Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Estadística

Primer Semestre 2010

Curso : Probabilidad y Estadística

Sigla : EYP1113

Pauta : I2

Profesores : Ricardo Aravena (Sec 01 y 03) y Ricardo Olea (Sec 02 y 04)

Ayudantes : Tamara Fernández, Claudia Ortega, Constanza Quezada, Ignacia Vicuña.

Problema 1

Un circuito transfiere corriente desde A a B mediante los nodos 1, 2, 3 y 4. Estos nodos se encuentran actualmente operativos y desde que el sistema comienza a funcionar los tiempos de vida útil de cada nodo se comportan de manera independiente según la distribución determinada por la siguiente función de densidad:

$$f(t) = \begin{cases} \frac{\beta}{\alpha} \left(\frac{t}{\alpha}\right)^{\beta - 1} \exp\left[-\left(\frac{t}{\alpha}\right)^{\beta}\right], & \text{si } t \ge 0, \, \alpha > 0 \text{ y } \beta > 0 \\ 0, & \text{en otro caso} \end{cases}$$

(a) [3.0 Ptos] Determine la función de distribución de probabilidad acumulada y la función de densidad del Tiempo de funcionamiento del sistema según el siguiente circuito.

(b) [3.0 Ptos] Repita (a) para este nuevo circuito.

Solución

(a) Para el circuito propuesto el tiempo T de funcionamiento del sistema está determinado por

$$T = \max\{T_1, T_2, T_3, T_4\}$$
 [0.5 Ptos]

donde T_1, \dots, T_4 son variables aleatorias independientes e idénticamente distribuidas con función de densidad

$$f(t) = \begin{cases} \frac{\beta}{\alpha} \left(\frac{t}{\alpha}\right)^{\beta - 1} \exp\left[-\left(\frac{t}{\alpha}\right)^{\beta}\right], & \text{si } t \ge 0, \, \alpha > 0 \text{ y } \beta > 0 \\ 0, & \text{en otro caso} \end{cases}$$

Luego, su función de distribución de probabilidad acumulada esta dada por:

$$F(t) = \begin{cases} 0 & t < 0 \\ 1 - \exp\left[-\left(\frac{t}{\alpha}\right)^{\beta}\right] & t \ge 0 \end{cases}$$
 [1.0 Ptos]

para $\alpha > 0$ y $\beta > 0$.

Se pide la función de distribución de probabilidad acumulada de T la cual se obtiene como sigue:

$$\begin{split} F_T(t) &= P(T \leq t) \\ &= P(\max\{T_1,\,T_2,\,T_3,\,T_4\} \leq t) \\ &= P(T_1 \leq t,\,T_2 \leq t,\,T_3 \leq t,\,T_4 \leq t) \quad \textbf{[0.2 Ptos]} \\ &= \prod_{i=1}^4 P(T_i \leq t) = \prod_{i=1}^4 F_{T_i}(t), \quad \text{por independencia} \quad \textbf{[0.3 Ptos]} \\ &= F(t)^4, \quad \text{por idéntica distribución} \quad \textbf{[0.3 Ptos]} \\ &= \left\{1 - \exp\left[-\left(\frac{t}{\alpha}\right)^{\beta}\right]\right\}^4 \quad \textbf{[0.2 Ptos]} \end{split}$$

A partir de este resultado podemos obtener su función de densidad:

$$f_T(t) = \frac{d}{dt} F_T(t) = 4 F(t)^3 f(t) \quad [0.3 \text{ Ptos}]$$

$$= 4 \left\{ 1 - \exp\left[-\left(\frac{t}{\alpha}\right)^{\beta} \right] \right\}^3 \frac{\beta}{\alpha} \left(\frac{t}{\alpha}\right)^{\beta - 1} \exp\left[-\left(\frac{t}{\alpha}\right)^{\beta} \right], \quad \text{para } t \ge 0, \, \alpha > 0, \, \beta > 0 \quad [0.2 \text{ Ptos}]$$

(b) Para este nuevo circuito propuesto el tiempo T de funcionamiento del sistema está determinado por

$$T = \min\{\max\{T_1, \min\{T_2, T_3\}\}, T_4\}$$
 [1.0 Ptos]

