PAÜ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜH. BÖLÜMÜ 2020-2021 GÜZ DÖNEMİ CENG 309 İŞARET İŞLEME VİZE SINAVI

TÜM YAPRAKLARA AD-SOYAD yazınız.		
AD/SOYAD:	NO:	
NOT: Ara cevapları tek, kesin cevapları çift kutu içine alınız	PUAN	

1-) Şekildeki x(t) işareti için

zamanda kaydırma (öteleme/geciktirme), tersleme ve ölçekleme özelliklerini kullanarak

$$x(2-\frac{t}{2})$$
 grafiğini çiziniz (20p)

2. a)
$$y[k+2] + 2.5y[k+1] + y[k] = x[k+1] - 2x[k]$$

b)
$$y[k] - y[k-1] + 0.21y[k-2] = 2x[k-1] + 3x[k-2]$$

c)
$$(D - 0.7)(D^2 + 7D + 10)y(t) = (D - 3)x(t)$$

d)
$$(D+5)(D^2+4)y(t) = (D^2+D+1)x(t)$$

Yukarıda verilen sistemlerin kutuplarını/karakteristik modlarını gösteriniz (**eksende ve/veya çemberde**). Her seçenekte verilen sistemin kararlılığı hakkında ne söyleyebilirsiniz yazınız. **(20p)**

3. (D² + 4D + 4)y(t) = Df(t) sisteminde
$$y_0(0) = 3$$
, $\dot{y}_0(0) = -4$ başlangıç şartları varsa $y_{SGC}(t) = ?$ (20p)

4. Aşağıdaki blok diyagramı kullanarak ayrık zamanlı y[n] denklemini elde ediniz. Bu sistemde $\mathbf{n} < \mathbf{0}$ için $y[n] = \mathbf{0}$ başlangıç koşulları geçerlidir (nedensel sistem olduğu için). Bulduğunuz y[n] denklemini kullanarak aşağıda istenen cevapları elde ediniz.

a)
$$x[n] = \delta[n]$$
 (birim darbe sinyali) girişi için sistem çıkışı $y[0] = ?$, $y[1] = ?$, $y[2] = ?$ (10p)

b)
$$x[n] = u[n]$$
 (birim basamak sinyali) girişi için sistem çıkışı $y[0] = ?$, $y[1] = ?$, $y[2] = ?$ (10p)

5. Aşağıdaki soruları ilgili tabloları kullanarak çözünüz. (20p)

a)
$$h(t) = (8e^{5t})u(t)$$
 ve $x(t) = u(t)$ ise $y(t) = x(t) * h(t) = ?$

b)
$$f(t) = [-2e^{-5(t-3)} + 3e^{-(t-3)}]u(t-3)$$
 ise $F(s) = ?$

c)
$$x(t) = 3e^{-4t}u(t)$$
 ve $h(t) = (e^{-3t} - e^{-4t})u(t)$ ise *Konvolüsyon*: $y(t) = x(t) * h(t) = ?$

d)
$$F(s) = \frac{(s+17)}{(s^2+4s-5)}$$
 ise $f(t) = ?$

Sürekli-Zamanlı Konvolüsyon Tablosu

Surekii-Zailiailii Kolivolusyoli Tablosu				
No	$\mathbf{x_1}(\mathbf{t})$	$x_2(t)$	$\mathbf{x}_1(\mathbf{t}) * \mathbf{x}_2(\mathbf{t})$	
1	x(t)	$\delta(t-T)$	x(t-T)	
2	$e^{\lambda t}u(t)$	u(t)	$\frac{1-e^{\lambda t}}{-\lambda}u(t)$	
3	u(t)	u(t)	tu(t)	
4	$e^{\lambda 1t}u(t)$	$e^{\lambda 2t}u(t)$	$\frac{e^{\lambda 1t} - e^{\lambda 2t}}{\lambda_1 - \lambda_2} \mathbf{u}(\mathbf{t})$	
5	$e^{\lambda t}u(t)$	$e^{\lambda t}u(t)$	$te^{\lambda t}u(t)$	
6	$te^{\lambda t}u(t)$	$e^{\lambda t}u(t)$	$\frac{1}{2}t^2e^{\lambda t}\mathbf{u}(\mathbf{t})$	

Laplace Özellikleri Tablosu

No	x(t)	X (s)			
1	$\mathbf{x}_1(\mathbf{t}) + \mathbf{x}_2(\mathbf{t})$	$X_1(s) + X_2(s)$			
2	kx(t)	kX(s)			
3	$\frac{d\mathbf{x}(\mathbf{t})}{dt}$	$sX(s) - x(0^-)$			
	$\frac{d^2\mathbf{x}(\mathbf{t})}{dt^2}$	$s^2X(s) - sx(0^-) - \dot{x}(0^-)$			
4	$\mathbf{x}(\mathbf{t}-t_0)\mathbf{u}(\mathbf{t}-t_0)$	$X(s)e^{-st_0}$, $t_0\geq 0$			

Laplace Dönüşüm Tablosu

No	$x_1(t)$	$X_1(s)$	
1	$\delta(t)$	1	
2	u(t)	1/s	
3	t.u(t)	1/82	
4	$e^{\lambda t}u(t)$	$^{1}/_{(s-\lambda)}$	
5	$t.e^{\lambda t}.u(t)$	$1/(s-\lambda)^2$	

S1-20p	S2-20p	S3-20p	S4-20p	S5-20p	Т-100р
51 2 0 p	52 20p	55 2 0 p	5-1 2 0 p	55 2 0 p	1 100p

Dr. Meriç Çetin, Başarılar dilerim