AS Mathematics and Statistics

Greeral Murking Instructions

- It is very important that all markers should adhere as closely as possible to the marking selection. In many cases, however, candidates will have obtained a correct accover by no alternative method not specified to the marking scheme. In general, a correct answer merits all the marks allocated to that part, unless a particular method has been specified in the question. Markets about be patient in marking alternative solutions not specified in the marking scheme.
- In the marking scheme, marks are classified into the following three enterories:

M marks rewarded for correct methods before used: "A" macks awarded for the accuracy of the enswers.

Marks without 'M' or 'A' awarded for correctly completing a proof or awiving at

an auswar given bi a question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to stead or methods correctly deduced from previous answers, even if these apparers are expansions. However, 'A' marks for the corresponding answers should NOT be awarded (unitess otherwise specified).

- 3. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is still likely that contributes would not present their sofution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking condidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique land been used.
- Her of notation different from those in the marking scheme glion's not be penalized.
- In marking condidates, work, the benefit of doubt should be given in the condidates, favour.
- Marks may be deducted for poor presentation (py). The symbol (pp-D should be used to denote 1 spark deducted for op . At most deducted I mask from Section A stall I mark from Section it for pp . In any case, do not deduct any marks for pp in those steps where candidates could not score nav merks.
- Marks may be deducted for numerical answers with inappropriate degree of securacy (a). The symbol @-Dishould be used to denote I mark deducted for in . At most deducted I mark from Section A and I mark from Section B for p. In any case, do not deduct any marks for a in those steps where candidates could not score any marks.
- In the marking scheme, "r.t." stands for "accepting enswers which can be strended off to" and "f.t." stands for 'follow through'. Steps which can be skipped are shifted whereas alternative answers are enclosed with rectangles.

		Sclution	Marks
1.	(4)	$\begin{aligned} &(1+\alpha x)^{2} \\ &-1+r\alpha y+\frac{r(r-1)}{2!}(\alpha x)^{2}+\frac{r(r-1)(r-2)}{3!}(\alpha x)^{3}+\cdots \\ &=1+r\alpha x+\frac{r(r-1)}{2}a^{2}x^{2}+\frac{r(r-1)(r-2)}{6}a^{3}x^{3}+\cdots \\ &\text{So, we have} ra=\frac{3}{2}, \frac{r(r-1)}{2}a^{2}=\frac{27}{8} \text{and} \frac{r(r-1)(r-2)}{6}a^{3}+b \end{aligned}.$	Tốc fòc ảny twó tenus cornect TÁ
	(b)	Solving, we have $x=\frac{-1}{2}$, $x=-3$ and $x=\frac{135}{16}$. The required range of values of x is $\frac{1}{2}-3x\frac{1}{4} < \frac{1}{3}$. Thus, the expansion is valid for $\frac{-1}{3} < x < \frac{1}{3}$.	I.A. first any one $+$ I.A. for all III.A.con be absorbed I.B. accept $\frac{1}{2} + \frac{1}{2} = \frac{1}{2}$
2-	(n)	$\int_{0}^{\frac{\pi}{2}} d\sigma^{\frac{2}{3}} d\tau$ $= \frac{\pi - 0}{2(4)} \left(0 + 8e^{\frac{2}{3}} + 2(2e^{\frac{2}{3}} - 4e^{\frac{2}{3}} + 6e^{\frac{2}{3}}) \right)$ $= 102.2373887$ $= 102.2373$	CM for trapezaidal role
	(b)	$\int_{0}^{4} \frac{dx}{dt} dt = \int_{0}^{3} \left(4t e^{\frac{t}{2}} + \frac{200}{t+1} \right) dt$ $x(\mathcal{E}) - x(0) = \int_{0}^{2} \left(4t e^{\frac{t}{2}} + \frac{200}{t+1} \right) dt$	1A # 1 for ext. 103.237 IM for considering $\int_0^1 \frac{dx}{dt} dt$ 1A
		$x(8) - x(0) = 4 \int_{0}^{8} t e^{\frac{t}{2}} dt + 200 \int_{0}^{8} \frac{dt}{t - 1}$ $x(8) - 100 = 4(103.2372887) + 200 \int_{0}^{8} \frac{dt}{t + 1} \qquad (by (a))$ Note that $\int_{0}^{8} \frac{dt}{t + 1}$	likt focusing (a)
		= $[\ln(r+1)]_0^4$ = $[\ln(r+1)]_0^4$ = $[\ln(r+1)]_0^4$ So, we have $\times(3) = (2.2334070)^2 \times 950$ (correct to 2 significant figures).	$ A \text{ for } \int \frac{dt}{t+1} = \ln(t+1) + C$ $ A $
		Thus, the required number (\$ 950).	(7)

