Y. Lavault & J. Poujaud

yves.lavault@aii-biomedical.com

3. Le bus PC104, techniques d'interfaçage, prototypage...

Plan

➤ Le bus ISA/PC104

Vue générale, caractéristiques des cartes, les signaux, exemples de transferts, les interruptions et le plan mémoire

> Les périphériques

Généralités, exemples de raccordements, le bus PC104/ISA, le décodage d'adresses, circuit de base de l'interfaçage, les timings des cycles d'écriture/lecture, analyse de cartes

3. Le bus PC104, techniques d'interfaçage, prototypage...

Plan

> Le bus ISA/PC104

Vue générale, caractéristiques des cartes, les signaux, exemples de transferts, les interruptions et le plan mémoire

> Les périphériques

Généralités, exemples de raccordements, le bus PC104/ISA, le décodage d'adresses, circuit de base de l'interfaçage, les timings des cycles d'écriture/lecture, analyse de cartes

3. Le bus PC104, techniques d'interfaçage, prototypage...

Le bus PC104/ISA: vue générale

- ➤ Bus d'extension standard des PC depuis le PC-AT
- ➤ Bus défini au départ par IBM pour équiper ses PC-XT (8088, 8 bits)
- > Evolution avec le PC-AT (80286, 16 bits données adressage 24 bits)
- > Apparition d'un nouveau bus très différent (IBM Microchannel)
- > Normalisation enfin sous la forme ISA basé sur le bus PC-AT et compatible avec les anciennes générations de cartes.
- ➤ Toujours utilisé aujourd'hui dans les PC industriels (forme ISA)
 - pour assurer la compatibilité avec les cartes existantes
 - pour les Entrées/Sorties ne nécessitant pas de hautes performances

3. Le bus PC104, techniques d'interfaçage, prototypage...

Le bus PC104/ISA: vue générale

- Sous sa forme compacte PC104 (systèmes embarqués)
- Remplacé par le bus PCI/PCI express dans les PC d'usage général
- > Fortement lié aux familles de processeur Intel
- ➤ Horloge de base 8.33Mhz, Données 8/16bits Adresses 24 bits (16Mo) Bande passante = 8.33*2 = 16.7Mo/s max
- Bus dérivés : EISA(bus 32 bits)
 PC104 (version industrielle pour systèmes embarqués)

3. Le bus PC104, techniques d'interfaçage, prototypage...

Le bus PC104/ISA: format des cartes ISA

> Carte 8 bits

3. Le bus PC104, techniques d'interfaçage, prototypage...

Le bus PC104/ISA: format des cartes ISA

> Carte 16 bits

3. Le bus PC104, techniques d'interfaçage, prototypage...

Le bus PC104/ISA: format des cartes PC104

Dimensions are in inches / (millimeters)

3. Le bus PC104, techniques d'interfaçage, prototypage...

Le bus PC104/ISA: format des cartes PC104

Dimensions are in inches / (millimeters)

3. Le bus PC104, techniques d'interfaçage, prototypage...

Le bus PC104/ISA: les signaux

```
AT Bus only
     *SBHE
                                         *M16
                                   D1:
C2:
     LA23
                                   D2:
                                         *I016
C3:
     LA22
                                   D3:
                                         IRQ10
C4:
     LA21
                                   D4:
                                         IRO11
              20=>24 bits
     LA20
                                   D5:
                                         IRQ12
     LA19
C6:
                                   D6:
                                         IRO15 [B]
C7:
     LA18
                                   D7:
                                         IRO14
C8:
     LA17
                                   D8:
                                         *DAK0
C9:
     *MRDC
                                   D9:
                                         DRO0
C10: *MWTC
                                   D10: *DAK5
C11: SD8
                                   D11: DRO5
C12: SD9
                                   D12: *DAK6
C13: SD10
                                   D13: DR065
C14: SD11
                                   D14: *DAK7
              8=>16 bits
C15: SD12
                                   D15: DR07
C16: SD13
                                   D16: +5
C17: SD14
                                   D17: *MASTER16
C18: SD15
                                   D18: GND
                  * Active Low
```


3. Le bus PC104, techniques d'interfaçage, prototypage...

Le bus PC104/ISA: analyse des signaux

AEN	Address Enable	Actif état haut si une unité DMA pilote le bus interdit aux dispositifs I/O de répondre aux cdes I/O pendant le transfert DMA				
BALE	Bus Address Latch Enable	Adresse latchée sur front montant de ce signal Adresse valide du front descendant à la fin du cycle de bus				
BCLK	Bus Clock	4.77 à 8-8.33Mhz peut monter à 12MHz				
СНСНК	Channel check	état bas -> NMI si autorisée erreur de parité				
CHRDY (IO CHRDY)	Channel Ready	= 0 permet d'allonger les cycles mémoire				
DACKx	DMA Ack					
DRQx	DMA Req					
I016	I/O size 16	généré par un esclave 16 bit s'il est adressé par un maître du bus				
IORC		Ligne de Commande de lecture I/O				

