Criteris de correcció

Física

SÈRIE 3

Criteris generals d'avaluació i qualificació

- Les respostes s'han d'ajustar a l'enunciat de la pregunta. Es valorarà sobretot que l'alumnat demostri que té clars els conceptes de caràcter físic sobre els quals tracta cada pregunta.
- 2. Es tindrà en compte la claredat en l'exposició dels conceptes, dels processos, dels passos a seguir, de les hipòtesis, l'ordre lògic, l'ús correcte dels termes científics i la contextualització segons l'enunciat.
- 3. En les respostes cal que l'alumnat mostri una adequada capacitat de comprensió de les qüestions plantejades i organitzi de forma lògica la resposta, tot analitzant i utilitzant les variables en joc. També es valorarà el grau de pertinença de la resposta, el que l'alumnat diu i les mancances manifestes sobre el tema en güestió.
- 4. Totes les respostes s'han de raonar i justificar. Una resposta correcta sense raonament ni justificació pot ser valorada amb un zero si el corrector no és capaç de veure d'on ha sortit el resultat, tanmateix un resultat erroni amb un raonament correcte s'ha de valorar.
- 5. Un error no s'ha de penalitzar dues vegades en el mateix problema. Si un apartat necessita un resultat anterior, i aquest és erroni, cal valorar la resposta independentment del seu valor numèric, i tenir en compte el procediment de resolució.
- 6. <u>Si l'alumne ha resolt un problema per un altre procediment vàlid diferent del</u> descrit en aquestes pautes, la resolució es considera vàlida.
- 7. Els errors d'unitats o el fet de no posar-les restaran el 20 % de la puntuació d'aquest apartat. Exemple: Si un apartat val 1 punt i s'ha equivocat en les unitats li haurem de puntuar 0,8 punts.
- 8. Cal resoldre els exercicis fins al resultat final i no es poden deixar indicades les operacions. Tanmateix, els errors en el càlcul restaran el 20% de la puntuació d'aquest apartat. Exemple: Si un apartat val 1 punt i s'ha equivocat en les càlculs li haurem de puntuar 0,8 punts.
- 9. Cal fer la substitució numèrica a les expressions que s'usen per resoldre les preguntes.
- 10. Un resultat amb un nombre molt elevat de xifres significatives (6 xifres significatives) es penalitzarà amb 0,1p.

Criteris de correcció

Física

PART COMUNA

P1)

a)

$$\Sigma \vec{F} = m\vec{a}$$

0.1 p T=0,33 dies =28512 s

0.3 p
$$G\frac{Mm}{R^2} = m\frac{v^2}{R} = m\omega^2 R$$

$$\omega = \frac{2\pi}{T}$$

$$GMT^2 = 4\pi^2 R^3 \Rightarrow R = \sqrt[3]{\frac{GMT^2}{4\pi^2}}$$
0.3 p

0.3 p
$$R = \sqrt[3]{\frac{6,67 \times 10^{-11} \times 2,2 \times 10^{31} \times (28512)^2}{4\pi^2}} = 3,11 \times 10^9 \, m$$

b)

0.4 p
$$v = \omega R = \frac{2\pi}{T} R = \frac{2\pi}{28512} 3,11 \times 10^9 = 6,85 \times 10^5 \, \text{m/s}$$

0.4 p
$$a_c = \frac{v^2}{R} = \frac{\left(6.85 \times 10^5\right)^2}{3.11 \times 10^9} = 151 m/s^2$$

0.2 p

Física

P2) a)

