

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе № 2 По курсу "Анализ Алгоритмов"

Алгоритмы умножения матриц

Студент:

Турсунов Жасурбек Рустамович

Группа: ИУ7-56Б

Преподователи:

Волкова Лилия Леонидовна Строганов Юрий Владимирович

Содержание

1	Аналитическая часть				
	1.1	Алгоритм Винограда	2		
	1.2	Вывод	2		
2	Кон	нструкторская часть	3		
	2.1	Разработка алгоритмов	3		
	2.2	Трудоемкость алгоритмов	7		
		2.2.1 Трудоемкость первичной проверки	7		
		2.2.2 Классический алгоритм	7		
		2.2.3 Алгоритм Винограда	8		
		2.2.4 Оптимизированный алгоритм Винограда	8		
	2.3	Вывод	8		
3	Технологическая часть				
	3.1	Требования к программному обеспечению	9		
	3.2	Средства реализации	9		
	3.3	Листинг кода	10		
	3.4	Вывод	11		
4	Исследовательская часть				
	4.1	Постановка эксперимента	12		
	4.2	Сравнительный анализ на основе замеров времени работы алго-			
		ритмов	12		
	4.3	Тестирование программы	13		
	4.4	Reibon	1/1		

Введение

Целью данной лабораторной работы является изучение алгоритмов умножения матриц. В данной лабораторной работе рассматривается стандартный алгоритм умножения матриц, алгоритм Винограда и модифицированный алгоритм Винограда. Также требуется изучить рассчет сложности алгоритмов, получить навыки в улучшении алгоритмов.

В ходе лабораторной предстоит выполнить следующие задачи:

- 1. Изучить алгоритмы умножения матриц; стандартный и алгоритм Винограда;
- 2. Оптимизировать алгоритм Винограда;
- 3. Дать теоретическую оценку базового алгоритма умножения матриц, алгоритма Винограда и улучшенного алгоритма Винограда;
- 4. Реализовать три алгоритма умножения матриц на одном из языков программирования;
- 5. Сравнить алгоритмы умножения матриц.

1 Аналитическая часть

Матрицей А размера [m * n] называется прямоугольная таблица чисел, функций или алгебраических выражений, содержащая m строк и n столбцов. Числа m и n определяют размер матрицы. Если число столбцов в первой матрицы совпадает с числом строк во второй матрице, то эти матрицы можно перемножить. У произведения будет столько же строк, сколько в первой матрице и столько же столбцов, сколько во второй.

Пусть даны две прямоугольные матрицы A и B размеров [m*n] и [n*k] соответственно. B результате произведения матриц A и B получим матрицу C размера [m*k].

$$c_{i,j} = \sum_{r=1}^{n} a_{i,r} \cdot b_{r,j}$$
 называется произведением матриц A и B [1].

1.1 Алгоритм Винограда

Подход Алгоритма Винограда является иллюстрацией общей методологии, начатой в 1979-ч годах на основе билинейных и трилинейных форм, благодоря которым большинство усовершенствований для умножения матриц были получены с помощью разложения скалярного произведения векторов. v1

Рассмотрим два вектора V=(v1, v2, v3, v4) и W=(w1, w2, w3, w4). Их скалярное произведение равно (1.1)

$$V \cdot W = v_1 \cdot w_1 + v_2 \cdot w_2 + v_3 \cdot w_3 + v_4 \cdot w_4 \tag{1.1}$$

Равенство (1.1) можно переписать в виде (1.2)

$$V \cdot W = (v_1 + w_2) \cdot (v_2 + w_1) + (v_3 + w_4) \cdot (v_4 + w_3) - v_1 \cdot v_2 - v_3 \cdot v_4 - w_1 \cdot w_2 - w_3 \cdot w_4$$

$$\tag{1.2}$$

Менее очевидно, что выражение в правой части последнего равенства допускает предварительную обработку: его части можно вычислить заранее и запомнить для каждой строки первой матрицы и для каждого столбца второй. Это означает, что над предварительно обработанными элементами нам придется выполнить лишь первые два умножения и последующие пять сложений, а также дополнительно два сложения.

1.2 Вывод

Были рассмотрены алгоритмы классического умножения матриц и алгоритм Винограда, главное отличие которых - наличие предварительной обработки, а также количество операций умножения.

2 Конструкторская часть

Требования к вводу: На вход подаются две матрицы.

- 1. На вход подаются две строки;
- 2. Строчные и заглавные буквы считаются разными;

Требования к программе: На вход подаются две матрицы.

- 1. Корректное умножение двух матриц;
- 2. При матрицах разных размеров программа не должнв аварийно завершаться.

2.1 Разработка алгоритмов

В данном разделе будут рассмотрены схемы алгоритмов:

- 1. Классический алгоритм умножения матриц;
- 2. Алгоритм Винограда;
- 3. Оптимизированный алгоритм Винограда.

