Digital Design IE1204

Föreläsningsbilder av William Sandqvist

Tillståndsautomater del II

Carl-Mikael Zetterling bellman@kth.se

Designmetodik

Grundläggande designmetodik för tillståndsmaskiner.

- 1. Analysera specifikationen för kretsen
- 2. Skapa tillståndsdiagram
- 3. Ställ upp tillståndstabellen
- 4. Minimera tillståndstabellen
- 5. Tilldela koder för tillstånden
- 6. Välj typ av vippor
- 7. Realisera kretsen mha Karnaugh-diagram.

Moore-automat

För Moore-automaten beror utsignalerna på det inre tillståndet.

Moore: input och output

Output syns efter att tillståndet (state) har ändrats

Mealy-automat

I en **Mealy**-Automat beror utgångssignalerna både på nuvarande tillstånd *och* ingångarna

Mealy: input och output

Output syns direkt efter att input har ändrats

Överblivna tillstånd?

• Ibland får man några states *över* när man väljer kod.

(Totala antalet states är alltid potenser av 2)

• Överblivna states måste tas om hand så att inte statemaskinen låser sig vid uppstart

Ett annat sätt är att man alltid (tex. automatiskt) gör RESET vid uppstart.

(RESET-generator chip)

Om matningsspänningen får problem, eller sjunker under viss nivå, så blir det **RESET**

Bättre än att behöva skaffa extra skydd, är att designa förebyggande och från början "ta hand om" alla tillstånd ...

Ex. räknare {0,1,2}

3 tillstånd \rightarrow 2 vippor \rightarrow 2² = 4 tillstånd. Ett tillstånd blir över ...

Räknaren som automat

Nextstate-funktion

	Nuv. värde	Utsignal	Nästa värde	D-vippa
	Q_1Q_0	f	$Q_1^{\dagger}Q_0^{\dagger}$	D_1D_0
S 0	0 0	0	0 1	0 1
S 1	0 1	0	1 0	1 0
S 2	1 0	1	0 0	0 0
	1 1	_	(ej 11)	
)

Vi kan specifiera vad som helst här – *utom* att "stanna kvar (dvs. ej 11)!

Karnaughdiagram

	Nuv. värde	Utsignal	Nästa värde	D-vippa
	Q_1Q_0	f	$Q_1^{\dagger}Q_0^{\dagger}$	D_1D_0
S0	0 0	0	0 1	0 1
S1	0 1	0	1 0	1 0
S2	1 0	1	0 0	0 0
	1 1	_	(ej 11)	

$$\begin{array}{c|cccc}
Q_0 & & & & \\
Q_1 & 0 & 1 & \\
0 & 0 & 0 & \\
1 & 1 & - & \\
\end{array}$$

$$f = Q_1$$

• OK, 10 inte 11!

Minimerad kodad tillståndstabell

Nuv. värde	Utsignal	Nästa värde	D-vippa
Q_1Q_0	f	$Q_1^{\dagger}Q_0^{\dagger}$	D_1D_0
0 0	0	0 1	0 1
0 1	0	1 0	1 0
1 0	1	0 0	0 0
1 1	1	1 0 (ej 11)	1 0

Dvs, det extra tillståndet går in till S2 i huvudsekvensen...

Räknaren

Räknaren

Slutgiltigt tillståndsdiagram

Tillståndsminimering

När man konstruerar komplexa tillståndsmaskiner så kan det lätt hända att det finns **ekvivalenta** och därmed redundanta tillstånd *som kan tas bort* för att få en effektivare implementering.

Minimeringsmetod

- Följande exempel illustrerar en manuell minimeringsmetod
 - syftet är att förklara begreppet tillståndsminimering

• Observera att CAD-syntesverktyg använder andra (effektivare) algoritmer

Ex. Tillståndsminimering

IE1204 2018 P1 bellman@kth.se 19

Inte ekvivalenta tillstånd

Det är mycket enklare att skilja ut tillstånd som absolut inte kan vara ekvivalenta än att direkt leta reda på ekvivalenta tillstånd ...

