```
q is an integer of from 3 to 6;
A is NR<sup>6</sup>;
E is NR^7;
J is O;
T is (CH_2)_b wherein b is an integer of from 0 to 2;
M is selected from the group consisting of C(R^9)(R^{10}) and
         (CH<sub>2</sub>)<sub>u</sub> wherein u is an integer of from 0 to 1;
L is (CH_2)_n wherein n is an integer of 0 or 1;
X is selected from the group consisting of CO<sub>2</sub>B, and tetrazolyl;
W is selected from the group consisting of C and CR<sup>15</sup>;
B is H or alkyl;
R<sup>1</sup> at each occurrence is independently selected from the group consisting of
         hydrogen, halogen, alkyl, alkoxy, -CF<sub>3</sub>, -NH<sub>2</sub>, -OH, -NHC(O)N(C<sub>1</sub>-C<sub>3</sub>
         alkyl)C(O)NH(C1-C3 alkyl), -NHSO2(C1-C3 alkyl), alkylamino, di(C1-C3
         alkyl)amino, cycloalkyl, aryl, arylamino, heterocyclyl and sulfonamido;
R<sup>2</sup> and R<sup>3</sup> are hydrogen;
R<sup>4</sup> is selected from the group consisting of
         hydrogen, alkyl, aryl, biaryl, heterocyclyl, alkylaryl, aralkyl, heterocyclylalkyl
         and alkylheterocyclyl;
R<sup>5</sup> at each occurrence is independently selected from the group consisting of
         alkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclylalkyl, heterocyclyl
         and aryloxyalkyl;
R<sup>6</sup> and R<sup>7</sup> are independently hydrogen or alkyl;
R<sup>9</sup> and R<sup>10</sup> are independently selected from the group consisting of
         hydrogen, alkyl and halogen; and
R<sup>15</sup> is hydrogen;
                  wherein B, R^1, R^2, R^3, R^4, R^5, R^6, R^7, R^9, R^{10} and R^{15} are
                  unsubstituted or substituted with at least one electron donating or
                  electron withdrawing group;
                  and wherein when A is NR<sup>6</sup> and at least one Y is CR<sup>1</sup>, R<sup>1</sup> and R<sup>6</sup>
```

or a pharmaceutically acceptable salt thereof.

taken together may form a ring;

4. (once amended) A compound of the structure

$$Q \leftarrow X$$
 $Q \leftarrow X$
 $Q \leftarrow$

wherein Y, at each occurrence, is independently selected from the group consisting of C(O), N, CR¹, C(R²)(R³), NR⁵ and CH;

q is an integer of from 3 to 6;

T is (CH₂)_b wherein b is an integer of 0 to 2;

L is $(CH_2)_n$ wherein n is an integer of 0 or 1;

W is selected from the group consisting of C and CR¹⁵;

B is H or alkyl;

R¹ at each occurrence is independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, -CF₃, -NH₂, -OH, -NHC(O)N(C₁-C₃ alkyl)C(O)NH(C₁-C₃ alkyl), -NHSO₂(C₁-C₃ alkyl), alkylamino, di(C₁-C₃ alkyl)amino, cycloalkyl, aryl, arylamino, heterocyclyl and sulfonamido;

R² and R³ are hydrogen;

R⁴ is selected from the group consisting of hydrogen, alkyl, aryl, biaryl, heterocyclyl, alkylaryl, aralkyl, heterocyclylalkyl and alkylheterocyclyl;

R⁵ at each occurrence is independently selected from the group consisting of alkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclylalkyl, heterocyclyl and aryloxyalkyl;

A2

R⁶ and R⁷ are independently hydrogen or alkyl; and R⁹ and R¹⁰ are independently selected from the group consisting of hydrogen, alkyl and halogen;

wherein B, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁹, R¹⁰ and R¹⁵ are unsubstituted or substituted with at least one electron donating or electron withdrawing group; and wherein when at least one Y is CR¹, R¹ and R⁶ taken together may form a ring;

or a pharmaceutically acceptable salt thereof.

Please amend claim 7 as follows:

7. (once amended) A compound of the structure

wherein Y, at each occurrence, is independently selected from the group consisting of C(O), N, CR^1 , $C(R^2)(R^3)$ and CH;

q is an integer of from 2 to 4;

T is (CH₂)_b wherein b is an integer of 0 to 2;

L is $(CH_2)_n$ wherein n is an integer of 0 or 1;

B is H or alkyl;

R¹ at each occurrence is independently selected from the group consisting of

A3

hydrogen, halogen, alkyl, alkoxy, -CF₃, -NH₂, -OH, -NHC(O)N(C₁-C₃ alkyl)C(O)NH(C₁-C₃ alkyl), -NHSO₂(C₁-C₃ alkyl), alkylamino, di(C₁-C₃ alkyl)amino, cycloalkyl, aryl, arylamino, heterocyclyl and sulfonamido;

R² and R³ are hydrogen;

R⁴ is selected from the group consisting of

hydrogen, alkyl, aryl, biaryl, heterocyclyl, alkylaryl, aralkyl, heterocyclylalkyl and alkylheterocyclyl;

R⁶ R⁷ are independently hydrogen or alkyl;

R⁹ and R¹⁰ are independently selected from the group of

hydrogen, alkyl and halogen; and

R¹⁸ is selected from the group consisting of

hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, alkylheterocyclyl, heterocyclylalkyl, heterocyclyl and aryloxyalkyl;

wherein B, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^9 , R^{10} , R^{11} and R^{18} are

unsubstituted or substituted with at least one electron donating or electron withdrawing group;

and wherein when at least one Y is CR¹, R¹ and R⁶ taken

together may form a ring;

or a pharmaceutically acceptable salt thereof.

