Chương 2. Đạo hàm và vi phân hàm số 1 biến

2.1. Đạo hàm và vi phân cấp 1

- 1. Đạo hàm cấp 1
- Cho hàm số f(x) xác định tại x_0 và lân cận của x_0 , nếu tồn tại giới hạn

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \tag{1}$$

thì giới hạn đó được gọi là đạo hàm của hàm f(x) tại x_0 , và ký hiệu là $f'(x_0)$.

- Trong (1) nếu ta đặt $x=x_0+\Delta x$ thì ta có thể viết lại

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$
 (2)

- Đạo hàm trái của f(x) tại x_0 : $f'_{-}(x_0) = \lim_{x \to x_0^-} \frac{f(x) f(x_0)}{x x_0}$.
- Đạo hàm phải của f(x) tại x_0 : $f'_+(x_0) = \lim_{x \to x_0^+} \frac{f(x) f(x_0)}{x x_0}$.

Dào Việt Cường Ciải tích 1 Ngày 12 tháng 10 năm 2021

Nhân xét:

- i) $\exists f'(x_0) \Leftrightarrow f'_-(x_0) = f'_+(x_0)$
- ii) Một cách tổng quát, đạo hàm của hàm số f(x) tại điểm bất kỳ có thể tính theo công thức

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Ví dụ.

- (1) Tính đạo hàm của hàm số $f(x) = \begin{cases} x^2 & \text{với } x \ge 0 \\ 2x & \text{với } x < 0 \end{cases}$ tại điểm $x_0 = 0$.
- (2) Tính đạo hàm theo định nghĩa của hàm số $f(x) = x^2$ tại điểm bất kỳ.

Bảng các đạo hàm cơ bản

$(x^{\alpha})' = \alpha x^{\alpha - 1}$	$(\tan x)' = \frac{1}{\cos^2 x}$
$(e^{x})'=e^{x}$	$(\cot x)' = \frac{-1}{\sin^2 x}$
$(a^{\times})' = a^{\times} \ln a$	$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$
$(\sin x)' = \cos x$	$(\arccos x)' = \frac{-1}{\sqrt{1 - x^2}}$
$(\cos x)' = -\sin x$	$(\arctan x)' = \frac{1}{1+x^2}$
$(\ln x)' = \frac{1}{x}$	$(arccot \ x)' = \frac{-1}{1+x^2}$

Đào Việt Cường Giải tích 1 Ngày 12 tháng 10 năm 2021 4/26

* Tính chất của đạo hàm cấp 1

Giả sử tồn tại f'(x) và g'(x). Khi đó

- $(f(x) \pm g(x))' = f'(x) \pm g'(x)$
- (C.f(x))' = C.f'(x)
- (f(x).g(x))' = f'(x).g(x) + f(x).g'(x)
- $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x).g(x) f(x).g'(x)}{(g(x))^2}$
- Giả sử y = f(u), với u = u(x). Khi đó

$$y'(x) = f'(u).u'(x)$$

イロト (団) (三) (三) 至 りない

Dào Việt Cường

2. Vi phân cấp 1

- Cho hàm số f(x) xác định tại x_0 và lân cận của x_0 . Ta gọi số gia của x và f(x) tại điểm x_0 tương ứng là: Δx và $\Delta f(x_0) = f(x_0 + \Delta x) f(x_0)$.
- Nếu ta có thể biểu diễn $\Delta f(x_0) = A.\Delta x + \alpha(\Delta x)$, trong đó A là đại lượng không phụ thuộc vào Δx , và $\alpha(\Delta x) \to 0$ khi $\Delta x \to 0$, thì ta nói rằng hàm số f(x) khả vi tại điểm x_0 .

