Ring Design Notes

Thursday, January 29, 2015 7:40 PM

Technical notes:

- Bi-metal casting: http://www.ganoksin.com/borisat/nenam/casting-gold-to-platinum.htm
- · Instructables casting rings: http://www.instructables.com/id/Casting-Rings-From-Startup-to-Finish/?ALLSTEPS
- Bi-metal basics: http://technical-articles.hooverandstrong.com/wordpress/bi-metal-basics/
- · Question about bimetal casting from instructables: http://www.instructables.com/answers/Jewellery-made-from-both-silver-and-gold/
 - Precious metal clay may be an option for the second casting?
- Setting stones in wax: http://ganoksin.com/blog/gerrylewy/2012/11/01/setting_stones_in_wax/
- Casting with gemstones: http://technical-articles.hooverandstrong.com/wordpress/casting-with-gemstones/
 - o Appears that reduced temperatures are required for casting gemstones in-place, even with diamonds (seen everywhere from 1000 F down to 800 F recommended.
- Flush-setting stones: http://www.instructables.com/id/How-to-flush-set-stones/?ALLSTEPS
 - o Also known as burnish setting, shot setting or gypsy setting
- Another neat option electroforming: http://www.instructables.com/id/Unique-Geode-Pendant-using-Electroforming/?ALLSTEPS
 - o Also electroplating. What is difference?
 - · Appears that electroforming is just heavy-wall electroplating. We could do electroplating instead if needed.

Material Temperatures:

- Clays
 - o PMC III: Minimum 1110F for 30 min; recommended 1650 for 2 hrs
 - Melting point is 1762 F
 - o PMC Gold: 1290F for 90 mins; no max recommended time
 - MP is 1832 F.
- · Casting Grains
 - <u>18kt Yellow Gold</u>: Liquidus = 1650F. Cast = 1800F
 - o 22kt Yellow Gold: Liquidus = 1832F. Cast = 1965F
 - o 24kt Yellow Gold: Liquidus = 1945F. Cast = 2100+F
 - Platinum: Solidus temp = 3,235F. But platinum is also really hard to cast.
- More melting temps: http://www.jewelryartistsnetwork.com/index/metals-melting-temperatures/
- Looks like best bet may be gold base, silver stone-setting.

- Material Pricing:

 Volume is currently 179.36 cu mm (min thk) to 307.21 cu mm (max thk). Assuming pure gold, weighs 2.43 g (min thk) to 5.84 g (max thk).

 - This is .179 cc to .307 cc
 `1.555 g per dw, 31.10 g per TO

Name	Price	Wax Factor	Liquidus	Notes
14 Kt Palladium White Casting Grain (white gold with no nickel):	\$49.82/dw	14	1880F	Probably will be insufficiently white
22 Kt Yellow Casting Grain	\$70.52/dw	21	1850F	
10 Kt Extra White				Contains nickel.
Fine Silver	\$25.97/troy oz.	11	1761 F	Probably too soft.

10kt X1 Grain	\$34.71/dwt	1755- 1850F	Need to call & find out about wax factor.
14kt X1 Grain	\$46.24/dwt	1682- 1730F	Probably melts too low.
PMC III Silver	\$18.08/6.3 = \$2.87/g, (18.08 for 6.3g packet)		
PMC Gold	\$190.62/pkt (190.62/3 = \$63.54/g		

Total Cost Estimate

Ring ideas -

Spreadsheet

Name	Units	Value	Notes		Conversions			Options:						
Model Mass	g				dwt/g	1.55517		Inner	Outer	TOTAL				
Model volume	CC	0.65			dwt/TO	20		203	190.62	393.62	10kt X1 +	PMC Gold		
Button pctge	%	10						661.46	18	679.46	22kt Yello	w + PMC Si	lver	
Total volume requ	uirecc	0.715												
Material used		10KT X1												
Density		10.49	10.49 10kt X1: 11.17. 22kt: 17.86. Fine Silver: 10.49											
Amt req'd	g	7.50035												
	dwt	11.66432												
Price/dwt	\$/dwt	1.304												
Cost	\$	15.21027												

More notes:

- Discouraging piece on challenges of firing moissanite into PMC: http://www.ganoksin.com/borisat/nenam/firing-stones.htm
- · List of safe/unsafe stones for PMC firing: https://www.riogrande.com/Content/Stone-Firing-Guide-CG-html
- Very cool technique for forming-in plugs that are later replaced with heat-sensitive stones: https://www.riogrande.com/Content/Forming-Onto-Plugs-HT-psd

Final design:

• 642.25 cu mm - call it 650 cu mm, or 0.65 cc.

