WHAT IS CLAIMED IS:

- 1. A method of modulating the activity of a mammalian type II popoisomerase enzyme comprising contacting said enzyme with a compound that inhibits enzyme-mediated cleavage of a polynucleotide substrate.
- 2. The method according to claim 1, wherein said compound forms a stable non-covalent ternary complex comprising said enzyme, said polynycleotide, and said compound.
- 3. The method according to claim 1, wherein said inhibition comprises preventing the formation of said enzyme-polynucleotide complex.
- 4. The method according to claim 1, wherein said mammal is a human.
- 5. The method according to claim 1, wherein said mammal is a domestic animal.
- 6. The method according to claim 1, wherein said polynucleotide substrate is selected from the group consisting of DNA, RNA and a DNA-RNA hybrid.
- 7. The method according to claim 1, wherein said enzyme is associated with a mammalian disease, and wherein said compound inhibits the progression of said disease.
- 8. The method according to claim 7, wherein said disease is a cancer.
- 9. The method according to claim 8, wherein contact with said compound inhibits replication of cancer cells.
- 10. The method acfording to claim 7, wherein said contacting step occurs in vitro.
- 11. The method according to claim 7, wherein said contacting step occurs in vivo in a mammal.
- 12. The method according to claim 7, wherein said contacting step occurs ex vivo.

13. The method according to claim 1, wherein said compound is a compound of formula (Ia) or a pharmaceutically acceptable derivative thereof:

$$AB(CH_2)_n \longrightarrow N \longrightarrow N \longrightarrow R^4$$

$$Z^1 \longrightarrow Z^5 \longrightarrow R^3$$

$$Z^2 \longrightarrow Z^4 \longrightarrow R^3$$
(Ia)

wherein:

one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is N, one is CR^{1a} and the remainder are CH, or one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is CR^{1a} and the remainder are CH;

 R^1 is selected from hydroxy; (C_{1-6}) alkoxy optionally substituted by (C_{1-6}) alkoxy, amino, piperidyl, guanidino or amidino optionally N-substituted by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups, NH2CO, hydroxy, thiol, (C_{1-6}) alkylthio, heterocyclylthio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C_{1-6}) alkylsulphonyloxy; (C_{1-6}) alkoxy-substituted (C_{1-6}) alkyl; halogen; (C_{1-6}) alkyl; (C_{1-6}) alkylthio; nitro; azido; acyl; acyloxy; acylthio; (C_{1-6}) alkylsulphonyl; (C_{1-6}) alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups, or when one of (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups, or when one of (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups, or when one of (C_{1-6}) alkylsulphonyl groups, or when one o

R^{1a} is selected from H and the groups listed above for R¹;

R³ is hydrogen; or

 \mathbb{R}^3 is in the 2- or 3-position and is:

carboxy; (C_{1-6}) alkoxycarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{1-6}) alkenylsulphonyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl or (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl or (C_{2-6}) alkenyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by (C_{1-6}) alkyloxy-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5-

ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by R¹⁰; or 5-oxo-1,2,4-oxadiazol-3-yl; or

 R^3 is in the 2- or 3-position and is (C_{1-4})alkyl or ethenyl substituted with any of the groups listed above for R^3 and/or 0 to 3 groups R^{12} independently selected from:

thiol; halogen; (C₁₋₆)alkylthio; trifluoromethyl; azigo; (C₁₋₆)alkoxycarbonyl; (C₁₋ 6)alkylcarbonyl; (C₂₋₆)alkenyloxycarbonyl; (C₂₋₆)alkenylcarbonyl; hydroxy optionally substituted by (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋ 6)alkenyloxycarbonyl, (C2-6)alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylcarbonyl or (C₂₋ 6)alkenylcarbonyl; amino optionally mono- or disubstituted by (C₁₋₆)alkoxycarbonyl, (C₁₋₁ 6) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{1-6}) alkyl, (C_{2-6}) 6) alkenyl, (C₁₋₆) alkylsulphonyl, (C₂₋₆) alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, $aminocarbonyl(C_{1-6})alkyl, (C_{2-6})alkerfyl, (C_{1-6})alkoxycarbonyl, (C_{1-6})alkylcarbonyl, (C_{2-6})alkylcarbonyl, (C_$ 6)alkenyloxycarbonyl or (C₂₋₆)alkenylcarbonyl and optionally further substituted by (C₁₋ 6) alkyl, hydroxy(C_{1-6}) alkyl, amin ϕ carbonyl(C_{1-6}) alkyl or (C_{2-6}) alkenyl; oxo; (C_{1-6}) 6)alkylsulphonyl; (C₂₋₆)alkenyls/alphonyl; or (C₁₋₆)aminosulphonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; provided that when R³ is disubstituted with hydroxy or amino and carboxy containing substituents these may optionally together form a cyclic ester or amide linkage, respectively;

wherein R^{10} is selected from (C_{1-4}) alkyl; (C_{2-4}) alkenyl; aryl; a group R^{12} as defined above; carboxy; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{1-6}) alkenylsulphonyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; cyano; or tetrazolyl;

 R^4 is a group -CH₂- R^5 in which R^5 is selected from:

 $(C_{3-12})\text{alkyl}; \text{ hydroxy}(C_{3-12})\text{alkyl}; (C_{1-12})\text{alkoxy}(C_{3-12})\text{alkyl}; (C_{1-12})\text{alkoxy}(C_{3-12})\text{alkyl}; (C_{1-12})\text{alkoxy-or}$ $(C_{1-12})\text{alkanoyloxy-}(C_{3-6})\text{cycloalkyl}(C_{3-12})\text{alkyl}; \text{ hydroxy-}, (C_{1-12})\text{alkoxy- or}$ $(C_{1-12})\text{alkanoyloxy-}(C_{3-6})\text{cycloalkyl}(C_{3-12})\text{alkyl}; \text{ cyano}(C_{3-12})\text{alkyl}; (C_{2-12})\text{alkenyl};$ $(C_{2-12})\text{alkynyl}; \text{ tetrahydrofuryl}; \text{ mono- or di-}(C_{1-12})\text{alkylamino}(C_{3-12})\text{alkyl};$ $\text{acylamino}(C_{3-12})\text{alkyl}; (C_{1-12})\text{alkyl- or acyl-aminocarbonyl}(C_{3-12})\text{alkyl}; \text{ mono- or di-}(C_{3-12})\text{alkyl};$

 $(C_{1-12}) alkylamino(hydroxy) \ (C_{3-12}) alkyl; optionally substituted pheryl(C_{1-2}) alkyl, \\ phenoxy(C_{1-2}) alkyl or phenyl(hydroxy)(C_{1-2}) alkyl; optionally substituted diphenyl(C_{1-2}) alkyl; optionally substituted phenyl(C_{2-3}) alkenyl; optionally substituted benzoyl or benzoyl(C_{1-3}) alkyl; optionally substituted heteroaryl or heteroaryl(C_{1-2}) alkyl; and optionally substituted heteroaroyl or heteroaroylmethyl;$

n is 0, 1 or 2;

AB is NR¹¹CO, CO-CR⁸R⁹ or CR⁶R⁷-CR⁸R⁹ or when n is 1 or 2, AB may instead be O-CR⁸R⁹ or NR¹¹-CR⁸R⁹, or when n is 2 AB may instead be CR⁶R⁷-NR¹¹ or CR⁶R⁷-O, provided that when n is 0, B is not CH(OH), and wherein:

each of R^6 and R^7 R^8 and R^9 is independently selected from: H; thiol; (C_{1-6}) alkylthio; halo; trifluoromethyl; azido; (C_{1-6}) alkyl; (C_{2-6}) alkenyl; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) alkylcarbonyl; (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) alkenyloxycarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents in R^3 ; (C_{1-6}) alkylsulphonyl; (C_{2-6}) alkenylsulphonyl; or (C_{1-6}) aminosulphonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{1-6}) alkenyl; or R^6 and R^8 together represent a bond and R^7 and R^9 are as above defined; and each R^{11} is independently H, trifluoromethyl, (C_{1-6}) alkyl, (C_{1-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkenylcarbonyl, (C_{1-6}) alkenyloxycarbonyl, (C_{1-6}) alkenylcarbonyl, (C_{1-6}) alkenyl and optionally further substituted by (C_{1-6}) alkyl or (C_{1-6}) alkenyl;

or where one of \mathbb{R}^3 and \mathbb{R}^6 , \mathbb{R}^7 , \mathbb{R}^8 or \mathbb{R}^9 contains a carboxy group and the other contains a hydroxy or amino group they may together form a cyclic ester or amide linkage.