0.2 p
$$f_{A} = \frac{1}{T_{A}} = \frac{1}{1} = 1Hz \rightarrow \omega_{A} = 2\pi f_{A} = 2\pi rad / s$$

$$f_{B} = 2f_{A} = 2Hz \rightarrow \omega_{B} = 2\pi f_{B} = 4\pi rad / s$$
0.2 p
$$\omega_{A} = \sqrt{\frac{k}{m_{A}}} \Rightarrow k = \omega_{A}^{2} m_{A} = (2\pi)^{2} \times 0, 1 = 4\pi^{2} \times 0, 1 = 0.4\pi^{2} N / m$$
0.6 p
$$\omega_{B} = \sqrt{\frac{k}{m_{B}}} \Rightarrow m_{B} = \frac{k}{\omega_{B}^{2}} = \frac{0.4\pi^{2}}{(4\pi)^{2}} = 0,025kg = 25g$$

També és vàlid:

0.8 p
$$\frac{\omega_A^2}{\omega_B^2} = \frac{m_B}{m_A} \Rightarrow m_B = m_A \frac{\omega_A^2}{\omega_B^2} = \frac{(2\pi)^2}{(4\pi)^2} \times 0.1 = 0.025 kg = 25 g$$

b)

0.2 p
$$v_{A,\max} = A\omega_A = 0.05 \times 2\pi = 0.31 m/s$$

$$v_{B,\max} = A\omega_B = 0.05 \times 4\pi = 0.63 m/s$$

0.2 p Si
$$f_{\mathbf{B}} = 2f_{A} \Rightarrow T_{B} = 0.5s$$

$$T_A = 1 s$$

El gràfic es construeix atenent els valors màxims de la velocitat i als períodes de 1s i 0,5 s, respectivament. La diferència de fase és de π radiants quan estan en oposició de fase. Això passa a 0,5 s i a 1,5 s (en aquests moments cada objecte està a un extrem diferent, amb v=0).

Física

OPCIÓ A

P3)

0.2 p
$$\lambda = \frac{v}{f} = \frac{340}{83 \times 10^3} = 4.1 \times 10^{-3} m = 4.1 mm$$

0.2 p
$$T = \frac{1}{f} = \frac{1}{83 \times 10^3} = 1,20 \times 10^{-5} \, s = 12 \, \mu s$$

0.3 p
$$y(x,t) = A\sin(\omega t - kx)$$
Diferència de fase = $kx_1 - kx_2$

0.3 p Diferència de fase =
$$\frac{2\pi}{4,1 \times 10^{-3}} (1,503 - 1,500) = 4,60 rad$$
 (també seria vàlid $2\pi - 4,60 = 1,69 rad$)

b)

0.2 p
$$I = \frac{W}{4\pi R^2}$$
 on W és la potència de l'ultrasò reemès pel mosquit

0.3 p
$$\frac{I_{dreta}}{I_{esquerra}} = \frac{R_{esquerra}^2}{R_{dreta}^2} = \frac{34^2}{33^2} = 1,06$$

$$\left. \begin{aligned} L_{dreta} &= 10\log\frac{I_{dreta}}{I_0} \\ L_{esquerra} &= 10\log\frac{I_{esquerra}}{I_0} \end{aligned} \right\} L_{dretra} - L_{esquerra} = 10\log\frac{I_{dreta}}{I_0} - 10\log\frac{I_{esquerra}}{I_0} = 10\log\frac{I_0}{I_0} = 10\log\frac{I_0}{I_0} = 1$$

=
$$10\log \frac{\frac{I_{dreta}}{I_0}}{\frac{I_{esquerra}}{I_0}} = 10\log \frac{I_{dreta}}{I_{esquerra}} = 10\log 1,06 = 0,26dB$$
 0.5 p

Criteris de correcció

Física

P4)

a) L'electró manté la seva energia mecànica quan va de A a B, $E_{\scriptscriptstyle A}=E_{\scriptscriptstyle B}$

0.2 p
$$0 + q_e V_A = \frac{1}{2} m_e v_B^2 + q_e V_B \Rightarrow \frac{1}{2} m_e v_B^2 = q_e (V_A - V_B)$$