Rings

- Smaller: Bigger than 0.5 kt 0.5 to 0.75 kt
 - o 0,5 was \$2200.
- GIA Certificate don't buy without

Notes on casting process

- David Adamson reports good burnout with 6-stage sequence, even when using regular satin cast.
 - o His burnout cycle: Fast climb to 290 hold 2 hrs -700 1 hr 1350 1 hr down to casting temp
 - $\circ\quad$ Elsewhere, recommends initial burn of 290 for 4 hours.
 - Apparently very important to start below 300 to avoid resin expansion
- Quick explanation of what each phase of burnout does: http://forum.formlabs.com/t/castable-resin-burnout-schedule/3453/2
 - o Mentions wet flask burnout...
- $\bullet \quad \text{Another post mentioning 8 hr burnout:} \\ \underline{\text{http://forum.formlabs.com/t/heating-investment-mold-for-better-results/8274/2}}$
 - o Rule of thumb mold at 1/2 melt temp, lower for thicker objects.
- Plasticast TDS recommends 8 hr burnout exactly what David Adamson does

Investment notes:

- Furnace temps:
 - \circ 5 seems to get us to ~ 260 F
 - Drew lines at region that gets us to ~290 F
- Sprue Weights:
 - o A: 0.8 g
 - Good quality
 - Volume: pi*2.75*(1.85/2)^2 = 7.392069339126358 cu in
 - Powder: 21*7.39 = 155.19 g
 - Water: 8*7.39 = 59.12 g
 - o B: 1.0 g
 - · Better quality
 - Volume = 7.39 cu in
 - o C: 1.1 g
 - Better quality
 - Extra wax at sprue/ring interface to improve flow
 - Volume = 7.39 cu in
 - o D: 0.6 g

- Best quality
- · Matt's flask
- Volume: pi*2.5*(2.36/2)^2 = 10.93588402714607 cu in
 - Powder: 21 * 10.93 = 229.53 g
 Water: 8*10.93 = 87.44 g
- E: 1.9 g
 - · Terrible quality
 - 2 rings on same sprue
 - Volume: pi*3*(2.37/2)^2 = 13.23450883196138 cu in
 - Powder: 21*13.23 = 277.83 g
 Water: 8*13.23 = 105.84 g
- · Total powder and water
 - Powder: (3*155.19) + 229.53 + 277.83 = 972.93 g
 Water: (3*59.12) + 87.44 + 105.84 = 370.64 g
- · Oven timing
 - o 700 1350: Turned to ~ 15, I think this is where the right temperature will be hit.
 - 5 min: 950 F(may have missed a little)
 - 10 min: 1100 F
 - 15 min: 1225 F
 - 20 min: 1325 F (I think I've turned it up too high!)
 - 25 min: 1410 F
 - Turned down to 14 at this point. Correct setting is marked
 - · Slope: 22.9 deg/min
- · Plan for Wednesday:
 - o Arrive @ 7 AM
 - Start oven preheat to 290 (should be fast ~30 mins)
 - o Submerge flasks in water for 1 min (check for other recs for overnight leaving)
 - Load flasks hold 2 hrs (9:30) 2.5 hrs (10 AM)
 - START: 6:45
 - At 7:07 checked with external thermocouple oven wasn't as hot as dial said (only ~134 F). Cranking up temperature with thermometer in.
 - Got to ~correct temperature around 7:41
 - END: 9:45
 - o Ramp to 700 hold 1 hr (11:30 for 1 hr ramp)
 - START: 9:45
 - END RAMP: 10:45
 - For ramp, assuming 22.9 deg/min:
 - (700-290)/22.9 = 17.9039 min for direct heating
 - If we want it to take 1 hr: 17.9/60 = 0.2983
 - Roughly, breaking the heat cycle up into 4 parts should work
 - Ramp Notes
 - · Started at 306 F
 - 15 mins: 367 (should be 404)
 - 30 mins: 445 (should be 502)
 - 45 mins: 530 (should be 600)
 - 60 mins: 645(should be 700)
 - Boosting output slightly to get to 700.
 - Wound up overshooting a little hit 750. For 1350 bake, going to specified temperature and holding there.
 - END BAKE: 11:45
 - \circ Ramp to 1350 hold 2 hrs (3:00 for 1.5 hr ramp)
 - START: 11:45
 - END RAMP: 12:45
 - For ramp (assuming 22.9 deg/min)
 - (1350-750) = 600
 - 600/22.9 = 26.2009 min for direct heating.
 - Thus, to heat over 1 hour, break cycle into 3 parts. This time, start with larger increases and only slightly bump up to hit 1350.
 - · Ramp Notes:
 - Started at 752
 - 20 mins (950 des): 975
 - 40 mins (1150 des): 1142
 - 60 mins (1350 des, okay to overshoot): 1291 at 12:45
 - Cranked dial higher to try to reach ~1400
 END BAKE: 4:15 (reduced time slightly to compensate for missed temp at startup
 - Cool to ambient.
 - o Take to Matt's
 - · Cast bronze first (E, then A)
 - · Get parameters from Matt
 - · Cast silver second (start with D, remelt and retry as needed)
 - Recommended covering flame over sprue gate to reduce oxygen
 - Also can add charcoal to melt to absorb excess oxygen
 - Flask temperature:1150 to 1300 deg F.
 - Casting range: 1922 to 1940 deg F
 - Quenching: Air cool to black heat and then quench in water.

