

Roteiros

Circuitos Lógicos Digitais

Instituto de Ciências Exatas e Tecnologia Disciplina: Circuitos Lógicos Digitais

Título da Aula: Introdução ao Simulador

Circuitverse

ROTFIRO 1

Roteiro da aula prática - Introdução ao simulador Circuitverse

1. Objetivos da aula

- Conhecer os simuladores utilizados para circuitos lógicos digitais.
- Explorar as principais características e funcionalidades do simulador.
- Aprender como montar e simular um circuito no simulador CircuitVerse.

2. Recursos necessários

- Computadores conectados à internet.
- Material de apoio: livro-texto e videoaulas.

3. Estrutura da aula

3.1. Abertura (10 minutos)

- Boas-vindas aos alunos e apresentação do tema e dos objetivos da aula.
- Discussão inicial: "Como podemos simular circuitos digitais?"
- Exibição de imagens ou vídeo sobre o uso de simuladores.

3.2. Revisão conceitual (20 minutos)

- Definição de circuitos lógicos digitais.
- Funcionamento das portas lógicas.
- Aplicações de circuitos lógicos.

4. Atividade prática (70 minutos)

4.1. Introdução

As atividades de laboratório da disciplina de Circuitos Lógicos Digitais serão realizadas por meio de simulação computacional, utilizando o simulador **CircuitVerse**. Este simulador é gratuito e pode ser usado na sua versão online, sem a necessidade de nenhuma instalação no computador. Existe a opção de se criar uma conta, também gratuita, onde podem ser salvas, mas não é obrigatório ou necessário fazê-lo.

4.2 Acessando o CircuitVerse e criando uma conta

O **CircuitVerse** é acessado pela página https://circuitverse.org/. Isto levará à página de abertura, onde pode ser selecionada (no canto superior direito) a opção *Log In*, caso se deseje criar ou acessar uma conta (ver figura 4.1).

Figura 4.1 – Página inicial do simulador CircuitVerse

Caso o usuário tenha uma conta da Google, Facebook ou GitHub, o simulador pode usar estas contas, não sendo necessário preencher seus dados. Após entrar em uma conta, ou clicar no botão *Launch Simulator*, o usuário será direcionado para a tela do simulador propriamente dito.

Figura 4.2 – Página do simulador CircuitVerse.

4.3. Funcionalidades do CircuitVerse

No alto, temos um menu (indicado por 1 na Figura 4.3), que permite gerenciar os arquivos e projetos (lembrando que é necessário estar logado para salvar ou abrir um projeto já feito).

No menu à esquerda, temos os componentes dos circuitos (indicado por 2 na Figura 4.3). Nas aulas de Circuitos Lógicos Digitais, utilizaremos os três primeiros itens deste menu:

Input: as entradas do circuito;

Output: as saídas do circuito;

• Gates: as portas lógicas.

Nas simulações, utilizaremos a entrada e a saída binária em todos os circuitos (indicadas na Figura 4.4).

Por fim, na lateral direita (indicado por 3), temos o menu com as propriedades: caso algum componente esteja selecionado, este menu irá mostrar as propriedades deste componente (aqui podemos ajustar o número de entradas de uma porta lógica, por exemplo); do contrário, mostrará as propriedades do circuito como um todo.

Figura 4.3 – Elemento da interface do simulador CircuitVerse.

Figura 4.4 – Componentes dos circuitos do simulador CircuitVerse.

4.4. Montando um circuito no CircutVerse

Para construir um circuito no **Circuitverse**, basta selecionar e arrastar os componentes desejados para a área de trabalho. O componente selecionado irá aparecer em amarelo na área de trabalho.

Figura 4.5 - Inserindo um componente.

Para conectar dois componentes, coloca-se o mouse sobre o conector do componente (uma bolinha verde) e, mantendo o botão do mouse pressionado, arrastar e clicar no conector de outro componente com o qual se deseja fazer a conexão.

O **CircuitVerse** simula em tempo real: as conexões com valor lógico 1 aparecerão em verde claro, e aquelas com valor lógico 0 aparecerão em verde escuro. Ao ser conectada uma saída, assumirá o valor lógico correspondente a suas conexões.

Para remover um componente ou conexão, basta selecioná-lo clicando com o mouse e pressionar "Delete" no teclado.

4.5. Desafio inicial

Cada aluno deverá simular circuitos compostos de apenas uma porta lógica. Para isto, serão simuladas as portas lógicas *AND*, *NAND*, *OR*, *NOR*, *XOR* e *NXOR* com duas, três e quatro entradas em cada um dos casos.

O simulador **CircuitVerse** oferece a possibilidade de se trabalhar com estas portas lógicas com um número de entradas variando de duas a dez. Será simulada cada uma das seis portas lógicas com as quantidades de entradas indicadas e serão anotados e analisados os resultados, completando as tabelas a seguir com os resultados, e verificando se o resultado do simulador corresponde ao valor visto nas aulas teóricas.

