

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Geometría I Examen XV

Los Del DGIIM, losdeldgiim.github.io

Roxana Acedo Parra

Granada, 2025

Asignatura Geometría I.

Curso Académico 2024-25.

Grado Doble Grado de Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Ana María Hurtado Cortegana y Antonio Ros Mulero.

Descripción Convocatoria extraordinaria.

Fecha 10 de febrero de 2025.

Ejercicio 1 (2.5 puntos). Dado $a \in \mathbb{R}$, consideremos el subespacio de \mathbb{R}^4 .

$$U_a := \mathcal{L}(\{(0, -1, a, 3), (2 - a, 1, 2, -3), (0, a, -2 - a, 3)\})$$

- 1. Calcula la dimensión de U_a en función de los valores de a. Determina una base y ecuaciones implícitas de U_a para cada $a \in \mathbb{R}$.
- 2. Para a satisfaciendo $\dim_{\mathbb{R}} U_a = 2$, encuentra un subespacio W de \mathbb{R}^4 tal que $\mathbb{R}^4 = U_a \oplus W$. Determina las ecuaciones implícitas de W.

Ejercicio 2 (2.5 puntos). Sea $f: \mathcal{M}_2(\mathbb{R}) \to \mathbb{R}^3$ la aplicación lineal dada por:

$$f\left(\begin{smallmatrix} 0 & & 1 \\ 1 & & 0 \end{smallmatrix} \right) = 1 + x^2, \quad f\left(\begin{smallmatrix} 1 & & 1 \\ 0 & & 0 \end{smallmatrix} \right) = 2 - x + x^2, \quad f\left(\begin{smallmatrix} 0 & & 0 \\ 0 & & 1 \end{smallmatrix} \right) = 1 + x^2, \quad f\left(\begin{smallmatrix} 1 & & -1 \\ 0 & & 0 \end{smallmatrix} \right) = 2 - 3x - x^2$$

- 1. Calcula la matriz asociada a f respecto de las bases usuales de $\mathcal{M}_2(\mathbb{R})$ y de $\mathbb{R}_2[x]$.
- 2. Encontrar bases ordenadas B y B' de $\mathcal{M}_2(\mathbb{R})$ y $\mathbb{R}_2[x]$ respectivamente, para las cuales

$$M(f, B, B') = \begin{pmatrix} I_r & 0 \\ \hline 0 & 0 \end{pmatrix},$$

donde I_r es la matriz identidad de orden r para un cierto r.

3. Calcula la base dual de la base B' obtenida en el apartado anterior.

Ejercicio 3 (2.5 puntos). Sea V un espacio vectorial de dimensión finita sobre \mathbb{K} y $f, g \in \operatorname{End}_{\mathbb{K}} V$ tales que $f \circ g = g \circ f$. Prueba que:

- 1. $f(\ker(g)) \subseteq \ker(g)$ y nulidad $(g) = \dim_{\mathbb{K}}(\ker(f) \cap \ker(g)) + \dim_{\mathbb{K}}(f(\ker(g)))$.
- 2. $f(\operatorname{Im}(g)) \subseteq \operatorname{Im}(g) \text{ y rango}(g) = \dim_{\mathbb{K}}(\ker(f) \cap \operatorname{Im}(g)) + \operatorname{rango}(f \circ g)$.

Ejercicio 4 (2.5 puntos). Decide de forma razonada si las siguientes afirmaciones son verdaderas o falsas:

- 1. Sea V un espacio vectorial de dimensión finita, $U, W \subseteq V$ dos subespacios vectoriales no triviales y B_U , B_W una base de U y otra de W.
 - a) Si $B_U \cup B_W$ es una base de V entonces U + W = V.
 - b) Si $B_U \cap B_W = \emptyset$ entonces $U \cap W = \{\overrightarrow{0}\}.$
- 2. Si $\mathcal{M}_n(\mathbb{R})$ es el espacio de las matrices cuadradas reales de orden $n \geq 2$ entonces
 - a) Existe una base de $\mathcal{M}_n(\mathbb{R})$ formada por matrices de traza igual a 0.
 - b) Existe una base de $\mathcal{M}_n(\mathbb{R})$ con una matriz de traza 1 y todas las demás con traza igual a 0.

Ejercicio 1 (2.5 puntos). Dado $a \in \mathbb{R}$, consideremos el subespacio de \mathbb{R}^4 .

$$U_a := \mathcal{L}(\{(0, -1, a, 3), (2 - a, 1, 2, -3), (0, a, -2 - a, 3)\})$$

1. Calcula la dimensión de U_a en función de los valores de a. Determina una base y ecuaciones implícitas de U_a para cada $a \in \mathbb{R}$.

