

Murata Chip-Level

Low-Power IC Radio Products

Ultra-Low-Power
Ultra-Small
Ultra-Performance

KEY BENEFITS

Wide range of frequencies

Ultra-low-power consumption with very long battery life

Field tested, proven proprietary technologies

Small form factor IC chipsets

Evaluation modules and developer kits with design assistant software

RoHS compliant

Murata has been offering short-range radios since the early 1990's when the company first introduced its patented amplifier sequenced hybrid (ASH) radio architecture. ASH technology integrates quartz SAW filtering plus frequency control components into a single custom integrated circuit (IC).

Murata's ASH architecture delivers up to 70% power savings over superheterodyne architecture. As a consequence, OEMs are able to extend the operating life of their products - particularly in medical implant and external medical devices where long operating life is essential. They are also embedded in many automotive, AMR, and consumer products.

Then in 2005, Murata introduced a line of RF ICs featuring an integrated PLL, IF and Baseband circuitry which significantly minimizes external component count and greatly simplifies and speeds up design cycles.

Murata has since expanded the company's line of RF ICs for applications in frequency ranges 300-510 MHz, 863-960 MHz, and 2.4 GHz; and in very small 5mm x 5mm, 4mm x 4mm, and even 3mmx 3mm packages.

As a result, Murata ICs are embedded in a variety of applications around the globe.

www.murata.com

FEATURES

 Broad range of devices and technology.

Murata offers a variety of technology options at the subsystem chip-level that includes transceivers, receivers and transmitters. Additionally, Murata offers a complementary range of SAW-based components.

- Integrated design. As a leader in RF technologies, Murata has developed a broad portfolio of short-range radios that deliver the largest link budget in the industry. System level functions in our SAW-based and RF IC short-range radios off-load functionality from the micro controller to reduce power and computation burden.
- Broad data rates. Murata SAW-based radios support data rates from 1 kb/s to 200 kb/s; RF ICs 1 kb/s to 1 Mb/s.
- **Broad frequency range support.** Our devices also support all license-free ISM frequency bands (2.4 GHz, 868 to 928 MHz, 300 MHz to 460 MHz) so you can design products that target a wide range of proprietary wireless industrial and consumer applications.
- **High sensitivity.** Depending upon the series of short-range radios, Murata has brought the latest in its proprietary technology or innovation to ensure best-inclass or highest in radio sensitivity for superior radio performance among all its radios.
- Low current consumption. Whether in operation, idle, and sleep mode, Murata short-range radios are engineered with key features to deliver long battery lifetime.
- Variety of output power. Transceiver devices support a power output range from 0 dBm to 10 dBm.
- Variety of modulations and technologies. Murata short-range radios feature OOK / ASK, Single-channel, FSK, multi-channel, FHSS, and DSSS.
- Smallest short-range radio packages. RF IC transceivers come in packages as small as 4 mm x 4 mm; RF IC transmitters come in 3 mm x 3 mm.

ASH RX & TR architecture

delivers up to

70% Power Savings

over superheterodyne

RX & TR architecture

SAW-Based

300 MHz - 1 GHz

OOK / ASK • Data Rates 1 kb/s - 1 Mb/s

- Provide robust operation for wireless control or data communication in applications where low power consumption, small size and low implementation costs are critical.
- Murata's patented Amplifier-Sequenced Hybrid (ASH) radio architecture called Virtual Wire™ integrates RF ICs with quartz SAW filtering plus frequency control components built with a custom integrated circuit.
- ASH architecture delivers ultra-low-power consumption and long range in a miniature-sized surface-mount package while also ensuring greater frequency stability, reliability and out-of-band rejection in a crowded frequency spectrum.
- ASH architecture also provides a low-cost radio by reducing external component count which also eases the RF engineering design task.
- The devices include provisions for both OOK and ASK modulation and can be configured to support a wide range of data rates and protocol requirements.

