TMC2130-LA DATASHEET

Universal high voltage driver for two-phase bipolar stepper motor. stealthChop™ for quiet movement. Integrated MOSFETs for up to 2.0A motor current per coil. With Step/Dir Interface and SPI.

FEATURES AND BENEFITS

2-phase stepper motors up to 2.0A coil current (2.5A peak)

Step/Dir Interface with microstep interpolation microPlyer™

SPI Interface

Voltage Range 4.75... 46V DC

Highest Resolution 256 microsteps per full step

stealthChop™ for extremely quiet operation and smooth motion

spreadCycle™ highly dynamic motor control chopper

dcStep™ load dependent speed control

 $\textbf{stallGuard2}^{\textbf{TM}} \ \ \textbf{high precision sensorless motor load detection}$

coolStep™ current control for energy savings up to 75%

Integrated Current Sense Option

Passive Braking and freewheeling mode

Full Protection & Diagnostics

Small Size 5x6mm² QFN36 package or TQFP48 package

APPLICATIONS

Textile, Sewing Machines
Factory & Lab Automation
3D printers
Liquid Handling
Medical
Office Automation
CCTV, Security
ATM, Cash recycler
POS
Pumps and Valves

DESCRIPTION

The TMC2130 is a high performance driver IC for two phase stepper motors. Standard SPI and STEP/DIR simplify communication. TRINAMICs sophisticated stealthChop chopper ensures noiseless operation combined with maximum efficiency and best motor torque. coolStep allows reducing energy consumption by up to 75%. dcStep drives high loads as fast as possible without step loss. Integrated power MOSFETs handle motor currents up to 1.2A RMS (QFN package) / 1.4A RMS (TQFP) or 2.5A short time peak current per coil. Protection and diagnostic features support robust and reliable operation. Industries' most advanced stepper motor driver enables miniaturized designs with low external component count for costeffective and highly competitive solutions.

BLOCK DIAGRAM

APPLICATION EXAMPLES: HIGH VOLTAGE - MULTIPURPOSE USE

The TMC2130 scores with power density, integrated power MOSFETs, and a versatility that covers a wide spectrum of applications from battery systems up to embedded applications with 2.0A motor current per coil. Based on stallGuard2, coolStep, dcStep, spreadCycle, and stealthChop, the TMC2130 optimizes drive performance and keeps costs down. It considers velocity vs. motor load, realizes energy savings, smoothness of the drive and noiselessness. Extensive support at the chip, board, and software levels enables rapid design cycles and fast time-to-market with competitive products.

MINIATURIZED DESIGN FOR ONE STEPPER MOTOR

DESIGN FOR DEMANDING APPLICATIONS WITH S-SHAPED RAMP PROFILES

COMPACT DESIGN FOR UP TO THREE STEPPER MOTORS

In this application, the CPU initializes the TMC2130 motor driver via SPI interface and controls motor movement by sending step and direction signals. A real time software realizes motion control.

The CPU initializes the TMC4361 motion controller and the TMC2130. Thereafter, it sends target positions to the TMC4361. Now, the TMC4361 takes control over the TMC2130. Combining the TMC4361 and the TMC2130 offers diverse possibilities for demanding applications including servo drive features.

Here, an application with up to three stepper motors is shown. A single CPU combined with a TMC429 motion controller manages the whole stepper motor driver system. This design is highly economical and space saving if more than one stepper motor is needed.

ORDER CODES

Order code	Description	Size [mm²]
TMC2130-LA	1-axis dcStep, coolStep, and stealthChop driver; QFN36	5 x 6
TMC2130-TA	1-axis dcStep, coolStep, and stealthChop driver; TQFP48	9 x 9
TMC2130-EVAL	Evaluation board for TMC2130 two phase stepper motor controller/driver	85 x 55
TMC4361-EVAL	Motion controller board (part of evaluation board system)	85 x 55
STARTRAMPE	Baseboard for TMC2130-EVAL and further evaluation boards	85 x 55
ESELSBRÜCKE	Connector board for plug-in evaluation board system	61 x 38

Table of Contents

1	PRII	NCIPLES OF OPERATION5	8 A	NALOG CURRENT CONTROL AIN	. 54
	1.1	KEY CONCEPTS7	9 S	ELECTING SENSE RESISTORS	. 55
	1.2	SPI CONTROL INTERFACE7	10	INTERNAL SENSE RESISTORS	. 57
	1.3	SOFTWARE		VELOCITY BASED MODE CONTROL	
	1.4 1.5	STEALTHCHOP DRIVER8	11		
	1.6	STALLGUARD2 – MECHANICAL LOAD SENSING8	12	DRIVER DIAGNOSTIC FLAGS	.61
	1.7	COOLSTEP – LOAD ADAPTIVE CURRENT	12.1	TEMPERATURE MEASUREMENT	.61
	CONTRO)L8	12.2	SHORT TO GND PROTECTION	.61
	1.8	DCSTEP – LOAD DEPENDENT SPEED CONTROL 9	12.3	OPEN LOAD DIAGNOSTICS	.61
2	PIN	ASSIGNMENTS10	14	STALLGUARD2 LOAD MEASUREMENT	.62
	2.1	PACKAGE OUTLINE10	14.1	TUNING STALLGUARD2 THRESHOLD SGT	.63
	2.2	SIGNAL DESCRIPTIONS11	14.2		
3	SAM	IPLE CIRCUITS13	14.3		
,			14.4	LIMITS OF STALLGUARD2 OPERATION	.65
	3.1 3.2	STANDARD APPLICATION CIRCUIT13 REDUCED NUMBER OF COMPONENTS14	15	COOLSTEP OPERATION	.66
	3.3	INTERNAL RDSon Sensing14	15.1	L USER BENEFITS	.66
	3.4	EXTERNAL 5V POWER SUPPLY15	15.2		
	3.5	PRE-REGULATOR FOR REDUCED POWER	15.3	TUNING COOLSTEP	.68
	DISSIPA	ATION16	16	STEP/DIR INTERFACE	69
	3.6	5V ONLY SUPPLY17	10		
	3.7	HIGH MOTOR CURRENT18	16.1		
	3.8	Driver Protection and EME Circuitry20	16.2		
4	SPI	INTERFACE21	16.3 Stri	MICROPLYER STEP INTERPOLATOR AND STAIL DETECTION	
	4.1	SPI DATAGRAM STRUCTURE21		DIAG OUTPUTS	
	4.2	SPI SIGNALS22	17		
	4.3	TIMING23	18	DCSTEP	.73
5	REG	ISTER MAPPING24	18.1		
	5.1	GENERAL CONFIGURATION REGISTERS25	18.2		
	5.2	VELOCITY DEPENDENT DRIVER FEATURE	18.3		
	-	DL REGISTER SET27	18.4	STALL DETECTION IN DCSTEP MODE	. / /
	5.3	SPI Mode Register29	19	SINE-WAVE LOOK-UP TABLE	. 78
	5.4	DCSTEP MINIMUM VELOCITY REGISTER29	19.1	L USER BENEFITS	. 78
	5.5	MOTOR DRIVER REGISTERS30	19.2		
6	STE	ALTHCHOP™39	20	EMERGENCY STOP	70
	6.1	Two Modes for Current Regulation39	20		
	6.2	AUTOMATIC SCALING40	21	DC MOTOR OR SOLENOID	.80
	6.3	VELOCITY BASED SCALING42	21.1	SOLENOID OPERATION	.80
	6.4	COMBINING STEALTHCHOP AND SPREADCYCLE	22	QUICK CONFIGURATION GUIDE	Ω1
		44		•	
	6.5	FLAGS IN STEALTHCHOP45	23	GETTING STARTED	.84
	6.6	Freewheeling and Passive Motor Braking 46	23.1	I INITIALIZATION EXAMPLE	.84
7	SPR	EADCYCLE AND CLASSIC CHOPPER47	24	STANDALONE OPERATION	.85
_	7.1	SPREADCYCLE CHOPPER48	25	EXTERNAL RESET	.88
	7.1 7.2	CLASSIC CONSTANT OFF TIME CHOPPER51	26	CLOCK OSCILLATOR AND INPUT	.88
	7.3	RANDOM OFF TIME	26.1	CONSIDERATIONS ON THE FREQUENCY	.88
	7.4	CHOPSYNC2 FOR QUIET 2-PHASE MOTOR53	27	ABSOLUTE MAXIMUM RATINGS	.89

28.1 OPERATIONAL RANGE	89 590	30.1 30.2 30.3	DIMENSIONAL DRAWINGS TOPP	-EP4899
29 LAYOUT CONSIDERATIONS	94	32	ESD SENSITIVE DEVICE	101
29.1 EXPOSED DIE PAD		33	TABLE OF FIGURES	102
29.2 WIRING GND29.3 SUPPLY FILTERING		34	REVISION HISTORY	103
29.4 LAYOUT EXAMPLE (QFN36)		35	REFERENCES	103
30 PACKAGE MECHANICAL DATA.	97			

1 Principles of Operation

THE TMC2130 OFFERS THREE BASIC MODES OF OPERATION:

In *Step/Direction Driver Mode*, the TMC2130 is the microstep sequencer and power driver between a motion controller and a two phase stepper motor. Configuration of the TMC2130 is done via SPI. A dedicated motion controller IC or the CPU sends step and direction signals to the TMC2130. The TMC2130 provides the related motor coil currents to operate the motor. In *Standalone Mode*, the TMC2130 can be configured using pins. In this mode of operation CPU interaction is not necessary. The third mode of operation is the *SPI Driver Mode*, which is used in combination with TRINAMICs TMC4361 motion controller chip. This mode of operation offers several possibilities for sophisticated applications.

OPERATION MODE 1: Step/Direction Driver Mode

An external motion controller is used or a central CPU generates step and direction signals. The motion controller (e.g. TMC429) controls the motor position by sending pulses on the STEP signal while indicating the direction on the DIR signal. The TMC2130 provides a microstep counter and a sine table to convert these signals into the coil currents which control the position of the motor. The TMC2130 automatically takes care of intelligent current and mode control and delivers feedback on the state of the motor. The microPlyer automatically smoothens motion. To optimize power consumption and heat dissipation, software may also adjust coolStep and stallGuard2 parameters in real-time, for example to implement different tradeoffs between speed and power consumption.

Figure 1.1 TMC2130 STEP/DIR application diagram

OPERATION MODE 2: Standalone Mode

The TMC2130 positions the motor based on step and direction signals. The microPlyer automatically smoothens motion. No CPU interaction is required. Configuration is done by hardware pins. Basic standby current control can be done by the TMC2130. Optional feedback signals allow error detection and synchronization.

Figure 1.2 TMC2130 standalone driver application diagram

OPERATION MODE 3: SPI Driver Mode

Together with the TMC4361 high-performance S-ramp motion controller the TMC2130 stepper motor driver offers an SPI control mode, which gives full control over the motor coil currents to the TMC4361. Combining these two ICs offers several possibilities for demanding applications including servo features. Please refer to Figure 1.1 for more information about the pinning, which is identical to step/direction driver mode, except that the STEP & DIR pins are not required for operation.

1.1 Key Concepts

The TMC2130 implements advanced features which are exclusive to TRINAMIC products. These features contribute toward greater precision, greater energy efficiency, higher reliability, smoother motion, and cooler operation in many stepper motor applications.

stealthChop™ No-noise, high-precision chopper algorithm for inaudible motion and inaudible

standstill of the motor.

spreadCycle™ High-precision chopper algorithm for highly dynamic motion and absolutely clean

current wave.

dcStep™ Load dependent speed control. The motor moves as fast as possible and never loses

a step.

stallGuard2™ Sensorless stall detection and mechanical load measurement.

coolStep™ Load-adaptive current control reducing energy consumption by as much as 75%.

microPlyer™ Microstep interpolator for obtaining increased smoothness of microstepping when

using the STEP/DIR interface.

In addition to these performance enhancements, TRINAMIC motor drivers offer safeguards to detect and protect against shorted outputs, output open-circuit, overtemperature, and undervoltage conditions for enhancing safety and recovery from equipment malfunctions.

1.2 SPI Control Interface

The SPI interface is a bit-serial interface synchronous to a bus clock. For every bit sent from the bus master to the bus slave another bit is sent simultaneously from the slave to the master. Communication between an SPI master and the TMC2130 slave always consists of sending one 40-bit command word and receiving one 40-bit status word.

The SPI command rate typically is a single initialization after power-on.

1.3 Software

From a software point of view the TMC2130 is a peripheral with a number of control and status registers. Most of them can either be written only or read only. Some of the registers allow both read and write access. In case read-modify-write access is desired for a write only register, a shadow register can be realized in master software.

1.4 Moving the Motor

1.4.1 STEP/DIR Interface

The motor can be controlled by a step and direction input. Active edges on the STEP input can be rising edges or both rising and falling edges as controlled by a mode bit (*dedge*). Using both edges cuts the toggle rate of the STEP signal in half, which is useful for communication over slow interfaces such as optically isolated interfaces. On each active edge, the state sampled from the DIR input determines whether to step forward or back. Each step can be a fullstep or a microstep, in which there are 2, 4, 8, 16, 32, 64, 128, or 256 microsteps per fullstep. A step impulse with a low state on DIR increases the microstep counter and a high decreases the counter by an amount controlled by the microstep resolution. An internal table translates the counter value into the sine and cosine values which control the motor current for microstepping.

1.4.2 SPI Direct Mode

The direct mode allows control of both motor coil currents and polarity via SPI. It mainly is intended for use with a dedicated external motion controller IC with integrated sequencer. The sequencer applies sine and cosine waves to the motor coils. This mode also allows control of DC motors, etc.

1.5 stealthChop Driver

stealthChop is a voltage chopper based principle. It guarantees absolutely quiet motor standstill and silent slow motion, except for noise generated by ball bearings. stealthChop can be combined with classic cycle-by-cycle chopper modes for best performance in all velocity ranges. Two additional chopper modes are available: a traditional constant off-time mode and the spreadCycle mode. The constant off-time mode provides high torque at highest velocity, while spreadCycle offers smooth operation and good power efficiency over a wide range of speed and load. spreadCycle automatically integrates a fast decay cycle and guarantees smooth zero crossing performance. The extremely smooth motion of stealthChop is beneficial for many applications.

Programmable microstep shapes allow optimizing the motor performance for low cost motors.

Benefits of using stealthChop:

- Significantly improved microstepping with low cost motors
- Motor runs smooth and quiet
- Absolutely no standby noise
- Reduced mechanical resonances yields improved torque

1.6 stallGuard2 - Mechanical Load Sensing

stallGuard2 provides an accurate measurement of the load on the motor. It can be used for stall detection as well as other uses at loads below those which stall the motor, such as coolStep load-adaptive current reduction. This gives more information on the drive allowing functions like sensorless homing and diagnostics of the drive mechanics.

1.7 coolStep - Load Adaptive Current Control

coolStep drives the motor at the optimum current. It uses the stallGuard2 load measurement information to adjust the motor current to the minimum amount required in the actual load situation. This saves energy and keeps the components cool.

Benefits are:

Energy efficiency power consumption decreased up to 75%

Motor generates less heat improved mechanical precision

Less or no cooling improved reliability

Use of smaller motor less torque reserve required → cheaper motor does the job

Figure 1.3 shows the efficiency gain of a 42mm stepper motor when using coolStep compared to standard operation with 50% of torque reserve. coolStep is enabled above 60RPM in the example.

Figure 1.3 Energy efficiency with coolStep (example)

1.8 dcStep - Load Dependent Speed Control

dcStep allows the motor to run near its load limit and at its velocity limit without losing a step. If the mechanical load on the motor increases to the stalling load, the motor automatically decreases velocity so that it can still drive the load. With this feature, the motor will never stall. In addition to the increased torque at a lower velocity, dynamic inertia will allow the motor to overcome mechanical overloads by decelerating. dcStep feeds back status information to the external motion controller or to the system CPU, so that the target position will be reached, even if the motor velocity needs to be decreased due to increased mechanical load. A dynamic range of up to factor 10 or more can be covered by dcStep without any step loss. By optimizing the motion velocity in high load situations, this feature further enhances overall system efficiency.

Benefits are:

- Motor does not loose steps in overload conditions
- Application works as fast as possible
- Highest possible acceleration automatically
- Highest energy efficiency at speed limit
- Highest possible motor torque using fullstep drive
- Cheaper motor does the job

2 Pin Assignments

2.1 Package Outline

Figure 2.1 TMC2130-LA package and pinning QFN36 (5x6mm² body)

Figure 2.2 TMC2130-TA package and pinning TQFP-EP 48-EP (7x7mm² body, 9x9mm² with leads)

2.2 Signal Descriptions

Pin	QFN36	TQFP48	Туре	Function	
CLIV	1	2	DI	CLK input. Tie to GND using short wire for internal clock	
CLK	1	2	DI	or supply external clock.	
CCN CEC2	,	2	DI	SPI chip select input (negative active) (SPI_MODE=1) or	
CSN_CFG3	2	3	(tpu)	Configuration input (SPI_MODE=0) (tristate detection).	
SCK_CFG2	3	4	DI	SPI serial clock input (SPI_MODE=1) or	
3CK_CFG2	,	4	(tpu)	Configuration input (SPI_MODE=0) (tristate detection).	
SDI_CFG1	4	5	DI	SPI data input (SPI_MODE=1) or	
3D1_Cl d1		,	(tpu)	Configuration input (SPI_MODE=0) (tristate detection).	
SDO_CFG0	5	7	DIO	SPI data output (tristate) (SPI_MODE=1) or	
_		•	(tpu)	Configuration input (SPI_MODE=0) (tristate detection).	
STEP	6	8	DI	STEP input	
DIR	7	9	DI	DIR input	
VCC_IO	8	10		3.3V to 5V IO supply voltage for all digital pins.	
		11, 14, 16,		Do not connect. Leave open to ensure highest distance	
DNC	9	18, 20, 22,	-	for high voltage pins in TQFP package!	
		28, 41, 43,			
	-	45, 47	1	Mode selection input with pullup resistor. When tied low,	
			DI	the chip is in standalone mode and pins have their CFG	
SPI_MODE	10	12	(pu)	functions. When tied high, the SPI interface is available	
			(pu)	for control. Integrated pull-up resistor.	
				Unused pin, connect to GND for compatibility to future	
N.C.	11	6, 31, 36		versions.	
GNDP	12, 35	13, 48		Power GND. Connect to GND plane near pin.	
OB1	13	15		Motor coil B output 1	
				Sense resistor connection for coil B. Place sense resistor	
BRB	14	17		to GND near pin. An additional 100nF capacitor to GND	
				(GND plane) is recommended for best performance.	
OB2	15	19		Motor coil B output 2	
				Motor supply voltage. Provide filtering capacity near pin	
VS	16, 31	21, 40		with short loop to nearest GNDP pin (respectively via GND	
				plane).	
DCO	17	23	DIO	dcStep ready output	
			DI	dcStep enable input (SPI_MODE=1) - tie to GND for normal	
DCEN_CFG4	18	24	(tpu)	operation (no dcStep) or	
			(tpu)	Configuration input (SPI_MODE=0) (tristate detection).	
			DI	dcStep gating input for axis synchronization (SPI_MODE=1)	
DCIN_CFG5	19	25	(tpu)	or	
			(tpu)	Configuration input (SPI_MODE=0) (tristate detection).	
DIAG0	20	26	DIO	Diagnostics output DIAGO. Use external pull-up resistor	
Dirido		20	510	with 47k or less in open drain mode.	
DIAG1	21	27	DIO	Diagnostics output DIAG1. Use external pull-up resistor	
			<u> </u>	with 47k or less in open drain mode.	
				Enable input (SPI_MODE=1) or	
DRV_ENN_	22	30	DI	configuration / Enable input (SPI_MODE=0) (tristate	
CFG6	22	2 29	(tpu)	detection).	
				The power stage becomes switched off (all motor outputs	
	-		1	floating) when this pin becomes driven to a high level.	
ATM TOFF	22	30	ΑТ	Analog reference voltage for current scaling (optional	
AIN_IREF	23	30	ΑI	mode) or reference current for use of internal sense	
				resistors	

Pin	QFN36	TQFP48	Туре	Function		
GNDA	24	32		Analog GND. Tie to GND plane.		
				Output of internal 5V regulator. Attach 2.2µF or larger		
5VOUT	25	33		ceramic capacitor to GNDA near to pin for best performance. May be used to supply VCC of chip.		
VCC	26	34		5V supply input for digital circuitry within chip and charge pump. Attach 470nF capacitor to GND (GND plane). May be supplied by 5VOUT. A 2.2 or 3.3 Ohm resistor is recommended for decoupling noise from 5VOUT. When using an external supply, make sure, that VCC comes up before or in parallel to 5VOUT or VCC_IO, whichever comes up later!		
CPO	27	35		Charge pump capacitor output.		
CPI	28	37		Charge pump capacitor input. Tie to CPO using 22nF 50V capacitor.		
VCP	29	38		Charge pump voltage. Tie to VS using 100nF capacitor.		
VSA	30	39		Analog supply voltage for 5V regulator. Normally tied to VS. Provide a 100nF filtering capacitor.		
OA2	32	42		Motor coil A output 2		
BRA	33	44		Sense resistor connection for coil A. Place sense resistor to GND near pin. An additional 100nF capacitor to GND (GND plane) is recommended for best performance.		
OA1	34	46		Motor coil A output 1		
TST_MODE	36	1	DI	Test mode input. Tie to GND using short wire.		
Exposed die pad	-	-		Connect the exposed die pad to a GND plane. Provide as many as possible vias for heat transfer to GND plane. Serves as GND pin for digital circuitry.		

^{*(}pu) denominates a pin with pullup resistor; (tpu) denominates a pin with pullup resistor or toggle detection. Toggle detection is active in standalone mode, only (SPI_MODE=0)

^{*} Digital Pins: All pins of type DI, DI(pu), DI(tpu), DIO and DIO(tpu) refer to VCC_IO and have intrinsic protective clamping diodes to GND and VCC_IO and use Schmitt trigger inputs.

3 Sample Circuits

The sample circuits show the connection of external components in different operation and supply modes. The connection of the bus interface and further digital signals is left out for clarity.

3.1 Standard Application Circuit

Figure 3.1 Standard application circuit

The standard application circuit uses a minimum set of additional components. Two sense resistors set the motor coil current. See chapter 9 to choose the right sense resistors. Use low ESR capacitors for filtering the power supply. The capacitors need to cope with the current ripple cause by chopper operation. A minimum capacity of 100µF near the driver is recommended for best performance. Current ripple in the supply capacitors also depends on the power supply internal resistance and cable length. VCC_IO can be supplied from 5VOUT, or from an external source, e.g. a low drop 3.3V regulator. In order to minimize linear voltage regulator power dissipation of the internal 5V voltage regulator in applications where VM is high, a different (lower) supply voltage can be used for VSA, if available. For example, many applications provide a 12V supply in addition to a higher driver supply voltage. Using the 12V supply for VSA rather than 24V will reduce the power dissipation of the internal 5V regulator to about 37% of the dissipation caused by supply with the full motor voltage.

Basic layout hints

Place sense resistors and all filter capacitors as close as possible to the related IC pins. Use a solid common GND for all GND connections, also for sense resistor GND. Connect 5VOUT filtering capacitor directly to 5VOUT and GNDA pin. See layout hints for more details. Low ESR electrolytic capacitors are recommended for VS filtering.

Attention

In case VSA is supplied by a different voltage source, make sure that VSA does not exceed VS by more than one diode drop, especially also upon power up or power down.

3.2 Reduced Number of Components

Figure 3.2 Reduced number of filtering components

The standard application circuit uses RC filtering to de-couple the output of the internal linear regulator from high frequency ripple caused by digital circuitry supplied by the VCC input. For cost sensitive applications, the RC-Filtering on VCC can be eliminated. This leads to more noise on 5VOUT caused by operation of the charge pump and the internal digital circuitry. There is a slight impact on microstep vibration and chopper noise performance.

