$\begin{array}{cccc}
(A) & T_1 &= \overline{B}C \\
T_3 &= A + \overline{B}C \\
T_4 &= D \oplus \overline{A}C \\
F_1 &= (A + \overline{B}C) + (D \oplus \overline{A}C) \\
F_2 &= \overline{A}C + D
\end{array}$

Question 1: for the combinational circuit shown in Figure 1,

- a) Write the Boolean expression of T₁, T₃, T₄, F₁ and F₂ in terms of the four input variables A, B, C, D.
- b) Write the truth table showing binary values of T₁, T₃, T₄, F₁ and F₂ for all combinations of four inputs (A, B, C, D)
- c) Simplify the functions of F₁ and F₂ by using Karnaugh map method.

Figure 1. Combinational circuit

B TRUTH TABE

ABCD	т1	т3	Т4	F1	F2
0000	0	0	0	0	0
0001	0	0	1	1	1
0010	1	1	0	1	0
0011	1	1	0	1	1
0100	0	0	1	1	1
0101	0	0	0	0	1
0110	0	0	1	1	1
0111	0	0	0	0	1
1000	0	1	0	1	0
1001	0	1	1	1	1
1010	1	1	0	1	0
1011	1	1	1	1	1
1100	0	1	0	1	0
1101	0	1	1	1	1
1111	0	1	1	1	1

Question 2: consider the following sequential building blocks in Figure 2,

- a) What type of sequential block is it?
- b) Assume that S = R = 1, what happens to the outputs Q and Q' when CLK transitions from a 1 to 0?

Figure 2 Sequential circuit

A)

R. O. wing the (15)

$$\overline{Q} = \overline{Q} + \overline{Q} = \overline{Q}$$
 $Q = \overline{Q} + \overline{Q} = \overline{Q} = \overline{Q}$

In this state the outputs are held as their previous values

Question 3: the circuit in Figure 3 looks like a counter. What is the sequence that this circuit counts in? Complete the timing diagram given in Figure 3. The initial conditions of $Q_0Q_1Q_2$ are 000.

Figure 3. Counter-type circuit

Question 4: you are given the sequential circuit shown in Figure 4. Find the state diagram, state assigned table and state table for the circuit using Mealy-type FSM. Assume the state assignments as {A=00, B=01, C=10, D=11}.

Figure 4. Finite-State Machine circuit

$$D_1 = x(\overline{y_1} + y_2)$$
 we know

 $D_2 = x(y_1 + y_2)$
 $y_{1,1+1} = x(\overline{y_1} + y_2) = x\overline{y_1} + xy_2$
 $y_{2,1+1} = x(y_1 + y_2) = xy_1 + xy_2$
 $y_{2,1+1} = x(y_1 + y_2) = xy_1 + xy_2$

STATE TRINSITION TABLE

PRESENT STATE		TUBUS	NEXTSTATE		0UTRUT
ઝે	92	×	31,441	y2,+41	E
0	O	٥	0	0	O
D	0	(1	O	0
	1	0	0	0	0
0	•				0
0	1	(.	\	\	
,	0	0	0	0	0
,	0	l	0	١	0
1	1	6	0	0	ð
((1	(l	1
					}

D<11 R<01 B<01

P.S.	INPUT	N-5.	007857
9,72	*	y, y, t	2
A	0	A C	6
3		A	0
B	0	D	6
	0	A	6
(1	R	6
V	0	A	G
D		P	1

