Identification of Conserved Regions in CRISPR Protein Family

02-712 Final Project

December 3, 2016

Christine Baek Qi Chu Yanyu Liang christib@andrew.cmu.edu qchu@andrew.cmu.edu yanyul@andrew.cmu.edu Department of Computational Biology, Carnegie Mellon University

Abstract

The abstract goes here.

1 Introduction

This report explores the evolution and relationship of various Cas (CRISPR-associated) proteins. CRISPR is a prokaryotic adaptive immune system that works by base-pair recognition of foreign genetic material and subsequent nuclease activity on the non-self genome. This has been adopted for various applications including genome engineering, and the fact that CRISPR's recognition mechanism based on base-pairing (as opposed to protein-DNA recognition of ZNF or TALENs) result in improved accuracy and reduced costs (no protein engineering involved). CRISPR is as diverse as the species that carry CRISPR in its genome, but ultimately have the same function of adaptive immunity against foreign agents. While Cas9 (isolated from Streptococcus pyogenes) is currently the Cas protein of choice for such applications due to smallest number of involved components, it would be beneficial to study the other Cas proteins as well, since s.pyogenes Cas9 is limited in terms of PAM (Protospacer Adjacent Motif), of -NGG), large size of Cas9 provides limits in some applications, as well as expanding available options for CRISPR engineering.

Cas9 currently is predominantly used for genome engineering because it was the first CRISPR protein that was successfully adapted for genome engineering, chosen for its relative simplicity (single gene for all required protein components). In other CRISPR system, the CRISPR functionality is split into multiple Cas proteins rather than a single protein, such as in Cas9. Now that we know more about the CRISPR system and somewhat better understanding of what each domain does, it may be beneficial to explore using some of the other CRISPR proteins to achieve same goal: use Cas protein and its base-pair recognition capacity for various applications ranging from scientific research to genetic therapy.

Cas9's big size (1368AA residues) has been a source of concern for therapeutic applications. Prominent delivery tool for *in vivo* and *in vitro* for gene therapy has been adeno-associated virus. While

there have been attempts to utilize such delivery method for Cas9 such as [12] or [13], its prohibitively large size has limited number of studies reporting successful gene therapy using both Cas9 and AAV. Other families of Cas proteins are predicted to have different functions split up into multiple genes. As some function of CRISPR system is not necessarily for the purpose of genetic engineering (such as initial cleavage and insertion of foreign genetic material into CRISPR complex), it would be greatly beneficial to identify and isolate specific regions of interest, as well as individual Cas proteins that represent those regions, that are directly applicable for genome studies. By identifying conserved motifs between different CRISPR proteins, we can hopefully identify regions of corresponding activity in those CRISPR proteins, and compare to Cas9 which has been studied in greater detail in terms of structure [10] or function [6] compared to other Cas proteins. Using other Cas proteins would not only allow for greater choice for PAM motifs, but also possibly smaller Cas proteins that can accomplish same goals, with less hindrance from the size of protein.

In this report, we employ 3 different approaches to identify motifs, or conserved regions of significance in terms of *Cas* function for better understanding of the *Cas* protein family and mechanism of each component.

1.1 CRISPR/Cas

CRISPR(Clustered regularly interspaced short palindromic repeats) is a microbial adaptive immune system. While bacteria and archaea utilize CRISPR system to store foreign genetic material to distinguish self vs non-self, this system has been adopted and exploited by scientists since 2012 genome engineering tool, as discussed in [7] and [8]. CRISPR initially began as next-generation tool to replace ZNFs and TALENs, it has since then been modified for non-genome engineering purposes such as CRISPRi [9]. There also have been attempts to reduce off-target effects by modifying the nuclease domain [11] .

Naturally in bacteria or archaea, CRISPR proteins have distinct roles in the three phases of CRISPR system as follows:

- 1. Acquisition: foreign genetic material enters microbe, which is cut by CRISPR protein and inserted into CRISPR array. This fragment is now a *spacer* separated by *repeats*, hence the name
- 2. Expression: CRISPR array, which include multiple spacers separated by repeats, is expressed as a single RNA. This is then cleaved into individual units known as crRNA, which contain single spacer. crRNA forms complex with one or more CRISPR proteins (depending on the CRISPR system)
- 3. Interference: upon recognition of specific foreign genetic material via base-pairing with the spacer in crRNA, CRISPR protein in complex with the spacer cleaves the foreign genetic material.

1.2 Past Approaches

Functionally related regions can be clustered by evidences in experimental data. As summarized in Figure 2. Previous work has found conserved regions on the sequence level using sequence alignment and structural information [4] inside each sub-type of the *Cas* system but not across the whole *Cas* family.

Figure 1: Overview of CRISPR proteins and their function as described in 1.1 [5]

1.3 Goal of Project

In this paper, we would like to answer the question that whether or not the proteins in Cas family share some sequence level similarity. And more specifically, as Cas9 is a multi-domain protein with multiple functions and each function can be achieved by other single-function protein in Cas family, we would like to explore if we can map such functional domain similarity on the basis of primary sequence similarity between Cas9 and other cas proteins. Informally, we tend to solve the following problem:

- Input: Two sets of sequences $C_1 = \{p_1, ..., p_m\}$ and $C_2 = \{q_1, ..., q_n\}$
- Output: A set of regions $R = \{r_1, ..., r_k\}$ such that r_i occurs and is representative in both C_1 and C_2

Here occurs and representative can be explained in different ways under different strategies. In the following section we will discuss the two strategies we proposed to solve this problem.

1.4 Approaches in This Project

In this paper, we propose the following two strategies: i) alignment; ii) motif finding. First of all, our problem is naturally a multiple sequence alignment problem. Notice that other Cas proteins is like a substring of Cas9, then to recognize such local similarity, both semi-global alignment and local alignment is suitable in this case. And here occurs and representative mean that r_i is optimal in alignment.

Figure 2: Conserved building blocks of Cas family proteins

Besides profile-based local alignment or semi-global alignment techniques, an alternative approach is to make use of motif information. Motif finding problem is defined as to find representative pattern in a collection of sequences. Following this idea, we can first find motif in C_1 and perform pattern recognition in C_2 . The motif found in C_1 carries the representative signature of C_1 and the recognition in C_2 tests whether it meets the requirement to be occur in both C_1 and C_2 . Furthermore, for motif analysis, we propose two widely used methods: i) Gibbs sampling; ii) Hidden Markov Models.

2 Methods

All code and output files are available on https://github.com/cookie223/CAS_project.

Any reference to files in this report indicate filepath based on root of the repository.

In this paper, we use 3 different approaches, each with different strengths and limits as for discovering patterns and information from multiple related sequences. Each method has its own section which discusses overview of algorithm/model, pros and cons of given model, detailed protocol and parameters, and analysis performed.

Protein sequences were used (as opposed to DNA), to uncover preservation of *Cas* protein's functional motifs. Protein sequence analysis much more appropriate for such purpose than DNA sequence especially for distantly related sequences.

2.1 Data Retrieval

Gene sequences for *Cas* family including *Cas1* through *Cas10* were searched and downloaded from NCBI. For each gene, a variety of species were selected to have all the sequences of the proteins in the *Cas* system of one species and also maintain a certain level of variety. The selection is also

subject to the availability in NCBI. For domain-specific profile HMM, domain markers were fectched from EMBL-EBI (http://www.ebi.ac.uk).

2.2 Sequence Alignment using Dynamic Programming

Semiglobal alignment using Needleman-Wunsch [2] and local alignment using Smith-Waterman Algorithm [3] were implemented for pairwise sequence comparison. This is the most intuitive and straight-forward approach for identifying regions of similarity or conserved patterns. However, as simple as the method is, it does have some limitations as discussed in detail below. Because amino acid sequences were used for alignment, it does allow for discrimination between varying degree of conservation or divergence of residues or patterns.

Code available at https://github.com/cookie223/CAS_project/tree/master/dp

2.2.1 Model & Algorithm Overview

Semiglobal alignment and local alignment were performed on various Cas sequences. Because certain families of Cas proteins are composed of multiple genes, it is impossible to do a global alignment, or multiple sequence alignment with all Cas sequences. Instead, s.pyogenes Cas9 was used as a reference sequence, to which all other Cas sequence was aligned to in pairwise sequence alignment.

Semiglobal alignment aimed to identify which region of the Cas protein as a whole fit to Cas9, or the reference sequence (which part of Cas9 it is most similar to as a whole). As Cas9 has been studied extensively relative to other Cas proteins, this approach aimed to possibly map the function of individual Cas protein to a specific region of Cas9 protein with regions with identified functions.