Porta AND

Entrada	Entrada	Saída
1	2	
0	0	
0	1	
1	0	
1	1	

Entrada	Entrada	Entrada	Saída
1	2	3	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	_
1	1	1	

Entrada	Entrada	Entrada	Entrada	Saída
1	2	3	4	
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	

0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Porta NAND

Entrada	Entrada	
1	2	Saída
0	0	
0	1	
1	0	
1	1	

Entrada	Entrada	Entrada	Saída
1	2	3	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Entrada	Entrada	Entrada	Entrada	Saída
1	2	3	4	
0	0	0	0	
0	0	0	1	
0	0	1	0	

0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Porta OR

Entrada	Entrada	Saída
1	2	
0	0	
0	1	
1	0	
1	1	

Entrada	Entrada	Entrada	Saída
1	2	3	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Entrada	Entrada	Entrada	Entrada	Saída
1	2	3	4	
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Porta NOR

Entrada	Entrada	Saída
1	2	
0	0	
0	1	
1	0	
1	1	

Entrada	Entrada	Entrada	Saída
1	2	3	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Entrada	Entrada	Entrada	Entrada	Saída
1	2	3	4	
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Porta XOR

Entrada	Entrada	Saída
1	2	
0	0	
0	1	
1	0	
1	1	

Entrada	Entrada	Entrada	Saída
1	2	3	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Entrada	Entrada	Entrada	Entrada	Saída
1	2	3	4	
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Porta NXOR

Entrada	Entrada	Saída
1	2	
0	0	
0	1	
1	0	
1	1	

Entrada	Entrada	Entrada	Saída
1	2	3	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Entrada	Entrada	Entrada	Entrada	Saída
1	2	3	4	
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

4.6. Ampliação do desafio

Considerando as portas com duas, três e quatro entradas, o aluno deve tentar compreender o funcionamento de cada porta lógica. Como pode ser descrito, de forma textual, o funcionamento de cada uma das seis portas lógicas?

Porta AND:	
Porta NAND:	_
Porta OR:	
Porta NOR:	
Porta XOR:	
Porta NXOR:	

5. Encerramento e orientações finais (20 minutos)

- Discussão sobre o simulador e seu uso, suas vantagens e eventuais dificuldades de uso.
- Dicas para a organização dos componentes e como conectá-los.
- Orientação sobre a entrega do relatório final.

6. Orientações para o Relatório Final

Cada aluno deve produzir um relatório curto contendo:

- Resultado das simulações, com as respectivas tabelas-verdade e prints dos circuitos lógicos correspondentes.
- Resposta das questões acerca das portas lógicas.

7. Critérios de avaliação

Critério	Peso	Descrição
Tabelas-verdade completas e	4.0	Compreensão e clareza na teoria
corretas	4,0	de circuitos
Apresentação dos circuitos	4.0	Compreensão e clareza no uso
correspondentes	4,0	do simulador
Formulação das regras das	2.0	Capacidade de análise e dedução
portas lógicas	2,0	a partir dos dados obtidos

Nota final: Será a soma dos valores obtidos em cada critério. Alunos ou equipes que não cumprirem os requisitos mínimos de funcionamento do código ou não entregarem o relatório dentro do prazo terão sua nota diminuída proporcionalmente.

8. Conclusão

Nesta aula, os alunos entenderam os conceitos fundamentais do uso de simuladores na prática do projeto e teste de circuitos lógicos digitais. Além disso, a atividade consolidou o funcionamento e o uso das portas lógicas.

Bom estudo e boa prática!

Instituto de Ciências Exatas e Tecnologia Disciplina: Circuitos Lógicos Digitais

Título da Aula: Construindo e avaliando

Circuitos Lógicos

ROTEIRO 2

Roteiro da aula prática - Construindo e avaliando circuitos lógicos

1. Objetivos da aula

- Construir circuitos lógicos a partir das suas respectivas expressões lógicas.
- Obter a expressão lógica a partir de circuitos lógicos.
- Compreender os fundamentos da simplificação de circuitos lógicos.

2. Recursos necessários

- Computadores conectados à internet.
- Material de apoio: livro-texto e videoaulas.

3. Estrutura da aula

3.1. Abertura (10 minutos)

- Boas-vindas aos alunos e apresentação do tema e dos objetivos da aula.
- Discussão inicial: "Como transformar uma expressão lógica em um circuito e vice-versa?".
- Exibição de imagens ou vídeo sobre o uso de simuladores.

3.2. Revisão conceitual (30 minutos)

- Precedência de operadores lógicos.
- Leis da Lógica e equivalência de circuitos lógicos.

- Desenvolvimento de circuitos lógicos a partir de expressões lógicas.
- Simulação de circuitos lógicos.

4. Atividade prática (60 minutos)

4.1. Introdução

Parte importante da construção de circuitos lógicos digitais é saber transformar expressões lógicas em circuitos e obter a expressão lógica a partir do desenho esquemático de circuitos.

Um outro objetivo desta atividade é demonstrar, por meio da simulação no **CircuitVerse**, que toda expressão lógica (e, consequentemente, todo circuito lógico) possui infinitos equivalentes.

4.2. Desafio inicial

Utilizando o simulador **CircuitVerse**, esboçar os circuitos e montar as tabelas-verdade das expressões lógicas a seguir:

Parte I

Esboçar o circuito para cada uma das expressões, simulá-lo e completar a tabela verdade.

a)
$$S = \overline{A} \cdot \overline{B} + A \cdot \overline{C} + \overline{A} \cdot C$$

А	В	С	Saída (Simulada)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

b)
$$S = P \cdot \overline{Q} + P \cdot \overline{R \cdot Q} + (\overline{P} \oplus R)$$

Р	Q	R	Saída (Simulada)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Parte II

Determinar a expressão para cada um dos circuitos, simulá-lo e completar a tabela verdade.

a)

А	В	С	Saída (Simulada)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Α	В	Saída (Simulada)
0	0	
0	1	
1	0	
1	1	

Р	Q	R	Saída (Simulada)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Parte III

