Discrete random variables...

Frequentist probability: $p = \lim_{N \to \infty} \frac{N_s}{N}$

Elementary events: $A = \{a_j | j = 1, N_A\}$

Normalization of Probability: $\sum_{j=1}^{N_A} P(a_j) = 1, \quad 0 \le P(a_j) \le 1$

Joint probability: P(a, b)

Marginal probability: $P_A(a) = \sum_{b} P(a,b)$

Conditional probability: $P(a|b) = \frac{P(a,b)}{P_B(b)}, P_B(b) \neq 0$

Normalization of joint probability: $\sum_{a} \sum_{b} P(a,b) = 1$, $0 \le P(a,b) \le 1$

Independent variables: $P(a,b) = P_A(a)P_B(b)$

Conditional probability for independent variables: $P(a|b) = P_A(a)$

Kronecker delta: $\delta_{x,y} = \begin{cases} 1 & x = y \\ 0 & x \neq y \end{cases}$

Probability distribution: $P_F(f) = \sum_a \delta_{f,F(a)} P_A(a)$

Mean: $\langle F \rangle \equiv \sum_{a} F(a) P_A(a)$

Moment: $\langle F^n \rangle \equiv \sum_a F(a)^n P_A(a)$

Central moment: $\langle (F - \langle F \rangle)^n \rangle \equiv \sum_a (F(a) - \langle F \rangle)^n P_A(a)$

Variance: $\sigma^2 = \langle (F - \langle F \rangle)^2 \rangle = \sum_a (F(a) - \langle F \rangle)^2 P_A(a) = \langle F^2 \rangle - \langle F \rangle^2$

Standard deviation: $\sigma \equiv \sqrt{\langle F^2 \rangle - \langle F \rangle^2}$

Correlation function: $f_{FG} = \langle FG \rangle - \langle F \rangle \langle G \rangle$

Mean of a sum: $\langle S \rangle = \langle F \rangle N$ Variance of sum: $\sigma_S^2 = \sigma^2 N$

Standard deviation of a sum: $\sigma_S = \sigma \sqrt{N}$

Binomial coefficient: $\binom{N}{n} = \frac{N!}{n!(N-n)!}$

Binomial distribution: $P(n|N) = {N \choose n} p^n (1-p)^{N-n}$

Binomial theorem: $(p+q)^N = \sum_{n=0}^N \binom{N}{n} p^n q^{N-n}$

Binomial identities: $\binom{N}{0} = \binom{N}{N} = 1$, $\binom{N-1}{n} + \binom{N-1}{n-1} = \binom{N}{n}$, $\binom{N}{n+1} = \frac{N-n}{n+1} \binom{N}{n}$

Gaussian function: $g(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-x_0)^2}{2\sigma^2}\right], \quad \langle x \rangle = x_0 = x_{max}, \quad \langle (x-x_0)^2 \rangle = \sigma^2$

Gaussian approximation to binomial distribution: $P(n|N) \approx \frac{1}{\sqrt{2\pi p(1-p)N}} \exp\left[-\frac{(n-pN)^2}{2p(1-p)N}\right]$

Continuous random variables...

Probability density:
$$P([a,b]) = \int_a^b P(x)dx$$
, $\int_{\Omega} P(x)dx = 1$

Marginal probability:
$$P_x(x) = \int_{-\infty}^{\infty} P(x,y)dy$$

Conditional probability:
$$P(y|x) = \frac{P(x,y)}{P_x(x)}$$

Baye's theorem:
$$P(y|x) = \frac{P(x|y)P_y(y)}{P_z(x)}$$

Independence:
$$P(x,y) = P_x(x)P_y(y)$$

Conditional probability for independent variables:
$$P(x|y) = P_x(x)$$

Average of a function:
$$\langle F(x) \rangle = \int_{-\infty}^{\infty} F(x)P(x)dx$$

