MATH-F307 - Mathématiques Discrètes Laurent LA FUENTE Notes de cours

André Madeira Cortes Nikita Marchant TABLE DES MATIÈRES 2

Table des matières

1	Théorie des Graphes	
	1.1 Définitions	
	1.2 Chemins dans les graphes	4
	1.3 Arbres	4
	1.4 Graphes Eulériens	7
	1.5 Application : le problème du voyageur de commerce (TSP)	7
	1.5.1 Énoncé du problème	7
	1.5.2 Arbres couvrant minimum	
	1.6 Ordres partiels	8
2	Arithmétique Modulaire	10
3	Combinatoire énumérative	11
4	Théorie des Codes	12
5	Transformées de Fourier discrètes	13

1 Théorie des Graphes

1.1 Définitions

Définition 1.1 Un graphe Γ est un triplet (V, E, γ) où V est un ensemble fini dont les éléments sont appelés sommets, E est un ensemble fini dont les éléments sont appelés arêtes, γ est une fonction $\gamma: E \to Paires(V)$. On nottera le plus souvent $\Gamma = (V, E)$ en omettant la fonction γ .

Soit $\gamma(e) = \{x, y\}$ pour $e \in E, x, y \in V$:

- 1. On dit que x et y sont adjacents.
- 2. On dit que e est incidente à x et y.

Définition 1.2 Soit $\Gamma = (V, E, \gamma)$ un graphe.

- 1. $\gamma(e) = \{x, x\}$ pour $e \in E, x \in V$ est appellé un lacet.
- 2. Si au moins 2 arêtes sont incidentes à 2 mêmes somments, on les appelle arêtes multiples.
- 3. Un graphe est simple s'il n'a ni lacet, ni arêtes multiples. Dans ce cas, on omet la fonction γ ,on note $\Gamma = (V, E)$ et E est identifié un sous-ensemble de Paires(V).

Définition 1.3 Soit $\Gamma = (V, E)$ un graphe. Le degré d'un sommet $v \in V$ est le nombre d'arêtes incidentes à v, les lacets comptant pour 2 arêtes. On note le degré de v par $\deg(V)$.

Exemple Dans la figure suivante, nous avons 2 sommets de degré 4 et 6 sommets de degré 1.

FIGURE 1 – Exemple degrés des sommets dans la molécule C_2H_6 .

Théorème 1.1 Soit $\Gamma = (V, E)$, alors

$$\sum_{i=1}^{\#V} deg(v_i) = 2\#E$$

Démonstration Chaque arête contribue 2 fois dans la somme des degrés.

Corollaire La somme des degrés des sommets d'un graphe est paire.

Définition 1.4 Le graphe complet K_n est le graphe simple à n sommets pour lequel chaque paire de sommets est une arête.

Définition 1.5 Un graphe $\Gamma' = (U, F)$ est un sous-graphe de $\Gamma = (V, E)$ si $U \subseteq V$ et $F \subseteq E$. On nottera $\Gamma' \leq \Gamma$.

Exemple $K_m \leq K_n \text{ si } m \leq n.$

Exercice Montrer que K_m possède $q = \frac{1}{2}n(n-1)$ arêtes.

1.2 Chemins dans les graphes

Définition 1.6 Soit $\Gamma = (V, E)$ et $v, w \in V$. Un chemin de v à w de longueur n est une séquence alternée de (n+1) sommets $v_0, v_1, ..., v_n$ et de n arêtes $e_1, e_2, ..., e_n$ de la forme

$$(v_0, e_1, v_1, e_2, ..., e_n, v_n)$$

dans laquelle chaque e_i est incident à v_{i-1} et v_i pour $1 \le i \le n$ et $e_i \ne e_j, \forall i \ne j \in 1, ..., n$

Un chemin est simple si aucun sommet ne se répète sauf peut-être v_0 et v_n .

Dans un graphe simple on nottera juste la suite des sommets lorsque l'on décrit un chemin.

Définition 1.7 Un graphe $\Gamma = (V, E)$ est connexe si $\forall x, y \in V : \exists$ un chemin de x à y.

La composante connexe de Γ contenant x est le sous-graphe Γ' de Γ dont les sommets et les arêtes sont contenus dans un chemin de Γ démarrant en x.

Définition 1.8 Soit $\Gamma = (V, E)$ et $v \in V$.

Un cycle est un chemin de v à v.

Un cycle simple est un cycle de v à v dans lequel aucun sommet n'est répété (mis à part le départ et l'arrivée).

1.3 Arbres

Définition 1.9 Un arbre est un graphe simple connexe qui ne contient aucun cycle.

