Bio-magnetism with optically pumped magnetometers

AIM: High sensitivity optically pumped magnetometers (OPMs) for bio-magnetic measurements

Enabling technology:

- Anodically bonded alkali vapour cells (Collaboration University of Strathclyde)
- VCSEL lasers for low power and compact package integration
- Magnetically shielded room

Principles and goals:

- Thermal atoms operation in spin-exchange relaxation free (SERF) regime.[3]
- Magnetic field sensitivity of \sim 10 fT/ $\sqrt{\text{Hz}}$
- Perform magnetoencephalography (MEG) [4] and magnetospinography (MSG) on healthy subjects

Performance Parameters	ОРМ	SQUID
Distance Scalp-Sensor	4mm	2-4 cm
Sensor arrangement	Flexible	Fixed
Reference channel locations	Flexible	Inside Dewar
Sensor temperature	Heating > 60 °C	Cyrogenic cooling
Sensitivity	1-100 fT/Hz ^{1/2}	3 fT/Hz ^{1/2}
Bandwidth	DC - 1 kHz	DC - 10 kHz
Number of sensors	~20 currently	300 commercially
Large array status	Yet to be fully demonstrated	Well characterised

Vacuumschmelze Magnetically shielded room and Elekta MEG system

- [1] Kominis et al. Nature, **422**, 596, (2003)
- [2] Boto et al. Neurolmage, **149**, 404 (2017)

- Developing low-cost magnetic shielding capabilities in conjunction with Magnetic Shielding Ltd
- Adapting active magnetic shielding to develop clinical solutions capable of providing higher comfort levels for patients
- Monitoring of the central nervous system should allow the study of a range of progressive degenerative disease.

