Москва 2024

Моделирование реакции банковской системы России на внешние шоки и инструменты монетарной политики

Студент: Масленникова Светлана Игоревна

Научный руководитель: Пильник Николай Петрович

Моделирование реакции банковской системы России на внешние шоки и инструменты монетарной политики

Актуальность

Существующие исследования часто ограничивают моделирование политики монетарных властей ключевой ставкой или денежными агрегатами, что во многих случаях оправдано в периоды экономической стабильности.

Однако, опыт Банка России показывает, что в ответ на **кризисные ситуации,** регулятор прибегает к более широкому спектру инструментов, что указывает на ограничения подхода, основанного на узком понимании мер монетарной политики.

Данной работой мы делаем попытку закрыть этот **пробел** и построить модель, включающую **расширенные** инструменты монетарной политики.

Цель и задачи

Целью данной работы является моделирование реакции финансовой системы России на внешние шоки и различные инструменты монетарной политики

Задачи

- * Обзор существующих подходов к моделированию финансовой системы
- * Определение моделируемых показателей финансовой системы РФ
- * Построение векторных моделей временных рядов: включающих расширенный список показателей монетарной политики и не включающих
- * Сравнение прогнозной и объясняющей силы построенных моделей
- * Построение прогнозных сценариев динамики банковского сектора

Обзор литературы

Исследование	Страна		Данные
[Salmanov, 2017]		Россия	Объемы корпоративного кредитования, денежная масса, денежная база, ставка рефинансирования
[Juurikkala, 2009]; [Дробышевский, 2009]		Россия	Ставка межбанковского кредита (1999-2007 годы)
[Леонтьева, 2013]		Россия	Ставка рефинансирования, процентные ставки на банковские вклады, ставка репо
[Пестова, Мамонов, Ростова, 2019]		Россия	Макроэкономические показатели, корпоративные и потребительские кредиты, ключевая ставка, потребительские депозиты
[Пильник, 2020]		Россия	Ключевая процентная ставка, банковский сектор

Существующие исследования часто ограничивают моделирование политики монетарных властей ключевой ставкой или денежными агрегатами

Обзор литературы

Исследование	Модель	
[Krainer, 2014]; [Леонтьева, 2013]	Тест Грэнджера на причинность	
[Salmanov, 2017]; [Juurikkala, 2009]	Обобщенный метод моментов	
[Дробышевский, 2009]; [Sims, 1992]; [Stock, Watson, 1986]; [Айвазян и др., 2003], [Zhang, Hu, 2010], [Пестова, 2018]	Векторная авторегрессия (VAR), VECM, BVAR	
[Горячева и др., 2013]; [Пильник, 2020]	Экономико-математическая модель (оптимизационная задача)	

При выборе модели для анализа реакции финансовой системы на внешние шоки мы рассматривали **VAR, VECM и VARX**. Мы выбрали модель VARX, которая учитывает экзогенные переменные и их лаги, для анализа реакции финансовой системы на изменения во внешних показателях.

Моделирование реакции банковской системы России на внешние шоки и инструменты монетарной политики

Группа индикаторов	Показатели
Банковский сектор (эндогенные переменные)	Рублевые и в иностранной валюте: депозиты и кредиты корпоративных клиентов. В рублях: депозиты и кредиты физ. лиц
Экзогенные переменные, не связанные с монетарной политикой	Прокси номинальный ВВП, 1Y Treasuries yield, курс доллара США
Базовые инструменты монетарной политики (экзогенные переменные)	Ключевая ставка, денежный агрегат М0
Расширенные инструменты монетарной политики (экзогенные переменные)	Резервы иностранной валюты, резервы монетарного золота, индекс послаблений ЦБ

Индекс послаблений ЦБ представляет собой попытку отразить в модели смягчение формальных требований со стороны регулятора, которые не могут быть выражены численно. 1) для каждой меры определяется срок действия; 2) мера преобразуются в "1" в период своего действия; 3) индекс в период t равняется сумме мер, действовавших в период t.

Предобработка данных

- * STE декомпозиция для выделения сезонной компоненты
- * Вычитание сезонной компоненты из рядов
- * ADF и KPSS для тестов на стационарность
- * Взятие первых разностей для нестационарных рядов
- * Повторные тесты

Динамика резервов иностранной валюты

Модели

без экзогенных переменных

- Выбор лагов через BIC и AIC
- Приоритет для ВІС
- MSE, MAPE, MAE как метрики качества
- Тесты Портмана, Жака-Бера и Шапиро-Уилка на автокорреляцию остатков и их нормальность в финальной спецификации
- В модель входят только эндогенные показатели банковского сектора

с базовыми инструментами

системы России на внешние шоки

- Выбор лагов через BIC и AIC
- Приоритет для ВІС
- MSE, MAPE, MAE как метрики качества
- Тесты Портмана, Жака-Бера и Шапиро-Уилка на автокорреляцию остатков и их нормальность в финальной спецификации
- В модель входят эндогенные показатели банковского сектора, экзогенные переменные и базовые инструменты монетарной политики

с расширенными инструментами

- Выбор лагов через BIC и AIC
- Приоритет для ВІС
- MSE, MAPE, MAE как метрики качества
- Тесты Портмана, Жака-Бера и Шапиро-Уилка на автокорреляцию остатков и их нормальность в финальной спецификации
- В модель входят эндогенные показатели банковского сектора, экзогенные переменные, базовые и расширенные инструменты монетарной политики

Сравнение моделей на тренировочных данных

Модель	MSE	MAE	МАРЕ
Без экзогенных переменных	2270478	1128,88	6,63
С базовыми инструментами	754866,4	652,57	4,66
С расширенными инструментами	556348,6	542,15	3,81

Обучение происходило на данных 2015-2022 года

Факультет экономических наук

Модели с экзогенными переменными в целом показывают себя лучше, чем модель без экзогенных. Улучшение качества прогноза во многом достигается за счет ряда «Корпоративные кредиты в иностранной валюте». Стоит также отметить, что на тренировочных данных модель с расширенными переменными показывает лучшее качество, чем модель с базовыми.

Сравнение прогнозной силы моделей. Стратегия 1.

В рамках первой стратегии нашего подхода мы осуществляем прогнозирование для модели VARX с использованием **реальных значений экзогенных** переменных в каждом периоде. Этот подход обоснован тем, что мы хотим убедиться, что включение экзогенных переменных в реальном времени позволяет улучшить объясняющую силу модели.

Модель	MSE	MAE	MAPE
Без экзогенных переменных	7170121	2061,87	8,87
С базовыми инструментами	4032455	1567,24	5,59
С расширенными инструментами	3736096	1540,57	5,55

Использование как базовых, так и расширенных инструментов значительно улучшает качество модели прогнозирования по сравнению с моделью без экзогенных переменных.

Модель с расширенными инструментами демонстрирует незначительное отличие по ошибке от модели, основанной на базовых инструментах.

Тестирование происходило на данных 2023 года

Сравнение прогнозной силы моделей. Стратегия 2.

Во второй стратегии мы применяем подход, в котором значения экзогенных переменных для последних двух моделей **предсказываются** с помощью одномерных рядов. Мы делаем попытку использовать модель в режиме "псевдореального" времени - в реальности мы не знаем значения экзогенных переменных в будущем, однако распространен подход моделирования этих переменных независимо или использование их как сценариев, в зависимости от целей прогноза.

Модель	MSE	MAE	МАРЕ
Без экзогенных переменных	7170121	2061,87	8,87
С базовыми инструментами	5673117	1944,71	8,59
С расширенными инструментами	5526849	1890,53	8,03

В сравнении с моделями без экзогенных переменных, модели с прогнозными экзогенными переменными демонстрируют лучшее поведение в прогнозах.

Вторая прогнозная стратегия также выделяется ухудшением ошибок моделей относительно первой в моделях с экзогенными переменными.