Mean:
$$\langle x \rangle = \int_{-\infty}^{\infty} x P(x) dx$$

Moment:
$$\langle x^n \rangle = \int_{-\infty}^{\infty} x^n P(x) dx$$

Central moment:
$$\langle (x - \langle x \rangle)^n \rangle = \int_{-\infty}^{\infty} (x - \langle x \rangle)^n P(x) dx$$

Variance:
$$\sigma^2 = \langle (x - \langle x \rangle)^2 \rangle = \int_{-\infty}^{\infty} (x - \langle x \rangle)^2 P(x) dx = \langle x \rangle^2 - \langle x^2 \rangle$$

Standard deviation:
$$\sigma = \sqrt{\langle x \rangle^2 - \langle x^2 \rangle}$$

Gaussian integral:
$$G = \int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}$$

Stirling's Approximation:
$$\ln N! \approx N \ln N - N + 1$$
, or $N! \approx N^N \exp(1 - N)$

Entropy...

Total entropy:
$$S_{total}(E, V, N) = S_q(V, N) + S_p(E, N)$$

Number probability distribution:
$$P(N_j, N_k) = \frac{N_T!}{N_j! N_k!} \left(\frac{V_j}{V_T}\right)^{N_j} \left(\frac{V_k}{V_T}\right)^{N_k}$$
, where $N_j + N_k = N_T$

$$P(N_j,N_k) = \frac{\Omega_q(N_j,V_j)\Omega_q(N_k,V_k)}{\Omega_q(N_T,V_T)}, \ \ \text{where} \ \Omega_q(N,V) = \frac{V^N}{N!}$$

Configurational entropy (Boltzmann):
$$S_q(N,V) = k \ln \Omega_q(N,V) + kXN$$

Additivity of configurational entropy:
$$S_q(N_j, V_j, N_k, V_k) = S_q(N_j, V_j) + S_q(N_k, V_k)$$

Analytic approximation:
$$S_q(N,V) \approx kN \left[\ln \left(\frac{V}{N} \right) + X \right]$$

Energy in subsystem of classical ideal gas:
$$E_{\alpha} = \sum_{i=1}^{N_{\alpha}} \frac{\left|\vec{p}_{\alpha,i}\right|^2}{2m}$$

Integral over momenta of all particles:
$$\int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}(\cdots)dp_{\alpha,1}^3\cdots dp_{\alpha,N_j}^3\equiv\int_{-\infty}^{\infty}(\cdots)dp_{\alpha,N_j}^3$$

$$\begin{aligned} \textbf{Energy probability distribution:} \ \ P(E_j, E_k) &= \frac{\int_{-\infty}^{\infty} \delta\left(E_j - \sum_{i=1}^{N_j} \frac{|\vec{p}_{j,i}|^2}{2m}\right) dp_j \int_{-\infty}^{\infty} \delta\left(E_k - \sum_{\ell=1}^{N_k} \frac{|\vec{p}_{k,\ell}|^2}{2m}\right) dp_k}{\int_{-\infty}^{\infty} \delta\left(E_T - \sum_{i=1}^{N_T} \frac{|\vec{p}_i|^2}{2m}\right) dp} \end{aligned}$$

$$P(E_j, E_k) = \frac{\Omega_p(E_j, N_j)\Omega_p(E_k, N_k)}{\Omega_p(E_T, N_T)} \text{ where } \Omega_p(E_\alpha, N_\alpha) = \int_{-\infty}^\infty \delta\left(E_\alpha - \sum_{i=1}^{N_\alpha} \frac{\left|\vec{p}_{\alpha,i}\right|^2}{2m}\right) dp_\alpha$$

$$\Omega_p(E, N) = S_n m(2mE)^{3N/2-1}$$
 where $S_n = n \frac{\pi^{n/2}}{(n/2)!}$

