12. Характеристические функции.

Определение. Характеристической функцией случайной величины ξ называется комплекснозначная функция вещественного аргумента t:

$$arphi_{\xi}(t)=arphi(t)=Ee^{it\xi}=\left\{egin{array}{c} \displaystyle\sum_{k}p_{k}e^{itx_{k}} \ ,$$
 для дискретной $\xi \ \displaystyle\int_{-\infty}^{\infty}p(x)e^{itx}dx \ ,$ для непрерывной $\xi \ \end{array}
ight.$

Здесь i обозначает мнимую единицу, $i^2 = -1$.

Теорема 1. Основные свойства характеристических функций:

- 1). $\varphi(0) = 1$; при всех $t, |\varphi(t)| \le 1$.
- 2). Если $\eta = a + b\xi$, то $\varphi_n(t) = e^{ita}\varphi_{\xi}(bt)$.
- 3). Если ξ и η независимы, то $\varphi_{\xi+\eta}(t)=\varphi_{\xi}(t)\varphi_{\eta}(t)$.
- 4). Если существует k-й момент $m_k = E\xi^k$, то

$$\frac{d^k \varphi(t)}{dt^k} \big|_{t=0} = i^k m_k.$$

Доказательство. Первые два свойства очевидны; третье основано на свойстве: математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий

$$\varphi_{\xi+\eta}(t) = Ee^{it(\xi+\eta)} = Ee^{it\xi}e^{it\eta} = Ee^{it\xi}Ee^{it\eta} = \varphi_{\xi}(t)\varphi_{\eta}(t).$$

Для доказательства равенства 4) вычислим производные характеристической функции:

$$\frac{d\varphi}{dt} = iE\xi e^{it\xi}, \frac{d^2\varphi(t)}{dt^2} = i^2E\xi^2 e^{it\xi}, \dots, \frac{d^k\varphi(t)}{dt^k} = i^kE\xi^k e^{it\xi},$$

положив t=0, получим доказываемое соотношение. Из него следует, что характеристическую функцию можно разложить в ряд Тейлора:

$$\varphi_{\xi}(t) = 1 + im_1 t + \frac{i^2 m_2}{2} t^2 + \frac{i^3 m_3}{3!} t^3 + \dots \blacksquare$$

Рассмотрим некоторые примеры вычисления характеристических функций.

Пример 1. Характеристическая функция биномиального распределения. Представим случайную величину ξ в виде суммы n независимых одинаково распределенных бинарных случайных величин, $\xi = \xi_1 + \xi_2 + \dots + \xi_n$, $(P\{\xi_1 = 1\} = p, P\{\xi_1 = 0\} = 1 - p)$. Каждая ξ_k имеет характеристическую функцию

$$\varphi_{\xi_k}(t) = pe^{it \cdot 1} + (1-p)e^{it \cdot 0} = pe^{it} + 1 - p = 1 + p(e^{it} - 1).$$

Вследствие свойства 3),

$$\varphi_{\xi}(t) = \prod_{k=1}^{n} \varphi_{\xi_k}(t) = \left(1 + p(e^{it} - 1)\right)^n.$$

Пример 2. Характеристическая функция распределения Пуассона. Для случайной величины с распределением Пуассона,

$$p_k = P\{\xi = k\} = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0,1,2,...,$$

имеем

$$\varphi(t) = e^{-\lambda} \sum_{k} \frac{\lambda^k}{k!} e^{itk} = e^{-\lambda} \sum_{k} \frac{(\lambda e^{it})^k}{k!} = e^{-\lambda} e^{\lambda e^{it}} = \exp\left(\lambda \left(e^{it} - 1\right)\right).$$

Пример 3. Характеристическая функция гауссовского распределения. Сначала рассмотрим стандартное нормальное, $\xi \sim \mathcal{N}(0,1)$. Представляя экспоненту по формуле Эйлера,

$$\varphi(t) = \int_{-\infty}^{\infty} p(x)e^{itx}dx = \int_{-\infty}^{\infty} p(x)\cos(tx)dx + i \int_{-\infty}^{\infty} p(x)\sin(tx)dx$$

