Utilizing Meteorological Data with Supervised Learning to Predict Snowfall Amounts at Copper Mountain Ski Resort

Dustin Rapp

Introduction

- > Prognostic models have difficulty predicting snowfall for specific mountains and slopes
- More accurate site specific snowfall forecasts could potentially improve ski resort operations
- Copper Mountain unique as multiple official meteorological stations are near or onsite, each with freely available data
- Could supervised learning be used to site specific snowfall?

Overview

- > Outline
 - Data Utilized
 - Modeling Methodology
 - Feature Selection
 - Model Performance
 - Model Diagnostics
 - Recommendations

> Goals:

- 1.) Run a supervised learning model to predict snowfall using readily available meteorological data
- > 2.) Make recommendations based on findings

3

Surface Data Station Meteorological **Temporal Station ID** Location **Elevation** Measurements Utilized Resolution Type Popular Ski Runs **NRCS** Temperature SNOTEL 415 10550' midway up Copper Hourly SNOTEL Snow Depth Mtn Temperature Dewpoint Wind Speed NWS ~25 mi SW of Copper Hourly KLXV 9938' Wind Direction ASOS Mtn Pressure 12-hr Pressure Changes* Temperature Dewpoint CDOT Near top of Copper Hourly 12075' **KCCU** Wind Speed **AWOS** Mtn Wind Direction *Calculated feature

Additional Upper Air Data

> Snowfall is highly dependent on physics of crystal development, which is affected by upper air physics. Therefore, upper air data was also included

Station ID	Location	Pressure Levels	Measurements at each Level	Temporal Location
KJCT	Grand Junction, CO	200mb, 250mb, 300mb, 400mb, 500mb, 700mb, & 850mb	 Dewpoint 	12 hour

Differences in meteorological measurements between Pressure Levels are common considerations when forecasting snowaffall so were also calculated and included (e.g. 500mb Dewpoint minus 400mb Dewpoint) as additional features

Modeling Methodology

- Ordinary Least Squares (OLS) model as most basic supervised learning approach
- > Linear Regression Analysis performed for all features
- > Datasets divided into two Training/Test partitions
- > Features for use in model chosen using forward stepwise approach
- > Two model runs were fit on each of the two training partitions:
 - Surface Data Feature Only
 - Surface Data plus Upper Air Data Features
- > Fitted models were then tested on respective test datasets to assess snowfall prediction

Test/Training Partitions

- > Two partitions were developed as two modeling scenarios would give better asseement of real world model performance
- > Priority was given to preserve seasonality in test/train set by choosing full year groupings which resulted 80/20 splits
- > Partition A:
 - Test set: Years 2016 and 2017
 - Train Set: Remaining Years 2006-2015
- > Partition B
 - Test Set: Years 2014 and 2015
 - Train Set: Remaining years 2006-2013, 2016-2017
 - Each of the these divisions resulted in ~80% Training/~20% Test Datasets

9

Feature Selection

- Statsmodel using forward stepwise approach on Training Datasets
- > Adjusted R² used as metric
- Optimized such that individual feature t-statistic confidence intervals (p values) were minimized
- > Upper Air Data did improve Adjusted R²

Partition A – Best Combination of Features						
Dataset	Adj. R-squared:	F-statistic:	Prob (F-statistic)			
Surface Data Only	0.045	2.818	0.0177			
Surface+Upper Air Data	0.189	3.493	8.73e-06			

Partition B – Best Combination of Features						
Dataset	Adj. R-squared:	F-statistic:	Prob (F-statistic):			
Surface Data Only	0.100	5.309	0.000137			
Surface+Upper Air Data	0.303	1.38e-09	0.000229			

Model Performance of Snowfall Predictions

Model	Sci-kit R2 Score	RMSE (inches)
Partition A (Surface Data Features only)	0.018	2.392
Partition A (Surface+Upper Air Data Features)	0.052	2.35
Partition B (Surface Data Features only)	-0.164	2.622
Partition B Surface+Upper Air Data Features)	-0.293	2.764

- Partition A model performed better then Partition B model
- The Partition B models performed very poorly by all metrics
- Upper Air Data did improve performance in the Partition A cases.
- > Why such bad performance for Partition B??

Much room for improvement! But many opportunities...

Snowfall Distributions between Training and Test Set

(a) Particle A Cust Training Set

(b) Particle A Test Bet

(c) Particle A Cust Training Set Snowfall distributions very different, likely causing poor performance

(c) Particle B Training Set Snowfall distributions very different, likely causing poor performance

(c) Particle B Training Set Snowfall distributions very different, likely causing poor performance

(c) Particle B Training Set Snowfall distributions very different title between the control of the set of the set of the control of the set of the control of the set of

Non-linearity considerations

- Sometimes 1" of melted can equate up to a foot of snow. Finer snow could result in two feet or more
- Snowfall must consider temperatures where the snow develops (upper air), as well as amount of moisture available.
 - Breaking model down into finer components (e.g. try to predict amount of moisture to fall vs snowfall) may be better approach

-13

Major Recommendations

- The top three recommendations to improve performance are:
 - 1. Investigate collinear features more, and consider eliminating some of the strongly collinear features
 - 2. Work to balance the distribution of large and smaller size snowfall events in the training to improve prediction of larger snowfall events.
 - 3. Consider breaking complexity of model up predict amount of moisture that is expected to fall at first then add additional complexity of snow depth.

Acknowledgements Thanks to Dr. Guy Maskall of Springboard for mentorship during the preparation of this analysis