IC

Criptografía

Índice de temas

- Encoding
- Criptografía
- Hashing
- Ofuscación / Esteganografía (para ir mirando)

Codificación

- El encoding de caracteres es usado para representar un repertorio de caracteres en algún tipo de sistema de codificación.
- En ocasiones nos referimos al encoding con la conversión de la representación de los caracteres de un sistema de codificación a otro.

Algunos ejemplos de sistemas de codificación

- ASCII
- Representación numérica en distintas otras bases
- Unicode
- EBCDIC
- Morse
- Braile
- Lenguaje de señas
- Base64

ASCII

American Standard Code for Information Interchange es un metodo de codificación de 7-bit character usado en Windows, UNIX, and Macintosh machines.

representación numerica

- base 2 o binario 01000011 01101001 01100010 01100101 01110011 01110011 01100101 01100111
- base 10 o decimal 67 105 98 101 114 115 101 103
- base 16 o hexadecimal 0x43 0x69 0x62 0x65 0x72 0x73 0x65 0x67

Binario	Dec	Hex	Representación	Binario	Dec	Hex	Representación	Binario	Dec	Hex	Representación
0010 0000	32	20	espacio ()	0100 0000	64	40	@	0110 0000	96	60	,
0010 0001	33	21	!	0100 0001	65	41	Α	0110 0001	97	61	а
0010 0010	34	22	•	0100 0010	66	42	В	0110 0010	98	62	b
0010 0011	35	23	#	0100 0011	67	43	С	0110 0011	99	63	С
0010 0100	36	24	\$	0100 0100	68	44	D	0110 0100	100	64	d
0010 0101	37	25	%	0100 0101	69	45	E	0110 0101	101	65	е
0010 0110	38	26	&	0100 0110	70	46	F	0110 0110	102	66	f
0010 0111	39	27		0100 0111	71	47	G	0110 0111	103	67	g
0010 1000	40	28	(0100 1000	72	48	Н	0110 1000	104	68	h
0010 1001	41	29)	0100 1001	73	49	1	0110 1001	105	69	i
0010 1010	42	2A	*	0100 1010	74	4A	J	0110 1010	106	6A	j
0010 1011	43	2B	+	0100 1011	75	4B	К	0110 1011	107	6B	k
0010 1100	44	2C	,	0100 1100	76	4C	L	0110 1100	108	6C	I
0010 1101	45	2D	-	0100 1101	77	4D	М	0110 1101	109	6D	m
0010 1110	46	2E		0100 1110	78	4E	N	0110 1110	110	6E	n
0010 1111	47	2F	1	0100 1111	79	4F	0	0110 1111	111	6F	0
0011 0000	48	30	0	0101 0000	80	50	Р	0111 0000	112	70	р
0011 0001	49	31	1	0101 0001	81	51	Q	0111 0001	113	71	q
0011 0010	50	32	2	0101 0010	82	52	R	0111 0010	114	72	r
0011 0011	51	33	3	0101 0011	83	53	S	0111 0011	115	73	S
0011 0100	52	34	4	0101 0100	84	54	Т	0111 0100	116	74	t
0011 0101	53	35	5	0101 0101	85	55	11	0111 0101	117	75	

Unicode

- Unicode es un estándar de codificación de caracteres diseñado para facilitar el tratamiento informático, transmisión y visualización de textos de numerosos idiomas.
- El término Unicode proviene de los tres objetivos perseguidos: universalidad, uniformidad y unicidad.
- La versión 12.1 de Unicode contiene un repertorio de 137994 caracteres
- Unicode puede ser implementado por diferentes codificaciones de caracteres UTF (Unicode Transformation Format): UTF-8 UTF-16, UTF-32.

character	encoding				bits
A	UTF-8				01000001
A	UTF-16			0000000	01000001
A	UTF-32	0000000	0000000	0000000	01000001
あ	UTF-8		11100011	1000001	10000010
あ	UTF-16			00110000	01000010
あ	UTF-32	0000000	0000000	00110000	01000010

EBCDIC

Extended Binary Coded Decimal Interchange Code es un esquema de codificación de 8 bits desarrollado por IBM en 1963 para mainframes IBM.

