

Trabalho Prático- Avaliação Empírica de Algoritmos de Ordenação

Alunos em Graduação da Universidade Federal de Ouro Preto do curso Ciência da Computação:

Halliday Gauss Costa dos Santos

Guilherme Augusto de Deus Maciel

Área: Projeto de Análise de Algoritmos.

Professor: Anderson Almeida Ferreira

Resumo

Este trabalho apresenta a análise empírica e comparação dos algoritmos de ordenação InsertionSort, MergeSort e RadixSort utilizando o teste estatístico t, assim como o funcionamento e análise de complexidade dos mesmos através das funções de complexidade, e gráficos alimentados com o tempo médio de execução desses algoritmos sobre diversas instâncias.

1 - Introdução:

O objetivo desse trabalho é fazer uma análise empírica e uma comparação estatística dos métodos de ordenação InsertionSort, MergeSort e RadixSort visando determinar qual desses é o melhor algoritmo para uma instância de tamanho "n", e qual é o comportamento dos mesmos quando o tamanho da instância aumenta.

Primeiramente será apresentado como é o funcionamento dos algoritmos InsertionSort, MergerSort e RadixSort, a implementação e a função de complexidade de cada um no melhor caso, no caso médio e no pior caso. Em seguida será feito a análise das funções de complexidade e serão estabelecidas as notações assintóticas e uma breve comparação entre os algoritmos.

Segundamente serão geradas 20 instâncias distintas de tamanho 'n'. Os tamanhos que 'n' irá assumir são 100, 1.000,10.000, 100.000 e 1.000.000. Portanto, são geradas 100 instâncias as quais serão testadas nos 3 algoritmos implementados. Após o teste de cada instância os tempos de execução são coletados e armazenados em uma tabela por algoritmo, e após completar as tabelas os gráficos relativos a cada tabela serão construídos utilizando o tempo médio com intervalo de 95% de confiança. Uma outra comparação entre os algoritmos será feita de maneira visual, ou seja, através de uma análise do gráfico que reflete o intervalo dos tempos de execução coletados.

Por fim, é feita uma análise estatística através do teste de estatística t pareado com 95% de confiança visando encontrar evidências estatísticas de qual será o melhor método para cada conjunto de 20 instâncias de tamanho 'n', ou seja, será concluído se um algoritmo é significativamente melhor que o outro para instâncias de tamanho 'n'.

2- Descrição dos Métodos e Análise de Complexidade

2.1 - InsertionSort

O InsertionSort é um algoritmo de ordenação encima de um vetor que se baseia em pegar um elemento do vetor por vez e trocar com os anteriores desde que não seja menor que eles.

Primeiramente o algoritmo considera que o primeiro elemento do vetor esteja ordenado, e a partir do segundo elemento é conferido se o mesmo é menor que o elemento anterior, se for menor ele troca de lugar com esse elemento e repete a troca de elementos com o próximo elemento anterior desde que seja menor ou que já não esteja no início do vetor, caso contrário o elemento a ser ordenado fica nessa posição mesmo e o próximo elemento do vetor(nesse caso o terceiro elemento) passará pelo mesmo processo. Isso se repete até chegar no último elemento do vetor e o posicionar corretamente. A figura abaixo apresenta esse algoritmo na linguagem Python:

Figura 1. Algoritmo InsertionSort em Python

Percebe-se que se o vetor já estiver ordenado o código dentro do 'while' nunca será executado, pois o elemento a ser ordenado, na figura acima chamado de 'chave', nunca será menor que o anterior.

Também é possível observar que na linha 2 têm-se um 'for' que repete n-1 vezes, e na linha 3, 4 e 8 totalizam 3 instruções de atribuição dentro do escopo do 'for'. Na linha 6 e 7 têm-se duas instruções de atribuição dentro do escopo do 'while' que dependem da posição dos elementos do vetor para ser executadas, considerando que essas duas instruções são executada 'ti' vezes, e sabendo que

existem três instruções de comparação no 'while' e que o 'while' repete sempre uma vez a mais que as instruções dentro de seu escopo, então a linha 5 é executada dentro de uma interação do 'for', 'ti'+1 vezes.

Linha	Quantidade de Instruções	Quantas vezes é executada
2	1	n-1
3	1	n-1
4	1	n-1
5	3	ti+1 para cada i de 1 a n-1
6	1	ti para cada i de 1 a n-1
7	1	ti para cada i de 1 a n-1
8	1	n-1

Figura 2. Quantidade de instruções que são executadas pelo InsertionSort

Fazendo o somatório dessas instruções é obtido:

$$T(n) = 4 \cdot (n-1) + \sum_{i=1}^{n-1} 3 \cdot (ti + 1) + 2 \cdot ti$$

$$T(n) = 7 \cdot n - 7 + 5 \sum_{i=1}^{n-1} ti$$

Onde T(n) é a função que calcula a quantidade de instruções que serão realizadas para ordenar um vetor de tamanho 'n' utilizando o InsertionSort.

