Функтори и монади

Трифон Трифонов

Функционално програмиране, 2024/25 г.

17 януари 2022 г.

Тази презентация е достъпна под лиценза Creative Commons Признание-Некомерсиално-Споделяне на споделеното 4.0 Международен 🐵 🕦 🚳

• Досега разглеждахме класове от типове, които имат сходно поведение (Eq. Read, Show, Enum, Measurable, Num, ...).

- Досега разглеждахме класове от типове, които имат сходно поведение (Eq. Read, Show, Enum, Measurable, Num, ...).
- Разглеждахме и типови конструктори, които позволяват дефиниране на параметризирани (генерични) типове (Maybe, [], BinTree, Tree, IO, ...).

- Досега разглеждахме класове от типове, които имат сходно поведение (Eq. Read, Show, Enum, Measurable, Num, ...).
- Разглеждахме и типови конструктори, които позволяват дефиниране на параметризирани (генерични) типове (Maybe, [], BinTree, Tree, IO, ...).
- Нека да разгледаме *клас от типови конструктори*, които имат някаква обща характеристика.

- Досега разглеждахме класове от типове, които имат сходно поведение (Eq. Read, Show, Enum, Measurable, Num, ...).
- Разглеждахме и типови конструктори, които позволяват дефиниране на параметризирани (генерични) типове (Maybe, [], BinTree, Tree, IO, ...).
- Нека да разгледаме *клас от типови конструктори*, които имат някаква обща характеристика.
- Пример: Има ли нещо общо, което можем да правим с [], BinTree и Tree?

- Досега разглеждахме класове от типове, които имат сходно поведение (Eq. Read, Show, Enum, Measurable, Num, ...).
- Разглеждахме и типови конструктори, които позволяват дефиниране на параметризирани (генерични) типове (Maybe, [], BinTree, Tree, IO, ...).
- Нека да разгледаме *клас от типови конструктори*, които имат някаква обща характеристика.
- Пример: Има ли нещо общо, което можем да правим с [], BinTree и Tree?
- Нещо, което не зависи от типа на елементите в тези контейнери?

• Пример: Има ли нещо общо, което можем да правим с [], BinTree и Tree?

- Пример: Има ли нещо общо, което можем да правим с [], BinTree и Tree?
- Можем да намираме брой елементи

```
class Countable c where
  count :: c a -> Integer
```

- Пример: Има ли нещо общо, което можем да правим с [], BinTree и Tree?
- Можем да намираме брой елементи

```
class Countable c where
  count :: c a -> Integer
```

• Можем да намерим списък от всички елементи

```
class Listable c where
  elements :: c a -> [a]
```

- Пример: Има ли нещо общо, което можем да правим с [], BinTree и Tree?
- Можем да намираме брой елементи

```
class Countable c where
  count :: c a -> Integer
```

• Можем да намерим списък от всички елементи

```
class Listable c where
  elements :: c a -> [a]
```

• Можем да приложим функция над всеки елемент

```
class Functor f where
  fmap :: (a -> b) -> f a -> f b
```


Дефиниция

Класът Functor в Haskell се състои от типовите конструктори f, за които може да се дефинира fmap :: (a -> b) -> f a -> f b.

Дефиниция

Класът Functor в Haskell се състои от типовите конструктори f, за които може да се дефинира fmap :: (a -> b) -> f a -> f b.

За удобство операцията <\$> е инфиксен вариант на fmap.

Дефиниция

Класът Functor в Haskell се състои от типовите конструктори f, за които може да се дефинира fmap :: (a -> b) -> f a -> f b.

За удобство операцията <\$> е инфиксен вариант на fmap.

Примери за функтори:

Maybe

Дефиниция

Класът Functor в Haskell се състои от типовите конструктори f, за които може да се дефинира fmap :: (a -> b) -> f a -> f b.

За удобство операцията <\$> е инфиксен вариант на fmap.

Примери за функтори:

- Maybe
- (,) a

Дефиниция

Класът Functor в Haskell се състои от типовите конструктори f, за които може да се дефинира fmap :: (a -> b) -> f a -> f b.

За удобство операцията <\$> е инфиксен вариант на fmap.

- Maybe
- (,) a
- Either a

Дефиниция

Класът Functor в Haskell се състои от типовите конструктори f, за които може да се дефинира fmap :: (a -> b) -> f a -> f b.

За удобство операцията <\$> е инфиксен вариант на fmap.

Примери за функтори:

- Maybe
- (,) a
- Either a
- []

Дефиниция

Класът Functor в Haskell се състои от типовите конструктори f, за които може да се дефинира fmap :: (a -> b) -> f a -> f b.

За удобство операцията <\$> е инфиксен вариант на fmap.

Примери за функтори:

- Maybe
- (,) a
- Either a
- []
- BinTree

Дефиниция

Класът Functor в Haskell се състои от типовите конструктори f, за които може да се дефинира fmap :: (a -> b) -> f a -> f b.

За удобство операцията <\$> е инфиксен вариант на fmap.

- Maybe
- (,) a
- Either a
- []
- BinTree
- Tree

Дефиниция

Класът Functor в Haskell се състои от типовите конструктори f, за които може да се дефинира fmap :: (a -> b) -> f a -> f b.

За удобство операцията <\$> е инфиксен вариант на fmap.

- Maybe
- (,) a
- Either a
- []
- BinTree
- Tree
- (->) r

Дефиниция

Класът Functor в Haskell се състои от типовите конструктори f, за които може да се дефинира fmap :: (a -> b) -> f a -> f b.

За удобство операцията <\$> е инфиксен вариант на fmap.

- Maybe
- (.) a
- Either a
- []
- BinTree
- Tree
- (->) r
- IO

```
Пример: да разгледаме екземпляра
data Pill a = BluePill a | RedPill a
instance Functor Pill where
```

```
fmap f (BluePill x) = RedPill (f x)
fmap f (RedPill x) = BluePill (f x)
```

```
Пример: да разгледаме екземпляра

data Pill a = BluePill a | RedPill a

instance Functor Pill where

fmap f (BluePill x) = RedPill (f x)

fmap f (RedPill x) = BluePill (f x)

Проблем №1:

• fmap id (BluePill 2) = RedPill 2
```

Пример: да разгледаме екземпляра

```
data Pill a = BluePill a | RedPill a
instance Functor Pill where
  fmap f (BluePill x) = RedPill (f x)
  fmap f (RedPill x) = BluePill (f x)
```

Проблем №1:

- fmap id (BluePill 2) = RedPill 2
- fmap c "празна" функция променя структурата на функтора!

```
Пример: да разгледаме екземпляра
data Pill a = BluePill a | RedPill a
instance Functor Pill where
 fmap f (BluePill x) = RedPill (f x)
 fmap f (RedPill x) = BluePill (f x)
Проблем №1:
 • fmap id (BluePill 2) = RedPill 2
 • fmap c "празна" функция променя структурата на функтора!
Проблем №2:
```

Пример: да разгледаме екземпляра

```
data Pill a = BluePill a | RedPill a
instance Functor Pill where
  fmap f (BluePill x) = RedPill (f x)
  fmap f (RedPill x) = BluePill (f x)
```

Проблем №1:

- fmap id (BluePill 2) = RedPill 2
- fmap c "празна" функция променя структурата на функтора!

Проблем №2:

• fmap (+3) (BluePill 3) = RedPill 6

Пример: да разгледаме екземпляра

```
data Pill a = BluePill a | RedPill a
instance Functor Pill where
  fmap f (BluePill x) = RedPill (f x)
  fmap f (RedPill x) = BluePill (f x)
```

Проблем №1:

- fmap id (BluePill 2) = RedPill 2
- fmap c "празна" функция променя структурата на функтора!

Проблем №2:

- fmap (+3) (BluePill 3) = RedPill 6
- fmap (+1) (fmap (+2) (BluePill 3)) = BluePill 6

Пример: да разгледаме екземпляра

```
data Pill a = BluePill a | RedPill a
instance Functor Pill where
  fmap f (BluePill x) = RedPill (f x)
  fmap f (RedPill x) = BluePill (f x)
```

Проблем №1:

- fmap id (BluePill 2) = RedPill 2
- fmap c "празна" функция променя структурата на функтора!

Проблем №2:

- fmap (+3) (BluePill 3) = RedPill 6
- fmap (+1) (fmap (+2) (BluePill 3)) = BluePill 6
- Има значение колко поред функции ще приложим!

Дефиниция

 Φ унктор наричаме екземпляр на класа Functor такъв, че:

- lacktriangle fmap $id \iff id$ (запазване на идентитета)
- $oldsymbol{0}$ fmap f . fmap g \Longleftrightarrow fmap (f . g) (дистрибутивност относно композиция)

Дефиниция

 Φ унктор наричаме екземпляр на класа Functor такъв, че:

- Ф fmap id ← id (запазване на идентитета)
- $oldsymbol{0}$ fmap f . fmap g \Longleftrightarrow fmap (f . g) (дистрибутивност относно композиция)

Функторните закони ни дават гаранция, че реализацията на fmap е "неутрална" към функтора и променя стойностите в него само и единствено на базата на подадената функция f.

Дефиниция

 Φ унктор наричаме екземпляр на класа Functor такъв, че:

- Ф fmap id ← id (запазване на идентитета)
- $oldsymbol{0}$ fmap f . fmap g \Longleftrightarrow fmap (f . g) (дистрибутивност относно композиция)

Функторните закони ни дават гаранция, че реализацията на fmap е "неутрална" към функтора и променя стойностите в него само и единствено на базата на подадената функция f.

Всички примерни екземпляри (освен Pill) удовлетворяват функторните закони.

Дефиниция

 Φ унктор наричаме екземпляр на класа Functor такъв, че:

- Ф fmap id ←⇒ id (запазване на идентитета)
- $oldsymbol{0}$ fmap f . fmap g \Longleftrightarrow fmap (f . g) (дистрибутивност относно композиция)

Функторните закони ни дават гаранция, че реализацията на fmap е "неутрална" към функтора и променя стойностите в него само и единствено на базата на подадената функция f.

Всички примерни екземпляри (освен Pill) удовлетворяват функторните закони. Можем да мислим, че fmap "повдига" функцията f от елементи към функтори.

Можем ли да използваме fmap за "повдигане" на двуаргументна функция?

Можем ли да използваме fmap за "повдигане" на двуаргументна функция? Пример: fmap (+) (Just 3) (Just 5) \longrightarrow ?

```
Можем ли да използваме fmap за "повдигане" на двуаргументна функция? Пример: fmap (+) (Just 3) (Just 5) \longrightarrow Грешка!
```

```
Можем ли да използваме fmap за "повдигане" на двуаргументна функция? Пример: fmap (+) (Just 3) (Just 5) \longrightarrow Грешка! Проблем: fmap (+) (Just 3) :: ?
```

```
Можем ли да използваме fmap за "повдигане" на двуаргументна функция? Пример: fmap (+) (Just 3) (Just 5) \longrightarrow Грешка! Проблем: fmap (+) (Just 3) :: Maybe (Int -> Int)
```

Можем ли да използваме fmap за "повдигане" на двуаргументна функция? Пример: fmap (+) (Just 3) (Just 5) \longrightarrow Грешка!

Проблем: fmap (+) (Just 3) :: Maybe (Int -> Int)

Получаваме функтор над функция, която не можем директно да приложим над функтор над стойност!

Можем ли да използваме fmap за "повдигане" на двуаргументна функция?

Пример: fmap (+) (Just 3) (Just 5) \longrightarrow Грешка!

Проблем: fmap (+) (Just 3) :: Maybe (Int -> Int)

Получаваме функтор над функция, която не можем директно да приложим над функтор над стойност!

Можем ли да използваме fmap за "повдигане" на двуаргументна функция?

Пример: fmap (+) (Just 3) (Just 5) \longrightarrow Грешка!

Проблем: fmap (+) (Just 3) :: Maybe (Int -> Int)

Получаваме функтор над функция, която не можем директно да приложим над функтор над стойност!

Идея: Да разбием fmap на две части:

• повдигане на функтор над функция към функция над функтори

Можем ли да използваме fmap за "повдигане" на двуаргументна функция?

Пример: fmap (+) (Just 3) (Just 5) \longrightarrow Грешка!

Проблем: fmap (+) (Just 3) :: Maybe (Int -> Int)

Получаваме функтор над функция, която не можем директно да приложим над функтор над стойност!

- повдигане на функтор над функция към функция над функтори
 - f (a -> b) -> f a -> f b

Можем ли да използваме fmap за "повдигане" на двуаргументна функция?

Пример: fmap (+) (Just 3) (Just 5) \longrightarrow Грешка!

Проблем: fmap (+) (Just 3) :: Maybe (Int -> Int)

Получаваме функтор над функция, която не можем директно да приложим над функтор над стойност!

- повдигане на функтор над функция към функция над функтори
 - f (a -> b) -> f a -> f b
- повдигане на обикновена функция към функтор над функция

Можем ли да използваме fmap за "повдигане" на двуаргументна функция?

Пример: fmap (+) (Just 3) (Just 5) \longrightarrow Грешка!

Проблем: fmap (+) (Just 3) :: Maybe (Int -> Int)

Получаваме функтор над функция, която не можем директно да приложим над функтор над стойност!

- повдигане на функтор над функция към функция над функтори
 - f (a -> b) -> f a -> f b
- повдигане на обикновена функция към функтор над функция
 - (a -> b) -> f (a -> b)

Можем ли да използваме fmap за "повдигане" на двуаргументна функция?

Пример: fmap (+) (Just 3) (Just 5) \longrightarrow Грешка!

Проблем: fmap (+) (Just 3) :: Maybe (Int -> Int)

Получаваме функтор над функция, която не можем директно да приложим над функтор над стойност!

Идея: Да разбием fmap на две части:

- повдигане на функтор над функция към функция над функтори
 - f (a -> b) -> f a -> f b
- повдигане на обикновена функция към функтор над функция
 - (a -> b) -> f (a -> b)

Функторите, които поддържат такова разлагане на fmap наричаме апликативни.


```
class (Functor f) => Applicative f where
  pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b

Moжем да дефинираме fmap f a = pure f <*> a.
```

```
class (Functor f) => Applicative f where
  pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b

Moжем да дефинираме fmap f a = (<*>) (pure f) a.
```

```
class (Functor f) => Applicative f where
  pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b

Moжем да дефинираме fmap f = (<*>) (pure f).
```

```
class (Functor f) => Applicative f where
  pure :: a -> f a
   (<*>) :: f (a -> b) -> f a -> f b

Moжем да дефинираме fmap = (<*>) . pure.
```

```
class (Functor f) => Applicative f where
  pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b

Можем да дефинираме fmap = (<*>) . pure.
Примери за апликативни функтори:
```

• Either a

```
class (Functor f) => Applicative f where
  pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b

Можем да дефинираме fmap = (<*>) . pure.
Примери за апликативни функтори:
```

- Maybe
- Either a
- []

• []

ZipList

ZipList(->) r

```
class (Functor f) => Applicative f where
  pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b

Moжем да дефинираме fmap = (<*>) . pure.
```

Примери за апликативни функтори:

- Maybe
 - Either a
 - []
 - ZipList
 - (->) r
 - IO

```
• liftA2 :: Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
```

- liftA2 :: Applicative f =>
 (a -> b -> c) -> f a -> f b -> f c
 - повдига двуаргументна функция над функтор

- liftA2 :: Applicative f =>
 (a -> b -> c) -> f a -> f b -> f c
 - повдига двуаргументна функция над функтор
 - liftA2 f a b = f <\$> a <*> b

- - повдига двуаргументна функция над функтор
 - liftA2 f a b = f <\$> a <*> b
 - Пример:

```
liftA2 (+) [2,3] [10,20,30] \longrightarrow ?
```

- liftA2 :: Applicative f =>
 (a -> b -> c) -> f a -> f b -> f c
 - повдига двуаргументна функция над функтор
 - liftA2 f a b = f <\$> a <*> b
 - Пример:

```
liftA2 (+) [2,3] [10,20,30] \rightarrow [12,22,32,13,23,33]
```

- liftA2 :: Applicative f =>
 (a -> b -> c) -> f a -> f b -> f c
 - повдига двуаргументна функция над функтор
 - liftA2 f a b = f <\$> a <*> b
 - Пример:

```
liftA2 (+) [2,3] [10,20,30] \rightarrow [12,22,32,13,23,33]
```

• sequenceA :: Applicative f => [f a] -> f [a]

- liftA2 :: Applicative f =>
 (a -> b -> c) -> f a -> f b -> f c
 - повдига двуаргументна функция над функтор
 - liftA2 f a b = f <\$> a <*> b
 - Пример:

liftA2 (+) [2,3]
$$[10,20,30] \rightarrow [12,22,32,13,23,33]$$

- sequenceA :: Applicative f => [f a] -> f [a]
 - повдига списък от функтори до функтор над списък

- - повдига двуаргументна функция над функтор
 - liftA2 f a b = f <\$> a <*> b
 - Пример:

liftA2 (+) [2,3]
$$[10,20,30] \rightarrow [12,22,32,13,23,33]$$

- sequenceA :: Applicative f => [f a] -> f [a]
 - повдига списък от функтори до функтор над списък
 - sequenceA [] = pure []
 - sequenceA (x:xs) = liftA2 (:) x (sequenceA xs)

- - повдига двуаргументна функция над функтор
 - liftA2 f a b = f <\$> a <*> b
 - Пример:

liftA2 (+) [2,3]
$$[10,20,30] \rightarrow [12,22,32,13,23,33]$$

- sequenceA :: Applicative f => [f a] -> f [a]
 - повдига списък от функтори до функтор над списък
 - sequenceA [] = pure []
 - sequenceA (x:xs) = liftA2 (:) x (sequenceA xs)
 - sequenceA = foldr (liftA2 (:)) (pure [])

- sequenceA :: Applicative f => [f a] -> f [a]
 - повдига списък от функтори до функтор над списък
 - sequenceA [] = pure []
 - sequenceA (x:xs) = liftA2 (:) x (sequenceA xs)
 - sequenceA = foldr (liftA2 (:)) (pure [])
 - Пример: sequenceA [Just 2, Just 3, Just 5] → ?

- liftA2 :: Applicative f =>
 (a -> b -> c) -> f a -> f b -> f c
 - повдига двуаргументна функция над функтор
 - liftA2 f a b = f <\$> a <*> b
 - Пример:

liftA2 (+) [2,3]
$$[10,20,30] \rightarrow [12,22,32,13,23,33]$$

- sequenceA :: Applicative f => [f a] -> f [a]
 - повдига списък от функтори до функтор над списък
 - sequenceA [] = pure []
 - sequenceA (x:xs) = liftA2 (:) x (sequenceA xs)
 - sequenceA = foldr (liftA2 (:)) (pure [])
 - Пример:

sequenceA [Just 2, Just 3, Just 5] \longrightarrow Just [2,3,5]

- liftA2 :: Applicative f =>
 (a -> b -> c) -> f a -> f b -> f с
 повдига двуаргументна функция над функтор
 - liftA2 f a b = f <\$> a <*> b
 - Пример:

liftA2 (+) [2,3] [10,20,30]
$$\longrightarrow$$
 [12,22,32,13,23,33]

- sequenceA :: Applicative f => [f a] -> f [a]
 - повдига списък от функтори до функтор над списък
 - sequenceA [] = pure []
 - sequenceA (x:xs) = liftA2 (:) x (sequenceA xs)
 - sequenceA = foldr (liftA2 (:)) (pure [])
 - Пример:

sequence A [Just 2, Just 3, Just 5] \longrightarrow Just [2,3,5]

• Пример: sequence A [Just 2, Nothing, Just 5] \longrightarrow ?

