Chapter 3

集合論

Set Theory

3.1 集合和子集合

3.2 集合運算及集合論定律

(3.3 計數及范恩圖)

3.1 集合和子集合

Set and Subset

A well-defined (unordered) collection of objects.

Should avoid: e.g. "the set of outstanding people", where outstanding is very subjective

These objects are called *elements* and are said to be *members* of the set.

Notations

我們使用大寫字母,如 A,B,C,… 來表示集合,且以小寫字母來表示元素。對集合 A,我們寫 $x \in A$ 若 x 為 A 的元素; $y \notin A$ 表示 y 不是 A 的一份子。

EXAMPLE 3. 1

一個集合可以把其所有元素列在集合括弧內之方式呈現。

For example, if A is the set consisting of the first five positive integers, then we write $A = \{1, 2, 3, 4, 5\}$.

Here $2 \in A$

elements

but $6 \notin A$.

EXAMPLE 3. 1 Cont.

Another standard notation

$$A = \{x | x \text{ is an integer and } x \leq 5\}.$$

在集合括弧內的垂直線|被讀做"滿足"。符號 $\{x|\dots\}$ 被讀做"滿足…的所有x的集合"。|之後的性質幫助我們決定被描述的集合之元素。

"the set of all x such that"

Beware! The notation $\{x \mid 1 \le x \le 5\}$ is not an adequate description of the set A.

Universe of a Set

宇集

A *universe* is usually denoted by \mathcal{U} .

We select only elements from u to form our sets.

- * if \mathcal{U} denotes the set of all integers or the set of all positive integers, then $\{x | 1 \le x \le 5\}$ adequately describes A.
- * If \mathcal{U} is the set of all real numbers, then $\{x | 1 \le x \le 5\}$ would contain all of the real numbers between 1 and 5 inclusives
- * if \mathcal{U} consists of only even integers, then the only members of $\{x | 1 \le x \le 5\}$ would be 2 and 4.

EXAMPLE 3. 2

For $\mathcal{U} = \{1, 2, 3, \ldots\}$, the set of positive integers, we consider the following sets. At the same time we introduce various notations one may use to describe such sets.

a)
$$A = \{1, 4, 9, \dots, 64, 81\}$$

= $\{x^2 | x \in \mathcal{U}, x^2 < 100\} = \{x^2 | x \in \mathcal{U} \land x^2 < 100\}$

b)
$$B = \{1, 4, 9, 16\}$$

= $\{y^2 | y \in \mathcal{U}, y^2 < 20\} = \{y^2 | y \in \mathcal{U}, y^2 < 23\}$
= $\{y^2 | y \in \mathcal{U} \land y^2 \le 16\}.$

c)
$$C = \{2, 4, 6, 8, \ldots\} = \{2k | k \in \mathcal{U}\}.$$

a)
$$A = \{1, 4, 9, \dots, 64, 81\}$$

b)
$$B = \{1, 4, 9, 16\}$$

c)
$$C = \{2, 4, 6, 8, \ldots\}$$

有限

無限

Sets A and B are examples of *finite* sets, whereas C is an *infinite* set.

For any finite set A, |A| denotes the number of elements in A

and is referred to as the cardinality or size

基數

大小

$$|A| = 9$$

$$|B| = 4$$

Definition 3.1

If C, D are sets from a universe \mathcal{U} , we say that C is a *subset* of D and write $C \subseteq D$, or $D \supseteq C$, if every element of C is an element of D. If, in addition, D contains an element that is not in C, then C is called a *proper subset* of D, and this is denoted by $C \subset D$ or $D \supset C$.

a)
$$A = \{1, 4, 9, \dots, 64, 81\}$$

b)
$$B = \{1, 4, 9, 16\}$$

c)
$$C = \{2, 4, 6, 8, \ldots\}$$

$$B \subseteq A$$
 and also $B \subset A$

but
$$A \not\subseteq C$$

Note that for all sets C, D from a universe \mathcal{U} , if $C \subseteq D$, then

$$\forall x [x \in C \Rightarrow x \in D],$$

and if $\forall x [x \in C \Rightarrow x \in D]$, then $C \subseteq D$.

Also, we find that for all subsets C, D of \mathcal{U} ,

$$C \subset D \Rightarrow C \subseteq D$$
,

and when C, D are finite,

$$C \subseteq D \Rightarrow |C| \le |D|$$
, and $C \subset D \Rightarrow |C| < |D|$.

