基本概念

- 图=顶点+边
 - G=(V,E)
 - V(G)->顶点集, IVI->顶点数(也称图的阶)
 - E(G)->边集, IEI->边数
- 线性表有空表, 树有空树, 但图没有空图
- 图的顶点集V一定非空, 但边集E可以为空

分类

有向图

全部由有向边构成的图

无向图

全部由无向边构成的图

简单图:不存在重复边,不存在顶点到自身的边

多重图:两个顶点之间的边数大于1

完全图(简单完全图)

完全无向图: 边数 $\frac{n(n-1)}{2}$ 完全有向图: 边数 n(n-1)

子图和生成子图

G的子图: 所有的顶点和边都属于图G的图 G的生成子图: 含有G的所有顶点的子图

连通,连通图,连通分量(无向图)

v和w连通:无向图中,v到w的路径存在连通图:图中任意两个顶点都是连通的连通分量:无向图中的极大连通子图

强连通, 强连通图, 强连通分量

v和w强连通:有向图中,从v到w和从w到v都有路径

强连通图:图中任何一对顶点都是强联通的

强连通分量:有向图中的极大连通子图

生成树和生成森林

生成树:包含图中全部顶点的一个极小连通图

生成森林: 非连通图中,连通分量的生成树构成了非连通图的生成森林

顶点的度, 出度, 入度

各个顶点的度

$$D(v_0) = ID(v_0) + OD(v_0) = 1 + 2 = 3$$

$$D(v_1) = ID(v_1) + OD(v_1) = 1 + 0 = 1$$

$$D(v_2) = ID(v_2) + OD(v_2) = 1 + 1 = 2$$

$$D(v_3) = ID(v_3) + OD(v_3) = 1 + 2 = 3$$

$$D(v_4) = ID(v_4) + OD(v_4) = 1 + 0 = 1$$

$$e = \frac{1}{2} \sum_{i=0}^{n-1} D(v_i) = \frac{3+1+2+3+1}{2} = 5$$

CSDN @路遥叶子

顶点的度: 图中与该顶点相关联边的数目

入度: 指向该顶点的边的数目

出度: 从该顶点出去的边的数目

顶点的度= 出度 + 入度

对于具有n个顶点, e条边的有向图, 出度和=入度和=e

对于具有n个顶点, e条边的无向图, 度和=2e

边的权和网

权Weight: 边上的数值

网Network: 边上标识权的图

稠密图,稀疏图

稠密图: 边多稀疏图: 边少

路径,路径长度和回路

路径Path: 在一个图中, 路径是从顶点u到顶点v所经过的顶点序列

路径长度: 该路径上边的数目

回路: 第一个顶点和最后一个顶点相同的路径

简单路径和简单回路

简单路径:顶点不重复出现的路径

简单回路: 除第一个和最后一个顶点, 其余顶点不重复出现的回路

距离

从u到v的距离:从u到v的最短路径长度

有向树

有向树:一个顶点的入度为0,其余顶点的入度均为1的有向图

Abstract

无向图边数*2 = 各顶点度数之和 有向图边数 = 各顶点的入度之和 = 各顶点的出度之和

一个连通图的生成树是一个极小连通子图,是无环的

对于一个有n个顶点的图 若是连通无向图, 其边的个数至少为n-1(边最少即构成一 棵树的情形)

若是强连通有向图, 其边的个数至少是n (边最少即构成一个有向环的情形)

易错题

01. 图中有关路径的定义是()。

- A. 由顶点和相邻顶点序偶构成的边所形成的序列
- B. 由不同顶点所形成的序列
- C. 由不同边所形成的序列
- D. 上述定义都不是
- 14. 若具有 n个顶点的图是一个环,则它有()裸生成树。

A. n² B. n

C, n-1

D. 1

图的存储及基本操作

邻接矩阵

图 6.5 有向图、无向图及网的邻接矩阵

邻接矩阵的遍历及顶点度的计算

#define MaxVertexNum 100 typedef char VertexType; typedef int EdgeType; typedef struct{

VertexType vex[MaxVertexnum];
EdgeType edge[MaxVertexNum][MaxVertexNum];
int vexnum,arcnum;
}MGraph;

