

Type977 fitting for heat pump SIN-14TU Parametric Heat Pump calculation

Dani Carbonell

dani. carbonell@spf.ch

2019/03/12 at: 16:07:50 h

Table 1: Fitted coefficients for the heat pump.

Coefficient	Diti	
Coemcient	Description	[2 777]
		[kW]
P_{Q_1}	1 st condenser polynomial coefficient	1.3258e + 01
P_{Q_2}	2^{st} condenser polynomial coefficient	1.5673e + 02
P_{Q_3}	3^{st} condenser polynomial coefficient	$3.5853e{+01}$
P_{Q_4}	4^{st} condenser polynomial coefficient	-2.6116e + 02
P_{Q_5}	5^{st} condenser polynomial coefficient	2.0242e+01
P_{Q_6}	6^{st} condenser polynomial coefficient	-1.8200e+02
P_{COP_1}	1 st COP polynomial coefficient	7.4744e + 00
P_{COP_2}	2^{st} COP polynomial coefficient	8.2635e+01
P_{COP_3}	3 st COP polynomial coefficient	-9.7922e+00
P_{COP_4}	4 st COP polynomial coefficient	-3.2890e+02
P_{COP_5}	5 st COP polynomial coefficient	-6.5161e + 01
P_{COP_6}	6 st COP polynomial coefficient	-6.7357e + 01
\dot{m}_{cond}	2400.00 [kg/h]	
\dot{m}_{evap}	2400.00 [kg/h]	
COP_{nom} (A0W35)	4.95	
$Q_{cond,nom}$ (A0W35)	$13.80 \ [kW]$	
$Q_{evap,nom}$ (A0W35)	11.01 [kW]	
$W_{comp,nom}$ (A0W35)	2.79 [kW]	
RMS_{COP}	5.09e - 02	
$RMS_{Q_{cond}}$	3.70e - 02	
$RMS_{W_{comp}}$	4.18e - 02	
Fit model	Average Temperature	

Table 2: Differences between experiments and fitted data for the heat pump. $error = 100 \cdot |\frac{Q_{exp} - Q_{num}}{Q_{exp}}|$ and $RMS = \sqrt{\sum \frac{(Q_{exp} - Q_{num})^2}{n_p}}$ where n_p is the number of data points.

$T_{cond,out}$	$T_{evap,in}$	COP	COP_{exp}	error	Q_{cond}	$Q_{cond,exp}$	error	W_{comp}	$W_{comp,exp}$	error
^{o}C	${}^{o}C$	[-]	[-]	[%]	[kW]	[kW]	[%]	[kW]	[kW]	[%]
35.00	-5.00	4.21	4.20	0.2	11.84	11.90	0.5	2.81	2.83	0.69
35.00	0.00	5.00	5.00	0.0	13.94	13.90	0.3	2.79	2.78	0.27
35.00	5.00	5.77	5.75	0.3	16.06	16.05	0.1	2.78	2.79	0.23
50.00	-5.00	3.05	3.00	1.5	11.32	11.30	0.1	3.71	3.76	1.34
50.00	0.00	3.54	3.49	1.5	13.22	13.17	0.4	3.73	3.77	1.07
50.00	5.00	4.01	3.94	1.9	15.14	15.12	0.2	3.77	3.84	1.74
45.00	-5.00	3.48	3.52	1.0	11.60	11.60	0.0	3.33	3.30	1.04
45.00	0.00	4.08	4.13	1.3	13.57	13.53	0.3	3.33	3.28	1.60
45.00	5.00	4.65	4.70	1.1	15.56	15.58	0.1	3.35	3.31	0.96
55.00	0.00	2.96	3.00	1.3	12.76	12.80	0.3	4.31	4.27	0.96
55.00	5.00	3.33	3.36	0.9	14.61	14.65	0.3	4.39	4.37	0.61
35.00	10.00	6.52	6.50	0.3	18.21	18.20	0.0	2.79	2.80	0.24
35.00	15.00	7.24	7.24	0.0	20.37	20.35	0.1	2.81	2.81	0.09
50.00	10.00	4.46	4.37	2.1	17.09	17.07	0.1	3.83	3.91	1.95
50.00	15.00	4.88	4.79	2.0	19.05	19.02	0.2	3.90	3.97	1.81
45.00	10.00	5.20	5.26	1.1	17.58	17.63	0.3	3.38	3.35	0.78
45.00	15.00	5.73	5.80	1.3	19.61	19.68	0.4	3.42	3.39	0.91
55.00	10.00	3.67	3.70	0.8	16.49	16.50	0.1	4.49	4.46	0.72
55.00	15.00	3.99	4.03	1.0	18.39	18.35	0.2	4.61	4.55	1.21
Sum				19.5			4.0			18.22
RMS_{COP}	5.09e - 02									
$RMS_{Q_{cond}}$	3.70e - 02									
RMS_W	4.18e - 02									

$\rm Meier/SIN\text{-}14TU/SIN\text{-}14TU\text{-}Qcond.pdf}$

Figure 1: Q_{cond} differences between experiments and fitted data

$\rm Meier/SIN\text{-}14TU/SIN\text{-}14TU\text{-}Qcomp.pdf$

Figure 2: W_{comp} differences between experiments and fitted data

$\rm Meier/SIN\text{-}14TU/SIN\text{-}14TU\text{-}COP.pdf$

Figure 3: COP differences between experiments and fitted data