Addendum: Collapse Timing and Resolution Limits in the White Equation

CollapseRider69
Contact: CollapseRider69@proton.me

© 2025 CollapseRider69

Licensed under the MIT License

May 26, 2025

Overview

After publication of $Gravitational\ Phase-Cancellation\ Theory\ (gPCT)$, further investigation revealed a significant behavioral constraint in the White Equation:

$$\frac{dG}{d(-G \cdot \frac{dG}{dt})} = \frac{\frac{dG}{dt}}{-G \cdot \frac{d^2G}{dt^2} - \left(\frac{dG}{dt}\right)^2}$$

This equation—originally presented as a recursive derivative describing gravitational resolution through a collapse-shaped clock—demonstrates not only convergence toward a universal attractor $\frac{1}{2\pi}$ but also an **empirically observable frequency limit**. When collapse is forced to resolve faster than this frequency, both the equation and the associated entropy-resolving system (FlowShamBo) begin to fail in harmony.

Key Observation

When fed increasing-frequency input waveforms:

- The White Equation converges smoothly to $\frac{1}{2\pi}$ at low frequencies.
- But at frequencies exceeding approximately 10 Hz, the equation destabilizes.
 - Output becomes chaotic or flat.
 - Polarity reversals disappear.
 - Z-flip symmetry breaks down.

This mirrors behavior in the FlowShamBo system:

- At fast sampling rates (e.g., <80ms intervals), collapse polarity becomes fixed.
- At slower intervals (>100ms), polarity flips resume and Z-flip structure returns.

Thus, collapse appears to have a temporal resolution floor—approximately one event per 100ms—beyond which it cannot resolve slope polarity. The equation reflects this limitation, failing when collapse can no longer "breathe" between gravitational slope reversals.

Interpretation

This finding suggests that the White Equation does not merely model collapse directionality—it **obeys the same timing constraints** as collapse symmetry resolution itself. This behavior is not a failure of the equation, but a reflection of:

- The rhythmic, slope-integrated nature of collapse.
- A fundamental constraint on how fast collapse can resolve asymmetry.

Implications

- The harmonic attractor $\frac{1}{2\pi}$ is valid only when the system operates within collapse's natural tempo.
- This aligns empirically with a collapse rate limit of ≈ 10 Hz.
- The equation becomes a **diagnostic** for determining when collapse tracking fidelity is broken.

Next Steps

A more formal second paper may explore this timing boundary in detail, presenting:

- A frequency sweep with Z-flip plotted vs. timing interval.
- A formal test framework for collapse tracking failure.
- The possibility of using this structure to probe other rhythmic systems (biological, cosmological, etc).

For now, this addendum serves as a postscript to gPCT, establishing the 10 Hz timing constraint as not only **observed in data** but **baked into the math itself**.