РАЗРАБОТКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ДЛЯ СИСТЕМЫ УПРАВЛЕНИЯ СТЕНДОМ ИСПЫТАТЕЛЬНЫМ ГИДРОБАРИЧЕСКИМ

Симоновский Даниил, группа 5130901/10101 Руководитель - Лавров Алексей Александрович Работа выполняется на базе АО «НПО «Прибор»

АКТУАЛЬНОСТЬ

- Необходимость тестировать оборудование, работающее под высоким давлением.
- Отсутствие автоматизированных решений на территории СПб.
- Избыточность существующих решений на рынке.
- Работа выполняется для компании АО «НПО «Прибор».

ЧТО ТАКОЕ СИГ

Гидробак

Система кранов

СХЕМА ПОДКЛЮЧЕНИЙ СИГ

ЦЕЛИ И ЗАДАЧИ

Целью выпускной квалификационной работы является:

• Разработка программного обеспечения для СИГ.

Задачи:

- Разработка ПО для панели оператора СПЗ10.
- Разработка ПО для контроллера ПР200.
- Разработка ПО для дублирующего интерфейса оператора.
- Разработка программы для визуализации процесса испытаний по сохраненным данным.

ИНТЕРФЕЙС СРЕДЫ ПРОГРАММИРОВАНИЯ СП310

МЕНЮ ДЛЯ ПОЛЬЗОВАТЕЛЯ

ЦИКЛИЧЕСКИЙ РЕЖИМ

СТАТИЧЕСКИЙ РЕЖИМ

КОД КОНТРОЛЛЕРА ПР200 ОБЩИЕ ДЕЙСТВИЯ ДЛЯ РЕЖИМОВ

Процент работы ПЧВ

P enable

C enable

U enable

СП_Давление_1_кгс

СП Давление 2 кгс

КОД ПР200. РУЧНОЙ РЕЖИМ

КОД ПР200. ЦИКЛИЧЕСКИЙ РЕЖИМ

КОД ПР200. ЦИКЛИЧЕСКИЙ РЕЖИМ

КОД ПР200. СТАТИЧЕСКИЙ РЕЖИМ

КОД ПР200. СТАТИЧЕСКИЙ РЕЖИМ

КОД УДАЛЁННОГО РАБОЧЕГО ΜΕСΤΑ ΟΠΕΡΑΤΟΡΑ

App

- + __init__(): none
- + on_close(): none
- + _plots_upd(): none
- + _write_registers_callback(request): none
- + _show_frame(cont): none
- + _center_window(): none
- + _update_kgs1(): none
- + _update_kgs2(): none

ModbusSlave

- + __init__(): none
- + start(): none
- + stop(): none
- + set_callback(functional_code, callback): none
- + _auto_detect_port(timeout): bool
- + _rtu_loop(): none
- + _get_expected_rtu_length(data): none
- + _calculate_crc(data): bytes
- + _process_request(request): bytearray
- + _write_multiple_registers(slave_id, pdu): bytearray
- + _write_single_registers(slave_id, pdu): bytearray
- + _read_holding_registers(slave_id, pdu): bytearray
- + _exception_response(slave_id, function_code, exception_code): bytearray

BaseFrame + __init__(): none + load_image(filename, size): PhotoImage I none + set_background(image_path): none + on_show_frame(event): none + on_hide_frame(event): none + ask_value_in_range(title, prompt, initial_value, min_value, max_value, ask_float): int | float | none

- + on_entry_click(event, regs, min_val, max_val, entry, ask_float): none
- + _resize_background(event): none
- + _get_float_from_registers(start_reg): float
- + _start_mode_func(button, reg): none
- + _update_button_state_by_register(start_n3_reg, start_mode_reg): none
- + _refresh_entry(entry, reg, is_float): none
- + _update_back_button_state(btn): none

