21 February 2023 23:42

Buchple of exponental formula. also = 1/25 - accs) value tis 4 1.v. Occ is obsolved Codinuous.

Chapter 8

Z(+) = Z60) - 1 t Z(5-) H(5) da(5)

Note that
$$\Delta ass = \begin{cases} 0 & \text{if } S < z \end{cases}$$
, $T(\mu s) \Delta ass = 1_{z < t} (\mu s) + 1_{z > t}$
1 if $S = z$ 0 osset

$$\sum_{0 < x \le t} g(s) \Delta f(s) = -\sum_{0 < x \le t} f(s-) g(s-) \mu(s) \Delta a(s),$$

$$f(t)g(t) = f(0)g(0) - \int_{0}^{t} f(s-)g(s-)\mu(s)da(s).$$

That is f(t)g(t), $t \in [0,T]$, is a solution to the equation (8). The uniqueness of the solution is left as an exercise. \Box

3 Single jump processes and Girsanov's theorem

3.1 Stopping times

Definition 5. A filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, P)$ is said to satisfy the <u>usual conditions</u> if the following conditions hold: (1) completeness: \mathcal{F}_0 includes all of the P-ull sets; (2) right continuity: $\mathcal{F}_t = \mathcal{F}_{t+}$ where $\mathcal{F}_{t+} = \cap_{n\geq 1} \mathcal{F}_{t+\frac{1}{4}}$. \square

For any "reasonable" strong Markov process X (e.g. Feller processes including Levy, Brownian and Poisson processes), its natural filtration $\mathscr{F}_t := \sigma(X_t : s \le t)$ after augmentation is right continuous?.

Definition 6. A random variable $\tau:\Omega\to[0,\infty]$ is called an \mathscr{F}_r -stopping time if $\{\tau\le I\}\in\mathscr{F}_r$ for $t\ge 0$. The random variable τ is called an optional time if $\{\tau< t\}\in\mathscr{F}_r$

If τ is an \mathscr{F}_t -stopping time, then

$$\{\tau < t\} = \bigcup_{n \ge 1} \{\tau \le t - \frac{1}{n}\} \in \bigcup_{n \ge 1} \mathscr{F}_{t - \frac{1}{n}} \subset \mathscr{F}_t.$$

$$\{\tau \le t\} = \bigcap_{n \ge 1} \{\tau < t + \frac{1}{n}\} \in \bigcap_{n \ge 1} \mathscr{F}_{t + \frac{1}{n}},$$

which is \mathscr{F}_t only if $\{\mathscr{F}_t\}_{t\geq 0}$ is right continuous.

Example 3. Let $\{\tau_n\}_{n\geq 1}$ be a sequence of \mathscr{F}_I -stopping times. Then,

$$\left\{\sup_{n\geq 1}\tau_n\leq t\right\}=\cap_{n\geq 1}\left\{\tau_n\leq t\right\}\in\mathscr{F}_t,$$

Teaching ST909-2023 Page 1

Note that the natural filtration of Poisson processes is right continuous before argumentation, and so are single jump processes.

Gechun Liane

so $\sup_{n\geq 1} \tau_n$ is again an \mathscr{F}_t -stopping time. However, since

$$\left\{\inf_{n\geq 1}\tau_n\leq t\right\}=\cap_{m\geq 1}\cup_{n\geq 1}\left\{\tau_n< t+\frac{1}{m}\right\}\in\cap_{m\geq 1}\mathscr{F}_{t+\frac{1}{m}},$$

which is \mathscr{F}_r only if $\{\mathscr{F}_r\}_{r\geq 0}$ is right continuous, $\inf_{n\geq 1}\tau_n$ is an \mathscr{F}_r -stopping time only if the filtration is right continuous. On the other hand, if τ_n is only optional, then since $\{\inf_{n\geq 1}\tau_n\geq t\}=\cap_{n\geq 1}\{\tau^n\geq t\}$, it follows that

$$\left\{\inf_{n \geq 1} \tau_n < t\right\} = \cup_{n \geq 1} \{\tau^n < t\} \in \mathscr{F}_t,$$

 $\inf_{n\geq 1} \tau_n$ is an optional time. \square

Definition 7. The past at the stopping time τ is the $\sigma\text{-field } \mathscr{F}_{\tau}$ defined by

$$\mathscr{F}_{\tau} = \{A \in \mathscr{F}_{m} : A \cap \{\tau \leq t\} \in \mathscr{F}_{t} \text{ for } t \geq 0\}$$

