```
In [15]: # Dependencies
         import pandas as pd
         import psycopg2
         import sqlalchemy
         import numpy as np
         import matplotlib.pyplot as plt
         %matplotlib inline
         # SQL Alchemy
         from sqlalchemy import create engine
         POSTGRES_ADDRESS = 'localhost'
         POSTGRES_PORT = '5432'
         POSTGRES_USERNAME = 'postgres'
         POSTGRES PASSWORD =
         POSTGRES_DBNAME = 'sql-challenge'
         postgres = ('postgresql://{username}:{password}@{ipaddress}:{port}/{dbname}'
                      .format(username=POSTGRES_USERNAME,
                     password=POSTGRES_PASSWORD,
                    ipaddress=POSTGRES_ADDRESS,
                    port=POSTGRES PORT,
                    dbname=POSTGRES_DBNAME))
         cnx = create engine(postgres)
```

```
In [16]: salaries = pd.read_sql('SELECT * FROM "Salaries"', cnx)
salaries.head()
```

Out[16]:

	emp_no	salary	from_date	to_date
0	10001	60117	1986-06-26	1987-06-26
1	10002	65828	1996-08-03	1997-08-03
2	10003	40006	1995-12-03	1996-12-02
3	10004	40054	1986-12-01	1987-12-01
4	10005	78228	1989-09-12	1990-09-12

```
In [17]: employees = pd.read_sql('SELECT * FROM "Employees"', cnx)
employees.head()
```

Out[17]:

	emp_no	birthdate	first_name	last_name	gender	hire_date
0	10001	1953-09-02	Georgi	Facello	М	1986-06-26
1	10002	1964-06-02	Bezalel	Simmel	F	1985-11-21
2	10003	1959-12-03	Parto	Bamford	М	1986-08-28
3	10004	1954-05-01	Chirstian	Koblick	М	1986-12-01
4	10005	1955-01-21	Kyoichi	Maliniak	М	1989-09-12

4/5/2020 Bonus Analysis

```
In [18]: titles = pd.read_sql('SELECT * FROM "Titles"', cnx)
   titles.head()
```

Out[18]:

	emp_no	title	from_date	to_date	
0	10001	Senior Engineer	1986-06-26	9999-01-01	
1	10002	Staff	1996-08-03	9999-01-01	
2	10003	Senior Engineer	1995-12-03	9999-01-01	
3	10004	Engineer	1986-12-01	1995-12-01	
4	10004	Senior Engineer	1995-12-01	9999-01-01	

4/5/2020 Bonus Analysis

```
In [29]:
        # 2. Create a bar chart of average salary by title.
         # Create the query
         query = pd.read_sql('SELECT * FROM "Salaries" INNER JOIN "Titles" ON "Salarie
         s".emp_no = "Titles".emp_no', cnx)
         # Store the guery
         average salaries by title = query.groupby(["title"]).mean()["salary"]
         # Plot the Barchart
         title_list = average_salaries_by_title.index
         average_salary_for_title = average_salaries_by_title.values
         x_axis = np.arange(len(title_list))
         tick locations = [value for value in x axis]
         plt.xticks(tick_locations, title_list, rotation=90)
         plt.title("Average Salary by Title")
         plt.xlabel("Title")
         plt.ylabel("Average Salary ($)")
         plt.grid(axis="y")
         chart = plt.bar(x_axis, average_salary_for_title, color='pink', alpha=0.5, ali
         gn="center")
         for i in chart:
             yvalue = i.get_height()
             plt.text(i.get x(), yvalue + 500, "${:,.2f}K".format(yvalue/1000))
         plt.savefig("Average Salary by Title.png")
         plt.show()
```



```
In [ ]:
```