Application No.: 10/601,444

Office Action Dated: February 9, 2007

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Previously Presented) A method for semantic representation of one or more XML

language inquiries across relational and non-relational data sources comprising:

receiving at least one inquiry;

defining a plurality of nodes of a graph structure which represents the at least one

inquiry, the graph structure having at least one node object for every operation within the at

least one received inquiry;

translating each of the at least one node objects using operators; and

generating a semantic representation having the graph structure;

wherein the semantic representation explicitly describes a meaning of the one or more XML

language inquiries and wherein the semantic representation decouples front-end language

compilers from back-end query engines that use the semantic representation.

2. (Original) The method of claim 1, wherein the semantic representation is an

intermediate language representation formed for interpretation and execution by a target

query engine.

3. (Original) The method of claim 2, wherein the non-relational data sources comprise

one or more of a text document, a spreadsheet, and a non-relational database.

4. (Original) The method of claim 1, wherein the generating step further comprises

breaking down high level operations of the received inquiry into explicit parts.

5. (Original) The method of claim 4, wherein the explicit parts are common across

multiple XML languages.

Page 2 of 10

Application No.: 10/601,444

Office Action Dated: February 9, 2007

6. (Original) The method of claim 1, wherein the operators comprise one or more of

special operators, data sources, literals, Boolean operators, sequence operators, arithmetic

operators, string operators, value comparison operators, node comparison operators, tuple

spaces, function definition and invocation, XML navigation, XML construction, XML

property accessors, type operators, language specific operators, and data manipulation

operators.

7. (Cancelled)

8. (Original) The method of claim 1, wherein the at least one received inquiry comprises

one or more of an XML query language and an XML view definition language.

9. (Original) The method of claim 1, wherein the at least one received inquiry comprises

one or more of an XPath, an XSLT, an XQuery, a DML, an OPath, and an Annotated Schema

inquiry.

10. (Original) The method of claim 1, wherein the semantic language representation

allows XML queries over XML views of relational data.

11. (Previously Presented) A semantics interpreter for expressing a meaning of one or

more of an XML query and an XML view across multiple data sources comprising:

an input for receiving the one or more of an XML query and an XML view which

form an inquiry;

a graph structure generator for defining node objects for every operation within the

inquiry;

a translator for assigning operators for each node object wherein the operators break

down operations of the inquiry into explicit parts; and

Page 3 of 10

Application No.: 10/601,444

Office Action Dated: February 9, 2007

an output for providing the explicit parts as an intermediate language representation for expressing the meaning of the one or more of an XML query and an XML view, wherein the intermediate language representation decouples front-end language compilers from backend query engines that use the intermediate language representation.

12. (Original) The semantic interpreter of claim 11, wherein the multiple data sources

comprise relational and non-relational data sources.

13. (Original) The semantic interpreter of claim 12, wherein the non-relational data

sources comprise one or more of a text document, a spreadsheet, and a non-relational

database.

14. (Original) The semantic interpreter of claim 11, wherein the operators comprise one

or more of special operators, data sources, literals, Boolean operators, sequence operators,

arithmetic operators, string operators, value comparison operators, node comparison

operators, tuple spaces, function definition and invocation, XML navigation, XML

construction, XML property accessors, type operators, language specific operators, and data

manipulation.

15. (Original) The semantic interpreter of claim 11, wherein the explicit parts are

common across multiple XML languages.

16. (Original) The semantic interpreter of claim 11, wherein the intermediate language

representation is formed for interpretation and execution by a target query engine.

17. (Previously Presented) A computer-readable medium having computer-executable

instructions for performing a method of intermediate language representation of a received

inquiry comprising:

receiving one or more of an XML query and an XML view forming the received

inquiry;

Page 4 of 10

Application No.: 10/601,444

Office Action Dated: February 9, 2007

defining a plurality of nodes objects in a graph structure which represents the at least one received inquiry, the graph structure having a node object for every operation within the received inquiry;

translating each node using operators which break down operations of the received inquiry into explicit parts; and

generating instructions corresponding to the explicit parts forming an intermediate language representation for subsequent queries over one or more of relational and non-relational data sources, wherein the intermediate language representation comprises an explicit description of a meaning of the received inquiry, and wherein the intermediate language representation decouples front-end language compilers from back-end query engines that use the intermediate language representation.

- 18. (Original) The computer-readable medium of claim 17, wherein the operators comprise one or more of special operators, data sources, literals, Boolean operators, sequence operators, arithmetic operators, string operators, value comparison operators, node comparison operators, tuple spaces, function definition and invocation, XML navigation, XML construction, XML property accessors, type operators, language specific operators, and data manipulation.
- 19. (Original) The computer-readable medium of claim 17, wherein the explicit parts are common across multiple XML languages.
- 20. (Original) The computer-readable medium of claim 17, wherein the received inquiry comprises one or more of an XML query language and an XML view definition language.
- 21. (Previously Presented) A computer system for generating a semantic representation of an inquiry comprising:

a processor for executing computer instructions and

Application No.: 10/601,444

Office Action Dated: February 9, 2007

at least one module comprising:

an input function for receiving one or more of an XML query and an XML

view which forms the inquiry;

a graph structure generator for defining node objects for every operation

within the inquiry;

a translator function for assigning operators for each node object wherein the

operators break down operations of the inquiry into explicit parts; and

an output for providing the explicit parts as an intermediate language

representation for expressing a meaning of the XML query and the XML view, wherein the

intermediate language representation decouples front-end language compilers from back-end

query engines that use the intermediate language representation and wherein the at least one

module comprises one or more of one or more software modules and one or more hardware

modules.

22. (Original) The computer system of claim 21, wherein the operators comprise one or

more of special operators, data sources, literals, Boolean operators, sequence operators,

arithmetic operators, string operators, value comparison operators, node comparison

operators, tuple spaces, function definition and invocation, XML navigation, XML

construction, XML property accessors, type operators, language specific operators, and data

manipulation.

23. (Original) The computer system of claim 21, wherein the explicit parts are common

across multiple XML languages.

Page 6 of 10