# Architecture des processeurs RISC-V (RV32I) Architecture multicycle, Pipeline

```
Michel Agoyan (michel.agoyan@thalesgroup.com),
Clément Fanjas (clement.fanjas@cea.fr),
Théophile Gousselot (theophile.gousselot@emse.fr),
Marc Lacruche (marc.lacruche@st.com),
Louis Noyez (louis.noyez@emse.fr),
Simon Pontié (simon.pontier@cea.fr),
Olivier Potin (olivier.potin@emse.fr),
Jean-Baptiste Rigaud (rigaud@emse.fr).
```

3 janvier 2023



Multicycle

- Micro-architecture bicycle
  - Chemin de données
  - Contrôle de données
  - Performances
  - Micro-architecture multi-cycle
  - Architecture mono-cycle vs règles d'optimisation
  - Architecture multi-cycle vs règles d'optimisation
  - Le chemin de données

- Le chemin de contrôle
- Micro-architecture pipeline
  - Le pipeline idéal
  - Pipeline à 5 étages
- 4 Le Pipeline réel
  - Les dépendances ("Hazard")
  - Les dépendances de données
  - Résolution des dépendances de données
  - Interlocks
  - Bypass
- Dipeline : Conclusion

#### Plan

- Micro-architecture bicycle
  - Chemin de données
  - Contrôle de données
  - Performances
- 2 Micro-architecture multi-cycle
  - Architecture mono-cycle vs règles d'optimisation
  - Architecture multi-cycle vs règles d'optimisation
  - Le chemin de données

- Le chemin de contrôle
- Micro-architecture pipeline
  - Le pipeline idéalPipeline à 5 étages
- Le Pipeline réel
  - Les dépendances ("Hazard")
  - Les dépendances de données
  - Résolution des dépendances de données
  - Interlocks
  - Bypass
- 5 Pipeline : Conclusion

- Micro-architecture bicycle
  - Chemin de données
  - Contrôle de données
  - Performances
- - Architecture mono-cycle vs règles
  - Architecture multi-cycle vs règles
  - Le chemin de données

- Le chemin de contrôle
  - Le pipeline idéal

  - Pipeline à 5 étages
  - - Les dépendances ("Hazard")
    - Les dépendances de données
    - Résolution des dépendances de données
    - Interlocks
    - Bypass

## Data path



5 / 44

Multicycle 3 janvier 2023

- Micro-architecture bicycle
  - Chemin de données
  - Contrôle de données
  - Performances
- Micro-architecture multi-cycle
  - Architecture mono-cycle vs règles d'optimisation
  - Architecture multi-cycle vs règles d'optimisation
  - Le chemin de données

- Le chemin de contrôle
  - Micro-architecture pipeline
  - Le pipeline idéal
  - Pipeline à 5 étages
  - Le Pipeline réel
    - Les dépendances ("Hazard")
    - Les dépendances de données
    - Résolution des dépendances de données
    - Interlocks
    - Bypass
- 5 Pipeline : Conclusion

# Control path

#### 2 états

- Fetch
- Execute



- Micro-architecture bicycle
  - Chemin de données
  - Contrôle de données
  - Performances
  - Micro-architecture multi-cycle
    - Architecture mono-cycle vs règles d'optimisation
    - Architecture multi-cycle vs règles d'optimisation
    - Le chemin de données

- Le chemin de contrôle
  - Micro-architecture pipelin
  - Le pipeline idéal
  - Pipeline à 5 étages
  - Le Pipeline réel
    - Les dépendances ("Hazard")
    - Les dépendances de données
    - Résolution des dépendances de données
    - Interlocks
    - Bypass
- 5 Pipeline : Conclusion

#### Performances

#### Pour l'état Fetch

Le chemin critique vaut : t<sub>ifetch</sub>

#### Pour l'état Execute

ullet Le chemin critique vaut :  $t_{opfetch} + t_{ALU} + t_{MEM}$ 

#### Donc:

- $T_{bicycle} < T_{monocycle}$
- si  $t_{ifetch} = T_{MEM} >> t_{opfetch} + t_{ALU}$  alors  $T_{monocycle} = 2T_{bicycle}$
- Pas de différence de performance



#### Plan

- Micro-architecture bicycle
  - Chemin de données
  - Contrôle de données
  - Performances
- Micro-architecture multi-cycle
  - Architecture mono-cycle vs règles d'optimisation
  - Architecture multi-cycle vs règles d'optimisation
  - Le chemin de données

