TECHNOLOGY FOR THE FUTURE: In-Space Technology Experiments Program

1N-CAT 15 30099 P.304

Compiled by
Roger A. Breckenridge
Lenwood G. Clark
Kelli F. Willshire
and Sherwin M. Beck
NASA Langley Research Center
Hampton, Virginia

Lisa D. Collier CTA, Inc. Hampton, Virginia

Proceedings of OAST IN-STEP 88 workshop sponsored by the National Aeronautics and Space Administration and held in Atlanta, Georgia December 6-9, 1988

JUNE 1991

NASA

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665-5225

N91-2(17) Unclas G3/15 0030099

(NASA-CP-10073-Pt-1) TECHNOLOGY FUR THE FUTURE: IN-SPACE TECHNOLOGY EXPERIMENTS PRUGRAM, PART 1 (NASA) 304 p CSCL 228

			• •	
		i.		
•				-
				į
				-
	-			
				-
				-

Preface

The major space goal of the National Aeronautics and Space Administration's Office of Aeronautics and Space Technology (OAST)† is to provide enabling technologies—validated at a level suitable for user-readiness—for future space missions, in order to ensure continued U.S. leadership in space. An important element in accomplishing this goal is the *In-Space Technology Experiments Program* (*IN-STEP*), whose purpose it is to explore and validate, in space, advanced technologies that will improve the effectiveness and efficiency of current and future space systems.

On December 6 through 9, 1988, almost 400 researchers, technologists and managers from U.S. companies, universities and the government participated in the OAST IN-STEP 88 Workshop*. The participants reviewed the current in-space technology flight experiments, identified and prioritized the technologies that are critical for future national space programs and that require verification or validation in space, and provided constructive feedback on the future plans for the In-Space Technology Experiments Program. The attendees actively participated in the identification and prioritization of future critical space technologies in eight major discipline theme areas. The content presented in the two parts of this NASA Conference Publication (CP), each under separate cover, reflect an overview of the workshop participants' efforts to review IN-STEP planning for the future of the program. These critical space technologies will help focus future solicitations for in-space flight experiments.

At the workshop, Dr. Harrison H. Schmitt emphasized that the nations which effectively exploit the advantages of space will lead human activities on Earth. OAST has worked closely with the aerospace community over the last few years to utilize the Space Shuttle, expendable launch vehicles, and, in the future, Space Station Freedom, for experimentation in space in the same way that we utilize wind tunnels to develop aeronautical technologies. This close cooperation with the user community is an important, integral part of the evolution of the In-Space Technology Experiments Program which was originated to provide access to space for technology research and for experimentation by the entire U.S. aerospace community.

The PREFACE edited for this NASA Conference Publication is based on the IN-STEP 88 WORKSHOP handout foreword written by Dr. Leonard Harris, Chief Engineer, Office of Aeronautics and Space Technology.

[†] The Office of Aeronautics and Space Technology has since been renamed the Office of Aeronautics, Exploration and Technology (OAET). In conjunction with this change, the scope of the Human Exploration Initiative (HEI) has been broadened and renamed the Space Exploration Initiative (SEI).

^{*} The IN-STEP 88 Workshop was conducted by the Space Station Freedom Office of the Langley Research Center. Questions regarding this workshop should be directed to Dr. Roger A. Breckenridge, Deputy Manager, Space Station Freedom Office, M.S. 288, NASA Langley Research Center, Hampton, Virginia, 23665.

This Page Intentionally Blank

Introduction

NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop December 6-9, 1988, on the In-Space Technology Experiments Program (IN-STEP) in Atlanta, Georgia. The purpose of this workshop, IN-STEP 88, was to identify and prioritize space technologies that are critical for future national space programs and which require validation in the space environment. A secondary objective was to review the current NASA (In-Reach) and industry/university (Out-Reach) experiments.

Finally, the aerospace community was asked to review and comment on the proposed plans for continuation of the In-Space Technology Experiments Program itself. In particular, this review included the proposed process for focusing the next experiment selection on specific, critical technologies as well as the process for implementing associated hardware development and integration on the Space Shuttle vehicle.

The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants—including researchers, technologists and managers—from aerospace industries, universities and government organizations. The identification and prioritization of the critical space technology needs were initiated by assigning NASA chairpersons (theme leaders) to the eight major technology discipline themes requiring consideration. These themes were as follows:

- Space Structures
- Space Environmental Effects
- Power Systems and Thermal Management
- 9 Fluid Management and Propulsion Systems
 - 6 Automation and Robotics
 - **6** Sensors and Information Systems
 - O In-Space Systems
 - 1 Humans in Space

In order to afford further structure within each theme, the chairpersons divided their themes into three theme elements each. The theme element concept allowed focused technical discussions to occur within the broad discipline themes. For each theme element, the theme leader selected government, industry and university experts to present the critical space technology needs of their respective organizations. The presentations were reviewed and discussed by the theme audiences (other members of the aerospace community), and prioritized lists of the critical technologies in need of verification and validation in space were established for each theme element. The comments and conclusions for each theme were incorporated into a summary listing of the critical space technology needs as well as associated flight experiments representing the combined inputs of the speakers, the audience, and the theme leader.

The critical space technology needs and associated space flight experiments identified by the participants provide an important part of the strategic planning process for space technology development and provide the basis for the next solicitation for space technology flight experiments. The results of the workshop will be presented in the IN-STEP Selection Advisory Committee in early 1989. This committee will review the critical technology needs, the funding available for the program, and the space flight opportunities available to determine the specific technologies for which space flight experiments will be requested in the next solicitation.

Conference Publication Content Description, Parts 1 and 2

The proceedings handbooks were organized as three presentation categories in four volumes: (1) Overview (Executive Summary volume), (2) In-Reach/Out-Reach experiments and the experiment integration process (Volume I), and (3) critical technology presentations (Volumes II and III). For presentation in this NASA Conference Publication (CP), a two-part set (under separate covers), the Executive Summary and Volume I are combined in Part 1 and Volumes II and III are combined in Part 2.

Part 1

Keynote Address — Part 1 of the IN-STEP 88 CP set opens with the keynote address presented at the workshop banquet by Dr. Harrison Schmitt, a former U.S. Senator and Apollo astronaut, on the 16th anniversary of his lunar launch (Apollo 17). In his presentation, Dr. Schmitt outlined his vision for the future of the U.S. space program by describing a *Millennium Project* which would combine space ventures to the Moon, to Mars, and to planet Earth.

Executive Summary — The Executive Summary (first half of Part 1) contains the welcome and workshop instructions, strategic planning for the in-space technology experiments, an overview of the space technology experiments being conducted in OAST as well as the solicitation process for IN-STEP, the proposed accommodation process for Space Station Freedom, and the critical-technology-needs summaries for each theme. These summaries are presented in a standardized format version of the lists prepared in "real-time" at the workshop.

The Welcome and Workshop Instructions describes the purpose, the process, and the product intended for the workshop. The Space Strategic Planning process describes the OAST space research and technology base programs which generate new technology concepts in the major discipline areas, the new focused programs of the Civil Space Technology Initiative (CSTI) as well as the Pathfinder, and provides funding for the industry, university and NASA space technology experiments. Overview charts of current OAST sponsored space flight experiments and specific information regarding the IN-STEP solicitation process are provided to establish an understanding of space technologies currently validated and the proposed approach for initiating new experiments.

Brief overviews of the objectives, technology needs/backgrounds, descriptions, and development schedules for current industry, university and NASA space flight technology experiments are presented in the second half of Part 1 (Volume I of the original workshop handbook set). This was a very important part of the workshop, providing an opportunity for the aerospace community to interact with experimenters and provide feedback on the flight experiments. An overview of the user/payload integration and accommodation process being established for use on Space Station Freedom is included in the content of Part 1 Experiment Descriptions to promote better understanding within the space experiment community, and presentations describing the experiment integration process are presented at the end of Part 1.

Part 2

Critical Technologies — Part 2 of the IN-STEP 88 CP set combines the contents of Volumes II and III of the original handbook set. This book contains a theme introduction by each chairperson, critical technology presentations for each of the theme's three elements of technical focus, and summary listings of critical space technology needs for each theme. The introduction for each theme includes the chairperson's overview and instructions for the participants. The critical technology presentations, along with summaries listing the critical space technology needs and associated flight experiments, are presented as previously described.

32 5 2

÷.,

Contents

By Presentation Title & Speaker

Part 1: IN-STEP 88 Executive Summary

	-STEP 88 Keynote Address: Mission to Earth, Moon, and Mars
W	orkshop Opening:
	Workshop Purpose and Agenda
	In-Space Technology Experiments in NASA's Strategic Planning [†]
	In-Space Technology Experiment Program
0	Space Station Freedom User/Payload Integration & Accommodations
C	ritical In-Space Technology Needs:
0	• Space Structures
O	Space Environmental Effects
	© Power Systems and Thermal Management
ū	• Fluid Management and Propulsion Systems
ū	♦ Automation and Robotics
0	© Sensors and Information Systems
	In-Space Systems
	O Humans in Space

Part 1 Contents Continued on Next Page

 $^{^\}dagger$ Dr. Ambrus' presentation for the IN-STEP 88 Workshop was given by Dr. Harris.

Part 1: IN-STEP 88 Experiment Descriptions

In-Reach / Out-Reach Experiments and Experiment Integration Process

In-Reach / Out-Reach Experiments (by Theme):

0	SPACE STRUCTURES	
	In-Space Structural Dynamics Evaluation of a Skewed-Scale Truss	
ū	Middeck 0-Gravity Dynamics Experiment (MODE)	
ū	Measurement and Modeling of Joint Damping in Space Structures	
0	Payload Vibration Isolation in Microgravity Environment	
0	Generic Pointing Mount	
<u></u>	Space Station Structural Characterization Experiment	
۵	Inflatable Solar Concentrator Experiment	99
@	SPACE ENVIRONMENTAL EFFECTS	
0	Measurement of Surface Reactions in the Space Environment	
	Optical Properties Monitor (OPM) Experiment	
0	Experimental Investigation of Spacecraft Glow	
ū	Return Flux Experiment (REFLEX)	
0	Debris Collision Warning Sensors	
ā	Thin Foil X-Ray Optics Space Environment Contamination Experiment	. 118
•	POWER SYSTEMS AND THERMAL MANAGEMENT	
0	Sodium-Sulfur Battery Flight Experiment Definition Becky Chang, Ford Aerospace Corporation	
Q	Unitized Regenerative Fuel Cell Timothy A. Nalette, United Technologies Corporation	
ū	Thermal Energy Storage Flight Experiments for Solar Dynamics Power Systems	. 12 8
a	Investigation of Microgravity Effects on Heat Pipe Thermal Performance	400
	and Working Fluid Behavior	. 131

Part 1: Experiment Descriptions (continued)

u	A High-Efficiency Thermal Interface (using condensation heat transfer) Between a Two-Phase Fluid Loop and a Heat Pipe Radiator
	Moving Belt Radiator Dynamics
Q	Liquid Droplet Radiator
0	FLUID MANAGEMENT AND PROPULSION SYSTEMS
ū	Tank Pressure Control Experiment
0	Integrated Cryogenic Experiment (ICE) Microsphere Insulation Investigation
	Liquid Motion in a Rotating Tank
ū	Thermoacoustic Convection Heat Transfer
6	AUTOMATION AND ROBOTICS
ū	Research and Design of Manipulator Flight Testbeds
0	Control of Flexible Robot Manipulators in Zero Gravity
	Jitter Suppression for Precision Space Structures
ū	Passive Damping Augmentation for Space Applications
③	SENSORS AND INFORMATION SYSTEMS
ū	Development of Emulsion Chamber Technology
ū	Infrared Focal Plane Performance in the South Atlantic Anomaly
0	Construction and In-Space Performance Evaluation of High Stability Hydrogen Maser Clocks
a	Acceleration Measurement and Management Experiment Definition
a	Dynamic Spacecraft Attitude Determination with GPS
ū	Stanford University / NASA Laser In-Space Technology Experiment (SUNLITE)

Part 1: Experiment Descriptions (concluded)

0	IN-SPACE SYSTEMS
ū	Definition of Experiments to Investigate Fire Suppressants in Microgravity
	Risk-Based Fire Safety Experiment Definition
	Plasma Arc Welding in Space
	Extra-Vehicular Activity Welding Experiment
	On-Orbit Electron Beam Welding Experiment
0	Laser Welding in Space
a	Liquid Encapsulated Float Zone Refining of Gallium Arsenide
	Vapor Crystal Growth Technology
0	HUMANS IN SPACE
٥	Enhancement of In-Space Operations Using Spatial Perception Auditory Referencing (SPAR)
۵	Definition of a Microbiological Monitor for Application in Space Vehicles
ū	Design of a Closed-Loop Nutrient Solution Delivery System for CELSS (Controlled Ecological Life Support Systems) Application
ū	Impact of Low Gravity on Water Electrolysis Operation
٥	Experiment Integration Process Presentations
Pa	yload Integration Overview:
ٔ ت	NSTS Integration and Operations
	Complex Autonomous Payload Carriers
O	Hitchhiker Project Overview
ū	Middeck Payload Integration
0	KSC Payload Integration

Part 2: Critical Technologies[†]

IN-STEP 88 Technology Themes

By Theme:

O SPACE STRUCTURES

Back	ground and Objectives:	
O.	Theme Orientation and Recap of In-Space RE&E Workshop (Williamsburg, '85)	291
1.1	Structures: Air Force Structural Dynamics and CSI Technology Needs Jerome Pearson, USAF Wright Aeronautical Laboratories	297
ū	Industry Perspective on Technology Needs for Space Structures	299
	University Participation in In-Space Technology Experiments	302
1.2	Control/Structure Interaction (CSI): An Overview of the NASA Controls-Structures-Interaction Program J. Newsom, NASA Langley Research Center H. Waites, NASA Marshall Space Flight Center W. Layman, Jet Propulsion Laboratory	305
	Technology Development Needs: Industry Perspective	308
a	The Need for Space Flight Experimentation in Control/Structure Interaction Edward F. Crawley, Massachusetts Institute of Technology	310
1.3	Controls: Space Structures: Controls (Validation — Ground and In Space) Henry B. Waites, NASA Marshall Space Flight Center	314
	Industry Perspective on Control Technology Needs for Space Flight Verification	
ū	Experiments in Dynamics and Controls	319
	Space Structures Critical Technology Requirements	323
@	SPACE ENVIRONMENTAL EFFECTS	
Bacl	kground and Objectives:	
	Theme General Content and Sub-Theme Definition	330
2.1	Atmospheric Effects and Contamination: Atmospheric Effects & Contamination: Government Perspective Bruce A. Banks, NASA Lewis Research Center	333

Part 2 Contents Continued on Next Page

[†] Part 2 of the IN-STEP 88 Workshop Conference Publication two-part set is under separate cover.

2.1	Atmospheric Effects and Contamination (continued): Atmospheric Effects & Contamination Technology Development Needs
	Hyperthermal Interactions of Atmospheric Species with Spacecraft
2.2 •	Micrometeoroids and Debris: Detection and Measurement of the Orbital Debris Environment
a	Design Considerations for Space Debris: An Industry Viewpoint
0	Space Debris Environment Definition
2.3 •	Charged Particles and Electromagnetic Radiation Effects: Effects of Charged Particles and Electromagnetic Radiation on Structural Materials and Coatings
ū	Effects on Space Systems: Technology Requirements for the Future
0	Electromagnetic and Plasma Environment Interactions: Technology Needs for the Future 354 G. Murphy, Jet Propulsion Laboratory
O	Space Environmental Effects Critical Technology Requirements
•	POWER SYSTEMS & THERMAL MANAGEMENT
Bacl	kground and Objectives:
	Review of Previous Workshops (Williamsburg '85, Ocean City '88)
3.1	Dynamic and Nuclear Power Systems: Dynamic and Nuclear Systems
ū	Dynamic & Nuclear Power Systems
	Dynamic & Nuclear Systems
3.2	Conventional Power Systems: Conventional Power Systems
	Conventional Power Systems
ū	Conventional Power Systems

3.3	Thermal Management: Government View: Spacecraft Thermal Management Requirements
	& Technology Needs
ū	Thermal Management: An Industry Viewpoint
ū	Thermal Management Issues in Advanced Space Missions: University Viewpoint
	Power Systems & Thermal Management Critical Technology Requirements
0	FLUID MANAGEMENT & PROPULSION SYSTEMS
Bacl	kground and Objectives:
0	Theme Organization and Purpose
4.1	On-Orbit Fluid Management: Fluid Management Technology
	Cryogenic Fluid Management Technology: An Industry Perspective
4.2	Propulsion: Low Thrust Propulsion Space Experiments
0	Key Propulsion Technologies for In-Space Experiments
	In-Space Technology Experiments in Propulsion: The Role of Universities
4.3	Fluid Physics:
	Fluid Physics
O	Low-G Interface Configurations, Stability and Dynamics
	The Case for Two-Phase Gas-Liquid Flow Experiments in Space
	Fluid Management & Propulsion Systems Critical Technology Requirements
6	AUTOMATION AND ROBOTICS
Bac	kground and Objectives:
ū	Subthemes: Robotics, Teleoperation, and Artificial Intelligence; Summary of Williamsburg Workshop ('85)

5.1 •	Robotic Systems: Robotics
ū	Robotics
	Robots in Space
5.2 •	Teleoperations: Space Operations, Now and Future
	Teleoperation
D	Multimode Operator Interfaces, Intelligent Displays, Hierarchical-Control Communication Time Delay Visual Perception Systems
5.3 Q	Artificial Intelligence: In-Space Experiments in Artificial Intelligence
0	Artificial Intelligence: An Industry View
0	Artificial Intelligence
0	Automation and Robotics Critical Technology Requirements
(SENSORS AND INFORMATION SYSTEMS
Back	kground and Objectives:
0	Themes and Criteria for Prioritization
6.1 •	Sensors: In-Space Experiments in Remote Sensing Systems
0	In-Space Sensor Technology Experiments
O	LIDAR/Laser Sensors
6.2 -	Communications: In-Space Experiments in Communication Systems
	Space Laser Communication Experiments

6.2	Communications (continued): Coherent Optical Intersatellite Crosslink Systems
6.3 •	Information Systems: In-Space Experiments in Information Systems
•	Information System Panel DMS Perspectives — December '88
ū	In-Space Experiments in Information Systems
a	Sensors and Information Systems Critical Technology Requirements
0	IN-SPACE SYSTEMS
Bacl	kground and Objectives:
ū	Theme Session Objectives and Prioritization Criteria
7.1 Q	Materials Processing: Materials Processing
ū	Floating-Point Crystal Growth in Space
	Materials Processing — Cells and Cellular Products
7.2 •	Maintenance, Repair and Fire Safety: Maintenance, Servicing and Repair in Space
Ü	Spacecraft Fire Safety for Advanced Spacecraft
ū	Maintenance, Servicing and Repair in Space
7.3 •	In-Space Systems: Payload Operations from the Perspective of Manned Space Flight
J	Orbit Assembly Node
	In-Space Systems: Space Construction and Payload Operations
	In-Space Systems Critical Technology Requirements

9 HUMANS IN SPACE

Bacl	kground and Objectives:	
O)	Overview: EVA, Performance, Life Support Systems	546
8.1 Q	EVA / Suit: EVA Technology Dr. Bruce W. Webbon and Bernadette Squire, NASA Ames Research Center	
0	Extra-Vehicular Activity / Suit	
0	EVA and Pressure Suit Technology	560
8.2	Human Performance: Crew and Environmental Factors Dr. Barbara G. Kanki, NASA Ames Research Center	
Q	Artificial Gravity Larry G. Lemki, NASA Ames Research Center	
	Human Performance William R. Ferrell, University of Arizona	. 568
8.3 Q	Closed-Loop Life Support Systems: Physical/Chemical Closed-Loop Life Support	
a	Closed-Loop Life Support: Industry Presentation	
	Physical/Chemical Closed-Loop Life Support	
ū	Humans in Space Critical Technology Requirements	. 578

This Page Intentionally Blank

This Page Intentionally Blank

Executive Summary

Keynote Address

Mission to Earth, Moon, and Mars

Keynote Address

Dr. Harrison H. Schmitt Scientist, Administrator, Educator, Consultant on Space Initiatives Former U.S. Senator and Lunar Module Pilot for Apollo 17

plania Whilmia

P.O. Box 14338 Albuquerque, NM 87191-4338 (505) 823-2616

BIOGRAPHICAL SKETCH

Harrison "Jack" Schmitt has the varied experience of a geologist, scientist, astronaut, pilot, administrator, educator, writer, and United States Senator.

He trained as a geologist and scientist at the California Institute of Technology, as a Fulbright Scholar at the University of Oslo, and at Harvard University, receiving his PH.D. in geology from Harvard in 1964 based on earlier field studies conducted in Norway.

He was selected for the Apollo Scientist-Astronaut program in 1965 and served as the Lunar Module Pilot for Apollo 17--the last Apollo mission to the Moon.

Schmitt's studies of the Valley of Taurus-Littrow on the Moon in 1972, as well as his earlier scientific work, made Schmitt one of the leading experts on the history of the terrestrial planets. As the only scientist to go to the Moon, he was also the last of twelve men to step on the Moon.

After organizing and directing the activities of the Scientist-Astronaut Office and of the Energy Program Office for NASA in 1973-1975, Schmitt fulfilled a long-standing commitment by entering politics. He was elected to the U.S. Senate from his home state of New Mexico in 1976.

In his last two years in the Senate, Senator Schmitt was Chairman of the Senate Commerce Committee's Subcommittee on Science, Technology, and Space and of the Senate Appropriations Committee's Subcommittee on Labor, Health and Human Services, and Education. He currently serves as a member of the Army Science Board and as consultant to the National Strategic Materials and Minerals Program Advisory Committee.

Harrison Schmitt is consulting, speaking, and writing on a wide range of business, foundation, and government initiatives. His principle activities are in the fields of technology, space, defense, biomedicine, geology, and policy issues of the future. He brings to the consideration of complex public and corporate concerns a unique breadth of experience ranging from the scientific to the practical and from the administrative to the political.

Executive Summary

Keynote Address

Keynote Address

Mission to Earth, Moon, and Mars

Dr. Harrison H. Schmitt Scientist, Administrator, Educator, Consultant on Space Initiatives Former U.S. Senator and Lunar Module Pilot for Apollo 17

MISSION TO EARTH, MOON, AND MARS

Harrison H. Schmitt

Let us jump ahead to late January, 1990, and try to anticipate what should be the concluding paragraphs of the President's State of the Union Address to the Congress.

"Now, my fellow Americans, as your representatives assembled in these historic chambers know so well, there has been a rising tide of domestic and international political pressure in support of initiatives for the future. You have made us all increasingly aware that both vulnerabilities and opportunities in America's future and in the future of humankind require our urgent attention. The unfair inequities of the present still do and will always demand our concern and our compassion, however, many issues essential to the future well-being of our children and our country have been too long neglected.

"Therefore, over the next 60 days, I will send to the Congress a number of proposals that address long term structural changes in our approaches to education, the environment, retirement and health security, basic research, and other critical areas.

"Tonight, because of the central roles played by environment and space in the future of our children, I am calling on the Congress to provide the long term commitments necessary to undertake a specific project focused on the turn of the Third Millennium. Although this rare milestone is only 10 years away, the challenge has grown to for a Millennium Project that will match the times and the opportunities.

"Our Millennium Project, in which we invite the family of nations to join, will be the establishment of a permanent human outpost on Mars by 2010 and, by so doing, provide the technology base necessary to preserve the Earth's global environment.

"The creation of a permanent outpost on Mars will have as its primary purposes the eventual settlement of the planet Mars by free human beings and the provision of abundant and environmentally benign electrical power on Earth. The bridge between these two essential achievements is the development of helium-3 fusion

Executive Summary

Keynote Address

Keynote Address

Mission to Earth, Moon, and Mars

Dr. Harrison H. Schmitt
Scientist, Administrator, Educator, Consultant on Space Initiatives
Former U.S. Senator and Lunar Module Pilot for Apollo 17

power plants on Earth fueled by the helium resources of the moon. This bridge of energy also provides, as by-products from the energy resources of the moon, the oxygen, hydrogen, and other consumable materials critical to sustaining the early settlers of Mars.

"Thus, our Millennium Project combines space ventures to the Earth, moon, and Mars into a single great human mission — a mission to save the atmosphere, waters, and rainforests of Earth, a mission to settle the moon and utilize it resources for the benefit of all, and a mission to establish human civilization and freedom permanently on Mars.

"A draft treaty for international participation in The Millennium Project is being circulated among the nations of Earth. This treaty, tentatively called the INTERMARS Charter, proposes a participant based relationship between nations, users, and investors, modeled after the successful International Telecommunications Satellite or INTELSAT Agreements. It is the intention of the United States Government that an international conference to finalize the INTERMARS Charter will be convened by interested nations before the end of the year.

"Ladies and gentlemen and my fellow Americans, our commitment to the success of The Millennium Project must be unequivocal. It must include an equally unequivocal commitment to carry the sacred institutions of freedom with us as humankind expands into its larger home among the planets and the stars."

The recent return of American astronauts to space, as satisfying as it must be to those of you responsible, constitutes but a very small step in the repair of what can only be called a space policy disaster.

Challenger and the tragedy of its loss did not cause this policy disaster nor was it caused by the dedicated people of NASA and its contractors whatever errors in judgment may have been made. The now so obvious loss of momentum in the United States space program has been the result of a loss of will on the part of national leadership spanning almost two decades.

Humankind's first explorations of the moon and of space near the Earth between 1968 and 1972 were also the species first clear steps of evolution into the solar system and eventually into the galaxy. As the Pueblo Indians tell the lesson of their ancestors, "We walk on the Earth, but we live in the sky."

INSTEP88 Workshop OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Executive Summary

Keynote Address

Mission to Earth, Moon, and Mars

Keynote Address

Dr. Harrison H. Schmitt Scientist, Administrator, Educator, Consultant on Space Initiatives Former U.S. Senator and Lunar Module Pilot for Apollo 17

Early explorers of the sky not only took their eyes and minds into space and became the eyes and minds of billions of other explorers on the starship Earth, but they began the long process of transplanting civilization into space. This fundamental change in the course of history has occurred as humans also have gained new insight into themselves and their first planetary home.

Limitless seas in space exist not only as new frontiers but as new challenges for humankind. The nations on Earth which effectively utilize technology to exploit the economic and military advantages of the new ocean of space will dominate human activities on this planet well into the next century, if not indefinitely. Those nations also will provide the irreversible templates for the social and political evolution of civilization beyond the next century far into the Third Millennium.

The first response to this challenge in space by the United States under President John F. Kennedy's leadership appeared to recognize the historic proportions of the contest. The leading involvement of the United States in space initially insured that the traditions of free institutions would be represented. As a consequence, at the high point of the Apollo Program, the United States verged on the establishment of bases on the moon, research stations in earth orbit, and the statement of a realistic goal of a foothold on Mars by the end of the Century. In the motto of the last Apollo mission to the moon in December 1972, the conclusion of the Apollo Program truly could have been "The End of the Beginning.'

The opportunity given to humankind by the Apollo Program and its generation passed by. Consequently, the responsibility to re-ignite Kennedy's torch for space falls to others. The emotional energy to light that torch could be supplied to generations now alive by the vision of the human settlement of Mars and by the necessity of providing vast amounts of environmentally compatible energy for the billions of humans left at home.

The return of Americans and their partners to space must be viewed in the context of the free world's over all perception of the future of humankind. In the United States, unfortunately, little political thought normally is given to that future or to our role with in it. However, in space, we have little choice. The United States will be the free world's principal agent and advocate in space, because there are no other likely alternatives.

One body of opinion in the U.S. today would argue that there is no hurry. "Space will always be there, and meanwhile we have more pressing near term interests here on Earth. What is interesting to do scientifically can be done with robots at

Executive Summary

Keynote Address

Keynote Address

Mission to Earth, Moon, and Mars

Dr. Harrison H. Schmitt Scientist, Administrator, Educator, Consultant on Space Initiatives Former U.S. Senator and Lunar Module Pilot for Apollo 17

much lower cost." Unfortunately for those who hold this opinion, times are changing rapidly, and there is history being made without us. The challenge in space can no longer be viewed as merely a scientific challenge as valuable as the science to be done will be. The challenge now is to both lead the human settlement of space and the environmental preservation of our home planet.

why the hurry? Why stretch human technological and psychological reach to the limit? First and foremost, the answers are in the minds of young people who will carry us into the Third Millennium. The answers are in the generations now in school, now playing around our homes, now driving us to distraction as they struggle toward adulthood. They will settle the moon and then Mars. They will do this simply because they want to do this. They want to "be there". "Being there" remains the essential human ingredient in life's meaningful experiences.

The desire to "be there" will drive our young people away from the established paths of history on a now too confining Earth. It will take them and their progeny to an infinity of opportunity among the planets and the stars. Video pictures and data streams from robots on Mars, no matter how good or how complete, will never be enough for the parents of the first Martians. Somewhere, those parents are alive today. Whether they now play on the steppes of Russia, on the river banks of China, or on the mountains, plains, and shores of America, or on a combination of all three, constitutes the most critical question of national will we face today.

Thus, an answer to "why the hurry" also lies in the clear determination of the Soviet Union to establish its sovereignty in deep space and on Mars before the forces of freedom do so. The permanently occupied MIR space station, very long duration earth orbital flights by the cosmonauts, heavy lift launch vehicle testing, and their public emphasis of Mars exploration, leading to human visits early in the 21st Century, all tell us what the Soviets expect to do. In spite of all the real and perceived difficulties faced by the Soviet Union in the future, there is now reason to count on their failure in space.

Perhaps the most important answer from the perspective of the physical welfare of the human species lies in the absolute moral and political requirement to provide the ever expanding population of Earth with an ever improving quality of life. We do not currently have the technical means to do this. We do not know how we are going to provide the ten billion human beings expected before the end of the 21st Century with both the hope and the reality that they will have defeated the four horsemen of worldwide disaster: poverty, hunger, disease, and ignorance. The essential ingredient for victory in this very human battle is environmentally

INSTEP88 Workshop OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Keynote Address

Keynote Address

Executive Summary

Mission to Earth. Moon, and Mars

Dr. Harrison H. Schmitt
Scientist, Administrator, Educator, Consultant on Space Initiatives
Former U.S. Senator and Lunar Module Pilot for Apollo 17

compatible energy. Fossil fuels, the rainforests, and conventional nuclear power cannot provide the answer without either unexceptable political conflict or potentially devastating consequences to the biosphere of the Earth.

Fusion power plants fueled by helium-3 from the moon (Wittenberg, 1986) could supply the electrical energy human civilization will require to maintain and expand human quality of life as we enter the Third Millennium. Inherently safe and potentially low cost fusion reactors fueled by lunar helium-3 also could become the basis for producing large quantities of continuously available electrical power in space, for highly efficient space propulsion to and from Mars, and for life giving by-products that insure the self sufficiency of settlements on the moon and Mars (Kulcinski, 1987).

Furthermore, establishment of a permanent settlement on the moon, based on the production of helium-3 for use as an energy source on Earth fully supports the desire to live on Mars as soon as possible.

First of all, most of the technology needed for the creation of a permanent lunar settlement with a resources production economy will support the technological requirements for establishing a Martian settlement. The compatible technologies include heavy lift launch vehicles, long duration surface habitats and mobility systems, resource production facilities, regular and routine capability to work in a hostile and dusty environment, and new concepts in equipment automation, reliability, longevity, and maintainability.

Second, the direct and indirect by-products of helium-3 production from the lunar surface materials will provide a ready source of necessary consumables for Martian inhabitants prior to and possibly even after the creation of their own consumables industry. These lunar produced consumables include hydrogen, oxygen, nitrogen, carbon, and food.

A preliminary extimate of the energy equivalent value of helium-3 today is about two billion dollars per metric tonne if matched against the cost of coal currently used to produce electricity in the United States. This is roughly equivalent to \$14 per barrel oil at today's prices. Two billion dollars worth of fuel currently supplies the electrial power needs of the United States for about two weeks or of a city of 10 million for about one year. The foregoing estimates of value do not take into account the additional value of by-products from lunar helium-3 production or the spin-off value of related technologies.

The principle advantages of the helium-3 fusion power cycle on Earth over other nuclear cycles include:

Executive Summary

Keynote Address

Keynote Address

Mission to Earth, Moon, and Mars

Dr. Harrison H. Schmitt Scientist, Administrator, Educator, Consultant on Space initiatives Former U.S. Senator and Lunar Module Pilot for Apollo 17

- 1. About 99 percent of the energy released is in charged particles (protons) that induce no radioactivity in other materials.
- 2. High efficiency (70-80 percent) in energy conversion due to the potential for direct conversion of protons to electricity.
- 3. Less waste heat to be rejected due to high efficiency.
- 4. The energy of each of the few neutrons released (1 percent of total energy) is only one-fourth that released in other fusion cycles and such neutrons create no significant quantities of long lived radioactive waste.
- 5. A potentially shorter time to licensed commercialization than for other fusion cycles due to the absence of significant radioactivity and waste heat.

Estimates of the ultimate steady-state costs of delivering helium-3 to deuterium/helium-3 power plants on Earth run about one billion dollars per metric tonne. If such cost prove to be correct, such power plants will provide much lower cost electricity as well as much less environmental impact than other competing power sources proposed for the 21st Century.

The only major technical disadvantage of the deuterium/helium-3 fusion cycle is that the ignition temperature and confinement pressure required to initiate fusion is about four times higher that for the competing deuterium/tritium cycle. This disadvantage appears to be becoming less and less significant as new fusion confinement technologies are developed. In fact, a recent test in Great Britain produced a record 60 kilowatts of fusion energy using deuterium and helium-3 (G.L. Kulcinski, personal communication).

Sufficient helium-3 is available on Earth (largely from tritium decay and natural gas) for development and prototype testing of deuterium/helium-3 power plants. Therefore, the primary issues that must be addressed to determine the feasibility of a commercial helium-3 industry are, first, the technical and economic feasibility of deuterium/helium-3 commercial reactors and, second, the technical and economic feasibility of providing lunar helium-3 to fuel such reactors.

Historically, major extensions of the benefits of civilization have built on extensions of the existing

INSTEP88 Workshop
OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Executive Summary

Keynote Address

Keynote Address

Mission to Earth, Moon, and Mars

Dr. Harrison H. Schmitt
Scientist, Administrator, Educator, Consultant on Space Initiatives
Former U.S. Senator and Lunar Module Pilot for Apollo 17

foundation of scientific and technical understanding. The creation of the pyramids, the aqueducts and roads of the Roman Empire, the Gothic Cathedrals, the industrial revolution, the airplane, the construction of the Panama Canal, the green revolution in agriculture, and controlled nuclear energy have followed this pattern. No less than these examples, Apollo exploration of the moon and the technological revolution brought about by space flight matched the experience and technology of the past with the imagination and research of the moment.

New explorations at the frontiers of space, that is, in places and for times that are significantly beyond the technical capabilities of Apollo, Skylab, the Space Shuttle, and the space station also will require new technologies to augment those necessary to live and work in near Earth space. New and more rapid interplanetary rockets and new concepts of life support, mobility, and transportation will obviously be necessary. Foresight will be required to invest a reasonable proportion of available resources in these essential new technologies.

In the political climate of the last two decades, however, it is probably appropriate to ask, "do the discussions of future large scale space activities have any actual relevance in the United States today?" This question is particularly topical in view of the very limited commitment to major space activities put forth in the recent congressional and presidential campaigns.

Positive indications of the relevance of discussions related to space are found in the interest and motivation of a core of a few tens of thousands of technical, scientific, and philosophical advocates, in the extraordinary qualitative support of the American people for the space program, and in the historical imperative space imposes on free men and women.

Polls and surveys indicate that 75% or more of the American people support a strong space program. 75% support for anything is almost beyond rational explanation. Space has the potential to excite and motivate almost anyone.

Even if this overwhelming qualitative support did not exist, the question would still have to be asked, "if the Americans do not insure that free institutions are established elsewhere in the solar system, who else will guarantee that they will be?" Further, "if the Americans do not insure the ultimate survival of the Earth's biosphere, who else will guarantee that survival?" These fundamental points have been missed in almost all political and technical debates on the future course of the U.S. space effort.

Unfortunately, the indications of a lack of current political relevance of any discussion about advanced space

Executive Summary

Keynote Address

Keynote Address

Mission to Earth, Moon, and Mars

Dr. Harrison H. Schmitt
Scientist, Administrator, Educator, Consultant on Space Initiatives
Former U.S. Senator and Lunar Module Pilot for Apolio 17

technology are staggering as any regular reader of Aviation Week and the Wall Street Journal will soon discover.

First, few candidates for political office feel any need to address civilian space activities as a significant philosophical, political, or environmental issue. Nor do they feel the need to address any of the broad spectrum of other critical issues of the future. The short term vested interests dominate their view because that is where elections and re-elections are won or lost.

Second, in spite of tentative commitments to it, the space station may lose its battle for domestic and international legitimacy — on the one hand, the Administration has failed to make an unequivocal domestic political case for a U.S. managed space infrastructure and, on the other hand, the Soviets have a ten year lead in space station capability with the permanently occupied MIR station already in orbit.

Third, a U.S. heavy lift launch capability, critical to so many aspects of the future in space, does not exist. Again, the Soviets have a ten year lead in such capability which now includes an apparently competitive space shuttle.

Fourth, no significant resources are being allocated to recasting the free world's space agenda toward the settlement of Mars while, once again, the Soviets have at least a ten year lead in planning and developing such a capability.

Fifth, many national leaders are committed to severe limitation on the development of strategic defenses while the Soviets appear to be nearing a strategic defense breakout in ground based systems.

Sixth, our national leaders as well as the armed services have been unable to recognized the values of integrated manned and automated space based systems in tactical and strategic defense doctrines while the Soviets continue to develop and exercise their decades old commitment to an integrated Earth and space military doctrine. As the CINCSPACE, General Piotrowski, has said recently, the Soviets can rapidly and effectively exercise control of space —— the U.S. cannot do so.

Seventh, no workable policy exists that would insure that the U.S. and its allies would have an assured supply of critical energy and materials and the related industrial base necessary to sustain either long term space activities or near term defense and economic activities (Mott Committee, 1988). Indeed, no national leader appears to recognize that this is even an issue, witness the limited factual basis for proposals related to southern Africa.

Executive Summary

Keynote Address

Mission to Earth, Moon, and Mars

Keynote Address

Dr. Harrison H. Schmitt
Scientist, Administrator, Educator, Consultant on Space Initiatives
Former U.S. Senator and Lunar Module Pilot for Apollo 17

Even this list does not tell the whole terribly sad story as many of you know better than I.

How did we fall so far from the dizzy heights of Apollo? 1970 was the fateful year history must mark as the year the nation's political leadership began to let our space momentum and maybe our national destiny slip away.

Ironically, the people of Apollo, in spite of their spectacular success in meeting President John Kennedy's challenge, "to put men on the moon and return them safely to Earth," had lost the media and political support necessary to build on their accomplishments.

Once Apollo missions began to be canceled and the industrial base to utilize the Apollo technology base started to be dismantled, the opportunity to lead humankind into space began to slip away. Even the reluctant decision by the Nixon Administration to build the Space Shuttle, and the equally reluctant decision by the Carter Administration to continue, were made out of context relative to any grand design for our future in space. The underfunding of the Shuttle development program, by at least a factor of three less than prudent estimates of the time, was the direct consequence of this hesitant and uncomprehending political environment. The seeds of the Challenger accident were sown by these events. Their tragic harvest sixteen years later is a stark indictment of all who let this drift in space policy begin and continue.

America, like Ebenezer Scrooge, still has time to change this spector of history yet to come. So, rather than conclude on the preceeding pessimistic recital of history and current reality, let me return to the areas of technological challenge before America and the possibilities for progress before the humankind by referring back to the hypothetical State of the Union Address.

"Our Millennium Project combines space ventures to the Earth, moon, and Mars into a single great human mission — a mission to save the atmosphere, waters, and rainforests of Earth, a mission to settle the moon and utilize it resources for the benefit of all, and a mission to establish human civilization and freedom permanently on Mars.

"Our commitment to the success of The Millennium Project must be unequivocal. It must include an equally unequivocal commitment to carry the sacred institutions of freedom with us as humankind expands into its larger home among the planets and the stars."

Executive Summary

Keynote Address

Mission to Earth, Moon, and Mars

Keynote Address

Dr. Harrison H. Schmitt Scientist, Administrator, Educator, Consultant on Space Initiatives Former U.S. Senator and Lunar Module Pilot for Apollo 17

References

Rulcinski, G.L., and Schmitt, H.H. (1987) The moon: An abundant source of clean and safe fusion fuel for the 21st Century, 11th Intl. Sci. Forum on Fueling the 21st Century, Oct. 1987, Moscow, USSR (UWFDM-730).

Mott Committee (1988) National Strategic Materials and Minerals Program Advisory Committee Report, Nov. 1988, Dept. Interior.

Wittenberg, L.J., Santarius, J.F., and Kulcinski, G.L. (1986) Lunar source of He-3 for commercial fusion power, Fusion Technology, v. 10, p. 167 (UWFDM-709).

See also:

Schmitt, H.H (1985) A Millennium Project -- Mars 2000, in W.W. Mendell, ed., Lunar Bases and Space Activities of the 21st Century, LPI, Houston, p. 787-794.

Schmitt, H.H (1986) INTERMARS: User-controlled international management system for missions to Mars, in Manned Mars Missions Working Group Papers, NASA M002, v. 2, June 1986.

Executive Summary

Workshop Purpose & Agenda

Dr. Leonard Harris Chief Engineer Office of Aeronautics & Space Technology, NASA Hqs

IN-STEP 88

PURPOSE

-- 600 1-300

-- 6H/HSH3E

- **IDENTIFY & PRIORITIZE IN-SPACE TECHNOLOGIES** WHICH:
 - ARE CRITICAL FOR FUTURE NATIONAL
 - SPACE PROGRAMS
 REQUIRE DEVELOPMENT & IN-SPACE VALIDATION
- REVIEW CURRENT NASA (IN-REACH) & INDUSTRY/ UNIVERSITY (OUT-REACH) EXPERIMENTS WITH THE AEROSPACE COMMUNITY
- OBTAIN AEROSPACE COMMUNITY COMMENTS & SUGGESTIONS ON OAST IN-STEP PLANS

PRODUCT

- AEROSPACE COMMUNITY RECOMMENDED PRIORITY LISTING OF CRITICAL SPACE TECHNOLOGY **NEEDS & ASSOCIATED SPACE FLIGHT EXPERIMENTS**

TECHNOLOGY THEMES

IN-STEP 85 WORKSHOP

SPACE STRUCTURES

SPACE ENVIRONMENT **EFFECTS**

ENERGY SYSTEMS & THERMAL MANAGEMENT

FLUID MANAGEMENT

AUTOMATION & ROBOTICS

INFORMATION SYSTEMS

IN-SPACE OPERATIONS

IN-STEP 88 WORKSHOP

HNL4SHEHP YU WEGILIE HEGILE

SPACE STRUCTURES

SPACE ENVIRONMENT EFFECTS

POWER SYSTEMS & THERMAL MGMT.