However, for $\mathcal{U} = \{1, 2, 3, 4, 5\}$, $C = \{1, 2\}$, and $D = \{1, 2\}$, we see that C is a subset of D (that is, $C \subseteq D$), but it is not a proper subset of D (or, $C \not\subset D$).

So, in general, we do *not* find that $C \subseteq D \Rightarrow C \subset D$.

EXAMPLE 3.3

For the universe $\mathcal{U} = \{1, 2, 3, 4, 5\}$, consider the set $A = \{1, 2\}$.

If $B = \{x | x^2 \in \mathcal{U}\}$, then the members of B are 1, 2.

Here A and B contain the same elements

sets A and B are equal.

it is also true here that $A \subseteq B$ and $B \subseteq A$

For a given universe \mathcal{U} , the sets C and D (taken from \mathcal{U}) are said to be <u>equal</u>, and we write C = D, when

相等的

 $C \subseteq D$ and $D \subseteq C$.

neither order nor repetition is relevant for a general set.

for example, that $\{1, 2, 3\} = \{3, 1, 2\} = \{2, 2, 1, 3\} = \{1, 2, 1, 3, 1\}.$

Negations of Subset and Set Equality

subsets
$$A \subseteq B \Leftrightarrow \forall x[x \in A \Rightarrow x \in B]$$

$$A \not\subseteq B \Leftrightarrow \neg \forall x[x \in A \Rightarrow x \in B]$$

$$\Leftrightarrow \exists x \neg [\neg (x \in A) \lor x \in B)]$$

there is at least one element x in the universe where x is a member of A but x is not a member of B.

Negations of Subset and Set Equality

set equality
$$C = D \Leftrightarrow (C \subseteq D) \land (D \subseteq C)$$

$$C \neq D \Leftrightarrow \neg(C \subseteq D \land D \subseteq C)$$

$$\Leftrightarrow$$

(1) there exists at least one element x in \mathcal{U} where $x \in C$ but $x \notin D$ or (2) there exists at least one element y in \mathcal{U} where $y \in D$ and $y \notin C$ or perhaps both (1) and (2) occur.

Let
$$\mathcal{U} = \{1, 2, 3, 4, 5, 6, x, y, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}$$

(where x, y are the 24th, 25th lowercase letters of the alphabet and do not represent anything else).

Then $|\mathcal{U}| = 11$.

If $A = \{1, 2, 3, 4\}$, then |A| = 4 and here we have

i) $A \subseteq \mathcal{U}$;

iv) $\{A\} \subseteq \mathcal{U}$;

- ii) $A \subset \mathcal{U}$;
- v) $\{A\} \subset \mathcal{U}$; but

- iii) $A \in \mathcal{U}$;
- vi) $\{A\} \notin \mathcal{U}$.

Let $\mathcal{U} = \{1, 2, 3, 4, 5, 6, x, y, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}$ (where x, y are the 24th, 25th lowercase letters of the alphabet and do not represent anything else).

Then $|\mathcal{U}| = 11$.

$$A = \{1, 2, 3, 4\}$$

Now let
$$B = \{5, 6, x, y, A\} = \{5, 6, x, y, \{1, 2, 3, 4\}\}.$$

Then
$$|B| = 5$$
, not 8.

we find that

i)
$$A \in B$$
;

ii)
$$\{A\} \subseteq B$$
; and

iii)
$$\{A\} \subset B$$
.

But

iv)
$$\{A\} \notin B$$
;

v)
$$A \nsubseteq B$$

vi)
$$A \not\subset B$$

Let $A, B, C \subseteq \mathcal{U}$.

- a) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
- **b)** If $A \subset B$ and $B \subseteq C$, then $A \subset C$.
- c) If $A \subseteq B$ and $B \subset C$, then $A \subset C$.
- **d)** If $A \subset B$ and $B \subset C$, then $A \subset C$. 建議練習

THEOREM 3. 1

Proof:

a) To prove that $A \subseteq C$, we need to verify that for all $x \in \mathcal{U}$, if $x \in A$ then $x \in C$.

We start with an element x from A.

Since $A \subseteq B$, $x \in A$ implies $x \in B$.

Then with $B \subseteq C$, $x \in B$ implies $x \in C$.

