Introducción al aprendizaje automático

•••

#1. Introducción al aprendizaje automático. Regresión. Clasificación. Naïve Bayes

Programación tradicional

Aprendizaje automático

Tipos de aprendizaje

- Aprendizaje supervisado (inductivo)
 Datos de entrenamiento + salida esperada
- Aprendizaje no supervisado
 Datos de entrenamiento (sin salida esperada)
- Aprendizaje semi-supervisado
 Datos de entrenamiento + pocas salida esperadas
- Aprendizaje por refuerzo
 "Recompensas" por secuencias de acciones

Aprendizaje supervisado: entrenamiento vs. evaluación

Aprendizaje supervisado: regresión

- Dados $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Aprender una f(x) que permita predecir y a partir de x
 - \circ Si y está en \mathbb{R}^n \to regresión

Aprendizaje supervisado: clasificación

- Dados $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Aprender una f(x) que permita predecir y a partir de x
 - \circ Si y es categórica \rightarrow clasificación

Aprendizaje supervisado: clasificación

- Dados $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Aprender una f(x) que permita predecir y a partir de x
 - \circ Si y es categórica \rightarrow clasificación

Supervised Learning

- x can be multi-dimensional
 - Each dimension corresponds to an attribute

- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape

...

Aprendizaje no supervisado

- Dados $x_1, x_2, ..., x_n$
- Aprender la estructura interna de los datos
 - o p.ej. clustering

Aprendizaje no supervisado

Organize computing clusters

Market segmentation

Social network analysis

Astronomical data analysis

Aprendizaje por refuerzo

- Dada una secuencia de estados y acciones con recompensa (reward), generar una política (policy)
 - política = mapeo estados → acciones que nos dicen que hacer en un determinado estado
- Ejemplos:
 - Juegos
 - Navegación en robótica
 - Control
 - o ..

La interfaz agente-entorno

- El agente y el entorno interactúan a instantes discretos de tiempo
 - \circ t=0,1,...,K
 - \circ el agente observa el estado S_t en el paso t
 - o produce una acción a_t en el paso t
 - o obtiene una recompensa r_{t+1} en el paso t+1
 - o genera un nuevo estado s_{t+1} en el paso t+1

Sobre "aprendizaje"

- Se puede ver como la utilización directa o indirecta de la experiencia para aproximar una determinada función.
- La aproximación de dicha función corresponde a una búsqueda en un espacio de hipótesis (espacio de funciones) por aquella que mejor ajusta el conjunto de datos de entrenamiento.
- Distintos métodos de aprendizaje automático asumen distintos espacios de hipótesis o utilizan distintas estrategias de búsqueda.

Aprendizaje supervisado

Regresión

Regresión

Disponemos de N pares de entrenamiento (observaciones)

$$\{(x_i, y_i)\}_{i=1}^N = \{(x_1, y_1), \cdots, (x_N, y_N)\}$$

 El problema de regresión consiste en estimar f(x) a partir de estos datos

Regresión polinomial

- En verde se ilustra la función "verdadera" (inaccesible)
- Las muestras son uniformes en x y poseen ruido en y
- Utilizaremos una <u>función de costo</u> (error cuadrático)
 que mida el error en la predicción de y mediante f(x)

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Sobreajuste (overfitting)

- Datos de test: otra muestra de los misma función subyacente
- El error de entrenamiento se hace cero, pero el de test crece con M

Root-Mean-Square (RMS) Error: $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^\star)/N}$

Bondad de ajuste vs. complejidad de modelo

- Si el modelo tiene tantos grados de libertad como los presentes en los datos de entrenamiento, puede ajustarlos perfectamente
- El objetivo en aprendizaje automático no es el ajuste perfecto, sino la generalización a conjuntos no vistos
- Podemos decir que un modelo generaliza, si puede explicar los datos empleando una complejidad acotada

	M=0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43
	*			

Prevenir el sobreajuste (I)

• Agregar más datos (más que la "complejidad" del modelo)

Prevenir el sobreajuste (II)

• Regularización: penalizar valores grandes de los coeficientes

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Prevenir el sobreajuste (II)

Regularización: penalizar valores grandes de los coeficientes

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

Elección de hiperparámetros

Dividir el conjunto total de ejemplos en tres subconjuntos

- Entrenamiento: aprendizaje de variables del modelo
- Validación: ajuste/elección de hiperparámetros
- Test: estimación <u>final</u> de la performance del modelo entrenado (y con hiperparámetros elegidos adecuadamente

Generalización en clasificación

• Complejidad del modelo ⇔ complejidad de la frontera de decisión

Clasificación

Clasificación binaria

Disponemos de N pares de entrenamiento (observaciones)

$$\{(x_i,y_i)\}_{i=1}^N=\{(x_1,y_1),\cdots,(x_N,y_N)\}$$
 con $x_i\in\mathbb{R}^n,y_i\in\{-1,+1\}.$

• Aprender una f(x) tal que

$$f(\mathbf{x}_i) \begin{cases} \geq 0 & y_i = +1 \\ < 0 & y_i = -1 \end{cases}$$

es decir: $y_i f(x_i) > 0$ para una clasificación correcta.

