

SEMANTIC WEB AND SEMANTIC TECHNOLOGIES TO ENHANCE INNOVATION AND TECHNOLOGY WATCH PROCESSES

Arrasate-Mondragon, 14 October 2016

Alain Perez Riaño

Supervisor: Dr. Felix Larrinaga Barrenechea Co-Supervisor: Dr. Juan Ignacion Igartua Lopez

Electronics and Computing Department Faculty of Engineering – Mondragon University

Table of contents

- 1. INTRODUCTION
- 2. FOUNDATIONS
- 3. WEB BASED PLATFORM FOR INNOVATION PROCESSES
- 4. SEMANTIC WEB TO LINK THE INNOVATION PROCESS WITH INTERNAL AND EXTERNAL REPOSITORIES
- 5. SEMANTIC WEB TO ENHANCE INNOVATION AND TECH. WATCH LINKING
- 6. SEMANTIC TECHNOLOGIES TO ENHANCE TECH. WATCH PRODUCTIVITY
- 7. CONCLUSIONS
- 8. CONTRIBUTIONS

INTRODUCTION

Contribution area and scope

1. Innovation process

- Idea life-cycle, from its **definition** to its **implementation**.
- Idea management Systems (IMSs).

2. Technology Watch (TW) process

- Capturing information relevant to a company's business from outside and inside the organization.
- Information refers to competitors, technologies, news, patents...
- **Software platforms** can help storing and managing that information.

Problem and Motivation

1. Data-overflow

- Noisy data.
- Duplicate or already processes content.
- Hard to manage large amount of information.

2. Successful idea contest identification and replication.

- Hard to identify why some contest are successful and other not.
- Most IMSs are idea centered (do not gather background information).

Problem and Motivation

3. Interoperability

- Lack of interoperability among platforms.
- Data re-usability.

4. Non productive tasks

• Waste of time of experts in non-productive tasks (reading and classifying).

Objectives

- 1. Propose a conceptual model for the identification of successful idea contests and their replication.
- 2. Identify semantic web methods that provide additional content to IMSs from repositories inside and outside the company.
- 3. Propose a concept model to enable the interoperability among platforms linking content.
- Reduce the workload of the experts in the TW process.

Research Questions

- Can a conceptual model help on replicate successful Idea Contests?
- 2. Can semantic methods enable content linking among IMS platforms and semantic repositories internal and external to the companies?
- 3. Can interoperability among content from Innovation and TW platforms be generalized in a single model?
- 4. Which are the best semantic technologies that help reducing the time spent on non-productive tasks inside the TW process?

Solution Architecture

Figure 1: Solution architecture for the thesis.

Innovation Process

 Most of the Innovation process definitions agree on a common baseline[1]:

Figure 2: Innovation process baseline stages.

• Thus, management of the ideas is the most critical part.

[1] N. Errasti, N. Zabaleta, and A. Oyarbide. A review and conceptualisation of innovation models from the past three decades. International Journal of Technology Management, 55(3):190-200, 2011.

Innovation Process

- Igartua, J.I._[1] showed relationship between the use of Innovation Management Tools and innovation activity.
- Westerski et al._[2] wrote about innovation, interoperability and linking.
 - "knowledge management based on interlinking of enterprise systems and web assets to increase information awareness and help innovation assessment".
- Interoperability issues.
- Relation among Innovation and Technology Watch (TW) processes.

[1] J. I. Igartua, J. A. Garrigós, and J. L. Hervas-Oliver. How innovation management techniques support an open innovation strategy. Research-Technology Management, 53(3):41-52, 2010.

[2] A. Westerski, C. A. Iglesias, and F. T. Rico. A model for integration and interlinking of idea management systems. In 4th Metadata and Semantics Research Conference (MTSR 2010), volume 108 CCIS, pages 183-194, October 2010. Springer Verlaa.

Technology Watch Process

TW definition (AENOR's UNE 166006:2011 Standard)

- An organized, selective and permanent process.
- To capture information about science and technology.
- From outside and inside the organization.

Different domains

- Patents, utility models, industrial designs.
- Legislation, regulations, grants.
- Socio-economic situation of markets.
- News (sector, scientific, doctoral thesis).
- · Products.
- ...

