

ГЕОМЕТРИЯ ЕГЭ

виды углов

Сумма углов любого треугольника 180°

ДЫ ТРЕУГОЛЬНИКОВ

РАВНОБЕДРЕННЫЙ (ОСТРОУГОЛЬНЫЙ)

РАВНОБЕДРЕННЫЙ (ПРЯМОУГОЛЬНЫЙ)

РАВНОБЕДРЕННЫЙ (ТУПОУГОЛЬНЫЙ)

РАВНОСТОРОННИЙ

ПЛОЩАДЬ (ЧЕРЕЗ ВЫСОТУ)

ПЛОЩАДЬ (ЧЕРЕЗ УГОЛ)

$$S = \frac{1}{2}ac \cdot sin\alpha$$

ПЛОЩАДЬ (ФОРМУЛА ГЕРОНА)

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$
, где $p = \frac{a+b+c}{a}$

ПЛОЩАДЬ (ЧЕРЕЗ РАДИУС)

$$S = \frac{1}{2}pr$$

ПЛОЩАДЬ (ЧЕРЕЗ РАДИУС)

ТЕОРЕМА СИНУСОВ

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$$

ТЕОРЕМА КОСИНУСОВ

 $a^2 = b^2 + c^2 - 2bc \cdot cos\alpha$

СРЕДНЯЯ ЛИНИЯ

Средняя линия параллельна основанию и равна его половине.

соотношение сторон и углов

- В любом треугольнике:
- против большей стороны лежит больший угол.
- против средней стороны лежит средний угол.
- против меньшей стороны лежит меньший угол.

НЕРАВЕНСТВО ТРЕУГОЛЬНИКА

В любом треугольнике сумма длин двух сторон больше длины третьей стороны.

Пример:

- 3 + 4 > 5
- 3 + 5 > 4
- 4 + 5 > 3

ПРИЗНАКИ РАВЕНСТВА ТРЕУГОЛЬНИКОВ

РАВЕНСТВО ТРЕУГОЛЬНИКОВ

В равных треугольниках все соответственные элементы равны.

Пример:

Все стороны равны: Все углы равны:

AB = OD

AC = DE

 $\angle C = \angle E$ $\angle A = \angle D$ BC = OE $\angle B = \angle O$

ПО ДВУМ СТОРОНАМ И УГЛУ МЕЖДУ НИМИ

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

ПО СТОРОНЕ И ДВУМ ПРИЛЕЖАЩИМ К НЕЙ **УГЛАМ**

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники

ПО ТРЁМ СТОРОНАМ

Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.

ПРИЗНАКИ ПОДОБИЯ ТРЕУГОЛЬНИКОВ

ПОДОБИЕ ТРЕУГОЛЬНИКОВ

В подобных треугольниках все сходственные стороны относятся с коэффициентом подобия k.

Пример:

ПО ДВУМ УГЛАМ

Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.

ПО ДВУМ ПРОПОРЦИОНАЛЬНЫМ СТОРОНАМ И УГЛУ МЕЖДУ НИМИ

Если угол одного треугольника равен углу другого треугольника, а стороны, образующие этот угол, пропорциональны в равном отношении, то такие треугольники подобны.

ПО ТРЁМ ПРОПОРЦИОНАЛЬНЫМ СТОРОНАМ

Если три стороны одного треугольника соответственно пропорциональны трём сторонам другого треугольника, то такие треугольники подобны.

ОТНОШЕНИЯ В ПОДОБНЫХ ТРЕУГОЛЬНИКАХ

ОТНОШЕНИЕ ПЛОЩАДЕЙ

k = 3

Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

$$\frac{S_{\text{большого треугольника}}}{S} = k^2$$

 $S_{
m маленького\ треугольника}$

ОТНОШЕНИЕ ОБЪЁМОВ

Отношение объёмов подобных фигур равно кубу коэффициента подобия.

$$\frac{V_{\text{большой фигуры}}}{V_{\text{маленькой фигуры}}} = k^3$$

ОТНОШЕНИЕ ЭЛЕМЕНТОВ ПОДОБНЫХ ТРЕУГОЛЬНИКОВ

Отношение периметров равно коэффициенту подобия

 $p_{\text{большого треугольника}} = k$

 $p_{
m\scriptscriptstyle MADEHLKOFO}$ треугольника

Отношение биссектрис равно коэффициенту подобия

*l*большого треуг<u>ольника</u>

 $l_{\mathsf{маленького}}$ треугольника

Отношение медиан равно коэффициенту подобия

*т*большого треугольника

 $m_{
m\scriptscriptstyle MAЛенького}$ треугольника Отношение высот равно коэффициенту подобия

*h*большого треугольника

 $h_{\mathsf{маленького}}$ треугольника

БИССЕКТРИСА

Биссектриса – это луч, делящий угол пополам.

