AIRCRAFT PERFORMANCE

Czech technical university in Prague Faculty of electrical engineering Department of control engineering

FLIGHT CONTROL SYSTEM

Principle of flight

Horizontal flight (elementary variable)

Longitudinal static stability

Steady flight

Coordinate system

Equation of motion - 6 degree of freedom

Aerodynamic model / aerodynamic coefficient

Exercising

Non-linear longitudinal of motion

Principle of flight

pressure lay out on foil

$$L' = \int_{\substack{\text{Leading} \\ \text{Edge}}}^{\text{Trailing}} \left(p_{\text{lower side}} - p_{\text{upper side}} \right) dx$$

angle of attack α air speed V

non-dimensional lift coefficient c₁.

Horizontal flight (logitudinal plane)

engine thrust T aerodynamic lift L aerodynamic drag **D** aerodynamic pitch moment M weight of aircraft W air speed V

Aerodynamic forces

Lift equation $L = \overline{q} \cdot S \cdot c_L$

Drag equation $D = \overline{q} \cdot S \cdot c_D$

Pitch moment equation $M = \overline{q} \cdot S \cdot \overline{c} \cdot c_m$

Where

$$\overline{q}$$
 dynamic pressure $\overline{q} = \frac{1}{2} \cdot \rho \cdot V^2$

air density

wing span

mean aerodynamic chord $\overline{c} = \int_{0}^{b/2} c$

wing area $\overline{c} \times b$

Logitudial static stability

initial tendency of a body to return to its equilibrium state after being disturbed

equilibrium point - moment about centre of gravity to be zero $c_m = 0$

If perturb α up, need a moment that pushes nose back down (negative)

$$\frac{\partial c_m}{\partial \alpha} < 0; \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.4 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.2 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.2 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.3 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.4 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.2 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.3 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.4 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.2 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.3 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.4 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.2 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.3 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.4 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.4 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.5 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.6 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.7 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.8 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.9 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.1 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.1 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.2 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.3 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.4 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.5 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.7 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.8 \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.9 \quad \frac{\partial c_m$$

Steady flight - trim

thrust of engine = drag force

$$T = D = \frac{1}{2} \rho \cdot v^2 \cdot S \cdot c_D$$

lift = weight of aircraft W = L

$$m.g = \frac{1}{2} \rho.v^2.S.c_L$$

zero pitch momet $\frac{1}{2} \rho . v^2 . S . c_m \overline{c} = 0$

Defined values: v, m, S, ρ, g

Steady flight - trim

thrust of engine = drag force

$$T = D = \frac{1}{2} \rho \cdot v^2 \cdot S \cdot c_D$$

lift = weight of aircraft W = L

$$m.g = \frac{1}{2} \rho.v^2.S.c_L$$

zero pitch momet $\frac{1}{2} \rho . v^2 . S . c_m \overline{c} = 0$

Defined values: v, m, S, ρ, g

can use elevators to provide incremental lift and moments

lift coefficient $c_{L_{Trim}} = c_{L_0} + c_{L_{\alpha}} . \alpha + c_{L_{\delta e}} . \delta e$

$$c_{L_{Trim}} = \frac{m.g}{\frac{1}{2} \rho.v^2.S}$$

pitch moment coefficient

$$c_m = c_{m_0} + c_{m_\alpha} . \alpha + c_{m_{\delta e}} . \delta e = 0$$

two equation with two unknown

$$-c_{m_0} = c_{m_\alpha}.\alpha_{Trim} + c_{m_{\delta e}}.\delta e_{Trim}$$

$$c_{L_{Trim}} - c_{L_0} = c_{L_\alpha}.\alpha_{Trim} + c_{L_{\delta e}}.\delta e_{Trim}$$

elevator angle needed to trim

$$\delta e_{Trim} = \frac{c_{m_0} (c_{L_0} - c_{L_{Trim}}) - c_{L_{\alpha}} c_{m_0}}{c_{m_{\delta e}} c_{L_{\alpha}} - c_{m_{\alpha}} c_{L_{\delta e}}}$$