So $x \in A$ implies $x \in C$, and $A \subseteq C$.

Let $A, B, C \subseteq \mathcal{U}$.

Proof: **b)** Since $A \subset B$, if $x \in A$ then $x \in B$.

With $B \subseteq C$, it then follows that $x \in C$, so $A \subseteq C$.

However, $A \subset B \Rightarrow$ there exists an element $b \in B$ such that $b \notin A$.

Because $B \subseteq C$, $b \in B \Rightarrow b \in C$.

Thus $A \subseteq C$ and there exists an element $b \in C$ with $b \notin A$, so $A \subset C$.

Let $A, B, C \subseteq \mathcal{U}$.

c) If $A \subseteq B$ and $B \subset C$, then $A \subset C$.

Proof:

EXAMPLE 3. 5

Let
$$\mathcal{U} = \{1, 2, 3, 4, 5\}$$
 with $A = \{1, 2, 3\}$, $B = \{3, 4\}$, and $C = \{1, 2, 3, 4\}$.

Then the following subset relations hold:

a)
$$A \subseteq C$$

b)
$$A \subset C$$

c)
$$B \subset C$$

d)
$$A \subseteq A$$

e)
$$B \nsubseteq A$$

f)
$$A \not\subset A$$
 (that is, A is not a proper subset of A)

In this example, the sets A and B are both subsets of C.

How many subsets *C* has in total?

於 Example 3.6 回應

Definition 3.3

零集 空集合

The <u>null set</u>, or <u>empty set</u>, is the (unique) set containing no elements.

It is denoted by \emptyset or $\{\ \}$.

We note that $|\emptyset| = 0$ but $\{0\} \neq \emptyset$.

Also, $\emptyset \neq \{\emptyset\}$ because $\{\emptyset\}$ is a set with one element, namely, the null set.

For any universe \mathcal{U} , let $A \subseteq \mathcal{U}$. Then $\emptyset \subseteq A$, and if $A \neq \emptyset$, then $\emptyset \subset A$.

Proof: If the first result is not true, then $\emptyset \not\subseteq A$,

so there is an element x from the universe with $x \in \emptyset$ but $x \notin A$.

But $x \in \emptyset$ is impossible.

So we reject the assumption $\emptyset \not\subseteq A$ and find that $\emptyset \subseteq A$.

In addition, if $A \neq \emptyset$, then there is an element $a \in A$ (and $a \notin \emptyset$), so $\emptyset \subset A$.

EXAMPLE 3. 6

determine the number of subsets of the set $C = \{1, 2, 3, 4\}$. In constructing a subset of C, we have, for each member x of C, two distinct choices: Either include it in the subset or exclude it. Consequently, there are $2 \times 2 \times 2 \times 2$ choices, resulting in $2^4 = 16$ subsets of C.

These include the empty set \emptyset and the set C itself.

The total number of subsets of C, 2^4 , is also the sum

Definition 3.4

口一`

幂集合

If A is a set from universe \mathcal{U} , the <u>power set</u> of A, denoted $\mathcal{P}(A)$, is the collection (or set) of all subsets of A.

 $\mathcal{P}(A)$ is the set of all subsets of A.

EXAMPLE 3. 7

For the set *C* of Example 3.6 $C = \{1, 2, 3, 4\}$

 $\mathcal{P}(C) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, C \}.$

If |A| = n, then $|P(A)| = 2^n$.

For any finite set A with $|A| = n \ge 0$, and for any $0 \le k \le n$, there are C(n, k) subsets of size k.

Counting the subsets of A according to the number, k, of elements in a subset, we have the combinatorial identity

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n, \text{ for } n \ge 0$$

Set of Numbers

- (a) \mathbf{Z} = the set of integers = {0, 1, -1, 2, -1, 3, -3,...}
- (b) $N = \text{the set of natural numbers or whole numbers} = \{0, 1, 2, 3, ...\}$
- (c) \mathbf{Z}^+ = the set of positive integers = $\{1, 2, 3, ...\}$
- (d) \mathbf{Q} = the set of rational numbers = $\{a/b \mid a, b \in \mathbf{Z}, b \neq 0\}$
- (e) \mathbf{Q}^+ = the set of positive rational numbers
- (f) \mathbf{Q}^* = the set of nonzero rational numbers
- (g) \mathbf{R} = the set of real numbers
- (h) \mathbf{R}^+ = the set of positive real numbers
- (i) \mathbf{R}^* = the set of nonzero real numbers
- (j) C = the set of complex numbers = $\{x + yi \mid x, y \in \mathbf{R}, i^2 = -1\}$
- (k) C^* = the set of nonzero complex numbers
- (1) For any $n \in \mathbb{Z}^+$, $\mathbb{Z}_n = \{0, 1, 2, 3, ..., n-1\}$