Ta gọi $A.\Delta x$ là vi phân của hàm số f(x) tại x_0 , ký hiệu là $df(x_0)$. Nhận xét:

- Nếu f(x) khả vi tại x₀ thì liên tục tại x₀
- Các hàm số sơ cấp luôn khả vi trong khoảng xác định của nó
- f(x) khả vi tại x_0 khi và chỉ khi $\exists f'(x_0)$ và ta có

$$df(x_0) = f'(x_0).\Delta x$$

Activate Wi Go to Settings t

Một cách tổng quát ta có thể biểu diễn công thức vi phân cấp 1 của hàm y=f(x) dưới dạng

$$dy = f'(x)dx$$
 hay $dy = y'dx$

Ví dụ. Xét tính khả vi của hàm số

$$f(x) = \begin{cases} x^2 + 2x & \text{n\'eu } x \ge 0 \\ a.x & \text{n\'eu } x < 0 \end{cases}.$$

Giải:

Ta chia làm các trường hợp sau:

- Với x > 0, $f(x) = x^2 + 2x$ là hàm số sơ cấp xác định nên khả vi.
- Với x < 0, f(x) = a.x là hàm số sơ cấp xác định nên khả vi.
- Tại $x = 0, f(0) = 0^2 + 2.0 = 0,$

$$f'(0^+) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{x^2 + 2x}{x} = \lim_{x \to 0^+} (x + 2) = 2,$$

$$f'(0^-) = \lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{a \cdot x}{x} = a.$$

Vậy, với a=2 thì f(x) khả vi trên $\mathbb R$

với $a \neq 2$ thì f(x) không khả vi tại x = 0.

Activate Wing Go to Settings to

2.2. Đạo hàm và vi phân cấp cao

1. Đạo hàm cấp cao

Ta thương xây dựng công thức đạo hàm cấp cao của hàm số y = f(x) một cách guy nap như sau:

$$(y')' = y''$$

•
$$(y'')' = y^{(3)}, \dots$$

$$(y^{(n-1)})' = y^{(n)}$$
.

Vi du: Tìm đạo hàm cấp n của các hàm số sau

(1)
$$y = x^5 + 5x^2 + 2$$
;

(2)
$$y = e^{ax}$$
;

$$(3) y = x^n, n \in \mathbb{N}$$

(4)
$$y = x^{\alpha}, \ \alpha \in \mathbb{R};$$

(5)
$$y = \frac{1}{1-x}$$

(2)
$$y = e^{ax}$$
; (3) $y = x^n$, $n \in \mathbb{N}$
(5) $y = \frac{1}{1-x}$; (6) $y = \frac{1}{1+x}$

$$(7) y = \frac{1}{ax + b};$$

(8)
$$y = \sin x$$
; (9) $y = \cos x$

$$(9) y = \cos x$$

(1)
$$y = x^5 + 5x^2 + 2$$

 $y' = 5x^4 + 10x$
 $y'' = 20x^3 + 10$

$$y^{(3)} = 60x^2$$

$$y^{(4)}=120x$$

$$y^{(5)} = 120$$

 $y^{(n)} = 0, \forall n \ge 6.$

4 D F 4 M F 4 B F 4 B F 8 P 9

$$(2) y = e^{ax}$$

$$y' = ae^{ax}$$

$$y'' = a^2 e^{ax}$$

. . .

$$y^{(n)} = a^n e^{ax}.$$

- $y'' = n(n-1)x^{n-2}$
- $y' = nx^{n-1}$

(3) $y = x^n$

 $y^{(n)} = n(n-1)(n-2)...2.1x^0 = n!.$

$$(4) y = x^{\alpha}$$
$$y' = \alpha x^{\alpha - 1}$$

 $y'' = \alpha(\alpha - 1)x^{\alpha - 2}$

 $y^{(n)} = \alpha(\alpha - 1)(\alpha - 2) \dots (\alpha - n + 1)x^{\alpha - n}.$

(5) $y = \frac{1}{1-x}$

 $y'=\frac{1}{(1-x)^2}$

 $y'' = \frac{1.2}{(1-x)^3}$

 $y^{(n)} = \frac{n!}{(1-x)^{n+1}}.$

(6)
$$y = \frac{1}{1+x}$$

$$y^{(n)} = \frac{(-1)^n n!}{(1+x)^{n+1}}.$$

(7) $y = \frac{1}{ax + b}$ $y^{(n)} = \frac{(-1)^n a^n n!}{(ax + b)^{n+1}}.$

(8)
$$y = \sin x$$

$$y' = \cos x = \sin(x + \frac{\pi}{2})$$
$$y'' = -\sin x = \sin(x + 2.\frac{\pi}{2})$$

