Richiami di Algebra Lineare

Sia n un numero intero positivo. Sia R^n l'insieme delle n-uple di numeri reali $(x_1, x_2, ..., x_n)$. Esiste una corrispondenza biunivoca fra le n-uple di numeri reali e i vettori a n componenti reali, cioè

Si suole perciò indicare con R^n anche l'insieme dei vettori ad n componenti reali.

$$x \in \mathbb{R}^n, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

Si definiscano in R^n le operazioni di addizione tra due vettori e di moltiplicazione di un vettore per uno scalare.

$$x \in \mathbb{R}^n, y \in \mathbb{R}^n$$
 $x + y = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \dots \\ x_n + y_n \end{bmatrix}$ $e \lambda x = \begin{bmatrix} \lambda x_1 \\ \lambda x_2 \\ \dots \\ \lambda x_n \end{bmatrix}, \lambda \in \mathbb{R}$

Si dimostra facilmente che esse godono delle seguenti proprietà.

- 1. L'addizione tra vettori è commutativa ed associativa.
- 2. L'elemento $0 \in \mathbb{R}^n$, cioè il vettore che ha tutte componenti nulle, detto vettore zero o vettore nullo è tale che $v+0=v \ \forall v \in \mathbb{R}^n$;

- 3. $0 \cdot v = 0$, $1 \cdot v = v$, essendo rispettivamente 0 ed 1 rispettivamente lo zero e l'unità di R..
- 4. Per ogni elemento $v \in \mathbb{R}^n$ esiste il suo opposto -v in \mathbb{R}^n tale che v+(-v)=0;
- 5. valgono le seguenti proprietà distributive:

$$\forall \alpha \in R, \quad \forall x, y \in R^n, \quad \alpha(x+y) = \alpha x + \alpha y$$

 $\forall \alpha, \beta \in R, \quad \forall x \in R^n, \quad (\alpha + \beta)x = \alpha x + \beta$

6. vale la seguente proprietà associativa:

$$\forall \alpha, \beta \in R, \forall x \in R^n (\alpha \beta) x = \alpha(\beta x)$$

L' insieme R^n in cui sono definite queste due operazioni è <u>munito di una struttura di spazio vettoriale sul campo R.</u>

 R^n è solo un esempio di <u>spazio vettoriale</u>. Un altro importante esempio di spazio vettoriale è Π_n , l'insieme dei polinomi a coefficienti reali di grado minore o uguale ad n sull'intervallo [a,b] su cui sono definite le analoghe operazioni di somma tra due polinomi e di moltiplicazione di un polinomio per uno scalare.

Ritorniamo per semplicità a parlare di R^n .

Dati k vettori, $\ v_1,v_2,\ldots,v_k\in R^n$ e k scalari $\lambda_1,\lambda_2,\ldots,\lambda_k\in R$, la quantità

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots \lambda_k v_k$$

si dice <u>combinazione lineare</u> dei vettori v_1, v_2, \ldots, v_k con coefficienti $\lambda_1, \lambda_2, \ldots, \lambda_k$

Definizione di lineare indipendenza: I vettori $v_1, v_2, ..., v_k$ si dicono linearmente indipendenti se una loro combinazione lineare

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots \lambda_k v_k = 0$$

solo per $\lambda_i = 0$ i=1,2,...,k, cioè se nessuno di essi può essere ottenuto come combinazione lineare degli altri.

In R^n il massimo numero di vettori linearmente indipendenti <u>è n, cioè la dimensione</u> dello spazio.

