



# Applications of Al in Medicine & Biology

King Abdullah University of Science and Technology (KAUST)
KAUST Academy

- Sequences:
  - FASTA: DNA/RNA/Protein sequences



- Sequences:
  - FASTA: DNA/RNA/Protein sequences
- ⇒ NLP Problem

- Images:
  - TIFF: microscopic images.



- Images:
  - o DICOM: radiological images (e.g. X-Ray, MRI,...).



- Images:
  - TIFF: microscopic images (2D/3D).
  - DICOM: radiological images (e.g. X-Ray, MRI,...) (2D/3D).
  - JPEG/PNG after pre-processing.

- Images:
  - TIFF: microscopic images.
  - DICOM: radiological images (e.g. X-Ray, MRI,...).
  - JPEG/PNG after pre-processing.
- → Vision Problem

- 3D-Structures:
  - PDB: 3D coordinates per atom.



- Molecular Strings:
  - SMILES: representing chemical structures as text strings.



- 3D-Structures:
  - PDB: 3d coordinates per atom.
- Molecular Strings:
  - SMILES: representing chemical structures as text strings.
- → Graphs / NLP Problem

• Let's have a look at some problems...

 A given protein can be in one, several, or different subcellular compartments depending on cell type and conditions

- A given protein can be in one, several, or different subcellular compartments depending on cell type and conditions
- Goal: Develop model capable of classifying the subcellular compartments that have proteins using microscope images.

- A given protein can be in one, several, or different subcellular compartments depending on cell type and conditions
- Goal: Develop model capable of classifying the subcellular compartments that have proteins using microscope images.
- This model will be used to build a tool integrated with a smart-microscopy system to identify a protein's location(s) from images.

- A given protein can be in one, several, or different subcellular compartments depending on cell type and conditions
- Goal: Develop model capable of classifying the subcellular compartments that have proteins using microscope images.
- This model will be used to build a tool integrated with a smart-microscopy system to identify a protein's location(s) from images.
- Data Modality: A mix of 2048x2048 and 3072x3072 2D TIFF images.

Green = the protein of interest; blue/red/yellow are constant reference markers (nucleus, microtubules, ER) to help you judge where the green signal sits.



Green = the protein of interest; blue/red/yellow are constant reference markers (nucleus, microtubules, ER) to help you judge where the green signal sits.

Cytokinetic bridge Cytosol





Green = the protein of interest; blue/red/yellow are constant reference markers (nucleus, microtubules, ER) to help you judge where the green signal sits.



- ⇒ Multilabel classification problem (28 subcellular components).
- ⇒ Very simple vision problem.

Radiation oncologists must manually segment the position of the stomach and intestines in order to adjust the direction of the x-ray beams to increase the dose delivery to the tumor and avoid the stomach and intestines.



Normal

**Breath Hold** 

- Radiation oncologists must manually segment the position of the stomach and intestines in order to adjust the direction of the x-ray beams to increase the dose delivery to the tumor and avoid the stomach and intestines.
- Goal: Create a model to automatically segment the stomach and intestines on MRI scans.

- Radiation oncologists must manually segment the position of the stomach and intestines in order to adjust the direction of the x-ray beams to increase the dose delivery to the tumor and avoid the stomach and intestines.
- Goal: Create a model to automatically segment the stomach and intestines on MRI scans.
- The MRI scans are from actual cancer patients who had 1-5 MRI scans on separate days during their radiation treatment.



Data Modality: Preprocessed PNG 2D slices (3D Images)

- Data Modality: Preprocessed PNG 2D slices (3D Images)
- Task: 2D / 2.5D / 3D Segmentation.

- Data Modality: Preprocessed PNG 2D slices (3D Images)
- Task: 2D / 2.5D / 3D Segmentation.
- Models: 2D / 3D Unet

- Data Modality: Preprocessed PNG 2D slices (3D Images)
- Task: 2D / 2.5D / 3D Segmentation.
- Models: 2D / 3D Unet
- FYI: Using a detection model first to pick the interesting regions, then segmenting them worked better here.

 Goal: Predict an RNA molecule's 3D structure from its sequence.



 Goal: Predict an RNA molecule's 3D structure from its sequence.



- Goal: Predict an RNA molecule's 3D structure from its sequence.
- In other words, predict the 3D coordinates of each atom.



- Goal: Predict an RNA molecule's 3D structure from its sequence.
- In other words, predict the 3D coordinates of each atom.
- Data Modality:Sequence + PDB



- Goal: Predict an RNA molecule's 3D structure from its sequence.
- In other words, predict the 3D coordinates of each atom.
- Data Modality:Sequence + PDB
- Task: Regression ez



- Goal: Predict an RNA molecule's 3D structure from its sequence.
- In other words, predict the 3D coordinates of each atom.
- Data Modality:Sequence + PDB
- Task: Regression ez



- Data Modality: Sequence + PDB  $\Rightarrow$  3D coordinates per atom.
- Task: Regression on X, Y, Z.
- Model??

- Data Modality: Sequence + PDB ⇒ 3D coordinates per atom.
- Task: Regression on X, Y, Z.
- Model:
  - ML (Atom / Sequence features + Regressor)
  - Transformers (Sequence + Regression Head)
  - Graph NN (Graphs + Node Regressor)

- Data Modality: Sequence + PDB ⇒ 3D coordinates per atom.
- Task: Regression on X, Y, Z.
- Model:
  - ML (Atom / Sequence features + Regressor)
  - Transformers (Sequence + Regression Head)
  - Graph NN (Graphs + Node Regressor)
- E.g. <u>RibonanzaNet</u> (transformer)

# 3) Stanford RNA 3D Folding

- Data Modality: Sequence + PDB ⇒ 3D coordinates per atom.
- Task: Regression on X, Y, Z.
- Model:
  - ML (Atom / Sequence features + Regressor)
  - Transformers (Sequence + Regression Head)
  - Graph NN (Graphs + Node Regressor)
- Google Deepmind did some good work here though
  - AlphaFold 2: Delivers near-atomic 3D protein structures from sequence alone.
  - AlphaFold 3: Extends prediction to whole complexes—proteins with DNA/RNA, ligands, ions, and modifications

 Knowing the binding affinity of small molecules to specific protein targets is a critical step in drug development.



- Knowing the binding affinity of small molecules to specific protein targets is a critical step in drug development.
- Goal: Predict which drug-like small molecules (chemicals) will bind to three possible protein targets.



Data Modality: SMILES + Protein Target Name

- Data Modality: SMILES + Protein Target Name
- Task: Binary Classification (Will bind or not).

- Data Modality: SMILES + Protein Target Name
- Task: Binary Classification (Will bind or not).
- Model:
  - ML (SMILES features + protein + Classifier)
  - Transformers (SMILES backbone (e.g. ChemBERTa) +
     Classification Head)
  - Graph NN (Graph Classification + Protein name as a feature within the nodes)

- Data Modality: SMILES + Protein Target Name
- Task: Binary Classification (Will bind or not).
- Model:
  - ML (SMILES features + protein + Classifier)
  - Transformers (SMILES backbone (e.g. ChemBERTa) + Classification Head)
  - Graph NN (Graph Classification + Protein name as a feature within the nodes)
  - o 1D CNN

- Predicting protein stability is a fundamental problem in biotechnology.
- Its applications include enzyme engineering for addressing the world's challenges in sustainability, carbon neutrality and more.

| Wild type      | Mutant<br>Sequence | dTm  |
|----------------|--------------------|------|
| <b>ABCDEFG</b> | <b>ABCXEFG</b>     | 35.2 |
| ABCDEFG        | <b>AXCDEFG</b>     | 35.7 |
| ABCDEFG        | ABYDEFG            | 34.5 |
| ABCDEFG        | ABCDZFG            | 34.8 |
| ABCDEFG        | YBCDEFG            | 35.0 |
| ABCDEFG        | ABCDEFX            | 35.1 |

 Goal: Predict the ranking of protein thermostability (as measured by melting point, tm) after single-point amino acid mutation and deletion.

| Wild type      | Mutant<br>Sequence | dTm  |
|----------------|--------------------|------|
| <b>ABCDEFG</b> | <b>ABCXEFG</b>     | 35.2 |
| ABCDEFG        | <b>AXCDEFG</b>     | 35.7 |
| ABCDEFG        | ABYDEFG            | 34.5 |
| ABCDEFG        | ABCDZFG            | 34.8 |
| ABCDEFG        | YBCDEFG            | 35.0 |
| ABCDEFG        | <b>ABCDEFX</b>     | 35.1 |

- Data Modality: Sequences (Wildtype + mutant)
- Task: Ranking (how to do it?).

- Data Modality: Sequences (Wildtype + mutant)
- Task: Ranking (regression then sort ez).
- Model:

- Data Modality: Sequences (Wildtype + mutant)
- Task: Ranking (regression then sort ez).
- Model:
  - ML (TF-IDF features + diff features + Regressor)
  - Transformers (protein backbone (e.g. ProtBert) + Regression Head)
  - Graph NN (Graph Regressor)

- Data Modality: Sequences (Wildtype + mutant)
- Task: Ranking (regression then sort ez).
- Model:
  - ML (TF-IDF features + diff features + Regressor)
  - Transformers (protein backbone (e.g. ProtBert) + Regression Head)
  - Graph NN (Graph Regressor)
  - 3D CNN

- Data Modality: Sequences (Wildtype + mutant)
- Task: Ranking (regression then sort ez).
- Model:
  - ML (TF-IDF features + diff features + Regressor)
  - Transformers (protein backbone (e.g. ProtBert) + Regression Head)
  - Graph NN (Graph Regressor)
  - 3D CNN ⇒ Convert sequences to PDB then use 3D CNN ⇒
     The most powerful idea (ThermoNet <u>link</u>)





# Thanks for Attending!

**Prepared By: Mohamed Eltayeb**