Sistemas informáticos

PROMETEO

Unidad 1. Fundamentos de los sistemas operativos

Un sistema operativo (SO) es el software base que coordina el uso del hardware y proporciona servicios a las aplicaciones. Es quien gestiona procesos, memoria, archivos, dispositivos y la comunicación entre el usuario y la máquina. Sin un SO, la CPU, la RAM o el disco serían "músculo" sin coordinación: habría potencia, pero no habría reglas para usarla.

<u>Sesión 1. Concepto y tipos de SO (libres vs propietarios, escritorio, servidor, móviles)</u>

Un sistema operativo (SO) es el software base que coordina el uso del hardware y proporciona servicios a las aplicaciones. Es quien gestiona procesos, memoria, archivos, dispositivos y la comunicación entre el usuario y la máquina. Sin un SO, la CPU, la RAM o el disco serían "músculo" sin coordinación: habría potencia, pero no habría reglas para usarla.

Por licencia

- Libres (ej. GNU/Linux, FreeBSD): su código puede estudiarse, modificarse y redistribuirse bajo condiciones que garantizan esa libertad. Esto permite auditoría y adaptación, muy valiosas en educación, investigación o empresas con requisitos específicos.
- Propietarios (ej. Microsoft Windows,
 Apple macOS, iOS): el código es cerrado
 y el uso se rige por un contrato (EULA).
 Suelen ofrecer ecosistemas integrados,
 soporte comercial directo y
 compatibilidad certificada con un
 amplio catálogo de software y
 hardware.

Por ámbito de uso

- Escritorio (Windows, macOS, Ubuntu Desktop): priorizan experiencia de usuario, compatibilidad con periféricos, multimedia y productividad personal.
- Servidor (Windows Server, Red Hat Enterprise Linux, Ubuntu Server): optimizados para estabilidad, seguridad, automatización, contenedores, virtualización y trabajo en red
- Móviles (Android, iOS): diseñados para autonomía energética, conectividad continua, sensores y pantallas táctiles, con tiendas de apps y ciclos de actualización acordes al hardware.

En el mercado profesional conviven los cuatro cuadrantes posibles (libre/propietario × escritorio/servidor/móvil). Por ejemplo, Linux (libre) domina en servidores y supercomputación; Windows (propietario) es referencia en escritorio empresarial; Android (libre en su base) lidera en móviles con capas y servicios propietarios; macOS/iOS (propietarios) priorizan integración hardware–software. Entender estas combinaciones te permite evaluar compatibilidad, costes (licencias vs soporte), seguridad, escalabilidad y disponibilidad de talento técnico.

1

Esquema Visual - Clasificación de Sistemas Operativos

Cómo reproducir el esquema sin ambigüedades:

- Lienzo y orientación: usa un diagrama de flujo Top-Bottom (TB). Coloca un nodo título "Sistemas Operativos" centrado arriba.
- 2. Bloques (subgraphs): dibuja dos contenedores rectangulares bajo el título, alineados horizontalmente
- Conexiones: Flechas sólidas desde el nodo título al contenedor de Licencia y al de Ámbito. Líneas
 punteadas o conexiones simples entre cada tipo de licencia y cada ámbito, para mostrar que todas las
 combinaciones existen en la práctica
- 4. **Estilo**: Rectángulos con esquinas redondeadas para los nodos individuales. Contenedores con borde sutil y rótulo superior. Tipografía sin serif; título con negrita.
- 5. **Lectura**: el esquema comunica que **la elección real de un SO** surge de **cruzar licencia y ámbito**; no es un árbol excluyente, sino un **mapa de combinaciones** posibles.

