45

Total

0

100

Program	Bachelor of Technology (BTech)				
Type of Course	Professional Core				
Prerequisite Calculus, Data Structures and Algorithms, Set Theory					
Course Objective To learn about verious issues in the mathematical devlopement of computer science theory. To gain more formal understanding of various models of computation, their capabilities and limitations.					

Teaching Scheme (Contact Hours)				Examination Scheme				
Lastina	Tutorial	Practical	Credit	Theory Marks		Practical Marks		Total
Lecture				SEE (T)	CIA (T)	SEE (P)	CIA (P)	Marks
3	0	0	3	70	30	-	1	100

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cou	rse Content	T - Teaching Hours W	- Wei	ghtag
Sr.	Topics		Т	W
1	Review of Math	ematical Terms and Theory	7	20
		tical notation and Set theory, Logic, Functions and Relations, Proof, Mathematical induction, Strong princ nduction, Languages	ciple o	of
2	Finite Automata	a	14	20
	notation, Union FA, ^ - Non-Dete	ges & Regular expressions, Finite Automata, Types of Finite Automata, Application of Finite Automata, Ex , Intersection and Complement of Regular Languages, Non-Deterministic Finite Automata, Conversion fro erministic Finite Automata, Conversion of NFA-^ to FA, Kleene's Theorem Part — I, Finite Automata with O FA, Regular and non- regular languages, Pumping lemma	m NF	A to
3	Context Free G	rammar	8	20
		nar, Definitions and Examples of CFG, Derivations and Ambiguity , Unambiguous CFG and Algebraic Expre nd Simplified form, Conversion from CFG to CNF	ession	S,
4	Pushdown Auto	omata and CFL	8	20
		PDA, Types of PDA, Design of PDA, PDA corresponding to CFG, CFG corresponding to PDA , Unions, Conc Context Free Language, Pumping lemma for CFL	catena	itions
5	Turing Machine		8	20
J				

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance	Understanding	Application	Analyze	Evaluate	Create

50

35

15

Weightage

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

0

0

Printed on: 24-09-2024 10:41 AM Page 1 of 2

Cours	Outcomes			
At the end of this course, students will be able to:				
CO1	CO1 describe the concept of set theory and mathematical proof techniques.			
C02	design finite state machines and equivalent regular expression using concept of language theory.			
CO3	scuss context free grammar and ambiguity.			
CO4	epare pushdown automata and equivalent context free grammars.			
CO5	nlement recursively enumerable language using turing machines			

Refe	erence Books
1.	Introduction to languages and the theory of computation Applications By John C. Martin Tata McGraw Hill
2.	Introduction to Theory of Computation By Michael Sipser Course Technology
3.	Automata Theory, Languages and Computation By John Hopcroft, Rajeev Motwani, Jeffrey Ullman Pearson Education
4.	Theory of automata, Languages and computation By Rajendra Kumar McGraHill
5.	The Theory of Computation By Bernard M. Moret Pearson Education

Printed on: 24-09-2024 10:41 AM Page 2 of 2