No melhor caso o vetor está ordenado e o escopo do 'while' não é executado nenhuma vez, ou seja, 'ti' = 0 então T(n) = 7*n -7. Portanto, T(n) é $\Theta(n)$ no melhor caso, pois,

$$1*n \le 7*n -7 \le 8*n$$
, para $n > 10$.

Para calcular o caso médio deve-se calcula o 'ti' médio, sabendo que 'ti' pode ser executado 0, 1, 2 até i-1 vezes. Fazendo o somatório de (0+1+2+...+i-1) que é igual a (i-1) * i/2 dividindo pela quantidade de termos que é 'i' é obtida a média (i-1)/2. Portanto:

$$T(n) = 7 \cdot n - 7 + \frac{5}{4}n \cdot (n-1)$$

$$T(n) = 7 \cdot n - 7 + 5\sum_{i=1}^{n-1} \frac{(i-1)}{2}$$

$$T(n) = \frac{5n^2 + 23n - 28}{4}$$

Sendo assim T(n) é $\Theta(n^2)$ no caso médio, pois 1*n^2 <= T(n) <= 28*n^2, para n >5.

O pior caso acontece quando é necessário trocar um elemento com todos os anteriores, ou seja, 'ti' = i-1. Então:

$$T(n) = 7n - 7 + 5 \sum_{i=1}^{n-1} i - 1$$

$$T(n) = 7n - 7 + 5 \cdot \left(\frac{n(n-1)}{2} - n + 1\right)$$

$$T(n) = \frac{5n^2 - n - 4}{2}$$

No pior caso $T(n) \in \Theta(n^2)$ pois $1*n^2 <= T(n) <= 7n^2$, para n > 10.

Observando as funções de complexidade do melhor, pior e caso médio é possível perceber que o InsertionSort executa menos operações quando o vetor está ordenado, e no caso médio são executadas menos operações que o pior caso.

Figura 3. Comparação entre o melhor, pior e caso médio do InsertionSort.

2.2 - MergeSort

O MergeSort é um de algoritmo de ordenação por comparação do tipo dividirpara-conquistar. Sua ideia consiste em Dividir (divide o problema em vários subproblemas e resolve esses subproblemas através da recursividade) e Conquistar (após todos os subproblemas terem sido resolvidos ocorre a conquista que é a união das resoluções dos subproblemas).

Os passos do Merge são:

- Dividir: Calcula o ponto médio do vetor. Custo igual a Θ(1). E faz duas chamadas recursivas uma para cada parte do vetor.
- Essa divisão é feita novamente recursivamente para cada chamada recursiva até que sobre um único elemento que por ser único já estar ordenado.
- Conquistar ou Combinar: Recursivamente resolve dois subproblemas, cada um de tamanho n/2. O algoritmo após dividir todo o vetor vai subir recursivamente intercalando os subvetores, ou seja, faz uma combinação entre subvetores que tem custo Θ(n), já que a ordenação desses subvetores é feita comparando os elementos de um subvetor e inserindo os elementos de maneira ordenada em um vetor que terá um tamanho maior. A comparação começa no começo de cada vetor e o menor elemento é inserido no vetor auxiliar e o ponteiro do vetor que teve seu elemento retirado avança em uma posição. Esse procedimento é feito até que tenha um único vetor maior ordenado.

O código em Python abaixo apresenta esse algoritmo:

```
if len(lista):
    if len(lista) > 1:

meio = len(lista) // 2

listadaesquerda = lista[meio]
listadadireita = lista[meio:]

mergesort(listadaesquerda)
mergesort(listadadireita)

i = 0
    j = 0
    k = 0

while i < len(listadaesquerda) and j < len(listadadireita):

if listadaesquerda[i] < listadadireita[j]:
    lista[k] = listadaesquerda[i]
    i += 1
else:
    lista[k] = listadadireita[j]
    j += 1
    k += 1

while j < len(listadaesquerda[i]
    i += 1
    k += 1

while j < len(listadaesquerda[i]
    i += 1
    k += 1

while j < len(listadaesquerda[i]
    i += 1
    k += 1</pre>
```

Figura 4. Algoritmo MergeSort em Python

Esse código faz exatamente o que foi supracitado, inicialmente, são feitas duas chamadas recursivas, em seguida, serão feitas mais duas chamadas recursiva por recursão até que divida o vetor em 1 elemento (linhas de 2 a 10), e em seguida é feita a intercalação de dois subvetores para cada par de chamada recursiva que tem custo 'n' pois percorre ambos subvetores para intercalar (linhas de 16 a 35). Considerando as linhas de 2 a 8 como $\Theta(1)$, o custo desse algoritmo a função de complexidade desse algoritmo é:

Θ(1), se n = 1, ou seja, 1 elemento só tem custo 1 do 'if' da linha 2.