The strict past at the stopping time τ is the σ -field $\mathcal{F}_{\tau-}$ generated by the set

$$\mathscr{F}_{\tau-} = \sigma\left(\{A_0 \in \mathscr{F}_0\} \cup \{A_s \cap \{\tau > s\} \text{ for } s \geq 0, A_s \in \mathscr{F}_s\}\right)$$

Proposition 2. Both \mathcal{F}_{τ} and \mathcal{F}_{τ} . are σ -fields satisfying $\mathcal{F}_{\tau} \subset \mathcal{F}_{\tau}$, and τ is an \mathcal{F}_{τ} -measurable random variable (therefore also \mathcal{F}_{τ} -measurable). When X is progressively measurable, X_{τ} is \mathcal{F}_{τ} -measurable.

Proof. The verification of \mathscr{F}_{τ} and \mathscr{F}_{τ} . being σ -fields is by the definition. For example, for $A \in \mathscr{F}_{\tau}$, $A' \cap \{\tau \leq t\} = \{\tau \leq t\} - A \cap \{\tau \leq t\}$. Since $\{\tau \leq t\} \in \mathscr{F}_{\tau}$ and $A \cap \{\tau \leq t\} \in \mathscr{F}_{\tau}$, it follows that $A' \in \mathscr{F}_{\tau}$. To prove that $\mathscr{F}_{\tau} \subset \mathscr{F}_{\tau}$ it suffices to show that the generators of \mathscr{F}_{τ} are in \mathscr{F}_{τ} . G_{τ} is the first order of G_{τ} . For $A_{\lambda} \in \mathscr{F}_{\lambda}$, G_{τ} is the first order of G_{τ} . For $G_{\lambda} \in \mathscr{F}_{\tau}$ is the first order of G_{τ} .

$$A_s \cap \{\tau > s\} \cap \{\tau \le t\} = A_s \cap \{s < \tau \le t\} \in \mathscr{F}_t$$

The set $\{\tau=0\}$ and $\{\tau>a\}$, $a\geq 0$, are generators of $\mathscr{F}_{\tau-}$ and therefore τ is

 \mathscr{F}_{τ} -measurable. Finally, we show that X_{τ} is \mathscr{F}_{τ} measurable. For this, for fixed $t \geq 0$, we aim to show that for any Borel set V, $X_{\tau}^{-1}(V) \cap \{\tau \leq t\} \in \mathscr{F}_{t}$. Define two maps $\mbox{\textbf{g}}_{\zeta} : \omega \mapsto \mbox{\textbf{g}}_{\alpha(s)}(\omega)$

$$\phi_{t}: \{\omega: \tau(\omega) \leq t\} \rightarrow [0, t] \times \Omega, \text{ by } \phi_{t}(\omega) = (\tau(\omega), \omega), \qquad \bigcup_{t} \frac{\phi_{t}}{\phi_{t}} \rightarrow (\tau(\omega), \omega), \frac{\phi_{t}}{\phi_{t}} \rightarrow \mathbb{Z}_{\zeta(\omega)}(\omega)$$

$$\phi^t$$
: $[0,t] \times \Omega \rightarrow \mathbb{R}^d$, by $\phi^t(s,\omega) = X_s(\omega)$.

Note that $X_{\tau} = \phi' \circ \phi_t$. We verify that ϕ_t is $\mathscr{F}_t \cap \{\tau \leq t\} \to \mathscr{B}[0,t] \otimes \mathscr{F}_t$ measurable. Indeed, for $A \in \mathscr{F}_t$ and $a \in [0,t]$, since τ is a stopping time,

$$\phi_t^{-1}([0,a]\times A)=\{\tau\leq a\}\cap A\subset \{\tau\leq t\}\cap A\in \mathscr{F}_t\cap \{\tau\leq t\}.$$

