

MINIMAX ESTIMATOR & EMPIRICAL BAYES ESTIMATOR

1. Define: (i) Admissible estimator, (ii) Decision function, (iii) Loss function, (iv) Risk function. [Saleh & Rohatgi: Page-424]
2. Explain the way of obtaining minimax estimator along with example.
3. Let $X \sim b(1, p)$, $p \in \theta = \left\{ \frac{1}{4}, \frac{1}{2} \right\}$ and $A = \{a_1, a_2\}$. Let the loss function be defined as follows.

	a_1	a_2
$p_1 = \frac{1}{4}$	1	4
$p_2 = \frac{1}{2}$	3	2

Find the minimax solution. [Saleh & Rohatgi: Example 04: Page-425]

4. Define bayesian risk. [Saleh & Rohatgi: Definition 05: Page-426]
5. Let $X \sim b(n, p)$ and $L(p, \delta(x)) = [p - \delta(x)]^2$. Let $\pi(p) = 1$ for $0 < p < 1$ be the a priori PDF of p. Then check whether the bayes estimator is the minimax estimator. [Saleh & Rohatgi: Example 05: Page-428]
6. Let $X \sim N(\mu, 1)$, and let the a priori PDF of μ be $N(0,1)$. Also let $L(p, \delta(x)) = [p - \delta(x)]^2$. Then check whether the bayes estimator is the minimax estimator. [Saleh & Rohatgi: Example 06: Page-428]
7. Let $\{f_\theta: \theta \in \Theta\}$ be a family of PDFs (PMFs), and suppose that an estimator δ^* of θ is a Bayes estimator corresponding to an a priori distribution π on Θ . If the risk function $R(\theta, \delta^*)$ is constant on Θ , then δ^* is a minimax estimator for θ . [Saleh & Rohatgi: Theorem 02: Page-435]
8. Let $X \sim b(n, p)$, $0 < p < 1$. We seek a minimax estimator of p of the form $\alpha X + \beta$, using the squared-error loss function. [Saleh & Rohatgi: Example 15: Page-436]

EMPIRICAL BAYES ESTIMATOR

MINIMAX ESTIMATOR & EMPIRICAL BAYES ESTIMATOR

9. What do u mean by empirical Bayes estimator ? Explain with an example .
[lehmamn-and-george-casella .Page 262]

10. Let $X_k \sim \text{binomial}(p_k, n)$ and $p_k \sim \text{beta}(a, b)$

Find emperical bayes estimator of p_k . [lehmamn-and-george-casella. Page 263.Example 6.2]

11. If X_1, X_2, \dots, X_p has the density $p_\eta(x) = e^{\sum_{i=1}^p \eta_i x_i - \lambda(\eta)} h(x)$ and η has prior density $\pi(\eta|\lambda)$, Suppose $\hat{\lambda}(x)$ is the MLE of λ based on $m(x|\lambda)$. Then the emperical bayes estimator is

$$E(\eta_i|x, \hat{\lambda}) = \frac{\delta}{\delta, x_i} \log m(x|\hat{\lambda}(x)) \frac{\delta}{\delta, x_i} \log(h(x))$$

[lehmamn-and-george-casella. Page 265. Theorem : 6.3]

12. Calculate an Empirical Bayes Estimator for the model

$X_i|\theta \sim N(\theta, \sigma^2)$, $\Omega \sim N(0, \tau^2)$ [lehmamn-and-george-casella. Page 266. Example : 6.4]

13. What is James –Stein estimator ? Write down its properties . [lehmamn-and-george-casella. Page 272.]
14. Find the Bayes risk of the James Stein estimator . [lehmamn-and-george-casella . Page 273. Example 7.3]
15. Find the poisson hierarchical Bayes estimator using the following model

$$X_i \sim \text{Poisson}(\lambda_i) \quad i = 1, 2, 3, \dots, p \text{ independent} .$$

$\lambda_i \sim \text{Gamma}(a, b)$, $i = 1, 2, 3, \dots, p$, independent , a known [lehmamn-and-george-casella .Page : 268, Example:6.6]