Introduction to probability for CS - Assignment 4

Michael art

March 12, 2024

1 Exercise 6

1.1 Q 3 b:

3. Find E(X) and V(X) if X is distributed according to the following probability functions:

(a)
$$p(x)=\left\{\begin{array}{ll} \frac{e^{-\lambda}\lambda^x}{x!(1-e^{-\lambda})},& x=1,2,\ldots,\ (\lambda>0),\\ \\ 0,&\text{otherwise}. \end{array}\right.$$

(b)
$$p(x) = \begin{cases} \frac{(1-p)^x}{-x \ln p}, & x = 1, 2, \dots, \ (0$$

Solution:

(b) (i)

$$E(X) = \sum_{x=0}^{\infty} p(x) \cdot x = \sum_{x=0}^{\infty} \frac{(1-p)^x}{-x \ln p} \cdot x = \sum_{x=1}^{\infty} \frac{(1-p)^x}{-x \ln p} \cdot x = -\frac{1}{\ln p} \sum_{x=1}^{\infty} (1-p)^x = \boxed{\frac{p-1}{p \ln p}}$$

(ii) (1)
$$E(X^2) = \sum_{x=0}^{\infty} p(x) \cdot x^2 = \sum_{x=0}^{\infty} \frac{(1-p)^x}{-x \ln p} \cdot x^2 = \sum_{x=1}^{\infty} \frac{(1-p)^x}{-x \ln p} \cdot x^2 =$$
$$= -\frac{1}{\ln p} \sum_{x=1}^{\infty} x (1-p)^x = -\frac{1}{\ln p} \cdot \frac{1-p}{p^2} = \frac{p-1}{p^2 \ln p}$$

(2)
$$E(X)^2 = \left(\frac{p-1}{p \ln p}\right)^2 = \frac{p^2 - 2p + 1}{p^2 \ln^2 p}$$

In total:

$$V(X) = E(X^2) - E(X)^2 = \frac{p-1}{p^2 \ln p} - \frac{(p-1)^2}{p^2 \ln^2 p} = (p-1) \left(\frac{1}{p^2 \ln p} - \frac{p-1}{p^2 \ln^2 p} \right) = \left[(p-1) \frac{\ln p - p + 1}{p^2 \ln^2 p} \right]$$

1.2 Q 8:

Find the variance of the number of letters sent to the right destination in the absent-minded secretary problem.

Solution:

Let us define an indicator random veriable:

$$X_i = \begin{cases} 1, & \text{if the } i\text{'th letter reached its destination} \\ 0, & \text{otherwise} \end{cases}$$

Where $X = \sum_{i=1}^{n} X_i$, therefore:

$$\begin{split} V(X) &= cov(X,X) = cov\Big(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i\Big) = n \cdot V(X_1) + n(n-1) \cdot cov(X_1,X_2) = \\ &= n\Big(E(X_1^2) - E(X_1)^2\Big) + n(n-1)\Big(E(X_1X_2) - E(X_1)E(X_2)\Big) = \\ &= n\Big(\frac{1}{n} - \frac{1}{n^2}\Big) + n(n-1)\Big(P(X_1 = 1, X_2 = 1) - \frac{1}{n^2}\Big) = 1 - \frac{1}{n} + n(n-1)\Big(\frac{1}{n(n-1)} - \frac{1}{n^2}\Big) = \\ &= 1 - \frac{1}{n} + 1 - 1 + \frac{1}{n} = \boxed{1} \end{split}$$

2 Exercise 7

2.1 Q 1:

1. The probability function of (X,Y) is given by the following table:

y x	1	2	3
1	1/12	1/6	1/12
2	1/6	1/4	1/12
3	1/12	1/12	0

Find:

- (a) the probability for X to be odd.
- (b) the probability for XY to be odd.
- (c) $P(X + Y \ge 4)$.
- (d) E(X + Y).
- (e) V(X + Y).

Solution:

(a) $P(X \text{ is odd}) = P(x=1) + P(x=3) = \frac{1}{12} + \frac{1}{6} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} = \boxed{\frac{1}{2}}$

(b)
$$P(XY \text{ is odd}) = P(1,1) + P(1,3) + P(3,1) + P(3,3) = \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + 0 = \boxed{\frac{1}{4}}$$

(c)
$$P(X+Y \ge 4) = P(1,3) + P(2,2) + P(2,3) + P(3,1) + P(3,2) + P(3,3) = \frac{1}{12} + \frac{1}{4} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + 0 = \boxed{\frac{7}{12}}$$

(d)
$$E(X+Y) = E(X) + E(Y) = 2\left(1 \cdot \left(\frac{1}{12} + \frac{1}{6} + \frac{1}{12}\right) + 2 \cdot \left(\frac{1}{6} + \frac{1}{4} + \frac{1}{12}\right) + 3 \cdot \left(\frac{1}{12} + \frac{1}{12}\right)\right) = \boxed{\frac{11}{3}}$$

(e)
$$V(X+Y) = E((X+Y)^2) - E(X+Y)^2 = 4 \cdot \frac{1}{12} + 9 \cdot \frac{1}{3} + 16 \cdot \frac{5}{12} + 25 \cdot \frac{1}{6} - \left(\frac{11}{3}\right)^2 = \boxed{\frac{13}{18}}$$

2.2 Q 5:

- 5. A die is rolled n times. Let X_1 and X_2 be the number of 1-s and of 2-s, respectively. Find:
 - (a) the probability function of (X_1, X_2) .
 - (b) $Cov(X_1, X_2)$.

