Monte Carlo Simulation (MA323) A Model Report Quiz I

1. (a) Let X be a random variable that denotes the amount of rain on a given day. Let Y be another random variable defined as follows.

$$Y = \begin{cases} 1 & \text{if there is rain on the day} \\ 0 & \text{if there is no rain on the day.} \end{cases}$$

Then, for $x \geq 0$,

$$\begin{split} P\left(X \le x\right) &= P\left(X \le x | Y = 1\right) P\left(Y = 1\right) + P\left(X \le x | Y = 0\right) P\left(Y = 0\right) \\ &= \frac{1}{5} \left(1 - e^{-2x}\right) + \frac{4}{5}. \end{split}$$

Thus, the cumulative distribution function of X is

$$F(x) = \begin{cases} 0 & \text{if } x < 0\\ 1 - \frac{1}{5}e^{-2x} & \text{if } x \ge 0. \end{cases}$$

Clearly, $F(\cdot)$ has a jump at x=0 and size of the jump is $\frac{4}{5}$ and $F(\cdot)$ is continuous at all $x \neq 0$. Therefore, the following algorithm can be used to generate a sample from the cumulative distribution function $F(\cdot)$.

- 1: Generate U from U(0, 1) distribution.
- 2: if $U \leq \frac{4}{5}$ then
- 3: Set X = 0.
- 4: else
- 5: Set $X = -\frac{1}{2} (\ln 5 + \ln(1 u))$.
- 6: end if
- 7: Return X.

The above algorithm is implemented in R software and 1000 random numbers are generated. The seed is 123. The histogram of the generated random numbers are given in the Figure 1.

- (b) Based on the random numbers generated in the previous part, the average of amount of rain is 0.0956.
- 2. For $(x, y) \in \mathbb{R}^2$, the joint probability density function of X and Y is

$$f(x,y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \times \frac{1}{2\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{y-2x-1}{2}\right)^2}$$
$$= \frac{1}{4\pi} e^{-g(x,y)},$$

Histogram of u

Figure 1: Histogram of Generated Random Numbers

where
$$g(x, y) = x^2 + \left(\frac{y-1}{2\sqrt{2}}\right)^2 - \frac{2 \times \frac{1}{\sqrt{2}}}{2\sqrt{2}} x(y-1)$$
. Thus, $(X, Y) \sim N_2\left(\boldsymbol{\mu}, \Sigma\right)$, where $\boldsymbol{\mu} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $\boldsymbol{\Sigma} = \begin{pmatrix} 1 & 2 \\ 2 & 8 \end{pmatrix}$.

Now, we can use the following algorithm to generate random numbers from the joint distribution of X and Y.

- 1: Generate Z_1 and Z_2 from N(0, 1) distribution using Box-Muller method.
- 2: Set $X = Z_1$.
- 3: Set $Y = 1 + 2Z_1 + 2Z_2$ (using Cholesky Factorization).
- 4: Return (X, Y).

The above algorithm is implemented in R software with seed 123. Based on the generated random numbers, the sample means of X and Y are 0.019 and 0.98, respectively. The sample variances of X and Y are 0.945 and 7.696, respectively. The sample correlation coefficient is 0.688.

3. (a) As
$$1 + \frac{x^2}{3.2} > 1$$
 for all $x \in \mathbb{R}$,

$$\left(1 + \frac{x^2}{3.2}\right)^{-2.1} \le \left(1 + \frac{x^2}{3.2}\right)^{-1}$$

$$\implies \frac{\Gamma(2.1)}{\sqrt{3.2\pi}\Gamma(1.6)} \left(1 + \frac{x^2}{3.2}\right)^{-2.1} \le \frac{\Gamma(2.1)\sqrt{3.2\pi}}{\sqrt{3.2\pi}\Gamma(1.6)} \frac{1}{\sqrt{3.2\pi}} \left(1 + \frac{x^2}{3.2}\right)^{-1}$$

$$\implies f(x) \le cg(x)$$

for all $x \in \mathbb{R}$, where $c = \frac{\sqrt{\pi}\Gamma(2.1)}{\Gamma(1.6)}$ and $g(x) = \frac{1}{\sqrt{3.2}\pi\left(1+\frac{x^2}{3.2}\right)}$. Now, to generate from $g(\cdot)$, note that the corresponding cumulative distribution function is

$$G(x) = \frac{1}{2} + \frac{1}{\pi} \tan^{-1} \left(\frac{x}{\sqrt{3.2}} \right)$$
 for all $x \in \mathbb{R}$.

Therefore, $G^{-1}(\cdot)$ is given by

$$G^{-1}(u) = \sqrt{3.2} \tan \left[\pi \left(u - \frac{1}{2} \right) \right]$$
 for all $u \in (0, 1)$.

Hence, we can use the following algorithm to generate random numbers from $f(\cdot)$.

- 1: repeat
- Generate U_1 from U(0, 1). 2:

- 3: Set $X = \sqrt{3.2} \tan \left[\pi \left(U_1 \frac{1}{2}\right)\right]$. 4: Generate U_2 from U(0, 1). 5: **until** $U_2 \le \left(1 + \frac{X^2}{3.2}\right)^{-1.1}$ 6: Return X.
- (b) The acceptance probability is $\frac{1}{c} = \frac{\Gamma(1.6)}{\sqrt{\pi}\Gamma(2.1)} \simeq 0.482$.
- (c) The proportion of acceptance based on 1000 random numbers generated using previous algorithm (implemented in R software) with seed 123 is 0.478.