Credit: Counterexample Guided Abstraction Refinement *

1, 2 Introduction and Preliminaries

Spurious counterexamples

CTL*: a superset of CTL (Computational Tree Logic) and LTL (Linear Temporal Logic) ACTL* specification: formulas satisfiable by CTL* which only allow ∀ over paths

Let

φ an ACTL* specification (satisfiable formula)

P the program

Transition blocks B_i

Atoms(B_i) the set of atomic formulas that appear in the conditions (transition blocks B_i)

Atoms(φ) the set of atomic formulas appearing in the specification (satisfiable formula) φ Atoms(φ) = Atoms(φ) U Atoms(φ)

program P corresponds to a labeled *Kripke structure* M = (S, I, R, L)

S = D the set of states

 $I \subseteq S$ the set of initial states

 $R \subseteq S \times S$ the transition relation

 $L: S \rightarrow 2^{Atoms(P)}$

 $L(d) = \{ f \in Atoms(P) \mid d \models f \}$

abstraction h for a program P is given by a surjection h : D $\rightarrow \widehat{D}$

Let e, $d \in D$ then $d \equiv e$ iff h(d) = h(e)

Given program P and abstraction function h for P,

abstract Kripke structure: $\widehat{M} = (\widehat{S}, \widehat{I}, \widehat{R}, \widehat{L})$ where (existential abstraction)

1. \widehat{S} is the abstract domain \widehat{D}

2.
$$\widehat{I}(\widehat{d})$$
 iff $\exists d (h(d) = \widehat{d} \land I(d))$

3.
$$\widehat{R}(\widehat{d_1}, \widehat{d_2})$$
 iff $\exists d_1 \exists d_2 \ (h(d_1) = \widehat{d_1} \land h(d_2) = \widehat{d_2} \land R(d_1, d_2))$

4.
$$\widehat{L}(\widehat{d}) = \bigcup_{h(d) = \widehat{d}} L(d)$$

Atomic formula f

represents an abstraction function h

If
$$\forall d,d' \in D$$
, $(d \equiv d') \Rightarrow (d \models \mathbf{f} \Leftrightarrow d' \models \mathbf{f})$

Let \widehat{d} an abstract state

if all concrete states corresponding to \widehat{d} satisfy all labels in \widehat{L} (\widehat{d}) then \widehat{L} (\widehat{d}) is consistent. (if all concrete states corresponding to \widehat{d} satisfy all labels in \widehat{L} (\widehat{d}) means

$$\forall d \in h^{-1}(\widehat{d})$$
 it holds that $d \models \Box \land f \in \widehat{L}(\widehat{d}) f$

Theorem 1)

Given

- *h* an abstraction function
- φ an ACTL* specification (satisfiable formula)
- $\widehat{M} = (\widehat{S}, \widehat{I}, \widehat{R}, \widehat{L})$ abstract Kripke structure
- $\widehat{S} = \widehat{D}$ the set of abstract states
- Atoms(ϕ) the set of atomic formulas appearing in the specification (satisfiable formula) ϕ
- $Atoms(P) = Atoms(\phi) \cup Atoms(B_i)$
- $\widehat{d} \in \widehat{D}$ or $\widehat{d} \in \widehat{S}$ an abstract state
- $\widehat{L} \cdot \widehat{S} \rightarrow 2^{Atoms(P)}$
- $\widehat{L}(\widehat{d}) = \{ f \in Atoms(P) \mid \widehat{d} \mid = f \}$
- abstraction h for a program P is given by a surjection $h: D \to \widehat{D}$ (could we say $h: S \to \widehat{S}$?)

Let

- Any atomic subformula of φ (something like Atoms(φ)) respects h

Then the following holds:

(i) $\widehat{L}(\widehat{d})$ is consistent for all abstract states \widehat{d} in \widehat{M}