3. Le bus PC104, techniques d'interfaçage, prototypage...

Le bus PC104/ISA: analyse des signaux

IOWC		Ligne de Commande d'écriture I/O
IRQx	Int. Request	IRQ2 priorité max IRQ10-15 AT seul prio > IRQ3-7
LAxx	Latchable Addr lines	SE combinent avec les adresses basses pour former une adresse 24 bits (16Mo)
MASTER16		Maître 16 bit généré par le maître en début de cycle
M16		Accès Mémoire, 16 bit
MRDC /MEMR		Ligne de commande de lecture mémoire
MWTC /MEMW		Ligne de commande d'écriture mémoire
NOWS		No Wait State raccourcit le cycle mémoire

3. Le bus PC104, techniques d'interfaçage, prototypage...

Le bus PC104/ISA: analyse des signaux

osc		14.31818MHz 50%		
REFRESH		Généré quand la logique de rafraîchissement est le maître du bus		
RESDRV (RESET)		Reset système		
SA0-SA19		Adresses tri-state		
SBHE	System bus High Enable	tri-state indique un transfert 16 bits ou 8bits si une adresse impaire est présente (données présentes sur SD8-15)		
SD0-SD15	System Data Lines	Données Bi-directionnelles tri-state		
SMRDC / SMEMR		Lecture mémoire dans le 1 ^{er} Mo		
SMWTC / SMEMW		Ecriture mémoire dans le 1 ^{er} Mo		
TC	Terminal count	Notifie au CPU que le dernier transfert DMA est complété		

3. Le bus PC104, techniques d'interfaçage, prototypage...

Le bus PC104/ISA: transfert 8 bits (I/O ou Mémoire)

Note: W1 through W4 indicate wait cycles. ⇒ 4 par défaut (0 -> NOWS -> on raccourcit)

1 -> CHRDY -> on rallonge

3. Le bus PC104, techniques d'interfaçage, prototypage...

Le bus PC104/ISA: transfert 16 bits (I/O ou Mémoire)

3. Le bus PC104, techniques d'interfaçage, prototypage...

Le bus PC104/ISA: interruptions

	Interrupt (Hex)	
NMI	2	Parity Error, Mem Refresh
IRQ0	8	8253 Channel 0 (System Timer)
IRQ1	9	Keyboard
IRQ2	A	Cascade from slave PIC
IRQ3	В	COM2
IRQ4	C	COM1
IRQ5	D	LPT2
IRQ6	E	Floppy Drive Controller
IRQ7	F	LPT1
IRQ8	F	Real Time Clock
IRQ9	F	Redirection to IRQ2
IRQ10	F	Reserved
IRQ11	F	Reserved
IRQ12	F	Mouse Interface
IRQ13	F	Coprocessor
IRQ14	F	Hard Drive Controller
IRQ15	F	Reserved

IRQ0,1,2,8, and 13 are not available on the ISA bus.

3. Le bus PC104, techniques d'interfaçage, prototypage...

Le bus PC104/ISA: adresse des Ports d'entrées/sorties

```
Port (hex)
000-00F DMA Controller
                                                         270-27F
                                                                  Parallel Port 3
010-01F DMA Controller (PS/2)
                                                         280-2A1
                                                                  AVAILABLE
020-02F Master Programmable Interrupt Controller (PIC)
                                                         2A2-2A3
                                                                  clock
030-03F
         Slave PIC
                                                         2B0-2DF EGA/Video
040-05F Programmable Interval Timer (PIT)
                                                         2E2-2E3
                                                                  Data Acquisition Adapter (AT)
060-06F Keyboard Controller
                                                         2E8-2EF Serial Port COM4
                                                         2F0-2F7 Reserved
070-071
         Real Time Clock
                                                         2F8-2FF Serial Port COM2
        DMA Page Registers
080-083
                                                         300-31F Prototype Adapter, Periscope Hardware Debugger
090-097
         Programmable Option Select (PS/2)
                                                         320-32F
                                                                  AVAILABLE
0A0-0AF
         PIC #2
                                                         330-33F
                                                                  Reserved for XT/370
0C0-0CF
        DMAC #2
                                                         340-35F AVAILABLE
0E0-0EF reserved
                                                         360-36F Network
0F0-0FF
         Math coprocessor, PCJr Disk Controller
                                                         370-377 Floppy Disk Controller
100-10F Programmable Option Select (PS/2)
                                                         378-37F Parallel Port 2
110-16F
         AVAILABLE
                                                         380-38F SDLC Adapter
170-17F
         Hard Drive 1 (AT)
                                                         390-39F Cluster Adapter
180-1EF AVAILABLE
                                                         3A0-3AF reserved
1F0-1FF Hard Drive 0 (AT)
                                                         3B0-3BB Monochome Adapter
200-20F Game Adapter
                                                         3BC-3BF Parallel Port 1
210-217 Expansion Card Ports
                                                         3C0-3CF EGA/VGA
220-26F AVAILABLE
                                                         3D0-3DF Color Graphics Adapter
                                                         3E0-3EF Serial Port COM3
                                                         3F0-3F7 Floppy Disk Controller
                                                         3F8-3FF Serial Port COM1
```


