CS 772/872: Advanced Computer and Network Security Fall 2025

Course Link:

https://shhaos.github.io/courses/CS872/netsec-fall25.html

Instructor: Shuai Hao

shao@odu.edu

www.cs.odu.edu/~haos

CS 772/872: Advanced Computer and Network Security

- Network Security (including Crypto foundations and applications)
- Web and Browser Security
- Cloud Security
- System/Software Security
- AI/LLM Security (by papers)

- TCP/IP
- DNS
- BGP
- (D)DoS Attacks
- CDN

- Applied Cryptography
- PKI
- SSL/TLS and HTTPS
- DNSSEC/RPKI

- Confidentiality: only sender, intended receiver should "understand" message contents
 - sender encrypts message
 - receiver decrypts message
- Integrity: sender, receiver want to ensure message not altered (in transit, or afterwards)
- Authentication: sender, receiver want to confirm identity of each other

- Confidentiality: only sender, intended receiver should "understand" message contents
 - sender encrypts message
 - receiver decrypts message
- Integrity: sender, receiver want to ensure message not altered (in transit, or afterwards)
- Authentication: sender, receiver want to confirm identity of each other
- Accessibility and Availability: services must be accessible and available to users

- Eavesdrop: Intercept messages
- Impersonation: fake/spoof source address of packets
- Hijacking: "take over" ongoing connection by inserting himself in place
- **Denial of service**: prevent service from being used by others

OSI Protocol Stack

Encapsulation: end-to-end connectivity

"Narrow Waist" Narrow Waist email, Web, NFS application email WWW phone... SMTP HTTP RTP... presentation **RPC** TCP UDP... session TCP IP₄ IP₆ transport ΙP network ethernet PPP... Ethernet CSMA async sonet... data link copper fiber radio... physical

IP – Internet Protocol

- Connectionless
 - Unreliable, "best-effort" protocol
- Packet switching
 - No states established ahead of time
 - Destination-based Routing
 - Shared resources

- Sender: break data into segments
 - Sequence number is assigned to every segment
- Receiver: reassemble segments in correct order
 - Acknowledge receipt; lost segments will be re-sent
- Connection state maintained on both sides

• TCP Handshake: Connection establishment

SYN Flooding Attack

- Attacker sends many connection requests with spoofed source address
- Victim allocates resources for each request
 - New thread
 - "half-open" connections
- Once resources exhausted, legitimate requests are dropped
- Classic (Distributed-)Denial-of-Service (DDoS) pattern

- Preventing Denial of Service
 - DoS is caused by asymmetric state allocation
 - If a victim server opens new state for each connection attempt, attacker can initiate thousands of connections from bogus or forged IP addresses
 - Cookies ensure that the responder (victim) is stateless until initiator produced at least one acknowledgment
 - Responder's state (IP addresses and ports of the connection) is stored in a cookie and sent to initiator
 - After initiator responds, cookie is regenerated and compared with the cookie returned by the initiator

Preventing Denial of Service

- Denial of Service by Connection Reset
 - If attacker can guess/predict/monitor the current sequence number for an existing connection, can send RESET packet to close it
 - Especially effective against long-lived connection
 - Widely used in Internet Censorship

UDP – User Datagram Protocol

- Connectionless protocol
 - Simply send datagram to application process at the specified port of the IP address
 - Source port number provides return address
 - Applications: media streaming, broadcast
- · No acknowledgement, no flow control, no message continuation

TCP vs UDP Communication

UDP – User Datagram Protocol

- NTP Amplification Attack
 - "Reflection-and-Amplification" attack

 Dec. 2013 – Feb. 2014: 400Gbps DDoS attacks involving 4,500+ NTP servers targeting Cloudflare's data center

Network Defenses

- Rate-limiting
 - Straightforward but cannot differentiate legitimate traffic from malicious traffic
- Egress Filtering against IP spoofing
 - ISPs are lack of motivation to deploy
- DDoS Protection Service offered by Content Delivery Networks (CDNs)
 - Re-route the traffic to CDN's highly distributed network infrastructures
 - Must hide the the origin IP address

- Internet Dictionary
 - Maps symbolic names to numeric IP addresses
 - UDP-based protocol