- - повдига двуаргументна функция над функтор
 - liftA2 f a b = f <\$> a <*> b
 - Пример:

```
liftA2 (+) [2,3] [10,20,30] \rightarrow [12,22,32,13,23,33]
```

- sequenceA :: Applicative f => [f a] -> f [a]
 - повдига списък от функтори до функтор над списък
 - sequenceA [] = pure []
 - sequenceA (x:xs) = liftA2 (:) x (sequenceA xs)
 - sequenceA = foldr (liftA2 (:)) (pure [])
 - Пример:

sequence A [Just 2, Just 3, Just 5] \longrightarrow Just [2,3,5]

• Пример: sequenceA [Just 2, Nothing, Just 5] → Nothing

Дефиниция

Aпликативен функтор наричаме екземпляр на класа Applicative, за който:

lacktriangledown pure f <*> x \Longleftrightarrow fmap f x

Дефиниция

- lacktriangledown pure f <*> x \Longleftrightarrow fmap f x
- ② pure id <*> v ←⇒ v

Дефиниция

- ① pure f <*> x \iff fmap f x
- 2 pure id <*> v \iff v
- pure (.) <*> u <*> v <*> w ⇔ u <*> (v <*> w)

Дефиниция

- \bullet pure f <*> x \iff fmap f x
- 2 pure id <*> v \iff v
- \bullet pure (.) <*> u <*> v <*> w \Longleftrightarrow u <*> (v <*> w)
- \bigcirc pure f <*> pure x \iff pure (f x)

Дефиниция

- \bullet pure f <*> x \iff fmap f x
- 2 pure id <*> v \iff v
- pure (.) <*> u <*> v <*> w ←⇒ u <*> (v <*> w)
- \bigcirc pure f <*> pure x \iff pure (f x)
- **⑤** u <*> pure y ←⇒ pure (\$ y) <*> u

• Функторите ни позволяваха да превърнем *функция над елементи* във функция над функтори:

• Функторите ни позволяваха да превърнем *функция над елементи* във функция над функтори:

•
$$(+3) < \$ > [1,2] \longrightarrow [4,5]$$

• Функторите ни позволяваха да превърнем *функция над елементи* във функция над функтори:

•
$$(+3)$$
 <\$> $[1,2] \longrightarrow [4,5]$

• Апликативните функтори ни позволяваха да превърнем *функтор над функция* към функция над функтори

• Функторите ни позволяваха да превърнем *функция над елементи* във функция над функтори:

•
$$(+3)$$
 <\$> $[1,2] \longrightarrow [4,5]$

• Апликативните функтори ни позволяваха да превърнем *функтор над функция* към функция над функтори

• (+)
$$<$$
\$> [1,2] $<$ *> [10,20] \longrightarrow [11,12,21,22]

• Функторите ни позволяваха да превърнем *функция над елементи* във функция над функтори:

•
$$(+3)$$
 <\$> $[1,2] \longrightarrow [4,5]$

• Апликативните функтори ни позволяваха да превърнем *функтор над функция* към функция над функтори

• (+)
$$\langle * \rangle$$
 [1,2] $\langle * \rangle$ [10,20] \longrightarrow [11,12,21,22]

• Но как можем да превърнем *функция, връщаща функтор* във функция над функтори?

- Функторите ни позволяваха да превърнем *функция над елементи* във функция над функтори:
 - (+3) <\$> $[1,2] \longrightarrow [4,5]$
- Апликативните функтори ни позволяваха да превърнем *функтор над функция* към функция над функтори
 - (+) <\$> [1,2] <*> [10,20] \longrightarrow [11,12,21,22]
- Но как можем да превърнем *функция, връщаща функтор* във функция над функтори?
 - $(\x -> [1..x]) = << [3,4] \longrightarrow [1,2,3,1,2,3,4]$

- Функторите ни позволяваха да превърнем *функция над елементи* във функция над функтори:
 - (+3) <\$> $[1,2] \longrightarrow [4,5]$
- Апликативните функтори ни позволяваха да превърнем *функтор над функция* към функция над функтори
 - (+) $\langle * \rangle$ [1,2] $\langle * \rangle$ [10,20] \longrightarrow [11,12,21,22]
- Но как можем да превърнем *функция, връщаща функтор* във функция над функтори?
 - $(\x -> [1..x]) = << [3,4] \longrightarrow [1,2,3,1,2,3,4]$
 - Искаме структурата на функтора-резултат да може да зависи от стойността във функтора-параметър!

- Функторите ни позволяваха да превърнем *функция над елементи* във функция над функтори:
 - (+3) <\$> $[1,2] \longrightarrow [4,5]$
- Апликативните функтори ни позволяваха да превърнем *функтор над функция* към функция над функтори
 - (+) $\langle * \rangle$ [1,2] $\langle * \rangle$ [10,20] \longrightarrow [11,12,21,22]
- Но как можем да превърнем *функция, връщаща функтор* във функция над функтори?
 - $(\x -> [1..x]) = << [3,4] \longrightarrow [1,2,3,1,2,3,4]$
 - Искаме структурата на функтора-резултат да може да зависи от стойността във функтора-параметър!
 - (=<<) :: (a -> f b) -> f a -> f b

- Функторите ни позволяваха да превърнем *функция над елементи* във функция над функтори:
 - $(+3) < \$ > [1,2] \longrightarrow [4,5]$
- Апликативните функтори ни позволяваха да превърнем *функтор над функция* към функция над функтори
 - (+) $\langle * \rangle$ [1,2] $\langle * \rangle$ [10,20] \longrightarrow [11,12,21,22]
- Но как можем да превърнем *функция, връщаща функтор* във функция над функтори?
 - $(\x -> [1..x]) = << [3,4] \longrightarrow [1,2,3,1,2,3,4]$
 - Искаме структурата на функтора-резултат да може да зависи от стойността във функтора-параметър!
 - (=<<) :: (a -> f b) -> f a -> f b
 - По-често се използва операцията "свързване" (bind) с разменени аргументи:

- Функторите ни позволяваха да превърнем *функция над елементи* във функция над функтори:
 - $(+3) < \$ > [1,2] \longrightarrow [4,5]$
- Апликативните функтори ни позволяваха да превърнем *функтор над функция* към функция над функтори
 - (+) <\$> [1,2] <*> [10,20] \longrightarrow [11,12,21,22]
- Но как можем да превърнем *функция, връщаща функтор* във функция над функтори?
 - $(\x -> [1..x]) = << [3,4] \longrightarrow [1,2,3,1,2,3,4]$
 - Искаме структурата на функтора-резултат да може да зависи от стойността във функтора-параметър!
 - (=<<) :: (a -> f b) -> f a -> f b
 - По-често се използва операцията "свързване" (bind) с разменени аргументи:
 - (>>=) :: f a -> (a -> f b) -> f b


```
class Applicative m => Monad m where
  return :: a -> m a
  return = pure

(>>=) :: m a -> (a -> m b) -> m b
  (>>) :: m a -> m b -> m b
  x >> y = x >>= \_ -> y
```

```
class Applicative m => Monad m where
  return :: a -> m a
  return = pure

(>>=) :: m a -> (a -> m b) -> m b
  (>>) :: m a -> m b -> m b
  x >> y = x >>= \_ -> y
```

Примери за монади:

Maybe

```
class Applicative m => Monad m where
  return :: a -> m a
  return = pure

(>>=) :: m a -> (a -> m b) -> m b
  (>>) :: m a -> m b -> m b
  x >> y = x >>= \_ -> y
```

- Maybe
- []

```
class Applicative m => Monad m where
  return :: a -> m a
  return = pure

(>>=) :: m a -> (a -> m b) -> m b
  (>>) :: m a -> m b -> m b
  x >> y = x >>= \_ -> y
```

- Maybe
- []
- (->) r

```
class Applicative m => Monad m where
  return :: a -> m a
  return = pure

(>>=) :: m a -> (a -> m b) -> m b
  (>>) :: m a -> m b -> m b
  x >> y = x >>= \_ -> y
```

- Maybe
- []
- (->) r
- IO


```
class Applicative m => Monad m where
  return :: a -> m a
  return = pure

(>>=) :: m a -> (a -> m b) -> m b
  (>>) :: m a -> m b -> m b
  x >> y = x >>= \_ -> y
```

- Maybe
- []
- (->) r
- IO

• liftM :: Monad m => (a -> b) -> m a -> m b

- liftM :: Monad m => (a -> b) -> m a -> m b
 - fmap за монади

- liftM :: Monad m => $(a \rightarrow b) \rightarrow m a \rightarrow m b$
 - fmap за монади
 - liftM f m = m >>= (\x -> return \$ f x)

- liftM :: Monad m => (a -> b) -> m a -> m b
 - fmap за монади
 - liftM f m = m >>= (\x -> return \$ f x)
- \bullet ap :: Monad m => m (a -> b) -> m a -> m b

- liftM :: Monad m => (a -> b) -> m a -> m b
 - fmap за монади
 - liftM f m = m \Rightarrow (\x -> return \$ f x)
- ap :: Monad $m \Rightarrow m (a \rightarrow b) \rightarrow m a \rightarrow m b$
 - <*> за монади

- liftM :: Monad m => $(a \rightarrow b) \rightarrow m a \rightarrow m b$
 - fmap за монади
 - liftM f m = m >>= (x -> return \$ f x)
- ap :: Monad m => m (a -> b) -> m a -> m b
 - <*> за монади
 - ap mf m = mf >>= (\f -> m >>= (\x -> return f x)

- liftM :: Monad m => (a -> b) -> m a -> m b
 fmap за монади
 liftM f m = m >>= (\x -> return \$ f x)
 ap :: Monad m => m (a -> b) -> m a -> m b
 - <*> за монади
 - ap mf m = mf >>= (\f -> m >>= (\x -> return f(x))
- liftM2::Monad $m \Rightarrow (a \rightarrow b \rightarrow c) \rightarrow m a \rightarrow m b \rightarrow m c$

- liftM :: Monad m => $(a \rightarrow b) \rightarrow m a \rightarrow m b$
 - fmap за монади
 - liftM f m = m $>>= (\x -> return \$ f x)$
- ap :: Monad m => m (a -> b) -> m a -> m b
 - <*> за монади
 - ap mf m = mf >>= $(\f -> m >>= (\x -> return $ f x))$
- liftM2::Monad m => (a -> b -> c) -> m a -> m b -> m c
 - liftA2 за монади


```
• liftM :: Monad m \Rightarrow (a \rightarrow b) \rightarrow m a \rightarrow m b

    fmap за монади

    • liftM f m = m >>= (\x -> return $ f x)
\bullet ap :: Monad m => m (a -> b) -> m a -> m b
    <*> за монади
     • ap mf m = mf >>= (\f -> m >>= (\x -> return \$ f x))
\bullet liftM2::Monad m => (a -> b -> c) -> m a -> m b -> m c
    • liftA2 за монади
       liftM2 f m1 m2 = m1 <<= (\x1 ->
                          m2 <<= (\x2 ->
                          return $ f x1 x2))
```