14. The method according to claim 1, wherein said compound is:

$$\begin{array}{c|c} A-B-(CH_2)_n & N-R^4 \\ \hline (R^1)_m & R^2 & R^3 \end{array}$$

wherein:

(Ib)

m is 1 or 2

each R¹ is independently hydroxy; (C₁₋₆) alkoxy optionally sybstituted by (C₁₋ 6)alkoxy, amino, piperidyl, guanidino or amidino optionally N-substituted by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups, NH₂CO, hydroxy, thiol, (C_{1-6}) alkylthio, heterocyclylthio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C₁₋ 6) alkylsulphonyloxy; (C_{1-6}) alkoxy-substituted (C_{1-6}) alkyl; halogen; (C_{1-6}) alkyl; (C_{1-6}) 6)alkylthio; nitro; azido; acyl; acyloxy; acylthio; (C₁₋₆)alkyl sulphonyl; (C₁₋₆) 6)alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted by one or two (c_{1-6}) alkyl, acyl or (c_{1-6}) 6)alkylsulphonyl groups; either R^2 is hydrogen; and

 \mathbb{R}^3 is in the 2- or 3-position and is hydrogen or (C_{1-6}) alkyl or (C_{2-6}) alkenyl optionally substituted with 1 to 3 groups selected from:

thiol; halogen; (C_{1-6}) alkylthio; trifly fromethyl; azido; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) 6) alkylcarbonyl; (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl; hydroxy optionally substituted by (C_{1-6}) alkyl, (C_{2-6}) alkenyl/ (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkoxycarbonyl, (C_{2-6}) alkylcarbonyl, (C_{2-6}) alky 6)alkenyloxycarbonyl, (C2-6)alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylcarbonyl or (C_{2-6}) 6)alkenylcarbonyl; amino optionally/mono- or disubstituted by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) 6) alkylcarbonyl, (C_{2-6}) alkenyloxy farbonyl, (C_{2-6}) alkenylcarbonyl, (C_{1-6}) alkyl, (C_{2-6}) 6) alkenyl, (C_{1-6}) alkylsulphonyl, (C_{2-6}) alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl(C_{1-6})alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) 6) alkenyloxy carbonyl or (C_{2-6}) alkenyl carbonyl and optionally further substituted by (C_{1-6}) 6)alkyl, hydroxy(C₁₋₆)alkyl, aminocarbonyl(C₁₋₆)alkyl or (C₂₋₆)alkenyl; oxo; (C₁₋₆) 6) alkylsulphonyl; $(C_2/6)$ alkenylsulphonyl; or aminosulphonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; or

 R^3 is in the 3-position and R^2 and R^3 together are a divalent residue = $CR^{5^1}R^{6^1}$ where R^{5^1} and R^{6^1} are independently selected from H, (C_{1-6}) alkyl, (C_{2-6}) alkenyl, aryl (C_{1-6}) 6)alkyl and aryl (C₂₋₆)alkenyl, any alkyl or alkenyl moiety being optionally substituted by 1 to 3 groups selected from those listed above for substituents on R³;

 R^4/s a group -CH₂- R^5 in which R^5 is selected from:

 (Q_{3-12}) alkyl; hydroxy (C_{3-12}) alkyl; (C_{1-12}) alkoxy (C_{3-12}) alkyl; (C_{1-12}) alkyl; $(C_{1$ 12)alkano $\sqrt[4]{\log(C_{3-12})}$ alkyl; (C₃₋₆)cycloalkyl(C₃₋₁₂)alkyl; hydroxy-, (C₁₋₁₂)alkoxy- or $(C_{1-12})ak$ anoyloxy- (C_{3-6}) cycloalkyl (C_{3-12}) alkyl; cyano (C_{3-12}) alkyl; (C_{2-12}) alkenyl;

