Backgammon

Tobias Krönke

Technische Universität Darmstadt Fachbereich Informatik Fachgebiet Knowledge Engineering

Seminar zu Knowledge Engineering und Lernen in Spielen, 2010

Backgammon

Tobias Krönke

Einführung Backgammon Lösungsansätze

TD-Gammon

Steine ziehen

=Valuation Spielstärke

Gliederung

Einführung

Backgammon Lösungsansätze

TD-Gammon

Steine ziehen Den Einsatz verdoppeln

Evaluation

Spielstärke Warum es so gut funktioniert

Zusammenfassung

Backgammon

Tobias Krönke

Einführung Backgammon Lösungsansätze

D-Gammon

Steine ziehen Den Einsatz ver

Spielstärke
Warum es so gut
funktioniert

Gliederung

Einführung

Backgammon Lösungsansätze

TD-Gammor

Steine ziehen Den Einsatz verdoppelr

Evaluation

Spielstärke Warum es so gut funktioniert

Zusammenfassung

Backgammon

Tobias Krönke

Einführung

Backgammon Lösungsansätz

TD-Gammon

Steine ziehen

Den Einsatz verdoppe

Evaluation Spielstärke

Startaufstellung

Abbildung: GNU Backgammon aus schwarzer Sicht

Backgammon

Tobias Krönke

Einführung

Backgammon

Lösungsans

Steine ziehen
Den Einsatz verdoppe

Warum es so gut unktioniert

usammemassung

Spielziel

Abbildung: Schwarz gewinnt zwei Punkte

Backgammon

Tobias Krönke

Einführung

Backgammon Lösungsansät

Lösungsanså

Steine ziehen Den Einsatz verdoppel

Warum es so gut funktioniert

Lusammentassung

Steine bewegen

Abbildung: Mögliche Züge für Schwarz von 14 aus

Backgammon

Tobias Krönke

Finführung

Backgammon

Lösungsansä

TD-Gammor

Steine zienen Den Einsatz verdoppel

Warum es so gut unktioniert

Den Einsatz verdoppe

/arum es so gut nktioniert

Zusammenfassung

Steine ziehen

- Zugzwang
- Einzelne Steine (= Blots) sind schlagbar
 - Sie müssen dann beim Start neu beginnen
 - Vorher darf kein anderer Stein bewegt werden

Einsatz verdoppeln

- Höchstens einmal pro Zug vor dem Würfeln
- Besitzer des Verdopplungswürfels kann anbieten, den Einsatz zu verdoppeln
- ▶ Gegner kann ablehnen → verliert aktuellen Einsatz
- ▶ Gegner kann annehmen → wird Besitzer des Verdopplungswürfels

Komplexität

Mathematisch

- ► Mehr als 10²⁰ Spielzustände
- Zwei 6er-Würfel → 21 Kombinationen
- ► Im Schnitt 20 Möglichkeiten pro Halbzug → Hunderte Folgezustände

Strategisch

- Blots schlagen
- Blockaden
- Endgame-Race

Backgammon

Tobias Krönke

Einführung

Backgammon

Lusungsansatze

D-Gammon Steine ziehen

Den Einsatz verdoppelr

Spielstärke
Warum es so gut

Allgemeiner Ansatz

Zustandsbewertungsfunktion

- Modell und Lernverfahren frei.
- Ausgabe ist Wahrscheinlichkeit für "Schwarz / Rot gewinnt einfachen / doppelten Einsatz"
- ▶ Backgammons ignoriert, da zu selten
- Wähle Zug mit bestem Folgezustand

Backgammon

Tobias Krönke

Einführung Backgammon Lösungsansätze

ΓD-Gammon

Den Einsatz verdoppelr

Warum es so gut funktioniert

Neurogammon

Backgammon

Tobias Krönke

Einführung Backgammon Lösungsansätze

TD-Gammon Steine ziehen

Varum es so gut unktioniert

Zusammenfassunç

Neurales Netz

- Rohe Boarddaten und strategische Konzepte als Inputs
- ▶ Backpropagation aufgezeichneter Expertenzüge → Supervised Learning
- Gewann die International Computer Olympiad 1989

TD-Gammon

Wieder neurales Netz

- ► Inputs von Neurogammon
- ▶ Inferenz durch Spiele gegen sich selbst \rightarrow Reinforcement Learning

Backgammon

Tobias Krönke

Backgammon

Lösungsansätze

TD-Gammon

Den Einsatz verdoppel

Warum es so gut funktioniert

Reinforcement Learning

Trainingsdaten ohne Expertenwissen

- ▶ Sequenz von Spielzuständen x₁, x₂,..., x_f
- ► Finale Punktevergabe Y_f
- Spezielle Features als Ausnahme

Problem: Welche Halbzüge (= Zustandstransitionen) waren gut / schlecht? → Temporal Difference Learning