Solution:

(a)
$$P(X_1 = i, X_2 = j) = \binom{n}{i} \left(\frac{1}{6}\right)^i \cdot \binom{n-i}{j} \left(\frac{1}{6}\right)^j \cdot \left(\frac{4}{6}\right)^{(n-i-j)} = \left[\binom{n}{i, j, n-i-j} \left(\frac{1}{6}\right)^{(i+j)} \cdot \left(\frac{4}{6}\right)^{(n-i-j)}\right]$$

(b) (i)
$$X_1, X_2 \sim B(n, \frac{1}{6}) \implies E(X_1) = E(X_2) = n \cdot \frac{1}{6} = \frac{n}{6}$$

(ii) Let $X_{1,i}$ be an indicator random variable, where $X_{1,i}=1$ if the outcome on the i'th position is 1 and 0 otherwise. Let $X_{2,i}$ be an indicator random variable, where $X_{1,i}=1$ if the outcome on the i'th position is 2 and 0 otherwise. We know that $X_1=\sum_{i=1}^n X_{1,i}$ and $X_2=\sum_{i=1}^n X_{2,i}$. Therefore:

$$E(X_1X_2) = E(\sum_{i=1}^n X_{1,i} \cdot \sum_{j=1}^n X_{2,i}) = \sum_{i,j=1}^n E(X_{1,i}X_{2,j}) = \sum_{i\neq j}^n E(X_{1,i})E(X_{2,j}) + \sum_{i=1}^n E(X_{1,i},X_{2,i}) = \frac{n}{6}\frac{n-1}{6} = \frac{n(n-1)}{36}$$
 In total: $Cov(X_1,X_2) = E(X_1X_2) - E(X_1)E(X_2) = \frac{n(n-1)}{36} - \frac{n^2}{36} = \boxed{-\frac{n}{36}}$

3 Exercise 8:

3.1 Q 2 a:

- 2. Let X_i , i = 1, 2, ..., m, be independent random variables distributed according to one of the following possibilities:
 - (a) $X_i \sim P(\lambda_i)$.
 - (b) $X_i \sim B(n_i, p)$.
 - (c) $X_i \sim G(p)$.

Let $Y = \sum_{i=1}^{m} X_i$. Prove that, correspondingly:

- (a) $Y \sim P(\sum_{i=1}^{m} \lambda_i)$.
- (b) $Y \sim B(\sum_{i=1}^{m} n_i, p)$.
- (c) $Y \sim \overline{B}(m, p)$.

Solution: Recall the multinomial theorem:

$$(x_1 + x_2 + \dots + x_m)^n = \sum_{k_1 + k_2 + \dots + k_m = n; k_1, k_2, \dots, k_m \ge 0} \binom{n}{k_1, k_2, \dots, k_m} \prod_{i=1}^m x_i^{k_i}$$

$$X_i \sim P(\lambda_i) \implies P(X_i = k) = \frac{\lambda_i^k e^{-\lambda_i}}{k!}$$

$$P(Y = k) = P(X_1 + X_2 + \dots + X_m = k)$$

Since X_i 's are independent we get:

$$P(Y = k) = P(X_1 + X_2 + \dots + X_m = k) = \sum_{k_1 + \dots + k_m = k} P(X_1 = k_1) P(X_2 = k_2) \cdot \dots \cdot P(X_m = k_m) = \sum_{k_1 + \dots + k_m = k} \frac{\lambda_1^{k_1} e^{-\lambda_1}}{k_1!} \cdot \dots \cdot \frac{\lambda_m^{k_m} e^{-\lambda_m}}{k_m!} = e^{-(\lambda_1 + \lambda_2 + \dots + \lambda_m)} \cdot \left(\sum_{k_1 + \dots + k_m = k} \frac{\lambda_1^{k_1}}{k_1!} \cdot \dots \cdot \frac{\lambda_m^{k_m}}{k_m!}\right) \cdot \frac{k!}{k!} = \sum_{k_1 + \dots + k_m = k} \frac{e^{-(\lambda_1 + \lambda_2 + \dots + \lambda_m)}}{k!} \cdot \left(\sum_{k_1 + \dots + k_m = k} \frac{k!}{k_1! \cdot k_2! \cdot \dots \cdot k_m!} \cdot (\lambda_1^{k_1} \cdot \lambda_2^{k_2} \cdot \dots \cdot \lambda_m^{k_m})\right) = \sum_{k_1 + \dots + k_m = k} \frac{e^{-(\lambda_1 + \lambda_2 + \dots + \lambda_m)}}{k!} \cdot \left(\sum_{k_1 + \dots + k_m = k} \binom{k}{k_1, k_2, \dots, k_m} \cdot \prod_{i=1}^m \lambda_i^{k_i}\right) = \frac{e^{-(\lambda_1 + \lambda_2 + \dots + \lambda_m)}}{k!} \cdot (\lambda_1 + \lambda_2 + \dots + \lambda_m)^k = \sum_{k_1 + \dots + k_m = k} \frac{e^{-(\sum_{i=1}^m \lambda_i)} \cdot (\sum_{i=1}^m \lambda_i)^k}{k!} \implies Y \sim P\left(\sum_{i=1}^m \lambda_i\right) \blacksquare$$

