HMIN318M

Imagerie (médicale) 3D

Introduction

Noura Faraj noura.faraj@umontpellier.fr

Source Gérard Subsol

Présentation de l'UE

 Traitement et visualisation d'images 3D (segmentation, recalage...)

- Interventions:
 - Denis Hoa (Imaios)
 - Benjamin Gilles (Anatoscope)
 - Emmanuel Faure (CNRS)

Présentation de l'UE

- Tout sera sur le moodle
- En salle TPDptInfo
- Attention séance le mardi 24 matin
- Inscrivez vous
 - Support de cours
 - Sujets de TP
 - Rendus

Le projet (~40% de la note de TP)

- Acquisition 3D
- Visualisation 3D
- Segmentation 3D
- Recalage 3D
- Analyse 3D

Projet

- Présentation des sujets le jeudi 26 septembre (1,5h)
- Sujet à choisir, valider et envoyer par mail avant le jeudi 3 octobre (minuit)
- Présentation orale du sujet en 5 mn : jeudi 17 octobre (3h)
- Séances de travail prévues le 28 nov. et 5 déc . (2 x 1,5)
- Rapport à rendre avant le lundi 6 janvier 2019 (minuit)

Projets

Acquisition 3D

- Acquisition par micro-scanner X (avec Dr. Favier)
- Echantillons anatomiques du laboratoire d'anatomie ou de la collection de l'ISEM (primates) ?

Visualisation 3D

- Simulateur de vue endoscopique (avec Dr. Favier). 2 groupes possibles :
- Visualisation surfacique réaliste avec simulation d'effets spéculaires et intégration de texture
- Visualisation volumique couplée à une visualisation MPR
- Visualisation d'une très grosse image 3D sur une petite machine par découpage

Projets

Segmentation 3D

- Segmentation des sinus dans des images scanner X (avec Dr. Favier)
- Application de programmes existants sur des images de patients sélectionnés (contrôle, pathologique, variant anatomique...)
- Intégration de TP dans le frameworkindustriel MyrianStudio
- Segmentation de l'intestin dans des images scanner X (avec le service radiologie CHU)

Recalage 3D

- Analyse morphométrique d'endocrânes d'enfants atteints de plagiocéphalie (avec Prof. Captier)
- Application de programmes existants sur une base de données de cas contrôles et pathologiques

Projets

Analyse 3D

- Construction procédurale 3D de sinus (avec Dr. Favier)
- A partir d'une image 3D de référence construite à partir de données anatomiques (os sphénoïde, carotides)
- Transcription de la procédure définie par l'expert
- Essai et comparaison avec des données réelles.

Qu'est-ce qu'une image 3D?

- Matrice en 3 dimensions et non plus en 2 dimensions
- Représentée en général par un empilement d'images 2D (= coupes)
- Epaisseur en plus de la largeur et de la longueur
- Pixel (*Picture Element*) → **Voxel** (*Volume Element*)
- I=f(x,y,z) où I= intensité (ou couleur) représentant la mesure d'un signal

Pixel =
un point dans
une image 2D

Voxel = un point dans une image 3D

En prenant des images de coupes et en les empilant!

Exemple: Visible Man (1994)

Un cadavre d'homme est découpé en tranches de 1mm d'épaisseur → 15Go de données

En faisant directement une acquisition volumique

Appareils d'imagerie médicale (résolution de 0,1 à quelques mm)

 Tomodensitométrie par rayons X (scanner médical ou ComputedTomography-Scan)

Imagerie par Résonance magnétique (IRM)

Echographie 3D

Médecine nucléaire

→ voir cours de D. Hoa (IMAIOS + radiologue)

Mais aussi avec des appareils dédiés aux applications précliniques ou industrielles (résolution de quelques microns)

Micro-CT (plateforme RIO Imaging, ISEM, UM)

Micro-IRM (plateforme BioNanoNMRI)

→ voir cours d'E. Faure (CNRS informaticien+biologiste)

Microscopie SPIM

Par discrétisation volumique du monde réel ou virtuel

- Voxelisation d'acquisitions surfaciques
- Voxelisation de maillages 3D
- Création interactive à la «Minecraft»

Imagerie 3D pas que (bio)médicale

- Contrôle qualité (contrôle d'assemblage, comparaison fabrication/CAO, analyse des défauts internes), ingénierie inverse
- Utilisation de μ-scan dédiés, voire de η-scan avec plus de puissance pour traverser les métaux
- Analyse de produits alimentaires
- Etude du patrimoine (fossiles, objets)

 \rightarrow exemples

Représentation et stockage?

- Tout simplement comme un empilement de coupes suivant la direction d'acquisition ou de reconstruction...
- Intensité codée sur 12 bits ou 8 bits, souvent sur 2 octets (attention au codage bigendian/littleendian: 1000 = 256 x **3**+ **232**
- \rightarrow 03 E8 ou E8 03...)
- Conserver la taille du pixel et son épaisseur (SliceThickness) ≠ écart entre coupes (SpacingBetweenSlices)
- Standard DICOM (Digital Imaging and Communications in Medicine) qui code non seulement l'image mais aussi ses caractéristiques, voire le protocole de la chaîne d'acquisition ou la procédure clinique.

Les artefacts

Un grand problème de la discrétisation : le «volume partiel» (partial volume) renforcé par la 3ème dimension (et son anisotropie)

Les artefacts

Scanner X: artefact en étoile du à des matériaux très denses (alliages dentaires, prothèse)

Les artefacts

IRM: « décalage chimique » (chemical shift) lié à des matériaux très différents qui sont proches spatialement → les temps de relaxation « interfèrent » et cela crée des interfaces qui n'existent pas

Comment visualiser une image 3D?

Problème : comment voir à l'intérieur de l'image ?

1. En visualisant coupe par coupe

→ Ne permet pas bien d'appréhender les structures en 3D...

Comment visualiser une image 3D?

Problème : comment voir à l'intérieur de l'image ?

2. En visualisant suivant 3 plans orthogonaux (*Multi-PlanarReconstruction*) avec éventuellement une vision <u>«3D»</u> de ces 3 plans

→ Ne permet pas de visualiser des structures obliques...

Visualisation volumique

• Principe :

- définir une couleur et une opacité pour chaque voxel en fonction de son intensité;
- sélectionner un point de vue d'observation de l'image 3D
- «intégrer» les informations de couleur et d'opacité en fonction des voxels traversés par les rayons issus de l'œil (ray casting).

→ Mais il ne s'agit que d'une «coloration» des voxels qui permet d'obtenir une image utile mais pas exactement précise.

4. Visualisation volumique (Volume Rendering)

Cas général:

- Couleur = f(intensité, gradient(intensité))
- Intégration en fonction de l'opacité

→ Permet des effets complexes si on a les bons paramètres...

4. Visualisation volumique (Volume Rendering)

Traitement d'images 3D

- Un grand nombre de fonctions (par exemple, filtrage) sont les mêmes qu'en 2D mais plus complexes à développer. Une difficulté reste l'anisotropie suivant l'axe z.
- Problème 1 : la segmentation. Comment définir automatiquement une Région d'Intérêt ou sa frontière ?
- Problème 2 : le **recalage**. Comment aligner des images 3D entre elles ?
- Problème 3 : l'analyse. Comment analyser le résultats de la segmentation ou du recalage : par exemple suivi de croissance d'une lésion.