september 4 shift2

1

EE24BTECH11066 - YERRA AKHILESH

16) The angle of elevation of a cloud **C** from a point **P**, 200m above a still lake is 30°. If the angle of depression of the image of **C** in the lake from the point **P** is 60°,

c) 400

d) 100

then PC (in m)

a) $200\sqrt{3}$

b) $400\sqrt{3}$

17)	7) Let $\bigcup_{i=1}^{50} X_i = \bigcup_{i=1}^n Y_i = T$, where each X_i contains 10 elements and each Y_i contains 5 elements. If each element of the set T is an element of exactly 20 of the sets X_i 's and exactly 6 of the sets Y_i 's, then n is equal to:					
	a) 15	b) 30	c) 50	d) 45		
18)	18) Let $x = 4$ be a directrix to an ellipse whose centre is at the origin and its eccentricity is $\frac{1}{2}$. If $\mathbf{P}(1,\beta)$, $\beta > 0$ is a point on this ellipse, then the equation of the normal to i at \mathbf{P} is:					
	a) 8x - 2y = 5	b) $4x - 2y = 1$	c) $7x - 4y = 1$	d) $4x - 3y = 2$		
19)	19) Let a_1, a_2, \ldots, a_n be a given A.P. whose common difference is an integer and $S_n = a_1 + a_2 + \ldots + a_n$. If $a_1 = 1$, $a_n = 300$ and $15 \le n \le 50$, then the ordered pair (S_{n-4}, a_{n-4}) is equal to:					
	a) (2480, 248)	b) (2480, 249)	c) (2490, 249)	d) (2490, 248)		
20)	20) The circle passing through the intersection of the circles, $x^2 + y^2 - 6x = x^2 + y^2 - 4y = 0$, having its centre on the line, $2x - 3y + 12 = 0$, also passes the the point:					
	a) $(-1,3)$	b) (1, -3)	c) (-3,6)	d) (-3, 1)		
21)	1) Let $\{x\}$ and $[x]$ denote the fractional part of x and the greatest integer $\leq x$ respectively of a real number x . If $\int_{0}^{x} \{x\} dx$, $\int_{0}^{x} [x] dx$ and $10(n^{2} - n)$, $(n \in N, n > 1)$ are three consecutive terms of a G.P., then n is equal to					
22)	A test consists of 6 multiple choice questions, each having 4 alternative answers of which only one is correct. The number of ways, in which a candidate answers all six questions such that exactly four of the answers are correct, is					

23) If $\bar{a} = 2\hat{i} + \hat{j} + 2\hat{k}$, then the value of $|\hat{i} \times (\bar{a} \times \hat{i})|^2 + |\hat{j} \times (\bar{a} \times \hat{j})|^2 + |\hat{k} \times (\bar{a} \times \hat{k})|^2$ is equal to _____

24) Let PQ be a diameter of the circle $x^2 + y^2 = 9$. If α and β are the lengths of the perpendiculars from **P** and **Q** on the straight line, x + y = 2 respectively, then the maximum value of $\alpha\beta$ is

25) If the variance of the following frequency distribution:

Class	10-20	20-30	30-40
Frequency	2	X	2

is 50, then x is equal to _____