Рис. 1: Схема классического алгоритма умножения матриц

Рис. 2: Схема алгоритма Винограда

Рис. 3: Схема оптимизированного алгоритма Винограда

2.2 Трудоемкость алгоритмов

Введем модель трудоемкости для оценки алгоритмов:

- 1. Базовые операции стоимостью 1 +, -, *, /, =, ==, <=, >=, !=, +=, [], получение полей класса;
- 2. Оценка трудоемкости цикла: Fu = init + N * (a + Ftena + post) + a, где a условие цикла, init предусловие цикла, post постусловие цикла;
- 3. Стоимость условного перехода применим за 0, стоимомть вычисления условия остаётся.

Оценим трудоемкость алгоритмов по коду программы.

2.2.1 Трудоемкость первичной проверки

Рассмотрим трудоемкость первичной проверки на возможность умножения матриц.

Табл. 2.1 Построчная оценка веса

<u> </u>	
Код	Bec
int n1 = mart1.Length;	2
$\int int \ n2 = matr2.Length;$	2
if $(n1 == 0 n2 == 0)$ return null;	3
int m1 = mart1[0]. Length;	3
int m2 = matr2[0].Length;	3
if (m1 != n2) return null;	1
Итого	14

2.2.2 Классический алгоритм

Рассмотрим трудоемкость первичной проверки на возможность умножения матриц.

Инициализация матрицы результата: $1+1+n_1(1+2+1)+1=4n_1+3$. Подсчёт:

2.2.3 Алгоритм Винограда

Аналогично рассмотрим трудоемкость алгоритма Винограда.

Первый цикл:
$$\frac{15}{2}n_1m_1+5n_1+2$$
 Второй цикл:
$$\frac{15}{2}m_2n_2+5m_2+2$$
 Третий цикл:
$$13n_1m_2m_1+12n_1m_2+4n_1+2$$
 Условный переход:
$$\begin{bmatrix} 2 & \text{, невыполнение условия} \\ 15n_1m_2+4n_1+2 & \text{, выполнение условия} \end{bmatrix}$$
 Итого:
$$13n_1m_2m_1+\frac{15}{2}n_1m_1+\frac{15}{2}m_2n_2+12n_1m_2+5n_1+5m_2+4n_1+6+$$

$$\begin{bmatrix} 2 & \text{, невыполнение условия} \\ 15n_1m_2+4n_1+2 & \text{, выполнение условия} \end{bmatrix}$$

2.2.4 Оптимизированный алгоритм Винограда

Аналогично Рассмотрим трудоемкость оптимизированого алгоритма Винограда:

Первый цикл:
$$\frac{11}{2}n_1m_1+4n_1+2$$

Второй цикл: $\frac{11}{2}m_2n_2+4m_2+2$
Третий цикл: $\frac{17}{2}n_1m_2m_1+9n_1m_2+4n_1+2$
Условный переход:
$$\begin{bmatrix} 1 & \text{, невыполнение условия} \\ 10n_1m_2+4n_1+2 & \text{, выполнение условия} \end{bmatrix}$$
 Итого: $\frac{17}{2}n_1m_2m_1+\frac{11}{2}n_1m_1+\frac{11}{2}m_2n_2+9n_1m_2+8n_1+4m_2+6+$
$$\begin{bmatrix} 1 & \text{, невыполнение условия} \\ 10n_1m_2+4n_1+2 & \text{, выполнение условия} \end{bmatrix}$$

2.3 Вывод

В данном разделе были рассмотрены схемы алгоритмов умножения матриц, введена модель оценки трудоемкости алгоритма, были расчитаны трудоемкости алгоритмов в соответствии с этой моделью.

3 Технологическая часть

В данном разделе будут рассмотрены требования к программному обеспечению, средства реализации и представлен листинг кода.

3.1 Требования к программному обеспечению

Входные данные: две матрицы.

Выходные данные: матрица полученная в результате умножения двух матриц.

Рис. 4: IDEF0-диаграмма, описывающая функциональную схему умножения матриц.

3.2 Средства реализации

В данной работе используется язык программирования Python, так как ЯП позволяет написать программу за кратчайшее время. Проект выполнен в среде разработки Visual Studio Code.

