Reinforcement Learning

Learning Algorithms

- Supervised learning
 - classification, regression
- Unsupervised learning
 - clustering

- Reinforcement learning
 - more general than supervised/unsupervised learning
 - learn from interaction w/ environment to achieve a goal

Reinforcement Learning

Objective: get as much reward as possible

Key Features of RL

- Learner is not told which actions to take
- Trial-and-Error search
- Possibility of delayed reward (sacrifice short-term gains for greater long-term gains).
- The need to explore and exploit
- Considers the whole problem of a goal-directed agent interacting with an uncertain environment.

Element of RL

- Policy: what to do
- Reward: what is good
- Value: what is good because it predicts reward
- Model: what follows what

Outlines

- Examples
- Defining an RL problem
 - Markov Decision Processes
- Solving an RL problem
 - Dynamic Programming
 - Monte Carlo methods
 - Temporal-Difference learning

Example: Tic-Tac-Toe

An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per state:

a *greedy* move.

But 10% of the time pick a move at random; an *exploratory move*.

RL Learning Rule for Tic-Tac-Toe

Robot in a Room

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP10% move LEFT10% move RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- what's the strategy to achieve max reward?
- what if the actions were deterministic?

Other examples

- Pole-balancing
- TD-Gammon [Gerry Tesauro]
- Helicopter [Andrew Ng]
- No teacher who would say "good" or "bad"
 - is reward "10" good or bad?
 - rewards could be delayed
- Similar to control theory
 - more general, fewer constraints
- Explore the environment and learn from experience
 - not just blind search, try to be smart about it

Resource allocation in datacenters

- A Hybrid Reinforcement Learning Approach to Autonomic Resource Allocation
 - Tesauro, Jong, Das, Bennani (IBM)
 - ICAC 2006

Outline

- Examples
- Defining an RL problem
 - Markov Decision Processes
- Solving an RL problem
 - Dynamic Programming
 - Monte Carlo methods
 - Temporal-Difference learning

Robot in a room

		+1
		-1
START		

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP10% move LEFT10% move RIGHT

reward +1 at [4,3], -1 at [4,2] reward -0.04 for each step

- states
- actions
- rewards
- what is the solution?

Is this a solution?

- only if actions deterministic
 - not in this case (actions are stochastic)
- solution/policy
 - mapping from each state to an action

Optimal policy

Reward for each step: -2

Reward for each step: -0.1

Reward for each step: -0.04

Reward for each step: -0.01

Reward for each step: +0.01

Markov Decision Process (MDP)

- set of states S, set of actions A, initial state S₀
- transition model P(s,a,s')
 - P([1,1], up, [1,2]) = 0.8
- reward function r(s)
 - r([4,3]) = +1

- goal: maximize cumulative reward in the long run
- policy: mapping from S to A
 - $\pi(s)$ or $\pi(s,a)$ (deterministic vs. stochastic)
- reinforcement learning
 - transitions and rewards usually not available
 - how to change the policy based on experience
 - how to explore the environment

Computing return from rewards

- episodic (vs. continuing) tasks
 - "game over" after N steps
 - optimal policy depends on N; harder to analyze

- additive rewards
 - $-V(s_0, s_1, ...) = r(s_0) + r(s_1) + r(s_2) + ...$
 - infinite value for continuing tasks
- discounted rewards
 - $V(s_0, s_1, ...) = r(s_0) + \gamma^* r(s_1) + \gamma^{2*} r(s_2) + ...$
 - value bounded if rewards bounded

Value functions

- state value function: $V^{\pi}(s)$
 - expected return when starting in s and following π
- state-action value function: $Q^{\pi}(s,a)$
 - expected return when starting in s, performing a, and following π
- useful for finding the optimal policy
 - can estimate from experience

$$- \mathbf{F}V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} P^{a}_{ss'} \left[r^{a}_{ss'} + \gamma V^{\pi}(s') \right] = \sum_{a} \pi(s, a) Q^{\pi}(s, a)$$

Bellman equation

Optimal value functions

- there's a set of optimal policies
 - V^{π} defines partial ordering on policies
 - they share the same optimal value function $V^*(s) = \max_{\pi} V^{\pi}(s)$
- Bellman optimality equation

$$V^*(s) = \max_{a} \sum_{s} P^a_{ss'} \left[r^a_{ss'} + \gamma V^*(s') \right]$$