1 Info

- 1. 在简单应用中, 可直接用二维数组作为图的邻接矩阵(顶, 点信息等均可省略)
- 2. 当邻接矩阵的元素仅表示相应边是否存在时,EdgeType可用值为0和1的枚举类型
- 3. 无向图的邻接矩阵是对称矩阵, 对规模特大的邻接矩阵可采用压缩存储。
- 4. 邻接矩阵表示法的空间复杂度为 $O(n^2)$,其中n为图的顶点数。

$A^n[i][j]$ 等于顶点i到j的长度为n的路径的数目

邻接表

图 6.7 无向图邻接表表示法实例

图 6.8 有向图邻接表表示法实例

实现

#define MaxVertexNum 100
typedef struct ArchNide{ //边表节点
int adjvex; //指向节点的位置

```
struct ArchNide *nextarc; //指向下一条弧的指针
}ArcNode;
typedef struct VNode{ //顶点表节点
    VertexType data; //顶点信息
    ArcNode *firstarc;//指向第一条依附该节点的指针
}VNode, AdjList[MaxVertexNum];
typedef struct {
    AdjList vertices;
    int vexnum,arcnum;
}ALGraph;
```

无向图的存储空间为 O(|V| + 2|E|),有向图 O(|V| + |E|)

十字链表法

图 6.9 有向图的十字链表表示(弧结点省略 info 域)

邻接多重表

图 6.10 无向图的邻接多重表表示(边结点省略 info 域)

比较

表 6.1 图的四种存储方式的总结

	邻接矩阵	邻 接 表	十字链表	邻接多重表	
空间复杂度	O(V ²)	无向图: O(I/ +2 E) 有向图: O(I/ + E)	O(V + E)	O(V + E)	
找相邻边	遍历对应行或列的时间 复杂度为 O(V)			很方便	
删除边或顶点	删除边很方便,删除项 点需要大量移动数据	无向图中删除边或顶点都 不方便	很方便	很方便	
适用于	稠密图	稀疏图和其他	只能存有向图	只能存无向图	
表示方式	唯一	不唯一	不唯一	不唯一	

图的基本操作

Adjacent(G,x,y)	- 判断是否存在边
Neighbors(G,x)	- 列出图中与结点x邻接的边
InsertVertex(G,x)	- 在图中插入顶点x
DeleteVertex(G,x)	- 在图中删除顶点x
AddEdge(G,x,y)	- 若无向边或有向边不存在,则向图中添加该边
RemoveEdge(G,x,y)	- 若无向边或有向边存在,则向图中删除该边
NextNeighbor(G,x,y)	- 假设图中顶点y是顶点x的一个邻接点 - 返回除y外的顶点x的下一个邻接点的顶点号 - 若y是x的最后一个邻接点,则返回1
Get_Edge_Value(G,x,y)	- 获取图中边对应的权值
Set_Edge_Value(G,x,y,v)	- 设置图中边对应的权值

代码题

【2021 统考真题】已知无向连通图 G 由顶点集 V 和边集 E 组成,E > 0,当 G 中度为奇数的顶点个数为不大于 2 的偶数时,G 存在包含所有边且长度为E 的路径(称为 E L路径)。设图 G 采用邻接矩阵存储,类型定义如下:

```
typedef struct{ //图的定义 
int numVertices,numEdges; //图中实际的顶点数和边数 
char VerticesList[MAXV]; //顶点表。MAXV 为已定义常量 
int Edge[MAXV][MAXV]; //邻接矩阵 
}MGraph;
```

请设计算法 int IsExistEL (MGraph G),判断 G 是否存在 EL 路径,若存在,则返回 1,否则返回 0。要求:

1)给出算法的基本设计思想。

2025 年数据结构考研复习指导

- 2) 根据设计思想,采用 C或 C++语言描述算法,关键之处给出注释。
- 3) 说明你所设计算法的时间复杂度和空间复杂度。

思路

遍历

代码

```
int IsExistEL(MGraph G)
{
    int degree,i,j,count;
    for(i=0;i<G.numVertices;i++)
    {
        degree =0;
        for(j=0;j<G.numVertices;j++)
            degree +=G.Edge[i][j];
        if(degree&2!=0)
            count++;
    }
    if(count==0||count==2)
        return 1;
    else</pre>
```

```
return 0;
}
```