FLUID MANAGEMENT & PROPULSION SYSTEMS

> **AUTOMATION** & ROBOTICS

SENSORS & INFORMATION SYSTEMS

IN-SPACE SYSTEMS

HUMANS-IN-SPACE

6p. -5=6

=94444

(Friday Morning)

Executive Summary

Inlashes in World in the

Workshop Purpose & Agenda

Dr. Leonard Harris
Chief Engineer
Office of Aeronautics & Space Technology, NASA Hqs

RESULTS OF THE WORKSHOP

STRENGTHEN COMMUNICATION WITH THE AEROSPACE COMMUNITY ON THE IN-SPACE TECHNOLOGY EXPERIMENTS PROGRAM

- IDENTIFY CRITICAL IN-SPACE TECHNOLOGY NEEDS FOR FUTURE RESEARCH & DEVELOPMENT
- PRIORITIZE SPACE TECHNOLOGY NEEDS & ASSOCIATION IN-SPACE TECHNOLOGY EXPERIMENTS

WORKSHOP AGENDA

PROGRAM OVERVIEW Dec 6 (Tuesday Morning) REVIEW OF CURRENT IN-REACH Dec 6 & OUT-REACH EXPERIMENTS (Tuesday Afternoon) THEME REVIEWS & DISCUSSIONS Dec 7 (Wednesday & Thursday Morning) **EXPERIMENT INTEGRATION PROCESS** Dec 8 (Thursday Afternoon) CRITICAL TECHNOLOGY REQUIREMENTS Dec 9

Executive Summary

In-Space Technology Experiments in NASA's Strategic Planning

Dr. Judith H. Ambrus
Assistant Director for Space
Office of Aeronautics & Space Technology, NASA Hqs

SPACE R&T PROGRAM

-0/18/

W-372233

GOAL

 RECOGNIZED LEADERSHIP IN SPACE R&T TO ENABLE AND ENHANCE FUTURE CIVIL SPACE MISSIONS

AND

 PROVIDE A SOILID BASE OF CAPABILITIES AND TALENT TO SERVE ALL NATIONAL SPACE SECTORS

STRATEGY

-M-SHEF-98-

ENSURE INNOVATIVE R&T BASE

LONG RANGE PLAN

- PURSUE NEW DIRECTIONS THROUGH ROLLOVER
- NURTURE NEW FOCUSED PROGRAMS
 - ULTRA-RELIABLE SYSTEMS
 - TECHNOLOGIES FOR MISSION TO PLANT EARTH
- ADVOCATE BUDGET GROWTH

Executive Summary

In-Space Technology Experiments in NASA's Strategic Planning

Dr. Judith H. Ambrus
Assistant Director for Space
Office of Aeronautics & Space Technology, NASA Hqs

R&T BASE CHARACTERISTICS

(e) // SH

M-STEP-99

- LABORATORY RESEARCH
- GENERIC, FUNDAMENTAL
- ANALYTICAL MODELING
- ENGINEERING DATA BASE
- HIGH RISK, HIGH PAYOFF
- TECHNOLOGY OPPORTUNITIES

Executive Summary

In-Space Technology Experiments in NASA's Strategic Planning

Dr. Judith H. Ambrus
Assistant Director for Space
Office of Aeronautics & Space Technology, NASA Hqs

AEROTHERMODYNAMICS ADVANCED COMPITATIONAL METHODS AEROTHERMAL LOADS HYPERSONIC WIND TUNNEL TESTING

Executive Summary

In-Space Technology Experiments in NASA's Strategic Planning

Dr. Judith H. Ambrus
Assistant Director for Space
Office of Aeronautics & Space Technology, NASA Hqs

SPACE ENERGY CONVERSION - PRIMARY SECONDARY BATTERIES - SOLAR DYNAMICS - FUEL CELLS - LIGHTWEIGHT ARRAYS - CONCENTRATORS - ADVANCED CELLS - POWER DISTRIBUTION COMPONENTS - POWER DISTRIBUTION COMPONENTS - ADVANCED RADIATORS - POWER DISTRIBUTION COMPONENTS - POWER DISTRIBUTION COMPONENTS

Executive Summary

In-Space Technology Experiments in NASA's Strategic Planning

Dr. Judith H. Ambrus
Assistant Director for Space
Office of Aeronautics & Space Technology, NASA Hqs

MATERIALS AND STRUCTURES

SPACE DATA AND COMMUNICATIONS

Executive Summary

In-Space Technology Experiments in NASA's Strategic Planning

Dr. Judith H. Ambrus **Assistant Director for Space** Office of Aeronautics & Space Technology, NASA Hqs

INFORMATION SCIENCES

NVSV

CONTROLS AND GUIDANCE

BEAM DYNAMICS

ADAPTIVE CONTROL (AFE)

LASER GUIDANCE .

SPACECRAFT CONTROL LABORATORY EXPERIMENT

Executive Summary

In-Space Technology Experiments in NASA's Strategic Planning

Dr. Judith H. Ambrus
Assistant Director for Space
Office of Aeronautics & Space Technology, NASA Hqs

HUMAN FACTORS

SPACE FLIGHT SYSTEMS R&T

Executive Summary

In-Space Technology Experiments in NASA's Strategic Planning

Dr. Judith H. Ambrus
Assistant Director for Space
Office of Aeronautics & Space Technology, NASA Hqs

SPACE RESEARCH & TECHNOLOGY BASE

_0/\Sid

M-STEP-33

CANDIDATE EXAMPLES FOR FUTURE EMPHASIS

- SOFTWARE ENGINEERING
- HIGH TEMPERATURE SUPERCONDUCTORS
- OPTICS
- COMPUTATIONAL CONTROLS
- NDE/NDI
- TECHNOLOGY FOR SELF REPAIR
- BASIC RESEARCG IN "INHERENT RELIABILITY"
- MICROSAT TECHNOLOGY
- WORLD MODELING DATA SYSTEMS

In-Space Technology Experiments in NASA's Strategic Planning

Dr. Judith H. Ambrus
Assistant Director for Space
Office of Aeronautics & Space Technology, NASA Hqs

BACKGROUND

三色油料

MSIEF99

- THE FIRST STEP IN REVITALIZING THE NATION'S CIVIL TECHNOLOGY BASE
- WILL FILL IN GAPS IN MANY TECHNOLOGY AREAS
- FOCUSED TECHNOLOGY EFFORT, WILL RESULT IN DEMONSTARTED / VALIDATED TECHNOLOGIES

Executive Summary

In-Space Technology Experiments in NASA's Strategic Planning

Dr. Judith H. Ambrus
Assistant Director for Space
Office of Aeronautics & Space Technology, NASA Hqs

MISSION NEEDS

__(e)_{_1}_{_2}_{_3}_{_3}_{_4}_{_5}_{_5}_{_5}_{_5}

Mayesplan

- TRANSPORTATION TO LOW EARTH ORBIT
 - PROPULSION
 - AEROBRAKING
- OPERATIONS IN LOW EARTH ORBIT
 - AUTONOMOUS SYSTEMS
 - TELEROBOTICS
 - POWER
- SCIENCE
 - STRUCTURES
 - SENSORS
 - DATA SYSTEMS

Executive Summary

In-Space Technology Experiments in NASA's Strategic Planning

Dr. Judith H. Ambrus
Assistant Director for Space
Office of Aeronautics & Space Technology, NASA Hqs

PATHFINDER

IM-SIESE-IE

- DEVELOPS HIGH LEVERAGE TECHNOLOGIES FOR PILOTED AND ROBOTIC SOLAR SYSTEM EXPLORATION
- CRITICAL ELEMENT OF THE PRESIDENT'S SPACE POLICY
- LONG-TERM PROGRAM, PROVIDING BOTH RESEARCH AND DEMONSTRATIONS
- NECESSARY TO MAINTAIN U.S. LEADERSHIP IN SPACE

STRATEGY

-1M-Sieebb-

 VALIDATE TECHNOLOGY FOCUSED ON ENABLING AND ENHANCING NEW MISSIONS

LONG RANGE PLAN

- EMPHASIZE HEALTHY AND COMPLETE CSTI AND PATHFINDER PROGRAMS
- RESPOND TO EVOLVING NEW MISSION CONCEPTS
- REFINE AND ACCELERATE TECHNOLOGY DEVELOPMENT AND VALIDATION IN RESPONSE TO AGENCY DECISION ON BOLD NEW INITIATIVES

Executive Summary

In-Space Technology Experiments in NASA's Strategic Planning

Dr. Judith H. Ambrus **Assistant Director for Space** Office of Aeronautics & Space Technology, NASA Hqs

UNIVERSITY SPACE ENGINEERING RESEARCH PROGRAM

OASI

an over of

- INTEGRAL PART OF STRATEGY TO REBUILD R&T BASE
 - INCREASE NUMBER OF ENGINEERING GRADUATES
 - INCREASE INVOLVEMENT OF UNIVERSITIES IN CIVIL SPACE PROGRAM
- LONG TERM FUNDING ENCOURAGES UNIVERSITY COMMITMENT
- UNIVERSITY INVOLVEMENT ADDS VALUE
 - SPACE R&T
 - INNOVATIVE/CREATIVE APPROACHES
 - PARTICIPATION FROM WIDE RANGE OF ENGINEERING AND SCIENTIFIC FIELDS
 - UNIVERSITY
 - IMPROVES CURRICULA
 - GREATER RELEVANCE OF RESEARCH TO CIVIL SPACE NEEDS

UNIVERSITY SPACE ENGINEERING RESEARCH PROGRAM

M-37520

NINE CENTERS SELECTED FOR FY 1988

UNIVERSITY OF ARIZONA

CENTER FOR UTILIZATION OF LOCAL PLANETARY RESOURCES

UNIVERSITY OF CINCINNATI

HEALTH MONITORING TECHNOLOGY CENTER FOR SPACE

PROPULSION SYSTEMS

UNIVERSITY OF COLORADO, BOULDER

CENTER FOR SPACE CONSTRUCTION

UNIVERSITY OF IDAHO

VERY LARGE SCALE INTEGRATED HARDWARE ACCELERATION

CENTER FOR SPACE RESEARCH

MASSACHUSETTS WISTITUTE OF TECHNOLOGY

CENTER FOR SPACE ENGINEERING RESEARCH FOCUSED

ON CONTROLLED STRUCTURES TECHNOLOGY

UNIVERSITY OF MICHIGAN

CENTER FOR NEAR-MILLIMETER WAVE COMMUNICATION

NORTH CAROLINA STATE AT RALEIGH MARS MISSION RESEARCH CENTER & NORTH CAROLINA AGRICULTURAL & TECHNICAL STATE UNIVERSITY

PENNSYLVANIA STATE UNIVERSITY

CENTER FOR SPACE PROPULSION ENGINEERING

RENSSELAER POLYTECHNIC

INTELLIGENT ROBOTIC SYSTEMS FOR

INSTITUTE

SPACE EXPLORATION

Executive Summary

In-Space Technology Experiments in NASA's Strategic Planning

Dr. Judith H. Ambrus
Assistant Director for Space
Office of Aeronautics & Space Technology, NASA Hqs

STRATEGY

-0ASI

1M-SYEEP-88

EXPAND UNIVERSITY PROGRAMS

LONG RANGE PLAN

- GROWTH FOR NINE INCUMBENT UNIVERSITY ENGINEERING RESEARCH CENTERS AWARDED IN APRIL, 1988
- ADD NEW AREAS OF PROGRAMMATIC INTEREST
- BROADEN UNIVERSITY SUPPORT TO INCLUDE INDIVIDUAL INNOVATION IN RESEARCH

IN-SPACE EXPERIMENTS IN OAST

_0AS#

-M-0122100-

- IN-SPACE EXPERIMENTS HAVE ALWAYS BEEN PART OF OAST'S PROGRAM
 - TO OBTAIN DATA THAT CAN NOT BE ACQUIRED ON THE GROUND
 - TO DEMONSTRATE FEASIBILITY OF CERTAIN ADVANCED TECHNOLOGIES
- CONDUCTING TECHNOLOGY EXPERIMENTSS IN SPACE IS A VALUABLE AND COST EFFECTIVE WAY TO INTRODUCE ADVANCED TECHNOLOGY INTO FLIGHT PROGRAMS
- THE SHUTTLE HAS DEMONSTRATED THE FEASIBILITY AND TIMELY BENEFITS OF CONDUCTING HANDS-ON EXPERIMENTS IN SPACE
- SPACE STATION WILL BE A PERMANENT LABORATORY IN SPACE AND WILL PROVIDE LOGICAL AND EVOLUTIONARY EXTENSION OF GROUND BASED R&T IN SPACE

Executive Summary

In-Space Technology Experiments in NASA's Strategic Planning

Dr. Judith H. Ambrus
Assistant Director for Space
Office of Aeronautics & Space Technology, NASA Hqs

IN-SPACE EXPERIMENTS PLANNING

ACED DANIEL ON MACAIC DAT DECCEAN	JUNE	1983
ASEB PANEL ON NASA'S R&T PROGRAM		
INDUSTRY/DOD WORKSHOP	FEB	1984
ADMINISTRATOR'S POLICY STATEMENT	APRIL	1984
ASEB PANEL ON IN-SPACE ENGINEERING AND TECHNOLOGY DEVELOPMENT	MAY	1985
OAST IN-SPACE TECHNOLOGY WORKSHOP	OCT	1985
INITIATION OF IN-REACH/OUT-REACH PROGRAMS	OCT	1985
SSTAC AD HOC COMMITTEE ON THE USE OF SPACE STATION FOR IN-SPACE ENGINEERING R&T	AUG	1987
SPACE STATION OPERATIONS TASK FORCE	OCT	1987
NASA MANAGEMENT STUDY GROUP (NMSG - 24)	DEC	1987
NASA CENTER SCIENCE ASSESSMENT TEAM	MAY	1988

ADVISORY GROUP RECOMMENDATIONS

..."NASA SHOULD PROVIDE ACCESS TO SPACE FOR EXPERIMENTAL PURPOSES AS A NATURAL EXTENSION OF AEROSPACE FACILITIES...
...AN EVOLUTIONARY PROGRAM OF ON-ORBIT RESOURCE EQUIVALENT TO THE WIND TUNNELS"...

ASEB, 1983

..."NASA SHOULD BETTER EXPLOIT THOSE SPACE FACILITIES THAT ARE UNIQUE THE SHUTTLE AND THE SPACE STATION FOR THE DEVELOPMENT OF TECHNOLOGY FOR NASA, DOD, AND THE INDUSTRY"... DOD/INDUSTRY (HEARTH) WORKSHOP, 1984

..."OAST SHOULD PROVIDE THE LEADERSHIP.....TO SUPPORT THE ENGINEERING TECHNOLOGY NEEDS OF THE USER INDUSTRY, OTHER GOVERNMENT AGENCIES, AS WELL AS ITS OWN FOR ALL IN-SPACE ENGINEERING R&T"...

ASEB, 1985

Executive Summary

In-Space Technology Experiments in NASA's Strategic Planning

Dr. Judith H. Ambrus
Assistant Director for Space
Office of Aeronautics & Space Technology, NASA Hqs

NASA POLICY ON ROLE OF SPACE TECHNOLOGY

-0434

M-Syesen -

... "IT WILL BE NASA'S POLICY TO SUPPORT THE DOD AND SPACE INDUSTRY THROUGH COMPETITIVE R&T PROGRAMS JUST AS WE DO IN AERONAUTICS"...

..."WE CAN BE PARTICULARLY EFFECTIVE IN ESTABLISHING CLOSER TIES WITH INDUSTRY AND THAT IS THE USE OF THE SHUTTLE FOR IN-SPACE EXPERIMENTS.... WHICH WILL LEAD QUITE NATURALLY TO USING THE SPACE STATION FOR TECHNOLOGY AND ENGINEERING EXPERIMENTS"...

..."TO BEGIN IMPLEMENTING THIS POLICY, I HAVE ASKED ..(OAST)..
TO INCREASE OUR EMPHASIS ON IN-FLIGHT EXPERIMENTS"...

MEMORANDUM FROM THE ADMINISTRATOR APRIL 3, 1984

Executive Summary

In-Space Technology Experiments in NASA's Strategic Planning

Dr. Judith H. Ambrus
Assistant Director for Space
Office of Aeronautics & Space Technology, NASA Hqs

IN-SPACE EXPERIMENTS INITIATIVE - PHASE !

-0AST

M-07752200

- FLIGHT OPPORTUNITY RESTORED
- INITIATE MORE VIGOROUS PROGRAM ON SHUTTLE AND ELVs
 - OBTAIN DATA THAT CAN NOT BE OBTAINED ON THE GROUND
 - VALIDATE ADVANCED TECHNOLOGIES FOR EARLY USE IN FLIGHT PROJECTS
- GET A RUNNING START ON SPACE STATION
 - GEAR UP NASA, INDUSTRY, UNIVERSITY ACTIVITY
 - CONDUCT SPACE STATION PRECURSOR EXPERIMENTS

IN-SPACE TECHNOLOGY EXPERIMENTS PROGRAM

-0/187

- NASA EXPERIMENTS
 - ARISE FROM THE RAT BASE OR FOCUSED PROGRAMS
 - INCLUDE PRESENTLY ONGOING EXPERIMENTS
- INDUSTRY/UNIVERSITY EXPERIMENTS
 - FOLLOWING THROUGH ON OUR COMMITMENTS IN THE OUT-REACH PROGRAM
- INTERNATIONAL EXPERIMENTS
 - COOPERATIVE ACTIVITIES WITH OUR ALLIES

Executive Summary

In-Space Technology Experiments in NASA's Strategic Planning

Dr. Judith H. Ambrus
Assistant Director for Space
Office of Aeronautics & Space Technology, NASA Hqs

NASA IN-SPACE TECHNOLOGY EXPERIMENTS

-0ASI

Marie 200

- INCORPORATES PRESENTLY ON-GOING IN-SPACE R&T PROGRAM
 - ORBITER EXPERIMENTS PROGRAM (OEX)
 - LONG DURATION EXPOSURE FACILITY (LDEF)
 - LIDAR IN-SPACE TECHNOLOGY EXPERIMENT (LITE)
 - ARCJET AUXILIARY PROPULSION SYSTEM
 - EXPERIMENTS SELECTED FROM IN-REACH SOLICITATION
- FUTURE EXPERIMENTS WILL CONTINUE TO ARISE AS A NATURAL EXTENSION OF R&T BASE AND FOCUSED PROGRAMS
 - CIVIL SPACE TECHNOLOGY INITIATIVE (CSTI)
 - PATHFINDER

INDUSTRY/UNIVERSITY IN-SPACE EXPERIMENTS

-0/187

-M-0752-00-

- PROVIDE ACCESS TO SPACE FOR INDUSTRY AND UNIVERSITIES TO DEVELOP SPACE TECHNOLOGY
 - ENTHUSIASTIC RESPONSE OF AEROSPACE COMMUNITY TO OUT-REACH SOLICITATION
- OAST HAS COMMITTED TO AEROSPACE COMMUNITY TO SERVE AS CONDUIT FOR TECHNOLOGY DEVELOPMENT IN SPACE
 - PERIODIC RESOLICITATIONS TO INDUSTRY/UNIVERSITY COMMUNITY FOR EXPERIMENT DEFINITION, DEVELOPMENT, AND FLIGHT

Executive Summary

In-Space Technology Experiments in NASA's Strategic Planning

Dr. Judith H. Ambrus
Assistant Director for Space
Office of Aeronautics & Space Technology, NASA Hgs

INTERNATIONAL IN-SPACE EXPERIMENTS

-0AS'/---

M-STEP SO

- PROMOTES COOPERATION WITH ALLIES
- LEVERAGES TECHNOLOGY DEVELOPMENT BY OTHERS IN KEY AREAS
- LEVERAGES AND HUSBANDS SCARCE FLIGHT OPPORTUNITIES

IN-SPACE EXPERIMENTS INITIATIVE - PHASE II

-04ST

-M-6762-28-

- ROUTINE OPERATIONS IN LOW EARTH ORBIT WILL INITIATE ERA OF BOLD NEW INITIATIVES
 - NEED FOR TECHNOLOGY DEMONSTRATIONS FOR ENABLING TECHNOLOGIES WILL INCREASE
 - THE RANGE OF TECHNOLOGIES TO BE DEMONSTRATED IN SPACE WILL INCREASE
 - SPACE STATION WILL PROVIDE THE FACILITY FOR SIMPLER, FASTER ACCESS TO SPACE
 - SPACE STATION WILL ENABLE EXPERIMENTS NEEDING LONG-TERM HUMAN INTERACTION
- EXPERIMENTS PLANNED AND DEFINED FOR SPACE STATION DURING PHASE I WILL ENTER HARDWARE DEVELOPMENT STAGE

Executive Summary

In-Space Technology Experiments in NASA's Strategic Planning

Dr. Judith H. Ambrus
Assistant Director for Space
Office of Aeronautics & Space Technology, NASA Hgs

SUMMARY

=0ASI

-M-975200-

- TECHNICAL NEED IDENTIFIED
- 1983
- PLANNING COMPLETE
- 1983-86
- COMMITMENTS MADE
- 1986-88
- INDUSTRY / UNIVERSITIES (VIA OUT-REACH)
- CENTERS (VIA IN-REACH)
- INTERNATIONAL COMMUNITY
- OPPORTUNITY FOR SPACE FLIGHT RESTORED
 - SHUTTLE, ELV MANIFESTING
 - SPACE STATION PLANNING

STRATEGY

- ENSURE INNOVATIVE R&T BASE
- VALIDATE TECHNOLOGY FOCUSED ON ENABLING NEW MISSIONS
- BUILD STRONGER LINKAGES TO EFFECTIVELY TRANSFER NEW TECHNOLOGIES TO USERS
- EXPAND UNIVERSITY PROGRAMS
- STEP UP TO COMMITMENT AS LEADER FOR TECHNOLOGY DEVELOPMENT ON SPACE STATION

In-Space Technology Experiments in NASA's Strategic Planning

Dr. Judith H. Ambrus
Assistant Director for Space
Office of Aeronautics & Space Technology, NASA Hqs

SUMMARY

_0ASH

M-9752-99

SPACE RAT: A FIVE YEAR OUTLOOK

- EQUITABLE AGENCY TECHNOLOGY INVESTMENT ESTABLISHED
- OAST IN TECHNOLOGY LEADERSHIP ROLE FOR AGENCYY
- COOPERATIVE TECHNOLOGY HAND-OFF AGREEEMENTS ESTABLISHED WITH USERS
- COORDINATION WITH NATIONAL SPACE SECTORS WELL ESTABLISHED
- OAST RECOGNIZED AS NATIONAL FOCAL POINT FOR IN-SPACE TECHNOLOGY DEVELOPMENT

Executive Summary

In-Space Technology Experiment Program

Jack Levine, Director, Flight Projects Division Jon S. Pyle, Manager, In-Reach & Out-Reach Programs Office of Aeronautics & Space Technology, NASA Hqs

CURRENT SPACE FLIGHT EXPERIMENTS

-WASTED-IN-WOULKSTERS (DA) (B) 18 FLIGHT EXPERIMENTS HQ **LEAD CENTER** LONG DURATION EXPOSURE FACILITY JOHN LORIA **LANGLEY** ORBITER EXPERIMENTS RICHARD GUALDONI **JOHNSON** LIDAR IN-SPACE TECHNOLOGY RICHARD GUALDONI LANGLEY **EXPERIMENT** AEROASSIST FLIGHT EXPERIMENT JOHN SMITH MARSHALL ARCJET FLIGHT EXPERIMENT JOHN LORIA **LEWIS** TELEROBOT INTELLIGENT INTERFACE **RICHARD GUALDONI JPL** FLIGHT EXPERIMENT CRYOGENIC FLUID MANAGEMENT **JOHN LORIA LEWIS FLIGHT EXPERIMENT** IN-REACH (NASA TECHNOLOGY JON PYLE EXPERIMENTS) **OUT-REACH (INDUSTRY/UNIVERSITY** JON PYLE

LDEF LONG DURATION EXPOSURE FACILITY

OBJECTIVES:

TECHNOLOGY EXPERIMENTS)

 DETERMINE LONG-TERM SPACE EXPOSURE EFFECTS ON MATERIALS, COATINGS, & OPTICS

W THE PLANT WE ON THE STREET

 MEASURE SPACE ENVIRONMENTAL PHENOMENA OVER EXTENDED TIME

STATUS:

_6b:\&\}E

- 34 EXPERIMENTS ADVERSELY AFFECTED BY LDEF RECOVERY DELAY
- 23 EXPERIMENTS EITHER IMPROVED OR NOT AFFECTED
- LDEF STRUCTURE AVAILABLE FOR STUDY OF ENVIRONMENTAL EROSION & DEBRIS IMPACT
- SCHEDULED FOR RETRIEVAL NOVEMBER 1989

LEAD CENTER CONTACT:

 ROBERT L. JAMES, JR. LANGLEY RESEARCH CENTER PHONE NO. (804) 865-4987

Executive Summary

In-Space Technology Experiment Program

Jack Levine, Director, Flight Projects Division Jon S. Pyle, Manager, In-Reach & Out-Reach Programs Office of Aeronautics & Space Technology, NASA Hqs

OEX ORBITER EXPERIMENT PROGRAM

=01/16=1

INLEDUSE YOU WOULKSY YOU

OBJECTIVES:

- OBTAIN BASIC AEROTHERMODYNAMIC & ENTRY ENVIRONMENT DATA FROM R&D INSTRUMENTATION INSTALLED IN SPACE SHUTTLE ORBITER
- FLIGHT-VALIDATE GROUND TEST RESULTS TO IMPROVE BASIS FOR DESIGN OF ADVANCED **SPACECRAFT**

STATUS:

- DATA COLLECTION ON-GOING SINCE 1985 WILL **CONTINUE INTO 1990'S**
- SOME EXPERIMENTS STILL TO BE DESIGNED & DEVELOPED

LEAD CENTER CONTACT:

 ROBERT SPANN JOHNSON SPACE CENTER PHONE # (713) 483-3022

LITE LIDAR IN-SPACE TECHNOLOGY EXPERIMENT

OBJECTIVE:

6)4 15 F

- EVALUATE CRITICAL ATMOSPHERIC PARAMETERS & VALIDATE OPERATION OF A SOLID-STATE LIDAR SYSTEM FROM A SPACEBORNE PLATFORM, MEASURING:
 - CLOUD DECK ALTITUDES
 - PLANETARY BOUNDARY-LAYER HEIGHTS

 - STRATOSPHERIC & TROPOSPHERIC AEROSOLS
 ATMOSPHERIC TEMPERATURE & DENSITY (10KM TO 40KM)

STATUS:

- LASER TRANSMITTER MODULE, CASSEGRAIN TELESCOPE, & ENVIRONMENTAL MONITORING SYSTEM IN DEVELOPMENT
- FLIGHT MANIFESTED FOR 1993

LEAD CENTER CONTACT:

RICHARD R. NELMS LANGLEY RESEARCH CENTER PHONE NO. (804) 865-4947

Executive Summary

In-Space Technology Experiment Program

Jack Levine, Director, Flight Projects Division
Jon S. Pyle, Manager, In-Reach & Out-Reach Programs
Office of Aeronautics & Space Technology, NASA Hqs

AFE AEROASSIST FLIGHT EXPERIMENT

___0A\$F

_WA_SHEEP___OVO___WAONEWIESEEFON?_

OBJECTIVE:

INVESTIGATE CRITICAL VEHICLE DESIGN &
 ENVIRONMENTAL TECHNOLOGIES APPLICABLE
 TO THE DESIGN OF AEROASSISTED SPACE
 TRANSFER VEHICLES

STATUS:

- PHASE B DEFINITION COMPLETE
- EXPERIMENT/INSTRUMENT COMPLEMENT ESTABLISHED
- PRELIMINARY DESIGN INITIATED

LEAD CENTER CONTACT:

 LEON B. ALLEN MARSHALL SPACE FLIGHT CENTER PHONE NO. (205) 544-1917

ARCJET FLIGHT EXPERIMENT

--- 60 HSHF

OBJECTIVES:

- ASSESS ARCJET AUXILIARY PROPULSION SYSTEM OPERATION IN SPACE ENVIRONMENT
 - HY DRAZINE PROPELLANT
 - 1.4 KW, 50 mLB THRUST, Isp 450
- EVALUATE PLUME EFFECTS & THRUSTER/THERMAL INTERACTIONS ON A COMMERICAL COMMUNICATIONS SATELLITE

STATUS:

- PRELIMINARY DESIGN & ARCJET COMPONENT DEVELOPMENT COMPLETED
- FLIGHT HARDWARE DESIGN, DEVELOPMENT & TESTING SCHEDULED TO START IN 1989
- FLIGHT TEST TENTATIVELY PLANNED FOR 1991

LEAD CENTER CONTACT:

 JERRÍ S. LING LEWIS RESEARCH CENTER PHONE NO. (216) 433-2841

Executive Summary

in-Space Technology Experiment Program

Jack Levine, Director, Flight Projects Division Jon S. Pyle, Manager, In-Reach & Out-Reach Programs Office of Aeronautics & Space Technology, NASA Hqs

TRIIFEX TELEROBOTIC INTELLIGENT INTERFACE FLIGHT EXPERIMENT

OBJECTIVES:

=0-(1-6)+je

- EVALUATE & VALIDATE TELEOPERATION OF A ROBOTIC
 MANIPULATOR UNDER CONDITIONS OF MICRO-G &
 COMMUNICATION TIME DELAYS
- VALIDATE ADVANCED SPACE TELEROBOT CONTROLS INCLUDING HIGH-FIDELITY HYBRID POSITION & FORCE CONTROL TECHNIQUES

STATUS:

- CONCEPTUAL DESIGN IN PROGRESS AT JPL
- DEVELOPMENT & INTEGRATION SCHEDULED TO START IN LATE 1988
- FLIGHT TEST PLANNED IN COMBINATION WITH GERMAN ROTEX EXPERIMENT ON SPACELAB D-2 MISSION (1991)

LEAD CENTER CONTACT:

DANIEL KERRISK
 JET PROPULSION LABORATORY
 PHONE NO. (818) 354-2566

CFMFE CRYOGENIC FLUID MGMT FLIGHT EXP.

-OALSHE WILSHELD BY WEDER STREET

OBJECTIVES:

- DEVELOP TECHNOLOGY REQUIRED FOR EFFICIENT STORAGE, SUPPLY & TRANSFER OF SUBCRITICAL CRYOGENIC LIQUIDS IN LOW-GRAVITY SPACE ENVIRONMENT
- FLIGHT VALIDATE NUMERICAL MODELS OF THE PHYSICS INVOLVED

STATUS:

- CONTRACTOR FEASIBILITY STUDIES CURRENTLY UNDER WAY
- 1992 NEW START PROPOSED

LEAD CENTER CONTACT:

• E. PAT SYMONS LEWIS RESEARCH CENTER PHONE NO. (216) 433-2853

Executive Summary

In-Space Technology Experiment Program

Jack Levine, Director, Flight Projects Division Jon S. Pyle, Manager, In-Reach & Out-Reach Programs Office of Aeronautics & Space Technology, NASA Hqs

PROGRAM OBJECTIVES

MISHED OF WORKSHOP

in chep in work-prop

PROVIDE FOR IN-SPACE FLIGHT RESEARCH **EVALUATION & VALIDATION OF ADVANCED SPACE TECHNOLOGIES**

OUT-REACH PROGRAM

- INDUSTRY/UNIVERSITY FLIGHT **TECHNOLOGY EXPERIMENTS**

IN-REACH PROGRAM

- NASA FLIGHT TECHNOLOGY **EXPERIMENTS**

IN-REACH EXPERIMENTS

June 1986	LETTER TO CENTERS REQUESTING PROPOSED IN-SPACE TECHNOLOGY FLIGHT EXPERIMENTS
Aug. 1986	58 FLIGHT EXPERIMENT PROPOSALS FROM NASA CENTERS
Jan. 1987	COMPLETED EVALUATION OF PROPOSALS
Apr. 1987	ADVISORY COMMITTEE REVIEW & PRIORITIZATION OF PROPOSALS
Jul. 1987	SELECTION OF 6 DEFINITION & 1 DEVELOPMENT EXP.

- SPACE STATION STRUCTURAL CHARACTERIZATION
- LASER COMMUNICATION FLIGHT EXPERIMENT DEBRIS COLLISION SENSOR
- LASER IN-SPACE SENSOR EXPERIMENT CONTAMINATION FLIGHT EXPERIMENT
- EFFECT OF SPACE ENVIRONMENT ON THIN-FOIL MIRRORS
- THERMAL ENERGY STORAGE TEST EXPERIMENT

=55%产3并产

Executive Summary

In-Space Technology Experiment Program

Jack Levine, Director, Flight Projects Division Jon S. Pyle, Manager, In-Reach & Out-Reach Programs Office of Aeronautics & Space Technology, NASA Hqs

OUT-REACH EXPERIMENTS

Dec. 1985 IN-STEP 85 WORKSHOP

-0-11-5-F

-621-9-7F

Oct. 1986 REQUEST FOR INDUSTRY/UNIVERSITY PROPOSALS

Jan. 1987 231 PROPOSALS FOR IN-SPACE EXPERIMENTS (140 FROM INDUSTRY & 91 FROM UNIVERSITIES)

Sept. 1987 SELECTED 5 PROPOSALS FOR DEVELOPMENT OF FLIGHT EXPERIMENT HARDWARE

- TANK PRESSURE CONTROL EXPERIMENT

BOEING AEROSPACE COMPANY/ LeRC
- MID-DECK 0-G DYNAMICS EXPERIMENT

MASSACHUSETTS INSTITUTE OF TECHNOLOGY/LaRC
- INVESTIGATION OF SPACECRAFT GLOW

- INVESTIGATION OF SPACECRAFT GLOW LOCKHEED MISSILE & SPACE COMPANY/JSC

HEAT PIPE THERMAL PERFORMANCE
HUGHES AIRCRAFT COMPANY/GSFC

- EMULSION CHAMBER TECHNOLOGY EXPERIMENT UNIVERSITY OF ALABAMA IN HUNTSVILLE/MSFC

Sept. 1987 SELECTED 36 PROPOSALS FOR DEFINITION OF

FLIGHT TECHNOLOGY EXPERIMENTS
- STUDIES TO BE COMPLETED IN SEPT. 1989

- SOLICITATION FOR DEVELOPMENT OF FLIGHT HARDWARE OPEN TO ENTIRE COMMUNITY

FIRST SOLICITATION REVIEW

OBSERVATIONS

- SIGNIFICANT EXPENDITURE BY INDUSTRY & UNIVERSITIES (231 PROPOSALS)
- APPROX. 250 NASA SCIENTISTS & TECHNOLOGISTS INVOLVED IN TECHNICAL EVALUATIONS
- NEW SOLICITATION BETWEEN DEFINITION & DEVELOPMENT ADDS MORE PROPOSAL COSTS
- GENERAL TECHNOLOGY SOLICITATION TOO BROAD (SHOTGUN APPROACH TO TECHNOLOGY DEVELOPMENT)

SPACE MISSIONS

Executive Summary

*-*M-STEP---V)---WOMSWO2

In-Space Technology Experiment Program

Jack Levine, Director, Flight Projects Division Jon S. Pyle, Manager, In-Reach & Out-Reach Programs Office of Aeronautics & Space Technology, NASA Hqs

REVISED APPROACH

 DEFINE & PRIORITIZE CRITICAL SPACE TECHNOLOGY DEVELOPMENT REQUIREMENTS FOR FUTURE

- USE PRIORITIZED LISTING TO FOCUS FUTURE TECHNOLOGY DEVELOPMENT & IN-SPACE FLIGHT TECHNOLOGY EXPERIMENTS
- FUTURE SOLICITATIONS FOR DEFINITION OF FOCUSED IN-SPACE FLIGHT TECHNOLOGY EXPERIMENTS
- DOWN-SELECT BETWEEN COMPETING EXPERIMENTS FOR CONCEPTUAL DESIGN PHASE & FLIGHT HARDWARE DEVELOPMENT PHASE

SOLICITATION PROCESS

Executive Summary

In-Space Technology Experiment Program

Jack Levine, Director, Flight Projects Division Jon S. Pyle, Manager, In-Reach & Out-Reach Programs Office of Aeronautics & Space Technology, NASA Hqs

SUMMARY

- LONG & SUCCESSFUL HISTORY IN THE CONDUCT OF SPACE FLIGHT TECHNOLOGY EXPERIMENTS
- PROGRAM IS BEING EXPANDED TO
 EMPHASIZE THE DEVELOPMENT OF
 ADVANCED SPACE FLIGHT TECHNOLOGIES
- OAST PLANS TO PROVIDE ACCESS TO SPACE FOR THE AEROSPACE TECHNOLOGY COMMUNITY (NASA, DOD, INDUSTRY & UNIVERSITIES)

USER ROLE -- STRATEGIC PLANNING

Executive Summary

In-Space Technology Experiment Program

Jack Levine, Director, Flight Projects Division Jon S. Pyle, Manager, In-Reach & Out-Reach Programs Office of Aeronautics & Space Technology, NASA Hqs

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division
Utilization & Operations Group
NASA Space Station Freedom Program Office, Reston, Virginia

SPACE STATION FREEDOM TECHNOLOGY PAYLOADS

- CRITICAL TO THE SUCCESS OF THE SPACE STATION GROWTH OR DEVELOPMENT AND FUTURE SPACE PROJECTS AND MISSIONS.
- EFFECTIVE WAY OF AUGMENTING SPACE STATION PAYLOAD ACCOMMODATION CAPABILITIES TEST AND CONVERSION TO OPERATIONAL USE.
- PROMOTE THE DEVELOPMENT OF TECHNOLOGICAL APPLICATIONS WHICH SUPPORT OTHER GOVERNMENT AND PRIVATE PROJECTS AND PRODUCTS.
- PROVIDES NEW EDUCATIONAL OPPORTUNITIES FOR NEW GENERATIONS OF SCIENTISTS, ENGINEERS, AND OTHER PROFESSIONS.

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division Utilization & Operations Group NASA Space Station Freedom Program Office, Reston, Virginia

SPACE STATION FREEDOM TECHNOLOGY PAYLOAD ACCOMMODATION

- MATERIALS R&D
- ADVANCED RADIATOR AND POWER SYSTEM
- ADVANCED PROPULSION SYSTEMS
- TECHNOLOGY PAYLOADS WITH STRONG MAGNETIC FIELDS
- LASER SYSTEMS OPTICAL COMMUNICATION
- ELECTRON BEAMS, WAVE GENERATION, ETC.
- INTERNAL TECHNOLOGY PAYLOADS RADIATION, SEU
- ADVANCED ECLS SUBSYSTEMS

Potential Attached Payload Locations

44

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User integration Division Utilization & Operations Group NASA Space Station Freedom Program Office, Reston, Virginia

MANNED BASE ATTACHED PAYLOAD ACCOMMODATIONS

PAYLOAD CLASSIFICATION

CLASS	PAYLOAD FEATURES		
MAJOR	LARGE REQUIRES MAJOR APAE RESOURCES ACTIVE THERMAL COOLING SOME NEED PPS FOR POINTING LONG STAY		
SMALL AND/OR RAPID RESPONSE	SMALL NO ACTIVE THERMAL COOLING MODEST POWER/DATA RESOURCES VARIETY OF FIELDS OF VIEW SET ASIDE RESOURCES		
DISTRIBUTED	CAN BE VERY SMALL IN SIZE (LIKE ACCELEROMETER) NON-STANDARD LOCATIONS		

SENSOR

APAE TYPICAL CONFIGURATIONS

MODEST POWER/DATA RESOURCES CAN BE ANALYTICALLY INTENSIVE CAN HAVE UNIQUE PACKAGING

MULTIPLE PAYLOADS

PAYLOAD AND PAYLOAD POWITING SYSTEM

PALLET MOUNTED PAYLOAD

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division **Utilization & Operations Group** NASA Space Station Freedom Program Office, Reston, Virginia

MANNED BASE ATTACHED PAYLOAD ACCOMMODATIONS

APAE DESIGN CAPABILITY

DESIGNED FOR:

MULTIPLE PAYLOADS

POINTING PAYLOADS

4 COMPATIBLE PAYLOADS VIA MULTIPLE PAYLOAD ADAPTERS (MPAs)

- APAE DESIGNED TO SUPPORT UP TO 25,000 LB PAYLOAD
- PROVIDES: 10kW POWER
 - **50 MBPS DATA RATE** 10 kW ACTIVE COOLING

PAYLOAD(S)

· STRUCTURAL SUPPORT FOR POINTING CAPABILITY (60 ARC SEC **ACCURACY) FOR 6000 kg PAYLOAD**

MULTIPLE PAYLOAD/DECK CARRIER CONFIGURATION

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division
Utilization & Operations Group
NASA Space Station Freedom Program Office, Reston, Virginia

PAYLOAD POINTING SYSTEM (PPS)

PPS PAYLOAD ACCOMDATION CAPABILITIES

- 1 ARC MINUTE POINTING ACCURACY
- 30 ARC SECOND PONTING STABILITY (OVER 1800 SECS)
- 15 ARC SECOND/SECOND JITTER
- 3 AXES
- 5 kW OF POWER/ACTIVE COOLING
- 50 MEGABITS HIGH RATE DATA/IMAGERY
- 6000 KG PAYLOAD 3 METERS WIDE,
 C.G. TO BASE 2.5 METERS
- ACCEPTS PAYLOAD SENSOR INPUT FOR POINTING

CAPABILITY TO ADD TRUSS STRUCTURE TO ENHANCE ATTACHED PAYLOAD VIEWING AND CLEARANCE

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division **Utilization & Operations Group** NASA Space Station Freedom Program Office, Reston, Virginia

JAPANESE EXPERIMENT MODULE

SMALL AND RAPID RESPONSE PAYLOADS

EXTERNAL SARR PAYLOAD ENVELOPE & PROPOSED CONSTRAINTS

• TRUNNION/KEEL (T/K) SARR PAYLOAD:

FIT INTO 4M X 1.25M X 2M ENVELOPE (MAX VOL <10M3)

- ≤ 900 KG
- ≤ 900 WATTS
- ≤ 0.3 MBPS UPLINK/2.0 MBPS DOWNLINK

≤ 100 MBYTES DATA STORAGE/ORBIT CAN ACCOMMODATE MORE THAN ONE PAYLOAD RMS GRAPPLE FIXTURE (ON T/K CARRIER)

• GENERIC (GEN) SARR PAYLOAD:

FIT INTO 1.25 M X 1.25 M X 1.25 M ENVELOPE (MAX VOL ≤ 2 M3)

- ≤ 300 KG
- ≤ 300 WATTS
- ≤ 0.3 MBPS UPLINK/2.0 MBPS DOWNLINK
- ≤ 100 MBYTES DATA STORAGE/ORBIT ORU COMPATIBLE I/F (ORU TOOL)

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division
Utilization & Operations Group
NASA Space Station Freedom Program Office, Reston, Virginia

SMALL AND RAPID RESPONSE PAYLOADS

INTERFACE COMPARISON CHART FOR RELATIVELY SMALL ATTACHED PAYLOADS* ON TRUSS AND JEM EF (PROPOSED)

* These do not require an APAE

Interface or	PAYLOAD			
Physical Constraint	SARR Trunnion Keel	SARR Generic	JEM Exposed Facility	
Weight	≤ 1980 lbs ≤ 900 kg	≤ 660 lbs ≤ 300 kg	typically 1100 lbs or 500 kg	
Volume Limitations Physical Dimensions	~ 10m3 1.25m x 2.0m x 4.0m	- 2m3 1.25m x 1.25m x 1.25m	~ 2m3 0.8m x 1.0m x 1.85m (0.8m x 1.0m footprint)	
Thermal Cooling	only passive	only passive	≤ 6kW active cooling	
Power Constraint	≤1.5kW	≤0.3kW	≤6.0kW	
Data Rales Downlink Uplink	2 0 Mbps 0.3 Mbps	1.4 Mbps 0.3 Mbps	4 Mbps 4 Mbps	
Access to Pressurized Module	None	None	Possible thru JEM Airlock	
Pointing Capability Provided	None	None	None	

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division
Utilization & Operations Group
NASA Space Station Freedom Program Office, Reston, Virginia

TRIAL PAYLOAD MANIFEST, U.S. LABORATORY MODULE: AFTER OUTFITTING FLIGHT OF-1

16 STATION SYSTEM RACKS

18 USER PAYLOAD RALKS (28 NASA)

COMMAND/CONTROL WORKSTATION DESIGN CONCEPT

DMS Fixed MPAC Components

- Three 15" color CRTs
- QWERTY keyboard
- **■** Trackball
- Hand controllers
- Processor
- Safety-critical D&C
- Hard-copy printer/plotter

Other Components

- Video recorders
- Audio recorders
- Lighting
- Crew restraints

Functions

■ Subsystem management, customer support, proximity operations, telerobotic (MSC, FTS) control, external operations support

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division
Utilization & Operations Group
NASA Space Station Freedom Program Office, Reston, Virginia

