Anàlisi Complexa - Laboratori 4

Christian José Soler

4 de abril de 2016

1. Siguin X un espai topològic connex i $f: X \to \mathbb{C} \setminus \{0\}$ una funció contínua. Una determinació de l'arrel n-èsima de f és una funció contínua $h: X \to \mathbb{C} \setminus \{0\}$ tal que $(h(x))^n = f(x)$, per a tot $x \in X$. Demostreu que si h i g són dues determinacions de l'arrel n-èsima de f llavors existeix una arrel n-èsima de la unitat f tal que f q

El nostre objectiu serà passar de determinacions de l'arrel a determinacions de $\log f(x)$.

$$(h(x))^n = f(x) \implies e^{n \log(h(x))} = e^{\log(f(x))} = f(x)$$

Com $e^{n\log(h(x))}$ és una funció contínua, tant $n\log(h(x))$ com $n\log(g(x))$ són determinacions de $\log f(x)$, ja que compleixen la definició donada a classe. Ara bé, com estem en un espai connex, f és una funció contínua i aquestes dues funcions són determinacions de $\log f(x)$, per $k \in \mathbb{Z}$ i independentment d'x:

$$n\log(h(x)) - n\log(g(x)) = 2k\pi i$$

$$n(\log(h(x)) - \log(g(x))) = 2k\pi i$$

$$n\left(\log\left(\frac{h(x)}{g(x)}\right)\right) = 2k\pi i$$

$$\log\left(\frac{h(x)}{g(x)}\right) = \frac{2k\pi i}{n}$$

$$\frac{h(x)}{g(x)} = e^{\frac{2k\pi i}{n}}$$

$$h(x) = g(x)e^{\frac{2k\pi i}{n}}$$

on $e^{\frac{2k\pi i}{n}}$ és una arrel n-èssima de la unitat, ja que $e^{2k\pi i}=1, \, \forall k\in\mathbb{Z}$ i $\forall x\in X$, tal com volíem veure.

- 2. Siguin $h_0(z)$, $h_1(z)$, $h_2(z)$, $h_3(z)$ i $h_4(z)$ les determinacions de l'arrel cinquena en $\Omega = \mathbb{C} \setminus (-\infty, 0]$ tal que $h_0(1) = 1$, $h_1(1) = e^{2\pi i/5}$, $h_2(1) = e^{4\pi i/5}$, $h_3(1) = e^{6\pi i/5}$ i $h_4(1) = e^{8\pi i/5}$.
 - a) Relacioneu les funcions h_j entre elles i descriviu $h_j(\Omega)$ per j=0,1,2,3,4.

Per relacionar les funcions entre elles, fem servir l'exercici anterior. Relacionem les determinacions de forma general, sigui $i,j\in\{0,1,2,3,4\}$. Per l'exercici anterior sabem que

$$h_i = h_i * \zeta$$

on ζ és una arrel cinquena de la unitat. Per calcular aquesta $\zeta,$ sustituïm en 1:

$$h_i(1) = h_j(1) * \zeta$$
$$\frac{h_i(1)}{h_j(1)} = \zeta$$

És a dir, $h_k = h_k(1) * h_0$, $\forall k \in \{0, 1, 2, 3, 4\}$ Com $h_0(1) = 1$ i el domini és $\mathbb{C} \setminus (-\infty, 0]$, h_0 és la determinació principal de l'arrel cinquena, és a dir:

$$h_0(z) = e^{\frac{1}{5}Log(z)} = e^{\frac{1}{5}(ln(|z|) + iArg(z))} = \sqrt[5]{|z|}e^{\frac{iArg(z)}{5}}$$

Ara amb h_0 i la relació entre determinacions anem a trobar les imatges que se'ns demanen. Sigui r := |z| i $\theta := Arg(z)$:

$$h_0(\Omega) = \left\{ \sqrt[5]{r} e^{\frac{i\theta}{5}} : r > 0, \theta \in (-\pi, \pi) \right\}$$
$$= \left\{ r_1 e^{i\theta_1} : r_1 > 0, \theta_1 \in \left(-\frac{\pi}{5}, \frac{\pi}{5} \right) \right\}$$

Per la resta, simplement desplacem el domini de θ_1 amb el desplaçament que li pertoca. És a dir per una j fixada, el desplaçament de θ_1 respecte h_0 de h_j és $j*\frac{2\pi}{5}$

1)
$$h_1(\Omega) = \{ r_1 e^{i\theta_1} : r_1 > 0, \theta_1 \in \left(-\frac{\pi}{5} + \frac{2\pi}{5}, \frac{\pi}{5} + \frac{2\pi}{5} \right) \} =$$

$$\left\{ r_1 e^{i\theta_1} : r_1 > 0, \theta_1 \in \left(\frac{\pi}{5}, \frac{3\pi}{5}\right) \right\}$$

