

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International Advanced level In Statistics S3 (WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code WST03_01_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number		Scheme	Marks					
1(a)	Number a	all of the students in each year group.	B1					
	Use rando	om numbers to select/take a (simple) random sample of	B1					
		24 students in Group 1 (year 7-9)						
		ts in <u>Group 2</u> (year 10-11)	B1					
	<u>6</u> students	s in <u>Group 3</u> (year 12-13)						
			(3)					
(b)	'It is more representative when there might be systematic differences between age groups.'							
		(1						
		Notes						
1(a)	B1	For numbering/labelling/ordering (o.e.) students in each group (Condone poor	or					
		numbering but if just one numbered list, the Groups must be distinguishable)						
	B1 For use of random sample/numbers/selection							
	B1 All 3 numbers correct with associated groups							
(b)	B1 Any suitable advantage of using stratified sampling versus simple random sampling							
	e.g. 'it gives more accurate estimates for each strata'							
	or 'each year group is fairly represented'							
	or 'reflects the population structure'							
		more accurate on its own is B0						

Question Number	Cheme									Marks
2(a)					_			te activity (indepe te activity (depend		B1
		Water			Mountair	.		 T		M1
	Expd	sports	Bus	shcraft	activities	r	Cotal			
	Boys	147.6	+	17	97.228	_	328)			A1
	Girls Total	104.4 (252)	58.3	828	(166)	_	232) 560)	_		
	Total	(232)	(14	<i>2)</i>	(100)	1 (-	<u> </u>			
	Observe	ed Exped	eted	$\frac{(O-E)}{E}$	$\frac{(2)^2}{2}$	$\frac{O^2}{E}$				45.50
	142	147	6	$\frac{E}{0.212.}$		<u>E</u> 612				dM1
	110	104		0.3003						
	96	83.1	.7	1.978.	110.	807				
	46	58.8	33	2.797.	35.9	968				
	90	97.2		0.537.		808				
	76	68.7		0.759.		988				
		10	otals	6.5863	566.5	8626	13			
	$\chi^2 = \sum_{i}$	$\frac{(O-E)^2}{E}$	or \sum	$\frac{O^2}{E} - 56$	50;					dM1
	= awr									A1
		1)(3-1) = 2								B1
) = 5.991								B1
	-	R/significa		5			() 1			
		that there urite activ		vidence (of an assoc i	atio	n (o.e.) t	between gender		A1 (0)
(b)	Bushcraf	t as these	contr	ibute the	most to the	$= \gamma^2$	value			(9) B1
						<i>7</i> C				(1)
						N.T.	4			Total 10
(a)	B1	For both 1	nvpot	heses. M	ust mention		otes der" <i>and</i>	d "activity" o.e. at le	east once.	
					"correlation	-		•		
	M1	Some atte	empt a	$\frac{\text{(Row })}{\text{(Now }}$	Γotal)(Colu	nn To	otal)	nn be implied by at l	east one correct	E to 1dp
	(Grand Total)									i vo - or
	A1	_		_			_			
	dM1				L	L		ect expressions with		
	dM1	Dep on pi	reviou	ıs M bein	g awarded. l	For a	oplying	either $\sum \frac{(O-E)^2}{E}$ or	$\sum \frac{O^2}{E} - 560$	
	A1	awrt <u>6.6</u>					. •.			
