Resumen de teoremas para el final de Matemática Discreta II

Agustin Curto, agucurto95@gmail.com

2016

Índice general

1.	Part	
	1.1.	La complejidad de EDMONS-KARP
		Las distancias de Edmonds-Karp no disminuyen en pasos sucesivos
	1.3.	La complejidad de DINIC
	1.4.	La complejidad de WAVE
		La distancia entre NA sucesivos aumenta
2.	Par	
		2-COLOR es polinomial
	2.2.	Probar que:
		2.2.1. El valor de todo flujo es menor o igual que la capacidad de todo corte
		2.2.2. Si el valor de un flujo es igual a la capacidad de un corte entonces el flujo
		es maximal y el corte minimal
		2.2.3. Si un flujo es maximal entonces existe un corte con capacidad igual al valor del flujo
	2.3.	Complejidad del Hungaro es $\mathcal{O}(n^4)$
	2.4.	Teorema de Hall
	2.5.	Teorema del matrimonio
	2.6.	Si G es bipartito $\Rightarrow \chi'(G) = \Delta \dots \dots \dots \dots \dots \dots \dots$
	2.7.	Teorema cota de Hamming
	2.8.	Sea H una matriz de chequeo de un código C, pruebe que:
		2.8.1. $\delta(C) = \text{mínimo número de columnas linealmente dependientes de H}$
		2.8.2. Si H no tiene la columna cero ni columnas respetidas \Rightarrow C corrige al
		menos un error
	2.9.	Sea C un código cíclico de dimensión k y longitud n y sea $g(x)$ su polinomio
		generador, probar que:
		2.9.1. C está formado por los múltiplos de $g(x)$ de grado menor a $n cdot$
		2.9.2. El grado de $g(x)$ es $n-k$
		2.9.3. $g(x)$ divide a $1+x^n$
3.	Parte C	
	3.1.	4 -COLOR \leq_p SAT
	3.2.	3-SAT es NP-Completo
	22	2 COLOR of ND Complete

Capítulo 1

Parte A

1.1. La complejidad de EDMONS-KARP

Teorema: La complejidad de $\langle E - K \rangle$ con n = |V| y m = |E| es $\mathcal{O}(nm^2)$.

Prueba: Sean: f_0, f_1, f_2, \ldots la sucesión de flujos creados por $\langle E - K \rangle$. Es decir, el paso k crea f_k .

Para cada k definimos funciones:

- $d_k(x)$ = "distancia" entre s y x en el paso k en caso de existir, si no ∞ .
- $b_k(x) = \text{distancia entre } x \ y \ t \ \text{en el paso} \ k \ \text{en caso de existir, si no } \infty.$

"Distancia": longitud del menor camino aumentante entre dos vértices.

Observaciónes:

- 1. $d_k(s) = 0$
 - $b_k(t) = 0$
- 2. Sabemos que las distancias de $\langle E K \rangle$ no disminuyen en pasos sucesivos, como esto será útil en esta demostración llamaremos \circledast a la demostración de:

$$d_k(x) \le d_{k+1}(x)$$

Llamemos <u>crítico</u> a un lado disponible en el paso k pero no disponible en el paso k+1. Es decir, si xy es un lado $\Rightarrow xy$ se satura o yx se vacía en el paso k.

Supongamos que al construir f_k el lado xy se vuelve crítico, el camino: $s \cdots x, y \cdots t$ se usa para construir f_k .

$$d_k(t) = d_k(x) + b_k(x)$$

$$= d_k(x) + b_k(y) + 1$$
(1.1)

Para que xy pueda ser crítico nuevamente debe ser usado en la otra dirección $(i.e \ yx)$. Sea j el paso posterior a k en el cual se usa el lado en la otra dirección, el camino $s \cdots y, x \cdots t$ se usa para construir f_j .

$$d_{j}(t) = d_{j}(x) + b_{j}(x)$$

$$= d_{j}(y) + 1 + b_{j}(x)$$
(1.2)

Es decir:

De ① y ②
$$\Rightarrow$$

$$\begin{cases} d_j(x) = d_j(y) + 1 \\ d_k(y) = d_k(x) + 1 \end{cases}$$

Luego:

$$d_i(t) = d_i(x) + b_i(x) \tag{1.3}$$

$$= d_i(y) + 1 + b_i(x) (1.4)$$

$$\geq d_k(y) + 1 + b_k(x) \tag{1.5}$$

$$= d_k(x) + 1 + 1 + b_k(x) (1.6)$$

$$= d_k(t) + 2 \tag{1.7}$$

$$\Rightarrow d_{\ell}(t) \geq d_{k}(t) + 2 \tag{1.8}$$

Por lo tanto cuando un lado se vuelve crítico recien puede volver a saturarse cuando la distancia de s a t haya aumentado en por lo menos 2. Puede existir $\mathcal{O}(n/t)$ tales aumentos, es decir:

Veces que un lado puede volverse crítico = $\mathcal{O}(n)$.

$$\therefore Complejidad(\langle E - K \rangle) = (\#pasos) * Complej(paso)$$

$$= (\#veces que un lado se vuelve crítico) * (\#lados) * Complej(BFS)$$

$$= \mathcal{O}(n) * \mathcal{O}(m) * \mathcal{O}(m)$$

$$= \mathcal{O}(nm^2)$$

1.2. Las distancias de Edmonds-Karp no disminuyen en pasos sucesivos

Lema interno: queremos probar que

- 1. $d_k(x) \leq d_{k+1}(x)$
- 2. $b_k(x) \leq b_{k+1}(x)$

<u>Prueba:</u> lo probaremos por inducción y solo para d_k ya que para b_k la prueba es análoga.