Technology Watch Process

 Society for Competitive Intelligence Professionals (SCIP), identifies five steps in the process:

Figure 3: Five stages of the Technology Watch process.

· Content gathering may cause a data overflow.

Social Web

- Dynamic bi-directional web pages.
- Hence the concept of Collective Intelligence or Wisdom of crowds_[1] (Social Networks).
- Increasing interest in IMS_[2].

[1] J. Surowiecki. The wisdom of crowds. Random House Digital, Inc., 3:22, 2005.

[2] A. Conry-Murray. Can enterprise social networking pay off. Informationweek.com, 1224:23-29, 2009.

Natural Language Processing (NLP)

- "explores how computers can be used to understand and manipulate natural language text or speech"[1].
- \bullet Covertino et al. $_{[2]}$ used NLP to identify the "core" of the ideas.
- Other aim to extract text and map it to an ontology or semantic element $_{[3][4]}$

[1] G. G. Chowdhury. Natural language processing. Annual review of information science and technology, 37(1):51-89, 2003.

[2] G. Convertino, Á. Sándor, and M. Baez. Idea spotter and comment interpreter: Sensemaking tools for idea management systems. In ACM Communities and Technologies Workshop: Large-Scale Idea Management and Deliberation Systems Workshop, 2013.

[3] J. West and S. Gallagher. Challenges of open innovation: the paradox of firm investment in open-source software. R&D Management, 36(3):319-331, 2006.

[4] S. Hellmann, J. Lehmann, S. Auer, and M. Brümmer. Integrating nlp using linked data. In 12th International Semantic Web Conference, 21-25 October 2013, Sydney, Australia, 2013.

Artificial Intelligence (AI)

- "is the study of the design of intelligent agents"[1]
- Classification => learn from training set and classify new items.
- Clustering => it finds similarities among the objects and groups them in different clusters.

[1] D. Poole, A. Mackworth, and R. Goebel. Computational Intelligence. Oxford University Press Oxford, 1998.

Semantic Web

- "The Semantic Web is ... an extension of the current one, ...
 enabling computers and people to work in cooperation"
 [1].
- Main technologies:
 - Resource Description Framework (RDF)
 - Web Ontology Language (OWL)
- Their combination make explicit descriptions of content on the web.
- The content of the web is structured and linked as in any database, creating the Linked Data (LD)

Conclusions

- Innovation is essential for buisiness survival.
- TW closely related to Innovation.
- With the use of ICT:
 - Collaborative IMSs => for idea generation and reaching more collaborators.
 - Semantic Web & Linked Data => for interoperability and adding automatically relevant data.
 - Semantic Technologies => task automation for reducing time spent on non productive tasks.

WEB BASED PLATFORM FOR

INNOVATION PROCESSES

Main Contributions

- IMS platform to enable the identification and replication of successful idea contests.
- Gi2Mo Wave ontology to annotate semantically the background of idea contests.

Introduction

Probematic

- Most IMSs gather little context information.
- · Hard to identify why an Idea contest has been successful.
- Interoperability for data re-usability.

Approach

- Build an interoperable IMS.
- Gather and store context information.

Existing theories

Architecture participation analysis_[1]

- IMSs → Idea centered.
- Open Source platform selection reinforced.
- · Social networks help reaching new collaborators.
- Drupal & Liferay → Highest score.

Semantic Web Ontologies for ideas

• Innovation management_[2] & Gi2MO ontology $_{[3]}$.

[1] N. Errasti. Social software in support of collaborative innovation processes. Projectics/Projectique, (2):81-104, 2010.

[2] C. Riedl, N. May, J. Finzen, S. Stathel, V. Kaufman, and H. Krcmar. An idea ontology for innovation management.

International Journal on Semantic Web and Information Systems, 5(4):1-18, 10 2009.

[3] A. Westerski. Gi2mo: Interoperability, linking and filtering in idea management systems. In Extended Semantic Web

Conference 2011. PhD Symposium Poster., Heraklion, Greece, May 2011.

Research approach

Figure 4: Incremental Development Cycle methodology.

