## TÉCNICO EM AUTOMAÇÃO INTEGRADO AO ENSINO MÉDIO – 2º ANO



# Semelhança de triângulos e retângulos

DOCENTE: ANA PAULA MAZZINI LIMA

E-MAIL INSTITUCIONAL: <u>ANA.LIMA@IFSP.EDU.BR</u>

LIVRO: MATEMÁTICA - CIÊNCIAS E APLICAÇÕES — VOLUME 1: IEZZI, ET AL.

## Observação

A primeira parte da disciplina está presente no livro do primeiro ano.

figura A

Brasil: algumas capitais



figura B

Brasil: algumas capitais



Fonte: Atlas geográfico escolar. 6º ed. Rio de Janeiro: IBGE, 2012. p. 90.

## Semelhança

Cada uma das figuras apresenta, em escalas diferentes, um mapa contendo o nome de algumas capitais brasileiras.

Vamos relacionar elementos da figura **A** com seus correspondentes da figura **B** e apresentar alguns conceitos importantes.

- Medindo a distância entre duas cidades quaisquer na figura A e a correspondente distância na figura
   B, observamos que a primeira mede o dobro da segunda.
- Ao medir um ângulo qualquer em uma das figuras e seu correspondente na outra, obteremos a mesma medida.

Por exemplo, ao medir a distância entre Belo Horizonte e Fortaleza na figura **A**, obtemos  $d_1 = 46$  mm. Na figura **B**, a distância que separa essas duas capitais é  $d_1 = 23$  mm.

Entre o Rio de Janeiro e Salvador, temos, em  $\mathbf{A}$ ,  $d_2 = 30$  mm e, em  $\mathbf{B}$ ,  $d_2 = 15$  mm.

Generalizando, para essas duas figuras, temos:  $d_i = 2d'_i$ .

Isso nos garante que existe uma constante de proporcionalidade,  $\mathbf{k}$ , entre as medidas dos comprimentos na figura  $\mathbf{A}$  e seus correspondentes comprimentos na figura  $\mathbf{B}$ ; no caso,  $k = \frac{d_i}{d_i^l} = 2$ . Essa constante chama-se **razão de semelhança**.

Vamos estudar agora a parte angular: tanto na figura  $\bf A$  como na  $\bf B$ , o ângulo assinalado com vértice em Belém mede 93°. Da mesma forma que, nas duas figuras, cada ângulo assinalado com vértice na capital federal tem 76°.

Os ângulos indicam a "forma" da figura, que se mantém quando a ampliamos ou reduzimos. O que se modifica nesses casos é apenas as medidas dos segmentos de reta.

Como essas duas condições (medidas lineares proporcionais e medidas angulares congruentes) são satisfeitas, dizemos que as duas figuras são **semelhantes**.

Dois quadrados quaisquer são semelhantes.







Dois quadrados quaisquer são semelhantes.



A razão de semelhança entre os quadrados 1 e 2 é:

$$\frac{1 \text{ cm}}{3 \text{ cm}} = \frac{1}{3}$$



Poderíamos também ter calculado a razão de semelhança entre os quadrados 2 e 1, nessa ordem, obtendo  $\frac{3 \text{ cm}}{1 \text{ cm}} = 3$ , que é o inverso de  $\frac{1}{3}$ .

Dois círculos quaisquer são semelhantes.





Dois círculos quaisquer são semelhantes.





A razão de semelhança entre os círculos 1 e 2 pode ser determinada pela razão entre as medidas dos raios, que é  $\frac{3 \text{ cm}}{2 \text{ cm}} = 1.5$ .

Observe que a razão entre as medidas de seus diâmetros é, também,  $\frac{6 \text{ cm}}{4 \text{ cm}} = \frac{3}{2} = 1,5.$ 

Dois retângulos serão semelhantes somente se a razão entre as medidas de seus lados maiores for igual à razão entre as medidas de seus lados menores.







#### **PENSE NISTO:**

Dê um exemplo de dois retângulos que não são semelhantes.

Dois retângulos serão semelhantes somente se a razão entre as medidas de seus lados maiores for igual à razão entre as medidas de seus lados menores.



0,6 cm 2 cm



Dê um exemplo de dois retângulos que não são semelhantes.