Una n-upla di vettori linearmente indipendenti costituisce una base per R^n , cioè un sistema di vettori generatori di R^n ,

Un esempio di base di Rⁿ è la <u>base canonica</u>. Essa è formata dai vettori:

$$e_i = \begin{bmatrix} 0 \\ \dots \\ 1 \\ 0 \end{bmatrix} \quad \leftarrow i \qquad \qquad i=1,\dots n$$

Quando scriviamo un vettore in genere lo pensiamo rappresentato nella base canonica

$$v = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \qquad \Leftrightarrow x_1 \cdot \begin{bmatrix} 1 \\ 0 \\ \dots \\ 0 \end{bmatrix} + x_2 \cdot \begin{bmatrix} 0 \\ 1 \\ \dots \\ 0 \end{bmatrix} + \dots \times x_n \cdot \begin{bmatrix} 0 \\ 0 \\ \dots \\ 1 \end{bmatrix}$$

I vettori della base canonica, oltre a essere linearmente indipendenti, possiedono un'ulteriore proprietà: <u>l'ortogonalità.</u> Per definirla è necessario introdurre il concetto di prodotto scalare.

Definiamo il <u>prodotto scalare canonico</u> su R^n , (che è stato munito di struttura di spazio vettoriale)

Definizione: Siano $x, y \in \mathbb{R}^n$, il loro prodotto scalare canonico è definito come:

$$x \cdot y := x_1 \cdot y_1 + x_2 \cdot y_2 + \dots + x_n \cdot y_n = \sum_{i=1}^{n} x_i y_i$$

Per indicare il prodotto scalare canonico tra due vettori si può utilizzare anche la notazione equivalente x^Ty

Esempio:

Siano
$$x = \begin{bmatrix} 3 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$
 $y = \begin{bmatrix} -2 \\ 1 \\ -2 \\ -3 \end{bmatrix}$, il loro prodotto scalare canonico è dato da:

$$x \cdot y := 3 \cdot (-2) + 0 + (-1) \cdot (-2) + 1 \cdot (-3) = -6 + 2 - 3 = -7$$

In generale, un prodotto scalare sullo spazio vettoriale R^n è un'applicazione da $R^n \times R^n$ a R che gode delle seguenti proprietà:

Proprietà

1)
$$x \cdot y = y \cdot x \quad \forall x, y \in \mathbb{R}^n$$

2)
$$x \cdot (\lambda_1 y_1 + \lambda_2 y_2) = \lambda_1 x \cdot y_1 + \lambda_2 x \cdot y_2 \quad \forall x, y_1, y_2 \in \mathbb{R}^n, \quad \forall \lambda_1, \lambda_2 \in \mathbb{R}$$

3)
$$x \cdot x > 0$$
 se $x \neq 0$

Definizione di vettori ortogonali. Due vettori $x, y \in \mathbb{R}^n$ si dicono <u>ortogonali</u> rispetto al prodotto scalare introdotto se $x \cdot y = 0$, o equivalentemente se $\langle x, y \rangle = 0$.

Matrici

Siano m ed n due interi positivi. Si definisce matrice $(m \times n)$ una tabella di m righe e n colonne di elementi reali o complessi del tipo:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

Poiché la tabella è costituita da m righe ed n colonne si dice che la matrice ha dimensioni m ed n, cioè è una matrice $m \times n$. Possiamo pensarla come n vettori, detti vettori colonna, di dimensione m ciascuno.

Una matrice $m \times 1$ coincide con un vettore colonna appartenente ad R^m ; una matrice $1 \times m$ coincide con un vettore riga (o trasposto di un vettore colonna) di dimensione m.

Se m=n la matrice è quadrata di dimensione n.

L'insieme delle matrici $m \times n$, in genere si indica con $M(m \times n)$

Operazioni tra matrici:

Somma tra matrici

Siano $A, B \in M(m \times n)$ si definisce matrice somma la matrice $C \in M(mxn)$ definita come segue:

$$C = A + B = [a_{ij} + b_{ij}]$$
 $i = 1, ..., m, j = 1, ..., n$

Prodotto di uno scalare per una matrice

Siano $A \in M(m \times n)$, $\lambda \in R$ si definisce

$$\lambda \cdot A = \begin{bmatrix} \lambda \cdot a_{ij} \end{bmatrix}$$
 $i = 1, \dots m$ $j = 1, \dots, n$

 $M(m \times n)$ è così munito della <u>struttura di spazio vettoriale</u>.