- Le chemin de contrôle
- Micro-architecture pipeline
  - Le pipeline idéal
  - Pipeline à 5 étages
  - Le Pipeline réel
    - Les dépendances ("Hazard")
    - Les dépendances de données
    - Résolution des dépendances de données
    - Interlocks
    - Bypass
- 5 Pipeline : Conclusion

- Micro-architecture bicycle
  - Chemin de données
  - Contrôle de données
  - Performances
- 2 Micro-architecture multi-cycle
  - Architecture mono-cycle vs règles d'optimisation
  - Architecture multi-cycle vs règles d'optimisation
  - Le chemin de données

- Le chemin de contrôle
  - Micro-architecture pipelineLe pipeline idéal
  - Dipolino à 5 étages
  - Pipeline à 5 étages
  - Le Pipeline réel
    - Les dépendances ("Hazard")
    - Les dépendances de données
    - Résolution des dépendances de données
    - Interlocks
    - Bypass
- 5 Pipeline : Conclusion

## Architecture mono-cycle vs règles d'optimisation

- Réduction des chemins critiques
  - Les chemins se superposent!
- Optimiser les opérations les plus fréquentes
  - Le traitement le plus long impose le temps de cycle!
- Équilibrer l'utilisation du matériel
  - Si une ressource doit être utilisée plusieurs fois elle doit être dupliquée!

#### Idée

- Plusieurs cycles/Instruction = micro-architecture multi-cycle
- ⇒ Découpler le temps de cycle du temps de traitement de l'instruction

- - Chemin de données
  - Contrôle de données
  - Performances
- Micro-architecture multi-cycle
  - Architecture mono-cycle vs règles
  - Architecture multi-cycle vs règles d'optimisation
  - Le chemin de données

- Le chemin de contrôle

  - Le pipeline idéal
  - Pipeline à 5 étages
  - - Les dépendances ("Hazard")
    - Les dépendances de données
    - Résolution des dépendances de données
    - Interlocks
    - Bypass

## Architecture multi-cycle vs règles d'optimisation

- Réduction des chemins critiques
  - Le chemin critique peut être optimisé pour chaque instruction
- Optimiser les opérations les plus fréquentes
  - Les instructions deviennent indépendantes, d'un point de vue temporel et on peut donc optimiser les opérations les plus fréquentes
- Équilibrer l'utilisation du matériel
  - On peut mieux factoriser le matériel entre les instructions ou pour une instruction

- Micro-architecture bicycle
  - Chemin de données
  - Contrôle de données
  - Performances
- Micro-architecture multi-cycle
  - Architecture mono-cycle vs règles d'optimisation
  - Architecture multi-cycle vs règles d'optimisation
  - Le chemin de données

- Le chemin de contrôle
  - Le pipeline idéal
  - Pipeline à 5 étages
  - Le Pipeline réel
    - Les dépendances ("Hazard")
    - Les dépendances de données
    - Résolution des dépendances de données
    - Interlocks
    - Bypass
- 5 Pipeline : Conclusion

## Le data-path : 18 signaux de contrôle



4□ > 4□ > 4 = > 4 = > = 9 < ○</p>

Multicycle

- 1 Micro-architecture bicycle
  - Chemin de données
  - Contrôle de données
  - Performances
- Micro-architecture multi-cycle
  - Architecture mono-cycle vs règles d'optimisation
  - Architecture multi-cycle vs règles d'optimisation
  - Le chemin de données

- Le chemin de contrôle
  - Micro-architecture pipelin
  - Le pipeline idéal
  - Pipeline à 5 étages
  - Le Pipeline réel
    - Les dépendances ("Hazard")
    - Les dépendances de données
    - Résolution des dépendances de données
    - Interlocks
    - Bypass
- 5 Pipeline : Conclusion

## Le control-path



On distingue 5 opérations élémentaires :

- IF : récupération de l'instruction (fetch) et décodage d'instruction (decode)
- ID : récupération des opérandes (fetch operands)
- EX : exécution
- MEM : accès mémoire
- WB : l'écriture du résultat dans un registre (write back)

## Le control-path micro-programmé



Les instructions sont des micro-séquences :

• 
$$F1 : PC = Op1 + Op2$$

Pour chaque micro-état on définit :

- les 18 signaux de contrôle
- le micro-état suivant

Taille de la ROM:

Performances:

- CPI différent pour chaque instruction
- Temps de cycle optimal

4□ > 4□ > 4≡ > 4≡ > 900

19 / 44

#### Plan

- Micro-architecture bicycle
  - Chemin de données
  - Contrôle de données
  - Performances
- Micro-architecture multi-cycle
  - Architecture mono-cycle vs règles d'optimisation
  - Architecture multi-cycle vs règles d'optimisation
  - Le chemin de données

- Le chemin de contrôle
- Micro-architecture pipeline
  - Le pipeline idéal
  - Pipeline à 5 étages
- Le Pipeline réel
  - Les dépendances ("Hazard")
  - Les dépendances de données
  - Résolution des dépendances de données
  - Interlocks
  - Bypass
- 5 Pipeline : Conclusion

## Micro-architecture pipeline

La microarchitecture multi cycle permet une bonne factorisation des ressources matérielles mais ne permet pas le parallélisme des traitements.

