SECTION A

- 1. Carbon, silicon, tin and lead are elements of group(IV) of the periodic Table.
 - (a) Write the general outer most electronic configuration of the elements (01 mark)
 - (b) Describe the reactions of;
 - (i) Silicon and lead with water

(05 marks)

- (ii) The oxides of carbon and tin with sodium hydroxide solution
- (iii) The tetrachlorides of the elements with water

(05 marks) (03 marks)

- (c) Sodium hypochlorite (sodium chlorate(I)) was added to lead(II) ethanoate solution and the mixture warmed.
 - (i) State what was observed

(01 mark)

(ii) Write equation for the reaction that took place

 $(1\frac{1}{2} \text{ marks})$

- (d) When an aqueous solution of tin(II) sulphate was added to an aqueous solution of potassium manganate(VII) solution, the purple solution turned colourless. Explain this observation. $(3\frac{1}{2} \text{ marks})$
- 2. (a) Explain what is meant by
 - (i) Strong electrolyte

(2 marks)

(ii) Weak electrolyte

(2 marks)

(b) State two factors that affect conductivity of an electrolyte.

(2 marks)

- (c) Explain how the factors you have stated in (b) above affect the conductivity of an electrolyte. (6 marks)
- (d) A solution containing $0.095gl^{-1}$ of magnesium chloride has an electrolytic conductivity of $2.58 \ X 10^{-4} \ \Omega^{-1} \ cm^{-1}$. If the molar ionic conductivity of magnesium ions is $106\Omega^{-1} cm^2 mol^{-1}$, determine the molar ionic conductivity of chloride ions. (3 marks)
- (e) State three factors which affect degree of ionization of a weak acid. ($\frac{1}{2}$ marks)
- (f) The molar conductivity at infinite dilution of ammonium ethanoate, magnesium chloride and magnesium ethanoate are 115.2, 258 and $188\Omega^{-1}cm^2mol^{-1}$. ($3\frac{1}{2}$ marks) Calculate the molar conductivity at infinite dilution of ammonium chloride.
- 3. Complete the following equations and in each case outline the mechanism for the reaction.

(a)

(b)
$$\begin{array}{c} CH_2\text{-}CH_3 \\ \hline AICI_3 \end{array}$$
 (5 marks)

- (c) $CH_3CH_2CH_2CH_2OH$ Conc. H_2SO_4 (5 marks)
- (d) $C \equiv CH$ (5 marks)
- 4. (a) State Raoult's law.

(2marks)

- (b) The vapour pressure of n heptane and n-hexane at 50°C are 20KNm⁻² and 50KNm⁻² respectively. If the mixture contains 20g of n-heptane and 30g of n-hexane at 50°C, calculate the;
 - (i) vapour pressure above the liquid mixture at 50°C. (4marks)
 - (ii) mole fraction of each in the vapour. (3marks)
- (c) Nitric acid (boiling point 86°C) and water form an azeotropic mixture which boils at 120°C and contains 68% of nitric acid.
 - (i) Draw a labeled temperature composition diagram of a nitric acid-water mixture. (4marks)
 - (ii) Explain the shape of the curve

(4marks)

(iii)Using the diagram describe what will happen when a mixture containing 30% of nitric acid is distilled. (3marks)

SECTION B

- 5. (a) write equations for the following reactions.
 - (i) Calcium oxide reacts with carbon to give calcium carbide which reacts with water to give ethyne. (3 marks)
 - (ii) Aluminium combines directly with carbon at $1600^{\circ}C$ to give aluminium carbide and hydrolysis the carbide gives an inflammable gas. (3 marks)
 - (iii) The carbide of magnesium gives prop-1-yne on hydrolysis. (3 marks)
 - (b) What do you understand by the term first electron affinity? (1 mark)

(c) The table below shows the first electron affinities of the elements of Period 2 of the Periodic Table.

Element	Li	Ве	В	С	N	0	F
First electron affinity	-59.8	+66	-29.0	-120	-3.0	-142	-348

- (i) Write an equation for the first electron affinity of nitrogen. (1 mark)
- (ii) State and explain the trend of first electron affinities of the elements. (06 marks)
- 6. The elements fluorine, chlorine, bromine and iodine belong to group VII of the Periodic table.
 - (a) Write the general outermost electronic configuration of the elements.

 (\frac{1}{2} \text{ marks})
 - (b) Fluorine shows only one oxidation state of -1 but the others show -1 and higher oxidation states. Explain (3 marks)
 - (c) Explain the following observations:
 - (i) Chlorine is much more soluble in sodium hydroxide than it is in water (3 marks)
 - (ii) Iodine is only sparingly soluble in water but dissolves readily in aqueous potassium iodide. (3 marks)
 - (iii) Unlike the other halogens, fluorine liberates oxygen from cold water. (3 marks)
 - (d) When iodine is added to aqueous sodium hydroxide, the initial product disproportionate. Explain the meaning of this term and write ionic equation(s) for the changes that take place. (3 marks)
 - (e) The elements of group (vii) form oxoacids except fluorine.
 - (i) Define the term oxoacid. (1 mark)
 - (ii) Give reasons why fluorine doesnot form oxoacids. $(1\frac{1}{2} \text{ marks})$
 - (iii) Write the formulae of the oxoacids formed by chlorine. (2 marks)
- 7. Write equations to show how the following compounds can be synthesized.
 - (a) 2,2-dichloropropane from propan-1-ol (5 marks)
 - (b) 1,3,5-tribromobenze from benzene (5 marks)
 - (c) pent-2-yne from 1,1-dibromopropane (5 marks)
 - (d) ethanol from 2-chlorobutane (5 marks)

- 8. (a) What is meant by a buffer solution. (2 marks)
 - (b) Explain how the following act as buffers.
 - (i) A solution of ethanoic acid and sodiumethanoate (04 marks)
 - (ii) A solution of ammonium chloride and ammonia solution (04 marks)
 - (c) A solution is made by dissolving 7.2g of ethanoic acid and 12.0g of sodiumethanoate to make $1dm^3$. To this solution was added $14cm^3$ of 1M hydrochloric acid. Calculate the pH of the solution. State any assumptions made. ($Ka = 1.8X10^{-5} \ moldm^{-3}$) (04 marks)
 - (d) Calculate the pH
 - (i) Of a solution made by mixing $40cm^3$ of 0.1M aminoethane and $16cm^3$ of 0.1M hydrochloric acid.
 - (ii) Change when of $6cm^3$ of 0.1M potassium hydroxide is added to the solution in d(i) above. $(Kb = 1.8X10^{-5} moldm^{-3})$ (03 marks)

END