# Chap. 9 Turing Machines Machines

#### Agenda of Chapter 9

What can we say about the most powerful automata and the limits of computation?

How to define the idea of a mechanical or algorithmic computation?

- □ The Standard Turing Machine
  - Turing machines as language accepters
  - Turing machines as transducers
- Combining Turing Machines for Complicated Tasks
- Turing's Thesis.

#### Definition of a Turing Machine(1/5)

Schematic representation of Turing machine



# **Definition] Turing machine M**=(Q, $\Sigma$ , $\Gamma$ ) $\delta$ , $q_0$ , $\neg$ , F) - Q: set of internal states - $\Sigma$ : input alphabet (Assume $\Sigma \subseteq \Gamma$ -{ $\bigcirc$ }) - $\Gamma$ : tape alphabet (a finite set of symbols) - $\delta$ : $Q \times \Gamma \to Q \times \Gamma \times \{L,R\}$ (partial function) - $\square \in \Gamma$ : a special symbol called blank

#### Definition of a Turing Machine(2/5)



#### Ex9.2] Turing machine with a halt state

$$M = (\{q_0, q_1\}, \{a,b\}, \{a,b, \square\}, \delta, q_0, \square, \{q_1\})$$

$$\delta(q_0,a) = (q_0,b,R), \, \delta(q_0,b) = (q_0,b,R), \, \delta(q_0,\Box) = (q_1,\Box,L)$$



#### [Representation by transition graph]



#### Definition of a Turing Machine (3/5)

Ex 9.3] Turing machine in an **infinite loop** 

$$M = (\{q_0, q_1\}, \{a,b\}, \{a,b, \square\}, \delta, q_0, \square, \{\}))$$

$$\delta(q_0, a) = (q_1, a, R), \delta(q_0, b) = (q_1, b, R), \delta(q_0, \square) = (q_1, \square, R),$$

$$\delta(q_1, a) = (q_0, a, L), \delta(q_1, b) = (q_0, b, L), \delta(q_1, b) = (q_0, \square, L)$$
Transition graph:

If the tape initially contains ab..., with read-write head on a

- Main features of standard Turing machine
  - An unbounded tape in both directions,
  - Deterministic (i.e., at most one move for each configuration)
  - No special input file and no output device.
    - Input : contents of the tape at the initial time
    - Output : contents of the tape when the machine halts.

#### Definition of a Turing Machine (4/5)

Instantaneous description for Turing machine configuration



□ Instantaneous description for a movement



#### Definition of a Turing Machine (5/5)

- Computation of a Turing machine
  - Let M=(Q, Σ, Γ, δ,  $q_0$ , □, F) be a Truing machine
  - A move  $a_1 a_2 ... a_{k-1} q_1 a_k a_{k+1} ... a_n \vdash a_1 a_2 ... a_{k-1} q_2 a_{k+1} ... a_n$  is possible iff  $\delta(q_1, a_k) = (q_2, b, R)$ .
  - A move  $a_1 a_2 ... a_{k-1} q_1 a_k a_{k+1} ... a_n \vdash a_1 a_2 ... q_2 a_{k-1} a_{k+1} ... a_n$  is possible iff  $\delta(q_1, a_k) = (q_2, b, L)$ .
  - M is said to halt starting from initial configuration  $x_1q_ix_2$  if  $x_1q_ix_2 \not\models y_1q_iay_2$  for any  $q_i$  and a, for  $\delta(q_i, a)$  is undefined.
  - Computation: sequence of configurations leading to a halt sate.
- Notation for endless loop.
  - $x_1 q x_2 \not\models \infty$
  - Staring from the initial configuration  $x_1qx_2$ , the machine never halts.

#### Turing Machines as Language Accepters (1/3)

- Turing machine accepting w
  - w is written on tape, with blanks for unused portions. Que
  - Start in q<sub>0</sub>
  - Read-write Kead positions on the leftmost symbol of w.
  - Halts after a sequence of moves.
  - Enters a final states



# **Definition] Language accepted by M**=(Q, $\Sigma$ , $\Gamma$ , $\delta$ , $q_0$ , $\square$ , F) $L(M)=\{w\in\Sigma^+\mid q_0w \not\models x_1q_fx_2 \text{ for some } q_f\in F, x_1,x_2\in \Gamma\}$

- Input w is written on the tape with blank on either side
- When w is not in L(M)
  - halts in a nonfinal state → find the fine to the spect.
  - Enters an infinite loop and never halt.



