

MEC-E1070 Selection of Engineering Materials

Prof. Junhe Lian
Prof. Sven Bossuyt
Zinan Li (Course assistant)

Learning objectives for this Lecture

Knowledge and Understanding

Knowledge and understanding of the design process using Material Indices

Skills and Abilities

Ability to use GRANTA EduPack to apply **screening** and **ranking** to material properties

Values and Attitudes

Appreciation of design-led decision-making using GRANTA EduPack tools

Resources

- Text: "Materials Selection in Mechanical Design", 4th edition by M.F. Ashby, Butterworth Heinemann, Oxford, 2016, Chapters 3-5
- Text: "Materials: engineering, science, processing and design" 4th edition by M.F. Ashby, H.R. Shercliff and D. Cebon, Butterworth Heinemann, Oxford, 2019, Chapter 3, 4 and 5.

The design process

Need – Concept – Embodiment

Embodiment – Detail

The selection strategy: materials

Translation is important

Translation: "express design requirements as constraints and objectives"

What is a "material index"?

Component performance is limited by either:

a single material property e.g. tensile strength,

σ_{ts} The material inde

a material property group, e.g. modulus / density,

Ε/ρ

material index for the design

To maximize performance:

- First apply all constraints
- Then select materials with the biggest or smallest index

Simple one-property indices

Design requirement

Constraints

- Transparent of optical quality
- Able to be molded

Objective

As tough as possible –
 maximize fracture toughness K_{1c}

The material index: choose material with largest K_{1c}

Alternative objective

As cheap as possible –
 minimize material cost C_m

The material index: choose material with smallest C_m

Minimum weight design - indices Tensile ties

Undercarriage - bending and compression

$$\left(\frac{\sigma_y^{2/3}}{\rho}\right)$$

E = Young's modulus

P = Density

 σ_y = Yield strength

Index for a strong, light tie-rod

Strong tie of length L and minimum mass

Index for a stiff, light beam

Function

Stiff beam of length L and minimum mass

Constraints

- Length L is specified
- Must have bending stiffness > S*

Equation for constraint on A:

$$S = \frac{F}{\delta} = \frac{CEI}{L^3} = \frac{CEA^2}{12L^3}$$

Objective

Minimize mass m:

$$m = AL\rho$$

$$m = mass$$

$$A = area$$

$$L = length$$

$$\rho$$
 = density

$$S = stiffness (F/\delta)$$

This beam:
$$\delta = FL^3/CEI$$

$$(I = b^4/12 = A^2/12)$$

$$m = \left(\frac{12}{3}\right)$$

$$m = \left(\frac{12L^5 S^*}{C}\right)^{1/2} \left(\frac{\rho}{E^{1/2}}\right)$$

Chose materials $M = \left(\frac{E^{1/2}}{\rho}\right)$

$$M = \left(\frac{\mathsf{E}^{1/2}}{\mathsf{p}}\right)$$

Ranking, using charts

Light stiff beam:

Index
$$M = \frac{E^{1/2}}{\rho}$$

Rearrange:

$$E = \rho^2 M^2$$

Take logs:

Log E =
$$2 \log \rho + 2 \log M$$

Function	Index	Slope
Tie	Ε/ρ	1
Beam	E ^{1/2} /ρ	2
Panel	E ^{1/3} /ρ	3

Selection using index in a bubble chart

