Teorija brojeva

Filip Najman

9 predavanje

24.5.2021.

Zadatak

Je li funkcija $\lambda(n)=(-1)^\omega(n)$, gdje je $\omega(n)=$ broj prostih djelitelja od n multiplikativna?

Zadatak

Je li funkcija $F(n) = \varphi(n^2)$, multiplikativna?

Diofantske aproksimacije

Za dani realni broj α s $\{\alpha\}$ ćemo označavati razlomljeni dio od α , tj. $\{\alpha\} = \alpha - \lfloor \alpha \rfloor$, a sa $\|\alpha\|$ označavat ćemo udaljenost od α do najbližeg cijelog broja, tj. $\|\alpha\| = \min(\{\alpha\}, 1 - \{\alpha\})$.

Očito je
$$0 \le \{\alpha\} < 1$$
 i $0 \le \|\alpha\| \le \frac{1}{2}$.

Na primjer, $\{3.7\} = 0.7$ i $\|3.7\| = 0.3$.

Teorem (Dirichlet)

Neka su α i Q realni brojevi i Q>1. Tada postoje cijeli brojevi p,q takvi da je $1\leq q< Q$ i $\|\alpha q\|=|\alpha q-p|\leq \frac{1}{Q}$.

Dokaz: Pretpostavimo najprije da je Q prirodan broj. Promotrimo sljedećih Q+1 brojeva:

$$0, 1, \{\alpha\}, \{2\alpha\}, \ldots, \{(Q-1)\alpha\}.$$

Svi ovi brojevi leže na segmentu [0,1]. Podijelimo segment [0,1] na Q disjunktnih podintervala duljine $\frac{1}{Q}$:

$$[0,\frac{1}{Q}\rangle, [\frac{1}{Q},\frac{2}{Q}\rangle, [\frac{2}{Q},\frac{3}{Q}\rangle, \ldots, [\frac{Q-1}{Q},1].$$

Prema Dirichletovom principu, barem jedan podinterval sadrži dva (ili više) od gornjih Q+1 brojeva.

Uočimo da broj $\{r\alpha\}$ ima oblik $r\alpha - s$, $r, s \in \mathbb{Z}$, a brojevi 0 i 1 se također mogu zapisati u tom obliku (uz r = 0).

Dakle, postoje cijeli brojevi r_1 , r_2 , s_1 , s_2 takvi da je $0 \le r_i < Q$, $i = 1, 2, r_1 \ne r_2$ i da vrijedi

$$|(r_1\alpha-s_1)-(r_2\alpha-s_2)|\leq \frac{1}{Q}.$$

Možemo pretpostaviti da je $r_1>r_2$. Stavimo: $q=r_1-r_2$, $p=s_1-s_2$. Tada je $1\leq q< Q$ (jer su i r_1 i r_2 manji od q) i $|\alpha q-p|\leq \frac{1}{Q}$, čime je tvrdnja teorema dokazana u slučaju $Q\in \mathbb{N}$.

Pretpostavimo sada da Q nije prirodan broj. Neka je $Q'=\lfloor Q\rfloor+1>Q$. Prema prije dokazanom, postoje cijeli brojevi p,q takvi da je $1\leq q< Q'$ i $|\alpha q-p|\leq \frac{1}{Q'}<\frac{1}{Q}$.

Također zbog $1 \leq q < Q'$ slijedi $1 \leq q \leq \lfloor Q \rfloor$, odnosno $1 \leq q < Q$.

Korolar

Ako je α iracionalan broj, onda postoji beskonačno mnogo parova p, q relativno prostih cijelih brojeva takvih da je

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^2}.\tag{1}$$

Dokaz: Tvrdnja Dirichletovog Teorema očito vrijedi i ukoliko zahtjevamo da su p i q relativno prosti. Naime ako je (p,q)=d i $p=dp_1,\ q=dq_1$, tada je

$$|dq_1lpha-dp_1|\leq rac{1}{Q}, ext{ pa je } |q_1lpha-p_1|\leq rac{1}{dQ}\leq rac{1}{Q}.$$

Dakle, za Q>1 postoje relativno prosti cijeli brojevi p,q takvi da je $|\alpha-\frac{p}{q}|\leq \frac{1}{Qq}<\frac{1}{q^2}$. Budući da je α iracionalan, slijedi da $\alpha q-p\neq 0$ tj. $|\alpha-\frac{p}{q}|>0$ za sve $\frac{p}{q}\in\mathbb{Q}$.