Se pide la función de distribución de probabilidad acumulada de T la cual se obtiene como sigue:

$$F_{T}(t) = P(T \le t)$$

$$= P(\min\{\max\{T_{1}, \min\{T_{2}, T_{3}\}\}, T_{4}\} \le t)$$

$$= 1 - P(\min\{\max\{T_{1}, \min\{T_{2}, T_{3}\}\}, T_{4}\} > t)$$

$$= 1 - P(\max\{T_{1}, \min\{T_{2}, T_{3}\}\} > t, T_{4} > t)$$

$$= 1 - P(\max\{T_{1}, \min\{T_{2}, T_{3}\}\} > t) P(T_{4} > t)$$

$$= 1 - [1 - P(\max\{T_{1}, \min\{T_{2}, T_{3}\}\} \le t)] P(T_{4} > t)$$

$$= 1 - [1 - P(T_{1} \le t, \min\{T_{2}, T_{3}\} \le t)] P(T_{4} > t)$$

$$= 1 - [1 - P(T_{1} \le t) P(\min\{T_{2}, T_{3}\} \le t)] P(T_{4} > t)$$

$$= 1 - [1 - P(T_{1} \le t) \{1 - P(\min\{T_{2}, T_{3}\} > t)\}] P(T_{4} > t)$$

$$= 1 - [1 - P(T_{1} \le t) \{1 - P(T_{2} > t, T_{3} > t)\}] P(T_{4} > t)$$

$$= 1 - [1 - P(T_{1} \le t) \{1 - P(T_{2} > t, T_{3} > t)\}] P(T_{4} > t), \text{ por independencia } [\textbf{0.5 Ptos}]$$

$$= 1 - \left[1 - F(t) \left\{1 - [1 - F(t)]^{2}\right\}\right] [1 - F(t)], \text{ por identica distribución } [\textbf{0.5 Ptos}]$$

$$= F(t) + 2F(t)^{2} - 3F(t)^{3} + F(t)^{4}, [\textbf{0.5 Ptos}]$$

con

$$F(t) = 1 - \exp\left[-\left(\frac{t}{\alpha}\right)^{\beta}\right]$$

2

Mientras que su función de densidad esta dada por

$$f_T(t) = f(t) + 4F(t)^3 f(t) - 9F(t)^2 f(t) + 4F(t)^3 f(t)$$

= $\left[1 + 4F(t)^3 - 9F(t)^2 + 4F(t)^3\right] f(t), \quad t \ge 0, \, \alpha > 0, \, \beta > 0$ [0.5 Ptos]

con

$$F(t) = 1 - \exp\left[-\left(\frac{t}{\alpha}\right)^{\beta}\right] \quad \text{y} \quad \frac{\beta}{\alpha} \left(\frac{t}{\alpha}\right)^{\beta - 1} \exp\left[-\left(\frac{t}{\alpha}\right)^{\beta}\right]$$

Problema 2

El número de bacterias Y por m^3 en un estanque decantador de "La Farfana" sigue una distribución de Poisson(X), donde X corresponde a la tasa de descarga de un emisario. Registros históricos indican que la tasa X de descarga de un emisario se comporta de manera aleatoria regida por una distribución $\operatorname{Gamma}(k,\nu)$ con $\nu>0$ y $k\in\mathbb{N}$.

- (a) [3.0 Ptos] Determine la función de distribución de probabilidad del número de bacterias por m^3 . ¿Qué modelo reconoce? Identifique sus parámetros.
- (b) [3.0 Ptos] Determine la distribución condicional de la tasa descarga condicionada al número de bacterias por m^3 . ¿Qué modelo reconoce? Identifique sus parámetros.