Если точка лежит на биссектрисе угла, то она равноудалена от сторон этого угла.

Центр вписанной в треугольник окружности – это точка пересечения биссектрис.

Медиана – это отрезок, делящий противоположную сторону треугольника пополам.

Медиана разбивает треугольник на два равновеликих (с одинаковыми площадями).

В прямоугольном треугольнике медиана, проведённая к гипотенузе, равна половине гипотенузы.

Медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2:1 считая от вершины.

ВЫСОТА

Высота – это перпендикуляр, проведённый к противоположной стороне, т.е. отрезок опущенный из угла под 90 градусов.

СЕРЕДИННЫЙ ПЕРПЕНДИКУЛЯР

Серединный перпендикуляр – это прямая, перпендикулярная стороне треугольника, и делящая эту сторону пополам.

Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка.

Центр описанной вокруг треугольника окружности – это точка пересечения серединных перпендикуляров.

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК

ОПРЕДЕЛЕНИЕ

Прямоугольный треугольник – это треугольник, у которого есть угол 90°.

катет

ПЛОЩАДЬ

Площадь прямоугольного треугольника равна половине произведения катетов:

$$S = \frac{ab}{2}$$

РАДИУС ОПИСАННОЙ ОКРУЖНОСТИ

Радиус описанной вокруг прямоугольного треугольника окружности равен половине гипотенузы:

$$R = \frac{c}{2}$$

ТЕОРЕМА ПИФАГОРА

Квадрат гипотенузы равен сумме квадратов катетов:

$$c^2 = a^2 + b^2$$

КАТЕТ НАПРОТИВ УГЛА 30 ГРАДУСОВ

Катет, лежащий напротив угла 30°, равен половине гипотенузы.

РАВНОБЕДРЕННЫЙ ТРЕУГОЛЬНИК

ОПРЕДЕЛЕНИЕ

Равнобедренный треугольник – это треугольник, у которого две стороны равны.

СВОЙСТВО

Биссектриса, медиана и высота, проведённые к основанию, совпадают между собой.

РАВНОСТОРОННИЙ<mark>ТРЕУГ<u>ОЛЬНИК</u></mark>

ОПРЕДЕЛЕНИЕ

Равносторонний треугольник – это треугольник, у которого все стороны равны и все углы равны 60°.

ПЛОЩАДЬ

РАДИУС ВПИСАННОЙ ОКРУЖНОСТИ

РАДИУС ОПИСАННОЙ ОКРУЖНОСТИ

BLICOTA

$$h = \frac{\sqrt{3}a}{2}$$

ОПРЕДЕЛЕНИЕ

Квадрат – это четырёхугольник, у которого все стороны равны и все углы равны 90°.

ОПРЕДЕЛЕНИЕ

Прямоугольник – это четырёхугольник, у которого все углы равны 90°.

S = ab

ОПРЕДЕЛЕНИЕ

Параллелограмм – это четырёхугольник, у которого противоположные стороны попарно параллельны.

ПЛОЩАДЬ (ЧЕРЕЗ ВЫСОТУ)

 $S = ah_a$

ПЛОЩАДЬ (ЧЕРЕЗ УГОЛ)

 $S = ac \cdot sin\alpha^{\circ}$

СВОЙСТВО

ПЛОЩАДЬ

ПЛОЩАДЬ

В параллелограмме сумма углов,

прилежащих к любой стороне, равна 180°:

$$\angle A + \angle B = 180^{\circ}$$

$$\angle B + \angle C = 180^{\circ}$$

$$\angle C + \angle D = 180^{\circ}$$

$$\angle A + \angle D = 180^{\circ}$$

ОПРЕДЕЛЕНИЕ

Ромб – это параллелограмм, у которого все стороны равны.

ПЛОЩАДЬ (ЧЕРЕЗ ДИАГОНАЛИ)

Площадь ромба равна половине произведения диагоналей:

$$S = \frac{d_1 \cdot d_2}{2}$$

ПЛОЩАДЬ (ЧЕРЕЗ ВЫСОТУ)

ПЛОЩАДЬ (ЧЕРЕЗ УГОЛ)

$$S = a^2 \cdot \sin \alpha$$

ПЛОЩАДЬ (ЧЕРЕЗ РАДИУС)

$$S = 2ar$$

ТРАПЕЦИЯ

ОПРЕДЕЛЕНИЕ

Трапеция – это четырёхугольник, у которого две стороны параллельны, а две другие не параллельны.