Ponemos los vectores que generan U_a por filas para hacer una matriz.

$$A(a) := \begin{pmatrix} 0 & -1 & a & 3 \\ 2 - a & 1 & 2 & -3 \\ 0 & a & -2 - a & 3 \end{pmatrix}$$

El determinante del menor de A(a) formado por sus columnas primera, segunda y tercera es.

$$\begin{vmatrix} 0 & -1 & 3 \\ 2 - a & 1 & -3 \\ 0 & a & 3 \end{vmatrix} = 3(2 - a)(1 + a)$$

Por tanto:

I. Si $a \neq -1, 2$, el rango de A(a) es 3. Esto quiere decir que los tres vectores que forman el sistema de generadores de U_a del enunciado son linealmente independientes, y por tanto, dim_R $U_a = 3$. Una base de U_a es

$$B_a := \{(0, -1, a, 3), (2 - a, 1, 2, -3), (0, a, -2 - a, 3)\}$$

Para calcular las ecuaciones implícitas de U_a , obligamos a que la matriz.

$$\begin{pmatrix}
0 & -1 & a & 3 \\
2 - a & 1 & 2 & -3 \\
0 & a & -2 - a & 3 \\
x & y & z & t
\end{pmatrix}$$

tenga rango 3, es decir, que su determinante sea cero. Este determinante vale

$$-(a+1)\left[-3(a+2)x+6(2-a)y+3(2-a)z+(a^2-4a+4)t\right]$$

así que la (única) ecuación implícita de U_a es

$$-3(a+2)x + 6(2-a)y + 3(2-a)z + (a^2 - 4a + 4)t = 0.$$

II. Si a = -1, nos queda $A(-1) = \begin{pmatrix} 0 & -1 & -1 & 3 \\ 3 & 1 & 2 & -3 \\ 0 & -1 & -1 & 3 \end{pmatrix}$, que tiene iguales sus filas primera y tercera, luego el rango de A(-1) es como mucho 2. Como el menor $M := \begin{pmatrix} 0 & -1 \\ 3 & 1 \end{pmatrix}$

de A(-1) tiene determinante $3 \neq 0$, el rango de A(-1) es 2, y por tanto $\dim_{\mathbb{R}} U_{-1} = 2$. Una base de U_{-1} es

$$B_{-1} = \{(0, -1, -1, 3), (3, 1, 2, -3)\}.$$

Para calcular las ecuaciones implícitas de U_{-1} , obligamos a que la matriz

$$\begin{pmatrix} 0 & -1 & -1 & 3 \\ 3 & 1 & 2 & -3 \\ x & y & z & t \end{pmatrix}$$

tenga rango 2, es decir, a que los siguientes dos determinantes se anulen (se obtienen orlando el menor M):

$$\begin{vmatrix} 0 & -1 & -1 \\ 3 & 1 & 2 \\ x & y & z \end{vmatrix} = -x - 3y + 3z, \quad \begin{vmatrix} 0 & -1 & 3 \\ 3 & 1 & -3 \\ x & y & t \end{vmatrix} = 3t + 9y$$

luego las ecuaciones implícitas de U_{-1} son

$$-x - 3y + 3z = 0$$
, $3t + 9y = 0$

III. Si
$$a=2$$
, nos queda $A(2)=\begin{pmatrix} 0 & -1 & 2 & 3 \\ 0 & 1 & 2 & -3 \\ 0 & 2 & -4 & 3 \end{pmatrix}$. El determinante del

menor formado por las columnas segunda, tercera y cuarta de A(2) es $-36 \neq 0$, luego como pasaba en el apartado i), los tres vectores que forman el sistema de generadores de U_2 del enunciado son linealmente independientes, y por tanto, $\dim_{\mathbb{R}} U_2 = 3$. Una base de U_a es B_2 (en el apartado B_a teníamos definida B_a para $a \in \mathbb{R} \setminus \{-1, 2\}$, ahora extendemos esa misma definición al caso a = 2):

$$B_2 = \{(0, -1, 2, 3), (0, 1, 2, -3), (0, 2, -4, 3)\}.$$

Para calcular las ecuaciones implícitas de U_2 seguimos el mismo procedimiento del apartado 1 con la base B_2 , es decir, imponemos que la matriz

$$\begin{pmatrix} 0 & -1 & 2 & 3 \\ 0 & 1 & 2 & -3 \\ 0 & 2 & -4 & 3 \\ x & y & z & t \end{pmatrix}$$

tenga rango 3, es decir, que su determinante sea cero. Desarrollando por la primera columna, este determinante vale 36x, luego la ecuación implícita de U_2 es

$$x = 0$$
.

