

# Universidade Federal do Ceará – Departamento de Engenharia de Teleinformática Atividade Didática Remota – 2020.1 Introdução à Programação Prof. Tarcisio Ferreira Maciel, Dr.-Ing.

### Objetivos:

- Explorar programas que expressem fórmulas matemáticas nos termos da linguagem de programação.
- Explorar programas que realizem validação de dados de entrada.
- Explorar programas que utilizem estruturas condicionais.
- Explorar programas que utilizem estruturas de repetição.

Para cada questão de programação da atividade, comece criando uma aplicação do tipo "Console application" seguindo o passo-a-passo apresentado em laboratório. Em seguida, modifique o programa "Hello World!" para resolver uma questão. Cada projeto deverá ser chamado QuestaoXX, onde XX é o número da questão. Por exemplo, para a Questão 1, o projeto deverá se chamar Questao01. As questões que não puderem ser solucionadas no horário do laboratório deverão ser consideradas exercícios a serem solucionados em casa. **Em todas as questões é mandatório que os dados de entrada fornecidos pelo usuário sejam validados.** 

### 1 Estrutura condicional

**Exercício 1.** (L04) Dados três valores A, B e C, construa um programa para verificar se estes valores podem ser valores dos lados de um triângulo, e se forem, classifique o triângulo (imprimindo uma mensagem) segundo os ângulos (triângulo retângulo: um ângulo =  $90^{\circ}$ , triângulo obtusângulo: um ângulo >  $90^{\circ}$ , triângulo acutângulo: todos os ângulos <  $90^{\circ}$ ).

**Exercício 2.** (L03) Crie um programa que leia o destino do passageiro, se a viagem inclui retorno (ida e volta) e informe o preço da passagem conforme a tabela a seguir:

| Condição            | Ida        | Ida e Volta |
|---------------------|------------|-------------|
| Região Norte        | R\$ 500,00 | R\$ 900,00  |
| Região Nordeste     | R\$ 350,00 | R\$ 650,00  |
| Região Centro-Oeste | R\$ 350,00 | R\$ 600,00  |
| Região Sudeste      | R\$ 400,00 | R\$ 750,00  |
| Região Sul          | R\$ 300,00 | R\$ 550,00  |
|                     |            |             |

**Exercício 3.** (L03) Crie um programa que leia o número correspondente ao mês atual e os dígitos (somente os quatro números) de uma placa de veículo, e através do número finalizador da placa (algarismo da casa das unidades) determine se o IPVA do veículo vence no mês corrente.

| Final 1 - mês (1) - Janeiro   | Final 6 - mês (6) - Junho    |
|-------------------------------|------------------------------|
| Final 2 - mês (2) - Fevereiro | Final 7 - mês (7) - Julho    |
| Final 3 - mês (3) - Março     | Final 8 - mês (8) - Agosto   |
| Final 4 - mês (4) - Abril     | Final 9 - mês (9) - Setembro |
| Final 5 - mês (5) - Maio      | Final 0 - mês (10) - Outubro |

**Exercício 4.** (L04) Crie um programa que informe a quantidade total de calorias de uma refeição a partir do usuário que deverá informar o prato, a sobremesa e a bebida (veja a tabela a seguir).

| Prato       | Calorias | Sobremesa         | Calorias | Bebida                 | Calorias |
|-------------|----------|-------------------|----------|------------------------|----------|
| Vegetariano | 180 cal  | Abacaxi           | 75 cal   | Chá                    | 20 cal   |
| Peixe       | 230 cal  | Sorvete dietético | 110 cal  | Suco de laranja        | 70 cal   |
| Frango      | 250 cal  | Mouse dietético   | 170 cal  | Suco de melão          | 100 cal  |
| Carne       | 350 cal  | Mouse chocolate   | 200 cal  | Refrigerante dietético | 65 cal   |

Sugestão: enumere cada opção de prato, sobremesa e bebida. Ou seja: Prato: 1 - vegetariano, 2 - Peixe, 3 - Frango, 4 - Carne; Sobremesa: 1 - Abacaxi, 2 - Sorvete dietético, 3 - Mouse dietético, 4 - Mouse chocolate; Bebida: 1 - Chá, 2 - Suco de laranja, 3 - Suco de melão, 4 - Refrigerante dietético.

