Simplifications of Context-Free Grammars

A Substitution Rule

Substitute

 $B \rightarrow b$

$$S \rightarrow aB$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc$$

$$B \rightarrow aA$$

$$B \rightarrow b$$

Equivalent grammar

$$S \rightarrow aB \mid ab$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc$$

$$B \rightarrow aA$$

$$S \rightarrow aB \mid ab$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc$$

$$B \rightarrow aA$$

Substitute

$$B \rightarrow aA$$

$$S \rightarrow aR \mid ab \mid aaA$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc \mid abaAc$$

Equivalent grammar

In general: $A \rightarrow xBz$

$$B \rightarrow y_1$$

Substitute
$$B \rightarrow y_1$$

$$A \rightarrow xBz \mid xy_1z$$

equivalent grammar

Nullable Variables

$$\lambda$$
 – production:

$$X \to \lambda$$

Nullable Variable:

$$Y \Rightarrow ... \Rightarrow \lambda$$

Example:

$$S \rightarrow aMb$$

$$M \rightarrow aMb$$

$$M \to \lambda$$

Nullable variable

 λ – production

Removing λ – production s

$$S \rightarrow aMb$$
 $M \rightarrow aMb$
 $M \rightarrow \lambda$
Substitute
 $M \rightarrow aMb \mid ab$
 $M \rightarrow \lambda$
 $M \rightarrow aMb \mid ab$

After we remove all the λ - production s all the nullable variables disappear (except for the start variable)

Unit-Productions

Unit Production:

$$X \to Y$$

(a single variable in both sides)

Example:

$$S \rightarrow aA$$

$$A \rightarrow a$$

$$A \rightarrow B$$

$$B \to A$$

$$B \rightarrow bb$$

Unit Productions

Removal of unit productions:

$$S \rightarrow aA$$
 $A \rightarrow a$
 $A \rightarrow B$
 $B \rightarrow A$
 $B \rightarrow bb$
 $S \rightarrow aA \mid aB$
 $S \rightarrow aA \mid aB$
 $S \rightarrow aA \mid B$
 $S \rightarrow A \mid B$
 $S \rightarrow A \mid B$

Unit productions of form $X \to X$ can be removed immediately

$$S \rightarrow aA \mid aB$$
 $S \rightarrow aA \mid aB$ $A \rightarrow a$ Remove $A \rightarrow a$ $B \rightarrow A \mid B \rightarrow bb$ $B \rightarrow bb$

$$S \to aA \mid aB$$

$$A \to a$$

$$B \to A$$

 $B \rightarrow bb$

 $\begin{array}{c|c} S \rightarrow aA \mid aB \mid aA \\ \hline \text{Substitute} \\ B \rightarrow A \end{array}$ $A \rightarrow a \\ B \rightarrow bb$

Remove repeated productions

$$S \rightarrow \widehat{aA} \mid aB \mid aA$$

$$A \rightarrow a$$

$$B \rightarrow bb$$

Final grammar

$$S \rightarrow aA \mid aB$$

$$A \rightarrow a$$

$$B \rightarrow bb$$

Useless Productions

$$S o aSb$$
 $S o \lambda$
 $S o A$
 $A o aA$ Useless Production

Some derivations never terminate...

$$S \Rightarrow A \Rightarrow aA \Rightarrow aaA \Rightarrow ... \Rightarrow aa ... aA \Rightarrow ...$$

Another grammar:

$$S o A$$
 $A o aA$
 $A o \lambda$
 $B o bA$ Useless Production

Not reachable from S

In general:

If there is a derivation

$$S \Rightarrow ... \Rightarrow xAy \Rightarrow ... \Rightarrow w \in L(G)$$

consists of terminals

Then variable A is useful

Otherwise, variable A is useless

A production $A \rightarrow x$ is useless if any of its variables is useless

$$S o aSb$$
 $S o \lambda$ Productions
Variables $S o A$ useless
useless $A o aA$ useless
useless $B o C$ useless
useless $C o D$ useless