	B1 B1	,					rect crit	ical value of 5.991)		
	D1				p value 0.03 and 3 rd B1. (ct contex	ktualised conclusion	rejecting H _a	
	A1	_	_					not "correlation".	-J 0	
(b)	B1	Bushcraft	and 1	reason – a	llow compa	rison	s of pro	portions		

Number 3(a)	singers Rank Jan	A B		Scheme									
			($C \mid I$)	E	F		\tilde{I}	Н	I		
	1 IXanix Jan)	7	5			8	6		M1
	Rank age	1 4			7	6	3	2		9	8	1	1.11
	$\sum d^2 = 4 + 9 + 9 + 4 + 1 + 4 + 4 + 1 + 4 = 40$											M1A1	
	6(40)										awrt 0.667	dM1A1	
-)(0.	·)											(5)
(b)	$H_0: \rho = 0, H_1: \rho > 0$												B1
	$\begin{array}{c} \Pi_0 \cdot p = 0, \ \Pi_1 \cdot p > 0 \\ \hline \text{Critical Value } r_s = 0.6 \end{array}$										B1		
	Either reject H_0 / accept H_1 / Result is significant / $r_s = 0.666$ does lie in the CR										M1		
												ge by listening	
	to them sir		viacii	ec mai	Julili	ı can	Tuitk	Silige	713 11	i oruc	n or a	ge by instelling	A1ft
													(4)
(c)	Give each	singer a rank	of 3.	5									B1
	Use the pn	ncc											B1
													(2)
()	3.54	•	1 6	r '12		No		1		1			Total 11
(a)		Attempt to rank for Jamil's estimate and actual ages. (At least 5 correct in either row) (Allow reverse rankings)											
	M1	For finding difference between each of their ranks and evaluating $\mathring{\partial} d^2$ (may be implied by A1)											
		$\sum d^2 = 40$											
		_											
	dM1	Dependent on the 2 previous M being awarded. Using $1 - \frac{6'\sum d^{2'}}{9(80)}$											
	A1	Awrt 0.667											
	May see:												
		singers	В	С	A	(j	F	Ι		E	H D	
		Rank Jamil	1	2	3	4		5	6		7	8 9	
<i>a</i> >		Rank age	4	5	1	2		3	8		6	9 7	
(b)		Both hypothes	es sta	ted in te	rms o	f ro	$\rho_{\rm s}$.						
		0.6 for CV									/ı ı	1	
	M1	For a correct	non-c	contrad	ictory	state	ement	relat	ing	their	$r_S r_S $	< 1) with their c.	V.
	,	where their c	.v. <	0.6 allo	w 'D	o not	t rejec	t H _o	', 'n	ot sig	nifica	nt', 'not in critic	cal region'
		for the metho	d ma	rk									
		Dependent on	_									- '	
											_	oice and age.	
		Follow through their r_s with 0.6 (provided their r_s < 1)											
		Γwo-tailed tes		1.				0.5	0D 13	. .			
		Applying a two										l volue = = (1)	0.7
							1_1 : $\boldsymbol{\rho}$	≠ U IC	MOIIC	eu by	critica	I value $r_s = (\pm)$	U. /
(c)		and allow acce For use of ran			malk (omy.							
		Use pmcc (in			f 1 st F	31)							

Question Number		Scheme		Marks					
4(a)	10 84	0.008 10840 8	any z value	M1 A1					
	$\frac{500}{50} \pm 2$	$2.3263 \times \frac{0.008}{\sqrt{50}}$ or $\frac{10840}{50} \pm 2.3263 \times \frac{8}{\sqrt{50}}$	2.3263	B1					
		(0.2141,0.2194) = awrt (0.214, 0.219) or (214, 219)							
				(4)					
(b)		e weights (of individual packets) are normally distributed be normally distributed).	d (the sample means	B1					
		· · · · · · · · · · · · · · · · · · ·		(1)					
(c)	Bindy's l	pelief is not supported as 0.22 kg is outside of the CI		B1ft					
				(1)					
		N		Total 6					
4(a)		Notes							
4(a)	M1	$\frac{10.84}{50} \pm z \times \frac{0.008}{\sqrt{50}}$ or $\frac{10840}{50} \pm z \times \frac{8}{\sqrt{50}}$ where $ z > 2$ an	d condone mixed unit	S					
	A1	allow $\frac{10.84}{50} \pm z \times \frac{0.008}{\sqrt{50}}$ or $\frac{10840}{50} \pm z \times \frac{8}{\sqrt{50}}$ units must							
	B1	2.3263 (condone awrt 2.33)							
	A1	Both values correct to 3sf							
(b)	B1	Idea that we are told the underlying variable is normally dis	tributed						
(c)	B1ft	Ft their CI							
		Do not allow ft if their interval includes 0							