Local alignment aimed to identify specific regions that may or may not be smaller than the *Cas* protein itself, compared to *Cas9*. This alignment should be fairly similar in case of highly conserved sequences. However, it may result in *Cas* protein mapping to different regions in *Cas9* depending on the size or the degree of divergence.

2.2.2 Pros and Cons

Because alignment were done against s.pyogenes Cas9 rather than a progressive alignment, for Cas sequences highly divergent from s.pyogenes Cas9 may be aligned to an inaccurate site. Each alignment is guaranteed to return the global maximum or the most optimal alignment with given parameters, which may or may not be the actual corresponding motif. Also, this method assumes site independence, and does not discriminate conserved regions (which motifs would likely be part of) as opposed to fast-evolving regions.

2.2.3 Protocol

Following parameters were used for sequence alignment:

- Scoring Matrix = BLOSUM62 (BLASTP default)
- Affine Gap Penalty = -10 (BLASTP default is -11)

- Gap Extension Penalty = -1 (BLASTP default)
- End Gap Penalty (for Semi-Global only) = -3

Gap opening / affine gap penalty was slightly lowered to relax requirement for opening gap, as this experiment is for identifying local regions rather than strict sequence search.

2.2.4 Analysis

After each Cas sequence was aligned to s.pyogenes Cas9, it was then analyzed for the following values:

- Start position (row, col) of traceback
- End position (row, col) of traceback
- Alignment score (based on parameters discussed in section 2.2)
- Average Score per base : alignment score / number of bases in alignment
- % Sequence Aligned : length of alignment / length of query (non-reference) sequence

This was done for both semi-global and local alignment outputs.

2.3 Gibbs Sampling

2.3.1 Model & Algorithm Overview

Gibbs sampling approach is based on position-specific scoring matrix [15], or PSSM, is one of the ways to model a motif. Suppose we are working on sequence set with Σ as alphabet and the length of the motif is w. Then PSSM is a $|\Sigma|$ -by-w matrix with entry:

$$S_c(A) = \log \frac{\Pr(A \text{ is at } c \text{th column}|\text{motif})}{\Pr(A \text{ is at } c \text{th column}|\text{background})}$$

, where $S_c(A)$, $A \in \Sigma$ is the score of alphabet A appearing at cth position in the motif and the score is a log odds ratio.

Under PSSM setup, the motif is ungapped with a fixed length and each position is scored independently to each other. PSSM provides a way to parameterize motif and, furthermore, the motif finding problem can be cast as an optimization problem as follow:

$$\max_{S,o} \sum_{i=1}^{n} \sum_{c=1}^{w} S_c(q_i[o_i + c]) \tag{1}$$

, where $q_i[x]$ is the xth character of ith sequence in the collection and o_i indicates the starting site of the motif for ith sequence. With various size of the sequence set, this problem is NP-hard and [16] has proposed a Gibbs sampling approach to solve it.

Note that with known o, solving for S is reduced to a maximum likelihood estimation, which is trivial to solve, so the core of this problem is to find the optimal o^* . Let S^o denote the scoring

matrix induced by o and $f_S(o)$ denote the objective in Equation (1) (with S as scoring matrix), then we can encode the probability distribution of o according to f(o):

$$\Pr(o) \propto e^{f_{S^o}(o)}$$

Gibbs sampler can be used to sample from this distribution with transition probability as follow:

$$\log q(o_{1}, ..., o'_{i}, ..., o_{k} | o_{1}, ..., o_{i}, ..., o_{k})$$

$$= \log \frac{1}{k} \Pr(o_{1}, ..., o'_{i}, ..., o_{k} | o_{1}, ..., o_{i}, ..., o_{k})$$

$$= S^{(o_{1}, ..., o'_{i}, ..., o_{k})}(o'_{i}) \sum_{j \neq i}^{k} S^{(o_{1}, ..., o'_{i}, ..., o_{k})}(o_{j}) + const$$

$$\approx S^{o_{-i}}(o'_{i}) \sum_{j \neq i}^{k} S^{o_{-i}}(o_{j}) + const$$

$$= S^{o_{-i}}(o'_{i}) + const$$
(3)

, where $S^{o_{-i}}$ is the scoring matrix derived from o without o_i and $S(o_i)$ is the score of o_i based on S. With this setup, [16] proposed Algorithm 1.

Algorithm 1 Gibbs sampler for motif finding

Input: sequence set q, motif width w

Output: set of starting points o

- 1: initialize o
- $2: o^{\star} \leftarrow o$
- 3: while forever do
- 4: pick i from 1, ..., |q| with uniform distribution
- 5: update $S \leftarrow S^{o_{-i}}$
- 6: compute transition probability $p(o_i') \leftarrow \exp\{S(o_i')\}$
- 7: update $o_i \sim \text{Multinomial}(p, 1)$
- 8: update o^* if there is any improvement
- 9: end while

2.3.2 Pros and Cons

Gibbs sampling approach is easy to implement and it converges to optimal solution as the running time goes to infinity. Besides, PSSM representation of a motif is easy to understand and visualize. While, the downside of this approach is that it cannot bear gap. If the sequence collection shares a gapped motif, PSSM based Gibbs sampler will fail to recognize it. Furthermore, the length of the motif and the number of steps are two hyper-parameters which should be specified by the user. In practice, it takes extra computing time to search for a suitable width and to stop early or later is instance specific, and has no general strategy to follow.

2.3.3 Protocol

Following steps were applied to the analysis:

- 1. Implement a Gibbs sampler described in Algorithm 1
- 2. Train a set of motifs with various widths using Cas5 and Cas7
- 3. Score Cas9 sequences based on learned motifs

The widths used started from 10 to up to 190 and the size of interval was 10. To retrieve not only the most representative motif but other sub-optimal ones, for every width we repeated the Gibbs sampling procedure five times and recorded the best output for every run. For every Markov chain, we ran 600 steps because it was sufficient to reach a suboptimal with 600 steps for all instances in analysis.

2.3.4 Analysis

To show our Gibbs sampler converge, we track the objective value along the Markov chain. And to show our motif finding based strategy works, we performed the proposed procedure on simulated sequences and globin sequences given in Hmmer [14] where two sets of sequences share similar primary sequence patterns and checked whether our approach could recover such similarity.

2.4 Domain-specific profile HMM

2.4.1 Model & Algorithm Overview

To find out whether a sequence of amino acid belongs some domain, we can build a model of the domain and try to match the sequence of the model. Profile Hidden Markov Model is one of the models we can build to figure out whether a sequence contains the domain. The model of profile HMM is shown in Figure 3.

Figure 3: Profile Hidden Markov Model [14]

2.4.2 Pros and Cons

• Pros

- 1. We can leverage the abundant prior knowledge of Cas9 domain markers by building profile HMM using the alignment of the domains rather than the full sequence.
- 2. Compared with pair-wise sequence alignment, HMM can find more cases of distantly related sequences.
- 3. As shown in the figure, HMM can model insertions and deletions.

• Cons

- 1. To leverage the prior knowledge of domain markers, those markers need to be fetched separately from other data source rather than learned by the algorithm.
- 2. The number of parameters is very large and they need to be optimized.

2.4.3 Protocol

- a. A set of *Cas9* or *Cas5* sequences and their domain markers are fetched from EMBL-EBI (http://www.ebi.ac.uk).
- b. Sequences of each of the shared domains are subtracted from the full Cas9 or Cas5 sequences.
- c. For each domain, multiple sequences from different Cas9 or Cas5 are aligned by Clustal Omega (http://www.clustal.org/).
- d. A profile HMM is built on the multiple sequence alignment for each domain by Hmmer (http://hmmer.org/) [14].
- e. Search for matches using the profile HMM in the sequences of all previously downloaded *Cas* family proteins.

2.4.4 Analysis

For method testing, a set of globin sequences given in Hmmer [14] is used. Since there are Cas9 and Cas5 in the previously downloaded Cas family proteins sequences, they also act as positive control since the method should be able to find the domains in these proteins.

For output analysis, HMM is able to give the probability of given sequence emitted from the underlying domain profile HMM.

3 Results

Each of the three approaches for identifying motifs of *Cas* proteins and the resulting data are presented below.

