模电实验报告 7: 积分与微分电路实验

xy 学号 匡亚明学院

2019年2月29日

1 实验目的

1. 学习使用运放组成积分与微分电路。

2 实验仪器

示波器、信号发生器、交流毫伏表、数字万用表.

3 预习内容

- 1. 阅读 OP07 的"数据手册", 了解 OP07 的性能.
- 2. 复习关于积分与微分电路的理论知识.
- 3. 阅读本次实验的教材。

4 实验内容

4.1 积分电路

积分电路如图 (1) 所示。 在理想条件下,

$$\frac{v_I(t)}{R_1} = -C \frac{\mathrm{d}v_O(t)}{\mathrm{d}t} \tag{1}$$

当 C 两端的初始电压为零时,则

$$v_O(t) = -\frac{1}{R_1 C} \int_0^t v_I(t) dt$$
 (2)

因此得名积分电路。

4.1.1 测量积分电路幅频特性曲线

取 $C=0.1\mu F$,测量积分电路的幅频特性曲线。观察输入输出的波形。测量得到的幅频特性数据填入表 (1)。

图 1: 积分电路

4.1.2 改进的积分电路的方波波形

使用如图 (1) 所示的电路进行实验,通常会观察到输出的直流漂移,解决办法是在电容 C 两端并联一个电阻 R_2 ,改进的积分电路如图 (2):

图 2: 直流闭环的积分电路一阶低通滤波器

取输入信号的峰峰值为 1V, 频率分别为 20Hz, 1kHz, 2kHz, 记录所得的输入输出波形图。

4.2 微分电路

4.2.1 测量微分电路的幅频特性曲线

按图 (3) 连接电路,测量幅频特性数据填入表 (2)。

图 3: 微分电路优化设计

4.2.2 改进的微分电路的方波波形

取输入信号峰峰值为 0.2V, 频率分别为 10Hz, 100Hz, 1kHz, 观察输入输出波形。

4.3 积分-微分电路

接图 (4) 连接电路,改变输入信号频率从 10Hz 到 10kHz,记录积分-微分电路的幅频特性数据,填入表 ()。

图 4: 积分-微分电路

图 (4) 中的电阻 R_2 的作用为防止直流漂移,电容 C_2 旁缺少的 155Ω 电阻会使得幅频特性曲线中出现一个突变的峰。

5 实验数据

5.1 积分电路

取输入信号为 v_{ipp} =1.03V 的正弦波。

5.1.1 积分电路幅频特性

积分电路的幅频特性数据如表 (1):

表 1: 积分电路幅频响应

$f_i/{ m Hz}$	10	20	30	40	50	60	70	80
$v_{opp}/{ m V}$	13.8	6.9	4.6	3.5	2.8	2.3	2.0	1.7
$v_o(幅值 = \frac{v_{opp}}{2})/V$	6.9	3.45	2.3	1.75	1.4	1.15	1.0	0.85
$f_i/{ m Hz}$	90	100	150	200	300	500	1000	5000
$v_{opp})/\mathrm{V}$	1.6	1.4	1.0	0.7	0.5	0.29	0.15	0.1
$v_o(幅值 = \frac{v_{opp}}{2})/V$	0.8	0.7	0.5	0.35	0.25	0.145	0.075	0.05

根据表 (1) 画出幅频特性曲线,如图 (5):

图 5: 积分电路的幅频特性曲线

5.1.2 方波输入波形图

取输入信号为方波时,输入输出波形如图 (6)、(7)、(8):

图 6: 改进的积分电路,方波输入,20Hz

图 7: 改进的积分电路,方波输入,1kHz

图 8: 改进的积分电路, 方波输入, 2kHz

5.2 微分电路

图 (3) 中的电阻为 $R_2=155.328\Omega$ 。

5.2.1 微分电路幅频特性

微分电路的幅频特性数据如表 (2): 根据表 (1) 画出幅频特性曲线,如图 (5):

