$$3 + \overline{AB} = A + AB = (A.1) + (A.0)$$

$$= A(B+1)$$

$$= A$$

$$(4) \left(A+A' \right) B.B' = \left(A+A' \right) O = 1.0 = 0$$

AB+CD

$$=A + C(B' + BD')$$

$$=A + C(B' + D')$$

$$= A'B' + ADC' + AD'C'$$

$$D(A+A'C') = (a+c')B = AB+Bc'$$

$$+++'S$$

$$\begin{bmatrix}
A' + B \\
A' + B
\end{bmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix} = \begin{pmatrix}
A' + B \\
A' + B
\end{pmatrix}$$

$$= (A'+B)(A'B+A'A)$$
$$= (A'+B)(A'B)(A'B)$$

* + + 7 = * + 4

14 (A+C) (AO+ AO') +AC+C

$$=A+AC+C$$

15

Storpet Garpine =?

16 F(A,B,C) = A'B'C + A'BC + ABC = Supply

A	B	<u></u>		mintern	
0	\circ	\supset		Mo	- A'B'C
0	\mathcal{O}	(3	~ 1	
0	(0	0	MZ	- A'BC
0			۱ ۲	~3 ~k	
	0	0		M5	
		0	0	™ 6	
			1	MZ	- ABC
·	1				

$$F(ABC) = \leq (1,3,7)$$