Année Universitaire 2018- 2019

Filière : SMIA / SI

Pr. FAIZ

Contrôle de rattrapage

Module Physique I

Durée 1h15

Ouestions de cours

Considérons un point matériel M de masse m en mouvement par rapport à un référentiel R (O,

x, y, z) avec une vitesse V(M/R).

Donner l'expression du moment cinétique σ₀ (M/ℜ) en O de M par rapport à ℜ

2. Enoncer puis démontrer le théorème du moment cinétique

Exercice 1

Un point materiel M de masse m est en mouvement sans frontement sur le plan XOY d'un référentiel galiléen 9 (O, x, y, z). Un opérateur exerce une force de module F dirigée constamment vers le point O. Soit un référentiel relatif R' muni de la base orthonormée directe (e, e, k). M est repéré par ses cordonnées p et \(\phi \) (voir la figure).

N.B: Toutes les expressions vectorielles doivent être exprimées dans la base (ep eq k):

- Donner le vecteur position du point M
- Donner l'expression de la vitesse de rotation de R' par rapport à R est donnée par Ω((R'/R))
- Calculer les vitesses relative, d'entrainement et absolue.
- 4. Déterminer les expressions des accélérations $\overline{Y_r}$, $\overline{Y_c}$, $\overline{Y_c}$, $\overline{Y_c}$, $\overline{Y_c}$
- Représenter sur un schéma les forces appliquées sur M
- En appliquant le PFD, déduire les deux équations suivantes :

$$F = -m\left(\frac{d^2\rho}{dt^2} - \rho\left(\frac{d\varphi}{dt}\right)^2\right) \tag{1}$$
$$0 = 2\frac{d\rho}{dt}\frac{d\varphi}{dt} + \rho\frac{d^2\varphi}{dt^2} \tag{2}$$

- 7. En utilisant l'équation (2), montrer que :
 - a. $\rho^2 \frac{d\phi}{dt} = A$, où A est une constante
 - $\dot{\rho}(t=0) = \dot{\rho}_0$; $\dot{\phi}(t=0) = \phi_0$; $\dot{\phi}(t=0) = \dot{\phi}_0$ (le point sur les grandeur indique $\frac{d}{dt}$) b. sachant que les conditions initiales à t=0 sont les suivantes; p (t=0)= po:

Déduire que $A = \rho_0^2 \dot{\varphi}^2$.

8. En supposant que $\dot{\rho}_0 = 0$, $\dot{\phi}_0 = 0$ et F=constante, Etablir l'équation horaire p(t) du mouvement de M.