Pretpostavimo da postoji samo konačno mnogo racionalnih brojeva $\frac{p}{a}$ koji zadovoljavaju (1).

Neka su to brojevi $\frac{p_j}{a_i}$, $j=1,\ldots,n$.

Izaberimo prirodan broj m tako da je $\frac{1}{m} < |\alpha q_j - p_j|$ za sve $j = 1, \ldots, n$.

Primijenimo sada Teorem 3 uz Q=m, pa dobivamo racionalan broj $\frac{p}{q}$ s q < m za koji vrijedi $|\alpha q - p| \leq \frac{1}{m} < \frac{1}{q}$, pa vrijedi i $|\alpha - \frac{p_j}{q_i}| \leq \frac{1}{mq} < \frac{1}{q^2}$.

Također, $\frac{p}{q}$ je različit od $\frac{p_1}{q_1}, \ldots, \frac{p_n}{q_n}$, što je kontradikcija.

Napomena

Tvrdnja prethodnog Korolara ne vrijedi ukoliko je α racionalan.

Zaista, neka je $\alpha = \frac{u}{v}$. Ako je $\frac{p}{a} \neq \alpha$, onda

$$\frac{1}{q^2} > |\alpha - \frac{p}{q}| = |\frac{u}{v} - \frac{p}{q}| = |\frac{uq - vp}{vq}| \ge \frac{1}{vq}$$

povlači da je q < v. To znači da (1) može biti zadovoljeno samo za konačno parova p, q relativno prostih cijelih brojeva.

Neka je α proizvoljan realan broj. Stavimo: $a_0 = \lfloor \alpha \rfloor$.

Ako je $a_0 \neq \alpha$, onda zapišimo α u obliku $\alpha = a_0 + \frac{1}{\alpha_1}$, tako da je $\alpha_1 > 1$, i stavimo $a_1 = |\alpha_1|$.

Ako je $a_1 \neq \alpha_1$, onda α_1 zapišimo u obliku $\alpha_1 = a_1 + \frac{1}{\alpha_2}$, tako da je $\alpha_2 > 1$, i stavimo $a_2 = \lfloor \alpha_2 \rfloor$.

Ovaj proces možemo nastaviti u nedogled, ukoliko nije $a_n=\alpha_n$ za neki n.

Jasno je da ako je $a_n=lpha_n$ za neki n, onda je lpha racionalan broj.

Naime, tada je

$$\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + }}, \qquad (2)$$

Ovo ćemo kraće zapisivati u obliku $\alpha = [a_0, a_1, \ldots, a_n]$.

Zadatak Dokažite da je $a_n \ge 1$ za sve $n \in \mathbb{N}$. Mora li biti $a_0 \ge 1$?

Pretpostavimo sada da je $a_n \neq \alpha_n$ za sve n.

Definirajmo racionalne brojeve $\frac{p_n}{q_n}$ sa

$$\frac{p_n}{q_n}=[a_0,a_1,\ldots,a_n].$$

Zadatak Odredite sve p_n/q_n za $\alpha = 17/7$.

Teorem

Brojevi p_n , q_n zadovoljavaju rekurzije

$$p_n = a_n p_{n-1} + p_{n-2}, \quad p_0 = a_0, \quad p_1 = a_0 a_1 + 1;$$

 $q_n = a_n q_{n-1} + q_{n-2}, \quad q_0 = 1, \quad q_1 = a_1.$

Dokaz: Za n=2 tvrdnja se provjerava direktno. Pretpostavimo da je n>2 i da tvrdnja vrijedi za n-1. Definirajmo brojeve p'_j , q'_j sa $\frac{p'_j}{a'_i}=[a_1,a_2,\ldots,a_{j+1}]$. Tada je

$$p'_{n-1} = a_n p'_{n-2} + p'_{n-3}, \quad q'_{n-1} = a_n q'_{n-2} + q'_{n-3}.$$

po pretpostavci indukcije. No,

$$\frac{p_j}{q_j} = a_0 + \frac{1}{[a_1, \ldots, a_j]} = a_0 + \frac{q'_{j-1}}{p'_{j-1}} = \frac{a_0 p'_{j-1} + q'_{j-1}}{p'_{j-1}}.$$

