The Cost of Intermediary Market Power for Distressed Borrowers

Winston W. Dou† Wei Wang[‡] Wenyu Wang[§]

†University of Pennsylvania and NBER

‡Queen's University

§Indiana University

August 25, 2023

Motivation

It is well-known that repeated syndication interactions can facilitate coordination

- European Commission published the European Union (EU) report:
 - The potential competition concerns of the loan syndication process
 - Loans for leveraged buyouts and those for infrastructure

Regulators and corporations were clearly paying serious attention to

- The market power of syndication lenders
- Even, the possible "club deals"

Q: To what extent does lender market power affect the loan yield spread, and how?

Not merely an asset pricing question, but also an IO question, underscored by identification challenges

Motivation

It is well-known that repeated syndication interactions can facilitate coordination

- European Commission published the European Union (EU) report:
 - The potential competition concerns of the loan syndication process
 - Loans for leveraged buyouts and those for infrastructure

Regulators and corporations were clearly paying serious attention to

- The market power of syndication lenders
- Even, the possible "club deals"

Q: To what extent does lender market power affect the loan yield spread, and how?

Not merely an asset pricing question, but also an IO question, underscored by identification challenges

Motivation

It is well-known that repeated syndication interactions can facilitate coordination

- European Commission published the European Union (EU) report:
 - The potential competition concerns of the loan syndication process
 - Loans for leveraged buyouts and those for infrastructure

Regulators and corporations were clearly paying serious attention to

- The market power of syndication lenders
- Even, the possible "club deals"

Q: To what extent does lender market power affect the loan yield spread, and how?

Not merely an asset pricing question, but also an IO question, underscored by identification challenges

Traditional neoclassical asset pricing theories are not enough

Traditional neoclassical asset pricing theories:

Asset price = unbiased estimate of the fundamental value

Assumptions:

- Fully diversified investors who can trade assets freely across all markets
- Efficient markets with perfect information, perfect competition, no arbitrage

Yet many asset markets are mainly intermediated by a relatively small number of highly specialized institutional investors

- The channels of funding liquidity, leverage constraints, and fund flow risk e.g., Shleifer_Vishny (1997), Gromb_Vayanos (2002), He_Krishnamurthy (2013), Frazzini_Pedersen (2014), Drechsler_Savov_Schnabl (2018), Dou_Kogan_Wu (2022), ...
- Imperfect competition among highly specialized institutional investors
 relatively understudied in the literature

In this paper, we show

Lenders' market power largely affects loan pricing for distressed firms in primary markets

Traditional neoclassical asset pricing theories are not enough

Traditional neoclassical asset pricing theories:

Asset price = unbiased estimate of the fundamental value

Assumptions:

- Fully diversified investors who can trade assets freely across all markets
- Efficient markets with perfect information, perfect competition, no arbitrage

Yet many asset markets are mainly intermediated by a relatively small number of highly specialized institutional investors

- The channels of funding liquidity, leverage constraints, and fund flow risk
 e.g., Shleifer_Vishny (1997), Gromb_Vayanos (2002), He_Krishnamurthy (2013), Frazzini_Pedersen (2014),
 Drechsler_Savov_Schnabl (2018), Dou_Kogan_Wu (2022), ...
- Imperfect competition among highly specialized institutional investors
 relatively understudied in the literature

In this paper, we show

Lenders' market power largely affects loan pricing for distressed firms in primary markets

Traditional neoclassical asset pricing theories are not enough

Traditional neoclassical asset pricing theories:

Asset price = unbiased estimate of the fundamental value

Assumptions:

- Fully diversified investors who can trade assets freely across all markets
- Efficient markets with perfect information, perfect competition, no arbitrage

Yet many asset markets are mainly intermediated by a relatively small number of highly specialized institutional investors

- The channels of funding liquidity, leverage constraints, and fund flow risk
 e.g., Shleifer_Vishny (1997), Gromb_Vayanos (2002), He_Krishnamurthy (2013), Frazzini_Pedersen (2014),
 Drechsler_Savov_Schnabl (2018), Dou_Kogan_Wu (2022), ...
- Imperfect competition among highly specialized institutional investors
 relatively understudied in the literature

In this paper, we show

Lenders' market power largely affects loan pricing for distressed firms in primary markets

Loan markets for distressed firms are important

Two loan markets for distressed borrowers:

- **Distressed loans:** borrowers' S&P rating ≤ CCC+ or five-year CDS spread ≥ 10%
- Debtor-in-possession (DIP) loans: borrowers in Chapter 11

Shape the "financial distress cost" for the whole corporate sector

- Affect survival rate of financially distressed firms
- Affect efficiency of bankruptcy processes (Dou, Taylor, Wang, and Wang, 2021)