3.3 Internal RDSon Sensing

For cost critical or space limited applications, sense resistors can be omitted. For internal current sensing, a reference current set by a tiny external resistor programs the output current. For calculation of the reference resistor, refer chapter 10.

Figure 3.3 RDSon based sensing eliminates high current sense resistors

3.4 External 5V Power Supply

When an external 5V power supply is available, the power dissipation caused by the internal linear regulator can be eliminated. This especially is beneficial in high voltage applications, and when thermal conditions are critical. There are two options for using an external 5V source: either the external 5V source is used to support the digital supply of the driver by supplying the VCC pin, or the complete internal voltage regulator becomes bridged and is replaced by the external supply voltage.

3.4.1 Support for the VCC Supply

This scheme uses an external supply for all digital circuitry within the driver (Figure 3.4). As the digital circuitry makes up for most of the power dissipation, this way the internal 5V regulator sees only low remaining load. The precisely regulated voltage of the internal regulator is still used as the reference for the motor current regulation as well as for supplying internal analog circuitry.

When cutting VCC from 5VOUT, make sure that the VCC supply comes up before or synchronously with the 5VOUT supply to ensure a correct power up reset of the internal logic. A simple schematic uses two diodes forming an OR of the internal and the external power supplies for VCC. In order to prevent the chip from drawing part of the power from its internal regulator, a low drop 1A Schottky diode is used for the external 5V supply path, while a silicon diode is used for the 5VOUT path. An enhanced solution uses a dual PNP transistor as an active switch. It minimizes voltage drop and thus gives best performance.

In certain setups, switching of VCC voltage can be eliminated. A third variant uses the VCC_IO supply to ensure power-on reset. This is possible, if VCC_IO comes up synchronously with or delayed to VCC. Use a linear regulator to generate a 3.3V VCC_IO from the external 5V VCC source. This 3.3V regulator will cause a certain voltage drop. A voltage drop in the regulator of 0.9V or more (e.g. LD1117-3.3) ensures that the 5V supply already has exceeded the lower limit of about 3.0V once the reset conditions ends. The reset condition ends earliest, when VCC_IO exceeds the undervoltage limit of minimum 2.1V. Make sure that the power-down sequence also is safe. Undefined states can result when VCC drops well below 4V without safely triggering a reset condition. Triggering a reset upon power-down can be ensured when VSA goes down synchronously with or before VCC.

VCC supplied from external 5V. 5V or 3.3V IO voltage.

VCC supplied from external 5V. 3.3V IO voltage generated from same source.

VCC supplied from external 5V using active switch. 5V or 3.3V IO voltage.

Figure 3.4 Using an external 5V supply for digital circuitry of driver (different options)

3.4.2 Internal Regulator Bridged

In case a clean external 5V supply is available, it can be used for complete supply of analog and digital part (Figure 3.5). The circuit will benefit from a well-regulated supply, e.g. when using a +/-1% regulator. A precise supply guarantees increased motor current precision, because the voltage at 5VOUT directly is the reference voltage for all internal units of the driver, especially for motor current control. For best performance, the power supply should have low ripple to give a precise and stable supply at 5VOUT pin with remaining ripple well below 5mV. Some switching regulators have a higher remaining ripple, or different loads on the supply may cause lower frequency ripple. In this case, increase capacity attached to 5VOUT. In case the external supply voltage has poor stability or low frequency ripple, this would affect the precision of the motor current regulation as well as add chopper noise.

Figure 3.5 Using an external 5V supply to bypass internal regulator

3.5 Pre-Regulator for Reduced Power Dissipation

When operating at supply voltages up to 46V for VS and VSA, the internal linear regulator will contribute with up to 1W to the power dissipation of the driver. This will reduce the capability of the chip to continuously drive high motor current, especially at high environment temperatures. When no external power supply in the range 5V to 24V is available, an external pre-regulator can be built with a few inexpensive components in order to dissipate most of the voltage drop in external components. Figure 3.6 shows different examples. In case a well-defined supply voltage is available, a single 1W or higher power Zener diode also does the job.

Figure 3.6 Examples for simple pre-regulators

3.6 5V Only Supply

Figure 3.7 5V only operation

While the standard application circuit is limited to roughly 5.5 V lower supply voltage, a 5 V only application lets the IC run from a normal 5 V +/-5% supply. In this application, linear regulator drop must be minimized. Therefore, the major 5 V load is removed by supplying VCC directly from the external supply. In order to keep supply ripple away from the analog voltage reference, 5 VOUT should have an own filtering capacity and the 5 VOUT pin does not become bridged to the 5 V supply.

3.7 High Motor Current

When operating at a high motor current, the driver power dissipation due to MOSFET switch on-resistance significantly heats up the driver. This power dissipation will heat up the PCB cooling infrastructure also, if operated at an increased duty cycle. This in turn leads to a further increase of driver temperature. An increase of temperature by about 100°C increases MOSFET resistance by roughly 50%. This is a typical behavior of MOSFET switches. Therefore, under high duty cycle, high load conditions, thermal characteristics have to be carefully taken into account, especially when increased environment temperatures are to be supported. Refer the thermal characteristics and the layout hints for more information. As a thumb rule, thermal properties of the PCB design become critical for the QFN-36 at or above about 1000mA RMS motor current for increased periods of time. Keep in mind that resistive power dissipation raises with the square of the motor current. On the other hand, this means that a small reduction of motor current significantly saves heat dissipation and energy.

An effect which might be perceived at medium motor velocities and motor sine wave peak currents above roughly 1.2A peak is a slight sine distortion of the current wave when using spreadCycle. It results from an increasing negative impact of parasitic internal diode conduction, which in turn negatively influences the duration of the fast decay cycle of the spreadCycle chopper. This is, because the current measurement does not see the full coil current during this phase of the sine wave, because an increasing part of the current flows directly from the power MOSFETs' drain to GND and does not flow through the sense resistor. This effect with most motors does not negatively influence the smoothness of operation, as it does not impact the critical current zero transition. The effect does not occur with stealthChop.

3.7.1 Reduce Linear Regulator Power Dissipation

When operating at high supply voltages, as a first step the power dissipation of the integrated 5V linear regulator can be reduced, e.g. by using an external 5V source for supply. This will reduce overall heating. It is advised to reduce motor stand still current in order to decrease overall power dissipation. If applicable, also use coolStep. A decreased clock frequency will reduce power dissipation of the internal logic. Further a decreased chopper frequency also can reduce power dissipation.

3.7.2 Operation near to / above 2A Peak Current

The driver can deliver up to 2.5A motor peak current. Considering thermal characteristics, this only is possible in duty cycle limited operation. When a peak current up to 2.5A is to be driven, the driver chip temperature is to be kept at a maximum of 105°C. Linearly derate the design peak temperature from 125°C to 105°C in the range 2A to 2.5A output current (see Figure 3.8). Exceeding this may lead to triggering the short circuit detection.

Figure 3.8 Derating of maximum sine wave peak current at increased die temperature

3.7.3 Reduction of Resistive Losses by Adding Schottky Diodes

Schottky Diodes can be added to the circuit to reduce driver power dissipation when driving high motor currents (see Figure 3.9). The Schottky diodes have a conduction voltage of about 0.5V and will take over more than half of the motor current during the negative half wave of each output in slow decay and fast decay phases, thus leading to a cooler motor driver. This effect starts from a few percent at 1.2A and increases with higher motor current rating up to roughly 20%. As a 30V Schottky diode has a lower forward voltage than a 50V or 60V diode, it makes sense to use a 30V diode when the supply voltage is below 30V. The diodes will have less effect when working with stealthChop due to lower times of diode conduction in the chopper cycle. At current levels below 1.2A coil current, the effect of the diodes is negligible.

Figure 3.9 Schottky diodes reduce power dissipation at high peak currents up to 2A (2.5A)

3.8 Driver Protection and EME Circuitry

Some applications have to cope with ESD events caused by motor operation or external influence. Despite ESD circuitry within the driver chips, ESD events occurring during operation can cause a reset or even a destruction of the motor driver, depending on their energy. Especially plastic housings and belt drive systems tend to cause ESD events of several kV. It is best practice to avoid ESD events by attaching all conductive parts, especially the motors themselves to PCB ground, or to apply electrically conductive plastic parts. In addition, the driver can be protected up to a certain degree against ESD events or live plugging / pulling the motor, which also causes high voltages and high currents into the motor connector terminals. A simple scheme uses capacitors at the driver outputs to reduce the dV/dt caused by ESD events. Larger capacitors will bring more benefit concerning ESD suppression, but cause additional current flow in each chopper cycle, and thus increase driver power dissipation, especially at high supply voltages. The values shown are example values - they might be varied between 100pF and 1nF. The capacitors also dampen high frequency noise injected from digital parts of the application PCB circuitry and thus reduce electromagnetic emission. A more elaborate scheme uses LC filters to de-couple the driver outputs from the motor connector. Varistors in between of the coil terminals eliminate coil overvoltage caused by live plugging. Optionally protect all outputs by a varistor against ESD voltage.

Figure 3.10 Simple ESD enhancement and more elaborate motor output protection

4 SPI Interface

4.1 SPI Datagram Structure

The TMC2130 uses 40 bit SPITM (Serial Peripheral Interface, SPI is Trademark of Motorola) datagrams for communication with a microcontroller. Microcontrollers which are equipped with hardware SPI are typically able to communicate using integer multiples of 8 bit. The NCS line of the device must be handled in a way, that it stays active (low) for the complete duration of the datagram transmission.

Each datagram sent to the device is composed of an address byte followed by four data bytes. This allows direct 32 bit data word communication with the register set. Each register is accessed via 32 data bits even if it uses less than 32 data bits.

For simplification, each register is specified by a one byte address:

- For a read access the most significant bit of the address byte is 0.
- For a write access the most significant bit of the address byte is 1.

Most registers are write only registers, some can be read additionally, and there are also some read only registers.

SPI DATAGRAM STRUCTURE					
MSB (transmitted first)		40 bit LSB (transmitted las-			
39				0	
→ 8 bit address ← 8 bit SPI status	← → 32 hit data				
39 32		31	0		
→ to TMC2130					
RW + 7 bit address	8 bit data	8 bit data	8 bit data	8 bit data	
← from TMC2130	o Dit uata	o bit data o bit data o bit t		o bit data	
8 bit SPI status					
39 / 38 32	31 24	23 16	15 8	7 0	
w 3832	3128 2724	2320 1916	1512 118	74 30	
3 3 3 3 3 3 3 3 9 8 7 6 5 4 3 2	3 3 2 2 2 2 2 2 1 0 9 8 7 6 5 4		1 1 1 1 1 1 1 9 8 5 4 3 2 1 0 9 8	7 6 5 4 3 2 1 0	

4.1.1 Selection of Write / Read (WRITE_notREAD)

The read and write selection is controlled by the MSB of the address byte (bit 39 of the SPI datagram). This bit is 0 for read access and 1 for write access. So, the bit named W is a WRITE_notREAD control bit. The active high write bit is the MSB of the address byte. So, 0x80 has to be added to the address for a write access. The SPI interface always delivers data back to the master, independent of the W bit. The data transferred back is the data read from the address which was transmitted with the *previous* datagram, if the previous access was a read access. If the previous access was a write access, then the data read back mirrors the previously received write data. So, the difference between a read and a write access is that the read access does not transfer data to the addressed register but it transfers the address only and its 32 data bits are dummies, and, further the following read or write access delivers back the data read from the address transmitted in the preceding read cycle.

A read access request datagram uses dummy write data. Read data is transferred back to the master with the subsequent read or write access. Hence, reading multiple registers can be done in a pipelined fashion.

Whenever data is read from or written to the TMC2130, the MSBs delivered back contain the SPI status, SPI_STATUS, a number of eight selected status bits.

Example:

For a read access to the register (DRV_STATUS) with the address 0x6F, the address byte has to be set to 0x6F in the access preceding the read access. For a write access to the register (CHOPCONF), the address byte has to be set to 0x80 + 0x6C = 0xEC. For read access, the data bit might have any value (-). So, one can set them to 0.

action	data sent to TMC2130	data received from TMC2130
read <i>DRV_STATUS</i>	→ 0x6F00000000	← 0xSS & unused data
read <i>DRV_STATUS</i>	→ 0x6F00000000	← 0xss & drv_status
write CHOPCONF:= 0x00ABCDEF	→ 0xEC00ABCDEF	← 0xss & drv_status
write <i>CHOPCONF</i> := 0x00123456	→ 0xEC00123456	← 0xSS00ABCDEF

 $[\]star$) S: is a placeholder for the status bits SPI_STATUS

4.1.2 SPI Status Bits Transferred with Each Datagram Read Back

New status information becomes latched at the end of each access and is available with the next SPI transfer.

SPI_	SPI_STATUS - status flags transmitted with each SPI access in bits 39 to 32					
Bit Name Comment						
7	-	unused				
6	-	unused				
5	-	unused				
4	-	unused				
3	standstill	DRV_STATUS[31] - 1: Signals motor stand still				
2	sg2	DRV_STATUS[24] - 1: Signals stallguard flag active				
1	driver_error	GSTAT[1] - 1: Signals driver 1 driver error (clear by reading GSTAT)				
0	reset_flag	GSTAT[0] - 1: Signals, that a reset has occurred (clear by reading GSTAT)				

4.1.3 Data Alignment

All data are right aligned. Some registers represent unsigned (positive) values, some represent integer values (signed) as two's complement numbers, single bits or groups of bits are represented as single bits respectively as integer groups.

4.2 SPI Signals

The SPI bus on the TMC2130 has four signals:

- SCK bus clock input
- SDI serial data input
- SDO serial data output
- CSN chip select input (active low)

The slave is enabled for an SPI transaction by a low on the chip select input CSN. Bit transfer is synchronous to the bus clock SCK, with the slave latching the data from SDI on the rising edge of SCK and driving data to SDO following the falling edge. The most significant bit is sent first. A minimum of 40 SCK clock cycles is required for a bus transaction with the TMC2130.

If more than 40 clocks are driven, the additional bits shifted into SDI are shifted out on SDO after a 40-clock delay through an internal shift register. This can be used for daisy chaining multiple chips.

CSN must be low during the whole bus transaction. When CSN goes high, the contents of the internal shift register are latched into the internal control register and recognized as a command from the master to the slave. If more than 40 bits are sent, only the last 40 bits received before the rising edge of CSN are recognized as the command.

4.3 Timing

The SPI interface is synchronized to the internal system clock, which limits the SPI bus clock SCK to half of the system clock frequency. If the system clock is based on the on-chip oscillator, an additional 10% safety margin must be used to ensure reliable data transmission. All SPI inputs as well as the ENN input are internally filtered to avoid triggering on pulses shorter than 20ns. Figure 4.1 shows the timing parameters of an SPI bus transaction, and the table below specifies their values.

Figure 4.1 SPI timing

Hint
Usually this SPI timing is referred to as SPI MODE 3

SPI interface timing	AC-Charac	teristics				
	clock period: t _{CLK}					
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
SCK valid before or after change of CSN	t _{CC}		10			ns
CSN high time	t _{сsн}	*) Min time is for synchronous CLK with SCK high one t _{CH} before CSN high only	t _{CLK} *)	>2t _{CLK} +10		ns
SCK low time	t _{CL}	*) Min time is for synchronous CLK only	t _{CLK} *)	>t _{CLK} +10		ns
SCK high time	t _{CH}	*) Min time is for synchronous CLK only	t _{CLK} *)	>t _{CLK} +10		ns
SCK frequency using internal clock	f _{SCK}	assumes minimum OSC frequency			4	MHz
SCK frequency using external 16MHz clock	f _{SCK}	assumes synchronous CLK			8	MHz
SDI setup time before rising edge of SCK	t _{DU}		10			ns
SDI hold time after rising edge of SCK	t _{DH}		10			ns
Data out valid time after falling SCK clock edge	t _{DO}	no capacitive load on SDO			t _{FILT} +5	ns
SDI, SCK and CSN filter delay time	t _{FILT}	rising and falling edge	12	20	30	ns

5 Register Mapping

This chapter gives an overview of the complete register set. Some of the registers bundling a number of single bits are detailed in extra tables. The functional practical application of the settings is detailed in dedicated chapters.

Note

- All registers become reset to 0 upon power up, unless otherwise noted.
- Add 0x80 to the address Addr for write accesses!

NOTATION OF HEXADECIMAL AND BINARY NUMBERS			
0x	precedes a hexadecimal number, e.g. 0x04		
%	precedes a multi-bit binary number, e.g. %100		

NOTATION OF R/W FIELD		
R	Read only	
W	Write only	
R/W	Read- and writable register	
R+C	Clear upon read	

OVERVIEW REGISTER MAPPING

REGISTER	DESCRIPTION
General Configuration Registers	These registers contain - global configuration - global status flags - interface configuration - and I/O signal configuration
Velocity Dependent Driver Feature Control Register Set	This register set offers registers for
Motor Driver Register Set	This register set offers registers for - setting / reading out microstep table and counter - chopper and driver configuration - coolStep and stallGuard2 configuration - dcStep configuration - reading out stallGuard2 values and driver error flags
dcStep Minimum Velocity	Setting for minimum dcStep velocity

5.1 General Configuration Registers

			1	(0x000x	
R/W	Addr	n	Register	Descrip	otion I bit names
				Bit	GCONF - Global configuration flags
				0	I_scale_analog
					0: Normal operation, use internal reference voltage
					1: Use voltage supplied to AIN as current reference
				1	internal_Rsense
					0: Normal operation
					1: Internal sense resistors. Use current supplied into
				AIN as reference for internal sense resistor	
				2	en_pwm_mode
				1: stealthChop voltage PWM mode enabled	
					(depending on velocity thresholds). Switch from
				2	off to on state while in stand still, only.
				3	enc_commutation (Special mode - do not use, leave 0)
					1: Enable commutation by full step encoder
				4	(DCIN_CFG5 = ENC_A, DCEN_CFG4 = ENC_B) shaft
				4	1: Inverse motor direction
				5	diag0 error
					1: Enable DIAGO active on driver errors:
					Over temperature (ot), short to GND (s2g),
					undervoltage chargepump (uv_cp)
					DIAGO always shows the reset-status, i.e. is active low
					during reset condition.
		17		6	diag0_otpw
					1: Enable DIAGO active on driver over temperature
RW	0x00		GCONF		prewarning (otpw)
				7	diag0_stall
					1: Enable DIAGO active on motor stall (set
					TCOOLTHRS before using this feature)
				8	diag1_stall
					1: Enable DIAG1 active on motor stall (set
					TCOOLTHRS before using this feature)
				9	diag1_index
					1: Enable DIAG1 active on index position (microstep
				10	look up table position 0)
				10	diag1_onstate1: Enable DIAG1 active when chopper is on (for the
					coil which is in the second half of the fullstep)
				11	<u> </u>
				11	diag1_steps_skipped
					1: Enable output toggle when steps are skipped in dcStep mode (increment of LOST_STEPS). Do not
					enable in conjunction with other DIAG1 options.
				12	diag0_int_pushpull
				15	0: DIAGO is open collector output (active low)
					1: Enable DIAGO push pull output (active high)
				13	diag1_pushpull
				10	0: DIAG1 is open collector output (active low)
					1: Enable DIAG1 push pull output (active high)
				14	small_hysteresis
					0: Hysteresis for step frequency comparison is 1/16
					1: Hysteresis for step frequency comparison is 1/32

s the sequencer when me executed by the sandstill state). Ind polarity directly face: Register XDIRECT I A current (bits 80) 16). In this mode, the
me executed by the candstill state). Ind polarity directly face: Register XDIRECT I A current (bits 80) 16). In this mode, the
me executed by the candstill state). Ind polarity directly face: Register XDIRECT I A current (bits 80) 16). In this mode, the
nd polarity directly face: Register <i>XDIRECT</i> l A current (bits 80) 16). In this mode, the
face: Register <i>XDIRECT</i> l A current (bits 80) 16). In this mode, the
face: Register <i>XDIRECT</i> l A current (bits 80) 16). In this mode, the
setting. Velocity based nChop is not available ic stealthChop current or low stepper motor
n pin DCO. <i>IHOLD</i> [10]
p 5 co. 17025[10]
or normal operation!
en reset since the last registers have been
has been shut down short circuit detection Read DRV_STATUS for e reset when all error
on the charge pump. s case.
available
· IC
al compatibility.

