(1343°)

UNIVERSITÀ DEGLI STUDI DI PISA

DIPARTIMENTO DI INGEGNERIA DELLA INFORMAZIONE

ELETTRONICA, INFORMATICA, TELECOMUNICAZIONI

TEORIA DEI SEGNALI – 8/07/12

Es. 1 - Siano dati lo schema in figura 1 e il segnale di ingresso $x(t) = \operatorname{sinc}\left(\frac{t}{2T}\right) \sin\left(\frac{\pi t}{2T}\right)$. Osservando che $x_c(t) = \sum_{n} x(nT) \delta(t-nT)$ si determinino le espressioni dei segnali y(t) e z(t).

Figura 1

Es. 2 - Si discutano le proprietà di stazionarietà, stabilità e linearità del sistema $y(t) = \int_{t-T}^{t} x(\alpha+T)d\alpha$. Se il sistema risulta lineare e tempo-invariante, se ne calcolino la risposta impulsiva e in frequenza.

- **Es. 3** Due terminali A e B sono connessi tra di loro tramite 4 interruttori, T_1 , T_2 , T_3 e T_4 ; per la precisione T_1 e T_2 sono connessi in serie tra di loro ed in parallelo a T_3 e a T_4 . Nell'ipotesi che gli interruttori possano essere aperti e chiusi con uguale probabilità e in modo indipendente l'uno dall'altro, determinare
 - 1) la probabilità che i terminali A e B siano connessi;
 - 2) La probabilità che A e B siano connessi sapendo che l'interruttore T₁ è chiuso;
 - 3) La probabilità che l'interruttore T₄ sia chiuso, sapendo che i terminali sono connessi.

Es. 4 - Si consideri il processo aleatorio

$$X(t) = a\cos(2\pi f_0 t + \varphi) + W(t)$$

dove a, f_0 e φ sono costanti deterministiche, $s_i(t) = a\cos(2\pi f_0 t + \varphi)$ rappresenta il segnale utile mentre W(t) è un processo di rumore bianco con densità spettrale di potenza $S_W(f) = N_0/2$. Si invia X(t) in ingresso ad un filtro RC passa-basso e si indichi con $Y(t) = s_u(t) + N(t)$ il processo di uscita prelevato ai capi del condensatore, in cui $s_u(t)$ è la risposta del filtro al segnale deterministico $s_i(t)$ e N(t) la risposta al rumore di ingresso W(t). Detta $\tau = RC$ la costante di tempo del filtro si calcolino:

- a) l'espressione di $s_{\mu}(t)$ e la sua potenza;
- b) la densità spettrale di potenza e la correlazione del rumore di uscita N(t);