BSCCS2001: Graded Assignment with Solutions Week 4

1. Consider the relations shown in Figure 1.

[MSQ: 2 points]

CAR		
NAME	MADE	COST
CAR-A	COM-X	200
CAR-B	COM-X	100
CAR-A	COM-Z	300
CAR-B	COM-Y	300
CAR-B	COM-Z	400
CAR-C	COM-X	100
CAR-D	COM-Y	200
CAR-D	COM-X	300

COSTING	
MADE	COST
COM-X	100
COM-Z	400

Figure 1: Relations CAR and COSTING

Which car name(s) will be displayed by the operation $CAR \div COSTING$?

- CAR-A
- √ CAR-B
- O CAR-D
- O CAR-A, CAR-B

Solution: The relation returned by the division operation must have attributes that are in **CAR** but not in **COSTING**. Thus, the returned relation will have only one attribute *NAME*.

The returned relation must have those tuples from relation **CAR** which are associated to every tuple from **COSTING**. Thus, in this case it will be **CAR-B**.

2. Which of the following symbols is used in the ER-diagrams to represent "total participation of an entity set in a relationship"?

[MCQ: 1 point]

O None of the above

Solution:

represents total participation of an entity set in a relationship.

represents identifying relationship set for weak entity.

represents cardinality limits.

3. Choose the relational algebra expression that is equivalent to the following tuple calculus expression: [MCQ: 1 point]

$$\{t \mid t \in r \land (t[A] = 50 \land t[B] = 90)\}$$

- $\bigcirc \ \sigma_{(A=50\vee B=90)}(r)$
- $\bigcirc \sigma_{(A=50)}(r) \cup \sigma_{(B=90)}(r)$
- $\sqrt{\sigma_{(A=50)}(r)} \cap \sigma_{(B=90)}(r)$
- $\bigcirc \ \sigma_{(A=50)}(r) \sigma_{(B=90)}(r)$

Solution: Select Operator (σ) selects those rows or tuples from a relation that satisfies the selection condition.

Option 1: It will fetch the tuples having A = 50 or B = 90.

Option 2: It calculates union of tables having A = 50 and B = 90 separately.

Option 3: It is valid as it calculates the intersection of tables having A=50 and B=90 separately.

Option 4: The MINUS operator is used to subtract the result set obtained by $\sigma_{(A=50)}(r)$ from the result set obtained by $\sigma_{(B=90)}(r)$, thus it will return only those rows which have tuple A=50 and not those rows which are common to both A=50 and B=90.

4.	A bank consists of several Person entities. The Person entities may have two special
	types: Employee and AccountHolder. However, there is a possibility that some
	Person entities are neither an Employee nor an AccountHolder (like a visitor at the
	bank). Again, some Person entities can be of both Employee and AccountHolder
	types. [MCQ: 2 points]
	Identify the constraints on specialization with respect to the above scenario.
	O Disjoint and partial
	$\sqrt{\text{Overlapping and partial}}$
	O Disjoint and total
	Overlapping and total

Solution:

- As a **Person** can be an **Employee** or an **AccountHolder** or just a **Person** (like a visitor at the bank), it is partial specialization.
- As a **Person** can be both **Employee** and **AccountHolder**, it is overlapping specialization.

Figure 2: E-R diagram

Identify the option(s) that correctly represent(s) the corresponding tables for the given E-R diagram.

- $\sqrt{ \begin{array}{c} \mathbf{Manager}(\underline{mgr_num}, mgr_name) \\ \mathbf{Department}(\underline{dept_num}, mgr_num, \underline{dept_name}, since) \end{array} }$
- $\sqrt{\text{Manager}(\underline{mgr_num}, dept_num, mgr_name, since)}$ $\text{Department}(\underline{dept_num}, dept_name)$
- $\bigcirc \ \, \mathbf{Manager}(\underline{mgr_num}, \underline{dept_num}, \underline{mgr_name}, \underline{since}) \\ \mathbf{Department}(\underline{dept_num}, \underline{dept_name})$

Solution: manages is a one-to-one relationship set between Manager and Department.

