Introdução à Computação Gráfica Cor

Claudio Esperança Paulo Roma Cavalcanti

Cor

- O que é cor?
 - Cor é uma sensação produzida no nosso cérebro pela luz que chega aos nossos olhos.
 - É um problema <u>psico-físico</u>.

Paradigmas de Abstração

- Universos: físico → matemático → representação → codificação.
- Luz → modelo espectral → representação tricromática → sistemas de cor.

Modelo Espectral de Cor

- Luz é uma **radiação** eletro-magnética que se propaga a $3x10^5$ km/s ($E = h \cdot v$, $c = \lambda \cdot v$).
 - h é a constante de Planck (6.626 ×10⁻³⁴ J·s).
- Luz branca é uma *mistura* de radiações com diferentes comprimentos de onda.

Campo Eletro-Magnético

Figure 2.16 Convention for wave reflection/refraction at an interface

Reflexão e Refração

$$sen \ \theta_r = \frac{\eta_2}{\eta_1} \quad sen \ \theta_i \qquad lei \ de \ Snell$$
 (1621)

$$\eta_{i} = \frac{\text{velocidade da luz no vácuo}}{\text{velocidade da luz no material i}}$$

luz branca (acromática) tem todos os comprimentos de onda

Modelo Matemático de Cor

- Universo matemático é o conjunto D de todas as funções de distribuição espectral.
- Função de distribuição espectral relaciona: comprimento de onda com uma grandeza radiométrica.

$$D = \left\{ f : U \subset \mathfrak{R}^+ \to \mathfrak{R}^+ \right\}$$

Espectro Visível

Luz Visível

Range (nm)	Colour
380 – 450	Violet
450 – 490	Blue
490 – 560	Green
560 – 590	Yellow
590 – 640	Orange
640 – 730	Red

Sistemas Físicos de Cor

- O olho é um sistema físico de processamento de cor (sistema refletivo).
 - Similar a uma câmera de vídeo.
 - Converte luz em impulsos nervosos.

Percepção de Cor

- Diferente para cada espécie animal.
- Dentre os mamíferos, só o homem e o macaco enxergam cores.
- Aves têm uma visão muito mais acurada do que a nossa.

Representação

- Amostragem gera uma representação **finita** de uma função de distribuição espectral.
- Todo sistema refletivo possui um número **finito** de sensores, que fazem uma amostragem em *n* faixas do espectro.

Amostragem

$$C(\lambda) \rightarrow (c_1, c_2, ..., c_n), c_i = \int_0^\infty C(\lambda) s_i(\lambda) d\lambda$$

• $s_i(\lambda)$ é a função de resposta espectral do i-ésimo sensor.

Sistema Visual Humano

- Dois tipos de células receptoras com sensibilidades diferentes: cones e bastonetes.
 - ◆ Bastonetes → luz de baixa intensidade (sem cor).
 - ◆ Cones → luz de média e alta intensidade (com cor).
- Três tipos de cones que amostram: comprimento de onda curto (azul), médio (verde) e longo (vermelho).

Tipos de Cones

Eficiência Luminosa

- Brilho aparente varia com o comprimento de onda.
- Pico do brilho é diferente para níveis baixos (bastonetes), médios e altos (cones).
 - Máximo na faixa do verde.

Eficiência Luminosa Relativa

Sistemas Emissivos

• Sistemas **emissivos** reconstroem cores a partir de emissores que formam uma base de primárias, $P_{\rm k}$

$$C_{r}(\lambda) = \sum_{k=1}^{n} c_{k} P_{k}(\lambda).$$

Amostragem e Reconstrução

- A cor reconstruída deve ser perceptualmente igual a cor original.
 - É possível devido ao metamerismo.
 - Cores metaméricas são perceptualmente idênticas.

O Problema De Reprodução De Cor Em CG

Espaço Virtual

- mesma sensação de cor
- ⇒ Metamerismo
- só distingue 400 mil cores ($< 2^{19}$) \Rightarrow 19 bits deveriam ser suficientes

Representação Discreta de Cor

- O espaço de todas as distribuições espectrais possui dimensão **infinita**.
- Representação **finita** requer um processo de amostragem.
 - Aproxima um espaço de dimensão infinita por um espaço de dimensão finita (há perda de informação).
- Pode-se utilizar um vetor de dimensão finita na representação discreta de cor.

$$R: f \in D \to (f(x_1), f(x_2), ..., f(x_n)) \in \Re^n$$

Espaço Perceptual de Cor

- Representação define uma transformação linear.
 - De acordo com os experimentos de Young em 1807.

$$R(af_1 + bf_2) = aR(f_1) + bR(f_2)$$

- Espaço perceptual de cor é de dimensão 3.
- Representação discreta associa um conjunto de distribuições espectrais ao mesmo ponto do R^3 (metamerismo).

Metamerismo

Reconstrução de Cor

- Dados
 - Uma função de distribuição espectral $C(\lambda)$,
 - Um sistema emissivo com base P_k
 - E um sistema refletivo,
- Como calcular as componentes na base de primárias de forma a que a cor reconstruída seja perceptualmente equivalente a cor original?

Funções de Reconstrução de Cor

• Uma vez que se conheça a resposta espectral do sistema, prova-se que:

$$C_r(\lambda) = \sum_{k=1}^n c_k P_k(\lambda), c_k = \int_0^\infty C(\lambda) r_k(\lambda) d\lambda$$

 $r_k(\lambda)$ são as funções de reconstrução de cor.

Resposta Espectral

- Cor espectral desconhecida à esquerda.
- Três cores padrão de cada lado.
- Intensidade de cada cor padrão varia de forma independente.

Diagrama de Cromaticidade

Intensidade Negativa?

- Podem haver cores que não são igualadas pelas três cores padrão apenas.
 - Nesse caso, adiciona-se uma cor padrão ao lado esquerdo também (correspondendo, matematicamente, a uma intensidade negativa).

Sólido de Cor

- Conjunto de todas as cores visíveis forma um cone convexo, chamado de sólido de cor.
 - Combinação convexa de duas distribuições espectrais é uma distribuição espectral.
 - Cada distribuição espectral corresponde a um único ponto no espaço de cor.
 - Aplicação de representação é linear.
 - Espaço de cor é o conjunto das retas que passam pela origem.

Sólido de Cor

Propriedades

- $C(\lambda)$ é cor visível \Rightarrow t $C(\lambda)$ é cor visível.
 - $R(t C(\lambda)) = t R(C(\lambda)).$
- $C_1(\lambda)$ e $C_2(\lambda)$ são cores visíveis \Rightarrow (1-t) $C_1(\lambda)$ + t $C_2(\lambda)$, t \in [0,1], é cor visível.
 - $R((1-t) C_1(\lambda) + t C_2(\lambda)) = (1-t) R(C_1(\lambda)) + t R(C_2(\lambda)).$

Diagrama de Cromaticidade

- Projeta-se radialmente o sólido de cor no plano de Maxwell: x + y + z = 1.
 - A interseção do sólido de cor com o plano de Maxwell é uma curva convexa.
 - Cores espectrais correspondem a pontos na fronteira do diagrama de cromaticidade.

Coordenadas de Cromaticidade

- Reta que passa pela origem e por uma cor *C*.
 - $\{p; p = tC, t \in R\}.$
- Projeção $c = (c_r, c_g, c_b)$ no plano de Maxwell impõem $c_r + c_g + c_b = 1$.
- $t(C_r + C_g + C_b) = c_r + c_g + c_b = 1 \Rightarrow t = 1/(C_r + C_g + C_b)$ $\Rightarrow c_i = C_i/(C_r + C_g + C_b).$

Luminância

- Dada uma luz monocromática com potência constante de 1W, como varia a resposta do olho a este estímulo, em função do comprimento de onda?
 - A resposta é <u>máxima</u> para λ = 555 nm (verde).
- Luz monocromática com λ = 555 nm e 1W de potência produz 680 lumens.
- A constante $K(\lambda) = 680 V(\lambda) lm/W$ permite converter de watts para lumens.

Cálculo da Luminância

- Luminância é uma grandeza colorimétrica que corresponde aos termos perceptuais de **brilho** (emissores) ou **luminosidade** (refletores).
- Luminância é um funcional linear.

$$L: \varsigma = \Re^3 \to \Re$$

$$L(C(\lambda)) = K(\lambda) \int_0^\infty C(\lambda) V(\lambda) d\lambda$$

$$L(C(\lambda)) = < L, c > = < (0.177, 0.812, 0.016), (c_r, c_g, c_b) >$$

Decomposição Crominância-Luminância

- Coordenadas de cromaticidade captam a noção da **matiz** de uma cor.
- Juntamente com a informação de intensidade ou luminância determinam <u>unicamente</u> uma cor.

