Segundo Parcial de Geometría y Álgebra Lineal 2

Sábado 17 de noviembre de 2018.

Ejercicios de múltiple opción

Ejercicio 1. Sea V un \mathbb{K} -espacio vectorial con producto interno de dimensión finita y $\{v_1, ..., v_n\}$ una base ortogonal del espacio V. Supongamos que T es un funcional lineal sobre V, se sabe que

$$T(v_i) = \langle v_i, v_i \rangle^{\frac{1}{2}}$$

para cada i tal que $1 \le i \le n$. Indicar la opción correcta:

- 1. El vector representante de Riesz de T es $\sum_{i=1}^{n} \frac{v_i}{\langle v_i, v_i \rangle^{\frac{1}{2}}}$
- 2. El vector representante de Riesz de T es $\sum_{i=1}^n v_i$
- 3. El vector representante de Riesz de T es $\sum_{i=1}^{n} \langle v_i, v_i \rangle^{\frac{1}{2}} v_i$
- 4. No se cumplen las hipótesis del teorema de Riesz

La opción correcta es la 1.

Sea $w_i = \frac{v_i}{\|v_i\|}$, luego, $\{w_1,...,w_n\}$ es una base ortonormal de V. Sabemos que el representante de Riesz es de la forma

$$\sum_{i=1}^{n} \overline{T(w_i)} w_i = \sum_{i=1}^{n} \overline{T\left(\frac{v_i}{\|v_i\|}\right)} \frac{v_i}{\|v_i\|} = \sum_{i=1}^{n} \frac{1}{\|v_i\|^2} \overline{T(v_i)} v_i = \sum_{i=1}^{n} \frac{1}{\|v_i\|^2} \overline{\|v_i\|} v_i = \sum_{i=1}^{n} \frac{1}{\|v_i\|^2} \overline{\|v_i\|^2} v_i = \sum_{i=1}^{n} \frac{1}{\|v_i\|^2} v_i = \sum_{i=1}^{n} \frac{1}{$$

$$\sum_{i=1}^{n} \frac{v_i}{\|v_i\|} = \sum_{i=1}^{n} \frac{v_i}{\langle v_i, v_i \rangle^{\frac{1}{2}}}.$$

Ejercicio 2. Sea V un \mathbb{C} -espacio vectorial con producto interno y $B=\{u,v,w\}$ una base de V tal que

$$_{B}(T)_{B} = \left(\begin{array}{ccc} \alpha & 0 & 0\\ 0 & \beta & 0\\ 0 & 0 & \beta \end{array}\right)$$

con $\alpha \neq \beta$. Indicar la opción correcta:

- 1. T autoadjunta $\Leftrightarrow [u]^{\perp} = [v, w]$.
- 2. T autoadjunta $\Leftrightarrow \alpha, \beta \in \mathbb{R}$.
- 3. Tautoadjunta $\Leftrightarrow [u]^\perp = [v,w]$ y $\alpha,\beta \in \mathbb{R}.$
- 4. Ninguna de las anteriores.

La opción correcta es la 3.

Es claro que α y β son valores propios de T así como que

$$S_{\alpha} = [u]$$
 $S_{\beta} = [v, w].$

 (\Rightarrow) Si T es autoadjunta tenemos que los valores propios son reales y se cumple que S_{α} y S_{β} son ortogonales, en particular, $S_{\beta} \subset (S_{\alpha})^{\perp}$, por las dimensiones se tiene que $(S_{\alpha})^{\perp} = S_{\beta}$, es decir,

$$[u]^{\perp} = [v, w].$$

 (\Leftarrow) Si $[u]^{\perp} = [v, w]$ tenemos que $(S_{\alpha})^{\perp} = S_{\beta}$ por lo cual $V = [u] \oplus [v, w]$. Por G-S podemos obtener bases ortonormales $\{u'\}$ de S_{α} y $\{v', w'\}$ de S_{β} cuya unión es una base ortonormal de V de vectores propios, como los valores propios además son reales se tiene T es autoadjunta.

Ejercicio 3. Sea U en $\mathcal{M}_3(\mathbb{C})$ una matriz unitaria que posee valores propios reales y verifica que

$$tr(U) = -1$$
 $U(1, -1, 0)^t = (1, -1, 0)^t$.

Indicar la opción correcta:

- 1. $U(1,-2,2)^t = (2,-1,-2)^t$
- 2. $U(1,-2,2)^t = (3,0,0)^t$
- 3. $U(1,-2,2)^t = (-1,2,-2)^t$
- 4. $U(1,-2,2)^t = (2,1,2)^t$

La opción correcta es la 1.

Por ser U unitaria tenemos que U es diagonalizable en una base ortonormal de \mathbb{C}^3 y que los valores propios tienen módulo 1. Dado que los valores propios son reales se cumple que $\lambda=\pm 1$ para todo valor propio. Si D es la matriz diagonal semejante a U sabemos que -1=tr(U)=tr(D)=mg(1)1+mg(-1)(-1), de donde se deduce que mg(1)=1 y mg(-1)=2. Luego, tenemos que $S_1=[(1,-1,0)^t]$ y que $S_{-1}=S_1^\perp=[(1,1,0)^t,(0,0,1)^t]$. Tenemos que $(1,-2,2)^t=\frac{3}{2}(1,-1,0)^t-\frac{1}{2}(1,1,0)^t+2(0,0,1)^t$, luego $U(1,-2,2)^t=\frac{3}{2}(1,-1,0)^t+\frac{1}{2}(1,1,0)^t-2(0,0,1)^t=(2,-1,-2)^t$.

