Chapter-10

Vector Algebra

- Position vector of a point P (x, y) is given as $\overline{} = \overline{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and its magnitude by $\sqrt{x^2 + y^2 + z^2}$
- The scalar components of a vector are its direction ratios, and represent its projections along the respective axes.
- The magnitude (r), direction ratios (a, b, c) and direction cosines (l, m, n) of any vector are related as: $1 = \frac{a}{r}$, $m = \frac{b}{r}$, $n = \frac{c}{r}$
- The vector sum of the three sides of a triangle taken in order is \overline{O}
- The vector sum of two conidial vectors is given by the diagonal of the parallelogram whose adjacent sides are the given vectors.
- The multiplication of a given vector by a scalar λ , changes the magnitude of the vector by the multiple $|\lambda|$, and keeps the direction same (or makes it opposite) according as the value of λ is positive (or negative).
- For a given vector \hat{a} , the vector $\hat{a} = \frac{\bar{a}}{|\bar{a}|}$ gives the unit vector in the direction of \bar{a}
- The position vector of a point R dividing a line segment joining the points P and Q whose position vectors are \bar{a} and \bar{b} respectively, in the ratio m:n
 - (i) internally, is given by m+n
 - (ii) externally, is given by m-n
- The scalar product of two given vectors \bar{a} and \bar{b} having angle θ between them is defined as

$$--=|\bar{a}||\bar{b}|\cos\theta$$

Key Notes

Also, when \overline{a} . \overline{b} is given, the angle θ ' between the vectors \overline{a} and \overline{b} may be determined by $cos\theta = \frac{-}{|\overline{a}||\overline{b}|}$

- If θ is the angle between two vector \overline{a} and \overline{b} , then their cross product is given as $\overline{a} \times \overline{b} = |\overline{a}| |\overline{b}| \sin \theta \hat{n}$ where \hat{n} is a unit vector perpendicular to the plane containing \overline{a} and \overline{b} . Such that \overline{a} , \overline{b} , \hat{n} form right handed system of coordinate axes.
- If we have two vectors \vec{a} and \vec{b} given in component form as $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ and λ any scalar, then, $a + b = (a_1 + b_1)\hat{i} + (a_2 + b_2)\hat{j} + (a_3 + b_3)\hat{k}$ $\lambda \vec{a} = (\lambda a_1)\hat{i} + (\lambda a_2)\hat{j} + (\lambda a_3)\hat{k};$

$$\overline{a}.\overline{b} = a_1b_1 + a_2b_2 + a_3b_3$$

and
$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$$