2. Para a satisfaciendo $\dim_{\mathbb{R}} U_a = 2$, encuentra un subespacio W de \mathbb{R}^4 tal que $\mathbb{R}^4 = U_a \oplus W$. Determina las ecuaciones implícitas de W.

Por el apartado (a), el único caso en el que $\dim_{\mathbb{R}} U_a = 2$ es para a = -1, y en este caso B_{-1} dada por (2). Ampliamos B_{-1} una base de \mathbb{R}^4 , por ejemplo con los vectores (0,0,1,0), (0,0,0,1). La ampliación

$$B' := \{(0, -1, -1, 3), (3, 1, 2, -3), (0, 0, 1, 0), (0, 0, 0, 1)\}$$

es una base de \mathbb{R}^4 porque los cuatro vectores son linealmente independientes, ya que

$$\begin{vmatrix} 0 & -1 & -1 & 3 \\ 3 & 1 & 2 & -3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 3 \neq 0$$

Así que $W := \mathcal{L}(\{(0,0,1,0), (0,0,0,1)\})$ cumple $\mathbb{R}^4 = U_{-1} \oplus W$. Finalmente, las ecuaciones implícitas de W son

$$x = 0, \quad y = 0.$$

Ejercicio 2 (2.5 puntos). Sea $f: \mathcal{M}_2(\mathbb{R}) \to \mathbb{R}^3$ la aplicación lineal dada por:

$$f\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 1 + x^2, \quad f\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = 2 - x + x^2, \quad f\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 1 + x^2, \quad f\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} = 2 - 3x - x^2$$

1. Calcula la matriz asociada a f respecto de las bases usuales de $\mathcal{M}_2(\mathbb{R})$ y de $\mathbb{R}_2[x]$. Llamamos

$$M_1 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad M_2 := \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \quad M_3 := \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad M_4 := \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}.$$

Las coordenadas de M_1, M_2, M_3, M_4 en la base ordenada usual de $\mathcal{M}_{\in}\mathbb{R}$) son respectivamente:

$$(M_1)_{B_u} = (0, 1, 1, 0), \quad (M_2)_{B_u} = (1, 1, 0, 0),$$

 $(M_3)_{B_u} = (0, 0, 0, 1), \quad (M_4)_{B_u} = (1, -1, 0, 0).$

Como el determinante

$$\begin{vmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & -1 & 0 & 0 \end{vmatrix} = 2 \neq 0$$

Deducimos que $B' := (M_1, M_2, M_3, M_4)$ es una base ordenada de $M_2(\mathbb{R})$. Esto hace que tenga sentido la definición de f del enunciado, vía el teorema fundamental de las aplicaciones lineales. Además, los datos que nos dan implican que

$$M(f, B', B'_u) = \begin{pmatrix} 1 & 2 & 1 & 2 \\ 0 & -1 & 0 & -3 \\ 1 & 1 & 1 & -1 \end{pmatrix}.$$

Sea $B'_u = (1, x, x^2)$ la base ordenada usual de $\mathbb{R}_2[x]$. La matriz que nos piden es:

$$M(f, B_u, B'_u) = M(f \circ 1_{\mathcal{M}_2(\mathbb{R})}, B_u, B'_u) = M(f, B', B'_u) \cdot M(1_{\mathcal{M}_2(\mathbb{R})}, B_u, B') =$$

$$= M(f, B', B'_u) \cdot M(1_{\mathcal{M}_2(\mathbb{R})}, B', B_u)^{-1} =$$

$$= \begin{pmatrix} 1 & 2 & 1 & 2 \\ 0 & -1 & 0 & -3 \\ 1 & 1 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}^{-1} =$$

$$= \begin{pmatrix} 1 & 2 & 1 & 2 \\ 0 & -1 & 0 & -3 \\ 1 & 1 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 1 & 0 \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} =$$

$$= \begin{pmatrix} 2 & 0 & 1 & 1 \\ -2 & 1 & -1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}.$$

$$f(x) = 7x + 3$$
$$= 7x + 3$$

2. Encontrar bases ordenadas B y B' de $\mathcal{M}_2(\mathbb{R})$ y $\mathbb{R}_2[x]$ respectivamente, para las cuales

$$M(f, B, B') = \begin{pmatrix} I_r & 0 \\ \hline 0 & 0 \end{pmatrix},$$

donde I_r es la matriz identidad de orden r para un cierto r.