Définition 1.10 Dans un arbre, les sommets de degré 1 sont appellés les feuilles.

Exemple < Dessin Arbre>

Proposition 1.1 Si T est un arbre avec $p \ge 2$ sommets, alors T contient au moins 2 feuilles.

Démonstration T a p sommets. Tous les chemins sont de longueur inférieure ou égale à p. Considérons un chemin $v_0, v_1, ..., v_r$ pour $v_i \in V$, i = 0, ..., r de longueur maximale. Alors, v_0 et v_r sont de degré 1.

Théorème 1.2 Soit T un graphe simple à p sommets. Alors les 3 assertions suivantes sont équivalentes :

- 1. T est un arbre.
- 2. T a (p-1) arêtes et aucun cycle.
- 3. T a (p-1) arêtes et est connexe.

Démonstration < Démonstration en 2 parties>.

 $<\!\!-$ COURS 2 MISSING $-\!\!>$

Théorème 1.3 (Dirac 1950) Soit $\Gamma = (V, E)$ un graphe simple avec $p \geq 3$ sommets. Si $\forall v \in V : deg(v) \geq \frac{1}{2}p$, alors Γ est Hamiltonien.

Démonstration Γ est connexe. Soit $C = (v_0, v_1, ..., v_k)$ un plus long chemin simple dans Γ avec $v_0 \neq v_k, k < p$.

 $deg(v_0) \geq \frac{p}{2}$, tous les sommets adjacents à v_0 sont dans $\{v_1, ..., v_k\}$

 $deg(v_k) \geq \frac{p}{2}$, tous les sommets adjacents à v_k sont dans $\{v_0, ..., v_{k-1}\}$

Comme k < q, il doit exister $i \in \{0, ..., k-1\}$ tel que $\{v_i, v_k\} \in E$ et $\{v_0, v_{i+1}\} \in E$. On obtient un cycle $\widetilde{C} = (v_0, v_1, ..., v_i, v_k, v_{k-1}, ..., v_{i+1}, v_0)$

FIGURE 2 – Les 2 chemins, C en rouge, \widetilde{C} en vert.

On nq(?) \widetilde{C} est un cycle Hamiltonien.

${\bf Supposons}:$

 $\exists y \in \widetilde{C} \Rightarrow \text{On peut supposer que } \{v_j, y\} \in E \text{ pour } j = \{0, ..., k\}.$

 \Rightarrow On construit un chemin $\overline{C}=(y,v_j,v_{j-1},...v_0,v_{i+1},...,v_k,v_i,v_{i-1},...,v_{j-1}).$ \overline{C} est un chemin plus long que C.

<Second Dessin>

Illustration : Code de Gray

Un code de Gray d'ordre n est un arrangement cyclique de 2^n mots binaires de longueur n tels que 2 mots adjacents ne diffèrent qu'en une seule position.

Exemple <dessin cercles concentriques>

Le code de Grey ci-dessus provient d'un cycles Hamiltonien.

<dessin cube et cycle>

Un code de Gray d'ordre (n+1) se construit à partir d'un code de Gray d'ordre n comme suit :

- 1. On écrit le code de Gray donné d'ordre n en ajoutant à la fin de chaque mot un zero.
- 2. On le fait suivre par le même code de Gray parcouru dans l'autre sens et en ajoutant à la fin de chaque mot un 1.

1.4 Graphes Eulériens

Définition 1.11 Un cycle Eulérien dans un graphe Γ est un cycle qui contient toutes les arêtes de Γ . Un graphe est Eulérien s'il contient un cycle Eulérien.

Exemple SOME EXAMPLE

Proposition 1.2 Si un graphe est Eulérien, alors tous ses sommets sont de degré pair.

Lemme Soit Γ un graphe dans lequel chaque sommet est de degré pair, alors l'ensemble E se partitionne en une union de cycles (arête-)disjointe.

Exemple < DRAWING 3 CYCLES>

Démonstration Par récurrence, sur le nombre d'arêtes

- 1. Le lemme est vrai pour q=2.
- 2. Supposons qu'il soit vrai pour tout graphe à $q \le k$ arêtes et montrons-le pour un graphe à (k+1) arêtes.
- 3. Soit v_0 un sommet de Γ . On démarre un chemin en v_0 et on le suit jusqu'à ce qu'un sommet soit répété 2 fois. On le note v_j et C le cycle de v_j à v_j .
- 4. Soit Γ' le sous-graphe de Γ , obtenu par V = V' et $E' = E \setminus C$. Γ' a $\#E' \leq k$ arêtes. Par hypothèse de récurence, les arêtes de Γ' se partitionnent en une union arête-disjointe de cycles $C_1 \cup C_2 \cup ... \cup C_n$.
- 5. Donc, $C_1 \cup C_2 \cup ... \cup C_n$ est une partition arête-disjointe des arêtes de Γ .
- 6. RECHECK THIS DEMO, SEEMS FISHY

Théorème 1.4 Soit Γ un graphe connexe. Alors, Γ est eulerien si et seulement si chaque sommet a un degré pair.