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	NUL	SOH	STX	ETX		PT			GE				FF	CR		
1	DLE	SBA	EUA	1C		NL				EM			DUP	SF	FM	ITB
2							ETB	ESC						ENQ		
3			SYN					EOT					RA	NAK		
4	SP										¢		<	(+	
5	&										ļ	\$	*)	i	7
6	-	/									Ι		%	_	>	?
7											:	#	@	-	=	"
8		а	В	С	d	е	ţ	g.	ħ	I						
9		j	K	_	m	n	0	р	q	ſ.						
Α		*	S	t	С	٧	₩	Х	У	Z						
В																
С	{	Α	В	С	D	Е	F	G	Н	ı						
D	}	J	K	L	М	N	0	Р	Q	R						
E	\		S	Т	U	V	W	Х	Υ	Ζ						
F	0	1	2	3	4	5	6	7	8	9						

Base64

ASCII			Z																					
HEXA	4d	5a						90							0									
binario	010011	0 1	0 1	0	1	1	0	1 0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
b64 value	19		21		42				16						0									
b64 char	Т		V			q			Q					Α										

Value	Char	Value	Char	Value	Char	Value	Char
0	A	16	Q	32	g	48	w
1	В	17	R	33	h	49	x
2	С	18	S	34	i	50	У
3	D	19	T	35	j	51	z
4	E	20	U	36	k	52	0
5	F	21	v	37	1	53	1
6	G	22	W	38	m	54	2
7	Н	23	X	39	n	55	3
8	I	24	Y	40	0	56	4
9	J	25	Z	41	р	57	5
10	K	26	a	42	q	58	6
11	L	27	b	43	r	59	7
12	M	28	С	44	S	60	8
13	N	29	d	45	t	61	9
14	0	30	е	46	u	62	+
15	P	31	f	47	v	63	/

Morse

```
-.-. .. -... . .-. ... . --.
C I B E R S E G
```

INTERNATIONAL MORSE CODE

- 1. A dash is equal to three dots.
- 2. The space between parts of the same letter is equal to one dot.
- 3. The space between two letters is equal to three dots.
- 4. The space between two words is equal to five dots.

Braile

Sistema de codificación	Ciberseg												
Binario Ascii	01000011 01101001 01100010 01100101 01110010 01110011 01100101 01100101												
Decimal Ascii	67 105 98 101 114 115 101 103												
Hexadecimal Ascii	43 69 62 65 72 73 65 67												
Valor Decimal	4857521860947174759												
Morse													
Braile													

¿Estamos protegiendo la información?

Ejemplo Vida real

App Cuidar - Encodear no es encriptar

```
sources > com > globant > pasaportesanitario > utils > token > • TokenUtils.java
      package com.globant.pasaportesanitario.utils.token;
      import dev.turingcomplete.kotlinonetimepassword.HmacAlgorithm;
      import dev.turingcomplete.kotlinonetimepassword.TimeBasedOneTimePasswordConfig;
      import dev.turingcomplete.kotlinonetimepassword.TimeBasedOneTimePasswordGenerator;
      import java.util.Date;
      import java.util.concurrent.TimeUnit;
      import org.apache.commons.codec.binary.Base32;
      public class TokenUtils {
 10
          public static TokenInfo getTokenInfo() {
 11
              TimeBasedOneTimePasswordConfig timeBasedOneTimePasswordConfig = new
 12
              TimeBasedOneTimePasswordConfig(25, TimeUnit.MINUTES, 8, HmacAlgorithm.SHA1);
              return new TokenInfo(Integer.parseInt(new TimeBasedOneTimePasswordGenerator(new Base32().
 13
              decode("JRSWSYI="), timeBasedOneTimePasswordConfig).generate(new Date(System.currentTimeMillis
              ()))) & 4095);
 14
 15
 16
```

Criptografía

¿Qué es?

La criptografía (del griego "ocultar" y "escribir"), literalmente "escritura oculta", es el arte o ciencia de cifrar y descifrar información utilizando técnicas que hagan posible el intercambio de mensajes de manera segura de forma tal que sólo puedan ser leídos por las personas a quienes van dirigidos.

