1 Prove that -(-v) = v for every $v \in V$.

2 Suppose $a \in \mathbf{F}$, $v \in V$, and av = 0. Prove that a = 0 or v = 0.

Supre a 70AU\$0

=> a a v = a 0 (a = 0)

=> 1v = 0 (per of field + 1.31)

=> v = 0

But we upond v = 0

This inches a = 0 or v = 0

3 Suppose $v, w \in V$. Explain why there exists a unique $x \in V$ such that v + 3x = w.

We, y eV s. t 5 + 3 r = W 15 + 3 y = W

ex 2 3 2 = 5 + 3 2 = 5 + 5 + 3 - 7 => 3 2 = 3 3 4 => [2 = 7] => 3 2 = 3 3 4 => [2 = 7]

4 The empty set is not a vector space. The empty set fails to satisfy only one of the requirements listed in the definition of a vector space (1.20). Which one?

The additive idality requirement is not relified, since: 3! to s.t. re E Ø.

5 Show that in the definition of a vector space (1.20), the additive inverse condition can be replaced with the condition that

0v = 0 for all $v \in V$.

Here the 0 on the left side is the number 0, and the 0 on the right side is the additive identity of V.

6 Let ∞ and $-\infty$ denote two distinct objects, neither of which is in **R**. Define an addition and scalar multiplication on $\mathbf{R} \cup \{\infty, -\infty\}$ as you could guess from the notation. Specifically, the sum and product of two real numbers is as usual, and for $t \in \mathbf{R}$ define

$$t\infty = \begin{cases} -\infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t > 0, \end{cases} \qquad t(-\infty) = \begin{cases} \infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ -\infty & \text{if } t > 0, \end{cases}$$

and

$$\begin{aligned} t+\infty &= \infty + t = \infty + \infty = \infty, \\ t+(-\infty) &= (-\infty) + t = (-\infty) + (-\infty) = -\infty, \\ \infty + (-\infty) &= (-\infty) + \infty = 0. \end{aligned}$$

With these operations of addition and scalar multiplication, is $R \cup \{\infty, -\infty\}$ a vector space over R? Explain.

No. $(\infty + \infty) - \infty = \infty - \infty = 0$ $(\infty + (\infty - \infty)) = \infty + 0 = \infty$ $= \infty$ associating of + does not hold.

7 Suppose S is a nonempty set. Let V^S denote the set of functions from S to V. Define a natural addition and scalar multiplication on V^S , and show that V^S is a vector space with these definitions

We wike + 11 os + 1.

Containly, exociding Polol from

· 0 € N 2 gligg as 0(2) = 0 n ASEZ YPEV5: (f+0)(5)= P(5)+0(5)
= P(5)+0V= P(5) => f+0= (r . Let geus. We défie - fe usin the flering way: (-f)(5) = - f(5) 4565 (f-f)(s)=p(s)-f(s)=Ov ==== R-f=0 · (1/6)(s)=1/6)4ses .WYEV, SES (v(ftg))(s) = v(ftg)(s) = v ((6) 49 (5)) = vf(s)+ vg(s) (dukulu) - (vf)6)+(vg)(s)

=> v(f+g)-vf+vg => V recken field over V

- 8 Suppose V is a real vector space.
 - The *complexification* of V, denoted by $V_{\mathbb{C}}$, equals $V \times V$. An element of $V_{\mathbb{C}}$ is an ordered pair (u, v), where $u, v \in V$, but we write this as u + iv.
 - Addition on V_C is defined by

$$(u_1 + iv_1) + (u_2 + iv_2) = (u_1 + u_2) + i(v_1 + v_2)$$

for all $u_1, v_1, u_2, v_2 \in V$.

Complex scalar multiplication on V_C is defined by

$$(a+bi)(u+iv) = (au-bv) + i(av+bu)$$

for all $a, b \in \mathbf{R}$ and all $u, v \in V$.

Prove that with the definitions of addition and scalar multiplication as above, $V_{\rm C}$ is a complex vector space.

Think of V as a subset of V_C by identifying $u \in V$ with u + i0. The construction of V_C from V can then be thought of as generalizing the construction of \mathbb{C}^n from \mathbb{R}^n .

Let re e V_c, re · y+v_i, v_iv_ie V y ∈ V_c, y = u₁+v_ii , v_iv_ie V λ ∈ C, λ = a+bi · a, b ∈ R ret y = (u₁+u₂)+i(v_i+v₂) EV EV rety ∈ V_c λ re = (au-b+s)+i(a+bu) Are = (au-b+s)+i(a+bu) Are E V_c Are E V_c Are E V_c · ne+ y = (u,+u2) + i(v,+v2) = (u2+u,) + i(v2+u,) (V veden pa) = 7+ ~ - Lat = 03+ iv3, U3, V3EV (2+y)++= ((U,+U2)+U3)+i(V,-W2)+W3) = (U1+(U2+U3)) + i(V1+(V2+V3)) = & + (y+Z) · Ve défie 0 € Vc 65 le 0+0i (whose o doubles idelike deal in V) re+0 = (u,+0) + i(v,+0) = UIFIVI = 1 · We dépie - re eVc to be - 0,+(-V1)i ne-re= (U1-U1)+(V1-V1); 0+0;=0 · 1 re = (HOi) te = (10,-04)+(14,+04); = U1+ iV1 = 10