05a eda

May 26, 2024

1 Exploratory Data Analysis

1.1 Content

- 1. Data imports
- 2. exploring the data structure
- 3. Up and Downsampling
- 4. data structure after SMOTE Upsampling
- 5. Regression Coefficient Confidence Intervals
- 6. Correlation Matrix
- 7. save to csv

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from collections import Counter
from sklearn.metrics import *
from sklearn.utils import resample
import matplotlib.colors as mcolors
from imblearn.over_sampling import SMOTE
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_auc_score
from sklearn.decomposition import PCA
```

Data imports

```
326
```

```
[78]:
        isco08
                                                         Name de \
          2655
                                                    Schauspieler
     1
          2612
                                                         Richter
     2
          3115
                Maschinenbautechniker, Techniker im Bereich Sy...
          2120
                            Mathematiker, Aktuare und Statistiker
     3
          1222 Führungskräfte in Werbung und Öffentlichkeitsa...
        {\tt Berufshauptgruppe}
                                                                s7
                             s1
                                   s2
                                         s3
                                               s4
                                                    s5
                                                          s6
                                                                       a45
                                                                            a46 \
     0
                        2 0.72 0.72 0.69 0.69 0.50 0.50
                                                              0.50
                                                                       0.0
                                                                            0.0
                        2 0.81 0.75 0.81 0.72 0.81 0.66
                                                              0.56
                                                                       0.0
                                                                            0.0
     1
     2
                        3 0.69 0.66 0.66 0.47 0.72 0.53
                                                              0.53
                                                                       0.0
                                                                            0.0
                        2 0.81 0.72 0.75 0.50 0.81 0.53
                                                              0.50
     3
                                                                       0.0
                                                                            0.0
                          0.69 0.75 0.78 0.75 0.75 0.56
                                                              0.63
                                                                       0.0 0.0
               a48
                           a50
         a47
                     a49
                                 a51
                                     a52 fo_probability fo_computerisation
     0 0.00 0.00 0.00 0.00 0.00
                                     0.0
                                                   0.370
     1 0.00 0.00 0.00 0.00 0.00 0.0
                                                   0.400
                                                                          na
     2 0.25 0.28
                          0.03 0.03 0.0
                                                   0.240
                    0.19
                                                                          na
     3 0.00 0.00
                    0.00
                          0.00
                               0.00 0.0
                                                   0.035
     4 0.00 0.00 0.00 0.00 0.00 0.0
                                                   0.015
     [5 rows x 92 columns]
     ## Exploring the data structure
[79]: # drop columns
     skills = skills.drop(columns=["id"])
     abilities = abilities.drop(columns=["id"])
[80]: # rename columns
     skills = skills.rename(columns={"name": "skill", "description":
      ⇔"skill description"})
     abilities = abilities.rename(columns={"name": "ability", "description": "
       ⇔"ability_description"})
[81]: # Add a letter in front of 'id' column
     skills['skill_id'] = 's' + skills['skill_id'].astype(str)
     abilities['ability_id'] = 'a' + abilities['ability_id'].astype(str)
     df.head(2)
[81]:
        isco08
                     Name_de Berufshauptgruppe
                                                  s1
                                                        s2
                                                              s3
                                                                    s4
                                                                          s5 \
          2655
                Schauspieler
                                                      0.72 0.69 0.69 0.50
                                              2 0.72
     1
          2612
                     Richter
                                                0.81 0.75 0.81 0.72 0.81
                s7 ... a45 a46 a47 a48 a49 a50 a51 a52 fo_probability \
          s6
```

 ${\tt fo_computerisation}$

0 na 1 na

[2 rows x 92 columns]

[82]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 326 entries, 0 to 325
Data columns (total 92 columns):

#	Column	Non-Null Count	Dtype
0		326 non-null	
1	Name_de	326 non-null	object
2			
3	s1	326 non-null	float64
4	s2	326 non-null	float64
5	s3	326 non-null	float64
6	s4	326 non-null	
7	s5	326 non-null	float64
8	s6	326 non-null	float64
9	s7	326 non-null	float64
10	s8	326 non-null	float64
11	s9	326 non-null	float64
12	s10	326 non-null	float64
13	s11	326 non-null	float64
14	s12	326 non-null	float64
15	s13	326 non-null	float64
16	s14	326 non-null	float64
17	s15	326 non-null	
18	s16	326 non-null	float64
19	s17	326 non-null	float64
20	s18	326 non-null	float64
21	s19	326 non-null	float64
22	s20	326 non-null	float64
23	s21	326 non-null	float64
24	s22	326 non-null	float64
25	s23	326 non-null	
26	s24	326 non-null	float64
27	s25	326 non-null	float64
28	s26	326 non-null	float64
29	s27	326 non-null	float64
30	s28	326 non-null	
31	s29	326 non-null	float64

32	s30	326	non-null	float64
33	s31	326	non-null	float64
34	s32	326	non-null	float64
35	s33	326	non-null	float64
36	s34	326	non-null	float64
37	s35	326	non-null	float64
38	a1	326	non-null	float64
39	a2	326	non-null	float64
40	a3	326	non-null	float64
41	a4	326	non-null	float64
42	a5	326	non-null	float64
43	a6	326	non-null	float64
44	a7	326	non-null	float64
45	a8	326	non-null	float64
46	a9	326	non-null	float64
47	a10	326	non-null	float64
48	a11	326	non-null	float64
49	a12	326	non-null	float64
50	a13	326	non-null	float64
51	a14	326	non-null	float64
52	a15	326	non-null	float64
53	a16	326	non-null	float64
54	a17	326	non-null	float64
55	a18	326	non-null	float64
56	a19	326	non-null	float64
57	a20	326	non-null	float64
5 <i>1</i>	a21			
50 59	a21	326	non-null	float64
		326	non-null	float64
60 61	a23 a24	326	non-null	float64
		326	non-null	
62	a25	326	non-null	float64
63	a26		non-null	float64
64	a27	326	non-null	float64
65	a28		non-null	float64
66	a29		non-null	float64
67	a30		non-null	float64
68	a31		non-null	float64
69	a32		non-null	float64
70	a33		non-null	float64
71	a34		non-null	float64
72	a35		non-null	float64
73	a36		non-null	float64
74	a37		non-null	float64
75	a38	326	non-null	float64
76	a39		non-null	float64
77	a40		non-null	float64
78	a41		non-null	float64
79	a42	326	non-null	float64

