НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ" ФАКУЛЬТЕТ ІНФОРМАТИКИ ТА ОБЧИСЛЮВАЛЬНОЇ ТЕХНІКИ

Кафедра обчислювальної техніки

РОЗРАХУНКОВА ГРАФІЧНА РОБОТА

з дисципліні "Комп'ютерна логіка 2. Комп'ютерна арифметика "

Биконао
Бурбіль Максим Андрійович
Факультет ІОТ,
Група IO - 62
Залікова книжка № 6203
Керівник
(підпис керівника)

Завдання:

- 1. Числа X і Y в прямому коді записати у формі з плаваючою комою у класичному варіанті (з незміщеним порядком і повною мантисою). На порядок відвести 4 розряди, на мантису 7 розрядів (з урахуванням знакових розрядів). Записати числа X і Y також за стандартом ANSI/IEEE 754–2008 в короткому 32-розрядному форматі).
- 2. Виконати в операцій з числами, що подані з плаваючою комою в класичному варіанті (чотири способи множення, два способи ділення, додавання та обчислення кореня додатного числа). Номери операцій (для п.3) відповідають порядку переліку, починаючи з нуля (наприклад, 0 множення першим способом; 5 ділення другим способом). Операндами для першого способу множення є задані числа X та Y. Для кожної наступної операції першим операндом є результат попередньої операції, а другим операндом завжди є число Y. (Наприклад, для ділення першим способом першим операндом є результат множення за четвертим способом, для операції обчислення кореня операндом є результат додавання зі знаком плюс).

Для обробки мантис кожної операції, подати:

- 2.1 теоретичне обґрунтування способу;
- 2.2 операційну схему;
- 2.3 змістовний (функціональний) мікроалгоритм;
- 2.4 таблицю станів регістрів (лічильника), довжина яких забезпечує одержання 6 основних розрядів мантиси результату;
 - 2.5 обробку порядків (показати у довільній формі);
- 2.6 форму запису нормалізованого результату з плаваючою комою в пам'ять комп'ютера в прямому коді.

Вказані пункти для операції додавання виконати для етапу нормалізації результату з урахуванням можливого нулевого результату. Інші дії до етапу нормалізації результату можна проілюструвати у довільній формі.

3 Для операції з номером $x_3x_2x_1$ додатково виконати:

- 3.1 побудувати функціональну схему з відображенням управляючих сигналів, входів для запису операндів при ініціалізації пристрою і схем формування внутрішніх логічних умов;
- 3.2 розробити закодований (структурний) мікроалгоритм (мікрооперації замінюються управляючими сигналами виду W,SL,SR тощо);
- 3.3 для операції з парним двійковим номером $x_3x_2x_1$ додатково подати граф управляючого автомата Мура з кодами вершин, а для непарного номера $x_3x_2x_1$ автомата Мілі;
- 3.4 побудувати управляючий автомат на тригерах та елементах булевого базису. Вибрати JK-тригери для автомата Мура та RS-тригери для автомата Мілі.

Обгрунтування варіанту

$$6203_{10}=1\ 1000\ 0011\ 1011_2$$

$$X = -011110, 0111$$

$$Y = +010011, 1011$$

Основна частина

Завдання №1

 $X_{\Pi K} = 1.011110, 0111$

 $Y_{\text{IIK}} = 0.010011, 1011$

Представлення чисел у формі з плаваючою комою з порядком і мантисою:

X:

Υ:

Представлення чисел у формі з плаваючою точкою з характеристикою і мантисою:

$$E = P + 2^{m} ;$$

$$m = 7$$
;

$$2^7 = 10000000_2;$$

$$E_x = 10000000 + 101 = 10000101;$$

X:

$$E_v = 10000000 + 101 = 10000101;$$

Y:

1	0	0	0	0	1	0	1
---	---	---	---	---	---	---	---

Представлення за стандартом ANSI/IEEE 754-2008

X = -0, 0111100111

X 8 IEEE 754:

S = 1

Eкспонента = $5 + 128 = 133_{10} = 10000101_2$ Мантиса = 011000111_2

S			Екс	וסח	нен	ma													Mc	ıнm	uco	1									
1	1	0	0	0	0	1	0	1	0	1	1	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Y = +0, 0100111011

Y 6 IEEE 754:

S = 0

Експонента = $5 + 128 = 133_{10} = 10000101_{2}$ Мантиса = 01010011_{2}

S			Eĸc	וסח	нен	ma													Ма	нш	ucc	1									
0	1	0	0	0	0	1	0	1	0	1	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Завдання №2

2.1 Перший спосіб множення

2.1.1 Теоретичне обґрунтування першого способу множення:

Числа множаться у прямих кодах, знакові та основні розряди обробляються окремо. Для визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення мантис першим способом здійснюється з молодших розрядів множника, сума часткових добутків зсувається вправо, а множене залишається нерухомим. Тоді добуток двох чисел представляється у вигляді:

$$Z = YX = Yx_{n}2^{-n}+Yx_{n-1}2^{-n+1}+...+Yx_{1}2^{-1};$$

$$Z = YX = ((...((0+Yx_{n})2^{-1}+Yx_{n-1})2^{-1}+...+Yx_{1})2^{-1};$$

$$Z = \sum_{i=1}^{n} (Z_{i-1}+Yx_{n-i+1})2^{-1}.$$

2.1.2 Операційна схема:

Рис. 2.1.1 – Операційна схема

2.1.3 Змістовний мікроалгоритм:

Рис. 2.1.2 – Змістовний мікроалгоритм виконання операції множення першим способом

Таблиця станів регістрів для першого способу множення

N₀	RG1	RG2	RG3	СТ
ПС	0000000	111100	100111	110
1	0000000	011110		101
2	0000000	001111		100
3	0010011	100111		011
4	+			
	0100111			
	=			
	0111010			
	0011101	010011		010
5	+			
	0100111			
	=			
	1000100			
	0100010	001001		001
6	+			
	0100111			
	=			
	1001001			
	0100100	100100		000

2.1.5 Οδροδκα πορядκίβ:

Порядок добутку буде дорівнювати сумі порядків множників з урахуванням знаку порядків: $P_x + P_y = P_z$.

$$P_x = 5$$
; $P_Y = 5$; $P_{Z=} 10_{10} = 1010_2$

2.1.6 Нормалізація результату:

Отримали результат: 0100100100100.

Знак мантиси: $1 \oplus 0 = 1$.

Робимо зсув результату вліво, доки у першому розряді не буде одиниця:

100100100100.

Порядок зменшуємо на 1: $P_z = 9$.

Запишемо нормалізований результат: 100101

	()	1	0	0	1	1	1	0	0	1	0	1
--	---	---	---	---	---	---	---	---	---	---	---	---	---

2.2 Другий спосіб множення

2.2.1 Теоретичне обґрунтування другого способу множення:

Числа множаться у прямих кодах. Під час множення чисел у прямих кодах знакові та основні розряди обробляються окремо. Для визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення другим способом здійснюється з молодших розрядів, множене зсувається вліво, а сума часткових добутків залишається нерухомою. Перед початком множення другим способом множник X записують у регістр RG2, а множене Y-B молодші розряди регістру RG3(тобто B регістрі RG3 установлюють $Y_0=Y2^{-n}$). В кожному і-му циклі множення додаванням кодів RG3 і RG1 керує цифра RG2(п), а B регістрі RG3 здійснюється зсув вліво на один розряд, у результаті чого формується величина $Y_1=2Y_{1-1}$. Оскільки сума часткових добутків у процесі множення нерухома, зсув у регістрі RG3 можна сполучити B часі з підсумовуванням (як правило, B0, B1). Завершення операції множення визначається за нульовим вмістом регістру RG2, що також приводить до збільшення швидкодії, якщо множник ненормалізований.