Sตโนต์ตล	Marks
$\ln w = \frac{3}{2} \ln(x-1) - \frac{1}{2} \ln(x+2) - \frac{1}{2} \ln(2x+1)$	IA.
Differentiate but sides w.r.t. x, we have $\frac{1}{w} \frac{dw}{dx} = \frac{3}{2(x-1)} - \frac{1}{2(x+2)} - \frac{1}{2x+1}$	1M.
$\frac{dw}{dx} = i\sqrt{\left(\frac{3}{2(x-1)} - \frac{1}{2(x+2)} - \frac{1}{2x+1}\right)}$	IA .
$\frac{\mathrm{diw}}{\mathrm{d}x} = \sqrt{\frac{(x-1)^2}{(x+2)(2x+1)}} \left(\frac{1}{2(x-1)} - \frac{1}{2(x+2)} - \frac{1}{2x+1} \right)$	
$\frac{dw}{dx} = \frac{w(2x^2 + 14x + 11)}{2(x - 1)(x + 2)(2x + 1)}$	
b) $w = 2^{y}$ $\ln w = y \ln 2$ $y = \frac{\ln w}{\ln 2}$	l St. for relating long our book strikes med ene be absorbe
<u>ਰੰਮ = 1</u> ਰੰਘ = ਮਾਰਿ2	1A
$\frac{dy}{dx} = \frac{dy}{dw} \frac{dw}{dx}$ $\frac{dy}{dx} = \left(\frac{1}{w \ln 2}\right) \left[w\left(\frac{3}{2(x-1)} - \frac{1}{2(x+2)} - \frac{1}{2x-1}\right)\right]$	166 for Chain Ruls
$\frac{dy}{dx} = \frac{1}{\ln 2} \left(\frac{3}{3(x-1)} - \frac{1}{2(x+2)} - \frac{1}{2x+1} \right)$	1A accept $\frac{(2x^2 + 4x+11)}{2(x-1)!(x+2)(2x+1)!n2}$
$\psi = 2^{y}$ In $w = y$ in 2 Differentiate both sides w.r.l. y , we have	164 for taking legion high sides and can be about to
$\frac{1}{w}\frac{dw}{dy} = \ln 2$ $\frac{dw}{dy} = w \ln 2$	
$\frac{dy}{dw} = \frac{1}{w \ln 2}$ $\frac{dy}{dw} = \frac{dy}{dw} \frac{dw}{dx}$	1.1.1
$\frac{dx}{dx} = \frac{dy}{dx} dx$ $\frac{dy}{dx} = \left(\frac{1}{w \ln 2}\right) \left[\pi \left(\frac{3}{2(x+1)} - \frac{1}{2(x+2)} - \frac{1}{2x+1}\right) \right]$	IM for Chalo Rufe
$\frac{dy}{dx} = \frac{1}{\ln 2} \left(\frac{3}{2(x-1)} - \frac{1}{2(x+2)} - \frac{1}{2x+1} \right)$	1A zecept $\frac{(2x^2 + 14x + 15)}{2(x-1)(x+2)(2x+5) \ln 2}$
	\

