Introduction to SE 350

Sebastian Fischmeister sfischme@uwaterloo.ca

Department of Electrical and Computer Engineering University of Waterloo Waterloo

UNIVERSITY OF

Course Goals

- Learn the magic of operating systems
- Make informed decisions in industry

Lecture Objectives

- Learn what really happens, if you double click an application.
- How can you run two applications in parallel?
- How come I have I0GB of memory although I only have 2GB of RAM?
- Why is timing important and what does the OS do about it?
- What differs between operation systems?

• ...

Lab Objectives

- Learn about the challenges of writing an OS
- Enjoy the fun of low-level programming
- Get hands on experience with embedded programming
- Experience group dynamics
- Learn to manage larger projects and assignments

Course Web Resources

- Use UW-ACE: http://uwace.uwaterloo.ca
- A special lab page:

Coordinates

- Lectures: 02:30-03:20MWF @ RCH 110
- Tutorials: 03:30-04:20W @ RCH 110

Course Instructor

- Sebastian Fischmeister
- DC 2538
- Office hours: (depends on your schedule)

Lab Instructor

- Irene Huang, i.huang@ece.uwaterloo.ca
- Office hours:

Teaching Assistants

- Tutorials:
 - Bahador Khalegh, bkhalegh@ecemail.uwaterloo.ca
- Labs:
 - Yanmeng Ba, yba@engmail.uwaterloo.ca
 - Thomas Rademeister, treideme@shoshin.uwaterloo.ca
 - Tarek Khalifa, <u>tkhalifa@pami.uwaterloo.ca</u>

Course Overview

- The book: Operating Systems: Internals and Design Principles, 6e.
- Mix of Powerpoints and blackboard writing
- Powerpoints available on UW-ACE
- Read the book
- Take notes

Course Textbook

 William Stallings, "Operating Systems: Internals and Design Principles", Prentice Hall, 6ed.

Second Opinion

Silberschatz. "Operating System Concepts".
Wiley.

Second Opinion

 A. Tanenbaum. "Modern Operating Systems", Prentice Hall.

Additional Material

 Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", Prentice Hall.

Wednesday, January 6, 2010

Additional Material

• Jane Liu, "Real-time Systems", Prentice Hall.

Additional Material

 Jean Labrosse, "MicroC OS II: The Real Time Kernel", CMP.

How to pass the course

Requirements:

- >50% on the lab (3 day grace period, 20% loss/d)
- >50% on the final
- >50% on the whole course

Grading

- Final exam: 50% (new UW requirement)
- Lab: 30%
- Ist quiz (Feb 3): 5%
- Midterm (Feb 24): 10%
- 2nd quiz (March 17): 5%

How to do great in the course

- Ask questions
- Go to the tutorial
- Mail the tutorial TA
- Use the office hours
- Try it in the OS you currently use

How I'll help you to succeed

- Usual things:
 - Deliver good lectures
 - Try to get you interested
 - Ask provoking questions
- Unusual things:
 - One forced meeting per term
 - Answering questions during and after the lectures
 - Reasonable suggestions accepted

What exams look like

- Some conceptual questions
 - Explain four advantages of a microkernel compared to a monolithic kernel.
- Some detail questions
 - How does a context switch work?
- Some practice questions
 - Name five signals that can be sent to a process in a POSIX-compliant system and explain what they do.
- Some lab questions

