An Investigation into Trust and Reputation Frameworks for Collaborative Teams of Autonomous Underwater Vehicles

Andrew Bolster

University of Liverpool andrew.bolster@liv.ac.uk

July 3, 2014

- Technical Programme
 - Background and Objectives
 - Progress
 - Publications

- 2 Collaborations
- 3 Experience

Research Context

- Project launched at QUB ECIT in 2011 under the DSTL/DGA Anglo French Defence Research Group PhD Programme
- What lessons from the Mobile Ad Hoc Network (MANET) space can be transferred to the marine environment?
- Teams of 3 16 Autonomous Underwater Vehicles (AUVs) Mine countermeasures, Hydrography, and Patrol Capabilities (MHPC)
- Defence focus, assumption of highly capable enemy attempting to compromise communications / operations
- Primary Simulation/Analysis work done in 12/13
- Moved to UoL Oct 13 after 2 mth placement @ DSTL PDW Naval Systems / Information Systems departments.

Trust in Ad-Hoc Systems and the context of this document

- Particularly interested in the application of Trust in Decentralised (P2P) Autonomous Systems of Systems, AUVs for example
- Trust: The expectation of an actor performing a certain task or range of tasks within a certain confidence or probability
- Full System Views of Trust
 - Design Trust a system of systems will perform as designed
 - Operational Trust an individual system will perform as designed in field
- Communications not the only target for an attacker (or failure);
 - Following to restricted area
 - Masquerading
 - Hardware Degradation
 - Resource attack via propulsive power
- Physical observation as opportunity to reduce the threat surface while discriminating between 'True' attacks and mechanical failure.
- Also could provide additional 'handshake' protocols for 'friendly' fleets/teams through reactionary behaviours

Multi-Vector Trust and the Threat Surface

Potential attacks exist across a multi-domain threat surface

Threat Surface for Trust Management Frameworks

Combination of multiple domains each containing multiple metrics

Raw Behavioural Metric Assessment in AUVs

Behavioural Trust Assessment in AUVs

Behavioural Trust Assessment in AUVs

- Detection and identification based on basic weight-assessment classifier against windowed history of observations, with confidence based on a Grey Theoretic weight
- Currently >96% statistical accuracy of detection and confidence, but this needs much more rigorous analysis
- Challenges to Trust assessment
 - How to define optimality in trust assessment when dealing with multiple vectors and transitive trust?
 - Is there a quantifiable benefit to cross-domain comparison beyond single vector Trust?
 - Is there an optimal generic cross-domain comparator?

Current Publications

- A Multi-Vector Trust Framework for Autonomous Systems [2]
 - Symposium paper to the Association for the Advancement of Artificial Intelligence on the current state of work, presenting our progress towards multi-vector trust
- Analysis of Trust Interfaces in Autonomous and Semi-Autonomous Collaborative MHPC Operations [1]
 - Part of a Five-Eyes defence strategy programme (TTCP) for assuring C3I capabilities as part of FF2020

Development Plan

- Behaviour Detection (Q3 14) Formal Analysis of Behavioural Trust Systems
 - INFOCOM 2015 (Aug 14)
 - ASON 2014 : Seventh Int. WS on Autonomous Self-Organizing Networks (Aug 14)
 - AHUC 2014 : The Fourth Int. WS on Ad Hoc and Ubiquitous Computing (Aug 14)
 - ICCAR 2015: WASET Int. Conf. on Control, Automation and Robotics (Dec 14)
- MANET/Marine comparison (Q4 14) Formal Comparison between Terrestrial MANET / Marine contexts
- Multi-Domain Trust Assessment (Q4 14) Combination of Communicative and Physical Behaviour Trusts
 - IEEE Trans. on Communications / Dependable and Secure Computing / Intelligent Systems
- 4 Reactionary/Perturbative Trust (Q1 15) Exploration of reactionary behaviours for teams to 'shake down' suspects
 - SASO15:Self-Adaptive and Self-Organizing Systems,
 - SEAMS15: Software Engineering for Adaptive and Self-Managing Systems

Research Collaborations

- DSTL
 - Visits and Placements (Summer '13) at DSTL Porton Down and Portsdown West
 - CDE Exhibition, London, (Spring '12)
 - PhD National Conferences, Oxford and London (12/13)
 - Direct Contribution to 5-Eyes programme on Autonomous Systems (13/14)
- DGA/UPMC
 - DGA Conference (Autumn, '12)
 - Visits fo CRIIF (Autumn, '12)
- NATO/CMRE
 - UComms'12
 - Visits & Ongoing data sharing with CMRE(NURC) in La Spezzia
- NPL/Plextek
 - CDE Project on Precision Timing for Positioning with NPL/Plextek
 - Simulation and Analysis of relevant drift characteristics; increasing positional accuracy by 40%

Research Experience

- Project launched at QUB ECIT in 2011 under the DSTL/DGA Anglo French Defence Research Group PhD Programme
- Primary Simulation/Analysis work done in 12/13
- Moved to UoL Oct 13 after 2 mth placement @ DSTL PDW Naval Systems / Information Systems departments.

Difficulties

- Move to UoL was challenging mid programme: new structures, requirements, etc. Incurred Delays
- Access to secure materials difficult (although placement helped a lot).
- Multiplicity of reporting (UoL, DSTL, Joint Programme, etc)

Benefits

- Flexibility in travel enabled international collaboration within and outside partners
- DSTL Placement extremely useful for context and background verification

References I

 $\mathsf{The}\;\mathsf{End}$