Como el rango de f es el rango de cualquiera de sus matrices (en cualquier par de bases de su dominio y codominio), tenemos r = rango(f). Para calcular r, nos podemos basar, por ejemplo, en la matriz $M(f, B_u, B'_u)$ que habíamos calculado en (3): la tercera fila de esta matriz es suma de sus dos primeras filas, luego $M(f, B_u, B'_u)$ tiene como mucho rango 2. Su rango es exactamente 2, ya que el menor $\begin{pmatrix} 2 & 0 \\ -2 & 1 \end{pmatrix}$ de $M(f, B_u, B'_u)$ tiene determinante $2 \neq 0$. Así que r = 2. Por la fórmula de la nulidad y el rango, la nulidad de f es 4-2=2. La base ordenada B Será de la forma $B = (N_1, N_2, N_3, N_4)$ siendo $\{N_3, N_4\}$ una base del núcleo de f. Usando (3), tenemos

$$\ker(f) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_{2}(\mathbb{R}) : \begin{pmatrix} 2 & 0 & 1 & 1 \\ -2 & 1 & -1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\} =$$

$$= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_{2}(\mathbb{R}) : \begin{pmatrix} 2a + c + d = 0 \\ -2a + b - c = 0 \end{pmatrix} \right\} =$$

$$= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_{2}(\mathbb{R}) : \begin{pmatrix} c + d = -2a \\ c = -2a + b \end{pmatrix} \right\} = \mathcal{L}(\{N_{3}, N_{4}\}),$$

donde:

$$N_3 := \begin{pmatrix} 1 & 0 \\ -2 & 0 \end{pmatrix}, \quad N_4 := \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}.$$

Tomamos N_1, N_2 como una ampliación donde $\{N_3, N_4\}$ es una base de $M_2(\mathbb{R})$; por ejemplo, con

$$N_1 := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad N_2 := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Que $B := (N_1, N_2, N_3, N_4)$ es base de $\mathcal{M}_2(\mathbb{R})$ es consecuencia de que el determinante de la matriz de las coordenadas de N_1, N_2, N_3, N_4 en la base usual es no nulo; escribiendo estas coordenadas por filas, este determinante es

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & -1 \end{vmatrix} = 2 \neq 0$$

y ya tenemos la base B. Para calcular la base B', notemos que

$$Im(f) = L(\{f(N_1), f(N_2), f(N_3), f(N_4)\}) = L(\{f(N_1), f(N_2)\}) = L(\{2-2x, x+x^2\}),$$

donde la última igualdad se deduce de las dos primeras columnas de la matriz $M(f, B_u, B'_u)$ que calculamos en el apartado (a). Ahora llamamos

$$B' := (2 - 2x, x + x^2, 1),$$

que es base (ordenada) de $\mathbb{R}_2[x]$ porque está formada por tres polinomios de grados distintos 1, 2, 0. Por construcción, la matriz de f en B, B' es

$$M(f, B, B') = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

3. Calcula la base dual de la base B' obtenida en el apartado anterior.

Llamamos $B'^* = (\varphi_1, \varphi_2, \varphi_3)$ a la base dual de B'. Entonces,

$$\varphi_1(2-2x) = 1$$
, $\varphi_1(x+x^2) = 0$, $\varphi_1(1) = 0$.

De la primera y tercera ecuación tenemos $1=2[\varphi_1(1)-\varphi_1(x)]=2[0-\varphi_1(x)]=-2\varphi_1(x)$, luego $\varphi_1(x)=-\frac{1}{2}$. De esto y la segunda ecuación deducimos que $\varphi_1(x^2)=-\varphi_1(x)=\frac{1}{2}$. Por tanto,

$$\varphi_1(a_0 + a_1x + a_2x^2) = -\frac{a_1}{2} + \frac{a_2}{2}, \quad \forall a_0 + a_1x + a_2x^2 \in \mathbb{R}_2[x].$$

 φ_2 y φ_3 se calculan análogamente:

$$\varphi_2(2-2x) = 0$$
, $\varphi_2(x+x^2) = 1$, $\varphi_2(1) = 0$,

luego $0 = 2[\varphi_2(1) - \varphi_2(x)] = 2[0 - \varphi_2(x)] = -2\varphi_2(x)$, de donde $\varphi_2(x) = 0$. $\varphi_2(x^2) = 1 - \varphi_2(x) = 1$. Por tanto,

$$\varphi_2(a_0 + a_1x + a_2x^2) = a_2, \quad \forall a_0 + a_1x + a_2x^2 \in \mathbb{R}_2[x].$$