Set of Numbers

(m) For real numbers a, b with a < b,

$$[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$$
 closed interval
 $(a,b) = \{x \in \mathbb{R} | a < x < b\}$ open interval

$$[a,b) = \{x \in \mathbb{R} | a \le x < b\}$$

$$[a,b] =$$

half-open interval

Other \mathbb{Z} : Integers

Forms Q: Rational numbers

 \mathbb{R} : Real numbers

 \mathbb{C} : Complex numbers

№ : Natural numbers

3.2 集合運算及集合論定律

Set Operations and the Laws of Set Theory

The addition and multiplication of positive integers are said to be <u>closed binary operations</u> on \mathbb{Z}^+ .

封閉性的二元運算

For example, when we compute a + b, for $a, b \in \mathbb{Z}^+$, there are two *operands*, namely, a and b.

運算元

Hence the operation is called *binary*.

And since $a + b \in \mathbb{Z}^+$ when $a, b \in \mathbb{Z}^+$, we say that the binary operation of addition (on \mathbb{Z}^+) is *closed*.

The binary operation of (nonzero) division, however, is *not* closed for \mathbb{Z}^+

Yet this operation is closed when we consider the set \mathbf{Q}^+ instead of the set \mathbf{Z}^+ .

Binary Operations for Sets

For $A, B \subseteq \mathcal{U}$ we define the following:

Definition 3.5

- a) $A \cup B$ (the <u>union</u> of A and B) = $\{x | x \in A \lor x \in B\}$.
- **b)** $A \cap B$ (the *intersection* of A and B) = $\{x | x \in A \land x \in B\}$.
- c) $A \triangle B$ (the symmetric difference of A and B)

$$=\{x|(x\in A\vee x\in B)\wedge x\notin A\cap B\}=\{x|x\in A\cup B\wedge x\notin A\cap B\}.$$

聯集、交集、對稱差集

Note that if $A, B \subseteq \mathcal{U}$, then $A \cup B, A \cap B, A \triangle B \subseteq \mathcal{U}$.

Consequently, \cup , \cap , and \triangle are closed binary operations on $\mathcal{P}(\mathcal{U})$

EXAMPLE 3.8

With $\mathcal{U} = \{1, 2, 3, \dots, 9, 10\}$, $A = \{1, 2, 3, 4, 5\}$, $B = \{3, 4, 5, 6, 7\}$, and $C = \{7, 8, 9\}$, we have:

a)
$$A \cap B = \{3, 4, 5\}$$

c)
$$B \cap C = \{7\}$$

e)
$$A \triangle B = \{1, 2, 6, 7\}$$

g)
$$A \triangle C = \{1, 2, 3, 4, 5, 7, 8, 9\}$$

b)
$$A \cup B = \{1, 2, 3, 4, 5, 6, 7\}$$

d)
$$A \cap C = \emptyset$$

f)
$$A \cup C = \{1, 2, 3, 4, 5, 7, 8, 9\}$$

Motivated by parts (d), (f), and (g) of Example 3.8 we introduce the following general ideas.

Definition 3.6

互斥的

Let $S, T \subseteq \mathcal{U}$. The sets S and T are called <u>disjoint</u>, or <u>mutually disjoint</u>, when $S \cap T = \emptyset$.

Such as example 3.8 (d), sets A and C are mutually disjoint.

If $S, T \subseteq \mathcal{U}$, then

S and T are disjoint if and only if $S \cup T = S \triangle T$.

若 S, T ⊆ \mathcal{U} , 則 S 和 T 為互斥的若且唯若 S ∪ T = S △ T。

Proof:

$$p \Rightarrow q$$

$$p \leftarrow q$$

If $S, T \subseteq \mathcal{U}$, then

S and T are disjoint if and only if $S \cup T = S \triangle T$.