ŧ۵ ٠D

 (C_{2-12}) alkynyl; tetrahydrofuryl; mono- or di- (C_{1-12}) alkylamino (C_{3-12}) alkyl; acylamino (C_{3-12}) alkyl; (C_{1-12}) alkyl- or acyl-aminocarbonyl (C_{3-12}) alkyl; mono- or di- (C_{1-12}) alkylamino(hydroxy) (C_{3-12}) alkyl; optionally substituted phenyl (C_{1-2}) alkyl, phenoxy (C_{1-2}) alkyl or phenyl (C_{1-2}) alkyl; optionally substituted diphenyl (C_{1-2}) alkyl; optionally substituted phenyl (C_{2-3}) alkenyl; optionally substituted benzoyl or benzoylmethyl; optionally substituted heteroaryl (C_{1-2}) alkyl; and optionally substituted heteroaroyl or heteroaroylmethyl;

n is 0, 1 or 2;

A is NR^{11} , O, $S(O)_X$ or CR^6R^7 and B is NR^{11} , O, $S(O)_X$ or CR^8R^9 where x is 0, 1 or 2 and wherein:

each of R^6 and R^7 R^8 and R^9 is independently selected from: H; thiol; (C_{1-6})alkylthio; halo; trifluoromethyl; azido; (C_{1-6})alkyl; (C_{2-6})alkenyl; (C_{1-6})alkoxycarbonyl; (C_{1-6})alkylcarbonyl; (C_{2-6})alkenyloxycarbonyl; (C_{2-6})alkenyloxycarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents in R^3 ; (C_{1-6})alkylsulphonyl; (C_{2-6})alkenylsulphonyl; or (C_{1-6})aminosulphonyl wherein the amino group is optionally substituted by (C_{1-6})alkyl or (C_{1-6})alkenyl;

or R⁶ and R⁸ together represent a bond and R⁷ and R⁹ are as above defined; or R⁶ and R⁸ together represent –O- and R⁷ and R⁹ are both hydrogen; or R⁶ and R⁷ or R⁸ and R⁹ together represent oxo;

and each R^{11} is independently H, trifluoromethyl, (C_{1-6}) alkyl, (C_{1-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{1-6}) alkenyloxycarbonyl, (C_{1-6}) alkenylcarbonyl, (C_{1-6}) alkyl or (C_{1-6}) alkenyl and optionally further substituted by (C_{1-6}) alkyl or (C_{1-6}) alkenyl;

provided that A and B cannot both be selected from NR^{11} , O and $S(O)_X$ and when one of A and B is CO the other is not CO, O or $S(O)_X$.

15. The method according to claim 1, wherein said compound is selected from the group consisting of:

[3R,4R]/-3-Ethyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R, R]-1-Heptyl-3-(1-(R)-hydroxyethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3/R,4R]-1-Heptyl-3-hydroxymethyl-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[2S]-1-Heptyl-4-[2-(R)-hydroxy-2-(6-methoxyquinolin-4-yl)ethyl]-2-hydroxymethylpiperazine;

[2S]-2-Carboxymethyl-1-heptyl-4-[2-(R,S)-hydroxy-2-(6-methoxyquinolin-4-yl)ethyl]piperazine trihydrochloride, and

1-Hydroxyheptyl-4-[2-(R)-hydroxy-2-(6-methoxyquinolin-4-yl)ethyl]piperazine.

- 16. A pharmaceutical composition comprising a compound that inhibit the mammalian type II topoisomerase enzyme-mediated cleavage of a polynucleotide substrate in a pharmaceutically or physiologically acceptable carrier.
 - 17. The composition according to claim 16, where said compound is selected from the group consisting of:

(A) a compound of formula (Ia) or a pharmaceurically acceptable derivative thereof:

wherein:

one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is N, one is CR^{1a} and the remainder are CH, or one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is CR^{1a} and the remainder are CH;

 R^1 is selected from hydroxy; (C_{1-6}) alkoxy optionally substituted by (C_{1-6}) alkoxy, amino, piperidyl, guanidino or amidino optionally N-substituted by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups, NH₂CO, hydroxy, thiol, (C_{1-6}) alkylthio, heterocyclylthio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C_{1-6}) alkylsulphonyloxy; (C_{1-6}) alkoxy-substituted (C_{1-6}) alkyl; halogen; (C_{1-6}) alkyl; (C_{1-6}) alkylthio; nitro; azido; acyl; acyloxy; acylthio; (C_{1-6}) alkylsulphonyl; (C_{1-6}) alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted

by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups, or when one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is N, R^1 may instead be hydrogen;

