<u>Lab 8: Implementing Security Protocols in SQL (User Authentication & Role Management, Views, Encryption)</u>

Objectives:

- User Authentication & Role Management (already done in DBS)
- View-based access control for restricting data access,
- SQL injection prevention using secure coding techniques,
- Basic encryption/decryption of sensitive data.

Tool/Software requirements:

- MySQL workbench
- Anaconda

Reference book: Database Management Systems, 3rd Edition by Raghu Ramakrishnan, Johannes Gehrke

Description:

Example and Lab Tasks:

✓ Part 1: View-Based Access Control

Setup:

```
CREATE TABLE employees (
emp_id INT PRIMARY KEY,
name VARCHAR(50),
department VARCHAR(50),
salary DECIMAL(10,2)
);
INSERT INTO employees VALUES
(1, 'Alice', 'IT', 70000),
(2, 'Bob', 'HR', 60000),
(3, 'Charlie', 'IT', 800000);
```

Create a view for HR staff that only shows employee names and departments (no salary info).

CREATE VIEW employee_view_hr AS

SELECT name, department FROM employees;

-- Assuming a user named hr_user

GRANT SELECT ON employee_view_hr TO hr_user;

- Part 2: Data Encryption with MySQL
- Task:

Encrypt user passwords using AES ENCRYPT and decrypt them for verification.

© Table Setup:

```
CREATE TABLE users (
   id INT PRIMARY KEY AUTO_INCREMENT,
   username VARCHAR(50),
   password VARBINARY(255)
);
```

insert Encrypted Passwords:

```
-- Replace 'my_secret_key' with your secure key
INSERT INTO users (username, password)
VALUES ('admin', AES ENCRYPT('admin123', 'my secret key'));
```

Decrypt Passwords:

SELECT username, AES_DECRYPT(password, 'my_secret_key') AS decrypted_password FROM users;

Deliverables in Report

- SQL scripts for views, secure queries, and encryption.
- Screenshots of table creation, view outputs, and decrypted results.
- A short report (1–2 pages) answering:
 - O What security threats are mitigated?
 - o What are best practices in each method?
 - How could this be extended in a real application?
- Why are views better than granting access to base tables?
- Is symmetric encryption sufficient for storing passwords?

Lab Tasks:

Task 1: Create Users and Roles

Goal: Implement user-level access control.

- 1. Create two roles:
 - o role_manager
 - o role_employee
- 2. Create two users and assign roles:
 - \circ user_john \rightarrow role_manager
 - \circ user_anna \rightarrow role_employee

Task 2: Define Views for Data Access Control

Goal: Use views to expose only necessary data to specific roles.

1. Create a view accessible by employees (hide salary and SSN):

Task 3: Encrypt a Sensitive Field

Goal: Store and retrieve encrypted data.

Rubric:

Total Marks: 10

Criteria	Description	Marks
1. SQL Script Accuracy	 Correct and complete implementation of: ✓ View-based access control ✓ Injection prevention 	2
	✓ AES encryption/decryption - Queries should run without errors.	
2. Explanation & Justification	 Written explanation for each SQL security technique used Justification of chosen approach with examples and context 	1.5
3. Originality & Customization	Use of unique table/data names (e.g., with student roll no.)Custom examples not copied directly from class material or AI responses	2
4. Screenshots of Execution	 Clear screenshots of working outputs with timestamps Must include data insertions, query execution, and encrypted outputs 	1

Criteria	Description	Marks
5. Written Reflection Report	- 1–2 pages explaining:	1.5
	√ Learning outcomes	
	✓ Real-world relevance	
	✓ Possible improvements	
6. Viva/Oral Defense	- Student explains any part of their work in a short viva	2
	(live or recorded)	
	- Questions may cover:	
	✓ Why use views?	
	√ How injection works?	
	✓ How AES works?	
Total		10