Add a microcontroller, RF SAW filter, crystal and a few passive components to create a

Complete, Robust Radio Function

RF ICs

300-510 MHz • 863-960 MHz • 2.4 GHz FSK / OOK • GFSK • Data Rates 1 kb/s - 1 Mb/s

- Optimized for RF performance and features a high-level of integration in a small form factor.
- Single chip, multi-channel, low-power RF transceivers, receivers, and transmitters.
- Ideal for low cost, high-volume, two-way and one-way short-range wireless applications in the 300 510 MHz, 863 960 MHz and 2.4 GHz frequency ranges.
- Incorporates a set of low-power states to reduce current consumption and extend battery life.
- Small size with low power consumption making them ideal for a wide variety of short-range radio applications.
- All critical RF and baseband functions are integrated in the radios, minimizing external component count and simplifying and speeding design cycles.

Short-Range Radio Selector Tool

Due to the broad selection of options in the Murata portfolio of RF ICs and SAW-based short-range radios, the following two-page selector tool is provided for catalog user convenience. The selector tool helps catalog users to quickly identify the RF IC and/or SAW-based radio(s) that meet initial criteria. Go to www.Murata.com to locate the radio by part number and download the data sheet.

Seven Key Questions (Match Question Number to Product Selection Table at Right)

Frequency:

In North or South America, if the application is for remote control choose 303 MHz or 433 MHz frequencies. If the application is for transmitting data choose 900 MHz.

In <u>Europe</u>, choose 433 MHz or 868 MHz for all applications.

In <u>Asia and Pan Pacific</u>, choose from any offered frequency. The RF power output is software programmable to meet the rules / regulations of a wide range of countries.

- Data rate and range: Choose the data rate and distance / line-of-sight range over which the remote control is to be activated or over which the data is to be transmitted.
- 3 RF Power and RX / TX Current: Is long battery life or transmission distance primarily important? The lower the power / current the longer the battery life. The longer the transmission range the higher the power / current required to transmit over extended ranges.

Also, is the application to be powered by main or by battery? If battery, then obtaining the lowest power / current is critical.

Modulation and Technology: Does the application require noise immunity or resistance to fading? Modulation enables transmission across a single channel (OOK/ASK) or multichannel (FSK) to affect desired level of noise immunity. FSK and FHSS offers highest immunity to interference.

Features: All SAW-based and RFIC short-range radios include a sleep mode feature to reduce power consumption.

<u>Duty Cycle</u>: Is programmable duty-cycle important (helps to regulate RF power output)? Murata 3rd generation SAW-based and RFIC short-range radios include fast wake up for duty-cycleing.

Clock Recovery: Is clock recovery needed within the RF device? Murata 3rd generation SAW-based and RFIC short-range radios have built-in clock recovery so that the microprocessor does not have to perform that function to minimize the processing overhead on the microprocessor. Murata 2nd generation short-range radios do not feature built-in clock recovery as they interface to encoders/decoders with built-in clock recovery.

Start Symbol: Murata's third generation SAW-based and RFIC short-range radios include a transmission start symbol option. The start symbol allows the receiver to automatically detect the start of a message, unloading this function from the host microprocessor. If automatic message detection by the radio is not mandatory, a second generation SAW-based radio can be used to achieve lowest receiver current.

- **6** Interface to microprocessor: Does your microprocessor have limited I/O? If so choose a short-range radio with serial (SPI) interface.
- **Package:** SAW-Based Short-range radios are encased in a rugged, self-shielding, metal / ceramic, hybrid package. RFIC Short-range radios are encased in smaller plastic packages.

Customize. Don't see what you need? Contact the sales rep or distributor nearest you to discuss your specifications. For certain high volume applications, Murata will customize the company's proprietary RF IC and SAW-based short-range radios to meet custom specifications in a variety of markets, such as medical / healthcare, industrial, automotive, and consumer.

