

Lab 3

CPS 563 – Data Visualization

Dr. Tam Nguyen

tamnguyen@udayton.edu

Outline

- Create and use function in MATLAB
- Modify the bar chart

Start MATLAB

Create Lab 3 folder

Copy Lab2b.m into Lab 3 folder

Lab2b.m

```
Precision = [0.797009 0.815369 0.832162 0.820447 0.865443 0.86361
0.822107 0.818487 0.884089 0.786283 0.856924 ];
Recall = [0.846184 0.765644 0.818961 0.773621 0.821652 0.78193
0.828532 0.773323 0.74201 0.655659 0.817653 ];
FMeasure = 2*(Precision.*Recall)./(Precision + Recall);
bar([Precision; Recall; FMeasure]');
legend('Precision', 'Recall', 'F-measure');
set(gca, 'XTickLabel', {'PCA', 'HS', 'SF', 'FT', 'RFCN', 'AIM', 'IT', 'GBVS',
'BM', 'DRFI', 'MDTS'});
title('Precision and Recall');
```

Create new function file: createBarChart

Open createBarChart.m

```
function [ output_args ] = createBarChart( input_args )
%CREATEBARCHART Summary of this function goes here
% Detailed explanation goes here
```

end

Update the output and the inputs

function createBarChart(data, methods, legends, chart_title)

%CREATEBARCHART Summary of this function goes here

% Detailed explanation goes here

end

Implement the function

```
function createBarChart( data, methods, legends, chart_title )
%CREATEBARCHART Summary of this function goes here
% Detailed explanation goes here
```

```
bar(data);
legend(legends);
set(gca, 'XTickLabel', methods);
title(chart_title);
end
```

 \cap

Create new script file: Lab3.m

Open Lab3.m

```
close all;
clear all;
clc;
```

Update Lab3.m

```
close all;
clear all;
clc;
```

```
Precision = [0.797009 0.815369 0.832162 0.820447 0.865443 0.86361 0.822107 0.818487 0.884089 0.786283 0.856924 ];

Recall = [0.846184 0.765644 0.818961 0.773621 0.821652 0.78193 0.828532 0.773323 0.74201 0.655659 0.817653 ];

FMeasure = 2*(Precision.*Recall)./(Precision + Recall);
```

Prepare the inputs

```
Precision = [0.797009 0.815369 0.832162 0.820447 0.865443 0.86361 0.822107 0.818487 0.884089 0.786283 0.856924 ];

Recall = [0.846184 0.765644 0.818961 0.773621 0.821652 0.78193 0.828532 0.773323 0.74201 0.655659 0.817653 ];

FMeasure = 2*(Precision.*Recall)./(Precision + Recall);
```

```
data = [Precision; Recall; FMeasure]';
methods = {'PCA', 'HS', 'SF', 'FT', 'RFCN', 'AIM', 'IT', 'GBVS', 'BM', 'DRFI',
'MDTS'};
chart_title = 'Precision and Recall';
legends = {'Precision', 'Recall', 'F-measure'};
```

Call the newly created function

createBarChart(data, methods, legends, chart title);

```
Precision = [0.797009 0.815369 0.832162 0.820447 0.865443 0.86361 0.822107 0.818487 0.884089 0.786283 0.856924 ];
Recall = [0.846184 0.765644 0.818961 0.773621 0.821652 0.78193 0.828532
0.773323 0.74201 0.655659 0.817653 ];
FMeasure = 2*(Precision.*Recall)./(Precision + Recall);
data = [Precision; Recall; FMeasure]';
methods = {'PCA', 'HS', 'SF', 'FT', 'RFCN', 'AIM', 'IT', 'GBVS', 'BM', 'DRFI', 'MDTS'};
chart title = 'Precision and Recall';
legends = {'Precision', 'Recall', 'F-measure'};
```

