Adjacency Hyperedges Matrix, A Hypergraph Model for Constructing Composite Objects Relationship

Soetrisno Cahya, Heru Suhartanto, Belawati H. Widjaja

PRAGMA 29, October 7-9, 2015, Depok University of Indonesia

Problem definition

Objects within database potentially have relationship.

Can we identify and construct the relationship that called as:

composite objects relationship: An object *covers* (superset, ⊆) other object(s) based-on their *set of object features*.

An illustration.

Objects within database: ellipse, circle, 2D-geometry, and 3D-geometry.

Relationship at feature level

Objects a, b, C, and d, are connected at feature 2 form a complete graph (clique)

Objects Relationship

based-on

set of feature: superset operation ⊆

Only objects **a**, **b**, and **C**, form (exclude **d**)

composite objects relationship

based-on **superset** operation

Composite objects relationship at object level: Abstracted (higher) level

Set of feature {1, 2} represents object c (2D-

geometry),
$$a = \{1, 2, 3, 4\}, b = \{1, 2, 4\}$$

Composite object relationship is poset (partially order set)

Transitive path, edge (a,c) can be reduced (edge-induced)

Optimum cost traversing

Each object has longest path connection, as Hasse diagram

Optimum cost traversing for each longest path based-

on vertex degree and still

preserve poset relation

Why we need alternative graph representation?

In 2-graph, each edge only connects two vertices

We need edge can connect more than two vertices:

Hypergraph

Laplacian Hypergraph:

Adjacency Hyperedges Matrix, A_e

$$S = \{a, b, c, d\} = \{\{1, 2, 3, 4\}, \{1, 2, 4\}, \{1, 2\}, \{2, 5\}\}$$

Hypergraph H = (S, F)

	1	2	3	4	5
a	1	1	1	1	
b	1	1		1	
c	1	1			
d		1			1

d(c) = 2

$$\delta(1) = 3$$

Laplacian hypergraph of H

							_
	1	2	3	4	5		•
1	3	3	1	2			
2	3	4	1	2	1		•
3	1	1	1	1		\	$ 1 \cap 4 = 2$
4	2	2	1	2		A _e	
5		1			1		

Objects Connection: Partially similar, P_K

$$K \subseteq S$$
 from $H = (S, F)$

$$n(K) > |F_K|$$

 $\exists e_i \in F_K, \delta(e_i) > 1$

Stepping Solution of Our Model

<feature, feature-value>

12

Object feature representation

Durga sculptures: original and synthetic objects

Based-on pair of <feature, feature-value>

Notes, objects within set "{}" are identical objects based on set of pair <feature, feature-value> or based-on set of feature exclude feature-value.

Based-on feature exclude feature-value

Original objects of Durga and Ganesha sculptures

There is no composite objects relationship based-on pair of <feature, feature-value>, all objects are isolated objects

Based-on feature exclude feature-value

Three composite objects composition relationships (posets)

- Eight isolated objects
- One of posets is identical objects {B60, B61}, it is Ganesha

cluster 15

Conclusions

The proposed model effective able recognize and construct composite objects relationship based-on pair of <feature, feature-value>, or based-on feature exclude feature-value.

Each object has longest path connection to other objects.

This model can present maximal group of clusters as **poset**, **isolated objects**, or combination of them together.

Future Works

• Hyperedge represents encoded feature and featurevalue, the model provides flexibility, and open possibility applied on different application domains.

Explore objects relationship on **objects** as **temporal** and **spatial** hypergraph, such as in chemioinformatics.

Future Works

- •Object-oriented modeling in designing class relationship.
- Constructing composite object relationship by **creating new generated objects as abstract objects** from **objects**that originally identified only as *partially similar*.

Use for indexing in graph database.

Future Works

Seeking mathematical formulation can indicate objects in partially similar potentially form composite object relationship before invoking composite objects construction algorithm.

Parallel computation applies on this model.

Thank You