ASSIGNMENT 4

Due by: 11:59 PM, Nov 17

Problem 1

Suppose that buses arrive are scheduled to arrive at a bus stop at noon but are always X minutes late, where X is an exponential random variable with probability density function $f_X(x) = \lambda e^{-\lambda x}$. Suppose that you arrive at the bus stop precisely at noon.

- (a) Compute the probability that you have to wait for more than five minutes for the bus to arrive.
- (b) Suppose that you have already waiting for 10 minutes. Compute the probability that you have to wait an additional five minutes or more.

Problem 2

Let R be the rate at which customers are served in a queue. Suppose that R is exponential with pdf $f(r) = 2e^{-2r}$ on $[0, \infty)$.

Find the pdf of the waiting time per customer T = 1/R.

Problem 3

Suppose that the cdf of X is given by:

F(a) =
$$\begin{cases} 0 \text{ for } a < 0 \\ 1 \text{ for } 0 \le a < 2.5 \\ 2 \text{ for } 2 \le a < 4.5 \\ 1 \text{ for } a \ge 4. \end{cases}$$

Determine the pmf of X.

Problem 4

- (a) Suppose that X has probability density function $f_X(x) = \lambda e^{-\lambda x}$ for $x \ge 0$. Compute the cdf, $F_X(x)$.
- (b)) If $Y = X^2$, compute the pdf and cdf of Y.

Due by: 11:59 PM, Nov 17

Problem 5

Let X have range [0,3] and density $f_X(x) = kx^2$. Let Y = X³.

- (a) Find k and the cumulative distribution function of X.
- (b) Compute E(Y).
- (c) Compute Var(Y).
- (e) Find the probability density function $f_{Y}(y)$ for Y.

Problem 6

Let X be the result of rolling a fair 4-sided die. Let Y be the result of rolling a fair 6-sided die. Let Z be the average of X and Y.

- (a) Find the standard deviation of X, of Y, and of Z.
- (b) Now consider a game; you win 2X dollars if X>Y and lose 1 dollar otherwise. After playing this game 60 times, what is your expected total gain (positive) or loss (negative)?

Problem 7

Let X be a continuous random variable with PDF:

$$f_X(x) = \begin{cases} x+\frac{1}{2} & ; & 0 \le x \le 1 \\ 0 & ; & \text{otherwise} \end{cases}$$

Find $E(X^n)$, where $n \in \mathbb{N}$.

Problem 8

Let X be a continuous random variable with PDF:

$$f_X(x) = \begin{cases} x^2 \left(2x + \frac{3}{2}\right); & 0 < x \le 1 \\ 0; & \text{otherwise} \end{cases}$$

If $Y = \frac{2}{X} + 3$, find Var(Y).