Importance \neq size of the market

- Intensive care unit (ICU) is important in the healthcare and hospital system
 - ICU admission ≤ 10% of hospital admission
 - ICU beds ≈ 10% of hospital beds
- Loan markets for distressed firms are just like ICUs in the economy
 - Distressed loans ≈ 10% of leveraged loans
 - Distressed loans > 45% of leveraged loans in 2009

Loan markets for distressed firms are important

Two loan markets for distressed borrowers:

- **Distressed loans:** borrowers' S&P rating ≤ CCC+ or five-year CDS spread \geq 10%
- Debtor-in-possession (DIP) loans: borrowers in Chapter 11

Shape the "financial distress cost" for the whole corporate sector

- Affect survival rate of financially distressed firms
- Affect efficiency of bankruptcy processes (Dou, Taylor, Wang, and Wang, 2021)

Importance ≠ size of the market

- Intensive care unit (ICU) is important in the healthcare and hospital system
 - ICU admission ≤ 10% of hospital admission
 - ICU beds ≈ 10% of hospital beds
- Loan markets for distressed firms are just like ICUs in the economy
 - Distressed loans \approx 10% of leveraged loans
 - Distressed loans > 45% of leveraged loans in 2009

Loan markets for distressed firms are important

Two loan markets for distressed borrowers:

- **− Distressed loans:** borrowers' S&P rating \leq CCC+ or five-year CDS spread \geq 10%
- Debtor-in-possession (DIP) loans: borrowers in Chapter 11

Shape the "financial distress cost" for the whole corporate sector

- Affect survival rate of financially distressed firms
- Affect efficiency of bankruptcy processes (Dou, Taylor, Wang, and Wang, 2021)

Importance \neq size of the market

- Intensive care unit (ICU) is important in the healthcare and hospital system
 - ICU admission \leq 10% of hospital admission
 - ICU beds ≈ 10% of hospital beds
- Loan markets for distressed firms are just like ICUs in the economy
 - Distressed loans \approx 10% of leveraged loans
 - Distressed loans > 45% of leveraged loans in 2009

Background of the markets

Specialized lenders possess strong market power in financing distressed firms

Qualitatively, not surprising:

- (1) Demand side: The distressed borrowers' bargaining position is weak
 - A dire liquidity situation and desperate need to raise capital to survive
 - Limited access to alternative external funding options
 - Limited commitment to future debt policies
- (2) Supply side: High entry barriers lead to segmented and concentrated markets in which specialized lenders can tacitly collude
 - Specialized skills and special resources in distress resolution
 - Tight and repeated syndication relations with multi-market contact
- (3) Creditor conflicts: Existing creditors may discourage others from participating
 - Existing creditors' blocking power
 - Existing creditors' favorable position in potential creditor conflicts

Background of the markets

Specialized lenders possess strong market power in financing distressed firms

Qualitatively, not surprising:

- (1) Demand side: The distressed borrowers' bargaining position is weak
 - A dire liquidity situation and desperate need to raise capital to survive
 - Limited access to alternative external funding options
 - Limited commitment to future debt policies
- (2) Supply side: High entry barriers lead to segmented and concentrated markets in which specialized lenders can tacitly collude
 - Specialized skills and special resources in distress resolution
 - Tight and repeated syndication relations with multi-market contact
- (3) Creditor conflicts: Existing creditors may discourage others from participating
 - Existing creditors' blocking power
 - Existing creditors' favorable position in potential creditor conflicts

Background of the markets

Specialized lenders possess strong market power in financing distressed firms

Qualitatively, not surprising:

- (1) Demand side: The distressed borrowers' bargaining position is weak
 - A dire liquidity situation and desperate need to raise capital to survive
 - Limited access to alternative external funding options
 - Limited commitment to future debt policies
- (2) Supply side: High entry barriers lead to segmented and concentrated markets in which specialized lenders can tacitly collude
 - Specialized skills and special resources in distress resolution
 - Tight and repeated syndication relations with multi-market contact
- (3) Creditor conflicts: Existing creditors may discourage others from participating
 - Existing creditors' blocking power
 - Existing creditors' favorable position in potential creditor conflicts

To dissect the cost of distressed corporate borrowers

Risk-adjusted loan yield spread

- = costs of lenders (latent)
- + markups due to lender's market power
 - = markups due to non-collusive market power
 - + markups due to tacit collusion

Empirical challenges

- Unobservable collusion capacity without reliable empirical proxies
- Latent confounding variable (endogeneity) issues in demand and supply estimation
 - Very difficult or impossible to find valid IVs

- Simultaneous estimation of the parameters and unknown latent variables summarizing the confounders
- Collusive and non-collusive equilibria coherently in one unified framework
- Closed-form solutions ⇒ MCMC Bayesian estimation with latent demand shifts
 - General: Bayes machine learning for classification
 - Not: BLP with single-equation estimation + IVs

