Title: "GAIT GENERATING DEVICE OF MOBILE ROBOT"
First Named Inventor: Toru Takenaka
National Stage of PCT/JP2005/001693
Customer No. 40854; Docket No. SAT-16648
Page 1 of 24

1 / 24 FIG.1

FIG. 4

Title: "GAIT GENERATING DEVICE OF MOBILE ROBOT"
First Named Inventor: Toru Takenaka
National Stage of PCT/JP2005/001693
Customer No. 40854; Docket No. SAT-16648
Page 6 of 24

FIG.6

Title: "GAIT GENERATING DEVICE OF MOBILE ROBOT"
First Named Inventor: Toru Takenaka
National Stage of PCT/JP2005/001693
Customer No. 40854; Docket No. SAT-16648
Page 7 of 24

7 / 24

FIG.7(a)

FIG.8

Title: "GAIT GENERATING DEVICE OF MOBILE ROBOT"
First Named Inventor: Toru Takenaka
National Stage of PCT/JP2005/001693
Customer No. 40854; Docket No. SAT-16648
Page 9 of 24

9 / 24

FIG.9

Title: "GAIT GENERATING DEVICE OF MOBILE ROBOT" First Named Inventor: Toru Takenaka National Stage of PCT/JP2005/001693 Customer No. 40854; Docket No. SAT-16648 Page 10 of 24

10 / 24

FIG.10

ENTRY

S100 DETERMINE 1ST PROVISIONAL CORRECTED BODY POSITION/POSTURE (Pb21, θ b21) SUCH THAT CONDITION 1 RELATED TO CENTER-OF-GRAVITY BETWEEN 1ST DISPLACEMENT DIMENSION CORRECTING MODEL AND 2ND DISPLACEMENT DIMENSION CORRECTING MODEL AND CONDITION 2 RELATED TO ANGULAR MOMENTUM PRODUCT ARE SATISFIED. **S102** WITH BODY POSTURE SET TO BE THE SAME AS THAT OF SIMPLIFIED MODEL GAIT, DETERMINE 2ND PROVISIONAL CORRECTED BODY POSITION/POSTURE (Pb22, θ b22) SUCH THAT CONDITION 2 RELATED TO ANGULAR MOMENTUM PRODUCT BETWEEN 1ST DISPLACEMENT DIMENSION CORRECTING MODEL AND 2ND DISPLACEMENT DIMENSION CORRECTING MODEL IS SATISFIED. \$104 wl_aim=1 IF MOTION MODE IS RUNNING MODE; wl_aim=0.5 IF MOTION MODE IS LOW FRICTION FLOOR SURFACE WALKING MODE; OR wl_aim=0 FOR OTHER MOTION MODES. **S106** GRADUALLY APPROXIMATE WEIGHT will TO will aim. \$108 **DETERMINE WEIGHT w2 ACCORDING TO THE FOLLOWING EXPRESSION:** w2 = 1 - w1DETERMINE DISPLACEMENT DIMENSION CORRECTED BODY POSITION/POSTURE (Pb2, θ b2) **S110 ACCORDING TO THE FOLLOWING EXPRESSIONS:** Pb2 = w1 * Pb21 + w2 * Pb22 θ b2 = w1 * θ b21 + w2 * θ b22

RETURN

Title: "GAIT GENERATING DEVICE OF MOBILE ROBOT"
First Named Inventor: Toru Takenaka
National Stage of PCT/JP2005/001693
Customer No. 40854; Docket No. SAT-16648
Page 11 of 24

11 / 24

FIG.11

ENTRY

DETERMINE MASS POINT POSITIONS AND BODY POSTURE OF 1ST DISPLACEMENT DIMENSION CORRECTING MODEL ON THE BASIS OF INSTANTANEOUS VALUES OF SIMPLIFIED MODEL GAIT AT CURRENT TIME 1.

\$200

S202

DETERMINE INITIAL CANDIDATES (Pb21_s, θ b21_s) of 1ST provisional corrected body position/posture according to the following expressions on the basis of 1ST provisional corrected body position Pb21_p, desired body position Pb_p, 1ST provisional corrected body posture θ b21_p, and desired body posture θ b_p at last time t- Δ t, and desired body position Pb and desired body posture θ b at current time t.

