SEQUENCE LISTING

```
<110> Memorial Sloan-Kettering Cancer Center
Kolesnick, Richard N.
Xing, Hong-Mei R.
```

<120> KINASE SUPPRESSOR OF RAS INACTIVATION FOR THERAPY OF RAS MEDIATED TUMORIGENESIS

<130> 1216-1-006PCTUS

<140> 10/516,342

<141> 2004-11-30

<150> PCT/US03/16961

<151> 2003-05-29

<150> 60/384,228

<151> 2002-05-30

<150> 60/460,023

<151> 2003-04-03

<160> 23

<170> PatentIn version 3.1

<210> 1

<211> 120

<212> DNA

<213> Homo sapiens

<400> 1

ctgcagaagc tcatcgatat ctccatcggc agtctgcgcg ggctgcgcac caagtgctca 60

gtgtctaacg acctcacaca gcaggagatc cggaccctag aggcaaagct ggtgaaatac 120

<210> 2

<211> 41

<212> PRT

<213> Homo sapiens

<400> 2

Leu Gln Lys Leu Ile Asp Ile Ser Ile Gly Ser Leu Arg Gly Leu Arg
1 5 10 15

Thr Lys Cys Ser Val Ser Asn Asp Leu Thr Gln Gln Glu Ile Arg Thr 20 25 30

Leu Glu Ala Lys Leu Val Lys Tyr Ile 35 40

<210>	3	
<211>	19	
<212>		
	Homo sapiens	
\213/	nomo saptens	
<400>		
ggcagt	ctgc gcgggctgc	19
<210>	4	
<211>		
<212>		
<213>	Homo sapiens	
<400>	4	
		18
ccagig	tcta acgacctc	10
<210>	5	
<211>	18	
<212>		
<213>	Homo sapiens	
<400>	5	
cggacc	ctag aggcaaag	18
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	antisense oligonucleotide	
\223 /	ancisense Oligonacieocide	
<400>	6	
cagccc	gcgc agactgccg	19
<210>	7	
<211>	18	
<212>		
<213>	Artificial Sequence	
<220>		
	antisense oligonucleotide	
\223 /	ancisense Oligonacieociae	
4.6		
<400>		
gaggtc	gtta gacactga	18
-		
<210>	Q	
<211>		
<212>		
<213>	Artificial Sequence	
		•
<220>		

