Department of Mathematical Science, KAIST

Neural Topic Modeling with Continual Lifelong Learning

Jinhwan Suk

October 27, 2020

Topic Modeling

Introduction: LDA, 2003

- Probabilistic topic models are used to extract topics from text collections.
- Information retrieval, document classification, or summarization.

Topic Modeling

Introduction: LDA, 2003

Figure 1: Graphical model for structural topic modelling

Restricted Boltzmann Machines (RBMs) Binary RBMs

The most common form of RBM has binary hidden nodes and binary visible nodes. The joint distribution has following form:

$$p(\mathbf{v}, \mathbf{h} \mid \theta) = \frac{1}{Z(\theta)} \exp(-E(\mathbf{v}, \mathbf{h}; \theta))$$

$$E(\mathbf{v}, \mathbf{h}) = -\mathbf{h}^T \mathbf{W} \mathbf{v} - \mathbf{b}^T \mathbf{v} - \mathbf{c}^T \mathbf{h} \triangleq -\mathbf{h}^T \mathbf{W} \mathbf{v}$$

$$Z(\theta) = \sum_{\mathbf{v}, \mathbf{h}} \exp(-E(\mathbf{v}, \mathbf{h}; \theta))$$

 $\theta = (W, b, c)$ are all the parameters. It is common to use **stochastic gradient descent**, since RBMs often have many parameters.

$$\hat{\theta} = \operatorname{argmax} p(\mathbf{v}; \theta) = \frac{1}{Z(\theta)} \sum_{\mathbf{h}} \exp(-E(\mathbf{v}, \mathbf{h}; \theta))$$

Restricted Boltzmann Machines (RBMs)

Binary RBMs: Learning

$$F(\mathbf{v}) := -\log \tilde{p}(\mathbf{v})$$

$$\tilde{p}(\mathbf{v}) = \sum_{\mathbf{h}} \exp(-E(\mathbf{v}, \mathbf{h}; \boldsymbol{\theta})) = \sum_{\mathbf{h}} \exp\left(\sum_{i=1}^{D} \sum_{j=1}^{K} W_{ij} v_{i} h_{j}\right)$$

$$= \sum_{\mathbf{h}} \prod_{j=1}^{K} \exp\left(\sum_{i=1}^{D} W_{ij} v_{i} h_{j}\right) = \prod_{j=1}^{K} \sum_{h_{j} \in \{0,1\}} \exp\left(\sum_{i=1}^{D} W_{ij} v_{i} h_{j}\right)$$

$$= \prod_{j=1}^{K} \left(1 + \exp\left(\sum_{i=1}^{D} W_{ij} v_{i}\right)\right)$$

$$\ell(\boldsymbol{\theta}) = \frac{1}{D} \sum_{i=1}^{D} \log p(v_{i}; \boldsymbol{\theta}) = -\frac{1}{D} \sum_{i=1}^{D} F(v_{i}; \boldsymbol{\theta}) - \log Z(\boldsymbol{\theta})$$

Restricted Boltzmann Machines (RBMs)

Binary RBMs: Learning

Since

$$\frac{\partial}{\partial w_{ij}}F(\mathbf{v}) = -\mathbb{E}\left[v_i h_j \mid \mathbf{v}, \boldsymbol{\theta}\right]$$

Hence

$$\frac{\partial}{\partial w_{ij}} \ell(\boldsymbol{\theta}) = \frac{1}{D} \sum_{i=1}^{D} \mathbb{E} \left[v_i h_j \mid \boldsymbol{v}, \boldsymbol{\theta} \right] - \mathbb{E} \left[v_i h_j \mid \boldsymbol{\theta} \right]$$
 (1)

The conditional expectation $\mathbb{E}[\boldsymbol{h}|\boldsymbol{v};\boldsymbol{\theta}]$ is $\operatorname{sigm}(\boldsymbol{W}^T\boldsymbol{v})$. Approximating $\mathbb{E}[v_ih_j\mid\boldsymbol{\theta}]$..?

