0.1 Lecture 4 - Master theorem

0.1.1 intro

$$T(n) = aT(\frac{n}{b}) + f(n)$$

1.
$$f(n) = n^{c+\epsilon}$$
 then $T(n) = \Theta(n^c)$

2.
$$f(n) = n^c$$
 then $T(n) = O(n^c)$

3.
$$f(n) = n^{c-\epsilon}$$
, then $T(n) = \Omega(f(n))$

0.1.2 inequality

$$T(n) = aT(\frac{n}{h}) + f(n)$$

1.
$$f(n) = O(n^{c+\epsilon})$$
 then $T(n) = O(n^c)$

2.
$$f(n) = O(n^c)$$
 then $T(n) = O(n^c)$

3.
$$f(n) = O(n^{c-\epsilon})$$
, then $T(n) = O(f(n))$

Remark 0.1 — when $f(n) = \Theta(n)$, we will split the cases by checking c > 1, c = 1 and c < 1

Proof when f(n) = O(n)

1.

$$\begin{split} T(n) & \leq aT(\frac{n}{b}) + f(n) \\ & = a \cdot (T(\frac{n}{b^2}) + \cdot (\frac{n}{b})) + f(n) \\ & = \dots \\ & = a^i T(1) + a^{i-1} (\frac{n}{b^i}) + \dots + kn \\ & = n^c + kn \sum_{i=0}^{\log_b(n)-1} (\frac{a}{b})^i \qquad \text{case 1: } c > 1 \\ & = n^c + kn \cdot \frac{(\frac{a}{b})^{\log_b n} - 1}{\frac{a}{b} - 1} \\ & \leq n^c + kn \cdot \frac{(\frac{a}{b})^{\log_b n}}{\frac{a}{b} - 1} \\ & = n^c + k \cdot \frac{n^{\log_b a}}{\frac{a}{b} - 1} \\ & = O(n^c) \end{split}$$

2.

$$\begin{split} T(n) &\leq a T(\frac{n}{b}) + f(n) \\ &= n + kn \sum_{i=0}^{\log_b(n)-1} (\frac{a}{b})^i \\ &= n + kn \cdot (\log_b n - 1) \\ &= O(n\log n) \end{split}$$
 case 2: $c = 1$

3.

$$\begin{split} T(n) &\leq a T(\frac{n}{b}) + f(n) \\ &= n^c + kn \sum_{i=0}^{\log_b(n)-1} (\frac{a}{b})^i \qquad \text{case 3: } c < 1 \\ &= n^c + kn \cdot O(1) \qquad \qquad \text{decreasing geometric series} \\ &= O(n) \end{split}$$

.