Ex3 - Getting and Knowing your Data

This time we are going to pull data directly from the internet. Special thanks to: https://github.com/justmarkham for sharing the dataset and materials.

Step 1. Import the necessary libraries

import pandas as pd

data = pd.read_csv('https://raw.githubusercontent.com/thieu1995/csv-files/main/data/pandas/u.user', sep='|')

Step 3. Assign it to a variable called users and use the 'user_id' as index

users = data.set_index('user_id')

Step 4. See the first 25 entries

users.head(25)

	age	gender	occupation	zip_code
user_id				
1	24	М	technician	85711
2	53	F	other	94043
3	23	М	writer	32067
4	24	М	technician	43537
5	33	F	other	15213
6	42	М	executive	98101
7	57	М	administrator	91344
8	36	М	administrator	05201
9	29	М	student	01002
10	53	М	lawyer	90703
11	39	F	other	30329
12	28	F	other	06405
13	47	М	educator	29206
14	45	М	scientist	55106
15	49	F	educator	97301
16	21	М	entertainment	10309
17	30	М	programmer	06355
18	35	F	other	37212
19	40	М	librarian	02138
20	42	F	homemaker	95660
21	26	М	writer	30068
22	25	М	writer	40206
23	30	F	artist	48197
24	21	F	artist	94533
25	39	М	engineer	55107

Next steps: Generate code with users View recommended plots New interactive sheet

Step 5. See the last 10 entries


```
users.shape[0]

→ 943
```

Step 7. What is the number of columns in the dataset?

```
users.shape[1]

→ 4
```

users.index

Step 8. Print the name of all the columns.

```
users.columns

Index(['age', 'gender', 'occupation', 'zip_code'], dtype='object')
```

→ Step 9. How is the dataset indexed?

```
☐ Index([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... 934, 935, 936, 937, 938, 939, 940, 941, 942, 943], dtype='int64', name='user_id', length=943)
```

Step 11. Print only the occupation column

users['occupation'] $\overline{\mathbf{x}}$ occupation user_id 1 technician 2 other 3 writer technician 5 other 939 student 940 administrator 941 student 942 librarian 943 student 943 rows × 1 columns dtvpe: object

→ Step 12. How many different occupations are in this dataset?

```
users['occupation'].nunique()

→ 21
```

Step 14. Summarize the DataFrame.

```
users.info()
    <class 'pandas.core.frame.DataFrame'>
     Index: 943 entries, 1 to 943
     Data columns (total 4 columns):
                  Non-Null Count Dtype
     # Column
     0
                     943 non-null
                                     int64
         age
         gender
                     943 non-null
                                     object
         occupation 943 non-null
                                     object
         zip_code
                     943 non-null
                                     object
     dtypes: int64(1), object(3)
     memory usage: 36.8+ KB
```

→ Step 15. Summarize all the columns

```
users.describe(include='all')
```


→ Step 16. Summarize only the occupation column

users['occupation'].value_counts()

s[occupation]	·varac_
	count
occupation	
student	196
other	105
educator	95
administrator	79
engineer	67
programmer	66
librarian	51
writer	45
executive	32
scientist	31
artist	28
technician	27
marketing	26
entertainment	18
healthcare	16
retired	14
lawyer	12
salesman	12
none	9
homemaker	7
doctor	7
dtvne: int64	

```
float(users['age'].mean())

34.05196182396607
```

Step 18. What is the age with least occurrence?

int(users['age'].value_counts().idxmin())

Start coding or generate with AI.