EE363 Winter 2008-09

Lecture 2 LQR via Lagrange multipliers

- useful matrix identities
- linearly constrained optimization
- LQR via constrained optimization

Some useful matrix identities

let's start with a simple one:

$$Z(I+Z)^{-1} = I - (I+Z)^{-1}$$

(provided I + Z is invertible)

to verify this identity, we start with

$$I = (I+Z)(I+Z)^{-1} = (I+Z)^{-1} + Z(I+Z)^{-1}$$

re-arrange terms to get identity

an identity that's a bit more complicated:

$$(I + XY)^{-1} = I - X(I + YX)^{-1}Y$$

(if either inverse exists, then the other does; in fact det(I + XY) = det(I + YX))

to verify:

$$(I - X(I + YX)^{-1}Y) (I + XY) = I + XY - X(I + YX)^{-1}Y(I + XY)$$
$$= I + XY - X(I + YX)^{-1}(I + YX)Y$$
$$= I + XY - XY = I$$

another identity:

$$Y(I + XY)^{-1} = (I + YX)^{-1}Y$$

to verify this one, start with Y(I+XY)=(I+YX)Y then multiply on left by $(I+YX)^{-1}$, on right by $(I+XY)^{-1}$

- note dimensions of inverses not necessarily the same
- ullet mnemonic: lefthand Y moves into inverse, pushes righthand Y out . . .

and one more:

$$(I + XZ^{-1}Y)^{-1} = I - X(Z + YX)^{-1}Y$$

let's check:

$$(I + X(Z^{-1}Y))^{-1} = I - X(I + Z^{-1}YX)^{-1}Z^{-1}Y$$
$$= I - X(Z(I + Z^{-1}YX))^{-1}Y$$
$$= I - X(Z + YX)^{-1}Y$$

Example: rank one update

- suppose we've already calculated or know A^{-1} , where $A \in \mathbf{R}^{n \times n}$
- we need to calculate $(A + bc^T)^{-1}$, where $b, c \in \mathbf{R}^n$ $(A + bc^T)$ is called a rank one update of A)

we'll use another identity, called *matrix inversion lemma*:

$$(A + bc^{T})^{-1} = A^{-1} - \frac{1}{1 + c^{T}A^{-1}b}(A^{-1}b)(c^{T}A^{-1})$$

note that RHS is easy to calculate since we know A^{-1}

more general form of matrix inversion lemma:

$$(A + BC)^{-1} = A^{-1} - A^{-1}B (I + CA^{-1}B)^{-1} CA^{-1}$$

let's verify it:

$$(A + BC)^{-1} = (A(I + A^{-1}BC))^{-1}$$

$$= (I + (A^{-1}B)C)^{-1}A^{-1}$$

$$= (I - (A^{-1}B)(I + C(A^{-1}B))^{-1}C)A^{-1}$$

$$= A^{-1} - A^{-1}B(I + CA^{-1}B)^{-1}CA^{-1}$$

Another formula for the Riccati recursion

$$P_{t-1} = Q + A^{T} P_{t} A - A^{T} P_{t} B (R + B^{T} P_{t} B)^{-1} B^{T} P_{t} A$$

$$= Q + A^{T} P_{t} (I - B(R + B^{T} P_{t} B)^{-1} B^{T} P_{t}) A$$

$$= Q + A^{T} P_{t} (I - B((I + B^{T} P_{t} B R^{-1}) R)^{-1} B^{T} P_{t}) A$$

$$= Q + A^{T} P_{t} (I - B R^{-1} (I + B^{T} P_{t} B R^{-1})^{-1} B^{T} P_{t}) A$$

$$= Q + A^{T} P_{t} (I + B R^{-1} B^{T} P_{t})^{-1} A$$

$$= Q + A^{T} (I + P_{t} B R^{-1} B^{T})^{-1} P_{t} A$$

or, in pretty, symmetric form:

$$P_{t-1} = Q + A^T P_t^{1/2} \left(I + P_t^{1/2} B R^{-1} B^T P_t^{1/2} \right)^{-1} P_t^{1/2} A$$

Linearly constrained optimization

minimize
$$f(x)$$
 subject to $Fx = g$

- $f: \mathbf{R}^n \to \mathbf{R}$ is smooth *objective function*
- $F \in \mathbf{R}^{m \times n}$ is fat

form Lagrangian $L(x,\lambda)=f(x)+\lambda^T(g-Fx)$ (λ is Lagrange multiplier) if x is optimal, then

$$\nabla_x L = \nabla f(x) - F^T \lambda = 0, \qquad \nabla_\lambda L = g - Fx = 0$$

i.e., $\nabla f(x) = F^T \lambda$ for some $\lambda \in \mathbf{R}^m$

(generalizes optimality condition $\nabla f(x) = 0$ for unconstrained minimization problem)

Picture

$$\nabla f(x) = F^T \lambda \text{ for some } \lambda \Longleftrightarrow \nabla f(x) \in \mathcal{R}(F^T) \Longleftrightarrow \nabla f(x) \perp \mathcal{N}(F)$$

Feasible descent direction

suppose x is current, feasible point (i.e., Fx = g)

consider a small step in direction v, to x + hv (h small, positive)

when is x + hv better than x?