COMMAND/CONTROL WORKSTATION DESIGN CONCEPT

Key MPAC Requirements

- Alphanumerics
- **E** Graphics
- M Animation
- Integrated Video, Graphics, Text
- Color Displays
- **■** Windowing
- Voice Input
- Voice Output
- 3D Graphics
- Run the DMS USE Software

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division
Utilization & Operations Group
NASA Space Station Freedom Program Office, Reston, Virginia

INTERNAL SARR PAYLOAD REQUIREMENTS

- LOCATION REQUIREMENTS:
 DEDICATED STANDARD DOUBLE RACK FOR UP TO 10 INTERNAL SARR PAYLOADS. RACK SHALL BE CAPABLE OF BEING RECONFIGURED ON ORBIT TO SUPPORT STANDARD SARR PAYLOADS.
- RESOURCE PROVISIONS FOR DEDICATED STANDARD DOUBLE RACK:

NO ACTIVE COOLING (STANDARD RACK AIR COOLING ONLY)

CUPOLA WORKSTATION CONCEPT

Key Cupola MPAC Regts

- Alphanumerics
- **■** Graphics
- **■** Animation
- Video
- Telerobotics Control
- OMV Piloting
- MSC Control
- M Run the DMS USE Software

DMS Cupola MPAC Component

- Two 15" TFEL Displays
- Two QWERTY keyboards
- Two Trackballs
- Hand controllers
- m Processor

Other Components

- Lighting
- **■** Crew restraints

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division
Utilization & Operations Group
NASA Space Station Freedom Program Office, Reston, Virginia

MOBILE SERVICING CENTER

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division Utilization & Operations Group NASA Space Station Freedom Program Office, Reston, Virginia

Microgravity Quasi-Static Isogravity Contours (x10⁴ G) (June, 1999, Altitude 230 n. miles) Front View

<u>*</u>-,*

Microgravity Quasi-Static Isogravity Contours (x10 G) (June, 1999, Altitude 230 n. miles) Side View

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division
Utilization & Operations Group
NASA Space Station Freedom Program Office, Reston, Virginia

Microgravity Quasi-Static Isogravity Contours (x10⁶G) (June, 1999, Altitude 230 n. miles) Close-up of U.S. Laboratory

SPACE STATION ELECTROMAGNETIC COMPATIBILITY AND ENVIRONMENTAL INTERACTIONS STUDY

NATURAL ENVIRONMENTS

- NEUTRAL
- PARTICULATE
- RADIATION
- MAGNETIC FIELD
- PLASMA
- EM RADIATION

ENVIRONMENT PERGURBATIONS

- THRUSTER FIRINGS
- VENTS AND OUTGASSING
- INDUCED CURRENTS
- COUPLING OF EM WAVES
- PLASMA BEAMS
- PARTICULATES
- RAM/WAKE

ENVIRONMENT INDUCED PHENOMENA

- CHARGING
- ESD
- EMI
- HIGH VOLTAGE SURFACES
- SURFACE CONTAMINATION
- LONG TERM DEGRADATION

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division
Utilization & Operations Group
NASA Space Station Freedom Program Office, Reston, Virginia

INDUCED ENVIRONMENT NEAR LARGE SURFACES (ANDERSON [1984])

PARAMETERS	RAM	WAKE	COMMENT	EFFECT				
NEUTRAL DENSITY, Torr	105	107	MEASURED	HIGH VOLTAGE SHORTS, CONTAMINATION				
PLASMA DENSITY, cm 3	AS HIGH AS 5 x 10 ⁶	AS LOW AS 10	MEASURED	POWER LOSS, ARCING				
PLASMA WAVES	20 Hz - 300 KHz (22V/m) ² /MHz AT PEAK	row	MEASURED ELECTROSTATIC WAYES	EM BACKGROUND NOISE				
ENERGETIC PARTICLES	MEAN ENERGY OF ELECTRONS: 10 - 100 eV FLUX: -10 ⁸ /cm ² sec ster eV MEAN ENERGY OF IONS: 10 - 30 eV	LOW	HIGHER FLUXES PREDICTED; LITTLE NUMERICAL DATA PUBLISHED	PLASMA WAKE, DIFFERENTIAL CHARGING				
GLOW, PHOTONS (cm3s) †	10 ⁷ - 10 ⁸	LOW	GLOWING LAYER IN RAM 10-20 cm THICK	OPTICAL (IR) CONTAMINATION				

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division
Utilization & Operations Group
NASA Space Station Freedom Program Office, Reston, Virginia

POTENTIAL ENVIRONMENTALLY ACTIVE PAYLOADS

ASTROMAG (EARLY ATTACHED PAYLOAD CANDIDATE)

- ENERGY STORED BY MAGNETIC FIELD: 10 MEGA JOULES
- MAXIMUM MAGNETIC FIELD INTENSITY: 70,000 GAUSS
- FIELD CONFIGURATION: QUADRUPOLE, DECREASES TO EARTH'S MAGNETIC FIELD INTENSITY AT 15 METER DISTANCE

SOLAR TERRESTRIAL OBSERVATORY: PLASMA PHYSICS GROUP (LATER ATTACHED PAYLOAD CANDIDATE)

- ELECTRON BEAMS
- WAVE GENERATORS GROWTH VERSION UP TO 50 KW POWER REQUIREMENT

HIGH TEMPERATURE SUPERCONDUCTING MAGNETIC FIELD ENERGY STORAGE SYSTEM (CANDIDATE PAYLOAD ANTICIPATED)

· HIGH MAGNETIC FIELD INTENSITIES

ADVANCED ELECTRIC AND ELECTROMAGNETIC PROPULSION SUBSYSTEM TECHNOLOGY TESTS (CANDIDATE PAYLOAD ANTICIPATED)

HIGH MAGNETIC FIELD AND ELECTRIC FIELD INTENSITIES

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division
Utilization & Operations Group
NASA Space Station Freedom Program Office, Reston, Virginia

INDUCED ENVIRONMENTAL EFFECTS OF ACTIVE TECHNOLOGY PAYLOADS - TOP VIEW

SPACE STATION FREEDOM GROWTH CAPABILITIES / TECHNOLOGY PAYLOADS

SERVICING FACILITY

- REPAIR AND CONDUCT RESUPPLY AND REFUELING OPERATIONS FOR FREE FLYERS AND CO-ORBITING PLATFORMS
- EXTENSIVE REPAIR WORK FOR ATTACHED PAYLOADS
- ASSEMBLY OF UPPER STAGES AND PAYLOADS

LARGE SPACE CONSTRUCTION FACILITY

- LARGE CRANE FOR POSITIONING
- ADDITIONAL MOBILE ROBOTICS
- CAPABILITY TO ASSEMBLE LARGE ANTENNAS, PHASED-ARRAY OPTICAL SYSTEMS

CO-ORBITING PLATFORM, ADVANCED TECHNOLOGY TEST FACILITY

- USER-SUPPLIED OR STATION-SUPPLIED PLATFORM TO CONDUCT PARTIAL OR FULLUP TESTS OF ADVANCED PROPULSION AND POWER SYSTEMS
- TESTING OF TECHNOLOGY INVOLVING HAZARDOUS MATERIALS OR OPERATIONS OR REQUIRING ORBITAL DYNAMICS NOT SUPPORTED BY THE STATION

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division Utilization & Operations Group NASA Space Station Freedom Program Office, Reston, Virginia

SKP TRUSS DERIVATIVE CONFIGURATION (WITH HRSO)

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division
Utilization & Operations Group
NASA Space Station Freedom Program Office, Reston, Virginia

Assembly of Large Deployable Reflector - I

Assembly of Large Deployable Reflector - II

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division
Utilization & Operations Group
NASA Space Station Freedom Program Office, Reston, Virginia

SPACE STATION WITH CANDIDATE MANNED MARS CONFIGURATION

Manned Mars Accommodation Study PROPELLANT TANK FARM

CO-ORBITING PROPELLANT TANK FARM RECOMMENDED TO STORE AND TRANSFER PROPELLANTS FOR MANNED MARS MISSION

CAPACITY

1./9 M LB H, - O,

12 TANKS 16' X 60'

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division
Utilization & Operations Group
NASA Space Station Freedom Program Office, Reston, Virginia

Space Station User Integration Process

SPACE STATION FREEDOM
UTILIZATION & OPERATIONS

SSU

Process Description

- SCOPE
 - ♦ End to End User Integration is the Process Which:
 - ▼ Enables a User to Conduct Research, Development or Commercial Activities on the Station.
 - ▼ Includes All Interactions Between the SSP and the User/User Sponsors
 - ▼ External Activities Beginning with the User's Initial Contact With the SSP and Continuing Until Exit from the Program.
 - ♦ The Integration Process Shall Provide a "Level Playing Field", with Payloads having similar Physical and Operational Requirements following the Same Path.

Space Station User Integration Process

SPACE STATION FREEDOM
UTILIZATION & OPERATIONS

SSU

Process Description

- PROCESS DEVELOPMENT GOAL:
 - ◊ Provide a Process for User Integration Which:
 - ▼ Supports a Diverse User Community, Including Rapid Response Research (QIB)
 - ▼ Enables high priority research and development supporting national objectives and future missions.
 - **▼ Minimizes the Burden on the Users** (Data, Meetings,etc.)
 - ▼ Provides single point of contact for Shuttle and Station Integration
 - ▼ Does Not Compromise Safety
 - ▼ Incorporates Lessons Learned from Past Programs
 - ▼ Recognizes Constraints Imposed by the Physical Requirements of Payload Integration

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User integration Division
Utilization & Operations Group
NASA Space Station Freedom Program Office, Reston, Virginia

Space Station User Integration Process

SPACE STATION FREEDOM
UTILIZATION & OPERATIONS

SSIJ

Integration Process Overview

· Consider as Multiple Processes:

♦ Payload Accommodation Assessment

- Verify station or platform capabilities can accommodate payload requirements
- Identify deficiencies and potential station enhancements or potential reduction in payload requirements required

♦ Payload Development

- Payload DDT&E Conducted by Developer, PI
- Driven by Experiment Goals, Development Resources

♦ Analytical Integration

- Engineering Analysis (Loads, Thermal, EMI, Contam., etc.)
- Verify S/W Design
- Analytical Support of Certification/Verification

◊ Payload Integration, Test & Verification

- Safety Certification
- Verify P/L Design for Transportation, On-orbit Ops
- Ensure that P/L Ops, Failures Will Not Endanger Crew, Station, Other Payloads (FMEA's, Failure Propagation, Debris Impacts, Etc.)

♦ Physical Integration

- Perform Required P/L to Rack, Carrier Integration

♦ Payload Operations

- On-orbit Payload Installation & C/O
- Conduct Experiment Runs, Gather Data
- Telescience & On-orbit Control
- Safing, Deintegration & Return to Developer
- ♦ Post Flight Debriefing, Lessons Learned, and Data Analysis

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division
Utilization & Operations Group
NASA Space Station Freedom Program Office, Reston, Virginia

Space Station User Integration Process

SPACE STATION FREEDOM
UTILIZATION & OPERATIONS

SSU

User Support Features

- **◊ Standardized Flows for Payload Classes**
 - Payloads Integration Flows Optimized for Level of P/L Complexity
 - Streamlined Flows for Rapid Response Research Payloads
 - Payloads Meet Pre-defined Constraints
 - Users of Existing Facilities
- Payload Accommodations Manager
 - Single Point of Contact Between User/Sponsor & SSP
 - · Assists User During All Phases After Selection
- ♦ Science & Technology Centers
 - · Conduct Tests, Modelling, Physical Integration for User
 - Both Gov't and Commercial (NASA Approved) Entities
- **Payload Operations**
 - · Payload Operations Conducted by User (Telescience)
 - Overall Coordination, Safety Monitoring Provided by POIC
 - Distributed User Locations
- **◊ Computer Supported Document Preparation, Reviews**
 - Use of Expert Systems as Appropriate ("Smart Documents")

Space Station User Integration Process

SPACE STATION FREEDOM
UTILIZATION & OPERATIONS

SSIJ

"Beat The System"

- **TWO PATHS TO SIMPLE INTEGRATION, RAPID FLIGHTS**
 - Use an Existing "Facility Class Payload"
 - ¶ Freedom is a Long Duration "Orbital International Research and Development Lab"
 - Analogous to: Argonne National Laboratory, LaRC, Kitt Peak, LeRC, etc.
 - ¶ Major Facilities and Lab Support Equipment Available:
 - Truss Payload Accommodation Equipment, Payload System, Mobile Servicing Center, Flight Telerobotic Servicer, SS Furnance Facility, EVA Servicing, Glovebox, etc.
 - ¶ Use of Existing Facilities Requires Integration of Sample, Procedures: No DDT&E, Certification of Unique Hardware
 - Design/Build an "R3" Payload
 - ¶ "R³" = Rapid Response Research: Payloads Defined to Established Guidelines (extension of GAS, STS Mid deck):
 - ¶ Simple, Standard Interfaces
 - Modest Resource Requirements
 - ¶ Standard Req'ts for Safety, Physical Integration, Crew Support
 - ¶ Both Internal and External

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division
Utilization & Operations Group
NASA Space Station Freedom Program Office, Reston, Virginia

Space Station User Integration Process

SPACE STATION FREEDOM
UTILIZATION & OPERATIONS

SSU

User/Payload Integration Complexity

Longest Duration (2 - 5 Years)

◊ User Designs/Supplies Facility Class (Multiple User) Payload for Station

♦ User Designs/Supplies Standard (Single User) Payload for Station

- ◊ User Modifies Facility P/L Hardware, Software and Operations and Provides Samples, Specimens
- ♦ User Designs/Supplies R Payload
- User Modifies Existing Facility Payload Software and Operations, Provides Samples

Shortest Duration

User Modifies Facility Operations and Provides Samples, Consumables

Most Complex

Least Complex

Space Station User Integration Process

to/from Orbit

SPACE STATION FREEDOM
UTILIZATION & OPERATIONS

SSU

Existing Facilities Use Dominates Mature Operations

Traditional "Payload/Mission Integration" for hardware being shipped

"Reconfiguration" of on-Orbit Facilities/Payloads to support Multiple User Operations (includes shipment/changeout/use of technology units, specimens, samples and consumables)

Executive Summary

Space Station Freedom User/Payload Integration & Accommodations

Alan C. Holt, Deputy Director (Acting), User Integration Division
Utilization & Operations Group
NASA Space Station Freedom Program Office, Reston, Virginia

SPACE STATION FREEDOM TECHNOLOGY PAYLOAD ACCOMMODATION

- PROVIDES FOR MULTIPLE TYPES AND SIZES OF TECHNOLOGY R.&D. OPPORTUNITIES
 - QUIET AND ACTIVE ENVIRONMENTAL CONDITION PERIODS CAN BE SCHEDULED
- SPACE STATION FREEDOM, TOGETHER WITH CO-ORBITING PLATFORM TEST FACILITIES, CAN FUNCTION AS A MAJOR TEST BED FACILITY
 - TO SUPPORT INTERPLANETARY SPACECRAFT R.&D.
 - TO SUPPORT LUNAR/MARS BASE TECHNOLOGY AND SYSTEMS R.&D.
- SPACE STATION FREEDOM USER INTEGRATION AND PAYLOAD ACCOMMODATION PROCESSES WILL BE ESTABLISHED
 - TO INSURE RAPID AND SUCCESSFUL INTEGRATION OF TECHNOLOGY PAYLOADS
 - WILL ENABLE "SKUNK WORKS" R.&D. IN SPACE.

INSTEP88 Workshop OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Executive Summary

CRITICAL IN-SPACE TECHNOLOGY NEEDS Space Structures

Martin Mikulas, Jr. Langley Research Center Hampton, Virginia

THEME ELEMENT #1: STRUCTURES

- 1. SYSTEM IDENTIFICATION
 - QUASI-STATIC
 - DYNAMIC
- 2. VERIFICATION OF PREDICTION METHODS
- 3. ERECTABLE STRUCTURES CONSTRUCTION
- 4. PRECISION SENSOR DEVELOPMENT
- 5. STRUCTURAL INTEGRITY

THEME ELEMENTS #2 & 3 : CONTROL/STRUCTURE INTERACTION & CONTROLS (COMBINED).

- 1. FLEXIBLE MULTI-BODY/ARTICULATED CONTROL
- 2. PRECISION POINTING AND SHAPE DIMENSIONAL CONTROL
- 3. MULTIPLE INTERACTING CONTROL SYSTEM
- 4. DAMPING AND VIBRATION SUPPRESSION
- 5. VIBRATION ISOLATION

• RECOMMENDATIONS: EXPERIMENTS SHOULD BE MULTIDICIPLINARY IN NATURE
AND PREFERABLY IN THE FORM OF REUSABLE TEST BEDS...

Executive Summary

CRITICAL IN-SPACE TECHNOLOGY NEEDS Space Environmental Effects

Lubert J. Leger Johnson Space Center Houston, Texas

THEME ELEMENT *1: ATMOSPHERIC EFFECTS AND CONTAMINATION

- 1. ACTIVE MEASUREMENT OF ATMOSPHERIC CONSTITUENTS SUCH AS ATOMIC OXYGEN, TO SUPPORT STUDIES OF ALL ATMOSPHERIC INTERACTION PHENOMENA
- 2. GLOW PHENOMENA INFORMATION TO SUPPORT SENSOR DESIGN
- 3. CONTAMINATION EFFECTS AND ATOMIC OXYGEN EROSION DATA FOR MATERIAL DURABILITY ASSESSMENT FUNCTIONAL PERFORMANCE PREDICTION AND MODEL DEVELOPMENT AND VERIFICATION

THEME ELEMENT #2: MICROMETEOROID AND DEBRIS

- 1. CHARACTERIZATION OF THE LOW EARTH ORBIT DEBRIS ENVIRONMENT
 - PARTICLE SIZE DISTRIBUTION
 - MORE INFORMATION ON DEBRIS CHARACTERISTICS SPECTRAL PROPERTIES, SHAPE, COMPOSITION
- 2. LONG TERM SURFACE DEGRADATION FROM DEBRIS
- 3. DEVELOP AND VERIFY COLLISION WARNING SYSTEMS TECHNOLOGY
- 4. EVALUATE AND VERIFY MITIGATION TECHNIQUES

THEME ELEMENT #3: CHARGED PARTICLES & ELECTROMAGNETIC RADIATION EFFECTS

- 1. BETTER CHARACTERIZATION OF RADIATION ENVIRONMENT IN POLAR REGION AND VAN ALLEN RADIATION BELTS & ASSOCIATED WITH SOLAR FLARE ACTIVITY
- 2. LONG TERM, CONTINUOUS MEASUREMENTS OF MATERIAL PHYSICAL AND ELECTRICAL PROPERTIES IN CRITICAL ORBITS FOR UNDERSTANDING OF INTERACTION MECHANISM AND VALIDATION OF GROUND BASED TESTING
- 3. DETERMINE THE EFFECTS OF GAS RELEASES IN LEO ON ELECTROMAGNETIC INTERACTIONS
- 4. DEVELOPMENT OF SIMPLE SMALL AUTONOMOUS SENSORS FOR MEASUREMENT OF SURFACE CHARGING, RADIATION EXPOSURE AND ELECTRIC FIELDS

Executive Summary

CRITICAL IN-SPACE TECHNOLOGY NEEDS Power Systems and Thermal Management

Roy McIntosh Goddard Space Flight Center Greenbelt, Maryland

THEME ELEMENT #1: DYNAMIC AND NUCLEAR POWER SYSTEMS

- 1. GAS COLLECTION AND RETENTION IN LIQ COOLANTS
- 2. FREEZE/THAW IN LIQ METAL SYSTEMS
- 3. GAS BUBBLE NUCLEATION/GROWTH IN LIQ METALS
- 4. TWO COMPONENT (SOLID/LIQUID) PUMPING/SEPARATION
- 5. TWO PHASE LIQ/GAS SEPARATION IN COOLANTS

THEME ELEMENT #2: CONVENTIONAL POWER SYSTEMS

- 1. ADVANCED ENERGY STORAGE
- 2. ADVANCED P.V. CELL TECHNOLOGY
- 3. PRIMARY & REGENERATIVE FUEL CELLS
- 4. THERMAL ENERGY STORAGE
- 5. CONTAMINATION, UV & CHARGED PARTICLE PV EFFECTS

THEME ELEMENT #3: THERMAL MANAGEMENT

- 1. TWO-PHASE HEAT TRANSFER
- 2. HEAT PIPES (LIQUID METAL & CRYO)
- 3. CAPILLARY LOOPS
- 4. TWO-PHASE FLOW & STABILITY
- 5. VOID BEHAVIOR FLIGHT TEST

Executive Summary

CRITICAL IN-SPACE TECHNOLOGY NEEDS Fluid Management and Propulsion Systems

Lynn Anderson Lewis Research Center Cleveland, Ohio

THEME ELEMENT #1: ON-ORBIT FLUID MANAGEMENT

- 1. FLUID TRANSFER
- 2. MASS GAUGING
- 3. THERMODYNAMIC VENT SYSTEM/MIXING
- 3. LIQUID ACQUISITION DEVICES
- 3. FLUID DUMPING/TANK INERTING
- 4. LIQUID DYNAMICS/SLOSH
- 5. AUTOGENOUS PRESSURIZATION
- 5. LONG TERM STORAGE

THEME ELEMENT #2: PROPULSION

- 1. PLUME IMPACTS & CHARACTERISTICS
- 2. ELECTRIC PROPULSION SPACE TEST
- 3. MULTIDISCIPLINE SPACE TEST BED

THEME ELEMENT #3 : FLUID PHYSICS

- 1. LIQUID-VAPOR INTERFACES
- 2. POOL/FLOW BOILING
- 2. CONDENSATION/EVAPORATION
- 3. ADVANCING LIQUID FRONTS
- 3. BUBBLE/DROPLET DYNAMICS

Executive Summary

CRITICAL IN-SPACE TECHNOLOGY NEEDS Automation and Robotics

Antal K. Bejczy
Jet Propulsion Laboratory
Pasadena, California

THEME ELEMENT #1: ROBOTIC SYSTEMS

- 1. ACTIVE/PASSIVE COMPLIANCE CONTROL AND PRECISION CONTROL IN SMART END EFFECTOR-TOOL-OBJECT INTERACTION
- 2. DISTURBANCE REJECTION AND STABILIZATION IN ROBOT/PLATFORM COUPLING DYNAMICS
- 3. SENSOR-CORRECTED PLANNED MOTION EXECUTION, INCLUDING COLLISION DETECTION AND AVOIDANCE
- 4. ADAPTIVE CONTROL COORDINATION OF MULTIPLE ARM/END EFFECTOR SYSTEMS
- 5. FAST, HIGH BANDWIDTH AND SMALL-VOLUME CONTROL AND DATA PROCESSING ELECTRONICS

THEME ELEMENT #2: TELEOPERATIONS

- 1. OPERATOR INTERACTION IN MICRO-G WITH FORCE-REFLECTING CONTROL
- 2. CONTROL TECHNIQUES FOR COMMUNICATION TIME DELAY CONDITIONS
- 3. OPERATOR MULTI-MODE MANUAL AND SUPERVISORY CONTROL INTERACTION WITH REMOTE MANIPULATORS
- 4. INTELLIGENT INFORMATION FUSION DISPLAY SYSTEMS
- 5. OPERATOR PERCEPTIVE/COMMAND INTERACTION WITH HIGH DEGREE OF FREEDOM ARM/END EFFECTOR SYSTEMS

THEME ELEMENT #3: ARTIFICIAL INTELLIGENCE

- 1. FAULT DETECTION AND PROCESSING SYSTEMS
- 2. LARGE INPUT/OUTPUT SENSOR AND SENSOR FUSION SYSTEMS
- 3. INTEGRATED MODEL AND DATA SENSING INFORMATION SYSTEMS
- 4. CONTINGENCY MANAGEMENT SYSTEMS
- 5. PARALLEL, INTEGRATED SYMBOLIC AND NUMERIC DATA PROCESSING AND INTELLIGENT OPERATING SYSTEMS

Executive Summary

CRITICAL IN-SPACE TECHNOLOGY NEEDS Sensors and Information Systems

Martin M. Sokoloski, NASA Hqs and John Dalton, Goddard Space Flight Center

THEME ELEMENT #1: SENSORS

- 1. SPACE QUALIFIED COOLER AND COOLER SYSTEMS
- 2. IN-SPACE POINTING AND CONTROL

THEME ELEMENT #2: COMMUNICATIONS

1. IN-SPACE LASER COMMUNICATIONS TECHNOLOGY DEMO.

THEME ELEMENT #3: INFORMATION SYSTEMS

- 1. IN-SPACE TESTING/DEMONSTRATION OF HIGHER PERFORMANCE COMPUTERS FOR AUTOMATED OPERATIONS AND ROBOTICS APPLICATIONS
- 2. IN-SPACE TESTING/DEMONSTRATION OF SPECIAL PURPOSE PROCESSORS (e.g., FROM THE CSTI HIGH RATE DATA SYSTEMS PROGRAM) FOR IMAGE COMPRESSION/PROCESSING FOR SCIENCE EXPERIMENTS AND ROBOTICS APPLICATIONS
- 3. IN SPACE TESTING OF HIGH RATE/VOLUME STORAGE DEVICES FOR IMAGE DATA PROCESSING AND COMMUNICATION LINK BUFFERING
- 4. IN SPACE TESTING AND CHARACTERIZATION OF RADIATION EFFECTS OF NEXT GENERATION COMMERCIAL AND RADIATION HARDENED DEVICES IN VARIOUS ORBTS FOR GENERAL SPACECRAFT AND INSTRUMENT APPLICATIONS

Executive Summary

CRITICAL IN-SPACE TECHNOLOGY NEEDS In-Space Systems

Jon B. Haussler Marshall Space Flight Center Huntsville, Alabama

THEME ELEMENT #1: MATERIALS PROCESSING

- 1. UNDERSTANDING OF MATERIALS BEHAVIOR IN SPACE ENVIRONMENT
- 2. DEMONSTRATION OF INNOVATIVE IN-SPACE SAMPLE ANALYSIS TECHNIQUES
- 2. CHARACTERIZATION AND MANAGEMENT OF THE MICRO-G ENVIRONMENT
- 3. DEMONSTRATION OF IMPROVED SENSING AND IMAGING TECHNIQUES IN EXPERIMENTAL SYSTEMS
- 4. DEMONSTRATION OF AUTOMATION AND ROBOTICS APPLICATIONS TO MATERIAL PROCESSING SYSTEMS

THEME ELEMENT #2: MAINTENANCE, REPAIR, AND FIRE SAFETY

- 1. DEMONSTRATION AND VALIDATION OF CAPABILITY TO REPAIR UNEXPECTED EVENTS
- 1. INVESTIGATION OF LOW-G IGNITION, FLAMMABILITY/FLAME SPREAD AND FLAME CHARACTERISTICS
- 2. DEMONSTRATION AND VALIDATION OF FLUID REPLENISHMENT TECHNIQUES
- 2. UNDERSTAND BEHAVIOR OF FLAME EXTINQUISHANTS IN SPACE ENVIRONMENT
- 3. DEMONSTRATE ROBOTIC MAINTENANCE AND REPAIR CAPABILITY

THEME ELEMENT #3: PAYLOAD OPERATIONS

- 1. DEMONSTRATION AND VALIDATION OF TELESCIENCE TECHNIQUES
- 2. DEMONSTRATION OF AUTONOMOUS CHECKOUT, PLACEMENT AND SPACE CONSTRUCTION

Executive Summary

CRITICAL IN-SPACE TECHNOLOGY NEEDS Humans in Space

Remus Bretol
Ames Research Center
San Jose, California

THEME ELEMENT #1: EVA / SUIT

- 1. TECHNOLOGY FOR MEASUREMENT OF EVA FORCES, MOMENTS, DYNAMICS, PHYSIOLOGICAL WORKLOAD, THERMAL LOADS, AND MUSCULAR FATIGUE
- 2. EVALUATION OF COOPERATIVE ROLES BETWEEN EVA AND TELEROBOTS AND FOR IVA AND ROBOTICS
- 3. SUIT CONTAMINANTS DETECTION, IDENTIFICATION AND REMOVAL

THEME ELEMENT #2: HUMAN PERFORMANCE

- 1. TECHNOLOGY AND MEASUREMENT OF GRAVITY-RELATED ADAPTATION AND RE-ADAPTATION BEHAVIOR
- 2. TECHNOLOGY FOR IN-SPACE ANTHROPOMETRIC AND PERFORMANCE MEASUREMENT
- 3. VARIABLE GRAVITY FACILITY AND APPLICATION TECHNOLOGY

THEME ELEMENT #3: CLOSED-LOOP LIFE SUPPORT

- 1. IMPROVED PHASE SEPARATION SYSTEMS
- 2. GRAVITY-INDEPENDENT SENSOR SYSTEMS
- 3. WASTE-CONVERSION PROCESSES

This Page Intentionally Blank

(Section) That the All Conference of the Confere

INSTEP88 Workshop OAST Technology For the Future
Part 1: Executive Summary & Experiment Descriptions **Experiment Descriptions Out-Reach** n-Reach In-Reach / Out-Reach Program In-Reach / Out-Reach Experiments and Experiment Integration Process

OAST Technology For the Future

Part 1: Experiment Descriptions & Experiment Descriptions

Experiment Descriptions

Out-Reach

SPACE STRUCTURES

Out-Reach

In-Space Structural Dynamics: Evaluation of a Skewed Scale Truss

James H. Peebles

McDonnell Douglas Astronautics, Space Station Division Contract: NAS1-18688, NASA Langley Research Center, Stanley E. Woodard

EXPERIMENT OBJECTIVE

Define a flight experiment for a hybrid scaled truss in the Orbiter's cargo bay. This experiment may be used to:

- Validate analytical techniques for predicting nonlinear dynamic behavior in truss structures
- Validate Hybrid Scale theory
- Validate 1g ground test techniques
- Address other technology issues

BACKGROUND/TECHNOLOGY NEED

- Many space truss structures envisioned for the future will be too large to dynamically test in full-scale on the ground
- Truss joints can dominate dynamic behavior and are not easily scaled due to their complexity
- Nonlinear characteristics in joints, such as free play, nonlinear stiffness, damping, and friction can only reasonably be simulated in a 0g space environment
- Analytical methods for predicting nonlinear behavior and damping need to be validated
- ••• A hybrid scaled truss with full-size joints and subscale struts offers a smaller, more manageable structure for dynamic testing on the ground and in space. The truss will be used to validate analytic predictive methods, ground test techniques, the hybrid scale concept, and investigate other important technology issues.

OAST Technology For the Future

Part 1: Experiment Descriptions & Experiment Descriptions

Experiment Descriptions

Out-Reach

SPACE STRUCTURES

Out-Reach

In-Space Structural Dynamics: Evaluation of a Skewed Scale Truss

James H. Peebles

McDonnell Douglas Astronautics, Space Station Division
Contract: NAS1-18688, NASA Langley Research Center, Stanley E. Woodard

EXPERIMENT DESCRIPTION

- 1g ground test multi-bay erectable truss with short struts and full-size loints (Hybrid Scaled)
- 0g flight test truss and correlate with ground test results
- Validate analytical predictive techniques for nonlinear response and damping
- Investigate other technology Issues
 - Instrumentation performance
 - Disturbance propagation
 - Damaged or damped members
 - Utilities/payload integration
 - EVA time lines
 - Long-term exposure test bed

EXPERIMENT DESCRIPTION Flight **Ground Test** Structura Dynamic Excitation Analytical Methods **Validation** Activities + . Base or Tip Excitation Single Instrumentation Hybrid Scale Disturbance Propagation Concept Replace Member and Rerun Same Test + Damaged - Damped Analysis Similar to Ground Other Technology Utilities Integration FVA Time Lines issues · Free-Flying Test Bed for

INSTEP88 Workshop OAST Technology For the Future Part 1: Experiment Descriptions & Experiment Descriptions **Experiment Descriptions** SPACE STRUCTURES **Out-Reach Out-Reach** In-Space Structural Dynamics: Evaluation of a Skewed Scale Truss James H. Peebles McDonnell Douglas Astronautics, Space Station Division Contract: NAS1-18688, NASA Langley Research Center, Stanley E. Woodard **SCHEDULE** WORK STATEMENT repose support structure sensepter Leunch, On-Orbit Test, Ground Test.

INSTEP88 Workshop **OAST Technology For the Future**

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

Space Structures

Out-Reach

Middeck 0-Gravity Experiment (MODE)

Prof. Edward F. Crawley and Dr. David W. Miller

MIT, Dept. of Aeronautics & Astronautics, Space Engineering Research Center Contract: NAS1-18690, NASA Langley Research Center, Dr. Garnett Horner

OBJECTIVES OF MODE

INVESTIGATE DYNAMICS OF TWO ASPECTS OF NONLINEAR SPACECRAFT DYNAMIC SYSTEMS WHICH ARE GRAVITY **DEPENDENT**

- MODE I Dynamics of a partially filled fluid tank as it

interacts with flexible vehicle motions.

Needed to verify modeling of large mass fraction

fluid storage system.

Nonlinear contribution of joints of statically - MODE II

indeterminate truss structure to damping

and modal structure.

Needed to verify structural modeling techniques

for use with precision/active structure.

BACKGROUND TO MODE

MODE I - FLUID/STRUCTURE INTERACTION

- Linearized and nonlinear fluid models already developed consider large motion of highly curved free surface.
- Extensive 1-g testing at M.I.T.
- Extensive short term 0-g testing on KC-135.
- Twenty seconds of +/- 0.02 g environment not sufficient.

MODE II - NONLINEAR TRUSS STRUCTURE

- Linearized and nonlinear models already developed include contribution of material damping and joint nonlinearity
- Extensive 1-g and vacuum testing at M.I.T.
- Short term 0-g testing in M.I.T. ASTROVAC
- Require zero gravity pre-load/long duration to study lightly damped/on-orbit behavior

Experiment Descriptions

Out-Reach

Space Structures Middeck 0-Gravity Experiment (MODE)

Out-Reach

Prof. Edward F. Crawley and Dr. David W. Miller

MIT, Dept. of Aeronautics & Astronautics, Space Engineering Research Center Contract: NAS1-18690, NASA Langley Research Center, Dr. Garnett Horner

MIDDECK EXPERIMENT

EXPERIMENTAL HARDWARE

- ESM: Experimental support module provides capabilities typical of a dynamic test facility in single middeck locker
- Two test articles, MODE I & II, deployed and tested in Middeck.

TEST ARTICLES

MODE I

Cylindrical tank
coupled to a one DOF
dynamic system

MODE II

Hybrid scale model erectable truss

OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

Space Structures Middeck 0-Gravity Experiment (MODE)

Out-Reach

Prof. Edward F. Crawley and Dr. David W. Miller

MIT, Dept. of Aeronautics & Astronautics, Space Engineering Research Center Contract: NAS1-18690, NASA Langley Research Center, Dr. Garnett Horner

TIMELINE

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
88												START
'89					PFER	PDR/ FER				CDR		
. 9 0									CREW TRAIN			
191		PPDR			DE- LIVER		FLIGHT		•			
92	FINAL REPORT	PMER										

PFER: Preliminary Flight Experiment Review

FER: Flight Experiment Review PPDR: Payload Pre-Delivery Review PMER: Post Mission Experiment Review

SUMMARY

- Since each of the phenomena under study is fundamentally influenced by gravity, experiments must be done in zero gravity
- All available Earth based simulations of zero gravity have already been exploited
- These experiments compliment programs of near term interest to NASA.
- Involvement of corporate participants, Boeing Aerospace and McDonnell Douglas, assures relevance of experiment and dissemination of technology

Experiment Descriptions

Out-Reach

SPACE STRUCTURES

Out-Reach

Experiment Definition Phase for Measurement and Modeling of Joint Damping in Space Structures

S.L. Folkman and F.J. Redd

Utah State University, Center for Space Engineering Contract: NAS1-18682, NASA Langley Research Center, Mark Lake

Experiment Objective

The objective is to build an experiment which will measure the influence of gravity on structural damping of a truss structure.

- A three-bay subscale truss will be constructed.
- The truss and the joints used will be similar to those proposed for the Space Station.
- Ground-based testing will measure damping with 1-g loads.
- Fly as Get Away Special experiment to get micro-gravity damping.
- Results will provide qualitative data on the influence of gravity on damping.

Background/Technology Need

Predicting the amount of damping expected in large space structures is expected to be difficult.

- Joints holding the structure together will produce some damping.
- The amount of damping produced by joints is dependent on several variables.
- Damping can be gravity dependent in a truss with pinned joints.
- On-ground damping measurements may be in error due to gravity loads.
- A data base of in-orbit and on ground tests is needed to permit better predictions of damping for other structures.

OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

SPACE STRUCTURES

Out-Reach

Experiment Definition Phase for Measurement and Modeling of Joint Damping in Space Structures

S.L Folkman and F.J. Redd

Utah State University, Center for Space Engineering Contract: NAS1-18682, NASA Langley Research Center, Mark Lake

Experiment Description

The experiment consists of a three-bay truss and associated hardware for truss excitation and measurement of oscillations.

- The experiment fits inside a 5 cubic foot Get Away Special Cannister.
- Cantilevered truss with a tip mass to reduce the resonant frequency.
- Cannister vented to space to eliminate air damping.
- Truss excitation will induce bending modes in two directions or a torsional mode.
- Means for tip mass support during launch and reentry will be provided.

Previous Experiments

An experiment has been constructed to measure damping of a tetrahedral truss with pinned joints.

- One of 6 experiments to fly as a GAS Payload.
- Very small project budget.
- Damping is gravity dependent

Experiment Descriptions

Out-Reach

SPACE STRUCTURES

Out-Reach

Experiment Definition Phase for Measurement and Modeling of Joint Damping in Space Structures

S.L Folkman and F.J. Redd

Utah State University, Center for Space Engineering Contract: NAS1-18682, NASA Langley Research Center, Mark Lake

Prototype truss design

As part of the Experiment Definition Phase we are constructing a truss for ground testing.

- 3 Bay truss.
- First bay uses 1/4 scale joints made by Star+Net Structures.
- An inexpensive bolted joint is used elsewhere.
- Ground tests will examine the influence of gravity on damping.

OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

SPACE STRUCTURES

Out-Reach

Payload Vibration Isolation in Microgravity Environment

Carl H. Gerhold and Richard M. Alexander

Texas A&M University, Mechanical Engineering Department

Contract: NAS9-17972, Johnson Space Center, A.R. Rocha, Loads & Dynamics Branch

EXPERIMENT OBJECTIVE:

- Develop both passive and active techniques to isolate sensitive payloads from shock and vibration.
- Demonstrate candidate methodologies in low-gravity simulator.

BACKGROUND/TECHNOLOGY NEED

Experiments and processes in laboratory module require microgravity. Vibration excited by adjacent experiments or crew activity can contaminate the low-gravity environment and degrade the usefulness of the experiment or process.

- Study will identify vibration isolation techniques for rigid body payload.
- · Can verify methodology concept in one-"g" environment.
- Working model design verification requires shuttle flight.

OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

SPACE STRUCTURES

Out-Reach

Payload Vibration isolation in Microgravity Environment

Carl H. Gerhold and Richard M. Alexander

Texas A&M University, Mechanical Engineering Department

Contract: NAS9-17972, Johnson Space Center, A.R. Rocha, Loads & Dynamics Branch

EXPERIMENT DESCRIPTION:

- Low-gravity is simulated in the horizontal plane with a cart supported on airbearing pads.
 - The cart rides on a film of air above a smooth, flat marble surface.
 - Motion of the test payload is measured using an ultrasonic sensor.
- Candidate isolation techniques are evaluated in terms of transmission ratio for harmonic and impulsive excitations.
 - · Passive isolation
 - · Utilize existing theory
 - Design for isolation = 99.9975%
 - Active Method
 - · Payload floats in enclosure
 - · Control system keeps payload centered

OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

SPACE STRUCTURES

Out-Reach

Payload Vibration Isolation in Microgravity Environment

Carl H. Gerhold and Richard M. Alexander

Texas A&M University, Mechanical Engineering Department

Contract: NAS9-17972, Johnson Space Center, A.R. Rocha, Loads & Dynamics Branch

MEASURED VIBRATION RESPONSE

RESPONSE ESTIMATED BY AWALYTICAL MODEL

INSTEP88 Workshop OAST Technology For the F

OAST Technology For the Future
Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

SPACE STRUCTURES Generic Pointing Mount

Out-Reach

Robert W. Bosley

Allied/Signal Aerospace Co., Airesearch Los Angeles Division Contract: NAS1-18685, Langley Research Center, Sharon S. LaFleur

CONCLUSIONS:

- Vibration control demonstrated
 - · System has one degree of freedom
 - · Passive system can meet impulse criterion
 - Digital controller developed for active system
- · Analytical model developed
 - Verified by experiment
 - · Will be used to develop control system parameters

SCHEDULE

		'88											
I.	Background	J	J	A	S	0	N	D	J	F	M	A	M
	A. Develop/Refine Isolation Criteria	_											
II.	Passive Methods												
	A. Select Candidate Techniques												
	B. Develop Design Parameters			-									
	C. Fabricate Samples & Evaluate				_								
III.	Active Methods												
	A. Select Candidate Technique				_								
	B. Develop Design Parameters					_							
	C. Fabricate and Test										_		_
IV.	Experiment Facility												
	A. Fabricate 1 DOF System	_		_									
	R Modify for Plane Motion												

NSTEP88 Workshop

OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

SPACE STRUCTURES Generic Pointing Mount

Out-Reach

Robert W. Bosley

Allied/Signal Aerospace Co., Airesearch Los Angeles Division Contract: NAS1-18685, Langley Research Center, Sharon S. LaFleur

EXPERIMENTAL OBJECTIVE

CHARACTERIZE THE PERFORMANCE CAPABILITIES OF A GENERIC POINTING MOUNT DESIGNED TO ISOLATE VIBRATION AND AIM INTERCHANGEABLE PAYLOADS OVER LARGE ARTICULATION ANGLES.

