# Корректирующие коды, код Хемминга

(Конспект: А. Рязанов)

## 1.1 Общие определения

Кодируется последовательность бит. При **непрерывном коде** кодируется вся последовательность, при **блочном** последовательность разбивается на блоки по k бит и каждый блок кодируется отдельно.

**Определение 1.1.** Инъективное отображение  $f: K \to \{0,1\}^n, K \subset \{0,1\}^k$  называется кодом. Образ любого слова из  $\{0,1\}^k$  называется кодовым словом или кодом. Множество  $C = f(\{0,1\}^k)$  также называется кодом.

**Определение 1.2.** Код называется раздельным, если  $[n] = A \cup B$ ,  $A \cap B = \emptyset$ , |A| = k и  $\forall x \in K$ :  $f(x)|_A = x$ , то есть, для некоторого подмножества бит кода оно совпадает с прообразом как строка. Биты множества A называются информационными, а из множества B — проверочными.

**Определение 1.3.** Код называется линейным, если соответствующее отображение f линейно.

**Определение 1.4.** Раздельный код называется систематическим, если проверочные символы являются линейной комбинацией информационных. То же самое, что раздельный линейный код.

**Определение 1.5.** Два кода f и g назовем эквивалентными, если  $g(x) = f(\pi(x))$ , где  $\pi(x)$  — это x под действием некоторой перестановки  $\pi$ .

**Определение 1.6.** Скорость кода  $C \subset \{0,1\}^n$  — это величина  $R = \frac{1}{n} \log_2 |C|$ . При  $|C| = 2^k$  имеет место  $R = \frac{k}{n}$ . Избыточность кода — это величина 1 - R

## 1.2 Расстояние Хемминга и исправление ошибок

**Определение 1.7.** Расстоянием Хемминга между строками  $x,y \in \{0,1\}^n$  будем называть величину

$$d(x,y) = |\{i \colon x_i \neq y_i\}|$$

**Определение 1.8.**  $d(C) = \min_{\substack{x,y \in C \\ x \neq y}} d(x,y)$  — кодовое расстояние кода C.

Обозначение: (n,k,d)-код, код с длиной кодируемого слова k, кодового слова n и минимальным кодовым расстоянием d. [n,K,d]-код — код с длиной кодового слова n, количеством слов K и минимальным кодовым расстоянием d.

**Определение 1.9.** Код обнаруживает ошибки в r битах, если существует отображение  $g:\{0,1\}^n \to \{0,1\}$ , такое, что  $\forall x \in \{0,1\}^k, |z| \le r \colon g(f(x) \oplus z) = 1$ 

**Определение 1.10.** Код исправляет ошибки в r битах, если существует отображение  $g:\{0,1\}^n \to \{0,1\}^k$ , такое, что  $\forall x \in \{0,1\}^k, |z| \le r \colon g(f(x) \oplus z) = x$ 

**Теорема 1.1.** Для того, чтобы код C позволял обнаружить ошибки в r битах, необходимо и достаточно, чтобы  $d(C) \ge r+1$ 

**Теорема 1.2.** Для того, чтобы код C позволял исправить ошибки в r битах, необходимо и достаточно, чтобы  $d(C) \ge 2r + 1$ 

 $Доказательство. \Leftarrow$ 

 $g(x) = \mathop{\arg\min}_{y \in \{0,1\}^k} d(x,f(y))$ . Пусть x = f(y) + z и  $|z| \le r$  и  $g(x) \ne y$ . Тогда  $d(f(g(x)),x) \le r$ , а, значит  $d(f(y),f(g(x))) \le d(x,f(y)) + d(x,f(g(x))) \le 2r$ . Противоречие.

Рассмотрим  $x,y \in C$  такие, что  $d(x,y) \leq 2r$ . Тогда легко видеть, что существует z, такое, что  $d(x,z) \leq r$  и  $d(y,z) \leq r$ . Тогда, как бы мы не определили g(z), мы получим противоречие с x или y.

### 1.3 Граница Хемминга

**Определение 1.11.** Шаром радиуса r с центром в x назовем множество точек

$$B_r(x) = \{y \colon d(x,y) \le r\}$$

Количество вершин в шаре в пространстве  $\{0,1\}^n$  обозначим  $S_r(n)$ 

Замечание 1.1.  $S_r(x) = \sum_{i=0}^r C_n^i$ .

Доказательство.  $S_r(n) = |B_r(0)|$ . Строки в  $B_r(0)$  — это строки с не более чем r единичными битами.

**Определение 1.12.** Энтропией дискретной случайной величины  $\xi$  принимающей значения  $1, \dots n$  с вероятностями  $p_1, \dots, p_n$  называется

$$H(\xi) = -\sum_{i=1}^{n} p_i \log_2(p_i)$$

Лемма 1.1.

$$\frac{1}{n+1}2^{nH(\frac{r}{n})} \leq C_n^r \leq 2^{nH(\frac{r}{n})}$$

Доказательство. По формуле Стирлинга

$$C_n^r \simeq \frac{\sqrt{2\pi n}}{\sqrt{2\pi k}\sqrt{2\pi(n-k)}} \cdot \frac{n^n}{k^k(n-k)^{n-k}}$$

С другой стороны

$$2^{nH(\frac{r}{n})} = 2^{n\left(-\frac{r}{n}\log_2\frac{r}{n} - (1 - \frac{r}{n})\log_2(1 - \frac{r}{n})\right)} = \frac{\left(\frac{r}{n}\right)^{-r}}{\left(1 - \frac{r}{n}\right)^{n-r}} = \frac{n^n}{r^r(n-r)^{n-r}}$$

Тогда для достаточно больших n достаточно показать

$$\frac{1}{n+1} \le \frac{\sqrt{2\pi n}}{\sqrt{2\pi k}\sqrt{2\pi(n-k)}} \le 1$$

Второе неравенство очевидно, поскольку в знаменателе квадратичная зависимость.

$$\frac{\sqrt{2\pi n}}{\sqrt{2\pi k}\sqrt{2\pi(n-k)}} = \sqrt{\frac{n}{k(n-k)}}\frac{1}{\sqrt{2\pi}}$$

 $k(n-k) \leq \frac{n^2}{4}$ , тогда имеем

$$\frac{\sqrt{2\pi n}}{\sqrt{2\pi k}\sqrt{2\pi(n-k)}} \geq \frac{2}{\sqrt{2\pi n}}$$

для достаточно больших n последнее  $\geq \frac{1}{n+1}$ 

**Теорема 1.3.** Для достаточно больших n и при условии  $0 < r \le \frac{n}{2}$  верно

$$\frac{\log_2 S_r(n)}{n} = H(\frac{r}{n}) + O(\frac{\log_2 n}{n})$$

где  $H(\frac{r}{n})$  — энтропия случайной величины, принимающей значения 0 и 1 с вероятностями  $\frac{r}{n}$  и  $1-\frac{r}{n}$ .

