Probabilidad y Estadistica Fundamental - II

@unal.edu.co

I. VARIABLES ALEATORIAS (Discretas)

• Función de Probabilidad

 $R \rightarrow [0, 1]$

$$x_0 \to p(x_0) = p[x = x_0]$$

 $\sum p(x) = 1$

II. PROBABILIDAD ACUMULADA (Discretas)

$$F(x_0) = P[x \le x_0] = \sum_{x \le x_0} P(x)$$
 (1)

• Distribución de Probabilidad

 $F: R \rightarrow [0, 1]$

$$x \to F(x) = P[x \le x_0]$$

$$P[a \le x \le b] = \sum_{a \le x \le b} p(x)$$

En general SI $I \subseteq R$

$$P[I] = \sum_{x \in I} P(x)$$

III. VALOR ESPERADO O ESPERANZA MATEMATICA (Discretas)

$E[x] = \sum x \cdot p(x) \tag{2}$

IV. VARIANZA PROBABILISTICA (Discretas)

$$Var[x] = \sum (x_i - E[x])^2 \cdot p(x_i)$$
 or

$$E\left[x^{2}\right] - \left(E\left[x\right]\right)^{2} \tag{4}$$

V. DESVIASIÓN ESTANDAR PROBABILISTICA (Discretas)

$$D\left[x\right] = \sqrt{Var\left[x\right]} \tag{5}$$

VI. VARIABLES ALEATORIAS (Continuas) - Intervalo

• Función de Densidad de Probabilidad

Nota: No mide probabilidades

$$f: R \to [0, +\infty)$$

$$x \to f(x) \ge 0$$

$$\int_{-\infty}^{\infty} f(x) dx = 1 \quad or \quad \int_{R} f(x) dx = 1$$

VII. PROBABILIDAD ACUMULADA (Continuas)

$$F(x_0) = P[x \le x_0] = \int_{-\infty}^{x_0} f(x) dx$$
 (6)

• Destribución de Probabilidad

ver $F(x_0)$ como función

$$p[a < x < b] = p[x < b] - p[x < a]$$

$$= F(b) - F(a)$$

$$\int_{a}^{b} f(x) dx$$

En general SI $I \subseteq R$, $p[I] = \int_{I} f(x) dx$

VIII. VALOR ESPERADO O ESPERANZA MATEMATICA (Continuas)

$$E[x] = \int_{-\infty}^{\infty} x \cdot f(x) dx \tag{7}$$

(3) Caso General:

$$E[g[x]] = \int_{-\infty}^{\infty} g(x) \cdot f(x) dx$$
 (8)

IX. VARIANZA PROBABILISTICA (Continuas)

$$Var\left[x\right] = \int_{-\infty}^{\infty} \left(x - E\left[x\right]\right)^{2} \cdot f\left(x\right) dx \tag{9}$$

$$= E[x^{2}] - (E[x])^{2}$$
 (10)

X. DESVIASIÓN ESTANDAR PROBABILISTICA (Discretas)

$$D[x] = \sqrt{Var[x]} \tag{11}$$

XI. MODELOS PROBABILISTICOS ESPECIALES

(Variables Aleatorias Especiales)

Discretos:

- 1) Distribución Empirica
- 2) Uniforme Discreta
- 3) Bernoulli
- 4) Binomial
- 5) Poisson
- 6) Hipergeometrico
- 7) Binomial Negativo

Continuo:

- 1) Uniforme Continuo
- 2) Exponencial Negativo
- 3) Normal
- 4) Distribuciones de Muestreo

XII. DISTRIBUCIÓN EMPIRICA (Discreto)

NOTA: X Variable aleatoria empirica si y solo si su función de probabilidad es la matematización de una tabla de frecuencia.

- El Valor Esperado es el Promedio Aritmetico
- La varianza probabilistica es la $Varianza\ Aritmetica$

$$f(x) = \begin{cases} 0 & \text{Para } x < x_1 \\ i/n & \text{Para } x_i \le x < x_{(i+1)} \\ 1 & \text{Para } x \ge x_n \end{cases}$$
 (12)

Para x_1 , x_2 , x_3 , ..., x_n

XIII. DISTRIBUCIÓN UNIFORME DISCRETA (Discreto)

x es uniforme discreta si y solo si su funcion de probabilidad

NOTA: Todas tiene la misma probabilidad de salir

$$f(x) = \begin{cases} \frac{1}{x} & \text{Si } x = x_0, \ x_1, \ x_2, \ x_3, \ \dots, \ x_n \\ 0 & \text{En otro caso} \end{cases}$$
 (13)

$$E[x] = \overline{x} = \sum_{i=1}^{n} \frac{x_i}{n}$$
 (14)

$$Var[x] = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$
 (15)

XIV. DISTRIBUCIÓN DE BERNOULLI (Discreto)

$$x \sim \beta er\left(r\right) \quad r = Proporsi\'on \label{eq:resolvent}$$
 (11) $0 < r < 1$

NOTA: Esta distribución solo puede tomar 2 valores '1' para la probabilidad de **éxito** y '0' para la probabilidad de **fracaso**.

$$p(\mathbf{x}) = \begin{cases} r & Si \ x = 1 \\ 1 - r & Si \ x = 0 \ o \ r^x \left(1 - r\right)^{1 - x} \\ 0 & En \ otro \ caso \end{cases}$$

XV. DISTRIBUCIÓN BINOMIAL (Discreto)

NOTA: Esta distribución cuenta el número de éxitos en una secuencia de n ensayos de Bernoulli independientes entre sí.

