Removing batch-effects from expression data

Maarten van Iterson

Leiden University Medical Center Department of Molecular Epidemiology

June 30, 2016

- biological nuisance factors:
 - gender, age, white blood cell composition, etc.

- biological nuisance factors:
 - gender, age, white blood cell composition, etc.
- technical nuisance factors (batch effects):
 - lab, sequence machine, library generation date, operator, etc.

- biological nuisance factors:
 - gender, age, white blood cell composition, etc.
- technical nuisance factors (batch effects):
 - lab, sequence machine, library generation date, operator, etc.
- Often not all factors are known!

In differential expression analyses there are primary variables of interest and often other nuisance factors, technical or biological, that introduce unwanted variation.

- biological nuisance factors:
 - gender, age, white blood cell composition, etc.
- technical nuisance factors (batch effects):
 - lab, sequence machine, library generation date, operator, etc.
- Often not all factors are known!

Confounding occurs when there is correlation between primary variable of interest and the outcome

GEUVADIS RNAseq data¹

Mar District 21(11) 101E 1000

Figure 1: (d) MDS plot of RNAseq data before batch correction colored by population and (e) colored by laboratory, (f) after batch correction colored by population and (e) colored by laboratory.

¹'t Hoen, P. A. et al. (2013). Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories.

Batch correction methods

- normalization methods:
 - quantile normalization, trimmed mean of M-values (TMM) edgeR

¹Hansen, K. D., Irizarry, R. A., and Wu, Z. (2012). Removing technical variability in RNA-seq data using conditional quantile normalization. *Biostatistics*, 13(2):204–216

²Risso, D., Schwartz, K., Sherlock, G., and Dudoit, S. (2011). GC-content normalization for RNA-Seq data. BMC Bioinformatics, 12:480

Batch correction methods

- normalization methods:
 - quantile normalization, trimmed mean of M-values (TMM) edgeR
- technology specific:
 - within-plate-, print-tip-normalization, etc.
 - GC-bias correction methods cqn¹, EDASeq²

¹Hansen, K. D., Irizarry, R. A., and Wu, Z. (2012). Removing technical variability in RNA-seq data using conditional quantile normalization.

Biostatistics. 13(2):204–216

²Risso, D., Schwartz, K., Sherlock, G., and Dudoit, S. (2011). GC-content normalization for RNA-Seq data. BMC Bioinformatics, 12:480

Batch correction methods

- normalization methods:
 - quantile normalization, trimmed mean of M-values (TMM)
 edgeR
- technology specific:
 - within-plate-, print-tip-normalization, etc.
 - GC-bias correction methods cqn¹, EDASeq²
- Batch correction methods:
 - Nuisance factors are known: linear model, ComBat
 - Nuisance factors are unknown: estimate batch-effects from the data
 - controls e.g. spike-ins or housekeeping
 - principal components

. . . .

¹Hansen, K. D., Irizarry, R. A., and Wu, Z. (2012). Removing technical variability in RNA-seq data using conditional quantile normalization.

Biostatistics. 13(2):204–216

²Risso, D., Schwartz, K., Sherlock, G., and Dudoit, S. (2011). GC-content normalization for RNA-Seq data. BMC Bioinformatics, 12:480

Normalization does not remove batch-effects

Figure 2: Raw vs upper-quartile-normalized data ¹

Nat. Biotechnol., 32(9):896–902

¹Risso, D., Ngai, J., Speed, T. P., and Dudoit, S. (2014). Normalization of RNA-seq data using factor analysis of control genes or samples.

Removing batch-effects using RUV

Figure 3: RUV estimate and corrected

ComBat¹

Usage:

- Input: Known batches

- Output: Batch corrected expression matrix

¹ Johnson, W. E., Li, C., and Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. *Biostatistics*, 8(1):118–127

ComBat¹

Usage:

- Input: Known batches
- Output: Batch corrected expression matrix

Method briefly:

- Mean center and standardize the variance of each batch for each gene independently
- Use an empirical Bayes approach to estimate robust mean and variance

¹ Johnson, W. E., Li, C., and Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. *Biostatistics*, 8(1):118–127

ComBat¹

Usage:

- Input: Known batches
- Output: Batch corrected expression matrix

Method briefly:

- Mean center and standardize the variance of each batch for each gene independently
- Use an empirical Bayes approach to estimate robust mean and variance