Доказательство. Покажем, что при  $r \leq \frac{n}{2}$  наибольшим слагаемым будет  $C_n^r$ .

$$\frac{C_n^i}{C_n^{i+1}} = \frac{n!(i+1)!(n-i-1)!}{n!i!(n-i)!} = \frac{i+1}{n-i}$$

Возрастание  $C_n^i$  равносильно  $\frac{C_n^i}{C_n^{i+1}} \le 1 \iff i+1 \le n-i \iff 2i \le n-1$ . То есть  $C_n^i$  больше предыдущего сочетания, если  $2(i-1) \le n-1$  то есть  $i \le \frac{n+1}{2}$ . Тогда имеем

$$C_n^r \leq S_r(n) \leq (r+1)C_n^r$$

Воспользуемся леммой, прологарифмируем формулу оттуда:

$$-\log_2(n+1) + nH(\frac{r}{n}) \le \log_2 S_r(n) \le \log_2(r+1) + nH(\frac{r}{n})$$

Поделим три части на n

$$-\frac{\log_2(n+1)}{n} + H(\frac{r}{n}) \le \frac{\log_2 S_r(n)}{n} \le \frac{\log_2(r+1)}{n} + H(\frac{r}{n})$$

Тогда получили, что требовалось,

$$\frac{\log_2 S_r(n)}{n} = H(\frac{r}{n}) + \underbrace{c}_{|.| \le 1} \frac{\log_2(r+1)}{n}$$

**Теорема 1.4.** (Граница Хемминга) Для любого (n,k)-кода, исправляющего r ошибок верно

$$n-k \ge \log_2\left(\sum_{i=0}^r C_n^i\right)$$

Доказательство. Рассмотрим прообразы исправляющей функции  $g.\ g^{-1}(y)$ . По определению  $|g^{-1}(y)| \geq S_r(n)$  и  $y_1 \neq y_2 \implies g^{-1}(y_1) \cap g^{-1}(y_2) = \emptyset$ . Тогда для завершения доказательства достаточно расписать

$$2^{n} = |\{0,1\}^{n}| = \Big|\bigcup_{y \in \{0,1\}^{k}} g^{-1}(y)\Big| \ge \sum_{y \in \{0,1\}^{k}} S_{r}(k) = 2^{k} S_{r}(n)$$

**Теорема 1.5.** Если  $n-k \ge \log_2(n+1)$ , то существует (n,k,3) код, то есть, граница Хемминга достигается.

Доказательство. Построим явно такой линейный код.  $C = \{Hx = 0\}$ , где H — матрица  $(n-k) \times n$ . Пусть  $H_ij$  — это i-й бит числа j  $(1 \le i \le n-k; 1 \le j \le n)$ . Заметим, что в условиях теоремы в матрице нет двух одинаковых столбцов, то есть, ее ранг не меньше 2. Пусть существуют  $x,y \in C$ , такие, что  $d(x,y) \le 2$  тогда  $d(0,x \oplus y) \le 2$ . То есть  $x \oplus y$  имеет не более двух единиц в двоичной записи  $H(x \oplus y) = H_{j_1} \oplus H_{j_2} = 0$ , что противоречит выводу о ранге. Тогда кодовое расстояние полученного кода равно 3.

**Пример 1.1.** Построим систематический (n,k) код Хемминга.

Пусть  $a \in \{0,1\}^k$ ;  $b \in \{0,1\}^n$ . Кодирующее преобразование E(a) = b. Наложим следующие ограничения:

$$\begin{cases} b_i = a_i & i \le k \\ b_{i+k} = (\Gamma_i, a) & i \le n - k \end{cases}$$

То есть  $b = a(E_k|\Gamma^T)$ . То есть, мы построили порождающую матрицу кодирующей функции. Построим теперь проверочную матрицу:

$$b_{i+k} = (\Gamma_i, (b_1, \dots, b_k)) \iff b_{i+k} \oplus (\Gamma_i, (b_1, \dots, b_k)) = 0$$

То есть,  $H = (\Gamma | E_{n-k})$ . Условие Hb = 0 является необходимым и достаточным для того, чтобы b являлось кодом, поскольку образом такого b является  $(b_1, \ldots, b_k)$ .

Если стоблцы матрицы H различны, то по 1.5 мы можем исправлять одну ошибку. Давайте построим явно исправляющую функцию.

Пусть  $b'=b\oplus e_i$ , где  $e_i=\underbrace{(0,\ldots,0}_{i-1},1,0,\ldots,0)$ . Тогда  $Hb'=H_i-i-$  столбец матрицы H. Так как все столбцы

различны, мы можем узнать, в каком бите была ошибка. Hb' называется  $cun\partial pomom$  вектора b'.

### 1.4 Граница Варшамова-Гильберта

**Теорема 1.6.** Существует (n,k)-код с минимальным расстоянием d, такой, что

$$n - k \le \log_2 S_{d-1}(n)$$

Доказательство. Выберем точку  $c_1$ . Рассмотрим  $B_{d-1}(c_1)$  и пометим точки в нем. Пока есть непомеченные точки будем выбирать  $c_i$  и помечать точки в шаре  $B_{d-1}(C_i)$ . Так мы построим последовательность точек  $c_1,\ldots,c_K$ , такую, что  $i\neq j\implies d(c_i,d_j)\geq d$ . Все точки  $\{0,1\}^n$  покрыты хотя бы одним шаром, то есть  $K\cdot S_{d-1}(n)\geq 2^n$ .  $K\geq 2$ , если d-1< n, так как  $d((0,\ldots,0),(1,\ldots,1))=n$ . Выберем  $k=\lceil \log_2 K \rceil$ , тогда  $2^kS_{d-1}(n)\geq 2^n\implies S_{d-1}(n)\geq 2^{n-k}$ .  $\square$ 

Следствие 1.1. Существует (п, k)-код, исправляющий г ошибок и удовлетворяющий

$$n - k \le \log_2(S_{2r}(n))$$

**Замечание 1.2.** Мы получили верхнюю границу на количество исправляющих символов. Граница Хемминга — нижняя граница, то есть

$$\log_2 S_r(n) \le n - k \le \log_2 S_{2r}(n)$$

#### 1.5 Граница Плоткина

**Теорема 1.7.** Для [n,K,d]-кода выполнено  $d \leq \frac{n \cdot \frac{K}{2}}{K-1}$ . В частности, для (n,k,d)-кода верно  $d \leq \frac{n2^{k-1}}{2^k-1}$ . Доказательство. Рассмотрим  $D = \sum_{x,y \in C} d(x,y)$ . С одной стороны

$$D > 2_K^2 d = K(K-1)d$$

С другой стороны, нассмотрим каждый бит строк и обозначим

$$d_i(x,y) = \begin{cases} 0 & x_i = y_i \\ 1 & x_i \neq y_i \end{cases}$$

Тогда  $d(x,y) = d_1(x,y) + \ldots + d_n(x,y)$ . Тогда

$$D = \sum_{i=1}^{n} \underbrace{\sum_{x,y \in C} d_i(x,y)}_{D_i}$$

Заметим, что

$$D_i = 2|\{x \in C \colon x_i = 0\}| \cdot |\{x \in C \colon x_i = 1\}|$$

Тогда  $D_i \leq 2\left(\frac{K}{2}\right)^2$ , а, значит

$$D \leq \frac{nK^2}{2}$$

Таким образом,

$$\frac{nK^2}{2} \ge K(K-1)d \iff \frac{nK}{K-1} \ge d$$

**Теорема 1.8.** Если существует, (n,k)-код C, такой, что  $d(C) \geq \frac{n}{2}$ , то

$$k \leq \log_2(2n) \iff \frac{\overbrace{K}^{2^k}}{2} \leq n$$

Доказательство. Рассмотрим преобразование

$$\underbrace{(b_1, \dots, b_n)}_{\in \{0,1\}^n} \mapsto ((-1)^{b_1}, \dots, (-1)^{b_n})$$

Пусть  $v^{(1)}, \dots, v^{(K)}$  — векторы, полученные этим преобразованием из векторов кода.  $d(b^{(i)}, b^{(j)}) \ge \frac{n}{2} \iff (v^{(i)}, v^{(j)}) \le 0$ .

Пусть  $\frac{K}{2} > n$ , тогда покажем, что не может существовать набора  $v^{(1)}, \dots, v^{(K)}$  с требуемым свойством. Рассмотрим  $x \in \mathbb{R}^n$ , такой, что  $(x, v^{(i)}) \neq 0$  для всех i. Например, можно рассмотреть  $(1, 0, \dots, 0)$ .

рим  $x \in \mathbb{R}^{\tilde{n}}$ , такой, что  $(x, v^{(i)}) \neq 0$  для всех i. Например, можно рассмотреть  $(1, 0, \dots, 0)$ . Тогда  $(x, v^{(i)}) > 0$  для не менее чем  $\frac{K}{2}$  векторов, либо  $(x, v^{(i)}) < 0$  для не менее чем  $\frac{K}{2}$  векторов. НУО верно первое иначе рассмотрим -x.

