Econ 424/Amath 540 Introduction to Portfolio Theory

Eric Zivot

July 31, 2012

Introduction to Portfolio Theory

Investment in Two Risky Assets

 $R_A = \text{ simple return on asset A}$

 $R_B = \text{ simple return on asset B}$

 $W_0 = \text{initial wealth}$

Assumptions

ullet R_A and R_B are described by the CER model

$$R_i \sim \operatorname{iid} N(\mu_i, \sigma_i^2), \ i = A, B$$
 $\operatorname{cov}(R_A, R_B) = \sigma_{AB}, \ \operatorname{cor}(R_A, R_B) = \rho_{AB}$

• Investors like high $E[R_i] = \mu_i$

• Investors dislike high $var(R_i) = \sigma_i^2$

• Investment horizon is one period (e.g., one month or one year)

Note: Traditionally in portfolio theory, returns are simple and not continuously compounded

Portfolios

$$x_A=$$
 share of wealth in asset ${\sf A}=\frac{\$\ {\sf in}\ {\sf A}}{W_0}$ $x_B=$ share of wealth in asset ${\sf B}=\frac{\$\ {\sf in}\ {\sf B}}{W_0}$

Long position

$$x_A, x_B > 0$$

Short position

$$x_A < 0$$
 or $x_B < 0$

Assumption: Allocate all wealth between assets A and B

$$x_A + x_B = \mathbf{1}$$

Portfolio Return

$$R_p = x_A R_A + x_B R_B$$

Portfolio Distribution

$$\mu_p = E[R_p] = x_A \mu_A + x_B \mu_B$$

$$\sigma_p^2 = \text{var}(R_p) = x_A^2 \sigma_A^2 + x_B^2 \sigma_B^2 + 2x_A x_B \sigma_{AB}$$

$$= x_A^2 \sigma_A^2 + x_B^2 \sigma_B^2 + 2x_A x_B \rho_{AB} \sigma_A \sigma_B$$

$$R_p \sim \text{iid } N(\mu_p, \sigma_p^2)$$

End of Period Wealth

$$W_1 = W_0(1 + R_p) = W_0(1 + x_A R_A + x_B R_B)$$

$$W_1 \sim N(W_0(1 + \mu_p), \sigma_p^2 W_0^2)$$

Example Data

$$\mu_A = 0.175, \ \mu_B = 0.055$$
 $\sigma_A^2 = 0.067, \ \sigma_B^2 = 0.013$
 $\sigma_A = 0.258, \ \sigma_B = 0.115$
 $\sigma_{AB} = -0.004875,$
 $\rho_{AB} = \frac{\sigma_{AB}}{\sigma_A \sigma_B} = -0.164$

Note: Asset A has higher expected return and risk than asset B

Example: Long only two asset portfolio

Consider an equally weighted portfolio with $x_A = x_B = 0.5$. The expected return, variance and volatility are

$$\mu_p = (0.5) \cdot (0.175) + (0.5) \cdot (0.055) = 0.115$$
 $\sigma_p^2 = (0.5)^2 \cdot (0.067) + (0.5)^2 \cdot (0.013)$
 $+ 2 \cdot (0.5)(0.5)(-0.004875) = 0.01751$
 $\sigma_p = \sqrt{0.01751} = 0.1323$

This portfolio has expected return half-way between the expected returns on assets A and B, but the portfolio standard deviation is less than half-way between the asset standard deviations. This reflects risk reduction via diversification.

Example: Long-Short two asset portfolio

Next, consider a long-short portfolio with $x_A=1.5$ and $x_B=-0.5$. In this portfolio, asset B is sold short and the proceeds of the short sale are used to leverage the investment in asset A. The portfolio characteristics are

$$\mu_p = (1.5) \cdot (0.175) + (-0.5) \cdot (0.055) = 0.235$$

$$\sigma_p^2 = (1.5)^2 \cdot (0.067) + (-0.5)^2 \cdot (0.013)$$

$$+ 2 \cdot (1.5)(-0.5)(-0.004875) = 0.1604$$

$$\sigma_p = \sqrt{0.01751} = 0.4005$$

This portfolio has both a higher expected return and standard deviation than asset A

Portfolio Value-at-Risk

- ullet Assume an initial investment of \$ W_0 in the portfolio of assets A and B.
- Given that the simple return $R_p \sim N(\mu_p, \sigma_p^2)$, For $\alpha \in (0, 1)$, the $\alpha \times 100\%$ portfolio value-at-risk is

$$VaR_{p,\alpha} = q_{p,\alpha}^R W_0$$
$$= (\mu_p + \sigma_p q_{\alpha}^z) W_0$$

where $q_{p,\alpha}^R$ is the α quantile of the distribution of R_p and $q_{\alpha}^z = \alpha$ quantile of $Z \sim N(0,1)$.