【2023 统考真题】已知有向图 G采用邻接矩阵存储,类型定义如下:

将图中出度大于入度的顶点称为K顶点。例如,在下图中,顶点a和b为K顶点。

请设计算法 int printVertices (MGraph G), 对给定的任意非空有向图 G, 输出 G 中所有的 K 顶点, 并返回 K 顶点的个数。要求:

- 1)给出算法的基本设计思想。
- 2) 根据设计思想,采用 C或 C++语言描述算法,关键之处给出注释。

思路

行列遍历

代码

```
int printVertices(MGraph G)
{
    int degree,outdegree,k,m,count=0;
    for(k=0;k<G.numVertices;k++)
    {
        indegree=outgree=0;
        for(m=0;m<G.numVertices;m++)
            outdegree+=G.Edge[k][m];
        for(m=0;m<G.numVertives;m++)
            indegree+=G.Edge[m][k];
        if(outdegree>indegree)
            printf("%c",G.VerticesList[k]);
            count++;
     }
    return count;
}
```

图的遍历

广度优先搜索(BFS)

相当于树的层次遍历

遍历过程

图 6.11 一个无向图 G

a->b->c->d->e->f->g

性能分析

邻接表: O(V+E) 临接矩阵 $O(V^2)$

• BFS可以求解非带权图的单源最短路径问题

广度优先生成树

图 6.12 图的广度优先生成树

邻接矩阵的生成树唯一, 邻接表不唯一

深度优先搜索(DFS)

类似于树的先序遍历

深度优先遍历的过程

图 6.11 一个无向图 G

a->b->d->e->h->c->f->g

DFS算法性能分析

需要递归工作栈,空间复杂度 O(V)

邻接表: O(V+E) 临接矩阵 $O(V^2)$

深度优先的生成树和生成森林

图 6.13 图的深度优先生成森林

图的应用

AOE网和AOV网

AOV不带权值, AOE带权值(都是有向无环图)

• 若AOE网只有一个入度为零的点,则称其为源点,同理出度为零则称汇点

最小生成树(MST)

Abstract

- 存在权值相同边MST不唯一, 否则唯一
- 权值之和唯一
- 边数等于顶点数减一

Prim算法

以顶点为中心扩展, 选最小加入

图 6.15 Prim 算法构造最小生成树的过程

时间复杂度 $O(V^2)$ (适用于边稠密)

Kruskal算法

权值递增次序选择合适边

图 6.16 Kruskal 算法构造最小生成树的过程

时间复杂度 $O(Elog_2^E)$ (适用于边稀疏)

最短路径

无向图直接用BFS搜索

Dikstra算法

每轮得到的最短路径如下:

第1轮: 1→5,路径距离为5

第2轮: 1→5→4, 路径距离为7

第3轮: 1→5→2, 路径距离为8

第4轮: 1→5→2→3, 路径距离为9

图 6.17 应用 Dijkstra 算法图

表 6.2 从 v₁ 到各终点的 dist 值和最短路径的求解过程

顶点	第1轮	第2轮	第3轮	第4轮
1	10	8	8	1
8*	$v_1 \rightarrow v_2$	$v_1 \rightarrow v_5 \rightarrow v_2$	$v_1 \rightarrow v_5 \rightarrow v_2$	
2	00	14	13	9
3		$v_1 \rightarrow v_5 \rightarrow v_3$	$v_1 \rightarrow v_5 \rightarrow v_4 \rightarrow v_3$	$v_1 \rightarrow v_5 \rightarrow v_2 \rightarrow v_3$
4	00	7		
,		$\nu_1 \rightarrow \nu_5 \rightarrow \nu_4$		//
5	5			1
,	$v_1 \rightarrow v_5$			
集合S	{1, 5}	{1, 5, 4}	{1, 5, 4, 2}	{1, 5, 4, 2, 3}

