## Paper ID: 72

# Human Activity Recognition using RNNs

#### **Term Project**

Neural Network & Fuzzy Logic (BITS F312)

Yash Bhagat 2017A7PS0063P Rajeev Singh Naruka 2017A7PS0010P Dhairya Bhorania 2017A8PS0260P

### PROJECT INTRODUCTION

Human activity recognition using smart home sensors is a topic undergoing intense research in the field of ambient assisted living.

The increasingly large amount of data sets calls for machine learning methods.

In this paper, a deep learning models that learns to classify human activities are used.

For this purpose, a Long Short Term Memory (LSTM) Recurrent Neural Network was applied.

### ABOUT THE DATASET

#### **OPPORTUNITY Activity Recognition** Data Set.

The OPPORTUNITY Dataset for Human Activity Recognition from Wearable, Object, and Ambient Sensors is a dataset devised to benchmark human activity recognition algorithms (classification, automatic data segmentation, sensor fusion, feature extraction, etc).

courtesy of UCI ML repository and ETH, Zurich.

| Data Set Characteristics:  | Multivariate, Time-Series | Number of Instances:  | 2551 | Area:               | Computer   |
|----------------------------|---------------------------|-----------------------|------|---------------------|------------|
| Attribute Characteristics: | Real                      | Number of Attributes: | 242  | Date Donated        | 2012-06-09 |
| Associated Tasks:          | Classification            | Missing Values?       | Yes  | Number of Web Hits: | 89929      |

The dataset comprises the readings of motion sensors recorded while users executed typical daily activities:

- \* Body-worn sensors: 7 inertial measurement units, 12 3D acceleration sensors, 4 3D localization information
- \* Object sensors: 12 objects with 3D acceleration and 2D rate of turn
- \* Ambient sensors: 13 switches and 8 3D acceleration sensors
- \* Recordings: 4 users, 6 runs per users. Of these, 5 are Activity of Daily Living runs characterized by a natural execution of daily activities. The 6th run is a "drill" run, where users execute a scripted sequence of activities.
- \* Annotations/classes: the activities of the user in the scenario are annotated on different levels: "modes of locomotion" classes; low-level actions relating 13 actions to 23 objects; 17 mid-level gesture classes; and 5 high-level activity classes

### Column Description

Column 1: Time in Milisecond

Column 1 to 37: Accelerometer around body of subject. unit = milli g

Column 38 to 134: Inertial Measurement Units like 3D acceleration, 3D rate of turn, 3D magnetic field, and orientation of the sensor

Column 135 to 194: Accelerometer on objects. unit = milli g

Column 195 to 207: Reed switch. unit = logical (0/1)

Column 208 to 231: Accelerometer on drawers, doors, etc. unit = milli g

Column 232 to 243: Location tags. unit = millimetres

## Labels Description

Label columns:

Column: 244 Locomotion

Column: 245 HL\_Activity

Column: 246 LL\_Left\_Arm

Column: 247 LL\_Left\_Arm\_Object

Column: 248 LL\_Right\_Arm

Column: 249 LL\_Right\_Arm\_Object

Column: 250 ML\_Both\_Arms

## Methodology

We used Long short-term memory (LSTM) for this project which is an artificial recurrent neural network (RNN) architecture.

A common LSTM unit is composed of a cell, an input gate, an output gate and a forget gate. The cell remembers values over arbitrary time intervals and the three gates regulate the flow of information into and out of the cell.

LSTM networks are well-suited to classifying, processing and making predictions based on time series data, since there can be lags of unknown duration between important events in a time series.

We have also used GRU (Gated Recurrent Units) also and have drawn a comparison between them.

## Locomotion









#### Middle Level Gestures



### Preprocessing the data

- We used following python libraries during this project: Pandas, Numpy, sklearn, keras, pickle, matplotlib
- 2. Since data from sensors was continuous, whenever there was NaN encountered, the previous value of sensor was taken to replace it.
- 3. Next, feature scaling was done because in LSTM, objective functions will not work properly without normalization.
- 4. After normalization, Labelling was done and label columns were removed before training.
- 5. Now, we converted data from 2D to 3D for LSTM, where the dimensions of the array are [samples, time steps, features].
- 6. Saved this preprocessed data in Numpy data format.

## Model Parameters Description

#### For predicting Locomotion:

Input Nodes: 133

Hidden Nodes: 35

Output Nodes: 5

Window Size: 32

#### For predicting High Level Activity:

Input Nodes: 99

Hidden Nodes: 30

Output Nodes: 5

Window Size: 32

## Locomotion Prediction for Subject 1 using LSTM

We predicted locomotion for all the users.

This is confusion matrix of Subject 1, ADL3.

Accuracy score = 0.9078547576787702

F1 score = 0.9080745337361374

Recall score = 0.9078547576787702



## Locomotion Prediction for Subject 2 using LSTM

This is confusion matrix of Subject 2, ADL3.

Accuracy score = 0.8940643274853801

F1 score = 0.8933840898664495

Recall score = 0.8940643274853801



## Locomotion Prediction for Subject 3 using LSTM

This is confusion matrix of Subject 3, ADL3.

Accuracy score = 0.9092748735244519

F1 score = 0.9068413721373243

Recall score = 0.9092748735244519



## Locomotion Prediction for Subject 4 using LSTM

This is confusion matrix of Subject 4, ADL3.

Accuracy score = 0.8361752988047809

F1 score = 0.8400106080628537

Recall score = 0.8361752988047809



## High-Level Activity Prediction for Subject 1 using LSTM

- 0 HL\_Activity Relaxing
- 1 HL\_Activity Coffee time
- 2 HL\_Activity Early morning
- 3 HL Activity Cleanup
- 4 HL\_Activity Sandwich time

Accuracy score = 0.7523408077946309

F1 score = 0.7424607522685885

Recall score = 0.7523408077946309



## High-Level Activity Prediction for Subject 2 using LSTM

- 0 HL\_Activity Relaxing
- 1 HL Activity Coffee time
- 2 HL\_Activity Early morning
- 3 HL Activity Cleanup
- 4 HL\_Activity Sandwich time

Accuracy score = 0.7832818400274631

F1 score = 0.7815344340088767

Recall score = 0.7832818400274631



## GRU-units based prediction for Subject 1 locomotion

- 0 HL\_Activity Relaxing
- 1 HL\_Activity Coffee time
- 2 HL\_Activity Early morning
- 3 HL\_Activity Cleanup
- 4 HL\_Activity Sandwich time

Accuracy score = 0.8187479317710057

F1 score = 0.8124637617944473

Recall score = 0.8187479317710057



## GRU-units based prediction for Subject 2 High-level activity

- 0 HL\_Activity Relaxing
- 1 HL\_Activity Coffee time
- 2 HL\_Activity Early morning
- 3 HL Activity Cleanup
- 4 HL\_Activity Sandwich time

Accuracy score = 0.7821489872983178

F1 score = 0.7802625951412586

Recall score = 0.7821489872983178



## **GRU vs. LSTM**

## Prediction of Locomotion for subject 1

Accuracy score = 0.81874

F1 score = 0.81246

Recall score = 0.81874

Precision score = 0.82710

Accuracy score = 0.90785

F1 score = 0.90807

Recall score = 0.90785

## **GRU vs. LSTM**

## Prediction of High-level Activity for subject 2

Accuracy score = 0.78214

F1 score = 0.78026

Recall score = 0.78214

Precision score = 0.78900

Accuracy score = 0.78328

F1 score = 0.78153

Recall score = 0.78328