Learnings from productionizing a semi-supervised deep learning system model at the petabyte scale.

Samiran Roy

Senior Lead Data Scientist at Envestnet | Yodlee, Masters at IIT Bombay

LinkedIn: samiranroy

Slides: http://bit.ly/pptsslprod

Supervised Setting

Semi-Supervised Learning

Yodlee Data Analytics - Scale

- 100 bn+ text datapoints
- 1 PB+ size
- 20 mn+ unique words
- 10+ classification challenges
- 3 mn+ classes*
- >90% precision/recall*

The Presentation

Simple Ideas

Common Sense - In hindsight

Tentative Outline

- Before
- During Model Creation
- After

The Power Law

debit purchase

debit purchase mcdonalds

debit purchase mcdonalds chicago il \$40 on 19-10-2019

The Power Law

Simple models sufficient for the 'fat head' Generalizability needed for the 'long tail'

Data Instance

Number of

Occurrences

The Before Stage

Bunch of Data Points Maybe a few labels

Where do you start?

Data Swimming

Data Swimming

The first step to training a neural net is to not touch any neural net code at all and instead begin by thoroughly inspecting your data. This step is critical. I like to spend copious amount of time (measured in units of hours) scanning through thousands of examples, understanding their distribution and looking for patterns. Luckily, your brain is pretty good at this. One time I discovered that the data contained duplicate examples. Another time I found corrupted images / labels. I look for data imbalances and biases. I will typically also pay attention to my own process for classifying the data, which hints at the kinds of architectures we'll eventually explore. As an example - are very local features enough or do we need global context? How much variation is there and what form does it take? What variation is spurious and could be preprocessed out? Does spatial position matter or do we want to average pool it out? How much does detail matter and how far could we afford to downsample the images? How noisy are the labels?

~ Andrej Karpathy, (Senior Director of AI at Tesla) (http://karpathy.github.io/2019/04/25/recipe/)

Accuracy?

Ref: https://gradientdescent.co/t/tesla-autonomy-day-watch-the-full-event/216/18

ML vs DL

Be very careful to avoid bias

100 bn -> 1 bn (sample)

(Data driven - Domain Expertise)

1bn -> 1 mn (labelled sample)

Machine learning based

Representation is key

Word Embeddings

Vector Arithmetic

Male-Female

Verb tense

Country-Capital

Visualizing embeddings

Unsupervised Learning (hdbscan, faiss)

Quantifying forgetfulness is important! Nearest neighbor sampling

100 bn -> 1 bn -> 1 mn

Data Annotation

Semi Supervised Approach 1

Unsupervised word Embeddings (1bn)

+ Deep Learning Models (1mn)

To read: https://arxiv.org/abs/1509.01626

Semi Supervised Approach 2

Jointly optimize Self-supervised + Supervised objective function

To read: https://arxiv.org/pdf/1905.03670v2.pdf

Self Supervision

https://deepai.org/publication/boosting-supervision-with-self-supervision-for-few-shot-learning https://proiect.inria.fr/paiss/files/2018/07/zisserman-self-supervised.pdf

Cross View Training

Learning on a Labeled Example

Inputs Seen by Auxiliary Prediction Modules

Auxiliary 1:	They traveled to	
Auxiliary 2:	They traveled to	Washington
Auxiliary 3:		Washington by plane
Auxiliary 4:		by plane

Refer to: https://arxiv.org/pdf/1809.08370.pdf

(Semi-Supervised Sequence Modeling with Cross-View Training)

Practical Considerations

Cache frequently

Model from scratch

Consider *hidden* technical debt

(https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf)

Bonus: https://arxiv.org/abs/1801.09536

Tooling

1) Root Cause Analysis

Plug and play

Output metrics

Confusion Matrices

2) Model Interpretation

Category: Sports

Alongside Tendulkar and Sehwag, several other retired international cricketers will be **seen in action**

Alongside **Tendulkar** and **Sehwag**, several other retired international **cricketers** will be seen in action

https://indico.scc.kit.edu/event/344/contributions/24 34/attachments/1258/1759/Talk Samek.pdf

3) Automatic feedback loops

Ties in with Root Cause Analysis

3) Automatic feedback loops

1mn -> 1k problem

3) Automatic feedback loops

Ensemble of models:

Word based sampling

Embedding based sampling

Random Sampling

Automatic Validation

Model 1: Productionized, needs to meet SLAs. ~n millisecond per query

Model 2: High Precision Classifier, no compute constraints

https://arxiv.org/abs/1506.02142 https://arxiv.org/pdf/1709.01907.pdf

Compare the outputs of the two models

Thank you!

Slides: http://bit.ly/pptsslprod

Take away:

Power Law
Data Swimming
Semi Supervised Approaches
Detecting hidden technical debt