 2*(T/2) + Θ(n), se n>1, pois para cada par de chamada recursiva vai ter uma intercalação de tamanho 'n', e o valor de 'n' depende da posição na recursão.

Resolvendo a equação de recorrência:

$$T(1) = \theta(1)$$

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + c \cdot n$$

$$T\left(\frac{n}{2}\right) = 2 \cdot T\left(\frac{n}{2^2}\right) + c \cdot \frac{n}{2}$$

$$T(n) = 2 \cdot \left(2 \cdot T\left(\frac{n}{2^2}\right) + c \cdot \frac{n}{2}\right) + c \cdot n$$

$$T(n) = 2^2 \cdot T\left(\frac{n}{2^2}\right) + 2 \cdot c \cdot n$$

$$T(n) = 2^2 \cdot \left(2 \cdot T\left(\frac{n}{2^3}\right) + c \cdot \frac{n}{2^2}\right) + 2 \cdot c \cdot n$$

$$T(n) = 2^3 \cdot T\left(\frac{n}{2^3}\right) + 3 \cdot c \cdot n$$

$$T(n) = 2^k \cdot T\left(\frac{n}{2^k}\right) + k \cdot c \cdot n$$

Mas como essa divisão de n/2^k acontece até que n/2^k seja 1, ou seja, não tenha mais elementos no vetor para dividir, então k tende a lg(n).

$$T(n) = 2^{\lg(n)} \cdot T\left(\frac{n}{2^{\lg(n)}}\right) + \lg(n) \cdot c \cdot n$$

$$T(n) = n \cdot \theta(1) + c \cdot lg(n) \cdot n$$

$$T(n) = \theta(n) + c \cdot lg(n) \cdot n$$

$$T(n) = \theta(n \cdot lg(n))$$

Portanto, o algoritmo MergeSort tem complexidade $\Theta(n^*lg(n))$. Cabe ressaltar que independentemente da posição dos elementos dos vetores o MergeSort vai executar os mesmos passos de recursão e intercalação, portanto esse algoritmo tem complexidade $\Theta(n^*lg(n))$ no melhor caso, pior caso e no caso médio.

Figura 5. Função de Complexidade do MergeSort.

2.3 - RadixSort

O RadixSort é um algoritmo de ordenação que utiliza uma estratégia de ordenação por dígitos ou caracteres de uma palavra ou um número. Em ordenação de números, por exemplo, é pego o último caractere de cada número, ou seja, o dígito menos significativo, em seguida é usado o CoutingSort para ordenar os números, portanto, é criado um vetor com 10 posições e cada número ficará na posição relativa ao seu último dígito, o número 10 por exemplo fica na posição 0, o

número 15 na posição 5, e o número 9 na posição 9, feito isso os números são recolhidos na ordem que ficaram e tudo isso é feito novamente mas com base no próximo caractere, ou seja, o número 10 fica na posição 1 junto com o número 15, e o número 9 como não tem um segundo dígito fica na posição 0. Isso é feito até que tenha analisado todos os caracteres dos números. Cabe ressaltar que o procedimento para ordenar palavras é o mesmo, porém o vetor auxiliar utilizado para fazer a contagem deve ter o tamanho do alfabeto. A figura abaixo apresenta esse algoritmo na linguagem Python:

```
MAX_CHARS = 28
def radix_sort(lista):
    tamanho_maximo = max([len(palavra) for palavra in lista])
    for pos in range(tamanho_maximo * 1, 1, -1):
        baldes = [list() for y in range(MAX_CHARS)]
       for palavra in lista:
            balde = numero_do_balde(palavra, pos)
            baldes[balde] += [palavra]
       lista = sum(baldes, [])
   return lista
def numero_do_balde(palavra, pos):
    if pos >= len(palavra): return 0
    ch = palavra[pos]
    if ch >= 'A' and ch <= 'Z': return ord(ch) - ord('A') + 1
    if ch >= 'a' and ch <= 'z': return ord(ch) - ord('a') + 1
    return MAX_CHARS - 1
```

Figura 6. Algoritmo RadixSort em Python

É possível perceber que existem dois loops, um 'for' mais externo que é repetido de acordo o tamanho da maior palavra ou número a ser ordenado, e um 'for' mais interno que é repetido pela quantidade de palavras a serem ordenadas.

Considerando 'k' como o tamanho da maior palavra e 'n' como a quantidade de palavras, o algoritmo tem complexidade k*n. E é fácil notar que o procedimento de ordenação é o mesmo independente da forma em que os dados a serem ordenados estão no vetor. Portanto a complexidade desse algoritmo é Θ(n*k) no melhor, pior e

caso médio. No entanto o melhor caso, dado uma entrada, seria quando k=1, ou seja, é passado um vetor a ser ordenado com palavras de tamanho 1, e a complexidade nesse caso seria $\Theta(n)$, e se o tamanho da maior palavra em um vetor for do tamanho da quantidade de palavras a serem ordenadas esse algoritmo terá a complexidade $\Theta(n^2)$, mas isso não interfere muito no resultado, já que esse cenário quase não é visto. O pior caso também pode acontecer quando se tem ordenação de pouco valores.

Figura 7. Análise da complexidade do RadixSort através de um controle deslizante.

2.3 - Comparação

Observando as funções de complexidade é possível perceber que o RadixSort tem um comportamento um pouco imprevisível porque 'k' pode ser variável, mas não tão imprevisível visto que o pior caso é difícil de acontecer, portanto deve ser feita uma análise estatística para saber se o RadixSort é melhor que o MergeSort. Em relação ao InsertionSort, tudo indica que esse algoritmo executará um maior número de instruções, pois sua função de complexidade é a maior e geralmente os dados não estão ordenados.

3- Análise Experimental

Os algoritmos foram colocados para ordenar 20 instâncias distintas geradas aleatoriamente para cada valor de 'n', sendo que 'n' pode valer 100, 1.000, 10.000, 100.000 e 1.000.000, o que totaliza 100 instâncias por algoritmo. Os tempos de execução das instâncias foram coletados e armazenados em tabelas, uma por algoritmo, em seguida foi calculado com 95% de confiança a distribuição da média utilizando a distribuição t para cada valor de 'n', e é gerado um gráfico de média para cada algoritmo. Por fim uma análise comparativa é feita.

3.1 InsertionSort

Logo abaixo é apresentado uma tabela que contém o tempo de execução do InsertionSort em segundos para as várias instâncias utilizadas no experimento, assim como as médias de cada instância e seus respectivos desvio padrão e intervalos de confiança das médias em 95%:

	Tamanho das Instâncias					
Instâncias	100	1000	10000	100000	1000000	
	t(s)	t(s)	t(s)	t(s)	t(s)	
1	0,0010	0,1020	8,2060	916,7140	84263,9851	
2	0,0000	0,0970	8,1030	910,5780	82903,5078	
3	0,0010	0,1950	8,2760	894,9730	82663,6088	
4	0,0000	0,0960	8,6220	908,8570	82576,9549	
5	0,0010	0,0950	9,3050	997,6330	82363,9656	
6	0,0000	0,0940	8,2320	914,7620	81926,5561	
7	0,0010	0,0910	8,3400	853,2014	82213,3740	
8	0,0010	0,0750	8,2080	831,7764	82099,3656	
9	0,0010	0,0810	8,2230	828,5472	82057,8030	
10	0,0000	0,0800	8,5880	805,4436	81876,5988	
11	0,0010	0,0770	8,4100	849,7632	82028,6074	
12	0,0000	0,0780	9,1930	881,4468	81880,6127	
13	0,0010	0,0770	8,3950	826,0200	81715,0813	
14	0,0010	0,0750	8,2800	799,2348	82111,7727	
15	0,0010	0,0750	8,2680	816,8628	82264,3070	
16	0,0010	0,0750	8,0220	800,3424	82000,8827	
17	0,0020	0,0800	8,4910	826,0200	81771,6156	
18	0,0010	0,0770	8,9250	829,2180	81953,5556	
19	0,0010	0,0800	9,4600	897,2964	81962,4957	
20	0,0020	0,0750	8,7290	805,5216	81839,3474	
Medias	0,00085001	0,088749969	8,513800001	859,7105836	82223,69989	
S	0,000587184	0,026578392	0,410731741	53,02729436	570,6112366	
Intervalo	(0.001,0.001)	(0.076,0.101)	(8.322,8.706)	(834.893,884.528)	(81956.646,82490.754)	

Figura 8. Tabela dos tempos de execução do InsertionSort

Pela tabela é possível perceber que à medida que o tamanho da instância aumenta o InsertionSort demora muito para ordenar os dados, e que para instâncias pequenas a ordenação é feita de maneira eficiente. Isso também é possível de observar no gráfico abaixo que contém o intervalo de tempo médio com 95% de confiança para cada tamanho 'n' de instância:

Figura 9. Gráfico do tempo médio de execução do InsertionSort.

Cabe ressaltar que a partir da implementação feita o InsertionSort demora em média várias horas para ordenar um vetor de 1 milhão de elementos.