Research approach

Platform

- Idea Generation => Blog.
- Idea Analysis => Selection table (with data).
- Idea Enrichment => Wiki.
- Idea Selection => Selection Matrix.
- Wave for multiple idea contests.
- Real Time Web (Twitter-email).
- Events.
- · Semantic Web (Gi2Mo Wave).
- Visualization tools.
- · Community modules (RDFme, workflow, voting..)

Research approach

Ekiten case-study

- Driven by the Engineering, Business and Humanities faculties of MU.
- To promote entrepreneurship among students.
- Each year => duration: 4 months.
- 3 waves each year
- Innoweb => since 2010
- Wave module => since 2011

Results

Context parameter	2010-11	2011-12	2012-13	2013-14	2014-15
Groups	10	27	46	98	78
Participants	40	92	155	240	276
Experts	10	10	10	14	14
Evaluators	9	9	9	10	10
Events	11	16	24	24	15
Activities integrated in regular courses				5	13

Table 1: Inputs from Ekiten case study.

Outcome	2010-11	2011-12	2012-13	2013-14	2014-15
Ideas	10	27	49	105	84
Promoted ideas	3	2	3	6	8
Spin-offs	0	1	1	1	1
Average rating of ideas	-	3.76	4.77	5.9	5.76

Table 2: Outcomes from Ekiten case study.

Conclusions

- 1st RQ: Can a conceptual model help on replicate successful Idea Contest?
- Offers data in semantic format (enabling interoperability).
- Visual tools, ease data analysis for managers.
- Enables management decisions impact analysis.
- Better campaign control/design.
- · Co-creation traceability.

SEMANTIC WEB TO LINK THE INNOVATION PROCESS WITH INTERNAL AND EXTERNAL REPOSITORIES

Main Contribution

 Proposal of a method to enable interoperability of IMS platforms with semantic repositories internal and external to the company.

Introduction

Probematic

- Lack of interoperable platforms => Data silos.
- Sustainability repository.
 - Energy consumption.
 - · GHG emissions.
 - ...

Approach

- Analyse semantic web methods to link IMSs with internal & external repositories.
- Tools to add information to IMSs from repositories.
- Create richer ideas.

Use cases

1. Energy Reduction

- I would change the incandescent bulb in desk number 333 for a LED bulb in order to save energy.
- Identify: desk number 333, incandescent bulb, LED bulb.
- Link to the data in the repository.
- Show location of the desk, and power consumption difference.

Figure 5: Energy Reduction and LCA ideas

Use cases

2. Life-cycle Assessment (LCA)

- If we buy 13-Inch MackBook Air laptops instead of 13-Inch MacBook Pro, we can reduce the amount of GHG emissions in the manufacture of our devices.
- Identify: MackBookAir, MacBook Pro and GHG.
- Show GHG emissions for both laptops.

3. Similar ideas recognition

- · Compare idea mentions.
- Show the ideas with the largest amount of matchings.
- Why similar ideas have been rejected.

Platform

Figure 6: Process to find related elements in Internal and External repositories.

Platform

Figure 7: Example of automatically added information.

Conclusions

- 2nd RQ: Can semantic methods enable content linking among IMS platforms and semantic repositories internal and external to the companies?
- Apply semantic web and LOD technologies to link sustainability repositories with IMSs.
- Identify elements mentioned in the ideas.
- Tools tested with real sustainability repository.

SEMANTIC WEB TO ENHANCE INNOVATION AND TECH. WATCH

LINKING

Main Contributions

- Architecture to enable interoperability among Innovation and TW platforms.
- Mentions Ontology (MO) to annotate semantically mentioned elements inside text based content.

Introduction

Probematic

- Interoperability
 - Linking content in the same platform (idea-idea).
 - Interoperability among platforms needed for data re-usability. (e.g. Innovation-TW or Idea-news item)

Approach

- Propose a conceptual model for linking content from IMS and TW platforms.
- Deliver definitions from external repositories.
- Show content similarities.

Theory

- A need to enable interoperability among **platforms**[1].
- Duplicates make idea assessment time consuming [2].
- Innovators do not find worthwhile to search in a huge database before posting their own ideas (proper tools)_[3].

[1] A. Westerski, C. A. Iglesias, and F. T. Rico. A model for integration and interlinking of idea management systems. In 4th Metadata and Semantics Research Conference, volume 108 CCIS, pages 183-194, 2010

[2] C. Geffen and K. Judd. Innovation through initiatives: a framework for building new capabilities in public sector research organizations. Journal of Engineering and Technology Management, 21(4):281-306, 2004.

