Problem (Problem 1): Let $U \subseteq \mathbb{C}$ be a nonempty open set. Given a sequence $(z_n)_n \subseteq U$, we write $z_n \to \partial U$ if, for every compact subset $K \subseteq U$, there exists some $N = N(K) \in \mathbb{N}$ such that $z_n \notin K$ whenever $n \ge N$.

Given a function $u: U \to \mathbb{R}$, define

$$\limsup_{z \to \partial U} u(z) = \inf_{\substack{K \subseteq U \\ K \text{ compact}}} \sup_{z \in U \setminus K} u(z).$$

(a) For each positive integer $n \in \mathbb{N}$, define

$$K_n := \left\{ z \in U \mid |z| \le n, \operatorname{dist}_{\mathbb{C} \setminus U}(z) \ge \frac{1}{n} \right\}.$$

Show that:

- (i) each K_n is compact;
- (ii) $K_n \subseteq K_{n+1}^{\circ}$;
- (iii) $U = \bigcup_{n=1}^{\infty} K_n$.
- (b) Let $L := \limsup_{z \to \partial U} u(z)$.
 - (i) Show that for each S > L, there is a compact subset K \subseteq U such that $u(z) \leqslant$ S for all $z \in U \setminus K$.
 - (ii) Show that there exists a sequence $(z_n)_n$ in U with $z_n \to \partial U$ and $\limsup_{n \to \infty} u(z_n) \ge L$.
- (c) Prove that

$$\limsup_{z \to \partial U} u(z) = \inf_{\substack{(z_n)_n \subseteq U \\ z_n \to \partial U}} \limsup_{n \to \infty} u(z_n).$$

Solution:

(a) We claim that the set

$$C_n = \left\{ z \in U \mid \operatorname{dist}_{\mathbb{C} \setminus U}(z) \geqslant \frac{1}{n} \right\}$$

is closed. Then, we observe that $K_n = B(0,n) \cap C_n$ would then be an intersection of a closed set with a closed and bounded set, hence a closed and bounded set, hence compact. Towards this end, suppose $(w_k)_k \subseteq C_n$ converges to $w \in \mathbb{C}$. Then, for each k, we have

$$\inf_{z\in\mathbb{C}\setminus\mathcal{U}}|w_k-z|\geqslant\frac{1}{n}.$$

Observe then that for any $z \in \mathbb{C} \setminus U$, we have

$$|w_k - z| \geqslant \frac{1}{n}$$

for each k, meaning that

$$\lim_{k\to\infty}|w_k-z|\geqslant\frac{1}{n},$$

or that

$$|w-z|\geqslant \frac{1}{n}.$$

In particular, it must be the case that $w \in U$, and that

$$\inf_{z\in\mathbb{C}\setminus\mathsf{U}}|w-z|\geqslant\frac{1}{\mathsf{n}},$$

so that $w \in C_n$, and thus C_n is closed, and K_n is compact.

To see that $K_n \subseteq K_{n+1}^\circ$, we show that $C_n \subseteq C_{n+1}^\circ$ by understanding the picture of C_n° . Towards this end, we see that $z \in C_n^\circ$ if and only if $z \in U$ and there is some r > 0 such that $\operatorname{dist}_{\mathbb{C}\setminus U}(w) \geqslant \frac{1}{n}$ for all $w \in U(z,r)$.

Observe that if $\varepsilon > 0$, then if z satisfies $\operatorname{dist}_{\mathbb{C}\setminus U}(z) \ge \frac{1}{n} + \varepsilon$, then if $w \in \mathbb{C} \setminus U$ and $\zeta \in U(z, \varepsilon/2)$, we have

$$\frac{1}{n} + \varepsilon \le |z - w|$$

$$\le |z - \zeta| + |\zeta - w|$$

$$< \varepsilon/2 + |\zeta - w|,$$

meaning that $|\zeta - w| \ge \frac{1}{n} + \varepsilon/2$ for all $w \in \mathbb{C} \setminus U$, so that $\operatorname{dist}_{\mathbb{C} \setminus U}(\zeta) \ge \frac{1}{n}$. In particular, this means that C_n° consists of all z for which there exists ε such that $\operatorname{dist}_{\mathbb{C} \setminus U}(z) \ge \frac{1}{n} + \varepsilon$, or more succinctly,

$$C_n^{\circ} = \left\{ z \in U \mid \operatorname{dist}_{\mathbb{C} \setminus U}(z) > \frac{1}{n} \right\}.$$

In particular, since $\frac{1}{n}>\frac{1}{n+1}$, it follows that $C_n\subseteq C_{n+1}^\circ$. Paired with the fact that $B(0,n)\subseteq U(0,n+1)$, we obtain that

$$K_{n} = B(0, n) \cap C_{n}$$

$$\subseteq U(0, n + 1) \cap C_{n+1}^{\circ}$$

$$= (B(0, n + 1) \cap C_{n})^{\circ}$$

$$= K_{n+1}^{\circ}.$$