Minimeringens grundidé

Två tillstånd är *inte* ekvivalenta om de har olika utgångsvärden, dvs. om:

1. de har olika utgångsvärden

Minimeringens grundidé

Två tillstånd är *inte* ekvivalenta om de har lika utgångsvärden, men

2. om *någon* av tillståndsövergångarna leder till *olika* efterföljande utgångsvärden

IE1204 2018 P1 bellman@kth.se 22

Tillståndstabell

Present	Next	Output	
state	w = 0	w = 1	Z.
A	В	С	1
В	D	F	1
C	F	E	0
D	В	G	1
E	F	C	0
F	Е	D	0
G	F	G	0

Ursprungligt tillståndsdiagram

Ursprunglig tillståndstabell

Present	Next state		Output
state	w = 0	w = 1	Z
A	В	С	1
В	D	F	1
C	F	E	0
D	В	G	1
E	F	C	0
F	E	D	0
G	F	G	0

Partitioner. Grupper av tillstånd.

Start

 P_1 . Från början utgör *alla* tillstånd ett enda block, $P_1 = (ABCDEFG)$

 $P_1 = (ABDCDEFG)$

Present	Next state		Output
state	w = 0	w = 1	Z
A	В	С	1
В	D	F	1
C	F	E	0
D	В	G	1
E	F	C	0
F	E	D	0
G	\mathbf{F}	G	0

Gruppera nu tillstånden i grupper efter samma utsignal

Vilka tillstånd har samma utsignal?

- ABD har utsignalen z = 1
- CEFG har utsignalen z = 0

$$\mathbf{P_2} = (ABD)(CEFG)$$

Tillstånden A, B, D kan därför **aldrig** vara ekvivalenta med något av tillstånden C, E, F, G eller tvärtom

$$\mathbf{P_2} = (ABD)(CEFG)$$

Present	Next state		Output
state	w = 0	w = 1	z
Α	В	С	1
В	D	F	1
C	F	E	0
D	В	G	1
E	F	C	0
F	E	D	0
G	F	G	0

Vilka **följdtillstånd** har tillstånden?

```
Block (ABD)
```

w = 0: "0-successor": $A \rightarrow (ABD), B \rightarrow (ABD), D \rightarrow (ABD)$

alla är övergångar till samma block (ABD)

w = 1: "1-successor": A \rightarrow (CEFG), B \rightarrow (CEFG), D \rightarrow (CEFG)

alla är övergångar till samma block (CEFG)

P = (ABD)(CEFG) ingen ändring av blocken

Block (CEFG)

w = 0: 0-successor: $C \rightarrow (CEFG)$, $E \rightarrow (CEFG)$, $F \rightarrow (CEFG)$,

 $G \rightarrow (CEFG)$ alla är övergångar till samma block (CEFG)

w = 1: 1-successor: $C \rightarrow (CEFG)$, $E \rightarrow (CEFG)$, $F \rightarrow (ABD)$,

 $G \rightarrow (CEFG)$ C E G går till samma block

F avviker, går till ett annat block

$$\mathbf{P_3} = (ABD)(CEG)(F)$$

$$\mathbf{P_3} = (ABD)(CEG)(F)$$

Present	Next state		Output
state	w = 0	w = 1	Z
Α	В	С	1
В	D	F	1
C	F	E	0
D	В	G	1
E	F	C	0
F	Е	D	0
G	F	G	0

Vilka **följdtillstånd** har tillstånden?

Block (ABD)

w = 0: "0-successor": $A \rightarrow (ABD), B \rightarrow (ABD), D \rightarrow (ABD)$

alla är övergångar till samma block ABD

w = 1: "1-successor": $A \rightarrow (CEG), B \rightarrow (F), D \rightarrow (CEG)$

 $A \rightarrow C$, $D \rightarrow G$ är övergångar till samma block

 $B \rightarrow F$ avviker, går till ett annat block

 $P_4 = (AD)(B)(CEG)(F)$ ny indelning av blocken

Block (CEG)

w = 0: "0-successor": $C \rightarrow (F), E \rightarrow (F), G \rightarrow (F)$

alla är övergångar till samma block (F)

w = 1: "1-successor": $C \rightarrow (CEG), E \rightarrow (CEG), G \rightarrow (CEG)$

alla är övergångar till samma block (CEG)

 $P_4 = (AD)(B)(CEG)(F)$ ingen ändring av blocken

Minimerat

Nästa partition P_5 blir densamma som P_4 . Processen är därför klar. AD respektive CEG är **ekvivalenta**.

