Práctica 4: Ramificación y poda (Branch and Bound)

Problema del viajante del comercio.

1.Recordatorio del problema viajante de comercio.

- Dado un conjunto de ciudades y una matriz con las distancias entre todas ellas:
 - Un viajante debe recorrer todas las ciudades exactamente una vez, regresando al punto de partida, de forma tal que la
 - distancia recorrida sea mínima.
 - Más formalmente, dado un grafo G, conexo y ponderado, se trata de hallar el ciclo hamiltoniano de mínimo peso de ese grafo.

2. Problema a realizar

 Buscar un algoritmo de ramificación o poda (Branch&Bound).

3. Introducción a Branch&Bound

- El esquema de Ramificación y Poda es el algoritmo de búsqueda más eficiente en espacios de búsqueda que sean árboles.
- En cada momento hay una solución en curso.
- La ramificación es óptima si el coste es menor que la solución en curso, en este caso esta última pasaría a ser la solución óptima en curso, en caso contrario sería podada.
- El algoritmo se encarga de detectar en qué ramificación las soluciones dadas ya no están siendo óptimas, para que se <<pode>> esa rama del árbol y así no se malgastan recursos y procesos en casos que se alejan de la solución óptima.
- Así se recorre todas las posibles soluciones hasta dar con la óptima

4. Solución al problema del viajante del comercio con Branch&Bound.

- Para la solución de esta práctica creamos una estructura llamada "nodo" la cual representará a cada ciudad, por lo que habrá tantas como número de ciudades les hayamos pasado a través del fichero, y los crea.
- Para realizar la poda, guardamos en todo momento en un vector de nodos el costo de la mejor solución obtenida hasta ahora (que se utiliza como cota superior global: la solución óptima debe tener un coste menor o igual a esa). Esa variable se inicializa con un algoritmo greddy, de la práctica anterior, contendrá la primera rama que explora.
- Con esto seguimos hacia delante, y calculamos la distancia absoluta del siguiente nivel, si ésta es menor que la cota anterior, expande este nodo y lo añade a nuestro vector de solución.
- En caso contrario, poda esa rama y se continúa con la siguiente.
- Podemos controlar los niveles en los que hemos estado mediante un campo "bandera" que nos indica si ese nivel ha sido visitado ya.

5. Ejemplos

Para su representación hemos usado gnuplot. En este caso el número de ciudades será 15:

Ciudades	Valor eje X	Valor eje Y
1	8671	5217
8	7871	8460
13	8299	9533
4	7738	9656
5	7007	8718
2	5562	9844
7	5389	9174
12	5007	6325
3	4333	7286
9	1195	7085
6	1408	6409
14	324	4767
0	2782	3443

Ejemplo con número de ciudades igual a 10:

Ciudades	Valor eje X	Valor eje Y
3	1480	9402
5	1936	6415
4	4302	5554
8	4813	5660
7	6831	3021
9	8702	2278
6	9320	2548
2	9124	3932
0	9039	8043

6. Cálculo de la eficiencia empírica.

Tamaño	Tiempo
8	0.00281443
9	0.0159347
10	0.0306175
11	0.143857
12	1.93821
13	2.00506
14	18.651
15	144.896

7. Conclusión

Como podemos comprobar cuando aumenta el tamaño el tiempo va creciendo, sobre todo al pasar el umbral de la cantidad de 14 ciudades, el tiempo crece de forma exponencial y rápidamente.