16

<210> 9

<211> 873

<212> PRT

<213> Mus musculus

<400> 9

Met Asp Arg Ala Ala Leu Arg Ala Ala Ala Met Gly Glu Lys Lys Glu 1 5 10 15

Gly Gly Gly Gly Ala Ala Ala Asp Gly Gly Ala Gly Ala Ala Val 20 25 30

Ser Arg Ala Leu Gln Gln Cys Gly Gln Leu Gln Lys Leu Ile Asp Ile 35 40 45

Ser Ile Gly Ser Leu Arg Gly Leu Arg Thr Lys Cys Ser Val Ser Asn 50 55 60

Asp Leu Thr Gln Gln Glu Ile Arg Thr Leu Glu Ala Lys Leu Val Lys 65 70 75 80

Tyr Ile Cys Lys Gln Gln Gln Ser Lys Leu Ser Val Thr Pro Ser Asp 85 90 95

Arg Thr Ala Glu Leu Asn Ser Tyr Pro Arg Phe Ser Asp Trp Leu Tyr
100 105 110

Ile Phe Asn Val Arg Pro Glu Val Val Gln Glu Ile Pro Gln Glu Leu 115 120 125

Thr Leu Asp Ala Leu Leu Glu Met Asp Glu Ala Lys Ala Lys Glu Met 130 135 140

Leu Arg Arg Trp Gly Ala Ser Thr Glu Glu Cys Ser Arg Leu Gln Gln 145 150 155 160

Ala Leu Thr Cys Leu Arg Lys Val Thr Gly Leu Gly Glu His Lys 165 170 175

Met	Asp	Ser	Gly 180	Trp	Ser	Ser	Thr	Asp 185	Ala	Arg	Asp	Ser	Ser 190	Leu	Gly
Pro	Pro	Met 195	Asp	Met	Leu	Ser	Ser 200	Leu	Gly	Arg	Ala	Gly 205	Ala	Ser	Thr
Gln	Gly 210	Pro	Arg	Ser	Ile	Ser 215	Val	Ser	Ala	Leu	Pro 220	Ala	Ser	Asp	Ser
Pro 225	Val	Pro	Gly	Leu	Ser 230	Glu	Gly	Leu	Ser	Asp 235	Ser	Cys	Ile	Pro	Leu 240
His	Thr	Ser	Gly	Arg 245	Leu	Thr	Pro	Arg	Ala 250	Leu	His	Ser	Phe	Ile 255	Thr
Pro	Pro	Thr	Thr 260	Pro	Gln	Leu	Arg	Arg 265	His	Ala	Lys	Leu	Lys 270	Pro	Pro
Arg	Thr	Pro 275	Pro	Pro	Pro	Ser	Arg 280	Lys	Val	Phe	Gln	Leu 285	Leu	Pro	Ser
Phe	Pro 290	Thr	Leu	Thr	Arg	Ser 295	Lys	Ser	His	Glu	Ser 300	Gln	Leu	Gly	Asn
Arg 305	Ile	Asp	Asp	Val	Thr 310	Pro	Met	Lys	Phe	Glu 315	Leu	Pro	His	Gly	Ser 320
Pro	Gln	Leu	Val	Arg 325	Arg	Asp	Ile	Gly	Leu 330	Ser	Val	Thr	His	Arg 335	Phe
Ser	Thr	Lys	Ser 340	Trp	Leu	Ser	Gln	Val 345	Cys	Asn ·	Val	Cys	Gln 350	Lys	Ser
Met	Ile	Phe 355	Gly	Val	Lys	Cys	Lys 360	His	Cys	Arg	Leu	Lys 365	Cys	His	Asn
Lys	Cys 370	Thr	Lys	Glu	Ala	Pro 375	Ala	Суз	Arg	Ile	Thr 380	Phe	Leu	Pro	Leu
Ala 385	Arg	Leu	Arg	Arg	Thr 390	Glu	Ser	Val	Pro	Ser 395	Asp	Ile	Asn	Asn	Pro 400
Val	Asp	Arg	Ala	Ala	Glu	Pro	His	Phe	Gly	Thr	Leu	Pro	Lys	Ala	Leu

.

Thr Lys Lys Glu His Pro Pro Ala Met Asn Leu Asp Ser Ser Ser Asn Pro Ser Ser Thr Thr Ser Ser Thr Pro Ser Ser Pro Ala Pro Phe Leu Thr Ser Ser Asn Pro Ser Ser Ala Thr Thr Pro Pro Asn Pro Ser Pro Gly Gln Arg Asp Ser Arg Phe Ser Phe Pro Asp Ile Ser Ala Cys Ser Gln Ala Ala Pro Leu Ser Ser Thr Ala Asp Ser Thr Arg Leu Asp Asp Gln Pro Lys Thr Asp Val Leu Gly Val His Glu Ala Glu Ala Glu Glu Pro Glu Ala Gly Lys Ser Glu Ala Glu Asp Asp Glu Glu Asp Glu Val Asp Asp Leu Pro Ser Ser Arg Arg Pro Trp Arg Gly Pro Ile Ser Arg Lys Ala Ser Gln Thr Ser Val Tyr Leu Gln Glu Trp Asp Ile Pro Phe Glu Gln Val Glu Leu Gly Glu Pro Ile Gly Gln Gly Arg Trp Gly Arg Val His Arg Gly Arg Trp His Gly Glu Val Ala Ile Arg Leu Leu Glu Met Asp Gly His Asn Gln Asp His Leu Lys Leu Phe Lys Lys Glu Val Met Asn Tyr Arg Gln Thr Arg His Glu Asn Val Val Leu Phe Met Gly Ala Cys Met Asn Pro Pro His Leu Ala Ile Ile Thr Ser Phe Cys Lys