$\frac{x}{P(X=x)} \frac{1}{\frac{1}{2}} \frac{1}{\frac{1}{3}} \frac{1}{\frac{1}{6}}$ $E(X) = 2.5$ $Var(X) = 9.5 - 2.5^2 = 3.25$ $X = mean of 60 rolls$ $P(\overline{X} > 2.75) \approx P\left(Z > \frac{2.75 - 2.5}{\sqrt{3.25/60}}\right) \text{ [by CLT]}$ $= 1 - P(Z < 1.074)$ $= 1 - 0.8586 [= 0.1414] [0.1423 \text{ from tables}]$ $10 \times ("0.1414")^2 (1 - "0.1414")^3$ $= 0.1265$ $\frac{\text{Notes}}{\text{Notes}}$ $\frac{\text{Notes}}{\text{If distribution given allow } 9.5 - \text{"(their E(X))}^2 \text{ or "their E(X)} - \text{"(their E(X))}^2. If no working shown it must be correct.}$ $\text{Sight of N(2.5, \frac{13}{2.30}) implies M1A1M1 M1 Standardising using their E(X) and Var(X) \frac{2.75 - "2.5"}{\sqrt{"3.25"/60}} \left[= \frac{0.25}{\text{awrt } 0.233} \right] A1 \frac{2.75 - 2.5}{\sqrt{5.25/60}} \text{ or awrt } 1.07 \sqrt{10.1414} = \frac{0.127}{\sqrt{10.128}} = \frac{0.25}{\sqrt{10.1414}} = \frac{0.25}{\sqrt$	Question Number		Scheme		Marks			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	P(M1			
$\overline{X} = \text{mean of } 60 \text{ rolls}$ $P(\overline{X} > 2.75) \approx P\left(Z > \frac{2.75 - 2.5}{\sqrt{3.25/60}}\right) \text{ [by CLT]}$ $= 1 - P(Z < 1.074)$ $= 1 - 0.8586 = 0.1414 = [0.1423 \text{ from tables}] $ $= 0.1265$ $\frac{\text{awrt}}{0.127/0.128} \text{ A1}$ $= 0.1265$ $\frac{\text{Notes}}{1 \text{ on } 127/0.128}$ $\frac{\text{M1}}{\text{A1}} = \frac{\text{Setting up the distribution - may be implied by correct } E(X) \text{ or } Var(X)$ $\text{For } E(X)$ $\text{M1} = \frac{1}{1} \text{ distribution given allow } 9.5 - \text{"(their } E(X))^2 \text{ or "their } E(X^2) - \text{"(their } E(X))^2 \text{. If no working shown it must be correct.}}$ $\text{Sight of } N(2.5, \frac{13}{240}) \text{ implies M1A1M1}$ $\text{M1} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M1} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M1} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M1} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M1} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M1} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M1} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M1} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M1} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M2} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M3} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M1} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M2} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M3} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M4} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M5} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M1} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M2} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M3} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M4} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M2} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M3} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M4} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M5} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M2} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ $\text{M3} = \frac{2.75 - 2.5}{\sqrt{3.25/60}} or aw$		E(X) = 2.5						