Prodotto tra matrici

Siano $A \in M(m \times r)$ e $B \in M(r \times n)$, si definisce matrice prodotto la matrice $C \in M(m \times n)$ definita come segue:

$$C = A \cdot B = \left[\sum_{k=1}^{r} a_{ik} b_{kj}\right] \quad i = 1, \dots m, \ j = 1, \dots, n$$

cioè la matrice $C = A \cdot B$ ha come elemento $[i \ j]$ il prodotto scalare della riga i-esima di A per la j-esima colonna di B.

Esempio

$$A = \begin{bmatrix} 0 & 2 & -1 \\ 1 & 1 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 1 & 2 \end{bmatrix} \quad C = A \cdot B = \begin{bmatrix} -1 & -4 \\ 1 & -1 \end{bmatrix}$$

Nota bene:

$$A \cdot B \neq B \cdot A$$

Non vale in generale la proprietà commutativa.

Se
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 0 & -1 \end{bmatrix}$$
 $B = \begin{bmatrix} 4 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix}$ $A \cdot B = \begin{bmatrix} 5 & 1 & 3 \\ 8 & 0 & 4 \\ -1 & -1 & -1 \end{bmatrix}$ $B \cdot A = \begin{bmatrix} 4 & 2 \\ 3 & 0 \end{bmatrix}$

L'elemento neutro dell'operazione prodotto tra matrice è la matrice identità:

$$I_{nxn} = \begin{bmatrix} 1 & & & & & \\ & 1 & & & 0 & \\ & & 1 & & \\ & 0 & & \dots & \\ & & & & 1 \end{bmatrix}$$

Se
$$A \in M(n \times n)$$
 $I \cdot A = A \cdot I$

Definizione di prodotto matrice vettore: Data la matrice $A \in M(m \times n)$ ed il vettore $x \in R^n$, si definisce prodotto matrice vettore il vettore Ax di R^m che ha come i-esima componente il prodotto scalare tra la riga i-esima della matrice A ed il vettore x, cioè

$$Ax = \begin{bmatrix} \sum_{j=1}^{n} a_{1j} x_{j} \\ \sum_{j=1}^{n} a_{2j} x_{j} \\ \dots \\ \sum_{j=1}^{n} a_{mj} x_{j} \end{bmatrix}$$

In modo equivalente Ax si può definire come il vettore ottenuto dalla combinazione lineare delle colonne di A con i coefficienti dati dagli elementi di x, cioè indicate con $\underline{a_i}$, i=1,...,n le colonne di A

$$Ax = \sum_{i=1}^{n} x_i \underline{a}_i$$

Osservazione:

Dati due vettori $x, y \in \mathbb{R}^n$ il prodotto scalare canonico può essere visto anche come:

$$x^T y = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix} = y^T x$$

(matrice riga per matrice colonna)

Attenzione: Il prodotto x y^T dà come risultato una matrice $n \times n$, che prende il nome di *matrice diade*.

$$xy^{T} = \begin{bmatrix} x_{1} \\ x_{2} \\ \dots \\ x_{n} \end{bmatrix} [y_{1} \quad y_{2} \quad \dots \quad \dots \quad y_{n}] = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & \dots & \dots & x_{1}y_{n} \\ x_{2}y_{1} & x_{2}y_{2} & \dots & \dots & x_{2}y_{n} \\ \dots & \dots & \dots & \dots & \dots \\ x_{n}y_{1} & x_{n}y_{2} & \dots & \dots & x_{n}y_{n} \end{bmatrix}$$

Definizione di matrice inversa: Si definisce matrice inversa di una matrice $A \in M(nxn)$, una matrice $A^{-1} \in M(nxn)$ tale che:

$$A^{-1} \cdot A = A^{-1} \cdot A = I$$

Definizione di rango di una matrice: Si definisce rango di una matrice il numero di vettori colonna linearmente indipendenti di A.

Esempio: Una matrice diade ha rango 1.

Teorema: Una matrice $A \in M(n \times n)$ si dice invertibile, cioè ammette inversa $A^{-1} \in M(n \times n)$, se e solo se è a rango massimo, cioè se ha n colonne tutte linearmente indipendenti.