- ightarrow Gibbs Sampling, Contrastive divergence (CD), Persistent CD
- \rightarrow The complexity of RSM is $\mathcal{O}(V)$

Salakhutdinov and Hinton, 2009

RSM is the extension of the binary RBM to categorical variable.

$$E(\mathbf{v}, \mathbf{h}) = -\sum_{i=1}^{D} \sum_{j=1}^{H} \sum_{k=1}^{V} W_{ij}^{k} v_{i}^{k} h_{j} - \sum_{i=1}^{D} \sum_{k=1}^{V} v_{i}^{k} b_{i}^{k} - \sum_{j=1}^{H} h_{j} a_{j}$$
(2)

The conditional distributions are given by

$$p(v_i^k = 1 \mid \boldsymbol{h}) = \frac{\exp(b_i^k + \sum_{j=1}^F h_j W_{ij}^k)}{\sum_{q=1}^K \exp(b_i^q + \sum_{j=1}^F h_j W_{ij}^q)}$$
$$p(h_j = 1 \mid \boldsymbol{v}) = \sigma\left(a_j + \sum_{i=1}^D \sum_{k=1}^K v_i^k W_{ij}^k\right)$$

Assuming we can ignore the order of the words, $\forall i, b = b_i, W_i^k = W_{ii}^k$

Salakhutdinov and Hinton, 2009

- Document length is not matter.
- Instead of representing documents as distributions over topics, relies on a **distributed representation** of the documents. (e.g.) (0.5, 0.3, 0.3)
- Evaluation metric : Perplexity score (PPL)

$$PPL = p(\mathbf{v})^{-\frac{1}{D}}$$

Computed using "Annealed Importance Sampling"

Salakhutdinov and Hinton, 2009

Salakhutdinov and Hinton, 2009

IDA vs RSM

Comparision

- Interpretability : LDA > RSM
- Complexity : LDA $< RSM(\mathcal{O}(VH + DH))$
- Predictability : LDA < RSM

H. Larochelle and S. Lauly, 2012

• **NADE** is a generative model over binary observations $\{0,1\}^D$

$$p(\mathbf{v}) = \prod_{i=1}^{D} p(v_i \mid \mathbf{v}_{< i}), \quad p(v_i = 1 \mid \mathbf{v}_{< i}) = \sigma(b_i + \mathbf{V}_{i,:} \mathbf{h}_i), \quad \mathbf{h}_i = \sigma(\mathbf{c} + \mathbf{W}_{:,< i} \mathbf{v}_{< i})$$

- The parameters $\{b, c, W, V\}$ are learned by minimizing NLL with SGD.
- **DocNADE** is a model over V-observations $\{1, \ldots, V\}^D$.

$$p(v_i = w | \mathbf{v}_{< i}) = \underbrace{\frac{\exp(b_w + V_{w,:} \mathbf{h}_i)}{\sum_{w'} \exp(b_w + V_{w,:} \mathbf{h}_i)}}_{\mathcal{O}(V) \Rightarrow \text{ expensive}!!}, \quad \mathbf{h}_i = \sigma \left(\mathbf{c} + \sum_{k < i} \mathbf{W}_{:,v_k}\right)$$

H. Larochelle and S. Lauly, 2012

- NADE and DocNADE were directly inspired from the RBM.
- The distribution of an RBM could be written as

$$p(\mathbf{v}) = \prod_{i=1}^{D} p(v_i | \mathbf{v}_{< i}) = \prod_{i=1}^{D} \frac{p(v_i, \mathbf{v}_{< i})}{p(\mathbf{v}_{< i})} = \prod_{i=1}^{D} \frac{\sum_{\mathbf{v}_{> i}} \sum_{\mathbf{h}} \exp(-E(\mathbf{v}, \mathbf{h}))}{\sum_{\mathbf{v}_{\geq i}} \sum_{\mathbf{h}} \exp(-E(\mathbf{v}, \mathbf{h}))}$$

Since the conditionals are intractable, we first find an approximation

$$q(\mathbf{v}, \mathbf{h}|\mathbf{v}_{< i}) \approx p(\mathbf{v}, \mathbf{h}|\mathbf{v}_{< i})$$

with mean-field assumption:

$$q(\mathbf{v}_i, \mathbf{v}_{>i}, \mathbf{h} | \mathbf{v}_{ i} \mu_j(i)^{\mathbf{v}_j} (1 - \mu_j(i))^{1 - \mathbf{v}_j} \prod_k \tau_k(i)^{h_k} (1 - \tau_k(i))^{1 - h_k}$$

