

#### POPULATION RESEARCH SEMINAR SERIES

Sponsored by the Statistics and Survey Methods Core of the U54 Partnership

## **Application of GEE and Mixed Effects Model in Longitudinal Data Analysis**

Presented by: Ling Shi Umass Boston





# 1. FEATURES OF LONGITUDINAL DATA

#### **Example 1**

Prospective Longitudinal Evaluation of Quality of Life in Patients With Permanent Colostomy After Curative Resection for Rectal Cancer (Ito et al, <u>J Wound Ostomy Continence Nurs</u>, 2012).

- ☐ Follow a group of rectal cancer patients who were scheduled to undergo curative surgery with a permanent colostomy to evaluate health-related quality of life in patients with a colostomy immediately before and during the first year after surgery.
- ☐ Outcome variable: quality of life using the Short Form-36 version 2
- ☐ Measurement schedule: One baseline measurement (before surgery) and three follow-up measurements at 2, 6, and 12 months after surgery



FIGURE 2. Changes in quality-of-life scores of 7 patients completed the questionnaires at all 4 time points (N = 7). Abbreviation: NBS, norm-based scoring.

#### Example 2

- Receipt of general medical care by colorectal cancer patients (Baldwin et al, J Am Board Fam Med, 2011).
- ☐ To evaluate changes in general medical care among elderly patients with colorectal cancer (CRC), from before diagnosis through longterm survival.
- Outcome variable: Receipt of preventive services (influenza vaccination, mammography) and, among diabetics, HgbA1c and lipid testing
- Measurement schedule: One baseline measurement (before diagnosis) and three follow-up measurements: after initial treatment, the surveillance phase (2-4 years after washout), and the survival care phase (5-7 years after washout)











#### **Example 3**

Quality-of-life evaluation for advanced non-small-cell lung cancer: a comparison between vinorelbine plus gemcitabine followed by docetaxel versus paclitaxel plus carboplatin regimens in a randomized trial (Kawahara et al, BMC Cancer, 2011).

- A randomized trial of vinorelbine plus gemcitabine followed by docetaxel (VGD) versus paclitaxel plus carboplatin (PC) in patients with advanced non-small-cell lung cancer, to test whether the VGD regimen produced better QOL compared with the PC regimen in patients with advanced NSCLC.
- □ Outcome variable: Quality of life assessed by the FACT-L, FACT-Taxane and FACIT-Sp QOL instruments
- ☐ Measurement schedule: One baseline measurement and three follow-up measurements at 6, 12 and 18 weeks after the treatment



Figure 2 Changes in FACT-L score.



Figure 3 Changes in FACT-Taxane score.

## Longitudinal Data

- Repeated measurements on study participants
- The trajectories of outcome variables

### Cross-sectional vs. Longitudinal



### Cross-sectional data



## Longitudinal data



## Features of Longitudinal Data

- Longitudinal data: Repeated measurements usually positively correlated
- OLS regression: Observations are independent of each other
- Ignoring correlation between observations can result in bias in SE: significance and CI
- Direction of bias depends on whether the variable is time-dependent (varying) or time-independent (unvarying)

## When ignoring correlation....

- Time-dependent variable, e.g. "age": change in Y by age (slope) →overestimated SE → spuriously large p value → less likely to reject H0
- Time-independent variable, e.g. "treatment": difference in Y between intervention and control → underestimated SE → spuriously small p value → more likely to reject H0

Special techniques for longitudinal data analysis to account for correlation

## 2. POPULATION AVERAGE MODEL

Example: Subjects are randomized to receive intervention (Trt=1) and control (Trt=0).

| Subject | Y <sub>i1</sub> | Y <sub>i2</sub> | <br>Y <sub>ij</sub> | Trt | Sex | Race |
|---------|-----------------|-----------------|---------------------|-----|-----|------|
| 1       | Y <sub>11</sub> | Y <sub>12</sub> | <br>$Y_{1j}$        |     |     |      |
| 2       | Y <sub>21</sub> | Y <sub>22</sub> | <br>$Y_{2j}$        |     |     |      |
|         |                 |                 | <br>                |     |     |      |
| i       | Y <sub>i1</sub> | $Y_{i2}$        | <br>$Y_{ij}$        |     |     |      |

- Y<sub>ii</sub>: j<sup>th</sup> response of the i<sup>th</sup> individual
- Different subjects are independent
- Repeated measures on the same subject are correlated

