Rapport du Projet Classification du Niveau de Risque d'Obésité

MOUACHA BASSOU

20 juin 2025

Introduction

Ce projet a pour objectif d'exploiter un ensemble de données démographiques et comportementales pour prédire le niveau d'obésité d'un individu à l'aide d'algorithmes d'apprentissage automatique. Le jeu de données comprend **20 758 échantillons**, avec des variables telles que l'âge, la taille, le poids, l'activité physique, les habitudes alimentaires, etc.

Les classes cibles sont :

- Insufficient_Weight
- Normal_Weight
- Overweight_Level_I
- Obesity_Type_I
- Obesity_Type_II
- Obesity_Type_III

Analyse Exploratoire des Données (EDA)

Résumé de l'EDA

- Genre : majorité de femmes ; elles consomment plus d'eau, font plus de sport, utilisent plus les transports en commun.
- Âge: moyenne de 24,4 ans; valeurs aberrantes supprimées.
- Poids: distribution bimodale; pics chez les femmes (55–60kg) et les hommes (80–85kg).
- Activité physique : modérée chez les hommes ; très peu de femmes inactives.

Prétraitement des Données

- Suppression de la colonne id
- Arrondi des âges
- Détection/suppression des outliers (IQR)
- Encodage via LabelEncoder
- Séparation 80% entraînement / 20% test

Modélisation et Résultats

2gray!10white

Modèle	Précision (%)	Commentaires
Random Forest	90	Excellente performance sur toutes les classes
SVC (SVM)	87	Bon compromis, nécessite normalisation
Decision Tree	84	Interprétable, mais moins stable
KNN	77	Sensible à l'échelle, résultats décevants
Naive Bayes	68	Hypothèses simplistes, moins adapté

Table 1 – Comparaison des performances des modèles

Commentaires détaillés

- Random Forest : robuste, précis, bien équilibré. Meilleur choix global.
- SVC: nécessite StandardScaler, bonnes performances sur classes minoritaires.
- KNN et Naive Bayes : résultats médiocres, inadéquats sans traitement avancé.

Conclusion

Le modèle $\mathbf{RandomForestClassifier}$ est le plus performant avec une précision globale de $\mathbf{90}\%$. Il surpasse les autres méthodes par sa stabilité, sa capacité à gérer des données complexes et sa robustesse sur les cas extrêmes.

Axes d'amélioration future :

- Optimisation par GridSearchCV
- Techniques d'équilibrage (SMOTE, class weights)
- Exploration de modèles profonds (Deep Learning)

Annexes

- Dataset: ObesityDataSet_raw_and_data_sinthetic.csv
- Librairies: pandas, scikit-learn, seaborn, matplotlib
- Modèle sauvegardé: obesity_risk_model.pkl