Міністерство освіти і науки України Національний університет «Львівська політехніка» Інститут комп'ютерних наук та інформаційних технологій Кафедра програмного забезпечення

, ,

Про виконання лабораторної роботи № 9 «НАБЛИЖЕННЯ ФУНКЦІЙ МЕТОДОМ НАЙМЕНШИХ КВАДРАТІВ» з дисципліни «Чисельні методи»

Лектор:

доцент кафедри ПЗ Мельник Н.Б.

Виконав:

студ. групи ПЗ-15 Бабіля О.О.

Прийняв:

Мета: ознайомлення на практиці з методом найменших квадратів апроксимації (наближення) функцій.

Теоретичні відомості:

На практиці часто виникає необхідність описати у вигляді функціональної залежності зв'язок між величинами, заданими таблично або у вигляді набору точок з координатами (x_i, y_i) , $(i = \overline{0, n})$, де n - загальна к-ть точок. Як правило, ці табличні дані отримані експериментально і мають похибки.

У результаті апроксимації бажано отримати досить просту функціональну залежність, яка дасть змогу «згладити» експериментальні похибки та обчислити значення функції в проміжних точках, що не містяться у вихідній таблиці.

Розглянемо функцію y = f(x), задану таблицею своїх значень $y_i = f(x_i)$, $i = \overline{0,n}$. Потрібно знайти поліном фіксованого m-го степеня $(m = \overline{0,n})$

$$P_m(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m$$

для якого похибкою апроксимації є середнє квадратичне відхилення

$$\sigma = \sqrt{\frac{1}{n+1} \sum_{i=0}^{n} (P_m(x_i) - y_i)^2}.$$

Оскільки поліном містить невизначені коефіцієнти a_i ($i = \overline{0,m}$), то необхідно їх підібрати таким чином, щоб мінімізувати функцію

$$\Phi(a_0, a_1, a_2, \dots, a_m) = \sum_{i=0}^n (P_m(x_i) - y_i)^2 = \sum_{i=0}^n \left(\sum_{j=0}^m a_j x_i^j - y_i \right)^2.$$

У цьому і полягає суть використання методу найменших квадратів для апроксимації функцій.

Використовуючи необхідну умову екстремуму $\frac{\partial \Phi}{\partial a_k} = 0$ ($k = \overline{0,m}$) функції від багатьох змінних $\Phi(a_0, a_1, a_2, ..., a_m)$, отримуємо так звану нормальну систему методу найменших квадратів для визначення коефіцієнтів a_i ($i = \overline{0,m}$) апроксимаційного полінома.

$$\sum_{j=0}^{m} \left(\left(\sum_{i=0}^{n} x_i^{j+k} \right) a_j \right) = \sum_{i=0}^{n} y_i x_i^k, k = \overline{0, m}.$$

Отримана система - це система лінійних алгебраїчних рівнянь відносно невідомих $a_0, a_1, a_2, ..., a_m$. Можна показати, що визначник цієї системи відмінний

від нуля, тобто її розв'язок існує і єдиний. Однак для високих степенів m система є погано обумовленою. Тому метод найменших квадратів застосовують для знаходження поліномів невисоких степенів m ≤ 5. Розв'язок нормальної системи шукають, використовуючи прямі або наближені методи розв'язування систем лінійних алгебраїчних рівнянь.

Індивідуальне завдання

Методом найменших квадратів побудувати лінійний, квадратичний і кубічний апроксимаційні поліноми для таблично заданої функції.

Варіант 1	x	0,59	0,7	0,81	0,9	0,95	1
	у	2,94	3,2	3,38	3,53	3,75	4,06

Хід роботи:

TX 10,	59 97	0.81	0,9	0,95	1	1
3 2,	154 3,2	3,38	3/53	375	106	
Barausus	40 opsy	a n				
5 60	xi fac	1 = 2	Jixi 5		20-	
Pormure	u soon	200000		ni huoro	1000	
(C)+1/20	A	1012	2 8		noviou	4
	i+o	1001-	to n			
(i20) a	0 + 2	Xi /0-1	' = \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	giri	28	2-10
Bucolote	co npor	isemi o	Ten we	au ;		
n+126;		×12=	4,200	57, 2	4072	9.86;
= ti= Y,	95)	Y CONTRACTOR		U=3	fixi ?	(7,51/3,
rigenrolau	u zuoi	rence y	- Pop	reasy		
(6000 + 9 4,55ao+	1,95013	20,86				
14,55ao+		1=17,5	1/9	10/2		
9a1= 2,9	1355					
ommae)			ac o	ige wor	an Gri	ng

Junieno Surous Bur omeulanco a = 385411 012-38002 14th yourun Q27 3,9334, annal nomou 333472+380027+ 3,854/1 nouracleo al 23 000 4 Bujunobun orugew smpuse 40 000 -12,5436 00,4365 a1 = 22 = -783943 omme agairella nauran 34,4519 03 = X-34, 4358 x3 -782943 x2+60,4365x-2,5436