H. Larochelle and S. Lauly, 2012

Minimizing $\mathcal{D}_{KI}(q(\mathbf{v}, \mathbf{h}|\mathbf{v}_{< i})||p(\mathbf{v}, \mathbf{h}|\mathbf{v}_{< i}))$, we have

$$\tau_k(i) = \sigma \left(c_k + \sum_{j \ge i} W_{kj} \mu_j(i) + \sum_{j < i} W_{kj} \nu_j \right)$$
$$\mu_j(i) = \sigma \left(b_j + \sum_k W_{kj} \tau_k(i) \right), \quad \forall j \ge i$$

With initial $\mu_i(i)$, $j \ge i$ to be 0, iterate only once. We can rewrite as follows :

$$p(v_i = 1 | \mathbf{v}_{< i}) = \sigma \left(b_i + \left(W^{\top} \right)_{i,:} h_i \right), \quad h_i = \sigma \left(c + W_{\cdot, < i} \mathbf{v}_{< i} \right)$$

H. Larochelle and S. Lauly, 2012

$$p(v_i = w | \mathbf{v}_{< i}) = \underbrace{\prod_{m=1}^{|\boldsymbol{\pi}(v_i)|} p\left(\pi(v_i)_m | \mathbf{v}_{< i}\right)}_{\mathcal{O}(\log V)}, \quad p\left(\pi(v_i)_m = 1 | \mathbf{v}_{< i}\right) = \sigma\left(b_{l(v_i)_m} + \mathbf{V}_{l(v_i)_m,:} \mathbf{h}_i\right)$$

H. Larochelle and S. Lauly, 2012

Generative Model Evaluation

Data Set	LDA (50)	LDA (200)	Replicated Softmax (50)	DocNADE (50)	DocNADE St. Dev
20 Newsgroups	1091	1058	953	896	6.9
RCV1-v2	1437	1142	988	742	4.5

perplexity per word score :

$$PPW = \exp\left(-rac{1}{N}\sum_t rac{1}{|D^t|}\log p(D^t)
ight)$$

H. Larochelle and S. Lauly, 2012

Document Retrieval Evaluation

Hidden unit topics								
jesus	shuttle	season	encryption					
atheism	orbit	players	escrow					
christianity	lunar	nhl	pgp					
christ	spacecraft	league	crypto					
athos	nasa	braves	nsa					
atheists	space	playoffs	rutgers					
bible	launch	rangers	clipper					
christians	saturn	hockey	secure					
sin	billion	pitching	encrypted					
atheist	satellite	team	keys					

Table 2: The five nearest neighbors in the word representation space learned by DocNADE.

weapons	medical	companies	define	israel	book	windows
weapon	treatment	demand	defined	israeli	reading	dos
shooting	medecine	commercial	definition	israelis	read	microsoft
firearms	patients	agency	refer	arab	books	version
assault	process	company	make	palestinian	relevent	ms
armed	studies	credit	examples	arabs	collection	pc

Document Informed Neural Autoregressive Topic Models with Distributional Prior P. Gupta et al., AAAI, 2012

- In DocNADE, to predict the word v_i , each hidden layer h_i takes $\mathbf{v}_{< i}$ as the input.
- It doesn't take into account the following words v_{>i}
- They extended DocNADE to incorporate full contextual information

Document Informed Neural Autoregressive Topic Models with Distributional Prior P. Gupta et al., AAAI, 2012

- In DocNADE, to predict the word v_i , each hidden layer h_i takes $\mathbf{v}_{< i}$ as the input.
- It doesn't take into account the following words v_{>i}
- They extended DocNADE to incorporate full contextual information
- Only powerful for long texts and corpora with many documents.
- They incorporated pre-trained word embeddings, E.