 $\varphi_3(2 - 2x) = 0, \quad \varphi_3(x + x^2) = 0, \quad \varphi_3(1) = 1,$

luego $0 = 2[\varphi_3(1) - \varphi_3(x)] = 2[1 - \varphi_3(x)]$, de donde $\varphi_3(x) = 1$. $\varphi_3(x^2) = -\varphi_3(x) = -1$. Por tanto,

$$\varphi_3(a_0 + a_1x + a_2x^2) = a_0 + a_1 - a_2, \quad \forall a_0 + a_1x + a_2x^2 \in \mathbb{R}_2[x].$$

Ejercicio 3 (2.5 puntos). Sea V un espacio vectorial de dimensión finita sobre \mathbb{K} y $f, g \in \operatorname{End}_{\mathbb{K}} V$ tales que $f \circ g = g \circ f$. Prueba que:

1. $f(\ker(g)) \subseteq \ker(g)$ y nulidad $(g) = \dim_{\mathbb{K}}(\ker(f) \cap \ker(g)) + \dim_{\mathbb{K}}(f(\ker(g)))$. Sea $x \in \ker(g)$. Veamos que $f(x) \in \ker(g)$ y tendremos la inclusión que nos piden.

$$g(f(x))=(g\circ f)(x)=(f\circ g)(x)=f(g(x))=f(0)=0.$$
 Por tanto, $f(\ker(g))\subseteq\ker(g).$

Como $f(\ker(g)) \subseteq \ker(g)$, podemos restringir f a $\ker(g)$ obteniendo un endomorfismo

$$f_{\mid \ker(g)} : \ker(g) \to \ker(g).$$

Aplicando la fórmula de la nulidad y el rango a $f_{|\ker(g)|}$ (notemos que el espacio total es ahora $\ker(g)$, que es de dimensión finita por serlo V), tenemos

$$\operatorname{nulidad}(g) = \dim_{\mathbb{K}} \ker(g) = \dim_{\mathbb{K}} \ker\left(f_{\big| \ker(g)}\right) + \dim_{\mathbb{K}} \operatorname{Im}\left(f_{\big| \ker(g)}\right),$$

luego para terminar basta demostrar que:

$$\ker\left(f_{\big|\ker(g)}\right) = \ker(f) \cap \ker(g), \quad \operatorname{Im}\left(f_{\big|\ker(g)}\right) = f(\ker(g)).$$

Tenemos que:

$$\ker\left(f_{\big|\ker(g)}\right) = \left\{x \in \ker(g) \mid f(x) = 0\right\} = \left\{x \in \ker(g) \mid x \in \ker(f)\right\} = \ker(f) \cap \ker(g),$$

$$\operatorname{Im}\left(f_{\big|\ker(g)}\right) = \left\{f(x) \mid x \in \ker(g)\right\} = f(\ker(g)).$$

2. $f(\operatorname{Im}(g)) \subseteq \operatorname{Im}(g) \text{ y rango}(g) = \dim_{\mathbb{K}}(\ker(f) \cap \operatorname{Im}(g)) + \operatorname{rango}(f \circ g)$.

Este apartado es muy parecido al anterior. Sea $x \in \text{Im}(g)$; y veamos que se tiene $f(x) \in \text{Im}(g)$.

Como $x \in \text{Im}(g)$, existe $y \in V$ tal que g(y) = x. Así, $f(x) = f(g(y)) = (f \circ g)(y) = (g \circ f)(y) = g(f(y))$, luego f(x) es la imagen por g de un elemento de V. Por tanto, $f(\text{Im}(g)) \subseteq \text{Im}(g)$.