Short-Range Radio Selector Tool

					1										2									3								4)			6)	6			7			
				Fr	eque	ency	У				[Data	a Ra	te			Ran	ge	Р	RF			TX					RX rrent					tion			Fea ture		Inte		Package				
																						0 + 10 dBm																						
	303.825 MHz	315 MHz	403.5 MHz	418 MHz	433.92 MHz	868.35 MHz	MHz	916.5 MHz		- s	32 kb/s - OOK 115 2 kb/s - OOK	N. S.	s/	115.2 kb/s		Up to 1 Mb/s	100 m Line-of-Sight 200 m Line-of-Sight	m 009	O dBm	4 dBm			6 mA		32 mA		2.7 mA	3.3 mA	4.3 mA	OOK / ASK	Single Channel	FSK	Multi-Channel	のの日上	Duty Cycle	Clock Recovery	Start Symbol	Digital	2 K 2 mm X 2 mm	X X	mm X 5	×	\times	11 mm X 9.5 mm
TDC402	۰					✓ v	(./	√		√	√	√				٦	√ ✓	RF	IC	TR ✓			IVEF	RS	√			√		√	√	./	√ ,	/ ,	✓	· 🗸	1		✓		✓	✓		
TRC103 TRC104					'	✓ v	✓ ✓	V	✓	•	V	· ·				/	✓ ✓	_	∨	_	√ ,	+	✓		•			v	√		•	-	_	v '	✓ ✓		∨		v v	✓	_	∨		
TRC105	✓	✓	✓	✓	✓					✓	✓	✓					√ √	✓		✓	√ ,	/			✓		✓			✓	✓	-	-	/	·		√		/	+	✓	✓		
	п															ľ			RF	IC	REC	ΕI\	VER												п									
TXC100	✓	✓	✓	✓	✓					✓	v	/				Т	✓ ✓			✓		1		✓				Т		✓	✓	✓	Т	Т	✓			✓	~					
																ı	SA	W-I	BAS	ED	TR	AN:	SCEI	VE	RS																			
TR1000								✓					✓	✓			✓		✓			_	✓			✓				✓	✓		T	T				✓				✓		
TR1001					,	✓							√	√		4	✓		√			-	√			√		_		√	√			_				√		+		√		
TR1004 TR1100							√	✓					✓	✓		/	√		✓			_	√			√				✓	✓ ✓			+				✓		+		✓		
TR3000					✓			<u> </u>					✓	✓			· ✓		✓			_	✓			✓				✓	✓			$^{+}$				✓				H		✓
TR3001		✓											✓	✓			✓		✓			_	√			✓				✓	✓							✓						✓
TR3002	✓			✓						_			✓	✓		4	✓ ✓	-	✓			-	✓ ✓			√				✓	√			-				✓						√
TR3003 TR3005	v		√							+			∨	∨		+	∨	\vdash	✓ ✓			-	∨ ✓			∨			+	∨	∨			+				∨				√		•
TR3100					✓								✓	✓	✓		✓		✓			_	✓			✓				✓	✓							✓						✓
TR7000					✓								✓	✓				√			✓			✓				~	_	✓	✓				✓	_	✓		/				✓	
TR7001 TR7002		✓		√							_		✓	✓		4		✓			√			√				· ·	_	✓	✓			+	✓	_	√	_	/	+			√	
TR7002	✓			•							+		√	∨		+		▼			√			▼					_	∨	√				√		v	_	/			-	• ✓	=
TR8000								✓					✓	✓				✓			✓			✓				v	/	✓	✓				✓	✓	✓		/				✓	
TR8001					,	✓							✓	✓		4		√	_		✓			✓				~	_	✓	✓			,		_	✓		/				✓	
TR8100								✓					✓	✓		d		√			√			✓				v		✓	✓			,	✓	✓	√	•					✓	
TYFOOO					-											ą				ED	TR/		SMIT	TE	RS					√	√							√						✓
TX5000 TX5001		✓			✓						+		✓	✓		+	✓		√			-	✓ ✓						+	✓	∨	+		+				√						✓
TX5002				✓									✓	✓			✓		· ✓			-	✓							√	√							✓						✓
TX5003	✓												√	✓		1	✓		√			_	√							√	✓	1						✓						✓
TX6000 TX6001					✓			✓		-	+		✓	√		+	✓		✓			-	√				\vdash		+	✓	✓	+	+	+				√					✓	
TX6001					1		√						∀			+	√		∨			_	√				\dashv			√	∨	+						√					✓	
																ľ	ş	ΑV	V- <u>B</u> /	\S	ED R	EC	EIVE	RS																				
RX5000					✓								✓	✓			✓									✓				✓								✓						✓
RX5001		✓											√	✓		1	✓	-								✓				√		_						✓						√
RX5002 RX5003	✓			✓							+	-	✓	√	\vdash	4	✓									√	\dashv			✓		+						✓ ✓						✓
RX5003	V				✓	H							∨	∨	\vdash	+	∨									∨	\dashv			∨	Н		+	+				∨				✓		•
RX5500					✓								✓				✓	-								✓				✓								✓						✓
RX5501		✓											✓			1	✓									✓				√								✓						✓
RX6000					1			✓				-	1	1		-	√					-				1			-	1		-	+	-				1					1	
RX6001 RX6004					✓		✓					-	✓	√		+	✓					+				√	\vdash		+	✓		+	+	+				✓ ✓					✓	
RX6501					√		¥						∨	•		\exists	∨	-								∨	\vdash			∨			+	+				∀					√	
10001													1.			-														1.														