A razão de semelhança entre os retângulos 1 e 2 é  $\frac{5 \text{ cm}}{2 \text{ cm}} = \frac{1,5 \text{ cm}}{0,6 \text{ cm}} = 2,5.$ 

Dois blocos retangulares (paralelepípedos retângulos) serão semelhantes somente se as razões entre as três dimensões (tomadas, por exemplo, em ordem crescente) de um deles e as correspondentes dimensões do outro forem sempre iguais.







#### PENSE NISTO:

Dois cubos quaisquer são sempre semelhantes?

Dois blocos retangulares (paralelepípedos retângulos) serão semelhantes somente se as razões entre as três dimensões (tomadas, por exemplo, em ordem crescente) de um deles e as correspondentes dimensões do outro forem sempre iguais.



Logo, eles são semelhantes.



Sim, porque, se um cubo tem aresta a e o outro tem aresta b. quaisquer dois segmentos correspondentes que se tome, um em cada cubo, estarão na razão a.

A razão de semelhança entre os paralelepípedos 1 e 2 é  $\frac{2.5 \text{ cm}}{1.25 \text{ cm}}$  =  $\frac{3 \text{ cm}}{1,5 \text{ cm}} = \frac{4 \text{ cm}}{2 \text{ cm}} = 2.$ 



#### PENSE NISTO:

Dois cubos quaisquer são sempre semelhantes?

## Exercícios

- Indique quais das seguintes afirmações são verdadeiras e quais são falsas.
  - a) Dois retângulos quaisquer são semelhantes.
  - **b)** Dois círculos quaisquer são semelhantes.
  - c) Dois triângulos retângulos quaisquer são semelhantes.
  - d) Dois triângulos equiláteros quaisquer são semelhantes.
  - e) Dois trapézios retângulos quaisquer são semelhantes.
  - f) Dois losangos quaisquer são semelhantes.

- Dois retângulos,  $\mathbf{R}_1$  e  $\mathbf{R}_2$ , são semelhantes. As medidas dos lados de  $\mathbf{R}_1$  são 6 cm e 10 cm. Sabendo que a razão de semelhança entre  $\mathbf{R}_1$  e  $\mathbf{R}_2$ , nessa ordem, é  $\frac{2}{3}$ , determine as medidas dos lados de  $\mathbf{R}_2$ .
- Dois triângulos retângulos distintos possuem um ângulo de 48° e lados com medidas proporcionais. É correto afirmar que eles são semelhantes? Explique.

Quais são as medidas dos lados de um quadrilátero A'B'C'D' com perímetro de 17 cm, semelhante ao quadrilátero ABCD da figura?



- Dois triângulos isósceles distintos possuem um ângulo de 40°. É correto afirmar que eles são semelhantes? Explique.
- 6 No bloco retangular a seguir, o comprimento mede 8 cm, a largura 2 cm e a altura 6 cm.

  A razão de semelhança entre esse bloco e um outro nessa ordem é 1/3. Quais são as dimensões

do outro bloco?



7 As duas figuras abaixo são semelhantes.



Obtenha os valores de x, y, z, w e t.

8 Um prospecto de propaganda imobiliária traz as posições das torres A, B, C e D de apartamentos, que serão construídos em um grande terreno plano.

Um cliente, interessado em conhecer essas distâncias, mediu com uma régua os segmentos  $\overline{AB}$ ,  $\overline{BC}$ ,  $\overline{CD}$  e  $\overline{AD}$ , obtendo, respectivamente, 2 cm, 4 cm, 5 cm e 2,7 cm.

Em seguida, ele verificou, no prospecto, que a escala utilizada era de 1 : 2000.

Que valores ele obteve para as distâncias reais entre as torres **A** e **B**, **B** e **C**, **C** e **D**, e **A** e **D**?



## Semelhança de triângulos

Observe os triângulos ABC e DEF, construídos de modo a terem a mesma forma.





É possível colocar o triângulo menor (ABC) dentro do maior (DEF), de maneira que seus lados fiquem respectivamente paralelos.



Observe que:

$$\hat{A} \equiv \hat{D}$$

$$\hat{\mathbf{B}} = \hat{\mathbf{E}}$$

$$\hat{C} \equiv \hat{F}$$

#### OBSERVAÇÃO 📵



Usaremos em toda a coleção a notação AB para representar a medida de um segmento  $\overline{AB}$  (segmento de extremidades A e B).