ST909 Chapter 8

Together with X being progressively measurable, i.e. ϕ' is $\mathscr{B}[0,t]\otimes \mathscr{F}_t \to \mathscr{B}(\mathbb{R}^d)$ measurable, we conclude that $X_t = \phi' \circ \phi_t$ is $\mathscr{F}_t \cap \{\tau \leq t\} \to \mathscr{B}(\mathbb{R}^d)$ measurable. Hence,

$$\begin{split} X_{\tau}^{-1}(V) \cap \{\tau \leq t\} &= \{\omega : \tau(\omega) \leq t, X_{\tau(\omega)}(\omega) \in V\} \\ &= \{\omega : \tau(\omega) \leq t, \phi^t \circ \phi_t(\omega) \in V\} \\ &= \{\tau \leq t\} \cap \phi^t \circ \phi_t^{-1}(V) \in \mathscr{F}_t \end{split}$$

3.2 Single jump processes

Let $\tau:\Omega\to\mathbb{R}_+$ be a non-negative random variable with property $\mathbf{P}(\tau=0)=0$ and $\mathbf{P}(\tau>t)>0$ for any $t\in\mathbb{R}_+$. Introduce the corresponding single jump process $H_t=\mathbf{1}_{\{\tau\leq t\}}, t\geq 0$, and its natural filtration $\{\mathscr{F}_t\}_{t\geq 0}$ by

$$\mathcal{F}_t = \sigma(H_u : u \leq t)$$

with $\mathscr{F}_{\infty} = \sigma(H_u : u \in \mathbb{R}_+)$. It is easy to check the following properties of \mathscr{F}_t .

 $\begin{array}{c} - \sigma(\tau) = \sigma(\tau) \\ 1. \ \mathcal{F}_t = \sigma(\{\tau \leq u\} : u \leq t); \\ 2. \ \mathcal{F}_t = \sigma(\sigma(\tau) \cap \{\tau \leq t\}); \\ 3. \ \mathcal{F}_t = \sigma(\sigma(\tau \wedge t) \cup \{\tau > t\}); \\ 4. \ \mathcal{F}_t = \mathcal{F}_{t+}; \\ 5. \ \mathcal{F}_u = \sigma(\tau); \\ 6. \ A \cap \{\tau \leq t\} \in \mathcal{F}_t \text{ for any } A \in \mathcal{F}_m. \end{array}$

The following formulas are useful to calculate the conditional distribution of τ . The key point (which may not be obvious at the beginning) is that any \mathcal{F}_F measurable τ . X_F is of the form $X_I = x_I^0 \mathbf{1}_{\{T>I\}} + x_I^1(\tau) \mathbf{1}_{\{T>I\}}$ (called Jacod's decomposition for optional processes).

Lemma 1. For any random variable $Y \in \mathscr{F}_{\infty}$,

if t~ exp(s)

$$\begin{split} & E[Y|\mathcal{F}_t] = \frac{E[1_{\{\tau>t\}}Y]}{P(\tau>t)} \mathbf{1}_{\{\tau>t\}} + E[Y|\sigma(\tau)] \mathbf{1}_{\{\tau>t\}}, \quad E[\gamma] \mathcal{F}_0] = \mathbf{1}_{C>t} E[\gamma] \mathbf{1}_{C>t} \mathcal{E}[\gamma] \mathcal{F}_0 \\ & \text{prove on } \{\tau \leq t\}, E[\gamma] \mathcal{F}_t] = E[Y|\sigma(\tau)], \text{ i.e.} \end{split}$$

 $\begin{array}{c} \textit{Proof.} \text{ We first prove on } \{\tau \leq t\}, \mathbf{E}[Y|\mathcal{F}_t] = \mathbf{E}[Y|\sigma(\tau)], \text{i.e.} \\ \text{ } \\ \text{$

Case 1. Y= 17>T

In other words, $E[1_{\{\tau\leq t\}}Y|\mathcal{F}_t]$ is the conditional expectation of $1_{\{\tau\leq t\}}Y$ on $\sigma(\tau)$. $E[1_{\mathcal{C}_T}|\mathcal{F}_t]$ $\Rightarrow 1_{\mathcal{C}_t}E[1_{\mathcal{C}_T}|\mathcal{F}_t]$ Indeed, for any $A\in\sigma(\tau)$, $A\cap\{\tau\leq t\}\in\mathcal{F}_t$, it follows that

$$E[\mathbf{1}_A E[\mathbf{1}_{\{\tau \leq t\}} Y | \mathscr{F}_r]] = E[\mathbf{1}_{A \cap \{\tau \leq t\}} E[Y | \mathscr{F}_r]] = E[\mathbf{1}_A \mathbf{1}_{\{\tau \leq t\}} Y].$$

(we. 2)= 1,5T

+1tst [1z= 612]

= 1 (1- e-NFE)

D= 8232 fm Sst

LHS= E[Jost] P(Tot)

1+<3=A @

110+ YPOOt) dP = 10+ E[10+1] dP

>7>+ TA = \$ => LHS=RHS=0

for YAEFE.