WHY CHOOSE TRC103 / TRC105?

300-960 MHz with Data Rates of 200 kb/s

High Sensitivity of -112 mA

Current consumption in receive mode; receive current can be as low as 3.0 mA (TRC103) or 2.7 mA (TRC105)

Transmit at high data rate to reduce transmitter on time and save power

Utilizing the RSSI in receive mode, the transmit power can be adjusted to maintain the data link and minimize power consumption

5 mm X 5 mm Size

WHY CHOOSE TRC104?

2.4 GHz with Data Rates of 250 kb/s and 1 Mb/s

Transmit power up to 1 mW with receive current at 18 mA

GFSK with FHSS Capability

4 mm X 4 mm Size

RF ICs - Chip-Level Radios

Proprietary Transceivers and Transmitters

Murata RF ICs include PLLbased, single- or multi-channel transceivers and transmitters, evaluation boards and RF Design Assistant Software, servicing varied wireless applications in the marketplace and providing the following features:

- Integrated PLL, IF and Baseband Circuitry to minimize external component count and simplify / speed design-ins
- Support for single- and multiplechannel applications
- Wide frequency range
- · Wide operating supply voltage
- Frequency Hopping Spread Spectrum capability
- Very few external components required
- Small size plastic packages

	Transmitters										
	Part	Frequency	Data Rate	Output Power	Description	Case					
0	TXC100	300 - 450 MHz	100 kb/s	10 dBm	ASK/FSK	3 mm x 3 mm					

			Trar	nsceivers		
	Part	Frequency	Data Rate	Output Power	Description	Case
Ø	TRC103	863 — 960 MHz	200 kb/s	13 dBm	Multi-channel OOK/FSK	5 mm x 5 mm
•	TRC104	2.401 — 2.527 GHz	1 Mb/s	O dBm	Multi-channel GFSK	4 mm x 4 mm
Ø	TRC105	300 - 510 MHz	200 kb/s	13 dBm	Multi-channel OOK/FSK	5 mm x 5 mm

More Key Features

<u>Duty Cycle</u>. To help regulate RF power output and deliver ultra-lower-power performance.

<u>Clock Recovery</u>. The build-in clock recovery within Murata RF ICs minimizes processing overhead in the microprocessor. The microprocessor does not have to perform clock recovery function.

<u>Start Symbol</u>. The built-in transmission start symbol option is another function of the Murata RF ICs that minimizes processing overhead in the microprocessor. The start symbol allows the receiver to automatically detect the start of a message thus unloading this function from the host micro processor.

