РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра теории вероятностей и кибербезопасности

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №13

дисциплина: Администрирование локальных сетей

Студент: Исаев Булат Абубакарович

Студ. билет № 1132227131

Группа: НПИбд-01-22

МОСКВА

2025 г.

Цель работы:

Провести подготовительные мероприятия по организации взаимодействия через сеть провайдера посредством статической маршрутизации локальной сети с сетью основного здания, расположенного в 42-м квартале в Москве, и сетью филиала, расположенного в г. Сочи.

Выполнение работы:

Для начала внесём изменения в схему L1 сети, добавив информацию о сети основной территории (42-й квартал в Москве) и сети филиала в г. Сочи. (Рис. 1.1). После этого добавим информацию в таблицы (Рис. 1.2 – 1.5):

Рис. 1.1. Внесение изменений в схему L1 сети (добавление информации о сети основной территории (42-й квартал в Москве) и сети филиала в г. Сочи).

3	Nº VLAN	Имя VLAN	Примечание	
4	1	default	Не используется	
5	2	management	Для управления устройствами	
6	3	servers	Для серверной фермы	
7	4	nat	Линк в Интернет	
8	5	q42	Линк в сеть квартала 42 в Москве	
9	6	sochi	Линк в сеть филиала в Сочи	
10				
11	101	dk	Дисплейные классы (ДК)	
12	102	departments	Кафедры	
13	103	adm	Администрация	
14	104	other	Для других пользователей	
15				
16	201	q42-main	Основной для квартала 42 в Москве	
17	202	q42-management	Для управления устройствами 42-го квартала в Москве	
18	301	hostel-main	Основной для общежитий в квартале 42 в Москве	
19				
20	401	sochi-main	Основной для филиала в Сочи	
21	402	sochi-management	Для управления устройствами в филиале в Сочи	

Рис. 1.2. Таблица VLAN сети основной территории и сети филиала в г. Сочи.

IP-адреса	Примечание	VLAN
10.128.255.0/24	Вся сеть для линков	
10 100 0FF 0/00		
10.128.255.0/30	Линк на 42-й квартал	5
10.128.255.1	msk-donskaya-gw-1	
10.128.255.2	msk-q42-gw-1	
10.128.255.4/30	Линк в Сочи	6
10.128.255.5	msk-donskaya-gw-1	
10.128.255.6	sch-sochi-gw-1	

Рис. 1.3. Таблица ІР для связующих разные территории линков.

IP-адреса	Примечание	VLAN
10.129.0.0/16	Вся сеть квартала 42 в Москве	
10.129.0.0/24	Основная сеть квартала 42 в Москве	201
10.129.0.1	msk-q42-gw-1	
10.129.0.200	pc-q42-1	
10.129.1.0/24	Сеть для управления устройствами в сети квартала 42 в Москве	202
10.129.1.1	msk-q42-gw-1	
10.129.1.2	msk-hostel-gw-1	
10.129.128.0/17	Вся сеть hostel	
10.129.128.0/24	Основная сеть hostel	301
10.129.128.1	msk-hostel-gw-1	
10.129.128.200	pc-hostel-1	

Рис. 1.4. Таблица IP для сети основной территории (42-й квартал г. Москва).

IP-адреса	Примечание	VLAN
10.130.0.0/16	Вся сеть филиала в Сочи	
10.130.0.0/24	Основная сеть филиала в Сочи	401
10.130.0.1	sch-sochi-gw-1	
10.130.0.200	pc-sochi-1	
	Сеть для управления	
10.130.1.0/24	устройствами в Сочи	402
10.130.1.1	sch-sochi-gw-1	

Рис. 1.5. Таблица ІР для филиала в г. Сочи.

Теперь откроем проект с названием lab_PT-12.pkt и сохраним под названием lab_PT-13.pkt. После чего откроем его для дальнейшего редактирования (Рис. 1.1):

Рис. 1.6. Открытие проекта lab_PT-13.pkt.