The E-R diagram can be mapped to the tables using either of the following:

- $Manager(mgr_num, mgr_name)$
- $\bullet \ \mathbf{Department}(dept_num, mgr_num, dept_name, since)$

or

- $\bullet \ \mathbf{Manager}(\underline{mgr_num}, dept_num, mgr_name, since)$
- $\mathbf{Department}(dept_num, dept_name)$

6. Consider the relations below:

[MSQ: 3 points]

- doctor(<u>doc_id</u>, doc_name, specialization)
- patient(patient_num, patient_name)
- \bullet operationRoster(doc_id , $patient_num$, $operation_cost$)

Identify the appropriate expression(s) to find all the distinct names of the patients operated either by "Dr. Nath" or by "Dr. Joseph".

```
 \sqrt{\prod_{patient\_name}(patient \bowtie \prod_{patient\_num} (\sigma_{doc\_name="Dr. Nath" \lor doc\_name="Dr. Joseph"} (doctor \bowtie operationRoster)))} 
\sqrt{\prod_{patient\_name}(patient \bowtie \prod_{patient\_num} (\sigma_{doc\_name="Dr. Nath" \lor doc\_name="Dr. Joseph"} (doctor \times operationRoster)))} 
\sqrt{\prod_{patient\_name}(\sigma_{doc\_name="Dr. Nath"}((patient \bowtie (doctor \bowtie operationRoster)))) \cup \prod_{patient\_name}(\sigma_{doc\_name="Dr. Joseph"}((patient \bowtie (doctor \bowtie operationRoster))))} 
\sqrt{\prod_{patient\_name}(\sigma_{doc\_name="Dr. Joseph"}((patient \bowtie (doctor \bowtie operationRoster))))} 
\sqrt{\prod_{patient\_name}(patient \bowtie \prod_{patient\_num} (\sigma_{doc\_name="Dr. Nath" \lor doc\_name="Dr. Joseph" \lor doctor.doc\_id=operationRoster.doc\_id} (doctor \times operationRoster)))
```

Solution: Option-1 does the following:

- 1. Apply natural join between **doctor** and **operationRoster**, thus, combines the tuples based on the equality on *doc_id* on both the relations.
- 2. Then, apply select operation to extract the tuples having doc_name as either "Dr. Nath" or "Dr. Joseph".
- 3. Then, project *patient_num* from the selected tuples.
- 4. Again, perform natural join between selected *patient_num* tuples with **patient**. Thus, combines the tuples based on the equality on *patient_num* on both the relations.
- 5. Finally, project the patient_name.

Hence, option-1 is **correct**.

In option-2, instead of natural join, Cartesian product has been applied. Since it combines all tuples from **doctor** with all the tuples from **operationRoster**, it is **wrong**.

In option-3, first natural join is applied between **doctor** and **operationRoster** based on equality on $doc_{-}id$. Then, again natural join is applied between the resultant

tuples and **patient** based on equality on $patient_num$. Then, select the tuples having $doc_name = "Dr. Nath"$ and project the $patient_name$.

The same natural join is again applied between **doctor**, **operationRoster** and **patient**. Then, select the tuples having $doc_name = "Dr. Joseph"$ and project the corresponding $patient_name$.

Finally, apply union between two sets of tuples. Hence, the option-3 is **correct**.

In option-4, the predicate used for selection is:

 $doc_name = "Dr. Nath" \lor doc_name = "Dr. Joseph"$

 $\lor doctor.doc_id = operationRoster.doc_id$ which is **incorrect**.

