisfies Lipschitz condition w.r.t. y in D, where the Lipschitz constant

$$M = I.u.b._{(x,y)\in D} |\frac{\partial f}{\partial y}(x,y)|.$$

$$\Longrightarrow f(x,y_1)-f(x,y_2)=(y_1-y_2)\frac{\partial f}{\partial y}(x,\xi),\ \xi\in(y_1,y_2).$$

$$|f(x, y_1) - f(x, y_2)| = |y_1 - y_2| |\frac{\partial f}{\partial y}(x, \xi)|$$

$$\leq |y_1 - y_2| I.u.b._{(x,y) \in D} |\frac{\partial f}{\partial y}(x, y)|.$$

Result : If f is such that $\frac{\partial f}{\partial y}$ exists and is bounded for all $(x,y)\in D$, then f satisfies Lipschitz condition w.r.t. y in D, where the Lipschitz constant

$$M = I.u.b._{(x,y)\in D} |\frac{\partial f}{\partial y}(x,y)|.$$

Proof: Mean value theorem

$$\Longrightarrow f(x,y_1)-f(x,y_2)=(y_1-y_2)\frac{\partial f}{\partial y}(x,\xi),\ \xi\in(y_1,y_2).$$

$$|f(x, y_1) - f(x, y_2)| = |y_1 - y_2| |\frac{\partial f}{\partial y}(x, \xi)|$$

$$\leq |y_1 - y_2| I.u.b._{(x,y) \in D} |\frac{\partial f}{\partial y}(x, y)|.$$

That is, f satisfies Lipschitz condition.

Consider

$$f(x,y) = y^2$$
 defined in $D: |x| \le a, |y| \le b$.

Consider

$$f(x,y) = y^2$$
 defined in $D: |x| \le a, |y| \le b$.

$$f_y = 2y$$
 is bounded in D .

Consider

$$f(x,y) = y^2$$
 defined in $D: |x| \le a, |y| \le b$.

 $f_y = 2y$ is bounded in D. The Lipschitz contant is

$$M =$$

Consider

$$f(x,y) = y^2$$
 defined in $D: |x| \le a, |y| \le b$.

 $f_y = 2y$ is bounded in D. The Lipschitz contant is

$$M = I.u.b._{(x,y)\in D} |\frac{\partial f}{\partial y}(x,y)| =$$

Example

Consider

$$f(x,y) = y^2$$
 defined in $D: |x| \le a, |y| \le b$.

 $f_y = 2y$ is bounded in D. The Lipschitz contant is

$$M = I.u.b._{(x,y)\in D} \left| \frac{\partial f}{\partial y}(x,y) \right| = I.u.b._{(x,y)\in D} |2y|$$

Example

Consider

$$f(x,y) = y^2$$
 defined in $D: |x| \le a, |y| \le b$.

 $f_y = 2y$ is bounded in D. The Lipschitz contant is

$$M = I.u.b._{(x,y)\in D} \left| \frac{\partial f}{\partial y}(x,y) \right| = I.u.b._{(x,y)\in D} \left| 2y \right| = 2b.$$

Example

Consider

$$f(x,y) = y^2$$
 defined in $D: |x| \le a, |y| \le b$.

 $f_y = 2y$ is bounded in D. The Lipschitz contant is

$$M = I.u.b._{(x,y)\in D} |\frac{\partial f}{\partial y}(x,y)| = I.u.b._{(x,y)\in D} |2y| = 2b.$$

(Verify Lipschitz condition directly!)

Consider

$$f(x,y) = x|y|$$
 defined in $D: |x| \le a, |y| \le b$.

Consider

$$f(x,y) = x|y|$$
 defined in $D: |x| \le a, |y| \le b$.

 $\frac{\partial f}{\partial v}$ doesn't exist for any point $(x,0) \in D$.

Consider

$$f(x,y) = x|y|$$
 defined in $D: |x| \le a, |y| \le b$.

Consider

$$f(x,y) = x|y|$$
 defined in $D: |x| \le a, |y| \le b$.

$$|f(x, y_1) - f(x, y_2)| =$$

Consider

$$f(x,y) = x|y|$$
 defined in $D: |x| \le a, |y| \le b$.

$$|f(x, y_1) - f(x, y_2)| = |x|y_1| - x|y_2|$$

Consider

$$f(x,y) = x|y|$$
 defined in $D: |x| \le a, |y| \le b$.

$$|f(x, y_1) - f(x, y_2)| = |x|y_1| - x|y_2|$$

= $|x| ||y_1| - |y_2||$

Consider

$$f(x,y) = x|y|$$
 defined in $D: |x| \le a, |y| \le b$.

$$|f(x, y_1) - f(x, y_2)| = |x|y_1| - x|y_2|$$

= $|x| ||y_1| - |y_2||$
 $\leq |x| |y_1 - y_2|$

Consider

$$f(x,y) = x|y|$$
 defined in $D: |x| \le a, |y| \le b$.

$$|f(x, y_1) - f(x, y_2)| = |x|y_1| - x|y_2|$$

$$= |x| ||y_1| - |y_2||$$

$$\leq |x| |y_1 - y_2|$$

$$\leq a|y_1 - y_2|$$

Consider

$$f(x,y) = x|y|$$
 defined in $D: |x| \le a, |y| \le b$.

