Algoritmi e Strutture Dati Lezione 24

23 novembre 2022

Programmazione dinamica

Problema Dato un vettore V di interi in Z trovare un sottore di somma massima 1 2 -4 8 -2 3 -1 Esempio

SOTTO VETTO	RE DI SOMA	A MAX:	solutione !	"immediata"		
Ricerca	esaustiva:	ispezioniam	o tetti,	י שליתונים	softwettor.	•
V[1n]] vestore in i	npoT				
2	softovettore	indice di	inizo i	: 1 < i <	$n \sim \frac{n^2}{2}$	sottoetter.
		instice of	tine 1	: 1474	n 2	
		P	7			
		1				

ALGORITMO	softsuettore Max (Array V[1	(n]) → (inTero, inTero)
maxe	V[1], inizo e 1, fine	(-1 1 2 -4 8 -2 3 -1
i sca	← 1 70 n Do	T T
FoR	fei Ton Do	j A F
	somma & somma d'	VC: £ 3 >
	IF somm > max THE	VCif7 Domna CO FOR Kei PO F DO
	max < comna	Somma E Somma + K
	ini io e i	
	Fine EF	Tempo O(n3)
RETURN	(inition fine)	

SOTTO VETTORE DI SOMMA MAX: soluzione "migliorata" ALGORITMO sottouettore Max (Array V[1..n]) -> (intero, intero) max e V[1], iniao e 1, fine e 1 FOR i + 1 TO n DO | Somma 60 FOR Fei TO n Do Somme & somme + V[6] IF somme > max THEN Tempo O(n2) max < comna inizo e i Fine E F RETURN (initio fine)

SOTTO VETTORE DI SOMMA MAX: soluzione "avanzata"

· CONSIDERO SOTTOPROBLEMI G(1), P(2), ..., P(n), VIA VIA PIÙ DIFFICILI,

DEL PROBLEMA P DATO Problem: Vincolari

- · RISOLVO I SOTTOPROBLEMI DAL PIÙ SEMPLICE (1)
- · DALLE SOLUZIONI di G(1), P(2),..., B(n) RICAVO LA SOLUZIONE DI P

- · G(i): TROVARE IL SOTTOVETTORE DI SOMMA MAX
- CHE TERMINA IN POSIZIONE U

in questo caso:

· SOLUZIONE DI P: SCELTA TRA LE SOLUZIONI DI B(1), P(2),...,P(n)

Esempio vettore -1 indici valore della solvaissa sti BCi) 8 いついかっ

ALGORITMO sottouettore Max (Array V[1. n]) -> (intero, intero) Sia S[1.. n] un vetts 2p S[1] + U[1] max & S[1], fine &1 FOR ic2 FO n Do Terms O(n) | IF S[:-1] >0 THEN [] V + [1-1] 2 + [] 2 **ELSE** S[i] + V[i] IF S[i] > max THEN max & S[i] Fine & i

iniais ef. re WHILE Sciniais] 7 V (inixis) DO al più a pass! inizio = inizio - 1 RETURN (inixio, Fine) Jo Veys TEV E(n)

PROGRAMMAZIONE DINAMICA

Soluzione di un problema a partire da sottoproblemi più semplici

- · Si individuano sottoproblemi del problema dato
- · Si risolvono i sottoproblemi a partire dai più semplici
- .. sottoproblemi "base": soluzione immediata -> memoristata in tasella
 - ·· altri sottoproblemi: soluzione ottenva utilizzando consultazione
 - le soluzioni di sottoproblemi -> e aggiorna
 resto tasella
 risolti in precedenza
- Solvaione finale: l'icavata dalle solvaioni -> finaione di alcuni clementi dei sottoproblemi della tabella

Problema Data una matrice nxn di interi deserminare un Cammino" dalla prima all'ultima colonna di valore minimo "Cammino" INIZIO: posizione qualunque della prima colonna DA UNA POSIZIONE: 1 3 8 5 si prò taggiongere la posizione nella colonna 4 2 7 6 2 1 5 1 Successiva:

Sulla riga sopra

Sulla stessa riga

Sulla riga sotto 2 8 2 3 FINE: positione qualunque dell'ultima colonna "valore" somme dei valori lungo il cammino

CAMMIND DI VALORE A	11NIMO SU MATRICI				
Ricerca esaustiva:	esemino totti i possibili	Cammini			
Quanti sono?		1	3	8 5	
		4	2	7 6	
1° CoBana _	-7 n scelle	2	1.	5 1	
2° c.C.n	2 o 3 scelor	۵	8	2 3	
n' colone -	20 bsceley				
o.Chre	n. 2. 2 · · 2 =	$n - 2^{n-1}$	Sce	le	

CAMMINO DI VALORE MINIMO SU MATRICI Programmezione dinamica 1 3 8 5 P: probleme del cammino di valoze 4 2 7 6 in una marrice n×n 2 1 5 1 2 8 2 3 Per i j=1,..., n considero il problema: P(i, f): trovare il cammino di valoze minimo che inizia nella colonna 1 e termina nella posizione (i, j)
problem incolaro La solutione di P si l'icava delle solutioni di $G(1,n), G(2,n), \ldots, G(n,n)$

CAMMIND DI VALORE MINIMO SU MATRICI: Programmuzione dinamica

MATRICE C DEI RISULTATI DEI PROBLEMI P(i,j)

C[i,j] = costo Cammino minimo che inizia nella

C[i,j] = costo cammino minimo che iniaia nella colonna 1 e termina nella posizione (i,j)

IL VALORE DEC CAMMINO MINIMO SULLA MATRICE E'
min { C[i,n] | i=1,...,n}

m

j-esima colonna (i,5-1) -(i+1. j-1) (i.j)

sima colonna
$$\begin{array}{c}
(i - 1, 5 - 1) \\
(i + 1, 5 - 1)
\end{array}$$

$$\begin{array}{c}
(i + 1, 5 - 1) \\
(i + 1, 5 - 1)
\end{array}$$

$$\begin{array}{c}
(i + 1, 5 - 1) \\
(i + 1, 5 - 1)
\end{array}$$

$$\begin{array}{c}
(i + 1, 5 - 1) \\
(i + 1, 5 - 1)
\end{array}$$

$$\begin{array}{c}
(i + 1, 5 - 1) \\
(i + 1, 5 - 1)
\end{array}$$

$$\begin{array}{c}
(i + 1, 5 - 1) \\
(i + 1, 5 - 1)
\end{array}$$

C(i, 17 = M(i, 17 i.1,..., "

C = (4 4 11 15) C = (4 3 10 14) 2 3 8 6 9 10 5 8/

