TripAdvisor Review Classification

FABIO CIMMINO 807070 ROBERTO LOTTERIO 807500 SAMUELE VENTURA 793060

Introduzione e obiettivi del progetto

- Dallo studio statistico effettuato da PhoCusWright [1] è emerso che il 77% delle persone non sono disposte a prenotare un hotel prima di aver letto le recensioni online su di esso.
- Spesso la valutazione complessiva di un hotel non è coerente con quanto riportato nella recensione. La causa di questo effetto è la soggettività intrinseca nel giudizio di ogni valutatore nei confronti dell'hotel.
- Risulta quindi evidente che chiunque voglia informarsi su una struttura alberghiera sia in difficoltà a capire quale sia l'effettiva qualità dell'albergo.

Introduzione e obiettivi del progetto

- Abbiamo quindi deciso di sviluppare un modello basato su una rete bayesiana che consente di classificare una recensione sulla base del commento e dei metadati inseriti dagli utenti di TripAdvisor.
- Al fine di dare una dimostrazione pratica della BN è stata sviluppata una applicazione che consente di:
 - Assegnare una valutazione ad una recensione inserita dall'utente con i relativi metadati
 - Visualizzare un istogramma ed un wordcloud delle parole più rilevanti associate ad un hotel

Descrizione del dataset iniziale

 Dopo aver effettuato il parsing dei file .dat, il dataset iniziale risulta composto da 13 attributi e 240 mila righe. Analizzando il dataset abbiamo riscontrato la presenza di features non rilevanti; le restanti risultano le seguenti:

	Feature	Descrizione	Range
	Value	Rapporto qualità/prezzo	0 - 5
	Rooms	Qualità camere	0 - 5
	Location	Qualità struttura alberighera	0 - 5
	Cleanliness	Pulizia dell'hotel	0 - 5
	Check-in	Accoglienza	0 - 5
	Service	Qualità servizi hotel	0 - 5
	Business	Qualità servizi business	0 - 5
X	Overall	Valutazione complessiva	0 - 5

Fase di preprocessing commento

- Questo processo consente di trasformare i dati grezzi (commenti) in un formato comprensibile per i modelli di Natural Language Processing. Sono stati effettuati i seguenti passi:
- 1. Tokenizzazione
- 2. Rimozione delle stopwords
- 3. Rimozione punteggiatura, numeri, caratteri non ASCII
- 4. Standardizzazione dei caratteri
- 5. Lemmatizzazione

Selezione dei termini per la rete bayesiana

 La selezione dei termini è stata effettuata utilizzando la funzione TF-IDF (Term Frequency – Inverse Document Frequency), che risulta il prodotto tra:

$$TF = \frac{N^{\circ} \text{ di volte in cui la parola appare nel documento}}{N^{\circ} \text{ di parole totali nel documento}}$$

$$IDF = log_{10} \frac{N^{\circ} \text{ di docuenti}}{N^{\circ} \text{ di documenti in cui la parola appare}}$$

 In questo modo viene misurata l'importanza di un termine rispetto ad un documento. L'idea alla base è quella di dare più importanza ai termini che compaiono nel documento ma che in generale sono poco frequenti.

Selezione dei termini per la rete bayesiana

- E' stato utilizzato il dataset Affin contenente circa 2500 termini con uno score compreso tra -5 e 5 indicante il grado di polarità della parola.
- Abbiamo quindi rimosso da ogni commento tutti i termini non presenti nel dataset o con score in valore assoluto minore di 3, perché considerati neutri.
- Quindi come nodi della rete bayesiana sono stati inseriti i primi 58 termini con TF-IDF più alta.

Modello creato

- In questo modello la presenza o l'assenza di una particolare feature in una recensione non è correlata alla presenza o assenza di altre features.
- I nodi relativi ai termini possono assumere valore 0 o 1, 1 quando il termine è presente nel commento, 0 quando non è presente.

- Il dataset è stato diviso in Training e Test set (rispettivamente 80% e 20%) ed è stata stimata la probabilità P(Overall|metadati, termini) per ogni riga del Test set ottenendo un'accuracy del 63%.
- Il valore non elevato dell'accuracy è dovuto alla presenza di valutazioni non coerenti all'interno del dataset. Perciò sono state rimosse tutte le tuple aventi una delle seguenti caratteristiche:
 - Il valore della variabile target è pari a 0
 - Tutti i metadati hanno valore -1 e l'Overall è maggiore di 2

• E' stato quindi condotto un nuovo esperimento ottenendo i seguenti risultati:

Accuracy	Precision	Recall	F-measure
68%	63%	68%	65%

 Abbiamo investigato ulteriormente sulla presenza di recensioni non coerenti eliminando dal dataset tutte le righe che presentavano 5 e più metadati con il valore -1. I risultati sono i seguenti:

Accuracy	Precision	Recall	F-measure
70%	67%	67%	66%

• Infine si è deciso di aumentare i termini utilizzati nel modello, passando da 58 termini a 74 con i seguenti risultati:

Accuracy	Precision	Recall	F-measure
70%	67%	67%	66%

 Come si può notare queste performance si presentano in linea con il precedente modello. Questo è dovuto al fatto che aumentando il numero di termini vengono inclusi nel modello sempre più termini meno influenti.

 Come ultimo esperimento è stato preso in considerazione il problema di Multilabel classification assegnando ad ogni istanza del Test set i due Overall più probabili. Le performance ottenute sono le seguenti:

Accuracy	Precision	Recall	F-measure
94%	93%	94%	93%

Conclusioni

- A seguito dei vari esperimenti e analisi che sono stati condotti possiamo concludere che abbiamo ottenuto risultati discreti in rapporto alla qualità del dataset iniziale a nostra disposizione.
- Il contributo dei termini per la predizione dell'Overall resta limitato anche con l'aumentare dei termini scelti.
- Data la soggettività delle recensioni risulta difficile stabilire in modo univoco una sola classe di appartenenza. Per questo è stato considerato il problema di Multilabel classification con un incremento notevole dell'accuracy.
- Al fine di migliorare il peso dei commenti sul modello si potrebbe pensare di selezionare non token formati da n-grammi e non da unigrammi.

Demo – Sezione 1

La prima predizione e' 4 con probabilita' 0.976365883720373

La seconda predizione e' 3 con probabilita' 0.0123549164905234

Demo - Sezione 2