To dissect the cost of distressed corporate borrowers

Risk-adjusted loan yield spread

- = costs of lenders (latent)
- + markups due to lender's market power
 - = markups due to non-collusive market power
 - + markups due to tacit collusion

Empirical challenges

- Unobservable collusion capacity without reliable empirical proxies
- Latent confounding variable (endogeneity) issues in demand and supply estimation
 - Very difficult or impossible to find valid IVs

- Simultaneous estimation of the parameters and unknown latent variables summarizing the confounders
- Collusive and non-collusive equilibria coherently in one unified framework
- Closed-form solutions ⇒ MCMC Bayesian estimation with latent demand shifts
 - General: Bayes machine learning for classification
 - Not: BLP with single-equation estimation + IVs

To dissect the cost of distressed corporate borrowers

- Risk-adjusted loan yield spread
 - = costs of lenders (latent)
 - + markups due to lender's market power
 - = markups due to non-collusive market power
 - + markups due to tacit collusion

Empirical challenges:

- Unobservable collusion capacity without reliable empirical proxies
- Latent confounding variable (endogeneity) issues in demand and supply estimation
 - Very difficult or impossible to find valid IVs

- Simultaneous estimation of the parameters and unknown latent variables summarizing the confounders
- Collusive and non-collusive equilibria coherently in one unified framework
- Closed-form solutions ⇒ MCMC Bayesian estimation with latent demand shifts
 - General: Bayes machine learning for classification
 - Not: BLP with single-equation estimation + IVs

To dissect the cost of distressed corporate borrowers

- Risk-adjusted loan yield spread
 - = costs of lenders (latent)
 - + markups due to lender's market power
 - = markups due to non-collusive market power
 - + markups due to tacit collusion

Empirical challenges:

- Unobservable collusion capacity without reliable empirical proxies
- Latent confounding variable (endogeneity) issues in demand and supply estimation
 - Very difficult or impossible to find valid IVs

- Simultaneous estimation of the parameters and unknown latent variables summarizing the confounders
- Collusive and non-collusive equilibria coherently in one unified framework
- Closed-form solutions ⇒ MCMC Bayesian estimation with latent demand shifts
 - General: Bayes machine learning for classification
 - Not: BLP with single-equation estimation + IVs

Outline

1. Motivating facts

2. Model in a nutshell

3. Data, identification, and estimation

4. Policy implications

Distressed loan:

Risk-adjusted loan yield spread (\approx 337 bps)

- = Total cost of borrowers spread (TCB spread) (\approx 517 bps)
 - Credit spread component (≈ 160 bps)
 - Liquidity premium component (\approx 20 bps)

DIP loan:

Risk-adjusted loan yield spread (≈ 718 bps)

- = Total cost of borrowers spread (TCB spread) (\approx 744 bps)
 - Credit spread component (≈ 20 bps)
 - Liquidity premium component (≈ 13 bps)

Note: The TCB spread is calculated as follows:

- + Upfront Fee/Risk Neutral Expected Loan Maturity in Years
- + Risk Neutral Expected Annualized Default Fee

Distressed loan:

Risk-adjusted loan yield spread (\approx 337 bps)

- = Total cost of borrowers spread (TCB spread) (\approx 517 bps)
 - Credit spread component (≈ 160 bps)
 - Liquidity premium component (≈ 20 bps)

DIP loan:

Risk-adjusted loan yield spread (≈ 718 bps)

- = Total cost of borrowers spread (TCB spread) (\approx 744 bps)
 - Credit spread component (≈ 20 bps)
 - Liquidity premium component (\approx 13 bps)

Note: The TCB spread is calculated as follows:

- + Upfront Fee/Risk Neutral Expected Loan Maturity in Years
- + Risk Neutral Expected Annualized Default Fe ϵ

Distressed loan:

Risk-adjusted loan yield spread (\approx 337 bps)

- = Total cost of borrowers spread (TCB spread) (\approx 517 bps)
 - Credit spread component (\approx 160 bps)
 - Liquidity premium component (\approx 20 bps)

DIP loan:

Risk-adjusted loan yield spread (≈ 718 bps)

- = Total cost of borrowers spread (TCB spread) (\approx 744 bps)
 - Credit spread component (≈ 20 bps)
 - Liquidity premium component (\approx 13 bps)

Note: The TCB spread is calculated as follows:

- + Upfront Fee/Risk Neutral Expected Loan Maturity in Years
- + Risk Neutral Expected Annualized Default Fe ϵ

Distressed loan:

Risk-adjusted loan yield spread (≈ 337 bps)

- = Total cost of borrowers spread (TCB spread) (\approx 517 bps)
 - Credit spread component (≈ 160 bps)
 - Liquidity premium component (\approx 20 bps)

DIP loan:

Risk-adjusted loan yield spread (≈ 718 bps)