Solución

(a) Se pide P(Y = y) y del enunciado tenemos que

$$Y \mid X = x \sim \text{Poisson}(x)$$
 v $X \sim \text{Gamma}(k, \nu)$

Para este caso la función de probabilidad conjunta está dada por:

$$P(Y = y \mid X = x) \cdot f_X(x) = \frac{x^y e^{-x}}{y!} \cdot \frac{\nu^k}{\Gamma(k)} x^{k-1} e^{-\nu x}$$
 [1.0 Ptos]

La función de distribución de probabilidad de Y la obtenemos barriendo para todos los posibles valores de X como sigue:

$$P(Y = y) = \int_{0}^{\infty} \frac{x^{y} e^{-x}}{y!} \cdot \frac{\nu^{k}}{\Gamma(k)} x^{k-1} e^{-\nu x} dx, \quad \text{ya que } X \text{ es continua} \quad \textbf{[0.3 Ptos]}$$

$$= \frac{\nu^{k}}{y! \Gamma(k)} \int_{0}^{\infty} x^{(y+k)-1} e^{-(\nu+1)x} dx$$

$$= \frac{\nu^{k}}{y! \Gamma(k)} \frac{\Gamma(y+k)}{(\nu+1)^{y+k}} \int_{0}^{\infty} \underbrace{\frac{(\nu+1)^{y+k}}{\Gamma(y+k)} x^{(y+k)-1} e^{-(\nu+1)x}}_{\text{Gamma}(y+k, \nu+1)} dx \quad \textbf{[0.7 Ptos]}$$

$$= \frac{\nu^{k}}{y! \Gamma(k)} \frac{\Gamma(y+k)}{(\nu+1)^{y+k}} \cdot 1$$

$$= \frac{(y+k-1)!}{y! (k-1)!} \left(\frac{\nu}{\nu+1}\right)^{k} \left(\frac{1}{\nu+1}\right)^{y}, \quad \text{ya que } k \in \mathbb{N}$$

$$= \left(\frac{[y+k]-1}{k-1}\right) \left(\frac{\nu}{\nu+1}\right)^{k} \left(1 - \frac{\nu}{\nu+1}\right)^{y}, \quad y = 0, 1, 2, \dots \quad \textbf{[0.5 Ptos]}$$

Esta función de probabilidad corresponde a una forma alternativa de escribir (reparametrización) del modelo Binomial-Negativo $\left(r=k,p=\frac{\nu}{\nu+1}\right)$. [0.5 Ptos]

$${z-1 \choose k-1} \left(\frac{\nu}{\nu+1}\right)^k \left(1 - \frac{\nu}{\nu+1}\right)^{z-k}, \quad z = (k+y), (k+y) + 1, \dots$$

(b) Se pide $f_{X \mid Y=y}(y)$ la cual la podemos obtener como sigue:

$$\begin{split} f_{X \mid Y = y}(y) &= \frac{P(Y = y \mid X = x) \cdot f_X(x)}{P(Y = y)} \quad \textbf{[1.0 Ptos]} \\ &= \frac{\frac{x^y e^{-x}}{y!} \cdot \frac{\nu^k}{\Gamma(k)} \, x^{k-1} \, e^{-\nu \, x}}{\frac{\nu^k}{y! \, \Gamma(k)} \, \frac{\Gamma(y + k)}{(\nu + 1)^{y + k}}} \\ &= \frac{(\nu + 1)^{k + y}}{\Gamma(k + y)} \, x^{(k + y) - 1} \, e^{-(\nu + 1) \, x}, \quad x \geq 0 \quad \textbf{[1.0 Ptos]} \end{split}$$

Por lo tanto

$$X | Y = y \sim \text{Gamma}(y + k, \nu + 1)$$
 [1.0 Ptos]

Problema 3

Con el objetivo de definir la construcción de un parque eólico, se realizan estudios para evaluar el flujo másico M y potencia P a ser generada. Las siguientes fórmulas representan las relaciones de interés:

$$M = \rho A V, \quad P = \frac{1}{2} \rho A V^3$$

Donde

 ρ : Densidad del viento en k/m^3

A: Área por donde pasa el viento en m^2

V: Velocidad del viento en m/s

M: Flujo másico en k/s

P: Potencia debido a la energía cinética en W/m^2 (W=vatio)

Suponga que la densidad ρ y velocidad del viento V pueden ser modeladas mediante distribuciones Log-Normales independientes con los siguientes valores esperados y desviaciones estándar:

$$\mu_{\rho} = 3 \frac{k}{m^3}, \quad \mu_{V} = 14 \frac{m}{s}, \quad \sigma_{\rho} = 1 \frac{k}{m^3}, \quad \sigma_{V} = 4 \frac{m}{s}$$