Run Lab3.m

Update the methods' names

% methods = {'PCA', 'HS', 'SF', 'FT', 'RFCN', 'AIM', 'IT', 'GBVS', 'BM', 'DRFI', 'MDTS'};

```
\label{eq:precision} Precision = [0.797009\ 0.815369\ 0.832162\ 0.820447\ 0.865443\ 0.86361\ 0.822107\ 0.818487\ 0.884089\ 0.786283\ 0.856924\ ]; \\ Recall = [0.846184\ 0.765644\ 0.818961\ 0.773621\ 0.821652\ 0.78193\ 0.828532\ 0.773323\ 0.74201\ 0.655659\ 0.817653\ ]; \\ FMeasure = 2*(Precision.*Recall)./(Precision\ +\ Recall);
```

data = [Precision; Recall; FMeasure]';

```
methods = {'Principal Component Analysis', 'Hierarchical Saliency ', 'Saliency Filter', 'Frequency Tune', 'Region-based Fully Convolutional Networks', 'Attention via Information Maximization', 'IT', 'Graph based Visual Saliency', 'Boolean Map', 'Discriminative Regional Feature Integration', 'Multi-task Deep Saliency'};
```

```
chart_title = 'Precision and Recall';
legends = {'Precision', 'Recall', 'F-measure'};
createBarChart( data, methods, legends, chart_title);
```

Run Lab3.m again

Maximize the window

Update createBarChart.m

end

```
function createBarChart( data, methods, legends, chart_title )
%CREATEBARCHART Summary of this function goes here
% Detailed explanation goes here
bar(data);
legend(legends);
set(gca, 'XTickLabel', methods);
title(chart title);
h = gca;
h.XTickLabelRotation = 60;
```

Run Lab3.m

Highlight the F-Measure: update createBarChart.m

```
function b = createBarChart( data, methods, legends, chart_title )
%CREATEBARCHART Summary of this function goes here
% Detailed explanation goes here
b = bar(data);
legend(legends);
set(gca, 'XTickLabel', methods);
title(chart title);
h = gca;
h.XTickLabelRotation = 60;
end
```

Update Lab3.m

```
Precision = [0.79700\ 0.815369\ 0.83216\ 0.820447\ 0.86544\ 0.86361\ 0.822107\ 0.818487\ 0.884089\ 0.786283\ 0.856924\ ];
Recall = [0.846184 \ 0.765644 \ 0.818961 \ 0.773621 \ 0.821652 \ 0.78193 \ 0.828532 \ 0.773323 \ 0.74201 \ 0.655659 \ 0.817653 \ ];
FMeasure = 2*(Precision.*Recall)./(Precision + Recall);
data = [Precision; Recall; FMeasure]';
methods = {'Principal Component Analysis', 'Hierarchical Saliency ', 'Saliency Filter', 'Frequency Tune', 'Region-based
Fully Convolutional Networks', 'Attention via Information Maximization', 'IT', 'Graph based Visual Saliency', 'Boolean
Map', 'Discriminative Regional Feature Integration', 'Multi-task Deep Saliency'};
chart title = 'Precision and Recall';
legends = {'Precision', 'Recall', 'F-measure'};
```

```
b = createBarChart( data, methods, legends, chart_title);
b(3).LineWidth = 2;
b(3).EdgeColor = 'red';
```

Color in MATLAB charts

Long Name	Short Name	RGB Triplet
'yellow'	'y'	[1 1 0]
'magenta'	'm'	[1 0 1]
'cyan'	'c'	[0 1 1]
'red'	'r'	[100]
'green'	'g'	[0 1 0]
'blue'	'b'	[0 0 1]
'white'	'w'	[1 1 1]
'black'	'k'	[0 0 0]

Run Lab3.m again

Change the bar color (Lab3.m)

```
b = createBarChart( data, methods, legends, chart_title);
b(3).LineWidth = 2;
b(3).EdgeColor = 'red';
```

```
b(1).FaceColor = 'cyan';
```

Run Lab3.m again

Q&A