(Q1)

(a) Since \mathcal{F} is the function space mapping into a vector space, these properties arise from the scalar and additive properties of V.

(b)

Proof. Set $s \in S$ as arbitrary, and $f, g, h \in \mathcal{F}$. Then

$$(f+g)(s) = f(s) + g(s) (g+h)(s) = g(s) + h(s) f(s) + g(s) + h(s) = f(s) + (g+h)(s)$$

(c)

Proof. Set $s \in S$ as arbitrary, and $f, g \in \mathcal{F}$. Then

$$c(f(s)) = (cf)(s), c(g(s)) = (cg)(s)$$
$$(cf)(s) + (cg)(s) = c(f(s)) + c(g(s))$$
$$= c(f(s) + g(s))$$
$$= c((f + g)(s))$$

(d)

Proof. Let $s \in S$ be arbitrary, and $f \in \mathcal{F}$. Then

$$(f + \mathbf{0})(s) = f(s) + \mathbf{0}(s)$$
$$= f(s) + \mathbf{0}_V$$
$$= f(s)$$

(e)

Proof. Let $s \in S$, g = -f. Then

$$(f+g)(s) = (f-f)(s)$$
$$= f(s) - f(s)$$
$$= \mathbf{0}_V$$