Тогда у нас есть набор из  $\frac{K}{2} > n$  векторов, таких, что  $(x, v^{(i)}) > 0$  для всех i. Количество векторов превышает n, тогда

$$\exists \lambda \colon \sum_{i=1}^{n+1} \lambda_i v^{(i)} = 0$$

НУО  $\exists \lambda_i > 0$ , иначе поменяем знак всем  $\lambda$ , тогда обозначим  $I = \{i \colon \lambda_i > 0\} \neq \emptyset$ . Можем записать

$$\sum_{i=1}^{n+1} \lambda_i v^{(i)} = \underbrace{\sum_{i \in I} \lambda_i v^{(i)}}_{z} + \sum_{i \notin I} \lambda_i v^{(i)} = 0$$

•  $z \neq 0$ . Тогда (z, z) > 0, с другой стороны

$$(z, 0 - z) = \left(\sum_{i \in I} \lambda_i v^{(i)}, -\sum_{i \notin I} \lambda_i v^{(i)}\right) = -\sum_{\substack{i \in I \\ j \notin I}} \underbrace{\lambda_i}_{>0} \underbrace{\lambda_j}_{<0} \underbrace{(v^{(i)}, v^{(j)})}_{<0} \le 0$$

Получаем противоречие

• z = 0. Тогда (z, x) = 0, но

$$(z,x) = \left(\sum_{i \in I} \lambda_i v^{(i)}, x\right) = \sum_{i \in I} \underbrace{\lambda_i}_{>0} \underbrace{\left(v^{(i)}, x\right)}_{>0} > 0$$

**Теорема 1.9.** Для (n,k) кода, такого, что  $n \geq 2d(C)$  выполнено

$$n-k \geq 2d(C) - \log_2 4d(C)$$

Доказательство. При n=2d воспользуемся 1.8 и получим  $-k \ge -\log_2(2n)$  и прибавим к обеим частям n=2d При n>2d обозначим n=2d+t и рассмотрим два случая:

- 1.  $t \geq k$ . Тогда сразу  $n \geq 2d + k$  и теорема доказана
- 2. t < k. Тогда выберем в коде t информационных символов  $I_0$  тогда рассмотрим код  $C' = \{x|_{[n]\setminus I_0} : x \in C \land x|_{I_0} = a\}$  для произвольного  $a \in \{0,1\}^t$ . Кодовое расстояние этого кода не менее d, поскольку мы вычеркивали одинаковые символы, n' = 2d. Тогда  $k t \le \log_2(2n')$ . Тогда

$$n-k=2d-(k-t)\geq 2d-\log_2(4d)$$

#### 1.6 Асимптотика границ

 $R = \frac{k}{n}$  — скорость кода.

Обозначим  $\delta(C) = \frac{d(C)}{n}$  — относительное кодовое расстояние. Обозначим  $\mathcal{U} = \{(R, \delta)\} \subset [0, 1] \times [0, 1]$  множество пар, таких, что существует последовательность  $(n_i, k_i, d_i)$ кодов, таких, что

$$\begin{array}{ccc} n_i \underset{i \to \infty}{\to} \infty \\ \frac{k_i}{n_i} \underset{i \to \infty}{\to} R \\ \frac{d_i}{n_i} \underset{i \to \infty}{\to} \delta \end{array}$$

Оценим величину  $\bar{R}(\delta) = \sup\{R \colon (R, \delta) \in \mathcal{U}\}$ 

**Замечание 1.3.** При  $\delta > \frac{1}{2} \ \bar{R}(\delta) = 0$ 

Доказательство.

$$d \le \frac{n2^{k-1}}{2^k - 1} \implies \delta + \frac{O(1)}{n} \le \frac{2^{k-1}}{2^k - 1}$$

При  $n \to \infty$  получим (пользуясь  $2\delta-1>0$ )  $2^k \le \frac{2\delta}{2\delta-1}$ , тогда  $k \le \log_2 \frac{2\delta}{2\delta-1}$ , и значит  $R=\frac{k}{n} \to 0$ 

Утверждение 1.1.  $\bar{R}(\delta) \leq 1 - H(\frac{\delta}{2})$ 

 $\mathcal{A}$ оказательство.  $n-k \geq \log_2 S_{\lfloor \frac{d(C)-1}{2} \rfloor}(n)$  известно из теоремы о границе Хемминга.  $d(C) = \lfloor \delta n \rfloor$  имеем

$$1 - \frac{k}{n} \ge \frac{\log_2 S_{\lfloor \frac{\lfloor n\delta \rfloor - 1}{2} \rfloor}(n)}{n}$$

По следствию

$$\frac{\log_2 S_r(n)}{n} = H(\frac{r}{n}) + O(\frac{\log_2 n}{n})$$

тогда

$$1-R \geq O(\frac{\log_2 n}{n}) + H(\lfloor \frac{\lfloor n\delta \rfloor - 1}{2} \rfloor)$$

пренебрегая округлениями

$$R + O(\frac{\log_2 n}{n}) \le 1 - H(\frac{\delta}{2})$$

и при  $n \to \infty$ 

$$\bar{R}(\delta) \leq 1 - H(\frac{\delta}{2})$$

Утверждение 1.2.  $\bar{R}(\delta) \geq 1 - H(\delta) \ npu \ \delta \leq \frac{1}{2}$ 

Доказательство. Из теоремы о границе Варшамова-Гильберта знаем, что

$$n-k \leq \log_2 S_{d-1}(n)$$

в нашем случае

$$1 - \frac{k}{n} \le \frac{\log_2 S_{\lfloor n\delta \rfloor - 1}(n)}{n}$$

по следствию из теоремы о границе Хемминга

$$1 - \frac{k}{n} \le H(\frac{\lfloor n\delta \rfloor - 1}{n}) - O(\frac{\log_2 n}{n})$$

тогда при  $n \to \infty$  получаем требуемое.

Утверждение 1.3.  $\bar{R}(\delta) \leq 1 - 2\delta \ npu \ \delta \leq \frac{1}{2}$ 

Доказательство. Из последней теоремы о границе Плоткина

$$n - k \ge 2n\delta - \log_2(4n\delta)$$

можно переписать как

$$\frac{k}{n} \leq 1 - 2\delta + \frac{\log_2 4n\delta}{n}$$

тогда при  $n \to \infty$  имеем  $\bar{R} \le 1 - 2\delta$ 

# Матрицы и коды Адамара

(Конспект: А. Рязанов)

#### 2.1 Матрицы и коды Адамара, общее представление

**Определение 2.1.** Матрицей Адамара называется матрица  $H \in \{-1,1\}^{n \times n}$ , такая, что  $H \cdot H^T = nE_n$ .

Матрица адамана в нормализованном виде — это матрица, у которой первая строка и первый столбец состоят из единиц.

Двоичная матрица Адамара, это матрица, полученная из матрицы Адамара заменой -1 на 1 а 1 на 0.

Утверждение 2.1. Умножение строчки или столбца матрицы Адамара на -1 переводит ее в матрицу Адамара.

Доказательство. Умножение строчки или столбца на единицу, это доножение слева или справа на матрицу  $d = diag(1, \dots, 1, -1, 1, \dots, 1)$ . Тогда в первом случае

$$(dH) \cdot (dH)^T = dHH^T d^T = d(nE)d^T = nEdd^T = nE$$

а во стором

$$(Hd) \cdot (Hd)^T = Hdd^TH^T = HH^T = nE$$

**Теорема 2.1.** Если существует матрица Адамара порядка n, то  $n \in \{1, 2\} \cup \{4k\}$ 

Доказательство. Пусть  $n \ge 3$  и существует H. Тогда представим ее в нормализованном виде и разделим столбцы на четыре типа:

- 1. Начинается с (1,1,1)-i штук
- 2. Начинается с (1,1,-1)-j штук
- 3. Начинается с (1, -1, 1) k штук
- 4. Начинается с (1, -1, -1) l штук

Запишем условия ортогональности строк (1,2), (2,3) и (1,3):

$$\begin{cases} i+j-k-l = 0 \\ i-j+k-l = 0 \\ i-j-k+l = 0 \end{cases}$$

Тогда i=j=k=l, тогда n=4i

**Утверждение 2.2.** Если H — матрица  $A \, damapa$ , то

$$\begin{pmatrix} H & H \\ H & -H \end{pmatrix}$$

— тоже матрица Адамара.

