$12a_{1023} (K12a_{1023})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{63} - u^{62} + \dots + 4u^3 - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 63 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{63} - u^{62} + \dots + 4u^3 - 1 \rangle$$

(i) Arc colorings

a) Art colonings
$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u \\ -u^3 + u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -u^2 + 1 \\ u^4 - 2u^2 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -u^{10} + 5u^8 - 8u^6 + 3u^4 + u^2 + 1 \\ -u^{10} + 4u^8 - 5u^6 + 2u^4 - u^2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u^6 - 3u^4 + 2u^2 + 1 \\ -u^8 + 4u^6 - 4u^4 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{17} - 8u^{15} + 25u^{13} - 36u^{11} + 19u^9 + 4u^7 - 2u^5 - 4u^3 + u \\ -u^{19} + 9u^{17} - 32u^{15} + 55u^{13} - 43u^{11} + 9u^9 + 4u^5 - u^3 + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{39} - 18u^{37} + \dots - 6u^5 - 6u^3 \\ u^{39} - 17u^{37} + \dots + 3u^5 + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{28} - 13u^{26} + \dots + u^2 + 1 \\ -u^{30} + 14u^{28} + \dots - 4u^4 - u^2 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} u^{57} - 26u^{55} + \dots + 2u^3 + u \\ -u^{59} + 27u^{57} + \dots - u^3 + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{61} 112u^{59} + \cdots + 4u 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{63} - 13u^{62} + \dots + 5048u - 367$
c_2, c_3, c_7	$u^{63} + u^{62} + \dots + 4u^3 + 1$
C4	$u^{63} - u^{62} + \dots - 16u + 1$
c_5, c_6, c_{10} c_{11}	$u^{63} + u^{62} + \dots - 2u^4 + 1$
c ₈	$u^{63} - 3u^{62} + \dots - 14u + 1$
c_9, c_{12}	$u^{63} - 11u^{62} + \dots + 1032u - 113$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{63} + 23y^{62} + \dots + 185728y - 134689$
c_2, c_3, c_7	$y^{63} - 57y^{62} + \dots + 12y^2 - 1$
C4	$y^{63} - y^{62} + \dots - 64y - 1$
$c_5, c_6, c_{10} \ c_{11}$	$y^{63} - 69y^{62} + \dots + 4y^2 - 1$
c ₈	$y^{63} - 5y^{62} + \dots + 96y - 1$
c_9, c_{12}	$y^{63} + 39y^{62} + \dots - 28816y - 12769$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.05857	-0.871869	-9.57900
u = -1.124880 + 0.212975I	-4.94868 - 6.91271I	0
u = -1.124880 - 0.212975I	-4.94868 + 6.91271I	0
u = 1.148860 + 0.182186I	2.18519 + 4.53135I	0
u = 1.148860 - 0.182186I	2.18519 - 4.53135I	0
u = -0.830553 + 0.042703I	-8.69415 + 0.00048I	-9.30642 + 0.15839I
u = -0.830553 - 0.042703I	-8.69415 - 0.00048I	-9.30642 - 0.15839I
u = -1.190630 + 0.128855I	2.84482 - 1.03901I	0
u = -1.190630 - 0.128855I	2.84482 + 1.03901I	0
u = -0.307202 + 0.707160I	-5.43312 - 10.27260I	-7.72829 + 7.96510I
u = -0.307202 - 0.707160I	-5.43312 + 10.27260I	-7.72829 - 7.96510I
u = 0.311428 + 0.693681I	1.68556 + 7.55058I	-4.18504 - 9.18442I
u = 0.311428 - 0.693681I	1.68556 - 7.55058I	-4.18504 + 9.18442I
u = -0.317156 + 0.675863I	2.25968 - 3.54520I	-2.30097 + 2.95262I
u = -0.317156 - 0.675863I	2.25968 + 3.54520I	-2.30097 - 2.95262I
u = -0.615511 + 0.402928I	-4.21282 + 6.36699I	-5.11968 - 2.58502I
u = -0.615511 - 0.402928I	-4.21282 - 6.36699I	-5.11968 + 2.58502I
u = 0.336084 + 0.649282I	-3.64458 + 1.06314I	-5.63466 - 3.13287I
