CLAIMS

What is claimed is:

- 1 1. A processor comprising:
- a first port to receive a supply voltage from an external voltage regulator,

 the supply voltage to power the processor;
- 4 a voltage sensor to monitor the supply voltage; and
- 5 a second port to provide a control signal from the voltage sensor to the voltage regulator to indicate if the supply voltage is above or below a
- 7 target value.
- 1 2. The processor of claim 1, wherein the target value is adjustable by the
- 2 processor in accordance with a power management policy.
- The processor of claim 1, wherein the target value is to be set to allow the
 processor to meet a timing requirement.
- 1 4. The processor of claim 1, wherein the target value is to be reduced if the circuit is inactive.
- 1 5. The processor of claim 1, wherein the voltage sensor includes an op amp.
- 1 6. The processor of claim 1, wherein the circuit includes at least a portion of a core of the processor.

- 1 7. The processor of claim 1, wherein the circuit includes a memory region.
- 1 8. The processor of claim 7, wherein the memory region is a cache.
 - 1 9. A computer system comprising:
 - a discrete voltage regulator to provide a supply voltage; and
 - a processor, powered by the supply yoltage, to provide a control signal to
 - 4 the voltage regulator to indicate/a target value for the supply voltage.
 - 1 10. The computer system of claim 9, wherein the target value is to be adjusted by
 - the processor in accordance with a power management policy.
 - 1 11. The computer system of claim 9, wherein the target value is to be set to allow
 - the processor to meet a tinfing requirement.
 - 1 12. The computer system of claim 9, wherein the target value is to be reduced if
 - 2 at least a portion of the processor is inactive.
 - 1 13. The computer system of claim 9, wherein the target value is to be indicated
 - by the control signal by indicating if the supply voltage is above or below the
 - 3 target value

1	14.	The computer system of claim 9, wherein the processor includes a voltage
2		sensor to monitor the supply voltage and to provide the control signal, the
 		voltage sensor including an op amp.
1	15.	A method comprising:
2		enabling a voltage regulator to provide Vcc to a processor;
3		enabling the processor to receive Vcc from the voltage regulator and to
4		send a control signal associated with Vcc to the voltage regulator, the
5		control signal to indicate a target value; and
6		enabling the voltage regulator to receive the control signal from the
7		processor, the voltage regulator to adjust Vcc to the target value in
8		response to the control signal.
1	16.	The method of claim 15, wherein enabling the voltage regulator to provide
2		Vcc to the processor includes electrically coupling a Vcc output of the voltage
3		regulator to a Vcc input of the processor.
1	17.	The method of claim 15 wherein enabling the voltage regulator to receive the
2		control signal from the processor includes electrically coupling a Vcc control
3		output of the processor to a Vcc control input of the voltage regulator.
-	-	
1	18.	The method of claim 15, further comprising reducing the target value if at
2		least a portion of the processor is inactive.