[3] E. Ford and S. Mohapatra. Idea de-duplication in an innovation community. Urbana, 51:61801-2302, 2011.

Theory

- TW as starting point of innovation process[1].
- News domain a "clear area where it is important for companies to keep a close eye on technologiecal developments in their field" [2].

[1] B. Fernández Fuentes, S. Pérez Álvarez, F.D. Valle Gastaminza. Metodología para la implantación de sistemas de vigilancia tecnológica y documental: El caso del proyecto INREDIS. Investigación bibliotecnológica, 23(49), 149-177, 2009
[2] D. Maynard, M. Yankova, A. Kourakis, and A. Kokossis. Ontology-based information extraction for market monitoring and technology watch. In ESWC Workshop "End User Apects of the Semantic Web", Heraklion, Crete, 2005.

Figure 8: Solution architecture

- Based on Modular Uniffied Tagging Ontology (MUTO) ¹.
- Methodology for ontology modelling. $_{[1][2]}$

Figure 9: Mentions Ontology's² Class Diagram.

· DBPedia Spotlight.

[1] A. Gómez-Pérez. Ontological engineering: A state of the art. Expert Update: Knowledge Based Systems and Applied Artificial Intelligence, 2(3):33-43, 1999.

[2] M. Uschold and M. King. Towards a methodology for building ontologies . Citeseer, 1995.

¹ http://purl.org/muto/core#

² https://w3id.org/mo

Ubuntu Brainstorm (27000)

- 10 most commented.
- 10 not commented.
- 10 highest rated.
- 10 not rated.
- 40 implemented.
- 120 random.

News feeds (550)

- OMG! Ubuntu.
- Ubuntu Security Notices.
- I heart Ubuntu.
- Web Upd8.
- Ubuntu Manual.
- 200 random.

Experiments

- 1. Concept definition experiment.
- 2. Idea similarity experiment.
- 3. News similarity experiment.

Evaluation - Statistical inference

- Size of the sample (200 ideas * 10 links/idea = 2000 links).
- Try to reject a Null hypothesis.

H0 (null hypothesis)	The system finds low quality relationships						
H1 (alternative hypothesis)	The system does not find low quality relationships						

Table 3: Null and alternative hypothesis for similarity experiments.

Figure 10: Accuracy of identified concepts from the body.

Figure 12: Accuracy of critical concepts from the body.

Figure 11: Accuracy of identified concepts from the title.

Figure 13: Accuracy of critical concepts from the title.

	Body	Title	T&B	T&B+Score	
Same	102	153 (+51)	197 (+44)	228 (+31)	
Closely related	194	255 (+61)	330 (+75)	448 (+118)	
Related	463	733 (+270)	851 (+118)	767 (-84)	
Some how related	233	193 (-40)	147 (-46)	143(-4)	
Not related	1008	666 (-342)	475 (-191)	414 (-61)	

Table 4: Idea relationships in each iteration.

Figure 14: News items and ideas relationships.

Figure 15: News items and ideas relationships by position.

LOW->0 MEDIUM->0.5 HIGH->1

	10 relationships	5 relationships	3 relationships
lu1	0.529	0.582	0.608
lu2	0.530	0.584	0.612

Table 5: Statistical inference results by amount of *idea-idea* relationships.

		10 relationships	5 relationships	3 relationships
lu	1	0.506	0.560	0.591
lu	2	0.507	0.563	0.594

Table 6: Statistical inference results by amount of *idea-news item* relationships.

- 3rd RQ: Can interoperability among content from Innovation and TW platforms be generalized in a single model?
- Statistical inference suggest that the architecture is feasible for:
 - · Link Ideas among each other.
 - Link Ideas-News items.
- Higher in the list -> More related.
- Best results using Title&Body+Score.
- Mentions ontology.

SEMANTIC TECHNOLOGIES TO ENHANCE TECH. WATCH PRODUCTIVITY

Main Contributions

- Reduction of human workload on document classification tasks in the TW process.
- Identification of best semantic technologies for automatic document classification.

Introduction

Probematic

- Real TW case study.
- Too much time wasted in document classification.