Stoga je $p_j = a_0 p'_{j-1} + q'_{j-1}$, $q_j = p'_{j-1}$

Prema tome,

$$p_{n} = a_{0}(a_{n}p'_{n-2} + p'_{n-3}) + (a_{n}q'_{n-2} + q'_{n-3})$$

$$= a_{n}(a_{0}p'_{n-2} + q'_{n-2}) + (a_{0}p'_{n-3} + q'_{n-3}) = a_{n}p_{n-1} + p_{n-2},$$

$$q_{n} = a_{n}p'_{n-2} + p'_{n-3} = a_{n}q_{n-1} + q_{n-2}.$$

Dogovorno uzimamo da je $p_{-2}=0$, $p_{-1}=1$, $q_{-2}=1$, $q_{-1}=0$. Lako se provjerava da uz ovaj dogovor Teorem 6 vrijedi za sve n>0.

Zadatak Dokažite da je q_n rastući niz i da je $q_n \ge n$ za sve $n \ge 0$.

Teorem

Za sve $n \ge -1$ vrijedi: $q_n p_{n-1} - p_n q_{n-1} = (-1)^n$.

 $\it Dokaz: Teorem dokazujemo indukcijom. Za \it n=-1 imamo:$

$$q_{-1}p_{-2} - p_{-1}q_{-2} = 0 \cdot 0 - 1 \cdot 1 = (-1)^{-1}$$
.

Pretpostavimo da tvrdnja vrijedi za n-1. Tada je

$$q_{n}p_{n-1} - p_{n}q_{n-1} = (a_{n}q_{n-1} + q_{n-2})p_{n-1} - (a_{n}p_{n-1} + p_{n-2})q_{n-1}$$
$$= -(q_{n-1}p_{n-2} - p_{n-1}q_{n-2}) = -(-1)^{n-1} = (-1)^{n}.$$

Korolar

Brojevi p_n i q_n su relativno prosti.

Dokaz: Slijedi jer se 1 može pokazati kao linearna kombinacija od p_n i q_n .

Teorem

1)
$$\frac{p_0}{q_0} < \frac{p_2}{q_2} < \frac{p_4}{q_4} < \cdots$$
,

2)
$$\frac{p_1}{q_1} > \frac{p_3}{q_3} > \frac{p_5}{q_5} > \cdots$$
,

3) Ako je n paran, a m neparan, onda je $\frac{p_n}{q_n} < \frac{p_m}{q_m}$.

Dokaz: Iz prethodnih Teorema je

$$\frac{p_{n-2}}{q_{n-2}} - \frac{p_n}{q_n} = \frac{p_{n-2}(a_n q_{n-1} + q_{n-2}) - (a_n p_{n-1} + p_{n-2})q_{n-2}}{q_n q_{n-2}}$$

$$= \frac{a_n(p_{n-2} q_{n-1} - p_{n-1} q_{n-2}) + p_{n-2} q_{n-2} - p_{n-2} q_{n-2}}{q_n q_{n-2}}$$

$$= \frac{(-1)^{n-1} a_n}{q_n q_{n-2}}.$$
(3)

Primijenimo li (3) za n paran, dobivamo $\frac{p_{n-2}}{q_{n-2}} < \frac{p_n}{q_n}$, a za n neparan dobivamo $\frac{p_{n-2}}{q_{n-2}} > \frac{p_n}{q_n}$.

Preostaje dokazati tvrdnju 3). Neka je n < m. To možemo pretpostaviti jer je ako je ova tvrdnja zadovoljena onda je zadovoljena i za sve $m \le n$, pošto $\frac{p_m}{a_m}$ rastu s m, a $\frac{p_n}{a_n}$ padaju s n.

Budući da je $rac{p_n}{q_n} \leq rac{p_{m-1}}{q_{m-1}}$, dovoljno je dokazati da je $rac{p_m}{q_{m-1}} < rac{p_m}{q_m}$.

Zadnja nejednakost je točna jer je, po prethodnom Teoremu,

$$q_m p_{m-1} - p_m q_{m-1} = (-1)^m = -1 < 0.$$

Teorem

$$\lim_{n\to\infty}\frac{p_n}{q_n}=\alpha$$

Dokaz: Budući da
$$\frac{p_0}{q_0} < \frac{p_2}{q_2} < \cdots < \frac{p_1}{q_1}$$
, slijedi da $\lim_{\substack{n \to \infty \\ n \text{ paran}}} \frac{p_n}{q_n}$ postoji.

lz istog razloga postoji i
$$\lim_{\substack{n \to \infty \\ n \text{ neparan}}} \frac{p_n}{q_n}$$
.

