TEK 5040/9040 Memory and Attention in RNNs

Narada Warakagoda

background

Attention

Attn. Examples

Sequence processing and "memory"

- Processing inputs such as images does not depend on memory
 - All inputs (pixels) are fed at the same time
- However, sequence processing inherently needs "memory"
 - Need to remember the previous inputs
- Plain RNN provides a simple memory solution!

background

Attention

Attn. Examples

The memory of plain RNN

- Cell states are a kind of memory of the previous inputs
- But these memories are highly restricted!

background

Attention

Attn. Examples

Memory of the LSTM

- Control state has a better memory
 - Forgets irrelevant information
 - Remembers important information

 \mathbf{c}_t remembers information from \mathbf{x}_t and \mathbf{x}_{t-1}

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

background

Attention

Attn. Examples

MANN

Self-attention

Attention

- Direct access to all the previous states
- But not all previous states are not important
 - Pick the states which are important

Encoder

Soft attention

background

Attention

Attn. Examples

MANN

Self-attention 6 / 28

Hard Attention

background

Attention

Attn. Examples

MANN

Self-attention 7 / 28

Examples of attention

- Machine translation
 - Sequence to sequence
- Image captioning
 - Vector to sequence

background Attention Attn. Examples MANN Self-attention 8 / 28

Machine translation

background

Attention

Attn. Examples

MANN

Self-attention 9 / 28

Image captioning

background

Attention

Attn. Examples

MANN

Self-attention 10 / 28

Attend to locations

background

Attention

Attn. Examples

MANN

Self-attention 11 / 28

Attention visualization

background

Attention

Attn. Examples

MANN

Self-attention 12 / 28

Pros & cons of attention

- Pros:
 - Direct access to previous states (memory of previous inputs)
- Cons:
 - Memory = states (Not a general layout)
 - Writing to memory = generating states one by one

background

Attention

Attn. Examples

MANN

Self-attention 13 / 28

Memory Augmented Neural Network (MANN)

- Provides a general memory layout
 - (independent of the RNN architecture and time-steps)

- Provides a more general reading/writing mechanism
- Choice in reading/writing memory
 - Content based addressing
 - Location based addressing

background

Attention

Attn. Examples

MANN

Self-attention 14 / 2

MANN architecture

Encoder

background

Attention

Attn. Examples

MANN

Self-attention 15 / 28

Cell architecture

background

Attention

Attn. Examples

MANN

Self-attention 16 / 28

Reading Memory

Generate read weights

$$\alpha_j = \mathbf{k} \cdot \mathbf{M}(j)$$
 (Similarity measure)

$$w^{R}(j) = \operatorname{softmax}(\alpha_{j}) = \frac{\exp(\alpha_{j})}{\sum_{k} \exp(\alpha_{k})}$$

Generate the read vector

$$\mathbf{r} = \sum_{j} w_{j}^{R} \mathbf{M}(j)$$

- "Soft" operation and hence differentiable
- Interpreted as "attention" to memory

background

Attention

Attn. Examples

Writing to memory

Generate write weights

$$\alpha_j = \mathbf{k} \cdot \mathbf{M}^t(j)$$
 (Similarity measure)
$$w^W(j) = \operatorname{softmax}(\alpha_j) = \frac{\exp(\alpha_j)}{\sum_k \exp(\alpha_k)}$$

Perform the write operation (update memory)

$$\mathbf{M}^{t+1}(j) = \mathbf{M}^t(j) \circ \left(\mathbf{1} - w^W(j)\mathbf{e}\right) + w^W(j)\mathbf{v}$$
 Elementwise multiplication Erase vector Write vector

background

Attention

Attn. Examples

MANN

Self-attention 18 / 28

Addressing

- Content based addressing (previous slides)
 - Find the similarity between memory contents and the key
 - Locations with high similarity
 - contributes more to the read vector (in reading)
 - are written with "more" information (in writing)
 - Locations with low similarity
 - Do the opposite
- Location based addressing
 - Read from (write to) a specified location
 - Common in regular computer systems
 - Differentiable location based addressing is useful in some

background Cases hackground Cases

Attn. Examples

MANN

Self-attention 19 / 28

MANN examples

- Neural Turing Machine
- Differentiable Neural Computer

background Attention Attn. Examples MANN Self-attention 20 / 28

Neural Turing Machine

- Sophisticated weight generalion mechansim
- Supports
 - Content based addressing
 - Location based addressing (through address shifting distribution s_t)
 - Both addressing mechanisms are blended