3.1 Sequence Alignment using Dynamic Programming

Table 1: Semi-Global Alignment Output

Cas10_Mtuberculosis 234 0.212148685 1 [1365][810] [330][1] Cas10_Phorikoshii 335 0.249813572 1 [1368][762] [41][1] Cas10_Solfataricus 364 0.27063197 1 [1322][1046] [62][1] Cas1_Typer 1 0.230576806 1 [1203][776] [46][1] Cas1_DvsH_plasmid 160 0.282186949 1 [1297][344] [734][1] Cas1_Gyaginalis 163 0.332653061 1 [1367][321] [886][1] Cas1_K-12 105 0.24305555 0.911764706 [428][306] [1][28] Cas1_Tdenticola 176 0.387665198 1 [519][291] [79][1] Cas2_K-12 65 0.5 0.5 1 [528][95] [400][1] Cas2_StB20-like 68 0.586206897 1 [217][88] [102][1] Cas3_DvsH_plasmid 152 0.145315488 1 [1059][703] [32][1] Cas3_Cyaginalis 260 0.229681979 0.	Gene Name	Alignment Score	Average Score / base	% Sequence aligned	Traceback Start	Traceback End
Cas10_Phorikoshii 335 0.249813572 1 [1368][762] [41][1] Cas10_Ssolfataricus 364 0.27063197 1 [1322][1046] [62][1] Cas1_DvSH_plasmid 160 0.282186949 1 [1297]3444 [734][1] Cas1_Gvaginalis 163 0.332653061 1 [1367]321] [886][1] Cas1_K-12 105 0.243055556 0.911764706 [428]306 [1][28] Cas1_Tdenticola 176 0.387665198 1 [519][291] [79][1] Cas2_Lsalivarius 64 0.444444444 1 [617][102] [476][1] Cas2_Lsalivarius 64 0.444444444 1 [617][102] [476][1] Cas2_StB20-like 68 0.586206897 1 [217][88] [102][1] Cas3_Gvaginalis 260 0.229681979 0.858199753 [1119][11] [1111] Cas3_C+12 233 0.185805423 1 [1254][889] [29][1] Cas4_Stal 124 1679][203] [387][1]	Cas10 Mtuberculosis	234	0.212148685	1	[1365][810]	[330][1]
Cas10_Ssolfataricus 364 0.27063197 1 [1322][1046] [62][1] Cas10_Tvolcanium 343 0.305976806 1 1203][776] [146][1] Cas1_DvsH_plasmid 160 0.282186949 1 1227][344] [734][1] Cas1_Gvaginalis 163 0.332653061 1 [1367][321] 886][1] Cas1_Gvaginalis 163 0.387665198 1 [519][291] [79][1] Cas2_Lsalivarius 64 0.444444444 1 [617][102] [70][1] Cas2_StB20-like 68 0.586206897 1 [217][88] [102][1] Cas3_DvsH_plasmid 152 0.145315488 1 [1059][703] [32][1] Cas3_Gvaginalis 260 0.229681979 0.858199753 11119][811] [1][116] Cas4_Cas3_K-12 233 0.185805423 1 [1254][889] [29][1] Cas4_K-12 171 0.341317365 1 [323][64] [833][1] Cas4_TeenaxKra 57 0.230769231 1		335	0.249813572	1		
Cas10_Tvolcanium 343 0.305976806 1 1203 776 146 1 Cas1_Dv8H_plasmid 160 0.282186949 1 1297 344 734 1 Cas1_Gvaginalis 163 0.332653061 1 1367 321 868 1 Cas1_Gal L 105 0.243055556 0.911764706 428 306 11 28 Cas1_Tdenticola 176 0.387665198 1 519 291 79 11 Cas2_K-12 65 0.5 1 528 95 400 1 Cas2_Stb20-like 68 0.586206897 1 217 88 102 1 Cas3_Dv8H_plasmid 152 0.145315488 1 1059 703 32 1 Cas3_Gvaginalis 260 0.229681979 0.858199753 1119 811 1 116 Cas3_Ck-12 171 0.341317365 1 1323 364 833 1 Cas4_Solfataricus 87 0.2904915254 1 679 203 387 1 Cas4_TeenaxKra 57 0.2307	<u> </u>			1		
Cas1_DvsH_plasmid 160 0.282186949 1 1297 344 734 1 Cas1_Gvaginalis 163 0.332653061 1 1367 321 886 1 Cas1_K-12 105 0.243055556 0.911764706 428 306 199 1 Cas2_Isdericola 176 0.387665198 1 519 291 79 1 Cas2_K-12 65 0.5 1 528 95 400 1 Cas2_Lsalivarius 64 0.444444444 1 617 102 476 1 Cas2_StB20-like 68 0.586206897 1 217 88 1002 1 Cas3_SvB_plasmid 152 0.145315488 1 1059 703 32 1 Cas3_K-12 233 0.185805423 1 1254 889 29 1 Cas4_Solfataricus 87 0.294915254 1 679 203 387 1 Cas4_Solfataricus 87 0.230769231 1 573 191 330 1 Cas5_Gvaginalis 140 0.330950773 1	<u> </u>					
Cas1_Gvaginalis 163 0.332653061 1 [1367][321] [886][1] Cas1_K-12 105 0.243055556 0.911764706 [428][306] [1][28] Cas1_Tdenticola 176 0.387665198 1 [519][291] [79][1] Cas2_K-12 65 0.5 1 [528][95] [400][1] Cas2_Lsalivarius 64 0.444444444 1 [617][102] [476][1] Cas2_StB20-like 68 0.586206897 1 [217][88] [102][1] Cas3_Gvaginalis 260 0.229681979 0.858199753 [1119][811] [1][116] Cas3_K-12 233 0.185805423 1 [1254][889] [29][1] Cas4_K-12 171 0.341317365 1 [1323][364] [833][1] Cas4_Solfataricus 87 0.294915254 1 [679][203] [387][1] Cas4_TtenaxKra 57 0.230769231 1 [573][191] [330][1] Cas5_Gvaginalis 140 0.30960773 1 [1185][292] </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Cas1_K-12 105 0.243055556 0.911764706 [428]306] [1][28] Cas1_Tdenticola 176 0.387665198 1 [519][291] [79][1] Cas2_K-12 65 0.5 1 [528][95] [400][1] Cas2_Lsalivarius 64 0.4444444444 1 [617][102] [476][1] Cas2_StB20-like 68 0.586206897 1 [217][88] [102][1] Cas3_DvsH_plasmid 152 0.145315488 1 [1059][703] [32][1] Cas3_Gvaginalis 260 0.229681979 0.858199753 [1119][811] [1][116] Cas3_K-12 233 0.18505423 1 [1254][889] [29][1] Cas4_K-12 171 0.341317365 1 [1323][364] [833][1] Cas4_Solfataricus 87 0.294915254 1 [679][203] [387][1] Cas4_TtenaxKra 57 0.230769231 1 [1753][191] [330][1] Cas5_Gvaginalis 140 0.309050773 1 [1185][292]						
Cas1_Tdenticola 176 0.387665198 1 [519][291] [79][1] Cas2_K-12 65 0.5 1 [528][95] [400][1] Cas2_Lsalivarius 64 0.444444444 1 [617][102] [476][1] Cas2_StB20-like 68 0.586206897 1 [217][88] [102][1] Cas3_DvsH_plasmid 152 0.145315488 1 [1059][703] [32][1] Cas3_Gvaginalis 260 0.229681979 0.858199753 [1119][811] [11][116] Cas3_K-12 233 0.185805423 1 [1254][889] [29][1] Cas4_K-12 171 0.341317365 1 [1323][364] [833][1] Cas4_Solfataricus 87 0.294915254 1 [679][203] [387][1] Cas4_TtenaxKra 57 0.230769231 1 [573][91] [330][1] Cas5_K-12 79 0.302681992 0.8 [261][225] [1][46] Cas6_Obotulinum 158 0.478787879 1 [740][230]						
Cas2_K-12 65 0.5 1 [528][95] [400][1] Cas2_Lsalivarius 64 0.444444444 1 [617][102] [476][1] Cas2_StB20-like 68 0.586206897 1 [217][88] 102][1] Cas3_DvsH_plasmid 152 0.145315488 1 [1059][703] [32][1] Cas3_Gvaginalis 260 0.229681979 0.858199753 [1119][811] [1][116] Cas3_K-12 233 0.185805423 1 [1254][889] [29][1] Cas4_K-12 171 0.341317365 1 [1323][364] [833][1] Cas4_Solfataricus 87 0.294915254 1 [679][203] [387][1] Cas4_TtenaxKra 57 0.230769231 1 [573][91] [330][1] Cas5_Gvaginalis 140 0.309650773 1 [185][922] [733][1] Cas5_K-12 79 0.302681992 0.8 [261][225] [1][46] Cas6_Obotulinum 158 0.478787879 1 [740][230]						
Cas2_Lsalivarius 64 0.444444444 1 [617][102] [476][1] Cas2_StB20-like 68 0.586206897 1 [217][88] [102][1] Cas3_DvsH_plasmid 152 0.145315488 1 [1059][703] [32][1] Cas3_Gvaginalis 260 0.229681979 0.858199753 [1119][811] [1][116] Cas3_K-12 233 0.185805423 1 [1254][889] [29][1] Cas4_K-12 171 0.341317365 1 [1323][364] [833][1] Cas4_Solfataricus 87 0.294915254 1 [679][203] [387][1] Cas4_TtenaxKra 57 0.230769231 1 [573][191] [330][1] Cas5_Gvaginalis 140 0.30950773 1 [1185][292] [733][1] Cas5_Gbotulinum 158 0.478787879 1 [740][230] [414][1] Cas6_Bbotulinum 158 0.478787879 1 [740][230] [414][1] Cas6_Hvolcanii_plasmid 9 0.25848564 1						
Cas2_StB20-like 68 0.586206897 1 [217][88] [102][1] Cas3_DvsH_plasmid 152 0.145315488 1 [1059][703] [32][1] Cas3_Gvaginalis 260 0.229681979 0.858199753 [1119][811] [1][116] Cas3_K-12 233 0.185805423 1 [1254][889] [29][1] Cas4_Solfataricus 87 0.294915254 1 [679][203] [387][1] Cas4_Solfataricus 87 0.230769231 1 [573][191] [330][1] Cas5_Gvaginalis 140 0.309050773 1 [1185][292] [733][1] Cas5_Gvaginalis 140 0.309681992 0.8 [261][225] [1][46] Cas6_Cbotulinum 158 0.478787879 1 [740][230] [414][1] Cas6_Hvolcanii_plasmid 99 0.25848564 1 [1309][273] [929][1] Cas6_Solfataricus 118 0.280952381 1 [1117][288] [701][1] Cas7_Hvolcanii_plasmid 164 0.31602317						
