UNIVERSITY OF GHANA

(All rights reserved)

DEPARTMENT OF MATHEMATICS

MATH 223: CALCULUS II (3 credits)

PRE IA EXERCISES - 1

- 1. If $y = \tanh^{-1}\left(\frac{1}{x}\right)$, express y as a natural logarithmic function of x. Sketch the graph of $\tanh^{-1}\left(\frac{1}{x}\right)$ showing it general characteristics.
- 2. Let $f(x) = \sinh x (x-1)\cosh x$.
 - (a) Find the local maximum and minimum values of f.
 - (b) Find the point of inflection and sketch the graph of f.
- 3. Express $\operatorname{cosech}^{-1} x$ in logarithmic form and hence solve the equation $\operatorname{cosech}^{-1} x + \ln x = 3$.
- 4. Differentiate the following expressions with respect to x.
 - (a) $\ln \sinh(x + \cosh^2 x)$
 - (b) $\ln \sinh(x \cosh^2 x)$
 - (c) $\sinh \sqrt{x^2+1}$
 - (d) $\sinh(xy) = x + 8$
 - (e) $\ln(\coth 3x)$
 - (f) $\sqrt{\tanh 3x}$
 - (g) $\sinh^{-1}(\cosh 2x)$
- 5. Solve the following equations
 - (a) $10 \cosh x 12 \sinh x = 1$.
 - (b) $6 \tanh x = 4(1 \operatorname{sech} x)$
 - (c) $4 \tanh x = \coth x$
 - (d) $\cosh x = \frac{13}{5}$
 - (e) $\sinh x = \frac{3}{4}$
 - (f) $\tanh x = \frac{1}{2}$
 - (g) $3 \coth^2 x + 4 \operatorname{cosech} x = 23$
 - (h) $\sinh^{-1} x + \cosh^{-1}(x+2) = 0$
 - (i) $2 \tanh^{-1} \left(\frac{x-2}{x+1} \right) = \ln 2$
 - (j) $4\cosh x + \sinh x = 4$
 - (k) $3\sinh x \cosh x = 1$

- (1) $2\cosh 2x + 10\sinh 2x = 5$
- 6. If $f(x) = \cosh^{-1} x \sinh^{-1}$ for x > 1, prove that f(x) increases with x.
- 7. Show that the equation $a \cosh x + b \sinh x = 1$ has
 - (a) no real solutions if $a^2 b^2 > 1$
 - (b) two solutions if $a^2 b^2 < 1$
- 8. Prove that in the range $0 < \theta < \frac{\pi}{2}$, the equation $\cosh^{-1}(\sec \theta) + \ln(\sin 2\theta) = 0$ has just one solution which is $\theta = \sin^{-1}\left(\frac{\sqrt{3}-1}{2}\right)$.
- 9. Prove that

(a)
$$\sinh(\ln x) = \frac{(x - x^{-1})}{2}$$
 for $x > 0$

(b)
$$\cosh(\ln x) = \frac{(x+x^{-1})}{2}$$
 for $x > 0$

- 10. Define $\sinh y$ and $\cosh y$ in terms of exponential functions and show that $2y = \ln \left(\frac{\cosh y + \sinh y}{\cosh y \sinh y} \right)$. By putting $\tanh y = \frac{1}{3}$, deduce that $\tanh^{-1} \frac{1}{3} = \frac{1}{2} \ln 2$.
- 11. Given that $\sinh x = \frac{5}{12}$, find the values of $\cosh x$, $\tanh x$, $\sinh 2x$, $\coth x$, $\operatorname{sech} x$ and $\cosh 2x$.
- 12. Find the value of x for which the following equations are true.

(a)

- 13. Find the possible value of $\sinh x$ for which $12\cosh^2 x + 7\sinh x = 24$. [You may use the identity $\cosh^2 x \sinh^2 x = 1$]
- 14. Find the equation of the tangent to the curve with equation $y = 3\cosh 2x \sinh x$ at the point $x = \ln 2$.