Núcleo do Funcional de Luminância

 Todo vetor de um espaço vetorial pode ser escrito, de modo único, como soma direta de um vetor do núcleo de um funcional linear e de um vetor pertencente a um espaço complementar ao núcleo.

$$\ker(L) = \{c \in \Re^3 : L(c) = 0\}$$

$$c = \ker(L) \oplus \ell, c = c_c + c_l$$

Propriedade

- Dimensão do núcleo mais a dimensão da imagem de uma transformação linear é igual a dimensão do domínio da transformação.
 - \bullet Seja $L: \Re^n \to \Re^m$. Então,
 - $\dim(\ker(L)) + \dim(\operatorname{Im}(L)) = n$.
 - ◆ Logo, a dimensão do núcleo do operador de luminância é igual a 2.

Plano de Crominância

• Se duas cores tem a mesma luminância, então elas estão em um hiperplano afim, paralelo ao núcleo do operador de luminância.

$$L(c_1 - c_2) = 0 \Longrightarrow c_1 - c_2 \in \ker(L)$$

 Cada hiperplano afim paralelo ao núcleo do operador de luminância é chamado de um hiperplano de crominância (luminância constante).

Núcleo do Operador de Luminância

Cor Dominante e Complementar

Saturação e Cor Complementar no Diagrama de Cromaticidade xy

saturação de
$$C_1 = \frac{a}{a+b}$$

$$\underline{\mathbf{C}}$$
 é complementar a C
⇔
$$\alpha \underline{\mathbf{C}} + \beta \mathbf{C} = \mathbf{Branco}$$

Diagrama de Cromaticidade XYZ

Padrão CIE

- CIE Comission Internationale de L'Eclairage (criada em 1913).
- Padrão CIE-RGB (1931) apresenta coordenadas negativas.
- Padrão CIE-XYZ foi criado para evitar coordenadas negativas.
 - Primárias não estão contidas no sólido de cor.
- Conversão CIE-RGB para CIE-XYZ é uma mera mudança de sistema de coordenadas.

Bases CIE

• Bases CIE (vetores coluna).

rgb	Х	У	Z	xyz	r	g	b
\mathbf{r}	1.2750	-1.7395	-0.7431	x	0.73467	0.27376	0.16658
g	-0.2779	2.7675	0.1409	У	0.26533	0.71741	0.00886
b	0.0029	-0.0280	1.6022	Z	0.00000	0.00883	0.82456

Criação do Sistema XYZ

- Duas cores primárias têm luminância zero.
- Informação de <u>luminância</u> na componente Y.
- Traça-se uma reta coincidente com o segmento quase retilíneo do diagrama de cromaticidade.
 - Interseção desta reta com a reta de luminância zero define a primária X.

Construção Geométrica

- As duas outras primárias ficam definidas traçando-se uma outra reta tangente ao diagrama de cromaticidade.
 - Esta reta minimiza a área do triângulo formado pela reta de luminância zero, a reta anterior e esta reta.
 - ◆ Z está sobre a reta de luminância zero.

Sistema xyY

- O diagrama de cromaticidade retira a luminância.
 - ◆ Cores relacionadas com luminância não aparecem (marrom = vermelho-alaranjado com luminância muito baixa).
- Coordenadas xyY permitem que se faça uso do diagrama de cromaticidade na especificação de cores.

Sistema xyY

$$x = \frac{X}{X + Y + Z}, y = \frac{Y}{X + Y + Z}, z = \frac{Z}{X + Y + Z}$$

$$X = \frac{x}{y}Y, y = Y, Z = \frac{z}{y}Y \Rightarrow (X, Y, Z) = Y\left(\frac{x}{y}, 1, \frac{1 - x - y}{y}\right)$$

Conversão RGB-XYZ

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} x_r C_r & x_g C_g & x_b C_b \\ y_r C_r & y_g C_g & y_b C_b \\ (1-x_r-y_r)C_r & (1-x_g-y_g)C_g & (1-x_b-y_b)C_b \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix} = M \begin{pmatrix} C_r R \\ C_g G \\ C_b B \end{pmatrix},$$

onde,
$$C_r = X_r + Y_r + Z_r$$
; $C_g = X_g + Y_g + Y_b$; $C_b = X_b + Y_b + Z_b$

- Dispõem-se das coordenadas de cromaticidade xyz.
 - C_r , C_g , C_b escalam apropriadamente os vetores da base.
- É necessário que se conheçam as coordenadas tricromáticas de um ponto.