5.2 Velocity Dependent Driver Feature Control Register Set

R/W	Addr	n	Register	Descriptio	n I bit names
				Bit	IHOLD_IRUN - Driver current control
				40	IHOLD
					Standstill current (0=1/3231=32/32)
					In combination with stealthChop mode, setting
					IHOLD=0 allows to choose freewheeling or co
					short circuit for motor stand still.
				128	IRUN
					Motor run current (0=1/3231=32/32)
		5			
		+			Hint: Choose sense resistors in a way, that norma
W	0x10	5	IHOLD_IRUN		<i>IRUN</i> is 16 to 31 for best microstep performance.
••	OXIO	+	111010_111011	1916	IHOLDDELAY
		4		1710	Controls the number of clock cycles for moto
					power down after a motion as soon as standstill i
					detected (stst=1) and TPOWERDOWN has expired
					The smooth transition avoids a motor jerk upo
					power down.
					power down.
					0: instant power down
					115: Delay per current reduction step in multipl
					of 2^18 clocks
				TPOWERDO	OWN sets the delay time after stand still (stst) of th
		8	TPOWER DOWN		motor current power down. Time range is about 0 to
W	0x11			4 seconds.	
				0((2^8)-1)	
					asured time between two 1/256 microsteps derived
					step input frequency in units of 1/fCLK. Measure
					^20)-1 in case of overflow or stand still.
				Value 13 (E	LOVE IN CASE OF OVERHOW OF Stand State.
				ΔΙΙ ΤΣΤΕΡ	related thresholds use a hysteresis of 1/16 of the
					value to compensate for jitter in the clock or the ste
				-	The flag small_hysteresis modifies the hysteresis to
					value of 1/32.
				(Txxx*15/16	
R	0x12	20	TSTEP		2)-1 is used as a second compare value for each
	OXIL		13121	compariso	
					ns, that the lower switching velocity equals th
					setting, but the upper switching velocity is higher a
					setting, but the upper switching velocity is higher a_i , the hysteresis setting.
				defined by	the hysteresis setting.
				In deStan	mode TSTEP will not show the mean velocity of the
					t the velocities for each microstep, which may not b
					thus does not represent the real motor velocity in
					is slower than the target velocity.
					upper velocity for stealthChop voltage PWM mode.
				TSTEP ≥ TP	
W	0x13	20	TPWMTHRS		
					ealthChop PWM mode is enabled, if configured Step is disabled

VELOCI	ELOCITY DEPENDENT DRIVER FEATURE CONTROL REGISTER SET (0x100x1F)				
R/W	Addr	n	Register	Description I bit names	
W	0x14	20	TCOOLTHRS	This is the lower threshold velocity for switching on smart energy coolStep and stallGuard feature. (unsigned) Set this parameter to disable coolStep at low speeds, where it cannot work reliably. The stall detection and stallGuard output signal becomes enabled when exceeding this velocity. In non-dcStep mode, it becomes disabled again once the velocity falls below this threshold. TCOOLTHRS ≥ TSTEP ≥ THIGH: - coolStep is enabled, if configured - stealthChop voltage PWM mode is disabled TCOOLTHRS ≥ TSTEP - stallGuard status output signal is enabled, if	
W	0x15	20	THIGH	This velocity setting allows velocity dependent switching into a different chopper mode and fullstepping to maximize torque. (unsigned) The stall detection feature becomes switched off for 2-3 electrical periods whenever passing THIGH threshold to compensate for the effect of switching modes. TSTEP ≤ THIGH: - coolStep is disabled (motor runs with normal current scale) - stealthChop voltage PWM mode is disabled - If vhighchm is set, the chopper switches to chm=1 with TFD=0 (constant off time with slow decay, only). - chopSync2 is switched off (SYNC=0) - If vhighfs is set, the motor operates in fullstep mode and the stall detection becomes switched over to dcStep stall detection.	

microstep velocity time reference t for velocities: TSTEP = f_{CLK} / f_{STEP}

5.3 SPI Mode Register

This register cannot be used in STEP/DIR mode.

n <i>Register</i>	Description I bit names	Range [Unit]
n Register 32 XDIRECT	Description / bit names direct_mode O: Normal operation 1: Directly SPI driven motor current Direct mode operation: XDIRECT specifies Motor coil currents and polarity directly programmed via the serial interface. Use signed, two's complement numbers. Coil A current (bits 80) (signed) Coil B current (bits 2416) (signed) Range: +-248 for normal operation, up to +-255 with stealthChop In this mode, the current is scaled by IHOLD setting. Velocity based current regulation of voltage PWM is not available in this mode. The automatic voltage PWM current regulation will work only for low stepper motor velocities. dcStep is not available in this mode. coolStep and stallGuard only can be used, when	Range [Unit] ±255 for both coils

5.4 dcStep Minimum Velocity Register

DCSTEF	DCSTEP MINIMUM VELOCITY REGISTER (0x33)				
R/W	Addr	n	Register	Description I bit names	
W	0x33	23	VDCMIN	The automatic commutation dcStep becomes enabled by the external signal DCEN. <i>VDCMIN</i> is used as the minimum step velocity when the motor is heavily loaded. Hint: Also set DCCTRL parameters in order to operate dcStep.	

time reference t for VDCMIN: t = 2^24 / f_{CLK}

5.5 Motor Driver Registers

R/W	Addr	n	Register	Description I bit names	Range [Unit]
W	0x60	32	MSLUT[0] microstep	Each bit gives the difference between entry x and entry x+1 when combined with the corresponding MSLUTSEL W bits:	32x 0 or 1 reset default= sine wave
			table entries	0: W= %00: -1 %01: .0	table
W	0x61 0x67	7 x 32	MSLUT[17] microstep table entries 32255	%01: +0 %10: +1 %11: +2 1: W= %00: +0 %01: +1 %10: +2 %11: +3 This is the differential coding for the first quarter of a wave. Start values for CUR_A and CUR_B are stored for MSCNT position 0 in START_SIN and START_SIN90. ofs31, ofs30,, ofs01, ofs00	7x 32x 0 or 1 reset default= sine wave table
				ofs255, ofs254,, ofs225, ofs224	
W	0x68	32	MSLUTSEL	This register defines four segments within each quarter MSLUT wave. Four 2 bit entries determine the meaning of a 0 and a 1 bit in the corresponding segment of MSLUT. See separate table!	0 <x1<x2<x3 reset default= sine wave table</x1<x2<x3
W	0x69	8 + 8	MSLUTSTART	bit 7 0: START_SIN bit 23 16: START_SIN90 START_SIN gives the absolute current at microstep table entry 0. START_SIN90 gives the absolute current for microstep table entry at positions 256. Start values are transferred to the microstep registers CUR_A and CUR_B, whenever the reference position MSCNT=0 is passed.	START_SIN reset default =0 START_SIN 90 reset default =247
R	0x6A	10	MSCNT	Microstep counter. Indicates actual position in the microstep table for CUR_A. CUR_B uses an offset of 256 (2 phase motor). Hint: Move to a position where MSCNT is zero before re-initializing MSLUTSTART or MSLUT and MSLUTSEL.	01023
R	0x6B	9 + 9	MSCURACT	bit 8 0: CUR_A (signed): Actual microstep current for motor phase A as read from MSLUT (not scaled by current) bit 24 16: CUR_B (signed): Actual microstep current for motor phase B as read from MSLUT (not scaled by current)	+/-0255

DRIVE	R REGISTE	R SET	(0x6C0x7F)		
R/W	Addr	n	Register	Description / bit names	Range [Unit]
RW	0x6C	32	CHOPCONF	chopper and driver configuration See separate table!	
W	0x6D	25	COOLCONF	coolStep smart current control register and stallGuard2 configuration See separate table!	
W	0x6E	24	DCCTRL	dcStep (DC) automatic commutation configuration register (enable via pin DCEN or via VDCMIN): bit 9 0: DC_TIME: Upper PWM on time limit for commutation (DC_TIME * 1/fclk). Set slightly above effective blank time TBL. bit 23 16: DC_SG: Max. PWM on time for step loss detection using dcStep stallGuard2 in dcStep mode. (DC_SG * 16/fclk) Set slightly higher than DC_TIME/16 0=disable Attention: Using a higher microstep resolution or interpolated operation, dcStep delivers a better stallGuard signal. DC_SG is also available above VHIGH if vhighfs is activated. For best result also set vhighchm.	
R	0x6F	32	DRV_ STATUS	stallGuard2 value and driver error flags See separate table!	
W	0x70	22	PWMCONF	Voltage PWM mode chopper configuration See separate table!	reset default= 0x00050480
R	0x71	8	PWM_SCALE	Actual PWM amplitude scaler (255=max. Voltage) In voltage mode PWM, this value allows to detect a motor stall.	0255
W	0x72	2	ENCM_CTRL	Encoder mode configuration for a special mode (enc_commutation), not for normal use. Bit 0: inv: Invert encoder inputs Bit 1: maxspeed: Ignore Step input. If set, the hold current IHOLD determines the motor current, unless a step source is activated. The direction in this mode is determined by the shaft bit in GCONF or by the inv bit.	
R	0x73	20	LOST_STEPS	Number of input steps skipped due to higher load in dcStep operation, if step input does not stop when DC_OUT is low. This counter wraps around after 2^20 steps. Counts up or down depending on direction. Only with SDMODE=1.	

MICROSTEP TABLE CALCULATION FOR A SINE WAVE EQUIVALENT TO THE POWER ON DEFAULT

$$round \left(248 * sin\left(2 * PI * \frac{i}{1024} + \frac{PI}{1024}\right)\right) - 1$$

- *i*:[0... 255] is the table index
- The amplitude of the wave is 248. The resulting maximum positive value is 247 and the maximum negative value is -248.
- The round function rounds values from 0.5 to 1.4999 to 1

5.5.1 MSLUTSEL - Look up Table Segmentation Definition

0x68	: MSLUTSEL	- LOOK UP TABLE SEGMENT	TATION DEFINITION
Bit	Name	Function	Comment
31 30 29 28	Х3	LUT segment 3 start	The sine wave look up table can be divided into up to four segments using an individual step width control entry Wx. The segment borders are selected by X1, X2 and X3.
27 26 25 24			Segment 0 goes from 0 to X1-1. Segment 1 goes from X1 to X2-1. Segment 2 goes from X2 to X3-1.
23 22 21 20 19 18 17	X2	LUT segment 2 start	Segment 3 goes from X3 to 255. For defined response the values shall satisfy: 0 <x1<x2<x3< td=""></x1<x2<x3<>
15 14 13 12 11 10 9	X1	LUT segment 1 start	
7	W3	LUT width select from ofs(X3) to ofs255	Width control bit coding W0W3: %00: MSLUT entry 0, 1 select: -1, +0
5 4	W2	LUT width select from ofs(X2) to ofs(X3-1)	%01: MSLUT entry 0, 1 select: +0, +1 %10: MSLUT entry 0, 1 select: +1, +2
3	W1	LUT width select from ofs(X1) to ofs(X2-1)	%11: MSLUT entry 0, 1 select: +2, +3
0	W0	LUT width select from ofs00 to ofs(X1-1)	

5.5.2 CHOPCONF - Chopper Configuration

0x6C	0x6C: CHOPCONF - CHOPPER CONFIGURATION						
Bit	Name	Function	Comment				
31	-	-	Reserved, set to 0				
30	diss2g	short to GND	0: Short to GND protection is on				
		protection disable	1: Short to GND protection is disabled				
29	dedge	enable double edge	1: Enable step impulse at each step edge to reduce step				
		step pulses	frequency requirement.				
28	intpol	interpolation to 256	1: The actual microstep resolution (MRES) becomes				
		microsteps	extrapolated to 256 microsteps for smoothest motor				
			operation.				
27	mres3	MRES	%0000:				
26	mres2	micro step resolution	Native 256 microstep setting.				
25	mres1		or 0001 or 1000				
24	mres0		%0001 %1000:				
			128, 64, 32, 16, 8, 4, 2, FULLSTEP Reduced microstep resolution for STEP/DIR operation.				
			The resolution gives the number of microstep entries per				
			sine quarter wave.				
			The driver automatically uses microstep positions which				
			result in a symmetrical wave, when choosing a lower				
			microstep resolution.				
			step width=2^MRES [microsteps]				
23	sync3	SYNC	This register allows synchronization of the chopper for				
22	sync2	PWM synchronization	both phases of a two phase motor in order to avoid the				
21	sync1	clock	occurrence of a beat, especially at low motor velocities. It is automatically switched off above VHIGH.				
20	sync0		%0000: Chopper sync function chopSync off				
			%0001 %1111:				
			Synchronization with $f_{SYNC} = f_{CLK}/(sync*64)$				
			Hint: Set TOFF to a low value, so that the chopper cycle is				
			ended, before the next sync clock pulse occurs. Set for the				
			double desired chopper frequency for chm=0, for the				
10	1 . 1 .		desired base chopper frequency for chm=1.				
19	vhighchm	high velocity chopper	This bit enables switching to <i>chm</i> =1 and <i>fd</i> =0, when <i>VHIGH</i> is exceeded. This way, a higher velocity can be achieved.				
		mode	Can be combined with <i>vhighfs</i> =1. If set, the <i>TOFF</i> setting				
			automatically becomes doubled during high velocity				
			operation in order to avoid doubling of the chopper				
			frequency.				
18	vhighfs	high velocity fullstep	This bit enables switching to fullstep, when VHIGH is				
		selection	exceeded. Switching takes place only at 45° position.				
			The fullstep target current uses the current value from				
17	1/00/22	compo resista alt	the microstep table at the 45° position.				
17	vsense	sense resistor voltage based current scaling	0: Low sensitivity, high sense resistor voltage 1: High sensitivity, low sense resistor voltage				
16	tbl1	TBL	%00 %11:				
15	tbl0	blank time select	Set comparator blank time to 16, 24, 36 or 54 clocks				
		Ziaini tiille Seteet	Hint: %01 or %10 is recommended for most applications				
14	chm	chopper mode	0 Standard mode (spreadCycle)				
		-11-	1 Constant off time with fast decay time.				
			Fast decay time is also terminated when the				
			negative nominal current is reached. Fast decay is				
			after on time.				

		F – CHOPPER CONFIGURATI	ION	
Bit	Name	Function	Comr	ment
13	rndtf	random TOFF time	0	Chopper off time is fixed as set by TOFF
			1	Random mode, TOFF is random modulated by
			_	dN _{CLK} = -12 +3 clocks.
12	disfdcc	fast decay mode	chm=	
				cc=1 disables current comparator usage for termi-
11	fd3	TFD [3]	chm=	n of the fast decay cycle 1.
11	jus	ורט [כ]	_	of fast decay time setting <i>TFD</i>
10	hend3	HEND	chm=	
9	hend2	hysteresis low value	C	Hysteresis is -3, -2, -1, 0, 1,, 12
8	hend1	OFFSET		(1/512 of this setting adds to current setting)
7	hend0	sine wave offset		This is the hysteresis value which becomes
				used for the hysteresis chopper.
			chm=	
				Offset is -3, -2, -1, 0, 1,, 12
				This is the sine wave offset and 1/512 of the
				value becomes added to the absolute value
6	hstrt2	HSTRT	chm=	of each sine wave entry. 0 %000 %111:
5	hstrt1	hysteresis start value	CIIII=	Add 1, 2,, 8 to hysteresis low value HEND
4	hstrt0	added to HEND		(1/512 of this setting adds to current setting)
7	1131110	daded to 112112		Attention: Effective HEND+HSTRT ≤ 16.
				Hint: Hysteresis decrement is done each 16
				clocks
		TFD [20]	chm=	Fast decay time setting (MSB: fd3):
		fast decay time setting		%0000 %1111:
				Fast decay time setting TFD with
2	. (7)	TOFF ((.:	0.00	N _{CLK} = 32* <i>TFD</i> (%0000: slow decay only)
3	toff3	TOFF off time		me setting controls duration of slow decay phase
2	toff2	and driver enable		12 + 32* <i>TOFF</i> 0: Driver disable, all bridges off
0	toff1	_		o: Driver disable, all bridges on 1: 1 – use only with <i>TBL</i> ≥ 2
U	toff0			0 %1111: 2 15

5.5.3 COOLCONF - Smart Energy Control coolStep and stallGuard2

0x6D	: COOLCON	F - SMART ENERGY CONTRO	DL COOLSTEP AND STALLGUARD2
Bit	Name	Function	Comment
	-	reserved	set to 0
24	sfilt	stallGuard2 filter enable	O Standard mode, high time resolution for stallGuard2
			Filtered mode, stallGuard2 signal updated for each four fullsteps (resp. six fullsteps for 3 phase motor) only to compensate for motor pole tolerances
23	-	reserved	set to 0
22	sgt6	stallGuard2 threshold	This signed value controls stallGuard2 level for stall
21	sgt5	value	output and sets the optimum measurement range for
20	sgt4		readout. A lower value gives a higher sensitivity. Zero is
19	sgt3		the starting value working with most motors.
18	sgt2		-64 to +63: A higher value makes stallGuard2 less
17	sgt1		sensitive and requires more torque to
16	sgt0		indicate a stall.
15	seimin	minimum current for	0: 1/2 of current setting (IRUN)
		smart current control	1: 1/4 of current setting (IRUN)
14	sedn1	current down step	%00: For each 32 stallGuard2 values decrease by one
13	sedn0	speed	%01: For each 8 stallGuard2 values decrease by one
			%10: For each 2 stallGuard2 values decrease by one
			%11: For each stallGuard2 value decrease by one
12	-	reserved	set to 0
11	semax3	stallGuard2 hysteresis	If the stallGuard2 result is equal to or above
10	semax2	value for smart current	(SEMIN+SEMAX+1)*32, the motor current becomes
9	semax1	control	decreased to save energy.
8	semax0		%0000 %1111: 0 15
7	-	reserved	set to 0
6	seup1	current up step width	Current increment steps per measured stallGuard2 value
5	seup0		%00 %11: 1, 2, 4, 8
4	-	reserved	set to 0
3	semin3	minimum stallGuard2	If the stallGuard2 result falls below SEMIN*32, the motor
2	semin2	value for smart current	current becomes increased to reduce motor load angle.
1	semin1	control and	%0000: smart current control coolStep off
0	semin0	smart current enable	%0001 %1111: 1 15

5.5.4 PWMCONF - Voltage PWM Mode stealthChop

	0x70: PWMCONF - VOLTAGE MODE PWM STEALTHCHOP						
Bit	Name	Function		nment			
	-	reserved		to 0			
21	freewheel1	Allows different		Stand still option when motor current setting is zero			
20	freewheel0	standstill modes		(I_HOLD=0).			
					nal operation		
			%01		wheeling		
			%10		shorted using LS drivers		
10		Farras accessos atria DVA/M			shorted using HS drivers		
19	pwm_ symmetric	Force symmetric PWM	0		VM value may change within each PWM cycle ard mode)		
	,		1	A symi	metric PWM cycle is enforced		
18	pwm_	PWM automatic	0		efined PWM amplitude. The current settings		
	autoscale	amplitude scaling			o influence.		
			1	Enable	automatic current control		
				Attenti	on: When using a user defined sine wave		
					the amplitude of this sine wave table should		
					less than 244. Best results are obtained with		
					252 as peak values.		
17	pwm_freq1	PWM frequency			2/1024 f _{CLK}		
16	pwm_freq0	selection	%01: f _{PWM} =2/683 f _{CLK} %10: f _{PWM} =2/512 f _{CLK} %11: f _{PWM} =2/410 f _{CLK}				
15	PWM	User defined amplitude	pwn		Velocity dependent gradient for PWM		
14	GRAD	(gradient)	· -		amplitude:		
13	070.0	or regulation loop	ap.:a		PWM GRAD * 256 / TSTEP		
12		gradient			is added to PWM_AMPL		
11			pwn	n_	User defined maximum PWM amplitude		
10			auto	scale=1	change per half wave (1 to 15)		
9							
8							
7	PWM_	User defined amplitude	pwn		User defined PWM amplitude offset (0-255)		
6	AMPL	(offset)	auto	scale=0	The resulting amplitude (limited to 0255)		
5					is:		
4			PWM_AMPL + PWM_GRAD * 256 / TSTEP				
3			pwm_		User defined maximum PWM amplitude		
2			autoscale=1		when switching back from current chopper		
1	-				mode to voltage PWM mode (switch over		
0					velocity defined by TPWMTHRS). Do not set		
					too low values, as the regulation cannot measure the current when the actual PWM		
					value goes below a setting specific value.		
					Settings above 0x40 recommended.		

5.5.5 DRV_STATUS - stallGuard2 Value and Driver Error Flags

0x6F	0x6F: DRV STATUS - STALLGUARD2 VALUE AND DRIVER ERROR FLAGS				
Bit	Name	Function	Comment		
31	stst	standstill indicator	This flag indicates motor stand still in each operation mode. This occurs 2^20 clocks after the last step pulse.		
30	olb	open load indicator phase B	1: Open load detected on phase A or B. Hint: This is just an informative flag. The driver takes no action		
29	ola	open load indicator phase A	upon it. False detection may occur in fast motion and standstill. Check during slow motion, only.		
28	s2gb	short to ground indicator phase B	1: Short to GND detected on phase A or B. The driver becomes disabled. The flags stay active, until the driver is disabled by		
27	s2ga	short to ground indicator phase A	software (TOFF=0) or by the ENN input.		
26	otpw	overtemperature pre- warning flag	1: Overtemperature pre-warning threshold is exceeded. The overtemperature pre-warning flag is common for both bridges.		
25	ot	overtemperature flag	1: Overtemperature limit has been reached. Drivers become disabled until <i>otpw</i> is also cleared due to cooling down of the IC. The overtemperature flag is common for both bridges.		
24	stallGuard	stallGuard2 status	Motor stall detected (SG_RESULT=0) or dcStep stall in dcStep mode.		
23 22 21	-	reserved	Ignore these bits		
20 19 18 17 16	CS ACTUAL	actual motor current / smart energy current	Actual current control scaling, for monitoring smart energy current scaling controlled via settings in register <i>COOLCONF</i> , or for monitoring the function of the automatic current scaling.		
15	fsactive	full step active indicator	1: Indicates that the driver has switched to fullstep as defined by chopper mode settings and velocity thresholds.		
14 13 12 11 10	-	reserved	Ignore these bits		
9 8 7 6 5 4 3 2 1	SG_ RESULT	stallGuard2 result respectively PWM on time for coil A in stand still for motor temperature detection	Mechanical load measurement: The stallGuard2 result gives a means to measure mechanical motor load. A higher value means lower mechanical load. A value of 0 signals highest load. With optimum SGT setting, this is an indicator for a motor stall. The stall detection compares SG_RESULT to 0 in order to detect a stall. SG_RESULT is used as a base for coolStep operation, by comparing it to a programmable upper and a lower limit. It is not applicable in stealthChop mode. SG_RESULT is ALSO applicable when dcStep is active. stallGuard2 works best with microstep operation. Temperature measurement: In standstill, no stallGuard2 result can be obtained. SG_RESULT shows the chopper on-time for motor coil A instead. If the motor is moved to a determined microstep position at a certain current setting, a comparison of the chopper on-time can help to get a rough estimation of motor temperature. As the motor heats up, its coil resistance rises and the chopper on-time increases.		

6 stealthChop™

stealthChop is an extremely quiet mode of operation for stepper motors. It is based on a voltage mode PWM. In case of standstill and at low velocities, the motor is absolutely noiseless. Thus, stealthChop operated stepper motor applications are very suitable for indoor or home use. The motor operates absolutely free of vibration at low velocities. With stealthChop, the motor current is applied by driving a certain effective voltage into

the coil, using a voltage mode PWM. There are no more configurations required except for the PWM voltage regulator response to a change of motor current. Two algorithms are provided, a manual and an automatic mode.

Figure 6.1 Motor coil sine wave current with stealthChop (measured with current probe)

6.1 Two Modes for Current Regulation

In order to match the motor current to a certain level, the stealthChop PWM voltage must be scaled depending on the actual motor velocity. Several additional factors influence the required voltage level to drive the motor at the target current: The motor resistance, its back EMF (i.e. directly proportional to its velocity) as well as actual level of the supply voltage. For the ease of use, two modes of PWM regulation are provided: An automatic mode using current feedback (pwm_autoscale = 1) and a feed forward velocity controlled mode (pwm_autoscale = 0). The feed forward velocity controlled mode will not react to a change of the supply voltage or to events like a motor stall, but it provides very stable amplitude. It does not use nor require any means of current measurement. This is perfect when motor type and supply voltage are well known. Since this mode does not measure the actual current, it will not respond to modification of the current setting, like stand still current reduction. Therefore we recommend the automatic mode, unless current regulation is not satisfying in the given operating conditions.

The PWM frequency can be chosen in a range in four steps in order to adapt the frequency divider to the frequency of the clock source. A setting in the range of 30-50kHz is good for many applications. It balances low current ripple and good higher velocity performance vs. dynamic power dissipation.

CHOICE OF PWM FREQUENCY FOR STEALTHCHOP				
Clock frequency	PWM_FREQ=%00	PWM_FREQ=%01	PWM_FREQ=%10	PWM_FREQ=%11
f _{CLK}	f _{PWM} =2/1024 f _{CLK}	f _{PWM} =2/683 f _{CLK}	f _{PWM} =2/512 f _{CLK}	f _{PWM} =2/410 f _{CLK}
18MHz	35.2kHz	52.7kHz	70.3kHz	87.8kHz
16MHz	31.3kHz	46.9kHz	62.5kHz	78.0kHz
(internal)	~26kHz	~38kHz	~52kHz	~64kHz
12MHz	23.4kHz	35.1kHz	46.9kHz	58.5kHz
10MHz	19.5kHz	29.3kHz	39.1kHz	48.8kHz
8MHz	15.6kHz	23.4kHz	31.2kHz	39.0kHz

Table 6.1 Choice of PWM frequency - green: recommended

6.2 Automatic Scaling

In stealthChop voltage PWM mode, the autoscaling function (pwm autoscale = 1) regulates the motor current to the desired current setting. The driver measures the motor current during the chopper on time and uses a proportional regulator to regulate the PWM_SCALE in order match the motor current to the target current. PWM_GRAD is the proportionality coefficient for this regulator. Basically, the proportionality coefficient should be as small as possible in order to get a stable and soft regulation behavior, but it must be large enough to allow the driver to quickly react to changes caused by variation of the motor target current, the motor velocity or effects resulting from changes of the supply voltage. As the supply voltage level and motor temperature normally change only slowly, a minimum setting of the regulation gradient often is sufficient (PWM_GRAD=1). If stealthChop operation is desired for a higher velocity range, variations of the motor back EMF caused by motor acceleration and deceleration may require a quicker regulation. Therefore, PWM_GRAD setting should be optimized for the fastest required acceleration and deceleration ramp (see Figure 6.4). The quality of a given setting can be examined when monitoring PWM SCALE and motor velocity. Just as in the acceleration phase, during a deceleration phase the voltage PWM amplitude must be adapted in order to keep the motor coil current constant. When the upper acceleration and the upper deceleration used in the application are identical, the value determined for the acceleration phase will already be optimum for both.

Figure 6.2 Scope shot: good setting for PWM GRAD

Figure 6.3 Scope shot: too small setting for PWM_GRAD

Figure 6.4 Good and too small setting for PWM_GRAD

Be sure to use a symmetrical sense resistor layout and sense resistor traces of identical length and well matching sense resistors for best performance.