(ii)
$$\widehat{M} \models \varphi \implies M \models \varphi$$

Let domain
$$D = D_1 \times ... D_n$$

Then: $h = (h_1, ..., h_n)$

Where also:
$$h = \{ h_i : Di \rightarrow \widehat{D}i \mid h(d_1, \dots, d_n) = (h_1(d_1), \dots, h_n(d_n)) \}$$
$$(h_i : Di \rightarrow \widehat{D}i \text{ is a surjection})$$

and
$$\widehat{D} = \widehat{D_1} \times ... \widehat{D_n}$$

The equivalence relations \equiv i corresponding to the individual surjections h_i induce an equivalence relation \equiv over the entire domain $D = D_1 \times ... D_n$ In the obvious manner:

$$(d_1, \ldots, d_n) \equiv (e_1, \ldots, e_n)$$
 iff $d_1 \equiv e_1 \wedge \ldots \wedge d_n \equiv e_n$

In previous works:

 D_i = D_{vi} where D_{vi} is the set of all values possible for variable V_i

But any abstraction functions h cannot be described as:

Example:

Let
$$h: D \to \widehat{D}$$

Let $D = \{0, 1, 2\} \times \{0, 1, 2\}$ and $\widehat{D} = \{0, 1\} \times \{0, 1\}$
 $\Rightarrow h_1: D_1 \to \widehat{D}_1$ and $h_2: D_2 \to \widehat{D}_2$
where $h = (h_1, h_2), D_1 = \{0, 1, 2\}, D_2 = \{0, 1, 2\}$
 $\widehat{D}_1 = \{0, 1\}, \widehat{D}_2 = \{0, 1\}$

Then

$$D = \{ 00, 01, 02, 10, 11, 12, 20, 21, 22 \}$$
 9 members D has 3 variables hence $D_v = \{ 0, 1, 2 \}$ $\widehat{D} = \{ 00, 01, 10, 11 \}$ 4 members \widehat{D} has 2 variables hence $\widehat{D_v} = \{ 0, 1 \}$ $\Rightarrow 4^9$ functions from D to \widehat{D} $\Rightarrow 2^3$ functions from D_v to $\widehat{D_v}$ there are two sets of $\{0, 1, 2\}$ and $\{0, 1\}$ $\Rightarrow 2(2^3) = 64$

So not always $D = D_v$

In this paper:

Set V of variables Where $V = VC_1, \ldots, VC_m$ and each VC_i a variable cluster

The Domain of
$$VC_i$$
 is $D_{VC_i} := \prod_{v \in VC_i} D_v$ $\Rightarrow D_V = D_{VC_1} \mathbf{x} \dots \mathbf{x} \ D_{VC_m}$

Abstraction function: surjections on the domains $D_{VC_i} = D_i$

Conclusion:

In the previous solutions $D = D_{\nu}$ which cannot be used for multidimensional domain and abstract domains,

In this paper, $D_{VC_i} = D_i$

3 Overview of the paper's proposal:

Let

- program P
- ACTL* formula (specification) φ

Does Kripke structure M of program P satisfy φ ?

Reminder: let

- Transition blocks B_i (conditions)
- Atoms(B_i) the set of atomic formulas that appear in the conditions B_i
- Atoms(φ) the set of atomic formulas appearing in the specification (satisfiable formula) φ
- Atoms(P) = Atoms(B_i) U Atoms(ϕ)
- 1. Generating the initial abstraction h

Examining the transition blocks B_i corresponding to the set V of variables of the program P. Aiming to construct variable clusters VC_i (reminder $V=VC_1,\ldots,VC_m$) by considering the conditions used in the **case** statements

2. Model-checking the abstract structure \widehat{M} :

Let \widehat{M} abstract Kripke structure corresponding to abstraction h.

We check whether $\widehat{M} \models \varphi$.

- If the check is affirmative, then we can conclude that $M = \varphi$.
- Suppose the check reveals that there is a counterexample T□.
 Check if T□ is an actual counterexample
 If T□ an actual counterexample, we report it to

3. Refining the abstraction:

Refining abstraction function h that has admitted the spurious counterexample $\mathsf{T}\Box$ by partitioning a *single equivalence class* \equiv After refinement of h, \widehat{M} corresponding to h does not admit the spurious counterexample $\mathsf{T}\Box$.