Вираз:
$$Z = YX = Y x_n 2^{-n} + Y x_{n-1} 2^{-n+1} + ... + Y x_1 2^{-1}$$
 подамо у вигляді $Z = ((...((0 + Y 2^{-n} x_n) + Y 2^{-n+1} x_{n-1}) + ... + Y 2^{-1} x_1.$

Оттислення виразу: $Z_i = Z_{i-1} + Y_i$ X_{n-i+1} , $Y_i = 2Y_{i-1}$.

3 початковими умовами $Z_0 = 0$, $Y_0 = Y2^{-n}$, i = 1.

2.2.2 Операційна схема:

Рис. 2.2.1 – Операційна схема

2.2.3 Змістовний мікроалгоритм:

Рис. 2.2.2 – Змістовний мікроалгоритм

2.2.4 Таблиця станів регістрів:

Таδлиця 2.2.1

Таблиця станів регістрів

№ц.	RG1	RG2→	RG3←
П.С.	0000000000	100101	00000100111
1	00000100111	010010	000001001110
2	00000100111	001001	000010011100
3	+		
	000010011100	000100	
	=		
	000011000011		000100111000
4	000011000011	000010	001001110000
5	000011000011	000001	010011100000
6	+		
	010011100000	000000	
	=		
	010110100011		100111000000

2.2.5 Обробка порядків:

Порядок добутку буде дорівнювати сумі порядків множників з урахуванням знаку порядків: $P_x + P_y = P_z$.

$$P_x = 9$$
; $P_Y = 5$; $P_{Z=} 14_{10} = 1110_2$.

2.2.6 Нормалізація результату:

Отримали результат: 010110100011.

Знак мантиси: $1 \oplus 0 = 1$.

Робимо здвиг результату вліво, доки у першому розряді не буде одиниця:

10110100011.

Порядок зменшуємо на 1:

 $P_z = 13.$

Запишемо нормалізований результат:

0	1	1	1	0	1	1	0	1	1	0	1
					•	•		•	•	•	•

2.3 Третій спосіб множення

2.3.1 Теоретичне обгрунтування третього способу множення:

Числа множаться у прямих кодах. Під час множення чисел у прямих кодах знакові та основні розряди обробляються окремо. Для визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення третім способом здійснюється зі старших розрядів множника, сума часткових добутків зсувається вліво, а множене нерухоме. Під час множення третім способом вага молодшого розряду RG3 дорівнює 2-²п , тому код у регістрі RG3 являє собою значення Y2-п. На початку кожного циклу множення здійснюється лівий зсув у регістрах RG1 і RG2, а потім виконується додавання, яким керує RG1(1). У результаті підсумовування вмісту RG3 і RG1 може виникнути перенос у молодший розряд регістру RG1. У старшій частині суматора, на якому здійснюється підсумовування коду RG2 з нулями, відбувається поширення переносу. Збільшення довжини RG2 на один розряд усуває можливість поширення переносу в розряди множника. Після виконання п циклів молодші розряди добутку будуть знаходитися в регістрі RG2, а старші — в регістрі RG1. Час множення третім способом визначається аналогічно першому способу і дорівнює t п = п(t п + t з).

Вираз Z = YX = Y
$$x_n 2^{-n} + Y x_{n-1} 2^{-n+1} + ... + Y x_1 2^{-1}$$
 подамо у вигляді Z = ((... ((0 + Y 2^{-n} x_1)2 + Y 2^{-n} x_2)2 + ... + Y 2^{-n} x_1)2 + ... + Y 2^{-n} x_n

Отте, сума часткових добутків в i-му циклі, де $i=\overline{1,n}$, зводиться до обчислення виразу: $Z_i=2Z_{i-1}+Y_i 2^{-n}$ x_i , $Y_i=2Y_{i-1}$, з початковими умовами $Z_0=0$, i=1.

