Operációs rendszerek:

a virtualizáció alapjai

Mészáros Tamás http://www.mit.bme.hu/~meszaros/

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék

Az előadásfóliák legfrissebb változata a tantárgy honlapján érhető el. Az előadásanyagok BME-n kívüli felhasználása és más rendszerekben történő közzététele előzetes engedélyhez kötött.

A virtualizáció alapjai 1 / 24

Az eddigiekben történt...

- Az OS multiprogramozott
 - szeparálja a taszkokat
 - absztrakt virtuális gép koncepció
- Erőforrások
 - CPU + védelmi szintek
 - memória + MMU + VMM
 - tárolórendszer virtualizáció

- Komplexitás → hibák, költségek
 - fejlesztés (I. architekturális részek)
 - üzemeltetés (l. laborok)

A virtualizáció alapjai 2 / 24

Mi a virtualizáció?

A virtualizáció alapjai 3 / 24

Mi a virtualizáció?

A virtualizáció alapjai 4 / 24

Mi a virtualizáció?

Erőforrás virtuális (szoftveres) változatának létrehozása, amely az eredetire támaszkodva, ahhoz hasonlóan, de attól elválasztott módon működik.

virtualizált erőforrás: számítógépes hardver vagy szoftver host (gazda): a virtualizált erőforrást biztosítja guest (vendég): az erőforrás felhasználója

Forrás: Smith, Nair: Introduction to Virtual Machines

A virtualizáció alapjai 5 / 24

Mi virtualizálható?

Hardver

- teljes számítógép
- számítógépes hálózat
- grafikus kártya
- stb.

Szoftver

- egy szolgáltatáshalmaz, azaz API
- lehet rendszerkönyvtár (pl. GUI), kernel (vagy egy része) is

Adat

- formátum- és elhelyezkedésfüggetlen
- hozzáférés és módosítás
- Egy már virtualizált rendszer is

A virtualizáció alapjai 6 / 24

Mire jó a virtualizáció?

- Konkurens erőforrás-használat (→ multiprogramozott OS)
 - egyszerre többen használhatják az erőforrást
 - kezeli a versenyhelyzeteket
- Összeolvasztás
 - kapacitásbővítés (lásd még tárolórendszerek)
 - szolgáltatások fúziója
- Szolgáltatásbővítés és -szűkítés
 - csak ami kell, akár többfélét összegyúrva
 - újfajta aggregált szolgáltatásokat megvalósítva
- Felügyelet, menedzsment (→ OS)
 - szabályozott, automatizált
 - szereplők, jogosultságok
- Archiválás
 - "dobozba zárva" megőrizhető

5 benefits of virtualization

Hewlett Packard Enterprise

#CoffeeCoaching

A virtualizáció alapjai 7 / 24

Miért jó a virtualizáció?

- Erőforrás-kihasználtság (→ OS)
 - több használó, kevesebb "üresjárat"
- Csökken a gyártófüggőség
 - helyettesíthető erőforrások
- Csökken az erőforrások száma
 - kevesebb hiba és energiafelvétel
- Jobb menedzsment
 - automatizálható, egyszerűsíthető
- Nagyobb izoláció
 - kisebb, szeparált támadási felületek
- Hatékonyabb rendszerfejlesztés
 - (fél)kész komponensek polcról
 - egyszerűbb tesztelés és archiválás

Csökkenő költségek

TCO: total cost of ownership beruházás fenntartás (menedzsment)

Növekvő rendelkezésre állás kezelhetőbb hibák megbízhatóbb rendszerek

Növekvő flexibilitás

rugalmasabb specifikáció skálázható, adaptív rendszerek

Kockázatok és mellékhatások támadható és hibaforrás (SPOF) van rezsiköltsége komplex lehet a kezelése

A virtualizáció alapjai 8 / 24

A virtualizáció főbb fajtái

- Rendszer (system / platform / full)
 - teljes rendszer virtualizációja
 - teljes környezetet ("élettér") biztosítása feladatok végrehajtására
 - az erőforrás egy teljes rendszer
 - feladatok: OS és taszkok
 - pl. VMware Player
- Folyamat (process / software)
 - API / ABI virtualizációja
 - taszkok működéséhez biztosít felületet
 - az erőforrás egy működéshez szükséges (futtatási) felület
 - pl. Java VM
- Infrastruktúra (infrastructure)
 - (jellemzően fizikai) infrastrukturális elemek virtualizációja
 - az erőforrás egy hardver/szoftver elem
 - pl. számítógépes hálózat, adattároló rendszer stb.

A virtualizáció alapjai 9 / 24

Rendszer virtualizáció

- Cél: teljes virtualizált környezet felépítése
 - (jellemzően) hardver virtualizáció: teljes számítógép virtualizálása
 - virtuális gép: a virtualizált hardveren futó rendszer
 - a virtuális gépek használata a fizikai gépekhez hasonló módon történik
- Összetevői

BME MIT

- gazda számítógép (host): a fizikai gép, amelyen a virtuális gépek futnak
- vendég gép (guest): a gazdagépen futó virtuális gép
- virtuális gép monitor (VMM): a virtuális gépeket felügyelő program
- Sokféle altípus
- Példák
 - Vmware Player, Xen, KVM, Hyper-V és ezernyi más
- Értékelés
 - egyszerű → nagyon elterjedt
 - hardvertámogatás? teljesítmény?

A virtualizáció alapjai 10 / 24

A hardver virtualizáció fajtái

Bare metal (1. típusú)

BME MIT

- a hardvert a VMM kezeli
- a gazdagépen nem futnak más alkalmazások
- a VMM neve ebben az esetben hypervisor
- fizikai virtuális hardver megfeleltetése
 - transzparens módon: natív virtualizáció
 - hardveres támogatással, vagy futásidejű bináris átírással
 - más hardver képében: paravirtualizáció
 - a fizikai hardverhez hasonló, de nem megegyező virtuális hardver
- Hosted (2. típusú)
 - a hardvert egy OS kezeli
 - a VMM egy alkalmazás a gazdagépen (pl. VMware Player)
 - a gazdagépen más alkalmazások is futhatnak (több VMM is)
- Hibrid megoldások
 - a hypervisor-ral egybeépítve is működik egy kernel, így
 - a VMM egyes funkcióit célszerű lehet az OS kernelre építve megvalósítani

A virtualizáció alapjai 11 / 24

Bare metal vs. hosted virtualizácó

A virtualizáció alapjai 12 / 24

A virtualizáció megvalósítása

A virtualizáció alapjai 13 / 24

A virtualizáció megvalósítása: elvárások

Transzparencia

- a vendég gép változtatás nélkül működjön
- a programokat ne kelljen kézzel átírni
- legyen automatikus és láthatatlan az utasítás-átírás
 - → sok feladatot ró a virtualizációs rendszerre

Védelem

- vendég ↔ gazda, vendég ↔ vendég
- pl. natív virtualizáció és a HALT utasítás → ne álljon le a gazdagép
 - → felügyelet, jogosultságok megvalósítása

Hatékonyság

- a VMM rezsiköltsége legyen kicsi
- az átírás minél kevésbé csökkentse a teljesítményt
 - → a hardvertámogatás minél teljesebb kihasználása

A virtualizáció alapjai 14 / 24

A virtualizáció megvalósítása: CPU

Tiszta emuláció

- virtuális hardveren (állapotgépen) hajtja végre az utasításokat
- az utasításokat leképezi (lefordítja) a fizikai eszköze
- nem hatékony

BME MIT

Trap and emulate

- utasítások válogatása futásidőben (végrehajtás közben)
 privilegizált: elkapja és átírja; nem védett: közvetlenül végrehajtja
- hatékony, de hardvertámogatást igényel

Bináris átírás

- a VMM privilegizált utasításokat végrehajtás előtt (de futásidőben) átírja
- a CPU már a biztonságos utasításokat hajtja végre
- az átírás valamelyest csökkenti a hatékonyságot

Forráskód-átírás (paravirtualizáció)

- a vendég OS forráskódját alakítják át fejlesztési időben
- a privilegizált utasításokat VMM hívásokra cserélik
- hatékony, de fejlesztői támogatást igényel (mai OS-ekben jellemző)

A virtualizáció alapjai 15 / 24

Példa a bináris átírásra

Forrás: Carl Waldspurger, Introduction to Virtual Machines

A virtualizáció alapjai 16 / 24

Paravirtualizáció

Direct Execution of User Requests

'Hypercalls' to the Virtualization Layer replace Non-virtualizable OS Instructions

A virtualizáció alapjai 17 / 24

A virtualizáció megvalósítása: memória

- Teljesítményérzékeny terület
- Kétszeres címfordítás
 - hardvertámogatás nélkül nagyon költséges
 - AMD Rapid Virtualization Indexing, Intel Extended Page Tables
 - beágyazott laptáblák és TLB címkézés

Az ábrát Micskei Zoltán, BME MIT készítette.

A virtualizáció alapjai 18 / 24

A virtualizáció megvalósítása: I/O

Szoftveres emuláció

- a teljes kommunikációt emulálja
- egyszerű hardvert emulált
- korlátozott képességek
- transzparens, de nem hatékony

Paravirtualizáció

- a vendég a virtualizációs rendszer által felkínált eszközt használja
- bizonyos hívások, adatmozgatások egyszerűsödnek a hardver felé
- speciális eszközmeghajtót kell telepíteni a vendég OS-ben
- nem annyira transzparens, de hatékonyabb az emulációnál

hardveres virtualizáció

- I/O eszközök megosztása
- Intel VT-d, AMD IOMMU, PCI IOV

Az ábrát Micskei Zoltán, BME MIT készítette.

A virtualizáció alapjai 19 / 24

Termékek és szolgáltatások

A virtualizáció alapjai 20 / 24

Üzleti megoldások és piaci szereplők

Saját kézben telepíthető rendszerek szállítói

```
VMware
```

BME MIT

XEN

Oracle Virtualbox

Microsoft Hyper-V, Virtual PC

Linux KVM

IBM PowerVM

Redhat EV

. . .

Szolgáltatók (felhő...)

Amazon EC2

Rackspace

Google Cloud Platform

Microsoft Azure

IBM Cloud

DigitalOcean

A virtualizáció alapjai 21 / 24

Felhőalapú szolgáltatások

- **laaS**: infrastructure-as-a-service
 - teljes hardvert nyújt

BME MIT

- operációs rendszert telepíthetünk
- sokféle sablonnal
- pl.: Amazon EC2, RackSpace, Microsoft Azure, Linode, DigitalOcean

- PaaS: platform-as-a-service
 - futtatókörnyezetet nyújt
 - saját alkalmazásainkat futtathatjuk
 - pl.: Amazon AWS, Microsoft Azure, Google AppEngine, Heroku
- SaaS: software-as-a-service
 - szoftverszolgáltatást nyújt
 - előre telepített alkalmazás (pl. adatbázis, dokumentumkezelő, email)
 - pl.: Microsoft Office365, Google Docs és Gmail

A virtualizáció alapjai 22 / 24

A virtualizáció kockázatai

- Támadások a virtualizációs rendszer ellen
 - a virtualizációs infrastruktúra lecserélésre (hyperjacking)
 - nagyon veszélyes, jelenleg inkább elvi lehetőség
 - támadás a virtualizációs mechanizmusok ellen
 - egy-egy mechanizmus (pl. hálózat, migráció) megfigyelése, megváltoztatása
 - a felügyelt rendszerek közötti adat- és kódszivárgás (VM jumping)
 - a szeparáció kijátszása megfigyelési vagy befolyásolási céllal
 - pl. vendég kitörése (guest breakout), a gyakorlatban is működik
- Auditálási nehézségek

BME MIT

- az egyre bonyolultabb rendszer és annak nagyobb dinamizmusa miatt
- Bonyolultabb menedzsment
 - sokféle virtualizált erőforrás, összetett virtualizációs sémák
 - a rendszer telepítése és üzemeltetése esetenként nagyon összetett feladat
- Szakemberhiány
 - új és változó technológiák

A virtualizáció alapjai 23 / 24

Esettanulmányok: RHEV / oVirt (demo)

A virtualizáció alapjai 24 / 24