Document Informed Neural Autoregressive Topic Models with Distributional Prior P. Gupta et al., AAAI, 2012

$$h_i^{\ell \to r} = \sigma \left(c^{\ell \to r} + \sum_{k < i} W_{:,v_k} + \lambda \sum_{k < i} E_{:,v_k} \right)$$

$$h_i^{r \to \ell} = \sigma \left(c^{r \to \ell} + \sum_{k > i} W_{:,v_k} + \lambda \sum_{k > i} E_{:,v_k} \right)$$

$$\log p(\mathbf{v}) = \frac{1}{2} \sum_{i=1}^{D} \left[\log p(v_i | \mathbf{v}_{< i}) + \log p(v_i | \mathbf{v}_{> i}) \right]$$

- A stream of document collection $\mathbf{S} = \{\Omega^1, \Omega^2, \dots, \Omega^T, \Omega^{T+1}\}$
- Mining and retaining prior knowledge from streams of document collections.
- Three main challenges in continual topic modeling :
 - 1. Mining prior knowledge relevant for the future task T+1
 - 2. Learning with prior knowledge
 - 3. Minimizing catastrophic forgetting
- All prior knowledge in this article means the embedding matrix $W \in \mathbb{R}^{K \times H}$.
 - 1. $W_{j,:}$ encodes j-th topic, i.e., topic-embedding(Z).
 - 2. $W_{:,v_i}$ corresponds to embedding of the word v_i , i.e., word-embedding(E).

Figure 2. An illustration of the proposed Lifelong Neural Topic Modeling (LNTM) framework over s stream of document collections

P. Gupta et al., ICML 20'

Topic Regularization

$$\mathcal{L}(\Omega^{T+1}; \; \Theta^{T+1}) = \sum_{v \in \Omega^{T+1}} \mathcal{L}(v; \Theta^{T+1}) + \Delta_{TR}$$

$$\Delta_{TR} = \sum_{t=1}^{T} \lambda_{TR}^{t} \left(\underbrace{||Z^{t} - A^{t}Z^{T+1}||_{2}^{2}}_{\text{tonic imitation}} + \underbrace{||U^{t} - P^{t}U||_{2}^{2}}_{\text{decoder proximity}} \right)$$

It enables jointly mining, transferring and retaining prior topics.

P. Gupta et al., ICML 20'

 Inspired by Gupta et al., 2019, we introduce prior knowledge in form of pre-trained word embeddings,

$$h_i = \sigma \left(c + \sum_{k < i} W_{:,v_k} + \sum_{k < i} \sum_{t=1}^{T} \lambda_{Emb}^t E_{:,v_k}^t \right)$$

```
13: function compute-NLL (\mathbf{v}, \boldsymbol{\Theta}, LNTM = {})
14:
            Initialize \mathbf{a} \leftarrow \mathbf{c} and p(\mathbf{v}) \leftarrow 1
15:
            for word i \in [1, ..., N] do
                 \mathbf{h}_i(\mathbf{v}_{< i}) \leftarrow g(\mathbf{a}), where g = \{\text{sigmoid, tanh}\}\
16:
                p(v_i = w | \mathbf{v}_{\leq i}) \leftarrow \frac{\exp(b_w + \mathbf{U}_{w,:} \mathbf{h}_i(\mathbf{v}_{\leq i}))}{\sum_{w \in \exp(b_w, +\mathbf{U}_{w,:} \mathbf{h}_i(\mathbf{v}_{\leq i}))}}
17:
                 p(\mathbf{v}) \leftarrow p(\mathbf{v})p(v_i|\mathbf{v}_{< i})
18:
                 Compute pre-activation at i^{th} step: \mathbf{a} \leftarrow \mathbf{a} + \mathbf{W}_{:,v_i}
19:
                 if EmbTF in LNTM then
20:
21:
                      Get word-embedding vectors for v_i from WordPool:
                     \mathbf{a} \leftarrow \mathbf{a} + \sum_{t=1}^{T} \lambda_{EmbTF}^{t} \mathbf{W}_{:,v_{t}}^{t}
22:
23:
                 end if
24:
            end for
25:
            return -\log p(\mathbf{v}; \boldsymbol{\Theta})
26: end function
```

```
input Past learning: \{\Theta^1, ..., \Theta^T\}
input TopicPool: \{\mathbf{Z}^1,...,\mathbf{Z}^T\}
input WordPool: \{\mathbf{E}^1, ..., \mathbf{E}^T\}
parameters \Theta^{T+1} = \{\mathbf{b}, \mathbf{c}, \mathbf{W}, \mathbf{U}, \mathbf{A}^1, ..., \mathbf{A}^T, \mathbf{P}^1, ..., \mathbf{P}^T\}
hyper-parameters \Phi^{T+1} = \{H, \lambda_{LNTM}^1, \dots, \lambda_{LNTM}^T\}
 1: Neural Topic Modeling:
 2: LNTM = {}
 3: Train a topic model and get PPL on test set \Omega_{test}^{T+1}:
 4: PPL^{T+1}, \boldsymbol{\Theta}^{T+1} \leftarrow topic-learning(\Omega^{T+1}, \boldsymbol{\Theta}^{T+1})
 5: Lifelong Neural Topic Modeling (LNTM) framework:
 6: LNTM = {EmbTF, TR, SAL}

 For a document v ∈ Ω<sup>T+1</sup>:

 8: Compute loss (negative log-likelihood):
          \mathcal{L}(\mathbf{v}|\mathbf{\Theta}^{T+1}) \leftarrow \text{compute-NLL}(\mathbf{v},\mathbf{\Theta}^{T+1},\text{INTM})
10: if TR in INTM then
11: Jointly minimize-forgetting and learn with TopicPool:
12: \Delta_{TR} \leftarrow \sum_{t=1}^{T} \lambda_{TR}^{t} (||\mathbf{Z}^{t} - \mathbf{A}^{t}\mathbf{Z}^{T+1}||_{2}^{2} + ||\mathbf{U}^{t} - \mathbf{P}^{t}\mathbf{U}||_{2}^{2})
13: \mathcal{L}(\mathbf{v}; \mathbf{\Theta}^{T+1}) \leftarrow \mathcal{L}(\mathbf{v}; \mathbf{\Theta}^{T+1}) + \Delta_{TR}
14: end if
22: Minimize \mathcal{L}(\mathbf{v}; \mathbf{\Theta}^{T+1}) using stochastic gradient-descent
23: Knowledge Accumulation:
24: TopicPool \leftarrow accumulate-topics(\Theta^{T+1})
25: WordPool \leftarrow accumulate-word-embeddings(\Theta^{T+1})
```

