MATH3301 Tutorial 9

- 1. Let R be a commutative ring with unity, and R[t] be the polynomial ring over R.
 - (a) Show that R[t] a commutative ring with unity and $R[t]^{\times} = R^{\times}$.
 - (b) Give an example to illustrate that $\deg(fg) \neq \deg f + \deg g$ can happen with $f, g \in R[t]$.
 - (c) Suppose R is an integral domain. Show that
 - (i) R[t] an integral domain, and (ii) $\deg(fg) = \deg f + \deg g, \forall f, g \in R[t]$.
 - (d) Give an example of an integral domain R[t] where the division algorithm does not hold.
- 2. (a) Let S be a commutative ring and R be a subring of S. For any $a \in S$, define R[a] to be the smallest subring of S that contains a and all elements in R. Show that every element of R[a] is of the form $r_0 + r_1 a + \cdots + r_n a^n$ for some $n \in \mathbb{N}$ and some $r_0, \dots, r_n \in R$.

[For example, letting $i = \sqrt{-1}$, the smallest subring of $\mathbb C$ containing i and $\mathbb Z$ is $\mathbb Z[i] = \{a + bi : a, b \in \mathbb Z\}.$

More generally, we define: for $x_1, \dots, x_m \in S$, $R[x_1, \dots, x_n] := R[x_1, \dots, x_{n-1}][x_n]$.

- (b) Consider $S = \mathbb{C}$ and $R = \mathbb{Z}$. Describe the elements in the (sub-)rings below:
 - i. $\mathbb{Z}[\sqrt{2}]$,
 - ii. $\mathbb{Z}[w] (w = e^{2\pi i/3}),$
 - iii. $\mathbb{Z}[2^{1/3}, 3^{1/2}],$
 - iv. $\mathbb{Z}[\pi]$ (π = area of the unit circle)

[Take for granted that there is no nonzero polynomial $P \in \mathbb{Z}[t]$ such that $P(\pi) = 0$.]

- (c) Let $\mathbb{Z}[t]$ be the polynomial ring over \mathbb{Z} . Find elements a, b in \mathbb{C} such that $\mathbb{Z}[a] \cong \mathbb{Z}[t]$ (i.e. $\mathbb{Z}[a]$ is isomorphic to $\mathbb{Z}[t]$ as rings) but $\mathbb{Z}[b] \not\equiv \mathbb{Z}[t]$. Justify your answer.
- 3. Let R be a commutative ring. Suppose L, M, J_1, J_2 are ideals of R.
 - (a) Show that $LM \subset L \cap M$. Give an example that $LM \neq L \cap M$.
 - (b) Suppose $J_1 + J_2 = R$. Show
 - (i) $J_1 \cap J_2 = J_1 J_2$, and
 - (ii) $\forall a, b \in R, (a + J_1) \cap (b + J_2) \neq \emptyset$.

4. (Chinese Remainder Theorem)

Let R be a commutative ring, and J_1, J_2 be its ideals such that $J_1 + J_2 = R$. Show that

$$R/(J_1 \cap J_2) \cong R/J_1 \times R/J_2$$
 as rings.

[Hint: Consider the ring homomorphism $f: R \longrightarrow R/J_1 \times R/J_2$, $x \mapsto (\overline{x}, \overline{x})$ where \overline{x} and \overline{x} are the images of x under the natural projections onto R/J_1 and R/J_2 respectively.]

5. Figure out the connection between the question below and the Chinese Remainder Theorem.

在《孫子算經》下卷裡有以下問題:今有物不知其數,三三數之剩二,五五數 之剩三,七七數之剩二,問物幾何?這個問題俗稱為「韓信點兵」,表述如下: 『韓信點兵,三個三個一數餘二人,五個五個數餘三人,七個七個數餘二人, 問兵有幾人?』

In the chinese mathematical treatise *The Mathematical Classic of Sunzi*, there is a problem equivalent to a folklore episode of the ancient Chinese General Han Xin's[†] Soldier Roll Call: When the soldiers stood 3 in a row, there were 2 soldiers left over. When they lined up 5 in a row, there were 3 soldiers left over. When they lined up 7 in a row, there were 2 soldiers left over. How many soldiers were there?

7-37

7, = 57

End

[†]Han Xin (230-196 BC) was a military general and contributed greatly to the founding of the Han dynasty.