IN 406 – Théorie des Langages Cours 3 : Automate fini minimum

Franck Quessette - Franck.Quessette@uvsq.fr

Université de Versailles - Saint-Quentin

V4 2020-2021

Notions déjà vues :

- ▶ lettre, alphabet **fini** ;
- ▶ mot, langage | fini | ou | infini |;
- langage rationnel (opérations ensemblistes);
- ▶ automate **fini** non-déterminsite (AFN), automate **fini** déterministe ;
- langage reconnaissable par automate fini .

Algorithmes déjà vus :

- ▶ AFN **avec** ε -transitions \Longrightarrow AFN **sans** ε -transition;
- ▶ AFN sans ε -transitions \Longrightarrow AFD;
- ▶ AFD ⇒ AFD complet;

Algorithmes déjà vus :

- ▶ AFN **avec** ε -transitions \Longrightarrow AFN **sans** ε -transition;
- ▶ AFN sans ε -transitions \Longrightarrow AFD;
- ▶ AFD ⇒ AFD complet;
- ► AFD minimum complet .

Algorithmes déjà vus :

- ▶ AFN **avec** ε -transitions \Longrightarrow AFN **sans** ε -transition;
- ▶ AFN sans ε -transitions \Longrightarrow AFD;
- ▶ AFD ⇒ AFD complet;
- ► AFD minimum complet .

Résultats :

- équivalence des représentations : AFN et AFD;
- ensemble des langages rationnels = ensemble des langages reconnaissables;

Algorithmes déjà vus :

- ▶ AFN **avec** ε -transitions \Longrightarrow AFN **sans** ε -transition;
- ▶ AFN sans ε -transitions \Longrightarrow AFD;
- ▶ AFD ⇒ AFD complet;
- ► AFD minimum complet .

Résultats :

- équivalence des représentations : AFN et AFD;
- ensemble des langages rationnels = ensemble des langages reconnaissables;
- unicité de l'AFD minimum complet .

Automate minimum

Intérêt

Un automate est minimal en nombre d'états.

- ▶ Nombre minimum d'états donc stockage minimal.
- L'unicité de l'automate minimal permet de tester l'égalité de langages.

Nouvelles notions

Deux nouvelles notions nécessaires :

- accessibilité;
- séparabilité.

Accessibilité

Définition

Soit $\mathcal{A} = (\Sigma, Q, q_0, F, T)$ un AFD, pour tout \mathbf{q} , $\mathbf{q'}$ éléments de Q et pour tout mot \mathbf{w} sur l'alphabet Σ si :

- $\mathbf{w} = a_1 a_2 \dots a_k \text{ avec } \forall i \in 1..k, a_i \in \Sigma;$
- $ightharpoonup \exists q_1,q_2,\ldots q_k,q_{k+1}\in Q$ tels que :
 - $|{\bf q}| = q_1;$
 - $\forall i \in 1..k$, $(q_i, a_i, q_{i+1}) \in T$;
 - ullet $|\mathbf{q'}|=q_{k+1}$;

on dit que q' est accessible depuis q avec w et on note

$$q \cdot w = q'$$

Accessibilité

Algorithme

Soit $\mathcal{A} = (\Sigma, Q, q_0, F, T)$, l'ensemble des états accessibles depuis q_0 , noté \mathbf{A} se calcule par :

DÉBUT

$$\mathbf{A} \leftarrow \{q_0\}$$

Tant que il existe $q \in A$, $q' \notin A$, $a \in \Sigma$ tel que $(q, a, q') \in T$ Faire $A \leftarrow A \cup \{q'\}$

Fin Tant que

Renvoyer **A**

FIN

C'est simplement un parcours de graphe à partir du sommet q_0 .

Séparabilité

Définition

Soit $A = (\Sigma, Q, q_0, F, T)$ un AFD deux états \mathbf{q} et $\mathbf{q'}$ sont séparables ou distingables, si :

$$\exists w \in \Sigma^*, \ \mathbf{q} \cdot w \in F \Rightarrow \mathbf{q'} \cdot w \not\in F$$

$$OU$$

$$\exists w \in \Sigma^*, \ \mathbf{q} \cdot w \not\in F \Rightarrow \mathbf{q'} \cdot w \in F$$

Définition

Soit $A = (\Sigma, Q, q_0, F, T)$ un AFD deux états \mathbf{q} et $\mathbf{q'}$ sont inséparables ou indistingables, si :

$$\forall w \in \Sigma^*, \ \mathbf{q} \cdot w \in F \iff \mathbf{q'} \cdot w \in F$$

Séparabilité

Algorithme

Soit un AFD $\mathcal{A} = (\Sigma, Q, q_0, F, T)$. L'algorithme marque les couples d'états séparables :

```
DÉBUT
```

```
\forall q \in F, \forall q' \notin F \mid \text{marquer } (q, q')
Tant que \exists (q_1, q_2) non marqué, \exists a \in \Sigma, \exists (q'_1, q'_2) marqué
            tels que (q_1, a, q_1') \in T et (q_2, a, q_2') \in T Faire
       marquer (q_1, q_2)
Fin Tant que
```

FIN

À la fin si un couple d'états est marqué les deux états sont séparables et si un couple d'état est non marqué les deux états sont inséparables.

Automate fini déterministe minimum

Définition

Un AFD $\mathcal{A} = (\Sigma, Q, q_0, F, T)$ est **minimum** si pour tout AFD $\mathcal{A}' = (\Sigma', Q', q'_0, F', T')$, tel que $L(\mathcal{A}') = L(\mathcal{A})$ alors :

$$|Q| \leq |Q'|$$

Théorème

Un AFD $\mathcal{A} = (\Sigma, Q, q_0, F, T)$ est **minimum** si et seulement si :

- ▶ tous les états de Q sont accessibles depuis q₀;
 ET
- ▶ tous les états de Q sont deux à deux séparables.

Étape 1 : AFD complet

Étape 2 : q_5 inaccessible

Étape 3 : séparabilité

Étape 4 : $q_0, q_1, q_4 \notin F$ et $q_2, q_3 \in F$

Étape 5 : $q_0 \cdot a \notin F$, $q_1 \cdot a \in F$, $q_4 \cdot a \in F$

Étape 6 : q_1 et q_4 non séparables, q_2 et q_3 non séparables

Étape 7 : fusion de q_1 avec q_4 et de de q_2 avec q_3

Fin : Automate fini déterministe minimal complet

