Argumentation and Temporal Persistence

E. Hadjisoteriou A. Kakas

Email: csp7he2@cs.ucy.ac.cy, antonis@cs.ucy.ac.cy

University of Cyprus, Dept. of Computer Science, Kallipoleos 75, 1678 Nicosia, Cyprus http://www.ucy.ac.cy

September 2011

Outline

- Motivation
- \bigcirc Language \mathcal{E}
- 3 Argumentation Program (B(D), A, <)
- Qualification Problem
- 6 Results
- 6 Conclusion

Motivation

- Understand Temporal Persistence via Argumentation
 - ullet Study this in the specific content of Language ${\mathcal E}$
 - Our analysis is applicable more widely
- Link to Frame Problem and Qualification Problem
- ullet Builds on earlier work: Language $\mathcal{E}[2]$ and Argumentation[1]
- Motivation
 - Not all domains are consistent
- Extension: Introduce new arguments for
 - backwards persistence
 - 2 persistence from observations

Motivation

- Understand Temporal Persistence via Argumentation
 - ullet Study this in the specific content of Language ${\mathcal E}$
 - Our analysis is applicable more widely
- Link to Frame Problem and Qualification Problem
- ullet Builds on earlier work: Language $\mathcal{E}[2]$ and Argumentation[1]
- Motivation
 - Not all domains are consistent
- Extension: Introduce new arguments for
 - backwards persistence
 - persistence from observations

Outline

- Motivation
- $oxed{2}$ Language ${\mathcal E}$
 - ullet Language ${\mathcal E}$ and Argumentation
 - Argumentation Basics
- 3 Argumentation Program (B(D), A, <)
- Qualification Problem
- 6 Results
- 6 Conclusion

- Action Language
- Propositions:
 - c-propositions (A initiates/terminates F when C)
 - h-propositions (A happens at T)
 - t-propositions (L holds at T)
- Models are truth assignments to Fluents that satisfy:
 - Persistence: Truth Values of Fluents remains the same in time intervals where no relevant action occurs
 - A fluent F changes its truth value only via occurrence of an initiation or a termination point

- Action Language
- Propositions:
 - c-propositions (A initiates/terminates F when C)
 - h-propositions (A happens at T)
 - *t*-propositions (*L* holds at *T*)
- Models are truth assignments to Fluents that satisfy:
 - Persistence: Truth Values of Fluents remains the same in time intervals where no relevant action occurs
 - A fluent F changes its truth value only via occurrence of an initiation or a termination point

- Action Language
- Propositions:
 - c-propositions (A initiates/terminates F when C)
 - h-propositions (A happens at T)
 - t-propositions (L holds at T)
- Models are truth assignments to Fluents that satisfy:
 - Persistence: Truth Values of Fluents remains the same in time intervals where no relevant action occurs
 - A fluent F changes its truth value only via occurrence of an initiation or a termination point

- Action Language
- Propositions:
 - c-propositions (A initiates/terminates F when C)
 - h-propositions (A happens at T)
 - t-propositions (L holds at T)
- Models are truth assignments to Fluents that satisfy:
 - Persistence: Truth Values of Fluents remains the same in time intervals where no relevant action occurs
 - A fluent F changes its truth value only via occurrence of an initiation or a termination point

Language ${\mathcal E}$ and Argumentation

- Priorities
 - PG[F, T; T1] < NG[F, T; T2], for all T1 < T2
 - . . .

Argumentation Basics

- Argumentation Framework < Arg, A >
 - Arg is a set of Arguments
 - A is an Attacking Relation on Arg
- Admissibility: Set of Arguments such that:
 - Non self attacking
 - Attacks all its attacks
- Models: Maximal admissible sets

Outline

- Motivation
- $oxed{2}$ Language ${\mathcal E}$
- 3 Argumentation Program (B(D), A, <)
- 4 Qualification Problem
- 5 Results
- 6 Conclusion

- $B(D) \rightarrow \text{background theory}$
- ullet A o argument rules
 - Persistence
 - Local Generation Arguments
 - Local Observation Arguments:
 - Assumption at 0
- ullet < o priority relation

```
For all time points t_1, t_2 and t such that t_1 < t < t_2, HoldsAt(f, t_2) \leftarrow HoldsAt(f, t) PFP[f, t_2; t] HoldsAt(f, t_1) \leftarrow HoldsAt(f, t) PBP[f, t_1; t] \neg HoldsAt(f, t_2) \leftarrow \neg HoldsAt(f, t) NFP[f, t_2; t] \neg HoldsAt(f, t_1) \leftarrow \neg HoldsAt(f, t) NBP[f, t_1; t]
```

- $B(D) \rightarrow \text{background theory}$
- ullet A o argument rules
 - Persistence
 - Local Generation Arguments
 - Local Observation Arguments:
 - Assumption at 0
- ullet < o priority relation

```
HoldsAt(f, t + 1) \leftarrow Initiation(f, t) PG_F[f, t]

\neg HoldsAt(f, t) \leftarrow Initiation(f, t) PG_B[f, t]

\neg HoldsAt(f, t + 1) \leftarrow Termination(f, t) NG_F[f, t]

HoldsAt(f, t) \leftarrow Termination(f, t) NG_B[f, t]
```

- $B(D) \rightarrow \text{background theory}$
- ullet A o argument rules
 - Persistence
 - Local Generation Arguments
 - Local Observation Arguments:
 - Assumption at 0
- ullet < o priority relation

$$HoldsAt(f,t) \leftarrow Observation(f,t) \qquad PO[f,t] \\ \neg HoldsAt(f,t) \leftarrow Observation(\neg f,t) \qquad NO[f,t]$$

- $B(D) \rightarrow \text{background theory}$
- ullet A o argument rules
 - Persistence
 - Local Generation Arguments
 - Local Observation Arguments:
 - Assumption at 0
- ullet < o priority relation

$$HoldsAt(f,0)$$
 $PA[f,0]$ $\neg HoldsAt(f,0)$ $NA[f,0]$

- $B(D) \rightarrow \text{background theory}$
- ullet A o argument rules
 - Persistence
 - Local Generation Arguments
 - Local Observation Arguments:
 - Assumption at 0
- ullet < o priority relation

```
If t_1 < t_2

PFP[f, t^*; t_1] < NFP[f, t^*; t_2], NFP[f, t^*; t_1] < PFP[f, t^*; t_2],

PBP[f, t^*; t_2] < NBP[f, t^*; t_1], NBP[f, t^*; t_2] < PBP[f, t^*; t_1],

NFP[f, t_2; t_1] < PO[f, t_2], PFP[f, t_2; t_1] < NO[f, t_2],

NBP[f, t_1; t_2] < PO[f, t_1] and PBP[f, t_1; t_2] < NO[f, t_1].
```

- $B(D) \rightarrow \text{background theory}$
- ullet A o argument rules
 - Persistence
 - Local Generation Arguments
 - Local Observation Arguments:
 - Assumption at 0
- ullet < o priority relation

At 0
$$PA[f,0] < NO[f,0]$$
 and $NA[f,0] < PO[f,0]$

- $B(D) \rightarrow \text{background theory}$
- ullet A o argument rules
 - Persistence
 - Local Generation Arguments
 - Local Observation Arguments:
 - Assumption at 0
- ullet < o priority relation

At
$$t$$

 $PG_B[f, t] < PO[f, t]$ and $NG_B[f, t] < NO[f, t]$

- $B(D) \rightarrow \text{background theory}$
- ullet A o argument rules
 - Persistence
 - Local Generation Arguments
 - Local Observation Arguments:
 - Assumption at 0
- ullet < o priority relation

At
$$t+1$$
 $PG_F[f,t] < NO[f,t+1]$ and $NG_F[f,t] < PO[f,t+1]$

Note that there are no priorities between conflicting forward and backward persistence

Outline

- Motivation
- $oxed{2}$ Language ${\mathcal E}$
- 3 Argumentation Program (B(D), A, <)
- Qualification Problem
- 6 Results
- Conclusion

Qualification Problem[3]

- Domains have meaning even when we observe an unexpected failure of an action
- ullet No conclusion between T_1 and T_2
 - Arguments for F and $\neg F$

Qualification Problem[3]

- Domains have meaning even when we observe an unexpected failure of an action
- No conclusion between T_1 and T_2
 - Arguments for F and $\neg F$

Outline

- Motivation
- \bigcirc Language $\mathcal E$
- 3 Argumentation Program (B(D), A, <)
- 4 Qualification Problem
- 6 Results
- 6 Conclusion

Results

- ullet Recover and also extend Language ${\mathcal E}$
- ullet The extended semantics can be explained by Language ${\mathcal E}$
- ullet Fully recover Language ${\mathcal E}$

