Integrált Informatikai Rendszerek Dolgozat

A koronavírus betegség, egy vírusos, léguti megbetegedés, amelyet a SARS-CoV-2 nevű koronavírus okoz. A járvány hivatalosan 2020 március 11.-én lett kihrdetve, a a Egészségügyi Világszervezet által. A betegség kezelésére sem hatásos gyógyszer, sem megelőzést lehetővé tevő védőoltás sem áll rendelkezésre. A vírus cseppfertőződésen keresztül terjed, Miután felfedezték a vírust Kína, Wuhan nevű városában, 2019 decemberében, néhány hónap múlva világszerte elterjedt.

A bemutató a COVID-19 világjárvány, romániai, helyzetéről hivatott tájékoztatni a lakosokat tehát a célközönség a román állampolgárok és bármilyen érdeklődő, akit foglalkoztat a romániai lakosság helyzete a koronavírussal szemben, mivel ahogy a vizualizációkon is látszik, majdnem 7%-os halálozási rátával jár a vírus, ami nem egy kis szám a 16 000 eddigi fertőzöttből. Semmi képp nem lehet kis számba venni a jelenlegi helyzetet, és fontos hogy tekintettel legyünk a koronavírussal szemben legsebezhetőbb korcsoportra, a 50 év feletti személyekre.

Véleményem szerint fontos hogy mindenki tájékoztatva legyen a helyzetről, mivel láthattuk hogy sokan figyelmen kívül hagyták a nemzetközi felhívásokatés szabályozásokat. A bemutató hivatott hangsúlyozni és informálni az embereket a helyzet súlyosságáról, mivel a látni lehet hogy

Az adataim az Nemzetközi Nemzetközi Egészségügy Szervezet oldaláról szereztem, ahol naponta frissítik az információkat, így csak annyit kell tenni hogy betöltjük az adatokat jupyter labba majd lefuttatjuk a kódot és updateli a következő napra szóló adatokat grafana-ban, ezzel is könnyítve az adatok a frissítését.

long	lat	date	_county	_total_dead	_total_healed	_total_county	_county_code
23.583333	46.066667	2020-05-18	Alba	17	22	309	AB
21.316667	46.183333	2020-05-18	Arad	74	1	589	AR
24.866667	44.85	2020-05-18	Argeş	20	0	259	AG
26.9	46.566667	2020-05-18	Bacău	49	0	430	BC
21.933333	47.066667	2020-05-18	Bihor	19	0	504	ВН
24.483333	47.133333	2020-05-18	Bistriţa-Năsăud	24	0	290	BN
26.666667	47.75	2020-05-18	Botoşani	42	0	634	ВТ
25.583333	45.633333	2020-05-18	Brașov	41	О	555	BV
27.983333	45.266667	2020-05-18	Brăila	0	0	20	BR
26.1	44.433333	2020-05-18	București	74	3	1332	В
26.833333	45.15	2020-05-18	Buzău	0	О	119	BZ
21.889167	45.300833	2020-05-18	Caraş-Severin	6	4	103	CS
23.6	46.766667	2020-05-18	Cluj	15	1	455	CJ
28.65	44.183333	2020-05-18	Constanța	15	2	210	СТ
25.783333	45.866667	2020-05-18	Covasna	9	О	214	CV
27.333333	44.2	2020-05-18	Călărași	3	0	70	CL
23.8	44.316667	2020-05-18	Dolj	3	0	150	DJ
25.45	44.933333	2020-05-18	Dâmboviţa	10	6	254	DB
28.05	45.45	2020-05-18	Galaţi	81	0	494	GL
25.966667	43.883333	2020-05-18	Giurgiu	4	0	187	GR
23.283333	45.05	2020-05-18	Gorj	7	1	99	GJ
25.8	46.35	2020-05-18	Harghita	0	0	68	HR
22.9	45.883333	2020-05-18	Hunedoara	68	3	595	HD
27.366667	44.566667	2020-05-18	Ialomiţa	20	О	316	IL
27.6	47.166667	2020-05-18	Iași	26	1	386	IS
23.583333	47.666667	2020-05-18	Maramureş	3	1	68	ММ
22.656111	44.631944	2020-05-18	Mehedinţi	12	0	94	МН

A kóvetkező oszlopkat tartalmazzák az adatok: Megye kód, Igazolt fertőzések száma, Felépültek száma, Halottak száma, a dátum oszlop szükséges volt a grafanaval való kompatibilitás miatt, az utolsó két oszlop a megyék fővárosainak a koordinátáit tartalmazza.

A bemutató megvalósításához dockert használtam, azon belül, több, úgynevezett "container"-t, méghozzá, Jupyter notebook, InfluxDB és Grafana, példányok, amelyeknek külön-külön "container"-ük van, amelyeken keresztül tudnak kommunikálni egymással.

A Jupyter notebook-ot az adatok formázására és InfluxDB-be való elküldésére használtam, ugyancsak Jupyter notebook tette lehetővé hogy hozak létre egy saját adatbázist InfluxDB példányban, ahova fel tudtam tölteni táblákat. Miután elküldtem az adatokat, táblák formájában InlfuxDB-be, szükséges volt specifikálni Grafanaban hogy hol keresse az InfluxDB példányt és ezen belül melyik adatbázisban keresse az adatokat. Miután ez megtörtént egyszerűen ki kellett választani Grafanaban hogy melyik táblát használjuk, melyik adatbázisból, ezzel készen állva, query-kkel tudtuk megmondani a vizualizációnak, miként jelenítse meg az adtokat.

Mivel Dockerben oldottam meg a bemutatót, amennyiben a példányokat külső tárolóra helyezzük át, az alkalmazás skálázhatósága optimálissá válhat. Az elkészített rendszer a konténerizálásnak köszönhetően hatékonyan használja ki az erőforrásokat. Ez hatékonyabb egy virtuális géppel szemben, így skálázhatóbbá is válik ezzel a módszerrel a rendszer: könnyen átvihető más környezetekbe. A konténerizálás tehát a hordozhatóságot is növeli, hiszen a konténerek izoláltan futnak az operációs rendszertől, előre definiáltak a dependency és más kritériumok, ezáltal több, különböző verziójú rendszerrel rendelkező felhasználó használhatja ugyanazt az integrált informatikai rendszert a saját környezetében, hiba fellépése nélkül. A konténerizáláshoz a Docker-t használtam, hiszen ennek neve már egyenlő a konténerizáció fogalmával.

Bővítés szempontjából annyival lehetne fejleszteni az alkalmazást, hogy múltbeli adatokat összehasonlítom a jelen adatokkal és egy idősorban megjelenítek régebbi adatokat is, mivel a jelenlegi megolds csak egy adott időpontra érvényes, ami a jelen. Viszont ezekhez az adatokhoz egy helyen, idősorban, nehéz hozzájutni, esetlegesen több idővel, össze tudnám gyűjteni ezeket és beiktatni a jelenlegi megoldásba.