SAE SON

Conception et réalisation d'un amplificateur de classe D

Alexandre Pichot

Intervenants: M Le-bastard

M Laurent

M Vermalean

M Salvat

0

Sommaire

- Introduction
- Organisation
- Etude de la chaine de traitement
- Réalisations
- Design
- Conclusion

Objectifs

- Avoir un signal entre 0V et 5V à la sortie du conditionnement
- Faire un CAN et une PWM en VHDL
- Faire un affichage dynamique du son
- Amplifier la PWM
- Amortir les surtensions et filtres les hautes fréquences
- Avoir une qualité de son la plus qualitative possible

Diagramme de Gantt

Name		06, 2024		Mar 10, 2024						Mar 17, 2024							Mar 24, 2024							Mar 31, 2024							Apr 0	Apr 07, 2024						
		7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	1	2	3	4	5	6	7	8	9	10	11	12
▼ Projet SAE SON	1																																					
Management & réflexion sur le projet																																						
Etude Conditionnement)	h																					
Etude Filtre de sortie)	H																					
Tests Conditionnement & filtre de sortie																																						
Création du CAN																																						
Création de la PWM																																						
Création affichage dynamique des leds								\mathbb{H}																														
Tests code VHDL			L																																			
Tests carte pont en H																																						
Tests sur labdec de l'intégralité de la chaine								L							•																							
Schématic et routage de la carte PepeJam																																						
Soudure & tests de la carte																	L					-																
Schématique et routage de la carte leds dyn																																		-				
Soudure & tests de la carte																																			-			
Conception du design																																						
Modélisation 3D																	-																				1	
Création du caisson en bois																									-													
Impression 3D																	_																					
Assemblage																	L																					
tests finaux																																						
														Po	owered	by: onlin	egantt.c	om																				

Introduction

230V - 12V 2A

ON/OFF

Introduction Organisation Etude de la chaine Réalisation Design Conclusion

De traitement

DBB

BDD [Modèle] Enceinte [structure enceinte] Diagramme DBB pichot alexandre | 10 Mars 2024 "block" Enceinte Parts Communication Bluetooth Microcontroleur Haut parleurs Carte Conditionnement et Filtrage LC Carte Pont en H Allumé l'enceinte ou l'eteindre Controlé le son (volume +, volume -) Pouvoir la controlé en bluetooth (joué de la musique, volume +, volume -, passé a la musique suivante ou revenir a la musique Affichage du bandeau de leds dynamique "block" Microcontroleur "block" "block" (DE-10 Lite) Alimentation Communication Bluetooth parts "block" Leds Bloc de charge Parts Haut-parleurs Switch Carte bluetooth Cordon secteur Bouton Entrée Analogique (CAN) Sortie PWM Values Enceinte 5V Continue Values Secteur 230V/50hz Gere la chaine de 8 Ohm 10W traitement & l'interface Homme Machine : "Association bidirectionnelle". Permet de relier deux blocs de façon générale. "block" : "Association unidirectionnelle". Dirigé dans le sens imposé par la relation Design : "Composition" (losange tourné vers le bloc contenant). Permet de relier d'autres blocs "block" "block" Relations indispensables au bloc concerné. Chaine de Interface Homme d'inclusion Bois & Plastique PLA -> : "Agrégation" (losange tourné vers le bloc contenant). Permet de relier des blocs annexes traitement Machine Bandeau de leds (non indispensables ou présents de façon temporaire). parts parts 1 Carte Leds déportés Values à un bloc plus général (dont la fonction contient les blocs liés). conditionnement et Potentiometre Dimention (L,I,h) 15*10*5 cm Filtrage LC Switch Multiplicité : Aux extrémités de la relation peut apparaître des chiffres qui indiquent le nombre de blocs 1 Carte pont en H values liés (pour chaque sens utile de la relation) Leds 5mm Switch ON/OFF Potentiometre

15/04/2024 IUT NICE COTE D'AZUR 6

IBD

IBD [Modèle] Enceinte [écouté de la musique]

Diagramme IBD

pichot alexandre | 10 Mars 2024

Conditionnement

- Module Bluetooth
- De-10 lite entrée analogique
- Sommateur non inverseur
- LM358
- Offset + Gain

TDS 2002B - 09:44:10 15/04/2024

VHDL

- Etude du manuel de la DE-10 lite
- Block CAN
- Création MLI
- Affichage leds dynamique

Figure 3-20 Connections between the Arduino Analog input and MAX 10 FPGA

Conclusion

Carte pont en H

- Aides
- Problème
- Signaux de sortie

Amplitude: 3.8V

TDS 2002B - 09:20:10 15/04/2024

PWM

Amplitude: 12.5V

TDS 2002B - 09:16:40 15/04/2024

OUT1

TDS 2002B - 09:18:10 15/04/2024

OUT2

Design Spark

Design Spark

LED Color	Typical Vf Range	
Red	1.8 to 2.1	
Amber	2 to 2.2	
Orange	1.9 to 2.2	
Yellow	1.9 to 2.2	
Green	2 to 3.1	
Blue	3 to 3.7	
White	3 to 3.4	

$$R = \frac{3,3V - 3V}{20 * 10^{-3}} = 15 \text{ ohms}$$

Caisson en bois

- Qualité du bois
- Bois dur contreplaqué
- Lasure couleur teck

Rendu assemblé

Introduction

Conclusion

- Inspiration Marshall
- PLA Blanc
- **175*175*137**
- Aimants
- Fixation colle
- Problème

Rendu final

Cahier des charges respecté

- ✓ Diagramme IBD et DBB
- ✓ Livrable

Introduction

- ✓ Conditionnement
- ✓ PWM en sortie de la DE-10 lite
- ✓ Affichage led dynamique
- ✓ Pont en H
- ≃ Filtre de sortie
- ✓ Boitier enceinte
- ✓ Prix

4	A	В
1		Prix
2	DE-10 lite	100,00€
3	vis	0,30€
4	Haut-parleurs	6,87€
5	Cables	0,20€
6	Composants	4,00€
7	Colles	0,10€
8	Aimants	0,05€
9	Alimentation 12V 2A	3,00€
10	Alimentation femelle	0,10€
11	Cartes	1,00€
12	Inter ON/OFF	0,10€
13	Bois	5,00€
14	0,5kg PLA	10,00€
15		
16	Amplificateur classe	115,72€
17	Boitié	15,00€
18	Total	130,72€

130,72€ < 150€

Questions

