

Experiência 2 – Projeto de Circuitos Combinacionais – Portas Lógicas

Alunos				
Número Nome Turma				
22.120.021-5 João Pedro Rosa Cezarino 020				
Professor: Isaac Jesus				

Professor: Isaac Jesus

Data da Realização:	05/03/2021
---------------------	------------

Sumário

1.	Descrição dos Objetivos Experimentais:	3
2.	Diagrama Esquemático-Lógico do Sistema Digital:	4
3.	Resultados dos Procedimentos Experimentais:	5
4.	Conclusões:	9

1. Descrição dos Objetivos Experimentais:

Este experimento tem o objetivo de exercitar os conceitos aprendidos nas aulas teóricas de Sistemas Digitais. Aqui serão praticados conceitos como: Tensão, Correntes, Níveis Lógicos Digitais, Portas Lógicas, Simplificação de Expressões Booleanas, Construção de Tabelas-Verdade e Montagem de Circuitos em geral.

O Ambiente de Simulação FALSTAD foi a plataforma utilizada para realizar o experimento. Esse Simulador foi desenvolvido por Paul Falstad para fins educacionais e aplica-se a inúmeros circuitos eletrônicos.

Ao longo da experiência, diversos circuitos foram montados e selecionados, permitindo a compreensão de diversos conceitos em níveis diferentes. Foram realizados testes com portas lógicas dos mais variados tipos: AND, OR, XOR, Inversora, entre outras.

Por fim, Tabelas-Verdade foram preenchidas para fixar os conceitos de níveis lógicos e portas lógicas e aprimorar o conhecimento sobre o conteúdo em geral. Também foram respondidas algumas questões referentes á Expressões Booleanas e a respeito dos circuitos montados.

- 2. Diagrama Esquemático-Lógico do Sistema Digital:
- 1. <u>Circuito lógico com as portas: Inversora, AND, OR e XOR de duas entradas</u>:

2. <u>Circuito lógico com as portas: AND, OR e XOR de três entradas</u> :

Curso de Ciência da Computação

CE3512 – LABORATÓRIO DE SISTEMAS DIGITAIS RELATÓRIO EXPERIMENTAL

3. <u>Circuito lógico da Função F</u>:

$$F = (\overline{A} \cdot \overline{B}) + (C.D) + (A \oplus C)$$

3. Resultados dos Procedimentos Experimentais:

• Circuito lógico com as portas: Inversora, AND, OR e XOR de duas entradas :

1. Porta NOT (Tabela 1):

A	S
NL1	NL0
NL0	NL1

2. Porta AND (Tabela 2):

В	A	S
NL0	NL0	NL0
NL0	NL1	NL0
NL1	NL0	NL0
NL1	NL1	NL1

3. Porta OR (Tabela 3):

В	A	S
NL0	NL0	NL0
NL0	NL1	NL1
NL1	NL0	NL1
NL1	NL1	NL1

4. Porta XOR (Tabela 4):

В	A	S
NL0	NL0	NL0
NL0	NL1	NL1
NL1	NL0	NL1
NL1	NL1	NL0

• Circuito lógico com as portas: AND, OR e XOR de três entradas :

1. Porta AND (Tabela 5):

С	В	A	S
NL0	NL0	NL0	NL0
NL0	NL0	NL1	NL0
NL0	NL1	NL0	NL0
NL0	NL1	NL1	NL0
NL1	NL0	NL0	NL0
NL1	NL0	NL1	NL0
NL1	NL1	NL0	NL0
NL1	NL1	NL1	NL1

2. Porta OR (Tabela 6):

C	В	A	S
NL0	NL0	NL0	NL0
NL0	NL0	NL1	NL1
NL0	NL1	NL0	NL1
NL0	NL1	NL1	NL1
NL1	NL0	NL0	NL1
NL1	NL0	NL1	NL1
NL1	NL1	NL0	NL1
NL1	NL1	NL1	NL1

3. Porta XOR (Tabela 7):

С	В	A	S
NL0	NL0	NL0	NL0
NL0	NL0	NL1	NL1
NL0	NL1	NL0	NL1
NL0	NL1	NL1	NL0
NL1	NL0	NL0	NL1
NL1	NL0	NL1	NL0
NL1	NL1	NL0	NL0
NL1	NL1	NL1	NL1

• <u>Circuito lógico da Função F</u>:

1. Tabela Verdade da Função F (Tabela 8):

ENTRADAS				SAÍDA
D	C	В	A	F
NL0	NL0	NL0	NL0	NL1
NL0	NL0	NL0	NL1	NL1
NL0	NL0	NL1	NL0	NL0
NL0	NL0	NL1	NL1	NL1
NL0	NL1	NL0	NL0	NL1
NL0	NL1	NL0	NL1	NL0
NL0	NL1	NL1	NL0	NL1
NL0	NL1	NL1	NL1	NL0
NL1	NL0	NL0	NL0	NL1
NL1	NL0	NL0	NL1	NL1
NL1	NL0	NL1	NL0	NL0
NL1	NL0	NL1	NL1	NL1
NL1	NL1	NL0	NL0	NL1
NL1	NL1	NL0	NL1	NL1
NL1	NL1	NL1	NL0	NL1
NL1	NL1	NL1	NL1	NL1

4. Conclusões:

Quando comparamos as portas lógicas de 3 entradas com as de 2 entradas, descobre-se que o comportamento das portas lógicas de 3 entradas dependem unicamente do tipo de porta escolhida. A porta "AND" segue um padrão onde só é possível obter uma saída "NL1" a partir do momento em que "A","B" e "C" estão em "NL1". Na porta "OR" quando acrescenta-se uma nova porta, o mesmo padrão é seguido: onde houver 1 entrada "NL1" a saída será "NL1" e a única possibilidade disso não ocorrer é se todas as entradas estiverem em "NL0"(nesse caso a saída será "NL0"). Já na porta "XOR", os valores "A","B" e "C" deverão ser somados para descobrir a saída, quando a soma for ímpar a saída deverá ser 1 e quando a soma for par o valor será 0.

Por fim, a função F pode ser simplificada utilizando os Teoremas de Simplificação. Segue abaixo a expressão simplificada:

$$F = \overline{C}.A + C.\overline{A} + \overline{C}.\overline{B} + D.A$$