Fit a population average model to show change in Y over time:

$$Y_{ij} = \beta_0 + \beta_1 \operatorname{Trt}_i + \beta_2 \operatorname{Time}_{ij} + \beta_3 \operatorname{Trt}_i \cdot \operatorname{Time}_{ij} + e_{ij}$$

Average difference in Y between Trt = 1 and Trt =0 when Time =0 (baseline)

Rate of change in Y (slope) among Control Group (Trt =0)

Difference in rate of change (slopes) between Trt = 1 and Trt =0

### Population Average Model



$$Y_{ij} = \beta_0 + \beta_1 \operatorname{Trt}_i + \beta_2 \operatorname{Time}_{ij} + \beta_3 \operatorname{Trt}_i \cdot \operatorname{Time}_{ij} + e_{ij}$$







### Time, group effects and interaction



#### Generalized Estimating equations (GEE)

- Developed by Liang and Zeger in 1980s
- Model: use regression model with robust variance estimation, allowing for within individual correlations in response
- Mechanism: Assume a working correlation for the within individual correlation; then estimate the regression coefficients using weighted least squares and the assumed working correlation; then estimate the standard errors robustly

- Independent  $\begin{bmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \sigma^2 \end{bmatrix}$  ry)
- Autoregressive
- Unstructured (no specification)

Independent

Exchangeable (compound symmetry)

• Autoregressive  $\begin{bmatrix} \sigma^2 & a & a \\ a & \sigma^2 & a \end{bmatrix}$  • Unstructured (no standard expression)

Independent

```
• Exchangeable ( \sigma^2 ar \sigma^2 ) \sigma^2 ar \sigma^2 ar \sigma^2 ar \sigma^2 ar \sigma^2 ar \sigma^2 or \sigma^2 .
```

Independent

Unstructured (no specification)

#### **OLS** regression

$$egin{bmatrix} \sigma_{y_{it}}^2 & 0 & 0 \ 0 & \sigma_{y_{it}}^2 & 0 \ 0 & 0 & \sigma_{y_{it}}^2 \end{bmatrix}$$

GEE: specify the covariance (correlation structure)

# Case Study: change in depressive scores among lung cancer patients

- To examine gender difference in depressive symptoms among lung cancer patients following antidepressant treatment
- 60 lung cancer patients (30 female and 30 male patients) screened for depressive symptoms.
- Depressive score was measured once a month, 6 times over 6 months.

#### Independent variables include:

- visit time (t)
- gender (gender=1 if female, gender =2 if male)
- baseline age (years)

| subject∉ | t1₽ | t2₽ | t3₽ | t4₽ | t5₽ | t6₽ | gender₽ | age∉ |
|----------|-----|-----|-----|-----|-----|-----|---------|------|
| 1₽       | 22₽ | 23₽ | 20₽ | 22₽ | 18₽ | 20₽ | 1₽      | 29₽  |
| 2₽       | 32₽ | 28₽ | 23₽ | 22₽ | 16₽ | 14₽ | 2₽      | 43₽  |
| 3₽       | 17₽ | 17₽ | 13₽ | 11₽ | 12₽ | 11₽ | 1₽      | 26₽  |
| 4₽       | 18₽ | 28₽ | 22₽ | 17₽ | 16₽ | 16₽ | 1₽      | 28₽  |
| 5₽       | 16₽ | 14₽ | 12₽ | 7₽  | 9₽  | 9₽  | 2₽      | 25₽  |
| 6₽       | 24₽ | 16₽ | 13₽ | 12₽ | 11₽ | 9₽  | 1₽      | 32₽  |

- H01:Are the trends similar in female and male patients?.
   (i.e. β3=0: no group by time interaction)
- H02:If the trends of female and male are parallel, are they also at the same level? (i.e. β1=0: no group effect)
- H03: If the trends of female and male are parallel, are the means constant over time? (i.e. β2=0: no time effect)

$$Y_{ij} = \beta_0 + \beta_1 \operatorname{Sex}_i + \beta_2 \operatorname{Time}_{ij} + \beta_3 \operatorname{Sex}_i \cdot \operatorname{Time}_{ij} + \beta_4 \operatorname{Age}_i + \operatorname{e}_{ij}$$