3. Le bus PC104, techniques d'interfaçage, prototypage...

Plan

➤ Le bus ISA/PC104

Vue générale, caractéristiques des cartes, les signaux, exemples de transferts, les interruptions et le plan mémoire

Les périphériques

Généralités, exemples de raccordements, le bus PC104/ISA, le décodage d'adresses, circuit de base de l'interfaçage, les timings des cycles d'écriture/lecture, analyse de cartes

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: généralités

- > Permettent au processeur de communiquer avec le monde extérieur :
 - Echange de données,
 - Lecture d'informations (capteurs de position, température),
 - Commande d'actionneurs (moteurs, résistance chauffante, électrovannes, relais)
- > Pour être opérationnels, doivent être raccordés (*interfacés*):
 - au processeur,
 - au système extérieur à commander

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: exemples de raccordements

GRENOBLE

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: exemples de raccordements

Raccordement via un port

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: exemples de raccordements

> Raccordement direct

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: exemples de raccordements

➤ Intégration dans un chip (µc Siemens infineon)

=> Block diagram du C515C

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: le bus PC104/ISA

Exemples d'interfaçage

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: le bus PC104/ISA

> Exemples d'interfaçage

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: le décodage d'adresses

> Exemples d'interfaçage

Address Decoder @ 0xFFFE A15 - A12 · A11 - A8 -@ de décodage? A7 - A4 A3 - A1 D7 - D0 8-bit Latch IO Device

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: le décodage d'adresses

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: le décodage d'adresses

➤ Le phénomène de miroir

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: le décodage d'adresses

- > Type d'adressage?
- ➤ @ de l'EEPROM?
- ➤ @ de la RAM?
- > @ du PI0

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: le décodage d'adresses

- > Type d'adressage?
- > @ de l'EEPROM?
- ➤ @ de la RAM?
- > @ du PI0

Miroir des adresses...

=> Attention à l'encombrement mémoire!!

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: le timing des cycles d'écriture/lecture

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: circuits de base de l'interfaçage

➤ Is74

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: circuits de base de l'interfaçage

➤ Is139

TRUTH TABLE								
	INPUTS	;		OUTPUTS				
E	A ₀	A ₁	ರ₀	Ō₁	Ō₂	\overline{O}_3		
Н	Х	Х	Н	Н	Н	Н		
L	L	L	L	Н	Н	Н		
L	Н	L	н	L	Н	Н		
L	L	Н	н	Н	L	Н		
L	Н	Н	Н	Н	Н	L		

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: circuits de base de l'interfaçage

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: circuits de base de l'interfaçage

> Is 240/244

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: circuits de base de l'interfaçage

> Is 688

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: circuits de base de l'interfaçage

➤ Is 273

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: circuits de base de l'interfaçage

➤ Is 374 SN74LS373 02 03 O_4 O_5 06 SN74LS374 ${\mathfrak O}_{D_2}$ [®]
_□
_{D3} 13) 1 D₄ (18) | D₇ CP CP D CP D CP D CP D CP D CP D CP Q Q Q Q Q QQ 0 0 QQ Q Q QQ O_3 O_0 01 0_2 04 O_5 O_6 07

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: circuits de base de l'interfaçage

➤ Is 640

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: analyse de cartes

Carte 16 entrées

3. Le bus PC104, techniques d'interfaçage, prototypage...

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: analyse de cartes

➤ Carte 16 entrées, conditionnement conditionnement entrées

- -Isolation galvanique 1000 V
- -Filtrage entrées optionnel 10ms
- -Tension nominale 24V DC

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: analyse de cartes

> Carte 16 sorties

Le signal BOARDEN/ est validé pour les configurations d'adresses suivantes :

SAS	SA8	SA	SA	SA5	SA4	SA3	SA2	SA1	SA0	
0	1	1	0	0	0	0	0	Χ	Χ	
0	1	1	0	0	0	0	0	0	0	180h Ecr/lect. CH0-7
0	1	1	0	0	0	0	0	0	1	181h Ecr/lect. CH8-15
0	1	1	0	0	0	0	0	1	0	182h Ecr OE B0 B1
0	1	1	0	0	0	0	0	1	1	183h

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: analyse de cartes

Carte 16 sorties

3. Le bus PC104, techniques d'interfaçage, prototypage...

Les périphériques: analyse de cartes

➤ Carte 16 sorties, conditionnement sorties

- -Isolation galvanique 1500 V
- -Courant de sortie: Ch 0-7 600mA Ch 8-15 300 mA
- -Tension de commande jusqu'à 30V
- Diode de protection pour les charges inductives

