Hacer los impares y 14.4-42.

Sección 14.3

53-58 Determine las segundas derivadas parciales.

53.
$$f(x, y) = x^3y^5 + 2x^4y$$

54.
$$f(x, y) = \text{sen}^2(mx + ny)$$

55.
$$w = \sqrt{u^2 + v^2}$$

$$56. \ \ v = \frac{xy}{x - y}$$

$$57. \ z = \arctan \frac{x+y}{1-xy}$$

$$58. \ v = e^{xe^y}$$

59-62 Compruebe que la conclusión del teorema de Clairaut se cumple, es decir, $u_{xy} = u_{yx}$.

59.
$$u = x^4 y^3 - y^4$$

60.
$$u = e^{xy} \operatorname{sen} y$$

61.
$$u = \cos(x^2y)$$

62.
$$u = \ln(x + 2y)$$

63-70 Encuentre la derivada parcial indicada.

63.
$$f(x, y) = x^4y^2 - x^3y$$
; f_{xxx} , f_{xyx}

64.
$$f(x, y) = \text{sen}(2x + 5y)$$
; f_{yxy}

65.
$$f(x, y, z) = e^{xyz^2}$$
; f_{xyz}

66.
$$g(r, s, t) = e^r \text{sen}(st); g_{rst}$$

67.
$$u = e^{r\theta} \operatorname{sen} \theta$$
; $\frac{\partial^3 u}{\partial r^2 \partial \theta}$

68.
$$z = u\sqrt{v - w}$$
; $\frac{\partial^3 z}{\partial u \partial v \partial w}$

69.
$$w = \frac{x}{y + 2z}$$
; $\frac{\partial^3 w}{\partial z \, \partial y \, \partial x}$, $\frac{\partial^3 w}{\partial x^2 \, \partial y}$

14.4 Ejercicios

1-6 Determine una ecuación del plano tangente a la superficie dada en el punto específico.

1.
$$z = 3y^2 - 2x^2 + x$$
, $(2, -1, -3)$

2.
$$z = 3(x-1)^2 + 2(y+3)^2 + 7$$
, $(2, -2, 12)$

3.
$$z = \sqrt{xy}$$
, $(1, 1, 1)$

4.
$$z = xe^{xy}$$
, $(2, 0, 2)$

5.
$$z = x \operatorname{sen}(x + y)$$
, $(-1, 1, 0)$

81. Verifique que la función $z = \ln(e^x + e^y)$ es una solución de las ecuaciones diferenciales

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1$$

y

$$\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} - \left(\frac{\partial^2 z}{\partial x \partial y} \right)^2 = 0$$

91. La energía cinética de un cuerpo cuya masa m y velocidad v es $K = \frac{1}{2}mv^2$. Demuestre que

$$\frac{\partial K}{\partial m} \frac{\partial^2 K}{\partial v^2} = K$$

93. Le dicen que hay una función f cuyas derivadas parciales son $f_x(x, y) = x + 4y$ y $f_y(x, y) = 3x - y$. ¿Debe creerlo?

42. Suponga que necesitamos conocer una ecuación del plano tangente a la superficie S en el punto P(2, 1, 3). No tenemos una ecuación para S pero sabemos que las curvas

$$\mathbf{r}_1(t) = \langle 2 + 3t, 1 - t^2, 3 - 4t + t^2 \rangle$$

$$\mathbf{r}_2(u) = \langle 1 + u^2, 2u^3 - 1, 2u + 1 \rangle$$

se encuentran ambas en S. Encuentre una ecuación del plano tangente en P.

1-6 Aplique la regla de la cadena para hallar dz/dt o dw/dt.

1.
$$z = x^2 + y^2 + xy$$
, $x = \text{sen } t$, $y = e^t$

2.
$$z = \cos(x + 4y)$$
, $x = 5t^4$, $y = 1/t$

3.
$$z = \sqrt{1 + x^2 + y^2}$$
, $x = \ln t$, $y = \cos t$

4.
$$z = \tan^{-1}(y/x)$$
, $x = e^{t}$, $y = 1 - e^{-t}$

5.
$$w = xe^{y/z}$$
, $x = t^2$, $y = 1 - t$, $z = 1 + 2t$

6.
$$w = \ln \sqrt{x^2 + y^2 + z^2}$$
, $x = \sin t$, $y = \cos t$, $z = \tan t$

7-12 Mediante la regla de la cadena encuentre $\partial z/\partial s$ y $\partial z/\partial t$.

