Large AMI systems – Architecture, Reliability, Security

A semiconductor solutions provider's perspective

Chander Goel

Network technologies based on density

- Cellular technologies are better for Sparse Networks like rural or small urban settlements
 - No separate gateway required.
 - High Range and scalability
 - Low latency
 - Drawbacks High on power, cost, congestion in dense networks
- Sub GHz Low Power RF like (WiSUN or proprietary mesh) are low cost alternative for Dense Networks in Urban Areas
 - Cost optimized and low power consuming
 - Mesh Networking with self healing
 - Free from interference due to frequency hopping
 - Drawbacks Long Network Set up time, High Latency,
 Medium data rates

Why same SLA for both type of networks?

Dining profite data for instance meters	hours after the midnight
3. On-Demand Remote reads of meters	
Collection of 7 days of interval energy data and the current total accumulated energy from a selected individual meter	From 90% of the meters in 2 minutes
4. Remote connect / disconnect	
Action to response for individual meter	Less than 3 mins
5. Updating of data on consumer portal/ app	
Updating of individual consumer data on portal/ app after receiving the data in MDM	Action performed for active on portal consumers within 5 minute after receiving the data in MDM
6. Ping Response with acknowledgement/ response for selected	meters
For installed meters	Action performed at 99.9% of meters within [1] minute; and
For an individual meter	Action performed within 3 seconds
7. Meter loss and restoration of supply	
Receiving of alert for all affected AMI meters	Alert to be received within 3 minutes for 60% of meters
8. Meter Tamper Alerts	
Receiving of alert for an individual meter	Alert to be received within 3 minutes
9. Power Quality Alerts	
Receiving of alert for an individual meter	Alert to be received within 5 minutes

RF mesh networks like Wi-SUN typically have a longer joining time compared to cellular networks due to the following reasons:

- **Multi-Hop Network Discovery**: In Wi-SUN mesh networks, a new device must first scan for nearby neighbors and establish a multi-hop path to a gateway which involves Finding the nearest parent node, Verifying link quality, Selecting the optimal routing path, Establishing multi-hop connectivity.
 - In contrast, a cellular device only needs to connect to the nearest base station, making the process faster.

Secure Authentication & Key Exchange

- Wi-SUN networks use public key infrastructure (PKI) for authentication, requiring secure key exchange between the device, neighbors, and gateway. This involves Certificate validation, Mutual authentication, Establishing encrypted communication.
- Cellular networks rely on pre-provisioned SIM cards, which authenticate quickly with the mobile network.

Network Synchronization & Routing Setup

- Mesh networks require:
 - Time synchronization between nodes to coordinate transmissions.
 - Routing table construction for multi-hop data forwarding.
 - Cellular networks do not need complex time sync or routing protocols, making the connection process faster.

Self-Forming & Self-Healing Overhead

- Wi-SUN mesh is a self-forming, self-healing network, which means:
- New nodes must find stable connections and integrate into the existing mesh.
- Nodes constantly update routing tables, which adds overhead.
- Cellular networks use a centralized infrastructure, eliminating the need for distributed routing updates.

🦊 Texas Instruments

Use Case for mandating BLE

- BLE can provide 1-to-1 direct access to the User Mobile phone or Utility Operator's Tablet. It is a good tool for commissioning, servicing and monitoring
- Experience tells that both Sub GHz RF as well as Cellular technologies may falter at some or the other point. BLE provides a reliable fail-safe connectivity especially for prepayment operations.
- It can replace old way of plugging an optical reader.
- The present BLE SOC offerings from Semiconductor vendors like Texas Instruments are very cost optimized and thus add minimal cost
- The BLE technology and BLE SOCs consume ultra low power. They can remain active through small batteries during power outages.

Al Generated Graphic

Security in AMI – A key feature of latest Sub GHz RF and BLE SOCs

Security is AMI is of utmost importance to:

- Prevent Cyber Attacks Blocks hacking, malware, and DoS threats.
- Ensure Data Privacy Protects consumer energy data.
- Stop Energy Theft Detects meter tampering and fraud.
- Maintain Grid Stability Prevents disruptions from cyber threats.
- Authenticate Devices Blocks unauthorized access.
- Prevent Insider Threats Restricts unauthorized data access.
- Avoid Service Disruptions Ensures reliable power distribution.

Snapshot from CC2755 Datasheet (TI's Latest BLE SOC)

Security enablers

- Global Platform SESIP (Security Evaluation Standard for IoT Platforms) Level 3 and Arm PSA (Platform Security Architecture) Level 3 Certification
- Hardware Security Module (HSM) with proprietary controller and dedicated memories supporting accelerated cryptographic operations and secure key storage:
 - AES (up to 256 bits) crypto accelerator
 - ECC (up to 521 bits), RSA (up to 3072 bits) public key accelerator
 - SHA-2 (up to 512 bits) accelerator
 - True random number generator
 - HSM firmware update support
 - Separate AES 128bit crypto accelerator (LAES) for latency-critical link-layer crypto operations
 - · Secure boot and secure firmware updates
 - Cortex®-M33 TrustZone-M, MPU, memory firewalls for software isolation
 - · Voltage glitch monitor (VGM)

* Al Generated Graphic

Questions