- = Total cost of borrowers spread (TCB spread) (\approx 744 bps)
 - Credit spread component (\approx 20 bps)
 - Liquidity premium component (\approx 13 bps)

Note: The TCB spread is calculated as follows:

- + Upfront Fee/Risk Neutral Expected Loan Maturity in Years
- Risk Neutral Expected Annualized Default Fee

Distressed loan:

Risk-adjusted loan yield spread (\approx 337 bps)

- = Total cost of borrowers spread (TCB spread) (\approx 517 bps)
 - Credit spread component (\approx 160 bps)
 - Liquidity premium component (\approx 20 bps)

DIP loan:

Risk-adjusted loan yield spread (≈ 718 bps)

- = Total cost of borrowers spread (TCB spread) (\approx 744 bps)
 - − Credit spread component (≈ 20 bps)
 - Liquidity premium component (\approx 13 bps)

Note: The TCB spread is calculated as follows:

- + Upfront Fee/Risk Neutral Expected Loan Maturity in Years
- + Risk Neutral Expected Annualized Default Fee

Concentrated markets

A. Names of specialized lenders

Rank	Distressed lo	an market	DIP loan market			
	Lender name	# of deals	Lender name	# of deals		
1	Bank of America	188	Wells Fargo	96		
2	JP Morgan Chase	182	Bank of America	88		
3	Wells Fargo	124	JP Morgan Chase	88		
4	Citigroup 107 Credit Suisse 105	107	GE Capital Corp	82		
5		105	Citigroup	67		
6	Deutsche Bank	102	Deutsche Bank	41		
7	Goldman Sachs	60	Credit Suisse	31		
8	GE Capital	58	Wachovia Bank	28		
9	UBS	58	Wilmington Trust	27		
10	Wachovia Bank	53	CIT Group	21		

B. Three loan types

	# of deals	# frac.			# of deals	# frac.		
Type 1: Existing creditor		11.80%						4.90%
					334 46			92.16% 2.94%
	441				436			

Note: The loan size are measured by constant 2019 dollars and presented in the unit of billion dollars.

Note: Existing creditor loans are those with one major lender who is an existing but not specialized lender. Note: Lender-of-last-resort loans are those with over 50% of the major lenders as HFs and PEs.

Concentrated markets

A. Names of specialized lenders

Rank	Distressed lo	an market	DIP loan market			
	Lender name	# of deals	Lender name	# of deals		
1	Bank of America	188	Wells Fargo	96		
2	JP Morgan Chase	182	Bank of America	88		
3	Wells Fargo	124	JP Morgan Chase	88		
4	Citigroup	107	GE Capital Corp	82		
5	Credit Suisse	105	Citigroup	67		
6	Deutsche Bank	102	Deutsche Bank	41		
7	Goldman Sachs	60	Credit Suisse	31		
8	GE Capital	58	Wachovia Bank	28		
9	UBS	58	Wilmington Trust	27		
10	Wachovia Bank	53	CIT Group	21		

B. Three loan types

Lender type		Distressed loans			DIP loans			
	# of deals	# frac.	\$ of deals	\$ frac.	# of deals	# frac.	\$ of deals	\$ frac.
Type 1: Existing creditor	52	11.80%	13	5.65%	56	12.80%	5	4.90%
Type 2: Specialized lender	336	76.20%	208	90.40%	334	76.60%	94	92.16%
Type 3: Lender of last resort	53	12.00%	9	3.91%	46	10.60%	3	2.94%
Total	441	100%	230	100%	436	100%	102	100%

Note: The loan size are measured by constant 2019 dollars and presented in the unit of billion dollars Note: Existing creditor loans are those with one major lender who is an existing but not specialized lender

Note: Lender-of-last-resort loans are those with over 50% of the major lenders as HFs and PEs $\,$

Syndication interaction intensity for distressed loans

Ultra-high risk-adjusted loan spreads

Note: The curves represent the average risk-adjusted loan spread per year, and the bars represent the fraction of deals financed by the 10 specialized lenders per year.

Lender market power

Outline

1. Motivating facts

2. Model in a nutshell

3. Data and estimation

4. Policy implications

Demand for loans

Demand side (distressed corporate borrowers)

− An iso-elastic demand curve for a borrower type $k \in \{1, \dots, K\}$:

$$\ln(L/A) = \alpha_k - \varepsilon_k \ln(R) + \sigma z$$

- L = loan size
- A = asset size
- R = risk-adjusted loan spread
- α_k = latent demand curve level
- ε_k = latent elasticity
- z = borrower-specific demand shock

A latent-variable model

- Borrower type *k* is **latent** to econometricians
- It is more flexible than BLP's latent demand shifts

