Chapitre

Équilibre de plusieurs réactions acido-basiques

5. Les outils

5.1. pH d'une solution aqueuse

Définition 1.1 : Définition du pH

 $pH = -\log(a(H_3O^+)) \simeq -\log([H_3O^+])$ si la concentration totale en ion est suffisament faible.

Définition 1.2 : Définition du pOH

 $pH = -\log(a(HO^-)) \simeq -\log([HO^-])$ si la concentration totale en ion est suffisament faible.

La somme des 2 vaut 14.

5.1. Constante d'équilibre d'une réaction

La constante d'équilibre peut se déduire des Ka des 2 couples mis en jeu. On a

π Théo

Théorème 1.1 : Constante d'équilibre

Pour une réaction de la forme Acide1+Base2=Base1+Acide2, on a

CHIMIE DES SOLUTIONS & Équilibre de plusieurs réactions acido-basiques, Méthode de la réaction prépondérante

$$K = \frac{Ka(1)}{Ka(2)}.$$

Si le $pK_a(2) > pK_a(1)$ et $|\Delta pK_a| > 4$, alors la réaction est quasi-totale dans le sens direct et la constante d'équilibre est $K = 10^{+|\Delta pKa|}$.

Si le $pK_a(2) < pK_a(1)$ et $|\Delta pK_a| > 4$, alors la réaction est quasinégligeable dans le sens indirect et la constante d'équilibre est $K=10^{-|\Delta pKa|}$.

Méthode de la réaction prépondérante

5.2. Réaction prépondérante

Par définition, c'est la réaction qui modifie le plus la composition du milieu.

Par hypothèse X, c'est celle qui a la constante d'équilibre la plus élevée. Quand il n'y a que es acides ou des bases, c'est la réaction de l'acide le plus fort sur la base la plus forte.

X Difficulté Cela dépend

Cela dépend aussi de la composition initiale mais aussi des conditions initiales (dilution, réactif en excès)

Méthode

- 1. Identifier les espèces prépondérantes
- 2. Classer les couples présents sur une échelle de pK_a
- 3. Entourer les espèces prépondérantes présentes initialement
- 4. On identifie l'acide le plus fort et la base la plus forte
- 5. Les 2 réagissent ensembles

5.2. Principe

On image la succession des réactions prépondérantes qui conduisent à des solutions équivalentes. On s'arrette quand $K < 10^4$.

5.2. Validation

Quand on connait le Ka, la concentration de la forme acide et de la forme basique, on peut trouver la concentration en [H₃O+] car $K_a = \frac{[A-][H_3O^+]}{[AH]}$.

5.2.**4**H

Acide/base fort

Solution	рН	Validité
Acide fort	$-\log(C)$	< 6.5
Base forte	$14 + \log(C)$	> 7.5

Acide/base faible

Solution	рН	Validité
Acide faible	$\frac{1}{2}(pK_A - \log(C_0))$	<6.5, < pKa-1
Base faible	$\frac{1}{2}(14 + pk_A + \log(C_0))$	> 7.5, > pKa + 1

Mélange

Solution	рН	Validité
Tampon (A/B faibles conjugués)	$pkA + \log(\frac{C_B}{C_A})$	
Acide/Base faible de couples \neq	$\frac{1}{2}(pkA + pkB + \log(\frac{C_B}{C_A}))$	