Approach

- Semantic Technologies (AI) for document classification.
- Different approaches.
 - Input text (RAW & Semantic annotations).
 - · Al algorithms.

Theory

- NLP tasks over electronic text to treat them_[1]:
 - Tokenization.
 - Function words elimination.
 - Stemming.
 - Word frequency.
- AI Algorithms for text mining_[2]. 3 selected belonging to different approaches.
 - · SVM.
 - Decision Tree (J48).
 - · Naive Bayes.

[1] R. Mitkov. The Oxford handbook of computational linguistics. Oxford University Press, 531:532, 2005.

[2] B. Baharudin, L. H. Lee, and K. Khan. A review of machine learning algorithms for text-documents classiffication.

Journal of advances in information technology, 1(1):4-20, 2010.

Dataset 1. Previously categorized documents.

- 7379 documents.
- 14 classes.
- The text of these documents $\rightarrow RAW Text$.

Dataset 2. Additional content added by the experts.

- 6968 documents.
- 14 classes.
- Additional content of these documents \rightarrow *Experts information*.

Semantic Annotations.

- URIs for Mentioned Flements.
- For both.

Tools

- DBPedia Spotlight → semantic annotation.
- WEKA \rightarrow text mining (10 fold cross validation).

Figure 17: Single document's l generation. hits.

Figure 16: Model generation.

Figure 18: Information flow with no interactions.

Figure 19: Information flow using automatic system.

7379 Instances			Raw text 35 attrib		Semar	Raw text ntic annol 36 attrib	No intervention	
		J48 SVM Naive Bayes		J48 SVM		Naive Bayes		
	1st Hit	0,978	0,947	0,908	0,977	0,946	0,908	
Ассигасу	2nd Hit	0,969	0,900	0,908	0,968	0,898	0,908	1
	3rd Hit	0,963	0,837	0,908	0,964	0,836	0,908	
	1st Hit	0,846	0,632	0,359	0,840	0,622	0,359	
Precision	2nd Hit	0,731	0,401	0,359	0,732	0,392	0,359	1
	3rd Hit	0,687	0,287	0,359	0,691	0,283	0,359	
	1st Hit	0,846	0,632	0,359	0,840	0,622	0,359	
Recall	2nd Hit	0,886	0,801	0,359	0,882	0,784	0,359	1
	3rd Hit	0,893	0,860	0,359	0,888	0,849	0,359	
	1st Hit	0,846	0,632	0,359	0,840	0,622	0,359	
FScore	2nd Hit	0,801	0,534	0,359	0,800	0,523	0,359	1
	3rd Hit	0,776	0,430	0,359	0,777	0,425	0,359	
Amount	1st Hit	9659	12807	16843	9736	12956	16838	
of	2nd Hit	10201	13027	21565	10305	13347	21568	14758
readings	3rd Hit	10938	13626	26292	11085	13981	26298	

Table 7: Results using "Raw text", without and with "Semantic Annotations" (1st experiment).

6968 Instances			ts' inforn)4 attribu		Semar	s' inform ntic annol 33 attribu	No intervention	
		J48 SVM Naive Bayes		J48 SVM		Naive Bayes		
	1st Hit	0,975	0,958	0,935	0,974	0,962	0,931	
Ассигасу	2nd Hit	0,958	0,912	0,934	0,960	0,914	0,931	1
	3rd Hit	0,948	0,849	0,934	0,950	0,850	0,931	
	1st Hit	0,824	0,709	0,542	0,819	0,732	0,519	
Precision	2nd Hit	0,655	0,442	0,536	0,667	0,450	0,515	1
	3rd Hit	0,590	0,313	0,536	0,604	0,316	0,515	
	1st Hit	0,824	0,709	0,542	0,819	0,732	0,519	
Recall	2nd Hit	0,873	0,884	0,548	0,868	0,900	0,524	1
	3rd Hit	0,887	0,940	0,548	0,879	0,949	0,524	
	1st Hit	0,824	0,709	0,542	0,819	0,732	0,519	
FScore	2nd Hit	0,748	0,589	0,542	0,754	0,600	0,519	1
	3rd Hit	0,709	0,470	0,542	0,716	0,475	0,519	
Amount	1st Hit	9421	11019	13355	9492	10708	13676	
of	2nd Hit	9962	10615	16459	10072	10232	16962	13934
readings	3rd Hit	10646	10636	19606	10841	10245	20282	