2)
$$h_2(\Omega) = \{r_1 e^{i\theta_1} : r_1 > 0, \theta_1 \in \left(-\frac{\pi}{5} + \frac{4\pi}{5}, \frac{\pi}{5} + \frac{4\pi}{5}\right)\} =$$

$$\left\{ r_1 e^{i\theta_1} : r_1 > 0, \theta_1 \in \left(\frac{3\pi}{5}, \frac{5\pi}{5}\right) \right\}$$

3)
$$h_3(\Omega) = \{r_1 e^{i\theta_1} : r_1 > 0, \theta_1 \in \left(-\frac{\pi}{5} + \frac{6\pi}{5}, \frac{\pi}{5} + \frac{6\pi}{5}\right)\} =$$

$$\left\{ r_1 e^{i\theta_1} : r_1 > 0, \theta_1 \in \left(\frac{5\pi}{5}, \frac{7\pi}{5}\right) \right\}$$

4)
$$h_4(\Omega) = \{r_1 e^{i\theta_1} : r_1 > 0, \theta_1 \in \left(-\frac{\pi}{5} + \frac{8\pi}{5}, \frac{\pi}{5} + \frac{8\pi}{5}\right)\} = 0$$

$$\left\{r_1e^{i\theta_1}: r_1 > 0, \theta_1 \in \left(\frac{7\pi}{5}, \frac{9\pi}{5}\right)\right\}$$

b) Per j = 0, 1, 2, 3, 4 relacioneu h_j amb Log i Arg (on Log i Arg denoten les branques principals del logaritme i de l'argument respectivament).

De la deducció anterior hem vist que h_0 és la determinació principal de l'arrel cinquena és a dir que:

$$h_0(z) = e^{\frac{1}{5}Log(z)} = e^{\frac{1}{5}(ln(|z|) + iArg(z))} = \sqrt[5]{|z|}e^{\frac{iArg(z)}{5}}$$

La resta es dedueixen a partir de la relació entre determinacions:

1)
$$h_1(z) = e^{\frac{2\pi i}{5}} * h_0(z) = e^{\frac{1}{5}Log(z) + \frac{2\pi i}{5}} =$$

$$\sqrt[5]{|z|}e^{\frac{iArg(z)}{5}+\frac{2\pi i}{5}}$$

2)
$$h_2(z) = e^{\frac{4\pi i}{5}} * h_0(z) = e^{\frac{1}{5}Log(z) + \frac{4\pi i}{5}} =$$

$$\sqrt[5]{|z|}e^{\frac{iArg(z)}{5} + \frac{4\pi i}{5}}$$

3)
$$h_3(z) = e^{\frac{6\pi i}{5}} * h_0(z) = e^{\frac{1}{5}Log(z) + \frac{6\pi i}{5}} =$$

$$\sqrt[5]{|z|}e^{\frac{iArg(z)}{5} + \frac{6\pi i}{5}}$$

4)
$$h_4(z) = e^{\frac{8\pi i}{5}} * h_0(z) = e^{\frac{1}{5}Log(z) + \frac{8\pi i}{5}} =$$

$$\sqrt[5]{|z|}e^{\frac{iArg(z)}{5} + \frac{8\pi i}{5}}$$

c) Usant les relacions anterior, trobeu el valor de $h_j(i)$, per j = 0, 1, 2, 3, 4i $h_2(1+i)$

Trobant els valors d' $h_0(i)$ i de $h_0(1+i)$, on h_0 és la determinació principal, ja tindrem el valor de la resta.

1)
$$h_0(i) = \sqrt[5]{|i|}e^{\frac{iArg(i)}{5}} = e^{\frac{i\frac{\pi}{2}}{5}} = e^{\frac{\pi i}{10}}$$

2) $h_1(i) = e^{\frac{\pi i}{10} + \frac{2\pi i}{5}} = e^{\frac{5\pi i}{10}} = e^{\frac{\pi i}{2}}$

2)
$$h_1(i) = e^{\frac{\pi i}{10} + \frac{2\pi i}{5}} = e^{\frac{5\pi i}{10}} = e^{\frac{\pi i}{2}}$$

3)
$$h_2(i) = e^{\frac{\pi i}{10} + \frac{4\pi i}{5}} = e^{\frac{9\pi i}{10}}$$

4)
$$h_3(i) = e^{\frac{\pi i}{10} + \frac{6\pi i}{5}} = e^{\frac{13\pi i}{10}}$$

5)
$$h_4(i) = e^{\frac{\pi i}{10} + \frac{8\pi i}{5}} = e^{\frac{17\pi i}{10}}$$

6)
$$h_0(1+i) = \sqrt[5]{|i+1|}e^{\frac{iArg(i+1)}{5}} = \sqrt[10]{2}e^{\frac{i\frac{\pi}{4}}{5}} = \sqrt[10]{2}e^{\frac{\pi i}{20}}$$

7)
$$h_2(1+i) = \sqrt[10]{2}e^{\frac{\pi i}{20} + \frac{4\pi i}{5}} = \sqrt[10]{2}e^{\frac{17\pi i}{20}}$$