Математический анализ данных и машинное обучение

Лекция 2

Саркисян Вероника

План на сегодня

9:30 - 11:00	Лекция 1: Решающие деревья
11:15 - 12:30	Лекция 2: Обработка текстовых признаков.
12:30 - 13:30	Обед
13:30 - 15:30	Семинар 1: Деревья, случайные леса
15:45 - 17:30	Семинар 2: Kaggle

Разминка 1: вспоминаем матрицу ошибок

	y = 1	y = 0
a(x) = 1	True Positive	False Positive
a(x) = 0	False Negative	True Negative

Запишите в этих терминах:

- accuracy
- precision
- recall
- F-меру

$\operatorname{accuracy} = rac{TP + TN}{TP + FP + FN + TN}$

Доля верно классифицированных объектов

procision -	$_$ \underline{TP}
precision =	$^ \overline{TP{+}FP}$

Доля положительных объектов относительно всех положительно определенных алгоритмом объектов

$$recall = \frac{TP}{TP + FN}$$

Доля всех найденных положительных объектов

$$F = rac{2*precision*recall}{precision+recall}$$

Разминка 2: строим ROC-AUC

	X 1	X 2	X 3	X 4	X 5
y i	0	1	0	1	1
a(xi)	0.2	0.4	0.1	0.7	0.05

Решающие деревья

Давать ли кредит?

Дерево Решений

Решающие деревья

Достоинства:

- Высокая интерпретируемость
- Нелинейность: можно обучиться под любую зависимость в данных

Недостатки:

- Очень быстро переобучаются
- Дискретная структура
 => нельзя
 продифференцировать
 => нельзя найти
 максимум (даже
 локальный)
- Неустойчивость

Рассмотрим бинарное дерево, в котором:

- каждой внутренней вершине v приписана функция (или предикат) $\beta_v : \mathbb{X} \to \{0,1\};$
- каждой листовой вершине v приписан прогноз $c_v \in Y$ (в случае с классификацией листу также может быть приписан вектор вероятностей).

Рассмотрим теперь алгоритм a(x), который стартует из корневой вершины v_0 и вычисляет значение функции β_{v_0} . Если оно равно нулю, то алгоритм переходит в левую дочернюю вершину, иначе в правую, вычисляет значение предиката в новой вершине и делает переход или влево, или вправо. Процесс продолжается, пока не будет достигнута листовая вершина; алгоритм возвращает тот класс, который приписан этой вершине. Такой алгоритм называется бинарным решающим деревом.

На практике в большинстве случаев используются одномерные предикаты β_v , которые сравнивают значение одного из признаков с порогом:

$$\beta_v(x; j, t) = [x_i < t].$$

Существуют и многомерные предикаты, например:

- линейные $\beta_v(x) = [\langle w, x \rangle < t];$
- метрические $\beta_v(x) = [\rho(x, x_v) < t]$, где точка x_v является одним из объектов выборки любой точкой признакового пространства.

Функционал ошибки

Rm - множество объектов, попавших в вершину для разбиения

R_I, R_r - множества объектов, определенных в левой и правое поддерево соответственно

H (R_m) - критерий информативности (минимизируем: меньшее значение H соответствует меньшему разнообразию целевой переменной в R)

Q (R_m,j, t) - функционал качества (максимизируем)

$$Q(R_m, j, s) = H(R_m) - \frac{|R_\ell|}{|R_m|} H(R_\ell) - \frac{|R_r|}{|R_m|} H(R_r).$$

Критерии информативности

$$H(R) = \min_{c \in \mathbb{Y}} \frac{1}{|R|} \sum_{(x_i, y_i) \in R} L(y_i, c)$$

Общее определение; L - это функция потерь, зависящая от задачи

$$H(R) = \min_{c \in \mathbb{Y}} \frac{1}{|R|} \sum_{(x_i, y_i) \in R} (y_i - c)^2$$

В случае регрессии - это (например) MSE.

$$H(R) = \min_{c \in \mathbb{Y}} \frac{1}{|R|} \sum_{(x_i, y_i) \in R} [y_i \neq c].$$

В случае классификации - это доля неверных ответов.