Quick Start

For a quick start, see the Quick Configuration Guide in chapter 22.

6.2.1 Lower Current Limit

The stealthChop current regulator imposes a lower limit for motor current regulation. As the coil current can be measured in the shunt resistor during chopper on phase only, a minimum chopper duty cycle allowing coil current regulation is given by the blank time as set by *TBL* and by the chopper frequency setting. Therefore, the motor specific minimum coil current in stealthChop autoscaling mode rises with the supply voltage and with the chopper frequency. A lower blanking time allows a lower current limit. Extremely low currents (e.g. for standstill power down) can be realized with the non-automatic current scaling or with the freewheeling option, only. The run current setting needs to be kept above the lower limit: In case the *PWM_SCALE* drops to a too low value, e.g. because the current scale was too low, the regulator may not be able to recover. The regulator will recover once the motor is in standstill. The freewheeling option allows going to zero motor current.

The lower motor coil current limit can be calculated from motor parameters and chopper settings:

$$I_{Lower\ Limit} = t_{BLANK} * f_{PWM} * \frac{V_M}{R_{COIL}}$$

With V_M the motor supply voltage and R_{COIL} the motor coil resistance.

 $I_{Lower\,Limit}$ can be treated as a thumb value for the minimum possible motor current setting.

EXAMPLE:

A motor has a coil resistance of 5Ω , the supply voltage is 24V. With *TBL*=%01 and *PWM_FREQ*=%00, t_{BLANK} is 24 clock cycles, f_{PWM} is 2/(1024 clock cycles):

$$I_{Lower\ Limit} = 24\ t_{CLK} * \frac{2}{1024\ t_{CLK}} * \frac{24V}{5\Omega} = \frac{24}{512} * \frac{24V}{5\Omega} = 225mA$$

This means, the motor target current must be 225mA or more, taking into account all relevant settings. This lower current limit also applies for modification of the motor current via the analog input VREF.

For *pwm_autoscale* mode, a lower coil current limit applies. This limit can be calculated or measured using a current probe. Keep the motor run-current setting *IRUN* well above this lower current limit.

6.2.2 Acceleration

In automatic current regulation mode (pwm_autoscale = 1), the PWM_GRAD setting should be optimized for the fastest required acceleration ramp. Use a current probe and check the motor current during (quick) acceleration. A setting of 1 may result in a too slow regulation, while a setting of 15 responds quickly to velocity changes, but might produce regulation instabilities in some constellations. A setting of 4 is a good starting value.

Hint

Operate the motor within your application when exploring stealthChop. Motor performance often is better with a mechanical load, because it prevents the motor from stalling due mechanical oscillations which can occur without load.

6.3 Velocity Based Scaling

Velocity based scaling scales the stealthChop amplitude based on the time between each two steps, i.e. based on *TSTEP*, measured in clock cycles. This concept basically does not require a current measurement, because no regulation loop is necessary. The idea is a linear approximation of the voltage required to drive the target current into the motor. The stepper motor has a certain coil resistance and thus needs a certain voltage amplitude to yield a target current based on the basic formula I=U/R. With R being the coil resistance, U the supply voltage scaled by the PWM value, the current I results. The initial value for PWM AMPL can be calculated:

$$PWM_AMPL = \frac{374 * R_{COIL} * I_{COIL}}{V_{M}}$$

With V_M the motor supply voltage and I_{COIL} the target RMS current

The effective PWM voltage U_{PWM} (1/SQRT(2) x peak value) results considering the 8 bit resolution and 248 sine wave peak for the actual PWM amplitude shown as *PWM SCALE*:

$$U_{PWM} = V_M * \frac{PWM_SCALE}{256} * \frac{248}{256} * \frac{1}{\sqrt{2}} = V_M * \frac{PWM_SCALE}{374}$$

With rising motor velocity, the motor generates an increasing back EMF voltage. The back EMF voltage is proportional to the motor velocity. It reduces the PWM voltage effective at the coil resistance and thus current decreases. The TMC2130 provides a second velocity dependent factor (*PWM_GRAD*) to compensate for this. The overall effective PWM amplitude (*PWM_SCALE*) in this mode automatically is calculated in dependence of the microstep frequency as:

$$PWM_SCALE = PWM_AMPL + PWM_GRAD * 256 * \frac{f_{STEP}}{f_{CLK}}$$

With f_{STEP} being the microstep frequency for 256 microstep resolution equivalent and f_{CLK} the clock frequency supplied to the driver or the actual internal frequency

As a first approximation, the back EMF subtracts from the supply voltage and thus the effective current amplitude decreases. This way, a first approximation for *PWM_GRAD* setting can be calculated:

$$PWM_GRAD = C_{BEMF} \left[\frac{V}{\underline{rad}} \right] * 2\pi * \frac{f_{CLK} * 1.46}{V_M * MSPR}$$

 C_{BEMF} is the back EMF constant of the motor in Volts per radian/second MSPR is the number of microsteps per rotation, e.g. 51200 = 256 μ steps multiplied by 200 fullsteps for a 1.8° motor.

Figure 6.5 Velocity based PWM scaling (pwm autoscale=0)

Hint

The values for *PWM_AMPL* and *PWM_GRAD* can easily be optimized by tracing the motor current with a current probe on the oscilloscope. It is not even necessary to calculate the formulas if you carefully start with a low setting for both.

UNDERSTANDING THE BACK EMF CONSTANT OF A MOTOR

The back EMF constant is the voltage a motor generates when turned with a certain velocity. Often motor datasheets do not specify this value, as it can be deducted from motor torque and coil current rating. Within SI units, the numeric value of the back EMF constant C_{BEMF} has the same numeric value as the numeric value of the torque constant. For example, a motor with a torque constant of 1 Nm/A would have a C_{BEMF} of 1V/rad/s. Turning such a motor with 1 rps (1 rps = 1 revolution per second = 6.28 rad/s) generates a back EMF voltage of 6.28V. Thus, the back EMF constant can be calculated as:

$$C_{BEMF}\left[\frac{V}{rad/s}\right] = \frac{HoldingTorque[Nm]}{2 * I_{COILNOM}[A]}$$

 I_{COILNOM} is the motor's rated phase current for the specified holding torque

HoldingTorque is the motor specific holding torque, i.e. the torque reached at I_{COILNOM} on both coils. The torque unit is [Nm] where 1Nm = 100Ncm = 1000mNm.

The voltage is valid as RMS voltage per coil, thus the nominal current is multiplied by 2 in this formula, since the nominal current assumes a full step position, with two coils operating.

6.4 Combining stealthChop and spreadCycle

For applications requiring high velocity motion, spreadCycle may bring more stable operation in the upper velocity range. To combine no-noise operation with highest dynamic performance, combine stealthChop and spreadCycle based on a velocity threshold (*TPWMTHRS*). With this, stealthChop is only active at low velocities.

As a first step, both chopper principles should be parameterized and optimized individually. In a next step, a transfer velocity has to be fixed. For example, stealthChop operation is used for precise low speed positioning, while spreadCycle shall be used for highly dynamic motion. *TPWMTHRS* determines the transition velocity. Use a low transfer velocity to avoid a jerk at the switching point.

A jerk occurs when switching at higher velocities, because the back-EMF of the motor (which rises with the velocity) causes a phase shift of up to 90° between motor voltage and motor current. So when switching at higher velocities between voltage PWM and current PWM mode, this jerk will occur with increased intensity. A high jerk may even produce a temporary overcurrent condition (depending on the motor coil resistance). At low velocities (e.g. 1 to a few 10 RPM), it can be completely neglected for most motors. Therefore, consider the switching jerk when choosing *TPWMTHRS*. Set *TPWMTHRS* zero if you want to work with stealthChop only.

When enabling the stealthChop mode the first time using automatic current regulation, the motor must be at stand still in order to allow a proper current regulation. When the drive switches to a different chopper mode at a higher velocity, stealthChop logic stores the last current regulation setting until the motor returns to a lower velocity again. This way, the regulation has a known starting point when returning to a lower velocity, where stealthChop becomes re-enabled. Therefore, neither the velocity threshold nor the supply voltage must be considerably changed during the phase while the chopper is switched to a different mode, because otherwise the motor might lose steps or the instantaneous current might be too high or too low.

A motor stall or a sudden change in the motor velocity may lead to the driver detecting a short circuit or to a state of automatic current regulation, from which it cannot recover. Clear the error flags and restart the motor from zero velocity to recover from this situation.

Hint

Start the motor from standstill when switching on stealthChop the first time and keep it stopped for at least 128 chopper periods to allow stealthChop to do initial standstill current control.

6.4.1 PWM AMPL limits Jerk

When combining stealthChop with spreadCycle or constant off time classic PWM, a switching velocity can be chosen using *TPWMTHRS*. With this, stealthChop is only active at low velocities. Often, a very low velocity in the range of 1 to a few 10 RPM fits best. In case a high switching velocity is chosen, special care should be taken for switching back to stealthChop during deceleration, because the phase jerk can produce a short time overcurrent.

To avoid a short time overcurrent and to minimize the jerk, the initial amplitude for switching back to stealthChop at sinking velocity can be determined using the setting *PWM_AMPL*. Tune *PWM_AMPL* to a value which gives a smooth and safe transition back to stealthChop within the application. As a thumb rule, ½ to ¾ of the last *PWM_SCALE* value which was valid after the switching event at rising velocity can be used. For high resistive steppers as well as for low transfer velocities (as set by *TPWMTHRS*), set *PWM_AMPL* to 255 as most universal setting.

Hint

In case the automatic scaling regulation is instable at your desired motion velocity, try modifying the chopper frequency divider *PWM_FREQ*. Also adapt the blank time *TBL* and motor current for best result.

6.5 Flags in stealthChop

As stealthChop uses voltage mode driving, status flags based on current measurement respond slower, respectively the driver reacts delayed to sudden changes of back EMF, like on a motor stall.

A motor stall can lead to an overcurrent condition. Depending on the previous motor velocity, and on the coil resistance of the motor, it may trigger the overcurrent detection. With low velocities, where the back EMF is just a fraction of the supply voltage, there is no danger of triggering the short detection.

6.5.1 Open Load Flags

In stealthChop mode, status information is different from the cycle-by-cycle regulated chopper modes. OLA and OLB show if the current regulation sees that the nominal current can be reached on both coils.

- A flickering OLA or OLB can result from asymmetries in the sense resistors or in the motor coils.
- An interrupted motor coil leads to a continuously active open load flag for the coil.
- One or both flags are active, if the current regulation did not succeed in scaling up to the full target current within the last few fullsteps (because no motor is attached or a high velocity exceeds the PWM limit).

If desired, do an on-demand open load test using the spreadCycle chopper, as it delivers the safest result. With stealthChop, *PWM SCALE* can be checked to detect the correct coil resistance.

6.5.2 PWM_SCALE Informs about the Motor State

Information about the motor state is available with automatic scaling by reading out *PWM_SCALE*. As this parameter reflects the actual voltage required to drive the target current into the motor, it depends on several factors: motor load, coil resistance, supply voltage, and current setting. Therefore, an evaluation of the *PWM_SCALE* value allows seeing the motor load (similar to stallGuard2) and finding out if the target current can be reached. It even gives an idea on the motor temperature (evaluate at a well-known state of operation).

6.6 Freewheeling and Passive Motor Braking

stealthChop provides different options for motor standstill. These options can be enabled by setting the standstill current *IHOLD* to zero and choosing the desired option using the *FREEWHEEL* setting. The desired option becomes enabled after a time period specified by *TPOWERDOWN* and *IHOLD_DELAY*. The *PWM_SCALE* regulation becomes frozen once the motor target current is at zero current in order to ensure a quick startup.

Parameter	Description	Setting	Comment
en_pwm_	General enable for use of stealthChop (register	0	Do not use stealthChop
mode	GCONF)	1	stealthChop enabled
TPWMTHRS	Specifies the upper velocity for operation in stealthChop voltage PWM mode. Entry the <i>TSTEP</i> reading (time between two microsteps) when operating at the desired threshold velocity.	1048575	stealthChop also is disabled if TSTEP falls below TCOOLTHRS or THIGH
pwm_	Enable automatic current scaling using current		Forward controlled mode
autoscale	measurement or use forward controlled velocity based mode.	1	Automatic scaling with current regulator
PWM_FREQ	PWM frequency selection. Use the lowest setting		f _{PWM} =2/1024 f _{CLK}
	giving good results. The frequency measured at		f _{PWM} =2/683 f _{CLK}
	each of the chopper outputs is half of the	2	f _{PWM} =2/512 f _{CLK}
	effective chopper frequency f _{PWM} .	3	f _{PWM} =2/410 f _{CLK}
PWM_GRAD	User defined PWM amplitude (gradient) for		With pwm_autoscale=1
	velocity based scaling or regulation loop gradient when <i>pwm_autoscale=</i> 1.	0 255	With pwm_autoscale=0
PWM_AMPL	User defined PWM amplitude (offset) for velocity based scaling or amplitude limit for re-entry into stealthChop mode when <pre>pwm_autoscale=1</pre> .		
pwm_	Activate to force a symmetric PWM for each cycle.		Normal operation
symmetric	Reduces the number of updates to the PWM cycle. Special use only.	1	A symmetric PWM cycle is enforced
FREEWHEEL	Stand still option when motor current setting is	0	Normal operation
	zero (<i>I_HOLD</i> =0). Only available with stealthChop	1	Freewheeling
	enabled. The freewheeling option makes the	2	Coil shorted using LS
	motor easy movable, while both coil short options		drivers
	realize a passive brake. Mode 2 will brake more intensely than mode 3, because low side drivers (LS) have lower resistance than high side drivers.	3	Coil shorted using HS drivers
PWM_SCALE	Read back of the actual stealthChop voltage PWM	0 255	The scaling value
	scaling as determined by the current regulation.	(read	becomes frozen when
	Can be used to detect motor load and stall when autoscale=1.	only)	operating in a different chopper mode
TOFF	General enable for the motor driver, the actual		Driver off
	value does not influence stealthChop	1 15	Driver enabled
TBL	Comparator blank time. This time needs to safely		16 t _{CLK}
	cover the switching event and the duration of the		24 t _{CLK}
	ringing on the sense resistor. Choose a setting of		36 t _{CLK}
	1 or 2 for typical applications. For higher	3	54 t _{CLK}
	capacitive loads, 3 may be required. Lower		
	settings allow stealthChop to regulate down to lower coil current values.		
IRUN	Run and hold current setting for stealth Chop		See chapter on current
IHOLD	operation – only used with pwm_autoscale=1		setting for details
THOLD	operation - only used with pwin_uutoscute-1	l	setting for details

7 spreadCycle and Classic Chopper

While stealthChop is a voltage mode PWM controlled chopper, spreadCycle is a cycle-by-cycle current control. Therefore, it can react extremely fast to changes in motor velocity or motor load. The currents through both motor coils are controlled using choppers. The choppers work independently of each other. In Figure 7.1 the different chopper phases are shown.

Figure 7.1 Chopper phases

Although the current could be regulated using only on phases and fast decay phases, insertion of the slow decay phase is important to reduce electrical losses and current ripple in the motor. The duration of the slow decay phase is specified in a control parameter and sets an upper limit on the chopper frequency. The current comparator can measure coil current during phases when the current flows through the sense resistor, but not during the slow decay phase, so the slow decay phase is terminated by a timer. The on phase is terminated by the comparator when the current through the coil reaches the target current. The fast decay phase may be terminated by either the comparator or another timer.

When the coil current is switched, spikes at the sense resistors occur due to charging and discharging parasitic capacitances. During this time, typically one or two microseconds, the current cannot be measured. Blanking is the time when the input to the comparator is masked to block these spikes.

There are two cycle-by-cycle chopper modes available: a new high-performance chopper algorithm called spreadCycle and a proven constant off-time chopper mode. The constant off-time mode cycles through three phases: on, fast decay, and slow decay. The spreadCycle mode cycles through four phases: on, slow decay, fast decay, and a second slow decay.

The chopper frequency is an important parameter for a chopped motor driver. A too low frequency might generate audible noise. A higher frequency reduces current ripple in the motor, but with a too high frequency magnetic losses may rise. Also power dissipation in the driver rises with increasing frequency due to the increased influence of switching slopes causing dynamic dissipation. Therefore, a compromise needs to be found. Most motors are optimally working in a frequency range of 16 kHz to 30 kHz. The chopper frequency is influenced by a number of parameter settings as well as by the motor inductivity and supply voltage.

Hint

A chopper frequency in the range of 16 kHz to 30 kHz gives a good result for most motors when using spreadCycle. A higher frequency leads to increased switching losses.

classic const. off time

Parameter	Description	Setting	Comment
TOFF	Sets the slow decay time (off time). This setting also	0	chopper off
	limits the maximum chopper frequency. For operation with stealthChop, this parameter is not used, but it is required to enable the motor. In case of operation with stealthChop only, any setting is OK.		off time setting N _{CLK} = 12 + 32* <i>TOFF</i> (1 will work with minimum blank time of 24 clocks)
	Setting this parameter to zero completely disables all driver transistors and the motor can free-wheel.		
TBL	Selects the comparator blank time. This time needs to	0	16 t _{CLK}
	safely cover the switching event and the duration of the ringing on the sense resistor. For most applications, a setting of 1 or 2 is good. For highly capacitive loads,	1	24 t _{CLK}
			36 t _{CLK}
	e.g. when filter networks are used, a setting of 2 or 3 will be required.	3	54 t _{CLK}
chm	Selection of the chopper mode	0	spreadCycle

Three parameters are used for controlling both chopper modes:

7.1 spreadCycle Chopper

The patented spreadCycle chopper algorithm is a precise and simple to use chopper mode which automatically determines the optimum length for the fast-decay phase. The spreadCycle will provide superior microstepping quality even with default settings. Several parameters are available to optimize the chopper to the application.

Each chopper cycle is comprised of an on phase, a slow decay phase, a fast decay phase and a second slow decay phase (see Figure 7.3). The two slow decay phases and the two blank times per chopper cycle put an upper limit to the chopper frequency. The slow decay phases typically make up for about 30%-70% of the chopper cycle in standstill and are important for low motor and driver power dissipation.

Calculation of a starting value for the slow decay time TOFF:

EXAMPLE:

Target Chopper frequency: 25kHz.

Assumption: Two slow decay cycles make up for 50% of overall chopper cycle time

$$t_{OFF} = \frac{1}{25kHz} * \frac{50}{100} * \frac{1}{2} = 10\mu s$$

For the TOFF setting this means:

$$TOFF = (t_{OFF} * f_{CLK} - 12)/32$$

With 12 MHz clock this gives a setting of TOFF=3.4, i.e. 3 or 4. With 16 MHz clock this gives a setting of TOFF=4.6, i.e. 4 or 5.

The hysteresis start setting forces the driver to introduce a minimum amount of current ripple into the motor coils. The current ripple must be higher than the current ripple which is caused by resistive losses in the motor in order to give best microstepping results. This will allow the chopper to precisely regulate the current both for rising and for falling target current. The time required to introduce the current ripple into the motor coil also reduces the chopper frequency. Therefore, a higher hysteresis setting will lead to a lower chopper frequency. The motor inductance limits the ability of the chopper to follow a changing motor current. Further the duration of the on phase and the fast decay must be longer than the blanking time, because the current comparator is disabled during blanking.

It is easiest to find the best setting by starting from a low hysteresis setting (e.g. *HSTRT*=0, *HEND*=0) and increasing HSTRT, until the motor runs smoothly at low velocity settings. This can best be checked when measuring the motor current either with a current probe or by probing the sense resistor voltages (see Figure 7.2). Checking the sine wave shape near zero transition will show a small ledge between both half waves in case the hysteresis setting is too small. At medium velocities (i.e. 100 to 400 fullsteps per second), a too low hysteresis setting will lead to increased humming and vibration of the motor.

Figure 7.2 No ledges in current wave with sufficient hysteresis (magenta: current A, yellow & blue: sense resistor voltages A and B)

A too high hysteresis setting will lead to reduced chopper frequency and increased chopper noise but will not yield any benefit for the wave shape.

Quick Start

For a quick start, see the Quick Configuration Guide in chapter 22. For detail procedure see Application Note AN001 - Parameterization of spreadCycle

As experiments show, the setting is quite independent of the motor, because higher current motors typically also have a lower coil resistance. Therefore choosing a low to medium default value for the hysteresis (for example, effective hysteresis = 4) normally fits most applications. The setting can be optimized by experimenting with the motor: A too low setting will result in reduced microstep accuracy, while a too high setting will lead to more chopper noise and motor power dissipation. When measuring the sense resistor voltage in motor standstill at a medium coil current with an oscilloscope, a too low setting shows a fast decay phase not longer than the blanking time. When the fast decay time becomes slightly longer than the blanking time, the setting is optimum. You can reduce the off-time setting, if this is hard to reach.

The hysteresis principle could in some cases lead to the chopper frequency becoming too low, e.g. when the coil resistance is high when compared to the supply voltage. This is avoided by splitting the hysteresis setting into a start setting (HSTRT+HEND) and an end setting (HEND). An automatic hysteresis decrementer (HDEC) interpolates between both settings, by decrementing the hysteresis value stepwise each 16 system clocks. At the beginning of each chopper cycle, the hysteresis begins with a value which is the sum of the start and the end values (HSTRT+HEND), and decrements during the cycle, until either the chopper cycle ends or the hysteresis end value (HEND) is reached. This way, the chopper frequency is stabilized at high amplitudes and low supply voltage situations, if the frequency gets too low. This avoids the frequency reaching the audible range.

Figure 7.3 spreadCycle chopper scheme showing coil current during a chopper cycle

Two parameters control spreadCycle mode:

Parameter	Description	Setting	Comment
HSTRT	Hysteresis start setting. This value is an offset	07	HSTRT=18
	from the hysteresis end value HEND.		This value adds to HEND.
HEND	manage code and mysterious and		-31: negative HEND
	value after a number of decrements. The sum <i>HSTRT+HEND</i> must be ≤16. At a current setting of	_	0: zero HEND
max. 30 (amplitude reduced to 240), the sum is not limited.	415	112: positive HEND	

Even at HSTRT=0 and HEND=0, the TMC2130 sets a minimum hysteresis via analog circuitry.

EXAMPLE:

A hysteresis of 4 has been chosen. You might decide to not use hysteresis decrement. In this case set:

HEND=6 (sets an effective end value of 6-3=3)
HSTRT=0 (sets minimum hysteresis, i.e. 1: 3+1=4)

In order to take advantage of the variable hysteresis, we can set most of the value to the HSTRT, i.e. 4, and the remaining 1 to hysteresis end. The resulting configuration register values are as follows:

HEND=0 (sets an effective end value of -3)

HSTRT=6 (sets an effective start value of hysteresis end +7: 7-3=4)

Hint

Highest motor velocities sometimes benefit from setting TOFF to 1 or 2 and a short TBL of 1 or 0.

7.2 Classic Constant Off Time Chopper

The classic constant off time chopper is an alternative to spreadCycle. Perfectly tuned, it also gives good results. In combination with RDSon current sensing without external sense resistors, this chopper mode can bring a benefit with regard to audible high-pitch chopper noise. Also, the classic constant off time chopper (automatically) is used in combination with fullstepping in dcStep operation.

The classic constant off-time chopper uses a fixed-time fast decay following each on phase. While the duration of the on phase is determined by the chopper comparator, the fast decay time needs to be long enough for the driver to follow the falling slope of the sine wave, but it should not be so long that it causes excess motor current ripple and power dissipation. This can be tuned using an oscilloscope or evaluating motor smoothness at different velocities. A good starting value is a fast decay time setting similar to the slow decay time setting.

Figure 7.4 Classic const. off time chopper with offset showing coil current

After tuning the fast decay time, the offset should be tuned for a smooth zero crossing. This is necessary because the fast decay phase makes the absolute value of the motor current lower than the target current (see Figure 7.5). If the zero offset is too low, the motor stands still for a short moment during current zero crossing. If it is set too high, it makes a larger microstep. Typically, a positive offset setting is required for smoothest operation.

