The assignment is to be turned in before Midnight (by 11:59pm) on February 17th, 2015. Late submissions are accepted, but there is a 5 point deduction for each day the assignment is late. You should turn in the solutions to this assignment as a pdf file through the TEACH website. The solutions should be produced using editing software programs, such as LaTeX or Word, otherwise they will not be graded.

1: Indexing (1 point)

Using B+ trees with degrees of two (2) whose keys are integer values, give an example of a B+ tree whose height changes from 2 to 3 when the value 25 is inserted. Show your structure before and after the insertion. A B+ tree with a single node has height of 1.

2: Query processing (2 points)

Consider the join of the relation R and S on attributes R.a=S.b, given the following information about the relations to be joined. Relation R contains 10,000 tuples and has 10 tuples per block. Relation S contains 2000 tuples and also has 10 tuples per block. Attribute b of relation S is the primary key for S. Neither relation has any indexes built on it. 52 buffer pages are available in main memory. What is the cost of joining R and S using a sort-merge join? You should use a version of sort-merge algorithm that provides the minimum cost. The cost metric is the number of block I/Os.

3: Query optimization (1 points)

Consider the following relational schema and SQL query:

Suppliers(sid, sname, city)

Supply(sid, pid)

Parts(pid, pname, price)

SELECT S.sname, P.pname

FROM Suppliers S, Parts P, Supply Y

WHERE S.sid = Y.sid AND Y.pid = P.pid

How many different join orders, assuming that cross-products are disallowed, does a System R style query optimizer consider when deciding how to process the given query? List the join orders.

4: Concurrency control (2 points)

Consider the schedule shown at Table 1.

- (a) What is the equivalent serialization order for this schedule? If no order is possible, you may state so.
- (b) When all transactions run in the above schedule, identify the transactions with degree 3 consistency. Answer the same question when transaction T3 does not exist in the schedule.

	T1	T2	T3
0		start	
1		read X	
2	start		
3	read Y		
4		write X	
5			start
6			read X
7			write X
8			Commit
9	read X		
10	write Y		
11	write X		
12	Commit		
13		read Y	
14		write Y	
15		Commit	

Table 1: Transaction schedule

5: Recovery (4 points)

In this problem, you need to simulate the actions taken by ARIES. Consider the following log records and buffer actions:

$_{ m time}$	LSN	Log	Buffer actions
0	00	update: T1 updates P7	P7 brought in
1	10	update: T0 updates P9	P9 brought in; P9 kicked out
2	20	update: T1 updates P8	P8 brought in; P8 kicked out
3	30	begin_checkpoint	
4	40	$end_checkpoint$	
5	50	update: T1 updates P9	P9 brought in
6	60	update: T2 updates P6	P6 brought in
7	70	update: T1 updates P5	P5 brought in
8	80	update: T1 updates P7	P6 kicked out
9		CRASH RESTART	

- (a) For the actions listed above, show Transaction Table (XT) and Dirty Page Table (DPT) after each action. Assume that DPT holds pageID and recLSN, and XT contains transID and lastLSN.
- (b) Simulate Analysis phase to reconstruct XT and DPT after crash. Identify the point where the Analysis phase starts scanning log records and show XT and DPT after each action.
- (c) Simulate Redo phase: first identify where the Redo phase starts scanning the log records. Then, for each action identify whether it needs to be redone or not.
- (d) Simulate Undo phase: identify all actions that need to be undone. In what order will they be undone?