Caleb Logemann MATH 566 Discrete Optimization Homework 4

1. Write a program that will solve an instance of linear programming by enumerating basic feasible solutions and keeping the best one. Input to the program is matrix, $A \in \mathbb{R}^{m \times n}$ and vectors $\mathbf{b} \in \mathbb{R}^m$ and $\mathbf{c} \in \mathbb{R}^n$

The following script impliements this function that solves a linear program by trying all basic feasible solutions. The function acheives the same values of the objective function as Sage's built in linear program solver.

```
\# \ https://wiki.sage math.org/quickref?action=AttachFile \&do=get \&target=
   \hookrightarrow quickref-linalg.pdf
\# I also suggest to google itertools.combinations
#
# This HW is about writing a program that solves linear programming
   \hookrightarrow problems where
# the input is A, b, c and you want to find x \ge 0 that minimizes c^Tx if
   \hookrightarrow Ax = b.
# You should write a solver that enumerates all basic feasible solutions
      and picks
# the best one. Recall that you get a basic feasible solution by picking
   \hookrightarrow m columns
# of A that are linearly independent and solve for x.
#
# The same is also implemented using sage solver so you can check if
   \hookrightarrow your program
# produced the correct result.
import itertools
# This is where you will write your program
\mathbf{def} solve_linear_program (A, b, c):
    m = len(b)
    n = len(c)
    if A.nrows() != m or A.ncols() != n or m > n:
         print "Invalid input"
         return [None, None]
    min\_value = None
               = None
    min x
    # Here comes your code where you compute min value and min x
    return [min value, min x]
# This is solver using sage
\mathbf{def} solve_using_sage(A, b, c):
    m = len(b)
```

```
n = len(c)
     p = MixedIntegerLinearProgram (maximization=False);
     x = p.new_variable(nonnegative=True);
     for i in range(m):
          p.add\_constraint(b[i] = sum([A[i,j]*x[j] for j in range(n)]))
     p.set\_objective(sum( [ c[j]*x[j] for j in range(n)] ))
     return p. solve()
# This is running your and also sage solver and prints the results
\mathbf{def} \ \operatorname{test\_solver}(A, b, c):
     min value, min_x = solve_linear_program(A,b,c)
     min\_value\_sage = solve\_using\_sage(A, b, c)
      \textbf{print} \quad \texttt{"Optimal} \; \sqcup \; solution \; \sqcup \; has \; \sqcup \; value \; \texttt{"} \; , \quad min\_value\_sage \; , \; \texttt{"} \; \sqcup \; You \; \sqcup \; computed \; \texttt{"} \; ,
         \rightarrow min_value, "_ for _x=", min_x
\#\#\#\#\#\#\#\# Several test data
# Input
A = \operatorname{matrix}(QQ, [[1, 0, 1, 0, 0], [1, 1, 0, 1, 0], [-1, 1, 0, 0, 1]])
b = vector(QQ, [4, 5, 1])
c = vector(QQ, [-1, -2, 0, 0, 0])
test_solver(A,b,c)
\# Input
A = \operatorname{matrix}(QQ, [[1, -2, 1, 0, 0], [1, 1, 0, 1, 0], [-1, 1, 0, 0, 1]])
b = vector(QQ, [4, 2, 4])
c = vector(QQ, [-1, 2, 0, 0, 0])
test solver (A, b, c)
# Input
A = matrix(QQ)
   \hookrightarrow ,[[1, -2, 6, 6, 1, 1, 0, 0], [1, 1, 2, 2, -2, 0, 1, 0], [-1, 1, 3, 3, 6, 0, 0, 1]])
b = vector(QQ, [4, 2, 5])
c = vector(QQ, [-1, 2, -2, -2, 1, 0, 0, 0])
test\_solver(A, b, c)
```

This is the output of the script.

2. Convert the following program to equational form and solve it using the simplex method.

$$(P) \begin{cases} \text{maximize} & x_1 + 2x_2 \\ \text{subject to} & x_1 + 2x_2 \\ & x_1 + x_2 \le 5 \\ & -x_1 + x_2 \le 1 \\ & x_1, x_2 \ge 0 \end{cases}$$

Use Bland's rule for selecting pivots. That is, pivot on variable with lowest possible index. Use the last tableau to argue that the solution is indeed optimal. Plot the set of feasible solutions of (P) and mark the solutions obtained after each iteration of the simplex method.

The new linear program in equational form with slack variables is

$$(P) \begin{cases} \max & x_1 + 2x_2 \\ \text{s.t.} & x_1 + x_2 \\ & x_1 + x_2 \\ & -x_1 + x_2 \end{cases} + x_4 = 5 \\ & + x_5 = 1 \\ & x_i \ge 0 \quad 1 \le i \le 5 \end{cases}$$

An initial basic feasible solution with $x_3 = 4$, $x_4 = 5$ and $x_5 = 1$.

$$x_3 = 4 - x_1$$

$$x_4 = 5 - x_1 - x_2$$

$$x_5 = 1 + x_1 - x_2$$

$$z = 0 + x_1 + 2x_2$$

Increasing x_1 by 4 results in the following.

$$x_1 = 4 - x_3$$

$$x_4 = 1 - x_2 + x_3$$

$$x_5 = 5 - x_2 - x_3$$

$$z = 4 + 2x_2 - x_3$$

Now x_2 can be increased by 1.

$$x_1 = 4 - x_3$$

$$x_2 = 1 + x_3 - x_4$$

$$x_5 = 4 - 2x_3 - x_4$$

$$z = 6 + x_3 - 2x_4$$

Lastly x_3 can be increased by 2.

$$x_1 = 2 + (1/2)x_4 + x_5$$

$$x_2 = 3 - (3/2)x_4 - x_5$$

$$x_3 = 2 - (1/2)x_4 - x_5$$

$$z = 8 - (5/2)x_4 - x_5$$

This is the optimal solution because all the coefficients of the objective function are negative.

3. Use simplex method on the following program:

$$(P) \begin{cases} \text{maximize} & x_1 \\ \text{subject to} & x_1 - x_2 \le 1 \\ & -x_1 + x_2 \le 2 \\ & x_1, x_2 \ge 0 \end{cases}$$

What is happening in the computation?

The new linear program with slack variables is

$$(P) \begin{cases} \text{maximize} & x_1 \\ \text{subject to} & x_1 - x_2 + x_3 \\ -x_1 + x_2 + x_3 + x_4 = 2 \\ & x_i \ge 0 \end{cases}$$

The initial basic feasible is $x_3 = 1$ and $x_4 = 2$.

$$x_3 = 1 - x_1 + x_2$$
$$x_4 = 2 + x_1 - x_2$$
$$z = 0 + x_1$$

First increase x_1 by 1.

4.