Ejercicio 4. Sea $Q(x,y,z)=ax^2+ay^2+4xy-6yz$ una forma cuadrática. Indicar la opción correcta:

- 1. Q semidefinida (positiva ó negativa) si y sólo si a=0.
- 2. Q indefinida para todo a.
- 3. Q definida positiva si y sólo si $a \in (0, \sqrt{13})$.

4. Q definida negativa si y sólo si $a \in (-\infty, -\sqrt{13})$.

La opción correcta es la 2.

La matriz asociada a la forma cuadrática es $A=\begin{pmatrix} a & 2 & 0 \\ 2 & a & -3 \\ 0 & -3 & 0 \end{pmatrix}$ cuyo polinomio característico resulta $\chi_A(\lambda)=-\lambda^3+2a\lambda+(13-a^2)\lambda-9a$. Utilizando la regla de descartes y discutiendo según $a<-\sqrt{13},\,a=-\sqrt{13},\,a\in(-\sqrt{13},0),\,a=0,\,a\in(0,\sqrt{13}),\,a=\sqrt{13}$ y $a>\sqrt{13}$ se puede ver que en todos los casos p>0 y q>0 por lo cual Q resulta indefinidapara todo a.

Ejercicio 5. Sea $A=\begin{pmatrix} -1 & 1\\ 0 & 1\\ 1 & 1 \end{pmatrix}$ y considere la descomposición en valores singulares $A=USV^t.$

- 1. La primer columna de U es $\pm \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- 2. La primer columna de U es $\pm \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}$
- 3. La primer columna de U es $\pm \begin{pmatrix} \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} \end{pmatrix}$
- 4. La primer columna de U es $\pm \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}$

La opción correcta es la 4.

Tenemos que

$$A^t A = \left(\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array}\right)$$

Luego, $\sigma_1 = \sqrt{3}$ y $v_1 = \pm \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ vector propio asociado al valor propio 3 de $A^t A$ (que

integra una base ortonormal de veps. de A^tA) y $w_1 = \frac{1}{\sigma}Av_1 = \pm \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}$ que resulta ser la primer columna de la matriz U.

Ejercicio de desarrollo

Sean V y W \mathbb{C} -espacios vectoriales con producto interno de dimensión finita.

- 1. Definir $T: V \to W$ isometría lineal y $S: V \to V$ operador unitario. (4 puntos)
- 2. Probar que si $T:V\to V$ es un operador unitario entonces es una isometría lineal. (6 puntos)
- 3. Probar que si $T:V\to V$ es una isometría lineal entonces
 - a) $|\lambda| = 1$ para todo λ valor propio de T. (4 puntos)
 - b) Los subespacios propios asociados a distintos valores propios son ortogonales. (6 puntos)
- 1. Una isometría lineal es una transformación lineal que preserva la norma, es decir,

$$||T(v)|| = ||v||$$
 para todo v en V .

Un operador unitario es un operador invertible que verifica que $T^{-1} = T^*$

2. Sea $T:V\to V$ un operador unitario y sean u,v vectores cualesquiera en V. Se cumple que

$$\langle T(u), T(v) \rangle = \langle u, T^*(T(v)) \rangle = \langle u, T^{-1}(T(v)) \rangle = \langle u, v \rangle.$$

Luego, T preserva el producto interno, en particular preserva la norma, y T resulta una isometría lineal.

- 3. Probar que si $T:V\to V$ es una isometría lineal entonces
 - a) Sea λ valor propio de T y v vector propio asociado, se cumple que

$$\langle T(v), T(v) \rangle = \lambda \bar{\lambda} \langle v, v \rangle = |\lambda|^2 \langle v, v \rangle.$$

Por ser isometría se cumple que

$$\langle T(v), T(v) \rangle = \langle v, v \rangle.$$

Luego, $\langle v,v\rangle=|\lambda|^2\langle v,v\rangle$ de donde se deduce que $|\lambda|=1$ para todo λ valor propio de T.

b) Sean $\lambda \neq \mu$ valores propios distintos de T, sean v y w vectores propios asociados. Se cumple que

$$\langle v, w \rangle = \langle T(v), T(w) \rangle = \langle \lambda v, \mu w \rangle = \lambda \bar{\mu} \langle v, w \rangle = \lambda \bar{\mu} \langle v, w \rangle$$

Luego

$$(1 - \lambda \bar{\mu})\langle v, w \rangle = 0$$

Por otro lado tenemos que $1 - \lambda \bar{\mu} = \mu \bar{\mu} - \lambda \bar{\mu} = (\mu - \lambda) \bar{\mu} \neq 0$ por lo cual obtenemos que $\langle v, w \rangle = 0$.