

Technische Grundlagen der Informatik WS 2023/24

Teil 2: Nachrichtentechnik

Einführung und Grundbegriffe der Informationstechnik

Dr. Solveig Schüßler

Inhalte der LV

- Grundlagen der Informationstheorie
- Signale im Zeit und Frequenzbereich
 - Signalarten (periodische und einmalige Signale)
 - Darstellung im Zeit- und Frequenzbereich
 - Abtasttheorem
- Nachrichtenübertragung
 - Übertragungsfunktion
 - Übertragungsqualität
 - Übertragungsmedien

Allgemeingültiges Blockschaltbild der Nachrichtenübertragung

Kommunikationsformen

Information(en): Mitteilung / Auskunft

- Wissen, das ein Absender einem oder mehreren Empfängern vermittelt
- Strukturiert, haben Nutzen für Betrachter ("Neuigkeitswert")
- werden aufgenommen, gespeichert, verarbeitet, weitergegeben, müssen hierfür aber an einen Träger gebunden sein

Nachricht: = Grundelement der Kommunikation

- "Träger der Informationen" im Übertragungsprozess
- Lässt sich qualitativ als Signal und quantitativ als bedeutungstragendes Zeichen beschreiben
- Während Kommunikation auf Basis eines (beidseitig bekannten)
 Codes von Sender zu Empfänger übertragen
- Entschlüsselung der Information durch Dekodierung der Nachricht zusammen mit bekanntem Kontext

Signal:

- physikalische Erscheinungsform einer Nachricht zum Zwecke der Übertragung (die Information einer physikalischen Größe aufgeprägt)
- zeitabhängige Größe

Daten:

- sind Rohinformationen in Form von Zahlen, Buchstaben, Symbolen, Töne...
- unstrukturiert, Bedeutung/ Kontext ersteinmal nicht erkennbar
- werden zwischen Systemen übertragen oder sind gespeichert

Code: ist eine Vorschrift, wie Nachrichten zur Übertragung oder Weiterverarbeitung für ein Zielsystem umgewandelt werden (z.B. Morsecode, Blindenschrift, Dualcode)

Informationstheorie

Fachbereich Elektrotechnik und Informationstechnik

- → Wir übermitteln also ganz allgemein über physikalische Übertragungskanäle Informationen bzw. tauschen Informationen aus.
- → Übertragen werden Nachrichten in Form von (physikalischen) Signalen. Zugrundeliegendes Kodierungen müssen bekannt sein.
- → Über konkrete Formen hierzu machen wir uns später Gedanken.

Informationstheorie

- Mathematische Theorie aus Bereich Wahrscheinlichkeitsrechnung
- Begriffe: Information, Entropie, Codewort, (Datenkompression, Kodierung), max. Kanalkapazität/Datenübertragungsrate, ...
- qualitative und quantitative Beschreibung von Information
- Theorie u.a. nach: Shannon (USA), Kotelnikov (UdSSR) ca. 1948

Technische Grundlagen der Informatik NT WS2023/24 VL1 - Folie 7

Einführendes Beispiel

Zusammenfassung Information / Informationsgehalt

- Informationen werden vom Sender zum Empfänger über ein Medium übertragen
- Information ist eine r\u00e4umliche oder zeitliche Folge physikalischer Signale, die mit bestimmten Wahrscheinlichkeiten auftreten
- Ein Zeichen kann mit mehreren JA/NEIN-Fragen aus einem Zeichenvorrat gewählt werden. (Kodiert man die Zeichen mithilfe von Bitstellen, entspricht ein Bit dabei einer Antwort auf so eine Ja/Nein-Frage)
- Informationsgehalt ist abhängig von der Auftrittswahrscheinlichkeit (Ist die <u>Antwort bekannt</u>/ keine Frage nötig: Information 0 ← <u>unveränderliches</u> <u>Signal</u>)
- → Der Informationsgehalt ist messbar.

Informationstheorie - Grundbegriffe

Fachbereich Elektrotechnik und Informationstechnik

Einfaches Bsp. zur "Technikseite" der Datenübertragung: Telex (ca. 1930 – 1980; 2007 durch Telekom beendet)

- Zweidrahtleitung, 2 "Zustände" kein Strom oder 40mA
- Asynchrone Übertragung mit Start- und Stoppbit
- Ein übertragenes Zeichen: 5 Bit (+ ein Startbit und ein Stoppbit)
- Startbit, Datenbit: 20ms, Stoppbit: mind. 30ms

WS2023/24

Fachbereich Elektrotechnik und Informationstechnik

Ein Zeichen: 5Bit, z.B. "F" → 10110 Wieviele unterschiedliche Zeichen lassen sich darstellen?

Wieviele ja/nein-Fragen muss ich mind. stellen, um das Zeichen zu ermitteln?