Separabilidad lineal

linealmente separable

no linealmente separable

Clasificadores lineales

- La entrada es un vector x, de dimensionalidad n
- La salida es una etiqueta y, ∈ {-1, +1}
- Clasificador = función de predicción + función de decisión

$$g(f(x)) \to \{-1, +1\}$$

Función de predicción lineal

$$f(x) = w^{\mathrm{T}} x + w_0$$

Función de decisión

$$g(z) = sign(z)$$
$$g(f(x)) = sign(w^{T}x + w_{0})$$

Propuesto por Rosemblatt en 1958

- El objetivo es encontrar un hiperplano de separación
 - Si los datos son linealmente separables, lo encuentra

Es un algoritmo online (procesa un ejemplo a la vez)

Muchas variantes ...

Entrada:

- una secuencia de pares de entrenamiento $(x_1,y_1), (x_2,y_2)$...
- Una tasa de aprendizaje r

Algoritmo:

- Inicializar $w^{(0)} \epsilon \mathbb{R}^n$
- Para cada ejemplo (x_i, y_i)
 - $\circ \quad \text{Predecir } y_i' = sign(w^T x_i + w_0)$
 - $\circ \quad \operatorname{Si} y_i' \neq y_i:$ $w^{(t+1)} \leftarrow w^{(t)} + r(y_i x_i)$

Entrada:

- una secuencia de pares de entrenamiento $(x_1,y_1), (x_2,y_2)$...
- Una tasa de aprendizaje r (número pequeño y menor a 1)

Algoritmo:

- Inicializar $w^{(0)} \epsilon \mathbb{R}^n$
- Para cada ejemplo (x_i,y_i)
 - $\circ \quad \text{Predecir } y_i' = sign(w^T x_i + w_0)$
 - \circ Si $y_i' \neq y_i$: $w^{(t+1)} \leftarrow w^{(t)} + r(y, x)$

Nota: el término de bias se puede contemplar definiendo las entrada como $(x_i^{\mathrm{T}} 1)^{\mathrm{T}} \epsilon \mathbb{R}^{\mathrm{n+1}}$. Pregunta: ¿qué implica que w_0 =0?

Entrada:

- una secuencia de pares de entrenamiento $(x_1,y_1), (x_2,y_2)$...
- Una tasa de aprendizaje *r* (número pequeño y menor a 1)

Algoritmo:

- Inicializar $w^{(0)} \epsilon \mathbb{R}^n$
- Para cada ejemplo (x_i, y_i)
 - \circ Predecir $y_i' = sign(w^T x_i)$
 - $\circ \quad \text{Si } y_i' \neq y_i:$ $w^{(t+1)} \leftarrow w^{(t)} + r (y_i x_i)$

Actualiza solo cuando comete un error

Error en positivos:

$$w^{(t+1)} \leftarrow w^{(t)} + r x_i$$

Error en negativos:

$$w^{(t+1)} \leftarrow w^{(t)} - r x_i$$

Si $y_i w^T x_i \le 0 \rightarrow \text{error}$

Dinámica de actualización

Error en ejemplo **positivo**:

Dinámica de actualización

Error en ejemplo **negativo**:

1. The "standard" algorithm

Given a training set D = { (\mathbf{x}_i, y_i) }, $\mathbf{x}_i \in \Re^n$, $y_i \in \{-1,1\}$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \Re^n$
- 2. For epoch = 1 ... T:
 - Shuffle the data
 - 2. For each training example $(\mathbf{x}_i, y_i) \in D$:
 - If $y_i \mathbf{w}^\mathsf{T} \mathbf{x}_i \leq \mathsf{0}$, update $\mathbf{w} \leftarrow \mathbf{w} + r \ y_i \ \mathbf{x}_i$
- 3. Return w

Another way of writing that there is an error

T is a hyper-parameter to the algorithm

Prediction: sgn(w^Tx)

¿Cuál es el mejor w?

