

planetmath.org

Math for the people, by the people.

every congruence is the kernel of a homomorphism

 ${\bf Canonical\ name} \quad {\bf Every Congruence Is The Kernel Of A Homomorphism}$

Date of creation 2013-03-22 13:48:59 Last modified on 2013-03-22 13:48:59

Owner almann (2526) Last modified by almann (2526)

Numerical id 11

Author almann (2526)

Entry type Theorem
Classification msc 03C07
Classification msc 03C05

Let Σ be a fixed signature, and $\mathfrak A$ a structure for Σ . If \sim is a congruence on $\mathfrak A$, then there is a homomorphism f such that \sim is the kernel of f.

Proof. Define a homomorphism $f: \mathfrak{A} \to \mathfrak{A}/\sim : a \mapsto \llbracket a \rrbracket$. Observe that $a \sim b$ if and only if f(a) = f(b), so \sim is the kernel of f. To verify that f is a homomorphism, observe that

- 1. For each constant symbol c of Σ , $f(c^{\mathfrak{A}}) = \llbracket c^{\mathfrak{A}} \rrbracket = c^{\mathfrak{A}/\!\!\sim}$.
- 2. For each $n \in \mathbb{N}$ and each n-ary function symbol F of Σ ,

$$f(F^{\mathfrak{A}}(a_1, \dots a_n)) = \llbracket F^{\mathfrak{A}}(a_1, \dots a_n) \rrbracket$$

$$= F^{\mathfrak{A}/\sim}(\llbracket a_1 \rrbracket, \dots \llbracket a_n \rrbracket)$$

$$= F^{\mathfrak{A}/\sim}(f(a_1), \dots f(a_n)).$$

3. For each $n \in \mathbb{N}$ and each n-ary relation symbol R of Σ , if $R^{\mathfrak{A}}(a_1, \ldots, a_n)$ then $R^{\mathfrak{A}/\sim}(\llbracket a_1 \rrbracket, \ldots, \llbracket a_n \rrbracket)$, so $R^{\mathfrak{A}/\sim}(f(a_1), \ldots, f(a_n))$.