Demonstrar algumas Leis da Lógica por meio da construção de ambos os circuitos indicados em cada uma delas. Construir os circuitos para cada uma delas e demonstrar as equivalências.

a) Lei Idempotente:
$$A + A \equiv A$$

$$A \cdot A \equiv A$$

А	A + A (Simulada)	A · A (Simulada)
0		
1		

b) Lei da Absorção:
$$(A \cdot B) + A \equiv A$$

$$(A + B) \cdot A \equiv A$$

А	В	(A · B) + A (Simulada)	(A + B) · A (Simulada)
0	0		
0	1		
1	0		
1	1		

c) <u>Lei Associativa:</u> $(A \cdot B) \cdot C \equiv A \cdot (B \cdot C)$

$$(A + B) + C \equiv A + (B + C)$$

Λ	D	ВС	(A · B) · C	A · (B · C)	(A + B) + C	A + (B + C)
A	D	C	(Simulada)	(Simulada)	(Simulada)	(Simulada)
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

d) Lei de De Morgan: \sim (A · B) \equiv \sim A + \sim B

$$\sim$$
(A + B) \equiv \sim A · \sim B

Δ.	D	~(A · B)	~A + ~B	~(A + B)	~A · ~B
A	В	(Simulada)	(Simulada)	(Simulada)	(Simulada)
0	0				
0	1				
1	0				
1	1				

4.3. Ampliação do desafio

Todo circuito lógico pode ser representado como uma associação de portas lógicas NOT, AND e OR. Por meio do simulador, encontre uma expressão equivalente contendo apenas estas três portas lógicas para S1 = P \oplus Q e S 2= \sim (P \oplus Q)

Р	Q	P ⊕ Q (Simulada)	~(P \oplus Q) (Simulada)	
0	0			
0	1			
1	0			
1	1			

5. Encerramento e orientações finais (20 minutos)

- Discussão sobre a equivalência de circuitos lógicos.
- Dicas para a organização dos componentes e como identificar circuitos equivalentes.
- Orientação sobre a entrega do relatório final.

6. Orientações para o Relatório Final

Cada aluno deve produzir um relatório curto contendo:

- Resultado das simulaç**ões, com as respectivas tabelas-**verdade e prints dos circuitos lógicos correspondentes.
- Resposta das simplificações e equivalência dos circuitos.

7. Critérios de avaliação

Critério	Peso	Descrição
Tabelas-verdade completas e	2.0	Compreensão e clareza na teoria
corretas	3,0	de circuitos
Apresentação dos circuitos	2.0	Compreensão e clareza no uso
correspondentes	3,0	do simulador
Demonstração das equivalências	2.0	Demonstrar pelo simulador as
lógicas	2,0	Leis da Lógica
		Obter um circuito equivalente
Desafio final	2,0	utilizando as portas lógicas
		indicadas.

Nota final: Será a soma dos valores obtidos em cada critério. Alunos ou equipes que não cumprirem os requisitos mínimos de funcionamento do código ou não entregarem o relatório dentro do prazo terão sua nota diminuída proporcionalmente.

8. Conclusão

Nesta aula, os alunos entenderam os conceitos fundamentais da construção de circuitos lógicos e os fundamentos da simplificação de circuitos. Além disso, a atividade consolidou o funcionamento e o uso das portas lógicas e do simulador.

Bom estudo e boa prática!

Instituto de Ciências Exatas e Tecnologia Disciplina: Circuitos Lógicos Digitais

Título da Aula: Simplificação de Circuitos Lógicos usando Mapas de Karnaugh, parte l

ROTEIRO 3

Roteiro da aula prática – Simplificação de Circuitos Lógicos usando Mapas de Karnaugh, parte l

1. Objetivos da aula

- Analisar circuitos lógicos e simplificá-los por meio do uso de Mapas de Karnaugh.
- Obter uma expressão lógica simplificada para circuitos lógicos.
- Obter uma expressão lógica e um circuito a partir de uma saída desejada para este.

2. Recursos necessários

- Computadores conectados à internet.
- Material de apoio: livro-texto e videoaulas.

3. Estrutura da aula

3.1. Abertura (10 minutos)

- Boas-vindas aos alunos e apresentação do tema e dos objetivos da aula.
- Discussão inicial: "Como obter uma expressão lógica e um circuito a partir de uma saída desejada?".
- Exibição de imagens ou vídeo sobre o uso de simuladores.

3.2. Revisão conceitual (30 minutos)

- Equivalência de expressões lógicas.
- Simplificação de circuitos lógicos.
- Mapas de Karnaugh.

4. Atividade prática (60 minutos)

4.1. Introdução

O objetivo desta atividade é, a partir da expressão lógica de um circuito, construí-lo e simulá-lo no **CircuitVerse**; em seguida, por meio do mapa de Karnaugh, simplificá-lo e construir e testar no simulador a versão simplificada do circuito.