Gechun Liane

12 Next, we show on $\{\tau > t\}$, $\mathbf{E}[Y|\mathscr{F}_t] = \frac{\mathbf{E}[\mathbf{1}_{\{\tau > t\}}Y]}{\mathbf{F}[\tau > t]}$, i.e.

$$\begin{array}{ll} (\tau > t), E[Y|\mathcal{F}_t] = \frac{E[I_{\{\tau > t\}}]}{|Y| > 2}, i.e. \\ E[I_{\{\tau > t\}}]Y|\mathcal{F}_t] = I_{\{\tau > t\}}P[\tau > t). \end{array} \not = \sum_{i=1}^{n} \left[\frac{1}{1} \operatorname{Tot} Y P[\tau > t) \right] P[\tau > t) P[\tau > t). \end{array} \\ \begin{array}{ll} \text{Hence, we need to verify.} \end{array}$$

In other words, $\mathbf{1}_{\{\tau>t\}}\mathbf{E}[\mathbf{1}_{\{\tau>t\}}Y]$ is the conditional expectation of $\mathbf{1}_{\{\tau>t\}}\mathbf{P}(\tau>t\}$ on \mathscr{F}_r . For this, for any $A \in \mathscr{F}_r$, it is sufficient to consider $A - \{\tau \le t\}$ for $s \le t$ which yields $A \cap \{\tau>t\} = \emptyset$, and $A = \{\tau>t\}$ which yields $A \cap \{\tau>t\} = \{\tau>t\}$. For the case $A \cap \{\tau>t\} = \emptyset$.

$$\mathbb{E}\left[\mathbf{1}_{A}\mathbf{1}_{\{\tau>t\}}\mathbb{E}[\mathbf{1}_{\{\tau>t\}}Y]\right] = \mathbb{E}\left[\mathbf{1}_{A}\mathbf{1}_{\{\tau>t\}}Y\mathbb{P}(\tau>t)\right] = 0,$$

so that (10) holds. For the case $A \cap \{\tau > t\} = \{\tau > t\}$,

$$\mathbb{E}\left[\mathbf{1}_{t}\mathbf{1}_{\{\tau>t\}}\mathbb{E}[\mathbf{1}_{\{\tau>t\}}Y]\right] = \mathbb{P}(\tau > t)\mathbb{E}[\mathbf{1}_{\{\tau>t\}}Y],$$

and

$$\mathbf{E}\left[\mathbf{1}_{A}\mathbf{1}_{\{\tau>t\}}Y\mathbf{P}(\tau>t)\right] = \mathbf{E}[\mathbf{1}_{\{\tau>t\}}Y]\mathbf{P}(\tau>t),$$

from which we conclude.

One of the most typical examples of the stopping time τ used to model default time is generated by an exponential random variable with constant intensity $\lambda>0$, as shown in the following example.

Example 4. If τ follows exponential distribution with constant intensity $\lambda > 0$, then $R = \Gamma I_{rot} \gamma R$

$$\mathbf{E}[\mathbf{1}_{\{\tau>t\}}Y|\mathscr{F}_t] = \mathbf{1}_{\{\tau>t\}}e^{\lambda t}\mathbf{E}[\mathbf{1}_{\{\tau>t\}}Y].$$

In particular, taking $Y = \mathbf{1}_{\{\tau > T\}}$ yields

$$P(\tau > T | \mathcal{F}_t) = \mathbf{1}_{\{\tau > t\}} e^{-\lambda(T-t)}$$
. (11)

Taking $Y = \mathbf{1}_{\{t < \tau \le T\}}$ yields

$$P(t < \tau \le T | \mathcal{F}_t) = \mathbf{1}_{\{\tau > t\}} (1 - e^{-\lambda(T-t)}).$$
 (12)

We also have the martingale characterisation of the single jump process $H_t:=1_{\{\tau\leq t\}}, t\geq 0$, when τ follows exponential distribution.