Como $f(\text{Im}(g)) \subseteq \text{Im}(g)$, podemos restringir f a Im(g) obteniendo un endomorfismo

$$f_{\mid \operatorname{Im}(g)} : \operatorname{Im}(g) \to \operatorname{Im}(g).$$

Aplicando la fórmula de la nulidad y el rango a $f_{|\text{Im}(g)}$ (ahora el espacio total es Im(g), que de nuevo tiene dimensión finita), tenemos

$$\operatorname{rango}(g) = \dim_{\mathbb{K}} \operatorname{Im}(g) = \dim_{\mathbb{K}} \ker \left(f_{\left| \operatorname{Im}(g) \right.} \right) + \dim_{\mathbb{K}} \operatorname{Im} \left(f_{\left| \operatorname{Im}(g) \right.} \right),$$

luego para terminar basta demostrar que:

$$\ker\left(f_{\left|\operatorname{Im}(g)\right.}\right)=\ker(f)\cap\operatorname{Im}(g),\quad\operatorname{Im}\left(f_{\left|\operatorname{Im}(g)\right.}\right)=\operatorname{Im}(f\circ g).$$

Tenemos que:

$$\begin{split} &\ker\left(f_{\left|\operatorname{Im}(g)\right.}\right) = \{x \in \operatorname{Im}(g) \mid f(x) = 0\} = \{x \in \operatorname{Im}(g) \mid x \in \ker(f)\} = \ker(f) \cap \operatorname{Im}(g), \\ &\operatorname{Im}\left(f_{\left|\operatorname{Im}(g)\right.}\right) = \{f(x) \mid x \in \operatorname{Im}(g)\} = \{f(g(y)) \mid y \in V\} = \operatorname{Im}(f \circ g). \end{split}$$

Ejercicio 4 (2.5 puntos). Decide de forma razonada si las siguientes afirmaciones son verdaderas o falsas:

- 1. Sea V un espacio vectorial de dimensión finita, $U, W \subseteq V$ dos subespacios vectoriales no triviales y B_U , B_W una base de U y otra de W.
 - a) Si $B_U \cup B_W$ es una base de V entonces U + W = V. **Verdadero:** como $B_U \cup B_W$ es base de V, en particular es sistema de generadores de V. Por tanto, $V = \mathcal{L}(B_U \cup B_W) = \mathcal{L}(B_U) + \mathcal{L}(B_W) = U + W$, donde en la última igualdad hemos usado que B_U es sistema de generadores de U y B_W lo es de W.
 - b) Si $B_U \cap B_W = \emptyset$ entonces $U \cap W = \{\overrightarrow{0}\}$. Falso: Tomemos $V(\mathbb{K}) = \mathbb{R}^3(\mathbb{R}), \ U = \{(a, b, c) \in \mathbb{R}^3 \mid a = 0\}, \ W = \{(a, b, c) \in \mathbb{R}^3 \mid c = 0\} \ y \ B_U = \{(0, 1, 0), (0, 0, 1)\}, \ B_W = \{(1, 0, 0), (1, 1, 0)\}.$ Entonces, B_U es base de U y B_W lo es de W, $B_U \cap B_W = \emptyset$ y $U \cap W = \mathcal{L}(\{(0, 1, 0)\}) \neq \{\overrightarrow{0}\}.$

- 2. Si $\mathcal{M}_n(\mathbb{R})$ es el espacio de las matrices cuadradas reales de orden $n \geq 2$ entonces
 - a) Existe una base de $\mathcal{M}_n(\mathbb{R})$ formada por matrices de traza igual a 0. Falso: Llamemos $U = \{A \in \mathcal{M}_n(\mathbb{R}) \mid \text{traza}(A) = 0\} = \text{ker}(\text{traza})$. Como la traza es una forma lineal no nula (porque la traza de I_n es $n \neq 0$), deducimos que U tiene dimensión $n^2 - 1$. Si existiera una base B de $\mathcal{M}_n(\mathbb{R})$ formada por matrices de traza igual a 0, entonces B estaría contenida en U, luego $\mathcal{M}_n(\mathbb{R}) = \mathcal{L}(B) \subseteq U$, lo que contradice que $\dim_{\mathbb{K}}(U) = n^2 - 1 < n^2 = \dim_{\mathbb{K}}(\mathcal{M}_n(\mathbb{R}))$.
 - b) Existe una base de $\mathcal{M}_n(\mathbb{R})$ con una matriz de traza 1 y todas las demás con traza igual a 0.

Verdadero: Tomemos una base B_U de U (el mismo subespacio definido en (a)), que tendrá dimensión $\dim_{\mathbb{K}}(U) = n^2 - 1$ matrices, todas con traza cero. Como I_n no tiene traza cero, $I_n \notin U$. Por tanto, $B := B_U \cup \{I_n\}$ es linealmente independiente. Como B tiene n^2 matrices y $\dim_{\mathbb{K}} M_n(\mathbb{R}) = n^2$, concluimos que B es base de $M_n(\mathbb{R})$. Claramente, B cumple las condiciones del enunciado.