Algebraic Number Theory

read by Prof. Dr. Werner Bley

notes by Stefan Albrecht

 $Ludwig-Maximilians-Universit \"{a}t\ M\"{u}nchen-winter\ term\ 2025/26$

Contents

1	Motivation	2
2	Integrality	5

1 Motivation

Theorem 1.1 (Lagrange). Let p be an odd prime. Then

Lecture 1 Oct 15, 2025

$$p = x^2 + y^2$$
 with $x, y \in \mathbb{Z}$ if and only if $p \equiv 1 \mod 4$.

Proof. For any integer x we have $x^2 \equiv 0, 1 \mod 4$, hence $x^2 + y^2 \equiv 0, 1$ or $2 \mod 4$ for all $x, y \in \mathbb{Z}$, hence $p \not\equiv 3 \mod 4$.

Conversely, assume that $p \equiv 1 \mod 4$. Then \mathbb{F}_p^{\times} is a cyclic group of order p-1, so there exists some $\overline{m} \in \mathbb{F}_p^{\times}$ of order 4. Thus there is $m \in \mathbb{Z}$ with $m^2 \equiv -1 \mod p$, i.e. $p \mid m^2 + 1 = (m+i)(m-i) \in \mathbb{Z}[i]$. Since the Gaussian integers form a Euclidean ring, it is in particular a PID.

Consider its norm $N: \mathbb{Z}[i] \to \mathbb{Z}$, $\alpha = a + bi \mapsto \alpha \overline{\alpha} = a^2 + b^2$, which is a multiplicative function. Suppose that $p \mid m+i$. Then $p \mid m-i$ as well, hence $p \mid 2i$, which is clearly wrong. Hence p is not a prime element in $\mathbb{Z}[i]$. Since we are in a PID, p is reducible in $\mathbb{Z}[i]$, i.e. there exist non-units $\alpha = x + yi$, $\beta = x' + y'i \in \mathbb{Z}[i]$ such that $p = \alpha\beta$. Now we see $p^2 = N(\alpha)N(\beta) = (x^2 + y^2)(x'^2 + y'^2)$. Since α, β aren't units, each factor is > 1, hence $p = x^2 + y^2 = x'^2 + y'^2$.

Definition 1.2. A finite extension K of \mathbb{Q} is called a *number field*.

Example 1.3. $\mathbb{Q}(i)$ is a number field of degree 2. In the above example, we worked in $\mathbb{Z}[i] \subseteq \mathbb{Q}(i)$. We want to generalize this.

Definition 1.4. Let K/\mathbb{Q} be a number field. Then

$$\mathcal{O}_K := \{ \alpha \in K \mid \exists f \in \mathbb{Z}[x] \text{ normalized s.t. } f(\alpha) = 0 \},$$

i.e. the integral closure of \mathbb{Z} in K, is called the *ring of integers* in K.

We will show: \mathcal{O}_K is a Dedekind domain.

Example 1.5. (i) For $K = \mathbb{Q}(i)$ we have $\mathcal{O}_K = \mathbb{Z}[i]$

- (ii) For $K = \mathbb{Q}(\sqrt{2})$ one gets $\mathcal{O}_K = \mathbb{Z}[\sqrt{2}]$
- (iii) For $K = \mathbb{Q}(\sqrt{-6})$ we have $\mathcal{O}_K = \mathbb{Z}[\sqrt{-6}]$
- (iv) (Exercise) More generally, for $d \in \mathbb{Z} \setminus \{0,1\}$ squarefree, the ring of integers of $K = \mathbb{Q}(\sqrt{d})$ is $\mathbb{Z}[\omega]$, where

$$\omega = \begin{cases} \sqrt{d} & \text{if } d \equiv 2, 3 \mod 4, \\ \frac{1+\sqrt{d}}{2} & \text{if } d \equiv 1 \mod 4. \end{cases}$$

Theorem 1.6. Let p be an odd prime. Then

$$p = x^2 - 2y^2$$
 with $x, y \in \mathbb{Z}$ if and only if $p \equiv \pm 1 \mod 8$.