2.3.2 Операційна схема:

Рис. 2.3.1 – Операційна схема

2.3.3 Змістовний мікроалгоритм:

Рис. 2.3.2 - Змістовний мікроалгоритм

2.3.4 Таблиця станів регістрів:

Тαδлиця 2.3.1

Таблиця станів регістрів

№ ц.	RG1 ←	RG2 ←	RG3	CT
П.С.	0000000000	101101	100111	110
1	000001001110	011010		101
2	000010011100	110100		100
3	+ 000000100111			
3	= 000011000011 000110000110	101000		011
	+ 000000100111			
4	000110101101 001101011010	010000		010
5	011010110100	100000		001
	+ 000000100111			
6	= 011011011011 110110110110	000000		000

2.3.5 Обробка порядків:

Порядок добутку буде дорівнювати сумі порядків множників з урахуванням знаку порядків: $P_x + P_y = P_z$.

$$P_X = 13$$
; $P_Y = 5$; $P_{Z=} 18_{10} = 10010_2$.

2.3.6 Нормалізація результату:

Отримали результат: 110110110110.

Знак мантиси: $1 \oplus 0 = 1$.

Корекція не потрібна:

110110110110.

$$P_z = 18.$$

Запишемо нормалізований результат:

-													
	Λ	1		^	1 1		1	1	1 1		1 1	1 1	1 1
	()		()	()		()				()			
	•			0	'	•				•	'	'	'

2.4 Четвертий спосіб множення

2.4.1 Теоретичне обґрунтування четвертого способу множення:

Числа множаться у прямих кодах. Під час множення чисел у прямих кодах знакові та основні розряди обробляються окремо. Для визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення виконується зі старших розрядів множника, сума часткових добутків залишається нерухомою, а множене зсувається вправо. Перед множенням четвертим способом множник записують у регістр RG2, а множене — в старші розряди регістру RG3(тобто в RG3 установлюють Y0 = Y2-1). У кожному циклі цифра RG2(1), що знаходиться в старшому розряді регістру RG2, керує підсумовуванням, а в RG3 здійснюється правий зсув на один розряд, що еквівалентно множенню вмісту цього регістра на 2-1. Час виконання множення четвертим способом складає tM=ntП, визначається аналогічно до другого способу. Запишу четвертий спосіб в аналітичні формі. Вираз

$$\begin{split} Z &= Y \cdot x_n \cdot 2^{-n} + Y \cdot x_{n-1} \cdot 2^{-n+1} + \dots + Y \cdot x_1 \cdot 2^{-1}, \text{ подамо у вигляді} \\ Z &= \left(\left(\dots \left((0 + Y \cdot 2^{-1} \cdot x_1) + Y \cdot 2^{-2} \cdot x_2 \right) + \dots + Y \cdot 2^{-k} x_k \right) + \dots + Y \cdot 2^{-n} x_n \right) \end{split}$$

Отме, сума часткових добутків в і-му циклі, де $i=\overline{1,n}$, зводиться до обчислення виразу: $Z_i=Z_{i-1}+2^{-1}Y_{i-1}\cdot X_i$, з початковими значеннями $i=1,\ Y_0=2^{-1}Y,\ Z_0=0.$

2.4.2 Операційна схема:

Рисунок 2.4.1- Операційна схема

2.4.3 Змістовний мікроалгоритм:

Рис. 2.4.2 - Змістовний мікроалгоритм

2.4.4 Таблиця станів регістрів:

Тαδлиця 2.4.1

Таблиця станів регістрів

№ ц.	RG1	RG2←	RG3 →
П.С.	000000000000	10110	010011100000
1	010011100000	101110	001001110000
2	+ 001001110000 = 011101010000	011100	000100111000
3	011101010000	111000	000010011100
4	+ 000010011100 = 011111101100	110000	000001001110
5	+ 000001001110 = 100000111010	100000	000000100111
6	+ 000000100111 = 100001100001	000000	000000010011

2.4.5 Οδροδκα πορядκίβ:

Порядок добутку буде дорівнювати сумі порядків множників з урахуванням знаку порядків: $P_x + P_y = P_z$.

$$P_x = 18$$
; $P_y = 5$; $P_{z=23_{10}} = 10111_2$.