Para un área A (en m^2) dada,

- (a) [2.0 Ptos] Determine las distribuciones del flujo másico M y de la potencia P. Identifique los valores de sus parámetros.
- (b) [2.0 Ptos] Calcule la probabilidad que la potencia supere los 12000 W/m^2 si él área es de 20 m^2 .
- (c) [2.0 Ptos] Si las distribuciones de ρ y V fuesen normales estándar, obtenga la distribución de $Z = \frac{P}{M}$.

Problema 3

(a) Tenemos que $M = \rho A V$ con

$$\rho \sim \text{Log-Normal}(\lambda_{\rho}, \zeta_{\rho})$$
 y $\rho \sim \text{Log-Normal}(\lambda_{V}, \zeta_{V})$

ambas independientes y A constante.

Del formulario se tiene que

$$\zeta_{\rho} = \ln\left(1 + \frac{\sigma_{\rho}^{2}}{\mu_{\rho}^{2}}\right) = \ln(1 + 1/9) = 0.3245928 \quad \textbf{[0.1 Ptos]}$$

$$\lambda_{\rho} = \ln \mu_{\rho} - \frac{1}{2}\zeta_{\rho}^{2} = 1.045932 \quad \textbf{[0.1 Ptos]}$$

$$\zeta_{V} = \ln\left(1 + \frac{\sigma_{V}^{2}}{\mu_{V}^{2}}\right) = \ln(1 + 4^{2}/14^{2}) = 0.2801279 \quad \textbf{[0.1 Ptos]}$$

$$\lambda_{V} = \ln \mu_{V} - \frac{1}{2}\zeta_{V}^{2} = 2.599822 \quad \textbf{[0.1 Ptos]}$$

Aplicando logaritmo natural

$$\ln M = \ln A + \ln \rho + \ln V$$

con

$$\ln \rho \sim \text{Normal}(\mu = \lambda_{\rho}, \, \sigma = \zeta_{\rho})$$
$$\ln V \sim \text{Normal}(\mu = \lambda_{V}, \, \sigma = \zeta_{V})$$

Luego, por suma de variables aleatorias independientes se tiene que

$$\ln M \sim \text{Normal}\left(\mu = \ln A + \lambda_{\rho} + \lambda_{V}, \, \sigma = \sqrt{\zeta_{\rho}^{2} + \zeta_{V}^{2}}\right)$$

Entonces

$$M \sim \text{Log-Normal}\left(\lambda_M = \ln A + \lambda_\rho + \lambda_V, \zeta_M = \sqrt{\zeta_\rho^2 + \zeta_V^2}\right)$$
 [0.5 Ptos]
 $\sim \text{Log-Normal}(\lambda_M = 3,645754 + \ln A, \zeta_M = 0,4287565)$ [0.3 Ptos]

De la misma manera

$$P \sim \text{Log-Normal} \left(\lambda_P = -\ln 2 + \ln A + \lambda_\rho + 3 \lambda_V, \, \zeta_P = \sqrt{\zeta_\rho^2 + 9 \, \zeta_V^2} \right)$$
 [0.5 Ptos] $\sim \text{Log-Normal}(\lambda_P = 8{,}152251 + \ln A, \, \zeta_P = 0{,}9008914)$ [0.3 Ptos]

(b) Si $A = 20 \, m^2$, entonces

$$P \sim \text{Log-Normal}(\lambda_P = 11,14798, \zeta_P = 0,9008914)$$
 [0.5 Ptos]

Se pide

$$\begin{split} P(P > 12000) &= 1 - P(P \le 12000) \quad \textbf{[0.3 Ptos]} \\ &= 1 - \Phi\left(\frac{\ln 12000 - 11,14798}{0,9008914}\right) \quad \textbf{[0.3 Ptos]} \\ &= 1 - \Phi(-1,948424) \quad \textbf{[0.3 Ptos]} \\ &= \Phi(1,948424) \quad \textbf{[0.3 Ptos]} \\ &\approx 0,9744 \quad \textbf{[0.3 Ptos]} \end{split}$$

