Hunter Lybbert Student ID: 2426454 10-07-24 AMATH 561

PROBLEM SET 3

1. Give an example of a probability space (Ω, \mathcal{F}, P) , a random variable X and a function f such that $\sigma(f(X))$ is strictly smaller than $\sigma(X)$ but $\sigma(f(X)) \neq \{\emptyset, \Omega\}$. Give a function g such that $\sigma(g(X)) = \{\emptyset, \Omega\}$. Hint: Look at finite sample spaces with a small number of elements.

Solution:

Let our probability space be two independent coin tosses, such that $\Omega = \{HH, TT, HT, TH\}$. Define a random variable X such that $X(\omega)$ be the number of heads in the outcome ω with $\omega \in \Omega$. Therefore

$$X(HH) = 2,$$

$$X(TT) = 0,$$

$$X(HT) = 1, \text{ and}$$

$$X(TH) = 1.$$

Now $\sigma(X)$ can be written as

$$\sigma(X) = \left\{ \{HH\}, \{TH, HT\}, \{TT\}, \{TT, HH\}, \{HH, HT, TH\}, \{TT, HT, TH\}, \Omega, \emptyset \right\}$$

Part one

Random variable X and f such that $\sigma(f(X)) \subseteq \sigma(X)$ and $\sigma(f(X))$ is not the trivial σ -algebra.

Define f(x) as follows

$$f(x) = \begin{cases} 0, & x \le 0 \\ 1, & x > 0. \end{cases}$$

Let's look at the possible pre-images of f(X) with respect to a few cases of Borel sets. For convenience, I will define $\hat{X} = f(X)$. Now let's look at some cases for the pre-image

Case 1: $0 \in B$ but $1 \notin B$

$$\hat{X}^{-1}(B) = \left\{\omega: \hat{X}(\omega) \in B\right\} = \left\{\omega: X(\omega) \in (-\infty, 0]\right.\} = \left\{TT\right\}$$

Case 2: $0 \notin B$ but $1 \in B$

$$\hat{X}^{-1}(B) = \left\{\omega: \hat{X}(\omega) \in B\right\} = \left\{\omega: X(\omega) \in (0, \infty) \right. \} = \left\{TH, HT, HH\right\}$$

Case 3: $0 \in B$ and $1 \in B$

$$\hat{X}^{-1}(B) = \left\{\omega: \hat{X}(\omega) \in B\right\} = \left\{\omega: X(\omega) \in (-\infty, \infty) \right. \} = \Omega$$

Case 4: $0 \notin B$ and $1 \notin B$

$$\hat{X}^{-1}(B) = \left\{ \omega : \hat{X}(\omega) \in B \right\} = \emptyset.$$

Therefore,

$$\sigma(f(X)) = \left\{ \{TT\}, \{TH, HT, HH\}, \Omega, \emptyset \right\} \neq \{\emptyset, \Omega\}$$

And thus we have $\sigma(f(X)) \subseteq \sigma(X)$.

Part two Now also give a function g such that $\sigma(g(X))$ is the trivial σ -algebra, $\{\emptyset, \Omega\}$.

Define g(x) to be a constant $c \in \mathbb{R}$ such that g(x) = c for all $x \in \mathbb{R}$. Once again, for convenience we define $\tilde{X} = g(X)$. Let's go through a few cases of what the pre-image may be for any Borel set

Case 1: $c \in B$

$$\tilde{X}^{-1}(B) = \left\{ \omega : \tilde{X}(\omega) \in B \right\} = \left\{ \omega : X(\omega) \in (-\infty, \infty) \right\} = \Omega$$

Case 2: $c \notin B$

$$\tilde{X}^{-1}(B) = \left\{ \omega : \tilde{X}(\omega) \in B \right\} = \emptyset.$$

Therefore,

$$\sigma(g(X)) = \{\Omega,\emptyset\} \,.$$

2. Give an example of events A, B, and C, each of probability strictly between 0 and 1, such that $P(A \cap B) = P(A)P(B)$, $P(A \cap C) = P(A)P(C)$, and $P(A \cap B \cap C) = P(A)P(B)P(C)$ but $P(B \cap C) \neq P(B)P(C)$. Are A, B and C independent? Hint: You can let Ω be a set of eight equally likely points. Solution:

Let $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Define events A, B, and C as follows

$$A = \{1, 2, 3, 4\}$$
$$B = \{1, 2, 5, 7\}$$
$$C = \{1, 3, 6, 8\}.$$

Then we have

$$P(A \cap B) = P(\{1, 2\}) = \frac{1}{4}$$

and

$$P(A)P(B) = P(\{1, 2, 3, 4\})P(\{1, 2, 5, 7\}) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}.$$

Additionally, we have

$$P(A \cap C) = P(\{1,3\}) = \frac{1}{4}$$

and

$$P(A)P(C) = P(\{1, 2, 3, 4\})P(\{1, 3, 6, 8\}) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}.$$

Finally, we have

$$P(A \cap B \cap C) = P(\{1\}) = \frac{1}{8}$$

and

$$P(A)P(B)P(C) = P(\{1,2,3,4\})P(\{1,2,5,7\})P(\{1,3,6,8\}) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}.$$

Notice we also get

$$P(B \cap C) = P(\{1\}) = \frac{1}{8}$$

which is not equal to

$$P(B)P(C) = P(\{1, 2, 5, 7\})P(\{1, 3, 6, 8\}) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}.$$

In class we said two events E and E' are independent if $P(E \cap E') = P(E)P(E')$. Therefore we have shown that A and B are independent, A and C are independent but B and C are not independent.

3. Let (Ω, \mathcal{F}, P) be a probability space such that Ω is countably infinite, and $\mathcal{F} = 2^{\Omega}$. Show that it is impossible for there to exist a countable collection of events $A_1, A_2, \ldots \in \mathcal{F}$ which are independent, such that $P(A_i) = 1/2$ for each i. Hint: First show that for each $\omega \in \Omega$ and each $n \in \mathbb{N}$, we have $P(\omega) \leq 1/2^n$. Then derive a contradiction.

Solution:

Literally just use the hint...

4. (a) Let $X \ge 0$ and $Y \ge 0$ be independent random variables with distribution functions F and G. Find the distribution function of XY. Solution:

These are not explicitly dealing with discrete or continuous. Definitely review lecture notes. Since these are independent try using the formulae from the lecture on 10-16-24.

(b) If $X \geq 0$ and $Y \geq 0$ are independent continuous random variables with density functions f and g, find the density function of XY. Solution:

Notice these are continuous and you're dealing with densities.

(c) If X and Y are independent exponentially distributed random variables with parameter λ , find the density function of XY.

Solution:

TBD