Код програми:

```
#include <math.h>
#include <iostream>
void subtractionRow(double** array, int n, int m, int l, int k, double coefficient)
{
       for (int i = 0; i < m; i++) {
              if (k != 1)
                     array[l][i] = array[l][i] - array[k][i] * coefficient;
       }
float sumOfRowS(double** array, int m, int k)
{
       int p = 0;
       float res = 0;
       for (int i = 0; i < m; i++)</pre>
       {
              if (i > 1 + k && i < m)
                     p++;
              if ((i != k) && (i != m - 1))
                     res += array[k][i];
       return res;
void swapRow(double** array, int m, int k, int 1)
{
       float* temp = new float[m];
       if (k != 1) {
              for (int i = 0; i < m; i++)</pre>
              {
                     temp[i] = array[k][i];
              for (int i = 0; i < m; i++)</pre>
                     array[k][i] = array[l][i];
              for (int i = 0; i < m; i++)</pre>
                     array[1][i] = temp[i];
       delete[] temp;
}
double sum(double x[6], int stepin)
{
       double sum = 0;
       for (int i = 0; i < 6; i++)
              sum += pow(x[i], stepin);
       return sum;
}
double sum(double x[6], double y[6], int stepin)
{
       double sum = 0;
       for (int i = 0; i < 6; i++)
              sum += y[i] * pow(x[i], stepin);
       return sum;
double* methodGauss(double** array, int n, int m)
       double** system = new double* [n];
       for (int i = 0; i < n; i++)
```

```
{
             system[i] = new double[m];
             for (int j = 0; j < m; j++)
                   system[i][j] = array[i][j];
             }
      for (int i = 0; i < n - 1; i++)
             for (int j = i; j < n; j++)</pre>
             {
                   subtractionRow(system, n, m, j, i, system[j][i] / system[i][i]);
             }
      double* X = new double[n];
      for (int i = 1; i <= n; i++)</pre>
             float b = system[n - i][m - 1];
             X[n-i] = (b - sumOfRowS(system, m, n-i)) / system[n-i][n-i];
             for (int j = 0; j < n - i; j++)
                   system[j][n - i] *= X[n - i];
      delete (system);
      return X;
}
void method(double x[6], double y[6])
      double** one = new double* [2]; double* oneRes;
      one[0] = new double[3];
      one[1] = new double[3];
      one[0][0] = 6;
      one[0][1] = sum(x, 1);
      one[0][2] = sum(x, y, 0);
      one[1][0] = sum(x, 1);
      one[1][1] = sum(x, 2);
      one[1][2] = sum(x, y, 1);
      oneRes = methodGauss(one, 2, 3);
      printf("----\n");
      printf("System of lineal polynomial:\n\n");
      std::cout << one[0][0] << "a0 + " << one[0][1] << "a1 = " << one[0][2] << std::endl
<< std::endl;</pre>
      std::cout << one[1][0] << "a1 + " << one[1][1] << "a2 = " << one[1][2] << std::endl
<< std::endl;
      printf("Lineal polynomial:\n\n");
      std::cout << oneRes[0] << "+" << "(" << oneRes[1] << ")" << "x" << std::endl;
      printf("-----");
      double** two = new double* [3]; double* twoRes;
      for (int i = 0; i < 3; i++)
             two[i] = new double[4];
      two[0][0] = 6;
      two[0][1] = sum(x, 1);
      two[0][2] = sum(x, 2);
      two[0][3] = sum(x, y, 0);
      two[1][0] = sum(x, 1);
      two[1][1] = sum(x, 2);
      two[1][2] = sum(x, 3);
      two[1][3] = sum(x, y, 1);
      two[2][0] = sum(x, 2);
      two[2][1] = sum(x, 3);
      two[2][2] = sum(x, 4);
```

```
two[2][3] = sum(x, y, 2);
            twoRes = methodGauss(two, 3, 4);
            printf("\nSystem of quadratic polynomial:\n\n");
            std::cout << two[0][0] << "a0 + " << two[0][1] << "a1 + " << two[0][2] << "a2 =
"<<two[0][3] << std::endl << std::endl;</pre>
            std::cout << two[1][0] << "a1 + " << two[1][1] << "a2 + " << two[1][2] << "a3 = " <<
two[1][3] << std::endl << std::endl;</pre>
            std::cout << two[2][0] << "a2 + " << two[2][1] << "a3 + " << two[2][2] << "a4 = " << two[2][2] << "a4 = " << two[2][2] << "a5 = " << two[2][2] << "a5 = " << two[2][2] << "a6 = " << two[2][2] << "a7 = " << two[2][2] << "a6 = " << two[2][2] << "a7 = " << two[2][2] << "a8 = " << two[2][2] << "a7 = " << two[2][2] << "a8 = " << two[2][2] << "a8 = " << two[2][2] << two[2] << two[2][2] << two[2][2] << two[2][2] << two[2][2] << two[2
two[2][3] << std::endl << std::endl;</pre>
            printf("Quadratic polynomial:\n\n");
            std::cout << twoRes[0] << "+" << "(" << twoRes[1] << ")" << "x" << "+" << "(" <<
twoRes[2] << ")" << "x^2" << std::endl;</pre>
            printf("----");
            double** three = new double* [4]; double* threeRes;
            for (int i = 0; i < 4; i++)
                         three[i] = new double[5];
            three[0][0] = 6;
            three[0][1] = sum(x, 1);
            three[0][2] = sum(x, 2);
            three[0][3] = sum(x, 3);
            three[0][4] = sum(x, y, 0);
            three[1][0] = sum(x, 1);
            three[1][1] = sum(x, 2);
            three[1][2] = sum(x, 3);
            three[1][3] = sum(x, 4);
            three[1][4] = sum(x, y, 1);
            three[2][0] = sum(x, 2);
            three[2][1] = sum(x, 3);
            three[2][2] = sum(x, 4);
            three[2][3] = sum(x, 5);
            three[2][4] = sum(x, y, 2);
            three[3][0] = sum(x, 3);
            three[3][1] = sum(x, 4);
            three[3][2] = sum(x, 5);
            three[3][3] = sum(x, 6);
            three[3][4] = sum(x, y, 3);
            threeRes = methodGauss(three, 4, 5);
            printf("\nSystem of cubic polynomial:\n\n");
            std::cout << three[0][0] << "a0 + " << three[0][1] << "a1 + " << three[0][2] << "a2
+ " << three[0][3] <<"a3 = " << three [0][4]<< std::endl << std::endl;
            std::cout << three[1][0] << "a1 + " << three[1][1] << "a2 + " << three[1][2] << "a3
+ " << three[1][3] << "a4 = " << three[1][4] << std::endl << std::endl;
            std::cout << three[2][0] << "a2 + " << three[2][1] << "a3 + " << three[2][2] << "a4
+ " << three[2][3] << "a5 = " << three[2][4] << std::endl << std::endl;
            std::cout << three[3][0] << "a3 + " << three[3][1] << "a4 + " << three[3][2] << "a5
+ " << three[3][3] << "a6 = " << three[3][4] << std::endl << std::endl;
            printf("Cubic polynomial:\n\n");
            std::cout << threeRes[0] << "+" << "(" << threeRes[1] << ")" << "x" << "+" << "(" <<
threeRes[2] << ")" << "x^2" << "+" << "(" << threeRes[3] << ")" << "x^3" << std::endl; printf("-----");
}
int main()
            double x[6] = \{ 0.59, 0.7, 0.81, 0.9, 0.95, 1 \};
            double y[6] = { 2.94, 3.2, 3.38, 3.53, 3.75,4.06 };
            std::cout << " x = 0.59, 0.7, 0.81, 0.9, 0.95 , 1" << std::endl;
            std::cout << " y = 2.94, 3.2, 3.38, 3.53, 3.75, 4.06" << std::endl<< std::endl;
            method(x, y);
            return 0;
                                                                                  }
```