Definizione di Matrice Trasposta:

Sia $A \in M(m \times n)$, si definisce matrice trasposta di A e si indica con $A^T \in M(n \times m)$, la matrice ottenuta scambiando le righe con le colonne di A, cioè

$$A^T = [a_{ji}] \quad i = 1, \dots n \ j = 1, \dots, m$$

Esempio:

$$A = \begin{bmatrix} 0 & 1 & 2 & 5 \\ -1 & 0 & 3 & 2 \\ 1 & 5 & 2 & 1 \end{bmatrix} \Rightarrow A^T = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & 5 \\ 2 & 3 & 2 \\ 5 & 2 & 1 \end{bmatrix}$$

Proprietà della trasposizione di matrici.

Se $A, B \in M(m \times n)$, si ha

$$(A+B)^T = A^T + B^T$$
$$(A^T)^T = A$$

Se $A \in M(m \times r)$ e $B \in M(r \times n)$ si ha che

$$(A \cdot B)^T = B^T \cdot A^T$$

Se $A \in M(n \times n)$ si ha che

$$(A^{-1})^T = (A^T)^{-1}$$

cioè l'operazione di trasposizione può essere scambiata con quella di inversione.

Definizione di matrice simmetrica $A \in M(m \times n)$ si dice simmetrica se $A^T = A$, cioè se coincide con la sua trasposta.

Esempio:

$$A = \begin{bmatrix} 3 & 2 & 0 & 1 \\ 2 & 5 & 1 & 4 \\ 0 & 1 & 1 & 2 \\ 1 & 4 & 2 & 6 \end{bmatrix} \dot{e} \quad simmetrica$$

Definizione di matrice diagonale. Una matrice $A \in M(n \times n)$ si dice diagonale se

$$a_{ij} = 0$$
 per $i \neq j$

Si può esprimere nel seguente modo:

$$A = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$$

Si definisce matrice inversa di una matrice diagonale, la matrice

$$A^{-1} = diag\left(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}\right)$$
 $\lambda_i \neq 0$ $i = 1, \dots n$

Definizione di matrice a diagonale dominante

Una matrice $A \in M(nxn)$ *si dice a diagonale dominante se*

$$|a_{ii}| \ge \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \qquad i = 1, \dots n$$

Definizione di matrice a diagonale strettamente dominante

Una matrice $A \in M(nxn)$ *si dice a diagonale strettamente dominante se*

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \qquad i = 1, \dots n$$

Definizione di matrice ortogonale.

Una matrice $A \in M(nxn)$ è ortogonale se è invertibile e la sua inversa coincide con la sua trasposta:

$$Q^{-1} = Q^T$$

Proprietà delle matrici ortogonali:

- Il prodotto di matrici ortogonali è ancora una matrice ortogonale.

- Le matrici ortogonali preservano il prodotto scalare canonico e quindi la norma 2 di vettori. Infatti, ricordando che

$$||x||_2 = \sqrt{\langle x, x \rangle} = \sqrt{x^T x}$$

si ha

$$||Qx||_2 = \sqrt{\langle Qx, Qx \rangle} = \sqrt{x^T Q^T Q x} = \sqrt{x^T Q^{-1} Q x} = \sqrt{x^T x} = ||x||_2$$

Definizione di matrice simmetrica definita positiva.

Una matrice $A \in M(n \times n)$ *simmetrica* è <u>definita positiva</u> se

$$A = A^T e \quad x^T A x > 0 \qquad \forall \ x \neq 0$$

Proprietà delle matrici definite positive:

Se due matrici A e B sono definite positive ed il loro prodotto commuta, cioè AB=BA, allora il loro prodotto è ancora una matrice definita positiva.

Se una matrice simmetrica ha elementi diagonali positivi ed è a diagonale dominante, allora è definita positiva.

Definizione di matrice simmetrica semidefinita positiva.

