Supplementary Material of IJCAI-18 submission - Paper ID: 327

APPENDIX

Due to the page limit, the current submission of Paper 327 does not include the detailed algorithm with updating rules, the dataset statistics about Foursquare-LA, or its experiment results. They are all listed in this supplementary material.

Detailed Algorithm

The detailed algorithm with the parameter updating rules is shown in **Algorithm** 1.

Algorithm 1 Our Proposed Methodology

- 1: **Input:** check-in data D
- 2: repeat
- 3:

4:
$$\langle z_{u,i,j} \rangle \leftarrow \frac{\sigma_1^2 w(\chi_{u,i,j} - \hat{\chi}_{u,i,j} - \rho d_{i,j}^{-1}) + \hat{z}_{u,i,j}^{-1} \sigma_2^2}{w^2 \sigma_1^2 + \sigma_2^2}$$

5: $\langle z_{u,i,j}^2 \rangle \leftarrow \frac{\sigma_1^2 \cdot \sigma_2^2}{\sigma_2^2 + w^2 \cdot \sigma_1^2} + \langle z_{u,i,j} \rangle^2$

5:
$$\langle z_{u,i,j}^2 \rangle \leftarrow \frac{\sigma_1^2 \cdot \sigma_2^2}{\sigma_2^2 + w^2 \cdot \sigma_2^2} + \langle z_{u,i,j} \rangle^2$$

- 6:

o: Mr-step:
7:
$$\sigma_{1}^{2} \leftarrow \frac{1}{N_{u,d}} \sum_{u,d} (\langle z_{u,i,j}^{2} \rangle - 2\langle z_{u,i,j} \rangle \cdot \hat{z}_{u,i,j}^{-1} + \hat{z}_{u,i,j}^{-2})$$

8: $\sigma_{2}^{2} \leftarrow \frac{1}{N_{u,d}} \sum_{u,d} (w^{2} \cdot \langle z_{u,i,j}^{2} \rangle + (\hat{\chi}_{u,i,j} + \rho d_{i,j}^{-1})^{2} + \chi_{u,i,j}^{2} + 2w \cdot \langle z_{u,i,j} \rangle \cdot (\hat{\chi}_{u,i,j} + \rho d_{i,j}^{-1}) - 2w \cdot \chi_{u,i,j} \cdot \langle z_{u,i,j} \rangle) - 2\chi_{u,i,j} \cdot (\hat{\chi}_{u,i,j} + \rho d_{i,j}^{-1})$

$$\chi_{u,i,j}^{2} + 2w \cdot \langle z_{u,i,j} \rangle \cdot (\chi_{u,i,j} + \rho d_{i,j}^{-1}) - 2w \cdot \langle z_{u,i,j} \rangle - 2\chi_{u,i,j} \cdot (\hat{\chi}_{u,i,j} + \rho d_{i,j}^{-1}) - 2w \cdot \langle z_{u,i,j} \rangle - 2\chi_{u,i,j} \cdot (\hat{\chi}_{u,i,j} + \rho d_{i,j}^{-1}) - 2w \cdot \langle z_{u,i,j} \rangle - 2\chi_{u,i,j} - 2w \cdot \langle z_{u,i,j} \rangle -$$

10:
$$w \leftarrow \frac{\sum_{u,d} \langle z_{u,i,j} \rangle \cdot (\chi_{u,i,j} - \hat{\chi}_{u,i,j} - \rho d_{i,j}^{-1})}{\sum_{u,d} \langle z_{u,i,j}^2 \rangle}$$

11:
$$\gamma_1 \leftarrow \hat{\chi}_{u,i,j} + \rho \cdot d_{i,j}^{-1} + w \langle z_{u,i,j} \rangle - \chi_{u,i,j}$$

12:
$$\boldsymbol{v}_{u}^{U,J} \leftarrow \boldsymbol{v}_{u}^{U,J} + \alpha(2\boldsymbol{v}_{j}^{J,U} \cdot \gamma_{1})$$

13:
$$\mathbf{v}_{j}^{J,U} \leftarrow \mathbf{v}_{j}^{J,U} + \alpha(2\mathbf{v}_{u}^{U,J} \cdot \gamma_{1})$$

14:
$$\mathbf{v}_{j}^{J,I} \leftarrow \mathbf{v}_{j}^{J,I} + \alpha(2\mathbf{v}_{i}^{I,J} \cdot \gamma_{1})$$

15:
$$\boldsymbol{v}_i^{I,J} \leftarrow \boldsymbol{v}_i^{I,J} + \alpha(2\boldsymbol{v}_j^{J,I} \cdot \gamma_1)$$