Table 8: Results using "Experts' information", without and with "Semantic Annotations" (2nd experiment).

classified as ->	a	Ь	С	d	е	f	g	h	i	j	k	l	m	n
а	352	6	7	3	8	13	3	2	8	1	3	1	3	10
Ь	5	412	26	3	5	5	1	2	4	1	8	2	17	1
С	12	18	766	2	4	6	5	1	5	1	3	0	7	6
d	2	0	2	313	2	1	0	19	0	5	2	1	1	1
е	2	7	4	2	562	16	7	4	126	1	9	8	7	2
F	20	10	3	0	23	737	21	2	7	1	2	3	3	3
g	5	3	3	0	5	21	388	3	11	1	7	7	4	2
h	1	0	2	16	4	0	4	391	12	5	2	1	1	2
i	4	8	4	2	93	5	3	5	377	3	4	2	7	2
j	0	2	0	9	2	4	1	11	0	273	3	0	1	0
k	4	4	7	1	6	5	2	3	15	0	633	3	42	0
l	3	3	2	0	4	3	10	1	5	0	7	449	13	2
m	3	22	11	0	11	4	6	3	5	3	41	5	284	1
n	10	2	7	0	4	6	2	2	0	1	0	1	1	302

Table 9: Confusion matrix of the model with the best results (J48 algorithm - 1st hit - RAW text) (Market | Competitors | Technologies | Subsidies).

- 4th RQ: Which are the best semantic technologies that help reducing the time spent on non-productive tasks inside the TW process?
- Semantic Annotations did not improve results in this case.
- RAW text does not need a treatment.
- Hits only improved using SVM and Experts information.
- J48, 1st hit & "RAW text" gave best results (34.55%).
- Taking into account super-classes, better results.

Figure 20: Solution architecture implemented in the 1st part of the thesis.

Figure 21: Solution architecture implemented in the 2nd part of the thesis.

65 / 73

Figure 22: Solution architecture implemented in the 3rd part of the thesis.

Figure 23: Solution architecture implemented in the 4th part of the thesis.

Future Work

- Test linking functionalities in other scenarios and content types.
- Case study that implement the whole architecture at once.
- Testing alternatives to DBpedia Spotlight API.
- Clustering for enhance document classification.
- · More visual tools development.

Cross university and company collaboration

- Digital Enterprise Research Institute (DERI) of the National University of Ireland (NUI)
- Universidad Politécnica de Madrid (UPM)
- ISEA
- Koniker
- · Mondragon Unibertsitatea (MU)

Projects

- **SELENE**: Support System for Strategic Decision and Patentability in the Field of Home Energy
- COLABORANOVA: Collaborative Innovation System Based on Participation
- ELKARWEB: Social and Semantic Web Platform to Support Collaborative Innovation
- PATENTAWARE: Support System for Strategic Decision and Patentability in the Field of Home Energy
- INNES: Smart Platform for Strategic Innovation in the Field of Health (Strategin Innovatioin) (MU)
- K-INNES: Smart Platform for Strategic Innovation in the Field of Health, Servicing for KONIKER
- ACCELERATE: A Platform for the Acceleration of GO-TO Market in the ICT Industry

Scientific Publications

- A case study on the use of community platforms for inter-enterprise innovation, 2011, 17th International Conference on Concurrent Enterprising (ICE 2011)
- INNOWEB: Gathering the context information of innovation processes with a collaborative social network platform, 2013, 19th International Conference on Concurrent Enterprising (ICE 2013)
- The Role of Linked Data and Semantic-Technologies for Sustainability Idea Management, 2013, 2nd International Symposium on Modelling and Knowledge Management for Sustainable Development (MoKMaSD 2013)
- Semantic Annotations to enhance Innovation and Technology Watch Interoperability, pending at International Journal on Semantic Web and Information Systems (IJSWIS)
- A case study on the use of Machine Learning techniques for supporting Technology Watch, pending at Data and Knowledge Engineering (DKE) journal

ESKERRIK ASKO THANK YOU GRACIAS

aperez@mondragon.edu