$P(\overline{X} > 2.75) \approx P\left(Z > \frac{2.75 - 2.5}{\sqrt{3.25/60}}\right) \text{ [by CLT]} $ $= 1 - P(Z < 1.074)$ $= 1 - 0.8586 [= 0.1414] [0.1423 \text{ from tables}] $ $= 0.1265 $ $\frac{\text{awrt}}{0.127/0.128} \text{Al}$ $= 0.1265 $ $\frac{\text{Notes}}{\text{Total } :}$ $\frac{\text{Notes}}{\text{If distribution given allow } 9.5 - \text{``(their } E(X))^2 \text{ or ``their } E(X^2) - \text{``(their } E(X))^2 \text{. If no working shown it must be correct.}}$ $Sight of N(2.5, \frac{13}{240}) \text{ implies M1A1M1}$ $\frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$		Var(X) =	$=9.5-2.5^2=3.25$		M1			
$=1-P(Z<1.074)$ $=1-0.8586 [= 0.1414] [0.1423 \text{ from tables}] \qquad M1$ $10\times ("0.1414")^2 (1-"0.1414")^3 \qquad M1$ $=0.1265 \qquad awrt \\ 0.127/0.128 \qquad A1$ $=0.1265 \qquad Notes$ $\frac{Notes}{Total 3}$ $\frac{N}{A1} Setting up the distribution - may be implied by correct E(X) or Var(X) For E(X) If distribution given allow 9.5 - \text{``(their } E(X))^2 \text{ or ``their } E(X^2) - \text{``(their } E(X))^2 \text{. If no working shown it must be correct.} Sight of N(2.5, \frac{13}{240}) \text{ implies M1A1M1} M1 Standardising using their E(X) and Var(X) = \frac{2.75 - "2.5"}{\sqrt{"3.25"}} = \frac{0.25}{awrt \cdot 0.233} A1 \frac{2.75 - 2.5}{\sqrt{3.25}} \text{ or awrt } 1.07 M1 Finding the correct area p < 0.5 (may be implied by a correct answer) 10\times ("p")^2 (1-"p")^3 \text{ with their } p$		$\overline{X} = \text{me}$	an of 60 rolls					
$= 1-0.8586 \ [= 0.1414] [0.1423 \ from tables] \qquad M1$ $10 \times ("0.1414")^2 \left(1-"0.1414"\right)^3 \qquad M1$ $= 0.1265 \qquad awrt \\ 0.127/0.128 \qquad A1$ $= 0.1265 \qquad Setting up the distribution – may be implied by correct E(X) or Var(X) For E(X) M1 $		$P(\overline{X} > 2)$	$(\overline{X} > 2.75) \approx P \left(Z > \frac{2.75 - 2.5}{\sqrt{3.25/60}} \right) \text{ [by CLT]}$					
$10 \times ("0.1414")^{2} (1-"0.1414")^{3} \qquad \qquad M1$ $= 0.1265 \qquad \qquad 10.127/0.128 \qquad A1$			=1-P(Z<1.074)					
= 0.1265 $= 0.1265$ $= 0.1265$ $= 0.127/0.128$								
Notes N		$10 \times ("0.1414")^2 (1 - "0.1414")^3$						
Notes M1 Setting up the distribution – may be implied by correct $E(X)$ or $Var(X)$ For $E(X)$ M1 If distribution given allow 9.5 – "(their $E(X)$) or "their $E(X^2)$ —"(their $E(X)$). If no working shown it must be correct. Sight of $N(2.5, \frac{13}{240})$ implies M1A1M1 M1 Standardising using their $E(X)$ and $Var(X)$ $\frac{2.75 - "2.5"}{\sqrt{"3.25"}} = \frac{0.25}{\text{awrt } 0.233}$ A1 $\frac{2.75 - 2.5}{\sqrt{3.25}}$ or awrt 1.07 M1 Finding the correct area $p < 0.5$ (may be implied by a correct answer) M1 $10 \times ("p")^2 (1 - "p")^3$ with their p								
Notes M1 Setting up the distribution – may be implied by correct $E(X)$ or $Var(X)$ For $E(X)$ M1 If distribution given allow 9.5 – "(their $E(X)$)2 or "their $E(X^2)$ – "(their $E(X)$)2. If no working shown it must be correct. Sight of $N(2.5, \frac{13}{240})$ implies M1A1M1 M1 Standardising using their $E(X)$ and $Var(X) = \frac{2.75 - "2.5"}{\sqrt{"3.25"/60}} = \frac{0.25}{\text{awrt } 0.233}$ A1 $\frac{2.75 - 2.5}{\sqrt{3.25/60}}$ or awrt 1.07 M1 Finding the correct area $p < 0.5$ (may be implied by a correct answer) M1 $10 \times ("p")^2 (1 - "p")^3$ with their p								
For E(X) If distribution given allow 9.5 – "(their E(X)) ² or "their E(X) ²) – "(their E(X)) ² . If no working shown it must be correct. Sight of N(2.5, $\frac{13}{240}$) implies M1A1M1 M1 Standardising using their E(X) and Var(X) $\frac{2.75 - "2.5"}{\sqrt{"3.25"/60}} \left[= \frac{0.25}{\text{awrt } 0.233} \right]$ A1 $\frac{2.75 - 2.5}{\sqrt{3.25/60}}$ or awrt 1.07 M1 Finding the correct area $p < 0.5$ (may be implied by a correct answer) M1 $10 \times ("p")^2 (1 - "p")^3$ with their p		Notes						