0.4 p
$$V_A - V_B = \frac{1}{2} \frac{m_e v_B^2}{q_e} = \frac{1}{2} \times \frac{9,11 \times 10^{-31}}{1,6 \times 10^{-19}} \times (2,00 \times 10^6)^2 = -11.4V$$

$$\acute{\text{o}} \qquad V_{\scriptscriptstyle B} - V_{\scriptscriptstyle A} = 11.4V \Longrightarrow V_{\scriptscriptstyle b} > V_{\scriptscriptstyle A}$$

0.4 p Esquema

b)

0.1 p
$$\vec{F}_e = q_e \vec{E} = m \overline{a}$$

0.4 p
$$\overline{a} = \frac{q_e}{m_e} \vec{E} = \frac{\left(-1.6 \times 10^{-19}\right)}{9,11 \times 10^{-31}} \times 500 \vec{j} = -8,78 \times 10^{13} \vec{j} m/s^2$$

0.2 p
$$\vec{v}_x = ctt = 2 \times 10^6 \vec{i} \, m / s$$

0.1 p
$$t = \frac{e}{v_x} = \frac{0.02}{2 \times 10^6} = 10^{-8} s$$

0.2 p
$$\vec{v}_y = \vec{a}_y t = -8.78 \times 10^5 \ \vec{j} m / s$$

També serà vàlida la solució de les components de la velocitat sense vectors unitaris.

Criteris de correcció

Física

P5) a)

0.3 p
$$E = hf - \underbrace{hf_0}_{W_{extracció}} = h(f - f_0)$$

A partir del pendent de la recta es calcula la constant de Planck.

Triem per exemple, els punts: $(1.5 \cdot 10^{15}, 2,07)$ i $(1.0 \cdot 10^{15}, 0)$

0.7 p

pendent
$$\approx \frac{(2,07 \times 1,6 \times 10^{-19}) - 0}{1.5 \times 10^{15} - 10^{15}} = 6,62 \times 10^{-34} Js$$

Es poden acceptar valors aproximats ja que estem llegint una gràfica.

b)

0.4 p La freqüència llindar f_0 , és, segons la gràfica: 10^{15} Hz

La energia mínima d'extracció dels electrons és:

0.6 p
$$W_{extracció} = hf_0 = 6.62 \times 10^{-34} \times 10^{15} = 6.62 \times 10^{-19} J = 4.14 eV$$

Criteris de correcció

Física

OPCIO B

P3)

a)

La superfície equipotencial que passa per P és la de +10V i el pla que equidista de les dues càrregues ha de ser el de 0 V, de manera que la diferència entre superfícies consecutives ha de ser de 5 V 0.6 p (Indicar correctament els valors de potencial elèctric en la figura)

Dibuixar correctament les línies del camp elèctric en la figura 0.4 p

b)

0.3 p
$$V_P = kq_+ \frac{1}{r_+} + kq_- \frac{1}{r_-}$$

0.3 p
$$10 = 8,99 \times 10^9 \times q \times \left(\frac{1}{0,005} - \frac{1}{\sqrt{0,005^2 + 0.01^2}} \right)$$

0.4 p
$$q_{+} = 1.0 \times 10^{-11} C; \ q_{-} = -1.0 \times 10^{-11} C$$

Criteris de correcció

Física

P4)

a)

0.5 p Desintegració β^{-} $^{40}_{19}K \rightarrow ^{40}_{20}Ca + \beta^{-} + ^{0}_{0}\overline{V}_{e}$ Si no es posa el antineutrí: -0-2p

0.5 p Desintegració β^+ $^{40}_{19}K \rightarrow ^{40}_{18}Ar + \beta^+ + ^0_0 \nu_e$ Si no es posa el neutrí: -0.2 p

$$\beta^{-} = {}^{0}_{-1}e ; \beta^{+} = {}^{0}_{1}e$$

b)

0.1 p
$$E = 1460 MeV = 1460 \cdot 10^{6} eV \cdot \frac{1.6 \cdot 10^{-19}}{1 eV} = 2.336 \cdot 10^{-10} J$$