2.4.6 Нормалізація результату:

Отримали результат: 100001100001.

Знак мантиси: $1 \oplus 0 = 1$.

Корекція не потрібна:

100001100001;

$$P_z = 23$$
.

Запишемо нормалізований результат:

2.5. Перший спосіб ділення

2.5.1 Теоретичне обґрунтування першого способу ділення:

Нехай ділене X і дільник Y є п-розрядними правильними дробами, поданими в прямому коді. В цьому випадку знакові й основні розряди операндів обробляються окремо. Знак результату визначається шляхом підсумовування по модулю 2 цифр, записаних в знакових розрядах.

При реалізації ділення за першим методом здійснюється зсув вліво залишку при нерухомому дільнику. Такий спосіб називається діленням із зсувом залишку. Черговий залишок формується в регістрі RG2 (у вихідному стані в цьому регістрі записаний X), дільник Y знаходиться в регістрі RG1. Виходи RG2 підключені до входів SM безпосередньо, тобто ланцюги видачі коду з RG2 не потрібні. Час для підключення n+1 цифри частки визначається виразом t=(n+1)(tt+tc), де tt — тривалість виконання мікрооперації зсуву. Результат формується в регістрі RG3.

2.5.2 Операційна схема:

Рис. 2.5.1 – Операційна схема

2.5.3 Змістовний мікроалгоритм:

Рис. 2.5.2 – Змістовний мікроалгоритм

Таблиця станів регістрів

№ ц.	RG3(Z)	RG2(X)	RG1(Y)
П.С.	000000	00100010	00100111
		01000100	
		+	
1		11011001	
		=	
	0000001	00011101	
		00111010	
		+	
2		11011001	
	0000011	00010011	
	0000011	0010011	
		+	
3		11011001	
		=	
	0000111	11111111	
		11111110	
		+	
4		00100111	
		=	
	0001110	00100101	
		01001010	
_		+	
5		11011001	
	0011101	00100011	
	0011101	00100011 01000110	
		+	
6		11011001	
		=	
	0111011	00011111	
		00111110	
		+	
7		11011001	
	1110111	=	
		00010111	

2.5.8 Обробка порядків:

Порядок частки буде дорівнювати: $P_z = P_x - P_y$;

В моєму випадку $P_{x=23}$; $P_{y=5}$; $P_{z=18}$;

2.5.9 Нормалізація результату:

Отримали результат: 1110111.

Знак мантиси: $1 \oplus 0 = 1$.

Нормалізація мантиси не потрібна.

2.6. Другий спосіб ділення

2.6.1 Теоретичне обґрунтування другого способу ділення:

Нехай ділене X і дільник Y є n-розрядними правильними дробами, поданими в прямому коді. В цьому випадку знакові й основні розряди операндів обробляються окремо. Знак результату визначається шляхом підсумовування по модулю 2 цифр, записаних в знакових розрядах.

Остача нерухома, дільник зсувається праворуч. Як і при множенні з нерухомою сумою часткових добутків можна водночає виконувати підсумування і віднімання, зсув в регістрах Y,Z. Тобто 1 цикл може складатися з 1 такту, це дає

прискорення відносно 1-го способу.