Hierarchical System Design

- Root nameservers for top-level domains
 (.com, .edu, .uk, etc.)
- 13 root server systems (A M)
- Top-level domain (TLD) nameservers indicate authoritative nameservers
- Authoritative nameservers (ADNS) resolve subdomains
- Local resolvers contact authoritative servers for requested domains

K-root servers

- DNS Caching
 - DNS responses can be cached (on local resolvers)
 - Quick response for repeated translations
 - Other queries may reuse some parts of lookup
 - NS records identify name servers responsible for a domain
 - DNS negative queries can be cached
 - Don't have to repeat past mistakes (failed domains, misspellings, etc.)
 - Cached data will periodically time out
 - Lifetime (TTL) of data controlled by owner of data, passed with every record

DNS Caching

DNS Caching

DNS Cache Poisoning

- Several opportunities to win the race.
- Here attacker attempts to pollute individual A records

DNS Cache Poisoning – Kaminsky attack

- If win the race, any request for <XXX>.foo.com will go to 6.6.6.6. The NS record is poisoned for a very long time
- If lose, try again with <ANYTHING>.foo.com

- Defending the DNS Cache Poisoning Problem
 - Long TTL for legitimate responses?
 - Does it really help?
 - Randomized Transaction ID (TXID 16 bits)
 - Randomize port in addition to TXID
 - 32 bits of randomness, makes it harder for attacker to guess TXID+port
 - DNSSEC
 - Cryptographic authentication of host-address mappings

- Other DNS-related Second
 - Fast flux in DNS mar
 - DNS-based C&C
 - DNS squatting
 - typo-squatting,

- Other DNS-related Security Is
 - Fast flux in DNS mappings
 - DNS-based C&C (Contr
 - DNS squatting
 - typo-squatting, combc

Browser Security Indicators

Convey information about the security of a page Locks, shields, keys, green bars...

"This page was fetched using SSL"

Page content was not viewed or altered by a network adversary

Certificate is valid (e.g. not expired), issued by a CA trusted by the browser, and the subject name matches the URL's domain

"This page uses an invalid certificate" A Not secure | https://

"Parts of the page are not encrypted" ① https://

"The legal entity operating this web site is known"

Extended Validation (EV) certificates 🔒 Sq

- Other DNS-related Security Issues
 - Fast flux in DNS mappings
 - DNS-based C&C (Control-and-command) in botnets
 - DNS squatting
 - typo-squatting, combo-squatting
 - Domain/subdomain hijacking
 - Dangling DNS records, domain shadowing
 - DNS Amplification

IP Routing – BGP (Border Gateway Protocol)

- BGP update messages contain no authentication or integrity protection
- Attacker (malicious ASes or misconfiguration) may falsify the advertised routes (BGP Hijacking)

- BGP update messages contain no authentication or integrity protection
- Attacker (malicious ASes or misconfiguration) may falsify the advertised routes (BGP Hijacking)
 - Modify the IP prefixes associated with a route
 - Can blackhole traffic to certain IP prefixes
 - Change the AS path
 - Either attract traffic to attacker's AS, or divert traffic away
 - Economic incentive: an ISP wants to dump its traffic on other ISPs without routing their traffic in exchange

- BGP Hijacking (Sub-)Prefix Hijacking
 - Routers perform routing by the manner of the most specific prefix matching (i.e., longest-matching)
 - Adversaries may intentionally announce a prefix "smaller" than originally advertised one
 - A fraction of Internet traffic destined to the prefix to be captured by the adversary
 - Captured traffic is blackholed

- BGP Hijacking Path Hijacking (Interception attack)
 - ASes selectively/incidentally put themselves on the path
 - Adversaries may announce reachability of a prefix to attract traffic to be routed through the AS
 - The interception attack allows the malicious AS to become an intermediate AS in the path
 - Traffic can be routed back keep the connection alive

- Domain advertises good routes to adc
 - Result: packets go into a network '
 - April 25, 1997: "The day the Interr
 - AS7007 (Florida Internet Exchang re-advertised all prefixes as if it o
 - In effect, AS7007 was advertising the Internet
 - Huge network instability as incorrect routing data propagated and routers crashed under traffic

