Practice Questions for MA 341 Midterm, Spring 2024

1. (5pts) Let (x_n) be a sequence of real numbers. Give the definition of

$$\lim_{n \to \infty} x_n = L$$

- 2. (5pts) Give the definition of a Cauchy sequence.
- 3. (5pts) Give the definition of the supremum and infimum.
- 4. (5pts) State the Principle of Mathematical Induction.
- 5. (5pts) State Cantor's Theorem.
- 6. (5pts) Let A be the set of prime numbers. Is the power set of A countable?
- 7. (5pts) Give an example of a function $f: \mathbb{N} \to \{n \in \mathbb{N} \mid n \text{ even}, n \geq 10\}$ which is surjective but not injective.
- 8. (5pts) Give an example of a function $f: X \to Y$ and a subset $Z \subseteq Y$ such that there is no bijection between Z and $f^{-1}(Z)$. (The sets X, Y, and Z are up to you.)
- 9. (5pts) Suppose that a sequence (x_n) has a constant subsequence. Must (x_n) converge? If so, say why. If not, give a counterexample.
- 10. (5pts) Give an example of unbounded subsets of \mathbb{R} , say $A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots$, such that

$$\bigcap_{i=1}^{\infty} A_i = \emptyset.$$

- 11. (5pts) State the Bolzano-Weierstrass Theorem.
- 12. (20pts) Prove that \mathbb{R} is uncountable.
- 13. (20pts) Prove that a bounded increasing sequence converges.
- 14. (20pts) Prove by induction that $5^{2n} 1$ is divisible by 8 for every $n \in \mathbb{N}$.
- 15. (20pts) Let $A \subseteq \mathbb{R}$ be a bounded nonempty set of positive numbers, and let c > 0. Define

$$cA = \{ y \in \mathbb{R} \mid y = cx \text{ for some } x \in A \}.$$

Prove that

$$\sup(cA) = c\sup(A).$$

Remember to prove first that $\sup(cA)$ exists!

16. (20pts) Prove, using the definition of the limit, that

$$\lim_{n \to \infty} \frac{n^2 - 1}{n^2 + 1} = 1$$

17. (20pts) Prove any of questions 1. through 4. in Section 3.3 of the text.