Théorie des nombres algorithmique (Aspects classiques)

2023-2024

Table des matières

1	Formalisme			
	1.1	Automates finis et langages	7	
	1.2	Machines de Turing	8	
	1.3	Exponentiation rapide	8	
2	Arithmétique et modules			
	2.1	Miller-Rabin	9	
	2.2	Distributions	10	
	2.3	Densité de premiers	10	
	2.4	Racines carrées dans \mathbb{F}_p^{\times}	10	
		Carrés dans $(\mathbb{Z}/n\mathbb{Z})^{\times}$		

TABLE DES MATIÈRES

Introduction

Le cours discute l'algorithmique quantique et le but c'est l'algo de Shor $[\operatorname{Sho}97]\,!$

TABLE DES MATIÈRES

Chapitre 1

Formalisme

1.1 Automates finis et langages

Un alphabet est un ensemble de symboles, on regarde en général $\Sigma = \{0, 1\}$ les binaires. Ensuite y'a le langage élémentaire :

$$\{\emptyset, \in, 0, 1\}$$

À partir du langage élémentaire on construit les langages régulier, par concaténations et unions finies.

Définition 1.1.1 (Langage). On prends comme convention que les sous ensembles

$$L\subset \Sigma^*$$

où $\Sigma = \{0, 1\}.$

Pour les automates on prends des 5-tuples $(Q, \Sigma, \delta, q_0, F)$ où Q est un ensemble d'états Σ l'alphabet,

$$\delta \colon Q \times \Sigma \to Q$$

une fonction de transition, q_0 l'état initial et F l'ensemble des états acceptés/terminaux. On étant ensuite δ en

$$\delta^* \colon Q \times \Sigma^* \to Q$$

par $\delta^*(q, w) = \delta^*(\delta(q, w_n), w_0 \dots w_{n-1})$ avec $w_{=}w_0 \dots w_n$. Le truc fun c'est qu'on peut déf le langage accepté par l'automate par :

$$L_{\delta} = \{ w \in \Sigma^* | \delta^*(q_0, w) \in F \}.$$

1.2 Machines de Turing

En gros c'est un automate fini plus une tape infinie à droite et une tête de lecture qui écrit et efface sur la tape.

Définition 1.2.1 (Machine de Turing). Une machine de Turing est un tuple (Σ, K, S, s) avec $S \colon K \times \Sigma \to (\mathbb{K} \cup \{Y, N, H\} \times \Sigma \times \{\bullet, \leftarrow, \to\})$ où on a les états... Un langage $L \subset \Sigma^*$ est accepté par M ssi $w \in L \leftrightarrow$ la machine s'arrête sur Y.

Définition 1.2.2 (Langage décidable). Un langage est décidable si il existe une machine de Turing qui l'accepte.

Définition 1.2.3 (Fonction récursive). Fonction qui est calculable par une machine de Turing.

Étant donné une fonction $f: \mathbb{N} \to \mathbb{N}$.

Définition 1.2.4. On dit qu'une machine de Turing a complexité O(f) si elle termine en temps f(|n|) pour une entrée n de taille |n|.

Définition 1.2.5 (PTIME). Dans l'ensemble des langages 2^{Σ^*} on regarde PTIME l'ensemble des langages décidables de complexité polynomial.

Définition 1.2.6 (FPTIME). Dans l'ensemble des fonctions $(\Sigma^*)^{\Sigma^*}$ on déf FPTIME l'analogue pour les fonctions.

1.3 Exponentiation rapide

Algorithm 1 Calcul de $a^e \mod N$

- 1: Écrire $e = \sum e_i 2^i$.
- 2: Calculer et enregistrer $a^{2^i} \mod N$ en réduisant à chaque carré par N pour les $e_i \neq 0$.
- 3: Multiplier $\prod_i a^{2^i} = a^e \mod N$.

Chapitre 2

Arithmétique et modules

Théoreme 2.0.1. Soit $r \leq 1$ et $M \leq \mathbb{Z}^r$ alors il existe a_1, \ldots, a_s avec $0 \leq s \leq r$ et une base v_1, \ldots, v_r de \mathbb{Z}^r telle que $a_1 \mid \ldots \mid a_s$ et

$$M = \bigoplus_{i}^{s} a_{i} v_{i}$$

Grâce à lui on peut résoudre un système linéaire AX = 0 en calculant une base de $\ker(A)$.

Théoreme 2.0.2. Soit G un groupe abélien de type fini. Alors il existe $a_1 \mid \ldots \mid a_s \mid t.q$

$$G \simeq \mathbb{Z}^r \oplus \bigoplus_{i=1}^r (\mathbb{Z}/a_i\mathbb{Z})$$

et la décomposition est unique.

2.1 Miller-Rabin

Un nombre $n \geq 2$ est pseudo-premier si $a^{n-1} \equiv 1 \mod n$ pour tout $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. On peut détecter si n est composé par contre.

Théoreme 2.1.1. Si n est impair premier, alors $n-1=2^k.m$ et pour tout $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ alors $a^m=1$ ou $a^{m2^c}=-1$ pour un $c \leq k$.

Théoreme 2.1.2. Si $n \ge 15$ est composé et impair alors MR(n,a) est faux pour plus de $\varphi(n)/4$ éléments de $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

2.2 Distributions

Si $X: \Omega \to G$ une variable aléatoire de loi uniforme. Et Y une loi quelconque, alors Z = X.Y suis une loi uniforme!

2.3 Densité de premiers

Soit $A \subset \mathbb{R}$ alors

$$\pi(A) = \#\{n | 1 \le n \le A, n \text{ est premier}\}\$$

a un équivalent

$$\pi(A) = \frac{A}{ln(A)}(1 + o(1))$$

C'est Hadamard, de la vallée Poussin (1900).

2.4 Racines carrées dans \mathbb{F}_p^{\times}

On note p-1=2*q si (a,p)=1 et $a^q=1$. On regarde le cas où $p\equiv 3 \mod 4$. Si on note $l\equiv 2^{-1}\mod q$ alors on écrit q=2l-1. Soit S les carrés de \mathbb{F}_p^{\times} , S est cyclique de taille q impaire. Alors $[2]:S\to S$ est une bijection d'inverse $[l]:S\to S$ (là [n] c'est $[n].g=g^n$). Alors, on a $r\equiv a^l\mod p$ avec $l=\frac{q+1}{2}$ et $r^2=a\mod p$.

2.5 Carrés dans $(\mathbb{Z}/n\mathbb{Z})^{\times}$

On note $n = \prod_i p_i^{e_i}$. Par le théorème chinois, $x \mod n$ est un carré ssi $\forall i \ x \mod p_i^{e_i}$ est un carré.

Les cas particuliers n = pq et $n = p^2q$ sont les cas RSA, et trouver une racine carrées implique de factoriser n avec notre méthode. En fait à l'inverse si on peut calculer des racines carrées, on peut factoriser.

Bibliographie

[Sho97] Peter W. Shor. « Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer ». In: $SIAM\ Journal\ on\ Computing\ 26.5\ (oct.\ 1997),\ p.\ 1484-1509.\ ISSN: \\ 1095-7111.\ DOI: 10.1137/s0097539795293172.\ URL: http://dx.doi.org/10.1137/S0097539795293172.$