Collusion-Resistant
Worker Set Selection
for
Transparent and Verifiable
Blockchain-Based Voting

Matthieu BETTINGER Lucas BARBERO Omar Hasan

Context

- Schiedermeier's blockchain-based voting protocol (2020)
 - P participants, and W workers chosen among them
 - Workers compute the referendum's result
 - Using SMPC:
 - Shamir's Secret Sharing scheme
 - Homomorphic encryption
 - All messages are recorded on-chain

Context

- However: workers are chosen by a single trusted entity
 - → Risk of collusion

- Goal:
 - → Collusion-resistant & verifiable selection of W workers

Process

Bettinger et al. (2021)

Proposal 1: Verifiable random number generation

Table 1 Three methods to attribute a number to a list V of comparable non-reoccurring elements (integers, character strings,...) knowing its superlist P.

Numbering Method	Expression	Output Space
Permutation $PN: V \to \mathbb{N}$	$\sum_{i=0}^{ V -1} (i! \sum_{k=0}^{i-1} \mathbb{1}_{x_k < x_i})$	$[\![0; V ![\![$
Combination $CN: V, P \to \mathbb{N}$	$\sum_{k=0}^{j(0)-1} { P -j(0)+k \choose V -1} + \sum_{i=1}^{ V -1} \sum_{k=0}^{j(i)-j(i-1)-2} { P -j(i)+k \choose V -i-1}$	$[0; { P \choose V }][$

PN : Ordering of V voters

Arrangement $AN: V, P \to \mathbb{N}$

 $\sum_{i=0}^{|V|-1} \left(\frac{|P|!}{(|P|-i)!} + CN(V, P) * |V|! + PN(V) \right)$

 $[0; \sum_{v=0}^{|P|} A^v_{|P|}]$

- CN: Which subset of V participants voted
- AN: PN & CN + Sum(AN with fewer voters)

10 participants: 10⁶ possibilities

100 participants: 10¹⁵⁸ possibilities

Proposal 1: Probability Distribution

- Hypergeometric Law
 H(n, M/P, P)
 - P participants
 - M ≤ P malicious participants
 - n workers
 - m malicious workers

Proposal 2: Worker distancing

Results: Cliques of adjacent workers

Application to iExec's worker selection

- Scheduler: trusted to distribute work fairly
 - → Proposed solutions can be used

- Difference with Schiedermeier's:
 - iExec workers perform multiple tasks
 - versus anonymized participants for each vote

Application to iExec's worker selection

- Aral et al. (2020)
 - Use of workers' task execution history
 - Clustering of workers that fail together
 - → Algorithm to maximize success probability