R^{1a} is selected from H and the groups listed above for R¹;

R³ is hydrogen; or

 R^3 is in the 2- or 3-position and is:

carboxy; (C_{1-6}) alkoxycarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{1-6}) alkenylsulphonyl, (C_{1-6}) alkenylsulphonyl, (C_{1-6}) alkenyloxycarbonyl or (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl or (C_{2-6}) alkenyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; cyano; tetrazolyl; 2,4-thiazolidinedione-5-yl; tetrazol-5-ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by (C_{1-6}) alkyl or 5-oxo-1,2,4-oxadiazol-3-yl; or

 R^3 is in the 2- or 3-position and is $(C_{1,4})$ alkyl or ethenyl substituted with any of the groups listed above for R^3 and/or 0 to 3 groups R^{12} independently selected from:

thiol; halogen; (C_{1-6}) alkylthio; trifluoromethyl; azido; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) 6)alkylcarbonyl; (C₂₋₆)alkenylcarbonyl; (C₂₋₆)alkenylcarbonyl; hydroxy optionally substituted by (C_{1-6}) alky/, (C_{2-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyl, (C_{2-6}) alkoxycarbonyl, (C_{2-6}) alkylcarbonyl, (C_{2-6}) alkylcarb 6) alkenyloxycarbonyl, ($\not c_{2-6}$) alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylcarbonyl or (C₂₋₆) 6)alkenylcarbonyl; amino optionally mono- or disubstituted by (C₁₋₆)alkoxycarbonyl, (C₁₋ 6) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl, (C_{1-6}) alkyl, (C_{2-6}) 6) alkenyl, (C₁₋₆) alkylsulphonyl, (C₂₋₆) alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbony (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) 6) alkenyloxy ϕ arbonyl or (C₂₋₆) alkenylcarbonyl and optionally further substituted by (C₁₋₁ 6) alkyl, hydfoxy(C_{1-6}) alkyl, aminocarbonyl(C_{1-6}) alkyl or (C_{2-6}) alkenyl; oxo; (C_{1-6}) 6)alkylsulphonyl; (C₂₋₆)alkenylsulphonyl; or (C₁₋₆)aminosulphonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; provided/that when R³ is disubstituted with hydroxy or amino and carboxy containing substituents these may optionally together form a cyclic ester or amide linkage, respectively; wherein R^{10} is selected from (C_{1-4}) alkyl; (C_{2-4}) alkenyl; aryl; a group R^{12} as defined above; carboxy; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{1-6}) alkenylsulphonyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl or (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; cyano; or tetrazolyl;

R⁴ is a group -CH₂-R⁵ in which R⁵ is selected from:

 $(C_{3-12})\text{alkyl}; \text{hydroxy}(C_{3-12})\text{alkyl}; (C_{1}/_{12})\text{alkoxy}(C_{3-12})\text{alkyl}; (C_{1-12})\text{alkyl}; (C_{1-12})\text{alkyl}; (C_{3-6})\text{cycloalkyl}(C_{3-12})\text{alkyl}; \text{hydroxy-}, (C_{1-12})\text{alkoxy-} \text{ or } (C_{1-12})\text{alkanoyloxy-}(C_{3-6})\text{cycloalkyl}(C_{3-12})\text{alkyl}; \text{cyano}(C_{3-12})\text{alkyl}; (C_{2-12})\text{alkenyl}; (C_{2-12})\text{alkynyl}; \text{tetrahydrofuryl}; \text{mono-} \text{ or } \text{di-}(C_{1-12})\text{alkylamino}(C_{3-12})\text{alkyl}; \text{mono-} \text{ or } \text{di-}(C_{1-12})\text{alkylamino}(C_{3-12})\text{alkyl}; \text{mono-} \text{ or } \text{di-}(C_{1-12})\text{alkylamino}(\text{hydroxy}) (C_{3-12})\text{alkyl}; \text{optionally substituted phenyl}(C_{1-2})\text{alkyl}, \text{phenoxy}(C_{1-2})\text{alkyl} \text{ or phenyl}(\text{hydroxy})(C_{1-2})\text{alkyl}; \text{ optionally substituted diphenyl}(C_{1-2})\text{alkyl}; \text{ optionally substituted phenyl}(C_{1-2})\text{alkyl}; \text{ optionally substituted benzoyl or benzoyl}(C_{1-3})\text{alkyl}; \text{ optionally substituted heteroaryl} \text{ or heter$

n is 0, 1 or 2;