Caso de Estudio – Google Android y el modelo abiertocerrado

Contexto

Android aparece como respuesta a la necesidad de un sistema móvil adaptable a distintos fabricantes y rangos de precio. Su base técnica se apoya en el **kernel Linux**, y el proyecto **AOSP (Android Open Source Project)** permite a terceros estudiar y modificar el código para integrarlo en teléfonos, tablets, relojes o televisores. Paralelamente, **Google Mobile Services (GMS)** ofrece servicios propietarios (Play Store, Maps, Gmail) con acuerdos y certificaciones, generando un ecosistema viable para usuarios y desarrolladores.

Estrategia

La clave de Android es el equilibrio entre apertura y control:

Apertura del sistema base (AOSP)

Facilita la **adopción masiva** por parte de fabricantes (Samsung, Xiaomi, Oppo, etc.), operadoras y desarrolladores de ROMs. Al poder adaptar el sistema, los OEM diferencian su propuesta (capas como One UI, MIUI) sin reinventar la rueda.

Capa de servicios propietarios (GMS)

Garantiza **experiencia coherente** (tienda de apps, APIs de localización/notificaciones, facturación) y **atracción de desarrolladores** gracias a distribución centralizada y monetización.

Estandarización y actualizaciones

Iniciativas como **Project Treble** modularizan el sistema para facilitar actualizaciones de fabricantes; **Android Enterprise** define perfiles y políticas para gestión corporativa (BYOD, Work Profile).

Seguridad y certificación

Compatibilidad con **SafetyNet/Play Integrity**, parches de seguridad mensuales y requisitos de compatibilidad CTS (Compatibility Test Suite) para el sello "compatible con Android".

Resultado

Dominio Global

Android se consolida como la plataforma con la **mayor presencia global**, impulsada por la diversidad de dispositivos y rangos de precios accesibles a un público amplio.

Modelo de Negocio Híbrido

Google capitaliza el ecosistema a través de publicidad y servicios en la nube. Paralelamente, los fabricantes monetizan hardware, servicios y, en ocasiones, sus propias tiendas de aplicaciones.

Efecto de Red Potenciado

Un mayor número de usuarios atrae más interés de desarrolladores, lo que resulta en más y mejores aplicaciones, incrementando el valor general para el usuario final.

Expansión a Nuevos Ámbitos

La flexibilidad del enfoque modular ha permitido la creación de variantes exitosas como **Android TV/Google TV**, **Android Automotive** y **WearOS**, llevando Android a diversos dispositivos.

El caso ilustra cómo **un SO de base libre** puede competir con **plataformas propietarias** combinando apertura, certificación, seguridad y una cadena de valor atractiva para todas las partes (usuario, fabricante y desarrollador).

Herramientas y Consejos

Virtualización Segura

Prueba diferentes sistemas operativos sin riesgo utilizando herramientas de virtualización.

VirtualBox (gratuito) y

VMware Workstation Player (uso no comercial) te permiten instalar Windows, Linux y BSD como máquinas virtuales.

- Para Linux con aceleración, valora KVM/QEMU (Linux host) o GNOME Boxes.
- Consejo: Asigna >= 2 CPU y
 >= 4 GB de RAM a las VMs
 de escritorio; activa VT-x/AMD-V en BIOS/UEFI.

Medios de Instalación Fiables

Crea USB de arranque desde imágenes ISO con balenaEtcher o Rufus. Es crucial verificar las descargas con el hash SHA256 proporcionado por el fabricante para evitar errores o manipulaciones.

 Consejo: Etiqueta tus USB por sistema y versión para una mejor organización.

Explora Distros Linux

Utiliza **DistroWatch** para comparar distribuciones, sus ciclos de soporte y entornos de escritorio. Si necesitas estabilidad en entornos productivos, prioriza las versiones **LTS** (Long Term Support).

 Consejo: Para empezar, Ubuntu LTS o Linux Mint son excelentes opciones por su facilidad de uso y ecosistema maduro.

Simulación Móvil

Desarrolla y testea aplicaciones móviles sin necesidad de un dispositivo físico. El **Android Studio Emulator** te permite configurar distintos tamaños de pantalla y niveles de API, mientras que el **iOS Simulator** es parte de **Xcode** (requiere macOS).

 Consejo: Desactiva las animaciones del emulador para pruebas de rendimiento y usa instantáneas para estados "limpios". /

Documenta tu Decisión

Antes de elegir un SO, crea una tabla de decisión con **criterios ponderados** como compatibilidad de software, licencias, coste total (TCO), seguridad, soporte, rendimiento, virtualización y facilidad de administración.

 Consejo: Puntúa cada opción de 1 a 5 y justifica la nota con hechos verificables (drivers disponibles, requisitos mínimos, ciclo de soporte).

Mitos y Realidades

Mito: "Linux no tiene soporte profesional; es solo para el aula o el hobby."

FALSO. La realidad es que existen distribuciones empresariales con soporte de nivel industrial (p. ej., Red Hat Enterprise Linux, SUSE Linux Enterprise, Ubuntu Pro) que ofrecen parches, hardening, certificaciones y SLAs. Además, los principales hipervisores, clouds y fabricantes certifican drivers y herramientas para Linux. En pymes, muchas consultoras locales dan soporte a medida. El ecosistema de soporte en Linux es amplio y maduro, tanto comercial como comunitario.

X Mito: "Elegir sistema operativo es solo una cuestión de gustos."

FALSO. Las preferencias importan, pero en entorno profesional pesa más el ajuste a requisitos: software crítico disponible, políticas de seguridad (cifrado, auditoría, control de cuentas), gestión centralizada (AD/LDAP/MAM), coste total (licencias, despliegue, soporte), ciclo de vida (LTS, LTSC) y compatibilidad hardware (chipset, GPU, Wi-Fi). En servidores, también automatización y observabilidad. La decisión técnica debe basarse en criterios verificables, no solo en comodidad personal.

Resumen Final

- SO = capa que coordina hardware y aplicaciones; gestiona procesos, memoria, archivos y dispositivos.
- Clasificación doble: **por licencia** (libres vs propietarios) y **por ámbito** (escritorio, servidor, móviles).
- Caso Android: base libre (AOSP) + servicios propietarios (GMS) → adopción masiva y ecosistema sostenible.
- Decidir no es "por gusto": pondera compatibilidad, seguridad, TCO, soporte y ciclo de vida.

Sesión 2. Licencias: GPL, OEM, Retail. Comparación práctica

Cada sistema operativo (SO) viene acompañado de una licencia que define cómo puede usarse, distribuirse y modificarse. Entender estas licencias es esencial para evitar sanciones, reducir costes y garantizar que el software se emplea de forma legal y eficiente.

GPL (General Public License)

- Promovida por la *Free Software Foundation.*
- Garantiza las "4 libertades del software": usar, estudiar, modificar y redistribuir.
- Ejemplo: Linux, MySQL, WordPress.
- En entornos profesionales, permite auditar código, adaptarlo y evitar dependencia de un único proveedor (vendor lock-in).

OEM (Original Equipment Manufacturer)

- Licencia vinculada a un dispositivo nuevo.
- Suele ser más barata porque el coste se reparte entre fabricante y distribuidor.
- No es transferible: si el hardware deja de usarse, la licencia se pierde.
- Ejemplo: Windows 11 preinstalado en un portátil Lenovo.

Retail

- Licencia comercial comprada de forma independiente (caja o digital).
- Puede instalarse en distintos equipos, siempre que se use en uno a la vez.
- Incluye soporte directo del fabricante y actualizaciones plenas.
- Ejemplo: compra de Windows 11 Pro en Microsoft Store.

En la práctica, las licencias no solo definen la **legalidad del uso**, sino también el **coste total de propiedad (TCO)** y la **flexibilidad** de la infraestructura tecnológica de una empresa.