```
80
     a43
                          326 non-null
                                          float64
 81
     a44
                          326 non-null
                                          float64
 82
     a45
                          326 non-null
                                          float64
 83
     a46
                          326 non-null
                                          float64
                          326 non-null
 84
     a47
                                          float64
 85
     a48
                          326 non-null
                                          float64
                          326 non-null
 86
     a49
                                          float64
 87
     a50
                          326 non-null
                                          float64
 88
     a51
                          326 non-null
                                          float64
 89
     a52
                          326 non-null
                                          float64
 90
     fo_probability
                          326 non-null
                                          float64
 91 fo_computerisation 326 non-null
                                           object
dtypes: float64(88), int64(2), object(2)
```

[83]: df.describe().round(2)

memory usage: 234.4+ KB

		• • • • • • • • • • • • • • • • • • • •	, ,								
[83]:		isco08	Berufs	rufshauptgruppe		s1	s2	s3	s4	s 5	\
	count	326.00			.00		326.00	326.00	326.00		
	mean	4931.37		4	.64	0.59	0.62	0.63	0.53	0.60	
	std	2580.44		2	.59	0.14	0.13	0.12	0.12	0.12	
	min	1112.00		1	.00	0.25	0.28	0.25	0.25	0.31	
	25%	2634.25		2	.00	0.50	0.50	0.50	0.44	0.50	
	50%	4311.50		4	.00	0.56	0.66	0.66	0.50	0.60	
	75%	7322.75		7	.00	0.72	0.75	0.75	0.63	0.72	
	max	9629.00		9	.00	0.94	0.94	0.97	0.81	0.81	
		s6	s7	s8	•••	a44	a45	a46	a47	a48	\
	count	326.00	326.00	326.00	•••	326.00	326.00	326.00	326.00	326.00	
	mean	0.58	0.52	0.53	•••	0.39	0.10	0.11	0.23	0.26	
	std	0.11	0.09	0.13	•••	0.15	0.12	0.13	0.20	0.22	
	min	0.22	0.25	0.22	•••	0.00	0.00	0.00	0.00	0.00	
	25%	0.50	0.47	0.44	•••	0.25	0.00	0.00	0.00	0.00	
	50%	0.53	0.50	0.50	•••	0.36	0.03	0.03	0.22	0.25	
	75%	0.69	0.56	0.63	•••	0.50	0.19	0.24	0.41	0.44	
	max	0.78	0.75	0.78	•••	0.91	0.60	0.72	0.78	0.81	
		a49	a50	a51		a52 fo	_probabil	lity			
	count	326.00	326.00	326.00	326	6.00	326	3.00			
	mean	0.21	0.11	0.16	(0.14	(0.43			
	std	0.19	0.13	0.15	(0.14	(0.39			
	min	0.00	0.00	0.00	(0.00	(0.00			
	25%	0.00	0.00	0.00	(0.00	(0.03			
	50%	0.19	0.03	0.15	(0.13	(0.36			
	75%	0.35	0.22	0.25		0.25		0.84			
	max	0.97	0.47	0.75	(0.63	(0.99			