Tests for PMC

- · Test Round 1:
 - o Rough Fine Silver Ring: PMC Silver, test with plug and slight opening. This test should most closely resemble final product
 - o Bronze Ring: PMC Silver, test with plug and smaller opening.
 - o Sterling ring: No PMC silver just heat test to make sure it doesn't melt.
 - Melting points:
 - Pure Silver: 1762 F
 Solidus: 1761 F
 Sterling Silver: 1640 F
 Bronze: 1562-1832
 Solidus: 1715F
 - o Kiln Temps:
 - Preheat to 1000 let part heat up at that temp
 - Then ramp to desired temp 1500
- · Tools to get together
 - o DI water
 - o Toaster oven
 - o Sintering oven
 - o Blocks for supporting ring stand
 - o Teflon or glass flat sheet
 - Glass or plastic roller (clear acrylic rod?)
- Super valuable resource: http://www.metalclayacademy.com/pdfs/
- · Questions for first bake
 - o Does PMC ring hold together, or does it snap?
 - O How much shrinkage?
 - Should I build thick (bronze ring) or thin (silver ring)?
 - Stone setting
 - · Does stone fit?
 - · Do I need a bezel?
- · Notes from first bake:
 - o Small crack across entire bronze ring. Tried to fix with slip will see how it goes.
 - o Placed rings in at ~975F for 1 hr
 - o Then, turned up to 1500F for 1 hr
 - · Checked at 20 mins:
 - 1430 F
 - Cracked ring broken through as expected.
 - Sterling ring sagging but not damaged.
 - o Outcome
 - · Bronze ring
 - · Cracked badly broke in another place as well. Eventually, all silver came off. Bond between silver and bronze is not great!
 - · Clearly some sort of carbonization happening with bronze turned black all over. Probably not appropriate for this process regardless.
 - Ring could be re-used for further testing if needed
 - Metal is too high above ring on band, just right on top.
 - · Setting too large.
 - Sterling ring
 - Seems to be fine. No obvious damage to material. I still think we should go with pure silver ring, though sterling may also offgas strangely like bronze did.
 Definitely some tarnish on ring.
 - Silver ring
 - Metal nicely inset in band, maybe (?) too low on top? But very clearly defined.
 - Gaps in metal are very obvious. Need to be careful to go back in after first drying and re-fill.
 - · Band cracked around stone setting too little material
 - · Stone setting too large
 - Mechanical bond is strong. I can pull material out of channel no actual fusing but it's in there pretty good
- Plan for next attempt
 - O Use PMC silver plus **sterling** ring
 - $\circ \quad \hbox{Clean inside of ring depression with acetone before starting}$
 - Make mutiple thin wires of material, wrap completely around outside, making sure to press into corners and bond to each other with water
 - Build up top with thin ropes of material fuse to each other with water/slip.
 - Make band slightly (0.5 mm) above flush to ring band
 - Make top 0.75 mm above flush to ring band
 - o Make smaller stone setting use stone to create hole, and then drop smaller plug into place
 - o Make bezel around stone
 - o Allow to air-dry to leather-hard. Then finish to final shape, making sure to smooth with water. Fill any voids with slip (this seems to work well)
- Notes from meeting with Tara Fadenrecht (2017-02-21)
 - General procedure
 - Cast
 - Cut gold fill-in

