Exercise 1.1-1.4

1.1

Prove by structural induction on ASTs that if $\mathcal{X} \subseteq \mathcal{Y} \implies \mathcal{A}[\mathcal{X}] \subseteq \mathcal{A}[\mathcal{Y}]$

Proof:

Suppose $\mathcal{X}\subseteq\mathcal{Y}$. Let $a\in\mathcal{A}[\mathcal{X}]$ be an AST. Do struct Induct on a.

- 1. If a=x, then a=y for some $y\in\mathcal{Y}$ by definition. Then $a\in\mathcal{A}[\mathcal{Y}].$
- 2. Otherwise, $a=o(a_1;...;a_n)$ and by induction, $a_i\in\mathcal{A}[\mathcal{Y}]$ for all $1\leq i\leq n$. By definition, $a\in\mathcal{A}[\mathcal{Y}]$.

1.2

Prove by structural induction modulo renaming on ABTs that if $\mathcal{X} \subseteq \mathcal{Y} \implies \mathcal{B}[\mathcal{X}] \subseteq \mathcal{B}[\mathcal{Y}]$ Proof:

Let $a \in \mathcal{B}[\mathcal{X}]$ be an ABT. Do struct Induct / α on a.

- 1. Same as above
- 2. Otherwise, $a = o(\vec{x}_1.a_1; ...; \vec{x}_n.a_n)$ and by induction, for each $1 \le i \le n$, $\hat{\rho}_i(a_i) \in \mathcal{B}[\mathcal{Y}]$ where ρ_i is a fresh renaming bijection. Then by definition, $a \in \mathcal{B}[\mathcal{Y}]$.

1.3

Show that if $a=_{\alpha}a'$ and $b=_{\alpha}b'$ and both [b/x]a and [b'/x]a' are defined, then $[b/x]a=_{\alpha}[b'/x]a'$. Proof:

By Struct Induct / α on a,

1. If a=x, then by the first α -equivalence condition and the assumption that $x=_{\alpha}a'$, then x=a'. Hence by assumption:

$$[b/x]a = [b/x]x = b =_{\alpha} b' = [b'/x]x = [b'/x]a'$$

- 2. The case where a=y and $y\neq x$ is trivial by the definition of α -equivalence.
- 3. Otherwise, $a=o(\vec{x}_1.a_1;...;\vec{x}_n.a_n)$. By the second α -equivalence condition, $a'=o(\vec{x}_1'.a_1';...;\vec{x}_n'.a_n')$ where we have bijections $\hat{\rho}_i(a_i)$ rename each variable. Also, by induction, for each $1\leq i\leq n$, $[b/x]a_i=_{\alpha}[b'/x]a_i'$. Therefore:

$$[b/x]o(\vec{x}_1.a_1;...;\vec{x}_n.a_n) = o(\vec{x}_1.\tilde{a_1};...;\vec{x}_n.\tilde{a_n}) =_{\alpha} o(\vec{x}_1'.\tilde{a_1}';...;\vec{x}_n'.\tilde{a_n}') = [b'/x]o(\vec{x}_1'.a_1';...;\vec{x}_n'.a_n')$$

where $\tilde{a_i}=[b/x]a_i$ if $x\notin \vec{x_i}$ and $\tilde{a_i}=a_i$ otherwise. The same is for a'. Sorry for the overloading notations used here.

1.4

Bound variables can be seen as the formal analogs of pronouns (she, it, they, etc.) in natural languages.

Abstract binding graphs (abg's) are constructed as follows:

- Free variables are atomic nodes with no outgoing edges
- Operators with n arguments are n-ary nodes, with one outgoing edge directed at each of their children.
- Abstractors are nodes with one edge directed to the scope of the abstracted variable.
- Bound variables are back edges directed at the abstractor that introduced it.

Asts are acyclic directed graphs, whereas general abts can be cyclic.

Exp 1:

```
let(num[2]; x.plus(x; num[3]))
```

Exp 2:

```
let(y; x.let(num[2]; z.plus(x; z)))
```

Exercise 1.1-1.4 2