Доказательство.

$$\begin{pmatrix} H & H \\ H & -H \end{pmatrix} \cdot \begin{pmatrix} H^T & H^T \\ H^T & -H^T \end{pmatrix} = \begin{pmatrix} HH^T + HH^T & HH^T - HH^T \\ HH^T - HH^T & HH^T + HH^T \end{pmatrix} = 2nE_{2n}$$

Такие матрицы Адамара называются матрицами Сильвестра.

**Определение 2.2.** Симплексным кодом Адамара называется  $[K-1,K,\frac{K}{2}]$ -код, состоящий из строк двоичной матрицы Адамара из которой удален первый столбец.

**Утверждение 2.3.** Для симплексного кода Адамара выполнено  $K = \frac{2d}{2d-n}$ .

Доказательство. Очевидно.

Замечание 2.1. Если матрица Адамара, построена по способу Сильвестра, то симплексный код, построенный по ней, линеен.

#### 2.2 Построение матрицы Адамара по способу Пэли

**Определение 2.3.** Пусть  $p \in \mathbb{P} \setminus \{2\}$ .  $\{a \in \{0, \dots, p-1\} : \exists b : b^2 = a\}$  называется множеством квадратичных вычетов.

Определение 2.4. Функция

$$\chi(i) = \begin{cases} 0 & i \text{ кратно } p \\ 1 & i \mod p \text{ вычет} \\ -1 & i \mod p \text{ невычет} \end{cases}$$

называется символом Лежандра.

**Теорема 2.2.**  $\forall c \neq 0 \mod p$  выполнено  $\sum\limits_{b=0}^{p-1} \chi(b)\chi(b+c) = -1$ 

**Конструкция 2.1.** Матрица Джекобстола.  $Q = \{q_{ij}\}_{p \times p}.$   $q_{ij} = \chi(j-i).$ 

Лемма 2.1. 
$$Q \cdot Q^T = pE - \mathbf{1}_{p \times p}$$
  $Q\mathbf{1}_{p \times p} = \mathbf{1}_{p \times p}Q = 0$ 

 $\mathcal{A}$ оказательство.  $Q\mathbf{1}_{p \times p} = \mathbf{1}_{p \times p}Q = 0$ , так как по модулю p существует  $\frac{p-1}{2}$  вычетов и  $\frac{p-1}{2}$  невычетов. Рассмотрим  $P = \{p_{ij}\} = Q \cdot Q^T$ . Тогда

$$p_{ii} = \sum_{k=0}^{p-1} q_{ik}^2 = p$$

$$p_{ij} = \sum_{k=0}^{p-1} q_{ik}q_{jk}$$

$$p_{ij} = \sum_{k=0}^{p-1} \chi(i-k)\chi(j-k) = \sum_{k=0}^{p-1} \chi(i-k) + \chi((i-k) + (j-i)) = -1$$

Лемма 2.2. Пусть

$$H = \begin{pmatrix} 1 & \mathbf{1}_p \\ \mathbf{1}_p & Q - E \end{pmatrix}$$

Tоhoдa H — мaтpицa Aдaмapa

Доказательство.

$$H \cdot H^T = \begin{pmatrix} 1 & \mathbf{1}_p \\ \mathbf{1}_p & Q - E \end{pmatrix} \cdot \begin{pmatrix} 1 & \mathbf{1}_p \\ \mathbf{1}_p & Q^T - E \end{pmatrix} = \begin{pmatrix} p+1 & \mathbf{0}_p \\ \mathbf{0}_p & \mathbf{1}_{p \times p} + (Q - E)(Q^T - E) \end{pmatrix}$$

Распишем

$$\mathbf{1}_{p imes p} + (Q-E)(Q^T-E) = \mathbf{1}_{p imes p} + QQ^T - Q - Q^T + E\mathbf{1}_{p imes p} + QQ^T - Q - Q^T + E$$
 заметим, что  $q_{ij} = \chi(i-j) = \chi(-1)\chi(j-i) = -\chi(j-i)$ , тогда  $Q^T = -Q^T$ , тогда  $\mathbf{1}_{p imes p} + QQ^T - Q - Q^T + E = \mathbf{1}_{p imes p} + QQ^T + E = (p+1)E$ 

# Линейные коды

(Конспект: А. Рязанов)

#### 3.1 Базовые факты, коды Адамара

**Определение 3.1.** Код называется линейным, если множество кодовых слов C является линейным подпространством  $\{0,1\}^n$ .

**Определение 3.2.** Весом Хэмминга  $a \in \{0,1\}^n$  назовем  $w(a) = \{i : a_i = 1\}$ 

**Замечание 3.1.**  $d(a,b) = w(a \oplus b)$ 

Лемма 3.1. Пусть C — линейный код. Тогда  $d(C) = \min_{\substack{x \in C \\ x \neq 0}} w(x)$ 

Доказательство. 
$$d(C) = \min_{a \neq b \in C} d(a, b) = \min_{\substack{a \neq b \in C \\ x \neq 0}} w(a \oplus b) = \min_{\substack{x \in C \\ x \neq 0}} w(x)$$

**Определение 3.3.** Пусть C — некоторый линейный код с порождающей матрицей G и проверочной матрицей H. Тогда дуальным к нему называется код  $C^{\perp}$  с порождающей матрицей H и проверочной матрицей G.

Если C являлся (n,k)-кодом, то  $C^{\perp}$  будет (n,n-k)-кодом.

**Теорема 3.1.** Дуальный код Хэмминга  $(2^m - 1, 2^m - 1 - m)$  является кодом Адамара с матрицей Сильвестра.

Доказательство. Будем доказывать по индукции.

**База:** m=2. Тогда  $n=2^m-1=3,\,k=2^m-1-m=1$ . Тогда проверочная матрица такого кода Хемминга имеет

вид 
$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
 Тогда все векторы дуального кода выглядят как:  $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ . Этот код совпадает с соответствующим

кодом Адамара.

**Переход:** пусть доказано для  $n=2^{m-1}-1$ . Пусть  $\bar{H}\in\{0,1\}^{(m-1)\times 2^{m-1}}$  — проверочная матрица для кода Хэмминга  $(2^{m-1}-1,2^{m-1}-1-(m-1))$ .

Покажем, что матрица

$$H = \begin{pmatrix} 0 \dots 0 & 1 & 1 \dots 1 \\ \bar{H} & \mathbf{0}_{m-1} & \bar{H} \end{pmatrix}$$

является проверочной матрицей кода Хэмминга  $(2^m-1,2^m-1-m)$ . Это почти очевидно, достаточно заметить, что столбцы матрицы различны и ее размерность  $m\times (2^m-1)$  (следует из того же свойства для  $\bar{H}$  и отсутствия в  $\bar{H}$  нулевого столбца.

По индукционному предположению матрица  $\bar{H}$  порождает строки матрицы  $\mathcal{A}'$  — усеченной бинарной матрицы Адамара размера  $2^{m-1} \times 2^{m-1} - 1$ . Тогда матрица  $(\bar{H}|\mathbf{0}_{m-1}|\bar{H})$  порождает строки матрицы  $(\mathcal{A}'|\mathbf{0}_{2^{m-1}}|\mathcal{A}')$ .

Добавим в  $(\bar{H}|\mathbf{0}_{m-1}|\bar{H})$  первую строку  $H_1$ , чтобы получить матрицу H. Тогда можно сделать вывод, что матрица H порождает все строки матрицы  $(\mathcal{A}'|\mathbf{0}_{2^{m-1}}|\mathcal{A}')$  и строки, полученные из них прибавлением  $H_0$ . Тогда в итоге мы получим коды

$$egin{pmatrix} \mathcal{A}' & \mathbf{0}_{2^{m-1}} & \mathcal{A}' \ \mathcal{A}' & \mathbf{1}_{2^{m-1}} & \mathbf{1} - \mathcal{A}' \end{pmatrix}$$

Припишем слева столбец из нулей и получим, что новая матрица — это в точности матрица, полученная из  $(\mathbf{0}_{2^{m-1}}|\mathcal{A}')$  по правилу Сильвестра. Таким образом, теорема доказана.

Следствие 3.1. Код Адамара с матрицей Сильвестра является линейным.

**Теорема 3.2.** Пусть C — линейный код, H — его проверочная матрица.

- 1. В проверочной матрице H любые d-1 столбцов линейно независимы  $\iff d(C) \geq d$
- 2. Если любые d-1 столбцов матрицы H линейно независимы и существуют d линейно зависимых столбцов, то d(C)=d

 $\mathcal{A}$ оказательство.  $\Rightarrow$ 

По лемме  $d(C) = \min_{x \in C} w(x)$ . Пусть существует  $x \in C$  такое, что w(x) < d. Hx = 0. Пусть  $i_1, \ldots, i_r$  — номера ненулевых компонент x (r < d). Тогда  $H_{i_1} \oplus H_{i_2} \oplus \ldots \oplus H_{i_r} = 0$ , но это противоречит условию линейной независимости столбцов.

 $\Leftarrow$  Если  $H_{i_1}\oplus\ldots\oplus H_{i_r}=0$ , то рассмотрим вектор  $x=\{x_j\},\ x_j=egin{cases} 0&\exists l\colon j=i_l\\1&$  иначе , Для такого вектора Hx=0, но w(x)=r< d.

Пункт 2 непосредственно следует из пункта 1.

#### 3.2 Смежные классы и декодирование по синдрому

**Определение 3.4.** Смежным классом группы G по подгруппе C называется множество вида

$$Cb = \{xb \colon x \in C\}$$
 правый  $bC = \{bx \colon x \in C\}$  левый

**Определение 3.5.** Синдром вектора x относительно линейного кода C с проверочной матрицей H называется вектор Hx

**Теорема 3.3.** Пусть  $x, y \in \{0, 1\}^n$ . Тогда  $x, y \in Cz$  для некоторого  $z \iff Hx = Hy$ 

Доказательство.  $\Rightarrow x = a + z, y = b + z, a, b \in C$ . Тогда

$$Hx = Ha + Hz = Hz = Hb + Hz = Hu$$

$$\Leftarrow Hx = Hy \implies H(x+y) = 0$$
, тогда  $x, y \in Cx$ .

Пусть  $b \in C$ , b' = b + e, где e — вектор ошибок. Тогда Hb' = He, то есть, ошибку для b' нужно искать в его смежном классе по C.

Лидер — это слово наименьшего веса в смежном классе. Лидер является наиболее вероятным вектором ошибок.

**Утверждение 3.1.** Будем полагать вектором ошибок лидера соответствующего смежного класса. Составим матрицу  $A = \{A_{ij}\}_{2^{n-k} \times 2^k}, A_{i,0} - nuдер$  смежного класса  $i, A_{0,i} \in C$  и  $A_{ij} = A_{i,0} \oplus A_{0,j}$ .

- 1. Исправим все ошибки, являющиеся лидерами
- 2. Для любого слова  $A_{ij}$  слово  $A_{0,j}$  является ближайшим к  $A_{ij}$  кодовым словом.

Доказательство. 1. Очевидно

2.  $A_{ij} = A_{0,j} + A_{i,0}$ .  $A_{i,0} - \text{лидер.} \ d(A_{ij}, A_{0,j}) = w(A_{i,0})$ . Рассмотрим другое кодовое слово  $A_{0,i'}$ .

$$d(A_{ij}, A_{0,j'}) = w(A_{ij} \oplus A_{0,j'})$$
$$A_{ij} \oplus A_{0,j'} = A_{i,0} \oplus \underbrace{A_{0,j} \oplus A_{0,j'}}_{\in C}$$

Тогда  $A_{ij} \oplus A_{0,j'}$  лежит в смежном классе i, значит  $w(A_{ij} \oplus A_{0,j'}) \ge w(A_{i,0})$ , что и требовалось.

#### 3.3 Полиномиальные коды

**Определение 3.6.** Установим взаимно однозначной соответствие между многочленами степени < n и двоичными векторами из  $\{0,1\}^n$ .

$$\sum_{i=0}^{n-1} g_i x^i \mapsto (x_0, \dots, x_{n-1}) \mapsto \sum_{i=0}^{n-1} g_i x^i$$

. Тогда рассмотрим некоторый многочлен g(x), тогда кодовые многочлены получаются по правилу b(x) = a(x)g(x), где deg(a(x)) < k. Тогда, если deg(g(x)) = n - k, то получается (n,k) код.

**Пример 3.1.** (6,4) код, с порождающим многочленом  $1+x+x^2$ 

 $0001 \quad \stackrel{x^3}{\rightarrow} \quad 000111$ 

 $0010 \stackrel{x^2}{\rightarrow} 001110$ 

 $0100 \stackrel{x}{\rightarrow} 011100$ 

 $1000 \stackrel{1}{\rightarrow} 111000$ 

### 3.4 Совершенные линейные коды

**Определение 3.7.** Линейный (n,k)-код, исправляющий r ошибок называется совершенным, если для него достигается граница Хэмминга:

$$2^{n-k} = S_r(n)$$

Замечание 3.2. Для нелинейных кодов граница Хэмминга имеет вид

$$K = \frac{2^n}{S_r(n)}$$

**Пример 3.2.** (2m+1,1) код. Кодовые слова  $\begin{pmatrix} 0 & \dots & 0 \\ 1 & \dots & 1 \end{pmatrix}$ . Этот код исправляет m ошибок.

$$S_m(2m+1) = \sum_{i=0}^m C_{2m+1}^i = \frac{1}{2} \sum_{i=0}^m (C_{2m+1}^i + C_{2m+1}^{2m+1-i}) = 2^{2m}$$

Тогда  $2^{2m+1-1}=2^{2m}=S_m(2m+1)$ , что и требуется по определению.

**Пример 3.3.** Код Хэмминга с  $n=2^m-1$ ,  $k=2^m-1-m$ ,  $m\geq 2$ . Код исправляет одну ошибку,  $S_1(n)=1+n=2^m$ . Тогда

$$2^{n-k} = 2^{2^m - 1 - (2^m - 1 - m)} = 2^m = S_1(n)$$

Теорема 3.4. Следующие условия равносильны

- 1. Существует двоичный совершенный код C в  $\{0,1\}^n$ , который исправляет одну ошибку
- 2.  $n = 2^m 1$

Доказательство. 2  $\implies$  1 Должно выполняться  $K=\frac{2^n}{n+1}$ . K может быть целым, только если  $n+1=2^m$  для некоторого m.

 $1 \implies 2$  Доказали в примере 3.3.

**Пример 3.4.** (23, 12)-код Голея, исправляющий 3 ошибки.  $S_3(23) = 1 + 23 + C_{23}^2 + C_{23}^3 = 2048 = 2^{11}$ . Тогда  $2^{23} = S_3(23) \cdot 2^{12}$ .

#### 3.5 Двоичные циклические коды

#### 3.5.1 Свойства циклического кода

**Определение 3.8.** Линейный код C называется циклическим, если  $\forall b \in C \colon b^{(1)} \in C$ , где  $(b_0, \dots, b_{n-1})^{(1)} = (b_{n-1}, b_0, \dots, b_{n-2})$ 

Аналогично обозначим  $b^{(j)}=(b^{(j-1)})^{(1)}$ — сдвиг на j позиций вправо.

**Определение 3.9.** Кодовым многочленом, соответствующим  $b \in C$  назовем многочлен  $\sum_{i=0}^{n-1} b_i x^i$ 

**Теорема 3.5.**  $b^{(j)}(x) = x^j b(x) \mod (x^n + 1)$ 

Доказательство. Распишем  $x^{j}b(x)$ :

$$x^{j}b(x) = \sum_{i=0}^{n-j-1} b_{i}x^{i+j} + \sum_{i=n-j}^{n-1} b_{i}x^{i+j} = \sum_{i=0}^{n-j-1} b_{i}x^{i+j} + x^{n} \underbrace{\sum_{i=n-j}^{n-1} b_{i}x^{i+j-n}}_{g(x)}$$

Рассмотрим многочлен  $q(x) = b_{n-j} + b_{n-j+1}x + \ldots + b_{n-1}x^{j-1}$  и прибавм его дважды к  $x^jb(x)$  (q(x) + q(x) = 0):

$$x^{j}b(x) = \underbrace{b_{n-j} + b_{n-j+1}x + \dots + b_{n-1}x^{j-1}}_{q(x)} + b_{0}x^{j} + \dots + b_{n-j-1}x^{n-1} + x^{n}q(x) + q(x)$$

Тогда по модулю  $x^n + 1$  получаем  $b^{(j)}(x)$ 

Теорема 3.6. В циклическом коде существует только один ненулевой многочлен минимальной степени.

Доказательство. Пусть есть два таких многочлена  $q_1(x) = x^m + \ldots$ ;  $q_2(x) = x^m + \ldots$  Тогда из линейности кода  $q_1(x) + q_2(x) \in C(x)$ . Но

$$(q_1 + q_2)(x) = \underbrace{x^m + x^m}_{=0} + \underbrace{\dots}_{deg < m}$$

тогда  $q_1$  и  $q_2$  не минимальны по степени. противоречие.

**Определение 3.10.** Кодовый многочлен g(x) минимальной степери среди многочленов C(x) называется порождающим многочленом C.

**Теорема 3.7.** Свободный член g(x) — порожедающего многочлена циклического кода, равен 1.

Доказательство. Пусть  $g_0 = 0$ , тогда  $g_1 + g_2 x + \ldots + g_{n-1} x^{n-2} \in C(x)$ , но его степень меньше, чем у g. Противоречие.

**Теорема 3.8.** Пусть g(x) — порождающий многочлен для циклического кода длины n. Тогда  $b(x) \in C(x) \iff b(x)$  кратно g(x).

Доказательство.  $\Leftarrow$  Пусть  $b(x) = g(x) \cdot a(x)$ .  $deg(a) \le n - m - 1$ , тогда

$$b(x) = g(x) \sum_{i=0}^{n-m-1} a_i x^i = \sum_{i=0}^{n-m-1} a_i \underbrace{g(x)x^i}_{=g(i)(x)}$$

таким образом, b(x) представлен в виде линейной комбинации циклических сдвигов g(x), то есть  $b(x) \in C(x)$   $\Rightarrow$  Пусть  $b(x) \in C(x)$ . Можно записать  $b(x) = g(x) \cdot q(x) + r(x)$ . Нужно показать, что r(x) = 0

$$r(x) = \underbrace{b(x)}_{\in C(x)} + \underbrace{g(x)q(x)}_{\in C(x)}$$

Тогда  $r(x) \in C(x)$ . deg(r(x)) < deg(g(x)), тогда по теореме 3.6 r(x) = 0.

**Теорема 3.9.** Пусть код порождается многочленом g(x). Тогда следующие условия равносильны

- 1. С является циклическим
- 2.  $g(x) \partial e \lambda u m e \lambda b x^n + 1$

Доказательство.  $1 \implies 2$  Рассмотрим  $b \in C$ . По теореме 3.5 имеем  $b(x)x^j = b^{(j)}(x) + (x^n + 1)q(x)$ . Выберем j так, чтобы  $deg(b(x)x^j) = n$ , тогда q(x) = 1. Тогда

$$\exists j \in \{0, \dots, n-1\}: x^j b(x) = b^{(j)}(x) + (x^n + 1)$$

Так как C циклический и порождается g(x), то  $b^{(j)}(x) = g(x)a_j(x)$ . Тогда

$$\underbrace{x^{j}b(x)}_{\text{KDATHO }q(x)} = \underbrace{b^{(j)}(x)}_{\text{KDATHO }q(x)} + (x^{n} + 1)$$

Тогда и  $x^n + 1$  кратно g(x).  $2 \implies 1$  Снова запишем

$$x^{j}b(x) = b^{(j)}(x) + (x^{n} + 1)q(x)$$

Тогда

$$b^{(j)}(x) = \underbrace{x^j b(x)}_{\text{кратно } g(x)} + \underbrace{(x^n+1)}_{\text{кратно } g(x)} q(x)$$

Таким образом, код циклический.

#### 3.5.2 Порождающая и проверочная матрицы циклического кода

Пусть C — циклический код с порождающим многочленом  $g(x) = 1 + g_1 x + \ldots + g_{r-1} x^{r-1} + x^r$ . Тогда все кодовые многочлены имеют вид

$$b(x) = g(x) \underbrace{a(x)}_{deg=k-1} = a_0 g(x) + a_1 x g(x) + \dots + a_{k-1} x^{k-1} g(x)$$

То есть, любой кодовый многочлен представляется как линейная комбинация многочленов  $x^j g(x)$ . Тогда порождающая матрица имеет вид:

$$G = \begin{pmatrix} 1 & g_1 & g_2 & \dots & g_{r-1} & 1 & 0 & \dots & 0 \\ 0 & 1 & g_1 & \dots & g_{r-2} & g_{r-1} & 1 & \dots & 0 \\ \dots & \dots \\ 0 & \dots & \dots & 1 & g_1 & \dots & g_{r-1} & 1 \end{pmatrix}$$

Теперь построим проверочную матрицу. Рассмотрим h(x), такой, что  $x^n + 1 = h(x)g(x)$ . Тогда рассмотрим произвольный кодовый многочлен b(x) = q(x)g(x).

$$b(x)h(x) = q(x)q(x)h(x) = q(x)(x^{n} + 1) = q(x) + x^{n}a(x)$$

Заметим, что  $deg(a(x)) \leq k-1$ , а мономы  $x^n a(x)$  имеют степень не менее n тогда коэффициенты b(x)h(x) при  $x^k, x^{k+1}, \dots, x^{n-1}$  равны нулю. Давайте выразим эти коэффициенты через коэффициенты b и h:

$$\sum_{i=0}^{k} b_i h_{k-i} = 0$$

$$\sum_{i=0}^{k} b_{i+1} h_{k-i} = 0$$
...

Тогда в матричном виде это выглядит как:

$$H = \begin{pmatrix} h_k & h_{k-1} & h_{k-2} & \dots & h_1 & h_0 & 0 & \dots & 0 \\ 0 & h_k & g_{k-1} & \dots & h_2 & h_1 & h_0 & \dots & 0 \\ \dots & \dots \\ 0 & \dots & \dots & h_k & g_{k-1} & \dots & h_1 & h_0 \end{pmatrix}$$

**Замечание 3.3.** Строки в G и H линейно независимы, поскольку у каждой строки есть компонент, отсутствующий во всех строках с большими номерами. Формально можно доказать по индукции.

**Замечание 3.4.** Порождающим многочленом дуального кода, порожденного многочленом g(x) с проверочным многочленом h(x) является многочлен  $x^k h(x^{-1})$ .

Доказательство. Многочлен  $x^k h(x^{-1}) = h_k + x h_{k-1} + \ldots + x^{k-1} h_1 + x^k h_0$ , то есть, это многочлен h(x) с развернутыми коэффициентами. Тогда порождающая матрица для этого многочлена совпадает с проверочной для кода, порожденного C.

### 3.6 Модификации линейных кодов

**Определение 3.11.** (n+1,k)-код, полученный из (n,k)-кода добавлением одного контрольного бита (иначе говоря, дополнительной переменной), называется расширенным кодом (extended code).

Вообще говоря, добовлять можем любой бит, но это не всегда имеет смысл.

**Утверждение 3.2.** Любой (n,k,d)-код с нечётным кодовым расстоянием можно расширить до (n+1,k,d+1)-кода добавлением бита проверки чётности.

Доказательство. Если между двумя словами было расстояние d, то одно из них имеет чётный вес, а другое нечётный, т.к. d нечётно. Тогда очевидно, что добавление бита проверки чётности увеличит расстояние между ними.  $\square$ 

**Определение 3.12.** (n-1,k)-код, полученный из (n,k)-кода удалением одного из контрольных битов (удалением переменной), называется *проколотым кодом (punctured code)*.