Aircraft coordinate system

body-fixed (aircraft system)

flight-path (wind, aerodynamic)

Transformation

Aerodynamic to body-fixed

$$\overline{\chi}_{B} = T^{Ba} \overline{\chi}_{a} = \left[T^{aB} \right]^{T} \overline{\chi}_{a}$$

$$T^{Ba} = \begin{bmatrix} \cos \alpha \cos \beta & -\cos \alpha \sin \beta & -\sin \alpha \\ \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & -\sin \alpha \sin \beta & \cos \alpha \end{bmatrix}$$

Euler angel from angular rates

$$\dot{\phi} = p + \tan\theta \cdot (q \cdot \sin\phi + r \cdot \cos\phi)$$

$$\dot{\theta} = q \cdot \cos\phi - r \cdot \sin\phi$$

$$\dot{\psi} = \frac{q \cdot \sin\phi + r \cdot \cos\phi}{\cos\theta}$$

body-fixed and flight-path coordinate system

Equation of motion 6-DOF (Degree of freedom)

Newton's second law of motion:

force equation
$$\vec{F} = \frac{d(mv)}{dt} = m\frac{dv}{dt} + v\frac{dm}{dt} = m\dot{\vec{v}} + m[\vec{\Omega} \times \vec{v}]$$

moment equation $\vec{M} = \frac{d(I\Omega)}{dt} = I\frac{d\Omega}{dt} + \Omega\frac{dI}{dt} = I\vec{\Omega} + [\vec{\Omega} \times I\vec{\Omega}]$

force vector [N]

mass [kg]

linear velocity vector [m.s⁻¹]

angular velocity vector [rad.s⁻¹]

time

derivative by time

moment vector [N.m]

moment of inertia[kg.s⁻²]

body-fixed coordinate system

Component form for linear velocities

$$\vec{v} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} = V_a \cdot \begin{bmatrix} \cos \alpha \cdot \cos \beta \\ \sin \beta \\ \sin \alpha \cdot \cos \beta \end{bmatrix}$$

Aerodynamic values

$$V_a = \sqrt{\left(u^2 + v^2 + w^2\right)}$$

$$V_a = \text{total airspeed}$$

$$\alpha = \tan^{-1} \left(\frac{w}{V_a} \right)$$

$$\alpha$$
 = angle of attack

$$\beta = \sin^{-1} \left(\frac{v}{V_a} \right)$$

Equation of motion 6-DOF

Newton's second law of motion:

force equation
$$\vec{F} = \frac{d(mv)}{dt} = m\frac{dv}{dt} + v\frac{dm}{dt} = m\vec{v} + m[\vec{\Omega} \times \vec{v}]$$

moment equation
$$\vec{M} = \frac{d(I\Omega)}{dt} = I\frac{d\Omega}{dt} + \Omega\frac{dI}{dt} = I\dot{\vec{\Omega}} + [\vec{\Omega} \times I\vec{\Omega}]$$

Equation of motion – force equation

right side

$$\vec{F} = m\dot{\vec{v}} + m\left[\vec{\Omega} \times \vec{v}\right] = m\begin{bmatrix} \dot{u} + q \cdot w - r \cdot v \\ \dot{v} + r \cdot u - p \cdot w \\ \dot{w} + p \cdot v - q \cdot u \end{bmatrix}$$

left side $\vec{F} = \vec{A} + \vec{G} + \vec{T}$

$$\vec{F} = \vec{A} + \vec{G} + \vec{T}$$

$$\vec{A} = \begin{bmatrix} X & Y & Z \end{bmatrix}^T$$

 $\vec{A} = [X \ Y \ Z]^T$ aerodynamic force

drag force, side force, lift force*

$$\vec{G} = \begin{bmatrix} G_X & G_Y & G_Z \end{bmatrix}^T$$

gravity force

$$\vec{T} = [F_T \quad 0 \quad 0]^T$$

thrust force

gravity force

$$G_{r} = -mg \cdot \sin \theta$$

$$G_{y} = mg \cdot \cos\theta \cdot \sin\phi$$

$$G_z = mg \cdot \cos \theta \cdot \cos \phi$$

total force equation

$$\vec{F} = \begin{bmatrix} X - mg \cdot \sin \theta + T_x \\ Y + mg \cdot \cos \theta \cdot \sin \phi \\ Z + mg \cdot \cos \theta \cdot \cos \phi \end{bmatrix} = m \begin{bmatrix} \dot{u} + q \cdot w - r \cdot v \\ \dot{v} + r \cdot u - p \cdot w \\ \dot{w} + p \cdot v - q \cdot u \end{bmatrix}$$

