1 Exercise 1

Figure 1: Something

- 1.2 since small Overlap was the same, took half the data for test and half for train
- 2.2: * do training set over some values of lambda * use that to pick lambda * test on 'validation' data and report an error value
 - 2.3: will need to plot lambda versus sparsity
- 2.4: * do training set over some values of bandwidth with lambda = 0 * do validation set over some values of lambda * test on test and report results
 - 2.5: * will need to think about this a little bit more.
- 3.1: * https://piazza.com/class/hzdfawvtilo7hf?cid=434 * L2 regularization, linear case * http://blog.datumbox.com/machine-learning-tutorial-the-multinomial-logistic-regression-softmax-regression/
 - * maybe need to save coefficients or predictions or something?
- 3.1 LR: * 2 features, 100 pts, 2 classes, l = 0.01 -; error = .485 * might need to randomly select subsets of data points
- * tips for getting numerics to work better: * normalize data beforehand (then don't forget to re-normalize later) *
- 3.2 multiclass SVM: * used http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.htm * can do this SO FAST it doesn't even make sense to try to do this by myself.
- * tried an array of l values with L1 loss (multiclasssym.py), best L with random partitioning of data into 3 sets. rigorous stopping criteria * hinge loss, l2 regularization: * validation error: .187 * test error: .261 * l: 0.01 * squared loss, l1

regularization: * validation error: .143 * test error: .143 * l: 7e-7