(c) Se tiene que

$$Z = \frac{P}{M} = \frac{\frac{1}{2} \rho A V^3}{\rho A V^2} = \frac{1}{2} V^2$$
 [0.5 Ptos]

Luego

$$f_Z(z) = f_V(-\sqrt{2}z) \left| \frac{d}{dz} \left(-\sqrt{2}z \right) \right| + f_V(\sqrt{2}z) \left| \frac{d}{dz} \left(\sqrt{2}z \right) \right|$$
$$= \frac{1}{\sqrt{2}z} \left[f_V(-\sqrt{2}z) + f_V(\sqrt{2}z) \right] \quad [1.0 \text{ Ptos}]$$

Bajo el supuesto de que $V \sim \text{Normal}(\mu = 0, \sigma = 1)$ se tiene que

$$f_Z(z) = \frac{1}{\sqrt{\pi}} z^{-1/2} e^{-z} = \frac{1}{\Gamma(1/2)} z^{1/2-1} e^{-z}, \quad z > 0$$
 [0.5 Ptos]

Por lo tanto

$$Z \sim \text{Gamma}(k = 1/2, \nu = 1)$$

Problema 4

Sean X e Y dos variables aleatorias distribuidas conjuntamente según la siguiente función de densidad:

$$f_{X,Y}(x,y) = \begin{cases} \frac{2}{\pi}, & |x| \le 1, \ 0 \le y \le 1, \ x^2 + y^2 \le 1\\ 0, & \text{en otro caso} \end{cases}$$

- (a) [3.0 Ptos] Determine las distribuciones condicionales de $X \mid Y = y$ e $Y \mid X = x$.
- (b) [3.0 Ptos] Verifique que $\mathbf{E}(Y) = \mathbf{E}(\mathbf{E}[Y \mid X])$ cuando X es aleatorio. Notar que $\mathbf{E}(Y \mid X) = g(X)$.

Solución

(a) La función de densidad de $X \mid Y = y$ e $Y \mid X = x$ por definición son:

$$f_{X|Y=y}(x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$
 [0.1 Ptos], $f_{Y|X=x}(y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$ [0.1 Ptos]

donde

$$f_X(x) = \int_{y \in \Theta_Y} f_{X,Y}(x,y) \, dy = \int_0^{\sqrt{1-x^2}} \frac{2}{\pi} \, dy \quad [\textbf{0.3 Ptos}]$$

$$= \begin{cases} \frac{2}{\pi} \sqrt{1-x^2}, & -1 \le x \le 1\\ 0, & \text{en otro caso} \end{cases}$$
[0.4 Ptos]

У

$$f_Y(y) = \int_{x \in \Theta_X} f_{X,Y}(x,y) \, dx = \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \frac{2}{\pi} \, dx \quad \text{[0.3 Ptos]}$$

$$= \frac{2}{\pi} \left(\sqrt{1-y^2} + \sqrt{1-y^2} \right)$$

$$= \begin{cases} \frac{4}{\pi} \sqrt{1-y^2}, & 0 \le y \le 1\\ 0, & \text{en otro caso} \end{cases}$$
[0.4 Ptos]

Reemplazando

$$f_{X|Y=y} = \frac{2/\pi}{\frac{4}{\pi}\sqrt{1-y^2}} \quad [\textbf{0.3 Ptos}]$$

$$= \begin{cases} \frac{1}{2\sqrt{1-y^2}}, & -\sqrt{1-y^2} \le x \le \sqrt{1-y^2}, \ y \in (0,1) \\ 0, & \text{en otro caso} \end{cases}$$

$$[\textbf{0.4 Ptos}]$$

У

$$f_{Y|X=x} = \frac{2/\pi}{\frac{2}{\pi}\sqrt{1-x^2}} \quad [\textbf{0.3 Ptos}]$$

$$= \begin{cases} \frac{1}{\sqrt{1-y^2}}, & 0 \le y \le \sqrt{1-x^2}, \ x \in (-1,1) \\ 0, & \text{en otro caso} \end{cases}$$

$$[\textbf{0.4 Ptos}]$$

(b) Por definición se tiene que

$$E(Y) = \int_{-\infty}^{\infty} y \, f_Y(y) \, dy = \int_0^1 y \, \frac{4}{\pi} \sqrt{1 - y^2} \, dy \quad [\textbf{0.5 Ptos}]$$
$$= \frac{4}{\pi} \left[-\frac{1}{3} (1 - y^2)^{3/2} \right]_0^1$$
$$= \frac{4}{3\pi} \quad [\textbf{0.5 Ptos}]$$