A1 $\frac{2.75 - 2.5}{\sqrt{3.25/60}} \text{ or awrt } 1.07$ M1 Finding the correct area $p < 0.5$ (may be implied by a correct answer) M1 $10 \times ("p")^2 (1 - "p")^3 \text{ with their } p$		A1 M1	For E(X) If distribution given allow 9.5 – "(their E(X)) ² or "their E(X ²)– "(their E(X)) or "their E(X) or "their E(X) or "their E(X) or "their E(X)" is shown it must be correct. Sight of N(2.5, $\frac{13}{240}$) implies M1A1M1	neir $E(X)$) ² . If no v	working			
M1 Finding the correct area $p < 0.5$ (may be implied by a correct answer) M1 $10 \times ("p")^2 (1-"p")^3$ with their p			V / 60	0.233				
M1 $10 \times ("p")^2 (1-"p")^3$ with their p		M1	$\sqrt{5.2}/60$	er)				
		M1						
		A1						

Question Number		Scheme	Marks
6(a)	$H_0 : \mu =$	280 $H_1: \mu > 280$	B1
	$z = \frac{290}{70}$	-	M1
	=1.597.		
	CV = 1.64	449	B1
	Not signi	ficant / accept H ₀ / not in the critical region	M1
	There is i	nsufficient evidence to support Baako's claim	Alcso
			(5)
(b)		$= \mu_w + 100 \text{H}_1: \mu_f > \mu_w + 100$	B1
	410-	$\frac{-290-100}{00} + \frac{60^2}{200}$	
	$z = \frac{1}{\sqrt{9}}$	$\frac{1}{10^2 \cdot 60^2}$	M1
	$\sqrt{\frac{2}{3}}$	$\frac{0}{00} + \frac{00}{200}$	M1
	,		A 1
	= 2.981	***	A1
	CV = 2.5		B1
		nt / reject H ₀ / accept H ₁ / in the critical region sufficient evidence to support Ayodele's claim	M1 A1cso
	There is s	urnicient evidence to support Ayodele's claim	
(a)	(i) The n	lants to receive fertiliser are allocated randomly	B1 (7)
(c)		·	D1
	\ / -	sufficiently large that the CLT holds so that the] deviation of sample ≈ standard deviation of population	B1
	Standard	deviation of sample ≈ standard deviation of population	(2)
			(2) Total 14
(a)	B1	Both hypotheses correct in terms of μ	1014114
(a)	DI		
	M1	Standardising with 290, 280 and $\frac{70}{\sqrt{125}}$ (or awrt 6.26)	
	B 1	CV 1.64(49) or better (or $p = \text{awrt } 0.055$)	
	M1	For a correct non-contradictory non-contextual statement (may be implied	1)
	A1cso	Fully correct solution with a correct comment in context dep upon all prev	vious marks in (a)
(b)	B 1	Both hypotheses correct – must be clear which is μ_f and μ_w NB: If use	<i>t</i> -test send to review
	M1	,	
	1,11	for $\pm \frac{410-290}{\sqrt{90^2+60^2}}$ ie ignore incorrect or missing 100	
		$\frac{190^2}{1000} + \frac{60^2}{1000}$	
		$\sqrt{\frac{30}{300}} + \frac{30}{200}$	
	M1	$for \pm \frac{410 - 290 \pm 100}{\boxed{90^2 \pm 60^2}}$	
		$101 \pm \frac{1}{90^2 + 60^2}$	
		$\sqrt{\frac{30}{300}} + \frac{60}{200}$	
	A 4		
	A1	Awrt ± 2.98	istic (or n = overt
	B 1	CV ± 2.5758 (condone awrt 2.58) and compatible sign with their test station 0.0014)	isuc (or p – awrt
	M1	Correct non-conflicting comment following from their test statistic and th	eir critical value
	A1cso	Fully correct solution with a correct comment in context dep upon all prev	
(c)	B1	Idea that plants allocated at random to be given fertiliser	(0)
	B1	Realising that they need the sd of the population	

Question Number		Scheme		Marks			
7(a)							
	$\frac{e^{-2.8}(2.8)}{5!}$		M1				
	Observed	5 and Expected awrt 8.37		A1			
		*		(2)			
(b)		on(2.8) is a suitable model/ good fit on(2.8) is not a suitable model/ good fit		B1			
	$\chi^2 = \sum \frac{(O-E)^2}{E} = \frac{("5"-"8.37")^2}{8.37} + \frac{(3-6.25)^2}{6.25} + 9.86$						
	= awrt 12.9						
	Degrees of		M1				
	$\chi^2_{6,0.05} =$		A1ft				
	[Reject H ₀] Data is not consistent with random sampling from a Poisson (2.8) model.						