```
[8 rows x 90 columns]
[84]: # replace na with 0
      df["fo_computerisation"] = pd.to_numeric(df["fo_computerisation"],__
       Gerrors='coerce').fillna(0).astype(int) # this will convert na to 0, which
       ⇒is wrong. the issue is solved later on
[85]: #Get Number per class
      freq = df['fo_computerisation'].value_counts()
      print(freq)
     fo_computerisation
          314
     0
           12
     Name: count, dtype: int64
[86]: # calculate fo_computerisation based on 'df_probability'
      df['fo\_computerisation'] = df['fo\_probability'].apply(lambda x: 1 if x >= 0.5_{L})
       ⇔else 0)
[87]: #Get Number per class
      freq = df['fo_computerisation'].value_counts()
      print(freq)
     fo_computerisation
          178
          148
     Name: count, dtype: int64
[88]: # Get number per class and sort by index
      freq = df['Berufshauptgruppe'].value_counts().sort_index()
      # Create a bar chart
      plt.bar(range(len(freq)), freq.values, color="#4682B4")
      # Set title, x-label, y-label, and x-ticks
      plt.ylabel('Anzahl Berufe', fontsize = 10)
```

plt.xlabel('Berufshauptgruppen', fontsize = 10)

plt.xticks(range(len(freq)), freq.index)

Show the figure

plt.show()


```
[89]: # Select only numeric columns
df_numeric = df.select_dtypes(include=[np.number])

# Calculate correlation
corr = df_numeric.corr()

# Display the correlation matrix
corr
```

```
[89]:
                            isco08 Berufshauptgruppe
                                                              s1
                                                                        s2
                                                                                   s3
      isco08
                          1.000000
                                              0.998287 -0.780094 -0.724832 -0.768921
      Berufshauptgruppe
                          0.998287
                                              1.000000 -0.785612 -0.733018 -0.775674
      s1
                         -0.780094
                                             -0.785612 1.000000 0.789472 0.849349
      s2
                         -0.724832
                                             -0.733018 0.789472
                                                                  1.000000
                                                                            0.908991
                                                                  0.908991
                                                                            1.000000
      s3
                         -0.768921
                                             -0.775674 0.849349
      •••
      a50
                          0.557115
                                              0.560632 -0.402196 -0.395728 -0.406229
      a51
                          0.496304
                                              0.501174 -0.384058 -0.337968 -0.367260
      a52
                          0.649642
                                              0.653424 - 0.630015 - 0.575574 - 0.566921
      fo_probability
                          0.510758
                                              0.518262 -0.512661 -0.557475 -0.563570
      fo_computerisation 0.494887
                                              0.503570 -0.497289 -0.548277 -0.545791
```