**Exercício 5.** (L03) Escreva um programa que leia um peso na Terra e o número de um planeta e imprima o valor do seu peso neste planeta. A relação de planetas é dada a seguir juntamente com o valor das gravidades relativas à Terra:

| Número | Gravidade Relativa | Planeta  |
|--------|--------------------|----------|
| 1      | 0,37               | Mercúrio |
| 2      | 0,88               | Vênus    |
| 3      | 0,38               | Marte    |
| 4      | 2,64               | Júpiter  |
| 5      | 1,15               | Saturno  |
| 6      | 1,17               | Urano    |

**Exercício 6.** (L03) Uma sequência de números forma uma progressão aritmética se a diferença entre dois números subsequentes for constante. Similarmente, uma sequência de números forma uma progressão geométrica se a razão (quociente) entre dois números subsequentes for constante. Escreva um programa que lê via teclado três números reais **a**, **b** e **c** e determina se os mesmos formam nesta ordem uma progressão aritmética e/ou uma progressão geométrica imprimindo uma mensagem adequada em cada caso.

**Exercício 7.** (L02) Crie um programa que a partir da idade e peso do paciente calcule a dosagem de determinado medicamento e imprima a receita informando quantas gotas do medicamento o paciente deve tomar por dose. Considere que o medicamento em questão possui 500 mg por ml, e que cada ml corresponde a 20 gotas.

- 1. Adultos ou adolescentes desde 12 anos, inclusive, se tiverem peso igual ou acima de 60 kg devem tomar 1000 mg;
- 2. Adultos ou adolescentes desde 12 anos, inclusive, com peso abaixo de 60 kg devem tomar 875 mg.
- 3. Para crianças e adolescentes abaixo de 12 anos a dosagem é calculada pelo peso corpóreo conforme a tabela a seguir:

| Peso            | Dosagem |
|-----------------|---------|
| 5 kg a 9 kg     | 125 mg  |
| 9,1 kg a 16 kg  | 250 mg  |
| 16,1 kg a 24 kg | 375 mg  |
| 24,1 kg a 30 kg | 500 mg  |
| Acima de 30 kg  | 750 mg  |

**Exercício 8.** (L04) [1, Q. 4.7] Faça um programa que receba o dia e o mês de uma data e determine a data do dia seguinte. Dados: abril, junho, setembro e novembro têm 30 dias; janeiro, março, maio, julho, agosto, outubro e dezembro têm 31 dias; e fevereiro tem 28. Desconsidere anos bissextos.

# 2 Estrutura de repetição

**Exercício 9.** (L01) Escreva um programa que imprima todos os números inteiros de 200 a 100 (em ordem decrescente).

**Exercício 10.** (L02) Crie um programa que imprima todos os números de 1 até 100, inclusive, e a soma do cubo desses números.

**Exercício 11.** (L03) Escreva um programa que receba números do usuário enquanto eles forem positivos e ao fim o programa deve imprimir quantos números foram digitados.

**Exercício 12.** (L03) Escreva um programa que receba números do usuário enquanto eles forem positivos e ao fim o programa deve imprimir a média dos números digitados.

**Exercício 13.** (L03) Escreva um programa que leia vários números e informe quantos números entre 100 e 200 foram digitados. Quando o valor 0 (zero) for lido, o programa deverá cessar sua execução.

**Exercício 14.** (L02) Considerando a equação do movimento uniformemente variado  $s=s_0+v_0t+\frac{1}{2}at^2$ , escreva um programa que leia a posição inicial  $s_0$ , a velocidade inicial  $v_0$ , a aceleração a e que calcule e imprima a posição final s em função do tempo t para  $t \in [0,30]$  s com passo de 1 s.

**Exercício 15.** (L03) Crie um programa que leia um número (**NUM**) e então imprima os múltiplos de 3 e 5, ao mesmo tempo, no intervalo fechado de 1 a **NUM**.

**Exercício 16.** (L03) Dado um país A, com 5.000.000 de habitantes e uma taxa de natalidade de 3% ao ano, e um país B com 7.000.000 de habitantes e uma taxa de natalidade de 2% ao ano, escreva um programa que seja capaz de calcular iterativamente e no fim imprimir o tempo necessário para que a população do país A ultrapasse a população do país B.