		Marks
. (a)	Increase in the moun	
•	$=\frac{33}{(10M_2)}.$	
		$1A \text{ (accept 160 cm } \rightarrow \frac{2575}{16} \text{ cm)}$
	= 15 cm] "*
	= 0,9375 cm	n−1 5ρτ r.t. U.V3B em
(b)	Change in the modian = 0	IA (accept no change)
(c)	Change in the mode = 0	1M (appelot up opus ão)
(d)	Change in The range = 0	IA (accept to change)
	Cate 2 "The three invotted records are 145 cm 145 cm and 146 cm Decrease in the range = 1 cm	1A (accept 29cm -> 28cm)
(ė		
	o 55 - 154	1A (accept 14em -> 27cat)
	+ ⊊⊓	(fi)
5. (a) P(メヘダ) +P(メ(ダ)P(ダ)	1M can be absorbed
	$=(\frac{3}{12}X)-\frac{2}{3}$	i eliferano
	- 1/4	IA I
	4	
0) P(J'O5)	
	= Y(B) A)P(A)	
	$= (\frac{\delta}{15})(1-\beta)$	tA or equivalent
		\
()	:) F(A'∪B) =1-P(ArtB')	
		(Maccay): NASA MATO (CARTA) & NAO FIT
	$= \left(-\frac{1}{4} \left(\text{by}(s) \right) \right)$	1
	= 3	1
	4 Note that $P(A' \cup B) = P(A') + P(B) - P(A') \cap B$.	1
	Hence, we have $\frac{1}{4} = (1-a) + \frac{2}{5} - (\frac{8}{15})(1-a)$ (by (b)).	(M) for using (b)
	Thus, we have $a = \frac{i}{4}$.	1A
	d) $\forall P(A) = P(A \cap B) + P(A \cap B') + P(A) = \frac{1}{4} \{by\{e\}\}$	
	and $P(A \cap B') = \frac{1}{4}$ (by (e))	
	$f_{i} = \mathcal{V}(A \cap E) = 0$	
	Thus, A and B are mynually exchasive.	1A mass show reasons(7)
		L

Solution	Marks	Solution	Marks
6. (a) The required probability $= C_2^4 (\frac{5}{12} \chi_{11}^4) (\frac{7}{10} \chi_9^6)$ $= \frac{14}{33}$ $\Rightarrow 0.323232323$ $= 0.4242$	IM for $C_2^4 + 1A$ for $(\frac{5}{12} \times \frac{4}{11} \times \frac{7}{10} \times \frac{6}{9})$ IA e^{-1} for e^{-1} , 0.424	7. (a) $\forall C_1$ and C_2 have a common printercept and $f(3) = g(3)$. $\Rightarrow f(0) = g(0)$ and $f(3) = g(3)$. Therefore, we have $b = \frac{a}{2}$ and $\frac{6+a}{5} = b = 6$. Solving, we have $a = 24$ and $b = 12$.	IM for setting up simultaneous aqua6ous IA + IA(3)
The required probability $= \frac{C_1^2 C_2^2}{C_1^{12}}$ $= \frac{14}{33}$ $= 0.4242424$ $= 0.42424$	LM for numerator + 1A for der continuor [A si=1 for n.t. 0.424	(a) $\frac{2x+24}{x+2} = \lim_{x\to 2\pi} \frac{2+\frac{24}{x}}{1-\frac{2}{x}} = 2$ $\therefore \text{ the equation of the horizontal asymptote to } C_1 \text{ is } y=2.$ $\frac{ \sin f(x) }{ x-x ^2} = \lim_{x\to 2} \frac{2x+34}{x+2} = -\infty \text{ and } \lim_{x\to 2} \frac{f(x)}{ x-x ^2} = \lim_{x\to 2} \frac{2x+34}{x+2}$ $\therefore \text{ the equation of the vertical asymptote to } C_1 \text{ is } x=-2.$	
(b) (i) The required probability $= (\frac{2}{4}K\frac{1}{3})$ $= \frac{1}{6}$ ≈ 00165666677 ≈ 0.1667 The required probability C_{3}^{2}	4-1 forest 0.167	(c) $C_3: y = f(x)$, where $f(x) = \frac{2\pi + 24}{x + 2}$. $C_3: y = g(x)$, where $g(x) = -x^2 : x : 12$. Note that $f(x) = g(x)$ $\Rightarrow \frac{2x + 24}{x + 2} = -x^2 + x : 12$ $\Leftrightarrow 2x + 24 = -x^3 - x^2 : 14x + 24$	(2)
$\begin{cases} \frac{C_1^2}{C_1^2} \\ = \frac{1}{6} \\ \frac{C_1}{C_1} = \frac{1}{6} \end{cases}$ (ii) The required probability	i A = 1 fea r.∟ 0.167	$\Leftrightarrow x^{1}+x^{2}-12x=0$ $\Leftrightarrow x(x^{2}+x-12)=0$ $\Leftrightarrow x(x-3)(x+4)=0$ $\Leftrightarrow x+6: x=3 \text{ or } x=-4$ So, all the politic of intersection are $(0,12)$. $(3,6)$ and $(-4,-8)$. Also, the pointercepts of C_{1} and C_{2} are $(2,12)$.	
$= (\frac{14}{33} \times \frac{1}{6}) + C_1^4 (\frac{5}{12} \times \frac{4}{11} \times \frac{3}{10})(\frac{7}{9})(\frac{3}{4} \times \frac{2}{3})$ $= \frac{14}{99}$ $= 0.1414$ $= 0.1414$	EM for the 2 cases + 1M for either case current [A] a=1 for no (), (4)	When $f(x) = 0$, we have $x = -12$. When $g(x) = 0$, we have $x = -3$ or $x = 4$. So, the x-intercept of C_1 is -12 . Also, the x-intercepts of C_2 are -2 and 4 . $y = g(x) = -x^2 + x + 12 = -(x - \frac{1}{2})^2 + \frac{49}{4}$:
The regulard probability $= (\frac{14}{33})(\frac{1}{6}) + (\frac{C_3^2C_1^2}{C_4^2})(\frac{C_2^4}{C_2^2})$ $= \frac{14}{99}$ $= 0.1414$	iM for the 2 cases + 1M for eliker case correct? 1A a=4 for r.c. 9.141 (7)	Electrical mean poins of C_2 is $(\frac{1}{2},\frac{49}{4})$.	
2005-AS-M & S-6 21		2005-AS-M № S-7 22	

