ENEL/ENEN 645 — Data Mining & Machine Learning

Overview of the course

ADVANCED IMAGING &
ARTIFICIAL INTELLIGENCE
LAB

@lab_ai2

Roberto Souza Assistant Professor Electrical and Computer Engineering Schulich School of Engineering

W2025

Course Delivery

- Synchronous and in-person
 - MWF 9:00 am to 9:50 am
 - Room ENE 241
- Use the D2L discussion board for questions
 - Alternative: Teams or slack channel?

Course Syllabus

Types of data mining: classification, clustering, association, prediction. Processes: data preparation, model building. Techniques: decision tree, neural network, evolutionary computing, Bayesian network. Applications: multi-media, text and web mining.

Course Syllabus (main topics)

- Python Bootcamp and machine learning concepts
- Data preparation and pre-processing
- Regularization techniques
- Traditional machine learning models (Decision Trees, Random Forests, ...)
- Neural Networks
- Transfer Learning and Domain Adaptation
- Generative models
- Self-supervised learning
- Physics informed neural networks

Learning Outcomes

- 1. Design and develop data mining and machine learning solutions for relevant problems
- 2. Select appropriate experimental setups and metrics for evaluating machine learning models
- 3. Select appropriate machine learning models for different types of problems
- 4. Have a comprehensive overview of current trends in machine learning
- 5. Acquire hands-on experience with machine learning programming frameworks

What this course is about?

- Model deployment
- CI/CD pipelines
- Monitoring & triggering

This course is about designing and developing machine learning models to achieve the best quantitative metrics* to the problems being modelled.

Textbook

No mandatory textbook for this course

Course Assessment

Component	Learning Outcomes	Weight
Participation	1, 2, 3, 4	5%
Assignments (2)	1, 2, 3, 4, 5	20%
Midterm	1, 2, 3, 4	30%
Final Project	1, 2, 3, 4, 5	45%

Participation (5%)

- Student participation will account for 5% of the final grade. How will participation be measured?
 - Students helping with proposed activities during class
 - Students questions and answers during class
 - Students participation on the discussion channels
 - Students helping each other during class

Assignments (20%)

- Team-based 4 people per team
- Assignment 01 (10%):
 - Proposing a garbage classification system based on images and natural language
 - Due: 31 January (midnight) | Delivery method: D2L dropbox
- Assignment 02 (10%):
 - Propose a solution for the problem of assignment 01
 - Due: 14 February (midnight) | Delivery method: D2L dropbox

Assignment 1

- Design a garbage classification system based on images and text
- Use text to add context potentially not available in the image

Assignment 02

 Develop a deep learning solution to the garbage classification problem used in assignment 1 (data will be provided)

Midterm (30%)

- Quizzes are individual
- Multiple choice
- A sample quiz will be provided for studying
- Content: all topics covered until the day of the midterm
- Date: 03 March 2025 in the classroom
- Accommodation: 10 March 2025 in the classroom

Final Project (45%)

- 5-page report + 1 additional page only with references (if necessary)
- Report template
 - Overleaf please make a copy for your team.
 - Microsoft word
- Final report due date: 04 April 2025 at midnight
- Final project presentations: TBD
 - 5-minute presentation + 3 minutes for questions
 - Send slides one day before your presentation
 - Presentations are not graded but can help raise your final report grade

Grades

Letter Grade	Total Mark (T)
A+	T≥95%
Α	90% ≤ T < 95%
A-	85% ≤ T < 90%
B+	80% ≤ T < 85%
В	75% ≤ T < 80%
B-	70% ≤ T < 75%
C+	65% ≤ T < 70%
С	60% ≤ T < 65%
C-	55% ≤ T < 60%
D+	50% ≤ T < 55%
D	45% ≤ T < 50%
F	T < 45%

The Programming Environment (Part 1)

https://colab.research.google.com/

https://jupyter.org/

https://github.com/rmsouza01/deep-learning

The Programming Environment (Part 2)

- Python 3
- Python libraries:
 - NumPy
 - Matplotlib
 - Pandas
 - Scikit-learn
 - Tensorflow (version ≥ 2.0)
 - PyTorch
 - Weight and Bias
- Please have your programming environment in your computer or on Google Colab set up asap

Deep Learning Frameworks

I hope you enjoy the class ©

Questions?