**Exercício 17.** (L03) Um poupador possui uma quantia inicial PV em uma caderneta de poupança e deseja realizar depósitos mensais de PMT com o objetivo de acumular um valor futuro FV. Sabendo que a taxa de juros i é capitalizada ao final de cada mês, escreva um programa que leia PV, FV, PMT e i, calcule e imprima mês-a-mês o valor total acumulado pelo poupador e quantos meses n serão necessários para ele atingir seu objetivo.

Exercício 18. (L03) Escreva um programa que determine todos os divisores de um dado número N.

**Exercício 19.** (LO4) Sendo  $S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{N}$ , faça um programa para gerar o número S. O número N é lido do teclado.

**Exercício 20.** (L04) Escreva um programa que realize a potência de **A** (número real) por **B** (número inteiro e positivo), ou seja,  $A^B$ , através de multiplicações sucessivas. Esses dois valores são passados pelo usuário através do teclado.

Exercício 21. (L06) [2, Q. 2.18] Escreva um programa que calcule e imprima o valor de S dado por

$$S = \frac{1}{N} + \frac{2}{N-1} + \frac{3}{N-2} + \frac{4}{N-3} + \ldots + \frac{N-1}{2} + \frac{N}{1},$$

em que N é um número inteiro positivo lido pelo teclado.

**Exercício 22.** (L05) Na associação em paralelo de um conjunto de resistores com resistências  $R_1, R_2, \ldots, R_N$  Ohms, a resistência  $R_{eq}$  do resistor equivalente pode ser calculada a partir da relação

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_N}.$$

Escreva um programa que calcule o valor da resistência  $R_{eq}$  do resistor equivalente da associação em paralelo de N resistores. O programa deve inicialmente solicitar o número N>1 de resistores a ser considerado. Em seguida, ele deve ler o valor da resistência de cada resistor da associação em paralelo, calcular e imprimir o valor de  $R_{eq}$ .

Por exemplo, se N=2,  $R_1=1$  e  $R_2=1$ , teríamos que  $R_{eq}=0,5$ . O programa deve verificar a validade dos dados fornecidos e imprimir mensagens adequadas alertando sobre dados inválidos. Não é necessário preocupar-se com as unidades das medidas.

**Exercício 23.** (L05) Na associação em paralelo de um conjunto de resistores com resistências  $R_1, R_2, \ldots, R_N$  Ohms, a corrente que flui através de cada um dos resistores é inversamente proporcional ao valor de sua resistência. Logo, a corrente  $i_1$  que flui através do resistor com resistência  $R_1$  pode ser calculada a partir da expressão

$$i_1 = V \cdot \frac{\frac{1}{R_1}}{\frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_N}}.$$

Escreva um programa que calcule o valor da corrente  $i_1$  que flui através de um resistor com resistência  $R_1$  associado em paralelo com outros N-1 resistores com resistências  $R_2,\ldots,R_N$ . O programa deve inicialmente solicitar o número N>1 de resistores a ser considerado. Em seguida, ele deve ler o valor da resistência de cada resistor da associação em paralelo, calcular e imprimir o valor de  $i_1$ . Considere que V=12 Volts. Por exemplo, se N=2,  $R_1=1$  e  $R_2=1$ , teríamos que  $i_1=12\cdot\frac{1}{\frac{1}{1}+\frac{1}{1}}=6$ . O programa deve verificar a validade dos dados fornecidos e imprimir mensagens adequadas alertando sobre dados inválidos. Não é necessário preocupar-se com as unidades das medidas.

