MATH 635 - Differential Topology Preliminaries

ARessegetes Stery

January 30, 2024

Contents

1	Riemannian Structure	2
2	Vector Bundle	3
3	Tensor Product	3
4	Riemannian Metric	3
5	Coverings	3
6	Metric on Lee Group	3
7	Common Objects on Riemannian Manifolds	3

1 Riemannian Structure

Definition 1.1 (Riemannian Structure). Let M be a smooth n-manifold. Then a **Riemannian Structure** on it is an assignment $M \ni p \mapsto g_p$, where $g_p : T_pM \times T_pM \to \mathbb{R}$ is a bilinear positive definite symmetric form, that depends smoothly on p. Such g is a **Riemannian metric**.

Specifically, if (x^1, \ldots, x^n) is a coordinate system on $U \subseteq M$, then for $i, j \in [1, n]$, $p \in U$, define

$$g_{ij}(p) = g_p \left(\left. \frac{\partial}{\partial x^i} \right|_p, \left. \frac{\partial}{\partial x^j} \right|_p \right)$$

where $\frac{\partial}{\partial x^i}\Big|_p \in M$ for all i. Then g_{ij} is C^{∞} ; and $g(p) = (g_{ij}(p))$ is a symmetric matrix that depends on p. The matrix is often referred to as the **metric tensor**. The calculation can be defined via specifying $g_p(v_1, v_2) = v_1^T g(p) v_2$.

Definition 1.2 (Riemannian Manifold). A Riemannian Manifold is a smooth manifold M endowed with a Riemannian Metric g, often denoted as pair (M,g).

Example 1.3. Let $M \subseteq \mathbb{R}^N$ be a smooth manifold. Then for all $p \in M$, via embedding the tangent space into \mathbb{R}^N , $T_pM \subseteq \mathbb{R}^N$. The inner product in the usual sense (dot product in \mathbb{R}^n) gives M a Riemannian structure.

Example 1.4. Take $M = S^2 \subset \mathbb{R}^3$, and let $U = S^2 \cap \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_3 > 0\}$. Specify the Riemannian structure as the inner product in \mathbb{R}^3 , with the tangent space regarded as planes in \mathbb{R}^3 , taking the local coordinate system as (x_1, x_2) , then at (x_1, x_2) , the metric tensor for the tangent space is given by

$$g = \frac{1}{1 - (x_1^2 + x_2^2)} \begin{pmatrix} 1 - x_2^2 & x_1 x_2 \\ x_1 x_2 & 1 - x_1^2 \end{pmatrix}$$

To see that this is indeed the metric, notice that at $T_{(x_1,x_2)}M$ for $(x_1,x_2)\in U$, the normal vector is given by $(x_1,x_2,\sqrt{1-x_1^2-x_2^2})$. Therefore $\boldsymbol{\alpha}\in T_{(x_1,x_2)}M$ must be in the form of $(a,b,-\frac{ax_1+bx_2}{\sqrt{1-x_1^2-x_2^2}})$ for $a,b\in\mathbb{R}$. Let $\boldsymbol{\beta}:=(c,d,-\frac{cx_1+dx_2}{\sqrt{1-x_1^2-x_2^2}})\in T_{(x_1,x_2)}M$. Then

$$\langle \boldsymbol{\alpha}, \boldsymbol{\beta} \rangle = ac + bd + \frac{acx_1^2 + bdx^2 + (ad + bc)(x_1x_2)}{1 - x_1^2 - x_2^2}$$
$$= \frac{1}{1 - x_1^2 - x_2^2} \left(ac(1 - x_2^2) + bd(1 - x_1^2) + ad(x_1x_2) + bc(x_1x_2) \right)$$

where the entries of the metric tensor can be read off.

Observation 1.5. The <u>length</u> can thus be defined given the generalization of inner product on the structure. For $\gamma:[0,1]\to M$, the length of γ

$$\|\gamma\| = \int_0^1 \sqrt{g_{\gamma(t)}\left(\frac{\mathrm{d}}{\mathrm{d}t}\gamma(t), \frac{\mathrm{d}}{\mathrm{d}t}\gamma(t)\right)} =: \int_0^1 \sqrt{g_{\gamma(t)}\left(\dot{\gamma}, \dot{\gamma}\right)}$$

If M is connected, Then the distance between $a, b \in M$ is $\inf_{\gamma(0)=a,\gamma(1)=b} \|\gamma\|$.

- 2 Vector Bundle
- 3 Tensor Product
- 4 Riemannian Metric
- 5 Coverings
- 6 Metric on Lee Group
- 7 Common Objects on Riemannian Manifolds