Let A and B be sets. Show that $P(A \cap B) \subseteq P(A) \cap P(B)$ **Definition of subsets**: $A \subseteq B \leftrightarrow \forall x (x \in A \rightarrow x \in B)$

We have to show that, if X is an element of $P(A \cap B)$ then X is an element of $P(A) \cap P(B)$.

Show that: If $X \in P(A \cap B)$ then $X \in P(A) \cap P(B)$.

Let X be an arbitrary element of $P(A \cap B)$.

Let $X \in P(A \cap B)$.

Then X is a subset of $A \cap B$.

Then $X \subseteq A \cap B$.

Then X is a subset of A and a subset of B (why?). Then $X \subseteq A$ and $X \subseteq B$. If X is a subset of A then X is an element of P(A). If $X \subseteq A$ then $X \in P(A)$.

If X is a subset of B then X is an element of P(B). If $X \subseteq B$ then $X \in P(B)$.

If X is an element of P(A) and P(B) then X is and element of $P(A) \cap P(B)$. If $X \in P(A \cap B)$ then $X \in P(A) \cap P(B)$.