4.2. Desafio inicial

Para as expressões lógicas a seguir, cada aluno deve elaborar o circuito no simulador, obter a saída correspondente e, por meio dos mapas de Karnaugh, obter uma versão simplificada deles.

a) Circuito I: S = [(A . B) + (A + B)]

Α	В	S (Simulada)
0	0	
0	1	
1	0	
1	1	

b) Circuito II: $S = [(M \oplus N) \oplus (M + N)] + M . N$

М	N	S (Simulada)
0	0	
0	1	
1	0	
1	1	

c) Circuito III: $S = \overline{A} \cdot [(B \cdot C) + (\overline{B} \cdot \overline{C})] + A \cdot [(\overline{B} \cdot C) + (B \cdot \overline{C})]$

			_ · · ·
А	В	С	S (Simulada)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

d) Circuito IV: $S = \overline{P} \cdot Q + (R \oplus P) + P \cdot \overline{Q} \cdot R$

Р	Q	R	S (Simulada)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

e) Circuito V: $S = X \cdot ((Y \cdot Z) + (\overline{Z} \cdot \overline{X})) + [X \oplus (\overline{Y} + Z) + (X \cdot \overline{Z})]$

Х	Y	Z	S (Simulada)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	

1	1	0	
1	1	1	

4.3. Ampliação do desafio

Sabendo que cada expressão lógica (e, consequentemente, cada circuito) possui infinitos circuitos equivalentes, para as simplificações obtidas existem outras possibilidades com o mesmo número de portas lógicas? Encontre, quando possível, circuitos lógicos equivalentes de mesmo tamanho para cada um deles.

5. Encerramento e orientações finais (20 minutos)

- Discussão sobre a equivalência e simplificação de circuitos lógicos.
- Dicas para a construção dos mapas de Karnaugh e obtenção das expressões lógicas a partir deles.
- Orientação sobre a entrega do relatório final.

6. Orientações para o Relatório Final

Cada aluno deve produzir um relatório curto contendo:

- Resultado das simulações, com as respectivas tabelas-verdade e prints dos circuitos lógicos correspondentes.
- Mapas de Karnaugh para cada um dos circuitos lógicos.
- Resposta das simplificações e equivalência dos circuitos.

7. Critérios de avaliação

Critério	Peso	Descrição
Tabelas-verdade completas e	2.0	Compreensão e clareza na teoria
corretas	3,0	de circuitos
Mapas de Karnaugh para cada	2.0	Uso adequado dos mapas de
circuito	3,0	Karnaugh
Expressão lógica simplificada	2.0	Resolução da simplificação de
obtida a partir dos mapas	2,0	circuitos
Desafio final	2.0	Obter um circuito equivalente
Desallo lilial	2,0	utilizando os mapas de Karnaugh

Nota final: Será a soma dos valores obtidos em cada critério. Alunos ou equipes que não cumprirem os requisitos mínimos de funcionamento do código ou não entregarem o relatório dentro do prazo terão sua nota diminuída proporcionalmente.

8. Conclusão

Nesta aula, os alunos entenderam os conceitos fundamentais do uso de mapas de Karnaugh para o projeto e a simplificação de circuitos lógicos, bem como reforçaram o conceito de que cada circuito lógico possui diversos outros circuitos equivalentes.

Bom estudo e boa prática!

Instituto de Ciências Exatas e Tecnologia Disciplina: Circuitos Lógicos Digitais

Título da Aula: Simplificação de Circuitos Lógicos usando Mapas de Karnaugh, parte II

ROTEIRO 4

Roteiro da aula prática – Simplificação de Circuitos Lógicos usando Mapas de Karnaugh, parte II

1. Objetivos da aula

- Analisar circuitos lógicos com quatro entradas e simplificá-los por meio do uso de mapas de Karnaugh.
- Obter uma expressão lógica simplificada para circuitos lógicos com quatro entradas.
- Simular circuitos maiores e mais complexos no CircuitVerse.

2. Recursos necessários

- Computadores conectados à internet.
- Material de apoio: livro-texto e videoaulas.

3. Estrutura da aula

3.1. Abertura (10 minutos)

- Boas-vindas aos alunos e apresentação do tema e dos objetivos da aula.
- Discussão inicial: "Qual é o limite de simplificação de um circuito lógico?"
- Exibição de imagens ou vídeo sobre mapas de Karnaugh.

3.2. Revisão conceitual (30 minutos)

- Equivalência de expressões lógicas.
- Simplificação de circuitos lógicos.
- Mapas de Karnaugh.

4. Atividade prática (60 minutos)

4.1. Introdução

O objetivo desta atividade é, a partir da expressão lógica de um circuito com quatro variáveis (entradas), construí-lo e simulá-lo no **CircuitVerse**; em seguida, por meio do mapa de Karnaugh, simplificá-lo e construir e testar no simulador a versão simplificada do circuito.

4.2. Desafio inicial

Para as expressões lógicas a seguir, cada aluno deve elaborar o circuito no simulador, obter a saída correspondente e, por meio dos mapas de Karnaugh, obter uma versão simplificada deles.

a) Circuito I:
$$S = \overline{A} \cdot B \cdot \overline{(C + D)} + (\overline{A} + \overline{B}) \cdot C \cdot D + (A + B) \cdot (C + \overline{D}) + A \cdot B \cdot \overline{C} \cdot \overline{D}$$

А	В	С	D	Saída S (simulada)	Saída após a simplificação (simulada)
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		

1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Circuito simplificado =_____

b) Circuito II: $S = (X \oplus Y) \cdot (Z+W) + (X \oplus Z) \cdot (Y+W) + (Y \oplus Z) \cdot (Z+W) + (W \oplus Z) \cdot (Y+X)$

Х	Y	W	Z	Saída S (simulada)	Saída após a simplificação (simulada)
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		

0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Circuito simplificado =_____

4.3. Ampliação do desafio

Sabendo que cada expressão lógica (e, consequentemente, cada circuito) possui infinitos circuitos equivalentes, para as simplificações obtidas existem outras possibilidades com o mesmo número de portas lógicas? Encontre, quando possível, circuitos lógicos equivalentes de mesmo tamanho para cada um deles. Uma dica é tentar aplicar as leis da lógica nas versões finais dos circuitos, principalmente as Leis de De Morgan e da Equivalência do Ou Exclusivo (ver livro-texto).