If S and T are disjoint, then $S \cup T \subseteq S \Delta T$

If S and T are disjoint, then $S \Delta T \subseteq S \cup T$

Which implies $S \Delta T = S \cup T$

If $S \triangle T = S \cup T$, but we assume that S and T are **NOT** disjoint, then this leads to a *contradiction*!!

It implies *S* and *T* are disjoint.

If $S, T \subseteq \mathcal{U}$, then

S and T are disjoint if and only if $S \cup T = S \triangle T$.

Proof: We start with S, T disjoint. (To prove that $S \cup T = S \triangle T$ we use Definition 3.2. In particular, we shall provide two element arguments, one for each inclusion.) Consider each x in ${}^{\circ}U$. If $x \in S \cup T$, then $x \in S$ or $x \in T$ (or perhaps both). But with S and T disjoint, $x \notin S \cap T$ so $x \in S \triangle T$. Consequently, because $x \in S \cup T$ implies $x \in S \triangle T$, we have $S \cup T \subseteq S \triangle T$. For the opposite inclusion, if $y \in S \triangle T$, then $y \in S$ or $y \in T$. (But $y \notin S \cap T$; we don't actually use this here.) So $y \in S \cup T$. Therefore $S \triangle T \subseteq S \cup T$. And now that we have $S \cup T \subseteq S \triangle T$ and $S \triangle T \subseteq S \cup T$, it follows from Definition 3.2 that $S \triangle T = S \cup T$.

We prove the converse by the method of proof by contradiction. To do so we consider any $S, T \subseteq \mathcal{U}$ and keep the hypothesis (that is, that $S \cup T = S \triangle T$) as is, but we assume the negation of the conclusion (that is, we assume that S and T are *not* disjoint). So if $S \cap T \neq \emptyset$, let $x \in S \cap T$. Then $x \in S$ and $x \in T$, so $x \in S \cup T$ and

$$x \in S \triangle T (= S \cup T).$$

But when $x \in S \cup T$ and $x \in S \cap T$, then

$$x \notin S \triangle T$$
.

From this contradiction — namely, $x \in S \triangle T \land x \notin S \triangle T$ — we realize that our original assumption was incorrect. Consequently, we have S and T disjoint.

Unary Operation for Sets

Definition

3.7

餘集

For a set $A \subseteq \mathcal{U}$, the *complement* of A, denoted $\mathcal{U} - A$, or \overline{A} . is given by $\{x | x \in \mathcal{U} \land x \notin A\}$.

EXAMPLE

3.9

With
$$\mathcal{U} = \{1, 2, 3, \dots, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5\}$, $B = \{3, 4, 5, 6, 7\}$, and $C = \{7, 8, 9\}$, we have:

$$\overline{A} = \{6, 7, 8, 9, 10\}, \overline{B} = \{1, 2, 8, 9, 10\},\$$

$$\overline{C} =$$

Definition 3.8

相對餘集

For $A, B \subseteq \mathcal{U}$, the <u>(relative) complement</u> of A in B, denoted B - A, is given by $\{x | x \in B \land x \notin A\}$.

EXAMPLE 3. 10

With
$$\mathcal{U} = \{1, 2, 3, \dots, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5\}$, $B = \{3, 4, 5, 6, 7\}$, and $C = \{7, 8, 9\}$, we have:

a)
$$B - A = \{6, 7\}$$

b)
$$A - B = \{1, 2\}$$

c)
$$A - C = A$$

d)
$$C - A = C$$

e)
$$A - A = \emptyset$$

f)
$$\mathcal{U} - A = \overline{A}$$

For $\mathcal{U} = \mathbf{R}$, let A = [1, 2] and B = [1, 3). Then we find that

a)
$$A = \{x | 1 \le x \le 2\} \subseteq \{x | 1 \le x < 3\} = B$$

b)
$$A \cup B = \{x | 1 \le x < 3\} = B$$

c)
$$A \cap B = \{x | 1 \le x \le 2\} = A$$

d)
$$\overline{B} = (-\infty, 1) \cup [3, +\infty) \subseteq (-\infty, 1) \cup (2, +\infty) = \overline{A}$$