Relationship between Portfolio VaR and Individual Asset VaR

Result: Portfolio VaR is not a weighted average of asset VaR

$$VaR_{p,\alpha} \neq x_A VaR_{A,\alpha} + x_B VaR_{B,\alpha}$$

unless $\rho_{AB} = 1$.

Asset VaRs for A and B are

$$VaR_{A,\alpha} = q_{0.05}^{R_A} W_0 = (\mu_A + \sigma_A q_{\alpha}^z) W_0$$
$$VaR_{B,\alpha} = q_{0.05}^{R_B} W_0 = (\mu_B + \sigma_B q_{\alpha}^z) W_0$$

Portfolio VaR is

$$VaR_{p,\alpha} = (\mu_p + \sigma_p q_{\alpha}^z) W_0$$

$$= \left[(x_A \mu_A + x_B \mu_B) + \left(x_A^2 \sigma_A^2 + x_B^2 \sigma_B^2 + 2x_A x_B \sigma_{AB} \right)^{1/2} q_{\alpha}^z \right] W_0$$

Portfolio weighted asset VaR is

$$x_A \mathsf{VaR}_{A,\alpha} + x_B \mathsf{VaR}_{B,\alpha} = x_A (\mu_A + \sigma_A q_\alpha^z) W_0 + x_B (\mu_B + \sigma_B q_\alpha^z) W_0$$
$$= [(x_A \mu_A + x_B \mu_B) + (x_A \sigma_A + x_B \sigma_B) q_\alpha^z] W_0$$
$$\neq (\mu_P + \sigma_P q_\alpha^z) W_0 = \mathsf{VaR}_{P,\alpha}$$

provided $\rho_{AB} \neq 1$.

If
$$\rho_{AB}=1$$
 then $\sigma_{AB}=\rho_{AB}\sigma_{A}\sigma_{B}=\sigma_{A}\sigma_{B}$ and
$$\sigma_{p}^{2}=x_{A}^{2}\sigma_{A}^{2}+x_{B}^{2}\sigma_{B}^{2}+2x_{A}x_{B}\sigma_{A}\sigma_{B}=(x_{A}\sigma_{A}+x_{B}\sigma_{B})^{2}$$
 $\Rightarrow \sigma_{p}=x_{A}\sigma_{A}+x_{B}\sigma_{B}$

and so

$$x_A \mathsf{VaR}_{A,\alpha} + x_B \mathsf{VaR}_{B,\alpha} = \mathsf{VaR}_{p,\alpha}$$

Example: Portfolio VaR and Individual Asset VaR

Consider an initial investment of $W_0 = 100,000$. The 5% VaRs on assets A and B are

$$VaR_{A,0.05} = q_{0.05}^{R_A}W_0 = (0.175 + 0.258(-1.645)) \cdot 100,000 = -24,937,$$

$$VaR_{B,0.05} = q_{0.05}^{R_B}W_0 = (0.055 + 0.115(-1.645)) \cdot 100,000 = -13,416.$$

The 5% VaR on the equal weighted portfolio with $x_A = x_B = 0.5$ is

$$VaR_{p,0.05} = q_{0.05}^{R_p}W_0 = (0.115 + 0.1323(-1.645)) \cdot 100,000 = -10,268,$$

and the weighted average of the individual asset VaRs is

$$x_A \text{VaR}_{A,0.05} + x_B \text{VaR}_{B,0.05} = 0.5(-24,937) + 0.5(-13,416) = -19,177.$$

Portfolio Frontier

Vary investment shares x_A and x_B and compute resulting values of μ_p and σ_p^2 . Plot μ_p against σ_p as functions of x_A and x_B

- Shape of portfolio frontier depends on correlation between assets A and B
- \bullet If $\rho_{AB}=-\mathbf{1}$ then there exists portfolio shares x_A and x_B such that $\sigma_p^2=\mathbf{0}$
- ullet If $ho_{AB}=1$ then there is no benefit from diversification
- ullet Diversification is beneficial even $0<
 ho_{AB}<1$

Efficient Portfolios

Definition: Portfolios with the highest expected return for a given level of risk, as measured by portfolio standard deviation, are efficient portfolios

• If investors like portfolios with high expected returns and dislike portfolios with high return standard deviations then they will want to hold efficient portfolios

- Which efficient portfolio an investor will hold depends on their risk preferences
 - Very risk averse investors dislike volatility and will hold portfolios near the global minimum variance portfolio. They sacrifice expected return for the safety of low volatility
 - Risk tolerant investors don't mind volatility and will hold portfolios that have high expected returns. They gain expected return by taking on more volatility.

