Unidad I. Los Números Reales Parte I

R. M.

Matemáticas Facultade de Ciencias **UASD**

2025

Tabla de Contenido

- 1 Conceptos Fundamentales
- 2 Conjuntos Numéricos
- 3 Propiedades de los \mathbb{R}
- 4 Distancia y Punto Medio
- 6 Intervalos

- 2 Conjuntos Numéricos
- $oldsymbol{3}$ Propiedades de los $\mathbb R$
- 4 Distancia y Punto Medio
- Intervalos

Conceptos Fundamentales

Conceptos Fundamentales

Definición

Unidad I. Los Números Reales Parte I

Una operación interna en un conjunto A es una regla que asigna a cada par de elementos a, b de A, un único elemento c que también pertenece a A.

$$*: A \times A \rightarrow A$$

$$a * b = c \in A$$

- 2 Conjuntos Numéricos
- \bigcirc Propiedades de los \mathbb{R}

Los Números Naturales (N)

Definición

Son los números que usamos para contar elementos de un conjunto.

$$\mathbb{N} = \{1,2,3,\dots\}$$

Definición

Son los números que usamos para contar elementos de un conjunto.

$$\mathbb{N} = \{1, 2, 3, \dots\}$$

- Símbolo: N
- **Ejemplos:** 1, 7, 25, 1000
- **Operaciones Internas:**

Definición

Son los números que usamos para contar elementos de un conjunto.

$$\mathbb{N} = \{1, 2, 3, \dots\}$$

- Símbolo: N
- **Ejemplos:** 1, 7, 25, 1000
- Operaciones Internas:
 - Adición (+): La suma de dos naturales es siempre un natural. (3+5=8)
 - Multiplicación (x): El producto de dos naturales es siempre un natural.
 (4 × 6 = 24)

Los Números Enteros (\mathbb{Z})

Definición

Incluyen a los números naturales, sus opuestos negativos y el cero.

$$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

$$\mathbb{N} \subset \mathbb{Z}$$

Definición

Incluyen a los números naturales, sus opuestos negativos y el cero.

$$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

$$\mathbb{N} \subset \mathbb{Z}$$

- Símbolo: Z
- **Ejemplos:** -10, -2, 0, 5, 42
- Operaciones Internas:
 - Adición (+): (-5) + 8 = 3
 - Sustracción (-): 4-9=-5
 - Multiplicación (x): $(-3) \times 7 = -21$

Los Números Racionales (\mathbb{Q})

Definición

Unidad I. Los Números Reales Parte I

Son todos los números que pueden expresarse como el cociente de dos números enteros, $\frac{a}{b}$, donde b es distinto de cero.

$$\mathbb{Q} = \left\{ \frac{p}{q} \,\middle|\, p, q \in \mathbb{Z}, \,\, q \neq 0 \right\}$$

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}$$

Los Números Racionales (0)

Definición

Son todos los números que pueden expresarse como el cociente de dos números enteros, $\frac{a}{b}$, donde b es distinto de cero.

$$\mathbb{Q}=\left\{rac{p}{q}\,\middle|\,p,q\in\mathbb{Z},\,\,q
eq0
ight\}$$

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}$$

- Símbolo: 0
- **Ejemplos:** $\frac{1}{2}$, $-\frac{3}{4}$, 5, -0.25
- Expresión: Se expresan como decimales finitos o periódicos.
- Operaciones Internas: Adición, sustracción, multiplicación y división (excepto por cero).

Suma: Se busca un denominador común.

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

Ejemplo:

$$\frac{1}{3} + \frac{2}{5} = \frac{1 \cdot 5 + 3 \cdot 2}{3 \cdot 5} = \frac{5 + 6}{15} = \frac{11}{15}$$

Operaciones con Fracciones

Suma: Se busca un denominador común.

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

Ejemplo:

$$\frac{1}{3} + \frac{2}{5} = \frac{1 \cdot 5 + 3 \cdot 2}{3 \cdot 5} = \frac{5+6}{15} = \frac{11}{15}$$

Resta: Similar a la suma.

$$\frac{a}{b} - \frac{c}{d} = \frac{ad - bd}{bd}$$

Ejemplo:

$$\frac{1}{3} + \frac{2}{5} = \frac{1 \cdot 5 + 3 \cdot 2}{3 \cdot 5} = \frac{5 + 6}{15} = \frac{11}{15} \qquad \qquad \frac{3}{4} - \frac{1}{2} = \frac{3 \cdot 2 - 4 \cdot 1}{4 \cdot 2} = \frac{6 - 4}{8} = \frac{2}{8} = \frac{1}{4}$$

Operaciones con Fracciones

Suma: Se busca un denominador común.

