

Fachbereich Informatik
Dr. Marco Hülsmann

Numerische Mathematik 1 Übungsblatt 4, WS 2019/20

Aufgabe 1 (Konditionsabschätzungen)

Betrachten Sie das Lineare Gleichungssystem Ax = b mit

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

Nehmen Sie an, daß die Koeffizienten der Matrix A exakt vorliegen. Wie groß darf der relative Fehler in der Maximumsnorm bei der rechten Seite sein, damit der relative Fehler in der Maximumsnorm in der Lösung kleiner als 10^{-2} ist?

Aufgabe 2 (Skalierung und Kondition)

Sei $A \in \mathbb{R}^{n \times n}$ regulär mit

$$\forall_{i=,1...,n} \sum_{j=1}^{n} |a_{ij}| = 1 \ (*)$$

(i) Zeigen Sie, daß für jede Diagonalmatrix $D \in \mathbb{R}^{n \times n}$ gilt:

$$cond(A) \le cond(DA)$$

Verwenden Sie die Zeilensummennorm!

(ii) Sei $B \in \mathbb{R}^{n \times n}$ regulär. Geben Sie eine reguläre Diagonalmatrix $D \in \mathbb{R}^{n \times n}$ an, so daß C := DB die Eigenschaft (*) erfüllt.

Aufgabe 3 (Gaußsches Eliminationsverfahren)

Programmieren Sie das Gaußsche Eliminationsverfahren mit diagonaler Pivotwahl! Implementieren Sie dabei neben dem Hauptprogramm für die Elimination die folgenden Teilprogramme, jeweils als separat aufrufbare Funktionen:

- Erstellung der erweiterten Koeffizientenmatrix
- Rückwärtseinsetzen
- Konfiguration (Definition der Matrix und der rechten Seite)

Lösen Sie mit Ihrem Programm die folgenden Linearen Gleichungssysteme Ax = b:

(i)
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 7 \\ 1 & 3 & -2 \end{pmatrix}, b = \begin{pmatrix} 3 \\ 0 \\ 17 \end{pmatrix}$$

(ii)
$$A = \begin{pmatrix} 0 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 4 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 6 \\ 3 \end{pmatrix}$$

Aufgabe 4* (Konditionsabschätzungen, freiwillige Hausübung!)

Zeigen Sie, daß bei Störungen ΔA und Δb , wobei $||A^{-1}|| \cdot ||\Delta A|| < 1$ ist, die folgenden Konditionsabschätzungen gelten:

(i)
$$||\Delta x|| \le \frac{||A^{-1}||}{1 - ||A^{-1}|| \cdot ||\Delta A||} (||\Delta b|| + ||A^{-1}|| \cdot ||\Delta A|| \cdot ||b||)$$

$$\text{(ii)} \ \frac{||\Delta x||}{||x||} \leq \frac{\operatorname{cond}(A)}{1 - \operatorname{cond}(A) \frac{||\Delta A||}{||A||}} \left(\frac{||\Delta A||}{||A||} + \frac{||\Delta b||}{||b||} \right) \operatorname{f\"{u}r} b \neq 0$$

Die Übungsaufgaben werden in der Übung am Donnerstag, 31. Oktober 2019, besprochen.