大学物理 B 相对论作业

- 1. 关于同时性的以下结论中,正确的是: [C]
 - (A) 在一惯性系同时发生的两个事件,在另一惯性系一定不同时发生
 - (B) 在一惯性系不同地点同时发生的两个事件,在另一惯性系一定同时发生
 - (C) 在一惯性系同一地点同时发生的两个事件,在另一惯性系一定同时发生
 - (D) 在一惯性系不同地点不同时发生的两个事件,在另一惯性系一定不同时发生
- 2. 一火箭的固有长度为L ,相对于地面作匀速直线运动的速度为 v_1 ,火箭上有一个人从火箭的后端向 火箭前端上的一个靶子发射一颗相对于火箭的速度为 v_2 的子弹.在火箭上测得子弹从射出到击中靶的时 间间隔是: (c表示真空中光速) [B]

(A)
$$\frac{L}{v_1 + v_2}$$

(A) $\frac{L}{v_1 + v_2}$ (B) $\frac{L}{v_2}$ (C) $\frac{L}{v_2 - v_1}$ (D) $\frac{L}{v_1 \sqrt{1 - (v_1/c)^2}}$

3. 在速度 $v = _{\frac{\sqrt{3}}{2}}C_{\frac{1}{2}}$ 情况下粒子的动量等于非相对论动量的两倍.

相对论动量: mv 非相对论动量: mov

$$\frac{m_0}{\sqrt{1 - v^2/c^2}} v = 2m_0 v \qquad v = \frac{\sqrt{3}}{2} c = 0.866c$$

4. 某加速器将电子加速到能量 $E = 2 \times 10^6 \, \text{eV}$ 时,该电子的动能是 1.49 × 10⁶ eV.

(电子的静止质量 $m_e = 9.11 \times 10^{-31}$ kg, 1 eV =1.60×10⁻¹⁹ J)

$$E_k = mc^2 - m_0c^2 = E - m_ec^2 = 2 \times 10^6 eV - \frac{9.11 \times 10^{-31} \times \left(3 \times 10^8\right)^2}{1.60 \times 10^{-19}} eV = 1.49 \times 10^6 eV$$

5. 一体积为 V_0 ,质量为 m_0 的立方体沿其一棱的方向相对于观察者A以速度v运动. 求: 观察者A 测 得其密度是多少?

解: 在静止惯性系中

体积 V_0 =abc, 密度 ρ = m_0/V_0

在观察者看来

体积V=a'bc,a'=a(1-v²/c²)1/2,质量

 $m=m_0/(1-v^2/c^2)^{1/2}$

联立: $\rho'=m_0/[v_0(1-v^2/c^2)]$

- 6. 一艘宇宙飞船的船身固有长度为 $L_0 = 90$ m,相对于地面以v = 0.8c (c为真空中光速)的匀速度在地面观测站的上空飞过.
 - (1) 观测站测得飞船的船身通过观测站的时间间隔是多少?
 - (2) 宇航员测得船身通过观测站的时间间隔是多少?

解: (1) 观测站测得船身的长度为:

$$L=L_0\sqrt{1-\frac{u^2}{c^2}}=90\sqrt{1-0.82}=54\text{m};$$

通过观测站的时间间隔为:

$$\Delta t = \frac{L}{u} = \frac{54m}{0.8c} = 2.25 \times 10^{-7} \text{s};$$

(2) 宇航员测得飞船船身通过观测站的时间间隔为:

$$\Delta t = \frac{L_0}{u} = \frac{90m}{0.8c} = 3.75 \times 10^{-7} \text{s};$$

- 7. (1) 如果将电子由静止加速到速率为0.1c, 须对它作多少功?
 - (2) 如果将电子由速率为0.8c 加速到0.9c,又须对它作多少功?

解析: 在相对论力学中,动能定理仍然成立,即 $W=\Delta E_k=E_{k2}-E_{k1}$,但需注意动能 E_k 不能用 $\frac{1}{2}$ mv^2 表示.动能等于动能量与静能量之差,即 $E_k=mc^2-m_0c^2$.

答案: 由相对论的功能表达式和质速关系可得当电子速率从v1增加到v2时, 电子动能的增量为

$$\Delta E_k = E_{k2} - E_{k1} = \ (m_2 c^2 - m_0 c^2) \ - \ (m_1 c^2 - m_0 c^2) \ = m_0 c^2 \ (\frac{1}{\sqrt{1 - \frac{\nu_2^2}{c^2}}} - \frac{1}{\sqrt{1 - \frac{\nu_1^2}{c^2}}}) \ , \ \text{kIs} \ \text{dis} \ \text{kE} \ \text{mE} \$$

 v_1 =0, v_2 =0.10c时,外力所做的功为W= ΔE_k =2.58×10³ eV. 当 v_1 =0.80c, v_2 =0.90c时,外力所做的功为W'= ΔE_k '=3.21×10⁵ eV.