Ali ova dva limesa su jednaka jer je
$$\frac{p_{n-1}}{q_{n-1}} - \frac{p_n}{q_n} = \frac{(-1)^n}{q_{n-1}q_n}$$
 i zbog $q_n \geq n$ je $\lim_{n \to \infty} \frac{(-1)^n}{q_{n-1}q_n} = 0$.

Neka je
$$\vartheta = \lim_{n \to \infty} \frac{p_n}{q_n}$$
.

Iz definicije brojeva
$$\alpha_1, \alpha_2, \ldots$$
 slijedi da je $\alpha = [a_0, a_1, \ldots, a_n, \alpha_{n+1}],$ gdje je $0 < \frac{1}{\alpha_{n+1}} \le \frac{1}{\alpha_{n+1}}$.

Vidimo da α leži između brojeva $\frac{p_n}{q_n}$ i $\frac{p_{n+1}}{q_{n+1}}$. Prema prethodnom Teoremu znači da je $\frac{p_n}{q_n} < \alpha < \frac{p_{n+1}}{q_{n+1}}$ za n paran i $\frac{p_{n+1}}{q_{n+1}} < \alpha < \frac{p_n}{q_n}$ za n neparan. Dakle, $\alpha = \vartheta$.

7adatak

Izračunajte prve četiri konvergente $\frac{p_0}{q_0}$, $\frac{p_1}{q_1}$, $\frac{p_2}{q_2}$, $\frac{p_3}{q_3}$ u razvoju broja $e=2.7182818284\cdots$ u jednostavni verižni razlomak.

Sada možemo zaključiti da ako je α racionalan, onda je $a_n=\alpha_n$ za neki n.

Zaista, u protivnom bi, zbog toga što α leži između $\frac{p_n}{q_n}$ i $\frac{p_{n+1}}{q_{n+1}}$, imali

$$\left|\alpha - \frac{p_n}{q_n}\right| < \left|\frac{p_{n+1}}{q_{n+1}} - \frac{p_n}{q_n}\right| = \frac{1}{q_{n+1}q_n} < \frac{1}{q_n^2} \tag{4}$$

za svaki *n*

To bi značilo da postoji beskonačno mnogo racionalnih brojeva $\frac{p}{q}$ takvih da je $|\alpha - \frac{p}{a}| < \frac{1}{a^2}$, što je u suprotnosti s Napomenom.

Definicija

Ako je a_0 cijeli broj, a_1, \ldots, a_n prirodni brojevi, te ako je $\alpha = [a_0, a_1, \ldots, a_n]$, onda ovaj izraz zovemo razvoj broja α u konačni jednostavni verižni (neprekidni) razlomak; $\frac{p_i}{q_i} = [a_0, \ldots, a_i]$ je i-ta konvergenta od α , a_i je i-ti parcijalni kvocijent od α , a $\alpha_i = [a_i, a_{i+1}, \ldots, a_n]$ je i-ti potpuni kvocijent od α .

Ako je α iracionalan broj, onda uvodimo oznaku $\lim_{n \to \infty} [a_0, a_1, \ldots, a_n] = [a_0, a_1, a_2, \ldots]$. Ako je $\alpha = [a_0, a_1, a_2, \ldots]$, onda ovaj izraz zovemo razvoj od α u (beskonačni) jednostavni verižni razlomak; $\frac{p_i}{q_i} = [a_0, \ldots, a_i]$ je i-ta konvergenta od α , a_i je i-ti parcijalni kvocijent, a $\alpha_i = [a_i, a_{i+1}, \ldots]$ je i-ti potpuni kvocijent od α .

Neka je α iracionalan broj. Prema formuli (4) svaka konvergenta od α zadovoljava nejednakost $|\alpha-\frac{p}{q}|<\frac{1}{q^2}$.

