1. AB: RSA - Vertraulichkeit und Authentizität

☑ Zur Verschlüsselung berechnet der Sender $c = m^e \mod n$ ☑ Zur Entschlüsselung berechnet der Empfänger $m = c^d \mod n$

✓ Zum Signieren berechnet der Sender
 ✓ Zur Verifikation berechnet der Empfänger
 S = m d mod n
 M = s e mod n

1.1. Aufgabe: Alice:verschlüsselt→ Bob: signiert → Ted:verifiziert

- 1. Alice schickt einen verschlüsselten Text an Bob.
- 2. Bob entschlüsselt diesen Text und sendet ihn signiert an Ted.
- 3. Ted verifiziert den Text.
- 4. Ted sagt Alice was sie Bob 'sagen' wollte.

Alice	Bob	Ted		
verschlüsseln →		verifizieren		
	signieren →			
 empfängt v. Bob pub_bob verschlüsselt einen Originaltext sendet verschlüsselten Text an Bob 	 erzeugt Schlüssel sendet pub_bob an Ted sendet pub_bob an Alice empfängt v. Alice den verschlüsselten Text entschlüsselt den Text signierten diesen entschlüsselten Text von Alice sendet den signierten Text an Ted 	 empfängt v. Bob pub_bob empfängt v. Bob den signierten Text verifiziert den Text vergleicht den verifizierten Text mit dem Originaltext v. Alice 		

Hilfsmittel:

http://web2.0rechner.de/

Informatik 1/2

17	Rohi	Schlüssel	erzeugen
1.2.	DUD.	oci ilussei	CIZCUUCII

- 1. Wähle zwei große Primzahlen mit p!=q \rightarrow p= ______ , q= _____
- 2. Berechne den RSA Modul n: \rightarrow n=_____
- 3. Berechne phi(n): \rightarrow phi(n)= _____
- 4. Wähle den Verschlüsselungs-Exponenten e: → e=_____
- 5. Welche Bedingungen gelten für die Wahl von e? →
- 6. Berechne den Entschlüsselungs-Exponenten d: → d=_____

1.3. Bob: sendet public-key an Alice und Ted

1.4. Alice: verschlüsselt und schickt c an Bob

m (Buchst.)			
m (kodiert)			
c=me mod n			

1.5. Bob: entschlüsselt

Cipehr: c			
m=c ^d mod n			
m (Buchst.)			

1.6. Bob: signiert und schickt s an Ted

m (Buchst.)			
m (kodiert)			
s=m ^d mod n			

1.7. Ted: verifiziert und sagt Alice was sie an Bob geschickt hat

signierter Text: s			
m (kodiert) m=s ^e mod n			
m (Buchst.)			

Informatik 2/2