Оформление отчёта

Самостоятельная работа 3

Борисов Н.А.

вар-т 3

группа ПИ20-5

 γ =0,95 — пишем своё гамма кот у вас в задании

Далее скриншот из Excel с суммами – точность до 2 знаков после запятой

12,3	151,29
14,2	201,64
14,1	198,81
12,2	148,84
13,3	176,89
12,4	153,76
12,6	158,76
13,5	182,25
14,8	219,04
12,6	158,76
21,8	475,24
12,9	166,41
14,1	198,81
12,5	156,25
13,8	190,44
14,1	198,81
Сумм	сумм
221,2	3136
срзнач	срзнач
13,825	196

$$\overline{X}$$
 = 221,2 $\overline{X^2}$ = 3136 n=16

$$\overline{X} = \frac{1}{n} * \sum Xi = 13,825$$

$$\overline{X^2} = \frac{1}{n} * \sum Xi^2 = 196$$

$$DB = \overline{X^2} - (\overline{X})^2 = 4.87$$

$$S^2 = \frac{n}{n-1} * D_B = 5,194$$

$$S = 2,279$$

$$\overline{t}_{n-1;1-\gamma} = \overline{t}_{20-1;1-0,99} = \overline{t}_{19;0,01} =$$
СТЬЮДЕНТ.ОБР.2X(0,01; 19) = 2,860934606,

-ищем с помощью соответствующей статистической функции в Excel

Далее все подставляем в интервал

$$\overline{X}-\overline{t}_{n-1;1-\gamma}rac{S}{\sqrt{n}} < EX < \overline{X}+\overline{t}_{n-1;1-\gamma}rac{S}{\sqrt{n}}$$
– выписываем в общем виде

Ошибка
$$(\frac{S}{\sqrt{n}})$$
= 0,57

$$13,825 - \overline{t}_{15:0.05}0,57 < EX < 13,825 + \overline{t}_{15:0.05}0,57$$

- подстановка без квантилей

Подставляем квантили

$$13,825 - 2,13 * 0,57 < EX < 13,825 + 2,13 * 0,57$$

Выборочное среднее генеральной совокупности лежит в этом интервале

Эти данные переносите из расчётов первой части

$$N=16$$
, $x = 13,825$, $y=0.95$, $s = 2,279$

Останется только найти квантили

$$\frac{1+\gamma}{2} = 0,975$$

$$\frac{1-\gamma}{2} = 0.025$$

Опечатка 0.975

$$\chi^2_{(1-\gamma)/2;\,n-1} = \chi^2_{0,025;19} =$$
 XИ2.ОБР((0,025; 19) = 8,90651648 и $\chi^2_{(1+\gamma)/2;\,n-1} = \chi^2_{0,975;19} =$ = XИ2.ОБР((0,025; 19) = 32,85232686 в формулу

=XИ2.ОБР((1+M6)/2;E2-1) M6=0,95 E2=16

для дисперсии		
27,48839286	6,262138	
левый	правый	

$$\frac{(n-1)s^2}{\chi^2_{n-1;\,(1+\gamma)/2}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{n-1;\,(1-\gamma)/2}}$$

$$\frac{15 * (2,279)^2}{27,48839286} < \sigma^2 < \frac{15 * (2,279)^2}{6,262137795}$$

После подсчётов

Получим 95%-ный доверительный интервал для генеральной дисперсии

(2,834287198, 12,44144)

Или 95% интервал для среднеквадратического отклонения генеральной совокупности

Корень интервала дисперсии

(1,683534139, 3,527242)