0.2 p
$$E = h v \Rightarrow v = \frac{E}{h} = \frac{2.336 \cdot 10^{-10}}{6.63 \cdot 10^{-34}} = 3.52 \cdot 10^{23} \, s^{-1}$$

0.3 p
$$\lambda = \frac{c}{v} = \frac{3 \cdot 10^8}{3.52 \cdot 10^{23}} = 8.51 \cdot 10^{-16} m$$

0.4 p
$$\Delta m = \frac{\Delta E}{c^2} = \frac{2.336 \cdot 10^{-10}}{\left(3,00 \cdot 10^8\right)^2} = 2.60 \cdot 10^{-27} \, kg$$

P5)

a)
$$B(x) = \frac{\mu_0 I}{2} \frac{R^2}{(x^2 + R^2)^{3/2}}$$

0.6 p
$$B(x=0) = \frac{\mu_0 I}{2R}$$

0.4 p
$$B(x=0) = \frac{4\pi 10^{-7} \times 10}{2 \times 0.05} = 1,26 \times 10^{-4} T = 126 \mu T$$

b)

Si el camp magnètic al centre de l'espira esta dirigit cap al sentit positiu de l'eix x, $(B\vec{i})$, el sentit del corrent elèctric és antihorari (justificació amb la regla de la mà dreta).

Criteris de correcció

Física

Sèrie 5

P1)

a) Si el motor realitza $1,91\cdot 10^3$ rpm, la seva freqüència angular serà:

$$\omega = 1.91 \cdot 10^3 \frac{\text{voltes}}{\text{minut}} \times \frac{2\pi \text{ rad}}{\text{volta}} \times \frac{\text{minut}}{60\text{s}} = 200 \text{ rad/s} \boxed{\textbf{0.2}}$$

L'equació del MVHS és:

$$x(t) = A \sin(\omega t + \phi)$$

D'altra banda: 2 A = 20,0 cm, per tant $A = 10,0 \text{ cm} \boxed{\textbf{0.2}}$

Com que: $x(t=0) = \pm A \Rightarrow \phi = \pm \pi/2$ el que és el mateix:

$$x(t) = A \sin(\omega t \pm \pi/2) \text{ m}$$
 0.2

(també seria vàlida la solució: $x(t) = \pm A \cos(\omega t + \phi)$ amb $\phi = 0$)

D'altra banda:

$$v(t) = \pm A\omega \cos(\omega t \pm \pi/2) \text{ m/s}$$
 0.2

Per tant:

$$v_{\mathrm{maxima}} = A\omega = 20,0 \text{ m/s}$$
 0.2

b) La constant de recuperació en un MVHS ve donada per: $k=\omega^2\ m$ 0.4 de manera que la força recuperadora màxima en un MVHS és:

$$F_{m\`{a}xima} = k A \boxed{\mathbf{0.2}} = 800 \text{ N} \boxed{\mathbf{0.4}}$$

P2)

a) Atès que les càrregues tenen signe diferent i el punt on hem de calcular el camp està situat entre les dues càrregues, el camp total serà la suma dels valors absoluts dels camps de cada una de les càrregues, la direcció serà la de la recta que uneix les dues càrregues i sentit el de la càrrega positiva a la negativa.
 0.3

$$|\vec{E}_{3\mu C}| = 9.0 \cdot 10^9 \frac{3 \cdot 10^{-6}}{(5 \cdot 10^{-2})^2} = 1.08 \cdot 10^7 \text{ N/C}$$

$$|\vec{E}_{-7\mu C}| = 9.0 \cdot 10^9 \frac{7 \cdot 10^{-6}}{(1 \cdot 10^{-1})^2} = 6.3 \cdot 10^6 \text{ N/C}$$

$$|\vec{E}| = |\vec{E}_{3\mu C}| + |\vec{E}_{-7\mu C}| = 1,7 \cdot 10^7 \text{ N/C}$$
 0.3

b) Sigui x la distància que hi ha entre la càrrega de $3\mu C$ i el punt on calculem el potencial.

