Logic Synthesis and Verification

Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University

Fall 2024

Don't Cares and Node Minimization

Reading:

Logic Synthesis in a Nutshell Section 3 (§3.4)

part of the following slides are by courtesy of Andreas Kuehlmann

Node Minimization

Problem:

Given a Boolean network, optimize it by minimizing each node as much as possible

Note:

- Assume initial network structure is given
 - □Typically obtained after the global optimization, e.g. division and resubstitution
- We minimize the function associated with each node

Permissible Functions of a Node

□ In a Boolean network, we may represent a node using the primary inputs $\{x_1,..., x_n\}$ plus the intermediate variables $\{y_1,..., y_m\}$, as long as the network is acyclic

Definition:

A function g_j , whose input variables are a subset of $\{x_1,..., x_n, y_1,..., y_m\}$, is implementable at a node j if

- the variables of g_j do not intersect with TFO_j

 □ TFO_j = {node i: i = j or ∃ path from j to i}
- the replacement of the function associated with j, say f_j, by g_j does not change the functionality of the network

Permissible Functions of a Node

☐ The set of implementable (or permissible) functions at j provides the solution space of the local optimization at node j

TFOj = {node i: i = j or \exists path from j to i}

Prime and Irredundant Boolean Network

- Consider a sum of products expression F_j associated with a node j
- Definition: F_j is prime (in a multilevel sense) if for all cubes $c \in F_j$, no literal of c can be removed without changing the functionality of the network
- Definition: F_j is irredundant if for any cube $c \in F_j$, the removal of c from F_j changes the functionality of the network
- Definition: A Boolean network is prime and irredundant if F_j is prime and irredundant for all j

Node Minimization

Goals:

- ☐ Given a Boolean network:
 - 1. make the network prime and irredundant
 - for a given node of the network, find a least-cost SOP expression among the implementable functions at the node

Note:

- Goal 2 implies Goal 1
- There are many expressions that are prime and irredundant, just like in two-level minimization. We seek the best.

Taxonomy of Don't Cares

- External don't cares XDC
 - The set of don't care minterms (in terms of primary input variables) given for each primary output is denoted XDC_k, k=1,...,p
- Internal don't cares derived from the network structure
 - Satisfiability don't cares SDC
 - Observability don't cares ODC
- Complete Flexibility CF
 - CF is a superset of SDC, ODC, and localized XDC

Satisfiability Don't Cares

- We may represent a node using the *n* primary inputs plus the *m* intermediate variables
 - Boolean space is B^{n+m}
- However, intermediate variables depend on the primary inputs
- \square Thus not all the minterms of B^{n+m} can occur:
 - use the non-occurring minterms as don't cares to optimize the node function
 - we get internal don't cares even when no external don't cares exist

Satisfiability Don't Cares

Example

$$y_1 = F_1 = \neg x_1$$

 $y_j = F_j = y_1 x_2$

- Since $y_1 = \neg x_1$, $y_1 \oplus \neg x_1$ never occurs. So we may include these points to represent F_i
 - ⇒ Don't Cares
- $SDC = (y_1 \oplus \neg x_1) + (y_j \oplus y_1 x_2)$

Note: $SDC \subset B^{n+m}$

Observability Don't Cares

$$y_j = \neg x_1 x_2 + x_1 \neg x_3$$

 $z_k = x_1 x_2 + y_j \neg x_2 + \neg y_j \neg x_3$

- Any minterm of $X_1 X_2 + \neg X_2 \neg X_3 + X_2 X_3 + X_1 \neg X_3$ determines z_k independent of y_i
- The ODC of y_j w.r.t. z_k is the set of minterms of the primary inputs for which the value of y_j is not observable at z_k

$$ODC_{jk} = \{x \in B^n \mid z_k(x)|_{y_j=0} \equiv z_k(x)|_{y_j=1}\}$$

This means that the two Boolean networks,

- one with y_i forced to 0 and
- one with y_i forced to 1

compute the same value for z_k when $x \in ODC_{jk}$

□ The ODC of y_j w.r.t. all primary outputs is $ODC_j = \bigcap_k ODC_{jk}$

Observability Don't Cares

$$ODC_{jk} = \{x \in B^n \mid z_k(x)|_{y_j=0} = z_k(x)|_{y_j=1}\}$$

denote
$$ODC_{jk} = \frac{\partial z_k}{\partial y_j}$$

where
$$\frac{\partial z_k}{\partial y_j} = z_k(x)|_{y_j=0} \oplus z_k(x)|_{y_j=1}$$

