DRP Notes

William Traub

Contents

1	Fun	ctions
	1.1	Definitions
	1.2	Indexed Sets
	1.3	Composition of functions
	1.4	Injections, surjections, bijections
		Injections, surjections, bijections: Second viewpoint
	1.6	Monomorphisms and epimorphisms
	1.7	Excercises
2	Section 3: Categories	
	2.1	Definition

1 Functions

1.1 Definitions

Definition 1. A Function is defined by a subset of $A \times B$:

$$\Gamma_f := \{(a, b) \in A \times B | b = f(a)\} \subseteq A \times B$$

This set Γ_f is the graph of f; a function is fully represented by its graph. Functions are required to follow $(\forall a \in A)(\exists!b \in B) f(a) = b$

Identity function: $id_A: A \to A$ or $(\forall a \in A) id_A(a) = a$

1.2 Indexed Sets

An indexed set $\{a_i\}_{i\in I}$ is informally defined as a_i for i ranging over some set of indicies I. The more formal definition is a function $I \to A$ where A is some set from which we draw the elements a_i .

1.3 Composition of functions

Functions may be composed if $f:A\to B$ and $g:B\to C$ are functions, then so is the operation $g\circ f$ defined by:

$$(\forall a \in A) (g \circ f)(a) := g(f(a))$$

Composition is commutative and associative.

1.4 Injections, surjections, bijections

- A function $f: A \to B$ is injective if $(\forall a' \in A)(\forall a'' \in A) a' \neq a'' \implies f(a') \neq f(a'')$. That is, if f sends different elements to different elements.
- A function $f: A \to B$ is surjective if $(\forall b \in B)(\exists a \in A) \ b = f(a)$. That is, if f 'covers the whole of B' (im f = b)

Injections are often drawn \hookrightarrow ; surjections are often drawn \twoheadrightarrow .

If f is both injective and surjective, we say it is bijective or and isomorphism of sets. Where we write \cong

1.5 Injections, surjections, bijections: Second viewpoint

If $f: A \to B$ is a bijection, than we can 'flip its graph' to define a function $g: B \to A$. Assume $A \neq \emptyset$, and let $f: A \to B$ be a function:

- 1. f has a left-inverse if and only if it is injective.
- 2. f has a right-inverse if and only if it is surjective.

This implies a function $f: A \to B$ if a bijection if and only if it has a two-sided inverse. ??.

1.6 Monomorphisms and epimorphisms

There is another way to express injectivity and surjectivity.

A function $f: A \to B$ is a monomorphism if the following holds:

for all sets Z and all functions $\alpha', \alpha'': Z \to A$

 $f \circ \alpha' = f \circ \alpha'' \implies \alpha' = \alpha''$

1.7 Excercises

Excercise 1. Prove that the inverse of a bijection is a bijection and that the composition of two bijections is a bijection.

First to prove the inverse of a bijective function f is injective:

By Proposition 2.1, b

2 Section 3: Categories

2.1 Definition

A category consists of a collection of 'objects' and of 'morphisms" between objects, satisying a list of conditions.

Categories are explicitly not sets, as we would like to create a category of all sets and a set cannot contain all sets. ¹ While a collection doesn't really have a formal definitions, *class* is used to deal with collections of sets. In some cases a class is a set (and is called small).

Definition 2. A category C consists of:

- a class Obj(C) of objects of the category
- for every two objects A, B of C, a set $Hom_{\mathbb{C}}(A,B)$ of morphisms, with the properties listed below

Think of objects as sets and morphisms as functions. Morphisms have these properties:

- For every object A of C, there exists at least one morphism $1_A \in \operatorname{Hom}_{\mathbf{C}}(A, A)$, the 'identity' on A.
- One can compose morphisms: two morphisms $f \in \operatorname{Hom}_{\mathbf{C}}(A, B)$ and $g \in \operatorname{Hom}_{\mathbf{C}}(B, C)$ determine a morphism $g f \in \operatorname{Hom}_{\mathbf{C}}(A, C)$. That is, for every triple of objects A, B, C of **C** there is a function where:

$$\operatorname{Hom}_{\mathbf{C}}(A,B) \times \operatorname{Hom}_{\mathbf{C}}(B,C) \to \operatorname{Hom}_{C}(A,C)$$

¹This might be because a set of all sets must include itself which violates ZF axiom of foundation. The text says this is because of Russel's Paradox which seems to be an alternative to ZF.