THEOREM 3. 4

For any universe \mathcal{U} and any sets A, $B \subseteq \mathcal{U}$, the following statements are equivalent:

a)
$$A \subseteq B$$

b)
$$A \cup B = B$$

c)
$$A \cap B = A$$

d)
$$\overline{B} \subseteq \overline{A}$$

Proof:

reasoning process

$$(a) \Rightarrow (b),$$

$$(b) \Rightarrow (c),$$

建議練習

$$(c) \Rightarrow (d)$$
, and

$$(d) \Rightarrow (a)$$

建議練習

For any universe \mathcal{U} and any sets A, $B \subseteq \mathcal{U}$,

$$A \subseteq B \implies A \cup B = B$$

Proof:

THEOREM 3. 4

For any universe \mathcal{U} and any sets A, $B \subseteq \mathcal{U}$,

$$A \cap B = A \implies \overline{B} \subseteq \overline{A}$$

Proof:

The Laws of Set Theory

對取自字集u的任意集合A,B及C

1)
$$\overline{\overline{A}} = A$$

2)
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

 $\overline{A \cap B} = \overline{A} \cup \overline{B}$

3)
$$A \cup B = B \cup A$$

 $A \cap B = B \cap A$

4)
$$A \cup (B \cup C) = (A \cup B) \cup C$$

 $A \cap (B \cap C) = (A \cap B) \cap C$

5)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Law of Double 雙餘集定律 Complement DeMorgan 定律

交換律 Commutative Laws

結合律 Associative Laws

分配律 Distributive Laws

$$6) \ A \cup A = A$$
$$A \cap A = A$$

7)
$$A \cup \emptyset = A$$

 $A \cap {}^{\circ}U = A$

8)
$$A \cup \overline{A} = \mathfrak{A}$$

 $A \cap \overline{A} = \emptyset$

9)
$$A \cup \mathcal{U} = \mathcal{U}$$

 $A \cap \emptyset = \emptyset$

10)
$$A \cup (A \cap B) = A$$

 $A \cap (A \cup B) = A$

Idempotent Laws

恒等律

Domination Laws

Definition 3.9

duals

令 s 為處理兩個集合表示式相等的 (一般) 敘述。每一個此類表示式可能含一個或更多個的集合因子 (諸如 A , \overline{A} , B , \overline{B} 等等),一個或多個 \emptyset 及 \mathfrak{A} , 及僅有集合運算符號 \cap 及 \cup 。s 的對偶表為 s^d ,由 s 以 (1) 將每一個 \emptyset 及 \mathfrak{A} (在 s) 分別取代為 \mathfrak{A} 及 \emptyset ;及 (2) 每一個 \cap 及 \cup (在 s) 分別取代為 \cup 及 \cap 之法獲得。

THEOREM 3. 5

對偶原理 (The Principle of Duality)。

Let s denote a theorem dealing with the equality of two set expressions (involving only the set operations \cap and \cup). Then s^d , the dual of s, is also a theorem.

Examples: The Laws of Set Theory $(2) \sim (10)$.

NIU CSIE – Discrete Mathematics

Lecturer: Fay Huang

Simplify the expression $\overline{(A \cup B) \cap C} \cup \overline{B}$.

$\overline{(A \cup B) \cap C} \cup \overline{B}$	Reasons
$= \overline{((A \cup B) \cap C)} \cap \overline{\overline{B}}$	DeMorgan's Law
$= ((A \cup B) \cap C) \cap B$	Law of Double Complement
$= (A \cup B) \cap (C \cap B)$	Associative Law of Intersection
$= (A \cup B) \cap (B \cap C)$	Commutative Law of Intersection
$= [(A \cup B) \cap B] \cap C$	Associative Law of Intersection
$= B \cap C$	Absorption Law

Express $\overline{A-B}$ in terms of \cup and $\overline{}$.

From the definition of relative complement,

$$A - B = \{x | x \in A \land x \notin B\} = A \cap \overline{B}.$$

Therefore,

$$\overline{A - B} = \overline{A \cap \overline{B}}$$
 Reasons
$$= \overline{A} \cup \overline{B}$$
 DeMorgan's Law
$$= \overline{A} \cup B$$
 Law of Double Complement