Proof. The forward direction follows as in the first theorem. For the converse, we work in $\mathbb{Z}[\sqrt{2}] \subseteq \mathbb{Q}(\sqrt{2})$. Consider the norm $N : \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}$, $\alpha = x + y\sqrt{2} \mapsto \alpha\sigma(\alpha) = x^2 - 2y^2$, where $\mathrm{Gal}(\mathbb{Q}(\sqrt{2}) \mid \mathbb{Q}) = \langle \sigma \rangle$. We will see later (Quadratic Reciprocity) that $p \equiv \pm 1 \mod 8$ is equivalent to $(\frac{2}{n}) = 1$, i.e. 2 being a square $\mathrm{mod} p$.

Hence there exists $m \in \mathbb{Z}$ with $p \mid m^2 - 2 = (m - \sqrt{2})(m + \sqrt{2})$. As before, we see that p is not prime, hence reducible $(\mathbb{Z}[\sqrt{2}]$ is again Euclidean) and we finish as before.

The main difference between theorems 1.1 and 1.6 is that the unit group of $\mathbb{Z}[i]$ is finite, while $\mathbb{Z}[\sqrt{2}]^{\times} = \{\pm 1\} \times (1 + \sqrt{2})^{\mathbb{Z}}$ is infinite¹. This implies that $p = x^2 - 2y^2$ has infinitely many solutions for $p \equiv \pm 1 \mod 8$, for $N((1 + \sqrt{2})^{2k}\alpha) = N(\alpha)$ for all $k \in \mathbb{Z}$.

In this vein, an important goal of this lecture is

Theorem 1.7 (Dirichlet's unit theorem). Let K/\mathbb{Q} be a number field. Let s be the number of real embeddings and let t be the number of pairs of complex embeddings of K. Then \mathcal{O}_K^{\times} is a finitely generated abelian group of rank r=s+t-1, i.e. there exist fundamental units $\varepsilon_1,\ldots,\varepsilon_r$ and $\zeta\in\mu_K=\{\text{roots of unity in }K\}$ such that each $\varepsilon\in\mathcal{O}_K^{\times}$ can be uniquely written in the form

$$\varepsilon = \zeta^l \varepsilon_1^{a_1} \cdots \varepsilon_r^{a_r}$$

with $a_i \in \mathbb{Z}$ and $l \in \mathbb{Z}/\operatorname{ord}(\zeta)\mathbb{Z}$.

Example 1.8. For $K = \mathbb{Q}(\sqrt{2})$ we have $\mu_K = \{\pm 1\}$, $\varepsilon_1 = 1 + \sqrt{2}$ and r = 2 + 0 - 1 = 1, since both embeddings $\sqrt{2} \mapsto \sqrt{2}$ and $\sqrt{2} \mapsto -\sqrt{2}$ are real.

Let K/\mathbb{Q} be a number field. We choose the algebraic closure \mathbb{Q}^c of \mathbb{Q} that sits inside of \mathbb{C} , so we may, and will, always assume $K \subseteq \mathbb{C}$. K/\mathbb{Q} is separable, so we may write $K = \mathbb{Q}(\alpha)$ for some $\alpha \in K$. Let $f \in \mathbb{Q}(\alpha)$ be the minimal polynomial of α . Then we have embeddings $\sigma : K \hookrightarrow \mathbb{C}$ corresponding to the zeroes $\alpha = \alpha_1, \ldots, \alpha_n$ of f, i.e. the conjugates of α . σ is called a real embedding if $\sigma(K) \subseteq \mathbb{R}$, or equivalently if the corresponding $\alpha_i \in \mathbb{R}$. Otherwise it is called a complex embedding. These come in pairs, because if α_i is a conjugate of α , so is $\overline{\alpha_i}$.

Example 1.9. Let $K = \mathbb{Q}(\sqrt{d})$ be a quadratic number field. If d > 0 we find as before that s = 2, t = 0, so r = 1. If, on the other hand, d < 0, then s = 0, t = 1, hence r = 0 and \mathcal{O}_K^{\times} is finite.

Question Which odd primes p can be written in the form $p=x^2+6y^2$ with $x,y\in\mathbb{Z}$? As in the previous theorems, we write this as $(x+y\sqrt{-6})(x-y\sqrt{-6})=N(x+y\sqrt{-6})$ in the number field $K=\mathbb{Q}(\sqrt{-6})$ with ring of integers $\mathbb{Z}[\sqrt{-6}]$. However, our previous proof strategy does not work, because $\mathbb{Z}[\sqrt{-6}]$ is not a PID (e.g. $2\cdot 3=-\sqrt{-6}\cdot \sqrt{-6}$ are two essentially different factorizations of 6 into irreducibles).

