

Geoffrey Hinton

Plan of Attack

What we will learn in this section:

- The Neuron
- The Activation Function
- How do Neural Networks work? (example)
- How do Neural Networks learn?
- Gradient Descent
- Stochastic Gradient Descent
- Backpropagation

How do NNs Work?

How Do Neural Networks Work?

How do Neural Networks learn?

How do Neural Networks learn?

How do Neural Networks leap\$40/12:59

Row ID	Study Hrs	Sleep Hrs	Quiz	Exam	
1	12	6	78%	93%	
2	22	6.5	24%	68%	
3	115	4	100%	95%	
4	31	9	67%	75%	
5	0	10	58%	51%	
6	5	8	78%	60%	
7	92	6	82%	89%	
8	57	8	91%	97%	

Gradient Descent

Gradient Descent

Stochastic Gradient Descent

Stochastic Gradient Descent

Stochastic Gradient Descent

Row ID	Study Hrs	Sleep Hrs	Ouiz	Exam
1	12	6	78%	93%
2	22	6.5	24%	68%
3	115	4	100%	95%
4	31	9	67%	75%
5	0	10	58%	51%
6	5	8	78%	60%
7	92	6	82%	89%
8	57	8	91%	97%

	Row ID	Study Hrs	Sleep Hrs	Quiz	Exam
Upd w's	1	12	6	78%	93%
Upd w's	2	22	6.5	24%	68%
Upd w's	3	115	4	100%	95%
Upd w's	4	31	9	67%	75%
Upd w's	5	0	10	58%	51%
Upd w's	6	5	8	78%	60%
Upd w's	7	92	6	82%	89%
Upd w's	8	57	8	91%	97%

Batch Gradient Descent

Upd w's

Stochastic Gradient Descent

Backpropagation

Gradient Descent

Training the ANN with Stochastic Gradient Descent

STEP 1: Randomly initialise the weights to small numbers close to 0 (but not 0).

STEP 2: Input the first observation of your dataset in the input layer, each feature in one input node.

STEP 3: Forward-Propagation: from left to right, the neurons are activated in a way that the impact of each neuron's activation is limited by the weights. Propagate the activations until getting the predicted result y.

STEP 4: Compare the predicted result to the actual result. Measure the generated error.

STEP 5: Back-Propagation: from right to left, the error is back-propagated. Update the weights according to how much they are responsible for the error. The learning rate decides by how much we update the weights.

STEP 6: Repeat Steps 1 to 5 and update the weights after each observation (Reinforcement Learning). Or:

Repeat Steps 1 to 5 but update the weights only after a batch of observations (Batch Learning).

STEP 7: When the whole training set passed through the ANN, that makes an epoch. Redo more epochs.