CS 334 - Homework 0 (Mathematical Prerequisites) Due 1/28/2016

Sets

1. Let f(x) = 2x, where $f:\mathbb{N} \to \mathbb{Z}_{10}$. Use set-notation to express the collection of values for which f(x) = 0.

Note: Given $f:D \to R$, the set $\{x \in D \mid f(x) = 0\}$, is sometimes called the "kernel" of the function. Kernels play a central role in constructions used throughout many fields of mathematics (group theory, linear algebra, algebraic topology, etc...) This set can also be expressed using the notation $f^{-1}(0)$. More generally, we call $f^{-1}(x)$ the "preimage of x under f".

2. Let A := $\{x \in \mathbb{N} \mid 2x \mod 10 = 0\}$, and B := $\{x \in \mathbb{N} \mid x \mod 2 = 0\}$. Use set-notation to express:

i. A
$$U$$
 B

Functions

For each of the following functions, identify *whether the function is injective, surjective, bijective, or neither injective nor surjective* for the following domain-range pairs:

i.
$$\mathbb{N} \to \mathbb{N}$$

ii.
$$\mathbb{N} \to \mathbb{Z}_5$$

iii.
$$\mathbb{N} \to \mathbb{Z}_{10}$$

iv
$$\mathbb{Z} \to \mathbb{Z}$$

If the function is not injective, provide an example of two objects in the domain which map to the same value. If the function is not surjective, provide an example of a value in the range which is not mapped to by any object in the domain.

1.
$$f(x) = x + 2$$

2.
$$f(x) = 2x$$

3.
$$f(x) = 3x$$

Boolean Logic

Write truth-tables for the following boolean expressions:

2.
$$(A \lor B) \Rightarrow C$$

3.
$$A \Rightarrow (B \oplus C)$$

Strings and Languages

- Provide an alphabet ∑ which would be sufficient to write all arithmetical expressions which include additions and subtractions of integers, as well as parentheses.
 Ex: "(3 - 5) / 2"
- 2. Give three examples of strings over this alphabet which would belong to Σ^* , but would not be a syntactically valid arithmetical expression. Try to have each of the three strings

violate a different syntactic rule.

Ex: "((12-8("

3. Try to give a complete list of conditions that would need to be checked in order to ensure that a given string is a valid arithmetical expression.

Ex: "No number's first digit is 0."

Proofs

- 1. "Proof by Contrapositive"
 - a. Use truth-tables to prove that: " $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$ ".

 The statement " $(\neg B \Rightarrow \neg A)$ " is known as the "contrapositive" of the statement " $(A \Rightarrow B)$ ".
 - b. State the contrapositive of the following: "If $n^2 \in \mathbb{N}$ is odd, then n is also odd."
 - c. Use arithmetic to prove the contrapositive statement, and conclude that the statement from (b) is true.
- 2. "Proof by Induction"

Given $n \in \mathbb{N}$, prove that $2^n \ge n^2$, for all $n \ge 4$.

Hint: Since this is only for numbers greater than or equal to 4, use n = 4 as the base case of your proof - then substitute "n+1" into the inequality above, and arithmetically manipulate it, under the assumption that the inequality holds for the (n-1)-case.