Reminder:

```
a single equivalence class \equiv equivalence classes of VC_i where V = (VC_1, ..., VC_m) is denoted as \equiv_V
```

4 The Abstraction-Refinement Framework

4.1 Generating the Initial Abstraction

Let

- program P
- n variables in program P, the set of variables in P is $v = \{v_1, \dots, v_n\}$
- Atomic formula f (notice $f \subseteq \text{Atoms}(P)$) var(f) the set of variables of program P appearing in f, meaning $var(f) \subseteq v$ Example: var(x = y) is $\{x, y\}$ A set of atomic formulas U

$$var(U) = \bigcup_{f \in U} var(f)$$

Then

 \forall syntactic entities X, var(X) will be the set of variables appearing in X. Two atomic formulas f_1 and f_2 interfere \underline{iff} $var(f_1) \cap var(f_2) \neq \emptyset$. The equivalence relation on Atoms(P) is denoted by \equiv_I . Reflexivity $(x \sim x)$. Transitivity $(x \sim y) \land (y \sim z) \Rightarrow (x \sim z)$. \equiv_I is a reflexive-transitive closure of the interference relation

Example on
$$\equiv_I$$
: ???
$$var(f_1) \cap var(f_2) \equiv_I var(f_2) \cap var(f_3)$$
implies $var(f_1) \cap var(f_3) \equiv_I var(f_2) \cap var(f_3)$

The equivalence class of an atomic formula $f \in Atoms(P)$ is called the $formula\ cluster$ of f and is denoted by [f]

```
Let f_1 and f_2 two atomic formulas
Then var(f_1) \cap var(f_2) \neq \emptyset implies [f_1] = [f_2]
```

Moreover,

a formula cluster [f] induces an equivalence relation \equiv_V on the set of variables V in the following way:

$$v_i \equiv_V v_j$$
 iff $\forall v_i \in var(f_i) \quad \forall v_j \in var(f_j)$, $[f_i] = [f_j]$ variable clusters VC_i (reminder $V = VC_1, \ldots, VC_m$): equivalence classes of \equiv_V

Example:

Consider a formula cluster $FCi = \{v1 > 3, v1 = v2\}$ the corresponding variable cluster is $VC_i = \{v_1, v_2\}$

Let

 $\{FC_1, \dots, FC_m\} \quad \text{set of formula clusters}$ $\{VC_1, \dots, VC_m\} \quad \text{set of corresponding variable clusters}$ initial abstraction $h = (h_1, \dots, h_m)$ where $\forall h_i$, $D_{VC_i} = \prod_{v \in VC_i} D_v$ variable cluster $VC_i = (v_{i_1}, \dots, v_{i_k})$ $D_{VC_i} \quad \text{the corresponding domain to } VC_i$ notice $v_{i_i} \subseteq D_{VC_i}$

Since the variable clusters $\ VC_i$ form a partition of the set of variables $\ V$, it follows that $\ D = D_{VC_1} \ \ \mathbf{x} \ \cdots \ \ \mathbf{x} \ D_{VC_m}$

remember in the previous work:

the equivalence relations \equiv i corresponding to the individual surjections h_i induce an equivalence relation \equiv over the entire domain $D = D_1 \times ... D_n$ in the obvious manner: $(d_1, ..., d_n) \equiv (e_1, ..., e_n) \quad \underline{\text{iff}} \quad d_1 \equiv e_1 \wedge ... \wedge d_n \equiv e_n$

$$(a_1, \ldots, a_n) = (e_1, \ldots, e_n)$$
 $\underline{\mathbf{m}}$ $a_1 = e_1 \cap \cdots \cap a_n = e_n$

remember $h = (h_1, ..., h_m)$,

hence for each formula cluster FC_i there's abstraction function h_i

In this paper:

the corresponding abstraction h_{i} is defined on $\mathit{D}_{\mathit{VC}_{i}}$ as follows:

$$h_i$$
 (d_1 ,..., d_k) = h_i (e_1 ,..., e_k)

iff

 \forall atomic formulas $f \in FC_i$, $[(d_1, \ldots, d_k) \mid = f] \Leftrightarrow [(e_1, \ldots, e_k) \mid = f]$

In other words:

two values (d_1, \ldots, d_k) and (e_1, \ldots, e_k) in the same equivalence class if they cannot be "distinguished" by all atomic formulas f such that $f \in FC_i$

Example 2 (initial abstraction h):

Let

program P

with three variables x, y, reset such that

$$x,y \in \{0, 1, 2\},\$$

reset ∈ {TRUE,FALSE}

the set of atomic formulas:

Atoms(P) = {(reset = TRUE),
$$(x = y), (x < y), (y = 2)$$
}

two formula clusters

$$FC_1 = \{ (x = y), (x < y), (y = 2) \}$$

 $FC_2 = \{ (reset = TRUE) \}$

with two corresponding variable clusters

$$VC_1 = \{x, y\}$$

$$VC_2 = \{\text{reset}\}$$

```
values (0, 0) and (1, 1) are in the same equivalence class because
                for all the atomic formulas f \in FC_1, (0,0) = f
                                                                            iff
                                                                                  (1,1) = f
                                                              0 = 0
                                                                            iff
                                                                                      1 = 1
                                                              0 < 0
                                                                            iff
                                                                                      1 < 1
                                                              0 = 2
                                                                            iff
                                                                                      1 = 2
domain \{0, 1, 2\} \times \{0, 1, 2\} = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)\}
is partitioned into a total of <u>five</u> equivalence classes by this criterion:
Equivalence class 0 = \{(0, 0), (1, 1)\}
Equivalence class 1 = \{(0, 1)\}
Equivalence class 2 = \{(0, 2), (1, 2)\}
Equivalence class 3 = \{(1, 0), (2, 0), (2, 1)\}
Equivalence class 4 = \{(2, 2)\}
// Start Program
        flag = false
        If FC_1 = \{ (x = y), (x < y), (y = 2) \} holds for (x_0, y_0) and (x_1, y_1) then
                Create Equivalence class 0
                Put (x_0, y_0) and (x_1, y_1) in Equivalence class 0
        Else
                Create Equivalence class 0
                Create Equivalence class 1
                Put (x_0, y_0) in Equivalence class 0
                Put (x_1, y_1) in Equivalence class 1
        For i = 2 to n
            For j = 0 to count.EquiClasses
                If FC_1 = \{(x = y), (x < y), (y = 2)\} holds for (x_i, y_i) and (x, y) \in Equivalence class
       j then
                        Put (x_i, y_i) in Equivalence class j
                        j = count.EquiClasses + 1
                        flag = true
                If flag == false then
                        count.EquiClasses = count.EquiClasses + 1
                        Create Equivalence class count. Equi Classes
                        Put (x_i, y_i) in Equivalence class count. EquiClasses
```

```
domain {TRUE, FALSE} :
```

Hence we have two abstraction functions h_1 and h_2 such as:

$$h_1: \{0, 1, 2\}^2 \rightarrow \{Equivalence\ Class\ 0, \\ Equivalence\ Class\ 1, \\ Equivalence\ Class\ 2, \\ Equivalence\ Class\ 3, \\ Equivalence\ Class\ 4\ \}$$

To simplify h_1 : $h_1: \{0, 1, 2\}^2 \to \{0, 1, 2, 3, 4\}$ To simplify h_2 : $h_2: \{TRUE, FALSE\} \to \{TRUE, FALSE\}$

Simplified h_1 output:

$$\begin{array}{lll} h_1\left(0,0\right) = & h_1\left(1,1\right) = & 0 \text{ (or = Equivalence Class 0)} \\ h_1\left(0,1\right) = & 1 & \text{(or = Equivalence Class 1)} \\ h_1\left(0,2\right) = & h_1\left(1,2\right) = & 2 & \text{(or = Equivalence Class 2)} \\ h_1\left(1,0\right) = & h_1\left(2,\,0\right) = & h_1(2,\,1) = & 3 & \text{(or = Equivalence Class 3)} \\ h_1\left(2,\,2\right) = & 4 & \text{(or = Equivalence Class 4)} \\ \end{array}$$

 h_2 identity function:

$$h_2(reset) = reset$$

Given the abstraction functions h_1 and h_2 , we use standard existential abstraction techniques to compute the abstract model \widehat{M} .

4.2 Model Checking the Abstract Model

Given

- an ACTL* specification φ
- an abstraction function h (φ respects $\Box h$)
- a program P with a finite set of variables $\Box V = \{v_1, \dots, v_n\}$

Let

- \widehat{M} the abstract Kripke structure
- h the abstraction function that \widehat{M} corresponds to

Does $\widehat{\mathit{M}}\ \ \text{satisfy}$ the specification (satisfiable formula) ϕ ?