 $\frac{\partial f}{\partial y}$ doesn't exist for any point $(x,0) \in D$. (Why?) Now f satisfies Lipschitz condition :

$$|f(x, y_1) - f(x, y_2)| = |x|y_1| - x|y_2|$$

$$= |x| ||y_1| - |y_2||$$

$$\leq |x| |y_1 - y_2|$$

$$\leq a|y_1 - y_2|$$

Existence of bounded derivative f_y is a sufficient condition for Lipschitz condition to hold true (not necessary).

Let R be a rectangle containing (x_0, y_0) in the domain D,

• f(x, y) be continuous at all points (x, y) in $R: |x - x_0| < a$, $|y - y_0| < b$ and

Let R be a rectangle containing (x_0, y_0) in the domain D,

- f(x, y) be continuous at all points (x, y) in $R: |x x_0| < a$, $|y y_0| < b$ and
- bounded in R, that is, $|f(x,y)| \le K \ \forall (x,y) \in R$.

Let R be a rectangle containing (x_0, y_0) in the domain D,

- f(x, y) be continuous at all points (x, y) in $R: |x x_0| < a$, $|y y_0| < b$ and
- bounded in R, that is, $|f(x,y)| \le K \ \forall (x,y) \in R$.

Then, the IVP $y' = f(x, y), \ y(x_0) = y_0$ has at least one solution y(x) defined for all x in the interval $|x - x_0| < \alpha$, where

$$\alpha = \min \left\{ a, \frac{b}{K} \right\}.$$

¹Existence - Peano, Existence & uniqueness -Picard □ ➤ ← 🖹 ➤ ← 🖹 ➤ → へ 🤉

Let R be a rectangle containing (x_0, y_0) in the domain D,

- f(x, y) be continuous at all points (x, y) in $R: |x x_0| < a$, $|y y_0| < b$ and
- bounded in R, that is, $|f(x,y)| \leq K \ \forall (x,y) \in R$.

Then, the IVP $y' = f(x, y), \ y(x_0) = y_0$ has at least one solution y(x) defined for all x in the interval $|x - x_0| < \alpha$, where

$$\alpha = \min\left\{a, \frac{b}{K}\right\}.$$

In addition to the above conditions, if f satisfies the Lipschitz condition with respect to y in R, that is,

¹Existence - Peano, Existence & uniqueness -Picard □ → ← □ → ← ≧ → ← ≧ → へ ℚ ∼

Let R be a rectangle containing (x_0, y_0) in the domain D,

- f(x, y) be continuous at all points (x, y) in $R: |x x_0| < a$, $|y y_0| < b$ and
- bounded in R, that is, $|f(x,y)| \le K \ \forall (x,y) \in R$.

Then, the IVP $y' = f(x, y), \ y(x_0) = y_0$ has at least one solution y(x) defined for all x in the interval $|x - x_0| < \alpha$, where

$$\alpha = \min \left\{ a, \frac{b}{K} \right\}.$$

In addition to the above conditions, if f satisfies the Lipschitz condition with respect to y in R, that is,

$$|f(x, y_1) - f(x, y_2)| \le M|y_1 - y_2| \ \forall (x, y_1), (x, y_2) \text{ in } R,$$

¹Existence - Peano, Existence & uniqueness -Picard □ → ← ② → ← ② → ← ② → → ② → ○ ○

Let R be a rectangle containing (x_0, y_0) in the domain D,

- f(x, y) be continuous at all points (x, y) in $R: |x x_0| < a$, $|y y_0| < b$ and
- bounded in R, that is, $|f(x,y)| \le K \ \forall (x,y) \in R$.

Then, the IVP $y' = f(x, y), \ y(x_0) = y_0$ has at least one solution y(x) defined for all x in the interval $|x - x_0| < \alpha$, where

$$\alpha = \min \left\{ a, \frac{b}{K} \right\}.$$

In addition to the above conditions, if f satisfies the Lipschitz condition with respect to g in g, that is,

$$|f(x, y_1) - f(x, y_2)| \le M|y_1 - y_2| \ \forall (x, y_1), (x, y_2) \text{ in } R,$$

then, the solution y(x) defined at least for all x in the interval $|x-x_0| < \alpha$, with α defined above is unique ¹.

¹Existence - Peano, Existence & uniqueness -Picard - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > <

Let R be a rectangle containing (x_0, y_0) in the domain D,

- f(x, y) be continuous at all points (x, y) in $R: |x x_0| < a$, $|y y_0| < b$ and
- bounded in R, that is, $|f(x,y)| \le K \ \forall (x,y) \in R$.

Then, the IVP $y' = f(x, y), \ y(x_0) = y_0$ has at least one solution y(x) defined for all x in the interval $|x - x_0| < \alpha$, where

$$\alpha = \min \left\{ a, \frac{b}{K} \right\}.$$

In addition to the above conditions, if f satisfies the Lipschitz condition with respect to g in g, that is,

$$|f(x, y_1) - f(x, y_2)| \le M|y_1 - y_2| \ \forall (x, y_1), (x, y_2) \text{ in } R,$$

then, the solution y(x) defined at least for all x in the interval $|x-x_0| < \alpha$, with α defined above is unique ¹.

¹Existence - Peano, Existence & uniqueness -Picard - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > <