4 Formal Logic Cheatsheet

4.1 Propositional Logic[™]

* **Proposition** is a statement which can be either true or false.

- Truth-bearer
- * Alphabet^[2] of propositional logic consists of (1) atomic symbols and (2) operator symbols.
- * **Atomic formula** (atom) is an irreducible formula without logical connectives.
 - \circ Propositional **variables**: A, B, C, \ldots, Z . With indices, if needed: $A_1, A_2, \ldots, Z_1, Z_2, \ldots$
 - ∘ Logical **constants**: ⊤ for always true proposition (*tautology*), ⊥ for always false proposition (*contradiction*).
- * Logical connectives (operators):

Type	Natural meaning	Symbolization
[☑] Negation	It is not the case that \mathcal{P} . It is false that \mathcal{P} . It is not true that \mathcal{P} .	$\neg \mathcal{P}$
^E Conjunction	Both \mathcal{P} and \mathcal{Q} . \mathcal{P} but \mathcal{Q} . \mathcal{P} , although \mathcal{Q} .	$\mathscr{P}\wedge Q$
[™] Disjunction	Either \mathcal{P} or Q (or both). \mathcal{P} unless Q .	$\mathscr{P} \lor Q$
Exclusive or (Xor)	Either \mathcal{P} or Q (but not both) \mathcal{P} xor Q .	$\mathcal{P}\oplus Q$
Implication (Conditional)	If \mathcal{P} , then Q . \mathcal{P} only if Q . Q if \mathcal{P} .	$\mathcal{P} \to Q$
[™] Biconditional	\mathcal{P} , if and only if \mathcal{Q} . \mathcal{P} iff \mathcal{Q} . \mathcal{P} just in case \mathcal{Q} .	$\mathcal{P} \leftrightarrow Q$

* **Sentence** of propositional logic is defined inductively:

Well-formed formula (WFF)

- 1. Every propositional variable/constant is a sentence.
- 2. If \mathcal{A} is a sentence, then $\neg \mathcal{A}$ is a sentence.
- 3. If \mathcal{A} and \mathcal{B} are sentences, then $(\mathcal{A} \wedge \mathcal{B})$, $(\mathcal{A} \vee \mathcal{B})$, $(\mathcal{A} \to \mathcal{B})$, $(\mathcal{A} \leftrightarrow \mathcal{B})$ are sentences.
- 4. Nothing else is a sentence.
- * Well-formed formulae grammar:

Backus-Naur form (BNF)

```
 \langle sentence \rangle ::= \langle constant \rangle \\ | \langle variable \rangle \\ | \neg \langle sentence \rangle \\ | `(`\langle sentence \rangle \langle binop \rangle \langle sentence \rangle `)` \\ \langle constant \rangle ::= \top | \bot \\ \langle variable \rangle ::= A | ... | Z | A_1 | ... | Z_n \\ \langle binop \rangle ::= \land | \lor | \oplus | \rightarrow | \leftarrow | \leftrightarrow
```

- * **Literal**^{\mathcal{L}} is a propositional variable or its negation: $\mathcal{L}_i = X_i$ (positive literal), $\mathcal{L}_j = \neg X_j$ (negative literal).
- * **Argument** is a set of logical statements, called *premises*, intended to support or infer a claim (*conclusion*):

$$\underbrace{\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_n}_{\textit{premises}} \quad \vdots \quad \underbrace{C}_{\textit{conclusion}}$$
"therefore"

* An argument is **valid** if whenever all the premises are true, the conclusion is also true.

Validity

* An argument is **invalid** if there is a case (a counterexample) when all the premises are true, but the conclusion is false.

4.2 Semantics of Propositional Logic

* **Valuation**[™] is any assignment of truth values to propositional variables.

- Interpretation
- * \mathcal{A} is a **tautology** (valid) iff it is true on *every* valuation. Might be symbolized as " $\neq \mathcal{A}$ ".
- * \mathcal{A} is a **contradiction** iff it is false on *every* valuation. Might be symbolized as " $\mathcal{A} \models$ ".
- * \mathcal{A} is a **contingency** iff it is true on some valuation and false on another. In other words, a **contingent** proposition is neither a tautology nor a contradiction.
- * \mathcal{A} is **satisfiable** iff it is true on *some* valuation.

