63.01 / 83.01 Química

Departamento de Química

Ejercicio 16 – Cinética química - Enunciado

En la siguiente tabla se da la variación de la constante de velocidad con la temperatura para la reacción de primer orden:

$$2N_2O_5(g) \rightarrow 2N_2O_4(g) + O_2(g)$$

Determine gráficamente la energía de activación y el factor de frecuencia.

T (K)	K (s ⁻¹)
273	7,87 x10 ³
298	3,46 x 10 ⁵
318	4,98 x 10 ⁶
338	4,87 x 10 ⁷

Ejercicio 16 – Cinética química

Ley de Arrhenius

$$k = A e^{-E_a/RT}$$

A= factor pre exponencial o de frecuencia

E_a = energía de activación

Ejercicio 16 – Cinética química

Ley de Arrhenius

$$\ln k = \ln A - \frac{E_a}{RT}$$

$$\underbrace{\frac{\ln k}{y}} = -\underbrace{\left(\frac{E_a}{R}\right)}_{m}\underbrace{\left(\frac{1}{T}\right)}_{x} + \underbrace{\frac{\ln A}{M}}_{b}$$

Podemos determinar gráficamente la energía de activación (*Ea*)

y el factor de frecuencia (A).

Ejercicio 16 – Cinética química

T (K)	K (s ⁻¹)
273	7,87 x10 ³
298	$3,46 \times 10^5$
318	4,98 x 10 ⁶
338	4,87 x 10 ⁷

$\ln k = -$	$\left(\frac{E_{\rm a}}{R}\right)\left(\frac{1}{T}\right) + \underbrace{\ln A}$	
\downarrow	$\begin{array}{c} \begin{pmatrix} R \end{pmatrix} \begin{pmatrix} I \end{pmatrix} \\ \downarrow \\ \end{pmatrix} \end{array}$	
y =	m x + b	

1/T	In K
3,66E-03	8,97
3,36E-03	12,75
3,14E-03	15,42
2,96E-03	17,70

$$\frac{Ea}{R}=12413$$

$$Ea = 12413 \times R$$

$$Ea = 103, 2 \, kJ/mol$$

$$lnA = 54,434$$

$$A = 4,37 \times 10^{23} s^{-1}$$

