1

The Pleiades are an open cluster of hot, B-type stars located at approximately $(RA, DEC)_{2000}$ = $(3h47m, +24^{\circ}03')$ and about 136.2 ± 5 [pc] from the Earth [1]. The goal of this assignment is to use observations from Hipparcos [2] to estimate the distance to the Pleiades using stellar parallax measurements, by recalling,

$$d[pc] = \frac{1}{\text{parallax}[arcsec]} \tag{1}$$

Thus, if we accurately retrieve the parallaxes of Pleiades cluster members, we can constrain some estimate of the distance. Some parameters about the Pleiades are tabulated in Table I.

Parameter	Value
Distance	$136.2 \pm 5 \; [pc]$
RA(2000)	$\approx 3h47m$
DEC(2000)	$\approx +24^{\circ}03'$
μ_{lpha}	$\approx 20 \text{ [mas/yr]}$
μ_{δ}	$\approx -45 \text{ [mas/yr]}$
Angular radius	$\approx 2^{\circ}$

Table I. Some useful parameters about the Pleiades cluster utilized in this assignment.

II. Data

The data for the Pleiades is retrieved from the Hipparcos catalog on Vizier¹ using the astroquery library². Using the built-in functionality of Vizier, the data was extracted from by querying a region centered at the Pleiades (see Table I), with a search radius of 2°. Within this search region, 47 stars are extracted, histograms of their Parallax, μ_{α} , and μ_{δ} are visualized in Fig. 1.

III. Outline of Analyses & Results

As seen in Fig. 1, there is a strong suspicion that the sample is contaminated by the influence of foreground (or background) stars. Specifically, there exists clear outlier stars which have a drastically different parallax and proper motion than the rest of the sample. The average parallax is 0.0090 ± 0.0037 [arcsec], which implies an average distance of 111.47 ± 46.67 [pc]—which is a very large error. Thus, to retrieve an accurate estimate of the distance, those outlier stars must be removed from the sample.

As a first order approximation, extraneous samples are removed from the sample by conducting an aggressive $\pm 1\sigma$ -clipping on the proper motions. Additionally, a $\pm 1\sigma$ -clipping is used on the parallax measurements. Visualizing this procedure in a color-magnitude diagram is seen in Fig. 2

After removing those identified stars, the average parallax is $0.0083 \pm 0.0009[arcsec]$. Which corresponds to an average distance of $119.13 \pm 12.99 [pc]^3$.

¹ http://cdsarc.u-strasbg.fr/viz-bin/VizieR-3?-source=I/311/hip2

² An astropy affilited package which can be used to access online astronomical data https://astroquery.readthedocs.io/

³ Where the errors were propagated using the errors provided by the catalog, and the standard error propagation technique.

Figure 1. Histograms of the μ_{α} (top), μ_{δ} (middle), and Parallax (bottom) with the mean and $\pm 1\sigma$, $\pm 2\sigma$, and $\pm 3\sigma$ ranges indicated by vertical bars. The average parallax is 0.0090 ± 0.0037 [arcsec].

IV. Discussion & Conclusion

In the end, after performing σ clipping, we are able to arrive at a more accurate estimate of the cluster distance. Specifically, before the data reduction, the average distance is $111.47 \pm 46.67 [pc]$ with a z-score of 0.09, however after the sample constraints, the average distance is $119.13 \pm 12.99 [pc]$ with a z-score of 0.02. Additionally, the corresponding distance modulus $(m - M = -5 + 5 \cdot \log_{10}(d))$ is 5.38 ± 0.24 . Results are summarized in Table II.

Before removing stars from the sample	;
Number of stars in the sample:	47
Average Distance:	$111.47 \pm 46.67 [pc]$
Z-score:	0.09
Distance Modulus:	5.2 ± 0.9
After removing stars from the sample	
After removing stars from the sample Number of stars in the sample:	37
	37 $119.13 \pm 12.99 [pc]$
Number of stars in the sample:	J.

Table II. Summary of Results

Figure 2. Color-Magnitude Diagram of all 47 stars in the sample. Visualized by the color bar is the normalized parallax. Additionally, the stars which were identified by the proper motion σ clipping are circled in red, while those identified by parallax σ clipping are noted in orange.

[1] Guillermo Abramson. The Distance to the Pleiades According to Gaia DR2. Research Notes of the American Astronomical Society, 2:150, August 2018. doi:10.3847/2515-5172/aada8b.

[2] F. van Leeuwen. Validation of the new Hipparcos reduction. , 474:653–664, November 2007. doi:10.1051/0004-6361:20078357.