Lemma 2. The \mathcal{F}_t -stopping time τ follows exponential distribution with constant

$$M_t := H_t - \int_0^t \mathbf{1}_{\{\tau > s\}} \lambda ds, \ t \ge 0,$$

is an $(\mathcal{F}_t, \mathbf{P})$ -martingale and $\mathbf{P}(\tau > 0) = 1$.

ST909 Chapter 8

 $\textit{Proof:} \ \ \underline{\text{Only if part}} \text{: For any } T \geq t \geq 0 \text{, by the formula (11),}$

$$\begin{split} \mathbf{E}[M_T|\mathcal{F}_t] &= 1 - \mathbf{E}[\mathbf{1}_{\{\tau \geq T\}}|\mathcal{F}_t] - \int_0^t \mathbf{1}_{\{\tau \geq s\}} \lambda ds - \int_t^T \mathbf{E}[\mathbf{1}_{\{\tau \geq s\}} \lambda|\mathcal{F}_t] ds \\ &= 1 - \mathbf{1}_{\{\tau \geq t\}} e^{-\lambda(T-t)} - \int_0^t \mathbf{1}_{\{\tau \geq s\}} \lambda ds - \mathbf{1}_{\{\tau \geq t\}} \int_t^T \lambda e^{-\lambda(s-t)} ds \\ &= \mathbf{1}_{\{\tau \geq t\}} - \int_0^t \mathbf{1}_{\{\tau \geq s\}} \lambda ds = M_t. \end{split}$$

Since τ follows exponential distribution, it follows that $\mathbf{P}(\tau>0)=e^{-\lambda 0}=1$. If part: For $t\geq 0$, define $\Phi(t)=\mathbf{P}(\tau>t)$. Then, following the martingale property of M,

$$\Phi(t) = \mathbb{E}\left[1 - M_t - \int_0^t \mathbf{1}_{\{\tau > s\}} \lambda ds\right]$$

= $1 - M_0 - \lambda \int_0^t \Phi(s) ds$.

It follows from the condition $\tau > 0$ a.s. that $M_0 - H_0 = 0$, a.s., so

$$\Phi(t) = 1 - \lambda \int_{0}^{t} \Phi(s)ds$$

which implies that $\Phi(t)=e^{-\lambda t}$, i.e. τ follows exponential distribution with intensity λ . \Box

In practice, we often need to model λ as an \mathcal{F}_1 -prog measurable stochastic process. Based on the above martingale characterisation, we impose the following assumption on the \mathcal{F}_7 -stopping time ε through its corresponding single jump process $H_{\varepsilon} = 1_{\xi = 0, 1} > 0$. It is clear that for each ω , $H(\omega)$ is a BV function (recall BV means Cadlag with bounded variation).

Assumption 1 Let τ be a non-negative random variable defined on $(\Omega, \mathcal{F}, \mathbf{P})$, and $\{\mathcal{F}_t\}_{t\geq 0}$ be the natural filtration of $H_t = \mathbf{1}_{\{\tau \leq t\}}, t \geq 0$. i.e. $\mathcal{F}_t = \sigma(H_t : s \leq t)$, such that

$$M_t := H_t - \int_0^t \mathbf{1}_{\{\tau > s\}} \lambda_s ds, \ t \ge 0,$$

is an (\mathcal{F}_1,P) -martingale, for λ being an \mathcal{F}_t -prog measurable, strictly positive and bounded process. Moreover, we assume that $P(\tau>0)=1$.

Since $H_{\cdot}(\omega)$ is BV, it is obvious that $M_{\cdot}(\omega)$ is also BV, that is, M is a Cadlag arranged with bounded variation, and moreover, $\Delta M_t = \Delta H_t$.

Teaching ST909-2023 Page 3

3.3 Girsanov's theorem

We next discuss the Girsanov's theorem for the single jump process \boldsymbol{H} under Assumption 1.