Energy-dependent entropy: $S_p(E,N) = k \ln \Omega_p(E,N)$, where $\ln \Omega_p(E,N) \approx N \left[\frac{3}{2} \ln \left(\frac{E}{N} \right) + X \right]$

Note the exact expression $\Omega_P(E, N) = \frac{3N\pi^{3N/2}}{(3N/2)!}m(2mE)^{3N/2-1}$

Entropy of a subsystem of a classical ideal gas: $S_j(E_j, V_j, N_j) = kN_j \left[\frac{3}{2} \ln \left(\frac{E_j}{N_j} \right) + \ln \left(\frac{V_j}{N_j} \right) + X \right]$

Note that traditionally $X = \frac{3}{2} \ln \left(\frac{4\pi m}{3h^2} \right) + \frac{5}{2}$

Hamiltonian for Ideal gas: $H_{\alpha}(q_{\alpha},p_{\alpha})=\sum_{i=1}^{3N_{\alpha}}\frac{\left|\vec{p}_{\alpha,i}\right|^{2}}{2m}$

 $\textbf{Hamiltonian for interacting particles:} \ \ H_{\alpha}(q_{\alpha},p_{\alpha}) = \sum_{i=1}^{3N_{\alpha}} \frac{\left|\vec{p}_{\alpha,i}\right|^{2}}{2m} + \sum_{i=1}^{N\alpha} \sum_{i'=1}^{N_{\alpha}} \phi(\vec{r}_{\alpha,i},\vec{r}_{\alpha,i'})$

Entropy for interacting particles: $S_{\alpha}(E_{\alpha}, V_{\alpha}, N_{\alpha}) = k \ln \Omega_{\alpha}(E_{\alpha}, V_{\alpha}, N_{\alpha})$

where $\Omega_{\alpha}(E_{\alpha}, V_{\alpha}, N_{\alpha}) = \frac{1}{h^{3N_{\alpha}}N_{\alpha}!} \int dq_{\alpha} \int dp_{\alpha} \delta(E_{\alpha} - H_{\alpha})$ and H_{α} is the Hamiltonian for the subsystem α

Thermodynamic quantities...

Maxwell-Boltzmann distribution for momentum of a single particle: $P(\vec{p_1}) = \left(\frac{\beta}{2\pi m}\right)^{3/2} \exp\left(-\beta \frac{|\vec{p_1}|^2}{2m}\right)$

Ideal gas law: $PV = \frac{N}{\beta}$ where $\beta = \frac{1}{k_B T}$ or $PV = Nk_B T$

Celsius to Kelvin conversion: $T[K] = T[^{\circ}C] + 273.15$

Equipartition theorem: $\frac{E}{N} = \frac{3}{2}k_BT$

 $\mbox{Equations of state:} \quad \left(\frac{\partial S}{\partial E}\right)_{V,N} = \frac{1}{T}, \quad \left(\frac{\partial S}{\partial V}\right)_{E,N} = \frac{P}{T}, \quad \left(\frac{\partial S}{\partial N}\right)_{E,V} = -\frac{\mu}{T}$

Laws and postulates of thermodynamics...

0th Law: If two systems are in thermal equilibrium with a third system, they are in equilibrium with each other.

 1^{st} Law: Heat is a form of energy, and energy is conserved.

2nd Law: If a system is constrained, its entropy cannot decrease after the constraints are removed.

3rd Law: The entropy of any quantum mechanical system goes to constant as temperature goes to zero.

1st Postulate: There exist equilibrium states characterized by a small number of extensive parameters.

2nd Postulate: Without internal constraints, values of extensive parameters are those that maximize entropy.

3rd Postulate: Entropy of a composite system is additive.

 $\mathbf{4^{th}}$ **Postulate:** Entropy is a continuous and differentiable function of extensive parameters.

"Sometimes true" postulates:

5th Postulate: Entropy is an extensive function of extensive variables.

6th Postulate: The entropy is a monotonically increasing function of energy for equilibrium values of energy.

