Initial Statistical Inference on 40 Exponents

Danish Tamboli

8/5/2020

Initial Statistical Inference on 40 Exponents, and comparison with CLT Distribution.

Overview:

• Comparison between Exponential Distribution and Central Limit Theorem Distribution (Normal Distribution) of 40.

What does Central Limit Theorem state?

- The central limit theorem states that if you have a population with :
 - mean mu.
 - standard deviation sigma.
 - Take sufficiently large random samples from the population with replacement.
 - The distribution of the sample means will be approximately normally distributed.
 - Here we are assuming lambda = 0.2, mu = 1/lambda and sigma = 1/lambda.
 - Here we will be taking 1000 simulations or sample sets from the 40 exponents.

Simulation:

```
set.seed(103101)
init_exp <- rexp(40,0.2)
exp_mean <- mean(init_exp)
print(paste("Observed Exponent Mean:", exp_mean))

## [1] "Observed Exponent Mean: 5.17300165083614"

clt <- sapply(1:1000, function(i){mean(sample(init_exp,replace = TRUE))})
clt_mean <- mean(clt)
print(paste("Observed Cental Limit Theorem Mean:", clt_mean))</pre>
```

Sample Mean versus Theoretical Mean:

- From the above we can discuss the Theoretical and Observed means:
 - We see that as lambda is 0.2, Hence the Theoretical mean = 1/lambda should be 5
 - The Observed Exponent Mean and Observed Central Limit Theorem Mean is \sim the Theoretical mean.

```
variance_exp <- var(init_exp)
print(paste("Observed Exponent Variance:",variance_exp))</pre>
```

[1] "Observed Exponent Variance: 20.4974576001592"

```
variance_clt <- var(clt)
print(paste("Observed Cental Limit Theorem Variance:",variance_clt))</pre>
```

[1] "Observed Cental Limit Theorem Variance: 0.511316406910704"

Sample Variance versus Theoretical Variance:

- From the above we can discuss the Theoretical and Observed variances:
 - We see that as lambda is 0.2, Hence the Theoretical variance = sd^2 , sd = (1/lambda) = 5 should be 25
 - The Observed Exponent Variance is \sim the Theoretical mean.

Distribution:

Warning: package 'ggplot2' was built under R version 4.0.2

Distibution of 40 Exponents

• From the above 2 figures we can see how the Central Limit Distribution (grey bars) is approximately normal (yellow line), as how it fits under the curve of the normal line (yellow).

QQPlot of 40 Exponents

Normal Q-Q Plot

- From the above 2 figures we can clearly see:
 - How the 40 exponents is not normal and hence the points are not on the straight line.
 - How the CLT Distribution is of Normal Distribution Type as majority of the points are on the straight line.