Seminár z algoritmizácie a programovania 1

Martin Bobák Ústav informatiky Slovenská akadémia vied

Obsah prednášky

- 1. Reprezentácia informácie
- 2. Zhrnutie

Spätná väzba:

https://forms.gle/iKbuLdF6xDtNSEDP8

Reprezentácia informácie

Reprezentácia informácie

Digitalizácia = reprezentácia informácie pomocou čísla

Zvyčajný postup:

- niečo (zvuk, obrázok, text...) sa konvertuje nejako (algoritmom) na čísla
- tieto čísla sú uložené, spracované, preposlané
- následne sú čísla pretransformované do pôvodného formátu

Hodnoty z reálneho sveta (zvuky, obrázky...)

- čo najpresnejšie ich zmeriame
- prevedieme ich číselné hodnoty

Analógová a digitálna reprezentácia

Analógový: "ručičkový"

- spojité hodnoty
- žiadne (diskrétne) skoky
- svet, ktorý vnímame je prevažne analógový

Digitálny: "diskrétne hodnoty"

- konečné množstvo hodnôt
- zmena vedie k prechodu z jednej diskrétnej hodnoty na inú diskrétnu hodnotu
- hodnoty sú reprezentované ako čísla

Prevodník

Zariadenie, ktoré konvertuje z jednej reprezentácie do inej

- mikrofón
- reproduktor, slúchadlá
- fotoaparát, kamera, skener
- tlačiareň, obrazovka
- klávesnica, myška, dotyková obrazovka
- ...

Zvyčajne dôjde k strate počas konverzie

kópia nie je tak dobrá ako originál

Kódovanie zvuku

- meranie tónu a jeho intenzity dosť často a presne, aby bolo možné daný zvuk rekonštruovať
- človek vie rozpoznať zvuky ~ 20 Hz 20 kHz
 - merať zvuk s dvojnásobnou presnosťou (frekvenciou) je dostatočné

CD

- 44,100 meraní za sekundu
- presnosť (kvantovanie t.j. rozdelenie úrovní signálu) 65 536 úrovní (=216 diskrétnych hodnôt)
- stereo zvuk = dve merania
- $44,100 \times 2 \times 16$ bit/meranie = 1,411,200 b/sec = 176,400 B/sec ~ 10.6 MB/min (bez kompresie)

MP3

- kompresia zvuku (odstránenie nepočuteľných zvukov)
- ~ 1MB/min

Kódovanie obrazu

- obrázok sa rozdelí na mriežku malých obdĺžnikov ("pixelov")
- každý z nich má priradené číslo reprezentujúce jeho farbu
- menšie obdĺžniky = plynulejší prechod medzi farbami, presnejšia reprezentácia

Kódovanie písmen

- číslo reprezentuje jeden znak
 - rôzne abecedy
 - špeciálne symboly
 - viacero spôsobov kódovanie -> treba štandard

ASCII (American Standard Code for Information Interchange)

ASCII Code Chert

	ASCII Code Chart															
	0	1 1	2	. 3	4	<u> </u>	<u> 6</u> 1	_ 7	8	9	A	_ B	\mathbf{C}	L D	E	_ F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2		••	=	#	\$	%	&	-	()	*	+	,	١	٠	/
3	0	1	2	3	4	5	6	7	8	9		;	٧	II	۸	?
4	@	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0
5	P	Q	R	S	T	U	V	W	X	Y	Z]	\]	^	_
6	,	a	b	c	d	e	f	g	h	i	j	k	l	m	n	0
7	p	q	r	S	t	u	v	w	X	y	Z	{		}	2	DEL

Zhrnutie

- počet hodnôt a počet znakov kódovania je previazaný
 - algoritmizovateľný prevod
- interpretácia závisí na kontexte
 - bez vedomosti o aké kódovanie sa jedná, nie je možné určiť pôvodnú informáciu
 - čo je 39502???