AB is $NR^{11}CO$, $CO-CR^8R^9$ of $CR^6R^7-CR^8R^9$ or when n is 1 or 2, AB may instead be $O-CR^8R^9$ or $NR^{11}-CR^8R^9$, or when n is 2 AB may instead be $CR^6R^7-NR^{11}$ or CR^6R^7-O , provided that when n is 0, B is not CH(OH),

and wherein:

each of R^6 and R^7 R^8 and R^9 is independently selected from: H; thiol; (C_{1-6}) alkylthio; halo; trifluoromethyl; azido; (C_{1-6}) alkyl; (C_{2-6}) alkenyl; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) alkylcarbonyl; (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) alkenyloxycarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents in R^3 ; (C_{1-6}) alkylsulphonyl; (C_{2-6}) alkenylsulphonyl; or (C_{1-6}) aminosulphonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{1-6}) alkenyl; or R^6 and R^8 together represent a bond and R^7 and R^9 are as above defined; and each R^{11} is independently H, trifluoromethyl, (C_{1-6}) alkyl, (C_{1-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkenylcarbonyl, (C_{1-6}) alkenyloxycarbonyl, (C_{1-6}) alkenylcarbonyl, (C_{1-6}) alkenyl and optionally

further substituted by (C_{1-6}) alkyl or (C_{1-6}) alkenyl;

or where one of R³ and R⁶, R⁷, R⁸ or R⁹ contains a carboxy group and the other contains a hydroxy or amino group they may together form a cyclic ester of amide linkage;

(B) (Ib) or a pharmaceutically acceptable derivative thereof and process for their preparation:

$$\begin{array}{c|c} A-B-(CH_2)_{\overline{n}} & N & -R^4 \\ \hline (R^1)_{\overline{m}} & R^2 & R^3 \end{array} \tag{Ib}$$

wherein:

m is 1 or 2

each R^1 is independently hydroxy; (C_{1-6}) alkoxy optionally substituted by (C_{1-6}) alkoxy, amino, piperidyl, guanidino or amidino optionally N-substituted by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups, NH_2CO , hydroxy, thiol, (C_{1-6}) alkylthio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C_{1-6}) alkylsulphonyloxy; (C_{1-6}) alkoxy-substituted (C_{1-6}) alkyl; halogen; (C_{1-6}) alkyl; (C_{1-6}) alkylthio; nitro; azido; acyl acyloxy; acylthio; (C_{1-6}) alkylsulphonyl; (C_{1-6}) alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N substituted by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups; either (C_{1-6}) alkylsulphonyl groups;

 R^3 is in the 2- or 3-position and is hydrogen or (C_{1-6}) alkyl or (C_{2-6}) alkenyl optionally substituted with 1 to 3 groups selected from:

thiol; halogen; (C_{1-6}) alkylthio; trifluoromethyl; azido; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) alkylcarbonyl; (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) alkenyloxycarbonyl; hydroxy optionally substituted by (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) alkenyloxycarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylcarbonyl or (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) alkenyloxycarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl,

aminocarbonyl(C_{1-6})alkyl, (C_{2-6})alkenyl, (C_{1-6})alkoxycarbonyl, (C_{1-6})alkylcarbonyl, (C_{2-6})alkenyloxycarbonyl or (C_{2-6})alkenylcarbonyl and optionally further substituted by (C_{1-6})alkyl, hydroxy(C_{1-6})alkyl, aminocarbonyl(C_{1-6})alkyl or (C_{2-6})alkenyl; oxo; (C_{1-6})alkylsulphonyl; (C_{2-6})alkenylsulphonyl; or aminosulphonyl wherein the amino group is optionally substituted by (C_{1-6})alkyl or (C_{2-6})alkenyl; or