#### Stata

Wide format

| subject# | t1₽ | t2₽ | t3₽ | t4₽ | t5₽ | t6₽ | gender₽ | age∉ |
|----------|-----|-----|-----|-----|-----|-----|---------|------|
| 1₽       | 22₽ | 23₽ | 20₽ | 22₽ | 18₽ | 20₽ | 1₽      | 29₽  |
| 2₽       | 32₽ | 28₽ | 23₽ | 22₽ | 16₽ | 14₽ | 2₽      | 43₽  |
| 3₽       | 17₽ | 17₽ | 13₽ | 11₽ | 12₽ | 11₽ | 1₽      | 26₽  |
| 4₽       | 18₽ | 28₽ | 22₽ | 17₽ | 16₽ | 16₽ | 1₽      | 28₽  |
| 5₽       | 16₽ | 14₽ | 12₽ | 7₽  | 9₽  | 9₽  | 2₽      | 25₽  |
| 6₽       | 24₽ | 16₽ | 13₽ | 12₽ | 11₽ | 9₽  | 1₽      | 32₽  |

reshape long score, i(subject) j(t)

Long format

| subject# | t₽ | ⁺score₽ | gender₽ | age∉ |
|----------|----|---------|---------|------|
| 1₽       | 1₽ | 22∻     | 1₽      | 29₽  |
| 1₽       | 2₽ | 23∉     | 1₽      | 29₽  |
| 1₽       | 3₽ | 20∉     | 1₽      | 29₽  |
| 1₽       | 4₽ | 22∻     | 1₽      | 29₽  |
| 1₽       | 5₽ | 18∻     | 1₽      | 29₽  |
| 1₽       | 6₽ | 20∉     | 1₽      | 29₽  |
| 2₽       | 1₽ | 32∉     | 2₽      | 43₽  |
| 2₽       | 2₽ | 28∉     | 2₽      | 43₽  |
| 2₽       | 3₽ | 23∉     | 2₽      | 43₽  |
| 2₽       | 4₽ | 22∻     | 2₽      | 43₽  |
| 2₽       | 5₽ | 16∻     | 2₽      | 43₽  |
| 2₽       | 6₽ | 14∻     | 2₽      | 43₽  |

#### Stata

xtgee



#### SAS

proc genmod

Subject ID and Gender are categorical covariates

```
proc genmod data=depress;
class subject gender;
model score= t gender age gender*t;
repeated subject = subject / type=exch corrw;
run;

Use subject to
identify
repeated
measures
```

#### Choice of correlation structure

From empirical data:

## Independent correlation

Estimated within-subject correlation matrix R:

```
c2
              с3
                        c4
                                      c6
r1 1.0000
r2 0.0000 1.0000
r3 0.0000 0.0000 1.0000
r4 0.0000 0.0000 0.0000 1.0000
r5 0.0000 0.0000 0.0000 0.0000 1.0000
r6 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
```

#### Compound Symmetry / Exchangeable

```
c1 c2 c3 c4 c5 c6
r1 1.0000
r2 0.5743 1.0000
r3 0.5743 0.5743 1.0000
r4 0.5743 0.5743 0.5743 1.0000
r5 0.5743 0.5743 0.5743 0.5743 1.0000
r6 0.5743 0.5743 0.5743 0.5743 1.0000
```

## Auto regressive

```
c4
                                    c5
  c1
           c2
                    c3
                                            c6
r1 1.0000
r2 0.6862 0.6862000
r3 0.47080.666862 1.0000
         <u>0.470</u>8 0.6862 1.0000
r4 0.3231
r5 0.2217 0.3231 0.4708 0.6862 1.0000
r6 0.1521 0.2217 0.3231 0.4708 0.6862 1.0000
```

#### Unstructured

```
c1 c2 c3 c4 c5 c6
r1 1.0000
r2 0.5206 1.0000
r3 0.3927 0.8512 1.0000
r4 0.3483 0.7289 0.6795 1.0000
r5 0.2834 0.7379 0.7517 0.7804 1.0000
r6 0.1593 0.5772 0.5901 0.6405 0.7408 1.0000
```

#### Choice of correlation structure

- Compared to the empirical correlation matrix
- Test by comparing the goodness of fit:
  - -2 Res Log Likelihood (likelihood ratio test)
  - AIC (smaller is better)
  - BIC (smaller is better)

#### Decision: unstructured

| •                                         | Coef.                                       |                                                |                                 | • •                              | [95% Con                           | f. Interval]                   |
|-------------------------------------------|---------------------------------------------|------------------------------------------------|---------------------------------|----------------------------------|------------------------------------|--------------------------------|
| t  <br>_gender_1 <br>age  <br>_genderXt_1 | -1.320369<br>-3.613827<br>.2351767<br>00971 | .2473101<br>1.557062<br>1 .1031182<br>.3357138 | -5.34<br>-2.32<br>2.28<br>-0.03 | 0.000<br>0.020<br>0.023<br>0.977 | -1.805087<br>-6.665611<br>.0330682 | 5620418<br>.4372841<br>6482771 |

No group by time effect
Time effect: depression score
decreases by 1.3 each
month.

