3.2.4. Свободные колебания в электрическом контуре.

Гусаров Николай Группа Б02-005

Цель работы: исследования свободных колебаний в колебательном контуре.

В работе используются: генератор импульсов, электронное реле, магазин сопротивлений, магазин ёмкостей, индуктивность, электронный осциллограф, унивенроальный мост.

Теория

Свободные колебания

Рассмотрим электрический контур, состоящий из последовательно соединённых конденстора C, катушки индуктивности L и резистора R. Обозначим разность потенциалов на конденсаторе U_C , а ток, текущий в контуре, через I. Второе првило Кирхгофа:

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{I}{C} = 0. ag{1}$$

Вводя обозначения $\gamma = \frac{R}{2L}$, $\omega_0^2 = \frac{1}{LC}$, получим уравнение

$$\ddot{I} + 2\gamma \dot{I} + \omega_0^2 I = 0. \tag{2}$$

Его решение в общем виде:

$$I = -\frac{U_0}{L\kappa} e^{-\gamma t} \operatorname{sh}(\kappa t), \tag{3}$$

где $\kappa = \sqrt{\gamma^2 - \omega_0^2}, \ U_0 = U_C$ – начальное напряжение на конденсаторе.

Затухающие колебания

В случае, когда $\gamma < \omega_0$, имеем $\kappa = i\omega$, где $\omega = \sqrt{\omega_0^2 - \gamma^2} - частоты свободных (собственных) колебаний. Тогда ток$

$$I = -\frac{U_0}{L\omega}e^{-\gamma t}\sin(\omega t) \tag{4}$$

затухает и имеет колебательный характер. Величина γ определяет затухание колебаний: $\gamma = \frac{1}{\tau}$, где τ – время затухание амплитуды в e

Рис. 1: Затухающие колебания.

раз. Формулы для наряжение на кондесаторе и тока в цепи можно переписать иначе:

$$U_C = U_0 \frac{\omega_0}{\omega} e^{-\gamma t} \cos(\omega t - \theta),$$

$$I = -\frac{U_0}{L} e^{-\gamma t} \cos(\omega t - \theta).$$
(5)

Апериодические колебания

В случае $\gamma > \omega_0$, формулы для тока и напряжения на конденсаторе имеют следующий вид:

$$I = -\frac{U_0}{L\kappa} e^{-\gamma t} \operatorname{sh}(\kappa t),$$

$$U_C = U_0 e^{-\gamma t} \left(\frac{\gamma}{\kappa} \operatorname{sh}(\kappa t) + \operatorname{ch}(\kappa t)\right).$$
a)
$$U_C = U_0 e^{-\gamma t} \left(\frac{\gamma}{\kappa} \operatorname{sh}(\kappa t) + \operatorname{ch}(\kappa t)\right).$$

Процесс в этом случае не является колебательным, его называют апериодическим. Режим, соответствующий $\gamma = \omega_0$, называ-

Рис. 2: Критический режим.

ются критическим. В этом случае предельный переход $\omega \to 0$ в (5) даст

$$I = -\frac{U_0}{L}te^{-\gamma t},$$

$$U_C = U_0 e^{-\gamma t} (1 + \gamma t).$$

Сопротивление в этом случае

$$R_{\rm \kappa p} = 2\sqrt{\frac{L}{C}}\tag{6}$$

называется *критическим сопротивлением* контура. *Добротность* контура по определению

$$Q = 2\pi \frac{W}{\Delta W},$$

где W – запасённая энергия, ΔW – потери за период. Тогда

$$Q = 2\pi \frac{CU_0^2/2 \cdot e^{-2\gamma t}}{CU_0^2/2 \cdot (e^{-2\gamma t} - e^{-2\gamma(T+t)})} = \frac{\pi}{\gamma T} = \frac{1}{R} \sqrt{\frac{L}{C}}.$$
 (7)

Логарифмическим декрементом затухания называются число

$$\Theta = \ln \frac{U_k}{U_{k+1}} = \ln e^{\gamma T} = \gamma T. \tag{8}$$

или

$$\Theta = \frac{1}{n} \ln \frac{U_k}{U_{k+n}}.$$
(9)

Описание установки

На рисунке приведена схема для исследования свободных колебаний в контуре, содержащем постоянную индуктивность L и переменные ёмкость C и сопротивление R. Колебания наблюдаются на экране осциллографа.