 Compromis entre la factorisation des ressources matérielles et la duplication avec parallélisme

Est-ce que l'architecture mémoire Harvard est une si mauvaise idée?

- Elle nous a permis d'accéder à la fois à l'instruction et à la donnée dans l'architecture monocycle (afin de résoudre la dépendance structurelle)
- Compromis entre une architecture Von Neumann et Harvard : Hiérarchie mémoire (prochain cours)

Comment paralléliser des traitements? :

"le travail à la chaîne!" ⇒ le pipeline



- Micro-architecture bicycle
  - Chemin de données
  - Contrôle de données
  - Performances
- Micro-architecture multi-cycle
  - Architecture mono-cycle vs règles d'optimisation
  - Architecture multi-cycle vs règles d'optimisation
  - Le chemin de données

- Le chemin de contrôle
- Micro-architecture pipeline
  - Le pipeline idéal
  - Pipeline à 5 étages
  - Le Pipeline réel
    - Les dépendances ("Hazard")
    - Les dépendances de données
    - Résolution des dépendances de données
    - Interlocks
    - Bypass
- 5 Pipeline : Conclusion

## Pipeline idéal

Nous reprenons nos 5 traitements de base de l'architecture multi-cycle que nous plaçons sur une chaîne de traitement⇒ le pipeline.

Les hypothèses d'une chaîne de traitement pour garantir un usage optimal des ressources de traitement sont les suivantes :

- Toutes les instructions passent par les mêmes étapes (Stages)
- Pas de ressources partagées entre deux étapes
- Les délais de traitement de chaque étape sont égaux
- L'entrée d'une instruction dans le pipeline est cadencée par la durée de traitement

- Micro-architecture bicycle
  - Chemin de données
  - Contrôle de données
  - Performances
- 2 Micro-architecture multi-cycle
  - Architecture mono-cycle vs règles d'optimisation
  - Architecture multi-cycle vs règles d'optimisation
  - Le chemin de données

- Le chemin de contrôle
- Micro-architecture pipeline
  - Le pipeline idéal
  - Pipeline à 5 étages
  - Le Pipeline réel
    - Les dépendances ("Hazard")
    - Les dépendances de données
    - Résolution des dépendances de données
    - Interlocks
    - Bypass
- 5 Pipeline : Conclusion

## Pipeline 5 étages : data path



## Pipeline 5 étages : illustration



|     | c1  | c2  | c3  | c4   | c5   | c6   | c7   | c8   |
|-----|-----|-----|-----|------|------|------|------|------|
| I1  | IF1 | ID1 | EX1 | MEM1 | WB1  |      |      |      |
| I2  |     | IF2 | ID2 | EX2  | MEM2 | WB2  |      |      |
| I3  |     |     | IF3 | ID3  | EX3  | MEM3 | WB3  |      |
| I4  |     |     |     | IF4  | ID4  | EX4  | MEM4 | WB4  |
| I5  |     |     |     |      | IF5  | ID5  | EX5  | MEM5 |
|     | c1  | c2  | c3  | c4   | c5   | c6   | c7   | c8   |
| IF  | I1  | I2  | I3  | I4   | I5   | I6   | I7   | I8   |
| ID  |     | I1  | I2  | I3   | I4   | I5   | I6   | I7   |
| EX  |     |     | I1  | I2   | I3   | I4   | I5   | I6   |
| MEM |     |     |     | I1   | I2   | I3   | I4   | I5   |
| WB  |     |     |     |      | I1   | I2   | I3   | I4   |

- 4 ロ ト 4 昼 ト 4 昼 ト - 夏 - りへで

Multicycle

## Pipeline 5 étages : illustration



|     | c1  | c2  | c3  | c4   | c5   | c6   | c7   | c8   |
|-----|-----|-----|-----|------|------|------|------|------|
| I1  | IF1 | ID1 | EX1 | MEM1 | WB1  |      |      |      |
| I2  |     | IF2 | ID2 | EX2  | MEM2 | WB2  |      |      |
| I3  |     |     | IF3 | ID3  | EX3  | MEM3 | WB3  |      |
| I4  |     |     |     | IF4  | ID4  | EX4  | MEM4 | WB4  |
| I5  |     |     |     |      | IF5  | ID5  | EX5  | MEM5 |
|     | c1  | c2  | c3  | c4   | c5   | c6   | c7   | c8   |
| IF  | I1  | I2  | I3  | I4   | I5   | I6   | I7   | I8   |
| ID  |     | I1  | I2  | I3   | I4   | I5   | I6   | I7   |
| EX  |     |     | I1  | I2   | I3   | I4   | I5   | I6   |
| MEM |     |     |     | I1   | I2   | I3   | I4   | I5   |
| WB  | 4   |     |     |      |      | I2   | I3   | I4   |

latence = 5 cycles

1 instruction / cycle

26 / 44

# Pipeline 5 étages (contrôle du data path)



Multicycle

## Plan

- Micro-architecture bicycle
  - Chemin de données
  - Contrôle de données
  - Performances
- Micro-architecture multi-cycle
  - Architecture mono-cycle vs règles d'optimisation
  - Architecture multi-cycle vs règles d'optimisation
  - Le chemin de données

- Le chemin de contrôle
- Micro-architecture pipeline
  - Le pipeline idéal
  - Pipeline à 5 étages
- 4 Le Pipeline réel
  - Les dépendances ("Hazard")
  - Les dépendances de données
  - Résolution des dépendances de données
  - Interlocks
  - Bypass
- 5 Pipeline : Conclusion

- - Chemin de données
  - Contrôle de données
  - Performances
- - Architecture mono-cycle vs règles
  - Architecture multi-cycle vs règles
  - Le chemin de données

- Le chemin de contrôle
  - - Le pipeline idéal
  - Pipeline à 5 étages
  - Le Pipeline réel
    - Les dépendances ("Hazard")
    - Les dépendances de données
    - Résolution des dépendances de données
    - Interlocks
  - Bypass

# Les dépendances ("Hazard")

- Nous avons vu précédemment qu'une concurrence sur une même ressource matérielle peut entraîner une dépendance structurelle («structural hazard») entre deux traitements
  - Dans le pipeline deux instructions peuvent interagir l'une sur l'autre à cause d'une dépendance structurelle (accès mémoire)
- Une instruction peut aussi dépendre de ce qu'a produit l'instruction précédente
  - Dépendance de données («data hazard»)
  - Dépendance de contrôle («control hazard»): calcul du PC

- Micro-architecture bicycle
  - Chemin de données
  - Contrôle de données
  - Performances
- Micro-architecture multi-cycle
  - Architecture mono-cycle vs règles d'optimisation
  - Architecture multi-cycle vs règles d'optimisation
  - Le chemin de données

- Le chemin de contrôle
  - Micro-architecture pipeline
  - Le pipeline idéal
  - Pipeline à 5 étages
  - Le Pipeline réel
    - Les dépendances ("Hazard")
    - Les dépendances de données
    - Résolution des dépendances de données
    - Interlocks
    - Bypass
- 5 Pipeline : Conclusion

## Les dépendances de données



- Micro-architecture bicycle
  - Chemin de données
  - Contrôle de données
  - Performances
- Micro-architecture multi-cycle
  - Architecture mono-cycle vs règles d'optimisation
  - Architecture multi-cycle vs règles d'optimisation
  - Le chemin de données

- Le chemin de contrôle
  - Micro-architecture pipeline
  - Le pipeline idéal
  - Pipeline à 5 étages
  - Le Pipeline réel
    - Les dépendances ("Hazard")
    - Les dépendances de données
    - Résolution des dépendances de données
    - Interlocks
    - Bypass
- 5 Pipeline : Conclusion

## Résolution des dépendances de données

- Réordonner les instructions pour supprimer les dépendances et le cas échéant insérer des « NOP » (no operation)
  - Stratégie du MIPS I (Microprocessor without Interlocked Pipeline Stage)
- Attendre le résultat en arrêtant les étages qui précèdent : « Interlocks »
- Trouver des raccourcis pour mettre les données à jour le plus tôt possible: « Bypass »

- Micro-architecture bicycle
  - Chemin de données
  - Contrôle de données
  - Performances
- Micro-architecture multi-cycle
  - Architecture mono-cycle vs règles d'optimisation
  - Architecture multi-cycle vs règles d'optimisation
  - Le chemin de données

