Task 1: Weather Forecasting

Hybrid Architecture: AWS Services + Open-Source Technologies

To optimize cost, flexibility, and customization, we will combine AWS services with open-source technologies for data ingestion, processing, storage, machine learning, and visualization while ensuring scalability and fault tolerance.

Architecture Breakdown

Proposed architecture follows a structured pipeline, moving from data ingestion to processing, storage, ML modeling, API deployment, and visualization.

1. Data Ingestion	 IoT Devices: Collect real-time weather data (temperature, humidity, wind speed). AWS IoT Core: Serves as a gateway for IoT devices, securely streaming data to Kafka.
-------------------	--

2. Data Streaming & Processing	 Amazon Managed Streaming for Kafka: Handles real-time data ingestion. Ensures scalability and fault tolerance for IoT data streams.
	 Apache Airflow (Managed Workflows for Apache Airflow): Orchestrates data pipelines. Cleans, validates, and preprocesses incoming data before storing it.
3. Data Storage & Machine Learning	 Amazon S3 (Preprocessed Data Storage): Stores clean, preprocessed weather data for model training. MLflow: Manages ML experiments, tracks model versions, and ensures reproducibility. Pulls preprocessed data from S3 for model training.
4. Model Deployment & API	 FastAPI (Dockerized): Deploys the trained model as a REST API. Provides real-time predictions for clients.
5. Visualization & User Interaction	 Grafana Dashboard: Provides users with real-time rain probability visualizations. Connects to FastAPI to fetch predictions.