TRIGONOMETRY Chapter 15

RAZONES TRIGONOMÉTRICA DE UN ÁNGULO EN POSICIÓN NORMAL I

<u>ÁNGULO EN</u> POSICIÓN

Son aquellos angulos trigonométricos cuyo vértice está en el origen de coordenadas y su lado inicial coincide con el semieje positivo de las abscisas, y su lado final puede ubicarse en cualquier cuadrante o semieje del plano cartesiano.

NOTA

Tenemos ángulos positivos y negativos. según el sentido de giro

θ: medida del ángulo en posición normal

<u>OBSERVACIÓN</u>

La posición del lado final del ángulo en posición normal determina el cuadrante al que pertenece.

<u>DEFINICIÓN DE LAS R.T PARA UN ÁNGULO EN </u> OSICIÓN NORMAL

$$r = \sqrt{x^2 + y^2} \quad ; r > 0$$

SE DEFINE:

$$sen\theta = \frac{ordenada \ del \ punto \ P}{radio \ vector \ del \ punto \ P} = \frac{y}{r}$$

$$\cos\theta = \frac{\text{abscisa del punto P}}{\text{radio vector del punto P}} = \frac{x}{r}$$

$$tan\theta = \frac{\text{ordenada del punto P}}{\text{abscisa del punto P}} = \frac{y}{x}$$

y: ordenada del punto P

Complete los casilleros en blanco.

RESOLUCIÓN

Calculando el radio vector

$$r = \sqrt{(x)^2 + (y)^2}$$

$$r = \sqrt{(-5)^2 + 12^2}$$

$$r = \sqrt{125 + 144}$$

$$r = \sqrt{169}$$

$$r = 13$$

Del gráfico, efectúe $E = sen\alpha + cos\alpha$

<u>RESOLUCIÓN</u>

Calculando el radio vector

$$r = \sqrt{(x)^2 + (y)^2}$$

$$r = \sqrt{(-24)^2 + 7^2}$$

$$r = \sqrt{576 + 49}$$

$$r = \sqrt{625} \qquad r = 25$$

$$x = -24$$
 $y = 7$ $r = 25$

Piden: $E = sen\alpha + cos\alpha$

$$\Rightarrow$$
 E = $\frac{7}{25} + \frac{-24}{25}$

$$\therefore E = -\frac{17}{25}$$

Del gráfico, efectúe M = tanβ.cosβ

<u>RESOLUCIÓN</u>

Calculando el radio vector

$$r = \sqrt{(x)^2 + (y)^2}$$

$$r = \sqrt{(\sqrt{8})^2 + (-1)^2}$$

$$r = \sqrt{8 + 1}$$

$$r = \sqrt{9}$$

$$r = 3$$

$$x = \sqrt{8}$$
 $y = -1$ $r = 3$

Piden: $M = tan\beta.cos\beta$

$$M = \left(\frac{-1}{8}\right)\left(\frac{8}{3}\right)$$

$$\therefore E = -\frac{1}{3}$$

Del gráfico, efectúe

$$N = \cos^2 \varphi - \sin^2 \varphi$$

Calculando el radio vector

$$r = \sqrt{(x)^2 + (y)^2}$$

$$r = \sqrt{(-2)^2 + 1^2}$$

$$r = \sqrt{4 + 1}$$

$$r = \sqrt{5}$$

$$x = -2$$
 $y = 1$ $r = \sqrt{5}$

Piden: $N = \cos^2 \varphi - \sin^2 \varphi$

$$N = \left(\frac{-2}{\sqrt{5}}\right)^2 - \left(\frac{1}{\sqrt{5}}\right)^2$$

$$N = \left(\frac{4}{5}\right) - \left(\frac{1}{5}\right)$$

$$\therefore N = \frac{3}{5}$$

Si el punto Q(–9; –12) pertenece el lado final del ángulo α en posición normal. Calcule: B = 30sen α – 27tan α .

RESOLUCIÓN

• Calculando el radio vector

$$r = \sqrt{(x)^2 + (y)^2}$$

$$r = \sqrt{(-9)^2 + (-12)^2}$$

$$r = \sqrt{81 + 144}$$

$$r = \sqrt{225}$$

$$x = -9$$
 $y = -12$ $r = 15$

Piden: $B = 30 \text{sen}\alpha - 27 \text{tan}\alpha$

$$\Rightarrow B = \frac{2}{30} \left(\frac{-12}{15} \right) - \frac{3}{27} \left(\frac{-12}{9} \right)$$

$$\Rightarrow$$
 B = $-24 - 36$

$$\therefore B = -60$$

Del gráfico, halle el valor

de "y", si sen
$$\theta = \frac{7}{2}$$

<u>RESOLUCIÓN</u>

Del gráfico:

$$sen\theta = \frac{y}{21}$$
(I)

• Del dato:

$$sen\theta = -\frac{3}{7} \quad(II)$$

De (I) y (II):

$$\frac{y}{21} = -\frac{3}{7}$$

$$\therefore y = -9$$

Del gráfico, si tan $\alpha \stackrel{1}{=}$ halle el valor de n.

RESOLUCIÓN

Del gráfico:

$$tan\alpha = \frac{n+1}{3n+1} \quad(I)$$

• Del dato:

$$\tan\alpha = \frac{1}{2}$$
(II)

De (I) y (II):

$$\frac{n+1}{3n+1} = \frac{1}{2} \Rightarrow 2n+2=3n+1$$

$$\therefore n=1$$

8

Para saber cuál fue la nota de André en su examen de trigonometría, deberás resolver lo siguiente: A =

Sabiendo que le falta A puntos para llegar a la nota 20, ¿cuál fue la nota de André?

RESOLUCIÓN

Calculando las coordenadas del punto M

$$M\begin{cases} x = \frac{-3-1}{2} = -2\\ y = \frac{4+2}{2} = 3 \end{cases} \Rightarrow M = (-2;3)$$

• Calculando radio vector de M:

$$r = \sqrt{(x)^2 + (y)^2}$$
 $r = \sqrt{(-2)^2 + 3^2} = \sqrt{13}$
 $x = -2$ $y = 3$ $r = \sqrt{13}$

• Nos piden: A = $\sqrt{13}$ (sen α + cos α)

$$A = \sqrt{13} \left(\frac{3}{\sqrt{13}} + \left(\frac{-2}{\sqrt{13}} \right) \right) A = 1$$

André tuvo 19 de nota