Observability Don't Cares

- □ The ODCs of node i and node j in a Boolean network may not be compatible
 - Modifying the function of node i using ODC_i may invalidate ODC_i
 - It brings up the issue of compatibility ODC (CODC)
 - Computing CODC is too expensive to be practical
 - □Practical approaches to node minimization often consider one node at a time rather than multiple nodes simultaneously

External Don't Cares

- □ The XDC global for an entire Boolean network is often given
- □ The XDC local for a specified window in a Boolean network can be computed
- Question:
 - How do we represent XDC?
 - How do we translate XDC into local don't care?
 - □XDC is originally in PI variables
 - □Translate XDC in terms of input variables of a node

External Don't Cares

□ Representing XDC

multi-level Boolean network for z

Don't Cares of a Node

The don't cares of a node j can be computed by

$$DC_{j} = \sum_{i \notin TFO_{j}} (y_{i}\overline{F}_{i} + \overline{y}_{i}F_{i}) + \prod_{k=1}^{p} (ODC_{jk} + XDC_{k})$$

Don't Cares of a Node

- □ Theorem: The function $\mathcal{F}_j = (F_j DC_j, DC_j, \neg(F_j + DC_j))$ is the complete set of implementable functions at node j
- Corollary: F_j is prime and irredundant (in the multi-level sense) iff it is prime and irredundant cover of \mathcal{F}_j
- lacksquare A least cost expression at node j can be obtained by minimizing \mathcal{F}_j
- A prime and irredundant Boolean network can be obtained by using only 2level logic minimization for each node j with the don't care DC_i

- ■How can ODC + XDC be used for optimizing a node j?
 - ODC and XDC are in terms of the primary input variables
 - ■Need to convert to the input variables of node j

- Definition: The local space B^r of node j is the Boolean space spanned by the fanin variables of node j (plus maybe some other variables chosen selectively)
 - A don't care set $D(y^{r+})$ computed in local space spanned by y^{r+} is called a local don't care set. (The "+" stands for additional variables.)
 - Solution: Map DC(x) = ODC(x) + XDC(x) to local space of the node to find local don't cares, i.e.,

$$D(y^{r+}) = IMG_{g_{FI_j^+}}(\overline{DC}(x))$$

- Computation in two steps:
 - 1. Find DC(x) in terms of primary inputs
 - 2. Find D, the local don't care set, by image computation and complementation

$$D(y^{r+}) = IMG_{g_{FI_j^+}}(\overline{DC}(x))$$

Mapping Don't Cares to Local Space Global Function of a Node

$$y_{j} = \begin{cases} f_{j}(y_{k}, \dots, y_{l}) \\ g_{j}(x_{1}, \dots, x_{n}) & \text{global function} \end{cases}$$

$$B^{m+n} \rightarrow B^n$$

Mapping Don't Cares to Local Space Don't Cares in Primary Inputs

■BDD based computation

- Build BDD's representing global functions at each node
 - □in both the primary network and the don't care network, $g_i(x_1,...,x_n)$
 - □use BDD_compose
- Replace all the intermediate variables in (ODC+XDC) with their global BDDs

$$\widetilde{h}(x, y) = DC(x, y) \rightarrow h(x) = DC(x)$$

$$\widetilde{h}(x, y) = \widetilde{h}(x, g(x)) = h(x)$$

Example

XDC
$$f_{12} = y_{10}y_{11}$$

$$y_{10} = x_1 x_3$$
 $y_{11} = x_2 x_4$

$$XDC_{2}^{=}y_{12}_{2}$$

$$g_{12}^{=}x_{1}x_{2}x_{3}x_{4}$$

z (output)

$$ODC_{2} = y_{1}$$

$$g_{1} = x_{1}x_{2}x_{3}x_{4}$$

$$DC_{2} = ODC_{2} + XDC_{z}$$

$$DC_{2} = x_{1}x_{2}x_{3}x_{4} + x_{1}x_{2}x_{3}x_{4}$$

Mapping Don't Cares to Local Space Image Computation

- Local don't cares are the set of minterms in the local space of y_i that cannot be reached under any input combination in the care set of y_i (in terms of the input variables).
- Local don't care set: $D_i = IMAGE_{(g_1,g_2,\dots,g_r)}[care set]$

i.e. those patterns of $(y_1,...,y_r)$ that never appear as images of input cares.

