Практика 9 (теория чисел)

Владимир Латыпов

donrumata03@gmail.com

Vladimir Latypov

donrumata03@gmail.com

Содержание

5 Число решений	
13 Выпожение чепез линейные комбинации	

5 Число решений

Напоминалочка 5.1 (Класс решений):

$$(x_0 + k \cdot dx, y_0 + k \cdot dy)$$

, где
$$\,\mathrm{d} x = rac{b}{\gcd(a,b)}$$
, $\,\mathrm{d} y = -rac{a}{\gcd(a,b)}$

Условие 1: Найдите число решений диофантового уравнения ax+by=c, в которых $|x|,|y|\leq M.$

Найдём отрезок $[l_x, r_x]$ значений k, при которых $-M \leq x_0 + k \cdot \mathrm{d}x \leq M$:

$$l_x = \frac{\lceil -M - x_0 \rceil}{\mathrm{d}x}$$

$$r_x = \frac{\lfloor M - x_0 \rfloor}{\mathrm{d}x}$$

PS: если $\,\mathrm{d}x$ отрицательный, $\,\to$ поставим минусы

Аналогично для y получаем $\left[l_{y},r_{y}\right]$.

Тогда ответом будет $\max ig(0, \min ig(r_x, r_yig) - \max ig(l_x, l_yig) + 1ig).$

13 Выражение через линейные комбинации

Условие 2: Есть массив a_i . Найти максимальное y, для которого существуют x и b_i такие, что $a_i = x + y \cdot b_i$.

Теорема 13.1 (Эквивалентная переформулировка): Нужно найти максимальный модуль, по которому a_i сравнимы

Доказательство: Если зафиксирован y, то существование $x,\{b_i\} \Longleftrightarrow a_i \equiv_y a_j \equiv_y a_0$, так как

- Если нашли, $x,\{b_i\}$, то $\forall i: x \operatorname{mod} y \equiv_y a_i = x + y \cdot b_i$
- + Если $\forall i: c \equiv_y a_i$, то для $a_i = x + y \cdot b_i$ возьмём

$$\begin{cases} x \coloneqq c \\ b_i = \frac{a_i - c}{y} \end{cases}$$

Введём $a'_i = a_i - a_0$

Очереная переформулировка: нужно найти максимальный модуль, по которому $a^\prime{}_i$ сравнимы с 0, ака делятся на этот модуль.

Тогда ответом будет $\gcd(\{a{'}_i\})$.