## Ordinal logistic model on large, classified windows data

## Ruth Gómez Graciani

## Prepare the data

First, we obtain the density distribution, and local minima and maxima for the recombination map.



Figure 1: Crossover zones; centromeres in blue, workspace limits in orange.

Next, we define telomeric regions as the space between the chromosome start to the next local minimum, or between the chromosome end to the previous local minimum. We also define centromeric regions as the space between two local maxima that contains the centromere. When the local maximum delimiting a centromeric region is the same as the peak from the corresponding telomeric region (see chr1, chr5, chr7, chr8, etc.), the limit between the telomeric and centromeric regions is defined as the center point between the local maximum corresponding to the telomeric peak and the local minimum corresponding to the centromere valley. These categories will be represented as the "Color" variable in this analysis.



Figure 2: Color-coded windows for telomeric, centromeric and arm categories.

## Descriptive statistics

Raw data:

| ## |   | ${\tt Chromosome}$ | Start       | End        | Color       | ${\tt invCenters}$ | NHCenters | NAHRCenters |
|----|---|--------------------|-------------|------------|-------------|--------------------|-----------|-------------|
| ## | 1 | chr10              | 158946      | 22251109   | telomeric   | 3                  | 2         | 1           |
| ## | 2 | chr10              | 22251109    | 27774149   | arm         | 0                  | 0         | 0           |
| ## | 3 | chr10              | 27774149    | 58150873   | centromeric | 2                  | 1         | 1           |
| ## | 4 | chr10              | 58150873    | 105096718  | arm         | 3                  | 3         | 0           |
| ## | 5 | chr10              | 105096718   | 135473442  | telomeric   | 1                  | 1         | 0           |
| ## | 6 | chr11              | 241489      | 30481001   | telomeric   | 2                  | 1         | 1           |
| ## |   | Length.Mb a        | allRepCount | s WAvgRate | e.perMb     |                    |           |             |
| ## | 1 | 22.092163          | 34          | 1.         | . 855788    |                    |           |             |
| ## | 2 | 5.523041           | 20          | 00 1.      | . 465803    |                    |           |             |
| ## | 3 | 30.376724          | 235         | 50 1.      | .215003     |                    |           |             |
| ## | 4 | 46.945846          | 80          | 08 1.      | .306162     |                    |           |             |
| ## | 5 | 30.376724          | 20          | 00 1.      | .864682     |                    |           |             |
| ## | 6 | 30.239512          | 74          | l8 1.      | .591677     |                    |           |             |

For each window, I calculated the number of total inversions, NH inversions, and NAHR inversions, the window length in Mb, number of repeats and the average recombination rate in cM/Mb.

I want to perform Ordinal Logistic Regressions on different subsets of the data. The assumptions of the Ordinal Logistic Regression are as follow:

- 1. The dependent variable is ordered.
- 2. One or more of the independent variables are either continuous, categorical or ordinal.
- 3. No multi-collinearity.
- 4. Proportional odds.

I show the data distributions in the figure below. The inversion counts have only a number of possible options, so they can be considered an ordinal variable. The independent variables are continuous and categorical, so assumptions 1 and 2 are satisfied

## Distribution of variables



Figure 3: Distribution of variables.

We see that some categories have low number of cases, so I will make a "3 or more" category when relevant.

| ## | [1] | "Original  | counts"    |           |             |
|----|-----|------------|------------|-----------|-------------|
| ## | C   | ountGroups | invCenters | NHCenters | NAHRCenters |
| ## | 1   | 0          | 38         | 55        | 67          |
| ## | 2   | 1          | 29         | 26        | 24          |
| ## | 3   | 2          | 14         | 11        | 7           |
| ## | 4   | 3          | 11         | 6         | NA          |
| ## | 5   | 4          | 6          | 3         | 1           |
| ## | 6   | 5          | 2          | NA        | 2           |
| ## | 7   | 6          | 1          | NA        | NA          |
| ## | [1] | "New count | ts"        |           |             |

| ## |   | CountGroups | invCategory | NHCategory | NAHRCategory |
|----|---|-------------|-------------|------------|--------------|
| ## | 1 | 0           | 38          | 55         | 67           |
| ## | 2 | 1           | 29          | 26         | 24           |
| ## | 3 | 2           | 14          | 11         | 7            |
| ## | 4 | 3+          | 20          | 9          | 3            |

With these groups, I visualize the relationships between dependent and independent variables.

# Differences in each chromosomal variable between inversion count groups invCategory



Figure 4: Potential effect of independent variables on the different types of invesions.

