CS 113 DISCRETE STRUCTURES

Chapter 3: Algorithms

HOMEWORK

- All homework is from the Exercises
 - No problems are from the Review Exercises
- Section 3.2 (p. 127): 19-21 (all)
- Section 3.3 (p. 131): 1-5 (all), 21-24 (all)
- Section 3.4 (p. 137): 8, 9, 12, 13, 27, 28
- Section 3.5 (p. 149): 1-12 (all), 16-25
- Section 3.7 (p. 160): 1-9 (all)

ALGORITHMS

- Chapter 3 is about algorithms
- An algorithm is a finite sequence of steps where
 - The steps are precisely stated
 - The intermediate results of each step are uniquely defined
 - They depend only on the inputs and the results of the previous steps
 - The algorithm always stops (in a finite number of steps)
 - The algorithm applies to a set of inputs
 - The algorithm receives input
 - The algorithm produces output

PSEUDOCODE VS. C++

- The book uses a well-defined, strict set of pseudocode instructions
- We will follow their lead
- Some notable differences from C++ are noted in the table on the next slide
- Pseudocode doesn't use semi-colons to end lines
 - Instead, it assumes the end of the line is like a semi-colon
- It also doesn't use parentheses around conditions
- Also, the "for" statement can only count by 1
 - In addition, you can only count up, not down

PSEUDOCODE VS. C++: HIGHLIGHTING SOME DIFFERENCES

C++	Pseudocode
=	:=
void some_function	Procedure some_function
if ()	If then (Parentheses are unnecessary)
{	begin (Most of the time)
}	end
while ()	while do (Parentheses are unnecessary)
for (i=0; i<10; i++)	for i := 0 to 9 do
m++	m := m + 1
%	mod
!	not

AN EXAMPLE-ALGORITHM 3.2.2 ON P. 124

C++	Pseudocode
int max (int a, int b, int c)	procedure max (a, b, c)
{	
x = a;	x := a
if (b>x)	if b > x then
x = b;	x := b
if (c>x)	if c > x then
x = c;	x := c
return x;	return x
}	end max

THE END OF SECTION 3.2

- Homework is due for Section 3.2
- The homework is
- Section 3.2 (p. 127): 19-21 (all)

THE DIVISION ALGORITHM

- The division algorithm states that
 - For any two integers x and y, where y is not 0, you can find two other integers q (the quotient) and r (the remainder) with

$$x=qy + r$$
 with $0 \le r < y$

- Back in our C++ days, we would have noted that x % y = r + x / y = q
- Some things to know
 - If x divides into y with no remainder, we write x | y
 - If there is a remainder in the division, we write $x \nmid y$
 - Also, if x divides into y with no remainder, we will write that y = kx for some integer k
 - We also say that there exists an integer k with y = kx

USING THAT LAST IDEA

- For example, if 6 divides into a number, then 3 divides into that number
- Formally, this isIf 6 | n, then 3 | n.
- Proof:

Suppose that 6 | n.

Then n = 6k for some integer k.

Then n = 3(2k), where 2k is also an integer.

So 3 | n.

From now on, assume that all letters stand for integers

THREE IDEAS FROM THE BOOK

- This is Theorem 3.3.4, p. 129
- The theorem has three parts
- Part 1:
 If c | m and c | n, then c | m + n.
- Part 2:
 If c | m and c | n, then c | m n.
- Part 3:If c | m, then c | mn for any n.
- The proofs of these three statements are very direct

THE END OF SECTION 3.3

- Homework is due for Section 3.3
- The homework is
- Section 3.3 (p. 131): 1-5 (all), 21-24 (all)

REVISITING RECURSION

- We saw recursion in C++
- A recursive procedure is one that calls itself
- Why would you want to create a procedure like that?
 - It might be easier to program
- A good example is the math function x!
 - Here, factorial (x) [programming notation] denotes x! [math notation]

8! means 8x7x6x5x4x3x2x1

9! means 9x8x7x6x5x4x3x2x1

10! means 10x9x8x7x6x5x4x3x2x1

CHECKING OUT THE FACTORIAL FUNCTION

- Just like before we notice that the end of 10! is 9!
 - And the end of 9! is 8!
 - It looks like 9! is just 9 x 8!
 - We notice that 8! is just 8 x7! too
 - And we keep going
- So, we can say n! = n x (n-1)!
- We can write
 procedure factorial (n)
 return n * factorial (n-1)
 end factorial
- Here are the other examples that we talked about in C++