3.2 MergeSort

Adiante é apresentado uma tabela que contém o tempo de execução do MergeSort em segundos para as várias instâncias utilizadas no experimento, assim como as médias de cada instância e seus respectivos desvio padrão e intervalos de confiança da média em 95%:

	Tamanho das Instâncias					
Instâncias	100	1000	1000 10000		1000000	
	t(s)	t(s)	t(s)	t(s)	t(s)	
1	0,0000	0,0070	0,0730	1,0560	13,3536	
2	0,0010	0,0070	0,0760	0,9700	13,9252	
3	0,0000	0,0090	0,0880	0,9520	15,9470	
4	0,0010	0,0080	0,1030	1,3140	13,7164	
5	0,0000	0,0050	0,0730	0,9770	13,7072	
6	0,0010	0,0060	0,0730	0,9640	13,0416	
7	0,0000	0,0050	0,0750	0,8580	14,4612	
8	0,0010	0,0050	0,0910	0,9048	13,2288	
9	0,0000	0,0060	0,0740	0,8580	12,5424	
10	0,0010	0,0050	0,0760	0,8580	13,4784	
11	0,0000	0,0060	0,0930	1,0296	12,2460	
12	0,0010	0,0050	0,0720	0,8736	13,4238	
13	0,0000	0,0050	0,0730	0,8736	12,6828	
14	0,0000	0,0060	0,0760	0,8424	12,9636	
15	0,0000	0,0060	0,0730	0,8580	16,0230	
16	0,0010	0,0050	0,0740	0,8580	13,4250	
17	0,0010	0,0050	0,0960	0,8580	14,7734	
18	0,0010	0,0060	0,0930	0,8736	13,4450	
19	0,0010	0,0060	0,0720	0,8580	13,4432	
20	0,0000	0,0050	0,0740	0,8580	14,1656	
Médias	0,0005	0,005900025	0,079900014	0,924730015	13,69966011	
5	0,000512989	0,001119138	0,009898939	0,111796209	0,988976218	
Intervalo	(0, 0.001)	(0.005,0.006)	(0.075,0.085)	(0.872,0.977)	(13.237,14.163)	

Figura 10. Tabela dos tempos de execução do MergeSort

Observando a tabela é possível perceber que à medida que o tamanho da instância aumenta o MergeSort não demora muito tempo para ordenar os dados. É um algoritmo eficiente. Isso também é possível de observar no gráfico abaixo que contém o intervalo de tempo médio com 95% de confiança para cada tamanho 'n' de instância:

Figura 11. Gráfico do tempo médio de execução do MergeSort

O MergeSort se mostrou um algoritmo eficiente tanto para instâncias pequenas quanto para instâncias grandes, isso acontece porque esse algoritmo realiza somente n*log(n) comparações resultando um poucas iterações para chegar ao resultado esperado.

3.3 RadixSort

Abaixo é apresentado uma tabela que contém o tempo de execução do RadixSort em segundos para as várias instâncias utilizadas no experimento, assim como as médias de cada instância e seus respectivos desvio padrão e intervalos de confiança da média em 95%:

	Tamanho das Instâncias					
Instâncias	100	1000	10000	100000	1000000	
	t(s)	t(s)	t(s)	t(s)	t(s)	
1	0,0010	0,0060	0,0440	0,6480	9,2508	
2	0,0000	0,0040	0,0420	0,6230	8,8512	
3	0,0010	0,0050	0,0440	0,6310	9,3212	
4	0,0000	0,0030	0,0590	0,8110	9,2196	
5	0,0010	0,0040	0,0470	0,6340	8,6580	
6	0,0000	0,0040	0,0440	0,6140	9,5004	
7	0,0000	0,0030	0,0440	0,5616	9,1416	
8	0,0000	0,0040	0,0450	0,5616	8,4552	
9	0,0020	0,0030	0,0470	0,5616	8,2212	
10	0,0000	0,0030	0,0450	0,5460	7,9716	
11	0,0010	0,0030	0,0520	0,6084	9,0168	
12	0,0000	0,0030	0,0480	0,5460	9,9996	
13	0,0000	0,0030	0,0590	0,6396	8,9388	
14	0,0010	0,0030	0,0470	0,5772	9,0168	
15	0,0010	0,0030	0,0440	0,5616	9,1728	
16	0,0000	0,0030	0,0430	0,5616	8,9086	
17	0,0000	0,0030	0,0590	0,5616	10,0564	
18	0,0000	0,0030	0,0490	0,5460	8,7868	
19	0,0000	0,0030	0,0450	0,5616	8,7054	
20	0,0000	0,0030	0,0450	0,5616	9,9668	
Médias	0,000399995	0,003449988	0,047599959	0,595850003	9,057980049	
5	0,000598246	0,000825594	0,005413478	0,061569626	0,549746899	
Intervalo	(0,0.001)	(0.003,0.004)	(0.045,0.05)	(0.567, 0.625)	(8.801,9.315)	

