Homework 7 Due Wednesday, November 2nd

- 1. Let \mathcal{C}, \mathcal{D} , and \mathcal{E} be categories and let F, G be functors of two variables (both contravariant in the first variable and covariant in the second variable) from $\mathcal{C} \times \mathcal{D}$ to \mathcal{E} . Give a definition of a natural transformation from F to G.
- 2. Show that the map assigning to a ring its group of (multiplicative) units defines a functor $\mathbb{G}_m : \mathcal{R}ing \longrightarrow \mathcal{G}rp$ from the category of (non-trivial) rings with 1 to the category of groups. Show by an explicit example that this functor is not faithful.
- **3**. If $F: \mathcal{C} \to \mathcal{D}$ is a covariant functor, let $\mathcal{I}m F$ consist of the objects $\{F(A) \mid A \in Obj(\mathcal{C})\}$ and morphisms $\{F(f) \mid f: A \to B \in Mor(\mathcal{C})\}$. Then show that $\mathcal{I}m F$ need not be a category. If the object function of F is injective or F is a full functor, then show that $\mathcal{I}m F$ is a category.
- 4. Construct functors as follows:
- (a) A covariant functor $\mathcal{G}rp \to \mathcal{S}et$ that assigns to each group the set of all its subgroups.
- (b) A covariant functor $\mathcal{R}ing \to \mathcal{R}ing$ that assigns to each ring R the polynomial ring R[x].
- (c) A functor covariant in both variables $\mathcal{M} \times \mathcal{M} \to \mathcal{M}$ such that $(A, B) \mapsto A \oplus B$.
- **5**. Let \mathcal{V} be the category whose objects are all finite dimensional vector spaces over a field F (of characteristic $\neq 2, 3$) and whose morphisms are all vector-space isomorphisms.
- (a) Construct a covariant functor $F: \mathcal{V} \to \mathcal{V}$ such that $F(V) = V^*$, where $V \in Obj(\mathcal{V})$ and $V^* = Hom_F(V, F)$ is the dual of V.
- (b) For each $V \in Obj(\mathcal{V})$ choose a basis $\{e_1, \ldots, e_n\}$ and let $\{\delta_1, \ldots, \delta_n\}$ be the dual basis of V^* . Define a map $\alpha_V : V \to V^*$ via $e_i \mapsto \delta_i$. Show that the assignment $V \mapsto \alpha_V$ is not a natural isomorphism from the identity functor $\mathcal{I}_{\mathcal{V}}$ to F (Hint: consider a one-dimensional vector space with basis $\{e\}$ and let f(e) = ce with $c \neq 0, \pm 1$).
- **6**. Prove that covariant representable functors $Set \to Set$ preserve surjective maps.
- 7. Show that the forgetful functor $\mathcal{R}ing \to \mathcal{S}et$ is representable.
- 8. Show that the forgetful functor $\mathcal{T}op \to \mathcal{S}et$ is representable.
- **9**. Show that if $F: \mathcal{C} \to \mathcal{S}et$ is a covariant functor that has a left adjoint, then F is representable.
- **10**. Let X be a fixed set and define a functor $F_X : Set \to Set$ by $Y \mapsto X \times Y$. Show that F_X is a left adjoint of the covariant hom functor $h_X = Hom_{Set}(X, -)$.