**Exercício 24.** (L05) Na associação em série de um conjunto de resistores com resistências  $R_1, R_2, \ldots, R_N$  Ohms, a queda de tensão em cada um dos resistores é diretamente proporcional ao valor de sua resistência. Logo, a queda de tensão  $V_1$  sobre o resistor com resistência  $R_1$  pode ser calculada a partir da expressão

$$V_1 = V \cdot \frac{R_1}{R_1 + R_2 + \ldots + R_N},$$

em que V é a tensão em Volts aplicada ao conjunto. Escreva um programa que calcule o valor da queda de tensão  $V_1$  sobre o resistor com resistência  $R_1$  associado em série com outros N-1 resistores com resistências  $R_2,\ldots,R_N$ . O programa deve inicialmente solicitar o número N>1 de resistores a ser considerado e o valor da tensão V aplicada ao conjunto. Em seguida, ele deve ler o valor da resistência de cada resistor da associação em série, calcular e imprimir o valor de  $V_1$ . Por exemplo, se  $N=2,V=12,R_1=1$  e  $R_2=1$ , teríamos que  $V_1=12\cdot\frac{1}{1+1}=6$ . O programa deve verificar a validade dos dados fornecidos e imprimir mensagens adequadas alertando sobre dados inválidos. Não é necessário preocupar-se com as unidades das medidas.

**Exercício 25.** (L05) Na associação em série de um conjunto de capacitores com capacitâncias  $C_1, C_2, \ldots, C_N$  F, a capacitância  $C_{eq}$  do capacitor equivalente pode ser calculada a partir da relação

$$\frac{1}{C_{ea}} = \frac{1}{C_1} + \frac{1}{C_2} + \ldots + \frac{1}{C_N}.$$

Escreva um programa que calcule o valor da capacitância  $C_{eq}$  do capacitor equivalente da associação em série de N capacitores. O programa deve inicialmente solicitar o número N>1 de capacitores a ser considerado. Em seguida, ele deve ler o valor da capacitância de cada capacitor da associação em série, calcular e imprimir o valor de  $C_{eq}$ . Por exemplo, se N=2,  $C_1=1$  e  $C_2=1$ , teríamos que  $C_{eq}=0,5$ . O programa deve verificar a validade dos dados fornecidos e imprimir mensagens adequadas alertando sobre dados inválidos. Não é necessário preocupar-se com as unidades das medidas.

**Exercício 26.** [3, Q. 5.24] Faça um programa que receba um conjunto com uma quantidade indeterminada de valores inteiros e positivos, calcule e mostre o maior e o menor valor do conjunto. Considere que:

- i. para encerrar a entrada de dados, deve ser digitado o valor zero.
- ii. para valores negativos, deve ser enviada uma mensagem.
- iii. os valores negativos ou iguais a zero não entrarão nos cálculos.

**Exercício 27.** (L04) [1, Q. 2.19 – MDC] Faça um programa que determine o máximo divisor comum (MDC) de dois inteiros positivos x e y pelo algoritmo de Euclides, onde x > y:

- i. Divida x por y e obtenha o resto  $r_1$ . Se  $r_1$  for zero, o MDC entre x e y é y.
- ii. Se  $r_1$  não for zero, divida y por  $r_1$  e obtenha um resto  $r_2$ . Se  $r_2$  for zero, o MDC entre x e y é  $r_1$ .
- iii. Se  $r_2$  não for zero, divida  $r_1$  por  $r_2$  e obtenha o resto  $r_3$ . Se  $r_3$  for zero, o MDC entre x e y é  $r_2$ , e assim por diante.

**Exercício 28.** (L05) A raiz quadrada r de um número real não-negativo x pode ser calculada iterativamente fazendo  $r_{n+1} = \frac{1}{2} \left( r_n + \frac{x}{r_n} \right)$  e tomando  $r_0 = \frac{x}{2}$ . A iteração deve continuar até que o processo convirja, ou seja, até que  $r_{n+1} = r_n$ . Escreva uma função **raiz** que calcula e retorne a raiz quadrada de um número real positivo x fornecido pelo teclado. Na função **main**, leia um número real  $x_1 > 0$  e utilizando a função **raiz**, calcule e imprima na função **main** a raiz quadrada de  $x_1$ .

### Referências

- [1] L. J. Aguilar, *Fundamentos da programação: algoritmos, estruturas de dados e objetos*, 3rd ed. McGraw-Hill, 2008.
- [2] Â. M. de Guimarães and N. A. C. de Lages, *Algoritmos e estruturas de dados*, 31st ed. Livros Técnicos e Científicos, 1994.
- [3] A. F. G. Ascencio and E. A. V. de Campos, *Fundamentos da programação de computadores: algoritmos, Pascal, C/C++ e Java*, 3rd ed. Prentice Hall, 2012.