```
s4
                                    s5
                                              s6
                                                        s7
                                                                   s8
isco08
                   -0.657392 -0.704797 -0.510884 -0.502370 -0.679214
                   -0.664497 -0.707131 -0.511340 -0.506091 -0.679665
Berufshauptgruppe
                    0.655073
                              0.836534 0.609810
                                                  0.613115
                                                            0.781304
s2
                    0.834895
                              0.754310
                                        0.599137
                                                  0.642778 0.706376
                    0.789313 0.777944 0.592369
s3
                                                  0.637421 0.729087
                   -0.365147 -0.208847 -0.095499 -0.188122 -0.247600
a50
a51
                   -0.326187 -0.179069 -0.080187 -0.157205 -0.180893
                   -0.472795 -0.416801 -0.218547 -0.350913 -0.446690
a52
fo_probability
                   -0.540139 -0.616052 -0.534419 -0.475254 -0.557876
fo computerisation -0.508542 -0.567065 -0.492861 -0.424156 -0.507713
                         a45
                                             a47
                                                       a48
                                                                  a49
                                   a46
isco08
                    0.551850
                              0.561929
                                        0.676531
                                                  0.669807
                                                            0.623415
Berufshauptgruppe
                    0.554762
                              0.564717
                                        0.683692
                                                  0.676154
                                                            0.629064
                   -0.393883 -0.440090 -0.588218 -0.579570 -0.540124
s1
s2
                   -0.361852 -0.393288 -0.630389 -0.606298 -0.535363
s3
                   -0.375216 -0.408926 -0.611800 -0.592960 -0.524761
•••
                    0.918138 0.910412 0.759231
                                                  0.784532 0.802498
a50
a51
                    0.881171 0.912271 0.684001
                                                  0.714539 0.774746
a52
                    0.665158 0.724730 0.752964
                                                  0.787220
                                                            0.799037
fo_probability
                    0.071696
                              0.103256
                                        0.289879
                                                  0.246624
                                                            0.204038
fo computerisation 0.115136 0.141952 0.322163
                                                  0.283416 0.239207
                         a50
                                                  fo probability \
                                   a51
                                             a52
isco08
                    0.557115
                              0.496304
                                        0.649642
                                                        0.510758
                    0.560632 0.501174
                                                        0.518262
Berufshauptgruppe
                                        0.653424
                   -0.402196 -0.384058 -0.630015
s1
                                                       -0.512661
s2
                   -0.395728 -0.337968 -0.575574
                                                       -0.557475
s3
                   -0.406229 -0.367260 -0.566921
                                                       -0.563570
a50
                    1.000000 0.835231 0.665827
                                                        0.103014
a51
                    0.835231
                              1.000000
                                        0.657659
                                                        0.057525
a52
                    0.665827
                              0.657659
                                                        0.228484
                                       1.000000
                    0.103014 0.057525
                                        0.228484
                                                        1.000000
fo_probability
fo_computerisation 0.154802 0.092507 0.253942
                                                        0.950052
                    fo computerisation
isco08
                              0.494887
Berufshauptgruppe
                              0.503570
ร1
                             -0.497289
s2
                             -0.548277
s3
                             -0.545791
```

```
a500.154802a510.092507a520.253942fo_probability0.950052fo_computerisation1.000000
```

[91 rows x 91 columns]

```
[90]: cov = df_numeric.cov()
cov
```

[90]:		isco0	8 Berufshau	ıptgruppe	s1	s2	\
	isco08	6.658669e+0			-276.964797	-233.957337	
	Berufshauptgruppe	6.664048e+0	3	6.692336	-0.279628	-0.237197	
	s1	-2.769648e+0	2 -	-0.279628	0.018931	0.013587	
	s2	-2.339573e+0	2 -	-0.237197	0.013587	0.015646	
	s3	-2.379457e+0	2 -	-0.240641	0.014014	0.013635	
				•••			
	a50	1.797850e+0	2	0.181377	-0.006920	-0.006190	
	a51	1.940292e+0	2	0.196428	-0.008006	-0.006405	
	a52	2.359491e+0	2	0.237922	-0.012201	-0.010133	
	fo_probability	5.148128e+0	2	0.523696	-0.027552	-0.027238	
	<pre>fo_computerisation</pre>	6.367815e+0	2	0.649589	-0.034118	-0.034198	
		s3	s4		s 5	s6 \	
	isco08	-237.945667	-200.748870	-210.1918	339 -139.673	673	
	Berufshauptgruppe	-0.240641	-0.203431	-0.2114	120 -0.140	151	
	s1	0.014014	0.010666	0.0133	0.008	389	
	s2	0.013635	0.012359	0.0109	0.0079	940	
	s3	0.014382	0.011202	0.0107	782 0.007	526	
	•••	•••	•••	•••	•••		
	a50	-0.006092	-0.005404	-0.0030	019 -0.0012	265	
	a51	-0.006673	-0.005848	-0.0031	135 -0.0012	287	
	a52	-0.009569	-0.007875	-0.0067	780 -0.0032	259	
	<pre>fo_probability</pre>	-0.026399	-0.024968	-0.0278	311 -0.022	117	
	<pre>fo_computerisation</pre>	-0.032638	-0.030009	-0.0326	880 -0.0260	38	
		s 7	s8	•••	a45	a46 \	
	isco08	-122.864516	-222.716112	164.8	395488 189.8	337509	
	Berufshauptgruppe	-0.124087	-0.223426	0.1	166184 0.3	191261	
	s1	0.007995	0.013660	0.0	006275 -0.0	007927	
	s2	0.007620	0.011228	0.0	005241 -0.0	006441	
	s3	0.007245	0.011110	0.0	005210 -0.0	006420	
	•••	•••		•••	•••		
	a50	-0.002230	-0.003935	0.0	0.0	014906	
	a51	-0.002257	-0.003483	0.0	0.0	18095	
	a52	-0.004681	-0.007989	0.0	0.0	13355	

```
fo_probability
                      -0.017594
                                  -0.027690 ...
                                                   0.003243
                                                               0.005280
fo_computerisation
                      -0.020046
                                  -0.032171
                                                   0.006648
                                                               0.009267
                            a47
                                        a48
                                                     a49
                                                                  a50 \
isco08
                     356.604117
                                 382.399647
                                              298.976780
                                                         179.784959
Berufshauptgruppe
                       0.361289
                                   0.386998
                                                0.302447
                                                            0.181377
                      -0.016532
                                               -0.013812
                                                           -0.006920
s1
                                  -0.017643
s2
                      -0.016107
                                  -0.016779
                                               -0.012446
                                                           -0.006190
s3
                                               -0.011696
                                                           -0.006092
                      -0.014987
                                  -0.015733
•••
a50
                                                0.018652
                                                            0.015640
                       0.019395
                                   0.021707
a51
                       0.021168
                                   0.023951
                                                0.021815
                                                            0.015825
a52
                       0.021649
                                   0.024514
                                                0.020902
                                                            0.011720
fo_probability
                       0.023129
                                   0.021313
                                                0.014812
                                                            0.005032
                                   0.031267
                                                0.022168
                                                            0.009653
fo_computerisation
                       0.032815
                            a51
                                              fo_probability fo_computerisation
                                        a52
isco08
                     194.029221
                                                  514.812848
                                                                       636.781463
                                 235.949105
                                   0.237922
Berufshauptgruppe
                       0.196428
                                                    0.523696
                                                                         0.649589
                      -0.008006
                                  -0.012201
                                                   -0.027552
                                                                        -0.034118
s1
s2
                      -0.006405
                                                   -0.027238
                                                                        -0.034198
                                  -0.010133
s3
                      -0.006673
                                  -0.009569
                                                   -0.026399
                                                                        -0.032638
                                                                         0.009653
a50
                       0.015825
                                   0.011720
                                                    0.005032
a51
                       0.022954
                                   0.014024
                                                    0.003404
                                                                         0.006989
a52
                       0.014024
                                   0.019811
                                                    0.012562
                                                                         0.017823
fo_probability
                       0.003404
                                   0.012562
                                                    0.152574
                                                                         0.185046
fo_computerisation
                       0.006989
                                   0.017823
                                                    0.185046
                                                                         0.248646
```

[91 rows x 91 columns]