Moment equation

$$\vec{M} = \frac{d\vec{H}}{dt} + \left[\vec{\Omega} \times \vec{H}\right] = \vec{I} \cdot \dot{\vec{\Omega}} + \dot{\vec{I}} \cdot \vec{\Omega} + \left[\vec{\Omega} \times \vec{I} \cdot \vec{\Omega}\right]$$

inertia moment

$$\bar{I} = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{yy} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{zz} \end{bmatrix}$$

right side

$$\vec{M} = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{yy} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{zz} \end{bmatrix} \cdot \begin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} +$$

$$+\det \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ p & q & r \\ p \cdot I_{xx} - q \cdot I_{xy} - r \cdot I_{xz} & q \cdot I_{yy} - p \cdot I_{xy} - r \cdot I_{yz} & r \cdot I_{zz} - p \cdot I_{xz} - q \cdot I_{yz} \end{vmatrix}$$

left side $\vec{M} = [L \ M \ N]^T$

roll moment, pitch moment, yaw moment

total moment equation $(I_{vz} = I_{xv} = 0)$

$$\vec{M} = \begin{bmatrix} L \\ M \\ N \end{bmatrix} = \begin{bmatrix} \dot{p} \cdot I_{xx} + q \cdot r \cdot (I_{zz} - I_{yy}) - (p \cdot q + \dot{r}) \cdot I_{xz} \\ \dot{q} \cdot I_{yy} + p \cdot r \cdot (I_{xx} - I_{zz}) + (p^2 - r^2) \cdot I_{xz} \\ \dot{r} \cdot I_{zz} + p \cdot q \cdot (I_{yy} - I_{xx}) + (q \cdot r - \dot{p}) \cdot I_{xz} \end{bmatrix}$$

Aircraft performance

^{*} body-fixed system

Aerodynamic model

force equation

drag force $X = \overline{q} \cdot S \cdot c_V$

 $Y = \overline{q} \cdot S \cdot c_V$ side force

 $Z = \overline{q} \cdot S \cdot c_7$ lift force

non-dimensional force coefficient c_X, c_Y, c_Z

moment equation

 $L = \overline{q} \cdot S \cdot b \cdot c_1$ roll moment

 $M = \overline{q} \cdot S \cdot \overline{c} \cdot c_m$ pitch moment

 $N = \overline{q} \cdot S \cdot b \cdot c_n$ vaw moment

non-dimensional moment coefficient C_1, C_m, C_n

 b, \overline{c} wing span, mean aerodynamic chord

definition of control deflection

longitudinal coefficient

$$c_Z = c_Z(\alpha, \beta, \delta, M, \text{Re}, \vec{\Omega})$$
 control coef.

$$c_{Z} = c_{Z_0} + c_{Z_{\alpha}} \cdot \alpha + c_{Z_{\alpha}} \cdot \delta z + c_{Z_q} \cdot \frac{q \overline{c}}{2 \cdot V}$$
Static coef.