Branco Padrão

• Normalmente, usam-se as coordenadas tricromáticas (X_w, Y_w, Z_w) do branco padrão de referência: $(R_w, G_w, B_w) = (1, 1, 1)$.

$$\begin{pmatrix} X_w \\ Y_w \\ Z_w \end{pmatrix} = M \begin{pmatrix} C_r \\ C_g \\ C_b \end{pmatrix} \Rightarrow \begin{pmatrix} C_r \\ C_g \\ C_b \end{pmatrix} = M^{-1} \begin{pmatrix} X_w \\ Y_w \\ Z_w \end{pmatrix}.$$

Matriz de Conversão

• Fazendo as contas usando (X_w, Y_w, Z_w) = (R_w, G_w, B_w) = (1, 1, 1), obtém-se:

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 0.489989 & 0.310008 & 0.200003 \\ 0.176962 & 0.812400 & 0.010638 \\ 0.000000 & 0.009999 & 0.990001 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix},$$

$$\begin{pmatrix} R \\ G \\ B \end{pmatrix} = \begin{pmatrix} 2.364666 & -0.896583 & -0.468083 \\ -0.515155 & 1.426409 & 0.088746 \\ 0.005203 & -0.014407 & 1.009204 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}.$$

Sistemas de Cor

- Espaço de cor + sistema de coordenadas.
 - Sistemas Padrão.
 - Sistemas dos Dispositivos.
 - Sistemas Computacionais.
 - Sistemas de Interface.

Sistemas Padrão

- Independentes de dispositivos físicos.
- CIE-RGB.
 - 700 mμ (Red), 546 mμ (Green), 435.8 mμ (Blue).
- CIE-CMY.
 - Ciano (azul piscina), Magenta (violeta), Amarelo.
- CIE-XYZ.

Sistema CMY

- Sistema das Impressoras.
 - CMY ou CMYK.
- Processo
 predominantemente
 subtrativo.

componente vermelha é absorvida

Sistemas dos Dispositivos

- Subconjunto do sólido de cor.
 - Contém todas as cores que podem ser geradas pelo dispositivo (combinação convexa da base de primárias do dispositivo).
- Forma de paralelepípedo e as faces são paralelogramos.
- Mudando-se as coordenadas ganha a forma de um **cubo**.

Cubo RGB

Gamutes

Gamute

Sistemas Computacionais

- Utilizados para **síntese** de imagens.
- Não são adequados à especificação de cor por um usuário.
- Pode ter dimensão maior do que três.

Sistemas de Interface

- Oferecem uma interface adequada a especificação de cores por um usuário comum.
- Em geral, especificam cores através de três parâmetros: <u>matiz</u>, <u>saturação</u> e <u>luminância</u>.

Tipos de Sistema de Interface

- Baseados em coordenadas: HSV, HSL.
- Baseados em **amostras**: Pantone, Munsell.

Paradigmas de Cor

Sistema HSV

- Criado por Alvy Ray Smith.
- Projeta o cubo RGB ortogonalmente sobre o plano: x + y + z = 3.
- Conversão para RGB <u>não</u> é uma transformação linear.

Visualização do Sistema HSV

HSV color picker from Mac OS X's Finder

Conversão RGB-HSV

Sistema HSL

• Sistema

H (Hue)

S (Saturation)

L (Lightness)

- Patenteado pela Tektronix.
- Baseado no HSV.

Sistema HSL

Sistemas Baseados em Amostras

- Amostram matizes, saturação e luminância.
- Sistema de Munsell (1915).
 - Obedece o critério da uniformidade perceptual.
- Sistema Pantone (1960).
 - Criado pela indústria gráfica.
 - Usado no processo de impressão em papel.

Sistema de Munsell

Correção Gama

- Assume luminância proporcional à voltagem.
 - ◆ Mas não é !!
- Luminância \propto Voltagem $^{\gamma}$.
 - γ entre 1.5 e 3.0 (depende do monitor).
 - Deve pré-compensar valores RGB.
- Alguns monitores fazem a correção gama por hardware, outros não.