видим, что мнимая часть обращается в 0, так как p(x) — симметричная функция, а sin — антисимметричная, следовательно, как и для любой для симметричной плотности, характеристическая функция вещественна,

$$\varphi(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} cos(tx) dx.$$

Продифференцируем,

$$\varphi'(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (-x)e^{-\frac{x^2}{2}} \sin(tx) dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \sin(tx) d\left(e^{-\frac{x^2}{2}}\right)$$

и проинтегрируем по частям,

$$\varphi'(t) = \frac{1}{\sqrt{2\pi}} \left[\sin(tx)e^{-\frac{x^2}{2}} \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} t \cdot \cos(tx)e^{-\frac{x^2}{2}} dx \right] = -t \varphi(t).$$

Получили дифференциальное уравнение для $\varphi(t)$, $\varphi'(t) = -t \varphi(t)$ или

$$\frac{\varphi'}{\varphi}=-t,$$

решение которого:

$$ln\varphi = \frac{t^2}{2} + const;$$

согласно начальному условию $\varphi(0)=1$, получаем const=0 и окончательно характеристическая функция стандартного нормального распределения

$$\varphi(t)=e^{-\frac{t^2}{2}}.$$

Для гауссовского распределения общего вида $\mathcal{N}(a,\sigma^2)$, согласно свойству 2) Теоремы 1,

$$\varphi(t) = exp\left(ita - \frac{\sigma^2 t^2}{2}\right). \blacksquare$$

С помощью характеристической функции легко вывести свойство нормального распределения для независимых случайных величин: сумма двух независимых нормальных случайных величин имеет нормальное распределение. Пусть независимые $\xi_k \sim \mathcal{N}(a_k, \sigma_k^2)$, (k=1,2), тогда

$$\varphi_{\xi_k}(t) = exp\left(ita_k - \frac{\sigma_k^2 t^2}{2}\right)$$

и в силу свойства 3),

$$\begin{split} \varphi_{\xi_1+\xi_2}(t) &= exp\left(ita_1 - \frac{\sigma_1^2 t^2}{2}\right) exp\left(ita_2 - \frac{\sigma_2^2 t^2}{2}\right) = \\ &= exp\left(it(a_1 + a_2) - \frac{(\sigma_1^2 + \sigma_2^2)t^2}{2}\right). \end{split}$$

Отметим еще: как следует из свойств характеристических функций, гауссовское распределение имеет моменты всех порядков.

Несколько важных свойств характеристических функций сформулируем здесь без доказательства.

Теорема (формула обращения). Если распределение абсолютно непрерывно (существует плотность распределения p(x)) и характеристическая функция $\varphi(t)$ интегрируема ($\int_{-\infty}^{\infty} |\varphi(t)| \, dt < \infty$), то

$$p(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(t) e^{-itx} dt$$

Таким образом, теорема дает условие, при котором характеристическая функция случайной величины однозначно определяет ее распределение.

Теорема Хелли. Пусть $\{\varphi_n(t)\}$ - последовательность характеристических функций и $\{F_n(x)\}$ - последовательность соответствующих функций распределения. Если при любом t последовательность $\varphi_n(t)$ сходится к некоторой функции $\varphi(t)$, непрерывной в 0, то

- 1) $\varphi(t)$ есть характеристическая функция, соответствующая некоторой функции распределения F(x);
- 2) последовательность $F_n(x)$ сходится к F(x) в точках непрерывности функции F(x).

Пример 4. Доказательство теоремы Пуассона с помощью характеристических функций. Рассмотрим схему Бернулли в условиях Теоремы 4.1. Характеристическую функцию в схеме Бернулли (Пример 1) обозначим

$$\varphi_n(t) = \left(1 + p_n(e^{it} - 1)\right)^n, \ p_n = \frac{\lambda}{n};$$

переходя к пределу, получаем

$$\varphi_n(t) \to exp(\lambda(e^{it}-1)),$$

а это есть характеристическая функция распределения Пуассона (Пример 2).

Упражнение 1. С помощью характеристической функции вычислить моменты m_k гауссовского распределения $\mathcal{N}(a,\sigma^2)$ (k=1,2,3,...,n). Чему равны асимметрия и эксцесс?