Classification (Part 2)

Mohammed Brahimi & Sami Belkacem

Outline

- Characteristics of Decision Trees
- Model Overfitting
- Model Evaluation and selection
- Conclusion

Characteristics of Decision Tree - Applicability

Nonparametric Approach

No prior assumptions on data's probability distribution.

Wide Applicability

Suitable for categorical and continuous datasets.

No Data Transformation

• Attributes can be used without binarization, normalization, or standardization.

Multiclass Problem Handling

Handel multiclass without reducing them to binary tasks.

Interpretability

• Trained trees are easy to understand (particularly shorter ones).

Competitive Accuracy

• The result are comparable with other techniques for many simple data sets.

Characteristics of Decision Tree -Expressiveness

Universal Representation

• Tree can encode any function of discrete-valued attributes.

Efficient Encoding

- Discrete-valued function can be represented as an assignment table.
- Decision tree can represent the assignment table efficiently.
- Decision tree can group a combinations of attributes as leaf nodes.

Limitations

 Some functions, like the parity function, require a full decision tree for accurate modeling.

A	В	C	D	class
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Example of Compact Representation

Boolean function $(A \land B) \lor (C \land D)$ using a simpler tree with fewer leaf nodes, instead of a fully-grown tree.

Α	В	C	D	class
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Example of Parity Representation

x	у	Parity
0	0	0
0	1	1
1	0	1
1	1	0

Corresponding Deterministic Decision Tree

Characteristics of Decision Tree - Rectilinear Splits

- Decision Trees use rectilinear splits to divide the data space.
- Simplifies complex multidimensional data into understandable segments.
- Effective in handling both categorical and continuous variables.

Characteristics of Decision Tree - Rectilinear Splits

What are the disadvantages of rectilinear splits?

Characteristics of Decision Tree - Rectilinear Splits

Disadvantages of rectilinear splits

Struggle with Non-linear Boundaries:

 Ineffective in capturing complex, non-linear relationships in data.

Limited Flexibility:

 Restricts decision boundaries to orthogonal lines, limiting flexibility.

Oversimplification Risks:

 Can lead to oversimplified models that fail to capture the true nature of the data.

Outline

- ☐ Characteristics of Decision Trees
- Model Overfitting
- Model Evaluation and selection
- Conclusion

Model Overfitting

- Overfitting occurs when a model fits training data too closely, leading to poor generalization.
- A overfitted model may perform well on training data but poorly on test data.
- Training vs Test Error: As tree size increases, training error may decrease, but test error eventually increases.

Causes of Overfitting

• Limited Training Size:

 A small training set may not represent true patterns, leading to overfitting.

High Model Complexity:

 Overly complex models can capture training-specific patterns, reducing generalizability.

Spurious Patterns Recognition:

 Models may learn irrelevant patterns present in training data (Ex. noise), which don't generalize to new data.

Overfitting vs Underfitting

Underfitting: Simple models may fail to capture essential patterns.

Data scientist challenge

Find a model that does not overfit or underfit

Dealing with overfitting - Pruning

Pruning: cutting away branches that may be based on noisy or misleading data to prevent overfitting.

- **Pre-pruning:** Occurs during tree construction.
 - Limits tree growth by limiting the maximum depth or minimum leaf size.
 - Prevents overfitting by avoiding overly complex models.
- Post pruning: Applied after the tree is fully grown.
 - Removes branches that contribute little to classification accuracy.
 - Reduces model complexity, enhancing generalization to new data.

Example about pruning in decision tree

Example about pruning in decision tree

```
MultiAgent = 0:
                                                        Max depth = 3
| depth > 2: class 0
| depth <= 2:
  MultiIP = 1: class 0
   MultilP = 0:
     breadth <= 6: class 0
                                                       MultiAgent = 0: class 0
     breadth > 6:
                                                        MultiAgent = 1:
     | RepeatedAccess <= 0.322: class 0
                                                        l totalPages <= 81: class 0
     | RepeatedAccess > 0.322: class 1
                                                         totalPages > 81: class 1
MultiAgent = 1:
| totalPages <= 81: class 0
| totalPages > 81: class 1
```

Outline

- ☐ Characteristics of Decision Trees
- Model Overfitting
- Model Evaluation and selection
- Conclusion

Model Evaluation

Objective:

- Estimate model performance on data not used during training.
- Ensure robust model evaluation.

Labeled Test Set

 Utilize a separate test set, not involved in model building, for unbiased evaluation.

Holdout Method

- Randomly split data into training and test sets.
- Use the test set to estimate generalization error.

Cross-Validation Method

 Divide data into multiple subsets; train and test the model on different subsets for a comprehensive performance estimate.

Holdout Method

Basic technique to partition data into training (D.train) and testing (D.test) sets.

Error Estimation

 Calculate error rate on **D.test (errtest)** as a measure of generalization error.

Data Proportion

- Analysts decide the split ratio.
- Commonly two-thirds training and one-third testing.

Trade-offs

 Balancing D.train size for model learning and D.test size for reliable error estimation

Repeated Holdout Method

Enhances reliability by repeating the process and averaging error rates.

Model selection and validation set

Achieve an optimal balance between model complexity and performance.

Complexity Measurement

 Complexity can be measured by the ratio of leaf nodes to training instances.

Limitation of Training Error:

 Training error rate is insufficient for effective model selection.

Validation Set:

Essential for assessing generalization error.

Model Selection Strategy:

 Combine complexity with validation set performance to select the most effective model.

Cross validation

- Cross validation helps to avoid the split baise.
- Divide data into k equal folds.
- Each instance is used exactly once for error.
 calculation.
- The error is calculated based on:

$$err_{test} = \frac{\sum_{i=1}^{k} err_{sum}(i)}{N}$$

What if some classes don't appear in some folds?

Cross validation

- Cross validation helps to avoid the split baise.
- Divide data into k equal folds.
- Each instance is used exactly once for error calculation.
- Run 1
- The error is calculated based on:

 S_1

Run 2

 S_2

 S_3

What if some classes don't appear in some folds?

Test Set

Training Set

Cross validation

Stratified Sampling

 Ensures equal representation of classes in each partition.

Leave-One-Out Approach

- A special case where each instance is used once as a test set.
- K = N

Estimating Error Variance

 Repeating cross-validation with different partitions provides robust error estimates.

Classification evaluation metrics

Accuracy

Proportion of correctly predicted instances to total instances.

Precision

Ratio of true positives to total predicted positives.

Recall (Sensitivity)

Ratio of true positives to actual positives.

F1 Score

Harmonic mean of precision and recall.

Confusion Matrix

 Visual tool categorizing true and false positives and negatives.

	Predicted O	Predicted 1
Actual O	TN	FP
Actual 1	FN	TP

Classification evaluation metrics

Outline

- ☐ Characteristics of Decision Trees
- Model Overfitting
- Model Evaluation and selection
- Conclusion

Conclusion

Remember, the journey in data science is a continuous battle against overfitting and underfitting. Stay vigilant!