Remarks:

- Specially suited for small sample microarray studies
- Method is based on the same idea's for hypothesis testing as implemented in *limma*

R implementation available within the sva package

¹ Johnson, W. E., Li, C., and Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. *Biostatistics*, 8(1):118–127

Surrogate variable analysis¹

Usage:

- Input: Does not use known factors but estimates a set of surrogate variables
- Optimize: number of surrogate variables
- Output: Estimated surrogate variables
- Testing: Include surrogate variables in a (generalized) linear model

¹Leek, J. T. and Storey, J. D. (2007). Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genetics, 3(9):1724–1735

Surrogate variable analysis¹

Usage:

- Input: Does not use known factors but estimates a set of surrogate variables
- Optimize: number of surrogate variables
- Output: Estimated surrogate variables
- Testing: Include surrogate variables in a (generalized) linear model

Method briefly:

- Constructs surrogate variables from a set of genes that are not associated with the biological factor of interest but are affected by unknown batches: principal component analysis on the residuals
- R implementation available sva package

¹Leek, J. T. and Storey, J. D. (2007). Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genetics, 3(9):1724–1735

Removing unwanted variation (RUV)¹

Usage:

- Input: Does not use known factors but estimates a set of factors describing the *unwanted variation*
- Optimize: Number of unknown factors
- Output: Estimated batch-effects
- Testing: Include estimated batch-effects in a (generalized) linear model

Method briefly:

¹Risso, D., Ngai, J., Speed, T. P., and Dudoit, S. (2014). Normalization of RNA-seq data using factor analysis of control genes or samples.

Nat. Biotechnol., 32(9):896–902

Removing unwanted variation $(RUV)^1$

Usage:

- Input: Does not use known factors but estimates a set of factors describing the *unwanted variation*
- Optimize: Number of unknown factors
- Output: Estimated batch-effects
- Testing: Include estimated batch-effects in a (generalized) linear model

Method briefly:

- Factor analysis (PC) on the residuals of the control genes
- R implementation available RUVseq

¹Risso, D., Ngai, J., Speed, T. P., and Dudoit, S. (2014). Normalization of RNA-seq data using factor analysis of control genes or samples.

Nat. Biotechnol., 32(9):896–902

CATE1

Usage:

- Input: Does not use known factors but estimates a set of latent factors describing the unobserved confounding factors
- Optimize: Number of latent factor
- Output: Estimated latent factors
- Testing: hypotheses testing included (robust regression)

¹Wang, J., Zhao, Q., Hastie, T., and Owen, A. B. (2015). Confounder Adjustment in Multiple Hypothesis Testing.
ArXiv e-prints

CATE1

Usage:

- Input: Does not use known factors but estimates a set of latent factors describing the unobserved confounding factors
- Optimize: Number of latent factor
- Output: Estimated latent factors
- Testing: hypotheses testing included (robust regression)

Method briefly:

- Factor analysis on residuals
- R implementation available cate

¹Wang, J., Zhao, Q., Hastie, T., and Owen, A. B. (2015). Confounder Adjustment in Multiple Hypothesis Testing.

ArXiv e-prints

Comparison from Leek¹

Simulated data with one group (Case/Control) and one batch

Figure 4: Correlation between simulated batch and group variables and various batch estimates

¹Leek, J. T. (2014). svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res., 42(21)

Comparison from Leek

Figure 5: Differential expression results for simulated data. A concordance at the top plot (CAT plot) shows the fraction of DE results that are concordant between the analysis with the true batch and the analyses using different batch estimates.

A few other methods

- 1. PEER¹ cran R package *peer*
- 2. isva² cran R package isva
- 3. RUV-4, RUV-inv, and RUV-rinv³ cran R package ruv

These methods can also be applied to other omics-data e.g. 450k DNA methylation data

¹Stegle, O., Parts, L., Piipari, M., Winn, J., and Durbin, R. (2012). Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. *Nat Protoc*, 7(3):500–507

²Teschendorff, A. E., Zhuang, J., and Widschwendter, M. (2011). Independent surrogate variable analysis to deconvolve confounding factors in large-scale microarray profiling studies.

Bioinformatics, 27(11):1496–1505

³Gagnon-Bartsch, J., Jacob, L., and Speed, T. (2013). Removing unwanted variation from high dimensional data with negative controls. *Tech Report*.