Machine Learning Supervised Learning Classification

NOCH KWAN UNIVERSITY IN THE PARTY IN THE PAR

Logistic Regression (Binary Classification)

 Instead of predicting a real (continuous) value, we might want to predict a discrete value to classify certain data into categories such as cat/not_cat, spam/not_spam, pass/fail, S/M/L, cancerous/not cancerous

- Logistic regression is the relationship between features (x's) and the probability of a particular outcome (related to y's)
- We will use logistic regression to predict the probability of an event (e.g. whether it is a cat) for binary classification problems
- Logistic regression uses Maximum Likelihood Estimation the set of coefficients (weights) for which the probability of getting the data we have observed is maximum

Linear Regression vs Logistic Regression

- Linear regression is used to predict a continuous value
 - **–** Best fit line is a straight line, y = wx + b
- Logistic regression (or binary classification) is used to predict a discrete value
- A key difference from linear regression is that in logistic regression, the output value being modelled is a binary value (0 or 1) rather than a numeric value
- To restrict the output to be between 0 and 1 use a sigmoid (logistic) function
- Actually the output is a probability between 0 and 1, so the higher the probability, the more likely the value of the output is 1 (if probability > 0.5, then output=1)
 - The result of wx + b is fed to a logistic function to get y

$$y = \frac{1}{1 + e^{-z}} \qquad \text{where } z = wx + b$$

Logistic Regression cont.

- Analogous to linear regression
- Predicts the probability of an event/class
 - rounded to 0 or 1

WA

- Finds weights, w for each feature, x
 - Positive implies positively correlated with outcome (e.g. haveScale and beingReptile)
 - Negative implies negatively correlated with outcome (e.g. weeklyExerciseHours and havingHeartAttack)
 - Absolute magnitude related to strength of the correlation
- Uses optimisation process to compute the weights, e.g. gradient descent to minimise the Log Loss

More on x's and y's

- In linear regression/classification, we may have a couple of scenarios:
 - One independent variable x affecting the final outcome (e.g. age affecting height)
 - More than one independent variable affecting the final outcome (e.g. age and sleep time affecting height)
 - More than one type of independent variable (continuous vs discrete) affecting the outcome (e.g. age, sleep time and gender affecting height)

Classification Method II

K Nearest Neighbours (kNN)

Animal Classification Example

Features Label

Cold-Name **Egg-laying** Scales **Poisonous** Number Reptile blooded legs 1 1 1 0 1 Cobra 1 Rattlesnake 1 1 1 Boa constrictor Chicken 0 Guppy 1 1 0 Dart frog Zebra 0 0 Python 0 1 1 Alligator

Distance matrix

	cobra	rattlesnake	boa constrictor	chicken	guppy	dart frog	zebra	python	alligator
cobra	-	0.0	1.414	2.236	1.732	1.732	2.236	1.0	1.414
rattlesnake	0.0	-	1.414	2.236	1.732	1.732	2.236	1.0	1.414
boa constrictor	1.414	1.414	-	2.236	1.0	2.236	1.732	1.0	1.414
chicken	2.236	2.236	2.236	-	2.449	2.0	2.0	2.0	1.0
guppy	1.732	1.732	1.0	2.449	-	2.0	1.414	1.414	1.732
dart frog	1.732	1.732	2.236	2.0	2.0	-	1.414	2.0	1.732
zebra	2.236	2.236	1.732	2.0	1.414	1.414	-	2.0	1.732
python	1.0	1.0	1.0	2.0	1.414	2.0	2.0	-	1.0
alligator	1.414	1.414	1.414	1.0	1.732	1.732	1.732	1.0	

- Distance between different observations are recorded in a distance matrix
- Distance can be calculated using Euclidean or Manhattan, for example

1 Nearest Neighbour

- Using simple distance matrix for classification
- Simplest approach is probably one nearest neighbour
- Remember training data
- When predicting the label of a new example
 - Find nearest example in the training data
 - Predict the label associated with that example

Nearest Neighbour

										_
	cobra	rattlesnake	boa constrictor	chicken	guppy	dart frog	zebra	python	alligator	Label
cobra		0.0	1.414	2.236	1.732	1.732	2.236	1.0	1.414	R
rattlesnake	0.0	-	1.414	2.236	1.732	1.732	2.236	1.0	1.414	R
boa constrictor	1.414	1.414	-	2.236	1.0	2.236	1.732	1.0	1.414	R
chicken	2.236	2.236	2.236	-	2.449	2.0	2.0	2.0	1.0	~R
guppy	1.732	1.732	1.0	2.449	-	2.0	1.414	1.414	1.732	~R
dart frog	1.732	1.732	2.236	2.0	2.0	-	1.414	2.0	1.732	~R
zebra	2.236	2.236	1.732	2.0	1.414	1.414	Prediction: ~R, Actual: ~R			
python	1.0	1.0	1.0	2.0	1.414	2.0	Prediction: R, Actual: R			
alligator	1.414	1.414	1.414	1.0	1.732	1.732	Prediction: ~R, Actual: R			

Choosing just one nearest neighbour could be problematic

K Nearest Neighbours (kNN)

 Take k nearest neighbours, k usually odd (if 2 classes), and take a vote on majority class

Problem: if k is too high it becomes inefficient (memory intensive)

kNN Exercise

Lisa has lost gender information of one of her customers, and does not know whether to make a skirt or trousers. She is planning to throw a coin.

Can you help her to make a better decision using a KNN-classifier?

The customer who is missing gender information: Gender -----, Waist 28, Hip 34

Let us use K = 3 nearest neighbors.

Fill in the table to calculate KNN.

	. ,	1.1.		1.	belongs to the	gender of neighborhood member (empty if
	waist	hip		ranking	neighborhood	x_n not in the
Gender	(cm)	(cm)	distance	number	(Yes or No)	neighborhood)
Male	28	32	$(28-28)^2+(34-32)^2=4$			
Male	33	35	$(28-33)^2+(34-35)^2=26$			
Female	27	33				
Female	31	36				

Logistic Regression vs. kNN

- Feature weights in Logistic Regression give insight about variables – positively or negatively correlated to the outcome and strength
- kNN is comparatively slower than logistic regression when it comes to predicting
- kNN is has no explicit training (memorise all data and labels)
- kNN is a distance based technique while logistic regression is probability based

Summary

- Supervised learning (Classification)
 - → logistic regression (binary classification)
 - → k nearest neighbours (KNN)

Links

- Russell and Norvig Chapter 18
- A. Ng. Linear and Logistic Regression Cost Function (Videos) [<u>LinearR1</u>] [<u>LinearR2</u>] [<u>LogisticR</u>]
- J. Brownlee. Logistic Regression for Machine Learning [Link]
- A. Ng Deeplearning.ai Logistic Regression Working [Link] Loss & Cost function [Link], Training [Link]
- StatQuest with Josh Starmer (Videos) [Coefficients]
 [Max Likelihood] [Significance] [R-squared]