#### Turing Machines as Language Accepters (2/3)

Ex9.6] 
$$\Sigma = \{0,1\}$$
 Turing machine accepting  $00^*$ 

$$- M = ( \log_{\lambda} \gamma_{i} \log_{\lambda} \gamma_{i} \log_{\lambda} \gamma_{i} \log_{\lambda} \beta_{i} \log_{\lambda$$

[q<sub>0</sub>] continue to head movement during input 0

 $[q_0 \rightarrow q_f]$  At  $\Box$ , go to final state

For input 1?



#### Turing Machines as Language Accepters (3/3)

```
Ex9.7] \Sigma = \{a,b\} Turing machine accepting L_1 = \{a^nb^n \mid n \geq 1\}
    M = (\{q_0, q_1, q_2, q_3, q_f\}, \{a,b\}, \{a,b,x,y,\Box\}, \delta, q_0,\Box, \{q_f\})
    Strategy: a,b를 하나씩 번갈아 x, y로 바꾸어감.
                 더 이 & a가) 남아 있지 않을 때 남아있는 b의 개수를 셈.
    [q_0 \rightarrow q_1] a \rightarrow x, change state to q_1 \in (Q_1, \chi_1 R)
    [q<sub>1</sub>] Go to leftmost b \delta(Q_0) = (Q_1,Q_1,Q_1), \delta(Q_1,Q_2) = (Q_1,Q_1,Q_1)
    [q_1 \rightarrow q_2] b \rightarrow y, change state to q_2 \delta(b_1 b) = b_2 b_3 b_4 b_1
    [q2] Return to the rightmost x & (D20) - (D2AL), &(D2D) - (D2AL)
    [q_2 \rightarrow q_0] reset state as q_0 (repeat q_0, q_1, q_2) \delta(b_1, \lambda) = (Q_1, \lambda_1, \lambda_2)
    [qo] When no more a, change state to q3 & (兄ッツ) = (ひょりゃん) ゼコ 徳 心 神波は
    [q<sub>3</sub>] go to the rightmost y, \delta(0_3, y) = (0_3, y, R)
    [q_3 \rightarrow q_4] change to final state to q_f when no character after y \in (q_1, p) = (q_2, p_3)
                                                                                     halt
q_0 aab \vdash
q_0 aabb \vdash
                                                                                          \rightarrow final \rightarrow accept.
```

### Turing Machines as Transducers (1/5)

- Turing machine transducer M
  - An implementation of a function f: w' = f(w)
  - provided that  $q_0 w \not\models_M q w for some q_f in F.$
- Function f with domain D is (Turing-) computable
  - There exists a Turing machine M such that  $q_0 w \models_M q_f(w), q_f \in F$  for all  $w \in D$ .
- All the common mathematical functions are Turing computable.



# The Standard Turing Turing Machines as Transducers (2/5)

Ex9.9] Turing machine for x+y, (x,y): positive integers)

```
- Use whary notation w(x) \in \{1\}^+, |w(x)| = x
```

- Function mapping:  $(q_0)w(x)0w(y) \vdash q_f^*w(x+y)0$  $M = (\{q_0, q_1, q_2, q_3, q_f\}, \{1, 0\}, \{1, 0, \square\}, \delta, q_0, \square, \{q_f\})$ 

Strategy: 0을 1로 바꾸고 마지막 1을 0으로 바꿈.

$$[q_0]$$
 Go to 0  $\{(Q_{a_j}, l) = (Q_{a_j}, l, R)\}$ 

 $[q_0 \rightarrow q_1] 0 \rightarrow 1$ , change state to  $q_1 \& (Q_0, \circ) \rightarrow (Q_1, \circ, \circ)$ 

$$[q_1]$$
 Go to  $\square$   $\delta(Q_1, 1) = (Q_1, 1, R_1)$ 

$$[q_1 \rightarrow q_2]$$
 at  $\square$ , change state to  $q_2 \ \S \cdot (Q_1, \square) = Q_2, \square \cdot \square \cdot \square$ 

[q<sub>2</sub>] rightmost  $1 \rightarrow 0$ , change state to  $q_3 \in (0, 1) = (0, 0, 1)$ 

[q<sub>3</sub>] return to leftmost 1 
$$\delta(Q_3, I) = Q_3, I = 0$$

 $[q_3 \rightarrow q_f]$  change state to  $q_f = \langle Q_f, \square \rangle = \langle Q_f, \square \rangle$ 



## Turing Machines as Transducers (3/5)

Ex9.10] Turing machine copying string of 1's.

- Function mapping:  $q_0 w \vdash_M q_f ww$  for any  $w(x) \in \{1\}^+$ .