The correct form of the predicate is:

 $(doc_name = "Dr. Nath" \lor doc_name = "Dr. Joseph") \land (doctor.doc_id = operationRoster.doc_id).$

7. Consider the E-R diagram given in Figure 3.

[MCQ: 2 points]

Figure 3: E-R diagram

What will be the schema for the tables corresponding to the relationship set **pre-scribes**?

- \bigcirc prescribes($\underline{doc_num}$, $patient_num$, $medicine_id$)
- \bigcirc **prescribes**($\underline{doc_num}$, $\underline{patient_num}$, $\underline{medicine_id}$, $\underline{dated_on}$)
- $\bigcirc \ \mathbf{prescribes}(\underline{doc_num}, \underline{patient_num}, \underline{medicine_id})$

√ prescribes(<u>doc_num</u>, patient_num, <u>medicine_id</u>, dated_on)

Solution: In the given E-R diagram, there is a ternary relationship with many-to-many relations between the entity sets **Doctor**, **Patient** and **Medicine**. As in the case of binary relationships, the ternary relationship set **prescribes** must also be mapped to a table with attributes as follows:

- the primary keys from all the entity sets associated via the relationship set,
- any descriptive attribute of the relationship set.

Thus, the schema for **prescribes** is: **prescribes**(<u>doc_num</u>, <u>patient_num</u>, <u>medicine_id</u>, <u>dated_on</u>).

Consider the E-R diagram given in Figure 4 and answer the questions 8 to 10.

Figure 4: E-R diagram

8. Identify the correct relational schema for the relationship set **enrolls**.

[MCQ: 2 points]

Note: The primary key is underlined.

- enrolls(join_date, completion_status)
- \bigcirc enrolls($\underline{enrollment_num}$, $\underline{join_date}$, $\underline{completion_status}$)
- $\bigcirc \ \mathbf{enrolls}(\underline{\mathit{course_id}}, \ \mathit{enrollment_num}, \ \mathit{join_date}, \ \mathit{completion_status})$
- $\sqrt{\text{enrolls}(\underline{course_id}, \underline{enrollment_num}, join_date, completion_status)}$

Solution: As the relationship is many-to-many, the schema for **enrolls** must have primary keys from the associated entity sets and the descriptive attributes of the relationship set. Hence, the right option is:

enrolls (<u>course_id</u>, <u>enrollment_num</u>, join_date, completion_status)

9. Identify the correct relational schema for the entity set **Assignment**.

[MCQ: 3 points]

Note: The primary key is underlined.

- \bigcirc **Assignment**(<u>assignment_num</u>, open_date, close_date)
- $\sqrt{Assignment(\underline{course_id}, \underline{assignment_num}, open_date, close_date)}$
- $\bigcirc \ \mathbf{Assignment}(\mathit{assignment_num}, \ \underline{\mathit{course_id}}, \ \mathit{open_date}, \ \mathit{close_date})$
- $\bigcirc \ \mathbf{Assignment}(assignment_num,\ course_id,\ open_date,\ close_date)$

Solution: Please note that **Assignment** is a weak entity which is identified by the strong entity **Course**. **Assignment** has total participation in the relationship and it is associated with **Course** via **course_assignment** as a many-to-one relationship. Thus, the primary key of **Course** (one-side) entity set will be added to the relational schema for **Assignment** and it also becomes part of the primary key (cannot be null because of total participation). So the schema is:

Assignment (*course_id*, *assignment_num*, *open_date*, *close_date*)

10. With reference to the relationship between **Student** and **Course**, which of the statement(s) is/are **TRUE**?

[MSQ: 3 points]

- O Each course must have at least one student.
- Consider the Each student must have enrolled for at least one course.
- $\sqrt{\text{Some courses may have no students.}}$
- \sqrt{A} student may enroll for many courses.

Solution: enrolls is a many-to-many relationship set between Student and Course entity sets.

As each course may be associated with 0 to n students, option-1 is wrong. As each student can enroll from 0 to n courses, option-2 is also wrong. However, option-3 and option-4 are correct.