

QUALITÉ DE DÉVELOPPEMENT DIAGRAMME UML DE SÉQUENCE

≈ 2A - Bachelor Universitaire de Technologie - 2023/2024

i IUT d'Orsay - Université Paris-Saclay

PLAN

- Diagramme de séquence
- > Fragments combinés
- > Utilisation du diagramme de séquence

Retour au plan - Retour à l'accueil

CYCLE DE DÉVELOPPEMENT

PLAN

- Diagramme de séquence
- > Fragments combinés
- Utilisation du diagramme de séquence

Retour au plan - Retour à l'accueil

DÉFINITIONS

- Les diagrammes de séquence ont été introduits pour permettre de décrire les scénarios de communications entre objets.
 - décrire les messages échangés pour la réalisation d'une fonctionnalité.
 - identifier les liens et les méthodes nécessaires pour les objets.

- Un diagramme de séquence représente :
 - les entités (objets/acteurs) verticalement par des lignes de vie
 - les messages horizontalement par des flèches

LES ENTITÉS

- Deux entités principales dans un diagramme de séquence :
 - 1. un acteur représentant une entité extérieur au système
 - 2. un **objet** représentant une entité du système
- Chaque entité a une ligne de vie représentée par une ligne verticale
 - en pointillée lorsque l'entité est inactive
 - en bloc lorsque l'entité est active

LES MESSAGES

- Différents types de communications :
 - création d'un objet
 - appels de méthodes
 - envoi d'un signal
 - destruction d'un objet ...

LES MESSAGES

- Une communication peut être représentée par trois types de messages
 - 1. message synchrone : l'entité attend la réponse avant de continuer
 - 2. message de retour : la réponse d'une entité à un message
 - 3. message asynchrone : l'entité n'attend pas la réponse pour continuer

EXEMPLE

PLAN

- Diagramme de séquence
- > Fragments combinés
- Utilisation du diagramme de séquence

Retour au plan - Retour à l'accueil

LES FRAGMENTS COMBINÉS

- Dans un diagramme de séquence, il est possible :
 - de représenter des contraintes ou des propriétés particulières (exécution atomique, répétition, ...).
 - de décomposer une interaction complexe en fragments simples.
- Le fragment combiné est l'élément graphique permettant de représenter ce type d'information.

LES FRAGMENTS COMBINÉS

- Un fragment combiné est constitué de :
 - un opérateur d'interaction (type de la combinaison)
 - un ou plusieurs fragments d'interaction (une partie du diagramme)
- L'opérateur d'interaction est indiqué dans le coin supérieur gauche dans un rectangle.

ALTERNATIVE

Alternative - alt : sélectionner un comportement en fonction d'une condition.

OPTION

Option - opt :

exécuter un comportement si la condition de garde est vérifiée.

BOUCLE

Boucle - loop:

exécuter une interaction tant qu'une condition est satisfaite.

RUPTURE

Rupture - break:

exécuter le fragment associé puis mettre fin à l'interaction englobante.

PARALLÈLE

Parallèle - par :

les fragments d'interaction associés sont exécutés en parallèle.

OPÉRATEURS SUPPLÉMENTAIRES

- ref: appeler une interaction décrite par ailleurs.
- strict : l'ordre d'exécution doit être strictement respecté.
- weak: l'ordre d'exécution des opérations n'a pas d'importance.
- ignore: certains messages peuvent être absents sans incidence.
- consider: certains messages doivent être obligatoirement présents.
- critical : une séquence d'interactions ne peut être interrompue (séquence critique est atomique).

PLAN

- Diagramme de séquence
- > Fragments combinés
- Utilisation du diagramme de séquence

Retour au plan - Retour à l'accueil

EN COMPLÉMENT DU DIAGRAMME DE CAS D'UTILISATION

- à la place de la description textuelle des scénarios du diagramme de cas d'utilisation.
- pour décrire les flux d'informations échangés pour la réalisation d'un cas d'utilisation.

EXEMPLE

EXEMPLE

EN COMPLÉMENT DU DIAGRAMME DE CLASSE

- identifier les liens entre les objets (les classes).
- identifier les méthodes nécessaires pour les objets (les classes).

EXEMPLE

EXEMPLE

MERCI

Retour à l'accueil - Retour au plan