- system of n non-linear equations
- solve for V*(s)
- easy to extract the optimal policy

having Q*(s,a) makes it even simpler

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$

Outline

- Examples
- Defining an RL problem
 - Markov Decision Processes
- Solving an RL problem
 - Dynamic Programming
 - Monte Carlo methods
 - Temporal-Difference learning

Dynamic programming

main idea

- use value functions to structure the search for good policies
- need a perfect model of the environment

- two main components
 - policy evaluation: compute V^{π} from π
 - policy improvement: improve π based on V^{π}
 - start with an arbitrary policy
 - repeat evaluation/improvement until convergence

Policy evaluation/improvement

- policy evaluation: $\pi \to V^{\pi}$
 - Bellman eqn's define a system of n eqn's
 - could solve, but will use iterative version

$$V_{k+1}(s) = \sum_{a} \pi(s, a) \sum_{k'} P_{ss'}^{a} \left[r_{ss'}^{a} + \gamma V_{k}(s') \right]$$

- start with an arbitrary value function V_0 , iterate until V_k converges

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

$$= \arg\max_{a} \sum_{s'} P^{a}_{ss'} \left[r^{a}_{ss'} + \gamma V^{\pi}(s') \right]$$
• policy improvement: $V^{\pi} \rightarrow \pi'$

- - π ' either strictly better than π , or π ' is optimal (if π =

Policy/Value iteration

Policy iteration

$$\pi_0 \to^E V^{\pi_0} \to^I \pi_1 \to^E V^{\pi_1} \to^I \dots \to^I \pi^* \to^E V^*$$

- two nested iterations; too slow
- don't need to converge to $V^{\pi k}$
 - just move towards it

•
$$V_a V_{k+1}(s) = \max_a \sum_{s'} P^a_{ss'} \left[r^a_{ss'} + \gamma V_k(s') \right]$$

- use Bellman optimality equation as an update
- converges to V*

Using DP

- need complete model of the environment and rewards
 - robot in a room
 - state space, action space, transition model
- can we use DP to solve
 - robot in a room?
 - back gammon?
 - helicopter?

Outline

- examples
- defining an RL problem
 - Markov Decision Processes
- solving an RL problem
 - Dynamic Programming
 - Monte Carlo methods
 - Temporal-Difference learning
- miscellaneous
 - state representation
 - function approximation
 - rewards

Monte Carlo methods

- don't need full knowledge of environment
 - just experience, or
 - simulated experience
- but similar to DP
 - policy evaluation, policy improvement
- averaging sample returns
 - defined only for episodic tasks

Monte Carlo policy evaluation

- want to estimate $V^{\pi}(s)$
 - = expected return starting from s and following π
 - estimate as average of observed returns in state s
- first-visit MC
 - average returns following the first visit to state s

$$V^{\pi}(s) \approx (2 + 1 - 5 + 4)/4 = 0.5$$

Monte Carlo control

- V^{π} not enough for policy improvement
 - need exact model of environment
- estimate $Q^{\pi}(s,a)$

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

$$\pi_0 \to^E Q^{\pi_0} \to^I \pi_1 \to^E Q^{\pi_1} \to^I \dots \to^I \pi^* \to^E Q^*$$

- MC control
 - update after each episode
- non-stationary environment

$$V(s) \leftarrow V(s) + \alpha [R - V(s)]$$

- a problem
 - greedy policy won't explore all actions

Maintaining exploration

- deterministic/greedy policy won't explore all actions
 - don't know anything about the environment at the beginning
 - need to try all actions to find the optimal one
- maintain exploration
 - use *soft* policies instead: $\pi(s,a)>0$ (for all s,a)
- ε-greedy policy
 - with probability 1-ε perform the optimal/greedy action
 - with probability ε perform a random action
 - will keep exploring the environment
 - slowly move it towards greedy policy: ε -> 0

Simulated experience

5-card draw poker

- s_0 : $A \clubsuit$, $A \spadesuit$, $6 \spadesuit$, $A \heartsuit$, $2 \spadesuit$
- a_0 : discard $6 \spadesuit$, $2 \spadesuit$
- s₁: A♣, A♦, A♥, A♠, 9♠ + dealer takes 4 cards
- return: +1 (probably)

DP

- list all states, actions, compute P(s,a,s')

MC

- all you need are sample episodes
- let MC play against a random policy, or itself, or another algorithm