- Observe 3 types of lenders: existing, specialized, last-resort
 - (1) An existing creditor: Monopolistic lending with marginal costs $e^{\phi_1+\varsigma u}$
 - (2) M specialized lenders: Cournot competition with marginal costs $e^{\phi_2+\varsigma u}$
 - Specialized lender's dis-utility of participating syndication is w, which is private information and distributed as

$$w \sim \mu e^{-w/\mu}$$
, where μ captures how difficult to participate

- (3) A lender of last resort: Monopolistic lending with marginal costs $e^{\phi_3+\varsigma u}$
- Marginal costs
 - u = deal-specific cost shock
 - Intuitively, we expect $\phi_1 < \phi_2 < \phi_3$ (not imposed but verified by estimation)
- Nicely, the game should be played out in a sequential way

- Observe 3 types of lenders: existing, specialized, last-resort
 - (1) An existing creditor: Monopolistic lending with marginal costs $e^{\phi_1+\varsigma u}$
 - (2) *M* specialized lenders: Cournot competition with marginal costs $e^{\phi_2 + \varsigma u}$
 - Specialized lender's dis-utility of participating syndication is w, which is private information and distributed as

$$\mathbf{w} \sim \mu \mathbf{e}^{-\mathbf{w}/\mu}$$
, where μ captures how difficult to participate

- (3) A lender of last resort: Monopolistic lending with marginal costs $e^{\phi_3+\varsigma u}$
- Marginal costs
 - u = deal-specific cost shock
 - Intuitively, we expect $\phi_1 < \phi_2 < \phi_3$ (not imposed but verified by estimation)
- Nicely, the game should be played out in a sequential way

- Observe 3 types of lenders: existing, specialized, last-resort
 - (1) An existing creditor: Monopolistic lending with marginal costs $e^{\phi_1+\varsigma u}$
 - (2) *M* specialized lenders: Cournot competition with marginal costs $e^{\phi_2 + \varsigma u}$
 - Specialized lender's dis-utility of participating syndication is w, which is private information and distributed as

$$w \sim \mu e^{-w/\mu}$$
, where μ captures how difficult to participate

- (3) A lender of last resort: Monopolistic lending with marginal costs $e^{\phi_3+\varsigma u}$
- Marginal costs:
 - u = deal-specific cost shock
 - Intuitively, we expect $\phi_1 < \phi_2 < \phi_3$ (not imposed but verified by estimation)
- Nicely, the game should be played out in a sequential way

- Observe 3 types of lenders: existing, specialized, last-resort
 - (1) An existing creditor: Monopolistic lending with marginal costs $e^{\phi_1 + \varsigma u}$
 - (2) M specialized lenders: Cournot competition with marginal costs $e^{\phi_2 + \varsigma u}$
 - Specialized lender's dis-utility of participating syndication is w, which is private information and distributed as

$$\mathbf{w} \sim \mu \mathbf{e}^{-\mathbf{w}/\mu}$$
, where μ captures how difficult to participate

- (3) A lender of last resort: Monopolistic lending with marginal costs $e^{\phi_3 + \varsigma u}$
- Marginal costs:
 - u = deal-specific cost shock
 - Intuitively, we expect $\phi_1 < \phi_2 < \phi_3$ (not imposed but verified by estimation)
- Nicely, the game should be played out in a sequential way

Model timeline

Existing creditor's problem

- A lender is the existing creditor with probability $1/M_0$
- The lending agreement is reached with probability λ_k
- Given that the agreement is reached, the existing creditor chooses L as:

$$\Pi_1(A, k, x) = \max_{L} \left[\left(e^{\alpha_k + \sigma_z} \frac{A}{L} \right)^{1/\varepsilon_k} - e^{\phi_1 + \varepsilon_u} \right] L, \text{ with } x \equiv (z, u)$$

– The optimal monopolistic spread and loan size:

$$R_1(k,x) = \frac{\varepsilon_k}{\varepsilon_k - 1} e^{\phi_1 + \varsigma u} \quad \text{and} \quad L_1(A,k,x) = \left[1 - \frac{1}{\varepsilon_k}\right]^{\varepsilon_k} e^{\alpha_k - \varepsilon_k(\phi_1 + \varsigma u) + \sigma z} A$$

Therefore, the profit margin is

$$\frac{R_1(k,x)-e^{\phi_1+\varsigma u}}{e^{\phi_1+\varsigma u}}=\frac{1}{\varepsilon_k}$$

Specialized lenders' problem

- Suppose there are m participants in the syndication
- The value function of a specialized lender at the beginning of the afternoon, when w,
 k, and x are already observed, is

$$V^{C}(A, k, x, w, m; L^{C}) \equiv U^{C}(A, k, x, m; L^{C}) - w,$$

where $U^{C}(A, k, x, m; L^{C})$ satisfies the following Bellman equation:

$$\begin{split} U^{C}(A,k,x,m;L^{C}) &= \Pi_{2}(A,k,x,m;L^{C}) \ + \ \frac{W^{C}(L^{C})}{1-\delta}, \ \text{where} \\ W^{C}(L^{C}) &= \mathbb{E}^{A',k'} \left\{ \lambda(k') \frac{\Pi_{1}(A',k')}{M_{0}} \right\} \\ &+ \mathbb{E}^{A',k'} \left\{ \left[1 - \lambda(k') \right] \mathbb{E}^{w',m',x'} \left[\left(\Pi_{2}(A',k',x',m';L^{C}) - w' \right) \mathbf{1}_{\{w' \leq w_{C}^{*}\}} \right] \right\} \end{split}$$

