

/	Angenment 2
on (a Bx	re that
	re short $\mathcal{L}\left\{\text{eny } \sqrt{t}\right\} = \mathcal{L}\left\{\frac{2}{\sqrt{\pi}}\int_{0}^{\sqrt{t}} e^{u^{2}} du\right\}$
	my get Althe english on on bettimber
	$\leq \frac{1}{\sqrt{3+1}}$
	Contraction and Add a
27/6	ne the integral egh

87) solve the integral
$$e_2^n$$

$$\int_0^t f(u) f(t-u) du = 16 \sin 4t.$$

as) Evaluate each of the following By using the convolution Theorem!

(i)
$$2^{-1}\left(\frac{s}{(s^2+a^2)^2}\right)$$
, (ii) $2^{-1}\left(\frac{1}{s^2(s+1)^2}\right)$.

(9) The the Laplace transform to solve 91/1 + 107/1 - 42/2 = 0- 4x1 + x2" + 4x2 = 0

Subject to
$$\chi_1(0) = 0$$
, $\chi_1'(0) = \frac{1}{2}$, $\chi_2(0) = 0$, $\chi_2'(0) = -1$.