THIS EXPERIMENT WILL:

- VERIFY THE ABILITY OF ADVANCED MAGNETIC SUSPENSIONS TO:
 - ELIMINATE THE NEED FOR MECHANICAL GIMBALS
 - OPERATE OVER LARGE ARTICULATION ANGLES
 - IMPLEMENT ADAPTIVE CONTROL LAWS
 - UTILIZE ARTIFICIAL INTELLIGENCE SCHEMES
- ESTABLISH DESIGN/PERFORMANCE DATA BASE FOR THE NEXT GENERATION OF GENERIC POINTING MOUNTS

CURRENT SPACE DEPLOYABLE POINTING TECHNOLOGY

INSTEP88 Workshop

OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

SPACE STRUCTURES Generic Pointing Mount

Out-Reach

Robert W. Bosley

Allied/Signal Aerospace Co., Airesearch Los Angeles Division Contract: NAS1-18685, Langley Research Center, Sharon S. LaFleur

TECHNOLOGIES/FEATURES USED BY THE GENERIC POINTING MOUNT:

- UTILIZES ADVANCED MAGNETIC SUSPENSION/BEARING TECHNOLOGY IN LIEU OF MECHANICAL GIMBALS FOR ARTICULATION
- AUTOMATICALLY MEASURES THE MASS, MOMENTS OF INERTIA, RESONANT FREQUENCIES, RESONANT MODE SHAPES, AND VIBRATION DAMPING REQUIREMENTS OF EACH PAYLOAD
- AUTOMATICALLY OPTIMIZES THE MAGNETIC SUSPENSION AND POINTING/TRACKING SERVOSYSTEM CONTROL LAWS TO MATCH EACH PAYLOAD
- OPTIMIZES THE CONTROL LAWS IN REAL TIME FOR SIMULTANEOUS CONVERGENCE OF POSITION, VELOCITY, AND ACCELERATION ERRORS
- TRANSFERS POWER AND DATA ACROSS THE MAGNETIC SUSPENSION GAP WHILE EXPERIENCING LARGE ARTICULATION ANGLES

INSTEP88 Workshop OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

SPACE STRUCTURES Generic Pointing Mount

Out-Reach

Robert W. Bosley

Allied/Signal Aerospace Co., Airesearch Los Angeles Division Contract: NAS1-18685, Langley Research Center, Sharon S. LaFleur

DIMENTE PEPERBRANCE OF PROMETICALLY SUSPENDED TIP TILT MIPPOP MEDIOD DIMENTER IS 14 THINES . METON OF MIPPOR THEORY IS 100 HOUND. METON OF MIPPOR TO MED ACUTOR METON OF MEDION OF METON OF METO

SIX ORDERS OF MAGNITUDE ERROR REDUCTION WITH NO OVERSHOOT/UNDERSHOOT

DYMANIC FERFORMANCE OF MACHETICALLY SUSPENDED IF TILT HIPPAR IN 1850 POINTS TO 15 14 INCHE THE PROPERTY OF THE

SIX ORDERS OF MAGNITUDE ERROR REDUCTION WITH NO OVERSHOOT/UNDERSHOOT

Experiment Descriptions

Out-Reach

SPACE STRUCTURES Generic Pointing Mount

Out-Reach

Robert W. Bosley

Allied/Signal Aerospace Co., Airesearch Los Angeles Division Contract: NAS1-18685, Langley Research Center, Sharon S. LaFleur

EXPERIMENT DESCRIPTION:

- THE SPACE BASED POINTING MOUNT MODULE WILL BE COMPRISED OF:
 - THE MAGNETICALLY SUSPENDED AND CONTROLLED GENERIC POINTING MOUNT
 - A POINTING MIRROR ATTACHED TO AND ARTICULATED BY THE MOUNT
 - THREE OPTICAL AUTOCOLLIMATORS (one articulated)
 - A TELESCOPE WITH STAR PATTERN RECOGNITION CAPABILITIES AND STAR POSITION/POINTING ERROR SENSORS. THIS TELESCOPE WILL BE ALTERNATELY
 - ATTACHED TO AND ARTICULATED BY THE POINTING MOUNT.
 - ATTACHED TO A NON-ARTICULATED SURFACE IN THE MODULE SO AS TO RECEIVE OPTICAL SIGNALS/IMAGES REFLECTING OFF THE POINTING MIRROR
 - SIMULATED INSTRUMENTS/DEVICES WITH DIFFERENT MECHANICAL IMPEDANCES
 - AN INERTIAL MEASUREMENT UNIT (IMU) WITHIN THE ARTICULATED POINTING MOUNT
 - AN IMU WITHIN THE NON-ARTICULATED PORTION OF THE MODULE
 - POWER AND DATA LINKS BETWEEN THE MOUNTED TELESCOPE AND THE MODULE (across the magnetic suspension gap)
 - DATA LINKS:
 - TO THE SPACECRAFT IMU AND COMPUTERS
 - TO ONE OR MORE GROUND STATIONS
- THE EXPERIMENT WILL BE DIVIDED INTO FIVE SUB-EXPERIMENTS
 - SUB-EXPERIMENT 1: CHARACTERIZE THE DYNAMIC SYSTEM PERFORMANCE WHEN SHIFTING LOCK FROM ONE AUTOCOLLIMATOR TO ANOTHER
 - SUB-EXPERIMENT 2: CHARACTERIZE THE ABILITY OF THE SYSTEM TO ADAPT TO CHANGES IN THE MECHANICAL IMPEDANCES OF THE INSTRUMENTS/DEVICES BEING AIMED
 - SUB-EXPERIMENT 3: CHARACTERIZE THE TRACKING STABILITY WHEN THE TELESCOPE IS ARTICULATED AND LOCKED TO A STAR OR EARTH STATION
 - SUB-EXPERIMENT 4: CHARACTERIZE THE TRACKING STABILITY WHEN THE MIRROR/TELESCOPE IS LOCKED TO A STAR OR EARTH STATION AND THE UNARTICULATED TELESCOPE IS EXCITED BY EXTERNAL VIBRATIONS
 - SUB-EXPERIMENT 5: CHARACTERIZE THE TRACKING STABILITY WHEN THE MIRROR IS RELAYING LASER BEAMS GENERATED BY EARTH STATIONS

INSTEP88 Workshop

OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

SPACE STRUCTURES

Generic Pointing Mount

Out-Reach

Robert W. Bosley

Allied/Signal Aerospace Co., Airesearch Los Angeles Division Contract: NAS1-18685, Langley Research Center, Sharon S. LaFleur

MASTER SCHEDULE (3 PHASES)

SUMMARY OF EXPERIMENT FEATURES:

- GENERIC POINTING MOUNT FOR INTERCHANGEABLE PAYLOADS
- SYSTEM AUTOMATICALLY ADAPTS CONTROL LAWS TO EACH PAYLOAD
- POINTING CONTROL IN THREE AXES AROUND A SINGLE PIVOT POINT
- 135° ARTICULATION ANGLES

Experiment Descriptions

In-Reach

SPACE STRUCTURES

h-Reach

Space Station Structural Characterization Experiment

James W. Johnson and Paul A. Cooper NASA Langley Research Center

OBJECTIVE

THE DEVELOPMENT OF MODELING TECHNIQUES FOR LARGE SPACE STRUCTURES USING ON-ORBIT MEASUREMENTS OF SPACE STATION STRUCTURAL DYNAMICS

TECHNOLOGY REQUIREMENT

LARGE SPACE STRUCTURES

- CANNOT BE INTEGRATED AND TESTED IN 1G
- REQUIRE ANALYTICAL PREDICTION AND / OR ON-ORBIT MEASUREMENT OF PERFORMANCE

DYNAMICS: MODELING TO PREDICT PERFORMANCE

CONTROL: ON-ORBIT CHARACTERIZATION FOR ACTIVE CONTROL

NSTEP88 Workshop

OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

in-Reach

SPACE STRUCTURES

In-Reach

Space Station Structural Characterization Experiment

James W. Johnson and Paul A. Cooper NASA Langley Research Center

EXPERIMENT DESCRIPTION

- **o SPACE STATION FREEDOM**
 - PRESENTS AN EARLY OPPORTUNITY TO DEVELOP MODELING TECHNOLOGY
 - MAGNIFIES THE OPPORTUNITY WITH MULTIPLE ASSEMBLY CONFIGURATIONS
- o FLIGHT EXPERIMENT CONCEPT

PHASEA

- MODAL TESTING OF SELECTED CONFIGURATIONS THRU ASSEMBLY COMPLETE
 - EXCITATION

REBOOST TRANSIENTS

MODULATED REBOOST

- MEASUREMENTS

ACCELERATION

MODAL IDENTIFICATION

FREE DECAY

EXPERIMENT DESCRIPTION

(Cont.)

MODAL DENSITY

ASSEMBLY COMPLETE CONFIGURATION

148 MODES / 0 - 4 HZ

EXCITATION FUNCTIONS

STARBOARD X RCS JETS

REBOOST TRANSIENTS

INSTEP88 Workshop

OAST Technology For the Future

Experiment Descriptions Part 1: Executive Summary & Experiment Descriptions

Out-Reach

SPACE STRUCTURES

Out-Reach

Inflatable Solar Concentrator Experiment Definition Program

Costa Cassapakis and Geoff Williams

L'Garde, Inc.

Contract: NAS1-18681, Langley Research Center, Tom Campbell

STUDY DESCRIPTION

- TRADE STUDIES WILL BE CONDUCTED ON THE:
 - DESIRABLE ORBIT TYPE
 - HEO
 - LEO
 - INFLATABLE STRUCTURE
 - TYPE (E.G. SPHERICAL OR PARABOLOID)
 - MATERIALS (E.G. KAPTON, MYLAR
 - TEFLON, ETC.)
 RESPONSE INSTRUMENTATION
 - (METEOROIDS, UV, O)
 - DYNAMICS INSTRUMENTATION
 - (ACCELEROMETERS AND/OR VIDEO FOR INSTANCE)
 - CARRIER VEHICLE
 - TYPE:
- -FREE FLYER, NON-RETRIEVABLE -FREE FLYER. RETRIEVABLE
- -SPACE STATION
- TELEMETRY

(MAY NOT BE REQUIRED FOR SPACE STATION MEASUREMENTS)

- CONTROL
- ATTITUDE CONTROL?
- ON-BOARD MICROPROCESSOR TYPE
- INFLATION FEEDBACK LOOP
- INFLATABLE DYNAMICS INDUCTION TYPE
- POWER
- REQUIREMENTS
- TYPE
- 2. RECOMMENDATIONS WILL BE MADE FOR THE MOST COST EFFECTIVE EXPERIMENTAL CONFIGURATION CONCEPT

Experiment Descriptions

Out-Reach

SPACE STRUCTURES

Out-Reach

Inflatable Solar Concentrator Experiment Definition Program

Costa Cassapakis and Geoff Williams L'Garde, Inc.

Contract: NAS1-18681, Langley Research Center, Tom Campbell

STUDY OBJECTIVE

ASSESS IN-SPACE THE TWO MOST CRITICAL ISSUES PERTAINING TO THE PERFORMANCE OF INFLATABLE STRUCTURES IN SPACE:

- * ASSESS THE EFFECTS OF SPACE ENVIRONMENT ON THE STRUCTURAL INTEGRITY AND SERVICE LIFE:
 - METEOROIDS
 - UV RADIATION
 - ATOMIC OXYGEN
- DEMONSTRATE THAT INFLATABLE SYSTEMS CAN BE DESIGNED TO PROVIDE HIGH LEVELS OF STRUCTURAL DAMPING.
 - BYPRODUCT: VALIDATION OF EXISTING ANALYTICAL TOOLS THAT PREDICT STRUCTURAL DAMPING.

BACKGROUND / TECHNOLOGY NEED

- * INFLATABLE STRUCTURES IN SPACE HAVE BEEN VERY SUCCESSFUL AND THEIR ADVANTAGES HAVE BEEN DEMONSTRATED IN SHORT MISSIONS
 - SMALL PACKAGED VOLUMES
 - LOW WEIGHT
 - LESS EXPENSIVE TO BUILD AND TEST THAN COMPETING MECHANICALLY ERECTED SYSTEMS
- * FOR LONG TERM SPACE MISSIONS, AS IN THE CASE OF ANTENNAS AND SOLAR CONCENTRATORS, IT IS NECESSARY TO DEMONSTRATE THAT:
 - INDUCED DAMAGE DUE TO ENVIRONMENT (METEOROIDS, UV RADIATION AND ATOMIC OXYGEN AT LOW EARTH ORBITS) CAN BE HANDLED BY ON-BOARD GAS SUPPLY, AND/OR OTHER MEANS.
 - INDUCED DYNAMICS ARE DAMPED OUT QUICKLY, SO THAT STRUCTURAL ACCURACY IS MAINTAINED.
- * THIS EXPERIMENT MUST BE CONDUCTED IN-SPACE, BECAUSE 2ERO GRAVITY, VACUUM, METEOROIDS, UV AND ATOMIC OXYGEN ARE ALL SIMULTANEOUSLY PRESENT.

INSTEP88 Workshop

OAST Technology For the Future
Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

SPACE STRUCTURES

Out-Reach

Inflatable Solar Concentrator Experiment Definition Program

Costa Cassapakis and Geoff Williams

L'Garde, Inc.

Contract: NAS1-18681, Langley Research Center, Tom Campbell

STUDY DESCRIPTION

1. Trade Studies Will Be Conducted on the:

* Desirable Orbit Type

Low Earth Orbit (LEO) High Earth Orbit (HEO)

* Inflatable Structure

Type - (e.g., spherical or paraboloid)
Materials - (e.g., kapton, mylar, teflon, etc)
Response Instrumentation (meteoroids, UV, O)
Dynamics Instrumentation
(e.g., accelerometers and/or video)

Carrier Vehicle

Type -

Free Flyer, Nonretrievable Free Flyer, Retrievable Space Station

Telemetry -

May not be required for space station measurements

Control -

Attitude Control?
On-board Microprocessor Type
Inflation Feedback Loop
Inflatable Dynamics Induction Type

Power -

Requirements Type

2. Recommendations will be made for the most cost effective experimental configuration concept.

		 when Alternative	
		•	
,			
•			
·			

Experiment Descriptions

Out-Reach

SPACE STRUCTURES

Out-Reach

Inflatable Solar Concentrator Experiment Definition Program

Costa Cassapakis and Geoff Williams

L'Garde, Inc.

Contract: NAS1-18681, Langley Research Center, Tom Campbell

Experiment Descriptions

Out-Reach

SPACE STRUCTURES

Out-Reach

Inflatable Solar Concentrator Experiment Definition Program

Costa Cassapakis and Geoff Williams

L'Garde, Inc.

Contract: NAS1-18681, Langley Research Center, Tom Campbell

Experiment Descriptions

Out-Reach

SPACE ENVIRONMENTAL EFFECTS

Out-Reach

Atmospheric Effects and Contamination

Measurement of Surface Reactions In the Space Environment

L.R. Megili

Globesat, Inc.

Contract: NAS1-18684, Langley Research Center / JPL, Lenwood G. Clark / Dr. David A. Brinza

Experiment objectives

Measure in space effective reaction rates for degredation of materials

- . Selected space materials
- In-space analysis
- . Inexpensive, small satellite

Background

- Observations of returned
 specimens indicate severe degredation
- Future structures will make use of composite materials
- Laboratory sources of 5ev atomic oxygen are difficult to obtain

Experiment Descriptions

Out-Reach

SPACE ENVIRONMENTAL EFFECTS

Out-Reach

Atmospheric Effects and Contamination

Measurement of Surface Reactions in the Space Environment

LR. Megill

Globesat, inc.

Contract: NAS1-18684, Langley Research Center / JPL, Lenwood G. Clark / Dr. David A. Brinza

. Gravity Gradient/Magnetic Torque

Stabilized satellite

Several in-space measurements

to be used

Results telemetered to the ground NASA IIE Satellite GS-100 Sion (entented) (IK Controller (CB (see as (8) Sarple lest area PitoVRoll regretic torquer coits

Experiment Descriptions

Out-Reach

SPACE ENVIRONMENTAL EFFECTS

Out-Reach

Atmospheric Effects and Contamination

Measurement of Surface Reactions In the Space Environment

L.R. Megill

Globesat, Inc.

Contract: NAS1 18684, Langley Research Center / JPL, Lenwood G. Clark / Dr. David A. Brinza

Measurement Techniques Under Consideration

- Mass Spectrometer
- . QCM
- Osmium Detectors
- Surface crosion measurements

Optical

SEM

Scattering

Definition
Satellite
Fab
Experiment
Procurement
Integration
Flight
Analysis

Experiment Descriptions

Out-Reach

Out-Reach

SPACE ENVIRONMENTAL EFFECTS

Atmospheric Effects and Contamination

Optical Properties Monitor (OPM) Experiment

Donald R. Wilkes

John M. Cockerham & Associates

Contract: NAS8-37755, Marshall Space Flight Center, Jim Zwiener

EXPERIMENT OBJECTIVE

To study the effects of the space environment, both natural and induced, on optical materials and thermal surfaces.

- Develop a multifunction, reuseable flight instrument for in-space optical studies
- Determine the effects and damage mechanisms of the space environment on optical materials and thermal surfaces
- · Provide flight testing of critical spacecraft and optical materials
- · Validate ground test facilities and techniques

BACKGROUND

- The natural and induced space environment can damage spacecraft materials
- Space environmental effects and damage mechanisms are not well understood
- · The space environment cannot be fully simulated
- · There have been only limited in-space optical measurements of material properties

TECHNOLOGY NEED

- Longer duration, and more complex missions, such as Space Station, require better materials and better materials performance characterization
- A better understanding of space environmental damage mechanisms will lead to:
 - Better, more stable materials and coatings
 - Better, more accurate ground simulation testing
- Improved materials and better material performance characterization will lead to better, more cost effective, lower weight space systems designs
- · A multifunction, reuseable flight instrument is needed for in-space optical studies

Experiment Descriptions

Out-Reach

Out-Reach

SPACE ENVIRONMENTAL EFFECTS

Atmospheric Effects and Contamination

Optical Properties Monitor (OPM) Experiment

Donald R. Wilkes

John M. Cockerham & Associates
Contract: NAS8-37755, Marshall Space Flight Center, Jim Zwiener

EXPERIMENT DESCRIPTION

Selected materials will be exposed to the near earth space environment and the effects measured through in-situ and post flight analysis.

- Active sample optical and thermal properties are measured by the in-situ measurement subsystem
 - Spectral total hemispherical reflectance Integrating Sphere
 - Total integrated scatter Coblentz Sphere
 - Spectral Transmittance
 - Total emittance/solar absorptance Calorimetric Method
- Environmental monitors measure the sample exposure environment
 - Solar/earth irradiance Radiometers
 - Molecular contamination Temperature controlled quartz crystal microbalance
 - Atomic oxygen
- Passive sample optical and thermal properties, surface degradation, and surface contamination are determined by post-flight analysis.

Experiment Descriptions

Out-Reach

Out-Reach

SPACE ENVIRONMENTAL EFFECTS

Atmospheric Effects and Contamination

Optical Properties Monitor (OPM) Experiment

Donald R. Wilkes

John M. Cockerham & Associates
Contract: NAS8-37755, Marshall Space Flight Center, Jim Zwiener

OPM SCHEDULE

OPM SUMMARY

- Definition phase effort is underway (September 16, 1988)
- Basic flight hardware concept proven on the LDEF Thermal Control Surfaces Experiment (TCSE)
- Total Integrated Scatter (TIS) and transmission measurements are added to the TCSE design
- Environmental monitors for molecular contaminants and atomic oxygen are added to the TCSE design
- The TIS measurement system design will be verified by laboratory breadboard testing
- 1978 TCSE design will be modernized to current technology
- · OPM mission opportunities are being researched
- · An OPM advisory committee is being formed

Experiment Descriptions

Out-Reach

SPACE ENVIRONMENTAL EFFECTS

Out-Reach

Atmospheric Effects and Contamination

Experimental Investigation of Spacecraft Glow Gary Swenson

Lockheed Missiles & Space Co., Palo Alto Research Laboratory (teamed with Lockheed Houston)
Contract: NAS9-17969, Johnson Space Center, Jim Visentine - ES5

Experiment Objective

Develop understanding of the physical processes leading to spacecraft glow phenomena, with emphasis on surface temperature and altitude effects. This development can be used to:

- Characterize optical instrument backgrounds
- Provide guidelines for thermal insulations
- Characterize material selection for flight optics and associated spacecraft
- Affect flight-operation altitude selection for relevant missions

Background/Technology Need

Experimental data from STS missions suggest that cold surfaces result in increased surface catalysis with atmospheric constituents, resulting in brighter glow.

Confirming spectral and intensity data are needed from a temperature-monitored surface in ram. Intensities at different altitudes are desired in order to understand the synergistic effect of multiple atmospheric species. Spectral and intensity data from ultraviolet and intrated wavelengths are also required.

Why a space experiment? Glow contamination results from large fluxes (>10¹³ cm⁻²) of fast atmospheric constituents (4-10 eV), catalytically reacting on surfaces to form excited-state molecules which emit glow. The combined fluxes and energies are not reproducible in ground facilities.

Spacecraft-Atmospheric Interaction

The top of the figure shows atmospheric N_2 interacting with rebounding O and atom exchanging to form N and NO. The N is shown to contact N which has been deposited on the surface, and to recombine to form N_2^* . This excited state leads to N_2 LBH emission which is predicted to be responsible for the low-altitude glow seen on the S3-4 satellite. The bottom of the figure illustrates atmospheric O impinging on NO which is weakly bound to the surface. The surface recombination will lead to NO_2^* and has been proposed as being responsible for the "red" shuttle glow.

Experiment Descriptions

Out-Reach

Out-Reach

SPACE ENVIRONMENTAL EFFECTS

Atmospheric Effects and Contamination

Experimental Investigation of Spacecraft Glow

Gary Swenson

Lockheed Missiles & Space Co., Palo Alto Research Laboratory (teamed with Lockheed Houston)

Contract: NAS9-17969, Johnson Space Center, Jim Visentine - ES5

Experiment Description

The experiment hardware will include a 1 \times 1 m flat plate with a material sample. The plate will be directed into atmospheric ram direction on orbit. The instrumentation includes a visible imaging spectrometer (400-800 nm), an IR detector (1-3 μ m), and a far-ultraviolet imaging spectrometer (110-300 nm). The instrumentation will be mounted on an MPESS structure. An uplink command will activate the experiment, and an onboard recorder will log the data. Operation during four "shadowed" orbit periods is desired, at low altitude. At least two orbits of 175-km perigee are desired (as part of the STS reentry sequence).

Breadboard Tests for Functionality, Response, and Sensitivity

- Breadboard an image detector for the far-ultraviolet imaging spectrometer
 - Gated intensifier, plug coupled to a CCD
 - 110-300-nm response
 - RbTe photocathode
 - 25-mm diameter
 - 388 x 480 CCD array, thermoelectrically cooled to 230 K
 - Digital output
- Breadboard an IR detector
 - Dewar resident, single element
 - 1–5.5-µm response
 - InSb element
 - Joule-Thompson cooled to 77 K
 - High-gain analog output

INSTEP88 Workshop

OAST Technology For the Future
Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

Out-Reach

SPACE ENVIRONMENTAL EFFECTS

Atmospheric Effects and Contamination

Experimental Investigation of Spacecraft Glow

Gary Swenson

Lockheed Missiles & Space Co., Palo Alto Research Laboratory (teamed with Lockheed Houston)
Contract: NAS9-17969, Johnson Space Center, Jim Visentine - ES5

MASTER SCHEDULE

Experiment Descriptions

In-Reach

In-Reach

SPACE ENVIRONMENTAL EFFECTS

Atmospheric Effects and Contamination

Return Flux Experiment (REFLEX)

J.J. Triolo and R. McIntosh Goddard Space Flight Center

EXPERIMENT OBJECTIVES

- * CONTAMINATION MEASUREMENTS
- FULLY CHARACTERIZE THE S/C MOLECULAR CONTAMINATION ENVIRONMENT
- TOTAL CONTAMINATION ACCRETION FROM DIRECT FLUX AND RETURN FLUX
- INDIVIDUAL SPECIES ACCRETION FROM DIRECT FLUX AND RETURN FLUX
- VERIFICATION OF ALL AVAILABLE MASS TRANSFER CODES (NEWLY DEVELOPED AND CURRENT)
- VELOCITY/DIRECTION OF EACH SPECIE
- CHEMISTRY OF NATURAL + INDUCED SPECIES (GAS PHASE AND HETEROGENEOUS REACTIONS)
- * NATURAL ENVIRONMENT CHARACTERIZATION
- DIRECT MEASUREMENT OF CONCENTRATION OF SPECIES IN THE NATURAL ENVIRONMENT (ATOMIC OXYGEN, ATOMIC NITROGEN, O2, N2, CO, NO, AR, ETC.)

BACKGROUND/TECHNOLOGY NEED

- AVAILABLE DATA ON SPACECRAFT INDUCED ENVIRONMENT IS VERY SPARSE. NO SYSTEMATIC EFFORT TO MEASURE THE CONTAMINATION ENVIRONMENT AS A FUNCTION OF MISSION PARAMETERS HAS BEEN MADE TO DATE.
- EXISTING CONTAMINATION MODELS ARE NOT FLIGHT VERIFIED. THE MEAGER AMOUNT OF FLIGHT DATA SEEMS TO INDICATE GROSS INACCURACIES IN SOME AREAS (PARTICULARLY FOR THE RETURN FLUX COMPONENT OF THE MOLECULAR ENVIRONMENT).
- FLIGHT EXPERIMENTS ARE URGENTLY NEEDED TO GATHER DATA IN AN ORGANIZED MANNER.
- RELIABLE PREDICTIONS WILL ALLOW GREAT ECONOMICAL ADVANTAGE IN THE SIZING OF THE CONTAMINATON CONTROL ACTIVITIES FOR A LARGE NUMBER OF NASA PROGRAMS.

Experiment Descriptions

In-Reach

SPACE ENVIRONMENTAL EFFECTS

In-Reach

Atmospheric Effects and Contamination Return Flux Experiment (REFLEX)

> J.J. Tridio and R. McIntosh Goddard Space Flight Center

EXPERIMENT DESCRIPTION

- MAJOR EXPERIMENT COMPONENTS:

1) - SENSOR: MASS SPECTROMETER

2) - MOLECULAR SOURCE: NOBLE GAS

3) - CARRIER: T

TBD

- COMPONENT FUNCTION:

- 1) SENSOR: DETECTION OF ALL MOLECULAR SPECIES OF INTEREST IN BOTH NATURAL AND SPACECRAFT INDUCED ENVIRONMENTS. CHEMICAL NATURE AND VELOCITY ARE OBTAINED AS A FUNCTION OF TIME.
- 2) MOLECULAR SOURCE: PROVIDES A KNOWN INPUT TO THE S/C ENVIRONMENT FOR RETURN FLUX MEASUREMENTS.
- 3)- CARRIER: ALLOWS POSITIONING OF THE EXPERIMENT PACKAGE TO LOW/ZERO BACKGROUND LOCATIONS FOR EXTREMELY ACCURATE MEASUREMENTS OF LOW INTENSITY PHENOMENA (RETURN FLUX).

Experiment Descriptions

in-Reach

SPACE ENVIRONMENTAL EFFECTS
Atmospheric Effects and Contamination

In-Reach

Return Flux Experiment (REFLEX)

J.J. Triolo and R. McIntosh Goddard Space Flight Center

SCHEDULE

- COMPLETE PHASE A:

NOV 88

- PHASE B START:

JAN 89

- PHASE C/D START:

JAN 90

Experiment Descriptions

In-Reach

SPACE ENVIRONMENTAL EFFECTS

Meteoroids and Debris

Debris Colfision Warning Sensors

Faith Vitas and David Thompson Johnson Space Center Solar System Exploration Division In-Reach

EXPERIMENT OBJECTIVE:

CHARACTERIZE STATISTICALLY THE LEO DEBRIS ENVIRONMENT, CONCENTRATING ON OBSERVING DEBRIS OF SIZES DOWN TO 1 mm DIAMETER; OBTAINING BOTH VISIBLE PHOTOMETRY (\sim 0.56 μ m) AND THERMAL RADIOMETRY (5μ m). TEST DETECTOR EFFECTIVENESS FOR SPACECRAFT DEBRIS COLLISION WARNING SYSTEM. DATA ACQUIRED WILL USED TO:

- MODEL EFFECTS (NOISE SOURCES, FALSE SIGNALS) WHICH SMALL DEBRIS PIECES COULD HAVE ON DEBRIS COLLISION WARNING SYSTEM OPERATION.
- OPTIMIZE DETECTOR SELECTION FOR DCW BY UNDERSTANDING ALBEDO VALUES AND THERMAL HEATING PROPERTIES OF LEO DEBRIS.
- CALCULATE DEBRIS FRAGMENT SIZES WITH ACCURATE ALBEDO MEASUREMENT.

BACKGROUND/TECHNOLOGY NEED

- LEO DEBRIS POPULATION INCREASING, PRODUCING INCREASED HAZARD TO SPACECRAFT.
- NEW CONCEPTS FOR PROTECTING SPACECRAFT MUST BE DEVELOPED.
 - ON-BOARD DETECTION WILL PROBABLY PLAY A KEY ROLE.
 - REQUIRES SCIENTIFIC TECHNIQUE AND TECHNOLOGY DEVELOPMENT.
- DATA AMOUNT AND QUALITY ARE WORST IN SIZE (1mm-10cm), SPECTRAL RANGES (0.56µm, 5µm) WHERE INFORMATION IS MOST CRITICAL TO DEBRIS COLLISION WARNING SYSTEM DESIGN.

Experiment Descriptions

In-Reach

SPACE ENVIRONMENTAL EFFECTS

Meteoroids and Debris

Debris Collision Warning Sensors

Faith Vilas and David Thompson Johnson Space Center Solar System Exploration Division In-Reach

EXPERIMENT DESCRIPTION

THE APPARATUS WILL CONSIST OF ONE 60-IN. F/1.2 TELESCOPE HAVING ALL-REFLECTING OPTICS WITH A 3.7° FIELD OF VIEW. A TEKTRONIX 2048x2048 PIXEL CCD RINGED BY SINGLE-ELEMENT 5-µm DETECTORS, OPERATING AT A READOUT RATE OF ONE FRAME EVERY 1/10 SEC, IS LOCATED IN THE FOCAL PLANE. VISIBLE PHOTOMETRY, THERMAL RADIOMETRY, AND VELOCITY DATA CAN BE ACQUIRED ON DEBRIS PIECES PASSING THROUGH THE TELESCOPE'S FOV. EXPERIMENT MODES INCLUDE A BLIND SEARCH FOR DEBRIS DOWN TO 1mm DIAMETER, OBSERVATIONS OF KNOWN DEBRIS PIECES TRACKED BY USSPACECOM.

Experiment Descriptions

In-Reach

SPACE ENVIRONMENTAL EFFECTS

In-Reach

Meteoroids and Debris

Debris Collision Warning Sensors

Faith Vilas and David Thompson

Johnson Space Center Solar System Exploration Division

Preliminary schedule for proposed

FLIGHT EXPERIMENT

Experiment Descriptions

in-Reach

SPACE ENVIRONMENTAL EFFECTS

In-Reach

Atmospheric Effects and Contamination

Thin Foil X-Ray Optics Space Environment Contamination Experiment

R. Petre, P.J. Seriemitsos, C.A. Glasser Goddard Space Flight Center

Experiment Objective:

Expose thin-foil, lacquer-coated, grazing incidence X-ray reflectors to low earth orbit environment in order to:

- Measure the degradation of X-ray reflection efficiency of candidate mirror surfaces due to interaction with atomic oxygen
- 2. Determine the effectiveness of protective measures

Background:

- Thin-foil, conical imaging X-ray mirrors represent new technology X-ray astronomy instrumentation
- Mirror technology developed entirely within NASA (GSFC)
- Grazing incidence reflecting surfaces consist of lacquer-coated, high reflectivity aluminum foil, with evaporated 500 Angstrom gold layer
- Initial implementation on Broad Band X-Ray Telescope (STS-35, March 1990)
- Will be used or being studied for use on several long term X-ray astronomy missions:
 ASTRO-D, 1993 (Japan/USA)
 Spectrum-X , 1994 (USSR/Denmark/USA)
 Spektrosat, 1994 (W. Germany/USA)
- Lacquer coating technology has direct applications for other kinds of X-ray mirrors and for far and extreme ultraviolet optics
- Unclear how previous contamination studies relate to grazing incidence or lacquer coated surfaces, or to X-ray reflectivity

Experiment Descriptions

In-Reach

SPACE ENVIRONMENTAL EFFECTS Atmospheric Effects and Contamination

In-Reach

Thin Foil X-Ray Optics Space Environment Contamination Experiment

R. Petre, P.J. Seriemitsos, C.A. Glasser Goddard Space Flight Center

Thin foil conical imaging X-ray mirror for the Broad Band X-Ray Telescope instrument

Experiment Description

Baseline approach low cost, minimal STS interface

Strategy - use GAS carrier, develop hardware quickly to allow possibility of manifesting with larger experiments with similar mission requirements (e.g., EOIM-3, IFCE)

Key Components -

Conical mirror quadrant - holds reflector samples at proper incidence angles

Sample tray - holds thin foil mirror samples at normal incidence

Shutter mechanism - shuts slowly over duration of experiment to allow determination of degradation vs. exposure time

Carrier - GAS can with Motorized Door Assembly

Experiment Descriptions

in-Reach

SPACE ENVIRONMENTAL EFFECTS

in-Reach

Atmospheric Effects and Contamination

Thin Foil X-Ray Optics Space Environment Contamination Experiment

R. Petre, P.J. Serlemitsos, C.A. Giasser Goddard Space Flight Center

Thin Foil Mirror Contamination Experiment

INSTEP88 Workshop OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

July, 1986

In-Reach

in-Reach

SPACE ENVIRONMENTAL EFFECTS

Atmospheric Effects and Contamination

Thin Foil X-Ray Optics Space Environment Contamination Experiment

R. Petre, P.J. Seriemitsos, C.A. Glasser Goddard Space Flight Center

Milestones

In-Reach proposal submitted

In-Reach proposal accepted; begin Phase A study August, 1987

Finish Phase B definition phase November, 1988

Begin Phase C/D development (pending funding) January, 1989

Submit GAS reservation January, 1989

Deliver complete instrument to GAS program June, 1990

Experiment Descriptions

Out-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

Out-Reach

Conventional Power Systems

Sodium-Sulfur Battery

Becky Chang

Ford Aerospace Corporation, Space Systems Division Contract: NAS3-25355, Lewis Research Center, H.F. Leibecki

NaS BATTERY TECHNOLOGY BENEFITS -

\$ 1.1-1.7 M\$/KW SAVING IN LAUNCH FOR GEO MISSION OVER NIH2 BATTERY 0.2-0.4 M\$/KW SAVING IN LAUNCH FOR LEO MISSION OVER NIH2 BATTERY

EXPERIMENT OBJECTIVE

TO DESIGN AN EXPERIMENT THAT WILL DEMONSTRATE OPERATION OF SODIUM-SULFUR BATTERY/CELLS UNDER SPACE ENVIRONMENTS WITH PARTICULAR EMPHASIS ON EVALUATION ON MICROGRAVITY EFFECTS.

- O TO EVALUATE CHARGE AND DISCHARGE CHARACTERISTICS AS AFFECTED BY FLUID REACTANT DISTRIBUTIONS
- O TO DETERMINE REACTANT DISTRIBUTIONS UNDER MICROGRAVITY CONDITION
- O TO UNDERSTAND CURRENT & THERMAL DISTRIBUTION WITHIN CELLS
- O TO EVALUATE FREEZE THAW EFFECTS
- O TO EVALUATE COLD VS WARM LAUNCH
- O TO EVALUATE MULTICELL OPERATION

BACKGROUND /TECHNOLOGY

INSTEP88 Workshop OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

Out-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

Conventional Power Systems

Sodium-Sulfur Battery

Becky Chang

Ford Aerospace Corporation, Space Systems Division Contract: NAS3-25355, Lewis Research Center, H.F. Leibecki

EXPERIMENTAL APPROACH

- O SELECT ONLY THOSE TESTS THAT ARE CRITICAL AND EXPECTED TO DIFFER UNDER MICROGRAVITY CONDITION.
- O 'SPINNERS' CAN BE DUPLICATED ON EARTH.
- O CORRELATE CELL CHARACTERISTICS BEFORE/DURING/FOLLOWING SPACE FLIGHT TO ELIMINATE EXTRANEOUS VARIABLES
- O INCORPORATE ADDITIONAL CONTROL CELLS

EXPERIMENT DESCRIPTION

- I. CELL CHARACTERIZATION TEST
 - O RATED 40 AH BASELINE CELLS
- O 8 CELLS FOR SPACE; 4 CELLS FOR GROUND CONTROL
- O COLD LAUNCH
- O TWO OPERATING TEMPERATURES: 275-300; 350 -375°C
- O CHARGE RATES: C/5,C/2,3/4C,C PLUS TAPER
- O DISCHARGE RATES C/2; C; 1.5C, 2C PLUS PULSES TO ~4C
- O CELL IMPEDANCE & EFFICIENCY
- II. REACTANT DISTRIBUTION DESTRUCTIVE PHYSICAL ANALYSIS
 O 8 CELLS REUSED AFTER NO. I
- **III. REACTANT DISTRIBUTION TEST**
- O SPECIAL INSTRUMENTED 40 AH CELLS
- O 2 CELLS IN SPACE, 1 CELL ON GROUND
- O TO DETERMINE CURRENT DENSITY VS. AXIAL POSITION DURING DISCHARGE/CHARGE AND OPEN CIRCUIT
- IV. FREEZE/THAW TEST
- O RATED 40 AH BASELINE CELLS
- O 4 CELLS FOR SPACE; 2 CELLS ON GROUND
- V. WARM LAUNCH TEST
- O RATED 40 AH BASELINE CELLS
- O 4 CELLS FOR SPACE
- O 200°C PRELAUNCH/LAUNCH
- VI. CELL CYCLE TEST
- O MULTI-CELL OPERATION
- O EARLY-LIFE LEO CHARACTERISTICS

Experiment Descriptions

Out-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

Out-Reach

Conventional Power Systems

Sodium-Sulfur Battery

Becky Chang

Ford Aerospace Corporation, Space Systems Division Contract: NAS3-25355, Lewis Research Center, H.F. Leibecki

NA-S BATTERY FLIGHT EXPERIMENT DEFINITION MASTER SCHEDULE

SUMMARY

- O NA-S BATTERY TECHNOLOGY OFFERS SIGNIFICANT PAYOFF FOR SPACE APPLICATIONS, BUT OPERATION IN SPACE ENVIRONMENT IS UNKNOWN.
- O FURTHER ENHANCEMENT OF NA-S EXCELLENT PERFORMANCE AND CYCLE LIFE COULD OCCUR DUE TO MORE UNIFORM CONDITION WITHIN CELL DUE TO MICROGRAVITY CONDITIONS.
- O SOME HYPOTHESES PREDICT PERFORMANCE LIMITATIONS WITH IMPACT ON CELL LIFE IN LOW-GRAVITY ENVIRONMENTS.
- O FLIGHT EXPERIMENTS HAVE BEEN SELECTED TO DOCUMENT AND CORRELATE CRITICAL CELL CHARACTERISTICS UNDER SPACE ENVIRONMENTS WITH KNOWN RESPONSE ON EARTH.
- O RESULTING DATA BASE WILL MINIMIZE COSTS OF SUBSEQUENT LARGER-SCALE APPLICATION-SPECIFIC EXPERIMENTS.
- O CYCLE LIFE EFFORTS CAN NOT BE ADDRESSED IN SIMPLE STS FLIGHT WOULD REQUIRE-EXTENDED ORBIT EXPERIMENT.

Experiment Descriptions

Out-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

Out-Reach

Conventional Power Systems

Unitized Regenerative SPE® Fuel Cell

Timothy A. Nalette

United Technologies Corporation, Hamilton Standard Division Contract: NAS9-18001, Lewis Research Center, Rick Baldwin

Experiment Objective:

- Evaluate zero gravity operation of a passive Unitized Regenerative SPE Fuel Cell (URFC) electrical energy storage system
 - Cell module
 - Reversible SPE Fuel Cell/electrolyzer operation
 - Passive phase separation
 - Static vapor feed
 - System
 - Passive fluid management
 - Passive thermal control

Background:

- Existing spacecraft energy storage and fluid management systems are heavy and/or complex
- SPE fuel cells and SPE electrolyzers are mature technologies
- Unitized regenerative fuel cells offer potential reductions in system complexity, weight, and volume

Technology need:

- Reliability is enhanced through the use of passive fluid and thermal management technologies
- Applications include electrical energy storage for Space Station, satellites, rechargeable rover vehicles, peak power requirements, and any orbiting system requiring electrical energy storage

INSTEP88 Workshop
OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

Out-Reach

Conventional Power Systems

Unitized Regenerative SPE® Fuel Cell

Timothy A. Nalette

United Technologies Corporation, Hamilton Standard Division Contract: NAS9-18001, Lewis Research Center, Rick Baldwin

Packaging Concept

Experiment Descriptions

Out-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

Out-Reach

Conventional Power Systems

Unitized Regenerative SPE® Fuel Cell

Timothy A. Nalette

United Technologies Corporation, Hamilton Standard Division Contract: NAS9-18001, Lewis Research Center, Rick Baldwin

Experiment Description:

- URFC system will demonstrate a simple passive means of electrical energy storage for space applications employing passive fluid and thermal management technologies
- System parameters such as temperatures, pressures, voltage, and current will be measured for purposes of control and analysis
- Packaging concept depicts the "Get Away Special" carrier option but is easily adapted to other options
- Experiment will be self-contained
- Component selection and safety consideration based on mature flight designs

Simplified URFC system schematic

Experiment Descriptions

In-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

In-Reach

Dynamic and Nuclear Power Systems

Thermal Energy Storage Flight Experiments for Solar Dynamic Power Systems

David Namkoong, Jerri Ling, Steve Johnson, Barbara Helzer, Tom Foster Lewis Research Center (Boeing, Contract NAS3-25364)

OBJECTIVE

EVALUATION OF PHASE CHANGE THERMAL ENERGY STORAGE (TES) SYSTEM AND MATERIALS IN MICROGRAVITY.

ISSUES

PROGRAMMATIC

- TES CRITICAL TO EFFICIENT OPERATION OF THE RECEIVER, SYSTEM.
- FLIGHT TESTS ARE REQUIRED TO ASSESS VOID BEHAVIOR OF ADVANCED TES MATERIALS UNDERGOING REPEATING PHASE CHANGE IN MICROGRAVITY.
- COMPREHENSIVE APPROACH REQUIRES ANALYTICAL UNDERSTANDING AND EXPERIMENTAL VERIFICATION - - NEEDED FOR ADVANCED HEAT RECEIVER DESIGN PROCESS.

TECHNICAL

- · VOID SHAPE AND LOCATION
- · EFFECT OF VOID ON HEAT TRANSFER MECHANISMS
- COMPARISON BETWEEN 1-g AND MICROGRAVITY PERFORMANCE
- EFFECT OF STORAGE MATERIAL THERMAL/PHYSICAL PROPERTIES ON SYSTEM PERFORMANCE
- LACK OF A VALIDATED COMPUTER MODEL TO PREDICT PERFORMANCE TES SYSTEMS IN MICROGRAVITY

APPROACH

STSE DEFINITION

- DEFINE SPECIFIC EXPERIMENT OBJECTIVES AND REQUIREMENTS
- DEVELOP PRELIMINARY DESIGN OF EXPERIMENT TO ACCOMMODATE MULTIPLE TES CONCEPTS
- CONDUCT TRADE STUDIES, ANALYSES, AND GROUND TESTS
- PREPARE PROGRAM PLAN, SCHEDULE, AND COST

TEST

- DEVELOP AN ANALYTICAL AND COMPUTATIONAL BASIS TO PREDICT TRANSIENT BEHAVIOR OF TES MATERIALS, PARTICULARLY VOID SHAPE AND LOCATION, UNDER MICROGRAVITY
- CONDUCT MICROGRAVITY EXPERIMENTS TO ESTABLISH DATA BANK OF TES MATERIALS UNDER 1-9 AND MICROGRAVITY
- VERIFY CAPABILITY OF DEVELOPED COMPUTER CODE TO PREDICT VOID LOCATION AND THERMAL HISTORY OF TES SYSTEM UNDERGOING PHASE CHANGE IN MICROGRAVITY

Experiment Descriptions

In-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

h-Reach

Dynamic and Nuclear Power Systems

Thermal Energy Storage Flight Experiments for Solar Dynamic Power Systems

David Namkoong, Jerri Ling, Steve Johnson, Barbara Heizer, Tom Foster Lewis Research Center (Boeing, Contract NAS3-25364)

TEST EXPERIMENT

"GAS" CAN EXPERIMENTAL PACKAGE

FOUR EXPERIMENTS:

LIF 1121 K
CaF/50 MgF 1250 K
'GERMANIUM 1210 K
'NiSi 1265 K

 SUN/SHADE PERIODS OF 60/34 MINUTES PER CYCLE; 5 CYCLES

• RESULTS:

TEMPERATURE MEASUREMENTS

POST-TEST EXAMINATION OF VOID SHAPE, LOCATION

COMPARISON WITH ANALYTICAL PREDICTION

TES EXPERIMENT NO. 1

Experiment Descriptions

In-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

In-Reach

Dynamic and Nuclear Power Systems

Thermal Energy Storage Flight Experiments for Solar Dynamic Power Systems

David Namkoong, Jerri Ling, Steve Johnson, Barbara Heizer, Tom Foster Lewis Research Center (Boeing, Contract NAS3-25364)

STSE EXPERIMENT

Open door Liquid metal hear pipes Surface mounted 1.5 W heaters Thermal energy Tronge conditions Tronge conditions

Thermal Energy Storage Conisters Contained in an Insulated Box

DESCRIPTION

- COMPATIBLE WITH HITCHHIKER
- DESIGNED FOR MODULARITY
- MULTIPLE CONCEPTS TESTED SIMULTANEOUSLY
- TEMPERATURE DISTRIBUTION AND HEAT FLUX MEASURED

OBJECTIVES

- VERIFY THERMAL PERFORMANCE IN MICROGRAVITY
- VERIFY NON-DESTRUCTIVE METHODS OF DETERMINING VOID DISTRIBUTION
- COMPARE VOID DISTRIBUTION AND VOID MANAGEMENT FOR 1-g AND MICROGRAVITY ENVIRONMENTS
- VALIDATE PERFORMANCE PREDICTION METHODS

Solar Thermal Systems Experiment - Hester Schedule NASJ-25364

Experiment Descriptions

Out-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

Out-Reach

Thermal Management

Investigation of Microgravity Effects on Heat Pipe Thermal Performance and Working Fluid Behavior
George L. Reischman

Hughes Aircraft Company, Electron Dynamics Division Contract: NAS5-30359, Goddard Space Flight Center, Roy McIntosh

EXPERIMENT OBJECTIVE

DEVELOP IN-DEPTH UNDERSTANDING OF THE BEHAVIOR OF HEAT PIPES IN SPACE. BOTH CONSTANT CONDUCTANCE HEAT PIPES WITH AXIAL GROOVES AND VARIABLE CONDUCTANCE HEAT PIPES WITH WICKS WILL BE INVESTIGATED. THIS UNDERSTANDING WILL BE APPLIED TO THE DEVELOPMENT OF:

- IMPROVED PERFORMANCE OF HEAT PIPES SUBJECTED TO VARIOUS ACCELERATIONS IN SPACE.
- MORE EFFICIENT AND RELIABLE SPACECRAFT THERMAL MANAGEMENT SYSTEMS.
- LIGHTER WEIGHT SPACECRAFT THERMAL SYSTEMS.