3.3 Листинг кода

В данном пункте представлен листинг кода, а именно:

- Классический алгоритм умножения матриц;
- Алгоритм Винограда;
- Оптимизированный алгоритм Винограда.

```
def classicMul(a, b):
1
          if len(b) != len(a[0]):
2
              print("Different dimension of the matrics")
4
          n = len(a)
          m = len(a[0])
          k = len(b[0])
          res = [[0 for i in range(0, k)] for j in range(0, n)]
9
          for i in range(n):
              for j in range(m):
                   for t in range(k):
11
                       res[i][t] += a[i][j] * b[j][t]
12
          return res
14
```

Листинг 1: Классический алгоритм умножения матриц

```
def classicVinograd(G, H):
               a = len(G)
2
               b = len(H)
3
               c = len(H[0])
               if b != len(G[0]):
5
                   print("Different dimension of the matrics")
6
                   return
               d = b // 2
               row = [0 for i in range(a)]
9
               col = [0 for i in range(c)]
10
               for i in range(a):
11
                   for j in range(d):
                       row[i] += G[i][2 * j] * G[i][2 * j + 1]
               for i in range(c):
14
                   for j in range(d):
                        col[i] += H[2 * j][i] * H[2 * j + 1][i]
16
               answer = [[0 for i in range(c)] for j in range(a)]
18
               for i in range(a):
19
                   for j in range(c):
20
                       answer[i][j] = - row[i] - col[j]
21
                       for k in range(d):
22
                            answer[i][j]+=((G[i][2*k] +
                                    H[2*k+1][j])*(G[i][2*k+1]+H[2*k][j]))
24
               if b % 2:
25
                   for i in range(a):
26
                       for j in range(c):
27
                            answer[i][j] += G[i][b - 1] * H[b - 1][j]
28
29
               return answer
30
```

Листинг 2: Алгоритм Винограда

```
def imprvVinograd(G, H):
          a = len(G)
2
          b = len(H)
3
          c = len(H[0])
          if b != len(G[0]):
6
               print("Different dimension of the matrics")
               return
          d = b // 2
10
          row = [0 for i in range(a)]
12
          col = [0 for i in range(c)]
14
          for i in range(a):
15
               row[i]=sum(G[i][2*j]*G[i][2*j+1] for j in range(d))
17
          for i in range(c):
               col[i]=sum(H[2*j][i]*H[2*j+1][i] for j in range(d))
20
          answer = [[0 for i in range(c)] for j in range(a)]
21
          for i in range(a):
22
               for j in range(c):
                   answer[i][j]=sum((G[i][2 k]+H[2*k+1][j])*
24
                      (G[i][2*k+1]+H[2*k][j]) for k in range(d))
25
                                             -row[i]-col[j]
26
          if b % 2:
28
               for i in range(a):
29
                 answer[i][j]=sum(G[i][b-1]*H[b-1][j] for j in range(c))
30
31
32
          return answer
33
```

Листинг 3: Оптимизированный алгоритм Винограда

3.4 Вывод

В данном разделе была представлена структура ΠO и листинги кода программы.

4 Исследовательская часть

В данном разделе будет проведен эксперимент и сравнительный анализ.

4.1 Постановка эксперимента

В рамках данного проекта были проведены эксперименты, описанные ниже:

1. Сравнение времени работы алгоритмов при четном и нечеином размере матрицы.

4.2 Сравнительный анализ на основе замеров времени работы алгоритмов

Был проведен замер времени работы каждого из алгоритмов.

Первый эксперимент производится для лучшего случая на квадратных матрицах размером от 100 х 100 до 1000 х 1000 с шагом 100. Ниже приведена полученная диаграмма:

Рис. 5: Сравнение времени работы алгоритмов при четном размере матрицы

Второй эксперимент производится для худшего случая, когда поданы квадратные матрицы с нечетными размерами от 101×101 до 1001×1001 с шагом 100. Ниже приведена полученная диаграмма:

Рис. 6: Сравнение времени работы алгоритмов при нечетном размере матрицы

4.3 Тестирование программы

В данном разделе будут показаны результаты тестирования Всего было реализовано 7 тестовых случаев:

- 1. Некорректный размер матриц;
- 2. Размер матрицы равен 1;
- 3. Размер матрицы равен 2;
- 4. Сравнение работы стандартной реализации с алгоритмом Винограда на случайных значениях при четном и нечетном размерах матриц;
- 5. Сравнение работы стандартной реализации с оптимизированным алгоритмом Винограда на случайных значениях при четном и нечетном размерах матриц;

```
Number of failed tests:

Not correct size of matrix: 0
Size of matrix is 1: 0
Size of matrix is 2: 0
Standart Vinograd(even) : 0
Standart Vinograd(odd) : 0
Optimized Vinograd(odd) : 0
Optimized Vinograd(odd) : 0
```

Рис. 7: Результаты тестирования

4.4 Вывод

По результатам тестирования все рассматриваемые алгоритмы были реализованы верно. Самым медленным алгоритмом оказался алгоритм классического умножения матриц, а самым быстрым - оптимизированный алгоритм Винограда.

Заключение

В ходе работы были изучены алгоритмы классического умножения матриц, стандартный и оптимизированный алгоритм Винограда. Также была дана теоретическая оценка алгоритмам умножения матриц. Было сделано сравнение этих алгоритмов, также был реализован программный код продукта.