Finally, I will test assumption number 3, no multi-collinearity between independent variables.

## Pearson correlation



## Spearman correlation



Figure 5: Correlations between variables.

We see that our three variables are significantly correlated, but this does not confirm multi-collinearity. I perform a variance inflation factor test on the corresponding linear model to further check the multi-collinearity.

The general rule of thumbs for VIF test is that if the VIF value is greater than 10, then there is multi-collinearity, so we can say that the third assumption (no multi-collinearity) is satisfied.

The proportional odds assumption will be tested for each model that we fit in the following analyses.

## Variable scalation (optional)

Standardized coefficients are useful in our case to compare effects of predictors reported in different units. The most straightforward way is using the Agresti method of standardization, applied with the scale() function.

```
##
      Length.Mb
                                                           allRepCounts.Scaled
                      Length.Mb.Scaled
                                          allRepCounts
##
    Min.
           : 2.565
                      Min.
                             :-1.4230
                                                    6.0
                                                                  :-0.9215
##
    1st Qu.:14.738
                      1st Qu.:-0.7697
                                         1st Qu.: 298.0
                                                           1st Qu.:-0.6226
   Median :25.971
                      Median :-0.1668
                                         Median : 622.0
                                                           Median :-0.2911
##
    Mean
           :29.078
                             : 0.0000
                                                : 906.4
                                                                  : 0.0000
                      Mean
                                         Mean
                                                           Mean
                      3rd Qu.: 0.5987
    3rd Qu.:40.233
                                         3rd Qu.:1152.0
                                                           3rd Qu.: 0.2513
##
##
   Max.
           :89.545
                             : 3.2453
                                         Max.
                                                :5054.0
                                                                  : 4.2445
                      Max.
                                                           Max.
   WAvgRate.perMb
                     WAvgRate.perMb.Scaled
##
   \mathtt{Min}.
           :0.646
                     Min.
                            :-2.15076
##
   1st Qu.:1.302
                     1st Qu.:-0.72706
##
  Median :1.664
                     Median : 0.05816
   Mean
           :1.637
                     Mean
                            : 0.00000
    3rd Qu.:1.889
                     3rd Qu.: 0.54701
##
   Max.
           :3.133
                     Max.
                            : 3.24489
```

Once the model is fitted, we can use the sd to transform scaled coefficients to natural coefficients and viceversa.

## Total inversions (invCategory)

#### Model fitting

```
## Call:
## polr(formula = myFormula, data = winRegions, Hess = T)
##
## Coefficients:
##
                         Value Std. Error t value
## Length.Mb
                     9.952e-02 0.0142331 6.9919
## allRepCounts
                    -8.528e-05 0.0003422 -0.2492
## Colorcentromeric 1.651e+00 0.6350390
                                           2.5998
## Colortelomeric
                     3.211e-01 0.4621403
                                           0.6948
## WAvgRate.perMb
                     8.173e-01 0.2038465
                                           4.0096
##
## Intercepts:
##
        Value
                Std. Error t value
## 0|1
         3.6692 0.1448
                           25.3385
## 1|2
         5.4864
                 0.3268
                           16.7867
## 2|3+ 6.6198 0.4170
                           15.8734
##
## Residual Deviance: 208.6729
## AIC: 224.6729
```

We compare the t-value against the standard normal distribution to calculate the p-value.

```
##
                            Value
                                    Std. Error
                                                  t value
                                                             p value
## Length.Mb
                     9.951611e-02 0.0142330757
                                               6.9918906 0.00000000
## allRepCounts
                    -8.527591e-05 0.0003422055 -0.2491950 0.80320991
## Colorcentromeric 1.650947e+00 0.6350390465 2.5997565 0.00932899
## Colortelomeric
                     3.211146e-01 0.4621403074 0.6948422 0.48715418
## WAvgRate.perMb
                     8.173350e-01 0.2038465195
                                               4.0095609 0.00006083
## 0|1
                     3.669234e+00 0.1448086001 25.3385087 0.00000000
## 1|2
                     5.486432e+00 0.3268325475 16.7866749 0.00000000
## 2|3+
                     6.619768e+00 0.4170341732 15.8734428 0.00000000
```

We can also get confidence intervals for the parameter estimates. These can be obtained either by profiling the likelihood function or by using the standard errors and assuming a normal distribution. Note that profiled CIs are not symmetric (although they are usually close to symmetric). If the 95% CI does not cross 0, the parameter estimate is statistically significant.

