Top-Down Parsing

- The parse tree is created top to bottom.
- Top-down parser
 - Recursive-Descent Parsing
 - Backtracking is needed (If a choice of a production rule does not work, we backtrack to try other alternatives.)
 - It is a general parsing technique, but not widely used.
 - Not efficient
 - Predictive Parsing
 - no backtracking
 - efficient
 - needs a special form of grammars (LL(1) grammars).
 - Recursive Predictive Parsing is a special form of Recursive Descent parsing without backtracking.
 - Non-Recursive (Table Driven) Predictive Parser is also known as LL(1) parser.

Recursive-Descent Parsing (uses Backtracking)

- Backtracking is needed.
- It tries to find the left-most derivation.

$$S \rightarrow aBc$$

 $B \rightarrow bc \mid b$

input: abc

Predictive Parser

When re-writing a non-terminal in a derivation step, a predictive parser can uniquely choose a production rule by just looking the current symbol in the input string.

Predictive Parser (example)

```
stmt \rightarrow if ..... | while ..... | begin ..... | for .....
```

- When we are trying to write the non-terminal *stmt*, if the current token is if we have to choose first production rule.
- When we are trying to write the non-terminal *stmt*, we can uniquely choose the production rule by just looking the current token.

Non-Recursive Predictive Parsing -- LL(1) Parser

- Non-Recursive predictive parsing is a table-driven parser.
- It is a top-down parser.
- It is also known as LL(1) Parser.

LL(1) Parser

input buffer

- our string to be parsed. We will assume that its end is marked with a special symbol \$.

output

 a production rule representing a step of the derivation sequence (left-most derivation) of the string in the input buffer.

stack

- contains the grammar symbols
- at the bottom of the stack, there is a special end marker symbol \$.
- initially the stack contains only the symbol \$ and the starting symbol \$.
 \$S ← initial stack
- when the stack is emptied (ie. only \$ left in the stack), the parsing is completed.

parsing table

- a two-dimensional array M[A,a]
- each row is a non-terminal symbol
- each column is a terminal symbol or the special symbol \$
- each entry holds a production rule.

LL(1) Parser – Parser Actions

- The symbol at the top of the stack (say X) and the current symbol in the input string (say a) determine the parser action.
- There are four possible parser actions.
- 1. If X and a are \$ → parser halts (successful completion)
- 2. If X and a are the same terminal symbol (different from \$)
 - → parser pops X from the stack, and moves the next symbol in the input buffer.
- 3. If X is a non-terminal
 - → parser looks at the parsing table entry M[X,a]. If M[X,a] holds a production rule $X \rightarrow Y_1 Y_2 ... Y_k$, it pops X from the stack and pushes $Y_k, Y_{k-1}, ..., Y_1$ into the stack. The parser also outputs the production rule $X \rightarrow Y_1 Y_2 ... Y_k$ to represent a step of the derivation.
- 4. none of the above \rightarrow error
 - all empty entries in the parsing table are errors.
 - If X is a terminal symbol different from a, this is also an error case.

LL(1) Parser – Example1

 $S \rightarrow aBa$ $B \to b B \text{ I}\epsilon$

	a	b	\$
S	$S \rightarrow aBa$		
В	$B \to \epsilon$	$B \rightarrow bB$	

LL(1) Parsing Table

<u>stack</u>	<u>input</u>	<u>output</u>
\$ S	abba\$	$S \rightarrow aBa$
\$aB <mark>a</mark>	abba\$	
\$aB	bba\$	$B \rightarrow bB$
\$aB <mark>b</mark>	bba\$	
\$aB	ba\$	$B \rightarrow bB$
\$aB <mark>b</mark>	ba\$	
\$aB	a\$	$B \to \epsilon$
\$ <mark>a</mark>	a\$	
\$	\$	accept, s

 $S \rightarrow aBa$

accept, successful completion

LL(1) Parser – Example1 (cont.)

Outputs: $S \to aBa$ $B \to bB$ $B \to \epsilon$

Derivation(left-most): S⇒aBa⇒abBa⇒abbBa⇒abba

LL(1) Parser – Example2

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
T	$T \rightarrow FT'$			$T \rightarrow FT'$		
T'		$T' \rightarrow \epsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$F \rightarrow id$			$F \rightarrow (E)$		

LL(1) Parser – Example2

<u>stack</u>	<u>input</u>	<u>output</u>
\$E	id+id\$	$E \rightarrow TE'$
\$E'T	id+id\$	$T \rightarrow FT'$
\$E' T' F	id+id\$	$F \rightarrow id$
\$ E' T'id	id+id\$	
\$ E' T '	+id\$	$T' \to \epsilon$
\$ E'	+id\$	$E' \rightarrow +TE'$
\$ E' T+	+id\$	
\$ E' T	id\$	$T \rightarrow FT$
\$ E' T' F	id\$	$F \rightarrow id$
\$ E' T'id	id\$	
\$ E' T '	\$	$T^{'} \rightarrow \epsilon$
\$ E'	\$	$E' \rightarrow \epsilon$
\$	\$	accept
	•	

Constructing LL(1) Parsing Tables

- Two functions are used in the construction of LL(1) parsing tables:
 - FIRST FOLLOW
- FIRST(α) is a set of the terminal symbols which occur as first symbols in strings derived from α where α is any string of grammar symbols.
- if α derives to ε , then ε is also in FIRST(α).
- **FOLLOW(A)** is the set of the terminals which occur immediately after (follow) the *non-terminal A* in the strings derived from the starting symbol.
 - a terminal a is in FOLLOW(A) if $S \stackrel{*}{\Rightarrow} \alpha A a \beta$
 - -\$ is in FOLLOW(A) if $S \stackrel{*}{\Rightarrow} \alpha A$

Compute FIRST for Any String X

- If X is a terminal symbol \rightarrow FIRST(X)={X}
- If X is a non-terminal symbol and X → ε is a production rule
 ★ is in FIRST(X).
- If X is a non-terminal symbol and $X \rightarrow Y_1Y_2...Y_n$ is a production rule
 - if a terminal **a** in FIRST(Y_i) and ε is in all FIRST(Y_j) for j=1,...,i-1 then **a** is in FIRST(X).
 - \rightarrow if ε is in all FIRST(Y_j) for j=1,...,n then ε is in FIRST(X).
- If X is ε

 \rightarrow FIRST(X)={ ϵ }

- If X is $Y_1Y_2...Y_n$
 - \rightarrow if a terminal **a** in FIRST(Y_i) and ε is in all FIRST(Y_j) for j=1,...,i-1 then **a** is in FIRST(X).
 - \rightarrow if ε is in all FIRST(Y_j) for j=1,...,n then ε is in FIRST(X).

FIRST Example

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

$$FIRST(F) = \{ (,id) \}$$

$$FIRST(T') = \{ *, \epsilon \}$$

$$FIRST(T) = \{ (,id) \}$$

$$FIRST(E') = \{ +, \epsilon \}$$

$$FIRST(E) = \{ (,id) \}$$

Compute FOLLOW (for non-terminals)

- If S is the start symbol \rightarrow \$ is in FOLLOW(S)
- if $A \rightarrow \alpha B\beta$ is a production rule
 - \rightarrow everything in FIRST(β) is FOLLOW(B) except ϵ
- If (A → αB is a production rule) or
 (A → αBβ is a production rule and ε is in FIRST(β))
 ⇒ everything in FOLLOW(A) is in FOLLOW(B).

We apply these rules until nothing more can be added to any follow set.

FOLLOW Example

```
E \rightarrow TE'
E' \rightarrow +TE' \mid \epsilon
T \rightarrow FT'
T' \rightarrow *FT' \mid \epsilon
F \rightarrow (E) \mid id
```

```
FOLLOW(E) = { $, ) }

FOLLOW(E') = { $, ) }

FOLLOW(T) = { +, ), $ }

FOLLOW(T') = { +, ), $ }

FOLLOW(F) = { +, *, ), $ }
```

Constructing LL(1) Parsing Table -- Algorithm

- for each production rule $A \rightarrow \alpha$ of a grammar G
 - for each terminal a in FIRST(α)
 - \rightarrow add $A \rightarrow \alpha$ to M[A,a]
 - If ε in FIRST(α)
 - \rightarrow for each terminal a in FOLLOW(A) add A $\rightarrow \alpha$ to M[A,a]
 - If ε in FIRST(α) and φ in FOLLOW(A)
 - \rightarrow add $A \rightarrow \alpha$ to M[A,\$]
- All other undefined entries of the parsing table are error entries.

Constructing LL(1) Parsing Table -- Example

 $E \rightarrow TE'$ FIRST(TE')={(,id}

 \rightarrow E \rightarrow TE' into M[E,(] and M[E,id]

 $E' \rightarrow +TE'$

 $FIRST(+TE')=\{+\}$

 \rightarrow E' \rightarrow +TE' into M[E',+]

 $E' \rightarrow \varepsilon$

 $FIRST(\varepsilon) = \{\varepsilon\}$

→ none

but since ε in FIRST(ε)

and $FOLLOW(E')=\{\$,\}$

 \rightarrow E' \rightarrow ϵ into M[E',\$] and M[E',)]

 $T \rightarrow FT$

 $FIRST(FT')=\{(,id)\}$

 \rightarrow T \rightarrow FT' into M[T,(] and M[T,id]

 $T' \rightarrow *FT'$

FIRST(*FT')={*}

 \rightarrow T' \rightarrow *FT' into M[T',*]

 $T' \rightarrow \epsilon$

 $FIRST(\varepsilon) = \{\varepsilon\}$

 \rightarrow none

but since ε in FIRST(ε)

and FOLLOW(T')= $\{\$,\}$ + $\}$ $\rightarrow \epsilon$ into M[T',\$], M[T',)] and M[T',+]

 $F \rightarrow (E)$

 $FIRST((E)) = \{(\}$

 \rightarrow F \rightarrow (E) into M[F,(]

 $F \rightarrow id$

 $FIRST(id) = \{id\}$

 \rightarrow F \rightarrow id into M[F,id]