Backgammon

Tobias Krönke

Einführung Backgammon Lösungsansätze

TD-Gammon

Steine ziehen Den Einsatz verdop

Spielstärke Warum es so gut funktioniert

Temporal Difference Learning

Supervised Learning emulieren

- Verwende Voraussage für Folgezustand als Zielwert für aktuellen Zustand
- Propagiere den Fehler in der Zeit zurück

Backgammon

Tobias Krönke

Einführung Backgammon Lösungsansätze

TD-Gammon

Den Einsatz verdoppeln

Spielstärke Warum es so gut funktioniert

Gliederung

Einführung

Backgammon Lösungsansätze

TD-Gammon

Steine ziehen Den Einsatz verdoppelr

Evaluation

Spielstärke Warum es so gut funktioniert

Zusammenfassung

Backgammon

Tobias Krönke

Einführung

Backgammon Lösungsansätz

TD-Gammon

Steine ziehen Den Einsatz verdoppeln

valuation

Spielstärke
Warum es so gut
funktioniert

Das neurale Netz Iernen

$$w_{t+1} - w_t = \alpha (Y_{t+1} - Y_t) \sum_{k=1}^t \lambda^{t-k} \nabla_w Y_k$$

Abbildung: TD-Gammon Updateregel $TD(\lambda)$ [Tesauro2002]

Symbol	Erklärung
t	Zeitpunkt in der Zustandssequenz
W	Gewichte des neuralen Netzes
Y_t	Ausgabe bei Input x_t
α	Lernrate
$0 \le \lambda \le 1$	Wie stark TD-Fehler der Vergangenheit
	korrigiert werden

Tabelle: Erläuterung zu $TD(\lambda)$

Backgammon

Tobias Krönke

Einführung Backgammon Lösungsansätze

ΓD-Gammon

Steine ziehen

valuation pielstärke

Trainingsverlauf

Abbildung: Lernkurve gegen Gammontool [Tesauro2002]

Backgammon

Tobias Krönke

Einführung Backgammon Lösungsansätz

TD-Gammon

Steine ziehen

Den Einsatz verdoppeln

Spielstärke Warum es so gut funktioniert

Die Genauigkeit erhöhen

Den Spielbaum durchsuchen

- Bis zu 3 Halbzüge Suchtiefe in Echtzeit ("3-ply")
 - Nicht in voller Breite
 - Forward Pruning des ersten Halbzugs gemäß 1-ply Vorhersage
 - Danach greedy Suche mit durch 1-ply Suche bestimmten Entscheidungen in allen 21² Würfelsequenzen
- Ergebnis ist der gewichtete Durchschnitt aller Blätter

Backgammon

Tobias Krönke

Einführung Backgammon Lösungsansätze

D-Gammon

Steine ziehen

Den Einsatz verdoppeln

Spielstärke
Warum es so gut

Verdopplungs-Theorie

Backgammon

Tobias Krönke

Einführung Backgammon

FD-Gammon
Steine ziehen
Den Einsatz verdoppeln

Evaluation Spielstärke

usammenfassung

Annehmen

- ▶ Bei E[Annahme] \geq E[Ablehnen] = -Einsatz
- In der Praxis weniger, da Besitz des Würfels die Equity erhöht

Anbieten

- Gegner ist mathematisch gezwungen, anzunehmen (oder kurz davor)
- Einsatzerhöhung kompensiert kurzfristige Varianz

Verdopplungs-KI

Vorgehen

- 1. Varianz v ("Volatilität") und Bewertung \vec{x} des aktuellen Zustands mit n-ply Suche
- 2. Angepasste Heuristik von Zadeh–Kobliska als Funktion von $v \rightarrow$ 3-D Entscheidungsebene E
- 3. Auf welcher Seite von E liegt \vec{x} ?

Verbesserungen

- Empirische Anpassungen, da zu aggressiv
- "Veto"-Entscheidungsebene

Backgammon

Tobias Krönke

Einführung Backgammon Lösungsansätze

D-Gammon Steine ziehen

Den Einsatz verdoppeln

Evaluation
Spielstärke
Warum es so gut

Gliederung

Einführung

Backgammon Lösungsansätze

TD-Gammor

Steine ziehen Den Einsatz verdoppelr

Evaluation

Spielstärke Warum es so gut funktioniert

Zusammenfassung

Backgammon

Tobias Krönke

Einführung

Backgammon Lösungsansätz

TD-Gammon

Steine ziehen

Den Einsatz verdoppe

Evaluation

Spielstärke Warum es so gut

Spielstärke messen

Computer-Wettkämpfe

- Große Samplesize möglich
- Keine Herausforderung für TD-Gammon
- Absolute Spielstärke?