#### ## [1] "Profiling likelihod"

```
2.5 %
##
                                         97.5 %
## Length.Mb
                     0.0625867701 0.1413139203
## allRepCounts
                    -0.0006388095 0.0004698302
## Colorcentromeric 0.2508033684 3.1302149241
## Colortelomeric
                    -0.5861609138 1.2513784295
## WAvgRate.perMb
                               NΑ
                                             NA
  [1] "Assuming a normal distribtuion"
##
                             2.5 %
                                         97.5 %
## Length.Mb
                     0.0716197926 0.1274124241
## allRepCounts
                    -0.0007559864 0.0005854345
## Colorcentromeric 0.4062932084 2.8956005283
## Colortelomeric
                    -0.5846637590 1.2268929576
```

```
## WAvgRate.perMb 0.4178031930 1.2168668663
```

We convert the coefficients into odds ratios. To get the OR and confidence intervals, we just exponentiate the estimates and confidence intervals (here I used the likelihood confidence intervals).

```
## Length.Mb 1.1046363 1.0645868 1.151786

## allRepCounts 0.9999147 0.9993614 1.000470

## Colorcentromeric 5.2119125 1.2850574 22.878896

## Colortelomeric 1.3786636 0.5564595 3.495157

## WAvgRate.perMb 2.2644571 NA NA
```

Example of interpretation: "For 1 unit increase in Length.Mb, a window is 1.1046363 times more likely to increase in inversion amount category."

#### Proportional odds assessment

Now we should test the proportional odds or parallel regression assumption. If it is satisfied, the coefficients are valid for all the cases (i.e. the same coefficient is valid for increasing from 0 to 1 inversions, from 1 to 2, etc.). If this assumption is violated, different models are needed to describe the relationship between each pair of outcome groups.

We test the parallel regression assumption with a Brant test:

```
## -----
          X2 df probability
## -----
## Omnibus
             4.66
                   10 0.91
## Length.Mb
             0.68
                   2
                      0.71
## allRepCounts
             1.55
                   2
                      0.46
## Colorcentromeric 0.39
                   2
                      0.82
## Colortelomeric
                1.37
                      2
                        0.51
                        0.88
## WAvgRate.perMb
                0.26
                      2
##
```

## HO: Parallel Regression Assumption holds

We can also evaluate the parallel regression visually. We transform the ordinal dependent variable with k categories into a series of k-1 binary variables that indicate whether the dependent value is above or below a cutpoint (e.g. windows with at least 2 inversions vs windows with less than 2 inversions). We then calculate the observed Log Odds Ratio for each binary variable across multiple value ranges of the independent variables. The lines should be approximately parallel, that each independent variable affects the probability of increasing by 1 level the inversion count in the same way, for all transitions, and that we don't need a specific model for each level increase.

## Proportional odds visual test



#### Predicted probabilites

1.00 -0.75 -0.50 -0.25 0.00 -

Ö

25

Although our objective is to describe the dataset, predicted probabilities are usually easier to understand than either the coefficients or the Odds Ratios.

## Probability of inversion level (invCategory) for multiple scenarios



Figure 6: Probability of having 0 to >3 inversions depending on multiple independent variables

50

Length.Mb

**7**5

25

50

75

25

75

Ö

50

## Total inversions (NHCategory)

#### Model fitting

```
## Call:
## polr(formula = myFormula, data = winRegions, Hess = T)
##
## Coefficients:
##
                         Value Std. Error
                                          t value
## Length.Mb
                     9.143e-02 0.0124309
                                           7.35470
## allRepCounts
                    -3.228e-05
                                0.0003282 -0.09835
## Colorcentromeric 9.362e-01 0.6286970
                                           1.48906
## Colortelomeric
                     4.652e-02 0.5001710
                                           0.09300
                     8.872e-01 0.2270231
## WAvgRate.perMb
                                           3.90789
##
## Intercepts:
##
        Value
                Std. Error t value
## 0|1
         4.3567
                0.1413
                           30.8398
## 1|2
         6.1522
                 0.3573
                           17.2184
## 2|3+
        7.5650 0.5164
                           14.6505
##
## Residual Deviance: 182.8368
## AIC: 198.8368
```