- · Hammer into place
- Solder
 - · Alternative hammer/solder in sections
 - · Join at thinnest part of ring
- Set stone
 - Bezel setting maybe do this start at noon/six, 3/9, etc.

Other notes

- · Annealing generally a good idea
- US clean after polishing
- · Optionally, pickle before doing PMC gives it an acid finish
- Re-melting --> cast to ingot --> rolling mill & anneal: can try this
 - · Ingot mold can make myself out of steel, just need to oxidize surface so that it doesn't bond to the surface
 - · Alternatively, investment cast, but make neck between sprue and ingot thn
- · Extra studs inside of band good call.

JL & AD's wedding rings

- Sizes
 - o AD: 5.25 loose to 5.5 tight. Probably design for 5.25
 - JL: 8

Casting weights spring 2017

- ADSK pendant: .646 oz, no button
- · AD ring: .429 oz, no button
- JL ring: .483 oz, no button

Casting sprues:

- A. AD ring, lateral sprue
- B. JL ring, lateral sprue, higher quality
- C. JL ring, lateral sprue, broken
- D. ADSK Pendant (now has E body)
- E. JL ring, vertical sprue (now has D body)

Burnout Plan

- Preheat to 300
- Load investments, hold for 2 hrs
 - START: 9:45 AM
 - Started at 350 F a little over. LOW (0) setting seems to match this
 - Actually, LOW setting slowly crept down towards 300. Pushing back towards 0.5
 - Kept creeping to ~400F at 11:37
 - o END: 11:45 AM
- Ramp to 700 for 1 hr (#1.6), hold for 1 hr
 - o START: 11:45 AM
 - o END RAMP: 12:45 PM
 - Only at 600 at end of ramp continuing to ramp, will see how long it takes us to get to 700.
 - · 650 at 12:21
 - 700 at 12:30
 - · Crept to 850 by 1 PM
 - o END BAKE: 1:45 PM
 - Finished at around 950. Whoops :-/
- Ramp to 1350 for 1 hr (#3.1), hold for 2 hrs
 - START: 1:45 PM
 - Cranking up to 2 initially. I don't think we're going to need to go to 3 to get to 1350.
 - END RAMP: 2: 45 PM
 - Ended ramp at 1300 F. Monitoring closely to make sure we don't exceed by too much.
 - O END BAKE: 4:45 PM
- Ramp to 900 for 1 hr (#2), hold for 1 hr
 - START: 4:45 PM
 - O END RAMP:5:45 PM
 - O END BAKE: 6:45 PM
- Burnout other notes:
 - \circ Assuming linear response in holding temperature as function of dial position, we should have $^{\sim}300$ F per notch on dial
 - After initial testing, it looks like 1 is closer to 350. This makes sense if low is 0 this gives us the response we expected. However, that doesn't make sense if low is > 0.
 We should probably underestimate
 - o Temperature has kept creeping. Using mapRange --> 430/div. This roughly corresponds to what we've been seeing. Numbers above now reflect this
- · Casting silver
 - Flask temperature:1150 to 1300 deg F.
 - · Casting range: 1922 to 1940 deg F
 - · Quenching: Air cool to black heat and then quench in water.