Engineering Technical School

Funções - Calculadora

O objetivo desta tarefa é criar uma calculadora avançada, utilizando os conceitos vistos durante as aulas. Para cada operação solicitada, crie uma função que realizará o input de números de acordo com as instruções abaixo.

- 1. Crie um menu, que permite que o usuário escolha entre as opções de cálculos existentes no programa:
 - a. Faça um tratamento que garanta que ele selecione apenas operações válidas; pode ser utilizando letras, palavras ou números.
 - Cada opção de cálculo deve estar associada a uma função, que será chamada e executada quando a pessoa a escolher;
- 2. Crie uma função para receber números inteiros e outra para receber números reais;
 - a. Se quiser pode criar apenas uma função, mas fique atento para a diferença entre esses números nas operações seguintes;
- 3. Faça os seguintes cálculos:
 - a. Soma (soma de dois números reais);
 - b. Subtração (subtração de dois números reais);
 - c. Multiplicação (multiplicação entre dois números reais);
 - d. Divisão (divisão entre dois números reais, onde o segundo número não pode ser 0);
 - e. Inverso (inverso de um número real, que é a divisão de 1 por esse número);
 - f. Potência (potência de uma base inteira positiva elevada a um expoente inteiro).
- 4. Crie uma função que recebe o resultado das operações e verifica se o número se encontra na notação de engenharia; caso não estiver, manipule-o para que fique na notação com o prefixo correto.

Notação de engenharia

Prefixo			F
Nome	Símbolo	Potência	Equivalente numérico
iota	Υ	10 ²⁴	1 000 000 000 000 000 000 000
zeta	Z	1021	1 000 000 000 000 000 000 000
exa	E	10 ¹⁸	1 000 000 000 000 000 000
peta	Р	10 ¹⁵	1 000 000 000 000 000
tera	Т	10 ¹²	1 000 000 000 000
giga	G	109	1 000 000 000
mega	М	10 ⁶	1 000 000
quilo	К	10 ³	1 000
hecto	h	10 ²	100
deca	da	10 ¹	10
nenhum		10°	1
deci	d	10-1	0,1
centi	С	10-2	0,01
mili	m	10-3	0,001
micro	μ	10-6	0,000 001
nano	n	10-9	0,000 000 001
pico	р	10-12	0,000 000 000 001
femto	f	10-15	0,000 000 000 000 001
atto	a	10-18	0,000 000 000 000 000 001
zepto	z	10-21	0,000 000 000 000 000 000 001
iocto	у	10-24	0,000 000 000 000 000 000

- 5. Crie as seguintes funções:
 - Fatorial (recebe um número inteiro positivo ou zero, e retorna o fatorial desse número);

 Número de Euler (recebe uma quantia de termos do somatório – números inteiros maiores que 1 – e retorna o Número de Euler calculado com n termos);

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots$$

 Número PI (recebe uma quantia de termos do somatório – números inteiros maiores que 1 – e retorna o Número PI calculado com n termos).

$$\frac{\pi}{4} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$$