RF ICs - Chip-Level Radios Proprietary Transceivers and Transmitters

402.0-407.3 MHz

447.0-451.0 MHz

416.395-436.395 MHz

"Out-of-the-box"	ased PCs				
Part	Frequency	Data Rate	Output Power	Filter Part #	
DR-TRC103-868-DK	863-870 MHz	200 kb/s	13 dBm	RF3501E	Murata Filters are
DR-TRC103-915-DK	902-928 MHz	200 kb/s	13 dBm	RF2040E or SF2093E	designed for the correct frequency
DR-TRC103-950-DK	950-960 MHz	200 kb/s	13 dBm	RF3601E	in the associated
DR-TRC104-2400-DK	2.401-2.527 MHz	1 Mb/s	0 dBm	Not Needed	developer kits.
DR-TRC105-304-DK	303.325-307.3 MHz	200 kb/s	13 dBm	RF3602D	developer kits.
DR-TRC105-315-DK	310.0-319.5 MHz	200 kb/s	13 dBm	RF3603D	
DR-TRC105-345-DK	342.0-348.0 MHz	200 kb/s	13 dBm	RF3607D	Refer to this table
DR-TRC105-372-DK	365.0-381.0 MHz	200 kb/s	13 dBm	RF3608D	when ordering
DR-TRC105-390-DK	382 0-398 0 MHz	200 kh/s	13 dBm	RE3604D	

Developer Kits

production parts.

Each Developer Kit Contains:

• (2) DR Radio Boards

DR-TRC105-403-DK

DR-TRC105-434-DK

DR-TRC105-450-DK

- (2) DR Interface Boards
- (2) Dipole Antennas
- (2) USB 2.0 A/B Cables
- (2) Universal Wall-plug Power Supplies
- (2) AA Battery Packs
- (4) AA Batteries
- CD Containing: RF IC Design Assistant Software, KIT Firmware Source Code, User Guide

200 kb/s

200 kb/s

200 kb/s

13 dBm RF3605D

13 dBm RF3606D

13 dBm RF3609D

DR-TRC103-DK DR-TRC105-DK Series

BUY YOUR DEV KIT NOW

Use for initial

evaluation of Murata RF IC radio

technology.

Prototype applications that

will be using

Murata RF IC

radios.

Evaluations Kits											
Part	Frequency	Data Rate	Output Power	Filter Part #							
DR-TRC103-868-EV	863-870 MHz	200 kb/s	13 dBm	RF3501E							
DR-TRC103-915-EV	902-928 MHz	200 kb/s	13 dBm	RF2040E or SF2093E							
DR-TRC103-950-EV	950-960 MHz	200 kb/s	13 dBm	RF3601E							
DR-TRC104-2400-EV	2.401-2.527 MHz	1 Mb/s	0 dBm	Not Needed							
DR-TRC105-304-EV	303.325-307.3 MHz	200 kb/s	13 dBm	RF3602D							
DR-TRC105-315-EV	310.0-319.5 MHz	200 kb/s	13 dBm	RF3603D							
DR-TRC105-345-EV	342.0-348.0 MHz	200 kb/s	13 dBm	RF3607D							
DR-TRC105-372-EV	365.0-381.0 MHz	200 kb/s	13 dBm	RF3608D							
DR-TRC105-390-EV	382.0-398.0 MHz	200 kb/s	13 dBm	RF3604D							
DR-TRC105-403-EV	402.0-407.3 MHz	200 kb/s	13 dBm	RF3605D							
DR-TRC105-434-EV	416.395-436.395 MHz	200 kb/s	13 dBm	RF3606D							
DR-TRC105-450-EV	447.0-451.0 MHz	200 kb/s	13 dBm	RF3609D							
DR-TXC100-315	315 MHz	100 kb/s	10 dBm								
DR-TXC100-433	433.92 MHz	200 kb/s	10 dBm								

DR-TXC100 Evaluation

DR-TRC103 / DR-TRC105

Series Evaluation Kit

Each Evaluation Kit Contains:

- (2) DR Evaluation Radio Boards
- (2) Dipole Antennas
- (2) AA Battery Packs
- (4) AA Batteries
- User Guides

Board

Evaluation Board in the DR-TRC104-2400-EV

TOP MARKETS

Utilities (power, gas, water)

Consumer Electronics and Residential

Commercial and Retail

Automotive

Medical / Healthcare

TOP APPLICATIONS

Automated Meter Reading

Building Automation

Security Systems / Controlled Entry

Two-Way RKE

Industrial Controls

Asset Tracking / RFID

Sports & Recreation Equipment

Low-Power Two-Way Telemetry Systems

Patient Monitoring / Medial Alert Pendants

RF IC Development Boards

WHY CHOOSE THIRD GEN?