Чуть более хитрые критерии для классификации

Критерий Бриера:

$$H(R) = \min_{\sum_{k} c_{k} = 1} \frac{1}{|R|} \sum_{(x_{i}, y_{i}) \in R} \sum_{k=1}^{K} (c_{k} - [y_{i} = k])^{2}.$$

Путем несложных математических преобразований находим оптимум

$$c_* = (p_1, \ldots, p_K)$$

Подставляем его в исходный критерий и получаем критерий Джини:

$$H(R) = \sum_{k=1}^{K} p_k (1 - p_k).$$

Энтропийный критерий:

$$H(R) = \min_{\sum_{k} c_{k} = 1} \left(-\frac{1}{|R|} \sum_{(x_{i}, y_{i}) \in R} \sum_{k=1}^{K} [y_{i} = k] \log c_{k} \right)$$

Путем несложных математических преобразований находим оптимум, он такой же

$$c_* = (p_1, \dots, p_K)$$

$$H(R) = -\sum_{k=1}^{K} p_k \log p_k$$

Борьба с переобучением

1. Критерии останова

- а. Ограничение максимальной глубины дерева
- b. Ограничение максимального количества листьев
- с. Ограничение минимального числа объектов в листе
- d. Останавливаемся, если все объекты в листе лежат в одном классе
- e. На очередном шаге функционал качества улучшился менее чем на *п* процентов

2. Стрижка дерева

Обработка пропущенных значений

• Усреднение
$$a_{mk}(x) = \begin{cases} a_{\ell k}(x), & \beta_m(x) = 0; \\ a_{rk}(x), & \beta_m(x) = 1; \\ \frac{|R_\ell|}{|R_m|} a_{\ell k}(x) + \frac{|R_r|}{|R_m|} a_{rk}(x), & \beta_m(x) \text{ нельзя вычислить.} \end{cases}$$

Суррогатные предикаты: используем другой признак, дающий разбиение, максимально близкое к данному

• Замена пропуска на минимальное (максимальное) значение

Обработка категориальных признаков

В случае с бинарной классификацией упорядочим все значения категориального признака на основе того, какая доля объектов с таким значением имеет класс +1:

$$\frac{1}{N_m(u_{(1)})} \sum_{x_i \in R_m(u_{(1)})} [y_i = +1] \leqslant \ldots \leqslant \frac{1}{N_m(u_{(q)})} \sum_{x_i \in R_m(u_{(q)})} [y_i = +1],$$

после чего заменим категорию $u_{(i)}$ на число i, и будем искать разбиение как для вещественного признака. Можно показать, что если искать оптимальное разбиение по критерию Джини или энтропийному критерию, то мы получим такое же разбиение, как и при переборе по всем возможным $2^{q-1}-1$ вариантам.

Для задачи регрессии с MSE-функционалом это тоже будет верно, если упорядочивать значения признака по среднему ответу объектов с таким значением:

$$\frac{1}{N_m(u_{(1)})} \sum_{x_i \in R_m(u_{(1)})} y_i \leqslant \ldots \leqslant \frac{1}{N_m(u_{(q)})} \sum_{x_i \in R_m(u_{(q)})} y_i.$$

Как еще можно бороться с переобучением?

Как еще можно бороться с переобучением?

Градиентный бустинг на деревьях решений

- XGBoost (2014)
- LightGBM (январь 2017)
- <u>CatBoost</u> (июль 2017)

	CatBoo	CatBoost		LightGBM		XGBoost	
	Tuned	Default	Tuned	Default	Tuned	Default	
L [®] Adult	0.26974	0.27298 +1.21%	0.27602 +2.33%	0.28716 +6.46%	0.27542 +2.11%	0.28009 +3.84%	
L [™] Amazon	0.13772	0.13811 +0.29%	0.16360 +18.80%	0.16716 +21.38%	0.16327 +18.56%	0.16536 +20.07%	
L [™] Click prediction	0.39090	0.39112 +0.06%	0.39633 +1.39%	0.39749 +1.69%	0.39624 +1.37%	0.39764 +1.73%	
L [™] KDD appetency	0.07151	0.07138 -0.19%	0.07179 +0.40%	0.07482 +4.63%	0.07176 +0.35%	0.07466 +4.41%	
L [™] KDD churn	0.23129	0.23193 +0.28%	0.23205 +0.33%	0.23565 +1.89%	0.23312 +0.80%	0.23369 +1.04%	
™ KDD internet	0.20875	0.22021 +5.49%	0.22315 +6.90%	0.23627 +13.19%	0.22532 +7.94%	0.23468 +12.43%	
KDD upselling	0.16613	0.16674 +0.37%	0.16682 +0.42%	0.17107 +2.98%	0.16632 +0.12%	0.16873 +1.57%	

Перерыв!

Текстовые признаки

- BOW (Bag of words)
- tf-idf
- Векторизация (word2vec)
- ... и множество других признаков, построенных на морфологическом или синтаксическом анализе.