TEMA 3 NIVEL FÍSICO

3.1 Funciones de la capa física

Esquema de comunicación entre DTE's

DTE (Data Terminal Equipment): Equipo Terminal de Datos.

DCE (Data Circuit-Terminating Equipment): Equipo Terminador de Circuito de Datos.

Tipos de señales

Señal analógica

Señal digital

Análisis de señales con series de Fourier

$$f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cdot \cos(2\pi n f_0 t) + \sum_{n=1}^{\infty} b_n \cdot \sin(2\pi n f_0 t)$$

$$T = \text{Periodo de la señal } f(t)$$

$$f_0 = \frac{1}{T} = \text{Frecuencia de la señal } f(t)$$

$$a_n = \frac{2}{T} \int_0^T f(t) \cos(2\pi n f_0 t) dt \quad n = 0, \dots, \infty$$

$$b_n = \frac{2}{T} \int_0^T f(t) \operatorname{sen}(2\pi n f_0 t) dt \quad n = 1, \dots, \infty$$

Armónico de orden n:

Par de funciones cos y sen de frecuencias nf_0 y amplitudes a_n y b_n .

Una señal está compuesta por la suma de infinitos armónicos.

Análisis de señales con series de Fourier

Señal analógica de pulsos

Señal periódica asociada a la transmisión secuencial de un carácter ASCII

Análisis de señales con series de Fourier

Reconstrucción de la señal empleando los 10 primeros armónicos

Análisis de señales con series de Fourier

Espectro de potencia de una señal

$$A(n) = \sqrt{a_n^2 + b_n^2}$$

Valor medio de la contribución en amplitud de un armónico a la reconstrucción de la señal

Ancho de banda de un medio físico (B)

Un medio físico es capaz de transmitir los armónicos o componentes frecuenciales de una señal que tengan una frecuencia dentro de un rango determinado.

$$B = f_c - f_0$$
 Hz (Hertzios)

Velocidad de modulación (Vm)

Número de veces por unidad de tiempo que la magnitud física de una señal puede variar su valor. Unidad de velocidad de modulación: baudio (bd)

Velocidad de transmisión en un medio físico (Vt)

Número de bits transmitidos por unidad de tiempo en un medio físico.

Unidad de Vt: bps (bits por segundo)	Unidad de Vt: Bps (bytes por segundo)
1000 bps ⇔ 1 Kbps	1024 Bps ⇔ 1 KBps
1000 Kbps ⇔ 1 Mbps	1024 KBps ⇔ 1 MBps
1000 Mbps ⇔1 Gbps	1024 MBps ⇔ 1 GBps
1000 Gbps ⇔ 1 Tbps	1024 GBps ⇔ 1 TBps

Redes de Computadores. Grado I. I.

Relación entre Vt y Vm

$$V_t = V_m \cdot \log_2 n$$
 n = número de niveles de la señal de pulsos

$$V_{t} = \frac{12 \text{ bits}}{0.6 \text{ seg}} = 20 \text{ bps}$$
 $V_{t} = \frac{1 \text{ cambio}}{0.1 \text{ seg}} \log_{2} 4 = 20 \text{ bps}$

Relación entre B, Vt y número de armónicos transmitidos en un medio

Sea n el número de armónicos de una señal que son transmitidos por un medio, f_0 la frecuencia fundamental de la señal periódica transmitida y B el ancho de banda del medio. Entonces,

$$n \cdot f_0 \le B \qquad \textbf{(1)}$$

Si se transmite una señal periódica consistente en la repetición de 8 bits en un tiempo de T segundos, entonces

$$V_t = \frac{8}{T} = 8\frac{1}{T} = 8f_0 bps$$
 luego $f_0 = \frac{V_t}{8} Hz$ (2)

Sustituyendo (2) en (1) obtenemos:

$$n \cdot \frac{V_t}{8} \le B$$

Teorema de Nyquist

Reconstrucción de señales empleando un muestreador

$$f_m$$
 = frecuencia de muestreo $f_m = \frac{1}{T_m}$ T_m = periodo de muestreo

Teorema de Nyquist

Representación de la función $f(t) = A \cdot sin(2\pi t)$ donde A=1 y T= 1 seg (f₀ = 1 Hz)

Para recuperar una función seno (o coseno) se necesitan como mínimo dos puntos en cada periodo de la señal. Luego Tm = 0.5 segundos y fm = 2 Hz = 2 f_0 .

Teorema de Nyquist

Si un medio físico tienen un ancho de banda B, entonces es cierto que:

La frecuencia del armónico de mayor frecuencia de la señal transmitido por el medio físico tendrá una frecuencia de B Hz

$$V_{t(max)} = V_m \log_2 n = 2B \log_2 n \ bps$$

n = Número de niveles de la señal

$$f_m = 2B Hz$$

La velocidad de modulación para una señal de pulsos es el número de veces por unidad de tiempo en que se detectan cambios.

$$V_{m(max)} = \frac{1}{T_m} = f_m = 2B \text{ baudios}$$

Ejemplo: Transmisión de pulsos en RTC

$$B = 4000 Hz \Rightarrow$$

$$V_{t(max)} = 2 \cdot 4000 \cdot \log_2 2 = 8000 \, bps$$

Distorsión en el medio de transmisión

Distorsión en el medio de transmisión

3. Distorsión de retardo

4. Ruido

Redes de Computadores. Grado I. I.

Ruido en el medio. Teorema de Shannon

Ruido de fondo en un medio físico

Relación señal-ruido (signal to noise ratio) =
$$10\log_{10}\left(\frac{P_s}{P_n}\right)$$
 dB (decibelios)

Teorema de Shannon

Velocidad máxima de transmisión en un medio físico (independientemente del número de niveles de la señal) con una relación señal ruido en el medio.

$$V_{t(max)} = B \log_2 \left(1 + \frac{P_s}{P_n} \right) bps$$

Ruido en el medio. Teorema de Shannon

Ejemplo: Velocidad máxima de transmisión en la RTC con una relación señal ruido de 30 dB.

$$V_{t(max)} = 4000\log_2\left(1 + \frac{P_s}{P_n}\right) bps$$

$$30 dB = 10 \log_{10} \left(\frac{P_s}{P_n} \right) \Rightarrow \log_{10} \left(\frac{P_s}{P_n} \right) = \frac{30}{10} = 3$$
 $\frac{P_s}{P_n} = 10^3 = 1000$

$$V_{t(max)} = 4000 \log_2(1+1000) = 4000 \frac{\log_{10}(1001)}{\log_{10} 2} = 39868.91 \ bps$$

Tipos de ruido según la naturaleza de su origen

1. Ruido cruzado (crosstalk) o diafonía

2. Autoacoplamiento

Tipos de ruido según la naturaleza de su origen