If yes

- By Theorem 1 we can conclude that the original Kripke structure $\it M$ also satisfies $\it \phi$. If no:
- Firstly we assume the model checker is producing a counterexample \widehat{T} corresponding to the abstract model \widehat{M} . Implying an spurious counterexample \widehat{T} is assumed.

Identification of Spurious Path Counterexamples

$$\widehat{T}$$
 is a path $\langle \widehat{s_1}, \cdots, \widehat{s_n} \rangle$

the set of abstract states \hat{s}

the set of concrete states s such that $h(s) = \widehat{s}$ is denoted by $h^{-1}(\widehat{s})$

i.e.,
$$h^{-1}(\widehat{s}) = \{ s \mid h(s) = \widehat{s} \}$$

 $h^{-1}_{\ path}$ is the same as h^{-1} , since h^{-1} is applied to a sequence

$$h^{-1}(\widehat{T}) = \{ \langle s_1, \cdots, s_n \rangle \mid \bigwedge h(s_i) = \widehat{s_i} \wedge I(s_1) \wedge \bigwedge R(s_i, s_{i+1}) \}$$

i = 1 i = 1

Algorithm to compute $h^{-1}(\widehat{T})$:

Let

$$S_1 = h^{-1} (\widehat{s}_1) \cap I$$

R transition relation on M

Define:

$$S_i := Img(S_{i-1}, R) \cap h^{-1}(\widehat{s_i}), \quad 1 < i \leq n$$

Where:

 $Img(S_{i-1}, R)$: forward image of S_{i-1} with respect to transition relation R

 S_1 through S_n is computed using Ordered Binary Decision Diagrams and Img(...)

Lemma 1)

- (i) Abstract path \hat{T} corresponds to a concrete path T (concrete counterexample)
- (ii) The set of concrete paths $T = h^{-1}(\widehat{T})$ is non-empty
- (iii) $\forall 1 \leq i \leq n$, $S_i \neq \emptyset$.

Note: $h^{-1}(\widehat{T}) \neq \emptyset$ implies the counterexample $T \square$ is spurious)

Lemma 1 implies:

 h^{-1} $(\widehat{T}) \neq \emptyset$ then there exists a minimal i, $2 \le i \le n$ such that $S_i = \emptyset$

Side Note

است. پس از اینکه یک حلقه باز می شود، شرط حلقه برای چک کردن وجود ندارد و در هر مرحله اجرای حلقه، شاخه های کمتری اجرا می شوند. در مجموع با استفاده از تکنیک بازکردن حلقه، سرعت اجرای برنامه افزایش می یابد و از سوی دیگر، حجم کد برنامه افزایش خواهد یافت. تکنیک بازکردن حلقه، بخشی از روشهای درستی یابی صوری (Formal Verification) است، که کاربرد ویژه آن در زمینه و ارسی مدل می باشد.

Fig 3. An abstract counterexample

Fig 4. SplitPath checks spurious path

Algorithm SplitPath

$$S = h^{-1}(\widehat{s_1}) \cap I$$

$$j := 1$$
While $(S \neq \emptyset)$ and $j < n$)
$$j := j + 1$$

$$S_{prev} := S$$

$$S := Img(S_{prev}, R) \cap h^{-1}(\widehat{s_j})$$

if $S \neq \emptyset$ then output counterexample (S) [genuine] else output j, S_{prev} [spurious]

Example 3)

Consider a program with only one variable with domain $D = \{1, \dots, 12\}$

Assume the abstraction function $h(x) = \lfloor (x-1)/3 \rfloor + 1$

There are four abstract states corresponding to the —equivalence classes—

equivalence class $s_1 = \{1, 2, 3\}$ equivalence class $s_2 = \square\{4, 5, 6\}$ equivalence class $s_3 = \{7, 8, 9\}$ equivalence class $s_4 = \{10, 11, 12\}$

The $transitions\ between\ states\ (R)$ in the concrete model are indicated by the arrows in Figure 3;

- big dots denote reachable states
- small dots denote non-reachable states

abstract counterexample $\widehat{T} = \langle \Box \widehat{1}, \widehat{2} \Box, \Box \widehat{3}, \Box \widehat{4} \rangle$ is spurious

Identification of Spurious Loop Counterexamples

When abstract counterexample \widehat{T} is a loop:

$$\widehat{T} \ = \ \langle \widehat{s}_1, \, \cdots, \, \widehat{s}_i \rangle \langle \widehat{s}_{i+1}, \, \cdots, \, \widehat{s}_n \, \rangle^{\omega}$$

Each arbitrary s_j is an actual state Each arbitrary s_j is an abstract state

Example 4)

Consider a loop
$$\langle \widehat{s_1} \rangle \langle \widehat{s_2}, \widehat{s_3} \rangle^{\omega}$$

Does the abstract loop correspond to concrete loops?