$$V(x) \ = \ 9, 0 \cdot 10^9 \ \left\{ \ \frac{3 \cdot 10^{-6}}{x} \ + \ \frac{-7 \cdot 10^{-6}}{0, 15 \ -x} \ \right\} \ = \ 0 \ \boxed{\textbf{0.5}} \ \Rightarrow$$

$$\frac{3}{x} - \frac{7}{0.15 - x} = 0 \Rightarrow 0.45 - 3x = 7x \Rightarrow x = 0.045 \,\mathrm{m} = 4.5 \,\mathrm{cm} \, \boxed{0.5}$$

Criteris de correcció

Física

Opció A P3)

a) La força d'atracció gravitatòria de Saturn sobre Mimas serà igual a la massa de Mimas per la seva acceleració centrípeta: 0.1

$$G \frac{M_S \ M_M}{r_{
m orbita}^2} = M_M \left(\frac{2\pi}{T} \right)^2 \ r_{
m orbita} \left[{f 0.1} \right]$$

$$r_{\text{orbita}} = \sqrt[3]{\frac{G M_S T^2}{4\pi^2}} = 1,85 \cdot 10^8 \text{ m}$$
 0.3

Per tant l'alçada respecte la superfície de Saturn serà: $h = r_{\text{orbita}} - R_{\text{Saturn}} = 1,28 \cdot 10^8 \text{ m}$ La seva velocitat orbital serà: $v_{\text{orbital}} = \omega r_{\text{orbita}} = \frac{2\pi}{T} r_{\text{orbita}} = 1,43 \cdot 10^4 \text{ m/s}$ 0.3

b) L'energia mecànica de Mimas serà:

$$E_{m} = E_{T} = \frac{1}{2} M_{M} v_{\text{orbital}}^{2} - \frac{G M_{S} M_{M}}{r_{\text{orbita}}} \boxed{\mathbf{0.2}}$$

$$G \frac{M_{S} M_{M}}{r_{\text{orbita}}^{2}} = M_{M} \frac{v_{\text{orbital}}^{2}}{r_{\text{orbita}}} \Rightarrow v_{\text{orbital}}^{2} = \frac{G M_{S}}{r_{\text{orbita}}} \boxed{\mathbf{0.2}}$$

$$E_m = E_T = -\frac{1}{2} \frac{G M_S M_M}{r_{\text{orbita}}} \left[\mathbf{0.2} \right] = -3,90 \cdot 10^{27} \text{ J} \left[\mathbf{0.2} \right]$$

El signe negatiu significa que el satèl·lit Mimas està girant en una òrbita estable al voltant de Saturn. $\boxed{\mathbf{0.2}}$

P4)

a) La força que fa un camp magnètic sobre una partícula carregada en moviment és $\vec{F} = q \vec{v} \wedge \vec{B}$ 0.2. Com que ara la velocitat i el camp magnètic són perpendiculars, el mòdul de la força és simplement F = q v B. 0.1 L'electró i el protó tenen la mateixa càrrega en valor absolut de forma que el mòdul de la força que fa el camp és el mateix

$$F = (1.60 \cdot 10^{-19})(5)(2 \times 10^{-3}) \equiv 1.60 \cdot 10^{-21} \,\mathrm{N} \,.$$

Per altra banda, el neutró no té càrrega elèctrica i per tant la força que actua sobre ell és $F=0\,\mathrm{N}.$ $\boxed{\mathbf{0.1}}$

Atès que la càrrega del protó és positiva, la força que fa el camp es dirigeix sobre l'eix X i en sentit positiu.

O.1 El protó descriu llavors un moviment circular en sentit horari vist des del semieix positiu Z.

