Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																					
Prénom(s) :																					
N° candidat :							L			N° d'inscription :											
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE NÉ(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)														1.1

ÉPREUVES COMMUNES DE CONTRÔLE CONTINU
CLASSE: Première
E3C : □ E3C1 ⊠ E3C2 □ E3C3
VOIE : ⊠ Générale □ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : Spécialité « Mathématiques »
DURÉE DE L'ÉPREUVE : 2 heures
CALCULATRICE AUTORISÉE : ⊠Oui □ Non
DICTIONNAIRE AUTORISÉ : □Oui ⊠ Non
☐ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
\Box Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 6

Exercice 1 (5 points)

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Aucune justification n'est demandée.

Une bonne réponse rapporte un point. Une mauvaise réponse, une réponse multiple ou l'absence de réponse ne rapporte ni n'enlève aucun point.

Indiquer sur la copie le numéro de la question et la réponse correspondante.

Question 1

Soit la fonction P définie sur \mathbb{R} par $P(x) = (x^2 + x + 1)(x - 1)$. L'équation P(x) = 0:

a. n'a pas de solution sur \mathbb{R}

b. a une unique solution sur \mathbb{R}

c. a exactement deux solutions sur \mathbb{R}

d. a exactement trois solutions sur \mathbb{R} .

Question 2

Soit la fonction f définie sur \mathbb{R} par $f(x) = (7x - 23)(e^x + 1)$. L'équation f(x) = 0:

a. admet x = 1 comme solution

b. admet deux solutions sur \mathbb{R}

admet $x = \frac{23}{7}$ comme solution

d. admet x = 0 comme solution.

Question 3

Dans le plan rapporté à un repère orthonormé, le cercle de centre A(-4; 2) et de rayon $r = \sqrt{2}$ a pour équation :

a.
$$(x+4)^2 + (y-2)^2 = \sqrt{2}$$

c. $(x+4)^2 + (y-2)^2 = 2$

b.
$$(x-4)^2 + (y-2)^2 = 4$$

c.
$$(x+4)^2 + (y-2)^2 = 2$$

b.
$$(x-4)^2 + (y-2)^2 = 4$$

d. $(x-4)^2 + (y+2)^2 = 2$.

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	scrip	tior	ı :			
	(Les nu	ıméros	figure	nt sur	la con	vocatio	on.)			•								
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :			/															1.1

Question 4

Dans le plan rapporté à un repère orthonormé, on considère les vecteurs $\vec{u}(m+1\;;\;-1)$ et $\vec{v}(m; 2)$ où m est un réel.

Une valeur de $\,m\,$ pour laquelle les vecteurs $\,\vec{u}\,$ et $\,\vec{v}\,$ sont orthogonaux est :

a.
$$m = -\frac{2}{3}$$

b.
$$m = -2$$

c.
$$m = 2$$

d.
$$m = -1$$
.

Question 5

Dans le plan rapporté à un repère orthonormé, une équation cartésienne de la droite D passant par le point A(-2;5) et admettant pour vecteur normal $\vec{n}(-1;3)$ est :

a.
$$-x + 3y + 7 = 0$$

b.
$$x - 3y + 17 = 0$$

c.
$$-3x - y - 1 = 0$$

b.
$$x - 3y + 17 = 0$$

d. $-x - 3y + 13 = 0$.

Exercice 2 (5 points)

Une entreprise vend des téléviseurs. Une étude a montré que ces téléviseurs peuvent rencontrer deux types de défauts : un défaut sur la dalle, un défaut sur le condensateur. L'étude indique que :

- 3% des téléviseurs présentent un défaut sur la dalle et que parmi ceux-ci, 2% ont également un défaut sur le condensateur.
- 5% des téléviseurs ont un défaut sur le condensateur.

On choisit un téléviseur au hasard et on considère les événements suivants :

- D : « le téléviseur a un défaut sur la dalle » ;
- C : « le téléviseur a un défaut sur le condensateur ».

Pour tout événement E, on note p(E) sa probabilité et \overline{E} l'événement contraire de E. Pour tout événement F de probabilité non nulle, on note $p_F(E)$ la probabilité de E sachant que F est réalisé.

Les résultats seront approchés si nécessaire à 10⁻⁴ près.

- **1.** Justifier que P(D) = 0.03 puis donner $P_D(C)$.
- **2.** Recopier l'arbre ci-dessous et compléter uniquement les pointillés par les probabilités associées :

- **3.** Calculer la probabilité $p(D \cap C)$ de l'événement $D \cap C$.
- **4.** Le téléviseur choisi a un défaut sur le condensateur. Quelle est alors la probabilité qu'il ait un défaut sur la dalle ?
- **5.** Montrer que la probabilité que le téléviseur choisi ait un défaut sur le condensateur et n'ait pas de défaut sur la dalle est égale à 0,0494.

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	scrip	otio	n :			
Liberté - Égalité - Fraternité PÉRILLE FRANÇAISE NÉ(e) le :	(Les no	uméro	s figure	ent sur	la con	vocatio	on.)											1.1

Exercice 3 (5 points)

Dans le repère ci-dessous, on note C_f la courbe représentative d'une fonction f définie sur l'intervalle [-10;2].

On a placé dans ce repère les points A(0; 2), B(2; 0) et C(-2; 0).

On dispose des renseignements suivants :

- Le point B appartient à la courbe C_f .
- La droite (AC) est tangente en A à la courbe C_f.
- La tangente à la courbe C_f au point d'abscisse 1 est une droite parallèle à l'axe des abscisses.

- **1.** Déterminer la valeur de f'(1).
- **2.** Donner une équation de la tangente à la courbe C_f au point A.

On admet que cette fonction f est définie sur [-10;2] par $f(x)=(2-x)e^x$.

- **3.** Montrer que pour tout réel x appartenant à l'intervalle [-10; 2], $f'(x) = (-x+1)e^x$.
- **4.** En déduire le tableau de variations de la fonction f sur l'intervalle [-10; 2].
- **5.** Déterminer une équation de la tangente à la courbe C_f au point B.

Exercice 4 (5 points)

La médiathèque d'une petite ville a ouvert ses portes début janvier 2013 et a enregistré 2 500 inscriptions pour l'année 2013.

Elle estime que, chaque année, 80% des anciens inscrits renouvellent leur inscription l'année suivante et qu'il y aura également 400 nouveaux adhérents.

Pour tout entier naturel n, on peut donc modéliser le nombre d'inscrits à la médiathèque n années après 2013 par une suite numérique (a_n) définie par : $a_0=2500\,$ et $a_{n+1}=0.8a_n+400\,$.

1. Calculer a_1 et a_2 .

- **2.** On pose, pour tout entier naturel n, $v_n = a_n 2000$.
 - **a.** Démontrer que (v_n) est une suite géométrique de raison 0,8. Préciser son premier terme.
 - **b.** Exprimer, pour tout entier naturel $n,\, v_n\,$ en fonction de $n.\,$
 - **c.** En déduire que pour tout entier naturel n, $a_n = 500 \times 0.8^n + 2000$.
 - **d.** Déterminer le plus petit entier naturel n tel que $a_n \le 2010$. Interpréter ce résultat dans le contexte de l'exercice.