Для периодического возбуждения колебаний в контуре используется генератор импульсов Γ 5-54. С выхода генератора по коаксиальному кабелю импульсы поступают на колебательный контур через электронное реле, смонтированное в отдельном блоке (или на выходе генератора). Реле содержит тиристор D и ограничительный резистор R_1 .

Импульсы заряжают конденсатор C. После каждого импульса генератор отключается от колебательного контура, и в контуре возникают свободные затухающие колебания. Входное сопротивление осциллографа велико ($\approx 1 \text{ MOM}$), так что его влиянием на контур можно пренебречь. Для получения устойчивой картины затухающих колебаний используется режим ждущей развёртки с синхронизацией внешними импульсами, поступающими с выхода «синхроимпульсы» генератора.

Ход работы

На генераторе устанавливаем длительность импульсов 5 мск, частоту повторения $\nu_0=100$ Гц. На магазине сопротивлений устанавливаем величину R=0 Ом, на магазине ёмкостей – C=0.02 мк Φ . По картине на осциллографе проведём измерение зависимости периода свободных колебаний от ёмкости.

С, мкФ
0,02
0,12
0,22
0,32
0,42
0,52
0,62
0,72
0,82
0,9

Таблица 1: Зависимость T = T(C).

Считая $L\approx 200$ мГн, рассчитаем C, при которой $\nu_0=1/2\pi\sqrt{LC}=5$ кГц: $C\approx 5$ нФ. Критическое сопротивление в этом случае $R_{\rm kp}\approx 12500$ Ом. Измерим зависимость $\Theta(R)$ декремента затухания от сопротивления в диапазоне $0.1R_{\rm kp}\div 0.3R_{\rm kp}$, пользуясь формулой $(\ref{eq:constraint})$:

Θ	R, Ом
0,38	560
0,48	700
0,61	900
0,72	1100
0,79	1300
0,96	1500
1,1	1700

Таблица 2: Зависимость $\Theta = \Theta(R)$ по развертке сигнала.

Получив изображение колебаний на фазовой плоскости (в координатах $\left(U_C, \frac{dU_C}{dt}\right)$, убеждаемся, что декремент затухания вычисленный по тем же способом практически совпадает с вычисленным в кооридинатах (U_C, t) :

Θ	R, Ом
0,35	560
0,43	700
0,56	900
0,72	1100
0,8	1300
0,9	1500
1,07	1700

Таблица 3: Зависимость $\Theta = \Theta(R)$ по фазовой диаграмме сигнала.

С помощью универсального моста измеряем индуктивность L и R_L катушки для трёх значений частоты:

R_L , Om	9,6	12,5	21,2
L , м Γ н	138	133	133
Q	4,5	66,7	197
ν , к Γ ц	0,05	1,00	5,00

Таблица 4: Экспериментально полученные параметры индуктивности.

Обработка результатов

Рассчитаем теоретически периоды свободных колебаний и сравним с полученными экспериментально:

T_{theor} , MC	T_{exp} , MC
0,33	0,32
0,81	0,75
1,09	1,02
1,32	1,26
1,51	1,42
1,68	1,57
1,84	1,74
1,98	1,84
2,11	1,93
2,21	2,08

Таблица 5: Сравнение теоретических и экспериментальных периодов.

Результат представим на графике:

Рис. 3: Зависимость теоретического периода колебаний от экспериментального.

Построим зависимость для поиска R_{cr} :

Рис. 4: Зависимость для поиска R_{cr} : $k_{init} = 3,25 \cdot 10^6 \ Om^2$

Рассчитаем критическое сопротивление по формуле

$$R_{cr} = 2\pi \sqrt{k_{init}} = (11 \pm 0, 5) (kOm)$$

Теоретическое значение $R_{cr}=2\sqrt{\frac{L}{C}}=(10,5\pm0,5)\;(kOm)$ — совпадает в пределах погрешности.

Для конутуров с максимальным и минимальным декрементом θ рассчитаем добротность Q экспериментальную – $Q=\frac{\pi}{\Theta}$ – и теоретическую – $Q=\frac{1}{R}\sqrt{\frac{L}{C}}$:

	Θ	R, Om	Q_{reop}	$Q_{ m эксп}$
Макс	$1,07 \pm 0,1$	1700	$3,06 \pm 0,04$	$2,9 \pm 0,13$
Мин	$0,35 \pm 0,1$	560	$9,31 \pm 0,08$	$8,97 \pm 0,56$

Таблица 6: Добротности для конутров с наибольшим и наименьшим затуханием.