Se calcularmos as razões entre os lados correspondentes, teremos:

$$\frac{AB}{DE} = \frac{1,5 \text{ cm}}{3,0 \text{ cm}} = \frac{1}{2}$$
  $\frac{AC}{DF} = \frac{2,2 \text{ cm}}{4,4 \text{ cm}} = \frac{1}{2}$   $\frac{BC}{EF} = \frac{2,5 \text{ cm}}{5,0 \text{ cm}} = \frac{1}{2}$ 

$$\frac{AC}{DF} = \frac{2,2 \text{ cm}}{4,4 \text{ cm}} = \frac{1}{2}$$

$$\frac{BC}{EF} = \frac{2,5 \text{ cm}}{5,0 \text{ cm}} = \frac{1}{2}$$

Logo, as razões são todas iguais, ou seja, os lados correspondentes (homólogos) são proporcionais.

$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$$

Daí, podemos estabelecer a seguinte definição:

Dois triângulos são semelhantes se seus ângulos correspondentes são congruentes e os lados homólogos são proporcionais.

Em símbolos matemáticos, podemos escrever:

$$\triangle ABC \sim \triangle DEF \Leftrightarrow \begin{cases} \hat{A} \equiv \hat{D} \\ \hat{B} \equiv \hat{E} e \frac{a}{d} = \frac{b}{e} = \frac{c}{f} \end{cases}$$



Símbolos

 $\sim$  : semelhante

 $\equiv$  : congruente

#### Razão de semelhança

Se dois triângulos são semelhantes, a razão entre as medidas dos lados correspondentes é chamada razão de semelhança. Nos triângulos ABC e DEF, que estão logo acima:

$$\frac{a}{d} = \frac{b}{e} = \frac{c}{f} = k$$
, em que **k** é a razão de semelhança.

O conceito de triângulos semelhantes fixou as seguintes condições para um triângulo ABC ser semelhante a outro A'B'C':

$$\underbrace{\hat{A} \equiv \hat{A}', \ \hat{B} \equiv \hat{B}', \ \hat{C} \equiv \hat{C}'}_{\text{três congruências de ângulos}} \quad e \quad \underbrace{\frac{AB}{A'B'} = \frac{AC}{A'C'} = \frac{BC}{B'C'}}_{\text{proporcionalidade dos três lados}}$$

Mas podemos reduzir essas exigências a uma quantidade menor. Os casos de semelhança (ou critérios de semelhança), que estudaremos a seguir, mostram quais são as condições mínimas para dois triângulos serem semelhantes.



#### PENSE NISTO

O que ocorre quando a razão de semelhança de dois triângulos é igual a 1? Para demonstrar a validade dos critérios de semelhança, precisamos rever o teorema de Tales e o teorema fundamental da semelhança.

Ao observar, na figura ao lado, um feixe de retas paralelas com duas transversais  $\mathbf{t}_1$  e  $\mathbf{t}_2$ , podemos dizer que:

- são correspondentes os pontos: A e A', B e B', C e C', D e D';
- são **correspondentes** os segmentos:  $\overline{AB}$  e  $\overline{A'B'}$ ,  $\overline{CD}$  e  $\overline{C'D'}$ ,  $\overline{AC}$  e  $\overline{A'C'}$  etc.



#### Teorema de Tales

Se duas retas são transversais a um feixe de retas paralelas, então a razão entre as medidas de dois segmentos quaisquer de uma delas é igual à razão entre as medidas dos segmentos correspondentes da outra.

Considerando a figura na página anterior, a tese é:  $\frac{AB}{CD} = \frac{A'B'}{C'D'}$ .



Na figura abaixo, as retas **r**, **s** e **t** são paralelas. Vamos calcular o valor de **x**.



Na figura abaixo, as retas **r**, **s** e **t** são paralelas. Vamos calcular o valor de **x**.



Observe que o segmento  $\overline{A'B'}$  mede, em metros, x - 9.

Aplicando o teorema de Tales, segue que:

$$\frac{AB}{BC} = \frac{A'B'}{B'C'} \Rightarrow \frac{4}{6} = \frac{x-9}{9} \Rightarrow 6x = 90 \Rightarrow x = 15$$

Logo, x = 15 m.