Forward persistence arguments = backwards persistence arguments

Theorem

Let D be a language $\mathcal E$ domain description and a countable number of h-propositions. Then:

- For every language \mathcal{E} model, M, of D there exists an admissible extension, E, of the corresponding argumentation program $\Delta \equiv (B(D), A, <)$ such that E corresponds to M, i.e. $E \models holds-at(f,T)$ if and only if M(f,T) = true and $E \models \neg holds-at(f,T)$ if and only if M(f,T) = false.
- There exists a complete admissible extension D of the corresponding argumentation program $\Delta \equiv (B(D), A, <)$.

Results

- ullet Recover and also extend Language ${\cal E}$
- ullet The extended semantics can be explained by Language ${\mathcal E}$
- ullet Fully recover Language ${\mathcal E}$

Add a generation point

Theorem

Let D be a domain description. For every maximally admissible extension E there exist a domain D' obtained from D by adding new events such that there exist a language \mathcal{E} model, M, of D' that corresponds to E (i.e. $E \models holds-at(f,t)$ if and only if $M \models holds-at(f,t)$).

Results

- ullet Recover and also extend Language ${\cal E}$
- ullet The extended semantics can be explained by Language ${\mathcal E}$
- ullet Fully recover Language ${\mathcal E}$

Assign higher priority to conflicting forward persistence arguments over backwards persistence arguments

Theorem

Add the following priorities rules when $t_1 < t_2$: $PFP[f, t; t_1] > NBP[f, t; t_2]$ and $NFP[f, t; t_1] > PBP[f, t; t_2]$. Then, every maximally admissible extension E, for any domain D corresponds to a model M of the language \mathcal{E} , of D.

Outline

- Motivation
- \bigcirc Language \mathcal{E}
- 3 Argumentation Program (B(D), A, <)
- 4 Qualification Problem
- 5 Results
- 6 Conclusion

- ullet The extension of Language ${\mathcal E}$ enable us to:
 - ullet recover and also extend Language ${\mathcal E}$
 - \bullet give a semantic meaning to domains that cannot be interpreted in Language ${\cal E}$
- Closer to original Event Calculus
- ullet The formalization does not depend on Language ${\mathcal E}$
- Based on "Natural" Properties
- Advance Qualification Problem

- ullet The extension of Language ${\mathcal E}$ enable us to:
 - ullet recover and also extend Language ${\mathcal E}$
 - \bullet give a semantic meaning to domains that cannot be interpreted in Language ${\cal E}$
- Closer to original Event Calculus
- ullet The formalization does not depend on Language ${\mathcal E}$
- Based on "Natural" Properties
- Advance Qualification Problem

- ullet The extension of Language ${\mathcal E}$ enable us to:
 - ullet recover and also extend Language ${\mathcal E}$
 - \bullet give a semantic meaning to domains that cannot be interpreted in Language ${\cal E}$
- Closer to original Event Calculus
- ullet The formalization does not depend on Language ${\mathcal E}$
- Based on "Natural" Properties
- Advance Qualification Problem

- ullet The extension of Language ${\mathcal E}$ enable us to:
 - ullet recover and also extend Language ${\mathcal E}$
 - \bullet give a semantic meaning to domains that cannot be interpreted in Language ${\cal E}$
- Closer to original Event Calculus
- ullet The formalization does not depend on Language ${\mathcal E}$
- Based on "Natural" Properties
- Advance Qualification Problem

- ullet The extension of Language ${\mathcal E}$ enable us to:
 - ullet recover and also extend Language ${\mathcal E}$
 - \bullet give a semantic meaning to domains that cannot be interpreted in Language ${\cal E}$
- Closer to original Event Calculus
- ullet The formalization does not depend on Language ${\mathcal E}$
- Based on "Natural" Properties
- Advance Qualification Problem

Thanks for listening!!!

Questions?

September 2011

- Antonis C. Kakas, Rob Miller, and Francesca Toni, *An argumentation framework of reasoning about actions and change*, LPNMR, 1999, pp. 78–91.
- R Kowalski and M Sergot, *A logic-based calculus of events*, New Gen. Comput. **4** (1986), no. 1, 67–95.
- M. Thielscher, *The Qualification Problem: A Solution to the Problem of Anomalous Models*, AlJ **131** (2001), no. 1–2, 1–37.