need x + hv feasible: F(x + hv) = g + hFv = g, so Fv = 0

 $v \in \mathcal{N}(F)$ is called a *feasible direction*

we need x + hv to have smaller objective than x:

$$f(x + hv) \approx f(x) + h\nabla f(x)^T v < f(x)$$

so we need $\nabla f(x)^T v < 0$ (called a descent direction)

(if $\nabla f(x)^T v > 0$, -v is a descent direction, so we need only $\nabla f(x)^T v \neq 0$)

x is not optimal if there exists a feasible descent direction

if x is optimal, every feasible direction satisfies $\nabla f(x)^T v = 0$

$$Fv = 0 \implies \nabla f(x)^T v = 0 \iff \mathcal{N}(F) \subseteq \mathcal{N}(\nabla f(x)^T)$$

$$\iff \mathcal{R}(F^T) \supseteq \mathcal{R}(\nabla f(x))$$

$$\iff \nabla f(x) \in \mathcal{R}(F^T)$$

$$\iff \nabla f(x) = F^T \lambda \text{ for some } \lambda \in \mathbf{R}^m$$

$$\iff \nabla f(x) \perp \mathcal{N}(F)$$

LQR as constrained minimization problem

minimize
$$J = \frac{1}{2} \sum_{t=0}^{N-1} \left(x_t^T Q x_t + u_t^T R u_t \right) + \frac{1}{2} x_N^T Q_f x_N$$
 subject to $x_{t+1} = A x_t + B u_t, \quad t = 0, \dots, N-1$

- variables are u_0, \ldots, u_{N-1} and x_1, \ldots, x_N $(x_0 = x^{\text{init}} \text{ is given})$
- objective is (convex) quadratic
 (factor 1/2 in objective is for convenience)

introduce Lagrange multipliers $\lambda_1,\ldots,\lambda_N\in\mathbf{R}^n$ and form Lagrangian

$$L = J + \sum_{t=0}^{N-1} \lambda_{t+1}^{T} \left(Ax_t + Bu_t - x_{t+1} \right)$$

Optimality conditions

we have $x_{t+1} = Ax_t + Bu_t$ for $t = 0, \dots, N-1$, $x_0 = x^{\text{init}}$

for
$$t = 0, ..., N - 1$$
, $\nabla_{u_t} L = Ru_t + B^T \lambda_{t+1} = 0$

hence,
$$u_t = -R^{-1}B^T\lambda_{t+1}$$

for
$$t = 1, \dots, N-1$$
, $\nabla_{x_t} L = Qx_t + A^T \lambda_{t+1} - \lambda_t = 0$

hence,
$$\lambda_t = A^T \lambda_{t+1} + Q x_t$$

$$\nabla_{x_N} L = Q_f x_N - \lambda_N = 0$$
, so $\lambda_N = Q_f x_N$

these are a set of linear equations in the variables

$$u_0,\ldots,u_{N-1},\quad x_1,\ldots,x_N,\quad \lambda_1,\ldots,\lambda_N$$

Co-state equations

optimality conditions break into two parts:

$$x_{t+1} = Ax_t + Bu_t, \qquad x_0 = x^{\text{init}}$$

this recursion for state x runs forward in time, with initial condition

$$\lambda_t = A^T \lambda_{t+1} + Q x_t, \qquad \lambda_N = Q_f x_N$$

this recursion for λ runs backward in time, with final condition

- λ is called *co-state*
- ullet recursion for λ sometimes called *adjoint system*

Solution via Riccati recursion

we will see that $\lambda_t = P_t x_t$, where P_t is the min-cost-to-go matrix defined by the Riccati recursion

thus, Riccati recursion gives clever way to solve this set of linear equations

it holds for t=N, since $P_N=Q_f$ and $\lambda_N=Q_fx_N$

now suppose it holds for t+1, *i.e.*, $\lambda_{t+1} = P_{t+1}x_{t+1}$

let's show it holds for t, i.e., $\lambda_t = P_t x_t$

using $x_{t+1} = Ax_t + Bu_t$ and $u_t = -R^{-1}B^T\lambda_{t+1}$,

$$\lambda_{t+1} = P_{t+1}(Ax_t + Bu_t) = P_{t+1}(Ax_t - BR^{-1}B^T\lambda_{t+1})$$

SO

$$\lambda_{t+1} = (I + P_{t+1}BR^{-1}B^T)^{-1}P_{t+1}Ax_t$$

using $\lambda_t = A^T \lambda_{t+1} + Q x_t$, we get

$$\lambda_t = A^T (I + P_{t+1}BR^{-1}B^T)^{-1} P_{t+1}Ax_t + Qx_t = P_t x_t$$

since by the Riccati recursion

$$P_t = Q + A^T (I + P_{t+1}BR^{-1}B^T)^{-1}P_{t+1}A$$

this proves $\lambda_t = P_t x_t$

let's check that our two formulas for u_t are consistent:

$$u_{t} = -R^{-1}B^{T}\lambda_{t+1}$$

$$= -R^{-1}B^{T}(I + P_{t+1}BR^{-1}B^{T})^{-1}P_{t+1}Ax_{t}$$

$$= -R^{-1}(I + B^{T}P_{t+1}BR^{-1})^{-1}B^{T}P_{t+1}Ax_{t}$$

$$= -((I + B^{T}P_{t+1}BR^{-1})R)^{-1}B^{T}P_{t+1}Ax_{t}$$

$$= -(R + B^{T}P_{t+1}B)^{-1}B^{T}P_{t+1}Ax_{t}$$

which is what we had before