Satisfiability

* \mathcal{A} is **falsifiable** iff it is not valid, *i.e.* it is false on *some* valuation.

Falsifiability

- * \mathcal{A} and \mathcal{B} are **equivalent** (symbolized as $\mathcal{A} \equiv \mathcal{B}$) iff, for every valuation, their truth values agree, *i.e.* there is no valuation in which they have opposite truth values.
- * $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_n$ are **consistent** (**jointly satisfiable**) iff there is *some* valuation which makes them all true. Sentences are **inconsistent** (**jointly unsatisfiable**) iff there is *no* valuation that makes them all true. Consistency
- * The sentences $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_n$ **entail** the sentence C (symbolized as $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_n \models C$) if there is no valuation which makes all of $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_n$ true and C false. Semantic entailment
- * If $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_n \models C$, then the argument $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_n \stackrel{.}{.} C$ is **valid**. *Validity check examples*:

A B	$A \rightarrow B$	A	valid	В	$\neg A$	$A \rightarrow \neg B$	valid	$B \rightarrow A$	$A \rightarrow B$	В	invali	^d ¬ (,	$B \rightarrow A)$
0 0	1	0		0	1	1 1	✓	1	1	0		0	1
0 1	1	0		1	1	0 0		0	1	1	1	1	0
1 0	0	1	•	0	0	1 1	✓	1	0	0		0	1
1 1	1	1	✓	1	0	1 0	1	1	1	1	X	0	1

R S T	$R \vee S$	$S \vee T$	$\neg R$	invali	${}^{\mathbf{d}}S \wedge T$	$(R \wedge S)$	\rightarrow	T	valid	R	→ ($(S \to T)$
0 0 0	0	0	1		0	0	1	0	1	0	1	1
0 0 1	0	1	1		0	0	1	1	✓	0	1	1
0 1 0	1	1	1	X	0	0	1	0	✓	0	1	0
0 1 1	1	1	1	✓	1	0	1	1	✓	0	1	1
1 0 0	1	0	0		0	0	1	0	✓	1	1	1
1 0 1	1	1	0		0	0	1	1	✓	1	1	1
1 1 0	1	1	0		0	1	0	0	•	1	0	0
1 1 1	1	1	0		1	1	1	1	✓	1	1	1

- * **Soundness** $\Gamma \vdash \mathcal{A} \rightarrow \Gamma \models \mathcal{A}$ "Every provable statement is in fact true"
- * **Completeness:** $\Gamma \models \mathcal{A} \rightarrow \Gamma \vdash \mathcal{A}$ "Every true statement has a proof"

4.3 Natural Deduction Rules

Reiteration

m	Я	
<i>:</i> .	Я	R <i>m</i>

Modus ponens

i	$\mathcal{A} \to \mathcal{B}$	
<i>j</i> ∴	A	
<i>:</i> .	\mathcal{B}	MP i, j

Modus tollens

i	$\mathcal{A} \to \mathcal{B}$	
j	$\neg \mathcal{B}$	
\therefore	$\neg \mathcal{A}$	MT i, j

Negation

i	$\neg \mathcal{A}$	
j	${\mathcal A}$	
<i>i j</i> ∴	1	$\neg E i, j$
	' 	
i	$ \mathcal{A} $	
j	<u>A</u> ⊥	
·.	$\neg \mathcal{A}$	¬I <i>i−j</i>

Indirect proof

$$\begin{array}{c|cccc}
i & \neg \mathcal{A} \\
j & \bot \\
\vdots & \mathcal{A} & \text{IP } i-j
\end{array}$$

Double negation

$$m \mid \neg \neg \mathcal{A}$$

 $\therefore \mid \mathcal{A} \quad \neg \neg E m$

Law of excluded middle

$$\begin{array}{c|c}
i & \mathcal{A} \\
j & \mathcal{B} \\
k & \neg \mathcal{A} \\
l & \mathcal{B} \\
\therefore & \mathcal{B} & \text{LEM } i-j, k-l
\end{array}$$