5. Encerramento e orientações finais (20 minutos)

- Discussão sobre a equivalência e simplificação de circuitos lógicos.
- Dicas para a construção dos mapas de Karnaugh e obtenção das expressões lógicas a partir deles.
- Orientação sobre a entrega do relatório final.

6. Orientações para o Relatório Final

Cada aluno deve produzir um relatório curto contendo:

- Resultado das simulações, com as respectivas tabelas-verdade e prints dos circuitos lógicos correspondentes.
- Mapas de Karnaugh para cada um dos circuitos lógicos.
- Resposta das simplificações e equivalência dos circuitos.

7. Critérios de avaliação

Critério	Peso	Descrição
Tabelas-verdade completas e corretas	3,0	Compreensão e clareza na teoria de circuitos
Mapas de Karnaugh para cada circuito	3,0	Uso adequado dos mapas de Karnaugh
Expressão lógica simplificada obtida a partir dos mapas	2,0	Resolução da simplificação de circuitos
Desafio final	2,0	Obter um circuito equivalente utilizando os mapas de Karnaugh

Nota final: Será a soma dos valores obtidos em cada critério. Alunos ou equipes que não cumprirem os requisitos mínimos de funcionamento do código ou não entregarem o relatório dentro do prazo terão sua nota diminuída proporcionalmente.

8. Conclusão

Nesta aula, os alunos reforçaram o uso de mapas de Karnaugh para o projeto e a simplificação de circuitos lógicos, bem como o conceito de que cada circuito lógico possui diversos outros circuitos equivalentes.

Bom estudo e boa prática!

Instituto de Ciências Exatas e Tecnológicas

Disciplina: Circuitos Lógicos Digitais

Título da aula: Simulação de circuitos

codificadores e decodificadores

ROTEIRO 5

Roteiro da aula prática – Simulação de circuitos codificadores e decodificadores

1. Objetivos da aula

- Entender o funcionamento de circuitos codificadores e decodificadores, mais especificamente o BCD 8421 e o BCH.
- Simular os circuitos codificadores e decodificadores no CircuitVerse.

2. Recursos necessários

- Computadores conectados à internet.
- Material de apoio: livro-texto e videoaulas.

3. Estrutura da aula

3.1. Abertura (10 minutos)

- Boas-vindas aos alunos e apresentação do tema e dos objetivos da aula.
- Discussão inicial: "O que é um circuito codificador e um circuito decodificador?"
- Exibição de imagens ou vídeo sobre circuitos codificadores.

3.2. Revisão conceitual (30 minutos)

- Principais códigos utilizados em circuitos lógicos digitais.
- Circuitos codificadores.
- Circuitos decodificadores.

4. Atividade prática (60 minutos)

4.1. Introdução

O objetivo desta atividade é realizar a simulação de circuitos codificadores no **CircuitVerse**; para os códigos BCD 8421 e BCH, a partir da tabela-verdade, encontrar a expressão de cada saída do circuito e simular o circuito no simulador.

4.2. Desafio inicial

A partir das saídas da tabela-verdade dos circuitos codificadores, obter as expressões lógicas para cada uma das quatro saídas dos circuitos, implementá-los no simulador e comparar os resultados obtidos com a tabela do respectivo código.

4.2.1 Código BCD 8421

O Código BCD 8421, ou simplesmente BCD (*Binary Coded Decimal*, Decimal Codificado em Binário), é um dos códigos mais utilizados nos sistemas digitais. Ele é composto de 4 bits, sendo que cada um representa uma potência de 2 (8, 4, 2 e 1, daí o nome do código).

	BCD					
Decimal	Canal	Canal	Canal	Canal		
	8	4	2	1		
0	0	0	0	0		
1	0	0	0	1		
2	0	0	1	0		
3	0	0	1	1		
4	0	1	0	0		
5	0	1	0	1		
6	0	1	1	0		
7	0	1	1	1		
8	1	0	0	0		
9	1	0	0	1		

Este circuito apresenta 10 entradas e 4 saídas. Determinar a expressão lógica de cada saída, esboçar o circuito e realizar a simulação do mesmo.

Saídas:	
Canal 1:_	
Canal 2:	
Canal 4:	
Canal 8:	

		ultado d		
Decimal	Canal	Canal	Canal	Canal
	8	4	2	1
0				
1				
2				
3				
4				
5				
6				
7				
8				
9				

4.2.2. Código BCH

O Código BCH (*Binary Coded Hexadecimal*, Hexadecimal Codificado em Binário) é muito semelhante ao código BCD, mas serve para representar os 16 algarismos do sistema hexadecimal no sistema binário:

	ВСН									
Decimal	Canal	Canal	Canal	Canal						
	8	4	2	1						
0	0	0	0	0						
1	0	0	0	1						
2	0	0	1	0						
3	0	0	1	1						
4	0	1	0	0						

5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
Α	1	0	1	0
В	1	0	1	1
С	1	1	0	0
D	1	1	0	1
E	1	1	1	0
F	1	1	1	1

Este circuito apresenta 16 entradas e 4 saídas. Determinar a expressão lógica de cada saída, esboçar o circuito e realizar a simulação do mesmo.

