CSDS 310 Assignment 4

Note: Arrays are zero-indexed.

Problem 1

- a) Counterexample: Consider activities $a_1 = [1, 4], a_2 = [2, 3]$, and $a_3 = [3, 4]$. The optimal solution is $\{a_2, a_3\}$. This greedy approach selects a_1 first, which creates the unoptimal set $\{a_1\}$.
- b) Counterexample: Consider activities $a_1=[1,3], a_2=[3,5], a_3=[2,6]$. The optimal solution is $\{a_1\}$ Selecting a_1 (shortest duration) excludes a_2 , and a_3 The optimal solution is $\{a_1,a_2\}$
- c) Counterexample: there isn't one this one is true

Problem 2

Pseudocode

```
1 procedure MAX_PROFIT(A, B, n):
```

```
 \begin{array}{c|c} 2 & \text{r-quicksort A} \\ 3 & \text{r-quicksort B} \\ 4 & \text{profit} \leftarrow 1 \\ 5 & \textbf{for } 0 \leq i < n \text{:} \\ 6 & \text{profit} \leftarrow \text{profit} \times A[i]^{B[i]} \\ 7 & \textbf{return profit} \end{array}
```

Proof

Pairing larger values amplifies the exponentiation result.

• Example: A=[3,1], B=[2,4] Reordering A=[3,1], B=[4,2] maximizes the result: $3^4c\cdot 1^2=81$ versus other arrangements.

Runtime

Randomized quick sort takes $O(n \log n)$ time in the worst case. It also sorts in place, using O(1) extra space. The for loop runs for $\Theta(n)$ time. Thus, we have:

Time complexity: $O(n \log n)$ Space complexity: O(1)

Problem 3

Algorithm

- Sort activities by their deadlines d_i in ascending order.
- Start scheduling from t=0, assigning $s_i=\max(t,0)$ and updating $t=s_i+t_i$

Example

- Input: t = [10, 5, 6, 2], d = [11, 6, 12, 20]
- Sorted by deadlines: $\{(5,6), (10,11), (6,12), (2,20)\}$
- Scheduled order: [2, 1, 3, 4]
- Starting/Finishing times: $\left[\frac{0}{5}, \frac{5}{15}, \frac{15}{21}, \frac{21}{23}\right]$

• Maximum delay: $\Delta = \max(-1, 4, 9, -3) = 9$

Explanation

• Sorting by deadlines minimizes delays, ensuring earlier deadlines are prioritized.

Problem 4

- a) With the counterexample c = [1, 3, 4] and n = 6, the optimal solution is 2 coins ($\{3, 3\}$). However, the greedy choice is 3 coins ($\{4, 1, 1\}$).
- b) We must prove that if the coin denominations are powers of 2, then this greedy choice leads to the optimal solution. Let a represent the coins needed to make n based on the greedy choice.
 - Base case:

```
When n=1, we have c=[1] so a=1 (coins = \{1\}).
When n=2, we have c=[1,2] so that a=1 (coins = \{2\}).
When n=2, we have c=[1,2] so that a=1 (coins = \{2,1\}).
```

• Inductive step: Having proven that a is optimal for $1 \le n \le b$ such that b = 3, we must prove b+1. From our base case, we notice that for the largest coin c_k , we have $k = \lfloor \log_2(b) \rfloor$. Then, we have $k' = \lfloor \log_2(b+1) \rfloor$. This means that if b+1 can be expressed as 2^d with $d \in \mathbb{Z}$, we have $a' = a - c_{k'}$, another optimal solution. This also works for cases in which b+1 cannot be expressed as such. Therefore, the greedy solution is always optimal for n.