2.6.2 Операційна схема

Рис. 2.6.1 – Операційна схема для операції ділення другим способом

2.6.3 Змістовний мікроалгоритм

Рис. 2.6.2 – Змістовний мікроалгоритм

2.6.4 Таблиця станів регістрів

Таδлиця 2.6.1

Таблиця станів регістрів

№ ц.	RG3(Z)	RG2(X)	RG1(Y)
П.С.	0000001	011110000000	001001110000
		011110000000	
		+	
1		110110010000	
		=	
	0000011	010100010000	000100111000
		010100010000	
		+	
2		111011001000	
		=	
	0000111	001111011000	000010011100
		001111011000	
		+	
3		111101100100	
		=	
	0001111	001100111100	000001001110

		001100111100	
		+	
4		111110110010	
		=	
	0011111	001011101110	00000100111
		001011101110	
		+	
5		111111011001	
		=	
	0111111	001011000111	00000010011
		001011000111	
		+	
6		11111101101	
		=	
	1111111	001010110100	00000001001

2.6.8 Обробка порядків:

Порядок частки буде дорівнювати: $P_z = P_{\rm x} - P_{\rm y}$;

В моєму випадку $P_{x} = 18; \quad P_{y} = 5; \quad P_{z} = 13;$

2.6.9 Нормалізація результату:

Отримали результат: 111111.

Знак мантиси: $1 \oplus 0 = 1$.

Нормалізація мантиси не потрібна.

2.7. Операція додавання чисел.

2.7.1 Теоретичне обґрунтування способу

В пам'яті числа зберігаються у ПК. На першому етапі додавання чисел з плаваючою комою виконують вирівнювання порядків до числа із старшим порядком.

На другому етапі виконують додавання мантис. Додавання мантис виконується у доповнювальних кодах, при необхідності числа у ДК переводяться в АЛП. Додавання виконується порозрядно на п-розрядному суматорі з переносом. Останній етап — нормалізація результату. Виконується за допомогою зсуву мантиси результату і коригування порядку результату. Порушення нормалізації можливо вліво і вправо, на 1 розряд вліво і на прозрядів вправо.

Виконання етапів вирівнювання порядків і додавання мантис:

1. Порівняння порядків.

$$P_{x}=+13_{10}=+1101_{2}$$

$$P_{y}=+5_{10}=+0101_{2}$$

$$P_{x}>P_{y} \implies$$

$$\Delta=P_{x}-P_{y}=_{13_{10}}-5_{10}=8_{10}=1000_{2}$$

2. Вирівнювання порядків.

Робимо зсув вправо мантиси числа Y, зменшуючи Δ на кожному кроці, доки Δ не стане 0.

Таблиця 2.7.1 Таблиця зсуву мантиси на етапі вирівнювання порядків

M_Y	Δ	Мікрооперація
0, 100111	1000	Початковий стан
0, 010011	0111	$M_Y \rightarrow \Delta := \Delta - 1$
0, 001001	0110	$M_Y \rightarrow \Delta := \Delta - 1$
0, 000100	0101	$M_Y \rightarrow \Delta := \Delta - 1$
0, 000010	0100	$M_Y \rightarrow \Delta := \Delta - 1$
0, 000001	0011	$M_Y \rightarrow \Delta := \Delta - 1$
0, 000000	0010	$M_Y \rightarrow \qquad \Delta \coloneqq \Delta - 1$
0, 000000	0001	$M_Y \rightarrow \Delta := \Delta - 1$
0, 000000	0000	$M_Y \rightarrow \qquad \Delta \coloneqq \Delta - 1$

3. Додавання мантис у модифікованому ДК.

Тαδлиця 2.7.2

Додавання мантис

M _x	1	1,	0	0	0	0	0	1
$M_{\scriptscriptstyle Y}$	0	0,	0	0	0	0	0	0
M_z	1	1,	0	0	0	0	0	1

$$M_X = 11$$
, $111111_{\Pi K} = 11$, 000001_{JK}
 $M_Y = 00$, $000000_{\Pi K} = 00$, 000000_{JK}
 $M_Z = 11$, $000001_{JK} = 11$, $111111_{\Pi K}$

4. Нормалізація результату (В ПК).