O.1 Per altra banda, la càrrega de l'electró és negativa i el moviment que realitza és també circular, però en sentit contrari al que realitza el protó.

O.1 El neutró segueix una trajectòria rectilínia a velocitat constant segons el sentit positiu de l'eix Y.

O.1

b) El camp magnètic creat per un fil infinit de corrent sobre un punt que es troba a una distància r de l'eix del fil és

$$B = \frac{\mu_0 I}{2\pi r} \ .$$

Per tal que el protó descrigui un moviment rectilini, cal que el camp magnètic total que actua sobre ell sigui 0. En el present cas, això vol dir que el fil ha de fer un camp $\vec{B}_{fil} = -2.00 \cdot 10^{-3} \, T \, \hat{k}$. $\boxed{\textbf{0.4}}$ Pel que fa al valor del corrent, el trobem imposant la condició

$$\frac{\mu_0 I}{2\pi r} = 2.00 \cdot 10^{-3} ,$$
 0.1

o el que és el mateix

$$I = \frac{4\pi \, 10^{-3} \, 3 \cdot 10^{-3}}{4\pi \cdot 10^{-7}} = 30.0 \,\mathrm{A} \;. \; \boxed{\mathbf{0.5}}$$

Criteris de correcció

Física

P5)

a)

$$E_{fotons} = W_0 + E_{c \ m\`{a}xima} \Rightarrow W_0 = \frac{hc}{\lambda} - E_{c \ m\`{a}xima} \boxed{\textbf{0.2}}$$

El potencial de frenada és una manera de determinar l'energia cinètica màxima:

$$E_{c\ m\`{a}xima} = q\ V_{potencial\ de\ frenada} \Rightarrow$$

$$W_0 \ = \ \frac{hc}{\lambda} - q \, V_{potencial \ de \ frenada} \, \boxed{\textbf{0.2}} \ = \ \frac{6,63 \times 10^{-34} \cdot 3 \times 10^8}{560 \times 10^{-9}} - 1,6 \times 10^{-19} \cdot 0.95 \ = \ 2.03 \times 10^{-19} \, \mathrm{J} \, \boxed{\textbf{0.2}}$$

On W_0 és la funció de treball.

La frequència llindar per produir efecte fotoelèctric és:

$$\nu_0 = \frac{W_0}{h} = \boxed{\mathbf{0.2}} = 3,06 \times 10^{14} \text{ Hz} \boxed{\mathbf{0.2}}$$

b)

Si
$$\lambda > \lambda_0 \Rightarrow \frac{1}{\lambda} < \frac{1}{\lambda_0} \Rightarrow E(\lambda) = \frac{hc}{\lambda} < \frac{hc}{\lambda_0} = W_0 \Rightarrow$$

No es pot produir efecte fotoelèctric 0.5

Si
$$\nu > \nu_0 \Rightarrow E(\nu) = h\nu > h\nu_0 = W_0 \Rightarrow$$

En aquest cas sí que es produirà efecte fotoelèctric $\boxed{\textbf{0.5}}$

Criteris de correcció

Física

Opció B P3)

a) L'acceleració de la gravetat en funció de l'alçada ve donada per l'expressió:

$$g(h) = \frac{G M_T}{(h + R_T)^2} \boxed{\textbf{0.4}}$$

$$g(h = 330 \text{ km}) = 8,87 \text{ m/s}^2 \boxed{\textbf{0.3}} g(h = 50 \text{ km}) = 9,66 \text{ m/s}^2 \boxed{\textbf{0.3}}$$

b) Si considerem negligible la resistència de l'aire, durant tot el procés de caiguda l'energia es conserva, **0.2** per tant:

$$E_m(h = 330 \text{ km}) = E_m(h = 80 \text{ km}) \boxed{\mathbf{0.3}} \Rightarrow -\frac{G M_T m}{(330 + 6370) \cdot 10^3} = -\frac{G M_T m}{(80 + 6370) \cdot 10^3} + \frac{1}{2} m v^2 \Rightarrow v = \sqrt{2 G M_T \left\{ \frac{1}{(80 + 6370) \cdot 10^3} - \frac{1}{(330 + 6370) \cdot 10^3} \right\}} = 2,15 \cdot 10^3 \text{ m/s} \boxed{\mathbf{0.5}}$$