	Selution	Marks
8. (a)	$\frac{\mathbf{r}(t) - a(\mathbf{v}^{-\beta t})}{\mathbf{r}(t)} = a e^{-\beta t}$	
	$ \ln \frac{\mathbf{r}(t)}{t} \Rightarrow \ln \alpha - \beta t $	IA(E)
(ъ)	$v: In \alpha = 2.3$ $v: \alpha = 10 \text{ (correct to 4 significant figure)}$ Alon, we have $\beta = 0.5 \text{ (correct to 1 significant figure)}$.	IA IA
	$\frac{10e^{-0.5}}{dt} = 10e^{-0.5} \cdot 5te^{-0.5} + 10e^{-0.5}$ $= 40e^{-0.5} \cdot 5te^{-0.5}$	
	$ \begin{array}{ccc} & \begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & \\ & & & &$	1M (for ressing + 1A
		Traine mainly 110
:	Thus, the greatest rate of change is 7 ppm per bour. $\frac{dr(t)}{dt} = 0/(-0.5e^{-Ct}) + 10e^{-0.8t}$	IA
	$= 10e^{-0.3t} = 5te^{-0.3t}$ $= (10 - 5t)e^{-0.3t}$	1A
	$\frac{d^2r(t)}{dt^2} = -5e^{-0.5t} + (-5 + 2.5t)e^{-0.5t} = (2.5t - 10)e^{-0.5t}$ $\frac{dr(t)}{dt} = 0 \text{when } t = 2 \text{only and} \frac{d^2r(t)}{dt^2} = -5e^{-t} < 0$	1K4 for resuling + LA
	So, r(t) ottains its greatest value wher, t = 2. Hence, greatest value of c(t) is (LOX2) e ^{-0.4(2)} = 22.337868823 . Thus, the greatest rate of clienge is 7 ppm per hour.	:A
(c)	(i) $\frac{d}{dt}\left(t-\frac{t}{\beta}\right)e^{-tt}$	(4)
	$= \frac{d}{dr} \{ (r+2) e^{-\Phi J_2} \}$ $= e^{-\Phi J_2} - 0.5 (r+2) e^{-\Phi J_2}$ $= -0.5 r e^{-\Phi J_2}$	IM for product rule or challs rule IM occept = $\mathcal{H}e^{-\mathcal{H}}$
2005-AS-6	(&5-9 24	

