Robust estimation in linear mixed models using the R package skewlmm

Fernanda Lang Schumacher joint work with Larissa A. Matos and Victor H. Lachos

Universidade Estadual de Campinas

23 de novembro de 2020

Introduction

- Linear mixed models are frequently used to analyze repeated measures data.
- Usual assumption: both random effect and error term follow normal distributions.
- Some proposals have been made in the literature for relaxing the assumption of normality.

Introduction

- Linear mixed models are frequently used to analyze repeated measures data.
- Usual assumption: both random effect and error term follow normal distributions.
- Some proposals have been made in the literature for relaxing the assumption of normality.
- Frequently, classes of LMMs consider that the error terms are conditionally independent.
- However, in longitudinal studies, repeated measures are collected over time and hence the error term tends to be serially correlated.

Motivation: sleepstudy data

- The average reaction time per day for subjects was evaluated by Gregory et al. (2003) in a sleep deprivation study.
- On day 0 the subjects had their normal amount of sleep and starting that night they were restricted to 3 hours of sleep per night for 9 days, and the reaction time basead on a series of tests was measured on each day for each subject.
- The data are available at the R package lme4.

Motivation: sleepstudy data

Fitting a LMM to the sleepstudy dataset

Scale mixture of skew-normal (SMSN) distributions

The $SN_p(\mu, \Sigma, \lambda)$ distribution (Azzalini and Valle, 1996) can be defined from:

$$f(\mathbf{y}) = 2\phi_p(\mathbf{y}; \boldsymbol{\mu}, \boldsymbol{\Sigma})\Phi(A), \quad \mathbf{y} \in \mathbb{R}^p,$$

where $A = \boldsymbol{\lambda}^{\top} \boldsymbol{\Sigma}^{-1/2} (\mathbf{v} - \boldsymbol{\mu}).$

Scale mixture of skew-normal (SMSN) distributions

The $SN_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\lambda})$ distribution (Azzalini and Valle, 1996) can be defined from:

$$f(\mathbf{y}) = 2\phi_p(\mathbf{y}; \boldsymbol{\mu}, \boldsymbol{\Sigma})\Phi(A), \quad \mathbf{y} \in \mathbb{R}^p,$$

where
$$A = \boldsymbol{\lambda}^{\top} \boldsymbol{\Sigma}^{-1/2} (\mathbf{y} - \boldsymbol{\mu}).$$

The $SMSN_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\lambda}; H)$ class of distributions can then be defined through the following pdf:

$$f(\mathbf{y}) = 2 \int_0^\infty \phi_p(\mathbf{y}; \boldsymbol{\mu}, \kappa(u) \boldsymbol{\Sigma}) \ \Phi(\kappa(u)^{-1/2} A) dH(u; \boldsymbol{\nu}),$$

 $\mathbf{y} \in \mathbb{R}^p$, for some positive weight function $\kappa(u)$.

SMSN - special cases

- When $\lambda = 0$, we get the $SMN_p(\mu, \Sigma; H)$;
- When $\kappa(u) = u^{-1}$, we get the skew-normal/independent (SNI) class of distributions:
 - By taking $U \sim \text{Gamma}(\nu/2, \nu/2)$, the $\text{ST}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\lambda}, \nu)$ can be derived;
 - By taking $U \sim \text{Beta}(\nu, 1)$, the $\text{SSL}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\lambda}, \nu)$ can be derived;
 - By taking U as a discrete random variable with probability function given by $h(u|\boldsymbol{\nu}) = \nu_1 \mathbb{I}_{\{\nu_2\}}(u) + (1-\nu_1)\mathbb{I}_{\{1\}}(u)$, the $SCN_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\lambda}, \nu, \rho)$ can be derived, where $\nu_1, \nu_2 \in (0, 1)$.

SMSN linear mixed model (SMSN-LMM)

In general, a normal linear mixed effects model is defined as

$$\mathbf{Y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{b}_i + \boldsymbol{\epsilon}_i, \quad i = 1, \dots, n,$$
 (1)

where

- \mathbf{X}_i of dimension $n_i \times l$ is the design matrix corresponding to the fixed effects,
- β of dimension $l \times 1$ is a vector of population-averaged regression coefficients called fixed effects,
- \mathbf{Z}_i of dimension $n_i \times q$ is the design matrix corresponding to the $q \times 1$ random effects vector \mathbf{b}_i , and
- ϵ_i of dimension $n_i \times 1$ is the vector of random errors.

