THE MOREAU ENVELOPE APPROACH FOR THE_L1_TV_IMAGE_DENOISING_MODEL-Chen-Shen-Xu-Zeng-2014

По факту тут приведены разные варианты реализации I1_tv-модели

$$\min_{u} \{\lambda \|u - x\|_1 + \|u\|_{\text{TV}}\}$$

u: Это переменная, которую мы оптимизируем. В контексте обработки изображений u может представлять восстановленное или очищенное изображение.

x: Это исходное изображение или сигнал, который может быть зашумленным или искаженным.

 $\lambda>0$: Параметр баланса между двумя терминами. Он управляет относительным весом каждого слагаемого.

Использование L1-нормы вместо L2-нормы (как в MSE) делает эту модель более устойчивой к выбросам и позволяет сохранять резкие переходы (например, края объектов на изображении).

$$\|u\|_{\mathrm{TV}} = \sum_{i,j} \sqrt{\left(rac{\partial u}{\partial x}
ight)^2 + \left(rac{\partial u}{\partial y}
ight)^2}$$

Это **Total Variation (TV)-норма** изображения u. Она измеряет сумму градиентов (или изменений интенсивности) пикселей в изображении. В дискретном случае она может быть записана как:

$$\|u\|_{\mathrm{TV}} = \sum_{i,j} \left(|u_{i+1,j} - u_{i,j}| + |u_{i,j+1} - u_{i,j}|
ight)$$

где $\overline{u_{i,j}}$ — интенсивность пикселя в точке (i,j).

TV-норма способствует получению разряженного градиента, т. е. изображения с резкими границами и минимальными изменениями внутри однородных областей.

Это особенно полезно для задач, где важно сохранить края объектов (например, в задачах сегментации или восстановления изображений).

Если и имеет резкие переходы (например, края), то TV-норма остается небольшой.

Если и содержит много мелких деталей или шума, то TV-норма увеличивается.

- Первый термин ($\lambda \|u-x\|_1$) стремится сделать u похожим на x.
- Второй термин ($\|u\|_{\mathrm{TV}}$) стремится сделать u гладким и с резкими границами.

Параметр λ регулирует баланс между этими двумя целями:

- Большое λ : Приоритет отдается точному приближению u к x, но возможны "мягкие" края.
- Маленькое λ : Приоритет отдается гладкости и резким границам, но u может отклоняться от x.

Они рассматривают данную модель, применяя функцию

$$\mathrm{env}_{eta}\psi(z):=\min_{y\in\mathbb{R}^m}\left\{rac{1}{2eta}\|y-z\|_2^2+\psi(y)
ight\}$$

Объяснение функции:

Эта формула описывает обобщенную проекцию или proximal оператор, который часто используется в оптимизации и машинном обучении. Она называется envelope function (функция оболочки) или Moreau envelope.

Что делает эта функция?

Функция $\mathrm{env}_{eta}\psi(z)$ минимизирует сумму двух терминов:

- 1. **Квадратичное расстояние** : $\frac{1}{2\beta}\|y-z\|_{2}^2$, которое измеряет близость точки y к точке z.
- 2. **Целевая функция** : $\psi(y)$, которая представляет собой некоторую целевую функцию, которую мы хотим минимизировать.

Минимизация этой суммы позволяет найти точку y, которая балансирует между близостью к z и минимизацией $\psi(y)$.

Переменные и их значения:

- 1. $\operatorname{env}_{\beta}\psi(z)$:
 - Это результат применения оператора оболочки к функции ψ с параметром eta в точке z.
 - Это значение является минимальным значением выражения внутри скобок при оптимальном выборе y.
- 2. $\beta > 0$:
 - Параметр β регулирует "степень гладкости" функции $\mathrm{env}_{\beta}\psi(z)$. Чем больше β , тем более гладкой становится функция $\mathrm{env}_{\beta}\psi(z)$.
 - Он также влияет на вес квадратичного слагаемого по сравнению с $\psi(y)$.
- 3. $z \in \mathbb{R}^m$:
 - Точка, относительно которой производится минимизация. Это входная точка для функции $\mathrm{env}_{\beta}\psi(z).$
- 4. $y \in \mathbb{R}^m$:
 - Переменная, по которой происходит минимизация. Это точка, которая выбирается так, чтобы минимизировать выражение $\frac{1}{2\beta}\|y-z\|_2^2+\psi(y)$.

- 5. $||y-z||_2^2$:
 - Квадрат евклидова расстояния между точками y и z. Это измеряет, насколько близка точка y к точке z.
- 6. $\psi(y)$:
 - Целевая функция, зависящая от y. Она может быть любой выпуклой функцией, которую мы хотим минимизировать. Например, это может быть функция потерь, штраф или регуляризация.

Геометрическая интерпретация:

- ullet Функция $rac{1}{2eta}\|y-z\|_2^2$ представляет собой параболоид, который стремится "тянуть" y к z.
- Функция $\psi(y)$ представляет собой целевую поверхность, которую нужно минимизировать.
- Минимизация их суммы позволяет найти компромисс между близостью к z и минимизацией $\psi(y)$.

Применяя данную функцию к исходной, они получили 5 вариантов

МОДЕЛЬ	ТЕРМ ТОЧНОСТИ	РЕГУЛЯРИЗАЦИОННЫЙ ТЕРМ	модель
1	$ u-x _1$	arphi(Bu)	$\min_u \left\{ \lambda u-x _1 + arphi(Bu) ight\}$
2	$\mathrm{env}_{\beta \cdot _1}(u-x)$	arphi(Bu)	$\min_u \left\{ \lambda \mathrm{env}_{eta \cdot _1}(u-x) + arphi(Bu) ight\}$
3	$ u-x _1$	$\mathrm{env}_{\beta\varphi}(Bu)$	$\min_u \left\{ \lambda u-x _1 + ext{env}_{etaarphi}(Bu) ight\}$
4	$\mathrm{env}_{\beta \cdot _1}(u-x)$	$\mathrm{env}_{\beta\varphi}(Bu)$	$\min_u \left\{ \lambda \mathrm{env}_{eta \cdot _1}(u-x) + \mathrm{env}_{etaarphi}(Bu) ight\}$
5	$ u-x _1$	$\mathrm{env}_{\beta\varphi\circ B}(Bu)$	$\min_u \left\{ \lambda u-x _1 + \mathrm{env}_{eta arphi \circ B}(Bu) ight\}$
6	$\mathrm{env}_{\beta \cdot _1}(u-x)$	$\mathrm{env}_{\beta\varphi\circ B}(Bu)$	$\min_u \left\{ \lambda \mathrm{env}_{eta \cdot _1}(u-x) + \mathrm{env}_{etaarphi\circ B}(Bu) ight\}$

Самой эффективной из них оказалась модель 3, тк она наиболее предпочтительная для задачи удаления импульсного шума (шум соль-перец).

Модель 3 основана на следующей формуле:

$$\min_u \left\{ \lambda \|u - x\|_1 + \operatorname{env}_{eta arphi}(Bu)
ight\},$$

где:

- ullet x зашумленное изображение.
- u восстанавливаемое изображение.
- λ параметр баланса между термом точности и регуляризатором.

- $\|u-x\|_1$ терм точности, представляющий ℓ^1 -норму разницы между исходным изображением и зашумленным.
- ullet $\mathrm{env}_{eta arphi}(Bu)$ сглаженная полная вариация, где:
 - ullet B матрица разностей, описывающая полную вариацию изображения.
 - φ функция, связанная с полной вариацией.
 - ullet $\mathrm{env}_{eta arphi}$ оболочка Морана функции arphi, которая делает её дифференцируемой.

Для решения модели 3 были использованы два основных подхода:

Алгоритм 1 : Ускоренный метод Гаусса-Зейделя.

```
Algorithm 1 Proximity algorithm for Models 1-4 accelerated by GS iteration

Given: A noisy image x in \mathbb{R}^d; \lambda > 0, \beta > 0, \gamma > 0, \sigma > 0 such that \frac{\sigma}{\gamma} < \frac{1}{8}

Initialization: u^0 = x, v^0 = 0, b^0 = 0

repeat

(a) Update the components of u^{k+1} according to equation (38)

(b) v^{k+1} \leftarrow \operatorname{prox}_{\frac{1}{\sigma}R}(b^k + Bu^{k+1})

(c) b^{k+1} \leftarrow b^k + Bu^{k+1} - v^{k+1}

until u^{k+1} converges or satisfies a stopping criteria.
```

(перевод с англ.)

Дано: Зашифрованное изображение $x\in\mathbb{R}^d$; $\lambda>0$, $\beta>0$, $\gamma>0$, $\sigma>0$ такие, что $\frac{\sigma}{\gamma}<\frac{1}{8}.$

Инициализация: $u^0=x$, $v^0=0$, $b^0=0$.

Повторять:

- 1. Обновить компоненты u^{k+1} согласно уравнению (38).
- 2. $v^{k+1} \leftarrow \operatorname{prox}_{\frac{1}{\gamma}R}(b^k + Bu^{k+1})$.
- 3. $b^{k+1} \leftarrow b^k + Bu^{k+1} v^{k+1}$.

Пока u^{k+1} сходится или удовлетворяет критерию остановки.

Он показывает быструю сходимость при небольших значениях β (меньше 10).

Алгоритм 6: Комбинация FISTA и метода Гаусса-Зейделя.

Этот алгоритм применяет FISTA для ускорения сходимости итерационного процесса.

Он особенно эффективен при больших значениях β (от 10 до 20), так как FISTA способствует более быстрой минимизации целевой функции.