This leads naturally to the question when \mathcal{O}_K is a PID. To investigate this, we will introduce the *class group*: The nonzero ideals of \mathcal{O}_K form a monoid w.r.t. multiplication.

Definition 1.10. Write I_K for the group of fractional nonzero ideals and $P_K = \{\alpha \mathcal{O}_K \mid \alpha \in K^\times\}$ the subgroup of principal fractional ideals. The quotient $\operatorname{cl}_K = I_K/P_K$ is called the *ideal class group*

One sees directly that $cl_K = 1$ if and only if \mathcal{O}_K is a PID. We will prove

Theorem 1.11. $|\operatorname{cl}_K| < \infty$.

In any case \mathcal{O}_K is Dedekind, which is equivalent to prime factorization of *ideals*, i.e. each ideal $(0) \neq \mathfrak{a} \subseteq \mathcal{O}_K$ can be uniquely written as a product of prime ideals

$$\mathfrak{a} = \prod_{\substack{\mathfrak{p} \in \mathrm{Spec}(\mathcal{O}_K)\\ \mathfrak{p} \neq 0}} \mathfrak{p}^{v_{\mathfrak{p}}(\mathfrak{a})}, \qquad v_{\mathfrak{p}}(\mathfrak{a}) \in \mathbb{Z}_{\geq 0}, \text{ almost all } v_{\mathfrak{p}}(\mathfrak{a}) = 0.$$

 $^{^{1}}$ ⊇ is easy by direct computation, which is all we use here. We will see how to prove \subseteq later.

Example 1.12. In $\mathbb{Z}[\sqrt{-6}]$ we have $2\mathcal{O}_K = \mathfrak{p}_2^2$ with $\mathfrak{P}_2 = \langle 2, \sqrt{-6} \rangle_{\mathbb{Z}}$, $3\mathcal{O}_K = \mathfrak{p}_3^2$ with $\mathfrak{p}_3 = \langle 3, \sqrt{-6} \rangle_{\mathbb{Z}}$ and $\sqrt{-6}\mathcal{O}_K = \mathfrak{p}_2\mathfrak{p}_3$, so the "problematic" factorization $2 \cdot 3 = -\sqrt{-6}^2$ becomes $\mathfrak{p}_2^2\mathfrak{p}_3^2 = (\mathfrak{p}_2\mathfrak{p}_3)^2$ when passing to ideals.

Given an extension of number fields L/K, and a prime ideal $\mathfrak{p} \subseteq \mathcal{O}_K$, by the above the ideal $\mathfrak{p} \mathcal{O}_L$ splits into a product of prime ideals $\mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r}$ in \mathcal{O}_L . A further goal of this lecture is to understand and compute this factorization. Denoting $f_i = [\mathcal{O}_L/\mathfrak{P}_i : \mathcal{O}_K/\mathfrak{p}]$, we will for example be able to show $[L:K] = \sum_{i=1}^r e_i f_i$.

Definition 1.13. Let p be a prime and $a \in \mathbb{Z}$ with $p \nmid a$. Then the *Legendre symbol* is defined as

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} := \begin{cases} 1 & \text{if } x^2 \equiv a \bmod p \text{ has a solution in } \mathbb{Z}, \\ -1 & \text{otherwise.} \end{cases}$$

Also set $(\frac{a}{p}) = 0$ if $p \mid a$.

We will show: Let $K = \mathbb{Q}(\sqrt{d})$. Let $p \neq 2$. Then

$$p\mathcal{O}_{K} = \begin{cases} \mathfrak{p}\overline{\mathfrak{p}}, \ \mathfrak{p} \neq \overline{\mathfrak{p}} \ \text{prime} & \text{if } (\frac{d}{p}) = 1, \\ \mathfrak{p}, \ \mathfrak{p} \ \text{prime} & \text{if } (\frac{d}{p}) = -1, \\ \mathfrak{p}^{2}, \ \mathfrak{p} \ \text{prime} & \text{if } p \mid d. \end{cases}$$
 (*)

Law of quadratic reciprocity Let p, q be odd primes. Then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{(p-1)(q-1)/4} = \begin{cases} 1 & \text{if } p \equiv 1 \bmod 4 \text{ or } q \equiv 1 \bmod 4 \\ -1 & \text{if } p \equiv 3 \bmod 4 \text{ and } q \equiv 3 \bmod 4 \end{cases}.$$

Further, we have the two supplements $(\frac{-1}{p}) = (-1)^{(p-1)/2}$ and $(\frac{2}{p}) = (-1)^{(p^2-1)/8}$. This theorem allows quick computation of Legendre symbols.