7.
$$z = x^2y^3$$
, $x = s\cos t$, $y = s\sin t$

8.
$$z = \arcsin(x - y)$$
, $x = s^2 + t^2$, $y = 1 - 2st$

9.
$$z = \sin \theta \cos \phi$$
, $\theta = st^2$, $\phi = s^2t$

10.
$$z = e^{x+2y}$$
, $x = s/t$, $y = t/s$

11.
$$z = e^r \cos \theta$$
, $r = st$, $\theta = \sqrt{s^2 + t^2}$

12.
$$z = \tan(u/v)$$
, $u = 2s + 3t$, $v = 3s - 2t$

21-26 Use la regla de la cadena para calcular las derivadas parciales que se indican.

21.
$$z = x^4 + x^2y$$
, $x = s + 2t - u$, $y = stu^2$;
 $\frac{\partial z}{\partial s}$, $\frac{\partial z}{\partial t}$, $\frac{\partial z}{\partial u}$ donde $s = 4$, $t = 2$, $u = 1$

14.6

4-6 Determine la derivada direccional de f en el punto dado en la dirección que indica el ángulo θ .

4.
$$f(x, y) = x^3y^4 + x^4y^3$$
, (1, 1), $\theta = \pi/6$

5.
$$f(x, y) = ye^{-x}$$
, $(0, 4)$, $\theta = 2\pi/3$

6.
$$f(x, y) = e^x \cos y$$
, $(0, 0)$, $\theta = \pi/4$

7-10

- a) Determine el gradiente de f.
- b) Evalúe el gradiente en el punto P.
- c) Encuentre la razón de cambio de f en P en la dirección del vector u.

7.
$$f(x, y) = \text{sen}(2x + 3y)$$
, $P(-6, 4)$, $u = \frac{1}{2}(\sqrt{3}i - j)$

8.
$$f(x, y) = y^2/x$$
, $P(1, 2)$, $u = \frac{1}{2}(2i + \sqrt{5}i)$

9.
$$f(x, y, z) = x^2yz - xyz^3$$
, $P(2, -1, 1)$, $\mathbf{u} = \left(0, \frac{4}{5}, -\frac{3}{5}\right)$

13. Si z = f(x, y), donde f es derivable,

$$x = g(t)$$
 $y = h(t)$
 $g(3) = 2$ $h(3) = 7$
 $g'(3) = 5$ $h'(3) = -4$
 $f_x(2,7) = 6$ $f_y(2,7) = -8$

determine dz/dt cuando t=3.

14. Sea W(s, t) = F(u(s, t), v(s, t)), donde F, u y v son derivables,

$$u(1,0) = 2$$
 $v(1,0) = 3$
 $u_t(1,0) = -2$ $v_t(1,0) = 5$
 $u_t(1,0) = 6$ $v_t(1,0) = 4$
 $F_u(2,3) = -1$ $F_v(2,3) = 10$

Determine $W_s(1,0)$ y $W_t(1,0)$.

15. Suponga que f es una función derivable de x y y, y que g(u, v) = f(e^u + sen v, e^u + cos v). Mediante la tabla de valores calcule g_u(0, 0) y g_v(0, 0).

	f	g	f_x	fy
(0, 0)	3	6	4	8
(1, 2)	6	3	2	5

16. Suponga que f es una función derivable de x y y, y que $g(r, s) = f(2r - s, s^2 - 4r)$. Mediante la tabla de valores del ejercicio 15 calcule $q_r(1, 2)$ y $q_s(1, 2)$.

23.
$$w = xy + yz + zx$$
, $x = r\cos\theta$, $y = r\sin\theta$, $z = r\theta$; $\frac{\partial w}{\partial r}$, $\frac{\partial w}{\partial \theta}$ donde $r = 2$, $\theta = \pi/2$

24.
$$P = \sqrt{u^2 + v^2 + w^2}$$
, $u = xe^y$, $v = ye^x$, $w = e^{xy}$; $\frac{\partial P}{\partial x}$, $\frac{\partial P}{\partial y}$ donde $x = 0$, $y = 2$

25.
$$N = \frac{p+q}{p+r}$$
, $p = u + vw$, $q = v + uw$, $r = w + uv$; $\frac{\partial N}{\partial u}$, $\frac{\partial N}{\partial v}$, $\frac{\partial N}{\partial w}$ donde $u = 2$, $v = 3$, $w = 4$

11-17 Calcule la derivada direccional de la función en el punto dado en la dirección del vector v.

