安徽大学 2019—20 20 学年第 2 学期

《 离散数学》期末考试试卷(A卷) (闭卷 时间 120 分钟)

考场登记表序号

题 号	-	=	Ξ	四	五	六	七	总分
得 分				15				
阅卷人								

一、单选题(每小题2分,共20分)

得分

- 1、设 $<G, \circ>$ 为群,其中G是实数集,运算 \circ 为 $a\circ b=a+b+k$, k为G中固定常数,则在 群 $< G, \circ >$ 中,关于运算 \circ 的幺元以及元素 x 的逆元分别为(
 - A. $e \pi x$ B. $-e \pi k x$ C. $k \pi x 2k$ D. $-k \pi (x + 2k)$

世

爿

江

型 4

- 2、设 f 是 < G,* > 到 < H,⊗ > 的群同态,那么下列命题错误的是(
 - A. 同态 f 的核是< G,*>的正规子群 B. < f(G), $\otimes >$ 的幺元必是< H, $\otimes >$ 的幺元
 - $C. < f(G), \otimes >$ 的零元可以不是 $< H, \otimes >$ 的零元 D. 同态象 $< f(G), \otimes >$ 是 $< H, \otimes >$ 的子群
- 3、设 $f: R_1 \to R_2$ 是环同态满射, f(a) = b ,那么下列结论错误的是(
 - A. 若a是零元,则b是零元
- B. 若a是幺元,则b是幺元
- 4. 设 R 为实数集合, $M_2(R) = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} | a, b \in R, R$ 为实数域 $\right\}$ 关于矩阵的乘法运算(
 - A. 可交换且有幺元
- B. 可交换且无幺元
- C. 不可交换且有幺元 D. 不可交换且无幺元
- 5. 下面哈斯图为分配格的是(

- 6. 在布尔代数 $\langle B, *, \oplus, ', 0, 1 \rangle$ 中任取两元素 a, b,下列命题与 $a \le b$ 不一定等价的是(
- A. a*b=a
- B. $a \oplus b = b$
- C. a * b' = 0 D. $a \oplus b' = 1$

7.	布尔代数 $< B, *, \oplus, ', 0, 1 >$ 上定义的 n 元布尔表达式所对应的不同主析取范式总	个数为()
	A. 2^n B. $ B ^{ B ^n}$ C. $ B ^{2^n}$ D. $ B ^n$	
8.	设 G 是连通平面图, G 中有 6 个顶点 8 条边,则 G 的面的数目是()	
	A. 2个 B. 4个 C. 3个 D. 5个	
9.	下列各图不是哈密尔顿图的为()	
	A. B, C. D	
10	.完全二部图 $K_{4,5}$ 删去()条边可以得到树。	
	A. 4 B. 10 C. 5 D. 12	
=	、判断题(对的打√,错的打×,每小题2分,共10分)	得分
1.	在代数系统中,一个元素的逆元不一定是唯一。()	
2.	若环 R 满足左消去律,那么 R 必定没有右零因子。()	
3.	不满足分配率的格(非分配格)同样也满足模不等式。()	
4.	无向简单图 G 的极小支配集必为 G 的极大独立集。(
5.	任何树(2个顶点以上)的点连通度和边连通度都是1。()	
三	、填空题(每小空 2 分,共 20 分)	得 分
1.	设 Z 是整数集,在 Z 上定义二元运算 * 为 a * b = a + b + a × b ,其中 + 和 × 是数 代数系统 < Z ,* > 的幺元是,零元是。	数的加法和乘法,则
2.	设 $N_{12} = \{0,1,,11\}$, $+_{12}$ 为模 12 加法,则群 $< N_{12},+_{12} >$ 中元素 7 的阶为	,元素 4 确
	定的子群 $H = \{0,3,6,9\}$ 的陪集为。	
3.	布尔代数 < $\rho(\{a,b,c\})$, \cap , \cup > 中,原子为	o
4.	设图 G 的邻接矩阵为 $M = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$,则 G 的可达性矩阵为	·°

6. 若一棵树有 2 个结点度数为 2, 一个结点度数为 3, 3 个结点度数为 4, 其余是叶结点,则该树有___

5. 设 e 为无向完全图 K_4 的一条边,则 K_4 - $\{e\}$ 的连通度为______, 匹配数为_____。

__个叶结点。

四、解答题 (每小题 10 分,共 30 分)

得分

1. 给定集合 $G = \{\pi_1, \pi_2, \pi_3, \pi_4, \pi_5, \pi_6\}$, 其中,

$$\pi_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \qquad \pi_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \qquad \pi_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix},$$

$$\pi_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \qquad \pi_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \qquad \pi_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}.$$

G 在合成运算。下组成的群 $< G, \circ>$,试求 $< G, \circ>$ 的所有正规子群和每个正规子群的陪集。

2. 设布尔代数 $\langle \{0,a,b,1\},*,\oplus,',0,1\rangle$ 上的布尔表达式 $f(x_1,x_2,x_3)=a*x_1\oplus b*x_2*x_3$,试求其主析取范式和主合取范式。

3. 求图 G (如下图所示)的支配数 $\gamma_0(G)$ 、点覆盖数 $\alpha_0(G)$ 、边覆盖数 $\alpha_1(G)$ 、独立数 $\beta_0(G)$ 、匹配数 $\beta_1(G)$ 、点连通度 $\kappa_0(G)$ 、边连通度 $\kappa_1(G)$ 、点色数 $\chi_0(G)$ 、边色数 $\chi_1(G)$,结果填入下表。并给出图 G 的邻接矩阵 A (结点与自身邻接,结点次序按字母顺序)。

$\gamma_0(G)$	$\alpha_0(G)$	$\alpha_1(G)$	$\beta_0(G)$	$\beta_1(G)$	$\kappa_0(G)$	$\kappa_1(G)$	$\chi_0(G)$	$\chi_1(G)$

五、证明题 (每小题 10 分, 共 20 分)

1. 设 $F=\{a+b\sqrt{3}i\ |\ a,b\in Q\}$,其中 i 为虚数单元,+ 和 * 为常规的复数加法和乘法,试证明 < F , + , * > 是一个域 。

2. 证明若 G 是每个区域至少由 k ($k \ge 3$)条边围成的连通平面图,其中 n 、 m 分别是图 G 的顶点数和边数,则 $m \le \frac{k(n-2)}{k-2}$ 。

戮

江

海市

國