Esquema Visual

Cómo reproducir el esquema sin ambigüedad:

- 1. Un nodo principal arriba: "Licencias de Sistemas Operativos".
- 2. Tres ramas horizontales hacia GPL, OEM, Retail.
- 3. De cada licencia, dibuja dos nodos hijos que aclaren sus características principales.
- 4. Estilo: rectángulos con texto claro; usa conectores simples (-->).

Caso de Estudio – Microsoft y el mercado OEM

Contexto

Desde los años 90, Microsoft consolidó su posición en el mercado de escritorio gracias a acuerdos con fabricantes (OEM) como Dell, HP o Lenovo. Cada ordenador nuevo llegaba al consumidor con Windows preinstalado, lo que eliminaba la fricción de instalar un SO.

Estrategia

- Licenciar Windows en formato OEM a los fabricantes, asegurando que cada equipo vendido incluía su sistema.
- Ofrecer precios reducidos por volumen, compensados con la enorme cuota de mercado alcanzada.
- Establecer contratos que limitaban la preinstalación de sistemas alternativos, lo que reforzó su dominio.

Resultado

- Windows alcanzó más del 75% de cuota en PC de escritorio a nivel mundial.
- Las licencias OEM, más económicas para los fabricantes, limitaron la libertad del usuario final (no transferibles, sin soporte directo de Microsoft).
- Este modelo garantizó ingresos recurrentes para Microsoft y consolidó su posición como estándar de facto.

Herramientas y Consejos

Comprobación de licencias en Windows

Usa el comando slmgr /dli para verificar el tipo de licencia activa (OEM, Retail, Volume). Herramientas como **ProduKey** permiten extraer claves instaladas.

Explora ejemplos de software GPL

LibreOffice (ofimática),
GIMP (diseño), VLC
(multimedia). Estos
casos demuestran que
libre no significa menor
calidad, sino mayor
control y personalización.

Evalúa costes de licencias en empresas

Usa hojas de cálculo para calcular el **TCO**: coste inicial + actualizaciones + soporte. Considera soluciones **open source** (ej. Linux en servidores) para reducir costes recurrentes.

Mitos y Realidades

X Mito: "El software libre siempre es gratis."

FALSO. El término "libre" se refiere a las libertades de uso y modificación, no al precio. Muchas empresas venden servicios de soporte, formación y certificación alrededor de software libre (ej.: Red Hat con Linux).

Mito: "Una licencia OEM se puede reinstalar en cualquier equipo."

FALSO. Está vinculada al hardware original. Aunque puedes reinstalar el sistema en ese mismo dispositivo, al cambiar de ordenador la licencia pierde validez legal.

Resumen Final

- SO = capa que coordina hardware y aplicaciones; gestiona procesos, memoria, archivos y dispositivos.
- Clasificación doble: por licencia (libres vs propietarios) y por ámbito (escritorio, servidor, móviles).
- Caso Android: base libre (AOSP) + servicios propietarios (GMS) → adopción masiva y ecosistema sostenible.
- Decidir no es "por gusto": pondera compatibilidad, seguridad, TCO, soporte y ciclo de vida.

<u>Sesión 3. Elección del SO según uso: personal, empresarial, servidores</u>

No existe un sistema operativo "mejor" en términos absolutos. La elección adecuada depende del **contexto de uso**:

Uso personal

Prioriza facilidad,
compatibilidad con
programas de ofimática,
entretenimiento y
periféricos. Windows es
líder en videojuegos y
software comercial;
macOS destaca en
creatividad;
distribuciones Linux como
Ubuntu o Linux Mint
ofrecen alternativas
gratuitas y seguras.

Uso empresarial

Se buscan seguridad, administración centralizada y compatibilidad con software de gestión (ERP, CRM, bases de datos). Windows Server, junto a Active Directory, domina en entornos corporativos. Linux empresarial (Red Hat Enterprise Linux, SUSE, Ubuntu Server LTS) ofrece estabilidad, coste controlado y soporte de misión crítica.