#### Teorema fundamental da semelhança

Toda reta paralela a um lado de um triângulo, que intersecta os outros dois lados em pontos distintos, determina um novo triângulo semelhante ao primeiro.

Hipótese:  $\overrightarrow{DE}$  //  $\overrightarrow{BC}$  (D  $\in \overrightarrow{AB}$  e E  $\in \overrightarrow{AC}$ )

Tese: △ADE ~ △ABC



Na figura ao lado,  $\overline{DE}$  é paralelo a  $\overline{AB}$ . Vamos calcular a medida dos segmentos  $\overline{CB}$  e  $\overline{CE}$ .



Na figura ao lado, DE é paralelo a AB. Vamos calcular a medida dos segmentos CB e CE.

Sendo  $\overline{DE}$  //  $\overline{AB}$ , temos:  $\triangle CDE \sim \triangle CAB$ .

Daí, segue que:

$$\frac{CD}{CA} = \frac{CE}{CB} = \frac{DE}{AB} = \frac{9}{12} \Rightarrow \frac{CE}{CB} = \frac{9}{12} \Rightarrow$$

$$\Rightarrow \frac{CE}{CE + 4} = \frac{9}{12} \Rightarrow CE = 12$$

$$CB = CE + 4 = 12 + 4 = 16$$



## Critérios de semelhança

### AA (ângulo — ângulo)

Observe os triângulos ABC e A'B'C', com dois ângulos respectivamente congruentes:

$$\hat{A} \equiv \hat{A}^{\scriptscriptstyle I}$$
 e  $\hat{B} \equiv \hat{B}^{\scriptscriptstyle I}$ 





#### LAL (lado — ângulo — lado)

Se dois triângulos têm dois lados correspondentes proporcionais e os ângulos compreendidos são congruentes, então os triângulos são semelhantes.

Observe a demonstração considerando os dois triângulos, ABC e A'B'C', tais que:





$$\begin{cases} \frac{c}{c'} = \frac{b}{b'} \\ \hat{A} \equiv \hat{A}' \end{cases} \Rightarrow \triangle ABC \sim \triangle A'B'C'$$

#### LLL (lado — lado — lado)

Se dois triângulos têm os lados correspondentes proporcionais, então os triângulos são semelhantes.

Considere os triângulos ABC e A'B'C' tais que:





$$\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'} \Rightarrow \triangle ABC \sim \triangle A'B'C'$$

Observe os dois triângulos ilustrados.

Temos:





Observe os dois triângulos ilustrados. Temos:

$$\hat{G} \equiv \hat{J} \in \hat{I} \equiv \hat{L}$$

Então, pelo critério AA de semelhança,  $\triangle$ GHI  $\sim \triangle$ JKL e, em consequência, seus lados homólogos são proporcionais:

$$\frac{GH}{JK} = \frac{GI}{JL} = \frac{HI}{KL}$$





Sabe-se que AE // CD. Quais são as medidas x de AB e y de CD?

Solução:



Sabe-se que AE // CD. Quais são as medidas x de AB e y de CD?

#### Solução:

Como AE // CD, há dois pares de ângulos alternos internos congruentes:

$$B\hat{A}E \equiv B\hat{C}D \ e \ B\hat{E}A \equiv B\hat{D}C$$

Há também  $A\hat{B}E \equiv C\hat{B}D$  (ângulos opostos pelo vértice). Assim, temos  $\triangle ABE \sim \triangle CBD$ .

Podemos escrever a proporcionalidade entre as medidas dos lados homólogos:

$$\frac{AB}{CB} = \frac{AE}{CD} = \frac{BE}{BD} \Rightarrow \frac{x}{4,5} = \frac{1,6}{y} = \frac{2}{6}$$



Temos, então,  $x = \frac{2 \cdot 4.5}{6}$ , isto é, x = 1.5 cm, além de  $y = \frac{6 \cdot 1.6}{2}$ , ou seja, y = 4.8 cm.

Piem cada caso, as retas **r**, **s** e **t** são paralelas. Determine os valores de **x** e **y**:



Três terrenos têm frentes para a rua **A** e para a rua **B**, como mostra a figura. As divisas laterais são perpendiculares à rua **A**. Qual é a medida da frente para a rua **B** de cada lote, sabendo que a frente total para essa rua mede 180 m?