Una matrice $A \in M(n \times n)$ *simmetrica* è *semidefinita positiva se*

$$A = A^T e \quad x^T A x \ge 0 \qquad \forall \ x \ne 0$$

Autovalori ed autovettori

Sia $A \in C^{nxn}$, il numero $\lambda \in C$, reale o complesso, è detto **autovalore** di A se esiste un vettore $x \in C^n$, $x \ne 0$, tale che valga la relazione

$$Ax = \lambda x \tag{1}$$

Allora il vettore x è detto **autovettore** di A corrispondente all'autovalore λ .

L'insieme degli autovalori di una matrice A costituisce lo *spettro* di A e l'autovalore di A di modulo massimo è detto *raggio spettrale* e si indica con $\rho(A)$.

Il sistema (1) può essere riscritto nella forma

$$(A - \lambda I)x = 0. \tag{2}$$

Per il teorema fondamentale dei sisitemi lineari esso ammette soluzioni non nulle se e solo se

$$\det(A - \lambda I) = 0$$

cioè se

$$\det(A - \lambda I) = P_n(\lambda) = a_0 \lambda^n + a_1 \lambda^{n-1} + \dots + a_n = 0, \quad (3)$$

in cui

$$a_0 = (-1)^n$$

$$a_1 = (-1)^{n-1} tr(A) = (-1)^{n-1} \sum_{i=1}^{n} a_{ii}$$
 $e \quad a_n = \det(A)$.

Il polinomio $P_n(\lambda)$ è detto *polinomio caratteristico* di A e l'equazione $P(\lambda)=0$ è detta *equazione caratteristica* di A.

Gli autovalori di A sono tutti e soli i valori che annullano $P_n(\lambda)$, cioè le radici di $P_n(\lambda)$. Poiché un polinomio di grado n ammette sempre n radici reali o complesse, distinte o coincidenti, una matrice $n \times n$ ha sempre n autovalori, non necessariamente distinti.

Dalle relazioni che legano i coefficienti e le radici di un'equazione algebrica risulta che

$$\sum_{i=1}^{n} \lambda_i = tr(A) \quad e \quad \prod_{i=1}^{n} \lambda_i = \det(A).$$

Gli autovettori corrispondenti agli auto valori di A sono le soluzioni non nulle del sistema lineare omogeneo (2). Quindi un autovettore corrispondente ad un autovalore λ risulta determinato a meno di una costante moltiplicativa $\alpha \neq 0$, cioè se x è un autovettore di A anche αx è un autovettore di A corrispondente allo stesso autovalore.

Esempio1:

Il polinomio caratteristico della matrice A

$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$

si ricava dal determinante

$$\det(A - \lambda I) = \det\begin{bmatrix} 1 - \lambda & 3 \\ 3 & 1 - \lambda \end{bmatrix} = (1 - \lambda)^2 - 9 = \lambda^2 - 2\lambda - 8.$$

L'equazione caratteristica corrispondente

$$\lambda^2 - 2\lambda - 8 = 0$$

ha come radici λ_1 =-2 e λ_2 =4 che sono gli autovalori della matrice A.

L'autovalore corrispondente all'autovalore λ_1 =-2 si calcola risolvendo il sistema (2) che in questo caso diventa

$$\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

Dalla prima equazione di ottiene $x_1+x_2=0$ da cui $x_1=-x_2$

Da cui segue che qualunque vettore

$$x = \alpha \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Con $\alpha \neq 0$ è un autovettore di A corrispondente a λ_1 .

Proprietà degli autovalori

- Gli autovalori di una matrice diagonale o triangolare sono uguali agli elementi diagonali.
- Se λ è un autovalore di una matrice A non singolare e x un autovettore corrispondente, allora risulta
 - 1. $\lambda \neq 0$
 - 2. $1/\lambda$ è autovalore di A^{-1} con x autovettore corrispondente. Infatti dalla (1) si ha

$$x = \lambda A^{-1}x$$

e quindi

$$\lambda \neq 0$$
 e $A^{-1}x = \frac{1}{\lambda}x$.