```
[91]: # boxplot of probabilities of computerisation
plt.figure(figsize=(8,1.2))
sns.set_style("white")
sns.boxplot(x=df['fo_probability'], color="#4682B4")
```

[91]: <Axes: xlabel='fo_probability'>


```
[92]: # Get number per class
freq = df['fo_computerisation'].value_counts()

# Create a bar chart
plt.bar(freq.index, freq.values, color="#4682B4")
# plt.title('Substituierbarkeit nach Osborne and Frey (2013)')
plt.ylabel('Anzahl Berufe', fontsize = 10)
plt.xticks(freq.index)
plt.xlabel('Substituierbarkeit', fontsize = 10)
plt.show()
```


Up and Downsampling

```
model = LogisticRegression(max_iter=1000)
model.fit(X_train, y_train)

# Predict probabilities for the test set
y_pred_prob = model.predict_proba(X_test)[:, 1]

# Calculate AUC
auc = roc_auc_score(y_test, y_pred_prob)
print('AUC: %.2f' % auc)
```

AUC: 1.00

1.1.1 calculate minority and majority class automaitcally

```
[95]: # Get the counts of each class
class_counts = df_numeric['fo_computerisation'].value_counts()

# Identify majority and minority classes
majority_class = class_counts.idxmax()
minority_class = class_counts.idxmin()

# Separate majority and minority classes
df_majority = df_numeric[df['fo_computerisation'] == majority_class]
df_minority = df_numeric[df['fo_computerisation'] == minority_class]
```

1.1.2 SMOTE

Counter({0: 178, 1: 178})

```
[97]: # calculate "fo_computerisation" based on 'df_probability' to make sure SMOTE

didn't mess this up

df_smote['fo_computerisation'] = df_smote['fo_probability'].apply(lambda x: 1

if x >= 0.5 else 0)
```

```
[98]: # Get Amount per class
      freq = df_smote['fo_computerisation'].value_counts()
      print(freq)
     fo_computerisation
          178
          178
     Name: count, dtype: int64
[99]: # Split the data into training and testing sets
      X_train, X_test, y_train, y_test = train_test_split(df_smote.

¬drop('fo_computerisation', axis=1), df_smote['fo_computerisation'],

       →test_size=0.2, random_state=42)
      # Fit a logistic regression model
      model = LogisticRegression(max_iter=1000)
      model.fit(X_train, y_train)
      # Predict probabilities for the test set
      y_pred_prob = model.predict_proba(X_test)[:, 1]
      # Calculate AUC
      auc = roc_auc_score(y_test, y_pred_prob)
      print('AUC: %.2f' % auc)
     AUC: 1.00
```

1.1.3 Upsampling

```
[100]: fo_computerisation
     0    178
     1    178
     Name: count, dtype: int64
```

AUC: 0.99

1.1.4 Downsampling

```
[102]: # Downsample majority class
      df_majority_downsampled = resample(df_majority,
                                          replace=False, # sample without_
        →replacement
                                          n_samples=df_minority.shape[0], # to match_
        ⇔minority class
                                          random state=42) # reproducible results
       # Combine minority class with downsampled majority class
      df_downsampled = pd.concat([df_majority_downsampled, df_minority])
       # Display new class counts
      df_downsampled.fo_computerisation.value_counts()
[102]: fo_computerisation
            148
      0
            148
      Name: count, dtype: int64
[103]: # Split the data into training and testing sets
      X_train, X_test, y_train, y_test = train_test_split(df_downsampled.
       →drop('fo_computerisation', axis=1), df_downsampled['fo_computerisation'], ⊔
       →test_size=0.2, random_state=53)
       # Fit a logistic regression model
      model = LogisticRegression(max_iter=1000)
      model.fit(X_train, y_train)
```

```
# Predict probabilities for the test set
y_pred_prob = model.predict_proba(X_test)[:, 1]

# Calculate AUC
auc = roc_auc_score(y_test, y_pred_prob)
print('AUC: %.2f' % auc)
```

AUC: 1.00

Data structure after SMOTE Upsampling