 R^3 is in the 3-position and R^2 and R^3 together are a divalent residue = $CR^{5^1}R^{6^1}$ where R^{5^1} and R^{6^1} are independently selected from H, (C_{1-6}) alkyl, (C_{2-6}) alkenyl, aryl (C_{1-6}) alkyl and aryl (C_{2-6}) alkenyl, any alkyl or alkenyl projety being optionally substituted by 1 to 3 groups selected from those listed above for sybstituents on R^3 ;

R⁴ is a group -CH₂-R⁵ in which R⁵ is/selected from:

 $(C_{3-12})\text{alkyl}; \text{hydroxy}(C_{3-12})\text{alkyl}; (C_{1-12})\text{alkoxy}(C_{3-12})\text{alkyl}; (C_{1-12})\text{alkoxy}(C_{3-12})\text{alkyl}; (C_{1-12})\text{alkoxy-or} \\ (C_{1-12})\text{alkanoyloxy-}(C_{3-6})\text{cycloalkyl}(C_{3-12})\text{alkyl}; \text{cyano}(C_{3-12})\text{alkyl}; (C_{2-12})\text{alkenyl}; \\ (C_{2-12})\text{alkynyl}; \text{tetrahydrofuryl}; \text{mono- or di-}(C_{1-12})\text{alkylamino}(C_{3-12})\text{alkyl}; \\ \text{acylamino}(C_{3-12})\text{alkyl}; (C_{1-12})\text{alkyl-or acyl-aminocarbonyl}(C_{3-12})\text{alkyl}; \\ \text{mono- or di-}(C_{1-12})\text{alkylamino}(\text{hydroxy}) \\ (C_{3-12})\text{alkyl}; \text{optionally substituted phenyl}(C_{1-2})\text{alkyl}, \\ \text{phenoxy}(C_{1-2})\text{alkyl} \text{ or phenyl hydroxy})(C_{1-2})\text{alkyl}; \text{ optionally substituted diphenyl}(C_{1-2})\text{alkyl}; \\ \text{optionally substituted phenyl}(C_{1-2})\text{alkyl}; \text{ optionally substituted benzoyl or benzoylmethyl}; \\ \text{optionally substituted heteroaryl}(C_{1-2})\text{alkyl}; \text{and optionally substituted heteroaroyl or heteroaroylmethyl}; }$

n is 0, 1 or 2;

A is NR^{11} , O, $S(O)_X$ or CR^6R^7 and B is NR^{11} , O, $S(O)_X$ or CR^8R^9 where x is 0, 1 or 2 and wherein:

each of R^6 and R^7 R^8 and R^9 is independently selected from: H; thiol; (C_{1-6})alkylthio; halo; trifluoromethyl; azido; (C_{1-6})alkyl; (C_{2-6})alkenyl; (C_{1-6})alkoxycarbonyl; (C_{1-6})alkylcarbonyl; (C_{2-6})alkenyloxycarbonyl; (C_{2-6})alkenyloxycarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents in R^3 ; (C_{1-6})alkylsulphonyl; (C_{2-6})alkenylsulphonyl; or (C_{1-6})aminosulphonyl wherein the amino group is optionally substituted by (C_{1-6})alkyl or (C_{1-6})alkenyl;

or R^6 and R^8 together represent a bond and R^7 and R^9 are as above defined; or R^6 and R^8 together represent -O- and R^7 and R^9 are both hydrogen; or R^6 and R^7 or R^8 and R^9 together represent oxo;

and each R^{11} is independently H, trifluoromethyl, (C_{1-6}) alkyl, (C_{1-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{1-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl, (C_{1-6}) alkyl or (C_{1-6}) alkenyl and optionally

further substituted by (C_{1-6}) alkyl or (C_{1-6}) alkenyl;

provided that A and B cannot both be selected from NR^{11} , O and $S(O)_X$ and when one of A and B is CO the other is not CO, O or $S(O)_X$;

(C) a compound selected from the group consisting of:

[3R,4R]-3-Ethyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-methoxyquino)(n-4-yl)propyl]piperidine;

[3R,4R]-1-Heptyl-3-(1-(R)-hydroxyethyl)-4-[3-(6-methoxyqu/nolin-4-yl)propyl]piperidine;

[3R,4R]-1-Heptyl-3-hydroxymethyl-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[2S]-1-Heptyl-4-[2-(R)-hydroxy-2-(6-methoxyquinolin-4-yl)ethyl]-2-hydroxymethylpiperazine;

[2S]-2-Carboxymethyl-1-heptyl-4-[2-(R,S)-hydroxy-2-(6-methoxyquinolin-4-yl)ethyl]piperazine trihydrochloride; and

1-Hydroxyheptyl-4-[2-(R)-hydroxy/2-(d-methoxyquinolin-4-yl)ethyl]piperazine.

