# **Complex Analysis**

# D. Zack Garza

# November 27, 2019

## **Contents**

| 1 | Defi                | initions                                | 1  |  |  |  |  |
|---|---------------------|-----------------------------------------|----|--|--|--|--|
| 2 | Preliminary Notions |                                         |    |  |  |  |  |
|   | 2.1                 | What is the Complex Derivative?         | 2  |  |  |  |  |
|   | 2.2                 | nth roots of a complex number           |    |  |  |  |  |
|   | 2.3                 | The Cauchy-Riemann Equations            |    |  |  |  |  |
| 3 | Inte                | egration                                | 3  |  |  |  |  |
|   | 3.1                 | The Residue Theorem                     | 3  |  |  |  |  |
|   | 3.2                 | Computing Residues                      | 3  |  |  |  |  |
|   | 3.3                 | Simple Poles                            |    |  |  |  |  |
|   | 3.4                 | Rational Functions                      |    |  |  |  |  |
|   | 3.5                 | Computing Integrals                     |    |  |  |  |  |
| 4 | Con                 | oformal Maps                            | 4  |  |  |  |  |
|   | 4.1                 | Applications                            | 5  |  |  |  |  |
|   |                     | 4.1.1 Heat Flow: Steady Temperatures    |    |  |  |  |  |
|   |                     | 4.1.2 Fluid Flow                        |    |  |  |  |  |
|   | 4.2                 | Theorems                                |    |  |  |  |  |
|   |                     | 4.2.1 General Theorems                  |    |  |  |  |  |
|   |                     | 4.2.2 Theorems About Analytic Functions |    |  |  |  |  |
|   | 4.3                 | Some Useful Formulae                    |    |  |  |  |  |
| 5 | Que                 | estion                                  | 11 |  |  |  |  |

# 1 Definitions

In these notes, C generally denotes some closed contour,  $\mathbb H$  is the upper half-plane,  $C_R$  is a semicircle of radius R in  $\mathbb H$ , f will denote a complex function.

## 1. Analytic

f is analytic at  $z_0$  if it can be expanded as a convergent power series in some neighborhood of  $z_0$ .

#### 2. Holomorphic

A function f is holomorphic at a point  $z_0$  if  $f'(z_0)$  exists in a neighborhood of  $z_0$ .

(Note - this is more than just being differentiable at a single point!)

Big Theorem: f is a holomorphic complex function iff f is analytic.

#### 3. Meromorphic

Holomorphic, except for possibly a finite number of singularities.

#### 4. Conformal

f is conformal at  $z_0$  if f is analytic at  $z_0$  and  $f'(z_0) \neq 0$ .

#### 5. Harmonic

A function u(x,y) is harmonic if it satisfies Laplace's equation,

$$\Delta u = u_{xx} + u_{yy} = 0$$

Some other notions to look up:

# •

# 2 Preliminary Notions

## 2.1 What is the Complex Derivative?

In small neighborhoods, the derivative of a function at a point rotates it by an angle  $\Delta\theta$  and scales it by a real number  $\lambda$  according to

$$\Delta\theta = \arg f'(z_0), \ \lambda = |f'(z_0)|$$

## 2.2 nth roots of a complex number

The *n*th roots of  $z_0$  are given by writing  $z_0 = re^{i\theta}$ , and are

$$\zeta = \left\{ \sqrt[n]{r} \exp\left[i\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right)\right] \mid k = 0, 1, 2, \dots, n - 1 \right\}$$

or equivalently

$$\zeta = \left\{ \sqrt[n]{r}\omega_n^k \mid k = 0, 1, 2, \dots, n-1 \right\} \text{ where } \omega_n = e^{\frac{2\pi i}{n}}$$

This can be derived by looking at  $\left(re^{i\theta+2k\pi}\right)^{\frac{1}{n}}$ .

It is also useful to immediately recognize that  $z^2 + a = (z - i\sqrt{a})(z + i\sqrt{a})$ .