São dados oito triângulos. Indique os pares de triângulos semelhantes e o critério de semelhança correspondente:



Determine **x** e **y** nas figuras, nas quais os ângulos assinalados com a mesma marcação são congruentes.



- Numa certa hora do dia, um prédio de 48 m de altura projeta no solo uma sombra de 10 m de comprimento.
  - **a)** Qual é o comprimento da sombra projetada por um prédio de 18 m de altura, situado na mesma rua, supondo-a plana e horizontal?
  - b) Em outra hora do dia, a sombra do prédio menor diminuiu 50 cm em relação à situação anterior. Em quanto diminuirá a sombra do prédio maior?

Determine DE, sendo  $\overline{AB}$  //  $\overline{CD}$ , BE = 4 cm, EC = 8 cm e AC = 11 cm.



- Sendo  $\overline{DE}$  //  $\overline{BC}$ , determine **x** nos casos:
- Uma rampa de inclinação constante tem 90 m de extensão e seu ponto mais alto se encontra a 8 m do solo.
  - a) Saindo do solo, uma pessoa se desloca sobre a rampa, atingindo um ponto que se encontra a 2 m de altura em relação ao solo. Quantos metros ainda faltam para a pessoa chegar ao ponto mais alto?
  - b) Saindo do ponto mais alto da rampa, uma pessoa desce 20 m da rampa, chegando a um ponto S. A que altura S está em relação ao solo?



 $\square$  Determine a medida de  $\overline{AB}$  em cada caso:



Determine a razão entre os perímetros dos triângulos ABC e ADE, nesta ordem, sabendo que r // s.



Determine a medida do lado do quadrado AEDF da figura:



A figura representa três ruas paralelas (I, II e III) de um condomínio. A partir do ponto **P**, deseja-se puxar uma extensa rede de fios elétricos, conforme indicado pelos segmentos PR, PT, QS e RT.



Sabe-se que a quantidade de fio (em metros) usada para ligar os pontos **Q** e **R** é o dobro da quantidade necessária para ligar os pontos **P** e **Q**. Determine quantos metros de fio serão usados para ligar **Q** e **S**, se de **R** a **T** foram usados 84 m.

# Consequências da semelhança de triângulos

### Primeira consequência

Utilizando os critérios de semelhança, podemos provar que, se a razão de semelhança entre dois triângulos é  $\mathbf{k}$ , então:

- a razão entre duas alturas homólogas é k;
- a razão entre duas medianas homólogas é k;
- a razão entre duas bissetrizes homólogas é k;
- a razão entre as áreas é k².

## Segunda consequência

Se um segmento une os pontos médios de dois lados de um triângulo, então ele é **paralelo ao terceiro lado** e é **metade do terceiro lado**. Veja a justificativa dessa propriedade.

Observe o triângulo ABC da figura em que  $\mathbf{M}$  e  $\mathbf{N}$  são os pontos médios de  $\overline{\mathsf{AB}}$  e  $\overline{\mathsf{AC}}$ , respectivamente.



Observe os triângulos AMN e ABC. Eles têm o ângulo  $\hat{\bf A}$  em comum e  $\frac{AM}{AB} = \frac{AN}{AC} = \frac{1}{2}$ . De acordo com o critério LAL de semelhança, temos:

$$\triangle$$
AMN  $\sim$   $\triangle$ ABC

e, portanto, 
$$\hat{M} \equiv \hat{B}$$
,  $\hat{N} \equiv \hat{C}$  e  $\frac{MN}{BC} = \frac{1}{2}$ .

Assim, podemos concluir que  $\overline{MN} // \overline{BC}$  e  $\overline{MN} = \frac{\overline{BC}}{2}$ .

### Terceira consequência

Se, pelo ponto médio de um lado de um triângulo, traçarmos uma reta paralela a outro lado, ela encontrará o terceiro lado em seu ponto médio.

Veja a justificativa dessa propriedade.

Observe a figura ao lado: tomamos um triângulo ABC e marcamos  $\mathbf{M}$ , ponto médio do lado  $\overline{AB}$ . Em seguida, traçamos por  $\mathbf{M}$  a reta  $\mathbf{r}$ , paralela ao lado  $\overline{BC}$ .

Pelo teorema fundamental da semelhança, temos  $\triangle AMN \sim \triangle ABC$ ; portanto,  $\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC} = \frac{1}{2}$ , ou seja, **N** é o ponto médio de  $\overline{AC}$ , e MN é a metade de BC.