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

Ejemplo:

$$\frac{1}{3} + \frac{2}{5} = \frac{1 \cdot 5 + 3 \cdot 2}{3 \cdot 5} = \frac{5 + 6}{15} = \frac{11}{15}$$

Resta: Similar a la suma.

$$\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$$

Ejemplo:

$$\frac{3}{4} - \frac{1}{2} = \frac{3 \cdot 2 - 4 \cdot 1}{4 \cdot 2} = \frac{6 - 4}{8} = \frac{2}{8} = \frac{1}{4}$$

Si tenemos denominador común:

$$\frac{a}{b} \pm \frac{c}{b} = \frac{a \pm c}{b}$$

Multiplicación: Se multiplican numeradores y denominadores.

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

Ejemplo:

$$\frac{2}{3} \times \frac{5}{7} = \frac{2 \cdot 5}{3 \cdot 7} = \frac{10}{21}$$

Operaciones con Fracciones II

Multiplicación: Se multiplican numeradores y denominadores.

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

Ejemplo:

$$\frac{2}{3} \times \frac{5}{7} = \frac{2 \cdot 5}{3 \cdot 7} = \frac{10}{21}$$

División: Se multiplica por el inverso del divisor.

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$$

Ejemplo:

$$\frac{1}{2} \div \frac{3}{4} = \frac{1}{2} \times \frac{4}{3} = \frac{4}{6} = \frac{2}{3}$$

Definición

Son números que no pueden ser expresados como una fracción $\frac{a}{b}$. Su expresión decimal es infinita y no periódica.

- Símbolo: $\mathbb{I} \circ \mathbb{Q}'$
- Ejemplos:
 - $\sqrt{2} \approx 1.41421356...$
 - $\pi \approx 3,14159265...$
 - El número de Euler $e \approx 2,71828...$

Los Números Reales (\mathbb{R})

Definición

El conjunto de los números reales es la unión del conjunto de los números racionales (\mathbb{Q}) y el conjunto de los números irracionales (\mathbb{I}) .

$$\mathbb{R}=\mathbb{Q}\cup\mathbb{I}$$

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}$$

Definición

El conjunto de los números reales es la unión del conjunto de los números racionales (\mathbb{O}) y el conjunto de los números irracionales (\mathbb{I}) .

$$\mathbb{R}=\mathbb{Q}\cup\mathbb{I}$$

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}$$

- Símbolo: ℝ
- Ejemplos: $-27, \frac{3}{5}, 0, \sqrt{3}, \pi$

- Conceptos Fundamentales
- 2 Conjuntos Numéricos
- $oldsymbol{3}$ Propiedades de los $\mathbb R$
- 4 Distancia y Punto Medio
- Intervalos

Propiedades de los Números Reales I

Para la suma (+) y la multiplicación (\cdot) , los números reales cumplen $a,b,c\in\mathbb{R}$:

Propiedades de los R

- **1 Cerradura o Clausura:** Suma: $a + b \in \mathbb{R}$ Multiplicación: $a \cdot b \in \mathbb{R}$
- **2 Conmutativa:** suma: a + b = b + aMultiplicación: $a \cdot b = b \cdot a$
- Asociativa:

suma:
$$(a + b) + c = a + (b + c)$$

Multiplicación: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

Elemento Neutro:

- Suma (0): a + 0 = a
- Multiplicación (1): $a \cdot 1 = a$
- 6 Elemento Inverso:
 - Inverso Aditivo u Opuesto (-a): a + (-a) = 0
 - Inverso Multiplicativo o Reciproco (a^{-1}): $a \cdot a^{-1} = 1$ (para $a \neq 0$)
- **6** Distributiva: $a \cdot (b+c) = a \cdot b + a \cdot c$

Nota: En \mathbb{R} con multiplicación, 0 es elemento absorbente.

Definición

La recta real es una representación geométrica del conjunto de los números reales. Cada punto en la recta corresponde a un único número real, llamado su coordenada.

Definición

La **recta real** es una representación geométrica del conjunto de los números reales. Cada punto en la recta corresponde a un único número real, llamado su **coordenada**.

Ubique las siguientes coordenadas:
$$3,-\sqrt{2},-\frac{4}{5},\frac{1}{5},\frac{1}{2},\sqrt{3},\frac{5}{2}$$

$$\leftarrow$$
 X

Definición

La **recta real** es una representación geométrica del conjunto de los números reales. Cada punto en la recta corresponde a un único número real, llamado su **coordenada**.

Definición

La **recta real** es una representación geométrica del conjunto de los números reales. Cada punto en la recta corresponde a un único número real, llamado su **coordenada**.