Для даного результату додавання нормалізація не потрібна.

2.7.2 Операційна схема

m-кількість розрядів мантиси n-кількість розрядів порядку q= log_2m [

Рис. 2.7.1-Операційна схема

Виконаємо синтез КС для визначення порушення нормалізації.

Тαδлиця 2.7.4

n		
Визначення	поришення	нормалізації

Du	basila lelilik hopgaelilik hopilakiisaali						
Розр	ради	pezicmpy	Значення				
RGZ			функцій				
Z'0	Zo	Z ₁	L	R			
0	0	0	0	1			
0	0	1	0	0			
0	1	0	1	1			
0	1	1	1	0			

$$L=Z_{0}$$
, $R=\overline{Z_{1}}$.

Результат беремо по модулю, знак встановлюємо за Z'0 до нормалізації.

2.7.3 Змістовний алгоритм

Рис. 2.7.2 – Змістовний мікроалгоритм

2.7.4 Таблиця станів регістрів

1) Додавання

Тαδлиця 2.7.5

Таблиця станів регістрів

Nº	RGPZ	RGZ	ЛПН(L)	ППН(R)	СТ	Мікрооперація
ПС	001000	11, 111111	0	1	01	
1	001000	00, 000001 <u>00, 000000</u> 00, 000001	0	0	00	$Z'_0 Z_0 := \overline{Z'_0 Z_0}$ RGZ := l(RGZ).0 RGPZ := RGPZ-1 CT := CT-1

2.7.8 Οδροδκα порядків

$$P_{X+Y} = 8_{10} = 1000_2$$

2.7.9 Форма запису результату з плаваючою комою

Результат додавання Z=X+Y.

$$Z_{nK} = 1. 111111_{nK}$$

$$P_z = 8_{10} = 1000_2$$

0	1	0	0	0	1	1	1	1	1	1	1	1
---	---	---	---	---	---	---	---	---	---	---	---	---

2.8.Операція добування кореня

2.8.1 Теоретичне обґрунтування операції обчислення квадратного кореня

Аргумент вводиться зі старших розрядів. Порядок результату дорівнює поділеному на два порядку аргумента. З мантиси добувається корінь завдяки нерівностям:

$$Z_i \le \sqrt{X} \le Z_i + 2^{-i}$$
;
 $Z_i^2 \le X \le Z_i^2 + 2^{-i}Z_i + 2^{-2i}$;
 $0 \le 2^{i-1}(X - Z_i^2) \le Z_i + 2^{-i-1}$.

Виконання операції зводиться до послідовності дій:

1. Одержання остачі.

$$R_{i+1}' = 2R_i - Z_i - 2^{-i-2};$$

2. Якщо
$$R_{i+1} \ge 0$$
, то $Z_{i+1} = 1$, $R_{i+1} = R_{i+1}$.

3. Якщо
$$R_{i+1}$$
 < 0, то $Z_{i+1} = 0$, $R_{i+1} = R_{i+1} + Z_i - 2^{-i-2}$.

Відновлення остачі додає зайвий такт, але можна зробити інакше:

 $R_{i+2} = 2R_{i+1}' + Z_i + 2^{-i-2} + 2^{-i-3}$, тоді корінь добувається без відновлення залишку.

Для цього R_i зсувається на 2 розряди ліворуч, а Z_i - на 1 розряд ліворуч, і формується як при діленні.

2.8.2 Операційна схема операції обчислення квадратного кореня

Рис. 2.8.1 — Операційна схема

2.8.3 Змістовний мікроалгоритм

Рис.2.8.2 – Змістовний мікроалгоритм

2.8.4 Таблиця станів регістрів

Таδлиця 2.8.1

Таблиця станів регістрів

Nº	RZ	RR	RX	СТ
nc		00000000		
пз	000000	00000011	100111	110
1		00000011		
		+		
		11111111		
		=		
		00000010		
	000001	00001011	011111	101
2		00001011		
		+		
		11111011		
		=		
		00000110		
	000011	00011011	001111	100
3		00011011		
		+	000111	
		11110011		
	000111	=		011

		00004440		
		00001110		
		00111000		
4		00111000		
		+		
		11100011		
		=		
		00011011		
	001111	01101100	000011	010
5		01101100		
		+		
		11000011		
		=		
		00101111		
			000001	
	011111	10111100		001
6		10111100	_	
		+		
		01111111		
		=		
		00111011		
	111111	11101100	000000	000

2.8.8 Обробка порядків

$$P_z = \frac{P_x}{2};$$

В моєму випадку $P_{z=4}$;

2.8.9 Запис результату

Отримали результат Z = 1111111.

Результат нормалізований, готовий до запису у мантису:

Завдання №3

Варіант завдання: четвертий спосіб множення.

Синтез управляючого автомату Мілі на RS— тригерах для операції четвертого способу множення.

3.1 Функціональна схема:

3.2 Закодований мікроалгоритм:

Таблиця 2.3.2

Кодування г	икрооперацій	Кодування логічних умов		
M0	УC	ЛЯ	Позначення	
RG1 := 0	R	RG2[n-1]	X1	
RG2 := X	W2	RG2 = 0	X2	
RG := Y	W3			
RG1 := RG1+RG3	W1			
RG1 := 0.r(RG3)	ShR			
RG2 := l(RG2).0	ShL			

Таблиця кодування сигналів

Ταδηυця 3.1

W2, W3, CLR1	Y1
W1	Y2
SR3, SL2	Y3

3.3 Мікроалгоритм в термінах управляючого автомата

Рис. 3.1 — Закодований мікроалгоритм

3.3 Граф управляючого автомата

Рис. 3.2 – Граф циклічного автомата

3.4 Таблиця переходів циклічного автомата на RS-тригерах

Ταδηυця 3.2

	Cmapuū	Новий	Вхідні	Вихідні		
Перехід	стан	Стан	CUSHQ/IU	CUSHQ/IU	Функції збудження тригерів	
	Q1 † Q2 †	Q1 ⁺⁺¹ Q2 ⁺⁺¹	X1 X2	Y1 Y2 Y3	R1 S1	R2 S2
Z1 - Z2	0 0	0 1		1 0 0	- 0	0 1
Z2 - Z3	0 1	1 0	0 -	0 0 0	0 1	1 0
Z2 - Z3	0 1	1 0	1 –	0 1 0	0 1	1 0
Z3 - Z4	1 0	1 1		0 0 1	0 -	0 1
Z4 - Z2	1 1	0 1	- 0	0 0 0	1 0	0 -
Z4 - Z1	1 1	0 0	- 1	0 0 0	1 0	1 0

3.5 Функцій збудження тригерів. Мінімізація функцій методом діаграм Вейча :

Рис. 3.3 – Мінімізація функцій

$$R_1 = Q_1 Q_2$$

$$R_2 = Q_2 X_2 V Q_2 \overline{Q}_1$$

$$S_1 = Q_2 \overline{Q}_1$$

$$S_2 = \overline{Q}_2$$

$$Y_{\tau} = \bar{Q}_2 \bar{Q}_1$$

$$Y_2 = x_1 \bar{Q}_1 Q_2$$

$$Y_3 = Q_1 \overline{Q}_2$$

3.6 Функціональна схема автомата

Рис. 3.5 – Функціональна схема

Висновок

У даній розрахунковій роботі було виконано операції з числами в двійковому коді з плаваючою комою, а саме: множення чотирма способами, ділення двома способами, додавання та віднімання. Для операції ділення другим способом було побудовано управляючий автомат Мілі на RS-тригерах і елементах булевого базису. Зроблено мінімізацію функцій тригерів і в середовищі AFDK побудована функціональна схема автомата.