- - $y^{(n)} = \sin(x + n.\frac{\pi}{2}).$

 - (9) $y = \cos x$
 - $y^{(n)}=\cos(x+n.\frac{\pi}{2}).$

Tính chất của đạo hàm cấp cao

Giả sử tồn tại các đạo hàm đến cấp n của các hàm số f(x) và g(x). Khi đó

•
$$(f(x) \pm g(x))^{(n)} = f^{(n)}(x) \pm g^{(n)}(x)$$

•
$$(C.f(x))^{(n)} = C.f^{(n)}(x)$$

•
$$(f(x).g(x))^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)}(x).g^{(n-k)}(x)$$

Ví dụ. Tính các đạo hàm cấp cao

(1)
$$f(x) = \frac{1}{x^2 - 3x + 2}$$
. Tính $f^{(100)}(0)$

(2)
$$f(x) = \frac{x+1}{\sqrt{x-1}}$$
. Tính $f^{(n)}(x)$

(3)
$$f(x) = e^x(x^2 + 2x + 3)$$
. Tính $f^{(100)}(x)$.

Bài tập

1.

Administrator Options -PP để thác $f(x) = \frac{1}{(x-1)(x-2)} = \frac{1}{x-2} - \frac{1}{x-1}$ $f^{(100)}(x) = \left(\frac{1}{x-2}\right)^{(100)} - \left(\frac{1}{x-1}\right)^{(100)} = \frac{(-1)^{100}.100!}{(x-2)^{101}} - \frac{(-1)^{100}.100!}{(x-1)^{101}}$ $f^{(100)}(x) = 100! \left(\frac{1}{(x-2)^{101}} - \frac{1}{(x-1)^{101}}\right)$ $f^{(100)}(0) = 100!\left(\frac{1}{(-2)^{101}} - \frac{1}{(-1)^{101}}\right)$

02/11/2021 7:29:45 SA ×

Highlight

Bài tập

2.

$$f(x) = \frac{x+1}{\sqrt{x-1}} = \frac{(x-1)+2}{\sqrt{x-1}} = (x-1)^{\frac{1}{2}} + 2(x-1)^{-\frac{1}{2}}$$
$$f'(x) = \frac{1}{2}(x-1)^{-\frac{1}{2}} + 2(-\frac{1}{2})(x-1)^{-\frac{3}{2}}$$
$$f''(x) = \frac{1}{2}(-\frac{1}{2})(x-1)^{-\frac{3}{2}} + 2(-\frac{1}{2})(-\frac{3}{2})(x-1)^{-\frac{5}{2}}$$

$$f^{(n)}(x) = \frac{1}{2}(-\frac{1}{2})...(\frac{1}{2}-n+1)(x-1)^{\frac{1}{2}-n} + 2(-\frac{1}{2})(-\frac{3}{2})...(-\frac{1}{2}-n+1)(x-1)^{-\frac{1}{2}-n}$$

 $\langle T \rangle$

Bài tập

3.
$$f(x) = (x^2 + 2x + 3)e^x$$

Áp dụng công thức Leibnitz ta có

$$f^{(100)}(x) = \sum_{k=0}^{100} C_{100}^{k} (x^{2} + 2x + 3)^{(k)} \cdot (e^{x})^{(100-k)}$$

$$f^{(100)}(x) = C_{100}^{0} (x^{2} + 2x + 3)^{(0)} \cdot (e^{x})^{(100)} + C_{100}^{1} (x^{2} + 2x + 3)' \cdot (e^{x})^{(99)} + C_{100}^{2} (x^{2} + 2x + 3)'' \cdot (e^{x})^{(98)}$$