SMSN-LMM

Usual assumptions:

- $\mathbf{b}_i \stackrel{\text{iid}}{\sim} N_q(\mathbf{0}, \mathbf{D}) \perp \boldsymbol{\epsilon}_i \stackrel{\text{ind}}{\sim} N_{n_i}(\mathbf{0}, \boldsymbol{\Sigma}_i),$
- The $q \times q$ random effects covariance matrix **D** may be unstructured or structured,
- the $n_i \times n_i$ error covariance matrix Σ_i is commonly written as $\sigma_e^2 \mathbf{R}_i$, where \mathbf{R}_i can be a known matrix or a structured matrix depending on a vector of parameter, say $\boldsymbol{\phi}$.

SMSN-LMM

Likewise, the SMSN-LMM can be defined by considering

$$\begin{pmatrix} \mathbf{b}_i \\ \boldsymbol{\epsilon}_i \end{pmatrix} \stackrel{\text{ind}}{\sim} \text{SMSN}_{q+n_i} \begin{pmatrix} \begin{pmatrix} c\boldsymbol{\Delta} \\ \mathbf{0} \end{pmatrix}, \begin{pmatrix} \mathbf{D} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_i \end{pmatrix}, \begin{pmatrix} \boldsymbol{\lambda} \\ \mathbf{0} \end{pmatrix}; H \end{pmatrix}, \tag{2}$$

 $i = 1, \ldots, n$, where

- $c = c(\nu) = -\sqrt{\frac{2}{\pi}}k_1, k_1 = E\{U^{-1/2}\}, \Delta = \mathbf{D}^{1/2}\delta,$
- $\mathbf{D} = \mathbf{D}(\boldsymbol{\alpha})$ depends on unknown and reduced parameter vector $\boldsymbol{\alpha}$, and
- $\Sigma_i = \sigma_e^2 \mathbf{R}_i$, with $\mathbf{R}_i = \mathbf{R}_i(\boldsymbol{\phi})$, $\boldsymbol{\phi} = (\phi_1, \dots, \phi_p)^{\top}$, being a structured matrix.

Within-subject dependence structures

- ① Conditional independence (CI): $\mathbf{R}_i = \mathbf{I}_{n_i}$.
- ② Autoregressive dependence of order p (AR(p)):

$$\mathbf{R}_i = \mathbf{R}_i(\boldsymbol{\phi}) = \frac{1}{1 - \phi_1 \rho_1 - \ldots - \phi_p \rho_p} [\rho_{|r-s|}],$$

where ρ_1, \ldots, ρ_p are the theoretical autocorrelations of the process and functions of $\boldsymbol{\phi} = (\phi_1, \ldots, \phi_p)^\top$, and they satisfy the Yule-Walker equations.

Oamped exponential correlation (DEC):

$$\mathbf{R}_i = \mathbf{R}_i(\phi_1, \phi_2, \mathbf{t}_i) = \left[\phi_1^{|t_{ij} - t_{ik}|^{\phi_2}} \right], \quad 0 < \phi_1 < 1, \ \phi_2 > 0.$$

Important remark

The SMSN-LMM can be written hierarchically as follows:

$$\mathbf{Y}_{i}|\mathbf{b}_{i}, U_{i} = u_{i} \overset{\text{ind}}{\sim} \operatorname{N}_{n_{i}}\left(\mathbf{X}_{i}\boldsymbol{\beta} + \mathbf{Z}_{i}\mathbf{b}_{i}, u_{i}^{-1}\sigma_{e}^{2}\mathbf{R}_{i}\right),$$

$$\mathbf{b}_{i}|T_{i} = t_{i}, U_{i} = u_{i} \overset{\text{ind}}{\sim} \operatorname{N}_{q}\left(\boldsymbol{\Delta}t_{i}, u_{i}^{-1}\boldsymbol{\Gamma}\right),$$

$$T_{i}|U_{i} = u_{i} \overset{\text{ind}}{\sim} \operatorname{TN}\left(c, u_{i}^{-1}, (c, \infty)\right), \text{ and}$$

$$U_{i} \overset{\text{ind}}{\sim} \operatorname{H}(\cdot; \boldsymbol{\nu}),$$

which are all independent, and $TN(\mu, \tau, (a, b))$ denotes the univariate normal distribution $(N(\mu, \tau))$ truncated on the interval (a, b).