• join :: Monad m => m (m a) -> m a

- join :: Monad m => m (m a) -> m a
 - "слива" двойната опаковка в единична

- join :: Monad $m \Rightarrow m (m a) \rightarrow m a$
 - "слива" двойната опаковка в единична
 - join mm = mm >>= id

- join :: Monad $m \Rightarrow m (m a) \rightarrow m a$
 - "слива" двойната опаковка в единична
 - join mm = (>>= id) mm

- join :: Monad m => m (m a) -> m a
 - "слива" двойната опаковка в единична
 - join = (>>= id)

- join :: Monad m => m (m a) -> m a
 - "слива" двойната опаковка в единична
 - join = (>>= id)
 - Можем да дефинираме (>>=) чрез join и fmap: m >>= f = join (fmap f m)

- join :: Monad $m \Rightarrow m (m a) \rightarrow m a$
 - "слива" двойната опаковка в единична
 - join = (>>= id)
 - Можем да дефинираме (>>=) чрез join и fmap: m >>= f = <math>join (fmap f m)
- filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]

- join :: Monad $m \Rightarrow m (m a) \rightarrow m a$
 - "слива" двойната опаковка в единична
 - join = (>>= id)
 - Можем да дефинираме (>>=) чрез join и fmap: m >>= f = join (fmap f m)
- filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]
 - Филтрира с предикат, връщащ "опаковани" булеви стойности

- join :: Monad $m \Rightarrow m (m a) \rightarrow m a$
 - "слива" двойната опаковка в единична
 - join = (>>= id)
 - Можем да дефинираме (>>=) чрез join и fmap: m >>= f = join (fmap f m)
- filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]
 - Филтрира с предикат, връщащ "опаковани" булеви стойности
 - Резултатът е "опакованите" елементи на списъка

- join :: Monad m => m (m a) -> m a
 - "слива" двойната опаковка в единична
 - join = (>>= id)
 - Можем да дефинираме (>>=) чрез join и fmap: m >>= f = join (fmap f m)
- filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]
 - Филтрира с предикат, връщащ "опаковани" булеви стойности
 - Резултатът е "опакованите" елементи на списъка
 - powerset = filterM (\x -> [True,False])

- join :: Monad $m \Rightarrow m (m a) \rightarrow m a$
 - "слива" двойната опаковка в единична
 - join = (>>= id)
 - Можем да дефинираме (>>=) чрез join и fmap: m >>= f = join (fmap f m)
- filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]
 - Филтрира с предикат, връщащ "опаковани" булеви стойности
 - Резултатът е "опакованите" елементи на списъка
 - powerset = filterM (\x -> [True,False])
- foldM :: Monad m => (a -> b -> m a) -> a -> [b] -> m a

- join :: Monad $m \Rightarrow m (m a) \rightarrow m a$
 - "слива" двойната опаковка в единична
 - join = (>>= id)
 - Можем да дефинираме (>>=) чрез join и fmap: m >>= f = join (fmap f m)
- filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]
 - Филтрира с предикат, връщащ "опаковани" булеви стойности
 - Резултатът е "опакованите" елементи на списъка
 - powerset = filterM (\x -> [True,False])
- foldM :: Monad m => (a -> b -> m a) -> a -> [b] -> m a
 - Натрупва елементи от списък с монадна операция

- join :: Monad $m \Rightarrow m (m a) \rightarrow m a$
 - "слива" двойната опаковка в единична
 - join = (>>= id)
 - Можем да дефинираме (>>=) чрез join и fmap: m >>= f = join (fmap f m)
- filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]
 - Филтрира с предикат, връщащ "опаковани" булеви стойности
 - Резултатът е "опакованите" елементи на списъка
 - powerset = filterM (\x -> [True,False])
- foldM :: Monad m => (a -> b -> m a) -> a -> [b] -> m a
 - Натрупва елементи от списък с монадна операция
 - Натрупването е ляво (итеративен процес, подобно на foldl)

- join :: Monad m => m (m a) -> m a
 - "слива" двойната опаковка в единична
 - join = (>>= id)
 - Можем да дефинираме (>>=) чрез join и fmap: m >>= f = join (fmap f m)
- filterM :: Monad $m \Rightarrow (a \rightarrow m Bool) \rightarrow [a] \rightarrow m [a]$
 - Филтрира с предикат, връщащ "опаковани" булеви стойности
 - Резултатът е "опакованите" елементи на списъка
 - powerset = filterM (\x -> [True,False])
- foldM :: Monad m => (a -> b -> m a) -> a -> [b] -> m a
 - Натрупва елементи от списък с монадна операция
 - Натрупването е ляво (итеративен процес, подобно на foldl)
 - boundSum lim = foldM (\x y -> if x+y < lim then Just (x+y) else Nothing) 0

