Thomas Snow

University of Toronto tsnow@cs.toronto.edu

Joint Work with Kanstantsin Pashkovich

Presentation Overview

- 1 Example
 Problem Example
 Algorithmic Objective
 Previous Work / Results
- 2 Consistent Instances Arrival Order Primal Assignments
- 3 Algorithm
 Online Partitioning
 Main Properties
 Feasibility and Competitiveness
 Cover Structure

$$\sum_e y_e = 2/3$$

 $\begin{aligned} & \text{Maximum Matching} = 1 \\ & \text{Current Ratio} = 2/3 \\ & \text{Competitive Ratio} \leq 2/3 \end{aligned}$

$$\sum_e y_e = 4/3$$

 $\label{eq:maximum Matching} \begin{aligned} &\text{Maximum Matching} = 2 \\ &\text{Current Ratio} = 2/3 \\ &\text{Competitive Ratio} \leq 2/3 \end{aligned}$

$$\sum_e y_e = 8/3$$

Maximum Matching = 3Current Ratio = 8/9

Competitive Ratio $\leq \min\{2/3, 8/9\} = 2/3$

$$\sum_e y_e = 8/3$$

 $\label{eq:maximum Matching} \begin{aligned} \text{Maximum Matching} &= 4 \\ \text{Current Ratio} &= 2/3 \end{aligned}$

Competitive Ratio $\leq 2/3$

Example

Problem Example

$$\sum_e y_e = 10/3$$

Maximum Matching = 4

Current Ratio = 5/6

Competitive Ratio $\leq \min\{2/3, 5/6\} = 2/3$

$$\sum_{e} y_{e} = 10/3$$

Maximum Matching = 6

Current Ratio = 5/9 < 2/3

Competitive Ratio $\leq \min\{2/3, 5/9\} = 5/9$

Goal

Given a target: $c \in [0, 1]$:

Goal

Design a strategy which assigns an arriving edge e a value $y_e \ge 0$ such that:

Fractional matching constraints are satisfied: For all u ∈ V,

$$\sum_{f\in\delta(u)}y_f\leq 1$$

At every time point:

Current Ratio
$$:= \frac{\sum_{f \in E} y_f}{|OPT_M|} \ge c$$

How large can c be?

Previous Work / Results

Known Bounds			
Maximum	Lower Bound	Upper Bound	
Degree			
1	1.0	1.0	
2	2/3 ≈ 0.667 [BST'18]	2/3 ≈ 0.667	
3	4/7 ≈ 0.571 [BST'18]	$4/(9-\sqrt{5})\approx 0.5914$	
4	8/15 ≈ 0.534 [BST'18]	$4/(9-\sqrt{5})\approx 0.5914$	
d	$\frac{1}{2}\left(1+\frac{1}{2^{d}-1}\right) [BST'18]$	$\frac{1}{2}\left(1+\frac{1}{d+1}\right)$ [GKMSW'19]	

Buchbinder, Segev, and Tkach 2018 Gamlath et al. 2019

Previous Work / Results

Known Bounds			
Maximum	Lower Bound	Upper Bound	
Degree			
1	1.0	1.0	
2	2/3 ≈ 0.667 [BST'18]	$2/3 \approx 0.667$	
3	$4/(9-\sqrt{5})\approx 0.5914$	$4/(9-\sqrt{5})\approx 0.5914$	
4	8/15 ≈ 0.534 [BST'18]	$4/(9-\sqrt{5})\approx 0.5914$	
d	$\frac{1}{2}\left(1+\frac{1}{2^d-1}\right)[BST'18]$	$\frac{1}{2}\left(1+\frac{1}{d+1}\right)$ [GKMSW'19]	

Buchbinder, Segev, and Tkach 2018 Gamlath et al. 2019

Previous Work / Results

Known Bounds			
Maximum	Lower Bound	Upper Bound	
Degree			
1	1.0	1.0	
2	2/3 ≈ 0.667 [BST'18]	2/3 ≈ 0.667	
3	$4/(9-\sqrt{5})\approx 0.5914$	$4/(9-\sqrt{5})\approx 0.5914$	
4	8/15 ≈ 0.534 [BST'18]	≈ 0.589	
d	$\frac{1}{2}\left(1+\frac{1}{2^d-1}\right) [BST'18]$	$\frac{1}{2}\left(1+\frac{1}{d+1}\right)$ [GKMSW'19]	

Buchbinder, Segev, and Tkach 2018 Gamlath et al. 2019

Arrival Order

Edge Types: 1 Path Edges

Theorem (Buchbinder, Segev, and Tkach 2018)

Arrival Order

Edge Types: 1 Path Edges

Theorem (Buchbinder, Segev, and Tkach 2018)

Arrival Order

Edge Types: 1 Path Edges 2 Spokes

Theorem (Buchbinder, Segev, and Tkach 2018)

Arrival Order

Edge Types: 1 Path Edges 2 Spokes

Theorem (Buchbinder, Segev, and Tkach 2018)

Arrival Order

Edge Types: 1 Path Edges 2 Spokes

Theorem (Buchbinder, Segev, and Tkach 2018)

Ideal Assignments

Example 0

How do we handle general arrival orders?