$$x \sim \beta in (n, r)$$

 $n = Numero de Ensayos (Enteros Positivos)$
 $r = Proporsi\'on$
 $0 < r < 1$

$$p(\mathbf{x}) = \begin{cases} \binom{n}{x} \cdot r^x (1-r)^{n-x} & x = 0, 1, 2, 3, \dots, n \\ 0 & En \ otro \ caso \end{cases}$$
(17)

$$E[x] = n \cdot r \qquad Var[x] = n \cdot r \cdot (1 - r) \qquad (18)$$

Cuanto son los exitos en los n ensayos

x: Numero de exitos de la dicotomia o valor booleano de interés

XVI. DISTRIBUCIÓN DE POISSON (Discreto)

NOTA: Esta distribución se utiliza cuando queremos modelar el número de veces que ocurre un evento del interés en un intervalo de tiempo o espacio determinados.

$$x P_{ois}(\lambda)$$
 λ : "Velocidad de conteo.", $\lambda > 0$

$$p(x) = \begin{cases} \frac{e^{-\lambda} \cdot \lambda^x}{x!} & x = 0, 1, 2, 3, 4, \dots \\ 0 & \text{En otro caso} \end{cases}$$
 (19)
$$E[x] = \lambda, \quad Var[x] = \lambda$$

 λ : Numero de veses que se espera que ocurra un fenomeno durante un intervalo dado - Media.

XVII. DISTRIBUCIÓN UNIFORME CONTINUA (Continua)

$$x \rightarrow u(a, b)$$
 a: Minimo, b: Maximo

$$p(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & \text{En otro caso} \end{cases}$$
 (20)

$$p(x_0 \le x \le x_1) = \int_{x_0}^{x_1} f(x) dx$$

$$E\left[x\right] = \frac{a+b}{2}$$

$$Var[x] = \frac{(b-a)^2}{12}$$

NOTA: Esta distribución se utiliza en el caso que tenga un fenómeno continuo y se conozca un valor **mínimo** y un valor **máximo**.

XVIII. DISTRIBUCIÓN MODELO EXPONENCIAL O EXPONENCIAL NEGATIVO (Continua)

NOTA: Podemos considerarla como un modelo adecuado para la distribución de probabilidad del tiempo de espera entre dos hechos que sigan un proceso de Poisson.

$$x \to Exp(\lambda)$$
 λ : 'Parámetro escalar', $\lambda > 0$

Función de Densidad:

$$f(x) = \begin{cases} \lambda \cdot e^{-\lambda \cdot x} & x > 0\\ 0 & \text{En otro caso} \end{cases}$$
 (21)

Función de Distribución:

$$F(x) = P[X \le x] = \begin{cases} 0 & \text{Para } x < 0 \\ 1 - e^{-\lambda \cdot x} & \text{Para } x \ge 0 \end{cases}$$
 (22)

$$E[x] = \frac{1}{\lambda}, \qquad Var[x] = \frac{1}{\lambda^2}$$

PROBABILIDAD:

Si $c_1 \le x \le c_2$ Es un intervalo positivo entonces:

$$P[c_1 \le x \le c_2] = e^{-\lambda \cdot c_1} - e^{-\lambda \cdot c_2}$$

XIX. MODELO NORMAL GAUSSIANO (Continua)

$$x \to N(\mu, \sigma^2)$$
 $o N(\mu, \sigma)$

 $\mu: Media$

 σ^2 : Varianza

 σ : Desviación Estandar

$$f(x) = \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot e^{-\frac{1}{2}} \cdot \left(\frac{x - \mu}{\sigma}\right)^2 \tag{23}$$

$$\begin{array}{ll} \mu \in R, & \sigma^2 > 0, & \sigma > 0 \\ E\left[x\right] = \mu, & Var\left[x\right] = \sigma^2 \end{array}$$

• Teorema de Limite Central

Sean $x_1, x_2, x_3, \dots, x_n$ Variables aleatorias independientes, suficientemente grandes con:

$$E[x_i] = \mu \quad Var[x_i] = \sigma^2$$

Entonces:

$$\overline{x} = \frac{1}{n} \cdot \sum x_i \rightarrow N\left(\mu, \frac{\sigma^2}{n}\right)$$

• Teorema de Estandarización

$$Si x \rightarrow N(\mu, \sigma^2) \quad y z = \frac{x-\mu}{\sigma}$$

Entonces:

- $(i): z \rightarrow N(0, 1) = Norma Estandar$
- $(ii): P[x \le x_0] = P[z \le \frac{x_0 \mu}{\sigma}]$
- $(iii): p(x_0 \le z \le x_1) = p(z \le x_1) p(z \le x_0)$

Propiedades

1)
$$E[c_1 \cdot x + c_2 \cdot y] = c_1 \cdot E[x] + c_2 \cdot E[y]$$

- 2) E[c] = c Donde c es constante
- 3) $E[I_A(x)] = P(A)$

$$I_{A}(x) = \begin{cases} 1 & Si \ x \in A \\ 0 & Six \notin A \end{cases}$$
 (24)

4)
$$Var[x] = E[x] - [E[x]]^2$$

- 5) $Var\left[c_1\cdot x\,+\,c_2\right]\,=\,c_1^2\cdot Var\left[x\right]$ $Var\left[x+c\right]\,=\,Var\left[x\right]\,{\rm Si}\,\,c\,\,{\rm es}\,\,{\rm una}\,\,{\rm constante}$
- 6) $Var\left[c_1\cdot x_1\ +\ c_2\cdot y_2\right]=c_1^2\cdot Var\left[x\right]\ +\ c_2^2\cdot Var\left[y\right]$ Siempre y cuando x e y sean independientes.