補題 0.1. 環 A を integrally closed domain とし,G をその自己準同型写像が成すある有限群とする.この時,固定環 $A^G (\subseteq A)$ は integrally closed domain である.

(証明). Quot (A^G) の元 f/g を任意にとる. 以下の式を満たす $\{a_i\}_i \subset A^G$ が存在したとしよう.

$$\left(\frac{f}{g}\right)^n + a_1 \left(\frac{f}{g}\right)^{n-1} + \dots + a_n = 0$$

 $A^G \subseteq A, \operatorname{Quot}(A^G) \subseteq \operatorname{Quot}(A)$ だから、 $f/g \in \operatorname{Quot}(A), \{a_i\}_i \subset A$ とみなすことが出来る。A が integrally closed domain であることから $f/g \in A$. まとめて $f/g \in \operatorname{Quot}(A^G) \cap A$ が得られる。

さて, f/g=h と置くと $h\in A$ かつ gh=f. $f/g\in \mathrm{Quot}(A^G)$ だから f,g はどちらも A^G の元である. なので,

$$\forall \sigma \in G, \ g \cdot h = \sigma(f) = f = g \cdot \sigma(h) \iff \forall \sigma \in G, \ h = \sigma(h)$$

よって $h = f/g \in A^G$ が得られた.