Solution	Morks	Solution	Marks
The required serroum;	<u> </u>	9. (a) (b) Let $v = 2 + 3re^{-kn^2r}$. Then, we have	
= j r(r)dr		$\frac{dv}{dt} = 3e^{-162x} - \frac{3t}{5\pi}e^{-0.07t}$	LM for product rule or chain rule +
$= \int_{r}^{r} 10 n e^{-0.5t} dt$	IM	$dt = \frac{3}{2}(50 - t)e^{-tx}$	
$= \begin{bmatrix} -20(t+2) e^{-0.5t} \end{bmatrix}_0^T$	IM+IA	so var	
= (-20(e+2)e] ₀ = (40 - 20(7 + 2) e ^{-0.37}) ppni	IA IA	(6) When $t = 0$, $\frac{dN}{dt} = 100$. So, we have $100 = \frac{50 \text{ Å}}{2}$.	İ
Note that		Titus, we have $d=0$.	ı
[r(r)dr		$v = \int 4(50-t) dt$	
=- [18ve-9-5ids	'	$R = \int \frac{4(50 - t)}{2e^{0.0t} + 3t} dt$	<u> </u>
$= -20(r+2)e^{-95r} + C$	IM+ JA	$-\frac{200}{3}\int \frac{dv}{v}$	(M for using (a)(1)
Let A(d) ppnt be the amount of sont reduced when the period addhive		$=\frac{300}{3}\ln v \cdot C$	
has been used for t hours. Then, we have $A(t) = -20(t+2)e^{-2St} + C$.	t Ma	$= \frac{200}{3} \ln(2 + 3te^{-0.02x}) + C$	IA
Since $\Lambda(0)=0$, we have $C=40$.	1.51	Note that when $r = 0$, $N = 10$. So, we have $C = 10 - \frac{240}{5} \ln 2$.	1M for finding C
So, we have $A(t) = (+0 - 20(t + 2) e^{-0.8t})$.		Thus, we have	The fact the first of the
Note that A(0) = 0.		$M = \frac{200}{3} \ln(2 + 3ze^{-0.02z}) + 10 - \frac{200}{3} \ln 2$	IA
Thus, the required amount = $A(T) = (40 - 20(T + 2)e^{-0.5T})$ spm.	iA	$= \frac{200}{3} \ln (1 + \frac{3te^{-50tr}}{2}) + 10$	
Note that		3 2	(?)
=		(b) $\frac{dN}{dr} = \frac{4(50-r)}{2e^{3(5)} + 3r}$	
$= -20(r+2)e^{-0.5r} + t^*$	IM+IA	(>0 if 0≤1<50	1
Let A(t) ppm be the amount of scot reduced when the peace' additive that been used for it hours.	ļ	{ > 0 if 0 ≤ x < 50 = 0 if x = 50 < 0 if x > 50	1.74 for testing + A
Then, we have $A(t) = -20(t+2)e^{-0.5t} = C$.	IM	So, M attains its grounds value when it = 50 .	'
The required amount		Note that $W(30) = \frac{200}{3} \ln(1 + \frac{150}{3} e^{-1}) + 10 \approx 233.5393678 < 500$.	1M for comparing A(St) and 500
$ = A(T) - A(0) $ $ = \left[-20(T+2)e^{-0.5T} + C \right] - \left(-40 + C \right) $		Thus, the claim is not exercen.	FAIL
$= (40 - 20(7 + 2)e^{-0.34})$ gpm	IA		
-			1
(II) The required amount $= \lim_{T\to\infty} \left(40 - 20(T + 2) e^{-0.9T}\right)$			
= um (40 - 245) 1 2) 5 ···) = 40 - 26 fim 75 ·• 57 - 40 lim 5 · 0 57			
	111 for Pr 537 - 0 - 1 - 1 - 1 - 1		
= 40 ppm	TM for Ear e * 17 = 0 and can be also thed [A	•	
	······(E)		