Long range at 600 meter line-of-sight transmission

Sleep mode current 200 nA extends battery life

SPI interface

WHY CHOOSE SECOND GEN?

Lowest power consumption in industry / smaller battery and overall footprint (TX current of 6 mA and RX current of 1.8 mA)

Adjustable data rates from 115.2 kb/s to 1 Mb/s

SAW-Based Short-Range Radios: Chip-Level Radios

Proprietary ASH Technology; Transceivers, Transmitters and Receivers

THIRD GENERATION

- Longer range: 600 meters line-of-sight
- Very low power with excellent receiver sensitivity
 - TX current of 32 mA
 - RX current of 4.3 mA
- Data rates: 115.2 kb/s
- Adjustable Transmit Power up to 10 mW
- Sleep Mode Current 200 nA
- SPI Interface
- Additional features include DSSS, Clock Recovery, and Start Symbol

SECOND GENERATION

- Short range: 200 meters line-of-sight
- Ultra low-power consumption with very long batter life
 - TX current of 6 mA
 - RX current of 1.8 mA
- Data rates: 115.2 kb/s to 1 Mb/s
- Adjustable Transmit Power up to 0 dBm
- Sleep Mode Current 700 nA
- Digital Interface

	THIRD GENERATION													
BS		Part	Frequency	Max Data Rate	Output Power	Case	Dev Kit Part #							
Ε.	0	TR7000	433.92 MHz	115.2 kb/s	10 mW	10.7 mm X 6.8 mm	DR7000-DK							
	0	TR7001	315 MHz	115.2 kb/s	10 mW	10.7 mm X 6.8 mm	DR7001-DK							
CE	0	TR7002	418 MHz	115.2 kb/s	10 mW	10.7 mm X 6.8 mm	DR7002-DK							
S	6	TR7003	303.825 MHz	115.2 kb/s	10 mW	10.7 mm X 6.8 mm	DR7003-DK							
A	0	TR8000	916.5 MHz	115.2 kb/s	10 mW	10.7 mm X 6.8 mm	DR8000-DK							
Œ	0	TR8001	868.35 MHz	115.2 kb/s	10 mW	10.7 mm X 6.8 mm	DR8001-DK							
-	0	TR8100	916.5 MHz	115.2 kb/s	10 mW	10.7 mm X 6.8 mm	DR8100-DK							