 $c_m = c_{m_0} + c_{m_{\alpha}} \cdot \alpha + c_{m_{\hat{\alpha}}} \cdot \delta e + c_{m_q} \cdot \frac{q \cdot c}{2 V}$

$$c_X = c_{X_0} + c_{X_{\alpha}} \cdot \alpha + c_{X_{\alpha^2}} \cdot \alpha^2 + c_{X_{\alpha}} \cdot \delta e + c_{X_q} \cdot \frac{q\bar{c}}{2V}$$

lateral coefficient

$$c_{Y} = c_{Y_{0}} + c_{Y_{\beta}} \cdot \beta + c_{Y_{\delta i}} \cdot \delta a + c_{Y_{\delta r}} \cdot \delta r + c_{Y_{r}} \cdot \frac{r \cdot b}{2 \cdot V} + c_{Y_{p}} \cdot \frac{p \cdot b}{2 \cdot V}$$

$$c_{l} = c_{l_{0}} + c_{l_{\beta}} \cdot \beta + c_{l_{\delta i}} \cdot \delta a + c_{l_{\delta r}} \cdot \delta r + c_{l_{r}} \cdot \frac{r \cdot b}{2 \cdot V} + c_{l_{p}} \cdot \frac{p \cdot b}{2 \cdot V}$$

$$c_{n} = c_{n_{0}} + c_{n_{\beta}} \cdot \beta + c_{n_{\delta i}} \cdot \delta a + c_{n_{\delta r}} \cdot \delta r + c_{n_{r}} \cdot \frac{r \cdot b}{2 \cdot V} + c_{n_{p}} \cdot \frac{p \cdot b}{2 \cdot V}$$

Aircraft performance

Aerodynamic coefficient

Wind tunnel

model of the aircraft in aerodynmical wind tunnel (six-component balance)

Computational methods

CFD (Computational fluid dynamics)

3D computer software for numerical calculations aerodynamic characteristics of aircraft

Panel methods potential flow (without viscosity)

Flight test
Aircraft parameter idetification

Least squares method Output error method Filter error method Frequency method

Aircraft parameter identification			
Parameter	Th	s(Th)	to
C_x0	1.97e-004	1.73e-011	11412871.5
C_xbeta	6.41e-002	1.12e-007	572594.7
C_xp	-9.53e-002	5.36e-006	17790.0
C_xr	-1.15e-001	6.17e-007	185744.4
C_xd_ail	-1.66e-002	7.65e-007	21684.0
C_xd_rud	-6.25e-002	2.41e-007	259252.9
s = gama	2.94e-004		
R^2, %	98.5		

Summary

force equation (final form)

$$\dot{u} = r \cdot v - q \cdot w - g \cdot \sin \theta + \frac{1}{m} (X + F_T)$$

$$\dot{v} = p \cdot w - r \cdot u + g \cdot \sin \phi \cdot \cos \theta + \frac{1}{m} Y$$

$$\dot{w} = q \cdot u - p \cdot v + g \cdot \cos \phi \cdot \cos \theta + \frac{1}{m} Z$$

moment equation

$$\dot{p} = (c_1 \cdot r + c_2 \cdot p) \cdot q + c_3 \cdot L + c_4 \cdot N$$

$$\dot{q} = c_5 \cdot p \cdot r - c_6 \cdot (p^2 - r^2) + c_7 \cdot M$$

$$\dot{r} = (c_0 \cdot p - c_2 \cdot r) \cdot q + c_4 \cdot L + c_0 \cdot N$$

where

$$\begin{split} \Gamma \cdot c_1 = & \left(I_y - I_z\right) \cdot I_z - I_{xz}^2 & \Gamma \cdot c_4 = I_{xz} & c_7 = 1/I_y \\ \Gamma \cdot c_2 = & \left(I_x - I_y + I_z\right) \cdot I_{xz} & c_5 = & \left(I_z - I_x\right)/I_y & \Gamma \cdot c_8 = I_x \cdot \left(I_x - I_y\right) + I_{xz}^2 \\ \Gamma \cdot c_3 = & I_z & c_6 = & I_{xz}/I_y & \Gamma \cdot c_9 = I_x \\ & \Gamma = & I_x \cdot I_z - I_{xz}^2 & \end{split}$$

euler angle

$$\begin{split} \dot{\phi} &= p + \tan\theta \cdot \left(q \cdot \sin\phi + r \cdot \cos\phi \right) \\ \dot{\theta} &= q \cdot \cos\phi - r \cdot \sin\phi \\ \dot{\psi} &= \frac{q \cdot \sin\phi + r \cdot \cos\phi}{\cos\theta} \end{split}$$

