

Zheng Feng

Part 1: Resistive Circuit Analysis

- 1. Circuit Variables and Circuit Elements
- 2. Simple Resistive Circuit Analysis
- 3. Techniques of Circuit Analysis
- 4. Operational Amplifier

Chapter 4: Operational Amplifier

- Operation Amplifier
- Simple Operational Circuits

4-1 Operational Amplifier

- What is operation amplifier?
- Terminals of operational amplifier
- Ideal operational amplifier

What is op amp?

- Operational amplifier (op amp) is a kind of IC active device with multi terminals;
- Combined with external circuit components, op amp can perform useful functions as scaling, summing, sign changing, subtracting

What is op amp?

F007 c

F007 op amp

What is op amp?

- op amp has very complex internal circuit structure, but has simple VCR of terminals;
- We do not care the internal behavior of op amp, just consider it as a black box;
- We focus on external terminals behavior (terminal VCR) of op amps.

Terminals of op amp

Non-inverting

Positive power supply

Output

Negative power supply

Inverting input

Terminals of op amp

Terminal voltage and current

Simplified Terminals of op amp

op amp symbol more often used

Voltage Transfer Characteristic

Voltage transfer characteristic:

$$v_{o} = \begin{cases} -V_{CC} & , & Negative & saturation & region & \left(v_{o} < -V_{CC}\right) \\ Av_{i} & , & Linear & region & \left(-V_{CC} \leq v_{o} \leq +V_{CC}\right) \\ +V_{CC} & , & Positive & saturation & region & \left(v_{o} > +V_{CC}\right) \end{cases}$$

Maximum Output Voltage is $\pm V_{CC}$

Linear Equivalent Circuit Model

- Voltage controlled Voltage source
- A is Open Loop Gain

Ideal Operation Amplifier

Ideal op amp has infinite R_i and A:

$$\begin{cases} A = \infty \\ R_i = \infty \end{cases}$$

For an ideal operation amplifier:

$$v_i = v_p - v_n = \frac{v_o}{A} \rightarrow 0$$
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad p = v_n$

$$R_i = \infty$$
 $i_p = i_n = 0$

Input voltage and current constraints for an ideal operation amplifier:

$$\begin{cases} v_p = v_n \end{cases} \qquad \begin{array}{c} \longleftarrow \text{Virtual Short} \\ i_p = i_n = 0 \end{array} \qquad \begin{array}{c} \longleftarrow \text{Virtual Open} \end{cases}$$

4-2 Simple Operational Circuits

Powerful tools in analyzing operational circuits with operation amplifier:

1. Virtual short:
$$v_p = v_n$$

2. Virtual open:
$$i_p = i_n = 0$$

3. KCL

Inverting Amplifier

Find the expression of v_0 as a function of source voltage v_s .

For the inverting terminal, apply KCL:

$$\frac{v_s - v_n}{R_s} + \frac{v_o - v_n}{R_f} - i_n = 0$$

$$\begin{cases}
i_p = i_n = 0 \\
v_p = v_n = v_s
\end{cases}$$

$$v_o = -\frac{R_f}{R_s} v_s$$

Summing Amplifier

Find the expression of v_o .

Summing Amplifier

For node A, apply node-voltage method:

$$\frac{v_a - v_n}{R_a} + \frac{v_b - v_n}{R_b} + \frac{v_o - v_n}{R_f} = i_n \qquad \begin{cases} i_p = i_n = 0 \\ v_p = v_n = 0 \end{cases}$$

$$\mathbf{v}_o = -\left(\frac{\mathbf{R}_f}{\mathbf{R}_a}\mathbf{v}_a + \frac{\mathbf{R}_f}{\mathbf{R}_b}\mathbf{v}_b\right)$$

Non-Inverting Amplifier

Find the expression of v_o .

Non-Inverting Amplifier

For node A, apply node-voltage method:

$$\frac{0 - v_n}{R_s} + \frac{v_o - v_n}{R_f} = i_n$$

$$\begin{cases}
i_p = i_n = 0 \\
v_p = v_n = v_s
\end{cases}$$

$$v_o = \left(1 + \frac{R_f}{R_s}\right)v_s$$

Voltage Follower

Difference Amplifier

Find the expression of v_o .

Difference Amplifier

For node A and B, by KCL:

$$\begin{cases} \frac{v_o - v_n}{R_f} + \frac{v_a - v_n}{R_a} = 0 \\ v_n = v_p = \frac{R_c}{R_b + R_c} v_b \end{cases} \qquad v_o = \frac{R_c \left(R_a + R_f \right)}{R_a \left(R_b + R_c \right)} v_b - \frac{R_f}{R_a} v_a$$

If
$$R_a R_c = R_b R_f$$
, then $v_o = \frac{R_f}{R_a} (v_b - v_a)$

Example

Find the current of *i*_a.

ANS:
$$i_a = \frac{-R_2R_3}{R_1(R_3R_4 + R_2R_4 + R_2R_5)}v_s$$

Example

ANS: $v_0 = -7 \text{mV}$

Summary of Chapter 4

- Basic conception of operational amplifier
- Input voltage and current constraints for an ideal op amp: Virtual short and Virtual open
- Analysis of simple circuits with operational amplifiers

