1

Assignment 8

K Vivek Kumar - CS21BTECH11026

I. PAPOULIS-CHAPTER-10

Question 10-17: Find the power spectrum $S\left(\omega\right)$ of a process x(t) if $S\left(\omega\right)=0$ for $|\omega|>\pi$ and

$$E\left\{x(n+m)x(n)\right\} = N\delta\left[m\right]$$

Solution: Given,

$$E\left\{x(n+m)x(n)\right\} = N\delta\left[m\right] \tag{I.1}$$

As we know, with $T = \frac{\pi}{\sigma}$

$$R(mT) = E\{x(nT + mT)x(nT)\} = \begin{cases} I & m = 0\\ \eta^2 & m \neq 0 \end{cases}$$
(I.2)

Hence, from the following equation,

$$R(\tau) = \sum_{n = -\infty}^{\infty} R(nT) \frac{\sin(\sigma(\tau - nT))}{\sigma(\tau - nT)}$$
 (I.3)

We can write,

$$R(\tau) = \sum_{m=-\infty}^{\infty} R(mT) \frac{\sin(\sigma(\tau - mT))}{\sigma(\tau - mT)}$$
 (I.4)

$$= \eta^2 + (I - \eta^2) \frac{\sin \sigma \tau}{\pi \tau}$$
 (I.5)

Therefore.

$$S(\omega) = 2\pi\eta^2 \delta(\omega) + 2\pi (I - \eta^2) p_{\sigma}(\omega)$$
 (I.6)

As it is said that $S(\omega) = 0$ for $|\omega| > \pi$, therefore we can say from the equation I.6, $\eta = 0$ and I = N. On substituting it in the equation,

$$S(\omega) = 2\pi (0)^2 \delta(\omega) + 2\pi (N - (0)^2) p_{\sigma}(\omega)$$
 (I.7)
= $2\pi N p_{\sigma}(\omega)$ (I.8)

... The power spectrum $S(\omega)$ is $2\pi N p_{\sigma}(\omega)$.