Computabilità e Algoritmi (Mod. A) 14 Settembre 2009

Esercizio 1

Sia $\mathcal{A} \subseteq \mathcal{C}$ un insieme di funzioni calcolabili e sia $f \in \mathcal{A}$ tale che per ogni funzione finita $\theta \subseteq f$ vale $\theta \notin \mathcal{A}$. Dimostrare che $A = \{x \in \mathbb{N} \mid \varphi_x \in \mathcal{A}\}$ non è r.e.

Esercizio 2

Dire se esiste una funzione totale non calcolabile $f : \mathbb{N} \to \mathbb{N}$ tale che

$$f(x) \neq \mathbf{\varphi}_{x}(x)$$

solo su di un valore $x \in \mathbb{N}$. Se la risposta è negativa fornire una dimostrazione, se la risposta è positiva dare un esempio di una tale funzione.

Esercizio 3

Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} : \exists y, z \in \mathbb{N}. \ z > 1 \land x = y^z\}$, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 4

Studiare la ricorsività dell'insieme $V=\{x\in\mathbb{N}:|W_x|>1\}$, ovvero dire se V e \overline{V} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 5

Enunciare il Secondo Teorema di Ricorsione ed utilizzarlo per dimostrare che esiste $n \in \mathbb{N}$ tale che $W_n = E_n = \{x \cdot n : x \in \mathbb{N}\}.$