Solution	Marks
$\frac{dN}{dr} = \frac{4(30-r)}{2e^{3r^2r} + 3r}$	
$\frac{d^2N}{dt^2} = 4 \left[\frac{(2e^{0.02t} + 3t)(-1) - (80 - t)(\frac{2}{50}e^{0.02t} + 3)}{(2e^{0.02t} + 3t)^2} \right]$	
$= \frac{4}{25} \left(\frac{16^{0.034} - 100e^{0.027} - 3750}{(2e^{0.034} + 37)^2} \right)$	
$\frac{dA'}{dt} = 0 \text{when } t = 50 \text{ . Also, when } t = 50 \text{ .}$	1
$\frac{d^2N}{dr^2} = \frac{4}{25} \left(\frac{10s - 100r - 3730}{(2v + 150)^2} \right)$	
-2 	
<0	IM for resting + 1A
So, N uttains its greatest value when $r = 30$.	
Note that $N(50) = \frac{200}{3} \ln(1 + \frac{150}{2}e^{-t}) + 10 = 233:5193678 < 500$.	IM for comparing N(10) and 500
Thus, the claim is not correct,	TA £L
(e) (i) $\frac{d^2N}{dr^2} = \frac{d}{dr} \left(\frac{4(30-t)}{2g^{0.021} + 3t} \right)$	
$= 4 \left(\frac{(2e^{0.02r} + 3t)(-1) - (50 - r)(\frac{2}{30}e^{0.02r} + 3)}{(2e^{0.02r} + 3t)^{\frac{1}{2}}} \right)$	
$=\frac{4}{25}\left(\frac{16^{16.73}-1006^{0.027}-3750}{(29^{0.237}+37)^2}\right)$	$1A \ (\text{ secces} \ \frac{k}{25} \left(\frac{4e^{3924} - 100e^{6434} - 1720}{(2e^{3924} + 3r)^2} \right) \)$
$=\frac{4}{25}\left(\frac{(\epsilon-100)e^{2\pi i\tau}-3750}{(2e^{2\pi it}+3\epsilon)^2}\right)$	
(ii) Note that $\frac{d^2N}{dt^2} = \frac{4}{25} \left[\frac{(t - 100)e^{0.00t} - 3750}{(2e^{0.01t} + 30)^2} \right]$ (by (c)(i)).	
Hence, we have $\frac{d^2N}{dt^2} < 0$ for $59 \le r \le 92$.	TiM for considering the sign of tweeton
So, eth decreases during the 3rd month after the start of the plan.	tA fit eld
Also note that $\frac{dN}{dt} = \frac{4(50-t)}{2e^{0.0(t)} + 3t} < 0$ for $59 \le t \le 92$.	
Therefore, N decreases during the 3rd month after the start of the plan.	IA f.t (4)
	I

	Solution	Marks
	The required probability $= \frac{62^{6}e^{-62}}{0!} + \frac{62^{1}e^{-62}}{1!} + \frac{62^{1}e^{-62}}{2!} + \frac{62^{1}e^{-62}}{3!} + \frac{62^{1}e^{-62}}{4!}$ FOR SERVING	JM for the 3 cases + IM for the less a protability
	□ 0.2592	IA a-I for t.t. 0.259
(ы)	 (i) Let X litres be the amount of the petrol for refuelling a cer. Then, X = N(23.2, 6²). The required probability of (X ≥ 25). 	
		$1M \left(\text{accept } P(Z > \frac{25 - 23.2}{6}) \right)$
	= 0.3821	IA n≃l form. 0.382
1	(ii) The required probability = $C_2^4(0.3821)^2(1+0.3821)^6(0.3821)$	1M for $C_2^2 p^2 (1-p)^4 p$ + 1M for $p = (b(0) - \cdots - $
	₩ <u>10718</u> 4935732 ₩ 0.0869	IA a 1 Foret, 0.087
•	(iii) The required probability $= \frac{6.2^{3}e^{-6.2}}{2} (0.1921)^{3}$ $= \frac{3.28 \times 3.28 \times 3.22}{2} (0.1921)^{3}$	i M for $\frac{6.2^3 e^{-6.2}}{3!} \rho^3$ either or
	#0;004@70%9°27€ ≈ 0.0043	14 p-1 forza 0.004
((h) The required probability • C\$(0.3821)³(1 − 0.3821) ∈ (0.3821)³ • (0.3821)³ • (0.3821)³ • (0.3821)³	IM for $C_1^4 p^3 (1-p) + p^4 \dots$
(VI The required probability	171 4-1 101 12.0.137
	$0.004497054 \pm 0.159198667 \left(\frac{6.2^4 e^{-0.2}}{4!} \right)$	3 M for numerator using (b)(III) and (b) + 1M for denominator using (s)
	20.054 ∞ 0.054	1A a-1 forts. 0.094 ———(12)
B-AS-MA	& S=13 28	ı

