

mult mod 2^16 + 1

uint16 x uint16 y uint32 product uint16 result

product = x*y
If LOW(product) >= HIGH(product)
 result = LOW(product) - HIGH(product)
else
 result = LOW(product) - HIGH(product) + 1

OP Codes

ADD = 0000 SUB = 0001 MUL = 0010 OR = 0011 AND = 0100 XOR = 0101 LOAD = 0110 STORE = 0111 BZ = 1000 BEQ = 1001 BP = 1010 BN = 1011 JR = 1100 HALT = 1101

Instruction encodings

Pipeline

Haza	rc) L	:Xa	amp	les		
F = fetch							
D = decode							
E = execute							
WB = write back							
RAW Hazard (R3)							
ADD R3 R2 R1	F	D	E	WB			
SUB R9 R4 R3		F	F	D	Е	WB	
OR R12 R10 R11				F	D	E	WB
Branch not taken							
BEQ R4 R5 #00C	F	D	E	WB			
ADD R1 R2 R3		F	D	E	WB		
Branch taken							
BEQ R1 R2 #00C	F	D	E	WB			
ADD R5 R3 R4		F	-	-	-		
XOR R7 R6 #00FF							
AND R5 R3 R4			F	D	E	WB	
Multiplication							
MUL R3 R1 R2	F	D	E	WB (R3)	WB (R4)		
ADD R7 R5 R6		F	F	D	Е	WB	
Multiplication with RAW Hazard							
MUL R3 R1 R2	F	D	Е	WB (R3)	WB (R4)		
ADD R8 R9 R3		F	F	D	E	WB	

				Write-ba ck first half cycle, so no extra stall needed			
Multiplication with RAW Hazard for second 16 bits							
MUL R3 R1 R2	F	D	E	WB (R3)	WB (R4)		
ADD R8 R9 R4		F	F	F	D	Е	WB

Comparison with other implementations

	Transistor Count		System Clock Speed	Year	Throughput/Transisto r Count	
Bibliography #3	190K	64Mbps	8MHz	2001	336	
Bibliography #4	251K	177Mbps	25MHz	1993	705	
Ме	1.3M	182Mbps	1GHz	2016	140	

Bibliography

- 1. Leong, M. P., Cheung, O. Y., Tsoi, K. H., & Leong, P. H. W. (2000). A bit-serial implementation of the international data encryption algorithm IDEA. In *Field-Programmable Custom Computing Machines*, 2000 IEEE Symposium on (pp. 122-131). IEEE.
- 2. Kim, S., & Cho, K. (2010). Design of high-speed modified booth multipliers operating at GHz ranges. *World Academy of Science, Engineering and Technology*, *61*, 1-4.
- 3. Sklavos, N., & Koufopavlou, O. (2001). Asynchronous low power vlsi implementation of the international data encryption algorithm. In *Electronics, Circuits and Systems, 2001. ICECS 2001. The 8th IEEE International Conference on* (Vol. 3, pp. 1425-1428). IEEE.
- Zimmermann, R., Curiger, A., Bonnenberg, H., Kaeslin, H., Felber, N., & Fichtner, W. (1994). A 177 Mb/s VLSI implementation of the international data encryption algorithm. Solid-State Circuits, IEEE Journal of, 29(3), 303-307.
- 5. Steinhaus, M., Kolla, R., Larriba-Pey, J. L., Ungerer, T., & Valero, M. (2001, June). Transistor count and chip-space estimation of simplescalar-based microprocessor models. In *Proceedings of the Workshop on Complexity-Effective Design* (pp. 1-15).

6.	Hennessy, J. & Patterson, D. (2006). Computer Architecture: A Quantitative Approach (5th Edition Prentice-Hall.