ПРОГРАММА ДЛЯ ОТРИСОВКИ ГРАФИКОВ

SIGPlotterApp

- + __init__: none
- + _configure_window: none
- + _init_fonts: none
- + _init_styles: none
- + _build_ui: none
- + _create_logo_section: none
- + _create_subtittle: none
- + _create_name_entry: none
- + _create_file_selector: none
- + _create_plot_button: none
- + _on_browse: none
- + _on_plot: none

ПРОГРАММА ДЛЯ ОТРИСОВКИ ГРАФИКОВ

Длительность испытания

выводы

В результате выполнения выпускной квалификационной работы было разработано программное обеспечение для СИГ, а также дополнительное приложение, для отрисовки графиков.

Разработка была внедрена в работу в АО «НПО «Прибор»

УТВЕРЖДАЮ Генеральный директор «Прибор» Ганкратов А.Е. « 20 г.

АКТ ВНЕДРЕНИЯ

Настоящий акт составлен о том, что результат выпускной квалификационной работы студента СПБПУ «Санкт-Петербургский политехнический университет Петра Великого» группы 5130901/10101 очной формы обучения Симоновского Д. Л. на тему «Разработка программного обеспечения для системы управления стендом испытательным гидробарическим» внедрен в стенд испытательный гидробарический. Результат выпускной квалификационной работы предоставил возможность эффективного управления стендом в автоматическом режиме, существенно сократив участие человека в процессе проведения испытаний, увеличив безопасность и скорость работы установки.

СОГЛАСОВАНО:

Генеральный конструктор

ЗГД по научно-техническому развитию

Начальник отделения ТО-5

Елизаров Б.А.

Татти Д.О.

Петров В.А.

ТЕСТ ЦИКЛИЧЕСКИЕ ИСПЫТАНИЯ

ТЕСТ ЦИКЛИЧЕСКИЕ ИСПЫТАНИЯ

TECT СТАТИЧЕСКИЕ ИСПЫТАНИЯ

ТЕСТ СТАТИЧЕСКИЕ ИСПЫТАНИЯ

Испытание

Длительность испытания

ПР200 ФУНКЦИОНАЛЬНАЯ СХЕМА

МАЛЫЙ НАСОС

ВЫБОР РЕЖИМА

Выбор режима

Статический режим

Циклический режим

Ручной режим

Функциональная область Архивирование на USB

РУЧНОЙ РЕЖИМ

ЦИКЛИЧЕСКИЙ РЕЖИМ

ЦИКЛИЧЕСКИЙ РЕЖИМ

СТАТИЧЕСКИЙ РЕЖИМ

СТАТИЧЕСКИЙ РЕЖИМ

ПНЕВМОГИДРАВЛИЧЕСКАЯ СХЕМА СИГ

ПОДСЧЕТ СКОРОСТИ ФИЛЬТР САВИЦКОГО-ГОЛЕЯ

$$\hat{y}_i = \sum_{i=-M}^M c_j y_{i+j},$$

Общий вид: $\hat{y}_i = \sum_{j=-M}^{M} c_j y_{i+j}$, \hat{y}_i – значение или оценка производной;

 y_{i+j} – значения измеренной величины;

 c_i – коэффициенты фильтра.

Для получения 1 производной и аппроксимации 1 степени:

$$c_j^{(1)} = \frac{j}{h\sum_{j=-M}^{M} j^2} = \frac{j}{h*\frac{2M(M+1)(2M+1)}{6}}$$

В проекте M = 4, h=200 ms.

П-РЕГУЛЯТОР С СИГМА АДАПТАЦИЕЙ

Скорость от процента ПЧВ на пустом баке: y = 0.02865982 * x

Формула П-регултора: $u[k] = K_{\Pi}e[k]$

Подстройка (сигма адаптация): $K_{\Pi}[k+1] = K_{\Pi}[k] + \gamma e[k] - \sigma K_{\Pi}[k]$

γ – скорость (коэффициент) адаптации;

 σ – коэффициент утечки, ограничивающий рост $K_{\Pi}[k]$.