Ahmet Inci

Email: inciaf@gmail.com • Website: https://inciaf.github.io • GitHub: https://github.com/inciaf • Mobile: 412-494-8068

RESEARCH INTERESTS

Computer Architecture, Machine Learning, Hardware/Software Co-Design

EDUCATION

Carnegie Mellon University, Pittsburgh, PA

Aug 2017 - Jul 2022

- Ph.D. in Electrical and Computer Engineering
 - Advisors: Prof. Diana Marculescu & Prof. Gauri Joshi
 - Dissertation: Scalable and Efficient Systems for Deep Learning
- M.Sc. in Electrical and Computer Engineering

Sabanci University, Istanbul, Turkey

Sep 2012 - Jul 2017

- Bachelor of Science (B.Sc.) in Electronics Engineering
 - **GPA:** 3.84 / 4.00, Salutatorian, Summa Cum Laude

WORK EXPERIENCE

NVIDIA

Senior Deep Learning Performance Architect

Jan 2024 – Present

• Developed architectures to extend the state of the art in DL performance and energy efficiency

Apple

- Machine Learning Engineer, Neural Engine Compiler Team
 Aug 2022 Jan 2024
 - Research and development on neural engine compiler for ultra low-power devices
 - Implemented new functional features in the compiler stack using Apple Neural Engine simulation environment, with an emphasis on performance and power
 - Brought up new hardware silicon and added support for new hardware features in the compiler
 - Developed features for future products, bringing those features from initial concept, through development, leading to hardware bringup and validation

NVIDIA

- Research Intern, Architecture Research Group (ARG)
- May 2021 Aug 2021
- Project: Optimizing Power Management of Deep Learning Systems with Reinforcement Learning
- Optimized power management for state-of-the-art deep learning systems and achieved performance/watt improvements on various MLPerf inference workloads
- Developed an automatic fine-grained RL-based power management framework, which automated the process of determining the optimal power management approach
- Collaborated closely with product and AI Research teams to drive RL-based power management of the next generation deep learning platforms
- Research Intern, Architecture Research Group (ARG)
 May 2020 Aug 2020
 - Project: Towards Scalable and Efficient Reinforcement Learning on CPU-GPU Systems
 - Investigated, analyzed, profiled, and optimized distributed reinforcement learning training workloads on state-of-the-art hardware and software platforms
 - Examined the interplay between HW and SW in DL workloads to identify areas for improvement
 - Analyzed performance, cost, and performance/watt trade-offs by performing system-level performance bottleneck analysis and introducing a new system design metric
 - Collaborated with product and AI Research teams to guide HW/SW co-design of future generations of CPU-GPU based deep learning platforms

ARM

• Research Intern, ML Technology Group

- May 2019 Aug 2019
- Implemented HW-aware neural architecture search (NAS) algorithms for heterogeneous systems
- Leveraged state-of-the-art NAS techniques and tools to design neural networks that are customized for mobile devices, resulting in more efficient and effective models

Cadence Design Systems

• Research Intern, Virtuoso ML Team

May 2018 - Aug 2018

Created a machine learning based recommendation system for EDA tools, particularly for Virtuoso
in order to alleviate the designer's workload, reduce design time, and improve productivity

RESEARCH EXPERIENCE

Energy-Aware Computing Lab, Carnegie Mellon University

• Advisor: Prof. Diana Marculescu

Aug 2017 - Jul 2022

Designing scalable and efficient systems and ML models using HW/ML model co-design techniques to
achieve the best of both worlds. I worked on quantization-aware DNN accelerator and model co-exploration
through architecture-level modeling and efficient design space exploration. Before that, I worked on scalable
and efficient reinforcement learning training on CPU-GPU systems. Additionally, my previous work has
explored how to utilize emerging non-volatile memories in GPU architectures for DL workloads.

Performance and Energy-Aware Computing Lab, Boston University

■ Advisor: Prof. Ayse Coskun

Jun 2016 – Sep 2016

- Project: Temperature Dependent DRAM Power and Performance Model
- Modeling 3D-stacked DRAM power consumption under various temperatures and embedding this temperature dependent power model into already existing DRAM simulators to optimize overall power and performance of 3D-stacked systems

Signal Processing and Information Systems Lab, Sabanci University

• Advisor: Prof. Mujdat Cetin

Jan 2015 – Jul 2017

• I had multiple projects within the common theme of signal processing and machine learning. In my junior year, I worked on error-related potentials (ErrP) in brain-computer interfaces applications to better understand the relation between ErrP and error severity.

Neuroelectronics Lab, University of California, San Diego

■ Advisor: Prof. Duygu Kuzum

Jun 2015 - Sep 2015

 Calculating local field potentials (LFP) by using a network and performing simulations on NEURON simulator. Understanding the contributions of spikes and synaptic potentials to sharp wave-ripple complexes.