Aerodynamic force and moment

$$\begin{split} X &= \overline{q} \cdot S \cdot c_X & L &= \overline{q} \cdot S \cdot b \cdot c_l \\ Y &= \overline{q} \cdot S \cdot c_Y & M &= \overline{q} \cdot S \cdot \overline{c} \cdot c_m & \overline{q} &= \frac{1}{2} \cdot \rho \cdot V^2 \\ Z &= \overline{q} \cdot S \cdot c_Z & N &= \overline{q} \cdot S \cdot b \cdot c_n \end{split}$$

Aerodynamic values

$$V_{a} = \sqrt{\left(u^{2} + v^{2} + w^{2}\right)}$$

$$\alpha = \tan^{-1}\left(\frac{w}{V_{a}}\right)$$

$$\beta = \sin^{-1}\left(\frac{v}{V_{a}}\right)$$

Aerodynamic characteristic

longitudinal $c_{Z} = c_{Z_{0}} + c_{Z_{\alpha}} \cdot \alpha + c_{Z_{\alpha}} \cdot \delta e + c_{Z_{q}} \cdot \frac{q \cdot \overline{c}}{2 \cdot V}$ $c_{m} = c_{m_{0}} + c_{m_{\alpha}} \cdot \alpha + c_{m_{\alpha}} \cdot \delta e + c_{m_{q}} \cdot \frac{q \cdot \overline{c}}{2 \cdot V}$ $c_{X} = c_{X_{0}} + c_{X_{\alpha}} \cdot \alpha + c_{X_{\alpha^{2}}} \cdot \alpha^{2} + c_{X_{\alpha}} \cdot \delta e + c_{X_{q}} \cdot \frac{q \cdot \overline{c}}{2 \cdot V}$ lateral $c_{Y} = c_{Y_{0}} + c_{Y_{\beta}} \cdot \beta + c_{Y_{\alpha}} \cdot \delta a + c_{Y_{\alpha}} \cdot \delta r + c_{Y_{r}} \cdot \frac{r \cdot b}{2 \cdot V} + c_{Y_{p}} \cdot \frac{p \cdot b}{2 \cdot V}$ $c_{I} = c_{I_{0}} + c_{I_{\beta}} \cdot \beta + c_{I_{\alpha}} \cdot \delta a + c_{I_{\alpha}} \cdot \delta r + c_{I_{r}} \cdot \frac{r \cdot b}{2 \cdot V} + c_{I_{p}} \cdot \frac{p \cdot b}{2 \cdot V}$ $c_{n} = c_{n_{0}} + c_{n_{\beta}} \cdot \beta + c_{n_{\alpha}} \cdot \delta a + c_{n_{\delta}} \cdot \delta r + c_{n_{r}} \cdot \frac{r \cdot b}{2 \cdot V} + c_{n_{p}} \cdot \frac{p \cdot b}{2 \cdot V}$

Non-linear longitudinal equation of motion

zero lateral values v, p, r, ϕ (side velocity, roll rate, yaw rate, roll angle)

initial condition m = 30kg, $V_a = 25m/s$, $\rho = 1{,}225kg/m^3$, $g = 9{,}81m.s^{-2}$

aircraft model $S = 2,33m^2$, $\bar{c} = 0,514m$, $I_Y = 8,36kg.m^2$

aerodynamic parameters $c_{Z_0} = -0.23$ $c_{Z_{\alpha}} = -5.4$ $c_{Z_{\infty}} = -0.3$ $c_{Z_{\alpha}} = 0$

$$c_{m_0} = -0.031$$
 $c_{m_{\alpha}} = -0.52$ $c_{m_{\delta}} = -0.5$ $c_{m_q} = -7.84$

$$c_{X_0} = -0.027$$
 $c_{X_{\alpha}} = -0.15$ $c_{X_{\alpha^2}} = -0.016$ $c_{X_{\alpha}} = c_{X_q} = 0$

Create a non-linear model (separate longitudinal) in Matlab (m-file)

Approximatele trim aircraft for initial condition (gravity influence!)

Plot results