Tính chất của đạo hàm cấp cao

Giả sử tồn tại các đạo hàm đến cấp n của các hàm số f(x) và g(x). Khi đó

•
$$(f(x) \pm g(x))^{(n)} = f^{(n)}(x) \pm g^{(n)}(x)$$

•
$$(C.f(x))^{(n)} = C.f^{(n)}(x)$$

•
$$(f(x).g(x))^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)}(x).g^{(n-k)}(x)$$

Ví dụ. Tính các đạo hàm cấp cao

(1)
$$f(x) = \frac{1}{x^2 - 3x + 2}$$
. Tính $f^{(100)}(0)$

(2)
$$f(x) = \frac{x+1}{\sqrt{x-1}}$$
. Tính $f^{(n)}(x)$

(3)
$$f(x) = e^x(x^2 + 2x + 3)$$
. Tính $f^{(100)}(x)$.

2. Vi phân cấp cao

Công thức của vi phân cấp cao đối với hàm 1 biến cũng được xây dựng một cách quy nạp và có thể viết như sau:

- dy = y'dx
- $d^2y = y''dx^2$
- _
- ...
- $d^n y = y^{(n)} dx^n.$

Nhận xét: Vi phân cấp cao có tính chất tương tự đạo hàm cấp cao.

40

2.3. Ứng dụng của đạo hàm vi phân cấp cao

1. Đạo hàm của hàm số cho dưới dạng tham số

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$

$$(y-y(t))$$

Ta cần tính các đạo hàm y'(x), y''(x), ...

c vi phân của hàm số
$$y(x)$$
 ta có
$$dy = y'(x)dx \Rightarrow y'(x) = \frac{dy}{dt} = \frac{y'(t)dt}{dt}$$

$$dy = y'(x)dx \Rightarrow y'(x) = \frac{dy}{dx} = \frac{y'(t)dt}{x'(t)dt}$$

 $y'(x) = \frac{y'(t)}{x'(t)}$ hay $y'_x = \frac{y'_t}{x'_t}$

Do đó

nức vi phân của hàm số
$$y(x)$$
 ta có

- Xét hàm số cho dưới dạng tham số

2. Quy tăc L'hospital

Xét giới hạn
$$\lim_{x\to x_0} \frac{f(x)}{g(x)}$$
 có dạng $(\frac{0}{0} \text{ hoặc } \frac{\infty}{\infty})$. Khi đó nếu $\lim_{x\to x_0} \frac{f'(x)}{g'(x)} = A$ thì $\lim_{x\to x_0} \frac{f(x)}{g(x)} = A$. và ta thường viết

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} \stackrel{L}{=} \lim_{x \to x_0} \frac{f'(x)}{g'(x)} = A$$

Chú ý: Điều ngược lại của quy tắc Lôpitan không đúng, tức là có thể tồn tại $\lim_{x \to x_0} \frac{f(x)}{g(x)} \text{ nhưng không tồn tại } \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$

Ví dụ. Tính các giới hạn sau
$$(1) \lim_{x\to 0} \frac{1-\cos x}{x^2}, \qquad (2) \lim_{x\to 0} \frac{x-\sin x}{x^3}, \qquad (3) \lim_{x\to 0} \frac{e^x-x-x}{\ln(1+x^2)}$$

(1)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$
, (2) $\lim_{x \to 0} \frac{x - \sin x}{x^3}$, (3) $\lim_{x \to 0} \frac{e^{-x - x}}{\ln(1 + x^2)}$

3. Công thức khai triển Taylor

Giả sử hàm số f(x) xác định tại x_0 và lân cận x_0 , có các đạo hàm đến cấp (n+1) tại x_0 . Khi đó với x thuộc lân cận x_0 ta có thể biểu diễn

tại
$$x_0$$
. Khi đó với x thuộc lần cận x_0 ta có thể biểu diễn
$$f(x) = f(x_0) + \frac{f'(x_0)}{11}(x - x_0) + \frac{f''(x_0)}{21}(x - x_0)^2 + \ldots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x_0)$$

trong đó $R_n(x_0)=rac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$, và c nằm giữa x và x_0 .