We compare the t-value against the standard normal distribution to calculate the p-value.

```
##
                            Value
                                    Std. Error
                                                   t value
                                                              p value
## Length.Mb
                     9.142563e-02 0.0124309048
                                               7.35470454 0.00000000
## allRepCounts
                    -3.228081e-05 0.0003282103 -0.09835403 0.92165118
## Colorcentromeric 9.361700e-01 0.6286969984 1.48906384 0.13647056
## Colortelomeric
                     4.651670e-02 0.5001709948 0.09300159 0.92590230
## WAvgRate.perMb
                     8.871811e-01 0.2270230851
                                               3.90788934 0.00009311
## 0|1
                     4.356732e+00 0.1412699284 30.83977137 0.00000000
## 1|2
                     6.152218e+00 0.3573051852 17.21838458 0.00000000
## 2|3+
                     7.565027e+00 0.5163680997 14.65045312 0.00000000
```

We can also get confidence intervals for the parameter estimates. These can be obtained either by profiling the likelihood function or by using the standard errors and assuming a normal distribution. Note that profiled CIs are not symmetric (although they are usually close to symmetric). If the 95% CI does not cross 0, the parameter estimate is statistically significant.

```
## [1] "Profiling likelihod"
```

```
2.5 %
##
                                         97.5 %
                     0.0572532547 0.1298089217
## Length.Mb
## allRepCounts
                    -0.0005916123 0.0005087736
## Colorcentromeric -0.4550261982 2.3681680663
## Colortelomeric
                    -0.9293705517 1.0588746546
## WAvgRate.perMb
                                             NΑ
  [1] "Assuming a normal distribtuion"
##
                             2.5 %
                                         97.5 %
## Length.Mb
                     0.0670615065 0.1157897580
## allRepCounts
                    -0.0006755612 0.0006109996
## Colorcentromeric -0.2960535098 2.1683934383
## Colortelomeric
                    -0.9338004378 1.0268338340
```

```
## WAvgRate.perMb 0.4422240241 1.3321381650
```

We convert the coefficients into odds ratios. To get the OR and confidence intervals, we just exponentiate the estimates and confidence intervals (here I used the likelihood confidence intervals).

```
## Length.Mb 1.0957353 1.0589240 1.138611

## allRepCounts 0.9999677 0.9994086 1.000509

## Colorcentromeric 2.5501954 0.6344313 10.677813

## Colortelomeric 1.0476156 0.3948021 2.883125

## WAvgRate.perMb 2.4282749 NA NA
```

Example of interpretation: "For 1 unit increase in Length.Mb, a window is 1.0957353 times more likely to increase in inversion amount category."

#### Proportional odds assessment

Now we should test the proportional odds or parallel regression assumption. If it is satisfied, the coefficients are valid for all the cases (i.e. the same coefficient is valid for increasing from 0 to 1 inversions, from 1 to 2, etc.). If this assumption is violated, different models are needed to describe the relationship between each pair of outcome groups.

We test the parallel regression assumption with a Brant test:

```
## -----
          X2 df probability
## -----
## Omnibus
             11.63
                   10 0.31
## Length.Mb
             5.2 2
                   0.07
## allRepCounts
             1.93
                   2
                      0.38
## Colorcentromeric 4.56
                   2
                      0.1
## Colortelomeric
                0.04
                      2
                         0.98
                         0.02
## WAvgRate.perMb
                8.22
                      2
##
```

We can also evaluate the parallel regression visually. We transform the ordinal dependent variable with k categories into a series of k-1 binary variables that indicate whether the dependent value is above or below a cutpoint (e.g. windows with at least 2 inversions vs windows with less than 2 inversions). We then calculate the observed Log Odds Ratio for each binary variable across multiple value ranges of the independent variables. The lines should be approximately parallel, that each independent variable affects the probability of increasing by 1 level the inversion count in the same way, for all transitions, and that we don't need a specific model for each level increase.

## Proportional odds visual test



#### Predicted probabilites

Although our objective is to describe the dataset, predicted probabilities are usually easier to understand than either the coefficients or the Odds Ratios.

## Probability of inversion level (NHCategory) for multiple scenarios



Figure 7: Probability of having 0 to >3 inversions depending on multiple independent variables

## Total inversions (NAHRCategory)

#### Model fitting

```
## Call:
## polr(formula = myFormula, data = winRegions, Hess = T)
##
## Coefficients:
##
                         Value Std. Error t value
## Length.Mb
                     0.0188601
                                  0.011921
                                             1.582
## allRepCounts
                     0.0003143
                                  0.000348
                                             0.903
## Colorcentromeric 0.9209545
                                  0.630055
                                             1.462
## Colortelomeric
                     0.8544856
                                  0.541881
                                             1.577
## WAvgRate.perMb
                    -0.2531833
                                  0.245667
                                           -1.031
##
## Intercepts:
##
        Value
                Std. Error t value
## 0|1
         1.6899 0.1483
                            11.3962
## 1|2
         3.3881
                 0.3617
                             9.3667
## 2|3+
        4.7416 0.6271
                             7.5614
##
## Residual Deviance: 168.9569
## AIC: 184.9569
```