Differentiable Neural Computer (DNC)

- Newer variant of NTM
- Main difference: Memory usage and temporal links.

background

Attention

Attn. Examples

Self attention

- An attention mechanism which considers its own elements of a sequence
- Different to the attention mechanisms related to RNNs
- Forms the basis of Transformers

Self-attention

The intuition

- Make the output a function of variable size sequence
- The number of learnable parameters should be a constant.

Self-attention

Self-attention mechanics (I)

$$\mathbf{q}_i = \mathbf{x}_i W^Q$$
 $\mathbf{k}_i = \mathbf{x}_i W^K$
 $\mathbf{v}_i = \mathbf{x}_i W^V$

background

Attention

Attn. Examples

MANN

Self-attention 25 / 28

Self-attention mechanics (II)

$$\alpha_1(1) = \frac{\exp(\boldsymbol{q}_1 \boldsymbol{k}_1^T)}{\sum_j \exp(\boldsymbol{q}_1 \boldsymbol{k}_j^T)}$$

$$\alpha_1(2) = \frac{\exp(\boldsymbol{q}_1 \boldsymbol{k}_2^T)}{\sum_j \exp(\boldsymbol{q}_1 \boldsymbol{k}_j^T)}$$

$$\alpha_1(3) = \frac{\exp(\boldsymbol{q}_1 \boldsymbol{k}_3^T)}{\sum_j \exp(\boldsymbol{q}_1 \boldsymbol{k}_j^T)}$$

$$egin{array}{c} oldsymbol{q}_3 \ oldsymbol{k}_3 \ oldsymbol{v}_3 \ oldsymbol{x}_3 \end{array}$$

$$\alpha_2(1) = \frac{\exp(\boldsymbol{q}_2 \boldsymbol{k}_1^T)}{\sum_j \exp(\boldsymbol{q}_2 \boldsymbol{k}_j^T)}$$

$$\alpha_2(2) = \frac{\exp(\boldsymbol{q}_2 \boldsymbol{k}_2^T)}{\sum_j \exp(\boldsymbol{q}_2 \boldsymbol{k}_j^T)}$$

$$\alpha_2(3) = \frac{\exp(\boldsymbol{q}_2 \boldsymbol{k}_3^T)}{\sum_j \exp(\boldsymbol{q}_2 \boldsymbol{k}_j^T)}$$

$$\alpha_3(1) = \frac{\exp(\boldsymbol{q}_3 \boldsymbol{k}_1^T)}{\sum_j \exp(\boldsymbol{q}_3 \boldsymbol{k}_j^T)}$$

$$\alpha_3(2) = \frac{\exp(\boldsymbol{q}_3 \boldsymbol{k}_2^T)}{\sum_j \exp(\boldsymbol{q}_3 \boldsymbol{k}_j^T)}$$

$$\alpha_3(3) = \frac{\exp(\boldsymbol{q}_3 \boldsymbol{k}_3^T)}{\sum_j \exp(\boldsymbol{q}_3 \boldsymbol{k}_j^T)}$$

background

Attention

Attn. Examples

Scaled dot product attention

Input word vectors
$$m{X} = [m{x}_1, m{x}_2, \cdots, m{x}_n]^T$$
 Query $m{Q} = [m{q}_1, m{q}_2, \cdots, m{q}_n]^T$ Keys $m{K} = [m{k}_1, m{k}_2, \cdots, m{k}_n]^T$ Values $m{V} = [m{v}_1, m{v}_2, \cdots, m{v}_n]^T$ $m{Q} = m{X} m{W}^Q$ $m{K} = m{X} m{W}^K$ $m{V} = m{X} m{W}^V$

 W^Q, W^K, W^V Trainable weight vectors

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Self-attention Pros and Cons

- Advantages
 - Parallelizable
 - All elements gets equal treatment

_

- Disadvantages
 - High computational complexity for long sequences
 - Position information gets lost

background

Attention

Attn. Examples

MANN

Self-attention 28 / 28