Laboratorio 1

M. Perez

July 13, 2021

Contents

1	\mathbf{Rec}	tas y Planos	1
	1.1	Ejercicio 1]
	1.2	Ejercicio 2	2
	1.3	Ejercicio 3	2
	1.4	Ejercicio 4	2
	1.5	Ejercicio 5	2
	1.6	Problema 1	٠
	1.7	Problema 2	٠
	Resu	uelva los siguientes ejercicios, puede usar los videos que se encuentra	ı
vir	iculac	dos para revisar el contenido necesario.	

1 Rectas y Planos

- Descripción general sobre rectas.
- Descripción general sobre planos.

1.1 Ejercicio 1

Ejemplo 1, ahora considere L la recta que pasa por los puntos A(2,-1,3) y B(1,2,1).

- 1. Escriba la ecuación vectorial de la recta.
- 2. Escriba las ecuaciones paramétricas de la recta.
- 3. Escriba la ecuación simétrica de la recta.

1.2 Ejercicio 2

Revise el Ejemplo 2, considere las rectas dadas por:

$$L_1(t) = (2t+5, -3t-7, 4t+7)$$
 $L_2(t) = (3-2t, 3t-4, 5t-6)$ $L_3(t) = (4-4t, 6t+1, -1-8t).$

Realice lo siguiente:

- 1. Determine si L_1 es paralela a L_2 , si L_1 es paralela a L_2 , y si L_2 es paralela a L_3 .
- 2. Revise el **Ejemplo 3** y para los pares de rectas *que no sean paralelas* encuentre si se intersecan, y calcule el punto de intersección.

1.3 Ejercicio 3

Utilice el Ejemplo para realizar lo siguiente.

Escriba una ecuación para la recta que sea perpendicular al plano:

$$3x - 2y + z = 10,$$

que pase por el punto A(3,-1,2).

1.4 Ejercicio 4

Utilice como base el ejemplo, para resolver lo siguiente:

Escriba una ecuación para el plano que pasa por los puntos:

$$A(0,2,1), B(-2,0,1), C(3,0,1).$$

Determine si los puntos D(-7,0,1), E(2,-5,-1).

1.5 Ejercicio 5

Considere los planos:

$$3x + 2y - z = 1$$
 $2x + y + 5z = 10$

- 1. Encuentre la intersección entre los planos. Puede usar este vídeo como guía.
- 2. Calcule el ángulo de que se forma entre los planos. Puede ver este vídeo como ayuda.

1.6 Problema 1

Considere la recta:

$$l(t) = \mathbf{v} \, t + \mathbf{A}.$$

y el punto B. Calcule la distancia de A a la recta l. Su respuesta puede ser planteada de forma similar, y también puede obtener ideas de como abordar el problema, a el ejemplo.

1.7 Problema 2

Considere una recta y un plano dados por:

$$L(t) = (a_1 t + b_1, a_2 t + b_2, a_3 t + b_3)$$
 $\mathcal{P} : Ax + By + Cz = D.$

Describa las posibilidades para la intersección entre L y $\mathcal P$ y relacione a las soluciones de un sistema de ecuaciones asociado.