Algorithm Complexity Analysis

Francesco Zanlungo

January 21, 2016

The problem

- When we use an algorithm to solve a problem on a computer, we would like to know how long it will take to execute.
- This depends on many things: the computer, the processor(s), how the program is written, in which language...
- In this course we forget all these problems and focus on the analysis of the algorithm itself, regardless of the details above.

The "solution"

- We look for the algorithm's *basic operation* and compute how many times it is computed.
- Of course we have to make a few basic definitions, first of all we have
 to define the basic operation itself, and find a function called time
 complexity function, that relates the size of the algorithm's input to
 how many times the operation is performed.
- We obviously need also to be able to properly analyse the result.

Input size

- The size *n* of an array.
- The size n of a n by n matrix.
- and for a single input?

Basic operation

- There is no unique definition.
- It may be the operation that is performed more times (in the meaning of the theory to be developed).
- Or the most time consuming operation.
- But the better solution is to analyse the complexity of all the operations done by our algorithm.

- It gives the number of operations as a function of the input size n.
- N = f(n); $n, N \in \mathcal{N}$
- But is this function uniquely determined by n?
- In general it depends not only on the size n, but on the input itself.

Every case (time) analysis

- For some algorithms the number of operations depends only on the input size.
- In this case we define N = T(n) as the every-case time complexity function.
- Examples:
 - simple sort n(n-1)/2
 - factorial n-1
 - matrix product n³
 - determinant with minors (no check) n!
 - Gaussian elimination $n^3/3 + n^2/2 + n/6$

Worst-case (time) analysis

- In other algorithms (or in different versions of the previous) the number of operations depends on the specific input.
- In this case we may define N = W(n) as the worst-case time complexity function.
- Examples:
 - assignment in simple sort
 - sequential search
 - determinants with checks

Best-case (time) analysis

- We may define also N = B(n), the best-case time complexity function.
- Examples:
 - assignment in simple sort
 - sequential search
 - determinants with checks

Average-case analysis

- Sometimes we may interested in knowing the worst case.
- The best case is almost always just a curiosity...
- ...unless statistically dominant.
- We may thus introduce an Average-case statistical analysis.
- Examples: search, determinant.

Intro Basic defs Further defs Complexity Analysis Practice Every Worst Best Average Issues Memory

Issues with average

- What is the probability of data?
- Statistical analysis (standard deviation etc.).

Every Worst Best Average Issues Memory

Memory complexity

- Tells us how the memory required by the program grows with n.
- It will not be considered in this course.

- We may use $\lim_{n\to\infty} f(n)$ to analyse complexity.
- If

$$\lim_{n\to\infty}\frac{g(n)}{f(n)}=0,$$

defining h(n) = f(n) + g(n) we have

$$\lim_{n\to\infty}\frac{h(n)}{f(n)}=1.$$

• This means that we may try to define *equivalence classes* between functions for which

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = m, \qquad 0 < m < \infty.$$

Analysis using limits 2

- Using the definition of limit for $n \to \infty$ we may easily see that:
 - if $\lim_{n\to\infty} h(n)/f(n) = m > 1$ (including $m = \infty$) then $\exists N$ such that if n > N, h(n) > f(n),
 - and if $\lim_{n\to\infty} g(n)/f(n) = 0$ adding g(n) to h(n) or f(n) does not change this situation.

- \bullet $n^n/n!$
- \bullet $n!/e^n$
- \bullet e^n/n^m
- $n^m/\ln n$
- $\log_a n / \log_b n$
- etc.

Algorithm complexity notation

- g(n) is O of f(n) or O(f(n)) if $\exists c > 0$ and N such that if n > N then g(n) > cf(n)
- g(n) is Ω of f(n) or $\Omega(f(n))$ if $\exists c > 0$ and N such that if n > N then g(n) < cf(n)
- g(n) is Θ of f(n) or $\Theta(f(n))$ if $\exists b > 0$, c > 0 and N such that if n > N then bf(n) > g(n) > cf(n)
- g(n) is o of f(n) or o(f(n)) if $\exists N$ such that if n > N then $\forall c > 0$ g(n) < cf(n)

Real world applications

 \bullet Taking in account finite n, length of operations, initialisation, etc.