Saídas:	
Canal 1:_	
Canal 2:	
Canal 4:	
Canal 8:	

	Res	ultado d	a Simula	ção
Decimal	Canal	Canal	Canal	Canal
	8	4	2	1
0				
1				
2				
3				
4				
5				
6				
7				
8				
9				
Α				
В				
С				

D		
E		
F		

4.3. Ampliação do desafio

O objetivo desta atividade é construir e simular um circuito decodificador, o BCD8421. Desta vez, o circuito terá 4 entradas cada e 10 saídas, sendo que apenas uma das saídas terá sinal para cada combinação das entradas.

É importante observar que no BCD nem todas as combinações entre as entradas ocorrerão; assim, as combinações que não ocorrerem serão consideradas como *indiferentes* no Mapa de Karnaugh.

Código BCD 8421

A tabela-verdade do circuito decodificador BCD8421 é apresentada abaixo. As entradas indicadas em cinza não ocorrerão.

	Entr	adas						Saío	las				
C8	C4	C2	C1	S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0	0	0	0
0	0	1	1	0	0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	0	0	1	0	0	0	0
0	1	1	0	0	0	0	0	0	0	1	0	0	0
0	1	1	1	0	0	0	0	0	0	0	1	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	0	0	0	0	0	0	0	0	0	1
1	0	1	0										
1	0	1	1										
1	1	0	0										
1	1	0	1										
1	1	1	0										
1	1	1	1										

Mapas de Karnaugh

S0=____

S2=____

S4=____

S5=____

	Entradas				Resultado da Simulação								
C8	C4	C2	C1	S0	S1	S2	S 3	S4	S5	S6	S7	S8	S 9
0	0	0	0										
0	0	0	1										
0	0	1	0										
0	0	1	1										
0	1	0	0										
0	1	0	1										
0	1	1	0										
0	1	1	1										
1	0	0	0										
1	0	0	1										
1	0	1	0										

1	0	1	1					
1	1	0	0					
1	1	0	1					
1	1	1	0					
1	1	1	1					

5. Encerramento e orientações finais (20 minutos)

- Discussão sobre a equivalência e simplificação de circuitos lógicos.
- Dicas para a construção dos mapas de Karnaugh e obtenção das expressões lógicas a partir deles.
- Orientação sobre a entrega do relatório final.

6. Orientações para o Relatório Final

- Cada aluno deve produzir um relatório curto contendo:
- Resultado das simulações, com as respectivas tabelas-verdade e prints dos circuitos lógicos correspondentes.
- Mapas de Karnaugh para cada um dos circuitos lógicos.

7. Critérios de avaliação

Critério	Peso	Descrição			
Tabelas-verdade completas	2.0	Compreensão e clareza na			
e corretas	3,0	teoria de circuitos			
Mapas de Karnaugh para	2.0	Uso adequado dos mapas			
cada circuito	3,0	de Karnaugh			
Simulação dos circuitos	2,0	Correta construção dos			
codificadores	2,0	circuitos			
Desafio final	2,0	Obtenção do circuito			
Desano iiilai	۷,0	decodificador			

Nota final: Será a soma dos valores obtidos em cada critério. Alunos ou equipes que não cumprirem os requisitos mínimos de funcionamento do código ou não entregarem o relatório dentro do prazo terão sua nota diminuída proporcionalmente.

8. Conclusão

Nesta aula, os alunos entenderam os conceitos envolvendo circuitos codificadores e decodificadores, bem como realizar a simulação destes. É importante observar que circuitos codificadores se mostram bem mais simples do que os decodificadores.

Bom estudo e boa prática!

Instituto de Ciências Exatas e Tecnológicas

Disciplina: Circuitos Lógicos Digitais

Título da aula: Display de Sete Segmentos

ROTEIRO 6

Roteiro da aula prática - Display de Sete Segmentos

1. Objetivos da aula

- Simular um display de sete segmentos.
- Obter uma expressão lógica para cada segmento do display.
- Utilizar a saída do display de sete segmentos do simulador CircuitVerse.

2. Recursos necessários

- Computadores conectados à internet.
- Material de apoio: livro-texto e videoaulas.

3. Estrutura da aula

3.1. Abertura (10 minutos)

- Boas-vindas aos alunos e apresentação do tema e dos objetivos da aula.
- Discussão inicial: "Como um display de sete segmentos pode ser representado na forma de um codificador?"
- Exibição de imagens ou vídeo sobre o display de sete segmentos.

3.2. Revisão conceitual (30 minutos)

- Circuitos codificadores.
- Obtenção da expressão lógica de um codificador.

4. Atividade prática (60 minutos)

4.1. Introdução

Um display de sete segmentos (SSD), ou indicador de sete segmentos, é uma forma de dispositivo de exibição eletrônica para exibir numerais decimais que é uma alternativa aos displays de matriz de pontos mais complexos.

Os monitores de sete segmentos são amplamente utilizados em relógios digitais, medidores eletrônicos, calculadoras básicas e outros dispositivos eletrônicos que exibem informações numéricas. Figura 4.1 ilustra este display:

Figura 4.1 – Display de sete segmentos

Um circuito para este display pode ser considerado como um codificador com dez entradas (de 0 a 9) e sete saídas. O simulador CircuitVerse possui uma saída (em *Output*) para displays de sete segmentos. Os conectores correspondentes a cada um dos segmentos são indicados na imagem a seguir:

Figura 4.2 – Conexões de um display de sete segmentos no CircuitVerse.