				SECOND GEN	ERATION		
		Part	Frequency	Max Data Rate	Output Power	Case	Dev Kit Part #
ဟ	1	TR1000	916.5 MHz	115.2 kb/s	1 mW	10.2 mm X 7.06 mm	DR2000-DK
E S	0	TR1001	868.35 MHz	115.2 kb/s	1 mW	10.2 mm X 7.06 mm	DR1201-DK
J/	0	TR1004	914 MHz	115.2 kb/s	1 mW	10.2 mm X 7.06 mm	
EIV	0	TR1100	916.5 MHz	1 Mb/s	1 mW	10.2 mm X 7.06 mm	DR3300
2	0	TR3000	433.92 MHz	115.2 kb/s	1 mW	10.8 mm X 9.52 mm	DR1300-DK
S	0	TR3001	315 MHz	115.2 kb/s	1 mW	10.8 mm X 9.52 mm	DR3101
A	0	TR3002	418 MHz	115.2 kb/s	1 mW	10.8 mm X 9.52 mm	
α	0	TR3003	303.825 MHz	115.2 kb/s	1 mW	10.8 mm X 9.52 mm	
-	0	TR3005	403.5 MHz	115.2 kb/s	1 mVV	10.2 mm X 7.06 mm	
	1	TR3006HS	314 MHz	115.2 kb/s	1 mW	10.7 mm X 6.8 mm	
	Ø	TR3100	433.92 MHz	576 kb/s	1 mW	10.8 mm X 9.52 mm	
ERS	0	TX5000	433.92 MHz	115.2 kb/s	1 mW	10.8 mm X 9.52 mm	DR4100
	0	TX5001	315 MHz	115.2 kb/s	1 mVV	10.8 mm X 9.52 mm	DR4101
ΙE	0	TX5002	418 MHz	115.2 kb/s	1 mVV	10.8 mm X 9.52 mm	
TRANSMITT	0	TX5003	303.825 MHz	115.2 kb/s	1 mW	10.8 mm X 9.52 mm	DR4103
8	0	TX6000	916.5 MHz	115.2 kb/s	1 mW	10.2 mm X 7.06 mm	DR4000
¥	0	TX6001	868.35 MHz	115.2 kb/s	1 mW	10.2 mm X 7.06 mm	DR4001
Ë	0	TX6004	914 MHz	115.2 kb/s	1 mVV	10.2 mm X 7.06 mm	
	0	RX5000	433.92 MHz	115.2 kb/s		10.8 mm X 9.52 mm	DR5100
	0	RX5000H	433.92 MHz	115.2 kb/s		10.2 mm X 7.06 mm	
	0	RX5001	315 MHz	115.2 kb/s		10.8 mm X 9.52 mm	DR5101
ဟ	Ø	RX5002	418 MHz	115.2 kb/s		10.8 mm X 9.52 mm	
1	0	RX5003	303.825 MHz	115.2 kb/s		10.8 mm X 9.52 mm	DR5103
VE	0	RX5005H	433.42 MHz	115.2 kb/s		10.2 mm X 7.06 mm	
Ш	0	RX5500	433.92 MHz	19.2 kb/s		10.8 mm X 9.52 mm	
O	0	RX5501	315 MHz	19.2 kb/s		10.8 mm X 9.52 mm	
R	0	RX5502H	434.52 MHz	115.2 kb/s		10.2 mm X 7.06 mm	
	0	RX6000	916.5 MHz	115.2 kb/s		10.2 mm X 7.06 mm	DR5000
	0	RX6001	868.35 MHz	115.2 kb/s		10.2 mm X 7.06 mm	DR5001
	0	RX6004	914 MHz	115.2 kb/s		10.2 mm X 7.06 mm	
	0	RX6501	868.35 MHz	19.2 kb/s		10.2 mm X 7.06 mm	

RF UART Integrated Circuits									
	Part								
	IC1000	Data / Clock Extraction	k04-057						
	IC1003	RF UART IC	vq65						

SAW-Based Short-Range Radios: Chip-Level Radios

The Murata SAW-based short-range radios feature Murata's proprietary amplifier sequenced hybrid (ASH) architecture; integrated RF ICs with quartz SAW filtering plus frequency control components built with a single custom integrated circuit.

The ASH architecture delivers ultra-low-power consumption and long range in a miniature sized surface-mount package while also ensuring greater frequency stability, reliability and out-of-band rejection in a crowded frequency spectrum.

SAW-Based Developer Kits "Out-of-the-box" Operation Between Two Windows-based PCs

	Out of the		don Dot
Part	Frequency	Data Rate	Output Power
DR1200A-DK	916.5 MHz	2 kb/s	1 mW
DR1200-DK	916.5 MHz	22.5 kb/s	1 mW
DR1201A-DK	868.35 MHz	2 kb/s	1 mW
DR1201-DK	868.35 MHz	22.5 kb/s	1 mW
DR1300A-DK	433.92 MHz	2 kb/s	1 mW
DR1300-DK	433.92 MHz	22.5 kb/s	1 mW
DR2000-DK	916.5 MHz	115.2 kb/s	1 mW
DR7000-DK	433.82 MHz	115.2 kb/s	10 mW
DR7001-DK	315 MHz	115.2 kb/s	10 mW
DR7002-DK	418 MHz	115.2 kb/s	10 mW
DR7003-DK	303.825 MHz	115.2 kb/s	10 mW
DR8000-DK	916.5 MHz	115.2 kb/s	10 mW
DR8001-DK	868.35 MHz	115.2 kb/s	10 mW
DR8100-DK	916.5 MHz	115.2 kb/s	10 mW

0

Each Developer Kit Contains:

- (2) DR Development Boards
- (2) USB 2.0 Cables
- (2) 9 V Batteries
- (2) tuned, SMA Antennas
- Program CD with Documentation
- · Configuration Software