Cas3_DvsH_plasmid 152 0.145315488 1 [1059][703] [32][1] Cas3_Gvaginalis 260 0.229681979 0.858199753 [1119][811] [1][16] Cas3_K-12 233 0.185805423 1 [1254][889] [29][1] Cas4_Solfataricus 87 0.294915254 1 [679][203] [387][1] Cas4_Solfataricus 87 0.294915254 1 [679][203] [387][1] Cas4_TtenaxKra 57 0.230769231 1 [573][191] [330][1] Cas5_Gvaginalis 140 0.309050773 1 [1185][292] [733][1] Cas5_K-12 79 0.302681992 0.8 [261][225] [1][46] Cas6_Cbotulinum 158 0.478787879 1 [740][230] [414][1] Cas6_Hvolcanii_plasmid 99 0.25848564 1 [1309][273] [929][1] Cas6_Solfataricus 118 0.280952381 1 [1117][288] [701][1] Cas7_K-12 171 0.341317365 1						
Cas3_Gvaginalis 260 0.229681979 0.858199753 [1119][811] [1][16] Cas3_K-12 233 0.185805423 1 [1254][889] [29][1] Cas4_K-12 171 0.341317365 1 [1323][364] [833][1] Cas4_Solfataricus 87 0.294915254 1 [679][203] [387][1] Cas4_TtenaxKra 57 0.230769231 1 [573][191] [330][1] Cas5_Gvaginalis 140 0.309050773 1 [1185][292] [733][1] Cas5_Gbedulinum 158 0.478787879 1 [740][230] [414][1] Cas6_Cbotulinum 158 0.478787879 1 [740][230] [414][1] Cas6_Bed Hvolcanii_plasmid 99 0.25848564 1 [1309][273] [929][1] Cas6_Solfataricus 118 0.280952381 1 [1117][288] [701][1] Cas7_K-12 171 0.341317365 1 [1393][364] 833][1] Cas7_K-12 171 0.341317365 1	_					
Cas3_K-12 233 0.185805423 1 [1254][889] [29][1] Cas4_K-12 171 0.341317365 1 [1323][364] [833][1] Cas4_Solfataricus 87 0.294915254 1 [679][203] [387][1] Cas4_TtenaxKra 57 0.230769231 1 [573][191] [330][1] Cas5_Gvaginalis 140 0.309050773 1 [1185][292] [733][1] Cas5_Gvobtulinum 158 0.478787879 1 [740][230] [414][1] Cas6_Cbotulinum 158 0.478787879 1 [740][230] [414][1] Cas6_Solfataricus 118 0.280952381 1 [1117][288] [701][1] Cas7_Hvolcanii_plasmid 164 0.316602317 1 [899][341] [390][1] Cas7_Hvolcanii_plasmid 164 0.316302317 1 [899][341] [390][1] Cas7_Solfataricus 147 0.267272727 1 [950][312] [404][1] Cas8_Pdistasois 237 0.295511222 1						
Cas4_K-12 171 0.341317365 1 [1323]364 [833][1] Cas4_Solfataricus 87 0.294915254 1 [679][203] [387][1] Cas4_TtenaxKra 57 0.230769231 1 [573][191] [330][1] Cas5_Gvaginalis 140 0.309050773 1 [1185][292] [733][1] Cas5_K-12 79 0.302681992 0.8 [261][225] [1][46] Cas6_Cbotulinum 158 0.478787879 1 [740][230] [414][1] Cas6_Hvolcanii_plasmid 99 0.25848564 1 [1309][273] [929][1] Cas6_Solfataricus 118 0.280952381 1 [1117][288] [701][1] Cas7_Hvolcanii_plasmid 164 0.316602317 1 [899][341] [390][1] Cas7_Hvolcanii_plasmid 164 0.316602317 1 [899][341] [390][1] Cas7_K-12 171 0.341317365 1 [1323][364] [833][1] Cas7_Solfataricus 147 0.2672727277 1						
Cas4_Solfataricus 87 0.294915254 1 [679][203] [387][1] Cas4_TtenaxKra 57 0.230769231 1 [573][191] [330][1] Cas5_Gvaginalis 140 0.309050773 1 [1185][292] [733][1] Cas5_K-12 79 0.302681992 0.8 [261][225] [1][46] Cas6_Cbotulinum 158 0.478787879 1 [740][230] [414][1] Cas6_Hvolcanii_plasmid 99 0.25848564 1 [1309][273] [929][1] Cas6_Ssolfataricus 118 0.280952381 1 [1117][288] [701][1] Cas7_Hvolcanii_plasmid 164 0.316602317 1 [899][341] [390][1] Cas7_K-12 171 0.341317365 1 [1323][364] [833][1] Cas7_Ssolfataricus 147 0.267272727 1 [950][312] [404][1] Cas8_LsV 136 0.265625 1 [1289][314] [783][1] Cas8_Pdistasois 237 0.29511222 1 <	_					
Cas4_TtenaxKra 57 0.230769231 1 [573][191] [330][1] Cas5_Gvaginalis 140 0.309050773 1 [1185][292] [733][1] Cas5_K-12 79 0.302681992 0.8 [261][225] [1][46] Cas6_Cbotulinum 158 0.478787879 1 [740][230] [414][1] Cas6_Hvolcanii_plasmid 99 0.25848564 1 [1309][273] [929][1] Cas6_Ssolfataricus 118 0.280952381 1 [1117][288] [701][1] Cas7_Hvolcanii_plasmid 164 0.316602317 1 [899][341] [390][1] Cas7_Hvolcanii_plasmid 164 0.316602317 1 [899][341] [390][1] Cas7_K-12 171 0.341317365 1 [1323][364] [833][1] Cas7_Ssolfataricus 147 0.267272727 1 [950][312] [404][1] Cas8_LsV 136 0.265625 1 [1289][314] [783][1] Cas8_Pgingivalis 212 0.280794702 1	_					
Cas5_Gvaginalis 140 0.309050773 1 [1185][292] [733][1] Cas5_K-12 79 0.302681992 0.8 [261][225] [1][46] Cas6_Cbotulinum 158 0.478787879 1 [740][230] [414][1] Cas6_Hvolcanii_plasmid 99 0.25848564 1 [1309][273] [929][1] Cas6_Ssolfataricus 118 0.280952381 1 [1117][288] [701][1] Cas7_Hvolcanii_plasmid 164 0.316602317 1 [899][341] [390][1] Cas7_K-12 171 0.341317365 1 [1323][364] [833][1] Cas7_Ssolfataricus 147 0.267272727 1 [950][312] [404][1] Cas8_LsV 136 0.265625 1 [1289][314] [783][1] Cas8_Pdistasois 237 0.295511222 1 [1342][573] [559][1] Cas8_Pgingivalis 212 0.280794702 1 [1340][500] [609][1] Cas9_Scindologenes 476 0.282157676 1						
Cas5_K-12 79 0.302681992 0.8 [261][225] [1][46] Cas6_Cbotulinum 158 0.478787879 1 [740][230] [414][1] Cas6_Cbotulinum 168 0.265825 1 [1117][288] [701][1] Cas7_Scolfataricus 147 0.341317365 1 [1323][364] [833][1] Cas7_Scolfataricus 147 0.267272727 1 [950][312] [404][1] Cas8_LsV 136 0.265625 1 [1289][314] [783][1] Cas8_Pdistasois 237 0.295511222 1 [1340][500] [609][1] Cas8_Pgingivalis 212 0.280794702 1 [1365][1301] [47][1] Cas9_Bthermosphacta 1726 1.249818972 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Cas6_Cbotulinum 158 0.478787879 1 [740][230] [414][1] Cas6_Hvolcanii_plasmid 99 0.25848564 1 [1309][273] [929][1] Cas6_Ssolfataricus 118 0.280952381 1 [1117][288] [701][1] Cas7_Hvolcanii_plasmid 164 0.316602317 1 [899][341] [390][1] Cas7_K-12 171 0.341317365 1 [1323][364] [833][1] Cas7_Ssolfataricus 147 0.267272727 1 [950][312] [404][1] Cas8_LsV 136 0.265625 1 [1289][314] [783][1] Cas8_Pdistasois 237 0.295511222 1 [1342][573] [559][1] Cas8_Pgingivalis 212 0.280794702 1 [1340][500] [609][1] Cas9_Bthermosphacta 1726 1.249818972 1 [1365][1301] [47][1] Cas9_Cindologenes 476 0.282157676 1 [1366][1444] [3][1] Cas9_Hpullorum 180 0.276344878 <th< td=""><td>_ =</td><td></td><td></td><td></td><td></td><td></td></th<>	_ =					
Cas6_Hvolcanii_plasmid 99 0.25848564 1 [1309][273] [929][1] Cas6_Ssolfataricus 118 0.280952381 1 [1117][288] [701][1] Cas7_Hvolcanii_plasmid 164 0.316602317 1 [899][341] [390][1] Cas7_K-12 171 0.341317365 1 [1323][364] [833][1] Cas7_Ssolfataricus 147 0.267272727 1 [950][312] [404][1] Cas8_LsV 136 0.265625 1 [1289][314] [783][1] Cas8_Pdistasois 237 0.295511222 1 [1342][573] [559][1] Cas8_Pgingivalis 212 0.280794702 1 [1340][500] [609][1] Cas9_Bthermosphacta 1726 1.249818972 1 [1365][1301] [47][1] Cas9_Cindologenes 476 0.282157676 1 [1366][1444] [3][1] Cas9_Hpullorum 180 0.27820711 1 [643][345] [4][1] Cas9_Hyillorum 2 330 0.391459075 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Cas6 Ssolfataricus 118 0.280952381 1 [1117][288] [701][1] Cas7 Hvolcanii plasmid 164 0.316602317 1 [899][341] [390][1] Cas7 K-12 171 0.341317365 1 [1323][364] [833][1] Cas7 Ssolfataricus 147 0.267272727 1 [950][312] [404][1] Cas8 LsV 136 0.265625 1 [1289][314] [783][1] Cas8 Pdistasois 237 0.295511222 1 [1342][573] [559][1] Cas8 Pgingivalis 212 0.280794702 1 [1340][500] [609][1] Cas9 Bthermosphacta 1726 1.249818972 1 [1365][1301] [47][1] Cas9 Cindologenes 476 0.282157676 1 [1366][1444] [3][1] Cas9 Cochracea 375 0.276344878 0.650315347 [1322][1427] [1][500] Cas9 Hpullorum 180 0.27820711 1 [643][345] [4][1] Cas9 Kkingae 520 0.370634355 0.997172479	_					
Cas7_Hvolcanii_plasmid 164 0.316602317 1 [899][341] [390][1] Cas7_K-12 171 0.341317365 1 [1323][364] [833][1] Cas7_Ssolfataricus 147 0.267272727 1 [950][312] [404][1] Cas8_LsV 136 0.265625 1 [1289][314] [783][1] Cas8_Pdistasois 237 0.295511222 1 [1342][573] [559][1] Cas8_Pgingivalis 212 0.280794702 1 [1340][500] [609][1] Cas9_Bthermosphacta 1726 1.249818972 1 [1365][1301] [47][1] Cas9_Cindologenes 476 0.282157676 1 [1366][1444] [3][1] Cas9_Hpullorum 180 0.27820711 1 [643][345] [4][1] Cas9_Hpullorum_2 330 0.391459075 1 [1347][703] [549][1] Cas9_Movipneumoniae 519 0.340998686 0.988216811 [1349][1273] [1][16] Cas9_Pacidlactici 1786 1.209207854 0.9992673						
