實作及評估以AUC當作分支準則的分類樹

實作方法來源-Ferri, C., Flach, P., & Hernandez-Orallo, J. (2002). Learning decision trees using the area under the roc curve. Proc. ICML

> 陳育婷Yu Ting Chen 2018/10/30 3rd meeting report

目錄

- 1.Review 論文提出的分支準則
- 2.介紹用於實作之分類樹程式
- 3.介紹用於實作之資料集
- 4.實作結果呈現
- 5.結論

1.Review論文提出的分支準則

1.Review論文提出的分支準則

$$r_i = \frac{E_i^+}{E_i^+ + E_i^-}$$

Definition 2 (Optimal labellings). Given a decision tree for a problem with 2 classes formed by n leaves $\{l_1, l_2, ..., l_n\}$ ordered by local positive accuracy, i.e, $r_1 \ge r_2, ..., r_{n-1} \ge r_n$, we define the set of optimal labellings $\Gamma = \{S_0, S_1, ..., S_n\}$ where each labelling S_i ($0 \le i \le n$) is defined as: $S_i = \{A^1_i, A^2_i, ..., A^n_i\}$ where $A^i_i = (j, +)$ if $j \le i$ and $A^i_i = (j, -)$ if j > i.

Theorem 6. Given a decision tree for a problem of 2 classes with n leaves, the convex hull of the 2^n possible labellings is formed by exactly those ROC points corresponding to the set of optimal labellings Γ , removing repeated leaves with the same local positive accuracy.

一 計算 一顆決策樹 2ⁿ 種可能的標籤方式(labellings) 之convex hull 相當於將葉節點根據local positive accuracy 排序

Figure 1. ROC points and convex hull of set Λ .

	+	_	S_0	S_1	S_2	S_3
Leaf 1	5	1	-	+	+	+
Leaf 2	4	2	-	-	+	+
Leaf 3	3	5	-	-	-	+

Definition 7 (AUC). Let Γ be the set of optimal labellings of a decision tree with n leaves, then the AUC metric is defined as

AUC(
$$\Gamma$$
) = $\sum_{i=1..n} A(P_{i-1}, P_i) = \sum_{i=1..n} \frac{E_i^-}{x_t} \cdot \frac{2y_{i-1} + E_i^+}{2y_t} = \frac{1}{2x_t y_t} \sum_{i=1..n} E_i^- \left[\left(\sum_{j=1..i-1} 2E_j^+ \right) + E_i^+ \right]$

Definition 8 (AUCsplit). Given several splits s_j , each one formed by n_j leaves $\{l^j_1, l^j_{2,...}, l^j_{nj}\}$, then the best split is the one that maximises:

$$AUCsplit(s_j) = \sum_{i=1..n_i} A(P_{i-1}^j, P_i^j)$$

2.介紹用於實作之分類樹程式

2.介紹用於實作之分類樹程式

● 程式模板來源

- ✓ 程式語言: Python
- ✓ 提供者: Google Developers

https://github.com/randomforests/tutorials/blob/master/decis ion_tree.ipynb

// 大只 1 立 1 1 土 。	<u> </u>	
● 程式修 改添加	原始	修改添加
分支數目	二元分支	屬質型變數:分支數目為水準數目 屬量型變數:維持二元分支
停止分支 條件	1.節點樣本 變數值一樣	2.節點樣本目標類別屬於同一類 3.節點樣本個數 < 3
分支及切割 準則	1.Gini係數	2.論文方法-該分支所有節點之AUC計算 3.Gain Ratio
結果評估	無	1.4折交叉驗證 2.Index: accuracy, true positive (tp),rate false positive(fp)rate, precision, F1-measure
分類域值標 準	節點中比例 最高的類別	為了目標類別分佈不平衡(class imblance problem)而修正

2.介紹用於實作之分類樹程式

● 分支準則:二元→多元

(0,0)-(fp rate, tp rate)-(1,1)

AUC=(tp rate-fp rate+1)/2

=average of positive and negative accuracy

● 分支及切割準則:Gain Ratio,Gini,AUC

$$egin{aligned} egin{aligned} 1. & Ent(D) = -\sum_{k=1}^{|y|} p_k \ log_2 p_k & Gain(D,a) = Ent(D) - \sum_{v=1}^{V} rac{|D^v|}{|D|} Ent(D^v) \ & Gain_ratio = rac{Gain(D,a)}{IV(a)}, \ where \ IV(a) = -\sum_{v=1}^{V} rac{|D^v|}{D} log_2 rac{|D^v|}{D} \end{aligned}$$

$$\textbf{2.} \ \ Gini(D) = \sum_{k=1}^{|y|} \sum_{k' \neq k} p_k p_{k'} = 1 - \sum_{k=1}^{|y|} p_k^2 \ \ Gini_index(D,a) = \sum_{v=1}^{V} \frac{|D^v|}{|D|} Gini(D^v)$$

3. AUC(
$$\Gamma$$
) = $\frac{1}{2x_t y_t} \sum_{i=1..n} E_i^{-1} \left[\left(\sum_{j=1..i-1} 2E_j^+ \right) + E_i^+ \right]$

結果評估: accuracy, tp rate, fp rate,precision,F1-measure

Fig. 1. Confusion matrix and common performance metrics calculated from it.

分類域值選擇標準: class imbalance problem-調整分類方法規則性

Number of Negative Instances: Positive Instances = a : b \rightarrow if $P(+|x) > \frac{b}{a+b}$, then assign+, else assign-

-Post Oprerative Patient Data

Browse Through:	8 Data Sets					Table View L	ist View
Default Task - <u>Undo</u>	<u>Name</u>	<u>Data Types</u>	Default Task	Attribute Types	# Instances	# Attributes	<u>Year</u>
Classification (8) Regression (2) Clustering (0) Other (5)	Abalone	Multivariate	Classification	Categorical, Integer, Real	4177	8	1995
Attribute Type - <u>Undo</u> Categorical (14) Numerical (41) Mixed (8)	Acute Inflammations	Multivariate	Classification	Categorical, Integer	120	6	2009
Data Type Multivariate (8) Univariate (0)	$oxed{Aa}_{oldsymbol{A}oldsymbol{a}}$ Artificial Characters	Multivariate	Classification	Categorical, Integer, Real	6000	7	1992
Sequential (0) Time-Series (0) Text (0) Domain-Theory (0)	Chess (King-Rook vs. King)	Multivariate	Classification	Categorical, Integer	28056	6	1994
Other (0) Area Life Sciences (4) Dhavior Sciences (4)	Contraceptive Method Choice	Multivariate	Classification	Categorical, Integer	1473	9	1997
Physical Sciences (0) CS / Engineering (2) Social Sciences (0) Business (0) Game (1)	Mechanical Analysis	Multivariate	Classification	Categorical, Integer, Real	209	8	1990
Other (1) # Attributes - Undo Less than 10 (8)	Post-Operative Patient	Multivariate	Classification	Categorical, Integer	90	8	1993
10 to 100 (25) Greater than 100 (2) # Instances	Teaching Assistant Evaluation	Multivariate	Classification	Categorical, Integer	151	5	1997

Less than 100 (1) 100 to 1000 (3) Greater than 1000 (4)

-Post Oprerative Patient Data

Abstract: Dataset of patient features

Data Set Characteristics:	Multivariate	Number of Instances:	90	Area:	Life	
Attribute Characteristics:	Categorical, Integer	Number of Attributes:		Date Donated	1993-06-01	
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	81672	

Source:

Creators:

Sharon Summers, School of Nursing, University of Kansas

Medical Center Kansas City KS 66160

Medical Center, Kansas City, KS 66160 Linda Woolery, School of Nursing, University of Missouri,

Columbia, MO 65211

Donor:

Jerzy W. Grzymala-Busse (jerzy '@' cs.ukans.edu) (913)864-4488

Data Set Information:

The classification task of this database is to determine where patients in a postoperative recovery area should be sent to next. Because hypothermia is a significant concern after surgery (Woolery, L. et. al. 1991), the attributes correspond roughly to body temperature measurements.

Results:

-- LERS (LEM2): 48% accuracy

-Post Oprerative Patient Data

Attribute Information:8 attributes,90 instances

- 1.L-CORE (patient's internal temperature in C): high (> 37), mid (>= 36 and <= 37), low (< 36)
- 2.L-SURF (patient's surface temperature in C): high (> 36.5), mid (>= 36.5 and <= 35), low (< 35)
- 3.L-O2 (oxygen saturation in %): excellent (>= 98), good (>= 90 and < 98), fair (>= 80 and < 90), poor (< 80)
- 4.L-BP (last measurement of blood pressure): high (> 130/90), mid (<= 130/90 and >= 90/70), low (< 90/70)
- 5.SURF-STBL (stability of patient's surface temperature): stable, mod-stable, unstable
- 6.CORE-STBL (stability of patient's core temperature) stable, mod-stable, unstable
- 7.BP-STBL (stability of patient's blood pressure) stable, mod-stable, unstable

- Class:Distribution: I (2) S (24) A (64) decision ADM-DECS (discharge decision) :
- I (patient sent to Intensive Care Unit)
- S (patient prepared to go home)
- A (patient sent to general hospital floor)
- ['mid', 'low', 'good', 'high', 'unstable', 'stable', 'stable', 10, 'A']

118.COMFORT (patient's perceived comfort at discharge : measured as integer ∈ [0, 20]

4.實作結果呈現

4.實作結果呈現-分類樹demo:最後1折(第4折)

-# of training data : 66, # of testing data:22

```
# Demo:Find the best question to ask first for ourdataset.
num,branch,col,cutpoint,best_gain, best_question = find_best_split(training_data,data)
print(num,branch,col,cutpoint,best_gain,best_question)
num,branch,col,cutpoint,best_gain, best_question = find_best_splitratio(training_data,data)
print(num,branch,col,cutpoint,best_gain,best_question)
num,branch,col,cutpoint,best_gain, best_question = find_best_splitauc(training_data,data)
print(num,branch,col,cutpoint,best_gain,best_question)

False 3 0 ['high', 'low', 'mid'] 0.022721464806949088 What's the L-CORE of instances?
True 2 7 10 0.08894064707447578 Is COMFORT >= 10?
False 3 1 ['low', 'high', 'mid'] 0.6054421768707483 What's the L-SURF of instances?
```

```
def build_treeauc(rows,data):
    num,branch,column,cutpoint,gain,question = find_best_splitauc(rows,data)
    # Base case: no further gain(3 stopping criterions met,or gain is truly 0)
    if gain == 0:
        return Leaf(rows)
```

```
my treeauc = build treeauc(training data,data)
print tree(my treeauc)
What's the L-SURF of instances?
-->1ow
  Predict {'A': 12, 'S': 6}
-->high
  Predict {'S': 1, 'A': 11}
-->mid
 Is COMFORT >= 15?
  --> True:
    Predict {'A': 6, 'S': 2}
  --> False:
   What's the L-CORE of instances?
    -->high
      Predict {'A': 3}
    -->low
      Predict {'S': 3, 'A': 2}
    -->mid
      Predict {'A': 15, 'S': 6}
```

```
Actual: A. Predicted: A Actual: A. Predicted: A Actual: A. Predicted: A Actual: S. Predicted: A Actual: A. Predicted: S Actual: A. Predicted: A
```

Actual: S. Predicted: A

Actual: A. Predicted: A

Actual: A. Predicted: A Actual: S. Predicted: A Actual: S. Predicted: A Actual: S. Predicted: A

Accuracy: 0.45454545454545453. TP rate: 0.8571428571428571. FP rate: 0.73333333333333. Precision: 0.35294117647058826. F1:

Actual: A. Predicted: A

4.實作結果呈現-分類樹demo fold1

4.實作結果呈現-分類樹demo fold1

4.實作結果呈現-分類樹demo fold2

4.實作結果呈現-結果評估

Gain Ratio

AUC

0.511(0.094)

0.387(0.079)

R-rpart package

: 54% (4 fold)