Target current corrected for optimum shape of coil current

Figure 7.5 Zero crossing with classic chopper and correction using sine wave offset

Three parameters control constant off-time mode:

Coil current does not have optimum shape

Parameter	Description	Setting	Comment
TFD	Fast decay time setting. With CHM=1, these bits		slow decay only
(fd3 & HSTRT)	control the portion of fast decay for each chopper cycle.	115	duration of fast decay phase
OFFSET	Sine wave offset. With CHM=1, these bits control		negative offset: -31
(HEND)	•	3	no offset: 0
	zero crossing error.	415	positive offset 112
disfdcc	Selects usage of the <i>current comparator</i> for termination of the <i>fast decay</i> cycle. If current comparator is enabled, it terminates the fast decay		enable comparator termination of fast decay cycle
	cycle in case the current reaches a higher negative value than the actual positive value.	1	end by time only

7.3 Random Off Time

In the constant off-time chopper mode, both coil choppers run freely without synchronization. The frequency of each chopper mainly depends on the coil current and the motor coil inductance. The inductance varies with the microstep position. With some motors, a slightly audible beat can occur between the chopper frequencies when they are close together. This typically occurs at a few microstep positions within each quarter wave. This effect is usually not audible when compared to mechanical noise generated by ball bearings, etc. Another factor which can cause a similar effect is a poor layout of the sense resistor GND connections.

Hint

A common factor, which can cause motor noise, is a bad PCB layout causing coupling of both sense resistor voltages (please refer layouts hint in chapter 29).

To minimize the effect of a beat between both chopper frequencies, an internal random generator is provided. It modulates the slow decay time setting when switched on by the *rndtf* bit. The *rndtf* feature further spreads the chopper spectrum, reducing electromagnetic emission on single frequencies.

Parameter	Description	Setting	Comment
rndtf	This bit switches on a <i>random off time</i> generator, which slightly modulates the off time <i>TOFF</i> using		disable
	a random polynomial.	1	random modulation enable

7.4 chopSync2 for Quiet 2-Phase Motor

chopSync2 is an alternative add-on concept for spreadCycle chopper and constant off time chopper to optimize motor noise at low velocities. When using stealthChop for low velocity operation, chopSync2 is not applicable.

While a frequency adaptive chopper like spreadCycle provides excellent high velocity operation, in some applications, a constant frequency chopper is preferred rather than a frequency adaptive chopper. This may be due to chopper noise in motor standstill, or due to electro-magnetic emission. chopSync2 provides a means to synchronize the choppers for both coils with a common clock, by extending the off time of the coils. It integrates with both chopper principles. However, a careful set up of the chopper is necessary, because chopSync2 can just increment the off times, but not reduce the duration of the chopper cycles themselves. Therefore, it is necessary to test successful operation best with an oscilloscope. Set up the chopper as detailed above, but take care to have chopper frequency higher than the chopSync2 frequency. As high motor velocities take advantage of the normal, adaptive chopper style, chopSync2 becomes automatically switched off using the VHIGH velocity limit programmed within the motion controller.

A suitable chopSync2 SYNC value can be calculated as follows:

$$SYNC = \left\lfloor \frac{f_{CLK}}{64 * f_{SYNC}} \right\rfloor$$

EXAMPLE:

The motor is operated in spreadCycle mode (*chm*=0). The minimum chopper frequency for standstill and slow motion (up to *VHIGH*) has been determined to be 25 kHz under worst case operation conditions (hot motor, low supply voltage). The standstill noise needs to be minimized by using chopSync. The IC uses an external 16 MHz clock.

Considering the chopper mode 0, SYNC has to be set for the closest value resulting in or below the double frequency, e.g. 50 kHz. Using above formula, a value of 5 results exactly and can be used. Trying a value of 6, a frequency of 41.7 kHz results, which still gives an effective chopper frequency of slightly above 20 kHz, and thus would also be a valid solution. A value of 7 might still be good, but could already give high frequency noise.

In chopper mode 1, SYNC could be set to any value between 10 and 13 to be within the chopper frequency range of 19.8 kHz to 25 kHz.

Parameter	Description	Setting	Comment
SYNC	This register allows synchronization of the		chopSync off
	chopper for both phases of a two phase motor in order to avoid the occurrence of a beat, especially at low motor velocities. It is automatically switched off above <i>VHIGH</i> .		f _{CLK} /64
			 f _{CLK} /(15*64)
	Hint: Set TOFF to a low value, so that the chopper cycle is ended, before the next sync clock pulse occurs. Set SYNC for the double desired chopper frequency for chm=0, for the desired base chopper frequency for chm=1.		

8 Analog Current Control AIN

When a high flexibility of the output current scaling is desired, the analog input of the driver can be enabled for current control, rather than choosing a different set of sense resistors or scaling down the run current via *IRUN* parameter. This way, a simple voltage divider can be used for the adaptation of a board to different motors.

ATN SCALES THE MOTOR CURRENT

The TMC2130 provides an internal reference voltage for current control, directly derived from the 5VOUT supply output. Alternatively, an external reference voltage can be used. This reference voltage becomes scaled down for the chopper comparators. The chopper comparators compare the voltages on BRA and BRB to the scaled reference voltage for current regulation. When *I_scale_analog* in *GCONF* is enabled, the external voltage on AIN is amplified and filtered and becomes used as reference voltage. A voltage of 2.5V (or any voltage between 2.5V and 5V) gives the same current scaling as the internal reference voltage. A voltage between 0V and 2.5V linearly scales the current between 0 and the current scaling defined by the sense resistor setting. It is not advised to work with reference voltages below about 0.5V to 1V, because relative analog noise caused by digital circuitry has an increased impact on the chopper precision at low AIN voltages. For best precision, choose the sense resistors in a way that the desired maximum current is reached with AIN in the range 2V to 2.4V. Be sure to optimize the chopper settings for the normal run current of the motor.

Driving AIN

The easiest way to provide a voltage to AIN is to use a voltage divider from a stable supply voltage or a microcontroller's DAC output. A PWM signal can also be used for current control. The PWM becomes transformed to an analog voltage using an additional R/C low-pass at the AIN pin. The PWM duty cycle controls the analog voltage. Choose the R and C values to form a low pass with a corner frequency of several milliseconds while using PWM frequencies well above 10 kHz. AIN additionally provides an internal low-pass filter with 3.5kHz bandwidth. When a precise reference voltage is available (e.g. from TL431A), the precision of the motor current regulation can be improved when compared to the internal voltage reference.

Hint

Using a low reference voltage (e.g. below 1V), for adaptation of a high current driver to a low current motor will lead to reduced analog performance. Adapting the sense resistors to fit the desired motor current gives a better result.

Figure 8.1 Scaling the motor current using the analog input

9 Selecting Sense Resistors

Set the desired maximum motor current by selecting an appropriate value for the sense resistor. The following table shows the RMS current values which can be reached using standard resistors and motor types fitting without additional motor current scaling.

CHOICE OF R _{SENSE} AND RESULTING MAX. MOTOR CURRENT				
R _{SENSE} [Ω]	RMS current [A]	RMS current [A]		
	(CS=31, vsense=0)	(CS=31, vsense=1)		
1.00	0.23	0.12		
0.82	0.27	0.15		
0.75	0.30	0.17		
0.68	0.33	0.18		
0.50	0.44	0.24		
0.47	0.47	0.26		
0.33	0.66	0.36		
0.27	0.79	0.44		
0.22	0.96	0.53		
0.15	1.35	0.75		
0.12	1.64	0.91		
0.10	1.92*)	1.06		

^{*)} Value exceeds upper current rating.

Sense resistors should be carefully selected. The full motor current flows through the sense resistors. Due to chopper operation the sense resistors see pulsed current from the MOSFET bridges. Therefore, a low-inductance type such as film or composition resistors is required to prevent voltage spikes causing ringing on the sense voltage inputs leading to unstable measurement results. Also, a low-inductance, low-resistance PCB layout is essential. Any common GND path for the two sense resistors must be avoided, because this would lead to coupling between the two current sense signals. A massive ground plane is best. Please also refer to layout considerations in chapter 29.

The sense resistor voltage range can be selected by the *vsense* bit in *CHOPCONF*. The low sensitivity setting (high sense resistor voltage, *vsense*=0) brings best and most robust current regulation, while high sensitivity (low sense resistor voltage, *vsense*=1) reduces power dissipation in the sense resistor. The high sensitivity setting reduces the power dissipation in the sense resistor by nearly half.

The current to both coils is scaled by the 5-bit current scale parameters (*IHOLD*, *IRUN*). Choose the sense resistor value so that the maximum desired current (or slightly more) flows at the maximum current setting (*IRUN* = %11111).

CALCULATION OF RMS CURRENT

$$I_{RMS} = \frac{CS+1}{32} * \frac{V_{FS}}{R_{SENSE} + 20m\Omega} * \frac{1}{\sqrt{2}} \label{eq:IRMS}$$

The momentary motor current is calculated by:

$$I_{MOT} = \frac{CUR_{A/B}}{248} * \frac{CS+1}{32} * \frac{V_{FS}}{R_{SENSE} + 20m\Omega}$$

CS is the current scale setting as set by the IHOLD and IRUN and coolStep.

 V_{FS} is the full scale voltage as determined by *vsense* control bit (please refer to electrical characteristics, V_{SRTL} and V_{SRTH}).

CUR_{A/B} is the actual value from the internal sine wave table.

248 is the amplitude of the internal sine wave table.

When I_scale_analog is enabled for analog scaling of V_{FS_i} the resulting voltage V_{FS_i} is calculated by:

$$V_{FS}' = V_{FS} * \frac{V_{AIN}}{2.5V}$$

with V_{AIN} the voltage on pin AIN_IREF in the range OV to $V_{SVOUT}/2$

The sense resistor needs to be able to conduct the peak motor coil current in motor standstill conditions, unless standby power is reduced. Under normal conditions, the sense resistor conducts less than the coil RMS current, because no current flows through the sense resistor during the slow decay phases.

CALCULATION OF PEAK SENSE RESISTOR POWER DISSIPATION

$$P_{RSMAX} = I_{COIL}^2 * R_{SENSE}$$

Hint

For best precision of current setting, it is advised to measure and fine tune the current in the application.

Attention

Be sure to use a symmetrical sense resistor layout and short and straight sense resistor traces of identical length. Well matching sense resistors ensure best performance.

A compact layout with massive ground plane is best to avoid parasitic resistance effects.

Parameter	Description	Setting	Comment
IRUN	Current scale when motor is running. Scales coil current values as taken from the internal sine wave table. For high precision motor operation, work with a current scaling factor in the range 16 to 31, because scaling down the current values reduces the effective microstep resolution by making microsteps coarser. This setting also controls the maximum current value set by coolStep. Identical to IRUN, but for motor in stand still.	0 31	scaling factor 1/32, 2/32, 32/32
IHOLD DELAY	Allows smooth current reduction from run current to hold current. <i>IHOLDDELAY</i> controls the number of clock cycles for motor power down after <i>TPOWERDOWN</i> in increments of 2°18 clocks: 0=instant power down, 115: Current reduction delay per current step in multiple of 2°18 clocks. <i>Example:</i> When using <i>IRUN</i> =31 and <i>IHOLD</i> =16, 15 current steps are required for hold current reduction. A <i>IHOLDDELAY</i> setting of 4 thus results in a power down time of 4*15*2°18 clock cycles, i.e. roughly one second at 16MHz.		instant IHOLD 1*2 ¹⁸ 15*2 ¹⁸ clocks per current decrement
vsense	Allows control of the sense resistor voltage range	0	V _{FS} = 0.32 V
	for full scale current.	1	V _{FS} = 0.18 V

10 Internal Sense Resistors

The TMC2130 provides the option to eliminate external sense resistors. In this mode the external sense resistors become omitted (shorted) and the internal on-resistance of the power MOSFETs is used for current measurement (see Figure 3.3). As MOSFETs are both, temperature dependent and subject to production stray, a tiny external resistor connected from +5VOUT to AIN/IREF provides a precise absolute current reference. This resistor converts the 5V voltage into a reference current. Be sure to directly attach BRA and BRB pins to GND in this mode near the IC package. The mode is enabled by setting *internal Rsense* in *GCONF*.

COMPARING INTERNAL SENSE RESISTORS VS. SENSE RESISTORS				
Item	Internal Sense Resistors	External Sense Resistors		
Ease of use	Set internal_Rsense first	(+) Default		
Cost	(+) Save cost for sense resistors			
Current precision	Slightly reduced	(+) Good		
Current Range	200mA RMS to 1.2A RMS	50mA to 1.4A RMS		
Recommended				
Recommended	stealthChop,	stealthChop or spreadCycle		
chopper	spreadCycle shows slightly			
	reduced performance at >1A			

While the RDSon based measurements bring benefits concerning cost and size of the driver, it gives slightly less precise coil current regulation when compared to external sense resistors. The internal sense resistors have a certain temperature dependence, which is automatically compensated by the driver IC. However, for high current motors, a temperature gradient between the ICs internal sense resistors and the compensation circuit will lead to an initial current overshoot of some 10% during driver IC heat up. While this phenomenon shows for roughly a second, it might even be beneficial to enable increased torque during initial motor acceleration.

PRINCIPLE OF OPERATION

A reference current into the AIN/IREF pin is used as reference for the motor current. In order to realize a certain current, a single resistor (R_{REF}) can be connected between 5VOUT and AIN/IREF (pls. refer the table for the choice of the resistor). AIN/IREF input resistance is about 1kOhm. The resulting current into AIN/IREF is amplified 3000 times. Thus, a current of 0.5mA yields a motor current of 1.5A peak. For calculation of the reference resistor, the internal resistance of VREF needs to be considered additionally.

When using reference currents above 0.5mA resulting in higher theoretical current settings of up to 2A, the resulting current decreases linearly when chip temperature exceeds a certain maximum temperature. For a 2A setting it decreases from 2A at up to 100°C down to about 1.5A at 150°C. The resulting curve limits the maximum current setting in this mode. For calculation of the reference resistor, the internal resistance of AIN/RREF needs to be considered additionally.

vsense=1 allows a lower peak current setting of about 55% of the value yielded with vsense=0 (as specified by V_{SRTH} / V_{SRTL}). For fine tuning use the current scale CS.

Choice of R_{REF} for Operation without Sense Resistors					
R _{REF} [Ω]	Peak current [A] (CS=31, vsense=0)	Peak current [A] (CS=31, vsense=1)			
6k8	1.92	1.06			
7k5	1.76	0.97			
8k2	1.63	0.90			
9k1	1.49	0.82			
10k	1.36	0.75			
12k	1.15	0.63			
15k	0.94	0.52			
18k	0.79	0.43			
22k	0.65	0.36			
27k	0.60	0.33			
33k	0.54	0.29			

In RDSon measurement mode, connect the BRA and BRB pins to GND using the shortest possible path (i.e. lowest possible PCB resistance). In a realistic setup, the effective current will be slightly lower than expected. RDSon based measurement gives best results when combined with classic constant off time chopper or with the voltage PWM stealthChop. When using spreadCycle with RDSon based current measurement, slightly asymmetric current measurement for positive currents (on phase) and negative currents (fast decay phase) can result in chopper noise. This especially occurs at increased die temperature and increased motor current.

Note

The absolute current levels achieved with RDSon based current sensing may depend on PCB layout exactly like with external sense resistors, because trace resistance on BR pins will add to the effective sense resistance. Therefore we recommend to measure and calibrate the current setting within the application.

Thumb rule

RDSon based current sensing works best for motors with up to 1.2A RMS current. The best results are yielded with stealthChop operation in combination with RDSon based current sensing. Consider using classic chopper rather than spreadCycle.

For most precise current control and best results with spreadCycle, it is recommended to use external 1% sense resistors rather than RDSon based current control.

11 Velocity Based Mode Control

The TMC2130 allows the configuration of different chopper modes and modes of operation for optimum motor control. Depending on the motor load, the different modes can be optimized for lowest noise & high precision, highest dynamics, or maximum torque at highest velocity. Some of the features like coolStep or stallGuard2 are useful in a limited velocity range. A number of velocity thresholds allow combining the different modes of operation within an application requiring a wide velocity range.

Figure 11.1 Choice of velocity dependent modes

Figure 11.1 shows all available thresholds and the required ordering. VPWMTHRS, VHIGH and VCOOLTHRS are determined by the settings *TPWMTHRS*, *THIGH* and *TCOOLTHRS*. The velocity is described by the time interval *TSTEP* between each two step pulses. This allows determination of the velocity when an external step source is used. *TSTEP* always becomes normalized to 256 microstepping. This way, the thresholds do not have to be adapted when the microstep resolution is changed. The thresholds represent the same motor velocity, independent of the microstep settings. *TSTEP* becomes compared to these threshold values. A hysteresis of 1/16 *TSTEP* resp. 1/32 *TSTEP* is applied to avoid continuous toggling of the comparison results when a jitter in the *TSTEP* measurement occurs. The upper switching velocity is higher by 1/16, resp. 1/32 of the value set as threshold. The stealthChop threshold *TPWMTHRS* is not shown. It can be included with VPWMTHRS < VCOOLTHRS. The motor current can be programmed to a run and a hold level, dependent on the standstill flag *stst*.

Using automatic velocity thresholds allows tuning the application for different velocity ranges. Features like coolStep will integrate completely transparently in your setup. This way, once parameterized, they do not require any activation or deactivation via software.

Parameter	Description	Setting	Comment
stst	This flag indicates motor stand still in each operation	Status bit, read only	
TD 014/ED	mode. This occurs 2^20 clocks after the last step pulse.		T: :
TPOWER	This is the delay time after stand still (stst) of the	0255	Time in multiples of 2^18
DOWN	motor to motor current power down. Time range		t _{CLK}
	is about 0 to 4 seconds.		
TSTEP	Actual measured time between two 1/256		Status register, read only.
	microsteps derived from the step input frequency	1048575	Actual measured step time
	in units of 1/fCLK. Measured value is (2^20)-1 in		in multiple of t_{CLK}
	case of overflow or stand still.		
TPWMTHRS	TSTEP ≥ TPWMTHRS	0	Setting to control the
	- stealthChop PWM mode is enabled, if	1048575	upper velocity threshold
	configured		for operation in
	- dcStep is disabled		stealthChop
TCOOLTHRS	TCOOLTHRS ≥ TSTEP ≥ THIGH:	0	Setting to control the
	 coolStep is enabled, if configured 	1048575	lower velocity threshold
	- stealthChop voltage PWM mode is		for operation with
	disabled		coolStep and stallGuard
	TCOOLTHRS ≥ TSTEP		
	 stallGuard status output signal is enabled, 		
	if configured		
THIGH	TSTEP ≤ THIGH:	0	Setting to control the
	- coolStep is disabled (motor runs with	1048575	upper threshold for
	normal current scale)		operation with coolStep
	- stealthChop voltage PWM mode is		and stallGuard as well as
	disabled		optional high velocity step
	- If <i>vhighchm</i> is set, the chopper switches		mode
	to chm=1 with TFD=0 (constant off time		
	with slow decay, only).		
	- chopSync2 is switched off (SYNC=0)		
	- If <i>vhighfs</i> is set, the motor operates in		
	fullstep mode and the stall detection		
	becomes switched over to dcStep stall		
	detection.		
small_	Hysteresis for step frequency comparison based		Hysteresis is 1/16
hysteresis	on TSTEP (lower velocity threshold) and	1	Hysteresis is 1/32
	(TSTEP*15/16)-1 respectively (TSTEP*31/32)-1 (upper		
uhiahfa	velocity threshold) This bit enables switching to fullstep, when VHIGH	0	No switch to fullstep
vhighfs			'
	is exceeded. Switching takes place only at 45° position. The fullstep target current uses the	1	Fullstep at high velocities
	current value from the microstep table at the 45°		
	position.		
vhighchm	This bit enables switching to <i>chm</i> =1 and <i>fd</i> =0, when	0	No change of chopper
viligileiiii	VHIGH is exceeded. This way, a higher velocity can		mode
	be achieved. Can be combined with <i>vhighfs</i> =1. If set,	1	Classic const. Toff chopper
	the TOFF setting automatically becomes doubled	_	at high velocities
	during high velocity operation in order to avoid		at high velocities
	doubling of the chopper frequency.		
en_pwm_	stealthChop voltage PWM enable flag (depending	0	No stealthChop
mode	on velocity thresholds). Switch from off to on	1	·
	state while in stand still, only.	1	StealthChop below VPWMTHRS
	•		ערטויווחגא

12 Driver Diagnostic Flags

The TMC2130 drivers supply a complete set of diagnostic and protection capabilities, like short to GND protection and undervoltage detection. A detection of an open load condition allows testing if a motor coil connection is interrupted. See the *DRV STATUS* table for details.

12.1 Temperature Measurement

The driver integrates a two level temperature sensor (120°C pre-warning and 150°C thermal shutdown) for diagnostics and for protection of the IC against excess heat. The heat is mainly generated by the motor driver stages, and, at increased voltage, by the internal voltage regulator. Most critical situations, where the driver MOSFETs could be overheated, are avoided when enabling the short to GND protection. For many applications, the overtemperature pre-warning will indicate an abnormal operation situation and can be used to initiate user warning or power reduction measures like motor current reduction. The thermal shutdown is just an emergency measure and temperature rising to the shutdown level should be prevented by design.

After triggering the overtemperature sensor (ot flag), the driver remains switched off until the system temperature falls below the pre-warning level (otpw) to avoid continuous heating to the shutdown level.

12.2 Short to GND Protection

The TMC2130 power stages are protected against a short circuit condition by an additional measurement of the current flowing through the high-side MOSFETs. This is important, as most short circuit conditions result from a motor cable insulation defect, e.g. when touching the conducting parts connected to the system ground. The short detection is protected against spurious triggering, e.g. by ESD discharges, by retrying three times before switching off the motor.

Once a short condition is safely detected, the corresponding driver bridge becomes switched off, and the s2ga or s2gb flag becomes set. In order to restart the motor, the user must intervene by disabling and re-enabling the driver. It should be noted, that the short to GND protection cannot protect the system and the power stages for all possible short events, as a short event is rather undefined and a complex network of external components may be involved. Therefore, short circuits should basically be avoided.

12.3 Open Load Diagnostics

Interrupted cables are a common cause for systems failing, e.g. when connectors are not firmly plugged. The TMC2130 detects open load conditions by checking, if it can reach the desired motor coil current. This way, also undervoltage conditions, high motor velocity settings or short and overtemperature conditions may cause triggering of the open load flag, and inform the user, that motor torque may suffer. In motor stand still, open load cannot be measured, as the coils might eventually have zero current.

In order to safely detect an interrupted coil connection, read out the open load flags at low or nominal motor velocity operation, only. However, the *ola* and *olb* flags have just informative character and do not cause any action of the driver.

14 stallGuard2 Load Measurement

stallGuard2 provides an accurate measurement of the load on the motor. It can be used for stall detection as well as other uses at loads below those which stall the motor, such as coolStep load-adaptive current reduction. The stallGuard2 measurement value changes linearly over a wide range of load, velocity, and current settings, as shown in Figure 14.1. At maximum motor load, the value goes to zero or near to zero. This corresponds to a load angle of 90° between the magnetic field of the coils and magnets in the rotor. This also is the most energy-efficient point of operation for the motor.

Figure 14.1 Function principle of stallGuard2

Parameter	Description	Setting	Comment
SGT	This signed value controls the stallGuard2	0	indifferent value
	threshold level for stall detection and sets the	+1 +63	less sensitivity
	optimum measurement range for readout. A lower value gives a higher sensitivity. Zero is the starting value working with most motors. A higher value makes stallGuard2 less sensitive and requires more torque to indicate a stall.		higher sensitivity
sfilt	Enables the stallGuard2 filter for more precision		standard mode
	of the measurement. If set, reduces the measurement frequency to one measurement per	1	filtered mode
	electrical period of the motor (4 fullsteps).		
Status word	Description	Range	Comment
SG_RESULT	This is the stallGuard2 result. A higher reading	0 1023	0: highest load
	indicates less mechanical load. A lower reading		low value: high load
	indicates a higher load and thus a higher load		high value: less load
	angle. Tune the SGT setting to show a SG_RESULT		
	reading of roughly 0 to 100 at maximum load		
	before motor stall.		

