PDE.2.3 Nonhomogeneous boundary conditions

1. Suppose \mathcal{L} is a linear partial differential operator, u(z;t) is the solution of the initial-boundary value problem

$$\mathcal{L}u = r(z;t)$$
 $(z,t) \in (0,L) \times (0,\infty),$
 $u(0;t) = f_1(t)$ $t \in (0,\infty),$
 $u(L;t) = f_2(t)$ $t \in (0,\infty),$
 $u(z;0) = u_0(z)$ $z \in (0,L),$

that $w_1(z;t)$ is the solution of the problem

$$\mathcal{L}w = 0$$
 $(z,t) \in (0,L) \times (0,\infty),$
 $w(0;t) = f_1(t)$ $t \in (0,\infty),$
 $w(L;t) = 0$ $t \in (0,\infty),$
 $w(z;0) = 0$ $z \in (0,L),$

that $w_2(z;t)$ is the solution of the problem

$$\mathcal{L}w = 0$$
 $(z,t) \in (0,L) \times (0,\infty),$ $w(0;t) = 0$ $t \in (0,\infty),$ $w(L;t) = f_2(t)$ $t \in (0,\infty),$ $z \in (0,L),$

and that $w_s(z;t)$ is the solution of the problem

$$\mathcal{L}w = r(z;t)$$
 $(z,t) \in (0,L) \times (0,\infty),$
 $w(0;t) = 0$ $t \in (0,\infty),$
 $w(L;t) = 0$ $t \in (0,\infty),$
 $w(z;0) = 0$ $z \in (0,L).$

Define $v(z;t) = u(z;t) - w_1(z;t) - w_2(z;t) - w_s(z;t)$. Formulate an initial-boundary value problem of which v is the solution.

2. Solve the problem

$$u_{t} = Ku_{zz} + az$$
 $(z,t) \in (0,L) \times (0,\infty),$
 $u(0;t) = 0$ $t \in (0,\infty),$
 $u(L;t) = 0$ $t \in (0,\infty),$
 $u(z;0) = 0$ $z \in (0,L).$

3. Consider a metallic rod of length L and thermal diffusivity K, insulated along its length and insulated at its ends. Suppose that at initial time t=0, the temperature at the left end of the rod is 20+2L, the temperature at the right end of the rod is 20-2L, and the initial temperature profile is linear. Find an expression for the temperature u(z;t) at all points in the rod and all times t>0.