7th Postulate (The Nernst Postulate): The entropy of any system is non-negative.

Thermodynamic processes...

Energy: $U = \langle E \rangle$

First law in differential form: dU = dQ + dW, for fixed N

Integrating factor: dG = r(x, y) dF

Fundamental relation: $dU = TdS - PdV + \mu dN$

Note that dQ = TdS, dW = PdV for fixed number of particles.

Entropy in heat cycle: $dS = \frac{dQ_H}{T_H} + \frac{dQ_L}{T_L} = 0$

Work in heat cycle: $dW = \left(1 - \frac{T_L}{T_H}\right) dQ_H$

Efficiency of heat engine: $\eta = \frac{dW}{dQ_H} = 1 - \frac{T_L}{T_H}$

Coefficient of performance for refrigerator: $\epsilon_R = \frac{dQ_L}{-dW} = \frac{T_L}{T_H - T_L}$

Coefficient of performance for heat pump: $\epsilon_{HP} = \frac{-dQ_H}{-dW} = \frac{T_H}{T_H - T_L}$

Thermodynamic potentials...

Helmholtz free energy: $F(T,V,N) \equiv U[T] = U - TS$, $dF = -SdT - PdV + \mu dN$ Enthalpy: $H(S,P,N) \equiv U[P] = U + PV$, $dH = TdS + VdP + \mu dN$

Gibbs free energy: $G(T, P, N) \equiv U[T, P] = U - TS + PV, dG = -SdT + VdP + \mu dN$

Extensivity...

Condition for extensivity: $S(\lambda U, \lambda V, \lambda N) = \lambda S(U, V, N)$

Euler equation: $U = TS - PV + \mu N$

Gibbs-Duhem relation: $d\mu = -\left(\frac{S}{N}\right)dT + \left(\frac{V}{N}\right)dP$

Thermodynamic potentials for extensive systems:

 $F = U - TS = -PV + \mu N$, $H = U + PV = TS + \mu N$, $G = U - TS + PV = \mu N$

Thermodynamic identities...

Coefficient of thermal expansion:
$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P,N}$$

Isothermal compressibility:
$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{T,N}$$

Specific heat per particle at constant pressure:
$$c_P = \frac{T}{N} \left(\frac{\partial S}{\partial T} \right)_{P,N}$$

Specific heat per particle at constant volume:
$$c_V = \frac{T}{N} \left(\frac{\partial S}{\partial T} \right)_{VN}$$

Heat capacity:
$$C_P = Nc_P$$
, $C_V = Nc_V$

$$\textbf{Jacobians:} \ \, \frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x}$$

Symmetry of Jacobians:
$$\frac{\partial(u,v)}{\partial(x,y)} = -\frac{\partial(v,u)}{\partial(x,y)} = \frac{\partial(v,u)}{\partial(y,x)} = -\frac{\partial(u,v)}{\partial(y,x)}$$

Jacobians as partial derivatives:
$$\frac{\partial(u,y)}{\partial(x,y)} = \left(\frac{\partial u}{\partial x}\right)_y$$

Chain rule for Jacobians:
$$\frac{\partial(u,v)}{\partial(x,y)} = \frac{\partial(u,v)}{\partial(r,s)} \frac{\partial(r,s)}{\partial(x,y)}$$

Reciprocals of partial derivatives:
$$\left(\frac{\partial u}{\partial x}\right)_y = 1 / \left(\frac{\partial x}{\partial u}\right)_y$$

Specific heat identity:
$$c_P = c_V + \frac{\alpha^2 TV}{N\kappa_T}$$

Extremum principles, Stability conditions, Phase transitions...