Lecture 2 Oct 17, 2025

Using the above, we will be able to generalize the theorems from the beginning:

Corollary 1.14. Let d be a squarefree integer. A prime $p \neq 2$ can be written in the form $p = x^2 - dy^2$ for $x, y \in \mathbb{Z}$ if and only if $(\frac{d}{p}) = 1$ and \mathfrak{p} is a principal ideal, where \mathfrak{p} is as in (*).

2 Integrality

Rings are always commutative and contain a multiplicative unit, unless explicitly stated otherwise.

Definition 2.1. Let $A \subseteq B$ be a ring extension. An element $b \in B$ is *integral* over A if there exists a normalized polynomial $f(X) = X^m + a_{m-1}X^{m-1} + \ldots + a_1X + a_0 \in A[X]$ such that f(b) = 0. B is *integral* over A if every $b \in B$ is integral over A.

Example 2.2. Let K be a number field. Then \mathcal{O}_K is integral (over \mathbb{Z}).

If B/A is a field extension, then B is integral over A if and only if B is algebraic over A.

We want to show that the set of all integral elements form a ring, i.e. that given integral elements $b_1, b_2 \in B$, $b_1 + b_2$ and b_1b_2 are integral as well.

Theorem 2.3. Let $b_1, \ldots, b_n \in B$. Then b_1, \ldots, b_n are integral over A if and only if $A[b_1, \ldots, b_n]$ is a finitely generated A-module.

Proof. " \Rightarrow ": By induction. For n=1 let $b\in B$ be integral over A. Let f(b)=0. Then $b^m=-\sum_{i=0}^{m-1}a_ib^i$, so A[b] is generated by $1,b,\ldots,b^{m-1}$ as a A-module.

More explicitly: Let $g(b) \in A[b]$ be some element. Since f is normalized, we can perform division with remainder to write g = qf + r with $q, r \in A[x]$ with $\deg(r) < m$. Hence g(b) = q(b)f(b) + r(b) = r(b), which is a linear combination of b^i , i < m.

For the inductive step, we have to prove that $A \subseteq A[b_1, \ldots, b_n] \subseteq A[b_1, \ldots, b_{n+1}]$ is finitely generated, knowing that the first extension is finitely generated. Since b_{n+1} is integral over A, it is also finitely generated over $A[b_1, \ldots, b_n]$, hence $A[b_1, \ldots, b_n] \subseteq A[b_1, \ldots, b_{n+1}]$ is finitely generated by the n=1 case, hence we are done.

" \Leftarrow ": Let $\omega_1, \ldots, \omega_r$ be a set of A-generators of $A[b_1, \ldots, b_n]$. For $b \in A[b_1, \ldots, b_n]$ we have

$$b\omega_i = \sum_{j=1}^r a_{ij}\omega_j$$
 with $a_{ij} \in A$.

Hence $(bE-M)(\omega_1,\ldots,\omega_r)^t=0$, where $M=(a_{ij})_{ij}\in A^{r\times r}$. By cofactor expansion, see lemma 2.4, this implies that $\det(bE-M)\omega_i=0$ for all $i=1,\ldots,r$, hence $\det(bE-M)=0$ since the ω_i generate $A[b_1,\ldots,b_n]$. Hence $\det(XE-M)\in A[X]$ is a normalized equation for b, i.e. b is integral over A.

Lemma 2.4. Let A a ring and $M \in A^{r \times r}$. If Mx = 0, then det(M)x = 0.

Proof. Let M^* be the adjoint matrix, i.e. $(M^*)_{ij}$ is $(-1)^{i+j}$ times the determinant of the matrix M with the j-th row and i-th column removed. Then $M^*M = MM^* = \det(M)E$. From Mx = 0 we then get $0 = M^*Mx = \det(M)x$.

Example 2.5. $K = \mathbb{Q}(\sqrt{2}) \supseteq \mathcal{O}_K = \mathbb{Z}[\sqrt{2}]$. Proceeding as in the proof, we can compute an integral equation for, say, $\alpha = 1 + 2\sqrt{2}$: Take $\omega_1 = 1$, $\omega_2 = \sqrt{2}$. Consider

$$T_{\alpha}: \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}[\sqrt{2}], \qquad x \mapsto \alpha x,$$

which has matrix representation w.r.t. the ω_i as $M=\begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix}$. Now $\det(XE-M)=X^2-2X-7$ is the desired relation.

