JEEM - 1Sep2021 - Shift1 - 1-15

ai24btech11030 - Shiven Bajpai

- a) f(2)
- b) 2f(2)
- c) $2f(\sqrt{2})$
- d) 4f(2)

2)
$$\cos^{-1}(\cos(-5)) + \sin^{-1}(\sin(6)) - \tan^{-1}(\tan(12))$$
 is equal to:

(1 Sep 2021 S1)

- a) $3\pi 11$
- b) $4\pi 9$
- c) $4\pi 11$
- d) $3\pi + 1$

3) Consider the system of linear equations:

$$-x + y + 2z = 0$$

$$3x - ay + 5z = 1$$

$$2x - 2y - az = 7$$

Let S_1 be the set of all $a \in \mathbb{R}$ for which the system is inconsistent, and S_2 the set of all $a \in \mathbb{R}$ for which the system has infinitely many solutions. If $n(S_1)$ and $n(S_2)$ denote the number of elements in S_1 and S_2 respectively, then: (1 Sep 2021 S1)

a)
$$n(S_1) = 2$$
, $n(S_2) = 2$

c)
$$n(S_1) = 2$$
, $n(S_2) = 0$

b)
$$n(S_1) = 1$$
, $n(S_2) = 0$

d)
$$n(S_1) = 0$$
, $n(S_2) = 2$

- 4) Let the acute angle bisector of the planes x 2y 2z + 1 = 0 and 2x 3y 6z + 1 = 0be the plane P. Which of the following points lies on P? (1 Sep 2021 S1)
 - a) $(3, 1, -\frac{1}{2})$

c)
$$(0, 2, -4)$$

b)
$$(-2, 0, -\frac{1}{2})$$

d)
$$(4, 0, -2)$$

- 5) Which of the following is equivalent to the Boolean expression $p \land \neg q$? (1 Sep 2021 S1)
- a) $\neg (q \to p)$ b) $\neg p \to \neg q$ c) $\neg (p \to \neg q)$ d) $\neg (p \to q)$
- 6) Two squares are chosen at random on a chessboard. The probability that they have a side in common is: (1 Sep 2021 S1)

(1 Sep 2021 S1)

d) $\frac{1}{9}$

7) If $y = y(x)$ is the solution of the different and $y(1) = 1$, then $y(\frac{1}{2})$ is equal to:	ferential equation $x^2 dy$	$+\left(y - \frac{1}{x}\right)dx = 0; \ x > 0$ (1 Sep 2021 S1)		
a) $\frac{3}{2} - \frac{1}{\sqrt{e}}$ b) $3 + \frac{1}{\sqrt{e}}$	c) 3 + <i>e</i>	d) 3 – <i>e</i>		
8) If n is the number of solutions of the equation				
$2\cos x \left(4\sin \left(\frac{\pi}{4} + x \right) \sin \left(\frac{\pi}{4} - x \right) - 1 \right) = 1, \ x \in [0, \pi],$				
and S is the sum of all these solution $S1$)	ns, then the ordered pa	ir (n, S) is: (1 Sep 2021		
a) $(3, \frac{13\pi}{9})$ b) $(2, \frac{2\pi}{3})$	c) $(2, \frac{8\pi}{9})$	d) $(3, \frac{5\pi}{3})$		
 9) The function f(x) = x³ - 6x² + ax + b is such that f(2) = f(4) = 0. Consider two statements: (S1) There exists x₁, x₂ ∈ (2, 4), x₁ < x₂, such that f'(x₁) = -1 and f'(x₂) = 0. (S2) There exists x₃, x₄ ∈ (2, 4), x₃ < x₄, such that f is decreasing in (2, x₄), increasing in (x₄, 4) and 2f'(x₃) = √3f(x₄). 				
Then:		(1 Sep 2021 S1)		
a) Both (S1) and (S2) are trueb) (S1) is false and (S2) is true	c) Both (S1) and d) (S1) is true ar			
10) Let				
$J_{n,m}=\int_0^{\frac{1}{2}} rac{\chi^n}{\chi^m-1} dx, orall n>m ext{and} n,m\in\mathbb{N}.$				
Consider a matrix $A = [a_{ij}]_{3\times 3}$ where				
$a_{ij} = \begin{cases} J_{6+} \\ 0, \end{cases}$	$i_{i,3} - J_{i+3,3}$, if $i \le j$, if $i > j$.			
Then $\left \operatorname{adj} A^{-1} \right $ is:		(1 Sep 2021 S1)		
a) $(15)^2 \times 2^{42}$ b) $(15)^2 \times 2^{34}$	c) $(105)^2 \times 2^{38}$	d) $(105)^2 \times 2^{36}$		
11) The area enclosed by the curves $y = \cos x - \sin x $ and $y = \sin x + \cos x$, and the lines				

c) $\frac{1}{7}$

b) $\frac{1}{18}$

a) $\frac{2}{7}$

x = 0 and $x = \frac{\pi}{2}$ is:

12) The distance of the line 3y - 2z - 1 = 0 = 3x - z + 4 from the point (2, -1, 6) is: (1 Sep 2021 S1)

a) $2\sqrt{2}-2$ b) $2+2\sqrt{2}$ c) $4-2\sqrt{2}$ d) $2+4\sqrt{2}$

a) $\sqrt{26}$	b) $2\sqrt{5}$	c) $2\sqrt{6}$	d) $4\sqrt{2}$	
13) Consider the parathe parabola a	parabola with vertex (bola meets the line x) gain at the point O , ($(\frac{1}{2}, \frac{3}{4})$ and the directrix $y = -\frac{1}{2}$. If the normal to the then $(PQ)^2$ is equal to:	$= \frac{1}{2}. \text{ Let } P \text{ be the}$ e parabola at P into $(1 \text{ Sep } 20)$	
-	b) $\frac{125}{6}$	c) $\frac{25}{5}$	d) $\frac{15}{2}$,

14) The number of pairs (a, b) of real numbers, such that whenever α is a root of the equation $x^2 + ax + b = 0$, $\alpha^2 - 2$ is also a root of the equation, is: (1 Sep 2021 S1)

a) 6

b) 2

c) 4

d) 8

15) Let $S_n = 1 \cdot (n-1) + 2 \cdot (n-2) + \cdots + (n-1) \cdot 1$, for $n \ge 4$. The sum

$$\sum_{n=4}^{\infty} \left(\frac{2S_n}{n!} - \frac{1}{(n-2)!} \right)$$

is equal to:

(1 Sep 2021 S1)

a) $\frac{e^{-1}}{3}$

b) $\frac{e-2}{6}$

c) $\frac{e}{3}$

d) $\frac{e}{6}$