Please amend claim 10 as follows:

A\$

10. (once amended) A compound of claim 7 wherein

is selected from the group consisting of

4 & Ort

$$\mathbb{R}^{18} \xrightarrow{\mathbb{N}} \mathbb{R}^{18} \xrightarrow{\mathbb{N}} \mathbb{N}$$

wherein R¹⁸ is selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, aryl, aralkyl, heterocyclylalkyl, heterocyclyl and aryloxyalkyl;

- R¹⁹ at each occurrence is independently selected from the group consisting of alkyl, heterocyclyl and aryl;
- R²⁰ at each occurrence is independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, -CF₃, -NH₂, -OH, -NHC(O)N(C₁-C₃ alkyl)C(O)NH(C₁-C₃ alkyl), -NHSO₂(C₁-C₃ alkyl), alkylamino, di(C₁-C₃ alkyl)amino, cycloalkyl, aryl, arylamino, heterocyclyl and sulfonamido;

R²¹ is hydrogen;

R²⁸ at each occurrence is independently selected from the group consisting of alkyl and hydroxy;

c is an integer of zero to two;

d is an integer of zero to three;

e is an integer of zero to four; and

i is an integer of zero to two.

Please amend claim 12 as follows:

A 5

12. (once amended) A compound of the structure

$$\mathbb{R}^{18}$$

wherein T is (CH₂)_b wherein b is an integer of from 0 to 2;

L is $(CH_2)_n$ wherein n is an integer of 0 or 1;

g is an integer of from 0 to 7;

B is H or alkyl;

R⁴ is selected from the group consisting of hydrogen, alkyl, aryl, biaryl, heterocyclyl, alkylaryl, aralkyl, heterocyclylalkyl and alkylheterocyclyl;

R⁶ and R⁷ are independently hydrogen or alkyl;

R⁹ and R¹⁰ are independently selected from the group consisting of hydrogen, alkyl and halogen;

R¹⁸ is selected from the group consisting of alkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclylalkyl, heterocyclyl and aryloxyalkyl; and

R²³ at each occurrence is independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, -CF₃, -NH₂, -OH, -NHC(O)N(C₁-C₃ alkyl)C(O)NH(C₁-C₃ alkyl), -NHSO₂(C₁-C₃ alkyl), alkylamino, di(C₁-C₃ alkyl)amino, cycloalkyl, aryl, arylamino, heterocyclyl and sulfonamido; wherein B, R⁴, R⁶, R⁷, R⁹, R¹⁰, R¹⁸ and R²³ are unsubstituted or substituted with at least one electron donating or electron withdrawing group;

or a pharmaceutically acceptable salt thereof.

Please amend claim 14 as follows:

14. (once amended) A compound of the structure

$$R^{24}$$
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{10}
 R

wherein h is an integer of zero to five;

B, R⁶, R⁷, R⁹, R¹⁰ are independently selected from the group consisting of hydrogen and alkyl;

R¹⁸ is selected from the group consisting of alkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclylalkyl, heterocyclylalkyl; and aryloxyalkyl;

R²⁴ is selected from the group consisting of hydrogen, alkyl and aryl;

R²⁵ is selected from the group consisting of hydrogen, halogen, alkyl and cycloalkyl;

R²⁶ is selected from the group consisting of hydrogen, alkyl and aralkyl; and

R²⁷ at each occurrence is independently selected from the group consisting of halogen, hydroxyl, alkyl, alkoxy, thioalkoxy, -CF₃, alkylamino, alkenylamino, di(C₁-C₃ alkyl)amino, haloalkyl, alkoxyalkoxy, cycloalkyl, aryl, sulfonyl and -SO₂-(C₁-C₃ alkyl);

wherein B, R⁶, R⁷, R⁹, R¹⁰, R¹⁸, R²⁴, R²⁵, R²⁶ and R²⁷ are unsubstituted or substituted with at least one electron donating or electron withdrawing group;

wherein \mathbb{R}^{24} and \mathbb{R}^{25} taken together may form a ring,

or a pharmaceutically acceptable salt thereof.

15. (once amended) The compound of claim 14 wherein B, R⁶, R⁷, R⁹, R¹⁰, R²⁴, R²⁵ and R²⁶ are each independently hydrogen or alkyl and R¹⁸ is substituted or unsubstituted aralkyl.

A6 Cost Please amend claim 17 as follows:

17. (once amended) A compound of the structure

Hort Cont

$$(Z)_z$$
 $(R^{29})_k$
 (R^{29})

wherein Z, at each occurrence, is independently selected from the group consisting of CR³⁰, C(R³¹)(R³²), CH, O and S;

z is an integer of from 3 to 5;

k is 1;

T is (CH₂)_b wherein b is an integer of from 0 to 1;

L is $(CH_2)_n$ wherein n is an integer of 0 or 1;

B is selected from the group consisting of

hydrogen and alkyl;

R⁴ is selected from the group consisting of

hydrogen, aryl, alkyl, aralkyl, heterocyclyl and biaryl;

 R^6 , R^7 , R^9 , R^{10} , R^{30} , R^{31} and R^{32} are hydrogen;

R¹⁸ is aralkyl; and

R²⁹ is hydroxyl;

wherein B, R^4 , R^6 , R', R^9 , R^{10} , R^{18} , R^{29} , R^{30} , R^{31} and R^{32} are

unsubstituted or substituted with at least one electron donating or electron withdrawing group;

or a pharmaceutically acceptable salt thereof.