Cas7_K-12 171 0.341317365 1 [1323][364] [833][1] Cas7_Ssolfataricus 147 0.267272727 1 [950][312] [404][1] Cas8_LsV 136 0.265625 1 [1289][314] [783][1] Cas8_Pdistasois 237 0.295511222 1 [1342][573] [559][1] Cas8_Pgingivalis 212 0.280794702 1 [1340][500] [609][1] Cas9_Bthermosphacta 1726 1.249818972 1 [1365][1301] [47][1] Cas9_Cindologenes 476 0.282157676 1 [1366][1444] [3][1] Cas9_Cochracea 375 0.276344878 0.650315347 [1322][1427] [1][500] Cas9_Hpullorum 180 0.27820711 1 [643][345] [4][1] Cas9_Hpullorum_2 330 0.391459075 1 [1347][703] [549][1] Cas9_Movipneumoniae 519 0.340998686 0.988216811 [1349][1273] [1][16] Cas9_Pacidlactici 1786 1.209207854						
Cas7_Ssolfataricus 147 0.267272727 1 [950][312] [404][1] Cas8_LsV 136 0.265625 1 [1289][314] [783][1] Cas8_Pdistasois 237 0.295511222 1 [1342][573] [559][1] Cas8_Pgingivalis 212 0.280794702 1 [1340][500] [609][1] Cas9_Bthermosphacta 1726 1.249818972 1 [1365][1301] [47][1] Cas9_Cindologenes 476 0.282157676 1 [1366][1444] [3][1] Cas9_Cochracea 375 0.276344878 0.650315347 [1322][1427] [1][500] Cas9_Hpullorum 180 0.27820711 1 [643][345] [4][1] Cas9_Hpullorum_2 330 0.391459075 1 [1347][703] [549][1] Cas9_Movipneumoniae 519 0.340998686 0.998216811 [1349][1273] [1][16] Cas9_Nlactamica 505 0.353889278 0.994459834 [1366][1365] [1][2] Cas9_Pacidlactici 1786 1.						[833][1]
Cas8_LsV 136 0.265625 1 [1289][314] [783][1] Cas8_Pdistasois 237 0.295511222 1 [1342][573] [559][1] Cas8_Pgingivalis 212 0.280794702 1 [1340][500] [609][1] Cas9_Bthermosphacta 1726 1.249818972 1 [1365][1301] [47][1] Cas9_Cindologenes 476 0.282157676 1 [1366][1444] [3][1] Cas9_Cochracea 375 0.276344878 0.650315347 [1322][1427] [1][500] Cas9_Hpullorum 180 0.27820711 1 [643][345] [4][1] Cas9_Hpullorum_2 330 0.391459075 1 [1347][703] [549][1] Cas9_Kkingae 520 0.370634355 0.997172479 [1341][1061] [1][4] Cas9_Nlactamica 505 0.353889278 0.994459834 [1368][1083] [1][7] Cas9_Pacidlactici 1786 1.209207854 0.999267399 [1366][1365] [1][4] Cas9_Pnultocida 510 0.3						
Cas8_Pdistasois 237 0.295511222 1 [1342][573] [559][1] Cas8_Pgingivalis 212 0.280794702 1 [1340][500] [609][1] Cas9_Bthermosphacta 1726 1.249818972 1 [1365][1301] [47][1] Cas9_Cindologenes 476 0.282157676 1 [1366][1444] [3][1] Cas9_Cochracea 375 0.276344878 0.650315347 [1322][1427] [1][500] Cas9_Hpullorum 180 0.27820711 1 [643][345] [4][1] Cas9_Hpullorum_2 330 0.391459075 1 [1347][703] [549][1] Cas9_Kkingae 520 0.370634355 0.997172479 [1341][1061] [1][4] Cas9_Movipneumoniae 519 0.340998686 0.988216811 [1349][1273] [1][16] Cas9_Nlactamica 505 0.353889278 0.994459834 [1366][1365] [1][2] Cas9_Pacidlactici 1786 1.209207854 0.999267399 [1366][1365] [1][2] Cas9_Pnultocida	_					
Cas8_Pgingivalis 212 0.280794702 1 [1340][500] [609][1] Cas9_Bthermosphacta 1726 1.249818972 1 [1365][1301] [47][1] Cas9_Cindologenes 476 0.282157676 1 [1366][1444] [3][1] Cas9_Cochracea 375 0.276344878 0.650315347 [1322][1427] [1][500] Cas9_Hpullorum 180 0.27820711 1 [643][345] [4][1] Cas9_Hpullorum_2 330 0.391459075 1 [1347][703] [549][1] Cas9_Kkingae 520 0.370634355 0.997172479 [1341][1061] [1][4] Cas9_Movipneumoniae 519 0.340998686 0.988216811 [1349][1273] [1][16] Cas9_Nlactamica 505 0.353889278 0.994459834 [1368][1083] [1][7] Cas9_Pacidlactici 1786 1.209207854 0.999267399 [1366][1365] [1][2] Cas9_Pnultocida 510 0.365068003 0.997161779 [1348][1057] [1][4]						
Cas9_Bthermosphacta 1726 1.249818972 1 [1365][1301] [47][1] Cas9_Cindologenes 476 0.282157676 1 [1366][1444] [3][1] Cas9_Cochracea 375 0.276344878 0.650315347 [1322][1427] [1][500] Cas9_Hpullorum 180 0.27820711 1 [643][345] [4][1] Cas9_Hpullorum_2 330 0.391459075 1 [1347][703] [549][1] Cas9_Kkingae 520 0.370634355 0.997172479 [1341][1061] [1][4] Cas9_Movipneumoniae 519 0.340998686 0.988216811 [1349][1273] [1][16] Cas9_Nlactamica 505 0.353889278 0.994459834 [1368][1083] [1][7] Cas9_Pacidlactici 1786 1.209207854 0.999267399 [1366][1365] [1][2] Cas9_Pnultocida 510 0.365068003 0.997161779 [1348][1057] [1][4]	_					
Cas9_Cindologenes 476 0.282157676 1 [1366][1444] [3][1] Cas9_Cochracea 375 0.276344878 0.650315347 [1322][1427] [1][500] Cas9_Hpullorum 180 0.27820711 1 [643][345] [4][1] Cas9_Hpullorum_2 330 0.391459075 1 [1347][703] [549][1] Cas9_Kkingae 520 0.370634355 0.997172479 [1341][1061] [1][4] Cas9_Movipneumoniae 519 0.340998686 0.988216811 [1349][1273] [1][16] Cas9_Nlactamica 505 0.353889278 0.994459834 [1368][1083] [1][7] Cas9_Pacidlactici 1786 1.209207854 0.999267399 [1366][1365] [1][2] Cas9_Pnultocida 510 0.365068003 0.997161779 [1348][1057] [1][4]						
Cas9_Cochracea 375 0.276344878 0.650315347 [1322][1427] [1][500] Cas9_Hpullorum 180 0.27820711 1 [643][345] [4][1] Cas9_Hpullorum_2 330 0.391459075 1 [1347][703] [549][1] Cas9_Kkingae 520 0.370634355 0.997172479 [1341][1061] [1][4] Cas9_Movipneumoniae 519 0.340998686 0.988216811 [1349][1273] [1][16] Cas9_Nlactamica 505 0.353889278 0.994459834 [1368][1083] [1][7] Cas9_Pacidlactici 1786 1.209207854 0.999267399 [1366][1365] [1][2] Cas9_Pnultocida 510 0.365068003 0.997161779 [1348][1057] [1][4]						
Cas9_Hpullorum 180 0.27820711 1 [643][345] [4][1] Cas9_Hpullorum_2 330 0.391459075 1 [1347][703] [549][1] Cas9_Kkingae 520 0.370634355 0.997172479 [1341][1061] [1][4] Cas9_Movipneumoniae 519 0.340998686 0.988216811 [1349][1273] [1][16] Cas9_Nlactamica 505 0.353889278 0.994459834 [1368][1083] [1][7] Cas9_Pacidlactici 1786 1.209207854 0.999267399 [1366][1365] [1][2] Cas9_Pnultocida 510 0.365068003 0.997161779 [1348][1057] [1][4]	_					
Cas9_Hpullorum_2 330 0.391459075 1 [1347][703] [549][1] Cas9_Kkingae 520 0.370634355 0.997172479 [1341][1061] [1][4] Cas9_Movipneumoniae 519 0.340998686 0.988216811 [1349][1273] [1][16] Cas9_Nlactamica 505 0.353889278 0.994459834 [1368][1083] [1][7] Cas9_Pacidlactici 1786 1.209207854 0.999267399 [1366][1365] [1][2] Cas9_Pnultocida 510 0.365068003 0.997161779 [1348][1057] [1][4]						
Cas9_Kkingae 520 0.370634355 0.997172479 [1341][1061] [1][4] Cas9_Movipneumoniae 519 0.340998686 0.988216811 [1349][1273] [1][16] Cas9_Nlactamica 505 0.353889278 0.994459834 [1368][1083] [1][7] Cas9_Pacidlactici 1786 1.209207854 0.999267399 [1366][1365] [1][2] Cas9_Pnultocida 510 0.365068003 0.997161779 [1348][1057] [1][4]						
Cas9_Movipneumoniae 519 0.340998686 0.988216811 [1349][1273] [1][16] Cas9_Nlactamica 505 0.353889278 0.994459834 [1368][1083] [1][7] Cas9_Pacidlactici 1786 1.209207854 0.999267399 [1366][1365] [1][2] Cas9_Pnultocida 510 0.365068003 0.997161779 [1348][1057] [1][4]						
Cas9_Nlactamica 505 0.353889278 0.994459834 [1368][1083] [1][7] Cas9_Pacidlactici 1786 1.209207854 0.999267399 [1366][1365] [1][2] Cas9_Pnultocida 510 0.365068003 0.997161779 [1348][1057] [1][4]						
Cas9_Pacidlactici 1786 1.209207854 0.999267399 [1366][1365] [1][2] Cas9_Pnultocida 510 0.365068003 0.997161779 [1348][1057] [1][4]						
Cas9_Pnultocida 510 $0.365068003 \ 0.997161779 \ [1348][1057] \ [1][4]$	_					
	_					
Gasy Ranatinestiter 391 () 239143731 1 11366H1406L 13H1	Cas9 Ranatipestifer	391	0.239143731	1	[1366][1406]	[3][1]
Cas9_Sgallolyticus 4529 3.274765004 0.999271137 [1368][1372] [1][2]						
Cas9_Smoniliformis 514 0.327597196 1 [1368][1260] [3][1]						
Cas9_Spaucimobilis 415 0.290616246 1 $[1362][1091]$ $[3][1]$						