This representation is useful for the implementation of an EM-type algorithm, for details see Schumacher et al. (2020).

Tools for model evaluation

- Likelihood ratio (LR) test;
- Mahalanobis distance (known distribution);
- Healy-type plot;
- Empirical autocorrelation function (ACF) for standardized marginal residuals, which at lag l can be defined as

$$\widehat{\rho}(l) = \frac{\sum_{i=1}^{n} \sum_{\{(j,k)|t_k - t_j = l\}} r_{it_j} r_{it_k} / N(l)}{\sum_{i=1}^{n} \sum_{j=1}^{n_i} r_{it_j}^2 / N(0)},$$

where $\mathbf{r}_i = \widehat{\mathbf{\Upsilon}}_i^{-1/2} \left(\mathbf{y}_i - \mathbf{X}_i \widehat{\boldsymbol{\beta}} \right)$ is the standardized marginal residual vector for subject i, with $\mathbf{\Upsilon}_i = \text{Var}(\mathbf{Y}_i)$, and $N(\cdot)$ is the number of pairs used in the respective numerator summation.

The R package skewlmm

- The package skewlmm implements an EM-type algorithm in R using S3 class, containing methods for estimating and predicting the SM(S)N-LMM.
- It has an user-friendly interface with generic R functions print, summary, plot, fitted, residuals and predict implemented.
- The main functions in the package are smsn.lmm() and smn.lmm(), which fit a SMSN-LMM and a SMN-LMM, respectively.

The R package skewlmm

The basic syntax of these functions is as follows:

where

- data: A data frame containing all the variables to be used in the model.
- formFixed: A two-sided linear formula object describing the fixed effects part of the model.
- groupVar: A character containing the name of the variable
 - which represents the subjects or groups in data.

- formRandom: A one-sided linear formula object describing the random effects part of the model.
- depStruct: A character indicating which dependence structure should be used.
- distr: A character indicating which distribution should be used.

- formRandom: A one-sided linear formula object describing the random effects part of the model.
- depStruct: A character indicating which dependence structure should be used.
- distr: A character indicating which distribution should be used.

Some other useful arguments:

- timeVar: A character containing the name of the variable which represents the time in data.
- par: The order of the autoregressive process that should be used (if depStruct="ARp").
- initialValues: A named list containing initial parameter values.

The functions return an object of the class SMSN and SMN, respectively, containing a list of elements, and the following methods/functions are available to these classes:

- print
- summary
- fitted
- plot
- predict
- residuals

- ranef
- acfresid
- healy.plot
- lr.test
- mahalDist

#fitting a (CI)-SMN-LMM, default is distr='norm'

Example: sleepstudy data


```
## Linear mixed models with distribution norm and dependency structure CI
## Call:
## smn.lmm(data = sleepstudy, formFixed = Reaction ~ Days, groupVar = "Subject",
##
       formRandom = ~Davs, quiet = T)
##
## Fixed:Reaction ~ Davs
## Random: ~Davs
    Estimated variance (D):
##
               (Intercept)
                               Days
## (Intercept) 560.68002 11.91827
## Days
               11.91827 32.52525
##
## Estimated parameters:
##
        (Intercept)
                      Days sigma2 Dsqrt1 Dsqrt2 Dsqrt3
           251,4051 10,4673 655,4400 23,6752 0,4059 5,6886
##
## s.e.
             7 2257 1 5541 31 3784 10 0856 1 7514 1 4270
##
## Model selection criteria:
   logLik
                ATC
                         BTC
##
   -875 97 1763 94 1783 098
##
## Number of observations: 180
## Number of groups: 18
```



```
## Linear mixed models with distribution sn and dependency structure CI
## Call:
## smsn.lmm(data = sleepstudy, formFixed = Reaction ~ Days, groupVar = "Subject",
##
       formRandom = ~Davs, quiet = T)
##
## Fixed:Reaction ~ Davs
## Random: ~Davs
    Estimated variance (D):
##
               (Intercept)
                               Days
## (Intercept) 1432.65701 35.22718
## Days
                  35.22718 33.76855
##
## Estimated parameters:
##
        (Intercept)
                      Days sigma2 Dsqrt1 Dsqrt2 Dsqrt3 lambda1 lambda2
           251,4073 10,4657 652,6598 37,8418 0,8080 5,7546 -4,2917 -0,2477
##
## s.e.
          11 6328 2 1610 32 7878 28 9642 5 2063 1 6311
                                                                NΑ
                                                                        NΑ
##
## Model selection criteria:
     logLik
                  ATC
                           BTC
##
   -875 354 1766 709 1792 253
##
## Number of observations: 180
## Number of groups: 18
```