```
[104]: # Get number per class
freq = df_smote['fo_computerisation'].value_counts()

# Create a bar chart
plt.bar(freq.index, freq.values, color="#4682B4")
plt.ylabel('Anzahl Berufe', fontsize = 10)
plt.xticks(freq.index)
plt.xlabel('Substituierbarkeit', fontsize = 10)
plt.show()
```



```
[105]: # boxplot of probabilities of computerisation
plt.figure(figsize=(8,1.2))
sns.set_style("white")
sns.boxplot(x=df_smote['fo_probability'], color="#4682B4")
```

[105]: <Axes: xlabel='fo_probability'>

[107]: sns.displot(df_smote['fo_probability'], bins=20, color="#4682B4", kde=True)

/opt/anaconda3/envs/bachelorarbeit/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

with pd.option_context('mode.use_inf_as_na', True):

[107]: <seaborn.axisgrid.FacetGrid at 0x16c420050>

Regression Coefficient / Confidence Intervals

```
[108]: # Select columns that start with 's' or 'a' and the 'fo_probability' column
    df_selected = df_smote.filter(regex='^(s|a|fo_computerisation)')

# Define the dependent variable
    y = df_selected['fo_computerisation']

# Define the independent variables
    X = df_selected.drop('fo_computerisation', axis=1)

# Fit the model
    model = LogisticRegression()
    model.fit(X, y)

intercept = model.intercept_

# Get the regression coefficients
```

```
coefficients = pd.Series(model.coef_[0], index=X.columns)
# Sort the coefficients
coefficients = coefficients.sort_values()
# Create a bar chart
plt.figure(figsize=(10,6))
sns.barplot(x=coefficients.index, y=coefficients.values, color="#4682B4")
plt.xticks(rotation=90) # Rotate x-axis labels for better visibility
# Konfidenzintervall 99%
plt.axhspan(-0.01, 0.01, color='#ff0000', alpha=0.3, edgecolor='none')
# Konfidenzintervall 95%
plt.axhspan(0.011, 0.05, color='#00FF00', alpha=0.1, edgecolor='none')
plt.axhspan(-0.05, -0.011, color='#00FF00', alpha=0.1, edgecolor='none')
plt.show()
/var/folders/ms/0wqr6tr5061fp142wmz0qph40000gn/T/ipykernel_3937/1369965362.py:28
: UserWarning: Setting the 'color' property will override the edgecolor or
facecolor properties.
```

plt.axhspan(-0.01, 0.01, color='#ff0000', alpha=0.3, edgecolor='none') /var/folders/ms/0wqr6tr506lfp142wmz0qph40000gn/T/ipykernel_3937/1369965362.py:31: UserWarning: Setting the 'color' property will override the edgecolor or facecolor properties.

plt.axhspan(0.011, 0.05, color='#00FF00', alpha=0.1, edgecolor='none') /var/folders/ms/0wqr6tr506lfp142wmz0qph40000gn/T/ipykernel_3937/1369965362.py:32 : UserWarning: Setting the 'color' property will override the edgecolor or facecolor properties.

plt.axhspan(-0.05, -0.011, color='#00FF00', alpha=0.1, edgecolor='none')

Save to csv

```
[109]: # Extract coefficients outside the 95% confidence interval
                    coefficients outside 95 = coefficients (coefficients < -0.05) | (coefficients > 0.05) | (c
                       \circlearrowleft 0.05)].round(4)
                    # Extract coefficients outside the 99% confidence interval
                    coefficients outside 99 = coefficients (coefficients < -0.01) | (coefficients >_{\sqcup}
                        \circlearrowleft0.01)].round(4)
[110]: # Create a dataframe from the coefficients outside the 95% and 99% confidence
                       ⇔intervals with headers
                    coefficients_outside_95 = pd.DataFrame(list(coefficients_outside_95.items()),__

columns=['id', 'coefficient'])
                    coefficients_outside_99 = pd.DataFrame(list(coefficients_outside_99.items()),__
                       ⇔columns=['id', 'coefficient'])
                    # Merge skills dataframe with coefficients
                    coefficients_outside_95 = coefficients_outside_95.merge(skills, left_on='id',_