ПЛОЩАДЬ

Площадь трапеции равна полусумме оснований, умноженной на высоту:

$$S = \frac{a+b}{2} \cdot h$$

СРЕДНЯЯ ЛИНИЯ

Средняя линия параллельна основаниям и равна их полусумме:

$$MN = \frac{a+b}{2}$$
OKPYXKHOCT

СВОЙСТВО

В трапеции сумма углов, прилежащих к боковой стороне, равна 180°:

$$\angle A + \angle B = 180^{\circ}$$
$$\angle C + \angle D = 180^{\circ}$$

ОПРЕДЕЛЕНИЕ

Окружность – это геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки (центра окружности).

ПЛОЩАДЬ КРУГА

ДЛИНА ОКРУЖНОСТИ

 $C = 2\pi R$

Вписанный угол равен половине дуги, на которую он опирается.

ЦЕНТРАЛЬНЫЙ УГОЛ

Центральный угол равен градусной мере дуги, на которую он опирается.

ВПИСАННЫЙ УГОЛ

Касательная к окружности перпендикулярна радиусу, проведённому в

точку касания.

УГОЛ МЕЖДУ TEOPEMA OF OTPESKAX КАСАТЕЛЬНОЙ И КАСАТЕЛЬНЫХ

Отрезки касательных к окружности, проведённые из одной точки, равны, и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

ОКРУЖНОСТЬ ОПИСАНА ОКОЛО ЧЕТЫРЁХУГОЛЬНИКА

Сумма противоположных углов равна 180°:

$$\angle A + \angle C = 180^{\circ}$$
$$\angle B + \angle D = 180^{\circ}$$

ОКРУЖНОСТЬ ВПИСАНА В ЧЕТЫРЁХУГОЛЬНИК

Суммы противоположных сторон равны:

$$a+c=b+d$$

КРУГОВОЙ СЕКТОР

 $l_{\text{сектора}} \cdot R$

ПРАВИЛЬНЫЙ ШЕСТИУГОЛЬНИК

PUCYHOK

ПЛОЩАДЬ

РАДИУС ВПИСАННОЙ ОКРУЖНОСТИ

РАДИУС ОПИСАННОЙ ОКРУЖНОСТИ

$$R = a$$

ПЛОЩАДИ ЧАСТЕЙ ШЕСТИУГОЛЬНИКА

ДИАГОНАЛИ ШЕСТИУГОЛЬНИКА

1:44	7
	_

		КУБ		
РИСУНОК	OEPEW	ПЛОЩАДЬ ПОВЕРХНО	СТИ	ДИАГОНАЛЬ
	$V = a^3$	$S_{\text{поверхности}} = 6a^2$		$d = \sqrt{3}a$
РИСУНОК	TPAMOYFOALH	ΜΑΡΑΛΛΕΛΕΠΗΠ ΠΛΟЩΑΔЬ ΠΟΒΕΡΧΗΟ		ДИАГОНАЛЬ
b b	V = abh	$\overline{S_{\text{поверхности}}} = 2ab + 2ah + 2bh$		$d^2 = a^2 + b^2 + h^2$
РИСУНОК	ОЕРЕМ	ПРИЗМА		ПЛОЩАДЬ БОКОВОЙ ПОВЕРХНОСТИ
	$V = S_{ m ochobahus} \cdot h$	$S_{ m поверхности} = 2S_{ m основания} + S_{ m боко}$	овой поверхности	$S_{ m 60ковой\ поверхности} = P_{ m ochobahus} \cdot h$
РИСУНОК	OEPĒW	ИЛИНДР площадь поверхно	ости	ПЛОЩАДЬ БОКОВОЙ ПОВЕРХНОСТИ
h h	$V = \pi R^2 h$	$S_{\text{поверхности}} = 2\pi R^2 + 2\pi Rh$		$S_{ m 60ковой\ поверхности}=2\pi Rh$
РИСУНОК	ОЕЪЁМ	площадь поверхно	ости	ПЛОЩАДЬ БОКОВОЙ ПОВЕРХНОСТИ
h longermand	$V = \frac{1}{3}\pi R^2 h$	$S_{\text{поверхности}} = \pi R^2 + \pi R l$		$S_{ m fokoboŭ\ поверхности}=\pi R l$
РИСУНОК		ИРАМИДА ОБЪЁМ		ПЛОЩАДЬ ПОВЕРХНОСТИ
	$V = \frac{1}{3} S_{\text{основания}} \cdot h$		$S_{\text{поверхности}} = S_{\text{поверхности}}$	$_{ m ochobahus} + S_{ m fokoboŭ}$ поверхности
РИСУНОК	· 	WAP OESËM		ПЛОЩАДЬ ПОВЕРХНОСТИ

 $V = \frac{4}{3}\pi R^3$

 $S_{\text{сферы}} = 4\pi R^2$