This: X remail rector space then X* is Banach. (IIFI) = sup X [f(x)])

If: $\{f_n\} \subset X^{\dagger} \subset \text{cauch}_{j} \Rightarrow \{F_n(x)\} \subset \text{consoly in } \mathbb{C} \text{ for any } x \in X$. So $f(x) = \lim_{n \to \infty} F_n(x)$ is the candidate. We know $F: X \to \mathbb{C}$.

oheck that Fis linear.

 $\begin{aligned} \left| F\left(dx + \beta y \right) - dF(x) - \beta F(y) \right| &\leq \\ \left| F\left(dx + \beta y \right) - F_n\left(dx + \beta y \right) + dF_n(x) + \beta F_n(y) - dF(x) - \beta F(y) \right| \\ &\leq \left| F\left(dx + \beta y \right) - F_n\left(dx + \beta y \right) \right| + d \left| F_n(x) - F(x) \right| + \beta \left| F_n(y) - F(y) \right| \\ &\rightarrow 0 \quad \text{ar} \quad n \rightarrow \infty. \end{aligned}$

check continuity (we need to show | F(x) | EM Fr | |x| | E |)

For any \$20, tale No>0 s.t. | Fa-Fm | < C if n, m > No

sup det of (ove are given cancly)

 $|f_n(y) - f_m(x)| \le ||f_n - f_m|| ||x|| - f_{or} ||x|| \le ||x|| \le ||f_n(y) - f_{od}| \le \varepsilon$ Then $|f_n(y)| = ||f_n(y)| = ||f_n(y)|| \le \varepsilon$

Finally with $F_n \to F$ in X^* shows and of last below $\|F_n - F\| = \sup_{x \in X} \left| F_n(x) - F(x) \right| \to 0 \quad \text{as } n \to \infty$

Det for any normal vector space, X* Bunnich space of X.

$$\mathcal{E}_{X}$$
: 1) $\left(\mathbb{C}^{n}\right)^{*} = \mathbb{C}^{n}$
 b/c for any $f \in \left(\mathbb{C}^{n}\right)^{*}$, $f(t) = \sum_{i=1}^{n} C_{i} t_{i}$

a)
$$(l')^*$$
 can be identified at l^{∞}

feath $l'(C)^2 \left\{ z = (z_n)^{\infty}_{n=1} \mid \sum_{n=1}^{\infty} |z_n| < \infty \right\}$
 $l^{\infty}(C) = \left\{ z \in (z_n)^{\infty}_{n=1} \mid \sup_{n \in \mathbb{N}} |z_n| < \infty \right\}$

Pf: For any $C \in \mathcal{L}^{\infty}$, define $f_c: \mathcal{L}' \to \mathcal{C}$ s.t. $f_c(z) = \sum_{k=1}^{\infty} C_k \, \mathcal{E}_k \, . \quad \text{So } f_c \text{ Interpret continuous} \, .$

 $|F_{c}(z)| \leq \sum_{n=1}^{\infty} |C_{n}| |z_{n}| \leq \sup_{n=1}^{\infty} |C_{n}| \sum_{n=1}^{\infty} |z_{n}| = ||c||_{\ell^{\infty}} ||z||_{\ell^{1}}$ $= |\sum_{n=1}^{\infty} C_{n}z_{n}| \leq \sum_{n=1}^{\infty} \sup_{n=1}^{\infty} |c_{n}| |z_{n}| = ||c||_{\ell^{\infty}} ||z||_{\ell^{1}}$

s. we assumed a liner knowned to every element in lo

Conveyed for any $g \in (l^i)^*$, then $g = F_c$ for some c che to linearly. We want to show $c \in l^\infty$.

To find C, consider $e_{n}=(0,0,...,1,0...)$ g har the form $\leq C_{n} \epsilon_{n}$.

The Rie cz-Rependenten Theren (for Hilbert spher).

For
$$f^n$$
, $(f^n)^k = f^n$. We know that $f \in (f^n)^k \Rightarrow f = \sum_{n=1}^{\infty} C_n \mathcal{Z}_n$.

Change to $f = \sum_{n=1}^{\infty} \overline{C_n} \mathcal{Z}_n \Rightarrow f = \langle \mathcal{Z}, C \rangle$.

and $f = \sum_{n=1}^{\infty} \overline{C_n} \mathcal{Z}_n \Rightarrow f = \langle \mathcal{Z}, C \rangle$.

cre unt la generalizer there to co-dim thilbert sphe.

Such that any linear functional is the rance pat of 2 ul sumo elevent in the thilbert spice.

Then let X be a Hilbert space. Fir a continuous linear functional.

Then exists a varyone yex -s.t. F(x) = (x,y) + xe X.

Moreover | | F | | = | | y | |

home for the during space.

Proof: If FeO then y=0. Assum F \$0.

iden: Suppre y exerts and \$(x) = <x.y> =0, then y \(\text{ Ker}(F).

×

If y continuor, Ker (F) should be closed. Then it has an

orthryund complement => y & orthryund empletant.

consider larnel of f: ker F: $\{x \in X : F(x) = 0\}$ since f is continuous, ker F is clear in X (pr-improof cloud set).

Note that k in F $\notin X$. Let M = k in F.

Then we have an orthogonal decomposity of X.) structure of X = M D M hilbert space.

For any $x \in X$, x = W + Z in general. $\begin{cases}
\uparrow & \uparrow \\
\in M
\end{cases}$

$$\Rightarrow F(x) = F(y) + F(z) \qquad \left(\text{linear} \right)$$

⇒ F(x) = F(z).

Fix $z_0 \in M^{\perp}$ s.t. $F(z_0) = 1$, So we write $x = W + d z_0$ $\Rightarrow d = F(x)$. Then $\langle x, z_0 \rangle = \langle w, z_0 \rangle + \langle d, z_0 \rangle = F(x) \|z_0\|$ $\lim_{n \to \infty} \int_{\mathbb{R}^2} \frac{z_0}{\|z_0\|} \int_{\mathbb{R}^2} \frac{z_0}{\|z_0\|$

Next, pour the norm.

(1) Take $\|x\| \le 1$, then $\|f(x)\| = \|\langle x, y \rangle\| \le \|x\| \cdot \|y\|$ $\|f\| = \sup_{\|x\| \le 1} \|f(x)\| \le \|y\|$

(a) Find vector
$$x = \frac{y}{\|y\|}$$
. So $\|x\| \le 1$. Then $\|F\| \ge |F(x)| = |\langle x,y \rangle| = |\langle y,y \rangle|$

$$= \|y\|$$

Ther NFIL = Nyll.

> Man pt: we can identify X* with X for Hilbert space.

Un can find may T: X -> X* sit. for ye X.

Ty = <., y> is linear bijector & preparer Morn. (ilometro).

$$\frac{\epsilon_{\text{knyle}}}{2} : \left(\left(\left[a, b \right] \right)^{*} \simeq \left(\left[\left[a, b \right] \right) \right)^{*}$$

Note I' is bound but not Hilbert.

- Midhum up hoe -

- (V) Hahn-Banach thornm. Goal: For normed vector space X, show that X* has non-trivial element. Discouls applications.
- bef: Let X rector space over \mathbb{R} . A functional $q:X \to \mathbb{R}$ is called sublinear if

(3)
$$J(yx) = JJ(x)$$
, $J \ge 0$

Cx) X roomed space. q(x)= ||x|| subliner.