Bit a bajt

Bit:

- · najmenšia jednotka informácie
- nadobúda dve hodnoty (true/false, áno/nie, on/off, m/ž...)
- reprezentovaný ako 0 a 1
 - dostatočné na zistenie pôvodnej hodnoty
 - jedna cifra s dvomi možnými hodnotami
 - binárna cifra (ang. binary digit = bit)
- v informatike sa používa pretože je ľahké vyrobiť rýchle, spoľahlivé a malé zariadenia s dvomi stavmi
 - vysoké/nízke napätie, (ne)prechádza prúd (čipy)
 - elektrický náboj (ne) prítomný (RAM, flash)
 - magnetizácia (disky)
 - (ne) odráža sa laser (CD, DVD)

"on/off model"

- hw transistor
- sw bit
- každý typ informácie je uložený a spracovaný v počítači ako bity

Bajt:

- 8 bitov, ktoré sú spracované ako celok (tak ako číslo 67327 v desiatkovej sústave)
- pamäť = pole bytov

Binárne čísla

- · ako desiatkové, ale majú iba dve číslice: 0 a 1
- každé binárne číslo je reprezentované ako mocnina 2 (1, 2, 4, 8, 16...)
 - nie mocnina 10 (1, 10, 100, 1000...)
- binárne počítanie:
 - 0 1
 - jedna binárna cifra reprezentuje 2 hodnoty
 - 00 01 10 11
 - dve binárne cifry reprezentujú 4 hodnoty
- binárne číslo je suma mocnín 2
 - $11011 = 1 \times 16 + 1 \times 8 + 0 \times 4 + 1 \times 2 + 1 \times 1$ = $1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 27$

Binárna aritmetika

podobne ako desiatková sústava

Sčítanie:

$$0 + 0 = 0$$
 $1 + 0 = 1$
 $0 + 1 = 1$
 $1 + 1 = 10$

• podobne odčítanie, násobenie delenie

Bajty

- jeden bajt = 8 bitov
 - na moderných počítačoch základná jednotka spracovania a ukladania informácií
 - vieme kódovať 2⁸ = 256 rôznych hodnôt (čísla, písmená, špeciálne znaky... -> ASCII tabuľka)
- dva bajty = 16 bitov
 - 2¹⁶ = 65 536 hodnôt
 - veľké čísla, znaky "väčšej abecedy" (napr. Unicode)
- štyri bajty = 32 bitov
 - 2³² = 4 294 967 296 hodnôt
 - ešte väčšie čísla, desatinné čísla, adresovanie pamäte (RAM môže mať max 4 GB)
- ...
 - v súčasnosti 64-bitové celé čísla (8 bajtov) a adresy v pamäti (RAM môže mať 16 EB)
 - 264 = 18 446 744 073 709 551 616 hodnôt

Interpretácia bitov záleží na kontexte

1 bajt môže byť:

- využije sa 1 bit (napr. databáza M/Ž) a 7 bitmi sa plytvá
- 8 bitov sa používa na ukladanie čísiel z intervalu <0, 255>
- znak napr. 'W', '+', '7'...
- časť znaku z väčšej abecedy
- časť väčšieho čísla (2, 4, 8 bajtových)
- časť obrázka, zvukovej stopy
- časť príkazov počítačového programu
 - príkazy sú bity uskladnené "vedľa" dát
 - rôzne architektúry majú rôzne reprezentácie (pc, mobil, server...)
- časť adresy do pamäte počítača

Mocniny dvojky a desiatky

1 bit = 2 možnosti

2 bity = 4 možnosti

3 bity = 8 možností

. . .

n bito $v = 2^n$

pridanie 1 bitu zdvojnásobí rozsah

Multiple-byte units V·T·E											
I	Dec	imal	Binary								
Value		Metric	Value		IEC		JEDEC				
1000	kB	kilobyte	1024	KiB	kibibyte	KB	kilobyte				
1000 ²	МВ	megabyte	1024 ²	MiB	mebibyte	МВ	megabyte				
1000 ³	GB	gigabyte	1024 ³	GiB	gibibyte	GB	gigabyte				
10004	ТВ	terabyte	10244	TiB	tebibyte		-				
1000 ⁵	РВ	petabyte	1024 ⁵	PiB	pebibyte		-				
1000 ⁶	ЕВ	exabyte	1024 ⁶	EiB	exbibyte		-				
10007	ΖB	zettabyte	10247	ZiB	zebibyte		-				
1000 ⁸	ΥB	yottabyte	1024 ⁸	YiB	yobibyte		-				
Orders of magnitude of data											

