Homework 10

MATH 416: ABSTRACT LINEAR ALGEBRA

Name: Date:

(Exercises are taken from *Linear Algebra*, *Fourth Edition* by Stephen H. Friedberg, Arnold J. Insel, and Lawrence E. Spence)

Here are theorems you may want to use.

Theorem 6.5 Let V be a nonzero finite-dimensional inner product space. Then V has a orthonormal basis β . Furthermore, if $\beta = \{v_1, v_2, ..., v_n\}$ and $x \in V$, then

$$x = \sum_{i=1}^{n} \langle x, v_i \rangle v_i.$$

Theorem 6.6 Let W be a nonzero finite-dimensional subspace of an inner product space V, and let $y \in V$. Then there exist unique vectors $u \in W$ and $z \in W^{\perp}$ such that y = u + z. Furthermore, if $\{v_1, v_2, ..., v_k\}$ is an orthonormal basis for W, then

$$u = \sum_{i=1}^{k} \langle y, v_i \rangle v_i.$$

1. §6.2 #2 In each part, (i) apply the Gram-Schmidt process to the given subset S of the inner product space V to obtain an orthogonal basis for span(S). Then normalize the vectors in this basis to obtain an orthonormal basis β for span(S), and (ii) compute the Fourier coefficients of the given vector relative to β . Finally, (iii) use Theorem 6.5 to verify your result.

a. §6.2 #2 (b)
$$V = \mathbb{R}^3$$
, $S = \{(1,1,1), (0,1,1), (0,0,1)\}$, and $x = (1,0,1)$

b. §6.2 #2 (c) $V = P_2(\mathbb{R})$ with the inner product $\langle f, g \rangle = \int_0^1 f(t)g(t)dt, S = \{1, x, x^2\}$, and h(x) = 1 + x

c. §6.2 #2 (g)
$$V = M_{2\times 2}(\mathbb{R})$$
 (with $\langle A, B \rangle = \text{tr}(B^*A)$), $S = \left\{ \begin{pmatrix} 3 & 5 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 9 \\ 5 & -1 \end{pmatrix}, \begin{pmatrix} 7 & -17 \\ 2 & -6 \end{pmatrix} \right\}$, and $A = \begin{pmatrix} -1 & 27 \\ -4 & 8 \end{pmatrix}$

(Use the blank spaces in the following two pages to write your solutions.)

Continued from Question 1.

a.
$$\S{6.2} \# 2 \text{ (b) } V = \mathbb{R}^3$$
, $S = \{(1,1,1),(0,1,1),(0,0,1)\}$, and $x = (1,0,1)$
 $\mathcal{U}_1 = \frac{1}{\sqrt{1+|H|}} (1,1,1) = \frac{\sqrt{3}}{3} (1,1,1)$.

 $\mathcal{U}_2 = \mathcal{W}_2 - \langle \mathcal{W}_2, \mathcal{U}_1 \rangle \mathcal{U}_1 = \{0,1,1\} - \frac{2\sqrt{3}}{3}, \frac{\sqrt{3}}{3} (1,1,1) = (-\frac{2}{3}, \frac{1}{3}, \frac{1}{3})$
 $\mathcal{U}_2 = \frac{V_2}{\|V_2\|} = \frac{\sqrt{6}}{6} (-2,1,1)$.