- Na figura ao lado,  $\overline{RS}$  é paralelo a  $\overline{TV}$ :
  - a) Determine o valor de x.
  - **b)** Sendo  $\mathbf{S}_1$  a área do triângulo PRS e  $\mathbf{S}_2$  a área do triângulo PTV, encontre uma relação entre  $\mathbf{S}_1$  e  $\mathbf{S}_2$ .



### Solução:

Como RS // TV, os triângulos PRS e PTV são semelhantes.

- a) Escrevendo a razão de semelhança entre os lados dos triângulos PRS e PTV, temos:  $\frac{PR}{PT} = \frac{PS}{PV} \Rightarrow \frac{4}{4+8} = \frac{x}{18} \Rightarrow x = 6$
- **b)** Como a razão de semelhança entre os lados dos triângulos PRS e PTV é  $\frac{1}{3}$ , nessa ordem, concluímos que a razão entre suas áreas é  $\left(\frac{1}{3}\right)^2 = \frac{1}{9}$ , isto é,  $\frac{S_1}{S_2} = \frac{1}{9}$ .



#### **PENSE NISTO:**

Na figura do exercício resolvido, qual é a razão entre a área do trapézio RSVT e a área do triângulo PRS?

A área do triângulo PRS é  $\frac{1}{9}$  da área do triângulo PTV, então a área do trapézio RSVT é  $\frac{8}{9}$  da

área do triângulo PTV. Assim, a razão pedida é  $\frac{\frac{8}{9}}{1} = 8$ .





- As medidas dos lados de um triângulo ABC são 5,2 cm, 6,5 cm e 7,3 cm. Seja MNP o triângulo cujos vértices são os pontos médios dos lados de ABC.
  - a) Qual é o perímetro de MNP?
  - b) Prove que MNP é semelhante a ABC.
- Na figura, DE é paralelo a BC.
  - a) Qual é a razão de B semelhança dos triângulos ADE e ABC, 9 cm nessa ordem?
  - b) Qual é a razão entre os perímetros dos triângulos ADE e ABC, nessa ordem?



- c) Qual é a razão entre as áreas dos triângulos ADE e ABC, nessa ordem?
- d) Se a área do triângulo ADE é 6 cm², qual é a área do triângulo ABC?

- Na figura, AB é paralelo a DE.

  Sabendo que AB = 5 cm,

  h<sub>1</sub> = 3 cm e DE = 10 cm,
  determine:
  - a) h<sub>2</sub>;
  - b) as áreas dos triângulos ABC e CDE.



- Dois triângulos equiláteros, T<sub>1</sub> e T<sub>2</sub>, têm perímetros de 6 cm e 24 cm. Qual é a razão entre a área de T<sub>2</sub> e de T<sub>1</sub>?
- Na figura,  $\overline{AB}$  //  $\overline{ED}$ ,  $\overline{DE}$  = 4 cm, e as áreas dos triângulos ABC e EDC valem, respectivamente, 36 cm² e 4 cm².

  Quanto mede  $\overline{AB}$ ?

# O triângulo retângulo

Todo triângulo retângulo, além do ângulo reto, possui dois ângulos (agudos) complementares.

O maior dos três lados do triângulo é o oposto ao ângulo reto e chama-se **hipotenusa**; os outros dois lados são os **catetos**.

### Semelhanças no triângulo retângulo

Traçando a altura AD, relativa à hipotenusa de um triângulo retângulo ABC, obtemos dois outros triângulos retângulos: DBA e DAC. Observe as figuras:



Os ângulos Îe 2 são complementares, ou seja, a soma é 90°.



O ângulo BÂD é complemento do ângulo Î. Então, BÂD = 2.



O ângulo DÂC é complemento do ângulo  $\hat{2}$ . Então, DÂC =  $\hat{1}$ .

Reunindo as conclusões, vemos que os triângulos ABC, DBA e DAC têm os ângulos respectivos congruentes e, portanto, são semelhantes:  $\triangle ABC \sim \triangle DBA \sim \triangle DAC$ 

# Relações métricas

Voltemos ao triângulo ABC, retângulo em  $\hat{A}$ , com a altura  $\overline{AD}$ . Os segmentos  $\overline{BD}$  e  $\overline{DC}$  também são chamados de **projeções** dos catetos sobre a hipotenusa.





n: medida da projeção de AB sobre BC.



m: medida da projeção de AC sobre BC.

