Álgebra Linear Aula 5

Josefran de Oliveira Bastos

Universidade Federal do Ceará

A atividade deverá ser entregue em um prazo de no máximo 20 min após início da aula. Lembrando que m_i é o i-ésimo dígito a partir da esquerda da sua matrícula.

Atividade 04

- Avalie as afirmações abaixo. Em caso ache que é falso, justifique.
 - 1. Considere a seguinte sequência de conta

$$AB + AC = 0 \rightarrow A(B + C) = 0.$$

Se $A \neq 0$ então podemos concluir que B = -C.

2. Dados matrizes A e B quadradas de mesmo tamanho quaisquer, temos

$$(A+B)^2 = (A+B)(A+B) = A(A+B) + B(A+B) = A^2 + 2AB + B^2.$$

3. Considere a matriz a seguir $A=\begin{bmatrix}0&9\\m_3+1&1\end{bmatrix}$. Qual o valor de x na matriz $B=\begin{bmatrix}\frac{1}{-9(m_3+1)}&\frac{1}{m_3+1}\\\frac{1}{9}&x\end{bmatrix}$ para que B seja a matriz inversa de A?

A atividade deverá ser entregue em um prazo de no máximo 20 min após início da aula. Lembrando que m_i é o i-ésimo dígito a partir da esquerda da sua matrícula.

Atividade 04 - Gabarito

- 1. Falso. Na aula passada vimos um contra-exemplo no qual $AB=0,\ A\neq 0$ e $B\neq 0$.
- 2. Falso. Seria verdade apenas se AB = BA.
- 3. x = 0.

Inversa Matriz 2×2

Inversa Matriz 2×2

Exemplo

Seja A uma matriz invertível tal que

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

Temos que

$$A^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right]$$

Matrizes Inversas Vs Sistemas Lineares

Exemplo

Resolva o sistema linear Ax = b onde

$$A = \left[\begin{array}{cc} 1 & 0 \\ 2 & 1 \end{array} \right]$$

e
$$b^T = [1 \ 2].$$

Teorema (1.4.6)

Sejam A e B duas matrizes invertíveis de mesmo tamanho então AB é invertível e

$$(AB)^{-1} = B^{-1}A^{-1}$$

Teorema (1.4.6)

Sejam A e B duas matrizes invertíveis de mesmo tamanho então AB é invertível e

$$(AB)^{-1} = B^{-1}A^{-1}$$

Corolário

Se A_1,\ldots,A_k são matrizes invertíveis de mesmo tamanho então $A_1\cdots A_k$ é invertível e

$$(A_1 \cdots A_k)^{-1} = A_k^{-1} \cdots A_1^{-1}$$

Seja A uma matriz quadrada e n um inteiro não negativo.

Definimos $A^n = \prod_{i=1}^n A$.

Seja ${\cal A}$ uma matriz quadrada e n um inteiro não negativo.

Definimos $A^n = \prod_{i=1}^n A$.

Proposição

Seja ${\cal A}$ uma matriz quadrada e n um inteiro não negativo.

Definimos
$$A^n = \prod_{i=1}^n A$$
.

Proposição

1.
$$A^{k+\ell} = A^k A^{\ell}$$
;

Seja ${\cal A}$ uma matriz quadrada e n um inteiro não negativo.

Definimos $A^n = \prod_{i=1}^n A$.

Proposição

- 1. $A^{k+\ell} = A^k A^{\ell}$;
- 2. $A^{k\ell} = (A^k)^{\ell} = (A^{\ell})^k$;

Seja ${\cal A}$ uma matriz quadrada e n um inteiro não negativo.

Definimos $A^n = \prod_{i=1}^n A$.

Proposição

- 1. $A^{k+\ell} = A^k A^{\ell}$;
- 2. $A^{k\ell} = (A^k)^{\ell} = (A^{\ell})^k$;
- 3. Se A é invertível então $(A^{-1})^{-1} = A$;

Seja ${\cal A}$ uma matriz quadrada e n um inteiro não negativo.

Definimos $A^n = \prod_{i=1}^n A$.

Proposição

- 1. $A^{k+\ell} = A^k A^\ell$;
- 2. $A^{k\ell} = (A^k)^{\ell} = (A^{\ell})^k$;
- 3. Se A é invertível então $(A^{-1})^{-1} = A$;
- 4. Se A é invertível então $(A^k)^{-1} = (A^{-1})^k$;

Seja ${\cal A}$ uma matriz quadrada e n um inteiro não negativo.

Definimos $A^n = \prod_{i=1}^n A$.

Proposição

- 1. $A^{k+\ell} = A^k A^{\ell}$;
- 2. $A^{k\ell} = (A^k)^{\ell} = (A^{\ell})^k$;
- 3. Se A é invertível então $(A^{-1})^{-1} = A$;
- 4. Se A é invertível então $(A^k)^{-1} = (A^{-1})^k$;
- 5. Se $c \neq 0$ e A é invertível então kA é invertível e $(kA)^{-1} = k^{-1}A^{-1}$.

Exemplo - Produto Notável Resolva $(A+B)^2$.