Table 2: Local Alignment Output

Gene Name	Alignment Score	Average Score / base	% Sequence aligned	Traceback Start	Traceback End
Cas10 Mtuberculosis	s 317	0.239064857	0.98888889	[1345][808]	[46][8]
Cas10 Phorikoshii	313	0.246650906	0.874015748	[1368][705]	[105][40]
Cas10 Ssolfataricus	432	0.316020483	0.864244742	[1365][929]	[16][26]
Cas10 Tvolcanium	362	0.312878133	0.923969072	[1312][749]	[165][33]
Cas1_DvsH_plasmic	d 152	0.290630975	0.959302326	[1237][342]	[728][13]
Cas1 Gvaginalis	120	0.270880361	0.99376947	[1332][320]	[904][2]
Cas1 K-12	107	0.29558011	0.666666667	[1340][263]	[983][60]
Cas1 Tdenticola	124	0.294536817	0.965635739	[1096][287]	[687][7]
Cas2 K-12	43	0.651515152	0.663157895	[1119][86]	[1055][24]
Cas2 Lsalivarius	77	0.611111111	0.794117647	[621][101]	[496][21]
Cas2 StB20-like	72	1.028571429	0.568181818	[738][87]	[669][38]
Cas3_DvsH_plasmic	d 210	0.195712954	0.944523471	[1099][683]	[48][20]
Cas3 Gvaginalis	261	0.244382022	0.937114673	[1317][790]	[272][31]
Cas3 K-12	248	0.245787909	0.750281215	[1232][873]	[265][207]
Cas4 K-12	177	0.353293413	0.848901099	[1355][325]	[856][17]
Cas4 Ssolfataricus	100	0.304878049	0.827586207	[1308][180]	[981][13]
Cas4_TtenaxKra	60	0.810810811	0.277486911	[883][175]	[811][123]
Cas5_Gvaginalis	159	0.42513369	0.863013699	[797][274]	[424][23]
$Cas5_K-12$	77	0.292775665	0.68	[493][184]	[233][32]
Cas6_Cbotulinum	132	0.371830986	0.82173913	[453][215]	[99][27]
Cas6_Hvolcanii_plas	smid 93	0.322916667	0.648351648	[755][225]	[468][49]
Cas6_Ssolfataricus	121	0.292978208	0.954861111	[1208][286]	[799][12]
Cas7_Hvolcanii_plas	smid 177	0.5	0.692082111	[416][297]	[63][62]
$Cas7_K-12$	177	0.353293413	0.848901099	[1355][325]	[856][17]
Cas7_Ssolfataricus	139	0.445512821	0.769230769	[1144][311]	[837][72]
$Cas8_LsV$	168	0.305454545	0.984076433	[592][313]	[43][5]
Cas8_Pdistasois	222	0.308333333	0.848167539	[772][572]	[65][87]
Cas8_Pgingivalis	192	0.309677419	0.666	[690][498]	[75][166]
Cas9_Bthermosphac	ta 1736	1.260711692	0.996156802	[1361][1296]	[47][1]
Cas9_Cindologenes	658	0.443396226	0.810249307	[1366][1170]	[3][1]
Cas9_Cochracea	493	0.361172161	0.62789068	[1352][896]	[3][1]
Cas9_Hpullorum	174	0.280645161	0.985507246	[616][342]	[6][3]
Cas9_Hpullorum_2	351	0.445997459	0.928876245	[1345][701]	[614][49]
Cas9_Kkingae	528	0.372881356	0.97737983	[1368][1042]	[3][6]
Cas9_Movipneumoni	iae 620	0.417508418	0.865671642	[1357][1118]	[2][17]
Cas9_Nlactamica	580	0.420594634	0.874422899	[1359][955]	[3][9]
Cas9_Pacidlactici	1793	1.214769648	0.998534799	[1365][1364]	[1][2]
Cas9_Pnultocida	577	0.416907514	0.904446547	[1361][961]	[3][6]
${\bf Cas9_Ranatipestifer}$	529	0.354795439	0.826458037	[1368][1162]	[3][1]
Cas9_Sgallolyticus	4540	3.289855072	0.997084548	[1366][1369]	[1][2]
Cas9_Smoniliformis	543	0.378133705	0.843650794	[1368][1063]	[3][1]
Cas9_Spaucimobilis	404	0.289191124	0.973418882	[1332][1063]	[4][2]

