Wersja:	Numer is	ndeksu:		Grupa ¹ :	I	I	
Λ				s. 4	s. 5	s. 103	s. 104
$\boldsymbol{\mathcal{H}}$				s. 105	s. 139	s. 140	nie chodz na ćwiczenia
		Logika dla	a informatykó	W			
		Kolokwium nr Czas pisan	2, 20 grudnia ia: 30+60 min				
Jeśli formu v prostokąt	$\operatorname{da}\left(\forall x\left(p(x)\right)\Rightarrow\right)$	V tym zadaniu p jes q) $\Rightarrow (\exists x p(x))$ jej dowód w systemykład.	$(1) \Rightarrow q$ jest t	tautologią	rachunl	ku predy	katów, t

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 3 (2 punkty). Rozważmy taką funkcję $f: \mathbb{Z} \times [0,1) \to \mathbb{R}$, że $f(n,x) = n+2x$. Jeśli funkcją f ma funkcję odwrotną, to w prostokąt poniżej wpisz funkcję odwrotną do f . W przeciwnym przypadku wpisz uzasadnienie, dlaczego funkcja odwrotna nie istnieje.
Zadanie 4 (2 punkty). Jeśli istnieje relacja antysymetryczna, której przechodnie domknięcie
jest relacją zwrotną, to w prostokąt poniżej wpisz dowolny przykład takiej relacji. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taka relacja nie istnieje.
Zadanie 5 (2 punkty). Rozważmy zbiory osób O , barów B i soków S oraz relacje binarne $Bywa \subseteq O \times B$, $Lubi \subseteq O \times S$ i $Podajq \subseteq B \times S$ informujące odpowiednio o tym jakie osoby
bywają w jakie barach, jakie osoby lubią jakie soki oraz jakie bary podają jakie soki. W prostokąt poniżej wpisz taką formułę φ , że $\{\langle b,s\rangle\mid\varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczającym wykaz barów i soków o tej własności, że wszystkie osoby lubiące sok s bywają tylko w barze b .

Wersja:

Numer i	ndeksu:	

 $Grupa^1$:

s. 4	s. 5	s. 103	s. 104
s. 105	s. 139	s. 140	nie chodzę na ćwiczenia

Zadanie 6 (5 punktów). Niech $\mathcal{A} = \{A_i \mid i \in \mathbb{N}\}$ oraz $\mathcal{B} = \{B_i \mid i \in \mathbb{N}\}$ będą nieskończonymi rodzinami podzbiorów \mathbb{N} . Powiemy, że rodzina \mathcal{A} jest *spleciona* z rodziną \mathcal{B} , jeżeli dla wszystkich $i \in \mathbb{N}$ zachodzą warunki: $A_i \subseteq B_i$ oraz $B_i \subseteq A_{i+1}$.

- (a) Podaj przykłady takich rodzin \mathcal{A}, \mathcal{B} podzbiorów \mathbb{N} , że \mathcal{A} jest spleciona z \mathcal{B} .
- (b) Czy dla dowolnych takich rodzin \mathcal{A}, \mathcal{B} podzbiorów \mathbb{N} , że \mathcal{A} jest splecione z \mathcal{B} , zachodzi warunek $\bigcup_{i \in \mathbb{N}} A_i = \bigcup_{i \in \mathbb{N}} B_i$?
- (c) Czy dla dowolnych takich rodzin \mathcal{A}, \mathcal{B} podzbiorów \mathbb{N} , że \mathcal{A} jest splecione z \mathcal{B} , zachodzi warunek $\bigcap_{i \in \mathbb{N}} A_i = \bigcap_{i \in \mathbb{N}} B_i$?

Podaj odpowiednie dowody lub kontrprzykłady.

Zadanie 7 (5 punktów). Na zbiorze $P(\mathbb{N})$ określamy binarną relację *prawie-równości* zbiorów \approx w taki sposób, że $A \approx B$ wtedy i tylko wtedy, kiedy A = B lub istnieje taka liczba $x \in \mathbb{N}$, że $A \setminus \{x\} = B \setminus \{x\}$. Czy relacja \approx jest (a) zwrotna, (b) symetryczna, (c) przechodnia?

Zadanie 8 (5 punktów). Niech S będzie dowolnym zbiorem. Multizbiorem nad S nazywamy dowolną funkcję $A:S\to\mathbb{N}$ (mówimy wtedy, że A(x) jest liczbą wystąpień elementu x w multizbiorze A). Jeśli A i B są multizbiorami, to ich przekrój $A\cap B$ i sumę $A\cup B$ definiujemy wzorami:

$$(A \cap B)(x) = \min(A(x), B(x))$$

$$(A \cup B)(x) = A(x) + B(x)$$

Czy dla dowolnych multizbiorów A, B, C zachodzą równości:

- (a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$,
- (b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$?