Gegen Menschen

- Kaum mehr als 100 Spiele
- Viel zu hohe Varianz bei ähnlicher Spielstärke

Lösung: Rollout-Analyse aller Halbzüge

Backgammon

Tobias Krönke

EINTÜHRUNG Backgammon Lösungsansätz

TD-Gammon

Steine ziehen Den Einsatz verdoop

Evaluation

Spielstärke Warum es so gu

Rollout-Analyse

Ziel: Equity-Verlust E[gemachter Zug] - E[bester Zug] in Points per Game (ppg)

Besten Zug bestimmen

- Monte Carlo Simulation aller möglichen Halbzüge
- Mehrere 1000 Spielverläufe simulieren
 - z. B. bis Tiefe 11
 - Mit oder ohne Verdopplungswürfel
- Equity ist Mittelwert der Ergebnisse aller Simulationen

Backgammon

Tobias Krönke

Backgammon Lösungsansätz

D-Gammo

Steine ziehen Den Einsatz verdo

Evaluatio

Spielstärke

Warum es so gui funktioniert

Rollout-Ergebnisse

Steine ziehen

Snowie Rollouts	∅ Equity	ØF	Ø GF
Bill Robertie	−0,188 ppg	2,21	0,47
TD-Gammon 2.1	│ −0, 163 ppg	1,67	0,20

Tabelle: Spielserie 1993 [Tesauro2002]

Snowie Rollouts	∅ Equity	ØF	Ø GF
Malcolm Davis	-0,183 ppg		
TD-Gammon 3.1	-0,050 ppg	0,59	0,04

Tabelle: AAAI Hall of Champions 1998 [Tesauro2002]

Backgammon

Tobias Krönke

Einführung Backgammon Lösungsansätz

> D-Gammon teine ziehen

en Einsatz verdoppei

Spielstärke

Warum es so gut funktioniert

Rollout-Ergebnisse

Verdoppeln anbieten, ablehnen / annehmen

Malcolm Davis

► -0.022 ppg bis -0.031 ppg

TD-Gammon 3.1

- ▶ -0.002 ppg bis -0.020 ppg
- Leichter Vorteil

Backgammon

Tobias Krönke

Einführung Backgammon

TD-Gammon

Steine ziehen

Den Einsatz verdoppeli

Evaluation

Spielstärke

Warum es so gu funktioniert

Was haben wir erreicht?

Wissen und Nicht-Wissen

- Neurale Netze offensichtlich gut für Backgammon geeignet
- w allein gibt aber keine neue Spielerkenntnis
 - Immerhin lassen sich Spielzüge analysieren
- Training: Masse statt Klasse?
- Reinforcement Learning mit TD(λ) die neue Wunderwaffe?

Backgammon

Tobias Krönke

Einführung Backgammon Lösungsansätz

D-Gammon

Den Einsatz verdoppelr

Spielstärke
Warum es so gut
funktioniert

Hill-climbing Ansatz aus [PollackBlair1997]

- 1. Initialisiere $w = \vec{0}$
- 2. Herausforderer m = w + normalverteiltes Rauschen
- 3. Testspiele (< 10) zwischen w und m
- 4. w = 0.95*Sieger + 0.05*Verlierer
- 5. Go to 2.

Ergebnis

- Erstaunlich gute Spielstärke
- ▶ Die Wahrscheinlichkeit, einen besseren Herausforderer m zu samplen, steigt mit der Stärke von w

Gliederung

Einführung

Backgammon Lösungsansätze

TD-Gammor

Steine ziehen Den Einsatz verdoppelr

Evaluation

Spielstärke Warum es so gut funktioniert

Zusammenfassung

Backgammon

Tobias Krönke

Einführung

Backgammon Lösungsansä

TD-Gammon

Steine ziehen

Den Einsatz verdoppe

Evaluation

Spielstärke Warum es so gut

Zusammenfassung

Backgammon

Tobias Krönke

Einführung Backgammon Lösungsansätze

D-Gammon

Evaluation
Spielstärke

Zusammenfassung

Fazit

- TD-Gammon auf übermenschlichem Niveau
- Einige Spielansichten umgekrempelt
- Nahezu einzigartig erfolgreiche Anwendung von Reinforcement Learning

Ausblick und Ziele

- Verdoppeln direkt lernen
- Den Erfolg bei anderen Problemen wiederholen

Gerald Tesauro.

Programming backgammon using self-teaching neural nets.

Artificial Intelligence, 134(1-2):181–199, 2002.

- Gerald Tesauro.

 Practical Issues in Temporal Difference Learning.

 Machine Learning, 1(1):257–277, 1992.
- Jordan B. Pollack und Alan D. Blair Why did TD-Gammon Work?. Advances in Neural Information Processing Systems, 9(1):10–16, 1997.
- Richard S. Sutton und Andrew G. Barto. Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning). The MIT Press, 1998.