	Solution	Marks
. Let	$oldsymbol{X}$ minutes be the lane receded for Peter to go to the train station platform	
The	$1. X - N(17.5, 2^2)$.	
(p)	The required probability = $P(13 < \lambda' \le 19)$	
	$= P(\frac{13 \cdot 17.5}{2} < 2 \le \frac{19 - 17.5}{2})$	IM (accept $T(\frac{11-175}{2} \le 2 < \frac{19-175}{1}))$
	- P(-2.25 < Z ≤ 0.75)	1
	- 0.4878 ± 0.2734 - 0.7612	1A n=1 for r.t. 0.761 ————————————————————————————————————
(b)	The required probability = $(0.02)(0.0122) + (0.15)(0.2612) + (0.35)(0.2144) + (1 (0.0122)$	1M for $(0.02)p_1 + (0.15)p_2 + (0.35)p_3$ + 1M for $(1)(1-p_1-p_1-p_1)$
	= 0.20166·I	1A
	= 0.2017	2 ← 1 For c.1, 0.202 ———————————————————————————————————
(c)	The required probability	!
	(0.15)(0.7612)	1M (hr (0.15Ha) (b)
	D.2D1664	[6]
	<u>₽ 0.5662</u> 0.5662	IA (pocept 0.5661) a-1 for f.t. 0.556
	# U.7002	(2)
(d)	The required probability	1
(4)	$= C_3^4 (0.201664)^4 (1 - 0.201664)^4$	1M for C} (6)2(1 - (6))2
	£(0.208923943	The less of flow (a)
	n 0.2069	1A (accept 0.2070) a=1 for vs. 0.207 ————————————————————————————————————
(e)	The required probability	
\-2	$C_2^2\{(0.15)(0.7612)\}^2\{(0.0122)(1-0.02)+(0.2144)(1-0.35)\}^6$ 0.206925443	$IM \Re r \frac{C_1^2 p^2 q^2}{(d)} + tA$
	#0,002 (8383)	
	= 0.0022	1A, a=E for ca. 0.002
	The required probability	
	$= \sqrt{(0.566189305)^2} \left(\frac{(0.0122)(1-0.02)+(0.2144)(1-0.35)}{1-0.291664} \right)^3$	IM for (c) ² t ³ + 1A
	70.77.73	1
	<u>⇒ 0.0022</u>	1A a=1 @rat 0.002
	a Bosselsons have a silver before 840 and	""
(1)	Suppose Peter leaves home it infinites before 7:00 a.m. Then, we have $P(X \le 13 + t) \ge 0.95$.	IM withhold IM for agreely or strict (our valid)
	So, we have $P(Z \le \frac{13+t-17.5}{2}) \ge 0.95$.	
	Therefore, we have $\frac{t-4.5}{2} \ge 1.645$.	IA (accept $\frac{t-4.5}{2} \ge z$, $1.64 \le z \le 1.65$)
	Hence, we have 127.79.	l
	Thus, the respond time is 6:52 a.m.	1A(3)
05-AS-2	M & S=14 79	