¬right_on='skill_id', how='left')
                    coefficients_outside_99 = coefficients_outside_99.merge(skills, left_on='id',_
                        →right_on='skill_id', how='left')
                    # Merge abilities dataframe with coefficients
```

```
coefficients_outside_95 = coefficients_outside_95.merge(abilities,_
        ⇔left_on='id', right_on='ability_id', how='left')
      coefficients_outside_99 = coefficients_outside_99.merge(abilities,_
        ⇔left on='id', right on='ability id', how='left')
       # remove unnecessary columns
      coefficients_outside_95 = coefficients_outside_95.drop(columns=['skill_id',__

¬'ability_id'])
      coefficients_outside_99 = coefficients_outside_99.drop(columns=['skill_id',__
        [111]: # Merge skill and skill description
      coefficients_outside_95['skill'] = coefficients_outside_95['skill'].

¬fillna(coefficients_outside_95['ability'])
      coefficients_outside_95["skill_description"] =__
        ⇔coefficients outside 95["skill description"].
        →fillna(coefficients_outside_95["ability_description"])
      coefficients_outside 99['skill'] = coefficients_outside 99['skill'].
        →fillna(coefficients_outside_99['ability'])
      coefficients_outside_99["skill_description"] =__
        ⇔coefficients_outside_99["skill_description"].

→fillna(coefficients_outside_99["ability_description"])

       # Now you can drop the abilities
      coefficients_outside_95 = coefficients_outside_95.

drop(columns=['ability_description', 'ability'])
      coefficients_outside_99 = coefficients_outside_99.
        odrop(columns=['ability_description', 'ability'])
[112]: # Save the dataframes to csv files
      coefficients outside 95.reset index().rename(columns={'index': 'Variable', 0:11
        → 'Coefficient'}).sort_values('coefficient').drop(columns=["Variable"]).
        ⇔to_csv('files/coefficients_outside_95.csv', index=False)
      coefficients outside_99.reset_index().rename(columns={'index': 'Variable', 0:__
        Good 'Coefficient').sort values('coefficient').drop(columns=["Variable"]).
        →to_csv('files/coefficients_outside_99.csv', index=False)
      df smote.to csv('files/fo smote.csv', index=False)
      pd.DataFrame([intercept], columns=['intercept']).to_csv('files/
        ⇔intercept_not_normalized.csv', index=False)
[113]: cols_to_keep = not_automatable
      cols_to_keep.extend(['fo_probability', 'fo_computerisation'])
      # Drop the other columns
      df_smote = df_smote[cols_to_keep]
```

```
# Display the first few rows of the DataFrame
      df_smote.head(5)
[113]:
                 s8 s31
                          s26
                                s24
                                                       s27
                                                             a5 fo_probability \
          s15
                                     a12
                                           a13
                                                  s4
      0 0.38 0.47 0.0 0.00 0.06 0.47 0.47
                                                0.69
                                                      0.00 0.72
                                                                          0.370
      1 0.56 0.72 0.0 0.00 0.19 0.78 0.81
                                                                          0.400
                                                0.72
                                                      0.00 0.81
      2 0.38 0.63 0.5 0.41 0.28 0.72 0.72 0.47
                                                      0.28 0.75
                                                                          0.240
      3 0.44 0.75 0.0 0.00 0.22 0.75 0.78 0.50
                                                      0.00 0.75
                                                                         0.035
      4 0.53 0.63 0.0 0.03 0.19 0.72 0.63 0.75
                                                                         0.015
                                                      0.00 0.75
         fo_computerisation
      0
                         0
      1
      2
                         0
      3
                         0
      4
                         0
     ## Correlation Matrix
[114]: # Calculate the correlation matrix
      corr_matrix = df_smote.corr()
      # Create a custom colormap
      cmap = mcolors.LinearSegmentedColormap.from list("custom", ["#2dd4bf", "white", |
       # Create a heatmap
      plt.figure(figsize=(12, 10))
      sns.heatmap(corr_matrix, annot=True, fmt=".2f", cmap=cmap, center=0)
      # Show the plot
      plt.show()
```