Algorithm 6 The proximity algorithm for Model 3 or Model 4 accelerated by

FISTA and GS iteration

Given: A noisy image x in \mathbb{R}^d ; $\lambda>0$, $\beta>0$, $\gamma>0$ such that $\frac{1}{\gamma\beta}<\frac{1}{4}$ Initialization: $y^1=u^0=x$, $u^{-1}=0$, $t^1=1$

- (a) Update the components of y^{k+1} according to equation (55).
- (b) $u^k = y^{k+1}$
- (c) $t^{k+1} = \frac{\sqrt{1+4(t^k)^2+1}}{2}$
- (d) $y^{k+1} = u^k + \frac{t^k-1}{t^{k+1}}(u^k u^{k-1})$

until u^k converges or satisfies a stopping criteria.

(перевод с англ.)

Дано: Зашифрованное изображение $x\in\mathbb{R}^d$; $\lambda>0$, $\beta>0$, $\gamma>0$ такие, что $\frac{1}{\gamma\beta}<\frac{1}{4}.$

Инициализация: $y^1=u^0=x$, $u^{-1}=0$, $t^1=1$.

Повторять:

- 1. Обновить компоненты y^{k+1} согласно уравнению (55).
- 2. $u^k = y^{k+1}$.
- 3. $t^{k+1} = \frac{\sqrt{1+4(t^k)^2}+1}{2}$.
- 4. $y^{k+1} = u^k + \frac{t^k-1}{t^{k+1}}(u^k u^{k-1})$.

Пока u^k сходится или удовлетворяет критерию остановки.

Из другой статьи

1D TV Denoising Algorithm

Input: integer size $N \ge 1$, real sequence (y[1], ..., y[N]), real parameter $\lambda > 0$. Output: real sequence $(x^*[1], ..., x^*[N])$ solution to (1).

- 1. Set $k = k_0 = k_- = k_+ \leftarrow 1$, $\nu_{\min} \leftarrow y[1] \lambda$, $\nu_{\max} \leftarrow y[1] + \lambda$, $u_{\min} \leftarrow \lambda$, $u_{\max} \leftarrow -\lambda$.
- 2. If k = N, set $x^*[N] \leftarrow \nu_{\min} + u_{\min}$ and terminate.
- 3. If $y[k+1] + u_{\min} < v_{\min} \lambda$, set $x^*[k_0] = \cdots = x^*[k_-] \leftarrow v_{\min}$, $k = k_0 = k_- = k_+ \leftarrow k_- + 1$, $v_{\min} \leftarrow y[k]$, $v_{\max} \leftarrow y[k] + 2\lambda$, $u_{\min} \leftarrow \lambda$, $v_{\max} \leftarrow -\lambda$.
- 4. Else, if $y[k+1] + u_{\text{max}} > v_{\text{max}} + \lambda$, set $x^*[k_0] = \cdots = x^*[k_+] \leftarrow v_{\text{max}}$, $k = k_0 = k_- = k_+ \leftarrow k_+ + 1$, $v_{\text{min}} \leftarrow y[k] 2\lambda$, $v_{\text{max}} \leftarrow y[k]$, $u_{\text{min}} \leftarrow \lambda$, $u_{\text{max}} \leftarrow -\lambda$.
- 5. Else, set $k \leftarrow k+1$, $u_{\min} \leftarrow u_{\min} + y[k] v_{\min}$ and $u_{\max} \leftarrow u_{\max} + y[k] v_{\max}$.
- 6. If $u_{\min} \ge \lambda$, set $v_{\min} \leftarrow v_{\min} + (u_{\min} \lambda)/(k k_0 + 1)$, $u_{\min} \leftarrow \lambda$, $k_- \leftarrow k$. If $u_{\max} \le -\lambda$, set $v_{\max} \leftarrow v_{\max} + (u_{\max} + \lambda)/(k - k_0 + 1)$, $u_{\max} \leftarrow -\lambda$, $k_+ \leftarrow k$.
- 7. If k < N, go to 3
- 8. If $u_{\min} < 0$, set $x^*[k_0] = \cdots = x^*[k_-] \leftarrow v_{\min}$, $k = k_0 = k_- \leftarrow k_- + 1$, $v_{\min} \leftarrow y[k]$, $u_{\min} \leftarrow \lambda$, $u_{\max} \leftarrow y[k] + \lambda v_{\max}$. Then go to 2.
- 9. Else, if $u_{\text{max}} > 0$, set $x^*[k_0] = \cdots = x^*[k_+] \leftarrow v_{\text{max}}$, $k = k_0 = k_+ \leftarrow k_+ + 1$, $v_{\text{max}} \leftarrow y[k]$, $u_{\text{max}} \leftarrow -\lambda$, $u_{\text{min}} \leftarrow y[k] \lambda v_{\text{min}}$. Then go to 2.
- 10. Else, set $x^*[k_0] = \cdots = x^*[N] \leftarrow \nu_{\min} + u_{\min}/(k k_0 + 1)$ and terminate.