Servidores

estabilidad a largo plazo, escalabilidad y coste de licencias. Linux es líder en servidores web, supercomputación y cloud (ej. Ubuntu Server en AWS, Google Cloud, Azure). Windows Server es más usado en entornos corporativos que requieren integración con Microsoft SQL Server, SharePoint o aplicaciones .NET.

Otros criterios de decisión relevantes:

- Presupuesto: licencias propietarias vs software libre con soporte opcional.
- Compatibilidad de software específico (ej. AutoCAD, Final Cut Pro, SAP).
- Seguridad y cumplimiento normativo (ISO 27001, RGPD, ENS en España).
- Soporte y talento técnico disponible en la organización o mercado laboral local.

Esquema Visual

Explicación para recrear el diagrama:

- Nodo principal: "Elección de Sistema Operativo".
- Tres ramas: Personal, Empresarial y Servidores.
- Cada rama con dos subcriterios: facilidad, compatibilidad; seguridad, integración; escalabilidad, costes.
- Formato rectangular, conectores simples y lectura vertical.

Caso de Estudio – Netflix y su infraestructura híbrida

Contexto

Netflix gestiona una de las mayores infraestructuras de streaming del mundo, sirviendo vídeo bajo demanda a más de 250 millones de suscriptores en todo el planeta. Su reto es garantizar disponibilidad 24/7, escalabilidad masiva y seguridad en la gestión de datos.

Estrategia

- Servidores: adoptaron Linux como base para sus sistemas en la nube (AWS). La elección se debe a su robustez, flexibilidad y coste controlado.
- Empresarial: para tareas internas de productividad, usan una combinación de Windows (ofimática y herramientas corporativas) y macOS (producción audiovisual y diseño).
- Personal (empleados): cada trabajador elige el SO que mejor se adapta a su perfil (desarrollo con Linux/macOS, administración con Windows).
- Además, apostaron por open source en herramientas de observabilidad (Chaos Monkey, Spinnaker), compartiéndolas con la comunidad.

Resultado

Netflix ha conseguido una infraestructura híbrida que combina lo mejor de cada SO:

- Linux en servidores cloud para escalar globalmente.
- Windows y macOS en puestos de trabajo para productividad y creatividad.
- Resultado: una plataforma resiliente que soporta miles de millones de horas de visionado al mes.

Herramientas y Consejos

Simuladores de elección de SO

Elabora una matriz de decisión con criterios como compatibilidad, seguridad, coste y soporte. Usa Excel o Google Sheets para ponderar opciones.

Portales cloud para practicar con diferentes SO

AWS, Azure o Google
Cloud permiten lanzar
instancias con **Ubuntu Server, Windows Server, SUSE o Red Hat** en pocos
clics. Así puedes
experimentar en un
entorno real.

Herramientas de virtualización

Con **VirtualBox** o **VMware Workstation**

Player, prueba varios SO en paralelo en tu PC sin necesidad de hardware adicional.

Mitos y Realidades

X Mito: "Linux no sirve para empresas."

FALSO. Empresas como Google, IBM, Amazon o Meta basan toda su infraestructura en Linux. Además, hay versiones certificadas con soporte 24/7 (RHEL, SUSE, Ubuntu Pro) diseñadas específicamente para empresas. X Mito: "Un único sistema operativo puede cubrir todas las necesidades."

FALSO. En la práctica, los entornos son **mixtos**: Windows para ofimática, Linux para servidores, macOS en entornos creativos. La decisión correcta suele ser **híbrida**.

Resumen Final

- La elección del SO depende del contexto: personal, empresarial o servidores.
- Personal = facilidad y compatibilidad. Empresarial = seguridad y administración.
 Servidores = estabilidad y escalabilidad.
- Caso Netflix: infraestructura híbrida con Linux, Windows y macOS.
- Mitos: Linux sí es válido para empresas; no existe un SO único que cubra todas las necesidades.