DEMO article

Lv Wenlong

October 31, 2016

Abstract

Pandoc template for my weekly report in my research group meeting

Contents

1	Outline	1
2	Use this template	2
_	DEMO	2
	3.1 中文字体, footnote	2
	3.2 Figure	2
	3.3 Table	3
	3.4 Equation	3
	3.5 Algorithm	
	3.6 Code	3
Re	eferences	4

1 Outline

- Pandoc template for my weekly report in my research group meeting
- What's in this demo:
 - CJK font: 中文字体
 - Footnote
 - Figures, like Fig. 1
 - Tables, like Table. 1
 - Equations, like Eq. 1
 - Algorithms
 - IEEE style bibliography[1, 2, 3, 4, 5, 6]
 - Code

2 Use this template

- Edit meta.yaml for title, author, date
- Edit custom.latex to add custom latex packages
- Edit makefile for markdown file name, target pdf file name, font...
- Edit beamer.tex to modify the beamer template
- Dependency:
 - pandoc
 - pandoc-crossref
 - biber
 - xelatex

3 DEMO

3.1 中文字体, footnote

马上相逢揖马鞭,客中相见客中怜。欲邀击筑悲歌饮,正值倾家无酒钱¹。

3.2 Figure

Figure 1: Ackley function and the model after optimization

¹李白诗一首。

3.3 Table

Table 1: A Table

Language	Good or Bad
Haskell	Good
C++	Good
PHP	Bad

3.4 Equation

$$\begin{cases} \mu(\boldsymbol{x}) &= \mu_0(\boldsymbol{x}) + \boldsymbol{k}(\boldsymbol{x})^T (\boldsymbol{K} + \sigma^2 \boldsymbol{I})^{-1} (\boldsymbol{y} - \boldsymbol{m}) \\ \sigma^2(\boldsymbol{x}) &= k(\boldsymbol{x}, \boldsymbol{x}) - \boldsymbol{k}(\boldsymbol{x})^T (\boldsymbol{K} + \sigma^2 \boldsymbol{I})^{-1} \boldsymbol{k}(\boldsymbol{x}) \\ LCB(\boldsymbol{x}) &= \mu(\boldsymbol{x}) - \kappa \sigma(\boldsymbol{x}) \end{cases}$$
(1)

3.5 Algorithm

Algorithm 1 Bayesian Optimization

```
1: Initial Sampling
2: Construct GP model
3: \mathbf{for} \ \mathbf{t} = \mathbf{1}, \mathbf{2}, \dots \mathbf{do}
4: Find \mathbf{x}_t that minimizes LCB
5: Sample y_t = f(\mathbf{x}_t) + \epsilon_t
6: Update GP model
7: \mathbf{end} \ \mathbf{for}
8: \mathbf{return} \ \mathbf{best} \ f(\mathbf{x}) \ \mathbf{recorded} \ \mathbf{during} \ \mathbf{iterations}
```

3.6 Code

```
#include <iostream>
using namespace std;
int main()
{
    cout << "Whatever!" << endl;
    return EXIT_SUCCESS;
}</pre>
```

References

- [1] I. Couckuyt, T. Dhaene, and P. Demeester, "ooDACE toolbox: A flexible object-oriented kriging implementation.," *Journal of Machine Learning Research*, vol. 15, no. 1, pp. 3183–3186, 2014.
- [2] C. E. Rasmussen, "Gaussian processes for machine learning," 2006.
- [3] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, "Taking the human out of the loop: A review of bayesian optimization," *Proceedings of the IEEE*, vol. 104, no. 1, pp. 148–175, 2016.
- [4] M. A. Gelbart, "Constrained bayesian optimization and applications," PhD thesis, 2015.
- [5] B. Liu, D. Zhao, P. Reynaert, and G. G. Gielen, "Gaspad: A general and efficient mm-wave integrated circuit synthesis method based on surrogate model assisted evolutionary algorithm," *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, vol. 33, no. 2, pp. 169–182, 2014.
- [6] A. Melkumyan and F. Ramos, "Multi-kernel gaussian processes," in *IJCAI Proceedings-International Joint Conference on Artificial Intelligence*, vol. 22, 2011, p. 1408.