UMBB/Sciences/Maths/Proba-Stat

ahmedrahmoune.umbb@gmail.com

Filière: Master MSS semestre3.

Module: Econométrie.

Année universitaire 2021-2022

.

SERIE D'EXERCICES N° 1

Questions de cours

- Qu'est ce que **l'économétrie**? Quelle est sa relation avec la statistique et en particulier avec la statistique inférentielle? A quoi sert **l'économétrie**, quel est son intéret?
- Il existe 3 types de variables **économétriques**, léquelles? Donner un exemple pour chaque type.
- Décrire les étapes pour une modélisation d'un phénomène économétrique.
- Donner des exemple d'un modèle linéaire (ML), non linéaire (MNL), modèle linéaire simple (MLS) et un modèle linéaire multiples (MLM)
- Soit le modèle

$$y_i = a_0 + a_1 x_{1i} + a_2 x_{2i} + a_3 x_{3i} + \epsilon_i$$
 $i = 1, ..., n$ où $a_i \neq 0$ pour $i = 1, 2, 3$

comment appelle on les y_i , x_{1i} , x_{2i} , x_{3i} et ϵ_i ? Ecrire ses équations sous forme matricielle.

- Décrire La méthode M C O(Moindre carrée ordinaire) (Mean Least Square).
- C'est quoi les équations Normale?
- Donner les équations Normales du modèle:

$$y_i = \alpha_0 + \alpha_1 x_{1i} + \alpha_2 x_{2i} + \alpha_3 x_{3i} + \epsilon_i$$
 où $i = 1, ..., n$

- Comment on valide un modèle **économétrique**? A quoi sert R^2 le coefficient de détermination? Quelle est sa relation avec r coefficient de corrélation lineaire? Dans le cas d'un modèle non lineaire(MNL) a quoi égale R^2 ?
- Présenter le test de Fisher et le test de Student pour valider un modèle? Dans les cas d'un modèle linéaire simple (MLS) les deux tests sont les identiques, expliquez.

Exercice 1

- (i) Linéariser les modèles suivants (Ecrire ces modèles sous formes Y=AX+B) $y=a \ln x^b + c$, $y=a \ln x^b + c$, $y=a \ln x^b + c$.
- (ii) On considère un corpus statistique (un jeu de données) (Y,X) où Y représente HTA (Hyper tension artierielle) et X représente l'age du patient exprimé en années

Y	114	124	143	158	166
X	35	45	55	65	75

faire un grahique, commenter.

(iii)Soit le(MLS)
$$y_i = \alpha_0 + \alpha_1 x_{1i} + \epsilon_i$$
 où $i = 1, ..., n$

Donner les estimateurs $\hat{\alpha}_0$ et $\hat{\alpha}_1$ des paramètres α_0 et de α_1 (respectivement) par Méthode (MCO)

(iv) Montrer que ces estimateurs $\hat{\alpha}_0$ et $\hat{\alpha}_1$ sont des estimateurs sont biais de variances minimales.

Indications

On commence par montrer $E(\hat{\alpha}_1) = \alpha_1$ puis on déduit $E(\hat{\alpha}_0) = \alpha_0$ en prenant comme hypothèse $E(\epsilon_i) = 0$

Exercice 2

Soit le modèle

$$y_t = \alpha_0 + \alpha_1 x_{1t} + \alpha_2 x_{2t} + \epsilon_t$$

t	Уt	\mathbf{x}_{1t}	\mathbf{x}_{2t}
2016	10	4	7
2017	12	6	4
2018	16	5	8
2019	18	8	6
2020	20	7	9

- (i) Comment appelle on ce modèle? Ecrire ce modèle sous forme matricielle.
- (ii)Quelle est la nature des variables?
- (ii) Donner l'estimation des paramètres (Méthode MCO)

Exercice 3

Soit le modèle

$$y_t = \alpha_0 + \alpha_1 x_{1t} + \alpha_2 x_{2t} + \epsilon_t$$

t	Уt	\mathbf{x}_{1t}	\mathbf{x}_{2t}
2000	4	1	6
2001	4	3	6
2002	8	4	7
2003	12	6	7
2004	12	6	9

(i) Donner les valeurs de
$$\begin{pmatrix} \hat{\alpha}_0 \\ \hat{\alpha}_1 \\ \hat{\alpha}_2 \end{pmatrix}$$
 estimateurs de $\begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{pmatrix}$

	i	Уі	\mathbf{x}_{1i}	\mathbf{x}_{2i}
	1	12	2	45
	2	14	1	43
ii) Même question pour	3	10	3	43
	4	16	6	47
	5	14	7	48
	6	19	8	41

On commence par mettre le système sous forme matricielle.

Exercice 4

Soit
$$Y_i = a_0 + a_1 X_i + \epsilon_i$$
 pour $i = 1, 2, 3, 4$

	37	37
i	X_i	Y_i
1	3	6
2	2	4
3	1	5
4	2	9

- $\overline{\text{(i)}}$ Donner \hat{a}_0 et \hat{a}_1 estimateurs de a_0 et de a_1
- (ii) Calculer les 3 sommes des carrées SCT, SCExp et SCRésidus
- (iii) Vérifier la relation entre ses 3 termes
- (iv)Calculer $var(\hat{a}_1)$
- (v) Effectuer le test de Student (H $_0:a_1=0)$ (nullité de la pente)avec $\alpha=5\%$