Auction Report

 $March\ 2016$

Group 16
Adrian Kamulegeya (ak13g15)
Adam Kantorik(ak2g15)
Anish Katariya(ak7n14)
Jonathan Elliot Keable(jek1g15)

Contents

1	Abstract	2
2	Scenario	3
3	Use Case	4
4	Use Case Diagram	5
5	Class Diagram	6
6	Sequence Chart Diagram	7
7	Statechart Diagram	9

1 Abstract

Abstract

Our group Consisting of Adrian Kamulegeya (ak13g15), Adam Kantorik(ak2g15), Anish Katariya(ak7n14) and Jonathan Elliot Keable(jek1g15) were given the task of creating a software model for an online auction service.

Our group was given guidelines and specifications to follow while making the software for the online auction service. To make the software model for this service or group made the following

- 1. An abstract containing introduction and tasks comments Made by Anish Katariya
- 2. Two full scenarios covering all aspects of the auction including but not limited to successful, failed or cancelled auctions Made by Adrian Kamulegeya
- 3. Two use cases covering 2 aspects
 - (a) Covering the holistic image of the online auction service Made by Jonathan Elliot Keable
 - (b) Covering the login service that the software will use to sign in registered users Made by Anish Katariya
- 4. One Use case diagram covering the holistic image of the full software Made by Jonathan Elliot Keable
- 5. One class diagram showing all functions and classes that will be used to make the Software. Made by Adrian and Adam Kantorik
- 6. Two sequence diagrams corresponding to the scenarios described above. Made by Adrian Kamulegeva
- 7. A state chart diagram for the Auction Object. Made by Adam Kantorik

This software model gives all information and sufficient specifications for making the software for the online e-auction service.

2 Scenario

Scenario 1 - Successful Auction

- Both Steve and Billy sign up to the auction website
- Steve submits a phone up for auction
- Steve submits the name of the item to be One Plus One; the start and end times to be 12th March 2016 19th March 2016; and a reserve price of 200
- The item is posted on the website; the auction has begun
- Another user submits a bid of 200
- Billy submits his bid of 220
- Billys bid is successful and he is the current highest bidder
- The auction end time has been reached
- Billy is the highest bidder
- Billy is pleased with the service and gives a star rating of 4 to Steve
- Steve sends off the item and Billy receives the item

Scenario 2 - Unsuccessful Auction

- Bob and Sam sign up to the auction website
- Sam submits a laptop up for auction
- Sam submits name of the item to be Macbook Pro; the start and end times to be 13th March 2016 19th March 2016; and a reserve price of 400
- The item is posted on the website; the auction has begun
- Bob tries to make a bid of 300
- The website notifies him he is below the reserve price
- Bob waits a few days and submits a second bid of 400
- The auction has ended, his bid didnt go through
- Sam takes the item off of the website, the auction has failed

3 Use Case

Use case name	AuctionItem
Participating actors	Initiated by Seller
<i>j</i>	Communicates with Bidder(s)
Flow of events	1. The Seller puts an item up for auction
v	2. A Bidder places a bid on the item
	3. Another Bidder places a higher bid on the item
	4. Repeat until an exit condition is met
	5. IF The auction was successful then the Bidder
	pays the Seller who then dispatches the item
	6. The Seller may rate the Bidder
	7. Regardless of auction outcome, any participating
	Bidders may provide the Seller with a rating
Entry condition	• The Seller is logged into their account
	• The Seller has less than three zero star ratings
Exit condition	• The auction time has passed and the
	highest bid is higher than the reserve price, OR
	• The auction time has passed and the
	highest bid is lower than the reserve price, OR
	• The auction is cancelled by the Seller and
	the highest bid is below the reserve price, OR
	• The auction is cancelled by the Seller and
	the highest bid is above the reserve price
Quality requirements	On average bids should take no more than one
	minute to be registered by the system

Use case name	Validate User
Participating actors	Invoked by User
	Communicates with Server and Database
Entry condition	• The User Enters his user name and password
	• The User Presses the submit button
Flow of events	1. The user enters his user name and password
	and pressed the submit button.
	2. The system sends the information to the
	server to check credentials
	3. The server checks the credentials
	4. If credentials are right server sends a request
	to the system allow the user to log in
	If credentials are wrong server sends request
	to the system to show an error message
	5. System checks the request sent by the server
	6. System shows user homepage or error message
	according to the request sent
Exit condition	The useris successfully logged in and shown the
	user homepage, OR
	The User has entered wrong user name or password
	and shown an error message
Special requirements	Each user has to be pre-registered in the system
	The users credentials should be stores in the server

4 Use Case Diagram

Figure 1: Use Case Diagram

5 Class Diagram

The Class diagram shows the associations between different classes in the system.

Figure 2: Class Diagram

6 Sequence Chart Diagram

For the auction process we created earlier two scenarios that documented a successful auction process and an unsuccessful auction process. To illustrate these scenarios further we created two sequence diagrams showing the execution of these auctions:

Figure 3: Successful Auction Process

Figure 4: Unsuccessful Auction Process

7 Statechart Diagram

The Statechart diagram shows lifecycle of auction object- its states from creation till end or cancelation.

Figure 5: Statechart Diagram