Stats Modelling Example Sheet 1

In all the questions that follow, X is an n by p design matrix with full column rank and H is the orthogonal projection onto the column space of X. Also, let X_0 be the matrix formed from the first $p_0 < p$ columns of X and let H_0 be the orthogonal projection on to the column space of X_0 . The vector $Y \in \mathbb{R}^n$ will be a vector of responses and we will define $\hat{\boldsymbol{\beta}} := (X^T X)^{-1} X^T Y$, $\hat{\boldsymbol{\beta}}_0 := (X_0^T X_0)^{-1} X_0^T Y$ and $\tilde{\sigma}^2 := ||(I - H)Y||^2/(n - p)$. By normal linear model, we mean the model $Y = X\beta + \epsilon$, $\epsilon |X \sim N_n(0, \sigma^2 I)$.

1 Question 1

Show that

$$||(H - H_0)Y||^2 = ||(I - H_0)Y||^2 - ||(I - H)Y||^2 = ||HY||^2 - ||H_0Y||^2$$

We know that since H and H_0 are projection matrices, they have the properties: $H_0H = HH_0 = H_0$ and $H^T = H$, $H_0^T = H_0$

$$||(H - H_0)Y||^2 = Y^T (H - H_0)^T (H - H_0)Y$$
(1)

$$= Y^{T}[H^{T}H - H_{0}^{T}H - H^{T}H_{0} + H_{0}^{T}H_{0}]Y$$
(2)

$$=Y^{T}[H-H_{0}-H_{0}+H_{0}]Y (3)$$

$$=Y^{T}[H-H_{0}]Y\tag{4}$$

$$||(I - H_0)Y||^2 - ||(I - H)Y||^2 = ((I - H_0)Y - (I - H)Y)^T ((I - H_0)Y + (I - H)Y)$$
(5)

$$= Y^{T}(H - H_0)^{T}(2I - H - H_0)Y$$
(6)

$$= Y^{T}(2H^{T} - 2H_{0}^{T} - H^{T}H + H_{0}^{T}H - H^{T}H_{0} + H_{0}^{T}H_{0})Y$$
 (7)

$$=Y^{T}[H-H_{0}]Y\tag{8}$$

$$||HY||^2 - ||H_0Y||^2 = ((H - H_0)Y)^T ((H + H_0)Y)$$
(9)

$$= Y^{T}(H^{T}H - H_{0}^{T}H + H^{T}H_{0} - H_{0}^{T}H_{0})Y$$
(10)

$$=Y^{T}(H-H_{0})Y\tag{11}$$