We compare the t-value against the standard normal distribution to calculate the p-value.

```
##
                            Value
                                    Std. Error
                                                  t value
                                                            p value
## Length.Mb
                     0.0188600857 0.0119213586
                                                1.5820416 0.1136401
## allRepCounts
                     0.0003142673 0.0003480284 0.9029934 0.3665294
## Colorcentromeric 0.9209544998 0.6300554837
                                                1.4617038 0.1438224
## Colortelomeric
                     0.8544856015 0.5418806717
                                                1.5768889 0.1148211
## WAvgRate.perMb
                    -0.2531832611 0.2456665356 -1.0305973 0.3027297
## 0|1
                     1.6898869893 0.1482844972 11.3962486 0.0000000
## 1|2
                     3.3881480780 0.3617230218 9.3666918 0.0000000
## 2|3+
                     4.7416499999 0.6270900119 7.5613547 0.0000000
```

We can also get confidence intervals for the parameter estimates. These can be obtained either by profiling the likelihood function or by using the standard errors and assuming a normal distribution. Note that profiled CIs are not symmetric (although they are usually close to symmetric). If the 95% CI does not cross 0, the parameter estimate is statistically significant.

```
## [1] "Profiling likelihod"
```

```
2.5 %
##
                                         97.5 %
                    -0.0131523892 0.0520801011
## Length.Mb
## allRepCounts
                    -0.0001947444 0.0008165678
## Colorcentromeric -0.5092010829 2.3735719224
                    -0.1797715268 1.9844609079
## Colortelomeric
## WAvgRate.perMb
                               NΑ
                                             NΑ
  [1] "Assuming a normal distribtuion"
##
                             2.5 %
                                         97.5 %
## Length.Mb
                    -0.0045053477 0.0422255191
## allRepCounts
                    -0.0003678558 0.0009963905
## Colorcentromeric -0.3139315567 2.1558405562
## Colortelomeric
                    -0.2075809990 1.9165522020
```

```
## WAvgRate.perMb -0.7346808229 0.2283143008
```

We convert the coefficients into odds ratios. To get the OR and confidence intervals, we just exponentiate the estimates and confidence intervals (here I used the likelihood confidence intervals).

```
## Length.Mb 1.0190391 0.9869337 1.053460

## allRepCounts 1.0003143 0.9998053 1.000817

## Colorcentromeric 2.5116867 0.6009755 10.735671

## Colortelomeric 2.3501651 0.8354611 7.275124

## WAvgRate.perMb 0.7763256 NA NA
```

Example of interpretation: "For 1 unit increase in Length.Mb, a window is 1.0190391 times more likely to increase in inversion amount category."

#### Proportional odds assessment

Now we should test the proportional odds or parallel regression assumption. If it is satisfied, the coefficients are valid for all the cases (i.e. the same coefficient is valid for increasing from 0 to 1 inversions, from 1 to 2, etc.). If this assumption is violated, different models are needed to describe the relationship between each pair of outcome groups.

We test the parallel regression assumption with a Brant test:

```
## -----
          X2 df probability
## -----
## Omnibus
             15.05
                   10 0.13
             3.95
## Length.Mb
                   2
                      0.14
## allRepCounts
             7.24
                      0.03
                      0.07
## Colorcentromeric 5.41
                   2
## Colortelomeric
                3.9 2
                      0.14
## WAvgRate.perMb
                6.12
                        0.05
                      2
##
```

## HO: Parallel Regression Assumption holds

We can also evaluate the parallel regression visually. We transform the ordinal dependent variable with k categories into a series of k-1 binary variables that indicate whether the dependent value is above or below a cutpoint (e.g. windows with at least 2 inversions vs windows with less than 2 inversions). We then calculate the observed Log Odds Ratio for each binary variable across multiple value ranges of the independent variables. The lines should be approximately parallel, that each independent variable affects the probability of increasing by 1 level the inversion count in the same way, for all transitions, and that we don't need a specific model for each level increase.

## Proportional odds visual test





#### Predicted probabilites

Although our objective is to describe the dataset, predicted probabilities are usually easier to understand than either the coefficients or the Odds Ratios.

## Probability of inversion level (NAHRCategory) for multiple scenarios





Figure 8: Probability of having 0 to >3 inversions depending on multiple independent variables