## Image Processing - Assignment 1

 $\begin{array}{c} \text{Group 3} \\ \text{Martin Eek Gerhardsen} \end{array}$ 

October 12



Department of Engineering Cybernetics

## Contents

| 1 | Spa | tial Filt | ering  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |
|---|-----|-----------|--------|--|--|--|--|--|--|--|--|--|--|--|--|--|---|
|   | 1.1 | Task 1:   | Theory |  |  |  |  |  |  |  |  |  |  |  |  |  | ] |

$$f = \begin{array}{|c|c|c|c|c|c|} \hline 5 & 0 & 2 & 3 & 4 \\ \hline 3 & 2 & 0 & 5 & 6 \\ \hline 4 & 6 & 1 & 1 & 4 \\ \hline \end{array}$$

## 1 Spatial Filtering

## 1.1 Task 1: Theory

**a**)

Sampling is the process of converting a continuos-time signal to a discretetime signal, usually by measuring the continuos-time signal at specific points in time and extending this measurement over a set time step.

b)

Quantization is the process of constraining a signal from a larger to a smaller set of values, like mapping colours to the standard RGB range of 256 integer values.

**c**)

A high contrast image histogram would look similar to a dirac delta function, with most values grouped together around the same intensity.

d)

$$n_{\text{pixel}} = 3 * 5 = 15$$
 $L = 7i_0 = 2$ 
 $i_1 = 2$ 
 $i_2 = 2$ 
 $i_3 = 2$ 
 $i_4 = 3$ 
 $i_5 = 2$ 
 $i_6 = 2$ 
 $i_7 = 0$ 

Then using eq. (1) on section 1.1 gives section 1.1.

| $\lceil n \rceil$                          | 0                                   | 1                                   | 2                                   | 3                              | 4                                    | 5                                    | 6                              | 7 ]                            |
|--------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------|--------------------------------------|--------------------------------------|--------------------------------|--------------------------------|
| $\begin{bmatrix} f_n \\ F_n \end{bmatrix}$ | $\frac{\frac{2}{15}}{\frac{2}{15}}$ | $\frac{\frac{2}{15}}{\frac{4}{15}}$ | $\frac{\frac{2}{15}}{\frac{6}{15}}$ | $\frac{2}{15} \\ \frac{8}{15}$ | $\frac{\frac{3}{15}}{\frac{11}{15}}$ | $\frac{\frac{2}{15}}{\frac{13}{15}}$ | $\frac{2}{15}$ $\frac{15}{15}$ | $\frac{0}{15}$ $\frac{15}{15}$ |

| 6 | 0 | 2 | 3 | 4 |  |  |
|---|---|---|---|---|--|--|
| 3 | 2 | 0 | 5 | 6 |  |  |
| 4 | 6 | 1 | 1 | 4 |  |  |

$$g_{i,j} = floor((L-1) * \sum_{n=0}^{f_{i,j}} \frac{i_n}{n_{\text{pixel}}})$$
(1)