■ Example (cont'd)

XDC
$$f_{12} = y_{10}y_{11}$$

$$ODC_{2} = y_{1}$$

$$ODC_{z} = y_{12}$$

$$DC_{2} = x_{1}x_{2}x_{3}x_{4} + x_{1}x_{2}x_{3}x_{4}$$

$$DC_{2} = x_{1} + x_{3} + x_{2}x_{4} + x_{2}x_{4}$$

$$D_{2} = y_{7}y_{8}$$

z (output)

Note that D_2 is given in this space y_5 , y_6 , y_7 , y_8 . Thus in the space (- - 10) never occurs.

Can check that $DC_2D_2=\varnothing=DC_2(x_1x_3)(x_2x_4+x_2x_4)$ Using $D_2=y_7y_8$, for an be simplified to

$$f_2 = y_7 y_8 + y_5 y_6$$

Image Computation

■ Two methods:

1. Transition relation method

☐ f: Bⁿ → B^r ⇒ F: Bⁿ x B^r → B

(F is the characteristic function of f!)

$$F(x,y) = \{(x,y) \mid y = f(x)\}$$

$$= \prod_{i \le r} (y_i \equiv f_i(x))$$

$$= \prod_{i \le r} (y_i f_i(x) + \overline{y_i} \overline{f_i}(x))$$

2. Recursive image computation (omitted)

Image Computation Transition Relation Method

□ Image of set A under f: $f(A) = \exists_x (F(x,y) \land A(x))$

□ The existential quantification \exists_x is also called "smoothing" Note: The result is a BDD representing the image, i.e. f(A) is a BDD with the property that $BDD(y) = 1 \Leftrightarrow \exists x \text{ such that } f(x) = y \text{ and } x \in A$.

Node Simplification

Express ODC in terms of variables in B^{n+m}

Node Simplification

- Complete flexibility (CF) of a node in a combinational network
 - SDC + ODC + localized XDC
 - Used to minimize one node at a time
 - ■Not considering compatible flexibilities among multiple nodes
 - □Different from CODC, where don't cares at different nodes are compatible and can minimize multiple nodes simultaneously

- Definition: A flexibility at a node is a relation (between the node's inputs and output) such that any well-defined sub-relation used at the node leads to a network that conforms to the external specification
- Definition: The complete flexibility (CF) is the maximum flexibility possible at a node

Combinational Logic Network

Relation vs. Function

- \square Relation R(X, Y)
 - Allow one-to-many mappings
 - □Can describe nondeterministic behavior
 - More generic than functions

- \square Function F(X)
 - Disallow one-to-many mappings
 - Can only describe deterministic behavior
 - A special case of relation

Boolean Relation

- Applications of Boolean relation
 - In high-level design, Boolean relations can be used to describe (nondeterministic) specifications
 - In gate-level design, Boolean relations can be used to characterize the flexibility of sub-circuits
 - Boolean relations are more powerful than traditional don'tcare representations

Relation for Circuit Minimization

■ Example

Computing complete flexibility

$$R(X, y_i) = \forall Z.[I(X, y_i, Z) \Rightarrow S(X, Z)]$$

Note: Specification relation S(X,Z) may contain nondeterminism and subsumes XDC. Influence relation $I(X,y_i,Z)$ subsumes ODC.