3.2 Gibbs Sampling

3.2.1 Proof of concept

The simulated sequences contain a motif with length 16 at various locations in the set of sequences and the sequences in the set contain either this motif or this motif and another motif shared by half some of the sequences (see Figure 6). We trained motif with lengths 5, 10, 15, 16 (the correct length), 20, and 30. The results are shown in Figure 7. It shows that our strategy can successfully recognize and recover the position of the conserved region. And furthermore, as the motif length matches exactly the underlying truth, the number of outliers is minimized and if the length is close enough or slightly longer than the truth, the method is still robust. From the accuracy perspective, also, the accuracy is minimized if we use the right width but if the width is chosen within an appropriate range, then the true position is roughly within 10 amino acids to the predicted ones, which is still acceptable for our goal.

Besides, simulated data, the similar analysis was done using globin data as well. We performed the analysis using width 10, 30, 50, ..., 130. Figure 8 shows the results of pattern recognition using learned motif with width 10, 50, 110, where we learned 10 motifs with width 10 and 5 for others. Here the score in each cell is defined as the maximum score among all the scores obtained by any possible window such position evolving with any motifs learned. It turns out that our method can find the conserved region at test time even though the motif is short, which implies that our method has enough sensitivity for our task.

3.2.2 Motif finding in Cas5 and Cas7

The optimization curves of motif finding in Cas5 and Cas7 with width 10, 50, 110 are shown in Figure 9 and Figure 10. From the curves we can see the Markov chain almost converges in each run.

3.2.3 Pattern recognition in Cas9

The results of pattern recognitions are shown in Figure 11 and Figure 12. It turns out that for motif with width 10, we some noises and for motif with width 50 and 110, we get no single at all.

3.3 Domain-specific profile HMM

3.3.1 Protocol testing

For method quality control purpose, some protocol was applied to globins 4.fasta (a file of 4 sequences of globins generated from a tutorial file of HMMer). We built the profile Hmm and save it in golbins 4.hmm. Using this profile HMM, we searched globins 45.fa (a tutorial file of HMMer) and the result is saved into golbins.search. The summary of found domains is in the header part of the file as shown in Figure. 13. An example alignment of the found domain is shown in Figure. 14. We can see that a domain is found in HBB_MANSP. The profile HMM model can also be read from the alignment. Full result is available in golbins.search file.

3.3.2 Finding domains of Cas9

After subtracting and aligning all the shared domains of Cas9 marked in EMBL-EBI. We built profile HMMs from these multi-sequence alignments and save them into data/domains_Cas9/IPR032239.hmm, etc. Then we use these models to find the domains of Cas9 in all Cas family protein sequences, hoping to find similar domains in other proteins in different subtypes. The summary of one of the search results can be seen in Figure. 15. The profile HMM can find similar domains in other Cas9 proteins, which is as expected. But all the models failed to find any similar domains in other Cas family proteins other than Cas9.

3.4 Finding domains of Cas5

We also tried the other direction. That is to use domain markers of Cas5, which is a component of Type I system, and to find similar domains in Cas9. The protocol is the same and one of the summaries of the results can be found in Figure 16. The result is similar, the model is able to find some similar domains in other Cas5 proteins but not other Cas family proteins.

4 Conclusion

. . .

TODO: we need to do this one together

TODO: please include any other resources or papers you referenced

References

- [1] K. S. Makarova, et al., An updated evolutionary classification of CRISPR-Cas systems http://dx.doi.org/10.1038/nrmicro3569, 28 September 2015
- D. A[2] Saul В. Needleman, Christian Wunsch, general methodapplicable the search for similarities in the aminoacidsequenceproteinshttp://www.sciencedirect.com/science/article/pii/0022283670900574, 28 March 1970
- [3] Smith, Temple F., Waterman, Michael S., *Identification of Common Molecular Subsequences* Journal of Molecular Biology. 147: 195-197. doi:10.1016/0022-2836(81)90087-5. PMID 7265238., 1981
- [4] Makarova, Kira S et al. ?Unification of Cas Protein Families and a Simple Scenario for the Origin and Evolution of CRISPR-Cas Systems.? Biology Direct 6 (2011): 38. PMC. Web. 26 Nov. 2016.
- [5] Devaki Bhaya, Michelle Davison, and Rodolphe Barrangou, CRISPR-Cas Systems in Bacteria and Archaea: Versatile Small RNAs for Adaptive Defense and Regulation Annual Review of Genetics Vol. 45: 273-297 (Volume publication date December 2011) DOI: 10.1146/annurevgenet-110410-132430

- [6] Mali, P., Esvelt, K. M., & Church, G. M. (2013). Cas as a versatile tool for engineering biology. Nature Methods, 10(10), 957?963. doi:10.1038/nmeth.2649
- [7] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science. 2012 Aug 17;337(6096):816-21. doi: 10.1126/science.1225829. Epub 2012 Jun 28.
- [8] Ran, F Ann and Hsu, Patrick D and Wright, Jason and Agarwala, Vineeta and Scott, David A and Zhang, Feng, Genome engineering using the CRISPR-Cas9 system Nat. Protocols(2013) http://dx.doi.org/10.1038/nprot.2013.143
- [9] Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell. 2013 Feb 28;152(5):1173-83. doi: 10.1016/j.cell.2013.02.022.
- [10] Hiroshi Nishimasu, F. Ann Ran, Patrick D. Hsu, Silvana Konermann, Soraya I. Shehata, Naoshi Dohmae, Ryuichiro Ishitani, Feng Zhang, Osamu Nureki Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA http://www.cell.com/cell/pdf/S0092-8674(14)00156-1.pdf February 13, 2014
- [11] Ran FA, Hsu PD, Lin C-Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380-1389. doi:10.1016/j.cell.2013.08.021.
- [12] Ran FA, et al., In vivo genome editing using Staphylococcus aureus Cas9 Nature 520, 186?191 (09 April 2015) doi:10.1038/nature14299
- [13] I. Maggio et al., Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells Scientific Reports 4, Article number: 5105 (2014) doi:10.1038/srep05105
- [14] HMMER 3.1b2 (February 2015); http://hmmer.org/
- [15] G. D. Stormo, T. D. Schneider, L. Gold, and A. Ehrenfeucht, "Use of the 'perceptron'algorithm to distinguish translational initiation sites in e. coli," *Nucleic Acids Research*, vol. 10, no. 9, pp. 2997–3011, 1982.
- [16] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, J. C. Wootton, et al., "Detecting subtle sequence signals: a gibbs sampling strategy for multiple alignment," SCIENCE-NEW YORK THEN WASHINGTON-, vol. 262, pp. 208–208, 1993.