Тестирование происходило на данных 2023 года

Функции импульсного отклика

Сразу после шока в ключевой ставке, мы видим резкое и значительное снижение корпоративных депозитов. Это указывает на то, что корпоративные депозиты в иностранной валюте чувствительны к изменениям в ключевой ставке и отрицательно реагируют на её увеличение в данной спецификации.

Депозиты корпоративных клиентов в иностранной валюте на ключевую ставку

Функции импульсного отклика

Мы видим повышение корпоративных депозитов в ответ на увеличение резервов, пик приходится примерно на 3-й месяц.

Корпоративные клиенты, реагируя на действия регулятора, ожидают дальнейшее увеличение курса валюты, в связи с чем увеличивают вложения в депозиты в иностранной валюте, ожидая увеличения доходности от этого инструмента

Депозиты корпоративных клиентов в иностранной валюте на резервы иностранной валюты

Прогнозные сценарии

	Базовый	Усиление фрагментации	Рисковый	Для первого сценария мы будем использовать модель с базовыми инструментами, для остальных - с расширенными.
Ключевые признаки	Стабильное развитие мировой экономики и сохранение жесткой денежно-кредитной политики центральных банков развитых стран.	Усиление глобальной деглобализации и геополитических напряженностей, что приведет к фрагментации мировой экономики.	Потенциальный глобальный финансовый кризис. В России - крупный экономический спад в	Для перехода к прогнозным сценариям мы дообучили модели, добавив в них данные за 2023 год, которые ранее использовались для проверки ошибок прогноза моделей на
	В России - умеренный экономический рост и снижение инфляции	В России - отрицательный экономический рост и повышение инфляции	течение двух лет, значительный рост инфляции.	незнакомых данных

Банк России не дает четкий прогноз для ряда переменных. Для аппроксимирования прогноза по 1Y Treasuries yield мы использовали данный ЦБ прогноз по ставке ФРС, которая сильно скоррелированы с доходностью по облигациям. Для курса доллара мы использовали следующий подход: каждый 1 п.п. изменения ключевой ставки ведет к изменению валютного курса на 0.2% (исследования ЦБ)

Прогнозные сценарии

Все три сценария предсказывают дальнейший тренд на снижение объема корпоративных кредитов в иностранной валюте, причем снижение в рисковом прогнозе достаточно радикально.

Динамика корпоративных кредитов в рублях

Прогнозные сценарии

Сценарии относительно депозитов отличаются незначительно, на показатель действуют две противонаправленные силы - если в базовом прогнозе показатели будут расти за счет роста ВВП, то в рисковом прогнозе этот показатель прирастает во многом за счет роста инфляции (11-13% в рисковом сценарии).

Динамика депозитов физических лиц в рублях

Моделирование реакции банковской системы России на внешние шоки и инструменты монетарной политики

Заключение

Что мы сделали?

- Произвели обзор существующих подходов к моделированию финансовой системы
- Определили список моделируемых показателей финансовой системы РФ
- Построили векторные модели в трех спецификациях: VAR без экзогенных переменных, VARX с базовыми инструментами монетарной политики и VARX с расширенными инструментами монетарной политики
- Произвели сравнение прогнозной и объясняющей силы построенных моделей
- Построили прогнозные сценарии динамики банковского сектора на 2024 год с помощью двух VARX моделей

Какие результаты получили?

- Использование моделей VAR с включением экзогенных переменных оказалось наиболее эффективным для прогнозирования показателей банковской системы, особенно это проявилось в улучшении прогнозов показателей в иностранной валюте.
- Модель VARX с расширенными инструментами монетарной политики продемонстрировала незначительное улучшение ошибки на тестовых данных по сравнению с моделью, использующей базовые инструменты.
- Это может быть обусловлено относительной стабильностью макроэкономических условий в период тестирования.
 Расширенные инструменты могут быть более чувствительными к экономическим шокам, но их эффективность может не проявляться в условиях стабильности.

