### PHY2005 Atomic Physics

Lecturer: Dr. Stuart Sim

Room: 02.019

E-mail: s.sim@qub.ac.uk

### (10) Transitions and selection rules

#### Learning goals

- 1. To qualitatively understand the processes of *spontaneous emission*, *absorption* and *stimulated emission* for transitions between bound states of atoms/ions.
- 2. To become familiar with the *Einstein coefficients*.
- 3. To know the *selection rules* that are obeyed by *permitted* (electric dipole) transitions.

Three distinct photon processes associated with atoms changing their state:

Three distinct photon processes associated with atoms changing their state:

**Spontaneous** 

**Emission** 



Three distinct photon processes associated with atoms changing their state:

Spontaneous

**Emission** 

**Absorption** 





Three distinct photon processes associated with atoms changing their state:

Spontaneous

**Emission** 

 $\begin{array}{c|c}
E_u \\
\hline
\\
E_mitted photon, \\
\\
hv = E_u - E_l
\end{array}$ 

Absorption



Stimulated

**Emission** 



Three distinct photon processes associated with atoms changing their state:

Spontaneous

**Emission** 

**Absorption** 

Stimulated

**Emission** 







Rates characterized by Einstein coefficients (three are related):

 $A_{ul}$ 

 $B_{lu}$ 

 $B_{ul}$ 

# Selection rules (permitted electric dipole transitions)

There are restrictions on which transitions (i.e. change in level) of an atom are "allowed" when emitting / absorbing a photon.

"Permitted" transitions require that the electric dipole moment of the atom changes

• Can be understood semi-classically: an oscillating electric dipole is an efficient source of electromagnetic radiation



# Selection rules (permitted electric dipole transitions)

"Permitted" transitions must also respect the angular momentum of the photon:

 Change in angular momentum quantum numbers of atom relates to angular momentum of emitted photon



#### Selection rules

These considerations give rise to set of "selection rules for permitted transitions":

- 1. **Single electron jump**: the transition must involve a change in the configuration that corresponds to a single electron changing its shell (or sub-shell).
- 2.  $\Delta l=\pm 1$ : the change in the electron configuration must involve the angular momentum quantum number of the "jumping" electron changing by one.
- 3.  $\Delta L = 0, \pm 1$  but  $L = 0 \rightarrow L = 0$  is forbidden.
- 4.  $\Delta S = 0$ .
- 5.  $\Delta J = 0, \pm 1$  but  $J = 0 \rightarrow J = 0$  is forbidden.
- 6.  $\Delta M_I = 0, \pm 1.$

#### Summary / Revision

- Transitions between atomic states involving photons have three types: *spontaneous emission*, *absorption* and *stimulated emission*.
- The rates of these three classes of transition depend on the corresponding *Einstein coefficients*.
- Permitted transitions must obey *selection rules* that govern the changes in the quantum numbers that occur during the transition. **Students are expected to know the selection rules.**