Zdroj:

https://en.wikipedia.org/wiki/Kilobyte

$$2^{10} = 1 \ 024 \sim 1 \ 000 = 1 K = 10^3$$

$$2^{20} = 1048576 \sim 1000000 = 1M = 10^{6}$$

$$2^{30} = 1\ 073\ 741\ 824 \sim 1\ 000\ 000\ 000 = 1G = 10^9$$

Hexadecimálne čísla

- binárne čísla sú dlhé
 - často pracujeme s 32 alebo 64 bitovými číslami
- 4 bity v jednom čísle (zapísané ako mocnina 16)
 - efektívnejšia reprezentácia tej istej informácie
- pre čísla 10 15 sa používajú symboly A B C D E F

```
0 0000 1 0001 2 0010 3 0011
4 0100 5 0101 6 0110 7 0111
8 1000 9 1001 A 1010 B 1011
C 1100 D 1101 E 1110 F 1111
```

V jazyku C majú hexadecimálne čísla prefix **0x** a binárne čísla majú prefix **0b** (napr. 0xf5 je 0b11110101)

Farba

RGB model

- žltá = R+G, purpurová = R+B, tyrkysová = B+G, biela = R+G+B
- tri bajty (=24 bitov) -> čierna = (0, 0, 0), oranžová = (255, 165, 0)
- obrázok rozdelený do mriežky 1024 x 1024 zaberá 3 145 728 bajtov (= 1024×1024×3)
- rozlíšenie obrázka je počet pixelov, ktorými je reprezentovaný (1024×1024 = 1 048 576 pixelov ~ 1 megapixel)
- farba pixelu bitmapy je vyjadrená ako tri čísla z intervalu <0, 255> reprezentujúce intenzity jednotlivých RGB komponentov
 - často vyjadrená ako hexadecimálne číslo, jednotlivé RGB komponenty sú vyjadrené nezávisle (000000 – čierna, FFFFFF – biela)
- tlačiarne používajú model CMY[K] -> cyan-magenta-yellow[-black]

Zhrnutie

- na konci je každá informácia (uložená v počítači) reprezentovaná ako postupnosť bitov
 - bit nadobúda dve hodnoty (0, 1)
- komplikovanejšie údaje sú reprezentované ako skupina bitov
 - číslo, písmeno, slovo, obrázok, zvuk, program...
 - interpretácia skupiny bitov záleží na kontexte (formát)
 - reprezentácia údajov je ľubovoľná, štandardy charakterizujú ako daný typ údajov reprezentovať v danom formáte
- počet cifier určuje koľko rôznych objektov (hodnôt) vieme nimi reprezentovať
 - 2¹⁶, 2³², 10⁶

Veľké čísla

Motivácia

- 32 bitov dokáže reprezentovať 4 294 967 295 čísiel
- 64 bitov dokáže reprezentovať 18 446 744 073 709
 551 615 čísiel

 nie vždy je to postačujúce (šifrovanie, vedecké výpočty...)

Reprezentácia

- pole znakov konštantnej dĺžky
 - v špecifických prípadoch môžeme typ poľa zmeniť
 - konštantná dĺžka zjednoduší operácie nad takými číslami (prenos)