Hochschule Fulda

University o

Fachbereich Elektrotechnik und

Deutschland

A B C D W u	?	•	2			
B C D E u	?	•				
C D E	: +					
E	4		-		•	
Ε	_					Г
	3					
				•	•	
G			•		•	•
Н						
I	8			•		
J	유					
K	(•			•	
L)					•
M				•		
N	,			•	•	
0	9				•	
Р	0		•			
Q	1	•	•			•
R	4		•		•	
S	,	•		•		
T	5					•
U	7	•	•	•		
٧	=		•	•	•	
W	2	•	•			
X	/	•			•	
Y	6		1	•		•
Z	+	•	1	-		•
<(Wa	genr.)	i	1		•	
≡(Ze	ile)		•			
A	(Bu)	•			•	•
1	(Zi)		•		•	•
Zwisc	henr.			•		
	A	A (Bu)	V = W 2 • X / • Y 6 • Z + • I < (Wagenr) = (Zeile) A (Bu) • I (Zi) • I	A (Bu) • • • • • • • • • • • • • • • • • • •	A (Bu) • • • • • • • • • • • • • • • • • • •	A (Bu) • • • • • • • • • • • • • • • • • • •

Codeelement

einfachstes Element zur Darstellung von Information (1 Codeelement entspricht 1 Schritt)

Beispiel:

Telex: ein Codeelement entspricht Strom bzw. kein Strom (für eine Dauer von 20ms)

Codezeichen oder Codewort

zusammengehörige Gruppe von Codeelementen. Insgesamt existiert eine endliche Menge von unterschiedlichen Codezeichen.

Beispiel:

Telex: 5 Codeelemente bilden hier ein Codewort

Stufenzahl n

Anzahl verfügbarer, unterschiedlicher Codeelemente (pro Schritt)

Telex: n =

Stellenzahl m

Anzahl der Codeelemente pro Codezeichen/Codewort

Telex: m =

Fachbereich Elektrotechnik und Informationstechnik

Beispiele

wir legen fest: Stellenzahl m = 5

n = 4

n = 2
(Bsp. Telex – binäre Codierung)

$$I=0A \rightarrow 0$$
 | $I=40mA \rightarrow 1$

n = 8

Fachbereich Elektrotechnik und Informationstechnik

Wieviele verschiedene Codeworte könnten jeweils dargestellt werden? (dies entspricht dem Zeichenvorrat N_0)

Allg. Berechnungsvorschrift:

n=2

n=4

n=8

wir hatten festgelegt: Stellenzahl **m = 5**

Fachbereich Elektrotechnik und Informationstechnik

Codezeichenvorrat N₀

endliche Menge von Codezeichen, die mit n Stufen und m Stellen prinzipiell dargestellt werden können. Es gilt: $N_0 = n^m$

Beispiel:

Telex: $N_0 = 2^5 = 32$ Codezeichen

Hochschul University of A

Fachbereich Elektrotechnik und Inf

Alphabet geordneter Zeichenvorrat

Deutschland 2345 A 2 3 4 5 6 7 8 9 B D E G Н . . K 12 13 Ν 0 18 19 20 21 22 23 24 25 26 27 R V W X Y <(Wacenr.) 28 29 30 (Bu) Zwischenr.

Code

Vorschrift für die eindeutige Zuordnung der Zeichen eines Zeichenvorrats zu denjenigen eines anderen Zeichenvorrats.

Informationstheorie – Beispiel

Fachbereich Elektrotechnik und Informationstechnik

Übungsaufgabe

Annahme: wir übertragen ASCII-Code, jedes Codezeichen wird in 8µs übertragen (Protokolle, Handshakes ... werden nicht beachtet)