Theorem 2.6. Let $A \subseteq B \subseteq C$ be extensions of rings. Let B/A be integral and let $c \in C$ be integral over B. Then c is also integral over A.

Proof. Let $c^n + b_{n-1}c^{n-1} + \ldots + b_0$ with $b_i \in B$. Then $A \subseteq A[b_0, \ldots, b_{n-1}] \subseteq A[b_0, \ldots, b_{n-1}][c]$ is a composition of finitely generated ring extensions by theorem 2.3, hence finitely generated. Again by theorem 2.3, we are done.

Definition 2.7. Let $A \subseteq B$ be a ring extension.

- (a) Then $\overline{A} = \mathcal{O}_{A,B} := \{b \in B \mid b \text{ integral over } A\}$ is called the *integral closure* of A in B.
- (b) A is called *integrally closed* in B if $\mathcal{O}_{A,B} = A$.

Note that by theorem 2.3, the integral closure of A in B is a ring. In particular, the ring of integers \mathcal{O}_K of a number field K is indeed a ring.

Example 2.8. $\mathcal{O}_{A,B}$ is integrally closed in B.

 \mathbb{Z} is integrally closed in \mathbb{Q} . More generally, \mathcal{O}_K is integrally closed in K, for if $\alpha \in K$ is integral over \mathcal{O}_K , by transitivity 2.6 it is then integral over \mathbb{Z} , hence $\alpha \in \mathcal{O}_K$.

 $R = \mathbb{Z}[\sqrt{-3}] \subseteq K = \mathbb{Q}(\sqrt{-3})$ is not integrally closed in K, because $\frac{1}{2}(1+\sqrt{-3}) \notin R$ is integral (even over \mathbb{Z}).

Theorem 2.9. Let R be a UFD and K = Quot(R). Then R is integrally closed in K.

Proof. Let $\frac{a}{b} \in K$ be integral over R, with $a, b \in R$ coprime. Let

$$X^{n} + c_{n-1}X^{n-1} + \ldots + c_{1}X + c_{0} = 0$$
 with $c_{i} \in R$

be an integral relation for $\frac{a}{b}$. Multiplying by b^n , we get

$$a^{n} + c_{n-1}ba^{n-1} + \ldots + c_{1}ab^{n-1} + c_{0}b^{n} = 0.$$

Suppose $b \notin R^{\times}$, then there exists a prime element $\pi \in R$ dividing b. Looking at the equation $\operatorname{mod} \pi$, we see that $\pi \mid a^n$; i.e. $\pi \mid a$, contradicting the coprime assumption.

Let A be an integral domain which is integrally closed in K = Quot(A). Let L/K be a finite field extension and let $B = \mathcal{O}_{A,L}$ be the integral closure of A in L.

$$\begin{array}{c|c} L \longleftarrow & B \\ & & \\ K \longleftarrow & A \end{array}$$

Then, by transitivity, B is integrally closed in L.

Lemma 2.10. In the above situation, L = Quot(B). More precisely, each $\beta \in L$ can be written in the form $\frac{b}{a}$ with $b \in B$ and $a \in A$.

Proof. For $\beta \in L$, let $a_n \beta^n + \ldots + a_1 \beta + a_0 = 0$ with $a_i \in A$ Multiplying by a_n^{n-1} , we obtain

$$(a_n\beta)^n + a_{n-1}(a_n\beta)^{n-1} + \ldots + a_1a_n^{n-2}(a_n\beta) + a_0a_n^{n-1} = 0.$$

Thus $a_n\beta$ is integral over A, and $\beta=\frac{a_n\beta}{a_n}$ has the desired form.

Lemma 2.11. One has $\beta \in B$ if and only if its minimal polynomial $\mu = \text{mipo}_{\beta,K}$ over K has coefficients in A.

Proof. Let $g(\beta) = 0$ with $g \in A[X]$ normalized. Then $\mu \mid g$ in K[X]. Thus all zeroes of μ (in some algebraic closure of K) are integral over A. Since the coefficients of μ are the elementary symmetric functions in its zeroes, the coefficients of μ are integral over A. Since by assumption A is integrally closed in K, it follows that $\mu \in A[X]$.