PUBLICATIONS

CONFERENCES

[1] <u>Inci, A.</u>, Isgenc, M., Marculescu, D., "DeepNVM: A Framework for Modeling and Analysis of Non-Volatile Memory Technologies for Deep Learning Applications" *DATE* '20

WORKSHOPS

- [1] Inci, A., Virupaksha, S., Jain, A., Thallam, V., Ding, R., Marculescu, D., "QADAM: Quantization-Aware DNN Accelerator Modeling for Pareto-Optimality" *ML for Computer Architecture and Systems Workshop (ISCA'21)*
- [2] Inci, A., Virupaksha, S., Jain, A., Thallam, V., Ding, R., Marculescu, D., "QAPPA: Quantization-Aware Power, Performance, and Area Modeling of DNN Accelerators" 2nd On-Device Intelligence Workshop (MLSys'21)
- [3] Inci, A., Isgenc, M., Marculescu, D., "Cross-Layer Design Space Exploration of NVM-based Caches for Deep Learning" 12th Non-Volatile Memories Workshop (NVMW'21)
- [4] Inci, A., Bolotin, E., Fu, Y., Dalal, G., Mannor, S., Nellans, D., Marculescu, D., "The Architectural Implications of Distributed Reinforcement Learning on CPU-GPU Systems" 6th Workshop on Energy Efficient Machine Learning and Cognitive Computing (EMC2'20)
- [5] <u>Inci, A.</u>, Marculescu, D., "Solving the Non-Volatile Memory Conundrum for Deep Learning Workloads" 8th Workshop on Architectures and Systems for Big Data, (ISCA'18)

JOURNALS

- [1] Inci, A., Virupaksha, S., Jain, A., Chin, R., Thallam, V., Ding, R., Marculescu, D., "QUIDAM: A Framework for Quantization-Aware DNN Accelerator and Model Co-Exploration" ACM Transactions on Embedded Computing Systems, September 2022
- [2] Inci, A., Isgenc, M., Marculescu, D., "DeepNVM++: Cross-Layer Modeling and Optimization Framework of Non-Volatile Memories for Deep Learning" IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, November 2021
- [3] Canakci, S., Toy, M. F., <u>Inci, A.</u>, Liu X., and Kuzum, D., "Computational Analysis of Network Activity and Spatial Reach of Sharp Wave-Ripples" *PLoS One*, September 2017

BOOK CHAPTERS

[1] <u>Inci, A.</u>, Isgenc, M., Marculescu, D., "Efficient Deep Learning Using Non-Volatile Memory Technology" Embedded Machine Learning for Cyber Physical, IoT, and Edge Computing, June 2023

PATENTS

[1] <u>Inci, A.</u>, Loh, D., Meng, L., Suda, N., Kunze, E. "Specializing Neural Networks for Heterogeneous Systems" *US Patent Application* 16/724,849, *Filed: December* 2019

HONORS AND AWARDS

 Finalist for Qualcomm Innovation Fellowship Hardware-Aware Multimodal 3D Object Detection for On-Device Augmented Reality Applications 	2020
■ Bob Lee Gregory Fellowship, Carnegie Mellon University	2019
 Best Project Award for Hardware Architectures for Machine Learning MAGNETO: Evaluation of Non-Volatile Memory Technologies for Deep Learning Workloads 	2018
 CMU ECE Finalist for Google PhD Fellowship 	2018
 Best Project Runner-Up Award for <i>Energy-Aware Computing</i> Power/Performance Analysis and Optimization for Deep Learning on a CPU-GPU Platform 	2017
 Best Project Award for Networks in the Real World Who Speaks to Whom? Spatiotemporal Analysis of Phone Call Networks 	2017
■ Carnegie Institute of Technology Dean's Fellow	2017
• Graduated as <i>Salutatorian</i> (2nd highest ranking) student in Electronics Engineering Department	nt 2017
■ Dean's High Honor List for all semesters 2013	- 2017
 Massachusetts Institute of Technology - Sabanci University Freshman Scholars Program Chosen for MIT - Sabanci University Freshman Scholars Program for outstanding success in freshman cour 	2015 ses
 Dilek Sabanci Scholarship, Sabanci University Full-tuition scholarship with stipend for undergraduate studies. It is only given to 5 students each year. 	2015
 Sakip Sabanci Encouragement Scholarship, Sabanci University Full-tuition scholarship with stipend for undergraduate studies 	2014
 Merit Scholarship, Sabanci University Awarded for ranking in top 0.15 percent among 1.8 Million participants in the Nationwide University Entrance 	– 2017 ce Exam

SKILLS

- Programming Languages: Python, C / C++, C#, Verilog, Assembly, MATLAB, Java, SKILL
- Tools: TensorFlow, Caffe, PyTorch, gem5, GPGPU-Sim, HotSpot, DRAMSim2, McPAT, Sniper
- CAD Tools: Xilinx ISE, Cadence Virtuoso, Mentor Graphics ModelSim, Synopsys Design Compiler, Cadence SoC Encounter, Agilent ADS

COURSEWORK

Carnegie Mellon University, Pittsburgh, PA

 Hardware Architectures for Machine Learning, Energy-Aware Computing, Machine Learning, Computer Architecture and Systems, System-on-Chip Design, Networks in the Real World

Sabanci University, Istanbul, Turkey

 Computer Architectures, VLSI Systems Design, Data Structures, Operating Systems, Digital IC, Microcomputer Based System Design

TEACHING EXPERIENCE

Carnegie Mellon University, Pittsburgh, PA

- TA for Energy-Aware Computing (18-743)
 - Instructor: Prof. Diana Marculescu
 - Designed and evaluated research projects, graded reports, presentations, and homeworks, and held weekly
 office hours.
- TA for ULSI Technology Status and Roadmap for SoC and SiP (18-664)

Fall 2020

Fall 2018

- Instructor: Prof. Andrzej Strojwas
- Gave tutorials on several architectural tools, evaluated research projects and presentations.

Sabanci University, Istanbul, Turkey

■ TA for Introduction to Computing (CS-201)

Spring 2015

- Instructor: Gulsen Demiroz
- Held weekly office hours and helped students to overcome their problems on programming concepts.
- TA for Logic and Digital System Design (CS-303)

Fall 2016

- Instructor: Prof. Ilker Hamzaoglu
- Held weekly office hours, supervised students in laboratory sessions, and evaluated their performances.

[CV compiled on 2024-01-20]