Figura 12. Tabela dos tempos de execução do RadixSort

A partir dos dados coletados acima percebe-se que em poucos segundos o RadixSort ordena os dados e leva em média 9 segundos para ordenar 1 milhão de elementos, portanto é um algoritmo muito eficiente. Isso também é possível de observar no gráfico abaixo que contém o intervalo de tempo médio com 95% de confiança para cada tamanho 'n' de instância:

Figura 13. Gráfico do tempo médio de execução do RadixSort

A partir da análise do gráfico acima é notável que o RadixSort se mostrou um algoritmo eficiente tanto para instâncias pequenas quanto para instâncias grandes, isso acontece porque esse algoritmo realiza somente n*k comparações resultando um poucas iterações para chegar ao resultado esperado.

3.4- Comparação

Após a execução das diversas instâncias de diversos tamanhos é possível perceber que para instâncias de tamanho menor igual a 10000, não faz muita diferença em qual algoritmo utilizar para ordenar, pois o tempo de execução é bem similar entre os mesmos. Porém o InsertionSort a partir de instâncias de tamanho maior que 10000 mostrou resultados muito inferiores em relação ao MergeSort e RadixSort, demorando minutos ou horas para ordenar um vetor enquanto o MergeSort e o RadixSort ordenam em segundos.

A partir da análise dos resultados obtidos também é possível perceber que para instâncias acima de 10000 elementos o RadixSort se mostrou mais eficiente que o MergerSort, porém a diferença é de apenas alguns segundos. A partir de uma análise estatística dos dados coletados no experimento utilizando o teste t com 95% de confiança será possível concluir com certeza qual é o melhor algoritmo para cada tamanho de instância.

5 – Análise Estatística a partir do teste t pareado com 95% de confiança

O Teste Estatístico T, é utilizado para encontrar o algoritmo que obteve estatisticamente o melhor desempenho. Como as mesmas instâncias são usadas para todos os algoritmos para cada valor de 'n', é possível realizar o teste T pareado para todos os valores de 'n'.

Para N = 100

Comparando InsertionSort com MergeSort:

```
Media A 0.00085000000000000001

Media B 0.000500000000000000000001

Desvio Padrao A 0.0005871429486123998

Desvio Padrao B 0.000512989176042577

Desvio Padrao das Diferencas 0.00017434086394791458

Graus de Liberdade: 39.25698611980413

Qual o valor mesmo?2.023

T = 2.023

( -2.691567766631268e-06 : 0.0007026915677666311 )
```

Figura 14. Comparação entre InsertionSort e MergeSort(N=100)

Como a comparação dos algoritmos InsertionSort e MergeSort utilizando o teste estatístico t resultou em um intervalo que contém o valor 0, então houve um empate estatístico.

Comparando InsertionSort com RadixSort:

Figura 15. Comparação entre InsertionSort e RadixSort(N=100)

Como a comparação dos algoritmos InsertionSort e RadixSort utilizando o teste estatístico t resultou em um intervalo que não contém o valor 0, então o algoritmo com menor média de tempo de execução é o melhor para instâncias de tamanho 100, ou seja, o RadixSort é o melhor algoritmo comparado ao InsertionSort em instâncias de tamanho 100.

Comparando MergeSort com RadixSort:

Figura 16. Comparação entre MergeSort e RadixSort(N=100)

Como a comparação dos algoritmos MergeSort e RadixSort utilizando o teste estatístico t resultou em um intervalo que contém o valor 0, então houve um empate estatístico.

Para N = 1000

Comparando InsertionSort com MergeSort:

```
Media A 0.0887499999999998

Media B 0.005900000000000002

Desvio Padrao A 0.02657833506329624

Desvio Padrao B 0.0011192102478745306

Desvio Padrao das Diferencas 0.00594836333084904

Graus de Liberdade: 19.074475895981017

T = 2.093

( 0.07040007554853293 : 0.09529992445146702 )
```

Figura 17. Comparação entre InsertionSort e MergeSort(N=1000)

Como a comparação dos algoritmos InsertionSort e MergeSort utilizando o teste estatístico t resultou em um intervalo que não contém o valor 0, então o algoritmo com menor média de tempo de execução é o melhor para instâncias de tamanho 1000, ou seja, o MergeSort é o melhor algoritmo comparado ao InsertionSort em instâncias de tamanho 1000.

