

BAGGRUND OG DATABESKRIVELSE (EKSEMPEL 1-2)

Denne opgave beskæftiger sig med den samlede månedlige el-produktion i Danmark i perioden 2000-2015, herunder hvor stor en del af produktionen der stammer vindmøller. Data er venligst stillet til rådighed af Energistyrelsen.

EKSEMPEL 1 (SAMLET EL-PRODUKTION)

a). **Angiv** de estimerede parametre i en lineær regressionsmodel med den samlede elproduktion i GigaWatt-timer (*El nettoproduktion GWh*) som responsvariabel og gennemsnitstemperaturen (målt over hele døgnet) i grader Celcius (*Middeltemperatur DK C*) som forklarende variabel.

Giv en fortolkning af de estimerede parametre.

Angiv modellens forklaringsgrad.

b). Beregn på baggrund af den estimerede regressionsmodel den forventede samlede månedlige el-produktion i GigaWatt-timer i en måned med en gennemsnitstemperatur på 15 grader Celsius.

EKSEMPEL 2 (EL-PRODUKTION FRA VINDMØLLER)

- a). **Angiv** de estimerede parametre i en lineær regressionsmodel med den samlede elproduktion fra vindkraft i GigaWatt-timer (*El Vindkraft GWh*) som responsvariabel og gennemsnitsvindhastigheden (målt over hele døgnet) i meter per sekund (m/s) (*Middelvind m/s*) som forklarende variabel.
- b). Beregn et 95%-konfidensinterval for β_0 og giv en fortolkning af intervallet.
- c). **Beregn** et 95%-konfidensinterval for betydningen for den forventede samlede el-produktion fra vindkraft af en stigning i gennemsnitsvindhastigheden på 1 m/s og **giv** en fortolkning af intervallet.
 - **Beregn** et 95%-konfidensinterval for betydningen for den forventede samlede el-produktion fra vindkraft af en stigning i gennemsnitsvindhastigheden på 0,5 m/s og **giv** en fortolkning af intervallet.
- d). **Gør rede for** om der er statistisk belæg for en nulhypotese om, at gennemsnitsvindhastigheden ikke har nogen betydning for den forventede samlede el-produktion fra

- vindkraft (brug $\alpha = 5\%$ som signifikansniveau). **Angiv** i den forbindelse hypoteser samt teknisk og let forståelig konklusion.
- e). Gør rede for om der er statistisk belæg for en nulhypotese om, at for hver 1 m/s gennemsnitsvindhastigheden stiger, så stiger den forventede samlede el-produktion fra vindkraft med 100 GigaWatt-timer (brug $\alpha=5\%$ som signifikansniveau). Angiv i den forbindelse hypoteser samt teknisk og let forståelig konklusion.
 - Gør rede for om der er statistisk belæg for en nulhypotese om, at for hver 1 m/s gennemsnitsvindhastigheden stiger, så stiger den forventede samlede el-produktion fra vindkraft med 150 GigaWatt-timer (brug $\alpha=5\%$ som signifikansniveau). Angiv i den forbindelse hypoteser samt teknisk og let forståelig konklusion.

VEJLEDENDE LØSNINGER

EKSEMPEL 1 (► Løsning i JMP)

1a):

De estimerede parametre hørende til modellen

El nettoproduktion GWh = $\beta_0 + \beta_1 \cdot Middeltemperatur$ DK C+ ϵ

hvor ε er normalfordelt $N(0,\sigma)$ er givet som

$$\hat{\beta}_0 = 3.947,69$$
 $\hat{\beta}_1 = -110,08$ $\hat{\sigma} = 435,23$

Summary of Fit										
RSquare		0,69509	96							
RSquare Adj		0,69339	93							
Root Mean Square Error		435,232	26							
Mean of Response		2984,43	36							
Observations (or Sum W	gts)	18	31							
Analysis of Varianc	e									
Parameter Estimates										
Term	Es	stimate	S	td Error	t Rat	tio	Prob>			
Intercept	394	47,6862	5	7,62214	68,	51	<,0001			
Middeltemperatur DK C	-13	10,0753	5	,449068	-20,	20	<,0001			

Det betyder, at den forventede samlede månedlige el-produktion...

- er på 3.947,69 GigaWatt-timer såfremt gennemsnitstemperaturen er 0 grader Celsius
- falder med 110,08 GigaWatt-timer for hver 1 grad Celsius den månedlige gennemsnitstemperatur stiger

Endvidere betyder det, at den samlede månedlige el-produktion med ca. 95% sandsynlighed vil variere med $\pm 2 \cdot 435, 23 = \pm 870, 46$ GigaWatt-timer efter at vi har korrigeret for gennemsnitstemperaturens indvirkning på/sammenhæng med el-produktionen.

Den estimerede regressionsmodel har en forklaringsgrad på $R^2 = 0,6951$.

1в):

På baggrund af den i delspg. a) estimerede regressionsmodel er den forventede samlede månedlige elproduktion på 2.296,56 GigaWatt-timer, såfremt gennemsnitstemperaturen i en måned er 15 grader Celsius.

