Applicazione di Media e Potenza

Mutua Correlazione tra due fasori

È possibile trovare la mutua correlazione tra due fasori a questo link (lezione precedente).

Proprietà della Funzione di Correlazione

I - Valore nell'origine della correlazione

Il valore nell'origine della mutua correlazione di x ed y è proprio il prodotto scalare tra x ed y, in altre parole **l'energia tra x ed y** se si tratta di <u>segnali di energia</u> o **potenza tra x ed y** se si tratta di <u>segnali di potenza</u>:

II - Simmetria Coniugata

La mutua correlazione di x ed y corrisponde alla correlazione coniugata (quindi di y ed x) "**ribaltata**", quindi cambiata di segno:

Dimostrazione Simmetria coniugata

froof:
$$\mathcal{E}_{xy}(x) = \langle x(t), y(t-x) \rangle = \langle x(t), y'(t-x) \rangle = \langle x(t), y'(t-x) \rangle = \langle x(t-x), y'(t-x) \rangle = \langle x(t-x), y'(t-x), y'(t-x) \rangle = \langle x(t-x), y'(t-x), y$$

III - La funzione di mutua correlazione è limitata

III) La fdi mutua Correlazione e LIMITATA
$$|\gamma(xy(\cdot))| \leq ||\chi(\cdot)|| ||y(\cdot)||$$

Dimostrazione della limitazione della mutua correlazione

Proof: ricordiamo che
$$\mathcal{Z}(z) = |\langle x(t), y(t-z) \rangle| \leq ||x(t)|| \cdot ||y(t-z)||$$

Per la

Disuguaglianzo

Di Shwartz

Per l'invarianza Temporale della norma = $||x(t)|| \cdot ||y(t)||$

CVD

Sfruttiamo la disuguaglianza di Shwartz (vista anche in analisi)

Il **vantaggio** di rappresentare i segnali come **vettori** sta anche nell'ereditare tutte le proprietà di essi; infatti **l'invarianza della norma**, ereditata dai <u>vettori</u> ci dice che:

Se un sistema è in uno stato di norma in un determinato momento, rimarrà in uno stato di norma in qualsiasi momento successivo. Ciò è legato alla conservazione dell'energia e del momento angolare nel sistema.

Proprietà della Funzione di autocorrelazione

PROPRIETA' Dell' autocorrela zione

-D Discendono da quelle appena Viste

- D Ci basta mettere movamente X al posto della y: Zxx

I - Valore nell'origine dell'autocorrelazione

I) Valore in
$$O:$$

$$\mathcal{L}_{xx}(0) = \langle \chi(\cdot), \chi(\cdot) \rangle = \|\chi(\cdot)^2\| = \begin{cases} \mathcal{E}_x & \text{Energia} \\ \mathcal{P}_x & \text{Potenea} \end{cases}$$

II - Simmetria coniugata dell'autocorrelazione

II) Simmetria Coniugata $\mathcal{L}_{\chi}(\cdot) = \mathcal{L}_{\chi}(-(\cdot))$

Nel caso in cui i segnali sono reali, anche la funzione di autocorrelazione risulterà reale; questo vuol dire che il coniugato non opera, e che quindi il segnale x è pari.

III - Autocorrelazione Limitata superiormente

III) Limitata
$$|2\chi(\cdot)| \leq ||\chi(\cdot)||^2$$

Che ci dice questo?

Innanzitutto ci dice che il segnale sarà massimo in zero. Inoltre, risponde alla domanda: "Se confrontiamo un segnale con se stesso, quando sarà massima la similitudine?" --> quando $\tau = 0$.

Questo perchè quando abbiamo calcolato il valore in zero (proprietà I), abbiamo visto come in zero, l'autocorrelazione vale proprio la norma al quadrato di x.

Somma dei segnali

Correlazione della somma di due segnali

$$\mathcal{Z}(t) = \chi(t) + y(t)$$
 applies to def
$$\mathcal{Z}_{z}(t) = \chi_{z+y}(t) = (\chi(t) + y(t))(\chi(t-t) + y(t-t))^{*}$$
 Theoning ato della somma dei convigation dei convigation dei convigation dei convigation della media
$$= (\chi(t) + y(t))(\chi^{*}(t-t) + y(t-t)) + (\chi(t) + y(t))(\chi^{*}(t-t)) + y(t)(\chi^{*}(t-t)) + y$$

Notiamo che la correlazione della somma di due segnali, non è la somma della correlazione dei due segnali, ma è la somma della correlazione dei due segnali (in viola) <u>più</u> i due termini di mutua correlazione (in giallo).

Inoltre quando la mutua correlazione di x ed y vale zero (vale l'additività):

Se
$$\mathcal{C}_{xy}(\mathcal{X}) = 0$$
 $+\mathcal{X} = 0$ \times ed y Sono Incoerenti
Vale l'additirita'
$$=0 \quad \mathcal{C}_{x+y} = \mathcal{C}_{x} + \mathcal{C}_{y}$$

Icoerenza VS Ortogonalità

ATTENZIONE P

Se scriviamo
$$\mathcal{C}_{\chi y}(0) = \emptyset$$
 Stiamo dicendo che x ed y sono ORTOGONALI
e NON INCOERENTI!

-D Questo perchi $\mathcal{C}_{\chi y}(0) = \emptyset$ SOLO PER UN SOLO VALORE
e NON TUTT!

Esempio: Due fasori con frequenze/pulsazioni diverse

Se abbiamo due fasori aventi frequenze/pulsazioni diverse, **sicuramente** i due fasori saranno **incoerenti**:

ES: Due fasori

$$-J(w_1t+\varphi_1)$$

$$\chi(t) = A e$$

$$-J(w_2t+\varphi_2)$$

$$\chi(t) = A e$$

$$Con \ w_4 \neq w_2 = 0 \ \chi_{\chi_1}(t) = 0 \ t$$

Questo ovviamente implica che essi saranno anche ortogonali.

Raccolta di esercizi

A seguito (nel PDF della lezione) sono riportati una serie di esercizi sulle funzioni di correlazione.