Если расширим код, а затем уменьшим его на тот же контрольный бит, на который увеличивали, получим исходный код.

Если удаляемый бит принимает значение 1 в кодовом слове минимального веса, то минимальное кодовое расстояние уменьшается.

**Определение 3.13.** Код, полученный удалением информационных битов, называется *укороченным кодом (shortened code)*.

Это значит удаление строки из порождающей матрицы и удаление столбца из проверочной. Т.е. (n,k)-код превращается в (n-1,k-1)-код.

**Определение 3.14.** Код, полученный добавлением информационного бита, называется y длинённым кодом (lengthened code).

Это значит, что мы добавили строку в порождающую матрицу и столбец в проверочную. Т.е. (n,k)-код превращается в (n+1,k+1)-код.

Утверждение 3.3. При удлинении и при укорочении минимальное кодовое расстояние не меняется.

Доказательство.

- 1. При удлинении очевидно.
- 2. При укорочении происходит следующее: из G вычёркивается строка и соответствующий её столбец edunuunou nodmampuuu. Соответственно, вычёркивается столбец из проверочной матрицы. Любая линейная комбинация строк G имеет вес как минимум d.

$$a_1g_1 + \ldots + a_ng_n \ge d, \ \forall \{a_i\}$$

Вычёркивание *i*-ой строки и соответствующего ей столбца— это линейная комбинация с  $a_i = 0$ .

**Определение 3.15.** Код, полученный удалением некоторых кодовых слов, называется суженным кодом (expurgated code).

Возможно построить суженный код так, чтобы он оставался линейным.

Минимальное кодовое расстояние может увеличиться.

**Определение 3.16.** Код, полученный добавлением новых кодовых слов, называется *дополненным кодом (augmented code)*.

**Пример 3.5.** (7,4)-код Хэмминга.

Построим расширенный код двум способами: начиная с проверочной матрицы и начиная с порождающей. Новая переменная — дополнительная проверка чётности для всех битов.

#### 1. Проверочная матрица

Последняя строка соответствует уравнению  $\sum\limits_{i=0}^6 x_i = x_7$ , то есть  $x_7$  — бит проверки четности. Линейными преобразованиями получим

Ей соответствует порождающая матрица

$$G = \left[ \begin{array}{ccccccc} 1 & 0 & 1 & |1| & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & |0| & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & |1| & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & |1| & 0 & 0 & 0 & 1 \end{array} \right]$$

соответствующая начальной порождающей, к которой добавили 1 столбец (4-ый).

#### 2. Порождающая матрица

$$G = \left[ \begin{array}{cccccc} 1 & 0 & 1 & |?| & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & |?| & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & |?| & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & |?| & 0 & 0 & 0 & 1 \end{array} \right]$$

. Добавим такой столбец, что количество единиц в каждой строке чётно. Легко видеть, что это тот же столбец, который мы получили в первом случае и других быть не может.

Почему появляется условие чётности по строкам? Вспомним,  $G = (\Gamma^t | E)$ ,  $H = (E | \Gamma)$ . От H хотим, чтобы линейными преобразованиями над строками можно было получить строку из всех единиц. Поскольку в H есть единичная подматрица, единственный способ это сделать — просуммировать все строки с коэффициентами 1. Тогда нам необходимо, чтобы все столбцы  $\Gamma$  были веса 1, то есть чтобы все строки  $\Gamma^t$  были веса 1. Следовательно, все строки G должны иметь вес 0.

### 3.7 Бинарные коды Голея

Чтобы бинарный (n,k,d)-код был совершенным, необходимо выполнение условия плотной упаковки:

$$2^k \sum_{k=0}^{\lfloor \frac{d-1}{2} \rfloor} C_n^k = 2^n$$

Голей нашел два возможных кандидата: (23, 12, 7) и (90, 78, 5).

**Теорема 3.10.** Не существует бинарного (90, 78, 5)-кода.

Доказательство. Предположим, что существует C-(90,78,5)-код. Не умаляя общности можем считать, что  $0 \in C$  (иначе выберем любой вектор C и прибавим его ко всем векторам кода).

Пусть  $Y = \{y \in \{0,1\}^{90} : y_0 = y_1 = 1 \land w(y) = 3\}$ . Очевидно, |Y| = 88. Так как C — совершенный код, каждому  $y \in Y$  соответствует единственный  $x \in C$  причем d(x,y) = 2. Тогда  $1 \le w(x) \le 5$ , но  $d(x,0) \ge 5$  и тогда мы можем заключить, что w(x) = 5. Тогда  $y \subset x$ , то есть  $y_i = 1 \implies x_i = 1$ .

Пусть  $X=\{x\in C\colon x_0=x_1=1\land w(x)=5\}$ . Каждому  $y\in Y$  соответствует единственный  $\phi(y)=x\in X$ , такой, что d(x,y)=2. С другой стороны, рассмотрим  $x\in X$ . Заменяя две из трех единиц, стоящих на позициях  $\{2,\dots,89\}$  на нули мы получим три различных  $y_1,y_2,y_3\in Y$ , при этом  $d(x,y_1)=d(x,y_2)=d(x,y_3)=2$ , тогда  $\phi(y_1)=\phi(y_2)=\phi(y_3)=x$ . Для любых других  $y\in Y$  d(x,y)>2. Тогда все элементы Y должны разбиться на тройки по значению  $\phi(y)$ . Но 88 не делится на 3. Противоречие.

**Определение 3.17.** Расширенным кодом Голея назовем (24,12)-код, построенный с помощью порождающей матрицы  $G = (E_{12}|A)$ , где A — фиксированная матрица  $12 \times 12$ , обладающая следующими свойствами:

- $\bullet$   $A = A^T$
- $i \neq j \implies A_i \bot A_j$  (где  $A_i, A_j$  строки матрицы A)

Утверждение 3.4. Так построенный код обладает кодовым расстоянием 8 и исправляет три ошибки.

Замечание 3.5. Удалив один проверочный бит из (24, 12, 8)-кода получим (23, 12, 7)-код — совершенный код Голея.

**Утверждение 3.5.** Код Голея самодуален, то есть  $G^{\perp} = G$ 

Доказательство. Заметим, что строки матрицы G ортогональны. Это следует из того, что строки E ортогональны и строки A ортогональны. Тогда  $G \subset G^{\perp}$ . Но размерности G и  $G^{\perp}$  равны 12, тогда  $G = G^{\perp}$ 

#### 3.8 Бинарные СВС-коды

**Определение 3.18.** CRC-код — это циклический код, используемый для *обнаружения* ошибок. Пусть порождающий многочлен нашего кода — g(x). Тогда будем производить кодирование по правилу

$$c(x) = x^k m(x) + (x^k m(x) \mod q(x))$$

Будем проверять наличие ошибок в  $\bar{c}(x)$  следующим образом:

$$\begin{cases} \text{ошибка} & \text{если } \bar{c}(x) \neq 0 \\ \text{принимаем} & \text{если } \bar{c}(x) = 0 \end{cases}$$

Обозначим  $e(x) = \bar{c}(x) + c(x)$ .

**Замечание 3.6.** В одну сторону наша проверка корректна, если ошибки нет, то мы точно примем вектор. Но мы можем принять и вектор с ошибкой.