 $V_3 = \mathcal{W}_3 - \langle \mathcal{W}_3, \mathcal{U}_1 \rangle \mathcal{U}_1 - \langle \mathcal{W}_3, \mathcal{U}_2 \rangle \mathcal{U}_2 = \{0,0,1\} - \frac{1}{3} (1,1,1)$
 $= (0, -\frac{1}{2}, \frac{1}{2})$
 $\mathcal{U}_3 = \frac{V_3}{\|V_3\|} = \frac{\sqrt{2}}{2} (0,-|1,1)$
 $\mathcal{E} = \begin{cases} \sqrt{\frac{3}{3}} (1,1,1), \frac{\sqrt{6}}{6} (-2,1,1), \frac{\sqrt{2}}{2} (0,-|1,1) \end{cases}$
 $\mathcal{E} = \begin{cases} \sqrt{\frac{3}{3}} (1,1,1), \frac{\sqrt{6}}{6} (-2,1,1), \frac{\sqrt{2}}{2} (0,-|1,1) \end{cases}$
 $\mathcal{E} = \begin{cases} \sqrt{\frac{3}{3}} (1,1,1), \frac{\sqrt{6}}{6} (-2,1,1), \frac{\sqrt{6}}{6} (-2,1,1), \frac{\sqrt{2}}{2} (0,-|1,1) \end{cases}$
 $\mathcal{E} = \begin{cases} \sqrt{\frac{3}{3}} (1,1,1), \frac{\sqrt{6}}{6} (-2,1,1), \frac{\sqrt{6}}{6} (-2,1,1), \frac{\sqrt{2}}{2} (0,-|1,1) \end{cases}$
 $\mathcal{E} = \begin{cases} \sqrt{\frac{3}{3}} (1,1,1), \frac{\sqrt{6}}{6} (-2,1,1), \frac{\sqrt{6}}{6} (-2,1,1), \frac{\sqrt{6}}{2} (0,-|1,1), \frac{\sqrt{6}}{2} (0,-|1,1), \frac{\sqrt{6}}{2} (0,-|1,1), \frac{\sqrt{6}}{6} (-2,1,1), \frac{\sqrt{6}}{6} (-2,1,1), \frac{\sqrt{6}}{2} (0,-|1,1), \frac{\sqrt{6}}{2} (0,-|1,1|), \frac{\sqrt{6}}{2} (0,-|1,1|), \frac{\sqrt{6}}{2} (0,-|1,1|), \frac{\sqrt{6}}{2} (0,-|1,1|), \frac{\sqrt{6}}{2$

$$U_{1} = 1. \qquad V_{2} = \frac{X - \langle X, 1 \rangle \cdot 1}{|Y_{2}|} = \frac{1}{2\sqrt{3}} (X - \frac{1}{2})^{2} dt = \frac{1}{2\sqrt{3}}$$

$$||V_{2}|| = \sqrt{\frac{V_{2}}{|V_{2}|}} = 2\sqrt{3} (X - \frac{1}{2}).$$

$$V_{3} = \chi^{2} - \langle \chi^{2}, 1 \rangle \cdot 1 - \langle \chi^{2}, 2\sqrt{3}(x - \frac{1}{2}) \rangle 2\sqrt{3}(x - \frac{1}{2})$$

$$= \chi^{2} \int_{0}^{1} t^{2} dt - \left(\int_{0}^{1} 2\sqrt{3}t^{2} - \sqrt{3}t^{2} dt \right) 2\sqrt{3}(x - \frac{1}{2}) = \chi^{2} - \chi + \frac{1}{6}$$

$$||V_{3}|| = \int_{0}^{1} (\chi^{2} - \chi + \frac{1}{6})^{2} dx = \sqrt{\frac{1}{5}} - \frac{1}{2} + \frac{P \frac{4}{6}e^{2}}{9} - \frac{1}{6} + \frac{1}{36} = \frac{1}{6\sqrt{3}}$$

$$\mathcal{U}_{S} = \frac{V_{S}}{\|V_{S}\|} = 6A\overline{S} \left(\frac{X^{\perp} \times Y + \frac{1}{6}}{2} \right).$$

$$\beta = \begin{cases} 1, 2A\overline{S} \left(\frac{X - \frac{1}{2}}{2} \right), 6A\overline{S} \left(\frac{X^{\perp} \times Y + \frac{1}{6}}{2} \right).$$

$$Continued from Question 1.$$

$$\langle h(x), 1 \rangle = \int_{0}^{1} 1 + t \, dt = \frac{3}{2}, \langle h(x), 2B(x - \frac{1}{2}) \rangle = \frac{13}{6}, \langle h(x), bA\overline{S}(x^{\perp} \times Y + \frac{1}{6}) \rangle = 0.$$
Fourier coefficients.