## 2.3 The Cauchy-Riemann Equations

If f(x+iy)=u(x,y)+iv(x,y) or  $f(re^{i\theta})=u(r,\theta)+iv(r,\theta)$ , then f is complex differentiable if u,v satisfy

$$u_x = v_y$$
  $u_y = -v_x$   
 $ru_r = v_\theta$   $u_\theta = -rv_r$ 

In this case,

$$f'(x+iy) = u_x(x,y) + iv_x(x,y)$$

or in polar coordinates,

$$f'(re^{i\theta}) = e^{i\theta}(u_r(r,\theta) + iv_r(r,\theta))$$

# 3 Integration

## 3.1 The Residue Theorem

If f is meromorphic inside of a closed contour C, then

$$\oint_C f(z)dz = 2\pi i \sum_{z_k} \mathop{\rm Res}_{z=z_k} f(z)$$

where  $\underset{z=z_k}{\operatorname{Res}} f(z)$  is the coefficient of  $z^{-1}$  in the Laurent expansion of f.

If f is analytic everywhere in the interior of C, then  $\oint_C f(z)dz = 0$ .

If f is meromorphic inside of a contour C and analytic everywhere else, one can equivalently calculate the residue at infinity

$$\oint_C f(z)dz = 2\pi i \sum_{z_k} \mathop{\rm Res}_{z=0} \, z^{-2} f(z^{-1})$$

#### 3.2 Computing Residues

## 3.3 Simple Poles

If  $z_0$  is a pole of order m, define  $g(z) := (z - z_0)^m f(z)$ .

If g(z) is analytic and  $g(z_0) \neq 0$ , then

$$\operatorname{Res}_{z=z_0} f(z) = \frac{\phi^{(m-1)}(z_0)}{(m-1)!}$$

In the case where m=1, this reduces to

$$\operatorname{Res}_{z=z_0} f(z) = \phi(z_0)$$

To compute residues this way, attempt to write f in the form

$$f(z) = \frac{\phi(z)}{(z - z_0)^m}$$

where  $\phi$  only needs to be analytic at  $z_0$ .

#### 3.4 Rational Functions

If  $f(z) = \frac{p(z)}{q(z)}$  where

- 1.  $p(z_0) \neq 0$
- 2.  $q(z_0) = 0$
- 3.  $q'(z_0) \neq 0$

then the residue can be computed as

$$\operatorname{Res}_{z=z_0} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)}$$

#### 3.5 Computing Integrals

When computing real integrals, the following contours can be useful:

One often needs bounds, which can come from the following lemmas

The Arc Length Bound If  $|f(z)| \leq M$  everywhere on C, then

$$|\oint_C f(z)dz| \le ML_C$$

where  $L_C$  is the length of C.

**Jordan's Lemma:** If f is analytic outside of a semicircle  $C_R$  and  $|f(z)| \leq M_R$  on  $C_R$  where  $M_R \to 0$ , then

$$\int_{C_R} f(z)e^{iaz}dz \to 0$$

Can also be used for integrals of the form  $\int f(z) \cos az dz$  or  $\int f(z) \sin az dz$ , just take real/imaginary parts of  $e^{iaz}$  respectively.

# 4 Conformal Maps

1. Linear Fractional Transformations:

$$f(z) = \frac{az+b}{cz+d} \qquad f^{-1}(z) = \frac{-dz+b}{cz-a}$$

the boundaries of the tho regions are marened.



#### FIGURE 126

 $w = \exp z$ .

Figure 1: image

2. 
$$[z_1, z_2, z_3] \mapsto [w_1, w_2, w_3]$$

Every linear fractional transformation is determined by its action on three points. Given 3 pairs points  $z_i \mapsto w_i$ , construct one using the implicit equation

$$\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}$$

3.  $z^k : \text{Wedge} \mapsto \mathbb{H}$ 

Just multiplies the angle by k. If a wedge makes angle  $\theta$ , use  $z^{\frac{\pi}{\theta}}$ .

It is useful to know that  $z \mapsto z^2$  is equivalent to  $(x,y) \mapsto (x^2 - y^2, 2xy)$ .

 $4. \ e^z: \mathbb{C} \mapsto \mathbb{C}$ 

| Horizontal lines | $\mapsto$ | rays from origin           |
|------------------|-----------|----------------------------|
| Vertical lines   | $\mapsto$ | circles at origin          |
| Rectangles       | $\mapsto$ | portions of wedges/sectors |

5.  $\log : \mathbb{H} \to \mathbb{R} + i[0, \pi]$ 

Just the inverse of what the exponential map does.

| Rays   | $\mapsto$ | Horizontal Lines  |
|--------|-----------|-------------------|
| Wedges | $\mapsto$ | Horizontal Strips |

6.  $\sin: [0, \pi/2] + i\mathbb{R} \mapsto \mathbb{H}_{\mathcal{R}(z) > 0}$ 

Maps the infinite strip to the first quadrant.

