CENG 415 Evrimsel Hesaplama

Bölüm 1: Çözülecek Problemler

Şevket Umut Çakır

Pamukkale Üniversitesi

13 Eylül 2020

Ders Kitabı

- Eiben, A. E., & Smith, J. E. (2015). Introduction to evolutionary computing. springer.
- Kitap bağlantısı(Üniversite içinden ücretsiz indirilebilir.)
- http://www.evolutionarycomputation.org (İngilizce sunumların bulunduğu sayfa)

Şekil: Ders kitabı 1

Ders Kitabı

- Brabazon, A., O'Neill, M., & McGarraghy, S. (2015). Natural computing algorithms (Vol. 554). Berlin: Springer.
- Kitap bağlantısı(Üniversite içinden ücretsiz indirilebilir.)

Şekil: Ders kitabı 2

Ders Saatleri ve Değerlendirme

- Ders Saatleri
 - Çarşamba 13:30-14:15
 - Perşembe 13:30-15:10
- Değerlendirme yöntemleri
 - Arasınav %30 (Açık uçlu)
 - Dönem sonu sınavı %40 (Açık uçlu)
 - Ödevler %15 (Kodlama ödevleri)
 - Kısa sınavlar %15 (Ders saatleri içinde)

Çözülecek Problemler

Problemler farklı şekillerde sınıflandırılabilirler.

- Kara kutu modeli
- Arama problemleri
- Eniyileme(optimization) ve kısıt sağlama(constraint satisfaction)
- NP problemler

- Kara kutu modeli 3 bileşenden oluşur.
- Bileşenlerden bir tanesi bilinmediğinde: yeni bir problem tipi

Eniyileme(Optimization)

Model ve arzu edilen çıktı biliniyor, amaç girdileri bulmak

Örnekler

- Üniversiteler için ders programı, çağrı merkezleri ve hastaneler için zaman çizelgesi
- Tasarım özellikleri
- ► Gezgin satıcı problemi(TSP)
- Sekiz vezir problemi vb.

Eniyileme Örneği 1: Üniversite Ders Programı

- Çok büyük bir arama uzayına sahiptir
- Ders programları iyi olmalıdır
- İyi birbiriyle çakışan bir takım kriterler ile tanımlanır
- Ders programı uygulanabilir olmalıdır
- Arama uzayının büyük çoğunluğu uygulanamaz çözümlerden oluşur

Eniyileme Örneği 1: Üniversite Ders Programı

Şekil: Tatties III: Evrimsel algoritmalar kullanarak ders programı hazırlayan

Eniyileme Örneği 2: Uydu Yapısı

- NASA'ya titreşim yalıtımını artırmak için eniyilenmiş uydu tasarımları yapılmaktadır
- Geliştirilen: Tasarım
- Uygunluk(Fitness): Titreşim direnci
- Evrimsel yaratıcılık

Şekil: Evrim stratejisi ile oluşturulmuş uydu anteni

Eniyileme Örneği 3: 8 Vezir Problemi

- 8x8'lik bir satranç tahtası ve 8 adet vezir verilir
- 8 adet veziri satranç tahtasına çakışma olmadan yerleştirmek istenir
- Vezirler yatay, dikey ve çapraz vönlerde sonsuz kare ilerleyebilir. Çakışma olmaması için vezirlerin ilerleme yönlerinde başka vezir olmamalıdır
- n-Vezir problemine de dönüştürülebilir(n > 8)

Şekil: 8 vezirin satranç tahtasına örnek yerleştirilmiş hali

Eniyileme Örneği 4: Gezgin Satıcı Problemi

- Bir seyyar satıcı var
- Bu satıcı mallarını n şehirde satmak istiyor
- Satıcı şehirleri mümkün olan en kısa şekilde ve her şehre sadece 1 defa uğrayarak satmak istiyor

Şekil: Avrupa başkentleri için örnek bir problem

Modelleme

Elimizde girdiler ve çıktılar mevcuttur, bilinen girdilere karşılık gelen çıktıları üreten modeli ararız.

- Genellikle dinamik ortamlar geliştirilirken "... olursa ne olur" sorusuna cevap olması için kullanılır
 - Evrimsel ekonomi, yapay yaşam
 - Hava tahmin sistemleri
 - Yeni vergilerin etki analizi için

Modelleme Örneği: Kredi Başvuru Güvenirliği

- Bankalar yeni kredi başvurularında güvenirliği öngörmek için modeller geliştirmektedir
- Geliştirilen: Kestirim/öngörü modeli
- Uygunluk: Geçmiş veri üzerinde modelin doğruluğu

Benzetim(Simulation)

Elimizde girdiler ve çıktılar mevcuttur, bilinen girdilere karşılık gelen çıktıları üreten modeli ararız.