u = 0.336084 - 0.649282I	-3.64458 - 1.06314I	-5.63466 + 3.13287I
u = -0.218313 + 0.688956I	-10.70060 - 3.40629I	-12.54413 + 4.55404I
u = -0.218313 - 0.688956I	-10.70060 + 3.40629I	-12.54413 - 4.55404I
u = 0.577950 + 0.406867I	2.80271 - 3.72383I	-1.35159 + 3.56435I
u = 0.577950 - 0.406867I	2.80271 + 3.72383I	-1.35159 - 3.56435I
u = 0.229540 + 0.647261I	-2.84257 + 2.89752I	-11.56820 - 6.31602I
u = 0.229540 - 0.647261I	-2.84257 - 2.89752I	-11.56820 + 6.31602I
u = 0.495663 + 0.468066I	-2.93186 + 2.65024I	-3.65682 - 3.70204I
u = 0.495663 - 0.468066I	-2.93186 - 2.65024I	-3.65682 + 3.70204I
u = -0.533777 + 0.423287I	3.22952 - 0.19502I	0.24983 + 3.49872I
u = -0.533777 - 0.423287I	3.22952 + 0.19502I	0.24983 - 3.49872I
u = 1.303640 + 0.225472I	-3.76308 - 0.34360I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.303640 - 0.225472I	-3.76308 + 0.34360I	0
u = -0.083521 + 0.671063I	-8.05532 + 3.57894I	-11.69365 - 1.74226I
u = -0.083521 - 0.671063I	-8.05532 - 3.57894I	-11.69365 + 1.74226I
u = 1.32555	-2.93780	0
u = -1.350050 + 0.193271I	3.40243 - 1.30144I	0
u = -1.350050 - 0.193271I	3.40243 + 1.30144I	0
u = 0.070290 + 0.619087I	-1.00852 - 1.48110I	-8.78123 + 3.67726I
u = 0.070290 - 0.619087I	-1.00852 + 1.48110I	-8.78123 - 3.67726I
u = 1.389370 + 0.217872I	4.99399 + 3.97068I	0
u = 1.389370 - 0.217872I	4.99399 - 3.97068I	0
u = 1.382970 + 0.269752I	-5.61347 + 6.88488I	0
u = 1.382970 - 0.269752I	-5.61347 - 6.88488I	0
u = -1.389830 + 0.251114I	2.31904 - 6.16933I	0
u = -1.389830 - 0.251114I	2.31904 + 6.16933I	0
u = -0.214690 + 0.530628I	-0.156297 - 1.165440I	-2.55431 + 5.45798I
u = -0.214690 - 0.530628I	-0.156297 + 1.165440I	-2.55431 - 5.45798I
u = 1.44160 + 0.15031I	9.44187 + 2.25272I	0
u = 1.44160 - 0.15031I	9.44187 - 2.25272I	0
u = -1.44303 + 0.13785I	9.12730 + 1.82675I	0
u = -1.44303 - 0.13785I	9.12730 - 1.82675I	0
u = 1.42643 + 0.26226I	7.83985 + 6.97132I	0
u = 1.42643 - 0.26226I	7.83985 - 6.97132I	0
u = -1.42926 + 0.25015I	2.00484 - 4.35421I	0
u = -1.42926 - 0.25015I	2.00484 + 4.35421I	0
u = 1.44572 + 0.12636I	2.23352 - 4.59359I	0
u = 1.44572 - 0.12636I	2.23352 + 4.59359I	0
u = -1.42610 + 0.26976I	7.24522 - 11.06320I	0
u = -1.42610 - 0.26976I	7.24522 + 11.06320I	0
u = 1.42568 + 0.27581I	0.10974 + 13.85250I	0
u = 1.42568 - 0.27581I	0.10974 - 13.85250I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.44329 + 0.16543I	3.21696 - 4.93771I	0
u = -1.44329 - 0.16543I	3.21696 + 4.93771I	0
u = 0.481012	-1.12974	-8.20090

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{63} - 13u^{62} + \dots + 5048u - 367$
c_2, c_3, c_7	$u^{63} + u^{62} + \dots + 4u^3 + 1$
C4	$u^{63} - u^{62} + \dots - 16u + 1$
c_5, c_6, c_{10} c_{11}	$u^{63} + u^{62} + \dots - 2u^4 + 1$
<i>c</i> ₈	$u^{63} - 3u^{62} + \dots - 14u + 1$
c_9, c_{12}	$u^{63} - 11u^{62} + \dots + 1032u - 113$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{63} + 23y^{62} + \dots + 185728y - 134689$
c_2, c_3, c_7	$y^{63} - 57y^{62} + \dots + 12y^2 - 1$
c_4	$y^{63} - y^{62} + \dots - 64y - 1$
c_5, c_6, c_{10} c_{11}	$y^{63} - 69y^{62} + \dots + 4y^2 - 1$
c ₈	$y^{63} - 5y^{62} + \dots + 96y - 1$
c_9, c_{12}	$y^{63} + 39y^{62} + \dots - 28816y - 12769$