BACKGROUND/TECHNOLOGY NEED

A PROBLEM THAT OFTEN ARISES IS HOW TO USE HEAT PIPE GROUND TEST DATA TO MAKE MICRO-GRAVITY PERFORMANCE PREDICTIONS. DURING GROUND TESTING, GRAVITY DOMINATES THE CAPILLARY FORCES AND BECOMES A LIMITING FACTOR. MOREOVER, BOTH THERMAL PERFORMANCE AND VEHICLE STABILIZATION ARE AFFECTED BY SPACECRAFT ACCELERATIONS CAUSED BY:

- MOTION IN ORBIT
- CHANGING ORBITS
- THREAT AVOIDANCE

Experiment Descriptions

In-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

In-Reach

Thermal Management

Investigation of Microgravity Effects on Heat Pipe Thermal Performance and Working Fluid Behavior

George L. Reischman

Hughes Aircraft Company, Electron Dynamics Division Contract: NAS5-30359, Goddard Space Flight Center, Roy McIntosh

EXPERIMENT DESCRIPTION

THE APPARATUS WILL PROVIDE THE ABILITY TO SPIN 4 HEAT PIPES, **MOUNTED IN A HOOP** ASSEMBLY, UP TO SEV-**ERAL HUNDRED RPM,** AND TO RECORD THE **NUTATION ACCELERA-**TION USING AN INFRA-**RED TELEMETRY SYS-**TEM. THE NUTATION DIVERGENCE FLIGHT TEST MEASURES THE **EXPONENTIAL TIME** CONSTANT FOR NUTA-TION DIVERGENCE OF A SPINNING MODEL WITH **CIRCUMFERENTIAL HEAT** PIPES.

EXPERIMENT DESCRIPTION

THE APPARATUS WILL PROVIDE THE ABILITY TO SPIN 4 HEAT PIPES. MOUNTED IN A RADIAL CONFIGURATION. **UP TO 100 RPM TO FORCE** THE WORKING FLUID TO ONE ONE OF THE HEAT PIPE. NEXT, THE ASSEMBLY WILL BE BROUGHT TO REST, AND THE EVAPORATOR PORTION OF EACH HEAT PIPE WILL BE HEATED USING BATTERY **POWERED HEATERS. REPRIM-**ING RATES, EFFECT OF **EXCESS LIQUID AND FLUID** DISTRIBUTION WILL BE EVAL-**UATED USING TEMPERATURE** SENSITIVE LIQUID CRYSTALS.

Experiment Descriptions

In-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

In-Reach

Thermal Management

Investigation of Microgravity Effects on Heat Pipe Thermal Performance and Working Fluid Behavior

George L. Reischman

Hughes Aircraft Company, Electron Dynamics Division Contract: NAS5-30359, Goddard Space Flight Center, Roy McIntosh

GROOVED CONSTANT CONDUCTANCE HEAT PIPE

VARIABLE CONDUCTANCE HEAT PIPE WITH CENTRAL CORE WICK

Experiment Descriptions

in-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

In-Reach

Thermal Management

Investigation of Microgravity Effects on Heat Pipe Thermal Performance and Working Fluid Behavior

George L. Relschman

Hughes Aircraft Company, Electron Dynamics Division Contract: NAS5-30359, Goddard Space Flight Center, Roy McIntosh

Experiment Descriptions

Out-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

Out-Reach

Thermal Management

A High-Efficiency Thermal Interface Between a Two-Phase Fluid Loop and a Heat Pipe Radiator John A Pohner

TRW, Space and Technology Group Contract: NASS-30375, Goddard Space Flight Center, Roy McIntosh

EXPERIMENT OBJECTIVE

Characterize the microgravity performance of a High-Efficiency Thermal Interface (HETI) which thermally couples a two-phase fluid loop to a heat pipe radiator.

- o For high-power spacecraft which must reject 10 to 100 kW of waste heat, two-phase fluid loops will be required to collect and transport heat, and large deployed radiators will be needed to reject the waste heat to space.
- o High efficiency (low ΔT) interface required between fluid loop and radiator to minimize radiator size and weight.
- Vapor from two-phase loop condenses on Gregorig-grooved exterior of heat pipe. Gregorig
 grooves use capillary forces to drain liquid from crests of grooves.
- Fibrous wick structure transfers liquid from Gregorig groove troughs to liquid return line.
- o Quantities of interest:
 - a) Condensation "h" on Gregorig grooves (predicted value = 50 kW/m²-K)
 - b) Evaporation "h" in heat pipe
 - c) Condensation "h" in heat pipe

DETAILS OF THE HIGH-EFFICIENCY THERMAL INTERFACE

Experiment Descriptions

Out-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

Out-Reach

Thermal Management

A High-Efficiency Thermal Interface Between a Two-Phase Fluid Loop and a Heat Pipe Radiator John A Pohner

TRW, Space and Technology Group Contract: NASS-30375, Goddard Space Flight Center, Roy McIntosh

BACKGROUND

- TRW developed the High Efficiency Thermal Interface (HETI) under the Air Force Wright Aeronautical Laboratory-sponsored High Power Spacecraft Thermal Management Study (Contract No. F33615-84-C-2414).
- Prior to development of HETI, no thermal bus-to-radiator heat exchangers suitable to high-power missions (excluding Space Station) were available.
- Ground testing of a single heat pipe version of the HETI resulted in heat transfer coefficients
 of the order of 10 kW/m²-K. Satisfactory ground testing is difficult since capillary forces
 and gravitational body forces are of the same order of magnitude.
- o Microgravity testing is required to determine:
 - a) heat transfer coefficients;
 - b) startup behavior; and
 - c) response to suddenly increased or decreased heat loads.

EXPERIMENT DESCRIPTION

- Experiment will be configured for Get Away Special or Hitchhiker-G carrier.
- Key components will include:
 - capillary pumped loop (CPL) including evaporator pump, liquid and vapor transport lines, accumulator (reservoir), and subcooler;
 - two slab wick heat pipes
 - HETI which accomodates two heat pipe's
 - radiator panel
 - battery and power control electronics; and
 - data acquisition electronics package.
- o Heat pipes and CPL will use ammonia as the working fluid.
- o Experiment will be heat sink limited. Increase of radiator mass will alleviate this problem.
- Experiment will be instrumented so that condensation and evaporation heat transfer coefficients in HETI and heat pipes may be calculated.
- Radiator panel must accommodate two heat pipes and liquid subcooler.
- Experiment will be designed to permit preliminary ground testing (heat pipes in reflux mode, evaporator pump of CPL below HETI, gravity-aided drainage of ammonia from Gregorig grooves).

INSTEP88 Workshop

OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

Out-Reach

Thermal Management

A High-Efficiency Thermal Interface Between a Two-Phase Fluid Loop and a Heat Pipe Radiator John A Pohner

TRW, Space and Technology Group

Contract: NASS-30375, Goddard Space Flight Center, Roy McIntosh

EXPERIMENT DESIGN

 THERMOCOUPLE LOCATIONS

SCHEDULE - EXPERIMENT DEFINITION PHASE

ANALYSIS AND PRELIMINARY DESIGN

IN-SPACE IMPLEMENTATION PLAN

DEVELOPMENT PHASE COST ESTIMATE

QUARTERLY STATUS REPORTS

ORAL REVIEW

DRAFT FINAL REPORT

NEW TECHNOLOGY REPORT

Experiment Descriptions

Out-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

Out-Reach

Thermal Management

A High-Efficiency Thermal Interface Between a Two-Phase Fluid Loop and a Heat Pipe Radiator
John A Pohner

TRW, Space and Technology Group
Contract: NAS5-30375, Goddard Space Flight Center, Roy McIntosh

SCHEDULE - EXPERIMENT DEVELOPMENT PHASE

REVIEWS AND DOCUMENTATION

SYSTEM DESIGN

FABRICATION AND ASSEMBLY

THERMAL VACUUM
PERFORMANCE TESTING

QUALIFICATION TESTING

FLIGHT TEST

DATA ANALYSIS

PDR - Preliminary Design Review LSA - Launch Services Agreement FSDP - Final Safety Data Package FR - Final Report

> CDR - Critical Design Review PSDP - Preliminary Safety Data Package

QR - Quarterly Report

Experiment Descriptions

Out-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

Out-Reach

Thermal Management

Moving Belt Radiator Dynamics

W. Peter Teagan

Arthur D. Little, Inc.

Contract: NAS3-25356, Lewis Research Center, Alan White

EXPERIMENTAL OBJECTIVE

Develop an improved understanding of the dynamics of a Moving Belt Radiator (MBR) during deployment and operation. In a zero gravity environment the primary forces on the belt will be those due to rotational motion (centrifugal forces) and spacecraft accelerations.

This understanding is needed to:

- Verify analytical methods developed to model the dynamics of flexible moving belt structures.
- Design MBR systems (belt structures, deployment, operation, and control)

Experiment Descriptions

Out-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

Out-Reach

Thermal Management

Moving Belt Radiator Dynamics

W. Peter Teagan

Arthur D. Little, Inc.

Contract: NAS3-25356, Lewis Research Center, Alan White

BACKGROUND/TECHNOLOGY NEED

- Computerized dynamic models have been developed to describe shape of MBR as influenced by rotational speeds, acceleration fields, and belt structure
- Ground based testing subject to gravity are not very useful since gravity forces will dominate the centrifugal forces which define belt dynamics in a spacce environment
- Ground based zero-G experiments (drop towers, KC135 test plane) provide too short a test period for extensive testing
- Lack of an experimentally verified dynamic model adds uncertainty to the design of this class of radiator possibly resulting in overly conservative design criteria

EXPERIMENTAL DESCRIPTION

- Experimental apparatus is a small scale moving belt structure 2-4 feet in diameter. Means are provided to:
 - vary belt rotational speed
 - subject belt to short term accelerations
 - vary sealing forces in interface heat exchanger structure
- Belt motion visualization (photographic) and measurements of forces on the IHX due to a belt motion, sealing pressure, and imposed acceleration will allow refinement of analytical models

Experiment Descriptions

Out-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

Out-Reach

Thermal Management

Moving Belt Radiator Dynamics

W. Peter Teagan Arthur D. Little, Inc.

Contract: NAS3-25356, Lewis Research Center, Alan White

Experiment Descriptions

Out-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

Out-Reach

Thermal Management

Moving Belt Radiator Dynamics

W. Peter Teagan

Arthur D. Little, Inc.
Contract: NAS3-25356, Lewis Research Center, Alan White

FIGURE 3 TEST APPARATUS DURING OPERATION (no perturbation)

FIGURE 4 EXPERIMENTAL APPARATUS DURING LINEAR PERTURBATION

INSTEP88 Workshop OAST Technology For the Future
Part 1: Executive Summary & Experiment Descriptions **Experiment Descriptions** POWER SYSTEMS AND THERMAL MANAGEMENT **Out-Reach Out-Reach** Thermal Management Moving Beit Radiator Dynamics W. Peter Teagan Arthur D. Little, Inc. Contract: NAS3-25356, Lewis Research Center, Alan White PROJECT IS IN EXPERIMENTAL DEFINITION PHASE 1988 1989 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1. Objectives & [______] Requirements 1.1 Technical ------ V Requirements 1.2 Experimental Test Requirements 2. Conceptual Designs 3. Implementation Plan

Experiment Descriptions

Out-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

Out-Reach

Thermal Management

Liquid Droplet Radiator

Shlomo L. Pfelffer Grumman Space Systems

Contract: NAS3-25357, Lewis Research Center, Alan White

Background

- Power levels for future space applications are increasing
- The heat rejection system can represent the dominant weight penalty of future space platforms
- Studies have shown that the Liquid Droplet Radiator (LDR) is significantly lighter than conventional radiators
- Contracts sponsored by NASA LeRC and AFAL have demonstrated LDR generator and collector operation

Need

 Test subscale LDR system which will provide end-to-end system verification of the LDR concept in zero-g

- Heated fluid is generated into a spray of droplets
- Droplets radiatively cool as they pass through space
- Droplets are collected and recycled back to the heat source

INSTEP88 Workshop

OAST Technology For the Future
Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

Out-Reach

Thermal Management

Liquid Droplet Radiator

Shlomo L. Pfeiffer

Grumman Space Systems

Contract: NAS3-25357, Lewis Research Center, Alan White

Conceptual Design of Linear Collector

Experiment Descriptions

Out-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

Out-Reach

Thermal Management

Liquid Droplet Radiator

Shlomo L. Pfeiffer

Grumman Space Systems

Contract: NAS3-25357, Lewis Research Center, Alan White

Heat Rejection System Weight Comparison

Liquid Droplet Radiator In-Space Experiment

INSTEP88 Workshop
OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

POWER SYSTEMS AND THERMAL MANAGEMENT

Out-Reach

Thermal Management

Liquid Droplet Radiator

Shlomo L. Pfeiffer

Grumman Space Systems

Contract: NAS3-25357, Lewis Research Center, Alan White

Zero-g Experimental Objectives

- Startup
 - Generator fluid loss
 - Film/stream interaction at the collector
 - Initial film capture and pressurization
- Steady state running
 - Droplet stream characteristics
 - Generator/collector operation
- Shutdown
 - Effect of fluid decay on pump operation
 - Fluid losses at generator and collector

Program Schedule

Experiment Descriptions

4,40,000

Out-Reach

FLUID MANAGEMENT AND PROPULSION SYSTEMS

Out-Reach

On-Orbit Fluid Management

Tank Pressure Control Experiment

M.D. Bentz Boeing Aerospace

Contract: NAS3-25363, Lewis Research Center, R. Knoll

EXPERIMENT OBJECTIVE:

Improve our understanding of jet mixing and its effect on thermal stratification, develop a better predictive capability, and give confidence in our ability to positively and reliably control cryogenic tank pressures in low gravity.

Our specific objectives are to:

- · Measure heat and mass transfer rates and compare with models
- · Observe mixing flow patterns to confirm/extend empirical correlations
- · Obtain data to validate or improve NASA-ECLIPSE computer code
- Together with COLD-SAT experiment, show effects of tank scale and fluid properties on mixing

BACKGROUND/TECHNOLOGY NEED

Justification:

- Future space systems will require storage and transfer of cryogenic fluids
 - STV / OTV
 - · manned Mars mission stage
 - Space Station nitrogen supply
 - · satellite propellants, reactants, coolants
- Lack of natural convection in low-g leads to increased thermal stratification, higher tank pressures, and possibly longer no-vent fill times
- · Use of refrigeration or TVS for pressure control depends on distribution of cooling in tank
- Compact forced-convection heat exchanger could save cost and weight
- · Mixing energy should be minimized but must provide reliable pressure control

Previous Work:

- · One-g thermal mixing tests
- · Small-scale low-g dye mixing tests in drop tower
- Low-g simulations
- NASA-ECLIPSE code development
- In-space experiment needed to provide low-g data of sufficient duration and scale

INSTEP88 Workshop OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

FLUID MANAGEMENT AND PROPULSION SYSTEMS

Out-Reach

On-Orbit Fluid Management

Tank Pressure Control Experiment

M.D. Bentz

Boeing Aerospace

Contract: NAS3-25363, Lewis Research Center, R. Knoll

EXPERIMENT DESCRIPTION:

- Small Self-Contained Payload (GAS)
- 5.0 cu-ft., approx. 160 lbm
- · autonomous control and data recording
- 800 W-hr power supply (alkaline cells)

Payload Installation

PROPOSED TESTS

- Measure effect of low-g on stratification buildup
- Measure performance of mixer as functions of flow rate and vapor location

symmetrical, high flow rate (regime IV)

unsymmetrical, high flow rate

PROCEDURE

- Heat fluid at one of two locations
- Measure pressure rise rate and temperature gradients
- Mix contents at a range of flow rates and measure pressure collapse rate, temperature transients
- Record liquid/vapor orientations and flow patterns on video

END RESULTS

- Demonstrate effective pressure control
- Determine minimum mixing energy
- Understand effect of g-jitter on self-mixing
- Provide visual record of fluid behavior
- Validate or identify needed improvements to NASA-ECLIPSE and other models

Experiment Descriptions

Out-Reach

FLUID MANAGEMENT AND PROPULSION SYSTEMS

Out-Reach

On-Orbit Fluid Management

Tank Pressure Control Experiment

M.D. Bentz

Boeing Aerospace Contract: NAS3-25363, Lewis Research Center, R. Knoll

TCR: Technical Concept Review PDR: Preliminary Design Review

FDRR: Flight Development Readiness Review

CDR: Critical Design Review FRR: Flight Readiness Review

Experiment Descriptions

Out-Reach

FLUID MANAGEMENT AND PROPULSION SYSTEMS

Out-Reach

On-Orbit Fluid Management

Integrated Cryogenic Experiment (ICE) Microsphere Insulation Investigation Dean C. Read

Lockheed Missiles & Space Company, Research & Development Division Contract: NAS2-12897, Ames Research Center, Jeffrey M. Lee

EXPERIMENT OBJECTIVE

- MEASURE THE LOW-G PERFORMANCE OF VARIOUS MICROSPHERE INSULATIONS OVER AN APPROPRIATE RANGE OF BOUNDARY TEMPERATURES. RESULTS OF PARTICULAR INTEREST ARE:
 - 1) COMPARISON OF ONE-G AND LOW-G PERFORMANCE
 - 2) PERFORMANCE AT LOW HOT BOUNDARY TEMPERATURES
 3) PERFORMANCE OF DIFFERENT TYPES OF MICROSPHERES

 - 4) COMPARISON TO MLI PERFORMANCE
- THE EXPERIMENT WILL BE MOUNTED IN THE INSTRUMENT WELL OF THE HELIUM EXTENDED LIFE DEWAR (HELD). USING THE HELD WILL ALLOW A CHARACTERIZATION OF THE DYNAMIC PROPERTIES OF THE PASSIVE ORBITAL DISCONNECT STRUT (PODS) SUPPORT SYSTEM UNDER LOW-G CONDITIONS.
- OTHER EXPERIMENTS MAY ALSO BE INCLUDED IN THE HELD.

BACKGROUND

- IMPROVED INSULATION SYSTEMS ARE OF GREAT INTEREST SINCE THEY ARE A MAJOR COMPONENT IN DETERMINING THE LIFETIME AND COST OF A CRYOGENIC SYSTEM.
- THE BENEFITS OF A MICROSPHERE INSULATION SYSTEM ARE:
 - 1) LOW-G PREDICTIONS SHOW THE POTENTIAL FOR BETTER PERFORMANCE THAN MLI
 - 2) INSTALLATION OF MICROSPHERES IS LESS LABOR INTENSIVE THAN MLI, RESULTING IN A SUBSTANTIAL COST SAVINGS.
 3) POTENTIAL FOR BETTER PERFORMANCE WITH GEOMETRIES
 - THAT ARE DIFFICULT TO WRAP WITH MLI.

2.757503

Experiment Descriptions

Out-Reach

FLUID MANAGEMENT AND PROPULSION SYSTEMS

Out-Reach

On-Orbit Fluid Management

Integrated Cryogenic Experiment (ICE) Microsphere Insulation Investigation Dean C. Read

Lockheed Missiles & Space Company, Research & Development Division Contract: NAS2-12897, Ames Research Center, Jeffrey M. Lee

TECHNOLOGY NEEDED

- EXTENSIVE TESTING AT LMSC HAS VERIFIED MLI AND MICROSPHERE PERFORMANCE PREDICTIONS. EXTRAPOLATING THESE PREDICTIONS FROM ONE-G TO LOW-G CONDITIONS SHOW A SUBSTANTIAL IMPROVEMENT IN MICROSPHERE PERFORMANCE.
- THE EFFECTIVE THERMAL CONDUCTIVITY OF MICROSPHERES CAN BE APPROXIMATED BY THE LINEAR SUMMATION OF THE CONDUCTION AND RADIATION COMPONENTS.
- IN ONE-G, THE RADIATION COMPONENT DOMINATES AT HIGH BOUNDARY TEMPERATURES AND THE SOLID CONDUCTION TERM DOMINATES AT LOW VALUES OF THE HOT BOUNDARY TEMPERATURE.
- IN LOW-G, THE SOLID CONDUCTION COMPONENT WOULD BE ZERO AND RADIATION WOULD BE THE ONLY HEAT TRANSFER MECHANISM.

COMPARISON OF CALCULATED AND MEASURED HEAT RATES

Experiment Descriptions

Out-Reach

FLUID MANAGEMENT AND PROPULSION SYSTEMS

Out-Reach

On-Orbit Fluid Management

Integrated Cryogenic Experiment (ICE) Microsphere Insulation Investigation Dean C. Read

Lockheed Missiles & Space Company, Research & Development Division Contract: NAS2-12897, Ames Research Center, Jeffrey M. Lee

COMPARISON OF MICROSPHERE AND MLI PERFOMANCE PREDICTIONS

EXPERIMENT DESCRIPTION

- MICROSPHERE PARAMETERS TO BE TESTED INCLUDE DIAMETER, COATINGS, PACKING DENSITY, MIXES OF DIFFERENT MICROSPHERES, ETC.
- IF THE HEAT TRANSFER IS TOTALLY BY RADIATION, CHANGES IN THE HOT BOUNDARY TEMPERATURE WILL BE EASY TO DETECT FOR SMALL CHANGES IN HEATER POWER SINCE $\mathbf{q_a}\mathsf{T^4}$.

Experiment Descriptions

Out-Reach

FLUID MANAGEMENT AND PROPULSION SYSTEMS

Out-Reach

On-Orbit Fluid Management

Integrated Cryogenic Experiment (ICE) Microsphere Insulation Investigation Dean C. Read

Lockheed Missiles & Space Company, Research & Development Division Contract: NAS2-12897, Ames Research Center, Jeffrey M. Lee

EXPERIMENT CONFIGURATION

I - REFERENCE INSULATION TUBE 2 THRU 9 - MICROSPHERE TUBES

INSULATION TUBE CONFIGURATION

PREDICTED EXPERIMENTAL RESULTS

Experiment Descriptions

Out-Reach

FLUID MANAGEMENT AND PROPULSION SYSTEMS

Out-Reach

On-Orbit Fluid Management

Integrated Cryogenic Experiment (ICE) Microsphere Insulation Investigation

Dean C. Read

Lockheed Missiles & Space Company, Research & Development Division Contract: NAS2-12897, Ames Research Center, Jeffrey M. Lee

HELIUM EXTENDED LIFE DEWAR

HELIUM EXTENDED LIFE DEWAR

Experiment Descriptions

Out-Reach

FLUID MANAGEMENT AND PROPULSION SYSTEMS

Out-Reach

On-Orbit Fluid Management

Integrated Cryogenic Experiment (ICE) Microsphere Insulation Investigation Dean C. Read

Lockheed Missiles & Space Company, Research & Development Division Contract: NAS2-12897, Ames Research Center, Jeffrey M. Lee

MASTER SCHEDULE

Experiment Descriptions

Out-Reach

FLUID MANAGEMENT AND PROPULSION SYSTEMS

Out-Reach

On-Orbit Fluid Management

Liquid Motion In a Rotating Tank

Franklin T. Dodge

Southwest Research Institute
Contract: NAS3-25358, Lewis Research Center, F.P. Chiaramonte

EXPERIMENT OBJECTNE

Develop a detailed understanding of liquid motions in a tank spinning about an external axis - primarily "inertial waves." Rotation rate can be so low that surface tension effects are important.

This understanding is needed for:

- general scientific knowledge (many unanswered theoretical questions that cannot be resolved by ground-based testing)
- design of spinning spacecraft (attitude control and stability problems)

BACKGROUND / TECHNOLOGY NEED

- Basic theory still has unresolved questions. CFD codes have not yet proved applicable. Good data is needed to guide theoretical work.
- Ground-based fundamental experiments are practically impossible - spin rate must be large to eliminate gravitational effects. Observation and measurement under such conditions are practically impossible.
- Liquid torques and energy dissipation interfere with attitude control systems and can cause a "flat" spin for a "prolate" spinner.
- Lack of good models and data lead to overly conservative satellite design.

Experiment Descriptions

Out-Reach

FLUID MANAGEMENT AND PROPULSION SYSTEMS

Out-Reach

On-Orbit Fluid Management

Liquid Motion In a Rotating Tank

Franklin T. Dodge

Southwest Research Institute
Contract: NAS3-25358, Lewis Research Center, F.P. Chiaramonte

EXPERIMENT DESCRIPTION

- Basic experimental apparatus is a forced motion spin table to control the motion of the test tanks
 - steady spin = 0 10 rpm
 - nutation (wobbling) frequency is less than twice the spin rate

INSTEP88 Workshop OAST Technology For the Future
Part 1: Executive Summary & Experiment Descriptions **Experiment Descriptions Out-Reach** FLUID MANAGEMENT AND PROPULSION SYSTEMS **Out-Reach** On-Orbit Fluid Management Liquid Motion In a Rotating Tank Franklin T. Dodge Southwest Research Institute Contract: NAS3-25358, Lewis Research Center, F.P. Chiaramonte PROJECT IS IN EXPERIMENT DEFINITION PHASE 1988 1989 07 08 09 10 11 12 01 02 03 04 05 06 07 Objectives & Requirements Modeling Conceptual Design Develop Plans, Schedule & Cost

Experiment Descriptions

Out-Reach

FLUID MANAGEMENT AND PROPULSION SYSTEMS

Out-Reach

Fluid Physics

Thermoacoustic Convection Heat Transfer

Prof. Masood Parang

University of Tennessee, Mechanical & Aerospace Engineering Department Contract: NAS3-25359, Lewis Research Center, Dr. An-Ti Chai

EXPERIMENT OBJECTIVE

THE OBJECTIVE IS TO ENHANCE FUNDAMENTAL UNDERSTANDING OF THERMOACOUSTIC CONVECTION (TAC) HEAT TRANSFER PHENOMENON AND EVALUATE ITS IMPORTANCE IN VARIOUS PROCESSES INVOLVING TRANSIENT HEAT TRANSFER IN LOW GRAVITY ENVIRONMENT. THE EXPERIMENT WILL PROVIDE DATA WHICH WILL BE USED TO VERIFY ANALYTICAL RESULTS AND COMPARE WITH GROUND-BASED EXPERIMENTS. THE UNDERSTANDING OF THIS PHENOMENON WILL BE APPLICABLE TO:

- DEVELOP INNOVATIVE WAYS FOR RAPID HEATING UNDER MICROGRAVITY CONDITIONS
- •IMPROVE HEAT TRANSFER CONTROL IN FLUID HANDLING, STORAGE AND TRANSPORT
- UNDERSTAND THE ROLE AND IMPORTANCE OF HEAT TRANSFER IN ACOUSTIC LEVITATORS

BACKGROUND

ANALYTICAL STUDIES INDICATE:

- VERY LARGE HEAT TRANSFER COMPARED TO CONDUCTION
- VERY SMALL TRANSIENT TIME

EXPERIMENTAL STUDIES SHOW:

- CONTRADICTORY AND INCONCLUSIVE RESULTS
- WHEN TAC EFFECTS ARE OBSERVED, THEIR IMPORTANCE IS SEEN TO BE NOT AS SIGNIFICANT

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

FLUID MANAGEMENT AND PROPULSION SYSTEMS

Out-Reach

Fluid Physics

Thermoacoustic Convection Heat Transfer

Prof. Masood Parang

University of Tennessee, Mechanical & Aerospace Engineering Department Contract: NAS3-25359, Lewis Research Center, Dr. An-Ti Chai

Comparison of the Results of the TAC Numerical Model with the Pure Conduction Solution

Comparison of the Numerical Results (Conduction and Radiation) and Experimental Results

EXPERIMENT DESCRIPTION

THE APPARATUS WILL PROVIDE RAPID HEATING OF A COMPRESSIBLE FLUID NEAR A BOUNDARY. THE SYSTEM CAN BE MODIFIED TO PROVIDE EXPERIMENTAL DATA FOR BOTH CLOSED AND OPEN-ENDED VESSEL GEOMETRY. INSTRUMENTATION FOR TEMPERATURE AND PRESSURE MEASUREMENTS ARE REQUIRED TO DETECT AND RECORD THE EFFECTS OF THERMOCONVECTIVE WAVES.

Experiment Descriptions

Out-Reach

AUTOMATION AND ROBOTICS

Out-Reach

Robotic Systems

Research and Design of Manipulator Flight Testbeds T.M. Depkovich

Martin Marietta Corporation, Astronautics Group Contract: NAS9-17907, Johnson Space Center, Jerry Reuter

EXPERIMENT OBJECTIVES

Advance the state-of-the-art in space robotics through the design and development of manipulator testbeds to be flown on the Space Transportation System (STS) supporting:

- Rigid Link Manipulators
- Large, Flexible Manipulators

BACKGROUND/TECHNOLOGY NEED

- Significant results from ground experimentation have not been validated in space
- Space robotics R & D program has need for long-term testbed capability in support of:
 - Mechanisms
 - Sensors
 - Processing
 - Controls
- On-orbit experimentation is required to provide a database for defining technology directions

EXPERIMENT DESCRIPTION

- · Experiment will support rigid and flexible arm experiments
- · Processing system will support varied controls research objectives
- · Experiment will support both autonomous and teleoperated functions
- · Emphasis is on growth capability

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

AUTOMATION AND ROBOTICS

Out-Reach

Robotic Systems

Research and Design of Manipulator Flight Testbeds

T.M. Depkovich

Martin Marietta Corporation, Astronautics Group Contract: NAS9-17907, Johnson Space Center, Jerry Reuter

SUMMARY

- A need exists for research testbeds, on orbit, to support validation of technology
- Must support both:
 - rigid and flexible structures
 - teleoperation and autonomy
 - operation from ground or space
- Key design feature: ability to integrate new technology

SCHEDULE

RESEARCH AND DESIGN	1988					1989					
MASTER SCHEDULE	J	J	Α	s	0	N	D	J	F	М	Α
FACE/DMACE											
Requirements Definition				<u> </u>							
Concept Definition											
Program Definition									<u> </u>		
Program Plan											

Experiment Descriptions

Out-Reach

AUTOMATION AND ROBOTICS

Out-Reach

Robotic Systems

Control of Flexible Robot Manipulators in Zero Gravity

Warren F. Phillips

Utah State University, Center for Computer Aided Design and Manufacturing Contract: NAS8-37754, Marshall Space Flight Center, Pamela Nelson

EXPERIMENT OBJECTIVE

DEVELOP A MANIPULATOR CONTROL SYSTEM CAPABLE OF ACCURATELY CONTROLLING A ROBOT ARM WITH LIGHTWEIGHT NON-RIGID LINKS IN A ZERO GRAVITY VACUUM. THIS CONTROL SYSTEM MUST MEET THE FOLLOWING REQUIREMENTS:

- POSITION CONTROL OF THE END-EFFECTOR MUST BE AS GOOD AS OR BETTER THAN PRESENT DAY INDUSTRIAL ROBOTS.
- CONTROL ACCURACY MUST NOT BE A FUNCTION OF PAYLOAD MASS OVER THE DESIGN LOAD-RANGE.
- STRUCTURAL STIFFNESS OF THE MANIPULATOR LINKS MUST NOT SIGNIFICANTLY AFFECT THE POSITION CONTROL ACCURACY.

BACKGROUND / TECHNOLOGY NEED

PROBLEMS ASSOCIATED WITH USING A COMPLETE MODEL BASED, DECOUPLING AND LINEARIZING MANIPULATOR CONTROL SYSTEM:

- IT IS COMPUTATIONALLY VERY EXPENSIVE TO USE THE ENTIRE DYNAMIC MODEL INSIDE THE CONTROL LOOP.
- THE VALUES OF THE PARAMETERS IN THE DYNAMIC MODEL ARE OFTEN NOT ACCURATELY KNOWN.
- SOME OF THE PARAMETERS ARE NOT REPEATABLE BECAUSE THEY CHANGE AS THE ROBOT AGES.
- STRUCTURAL VIBRATIONS MAY BE INDUCED BY THE CONTROL SYSTEMS IN MANIPULATORS WITH FINITE STIFFNESS.

Experiment Descriptions

Out-Reach

AUTOMATION AND ROBOTICS

Out-Reach

Robotic Systems

Control of Flexible Robot Manipulators in Zero Gravity

Warren F. Phillips

Utah State University, Center for Computer Aided Design and Manufacturing Contract: NAS8-37754, Marshall Space Flight Center, Pamela Nelson

BACKGROUND / TECHNOLOGY NEED

SIMPLIFICATIONS MADE IN MOST PRESENT DAY INDUSTRIAL ROBOT CONTROL SYSTEMS:

- THE DYNAMIC MODEL IS NOT USED AT ALL INSIDE THE CONTROL LOOP.
- THE CONTROL SYSTEM GAINS ARE ALL SET TO CONSTANT DIAGONAL MATRICES.
- THE CONSTANT GAINS ARE SET AS HIGH AS
 POSSIBLE, SO THAT THE ERRORS CAUSED BY THE
 JOINT COUPLING WILL BE QUICKLY SUPPRESSED BY
 THE ERROR DRIVEN CONTROL LAW.
- ALL LINKS ARE CONSTRUCTED TO BE VERY STIFF, TO PREVENT THE HIGH GAINS FROM INDUCING STRUCTURAL VIBRATIONS.

BACKGROUND / TECHNOLOGY NEED

PROBLEMS ASSOCIATED WITH USING PRESENT INDUSTRIAL ROBOT CONTROL SYSTEMS FOR IN-SPACE APPLICATIONS:

- IF THE MANIPULATOR IS DESIGNED TO HAVE VERY STIFF LINKS, IT NATURALLY MUST BE VERY HEAVY. A ROBOT TO PAYLOAD WEIGHT RATIO OF 50 IS COMMON.
- IF THE LINK WEIGHT AND STIFFNESS IS REDUCED, THE HIGH CONSTANT GAINS WILL EXCITE THE NATURAL VIBRATION MODES OF THE MANIPULATOR.
- IF THE CONSTANT GAINS ARE REDUCED, ERRORS INDUCED BY THE JOINT COUPLING WILL NOT BE ADEQUATELY SUPPRESSED.

Experiment Descriptions

Out-Reach

AUTOMATION AND ROBOTICS

Out-Reach

Robotic Systems

Control of Flexible Robot Manipulators in Zero Gravity

Warren F. Phillips

Utah State University, Center for Computer Aided Design and Manufacturing Contract: NAS8-37754, Marshall Space Flight Center, Pamela Nelson

EXPERIMENT DESCRIPTION

THE PRESENT RESEARCH WILL TEST THE FEASIBILITY OF ACCURATELY CONTROLLING A ROBOT ARM WITH LIGHTWEIGHT NON-RIGID LINKS IN A ZERO GRAVITY VACUUM. THE WORK WILL BE CARRIED OUT IN THREE PHASES:

- THE DEVELOPMENT OF A 2-AXIS ROBOT WHICH MINIMIZES THE EFFECTS OF GRAVITY AND CAN BE USED FOR PRELIMINARY GROUND TESTING OF THE CONTROL SYSTEM.
- THE DEVELOPMENT OF A COMPUTER SIMULATION FOR THE TEST ROBOT AND THE CONTROL SYSTEM.
- THE DEVELOPMENT OF A 3-AXIS ROBOT TO BE USED FOR IN-SPACE TESTING OF THE CONTROL SYSTEM.

Experiment Descriptions

Out-Reach

AUTOMATION AND ROBOTICS

Out-Reach

Robotic Systems

Control of Flexible Robot Manipulators in Zero Gravity

Warren F. Phillips
Utah State University, Center for Computer Aided Design and Manufacturing
Contract: NAS8-37754, Marshall Space Flight Center, Pamela Nelson

Experiment Descriptions

Out-Reach

AUTOMATION AND ROBOTICS

Out-Reach

Robotic Systems

Control of Flexible Robot Manipulators in Zero Gravity

Warren F. Phillips

Utah State University, Center for Computer Aided Design and Manufacturing Contract: NAS8-37754, Marshall Space Flight Center, Pamela Nelson

MASTER SCHEDULE

INSTEP88 Workshop

OAST Technology For the Future
Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

AUTOMATION AND ROBOTICS

Out-Reach

Robotic Systems (Control/Structure Interaction)

Jitter Suppression for Precision Space Structures

Robert M. Laurenson

McDonnell Douglas

Contract: NAS1-18689, Langley Research Center / JPL, Dean W. Sparks, Jr. / John A. Garba

EXPERIMENT OBJECTIVE

- IN-SPACE DEMONSTRATION OF ACTIVE AND PASSIVE DAMPING TECHNIQUES TO SUPRESS JITTER FOR PRECISION SPACE STRUCTURES
- IMPLEMENT A SHUTTLE PAYLOAD BAY EXPERIMENT TO ACCOUNT FOR IN-SPACE CONDITIONS
- ESTABLISH GROUND/FLIGHT DATABASE ON JITTER SUPPRESSION TECHNIQUES

BACKGROUND/TECHNOLOGY NEED

- BACKGROUND
 - SPACE-BASED OPTICAL APPLICATIONS REQUIRE LOW LINE-OF-SIGHT RESIDUAL JITTER LEVELS
 - LASER COMMUNICATIONS AND LASER RADAR ARE REPRESENTATIVE SYSTEMS
 - JITTER SUPPRESSION PLACES DEMANDS ON STRUCTURAL SUBSYSTEM
 - PRESENT SYSTEMS MICRORADIAN POINTING BUDGETS
 - FUTURE SYSTEMS SUB-MICRORADIAN POINTING AND/OR LARGER / COMPLEX CONFIGURATIONS
- TECHNOLOGY NEED
 - GROUND TEST VALIDATION IS INADEQUATE
 - DATA NEEDED FOR LOW-G, THERMAL/VACUUM ENVIRONMENT OF SPACE
 - PROVIDE VALIDATION OF JITTER SUPPRESSION TECHNIQUES FOR SPACE APPLICATION

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

AUTOMATION AND ROBOTICS

Out-Reach

Robotic Systems (Control/Structure Interaction)

Jitter Suppression for Precision Space Structures

Robert M. Laurenson

McDonnell Douglas

Contract: NAS1-18689, Langley Research Center / JPL, Dean W. Sparks, Jr. / John A. Garba

REDUCED JITTER YIELDS SYSTEM PAYOFF

REDUCED JITTER WITH DAMPING

SYSTEM PAYOFF

FREQUENCY

- REDUCED POWER
- REDUCED WEIGHT
 - LOWER COST
- HIGHER RELIABILITY
 - INCREASED LIFE

ANALYSES DEMONSTRATE JITTER REDUCTION WITH INTREGAL DAMPING

VISCOELASTIC DAMPING MATERIAL IMPLEMENTATION

VISCOELASTIC DAMPING MATERIAL VISCOELASTIC MATERIAL CONSTRAINING LAYER

JITTER ATTENUATION WITH VISCOELASTIC DAMPING

- ASSESSMENT OF PIEZOELECTRIC DAMPING
- EFFECTIVE MODAL DAMPING
- ORDER OF MAGNITUDE GREATER THAN VISCOELASTIC DAMPING

INSTEP88 Workshop

OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

AUTOMATION AND ROBOTICS

Out-Reach

Robotic Systems (Control/Structure Interaction)

Jitter Suppression for Precision Space Structures

Robert M. Laurenson

McDonnell Douglas

Contract: NAS1-18689, Langley Research Center / JPL, Dean W. Sparks, Jr. / John A. Garba

EXPERIMENT DESCRIPTION

- BASED ON EXISTING SPACE-BASED LASER COMMUNICATIONS SUBSYSTEM DESIGN
- USE EXISTING ENGINEERING MODEL HARDWARE
 - MASS SIMULATED EQUIPMENT COMPONENTS
- INTEGRATE DAMPING INTO GRAPHITE/EPOXY STRUCTURE
 - PASSIVE VISCOELASTIC DAMPING
 - ACTIVE PIEZOELECTRIC DAMPING
- PROVIDE EXCITATION SOURCES AND INSTRUMENTATION
- INTEGRATE INTO SHUTTLE PAYLOAD BAY EXPERIMENT

ENGINEERING MODEL UNIT STRUCTURE GRAPHITE/EPOXY CONSTRUCTION

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

AUTOMATION AND ROBOTICS

Out-Reach

Robotic Systems (Control/Structure Interaction)

Jitter Suppression for Precision Space Structures

Robert M. Laurenson McDonnell Douglas

Contract: NAS1-18689, Langley Research Center / JPL, Dean W. Sparks, Jr. / John A. Garba

SUMMARY

- EXPERIMENT DEFINITION PHASE
 - JUNE 88 THROUGH FEBRUARY 89
- BASED ON SPACE-BASED LASER COMMUNICATIONS DESIGN
 - HARDWARE IS AVAILABLE
 - MODIFICATIONS FOR EXPERIMENT BEING DEFINED
- PERFORM PRELIMINARY ANALYSES
 - DISTURBANCE SOURCES
 - DAMPING IMPLEMENTATION
- SUPPORTING ANALYSES
- INSTRUMENTATION
- DEVELOP PRELIMINARY PLANS
 - GROUND TEST, SHUTTLE INTEGRATION, IMPLEMENTATION (COST/SCHEDULE)
- INTEGRATION WITH OTHER EXPERIMENTS MAY BE BENEFICIAL
 - REDUCED COST
 - MAXIMUM PAYLOAD BAY UTILIZATION

Experiment Descriptions

Out-Reach

AUTOMATION AND ROBOTICS

Out-Reach

Robotic Systems

Passive Damping Augmentation for Space Manipulators

Dr. Thomas E. Alberts

Old Dominion University (Support by 3M Corporation)
Contract: NAS1-18687, Langley Research Center, Jack Pennington

EXPERIMENT OBJECTIVE

Demonstrate the use of constrained layer viscoelastic damping treatments to reduce vibrations in flexible space manipulators. The target example is the space shuttle RMS. The current phase of the project includes:

- Analysis and design of damping treatment for bending and torsion.
- Design for reduced sensitivity to temperature variations.
- Simulate and evaluate results.
- Experimental verification.

Experiment Descriptions

Out-Reach

AUTOMATION AND ROBOTICS

Out-Reach

Robotic Systems

Passive Damping Augmentation for Space Manipulators

Dr. Thomas E. Alberts

Old Dominion University (Support by 3M Corporation)
Contract: NAS1-18687, Langley Research Center, Jack Pennington

Finite Element Analysis of Damped System - Bending

Experiment Descriptions

Out-Reach

AUTOMATION AND ROBOTICS

Out-Reach

Robotic Systems

Passive Damping Augmentation for Space Manipulators

Dr. Thomas E. Alberts

Old Dominion University (Support by 3M Corporation)
Contract: NAS1-18687, Langley Research Center, Jack Pennington

Finite Element Analysis of Damped System - Torsion

Experiment Descriptions

Out-Reach

AUTOMATION AND ROBOTICS

Out-Reach

Robotic Systems

Passive Damping Augmentation for Space Manipulators

Dr. Thomas E. Alberts

Old Dominion University (Support by 3M Corporation)
Contract: NAS1-18687, Langley Research Center, Jack Pennington

DAMPING ANALYSIS

• Finite element analysis of single layer treatments.

