Unit 4

Numbers

Albert Sung

Prime Factorization

 A composite number can be represented as a product of smaller integers.

$$1001 = 7 \times 143$$

- ☐ This is called (integer) factorization.
- We can continue the process until all factors are primes.

$$1001 = 7 \times 11 \times 13$$

☐ This is called prime factorization.

- Another way to factorize it: $1001 = 11 \times 91$
- □ Continuing, $1001 = 11 \times 7 \times 13$
- ☐ The same factors are obtained.
- Is prime factorization unique?

The Fundamental Theorem of Arithmetic

(4 min) https://www.youtube.com/watch?v=8CluknrLeys

Outline of Unit 4

- 4.1 Divisibility
- 4.2 Primes and Co-primes
- 4.3 Euclidean Algorithm
- 4.4 Unique Factorization Theorem

Unit 4.1

Divisibility

Number Theory

- Number theory studies integers and operations on them.
- Its very basics (e.g. addition and multiplication) has natural applications in everyday life.
- ☐ Is more "advanced" number theory useless?
- No, it is vital for modern cryptography.
 - e.g. online transaction, e-banking, secure communications...
 - o more in Unit 6.

<u>Divisibility = Sharing Equally</u>

- Can the muffins be shared equally by the little animals?
- □ No, because 8 is *not* divisible by 3.
- □ Divisibility is the central concept of number theory.

Divisibility

■ **Definition:** Given two integers n and $d \neq 0$, we say that n is divisible by d iff n equals d times some integer:

$$\exists k \in \mathbf{Z}, \qquad n = d \times k.$$

- **Notation**: $d \mid n$ ("d divides n")
- We can also say that
 - "d is a factor of n."
 - "d is a divisor of n."
 - "n is a multiple of d."

- □ Why do we care about the definition, which is so trivial?
- It allows us to prove general properties.

Classwork

a) What are the divisors of 4?

b) Is 0 divisible by 0?

Transitivity of Divisibility

Theorem:

For all integers a, b, and c, if $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof:

By definition of divisibility,

b = ar and c = bs for some integers r and s.

By substitution,

$$c = bs = (ar)s = a(rs).$$

Since rs is an integer, by definition of divisibility,

$$a \mid c$$
.

Q.E.D.

Division with Remainders

☐ Division over integers is not always possible, but we can generalize it:

Quotient-Remainder Theorem:

(Proof omitted)

Given any integer *n* and positive integer *d*, there exist unique integers *q* and *r* such that

$$n = d \times q + r$$
, where $0 \le r < d$.

Terminology:

- o *n* is the dividend,
- o *d* is the divisor,
- \circ q is the quotient, and
- *r* is the remainder.

r can take only d values, $0, 1, 2, \dots, d-1$.

Intuition

 \square n = dq + r, where $0 \le r < d$.

- Split *n* objects into groups of size *d*.
- Form the groups one by one.
- There might be some objects left that are not enough for a new group.
- The number of objects left is *r*.
- \circ The number of groups formed is q.
- \square Idea: Repeatedly subtract d from n.
 - (If n < 0, repeatedly add d to n.)

The existence of q and r is intuitively clear.

Quotient and Remainder

- \square *n* div *d* denotes the quotient *q* obtained when n/d.
- \square $n \mod d$ denotes the remainder r obtained when n/d.
- ☐ Example:

$$\begin{array}{r}
3 \leftarrow 32 \ div \ 9 \\
9 \overline{\smash)32} \\
27 \\
\hline
5 \leftarrow 32 \ mod \ 9
\end{array}$$

Classwork

□ What day of the week will it be 1 year from today?

Unit 4.2

Primes and Co-Primes

Arranging Eggs

□ Is it possible to arrange a certain number of eggs in an array of several (i.e., more than 1) rows and columns?

Primes

Definition:

- a) An integer p is a prime if p > 1 and the only positive divisors of p are 1 and p itself.
- b) An integer *n* > 1 that is not a prime is called a composite.

□ Example:

- a) 1 is not a prime
- b) 2 is a prime as only 1|2 and 2|2
- c) 4 is a composite as not only 1|4, 4|4 but also 2|4

Arranging Two Groups of Eggs

□ Is it possible to arrange a eggs and b eggs in two arrays both of d rows, where d > 1?

$$a = 9$$

$$d = 3$$

$$b=15$$

It is possible if a and b have a common divisor d > 1.

It is impossible if they are co-prime (defined in the next slide).

Greatest Common Divisor

■ **Definition:** The greatest common divisor (gcd) of two numbers, *a* and *b*, is the largest integer that divides both *a* and *b*.

 \circ e.g., gcd(24, 16) = 8.

■ **Definition:** Two numbers, *a* and *b*, are said to be co-prime or relatively prime if

$$gcd(a, b) = 1.$$

• e.g. 14 and 9 are relatively prime.

Euler's Totient Function

- \square Euler's totient function $\phi(n)$ counts integers from 1 up to n that are co-prime with n.
 - $\phi(1) = 1$
 - $\phi(2) = 1$
 - $\phi(3) = 2$
 - $\phi(4) = 2$
 - $\phi(5) = 4$
 - $\phi(6) = 2$
 - $\phi(10) = ?$

- Euler's totient function is also called Euler's phi function.
- ☐ It plays a key role in the RSA encryption system (see Unit 6).