Вигляд виконаної програми

```
x = 0.59, 0.7, 0.81, 0.9, 0.95, 1
 y = 2.94, 3.2, 3.38, 3.53, 3.75, 4.06
System of lineal polynomial:
6a0 + 4.95a1 = 20.86
4.95a1 + 4.2067a2 = 17.5119
Lineal polynomial:
1.44755+(2.45954)x
System of quadratic polynomial:
6a0 + 4.95a1 + 4.2067a2 = 20.86
4.95a1 + 4.2067a2 + 3.6662a3 = 17.5119
4.2067a2 + 3.6662a3 + 3.26235a4 = 15.1127
Quadratic polynomial:
3.85409+(-3.80025)x+(3.93341)x^2
System of cubic polynomial:
6a0 + 4.95a1 + 4.2067a2 + 3.6662a3 = 20.86
4.95a1 + 4.2067a2 + 3.6662a3 + 3.26235a4 = 17.5119
4.2067a2 + 3.6662a3 + 3.26235a4 + 2.95251a5 = 15.1127
3.6662a3 + 3.26235a4 + 2.95251a5 + 2.70879a6 = 13.3462
Cubic polynomial:
-12.5436+(60.4365)x+(-78.2943)x^2+(34.4558)x^3
```

Висновки:

На даній лабораторній роботі ознайомився на практиці з методом найменших квадратів апроксимації (наближення) функцій. Виконав завдання згідно до індивідуального варіанту:

Варіант 1	x	0,59	0,7	0,81	0,9	0,95	1
	У	2,94	3,2	3,38	3,53	3,75	4,06

Отримав три поліноми:

- 1)Лінійний: y=2.45954х+1.44755
- 2) Квадратичний: $y=3.93341x^2-3.80025x+3.85509$ 3) Кубічний $y=34.4558x^3-78.2943x^2+60.4365x-12.5436$

Графіки цих поліномів:

Оранжевий колір-лінійний поліном Зелений колів-квадратичний поліном Червоний колір-кубічний поліном