CS 455: Principles of Database Systems

Review Guide 3: Database Theory

1. Given: α , β , γ , δ refer to distinct sets of attributes in R. For each of the following inference rules, show it is either <u>sound</u> through derivation using only **Armstrong's Axioms**, or <u>unsound</u> by providing a counterexample.

(a)
$$\alpha \to \beta \stackrel{?}{\Longrightarrow} \alpha \cup \gamma \to \beta$$

(b)
$$\alpha \to \beta \stackrel{?}{\Longrightarrow} \beta \subseteq \alpha$$

(c)
$$\alpha \to \beta, \beta \to \gamma \stackrel{?}{\Longrightarrow} \alpha \cup \delta \to \gamma \cup \delta$$

(d) **
$$\alpha \to \beta, \beta \cup \gamma \to \delta \stackrel{?}{\Longrightarrow} \alpha \cup \gamma \to \beta \cup \delta$$

2. ** Consider the relation U(W, X, Y, Z) with a set of functional dependencies

$$FD(U) = \{ XZ \rightarrow YZ, Y \rightarrow Z \}$$

- (a) List all of U's superkeys with respect to FD(U).
- (b) Is U in BCNF with respect to FD(U)? If so, show that every functional dependency $\alpha \to \beta$ is either trivial or that α is a superkey in U. Otherwise, decompose U into a set of BCNF relations with respect to FD(U). Show your work.
- (c) Find $FD_c(U)$, a canonical cover of FD(U).
- (d) List all of U's superkeys with respect to $FD_c(U)$.
- (e) Is U in BCNF with respect to $FD_c(U)$? If so, show that every functional dependency $\alpha \to \beta$ is either trivial or that α is a superkey in U. Otherwise, decompose U into a set of BCNF relations with respect to $FD_c(U)$. Show your work.

1