谐波平衡法求解Duffing振动方程
Thursday, June 22, 2023 1:54 PM () () () () () () () () () (
(D: Duffiny 方线的包围振动问题方程为:
$\ddot{x} + \omega_o^2(x + \varepsilon x^3) = 0$
游波平衡法的核心是仅保留一次展开系数
X = A cas wt ,3331
-Aw2015wt + Wo2 (Acas wt + EA3013wt) = 0
和用: 05 Wt = 3 OSWt + 4 OSSWt, 有.
$A(w_0^2-w^2)\cos wt + Ew^2A^3\cos^3 wt = 0$
$A(\omega^2 - \omega^2)$ cas wit + $E(\omega^2)A^3\left(\frac{3}{4}\cos\omega t + \frac{1}{4}\cos3\omega t\right) = 0$,
则会并 coe wt 顶:
A (w3-w2+3A2w2E) coswt + 4Ew3A3cos3wt = 0
由于cosut多数欠期质,为0,即·
3/A2 00, E= W2-W02, IM: W2=W02(1+3/4)E)
得:W=Wo人H 発在 即 Duffing 系统振动频
率以为振储的销售数。
二、受绝振动 筑推导:
对于有阻尼的 Duffing系统, 受到 频率W的周期激励。
其动力学方程为:
代入一次谐波近似角门
X= A cos wt ,
-A w2aswt - 2 SAwow sin wt + wo2 (Acoswrt 4 A aswt + A3 as 3wt) = B w3as (wt+0)

-Aw20swt-2 EAwow sin wt + wo2 (Acoswrt 4 acout + 4 acoswrt) = Bw3cos(wt+0) $(Aw^2 - Aw^2 + \frac{3}{4}A^3w^2)$ as wt $+(\frac{1}{4}B^3w^2)$ as $\frac{3wt}{2} - 25\mu$ wo not $=Bw^2$ as $(wt + \theta)$ 比时:令S=Wo为频率比,有:同除Wo A (1-52) + 3/3) cosut + 1/4 Aminosaut - 23 As. sinut = B as (ut+0) 只要帮并令一次多数相同的可: to, = Bles wt cas A- sin we sin A 按流; A(LS) + 2 A3 - B cos A cos wt + (B sin 0 - 2 & As) sin w v + 2 A3 w 2 one 3 w t = 0, 由于cosut, sinut的多数均为零点: नुहीं (a): $\beta \sin \theta - 2\xi As = 0$ s, O 另有:将其平方相如: $43^{2}A^{2}s^{2} + (A(Ls^{2}) + \frac{3E}{4}A^{3})^{2} = \beta^{2}$ 45 A's' + A'(15') + 3 A (15') + T(A' = B' (280) + [(1-52) + 3EA272 = (B)2. $B = \frac{3\xi_0}{(\text{Ho}^2) + \frac{3\xi_0}{4}} + (2\xi_0)^2$ 9 (9) 9 $S^{4} = (2 + \frac{3EA^{2}}{2} - \frac{43}{5})S^{2} + [1 + \frac{3}{2}A^{2}E + \frac{9}{16}E^{2}A^{4}] - (\frac{B}{A})^{2} = 0$ $+ (1 + \frac{3}{4} + \frac{1}{4} + \frac{1}{4}$