3.2 Q 4:

- 4. A die is rolled twice. Let X_i denote the outcome of the *i*th roll, and put $S = X_1 + X_2$ and $D = |X_1 X_2|$.
 - (a) Show that E(SD) = E(S)E(D).
 - (b) Are S and D independent?

Solution:

$$E(S) = E(X_1 + X_2) = E(X_1) + E(X_2) = 3.5 + 3.5 = 7$$

$$E(D) = E(|X_1 - X_2|) = \sum_{i=0}^5 P(|X_1 - X_2| = i) \cdot i = 0 \cdot \frac{6}{36} + 1 \cdot \frac{10}{36} + 2 \cdot \frac{8}{36} + 3 \cdot \frac{6}{36} + 4 \cdot \frac{4}{36} + 5 \cdot \frac{2}{36} = \frac{35}{18}$$

$$E(SD) = E((X_1 + X_2)|X_1 - X_2|) = E(X_1 \cdot |X_1 - X_2|) + E(X_2 \cdot |X_1 - X_2|) = 2 \cdot E(X_1 \cdot |X_1 - X_2|)$$
 The probability function $P(X_1, |X_1 - X_2|)$ is given by the following table:

$ X_1 - X_2 $	0	1	2	3	4	5
1	1/36	1/36	1/36	1/36	1/36	1/36
2	1/36	1/18	1/36	1/36	1/36	0
3	1/36	1/18	1/18	1/36	0	0
4	1/36	1/18	1/18	1/36	0	0
5	1/36	1/18	1/36	1/36	1/36	0
6	1/36	1/36	1/36	1/36	1/36	1/36

Therefore:

$$E(SD) = 2 \cdot \sum_{i=1}^{6} \sum_{j=0}^{5} i \cdot j \cdot P(X_1 = i, |X_1 - X_2| = j) = \frac{245}{18} = 7 \cdot \frac{35}{18} = E(S) \cdot E(D) \blacksquare$$

(b)
$$P(X_1 + X_2 = 7, |X_1 - X_2| = 0) = 0 \neq \frac{6}{36} \cdot \frac{6}{36} = P(X_1 + X_2 = 7) \cdot P(|X_1 - X_2| = 0)$$

Therefore S and D are not independent.

3.3 Q 7:

7. A tetrahedron, with the numbers 1, 2, 3, and 4 marked on its faces, is tossed twice. Let X be the smaller of the two outcomes and Y the larger. Find $\rho(X,Y)$.

Solution:

1.
$$P(X = k) = \frac{9-2k}{16}$$

5.
$$P(Y = k) = \frac{2k-1}{16}$$

2.
$$E(X) = \sum_{k=1}^{4} k \cdot \frac{9-2k}{16} = \frac{15}{8}$$

6.
$$E(Y) = \sum_{k=1}^{4} k \cdot \frac{2k-1}{16} = \frac{25}{8}$$

3.
$$E(X^2) = \sum_{k=1}^{4} k^2 \cdot \frac{9-2k}{16} = \frac{35}{8}$$

7.
$$E(Y^2) = \sum_{k=1}^{4} k^2 \cdot \frac{2k-1}{16} = \frac{85}{8}$$

4.
$$V(X) = \frac{35}{8} - \left(\frac{15}{8}\right)^2 = \frac{55}{64}$$

8.
$$V(Y) = \frac{85}{8} - \left(\frac{25}{8}\right)^2 = \frac{55}{64}$$

The probability function P(X,Y) is given by the following table:

X	1	2	3	4
1	1/16	1/8	1/8	1/8
2	0	1/16	1/8	1/8
3	0	0	1/16	1/8
4	0	0	0	1/16

$$E(XY) = P(1,1) + 2P(1,2) + 3P(1,3) + 4(P(1,4) + P(2,2)) + 4P(2,3) + 8P(2,4) + 9P(3,3) + 12P(3,4) + 16P(4,4) =$$

$$= \frac{1}{16} + \frac{2}{8} + \frac{3}{8} + \frac{4}{8} + \frac{4}{16} + \frac{6}{8} + \frac{8}{8} + \frac{9}{16} + \frac{12}{8} + \frac{16}{16} = \frac{25}{4}$$

In total we get:

$$\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{(V(X)V(Y))}} = \frac{E(XY) - E(X)E(Y)}{\sqrt{(V(X)V(Y))}} = \frac{\frac{25}{4} - \frac{15}{8} \cdot \frac{25}{8}}{\sqrt{\frac{55}{64} \cdot \frac{55}{64}}} = \frac{\frac{25}{64}}{\frac{55}{64}} = \boxed{\frac{5}{11}}$$