Comparando InsertionSort com RadixSort:

```
Media A 0.0887499999999998

Media B 0.0034500000000000017

Desvio Padrao A 0.02657833506329624

Desvio Padrao B 0.0008255779474818966

Desvio Padrao das Diferencas 0.0059459628054849565

Graus de Liberdade: 19.04052373898058

T = 2.093

( 0.07285509984811997 : 0.09774490015188 )
```

Figura 18. Comparação entre InsertionSort e RadixSort(N=1000)

Como a comparação dos algoritmos InsertionSort e RadixSort utilizando o teste estatístico t resultou em um intervalo que não contém o valor 0, então o algoritmo com menor média de tempo de execução é o melhor para instâncias de tamanho 1000, ou seja, o RadixSort é o melhor algoritmo comparado ao InsertionSort em instâncias de tamanho 1000.

Comparando MergeSort com RadixSort:

Figura 19. Comparação entre MergeSort e RadixSort(N=1000)

Como a comparação dos algoritmos MergeSort e RadixSort utilizando o teste estatístico t resultou em um intervalo que não contém o valor 0, então o algoritmo com menor média de tempo de execução é o melhor para instâncias de tamanho 1000, ou seja, o RadixSort é o melhor algoritmo comparado ao MergeSort em instâncias de tamanho 1000.

Para N = 10000

Comparando InsertionSort com MergeSort:

```
Media A 8.5138
Media B 0.0799
Desvio Padrao A 0.4107317731484676
Desvio Padrao B 0.009898963263100361
Desvio Padrao das Diferencas 0.09186908591777988
Graus de Liberdade: 19.024395626115176
T = 2.093
( 8.241618003174086 : 8.626181996825913 )
```

Figura 20. Comparação entre InsertionSort e MergeSort(N=10000)

Como a comparação dos algoritmos InsertionSort e MergeSort utilizando o teste estatístico t resultou em um intervalo que não contém o valor 0, então o algoritmo com menor média de tempo de execução é o melhor para instâncias de tamanho 10000, ou seja, o MergeSort é o melhor algoritmo comparado ao InsertionSort em instâncias de tamanho 10000.

Comparando InsertionSort com RadixSort:

```
Media A 8.5138
Media B 0.0476
Desvio Padrao A 0.4107317731484676
Desvio Padrao B 0.005413433583031636
Desvio Padrao das Diferencas 0.09185039323183165
Graus de Liberdade: 19.007295890425336
T = 2.093
( 8.273957126965778 : 8.658442873034224 )
```

Figura 21. Comparação entre InsertionSort e RadixSort(N=10000)

Como a comparação dos algoritmos InsertionSort e RadixSort utilizando o teste estatístico t resultou em um intervalo que não contém o valor 0, então o algoritmo com menor média de tempo de execução é o melhor para instâncias de tamanho 10000, ou seja, o RadixSort é o melhor algoritmo comparado ao InsertionSort em instâncias de tamanho 10000.

Comparando MergeSort com RadixSort:

```
Media A 0.0799
Media B 0.0476
Desvio Padrao A 0.009898963263100361
Desvio Padrao B 0.005413433583031636
Desvio Padrao das Diferencas 0.0025228430078198015
Graus de Liberdade: 30.529543814639617
Qual o valor mesmo?2.040
T = 2.04
( 0.0271534002640476 : 0.03744659973595239 )
```

Figura 22. Comparação entre MergeSort e RadixSort(N=10000)

Como a comparação dos algoritmos MergeSort e RadixSort utilizando o teste estatístico t resultou em um intervalo que não contém o valor 0, então o algoritmo com menor média de tempo de execução é o melhor para instâncias de tamanho 10000, ou seja, o RadixSort é o melhor algoritmo comparado ao MergeSort em instâncias de tamanho 10000.

Para N = 100000

Comparando InsertionSort com MergeSort:

```
Media A 859.7105800000002

Media B 0.92473

Desvio Padrao A 53.02729635744814

Desvio Padrao B 0.11179619191330173

Desvio Padrao das Diferencas 11.85729028355374

Graus de Liberdade: 19.000186682815354

T = 2.093

( 833.9685414365223 : 883.6031585634781 )
```

Figura 23. Comparação entre InsertionSort e MergeSort(N=100000)

Como a comparação dos algoritmos InsertionSort e MergeSort utilizando o teste estatístico t resultou em um intervalo que não contém o valor 0, então o algoritmo com menor média de tempo de execução é o melhor para instâncias de tamanho 100000, ou seja, o MergeSort é o melhor algoritmo comparado ao InsertionSort em instâncias de tamanho 100000.

Comparando InsertionSort com RadixSort:

```
Media A 859.7105800000002

Media B 0.59585000000000001

Desvio Padrao A 53.02729635744814

Desvio Padrao B 0.0615696396474414

Desvio Padrao das Diferencas 11.857271924437674

Graus de Liberdade: 19.000056621783422

T = 2.093

( 834.2974598621521 : 883.9320001378481 )
```

Figura 24. Comparação entre InsertionSort e RadixSort(N=100000)

Como a comparação dos algoritmos InsertionSort e RadixSort utilizando o teste estatístico t resultou em um intervalo que não contém o valor 0, então o algoritmo com menor média de tempo de execução é o melhor para instâncias de tamanho 100000, ou seja, o RadixSort é o melhor algoritmo comparado ao InsertionSort em instâncias de tamanho 100000.