На схеме нашего проекта разместим необходимое оборудование: 4 медиаконвертера (Repeater-PT), 2 маршрутизатора типа Cisco 2811, 1 маршрутизирующий коммутатор типа Cisco 3560-24PS, 2 коммутатора типа Cisco 2950-24, коммутатор Cisco 2950-24T, 3 оконечных устройства типа PC-PT. А также присвоим им названия и проведём соединение объектов согласно скорректированной нами схеме (Рис. 1.7):

Рис. 1.7. Размещение необходимого оборудования (4 медиаконвертера (Repeater-PT), 2 маршрутизатора типа Cisco 2811, 1 маршрутизирующий коммутатор типа Cisco 3560-24PS, 2 коммутатора типа Cisco 2950-24, коммутатор Cisco 2950-24T, 3 оконечных устройства типа PC-PT). Присвоение названий и соединение объектов.

На медиаконвертерах заменим имеющиеся модули на PT-REPEATERNM-1FFE и PT-REPEATER-NM-1CFE для подключения витой пары по технологии Fast Ethernet и оптоволокна соответственно (Рис. 1.8):

Рис. 1.8. Замена на медиаконвертерах имеющихся модулей на РТ-REPEATERNM-1FFE и PT-REPEATER-NM-1CFE (для подключения витой пары по технологии Fast Ethernet и оптоволокна соответственно).

Далее на маршрутизаторе msk-q42-gw-1 добавим дополнительный интерфейс NM-2FE2W (Рис. 1.9):

Рис. 1.9. Добавление на маршрутизаторе msk-q42-gw-1 дополнительного интерфейса NM-2FE2W.

В физической рабочей области Packet Tracer добавим в г.Москва здание 42-го квартала и присвоим ему название (Рис. 1.10):

Рис. 1.10. Добавление в физической рабочей области Packet Tracer в г. Москва здания 42-го квартала, присвоение названия.

Затем в физической рабочей области добавим город Сочи и в нём здание филиала, присвоим ему соответствующее название (Рис. 1.11):

Рис. 1.11. Добавление в физической рабочей области города Сочи и в нём здания филиала, присвоение названия.

После чего нужно перенести из сети «Донская» оборудование сети 42-го квартала и сети филиала в соответствующие здания и выполнить расстановку (Рис. 1.12 - 1.14):

Рис. 1.12. Перенос из сети «Донская» оборудование сети 42-го квартала и сети филиала в соответствующие здания.

Рис. 1.13. Размещение объектов в основном здании 42-го квартала в Москве.

Рис. 1.14. Размещение объектов в здании филиала в г. Сочи.

На последнем шаге выполним первоначальную настройку оборудования (Рис. 1.15-1.21):

Рис. 1.15. Первоначальная настройка маршрутизатора msk-q42-gw-1.

Рис. 1.16. Первоначальная настройка коммутатора msk-q42-sw-1.

Рис. 1. 17. Первоначальная настройка маршрутизирующего коммутатора msk-hostel-gw-1.

Рис. 1.18. Первоначальная настройка коммутатора msk-hostel-sw-1.

Рис. 1.19. Первоначальная настройка коммутатора sch-sochi-sw-1.

Рис. 1.20. Первоначальная настройка маршрутизатора sch-sochi-gw-1.

Вывод:

В ходе выполнения лабораторной работы мы провели подготовительные мероприятия по организации взаимодействия через сеть провайдера посредством статической маршрутизации локальной сети с сетью основного

здания, расположенного в 42-м квартале в Москве, и сетью филиала, расположенного в г. Сочи.

Ответы на контрольные вопросы:

- 1. В каких случаях следует использовать статическую маршрутизацию? - **B** реальных условиях Приведите примеры. статическая маршрутизация используется в условиях наличия шлюза по умолчанию (узла, обладающего связностью с остальными узлами) 1-2 сетями. Помимо этого, статическая маршрутизация используется для «выравнивания» работы маршрутизирующих протоколов в условиях наличия туннеля (для того, чтобы маршрутизация трафика, создаваемого туннелем, не производилась через сам туннель).
- 2. Укажите основные принципы статической маршрутизации между VLANs. Процесс маршрутизации на 3-м уровне можно осуществлять с помощью маршрутизатора или коммутатора 3-го уровня. Использование устройства 3- го уровня обеспечивает возможность управления передачей трафика между сегментами сети, в том числе сегментами, которые были созданы с помощью VLAN.