Criptografía Clásica

- Muy antigua
- Sin computadoras
- Se ocultaba el algoritmo

Algunos ejemplos

```
Scytale / Escítala
ROT
Columnar Transposition
Máquina Enigma (2da guerra mundial)
```

Cripto Clásica - Escítala

En siglo V a.c. los lacedemonios, un antiguo pueblo griego, usaban el método de la escítala para cifrar sus mensajes. El sistema consistía en una cinta que se enrollaba en un bastón sobre el cual se escribía el mensaje en forma longitudinal

ROT 3 - Cifrado Caesar

El cifrado César recibe su nombre en honor a Julio César, que, según Suetonio, lo usó con un desplazamiento de tres espacios para proteger sus mensajes importantes de contenido milita

Cifrado de transposición

En criptografía, un cifrado por transposición es un tipo de cifrado en el que unidades de texto plano se cambian de posición siguiendo un esquema bien definido; las 'unidades de texto' pueden ser de una sola letra, pares de letras, tríos de letras, mezclas de lo anterior.

Ejemplo de transposición columnar

Mensaje cifrado usando la clave CAT

```
C A T
T H E
S K Y
I S B
L U E

The sky is blue -> HKSUTSILEYBE
```

Criptografía clásica

Antes de la computadora era importante ocultar el algorítmo para no comprometer el mensaje.

• ... todo cambió cuando aparecieron las computadoras

Criptografía Moderna

La criptografía es la ciencia encargada de diseñar funciones o dispositivos capaces de transformar mensajes legibles en mensajes cifrados de tal manera que esta transformación (cifrar) y su transformación inversa (descifrar) sólo pueden ser factibles con el conocimiento de una o más **claves** o **llaves**.

Cifrar

Conversión de un mensaje legible (texto plano o plaintext) a un dato sin sentido aparente (mensaje cifrado o ciphertext).

Esta conversión requiere del uso de una clave o key.

El emisor (creador del mensaje cifrado) y los destinatarios deben compartir tanto la técnica de descifrado como la clave a utilizar.

Sistemas de criptografía

Existen dos tipos básicos de criptosistemas modernos:

- Sistemas de cifrado simétrico (también conocidos como sistemas de clave secreta o clave privada)
- Sistemas de cifrado asimétrico (también conocidos como sistemas de clave pública)

Un concepto muy importante utilizado en criptografía moderna es el de las funciones de HASH.

Funciones de hash

- Son funciones que transforman una entrada y retornan una string de salida de longitud fija, conocido como "message digest".
- Propiedades de las funciones de hash:
 - Determinístico.
 - El mismo mensaje siempre da el mismo hash
 - No son reversibles.
 - No es posible obtener el mensaje original a partir del hash
 - Un pequeño cambio en un mensaje cambia completamente el valor del hash o message digest
 - Es rápido calcular el hash para un mensaje dado

Algunas funciones de hash

```
MD5 (128 bists, RFC 1321)
SHA-1 (160 bits, NIST FIPS 180-2)
SHA-2 (SHA-224, SHA-256, SHA-384, SHA-512)
SHA-3 (SHA-224, SHA-256, SHA-384, SHA-512)
```

MD5

```
$ echo "Ciberseguridad" | md5sum
0e6e40411263311de0fa956a73cb2130 -

$ echo "CiberSeguridad" | md5sum
d5c4752e4a718ee4ad8fc8ba81a833e2 -

$ ls -lh Parrot-security-5.0.1_amd64.iso
-rw-rw-r-- 1 nico nico 4,6G jul 14 14:01 Parrot-security-5.0.1_amd64.iso

$ md5sum Parrot-security-5.0.1_amd64.iso
74ca72645896f83a65acd35ade46b0e0 Parrot-security-5.0.1_amd64.iso
```

Usos de funciones de hash

Las funciones de HASH además de ser muy importantes en la criptografía moderna, otros usos por las cuales son muy requeridas son:

- Implementación de Firma digital (veremos mas adelante)
- Para implementar políticas de almacenamiento de contraseñas que:
 - Hasheen las contraseñas usando SALT.
 - Que compliquen los ataques de fuerza bruta

Problemas con hashes:

- Las debilidades en una función de hash están asociadas con la posibilidad de manipular las colisiones.
- La rapidez en la generación lo hace vulnerable a ataques de fuerza bruta

¿Cuál usar hoy para almacenar contraseñas?

Los recomendados actualmente por su robustez y dificultad son: Bcrypt, scrypt, PBKDF2 o Argon2.

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

Colisiones en función de HASH

Colisión de MD5

```
$md5sum ship.jpg
253dd04e87492e4fc3471de5e776bc3d ship.jpg

$ md5sum plane.jpg
253dd04e87492e4fc3471de5e776bc3d plane.jpg
```

https://natmchugh.blogspot.com/2015/02/create-your-own-md5-collisions.html