→ ein ASCII-Zeichen ___ Bit

Bestimmen Sie

Stellenzahl m =

Stufenzahl n =

Codezeichenvorrat: N_0 =

ASCII-Tabelle

Dec Hex	Oct	Chr	Dec Hex	Oct	HTML	Chr	Dec He	x Oct	HTML	Chr	Dec	Hex	Oct	HTML	Chr
0 0	000	NULL	32 20	040		Space	64 40		2 8#064;	@	96	60	140	`	
1 1		SoH	33 21		!	!	65 41		A	Α	100000	61	141	a	а
2 2	002	SoTxt	34 22	042	"	"	66 42	102	2 B	В	98	62	142	b	b
3 3	003	EoTxt	35 23	043	#	#	67 43		8 C	C		63	143	c	С
4 4	004	EoT	36 24	044	\$	\$	68 44		£ D	D	100		144	d	d
5 5	005	Enq	37 25	045	%	%	69 45		8#069;		101	65	145	e	е
6 6	006	Ack	38 26	046		&	70 46		8 8#070;		102				f
7 7	007	Bell	39 27	047	'	.1	71 47		2 G	G	103	67	147	g	g
88	010	Bsp	40 28	050	((72 48	110) H	Н	104	68	150	h	h
9 9	011	HTab	41 29	051))	73 49	111	L I	I	105	69	151	i	i
10 A			42 2A	052	*	*	74 4A		2 J	J	106		152	j	j
11 B	013	VTab	43 2B	053	+	+	75 4B		8 K	K	107	6B	153	k	k
12 C	-	FFeed	44 2C	054		1	76 40		& #076;	L	108	6C	154	l	1
13 D	015		45 2D		-	-	77 4D		M	M		6D		m	m
14 E		SOut	46 2E	056	.		78 4E		8 8#078;	N	110		156	n	n
15 F	017	SIn	47 2F	057	/	/	79 4F	117	⁷ O	0	111		157	o	0
16 10	020	DLE	48 30	060	,	0	80 50) P	P	112			p	p
17 11	021	DC1	49 31	061	1	1	81 51		Q		113	71	161	q	q
18 12	022	DC2	50 32	062	2	2	82 52		2 R		114		162	r	r
19 13	023	DC3	51 33	063	3	3	83 53	123	8 S	S	115			s	
20 14	024	DC4	52 34	064	4	4	84 54		& #084;	Т	116	74		t	
21 15	025	NAck	53 35	065	5	5	85 55	125	U	U	117	75	165	u	u
22 16	026	Syn	54 36	066	6	6	86 56	126	8 8#086;	V	118	76	166	v	V
23 17	027	EoTB	55 37	067	7	7	87 57		8#087;		119		167	w	W
24 18	030	Can	56 38	070		8	88 58	130	2 8#088;	X	120	78		x	
25 19	031	EoM	57 39	071	9	9	89 59		Y		121	79		y	
26 1A	032	Sub	58 3A	072	:	:	90 5A	132	2 Z	Z	122	7A	172	z	Z
27 1B		Esc	59 3B	073	;	;	91 5B		8 [[123		173	{	{
28 1C		FSep	60 3C	074	<	<	92 50		& #092;	1	124	7C	174		
29 1D	035	GSep	61 3D	075	=	=	93 5D	135]]	125	7D	175	}	}
30 1E	036	RSep	62 3E	076	>	>	94 5E		8#094;	٨	126		176	~	~
31 1F	037	USep	63 3F	077	?	?	95 5F	137	8#095;	_	127	7F	177		Delete

charstable.com

Informationstheorie –

Grundbegriffe zeitl. Übertragung

Fachbereich Elektrotechnik und Informationstechnik

→ bisher keine Aussagen zur Übertragungsgeschwindigkeit

Schrittdauer Ti

Dauer für die Übertragung eines Codeelements

Schrittgeschwindigkeit v_s

$$v_S = \frac{1}{T_i}$$

$$[v_s] = \frac{Schritte}{s} = Bd$$

Informationstheorie – Grundbegriffe zeitl. Übertragung

Fachbereich Elektrotechnik und Informationstechnik

Übertragungsgeschwindigkeit v_{ii} / Bitrate $[v_{ii}]$ = Bit / s

Wieviele Bits n_b können in 1 Schritt übertragen werden?

Informationstheorie – Grundbegriffe zeitl. Übertragung

Fachbereich Elektrotechnik und Informationstechnik

Übertragungsgeschwindigkeit v_{ii} / Bitrate [v_{ii}] = Bit / s

Wieviele Bits n_b können in 1 Schritt übertragen werden?

$$n_b = ld(n) = \frac{\lg(n)}{\lg 2}$$

Wieviele Bits können in 1 Sekunde übertragen werden?

$$v_{\ddot{\mathrm{u}}} = v_{\mathrm{s}} \cdot ld(n)$$

$$[v_{\ddot{\mathbf{u}}}] = bit/s$$

Informationstheorie – Grundbegriffe zeitl. Übertragung Beispiel

Fachbereich Elektrotechnik und Informationstechnik

Übungsaufgabe - weiter

Annahme: wir übertragen ASCII-Code, jedes Codezeichen wird in 8µs übertragen (Protokolle, Handshakes ... werden nicht beachtet)

Bereits bekannt: Stellenzahl m = 8, Stufenzahl n = 2, Codezeichenvorrat: N_0 = 256

Berechnen Sie: V_s , $V_{\ddot{u}}$

Wie ändern sich die Angaben, wenn wir eine 16-stufige Übertragung verwenden würden?