Removing Useless Variables and Productions

Example Grammar: $S \rightarrow aS \mid A \mid C$

$$S \rightarrow aS \mid A \mid C$$

$$A \rightarrow a$$

$$B \rightarrow aa$$

$$C \rightarrow aCb$$

First: find all variables that can produce strings with only terminals or λ (possible useful variables)

$$S \to aS |A| C$$

$$A \to a$$

$$B \to aa$$

$$C \to aCb$$

Round 1: $\{A,B\}$

(the right hand side of production that has only terminals)

Round 2: $\{A,B,S\}$

(the right hand side of a production has terminals and variables of previous round)

This process can be generalized

Then, remove productions that use variables other than $\{A,B,S\}$

$$S \to aS \mid A \mid \varnothing$$

$$A \to a$$

$$B \to aa$$

$$C \to aCb$$

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

Second: Find all variables reachable from S

Use a Dependency Graph where nodes are variables

$$S \rightarrow aS \mid A$$

$$A \rightarrow a$$

$$B \rightarrow aa$$

unreachable

Keep only the variables reachable from S

Final Grammar

$$S \rightarrow aS \mid A$$

$$S \rightarrow aS \mid A$$

$$A \rightarrow a$$

Contains only useful variables

Removing All

Step 1: Remove Nullable Variables

Step 2: Remove Unit-Productions

Step 3: Remove Useless Variables

This sequence guarantees that unwanted variables and productions are removed

Normal Forms for Context-free Grammars

Chomsky Normal Form

Each productions has form:

Examples:

$$S \rightarrow AS$$

$$S \rightarrow a$$

$$A \rightarrow SA$$

$$A \rightarrow b$$

Chomsky Normal Form

$$S \rightarrow AS$$

$$S \rightarrow AAS$$

$$A \rightarrow SA$$

$$A \rightarrow aa$$

Not Chomsky Normal Form

Conversion to Chomsky Normal Form

$$S \rightarrow ABa$$

$$A \rightarrow aab$$

$$B \to Ac$$

Not Chomsky Normal Form

We will convert it to Chomsky Normal Form

Introduce new variables for the terminals:

$$T_a, T_b, T_c$$

Introduce new intermediate variable V_1 to break first production:

$$S \to ABT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

$$S \to AV_{1}$$

$$V_{1} \to BT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

Introduce intermediate variable:

$$S \to AV_{1}$$

$$V_{1} \to BT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

$$S \to AV_{1}$$

$$V_{1} \to BT_{a}$$

$$A \to T_{a}V_{2}$$

$$V_{2} \to T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

Final grammar in Chomsky Normal Form:

$$S o AV_1$$
 $V_1 o BT_a$
 $A o T_aV_2$
 $V_2 o T_aT_b$
 $S o ABa$
 $A o aab$
 $B o AC$
 $T_a o a$
 $T_a o a$
 $T_b o b$

In general:

From any context-free grammar (which doesn't produce λ) not in Chomsky Normal Form

we can obtain:

an equivalent grammar

in Chomsky Normal Form

The Procedure

First remove:

Nullable variables

Unit productions

(Useless variables optional)

Then, for every symbol a:

New variable: T_a

Add production $T_a \rightarrow a$

In productions with length at least 2 replace $\,a\,$ with $\,T_a\,$

Productions of form $A \rightarrow a$ do not need to change!

Replace any production $A \rightarrow C_1 C_2 \cdots C_n$

$$A \rightarrow C_1 C_2 \cdots C_n$$

with
$$A \to C_1 V_1$$

$$V_1 \to C_2 V_2$$

$$\cdots$$

$$V_{n-2} \to C_{n-1} C_n$$

New intermediate variables: $V_1, V_2, ..., V_{n-2}$

Observations

 Chomsky normal forms are good for parsing and proving theorems

• It is easy to find the Chomsky normal form for any context-free grammar

Greinbach Normal Form

All productions have form:

Examples:

$$S \to cAB$$

$$A \to aA \mid bB \mid b$$

$$B \to b$$

$$S \to abSb$$
$$S \to aa$$

Not Greinbach Normal Form

Conversion to Greinbach Normal Form:

$$S o abSb$$
 $S o aa$ T_a $S o aT_b$ $S o aT_a$ $S o aA$ $T_a o a$ $T_b o b$ Greinbach

Normal Form

Observations

Greinbach normal forms are very good
 for parsing strings (better than Chomsky Normal Forms)

 However, it is difficult to find the Greinbach normal of a grammar