What is $\phi(p)$ if p is a prime?

Phi Function Formulas

Theorem:

- a) If p is a prime and $k \ge 1$, then $\phi(p^k) = p^k p^{k-1}.$
- b) If m and n are co-prime, then $\phi(mn) = \phi(m)\phi(n).$

Why is it useful?

- By Unique Factorization Theorem (discussed later), every number x can be expressed as $p_1^{k_1}p_2^{k_2} \dots p_j^{k_j}$.
- □ By (b), $\phi(x) = \phi(p_1^{k_1})\phi(p_2^{k_2}) ... \phi(p_j^{k_j})$.
- □ Each term can then be obtained by (a).

Illustration of the proof of (a)

 \square Consider $\phi(8) = \phi(2^3)$.

□ Counting: 1, 2, 3, 4, 5, 6, 7, 8

Not co-prime with 8

- ☐ There are $\frac{8}{2} = 4$ such numbers. $(\frac{p^k}{p} = p^{k-1})$

Proof of (a)

- \square There are p^k numbers in $\{1, 2, ..., p^k\}$.
- ightharpoonup Except the multiples of p, all numbers in this set are co-prime with p^k .
- \square There are p^{k-1} multiples of p in this set.
- ☐ Therefore,

$$\phi(p^k) = p^k - p^{k-1}.$$

Q.E.D.

Proof of (b) is omitted.

Unit 4.3

Euclidean Algorithm

Euclid (~300 B.C.)

Euclid

Who's Euclid?

(2.5 min) https://www.youtube.com/watch?v=440gbGszjk8

What's an Algorithm?

- An algorithm is a step by step method of solving a problem.
- □ (5 min) https://www.youtube.com/watch?v=6hfOvs8pY1k

How to find gcd(a, b)?

■ **Method 1:** By Short Division

- (pen-and-paper method in primary schools)
- i. Divide a and b by any of their common factor and obtain the corresponding quotients.
- ii. Let the two quotients be two new dividends.
- iii. Repeat Steps 1 and 2 until the two quotients obtained are relatively prime.
- iv. gcd(a, b) equals the product of all the dividers.
- Cons: Time consuming.

gcd (540, 840)
=
$$2 \times 2 \times 3 \times 5$$

= 60

How to find gcd(a, b)?

- Method 2: By a simple for loop
 - Idea: Test b, b 1, b 2, ... until a divisor of both a and b is found.
- Example: gcd(12, 8)
 - 8 is not a divisor of 12
 - 7 is not a divisor of 12
 - 6 is a divisor of 12 but not a divisor of 8
 - 5 is not a divisor of 12
 - 4 is a divisor of both 12 and 8.
 - \circ Therefore, gcd(12, 8) = 4.
- Cons: Time consuming.

Pseudo-Code for Method 2 (optional)

Procedure na $"ive_gcd(a, b)"$

Input: Two integers a and b with $a \ge b \ge 0$

Output: gcd(a, b)

x := b;

while $a \mod x \neq 0$ or $b \mod x \neq 0$

$$x := x - 1;$$

return *x*;

How to find gcd(a, b)?

■ **Method 3:** By Euclidean Algorithm Let a be the larger number, i.e. $a > b \ge 0$. The key idea is based on

$$gcd(a, b) = gcd(b, a \mod b).$$

- i. If b = 0, then gcd(a, b) = a. (Done!)
- ii. Otherwise, find $gcd(b, a \mod b)$. *Divide-and-conquer!*
- Pros: Very efficient.
 - It has been proved that the number of steps required is at most 5 times the number of digits of *b*.

4-31

Pseudo-Code for Euclidean Algorithm (optional)

```
Procedure Euclid(a, b)
            Two integers a and b with a \ge b \ge 0
Input
Output gcd(a, b)
if b = 0,
      return a;
else
      return Euclid(b, a \mod b);
```

Euclidean Algorithm: An Example

Euclidean Algorithm: An Example

(2 min) https://www.youtube.com/watch?v=fwuj4yzoX1o

Why does it Work?

Theorem: gcd(a, b) = gcd(b, r), where $r = a \mod b$.

Proof:

- \square Suppose d is a common divisor of a and b.
 - \circ i.e., a = dh and b = dk for some integers h and k.
- \Box Let a = b q + r.
- \square Therefore, *d* is a divisor of *r*.
 - In particular, *d* is a common divisor of *b* and *r*.
- □ A common divisor of *a* and *b* is also a common divisor of *b* and *r*.
- ☐ Hence, their gcds are equal.

Q.E.D.

<u>Theorem - Geometric Interpretation</u>

If d divides a and b, it also divides a - b.

If d divides a and b, it also divides a mod b.

Hence, $gcd(a, b) = gcd(b, a \mod b)$.

Pen-and-Paper Method

Unit 4.4

Unique Factorization Theorem

How to Verify it?