HI:
$$H(i) = \{ \forall_z : d_{k+1}(z) < i, d_k(z) < d_{k+1}(z) \}$$

1.
$$H(0) = \{ \forall_z : d_{k+1}(z) \le 0, d_k(z) \le d_{k+1}(z) \}$$

Pero $d_{k+1} \le 0 \Rightarrow$

1.3. La complejidad de DINIC

<u>Teorema:</u> La complejidad del algoritmo de Dinic es $\mathcal{O}(n^2m)$.

<u>Prueba:</u> Como la distancia entre s y t en networks auxiliares consecutivos aumenta y puede ir a lo sumo entre 1 y n-1 entonces hay a lo sumo $\mathcal{O}(n)$ networks auxiliares.

Notación: llamemos PB al proceso de hallar paso bloqueante en un network auxiliar con Dinic.

Luego la complejidad de Dinic es $\mathcal{O}(n)$ compl(PB). Para probar que la complejidad de Dinic es $\mathcal{O}(n^2m)$ debemos probar que compl(PB) = $\mathcal{O}(nm)$.

Para hallar un flujo bloqueante:

- 1. Crear un NA: Como es con BFS es $\mathcal{O}(m)$
- 2. Hallar bloqueante, denotemos:
 - A: avanzar
 - R: retorceder
 - I: inicializar e incrementar

El paso bloqueante de Dinic luce de la forma:

subdiviadmoslo en palabras del tipo:

- AA...AI
- AA...AR.

donde las primeras son todas A pudiendo ser 0 la cantidad de la misma. Debemos determinar:

1. Cual es la complejidad de cada subpalabra.

Recordemos que:

- A: { P[i+1] = algún elemento de $\Gamma^+(P[i])$ i = i+1 \Rightarrow A es $\mathcal{O}(1)$
- R: { borrar P[i-1] del NA i = i - 1⇒ R es $\mathcal{O}(1)$
- I: { Recorre dos veces un camino de longitud d = d(t)⇒ R es $\mathcal{O}(d)$

Por lo tanto:

$$compl(A...AR) = \mathcal{O}(1) + ...\mathcal{O}(1) + \mathcal{O}(1) = \mathcal{O}(j)$$
(1.9)

Pero como cada A hace i = i + 1 y tenemos $0 \le i \le d \Rightarrow j \le d$.

$$\therefore compl(A...AR) = \mathcal{O}(d)$$

Similarmente:

$$compl(A...AI) = \mathcal{O}(1) + ...\mathcal{O}(1) + \mathcal{O}(1) = \mathcal{O}(d) + \mathcal{O}(d) = \mathcal{O}(d)$$

$$(1.10)$$

Pero como cada A hace i=i+1 y tenemos $0 \leq i \leq d \Rightarrow j \leq d$.

$$\therefore compl(A...AR) = \mathcal{O}(d)$$

2. Cuantas palabras hay de cada tipo.

1.4. La complejidad de WAVE

1.5. La distancia entre NA sucesivos aumenta

Capítulo 2

Parte B

- 2.1. 2-COLOR es polinomial
- 2.2. Probar que:
- 2.2.1. El valor de todo flujo es menor o igual que la capacidad de todo corte.
- 2.2.2. Si el valor de un flujo es igual a la capacidad de un corte entonces el flujo es maximal y el corte minimal.
- 2.2.3. Si un flujo es maximal entonces existe un corte con capacidad igual al valor del flujo.
- 2.3. Complejidad del Hungaro es $\mathcal{O}(n^4)$
- 2.4. Teorema de Hall
- 2.5. Teorema del matrimonio
- **2.6.** Si G es bipartito $\Rightarrow \chi'(G) = \Delta$
- 2.7. Teorema cota de Hamming
- 2.8. Sea H una matriz de chequeo de un código C, pruebe que:
- 2.8.1. $\delta(C) =$ mínimo número de columnas linealmente dependientes de H
- 2.8.2. Si H no tiene la columna cero ni columnas respetidas \Rightarrow C corrige al menos un error
- 2.9. Sea C un código cíclico de dimensión k y longitud n y sea g(x) su polinomio generador, probar que:
- 2.9.1. C está formado por los múltiplos de g(x) de grado menor a n

Capítulo 3

Parte C

- 3.1. 4-COLOR $\leq_p SAT$
- 3.2. 3-SAT es NP-Completo
- 3.3. 3-COLOR es NP-Completo

Bibliografía

- $[1]\ {\rm Curto}\ {\rm Agust\'in}$, «Matemática Discreta II, apuntes de clase», ${\it FaMAF},\ {\it UNC}.$
- [2] MAXIMILIANO ILLBELE, «Resumen de Discreta II, 16 de agosto de 2012», FaMAF, UNC.