MATH221 – Mathematics for Computer Science – Autumn 2018 Assignment One – Due in Week Six Tutorial

Student Name:	Student Number:
Tutorial Day & Time:	
	ot be marked, and will be recorded as unsatisfactory. mitted to your tutor in your Week 6 tutorial.
Question 1. [2 Marks] Consider your stude with $0 \le r < 3$ such that $n = 3q + r$.	ent number, n to be a natural number. Find natural numbers q, r
Question 2. [2 Marks] Using the value of question:	of r computed in Question 1 above answer only part (r) of this
(0) Let P, Q be statements. Write down a confalse. Justify your answer using a truth tak	npound statement that is true when one and only one of P or Q is ole.
(1) Is $\sim Q \Rightarrow P \lor (P \land \sim Q)$ a tautology, a	contradiction or a contingent statement? Justify your answer.
(2) Prove, using cases, that for every natural n	number $n \ge 1$ the expression $n^2 + n + 4$ is not a prime number.
Question 3. [2 Marks] Use a truth table to	show that the following is a valid argument.
	$P \Rightarrow Q$
	$\sim P$
	$\therefore \sim Q$.
argument, like those in the examples from lectures Claim k and Claim $k+1$ are, then wrap up th ").	question, full marks will only be awarded for writing out a <i>full</i> a. That is, make it clear which step you're doing, and write out what e argument with a concluding sentence ("Therefore, by induction,
Prove by mathematical induction that $1^2 + 3^2 +$	$5^{2} + \dots + (2n-1)^{2} = \frac{4n^{3}-n}{3}$ for all $n \in \mathbb{N}$.
МАТЦ991 М	athematics for Computer Science
	athematics for Computer Science ment One, Autumn 2017
	ceipt for Tutorial Submission
Student Name:	Student Number:
Date Submitted:	Tutor Initials: