ECE260B Winter 22

Power and Interconnect

Prof. Mingu Kang

UCSD Computer Engineering

Power

Power Consumption

- As transistor counts and clock frequencies have increased, power consumption has skyrocketed
- Dynamic power dissipation due to
 - Charging and discharging of load capacitances
 - "short-circuit" current while both PMOS and NMOS networks are partially ON
- Static power dissipation due to
 - Subthreshold conduction through OFF transistors
 - Tunneling current through gate oxide

Dynamic Power (during output transition from 0 -> 1)

- Energy delivered from power supply = $C_L V_{DD}^2$
- Energy stored in capacitor is ½ C_LV_{DD}²
- Energy dissipated in the PMOS register (by heat) is ½ C_LV_{DD}²
- No power dissipation from V_{DD} during 1 ->0 transition

Proof

Energy stored in the capacitor

$$E = \int_{0}^{\infty} v(t)i(t)dt = \int_{0}^{\infty} V\left[1 - e^{\frac{-t}{RC}}\right] \frac{V}{R} e^{\frac{-t}{RC}}dt$$

$$E = \frac{1}{2}CV^2$$

Energy dissipated in the register

$$E = R \int_{0}^{\infty} i^{2}(t)dt = R \frac{V^{2}}{R^{2}} \int_{0}^{\infty} e^{\frac{-2t}{RC}} dt$$

$$E = \frac{1}{2}CV^{2}$$

$$E_{trans} = \int_{0}^{\infty} Vi(t)dt = \int_{0}^{\infty} \frac{V^{2}}{R} e^{\left(\frac{-t}{RC}\right)} dt$$

$$E_{trans} = CV^{2}$$

Dynamic Power Dissipation with Switching Activity

$$P_{\text{dynamic}} = \frac{1}{T} \int_{0}^{T} i_{DD}(t) V_{DD} dt$$

$$= \frac{V_{DD}}{T} \int_{0}^{T} i_{DD}(t) dt$$

$$= \frac{V_{DD}}{T} \left[Tf_{\text{sw}} CV_{DD} \right]_{\text{(charge per cycle)}}$$

$$= CV_{DD}^{2} f_{\text{sw}}$$

- This repeats T*f_{sw} times over an interval of T
- Power dissipation = C_LV_{DD}² f_{sw}

Activity Factor

- Suppose the system clock frequency = f_{CLK}
- Let $f_{sw} = \alpha_{0->1} f_{CLK}$, where $\alpha_{0->1} =$ activity factor
 - If the signal is a clk, $\alpha_{0->1}$ is 1
 - If the signal switches once per cycle, $\alpha_{0\rightarrow 1}$ is 0.5
- Depends on design, but typically $\alpha_{0->1} = 0.1 \rightarrow$ now perhaps 0.03 0.05
- Dynamic power: $P_{dyn} = \alpha_{0->1} C_L V_{DD}^2 f_{CLK}$
- Activity factors are decreasing: Why?
 - (Cf. "Dark Silicon")

"Dark Silicon" Analysis in 2001 ITRS

- Portion of (switched) logic content at any given moment is approaching to zero due to power limits.
- Unfortunately, resource utilization is also decreasing

Short Circuit Power

- When transistors switch, both nMOS and pMOS networks may be momentarily
 ON at once
- Leads to "short circuit" current
- < 10% of dynamic power if rise/fall times are comparable for input and output</p>
 - This is one reason why you have transition time limits in your "electrical rule checks" (ERCs)

Basic Concepts of Power Optimization

- Goal
 - Maximize power reduction under a given timing requirement
- There is a tradeoff between power and delay
 - To reduce power, we need to sacrifice speed
 - However, since not all timing paths are timing critical, we can use surplus timing to reduce power
- Main idea
 - Critical timing path: Use faster (higher drive, higher power) cells
 - Non-critical timing path: Use slower (lower drive, lower power) cells

Power Optimization Knob in MOS

Pros and Cons of Low-Power Techniques

	Pros	Cons
Multi-V _{DD}	Most effective to reduce power (especially, dynamic power)	 Additional area for regulators, power networks and levelshifters are required Difficult to control voltage of individual cells
Multi-Vth	Easy to make cell variants (just change doping)	Additional masks and manufacturing steps are required
		Can increase dynamic power
Multi-Lgate	No additional mask or process are required	Additional cell layouts for all the variants are required
	■Many types of cell variants can be applicable → fine-grain control	Can increase dynamic power

Delay vs. Gate Length in 65 nm Process

- delay increases ~linearly with increasing channel length of the device.

Leakage vs. Gate Length in 65 nm Process

- leakage decreases exponentially with increasing channel length of the device.

Leakage vs. Delay Length in 65 nm Process

- leakage and delay are inversely proportional.

Interconnect

Interconnect Dimensions

w: width of interconnect

s: spacing between interconnects on same layer

h: dielectric thickness (spacing between interconnects in two vertically adjacent layers)

I: length of interconnect

t: thickness of interconnect

Resistance & Sheet Resistance

- Sheet resistance: resistance when W = L
- Resistance between R₁ vs. R₂ is same

Interconnect Resistance

Material	Sheet Resistance (Ω/□)
n- or p-well diffusion	1000 - 1500
n^+, p^+ diffusion	50 – 150
n^+, p^+ diffusion with silicide	3 – 5
n^+, p^+ polysilicon	150 – 200
n^+, p^+ polysilicon with silicide	4 – 5
Aluminum	0.05 - 0.1

- Resistance scales badly
 - True scaling would reduce width and thickness by S each node → roughly the case, since aspect ratio (AR) is constant
 - → R ~ S² for a fixed line length and material
- Reverse scaling → global wires get relatively slower with respect to (faster) devices
 - Skin effect: At very large dimensions and at higher frequencies, current <u>crowds</u> to edges (outer layers) of conductors → R increases more

Trends in Interconnect

Parallel Capacitance Plate Model

ILD = interlevel (or, interlayer) dielectric

$$H_{ILD} \equiv t_{ox}$$

Bottom plate of cap can be either substrate or another metal layer

$$C_{int} = e_{ox} * (W*L/t_{ox})$$

Capacitance Values for Different Configurations

- Parallel-plate model substantially underestimates capacitance as W drops below order of H
 - More lateral / fringing capacitance elements, esp. relative to ground (substrate) coupling

Capacitance Values for Different Configurations

Line dimensions: W, S (space), T, H

Inter-wire (Coupling) Capacitance

- Coupling effects among neighboring wires
 - Includes cross-over / cross-under wires on other layers

Coupling Noise

- Cross-section: victim (v) and aggressors (a)
- Interwire capacitance allows neighboring wires to interact
- Charge injected across C_c results in temporary (in static logic) glitch in voltage at the victim

Spectre Simulation (Demo): Victim – Aggressor

Rising slope with100p / 1ns

Simulations withC0 = 5 / 10 fF

Crosstalk from Capacitive Coupling

- Glitches caused by capacitive coupling between wires
 - An "aggressor" wire switches
 - A "victim" wire is charged or discharged by the coupling capacitance
- This is bad if:
 - The victim is a clock or asynchronous reset
 - The victim is a signal whose value is being latched at that moment

Slide courtesy of Paul Rodman, ReShape

Crosstalk: Timing Pull-In

- A switching victim is sped up by a coupled aggressor that is switching in the same direction
- This is bad if your path now violates "hold time" (minimum path delay constraint) checks
- can be fixed by adding delay elements to your path

Crosstalk: Timing Push-out

- A switching victim is slowed down by a coupled aggressor that is switching in the opposite direction
- This is bad if your path now violates setup time checks
- can be fixed by spacing the wires, using stronger drivers, ...

Miller Coupling Effect

- "A" switches but "B" does not: $\Delta V = V_{DD}$. A node "A" sees cap to node B is C_C .
 - "Miller Coupling Factor" (MCF) = 1. Thus C_{C,eff} = C_C.
- "A" and "B" switch in same direction: no voltage change: $\Delta V = 0$, C_c is effectively absent
 - MCF = 0, Thus $C_{C,eff} = 0$.
- "A" and "B" switch in opposite directions: voltage change $\Delta V = 2V_{DD}$, twice as much charge is required, C_c is effectively doubled
 - MCF = 2, Thus $C_{C,eff} = 2C_C$.

Timing Uncertainty over Technology Scaling

- Relatively greater coupling noise due to the reduced line space
- Tighter timing budgets to achieve fast circuit speed

Calculation Flow

- Timing window overlaps enable crosstalk delay variation
- Chicken-egg situation: delay vs. crosstalk
- Iteration
 - Starting with the assumption that all timing windows are overlapped (pessimistic about the unknowns)
 - Refine calculation by reducing pessimism

Interconnect Modeling

- Model in SPICE by using R and C.
 - Π Model is usually used, where resistance and capacitance of an interconnect is distributed
 - Distributed model uses N segments
 - More accurate but can have computational cost
 - Number of nodes blows up
 - Lumped model uses 1 segment of Π
 - Adequate only for local (short, point to point) nets

Distributed model of a single wire using multiple Π segments

Elmore Delay Model

$$t_{pd}(k) = 0.69 \Sigma_{i} R_{is} C_{i}$$

- lacksquare C_i is the capacitance at node i
- R_{is} is the total on-path (= on the shared path to s_k) resistance from the source s_0 to target node i

$$\begin{split} T_{D_3} &= R_1 C_1 + \left(R_1 + R_2\right) C_2 + \left(R_1 + R_2 + R_3\right) C_3 + R_1 C_4 \\ &= C_3 \\ \end{split}$$

Reducing RC Delay With Repeaters

Repeater

- strong driver (usually inverter or pair of inverters for non-inversion)
- placed along a long RC line to "break up" the line and reduce delay

HW: Elmore Delay

- Perform SPICE simulation with following parameters
 - Draw schematic
 - R3=30K while all the other R = 10K
 - -C1=C2=C3=C4=20fF
 - Measure 50%-50% delay from the input to node 3 & 4
 - Compare with your theoretic calculation

Miller Coupling Effect

- Perform simulation for the following three cases
- 1) "A" switches but "B" does not:
- 2) "A" and "B" switch in same direction
- 3) "A" and "B" switch in opposite directions

What will be the C_{eff} value for above three cases?

Simulate left and right cases to prove your calculated value (by comparing the delay).

(right bottom does not need to be simulated)