Podaj odpowiednie dowody lub kontrprzykłady.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Wersja:	Numer indeksu:	Grupa ¹ :			
		s. 4	s. 5	s. 103	s. 104
		s. 105	s. 139	s. 140	nie chodzę na ćwiczenia
	Logika dla informatyko	ów			

Kolokwium nr 2, 20 grudnia 2019 Czas pisania: 30+60 minut

i $Y \subseteq B$ z		$X] \cup Y] = X \cup f^{-1}$	$: A \to B$ oraz wszystkich $[Y]$, to w prostokąt poniż kontrprzykład.	
jest relacją	` = -,	poniżej wpisz dowoli	rczna, której przechodnie ny przykład takiej relacji. ie istnieje.	-

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 3 (2 punkty). W tym zadaniu p jest unarnym, a q jest 0-arnym symbolem relacyjnym.
Jeśli formuła $(\exists x p(x)) \Rightarrow q) \Rightarrow (\forall x (p(x) \Rightarrow q))$ jest tautologią rachunku predykatów, to
w prostokąt poniżej wpisz jej dowód w systemie naturalnej dedukcji. W przeciwnym przypadku wpisz odpowiedni kontrprzykład.
Zadanie 4 (2 punkty). Rozważmy zbiory osób O , barów B i soków S oraz relacje binarne $Bywa \subseteq O \times B$, $Lubi \subseteq O \times S$ i $Podajq \subseteq B \times S$ informujące odpowiednio o tym jakie osoby bywają w jakich barach, jakie osoby lubią jakie soki oraz jakie bary podają jakie soki. W prostokąt poniżej wpisz taką formułę φ , że $\{\langle b,o \rangle \mid \varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczającym wykaz barów i osób o tej własności, że wszystkie soki lubiane przez osobę o są podawane tylko w barze b .
Zadanie 5 (2 punkty). Rozważmy taką funkcję $f: \mathbb{Z} \times [0,1) \to \mathbb{R}$, że $f(n,x) = 2n+2$. Jeśli funkcją f ma funkcję odwrotną, to w prostokąt poniżej wpisz funkcję odwrotną do f . W przeciwnym przypadku wpisz uzasadnienie, dlaczego funkcją odwrotna nie istnieje.

We	rsj	ja

Numer inde	ksu:	

s. 4	s. 5	s. 103	s. 104
s. 105	s. 139	s. 140	nie chodzę na ćwiczenia

Zadanie 6 (5 punktów). Na zbiorze $P(\mathbb{N})$ określamy binarną relację *prawie-zawierania* zbiorów \subseteq w taki sposób, że $A \subseteq B$ wtedy i tylko wtedy, kiedy $A \subseteq B$ lub istnieje taka liczba $x \in \mathbb{N}$, że $A \setminus \{x\} \subseteq B \setminus \{x\}$. Czy relacja \subseteq jest (a) zwrotna, (b) symetryczna, (c) przechodnia?

Zadanie 7 (5 punktów). Niech $\mathcal{A} = \{A_i \mid i \in \mathbb{N}\}$ oraz $\mathcal{B} = \{B_i \mid i \in \mathbb{N}\}$ będą nieskończonymi rodzinami podzbiorów \mathbb{N} . Powiemy, że rodzina \mathcal{A} jest *wpleciona* w rodzinę \mathcal{B} , jeżeli dla wszystkich $i \in \mathbb{N}$ zachodzą warunki: $A_i \supseteq B_i$ oraz $B_i \supseteq A_{i+1}$.

- (a) Podaj przykłady takich rodzin \mathcal{A}, \mathcal{B} podzbiorów \mathbb{N} , że \mathcal{A} jest wpleciona w \mathcal{B} .
- (b) Czy dla dowolnych takich rodzin \mathcal{A}, \mathcal{B} podzbiorów \mathbb{N} , że \mathcal{A} jest wplecione w \mathcal{B} , zachodzi warunek $\bigcup_{i \in \mathbb{N}} A_i = \bigcup_{i \in \mathbb{N}} B_i$?
- (c) Czy dla dowolnych takich rodzin \mathcal{A}, \mathcal{B} podzbiorów \mathbb{N} , że \mathcal{A} jest wplecione w \mathcal{B} , zachodzi warunek $\bigcap_{i \in \mathbb{N}} A_i = \bigcap_{i \in \mathbb{N}} B_i$?

Podaj odpowiednie dowody lub kontrprzykłady.

Zadanie 8 (5 punktów). Niech S będzie dowolnym zbiorem. Multizbiorem nad S nazywamy dowolną funkcję $A:S\to\mathbb{N}$ (mówimy wtedy, że A(x) jest liczbą wystąpień elementu x w multizbiorze A). Jeśli A i B są multizbiorami, to ich przekrój $A\cap B$, sumę $A\cup B$ i różnicę $A\setminus B$ definiujemy wzorami:

$$(A \cap B)(x) = \min(A(x), B(x))$$

$$(A \cup B)(x) = A(x) + B(x)$$

$$(A \setminus B)(x) = \max(A(x) - B(x), 0).$$

Czy dla dowolnych multizbiorów A, B, C zachodzą równości:

- (a) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$,
- (b) $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$?

Podaj odpowiednie dowody lub kontrprzykłady.

¹Proszę zakreślić właściwą grupę ćwiczeniową.