**Определение 3.19.** Вектор ошибок содержит пакет ошибок длины B, если расстояние между первой и поледней ошибкой равно B, то есть, существует i, такое, что

$$e(x) = x^{i}(1 + e_{1}x + ... + x^{B-1})$$

Утверждение 3.6. Верны следующие утверждения

- 1. Ошибка  $e(x)=x^i$  для  $i\in\{0,\ldots,n-1\}$  будет найдена
- 2. Если  $g(x)=(1+x)\bar{g}(x)$ , то  $\forall e(x)\colon w(e)\mod 2=1$  будет найдена
- 3. Если e(x) содержит пакет ошибок длины n-k, то такая ошибка будет найдена
- 4. Если e(x) содержит пакет ошибок длины n-k+1, то она не будет найдена только если  $e(x)=x^ig(x)$
- 5. Вероятность, что ошибка с блоком длины l > n k + 1 не будет найдена равна  $2^{k-n}$

Доказательство. 1.  $g(x) = 1 + \ldots + x^r$ . r > 0. Рассмотрим произвольный многочлен  $a(x) = x^{d_l} + \ldots + x^{d_r}$ . Тогда  $g(x)a(x) = x^{d_l} + \ldots + x^{r+d_r}$ . Следовательно, так как  $d_l < r + d_r$ ,  $x^i$  не может делиться на g(x)

2.

$$c(x) = (1+x)\bar{g}(x)m(x) = (1+x)\left(\sum_{i=0}^{n-2} t_i x^i\right) = t_0 + x(t_0 + t_1) + \dots + t_{n-2}x^{n-1}$$

Посчитаем сумму коэффициентов:  $t_0 + (t_0 + t_1) + (t_1 + t_2) + \ldots + t_{n-2} = 2(\sum_{i=0}^{n-2} t_i) = 0$ . То есть, если ошибка содержит нечетное число единиц, то она не поделится на g(x)

3. Пусть e(x) содержит пакет ошибок длины n-k. Тогда

$$e(x) = x^{i}(1 + e_{1}x + \dots + x^{n-k-1})$$

 $i \in \{0, \dots, k\}$ . Пусть e(x) = f(x)g(x).

$$deg(f) = deg(e) - deg(g) = (i + n - k - 1) - (n - k) = i - 1$$

Тогда вспомним, что g не кратно  $x^j$  ни для каких j. Таким образом f кратно  $x^i$ , но deg(f) < i. Значит, e(x) не делится на g(x) и мы обнаружим такую ошибку.

- 4. Если  $e(x) = x^i(1 + e_1x + \ldots + x^{n-k})$ , тогда ошибка может не распознаться только если  $e(x) = x^ig(x)$
- 5. Пусть e(x) содержит пакет ошибок длины l>n-k+1. Тогда можем записать  $e(x)=x^ia(x)g(x)$ , опять исходя из факта, что g не кратно  $x^j$  для всех j>0. Тогда deg(a)=l-(n-k)-1 и свободный член a равен 1. Тогда возможных вариантов выбора a существует  $2^{l-n+k-2}$ .

Будем считать e равномерно распределенным по всем возможным ошибкам с блоком длины l. Тогда вероятность того, что такая ошибка поделится на g(x) равна

$$\frac{\overbrace{(n-l+1)}^{\text{выбор }i}2^{l-n+k-2}}{2^{l-2}(n-l+1)} = 2^{k-n}$$

# Регистры сдвига и линейная сложность

(Конспект: А. Рязанов)

### 4.1 Регистры сдвига с линейной обратной связью

Хотим генерировать поток битов из некоторого начального конечного количества. Рассмотрим следующий алгоритм:

**Алгоритм 4.1.** Имеем  $s_0, s_1, \ldots, s_{l-1}$ , где l будем называть длиной регистра сдвига. Пусть  $f: \{0,1\}^l \to \{0,1\}$ . Тогда будем генерировать дальнейшие биты по рекуррентному соотношению  $s_i = f(s_{i-1}, s_{i-2}, \ldots, s_{i-l})$ .

f будем называть функцией обратной связи.

 $s_i$  — выход регистра на шаге i.

Рассмотрим регистр сдвига с линейной функцией обратной связи (РСЛОС)

**Определение 4.1.** Если  $f(x_0,\ldots,x_{l-1})=\sum\limits_{i=0}^{l-1}c_ix_i$ , то многочлен, ассоциированный с РСЛОС:  $c(x)=1+c_0x+\ldots+c_{l-1}x^l$ .

**Определение 4.2.** Периодом регистра называется число  $\min\{N \in \mathbb{N} : \forall i \geq N \, S_{N+i} = S_i\}$ 

#### Свойства:

- 1.  $s_0 = \ldots = s_{l-1} = 0 \implies \forall i : s_i = 0$
- 2. Период регистра конечен.

Доказательство. Если

$$\begin{cases} s_i &= s_j \\ s_{i+1} &= s_{j+1} \\ & \cdots & \cdots \\ s_{i+l-1} &= s_{j+l-1} \end{cases}$$

То  $s_{i+l} = s_{j+l}$  по определению. Тогда  $\forall k \geq 0$ :  $s_{i+k} = s_j + k$ . Таким образом  $(s_i, s_{i+1}, \ldots) = (s_j, s_{j+1}, \ldots)$ . Но тогда существует не более  $2^l$  различных типов таких последовательностей.

- 3.  $T \leq 2^l 1$ . Непосредственно следует из доказательства предыдущего пункта.
- 4.  $c_{l-1} = 0 \implies$  период начинается не с начала последовательности ( $c_T$  не всегда равно  $c_0$ )
- 5.  $c_{l-1} = 1 \implies c_T = c_0$
- 6. c(x) неприводим над  $\mathbb{F}_2 \implies 2^l 1$  кратно T
- 7. c(x) примитивный над  $\mathbb{F}_2 \implies T = 2^l 1$

**Утверждение 4.1.** Пусть известны  $s_i, \ldots, s_{i+2l-1}$  и известно, что регистр имеет длину l. Тогда можно найти регистр сдвига, порождающий такую последовательность.

Доказательство. Составим систему уравнений, относительно  $c_i$ :

$$\begin{cases} s_{i+l} &= c_0 s_{i+l-1} + c_1 s_{i+l-2} + \ldots + c_{l-1} s_0 \\ s_{i+l+1} &= c_0 s_{i+l} + c_1 s_{i+l-1} + \ldots + c_{l-1} s_1 \\ \ldots &= \ldots \\ s_{i+2l-1} &= c_0 s_{i+2l-2} + c_1 s_{i+2l-3} + \ldots + c_{l-1} s_{i+l-1} \end{cases}$$

Система совместна по построению  $s_i$ , тогда решение — подходящий регистр сдвига. Если уранения линейно-независимы, регистр сдвига определяется однозначно.

#### 4.2 Линейная сложность, алгоритм Берлекэмпа-Мэсси

**Определение 4.3.** Регистр сдвига порождает последовательность s, если для начальных значений  $s_0, \ldots, s_{l-1}$  регистр выдает последовательность s.

Определение 4.4. Линейной сложностью последовательности бит (конечной или бесконечной) s назовем

- 0, если s = (0, 0, ...)
- $\infty$ , если  $\not\exists$  РСЛОС, порождающего s.
- Длина минимального регистра сдвига, порождающего s.

Обозначим L(s).

**Определение 4.5.** Пусть s — последовательность бит. Тогда пусть

$$L_N = L(s_0, \dots, s_{N-1})$$

Последовательность  $L_1, L_2, \ldots$  назовем профилем линейной сложности последовательности s.

Утверждение 4.2. Верны следующие утверждения

- 1.  $j > i \implies L_i \ge L_i$
- $2. L_N \leq \frac{N}{2} \implies L_{N+1} > L_N$
- 3.  $L_{N+1} > L_N \implies L_N + L_{N+1} = N+1$

## 4.3 Порождение симплексного кода с помощью регистра сдвига

**Определение 4.6.** Рассмотрим  $C_m$ ,  $(2^m-1, 2^m-m-1)$ -код Хэмминга. Дуальный к нему код  $S_m$  является кодом Адамара с матрицей Сильвестра — симплексным кодом.

**Замечание 4.1.**  $S_m$  является циклическим кодом с проверочным многочленом

$$h(x) = 1 + h_1 x + \ldots + h_{m-1} x^{m-1} + x^m$$

Тогда, вспоминая структуру проверочной матрицы циклического кода, можем записать условия на то, что  $(s_0, \ldots, s_{2^m-2}) \in S_m$ :

$$\forall i \in \{0, \dots, 2^m - 2 - m\} : s_{i+m} = s_i + s_{i+1}h_{m-1} + \dots + s_{i+m-1}h_1$$

Тогда каждое кодовое слово  $s \in S_m$  порождается регистром сдвига с характеристическим многочленом h(x) и начальными входами  $s_0, \ldots, s_{m-1}$ .