				(7)			
		Notes					
(a)	M1 A1	Setting up an equation leading to a value for n . eg $5.84 = e$ observed and expected (2dp) . 5 and awrt 8.37	$^{-2.8} \times n$ May be implied by	by correct			
(b)	B1	Both hypotheses correct must mention Po(2.8) at least once					
	M1	For combining last 2 cells to get observed 3 and expected 6.25 or $\frac{(3-6.25)^2}{6.25}$ seen.					
	M1 For $\frac{("5"-"8.37")^2}{8.37} + 9.86 +$ or a fully correct calculation						
	A1	\ 1 1 /					
	M1	Using df for their (number of expected values used – 1)					
	A1ft	12.592 (ft 14.067 from df = 7)	ana) all manks t l	h			
	A1cso	Jeff's model/Poisson is not suitable (condone missing 2.8 h	ere) all marks must have	been scored.			

Question Number	Scheme							
8(a)	Let $X = L$	- M	Let $X = L - M - 90$					
- ()	E(X) = 10		E(X) = 10	M1				
	Var(X) =		$Var(X) = 7^2 + 6^2$	1,11				
	Val(X) =	7 +0	$\operatorname{Val}(X) = 7 + 0$	M1				
	$X \sim N(100$	0,85)	$X \sim N(10,85)$	A1				
	P(X > 90)	$= P\left(Z > \frac{90 - 100}{\sqrt{85}}\right)$	$P(X>0) = P\left(Z > \frac{0-10}{\sqrt{85}}\right)$	dM1				
		= 0.8599(calc 0.860	awrt 0	.86 A1 (5				
(b)	(Let $Y = L$	-4S)		(-				
()	E(Y) = 20	*		B1				
	Var(Y) = 7	$7^2 + 16 \times \sigma^2$		M1				
		$(49+16\sigma^2)$		A1				
	$P(Y > 0) = P\left(Z > \frac{0 - '20'}{\sqrt{'49 + 16\sigma^2'}}\right)$							
	$\frac{0-20'}{\sqrt{49+16\sigma^2}} = -1.96$							
	•	$20^2 = 1.96^2 \left(49 + 16\sigma^2\right)$						
	$\sigma = 1.8561$							
				(8 Total 1				
			Notes					
8(a)	M1	Either 100 or 10						
	M1 A1	For addition of varianc N(100, 85) or N(10,85)						
	dM1 Dependent on the first 2 M marks $\frac{90-100}{\sqrt{"85"}}$ or $\frac{0-10}{\sqrt{"85"}}$							
		Dependent on the first	2 M marks $\frac{1}{\sqrt{85}}$ or $\frac{1}{\sqrt{85}}$					
(b)	B1	E(Y) = 20	,					
	M1							
	A1ft $N('20', 49+16\sigma^2)$ (may be implied by its use)							
	M1 M1 standardising using their mean, sd and zero							
	M1 Putting standardisation equal to a z value where $ z > 1.5$							
	B1 –1.96 or better used in a standardisation equation with compatible signs							
	dM1 Squaring (dependent upon 2 nd and 3 rd M1 marks) A1cso awrt 1.86 (must come from correct working)							
	A1cso	awit 1.00 (must come i	Tom correct working)					

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom	