1 Begrifflichkeiten bei Folgen

1.1 Beschränktheit

Eine Reelle Folge $(a_n)_{n\in\mathbb{N}}$ heißt beschränkt, falls gilt:

$$\exists C \in \mathbb{R}_{>0} : \forall n \in \mathbb{N} : |a_n| \le C.$$

1.2 Konvergenz

- (a) Sei $a \in \mathbb{R}$. Wir sagen, dass $(a_n)_{n \in \mathbb{N}}$ gegen a konvergiert, falls folgene Eigenschaft gilt: $\forall \varepsilon > 0 : \exists n_0 \in \mathbb{N} : \forall n \geq n_0 : |a a_n| < \varepsilon$
- (b) Wenn ein $a \in \mathbb{R}$ exisitert, so dass $(a_n)_{n \in \mathbb{N}}$ gegen a kovergiert, nennt man die Folge kovergent.
- (c) "nicht konvergent"⇔"divergent"
- (d) Konvergiert $(a_n)_{n\in\mathbb{N}}$ gegen a, so schreiben wir $\lim_{n\to\infty} a_n := a \text{ und } a_n \xrightarrow[n\to\infty]{} a$

1.2.1 Nullfolge

Konvergiert $(a_n)_{n\in\mathbb{N}}$ gegen 0, so nennen wir $(a_n)_{n\in\mathbb{N}}$ eine Nullfolge.

1.2.2 Differenzierbarkeit

Seien $a, b \in \mathbb{R}$ mit a<b. Seien $f : [a, b] \to \mathbb{R}$ eine Funktion und $x \in [a, b]$. Dann heißt f differenzierbar in x, falls $\in \mathbb{R}$ existiert mit

$$\lim_{n\to\infty} \frac{f(x+\varepsilon_n)-f(x)}{\varepsilon_n}$$

für jede Nullfolge mit $(\varepsilon_n)_{n\in\mathbb{N}}$ mit $\varepsilon_n\neq 0 \forall n\in\mathbb{N}$. In diesem Fall heißt die y auch die Ableitung von f in x und wird mit f'(x) bezeichnet.

1.3 Teilfolgen und Häufungspunkte

1.3.1 Teilfolgen

Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ Folgen in \mathbb{R} . Wir nennen $(b_n)_{n\in\mathbb{N}}$ eine Teilfolge von $(a_n)_{n\in\mathbb{N}}$, falls

$$(b_n)_{n\in\mathbb{N}}=(a_{s(n)})_{n\in\mathbb{N}}$$

für eine streng monoton steigende Funktion $s: \mathbb{N} \to \mathbb{N}$ gilt.

1.3.2 Häufungspunkt

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R} und sei $a\in\mathbb{R}$. Dann heißt a Häufungspunkt von $(a_n)_{n\in\mathbb{N}}$, falls eine Teilfolge von $(a_n)_{n\in\mathbb{N}}$ existiert die gegen a konvergiert.