1	Gini	Gain Ratio	AUC	2	Gini	Gair Rati		AUC	3	Gini	Gain Ratio	AUC	4	Gir	ni	Gain Ratio	AUC
Accu- racy	0.682	0.636	0.318		0.409	0.40	9	0.455		0.5	0.5	0.455		0.27	72	0.5	0.318
tp rate	0.25	0.25	0.75		0.2	0.2		0.2		0.75	0.75	0.125		0.57	71	0.286	0.429
fp rate	0.222	0.278	0.778		0.529	0.52	9	0.471		0.643	0.643	0.357		0.86	67	0.4	0.733
Preci- sion	0.20	0.167	0.176		0.1	0.1		0.111		0.4	0.4	0.167		0.23	35	0.25	0.214
F1	0.056	0.05	0.071		0.033	0.03	3	0.036		0.13	0.13	0.036		0.08	33	0.067	0.071
Testing data:S:4,A:18					Testing data:S:4,A:18				Testing data:S:8,A:14			Testing data:S:8,A:14				\:14	
LERS (LEM2)		Inde	dex Accuracy		у	tp rate			fp rate		precision			F1			
: 48%		Gini	Gini		0.466(0.172)		0.443(0.263)		3)	0.449(0.181)		0.234(0.125)		25)	0.076 (0.042)		2)

0.372(0.255)

0.276(0.281)

0.463(0.158)

0.585(0.203)

0.229(0.129)

0.131(0.049)

0.07(0.042)

0.053(0.021)

5.結論

- 1. 論文提出的AUC分支準則實際上可以實行
- 2. 不管是屬質、屬量型變數均可以處理
- 3. 此次實作是根據UCI上的1筆資料集

- t test with level of confidence 0.9
- ✓ Accuracies : 8 wins/13 ties /4 loses
- ✓ AUC: 11 wins/11 ties/ 3 loses

Table 3. Accuracy and AUC for Gain Ratio and AUCsplit.

	GAIN	Ratio	AUC	BETTER?		
SET	Acc.	AUC	Acc.	AUC	Acc.	AUC
1	90.7±6.6	83.6±11.8	96.5±3.9	94.3±6.7	✓	✓
2	57.7±6.5	61.1±7.9	56.0±6.2	56.7±8.0	X	X
3	97.6±7.8	97.4±8.5	99.1±1.1	99.1±1.4	\checkmark	\checkmark
4	78.9±4.6	79.8±7.2	77.6±4.7	76.9 ± 6.5	X	X
5	95.8±2.6	95.2±3.1	95.8±2.6	95.2±3.1		
6	1±0	1±0	1±0	1±0		
7	92.5±4.1	91.5±6.1	92.9±3.7	94.7±4.6		\checkmark
8	72.1 ± 10.2	61.3±16.9	69.5±10.6	59.3±16.2	X	
9	92.0 ± 4.7	90.4±7.0	89.6±5.0	89.7±6.7	X	
10	62.6±8.8	64.2±10.6	64.0±9.0	65.8±10.1		
11	73.3 ± 5.7	76.6 ± 6.9	72.5±5.1	76.7 ± 6.0		
12	99.1±2.3	99.5±1.6	99.2±0.6	99.5±0.6		
13	68.2 ± 10.2	67.4±11.9	71.0 ± 10.4	73.6 ± 11.0	\checkmark	\checkmark
14	95.4±2.5	96.3±2.5	96.2±2.5	97.6 ± 2.1	\checkmark	\checkmark
15	86.4 ± 14.2	85.1±17.9	83.4 ± 14.0	63.5 ± 22.3		X
16	98.0 ± 10.9	84.6 ± 13.1	98.6±0.8	94.8±5.6	\checkmark	\checkmark
17	95.2±1.4	92.6±3.5	96.7±1.2	95.1±3.1	\checkmark	\checkmark
18	71.4 ± 12.4	61.5 ± 20.8	68.9 ± 11.6	59.8 ± 21.3		
19	95.0±1.8	98.2±0.9	94.8±1.9	98.1±1.0		
20	1±0	1±0	1±0	1±0		
21	99.6±0.3	99.6 ± 0.5	99.6 ± 0.2	99.4±0.6		
22	96.8±0.9	93.3±4.7	96.8±0.2	95.1±6.9		\checkmark
23	70.4±3.9	72.2±4.9	71.1±3.6	73.3 ± 4.0		\checkmark
24	99.5±0.2	98.9±1.4	99.5±0.1	99.3±0.7	\checkmark	\checkmark
25	98.9±1.8	94.2±19.4	99.5±0.3	98.5±1.8	\checkmark	\checkmark
M.	87.49	85.78	87.55	86.24		