- join :: Monad m => m (m a) -> m a
 - "слива" двойната опаковка в единична
 - join = (>>= id)
 - Можем да дефинираме (>>=) чрез join и fmap: m >>= f = join (fmap f m)
- filterM :: Monad $m \Rightarrow (a \rightarrow m Bool) \rightarrow [a] \rightarrow m [a]$
 - Филтрира с предикат, връщащ "опаковани" булеви стойности
 - Резултатът е "опакованите" елементи на списъка
 - powerset = filterM (\x -> [True,False])
- foldM :: Monad m => $(a \rightarrow b \rightarrow m a) \rightarrow a \rightarrow [b] \rightarrow m a$
 - Натрупва елементи от списък с монадна операция
 - Натрупването е ляво (итеративен процес, подобно на foldl)
 - boundSum lim = foldM (\x y -> if x+y < lim then Just (x+y) else Nothing) 0
 - boundSum 60 [1..10] \longrightarrow ?

- join :: Monad m => m (m a) -> m a
 - "слива" двойната опаковка в единична
 - join = (>>= id)
 - Можем да дефинираме (>>=) чрез join и fmap: m >>= f = join (fmap f m)
- filterM :: Monad $m \Rightarrow (a \rightarrow m Bool) \rightarrow [a] \rightarrow m [a]$
 - Филтрира с предикат, връщащ "опаковани" булеви стойности
 - Резултатът е "опакованите" елементи на списъка
 - powerset = filterM (\x -> [True,False])
- foldM :: Monad m => (a -> b -> m a) -> a -> [b] -> m a
 - Натрупва елементи от списък с монадна операция
 - Натрупването е ляво (итеративен процес, подобно на foldl)
 - boundSum lim = foldM (\x y -> if x+y < lim then Just (x+y) else Nothing) 0
 - boundSum 60 [1..10] \longrightarrow Just 55

- join :: Monad m => m (m a) -> m a
 - "слива" двойната опаковка в единична
 - join = (>>= id)
 - Можем да дефинираме (>>=) чрез join и fmap: m >>= f = join (fmap f m)
- filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]
 - Филтрира с предикат, връщащ "опаковани" булеви стойности
 - Резултатът е "опакованите" елементи на списъка
 - powerset = filterM (\x -> [True,False])
- foldM :: Monad m => (a -> b -> m a) -> a -> [b] -> m a
 - Натрупва елементи от списък с монадна операция
 - Натрупването е ляво (итеративен процес, подобно на foldl)
 - boundSum lim = foldM (\x y -> if x+y < lim then Just (x+y) else Nothing) 0
 - boundSum 60 $[1..10] \longrightarrow Just 55$
 - boundSum 50 $[1..10] \rightarrow ?$

- join :: Monad m => m (m a) -> m a
 - "слива" двойната опаковка в единична
 - join = (>>= id)
 - Можем да дефинираме (>>=) чрез join и fmap: m >>= f = join (fmap f m)
- filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]
 - Филтрира с предикат, връщащ "опаковани" булеви стойности
 - Резултатът е "опакованите" елементи на списъка
 - powerset = filterM (\x -> [True,False])
- foldM :: Monad m => (a -> b -> m a) -> a -> [b] -> m a
 - Натрупва елементи от списък с монадна операция
 - Натрупването е ляво (итеративен процес, подобно на foldl)
 - boundSum lim = foldM (\x y -> if x+y < lim then Just (x+y) else Nothing) 0
 - boundSum 60 $[1..10] \longrightarrow Just 55$
 - boundSum 50 [1..10] → Nothing

Дефиниция

Монада наричаме инстанция на класа Monad, за която:

① return x >>= $f \iff f x (ляв идентитет)$

Дефиниция

Монада наричаме инстанция на класа Monad, за която:

- **1** return x >>= f \iff f x (ляв идентитет)
- ② m >>= return ←⇒ m (десен идентитет)

Дефиниция

Монада наричаме инстанция на класа Monad, за която:

- **1** return x >>= f \iff f x (ляв идентитет)
- ② m >>= return ←⇒ m (десен идентитет)
- \bigcirc (m >>= f) >>= g \Longleftrightarrow m >>= (\x -> f x >>= g) (асоциативност)

Дефиниция

Монада наричаме инстанция на класа Monad, за която:

- **1** return $x \gg f \propto ($ ляв идентитет)
- ② m >>= return ←⇒ m (десен идентитет)
- \bigcirc (m >>= f) >>= g \Longleftrightarrow m >>= (\x -> f x >>= g) (асоциативност)

Композиция на монадни функции:

$$(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c)$$

f $<=< g = \x -> g x >>= f$

Дефиниция

Монада наричаме инстанция на класа Monad, за която:

- \bigcirc return x >>= f \iff f x (ляв идентитет)
- **②** m >>= **return** ←⇒ m (десен идентитет)
- \bigcirc (m >>= f) >>= g \Longleftrightarrow m >>= (\x -> f x >>= g) (асоциативност)

Композиция на монадни функции:

$$(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c)$$

f $<=< g = \x -> g x >>= f$

Монадните закони чрез композиция:

- **①** f <=< return ←⇒ f (ляв идентитет)</p>
- 2 return \leftarrow f (десен идентитет)

15 / 1