$$h(x) = x + 1 = \frac{3}{2} + \frac{\sqrt{3}}{6} x \, 3\overline{S} \left(x - \frac{1}{2} \right) + 0$$

$$c. 86.2 #2 (8) V = M_{20}(8) (8th (A, B) = tr(B'A)). S = \left\{ \begin{pmatrix} 3 & 5 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 9 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} 7 & -17 \\ 2 & -6 \end{pmatrix} \right\}. \text{ and }$$

$$A - \begin{pmatrix} -1 & 27 \\ -1 & 8 \end{pmatrix}$$

$$\| W_{S} \| = \sqrt{1} + \sqrt{1$$

2. §6.2 #6 Let V be an inner product space, and let W be a finite-dimensional subspace of V. If $x \notin W$, prove that there exists $y \in V$ such that $y \in W^{\perp}$, but $\langle x, y \rangle \neq 0$. Hint: Use Theorem 6.6. See the first page of this homework sheet or refer to the textbook.

By Theoren 6.6, we know any XeV, exists $u \in W$ and $v \in W^{\perp}$, $v \in W^{\perp}$, $v \in W^{\perp}$, $v \in W^{\perp}$. Where $v \in W$, $v \in W^{\perp}$. Since $v \notin W$, $v \in W^{\perp}$. Since $v \notin W$, $v \in W^{\perp}$. $v \in W^{\perp}$

=> CUTV, y = CU, y = () The conclution above.

Set y=v, we have $\langle x,y\rangle = \langle x,v\rangle = \langle v,v\rangle \neq 0$

3. §6.2 #7 Let β be a basis for a subspace W of an inner product space V, and let $z \in V$. Prove that $z \in W^{\perp}$ if and only if $\langle z, v \rangle = 0$ for every $v \in \beta$.

"=" $1 \in \beta = 1 \in W$ hence $\langle Z, V \rangle = 0$. "=" $ZZ, V \rangle = 0$, $\forall V \in \beta$ = $ZZ, X \rangle = 0$ $\forall X \in Span(\beta)$. $W = Span(\beta)$ = $ZZ, X \rangle = 0$ $\forall X \in W$.

=) Z E W1

4. §6.2 #9 Let $W = \text{span}(\{(i,0,1)\})$ in \mathbb{C}^3 . Find orthonormal bases for W and W^{\perp} .

$$\langle (\hat{i}, 0, 1), (\hat{i}, 0, 1) \rangle = \hat{i}(-\hat{i}) + 1 = 2.$$

$$\beta_{W} = \{ \frac{1}{\sqrt{2}} (\hat{i}, 0, 1) \}.$$

$$\langle (x, y, z), (i, o, 1) \rangle = \chi(-i) + z = 0. = > z = xi.$$

$$\beta_{WL} = \{ (0, 1, 0), \frac{1}{\sqrt{2}}(1, 0, 2), \}.$$

5. $\S 6.2 \# 13$ (c) Let V be an inner product space and W be a finite-dimensional subspace of V. Prove the following result.

$$W = (W^{\perp})^{\perp}$$
 (Hint: Use the previous question 2. §6.2 #6.)

$$W = \{ \chi \in V \mid \langle x, y \rangle = 0, \forall y \in W^{\perp} \}.$$

Proof: Let
$$\{x \in V \mid \langle x, y \rangle = 0, \forall y \in W^{\perp}\} = K$$
.
by 6.2.6 if $x \notin W$, exist $y \in W^{\perp} \angle x, y > \neq 0$
and the $x \notin K = > K \subseteq W$.

