Билет 26

Автор1, ..., Aвтор<math>N

20 июня 2020 г.

Содержание

Билет 26: ε -сети и вполне ограниченность. Свойства. Связь с компактностью (тео-
рема Хаусдорфа). Теорема о характеристике компактов в \mathbb{R}^d . Теорема Больцано-
Вейерштрасса

Билет 26 СОДЕРЖАНИЕ

0.1. Билет 26: ε -сети и вполне ограниченность. Свойства. Связь с компактностью (теорема Хаусдорфа). Теорема о характеристике компактов в \mathbb{R}^d . Теорема Больцано-Вейерштрасса.

TODO: Сети и Хаусдорфа опять не видно не у меня не у Ани.

Определение 0.1.

Пусть $a, b \in \mathbb{R}^d$.

Замкнутый параллелепипед: $[a,b] = [a_1,b_1] \times [a_2,b_2] \times \ldots \times [a_d,b_d]$.

Открытый параллелепипед: $(a, b) = (a_1, b_1) \times (a_2, b_2) \times \ldots \times (a_d, b_d)$.

Теорема 0.1 (О вложенных параллелепипедах).

Пусть $P_1 \supset P_2 \supset P_3 \supset \dots$ - замкнутые параллелепипеды.

Тогда
$$\bigcap_{n=1}^{\infty} P_n \neq \emptyset$$
.

Доказательство.

Обозначим $P_n =: [a^{(n)}, b^{(n)}].$

По теореме о вложенных отрезках:

$$\forall k \in [1, n] \quad \exists c_k \in \bigcap_{n=1}^{\infty} [a_k^{(n)}, b_k^{(n)}]$$

Тогда,
$$c = (\forall n \quad c_1, \dots, c_d) \in P_n$$

Теорема 0.2.

Замкнутый куб (замкнутый параллелепипед, все координаты углов которого равны для данного угла) в \mathbb{R}^d - компакт.

Доказательство.

Пусть K - замкнутый куб и U_{α} - его открытое покрытие. Предположим что выбрать конечное нельзя.

Разобьём K на 2^d кубов, со стороной равной половине стороны $K.\ U_{\alpha}$ - открытое покрытие каждого такого куба.

Хотя-бы один маленький куб нельзя будет покрыть конечным покрытием, назовём его K_1 , повторим для него, получим последовательность $K_1 \supset K_2 \supset \dots$

По теореме о вложенных параллелепипедах, $\exists c \in \bigcap_{n=1}^{\infty} K_n$.

 $\exists \alpha_0 \quad c \in U_{\alpha_0}, \, U_{\alpha_0} \text{ открытое} \implies \exists r > 0 \quad B_r(c) \subset U_{\alpha_0}.$

Заметим, что длина ребра $K_n = \frac{l}{2^n} \to 0$ (l - длина ребра K) \Longrightarrow максимальное расстояние между точками - $\sqrt{d} \frac{l}{2^n} \to 0$ (какой-то факт о евклидовой метрике).

Тогда, $\exists n \quad \sqrt{d} \frac{l}{2^n} < r$. Значит, $\exists n \quad K_n \subset B_r(c) \subset U_{\alpha_0}$. Но это противоречит тому, что для K_n нельзя выбрать конечное покрытие. Значит K - компакт.

Теорема 0.3.

Пусть $K \subset \mathbb{R}^d$ с евклидовой метрикой. Тогда следующие услвия эквивалентны:

1. K - компакт

Билет 26 COДЕРЖАНИЕ

- $2. \ K$ замкнуто и ограничено
- 3. К секвенциально компактно.

Доказательство.

- $1 \implies 2$ и $1 \implies 3$ уже были.
- $2\implies 1$: K ограничено $\implies K\subset B_r(a)\subset$ куб. K замкнутое подмножество компакта \implies K компакт.
 - $3 \implies 2$:

Пусть K не замкнуто. Тогда есть предельная точка не в K. Можем выбрать сходящуюся к ней последовательность, но тогда любая подполседовательность сходится к ней \Longrightarrow не можем выбрать сходящуюся к точке из K. Противоречие $\Longrightarrow K$ замкнуто.

Пусть K не ограничено $\implies \forall n > 0 \quad K \not\subset B_n(0)$.

Тогда, можем выбрать последовательность вида $x_n \in K \setminus B_n(0)$. Тогда $\rho(0, x_n) \geqslant n$.

Выберем сходящуюся к $a \in K$ подпоследовательность x_{n_k} . Тогда x_{n_k} ограничена, причём ограничивающий шар с центром в a точно существует: $x_{n_k} \in B_r(a) \implies \rho(x_{n_k}, a) < r \implies \rho(x_{n_k}, a) < r \implies 0$. Противоречине, значит K ограничено.

Замечание.

- $3 \implies 1$ верно для произвольного пространства, но доказательство сложное.
- $2 \implies 1$ в общем случае неверно:

Рассмотрим \mathbb{R} с метрикой лентяя. $[0,1] \subset B_2(0)$, и есть замкнутость.

Но из $\bigcup_{x\in[0,1]} B_{\frac{1}{2}}(x)$ нельзя выбрать конечное покрытие, так-как каждый шар содержит лишь одну точку.

Теорема 0.4 (Больцано-Вейерштрасса).

Из всякой ограниченной последовательности в \mathbb{R}^d можно выбрать сходящуюся подпоследовательность.

Доказательство.

 $\{x_n\}$ ограничено \implies $\{x_n\}\subset B_R(a)\subset \overline{B}_R(a)$ - замкнуто и ограничено \implies компакт \implies секвенциально компактно \implies можно выбрать сходящуюся подпоследовательность.