Bending

Torsion

Experiment

- Use validated code to evaluate multi-layer treatments designed to extend effective temperature range.
- Use damping results in full scale simulation.

Experiment Descriptions

Out-Reach

SENSORS AND INFORMATION SYSTEMS

Out-Reach

Sensors

Development of Emulsion Chamber Technology John Gregory

University of Alabama in Huntsville Contract: NAS8-37751, Marshall Space Flight Center, Jon Haussler

OBJECTIVES

- O DESIGN, FABRICATE AND FLY ON THE STS AN EMULSION CHAMBER OF THE GENERAL TYPE WHICH WILL BE A LIKELY CANDIDATE FOR COSMIC RAY AND HIGH ENERGY PHYSICS STUDIES ON THE SPACE STATION.
- O ASSESS THE RADIATION BACKGROUND ENCOUNTERED IN SUCH DETECTORS IN ORBITS UP TO 400 km.
- O ASSESS PRE- AND POST-FLIGHT ENVIRONMENTAL EFFECTS ON PASSIVE DETECTORS.
- O ASSESS THE EFFECTS OF LARGE SHIELDING ON DOSE IN SPACE STATION ORBITS.
- O PROVIDE THE ASTROPHYSICS COMMUNITY WITH AN ENVIRONMENTAL ASSESSMENT OF THE PERFORMANCE CAPABILITIES OF EMULSION TECHNIQUES IN SPACE.
- O DEVELOP AND MODIFY EMULSION TECHNIQUES AS NECESSARY TO ALLOW OPTIMUM USE OF THE POWER OF THE METHOD.

BACKGROUND

- O NUCLEAR TRACK EMULSIONS HAVE BEEN USED FOR 50 YEARS IN PARTICLE PHYSICS AND COSMIC RAY PHYSICS AND HAVE PRODUCED MANY LANDMARK DISCOVERIES OR MEASUREMENTS:
 - FIRST-DEMONSTRATION OF EXISTENCE OF Π-MESON (1947).
 - DISCOVERY OF HEAVY ELEMENTS IN COSMIC RAYS (1948).
 - o FIRST MEASUREMENT OF HELIUM SPECTRUM (1957).
 - CONFIRMATION OF TRANS-IRON NUCLEI IN COSMIC RAYS (1967).
 - OBSERVATION OF EVIDENCE OF QUARK-GLUON PLASMA FORMATION IN HEAVY NUCLEUS COLLISIONS ABOVE 1TeV/n.
 - o FIRST MEASUREMENT OF CHEMICAL COMPOSITION OF COSMIC RAYS AT 1014eV.

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

SENSORS AND INFORMATION SYSTEMS

Out-Reach

Sensors

Development of Emulsion Chamber Technology

John Gregory

University of Alabama in Huntsville Contract: NAS8-37751, Marshall Space Flight Center, Jon Haussler

TECHNOLOGY NEEDS

(TO BE ADDRESSED BY ENGINEERING FLIGHT OF EMULSION CHAMBER.)

- O RADIATION-INDUCED BACKGROUND IN ORBIT. SELF-SHIELDING TO AMBIENT RADIATION. SHOWER PRODUCTION WITHIN THE CHAMBER FROM ENERGETIC BACKGROUND RADIATION.
- O RADIATION-INDUCED BACKGROUND ACCUMULATED DURING STORAGE AND GROUND OPERATIONS.
- O TEMPERATURE AND HUMIDITY EFFECTS: IMPACT ON MECHANICAL DESIGN AND GROUND OPERATIONS. TEMPERATURE GRADIENT EFFECTS WITHIN THE CHAMBER.
- O ABILITY TO PERFORM VARIOUS MEASUREMENTS ON INTERACTIONS OBSERVED IN THE TEST FLIGHT CHAMBER WITH A KNOWN BACKGROUND.

EXPERIMENT DESCRIPTION

- O DETECTOR PLATES INCLUDE NUCLEAR TRACK EMULSIONS OF DIFFERENT TYPES, X-RAY FILM AND CR-39 ETCHABLE TRACK DETECTORS. THIS STACK (ALSO INCLUDING INACTIVE MATERIAL SUCH AS LUCITE AND LEAD) MUST BE PROTECTED FROM LIGHT, HEAT, HUMIDITY AND VIBRATION DAMAGE.
- O THE STACK (OR EMULSION CHAMBER) IS CONTAINED IN A HERMETIC ALUMINUM BOX WHICH IS PARTIALLY EVACUATED. THE BOX HAS A HONEYCOMB LID TO REDUCE NUCLEAR INTERACTIONS OF INCOMING COSMIC RAYS.
- O DIMENSIONS:

50 CM X 60 CM X 40 CM

O WEIGHT:

180 KG

O TEMPERATURE:

≤ 20°C, REDLINE 30°C

O POWER:

HEATERS, THERMISTORS AND TEMPERATURE DATA RECORDER

O ORBIT:

 \leq 57 DEG; \leq 400 KM; 5-10 DAYS

Experiment Descriptions

Out-Reach

SENSORS AND INFORMATION SYSTEMS

Out-Reach

Sensors

Development of Emulsion Chamber Technology

John Gregory

University of Alabama in Huntsville Contract: NAS8-37751, Marshall Space Flight Center, Jon Haussler

SECTION OF EMULSION CHAMBER AND CONTAINER

INSTEP88 Workshop

OAST Technology For the Future
Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

SENSORS AND INFORMATION SYSTEMS

Out-Reach

Sensors

Development of Emulsion Chamber Technology

John Gregory University of Alabama in Huntsville Contract: NAS8-37751, Marshall Space Flight Center, Jon Haussler

SCHEDULE

		6 Months	12 Months	15 MONTHS
0	DESIGN			
	o MECHANICAL			
	o THERMAL			
	o SCIENTIFIC			
0	MID-TERM REVIEW			
	o MSFC	Δ		
0	FABRICATION OF TEST ARTICLE			
o	PHASE B DESIGN REVIEW	,	Δ	
o	BACKGROUND STUDY			
0	PREPARATION OF DRAWINGS			
O	DELIVERY OF DRAWINGS, SPECIFICATIONS AND COST PLAN FOR FLIGHT INVESTIGATION			Δ

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

SENSORS AND INFORMATION SYSTEMS

Out-Reach

Sensors

Infrared Focal Plane Performance In the South Atlantic Anomaly Frank Junga

Lockheed, Research and Development Division
Contract: NAS2-12898, Ames Research Center, Craig McCreight

PROGRAM OBJECTIVES

- Construct a model to predict selected focal plane performance parameters in the South Atlantic Anomaly environment. Outputs shall include protoninduced pulse height distribution in detectors and proton induced noise
- Verify pulse height distribution calculations for several proton energies and shielding thicknesses
- · Develop a detailed concept for a flight experiment

BACKGROUND

 NASA and DOD will fly missions employing low background IR detectors. The proton environment can significantly affect detector performance

TECHNOLOGY NEED

 An accurate model is required to assess noise problems and to develop signal processing algorithms for noise reduction

NEED FOR SPACE EXPERIMENT

 We can model and verify model for effects of particle energy, geometric factors, and shielding. We cannot model noise contributions due to fluctuations in the instantaneous proton energy distribution.

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

SENSORS AND INFORMATION SYSTEMS

Out-Reach

Sensors

Infrared Focal Plane Performance In the South Atlantic Anomaly

Frank Junga

Lockheed, Research and Development Division
Contract: NAS2-12898, Ames Research Center, Craig McCreight

PULSE HEIGHT DISTRIBUTIONS, NOISE ANALYSIS, AND VERIFICATION

ANALYSIS INCLUDES

Chord length distribution

Proton energy distribution

Proton energy loss, variance in energy distribution (a parameter)

Secondary sources of lonizing radiation (e.g. soft x-rays)

[NOVICE Code]

VERIFICATION

Measure pulse height distributions for various angles of incidence, proton energy (20-60 MeV), and type and thickness of shielding material

Test for blooming

ACTIVITIES TO DATE

- Background material assembled for pulse height distribution and noise calculations
- Visits to UC Berkeley and Davis cyclotrons to get specifics on experiment configurations
- Designed and fabricated necessary fixtures for proton pulse height distribution experiments*
- Scheduled Davis cyclotron for Dec 7

*NASA Ames completed dewar and software modifications

Experiment Descriptions

Out-Reach

SENSORS AND INFORMATION SYSTEMS

Out-Reach

Sensors

Infrared Focal Plane Performance In the South Atlantic Anomaly Frank Junga

Lockheed, Research and Development Division
Contract: NAS2-12898, Ames Research Center, Craig McCreight

FLIGHT EXPERIMENT CONCEPT

Lockheed ID He Extended Life Dewar (HELD)

- A self-contained experiment
 - · Data collected on tape

Minimum of two focal plane arrays

One with added shielding

Several experiments to be accomodated in dewar

PROGRAM SCHEDULE (MONTHS AFTER GO-AHEAD)

Program Start Date: 7 September 1988

Experiment Descriptions

Out-Reach

SENSORS AND INFORMATION SYSTEMS

Out-Reach

Sensors

Construction and In-Space Performance Evaluation of High-Stability Hydrogen Maser Clocks Robert F.C. Vessot

Smithsonian Astrophysical Observatory
Contract: NAS8-37752, Marshall Space Flight Center, Dr. R. Decher

EXPERIMENT OBJECTIVE:

- TO DEVELOP TECHNOLOGY FOR ULTRASTABLE ATOMIC HYDROGEN MASER CLOCKS FOR LONG DURATION SPACE-BORNE EXPERIMENTS
- TO DESIGN AND BUILD TWO FLIGHT-QUALIFIED HYDROGEN MASERS
- TO TEST AND EVALUATE THE MASERS' PERFORMANCE IN SPACE

BACKGROUND

- 1976 GP-A (REDSHIFT) H-MASER DEVELOPED FOR SHORT DURATION ROCKET FLIGHT ~2 HOURS, MASER STABILITY 7x10-15
- 1980-84 STUDY OF ORBITING CLOCK EXPERIMENT FOR VERY HIGH PRECISION GLOBAL TIME AND FREQUENCY TRANSFER
- 1988 GROUND BASED MASER FREQUENCY STABILITY APPROACHING 1x10-16 AT 104 SEC; THIS CAN BE REALIZED IN A SPACEWORTHY H MASER

TECHNOLOGY NEEDS SATISFIED BY SPACEBORNE ULTRA-HIGH STABILITY HYDROGEN MASERS

- · HIGH PRECISION SPACE-BORNE GUIDANCE AND NAVIGATION SYSTEMS
- RADIO ASTRONOMY VERY LONG BASELINE INTERFEROMETRY
- REAL-TIME HIGH PRECISION GLOBAL TIME AND FREQUENCY SYNCHRONIZATION
- GRAVITATION AND RELATIVITY PHYSICS
- SPACE-BORNE MULTISTATION TIME-CORRELATED RADAR TRACKING

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

SENSORS AND INFORMATION SYSTEMS

Out-Reach

Sensors

Construction and In-Space Performance Evaluation of High-Stability Hydrogen Maser Clocks Robert F.C. Vessot

Smithsonian Astrophysical Observatory

Contract: NAS8-37752, Marshall Space Flight Center, Dr. R. Decher

EXPERIMENT DESCRIPTION

PHOTOGRAPH OF SPACE MASER COMPONENTS

Experiment Descriptions

Out-Reach

SENSORS AND INFORMATION SYSTEMS

Out-Reach

Sensors

Construction and In-Space Performance Evaluation of High-Stability Hydrogen Maser Clocks Robert F.C. Vessot

Smithsonian Astrophysical Observatory
Contract: NAS8-37752, Marshall Space Flight Center, Dr. R. Decher

SPACE MASER DESIGN CONCEPT

SCHEDULE OF PRESENT PROGRAM AND ITS EXTENSION TO A FLIGHT EXPERIMENT.

Experiment Descriptions

Out-Reach

SENSORS AND INFORMATION SYSTEMS

Out-Reach

Sensors

Construction and In-Space Performance Evaluation of High-Stability Hydrogen Maser Clocks
Robert F.C. Vessot

Smithsonian Astrophysical Observatory
Contract: NAS8-37752, Marshall Space Flight Center, Dr. R. Decher

CONCLUSIONS AND SUMMARY

EARTH-BASED HYDROGEN MASERS HAVE ACHIEVED EXTREMELY HIGH PERFORMANCE AND STABILITY APPROACHING 1x10-16. THIS TECHNOLOGY SHOULD BE ADAPTED FOR SPACE APPLICATIONS OF LONG DURATION.

- THE SPACE STATION AND POLAR ORBITER WILL REQUIRE HIGH STABILITY CLOCKS FOR
 - -- VLBI OPERATION OF SPACEBORNE RADIOTELESCOPES
 - -- WORLD WIDE TIME AND FREQUENCY COORDINATION
 - -- HIGH SPEED COMMUNICATIONS SYNCHRONIZATION
- HIGH PRECISION, VERY HIGH STABILITY, CLOCK SIGNALS ARE NECESSARY AS AN ON-BOARD UTILITY FOR OTHER SYSTEM APPLICATIONS.

MODERN METROLOGY DEPENDS ON THE DEFINITION OF TIME INTERVAL IN TERMS OF THE ATOMIC SECOND. DISTANCE IS NOW DEFINED BY THE VELOCITY OF LIGHT IN TERMS OF ATOMIC TIME.

ATOMIC CLOCKS PROVIDE THE MOST PRECISE MEASUREMENTS OF PHYSICAL PARAMETERS.

Experiment Descriptions

Out-Reach

SENSORS AND INFORMATION SYSTEMS

Out-Reach

Sensors

Acceleration Measurement and Management Experiment Definition Jan A. Bijvoet

University of Alabama in Huntsville (support by Teledyne Brown Engineering) Contract: NAS1-18683, Langley Research Center, Robert C. Blanchard

General Experiment Objectives:

- Enhance the level of Acceleration Measurement and spatial patterning as an essential support to high quality microgravity operations.
- To bring acceleration measurement and management toward the mature status enjoyed by attitude and orbit determination & management.

Technology Need:

- Microgravity materials processes require:

 - very low acceleration disturbance levels.
 knowledge of direction of the residual acceleration vector for experiment accommodation.
- No methodology available to determine on-orbit the center-of-mass.
- Acceleration disturbance level and vector needs to be known at a large number of experiment locations.
- Needs to be known in real time.
- Information needed in real time for control of the center of mass.

Experiment Definition Objectives:

- Develop analytical methods for in-orbit calculation of center of mass from a number of separately located 3-D accelerometers.
 - Develop analytical methods for in-orbit calculation of acceleration level and acceleration vector at any selectable experiment location.
- Determine data for control of the center of mass.

Experiment Descriptions

Out-Reach

SENSORS AND INFORMATION SYSTEMS

Out-Reach

Sensors

Acceleration Measurement and Management Experiment Definition

Jan A. Biivoet

University of Alabama in Huntsville (support by Teledyne Brown Engineering) Contract: NAS1-18683, Langley Research Center, Robert C. Blanchard

ACCELEROMETER MEASUREMENT AND MANAGEMENT

SURVEY OF EXISTING ACCELEROMETERS

Other Similar Uses for Accelerometers

- Missile Guidance
- · Satellite Sensor Stabilization
- · Seismic Motion Detection
- · Orbital Experiment Instrumentation

Teledyne Brown Engineering Requested Information from the Following Organizations:

- Applied Technology Associates
 KMS Fusion
 Stanford University
- Bell Aerospace Textron
- · Bruel & Kiaer
- C.S. Draper Laboratories
- G.E. Space Div.
- Honeywell
- IC Sensors

- · Payload Systems, Inc. · Systron Donner
- Electronics
- Singer Kearfott

- Sundstrand Data Control
- Rockwell Defense
 Teledyne Geotech
 - · U of MD Physics Dept.
- Sperry Aerospace

Specifications Requested Were:

- Measure 10-7 to 10-2 g₀
- Frequency response of 10-4 to 50 Hz
- Accommodate a noise spectrum of up to 10-2 go from 1 to 50 Hz
- · A method of calibrating the sensor

Conclusions:

- Currently existing sensors may be suitable for our needs, pending testing
- · Sensor bias and drift characteristics will interfere with the low amplitude, low frequency measurements
- · Testing and calibration will be difficult in a one go environment
- · A new type of sensor may be more appropriate for this application

Experiment Descriptions

Out-Reach

SENSORS AND INFORMATION SYSTEMS

Out-Reach

Sensors

Acceleration Measurement and Management Experiment Definition Jan A. Bijvoet

University of Alabama in Huntsville (support by Teledyne Brown Engineering) Contract: NAS1-18683, Langley Research Center, Robert C. Blanchard

POTENTIAL SHUTTLE FLIGHTS FOR PILOT EXPERIMENTATIONS

Flight, Orbiter	Date	Relevant Payloud		_	ccelero meters*			
32,C	Nov 89				н, о			
35,C	Mar 90	Astro-1	2SL-PAL	уев?	н, о			
40,C	Jun 90	SLS-1	SL-LM	?	S?,H,O			
44,C	Dec 90	Atlas-1, <u>MSL-37</u>	2SL-PAL	уев	\$?,H,O			
45,A	Jan 91	TSS1	SL-PAL,+ MPESS		тво			
47,C	Apr 91	IML-1	SL-LM	yes	<u>s</u> ,н,о			
48,A	May 91	EURECA-IL		Aea	твр			
49,C	វិធីរ៉ា ទីរ	s/L-J	SL-LM	уев	<u>s</u> , H, O			
52,C	Dec 91	<u> 5/L-D2</u>	SL-LM+USS	уев	\mathbf{H} , $\mathbf{O} \to \mathbf{T}\mathbf{B}\mathbf{D}$			
55,C	Mar 92	<u>USML-1</u>	SL-LM+MPESS	уев	<u>25</u> ,11,0			
56,A	Apr 92	ORFEUS	SPAS	yes	тво			
57,D	May 92	<u> USMP-1</u>	MSL+MPESS	yes	тво			
59,C	Jul 92	S1.S-2	SL~LM	?	S?,H,O			
60,A	Jul 92	ISF 1		AGR	тво			
63,C	Oct 92	IML-3	SL-LM	yes	S?,H,O			
65,D	Nov 92	MSL 4	MPESS	yes	5?			
68,A	Feb 93	<u> ISF-2</u>		Nea	твр			
70, OV105	Apr 93	EURECA-2L		Хēя	тво			
73,C	Jul 93	USML 2	SL-LM+MPESS	yes	2S2,H,O			
74. OV 105	Aug 93	AAFE	2SL PAL	?	S (Mod.)?			
75,A	Sep 93	GP-B1	SL-PAL	yes	тво			
?	?	<u>MSI.:5</u>	MPESS	уев	57			
?	7	<u>MSL-6</u>	MPESS	уев	S7			

^{*}S = SAMS = Space Acceleration Measurement System (Le R.C.)
H = HIRAP = High Resolution Accelerometer Package
(JSC, La R.C.)
O = OARE = Orbital Acceleration Research Experiment
(JSC, La R.C.)

Experiment Descriptions

Damping

Out-Reach

SENSORS AND INFORMATION SYSTEMS

Out-Reach

Sensors

Acceleration Measurement and Management Experiment Definition Jan A. Bijvoet

University of Alabama in Huntsville (support by Teledyne Brown Engineering)
Contract: NAS1-18683, Langley Research Center, Robert C. Blanchard

M & M PROCESS FLOW Measurements: Accelero Attitude Orbit Strain meters Gauges Known Quantities: PROCESSING Physical Constants Structural Parameters (Data Reduction, Correlation, Error estimates) MODEL: Gravity gradient Atmospheric drag Radiator Pressure DETERMINING OF PARAMETERS AND ERROR ESTIMATES CM Orbital Local structural response parameters, incl. vibration Dynamics Attitude modes Structural Dynamics EXTRAPOLATED SPATIAL ACCELERATION ENVIRONMENT SIGNAL FOR CONTROL SYSTEMS -CM (Incl. Variance, covariance Attitude TEA

Experiment Descriptions

Out-Reach

SENSORS AND INFORMATION SYSTEMS

Out-Reach

Sensors

Dynamic Spacecraft Attitude Determination with GPS

Dr. Duncan B. Cox, Jr.

Mayflower Communications Company, Inc.

Contract: NAS5-30358, Goddard Space Flight Center, Dr. Seymor Kant

EXPERIMENT OBJECTIVE

Determine the feasibility of using NAVSTAR GPS signals to accurately measure very small differences in antenna locations in multiple antenna arrays.

o Determine spacecraft orbit, attitude, and flexure.

Consider shading of antennas by spacecraft structures.

Utilize optimum estimation filters, including models of spacecraft dynamics and potentially available inertial sensors.

 Measure very slow ground motions due to geodynamics.

Utilize data obtained by continuously monitoring GPS signals at multiple sites, including stable baselines as well as potentially unstable ones.

Estimate ionospheric and tropospheric delays and multipath perturbations.

BACKGROUND

NAVSTAR Global Positioning System (GPS)

Signals soon available continuously world-wide, to LEO and beyond

Likely to be widely used for spacecraft navigation

Phase information can be used to measure lengths and bearings of short baselines with subcentimeter accuracies.

Allows determination of attitude and flexure of spacecraft with multiple antennas.

Allows determination of geodynamic motions of GPS-instrumented ground sites.

INSTEP88 Workshop

OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

SENSORS AND INFORMATION SYSTEMS

Out-Reach

Sensors

Dynamic Spacecraft Attitude Determination with GPS

Dr. Duncan B. Cox, Jr.

Mayflower Communications Company, Inc.
Contract: NAS5-30358, Goddard Space Flight Center, Dr. Seymor Kant

TECHNOLOGY NEEDS

GPS-derived attitude data can be used for initial pointing of spacecraft subsystems, such as laser radars and laser communications systems. But technical issues must be resolved before mission applications are undertaken.

Spacecraft structures obscure the views of satellites and cause multipath interference.

A Geodynamic Laser Ranging System (GLRS) demonstration can benefit from having independent GPS measurements of terrestrial baselines with subcentimeter accuracies.

A system design employing low-cost, weather-tolerant, terrestrial equipment and advanced algorithms needs to be developed and demonstrated. The system should be integrated appropriately with the GLRS system.

EXPERIMENT DESCRIPTION

Instrumented space vehicle

Three GPS antennas, one GPS receiver, one high-accuracy clock, one digital controller, one data recorder.

One independent attitude determination subsystem, preferably part of a GLRS experiment. (Note that GPS receivers are likely to be utilized by GLRS for orbit determination.)

Record raw GPS pseudorange and phase data, and independent attitude data for post-flight processing. Include inertial sensor data if available.

Instrumented terrestrial range

A GPS antenna, receiver, and recorder at each of two GLRS sites.

Compare GPS attitude and baseline data with independent results.

INSTEP88 Workshop

OAST Technology For the Future
Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

SENSORS AND INFORMATION SYSTEMS

Out-Reach

Sensors

Dynamic Spacecraft Attitude Determination with GPS

Dr. Duncan B. Cox, Jr.

Mayflower Communications Company, Inc.
Contract: NAS5-30358, Goddard Space Flight Center, Dr. Seymor Kant

SCHEDULE

TASK DESCRIPTION	0	N	D	J	F	M	λ	M	J	J	λ	s	
System Description		.		-					:				
Algorithm development							-						
Hardware selection							-						
Performance analysis										-			
Experiment planning			•								-		
Final report												=	

Experiment Descriptions

Out-Reach

SENSORS AND INFORMATION SYSTEMS

Out-Reach

Sensors

Dynamic Spacecraft Attitude Determination with GPS

Dr. Duncan B. Cox, Jr.

Mayflower Communications Company, Inc.

Contract: NAS5-30358, Goddard Space Flight Center, Dr. Seymor Kant

SUMMARY

GPS signals probably can be used simply and at low cost to determine the attitudes of spacecraft, and bending of spacecraft members, to milliradian accuracies.

GPS signals probably can be used with low cost equipment for determination of slow geodynamic motions of terrestrial baselines to subcentimeter accuracies.

An experiment is proposed in which GPS would synergistically support'a GLRM experiment.

Utilizing GLRM-spacecraft attitude data to corroborate GPS attitude data.

Utilizing GPS data to corroborate GLRM baseline data.

Using GPS data for satellite orbit estimation, to the benefit of both experiments.

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

SENSORS AND INFORMATION SYSTEMS

Out-Reach

Sensors

Stanford University/NASA Laser In-Space Technology Experiment (SUNLITE)

Robert L. Byer, Stanford University

A. Martin Buoncristiani, Langley Research Center (National Research Council)

OBJECTIVE:

To provide ultra-stable. solid-state laser oscillators for future applications in space based systems. The self powered SUNLITE instrument will use the vibration free, microgravity environment in or about the orbiting Shuttle to test the stability and Schawlow-Townes linewidth limit of specially configured monolithic Non-Planar Ring Oscillators (NPRO).

BACKGROUND:

The availability of diode lasers, as pump sources, provides the opportunity for development of small, stable, long-life all solid-state laser sources. The monolithic Non-Planar Ring Oscillator (NPRO), developed at Stanford under NASA/OAST sponsorship, promises to satisfy scientific, medical and industrial applications requiring coherent narrow linewidth sources. Immediate benefits are promised for spacecraft operations and remote sensing applications.

Improved techniques in frequency control are used to lock the NPRO to external cavities and have yeilded linewidths down to about 150 Hz. Resultant linewidth measurements are limited by noise induced by sources within the lab environment. Reducing these sources to practical limits will leave gravity, mechanical and acoustically coupled vibration as limiting factors in laboratory experiments. The Shuttle experiment will provide the environment needed to further examine linewidth and stability limitations.

Experiment Descriptions

Out-Reach

SENSORS AND INFORMATION SYSTEMS

Out-Reach

Sensors

Stanford University/NASA Laser In-Space Technology Experiment (SUNLITE)

Robert L. Byer, Stanford University

A. Martin Buoncristiani, Langley Research Center (National Research Council)

The NPRO Module

The Nd:YAG laser is tuned by modulating the voltage across the PZT squeezing or stretching the crystal.

The laser crystal is specially ground containing all the elements of the laser cavity taking advantage of total internal reflection.

The magnet functions as an optical diode to assure a unidirectional light path.

The self contained unit will be stored in a Shuttle mid-deck locker. The experiment timeline takes about an hour, a warm-up period followed by short data taking periods. Data is stored in solid state memory for dump after the return flight.

DESCRIPTION

The experiment consists of 3 NPROs in heterodyne pairs using photodetection for examination and recording of difference signals.

Experiment Descriptions

Out-Reach

SENSORS AND INFORMATION SYSTEMS Sensors

Out-Reach

Stanford University/NASA Laser In-Space Technology Experiment (SUNLITE)

Robert L. Byer, Stanford University

A. Martin Buoncristiani, Langley Research Center (National Research Council)

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS

Out-Reach

Maintenance, Repair, and Fire Safety

Definition of Experiments to Investigate Fire Suppressants in Microgravity

Dr. James J. ReutherBattelle Columbus Division

Contract: NAS3-25362, Lewis Research Center, Mr. Robert Friedman

EXPERIMENT OBJECTIVE

 Define specific in-space technology experiment(s) to identify, evaluate, and develop effective fire suppressants for the microgravity environment. Fire suppression technology is broadly defined as the technology both to prevent ignition through atmosphere control and to extinguish smoldering and flaming combustion once initiated.

BACKGROUND/TECHNOLOGY NEED

- A preliminary analysis by Battelle of the combustion situation under microgravity conditions revealed that spacecraft fire suppression may be more difficult than that for 1-G fires on Earth. Specifically, fire suppressants that are routinely and rather universally used on Earth may not be as effective, or may even be ineffective, in spacecraft fire situations.
- Because there may not be proven techniques
 developed to extinguish fires in space, crews and
 hardware of future manned space missions may be at
 risk.

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS

Out-Reach

Maintenance, Repair, and Fire Safety

Definition of Experiments to Investigate Fire Suppressants in Microgravity

Dr. James J. Reuther

Battelle Columbus Division

Contract: NAS3-25362, Lewis Research Center, Mr. Robert Friedman

EARLY PROGRESS

- Determination of the extent to which the effectiveness and/or mode of action of terrestrial fire suppressants are altered by the spacecraft environment.
- Formulation of guidelines with which to identify terrestrial agents that have the potential for acting as effective spacecraft fire suppressants.

EXPERIMENT DESCRIPTION

 The apparatus will provide a means by which to simulate various flame situations representative of plausible spacecraft fire scenarios after which various means will be used to deliver and evaluate the suppression effectiveness of various agents.

ZERO GRAVITY COMBUSTION

GASES

SOHDS

ZERO GRAVILY

LARIH GRAVITY

ZIRU GRAVIIY

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS

Out-Reach

Maintenance, Repair, and Fire Safety

Definition of Experiments to Investigate Fire Suppressants in Microgravity

Dr. James J. Reuther

Battelle Columbus Division

Contract: NAS3-25362, Lewis Research Center, Mr. Robert Friedman

SUMMARY/CONCLUDING REMARKS

 The mission of the project is to identify those technologies that quickly and permanently extinguish spacecraft fires, with the action taken being no more life or mission threatening than the fire itself.

PROJECT SCHEDULE

IDENT. OF FIRE SCENARIOS

EVALUATION OF CONCEPTS

DEFINITION OF REQUIREMENTS

JUSTIFICATION OF SPACE BASING

COMPLET. OF EXPER. DEFINITION

PREP. OF IMPLEMENTATION PLAN

LINAL REPORT

- 1. TASK 1 APPROVAL
- 2. TASK 2 APPROVAL
- 3. FINAL REPORT TO NASA REVIEW

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS

Out-Reach

Maintenance, Repair, and Fire Safety

Risk-Based Fire Safety Experiment Definition

George Apostolakis

University of California, Los Angles
Contract: NAS8-37750, Marshall Space Flight Center, J. Austin

EXPERIMENT OBJECTIVE

EXPAND THE UNDERSTANDING OF PROCESSES AND PHENOMENA IMPORTANT TO THE ASSESSMENT OF RISKS ASSOCIATED WITH FIRES IN SPACECRAFT.

- OBSERVE THE MECHANISMS OF FLAME PROPAGATION BETWEEN TWO SOLID OBJECTS AND THE COMPETING PROCESSES OF DETECTION AND SUPPRESSION.
- OBSERVE THE GENERATION, MOTION, AND ADVERSE IMPACT OF COMBUSTION PRODUCTS.
- CONTRIBUTE TO THE DEVELOPMENT OF PROBABILISTIC RISK ASSESSMENT METHODOLOGY FOR SPACECRAFT.

BACKGROUND

- QUANTITATIVE RISK ASSESSMENT IS PLAYING AN INCREASINGLY IMPORTANT ROLE IN IDENTIFYING SIGNIFICANT RISKS AND JUSTIFYING MITIGATING ACTIONS (SEE ALSO NMI 8070.4)
- PRA METHODOLOGY QUANTIFYING THE FIRE RISK IN NUCLEAR POWER PLANTS HAS BEEN DEVELOPED AT UCLA.

TECHNOLOGY NEEDS

- TO INTEGRATE BASIC KNOWLEDGE ACQUIRED IN PREVIOUS MICROGRAVITY RESEARCH TO INVESTIGATE SYSTEM LEVEL PHENOMENA
- TO EXPAND BASIC FIRE-SAFETY KNOWLEDGE

OUTLINE OF FIRE RISK ASSESSMENT

- 1. IDENTIFICATION OF "CRITICAL" LOCATIONS AND ASSESSMENT OF THE FREQUENCY OF FIRES.
- 2. ESTIMATION OF FIRE GROWTH TIMES AND COMPETING DETECTION AND SUPPRESSION TIMES.

$$Q = FR\{T_G < T_D + T_S \mid FIRE\}$$

3. RESPONSE OF THE SYSTEM.

$$1 + 2 + 3 \Rightarrow \lambda_D = \sum \lambda_j Q_D|_J Q_D|_D,J$$

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS

Out-Reach

Maintenance, Repair, and Fire Safety

Risk-Based Fire Safety Experiment Definition

George Apostolakis

University of California, Los Angles Contract: NAS8-37750, Marshall Space Flight Center, J. Austin

Preliminary Schematic

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS Materials Processing

Out-Reach

Plasma Arc Welding In Space

Boris Rubinsky

University of California, Berkeley

Contract: NAS1-18686, Langley Research Center, Dr. John Buckley

EXPERIMENT OBJECTIVE

TO DEVELOP A FUNDAMENTAL UNDERSTANDING OF THE HEAT TRANSFER, MASS TRANSFER AND FLUID FLOW PROCESSES THAT OCCUR DURING PLASMA ARC WELDING IN A LOW-GRAVITY AND LOW PRESSURE ENVIRONMENT. TO DEVELOP CORRELATIONS WITH ANALYTICAL MODELS. THIS UNDERSTANDING WILL BE APPLIED TO:

- THE IDENTIFICATION OF THE OPTIMAL PARAMETERS FOR PLASMA ARC WELDING IN SPACE.
- THE DESIGN OF LOW WEIGHT TASK SPECIFIC PLASMA ARC WELDING SYSTEMS.

BACKGROUND/TECHNOLOGY NEEDS

- COMPUTER MODEL OF THE PLASMA ARC WELDING PROCESS FOR THE IDENTIFICATION OF WELDING PARAMETERS.
- ANALYTICAL AND EXPERIMENTAL METHOD FOR THE ANALYSIS OF THE EXPERIMENTAL DATA RETRIEVED FROM THE IN-SPACE EXPERIMENT.
- EXPERIMENTAL SYSTEMS FOR VERIFICATION OF THE ABOVE METHODS IN GROUND-BASED LABORATORIES.

COMPUTER MODEL

A FINITE ELEMENT COMPUTER MODEL WILL PROVIDE THE ABILITY TO DETERMINE THE SHAPE OF THE LIQUID REGION AND THE TEMPERATURE DISTRIBUTION IN THE SOLID REGION AS A FUNCTION OF GRAVITY AND AIR PRESSURE.

ASSUMPTIONS USED IN THE STUDY INCLUDE:

- THE PROCESS IS QUASI-STATIONARY AS VIEWED IN A FRAME OF REFERENCE MOVING WITH THE PLASMA-TORCH.
- THE MOLTEN LIQUID IS NEWTONIAN AND INCOMPRESSIBLE.
- THE HEAT TRANSFER AND FLUID FLOW CORRELATIONS FOR THE FLOW OF PLASMA ARE TAKEN FROM KNOWN EXPERIMENTAL DATA FOR FLOW OF PLASMAS IN TUBES.
- MATERIAL PROPERTIES ARE TEMPERATURE DEPENDENT.

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS Materials Processing

Out-Reach

Plasma Arc Welding In Space

Boris Rubinsky

University of California, Berkeley Contract: NAS1-18686, Langley Research Center, Dr. John Buckley

Velocity and temperature distributions in the molten pool, U= 0.5 mm/sec

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

Out-Reach

IN-SPACE SYSTEMS

Materials Processing

Plasma Arc Welding In Space

Borts Rubinsky

University of California, Berkeley

Contract: NAS1-18686, Langley Research Center, Dr. John Buckley

ANALYTICAL/EXPERIMENTAL METHOD FOR DATA ANALYSIS

AN INVERSE FINITE ELEMENT COMPUTER PROGRAM WILL PROVIDE THE ABILITY TO DETERMINE THE TEMPERATURE FIELD AND THE POSITION OF THE SOLID-LIQUID INTERFACE DURING WELDING USING CONTINUOUS TEMPERATURE AND HEAT FLUX MEASUREMENTS TAKEN ON THE OUTER SURFACE OF THE WORKPIECE, AWAY FROM THE WELD REGION. THE METHOD COULD ALSO PROVIDE REAL TIME CONTROL OVER THE QUALITY OF THE WELDING PROCESS.

ON GROUND LABORATORY EXPERIMENTS

THE DIRECT AND INVERSE FINITE ELEMENT COMPUTER CODES WILL BE VERIFIED USING A COMMERCIAL PLASMA ARC WELDING SYSTEM THROUGH:

- THERMOCOUPLE TEMPERATURE MEASUREMENTS.
- HIGH POWER FLASH X-RAY PHOTOGRAPHY.
- METALURGICAL CROSS SECTIONS.

OAST Technology For the Future
Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS Materials Processing

Out-Reach

Extra-Vehicular Activity Welding Experiment

Gary Schnittgrund

Rockwell International Corporation, Rocketdyne Division Contract: NAS8-37753, Marshall Space Flight Center, Arthur C. Nunes

Experiment Objective

Generate data to assess flight crew capability to perform on-orbit EVA welding operations

- Investigate equipment requirements
- Investigate crew/equipment & crew/process interaction
- Investigate weld automation
- Evaluate process/material compatibility
- Define critical human factors

Background

- Soviets welding in space since 1965
- Welding in vacuum demonstrated by Rocketdyne
- "Enabling" for Pathfinder missions

Technology Needed

- Welding is a versatile joining technique for diverse materials
- Welding applicable to contingency repair or in-space construction

Need for space experiment

- Extended duration of space flight gives environment integrated weld data
- Welding process sensitive to human factors

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS

Materials Processing

Out-Reach

Extra-Vehicular Activity Welding Experiment

Gary Schnittgrund

Rockwell International Corporation, Rocketdyne Division Contract: NAS8-37753, Marshall Space Flight Center, Arthur C. Nunes

Russian Astronaut Welding in Space (1986)

Experiment Description

Issues

- Equipment requirements
- Process interactions
- Materials effects
- Human factors

On-Orbit Tasks

- Manual GTA welding
- Semiautomatic in-place GTA tube welding
- Various materials, configurations, orientations, parameters

Baseline Data

- KC-135 low-G tube welding
- Gas can (G-169) tube welding experiment
- Pressure-suited manual welding tests
- KC-135 manual welding tests
- Laboratory process development

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS

Materials Processing

Out-Reach

Extra-Vehicular Activity Welding Experiment

Gary Schnittgrund

Rockwell International Corporation, Rocketdyne Division Contract: NAS8-37753, Marshall Space Flight Center, Arthur C. Nunes

Tungsten Inert Gas (TIG) Vacuum Welding Apparatus

Tungsten Inert Gas Vacuum Welding Experiment

OAST Technology For the Future
Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS

Materials Processing

Out-Reach

Extra-Vehicular Activity Welding Experiment

Gary Schnittgrund

Rockwell International Corporation, Rocketdyne Division Contract: NAS8-37753, Marshall Space Flight Center, Arthur C. Nunes

Rocketdyne Vacuum GTAW Torch

Automatically Pulsed Single Pass Full Penetration Vacuum GTA Weld Material 304SS

Appearance of Top Bead

6.9X Mag.

9X Mag.

Appearance of **Bottom Bead**

Cross-Section Top Width = 0.229 in., Bottom Width = 0.090 in.

OAST Technology For the Future
Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

Out-Reach

IN-SPACE SYSTEMS

Materials Processing

Extra-Vehicular Activity Welding Experiment

Gary Schnittgrund

Rockwell International Corporation, Rocketdyne Division

Contract: NAS8-37753, Marshall Space Flight Center, Arthur C. Nunes

KC-135 Welding Flight Experiments

Rockwell International/Cal Poly Gas Can **Welding Experiment**

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS

Out-Reach

Materials Processing

Extra-Vehicular Activity Welding Experiment

Gary Schnittgrund

Rockwell International Corporation, Rocketdyne Division Contract: NAS8-37753, Marshall Space Flight Center, Arthur C. Nunes

Master Schedule

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS

Out-Reach

Materials Processing

On-Orbit Electron Beam Welding Experiment

William Hooper

Martin Marietta Aerospace, Manned Space Systems
Contract: NAS8-37756, Marshall Space Flight Center, Arthur C. Nunes

EXPERIMENT OBJECTIVE

DESIGN AN EXPERIMENT THAT WILL DEMONSTRATE THAT THE ELECTRON BEAM PROCESS CAN SAFELY PRODUCE HIGH INTEGRITY WELDS IN THE SPACE ENVIRONMENT.

SPECIFICALLY ADDRESS THE EXPERIMENT DESIGN TO THE REPAIR OF MICROMETEOROID STRIKE DAMAGE TO STRUCTURAL PANELS AND THE TYPE OF ALLOY SPECIFIED FOR THE SPACE STATION STRUCTURES.

PROVIDE FOR CORRELATION BETWEEN SPACE-DERIVED AND GROUND-BASED DATA

BACKGROUND

PRIOR WORK

- D-56R: ONORBIT WELDING AND CUTTING
- M-42R: LONG TERM SPACE EXPOSURE OF METALS
- · M-01S: SPACE DEBRIS AND METEOROID PROTECTION
- · M-05S: MANNED SPACECRAFT EVA REPAIR

DEMONSTRATES

- LONG TERM RISK OF PENETRATION DAMAGE
- · TYPE OF DAMAGE
- · COMPATIBILITY OF EB WELDING PROCESS WITH EVA REPAIR

TECHNOLOGY NEED

- CANNOT PREDICT EB WELD BEAD PUSH-THROUGH CAPACITY IN ABSENCE OF GRAVITY EFFECTS
- SOLIDIFICATION CHARACTERISTICS OF WELD BEAD METAL IN MICROGRAVITY AND EFFECT ON WELD PROPERTIES

OAST Technology For the Future
Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS

Materials Processing

Out-Reach

On-Orbit Electron Beam Welding Experiment

William Hooper

Martin Marietta Aerospace, Manned Space Systems Contract: NAS8-37756, Marshall Space Flight Center, Arthur C. Nunes

EXPERIMENT DESCRIPTION CIRCULAR PATH OF EB WELD GUN ELECTRON-BEAM

- SIX WELD PANEL CONFIGURATIONS AND WELD SCHEDULES ARE DEVELOPED
- ONE SET OF SIX PANELS IS WELDED IN GROUND-BASED EXPERIMENT
- AN IDENTICAL SET IS MOUNTED FOR ONORBIT EXPERIMENT
- ONORBIT ENCLOSURE IS PORTED TO SPACE: THE AUTOMATED CYCLE OF WELDS IS REPEATED
- THE OPTIONAL HAND-HELD WELDING EXPERIMENT IS COMPLETED
- PROPERTIES OF ONORBIT WELDED AND GROUND-LEVEL WELDED PANELS ARE COMPARED

CAROUSEL FOR 6 WELD PANELS. INDEXES TO 6 FIXED STATIONS

OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS

Materials Processing

Out-Reach

On-Orbit Electron Beam Welding Experiment

William Hooper

Martin Marietta Aerospace, Manned Space Systems
Contract: NAS8-37756, Marshall Space Flight Center, Arthur C. Nunes

CONCEPTUAL DESIGN STUDY TASKS

- 1) DEVELOP OBJECTIVES FOR A SPECIFIC EXPERIMENT
- 2) DEFINE EXPERIMENT REQUIRMENTS
- 3) VERIFY EXPERIMENT REQMTS COMPATIBLE W/ORBITER
- 4) PERFORM EXPERIMENT DESIGN
- 5) EQUIPMENT TRADE STUDIES-SELECT OPTION
- 6) INTEGRATE EXPERIMENT & EQUIPMENT SELECTION

EXPERIMENT IMPLEMENTATION PLAN STUDY TASKS

- 7) FUNCTIONAL DIAGRAM
- 8) IMPLEMENTATION PLAN & COSTS

CONCEPTUAL DESIGN STUDY TASKS

- · MONTHLY REPORTS
- · PROGRESS REVIEWS

MASTER SCHEDULE

OAST Technology For the Future
Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

Out-Reach

IN-SPACE SYSTEMS
Materials Processing

Laser Welding in Space

Dr. Gary L. Workman and Dr. William F. Kaukler

University of Alabama in Huntsville

Contract: NAS9-17962, Johnson Space Center, Jay Bennett

EXPERIMENT OBJECTIVES

To develop a conceptual understanding of the significant characteristics of laser welding for space applications, including the following:

Operational characteristics of a laser welder in a micro gravity environment.