16:
$$e_{u}^{I,J} \leftarrow e_{u}^{U,J} + \alpha(2e_{j}^{I,U} \cdot (\hat{z}_{u,i,j} - \langle z_{u,i,j} \rangle^{-1}))$$

17: $e_{j}^{J,U} \leftarrow e_{j}^{J,U} + \alpha(2e_{u}^{U,J} \cdot (\hat{z}_{u,i,j} - \langle z_{u,i,j} \rangle^{-1}))$
18: $e_{j}^{J,I} \leftarrow e_{j}^{J,I} + \alpha(2e_{u}^{I,J} \cdot (\hat{z}_{u,i,j} - \langle z_{u,i,j} \rangle^{-1}))$
19: $e_{i}^{I,J} \leftarrow e_{i}^{I,J} + \alpha(2e_{j}^{J,I} \cdot (\hat{z}_{u,i,j} - \langle z_{u,i,j} \rangle^{-1}))$

17:
$$e_j^{J,U} \leftarrow e_j^{J,U} + \alpha (2e_u^{U,J} \cdot (\hat{z}_{u,i,j} - \langle z_{u,i,j} \rangle^{-1})$$

18:
$$e_i^{J,I} \leftarrow e_i^{J,I} + \alpha(2e_i^{I,J} \cdot (\hat{z}_{u,i,j} - \langle z_{u,i,j} \rangle^{-1}))$$

19:
$$e_i^{I,J} \leftarrow e_i^{I,J} + \alpha(2e_i^{J,I} \cdot (\hat{z}_{u,i,j} - \langle z_{u,i,j} \rangle^{-1}))$$

- 20: until convergence
- 21: **Return:** Θ

Experiments

Datasets

Besides the two datasets Foursquare(NYC) and Gowalla which are provided by [Bao et al., 2012] and [Cheng et al., 2012] respectively, we also evaluate the models on Foursquare(LA) which is provided by [Bao et al., 2012]. The statistics of the three datasets are listed in Table 1. Each dataset is split into two non-overlapping subsets to evaluate the model performance (for each user, the earliest 80% of check-ins as training set, and the remaining 20% check-ins as test set).

Table 1: Dataset Statistics

	#User	#POI	#Check-in
Foursquare-LA	2470	81361	123782
Foursquare-NYC	3401	106974	178143
Gowalla	1488	92679	226116

Performance Comparison on Next POI Recommendation (Foursquare-LA)

Fig.2(a) and Fig.2(b) show the experimental results for the "exact" next POI recommendation and the "exact" next new POI recommendation on Foursquare-LA dataset. The observations are consistent with that of the other two datasets described in the current submission (See Sec.4.3).

Figure 1: Performance Comparison on Next POI Recommendation

Performance Comparison on γ -hour Next POI Recommendation (Foursquare-LA, $\gamma=6$)

To make a fair comparison with the existing work, we further evaluate the performance of next POI recommendation by considering consecutive next check-ins within γ hours as the next location set (γ is set to 6 following [Cheng *et al.*, 2013] and [Feng *et al.*, 2015]).

Fig.2 depicts the comparison on Foursquare-LA dataset when considering the next POI as a set of locations. Similar outcomes to that in paper for the other two datasets can be observed. It is evident that our proposed model consistently outperforms other baselines.

Figure 2: Performance Comparison on γ -hour Next POI Recommendation($\gamma=6$)

Performance Comparison on Transition Interval (Foursquare-LA)

Fig.3 shows the performance comparison on transition interval predictions. The results show that the proposed model always achieves the highest precision over baselines, which proves that our model is capable of providing effective POI recommendations to users as well as predicting when it will happen. We also compute MAPE between the predicted transition intervals and the ground truth of the test set (See Table 2). Lower values indicate more accurate predictions. It is evident that the proposed model outperforms the baselines by a significant margin. Fig.4 shows the performance comparison by relaxing the threshold T, and our method outperforms all the baselines again. The observations are consistent with that in the submitted paper.

Table 2 tabulates the MAPE between the predicted transition intervals and the ground truth of the test set. Our proposed model achieves more accurate predictions than other baselines on the three datasets.