Pb21_s = Pb + (Pb21_p—Pb_p)

$$\theta$$
 b21_s = θ b + (θ b21_p— θ b_p)

DETERMINE MASS POINT POSITIONS OF 2ND DISPLACEMENT DIMENSION CORRECTING MODEL ON THE BASIS OF CURRENT CANDIDATES (Pb21_s, θ b21_s) AND DESIRED POSITIONS/POSTURES OF BOTH FEET AT CURRENT TIME t.

S206

DETERMINE OVERALL CENTER-OF-GRAVITY ERROR GC_err AND ANGULAR MOMENTUM PRODUCT ERROR L_err between 1st displacement dimension correcting model and 2nd displacement dimension correcting model.

S208

S210 yes

LEAVE REPETITION LOOP.

S212

ARE Gc_err AND L_err WITHIN PERMISSIBLE RANGES? <

S214

DETERMINE A PLURALITY OF CANDIDATES (Pb21_s+ \triangle Pb21x, θ b21_s), (Pb21_s+ \triangle Pb21z, θ b21_s) AND (Pb21_s, θ b21_s+ \triangle θ b21) NEAR (Pb21_s, θ b21_s), THEN USE THEM AS 1ST PROVISIONAL CORRECTED BODY POSITION/POSTURE CANDIDATES TO DETERMINE OVERALL CENTER-OF-GRAVITY ERROR AND ANGULAR MOMENTUM PRODUCT ERROR AS DESCRIBED ABOVE.

BASED ON OVERALL CENTER-OF-GRAVITY ERROR AND ANGULAR MOMENTUM PRODUCT ERROR ASSOCIATED WITH (Pb21_s, θ b21_s) and candidates in the vicinity thereof, determine new 1st provisional corrected body position/posture candidates

(Pb21_s, Θ b21_s) SO AS TO APPROXIMATE THE ERRORS TO ZERO.

S216

SUBSTITUTE CURRENT (Pb21_s, θ b21_s) INTO 1ST PROVISIONAL CORRECTED BODY POSITION/POSTURE (Pb21, θ b21) AT CURRENT TIME t.

S218

RETURN

S204

 ∞

Title: "GAIT GENERATING DEVICE OF MOBILE ROBOT" First Named Inventor: Toru Takenaka National Stage of PCT/JP2005/001693 Customer No. 40854; Docket No. SAT-16648 Page 12 of 24

12 / 24

FIG.12

ENTRY

DETERMINE MASS POINT POSITIONS AND BODY POSTURE OF 1ST DISPLACEMENT DIMENSION CORRECTING MODEL ON THE BASIS OF INSTANTANEOUS VALUES OF SIMPLIFIED MODEL GAIT AT CURRENT TIME t.

S300

DETERMINE INITIAL CANDIDATES (Pb22_s, θ b22_s) of 2nd provisional corrected BODY POSITION/POSTURE ACCORDING TO THE FOLLOWING EXPRESSIONS ON THE BASIS OF 2ND PROVISIONAL CORRECTED BODY POSITION Pb22_p AND DESIRED BODY POSITION Pb_p AT LAST TIME t- \(\Delta \) t, AND DESIRED BODY POSITION Pb AND DESIRED BODY POSTURE Θ b at current time t.

 $Pb22_s = Pb + (Pb22_p - Pb_p)$

 θ b22 s= θ b

S306

S302

DETERMINE MASS POINT POSITIONS OF 2ND DISPLACEMENT DIMENSION CORRECTING MODEL ON THE BASIS OF CURRENT CANDIDATES (Pb22 s, θ b22 s) and desired positions/postures OF BOTH FEET AT CURRENT TIME t.

DETERMINE ANGULAR MOMENTUM PRODUCT ERROR L err BETWEEN 1ST DISPLACEMENT DIMENSION CORRECTING MODEL AND 2ND DISPLACEMENT DIMENSION CORRECTING MODEL.

S308

S310 yes

LEAVE REPETITION LOOP.