An example cycle is indicated by a fat dashed arrow.

Observe:

- (i) A given abstract loop may correspond to several concrete loops of different size
- (ii) Each of these loops may start at different stages of the unwinding

(iii) The unwinding eventually becomes periodic (in our case $S^0_3 = S^2_3$), but only after several stages of the unwinding.

size of the loop's period = least common multiple (Loop1Size, ..., LoopNSize)

- Hence size of the loop's period in general exponential
- Hence naive algorithms may have exponential time complexity due to an exponential number of loop unwindings.

for
$$\widehat{T} = \langle \widehat{s}_1, \dots, \widehat{s}_i \rangle \langle \widehat{s}_{i+1}, \dots, \widehat{s}_n \rangle^{\omega}$$

the number of unwindings = $min_{i+1 \le j \le n} \mid h^{-1}(\widehat{s_j}) \mid$

Meaning if there's a state set $s_j = h^{-1}(\widehat{s_j})$ with set size \mathbf{x} ($|s_j| = |h^{-1}(\widehat{s_j})| = \mathbf{x}$) and \mathbf{x} is the minimum set size amongst all $s_1 = h^{-1}(\widehat{s_{i+1}})$, ..., $s_n = h^{-1}(\widehat{s_n})$ then the number of unwindings is equal to \mathbf{x}

the number of unwindings is at most the number of concrete states $\mid s_j \mid$ for any abstract state $\mid \widehat{s_k} \mid$ in the loop.

Let $\widehat{T}_{\mathit{unwind}}$ denote a unwinded loop counterexample

i.e. let
$$\widehat{T}_{unwind} = \langle \widehat{s}_1, \dots, \widehat{s}_i \rangle \langle \widehat{s}_{i+1}, \dots, \widehat{s}_n \rangle^{min}$$

Then theorem 2 holds.

Theorem 2)

the followings are equivalent:

(i) \widehat{T} corresponds to a concrete counterexample

(ii)
$$h_{path}^{-1}$$
 (\widehat{T}_{unwind}) $\neq \emptyset$

4.3 Refining the Abstraction

Path Refining:

Let

- **a** abstract counterexample $\widehat{T} = \langle \Box \widehat{s_1}, \ldots, \Box \widehat{s_n} \rangle$ a path.
- **b** \widehat{T} does not correspond to a real counterexample,

b implies, by Lemma 1 part (iii), that

 \exists set $S_i \subseteq h^{-1}(\widehat{s_i}) = s_i$ with $1 \le i < n$ such that $Img(S_i, R) \cap h^{-1}(\widehat{s_{i+1}}) = \emptyset$ and S_i is reachable from initial state set $h^{-1}(\widehat{s_1}) \cap I$.

since there is a transition R from abstract state $\widehat{s_i}$ to abstract state $\widehat{s_{i+1}}$ in the abstract model then there is at least one transition R from concrete state $s_i = h^{-1}(\widehat{s_i})$ to concrete state $s_{i+1} = h^{-1}(\widehat{s_{i+1}})$, even though there is no transition R from S_i to $h^{-1}(\widehat{s_{i+1}})$

We partition the concrete state $s_i = h^{-1}(\widehat{s_i})$ into three subsets $S_{i,0}$, $S_{i,1}$, and $S_{i,x}$ where:

In simple words:

- $-S_{i,0}$ the set of initial states
- $-S_{i,1}$ the set of states in $h^{-1}(\widehat{s}_i) = s_i$ that are not not reachable from initial states
- $-S_{i,x}$ the set of every other states that is in $h^{-1}(\widehat{s_i}) = s_i$ but not in $S_{i,0}$ or in $S_{i,1}$

Remembering Example 3, S_3 would be:

$$S_{3,0} = \{9\}$$

 $S_{3,1} = \{7\}$
 $S_{3,x} = \{8\}$

 $S_{i,1} \neq \emptyset \rightarrow \text{there is a spurious transition } \widehat{s}_i \rightarrow \widehat{s}_{i+1}$

This causes spurious counterexample \hat{T}

Hence we need a refined abstraction function h such that

if
$$s \in [h^{-1}(\widehat{s_i}) = s_i]$$
 then $\neg (s \in S_{i,0} \land s \in S_{i,1})$

Theorem 3.