- Örnekler
 - Evrimsel makine öğrenmesi
 - Borsa fiyatlarının tahmini
 - Akıllı evler için ses kontrol sistemleri
- Not: Modelleme problemleri eniyileme problemlerine dönüştürülebilir.

Benzetim Örneği: Yapay Toplumlar Geliştirmek

- Modelleri ayarlamak için ticaretin ve ekonomik rekabetin benzetilmesi
- Modeller strateji ve politikaları eniyilemek için kullanılır

Arama Problemleri

- Benzetim(simulation), eniyileme(optimization) ve modellemeden farklıdır
- Eniyileme ve modelleme problemleri çok büyük olasılık uzaylarında arama yaparlar
- Arama uzayı: İstenilen çözümün de bulunduğu ilgili bütün nesnelerin koleksiyonudur
- Soru: n adet şehrin farklı sıralarda gezilmesi durumunda arama uzayının büyüklüğü nedir?
- Bu problemleri sınıflandırmanın faydası: arama problemleri(arama uzaylarını tanımlar) ile problem çözücüler(arama uzayında nasıl ilerlenmesi/hareket edilmesi gerektiğini belirler) arasındaki farkın belirlenmesidir

Eniyilemeye(Optimization) karşı Kısıt Sağlama(Constraint Satisfaction)

- Amaç fonksiyonu: Bir çözümün kalitesini sayısal bir değer ile ilişkilendirmenin bir yoludur
 - Çakışmayan vezir sayısı(ençoklama/maximize)
 - Şehirlerin kümesini dolaşırken katedilen yol(enazlama/minimize)
- Kısıt: Bir gereksinimin gerçekleşip gerçekleşmediğinin ikili değerlendirmesi(evet/hayır)
- Herhangi iki vezirin birbiri ile çakışmadığı bir konfigürasyon bul
- X şehrinden sonra Y şehrinin dolaşıldığı en küçük mesafeye sahip bir tur bul

Eniyilemeye(Optimization) karşı Kısıt Sağlama(Constraint Satisfaction)

	Amaç fonksiyonu	
Kısıtlar	Evet	Hayır
Evet	Kısıtlı eniyileme	Kısıt sağlama
	problemi(constrained	problemi(constraint
	optimisation problem)	satisfaction problem)
Hayır	Bağımsız eniyileme	Problem yok
	problemi(free	
	optimisation problem)	

- Verilen örnekler hangisine uyar?
- Not: Kısıt problemleri eniyileme problemlerine dönüştürülebilir
- Soru: 8-vezir problemini KEP/KSP ve BEP şeklinde nasıl temsil edebiliriz?

- Sadece problemleri sınıflandırdık, problem çözücüleri incelemedik
- Bu sınıflandırma şeması problem çözücünün özelliklerine ihtiyaç duyar
- Bu şemanın faydası: Problemin ne kadar zor olduğunu söyleyebiliriz

Anahtar kayramlar

- **Problem büyüklüğü(Problem size):** Eldeki problemin boyutunu ve problem değişkenleri için mümkün değer sayısını temsil eder
- Çalışma zamanı(Running time): Algoritmanın sonlanması için gerekli işlem sayısı
 - Problem büyüklüğünün bir fonksiyonu olarak en kötü durum(worst case)
 - Polinomsal(polynomial), süper-polinomsal, üssel(exponential)
- **Problem indirgeme(Problem reduction):** Mevcut problemi izdüşüm yaparak başka bir probleme dönüştürme

Sinif

Problemlerin zorlukları aşağıdaki şekilde sınıflanabilir

- P Sınıfı: Algoritma problemi polinomsal zamanda çözebilir(n büyüklüğündeki bir problem için en kötü durumda çalışma zamanı F(n)'den azdır, F polinomsal bir fonksiyon)
- NP Sınıfı: Problem çözülebilir ve herhangi bir çözüm başka bir algoritma tarafından polinomsal zamanda doğrulanabilir(P, NP'nin alt kümesidir)
- NP-Tam Sınıfı: Problem NP sınıfına aittir ve NP sınıfındaki başka bir problem bu probleme polinomsal zamanda çalışan bir algoritma tarafından indirgenebilir
- NP-Zor Sınıfı: Problem en az NP-tam sınıfındaki bir problem kadar zordur fakat çözüm polinomsal zamanda doğrulanmak zorunda değildir

Sınıflar Arasındaki Farklar

- P, NP-zor'dan farklıdır
- P'nin NP'den farklı olup olmadığı bilinmemektedir

Şekil: $P \neq NP$

Sekil: P = NP

Şekil: P =? NP sorusu; 24 mayıs 2000 tarihinde, Clay Matematik Enstitüsü (CMI) tarafından hazırlanan 7 soruluk "Milenyum Problemleri" listesinin ilk sırasında yer almaktadır. Milenyum problemlerinin her birinin ilk doğru yanıtının ödülü 1.000.000 \$ 'dır.