- Domain advertises good routes to addresses it does not know how to reach
 - Result: packets go into a network "blackhole"
 - April 25, 1997: "The day the Internet died"
 - AS7007 (Florida Internet Exchange) de-aggregated the BGP route table and re-advertised all prefixes as if it originated paths to them
 - In effect, AS7007 was advertising that it has the best route to every host on the Internet
 - Huge network instability as incorrect routing data propagated and routers crashed under traffic

- Domain advertises good routes to addresses it does not know how to reach
 - Result: packets go into a network "blackhole"
 - April 25, 1997: "The day the Internet died"
 - AS7007 (Florida Internet Exchange) de-aggregated the BGP route table and re-advertised all prefixes as if it originated paths to them
 - In effect, AS7007 was advertising that it has the best route to every host on the Internet
 - Huge network instability as incorrect routing data propagated and routers crashed under traffic

- BGP Incident: Pakistan Telecom hijacks YouTube (February 2008)
 - Pakistan government wants to block YouTube
 - AS17557 (Pakistan Telecom) advertises 208.65.153.0/24
 - All YouTube traffic worldwide directed to AS17557

• BGP Incident: Pakistan Telecom hijacks YouTube (February 2008)

• BGP Incident: Pakistan Telecom hijacks YouTube (February 2008)

- Bitcoin Hijack (February 2014)
 - Hijacked users got directed to a mining server that was under the control of hijacker and redirects them to a malicious mining pool
 - Miners continues to receive mining tasks but don't get compensated

- Bitcoin Hijack (February 2014)
 - Hijacked users got directed to a mining server that was under the control of hijacker and redirects them to a malicious mining pool
 - Miners continues to receive mining tasks but don't get compensated

- Bitcoin Hijack (February 2014)
 - Hijacked users got directed to a mining server that was under the control of hijacker and redirects them to a malicious mining pool
 - Miners continues to receive mining tasks but don't get compensated

- Secure BGP is extremely hard
 - The victim AS doesn't see the problem
 - Picks its own route
 - May not cause entire loss of connectivity
 - Partial damage
 - Performance degradation
 - Diagnosing prefix hijacking
 - Analyzing updates from many vantage points

- Secure BGP is extremely hard
 - Complex System
 - Around 100K Autonomous Systems
 - Decentralized Control among ASes
 - Hard to reach agreement on the solution
 - Hard to deploy the solution even standardized
 - Low incentive: many solutions benefit others rather than the deployer itself, e.g., ingress filter to defend IP spoofing

- Secure BGP is extremely hard
 - RPKI Resource Public Key Infrastructure
 - Against prefix hijacking
 - Secure BGP/BGPsec
 - Against path hijacking

- Content Delivery Network
 - Deploy a large number of edge servers proximal to clients
 - Emerging in late 90s

- Content Delivery Network
 - Deploy a large number of edge ser
 - Emerging in late 90s

The legacy of Danny Lewin, the first man to die on 9/11 By Todd Leopold, CNN Updated 7:24 AM ET, Wed September 11, 2013

Markets Tech Media Success Perspectives Videos

■ LIVE TV Edition ∨

HISTORY

The First Victim of Sept. 11

He was likely the first person killed, but his influence was felt that entire terrible day—online.

By MOLLY KNIGHT RASKIN

SEPT 11, 2015 • 7:34 AM

- Content Delivery Network
 - Deploy a large number of edge servers proximal to clients
 - Emerging in late 90s
 - Delivery significant port of Internet traffic
 - All top Internet services leverage CDNs
 - DNS-based CDNs vs. Anycast-based CDNs

Content Delivery Network

DNS-based CDNs

Content Delivery Network

DNS-based CDNs

Content Delivery Network

DNS-based CDNs

Content Delivery Network

- Instinct Security Provided by CDNs
 - Additional layer of proxy
 - Hide the actual origin source of web services
 - Highly distributed, scalable platforms
 - Absorb malicious traffic (blackholing/scrubbing traffic)
 - Redundancy of service instance
 - Provision of integrity/authentication (TLS/SSL)

Network Security

• TCP/IP

• DNS

• BGP

• (D)DoS Attacks

• CDN

Applied Cryptography

PKI

SSL/TLS and HTTPS

• DNSSEC

• RPKI

CS 772/872: Advanced Computer and Network Security

Fall 2025

Course Link:

https://shhaos.github.io/courses/CS872/netsec-fall25.html

