University of Texas at Austin

HW Assignment 2

Note: You **must** show all your work. Numerical answers without a proper explanation or a clearly written down path to the solution will be assigned zero points.

Problem 2.1. (20 points) Two coins are tossed and a (6-sided) die is rolled.

- (i) (5 points) Describe a sample space (probability space), together with the probability, on which such a situation can be modelled.
- (ii) (15 points) Find the probability mass function of the random variable whose value is the sum of the number on the die and the total number of heads.

Problem 2.2. (10 points) Source: Sample P exam, Problem #126. Under an insurance policy, a maximum of five claims may be filed per year by a policyholder. Let p_n be the probability that a policyholder files exactly n claims during a given year, where n = 0, 1, 2, 3, 4, 5. An actuary makes the following observations:

- $p_n \ge p_{n+1}$ for n = 0, 1, 2, 3, 4.
- The difference between p_n and p_{n+1} is the same for n = 0, 1, 2, 3, 4.
- Exactly 40% of policyholders file strictly fewer than two claims during a given year.

Calculate the probability that a random policyholder will file strictly more than three claims during a given year.

Problem 2.3. (10 points) A continuous random variable X has the probability density function f_X given by

$$f_X(x) = A - \frac{x}{50}, \quad 0 \le x \le 10.$$

- (a) Find the value of the constant A.
- (b) Find the value of the survival function of X at 7, i.e., calculate $S_X(7)$.

Problem 2.4. (10 points) The lifespan of a certain machine is exponentially distributed. The probability that the lifespan exceeds 4 years is p. Find the expression for the density of the lifespan in terms of p.

Instructor: Milica Čudina Semester: Sprin 2022