Ta thường viết $R_n(x_0) = O((x-x_0)^n)$.

Khi $x_0 = 0$ ta có khai triển Maclaurent: $f'(0) = f''(0) = f^{(n)}(0) = f^{(n)}(0)$

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \ldots + \frac{f^{(n)}(0)}{n!}x^n + R_n(0).$$

$$V$$
í dụ. Khai triển Maclaurent đến cấp n của các hàm số sau
$$(1). \ f(x)=e^x, \quad (2). \ f(x)=\frac{1}{1-x}, \quad (3). \ f(x)=\frac{1}{1+x},$$

(4).
$$f(x) = \sin x$$
, (5). $f(x) = \cos x$.

(4).
$$f(x) = \sin x$$
, (5). $f(x) = \cos x$.
Giải: Bằng cách tính toán trực tiếp các đạo hàm của hàm số tại điểm $x = 0$ rồi

$$x = 1 + x + x^2 + x^n + 0$$

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \ldots + \frac{x^{n}}{n!} + O(x^{n}). \quad \forall x \in \mathbb{R}$$

$$e^x = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + O(x)$$

$$\frac{1}{1-x} = 1 + x + x^2 + \ldots + x^n + O(x^n). \ \forall x : |x| < 1$$

$$\frac{1-x}{1+x} = 1 - x + x^2 - \dots + (-1)^n x^n + O(x^n). \ \forall x : |x < 1|$$

$$\frac{1}{X} = 1 + \lambda + \lambda$$

$$+\ldots+x^n+$$

$$O(x^{\prime})$$

 $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + O(x^{2n+1}). \ \forall x \in \mathbb{R}$

 $\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4} + \frac{x^4}{4} + \frac{x^4}{2} + \frac{x^4}$