- Gly Arg Thr Leu His Ser Phe Val Arg Asp Pro Lys Thr Ser Leu Asp 645 650 655
- Ile Asn Lys Thr Arg Gln Ile Ala Gln Glu Ile Ile Lys Gly Met Gly 660 665 670
- Tyr Leu His Ala Lys Gly Ile Val His Lys Asp Leu Lys Ser Lys Asn 675 680 685
- Val Phe Tyr Asp Asn Gly Lys Val Val Ile Thr Asp Phe Gly Leu Phe 690 695 700
- Gly Ile Ser Gly Val Val Arg Glu Glu Arg Arg Glu Asn Gln Leu Lys 705 710 715 720
- Leu Ser His Asp Trp Leu Cys Tyr Leu Ala Pro Glu Ile Val Arg Glu 725 730 735
- Met Ile Pro Gly Arg Asp Glu Asp Gln Leu Pro Phe Ser Lys Ala Ala 740 745 750
- Asp Val Tyr Ala Phe Gly Thr Val Trp Tyr Glu Leu Gln Ala Arg Asp 755 760 765
- Trp Pro Phe Lys His Gln Pro Ala Glu Ala Leu Ile Trp Gln Ile Gly 770 780
- Ser Gly Glu Gly Val Arg Arg Val Leu Ala Ser Val Ser Leu Gly Lys 785 790 795 800
- Glu Val Gly Glu Ile Leu Ser Ala Cys Trp Ala Phe Asp Leu Gln Glu 805 810 815
- Arg Pro Ser Phe Ser Leu Leu Met Asp Met Leu Glu Arg Leu Pro Lys 820 825 830
- Leu Asn Arg Arg Leu Ser His Pro Gly His Phe Trp Lys Ser Ala Asp 835 840 845
- Ile Asn Ser Ser Lys Val Met Pro Arg Phe Glu Arg Phe Gly Leu Gly 850 855 860

Thr Leu Glu Ser Gly Asn Pro Lys Met 865 870

<210> 10

<211> 866

<212> PRT

<213> Homo sapiens

<400> 10

Met Gly Glu Lys Glu Gly Gly Gly Gly Asp Ala Ala Ala Glu 1 5 10 15

Gly Gly Ala Gly Ala Ala Ala Ser Arg Ala Leu Gln Gln Cys Gly Gln 20 25 30

Leu Gln Lys Leu Ile Asp Ile Ser Ile Gly Ser Leu Arg Gly Leu Arg 35 40 45

Thr Lys Cys Ala Val Ser Asn Asp Leu Thr Gln Gln Glu Ile Arg Thr 50 55 60

Leu Glu Ala Lys Leu Val Arg Tyr Ile Cys Lys Gln Arg Gln Cys Lys 65 70 75 80

Leu Ser Val Ala Pro Gly Glu Arg Thr Pro Glu Leu Asn Ser Tyr Pro 85 90 95

Arg Phe Ser Asp Trp Leu Tyr Thr Phe Asn Val Arg Pro Glu Val Val 100 105 110

Gln Glu Ile Pro Arg Asp Leu Thr Leu Asp Ala Leu Leu Glu Met Asn 115 120 125

Glu Ala Lys Val Lys Glu Thr Leu Arg Arg Cys Gly Ala Ser Gly Asp 130 135 140

Glu Cys Gly Arg Leu Gln Tyr Ala Leu Thr Cys Leu Arg Lys Val Thr 145 150 155 160

Gly Leu Gly Glu His Lys Glu Asp Ser Ser Trp Ser Ser Leu Asp 165 170 175

Ala Arg Arg Glu Ser Gly Ser Gly Pro Ser Thr Asp Thr Leu Ser Ala

Ala	Ser	Leu 195	Pro	Trp	Pro	Pro	Gly 200	Ser	Ser	Gln	Leu	Gly 205	Arg	Ala	Gly
Asn	Ser 210	Ala	Gln	Gly	Pro	Arg 215	Ser	Ile	Ser	Val	Ser 220	Ala	Leu	Pro	Ala
Ser 225	Asp	Ser	Pro	Thr	Pro 230	Ser	Phe	Ser	Glu	Gly 235	Leu	Ser	Asp	Thr	Cys 240
Ile	Pro	Leu	His	Ala 245	Ser	Gly	Arg	Leu	Thr 250	Pro	Arg	Ala	Leu	His 255	Ser
Phe	Ile	Thr	Pro 260	Pro	Thr	Thr	Pro	Gln 265	Leu	Arg	Arg	His	Thr 270	Lys	Leu
Lys	Pro	Pro 275	Arg	Thr	Pro	Pro	Pro 280	Pro	Ser	Arg	Lys	Val 285	Phe	Gln	Leu
Leu	Pro 290	Ser	Phe	Pṛo	Thr	Leu 295	Thr	Arg	Arg	Lys	Ser 300	His	Glu	Ser	Glr
Leu 305	Gly	Asn	Arg	Ile	Asp 310	Asp	Val	Ser	Ser	Met 315	Arg	Phe	Asp	Leu	Ser 320
His	Gly	Ser	Pro	Gln 325	Met	Val	Arg	Arg	Asp 330	Ile	Gly	Leu	Ser	Val 335	Thr
His	Arg	Phe	Ser 340	Thr	Lys	Ser	Trp	Leu 345	Ser	Gln	Val	Cys	His 350	Val	Cys
Gln	Lys	Ser 355	Met	Ile	Phe	Gly	Val 360	Lys	Cys	Lys	His	Cys 365	Arg	Leu	Lys
Cys	His 370	Asn	Lys	Cys	Thr	Lys 375	Glu	Ala	Pro	Ala	Cys 380	Arg	Ile	Ser	Phe
Leu 385	Pro	Leu	Thr	Arg	Leu 390	Arg	Arg	Thr	Glu	Ser 395	Val	Pro	Ser	Asp	Ile 400
Asn	Asn	Pro	Val	Asp 405	Arg	Ala	Ala	Glu	Pro 410	His	Phe	Gly	Thr	Leu 415	Pro

Lys Ala Leu Thr Lys Lys Glu His Pro Pro Ala Met Asn His Leu Asp Ser Ser Ser Asn Pro Ser Ser Thr Thr Ser Ser Thr Pro Ser Ser Pro Ala Pro Phe Pro Thr Ser Ser Asn Pro Ser Ser Ala Thr Thr Pro Pro Asn Pro Ser Pro Gly Gln Arg Asp Ser Arg Phe Asn Phe Pro Ala Ala Tyr Phe Ile His His Arg Gln Gln Phe Ile Phe Pro Asp Ile Ser Ala Phe Ala His Ala Ala Pro Leu Pro Glu Ala Ala Asp Gly Thr Arg Leu Asp Asp Gln Pro Lys Ala Asp Val Leu Glu Ala His Glu Ala Glu Ala Glu Glu Pro Glu Ala Gly Lys Ser Glu Ala Glu Asp Asp Glu Asp Glu Val Asp Asp Leu Pro Ser Ser Arg Arg Pro Trp Arg Gly Pro Ile Ser Arg Lys Ala Ser Gln Thr Ser Val Tyr Leu Gln Glu Trp Asp Ile Pro Phe Glu Gln Val Glu Leu Gly Glu Pro Ile Gly Gln Gly Arg Trp Gly Arg Val His Arg Gly Arg Trp His Gly Glu Val Ala Ile Arg Leu Leu Glu Met Asp Gly His Asn Gln Asp His Leu Lys Leu Phe Lys Lys Glu Val Met Asn Tyr Arg Gln Thr Arg His Glu Asn Val Val Leu Phe Met

Gly Ala Cys Met Asn Pro Pro His Leu Ala Ile Ile Thr Ser Phe Cys 645 650 655

Lys Gly Arg Thr Leu His Ser Phe Val Arg Asp Pro Lys Thr Ser Leu 660 665 670

Asp Ile Asn Lys Thr Arg Gln Ile Ala Gln Glu Ile Ile Lys Gly Met 675 680 685

Gly Tyr Leu His Ala Lys Gly Ile Val His Lys Asp Leu Lys Ser Lys 690 695 700

Asn Val Phe Tyr Asp Asn Gly Lys Val Val Ile Thr Asp Phe Gly Leu 705 710 715 720

Phe Gly Ile Ser Gly Val Val Arg Glu Gly Arg Arg Glu Asn Gln Leu 725 730 735

Lys Leu Ser His Asp Trp Leu Cys Tyr Leu Ala Pro Glu Ile Val Arg
740 745 750

Glu Met Thr Pro Gly Lys Asp Glu Asp Gln Leu Pro Phe Ser Lys Ala 755 760 765

Ala Asp Val Tyr Ala Phe Gly Thr Val Trp Tyr Glu Leu Gln Ala Arg 770 775 780

Asp Trp Pro Leu Lys Asn Gln Ala Ala Glu Ala Ser Ile Trp Gln Ile 785 790 795 800

Gly Ser Gly Glu Gly Met Lys Arg Val Leu Thr Ser Val Ser Leu Gly 805 810 815

Lys Glu Val Ser Glu Ile Leu Ser Ala Cys Trp Ala Phe Asp Leu Gln 820 825 830

Glu Arg Pro Ser Phe Ser Leu Leu Met Asp Met Leu Glu Lys Leu Pro 835 840 845

Lys Leu Asn Arg Arg Leu Ser His Pro Gly His Phe Trp Lys Ser Ala 850 855 860

<210> 11 <211> 4094 <212> DNA

<213> Mus musculus

<400> 11

60 gaatteecte ggggetttee tgeegaggeg eeegtgteee egggeteete geeteggeee 120 ccagcggccc cgatgccgag gcatggatag agcggcgttg cgcgcggcag cgatgggcga gaaaaaggag ggcggcggcg ggggcgccgc ggcggacggg ggcgcagggg ccgccgtcag 180 240 ccgggcgctg cagcagtgcg gccagctgca gaagctcatc gatatctcca tcggcagtct 300 gcgcgggctg cgcaccaagt gctcagtgtc taacgacctc acacagcagg agatccggac 360 cctagaggca aagctggtga aatacatttg caagcagcag cagagcaagc ttagtgtgac 420 cccaagcgac aggaccgccg agctcaacag ctacccacgc ttcagtgact ggctgtacat 480 cttcaacgtg aggcctgagg tggtgcagga gatcccccaa gagctcacac tggatgctct 540 qctqqaqatq gacqaggcca aagccaagga gatgctgcgg cgctgggggg ccagcacgga 600 ggagtgcagc cgcctacagc aagcccttac ctgccttcgg aaggtgactg gcctgggagg ggagcacaaa atggactcag gttggagttc aacagatgct cgagacagta gcttggggcc 660 720 tcccatggac atgctttcct cgctgggcag agcgggtgcc agcactcagg gaccccgttc 780 catctccgtg tccgccctgc ctgcctcaga ctctccggtc cccggcctca gtgagggcct 840 cteggactee tgtateeect tgcacaccag eggeeggetg acceeeggg eeetgeacag 900 cttcatcacg cccctacca caccccagct acgacggcac gccaagctga agccaccaag 960 gacaccccca ccgccaagcc gcaaggtctt ccagctgctc cccagcttcc ccacactcac acggagcaag tcccacgagt cccagctggg aaaccgaatc gacgacgtca ccccgatgaa 1020 gtttgaactc cctcatggat ccccacagct ggtacgaagg gatatcgggc tctcggtgac 1080 1140 gcacaggttc tccacaaagt catggttgtc acaggtgtgc aacgtgtgcc agaagagcat 1200 gatttttggc gtgaagtgca aacactgcag gttaaaatgc cataacaagt gcacaaagga 1260 agctcccgcc tgcaggatca ccttcctccc actggccagg cttcggagga cagagtctgt 1320 cccgtcagat atcaacaacc cagtggacag agcagcagag ccccattttg gaacccttcc 1380 caaggccctg acaaagaagg agcaccctcc agccatgaac ctggactcca gcagcaaccc atcctccacc acgtcctcca caccctcatc gccggcacct ttcctgacct catctaatcc 1440

ctccagtgcc	accacgcctc	ccaacccgtc	acctggccag	cgggacagca	ggttcagctt	1500
cccagacatt	tcagcctgtt	ctcaggcagc	cccgctgtcc	agcacagccg	acagtacacg	1560
gctcgacgac	cagcccaaaa	cagatgtgct	aggtgttcac	gaagcagagg	ctgaggagcc	1620
tgaggctggc	aagtcagagg	cagaggatga	cgaggaggat	gaggtggacg	acctccccag	1680
ctcccgccgg	ccctggaggg	gccccatctc	tcgaaaggcc	agccagacca	gcgtttacct	1740
gcaagagtgg	gacatcccct	ttgaacaggt	ggaactgggc	gagcccattg	gacagggtcg	1800
ctggggccgg	gtgcaccgag	gccgttggca	tggcgaggtg	gccattcggc	tgctggagat	1860
ggacggccac	aatcaggacc	acctgaagct	gttcaagaaa	gaggtgatga	actaccggca	1920
gacgcggcat	gagaacgtgg	tgctcttcat	gggggcctgc	atgaacccac	ctcacctggc	1980
cattatcacc	agcttctgca	aggggcggac	attgcattca	ttcgtgaggg	accccaagac	2040
gtctctggac	atcaataaga	ctaggcagat	cgcccaggag	atcatcaagg	gcatgggtta	2100
tcttcatgca	aaaggcatcg	tgcacaagga	cctcaagtcc	aagaatgtct	tctatgacaa	2160
cggcaaagtg	gtcatcacag	acttcgggct	gtttgggatc	tegggtgtgg	tccgagagga	2220
acggcgcgag	aaccaactga	aactgtcaca	tgactggctg	tgctacctgg	cccccgagat	2280
cgtacgagaa	atgatcccgg	ggcgggacga	ggaccagctg	cccttctcca	aagcagccga	2340
tgtctatgca	ttcgggactg	tgtggtatga	actacaggca	agagactggc	cctttaagca	2400
ccagcctgct	gaggccttga	tctggcagat	tggaagtggg	gaaggagtac	ggcgcgtcct	2460
ggcatccgtc	agcctgggga	aggaagtcgg	cgagatcctg	tctgcctgct	gggctttcga	2520
tctgcaggag	agacccagct	tcagcctgct	gatggacatg	ctggagaggc	tgcccaagct	2580
gaaccggcgg	ctctcccacc	ctgggcactt	ttggaagtcg	gctgacatta	acagcagcaa	2640
agtcatgccc	cgctttgaaa	ggtttggcct	ggggaccctg	gagtccggta	atccaaagat	2700
gtagccagcc	ctgcacgttc	atgcagagag	tgtcttcctt	tcgaaaacat	gatcacgaaa	2760
catgcagacc	accacctcaa	ggaatcagaa	gcattgcatc	ccaagctgcg	gactgggagc	2820
gtgtctcctc	cctaaaggac	gtgcgtgcgt	gcgtgcgtgc	gtgcgtgcgt	gcgtgcgtca	2880
ccaaggtgtg	tggagctcag	gatcgcagcc	atacacgcaa	ctccagatga	taccactacc	2940
gccagtgttt	acacagaggt	ttctgcctgg	caagcttggt	attttacagt	aggtgaagat	3000
cattctgcag	aagggtgctg	gcacagtgga	gcagcacgga	tgtccccagc	ccccgttctg	3060
gaagacccta	cagctgtgag	aggcccaggg	ttgagccaga	tgaaagaaaa	gctgcgtggg	3120

tgtgggctgt acccggaaaa	gggcaggtgg	caggaggttt	gccttggcct	gtgcttgggc	3180
cgagaaccac actaaggagc	agcagcctga	gttaggaatc	tatctggatt	acggggatca	3240
gagttcctgg agagtggact	cagtttctgc	tctgatccag	gcctgttgtg	cttttttt	3300
ttccccctta aaaaaaaaaa	agtacagaca	gaatctcagc	ggcttctaga	ctgatctgat	3360
ggatcttagc ccggcttcta	ctgcgggggg	gagggggga	gggatagcca	catatctgtg	3420
gagacaccca cttctttatc	tgaggcctcc	aggtaggcac	aaaggctgtg	gaactcagcc	3480
tctatcatca gacacccccc	cccaatgcct	cattgacccc	cttcccccag	agccaagggc	3540
tagcccatcg ggtgtgtgta	cagtaagttc	ttggtgaagg	agaacaggga	cgttggcaga	3600
agcagtttgc agtggcccta	gcatcttaaa	acccattgtc	tgtcacacca	gaaggttcta	3660
gacctaccac cacttccctt	ccccatctca	tggaaacctt	ttagcccatt	ctgacccctg	3720
tgtgtgctct gagctcagat	cgggttatga	gaccgcccag	gcacatcagt	cagggaggct	3780
ctgatgtgag ccgcagacct	ctgtgttcat	tcctatgagc	tggaggggct	ggactgggtg	3840
gggtcagatg tgcttggcag	gaactgtcag	ctgctgagca	gggtggtccc	tgagcggagg	3900
ataagcagca tcagactcca	caaccagagg	aagaaagaaa	tggggatgga	gcggagaccc	3960
acgggctgag tcccgctgtg	gagtggcctt	gcagctccct	ctcagttaaa	actcccagta	4020
aagccacagt tctccgagca	cccaagtctg	ctccagccgt	ctcttaaaac	aggccactct	4080
ctgagaagga attc					4094

<210> 12

<211> 3772

<212> DNA · ·

<213> Homo sapiens

<400> 12

60	ggctcccggt	agctgagcgt	aggcagtgca	ttgtaagcag	tccgttacat	gcgaagctgg
120	cactttcaac	actggctgta	cgcttcagcg	cagctacccc	cagagctcaa	gagaggaccc
180	cctgctggag	cgctggatgc	cgagacctca	ggagatcccc	aggtggtgca	gtgaggccgg
240	ggatgagtgt	gggccagcgg	cggcgctgtg	ggagacgctg	ccaaggtgaa	atgaatgagg
300	ttcatcaccc	caggcctggc	cggaaggtga	cacctgcctg	agtatgccct	ggccgtctgc
360	acgcccccc	gccaccacgg	ccaagctgaa	cgacggcaca	accccagctg	cgcccaccac
420	cggagcaagt	cacactcacc	ccagcttccc	cagctgctgc	caaggtcttc	cacccagccg
480	tgagttggga	ctcgatgagg	atgacgtctc	aaccgcattg	tcagctgggg	cccatgagtc

gcacgttcct	gcacgtggct	atgctgtggg	gcctctctca	tgagtcagag	cggagggaga	540	
cagctgtgcc	tctggagtct	gcttttaatt	gtctggaaat	gcagagatgt	ctggtttttg	600	
cctgagcaaa	ataggagttt	atttttgtac	tatcccgagc	tggctaagga	gagtcacgta	660	
gctgtgggcg	gggtcttggg	gatgaggagg	ggtacagcag	gcagggacta	tgctgaagtg	720	
gagctggctg	taggaacccc	agggaggcac	agggggagca	tgaagaggag	ctacacttcc	780	
ctcccttagt	gcccgggcag	aaactcccag	ggcccttcac	agaaccttgg	aggaacattc	840	
aacaccccca	tctctaggac	agccccagcc	ttgtcatcct	ccaattgctg	tggtaacacg	900	
gggactggag	cagtgagatt	attaggcctt	cagggccagt	gtctccatgc	agatcagatg	960	
gaggcggtgc	ttggcacata	caccacctca	ctgcccatgc	ccccagaagt	tggtgcagat	1020	
cataaggtgg	cttttggggc	taattgattg	aagttccaac	atagtctgtt	tctcctaggc	1080	
tggtagctgg	cacctttggc	cccatgtgtt	ttttaattat	tttttcttt	gagacgaaat	1140	
ctcgctctat	cacccaggct	gaagtgcagt	agtgcaatct	cagctcactg	cagcctctgc	1200	
ctcccgggtt	caagcaattc	tcctgcctca	gcctcccgag	tagccaggat	taaaggtgcc	1260	
tgccaccaca	catggctaat	ttttgtattt	ttaatagaga	cggggtttca	ccatgttagc	1320	
caggctggtc	tcaaactcct	gacctcaggt	gatcttcctg	cctcagcctc	ccaaagtgct	1380	
gggattacag	gtgtgagcca	ctgcgcccag	tcatgcccat	gtgttttggt	ggtcttggct	1440	
gctgatgggt	ggggtgagcc	ccaggaggaa	gttgggacaa	gtcaacctca	tggcagatgt	1500	
gccagggaga	gctgcgggtg	agatagattg	ttcctatccc	cctctccttg	atgtgggagg	1560	
actcagtacc	tccagcacac	ccttctcatg	gaggttggtt	atgtggtact	tggcctcaag	1620	
tgaaccagca	cttcatgagt	ccagctttgt	gctagaccag	cacttgggat	tgaggggggc	1680	
agtggccacc	ctcgggggac	cttctgactc	agaggacatg	agatggccac	actcgagcac	1740	
tgtgttcctg	acctttctgg	gtcacaggtc	accttgatga	ttggatgaaa	gtcttagatc	1800	
ttctttccag	agaaaagtct	acaacattct	actgaaccag	tccagagggt	tcccggaccc	1860	
ccgaagccca	cccatgggct	ggctctggga	ggcaatggcg	ctgagtatgg	gggcatctct	1920	
cgcatggatc	cccacagatg	gtacggaggg	atatcgggct	gtcggtgacg	cacaggttct	1980	
ccaccaagtc	ctggctgtcg	caggtctgcc	acgtgtgcca	gaagagcatg	atatttggag	2040	
tgaagtgcaa	gcattgcagg	ttgaagtgtc	acaacaaatg	taccaaagaa	gcccctgcct	2100	
gtagaatatc	cttcctgcca	ctaactcggc	ttcggaggac	agaatctgtc	ccctcggaca	2160	
tcaacaaccc	ggtggacaga	gcagccgaac	cccattttgg	aaccctcccc	aaagcactga	2220	

.

caaagaagga	gcaccctccg	gccatgaatc	acctggactc	cagcagcaac	ccttcctcca	2280
ccacctcctc	cacaccctcc	tcaccggcgc	ccttcccgac	atcatccaac	ccatccagcg	2340
ccaccacgcc	ccccaacccc	tcacctggcc	agcgggacag	caggttcaac	ttcccagctg	2400
cctacttcat	tcatcataga	cagcagttta	tctttccaga	catttcagcc	tttgcacacg	2460
cagccccgct	ccctgaagct	gccgacggta	cccggctcga	tgaccagccg	aaagcagatg	2520
tgttggaagc	tcacgaagcg	gaggctgagg	agccagaggc	tggcaagtca	gaggcagaag	2580
acgatgagga	cgaggtggac	gacttgccga	gctctcgccg	gccctggcgg	ggccccatct	2640
ctcgcaaggc	cagccagacc	agcgtgtacc	tgcaggagtg	ggacatcccc	ttcgagcagg	2700
tagagctggg	cgagcccatc	gggcagggcc	gctggggccg	ggtgcaccgc	ggccgctggc	2760
atggcgaggt	ggccattcgc	ctgctggaga	tggacggcca	caaccaggac	cacctgaagc	2820
tcttcaagaa	agaggtgatg	aactaccggc	agacgcggca	tgagaacgtg	gtgctcttca	2880
tgggggcctg	catgaacccg	ccccacctgg	ccattatcac	cagcttctgc	aaggggcgga	2940
cgttgcactc	gtttgtgagg	gaccccaaga	cgtctctgga	catcaacaag	acgaggcaaa	3000
tcgctcagga	gatcatcaag	ggcatgggat	atcttcatgc	caagggcatc	gtacacaaag	3060
atctcaaatc	taagaacgtc	ttctatgaca	acggcaaggt	ggtcatcaca	gacttcgggc	3120
tgtttgggat	ctcaggcgtg	gtccgagagg	gacggcgtga	gaaccagcta	aagctgtccc	3180
acgactggct	gtgctatctg	gcccctgaga	ttgtacgcga	gatgaccccc	gggaaggacg	3240
aggatcagct	gccattctcc	aaagctgctg	atgtctatgc	atttgggact	gtttggtatg	3300
agctgcaagc	aagagactgg	cccttgaaga	accaggctgc	agaggcatcc	atctggcaga	3360
ttggaagcgg	ggaaggaatg	aagcgtgtcc	tgacttctgt	cagcttgggg	aaggaagtca	3420
gtgagatcct	gtcggcctgc	tgggctttcg	acctgcagga	gagacccagc	ttcagcctgc	3480
tgatggacat	gctggagaaa	cttcccaagc	tgaaccggcg	gctctcccac	cctggacact	3540
tctggaagtc	agctgagttg	taggcctggc	tgccttgcat	gcaccagggg	ctttcttcct	3600
cctaatcaac	aactcagcac	cgtgacttct	gctaaaatgc	aaaatgagat	gcgggcacta	3660
acccagggga	tgccacctct	gctgctccag	tegtetetet	cgaggctact	tcttttgctt	3720
tgttttaaaa	actggccctc	tgccctctcc	acgtggcctg	catatgccca	ag	3772

<210> 13 <211> 24 <212> DNA

<213>	Artificial Sequence	
<220>		
<223>	primer	
<400>	13	
	ttac ttctgtggtg tgac	24
<210>	14	
<211>	24	
<212>		
<213>	Artificial Sequence	
<220>		
	primer	
<400>	14 acac tctatgcctg tgtg	24
caycay	deac tetatgeety tyty	24
<210>	15	
<211> <212>	18 DNA	
	Artificial Sequence	
<220> <223>	sense oligonucleotide	
~2237	sense origonacreotrae	
<400>	15	
cggacco	ctag aggcaaag	18
<210>	16	
<211>	20	
<212>	Artificial Sequence	
12137	Interpretar bequence	
<220>		
<223>		
	control oligonucleotide	
<400>	control oligonucleotide 16	
		20
	16	20
cacgtca	16 acgc gcgcactatt	20
<210><211>	16 acgc gcgcactatt 17 6	20
<210><211><212>	16 acgc gcgcactatt 17 6 PRT	20
<210><211><212>	16 acgc gcgcactatt 17 6	20
<210><211><212>	16 acgc gcgcactatt 17 6 PRT	20
<210> <211> <212> <213> <400>	16 acgc gcgcactatt 17 6 PRT Homo sapiens	20
<210> <211> <212> <213> <400>	16 acgc gcgcactatt 17 6 PRT Homo sapiens 17	20

<210> 18

```
<212> PRT
<213> Homo sapiens
<400> 18
Ala Val Ser Asn Asp Leu
<210> 19
<211> 6
<212> PRT
<213> Homo sapiens
<400> 19
Arg Thr Leu Glu Ala Lys
               5
<210> 20
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 20
tatctccatc ggcagtct
                                                                    18
<210> 21
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 21
                                                                    18
tcgacgctca cacttcaa
<210> 22
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 22
                                                                    17
ctgaccgctt cctcgtg
```

<211> 6

<210> 23

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 23

atagagccca ccgcatcc

18