0 1 2 3 4 5 ... 99

reťazec	'1'	'2'	'3'	'4'	'\0'	??	??	??
ASCII kód	49	50	51	52	0	??	??	??
Dlhé číslo	4	3	2	1	0	0	0	0

```
#define MAX DLZKA CISLA 1000
char *nacitaj(const char *str)
    int i, n = strlen(str);
    if (n > MAX DLZKA CISLA)
        return NULL; // prilis dlhy retazec
    char *dlhe = calloc(MAX DLZKA CISLA, 1);
    for (i = 0; i < n; i++)
        dlhe[i] = str[n - i - 1] - '0';
    return dlhe;
```

```
#define MAX DLZKA CISLA 1000
char *retazec(const char *dlhe)
    char str[MAX DLZKA CISLA];
    int i, j = 0;
    for (i = MAX DLZKA CISLA - 1; i > 0; i--)
        if (dlhe[i] > 0)
            break;
    while (i >= 0)
        str[j++] = dlhe[i--] + '0';
    str[j] = 0;
    return strdup(str);
```

```
#define MAX DLZKA CISLA 1000
int porovnaj(const char *a, const char *b) {
    int i;
    for (i = MAX DLZKA CISLA - 1; i > 0; i--)
        if (a[i] > 0 | | b[i] > 0)
            break;
    while (i > 0 \&\& a[i] == b[i])
        i--;
    if (a[i] < b[i])
        return -1;
    if (a[i] > b[i])
        return 1;
    return 0; }
```

```
#define MAX DLZKA CISLA 1000
void pripocitaj(char *a, const char *b) // a += b
{
    int i, prenos = 0;
    for (i = 0; i < MAX DLZKA CISLA; i++)
        prenos += a[i] + b[i] ;
        a[i] = prenos % 10 ;
        prenos /= 10;
```

```
#define MAX DLZKA CISLA 1000
char *plus vyraz(char *str) {
    char *x = dlhecislo("0");
    char num[MAX DLZKA CISLA];
    int i, k;
    for (i = k = 0; str[i]; i++) {
        if (str[i] >= '0' && str[i] <= '9')
            num[k++] = str[i];
        if (k > 0 && (str[i] == '+' || str[i+1] == 0)) {
            num[k] = 0; // ukonci predchadzajuce cislo
            char *y = dlhecislo(num);
            pripocitaj(x, y); // x += y
            \mathbf{k} = 0; 
    return x;}
```

```
#define MAX DLZKA CISLA 1000
void nasob int(char *a, int num) // a *= num
{
    int i, prenos = 0;
    for (i = 0; i < MAX DLZKA CISLA; i++)
        prenos += num * a[i] ;
        a[i] = prenos % 10 ;
        prenos /= 10;
```

```
#define MAX DLZKA CISLA 1000
char *binarne(const char *str)
    char *bin = dlhecislo("1"), *x = dlhecislo("0");
    int i, n = strlen(str);
    for (i = n - 1; i >= 0; i--)
        if (str[i] == '1')
            pripocitaj(x, bin); // x += bin
        nasob int(bin, 2); // bin *= 2
    return x;
```

```
#define MAX DLZKA CISLA 1000
void prinasob(char *a, const char *b) { // a *= b
    char x[2 * MAX DLZKA CISLA] = { 0 }; // vysledok
    int i, j, prenos;
    for (j = 0; j < MAX DLZKA CISLA; j++) {
        for ( prenos = i = 0; i < MAX DLZKA CISLA; i++ ) {
            prenos += a[i] * b[j] + x[i+j] ;
            x[i+j] = prenos % 10 ;
            prenos /= 10;
    for (i = 0; i < MAX DLZKA CISLA; i++)
        a[i] = x[i];
```

Námety na seminárnu prácu

- ďalšie operácie (rozdiel, podiel, mocnina, integrál, derivácia...)
- prehľad a porovnanie knižníc na prácu s veľkými číslami
 - podpora reálnych čísiel
 - iné programovacie jazyky
- aplikácie veľkých čísiel
 - vedecké výpočty
 - bankovníctvo
 - šifrovanie
- iné

Zdroje

[1] Bou Ezzeddine, A., Tvarožek, J. Programovanie v jazyku C v riešených príkladoch (1). Bratislava: Vydavateľstvo Spektrum STU, 2018. 233 p. ISBN 978-80-227-4865-0.

Ďakujem vám za pozornosť!

Spätná väzba:

https://forms.gle/iKbuLdF6xDtNSEDP8