In order to use stallGuard2 and coolStep, the stallGuard2 sensitivity should first be tuned using the SGT setting!

14.1 Tuning stallGuard2 Threshold SGT

The stallGuard2 value SG_RESULT is affected by motor-specific characteristics and application-specific demands on load and velocity. Therefore the easiest way to tune the stallGuard2 threshold SGT for a specific motor type and operating conditions is interactive tuning in the actual application.

INITIAL PROCEDURE FOR TUNING STALLGUARD SGT

- 1. Operate the motor at the normal operation velocity for your application and monitor SG RESULT.
- 2. Apply slowly increasing mechanical load to the motor. If the motor stalls before SG reaches zero, decrease SGT. If SG_RESULT reaches zero before the motor stalls, increase SGT. A good SGT starting value is zero. SGT is signed, so it can have negative or positive values.
- 3. Now monitor the stallGuard output signal via DIAGO or DIAG1 output (configure properly, also set *TCOOLTHRS*) and stop the motor when a pulse is seen on the respective output. Make sure, that the motor is safely stopped whenever it is stalled. Increase *SGT* if the motor becomes stopped before a stall occurs.
- 4. The optimum setting is reached when SG_RESULT is between 0 and roughly 100 at increasing load shortly before the motor stalls, and SG_RESULT increases by 100 or more without load. SGT in most cases can be tuned for a certain motion velocity or a velocity range. Make sure, that the setting works reliable in a certain range (e.g. 80% to 120% of desired velocity) and also under extreme motor conditions (lowest and highest applicable temperature).

OPTIONAL PROCEDURE ALLOWING AUTOMATIC TUNING OF SGT

The basic idea behind the SGT setting is a factor, which compensates the stallGuard measurement for resistive losses inside the motor. At standstill and very low velocities, resistive losses are the main factor for the balance of energy in the motor, because mechanical power is zero or near to zero. This way, SGT can be set to an optimum at near zero velocity. This algorithm is especially useful for tuning SGT within the application to give the best result independent of environment conditions, motor stray, etc.

- Operate the motor at low velocity < 10 RPM (i.e. a few to a few fullsteps per second) and target operation current and supply voltage. In this velocity range, there is not much dependence of SG_RESULT on the motor load, because the motor does not generate significant back EMF. Therefore, mechanical load will not make a big difference on the result.
- 2. Switch on *sfilt*. Now increase *SGT* starting from 0 to a value, where *SG_RESULT* starts rising. With a high *SGT*, *SG_RESULT* will rise up to the maximum value. Reduce again to the highest value, where *SG_RESULT* stays at 0. Now the *SGT* value is set as sensibly as possible. When you see *SG_RESULT* increasing at higher velocities, there will be useful stall detection.

The upper velocity for the stall detection with this setting is determined by the velocity, where the motor back EMF approaches the supply voltage and the motor current starts dropping when further increasing velocity.

SG_RESULT goes to zero when the motor stalls and the stall signal is activated. The external motion controller should react to a single pulse by stopping the motor if desired. Set TCOOLTHRS to match the lower velocity threshold where stallGuard delivers a good result.

The system clock frequency affects *SG_RESULT*. An external crystal-stabilized clock should be used for applications that demand the highest performance. The power supply voltage also affects *SG_RESULT*, so tighter regulation results in more accurate values. *SG_RESULT* measurement has a high resolution, and there are a few ways to enhance its accuracy, as described in the following sections.

Note

Application Note 002 Parameterization of stallGuard2 & coolStep is available on www.trinamic.com.

14.1.1 Variable Velocity Limits TCOOLTHRS and THIGH

The SGT setting chosen as a result of the previously described SGT tuning (chapter 0) can be used for a certain velocity range. Outside this range, a stall may not be detected safely, and coolStep might not give the optimum result.

Figure 14.2 Example: optimum SGT setting and stallGuard2 reading with an example motor

In many applications, operation at or near a single operation point is used most of the time and a single setting is sufficient. The driver provides a lower and an upper velocity threshold to match this. The stall detection is disabled outside the determined operation point, e.g. during acceleration phases preceding a sensorless homing procedure when setting *TCOOLTHRS* to a matching value. An upper limit can be specified by *THIGH*.

In some applications, a velocity dependent tuning of the *SGT* value can be expedient, using a small number of support points and linear interpolation.

14.1.2 Small Motors with High Torque Ripple and Resonance

Motors with a high detent torque show an increased variation of the stallGuard2 measurement value SG_RESULT with varying motor currents, especially at low currents. For these motors, the current dependency should be checked for best result.

14.1.3 Temperature Dependence of Motor Coil Resistance

Motors working over a wide temperature range may require temperature correction, because motor coil resistance increases with rising temperature. This can be corrected as a linear reduction of *SG RESULT* at increasing temperature, as motor efficiency is reduced.

14.1.4 Accuracy and Reproducibility of stallGuard2 Measurement

In a production environment, it may be desirable to use a fixed *SGT* value within an application for one motor type. Most of the unit-to-unit variation in stallGuard2 measurements results from manufacturing tolerances in motor construction. The measurement error of stallGuard2 – provided that all other parameters remain stable – can be as low as:

 $stallGuard\ measurement\ error = \pm max(1, |SGT|)$

14.2 stallGuard2 Update Rate and Filter

The stallGuard2 measurement value *SG* is updated with each full step of the motor. This is enough to safely detect a stall, because a stall always means the loss of four full steps. In a practical application, especially when using coolStep, a more precise measurement might be more important than an update for each fullstep because the mechanical load never changes instantaneously from one step to the next. For these applications, the *sfilt* bit enables a filtering function over four load measurements. The filter should always be enabled when high-precision measurement is required. It compensates for variations in motor construction, for example due to misalignment of the phase A to phase B magnets. The filter should be disabled when rapid response to increasing load is required and for best results of sensorless homing using stallGuard.

14.3 Detecting a Motor Stall

To safely detect a motor stall the stall threshold must be determined using a specific *SGT* setting. Therefore, the maximum load needs to be determined the motor can drive without stalling. At the same time, monitor *SG_RESULT* at this load, e.g. some value within the range 0 to 100. The stall threshold should be a value safely within the operating limits, to allow for parameter stray. The response at an *SGT* setting at or near 0 gives some idea on the quality of the signal: Check *SG_RESULT* without load and with maximum load. They should show a difference of at least 100 or a few 100, which shall be large compared to the offset. If you set the *SGT* value in a way, that a reading of 0 occurs at maximum motor load, the stall can be automatically detected by the motion controller to issue a motor stop. In the moment of the step resulting in a step loss, the lowest reading will be visible. After the step loss, the motor will vibrate and show a higher SG reading.

14.4 Limits of stallGuard2 Operation

stallGuard2 does not operate reliably at extreme motor velocities: Very low motor velocities (for many motors, less than one revolution per second) generate a low back EMF and make the measurement unstable and dependent on environment conditions (temperature, etc.). The automatic tuning procedure described above will compensate for this. Other conditions will also lead to extreme settings of SGT and poor response of the measurement value SG_RESULT to the motor load.

Very high motor velocities, in which the full sinusoidal current is not driven into the motor coils also leads to poor response. These velocities are typically characterized by the motor back EMF reaching the supply voltage.

15 coolStep Operation

coolStep is an automatic smart energy optimization for stepper motors based on the motor mechanical load, making them "green".

15.1 User Benefits

Energy efficiency
Motor generates less heat
Less cooling infrastructure
Cheaper motor

consumption decreased up to 75%improved mechanical precision

- for motor and driver

- does the job!

coolStep allows substantial energy savings, especially for motors which see varying loads or operate at a high duty cycle. Because a stepper motor application needs to work with a torque reserve of 30% to 50%, even a constant-load application allows significant energy savings because coolStep automatically enables torque reserve when required. Reducing power consumption keeps the system cooler, increases motor life, and allows reducing cost in the power supply and cooling components.

Reducing motor current by half results in reducing power by a factor of four.

15.2 Setting up for coolStep

coolStep is controlled by several parameters, but two are critical for understanding how it works:

Parameter	Description	Range	Comment
SEMIN	4-bit unsigned integer that sets a lower threshold. If SG goes below this threshold, coolStep increases the current to both coils. The 4-bit SEMIN value is scaled by 32 to cover the lower half of the range of the 10-bit SG value. (The name of this parameter is derived from smartEnergy, which is an earlier name for coolStep.)		disable coolStep threshold is <i>SEMIN</i> *32
SEMAX	4-bit unsigned integer that controls an <i>upper threshold</i> . If SG is sampled equal to or above this threshold enough times, coolStep decreases the current to both coils. The upper threshold is (SEMIN + SEMAX + 1)*32.	015	threshold is (SEMIN+SEMAX+1)*32

Figure 15.1 shows the operating regions of coolStep:

- The black line represents the SG RESULT measurement value.
- The blue line represents the mechanical load applied to the motor.
- The red line represents the current into the motor coils.

When the load increases, SG_RESULT falls below SEMIN, and coolStep increases the current. When the load decreases, SG_RESULT rises above (SEMIN + SEMAX + 1) * 32, and the current is reduced.

Figure 15.1 coolStep adapts motor current to the load

Five more parameters control coolStep and one status value is returned:

Parameter	Description	Range	Comment
SEUP	Sets the <i>current increment step</i> . The current becomes incremented for each measured stallGuard2 value below the lower threshold.	03	step width is 1, 2, 4, 8
SEDN	Sets the number of stallGuard2 readings above the upper threshold necessary for each current decrement of the motor current.	03	number of stallGuard2 measurements per decrement: 32, 8, 2, 1
SEIMIN	Sets the <i>lower motor current limit</i> for coolStep operation by scaling the <i>IRUN</i> current setting.	1	0: 1/2 of IRUN 1: 1/4 of IRUN
TCOOLTHRS	Lower velocity threshold for switching on coolStep and stall output. Below this velocity coolStep becomes disabled (not used in STEP/DIR mode). Adapt to the lower limit of the velocity range where stallGuard2 gives a stable result. Hint: May be adapted to disable coolStep during acceleration and deceleration phase by setting identical to VMAX.		Specifies lower coolStep velocity by comparing the threshold value to TSTEP
THIGH	Upper velocity threshold value for coolStep and stop on stall. Above this velocity coolStep becomes disabled. Adapt to the velocity range where stallGuard2 gives a stable result.		Also controls additional functions like switching to fullstepping.
Status word	Description	Range	Comment
CSACTUAL	This status value provides the actual motor current scale as controlled by coolStep. The value goes up to the IRUN value and down to the portion of IRUN as specified by SEIMIN.	031	1/32, 2/32, 32/32

15.3 Tuning coolStep

Before tuning coolStep, first tune the stallGuard2 threshold level SGT, which affects the range of the load measurement value SG_RESULT . coolStep uses SG_RESULT to operate the motor near the optimum load angle of +90°.

The current increment speed is specified in *SEUP*, and the current decrement speed is specified in *SEDN*. They can be tuned separately because they are triggered by different events that may need different responses. The encodings for these parameters allow the coil currents to be increased much more quickly than decreased, because crossing the lower threshold is a more serious event that may require a faster response. If the response is too slow, the motor may stall. In contrast, a slow response to crossing the upper threshold does not risk anything more serious than missing an opportunity to save power.

coolStep operates between limits controlled by the current scale parameter IRUN and the seimin bit.

15.3.1 Response Time

For fast response to increasing motor load, use a high current increment step *SEUP*. If the motor load changes slowly, a lower current increment step can be used to avoid motor oscillations. If the filter controlled by *sfilt* is enabled, the measurement rate and regulation speed are cut by a factor of four.

Hint

The most common and most beneficial use is to adapt coolStep for operation at the typical system target operation velocity and to set the velocity thresholds according. As acceleration and decelerations normally shall be quick, they will require the full motor current, while they have only a small contribution to overall power consumption due to their short duration.

15.3.2 Low Velocity and Standby Operation

Because coolStep is not able to measure the motor load in standstill and at very low RPM, a lower velocity threshold is provided for enabling coolStep. It should be set to an application specific default value. Below this threshold the normal current setting via *IRUN* respectively *IHOLD* is valid. An upper threshold is provided by the *VHIGH* setting. Both thresholds can be set as a result of the stallGuard2 tuning process.

16 STEP/DIR Interface

The STEP and DIR inputs provide a simple, standard interface compatible with many existing motion controllers. The microPlyer STEP pulse interpolator brings the smooth motor operation of high-resolution microstepping to applications originally designed for coarser stepping.

16.1 Timing

Figure 16.1 shows the timing parameters for the STEP and DIR signals, and the table below gives their specifications. When the *dedge* mode bit in the *CHOPCONF* register is set, both edges of STEP are active. If *dedge* is cleared, only rising edges are active. STEP and DIR are sampled and synchronized to the system clock. An internal analog filter removes glitches on the signals, such as those caused by long PCB traces. If the signal source is far from the chip, and especially if the signals are carried on cables, the signals should be filtered or differentially transmitted.

Figure 16.1 STEP and DIR timing, Input pin filter

STEP and DIR interface timing	AC-Characteristics					
	clock period is t _{CLK}					
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
step frequency (at maximum	f _{STEP}	dedge=0			1∕2 f _{CLK}	
microstep resolution)		dedge=1			1/4 f _{CLK}	
fullstep frequency	f _{FS}				f _{CLK} /512	
STEP input low time *)	t _{SL}		max(t _{FILTSD} , t _{CLK} +20)			ns
STEP input high time *)	t _{SH}		max(t _{FILTSD} , t _{CLK} +20)			ns
DIR to STEP setup time	t _{DSU}		20			ns
DIR after STEP hold time	t _{DSH}		20			ns
STEP and DIR spike filtering time	t _{FILTSD}	rising and falling	36	60	85	ns
*)		edge				
STEP and DIR sampling relative	t _{SDCLKHI}	before rising edge		t _{FILTSD}		ns
to rising CLK input		of CLK input				

^{*)} These values are valid with full input logic level swing, only. Asymmetric logic levels will increase filtering delay t_{FILTSD} , due to an internal input RC filter.

16.2 Changing Resolution

A reduced microstep resolution allows limitation of the step frequency for the STEP/DIR interface, or compatibility to an older, less performing driver. The internal microstep table with 1024 sine wave entries generates sinusoidal motor coil currents. These 1024 entries correspond to one electrical revolution or four fullsteps. The microstep resolution setting determines the step width taken within the table. Depending on the DIR input, the microstep counter is increased (DIR=0) or decreased (DIR=1) with each STEP pulse by the step width. The microstep resolution determines the increment respectively the decrement. At maximum resolution, the sequencer advances one step for each step pulse. At half resolution, it advances two steps. Increment is up to 256 steps for fullstepping. The sequencer has special provision to allow seamless switching between different microstep rates at any time. When switching to a lower microstep resolution, it calculates the nearest step within the target resolution and reads the current vector at that position. This behavior especially is important for low resolutions like fullstep and halfstep, because any failure in the step sequence would lead to asymmetrical run when comparing a motor running clockwise and counterclockwise.

EXAMPLES:

Fullstep: Cycles through table positions: 128, 384, 640 and 896 (45°, 135°, 225° and 315° electrical

position, both coils on at identical current). The coil current in each position

corresponds to the RMS-Value (0.71 * amplitude). Step size is 256 (90° electrical)

Half step: The first table position is 64 (22.5° electrical), Step size is 128 (45° steps)

Quarter step: The first table position is 32 (90°/8=11.25° electrical), Step size is 64 (22.5° steps)

This way equidistant steps result and they are identical in both rotation directions. Some older drivers also use zero current (table entry 0, 0°) as well as full current (90°) within the step tables. This kind of stepping is avoided because it provides less torque and has a worse power dissipation in driver and motor.

Step position	table position	current coil A	current coil B
Half step 0	64	38.3%	92.4%
Full step 0	128	70.7%	70.7%
Half step 1	192	92.4%	38.3%
Half step 2	320	92.4%	-38.3%
Full step 1	384	70.7%	-70.7%
Half step 3	448	38.3%	-92.4%
Half step 4	576	-38.3%	-92.4%
Full step 2	640	-70.7%	-70.7%
Half step 5	704	-92.4%	-38.3%
Half step 6	832	-92.4%	38.3%
Full step 3	896	-70.7%	70.7%
Half step 7	960	-38.3%	92.4%

16.3 microPlyer Step Interpolator and Stand Still Detection

For each active edge on STEP, microPlyer produces microsteps at 256x resolution, as shown in Figure 16.2. It interpolates the time in between of two step impulses at the step input based on the last step interval. This way, from 2 microsteps (128 microstep to 256 microstep interpolation) up to 256 microsteps (full step input to 256 microsteps) are driven for a single step pulse.

Enable microPlyer by setting the intpol bit in the CHOPCONF register.

The step rate for the interpolated 2 to 256 microsteps is determined by measuring the time interval of the previous step period and dividing it into up to 256 equal parts. The maximum time between two microsteps corresponds to 2²⁰ (roughly one million system clock cycles), for an even distribution of 256 microsteps. At 16 MHz system clock frequency, this results in a minimum step input frequency of 16 Hz for microPlyer operation. A lower step rate causes the *STST* bit to be set, which indicates a standstill event. At that frequency, microsteps occur at a rate of (system clock frequency)/2¹⁶ - 256 Hz. When a stand still is detected, the driver automatically switches the motor to holding current *IHOLD*.

Attention

microPlyer only works perfectly with a stable STEP frequency. Do not use the *dedge* option if the STEP signal does not have a 50% duty cycle.

Figure 16.2 microPlyer microstep interpolation with rising STEP frequency (Example: 16 to 256)

In Figure 16.2, the first STEP cycle is long enough to set the standstill bit stst. This bit is cleared on the next STEP active edge. Then, the external STEP frequency increases. After one cycle at the higher rate microPlyer adapts the interpolated microstep rate to the higher frequency. During the last cycle at the slower rate, microPlyer did not generate all 16 microsteps, so there is a small jump in motor angle between the first and second cycles at the higher rate.

17 DIAG Outputs

Operation with a motion controller often requires quick reaction to certain states of the stepper motor driver. Therefore, the DIAG outputs supply a configurable set of different real time information complementing the STEP/DIR interface.

Both, the information available at DIAGO and DIAG1 can be selected as well as the type of output (low active open drain – default setting, or high active push-pull). In order to determine a reset of the driver, DIAGO always shows a power-on reset condition by pulling low during a reset condition. Figure 17.1 shows the available signals and control bits.

Figure 17.1 DIAG outputs in STEP/DIR mode

The stall output signal allows stallGuard2 to be handled by the external motion controller like a stop switch. The Stall signal becomes activated, when SG_RESULT goes to zero and at the same time the velocity condition $TSTEP \le TCOOLTHRS$ is fulfilled. The index output signals the microstep counter zero position, to allow the application to reference the drive to a certain current pattern. Chopper on-state shows the on-state of both coil choppers (alternating) when working in spreadCycle or constant off time in order to determine the duty cycle. The dcStep skipped information is an alternative way to find out when dcStep runs with a velocity below the step velocity. It toggles with each step not taken by the sequencer.

Attention

The duration of the index pulse corresponds to the duration of the microstep. When working without interpolation at less than 256 microsteps, the index time goes down to two CLK clock cycles.

18 dcStep

dcStep is an automatic commutation mode for the stepper motor. It allows the stepper to run with its target velocity as commanded by the step pulses as long as it can cope with the load. In case the motor becomes overloaded, it slows down to a velocity, where the motor can still drive the load. This way, the stepper motor never stalls and can drive heavy loads as fast as possible. Its higher torque available at lower velocity, plus dynamic torque from its flywheel mass allow compensating for mechanical torque peaks. In case the motor becomes completely blocked, the stall flag becomes set.

18.1 User Benefits

dcStep™

Motor – never loses steps

Application - works as fast as possible

Acceleration – automatically as high as possible Energy efficiency – highest at speed limit

Cheaper motor - does the job!

18.2 Designing-In dcStep

In a classical application, the operation area is limited by the maximum torque required at maximum application velocity. A safety margin of up to 50% torque is required, in order to compensate for unforeseen load peaks, torque loss due to resonance and aging of mechanical components. dcStep allows using up to the full available motor torque. Even higher short time dynamic loads can be overcome using motor and application flywheel mass without the danger of a motor stall. With dcStep the nominal application load can be extended to a higher torque only limited by the safety margin near the holding torque area (which is the highest torque the motor can provide). Additionally, maximum application velocity can be increased up to the actually reachable motor velocity.

Figure 18.1 dcStep extended application operation area

Ouick Start

For detail configuration procedure see Application Note AN003 - dcStep

dcStep requires only a few settings. It feeds back motor motion to the external ramp generator, so that it becomes seamlessly integrated into the motion ramp, even if the motor becomes overloaded with respect to the target velocity. dcStep operates the motor in fullstep mode at the target velocity or at reduced velocity if the motor becomes overloaded. It requires enforcing a minimum operation velocity either by the ramp generator or by *VDCMIN*. It shall be set to the lowest operating velocity where dcStep gives a reliable detection of motor operation. The motor never stalls unless it becomes braked to a velocity below *VDCMIN*. In case the velocity should fall below this value, the motor would restart once its load is released, unless the stall detection is used to stop the motor in this case. Stall detection is covered by stallGuard2.

Figure 18.2 Velocity profile with impact by overload situation (example)

Attention

dcStep requires that the phase polarity of the sine wave is positive within the MSCNT range 768 to 255 and negative within 256 to 767. The cosine polarity must be positive from 0 to 511 and negative from 512 to 1023. A phase shift by 1 would disturb dcStep operation. Therefore it is advised to work with the default wave. Please refer chapter 19.2 for an initialization with the default table.

18.3 dcStep with STEP/DIR Interface

The TMC2130 provides two ways to use dcStep when interfaced to an external motion controller. The first way gives direct control of the dcStep step execution to the external motion controller, which must react to motor overload and is allowed to override a blocked motor situation. The second way assumes that the external motion controller cannot directly react to dcStep signals. The TMC2130 automatically reduces the motor velocity or stops the motor upon overload. In order to allow the motion controller to react to the reduced real motor velocity in this mode, the counter *LOST_STEPS* gives the number of steps which have been commanded, but not taken by the motor controller. The motion controller can later on read out *LOST_STEPS* and drive any missing number of steps. In case of a blocked motor it tries moving it with the minimum velocity as programmed by *VDCMIN*.

Enabling dcStep automatically sets the chopper to constant TOFF mode with slow decay only. This way, no re-configuration is required when switching from microstepping mode to dcStep and back.

dcStep operation in STEP/DIR mode is controlled by three pins:

 DCEN – Forces the driver to dcStep operation if high. A velocity based activation of dcStep is controlled by TPWMTHRS when using stealthChop operation for low velocity settings.
 In this case, dcStep is disabled while in stealthChop mode, i.e. at velocities below the stealthChop switching velocity.

- DCO Informs the motion controller when motor is not ready to take a new step (low level).
 The motion controller shall react by delaying the next step until DCO becomes high.
 The sequencer can buffer up to the effective number of microsteps per fullstep to allow the motion controller to react to assertion of DCO. In case the motor is blocked this wait situation can be terminated after a timeout by providing a long > 1024 clock STEP input, or via the internal VDCMIN setting.
- DCIN Commands the driver to wait with step execution and to disable DCO. This input can be used for synchronization of multiple drivers operating with dcStep.