时间复杂度 $O(V^2)$

Floyd算法

$$\begin{bmatrix} 0 & 6 & 13 \\ 10 & 0 & 4 \\ 5 & \infty & 0 \end{bmatrix}$$

(b) G 的邻接矩阵

图 6.19 带权有向图 G 及其邻接矩阵

表 6.3 Floyd 算法的执行过程

A		$A^{(-1)}$		A ⁽⁰⁾		$A^{(1)}$			$A^{(2)}$			
	V_0	V_1	V_2	V_0	V_1	V_2	V_0	V_1	V_2	V_0	V_1	V_2
V_0	0	6	13	0	6	13	0	6	10	0	6	10
V_1	10	0	4	10	0	4	10	0	4	2	0	4
V_2	5	00	0	5	11	0	5	11	0	5	- 11	0

	BFS 算法	Dijkstra 算法	Floyd 算法	
用途	求单源最短路径	求单源最短路径	求各顶点之间的最短路径	
无权图	适用	适用	适用	
带权图	不适用	适用	适用	
带负权值的图	不适用	不适用	适用	
带负权回路的图	不适用	不适用	不适用	
时间复杂度	$O(V ^2)$ 或 $O(V + E)$	$O(V ^2)$	O(V ³)	

表 6.4 BFS 算法、Dijkstra 算法和 Floyd 算法求最短路径的总结

有向无环图

若一个有向图中不存在环,则称为有向无环图,简称DAG图

图 6.20 二叉树描述表达式

图 6.21 有向无环图描述表达式

拓扑排序

拓扑排序是对有向无环图的顶点的一种排序,它使得若存在一条从顶点A到顶点B的路径,则在排序中B出现在A的后面。每个AOV网都有一个或多个拓扑排序序列

拓扑排序和回路的关系

对一个 AOV 网进行拓扑排序的算法有很多,下面介绍比较常用的一种方法的步骤:

- ① 从 AOV 网中选择一个没有前驱 (入度为 0) 的顶点并输出。
- ② 从网中删除该顶点和所有以它为起点的有向边。
- ③ 重复①和②直到当前的 AOV 网为空或当前网中不存在无前驱的顶点为止。后一种情况 说明有向图中必然存在环。

结点号	1	2	3	4	5
初始入度	0	1	2	2	2
第1轮		0	2	1	2
第2轮			1	0	2
第3轮			0		1
第4轮					0
第5轮					

图 6.22 有向无环图的拓扑排序过程

拓扑排序时间复杂度

邻接表 O(V+E),邻接矩阵 $O(V^2)$

逆拓扑排序

- 选择一个没有后继的顶点
- 从网中删除该顶点以及以它为终点的有向边
- 重复1,2直至为空

拓扑序列的存在性和唯一性

- 有多个直接后继不唯一,只有唯一的,则唯一
- 邻接矩阵是三角矩阵的一般有拓扑序列

关键路径

• AOE网中最大路径长度为关键路径,上的活动是关键活动。

参量

- 事件 v_k 最早发生时间 $v_c(K)$
 - $\quad \bullet \ \ v_c(K) = Max\{v_c(j) + Weight(v_j, v_k)\}$

• 最迟发生时间 $v_l(K)$

$$\bullet \ \ v_l(k) = Min\{v_l(j) - Weight(v_k, v_i)\}$$

• 活动 a_i 最早发生时间 e(i) 在边 $< v_k, v_j >$ 上

$$ullet e(i) = v_c(k)$$

• 活动 a_i 最迟发声时间 l(i)

- a_i 的最迟开始时间和最早发声的时间的差 d(i)
 - 等于零则为关键活动

求解过程

(''	v_1	v_2	v ₃	V4	V ₅	v_6
$v_c(i)$	0	3	2	6	6	8
$v_i(i)$	0	4	2	6	7	8

	a_1	<i>a</i> ₂	a_3	a_4	a ₅	a6	a ₇	a_8
e(i)	0	0	3	3	2	2	6	6
l(i)	1	0	4	4	2	5	6	7
l(i) = e(i)	1	0	1	1	0	3	0	1

图 6.23 求解关键路径的过程

总结

表 6.5 采用不同存储结构时各种图算法的时间复杂度

	Dijkstra	Floyd	Prim	Kruskal	DFS	BFS	拓扑排序	关键路径
邻接矩阵	$O(n^2)$	$O(n^3)$	$O(n^2)$	130	$O(n^2)$	$O(n^2)$	$O(n^2)$	$O(n^2)$
邻接表	-	-	-	O(eloge)	O(n+e)	O(n+e)	O(n+e)	O(n+e)