Review given vec. spaces V_1, V_2, ..., V_r, U,

$$\mu: V_1 \times V_2 \times ... \times V_r$$
 to U is multilinear iff for any index i, and choice of w_j in V_j for all $j \neq i$, the map V_i to U def by v mapsto $\mu(..., w_{i-1}, v, w_{i-1}, ...)$ is linear

μ is called a <u>multilinear functional</u> when U = F and V_1 = ... = V_r

previously saw: β : F^2 × F^2 to F def by $\beta((a, c), (b, d)) = ad - bc$ is a bilinear form on F^2

moreover, β has antisymmetry: $\beta(w, v) = -\beta(v, w)$ [pause: where have we seen ad – bc before?]

$$ad - bc = det a b$$

 $c d$

today: generalize this example to higher dim's, using multilinear forms

(Axler §9B, cont.) fix r, finite-dim'l V, and an r-linear form μ : V^r to F

Df we say μ is an <u>alternating r-form</u> iff μ(v_1, ..., v_r) = 0 for any v_1, ..., v_r that include a repeated vector: i.e., v_i = v_j for some distinct i and j

Ex β((a, c), (b, d)) = ad - bc is alternating [check on board]

is the dot product on F^2 alternating? [wait...] no

<u>Ex</u> for any V and r, there is a silly example of an alternating form [what is it?]: the <u>zero r-form</u>

given V, r, can we find other examples? [turns out there is a constraint:]

Prop if r > dim V, then
the only alternating r-form on V is
the zero form

[did we see the condition r > dim V before? wait] recall that if r > dim V, then a list of r vectors cannot form a linearly independent set

so the prop follows from:

Lem if v_1, ..., v_r is a linearly dependent set of vectors in V then $\mu(v_1, ..., v_r) = 0$ for any alternating r-form on V

<u>Pf</u> by the dependence, we can write some v_i as a lin combo of the others: say, $v_i = sum_{j \neq i} c_{j \neq i}$

so $\mu(..., v_i, ...) = sum_{j \neq i} \mu(..., c_jv_j, ...) = 0$

so alt. r-forms only interesting for 0 < r ≤ dim V

Rem recall that multilinear functionals on $V_1 \times ... \times V_r$ form a vector space [under $(a \cdot \mu + \mu')(...) = a\mu(...) + \mu'(...)$]

so r-linear forms on V form a vector space and alternating r-forms form a linear subsp. that we will denote Alt^r(V)

[the main thm of today:]

Thm let n = dim V let e_1, ..., e_n be an ordered basis

then an alternating n-form μ on V is determined by the value $\mu(e_1, ..., e_n)$

Lem for any permutation $\sigma = (i_1, ..., i_n)$ of (1, ..., n)

[i.e., we have $1 \le i_j \le n$ for j = 1, ..., n, and the numbers i_j have no repeats]

$$\mu(e_{i_1}, ..., e_{i_n})$$

= $(-1)^{\ln v(\sigma)} \mu(e_1, ..., e_n)$

where $Inv(\sigma) = |\{(j, k) \mid 1 \le j < k \le n \text{ but } i_j > i_k\}|$ a.k.a. the <u>inversion number</u> of σ

[thus: $\mu(e_{i_1}, ...)$ is determined by $\mu(e_1, ...)$]

let n = 3 and
$$\sigma$$
 = (2, 1, 3), σ' = (3, 1, 2)
[give them time to compute]
 $Inv(\sigma) = 1$, $Inv(\sigma') = 2$

<u>Pf Sketch</u> we assume the following fact:

every permutation σ is the result of applying a finite sequence of <u>transpositions</u> [i.e., pick two indices j < k, then swap them]

by induction, can show

 $Inv(\sigma) \equiv \# \text{ of transpositions needed (mod 2)}$

so it remains to show:

$$\mu(..., e_k, ..., e_j, ...) = -\mu(..., e_j, ..., e_k, ...)$$
 [pause: what's next?] expand
$$\mu(..., e_j + e_k, ..., e_j + k, ...)$$
 into four terms [do explicitly on board] then apply the alternating property

Pf of Thm suppose μ in Alt^n(V)

want to show: for all $v_1, ..., v_n$ in V, $\mu(v_1, ..., v_n)$ is determined by $\mu(e_1, ..., e_n)$

since (e_i)_i is a basis, have a_{j,i} in F s.t.

$$v_i = sum_i a_{j, i} e_j$$
 for all i

[what next?] substituting and using multilinearity,

= sum_
$$\sigma$$
 (-1)^Inv(σ) a_{1, i_1}...a_{n, i_n} μ (e_1, ...)

in fact, the proof gives more than the thm: it gives a formula for $\mu(v_1, ..., v_n)$ [in the box], for any list $v_1, ..., v_n$

Cor 1 if the matrix (a_{j, i})_{j, i} is upper-triangular, then

$$\mu(v_1, ..., v_n) = a_{1,1}...a_{n,n}$$

 $\mu(e_1, ..., e_n)$

<u>Pf</u> upper-triangular means for all j > i, we have a_{j} , i > 0

so in the sum formula for $\mu(v_1, ..., v_n)$, any term where $\ln v(\sigma) > 0$ must vanish so only $\sigma = (1, 2, ..., n)$ contributes

 $\underline{\text{Cor 2}}$ if n = dim V, then the space Alt^n(V) of alternating n-forms on V is 1-dim'l

Pf pick a basis e_1, ..., e_n any μ is determined by μ (e_1, ..., e_n)

in particular: if $\mu'(e_1, ..., e_n) = \lambda \mu(e_1, ..., e_n)$ then we must have $\mu'(...) = \lambda \mu(...)$

Motivation using Alt^n(V), we can interpret determinants as "scaling factors"

for any lin. op T : V to V, alt. form μ in Alt^n(V), let T* μ in Alt^n(V) be def by

$$T^*\mu(v_1, ..., v_n) = \mu(Tv_1, ..., Tv_n)$$

Rem Axler writes μ _T instead of T* μ

<u>Thm</u> [in this setup:] $T^*\mu(...) = det(T) \mu(...)$

<u>Pf</u> since dim Alt^n(V) = 1 [by Cor 1], suffices to prove it for a <u>fixed nonzero</u> μ

pick a basis e_1, ..., e_n s.t. the matrix of T wrt (e_i)_i is a Jordan canonical form matrix pick μ s.t. μ(e_1, ..., e_n) = 1

write the matrix as $(a_{j, i})_{j, i}$ then $det(T) = a_{1,1}...a_{n,n}$ [by earlier class] = $\mu(Te_{1, ..., Te_{n}})$ [by Cor 1] = $T^*\mu(e_{1, ..., e_{n}})$ [if out of time, just state last cor without proof]

 $\underline{Cor} \qquad \det(S \circ T) = \det(S) \det(T)$

<u>Pf</u> pick μ nonzero and observe:

 $(S \circ T)^*\mu = \det(S \circ T) \mu$ but also $(S \circ T)^*\mu = S^*(T^*\mu) = \det(S) \det(T) \mu$