Theorem 7. Let $\mu \in [0,1]$ be a constant, and suppose that Assumption 1 is satisfied. For T>0, define $Z_i^{\mu} = C_i^{\mu} V_i^{\mu}$ for $t \in [0,T]$, where

$$C_t^{\mu} = e^{\int_0^t \mu \mathbf{1}_{\{\tau>s\}} \lambda_s ds}$$
,

and

$$V_t^{\mu} = \mathbf{1}_{\{\tau > t\}} + (1 - \mu)\mathbf{1}_{\{\tau \le t\}}$$

Then, Z^{μ} is an $(\mathcal{F}_{l}, \mathbf{P})$ -martingale, and satisfies,

$$Z_t^{\mu} = 1 - \int_0^t Z_{s-\mu}^{\mu} dM_s, \quad for \ t \in [0, T].$$

Proof. Note that for T>0, $\int_0^T |\mu| dM_T = \mu M_T < \infty$. We decompose the martingale M into its continuous part and pure jump part as

$$M_t = M_t^c + \sum_{0 < s \le t} \Delta M_s$$

= $-\int_0^t \mathbf{1}_{\{\tau > s\}} \lambda_s ds + H_t$

In turn, we have

$$e^{-\int_{0}^{t} \mu dM_{x}^{c}} = e^{\int_{0}^{t} \mu 1_{\{\tau>s\}} \lambda_{a} ds} = C_{t}^{\mu}$$

and since $\Delta M_s = \Delta H_s$,

$$\prod_{0 \le s \le t} (1 - \mu \Delta M_s) = \prod_{0 \le s \le t} (1 - \mu \Delta H_s) = \mathbf{1}_{\{\tau > t\}} + (1 - \mu) \mathbf{1}_{\{\tau \le t\}} = V_t^{\mu}.$$

Theorem 6 then implies that $C_t^{\mu}V_t^{\mu}$ satisfies, for $t \in [0, T]$,

$$C_t^{\mu}V_t^{\mu} = 1 - \int_0^t C_{s-}^{\mu}V_{s-}^{\mu}\mu dM_s$$

so $Z_t^\mu = C_t^\mu V_t^\mu$, $t \in [0,T]$, is an $(\mathcal{F}_t,\mathbf{P})$ -local martingale. Since both C_t^μ and V_t^μ are bounded for $t \in [0,T]$, we conclude that Z^μ is also an $(\mathcal{F}_t,\mathbf{P})$ -martingale. \qed

Theorem 8. Let T>0 be fixed. Given the $(\mathcal{F}_1, \mathbf{P})$ -martingale Z^μ as in Theorem 7, define a new probability measure \mathbf{Q}^μ by the Radon-Nikodym density

$$\frac{d\mathbf{Q}^{\mu}}{d\mathbf{P}}\Big|_{\mathcal{F}_{\mathbf{r}}} = Z_{\mathbf{r}}^{\mu}.$$

Then.

ST909 Chapter 8

$$M_t^{\mu} = H_t - \int_0^t (1 - \mu) \mathbf{1}_{\{\tau > s\}} \lambda_s ds, t \in [0, T],$$

is an $(\mathcal{F}_t, \mathbf{Q}^{\mu})$ -martingale.

Proof. Note that by the Bayes' formula, M_i^{μ} , $t \in [0,T]$, is an $(\mathcal{F}_t, \mathbf{Q}^{\mu})$ -marringale iff $M_i^{\mu}Z_i^{\mu}$, $t \in [0,T]$ is an $(\mathcal{F}_t, \mathbf{P})$ -marringale. Hence, it is sufficient to show that $M_i^{\mu}Z_i^{\mu}$, $t \in [0,T]$, is an $(\mathcal{F}_t, \mathbf{P})$ -marringale. Using the integration by parts formula (3), we obtain

$$M_t^{\mu} Z_t^{\mu} = \int_0^t M_{s-}^{\mu} dZ_s^{\mu} + \int_0^t Z_{s-}^{\mu} dM_s^{\mu} + \sum_{\alpha, s, c} \Delta M_s^{\mu} \Delta Z_s^{\mu}.$$
 (13)

Note that M^{μ} can be rewritten as

$$M_s^{\mu} = M_s + \int_0^t \mu \mathbf{1}_{\{\tau > s\}} \lambda_s ds,$$

$$\int_{0}^{t} Z_{s-}^{\mu} dM_{s}^{\mu} = \int_{0}^{t} Z_{s-}^{\mu} dM_{s} + \int_{0}^{t} Z_{s-}^{\mu} \mu \mathbf{1}_{\{\tau > s\}} \lambda_{s} ds. \quad (14)$$

