<u>Nefinition 5.6</u> A group is a set G with spendim $\#: G \times G \longrightarrow G$.

(G1)

(G2)

(G3)

(64)

We woundly use multiplie notation for * : sey; c=1; z=1, z=1

Sometimes (if G is abdion, i.e. (G5) x+ y= y+2 Yzy) then we can ux additive notation: 2+ y, e=0, (-2),

kz.

Examples: (1) IR = IR\ {03 under ac; e=1, x=1

#= #\ [0] for any field F.

(2) $(\mathbb{Z}, +)$: e=0, $(-\infty)$ (invente of ∞). Also $(\mathbb{R}, +)$, $(\mathbb{C}, +)$, ..., $(\mathbb{F}, +)$

(Z, x) not a group: (G4) fails: 2-1 & Z.

(3) $\mathbb{Z}_{n} = \{0, 1, 2, 3, ..., n-1\}$ (the ring of integers mod n).

Then \mathbb{Z}_n is a group under $+: (GI) \forall x, y \in \mathbb{Z}_n \quad x + y \in \mathbb{Z}_n \quad (n-1+2=1 \text{ mod } n)$

(G2) /

(G3) e=0

(G4) ✓, e.g. (-2)=n-2€ Zn.

Note: (\mathbb{Z}_n, \times) is not a group as $0^{-1} \notin \mathbb{Z}_n$. Hence $\mathbb{Z}_n^* = \{$ all invulible elements in $\mathbb{Z}_n \}$.

e.g. Zq = {1,2,3,4,5,6,7,8}

all me Zn s.t. m, n are copied

Then Z, is group under x: e=1, x: e=1, x: e=1, x: e=1. $\forall x: (also can use Cayley Falle to which (G1) and (G4)$

 $\mathbb{Z}_{p}^{*} = \{1, 2, 3, 5, 7, ..., p \in \mathcal{F}\}$

Then \mathbb{Z}_n^* is group under $\infty: e=1$, $\infty^*\in \mathbb{Z}_n^*$ You (also can use Cayley Fable to check (G1) and (G4)).

Zn is especially nia if n=p prime

Thun Z = { 1, 2, 3, ..., p-1} = Zp \ {0}

(sutatumnar) equap naileda lla ena (E)-(1) algunare: ele

(4) Let $M_{n\times m}(F) = \{$ all $n\times m$ matrices ever field $F\}$ is abelian group under: $C = \{0 \cdots 0\}$

denote $GL_n(F) = \{$ all invest $n \times n$ matrices over $F \}$

Then $GL_n(F)$ is a group under $x: (AB)^{-1} = B^{-1}A^{-1}$, $e = 2n = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (Not abelian if $n \ge 2$)

(5) The symmetric group $S_n = \{ \text{ all bijections } X \longrightarrow X \}$

(G1) fog is a bijection if f, g are bijections X= {1,2,3,..., n-1}

(G12) Composition of maps is associative

(G3) e = 1x (identity map)

(G4) (bijection) is a bijection

(b) The group $D_3 = \{all \text{ symmetries of equilatinal } \Delta \} = \{(\Delta) = rob(120^\circ) = rob(\frac{2\pi}{3}); e=1 = rob(0^\circ);$ rob(240°) = Δ , Δ , Δ β behave to

: o rebre quarp a si (X) mps, , X squak a la quarp julumps jures, laring nh

(G1) sym1 o sym2 must be a symmetry

(G2) o is associative.

(G3) e= H. is a symmetry.

(G4) (sym) is symmetric.

(7) More generally, $\mathcal{D}_n = \{\text{all symmetries of a regular } n\text{-gon }\}$ has λ_n elements: rot $(0^\circ) = e$, rot $(\frac{2\pi}{n})$, rot $(\frac{2\pi-2}{n})$, ..., rot $(\frac{2\pi(n-1)}{n})$

n relations:

bban. Don notalfor n

n even: I i i n is botal

so $|D_n| = 2n$.

n upper to quare bubility will in na

Proposition 5.13: Let G be a group. Then (1) The identity e is unique.

(2) The inverse x-1 is unique $\forall x \in G$

Proof: (1) suppose e, e' are identities in G.

then e = e' and e' = e by (G3) $\Rightarrow e' = e$

(2) if y and y' are inverse of 2c,

thun $y = y \cdot e = y(x \cdot y') = (y \cdot x)y' = e \cdot y' = y'$