Comparando MergeSort com RadixSort:

```
Media A 0.92473

Media B 0.59585000000000001

Desvio Padrao A 0.11179619191330173

Desvio Padrao B 0.0615696396474414

Desvio Padrao das Diferencas 0.028538753522737798

Graus de Liberdade: 30.665633639542996

Qual o valor mesmo?2.040

T = 2.04

( 0.27066094281361486 : 0.38709905718638504 )
```

Figura 25. Comparação entre MergeSort e RadixSort(N=100000)

Como a comparação dos algoritmos MergeSort e RadixSort utilizando o teste estatístico t resultou em um intervalo que não contém o valor 0, então o algoritmo com menor média de tempo de execução é o melhor para instâncias de tamanho

100000, ou seja, o RadixSort é o melhor algoritmo comparado ao MergeSort em instâncias de tamanho 100000.

Para N = 1000000

Comparando InsertionSort com MergeSort:

```
Media A 82223.69989000002

Media B 13.69966

Desvio Padrao A 570.6112364849014

Desvio Padrao B 0.9889762023638914

Desvio Padrao das Diferencas 127.5927429904924

Graus de Liberdade: 19.00012616541891

T = 2.093

( 81942.94861892091 : 82477.05184107913 )
```

Figura 26. Comparação entre InsertionSort e MergeSort(N=1000000)

Como a comparação dos algoritmos InsertionSort e MergeSort utilizando o teste estatístico t resultou em um intervalo que não contém o valor 0, então o algoritmo com menor média de tempo de execução é o melhor para instâncias de tamanho 1000000, ou seja, o MergeSort é o melhor algoritmo comparado ao InsertionSort em instâncias de tamanho 1000000.

Comparando InsertionSort com RadixSort:

```
Media A 82223.69989000002

Media B 9.05798

Desvio Padrao A 570.6112364849014

Desvio Padrao B 0.5497468466198066

Desvio Padrao das Diferencas 127.59261056668278

Graus de Liberdade: 19.000038984695387

T = 2.093

( 81947.59057608395 : 82481.69324391609 )
```

Figura 27. Comparação entre InsertionSort e RadixSort(N=1000000)

Como a comparação dos algoritmos InsertionSort e RadixSort utilizando o teste estatístico t resultou em um intervalo que não contém o valor 0, então o algoritmo com menor média de tempo de execução é o melhor para instâncias de tamanho 1000000, ou seja, o RadixSort é o melhor algoritmo comparado ao InsertionSort em instâncias de tamanho 1000000.

Comparando MergeSort com RadixSort:

```
Media A 13.69966

Media B 9.05798

Desvio Padrao A 0.9889762023638914

Desvio Padrao B 0.5497468466198066

Desvio Padrao das Diferencas 0.2530114151783004

Graus de Liberdade: 30.846745690295037

Qual o valor mesmo?2.040

T = 2.04

( 4.125536713036267 : 5.1578232869637315 )
```

Figura 28. Comparação entre MergeSort e RadixSort(N=1000000)

Como a comparação dos algoritmos MergeSort e RadixSort utilizando o teste estatístico t resultou em um intervalo que não contém o valor 0, então o algoritmo com menor média de tempo de execução é o melhor para instâncias de tamanho 1000000, ou seja, o RadixSort é o melhor algoritmo comparado ao MergeSort em instâncias de tamanho 1000000.

4- Conclusão

Analisando os testes estatísticos é possível perceber que para instâncias de tamanho menor ou igual a 100, ou seja, instâncias relativamente pequenas os algoritmos se encontram em um empate estatístico. Porém, o RadixSort obteve um melhor desempenho comparado aos demais algoritmos sendo superior em quase todos os testes, somente comparado ao MergeSort em instâncias de tamanho 100 que não, e o MergeSort, a partir de instâncias de tamanho 100, foi superior somente ao InsertionSort, que por sua vez foi o algoritmo com pior desempenho. Conclui-se

que o algoritmo de ordenação com melhor desempenho dentro os analisados é o RadixSort, em seguida o MergeSort e por último o InsertionSort.

Referências:

https://pt.wikipedia.org/wiki/Insertion_sort

https://pt.wikipedia.org/wiki/Merge_sort

https://www.geogebra.org/calculator

https://pt.wikipedia.org/wiki/Radix_sort

https://mathcracker.com/pt/media-calculadora-intervalo-confianca-t#results