11.
$$f(x, y) = e^x \operatorname{sen} y$$
, $(0, \pi/3)$, $\mathbf{v} = \langle -6, 8 \rangle$

12.
$$f(x, y) = \frac{x}{x^2 + y^2}$$
, $(1, 2)$, $\mathbf{v} = \langle 3, 5 \rangle$

13.
$$q(p,q) = p^4 - p^2 q^3$$
, (2, 1), $\mathbf{v} = \mathbf{i} + 3\mathbf{j}$

14.
$$g(r, s) = \tan^{-1}(rs)$$
, $(1, 2)$, $v = 5i + 10j$

15.
$$f(x, y, z) = xe^y + ye^z + ze^x$$
, $(0, 0, 0)$, $v = \langle 5, 1, -2 \rangle$

16.
$$f(x, y, z) = \sqrt{xyz}$$
, (3, 2, 6), $\mathbf{v} = \langle -1, -2, 2 \rangle$

17.
$$h(r, s, t) = \ln(3r + 6s + 9t)$$
, $(1, 1, 1)$, $v = 4i + 12j + 6k$

Respuestas:

14.3

53.
$$f_{xx} = 6xy^5 + 24x^2y$$
, $f_{xy} = 15x^2y^4 + 8x^3 = f_{yx}$, $f_{yy} = 20x^3y^3$

55.
$$w_{uu} = v^2/(u^2 + v^2)^{3/2}$$
, $w_{uv} = -uv/(u^2 + v^2)^{3/2} = w_{vu}$

$$w_{vv} = u^2/(u^2 + v^2)^{3/2}$$

57.
$$z_{xx} = -2x/(1+x^2)^2$$
, $z_{xy} = 0 = z_{yx}$, $z_{yy} = -2y/(1+y^2)^2$

63.
$$24xy^2 - 6y$$
, $24x^2y - 6x$ **65.** $(2x^2y^2z^5 + 6xyz^3 + 2z)e^{xyz^2}$

65
$$(2r^2v^2z^5 + 6rvz^3 + 2z)e^z$$

67.
$$\theta e^{r\theta}(2 \operatorname{sen} \theta + \theta \cos \theta + r\theta \operatorname{sen} \theta)$$
 69. $4/(y + 2z)^3$, 0

69.
$$4/(y+2z)^3$$
, 0

93. No.

Sección 14.4

1.
$$z = -7x - 6y + 5$$
 3. $x + y - 2z = 0$

3.
$$x + y - 2z = 0$$

5.
$$x + y + z = 0$$

Sección 14.5

1.
$$(2x + y) \cos t + (2y + x)e^t$$

3.
$$[(x/t) - y \operatorname{sen} t] / \sqrt{1 + x^2 + y^2}$$

5.
$$e^{y/z}[2t - (x/z) - (2xy/z^2)]$$

7.
$$\partial z/\partial s = 2xy^3\cos t + 3x^2y^2\sin t$$
,

$$\partial z/\partial t = -2sxy^3 \operatorname{sen} t + 3sx^2y^2 \cos t$$

9.
$$\partial z/\partial s = t^2 \cos \theta \cos \phi - 2st \sin \theta \sin \phi$$
,

$$\partial z/\partial t = 2st \cos\theta \cos\phi - s^2 \sin\theta \sin\phi$$

11.
$$\frac{\partial z}{\partial s} = e^{r} \left(t \cos \theta - \frac{s}{\sqrt{s^2 + t^2}} \sin \theta \right)$$

$$\frac{\partial z}{\partial t} = e^r \left(s \cos \theta - \frac{t}{\sqrt{s^2 + t^2}} \sin \theta \right)$$

21. 1582, 3164,
$$-700$$
 23. 2π , -2π

23
$$2\pi - 2\pi$$

25.
$$\frac{5}{144}$$
, $-\frac{5}{96}$, $\frac{5}{144}$

25.
$$\frac{5}{144}$$
, $-\frac{5}{96}$, $\frac{5}{144}$ **27.** $\frac{2x + y \sin x}{\cos x - 2y}$

Sección 14.6

1.
$$\approx -0.08 \text{ mb/km}$$
 3. ≈ 0.778 **5.** $2 + \sqrt{3}/2$

7. a)
$$\nabla f(x, y) = \langle 2\cos(2x + 3y), 3\cos(2x + 3y) \rangle$$

b)
$$(2,3)$$
 c) $\sqrt{3} - \frac{3}{2}$

9. a)
$$\langle 2xyz - yz^3, x^2z - xz^3, x^2y - 3xyz^2 \rangle$$

b)
$$\langle -3, 2, 2 \rangle$$
 c) $\frac{2}{5}$

11.
$$\frac{4-3\sqrt{3}}{10}$$

11.
$$\frac{4-3\sqrt{3}}{10}$$
 13. $-8/\sqrt{10}$ 15. $4/\sqrt{30}$

17.
$$\frac{23}{42}$$
 19. 2/5 **21.** $\sqrt{65}$, $\langle 1, 8 \rangle$