$$\int \frac{\sqrt{x^2 - 11}}{x} \, dx$$

Solution

Let $x = \sqrt{11} \sec \theta$ with θ in quadrants I or III. So, $dx = \sqrt{11} \sec \theta \tan \theta \, d\theta$ and we use $\sec \theta = \frac{x}{\sqrt{11}}$ to draw a right triangle with x as the hypotenuse side and $\sqrt{11}$ as the adjacent side. The side opposite to θ is $\sqrt{x^2 - 11}$, which is found using the Pythagorean Theorem, and we have

Then $\tan \theta = \frac{\sqrt{x^2 - 11}}{\sqrt{11}}$. Based on this equation, we will use $\sqrt{11} \tan \theta = \sqrt{x^2 - 11}$ if it is helpful. Since $\cos \theta = \frac{\sqrt{11}}{x}$, we will use $x = \frac{\sqrt{11}}{\cos \theta} = \sqrt{11} \sec \theta$ if it is helpful.

So

$$\int \frac{\sqrt{x^2 - 11}}{x} dx = \int \frac{\sqrt{11} \tan \theta}{\sqrt{11} \sec \theta} \sqrt{11} \sec \theta \tan \theta d\theta$$
$$= \sqrt{11} \int \tan^2 \theta d\theta$$
$$= \sqrt{11} \int (\sec^2 \theta - 1) d\theta$$
$$= \sqrt{11} \left[\tan \theta - \theta \right] + C$$
$$= \sqrt{11} \left[\frac{\sqrt{x^2 - 11}}{\sqrt{11}} - \sec^{-1} \frac{x}{\sqrt{11}} \right] + C$$