18.3.1 Using LOST_STEPS for dcStep Operation

This is the simplest possibility to integrate dcStep with a dedicated motion controller: the motion controller enables dcStep using DCEN or the internal velocity threshold. The TMC2130 tries to follow the steps. In case it needs to slow down the motor, it counts the difference between incoming steps on the STEP signal and steps going to the motor. The motion controller can read out the difference and compensate for the difference after the motion or on a cyclic basis. Figure 18.3 shows the principle (simplified).

In case the motor driver needs to postpone steps due to detection of a mechanical overload in dcStep, and the motion controller does not react to this by pausing the step generation, LOST_STEPS becomes incremented or decremented (depending on the direction set by DIR) with each step which is not taken. This way, the number of lost steps can be read out and executed later on or be appended to the motion. As the driver needs to slow down the motor while the overload situation persists, the application will benefit from a high microstepping resolution, because it allows more seamless acceleration or deceleration in dcStep operation. In case the application is completely blocked, VDCMIN sets a lower limit to the step execution. If the motor velocity falls below this limit, however an unknown number of steps is lost and the motor position is not exactly known any more. DCIN allows for step synchronization of two drivers: it stops the execution of steps if low and sets DCO low.

Figure 18.3 Motor moving slower than STEP input due to light overload. LOSTSTEPS incremented

18.3.2 DCO Interface to Motion Controller

DCEN enables dcStep. It is up to the connected motion controller to enable dcStep either, once a minimum step velocity is exceeded within the motion ramp, or to use the automatic threshold *VDCMIN* for dcStep enable.

The STEP/DIR interface works in microstep resolution, even if the internal step execution is based on fullstep. This way, no switching to a different mode of operation is required within the motion controller. The dcStep output DCO signals if the motor is ready for the next step based on the dcStep measurement of the motor. If the motor has not yet mechanically taken the last step, this step cannot be executed, and the driver stops automatically before execution of the next fullstep. This situation is signaled by DCO. The external motion controller shall stop step generation if DCOUT is low and wait until it becomes high again. Figure 18.5 shows this principle. The driver buffers steps during the waiting period up to the number of microstep setting minus one. In case, DCOUT does not go high within the lower step limit time e.g. due to a severe motor overload, a step can be enforced: override the stop status by a long STEP pulse with min. 1024 system clocks length. When using internal clock, a pulse length of minimum 125µs is recommended.

Figure 18.4 Full signal interconnection for dcStep

Figure 18.5 DCO Interface to motion controller - step generator stops when DCO is asserted

18.4 Stall Detection in dcStep Mode

While dcStep is able to decelerate the motor upon overload, it cannot avoid a stall in every operation situation. Once the motor is blocked, or it becomes decelerated below a motor dependent minimum velocity where the motor operation cannot safely be detected any more, the motor may stall and loose steps. In order to safely detect a step loss and avoid restarting of the motor, monitor the stall output signal for stall detection. A stallGuard2 load value also is available during dcStep operation. The range of values is limited to 0 to 255, in certain situations up to 511 will be read out. In order to enable stallGuard, also set TCOOLTHRS corresponding to a velocity slightly above VDCMIN or up to VMAX.

Stall detection in this mode may trigger falsely due to resonances, when flywheel loads are loosely coupled to the motor axis.

Parameter	Description	Range	Comment
vhighfs & vhighchm	These chopper configuration flags in CHOPCONF need to be set for dcStep operation. As soon as VDCMIN becomes exceeded, the chopper becomes switched to fullstepping.	0 / 1	set to 1 for dcStep
TOFF	dcStep often benefits from an increased off time value in <i>CHOPCONF</i> . Settings >2 should be preferred.	2 15	Settings 815 do not make any difference to setting 8 for dcStep operation.
VDCMIN	In case the external motion controller cannot provide the lower dcStep velocity, this register may be used to enforce start/restart of a blocked motor. In dcStep operation, the motor operates at minimum <i>VDCMIN</i> even when it is completely blocked. Tune together with <i>DC_TIME</i> setting. Activation of stealthChop also disables dcStep.		0: Disable Set to the low velocity limit for dcStep operation if desired.
DC_TIME	This setting controls the reference pulse width for dcStep load measurement. It must be optimized for robust operation with maximum motor torque. A higher value allows higher torque and higher velocity, a lower value allows operation down to a lower velocity as set by VDCMIN.	0 1023	Lower limit for the setting is: t_{BLANK} (as defined by TBL) in clock cycles + n with n in the range 1 to 100 (for a typical motor)
	Check best setting under nominal operation conditions, and re-check under extreme operating conditions (e.g. lowest operation supply voltage, highest motor temperature, and highest supply voltage, lowest motor temperature).		
DC_SG	This setting controls stall detection in dcStep mode. A stall can be used as an error condition by issuing a hard stop for the motor.	0 255	Set slightly higher than DC_TIME I 16
	The stall detection is available as a pulse on DIAG0 or DIAG1 output.		

19 Sine-Wave Look-up Table

The TMC2130 provides a programmable look-up table for storing the microstep current wave. As a default, the table is pre-programmed with a sine wave, which is a good starting point for most stepper motors. Reprogramming the table to a motor specific wave allows drastically improved microstepping especially with low-cost motors.

19.1 User Benefits

Microstepping - extremely improved with low cost motors

Motor - runs smooth and quiet

Torque - reduced mechanical resonances yields improved torque

19.2 Microstep Table

In order to minimize required memory and the amount of data to be programmed, only a quarter of the wave becomes stored. The internal microstep table maps the microstep wave from 0° to 90°. It becomes symmetrically extended to 360°. When reading out the table the 10-bit microstep counter MSCNT addresses the fully extended wave table. The table is stored in an incremental fashion, using each one bit per entry. Therefore only 256 bits (ofs00 to ofs255) are required to store the quarter wave. These bits are mapped to eight 32 bit registers. Each ofs bit controls the addition of an inclination Wx or Wx+1 when advancing one step in the table. When Wx is 0, a 1 bit in the table at the actual microstep position means "add one" when advancing to the next microstep. As the wave can have a higher inclination than 1, the base inclinations Wx can be programmed to -1, 0, 1, or 2 using up to four flexible programmable segments within the quarter wave. This way even a negative inclination can be realized. The four inclination segments are controlled by the position registers X1 to X3. Inclination segment 0 goes from microstep position 0 to X1-1 and its base inclination is controlled by W0, segment 1 goes from X1 to X2-1 with its base inclination controlled by W1, etc.

When modifying the wave, care must be taken to ensure a smooth and symmetrical zero transition when the quarter wave becomes expanded to a full wave. The maximum resulting swing of the wave should be adjusted to a range of -248 to 248, in order to give the best possible resolution while leaving headroom for the hysteresis based chopper to add an offset.

Figure 19.1 LUT programming example

When the microstep sequencer advances within the table, it calculates the actual current values for the motor coils with each microstep and stores them to the registers CUR_A and CUR_B. However the incremental coding requires an absolute initialization, especially when the microstep table becomes modified. Therefore CUR_A and CUR_B become initialized whenever MSCNT passes zero.

Two registers control the starting values of the tables:

- As the starting value at zero is not necessarily 0 (it might be 1 or 2), it can be programmed
 into the starting point register START_SIN.
- In the same way, the start of the second wave for the second motor coil needs to be stored in START_SIN90. This register stores the resulting table entry for a phase shift of 90° for a 2phase motor.

Hint

Refer chapter 5.5 for the register set. The default table is a good base for realizing an own table. The TMC2130-EVAL comes with a calculation tool for own waves.

Initialization example for the reset default microstep table:

```
MSLUT[0]= %101010101010101010101010101010 = 0xAAAAB554
MSLUT[1]= %01001010101010101010101010101010 = 0x4A9554AA
MSLUT[2]= %0010010001001001001001001001001 = 0x24492929
MSLUT[3]= %0001000000010000010000100010 = 0x10104222
MSLUT[4]= %11111011111111111111111111111 = 0xFBFFFFFF
MSLUT[5]= %101101011011101110111011111111 = 0xB5BB777D
MSLUT[6]= %01001001001010101010101010101 = 0x49295556
MSLUT[6]= %0100100100100101010101010101 = 0x00404222

MSLUTSEL= 0xFFFF8056:
X1=128, X2=255, X3=255
W3=%01, W2=%01, W1=%01, W0=%10

MSLUTSTART= 0x00F70000:
START SIN 0= 0, START SIN90= 247
```

20 Emergency Stop

The driver provides a negative active enable pin ENN to safely switch off all power MOSFETs. This allows putting the motor into freewheeling. Further, it is a safe hardware function whenever an emergency stop not coupled to software is required. Some applications may require the driver to be put into a state with active holding current or with a passive braking mode. This is possible by programming the pin DCIN to act as a step disable function. Set GCONF flag $stop_enable$ to activate this option. Whenever DCIN becomes pulled high, the motor will stop abruptly and go to the power down state, as configured via $IHOLD_DELAY$ and stealthChop standstill options. Please be aware, that disabling the driver via ENN will require three clock cycles to safely switch off the driver. In case the external CLK fails, it is not safe to disable ENN. In this case, the driver should be reset, i.e. by switching off VCC_IO.

21 DC Motor or Solenoid

The TMC2130 can drive one or two DC motors using one coil output per DC motor. Either a torque limited operation, or a voltage based velocity control with optional torque limit is possible.

CONFIGURATION AND CONTROL

Set the flag *direct_mode* in the *GCONF* register. In direct mode, the coil current polarity and coil current, respectively the PWM duty cycle become controlled by register *XDIRECT* (0x2D). Bits 8..0 control motor A and Bits 24..16 control motor B PWM. Additionally to this setting, the current limit is scaled by *IHOLD*. The STEP/DIR inputs are not used in this mode.

PWM DUTY CYCLE VELOCITY CONTROL

In order to operate the motor at different velocities, use the stealthChop voltage PWM mode in the following configuration:

en_pwm_mode = 1, pwm_autoscale = 0, PWM_AMPL = 255, PWM_GRAD = 4, IHOLD = 31 Set TOFF > 0 to enable the driver.

In this mode the driver behaves like a 4-quadrant power supply. The direct mode setting of PWM A and PWM B using XDIRECT controls motor voltage, and thus the motor velocity. Setting the corresponding PWM bits between -255 and +255 (signed, two's complement numbers) will vary motor voltage from -100% to 100%. With $pwm_autoscale$ = 0, current sensing is not used and the sense resistors should be eliminated or 150m Ω or less to avoid excessive voltage drop when the motor becomes heavily loaded up to 2.5A. Especially for higher current motors, make sure to slowly accelerate and decelerate the motor in order to avoid overcurrent or triggering driver overcurrent detection.

To activate optional motor freewheeling, set IHOLD = 0 and FREEWHEEL = %01.

ADDITIONAL TOROUE LIMIT

In order to additionally take advantage of the motor current limitation (and thus torque controlled operation) in stealthChop mode, use automatic current scaling (pwm_autoscale = 1). The actual current limit is given by IHOLD and scaled by the respective motor PWM amplitude, e.g. PWM = 128 yields in 50% motor velocity and 50% of the current limit set by IHOLD. In case two DC motors are driven in voltage PWM mode, note that the automatic current regulation will work only for the motor which has the higher absolute PWM setting. The PWM of the second motor also will be scaled down in case the motor with higher PWM setting reaches its current limitation.

PURELY TORQUE LIMITED OPERATION

For a purely torque limited operation of one or two motors, spread cycle chopper individually regulates motor current for both full bridge motor outputs. When using spreadCycle, the upper motor velocity is limited by the supply voltage only (or as determined by the load on the motor).

21.1 Solenoid Operation

The same way, one or two solenoids (i.e. magnetic coil actuators) can be operated using spreadCycle chopper. For solenoids, it is often desired to have an increased current for a short time after switching on, and reduce the current once the magnetic element has switched. This is automatically possible by taking advantage of the automatic current scaling (IRUN, IHOLD, IHOLDDELAY and TPOWERDOWN). The current scaling in direct_mode is still active, but will not be triggered if no step impulse is supplied. Therefore, a step impulse must be given to the STEP input whenever one of the coils shall be switched on. This will increase the current for both coils at the same time.

22 Quick Configuration Guide

This guide is meant as a practical tool to come to a first configuration and do a minimum set of measurements and decisions for tuning the TMC2130. It does not cover all advanced functionalities, but concentrates on the basic function set to make a motor run smoothly. Once the motor runs, you may decide to explore additional features, e.g. freewheeling and further functionality in more detail. A current probe on one motor coil is a good aid to find the best settings, but it is not a must.

CURRENT SETTING AND FIRST STEPS WITH STEALTHCHOP

Figure 22.1 Current setting and first steps with stealthChop

TUNING STEALTHCHOP AND SPREADCYCLE

Figure 22.2 Tuning stealthChop and spreadCycle

ENABLING COOLSTEP (ONLY IN COMBINATION WITH SPREADCYCLE)

Figure 22.3 Enabling coolStep (only in combination with spreadCycle)

23 Getting Started

Please refer to the TMC2130 evaluation board to allow a quick start with the device and in order to allow interactive tuning of the device setup in your application. It will guide you through the process of correctly setting up all registers. The following example gives a minimum set of accesses allowing moving a motor.

23.1 Initialization Example

SPI datagram example sequence to enable the driver for step and direction operation and initialize the chopper for spreadCycle operation and for stealthChop at <60 RPM:

```
SPI send: 0xEC000100C3; // CHOPCONF: TOFF=3, HSTRT=4, HEND=1, TBL=2, CHM=0 (spreadCycle) SPI send: 0x9000061F0A; // IHOLD_IRUN: IHOLD=10, IRUN=31 (max. current), IHOLDDELAY=6 SPI send: 0x910000000A; // TPOWERDOWN=10: Delay before power down in stand still SPI send: 0x8000000004; // EN_PWM_MODE=1 enables stealthChop (with default PWM_CONF) SPI send: 0x93000001F4; // TPWM_THRS=500 yields a switching velocity about 35000 = ca. 30RPM SPI send: 0xF0000401C8; // PWM_CONF: AUTO=1, 2/1024 Fclk, Switch amplitude limit=200, Grad=1
```

Hint

Tune the configuration parameters for your motor and application for optimum performance.

24 Standalone Operation

For standalone operation, no SPI interface is required to configure the TMC2130. All pins with suffix CFG0 to CFG6 have a special meaning in this mode. They are evaluated using tristate detection, in order to differentiate between

- CFG pin tied to GND
- CFG pin open (no connection)
- CFG pin tied to VCC_IO

Figure 24.1 Standalone operation with TMC2130 (pins shown with their standalone mode names)

To activate standalone mode, tie pin SPI_MODE to GND. SPI is off. The driver works in spreadCycle mode or stealthChop mode. With regard to the register set, the following settings are activated:

GCONF settings:

GCONF.diag0 error = 1: DIAG0 works in open drain mode and signals driver error.

GCONF.diag1 index = 1: DIAG1 works in open drain mode and signals microstep table index position.

The following settings are affected by the CFG pins in order to ensure correct configuration:

CFG0: SETS CHOPPER OFF TIME (DURATION OF SLOW DECAY PHASE)				
CFG0	TOFF Setting	Registers		
GND	140 T _{CLK} (recommended, most universal choice)	TOFF=4		
VCC_IO	236 T _{CLK}	TOFF=7		
open	332 T _{CLK}	TOFF=10		

CFG1 AND CFG2: SETS MICROSTEP RESOLUTION FOR STEP INPUT								
CFG2, CFG1	Microsteps	Interpolation	Chopper Mode	Registers				
GND, GND	1 (Fullstep)	N	spreadCycle	MRES=8, intpol=0				
GND, VCC_IO	2 (Halfstep)	N		MRES=7, intpol=0				
GND, open	2 (Halfstep)	Y, to 256 µsteps		MRES=7, intpol=1				
VCC_IO, GND	4 (Quarterstep)	N		MRES=6, intpol=0				
VCC_IO, VCC_IO	16 µsteps	N		MRES=4, intpol=0				
VCC_IO, open	4 (Quarterstep)	Y, to 256 µsteps		MRES=6, intpol=1				
open, GND	16 µsteps	Y, to 256 µsteps		MRES=4, intpol=1				
open, VCC_IO	4 (Quarterstep)	Y, to 256 µsteps	stealthChop	MRES=6, intpol=1,				
				en_PWM_mode=1				
open, open	16 µsteps	Y, to 256 µsteps		MRES=4, intpol=1,				
				en_PWM_mode=1				

CFG3: Sets Mode of Current Setting					
CFG3	Current Setting	Registers			
GND	Internal reference voltage. Current scale set by sense resistors, only.				
VCC_IO	Internal sense resistors. Use analog input current on AIN as reference current for internal sense resistor. This setting gives best results when combined with stealthChop voltage PWM chopper.	internal_Rsense=1			
open	External reference voltage on pin AIN. Current scale set by sense resistors and scaled by AIN.	I_scale_analog=1			

CFG4: Sets Chopper Hysteresis (Tuning of Zero Crossing Precision)					
CFG4 HEND Setting Registers					
GND	5 (recommended, most universal choice)	HEND=7			
VCC_IO	9	HEND=11			
open	13	HEND=15			

CFG5: SETS CHOPPER BLANK TIME (DURATION OF BLANKING OF SWITCHING SPIKE)					
CFG5 Blank time (in number of clock cycles) Registers					
GND	16	TBL=%00			
VCC_IO	24 (recommended, most universal choice)	TBL=%01			
open	36	TBL=%10			

CFG6_ENN: ENAB	LE PIN AND CONFIGURAT	ION OF STANDSTILL POWER DOWN	
CFG6	Motor driver enable	Standstill power down	Registers
GND	Enable	N	IRUN=31, IHOLD=31
VCC_IO	Disable	- (Driver disable)	
open	Enable	Y, ramp down from 100% to	IRUN=31, IHOLD=11,
		34% motor current in 44M	IHOLDDELAY=8
		clock cycles (3 to 4 seconds) if	
		no step pulse for more than	
		1M clock cycles (standstill). In	
		combination with stealthChop,	
		be sure not to work with too	
		low overall current setting, as	
		regulation will not be able to	
		measure the motor current	
		after stand still current	
		reduction. This will result in	
		very low motor current after	
		the stand-still period.	

While the parameters for spreadCycle can be configured for good microstep performance, stealthChop mode is configured with its power on default values (*PWMCONF*=0x00050480):

f_{PWM}=2/683 f_{CLK} (i.e. roughly 38kHz with internal clock) pwm_autoscale=1 PWM_GRAD=4 PWM AMPL=128

CFG0 and CFG4 settings do not influence the stealthChop configuration. This way, it is even possible to switch between spreadCycle and stealthChop mode by simply switching CFG1 and CFG2.

Hint

Be sure to allow the motor to rest for at least 100ms (assuming a minimum of 10MHz f_{CLK}) before starting a motion using stealthChop. This will allow the current regulation to set the initial motor current.

Example:

It is desired to do small motions in smooth and noiseless stealthChop mode. For quick motions, spreadCycle is to be used. The controller can deliver 1/16 microstep step signals. Tie together CFG1 and CFG2 and drive them with a three state driver. Switch both to VCC_IO to operate in spreadCycle, switch them to hi-Z (open) state for a motion in stealthChop.

25 External Reset

The chip is loaded with default values during power on via its internal power-on reset. In order to reset the chip to power on defaults, any of the supply voltages monitored by internal reset circuitry (VSA, +5VOUT or VCC_IO) must be cycled. VCC is not monitored. Therefore VCC must not be switched off during operation of the chip. As +5VOUT is the output of the internal voltage regulator, it cannot be cycled via an external source except by cycling VSA. It is easiest and safest to cycle VCC_IO in order to completely reset the chip. Also, current consumed from VCC_IO is low and therefore it has simple driving requirements. Due to the input protection diodes not allowing the digital inputs to rise above VCC_IO level, all inputs must be driven low during this reset operation. When this is not possible, an input protection resistor may be used to limit current flowing into the related inputs.

In case, VCC becomes supplied by an external source, make sure that VCC is at a stable value above the lower operation limit once the reset ends. This normally is satisfied when generating a 3.3V VCC_IO from the +5V supply supplying the VCC pin, because it will then come up with a certain delay.

26 Clock Oscillator and Input

The clock is the timing reference for all functions: the chopper and the velocity thresholds. Many parameters are scaled with the clock frequency, thus a precise reference allows a more deterministic result. The on-chip clock oscillator provides timing in case no external clock is easily available.

USING THE INTERNAL CLOCK

Directly tie the CLK input to GND near to the IC if the internal clock oscillator is to be used. For best precision, the internal clock can be calibrated by reading out *TSTEP* at a defined external step frequency. It is easiest to use 1kHz microstep frequency. With this, *TSTEP* shows the number of internal clock cycles per millisecond, i.e. *TSTEP*=1200 means that f_{CLK} is 12 MHz in the actual IC. Scale velocity thresholds, *TOFF* and *PWM_FREQ* based on the determined frequency. Temperature dependency and ageing of the internal clock is comparatively low.

In case well defined velocity settings and precise motor chopper operation are desired, it is supposed to work with an external clock source.

USING AN EXTERNAL CLOCK

When an external clock is available, a frequency of 10 MHz to 16 MHz is recommended for optimum performance. The duty cycle of the clock signal is uncritical, as long as minimum high or low input time for the pin is satisfied (refer to electrical characteristics). Up to 18 MHz can be used, when the clock duty cycle is 50%. Make sure, that the clock source supplies clean CMOS output logic levels and steep slopes when using a high clock frequency. The external clock input is enabled with the first positive polarity seen on the CLK input.

Attention

Switching off the external clock source prevents the driver from operating normally. Therefore be careful to switch off the motor drivers before switching off the clock (e.g. using the enable input), because otherwise the chopper would stop and the motor current level could rise uncontrolled. The short to GND detection stays active even without clock, if enabled.

26.1 Considerations on the Frequency

A higher frequency allows faster step rates, faster SPI operation and higher chopper frequencies. On the other hand, it may cause more electromagnetic emission of the system and causes more power dissipation in the TMC2130 digital core and voltage regulator. Generally a frequency of 10 MHz to 16 MHz should be sufficient for most applications. For reduced requirements concerning the motor dynamics, a clock frequency of down to 8 MHz (or even lower) can be considered.

27 Absolute Maximum Ratings

The maximum ratings may not be exceeded under any circumstances. Operating the circuit at or near more than one maximum rating at a time for extended periods shall be avoided by application design.

Parameter	Symbol	Min	Max	Unit
Supply voltage operating with inductive load (V _{VS} ≥ V _{VSA})	V _{VS} , V _{VSA}	-0.5	49	V
Supply and bridge voltage max. *)	V _{VMAX}		50	V
VSA when different from to VS	V_{VSA}	-0.5	V _{VS} +0.5	٧
I/O supply voltage	V _{VIO}	-0.5	5.5	V
digital VCC supply voltage (if not supplied by internal	V_{VCC}	-0.5	5.5	٧
regulator)				
Logic input voltage	V_{I}	-0.5	V _{VIO} +0.5	٧
Maximum current to / from digital pins	${ m I}_{ m IO}$		+/-10	mΑ
and analog low voltage I/Os				
5V regulator output current (internal plus external load)	${ m I}_{\sf 5VOUT}$		50	mΑ
5V regulator continuous power dissipation (V _{VM} -5V) * I _{5VOUT}	P _{5VOUT}		1	W
Power bridge repetitive output current	${ m I}_{ m Ox}$		3.0	Α
Junction temperature	T _J	-50	150	°C
Storage temperature	T _{STG}	-55	150	°C
ESD-Protection for interface pins (Human body model,	V _{ESDAP}		4	kV
HBM)				
ESD-Protection for handling (Human body model, HBM)	V _{ESD}		1	kV

^{*)} Stray inductivity of GND and VS connections will lead to ringing of the supply voltage when driving an inductive load. This ringing results from the fast switching slopes of the driver outputs in combination with reverse recovery of the body diodes of the output driver MOSFETs. Even small trace inductivities as well as stray inductivity of sense resistors can easily generate a few volts of ringing leading to temporary voltage overshoot. This should be considered when working near the maximum voltage.