7.  $z \mapsto \frac{i-z}{i+z} : \mathbb{H} \mapsto D^{\circ}$ .

|  | Upper half of $D^{\circ}$<br>Bottom half of $D^{\circ}$ |
|--|---------------------------------------------------------|
|  | 5                                                       |

Has inverse  $w \mapsto i\frac{1-w}{1+w}$ 

8. 
$$z \mapsto z + z^{-1} : \partial D \mapsto \mathbb{R}$$

Maps the boundary of the circle to the real axis, and the plane to H.



Figure 2: image



Figure 3: image



Figure 4:  $z \mapsto \log z$ 



Figure 5:  $z \leftarrow \sin w$ 



Figure 6:  $z\mapsto z+z^{-1}$ 

The general technique is use solutions to the boundary value problem on a simple domain D, and compose one or several conformal maps to map a given problem into D, then pull back the solution.

#### 4.1.1 Heat Flow: Steady Temperatures

Generally interested in finding a harmonic function T(x,y) which represents the steady-state temperature at any point. Usually given as a Dirichlet problem on a domain D of the form



R0.35

$$\Delta T = 0$$
$$T(\partial D) = f(\partial D)$$

where f is a given function that prescribes values on  $\partial D$ , the boundary of D.

Embed this in an analytic function with its harmonic conjugate to yield solutions of the form F(x+iy) = T(x,y) + iS(x,y).

The **isotherms** are given by T(x, y) = c.

The lines of flow are given by S(x, y) = c.



R0.35

Any easy solution on the domain  $\mathbb{R} \times i[0,\pi]$  in the u,v plane, where

$$T(x,0) = 0$$
$$T(x,\pi) = 1$$

is given by  $T(u, v) = \frac{1}{\pi}v$ .

It is harmonic, as the imaginary part of the analytic  $F(u+iv) = \frac{1}{\pi}(u+iv)$ , since every analytic function has harmonic component functions.

Similar methods work with different domains, just pick a smooth interpolation between the boundary conditions.

#### 4.1.2 Fluid Flow



R0.35

Write  $F(z) = \phi(x, y) + i\psi(x, y)$ . Then F is the complex potential of the flow,  $\overline{F'}$  is the velocity, and setting  $\psi(x, y) = c$  yields the streamlines.

A solution in  $\mathbb{H}$  is F(z) = Az some some velocity A. Apply conformal mapping appropriately.



R0.35

#### 4.2 Theorems

#### 4.2.1 General Theorems

1. Liouville's Theorem:

If f is entire and bounded on  $\mathbb{C}$ , then f is constant.

- 2. If f is continuous in a region D, f is bounded in D.
- 3. If f is differentiable at  $z_0$ , f is continuous at  $z_0$ .

Note - the converse need not hold!

4. If f = u + iv, where u, v satisfy the Cauchy-Riemann equations **and** have continuous partials, then f is differentiable.

Note - continuous partials are not enough, consider  $f(z) = |z|^2$ .

5. Rouché's Theorem

If p(z) = f(z) + g(z) and |g(z)| < |f(z)| everywhere on C, then f and p have the same number of zeros with C.

6. The Argument Principle

If f is analytic on a closed contour C and meromorphic within C, then

$$W := \frac{1}{2\pi} \Delta_C \arg f(z) = Z - P$$

9

*Proof:* Evaluate the integral  $\oint_C \frac{f'(z)}{f(z)} dz$  first by parameterizing, changing to polar, and using the FTC, and second by using residues directly from the Laurent series.

- 7. The Main Story: The following are equivalent
  - f is continuous
  - f' exists
  - f is analytic
  - f is conformal
  - f satisfies the Cauchy-Riemann equations

#### 4.2.2 Theorems About Analytic Functions

1. If f is analytic on D, then  $\oint_C f(z)dz = 0$  for any closed contour  $C \subset D$ .

Note: this does not require f to be f' to be continuous on C.

#### 2. Maximum Modulus Principle

If f is analytic in a region D and not constant, then |f(z)| attains its maximum on  $\partial D$ .