Group effect: Male < Female



# 3. SUBJECT SPECIFIC MODEL



These are subjectspecific regression lines (random effects)

This is the population average (i.e. fixed effect)

#### Population Average (fixed effects):

$$Y_{ij} = \beta_0 + \beta_1 \operatorname{Trt}_i + \beta_2 \operatorname{Time}_{ij} + \beta_3 \operatorname{Trt}_i \cdot \operatorname{Time}_{ij} + e_{ij}$$

#### Subject Specific (random effects):



#### Mixed Effects Model

 Model both fixed effects (i.e. population average) and random effects (i.e. subject/individual specific)

#### Population Average Model



$$Y_{ij} = \beta_0 + \beta_1 \operatorname{Trt}_i + \beta_2 \operatorname{Time}_{ij} + \beta_3 \operatorname{Trt}_i \cdot \operatorname{Time}_{ij} + e_{ij}$$

#### Subject Specific (Mixed Effects) Model



$$Y_{ij} = \beta_0 + b_{0i} + \beta_1 Trt_i + \beta_2 Time_{ij} + b_{2i} Time_{ij} + \beta_3 Trt_i \cdot Time_{ij} + e_{ij}$$

#### Subject Specific (Mixed Effects) Model

$$Y_{ij} = \beta_0 + b_{0i} + \beta_1 Trt_i + \beta_2 Time_{ij} + b_{2i} Time_{ij} + \beta_3 Trt_i \cdot Time_{ij} + e_{ij}$$

$$\boldsymbol{e}_{ij} \sim N(0, \sigma_{ij}^2)$$

Error or residual: variation of Y value of subject i from its average at time j (i.e. fitted regression line for subject i)
It describes within-subject random errors



#### Subject Specific (Mixed Effects) Model

$$Y_{ij} = \beta_0 + b_{0i} + \beta_1 Trt_i + \beta_2 Time_{ij} + b_{2i} Time_{ij} + \beta_3 Trt_i \cdot Time_{ij} + e_{ij}$$

$$b_{0i} \sim N(\beta_0, \sigma_{b_0}^2)$$
 Variability in intercepts between subjects

$$b_{2i} \sim N(\beta_2, \sigma_{b2}^2)$$
 Variability in slopes between subjects





Covariance between intercepts and slopes

Variance of slopes: Deviations of individual slopes from the average slope

$$G = egin{bmatrix} oldsymbol{\sigma}_{b_0}^2 & 0 \ 0 & 0 \end{bmatrix}$$



$$G = egin{bmatrix} 0 & 0 \ 0 & \sigma_{b_2}^2 \end{bmatrix}$$



$$G = egin{bmatrix} oldsymbol{\sigma}_{b_0}^2 & 0 \ 0 & oldsymbol{\sigma}_{b_2}^2 \end{bmatrix}$$



$$G = \begin{bmatrix} \sigma_0^2 & Cov \\ b_0 & \sigma_0^2 \end{bmatrix}$$

$$Cov_{b_0b_2} & \sigma_{b_2}^2 \end{bmatrix}$$



## Case Study: RCT of antidepressant

We are interested to know the effects of antidepressant on cancer patients' depressive score. A total of 20 cancer patients were randomly assigned to receive antidepressant and placebo. They were measured depressive score for four times.

| ID | Trt | Y1  | Y2  | Y3  | Y4  |
|----|-----|-----|-----|-----|-----|
| 1  | 1   | 218 | 206 | 176 | 194 |
| 2  | 1   | 228 | 228 | 224 | 210 |
| 3  | 1   | 226 | 216 | 196 | 206 |
| 4  | 1   | 192 | 188 | 198 | 194 |
| 5  | 1   | 216 | 220 | 192 | 208 |
| 6  | 1   | 220 | 212 | 220 | 214 |
| 7  | 1   | 226 | 220 | 212 | 206 |
| 8  | 1   | 224 | 216 | 198 | 216 |
| 9  | 1   | 242 | 222 | 192 | 230 |
| 10 | 1   | 196 | 206 | 196 | 214 |
| 11 | 0   | 226 | 238 | 202 | 228 |
| 12 | 0   | 246 | 234 | 194 | 206 |
| 13 | 0   | 224 | 218 | 216 | 228 |
| 14 | 0   | 198 | 196 | 156 | 176 |

# Scientific hypotheses

- H01:Are the trends similar in intervention and control groups? (i.e. β3=0)
- H02:If the trends of the intervention and control groups are parallel, are they also at the same level? (i.e. β1=0)
- H03: If the trends of the intervention and control groups are parallel, are the means constant over time? (i.e. β2=0)
- In addition, we are interested in whether there are any differences between subjects on the trend.

