Series

19 February 2020 15:06

(1) a sequence (an) called the sequence of terms,

(2) a sequence (sn) called the sequence of partial sums

Sum of a Series. If the sequence (s_n) of partial sums converges to s then we say that the series $\sum a_n$ converges to the sum s and write

$$\sum_{n=0}^{\infty} a_n = s.$$

Otherwise we say that the series diverge

Example. The *geometric series* $\sum r^n$ converges to 1/(1-r) provided that |r| < 1. To see this, we calculate the nth partial sum:

$$s_n = 1 + r + r^2 + \cdots + r^n$$

Multiplying both sides by r gives

$$rs_n = r + r^2 + \cdots + r^n + r^{n+1}$$

Subtracting these equations gives:

$$s_n - rs_n = 1 - r^{n+1}$$
 or $s_n = \frac{1 - r^{n+1}}{1 - r}$

If |r| < 1 then $r^{n+1} \to 0$ so $s_n \to 1/(1-r)$. Hence

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r} \quad \text{for } |r| < 1.$$

To find the value that the sequence coverges to w can use the rul that r^n converges to 1/(1-r) when |r|< 1

Problem. Show that the series $\sum_{n=1}^{\infty} 1/(4n^2-1)$ converges and find its sum.

Solution. Taking partial fractions we have

$$\frac{1}{4n^2 - 1} = \frac{1}{(2n-1)(2n+1)} = \frac{1/2}{2n-1} - \frac{1/2}{2n+1}.$$

Hence the $n^{\rm th}$ partial sum is

$$s_n = \sum_{r=1}^n \frac{1}{4r^2 - 1} = \frac{1}{2} \left(\sum_{r=1}^n \frac{1}{2r - 1} - \sum_{r=1}^n \frac{1}{2r + 1} \right)$$

= $\frac{1}{2} \left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n - 3} + \frac{1}{2n - 1} - \frac{1}{3} - \frac{1}{5} - \dots - \frac{1}{2n - 3} - \frac{1}{2n - 1} - \frac{1}{2n + 1} \right)$
= $\frac{1}{2} \left(1 - \frac{1}{2n + 1} \right)$.

$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = \frac{1}{2}$$

Basic Properties of Convergent Series

- (1) Sum Rule: if $\sum a_n$ converges to s and $\sum b_n$ converges to t, then $\sum (a_n + b_n)$ converges to s + t.
- (2) Multiple rule: if $\sum a_n$ converges to s and $\lambda \in \mathbb{R}$, then $\sum \lambda a_n$ converges to
- (3) If the series ∑ a_n converges, then the sequence (a_n) converges to 0.
 (4) If the series ∑ |a_n| converges, then the series ∑ a_n also converges.

The Comparison Test

Often it is easier to determine whether or not a series converges rather than its actual sum.

The Comparison Test

Suppose that $0 \le a_n \le b_n$ for every n, then

- (1) if $\sum b_n$ converges then so does $\sum a_n$; (2) if $\sum a_n$ diverges then so does $\sum b_n$.

Problem. Show that the series $\sum_{n=1}^{\infty} 1/n^k$ diverges for $k \leq 1$.

Solution. It was shown earlier that $\sum 1/n$ diverges. For $k \le 1$, we have $0 \le 1/n \le 1/n^k$, so by the second part of the Comparison Test, the series $\sum 1/n^k$ diverges since $\sum 1/n$ diverges.

We can get the equation into

inequality form and then using the comparison rule deduce

that the series converges. In

Problem. Determine whether the following series converge or diverge.

(i)
$$\sum \frac{n+2}{n^3-n^2+1}$$
, (ii) $\sum \frac{n^2+4}{2n^3-n+1}$

Solution. For each $n \geq 2$ we have

$$n+2 \leq n+2n=3n, \\ n^3-n^2+1 \geq n^3-n^2=n^2(n-1) \geq n^2(n/2)=n^3/2,$$

since $n-1 \ge n/2$ for $n \ge 2$.

$$0 \le \frac{n+2}{n^3-n^2+1} \le \frac{3n}{n^3/2} = \frac{6}{n^2}.$$

this instance, the limits of the equation are reduced to 0 as the lower bound and 6/n^2 on the upper bound. Since we know 1/n^2 converges, by the comparison rule the original equation also converges.

 $\sum 1/n^2$ converges, so $\sum 6/n^2$ converges by the Multiple rule, and now the series (i) converges

The Ratio Test

The Ratio Test.

If $|a_{n+1}/a_n| \to L$ then

- (1) if $0 \le L < 1$ then the series $\sum a_n$ converges,
- (2) if L > 1 (or L is ∞) then the series $\sum a_n$ diverges,
- (3) if L = 1 then the test is inconclusive and the series may or may not converge.

Problem. Does the series $\sum a_n$ converge or diverge when $a_n = n/2^n$?

Solution. Trying the Ratio Test we get

$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{n+1}{2^{n+1}} \times \frac{2^n}{n}\right| = \frac{n+1}{2n} = \frac{1+1/n}{2} \to \frac{1}{2}$$

Since this limit is less than 1 we conclude that the series $\sum n/2^n$ converges.

Problem. Show that the series $\sum n^k r^n$ converges where k > 0 and $0 \le r < 1$.

Solution. We have

$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{(n+1)^k r^{n+1}}{n^k r^n}\right| = r\left(1+\frac{1}{n}\right)^k,$$

Summary of the ratio test:

- · To prove whether a series converges or diverges, especially useful for those series containing
- Take the absolute value of term a_n+1 divided by term a_n
- Simplify and observe the value of the result as n increases.
- If the result is < 1 then the series converges. If the result is > 1 then the series diverges. If the result is exactly 21 then the result is inconclusive

Basic Series

Basic Convergent Series

- (1) $\sum_{n=0}^{\infty} r^n = 1/(1-r)$ for any r with |r| < 1. (2) the series $\sum 1/n^k$ converges for any k > 1. (3) the series $\sum n^k r^n$ converges for k > 0 and |r| < 1. (4) $\sum_{n=0}^{\infty} c^n/n! = e^c$ for any $c \in \mathbb{R}$.

Basic Divergent Series

• the series $\sum 1/n^k$ diverges for any $k \le 1$

Power Series. A power series is a series of the form $\sum a_n x^n$ where it is usual to start the index at n = 0. So the first term is a_0 , the second a_1x , and so on.

Lemma. If $\sum a_n R^n$ converges for some $R \geq 0$, then $\sum a_n x^n$ converges for every x with

Proof. If the series $\sum a_n R^n$ converges then the sequence $(a_n R^n)$ converges to 0 (and so is bounded). Hence there is a B with $|a_nR^n| < B$ for every n. Now

$$|a_n x^n| \le |a_n R^n| |x/R|^n \le B|x/R|^n$$
 for all n

If |x| < R then $\sum |x/R|^n$ is a convergent geometric series, and therefore $\sum |a_nx^n|$ converges by the Comparison Test. It follows that $\sum a_nx^n$ converges.

Radius of Convergence

Radius of Convergence. We say that $R \geq 0$ is the radius of convergence of a power series $\sum a_n x^n$ if the series converges whenever |x| < R and diverges whenever |x| > R. If the series converges for all x we say the radius of convergence is ∞ . If the power series $\sum a_n x^n$ has radius of convergence R, then it defines a function $f: (-R, R) \to \mathbb{R}$ given by

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 for all $x \in (-R, R)$.

Basic Properties of Power Series

Let

$$\begin{split} f(x) &= \sum_{n=0}^{\infty} a_n x^n & x \in (-R_1, R_1), \\ g(x) &= \sum_{n=0}^{\infty} b_n x^n & x \in (-R_2, R_2), \end{split}$$

where $R_1, R_2 > 0$, and let R be the minimum of R_1 and R_2 .

(1) if f(x) = g(x) for all $x \in (-R, R)$, then $a_n = b_n$ for each n. Also for any $x \in (-R, R)$:

(2) sum rule:

$$f(x) + g(x) = \sum_{n=0}^{\infty} (a_n + b_n)x^n$$

$$\lambda f(x) = \sum_{n=0}^{\infty} \lambda a_n x^n \text{ for any } \lambda \in \mathbb{R}$$

(2) sum rule:
$$f(x) + g(x) = \sum_{n=0}^{\infty} (a_n + b_n)x^n;$$
(3) multiple rule:
$$\lambda f(x) = \sum_{n=0}^{\infty} \lambda a_n x^n \text{ for any } \lambda \in \mathbb{R};$$
(4) product rule:
$$f(x)g(x) = \sum_{n=0}^{\infty} (a_0 b_n + a_1 b_{n-1} + \dots + a_{n-1} b_1 + a_n b_0)x^n.$$