Explorando a semelhança dos triângulos, temos que:

$$\triangle ABC \sim \triangle DBA \Rightarrow \frac{a}{c} = \frac{c}{n} \Rightarrow c^2 = a \cdot n$$
 1

$$\triangle ABC \sim \triangle DAC \Rightarrow \frac{a}{b} = \frac{b}{m} \Rightarrow b^2 = a \cdot m$$
 2

$$\triangle DBA \sim \triangle DAC \Rightarrow \frac{h}{m} = \frac{n}{h} \Rightarrow h^2 = m \cdot n$$
 3

As relações (1), (2) e (3) são importantes **relações métricas no triângulo retângulo**. Em qualquer triângulo retângulo, temos, portanto:

 O quadrado da medida de um cateto é igual ao produto das medidas da hipotenusa e da projeção desse cateto sobre a hipotenusa, isto é:

$$b^2 = a \cdot m$$
  $e$   $c^2 = a \cdot n$ 

$$c^2 = a \cdot r$$

 O quadrado da medida da altura relativa à hipotenusa é igual ao produto das medidas dos segmentos que ela determina na hipotenusa:

$$h^2=m\cdot n$$

Das relações 1, 2 e 3 decorrem outras, entre as quais vamos destacar duas:

Multiplicando membro a membro as relações 1 e 2 e depois usando a 3, temos:

$$b^2 = a \cdot m$$

$$c^2 = a \cdot n$$

$$\Rightarrow b^2 \cdot c^2 = a^2 \cdot \underbrace{m \cdot n}_{3} \Rightarrow b \cdot c = a \cdot h$$

 Em qualquer triângulo retângulo, o produto das medidas dos catetos é igual ao produto das medidas da hipotenusa e da altura relativa a ela:

$$b \cdot c = a \cdot h$$

Somando membro a membro as relações (1) e (2) e observando que (2) m + (2) e observando que (3) m + (3) e (4) m + (4) m

$$b^2 = a \cdot m$$

$$c^2 = a \cdot n$$

$$\Rightarrow b^2 + c^2 = a \cdot m + a \cdot n \Rightarrow b^2 + c^2 = a \cdot (\underbrace{m + n}_{a}) \Rightarrow b^2 + c^2 = a^2$$

 Em qualquer triângulo retângulo, a soma dos quadrados das medidas dos catetos é igual ao quadrado da medida da hipotenusa.

$$b^2 + c^2 = a^2$$

Essa última relação é conhecida como teorema de Pitágoras.

### EXEMPLO 8

Sejam 2 cm e 3 cm as medidas das projeções dos catetos de um triângulo retângulo sobre a hipotenusa (veja a figura). Vamos calcular as medidas dos catetos.





#### PENSE NISTO:

De que outro modo poderíamos ter calculado as medidas dos catetos de ABC?

### **EXEMPLO 8**

Sejam 2 cm e 3 cm as medidas das projeções dos catetos de um triângulo retângulo sobre a hipotenusa (veja a figura). Vamos calcular as medidas dos catetos.

Podemos fazer:

3: 
$$h^2 = 2 \cdot 3 \Rightarrow h = \sqrt{6}$$

Como o triângulo ABH é retângulo, vale o teorema de Pitágoras:

$$c^2 = 2^2 + h^2 = 4 + 6 = 10 \Rightarrow c = \sqrt{10}$$

Logo, o cateto BA mede √10 cm.

No triângulo ACH, que é retângulo, temos:

$$b^2 = h^2 + 3^2 = 6 + 9 = 15 \Rightarrow b = \sqrt{15}$$

Logo, o cateto AC mede √15 cm.





#### PENSE NISTO:

De que outro modo poderíamos ter calculado as medidas dos catetos de ABC?

# Aplicações notáveis do teorema de Pitágoras

### 1ª) Diagonal do quadrado

Consideremos um quadrado ABCD cujo lado mede ℓ. Vamos encontrar a medida da diagonal d do quadrado em função de ℓ.