S312

 ∞

S304 | IS L_err WITHIN PERMISSIBLE RANGE? <

S314

DETERMINE A PLURALITY OF CANDIDATES (Pb22_s+ \triangle Pb22x, θ b22_s) AND (Pb21_s+ \triangle Pb22z, θ b22_s) NEAR (Pb22_s, θ b22_s), Then USE THEM AS 2ND PROVISIONAL CORRECTED BODY POSITION/POSTURE CANDIDATES TO DETERMINE ANGULAR MOMENTUM PRODUCT ERROR AS DESCRIBED ABOVE.

BASED ON ANGULAR MOMENTUM PRODUCT ERROR ASSOCIATED WITH (Pb22_s, θ b22_s) AND CANDIDATES IN THE VICINITY THEREOF, DETERMINE NEW 2ND PROVISIONAL CORRECTED BODY POSITION/POSTURE CANDIDATES (Pb22_s, θ b22_s) SO AS TO APPROXIMATE THE ERROR TO ZERO. HOWEVER, θ b22_s is not changed.

S316

SUBSTITUTE CURRENT (Pb22_s, \theta b22_s) INTO 2ND PROVISIONAL CORRECTED BODY POSITION/POSTURE (Pb22, θ b22) AT CURRENT TIME t.

S318

RETURN

Title: "GAIT GENERATING DEVICE OF MOBILE ROBOT"
First Named Inventor: Toru Takenaka
National Stage of PCT/JP2005/001693
Customer No. 40854; Docket No. SAT-16648
Page 14 of 24

14 / 24

FIG.15

ZMP

► X

Title: "GAIT GENERATING DEVICE OF MOBILE ROBOT"
First Named Inventor: Toru Takenaka
National Stage of PCT/JP2005/001693
Customer No. 40854; Docket No. SAT-16648
Page 15 of 24

Title: "GAIT GENERATING DEVICE OF MOBILE ROBOT"
First Named Inventor: Toru Takenaka
National Stage of PCT/JP2005/001693
Customer No. 40854; Docket No. SAT-16648
Page 16 of 24

Title: "GAIT GENERATING DEVICE OF MOBILE ROBOT"
First Named Inventor: Toru Takenaka
National Stage of PCT/JP2005/001693
Customer No. 40854; Docket No. SAT-16648
Page 17 of 24

Title: "GAIT GENERATING DEVICE OF MOBILE ROBOT"
First Named Inventor: Toru Takenaka
National Stage of PCT/JP2005/001693
Customer No. 40854; Docket No. SAT-16648
Page 18 of 24

Title: "GAIT GENERATING DEVICE OF MOBILE ROBOT"
First Named Inventor: Toru Takenaka
National Stage of PCT/JP2005/001693
Customer No. 40854; Docket No. SAT-16648
Page 19 of 24

Title: "GAIT GENERATING DEVICE OF MOBILE ROBOT" First Named Inventor: Toru Takenaka National Stage of PCT/JP2005/001693 Customer No. 40854; Docket No. SAT-16648 Page 20 of 24

20 / 24

FIG.23

ENTRY

DETERMINE 1ST PROVISIONAL CORRECTED BODY POSITION/POSTURE (Pb21, Θ b21) Such that condition 1 related to center-of-gravity between 1ST displacement dimension correcting model and 2ND displacement dimension correcting model and condition related to angular momentum product are satisfied.	
wl_aim=1 IF MOTION MODE IS RUNNING MODE; wl_aim=0.5 IF MOTION MODE IS LOW FRICTION FLOOR SURFACE WALKING MODE; OR wl_aim=0 FOR OTHER MOTION MODES.	S502
GRADUALLY APPROXIMATE WEIGHT wl TO wl_aim.	\$504
DETERMINE WEIGHT w2 ACCORDING TO THE FOLLOWING EXPRESSION: $w2 = 1 - w1$	\$506
WITH BODY POSTURE SET TO w1 $*$ θ b21+w2 $*$ θ b, determine 2ND provisional correspondy position/posture (Pb22, θ b22) such that condition 2 related to angular momentum product between 1st displacement dimension correcting model and 2N displacement dimension correcting model is satisfied.	
DETERMINE DISPLACEMENT DIMENSION CORRECTED BODY POSITION/POSTURE (Pb2, θ b2) ACCORDING TO THE FOLLOWING EXPRESSIONS. Pb2 = Pb22 θ b2 = θ b22(=w1 * θ b21 + w2 * θ b)	\$510

RETURN

Title: "GAIT GENERATING DEVICE OF MOBILE ROBOT" First Named Inventor: Toru Takenaka National Stage of PCT/JP2005/001693 Customer No. 40854; Docket No. SAT-16648 Page 21 of 24

21 / 24

FIG.24

ENTRY

\$600

S602

DETERMINE MASS POINT POSITIONS AND BODY POSTURE OF 1ST DISPLACEMENT DIMENSION CORRECTING MODEL ON THE BASIS OF INSTANTANEOUS VALUES OF SIMPLIFIED MODEL GAIT AT CURRENT TIME t.

DETERMINE INITIAL CANDIDATES (Pb22_s, θ b22_s) OF 2ND PROVISIONAL CORRECTED BODY POSITION/POSTURE ACCORDING TO THE FOLLOWING EXPRESSIONS ON THE BASIS OF 2ND PROVISIONAL CORRECTED BODY POSITION Pb22 p AND DESIRED BODY POSITION Pb p AT LAST TIME 1- \triangle 1, AND DESIRED BODY POSITION Pb, DESIRED BODY POSTURE Θ b, 1ST PROVISIONAL CORRECTED BODY POSTURE θ b21 and Weights w1, w2 at current time t. $Pb22_s = Pb + (Pb22_p - Pb_p)$

 θ b22 s= w1 * θ b21 + w2 * θ b

DETERMINE MASS POINT POSITIONS OF 2ND DISPLACEMENT DIMENSION CORRECTING MODEL ON THE BASIS OF CURRENT CANDIDATES (Pb22_s, θ b22_s) and desired POSITIONS/POSTURES OF BOTH FEET AT CURRENT TIME t.

S606

DETERMINE ANGULAR MOMENTUM PRODUCT ERROR L err BETWEEN 1ST DISPLACEMENT DIMENSION CORRECTING MODEL AND 2ND DISPLACEMENT DIMENSION CORRECTING MODEL.

S608

\$610 yes

LEAVE REPETITION LOOP.

S612

S604 IS L_err WITHIN PERMISSIBLE RANGE?

\$614

 ∞

DETERMINE A PLURALITY OF CANDIDATES (Pb22_s+ \triangle Pb22x, θ b22_s) AND (Pb21_s+ \triangle Pb22z, Θ b22_s) NEAR (Pb22_s, Θ b22_s), THEN USE THEM AS 2ND PROVISIONAL CORRECTED BODY POSITION/POSTURE CANDIDATES TO DETERMINE ANGULAR MOMENTUM PRODUCT ERROR AS DESCRIBED ABOVE.

5616

BASED ON ANGULAR MOMENTUM PRODUCT ERROR ASSOCIATED WITH (Pb22_s, Θ b22_s) AND CANDIDATES IN THE VICINITY THEREOF, DETERMINE NEW 2ND PROVISIONAL CORRECTED BODY POSITION/POSTURE CANDIDATES (Pb22_s, Θ b22_s) SO AS TO APPROXIMATE THE ERROR TO ZERO. HOWEVER, Θ b22 s is not changed.

SUBSTITUTE CURRENT (Pb22_s, θ b22_s) INTO 2ND PROVISIONAL CORRECTED BODY POSITION/POSTURE (Pb22, Θ b22) AT CURRENT TIME t.

S618

RETURN

Title: "GAIT GENERATING DEVICE OF MOBILE ROBOT"
First Named Inventor: Toru Takenaka
National Stage of PCT/JP2005/001693
Customer No. 40854; Docket No. SAT-16648
Page 22 of 24

22 / 24

Q(=ZMP)

Title: "GAIT GENERATING DEVICE OF MOBILE ROBOT"
First Named Inventor: Toru Takenaka
National Stage of PCT/JP2005/001693
Customer No. 40854; Docket No. SAT-16648
Page 23 of 24

Title: "GAIT GENERATING DEVICE OF MOBILE ROBOT"
First Named Inventor: Toru Takenaka
National Stage of PCT/JP2005/001693
Customer No. 40854; Docket No. SAT-16648
Page 24 of 24

24 / 24

FIG.27

