

AUTOENCODERS

PRODAM3D

Cristian López Del Alamo

2022

Introduction

- Objetivo
- Autoencoders
- Regularized Autoencoders
- Sparse Autoencoders
- Denoising Autoencoders

Entender el concepto, estructura y aplicaciones de los autoencoders

Different data sources : Images

$$f(\mathbf{p}) = \hat{y} |y - \hat{y}|_p^p < \epsilon$$

Different data sources

Tracking

Brain Segmentation

Temporal Signals

electrocardiogram

Sales information

electroencephalogram

sound signal

ciencia de la computación es el futuro

Text

RNN

Recurrent Neural Networks

And for these applications?

Image Compression

Image Denoising

2
7
5
7

100%

0% 53%

Feature Extraction

Image Inpainting

Dimensionality Reduction

AUTOENCODERS

Autoencoder

Autoencoder: Objective

The main objective is to perform a feature fusion process.

Autoencoder

```
class Autoencoder(nn.Module):
    def init (self):
        super(Autoencoder, self). init ()
        #Encoder
        self.E1 = nn.Linear(in features=100, out features=50)
        self.E2 = nn.Linear(in features=50, out features=25)
        self.E3 = nn.Linear(in features=25, out features=10)
        #Decoder
        self.D1 = nn.Linear(in features=10, out features=25)
        self.D2 = nn.Linear(in features=25, out features=50)
        self.D3 = nn.Linear(in features=50, out features=100)
    def forward(self, Input):
        Input = F.relu(self.E1(Input))
        Input = F.relu(self.E2(Input))
             = F.relu(self.E3(Input))
        Output = F.relu(self.D1(Z))
        Output = F.relu(self.D2(Output))
        Output = F.relu(self.D3(Output))
        return Output
```


Autoencoder classification by their structure

Autoencoder model according to their structure. (David Charte, 2018)

Autoencoder classification by Taxonomy

Autoencoder model according to their structure. (David Charte, 2018)

Lower dimensionality: Basic autoencoder

Lower dimensionality: Basic autoencoder

$$\mathcal{L}(x,\hat{x}) = \sum_{x \in S} \mathcal{L}(x, D_{\phi}(E_{\theta}(x)))$$

$$\mathcal{L}(x,\hat{x}) = ||x - \hat{x}||_2^2$$

Lower dimensionality: Basic autoencoder

Regularization (weight decay)

$$\mathcal{L}(x,\hat{x}) = \sum_{x \in S} \mathcal{L}(x, D_{\phi}(E_{\theta}(x))) + \lambda \sum ||w||_{p}^{p}$$

Autoencoder: Regularization

Regularization: Sparse

 Every column in D (dictionary) is a prototype signal (atom).

$$X = D\alpha$$

Regularization: Sparse

$$||DA - X||_F^2 \, \forall j, \, ||\alpha_j||_0 <= L$$

Sparsity Applications

Inpainting

nage inpainting [2, 10, 20, 38] is the processing data in a designated region of a still or lieations range from removing objects from the product of a still or usehing damaged paintings and photography produce a revised image in which the its seamlessly merged into the image in detectable by a typical viewer. Traditional been done by professional artist? For photing and the procession of the image in the procession of the property of the photographs or scratches and dust spots in fill move elements (e.g., removal of stamped from photographs; the infamous "airtrustic enemies [20]).

source click

Denoising

Compression

Sparse Autoencoder

Denoising Autoencoders

Pytorch Example

Convolutional Autoencoders

source: click

Convolutional Autoencoders: Unpooling

Nearest Neighbor

 1
 2

 3
 4

 1
 1

 1
 1

 2
 2

 3
 3

 4
 4

Bed of Nails

Convolutional Autoencoders : Max Unpooling

Source: Video

IPRODAM3D Dr. Cristian López Del Alamo - [clopezu@unsa.edu.pe]

Convolutional Autoencoders : Unpooling

Convolutional Autoencoders : Transpose Convolution

Convolutional Autoencoders : Transpose Convolution

Convolutional Autoencoders : Deconvolution - Upconvolution

Convolutional Autoencoders : Deconvolution - Upconvolution

Convolutional Autoencoders: Deconvolution - Upconvolution

$$D = D3' \times W'$$

Deconvolution (stride=2)

Source: Video

Convolutional Autoencoders

IPRODAM3D Dr. Cristian López Del Alamo - [clopezd@unsa.edu.pe]

Source: click

Fig. 2. An illustration of the SegNet architecture. There are no fully connected layers and hence it is only convolutional. A decoder upsamples its input using the transferred pool indices from its encoder to produce a sparse feature map(s). It then performs convolution with a trainable filter bank to densify the feature map. The final decoder output feature maps are fed to a soft-max classifier for pixel-wise classification.

Image segmentation: click

IPRODAM3D Dr. Cristian López Del Alamo - [clopezd@unsa.edu.pe]

Due to a limited training dataset size, a variational autoencoder branch is added.