Por otra parte

$$\begin{split} E(Y \,|\, X = x) &= \int_{-\infty}^{\infty} y \, f_{Y \,|\, X = x}(y) \, dy = \int_{0}^{\sqrt{1 - x^2}} y \, \frac{1}{\sqrt{1 - x^2}} \, dy \quad \text{[0.5 Ptos]} \\ &= \frac{1}{\sqrt{1 - x^2}} \, \frac{y^2}{2} \, \bigg|_{0}^{\sqrt{1 - x^2}} \\ &= \frac{\sqrt{1 - x^2}}{2} = g(x) \quad \text{[0.5 Ptos]} \end{split}$$

Luego, $E(Y\,|\,X)=g(X)=\frac{\sqrt{1-X^2}}{2}$ es una variable aleatoria con valor esperado

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx \quad [0.5 \text{ Ptos}]$$

$$= \int_{-1}^{1} \frac{\sqrt{1 - x^2}}{2} \frac{2}{\pi} \sqrt{1 - x^2} dx$$

$$= \frac{1}{\pi} \int_{-1}^{1} (1 - x^2) dx$$

$$= \frac{1}{\pi} \left[x - \frac{x^3}{3} \right]_{-1}^{1}$$

$$= \frac{4}{3\pi} \quad [0.5 \text{ Ptos}]$$

Por lo tanto se verifica que

$$E(Y) = E(E[Y \mid X])$$

Formulario

Valor Esperado:

Sea X una variable aleatoria discreta y Θ_X el conjunto de todos los valores posible.

$$E[g(X)] = \sum_{x \in \Theta_X} g(x) \cdot P(X = x)$$

Sea X una variable aleatoria continua y Θ_X la unión de todos los intervalos en los \mathbb{R} en que la función de densidad $f_X(x) \neq 0$.

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) \, dx = \int_{x \in \Theta_X} g(x) \cdot f_X(x) \, dx$$

■ Varianza (σ_X^2) , Coeficiente de Asimetría (θ_X) y Kurtosis (K_X) :

Sea X una variable aleatoria con valor esperado $\mu_X = E(X)$.

$$\sigma_X^2 = E\left[(X - \mu_X)^2 \right]$$

$$\theta_X = E\left[\left(\frac{X - \mu_X}{\sigma_X} \right)^3 \right]$$

$$K_X = E\left[\left(\frac{X - \mu_X}{\sigma_X} \right)^4 \right]$$

Covarianza:

Sean X e Y dos variables aleatorias con valores esperados μ_X y μ_Y respectivamente. Se define la covarianza entre X e Y como:

$$Cov(X, Y) = E(X \cdot Y) - \mu_X \cdot \mu_Y,$$

donde

$$E(X \cdot Y) = \begin{cases} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x \cdot y) f_{X,Y}(x,y) dx dy \\ \sum_{x \in \Theta_X} \sum_{y \in \Theta_Y} (x \cdot y) P(X = x, Y = y) \\ \int_{-\infty}^{\infty} \sum_{y \in \Theta_Y \mid X = x} (x \cdot y) P(Y = y \mid X = x) f_X(x) dx \\ \sum_{x \in \Theta_X} \int_{-\infty}^{\infty} (x \cdot y) f_{Y \mid X = x}(y) P(X = x) dy \end{cases}$$

Igualdades:

$$\sum_{i=x}^{\infty} \phi^i = \frac{\phi^x}{1-\phi}, \quad \text{si } |\phi| < 1; \quad (a+b)^n = \sum_{x=0}^n \binom{n}{x} a^x b^{n-x}; \quad e^a = \sum_{x=0}^{\infty} \frac{a^x}{x!}$$