EKSEMPEL 2 (► Løsning i JMP)

2a):

De estimerede parametre hørende til modellen

El Vindkraft GWh =
$$\beta_0 + \beta_1 \cdot \text{Middelvind m/s} + \varepsilon$$

hvor ε er normalfordelt $N(0,\sigma)$ er givet som

$$\hat{\beta}_0 = -307,85$$
 $\hat{\beta}_1 = 193,96$ $\hat{\sigma} = 259,43$

Summary of Fit						
RSquare RSquare Adj Root Mean Square Error Mean of Response Observations (or Sum Wgts)		0,272061				
		0,267994				
		259,4333				
		622,8343				
		181				
Parameter Es	timates					
Term	Estimate	Std Error	t Ratio	Prob> t	Lower 95%	Upper 95%
Intercept	-307,8472	115,4084	-2,67	0,0083*	-535,5833	-80,11111
Middelvind m/s	193,95895	23,71361	8,18	<,0001*	147,16476	240,75314

Det betyder, at den forventede samlede månedlige el-produktion fra vindkraft...

- er på -307,85 GigaWatt-timer såfremt gennemsnitsvindhastigheden er 0 m/s. (denne fortolkning er naturligvis en anelse aparte, idet en gennemsnitsvindhastighed på 0 betyder, at det overhovedet ikke blæser i en hel måned. Læg desuden mærke til, at der ikke er nogen måneder i datamaterialet, hvor det ikke i gennemsnit blæser mindst 3 m/s. Derfor er tilfældet med 0 m/s udelukkende et teoretisk scenarie, og derfor er det ikke overraskende, at modellens forventede produktion (negativ produktion) i dette tilfælde er ren nonsens.)
- stiger med 193,96 GigaWatt-timer for hver 1 m/s den månedlige gennemsnitsvindhastighed stiger

Endvidere betyder det, at den samlede månedlige el-produktion fra vindkraft med ca. 95% sandsynlighed vil variere med $\pm 2.259, 43 = \pm 518, 86$ GigaWatt-timer efter at vi har korrigeret for gennemsnitsvindhastighedens indvirkning på/sammenhæng med el-produktionen fra vindkraft.

2в):

Et 95%-konfidensinterval for β_0 er givet som [-535,58;-80,11]. Det betyder, at i en måned med en gennemsnitsvindhastighed på 0 vil den forventede el-produktion fra vindkraft med 95% sandsynlighed være på mellem -535,58 GigaWatt-timer og -80,11 GigaWatt-timer (som ovenfor er fortolkningen også her ren nonsens, fordi det ikke giver mening at alene se på β_0 , idet det svarer til at se på el-produktionen fra vindkraft i en måned, hvor det overhovedet ikke blæser bare det mindste).

2c):

Et 95%-konfidensinterval for β_1 er givet som [147,16; 240,75]. Det betyder, at med 95% sandsynlighed vil den forventede el-produktion fra vindkraft stige med mellem 147,16 og 240,75 GigaWatt-timer for hver gang gennemsnitsvindhastigheden stiger med 1 m/s.

Et 95%-konfidensinterval for $\beta_1 \cdot 0.5$ er givet som $[147,16 \cdot 0.5; 240,75 \cdot 0.5] = [73,58; 120,38]$. Det betyder, at med 95% sandsynlighed vil den forventede el-produktion fra vindkraft stige med mellem 73,58 og 120,38 GigaWatt-timer for hver gang gennemsnitsvindhastigheden stiger med 0,5 m/s.

2_D):

Test af nulhypotesen om at gennemsnitsvindhastigheden ikke har nogen betydning for den samlede månedlige el-produktion fra vindkraft

$$H_0: \beta_1 = 0$$
 og $H_a: \beta_1 \neq 0$

forkastes idet P-værdien er mindre end 0,01% (alternativt: fordi 0 ikke tilhører 95%-konfidensintervallet for β_1 , jf. delspg. 2c)). Der er således ikke på baggrund af datamaterialet belæg for at hævde, at gennemsnitsvindhastigheden ikke har en sammenhæng med den samlede el-produktion fra vindkraft (hvilket i øvrigt heller ikke ville give meget mening).

2E):

Test af nulhypotesen om at for hver 1 m/s gennemsnitsvindhastigheden stiger, så stiger den forventede samlede månedlige el-produktion fra vindkraft med 100 GigaWatt-timer

$$H_0: \beta_1 = 100$$
 og $H_a: \beta_1 \neq 100$

forkastes, fordi 100 ikke tilhører 95%-konfidensintervallet for β_1 (jf. delspg. 2c)). Der er således ikke på baggrund af datamaterialet belæg for at hævde, at en stigning i gennemsnitsvindhastigheden på 1 m/s medfører en stigning i den forventede samlede månedlige el-produktion fra vindkraft på 100 GigaWatt-timer.

Test af nulhypotesen om at for hver 1 m/s gennemsnitsvindhastigheden stiger, så stiger

den forventede samlede månedlige el-produktion fra vindkraft med 150 GigaWatt-timer

$$H_0: \beta_1 = 150$$
 og $H_a: \beta_1 \neq 150$

forkastes ikke, fordi 150 tilhører 95%-konfidensintervallet for β_1 (jf. delspg. 2c)). Der er således ikke på baggrund af datamaterialet belæg for at afvise en påstand om, at en stigning i gennemsnitsvindhastigheden på 1 m/s medfører en stigning i den forventede samlede månedlige el-produktion fra vindkraft på 150 GigaWatt-timer.