4.2. Desafio inicial

Um circuito para este display pode ser considerado como um codificador com dez entradas (de 0 a 9) e sete saídas. Utilizando a imagem apresentada em cada linha da tabela a seguir, cada aluno deve verificar quais segmentos do display são solicitados para a formação de cada número:

Decimal		Α	В	С	D			S	aída	S		
(Entrada)	Exibição	(8)	(4)	(2)	(1)	Α	В	С	D	Ε	F	G
0	8											
1	<u> </u>											
2	0											
3	8											
4												
5	8											
6	8											
7	8											
8	8											
9	8											

A partir da tabela-verdade do circuito, deve obter o cirucito lógico correspondente a cada um dos sete segmentos do display:

Segmento A:		
Segmento B:		
Segmento C:		
Segmento D:		
Segmento E:		
Segmento F:		
Segmento G:		

4.3. Ampliação do desafio

Alguns displays de 7 segmentos também exibem as letras de A a F, para formar o código hexadecimal. Sendo as letras as indicadas na imagem abaixo, quais segmentos são utilizados em cada uma delas?

Α	8	Letra A:	
b	8	Letra b:	
С	8	Letra C:	
d	8	Letra d:	
Е	8	Letra E:	
F	8	Letra F:	

5. Encerramento e orientações finais (20 minutos)

- Discussão sobre o circuito para o display.
- Dicas para a construção e organização do circuito.
- Orientação sobre a entrega do relatório final.

6. Orientações para o Relatório Final

Cada aluno deve produzir um relatório curto contendo:

O circuito codificador que controla o display de sete segmentos.

Tabela-verdade preenchida para o circuito codificador para as letras.

7. Critérios de avaliação

Critério	Peso	Descrição
Tabelas-verdade completas e corretas	4,0	Compreensão e clareza na teoria de circuitos codificadores
Circuito controlador do SSD no simulador	4,0	Uso correto do simulador
Desafio final	2,0	Extrapolação dos conceitos vistos na atividade

Nota final: Será a soma dos valores obtidos em cada critério. Alunos ou equipes que não cumprirem os requisitos mínimos de funcionamento do código ou não entregarem o relatório dentro do prazo terão sua nota diminuída proporcionalmente.

8. Conclusão

Nesta aula, os alunos compreenderam o circuito controlador de um display de sete segmentos como sendo um circuito codificador. Como circuito controlador, apenas uma porta lógica é responsável pelo controle de cada segmento do display.

Bom estudo e boa prática!

Instituto de Ciências Exatas e Tecnológicas

Disciplina: Circuitos Lógicos Digitais

Título da aula: Circuitos Meio Somadores

e Somadores

ROTFIRO 7

Roteiro da aula prática - Circuitos Meio Somadores e Somadores

1. Objetivos da aula

- Compreender como emular operações aritméticas por meio de portas lógicas.
- Criar um circuito meio somador.
- Simular um circuito meio somador e um circuito somador completo no CircuitVerse.

2. Recursos necessários

- Computadores conectados à internet.
- Material de apoio: livro-texto e videoaulas.

3. Estrutura da aula

3.1. Abertura (10 minutos)

- Boas-vindas aos alunos e apresentação do tema e dos objetivos da aula.
- Discussão inicial: "Como emular operações aritméticas com circuitos lógicos?".
- Exibição de imagens ou vídeo sobre o display de sete segmentos.

3.2. Revisão conceitual (30 minutos)

- Revisão de operações aritméticas com números binários.
- Revisão do funcionamento básico das portas lógicas.

4. Atividade prática (60 minutos)

4.1. Introdução

Um circuito somador é um circuito que emula, por meio de operações lógicas, o resultado de uma soma entre dois números binários. Para tanto, é importante lembrar que as operações com números binários são as seguintes:

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 1 = 10$
 $1 + 1 + 1 = 11$

4.2. Desafio inicial

Circuito Meio Somador

O circuito para realizar a soma de dois números de um dígito cada (A e B), chamado de meio somador, realiza a seguinte operação, onde S1 e S2 representam um dígito do resultado cada, conforme mostrado na Figura 4.1:

А	В	S2	S 1
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Figura 4.1 – Funcionamento de uma soma binária como operações lógicas.

Cada aluno deve obter as expressões lógicas das saídas S1 e S2, esboçar e simular o circuito.

Circuito Somador Completo

O circuito somador completo soma três digítos, sendo dois deles dos números que estão sendo (A e B) e um outro que é chamado "vai-um" (CE, do inglês *carry*), que pode aparecer caso a soma dos dígitos anteriores resulte em um resultado com mais de dois dígitos. As saídas representam o dígito menos significativo da soma dos três (S1) e outro que seria um eventual "vai-um" de saída (CS). A tabela ilustra este funcionamento:

Entradas			Saídas	
Α	В	CE	CS	S 1
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Cada aluno deve obter as expressões lógicas das saídas CS e S1, utilizando mapas de Karnaugh, se necessário, esboçar e simular o circuito.

4.3. Ampliação do desafio

É possível construir um circuito para soma de dois números de N dígitos utilizando um meio somador e N-1 somadores completos. Cada aluno deve esboçar e simular como seria um circuito para realizar a soma de dois números de dois dígitos cada.

5. Encerramento e orientações finais (20 minutos)

- Discussão sobre os circuitos aritméticos.
- Dicas para a construção e organização do circuito.
- Orientação sobre a entrega do relatório final.