Solución de **margen máximo**: el hiperplano más estable ante perturbaciones de la entrada

Naïve Bayes

Regla de Bayes

Dos formas de factorizar una distribución en dos variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Operando:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- ¿Porqué es útil?
 - Nos permite "revertir" el condicional
 - A veces una dirección es difícil de calcular, pero la otra no
 - Es la base de muchos modelos

El clasificador de Bayes

• Distribución conjunta sobre X_1, \ldots, X_n e Y

• Podemos definir una función de predicción de la forma:

$$\operatorname{arg} \max_{Y} P(Y|X_1,\ldots,X_n)$$

 por ejemplo: ¿cuál es la probabilidad de que una imagen represente un "5" dado el valor de sus píxeles?

• Problema: ¿cómo computamos $P(Y|X_1, ..., X_n)$? ...

El clasificador de Bayes

... ¡Usando regla de Bayes!

$$P(Y|X_1,\ldots,X_n) = \frac{P(X_1,\ldots,X_n|Y)P(Y)}{P(X_1,\ldots,X_n)}$$
Normalization Constant

 Ahora podemos pensar en modelar cómo los píxeles de la imágen son "generados" dado el número "5".

Naïve Bayes

Hipótesis: los X_i son independientes dado Y

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$

= $P(X_1|Y)P(X_2|Y)$

• O en forma más general:

$$P(X_1...X_n|Y) = \prod_i P(X_i|Y)$$

• Si los X_i consisten en n valores binarios, ¿cuántos parámetros necesito especificar para $P(X_i | Y)$?

El clasificador naïve Bayes

- Dado:
 - Distribución a priori P(*Y*)
 - \circ n features X_i condicionalmente independientes dada la clase Y

• Para cada X_i , especificar $P(X_i | Y)$

 X_1 X_2 \cdots X_n

Función de decisión:

$$y^* = h_{NB}(\mathbf{x}) = \arg \max_{y} P(y) P(x_1, \dots, x_n \mid y)$$
$$= \arg \max_{y} P(y) \prod_{i} P(x_i \mid y)$$

Ejemplo: reconocimiento de dígitos

· Input: pixel grids

Output: a digit 0-9

Pregunta: ¿cuán realista es la hipótesis del clasificador naïve Bayes en este ejemplo?

Ejemplo: reconocimiento de dígitos

Estimación de parámetros por MV

- Dado un conjunto de datos, obtener Count(A=a, B=b), es decir, el número de ejemplos en donde A=a y B=b.
- MV para naïve Bayes sobre variables discretas:
 - Prior:

$$P(Y = y) = \frac{Count(Y = y)}{\sum_{y'} Count(Y = y')}$$

Distribución condicionales (observación):

$$P(X_i = x | Y = y) = \frac{Count(X_i = x, Y = y)}{\sum_{x'} Count(X_i = x', Y = y)}$$

Ejemplo: estimación de parámetros por MV

 El entrenamiento consiste en promediar los ejemplos para cada clase

MAP estimation for NB

- Given dataset
 - Count(A=a,B=b) ← number of examples where A=a and B=b
- MAP estimation for discrete NB, simply:
 - Prior:

$$P(Y = y) = \frac{Count(Y = y)}{\sum_{y'} Count(Y = y')}$$

– Observation distribution:

$$P(X_i = x | Y = y) = \frac{Count(X_i = x, Y = y) + \mathbf{a}}{\sum_{x'} Count(X_i = x', Y = y) + |\mathbf{X_i}|^* \mathbf{a}}$$

Called "smoothing". Corresponds to Dirichlet prior!

Estimación de parámetros por MAP

- Dado un conjunto de datos, obtener Count(A=a, B=b), es decir, el número de ejemplos en donde A=a y B=b.
- MV para naïve Bayes sobre variables discretas:
 - O Prior:

$$P(Y = y) = \frac{Count(Y = y)}{\sum_{y'} Count(Y = y')}$$

Distribución condicionales (observación):

$$P(X_i = x | Y = y) = \frac{Count(X_i = x, Y = y) + a}{\sum_{x'} Count(X_i = x', Y = y) + a |X_i|}$$

Estimación de parámetros por MAP

- Dado un conjunto de datos, obtener Count(A=a, B=b), es decir, el número de ejemplos en donde A=a y B=b.
- MV para naïve Bayes sobre variables discretas:
 - o Prior:

$$P(Y = y) = \frac{Count(Y = y)}{\sum_{y'} Count(Y = y')}$$

smoothing

(Dirichlet prior)

o Distribución condicionales (observación):

$$P(X_i = x | Y = y) = \frac{Count(X_i = x, Y = y) + a}{\sum_{x'} Count(X_i = x', Y \neq y) + a|X_i|}$$