- If it deviates, it will be punished by no collusion from the next period with probability ξ
- The collusive loan size $L^{C}(\cdot)$ satisfies the incentive-compatibility (IC) constraint:

$$\mathbb{E}^{x}\left[U^{C}(A, k, x, m; L^{C})\right] \geq \mathbb{E}^{x}\left[U^{D}(A, k, x, m; L^{C})\right],$$

where $U^{D}(A, k, x, m; L^{C})$ is the value function if it deviates

Specialized lenders' problem

- Suppose there are m participants in the syndication
- The value function of a specialized lender at the beginning of the afternoon, when w,
 k, and x are already observed, is

$$V^{C}(A, k, x, w, m; L^{C}) \equiv U^{C}(A, k, x, m; L^{C}) - w,$$

where $U^{C}(A, k, x, m; L^{C})$ satisfies the following Bellman equation:

$$\begin{split} U^{C}(A,k,x,m;L^{C}) &= \Pi_{2}(A,k,x,m;L^{C}) \ + \ \frac{W^{C}(L^{C})}{1-\delta}, \ \text{where} \\ W^{C}(L^{C}) &= \mathbb{E}^{A',k'} \left\{ \lambda(k') \frac{\Pi_{1}(A',k')}{M_{0}} \right\} \\ &+ \mathbb{E}^{A',k'} \left\{ \left[1 - \lambda(k') \right] \mathbb{E}^{w',m',x'} \left[\left(\Pi_{2}(A',k',x',m';L^{C}) - w' \right) \mathbf{1}_{\{w' \leq w_{C}^{*}\}} \right] \right\} \end{split}$$

- If it deviates, it will be punished by no collusion from the next period with probability ξ
- The collusive loan size $L^{c}(\cdot)$ satisfies the incentive-compatibility (IC) constraint:

$$\mathbb{E}^{x}\left[U^{C}(A, k, x, m; L^{C})\right] \geq \mathbb{E}^{x}\left[U^{D}(A, k, x, m; L^{C})\right],$$

where $U^{D}(A, k, x, m; L^{C})$ is the value function if it deviates

Specialized lenders' problem

- Suppose there are *m* participants in the syndication
- The value function of a specialized lender at the beginning of the afternoon, when w, k, and x are already observed, is

$$V^{C}(A, k, x, w, m; L^{C}) \equiv U^{C}(A, k, x, m; L^{C}) - w,$$

where $U^{C}(A, k, x, m; L^{C})$ satisfies the following Bellman equation:

$$\begin{split} U^{C}(A,k,x,m;L^{C}) &= \Pi_{2}(A,k,x,m;L^{C}) \ + \ \frac{W^{C}(L^{C})}{1-\delta}, \ \text{where} \\ W^{C}(L^{C}) &= \mathbb{E}^{A',k'} \left\{ \lambda(k') \frac{\Pi_{1}(A',k')}{M_{0}} \right\} \\ &+ \mathbb{E}^{A',k'} \left\{ \left[1 - \lambda(k') \right] \mathbb{E}^{w',m',x'} \left[\left(\Pi_{2}(A',k',x',m';L^{C}) - w' \right) \mathbf{1}_{\{w' \leq w_{C}^{*}\}} \right] \right\} \end{split}$$

- If it deviates, it will be punished by no collusion from the next period with probability ξ
- The collusive loan size $L^{C}(\cdot)$ satisfies the incentive-compatibility (IC) constraint:

$$\mathbb{E}^{x}\left[U^{C}(A,k,x,m;L^{C})\right] \geq \mathbb{E}^{x}\left[U^{D}(A,k,x,m;L^{C})\right],$$

where $U^{D}(A, k, x, m; L^{C})$ is the value function if it deviates

Intuition for tacit collusion in syndicated loans

Given m specialized lenders choose to participate the syndication (an endogenous outcome),

- Collusive equilibrium: small loan size + high spread ⇒ greater revenues
- Non-collusive equilibrium: large loan size + low spread ⇒ smaller revenues

Collusion is preferred by specialized lenders, subject to the IC constraints

- Collusion is sustained by punishment for deviation

Collusive equilibrium \longrightarrow Non-collusive equilibrium with a probability ξ

