8. Hash Tables

- Motivation
- Hash Tables
- Integer Hashing
- String Hashing
- Storage and Retrieval
- Hashing Collisions

- Linear Probing
- Double Hashing
- Separate Chaining
- Hash Buckets
- Hashing Analysis
- Hashing Discussion

Motivation

- So far we have seen a variety of ADTs for storing and retrieving data.
- Goal of Hash Tables is to get faster access!

ADT	Search Time
array	O(N) – unsorted $O(log N)$ – sorted
linked list	O(N) – sorted or unsorted
stack	O(1) – for top only
queue	O(1) – for head/tail only
binary tree	O(logN) – for any value
heap	O(logN) – for largest value

Hash Tables

- A hash table is a data structure invented for very fast data storage and retrieval.
- Goal is to look for data in only ONE step using the data itself to tell you where to look.
- We use a <u>hash function</u> to map data values into table positions.

eg: hash("john") = 42 so we store "john" in position 42.

• Hash functions are many to one, so we need an algorithm to resolve collisions (where 2 values map to the same table position).

Integer Hashing

- Assume that we want to store/retrieve 100 student records by their ID.
- We could allocate an array 1,000,000 long use ID as the index, but this would waste a lot of space.
- Instead, we can allocate an array 200 long and use ID % 200 as our hash function.

eg: hash(672403) = 3

• We need to make sure the hash table size is larger than number of records we intend to store.

String Hashing

- Goal is to spread index values uniformly around the hash table to reduce collisions.
- There are many ways to do this with a string.
 - add the ASCII codes for all characters in the string.
 - convert string into a number base 256.
 - select k characters from string and multiply ASCII codes by user defined position weights.

eg.
$$index = (str[2]*17 + str[3]*21 + str[6]*33) \% size$$

j	o	h	n		g	a	u	С	h
0	1	2	3	4	5	6	7	8	9

Storage and Retrieval

- To store a record in hash table:
 - calculate index.
 - check array[index] is empty.
 - store record in array[index].
 - mark location as "taken".
- To retrieve a record from hash table:
 - calculate index.
 - check array[index] to see if not empty and key matches.
 - return record from array[index] or a "not found" message.
- This approach is very fast but there is one potential problem ...

Hashing Collisions

- When we attempt to store a value and the location is already taken this is called a <u>collision</u>.
- Instead of giving up, we must store the data somewhere else in the hash table.
- Many collision resolutions options are possible:
 - Linear probing.
 - Double hashing.
 - Separate chaining.
 - Hash buckets.
- We also need to modify our retrieval algorithm to look in alternative locations if necessary.

Linear Probing

• If the location at index is "taken" simply probe the next locations until an open spot is located.

- Here we use -1 to mark an open spot in the table.
- New data replaces the -1 and now that location is "taken".
- We must adapt our lookup to probe until -1 reached to check the locations adjacent to hash table index.
- If data is deleted, we must mark with "deleted" flag and search/insert adjusted accordingly.

Double Hashing

• Similar idea to linear probing except the step size between probes is a function of the hash index.

eg:
$$step = (index + 79) \% 23 + 1$$

- This will spread out the data records in case of collisions.
- Probes should <u>wrap around</u> at the end of the table (using the modulo % operator).
- Double hashing works best if the step size is relatively prime to table size. Hence use a prime table size.

• Here, index = (index + step) % size

Separate Chaining

• Instead of probing the hash table we can use a linked list or another dynamic ADT to store collisions.

- Insertion/search/deletion now use our existing linked list code
- Since each list is very small, the operations take very few steps.
- The table size for separate chaining can be smaller because the overflow space is in the linked list.

Hash Buckets

 We can also use fixed size buckets to resolve collisions instead of dynamic data structures.

- The hashing function returns the index of the <u>first</u> location in each bucket.
- We use linear probing to locate empty location in bucket to store data.
- If the bucket becomes full, then we probe next bucket to find empty spot.
- Same spare requirements as linear probing and double hashing.

Hashing Analysis

- Speed of insert/search/delete depends on the number of collisions
- Let α between 0 and 1 be fraction of table that is occupied, hence 1- α is probability location is empty.

Probe	Occupied	Free
1	α	(1-α)
2	α^2	(1-α) α
3	α^3	(1-α) α^2
4	α^4	(1-α) α^3
n	α^n	$(1-\alpha) \alpha^{(n-1)}$

• To calculate the <u>average</u> number of probes to locate a free location we sum the product of probe and free columns

Hashing Analysis

$$S = 1(1 - \alpha) + 2(1 - \alpha)\alpha + 3(1 - \alpha)\alpha^{2} + ...n(1 - \alpha)\alpha^{n-1}$$

$$\alpha S = 1(1 - \alpha)\alpha + 2(1 - \alpha)\alpha^{2} + ...(n-1)(1 - \alpha)\alpha^{n-1}$$

Subtracting and simplifying:

$$(1-\alpha)S = (1-\alpha) + (1-\alpha)\alpha + (1-\alpha)\alpha^{2} + \dots + (1-\alpha)\alpha^{n-1}$$

$$S = 1 + \alpha + \alpha^{2} + \dots + \alpha^{n-1} = \frac{1}{1-\alpha}$$

examples:
$$\alpha = 1/4, S = 4/3$$

 $\alpha = 1/2, S = 2$

$$\alpha = 3/4, S = 4$$

$$\alpha = 1/10$$
, S = 10/9

• Rule of thumb: make hash tables 2-4 times larger than amount of data you expect to store to keep number of probes small.

Hashing Discussion

- If we wish to store N values in a hash table and we allocate a table of size K*N then the highest value possible for $\alpha=1/K$.
- The average number of probes to find a free location will be:

$$S = \frac{1}{1 - \alpha} = \frac{1}{1 - 1/K} = \frac{K}{K - 1}$$

- S does not depend on N, so hashing runs in constant time O(1)
- This is clearly much better than our other ADTs where access time is O(logN) at best.
- Hash tables are widely used in applications when the data can fit in memory.
- Binary search trees are a better choice when data sets are too large for memory and must be stored on disk.