	Solution	Marks
12. (a)	Also let A be the sample mean of the number of computers sold in a day. $A = \frac{(0 \times 6) + (1 \times 10) + (2)(6) + (3)(2) + (4 \times 1)}{25} + (2 \times 1) + (2 \times 1)$	1A.
	For the Poisson distribution, $\alpha = (25) P(X = 1)$	
	$= (25)\left(\frac{1.28^{1}}{1!}\right)e^{-1.24}$	IM
	क्ष व:क्र97199 क्रॉर्स = a 90	IA p-1 for (1, 8.9
	For the binomial distribution, $8p = 1.28$	-
	p = 0.16 b = (25) P(X = 3)	rM
	= (25)C] ¹ (0.16) ² (0.34) ³ ¥2.391(93962	1M
	= 2 40	IA a-1 for r.z. 2.4
463	For the number of computers sold is 5 or more, the expected number of days by the Poisson distribution is $25 - (6.95 - 8.90 + 9.69 + 2.40 + 0.78) = 0.25$	tM
	Let SR ₁ be the sum of errors for model fitted by the Poisson distribution. So, SE ₁ $\Rightarrow [6-6.95] + [10-8.90] + [6-5.69] + [2-2.43] + [1-0.78] + [0-0.25]$	1M + 1M (FM for the first 5 terms
	±1.26	1M for the last turn;)
	For the number of computers sold is 5 or more, the expected number of days by the binomial distribution is $25 - (6.20 + 9.44 + 6.30 + 2.43 + 0.57) \pm 0.09$	
	Let SE, be the sum of errors for model filted by the binomial distribution. So, SE, $ = [6+6.20] + [10-9.44] + [6-6.30] + [2-2.40] + [1-0.57] + [0-0.00] $	eilber one
	$=1.98$ Singer $SE_2 < SE_1$, the binomial distribution like the data better,	1M (5)
(c)	(i) Let SY be the price of a computer. Then, $Y \sim N(9.580,800^2)$. The required probability $= P(Y > 8.500)$	
	-P(Z > \$500-7580)	IM (accept $P(Z \ge \frac{8500 \cdot 7580}{800})$)
	= P(Z>1.15) = 0.125)	IA a~l formut.i25
2003-AS-1	&&.S-15 30 °	

	Salation	Marks
ii) The regulace		
= (¢3(0.16)3(1	$-0.16)^{5}$ $\left\{C_{1}^{2}(0.1251)^{4}(1-0.1251)^{2}\right\}$	IM
n 0.0276	Į.	IA n=1 f0c r.t. 0.938
The required 259819456	probability (C ² (0.1251) ³ (1 = 0.1251) ²)	IM
÷ 0.0276	<u> </u>	1A w-1 for rJ. 0.028

考生表现

甲舞(必答題)

MU	一般表現	
1	良好, 部分考生未编版用容許, 尚有理數的更一般的公式,而只考虑,其正整 数的公式。	
2	平平。 部分考生仍希提油了定债分板不足债分。	
3	良好。 部分书生米格理相选式法明。	
4	都學。 超多考电描描模計算報話量,何他們來能顯示兩向齊錢的概念:据他們 對位,則可當部很多運算。	
ŝ	臭好。 部分者並提出了「互斥事件」的定義與「獨立事件」的定義。	
6	邳平 - 加分增生仍未熟落数出有關事件的數目及分辨有關事件是否獨立 -	

乙醇(6 組建符 4 組)

亞妹	遊戲百分中	一般表现
7(a)	B!	器佳•
(b)		良好。 部分的生未能验當物利用方程表示高近線。
(c)		至平。 那分考生沒有你明實際的交點。
(4)		平平。 很多考生龄基用积分运求而被特 碧劍鐵難。
8(=)	37	英 体・
(б)		真好· 部分考生未格證明該登點購擾火點。
(e) (i)		平平。 考生於酮部分與税理机,但後部分表现卻不符理机。 只有 部分考生能求得所減少的風煙排放總量。
(8)		禁約。由於宋能解 (c)(i) 部、故此惟多考生未能完成本稿。