Distribuciones

Distribución	Densidad de Probabilidad	Θ_X	Parámetros	Esperanza y Varianza		
Binomial	$\binom{n}{x} p^x \left(1-p\right)^{n-x}$	$x=0,\ldots,n$	$n,\ p$	$\mu_X = n p$ $\sigma_X^2 = n p (1 - p)$		
Geométrica	$p\left(1-p\right)^{x-1}$	$x=1,2,\ldots$	p	$\mu_X = 1/p$ $\sigma_X^2 = (1-p)/p^2$		
Binomial-Negativa	$\binom{x-1}{r-1} p^r (1-p)^{x-r}$	$x=r,r+1,\ldots$	$r,\;p$	$\begin{split} \mu_X &= r/p \\ \sigma_X^2 &= r (1-p)/p^2 \end{split}$		
Poisson	$\frac{(\nu t)^x e^{-\nu t}}{x!}$	$x = 0, 1, \dots$	ν	$\mu_X = \nu t$ $\sigma_X^2 = \nu t$		
Exponencial	$\nu e^{-\nu x}$	$x \ge 0$	ν	$\mu_X = 1/\nu$ $\sigma_X^2 = 1/\nu^2$		
Gamma	$\frac{\nu^k}{\Gamma(k)} x^{k-1} e^{-\nu x}$	$x \ge 0$	$k,\ u$	$\mu_X = k/\nu$ $\sigma_X^2 = k/\nu^2$		
Gamma Trasladada	$\frac{\nu^k}{\Gamma(k)} (x - \gamma)^{k-1} e^{-\nu (x - \gamma)}$	$x \geq \gamma$	$k,\ u,\ \gamma$	$\mu_X = k/\nu + \gamma$ $\sigma_X^2 = k/\nu^2$		
Normal	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$	$-\infty < x < \infty$	$\mu,~\sigma$	$\mu_X = \mu$ $\sigma_X^2 = \sigma^2$		
Log-Normal	$\frac{1}{\sqrt{2\pi}(\zetax)}\exp\left[-\frac{1}{2}\left(\frac{\lnx-\lambda}{\zeta}\right)^2\right]$	$x \ge 0$	λ,ζ	$\mu_X = \exp\left(\lambda + \frac{1}{2}\zeta^2\right)$ $\sigma_X^2 = \mu_X^2 \left(e^{\zeta^2} - 1\right)$		
Uniforme	$\frac{1}{(b-a)}$	$a \le x \le b$	$a,\ b$	$\mu_X = (a+b)/2$ $\sigma_X^2 = (b-a)^2/12$		
Beta	$\frac{1}{B(q, r)} \frac{(x-a)^{q-1} (b-x)^{r-1}}{(b-a)^{q+r+1}}$	$a \leq x \leq b$	$q,\ r$	$\mu_X = a + \frac{q}{q+r} (b-a)$ $\sigma_X^2 = \frac{q r (b-a)^2}{(q+r)^2 (q+r+1)}$		
Hipergeométrica	$\frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}}$	$\max\{0, n+m-N\} \le x \le \min\{n, m\}$	$N,\ m,\ n$	$\mu_X = n \frac{m}{N}$ $\sigma_X^2 = \left(\frac{N-n}{N-1}\right) n \frac{m}{N} \left(1 - \frac{m}{N}\right)$		

• Propiedades función $\Gamma(\cdot)$:

$$(1) \quad \Gamma(k) = \int_0^\infty u^{k-1} \, e^{-u} \, du; \quad (2) \quad \Gamma(a+1) = a \, \Gamma(a); \quad (3) \quad \Gamma(n+1) = n!, \quad \text{si } n \in \mathbb{N}; \quad (4) \quad \Gamma(1/2) = \sqrt{\pi}$$

• Propiedades función $B(\cdot, \cdot)$:

(1)
$$B(q, r) = \int_0^\infty x^{q-1} (1-x)^{r-1} dx;$$
 (2) $B(q, r) = \frac{\Gamma(q) \Gamma(r)}{\Gamma(q+r)}$

Tabla Normal Estándar

Estándar	
----------	--

S_p	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998