ANOTHER EXAMPLE: FIBONACCI NUMBERS

- The Fibonacci Numbers are a list (sequence) of numbers
 - The first two Fibonacci numbers are both 1
 - After that, to get the next Fibonacci number, add the two before it
- For example, the first seven numbers in the list are

```
1, 1, 2, 3, 5, 8, 13
```

- This is recursive!
- The code is (mostly)
 procedure fibonacci (n)
 return fibonacci (n-1) + fibonacci (n-2)
 end fibonacci
- Try to write that code without recursion

A THIRD EXAMPLE: THE TOWERS OF HANOI

- This problem is not as mathematical as the first two
- It provides an excellent example of the value of recursion
- Here is a picture of the towers

MOVING THE DISKS

- There are several disks on each tower
- In this case, there are four disks
 - I have colored them purple, red, blue, and brown
- Your job is to move them to the other end
- This seems simple enough

THE RULES

- There are only two rules
 - 1. You can only move one disk at a time
 - 2. You cannot put a disk on top of a smaller disk
- This is much harder than it looks!

THE SOLUTION USING RECURSION

- Suppose there are ten disks
- Then, to move all ten disks to the other end
 - Move the top nine disks to the middle post
 - Really, you are just setting aside the top 9 disks
 - Move the remaining disk to the end post
 - Move the nine disks from the middle post to the end post
 - This puts those disks on top of the disk you just moved
- Wow! We have moved the disks
- Notice that this solution is recursive
 - Try to see how to do that without recursion
 - It is really tough

RECURSION IN GENERAL

- Recursion means
 - You turn the problem into a smaller version of the same problem
 - Then you call the same function to complete the solution
- In recursion, a function calls itself
 - Of course, when it calls itself, it has to be solving a smaller problem
 - Something like factorial (n) = factorial (n) is not useful

THE CODE

So the pseudocode is (mostly)
 procedure move_disks (n, start_pole, end_pole, spare_pole)
 move_disks (n-1, start_pole, spare_pole, end_pole)

 Move top disk from start_pole to end_pole
 move_disks (n-1, spare_pole, end_pole, start_pole)
 end move_disks

A PROBLEM WITH RECURSION

- Let's go back to factorials
- Let's calculate 3!
- Using the code, $3! = 3 \times 2!$ = $3 \times (2 \times 1!)$ = $3 \times (2 \times (1 \times 0!))$ = $3 \times (2 \times (1 \times (0 \times (-1)!)))$
- Does this ever stop? No!

A STOPPING POINT

- For recursive code, we <u>always</u> need to include a stopping condition
 - This is called the base case
- The actual pseudocode for factorials is

```
procedure factorial (n)
  if n = 1 then
    return 1
  else
    return n * factorial (n-1)
end factorial
```

A DISADVANTAGE OF RECURSION

- Recursion is much slower than solving the problem directly
- However, programming the direct solution might be a lot harder
- This is a trade-off to consider when using recursion
 - The usual decision is to use recursion if it's appropriate
- Coding the factorial function directly (with a for loop) is easier and more efficient
 - We always use the direct method when we can
 - This is called iteration because it uses a loop

FACTORIAL VS. FACTORIAL

A recursive version

```
procedure factorial (n)
  if n = 1 then
    return 1
  else
    return (n * factorial (n-1))
end factorial
```

A non-recursive (iterative) version

```
procedure factorial (n)
  product = 1
  for i = 1 to n
     product = product * i
  return (product)
end factorial
```

THE FINBONACCI SEQUENCE

- The "opposite" of recursion is iteration
 - Usually this involves a loop
 - It may involve an array or a stack
- From before, the Fibonacci sequence was an example of recursion

$$F_1 = 1$$
, $F_2 = 1$, $F_n = F_{n-1} + F_{n-2}$

- This gives a clear demonstration of how recursion can be incredibly inefficient
- To check this, write out the steps needed to calculate F₄

CHECKING ON HOW RECURSION WORKS

- See the examples
- fib-counts.cpp (Shows the inefficiency of Fibonacci recursion)
- fib-iter.cpp (Shows reiterative Fibonacci sequence)
- fib-recur.cpp (Typical recursive version of Fibonacci numbers)

QUESTIONS

Any questions?