Figure 4: Pairwise sequence alignment of various *Cas* protein sequences against *s. pyogenes Cas9* protein sequence. Green bars show coverage of semi-global alignment of individual sequence against *s. pyogenes Cas9*. Purple bars show coverage of local alignment of individual sequence against *s. pyogenes Cas9*. Darker color indicates higher average score per base, and therefore higher sequence similarity. Each grey marker represents 10 amino acid residues

Figure 5: Pairwise sequence alignment of various Cas protein sequences against s. pyogenes Cas9 protein sequence. Green bars show coverage of semi-global alignment of individual sequence against s. pyogenes Cas9. Purple bars show coverage of local alignment of individual sequence against s. pyogenes Cas9. Darker color indicates higher average score per base, and therefore higher sequence similarity. Each grey marker represents 10 amino acid residues

Simulated data has three motifs and every sequence at training time share the same motif (red) but may or may not contain other motifs (yellow/blue). At test time, the sequences share similar pattern and we chech if the trained motif can successfully recover the shared pattern (red).

Figure 6: Gibbs sampling approach - The overview of the analysis design for simulated data

Figure 7: Gibbs sampling approach - The results of conserved region finding in simulated sequences

Figure 8: Gibbs sampling approach - The pattern recognition scores of globins

Figure 9: Gibbs sampling approach - The optimization curves for motif finding in Cas5

Figure 10: Gibbs sampling approach - The optimization curves for motif finding in Cas7

Figure 11: Gibbs sampling approach - The pattern recognition scores of Cas9 with motifs found in Cas5

Figure 12: Gibbs sampling approach - The pattern recognition scores of Cas9 with motifs found in Cas7

```
# hmmsearch :: search profile(s) against a sequence database
# HMMER 3.1b2 (February 2015); http://hmmer.org/
# Copyright (C) 2015 Howard Hughes Medical Institute.
# Freely distributed under the GNU General Public License (GPLv3).
# query HMM file:
                                   globins4.hmm
# target sequence database:
                                   globins45.fa
             globins4 [M=149]
Scores for complete sequences (score includes all domains):
   --- full sequence ---
                           --- best 1 domain ---
                                                    -#dom-
    E-value score bias
                            E-value score bias
                                                    exp N
                                                            Sequence
                                                                        Description
                     2.9
                            9.7e-67
                                             2.9
    8.7e-67
            215.6
                                     215.4
                                                    1.0 1
                                                            MYG_ESCGI
    1.1e-65
             211.9
                     0.1
                            1.3e-65
                                     211.8
                                             0.1
                                                    1.0
                                                         1
                                                            HBB_MANSP
    7.4e-65
             209.3
                     0.2
                            8.2e-65
                                     209.2
                                             0.2
                                                    1.0
                                                         1
                                                            HBB_CALAR
    5.5e-64
             206.5
                     1.2
                            6.1e-64
                                     206.3
                                             1.2
                                                    1.0
                                                         1
                                                            MYG_HORSE
    2.8e-63
             204.2
                     0.1
                            3.1e-63
                                     204.1
                                             0.1
                                                    1.0
                                                         1
                                                            HBB_URSMA
    9.9e-63
             202.4
                     0.5
                            1.1e-62
                                     202.3
                                             0.5
                                                    1.0
                                                         1
                                                            HBB_RABIT
    2.6e-62
             201.1
                            2.8e-62
                                     200.9
                                             1.3
                                                    1.0 1
                                                            HBA_PONPY
                     1.3
      2e-61
             198.2
                     1.1
                            2.2e-61
                                     198.1
                                             1.1
                                                    1.0 1
                                                            HBB_SPECI
      1e-60
             195.9
                     1.7
                            1.1e-60
                                     195.8
                                             1.7
                                                    1.0
                                                            MYG_LYCPI
                                                         1
    1.1e-60
             195.8
                     0.3
                            1.2e-60
                                     195.7
                                             0.3
                                                    1.0
                                                         1
                                                            MYG_PROGU
    1.4e-60 195.5
                     0.7
                            1.5e-60 195.3
                                             0.7
                                                    1.0
                                                         1 HBB_SPETO
```

Figure 13: profile HMM search results summary in globins.search

Figure 14: profile HMM approach - Domain alignment in globins.search

```
gchu@Qis-MacBook-Pro domains_Cas9 (master)*$ cat IPR003615_result.txt
# hmmsearch :: search profile(s) against a sequence database
# HMMER 3.1b2 (February 2015); http://hmmer.org/
# Copyright (C) 2015 Howard Hughes Medical Institute.
# Freely distributed under the GNU General Public License (GPLv3).
# query HMM file:
                            IPR003615.hmm
# target sequence database:
                             ../../genes/complete_amino_acids.fa
IPR003615 [M=50]
Scores for complete sequences (score includes all domains):
  --- full sequence --- --- best 1 domain --- -#dom-
   E-value score bias E-value score bias
                                           exp N Sequence
                                                                           Description
   -----
                                                                            -----
                       2e-30 95.9 4.4 1.8 1 Cas9_Sgallolyticus.fasta_1
   7.4e-31 97.3 4.4
                                           1.7 1 Cas9_Pacidlactici.fasta_1
   1.1e-25 80.7 3.5 2.7e-25 79.5 3.5
           73.5 1.0 5.7e-23 72.1 1.0 1.9 1 Cas9_Bthermosphacta.fasta_1
59.3 0.1 1.8e-18 57.6 0.1 2.0 1 Cas9_Cindologenes.fasta_1
49.0 0.0 2.2e-15 47.8 0.0 1.7 1 Cas9_Pnultocida.fasta_1
46.2 0.2 6.2e-14 43.1 0.2 2.9 1 Cas9_Smoniliformis.fasta_1
                                           1.9 1 Cas9_Bthermosphacta.fasta_1
    2e-23
   5.7e-19
   8.9e-16 49.0 0.0
   6.7e-15 46.2 0.2
                      5.6e-14 43.3 0.1 1.8 1 Cas9_Hpullorum_2.fasta_1
   2.1e-14 44.6 0.1
    3e-14 44.2 0.0 6.1e-14 43.2 0.0 1.6 1 Cas9_Nlactamica.fasta_1
   4.9e-14 43.5 0.0 9.4e-14 42.6 0.0 1.5 1 Cas9_Spaucimobilis.fasta_1
   2.8e-13 41.0 0.1 2.8e-13 41.0 0.1 2.5 2 Cas9_Ranatipestifer.fasta_1
   4.3e-13 40.5 0.0 1.1e-12 39.2 0.0 1.8 1 Cas9_Kkingae.fasta_1
   7.7e-13 39.6 3.3 7.7e-13 39.6 3.3 2.5 1 Cas9_Movipneumoniae.fasta_1
   8.8e-11 33.1 0.1 8.9e-10 29.8 0.0 2.9 2 Cas9_Cochracea.fasta_1
```

Figure 15: profile HMM approach - One example result for searching for Cas9 in all Cas family proteins

```
# hmmsearch :: search profile(s) against a sequence database
# HMMER 3.1b2 (February 2015); http://hmmer.org/
# Copyright (C) 2015 Howard Hughes Medical Institute.
# Freely distributed under the GNU General Public License (GPLv3).
# -----
# query HMM file: IPR013422.hmm
# target sequence database: ./../../genes/complete_amino_acids.fa
IPR013422 [M=40]
Query:
Scores for complete sequences (score includes all domains):
  --- full sequence --- --- best 1 domain --- -#dom-
  E-value score bias E-value score bias exp N Sequence
                                                                  Description
   -----
   1.2e-15 49.0 0.3 2.5e-15 47.9 0.3 1.6 1 Cas5_K-12.fasta_1
   5.5e-10 30.8 0.0 8.8e-10 30.2 0.0 1.3 1 Cas5_Gvaginalis.fasta_1
Domain annotation for each sequence (and alignments):
>> Cas5_K-12.fasta_1
 # score bias c-Evalue i-Evalue hmmfrom hmm to alifrom ali to envfrom env to
  1! 47.9 0.3 1.2e-16 2.5e-15 1 40 [] 5 44 .. 5 44 .. 0.98
 Alignments for each domain:
 == domain 1 score: 47.9 bits; conditional E-value: 1.2e-16
        IPR013422 1 lllelfaplaswrkPsasgersSyplPpPStilGaLaAil 40
                  1+1+1++p+++w++P + ++r++ ++P++S++1G+L+A+1
 Cas5_K-12.fasta_1 5 LILRLAGPMQAWGQPTFEGTRPTGRFPTRSGLLGLLGACL 44
```

Figure 16: profile HMM approach - One example result for searching for Cas5 in all Cas family proteins