- Le chemin de contrôle
  - Micro-architecture pipeline
    - Le pipeline idéal
    - Pipeline à 5 étages
  - Le Pipeline réel
    - Les dépendances ("Hazard")
    - Les dépendances de données
    - Résolution des dépendances de données
    - Interlocks
    - Bypass
- 5 Pipeline : Conclusion

## Interlocks



## Interlocks : logique de contrôle



 $stall = (Rs1\_add == Rd\_add)||(Rs2\_add == Rd\_add)||$ 

37 / 44

Multicycle 3 janvier 2023

## Génération du signal de contrôle stall

- $stall = (Rs1\_add == Rd\_add)||(Rs2\_add == Rd\_add)||$
- Affiner les conditions de manière à ne figer le pipeline que si nécessaire

| Format Inst |                     | Sources | Destination |    |
|-------------|---------------------|---------|-------------|----|
| ALU R       | Rd = Rs1  func  Rs2 | Rs1,Rs2 | Rd          | R0 |
| ALU I       | Rd = Rs1 func Imm   | Rs1     | Rd          | R0 |
| S           | MEM[Rs1+Imm]=Rs2    | Rs1,Rs2 |             |    |
| J           | PC=Pc+Imm           |         | Rd          | R0 |

Multicycle

## Interlock: illustration



|    |            | c1  | c2  | c3  | c4   | c5  | с6  | с7  | c8   |
|----|------------|-----|-----|-----|------|-----|-----|-----|------|
| I1 | ADD R2, R3 | IF1 | ID1 | EX1 | MEM1 | WB1 |     |     |      |
| I2 | OR R4, R2  |     | IF2 | ID2 | ID2  | ID2 | ID2 | EX2 | MEM2 |
| I3 |            |     |     | IF3 | IF3  | IF3 | IF3 | ID3 | EX3  |
| I4 |            |     |     |     |      |     |     | IF4 | ID4  |
| I5 |            |     |     |     |      |     |     |     |      |

- Micro-architecture bicvcle
  - Chemin de données
  - Contrôle de données
  - Performances
- Micro-architecture multi-cycle
  - Architecture mono-cycle vs règles d'optimisation
  - Architecture multi-cycle vs règles d'optimisation
  - Le chemin de données

- Le chemin de contrôle
  - Micro-architecture pipeline
  - Le pipeline idéal
  - Pipeline à 5 étages
  - Le Pipeline réel
    - Les dépendances ("Hazard")
    - Les dépendances de données
    - Résolution des dépendances de données
    - Interlocks
    - Bypass
- 5 Pipeline : Conclusion

## Bypass: principe



|    |            | c1  | c2  | c3  | c4   | c5   | с6   | с7   | c8   |
|----|------------|-----|-----|-----|------|------|------|------|------|
| I1 | ADD R2, R3 | IF1 | ID1 | EX1 | MEM1 | WB1  |      |      |      |
| I2 | OR R4,R2   |     | IF2 | ID2 | EX2  | MEM2 | WB2  |      |      |
| I3 |            |     |     | IF3 | ID3  | EX3  | MEM3 | WB3  |      |
| I4 |            |     |     |     | IF4  | ID4  | EX4  | MEM4 | WB4  |
| I5 |            |     |     |     |      | IF5  | ID5  | EX5  | MEM5 |

- En fait le résultat de l'exécution de l1 est disponible à l'étage EX et peut être fourni à temps pour l'exécution de 12
- Il faut pour cela créer un bypass entre la sortie de l'ALU et son entrée

## Bypass: circuit



Multicycle

#### Plan

- Micro-architecture bicycle
  - Chemin de données
  - Contrôle de données
  - Performances
- 2 Micro-architecture multi-cycle
  - Architecture mono-cycle vs règles d'optimisation
  - Architecture multi-cycle vs règles d'optimisation
  - Le chemin de données

- Le chemin de contrôle
- Micro-architecture pipeline
  - Le pipeline idéalPipeline à 5 étages
- 1 le Pineline réel
  - Les dépendances ("Hazard")
  - Les dépendances de données
  - Résolution des dépendances de données
  - Interlocks
  - Bypass
- 5 Pipeline : Conclusion

#### Conclusion

- $\bullet$  CPI >1
- Bypass complet augmente la complexité et a un impact sur le chemin critique et le temps de cycle.
- Dépendance de donnée entre un LW et l'instruction suivante ne peut pas être résolu par bypass
- Dépendances de contrôle dues aux branchements conditionnels non résolues par bypass (cf. séance 4)
- Hypothèse forte :
  - Structure mémoire Harvard avec un temps d'accès = 1 cycle
  - Séance 5 : hiérarchie mémoire