 $D\acute{e}monstration \Rightarrow \text{OK}$ par proposition précédente.

 \Leftarrow Par le Lemme : E se partitionne en une union (arête-)disjointe de cycles $C_1 \cup C_2 \cup ... \cup C_n$.

- 1. Si n=1, c'est bon.
- 2. Si n > 1, comme Γ est connexe, \exists une arête incidente à un $v \in C_1$ et un $w \notin C_1$. Cette arête est dans C_j pour un j = 2, ..., n (car on a une partition de E). On attache ce cycle en v. S'il reste des cycles dans la partition, on itère ce procédé jusqu'à avoir utilisé tous les cycles.

1.5 Application : le problème du voyageur de commerce (TSP)

1.5.1 Énoncé du problème

Énoncé : Un vendeur de livres démarre de chez lui et doit visiter un certain nombre de librairies avant de rentrer chez lui. Comment doit-il choisir sa route pour minimiser la distance parcourue?

Objet mathématique : Un graphe valué (à chaque arête est associé un nombre appelé poids) où les sommets représentent les librairies et les arêtes représentent les routes.

<VALUED K5 GRAPH HERE>

Objectif: Trouver un cycle hamiltonien de poids minimal.

Remarque : Un graphe complet K_n à n sommets possède $\frac{1}{2}(n-1)!$ cycles hamiltoniens differents. Par exemple, pour $n=10 \Rightarrow 181440$ cycles. On ne connait pas encore d'algorithme efficance qui donne une solution au problème.

1.5.2 Arbres couvrant minimum

Définition 1.12 Un arbre couvrant dans un graphe Γ est un arbre qui est un sous-graphe de Γ et qui contient tous les sommets de Γ .

Exemple < GRAPH TO MIN SPANNING TREE EXAMPLES HERE>

Il existe un algorithme qui donne des arbres couvrants de poids minimum dans un graphe valué.

Algorithme de Kurskal:

- i Choisir une arêtes de plus petit poids.
- ii Choisir parmi les arêtes restantes une arête de plus petit poids dont l'inclusion ne crée pas un cycle.
- iii Continuer jusqu'à obtenir un arbre couvrant.

Exemple < GRAPH K5 WITH PATH HERE>

Remarque : Si C est un cycles hamiltonien dans un graphe Γ , alors $\forall e \in E$ arête de C : $C \setminus \{e\}$ est un arbre couvrant.

 \Rightarrow (Solution de TSP) \geq (longueur minimum d'un arbre couvrant)

Mieux : Soit v un sommet de Γ . Tout cycle hamiltonien contient 2 arêtes incudentes à v. Le reste du chemin est un arbre couvrant de $\Gamma \setminus \{v\}$.

 \Rightarrow (Solution de TSP) \geq (\sum des longueurs des 2 plus courtes arêtes incidentes à v) + (longueur minimum d'un arbre couvrant de $\Gamma \setminus \{v\}$)

Remarque : ∃ borne supérieure à TSP en utilisant des cycles euleriens.

1.6 Ordres partiels

Définition 1.13 Soit P un ensemble. Un ordre partiel sur P est une relation sur P, c'est à dire un ensemble de couples $(p_1, p_2) \in P \times P$, noté $p1 \leq p2$ tel que :

- 1. $p \le p$ (réflexive)
- 2. $(p \le q \text{ et } q \le p) \Rightarrow p = q \text{ (anti-symétrique)}$
- 3. $(p \le q \text{ et } q \le r) \Rightarrow p \le r \text{ (transitive)}$

On note (P, \leq) un ensemble partiellement ordonné.

Exemple 1. (\mathbb{N}, \leq)

2. $(\mathbb{N}, |)$ où $a \mid b$ si $\exists c \in \mathbb{Z}$ tel que $a \cdot c = b \ (a, b \in \mathbb{Z})$

 $<\!\!-$ COURS 4 MISSING $-\!\!>$

2 Arithmétique Modulaire

3 Combinatoire énumérative

4 THÉORIE DES CODES 12

4 Théorie des Codes

5 Transformées de Fourier discrètes