Table 2: MAPE for our model and baselines on three datasets

	MF	PMF	FPMC	Our
Foursquare-LA	13.79	11.45	5.68	1.75
Foursquare-NYC	14.87	12.64	6.72	1.84
Gowalla	16.95	14.12	7.89	2.15

Figure 3: Performance Comparison for Transition Interval Prediction (Foursquare-LA)

Figure 4: Transition interval prediction v.s. T (Foursquare-LA)

Detailed Performance Comparisons on Specific Time Period for Next POI Recommendation

In this section, we report the detailed performance comparisons for different settings of future time period. For example, the setting of TP = [0.5,1] denotes that we consider the next check-ins between 0.5 to 1 hour since the current time point as the next location set. In contrast to MF and PFM, FPMC-LR, PRME-G and LBP are more competitive baselines. To present a more clear comparison, we only report the performance comparisons on recall for the three datasets. The detailed performance comparisons are tabulated in Table 3- Table 8.

Please note that, in general, with the setting of time interval increasing, the number of check-in within the time interval increases which lead the upper bound of recall@N to decrease. Again, our proposed method consistently outperforms the competitive baselines by a large margin for all three datasets.

Table 3: Performance Comparison for Next POI Recommendation, $TP = \left[0.5, 1\right]$

Metrics		Foursqu	are-LA		Foursquare-NYC				Gowalla			
Meures	F-LR	P-G	LBP	Our	F-LR	P-G	LBP	Our	F-LR	P-G	LBP	Our
top1	0.030	0.027	0.045	0.059	0.042	0.043	0.062	0.075	0.011	0.011	0.013	0.019
Improve	96.7%	119%	31.1%	0.039	78.6%	74.4%	21.0%	0.073	72.7%	72.7%	46.2%	0.019
top5	0.099	0.098	0.197	0.255	0.143	0.152	0.187	0.233	0.146	0.164	0.179	0.269
Improve	158%	160%	29.4%	0.255	62.9%	53.3%	24.6%	0.233	84.2%	64.0%	50.3%	0.209
top10	0.142	0.145	0.265	0.327	0.181	0.178	0.235	0.304	0.223	0.237	0.276	0.429
Improve	130%	126%	23.4%	0.527	68.0%	70.8%	29.4%	0.304	92.4%	81.0%	55.4%	0.429
top20	0.201	0.226	0.316	0.399	0.205	0.209	0.306	0.383	0.304	0.318	0.368	0.554
Improve	98.5%	76.5%	26.3%	0.399	86.8%	83.3%	25.2%	0.383	82.2%	74.2%	50.5%	0.354

Table 4: Performance Comparison for Next POI Recommendation, TP = [1,2]

Metrics		Foursqu	are-LA		Foursquare-NYC				Gowalla			
Micures	F-LR	P-G	LBP	Our	F-LR	P-G	LBP	Our	F-LR	P-G	LBP	Our
top1	0.021	0.022	0.042	0.051	0.027	0.026	0.037	0.045	0.009	0.010	0.012	0.017
Improve	143%	132%	21.4%	0.051	66.7%	73.1%	21.6%	0.045	88.9%	70.0%	41.7%	0.017
top5	0.085	0.091	0.158	0.198	0.126	0.130	0.168	0.207	0.083	0.092	0.104	0.157
Improve	133%	118%	25.3%	0.170	64.3%	59.2%	23.2%	0.207	89.2%	70.7%	51.0%	0.137
top10	0.133	0.141	0.246	0.312	0.167	0.171	0.243	0.299	0.161	0.159	0.203	0.301
Improve	135%	121%	26.8%	0.312	79.0%	74.9%	23.0%	0.233	87.0%	89.3%	48.3%	0.501
top20	0.202	0.216	0.298	0.383	0.219	0.225	0.301	0.387	0.231	0.228	0.301	0.433
Improve	89.6%	77.3%	28.5%	0.363	76.7%	72.0%	28.6%	0.367	87.4%	89.9%	43.9%	0.433

Table 5: Performance Comparison for Next POI Recommendation, TP = [2, 3]

Metrics		Foursqu	are-LA			Foursqua			Gowalla			
Meures	F-LR	P-G	LBP	Our	F-LR	P-G	LBP	Our	F-LR	P-G	LBP	Our
top1	0.024	0.022	0.026	0.034	0.031	0.032	0.039	0.047	0.011	0.012	0.013	0.018
Improve	41.7%	54.5%	30.8%	0.034	51.6%	46.9%	20.5%	0.047	63.6%	50.0%	38.5%	0.010
top5	0.132	0.126	0.173	0.216	0.138	0.141	0.179	0.222	0.069	0.072	0.082	0.112
Improve	63.6%	71.4%	24.9%	0.210	60.9%	57.4%	24.0%	0.222	62.3%	55.6%	36.6%	V.112
top10	0.187	0.171	0.213	0.275	0.189	0.194	0.231	0.293	0.132	0.143	0.163	0.218
Improve	47.1%	60.8%	29.1%	0.273	55.0%	51.0%	26.8%	0.273	65.2%	52.4%	33.7%	0.210
top20	0.234	0.216	0.265	0.339	0.221	0.226	0.291	0.368	0.193	0.192	0.243	0.326
Improve	44.9%	56.9%	27.9%	0.557	66.5%	62.8%	26.5%	0.500	68.9%	69.8%	34.2%	0.520