A' blir en ny beteckning för AD, C' blir ny beteckning för CEG.

$$\mathbf{P_4} = (AD)(B)(CEG)(F) = (A')(B)(C')(F)$$

Minimerad tillståndstabell

$$P_4 = (AD)(B)(CEG)(F) = (A')(B)(C')(F)$$

A' är ny beteckning för AD, C' är ny för CEG.

Present	Next state		Output
state	w = 0	w = 1	Z
A	В	C	1
В	D	F	1
C	F	E	0
D	В	G	1
E	F	C	0
F	E	D	0
G	F	G	0

Present	Nextstate		Output
state	w = 0	w = 1	Z.
A'	В	C'	1
В	A'	F	1
C'	F	C'	0
F	C'	A'	0

Minimerat tillståndsdiagram

Present	Nextstate		Output
state	w = 0	w = 1	z
A'	В	C'	1
В	A'	\mathbf{F}	1
C,	F	C'	0
F	C,	A'	0

4 tillstånd kräver 2 vippor $(2^2 = 4)$.

Jämförelse

Före minimering

Efter minimering

Värdet av tillståndsminimering?

• Det är *inte* säkert att färre tillstånd leder till ett *enklare* nät!

Fördelen med tillståndsminimering ligger i stället i att det blir enklare att skapa det ursprungliga tillståndsdiagrammet när man inte behöver anstränga sig för att det dessutom ska bli minimalt från början!

CAD-verktygen minimerar sedan det ursprungliga tillståndsdiagrammet till ett slutgiltigt.

Analys av sekvensnät

IE1204 2018 P1

bellman@kth.se

Tänk Moore-automat!

Analysera grindnäten

Fyll i Karnaughdiagram

Kan Du fylla i Karnaughdiagrammen med funktionerna?

$$Y_2 = wy_1 + wy_2$$

$$Y_2 = wy_1 + wy_2$$
 $Y_1 = w\overline{y}_1 + wy_2$ $z = y_1 \cdot y_2$

Ifyllda Karnaughdiagram

Ifyllda Karnaughdiagram

IE1204 2018 P1 bellman@kth.se 37

Kodad tillståndstabell

Slå ihop Karnaughdiagrammen till en kodad tillståndstabell

Kodad tillståndstabell

Tillståndstabell

Kodad tillståndstabell

Present	Next		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0	0 0	01	0
0 1	0 0	10	0
10	0 0	11	0
11	0 0	11	1

Tillståndstabell

Present	Next	Output	
state	w = 0	w = 1	Z
А	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

Den okodade tillståndstabellen är utgångspunkt om man vill byta till en annan tillståndskodning.

Tillståndsdiagram

Present	Next state		Output
state	w = 0	w = 1	Z
А	Α	В	0
В	Α	С	0
C	Α	D	0
D	Α	D	1

Rita färdigt tillståndsdiagrammet själv. (På övning 6 löser vi ett liknande problem – kretsen är en "tre i rad" krets).

Tillståndsdiagram

Present	Next state		Output
state	w = 0	w = 1	Z
А	А	В	0
В	Α	С	0
C	Α	D	0
D	Α	D	1

Ibland kan man behöva ändra ordningen på tillstånden för att få ett tydligare diagram

Tillståndsdiagram

Present	Next state		Output
state	w = 0	w = 1	Z
А	Α	В	0
В	Α	С	0
C	Α	D	0
D	Α	D	1

C och D har bytt plats – snyggare, inga korsande tillståndspilar

• Att kräva samma insignal "tre gånger i rad" är en ofta använd säkerhetsåtgärd.