28 Electrical Characteristics

28.1 Operational Range

Parameter	Symbol	Min	Max	Unit
Junction temperature	T _J	-40	125	°C
Supply voltage (using internal +5V regulator)	V_{VS} , V_{VSA}	5.5	46	V
Supply voltage (internal +5V regulator bridged: V _{VCC} =V _{VSA} =V _{VS})	V _{VS}	4.7	5.4	V
I/O supply voltage	V _{VIO}	3.00	5.25	V
VCC voltage when using optional external source (supplies	V_{VCC}	4.6	5.25	V
digital logic and charge pump)				
RMS motor coil current per coil (value for design guideline)	I _{RMS-QFN36}		1.2	Α
for QFN36 5x6 package resp. TQFP-48 package	$I_{\text{RMS-TQFP48}}$		1.4	
Peak output current per motor coil output (sine wave peak)	I_{0x}		2.0	Α
using external or internal current sensing				
Peak output current per motor coil output (sine wave peak)	I_{Ox}		2.5	Α
for short term operation. Limit $T_1 \le 105$ °C, e.g. for 100ms				
short time acceleration phase below 50% duty cycle.				

28.2 DC and Timing Characteristics

DC characteristics contain the spread of values guaranteed within the specified supply voltage range unless otherwise specified. Typical values represent the average value of all parts measured at +25°C. Temperature variation also causes stray to some values. A device with typical values will not leave Min/Max range within the full temperature range.

Power supply current	DC-Chara	cteristics				
	$V_{VS} = V_{VSA}$	= 24.0V				
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Total supply current, driver	I_{S}	f _{CLK} =16MHz		15	22	mA
disabled I_{VS} + I_{VSA} + I_{VCC}						
Total supply current, operating,	I_{S}	f _{CLK} =16MHz, 23.4kHz		19		mA
I_{VS} + I_{VSA} + I_{VCC}		chopper, no load				
Idle supply current from VS,	I_{VSO}	f _{CLK} =0Hz,		0.25	0.5	mΑ
charge pump operating		driver disabled				
Static supply current from VSA	I_{VSA0}	f _{CLK} =0Hz, includes	1.4	2	3	mΑ
with VCC supplied by 5VOUT		VCC supply current				
Supply current, driver disabled,	I_{VCCx}	f _{CLK} variable,		0.8		mA/MHz
dependency on CLK frequency		additional to I_{VSAO}				
Internal current consumption	I_{VCC}	f _{CLK} =16MHz, 23.4kHz		16		mA
from 5V supply on VCC pin		chopper				
IO supply current (typ. at 5V)	I_{VIO}	no load on outputs,		15	30	μΑ
		inputs at V_{IO} or GND				
		Excludes pullup 1				
		pull-down resistors				

Motor driver section		DC- and Timing-Characteristics V _{VS} = 24.0V					
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
RDS _{ON} lowside MOSFET	R _{ONL}	measure at 100mA, 25°C, static state		0.4	0.5	Ω	
RDS _{ON} highside MOSFET	R _{ONH}	measure at 100mA, 25°C, static state		0.5	0.6	Ω	
slope, MOSFET turning on	t _{SLPON}	measured at 700mA load current (resistive load)	50	120	220	ns	
slope, MOSFET turning off	t _{SLPOFF}	measured at 700mA load current (resistive load)	50	120	220	ns	
Current sourcing, driver off	I _{OIDLE}	O _{XX} pulled to GND	120	180	250	μΑ	

Charge pump	DC-Chara	DC-Characteristics					
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Charge pump output voltage	V_{VCP} - V_{VS}	operating, typical f _{chop} <40kHz	4.0	V _{VCC} - 0.3	V_{VCC}	V	
Charge pump voltage threshold for undervoltage detection	V_{VCP} - V_{VS}	using internal 5V regulator voltage	3.3	3.6	3.8	V	
Charge pump frequency	f_{CP}			1/16			
				f_{CLKOSC}			

Linear regulator	DC-Characteristics V _{VS} = V _{VSA} = 24.0V					
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	V _{5VOUT}	$I_{5VOUT} = 0mA$ $T_J = 25^{\circ}C$	4.80	5.0	5.25	V
Output resistance	R _{5VOUT}	Static load		3		Ω
Deviation of output voltage over the full temperature range	V _{5VOUT(DEV)}	I_{5VOUT} = 16mA I_{J} = full range		+/-30	+/-100	mV
Deviation of output voltage over the full supply voltage range	V _{5VOUT(DEV)}	I _{SVOUT} = 0mA V _{VSA} = variable		+/-15	+/-30	mV / 10V
Deviation of output voltage over the full supply voltage range	V _{5VOUT(DEV)}	I _{SVOUT} = 16mA V _{VSA} = variable		-38	+/-75	mV / 10V

Clock oscillator and input	Timing-Characteristics					
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Clock oscillator frequency	f _{CLKOSC}	t _J =-50°C	9	12.4		MHz
Clock oscillator frequency	f _{CLKOSC}	t _J =50°C	10.1	13.2	17.2	MHz
Clock oscillator frequency	f _{CLKOSC}	t _J =150°C		13.4	18	MHz
External clock frequency	f _{CLK}		4	10-16	18	MHz
(operating)						
External clock high / low level	t _{CLKH} /	CLK driven to	10			ns
time	t _{CLKL}	$0.1~V_{VIO}$ / $0.9~V_{VIO}$				
External clock first cycle	t _{CLKH1}	CLK driven high	30	25		ns
triggering switching to external						
clock source						

Detector levels	DC-Characteristics					
Parameter	Symbol	ol Conditions		Тур	Max	Unit
V _{VSA} undervoltage threshold for RESET	V _{UV_VSA}	V _{VSA} rising	3.8	4.2	4.6	V
V _{SVOUT} undervoltage threshold for RESET	V _{UV_5VOUT}	V _{SVOUT} rising		3.5		V
$V_{\text{VCC_IO}}$ undervoltage threshold for RESET	V _{UV_VIO}	V _{VCC_IO} rising (delay typ. 10µs)	2.1	2.55	3.0	V
V _{VCC_IO} undervoltage detector hysteresis	V _{UV_VIOHYST}			0.3		V
Short to GND detector threshold $(V_{VS} - V_{Ox})$	V _{OS2G}		2	2.5	3	V
Short to GND detector delay (high side switch on to short detected)	t _{S2G}	High side output clamped to V _{SP} -3V	0.8	1.3	2	μs
Overtemperature prewarning	t _{OTPW}	Temperature rising	100	120	140	°C
Overtemperature shutdown	tor	Temperature rising	135	150	170	°C

Sense resistor voltage levels	DC-Characteristics f _{CLK} =16MHz					
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Sense input peak threshold voltage (low sensitivity)	V _{SRTL}	vsense=0 csactual=31 sin_x=248 Hyst.=0; I _{BRxy} =0		325		mV
Sense input peak threshold voltage (high sensitivity)	V _{SRTH}	vsense=1 csactual=31 sin_x=248 Hyst.=0; I _{BRxy} =0		180		mV
Sense input tolerance / motor current full scale tolerance -using internal reference	I _{COIL}	I_scale_analog=0, vsense=0	-5		+5	%
Sense input tolerance / motor current full scale tolerance -using external reference voltage	I _{COIL}	I_scale_analog=1, V _{AIN} =2V, vsense=0	-2		+2	%
Internal resistance from pin BRxy to internal sense comparator (additional to sense resistor)	R _{BRxy}			20		mΩ

Digital pins	DC-Chara	DC-Characteristics				
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input voltage low level	V _{INLO}		-0.3		0.3 V _{VIO}	V
Input voltage high level	V_{INHI}		0.7 V _{VIO}		V _{VIO} +0.3	V
Input Schmitt trigger hysteresis	V_{INHYST}			0.12		V
				V_{VIO}		
Output voltage low level	V _{OUTLO}	I_{OUTLO} = 2mA			0.2	V
Output voltage high level	V _{OUTHI}	I_{OUTHI} = -2mA	V _{VIO} -0.2			V
Input leakage current	I _{ILEAK}		-10		10	μΑ
Pullup / pull-down resistors	R _{PU} /R _{PD}		132	166	200	kΩ
Digital pin capacitance	С			3.5		pF

AIN/IREF input	DC-Characteristics					
Parameter	Symbol Conditions		Min	Тур	Max	Unit
AIN_IREF input resistance to 2.5V (=5VOUT/2)	R _{AIN}	Measured to GND (internalRsense=0)	260	330	400	kΩ
AIN_IREF input voltage range for linear current scaling	V _{AIN}	Measured to GND (IscaleAnalog=1)	0	0.5-2.4	V _{5VOUT} /2	V
AIN_IREF open input voltage level	V _{AINO}	Open circuit voltage (internalRsense=0)		V _{5VOUT} /2		V
AIN_IREF input resistance to GND for reference current input	R _{IREF}	Measured to GND (internalRsense=1)	0.8	1	1.2	kΩ
AIN_IREF current amplification for reference current to coil current at maximum setting	I _{REFAMPL}	I _{IREF} = 0.25mA		3000		Times
Motor current full scale tolerance -using RDSon measurement	I _{COIL}	Internal_Rsense=1, vsense=0, I _{IREF} = 0.25mA	-10		+10	%

28.3 Thermal Characteristics

The following table shall give an idea on the thermal resistance of the package. The thermal resistance for a four layer board will provide a good idea on a typical application. Actual thermal characteristics will depend on the PCB layout, PCB type and PCB size. The thermal resistance will benefit from thicker CU (inner) layers for spreading heat horizontally within the PCB. Also, air flow will reduce thermal resistance.

A thermal resistance of 24K/W for a typical board means, that the package is capable of continuously dissipating 4.1W at an ambient temperature of 25°C with the die temperature staying below 125°C.

Parameter	Symbol	Conditions	Тур	Unit
Typical power dissipation	P _D	stealthChop or spreadCycle, 0.92A RMS in two phase motor, sinewave, 40 or 20kHz chopper, 24V, internal supply, 84°C peak surface of package (motor QSH4218-035-10-027)	2.6	W
Thermal resistance junction to ambient on a multilayer board for QFN36 package	R _{TMJA}	Dual signal and two internal power plane board (2s2p) as defined in JEDEC EIA JESD51-5 and JESD51-7 (FR4, 35µm CU, 84mm x 55mm, d=1.5mm)	24	K/W
Thermal resistance junction to ambient on a multilayer board for TQFP-EP48 package	R _{TMJA}	Dual signal and two internal power plane board (2s2p) as defined in JEDEC EIA JESD51-5 and JESD51-7 (FR4, 35µm CU, 70mm x 133mm, d=1.5mm)	21	K/W
Thermal resistance junction to board	R _{TJB}	PCB temperature measured within 1mm distance to the package	8	K/W
Thermal resistance junction to case	R _{TJC}	Junction temperature to heat slug of package	3	K/W

Table 28.1 Thermal Characteristics QFN5x6 and TQFP-EP48

The thermal resistance in an actual layout can be tested by checking for the heat up caused by the standby power consumption of the chip. When no motor is attached, all power seen on the power supply is dissipated within the chip.

Note

A spread-sheet for calculating TMC2130 power dissipation is available on www.trinamic.com.

29 Layout Considerations

29.1 Exposed Die Pad

The TMC2130 uses its die attach pad to dissipate heat from the drivers and the linear regulator to the board. For best electrical and thermal performance, use a reasonable amount of solid, thermally conducting vias between the die attach pad and the ground plane. The printed circuit board should have a solid ground plane spreading heat into the board and providing for a stable GND reference.

29.2 Wiring GND

All signals of the TMC2130 are referenced to their respective GND. Directly connect all GND pins under the device to a common ground area (GND, GNDP, GNDA and die attach pad). The GND plane right below the die attach pad should be treated as a virtual star point. For thermal reasons, the PCB top layer shall be connected to a large PCB GND plane spreading heat within the PCB.

Attention

Especially the sense resistors are susceptible to GND differences and GND ripple voltage, as the microstep current steps make up for voltages down to 0.5 mV. No current other than the sense resistor current should flow on their connections to GND and to the TMC2130. Optimally place them close to the IC, with one or more vias to the GND plane for each sense resistor. The two sense resistors for one coil should not share a common ground connection trace or vias, as also PCB traces have a certain resistance.

29.3 Supply Filtering

The 5VOUT output voltage ceramic filtering capacitor (4.7 μ F recommended) should be placed as close as possible to the 5VOUT pin, with its GND return going directly to the GNDA pin. This ground connection shall not be shared with other loads or additional vias to the GND plan. Use as short and as thick connections as possible. For best microstepping performance and lowest chopper noise an additional filtering capacitor should be used for the VCC pin to GND, to avoid charge pump and digital part ripple influencing motor current regulation. Therefore place a ceramic filtering capacitor (470nF recommended) as close as possible (1-2mm distance) to the VCC pin with GND return going to the ground plane. VCC can be coupled to 5VOUT using a 2.2 Ω or 3.3 Ω resistor in order to supply the digital logic from 5VOUT while keeping ripple away from this pin.

A 100 nF filtering capacitor should be placed as close as possible to the VSA pin to ground plane. The motor supply pins VS should be decoupled with an electrolytic capacitor (47 μ F or larger is recommended) and a ceramic capacitor, placed close to the device.

Take into account that the switching motor coil outputs have a high dV/dt. Thus capacitive stray into high resistive signals can occur, if the motor traces are near other traces over longer distances.

29.4 Layout Example (QFN36)

Schematic

1 - Top Layer (assembly side)

2 - Inner Layer 1

3 - Inner Layer 2

4 - Bottom Layer

Components / Silksceen Top

Figure 29.1 Layout example

30 Package Mechanical Data

All length units are given in millimeters.

30.1 Dimensional Drawings QFN36 5x6

Attention: Drawings not to scale.

Figure 30.1 Dimensional drawings QFN 5x6

Parameter	Ref	Min	Nom	Max
total thickness	Α	0.8	0.85	0.9
stand off	A1	0	0.035	0.05
mold thickness	A2	-	0.65	-
lead frame thickness	A3		0.203	
lead width	b	0.2	0.25	0.3
body size X	D	4.9	5	5.1
body size Y	E	5.9	6	6.1
lead pitch	е		0.5	
exposed die pad size X	J	3.5	3.6	3.7
exposed die pad size Y	K	4	4.1	4.2
lead length	L	0.35	0.4	0.45
mold flatness	bbb			0.1
coplanarity	ссс			0.08
lead offset	ddd			0.1
exposed pad offset	eee			0.1

30.2 Dimensional Drawings TQFP-EP48

Figure 30.2 Dimensional drawings TQFP-EP48

Parameter	Ref	Min	Nom	Max
total thickness	Α	-	-	1.2
stand off	A1	0.05	-	0.15
mold thickness	A2	0.95	1	1.05
lead width (plating)	b	0.17	0.22	0.27
lead width	b1	0.17	0.2	0.23
lead frame thickness	С	0.09	-	0.2
(plating)				
lead frame thickness	c1	0.09	-	0.16
body size X (over pins)	D		9.0	
body size Y (over pins)	E		9.0	
body size X	D1		7.0	
body size Y	E1		7.0	
lead pitch	е		0.5	
lead	L	0.45	0.6	0.75
footprint	L1		1 REF	
	Θ	0°	3.5°	7°
	Θ1	0°	-	-
	Θ2	11°	12°	13°
	Θ3	11°	12°	13°
	R1	0.08	-	-
	R2	0.08	-	0.2
	S	0.2	-	-
exposed die pad size X	М	4.9	5	5.1
exposed die pad size Y	N	4.9	5	5.1
package edge tolerance	aaa			0.2
lead edge tolerance	bbb			0.2
coplanarity	ссс			0.08
lead offset	ddd			0.08
mold flatness	eee			0.05

30.3 Package Codes

Type	Package	Temperature range	Code & marking
TMC2130-LA	QFN36 (RoHS)	-40°C +125°C	TMC2130-LA
TMC2130-TA	TQFP-EP48 (RoHS)	-40°C +125°C	TMC2130-TA

31 Disclaimer

TRINAMIC Motion Control GmbH & Co. KG does not authorize or warrant any of its products for use in life support systems, without the specific written consent of TRINAMIC Motion Control GmbH & Co. KG. Life support systems are equipment intended to support or sustain life, and whose failure to perform, when properly used in accordance with instructions provided, can be reasonably expected to result in personal injury or death.

Information given in this data sheet is believed to be accurate and reliable. However no responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use.

Specifications are subject to change without notice.

All trademarks used are property of their respective owners.

32 ESD Sensitive Device

The TMC2130 is an ESD sensitive CMOS device sensitive to electrostatic discharge. Take special care to use adequate grounding of personnel and machines in manual handling. After soldering the devices to the board, ESD requirements are more relaxed. Failure to do so can result in defect or decreased reliability.

33 Table of Figures

FIGURE	1.1 TMC2130 STEP/DIR APPLICATION DIAGRAM	5
FIGURE	1.2 TMC2130 STANDALONE DRIVER APPLICATION DIAGRAM	6
	1.3 ENERGY EFFICIENCY WITH COOLSTEP (EXAMPLE)	
	2.1 TMC2130-LA PACKAGE AND PINNING QFN36 (5X6MM2 BODY)	
	2.2 TMC2130-TA PACKAGE AND PINNING TQFP-EP 48-EP (7X7MM2 BODY, 9X9MM2 WITH LEADS)	
	3.1 STANDARD APPLICATION CIRCUIT	
	3.2 REDUCED NUMBER OF FILTERING COMPONENTS	
	3.3 RDSon based sensing eliminates high current sense resistors	
	3.4 USING AN EXTERNAL 5V SUPPLY FOR DIGITAL CIRCUITRY OF DRIVER (DIFFERENT OPTIONS)	
	3.5 USING AN EXTERNAL 5V SUPPLY TO BYPASS INTERNAL REGULATOR	
	3.6 EXAMPLES FOR SIMPLE PRE-REGULATORS	
	3.7 5V ONLY OPERATION	
	3.8 DERATING OF MAXIMUM SINE WAVE PEAK CURRENT AT INCREASED DIE TEMPERATURE	
	3.9 SCHOTTKY DIODES REDUCE POWER DISSIPATION AT HIGH PEAK CURRENTS UP TO 2A (2.5A)	
	3.10 SIMPLE ESD ENHANCEMENT AND MORE ELABORATE MOTOR OUTPUT PROTECTION	
	4.1 SPI TIMING	
	6.1 MOTOR COIL SINE WAVE CURRENT WITH STEALTHCHOP (MEASURED WITH CURRENT PROBE)	
	6.2 SCOPE SHOT: GOOD SETTING FOR PWM_GRAD	
	6.3 SCOPE SHOT: TOO SMALL SETTING FOR PWM_GRAD	
	6.4 GOOD AND TOO SMALL SETTING FOR PWM_GRAD	
FIGURE	6.5 VELOCITY BASED PWM SCALING (PWM_AUTOSCALE=0)	.43
	7.1 CHOPPER PHASES	. 47
FIGURE	7.2 NO LEDGES IN CURRENT WAVE WITH SUFFICIENT HYSTERESIS (MAGENTA: CURRENT A, YELLOW & BLUE: SENSE	
RI	SISTOR VOLTAGES A AND B)	.49
FIGURE	7.3 SPREADCYCLE CHOPPER SCHEME SHOWING COIL CURRENT DURING A CHOPPER CYCLE	. 50
FIGURE	7.4 CLASSIC CONST. OFF TIME CHOPPER WITH OFFSET SHOWING COIL CURRENT	. 51
FIGURE	7.5 ZERO CROSSING WITH CLASSIC CHOPPER AND CORRECTION USING SINE WAVE OFFSET	. 51
FIGURE	8.1 SCALING THE MOTOR CURRENT USING THE ANALOG INPUT	. 54
	11.1 CHOICE OF VELOCITY DEPENDENT MODES	
	14.1 FUNCTION PRINCIPLE OF STALLGUARD2	
	14.2 EXAMPLE: OPTIMUM SGT SETTING AND STALLGUARD2 READING WITH AN EXAMPLE MOTOR	
	15.1 COOLSTEP ADAPTS MOTOR CURRENT TO THE LOAD	
	16.1 STEP AND DIR TIMING, INPUT PIN FILTER	
	16.2 MICROPLYER MICROSTEP INTERPOLATION WITH RISING STEP FREQUENCY (EXAMPLE: 16 TO 256)	
	17.1 DIAG OUTPUTS IN STEP/DIR MODE	
	18.1 DCSTEP EXTENDED APPLICATION OPERATION AREA	
	18.2 VELOCITY PROFILE WITH IMPACT BY OVERLOAD SITUATION (EXAMPLE)	
	18.3 MOTOR MOVING SLOWER THAN STEP INPUT DUE TO LIGHT OVERLOAD. LOSTSTEPS INCREMENTED	
	18.4 FULL SIGNAL INTERCONNECTION FOR DCSTEP	
	18.5 DCO Interface to motion controller – step generator stops when DCO is asserted	
	19.1 LUT PROGRAMMING EXAMPLE	
	22.1 CURRENT SETTING AND FIRST STEPS WITH STEALTHCHOP	
	22.2 TUNING STEALTHCHOP AND SPREADCYCLE	
	22.3 ENABLING COOLSTEP (ONLY IN COMBINATION WITH SPREADCYCLE)	
	24.1 STANDALONE OPERATION WITH TMC2130 (PINS SHOWN WITH THEIR STANDALONE MODE NAMES)	
	29.1 LAYOUT EXAMPLE	
	30.1 DIMENSIONAL DRAWINGS QFN 5X6	
HTGURF	30.2 DIMENSIONAL DRAWINGS TOFP-EP48	.99

34 Revision History

Version	Date	Author	Description
		BD= Bernhard Dwersteg SD= Sonja Dwersteg	
V0.90	2014-AUG-21	SD	First version. Based on TMC5130 datasheet V0.42.
V0.91	2014-SEP-11	SD	Figure 1.1 and Figure 1.2 corrected.
V0.92	2014-SEP-25	BD	Clarified ramp generator source as step input, etc.
V1.00	2014-OCT-15	BD	Some detail corrections (removed wording 3 phase)
V1.01	2014-NOV-24	BD	Wording thermal shutdown, QFN36 table
V1.02	2014-DEC-08	BD	Some detail corrections for 2130 and stallGuard description
V1.03	2015-MAR-10	BD	Improved AN links, dcStep stallGuard description, blue blocks Renamed TZEROWAIT to TPOWERDOWN, Added References
V1.04	2015-APR-02	BD	More direct_mode info
V1.05	2015-OCT-09	BD	added TCLK spec for first clock event, moved chapter acceleration in stealthChop, 19.2: swapped X1 and X3, SPI mode 3 hint, sg_filt to sfilt, fCLK measurement hint S/D, Fig 1.1 and 3.1 update, Fig 3.7 corrected
V1.06	2016-APR-22	BD	More details on: stealthChop lower current limit, dcMotor operation, XDIRECT register Corrected: effective stealthChop PWM frequency is <u>2*</u> divider setting, ESD schematic w. varistors instead of snubber
V1.07	2016-APR-27	BD	Added TQFP48 package
V1.08	2016-SEP-21	BD	Hint for index pulse, New changing resolution table, Some wording
V1.09	2017-MAY-15	BD	Minor details, Pin 9 (11) must be left open, removed comment for tie to GND option

Table 34.1 Document Revisions

35 References

[TMC2130-EVAL] TMC2130-EVAL Manual

[AN001] Trinamic Application Note 001 - Parameterization of spreadCycleTM, <u>www.trinamic.com</u>

[AN002] Trinamic Application Note 002 - Parameterization of stallGuard2 $^{\text{TM}}$ & coolStep $^{\text{TM}}$,

www.trinamic.com

[AN003] Trinamic Application Note 003 - dcStep™, www.trinamic.com

Calculation sheet TMC5130 TMC2130 TMC2100 Calculations.xlsx