- Selective-Data Augmentation Learning
 - ← Data augmentation approaches are inefficient.

P. Gupta et al., ICML 20'

• **Step 1** Document Distillation

```
function distill-documents (\boldsymbol{\Theta}^{T+1}, \operatorname{PPL}^{T+1}, [\Omega^1, ..., \Omega^T])
Initialize a set of selected documents: \Omega^{T+1}_{aua} \leftarrow \{\}
      for task t \in [1,...,T] and document \mathbf{v}^t \in \Omega^t do
           \mathcal{L}(\mathbf{v}^t; \mathbf{\Theta}^{T+1}) \leftarrow \text{compute-NLL}(\mathbf{v}^t, \mathbf{\Theta}^{T+1}, \text{LNTM} = \{\})
           \mathrm{PPL}(\mathbf{v}^t; \mathbf{\Theta}^{T+1}) \leftarrow \exp(\frac{\mathcal{L}(\mathbf{v}^t; \mathbf{\Theta}^{T+1})}{|\mathbf{v}^t|})
           Select document \mathbf{v}^t for augmentation in task T+1: if \mathrm{PPL}(\mathbf{v}^t; \mathbf{\Theta}^{T+1}) \leq \mathrm{PPL}^{T+1} then
                 Document selected: \Omega_{aua}^{T+1} \leftarrow \Omega_{aua}^{T+1} \cup (\mathbf{v}^t, t)
           end if
      end for
     return \Omega_{aua}^{T+1}
end function
```

• Step 2 Selective Co-training

P. Gupta et al., ICML 20'

$$egin{aligned} \Delta_{\mathit{SAL}} &= \sum_{(oldsymbol{v}^t,t) \in \Omega_{\mathit{aug}}^{T+1}} \lambda_{\mathit{SAL}}^t \mathcal{L}(oldsymbol{v}^t;\;\Theta^{T+1}) \ \mathcal{L}(\Omega^{T+1};\;\Theta^{T+1}) &= \sum_{oldsymbol{v} \in \Omega^{T+1}} \mathcal{L}(oldsymbol{v};\;\Theta^{T+1}) + \Delta_{\mathit{SAL}} \end{aligned}$$

Overall loss in LNTM framework:

$$\mathcal{L}(\Omega^{T+1}; \; \Theta^{T+1}) = \sum_{\boldsymbol{v} \in \Omega^{T+1}} \mathcal{L}(\boldsymbol{v}; \; \Theta^{T+1}) + \Delta_{TR} + \Delta_{SAL}$$

Experiments and Analysis