P4)

a) N(t) és el nombre de nuclis que queden de la substància radioactiva, després que hagi passat un temps t, si en tenim un nombre N_0 a l'instant inicial. $\boxed{\mathbf{0.2}}$

L'exponent $0.005~{\rm s}^{-1}$ és la constant de desintegració radioactiva $\Rightarrow \lambda = 0,005~{\rm s}^{-1}$ [0.2]

El període de semidesintegració és el temps que ha de passar perquè es reduixi a la meitat la quantitat d'una substància radioactiva $\boxed{0.2}$ \Rightarrow

$$\frac{N_0}{2} \; = \; N_0 \; \mathrm{e}^{-\; \lambda \; t_{1/2}} \; \Rightarrow \; \frac{1}{2} \; = \; \mathrm{e}^{-\; \lambda \; t_{1/2}} \; \Rightarrow \ln(1) \; - \; \ln(2) \; = -\; \lambda \; t_{1/2} \; \Rightarrow \; t_{1/2} \; = \; \frac{\ln 2}{\lambda} \; = \; 1, 4 \cdot 10^2 \; \mathrm{s} \; \boxed{0.4}$$

b) L'activitat d'una substància radioactiva es defineix com:

$$A(t) = -\frac{\mathrm{d}N(t)}{\mathrm{d}t} = (-\lambda)(-N_0) e^{-\lambda t} \boxed{\mathbf{0.5}} \Rightarrow$$

$$A(t = 4 \text{ hores}) = 0,005 \text{ s}^{-1} \cdot 10^{28} \text{ nuclis e}^{-(0,005 \text{ s}^{-1} \cdot 4 \text{hores} \cdot 3600 \frac{\text{s}}{1 \text{ hora}})} = 2,7 \cdot 10^{-6} \frac{\text{nuclis}}{\text{s}}$$

P5)

a) La força de Lorentz ve donada per l'expressió:

$$\vec{F} = q \ \vec{v} \wedge \vec{B} \ \boxed{\mathbf{0.2}} = 2 \cdot 1,60 \cdot 10^{-19} \cdot 8 \cdot 10^{5} \cdot 1, 2 \cdot (\vec{i} \wedge \vec{k}) = -3,07 \cdot 10^{-13} \ \vec{j} \ \mathrm{N} \ \boxed{\mathbf{0.2}}$$

La trajectòria serà circular ja que la força és perpendicular a la la velocitat de la partícula, $\boxed{\mathbf{0.2}}$ i girarà en el pla xy en sentit horari. $\boxed{\mathbf{0.1}}$

Oficina	d'Accó	2 2 2	Liniv	orcitat
Oncina	O ACCES	sala	Univ	ersnai

Pàgina 13 de 13

PAU 2016

Criteris de correcció

Física

b) La força de Lorentz serà la força centrípeta que ens farà girar la partícula α : $\boxed{\mathbf{0.2}}$

$$m_{\alpha} \frac{v^2}{r} = q v B \boxed{\mathbf{0.2}} \Rightarrow r = \frac{m_{\alpha} v}{q B} = 1,38 \cdot 10^{-2} \,\mathrm{m} \qquad \boxed{\mathbf{0.2}} \Rightarrow$$

$$2 \pi \nu r = v \left[\mathbf{0.2} \right] \Rightarrow \nu = \frac{v}{2 \pi r} = \frac{qB}{2 \pi m_{\alpha}} = 9,20 \cdot 10^6 \text{ Hz} = 9,2 \text{ MHz} \left[\mathbf{0.2} \right]$$