CS5182 Computer Graphics Revision

2024/25 Semester A

City University of Hong Kong (DG)

Three Types of Rendering

- Rasterization-based rendering pipeline
- Ray tracing and radiosity
- Real-time Rendering

- Object modeling
 - 2D drawing--- a line, a circle
 - Representations of 3D object
 - Point clouds
 - Polygonal meshes (orientable/non-orientable, Euler formula)
 - Subdivision surfaces
 - Implicit surfaces
 - Parametric surfaces
 - Voxel
 - Constructive solid geometry
 - Fractals

Transformation

- Homogeneous coordinates
- 2D transformations
 - Translation
 - Scaling
 - uniform/non-uniform, simple/general case
 - Rotation
 - rotation orientation, simple/general case, three-step trick
 - Shearing
- 3D transformations
 - Translation, scaling, rotation around x, y or z-axis
- Inverse transformation
- The order of transformations

Projection

- The elements of projection:
 - COP, projector, projection plane
- Parallel projection
 - Orthographic projection and the corresponding projection matrix
 - Oblique projection
- Perspective projection
 - Vanish point
 - One/two/three-point perspective projection
 - Perspective projection matrix

Perspective transformation

- After the transformation, the z coordinate keep unchanged
- Its advantages
- The transformation matrix

- Hidden/Back Surface Removal
 - Object space algorithms
 - Back-face culling
 - Image space algorithms
 - Depth-sorting (or Painter's) algorithm
 - Z/Depth-buffering algorithm
- After the perspective transformation
 - Using the z component of the normal vector of a typical face

- Clipping
 - The Cohen-Sutherland line-clipping
 - The Sutherland-Hodgman polygon-clipping

- After the perspective transformation
 - The 6 clipping planes become parallel to the three axes, making the clipping easier.

Rasterization

 The process of taking a primitive and figuring out which pixels it covers clipping

Aliasing

- Spatial aliasing
- Temporal aliasing
 - Induced by the spatial aliasing
 - Undersampling in the time domain

Anti-Aliasing

- Supersampling
- Accumulation buffer
- Stochastic sampling
- Catmull's algorithm
- The A-buffer method

Illumination model

- Light sources
 - Ambient/point/area/spotlight
- Phong illumination model
 - Ambient reflection
 - diffuse reflection
 - specular reflection

Shading method

- Flat shading
- Smooth shading
 - Gouraud shading
 - Phong shading

Ray Tracing and Radiosity

- Ray Tracing
 - The process
 - How to calculate the color of a pixel
 - The advantages and disadvantages
 - Acceleration
 - Bounding volumes
 - Space subdivision
- Radiosity
 - The process
 - The advantages and disadvantages

Real-Time Rendering

- Progressive rending technique
 - Discrete LoD
 - Progressive mesh
 - Edge collapse
 - Vertex split
 - Selective refinement
- Ways to estimate the visual quality and rendering cost
- Shadows
 - Hard shadows
 - Shadow volume and shadow map
 - Soft shadows

GPU and Animation

GPU

- GPU vs. CPU
- Efficient computation: Data-level parallelism and task-level parallelism
- Efficient communication
- GPU architecture
 - Traditional hardware graphics pipeline
 - Advanced hardware graphics pipeline (Programmable vertex processer, rasterizer, programmable fragment processors (which processor performs which tasks?))

Computer Animation

- Key frame
- Procedure
- Motion capture

Point Cloud Processing

- The irregular structure of point cloud data makes it challenging to design deep neural networks
 - How to conduct convolution
 - How to find neighbors
 - How to aggregate features
 - Several popular feature extraction frameworks
 - Pointnet
 - Pointnet++
 - Dynamic graph cnn

In the final examination, there are **NO** questions for this section.

Final Examination

- There are SEVEN questions. Closed-book
- Question type
 - Understanding of basic algorithms and operations introduced in the lecture. (~20%)
 - 3 questions about transformation requiring very simple calculations. (~40%)
 - Ray tracing, illumination model, aliasing (~40%)
 - All questions are designed based on the content of the lecture notes and explanations in the lectures.