2a Avaluació	Física	1r Batxillerat
Cossos enllaçats		Data:
Nom i cognoms:		Qualificació:

Instruccions: Feu els exercicis a l'espai que se us proporciona. Feu servir la cara posterior si necessiteu més espai, indiqueu-ho clarament en aquest cas. Heu d'identificar clarament les respostes i mostrar el procés per tal d'aconseguir la màxima puntuació. La puntuació dels exercicis es dona entre parèntesis.

1. Siguin dues masses M_1 , M_2 lligades per una corda inextensible de massa negligible que passa per una politja sense fregament i de massa menyspreable. Quan el sistema es deixa anar es mou amb acceleració a. Es demana representar les forces presents (**0.5 pts**), escriure les equacions per cada massa (**1 pt**) i trobar l'acceleració de la gravetat g en funció dels altres paràmetres de l'exercici (**1 pt**). Suposeu que el sistema gira en sentit horari.

2. Considereu el següent sistema dinàmic on hem suposat que les cordes són inextensibles, de massa negligible i la politja no té fregament, i la seva massa es pot considerar també menyspreable. El coeficient de fregament entre la massa M_1 i la superfície és μ .

Es demana representar les forces presents (0.5 pts), escriure les equacions per cada massa (1.5 pts), calcular l'acceleració a del sistema en funció de M_1 , M_2 , M_3 , μ i g (1.5 pts) i finalment, trobar la força que fa M_2 sobre M_3 (1 pt).

3. Considereu el següent sistema dinàmic on hem suposat que les cordes són inextensibles, de massa negligible i la politja no té fregament, i la seva massa es pot considerar també menyspreable. El coeficient de fregament entre la massa M_2 i la superfície és μ .

Es demana representar (suposeu que el sistema es mou en sentit horari) les forces presents (1 pt), escriure les equacions per cada massa (2.5 pts), calcular l'acceleració a del sistema en funció de M_1 , M_2 , M_3 , M_4 , M_5 , μ i g (1.5 pts) i finalment, trobar la força que fa M_1 sobre M_4 (1 pt) i la que fa M_3 sobre M_5 (1 pt).