$$A \triangle B = \{x | x \in A \cup B \land x \notin A \cap B\}$$

= $(A \cup B) - (A \cap B) = (A \cup B) \cap \overline{(A \cap B)}$, so

$$\overline{A \triangle B} = \overline{(A \cup B) \cap \overline{(A \cap B)}}$$
Reasons $= \overline{(A \cup B)} \cup \overline{(A \cap B)}$ DeMorgan's Law $= \overline{(A \cup B)} \cup \overline{(A \cup B)}$ Law of Double Complement $= (A \cap B) \cup \overline{(A \cup B)}$ Commutative Law of \cup $= (A \cap B) \cup \overline{(A \cap B)}$ DeMorgan's Law $= [(A \cap B) \cup \overline{A}] \cap [(A \cap B) \cup \overline{B}]$ Distributive Law of \cup over \cap $= [(A \cup \overline{A}) \cap (B \cup \overline{A})] \cap [(A \cup \overline{B}) \cap (B \cup \overline{B})]$ Distributive Law of \cup over \cap $= [\mathcal{U} \cap (B \cup \overline{A})] \cap [(A \cup \overline{B}) \cap \mathcal{U}]$ Inverse Law $= (B \cup \overline{A}) \cap (A \cup \overline{B})$ Identity Law $= (A \cup B) \cap (A \cup \overline{B})$ Commutative Law of \cup $= (A \cup B) \cap (\overline{A} \cap B)$ DeMorgan's Law $= (A \cup \overline{B}) \cap (\overline{A} \cup B)$ Commutative Law of \cap $= (A \cup \overline{B}) \cap (\overline{A} \cup B)$ Commutative Law of \cap $= (A \cup B) \cap (\overline{A} \cup B)$ DeMorgan's Law

 $A = A \triangle B$

3.3 計數及范恩圖

Venn Diagram

NIU CSIE – Discrete Mathematics

Show that
$$\overline{(A \cup B) \cap C} = (\overline{A} \cap \overline{B}) \cup \overline{C}$$

$$\overline{(A \cup B) \cap C} = (\overline{A} \cap \overline{B}) \cup \overline{C}$$

$$A \cup B$$
 comprises regions 2,3,5,6,7,8 $(A \cup B) \cap C$ consists of regions 6,7,8

 $(\overline{A} \cap \overline{B}) \cup \overline{C}$ is made up of regions 1,2,3,4,5

$$(A \cup B) \cap C$$
 is made up of regions 1,2,3,4,5
 \overline{A} comprises regions 1,3,4,6
 \overline{B} comprises regions 1,2,4,7
 $\overline{A} \cap \overline{B}$ consists of regions 1,4
 \overline{C} comprises regions 1,2,3,5

NIU CSIE – Discrete Mathematics

Counting

對<mark>有限</mark>字集 \mathcal{U} 上的集合A,B,下面的范恩圖將助我們可以 $|\mathcal{U}|$,|A|,|B| 及 $|A \cap B|$ 來得 $|\overline{A}|$ 及 $|A \cup B|$ 的計數公式。

$$A \cup \overline{A} = \mathcal{U}$$
 and $A \cap \overline{A} = \emptyset$, so $|A| + |\overline{A}| = |\mathcal{U}|$
 $A \cap B = \emptyset$, so $|A \cup B| = |A| + |B|$

在一個 50 位大一新生的班級上,有 30 位學習 C++,25 位學習 Java,且有 10 位兩種語言均學習。試問有多少位大一新生學習 C++ 或 Java?

我們令 \mathcal{U} 表 50 位大一新生的班級,A 為學習 C++ 的那些學生所成的子集合,且 B 為學習 Java 的那些學生所成的子集合。欲回答這個問題,我們需 $|A \cup B|$ 。圖 3.11 中,各區域的數目是由所給的資訊獲得:|A| = 30,|B| = 25, $|A \cap B|$ = 10。因此, $|A \cup B|$ = 45 \neq 55 = 30 + 25 = |A| + |B| ,因为 |A| + |B| 計數在 $A \cap B$ 的學生兩次。欲救濟這個重數,我們由 |A| + |B| 減去 $|A \cap B|$ 而得正確公式: $|A \cup B|$ = |A| + |B| — $|A \cap B|$ 。

$$|A| = 23, |B| = 26, |C| = 30,$$

 $|A \cap B| = 7, |A \cap C| = 8,$
 $|B \cap C| = 10, \text{ and}$
 $|A \cap B \cap C| = 3$

$$|A \cup B \cup C| = ?$$

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C|$$
$$+ |A \cap B \cap C|$$
$$= 23 + 26 + 30 - 7 - 8 - 10 + 3 = 57.$$