Correlations between ground-based welds and those performed in low-gravity.

This understanding will be used to develop an optimal design for a space based laser welding facility which can be used for assembly or repair of space structures.

BACKGROUND/TECHNOLOGY NEEDS

Need for In - flight Experiment

To develop experience in welding operations in Space where processes and materials can behave differently

To evaluate suitability of laser power and beam delivery systems for Space Systems operation.

To determine overall man-process interactions and required level of automation for operations aboard a space structure.

Essential Technology Advancements

High efficiency solid - state lasers.

Alternate sources of pumping. (solar)

Robotized fiber - optic beam coupling system.

Demonstrations of materials joining capability other than metals.

EXPERIMENT DESCRIPTION

The space based laser welding facility will be used to weld tubular components using a solid-state laser with a fiber-optic beam delivery system. Variable weld parameters will include weld material, laser energy, and weld speed. Temperature measurements adjacent to the weld seam will be used correlate processing parameters of each sample. Ground based metallurgical and weld strength analysis will be used to determine consistancy in the overall weld process and the reliablity of the space based welds.

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

Out-Reach

IN-SPACE SYSTEMS

Materials Processing

Laser Welding in Space

Dr. Gary L. Workman and Dr. William F. Kaukler

University of Alabama in Huntsville

Contract: NAS9-17962, Johnson Space Center, Jay Bennett

Current version of the KC-135 laser welding experimental apparatus.

Sample chamber under vacuum

Laser welding experiments as performed here on the NASA KC-135 are used to obtain information about weld solidification and heat transfer in a microgravity environment.

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS Materials Processing

Out-Reach

Laser Welding in Space

Dr. Gary L. Workman and Dr. William F. Kaukler

University of Alabama in Huntsville

Contract: NAS9-17962, Johnson Space Center, Jay Bennett

SUMMARY

Laser welding experiments have been performed on the KC-135 aircraft sulting in a preliminary definition for a space based welding facility using a solidstate laser with fiber-optic delivery system and solar pumping for an alternate source of energy.

SCHEDULE

TASK 88 89 91 92

Ground Based Experiment Definition

Laser Sources Evaluation Determine Weld Parameters Metallurgical Analysis KC-135 Experimentation

Space Experiment Definiton

Space System Design Fabrication Flight Test and Qualification Space Based Experiments

Current Contract

Future Efforts

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS

Out-Reach

Materials Processing

Liquid Encapsulated Float Zone Refining of Gallium Arsenide

Edward Barocela

McDonnell Douglas Astronautics Company
Contract: NAS3-25360, Lewis Research Center, Arnon Chait

EXPERIMENT OBJECTIVE

DEMONSTRATE THE FEASIBILITY OF A NEW FLOAT ZONE REFINING PROCESS
THAT TAKES ADVANTAGE OF MICROGRAVITY TO PRODUCE DEFECT-FREE SEMICONDUCTORS.

- INVESTIGATE THE BENEFITS OF CONTAINERLESS PROCESSING ON GALLIUM ARSENIDE CRYSTAL QUALITY.
- DEMONSTRATE THE FEASIBILITY OF USING A FREE SURFACE ENCAPSULANT IN MICROGRAVITY.
- TEST THE STABILITY OF AN ENCAPSULATED GALLIUM ARSENIDE FLOATING ZONE.

BACKGROUND

COMPOUND SEMICONDUCTORS PLAY AN INCREASINGLY IMPORTANT ROLE IN AEROSPACE TECHNOLOGY.

- HIGH SPEED COMPUTERS
- RADIATION HARDENED ELECTRONICS
- SOLID STATE LASERS
- OPTICAL DETECTORS

TECHNOLOGY NEED

- GROWING CRYSTALS OF COMPOUND SEMICONDUCTORS IS DIFFICULT IN THE PRESENCE OF GRAVITATIONAL EFFECTS.
- CONTAINER WALLS INTRODUCE CRYSTAL STRAIN AND CHEMICAL CONTAMINANTS.
- HIGH DENSITY IC'S REQUIRE LOW DOPANT CONCENTRATIONS: LIQUID ENCAPSULATION PREVENTS CONTAMINATION FROM FURNACE COMPONENTS.

NEED FOR SPACE EXPERIMENT

- GALLIUM ARSENIDE CANNOT BE FLOAT ZONE PROCESSED IN GRAVITY.
- FREE SURFACE ENCAPSULANT WOULD FLOW IN GRAVITY.

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS

Out-Reach

Materials Processing

Liquid Encapsulated Float Zone Refining of Gallium Arsenide

Edward Barocela

McDonnell Douglas Astronautics Company
Contract: NAS3-25360, Lewis Research Center, Amon Chait

PROCESS DESCRIPTION

EXPERIMENT DESCRIPTION

- A ROD OF GALLIUM ARSENIDE IS COATED WITH A THIN LAYER OF BORON TRIOXIDE ENCAPSULANT.
- THE SAMPLE ROD IS SEALED INTO A QUARTZ
 AMPOULE, WHICH IS FILLED WITH DRY NITROGEN
 OR ARGON.
- THE SAMPLE IS FLOAT ZONE PROCESSED IN MICROGRAVITY.
- THERMAL AND OPTICAL OBSERVATIONS ARE MADE ON ORBIT TO DOCUMENT THE PROCESS. THESE OBSERVATIONS WILL BE ANALYZED TO ASSESS THE BEHAVIOR OF THE COMBINED LIQUID ENCAPSULANT-MOLTEN SEMICONDUCTOR SYSTEM AND THE SOLID-LIQUID INTERFACE.
- THE SAMPLE WILL BE COMPARED ON THE GROUND WITH TERRESTRIALLY GROWN MATERIAL.

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS Materials Processing

Out-Reach

Liquid Encapsulated Float Zone Refining of Gallium Arsenide **Edward Barocela**

McDonnell Douglas Astronautics Company Contract: NAS3-25360, Lewis Research Center, Arnon Chait

THERMAL MODELING - NEAR TERM TASKS

- REFINE BASELINE OPERATING PARAMETERS TO OPTIMIZE:
- ELECTRICAL POWER CONSUMPTION
- PEAK TEMPERATURE
- THERMAL GRADIENTS
- ESTABLISH REQUIREMENTS FOR COATING PROCESS BY INVESTIGATING THE EFFECTS OF:
- DIFFERENT ENCAPSULANT THICKNESSES
- ENCAPSULANT THICKNESS NONUNIFORMITIES
- PINHOLES IN THE ENCAPSULANT

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS Materials Processing

Out-Reach

Liquid Encapsulated Float Zone Refining of Gallium Arsenide

Edward Barocela

McDonnell Douglas Astronautics Company
Contract: NAS3-25360, Lewis Research Center, Arnon Chait

MASTER SCHEDULE

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS Materials Processing

Out-Reach

Vapor Crystal Growth Technology

Franz E. Rosenberger and Francis C. Wessling

University of Alabama Center for Microgravity and Materials Research (support by Boeing)
Contract: NAS3-25361, Lewis Research Center, Walter Duval

EXPERIMENT OBJECTIVE

Develop a novel vapor growth technology that results in increased flexibility in the control of the process parameters for high quality crystal growth in space and on earth.

Emphasis on:

- · Advantageous crystal nucleation and growth location
- · Growth of a controlled number (preferably one) of single crystals
- Reduced mechanical interaction between ampoule and crystal, in particulare during cooldown
 - higher structural quality
- · Continuous removal of volatile impurities
 - higher purity
- · Increased growth rates

BACKGROUND/TECHNOLOGY NEED

NASA-and ESA-sponsored researchers, and workers in the USSR have been conducting vapor growth experiments in space.

Crystal growth from vapors has many advantages over other techniques.

All low gravity vapor growth experiments have been carried out in closed ampoules and traditional heating geometries, thus resulting in

- · little control of number of size of crystals grown,
- relatively low growth rates
 - particularly important in view of limited experiment time in space

Despite these shortcoming, vapor growth in space has yielded very promising results.

To take full advantage of microgravity conditions for vapor crystal growth a novel technology is needed.

OAST Technology For the Future
Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS

Out-Reach

Materials Processing

Vapor Crystal Growth Technology Franz E. Rosenberger and Francis C. Wessling

University of Alabama Center for Microgravity and Materials Research (support by Boeing) Contract: NAS3-25361, Lewis Research Center, Walter Duval

EXPERIMENT DESCRIPTION

Essential Elements of Congruent (Diffusionless) Growth Technique:

- Semi-closed (leaky) ampoule
- Predetermined (viscous) transport rates and minimization of rate fluctuations
- No sealing of ampoule required
- Initial purification of source material
- Continuous purification, but possible stoichiometry shifts
- Predetermined crystal location, size and orientation
- Observability and, hence, controllability of seeding
- Temperature profile readily adjustable and, hence, expedient determination of optimum growth conditions

Experiment Descriptions

Out-Reach

IN-SPACE SYSTEMS

Out-Reach

Materials Processing

Vapor Crystal Growth Technology

Franz E. Rosenberger and Francis C. Wessling

University of Alabama Center for Microgravity and Materials Research (support by Boeing)
Contract: NAS3-25361, Lewis Research Center, Walter Duval

TASK SCHEDULI	'88		'89			'90
EXPERIMENT TECHNICAL REQUIREMENTS Definition of Experiment Requirements	O N D J	FMA	MJj	ASO	NDJ	F M
Choice of Specific Crystal Material Supporting Research Modelling of heat transfer, thermometry			_			
Modelling of vapor transport conditions Prototype System and Experiments Component design, building and/or procurement		_				
System assembly and testing Development of (semi-automated) growth procedure Technical Requirements Report					•	_
EXPERIMENT CONCEPTUAL DESIGN (For Phase II) Definition of Specific In-Space Technology Experiment Identification of Support Equipment Requirements						-
Hardware Accomodation Study Engineering Trade Study Functional Diagram						_
IMPLEMENTATION PLAN AND COST ESTIMATE (For F	hase II)					
REVIEWS AND REPORT						
Quarterly Technical Status Reports Semiannual Progress Report Final Report (principal deliverable)	Δ	Δ	Δ	Δ	Δ	Δ
MEETINGS						
OAST IN-STEP (Atlanta) Review Technical Requirements (UAH) Review Hardware Concept (LeRC) Final Review (LeRC)	0	0		o		0

OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

HUMANS IN SPACE Human Performance

Out-Reach

Enhancement of In-Space Operations Using Spatial Perception Auditory Referencing (SPAR)

Dr. Robert H.I. Blanks, Dr. Joie P. Jones, and Dr. Yasuhiro Torigoe

University of California, Irvine

Contract: NAS2-12834, Ames Research Center, Elizabeth M. Wenzel

OBJECTIVES:

DETERMINE THE FEASIBILITY OF USING DIRECTIONALLY CODED AUDITORY TRANSMISSION FOR THE ENHANCEMENT OF IN-SPACE OPERATIONS BY PROVIDING DIRECTIONALLY CODED SOUND FOR:

- 1) ADVANCED LIFE SUPPORT
 - * DIRECTIONALLY CODED PROXIMITY / THREAT ALERT
 - * AUDITORY DISPLAY OF AIR LOCKS, CO-WORKERS EVA, ROBOTICS AND PARTS
 - * IMPROVED ASTRONAUT VIGILANCE, JUDGEMENT AND WORK EFFICIENCY EVA
- 2) DIAGNOSTIC AND DATA SYSTEM (ALGORITHMS)
 - * KINEMATIC REFERENCING OF EVA ASTRONAUTS, ROBOTS AND MATERIALS
 - * PROVIDE DIRECTIONAL INFORMATION TO SAFETY OFFICERS
 - ON BOARD
 - SPACE STATION CONTROL FACILITY
- 3) LIFE SUPPORT AND SAFETY
 - * TREATMENT STRATEGY FOR SPACE ADAPTATION SYNDROME
- 4) OTHER BENEFITS
 - * IMPROVED QUALITY OF AUDITORY COMMUNICATIONS
 - * CUSTOMIZED ENTERTAINMENT FOR ASTRONAUTS

BACKGROUND:

- * NATURAL SOUND CONVEYS THE DIRECTION, DISTANCE AND "SIZE" OF THE SOURCE
- * DIRECTIONAL CUES ARE LOST WHEN SOUND IS HEARD OVER EARPHONES
- * SOUND CAN BE ELECTRONICALLY PROCESSED, FOR TRANSMISSION OVER EARPHONES, TO REINSTATE DIRECTIONAL CUES
- SOUND PROCESSING CAN BE:

<u>VIRTUAL</u> (E.G., VOICES HEARD AS COMING FROM THE DIRECTION OF PERSON SPEAKING)

<u>CODED</u> (E.G., TONES INDICATING LOCATION OF AIRLOCKS, ROBOTS, PARTS OR

GEOCENTRIC REFERENCE)

MINIMUM TRAINING IS REQUIRED TO EXTRACT DIRECTIONAL QUES FROM PROCESSED SOUND TRANSMISSIONS

OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

HUMANS IN SPACE

Human Performance

Out-Reach

Enhancement of In-Space Operations Using Spatial Perception Auditory Referencing (SPAR)

Dr. Robert H.i. Blanks, Dr. Jole P. Jones, and Dr. Yasuhiro Torigoe

University of California, Irvine

Contract: NAS2-12834, Ames Research Center, Elizabeth M. Wenzel

TECHNOLOGY REQUIRED FOR SOUND LOCALIZATION:

- * KINEMATIC REFERENCING (SENSOR SYSTEMS) ASTRONAUT BODY AND HEAD POSITION, ROBOTS AND PARTS
- * OPTIMUM SOUND SYSTEM, HELMET AND HEADPHONE DESIGN
- * INTERFACE TO COMPUTER SYSTEMS/COMMUNICATIONS

NEED FOR SPACE EXPERIMENT:

- * CONSTRUCTION AND MAINTENANCE OF SPACE STATION REQUIRES UNPRECEDENTED AMOUNTS OF EVA ACTIVITY
- * THE BENEFITS OF DIRECTIONALLY CODED SOUND ON ASTRONAUT PERFORMANCE EVA (IMPROVED SAFETY, WORK EFFICIENCY, VIGILANCE) ARE BEST ASSESSED OPERATIONALLY AND UNDER MICROGRAVITY CONDITIONS
- * SPACE ADAPTATION SYNDROME (SAS) WILL BE A PROBLEM GIVEN FREQUENT CREW CHANGES FOR CONSTRUCTION AND SERVICING OF THE STATION
- * TREATMENT STRATEGIES FOR SAS MUST ULTIMATELY BE TESTED IN MICROGRAVITY OF SPACE

THREE DIMENSIONAL REFERENCING OF ASTRONAUT HEAD POSITION & ORIENTATION RE. SPACECRAFT ACHIEVED BY:

1) ON-BOARD INERTIAL NAVIGATION SYSTEMS

2) UPGRADE OF "COMMON TRACKING SYSTEM" TO INCLUDE ASTRONAUT POSITION & ORIENTATION

3) NEW APPLICATION FOR LOCAL NAVIGATION SYSTEMS

- * LASER DOCKING SYSTEM
- * FIBER OPTIC INERTIAL GYROSCOPES

STAND ALONE
HARDWARE/FIRMWARE SYSTEM
SINGLE BOARD - MULTIPROCESSOR

EVA: SMALL CONTROLLER BOARD ON EMU

IVA/GROUND CONTROL: INTERFACE/ADD-ON TO ON-BOARD COMPUTER SYSTEM

FULL COMPATIBILITY WITH ON-BOARD / GOUND CONTROL SYSTEMS

*AUDITORY DISPLAY OF:

- 1) WARNING SIGNALS
 (O₂ LEVELS, PROXIMITY ALERT)
- 2) ACOUSTICAL POINTING (AIRLOCKS, PARTS, ETC.)
- 3) 3-D SOUND (CODED TRANSMISSIONS BETWEEN ASTRONAUTS AND SAFETY OFFICER)

SIMULTANEOUS <u>VISUAL</u> DISPLAY FOR BENEFIT OF ON BOARD SAFETY OFFICER

*DISPLAY MODES 1 & 2 COULD BE ACHIEVED WITH FIXED SPEAKER IN EMU HELMET OR VIA EAR INSERTS 3 D SOUND (3 ABOVE) REQUIRES FIXED MULTIPLE SPEAKERS OR HEAD PHONES

OAST Technology For the Future
Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

HUMANS IN SPACE

Out-Reach

Human Performance

Enhancement of In-Space Operations Using Spatial Perception Auditory Referencing (SPAR)

Dr. Robert H.I. Blanks, Dr. Joie P. Jones, and Dr. Yasuhiro Torigoe

University of California, Irvine

Contract: NAS2-12834, Ames Research Center, Elizabeth M. Wenzel

SCHEDULE

MONTHS	1988						1989					-
	6	7	8	9	10	11	12	1	2	3	4	5
1. EVALUATE COMMERCIAL SOUND SYSTEM_		W							Ī			
2. EVALUATE SPAR TECHNOLOGY												
EVALUATE EXISTING SENSOR TECHNOLOGY	_											
BUILD AND ASSEMBLE PROTOTYPE		<u> </u>										
SOFTWARE DEVELOPMENT		<u> </u>	<u> </u>									
BENCH TEST 4 & 5 ABOVE FOR EXPERIMENTS_				<u> </u>	<u> </u>	l						
PSYCHOACOUSTIC EXPERIMENTS					l							
UNDERWATER ORIENTATION EXPERIMENTS	<u>.</u>	l			<u> </u>							
MODIFY PROTOTYPE (UNDERWATER EXP.)					L							
O. PREPARE DOCUMENTATION TO NASA												

Experiment Descriptions

Out-Reach

HUMANS IN SPACE

Out-Reach

Closed-Loop Life Support

Definition Of a Microbiological Monitor for Application in Space Vehicles

Melvin V. Kilgore, Jr., and Dr. Robert J. Zahorchak

University of Alabama in Huntsville, Consortium For the Space Life Sciences Contract: NAS9-17963, Johnson Space Center, Dr. Duane Pierson

EXPERIMENT OBJECTIVES:

PHASE I

- Identify and Evaluate current methodologies for microbial monitoring
- Determine the Feasibility of Developing the Hardware for Space Applications
- Develop a Method for the Application of Microbiological Monitoring in Space
- Develop a Conceptual Design and Functional Diagram
- Prepare a Cost Estimate Regarding the Development Phase
- Define the Experimental Parameters to be Evaluated on Future STS Missions

PHASE II

- Thorough Evaluation of the Candidate Methodologies
- Development of Prototype Hardware
- Extensive Ground Based Evaluation of Hardware and Methodology
- In Flight Experiments

BACKGROUND

- Neccessity for Microbiology Monitoring Closed System Environment Increased Duration Missions Increased Distances
 Potential for Immuno Compromised Crew
- Current Methodologies
 Particulate Detection
 Culture Techniques
 Indicator Organisms

Experiments and Hardware

- Unique Requirements
 Microgravity Conditions
 Multiple Sample Handling
 Power, Weight, Volume
 Analysis Time
- Specifications
 Water
 Air
 Surfaces

TECHNOLOGY NEED

• No Commonly used Near Real Time Monitor Currently Available

JUSTIFICATION

- Assurance of Performance
- Bacterial Physiology Significantly Different in Space

OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

HUMANS IN SPACE

Closed-Loop Life Support

Out-Reach

Definition Of a Microbiological Monitor for Application in Space Vehicles

Melvin V. Kilgore, Jr., and Dr. Robert J. Zahorchak

University of Alabama in Huntsville, Consortium For the Space Life Sciences Contract: NAS9-17963, Johnson Space Center, Dr. Duane Pierson

EXPERIMENT DESCRIPTION:

PHASE I

• Definition and Design of a Near Real-Time Microbiological Monitor for Space Applications

Development and Evaluation of Performance of a Microbiological Monitor Under Microgravity and Other Conditions Imposed by Space

CRITERIA FOR FLIGHT EXPERIMENT

- Should Provide Information Required for the Development of a RTMM
- Should Demonstrate Proof of Concept Under Microgravity Conditions
- Should be Self Contained and Require Little Crew Support
- Experimental Design Should be such that Results/Products can be Analyzed/Retrieved on the Ground

TECHNICAL APPROACH

METHOD EVALUATION AND TRADE STUDIES

Technical

• Feasibility

Primary Sensitivity Precision Compatibility

Time Maturity Complexity Development

Applications

Secondary

Cost

Engineering

Power

Weight Volume Expendables

EXTENSVIE GROUND BASED EVALUATION OF METHODOLOGY

DEVELOPMENT OF PROTOTYPE AND GROUND BASED STUDIES

PROOF OF CONCEPT (IN FLIGHT)

EVALUATION OF HARDWARE (IN FLIGHT)

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

HUMANS IN SPACE

Out-Reach

Closed-Loop Life Support

Definition Of a Microbiological Monitor for Application in Space Vehicles

Melvin V. Kilgore, Jr., and Dr. Robert J. Zahorchak

University of Alabama in Huntsville, Consortium For the Space Life Sciences Contract: NAS9-17963, Johnson Space Center, Dr. Duane Pierson

CHARACTERISICS Of A NEAR REAL TIME MICROBIOLOGICAL MONITOR

- It Should be Adaptable to Water, Air and Surfaces
- It Should be Reliable and Require Little Maintenance
- If Should be Rapid
- It Should be Self-Contained and Require Minimum Crew Support
- It Should provide for Crew and Ground Support Interactions
- It Should Lend itself to Improvements and Modifications toward both Quantitative and Qualitative Monitor
- It Should be ready for Incorporation Aboard SS Freedom

SUMMARY OF RESULTS

- Identified Approximately 30 Methodologies having Potential Application to Microbiological Monitoring
- Approximately One-third of these met the Primary Requirements
- Five Highest Candidates from Secondary Screening choosen for Further Evaluation
- Engineering Trade Studies Currently Underway
- Feasability Studies Currently Underway
- Conceptual Design and Functional Diagrams

OAST Technology For the Future
Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

HUMANS IN SPACE

Out-Reach

Closed-Loop Life Support

Design Of a Closed-Loop Nutrient Solution Delivery System for CELSS Application

Dr. Steven H. Schwartzkopf and Mr. Mel W. Oleson

Lockheed Missiles & Space Co., Boeing Aerospace Co.

Contract: NAS9-17981, Johnson Space Center, Dr. Hatice S. Cullingford

EXPERIMENT OBJECTIVE (PHASE I)

TO DEVELOP A CONCEPTUAL DESIGN FOR A CLOSED-LOOP FLUID HANDLING SYSTEM THAT IS CAPABLE OF MONITORING, CONTROLLING, AND SUPPLYING NUTRIENT SOLUTION TO HIGHER PLANTS UNDER MICRO-GRAVITY ENVIRONMENTAL CONDITIONS IN A CELSS APPLICATION

BACKGROUND/TECHNOLOGY NEED

THE TRANSFER, STORAGE AND CONTROL OF LIQUIDS UNDER MICRO-GRAVITY CONDITIONS IS A UBIQUITOUS PROBLEM FOR SPACE FLIGHT. FOR ADVANCED LIFE SUPPORT (CELSS) APPLICATIONS, THE HANDLING OF FLUIDS AND THE CONTROL OF FLUID COMPOSITION ARE TWO OF THE MAJOR PROBLEMS.

THE TECHNOLOGY TO SOLVE THESE PROBLEMS WILL LEAD TO A SIGNIFICANT REDUCTION IN THE AMOUNTS OF LIFE-SUSTAINING MATERIALS CARRIED ON MANNED MISSIONS; THUS DECREASING THE ECONOMIC COST OF THESE MISSIONS.

EXPERIMENT DESCRIPTION

THE PROTOCOL OF THIS EXPERIMENT IS DESIGNED TO:

- 1) MEASURE SOLUTION MONITORING CAPABILITIES UNDER MICRO-GRAVITY CONDITIONS
- 2) MEASURE SOLUTION COMPOSITION CONTROL CAPABILITIES UNDER MICRO-GRAVITY CONDITIONS
- 3) MEASURE THE CAPABILITY OF THREE DIFFERENT NUTRIENT SOLUTION DELIVERY/RECOVERY SYSTEMS TO PROVIDE WATER AND NUTRIENTS TO HIGHER PLANTS UNDER MICROGRAVITY CONDITIONS
- 4) MEASURE THE CAPABILITY TO CONDENSE, COLLECT AND RECYCLE WATER VAPOR

CELSS: Controlled Ecological Life Support Systems

Experiment Descriptions

Out-Reach

HUMANS IN SPACE Closed-Loop Life Support

Out-Reach

Design Of a Closed-Loop Nutrient Solution Delivery System for CELSS Application

Dr. Steven H. Schwartzkopf and Mr. Mel W. Oleson Lockheed Missiles & Space Co., Boeing Aerospace Co. Contract: NAS9-17981, Johnson Space Center, Dr. Hatice S. Cullingford

CONCEPT DRAWING

PROJECT SCHEDULE

INSTEP88 Workshop
OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

HUMANS IN SPACE

Closed-Loop Life Support

Out-Reach

Impact of Low Gravity on Water Electrolysis Operation

Franz H. Schubert

Life Systems, Inc.

Contract: NAS9-17966, Johnson Space Center, Albert Behrend

EXPERIMENT OBJECTIVE

Investigate ways a low-G environment may improve static feed water electrolysis (SFE) performance based on the hydrophobic/philic cell components, and fluid and thermal flows within the cell. The results will be used to improve static feed electrolysis process efficiency for:

- Life Support
- Propulsion
- EMU O₂ Bottle Recharge
- Energy Storage
- Industry

BACKGROUND/TECHNOLOGY NEED

- · Hydrogen and Oxygen (H/O) are key to survival for humans in deep space
- Static Feed Electrolysis (SFE) is a key technology for H/O based economy
- Electrochemical processes are key to industrialization of space

Experiment Descriptions

Out-Reach

Out-Reach

HUMANS IN SPACE

Closed-Loop Life Support

Impact of Low Gravity on Water Electrolysis Operation

Franz H. Schubert

Life Systems, Inc.

Contract: NAS9-17966, Johnson Space Center, Albert Behrend

EXPERIMENT DESCRIPTION

The experiment apparatus will provide the ability to study the two major processes which occur within an SFE. The first is the electrochemical process of water electrolysis in an alkaline electrolyte. The second process is the static addition of water to the cell and diffusion to the electrolysis site. The experiment will be self-contained except for a power supply requirement. Conventional instrumentation including pressure and temperature sensors will be required.

INSTEP88 Workshop OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

Out-Reach

HUMANS IN SPACE

Out-Reach

Closed-Loop Life Support

Impact of Low Gravity on Water Electrolysis Operation

Franz H. Schubert

Life Systems, Inc.

Contract: NAS9-17966, Johnson Space Center, Albert Behrend

MASTER SCHEDULE

Formal Reviews
System Design
Fabrication and Assembly
Testing
Mission & Flight Operations
Data Analyses
Refurbishment

(a)Experiment equipment can be returbished (and modified, if necessary) and flown again to investigate other areas of electrochemical phenomena in low gravity.

Experiment Descriptions

HUMANS IN SPACE Experiment Integration Process Payload Integration Overview

Clarke R. Prouty
Goddard Space Flight Center, Special Payloads Division

Payload Requirements

- Mid-Deck Payloads PIP
- Complex Autonomous Payloads (CAP)
 Payload Accomodation Requirements (PAR)
- Hitchhiker Payloads
 Customer Payload Requirements (CPR)

Payload Requirements

- Experiment Description
- Hardware Description
- Operational Scenario

Support

- Mission Manager
- Safety Officer
- Integration
- Pre and Post Flight

Experiment Descriptions

HUMANS IN SPACE Experiment Integration Process

Payload Integration Overview

Clarke R. Prouty
Goddard Space Flight Center, Special Payloads Division

Safety Review And Certification

- Phase 0 Informal - Identify Hazards
- Phase I
 Formal Assess Preliminary Design
 Evaluate preliminary hazard controls,
 Verification methods
- Phase II
 Assess Final Design
 Concur on hazard controls,
 Safety verification Methods
- Phase III
 Formal Approve Safety Assessment Report Review Safety Compliance Data Package Identify Open Safety Items

NASA Documents

- PIP
- PIP Annexes
- ICD

Experiment Descriptions

HUMANS IN SPACE Experiment Integration Process Payload Integration Overview

Clarke R. Prouty
Goddard Space Flight Center, Special Payloads Division

Payload Integration Carrier

- Fit Checks and Assembly Loading consumables
- Final testing
- System Checkout

Payload Integration Carrier

- Mid Deck Payloads JSC
- CAP Payloads GSFC, KSC
- Hitchhiker Payloads GSFC, KSC

Payload Integration Orbiter

- Mid Deck Payloads KSC
- CAP Payloads KSC Adapter Beam, MPESS
- Hitchhiker Payloads
 KSC
 Adapter Beam, MPESS

Experiment Descriptions

HUMANS IN SPACE Experiment Integration Process Payload Integration Overview

Clarke R. Prouty
Goddard Space Flight Center, Special Payloads Division

ORIGINAL PAGE IS OF POOR QUALITY

Experiment Descriptions

HUMANS IN SPACE Experiment Integration Process Payload Integration Overview

Clarke R. Prouty
Goddard Space Flight Center, Special Payloads Division

Experiment Descriptions

HUMANS IN SPACE Experiment Integration Process Payload Integration Overview

Clarke R. Prouty
Goddard Space Flight Center, Special Payloads Division

Mission

- Launch
- On Orbit Operations
- POCC
- Landing
- Post Landing

ORIGINAL PAGE IS OF POOR QUALITY

Experiment Descriptions

HUMANS IN SPACE

Experiment Integration Process Payload Integration Overview

Clarke R. Prouty
Goddard Space Flight Center, Special Payloads Division

In-Step Payload Review and Integration Schedule

In-Step Payloads The Future

- Current Flight Opportunities on Shuttle
- Will expand to Expendable Launch Vehicles
- Begin with available Shared Flights
- May Fund Dedicated OAST ELV
- Eventual Space Station Experiments

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

NSTS Integration and Operations

John C. O'Laughlin Johnson Space Center, Spacelab & Middeck Integration Office

THE SPACE SHUTTLE SYSTEM PAYLOAD INTEGRATION PROCESS OVERVIEW

- NATIONAL SPACE TRANSPORTATION SYSTEM (NSTS) ORGANIZATION
- SPACE SHUTTLE SYSTEM DESCRIPTION
- PAYLOAD INTEGRATION PROCESS
- SCHEDULES/MANIFESTING

NSTS ORGANIZATION

NASA HEADQUARTERS

- . OVERALL MANAGEMENT OF THE NSTS
- . MANAGES TRANSPORTATION SERVICES
 - FLIGHT SCHEDULING
 - REQUEST FOR FLIGHT ASSIGNMENT (NASA FORM 1628)
- -- NEGOTIATION AND IMPLEMENTATION (POLICY, LEGAL, BUSINESS AND FINANCIAL ASPECTS)

<u>JSC</u>

- · MANAGES THE DEVELOPMENT AND OPERATIONS OF THE SPACE SHUTTLE
- · MANAGES TECHNICAL INTEGRATION OF PAYLOAD INTO THE STS SHUTTLE
 - WORKING GROUPS FOR ENGINEERING AND OPERATIONS PLANNING
 - DEFINE INTERFACE AND OPERATIONAL REQUIREMENTS
 - IDENTIFY, DEFINE, AND INTEGRATE ENGINEERING TASKS

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

NSTS Integration and Operations

John C. O'Laughlin Johnson Space Center, Spacelab & Middeck Integration Office

• KSC

- · LAUNCH AND LANDING SUPPORT FOR THE SHUTTLE
- IMPLEMENTS ACTIVITIES ASSOCIATED WITH PREPARING THE SPACE SHUTTLE AND ITS PAYLOADS
 - PAYLOAD PROCESSING
 - LAUNCH SUPPORT
 - LANDING
 - POST-FLIGHT SERVICES

MSFC

- · RESPONSIBLE FOR MANAGING THE DEVELOPMENT OF:
 - SOLID ROCKET BOOSTERS
 - SPACE SHUTTLE MAIN ENGINES
 - EXTERNAL TANK
 - SPACELAB MODULES AND PALLETS

• GSFC

- RESPONSIBLE FOR MANAGING:
 - COMMUNICATIONS NETWORK
 - SPACE FLIGHT TRACKING DATA NETWORK
 - GET AWAY SPECIAL (GAS) PROGRAM
 - OTHER SMALL PAYLOAD CARRIER PROGRAMS

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

NSTS Integration and Operations

John C. O'Laughlin
Johnson Space Center, Spacelab & Middeck Integration Office

SPACE SHUTTLE SYSTEM

- ORBITER
 - PAYLOAD BAY
 - MIDDECK
- SOLID ROCKET BOOSTERS
- EXTERNAL TANK
- FLIGHT CREW
 - COMMANDER
 - PILOT
 - MISSION SPECIALIST (2 OR MORE)

SPACE SHUTTLE SYSTEM SPACE SHUTTLE SYSTEM OVERALL LENGTH ISA 2 FT (83 m) PETERHAL TANK DIAMETER LENGTH 154 4 FT (47 m) SOLIO ROCKET BOOSTER DIAMETER 122 FT (37 m) HEIGHT 180 1 FT (48 m) THRUST (EACH) - LAUNCH 2,780,960 LB (72 810,140 M) ORBITER LENGTH 122 2 FT (37 2 m) WINGSPAN 78 1 FT (23 m) FT (13 m) FT (13 m) FT (13 m) ONB SEMIRS (3) - VACUUM THRUST EACH 2 100 LB (25 80 TAN) OUS SEMIRS (3) - VACUUM THRUST EACH 2 10 LB (25 80 TAN) OUS SEMIRS (3) - VACUUM THRUST EACH 2 10 LB (25 80 TAN) OUS SEMIRS (3) - VACUUM THRUST EACH 2 10 LB (25 80 TAN) OUS SEMIRS (3) - VACUUM THRUST EACH 2 10 LB (25 80 TAN) OUS SEMIRS (3) - VACUUM THRUST EACH 2 10 LB (25 80 TAN) OUS SEMIRS (3) - VACUUM THRUST EACH 2 10 LB (25 80 TAN) OUS SEMIRS (3) - VACUUM THRUST EACH 2 10 LB (111 2 N)

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

NSTS Integration and Operations

John C. O'Laughlin
Johnson Space Center, Spacelab & Middeck Integration Office

PAYLOAD INTEGRATION PROCESS OVERVIEW

- FORMAL REQUEST FOR FLIGHT ASSIGNMENT (FORM 1628)
- DEVELOPMENT OF FORMAL AGREEMENTS
- IMPLEMENTATION OF AGREEMENTS
- · PHASED SAFETY REVIEWS FLIGHT AND GROUND EQUIPMENT
- LAUNCH
- · POSTFLIGHT ACTIVITIES

INSTEP88 Workshop OAST Technology For the Future

Part 1: Executive Summary & Experiment Descriptions

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

NSTS Integration and Operations

John C. O'Laughlin
Johnson Space Center, Spacelab & Middeck Integration Office

PAYLOAD INTEGRATION PROCESS OVERVIEW

JOINT AGREEMENTS

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

NSTS Integration and Operations

John C. O'Laughlin
Johnson Space Center, Spacelab & Middeck Integration Office

NASA PAYLOAD INTEGRATION TEAM

- HQ CUSTOMER SERVICE MANAGER
 - FLIGHT SCHEDULE
 - POLICY
- . JSC PAYLOAD INTEGRATION MANAGER (PIM)
 - CUSTOMER PRIMARY POINT OF CONTACT
 - ENSURE PAYLOAD REQ. ACCURATELY DEFINED/DOCUMENTED
 - COORDINATES ENGINEERING TECHNICAL SUPPORT
- KSC LAUNCH SITE SUPPORT MANAGER (LSSM)
 - CUSTOMER POINT OF CONTACT AT KSC
 - ENSURES PAYLOAD PROCESSING SUPPORT AT LAUNCH SITE

PAYLOAD INTEGRATION SCHEDULE

- FINAL MANIFESTING IS DEPENDENT ON COMPLETION OF JOINT AGREEMENTS (PIP, ICD, ANNEXES)
- COMPLETION DATES OF JOINT AGREEMENTS ARE DEPENDENT UPON CATEGORY OF PAYLOAD
- PAYLOAD INTEGRATION PROCESS FOR ALL PAYLOADS SHOULD START AS SOON AS POSSIBLE AFTER AGREEMENT TO PROCEED (ACCEPTANCE OF FORM 1628 BY NASA HEADQUARTERS)
- QUARTER SECTION TYPICAL SCHEDULE
- MISSION CAN BE DEFINED IN THE FDRD WHEN JOINT AGREEMENTS ARE BASELINED PRIOR TO THE "NO LATER THAN" DATES SHOWN ON THE FOLLOWING MATRIX

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

NSTS Integration and Operations

John C. O'Laughlin Johnson Space Center, Spacelab & Middeck Integration Office

PAYLOAD CATEGORIES

- PRIMARY PAYLOAD
 - DRIVES THE OVERALL FLIGHT DESIGN
 - GENERALLY WEIGHS MORE THAN 8000 POUNDS
 - REQUIRES AT LEAST ONE-FOURTH OF PAYLOAD BAY SERVICES
- COMPLEX SECONDARY PAYLOAD
 - EXCEEDS NSTS ACCOMMODATIONS AS DEFINED IN APPLICABLE DOCUMENTATION
 - HAS ONE OR MORE OF THESE CHARACTERISTICS:
 - UTILIZES QUARTER-BAY PAYLOAD SERVICES
 - HAS OPTIONAL PAYLOAD BAY INTERFACES
 - HAS REQUIREMENTS WHICH DRIVE THE FLIGHT DESIGN
 - HAS UNIQUE INSTALLATION REQUIREMENTS IN THE ORBITER MIDDECK

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

NSTS Integration and Operations

John C. O'Laughlin Johnson Space Center, Spacelab & Middeck Integration Office

- NONSTANDARD SECONDARY/SMALL PAYLOAD ACCOMMODATION (SPA)
 - REQUIRES MINOR DEVIATIONS FROM GAS OR MIDDECK SIP AND/OR IDD
 - SPA MEETS THE SIP AND IDD REQUIREMENTS, BUT ITS COMPLEXITY REQUIRES THAT IT BE TREATED AS A NONSTANDARD SECONDARY PAYLOAD FROM A SCHEDULE PERSPECTIVE
 - DEVIATION FROM SPA STANDARDS REQUIRES THAT A PAYLOAD BE TREATED AS A COMPLEX SECONDARY
- STANDARD SECONDARY
 - DOES NOT EXCEED NSTS ACCOMMODATIONS AS DEFINED IN THE GAS OR MIDDECK SIP AND/OR IDD

FLIGHT ASSIGNMENT

PAYLOAD CATEGORY	LATEST FLIGHT ASSIGNMENT	PREREQUISITES			
PRIMARY	FDRD L-19 MONTHS	BASELINED* PIP AND ICD			
COMPLEX SECONDARY	FDRD L-19 MONTHS	BASELINED PIP AND ICD			
NONSTANDARD SECONDARY OR SPA	CARGO INTEGRATION REVIEW (CIR) L-11.5 MONTHS	BASELINED PIP AND ICD. ALL ANNEXES BASELINED EXCEPT 4 AND 9; HOWEVER, CUSTOMER SUBMITTAL OF ANNEXES 4 AND 9 IS REQUIRED.			
STANDARD SECONDARY	FLIGHT PLANNING AND STOWAGE REVIEW (FPSR) L-7 MONTHS	BASELINED PIP, ICD, AND ALL ANNEXES. PHASE II SAFETY REVIEW IS REQUIRED.			

^{*}BASELINED = SIGNED BY BOTH NSTS AND THE CUSTOMER

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process
NSTS Integration and Operations

NSTS Integration and Operations

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

Complex Autonomous Payload Carriers

Clarke R. Prouty
Goddard Space Flight Center, Special Payloads Division

GAS / CAP

Similarities

- Hardware
- Facilities
- Personnel

GAS / CAP Differences

GAS	CAP			
Existing Customers	Secondaries Policy			
Subject to Queue	Manifested			
Restrictive Interfaces	More Commands Possible Some Pointing Possible			
	Payload Integration Plan (PIP)			
	Longer Processing			

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

Complex Autonomous Payload Carriers

Clarke R. Prouty
Goddard Space Flight Center, Special Payloads Division

Get Away Special Concept

- Encourage the use of Space by all Researchers:
 Private Individuals and Organizations
- Foster Enthusiasm in Younger Generation
- Increase Knowledge of Space
- Be Alert to Possible growth of GAS Investigation into a Prime Experiment
- Generate New Activities Unique to Space

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

Complex Autonomous Payload Carriers

Clarke R. Prouty
Goddard Space Flight Center, Special Payloads Division

GET AWAY SPECIAL SMALL SELF-CONTAINED PAYLOADS

CONTAINER CONCEPT

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

Complex Autonomous Payload Carriers

Clarke R. Prouty Goddard Space Flight Center, Special Payloads Division

GET AWAY SPECIAL SMALL SELF-CONTAINED PAYLOADS CONTROL CONCEPT

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

Hitchhiker Project Overview

T.C. Goldsmith
Goddard Space Flight Center, Shuttle Small Payloads Project

SHUTTLE SMALL PAYLOADS PROJECT

- THE SHUTTLE SMALL PAYLOADS PROJECT CONTAINS THE HITCHHIKER, GET-AWAY-SPECIAL (GAS), AND COMPLEX AUTONOMOUS PAYLOADS (CAP) PROJECTS.
- O HITCHHIKER INCLUDES HH-G SIDE MOUNT CARRIERS AND HH-M CROSS-BAY CARRIERS WHICH CONNECT TO ORBITER ELECTRICAL SERVICES AND ARE FLOWN UNDER THE SECONDARY PAYLOAD MANIFEST.
- O GAS PAYLOADS ARE MOUNTED IN CANISTERS, DO NOT CONNECT TO ORBITER ELECTRICAL SERVICES, AND DO NOT REQUIRE SIGNIFICANT STS SUPPORT. GAS PAYLOADS ARE IN AN EXISTING TERTIARY PAYLOAD QUEUE. NO NEW RESERVATIONS ARE BEING ACCEPTED BUT EXISTING LAUNCH SLOTS MAY BE SOLD BY EXISTING RESERVATION HOLDERS.
- O COMPLEX AUTONOMOUS PAYLOADS USE GAS PROJECT CARRIER EQUIPMENT, DO NOT CONNECT TO ORBITER ELECTRICAL SERVICES, BUT MAY REQUIRE STS SERVICES SUCH AS POINTING, CREW ACTIVITY, LATE ACCESS, ETC. IN EXCESS OF THOSE ALLOWED FOR GAS. CAP PAYLOADS ARE MANIFESTED UNDER THE SECONDARY PAYLOAD SYSTEM.

