Problem Set 3

CS 6375

Due: 4/6/2022 by 11:59pm

Note: all answers should be accompanied by explanations for full credit. Late homeworks will not be accepted.

Problem 1: VC Dimension (25 pts)

1. Consider a binary classification problem for data points in \mathbb{R}^3 with a hypothesis space consisting of axis aligned 3-d boxes such that any point in the box is labeled with a + and any point outside the box is labeled with a -. What is the VC dimension of this hypothesis space? Prove it. Can you generalize your argument to axis aligned boxes in \mathbb{R}^d ?

Problem 2: Spherical Hypotheses (25 pts)

Given training data of the form $(x^{(1)}, y^{(1)}), \ldots, (x^{(M)}, y^{(M)})$, where $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \{-1, 1\}$, consider the hypothesis space of *n*-dimensional spheres: each element of the hypothesis space is parameterized by a center $c \in \mathbb{R}^n$ and a radius r > 0 such that all points within distance r of the center c are classified as +1 and the remaining points are classified with a -1.

- 1. Assuming that the training data can be correctly classified under the sphereical hypothesis space, describe an optimization problem whose solution is a spherical hypothesis that is a max-margin perfect classifier.
- 2. Using the method of Lagrange multipliers, construct the dual of your optimization problem.

Problem 3: Medical Diagnostics (50 pts)

For this problem, you will use the data set provided with this problem set. The data has been divided into two pieces heart_train.data and heart_test.data. These data sets were generated using the UCI SPECT heart data set (follow the link for information about the format of the data). Note that the class label is the first column in the data set.

- 1. Suppose that the hypothesis space consists of all decision trees with exactly three attribute splits (repetition along the same path is allowed) for this data set.
 - (a) Run the adaBoost algorithm for five rounds to train a classifier for this data set. Draw the 5 selected trees in the order that they occur and report the ϵ and α , generated by adaBoost, for each.

- (b) Run the adaBoost algorithm for 10 rounds of boosting. Plot the accuracy on the training and test sets versus iteration number.
- 2. Now, suppose that the hypothesis space consists of only height 1 decision trees for this data set.
 - (a) Use coordinate descent to minimize the exponential loss function for this hypothesis space over the training set. You can use any initialization and iteration order that you would like other than the one selected by adaBoost. What is the optimal value of α that you arrived at? What is the corresponding value of the exponential loss on the training set?
 - (b) What is the accuracy of the resulting classifier on the test data?
 - (c) What is the accuracy of adaBoost after 20 rounds for this hypothesis space on the test data? How does the α learned by adaBoost compare to the one learned by gradient descent?
 - (d) Use bagging, with 20 bootstrap samples, to produce an average classifier for this data set. How does it compare to the previous classifiers in terms of accuracy on the test set?
 - (e) Which of these 3 methods should be preferred for this data set and why?

ζ,	MY.	- ->\	C Tho	For refor	. (DC d	tion	0	C	MUS	.tbe	ių in	pa side	H- :[m/	s)	Jal wx	e:	the	. bì	Nov-	res]	<u> </u>									0 11			/ال.٠	
		- /	,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			ċ, N	of P ^{OS}	sible e to obl not sh	her poi	al S							5)	\bigcirc)	<	[ny P)is?	oit's ON	L	to	С		- €	furth Di	est sta	+ f n(l	mints to) 0
		B	Ж	C	ی	la	æl		íS	n	ego	ι 	<i>h</i> 6																						
		c	·	Su	No. Ni		ll Mos	bi et	ha ha	A n	ჯ პ	tha P	H Osr	cu ts	nte	uì n	۷	Or	ly		+		ab	el	F	oin	15	d	V671	\ ' +	O/	i's}	-		
				·	r ,	(\bigcap				,);	Υ	U	N	5	/ ()	\mathcal{V}_{I}		_		2)												
	ln	r ⇒	1-0 a:	lime point this	nai ''c	1000 1' w	L b Mose	SUX di	stanu Stanu	Ince e to d n	the othe	ne Ur p e U	exi oints hile	sts is so	24 Shortti 2	or ui ointa	n Il e	ore Xist . pos	poin otive	, t l	wn	Pois	nt C	wil	l ba	e for	æd	to !	be i	η ·	the	n	D	Ьοх	
		글) . 당)	1 f The	boy.	po" (tl	nat	c puta	1 S O	nly	+	Poin	ης	ins	idl	Cai	nnot	· es	r cist	•			1													

Giver consi- parar cente	en training data of the form $(x^{(1)}, y^{(1)}), \ldots, (x^{(M)}, y^{(M)})$, where $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \{-1, 1\}$, sider the hypothesis space of n -dimensional spheres: each element of the hypothesis space is ameterized by a center $c \in \mathbb{R}^n$ and a radius $r > 0$ such that all points within distance r of the ter c are classified as $+1$ and the remaining points are classified with a -1 . 1. Assuming that the training data can be correctly classified under the sphereical hypothesis space, describe an optimization problem whose solution is a spherical hypothesis that is a max-margin perfect classifier.																																		
2.		the me	thod o	of Lagr	ange													Ϋ́	2 – 2	۲1	٥	Co	८ (ψ.	- γ	()	+ N	0 =	<u>a</u> 2		r(q	') -			
		M O	χγ	ι ` `	ح>	W)	M nti	Υ2 .ho:	-r	ر ما درج	kan /	0	40	σ	t he i	(D	ni n-1	($\int (\infty$		x. \	+(ં પ્	- 4:	12	⇒ ¹	110	– X.	11						
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		-/	70	QH O	2 S	mű	14	5)	N (40	10 (1	, T	Onel	> .	1~	ć.	iJ		C 0 C	Ju	,		110		111		(a)	+	(r₀,γ <u> </u>	7)	
						١	K2 R1	G	rcu	- C	M	rs 13	m	- Pl W .	the	_	t	Poi	mB											7,	X		\mathcal{I}		
							R2		Pist Diet	ance	. fr	vn	C	t0 -	tin	ther	t 90: L +	n- l soci	ms at																
																TIQS.	,	1																	
				(JAK J) [1 [7]	10U) Y2	ζ,	$\int (\infty$	<u>_</u>	c;)t·	+ (٦ -	yi))																				