$$O(x^n)$$
. $\forall x \in \mathbb{R}$

$$\in \mathbb{R}$$

$$\mathbb{R}$$

$$\mathbb{R}$$

Câu 1: Giới hạn $\lim_{x\to 0} \frac{\ln(1+3x)}{\sin x}$ bảng A. 1 D. 6 B. $\frac{1}{2}$ E1 C. 3 F. 4 Câu 2: Cho hàm số $y = \frac{1}{\ln(x^2+1)}$ Kháng định nào sau đây đúng? A. Hàm liên tục trên $R \setminus \{0\}$ B. Hàm liên tục trên $R \setminus \{1\}$ D. Hàm liên tục trên $R \setminus \{0\}$ E. Hàm liên tục trên $R \setminus \{0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Câu 11: $\lim k d\hat{e} h h m f(x) = \begin{cases} \frac{e^{+}e^{-}x_{-}x_{-}^{2}}{2x^{2}} & \text{néu} x \neq 0, & \text{liên tuc:} \\ 2k+1 & \text{néu} x = 0. \end{cases}$ $A\frac{1}{4} & D. 2$ $B. \frac{1}{2} & E1$ $C. 1 & F. 2/3$ $C. 1 & \text{If } h d\hat{e} h h f(x) = \begin{cases} \frac{e^{+}e^{-}x_{-}^{2}}{1} & \text{néu } x \neq 0, \\ \frac{1}{\ln(1+e^{2})} & \text{néu } x \neq 0, \\ \frac{1}{\ln(1+e^{2})} & \text{néu } x \neq 0, \\ \frac{1}{\ln(1+e^{2})} & \text{néu } x = 0. \end{cases}$ $A. 3 & D. 2$ $B. 1 & E. 0$ $C1 & F1$ $Câu 13: Néu y = \sin 3x thi y' = A. 3\cos 3x$ $B3 \sin 3x & D\frac{1}{3}\cos 3x$ $C\cos 3x & F. 3\cos 3x$ $C\cos 3x & F. 3\cos 3x$ $Câu 14: Néu y = \arctan 2x thi y' = A. 2\arccos 3x$ $Câu 14: Néu y = \arctan 2x thi y' = A. 2\arctan 2x \\ E. \frac{1}{1+4x^{2}} & F\frac{1}{1+4x^{2}} \\ C. \frac{-2}{1+4x^{2}} & F\frac{1}{1+4x^{2}} \\ C. \frac{1}{1+4x^{2}} & F\frac{1}{1-4x^{2}} \\ B. (\sqrt{x})' = \frac{1}{\sqrt{x}} & D. (\cot x)' = \frac{1}{\cos^{2}x} \\ B. (\sqrt{x})' = -\frac{1}{\sqrt{x}} & E. (\tan x)' = -\frac{1}{\cos^{2}x} \\ C. \left(\frac{1}{x}\right)' = \frac{1}{x^{2}} & F. (\tan x)' = -\frac{1}{\cos^{2}x} \\ E. (\cot x)' = -\frac{1}{\cos^{2}x} \\ E. $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{Câu 21: N\'eu } y = -\frac{2}{\tan(x)} \text{ thi } dy = ? \\ \text{A. } dy = \frac{4x}{\sin^2(x)} dx & \text{D. } dy = \frac{-4x}{\sin((1-2x))} dx \\ \text{B. } dy = \frac{-4x}{\sin^2(x)} dx & \text{E. } dy = \frac{-4}{\sin(x)} dx \\ \text{C. } dy = \frac{2}{\sin^2(x)} dx & \text{F. Dáp án khác} \\ \text{Câu 22: Nếu } y = \frac{4x+1}{\sqrt{x^2+2}} \text{ thi } dy = ? \\ \text{A. } dy = \frac{8+x}{\sqrt{(x^2+2)^3}} dx & \text{D. } dy = \frac{8+x}{\sqrt{x^2+2}} dx \\ \text{B. } dy = \frac{8-x}{\sqrt{(x^2+2)^2}} dx & \text{E. } dy = \frac{-2x}{\sqrt{x^2+2}} dx \\ \text{C. } dy = \frac{8-x}{\sqrt{x^2+2}} dx & \text{F. } dy = \frac{8}{\sqrt{(x^2+2)^2}} dx \\ \text{C. } dy = \frac{8-x}{\sqrt{x^2+2}} dx & \text{F. } dy = \frac{8}{\sqrt{(x^2+2)^2}} dx \\ \text{Câu 23: Nếu } f(x) = \begin{cases} \frac{x-1}{1+e^{1-x}} & \text{néu } x \neq 1, \\ 0 & \text{néu } x = 1. \end{cases} \\ \text{A. 1 và 0} & \text{D. 0 và 1} \\ \text{B. 1 và 2} & \text{E. 0 và 1} \\ \text{C1 và 2} & \text{F. 1 và 1} \end{cases} \\ \text{Câu 24: Nếu } f(x) = x x \\ \text{thi } f''(0) = ? \\ \text{A. 1} & \text{D. 0} \\ \text{B. 2} & \text{E. } -2 \\ \text{C1} & \text{F. Dáp án khác} \end{cases} \\ \text{Câu 25: Nếu } f(x) = \frac{x+1}{x^2-3x+2} \\ \text{thi } f^{(n)}(x) = ? \\ \text{A. 3} & \frac{(-1)^n n!}{(x-2)^{n+1}} + 2 \frac{(-1)^n n!}{(x-2)^{n+1}} & \text{D. } \frac{(-1)^n n!}{(x-2)^{n+1}} + 2 \frac{(-1)^n n!}{(x-1)^{n+1}} \\ \text{B. 3} & \frac{(-1)^n n!}{(x-2)^{n+1}} = 2 \frac{(-1)^n n!}{(x-1)^{n+1}} & \text{E. } \frac{(-1)^n n!}{(x-2)^{n+2}} + \frac{(-1)^n n!}{(x-1)^{n+2}} \\ \text{C. 3} & \frac{(-1)^n n!}{(x-2)^{n+1}} = 2 \frac{(-1)^n n!}{(x-1)^{n+1}} & \text{F. 3} \frac{(-1)^n n!}{(x-1)^{n+2}} \\ \end{array} $
Đào Việt Cường 🐰		Ø - 1₫ D	5 C X	