Computing complete flexibility

$$CF(Y_i, y_i) = \forall X.[E(X, Y_i) \Rightarrow R(X, y_i)]$$

$$= \forall X.[E(X, Y_i) \Rightarrow \forall Z.[I(X, y_i, Z) \Rightarrow S(X, Z)]]$$

$$= \forall X. \neg [E(X, Y_i) \land I(X, y_i, Z) \land \neg S(X, Z)]$$

$$CF(Y_i, y_i) = \forall X.[E(X, Y_i) \Rightarrow \forall Z.[I(X, y_i, Z) \Rightarrow S(X, Z)]]$$
$$= \forall X, Z.[\overline{E(X, Y_i) \cdot I(X, y_i, Z) \cdot \overline{S(X, Z)}}]$$

Note: The same computation works for multiple y_i's

Window and Don't Care Computation

- Definition: A window for a node in the network is the context in which the don'tcares are computed
- A window includes
 - \blacksquare *n* levels of the TFI
 - \blacksquare m levels of the TFO
 - all re-convergent paths captured in this scope
- Window with its PIs and POs can be considered as a separate network
- Optimizing a window is more computationally affordable than optimizing an entire network

Boolean network

Window POs

SAT-based Don't Care Computation

"Miter" constructed for the window POs

SAT-based Don't Care Computation

Compute the care set

- Simulation
 - □ Simulate the miter using random patterns
 - □ Collect *x* minterms, for which the output of miter is 1
 - ☐ This is a subset of a care set
- Satisfiability
 - Derive set of network clauses
 - □ Add the negation of the current care set
 - □ Assert the output of miter to be 1
 - Enumerate through the SAT assignments
 - Add these assignments to the care set

Resubstitution for Circuit Minimization

Resubstitution considers a node in a Boolean network and expresses it using a different set of fanins

Computation can be enhanced by use of don't cares

Resubstitution with Don't Cares

- Consider all or some nodes in Boolean network
 - Create window
 - Select possible fanin nodes (divisors)
 - For each candidate subset of divisors
 - ■Rule out some subsets using simulation
 - Check resubstitution feasibility using SAT
 - □Compute resubstitution function using interpolation
 - A low-cost by-product of completed SAT proofs
 - Update the network if there is an improvement

Resubstitution with Don't Cares

Given:

- node function F(x) to be replaced
- \blacksquare care set C(x) for the node
- candidate set of divisors $\{g_i(x)\}$ for re-expressing F(x)

Find:

- A resubstitution function h(y) such that F(x) = h(g(x)) on the care set
- Necessary and sufficient condition: For any minterms a and b, $F(a) \neq F(b)$ implies $g_i(a) \neq g_i(b)$ for some g_i

Resubstitution

Example

Given:

$$\mathsf{F}(\mathsf{x}) = (\mathsf{x}_1 \oplus \mathsf{x}_2)(\mathsf{x}_2 \vee \mathsf{x}_3)$$

Two candidate sets:

$$\{g_1 = x_1'x_2, g_2 = x_1 x_2'x_3\},\$$

 $\{g_3 = x_1 \lor x_2, g_4 = x_2 x_3\}$

Set $\{g_3, g_4\}$ cannot be used for resubstitution while set $\{g_1, g_2\}$ can.

Х	F(x)	g ₁ (x)	g ₂ (x)	g ₃ (x)	g ₄ (x)
000	0	0	0	0	0
001	0	0	0	0	0
010	1	1	0	1	0
011	1	1	0	1	1
100	0	0	0	1	0
101	1	0	1	1	0
110	0	0	0	1	0
111	0	0	0	1	1

SAT-based Resubstitution

Miter for resubstitution check

Resubstitution function exists if and only if SAT problem is unsatisfiable Note: Care set is used to enhance resubstitution check

SAT-based Resubstitution

- Computing dependency function h by interpolation
 - Consider two sets of clauses, A(x, y) and B(y, z), such that $A(x, y) \wedge B(y, z) = 0$
 - y are the only variables common to A and B
 - An interpolant of the pair (A(x, y), B(y, z)) is a function h(y) depending only on the common variables y such that $A(x, y) \Rightarrow h(y) \Rightarrow \neg B(y, z)$

Boolean space (x,y,z)

SAT-based Resubstitution

- □ Problem: Find function h(y), such that $C(x) \Rightarrow [h(g(x)) = F(x)]$, i.e. F(x) is expressed in terms of $\{g_i\}$
- Solution:
 - Prove the corresponding SAT problem "unsatisfiable"
 - Derive unsatisfiability resolution proof [Goldberg/Novikov, DATE'03]
 - Divide clauses into A clauses and B clauses
 - Derive interpolant from the unsatisfiability proof [McMillan, CAV'03]
 - Use interpolant as the dependency function, h(g)
 - Replace F(x) by h(g) if cost function improved