6. §6.3 # 3 For each of the following inner product S paces V and linear operators T on V, evaluate T^* at the given vector in V.

a. §6.3 #3 (a)
$$V = \mathbb{R}^2$$
, $T(a,b) = (2a+b, a-3b)$, $x = (3,5)$

b. §6.3 #3 (c)
$$V = P_1(\mathbb{R})$$
 with $\langle f, g \rangle = \int_{-1}^1 f(t)g(t)dt$, $T(f) = f' + 3f$, $f(t) = 4 - 2t$

$$\begin{array}{l}
\alpha \cdot \beta = \{(1,0),(0,1)\}, \\
\{1\}^{\beta} = \{(2,1)\}_{\beta}, \{1,-3\}_{\beta}\} = \{2,1\}, \\
\{1\}^{\beta} = \{(2,1)\}_{\beta}, \{1,-3\}_{\beta}\} = \{1,-3\}. \\
\{1\}^{\beta} = \{(2,1)\}_{\beta} = \{1,-3\}, \\
\{1\}^{\beta} = \{1,-3\}, \\
\{1\}^{\beta$$

=)
$$T^*(f(t)) = 12\sqrt{12}x_{11}^{2} + 2\sqrt{16}x_{12}^{2}t = 12+6t$$

7. §6.3 #12 Let V be an inner product space, and let T be a linear operator on V. Prove the following results.

a. §6.3 #12 (a)
$$R(T^*)^{\perp} = N(T)$$

b. §6.3 #12 (b) If V is finite-dimensional, then $R(T^*) = N(T)^{\perp}$. Hint: Use the previous question 5($6.2 \# 13 \ (c)$).

$$\mathcal{O}. \quad \mathcal{R}(T^*) = \{ y \mid y = T^*(x), \forall x \in V \}.$$

$$\mathcal{N}(T) = \{ x \in V \mid T(x) = 0 \}.$$

 $< v, T^*(x) > = 0 \quad \forall x \in V \iff < T(v), x > = 0 \quad \forall x \in V$

$$\mathcal{L}(T^*)^{\perp} = \mathcal{N}(T).$$

$$\mathcal{N}(\mathsf{T})^{\perp} = (\mathcal{R}(\mathsf{T}^*)^{\perp})^{\perp} = \mathcal{R}(\mathsf{T}^*)$$

8. §6.3 #14 Let V be an inner product space, and let $y, z \in V$. Define $T: V \to V$ by $T(x) = \langle x, y \rangle z$ for all $x \in V$. First prove that T is linear. Then show that T^* exists and find an explicit expression for it.

$$T(x,+(x_{2}) = \langle x,+(x_{2},y) \rangle z$$

$$= \langle x,+(y) + \langle (x_{2},y) \rangle z$$

$$= \langle x,+(y) + \langle (x_{2},y) \rangle z$$

$$= \langle x,+(y) \rangle z + \langle (x_{2},y) \rangle z$$

$$= T(x_{1}) + \langle T(x_{2}) \rangle$$

$$= (x_{1}, y) + \langle T(x_{2}, y) \rangle$$

$$= (x_{1}, y) + \langle T(x_{2}, y) + \langle T(x_{2}, y) \rangle$$

$$= (x_{1}, y) + \langle T(x_{2}, y$$

9. §6.4 #2 For each linear operator T on an inner product space V, (i) determine whether T is normal, self-adjoint, or neither. (ii) If possible, produce an orthonormal basis of eigenvectors of T for V and list the corresponding eigenvalues.

a. §6.4 #2 (a)
$$V = \mathbb{R}^2$$
 and T is defined by $T(a,b) = (2a - 2b, -2a + 5b)$

b. §6.4 #2 (c)
$$V = \mathbb{C}^2$$
 and T is defined by $T(a, b) = (2a + ib, a + 2b)$

c. §6.4 #2 (e)
$$V = M_{2\times 2}(\mathbb{R})$$
 and T is defined by $T(A) = A^t$

(Use the blank space in the following page to write your solutions.)

10. §6.4 #4 Let T and U be self-adjoint operators on an inner product space V. Prove that TU is self-adjoint if and only if TU = UT.

T, U are sel-adjoint =>
$$T=T^*$$
, $U=U^*$.

Proof: $=$ >": TU is self-adjoint. => $TU=(TU)^*=U^*T^*$

= UT

($=$ ": $TU=UT=$) $TU=T^*U^*=(UT)^*$

= $(TU)^*$

=> TU is self-adjoint.