Changing the distribution

```
fitskew1<-smsn.lmm(data=sleepstudy,formFixed = Reaction~Days,distr = 'st',
                  formRandom = ~Days,groupVar = "Subject",quiet = T)
fit2<-smn.lmm(data=sleepstudy,formFixed = Reaction~Days,distr = 'sl',
              formRandom = ~Days,groupVar = "Subject",quiet = T)
fitskew2<-smsn.lmm(data=sleepstudy,formFixed = Reaction~Days,distr = 'ssl',
                  formRandom = ~Days,groupVar = "Subject",quiet = T)
fit3<-smn.lmm(data=sleepstudy,formFixed = Reaction~Days,distr = 'cn',</pre>
              formRandom = ~Days,groupVar = "Subject",quiet = T)
fitskew3<-smsn.lmm(data=sleepstudy,formFixed = Reaction~Days,distr =
                  formRandom = ~Days, groupVar = "Subject", quiet = T)
```

formRandom = ~Days,groupVar = "Subject",quiet = T)

fit1<-smn.lmm(data=sleepstudy,formFixed = Reaction~Days,distr = 't',

Comparing the fitted models

distr	AIC	BIC
norm	1763.9	1783.1
sn	1766.7	1792.3
\mathbf{t}	1737.5	1759.8
st	1739.8	1768.6
sl	1736.2	1758.5
ssl	1738.4	1767.2
$^{\mathrm{cn}}$	1733.7	1759.3
scn	1735.9	1767.8

Assessing the goodness of fit using a Healy-type plot

LR test for $H_0: \lambda = 0$ in the CN-LMM

lr.test(fitskew3,fit3)

```
## Model selection criteria:
##
             logLik AIC
                                  BIC
## fitskew3 -857.926 1735.851 1767.781
## fit3 -858.861 1733.722 1759.266
##
##
      Likelihood-ratio Test
##
## chi-square statistics = 1.871248
## df = 2
## p-value = 0.392341
##
## The null hypothesis that both models represent the
## data equally well is not rejected at level 0.05
```


Computing the ACF of the residuals from CN-LMM

acfresid(fit3)

##		lag	ACF	n.used
##	1	0	1.00000000	180
##	2	1	0.19793878	162
##	3	2	-0.07329748	144
##	4	3	-0.21972223	126
##	5	4	-0.06519806	108
##	6	5	-0.13723727	90
##	7	6	-0.27485055	72
##	8	7	-0.08778128	54
##	9	8	0.19912222	36
##	10	9	0.58707921	18

Plotting the ACF (CI-CN-LMM)

plot(acfresid(fit3,calcCI = T,maxLag = 6))

Fitting an AR(p)-SMN-LMM

```
#57.
fit2ar1<-smn.lmm(data=sleepstudy,formFixed = Reaction~Days,</pre>
                 formRandom = ~Days,groupVar = "Subject",
                 distr="sl",depStruct = "ARp",pAR=1,quiet=T)
fit2ar2<-smn.lmm(data=sleepstudy,formFixed = Reaction~Days,
                 formRandom = ~Days,groupVar = "Subject",
                 distr="sl",depStruct = "ARp",pAR=2,quiet=T)
#cn
fit3ar1<-smn.lmm(data=sleepstudy,formFixed = Reaction~Days,</pre>
                 formRandom = ~Days,groupVar = "Subject",
                 distr="cn",depStruct = "ARp",pAR=1,quiet=T)
fit3ar2<-smn.lmm(data=sleepstudy,formFixed = Reaction~Days,
                 formRandom = ~Days,groupVar = "Subject",
```

distr="cn",depStruct = "ARp",pAR=2,quiet=T)

Fitting a DEC-SMN-LMM

Since the data are equally spaced and sorted by time, the use of timeVar in here is optional (the function will use the position if timeVar is not provided).