Globabl Minimum Variance Portfolio

- The portfolio with the smallest possible variance is called the global minimum variance portfolio.
- This portfolio is chosen by the most risk averse individuals
- To find this portfolio, one has to solve the following constrained minimization problem

$$\min_{x_A, x_B} \sigma_p^2 = x_A^2 \sigma_A^2 + x_B^2 \sigma_B^2 + 2x_A x_B \sigma_{AB}$$

$$s.t. \ x_A + x_B = 1$$

Review of Optimization Techniques: Constrained Optimization

Example: Finding the minimum of a bivariate function subject to a linear constraint

$$y = f(x, z) = x^{2} + z^{2}$$

$$\min_{x,z} y = f(x, z)$$

$$s.t. x + z = 1$$

Solution methods:

- Substitution
- Lagrange multipliers

Method of Substitution

Substitute z = x - 1 in f(x, z) and solve univariate minimization

$$y = f(x, x - 1) = x^{2} + (1 - x)^{2}$$

 $\min_{x} f(x, x - 1)$

First order conditions

$$0 = \frac{d}{dx}(x^2 + (1 - x)) = 2x + 2(1 - x)(-1)$$

= $4x - 2$
 $\Rightarrow x = 0.5$

Solving for z

$$z = 1 - 0.5 = 0.5$$

Method of Lagrange Multipliers

Idea: Augment function to be minimized with extra terms to impose constraints

1. Put constraints in homogeneous form

$$x+z=1 \Rightarrow x+z-1=0$$

2. Form Lagrangian function

$$L(x, z, \lambda) = x^2 + z^2 + \lambda(x + z - 1)$$

 $\lambda = \text{Lagrange multiplier}$

3. Minimize Lagrangian function

$$\min_{x,z,\lambda} L(x,z,\lambda)$$

First order conditions

$$egin{align} 0 &= rac{\partial L(x,z,\lambda)}{\partial x} = 2 \cdot x + \lambda \ 0 &= rac{\partial L(x,z,\lambda)}{\partial z} = 2 \cdot z + \lambda \ 0 &= rac{\partial L(x,z,\lambda)}{\partial \lambda} = x + z - 1 \ \end{pmatrix}$$

We have three linear equations in three unknowns. Solving gives

$$2x = 2z = -\lambda \Rightarrow x = z$$

 $2z - 1 = 0 \Rightarrow z = 0.5, x = 0.5$

Example: Finding the Global Minimum Variance Portfolio

Two methods for solution

- Analytic solution using Calculus
- Numerical solution
 - use the Solver in Excel
 - use R function solve.QP() in package quadprog for quadratic optimization problems with equality and inequality constraints

Calculus Solution

Minimization problem

$$\min_{x_A, x_B} \sigma_p^2 = x_A^2 \sigma_A^2 + x_B^2 \sigma_B^2 + 2x_A x_B \sigma_{AB}$$
$$s.t. \ x_A + x_B = 1$$

Use substitution method with

$$x_B = 1 - x_A$$

to give the univariate minimization

$$\min_{x_A} \ \sigma_p^2 = x_A^2 \sigma_A^2 + (1 - x_A)^2 \sigma_B^2 + 2x_A (1 - x_A) \sigma_{AB}$$

First order conditions

$$0 = \frac{d}{dx_A}\sigma_p^2 = \frac{d}{dx_A} \left(x_A^2 \sigma_A^2 + (1 - x_A)^2 \sigma_B^2 + 2x_A (1 - x_A) \sigma_{AB} \right)$$

$$= 2x_A \sigma_A^2 - 2(1 - x_A)\sigma_B^2 + 2\sigma_{AB} (1 - 2x_A)$$

$$\Rightarrow x_A^{\min} = \frac{\sigma_B^2 - \sigma_{AB}}{\sigma_A^2 + \sigma_B^2 - 2\sigma_{AB}}, \ x_B^{\min} = 1 - x_A^{\min}$$

Excel Solver Solution

The Solver is an Excel add-in, that can be used to numerically solve general linear and nonlinear optimization problems subject to equality or inequality constraints

- The solver is made by FrontLine Systems and is provided with Excel
- The solver add-in may not be installed in a "default installation" of Excel
 - Tools/Add-Ins and check the Solver Add-In box
 - If Solver Add-In box is not available, the Solver Add-In must be installed from original Excel installation CD