Polinômio Matricial

Seja p(x) um polinômio qualquer da forma

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n.$$

Um polinômio matricial em A, onde A é quadrada, é definido na forma

$$p(A) = a_0 + a_1 A + a_2 A^2 + \dots + a_n A^n.$$

A Transposta de uma matriz A de tamanho $m\times n$ é uma matriz A^T de tamanho $n\times m$ tal que

$$(A)_{ij} = (A^T)_{ji}.$$

A Transposta de uma matriz A de tamanho $m\times n$ é uma matriz A^T de tamanho $n\times m$ tal que

$$(A)_{ij} = (A^T)_{ji}.$$

Teorema

A Transposta de uma matriz A de tamanho $m \times n$ é uma matriz A^T de tamanho $n \times m$ tal que

$$(A)_{ij} = (A^T)_{ji}.$$

Teorema

1.
$$(A^T)^T = A$$
;

A Transposta de uma matriz A de tamanho $m\times n$ é uma matriz A^T de tamanho $n\times m$ tal que

$$(A)_{ij} = (A^T)_{ji}.$$

Teorema

- 1. $(A^T)^T = A$;
- 2. $(A \pm B)^T = A^T \pm B^T$;

A Transposta de uma matriz A de tamanho $m \times n$ é uma matriz A^T de tamanho $n \times m$ tal que

$$(A)_{ij} = (A^T)_{ji}.$$

Teorema

- 1. $(A^T)^T = A$;
- 2. $(A \pm B)^T = A^T \pm B^T$;
- 3. $(kA)^T = kA^T$;

A Transposta de uma matriz A de tamanho $m \times n$ é uma matriz A^T de tamanho $n \times m$ tal que

$$(A)_{ij} = (A^T)_{ji}.$$

Teorema

- 1. $(A^T)^T = A$;
- 2. $(A \pm B)^T = A^T \pm B^T$;
- 3. $(kA)^T = kA^T$;
- $4. (AB)^T = B^T A^T.$

Teorema - Inversa Transposta

Se a matriz A é invertível então sua transposta também é invertível e

$$(A^T)^{-1} = (A^{-1})^T.$$

Equivalência de Matrizes

Duas matrizes A e B são equivalentes por linhas se podemos a partir de A realizar uma sequência finita de operações elementares nas linhas e obter B.

Equivalência de Matrizes

Duas matrizes A e B são equivalentes por linhas se podemos a partir de A realizar uma sequência finita de operações elementares nas linhas e obter B.

Teorema (1.5.1)

Cada operação elementar na linha possui uma matriz E, chamada de matriz elementar, tal que a matriz resultante EA é igual a matriz resultante da operação elementar em A.

Toda matriz elementar é invertível e sua inversa também é uma matriz elementar.

Seja A uma matriz $n \times n$. As seguintes afirmações são equivalentes:

1. A é invertível;

- 1. A é invertível;
- 2. Ax = 0 tem somente a solução trivial;

- 1. A é invertível;
- 2. Ax = 0 tem somente a solução trivial;
- 3. A forma escalonada reduzida de A é I_n ;

- 1. A é invertível;
- 2. Ax = 0 tem somente a solução trivial;
- 3. A forma escalonada reduzida de A é I_n ;
- 4. A pode ser expressa como um produto de matrizes elementares.

Algoritmo para encontrar a inversa de A

Encontre a sequência de matrizes elementares que levam A até I então execute a mesma sequência em I.

Teorema (1.6.1)

Um sistema linear de equações tem zero, uma ou infinitas soluções.

Exemplo

Analise o sistema linear Ax = b, onde

$$A = \left[\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array} \right] \ \mathbf{e} \ b = \left[\begin{array}{c} 1 \\ 1 \end{array} \right].$$

Exemplo

Analise o sistema linear Ax = b, onde

$$A = \left[\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array} \right] \ \mathbf{e} \ b = \left[\begin{array}{c} 2 \\ 1 \end{array} \right].$$

Teorema (1.6.2)

Se A é uma matriz invertível de tamanho $n\times n$, então para cada vetor b de tamanho $n\times 1$ o sistema Ax=b tem uma única solução. A saber

$$x = A^{-1}b.$$

1. Encontrar B tal que BA = I;

- 1. Encontrar B tal que BA = I;
- 2. Mostrar que AB = I.

- 1. Encontrar B tal que BA = I;
- 2. Mostrar que AB = I.

Teorema 1.6.3

Seja A é uma matriz quadrada.

- 1. Se B é tal AB = I então $A^{-1} = B$;
- 2. Se B é tal BA = I então $A^{-1} = B$;

Teorema 1.6.4

Seja ${\cal A}$ uma matriz quadrada. As seguintes afirmações são equivalentes.

- 1. A é invertível;
- 2. Ax = b tem exatamente uma solução para cada matriz b;
- 3. Ax = b é consistente para toda cada matriz b;

Exemplo

Sejam A e B as matrizes abaixo

$$A = \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right] \ \mathbf{e} \ B = \left[\begin{array}{cc} 2 & 2 \\ 1 & 0 \end{array} \right].$$

Encontre as inversas de A, B e AB.

Exemplo

Sejam A e B as matrizes abaixo

$$A = \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right] \ \mathbf{e} \ B = \left[\begin{array}{cc} 2 & 2 \\ 1 & 0 \end{array} \right].$$

Encontre as inversas de A, B e AB.

Teorema 1.6.5

Sejam A e B matrizes quadradas. Se AB for invertível então A e B também serão invertíveis.

Problema Fundamental

Encontre uma relação para os elementos de $b^T = [b_1 \ b_2 \ b_3]$ tal que o sistema Ax = b seja consistente, onde

$$A = \left[\begin{array}{rrr} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 3 \end{array} \right]$$