- 3. If f is analytic, then  $f^{(n)}$  is analytic for every n. If f = u(x, y) + iv(x, y), then all partials of u, v are continuous.
- 4. If f is analytic at  $z_0$  and  $f'(z_0) \neq 0$ , then f is conformal at  $z_0$ .
- 5. If f = u + iv is analytic, then u, v are harmonic conjugates.
- 6. If f is holomorphic, f is  $C_{\infty}$  (smooth).
- 7. If f is analytic, f is holomorphic.

*Proof:* Since f has a power series expansion at  $z_0$ , its derivative is given by the term-by-term differentiation of this series.

#### 4.3 Some Useful Formulae

$$f_{x_0}(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \dots$$

$$\frac{1}{1-z} = \sum_{k} z^k$$

$$e^z = \sum_k \frac{1}{k!} z^k$$

$$\left(\sum_{i} a_{i} z^{i}\right) \left(\sum_{j} b_{j} z^{j}\right) = \sum_{n} \left(\sum_{i+j=n} a_{i} b_{j}\right) z^{n}$$

$$\cos z = \frac{1}{2} (e^{iz} + e^{-iz}) \qquad = 1 - \frac{z^{2}}{2!} + \frac{z^{4}}{4!} - \dots$$

$$\cosh z = \frac{1}{2} (e^{z} + e^{-z}) \qquad = \cos i z = 1 + \frac{z^{2}}{2!} + \frac{z^{4}}{4!} + \dots$$

$$\sin z = \frac{1}{2i} (e^{iz} - e^{-iz}) \qquad = z - \frac{z^{3}}{3!} + \frac{z^{4}}{4!} - \dots$$

$$\sinh z = \frac{1}{2} (e^{z} - e^{-z}) \qquad = -i \sin i z = z + \frac{z^{3}}{3!} + \frac{z^{4}}{4!} + \dots$$

Mnemonic: just remember that cosine is an even function, and that the even terms of  $e^z$  are kept. Similarly, sine is an odd function, so keep the odd terms of  $e^z$ .

#### Harmonic Conjugate

$$v(x,y) = \int_{(0,0)}^{(x,y)} -u_t(s,t)ds + u_s(s,t)dt$$

The Gamma Function

$$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx$$

Useful to know:  $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ .

# 5 Question

1. True or False: If f is analytic and bounded in  $\mathbb{H}$ , then f is constant on  $\mathbb{H}$ .

1 = 1

False: Take  $f(z) = e^{-z}$ , where  $|f(z)| \le 1$  in  $\mathbb{H}$ .

1 = 0

2. Compute  $\int_{-\infty}^{\infty} \frac{\sin x}{x(x^2+a^2)} dx$ 

1 = 1

Two semicircles needed to avoid singularity at zero. Limit equals the residue at zero, solution is  $\pi(\frac{1}{a^2} - \frac{e^{-a}}{a^2})$ .

1 = 0

3. Compute  $\int_0^{2\pi} \frac{1}{2+\cos\theta} d\theta$ 

1 = 1

Cosine sub, solution is  $\frac{2\pi}{\sqrt{3}}$ 

1 = 0

4. Find the first three terms of the Laurent expansion of  $\frac{e^z+1}{e^z-1}$ .

1 = 1

Equals  $2z^{-1} + 0 + 6^{-1}z + \dots$ 

1 = 0

5. Compute  $\int_{S_1} \frac{1}{z^2+z-1} dz$ 

1 = 1

Equals  $i\frac{2\pi}{5}$ 

1 = 0

6. True or false: If f is analytic on the unit disk  $E = \{z : |z| < 1\}$ , then there exists an  $a \in E$  such that  $|f(a)| \ge |f(0)|$ .

1 = 1

True, by the maximum modulus principal. Suppose otherwise. Then f(0) is a maximum of f inside  $S_1$ . But by the MMP, f must attain its maximum on  $\partial S_1$ .

1 = 0

7. Prove that if f(z) and  $f(\bar{z})$  are both analytic on a domain D, then f is constant on D

1 = 1

Analytic  $\implies$  Cauchy-Riemann equations are satisfied. Also have the identity  $f' = u_x + iv_x$ , and  $f' = 0 \implies f$  is constant.

1 = 0