MATH 302

Chapter 8

SECTION 8.3: UNIT STEP FUNCTION

Contents

Piecewise Continuous Functions	2
Unit Step Function Basic Operations	4
Laplace Transform of The Unit Step Function	7
ODE Revisited	10

Created by: Pierre-Olivier Parisé Fall 2022

PIECEWISE CONTINUOUS FUNCTIONS

A piecewise continuous function f is

- a function defined on a finite number of intervals $[t_0, t_1], [t_1, t_2], \ldots, [t_{n-1}, t_n];$
- such that it is continuous on each interval $(t_0, t_1), (t_1, t_2), \ldots, (t_{n-1}, t_n)$.

(a) A function f(x)

(b) A function k(x)

EXAMPLE 1. Find the Laplace transform of

$$f(t) = \begin{cases} t & 0 < t \le 1\\ 2t & 1 < t \le 3\\ 10 - 3t & 3 < t \le 5\\ 0 & 5 < t. \end{cases}$$

UNIT STEP FUNCTION

To make the work easier with piecewise continuous function, we introduce the **unit step** function:

$$u(t) := \begin{cases} 0 & t < 0 \\ 1 & t \ge 0. \end{cases}$$

Figure 2: Plot of u(t)

Basic Operations

• Translation by a units:

$$u(t-a) = \begin{cases} 0 & t < a \\ 1 & t \ge a. \end{cases}$$

• Multiplication by c:

$$cu(t) = \begin{cases} 0 & t < 0 \\ c & t \ge 0. \end{cases}$$

• Activation of a function f(t) at time a:

$$f(t)u(t-a) = \begin{cases} 0 & t < a \\ f(t) & t \ge a. \end{cases}$$

• Destruction of a function f(t) at time b and activation of a function g(t) at time b:

$$f(t)u(t-a) + (g(t) - f(t))u(t-b) = \begin{cases} 0 & t < a \\ f(t) & a \le t < b \\ g(t) & b \le t. \end{cases}$$

EXAMPLE 2. Rewrite the function f(t) in Example 1 using the unit step function.

EXAMPLE 3. A farmer has a field of potatoes of 1 kilometer long. An automated watering system starts at 5:00AM and stops at 8:00AM. The spite of water is 1000 liters per hour. Give an expression of the function W(t) of water used during the day using the unit step function.

LAPLACE TRANSFORM OF THE UNIT STEP FUNCTION

Let $a \geq 0$ be a real number and f be a function with a Laplace transform F(s).

•
$$L(u(t-a)) = \frac{e^{-sa}}{s}$$
.

- $L(u(t-a)f(t)) = e^{-sa}L(f(t+a)).$
- $L(u(t-a)f(t-a)) = e^{-sa}F(s)$.

EXAMPLE 4. Find the Laplace transform of

$$f(t) = \begin{cases} \sin(t) & , 0 \le t < \pi/2\\ \cos(t) - 3\sin(t) & , \pi/2 \le t < \pi\\ 3\cos(t) & , t \ge \pi. \end{cases}$$

EXAMPLE 5. Find

$$L^{-1}\left(\frac{1}{s^2} - e^{-s}\left(\frac{1}{s^2} + \frac{2}{s}\right) + e^{-4s}\left(\frac{4}{s^3} + \frac{1}{s}\right)\right)$$

ODE REVISITED

We can now allow the forcing function to be a discontinuous function (piecewise continuous).

EXAMPLE 6. Solve the initial value problem

$$y'' - y = f(t), \quad y(0) = -1, y'(0) = 2,$$

where

$$f(t) = \begin{cases} t & 0 \le t < 1\\ 1 & t \ge 1. \end{cases}$$