The IC constrain to prevent deviation is

Short-run profits of deviation ≤ Long-run loss of cooperation value

Equilibrium path: The IC constraint is binding state by state

Intuition for tacit collusion in syndicated loans

Given m specialized lenders choose to participate the syndication (an endogenous outcome),

- Collusive equilibrium: small loan size + high spread ⇒ greater revenues
- Non-collusive equilibrium: large loan size + low spread ⇒ smaller revenues

Collusion is preferred by specialized lenders, subject to the IC constraints

- Collusion is sustained by punishment for deviation:

Collusive equilibrium \longrightarrow Non-collusive equilibrium with a probability ξ

where ξ captures collusion capacity

The IC constrain to prevent deviation is

Short-run profits of deviation \leq Long-run loss of cooperation value

Equilibrium path: The IC constraint is binding state by state

Intuition for tacit collusion in syndicated loans

Given m specialized lenders choose to participate the syndication (an endogenous outcome),

- Collusive equilibrium: small loan size + high spread ⇒ greater revenues
- Non-collusive equilibrium: large loan size + low spread ⇒ smaller revenues

Collusion is preferred by specialized lenders, subject to the IC constraints

- Collusion is sustained by punishment for deviation:

Collusive equilibrium \longrightarrow Non-collusive equilibrium with a probability ξ

where ξ captures collusion capacity

The IC constrain to prevent deviation is

Short-run profits of deviation ≤ Long-run loss of cooperation value

Equilibrium path: The IC constraint is binding state by state

Last-resort lender's problem

- When m = 0, the distressed borrower goes to the lender of last resort
- The last-resort lender chooses L as:

$$\Pi_3(A, k, x) = \max_{L} \left[\left(e^{\alpha_k + \sigma z} \frac{A}{L} \right)^{1/\varepsilon_k} - e^{\phi_3 + \varsigma u} \right] L, \text{ with } x \equiv (z, u)$$

The optimal monopolistic spread and loan size:

$$R_3(k,x) = \frac{\varepsilon_k}{\varepsilon_k - 1} e^{\phi_3 + \varsigma u}$$
 and $L_3(A,k,x) = \left[1 - \frac{1}{\varepsilon_k}\right]^{\varepsilon_k} e^{\alpha_k - \varepsilon_k(\phi_3 + \varsigma u) + \sigma z} A$

Therefore, the profit margin is

$$\frac{R_3(k,x)-e^{\phi_3+\varsigma u}}{e^{\phi_3+\varsigma u}}=\frac{1}{\varepsilon_k}$$

Outline

1. Motivating facts

2. Model in a nutshell

3. Data, identification, and estimation

4. Policy implications

Data sample

Distressed loan sample (2001-2017)

- Data sources: IHS Markit, Compustat, Dealscan
- How to identify distressed loans?
 - Step #1: 5Y CDS Spread>1,000 bps or rating≤ CCC+, whichever first, as the start of a distressed period
 - Step #2: 5Y CDS Spread<500 bps, rating>B-, default, or bankruptcy, whichever first, as the end of a distressed period
 - Step #3: Merge distressed periods with Dealscan
- Our sample: 441 loan facilities

DIP loan sample (2002-2019)

- Data sources: UCLA-LoPucki BRD, Bankruptcydata.com, PACER, and Dealscan
- Our sample: 436 loan facilities

LPC Loan Pricing Data

NYU-Salomon Center Default + Moody's Default and Recovery database

Model parameters to estimate:

- Heterogeneous demand curve: α_k and ε_k for $k \in \{1, \dots, K\}$
- □ Punishment on deviation: $\xi \in [0, 1]$
- □ Variable cost: ϕ_{ℓ} for $\ell \in \{1, 2, 3\}$

Latent variables to estimate

Classification: identify the demand curve each borrower belongs to, k.

MCMC Bayesian estimation (or Bayes machine learning for classification)

- Utilize the observables: lender type, lender number, loan size, loan price;
- Estimate the posterior distribution of model parameters;
- \Box Treat the latent demand shift k as auxiliary classification (let the machine learn).

Parameter Estimates

		Distressed Loan	DIP Loan
ξ	Collusion intensity	0.817	0.492
9	Condition interiority	(0.058)	(0.093)
μ	Participation cost	30.79	34.81
$\exp(\phi_1)$	Variable cost: existing	21 bps	149 bps
$\exp(\phi_2)$	Variable cost: specialized	22 bps	158 bps
$\exp(\phi_3)$	Variable cost: <i>last-resort</i>	27 bps	197 bps
α_1	Demand curve 1: Level	-8.718	-11.031
$arepsilon_1$	Demand curve 1: Elasticity	1.204	1.947
α_2	Demand curve 2: Level	-5.799	-8.041
$arepsilon_{2}$	Demand curve 2: Elasticity	1.069	1.588
$lpha_{3}$	Demand curve 3: Level		-5.505
$arepsilon_3$	Demand curve 2: Elasticity		1.253