- 18. The composition according to claim 16, having anti-cancer activity.
- 19. The composition according to claim 16, further comprising: an anticancer agent having a target other than topoisomerase.
- 20. A method for treating a disease in a mammal characterized by the abnormal behavior of a mammalian type II topoisomerase enzyme comprising administering to said mammal having said disease an effective amount of a pharmaceutical composition of claim 16.
- 21. The method according to claim 20, wherein said disease is a cancer.
- 22. The method according to claim 20, wherein said composition is administered by a route selected from intravenous, oral, intradermal, transdermal, intraperitoneal, intramuscular, subcutaneous, by inhalation and mucosal.

- 24. The method according to claim 20, wherein an effective dosage of said compound comprises about 1.5 mg/m² by intravenous infusion over 30 minutes daily for 5 consecutive days.
- 25. The method according to claim 20 wherein said mammal is a human.
- 26. The method according to claim 20, wherein said mammal is a domestic animal.
- 27. A method for identifying a compound useful to treat mammalian diseases characterized by the aberrant presence or activity of a mammalian type II opoisomerase comprising screening said compound for the ability to inhibit a mammalian type II topoisomerase-mediated cleavage of a polynucleotide substrate.
- 28. The method according to claim 27, wherein said compound is an anticancer compound.
- 29. The method according to claim 27, comprising determining that said compound forms a high molecular weight of out 230 Kda to 2000/Kda ternary complex with said enzyme and said polynucleotide substrate.
- 30. The method according to claim 29, wherein said determining step comprises adding a reaction mixture comprising in a buffer, a test compound, said enzyme, and said polynucleotide substrate to a size exclusion chromatographic column; and monitoring the fractions eluting from said chromatographic column to detect the fraction containing said ternary complex.
- 31. The method according to claim 29, further comprising detecting an intact complex comprising said polynucleotide and said enzyme.
- 32. The method according to claim 31, comprising reacting a test compound with said enzyme and polynucleotide substrate; quenching said reaction with a denaturant; and performing gel analysis to indicate if said polynucleotide is intact.

- 34. A compound identified by the method of claim 27.
- 35. A method for screening for an anticancer compound comprising the steps of: obtaining the crystal structure of a compound that inhibits the mammalian type II topoisomerase-mediated cleavage of a polynucleotide substrate; and performing computer analysis to design or select from among test compounds, a compound having a substantially similar crystal structure.
- 36. The method according to claim 35, comprising the step of exposing said compound having said substantially similar crystal structure to a sample of cancer cells, and observing said cells for inhibition of replication, wherein the occurrence of inhibition is indicative of an anticancer compound.
- 37. The method of claim 2 wherein the compound forms a stable non-covalent ternary complex comprising said enzyme, said polynucleotide, and said compound, by contacting an enzymes DNA cleavage/reunion domain.
- The composition according to claim 19, further comprising a compound selected from the group consisting of an alkylating agent, a hitrogen mustard, mechlorethamine hydrochloride, cyclophosphamide, ifosfamide, methalan, chlorambucil, thiotepa, busulfan, a nitrosourea, carmustine, lomustine, carmustine, and dacarbazine, an antimetabolite, methotrexate, a pyrimidine analog, cytarabine, fluorouracil, a purine analog, mercaptopurine, a vinca alkaloid, vincristine sulfate, vinblastine sulfate, taxol, etoposide, doxorubicin hydrochloride, mitoxantrone hydrochloride, bleomycin sulfate, plicamycin, mitomycin, L-asparaginase, a platinum coordination complex, cisplatin, mitotane, hydroxyurea, procarbazine hydrochloride, diethylstilbestrol, estradiol cypionate, a steroid and prednisone.