Summary of Monte Carlo

- don't need model of environment
 - averaging of sample returns
 - only for episodic tasks
- learn from sample episodes or simulated experience
- can concentrate on "important" states
 - don't need a full sweep
- need to maintain exploration
 - use soft policies

Outline

- examples
- defining an RL problem
 - Markov Decision Processes
- solving an RL problem
 - Dynamic Programming
 - Monte Carlo methods
 - Temporal-Difference learning
- miscellaneous
 - state representation
 - function approximation
 - rewards

Temporal Difference Learning

- combines ideas from MC and DP
 - like MC: learn directly from experience (don't need a model)
 - like DP: learn from values of successors
 - works for continuous tasks, usually faster than MC
- $\operatorname{con}V(s_t) \leftarrow V(s_t) + \alpha [R_t V(s_t)]$
 - have to wait until the end of the to update

$$V(s_t) \leftarrow V(s_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right]$$

- simplest TD
 - update after every step, based on the successor

MC vs. TD

observed the following 8 episodes:

$$A - 0, B - 0$$

r = 0

25%

MC and TD agree on V(B) = 3/4

• MC: V(A) = 0

- converges to values that minimize the error or training data

- TD: V(A) = 3/4
 - converges to ML estimate

Sarsa

again, need Q(s,a), not just V(s)

control

- start with a random policy
- update Q and π after each step
- again, need ε-soft policies

Q-learning

- before: on-policy algorithms
 - start with a random policy, iteratively improve
 - converge to optimal
- Q-learning: off-policy

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

- Q directly approximates Q* (Bellman optimality eqn)
- independent of the policy being followed
- only requirement: keep updating each (s,a) pair

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right] / \alpha$$

Sarsa

Outline

- examples
- defining an RL problem
 - Markov Decision Processes
- solving an RL problem
 - Dynamic Programming
 - Monte Carlo methods
 - Temporal-Difference learning
- miscellaneous
 - state representation
 - function approximation
 - rewards

State representation

- pole-balancing
 - move car left/right to keep the pole balanced
- state representation
 - position and velocity of car
 - angle and angular velocity of pole
- what about Markov property?
 - would need more info
 - noise in sensors, temperature, bending of pole
- solution
 - coarse discretization of 4 state variables
 - left, center, right
 - totally non-Markov, but still works

Function approximation

- represent V_t as a parameterized function
 - linear regression, $V_t(s) = \vec{\theta}_t^T \vec{\phi}_s = \sum_{i=1}^n \theta_t(i) \phi_s(i)$...
- update parameters instead of entries in a table
 - better generalization
 - fewer parameters and updates affect "similar" states as well $V(s_t) \leftarrow V(s_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) V(s_t) \right]$
- TD update

$$V(s_t) \mapsto r_{t+1} + \gamma V(s_{t+1})$$

- treat as one data point for regression
- want method that can learn on-line (update after each step)

Features

- tile coding, coarse coding
 - binary features

- radial basis functio
 - typically a Gaussiar
 - between 0 and 1

Splitting and aggregation

- want to discretize the state space
 - learn the best discretization during training
- splitting of state space
 - start with a single state
 - split a state when different parts of that state have different values

- state aggregation
 - start with many states
 - merge states with similar values

Designing rewards

robot in a maze

- episodic task, not discounted, +1 when out, 0 for each step

chess

- GOOD: +1 for winning, -1 losing
- BAD: +0.25 for taking opponent's pieces
 - high reward even when lose

rewards

- rewards indicate what we want to accomplish
- NOT how we want to accomplish it

shaping

- positive reward often very "far away"
- rewards for achieving subgoals (domain knowledge)
- also: adjust initial policy or initial value function

Case study: Back gammon

rules

- 30 pieces, 24 locations
- roll 2, 5: move 2, 5
- hitting, blocking
- branching factor: 400

implementation

- use $TD(\lambda)$ and neural nets
- 4 binary features for each pos
- no BG expert knowledge

results

- TD-Gammon 0.0: trained against itself (300,000 games)
 - as good as best previous BG computer program (also by Tesauro)
 - lot of expert input, hand-crafted features
- TD-Gammon 1.0: add special features
- TD-Gammon 2 and 3 (2-ply and 3-ply search)
 - 1.5M games, beat human champion

Summary

Reinforcement learning

 use when need to make decisions in uncertain environment

solution methods

- dynamic programming
 - need complete model
- Monte Carlo
- time-difference learning (Sarsa, Q-learning)

most work

- algorithms simple
- need to design features, state representation, rewards