MATHEMATICS FOR AI

PROBLEM SET: CALCULUS

August 20, 2022

Some of the following problems are chosen from Dennis G. Zill, Advanced Engineering Mathematics, 6th ed., Jones & Bartlett Learning.

- 1. Find all the values of x where the tangent lines to $y = x^3$ and $y = x^4$ are parallel.
- 2. Find the equation of the tangent line of $y = e^{x+2}$ at x = -1.
- 3. Find the Taylor polynomial of the kth order, p_k , of $\ln x$ at x = 1. Draw the graphs of $\ln x$, p_1 and p_2 , and note that, in a neighborhood of x = 1, the graph of p_2 is closer to the graph of $\ln x$ than that of p_1 .
- 4. Use the chain rule to find the derivative of $f \circ g$ for $f(u) = \sin u$ and g(x) = 2x + 1.
- 5. What is the least squares best fitting line $y = \hat{C} + \hat{D}t$ through

$$(-1,1)$$
 $(0,0)$ $(1,1)$?

Minimize the sum of the squares of the errors at t = -1, 0, 1.

6. Match the functions in the graphs of the first figure with their derivatives in the second figure:

SOLUTIONS:

1. We look for the tangent lines that have the same slope. The slope of the tangent line to the graph of a function at a point is the value of the derivative of the function. As such, we need only to equate the derivatives of x^3 and x^4 :

$$3x^2 = 4x^3$$

to find x = 0 or x = 3/4.

2. The equation for the line of slope m through the point (x_0, y_0) is

$$y - y_0 = m(x - x_0).$$

In our case, $x_0 = -1$ and $y_0 = e$. The slope is the derivative of $y = e^{x+2}$ at $x = x_0 = -1$: $y' = e^{x+2}$ evaluated at -1 is e. Finally, the equation of the

requested line is

$$y - e = e(x + 1),$$
 $y = e(x + 2).$

3. The Taylor poly of $\ln x$ at x = 1 is

$$p_k(x) = \sum_{n=1}^k \frac{(-1)^{n-1}}{n} (x-1)^n.$$

4. The chain rule gives the derivative of $f \circ g$ as

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

In our case, $f' = \cos u$ and g' = 2. Then,

$$(f \circ g)'(x) = (\sin(2x+1))' = \cos(2x+1)2 = 2\cos(2x+1).$$

5. We want to find \hat{C}, \hat{D} such that the error is minimized in the least squares sense. At each given value of t, t_i , the square of the error, e_i^2 , is

$$e_i^2 = (y_i - \hat{C} - \hat{D}t_i)^2$$
.

As such, we wish to minimize

$$f(\hat{C}, \hat{D}) = \sum_{i=1}^{3} e_i^2 = (1 - \hat{C} + \hat{D})^2 + \hat{C}^2 + (1 - \hat{C} - \hat{D})^2 = 2 - 4\hat{C} + 3\hat{C}^2 + 2\hat{D}^2.$$

This is a quadratic function of both \hat{C} and \hat{D} , with positive coefficients of both \hat{C}^2 and \hat{D}^2 . As such, the minimum is found by setting the derivative of f with respect to both \hat{C} and \hat{D} to zero:

$$\frac{\partial f}{\partial \hat{C}} = -4 + 6\hat{C} = 0, \qquad \frac{\partial f}{\partial \hat{D}} = 4\hat{D} = 0.$$

These are the normal equations. Note that these are linear in both \hat{C} and \hat{D} . Solving, yields $\hat{C} = 2/3$ and $\hat{D} = 0$.

6.	Yellow to yellow, in the red.	green	to	green	and	the	functions	blue	and	red	to the	derivativ	e