Table 6: Performance Comparison for Next POI Recommendation, TP = [3, 6]

Metrics		Foursqu	are-LA			Foursqua			Gowalla			
Micures	F-LR	P-G	LBP	Our	F-LR	P-G	LBP	Our	F-LR	P-G	LBP	Our
top1	0.023	0.025	0.031	0.038	0.015	0.014	0.018	0.022	0.011	0.012	0.015	0.018
Improve	65.2%	52.0%	22.6%	0.036	46.7%	57.1%	22.2%	0.022	63.6%	50.0%	20.0%	0.010
top5	0.081	0.078	0.101	0.122	0.071	0.072	0.085	0.105	0.062	0.068	0.081	0.105
Improve	50.6%	56.4%	20.8%	0.122	47.9%	45.8%	23.5%	0.105	69.4%	54.4%	29.6%	0.105
top10	0.122	0.119	0.142	0.173	0.115	0.112	0.131	0.166	0.116	0.124	0.148	0.191
Improve	41.8%	45.4%	21.8%	0.173	44.3%	48.2%	26.7%	0.100	64.7%	54.0%	29.1%	0.191
top20	0.168	0.171	0.200	0.241	0.143	0.141	0.173	0.212	0.169	0.176	0.224	0.285
Improve	43.5%	40.9%	20.5%	0.241	48.3%	50.4%	22.5%	0.212	68.6%	61.9%	27.2%	0.205

Table 7: Performance Comparison for Next POI Recommendation, $TP = \left[6,12\right]$

Metrics		Foursqu	are-LA			Foursqua			Gowalla			
Wicuics	F-LR	P-G	LBP	Our	F-LR	P-G	LBP	Our	F-LR	P-G	LBP	Our
top1	0.021	0.025	0.027	0.033	0.018	0.017	0.021	0.026	0.010	0.011	0.013	0.016
Improve	57.1%	32.0%	22.2%	0.033	44.4%	52.9%	23.8%	0.020	60.0%	45.5%	23.1%	0.010
top5	0.086	0.078	0.113	0.142	0.073	0.072	0.087	0.106	0.054	0.061	0.069	0.088
Improve	65.1%	82.1%	25.7%	0.142	45.2%	47.2%	21.8%	0.100	63.0%	44.3%	27.5%	0.000
top10	0.125	0.119	0.176	0.217	0.99	0.101	0.124	0.151	0.106	0.105	0.134	0.170
Improve	73.6%	82.4%	23.3%	0.217	52.5%	49.5%	21.8%	0.151	60.4%	61.9%	26.9%	0.170
top20	0.165	0.171	0.221	0.276	0.145	0.151	0.178	0.219	0.164	0.162	0.216	0.267
Improve	67.3%	61.4%	24.9%	0.270	51.0%	45.0%	23.0%	0.217	62.8%	64.8%	23.6%	0.207

Table 8: Performance Comparison for Next POI Recommendation, $TP = \left[12,24\right]$

Metrics		Foursqu	are-LA			Foursqua	are-NYC		Gowalla			
Metrics	F-LR	P-G	LBP	Our	F-LR	P-G	LBP	Our	F-LR	P-G	LBP	Our
top1	0.019	0.018	0.024	0.031	0.017	0.018	0.021	0.026	0.013	0.014	0.017	0.021
Improve	63.2%	72.2%	29.2%	0.031	52.9%	44.4%	23.8%	0.020	61.5%	50.0%	23.5%	
top5	0.072	0.073	0.098	0.129	0.068	0.067	0.079	0.100	0.068	0.073	0.089	0.115
Improve	79.2%	76.7%	31.6%	0.129	47.1%	49.3%	26.6%	0.100	69.1%	57.5%	29.2%	0.113
top10	0.107	0.099	0.146	0.184	0.104	0.109	0.131	0.162	0.113	0.118	0.151	0.188
Improve	72.0%	85.9%	26.0%	0.104	55.8%	48.6%	23.7%	0.102	66.4%	59.3%	24.5%	
top20	0.151	0.144	0.201	0.244	0.147	0.143	0.186	0.226	0.168	0.172	0.224	0.278
Improve	61.6%	69.4%	21.4%	0.244	53.7%	58.0%	21.5%	0.220	65.5%	61.6%	24.1%	U.276