表 2: 微分电路幅频响应

$f_i/{ m Hz}$	5	6	7	8	9	10	20	30	40
$v_o(V_{PP})/\mathrm{V}$	0.037	0.044	0.050	0.058	0.065	0.071	0.143	0.212	0.283
$v_o(=\frac{V_{PP}}{2})/V$	0.0185	0.022	0.025	0.029	0.0345	0.0355	0.0725	0.106	0.1425
$f_i/{ m Hz}$	50	60	70	71	80	90	100	143	150
$v_o(V_{PP})/\mathrm{V}$	0.354	0.423	0.492	0.501	0.562	0.630	0.700	1.00	1.05
$v_o(=\frac{V_{PP}}{2})/V$	0.177	0.2115	0.246	0.2505	0.281	0.315	0.35	0.5	0.5025
$f_i/{ m Hz}$	200	300	500	1000	1520	2000	3000	4000	5000
$v_o(V_{PP})/\mathrm{V}$	1.4	2.1	3.47	6.8	10.0	12.7	17.6	21.8	21.3
$v_o(=\frac{V_{PP}}{2})/V$	0.7	1.05	1.735	3.4	5.0	6.35	8.8	10.9	10.65

图 9: 微分电路的幅频特性曲线

5.2.2 方波输入波形图

取输入信号为方波时,输入输出波形如图 (10)、(11)、(12):

图 10: 改进的微分电路,方波输入,10Hz

图 11: 改进的微分电路,方波输入,100Hz

图 12: 改进的微分电路,方波输入,1kHz

5.3 积分-微分电路

积分微分电路的幅频特性数据如表 (3):

表 3: 积分-微分电路幅频响应

f_i/kHz	0.01	0.02	0.05	0.1	0.2	0.5	1	2	3
v_{opp}/mV	5.6	5.8	9.1	10.1	10.2	10.8	11.8	13.6	15.25
f_i/kHz	4	4.5	5	5.5	6	6.2	6.4	6.6	6.8
v_{opp}/mV	17.8	23.5	28	38	56	68	86	122.5	202.5
f_i/kHz	6.9	7	7.1	7.2	7.3	7.4	7.6	7.8	8
v_{opp}/mV	295	500	790	470	285	205	130	96	76
f_i/kHz	8.2	8.5	9	9.5	10	15	20	50	
v_{opp}/mV	65	53	41	35.5	30	17.25	15.25	11.8	

将其画图可得图 (13):

根据图 (13) 可明显观察到所谓"小刺",即幅频特性曲线中一个突起的峰。

6 实验讨论与误差分析

1. 测量准确性

在测量积分电路幅频特性数据时,当输出电压很小时,示波器显示的波形及其不清晰,其测量

图 13: 积分微分电路幅频特性曲线

功能测到的数据波动极大。因此测得的数据可能不准确。

2. 不接电阻 R_2 时积分电路的幅频特性

接了电阻 R_2 时,积分电路在低频下的波形图如图 (6),可以看到输出信号的三角波明显发生了弯曲。在不接电阻 R_2 时,测得低频下的波形图如图 (bxt4):

图 14: 使用图 (1), 方波输入, 20Hz

可以看到输出三角波的形状十分良好。

7 思考题

1. 在图 (1) 中,若出现了较大的直流漂移,在电容两端并联一个 $100k\Omega$ 的电阻可基本抑制直流 漂移,试述其原因。

通过查阅资料[1]得知,如果没有这个电阻,电路是交流反馈,交流反馈可以改变电路参数,但

由于电容的隔直,无法抑制缓慢变化的直流漂移。通过并联一个电阻,在电路中引入了直流反馈,从而能抑制直流信号变化,抑制零点漂移。

2. 图 (4) 中,若改选 R_1 =10 Ω , C_1 =100 μ F, R_1 与 C_1 乘积不变,这样是否可以?为什么?不可以。根据实验书中式 (1-6-3):

$$H_{I1} = \frac{V_o(s)}{V_i(o)} = -\frac{R_2}{R_1} \frac{1}{R_2 C_s + 1}$$
(3)

可知,若将 R_1 由 10k Ω 改为 10Ω,该电路对输入直流失调电压放大了 10000 倍,这将对电路产生较大影响。

3. 若加了 155Ω 电阻的图 (4) 中的运放为理想运放,试用 EWB 仿真有无 R_2 时的幅频特性曲 线。试述产生差别的原因。

进行 EWB 仿真的结果如图 (15) 所示:

图 15: EWB 仿真幅频特性曲线

从图中可以看出,没有 R_2 时,其幅频特性曲线在低频时几乎没有变化,即可以认为是直流放大。

参考文献

- [1] https://zhidao.baidu.com/question/2205915092087369388.html.
- [2] 康华光. 电子技术基础 (模拟部分). 高等教育出版社, 2006.