- Higher collusion capacity in the market of distressed loans
- Larger variable costs in the DIP market
- Consistent with the intution: $\phi_1 < \phi_2 < \phi_3$

Why the non-collusive model fails (Distressed loans)

Demand curve estimation for distressed loans

Demand curve estimation for DIP loans

Distribution of *m* for distressed loans

Distribution of *m* for DIP loans

- Collusion contributes over 200 bps to the loan spreads as markups in both markets
- Much larger blocking power of existing creditors in the DIP loan market
- Market power would be still large even with low levels of market concentration
- Much larger marginal costs of making loans in the DIP loan market

- Collusion contributes over 200 bps to the loan spreads as markups in both markets
- Much larger blocking power of existing creditors in the DIP loan market
- Market power would be still large even with low levels of market concentration
- Much larger marginal costs of making loans in the DIP loan market

- Collusion contributes over 200 bps to the loan spreads as markups in both markets
- Much larger blocking power of existing creditors in the DIP loan market
- Market power would be still large even with low levels of market concentration
- Much larger marginal costs of making loans in the DIP loan market

- Collusion contributes over 200 bps to the loan spreads as markups in both markets
- Much larger blocking power of existing creditors in the DIP loan market
- Market power would be still large even with low levels of market concentration
- Much larger marginal costs of making loans in the DIP loan market

- Collusion contributes over 200 bps to the loan spreads as markups in both markets
- Much larger blocking power of existing creditors in the DIP loan market
- Market power would be still large even with low levels of market concentration
- Much larger marginal costs of making loans in the DIP loan market

Outline

1. Motivating facts

2. Model in a nutshell

3. Data and estimation

4. Policy implications

Policy I: Government lending facilities

Suppose government sets up a special purpose vehicle (SPV)

 $-\,$ Participate the loan syndicate for each distressed borrower with probability $\tau \in [0,1]$

	(1)			(4)				
			Non-collusive					
				Direct effect		ct effect		
						$\tau = 1.0$		
		A. Distressed loans						
R (bps)			-240	-249		-240		
		269	-156	-162	-102	-156		
L/A		0.195	1.359	1.380		1.359		
		0.131	0.748		0.274	0.748		
R (bps)			-244	-249		-244		
		518	-125	-129		-125		
L/A		0.126	0.189	0.190		0.189		
		0.084		0.091				

Small borrowers are more vulnerable to lender market power, especially tacit collusion:

- Small borrowers exhibit lower price elasticity of demand
- Tacit collusion is more sustainable in smaller loans

⇒ Policies aiming at helping distressed firms should target more small firms, and need to be very aggressive to generate indirect effects!

Policy I: Government lending facilities

Suppose government sets up a special purpose vehicle (SPV)

- Participate the loan syndicate for each distressed borrower with probability $\tau \in [0, 1]$

	(1)	(2)	(3)	(4)	(5)	(6)	
	Borrower size	<u>Baseline</u>	Non-collusive	Government lending facility			
				Direct effect	Indirect effect		
					$\tau = 0.8$	$\tau = 1.0$	
		A. Distressed loans					
R (bps)	Small	396	-240	-249	0	-240	
	Large	269	-156	-162	-102	-156	
L/A	Small	0.195	1.359	1.380	0.000	1.359	
	Large	0.131	0.748	0.762	0.274	0.748	
				B. DIP loans			
R (bps)	Small	757	-244	-249	0	-244	
	Large	518	-125	-129	-69	-125	
L/A	Small	0.126	0.189	0.190	0.000	0.189	
	Large	0.084	0.090	0.091	0.039	0.090	

Small borrowers are more vulnerable to lender market power, especially tacit collusion: Small borrowers exhibit lower price elasticity of demand

- Tacit collusion is more sustainable in smaller loans.
- ⇒ Policies aiming at helping distressed firms should target more small firms, and need to be very aggressive to generate indirect effects!

Effects of intensive and extensive margins

Policy II: Interest rate cap

Suppose the regulator can directly consider the interest rate cap in the following form:

$$R_{max}(x) \equiv \mathcal{R}_{max} e^{\phi + \varsigma u},$$

where \mathcal{R}_{max} is a positive constant.

Conclusion

Intermediary asset pricing based on market concentration and coordination

A novel source of financial distress costs

Imperfect competition ⇒ a large cost for distressed borrowers, esp. small ones

- Tacit collusion exhibits in both markets and have similar effects
- Blocking power and large costs mainly exhibit in the DIP loan market

Policy implications

- Government lending facilities can be effective
 - ⇒ Easy to implement, no moral hazard, not credit-accessibility harmful
 - ⇒ Should target on small borrowers
- Interest rate cap is less applicable
 - ⇒ Hard to implement, moral hazard, credit-accessibility harmful