Summary of William Hoza's Research

Research Area: Computational Complexity Theory

Theorem [Hoza 2021]: If a decision problem can be solved by a randomized algorithm that uses S bits of space, where $S \ge \log n$, then it can also be solved by a deterministic algorithm that uses $O(S^{1.5}/\sqrt{\log S})$ bits of space.

$\Pr[f(x) = h(x)] \le 1/2 + 1/n^{\omega(1)}.$

Theorem [Hatami, Hoza, Tal, Tell 2021]: For

every constant $d \in \mathbb{N}$, there exists a $\delta > 0$

such that given an $(n^{1-\delta})$ -bit truly random

pseudorandom bits that appear random to

depth-d threshold circuits with $n^{1+\delta}$ wires.

seed, one can efficiently generate n