Instituto Tecnológico de Estudios Superiores de Occidente – ITESO

ITESO

Universidad Jesuita de Guadalajara

Materia: Arquitectura de computadoras – Primavera 2019

Maestro: Rodrigo Aldana López

Fecha: 26 de abril de 2019

Tarea 11

Autor(es): Díaz Meda Ricardo Ian - IS710007 Ávalos Guzmán Luis Joaquín - IS708601

Modificaciones hechas

Las modificaciones que hicimos fue primeramente cambiar en el módulo de Register lo siguiente:

```
***********
module Register
□#(
   parameter N=32
⊟(
   input clk,
   input reset,
   input enable,
          [N-1:0] DataInput,
   output reg [N-1:0] DataOutput
malways@(negedge reset on negedge clk) begin
   if(reset==0)
      DataOutput <= 0;
   else
      if(enable==1)
         DataOutput<=DataInput;
end
endmodule
```

Esto con la finalidad de arreglar el Hazard estructural en la memoria.

Además, agregamos el siguiente módulo llamado Pipeline para poder hacer la división de las rutas críticas:

```
//asereje
module Pipeline
3#(
    parameter N = 32

3(
    // Inputs
    input clk,
    input reset,
    input enable,
    input nopper,
    input [N-1:0] dataInput,
    output reg [N-1:0] dataOutput

);
salways@(negedge reset or posedge clk or posedge nopper or posedge enable) begin // Para que escriba en flanco de subida
    if(reset==0 || nopper == 1)
        dataOutput <= 0;
    else
        dataOutput <= dataInput;
end
endmodule|</pre>
```

Después añadimos las cuatro instancias necesarias para cada fase, añadimos bastantes wires para hacer el control de dichos Pipelines, y además cambiamos wires para que se adapten a la parte de la ruta crítica en la que están. Por ejemplo, cuando estamos en la parte que está en la ALU, le pasamos el wire de Alu_Result pero de la fase de EX.

```
//Pipeline IF/ID
Pipeline
# (
      .N(64)
Pipeline IF ID
      .clk(clk),
      .reset (reset),
      .enable(1'b1),
      .nopper(1'b0),
      .dataInput({Instruction wire, PC 4 wire}),
      .dataOutput({ID instruction wire, ID PC 4 wire})
);
Pipeline
# (
      .N(174)
Pipeline ID_EX
      .clk(clk),
      .reset (reset),
      .enable (1'b1),
      .nopper(1'b0),
      .dataInput({RegDst wire,
                               BranchNE wire,
                               MemReadWire,
                               BranchEQ wire,
                               MemWriteWire,
                               MemtoRegWire,
                               ALUOp wire,
                               ALUSrc wire,
                               RegWrite wire,
                               jump wire,
                                jal wire,
                               ID \overline{PC} 4 wire,
                               ReadData1_wire,
                               ReadData2_wire,
                               InmmediateExtend wire,
                                ID instruction wire
                                }) ,
      .dataOutput({EX RegDst wire,
                                EX BranchNE wire,
                                EX MemReadWire,
                                EX BranchEQ wire,
                                EX MemWriteWire,
                                EX MemtoRegWire,
```

```
EX ALUOp wire,
                               EX ALUSTC wire, //
                                EX RegWrite wire,
                               EX_jump_wire,
                               EX jal wire,
                               EX PC 4 wire,
                                EX ReadData1_wire,
                               EX ReadData2 wire,
                               EX InmmediateExtend wire,
                                EX instruction wire
                                })
);
Pipeline
#(
      .N(137)
Pipeline EX MEM
      .clk(clk),
      .reset (reset),
      .enable (1'b1),
      .nopper(1'b0),
      .dataInput({
                        InmmediateExtendAnded wire,
                        ALUResult wire,
                        EX ReadData2 wire,
                        WriteRegister wire,
                        MUX PC wire,
                        EX MemReadWire,
                        EX MemWriteWire,
                        EX MemtoRegWire,
                        EX RegWrite wire,
                        EX jal wire
                        }),
      .dataOutput({
                        MEM InmmediateExtendAnded wire,
                        MEM ALUResult wire,
                        MEM ReadData2 wire,
                        MEM WriteRegister wire,
                        MEM MUX PC wire,
                        MEM MemReadWire,
                        MEM MemWriteWire,
                        MEM MemtoRegWire,
                        MEM RegWrite wire,
                        MEM jal wire})
);
//Pipeline MEM/WB
Pipeline
#(
      .N(105)
Pipeline MEM WB
      .clk(clk),
```

```
.reset(reset),
     .enable(1'b1),
     .nopper(1'b0),
     .dataInput({
                     ramDataWire,
                     MEM ALUResult wire,
                     MEM MemWriteWire,
                     MEM MemtoRegWire,
                     MEM RegWrite wire,
                     MEM_jal_wire,
                     MEM_WriteRegister_wire,
                     }),
     .dataOutput({
                     WB_ramDataWire,
                     WB ALUResult wire,
                     WB MemWriteWire,
                     WB MemtoRegWire,
                     WB RegWrite wire,
                     WB jal wire,
                     WB WriteRegister wire,
                     WB MUX PC wire})
);
```

Simulación ModelSIM

Registers Coproc 1 Coproc 0		
Name	Number	Value
\$zero	0	(
\$at	1	C
\$v0	2	(
\$vl	3	(
\$a0	4	(
\$al	5	(
\$a2	6	
\$a3	7	I
\$t0	8	
\$tl	9	
\$t2	10	10
\$t3	11	26850099
\$t4	12	
\$t5	13	(
\$t6	14	
\$t7	15	(
\$30	16	1'
\$sl	17	-26850097
\$82	18	1
\$83	19	(
\$84	20	
\$a5	21	
\$36	22	(
\$37	23	3:
\$t8	24	
\$t9	25	(
\$k0	26	I
\$kl	27	(
\$gp	28	26846822
şsp	29	214747954
\$fp	30	
şra -	31	- 1
рс		419444
hi		
lo		(

Código MIPS

```
addi $t0,$zero,5

add $zero,$zero,$zero# NOP
add $zero,$zero,$zero# NOP

add $t1,$t0,$zero

add $zero,$zero,$zero#NOP
add $zero,$zero,$zero#NOP
addi $t1,$t1,2

add $zero,$zero,$zero# NOP
add $zero,$zero,$zero# NOP
add $zero,$zero,$zero#NOP
```

```
addi $t2,$t1,3
addi $t3, $t3, 0x1001
add $zero,$zero,$zero#NOP
add $zero,$zero,$zero#NOP
add $zero,$zero,$zero#NOP
sll $t3,$t3,16
add $zero,$zero,$zero#NOP
add $zero,$zero,$zero#NOP
sw $t2,0($t3)
add $zero,$zero,$zero#NOP
add $zero,$zero,$zero#NOP
add $s0,$t2,$t1
add $zero,$zero,$zero#NOP
add $zero,$zero,$zero#NOP
sub $s1,$s0,$t3
add $zero,$zero,$zero#NOP
add $zero,$zero,$zero#NOP
lw $t2, 0($t3)
add $zero,$zero,$zero#NOP
add $zero,$zero,$zero#NOP
addi $s2,$t2,-2
add $zero,$zero,$zero#NOP
add $zero,$zero,$zero#NOP
or $s2,$s2,$t4
add $zero,$zero,$zero#NOP
add $zero,$zero,$zero#NOP
sll $s7,$s2,2
exit:
```