Teorem

Neka su $\frac{p_{n-1}}{q_{n-1}}$ i $\frac{p_n}{q_n}$ dvije uzastopne konvergente od α . Tada barem jedna od njih zadovoljava nejednakost

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{2q^2}.$$

Dokaz: Brojevi $\alpha - \frac{p_n}{q_n}$, $\alpha - \frac{p_{n-1}}{q_{n-1}}$ imaju suprotni predznak, pa je

$$\left|\alpha - \frac{p_n}{q_n}\right| + \left|\alpha - \frac{p_{n-1}}{q_{n-1}}\right| = \left|\frac{p_n}{q_n} - \frac{p_{n-1}}{q_{n-1}}\right| = \frac{1}{q_n q_{n-1}} < \frac{1}{2q_n^2} + \frac{1}{2q_{n-1}^2}$$

(jer je $2ab < a^2 + b^2$ za $a \neq b$, mi uzmemo $a = \frac{1}{q_n}$, $b = \frac{1}{q_{n-1}}$). Prema tome, vrijedi

$$\left|\alpha - \frac{p_n}{q_n}\right| < \frac{1}{2q_n^2}$$
 ili $\left|\alpha - \frac{p_{n-1}}{q_{n-1}}\right| < \frac{1}{2q_{n-1}^2}$.

L

Teorem (Borel)

Neka su $\frac{p_{n-2}}{q_{n-2}}$, $\frac{p_{n-1}}{q_{n-1}}$, $\frac{p_n}{q_n}$ tri uzastopne konvergente od α . Tada barem jedna od njih zadovoljava nejednakost

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{\sqrt{5}q^2}.$$

Dokaz: Stavimo $lpha=[a_0,a_1,\dots],\ lpha_i=[a_i,a_{i+1},\dots]$ i $eta_i=rac{q_{i-2}}{q_{i-1}}$ za $i\geq 1$.

Imamo $\alpha = [a_0, a_1, \dots, a_n, \alpha_{n+1}]$, pa je

$$q_n \alpha - p_n = q_n \cdot \frac{\alpha_{n+1} p_n + p_{n-1}}{\alpha_{n+1} q_n + q_{n-1}} - p_n = \frac{(-1)^n}{\alpha_{n+1} q_n + q_{n-1}}.$$
 (5)

Stoga je

$$\left|\alpha - \frac{\rho_n}{q_n}\right| = \frac{1}{q_n^2(\alpha_{n+1} + \beta_{n+1})}.$$
 (6)

Da bi dovršili dokaz, moramo pokazati da ne postoji prirodan broj n takav da za $i=n-1,\,n,\,n+1$ vrijedi

$$\alpha_i + \beta_i \le \sqrt{5}. \tag{7}$$

Pretpostavimo da je (7) ispunjeno za i=n-1, n. Tada iz

$$\alpha_{n-1}=a_{n-1}+\frac{1}{\alpha_n},$$

$$\frac{1}{\beta_n} = \frac{q_{n-1}}{q_{n-2}} = \frac{a_{n-1}q_{n-2} + q_{n-3}}{q_{n-2}} = a_{n-1} + \frac{q_{n-3}}{q_{n-2}} = a_{n-1} + \beta_{n-1}$$
 slijedi
$$\frac{1}{\alpha_n} + \frac{1}{\beta_n} = \alpha_{n-1} + \beta_{n-1} \le \sqrt{5}.$$

Stoga je

$$1 = \alpha_n \cdot \frac{1}{\alpha_n} = \left(\sqrt{5} - \frac{1}{\beta_n}\right) \alpha_n \le \left(\sqrt{5} - \beta_n\right) \left(\sqrt{5} - \frac{1}{\beta_n}\right),$$

$$\implies 5 - \sqrt{5}\beta_n - \frac{\sqrt{5}}{\beta_n} + 1 \ge 1.$$

Množenjem s $-\beta_n/\sqrt{5}$ dobivamo $\beta_n^2-\sqrt{5}\beta_n+1\leq 0$. Odavde slijedi da je $\beta_n\in\left[\frac{\sqrt{5}-1}{2},\frac{\sqrt{5}+1}{2}\right]$, dakle budući da je β_n racionalan, $\beta_n>\frac{\sqrt{5}-1}{2}$.

Ako bi (7) također bilo ispunjeno za i = n, n + 1, onda bi

korištenjem istih argumenata dobili
$$eta_{n+1}>rac{\sqrt{5}-1}{2}$$
, pa iz $q_n=a_nq_{n-1}+q_{n-2}$ slijedi $a_n=rac{q_n}{q_{n-1}}-rac{q_{n-2}}{q_{n-1}}$

$$1 \le a_n = \frac{q_n}{q_{n-1}} - \frac{q_{n-2}}{q_{n-1}} = \frac{1}{\beta_{n+1}} - \beta_n < \frac{2}{\sqrt{5} - 1} - \frac{\sqrt{5} - 1}{2} = 1,$$

što je kontradikcija.