Portfolios with a Risk Free Asset

Risk Free Asset

- Asset with fixed and known rate of return over investment horizon
- ullet Usually use U.S. government T-Bill rate (horizons < 1 year) or T-Note rate (horizon > 1 yr)
- T-Bill or T-Note rate is only nominally risk free

Properties of Risk-Free Asset

$$R_f=$$
 return on risk-free asset $E[R_f]=r_f=$ constant ${
m var}(R_f)=0$ ${
m cov}(R_f,R_i)=0,\;R_i=$ return on any asset

Portfolios of Risky Asset and Risk Free Asset

$$x_f=\,$$
 share of wealth in T-Bills $x_B=\,$ share of wealth in asset B $x_f+x_B=1$ $x_f=1-x_B$

Portfolio return

$$R_p = x_f r_f + x_B R_B$$

$$= (1 - x_B) r_f + x_B R_B$$

$$= r_f + x_B (R_B - r_f)$$

Portfolio excess return

$$R_p - r_f = x_B (R_B - r_f)$$

Portfolio Distribution

$$\mu_p = E[R_p] = r_f + x_B(\mu_B - r_f)$$
 $\sigma_p^2 = \text{var}(R_p) = x_B^2 \sigma_B^2$
 $\sigma_p = x_B \sigma_B$
 $R_p \sim N(\mu_p, \sigma_p^2)$

Risk Premium

 $\mu_B - r_f =$ excess expected return on asset B = expected return on risky asset over return on safe asset

For the portfolio of T-Bills and asset B

$$\mu_p - r_f = x_B (\mu_B - r_f)$$
 = expected portfolio return over T-Bill

The risk premia is an increasing function of the amount invested in asset B.

Leveraged Investment

$$x_f < 0, x_B > 1$$

Borrow at T-Bill rate to buy more of asset B

Result: Leverage increases portfolio expected return and risk

$$\mu_p = r_f + x_B(\mu_B - r_f)$$

$$\sigma_p = x_B \sigma_B$$

$$x_B \uparrow \Rightarrow \mu_p \& \sigma_p \uparrow$$

Determining Portfolio Frontier

Goal: Plot μ_p vs. σ_p

$$\sigma_p = x_B \sigma_B \Rightarrow x_B = \frac{\sigma_p}{\sigma_B}$$

$$\mu_p = r_f + x_B (\mu_B - r_f)$$

$$= r_f + \frac{\sigma_p}{\sigma_B} (\mu_B - r_f)$$

$$= r_f + \left(\frac{\mu_B - r_f}{\sigma_B}\right) \sigma_p$$

where

$$\left(\frac{\mu_B - r_f}{\sigma_B}\right) = \mathsf{SR}_B = \mathsf{Asset} \; \mathsf{B} \; \mathsf{Sharpe} \; \mathsf{Ratio}$$
 = excess expected return per unit risk

Remarks

- The Sharpe Ratio (SR) is commonly used to rank assets.
- Assets with high Sharpe Ratios are preferred to assets with low Sharpe Ratios

Efficient Portfolios with 2 Risky Assets and a Risk Free Asset

Investment in 2 Risky Assets and T-Bill

$$R_A=\,$$
 simple return on asset A $R_B=\,$ simple return on asset B $R_f=r_f=\,$ return on T-Bill

Assumptions

ullet R_A and R_B are described by the CER model

$$R_i \sim iid \ N(\mu_i, \sigma_i^2), \ i = A, B$$
 $cov(R_A, R_B) = \sigma_{AB}, \ corr(R_A, R_B) = \rho_{AB}$

Results:

- The best portfolio of two risky assets and T-Bills is the one with the highest Sharpe Ratio
- ullet Graphically, this portfolio occurs at the tangency point of a line drawn from R_f to the risky asset only frontier.
- The maximum Sharpe Ratio portfolio is called the "tangency portfolio"

Mutual Fund Separation Theorem

Efficient portfolios are combinations of two portfolios (mutual funds)

- T-Bill portfolio
- Tangency portfolio portfolio of assets A and B that has the maximum Shape ratio

Implication: All investors hold assets A and B according to their proportions in the tangency portfolio regardless of their risk preferences.