Definición

La **recta real** es una representación geométrica del conjunto de los números reales. Cada punto en la recta corresponde a un único número real, llamado su **coordenada**.

Definición

La **recta real** es una representación geométrica del conjunto de los números reales. Cada punto en la recta corresponde a un único número real, llamado su **coordenada**.

Definición

La **recta real** es una representación geométrica del conjunto de los números reales. Cada punto en la recta corresponde a un único número real, llamado su **coordenada**.

Definición

La **recta real** es una representación geométrica del conjunto de los números reales. Cada punto en la recta corresponde a un único número real, llamado su **coordenada**.

Definición

La **recta real** es una representación geométrica del conjunto de los números reales. Cada punto en la recta corresponde a un único número real, llamado su **coordenada**.

Definición

La **recta real** es una representación geométrica del conjunto de los números reales. Cada punto en la recta corresponde a un único número real, llamado su **coordenada**.

Definición

La **recta real** es una representación geométrica del conjunto de los números reales. Cada punto en la recta corresponde a un único número real, llamado su **coordenada**.

- Conceptos Fundamentales
- 2 Conjuntos Numéricos
- \bigcirc Propiedades de los \mathbb{R}
- 4 Distancia y Punto Medio

Valor Absoluto I

Definición

El valor absoluto de un número real a, denotado como |a|, es su distancia al cero en la recta numérica.

$$|a| = \begin{cases} a & \text{si } a \ge 0 \\ -a & \text{si } a < 0 \end{cases}$$

Valor Absoluto II

Propiedades

- **1** $|a| \ge 0$
- **2** |a| = |-a|
- **3** |ab| = |a||b|
- $|a+b| \le |a| + |b|$ (Designaldad Triangular)

Valor Absoluto III

Ejemplos

- |5| = 5
- |-7,2| = -(-7,2) = 7,2

Distancia y Punto Medio

Distancia entre dos puntos en \mathbb{R}

La distancia entre dos números reales a y b se define como:

$$d(a,b)=|b-a|$$

Distancia y Punto Medio

Distancia entre dos puntos en \mathbb{R}

La distancia entre dos números reales a y b se define como:

$$d(a,b) = |b-a|$$

Propiedades:

- $d(a, b) \ge 0$ (No negatividad)
- d(a, b) = d(b, a) (Simetría)
- $d(a, c) \le d(a, b) + d(b, c)$ (Designaldad Triangular)

Distancia y Punto Medio

Distancia entre dos puntos en \mathbb{R}

La distancia entre dos números reales a y b se define como:

$$d(a,b) = |b-a|$$

Propiedades:

- $d(a, b) \ge 0$ (No negatividad)
- d(a, b) = d(b, a) (Simetría)
- $d(a, c) \le d(a, b) + d(b, c)$ (Designaldad Triangular)

Punto Medio

El punto medio M del segmento que une a y b es: $p_m(a,b) = \frac{\overline{a+b}}{\overline{a+b}}$

Ejemplos: Distancia y Punto Medio

Puntos:
$$a = -3 \text{ y } b = \frac{5}{2}$$

Distancia:

Ejemplos: Distancia y Punto Medio

Puntos: $a = -3 \text{ y } b = \frac{5}{2}$

Distancia:

$$d(-3,\frac{5}{2}) = \left| \frac{5}{2} - (-3) \right| = \left| \frac{5}{2} + 3 \right| = \left| \frac{5+6}{2} \right| = \left| \frac{11}{2} \right| = \frac{11}{2}$$

Punto Medio:

Unidad I. Los Números Reales Parte I

Ejemplos: Distancia y Punto Medio

Puntos:
$$a = -3 \text{ y } b = \frac{5}{2}$$

Distancia:

$$d(-3,\frac{5}{2}) = \left| \frac{5}{2} - (-3) \right| = \left| \frac{5}{2} + 3 \right| = \left| \frac{5+6}{2} \right| = \left| \frac{11}{2} \right| = \frac{11}{2}$$

Punto Medio:

$$M = \frac{-3 + \frac{5}{2}}{2} = \frac{\frac{-6+5}{2}}{2} = \frac{-\frac{1}{2}}{2} = -\frac{1}{4}$$

Puntos:
$$a = -\frac{9}{2} \text{ y } b = \frac{4}{5}$$

Distancia:

Ejemplos: Distancia y Punto Medio II

Puntos:
$$a = -\frac{9}{2} \text{ y } b = \frac{4}{5}$$

Distancia:

$$d(-\frac{9}{2},\frac{4}{5}) = \left|\frac{4}{5} - (-\frac{9}{2})\right| = \left|\frac{4}{5} + \frac{9}{2}\right| = \left|\frac{8+45}{10}\right| = \left|\frac{53}{10}\right| = \frac{53}{10}$$