- (i) The <u>problem of finding the coarsest abstract function h refinement</u> is NP-hard;
- (ii) $S_{i,x} = \emptyset$ then the <u>problem of finding the coarsest abstract function h refinement</u> can be solved in polynomial time.

Note:

Partition Into Cliques can be reduced to the <u>problem of finding the coarsest abstract function h refinement</u>

For when $S_{i,x} = \emptyset$

Let

 P_{j^+} , P_{j^-} projection functions such that

where

$$s = (d_1,...,d_m),$$

$$P_{j+}(s) = d_j$$
 and $P_{j-}(s) = (d_1,...,d_{j-1},d_{j+1},...,d_m)$

Then:

$$proj(S_{i,0}, j, a) = \{ P_{j-}(s) \mid P_{j+}(s) = a, s \in S_{i,0} \}$$

Hence $proj(S_{i,0}, j, a) \neq proj(S_{i,0}, j, b)$ in the <u>abstraction function h refinement algorithm</u>

Means that

$$\exists \quad P_{j^{-}}(s) = (\ d_{1},...,\ d_{j^{-1}}\ ,\ d_{j^{+1}}\ ,...,d_{m}) \quad \sqsubseteq \quad proj(S_{i,0},\ j,\ a) \ \land \quad P_{j^{-}}(s) = (\ d_{1},...,\ d_{j^{-1}}\ ,\ d_{j^{+1}}\ ,...,d_{m}) \quad \not\sqsubseteq \quad proj(S_{i,0},\ j,\ b)$$

According to definition:

$$proj(S_{i,0},j,a)$$
 implies $s_1 = (d_1,...,d_{j-1},a, d_{j+1},...,d_m) \in S_{i,0}$

Hence

$$s_2 = (d_1,...,d_{j-1},b,d_{j+1},...,d_m) \not\equiv S_{i,0}$$

i.e.
$$s_2 = (d_1,...,d_{j-1},b,d_{j+1},...,d_m) \in S_{i,1}$$

s₁ and s₂ only different in jth element

Hence to separate s1 and s2 into different equivalence classes

a and b have to be in different equivalence classes of $\equiv 'j$, i.e., $a/\equiv 'j$ b.

Lemma 2.

When $S_{i,x} = \emptyset$, the relation \equiv_j computed by **PolyRefine** is an equivalence relation which refines \equiv_j and separates $S_{i,0}$ and $S_{i,1}$. Furthermore, the equivalence relation \equiv_j is the coarsest refinement of \equiv_j .

In this paper, the following heuristics is used:

- Merging the states in Si,x into Si,1,
- using the algorithm PolyRefine to find the coarsest refinement that separates the sets Si,0 and Si,1 ∪ Si,x.

This heuristics isn't optimal but has given good practical results to the authors Works the same manner for SplitLoop once its unwinded

Theorem 4. Given a model M and an ACTL* specification φ whose counterexample $\Box\Box$ is either path or loop, our algorithm will find an abstract model \widehat{M} such that $\widehat{M} \models \varphi \Leftrightarrow M \models \varphi$.

5 Performance Improvements

Fig. 8. A spurious loop counterexample $(\widehat{1}, \widehat{2})^{\omega}$

Two-phase Refinement Algorithms

When spurious path (1,1,1,...) is detected in abstract model but this is needed in concrete one, we use :

$$S_{\mathrm{local}} := (\bigcup_{1 \leq i \leq n} \, h^{-1}(\widehat{s_i}))$$

Approximation

Using early approximation to avoid turning the whole abstract model \widehat{M} to concrete model M

Abstractions For Distant Variables

Using user provided constant to completely abstract variables whose distance from the specification in the *variable de- pendency graph* is greater than the user intends