On the other hand, since $\Delta Z_s^\mu = -Z_{s-}^\mu \mu \Delta M_s$, we have

$$\sum_{0 < s \leq t} \Delta M_s^{\mu} \Delta Z_s^{\mu} = - \sum_{0 < s \leq t} Z_{s-}^{\mu} \mu |\Delta M_s|^2.$$

But $\Delta M_s = \Delta H_s$ and $|\Delta H_s|^2 = \Delta H_s$, it follows that

$$\sum_{0 < s \le t} \Delta M_s^{\mu} \Delta Z_s^{\mu} = -\sum_{0 < s \le t} Z_{t-}^{\mu} \mu \Delta H_s = -\int_0^t Z_{s-}^{\mu} \mu dH_s. \tag{15}$$

Plugging (14) and (15) into (13), we get

$$M_t^{\mu} Z_t^{\mu} = \int_0^t M_{s-}^{\mu} dZ_s^{\mu} + \int_0^t Z_{s-}^{\mu} dM_s - \int_0^t Z_{s-}^{\mu} \mu dM_s,$$

which implies that $M^\mu_i Z^\mu_i$, $t \in [0,T]$, is an $(\mathcal{F}_t,\mathbf{P})$ -local martingale. Finally, since $M^\mu Z^\mu$ is bounded, it is also an $(\mathcal{F}_t,\mathbf{P})$ -martingale. \square

Note that when $\mu=0$, then $Z^0=1$. Therefore, $Q^0=P$, and $M^0=M$ is an (\mathcal{F}_1,P) -martingale following from Assumption 1. On the other hand, when $\mu=1$, Q^1 is only absolutely continuous w.r.t. P. Therefore, for $A\subset Q$. $P(A)=0=Q^1(A)=0$. However, for the sets $B_i=\{\tau\leq t\}$, $t\in[0,T]$, we have $Q^1(B_i)=0$ but $P(B_i)\neq 0$, so Q^1 and P are not equivalent.

Exercise 1. (Exponential formula)

1. Prove the solution to the equation (8) is unique. 2. Apply the change of variables formula in Theorem 5 to $\ln Z(t)$ to derive the solution of the equation (8) directly.

Given a Calling or manipule $m_t = \mu_t - \int_t^t 1_{to} s$ and $s = \int_0^t 1_{to} s$ and $s = \int_0^$ Consider SDE SIZE = - ZelldMt.

i.e. Zt = E(- Judm)t stockstie expressel, boal mertigle.

By coporatel fraule.

Define an efficient prob aresere QLP by RN densing $\frac{da^{\mu}}{dP}\Big|_{\Phi_{\alpha}} = Z_t = \xi(-\int \mu dn)_t$

Then under ON: by Girson's Herron

mt = mt - /t / d < Z, m/s is a martifale.

d < Z. m/z = - Zt / Ity Ity It dt

= Mt + St 1 100 Adt is a mentiple.

= Ht - StI Tos Asds + St He Ars Asds

= Ht - St CHW Los Nods

In partialer, for $\mu = 1$, Ht= Lest is a Quancity role.

To prove (A) is a mertiagle under QM, it is sufferent to show MHZt is a newtypole under P

Since
$$dM_t^H = dM_t + \mu I_{t>t} \lambda_t dt$$
 is BV
 $dZ_t = -Z_t \mu dM_t$ is BV.

By integration by perts formule,

[2s-dMs = 1 = 2s-dMs + 5 = 41 = 2s - 45 = ds los roexingle

Note that $\Delta Z_S = -4 Z_S - \Delta M_S$ $J = \sum_{0 \le s \le t} \Delta M_S^R \Delta Z_S = -\sum_{0 \le s \le t} 4 Z_S - (\Delta M_S)^2$.

AMS: AHS => (SMS) = AHS

= - Z WZs- AHS

 $= -\int_{t}^{t} \mu 2s \cdot dHs.$ $= M_{t}^{\mu} Z_{t}^{\mu} \int_{0}^{t} M_{s}^{\mu} d2s + \int_{0}^{t} Z_{s}^{\mu} dMs - \int_{0}^{t} \mu 2s \cdot dHs - I_{T,s} \gamma_{s} ds)$ $= \int_{0}^{t} \mu 2s \cdot dHs.$ $= -\int_{0}^{t} \mu 2s \cdot dHs.$