HITCHHIKER PROGRAM DESCRIPTION

- O THE HITCHHIKER PROGRAM WAS INITIATED BY THE NASA OFFICE OF SPACE FLIGHT IN 1984 TO PROVIDE A QUICK REACTION SHUTTLE CARRIER SERVICE FOR SMALL PAYLOADS. GSFC DEVELOPED THE SHUTTLE PAYLOAD OF OPPORTUNITY CARRIER (SPOC) SYSTEM TO SUPPORT THE HITCHHIKER-G PROGRAM. SPOC WAS SPECIFICALLY DESIGNED TO HAVE SIMPLE, STANDARD CARRIER TO ORBITER INTERFACES AND STANDARD, USER-FRIENDLY, CARRIER TO CUSTOMER INTERFACES TO REDUCE PAYLOAD UNIQUE INTEGRATION EFFORT REQUIRED AND THEREBY REDUCE LEAD TIME AND RECURRING COST. HITCHHIKER-G IS A FAMILY OF COMPONENTS DESIGNED TO MOUNT SMALL PAYLOADS TO THE SIDE OF THE ORBITER WITH MINIMUM TOTAL PAYLOAD WEIGHT.
- O HITCHHIKER-M IS A SECOND CARRIER SYSTEM DEVELOPED BY MSFC AND CONSISTING OF A CROSS-BAY (BRIDGE) TYPE CARRIER INTENDED FOR SOMEWHAT HEAVIER PAYLOADS. IN 1987 THE HITCHHIKER-M CARRIER SYSTEM WAS COMBINED WITH THE HITCHHIKER-G PROJECT AT GSFC AND WILL FLY WITH THE SAME ELECTRICAL CUSTOMER AND ORBITER INTERFACES AS THE HITCHHIKER-G.
- O HITCHHIKER IS BASICALLY AN EXTENSION OF THE STS AND IS PROVIDED AND OPERATED BY THE OFFICE OF SPACE FLIGHT AT NO COST TO A NASA USER PROVIDED ONLY STANDARD SERVICES ARE REQUIRED. EXCESS SERVICES ARE FUNDED BY THE CUSTOMER.
- HITCHHIKERS ARE FLOWN AS SECONDARY PAYLOADS UNDER THE 7/87 NASA SECONDARY PAYLOAD
 POLICY AND CAN FLY AS EITHER "SMALL" PAYLOADS OR STANDARD ATTACHED MIXED CARGO
 PAYLOADS.

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

Hitchhiker Project Overview

T.C. Goldsmith Goddard Space Flight Center, Shuttle Small Payloads Project

HITCHHIKER MANIFESTING SITUATION

- A NEW POLICY FOR SECONDARY PAYLOADS ON NASA SHUTTLE FLIGHTS WAS ANNOUNCED 7/29/87 AS FOLLOWS:
- ALLOCATIONS OF SECONDARY PAYLOAD SPACE BY WEIGHT (PERCENTAGE OF AVAILABLE SPACE) HAVE BEEN ESTABLISHED FOR THE VARIOUS DISCIPLINES AS FOLLOWS: THE CORRESPONDING TOTAL PAYLOAD WEIGHT FOR EACH DISCIPLINE IS SHOWN FOR THE 4/30/88 MANIFEST.

CODE E 38 39802 SCIENCE AND APPLICATIONS COMMERCIALIZATION CODE C 31 33500 CODE S 10 SPACE STATION TECHNOLOGY SPACE TECHNOLOGY 16575 10215 CODE M 5 4470 STS TECHNOLOGY CODE A 3 3666 AGENCY LEVEL CODE X 3 3835 FOREIGN REIMBURSABLE CODE C 1 DOMESTIC REIMBURSABLE DOD 0 DOD (UNDER NEGOTIATION)

111863

TOTAL 100

- GET-AWAY-SPECIAL (GAS) PAYLOADS WILL FLY IN SPACE AVAILABLE AFTER ACCOMMODATING PRIMARY AND SECONDARY PAYLOADS AND WILL CONTINUE TO USE THE EXISTING QUEUE AND POLICY. NO NEW GAS PAYLOADS ARE BEING ACCEPTED.
- o EMPHASIS TO BE PLACED ON MICROGRAVITY PAYLOADS OR SPACE STATION SUPPORT.

MANIFESTED IN-BAY SECONDARY PAYLOADS AS OF 10/1/88

FLIGHT	PAYLOAD	ORG	WEIGHT		CARRIER
89- 2/18	SHARE	CDS	830		UNIQUE
89- 2/18	SSBUV-1	CDE	1219	٠	CSCP
90-11/08	SSBUV-2	CDE	1219	•	CSCP
90-TBD	TPC	CDR	495	٠	CSCP
91- 1/31	PMG-1	CDM	730	٠	HH-G
91- 1/31	ASP	CDX	540	•	HH-G
91-8/15	FTS-DTF-1	CDS	1500		TBD
91-12/23	CXH-1	CDC	4000	•	HH-M
92- 2/27	DEE	CDM	300		UNIQUE
92- 2/27	SDS-1	CDE	930	•	HH-G
92- 6/11	EOIM/TEMP2A2	CDS	2345		UNIQUE
92- 6/11	SSBUV-3	CDE	1219		CSCP
92- 7/30	CTM	CDX	830	*	HH-G
92- 7/30	HPE	CDX	930	٠	HH-G
92-10/29	SPARTAN-2	CDE	5700		SPARTAN
92-11/19	SEDS	CDM	350		UNIQUE
92-TBD	CGAS-1	CDC	5 00	•	CSCP
93- 1/14	MAST-1 CSI	CDR	7000		UNIQUE
93- 2/11	LITE-1	CDR	4900		UNIQUE
93- 2/11	CXH-2	CDC	3000	•	HH-M
93- 3/18	SDS-2	CDE	740	•	HH-G
93- 4/08	SFH	CDM	3200	•	HH-M
93- 4/15	MSL-3	CDE	5700		MSL
93- 6/10	SSBUV-4	CDE	980	•	CSCP
93- 6/17	FTS-DTF-2	CDS	5500		TBD
93- 6/17	CXM-1	CDC	6000		MSL
93- 8/05	CXH-3	CDC	3000		HH-M
93- 9/09	SRAD	CDS	5700		UNIQUE
93-TBD	CGAS-2	CDC	500	•	CSCP
93-TBD	CGAS-3	CDC	500	•	CSCP
• ніто	CHHIKER / CSCP PAYLOADS				

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

Hitchhiker Project Overview

T.C. Goldsmith
Goddard Space Flight Center, Shuttle Small Payloads Project

HITCHHIKER-G MISSION ONE

SUPERFLUID HELIUM ON ORBIT TRANSFER FLIGHT DEMONSTRATION

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

Hitchhiker Project Overview

T.C. Goldsmith
Goddard Space Flight Center, Shuttle Small Payloads Project

SPOC FEATURES FOR REDUCTION OF CUSTOMER COSTS

- o STANDARD PRE-DEFINED INTERFACES REDUCE ENGINEERING EFFORT, DESIGN ITERATION, AND LEAD TIME.
- TRANSPARENT DATA SYSTEM ALLOWS USE OF CUSTOMER'S OWN GROUND SUPPORT EQUIPMENT, SOFTWARE, AND PERSONNEL DURING PAYLOAD INTEGRATION AND FLIGHT OPERATIONS MINIMIZING RETRAINING AND RETESTING EFFORTS AND ALLOWING THE CUSTOMER MAXIMUM AUTONOMY.
- o SIMPLE MOUNTING SCHEME.
- Q CANISTER OPTION PROVIDES CONTAINMENT AND REDUCES SAFETY ANALYSIS.
- SHORT HANDS-ON INTEGRATION PERIOD INSTRUMENTS DELIVERED AS LATE AS L-5 MONTHS.
- o REDUCED REQUIREMENTS FOR CONFERENCES, TRAVEL, ETC.

TYPICAL HITCHHIKER SCHEDULE MILESTONES (MONTHS)

CUSTOMER SUBMITS CUSTOMER PAYLOAD REQUIREMENTS DOCUMENT	-24
CUSTOMER PAYLOAD ACCOMMODATION CONFERENCE AT GSFC	-23
PRELIMINARY SAFETY DATA	-18
CUSTOMER PAYLOAD DELIVERED TO GSFC	-6
INTEGRATED PAYLOAD DELIVERED TO LAUNCH SITE	-3
LAUNCH	0
CUSTOMER PAYLOAD RETURNED TO CUSTOMER	1
ALL DATA DELIVERED TO CUSTOMER	1

PRELIMINARY

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

Hitchhiker Project Overview

T.C. Goldsmith
Goddard Space Flight Center, Shuttle Small Payloads Project

HITCHHIKER MECHANICAL ACCOMMODATIONS

o PLATE

- THE LARGE PLATE IS 50 X 60 INCHES AND CAN ACCOMMODATE UP TO 250 LBS OF CUSTOMER HARDWARE IN ADDITION TO THE SPOC AVIONICS.
- THE SMALL PLATE IS 25 X 39 INCHES AND CAN ACCOMMODATE 100 LBS.
- PLATES HAVE A GRID OF 3/8 BOLT HOLES ON 70 MM CENTERS.

o CANISTER

- THE CANISTERS CAN ACCOMMODATE A PAYLOAD 19.25 INCHES (DIA) X 28 INCHES (HEIGHT).
- CANISTERS WITH OPENING DOORS CAN ACCOMMODATE 170 LB PAYLOADS.
- SEALED CANISTERS (1 ATM AIR OR NITROGEN) CAN ACCOMMODATE 200 LB.

o BAIDGE (HH-M)

- THE BRIDGE HAS THREE ATTACHMENT LOCATIONS EACH ON THE TOP, FRONT, AND REAR OF THE TRUSS. THE TOP LOCATIONS CAN ACCOMMODATE UP TO 380 LBS EACH AND THE SIDE LOCATIONS CAN ACCOMMODATE UP TO AT LEAST 170 LBS. THE SIDE MOUNTING AREAS ARE 27 X 28 INCHES AND THE TOP MOUNTS ARE 28 X 36 INCHES. STANDARD MOUNTING HOLES ARE PROVIDED.

o THERMAL

- THERMAL CONTROL SURFACES, HEATERS, THERMOSTATS, ETC. ON PLATE MOUNTED CUSTOMER EQUIPMENT ARE PROVIDED BY THE CUSTOMER.
- GSFC PROVIDES EXTERNAL THERMAL BLANKET OR WHITE PAINT SURFACE FOR CANISTERS.
- NO FLUID LOOP COOLING IS PROVIDED BUT SEVERAL HUNDRED WATTS (CONTINUOUS) OR SEVERAL KW (SHORT PERIODS) OF HEAT DISSIPATION CAN USUALLY BE ACCOMMODATED BY RADIATION AND TEMPORARY STORAGE OF HEAT IN THE THERMAL MASS OF THE EQUIPMENT.

. ATTITUDE CONTROL

- ORBITER CAN POINT AT A TARGET WITHIN 9 ARC MINUTES (5 ARC MIN FOR SHORT PERIODS).
- USER SUPPLIED POINTING SYSTEM CAN BE USED TO IMPROVE POINTING ACCURACY.
- NOMINAL SHUTTLE ATTITUDE IS BAY DOWN,

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

Hitchhiker Project Overview

T.C. Goldsmith
Goddard Space Flight Center, Shuttle Small Payloads Project

SPOC STRUCTURAL ASSEMBLY (EXPLODED VIEW)

Hitchhiker-G Canister

Mechanical and Electrical Interfaces

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

Hitchhiker Project Overview

T.C. Goldsmith
Goddard Space Flight Center, Shuttle Small Payloads Project

CUSTOMER ELECTRICAL INTERFACES

The standard electrical interface or "port", consists of a signal cable and a separate power cable which provide the following:

o Two 28 V (+/- 4 V) 10 Amp, power lines which can be turned on (together) by ground command. Customer power and energy are monitored by the carrier system. The maximum simultaneous total customer power for a Hitchniker is 1300 W and the nominal maximum total customer energy is 6 KWH/ day with additional energy negotiable. Non-Hitchniker payloads may use up to 1650 W (2300 W for 15 minutes) and 10 KWH/day.

o Four 28V bi-level or pulse commands (10 ma max) which can be used with relay drivers and relays to control additional power switching within a payload. (For canister payloads one command is reserved for control of the door.)

o An asynchronous 1200 baud uplink command channel.

o An asynchronous 1200 baud low-rate downlink data channel. This data is available over Ku-band service or S-band service and can also be recorded on the orbiter's tape recorder.

o A medium-rate downlink channel 1-1400 KB/s for use with the real-time-only Ku-band TDRS service. The total simultaneous customer data rate for the carrier cannot exceed 1400 KB/s.

o IRIG-B scrial time code and a one pulse per minute square wave signal which can be complemented by a time command via the above asynchronous uplink channel.

o Three channels for temperature sensors to allow measurement of payload temperatures even when the payload power is off (for canister payloads these channels are reserved for door position, canister pressure, and temperature).

o An analog channel, 0-5V, 8 bit quantizing, 10 hertz sample rate. An index pulse is also supplied which can be used to advance a user supplied analog multiplexer to allow measuring a large number of parameters.

SPOC TRANSPARENT DATA SYSTEM COMMUNICATIONS

AT CUSTOMER'S FACILITY

AT CUSTOMER/CARRIER INTEGRATION

AT FLIGHT OPERATIONS

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

Hitchhiker Project Overview

T.C. Goldsmith
Goddard Space Flight Center, Shuttle Small Payloads Project

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

Middeck Payload Integration: Orbiter Crew Module Description

John C. O'Laughlin Johnson Space Center, Spacelab Middeck Integration Office

MIDDECK PAYLOAD INTEGRATION

- ORBITER CREW MODULE DESCRIPTION
- MIDDECK PAYLOAD ACCOMMODATIONS
- PAYLOAD DESIGN GUIDELINES/CONSIDERATIONS
- SCHEDULES/MANIFESTING

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

Middeck Payload Integration: Orbiter Crew Module Description

John C. O'Laughlin Johnson Space Center, Spacelab Middeck Integration Office

MIDDECK - RIGHT SIDE VIEW LOOKING FORWARD AND OUTBOARD

MIDDECK - LEFT SIDE VIEW LOOKING AFT AND OUTBOARD

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

Middeck Payload Integration: Middeck Payload Accommodations

John C. O'Laughlin Johnson Space Center, Spacelab Middeck Integration Office

PHYSICAL ACCOMMODATIONS

- LOCKER STOWED PAYLOAD
 - 54 POUND MAX PAYLOAD WEIGHT
 - CENTER-OF-GRAVITY (CG) OF LOCKER CAN BE NO MORE THAN 14 INCHES FROM FACE
 OF ORBITER WIRE TRAY
 - LOCKER PROVIDES 2 CUBIC FEET OF STOWAGE VOLUME
- NONLOCKER PAYLOAD
 - 69 POUND MAX PAYLOAD WEIGHT ONE LOCKER REPLACEMENT
 - 120 POUND MAX PAYLOAD WEIGHT TWO LOCKER REPLACEMENT
 - CG OF PAYLOAD CAN BE NO MORE THAN 14 INCHES FROM FACE OF ORBITER WIRE TRAY
 - MAX PAYLOAD WEIGHT CG DEPENDENT
 - PAYLOAD SHALL NOT PROTRUDE BEYOND FACE OF LOCKERS

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

Middeck Payload Integration: Middeck Payload Accommodations

John C. O'Laughlin Johnson Space Center, Spacelab Middeck Integration Office

STANDARD MIDDECK MODULAR LOCKER

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

Middeck Payload Integration: Middeck Payload Accommodations

John C. O'Laughlin

Johnson Space Center, Spacelab Middeck Integration Office

MIDDECK MODULAR STOWAGE LOCKER CONFIGURATIONS

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

Middeck Payload Integration: Middeck Payload Accommodations

John C. O'Laughlin Johnson Space Center, Spacelab Middeck Integration Office

ELECTRICAL POWER

- NOMINAL 28 VOLT DC, LIMITED TO 115 WATTS MAX CONTINUOUS
- POWER GENERALLY NOT AVAILABLE DURING ASCENT/DESCENT
- STANDARD POWER CABLES PROVIDED BY NSTS

THERMAL

- COOLING
 - · HEAT DISSIPATED INTO CREW COMPARTMENT BY PASSIVE OR FORCED AIR COOLING
 - PASSIVE AIR COOLING HEAT LOAD LIMITED TO 60 WATTS MAX CONTINUOUS FOR LOCKER STOWED PAYLOAD
 - FORCED AIR COOLING HEAT LOAD LIMITED TO 115 WATTS MAX CONTINUOUS
 - PAYLOAD PROVIDES AIR CIRCULATION FAN
 - AIR OUTLET TEMPERATURE LIMITED TO 120°F MAX
- EXTERNAL SURFACE TEMPERATURES
 - PAYLOAD SURFACES ACCESSIBLE TO CREW LIMITED TO 113°F MAX
 - PAYLOAD SURFACES INACCESSIBLE TO CREW LIMITED TO 120°F MAX

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

Middeck Payload Integration: Payload Design Guidelines/Considerations

John C. O'Laughlin

Johnson Space Center, Spacelab Middeck Integration Office

- PAYLOAD OPERATIONS LIMITED TO MIDDECK EXCEPT FOR "OUT-THÉ-WINDOW" PHOTOGRAPHIC ACTIVITIES
- NO PAYLOAD OPERATIONS ON LAUNCH AND LANDING DAYS EXCEPT FOR SIMPLE ACTIVATION/DEACTIVATION ACTIVITIES
- PAYLOAD OPERATIONS REQUIRING CREW INVOLVEMENT ALLOWED ONLY DURING CREW AWAKE PERIODS
- NORMAL SHUTTLE FLIGHT HAS ONE-SHIFT ON-ORBIT WORKDAY OF 10 HOURS WITH 8
 HOURS AVAILABLE FOR PAYLOAD OPERATIONS. AN ADDITIONAL I HOUR MAY BE
 AVAILABLE JUST BEFORE AND JUST AFTER THE NORMAL WORKDAY FOR SIMPLE PAYLOAD
 OPERATIONS
- TYPICAL SHUTTLE FLIGHT HAS A CREW OF 5 AND A DURATION OF 4-5 DAYS
- NO GROUND COMMANDING OR DATA DOWNLINK AVAILABLE FOR MIDDECK PAYLOADS

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

Middeck Payload Integration: Payload Design Guidelines/Considerations

John C. O'Laughlin

Johnson Space Center, Spacelab Middeck Integration Office

- DOCUMENTATION FOR PAYLOADS
 - PAYLOAD PROVIDED SYSTEMS FOR DATA STORAGE
 - CREW COMMENTS AUDIO/LOG BOOKS
 - VIDEO
 - PHOTOGRAPHY
- PAYLOAD INSTALLATION/REMOVAL
 - MIDDECK PAYLOADS NORMALLY INSTALLED IN SHUTTLE ORBITER 3-8 DAYS PRIOR TO LAUNCH AND REMOVED ONE DAY AFTER LANDING
 - IF ABSOLUTELY REQUIRED (SUBJECT TO NSTS APPROVAL) INSTALLATION OF MIDDECK PAYLOADS MAY BE PROVIDED AS LATE AS 18 HOURS PRIOR TO LAUNCH AND REMOVAL AS EARLY AS 2 HOURS AFTER LANDING
- PAYLOAD INSTALLED ORIENTATION SHOULD BE CONSIDERED DURING DESIGN WILL BE DIFFERENT DURING LAUNCH AND LANDING PHASES
- SHUTTLE DOES NOT PROVIDE ABSOLUTE ZERO-GRAVITY ENVIRONMENT CREW HOVEMENTS, CREW TREADMILL EXERCISE, THRUSTER FIRINGS, AND OTHER PAYLOAD OPERATIONS WILL INDUCE DISTURBANCES
- MATERIALS SELECTION VERY IMPORTANT FOR MIDDECK PAYLOADS TO PROTECT THE CREW AND ORBITER
 - TOXICITY
 - FLAMMABILITY
 - NUCLEAR RADIATION
- WORKING IN LOW GRAVITY GENERALLY REQUIRES MORE TIME THAN SAME TASK ON GROUND
- IF PAYLOAD ASSEMBLY IS REQUIRED ON-ORBIT, AVOID USE OF SMALL PARTS THAT CAN GET LOOSE IN CABIN
- VELCRO (NSTS APPROVED TYPE) CAN BE USED TO RESTRAIN PAYLOAD COMPONENTS DURING ON-ORBIT ACTIVITIES
- REDUNDANT/SPARE PARTS SHOULD BE CONSIDERED FOR CRITICAL PAYLOAD COMPONENTS
- SIMPLE IN-FLIGHT MAINTENANCE CAN BE DESIGNED INTO PAYLOAD, BUT MUST NOT VIOLATE SAFETY REQUIREMENTS AND MUST BE APPROVED BY MSTS

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process Middeck Payload Integration: Schedules/Manifesting

John C. O'Laughlin

Johnson Space Center, Spacelab Middeck Integration Office

FLIGHT ASSIGNMENT

PAYLOAD CATEGORY	LATEST FLIGHT ASSIGNMENT	PREREQUISITES
PRIMARY	FDRD L-19 MONTHS	BASELINED* PIP AND ICD
COMPLEX SECONDARY	FDRD L-19 MONTHS	BASELINED PIP AND ICD
NONSTANĎARD SECONDARY OR SPA	CARGO INTEGRATION REVIEW (CIR) L-11.5 MONTHS	BASELINED PIP AND ICD. ALL ANNEXES BASELINED EXCEPT 4 AND 9; HOWEVER, CUSTOMER SUBMITTAL OF ANNEXES 4 AND 9 IS REQUIRED.
STANDARD SECONDARY	FLIGHT PLANNING AND STOWAGE REVIEW (FPSR) L-7 MONTHS	BASELINED PIP, ICD, AND ALL ANNEXES. PHASE II SAFETY REVIEW IS REQUIRED.

^{*}BASELINED = SIGNED BY BOTH NSTS AND THE CUSTOMER

Experiment Descriptions

HUMANS IN SPACE Space Shuttle System Payload Integration Process KSC Payload Integration

Dean C. Zimmerman Kennedy Space Center, Payload Support Office

PAYLOAD MANAGEMENT RESPONSIBILITIES

- KENNEDY SPACE CENTER (KSC) IS THE PRIMARY NASA LAUNCH SITE
 - RESPONSIBLE FOR THE MANAGEMENT AND DIRECTION OF:
 - ASSEMBLY AND VERIFICATION OF THE SHUTTLE
 - ASSEMBLY AND PROCESSING OF SPACELAB AND SIMILAR TYPE PAYLOADS
 - SUPPORT OF PAYLOAD PROCESSING AND FINAL PREPARATION FOR LAUNCH
 - FINAL TEST AND INTEGRATION OF PAYLOADS IN THE ORBITER BAY BEFORE LAUNCH
 - FINAL TEST AND INTEGRATION OF PAYLOADS WITH EXPENDABLE VEHICLES
 - COUNTDOWN AND LAUNCH
 - FACILITIES, COMMUNICATIONS, AND DATA SUPPORT TO EARLY PHASE OF ORBITAL ACTIVITY WHEN REQUIRED
 - PRIMARY AND CONTINGENCY LANDING SITE OPERATIONS
 - DEINTEGRATION OF PAYLOADS FROM THE STS UPON THEIR RETURN FROM SPACE
 - PERFORMING THE HOST ROLE AS THE CUSTOMER'S AGENT

Experiment Descriptions

HUMANS IN SPACE Space Shuttle System Payload Integration Process KSC Payload Integration

Dean C. Zimmerman Kennedy Space Center, Payload Support Office

KSC **GET-AWAY SPECIAL PAYLOAD PROCESSING**

CINEMA 360° INSTALLATION

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process KSC Payload Integration

Dean C. Zimmerman Kennedy Space Center, Payload Support Office

GENERIC EXPERIMENT PHYSICAL AND FUNCTIONAL FAMILIARIZATION

- PERSONNEL ASSIGNED AFTER THE PAYLOAD EXPERIMENT COMPLEMENT IS DEFINED
 - ASSIGNMENT CONTINUES THROUGH EXPERIMENT DEINTEGRATION
- PERSONNEL PARTICIPATE IN
 - EXPERIMENT AND PAYLOAD DESIGN REVIEWS AT DESIGN FACILITY
 - TECHNICAL EXCHANGE MEETINGS
 - PAYLOAD GROUND OPERATIONS WORKING GROUP MEETINGS AT KSC
 - INTEGRATION AND TESTING ACTIVITIES AT THE EXPERIMENT DEVELOPER'S FACILITY
- PERSONNEL UTILIZE KNOWLEDGE ABOUT EXPERIMENTS TO
 - DEVELOP INPUTS FOR KSC PROCESSING SCHEDULES
 - DEVELOP PROCEDURES FOR EXPERIMENT ACTIVITIES AT KSC
 - EVALUATE REQUIREMENT VALIDITY AND IMPACT

GENERIC EXPERIMENT PRE-TURNOVER SUPPORT

- EVALUATE PRE-TURNOVER ACTIVITIES AND PROVIDE TASK DIRECTION FOR HAZARDOUS OPERATIONS
- PARTICIPATE IN POST DELIVERY TESTS CONDUCTED BY EXPERIMENT DEVELOPER
 - KSC ENGINEERS GAIN ADDITIONAL EXPERIENCE WITH EXPERIMENT
 - KSC ENGINEERS KEEP ABREAST OF EXPERIMENT STATUS
- PROVIDE GENERIC TEST EQUIPMENT AND FACILITIES
- FROVIDE SERVICING SUPPORT AS REQUIRED

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

KSC Payload Integration

Dean C. Zimmerman Kennedy Space Center, Payload Support Office

EXPERIMENT INTEGRATION

INTRODUCTION

- o KSC PERFORMS EXPERIMENT INTEGRATION AS DEFINED BY THE PAYLOAD MISSION MANAGER REQUIREMENTS .
- o THE EXPERIMENTER IS AN INTEGRAL PART OF THE EXPERIMENT INTEGRATION TEAM
 - SETS UP AND VERIFIES EXPERIMENT GROUND SUPPORT EQUIPMENT
 - MONITORS AND OPERATES GSE DURING TESTING
 - PROVIDES DETAILS ON HOW EXPERIMENTS ARE OPERATED
 - PROVIDES EXPERIMENT EXPERTISE FOR PROBLEM RESOLUTION/UNIQUE EXPERIMENT OPERATIONS
 - INPUTS TO REVIEWS/SIGN-OFF PROCEDURES
- o INTERFACE VERIFICATION POLICY
 - INTERFACES ARE VERIFIED AT EARLIEST OPPORTUNITY BY FUNCTIONAL TEST(S)
 - EXPERIMENT COMPATIBILITY IS VERIFIED USING MST/MAJOR INTEGRATED TESTING
 - NO "FAILURE" MODE/UNIQUE SOFTWARE VALIDATION (EXCEPT SAFETY RELATED)

EXPERIMENT INTEGRATION

REQUIREMENTS

- O PAYLOAD MISSION MANAGER PROVIDES REQUIREMENTS DOCUMENT WITH <u>ALL</u> KSC PROCESSING REQUIREMENTS TO LSSM INCLUDING:
 - OFF-LINE FACILITY SUPPORT
 - EXPERIMENT INSTALLATION
 - INTERFACE VERIFICATION
 - SERVICING, ALIGNMENT, AND CALIBRATION
 - LAUNCH DELAY CONTINGENCIES
 - DEINTEGRATION
 - EXPERIMENTER POST FLIGHT SUPPORT
 - CONTINGENCY LANDING SITE PROCESSING
- O KSC RESPONDS TO REQUIREMENTS WITH THE KSC LAUNCH SITE SUPPORT PLAN (LSSP), ANNEX 8 OF THE PAYLOAD INTEGRATION PLAN (PIP)
- o LSSP COMMITS KSC RESOURCES:
 - IDENTIFIES INTEGRATION PHASE OF REQUIREMENT
 - IDENTIFIES THOSE REQUIREMENTS WHICH ARE NON-STANDARD (OPTIONAL SERVICES)
 - IDENTIFIES REQUIREMENTS WHICH CANNOT BE MET OR NEED FURTHER RESOLUTION (PRELIMINARY ONLY)

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

KSC Payload Integration

Dean C. Zimmerman Kennedy Space Center, Payload Support Office

EXPERIMENT INTEGRATION

PMM/PI/ED PARTICIPATION

- o WORKS WITH KSC TO SATISFACTORILY IMPLEMENT REQUIREMENTS
- O PROVIDES PROCEDURE INPUTS RELATIVE TO PROPER EXPERIMENT OPERATION TO ENSURE ACCURATE TESTING AND HEALTH, REVIEW/SIGN RESULTANT PROCEDURES
- O PERFORM EXPERIMENT UNIQUE FUNCTIONS WHICH REQUIRE SPECIAL EXPERTISE OR TRAINING
- o CHECKOUT GSE IN USER ROOM
- O OPERATE GSE DURING KSC OPERATIONS (PASSIVE ACTIVITY)
- o PROVIDE EXPERIMENT EXPERTISE WHEN PROBLEMS OCCUR
- O EVALUATE EXPERIMENT GSE DATA
- o EVALUATE TEST RESULTS TO ENSURE OBJECTIVES ARE MET

EXPERIMENT INTEGRATION

OFF-LINE PREPARATIONS

- O "OFF-LINE" REFERS TO THOSE FUNCTIONS WHICH OCCUR OUTSIDE THE NORMAL SERIAL FLOW OF PAYLOAD HARDWARE INTEGRATION
 - NORMALLY PERFORMED BY EXPERIMENTER PERSONNEL
 - NORMALLY PERFORMED IN OFF-LINE AREAS (LAB, etc.)
 - KSC PERSONNEL ONLY INVOLVED TO PROVIDE SUPPORT OR CONTROL HAZARDOUS OPERATIONS
- o "OM-LINE" REFERS TO THOSE FUNCTIONS WHICH OCCUR AS A PART OF THE INTEGRATION FLOW AFTER EXPERIMENT TURNOVER
 - NORMALLY PERFORMED BY KSC
 - NORMALLY OCCURRING IN THE INTEGRATION STAND/ORBITER

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

KSC Payload Integration

Dean C. Zimmerman Kennedy Space Center, Payload Support Office

EXPERIMENT INTEGRATION

OFF-LINE ACTIVITIES

- o EXPERIMENT TURNOVER
 - THE PMM WILL PROVIDE KSC WITH A DATA PACKAGE DEFINING:
 - (1) EXPERIMENT CONFIGURATION
 - (2) OPEN WORK ITEMS (SCHEDULED)
 - (3) NON-FLIGHT ITEMS (RED TAG)
 - (4) OPEN PROBLEMS/VERIFICATIONS/WAIVERS
 - (5) FLIGHT SPARES
 - (6) BONDED STORAGE NEEDS
 - (7) HAZARDS (LASERS, CRYOGENS, ETC.)
 - THE PMM/PI/ED WILL CERTIFY THAT ALL GROUND SAFETY REVIEWS ARE COMPLETED (IDENTIFY ANY OPEN ITEMS) AND EXPERIMENT IS QUALIFIED FOR STS FLIGHT

O&C BUILDING ASSEMBLY AND TEST AREA

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

KSC Payload Integration

Dean C. Zimmerman Kennedy Space Center, Payload Support Office

GENERIC EXPERIMENT INTEGRATION WITH CARRIER

- MECHANICAL INTEGRATION ACTIVITIES, SUCH AS
 - MISSION PECULIAR EQUIPMENT (MPE) INSTALLATION (E.G., FLUID LINES, CABLES, SUPPORT STRUCTURES)
 - EXPERIMENT INSTALLATION
 - MPE AND EXPERIMENT HARDWARE MODIFICATIONS
- MECHANICAL MISSION DEPENDENT ACTIVITIES, SUCH AS
 - EXPERIMENT ALIGNMENT
 - EXPERIMENT SERVICING
 - MPE FLUID SYSTEM LEAK CHECKS AND SERVICING
 - EXPERIMENT HARDWARE STOWAGE (MODULE MISSIONS)
- ELECTRICAL PRE-TEST ACTIVITIES, SUCH AS
 - CONTINUITY AND MEGGER CHECKS
 - VOLTAGE AND POLARITY CHECKS
 - ISOLATION CHECKS

GENERIC EXPERIMENT TESTING

- LEVEL IV EXPERIMENT FUNCTIONAL TESTS
 - VERIFY EXPERIMENT TO SUBSYSTEM AND TO ORBITER INTERFACES
 - VERIFY EXPERIMENT FUNCTIONAL OPERATIONS TO EXTENT PRACTICAL
- INTEGRATED TESTS
 - MOST SYSTEMS/EXPERIMENTS ARE ACTIVE
 - SYSTEMS/CREW ARE UTILIZED IN MAXIMUM RESOURCE MODE
 - COMPATIBILITY BETWEEN EXPERIMENTS/SUBSYSTEMS IS VERIFIED
- CREW EQUIPMENT INTERFACE TESTS
 - VERIFY CREW/CREW EQUIPMENT COMPATIBILITY
 - VERIFY EXPERIMENT/CREW EQUIPMENT INTERFACES AND COMPATIBILITY
- CITE TESTS (MISSION DEPENDENT)
 - UTILIZED FOR FIRST TIME CONFIGURATIONS
 - PROVIDE HIGH FIDELITY SIMULATION OF ORBITER
- ORBITER INTERFACE TESTS
 - PERFORMED AT EITHER THE OPF OR THE PAD
 - VERIFY PAYLOAD TO ORBITER INTERFACES

NOTE: EXTENSIVE INVOLVEMENT BY FLIGHT CREW MEMBERS DURING EXPERIMENT TESTING FOR CERTAIN PAYLOADS, SUCH AS SPACELABS.

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

KSC Payload Integration

Dean C. Zimmerman Kennedy Space Center, Payload Support Office

GENERIC EXPERIMENT SERVICING AND CLOSEOUT

- SERVICING AND CLOSEOUT OPERATIONS ARE MISSION DEPENDENT AND MAY BE PERFORMED IN THE O&C TEST STANDS, IN THE OPF, AND/OR AT THE PAD.
- SERVICING AND PERIODIC MAINTENANCE, SUCH AS
 - **EXPERIMENT PURGES**
 - FLUIDS FILL/TOPOFF
 - **EXPERIMENT CALIBRATION**
 - BATTERY INSTALLATION/CHARGE
- CLOSEOUT ACTIVITIES, SUCH AS
 - PAYLOAD ENVELOPE CLEARANCE CHECKS
 - PAYLOAD WEIGHT AND CG MEASUREMENTS
 - **PYROTECHNICS INSTALLATION AND VERIFICATION**
 - EXPERIMENT UNIQUE OPERATIONS (E.G., REMOVE BEFORE FLIGHT ITEMS)
 OPF TIME CONSTRAINED STOWAGE AND CREW WALKDOWN (MODULE MISSIONS)

 - PAD LATE ACCESS FINAL STOWAGE (E.G., BIOLOGICAL SAMPLES, SL-3 PRIMATES AND RODENTS)

CANISTER/TRANSPORTER CONFIGURATIONS

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

KSC Payload Integration

Dean C. Zimmerman Kennedy Space Center, Payload Support Office

OPF WORKSTANDS

PAYLOAD AND UPPER STAGE INSTALLED IN A VPF WORK STAND

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process KSC Payload Integration

> Dean C. Zimmerman Kennedy Space Center, Payload Support Office

VERTICAL PROCESSING FACILITY ACTIVITIES

- PAYLOAD INTEGRATION WITH ORBITER SYSTEMS AND OTHER PAYLOADS ALSO TAKES PLACE IN THE VERTICAL PROCESSING FACILITY (VPF)
- DELIVERY CONFIGURATION VARIES DEPENDING ON THE UPPER STAGE:
 - PAM ALREADY MATED WITH PAYLOAD

 - IUS/TDRS AND PAYLOAD ARRIVE SEPARATELY SYNCOM CLASS AND ITS PKM ARRIVE SEPARATELY
- PAYLOAD ELEMENTS STACKING AND TESTS INVOLVE:
 - MATING WITH UPPER STAGE AS NECESSARY AND INSTALLATION INTO WORKSTAND IN PAYLOAD BAY SEQUENCE
 - STANDALONE HEALTH AND STATUS TESTS
 - INTEGRATION TESTS
 - ORBITER-TO-PAYLOAD INTERFACE VERIFICATION WITH PAYLOAD INTEGRATION TEST EQUIPMENT (CITE)
 - MISSION SEQUENCE TEST
 - END-TO-END TEST
 - ORDNANCE SYSTEMS TEST

CANISTER/TRANSPORTER BEING READIED TO LEAVE VPF

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

KSC Payload Integration

Dean C. Zimmerman Kennedy Space Center, Payload Support Office

CANISTER/TRANSPORTER ON PAD

CANISTER BEING RAISED TO PCR

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

KSC Payload Integration

Dean C. Zimmerman Kennedy Space Center, Payload Support Office

PAYLOAD ELEMENTS BEING TRANSFERRED FROM THE PCR INTO THE SHUTTLE PAYLOAD BAY

ORIGINAL PAGE IS OF POOR QUALITY

ORBITER INTEGRATION

- AFTER PAYLOAD INSTALLATION IN ORBITER PAYLOAD BAY IN THE OPF OR THE PCR:
 - OPF
 - PAYLOAD CABLES TO ORBITER ARE CONNECTED AND THE INTERFACE IS VERIFIED FROM FIRING ROOM AT LAUNCH CONTROL CENTER (LCC)
 - END-TO-END AND MISSION SEQUENCE TESTS WILL BE PERFORMED (IF REQUIRED)
 - PCR
 - FINAL ORDNANCE CONNECTIONS ARE MADE AND SAFING IS COMPLETED
 - ALL CLOSEOUT PREPARATIONS FOR FLIGHT ARE PERFORMED AND VERIFIED
 - PAYLOAD BAY DOORS ARE CLOSED AT L-10 DAYS
 - LATE SERVICING OR COMMANDS WILL BE ACCOMPLISHED THROUGH THE ORBITER UMBILICALS AS PART OF THE SHUTTLE COUNTDOWN PRIOR TO T-9 MINUTES
 - ACCESS IS EXTREMELY LIMITED AFTER INSTALLATION OF THE PAYLOAD AT THE VPF AND PCR

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

KSC Payload Integration

Dean C. Zimmerman Kennedy Space Center, Payload Support Office

PAYLOAD LAUNCH OPERATIONS CONTROL LOCATIONS

- LAUNCH CONTROL CENTER (LCC)
 - SHUTTLE COUNTDOWN AND LAUNCH CONTROL
 - KSC PAYLOAD MANAGEMENT AND TEST CONTROL
 - CUSTOMER ENGINEERING SUPPORT AREA (LPS DATA MONITORING)
- MISSION DIRECTOR'S CENTER (VERTICAL PAYLOADS)
 - CUSTOMER MANAGEMENT LAUNCH DIRECTION COMMUNICATIONS TO ALL LOCATIONS
- O&C CONTROL ROOM (HORIZONTAL PAYLOADS)
 - CUSTOMER MANAGEMENT LAUNCH DIRECTION
 - COMMUNICATIONS TO ALL LOCATIONS
- CUSTOMER'S KSC PAYLOAD CONTROL STATION (VERTICAL PAYLOADS)
 PAYLOAD COMMAND AND DATA EVALUATION
 VOICE AND DATA COMMUNICATIONS TO LCC AND PAD
- OFF-SITE CONTROL

 - MISSION CONTROL AT JSC
 PAYLOAD OPERATIONS CONTROL CENTER AT JSC
 - CUSTOMER'S MISSION CONTROL CENTER

POSTLANDING OPERATIONS

- AFTER KSC OR DFRF LANDING AND CREW EGRESS:
 - PAYLOAD BAY ENVIRONMENTAL LIMITS ARE MAINTAINED BY EXTERIOR UNITS
 - ORBITER IS TOWED TO A PROCESSING FACILITY FOR SAFING
 - REMOVAL OF RETURNING PAYLOADS AND AIRBORNE SUPPORT EQUIPMENT -APPROXIMATELY 3 DAYS AFTER LANDING AT KSC (EITHER DIRECT LANDING OR SHUTTLE CARRIER AIRCRAFT LANDING AT KSC)
 - PAYLOADS CAN BE TURNED OVER TO PAYLOAD OWNERS AS FOLLOWS:
 - SOME MIDDECKS CAN BE REMOVED PRIOR TO ORBITER TOW (LANDING + 2 HOURS)
 - REMAINING MIDDECK LOCKERS CAN BE REMOVED WITHIN 24 HOURS
 - OTHER PAYLOADS/ASE ARE REMOVED AFTER THE PAYLOAD BAY DOORS ARE OPENED (LAND AT KSC + 3 DAYS)
- NON-KSC/DFRF LANDINGS ARE COVERED BY KVT-PL-0014 AND APPROPRIATE ANNEX. KSC OFF-SITE OPERATIONS PLAN AND KCS-PL-0012.0, PAYLOAD OPERATIONAL LOGISTICS PLAN .

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process

KSC Payload Integration

Dean C. Zimmerman Kennedy Space Center, Payload Support Office

KENNEDY SPACE CENTER INTEGRATION ACTIVITIES

- CUSTOMER SUPPORT REQUIRED DURING ALL PHASES OF INTEGRATION ACTIVITIES FOR GROUND OPERATIONS AND RELATED PAYLOAD TESTING.
- REVIEWS REQUIRING CUSTOMER SUPPORT ARE:
 - GROUND OPERATIONS REVIEW (GOR)
 - PAYLOAD READINESS REVIEW (PRR)
 - LAUNCH READINESS REVIEW (LRR)
 - FLIGHT READINESS REVIEW (FRR)
 - PAYLOAD MANAGEMENT COUNTDOWN REVIEW (PMCR)

Experiment Descriptions

HUMANS IN SPACE

Space Shuttle System Payload Integration Process KSC Payload Integration

> Dean C. Zimmerman Kennedy Space Center, Payload Support Office

SUMMARY OF AVAILABLE PPF'S

• BUILDING AE

- HIGH BAY WORK AREA: 43 FT. 10 IN. BY 51 FT. 6 IN.
- CRANE:

6-TON, 36 FT. 10 IN. LIFT

- CLEANLINESS:

CLASS 10,000, CWA LEVEL 2

- ENTRY DOOR: 14 FT. 9 IN. WIDE BY 36 FT. 1 IN. HIGH

HANGAR S

- HIGH BAY WORK AREAS
 - NORTH:

42 FT. 1 IN. BY 29 FT. 11 IN.

SOUTH:

45 FT. BY 55 FT.

CRANES:

2-TON, 19 FT. 1 IN. LIFT

CLEANLINESS:

CLASS 100,000, CWA LEVEL 4 (CAN MAINTAIN CLASS 10,000, CWA LEVEL 2)

- ENTRY DOOR:

14 FT. 9 IN. WIDE BY 19 FT. 8 IN. HIGH

This Page Intentionally Blank

Tenera reminder und par Agnischigen		Report Docum	entation Page)	
1. Report No. NASA CP-10073, Part 1		2. Government Accession	on No.	3. Recipient's Catal	og No.
4. Title and Subtitle		1-		5. Report Date	· · · · · · · · · · · · · · · · · · ·
Technology for the Future: In-Space Technology Experiments Program				June 1991 6. Performing Organ	
7. Author(s)				8. Performing Organ	nization Report No.
Roger A. Breckenridge Kelli F. Willshire, S Lisa D. Collier (Com	in M. Beck, and		10. Work Unit No.		
9. Performing Organization Name and	ess		506-44-41-0		
Space Station Freedom Office NASA, Langley Research Center Hampton, Virginia 23665-5225				11. Contract or Gran	
12. Sponsoring Agency Name and Ad			13. Type of Report a	nd Period Covered	
		nago Adminotroti	a.m.	Conference	Publication
National Aeronautics and Space Adminstration Washington, DC 20546-0001			on	14. Sponsoring Agen	cy Code
15. Supplementary Notes					
Roger A. Breckenridge, NASA, Langley Research Hampton, Virginia.					
The purpose of the OAS technologies that are validation in the spac Industry/University (O technology needs was d Environmental Effects; and Propulsion Systems In-Space Systems; and	crit e en ut-R evel Pow ; Au	ical for future positions in the control of the case of the following the following the following the control of the control o	national space eview current s. A prioriti lowing 8 disci hermal Managem	programs and NASA (In-Reach zed list of th plines: Strucent; Fluid Ma	require a) and e critical tures; nagement
Part 1 is the Executive portion contains keyno technology needs summa contains brief overview descriptions, and devenance flight technology.	te a ries ws o Lopm	ddresses, stratege for each theme. I the objectives ent schedules for	gic planning i The Experim , technology n	nformation, an ent Descriptio eeds and backg	d the critical ns portion rounds,
17. Key Words (Suggested by Author(s))		18. Distribution Stater	nent	
Space Systems Space Technology Man/Systems Technology			Unclassi	fied - Unlimit	ed
			Subject Category: 15		
19. Security Classif. (of this report)		20. Security Classif. (of the	nis page)	21. No. of pages	22. Price
UNCLASSIFIED		UNCLASSIF	ED	307	A14

÷		-
-		
- -		
•		
	·	