Formale Grundlagen der Informatik II 1. Übungsblatt

Fachbereich Mathematik Prof. Dr. Ulrich Kohlenbach Alexander Kreuzer **SS 2012**

Gruppenübung

Pavol Safarik

Aufgabe G1

(a) Erstellen Sie die Wahrheitstafel zu folgender Formel:

$$\varphi := (\neg p \land \neg q) \to (p \lor (\neg q \land r))$$

Ist die Formel erfüllbar? Ist sie allgemeingültig?

(b) Geben Sie eine Formel zu folgender Wahrheitstafel an:

p	q	r	
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

- (c) Geben Sie eine Formel $\varphi(p,q,r)$ an, welche genau dann wahr ist, wenn höchstens eine der Variablen p,q,r wahr ist.
- (d) Geben Sie eine Formel $\varphi(p,q,r,s)$ an, welche genau dann wahr ist, wenn genau drei der Variablen denselben Wert haben.

Aufgabe G2

- (a) Wir versuchen, ein verteiltes System in der Aussagenlogik zu modellieren. Angenommen wir wollen n Prozesse für s Zeiteinheiten beobachten. Jeder Prozess kann sich an jedem Zeitpunkt im Zustand p, q oder r befinden. Wir führen Aussagenvariablen p_t^i , q_t^i und r_t^i ein, die auf wahr gesetzt werden, wenn Prozess i zur Zeit t im entsprechenden Zustand ist. Formalisieren Sie die folgenden Aussagen in AL:
 - Zu jedem Zeitpunkt ist höchstens ein Prozess in Zustand q.
 - Es sind immer mindestens zwei Prozesse in Zustand p.
 - Wenn sich ein Prozess in Zustand *q* befindet, dann wechselt er nach spätestens 3 Zeiteinheiten in den Zustand *r*.

(b) Konstruieren Sie induktiv über n aussagenlogische Formeln

$$\varphi_n(x_n,\ldots,x_0,y_n,\ldots,y_0),$$

welche genau dann wahr sind, wenn die in $x_n \dots x_0$ kodierte Binärzahl $\sum_i x_i 2^i$ kleiner ist als die in $y_n \dots y_0$ kodierte.

Aufgabe G3

- (a) Beweisen oder widerlegen Sie die folgenden Aussagen.
 - (i) $\varphi \models \psi$ genau dann, wenn $\models \varphi \rightarrow \psi$.
 - (ii) Wenn $\varphi \models \psi$ und φ allgemeingültig (bzw. erfüllbar) ist, dann ist auch ψ allgemeingültig (bzw. erfüllbar).
 - (iii) Wenn $\varphi \models \psi$ und ψ allgemeingültig (bzw. erfüllbar) ist, dann ist auch φ allgemeingültig (bzw. erfüllbar).
 - (iv) $\{\varphi, \psi\} \models \vartheta$ genau dann, wenn $\varphi \models \vartheta$ oder $\psi \models \vartheta$.
- (b) Beweisen oder widerlegen Sie die folgenden Äquivalenzen und Folgerungsbeziehungen.

i.
$$\neg(\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$$

ii.
$$\neg(\varphi \lor \psi) \equiv \neg \varphi \lor \neg \psi$$

iii.
$$\{\neg \psi, \psi \rightarrow \varphi\} \models \neg \varphi$$

iv.
$$\{\neg \varphi, \psi \rightarrow \varphi\} \models \neg \psi$$

Aufgabe G4

Für $n \ge 1$ sei

$$\varphi_n(p_1,\ldots,p_{2n}) := \bigwedge_{i=1}^n \neg (p_{2i-1} \longleftrightarrow p_{2i})$$

(siehe Beispiel 3.9 im Skript). Zeigen Sie, dass

- (a) φ_n genau 2^n verschiedene Modelle hat;
- (b) φ_n äquivalent zu einer Formel in KNF ist, welche 2n Konjunktionsglieder besitzt;
- (c) jede zu φ_n äquivalente Formel in DNF mindestens 2^n Disjunktionsglieder hat.