OPTIMAL CONTROL

MAE 546 : Fall 2024

Nathaniel Chen

Ryne Beeson Andlinger 017 9:30-10:50 AM

Contents

1	Optimal Control Introduction		3
	1.1	Deterministic Finite-Dimensional Continuous-Time Problem	;
	1.2	Definitions	;
2 Parameter Optimization Conditions		rameter Optimization Conditions	7
	2.1	Defining Optimality	,
	2.2	Unconstrained Smooth Parameter Optimization	,

1 Optimal Control Introduction

1.1 Deterministic Finite-Dimensional Continuous-Time Problem

$$\inf_{u \in \mathcal{U}} J(u; t_0, t_f, X_0) \equiv K(t_f, X_f) + \int_{t_0}^{t_f} L(s, X_s, u_s) \, ds \tag{1}$$

$$dX_t \equiv f(t, X_t, u_t) dt \quad X_0 \in \mathbb{R}^m$$
 (2)

$$\psi(t, X_t, u_t) = 0 \in \mathbb{R}^l, \quad \forall t \in [t_0, t_f]$$
(3)

$$\phi(t_f, X_f, u_t) \le 0 \in \mathbb{R}^k, \quad \forall t \in [t_0, t_f]$$
(4)

1.2 Definitions

Summary. Fundamental definitions

1. Metric Space: (M, d)

2. Inner Product Induced Metric: $(M, \langle \cdot, \cdot \rangle)$

3. Topology: $\mathcal{T} \equiv (A_i)$

4. Open & Closed Sets: A, A^c

5. Open & Closed Balls: $B(x,\epsilon;d), \bar{B}(x,\epsilon;d)$

6. Metric Topology: $\mathcal{T}(M)$

7. Set Closure: \bar{A}

8. Set Interior: A°

9. Open Neighborhood: $A \subseteq M$

Definition 1.1: Metric Space

Defining

• (M,d): a metric space

• M: a set with topology induced by d

• $d: M \times M - > [0, \infty)$

Then

1. $d(x,y) = d(y,x) \ \forall x,y \in M$

Symmetric

2. $d(x,x) = 0 \ \forall x \in M$

3. $d(x,y) > 0, \forall x,y \in M, x \neq y$

Non-Negative

4. $d(x,y) \le d(x,z) + d(z,y) \ \forall x,y,z \in M$

Triangle Inequality

Definition 1.2: Inner Product Induced Metric

Defining

- $(M, \langle \cdot, \cdot \rangle)$: an inner product space
- M: a vector space
- $\langle \cdot, \cdot \rangle$: an inner product

This induces the metric

$$d(x,y) = |x-y| \equiv \langle x-y, x-y \rangle^{1/2}, \quad \forall x, y \in M$$
 (5)

Definition 1.3: Topology

Defining

• $\mathcal{T} \equiv (A_i)$: a collection of subsets of M

 \mathcal{T} forms a topology for M if the following hold

- 1. $M, \emptyset \in \mathcal{T}$
- 2. If $(E_i) \subseteq \mathcal{T}$ is a countable collection
- 3. If $(E_i) \subseteq \mathcal{T}$ is a finite collection

Definition 1.4: Open & Closed Sets

- Open Set: elements of a topology (i.e., $A \in \mathcal{T}$)
- Closed Set: complement of an open set (i.e., A^c)

Definition 1.5: Open & Closed Balls

Defining

- (M,d): a metric space
- $\epsilon > 0$: Radius
- $x \in M$: Center

Open and closed balls are defined as

- 1. Open Ball: $B(x, \epsilon; d) \equiv \{y \in M | d(x, y) < \epsilon\}$
- 2. Closed Ball: $\bar{B}(x,\epsilon;d) \equiv \{y \in M | d(x,y) \le \epsilon\}$

Definition 1.6: Metric Topology

Given

• (M, d): a metric space

The metric can induce a topology by considering a collection of open balls.

Example 1.6.1: Borel Topology

- standard topology on \mathbb{R}^m
- all open balls centered at rational numbers $\mathbb Q$
- radius is positive rational

Definition 1.7: Set Closure

Given

- $A \subseteq M$: a subset of a metric space
- D_i : collection of all closed sets that contain A
- $\bar{A} \supseteq A$: the closure of A

Closure is defined as

$$\bar{A} \equiv \bigcap_{i} D_{i} \tag{6}$$

Remark. In Borel topology, isolated points are closed

Definition 1.8: Set Interior

Given

- $A \subseteq M$: a subset of a metric space
- E_i : collection of all open sets that contain A
- $A^{\circ} \subseteq A$: the interior of A

The interior is defined as

$$A^{\circ} \equiv \bigcup_{i} E_{i} \tag{7}$$

Definition 1.9: Open Neighborhood Given

- $x \in M$: a point in a metric space
- $\mathcal{T}(M)$: the topology of M

 $A\subseteq M$ is an open neighborhood of x if

- $x \in A$
- $A \in \mathcal{T}(M)$

Remark. The neighborhood is implied to be small, with motivation from metric topology implying that A looks like a small open ball centered at x.

2 Parameter Optimization Conditions

2.1 Defining Optimality

Summary. Defining local and global minimum on a metric space for a cost function

- 1. Local minimum
- 2. Global minimum
- 3. Local minimum; (\mathbb{R}, d) : Local minimum in standard 1D metric space
- 4. Global minimum; (\mathbb{R}, d) : Global minimum in standard 1D metric space
- 5. Extremum

2.2 Unconstrained Smooth Parameter Optimization

Summary. Deriving optimiality conditions in Euclidean space \mathbb{R}^n Definitions:

- 1. Continuously Bounded Differentiable Function
- 2. Compact Set
- 3. Stationary Point
- 4. Unit Sphere
- 5. Hessian Matrix

Theorems:

- 1. Heine-Borel Property
- 2. Weierstrass Extreme Value
- 3. First Order Necessary Condition; (\mathbb{R}, d)
- 4. Taylor's Formula; Using Lagrange Form of the Mean-Value of the Remainder
- 5. Second Order Necessary Condition; (\mathbb{R}, d)
- 6. Second Order Sufficient Condition; (\mathbb{R}, d)
- 7. First Order Necessary Condition; (\mathbb{R}^n, d)