6. Orientações para o Relatório Final

Cada aluno deve produzir um relatório curto contendo:

- O circuito meio somador e sua respectiva simulação.
- O circuito somador completo e sua respectiva simulação.
- O circuito para soma de dois números binários de dois dígitos.

7. Critérios de avaliação

Critério	Peso	Descrição
Tabelas-verdade completas e simulação do meio somador	4,0	Compreensão e clareza na teoria de circuitos aritméticos
Tabelas-verdade completas e simulação do somador completo	4,0	Combinação adequada dos circuitos meio somadores
Desafio final	2,0	Extrapolação dos conceitos vistos na atividade

Nota final: Será a soma dos valores obtidos em cada critério. Alunos ou equipes que não cumprirem os requisitos mínimos de funcionamento do código ou não entregarem o relatório dentro do prazo terão sua nota diminuída proporcionalmente.

8. Conclusão

Um computador pode ser considerado como uma grande máquina de somar números binários. Nesta atividade, os alunos compreenderam os fundamentos dos circuitos aritméticos e como emular a soma aritmética por meio de portas lógicas.

Bom estudo e boa prática!

Instituto de Ciências Exatas e Tecnológicas Disciplina: Circuitos Lógicos Digitais

Título da aula: Circuitos Meio Subtratores e

Subtratores

ROTEIRO 8

Roteiro da aula prática – Circuitos Meio Subtratores e Subtratores

1. Objetivos da aula

- Dar continuidade à emulação de operações aritméticas por meio de portas lógicas.
- Criar um circuito meio subtrator.
- Simular um circuito meio subtrator e um circuito subtrator completo no **CircuitVerse**.

2. Recursos necessários

- Computadores conectados à internet.
- Material de apoio: livro-texto e videoaulas.

3. Estrutura da aula

3.1. Abertura (10 minutos)

- Boas-vindas aos alunos e apresentação do tema e dos objetivos da aula.
- Discussão inicial: "Como realizar a operação de subtração com circuitos lógicos, de forma semelhante ao feito com soma?"
- Exibição de imagens ou vídeo sobre operações com números binários.

3.2. Revisão Conceitual (30 minutos)

- Revisão de operações aritméticas com números binários.
- Revisão do funcionamento básico das portas lógicas.

4. Atividade prática (60 minutos)

4.1. Introdução

Um circuito subtrator é um circuito que emula, por meio de operações lógicas, o resultado de uma subtração entre dois algarismos binários. Para tanto, é importante lembrar que as operações com números binários são as seguintes:

```
0 - 0 = 0

1 - 1 = 0

1 - 0 = 1

0 - 1 = 11 (resulta em 1 e "desce 1")
```

4.2. Desafio inicial

Circuito Meio Subtrator

O circuito para realizar a subtração de dois números de um dígito cada (A e B), chamado de meio subtrator, realiza a seguinte operação, onde S1 representa o dígito da subtração e C1 representa o "desce 1":

Α	В	C1	S 1
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

Figura 4.1 – Funcionamento de uma subtração binária como operações lógicas.

Cada aluno deve obter as expressões lógicas das saídas S1 e C1, esboçar e simular o circuito.

Circuito Subtrator Completo

O circuito subtrator completo subtrai dois digítos, sendo dois deles dos números que estão sendo (A e B), e considerando que pode haver outro, que é chamado "desce 1" (CE, do inglês *carry*), que pode aparecer caso a diferença dos dígitos anteriores resulte menor que zero. As saídas representam o dígito menos significativo da soma dos três (S1) e outro que seria um eventual "desce 1" de saída (CS). A tabela ilustra este funcionamento:

Entradas			Saídas	
Α	В	CE	CS	S 1
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Cada aluno deve obter as expressões lógicas das saídas CS e S1, esboçar e simular o circuito.

4.3. Ampliação do desafio

É possível construir um circuito para subtrair dois números de N dígitos utilizando um meio subtrator e N-1 subtratores completos. Esboce como seria um circuito para realizar a subtração de dois números de dois dígitos cada. Cada aluno deve esboçar e simular como seria um circuito para realizar a soma de dois números de dois dígitos cada.

5. Encerramento e orientações finais (20 minutos)

- Discussão sobre os circuitos aritméticos.
- Dicas para a construção e organização do circuito.
- Orientação sobre a entrega do relatório final.

6. Orientações para o Relatório Final

Cada aluno deve produzir um relatório curto contendo:

- O circuito meio subtrator e sua respectiva simulação.
- O circuito subtrator completo e sua respectiva simulação.
- O circuito para a subtração de dois números binários de dois dígitos.

7. Critérios de avaliação

Critério	Peso	Descrição
Tabelas-verdade completas e simulação do meio subtrator	4,0	Compreensão e clareza na teoria de circuitos aritméticos
Tabelas-verdade completas e simulação do subtrator completo	4,0	Combinação adequada dos circuitos meio subtratores
Desafio final	2,0	Extrapolação dos conceitos vistos na atividade

Nota final: Será a soma dos valores obtidos em cada critério. Alunos ou equipes que não cumprirem os requisitos mínimos de funcionamento do código ou não entregarem o relatório dentro do prazo terão sua nota diminuída proporcionalmente.

8. Conclusão

As duas operações mais básicas da aritmética, soma e subtração, podem ser emuladas por meio de operações lógicas e, consequentemente, por meio de portas lógicas. Nesta atividade, os alunos aprofundaram os fundamentos dos circuitos aritméticos e como emular a subtração aritmética por meio de portas lógicas.

Bom estudo e boa prática!