Explosion

$$\begin{array}{c|c}
m & \bot \\
\therefore & \mathcal{A} & X m
\end{array}$$

Conjunction

i	A		
<i>i j</i> ∴	$egin{array}{c} \mathcal{B} \ \mathcal{A} \wedge \mathcal{B} \end{array}$		
<i>:</i> .	$\mathcal{A} \wedge \mathcal{B}$	\wedge I i, j	
			-
 т	$\mathcal{A} \wedge \mathcal{B}$		-
<i>m</i> ∴	$egin{array}{c} \mathcal{A} \wedge \mathcal{B} \\ \mathcal{A} \\ \mathcal{B} \end{array}$	∧E <i>m</i>	-

Disjunction

m	\mathcal{A} $\mathcal{A} \vee \mathcal{B}$	
:.	$\mathcal{A} \lor \mathcal{B}$	\vee I m
m	\mathcal{A} $\mathcal{B} \lor \mathcal{A}$	
:.	$\mathcal{B} ee \mathcal{A}$	\vee I m
m	$\mathcal{A} \lor \mathcal{B}$	
i	A	
j	$ \begin{array}{c c} \mathcal{A} \lor \mathcal{B} \\ \hline \mathcal{A} \\ \hline \mathcal{C} \\ \hline \mathcal{C} \\ \hline \mathcal{C} \end{array} $	
k	$oxedsymbol{\mathcal{B}}$	
	_	
l	C	

Disjunctive syllogism

<i>i j</i> ∴	$egin{array}{c} \mathcal{A} ee \mathcal{B} \ eg \mathcal{A} \ \mathcal{B} \end{array}$	DS i, j
i j ∴	$egin{array}{c} \mathcal{A} ee \mathcal{B} \ eg \mathcal{B} \ eg \mathcal{A} \end{array}$	DS i, j

Hypothetical syllogism

$$\begin{array}{c|c} i & \mathcal{A} \to \mathcal{B} \\ j & \mathcal{B} \to C \\ \therefore & \mathcal{A} \to C & \text{HS } i, j \end{array}$$

Conditional
$$i \mid \mid \mathcal{A}$$

$$\begin{array}{c|c}
 & \overline{\mathcal{B}} \\
 & \mathcal{A} \to \mathcal{B} & \to I \ i-j
\end{array}$$

Contraposition

$$\begin{array}{c|c}
m & \mathcal{A} \to \mathcal{B} \\
\therefore & \neg \mathcal{B} \to \neg \mathcal{A} & \text{Contra } m
\end{array}$$

Biconditional

i j k l	$ \begin{vmatrix} \mathcal{A} \\ \mathcal{B} \end{vmatrix} $ $ \begin{vmatrix} \mathcal{B} \\ \mathcal{A} \end{vmatrix} $ $ \mathcal{A} \leftrightarrow \mathcal{B} $	↔I <i>i−j, k−l</i>
i j ∴	$\begin{array}{c} \mathcal{A} \leftrightarrow \mathcal{B} \\ \mathcal{A} \\ \mathcal{B} \end{array}$	↔E <i>i</i> , <i>j</i>
 i j ∴	$\begin{vmatrix} \mathcal{A} \leftrightarrow \mathcal{B} \\ \mathcal{B} \\ \mathcal{A} \end{vmatrix}$	↔E <i>i</i> , <i>j</i>

De Morgan Rules $m \mid \neg(\mathcal{A} \vee \mathcal{B})$

÷	$\mid \neg \mathcal{A} \wedge \neg \mathcal{B} \mid$	DeM m
m ∴	$ \begin{vmatrix} \neg \mathcal{A} \land \neg \mathcal{B} \\ \neg (\mathcal{A} \lor \mathcal{B}) \end{vmatrix} $	DeM m
m ∴	$ \begin{vmatrix} \neg(\mathcal{A} \land \mathcal{B}) \\ \neg\mathcal{A} \lor \neg\mathcal{B} \end{vmatrix} $	DeM m
m ∴	$ \neg \mathcal{A} \lor \neg \mathcal{B} \neg (\mathcal{A} \land \mathcal{B}) $	DeM m

Green: basic rules. **Orange:** derived rules.

More rules can be found in the "forall x: Calgary" book (p. 406).