1. Let S= {1, E3, C3 be a sample space. List all possible events. The list of all possible events is the list of all subsets of the sample space. Hence, \$ 23,512,5533,563,51,633,51,63,553,63,51,53,633 would be the answer 2. The odds that the number of tosses being odd will be PC tos, odd) = U PC1) and since all are disjoint sets we get needs needs $\sum_{\text{Acade}} \text{Pon}_{j} = \sum_{\text{Acade}} \left(\frac{g_{j}^{\text{apt}}}{g_{j}^{\text{apt}}}\right) \left(\frac{1}{g_{j}^{\text{apt}}}\right) = \sum_{k=1}^{\infty} \left(\frac{g_{j}}{g_{j}^{\text{apt}}}\right) \left(\frac{g_{j}}{g_{$ (a) Roual flush - A tougal flush is when we have an ace, king, queen, jack, to in on hand. Since the sequence of numbers is given, all we need to chance is the symbol of each As there are that supplies are part $\binom{4}{1}$ possibilities, and the sample space is $\binom{C_1}{5}$, the probability is $\frac{\binom{4}{1}}{\binom{5}{2}}$. Prompt flush = $\frac{\binom{4}{1}}{\binom{5}{2}} = \frac{u \cdot 5! \cdot 4!}{m_{2}!}$... Prompt flush = $\frac{4 \cdot 5! \cdot 4!}{m_{2}!}$ (b) Straight flush - This is the case cohere we have comets of sequential ranks, all of the same scats. Since we exclude a rougal flash the cases are (514.9.2.4.6) (6.544.9.2.6), (6.544.9.2.6), (6.9.4.5.5), (9.8.9.6.5), (9.8.9.6.5) (10,7,8,9,6), (3,10,9,8,9), (Q,3,10,9,8), (K, Q,7,10,9) A total of 9 cases. Similar to the closure as there are than saits we get P(straight flock) = 9. (1) = 36. VAI-51 (c) Flusi Hence, PCflush) = $\frac{\binom{9}{1}\cdot 1289 - 40}{\binom{52}{1}}$ A straight is a hand of 5 cents of sequential mark. First, the cases of the sequential contes is (54422.A), (65443.2), (4654.4), (6,4,654.4), (9,6,1,65), (10,1,65), (Q.T. 10.9.8), (K, Q.T. 10.9), (A, K, Q.T. 10). Since each cand on how one of the flour suits we get lox((1)) possibilities. Excluding straight and local flushes P(Straight) = (2) = 1000 (1) flushes Flort. Let's change the mark far the one cond. ((?). Now out of the left over 12 marks, all we need to change is two and since we chanse pairs of the same size. (12). Also, Since the rank con are different within a two cord pair. P(two pair) = $\frac{\binom{1}{1} \cdot \binom{4}{1} \cdot \binom{1}{2} \cdot \binom{4}{2} \cdot \binom{4}{1}}{\binom{5}{2}}$

	4.																										
		wouts am	simply	distribut	ing 13 cm	els each.	Hence,	IA1= (ار الا	<u>د)</u> . (ع)·(^B)																
					= 6, 36								5 = 1.49.	lo ¹⁵ haas	= 6.2(· (0 ²³ days =	1.90 · (6ª	uears.	Mach lar	ger than	13.90 bil	lion years	s				
	5.																										
	To get al	ii diffeen	f number	s we get	the permu	etation of	three n	umbers,	(Al= 68 ₃	. And Id	ıl =6³,	thus	P= 6P3	<u> 5</u> .													
ļ	ŋ																										
					same colo																						
					ecic than																						
					u-) = 1-																				0.2589	0.25	
					P(104) =	1 - (04.Pg	= 0.24 <	0.25°, PC	(co) = (= 1900 =	0.246A co	.25 , P	(98) = t-	488 =	0. 254 >	•.25, PC	1 1) = (-	91/8 = 0	.2519 >0.2	is. Since	, Pcion	< 0.25< F	CAN N	2.00			
	N = (00	would be	where	Pon co.	25 tinst.																						