Finding the tangency portfolio

$$\max_{x_A,\ x_B} \mathsf{SR}_p = \frac{\mu_p - r_f}{\sigma_p} \text{ subject to}$$

$$\mu_p = x_A \mu_A + x_B \mu_B$$

$$\sigma_p^2 = x_A^2 \sigma_A^2 + x_B^2 \sigma_B^2 + 2x_A x_B \sigma_{AB}$$

$$1 = x_A + x_B$$

Solution can be found analytically or numerically (e.g., using solver in Excel)

Using the substitution method it can be shown that

$$x_A^{\mathsf{tan}} = rac{(\mu_A - r_f)\sigma_B^2 - (\mu_B - r_f)\sigma_{AB}}{(\mu_A - r_f)\sigma_B^2 + (\mu_B - r_f)\sigma_A^2 - (\mu_A - r_f + \mu_B - r_f)\sigma_{AB}}$$
 $x_B^{\mathsf{tan}} = 1 - x_A^{\mathsf{tan}}$

Portfolio characteristics

$$\begin{split} \mu_p^{\mathsf{tan}} &= x_A^{\mathsf{tan}} \mu_A + x_B^{\mathsf{tan}} \mu_B \\ \left(\sigma_p^{\mathsf{tan}}\right)^2 &= \left(x_A^{\mathsf{tan}}\right)^2 \sigma_A^2 + \left(x_B^{\mathsf{tan}}\right)^2 \sigma_B^2 + 2 x_A^{\mathsf{tan}} x_B^{\mathsf{tan}} \sigma_{AB} \end{split}$$

Efficient Portfolios: tangency portfolio plus T-Bills

$$x_{ ext{tan}} = ext{ share of wealth in tangency portfolio}$$
 $x_f = ext{share of wealth in T-bills}$ $x_{ ext{tan}} + x_f = 1$ $\mu_p^e = r_f + x_{ ext{tan}}(\mu_p^{ ext{tan}} - r_f)$ $\sigma_p^e = x_{ ext{tan}}\sigma_p^{ ext{tan}}$

Result: The weights x_{tan} and x_f are determined by an investor's risk preferences

- Risk averse investors hold mostly T-Bills
- Risk tolerant investors hold mostly tangency portfolio

Example

For the two asset example, the tangency portfolio is

$$x_A^{\mathsf{tan}} = .46, \ x_B^{\mathsf{tan}} = 0.54$$
 $\mu_p^{\mathsf{tan}} = (.46)(.175) + (.54)(.055) = 0.11$
 $\left(\sigma_p^{\mathsf{tan}}\right)^2 = (.46)^2(.067) + (.54)^2(.013)$
 $+ 2(.46)(.54)(-.005)$
 $= 0.015$
 $\sigma_p^{\mathsf{tan}} = \sqrt{.015} = 0.124$

Efficient portfolios have the following characteristics

$$\mu_p^e = r_f + x_{\mathsf{tan}}(\mu_p^{\mathsf{tan}} - r_f)$$
 $= 0.03 + x_{\mathsf{tan}}(0.11 - 0.03)$
 $\sigma_p^e = x_{\mathsf{tan}}\sigma_p^{\mathsf{tan}}$
 $= x_{\mathsf{tan}}(0.124)$

Problem: Find the efficient portfolio that has the same risk (SD) as asset B? That is, determine x_{tan} and x_f such that

$$\sigma_p^e = \sigma_B =$$
 0.114 $=$ target risk

Note: The efficient portfolio will have a higher expected return than asset B

Solution:

$$.114 = \sigma_p^e = x_{\mathsf{tan}} \sigma_p^{\mathsf{tan}}$$

$$= x_{\mathsf{tan}} (.124)$$

$$\Rightarrow x_{\mathsf{tan}} = \frac{.114}{.124} = .92$$

$$x_f = 1 - x_{\mathsf{tan}} = .08$$

Efficient portfolio with same risk as asset B has

$$(.92)(.46) = .42$$
 in asset A
 $(.92)(.54) = .50$ in asset B
 $.08$ in T-Bills

If $r_f = 0.03$, then expected Return on efficient portfolio is

$$\mu_p^e = .03 + (.92)(.11 - 0.03) = .104$$

Problem: Assume that $r_f=0.03$. Find the efficient portfolio that has the same expected return as asset B. That is, determine x_{tan} and x_f such that

$$\mu_p^e = \mu_B = 0.055 = \mathsf{target}$$
 expected return

Note: The efficient portfolio will have a lower SD than asset B

Solution:

$$0.055 = \mu_p^e = 0.03 + x_{\sf tan}(.11 - .03)$$
 $x_{\sf tan} = \frac{0.055 - 0.03}{.11 - .03} = .31$ $x_f = 1 - x_{\sf tan} = .69$

Efficient portfolio with same expected return as asset B has

$$(.31)(.46) = .14$$
 in asset A
 $(.31)(.54) = .17$ in asset B
 $.69$ in T-Bills

The SD of the efficient portfolio is

$$\sigma_p^e = .31(.124) = .038$$