 $Y_{ij} = \beta_0 + b_{0i} + \beta_1 Trt_i + \beta_2 Time_{ij} + b_{2i} Time_{ij} + \beta_3 Trt_i Time_{ij} + e_{ij}$ 

#### SAS

```
data long;
                          Change to long
set wide;
                          format
y=T1; t=1; output;
y=T2; t=2; output;
y=T3; t=3; output;
y=T4; t=4; output;
drop T1 - T4;
                                        It gives hypothesis testing
run;
                                        on the random effects
proc mixed data = long covtest;
class ID Trt;
                                     It gives regression
                                     coefficients and Wald test
model y=Trt t t*Trt/ s chisq;_
random intercept t/ type=un sub=ID g v_vcorr;
run:
                                         G matrix, e<sub>ii</sub>, and correlation
This specifies random
                         G matrix as
                                         matrixes for random effects
intercept and slope
                         unstructured
```

Estimated G Matrix



Total variability in Y: between subject variability + within subject random error=107.3+0.2408+126.83 = 234.3708

54% of variability in depressive score is explained by within-subject variation. More within-subject variation than between-subject variation.

The Mixed Procedure
Solution for Fixed Effects



No group\*time trend No group difference Strong effect of time.

#### **GEE**

```
proc genmod data=long;
class ID Trt;
model y=Trt t t*Trt;
repeated subject = ID / type=<u>exch;</u>
run;
```

#### Analysis Of GEE Parameter Estimates Empirical Standard Error Estimates

| Parameter |   | Estimate  | Standard<br>Error |          | nfidence<br>nits | Z I    | r >  z  |
|-----------|---|-----------|-------------------|----------|------------------|--------|---------|
| Intercept |   | 220. 9000 |                   | 210.7594 |                  | 42, 70 | <. 0001 |
| Trt       | 0 | 6. 9000   | 7. 3188           | -7. 4446 | 21. 2446         | 0. 94  | 0. 3458 |
| Trt       | 1 | 0.0000    | 0. 0000           | 0. 0000  | 0.0000           | •      | •       |
| t         |   | -4.1800   | 1.3578            | -6.8412  | -1.5188          | -3.08  | 0.0021  |
| t*Trt     | 0 | -3.4000   | 2. 1470           | -7.6080  | 0.8080           | -1.58  | 0.1133  |
| t*Trt     | 1 | 0.0000    | 0.0000            | 0.0000   | 0.0000           |        |         |

#### GEE vs. Mixed Effects model

| Parameter | Population Average<br>(GEE exchangeable) | <b>Subject Specific</b> (Random b <sub>0</sub> & b <sub>1)</sub> |
|-----------|------------------------------------------|------------------------------------------------------------------|
| Trt       | 6.9 (7.32)                               | 6.9 (7.71)                                                       |
| Time      | -4.1 (1.36)                              | -4.2 (1.60)                                                      |
| Trt*time  | -3.4 (2.15)                              | -3.4 (2.26)                                                      |

Mixed model is close to GEE with exchangeable correlation: Nearly identical coefficients and slightly different SEs

#### GEE vs. Mixed Effects Model

- GEE (population average model):
  - On average, is there a trend in score change over time?
  - Robust: even if correlation model is wrong, SE still valid
- Mixed effects (subject specific model):
  - Are there any differences between subjects on the trend in score change over time? (Do all subjects have the same trend over time?)
  - Advantages
    - Characterization of heterogeneity
    - Incomplete unbalanced data

#### Extension

- Generalized linear model: outcome can be binary, counts, etc.
- Multilevel data analysis:
  - For longitudinal data with repeated measures, data are clustered within the subject
  - Studies by families (data are clustered within family)
  - Studies by school, clinic, school district, etc. (data are clustered within these levels)

correlation or dependencies in the data