Energy minimum princple: dU = dW, for constant entropy and constant number of particles

Stability with respect to volume changes: $\kappa_S \geq 0$

Stability with respect to heat transfer: $c_V \ge 0$

All stability conditions:

$$U(S,V,N) \qquad \left(\frac{\partial^2 U}{\partial S^2}\right)_{V,N} \geq 0 \qquad \left(\frac{\partial^2 U}{\partial V^2}\right)_{S,N} \geq 0$$

$$\begin{split} F(T,V,N) & \left(\frac{\partial^2 F}{\partial T^2}\right)_{V,N} \leq 0 & \left(\frac{\partial^2 F}{\partial V^2}\right)_{S,N} \geq 0 \\ H(S,P,N) & \left(\frac{\partial^2 H}{\partial S^2}\right)_{P,N} \geq 0 & \left(\frac{\partial^2 H}{\partial P^2}\right)_{S,N} \leq 0 \end{split}$$

$$H(S, P, N)$$
 $\left(\frac{\partial^2 H}{\partial S^2}\right)_{P, N} \ge 0$ $\left(\frac{\partial^2 H}{\partial P^2}\right)_{Q, N} \le 0$

$$G(T, P, N) \qquad \left(\frac{\partial^2 G}{\partial T^2}\right)_{P, N} \leq 0 \qquad \left(\frac{\partial^2 G}{\partial P^2}\right)_{T, N} \leq 0$$

$$\textbf{Helmholtz free energy of van der Waals fluid:} \ \ F_{vdW} = -Nk_BT \left[\ln \left(\frac{V-bN}{N} \right) + \frac{3}{2} \ln(k_BT) + X \right] - a \left(\frac{N^2}{V} \right)$$

Equations of state for van der Waals fluid:
$$P = \frac{Nk_BT}{V - bN} - \frac{aN^2}{V^2}$$
, $U = \frac{3}{2}Nk_BT - a\left(\frac{N^2}{V}\right)$

$$\textbf{Latent heat: } \ell = \frac{T\Delta S}{N} = \frac{L}{N}$$

Clausius-Clapeyron equation:
$$\frac{dP}{dT} = \frac{\ell N}{T\Delta V} = \frac{L}{T\Delta V}$$

The Nernst postulate...

Specific heat at low temperatures: $\lim_{T\to 0} c_X(T) = 0$

Coefficient of thermal expansion at low temperatures: $\lim_{T\to 0} \alpha(T) = 0$

Canonical ensemble...

Partition function for canonical ensemble: $Z = \frac{1}{h^{3N}N!} \int dq \int dp \exp[-\beta H(q,p)]$

Canonical distribution: $P(p,q) = \frac{1}{h^{3N}N!Z} \exp[-\beta H(p,q)]$

Liouville theorem: $\frac{dP}{dt} = 0$

Helmholtz free energy of canonical ensemble: $F(T,V,N) = -k_BT \ln Z(T,V,N)$

Specific heat in statistical mechanics: $\frac{1}{Nk_BT^2}\left(\langle E^2\rangle - \langle E\rangle^2\right)$

Forces independent of momentum: $Z = \frac{1}{h^{3N}N!} (2\pi m k_B T)^{3N/2} \int dq \exp \left[-\beta \sum_{j=1}^N \sum_{i>j}^N \phi(\vec{r_i}, \vec{r_j}) \right]$

Classical ideal gas (no forces): $Z = \frac{1}{h^{3N}N!}(2\pi mk_BT)^{3N/2}V^N$

Hamiltonian for SHO: $H = \frac{1}{2}Kx^2 + \frac{p^2}{2m}$

Partition function for SHO: $Z = \frac{1}{\beta\hbar\omega}, \ \omega = \sqrt{\frac{K}{m}}$

Hamiltonian for N SHOs: $H = \sum_{j=1}^{N} \left(\frac{1}{2} K_j x_j^2 + \frac{p_j^2}{2m_j} \right)$

Partition function for N SHOs: $Z = \prod_{j=1}^N \left(\frac{1}{\beta\hbar\omega_j}\right), \ \ \omega_j = \sqrt{\frac{K_j}{m_j}}$