Comparing the fitted models

distr	depStruct	AIC	BIC
sl	CI	1736.2	1758.5
sl	AR1	1716.9	1742.5
sl	AR2	1717.3	1746.0
sl	DEC	1718.2	1746.9
cn	CI	1733.7	1759.3
cn	AR1	1715.5	1744.3
cn	AR2	1714.9	1746.9
cn	DEC	1716.3	1748.2

$\overline{\text{Healy}}$ plot for the $\overline{AR(p)}$ -SMN-LMM

$\overline{\text{LR test}} \text{ for } H_0: \phi_2 = 0 \text{ in the CN-LMM}$

```
##
## Model selection criteria:
##
             logLik
                         AIC
                                  BIC
## fit3ar1 -848.760 1715.520 1744.257
## fit3ar2 -847.463 1714.925 1746.855
##
       Likelihood-ratio Test
##
##
## chi-square statistics = 2.594949
## df = 1
## p-value = 0.1072049
##
## The null hypothesis that both models represent the
## data equally well is not rejected at level 0.05
```


lr.test(fit3ar1.fit3ar2)

ACF plot for AR(1)-SMN-LMM

Fitted models

```
cbind(fit2ar1$theta,fit2ar1$std.error)
cbind(fit3ar1$theta,fit3ar1$std.error)
```

	SL		CN	
	estimate	$\operatorname{std.error}$	estimate	$\operatorname{std.error}$
(Intercept)	251.55	7.56	252.55	7.02
Days	9.81	1.66	9.99	1.57
sigma2	266.24	63.43	417.84	78.77
phiAR1	0.57	0.14	0.56	0.14
Dsqrt1	14.21	10.15	16.90	11.82
Dsqrt2	2.58	4.16	2.82	4.76
Dsqrt3	2.17	6.45	2.89	6.31
nu1	1.52	-	0.12	-
nu2	-	-	0.16	-

Mahalanobis distance for AR(1)-SMN-LMM

Mahalanobis distance versus \hat{u} for AR(1)-SMN-LMM

Plotting fitted models

Prediction of future measurements

```
tail(sleepstudy,n=3)
##
       Reaction Days Subject
## 178 343.2199
                         372
## 179 369 1417
                   8
                         372
## 180 364.1236
                         372
predData <- data.frame(Reaction=NA, Days=10:11, Subject="372")</pre>
predict(fit2ar1,newData = predData)
##
     groupVar Days
                      ypred
## 1
          372
                10 377,0998
## 2
          372
                11 389.5745
predict(fit3ar1,newData = predData)
##
     groupVar Days
                      ypred
```


372

372

1

2

10 377 1056

11 389.5576

Concluding remarks

Some additional features are currently under development:

- Estimation of some important special cases, such as when **D** is diagonal or in blocks;
- Use of parallel optimization to improve performance;
- Use of a method for acceleration of the convergence rate of the EM-type algorithm used in the estimation procedure.

Main references

- Azzalini, A. & A. D. Valle (1996).
 The multivariate skew-normal distribution. Biometrika 83(4), 715-726.
- [2] Belenky, G., Wesensten, N. J., Thorne, D. R., Thomas, M. L., Sing, H. C., Redmond, D. P., Russo, M. B. & Balkin, T. J. (2003). Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose-response study.
- [3] Box, G. E., G. M. Jenkins, G. C. Reinsel & G. M. Ljung (2015). Time series analysis: forecasting and control. John Wiley & Sons.
- [4] Dempster, A., Laird, N. & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39, 1-38.
- [5] Lachos, V. H., P. Ghosh & R. B. Arellano-Valle (2010).
 Likelihood based inference for skew-normal independent linear mixed models.
 Statistica Sinica 20, 303-322.
- [6] Muñoz, A., V. Carey, J. P. Schouten, M. Segal & B. Rosner (1992). A parametric family of correlation structures for the analysis of longitudinal data. Biometrics 48, 733-742.
- [7] Schumacher, F. L., Matos, L. A., & Lachos, V. H. (2020). Scale mixture of skew-normal linear mixed models with within-subject serial dependence. arXiv preprint arXiv:2002.01040.

Preprint

GitHub

Acknowledgments

Fernanda Lang Schumacher PhD student, IMECC – UNICAMP fernandalschumacher@gmail.com

