

Solution - Robust optimization

19-03-2019

Production planning

You work for a production company and support them with optimizing their capacity and production schedule for a new factory.

The company has $p \in P$ different products that are produced on different machine types $m \in M$. Not each product can be produced on each machine, i.e., parameter $a_{p,m}=1$, if product p can be produced on machine type m and $a_{p,m}=0$ otherwise. As you are opening a new factory, you also have to decide how many machines of type m you want to buy. The price is c_m^M for one machine of type $m \in M$. Each machine of type $m \in M$ provides T_m hours of production.

The production costs are c_p^P for each $p \in P$. The targeted production quantities d_p for each product $p \in \mathcal{P}$ for the next year are given. Because we consider the entire year, we approximate the production quantities as continuous values.

The production time of product $p \in P$ on machine type $m \in M$ is uncertain. You know that the expected production time is $\bar{t}_{p,m}$ and the deviation (positive and negative) can be up to $t_{p,m}$. From experience from other factories, we can conclude that for each machine type $m \in M$ not more than 30% of the products that can be produced on machine type m will have a deviation from the expected production time.

Task

Formulate a robust optimization model that decides the number of machines and production quantities for each product and machine to have minimal cost and cover the demand in all cases of production time deviation. Use a budget of uncertainty.

Hint: Start with writing down the deterministic model with $t_{p,m}$ as placeholder for the uncertain parameter, before introducing the budget of uncertainty.

Solve your robust model with GAMS using the file robust_model.gms which already has some data input. Compare the solution to the following cases:

- no deviation from the expected production time is included in the model $(\Gamma_m = 0)$
- full deviation from the expected production time is included in the model (all products on that machine type can deviate at the same time)

Solution

Variables

 y_m Number of machines of type m

 $x_{p,m}$ Production amount of product p on machine type m

Model without budget of uncertainty:

$$\min \sum_{m \in M} \left[c_m^M y_m + \sum_{p \in P} c_p^P x_{p,m} \right] \tag{1a}$$

$$s.t. \sum_{m \in \mathcal{M}} x_{p,m} \ge d_p \qquad \forall p \in P$$
 (1b)

$$\sum_{p \in P} \tilde{t}_{p,m} x_{p,m} \le T_m y_m \qquad \forall m \in M, \tilde{t}_{p,m} \in [\bar{t}_{p,m} - t_{p,m}, \bar{t}_{p,m} + t_{p,m}]$$
 (1c)

$$x_{p,m} \le Big M_{m,p} a_{p,m} y_m \qquad \forall m \in M, p \in P$$
 (1d)

$$y_m \ge 0$$
 and integer $\forall m \in M$ (1e)

$$x_{p,m} \ge 0 \qquad \forall m \in M, p \in P \tag{1f}$$

where $\tilde{t}_{p,m}$ represents the uncertain production time and $BigM_{m,p}$ a large enough constant (here: $\frac{T_m}{t_{p,m}-t_{p,m}}$). The model (1a)-(1f) does not model that maximum 30% of the products per machine type take their worst case values.

In the remainder, we use a budget of uncertainty $\Gamma_m = 0.3 \sum_{p \in P} a_{p,m}$ per machine type.

Reformulate constraint (1c) with budget of uncertainty:

$$\sum_{p \in P} \bar{t}_{p,m} x_{p,m} + \max_{\left\{S_m \cup \{s_m\} | S_m \subseteq P, | S_m | \le \Gamma_m, s_m \in P \setminus S_m\right\}} \left\{\sum_{p \in S_m} \left(t_{p,m} | x_{p,m}|\right) + \left(\Gamma_m - \lfloor \Gamma_m \rfloor\right) t_{s_m,m} | x_{s_m,m}|\right)\right\} \\ \leq T_m y_m \quad \forall m \in M$$
(2)

Formulate subproblem in (2) as LP for each $m \in M$, which S_m and s_m being the subsets of products that lead to the worst case:

$$\max_{\left\{S_m \cup \{s_m\} | S_m \subseteq P, |S_m| \le \Gamma_m, s_m \in P \setminus S_m\right\}} \left\{ \sum_{p \in S_m} \left(t_{p,m} | x_{p,m}|\right) + \left(\Gamma_m - \lfloor \Gamma_m \rfloor\right) t_{s_m,m} | x_{s_m,m}|\right) \right\}$$

$$\max \sum_{p \in P_m} t_{p,m} |x_{p,m}| z_{p,m} \tag{3a}$$

$$s.t. \sum_{p \in P} z_{p,m} \le \Gamma_m \qquad \qquad : \lambda_m \tag{3b}$$

$$0 \le z_{p,m} \le 1 \qquad \forall p \in P \tag{3c}$$

Dual of (3a)-(3c):

$$\min \quad \Gamma_m \lambda_m + \sum_{p \in P} \mu_{p,m} \tag{4a}$$

$$s.t.\lambda_m + \mu_{p,m} \ge t_{p,m}|x_{p,m}| \qquad \forall p \in P$$
 (4b)

$$\lambda_m \ge 0$$
 (4c)

$$\mu_{p,m} \ge 0 \qquad \qquad \forall p \in P \tag{4d}$$

Replace subproblem in (2) with (4a)-(4d) to get the overall robust model.

$$\min \sum_{m \in M} \left[c_m^M y_m + \sum_{p \in P} c_p^P x_{p,m} \right] \tag{5a}$$

$$s.t. \sum_{m \in M} x_{p,m} \ge d_p \tag{5b}$$

$$\sum_{p \in P} \bar{t}_{p,m} x_{p,m} + \Gamma_m \lambda_m + \sum_{p \in P} \mu_{p,m} \le T_m y_m \qquad \forall m \in M$$
 (5c)

$$\lambda_m + \mu_{p,m} \ge t_{p,m} x_{p,m} \qquad \forall m \in M, p \in P$$
 (5d)

$$x_{p,m} \le BigM_{m,p}a_{p,m}y_m$$
 $\forall m \in M, p \in P$ (5e)

$$y_m \ge 0$$
 and integer $\forall m \in M$ (5f)

$$x_{p,m} \ge 0$$
 $\forall m \in M, p \in P$ (5g)

$$\lambda_m \ge 0 \tag{5h}$$

$$\mu_{p,m} \ge 0 \tag{5i}$$

Note that we can remove the absolute value in constraint (5d), because $x_{p,m}$ is always positive.

The solution values for the three cases are given below. The production amounts are the same for all three solutions, because we have to cover the demand in each case, which does not change. However, the number of machines per type are different, because the production times are uncertain and can deviate more or less in the different cases. In case with no deviations (factor 0.0), the production time is always the expected production time and we do not have increased production times in the worst case. Therefore, we need less machines. In case with no restrictions on the deviations (factor 1.0) more machines are needed to cover the demand also in the worst case (with long production times). The solution for the restricted budget of uncertainty (factor 0.3) lies in between and leads to less cost and machines compared the very conservative case.

		$\Gamma_m = 0.3 \sum_{p \in P} a_{p,m}$	$\Gamma_m = 0.0 \sum_{p \in P} a_{p,m}$	$\Gamma_m = 1.0 \sum_{p \in P} a_{p,m}$
Obj		29458532	29478532	30848532
Machines	m1	22	15	7
	m2	0	0	17
	m3	12	15	0
	m4	3	3	17
Production	p1	5844	5844	5844
	p2	9313	9313	9313
	p3	5725	5725	5725
	p4	8511	8511	8511
	p 5	9465	9465	9465
	p 6	27866	27866	27866
	р7	28396	28396	28396
	p8	27394	27394	27394
	p 9	27590	27590	27590
	p10	27612	27612	27612