Elementos de Matemática Discreta para Computação: Soluções

Anamaria Gomide, Jorge Stolfi, Fernando Náufel $22/03/2024\ 15{:}28$

Índice

Apresentação	3
2 Teoria dos Conjuntos 2.1 Conjuntos, elementos e pertinência	4
Referências	6

Apresentação

???

Anamaria Gomide (2023)

2 Teoria dos Conjuntos

2.1 Conjuntos, elementos e pertinência

Exercício 2.1: Escreva os elementos dos conjuntos abaixo:

- (a) $\left\{ x: x \text{ \'e raiz do polinômio } x^4 5x^2 + 6 \right\}$ (b) $\left\{ x^2 + 1: x \text{ \'e raiz do polinômio } x^4 5x^2 + 6 \right\}$
- (c) $\{x \in \{1, 2, 3, 4\} : x \text{ \'e raiz do polinômio } x^4 5x^2 + 6\}$

Resposta (a)

Precisamos usar algum método para resolver a equação

$$x^4 - 5x^2 + 6 = 0$$

Uma maneira: se fizermos $y=x^2,$ a equação fica

$$y^2 - 5y + 6 = 0$$

que tem raízes y = 2 e y = 3.

Daí, resolvendo $2 = x^2$, temos $x = \pm \sqrt{2}$. E resolvendo $3 = x^2$, temos $x = \pm \sqrt{3}$.

Escrevendo o conjunto como uma enumeração dos elementos:

$$\left\{-\sqrt{3}, -\sqrt{2}, \sqrt{2}, \sqrt{3}\right\}$$

Resposta (b)

Preste atenção: agora, não queremos as raízes, mas sim os valores de $x^2 + 1$, onde x assume os valores das raízes.

O conjunto poderia ser escrito como

$$\left\{ x^2 + 1 : x \in \{-\sqrt{3}, -\sqrt{2}, \sqrt{2}, \sqrt{3}\} \right\}$$

Calculando os valores de $x^2 + 1$, temos:

\(x\)	$(x^2 + 1)$
$\backslash (-\backslash \operatorname{sqrt}\{3\}\backslash)$	$\setminus (4 \setminus)$
$(-\sqrt{2})$	$\setminus (3 \setminus)$
$(\sqrt{2})$	$\setminus (3 \setminus)$
$(\sqrt{3})$	$\setminus (4 \setminus)$

Na tabela acima, há elementos repetidos, mas isto não pode acontecer em um conjunto. Então, a resposta é

 $\{3, 4\}$

Em SETLX

Referências