Fachbereich Elektrotechnik und Informationstechnik

Informationsgehalt I_{xi} eines Zeichens - Überraschungswert

Errate eine Zahl aus einem Vorrat von 32 Zahlen

Wahrscheinlichkeit jeder Zahl:

Anzahl der notwendigen Ja/Nein-Fragen:

Fachbereich Elektrotechnik und Informationstechnik

Informationsgehalt I_{xi} eines Zeichens - Überraschungswert

Errate ein Wort mit 4 Buchstaben

Wahrscheinlichkeit eines Zeichens:

Anzahl der notwendigen Ja/Nein-Fragen:

Fachbereich Elektrotechnik und Informationstechnik

Informationsgehalt I_{xi} eines Zeichens - Überraschungswert

Mit Auftrittswahrscheinlichkeit eines Zeichens x_i : $p(x_i)$

Es gilt:
$$p(x_1) > p(x_2) \rightarrow I(x_1)$$
 $I(x_2)$

Informationsgehalt eines Zeichens
$$x_i$$
: $I_{xi} = ld\left(\frac{1}{p(xi)}\right)$

... ist unabhängig von der konkreten Codierung

... ist nur abhängig von

der Auftrittswahrscheinlichkeit

Fachbereich Elektrotechnik und Informationstechnik

Entscheidungsgehalt Ho

Anzahl der Binärentscheidungen zur Auswahl eines Zeichens aus dem Zeichenvorrat N_0

... gilt, wenn alle **Zeichen gleich wahrscheinlich** sind

... ist unabhängig von der konkreten Codierung

... ist nur abhängig von der **Anzahl** der Codezeichen

$$H_0 = ld(N_0)$$

Beispiele

Informationstheorie

wichtige Beziehungen

Fachbereich Elektrotechnik und Informationstechnik

Mittlerer Informationsgehalt oder Entropie H

- Durchschnittliche Anzahl von Binärentscheidungen, die benötigt werden, um ein Zeichen aus einer Zeichenmenge zu identifizieren oder zu isolieren
- Maß, das für eine Nachrichtenquelle den mittleren Informationsgehalt ausgegebener Nachrichten
- Maß für die "Unordnung"

$$H = \sum_{i} p(x_i) \cdot I_i = \sum_{i} p(x_i) \cdot ld \frac{1}{p(x_i)}$$
 [H] = bit / Zeichen

Die Formel für H gilt, wenn die einzelnen Zeichen stochastisch unabhängig sind

Informationstheorie

wichtige Beziehungen

Fachbereich Elektrotechnik und Informationstechnik

Redundanz R

Differenz zwischen Entscheidungsgehalt H_0 und Entropie H

$$R = H_0 - H \ge 0$$
 [bit/Zeichen]

Oder: maximal möglicher Entscheidungsgehalt (bei Gleichverteilung) – tatsächlich mittlerer Entscheidungsgehalt

Relative Redundanz
$$r$$
: $r = \frac{H_0 - H}{H_0} \ge 0$

Beispiel zu Redundanz: Deutsche (Schrift-)Sprache

Informationstheorie

wichtige Beziehungen

Fachbereich Elektrotechnik und Informationstechnik

Informationsfluss F

$$F = \frac{H}{T_m}$$
 [bit/s] $T_m = \text{mittlere Dauer für die Übertragung eines Zeichens}$
$$T_m = \sum_i p(x_i) \cdot T_{x_i}$$
 Übertragungsdauer von x_i

häufiger Spezialfall: alle Zeichen sind gleichlang $\rightarrow T_{x_i} = \text{const} = T$

$$\Rightarrow$$
 $F = \frac{H}{T}$ [bit/s]

Reale Übertragung von Signalen

Kanalkapazität

maximaler Informationsfluss, der auf einem Kanal fehlerfrei übertragen werden kann

$$C = F_{\text{max}} = \left(\frac{H}{T_m}\right)_{\text{max}}$$
 [bit/s]

Technische Begrenzung der Kanalkapazität

- Maximale Schrittgeschwindigkeit des Kanals, z.B. Anzahl Änderung der Spannung in gegebener Zeitspanne
- Signal-Rausch-Verhältnis: entstehende oder "eingefangene" Störungen begrenzen Anzahl der sicher empfangbaren /sicher unterscheidbaren Symbole
- Genaueres findet sich im Shannon-Hartley-Gesetz

Übertragungsraten digitaler Kanäle

ISDN 2x 64kbit/s Daten und 16 kbit/s Steuerinformationen

ADSL2+ 25Mbit/s im Download

Serial ATA bis 1,5Gbit/s

USB 3.1 bis 10Gbit/s

Fast Ethernet bis 100Mbit/s

3G Mobilfunk bis 42Mbit/s

4G Mobilfunk (LTE) 500Mbit/s bis Gigabit-Bereich

5G Mobilfunk bis mehrere Gbit/s

Lichtwellenleiter bis Tbit/s