	SAW-Base	ed Transceive	er Evaluatio	on Kits - '	Th
	Part	Frequency	Data Rate	Output Power	Ea •
	DR7000-EV	433.92 MHz	115.2 kb/s	10 mW	•
0	DR7001-EV	315 MHz	115.2 kb/s	10 mW	
0	DR7003-EV	303.825 MHz	115.2 kb/s	10 mW	
0	DR8000-EV	916.5 MHz	115.2 kb/s	10 mW	S
	DR 8001-EV	868.35 MHz	115.2 kb/s	10 mW	3/
9	DR8100-EV	916.5 MHz	115.2 kb/s	10 mW	

ird Generation ASH Technology ONLY ach Developer Kit Contains:

(1) DR Module

(1) Interface Board w/ Microprocessor

AW Radio Development Module Installed on an Evaluation Board with Microprocessor

Ø	DR8100-EV	916.5 MHz	115.2 kb/s	10 mW	Evaluation Board With Wildrop
	s	AW-Based R	adio Develo	opment N	Modules for Selected TR, TX, RX
	Part	Frequency	Data Rate	Output Power	Each Developer Kit Contains: • (1) DR Module
0	DR3000	916.5 MHz	2.4 kb/s	1 mW	(1) Interface Board w/Microprocess
0	DR3000-1	916.5 MHz	115.2 kb/s	1 mW	(1) litterface Board W/Microprocess
0	DR3001	868.35 MHz	2.4 kb/s	1 mW	
0	DR3100	433.92 MHz	2.4 kb/s	1 mW	
0	DR3100-1	433.92 MHz	115.2 kb/s	1 mW	10.2 mm X 7.06
0	DR3101	315 MHz	2.4 kb/s	1 mW	Surface Mou
O	DR3300	916.5 MHz	1 Mb/s	1 mW	Package
0	DR4000	916.5 MHz	115.2 kb/s	1 mW	1 donage
0	DR4001	868.35 MHz	115.2 kb/s	1 mW	
0	DR4100	433.92 MHz	115.2 kb/s	1 mW	
0	DR4101	315 MHz	115.2 kb/s	1 mW	
0	DR4103	303.825 MHz	115.2 kb/s	1 mW	
•	DR5000	916.5 MHz	19.2 kb/s	1 mW	10.8 mm X 9.52 mm
0	DR5001	868.35 MHz	19.2 kb/s	1 mW	Surface Mount
0	DR5100	433.92 MHz	19.2 kb/s	1 mW	Package
0	DR5101	315 MHz	19.2 kb/s	1 mW	•
0	DR5103	303.825 MHz	19.2 kb/s	1 mW	
0	DR7000	433.92 MHz	115.2 kb/s	10 mW	•
0	DR7001	315 MHz	115.2 kb/s	10 mW	10.7 mm X 6.8
•	DR7003	303.825 MHz	115.2 kb/s	10 mW	Surface Mo
0	DR8000	916.5 MHz	115.2 kb/s	10 mW	Package
0	DR8001	868.35 MHz	115.2 kb/s	10 mW	rackage
_					

- (1) DR Module
- (1) Interface Board w/Microprocessor

10.2 mm X 7.06 mm Surface Mount Package

10.7 mm X 6.8 mm Surface Mount Package

TOP MARKETS

Medical / Healthcare (Implants)

Automotive

Utilities (Power, Gas and Water)

Consumer Electronics and Residential

Commercial and Retail

TOP APPLICATIONS

Pacemakers and Defibrillators

Insulin Pumps, Monitors

Patient Monitoring / Medial Alert Pendants

Security Systems / Controlled Entry

Wireless Thermostats / Metering

Window Controls (Blinds / Drapes)

Auto Theft Deterrent Systems

Two-Way RKE

Asset Tracking / RFID

Sports & Recreation Equipment

Low-Power Two-Way Telemetry Systems

ASH RX & TR architecture delivers up to

70% Power Savings

over superheterodyne RX & TR architecture

Murata SAW-based short-range radios feature excellent suppression of output harmonics and generate virtually no RF emissions ...

...thus making them easy to certify to shortrange (unlicensed) radio regulations.

916.5 MHz

DR8100

Global locations

Note