Strategy: 모든 1을 x로 바꾼 후, 하나씩 1로 다시 바꾸면서 새로운 1도 추가

-  $M = (\{q_0, q_1, q_2, q_f\}, \{1\}, \{1, x, \square\}, \delta, q_0, \square, \{q_f\})$ 

$$[q_0] All 1 \rightarrow x \delta(Q_0, l) = (Q_0, l, k)$$

 $[q_0 \rightarrow q_1]$  at  $\square$  change state to  $q_1 \delta(Q_0, \square) = (Q_1, \square, \bot)$ 

[q<sub>1</sub>] Go to rightmost  $x \leq (Q_1, I) = (Q_1, I, L)$ 

 $[q_1 \rightarrow q_2] \times \rightarrow 1$ , change state  $q_2 \& (Q_1 \neq 0) = (Q_2 \neq 0) \land R$ .

 $[q_1 \rightarrow q_f]$  Change state to  $q_f$  when no more x

## Turing Machines as Transducers (4/5)

```
Ex9.11] TM for conditional statement
    halt in final state q_v if (x \ge y)(q_0w(x))0w(y) \vdash q_vw(x)0w(y)
    halt in a nonfinal state q_n if x < y (q_0 w(x) 0 w(y) \vdash q_n w(x) 0 w(y))
   Tips] (ex9.7)과 유사한 방법을 사용
  [q_0 \rightarrow q_1] First 1 \rightarrow x, change state to q_1
 [q_1] go to w(y) (find 0
  [q_1 \rightarrow q_2] at 0, change state to q_2
  [q_2 \rightarrow q_r] In w(y), first 1 \rightarrow x, change state to q_r
 [q_r \rightarrow q_r \rightarrow q_0] Return to last x, reset the state to q_0 (repeating q_0, q_1, q_2, q_r, q_r
  [q_0 \rightarrow q_c] When no more 1 in w(x), change state to q_c = \delta(Q_o, 0) = 0
  [q_c] count remaining 1 in w(y)
```

## Turing Machines as Transducers (4/5)



#### Turing Machine using Building Bolcks

- TM's for Basic operations  $\rightarrow$  TM for complex instructions
  - Use block diagram and pseudo code

Ex9.12] TM for 
$$f(x,y) = x+y$$
 if  $x \ge y$   
= 0 if  $x < y$ 



Comparer C

mparer C 
$$q_{C,0}w(x)0w(y) \not\models q_{A,0}w(x)0w(y) \qquad \text{when } x \geq y$$
 
$$q_{C,0}w(x)0w(y) \not\models q_{E,0}w(x)0w(y) \qquad \text{when } x < y$$

- Adder A:  $q_{A,0}w(x)0w(y) \nmid q_{A,f}w(x+y)0$ when x≥y
- $q_{E,0}w(x)0w(y) \nmid q_{E,f}0$ Eraser E: when x≥y

#### Turing Machine using Pseudo code (1/2)

- Macroinstructions for control statements
- Ex9.13] conditional statement: if a then q<sub>i</sub> else q<sub>k</sub>
  - Macroinstructions for implementing conditional statement

$$\begin{split} \delta(q_{i},a) &= (q_{j0},\,a,\,R) & \text{for all } q_{i} {\in} Q \\ \delta(q_{i},b) &= (q_{k0},\,b,\,R) & \text{for all } q_{i} {\in} Q \text{ and all } b {\in} \Gamma {-} \{a\} \\ \delta(q_{j0},c) &= (q_{j},\,c,\,L) & \text{for all } c {\in} \Gamma \\ \delta(q_{k0},c) &= (q_{k},\,c,\,L) & \text{for all } c {\in} \Gamma \end{split}$$



- 1. Write A's current state and arguments for B on tape region T
- A passes controls to B
- 3. B find input from tape, and start transitions
- 4. Return results of B to tape and passes control to A



### Turing Machine using Pseudo code (2/2)

ex:), w(3)=111.

Ex9.14] TM for multiplying 2 positive integers in unary notation

- Function mapping: Q 00 WEJ. DW(y) [\* Q+ 0 WEX\*Y) 0 WEJ OW(y).
  (大性 對神 한中).
  - Repeat the following steps until x contains no more 1's.
     Find a 1 in x and replace it with another symbol a.
     Replace the leftmost 0 by 0y.
  - 2. Replace all a's with 1's,



#### Turing's Thesis

#### [Turing thesis as the definition of mechanical computation]

- 1. Anything that can be done on any existing computer can also be done by a Turing machine.
- 2. No one has yet been able to suggest a problem
  - which is solvable by an algorithm
  - for which a TM program cannot be written
- 3. No alternative models for mechanical computation is more powerful than the TM model. ( 神 東 東 東 )

#### [Algorithm for a function $f : D \rightarrow R$ ]

- Turing machine M satisfying
    $q_0d \nmid_M q_f(d)$ ,  $q_f \in F$ , for all  $d \in D$
- Based on Turing's these, we can claim that anything we can do on any computer can also be done on a Turing machine.