The group G is isomorphic to the projective special linear group PSL(2,11). Ordinary character table of $G \cong PSL(2,11)$:

	1a	2a	3a	5a	5b	6a	11a	11b
χ_1	1	1	1	1	1	1	1	1
χ_2	5	1	-1	0	0	1	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^{10}$
χ_3	5	1	-1	0	0	1	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^{10}$	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$
χ_4	10	-2	1	0	0	1	-1	-1
χ_5	10	2	1	0	0	-1	-1	-1
χ_6	11	-1	-1	1	1	-1	0	0
χ_7	12	0	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	1	1
χ_8	12	0	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	1	1

Trivial source character table of $G \cong PSL(2,11)$ at p = 11:

Normalisers N_i	N_1						N_2						
p-subgroups of G up to conjugacy in G			P_1						P_2				
Representatives $n_j \in N_i$	1a	2a	3a	5a	5b	6a	1a	5b	5a	5d	5c		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	11	3	2	1	1	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8$	22	-2	1	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	1	0	0	0	0	0		
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8$	22	2	-2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	2	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8$	22	-2	1	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	1	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8$	22	2	1	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	-1	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	11	-1	-1	1	1	-1	0	0	0	0	0		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	1	1	1	1	1	1	1	1	1	1		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8$	12	0	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	1	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^4$		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8$	12	0	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	1	$E(5)^{2}$	$E(5)^{4}$	E(5)	$E(5)^{3}$		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8$	12	0	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	1	$E(5)^{3}$	E(5)	$E(5)^{4}$	$E(5)^{2}$		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8$	12	0	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	1	$E(5)^{4}$	$E(5)^{3}$	$E(5)^{2}$	E(5)		
				•									

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 4, 2, 9, 11, 3, 10, 7, 6, 5, 8)]) \cong C11$

 $N_1 = Group([(2,10)(3,4)(5,9)(6,7),(1,2,11)(3,5,10)(6,8,9)]) \cong PSL(2,11)$ $N_2 = Group([(1,4,2,9,11,3,10,7,6,5,8),(2,7,6,10,8)(3,4,5,11,9)]) \cong C11: C5$