Basta aplicar o teorema de Pitágoras a qualquer um dos triângulos destacados:

$$d^2 = \ell^2 + \ell^2 = 2\ell^2$$
$$d = \ell\sqrt{2}$$

Assim, por exemplo, se o lado de um quadrado mede 10 cm, sua diagonal medirá  $10\sqrt{2}$  cm (aproximadamente 14,1 cm).



### 2ª) Altura do triângulo equilátero

Consideremos um triângulo equilátero ABC cujo lado mede ℓ. Vamos expressar a medida da altura h do triângulo em função de ℓ.

Basta aplicar o teorema de Pitágoras ao triângulo destacado:

$$h^{2} + \left(\frac{\ell}{2}\right)^{2} = \ell^{2} \Rightarrow h^{2} = \ell^{2} - \left(\frac{\ell}{2}\right)^{2}$$
$$h^{2} = \ell^{2} - \frac{\ell^{2}}{4} = \frac{3\ell^{2}}{4}$$

$$h = \frac{\ell\sqrt{3}}{2}$$

Assim, por exemplo, em um triângulo equilátero com lado de 6 cm, a altura relativa a qualquer um dos lados mede  $\frac{6\sqrt{3}}{2}$  cm =  $3\sqrt{3}$  cm (aproximadamente 5,2 cm).



### OBSERVAÇÃO

No triângulo equilátero, a altura relativa a um lado é também mediana e bissetriz. Sabendo que  $\overline{AB}$  //  $\overline{CD}$ , determine  $\mathbf{x}$  e  $\mathbf{y}$ .



28 Determine x e y nas figuras:





A parte final de uma escada está representada na figura seguinte:



Um imprevisto na fase de construção fez com que a extensão do penúltimo degrau fosse o dobro da extensão do último. Considerando as retas **r**, **s** e **t** paralelas e AE = 6 m, determine a extensão de cada um desses degraus.

Para vencer um desnível de 9 m entre dois pisos de um shopping foi construído um elevador e uma rampa suave para possibilitar o acesso de cadeirantes ou pessoas com mobilidade reduzida, como mostra a figura:



O elevador sobe verticalmente 5 m, chegando ao ponto **A**. De **A** inicia-se o percurso sobre a rampa de baixa inclinação até se chegar ao ponto **B**, no outro nível.

Use uma calculadora para determinar o comprimento aproximado da rampa (por excesso), com erro inferior a 0,01. 31 Determine o valor de **x** em cada caso:







- Quanto medem os catetos e a altura relativa à hipotenusa de um triângulo, sabendo que essa altura determina, sobre a hipotenusa, segmentos de 3 cm e 5 cm?
- Uma piscina com a forma de um paralelepípedo retângulo tem 40 m de comprimento, 20 m de largura e 2 m de profundidade. Que distância percorrerá alguém que nade na superfície, em linha reta, de um canto ao canto oposto dessa piscina? Use √5 ≈ 2,23.
- A figura mostra o perfil de uma escada, formada por seis degraus idênticos, cada um com 40 cm de largura. A distância do ponto mais alto da escada ao solo é 1,80 m. Qual é a medida do segmento AB?



- Saindo de um ponto O, um robô caminha, em linha reta e sucessivamente, 10 m na direção Sul, 3 m na direção Leste, 6 m na direção Norte e, de lá, retorna em linha reta ao ponto de partida. Quantos metros o robô percorreu ao todo?
- Em certo trecho de um rio, as margens são paralelas. Ali, a distância entre dois povoados situados na mesma margem é de 3 000 m. Esses povoados distam igualmente de um farol, situado na outra margem do rio. Sabendo que a largura do rio é 2 km, determine a distância do farol a cada um dos povoados.

- No portão retangular da casa de Horácio foi necessário colocar, diagonalmente, um reforço de madeira (ripa) com 3 m de comprimento. Sabendo que a altura do portão excede em 60 cm seu comprimento, determine as dimensões desse portão.
- 38 O perímetro de um quadrado é 36 cm. Qual é a medida da diagonal desse quadrado?
- 39 A altura de um triângulo equilátero mede 6√3 m. Qual é o perímetro desse triângulo?

Para ajudar nas festas juninas de sua cidade, Paulo esticou completamente um fio de bandeirinhas, com 3,5 m de comprimento, até o topo de um poste com 4,5 m de altura. Sabendo que Paulo tem 1,70 m de altura, a que distância ele ficou do pé do poste?



# 40 Calcule x em:







