Statistical Modeling

Purpose

Statistical modeling is a mathematical technique used to verify and quantify associations between one or more quantitative and/or qualitative *predictor* variables $(x_1, x_2, ...)$, and a single quantitative or qualitative *response* variable (y), or multiple multivariate normal response variables $(y_1, y_2, ...)$.

E.g., the association between income (x_1) , whether or not someone at home cooks (x_2) , and the number of dinners in the last k eaten outside the home (y).

Components

• Probability Model: $f(y, \theta)$

Discrete: Bernoulli, Binomial, Poisson, Multinomial

Continuous: Normal, Weibull, Multivariate Normal

Probability Models

Suppose there is a 6 week experiment with 15 animals in treatment group A and 15 animals in treatment group B. Consider the following measurements on each animal:

- Whether or not there were malignant tumors.
- The number of tumors that were malignant.
- The number of tumors.
- The average size of the tumors.
- The time to the first tumor.
- The number of tumors that were malignant, benign, or other.
- The average size and average weight of the tumors.

The corresponding probability models are Bernoulli, Binomial, Poisson, Normal, Weibull, Multinomial, and Multivariate Normal.

Bernoulli Trials

- The basis for the probability models we will examine in this chapter is the Bernoulli trial.
- We have Bernoulli trials if:
 - there are two possible outcomes (success and failure).
 - the probability of success, p, is constant.
 - the trials are independent.

The Geometric Probability Model

- A Geometric probability model tells us the probability for a random variable that counts the number of Bernoulli trials until the first success.
- You may not know in advance the number of trials needed.
- Geometric models are completely specified by one parameter,
 p, the probability of success, and are denoted Geom(p).

The Geometric Probability Model

Geometric model for Bernoulli trials: Geom(p)

p = probability of success

q = 1 - p = probability of failure

X = number of trials until the first success occurs

$$P(X = x) = q^{x-1}p$$

$$E(X) = \mu = \frac{1}{p} \qquad \qquad \sigma = \sqrt{\frac{q}{p^2}}$$

Independence

- When we don't have an infinite population, the trials may not be independent. But, there is a rule that allows us to pretend we have independent trials:
 - The 10% condition: Bernoulli trials must be independent. If that assumption is violated, it is still okay to proceed as long as the sample is smaller than 10% of the population.

The Binomial Model

- A Binomial model tells us the probability for a random variable that counts the number of successes in a fixed number of Bernoulli trials.
- Two parameters define the Binomial model: n, the number of trials; and, p, the probability of success. We denote this Binom(n, p).

The Binomial Model (cont.)

In n trials, there are

$$_{n}C_{k}=\frac{n!}{k!(n-k)!}$$

ways to have k successes.

- Read ${}_{n}C_{k}$ as "n choose k."
- Note: n! = n x (n-1) x ... x 2 x 1, and n! is read as "n factorial."

The Binomial Model (cont.)

Binomial model for Bernoulli trials: Binom(n,p)

n = number of trials

p = probability of success

q = 1 - p = probability of failure

X = number of successes in n trials

$$P(X = x) = \binom{n}{x} p^{x} q^{n-x} where \binom{n}{x} \frac{n!}{x!(n-x)!}$$

$$\mu = np$$

$$\sigma = \sqrt{npq}$$

The Normal Model

- Success/failure condition: A Binomial model is approximately Normal if we expect at least 10 successes and 10 failures:
 - $np \ge 10$ and $nq \ge 10$.
- As long as the Success/Failure Condition holds, we can use the Normal model to approximate Binomial probabilities.
- The parameters of the normal model are
 - $\mu = np$ and $\sigma = sqrt(npq)$

Continuous Random Variables

- When we use the Normal model to approximate the Binomial model, we are using a continuous random variable to approximate a discrete random variable.
- So, when we use the Normal model, we no longer calculate the probability that the random variable equals a particular value, but only that it lies between two values.

The Poisson Model

- The Poisson probability model approximates the Binomial model when the probability of success, p, is very small and the number of trials, n, is very large.
- The parameter for the Poisson model is λ . To approximate a Binomial model with a Poisson model, just make their means match: $\lambda = np$.

The Poisson Model (cont.)

Poisson probability model for successes: Poisson(λ)

 λ = mean number of successes

X = number of successes

e is approximately 2.71828

$$P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$$

$$E(X) = \lambda$$
 $SD(X) = \sqrt{\lambda}$

What Can Go Wrong?

- Be sure you have Bernoulli trials.
 - You need two outcomes per trial, a constant probability of success, and independence.
 - Remember that the 10% Condition provides a reasonable substitute for independence.
- Don't confuse Geometric and Binomial models.
- Don't use the Normal approximation with small n.
 - You need at least 10 successes and 10 failures to use the Normal approximation.

What have we learned?

- Bernoulli trials show up in lots of places.
- Depending on the random variable of interest, we might be dealing with a
 - Geometric model
 - Binomial model
 - Normal model
 - Poisson model

What have we learned? (cont.)

Geometric model

 When we're interested in the number of Bernoulli trials until the next success.

Binomial model

 When we're interested in the number of successes in a certain number of Bernoulli trials.

Normal model

 To approximate a Binomial model when we expect at least 10 successes and 10 failures.

Poisson model

 To approximate a Binomial model when the probability of success, p, is very small and the number of trials, n, is very large.