Punto Medio:

Ejemplos: Distancia y Punto Medio II

Puntos:
$$a = -\frac{9}{2} \text{ y } b = \frac{4}{5}$$

Distancia:

$$d(-\frac{9}{2},\frac{4}{5}) = \left|\frac{4}{5} - (-\frac{9}{2})\right| = \left|\frac{4}{5} + \frac{9}{2}\right| = \left|\frac{8+45}{10}\right| = \left|\frac{53}{10}\right| = \frac{53}{10}$$

Punto Medio:

$$M = \frac{-\frac{9}{2} + \frac{4}{5}}{2} = \frac{\frac{-45 + 8}{10}}{2} = \frac{-\frac{37}{10}}{2} = -\frac{37}{20}$$

Ley de Tricotomía

Definición

Para cualesquiera dos números reales a y b, una y solo una de las siguientes relaciones es verdadera:

- a < b (a es menor que b)
- a = b (a es igual a b)
- a > b (a es mayor que b)

Esta ley establece que el conjunto de los números reales es un conjunto ordenado.

- Conceptos Fundamentales
- 2 Conjuntos Numéricos
- \bigcirc Propiedades de los \mathbb{R}
- 6 Intervalos

Intervalos: Definición I

Definición

Un **intervalo** una definicion superficial y acorde al curso, es un subconjunto de los números reales que heradan la relación de orden.

Intervalos: Definición II

Nombre	Notación	Descripción	Gráfica
Abierto	(a, b)	$ \{x \in \mathbb{R} \mid a < x < b\} $	a b
Cerrado	[<i>a</i> , <i>b</i>]	$\{x \in \mathbb{R} \mid a \le x \le b\}$	a b
Semiabierto	[a, b)	$\{x \in \mathbb{R} \mid a \le x < b\}$	a o
Semiabierto	(a,b]	$ \{x \in \mathbb{R} \mid a < x \le b\} $	a b
Rayo Cerrado	[<i>a</i> , ∞)	$\{x \in \mathbb{R} \mid x \ge a\}$	a
Rayo Abierto	(a,∞)	$\{x \in \mathbb{R} \mid x > a\}$	$\stackrel{\circ}{a} \longrightarrow$
Rayo Cerrado	$(-\infty,b]$	$\{x \in \mathbb{R} \mid x \le b\}$	ф
Rayo Abierto	$(-\infty,b)$	$\{x \in \mathbb{R} \mid x < b\}$	\leftarrow b

 $\mathbb{R} = (-\infty, \infty)$

Escriba la desigualdad, grafíque, halle longitud y punto medio del siguiente intervalo:

Intervalo [-1,4)

Escriba la desigualdad, grafíque, halle longitud y punto medio del siguiente intervalo:

Intervalo [-1,4)

Notación de Intervalo:

Escriba la desigualdad, grafíque, halle longitud y punto medio del siguiente intervalo:

Intervalo [-1, 4)

- Notación de Intervalo: [-1, 4)
- Descripción (Desigualdad):

Escriba la desigualdad, grafíque, halle longitud y punto medio del siguiente intervalo:

Intervalo [-1,4)

- Notación de Intervalo:[−1, 4)
- **Descripción (Desigualdad):** $\{x \in \mathbb{R} \mid -1 \le x < 4\}$

• Gráfica:

Escriba la desigualdad, grafíque, halle longitud y punto medio del siguiente intervalo:

Intervalo [-1, 4)

- Notación de Intervalo: [−1, 4)
- **Descripción (Desigualdad):** $\{x \in \mathbb{R} \mid -1 < x < 4\}$

- Gráfica:
- Longitud:

Escriba la desigualdad, grafíque, halle longitud y punto medio del siguiente intervalo:

Intervalo [-1, 4)

- Notación de Intervalo: [-1, 4)
- Descripción (Desigualdad): $\{x \in \mathbb{R} \mid -1 \le x < 4\}$

- Gráfica:
- Longitud: La longitud es la distancia entre los extremos.

$$d(a,b) = L = |4 - (-1)| = 5$$

• Punto Medio:

Escriba la desigualdad, grafíque, halle longitud y punto medio del siguiente intervalo:

Intervalo [-1, 4)

- Notación de Intervalo: [−1, 4)
- **Descripción (Desigualdad):** $\{x \in \mathbb{R} \mid -1 < x < 4\}$

- Gráfica:
- **Longitud:** La longitud es la distancia entre los extremos.

$$d(a,b) = L = |4 - (-1)| = 5$$

Punto Medio:

$$M = \frac{-1+4}{2} = \frac{3}{2}$$

