HW9

Y. Konpaku

April 28, 2019

1 QUESTION

1. Prove the case of (L \exists) and (R \exists) for **G3**[mi] in 3.5.2(α).

2 ANSWER

- 1. Proof.
 - (R \exists) For arbitrary fresh renaming * free in the conclusion $\Gamma \Rightarrow \exists x \varphi$, we can find a proper renaming ** s.t. $\Gamma^{**} \equiv \Gamma^*$. If * does not rename the bounded x in $\exists x \varphi$, we let ** has the same activity on φ as *. Then we can obtain that $(\varphi_t^x)^* \equiv (\varphi_t^x)^{**} \equiv (\varphi^{**})_t^x \equiv (\varphi^*)_t^x$ hence the effects of bounded variable renaming and term substitution are orthogonal. We can apply (R \exists) on $[\Gamma \Rightarrow \varphi_t^x]^{**} \equiv \Gamma^* \Rightarrow (\varphi^*)_t^x$ by induction hypothesis which concludes $\Gamma^* \Rightarrow \exists x \varphi^* \equiv [\Gamma \Rightarrow \exists x \varphi]^*$ since $\exists x \varphi^* \equiv (\exists x \varphi)^*$ for * is free for x in $\exists x \varphi$.

 Otherwise, $\exists x \varphi$ will be rename to $\exists y (\varphi^*)_y^x$ s.t. $y \not\in FV(\varphi^*) = FV(\varphi)$. Since y is free in φ we have $\varphi_t^x \equiv \varphi_{yt}^{xy}$. Then we can define ** as the same way and use the fact that substitution and renaming are commutable again: $[\Gamma \Rightarrow \varphi_t^x]^{**} \equiv \Gamma^* \Rightarrow (\varphi^*)_{yt}^{xy}$. If we apply (R \exists) on it by induction hypothesis then we can conclude $\Gamma^* \Rightarrow \exists y (\varphi^*)_y^x$, which is exactly what we want.
 - (L \exists) The case that * does not rename x in $\exists x\varphi$ in conclusion is very similar to (R \exists), now we focus on the case that $(\exists x\varphi)^* \equiv \exists z(\varphi^*)_z^x$ for some z fresh. Since z is fresh, we have $(\varphi_y^x)^* \equiv (\varphi^*)_y^x \equiv (\varphi^*)_{zy}^x$. We can apply (L \exists) on $[\Gamma, \varphi_y^x \Rightarrow \psi]^{**} \equiv \Gamma^*, (\varphi^*)_{zy}^{*z} \Rightarrow \psi^*$ to obtain $\Gamma^*, \exists z(\varphi^*)_z^x \Rightarrow \psi^*$ because y is free for Γ, ψ and $\exists x\varphi$ (this implies $y \equiv x$ or $y \notin FV(\varphi) = FV((\varphi^*)_z^x)$) and changing bound variables does not affect free variables.