Cl2612: Algoritmos y Estructuras de Datos II

Blai Bonet

Universidad Simón Bolívar, Caracas, Venezuela

Objetivos

- Introducir los problemas de ordenamiento y cálculo de estadísticos
- Discutir su relevancia y resultados

Problema de ordenamiento y cálculo de estadísticos

© 2018 Blai Bonet

Ordenamiento

Dada una secuencia $\{a_1,a_2,\ldots,a_n\}$ de n números, un algoritmo de ordenamiento produce una permutación (reordenamiento) $\langle a'_1,a'_2,\ldots,a'_n\rangle$ de la entrada tal que $a'_1\leq a'_2\leq\cdots\leq a'_n$

Sin embargo, lo que frecuentemente ordenamos son secuencias de registros donde cada registro tiene una clave asociada, tomada de un universo ${\cal U}$

Los datos que acompañan a la clave en un registro se llaman datos satélite

El universo U es **totamente ordenado**: dadas claves k_1 y k_2 en U, uno y sólo uno de los siguientes se cumple $k_1 < k_2$, $k_1 = k_2$, o $k_2 < k_1$

Aunque presentamos algoritmos de ordenamiento para números, un algoritmo de ordenamiento debe lidiar con los datos satélite

© 2018 Blai Bonet

© 2018 Blai Bonet

Propiedades de algoritmos de ordenamiento

Un algoritmo de ordenamiento es:

- "in place": si a lo sumo un número constante de elementos de la entrada son guardados fuera del arreglo de entrada durante la ejecución
- **estable:** si dos elementos a_i y a_j que sean iguales aparecen en la salida en el mismo orden relativo al que aparecen en la entrada (i.e. si $a_i = a_j$ e i < j, entonces los elementos $a'_{i'}$ y $a'_{j'}$ en la salida que refieren a a_i y a_j son tales que i' < j')

© 2018 Blai Bonet

Comparación de algoritmos de ordenamiento

Algoritmo	Tiempo en el peor caso	Tiempo promedio/esperado	Propiedades estable/in-place
Insertion-Sort	$\Theta(n^2)$	$\Theta(n^2)$	estable/in-place
Mergesort	$\Theta(n \log n)$	$\Theta(n \log n)$	estable
Heapsort	$\Theta(n \log n)$	$\Theta(n \log n)$	in-place
Quicksort	$\Theta(n^2)$	(promedio) $\Theta(n \log n)$	in-place
Randomized-Quicksort	$\Theta(n^2)$	(esperado) $\Theta(n \log n)$	in-place
Counting-Sort	$\Theta(k+n)$	$\Theta(k+n)$	estable
Radix-Sort	$\Theta(d(n+k))$	$\Theta(d(n+k))$	estable
Bucket-Sort	$\Theta(n^2)$	(promedio) $\Theta(n)$	estable

Importancia del problema de ordenamiento

- Un arreglo ordenado permite hacer búsqueda binaria
- Varios algoritmos fundamentales requieren hacer algún tipo de ordenamiento dentro de su ejecución
- Ordenamiento también se utiliza para remover duplicados y para construir formas canónicas de objetos

• . . .

© 2018 Blai Bonet

Cálculo de estadísticos de orden

El i-ésimo estadístico de orden de un conjunto de n elementos es el i-ésimo menor elemento del conjunto

Ordenando el conjunto podemos seleccionar el $i\text{-}\acute{\text{e}}\text{simo}$ estadístico en tiempo $O(n\log n)$

Veremos dos algoritmos eficientes para calcular estadísticos:

- algoritmo randomizado que corre en tiempo esperado ${\cal O}(n)$
- algoritmo determinístico que corre en tiempo O(n) en el peor caso

© 2018 Blai Bonet

© 2018 Blai Bonet