391L Machine Learning

Instructor: Dana Ballard

Office Hours Tuesday 2-4pm GDC 3.510

TA: Lijia Liu

Office Hrs: Thursday 2-4pm

TA Station Desk 2

Required Text: Bishop
Pattern Recognition and Machine Learning

Recommended: Marsland Machine Learning

Six assignments: 60%

Two exams: 40%

391L Machine Learning

The Curse of Dimensionality

Volume of orange cube goes to ... zero!

Random vectors X

$$E(X) = \mu$$
 $Var(X) = \sigma^2$

Sum of andom vectors

$$E(\bar{X}) = \frac{1}{n}E(X_1 + X_2 + \dots + X_n) = \left(\frac{1}{n}\right)(n\mu) = \mu$$

$$Var(\bar{X}) = \left(\frac{1}{n}\right)^2 Var(X_1 + X_2 + \dots + X_n) = \left(\frac{1}{n}\right)^2 (n\sigma^2) = \frac{\sigma^2}{n}$$

Distance between random vectors {-1,1} as *n* gets large?

High-dimensional spaces have counterintuitive properties

Two dimensional case

What happens to the ratio r/R as d -> infinity?

Main problems in Machine Laerning

Supervised

Classification Use labeled training samples to build a classifier that can label new samples

Regression Use labeled training samples to fit a curve that can predict new samples location

Unsupervised

Clustering eg movie preferences

Classification:

Linear separation using least squares

Regression

Polynomial Curve Fitting

Oth Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

Data Set Size: N = 100

9th Order Polynomial

How much training data do we need?

We want to be able to promise performance levels in the test phase

How much data do we need to guarantee a given performance level?

It turns out to be a function of the power of the function of the type of f

We use the terminology 'machine' to denote a class of f

K Nearest Neighbour k=15

NN k=1

Linear vs. Nearest Neighbour for different k

Example 2 Handwritten Digit Recognition

28x28 = 784 pixels

Homework guide

The programming homework should have the format of a conference paper, with sections Introduction Methods Results **Conclusions** Link to code

Week (Monday)	Monday	Wednesday	Bishop Chapter	Homework	Homework due (Friday)
Jan 20		Introduction			
Jan27	Linear Eqs	Eigenspaces	Notes	Eigendigits	
Feb 3	Probability Thy basics	Analytical Distrs	1 & 2		Eigendigits
feb 10	Information Thy mutual information KL divergence	ICA Ng derivation	Notes	ICA	
Feb 17	Sampling I analytical, Gauss importance	Sampling II MCMC, Gibbs	11		ICA
feb 24	Gaussian Process	Gaussian Process	Notes	Problem Set	
Mar 2	SVMs I basic eqns	SVMs II Learning params	7		Problem Set
Mar 9	Exam prep	Mid term exam		Gaussian Process	
Mar 16					
Mar 23	Hidden Markov Models	Reinforcement Learning	Notes		Gaussian Process
Mar 30	Reinforcement L I	Reinforcement L I	Notes	Reinforcement L	
Apr 6	Backpropagation	Convolution Nets	5, Notes		
Apri 13	Deep L	Thanksgiving	Notes, 6		Reinforcement L
Apr 20	Graphical Models I	Graphical Models 2	8	Deep L	
Apr 27	Graphical Models3	Learning Thy	Notes		Deep L
May 4	Exam prep	Final Exam			

Regression

Polynomial Curve Fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Sum-of-Squares Error Function

Because \mathbf{w} appears in the polynomial as a linear set of coefficients, $E(\mathbf{w})$ has a straightforward solution.