Project 1, Part 2.

Procedure

$$PH = \begin{pmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1x_1' & -y_1x_1' & -x_1' \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -x_1y_1' & -y_1y_1' & -y_1' \\ x_2 & y_2 & 1 & 0 & 0 & 0 & -x_2x_2' & -y_2x_2' & -x_2' \\ 0 & 0 & 0 & x_2 & y_2 & 1 & -x_2y_2' & -y_2y_2' & -y_2' \\ x_3 & y_3 & 1 & 0 & 0 & 0 & -x_3x_3' & -y_3x_3' & -x_3' \\ 0 & 0 & 0 & x_3 & y_3 & 1 & -x_3y_3' & -y_3y_3' & -y_3' \\ x_4 & y_4 & 1 & 0 & 0 & 0 & -x_4x_4' & -y_4x_4' & -x_4' \\ 0 & 0 & 0 & x_4 & y_4 & 1 & -x_4y_4' & -y_4y_4' & -y_4' \\ x_5 & y_5 & 1 & 0 & 0 & 0 & -x_5x_5' & -y_5x_5' & -x_5' \\ 0 & 0 & 0 & x_5 & y_5 & 1 & -x_5y_5' & -y_5y_5' & -y_5' \\ x_6 & y_6 & 1 & 0 & 0 & 0 & -x_6x_6' & -y_6x_6' & -x_6' \\ 0 & 0 & 0 & x_6 & y_6 & 1 & -x_6y_6' & -y_6y_6' & -y_6' \\ x_7 & y_7 & 1 & 0 & 0 & 0 & -x_7x_7' & -y_7x_7' & -x_7' \\ 0 & 0 & 0 & x_7 & y_7 & 1 & -x_7y_7' & -y_7y_7' & -y_7' \\ x_8 & y_8 & 1 & 0 & 0 & 0 & -x_8x_8' & -y_8x_8' & -x_8' \\ 0 & 0 & 0 & x_8 & y_8 & 1 & -x_8y_8' & -y_8y_8' & -y_8' \end{pmatrix}$$

This system is formed by choosing 8 points from the pictures. Solving this using Single Value Decomposition, $P=USV^T$ and select the last singular vector of V as the solution to H.

This procedure is used in Task 1, 2 and 3 to compute the Homography matrix H.

Task 1

Inputs

Points Chosen

	Left top	Left Bottom	Right Top	Right Bottom	Top Median	Bottom Median	Left Median	Right Median
Image A (x,y)	(0,0)	(0,507)	(499,0)	(499,507)	(249,0)	(249,506)	(0,253)	(499,253)
Image B (x',y')	(186,153)	(184,464)	(346,174)	(344,433)	(266,164)	(264,448)	(186,308)	(345,303)

Homography Matrix

Using the following 8 points in image A, and comparing them to their corresponding points in image B, we get 8 equations. By solving for these equations, the following matrix is obtained:

$$H = 0.0018 \quad 0.0004 \quad 0.0000$$
 $-0.0000 \quad 0.0025 \quad -0.0000$
 $0.7670 \quad 0.6416 \quad 0.0041$

Applying Homography x' = Hx

Using the following matrix H to warp the image A, we get the following transformed image:

Overlaying image

We overlay this image onto image B to obtain the required results:

Task 2

Inputs

Points chosen

	Left top	Left Bottom	Right Top	Right Bottom	Top Median	Bottom Median	Left Median	Right Median
Image A (x,y)	(0,0)	(0,276)	(182,0)	(182,276)	(91,0)	(91,276)	(0,138)	(182,138)
Image B (x',y')	(708,151)	(710,330)	(870,132)	(872,325)	(788,141)	(791,327)	(707,240)	(872,228)

Homography Matrix

Using the following 8 points in image A, and comparing them to their corresponding points in image B, we get 8 equations. By solving for these equations, the following matrix is obtained:

Applying Homography x' = Hx

Using the following matrix H to warp the image A, we get the following transformed image:

Overlaying image

We overlay this image onto image B to obtain the required results:

Task 3

Inputs

Points Chosen

	Left top	Left Bottom	Right Top	Right Bottom	Top Median	Bottom Median	Left Median	Right Median
Image A (x,y)	(0,0)	(0,240)	(479,0)	(479,240)	(239,0)	(239,240)	(0,120)	(479,120)
Image B (x',y')	(543,81)	(553,474)	(965,81)	(1053,457)	(756,80)	(806,465)	(549,278)	(1009,270)

Homography Matrix

Using the following 8 points in image A, and comparing them to their corresponding points in image B, we get 8 equations. By solving for these equations, the following matrix is obtained:

Applying Homography x'=Hx

Using the following matrix H to warp the image A, we get the following transformed image:

Overlaying image

We overlay this image onto image B to obtain the required results:

