TP2 Compte rendu

7 décembre 2017

Ce TP, illustre plusieurs méthodes pour calculer, approximativement, l'intégrale d'une fonction sur un intervalle borné et fermé.

1 Etude de fonction : $f(x) = \sqrt{1-x^2}$

- 1. Nous avons commencé par définir la fonction f(x) à l'aide de la fonction ${\tt sqrt}$ () du module ${\tt math}$
- 2. Voici la courbe représentatrice de f(x) sur l'intervalle [-0.5, 0.5]

3. Pour l'intégrale voir annexe 1

2 Méthode du point milieu

Calcul approché de l'intregrale à l'aide **méthode du point milieu** [Python: module **time**, on a crée un tableau de résultats dans un fichier texte **open()** et write(); Maths: approximation d'une fonction par une fonction en escalier, approximation numérique d'une intégrale.

Ensuite, on a défini une subdivision de l'intervalle d'intégration [0,1] avec n=4. On définit les milieux de ces sous-intervalles. On calcule la surface sk du rectanggle de base [xk-1,xk] et de hauteur f(ck). On sait que la surface d'un rectangle est S=b*h avec b la base et h la hauteur du rectangle.

La méthode du point milieu consiste à prendre la somme $S4 = \sum_{i=1}^{4} (s_k)$ comme approximation de I.

Par la suite, il a fallut calculer l'erreur entre l'intégrale et l'approximation qu'on en a faite. Pour cela, on a calculer la valeur absolue de S4 soutrait à l'intégrale I.

Nous avons également utiliser la fonction clock() du module time pour mesurer le temps de calcul de notre intégrale.

Puis nous avons eu à écrire la fonction point milieu qui utilise la méthode du point milieu. Pour pouvoir la tester par la suite avec $f(x) = \sqrt{1-x^2}$, a = -0.5, b = 0.5, et n qui va de 10 à 1 000 000. Et avoir la tableau suivant :

n	erreur	temps (sec.)
10	0.000480384	3.6e-05
100	4.811178e-06	0.000184
1000	4.81125e-08	0.001663
10000	4.8113e-10	0.01584
100000	4.81315e-12	0.161942
1000000	5.06262e-14	1.57448

3 Méthode du trapèze

Pour la méthode du trapèze, on approxime f sur l'intervalle [xk-1,xk] par la fonction affine qui prend les mêmes valeurs que f en x_{k-1} et x_k .

On a essayé de calculer l'intégrale par la $m\acute{e}thode$ du $trap\`{e}ze$. Pour cela, on définit la fonction trapeze qui prend en arguments une fonction ${\tt f}$, des bornes ${\tt a}$ et ${\tt b}$ et un entier ${\tt n}$ et qui renvoie l'intégrale approchée de ${\tt f}$ sur [a,b] au moyen de la $m\acute{e}thode$ du $trap\`{e}ze$.

Puis on a testé la méthode de la même manière qu'avec la méthode du point milieu.

Avec les données acquises nous avons rempli le tableau ci-dessous :

n	erreur	temps (sec.)
10	0.000961402	2.1e-05
100	9062242e-06	7.8e-05
1000	9.6225 e - 08	0.00077
10000	9.6225e-10	0.007611
100000	9.63307e-12	0.076049
1000000	1.11022e-13	0.744644

4 Méthode de Simpson

Pour la *méthode de Simpson*, on approxime f sur l'intervalle $[x_{k-1}, x_k]$ par le polynôme de degré 2 qui prend les mêmes valeurs que f en x_{k-1} , c_k et x_k . Nous avons définit la *fonction Simpson* à l'aide de nos camarades.

Puis nous avons testé notre programmme également de la même manière que les méthodes précédentes.

Avec ces données, nous avons rempli le tableau ci-dessous :

\mathbf{n}	erreur	temps (sec.)
10	2.11626e-07	2.8e-05
100	2.13807e-11	0.000185
1000	1.33227e-15	0.002373
10000	6.76126e-14	0.02393
100000	6.27609e-13	0.239471
1000000	1.12086e-11	2.40692

5 Comparaison des trois méthodes précédentes

Les trois méthodes **point milieu**, **trapèze** et **simpson** nous permettent de calculer une approximation d'intégrale d'une fonction sur un intervalle.

Il y a en revanche quelques différences entre ces méthodes. Dans la $m\acute{e}thode$ du point milieu on approxime f par la fonction constante , dans la $m\acute{e}thode$ du $Trap\`eze$ on approxime par la fonction affine et dans la $m\acute{e}thode$ de Simpson on approxime par la fonction du polynôme de degré 2.

On remarque que l'erreur commise est différente pour chaque méthode. On voit que la *méthode de Simpson* est plus efficace que les deux autres méthodes. En effet les erreurs commises par la *méthode de Simpson* sont très inférieures à celles des deux autres méthodes.

6 Méthode de Monte-Carlo

Nous avons eu du mal à dessiner le cercle unité ne sachant pas la fonction à utiliser sur Python, nous avons fait quelques recherches sur Internet puis la solution du problème a été trouvée. Nous avons utilisé une propriété du cercle unité qui est :

$$\begin{cases} x = \cos(\theta) \\ y = \sin(\theta) \end{cases} \tag{1}$$

Voici le cercle obtenu :

Grâce aux valeurs aléatoires nous avons pu "dessiner" un cercle en placant aléatoirement des points jaune lorcequ'ils sont inférieurs à l'équation du cercle et des points noires lorcequ'ils sont supérieurs au cercle unité c'est à dire à l'extérieur de ce cercle. Voici ce qu'on obtient :

Ensuite on a compté le nombre I de points intérieurs et le nombre E de points extérieurs.

On sait que la *méthode de Monte Carlo* consiste à prendre le rapport $\frac{I}{N}$ comme approximation de la surface S du disque. Ainsi nous avons calculé la valeur absolue du rapport $\frac{I}{N}$ soustrait à S pour savoir l'erreur commise par la fonction *Monte Carlo*. On a utilisé clock() pour mesurer le temps de calcul.

On a testé la fonction $Monte\ Carlo$ avec $N=10^k,$ k variant de 1 à 6.

Monte Carlo est une fonction avec des valeurs aléatoire donc le tableau suivant change à chaque fois que le programme sera exécuté.

n	erreur	temps (sec.)
10	0.0975927	7.8e-05
100	0.0975927	0.000256
1000	0.0975927	0.002503
10000	0.0975927	0.02528
100000	0.0975927	0.246219
1000000	0.0975927	2.47361

Et enfin, nous avons défini une fonction $monte_carlo_2$ pour le calcul du volume de la boule unité.

Abdel Rahmani

Imane Nehad