Lecture # 26

Hardware Control using I/O Ports

Textbook chapter #17, section 17.5

Download Textbook (7th Edition) from Slate

17

Expert MS-DOS Programming

17.1 Introduction

17.2

17.3

17.4	ln'	terrup	t H	land	ling
------	-----	--------	-----	------	------

- 17.4.1 Hardware Interrupts
- 17.4.2 Interrupt Control Instructions
- 17.4.3 Writing a Custom Interrupt Handler
- 17.4.4 Terminate and Stay Resident Programs
- 17.4.5 Application: The No_Reset Program
- 17.4.6 Section Review

17.5 Hardware Control Using I/O Ports

- 17.5.1 Input-Output Ports
- 17.5.2

17.6 Chapter Summary

IN and OUT Instructions The IN instruction inputs a byte, word, or doubleword from a port. Conversely, the OUT instruction outputs a value to a port. The syntax for both instructions is

```
IN accumulator, port
OUT port, accumulator
```

Port may be a constant in the range 0 to FFh, or it may be a value in DX between 0 and FFFFh. *Accumulator* must be AL for 8-bit transfers, AX for 16-bit transfers, and EAX for 32-bit transfers. Examples are as follows:

```
al,3Ch
in
                                    ; input byte from port 3Ch
                                    ; output byte to port 3Ch
out 3Ch,al
                                    ; DX can contain a port number
    dx, portNumber
mov
                                    ; input word from port named in DX
in
     ax, dx
                                    ; output word to the same port
out dx,ax
                                    ; input doubleword from port
in
    eax.dx
                                    ; output doubleword to same port
     dx, eax
out
```

Mnemonic	Description
OUT imm8, AL	Output byte in AL to I/O port address imm8.
-	Output word in AX to I/O port address imm8.
OUT imm8, EAX	Output doubleword in EAX to I/O port address imm8.
OUT DX, AL	Output byte in AL to I/O port address in DX.
OUT DX, AX	Output word in AX to I/O port address in DX.
OUT DX, EAX	Output doubleword in EAX to I/O port address in DX.

Mnemonic	Description
IN AL,imm8	Input byte from imm8 I/O port address into AL.
IN AX,imm8	Input byte from imm8 I/O port address into AX.
IN EAX,imm8	Input byte from imm8 I/O port address into EAX.
IN AL,DX	Input byte from I/O port in DX into AL.
IN AX,DX	Input word from I/O port in DX into AX.
IN EAX, DX	Input doubleword from I/O port in DX into EAX.

The original IBM-PC's parallel port had a total of 12 digital outputs and 5 digital inputs accessed via 3 consecutive 8-bit ports in the processor's I/O space.

Port	Direction	address	# of used bits	Used Bits
Data	output	378h	8	D0-D7
Status	input	379h	5	S3-S7
control	output	37ah	4	C0-C3

.code

x1: mov dx, 379h; Input port

in al, dx

and al,00001000b

cmp al,08H

je light

mov al,00000000b

jmp end1

light: mov al, 111111111b

end1: mov dx, 378H; Output port

out dx, al

jmp x1

end:

Direction	address
output	378h
input	379h
output	37ah

→ DOS way to exit a program

END

Question: Suppose EAX = 87345629. Display this number to to port 378h with a delay of one second. Use Irvine library for delay call Delay with EAX value of 1000 (for 1000 millisec=1 sec).

		LOADING	(Note a)
PIN NAMES	3	HIGH	LOW
A, B, C, D	BCD Inputs	0.5 U.L.	0.25 U.L.
RBI	Ripple-Blanking Input	0.5 U.L.	0.25 U.L.
IT	Lamp-Test Input	0.5 U.L.	0.25 U.L.
BVRBO	Blanking Input or	0.5 U.L.	0.75 U.L.
	Ripple-Blanking Output	1.2 U.L.	2.0 U.L.
a, to q	Outputs	Open-Collector	15 U.L.

MOTES

- a) 1 Unit Load (U.L.) = 40 µA HIGH, 1.6 mA LOW.
- b) Output current measured at Vout = 0.5 V

The Output LOW drive factor is 15 U.L. for Commercial (74) Temperature Ranges.

Memory mapped I/O

- Some processors have only one address space.
- Use memory address space for I/O devices. How?
- Reserve Address space slots for Devices.

Port mapped I/O

- Separate address spaces for Memory and I/O Devices.
- Processor generate R/W for Memory and IORQ to access memory