Online Partitioning

Online Partitioning

Online Partitioning

Example 0

Online Partitioning

Online Partitioning

Offilitie Partitioning

Arriving edge e = uv

Question

Should we assign e a path edge, a spoke, or a bridge?

Question

Should *e* join an existing consistent instance? If so, which one?

Question

What value should we assign e?

Classifying an Arriving Edge (Continued)

Definition

For $A \subseteq E$, type(A) := (t_1, t_2, t_3) where,

- $t_1 = \#$ path edges in A
- t₂ = # spokes in A
- *t*₃ = # bridges in *A*

$$type(\cdot) = (2, 1, 1)$$

Classifying an Arriving Edge (Continued)

Arriving edge e = uv

Consider type $(\delta(u))$ and type $(\delta(v))$

When should we assign e a bridge?

Algorithm 00000•000

Classifying an Arriving Edge

If e is not a bridge, what should we do?

Classifying an Arriving Edge

Paths and Spokes

Arriving edge e = uvAssume $deg(u) \ge deg(v)$

If e = uv is not a bridge...

1 Choose an endpoint $z(e) \in \{u, v\}$

$$z(e) \leftarrow \begin{cases} v & \text{if deg}(v) = 3 \& \sum_{f \in \delta(v) \setminus \{e\}} y_f > \sum_{f \in \delta(u) \setminus \{e\}} y_f \\ u & \text{otherwise} \end{cases}$$

2 Look at deg(z(e)) and type $(\delta_{G \setminus e}(z(e)))$

If deg(z(e)) = 3, when should e not be assigned a spoke?

• If type $(\delta_{G \setminus e}(z(e))) = (0, \frac{2}{2}, 0)$ or $(1, \frac{1}{2}, 0)$

Classifying an Arriving Edge Paths and Spokes

If deg(z(e)) < 3 or type $(\delta_{G \setminus e}(z(e))) = (0, 2, 0)$ or (1, 1, 0)

e gets assigned a path

Either

- e joins an existing consistent instance
 - e extends an existing path. i.e. there is a path edge in $\delta_{G \setminus e}(z(e))$
- e starts a new consistent instance

Lemma (Correctness Properties)

- 1 $\forall u \in V \sum_{e \in \delta(u)} y_e \leq 1$
- $2 \ \forall \ e = uv \in E \ x_u + x_v \geq c$
- $3 \sum_{e \in E} y_e = \sum_{u \in V} x_u$

To Accomplish Property 3: For Arriving Edge e = uv

Require: $a + b = y_e$

Note: a or b can be negative.

Cover Structure

Lemma (Cover Properties (Spokes))

1 \forall *u* ∈ *V* with deg(*u*) = 2 type ($\delta(u)$) \notin {(0, 2, 0), (1, 1, 0)}

Cover Structure

Lemma (Cover Properties (Paths))

1 \forall path edges e = uv, if e is the ith edge in the path then,

- Randomized Integral Algorithms for graphs of maximum degree d > 2?
- Does there exist a randomized Integral algorithm for bipartite graphs of maximum degree 3 achieving c-competitiveness?
- What's the minimum d for which on graphs of maximum degree d, vertex arrivals are strictly easier than edge arrivals?
 - Wang and Wong 2015 & Gamlath et al. 2019 show that for general graphs, vertex arrivals are easier than edge arrivals.
 - $d \neq 2$, Buchbinder, Segev, and Tkach 2018
 - $d \neq 3$, Buchbinder, Segev, and Tkach 2018 & this work

References

- Buchbinder, Niv, Danny Segev, and Yevgeny Tkach (Aug. 2018). "Online algorithms for maximum cardinality matching with edge arrivals". In: *Algorithmica* 81.5, pp. 1781–1799. DOI: 10.1007/s00453-018-0505-7.
- Gamlath, Buddhima et al. (2019). "Online Matching with General Arrivals". In: 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pp. 26–37. DOI: 10.1109/FOCS.2019.00011.
- Wang, Yajun and Sam Chiu-wai Wong (2015). "Two-sided Online Bipartite Matching and Vertex Cover: Beating the Greedy Algorithm". In: *Automata, Languages, and Programming*. Ed. by Magnús M. Halldórsson et al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1070–1081. ISBN: 978-3-662-47672-7. DOI:

10.1007/978-3-662-47672-7_87.