Per il raggio spettrale di A vale $|\rho(\lambda)| \le ||A||$ Infatti abbiamo $||Ax|| = |\lambda| \cdot ||x||$ perciò vale $||Ax|| \le ||A|| \cdot ||x|| \implies |\lambda| \cdot ||x|| \le ||A|| \cdot ||x|| \implies |\lambda| \le ||A||$

Se λ è un autovalore di una matrice A, allora esso è anche autovalore di A^T.
 Infatti, poiché

$$\det A^T = \det A$$
,

si ha

$$0 = \det(A - \lambda I) = \det(A - \lambda I)^{T} = \det(A^{T} - \lambda I).$$

• Se λ è un autovalore di una matrice A ortogonale, cioè tale che $A^T=A^{-1}$, allora risulta $|\lambda|=1$. Infatti dalla relazione (1) si ha

$$(Ax)^{T} = (\lambda x)^{T}$$

e quindi

$$x^T A^T = \lambda x^T$$
.

da cui si ha

$$x^{T}A^{T}Ax = \lambda \lambda x^{T}x.$$

Poiché A è ortogonale, A^TA=I e quindi si ha

$$x^T x = \lambda^2 x^T x$$
.

Essendo $x^T x \neq 0$, segue che

$$\lambda^2 = 1$$
, e quindi $|\lambda| = 1$.

• Se λ è un autovalore di una matrice A, allora λ^k è anche autovalore di A^k . Infatti dalla relazione $Ax = \lambda x$ si ottiene

$$A^{k}x = \underbrace{A \cdot A \dots \cdot A}_{k \text{ volte}} x = \underbrace{A \cdot A \dots \cdot A}_{k-1 \text{ volte}} \lambda x = \underbrace{A \cdot A \dots \cdot A}_{k-2 \text{ volte}} \lambda^{2} x = \dots = \lambda^{k} x$$

Autovalori di matrici speciali:

Le matrici simmetriche hanno tutti gli autovalori reali.

Le matrici simmetriche definite positive hanno tutti gli autovalori reali e positivi.

Matrici Simili

Siano A e B due matrici quadrate dello stesso ordine, si dice che B è simile ad A, o che B è ottenuta da A mediante una **trasformazione di similitudine** se esiste una matrice quadrata non singolare T tale che

$$B = T^{-1}AT$$

Si osserva che la similitudine tra matrici è una relazione di equivalenza, cioè

- A è simile ad A
- Se A è simile a B \Rightarrow B è simile ad A
- Se A è simile a B e B è simile a C ⇒ A è simile a C

Proprietà di matrici simili:

Due matrici simili hanno lo stesso spettro, cioè gli stessi autovalori. Inoltre
hanno gli autovettori legati tra loro dalla matrice di similitudine T. Infatti è
facile verificare che se (λ, x) è una coppia autovalore-autovettore di A allora
(λ, T⁻¹x) lo è di B=T⁻¹BT.

Se λ è autovalore di A ed x è il relativo autovettore vale

$$Ax = \lambda x$$

Sia ora $y=T^{-1}x$ allora si ha

$$By = T^{-1}ATT^{-1}x = T^{-1}Ax = T^{-1}\lambda x = \lambda y$$

da cui

$$By = \lambda y$$

cioè A e B hanno gli stessi autovalori e autovettori legati dalla matrice di similitudine.

• Due matrici simili A e B hanno lo stesso polinomio caratteristico, cioè

$$P_{A}(\lambda) {=} P_{B}(\lambda)$$

e quindi hanno gli stessi autovalori.

Infatti si ha

$$\begin{split} P_{\scriptscriptstyle B}(\lambda) &= \det(B - \lambda I) = \det \left[(T^{\scriptscriptstyle -1}AT - \lambda T^{\scriptscriptstyle -1}T) \right] = \det \left[(T^{\scriptscriptstyle -1}(A - \lambda I)T) \right] \\ &= \det(T^{\scriptscriptstyle -1}) \det(A - \lambda I) \det(T) = \det(A - \lambda I) \det(T^{\scriptscriptstyle -1}T) \\ &= \det(A - \lambda I) = P_{\scriptscriptstyle A}(\lambda) \end{split}$$