Certificate for gcd

Lemma: If *d* divides both *a* and *b*, and d = ax + by for some integers *x* and *y*, then $d = \gcd(a, b)$.

Proof:

Since *d* is a common divisor of *a* and *b*,

$$d \leq \gcd(a, b)$$
.

Since gcd(a, b) divides both a and b, it divides d = ax + by, $gcd(a, b) \le d$.

Hence,

$$d = \gcd(a, b).$$

How to Verify it?

 $d = \gcd(a, b)$

Certificate: x, y

Can the Certificate always be Found?

And How?

Can we always find integers x and y such that gcd(a,b) = ax + by?

Yes, it is guaranteed by Bézout's identity.

(pronunciation: bay zoh)

In addition, *x*, *y* (as well as the gcd) can be computed by the extended Euclidean algorithm.

Bézout's Identity

There exists integers x and y such that gcd(a, b) = ax + by.

- \square x and y are called Bézout's coefficients.
- ☐ They are not unique.
- A pair of *x*, *y* can be computed by extended Euclidean algorithm, which serves as a constructive proof.

Example: Pen-and-Paper Method

$$1785 = 3(546) + 147$$

$$546 = 3(147) + 105$$

$$147 = 1(105) + 42$$

$$105 = 2(42) + 21$$

$$42 = 2(21) + 0$$

1785	546		
1	0	1785	(a)
0	1	546	(b)
1	-3	147	(c) = (a) - 3(b)
-3	10	105	(d) = (b) - 3(c)
4	-13	42	(e) = (c) - (d)
-11	36	21	(f) = (d) - 2(e)

$$1785(-11) + 546(36) = 21$$
$$ax + by = d$$

Extending Euclid's Algorithm (optional)

- □ Recall that Euclidean algorithm is based on $gcd(a, b) = gcd(b, a \mod b)$.
- □ Assume that $d = \gcd(b, a \mod b)$ and that $d = bx' + (a \mod b)y'$.
- Then

$$d = bx' + \left(a - \left|\frac{a}{b}\right|b\right)y'$$
$$= ay' + b\left(x' - \left|\frac{a}{b}\right|b\right)$$

[z]: largest integer smaller than z. e.g. $\left|\frac{13}{3}\right| = 4$

Pseudo-Code (optional)

```
Procedure ext-Euclid(a, b)
             Two integers a and b with a \ge b \ge 0
Input
Output
            Integers x, y, d such that d = ax + by
if b = 0,
      return (1,0,a);
else
      (x', y', d) = \text{ext-Euclid}(b, a \mod b);
      return (y', x' - |a/b|y', d);
```

Euclid's Lemma

Lemma: If p is prime and p|ab, then p|a or p|b, for all integers a and b.

Proof:

If p|a, we are done.

Suppose $p \nmid a$. Then, gcd(a, p) = 1.

 $\exists x, y \in \mathbb{N}, ax + py = 1$ (by Bézout's identity)

abx + pby = b (multiply both sides by b)

Since *p* divides the left side, it also divides *b*.

Generalization of Euclid's lemma

Corollary: If *p* is prime and it divides a product of several integers, then *p* divides at least one of those integers.

Proof:

Suppose $p|a_1a_2 \dots a_k$. By Euclid's lemma, $p|a_1$ or $p|a_2 \dots a_k$. Apply the lemma again and again, we obtain $p|a_1$ or $p|a_2$ or ... or $p|a_k$.

<u>Unique Factorization Theorem</u>

Theorem:

Given any integer n > 1, there exists a positive integer k, distinct prime numbers $p_1, p_2, ..., p_k$, and positive integers, $e_1, e_2, ..., e_k$ such that

$$n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}.$$

Moreover, this representation is unique up to (except for) the order of the factors.

• It is also called the fundamental theorem of arithmetic.

Proof (Existence) (optional)

- We prove by mathematical induction.
- □ (Base case) 2 is a prime.
- □ (Induction hypothesis) Assume the statement is true that for all integers from 2 up to n-1.
- \square (Induction step) Consider the integer n.
 - \circ If n is a prime, done.
 - If not, n = ab, where $1 < a \le b < n$. By the induction hypothesis, both a and b are product of primes. Hence, n = ab is also a product of primes.

Proof (Uniqueness) (optional)

■ Suppose a given number *N* has two representations:

$$N = p_1 p_2 \dots p_m = q_1 q_2 \dots q_n$$

- \square Note that $p_1|q_1q_2...q_n$.
- \square By Euclid's lemma, $p_1|q_i$ for some *i*.
- \square Since q_i is prime, $p_1 = q_i$.
- \square Dividing N by p_1 , we can reduce one factor from both representations.
- Reasoning the same way, we can show that $m \le n$ and every p_i is a q_i .
- □ Applying the same argument with the role of p's and q's reversed, we can show that $n \le m$ (hence m = n) and every q_i is a p_i .

Recommended Reading

Section 1.2, S. Dasgupta, C. Papadimitriou, and U. Vazirani, Algorithms, McGraw-Hill, 2008.

□ Chapters 5 and 7, J. H. Silverman, A Friendly Introduction to Number Theory, 4th ed., Pearson, 2013.