Cover Sheet for Submission of Maths Examinations Summer 2020

We would advise preparing your coversheets with your CID, Module Name and Code and Date, before the exams are due to take place.

CID: 01738166

Module Name: Linear Algebra and Groups

Module Code: MATH40003

Date: 07/05/2020

Questions Answered (in the file):

Please tick next to the question or questions you have answered in this file.

Q1	
Q2	
Q3	
Q4	
Q5	√
Q6	

(Note: this is a coversheet for all students - not all students will have exams with 6 questions. Please tick the boxes which are appropriate for your exam and/or the file you are submitting).

(Optional) Page Numbers for each question;

Page Number	Question Answered

If handwritten, please complete in CAPITAL Letters, in Blue or Black Ink, ensuring the cover sheet is legible.

CID:01738166 MATH40003 Question 5 Page !

a) Definition of det(A) by induction on n:

(i) n=1: det (A) = an

(ii) n=2: det (an an) = an an - an an = an det (An) - an det (An)

(iii) $\det(A_{nm}) = a_{11} \det(A_{11}) - a_{12} \det(A_{21}) + a_{13} \det(A_{23}) - \cdots + (-1)^{4} a_{12}$ $= \sum_{j=1}^{\infty} (-1)^{j+1} a_{1j} \det(A_{2j})$ $= \sum_{j=1}^{\infty} (-1)^{j+1} a_{2j} \det(A_{2j})$

led 1 \(l \) = 13 is obtained by multiplying row (c) A byd.

* Case: (=): The ij entry of B is day and A:j = Bij, so by definition

 $det(B) = \sum_{j=1}^{n} (-1)^{j+1} da_{1j} del(A_{1j}) = d det(A)$

Case: (>1:

The 1j-minor Bij has leth row equal to d times the leth row of Aij. So by induction,

def (13.j) = d def (A1j) and as bij = aij we obtain by definition def (B) = d def (A).

(6) det (x2 y3x72) = det (x). det (x) - det (y). det (y). det (y). det (x). det (2)
where we have used that det (AB) = det (A). det (B) and det (A) = det(A)

$$\frac{1}{\det(x)} = \frac{1}{2} \begin{vmatrix} 1 & 3 \\ 0 & 2 \end{vmatrix} + \frac{1}{2} \begin{vmatrix} 0 & 3 \\ 0 & 2 \end{vmatrix} + \frac{7}{2} \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} = \frac{2}{2}$$

$$\det(9) = \frac{1}{2} \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} - \frac{1}{2} \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} + \frac{1}{2} \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} = \frac{1}{2}$$

CID: 0.1738166 NATH40003 Question 5 Page 2

$$det(z) = 0 \left[\frac{1}{2} \frac{1}{2} \right] - \frac{1}{2} \frac{1}{$$

This is surjective since ggida -x for any a egil.

So d'is a Bijedion.

CID: 01738166 14ATH40003 Guestion 5 Page 3

(iv) Assume Xn 書記 #8 , so Bce XnZ. Then c=ah and c=bx lor

Now all = ch-1 H = c(h-1 H) = cH as h-1 eH and & K = ck-1 K = c(k-1)c) = ck as k-1 ell.

So aHnBH = cHnck = c(Hnk)

Examples:

Then { e, r ? 3 1 } e, s } = f e } and { e, r ?) 1 { r, s r } = 8